

School of Information Technologies Faculty of Engineering & IT

ASSIGNMENT/PROJECT COVERSHEET - GROUP ASSESSMENT

Unit of Study:	COMP5048			
Assignment name	e:Assignment 2	?-Flights data se	t (flight delay data)	
Tutorial time:	20:00 Thursday	Tutor name:	Nguyen Quan	

DECLARATION

We the undersigned declare that we have read and understood the <u>University of Sydney Academic Dishonesty and Plagiarism in Coursework Policy</u>, an, and except where specifically acknowledged, the work contained in this assignment/project is our own work, and has not been copied from other sources or been previously submitted for award or assessment.

We understand that failure to comply with the Academic Dishonesty and Plagiarism in Coursework Policy can lead to severe penalties as outlined under Chapter 8 of the University of Sydney By-Law 1999 (as amended). These penalties may be imposed in cases where any significant portion of my submitted work has been copied without proper acknowledgement from other sources, including published works, the internet, existing programs, the work of other students, or work previously submitted for other awards or assessments.

We realise that we may be asked to identify those portions of the work contributed by each of us and required to demonstrate our individual knowledge of the relevant material by answering oral questions or by undertaking supplementary work, either written or in the laboratory, in order to arrive at the final assessment mark.

Project Team Members				
Student name	Student ID	Contribution	Agree to Share	Signature
Nagib Shah	470360839	16.66%	Yes	Nair
Xinan Ma	470489934	16.66%	Yes	30南
Alan Shen	470194809	16.66%	Yes	Yilmsher
Young Choi	470346338	16.66%	Yes	The
Qiushi Zhang	470119101	16.66%	Yes	Zheng Qinstin
Girishkumar Dhotarkar	470351620	16.66%	Yes	Cherry Marie 2

Project Initial Report ---- Group 30

Flight Data Visualisation

27.09.2017

Revision History

Revision	Date	Status	Author	Summary of Changes
0.1	23-Sep-2017	Completed	Girish	Initial Draft
0.2	24-Sep-2017	Completed	All	Incorporated Review Comments
0.3	25-Sep-2017	Completed	All	Incorporated Review Comments
0.4	27-Sep-2017	In-Progres	Xinan	Incorporated Review Comments
0.5	27-Sep-2017	Complete	Nagib	Review and copy changes

Table of Contents

1. Introduction	5
1.1 Data Set	6
1.1.1 Selection process	6
1.1.2 Flight Data	6
1.2 Aims	9
2. Related Work	10
3. Design and Approaches	12
3.1 Framework of VA System - A hitchhiker's guide to U.S.A	12
3.2 Explanations of VA system framework design	13
3.3 Analysis processes and techniques of VA design	15
4. Implementation	18
5. Evaluation	20
5.1 Details of Evaluation Methods	20
5.1.1 Perform Survey	20
5.1.2 Feedback from Family and friends	20
5.1.3 Cross Validation with related work	21
5.1.4 Pro and Cons Analysis	21
6. Planning/Schedule & Role Assignments	22
7. References	24

Appendix: weekly group meeting minutes.

1. Introduction

As part of the assignment 2 of data visualisation, the project team (Group-30) has been tasked to study, analyse, identify and document the data visualisation topics and techniques, alongside the VA system that will assist in solving a series of tasks and questions as outlined in this report.

The objective of this report is to provide a detailed overview of the

- 1) Dataset selected
- 2) The problem statement(s)
- 3) High-level plans, sketches and prototypes for visualisations
- 4) Analysis tasks and techniques to be carried out for effective visualisation and summarisation of information.
- 5) VA system overview alongside the proposed tools
- 6) Project plan
- 7) Evaluation framework to address and assess if the VA system is able to cater to the problem statements/aims.

1.1 Data Set

1.1.1 Selection process

As part of assignment 2 activity, team members (Group-30) agreed on the following key criterion for selecting data set.

- Team skills profile
- Available references for Visualisation
- Visualisation achievable within timelines
- Quality of Visualisation achievable
- Complexity/Size of data

Several datasets were considered for selection by the project team and a decision was made based on the above-mentioned criterion.

1.1.2 Flight Data

After analysing each data set based on criteria above, team finalized on **Flight** (**delay**) **data set** available on http://stat-computing.org/dataexpo/2009/. The dataset contains largely US domestic flight network and performance details consisting of approximately 120 million flight arrival and departure information, metrics, and statistics ranging from the years 1987 till 2008. Furthermore, the dataset also contains airline/carrier, airport, and aircraft information that may provide useful insights.

After thorough study, cross reference, and consideration by the project team a decision was made to utilise the complete dataset (21 years approx.) for visualisation and analysis in order to present a complete and coherent summary of the US flight network and delay profiles. The following table outlines the structure and content of the dataset in detail.

Table 1.1.1: Base data (ONTIME)

Name	Description
Year	1987-2008
Month	Number
DayofMonth	Day
DayOfWeek	1 (Monday) - 7 (Sunday)
DepTime	actual departure time (local, hhmm)
CRSDepTime	scheduled departure time (local, hhmm)
ArrTime	actual arrival time (local, hhmm)
CRSArrTime	scheduled arrival time (local, hhmm)
UniqueCarrier	unique carrier code
FlightNum	flight number
TailNum	plane tail number
ActualElapsedTime	in minutes
CRSElapsedTime	in minutes
AirTime	in minutes
ArrDelay	arrival delay, in minutes
DepDelay	departure delay, in minutes
Origin	origin IATA airport code
Dest	destination IATA airport code
Distance	in miles
TaxiIn	taxi in time, in minutes
TaxiOut	taxi out time in minutes
Cancelled	was the flight cancelled
CancellationCode	reason for cancellation (A = carrier, B = weather, C = NAS, D = security)
Diverted	1 = yes, 0 = no
CarrierDelay	in minutes
WeatherDelay	in minutes
NASDelay	in minutes
SecurityDelay	in minutes
LateAircraftDelay	in minutes

Supplemental data Tables:

Table 1.1.2: Airports data

Name	Description
iata	Iata (airport code)
airport	Airport Name
city	City Name
state	State Abbreviation
country	Country Abbreviation
lat	latitude
long	Latitude

Table 1.1.3: Carriers

Name	Description
Code	Code of Airline
Description	Name of Airline

1.2 Aims

Team have gone through multiple iterations to identify aims of project exercise. The following objectives/questions were identified that will form the subject of this visualisation exercise and the VA system.

- **a.** Visualise best time of year for travelling with minimal flight delays.
- Any specific seasons/months is good or bad for travelling;
- Weekends cause more delay than weekdays;
- · Any specific airport or air route to avoid while travel booking.
- b. Visualise performance of airports and carrier year on year
- Best performing airport
- · Worst performing airport
- Best performing airline/carriers
- Worst performing airline/carriers
- c. Visualise negative effect of specific incident or event on flight delay
- 1999-2000 Y2K bug effect on flight delay
- 9/11 World trade centre terrorist attack effect on flight delay
- **d.** Visualise best performing airport(s) performance for a single year.

2. Related Work

Winner 1: Congestion in the sky

http://stat-computing.org/dataexpo/2009/posters/wicklin-allison.pdf

Brief: Effective visualisation of the US flight network that indicates delays and overall performance of airports and airlines. The work/submission includes a comprehensive set of visualisations ranging from network overview, to temporal and carrier analysis as well as statistical inference of the dataset. This submission has the most amount of synergy with our project aims and tasks.

Table 2.1: Strengths and weakness analysis for related work (|)

Strengths	Weaknesses
The interactive graph for percentage	• The carrier effect visualisation is not
of flight delays in the network and	very effective at conveying the
provides an easy to use and clean	overall carrier performance.
visualisation.	
Effective visualisation of the seasonal	
effects of the US domestic flight	
network	
Historical comparison of each airport	
in the form of Box-Plots	

Winner 3: A tale of two Airports

http://stat-computing.org/dataexpo/2009/posters/wickham.pdf

Brief: Visualisations and charting aimed at providing insights related to specific events and incidents only in the US flight network. The work focuses mostly on two specific airports (SFO and OAK) and the effects of major world events (e.g. 911)

Table 2.2: Strengths and weakness analysis for related work (||)

Strengths	Weaknesses
Clean VA framework focusing on a	• Only focuses on two airports as
small subset (2 airports) and therefore	opposed to the flight network
deals with limited data.	• Does not utilise any network graphs
• Focuses on specific events and	and relies mostly on charting and
targeted visualisation to show effect.	plotting to infer information and
• Good use of colour schemes on line	patterns.
chart to show carrier and airport	• Excessive utilisation of line charts
effects.	with minimal variety.

Independent work: Flight data visualisation using google fusion tables - http://xliberation.com/googlecharts/d3flights.html

Brief: This reference is very useful as it attempts to build/augment rich interactive features with visualisation of the US flight network. The work includes custom airport/node centrality calculations, custom edge weights, as well as incorporation of colours scales and schemes to effectively convey the overall status and the local network of a specific airport(s).

Table 2.3: Strengths and weakness analysis for related work (III)

	Strengths		Weaknesses
•	Interactive features that allows	•	Does not provide a grand overview of
	selection of specific airports and its		the flight network. User must interact
	immediate neighbours.		and select airport first before any
•	Effective use of colour schemes to		visualisations are presented.
indicate performance		•	Does not indicate US states outside of
• Easy identification of key airports by			the mainland (e.g. Alaska, Hawaii)
	node size.	•	Does not utilise edge bundling to
•	Summary of airport and key statistics		limit the total number of edges for
	shown with airport selection		overviews for a busy network.

3. Design and Approaches

3.1 Framework of VA System - A hitchhiker's guide to U.S.A

Figure 3.1.1: VA Framework with Network Analysis

Figure 3.1.2: VA Framework with interactive network visualisation

3.2 Explanations of VA system framework design

Table 3.2.1: Explanation of each visualization design

A1	Label	Purpose	Explanation & Justification
Interactive Visualisation to show the networks of each airports / airlines by flight delay Calendar view of flight delay to show over 2l years Colour scale will be applied to indicate percentage delay. This interactive visualisation will have drop down for year from 1987 to 2008. Interaction with airport node (Hover) on graph to highlight network associated with airport alongside a brief summary. Software tool proposed for this visualization is D3 to cater to interactive features that are required for effective summarisation of the network. There will be switch button [Map Overview] created to toggle between A1 and A2 visualisation. Each day represented by squares and heat map technique will be used to depict flight delay percentage for the day. Due to the size of the dataset, heat map is considered to be the appropriate technique to represent and disseminate the delay data	A1	Graph - Summarize and visualise 21 years of US domestic flight network data	analysis in order to visualise sub-graph which represents only airports with minimum number of flights (done to reduce size of the flight network). Edges (Airlines route) in different weights affected by number of flights alongside custom edge attribute of delay percentage. This is done to reduce the overall edges within the network. Betweenness centrality analysis will be used to identify airports by their shortest path and thereby critical to the overall flight network. For visualisation software tool ArcGIS is proposed for creating Geo-spacial layout which will represent airport and airline routes which cause most delay in
flight delay to show overall flight delay by day/month/year over 21 years Calendar View of flight delay technique will be used to depict flight delay percentage for the day. Due to the size of the dataset, heat map is considered to be the appropriate technique to represent and disseminate the delay data	A2	Visualisation to show the networks of each airports / airlines by flight	colour scale will be applied to indicate percentage delay . This interactive visualisation will have drop down for year from 1987 to 2008. Interaction with airport node (Hover) on graph to highlight network associated with airport alongside a brief summary. Software tool proposed for this visualization is D3 to cater to interactive features that are required for effective summarisation of the network. There will be switch button [Map Overview]
Visualisation will be represented by calendar layout	В	flight delay to show overall flight delay by day/month/year	technique will be used to depict flight delay percentage for the day. Due to the size of the dataset, heat map is considered to be the appropriate technique to represent and disseminate the delay data effectively.

		from year 1987 to 2008 and D3 is proposed as the chosen tool to perform this task.
С	Bar Charts for representing top performing airports	Performance of airport can be measured by percentage delay. Statistical analysis will be used on airport performance by year from 1987 to 2008 to identify top 12 airports . Visualisation will be represented by Bar charts as it is considered the simplest form of information summarisation from an end user perspective. Tableau is proposed for this visualisation piece.
D	Line Charts representing performance of best airport for a year	Summary of the best performing airport(s) analysed by statistical analysis method. Identify months of the year which cause more flight delay for top performing airport. Summarised monthly flight delay data can be represented effectively in line chart . Tableau is the proposed tool for this exercise.
E	Bubble Charts for airlines comparison analysis for top performing airlines	Top 10 airlines performance shown from 1987 to 2008. Each cluster/colour represent airline, and the circle size to represent % delay. Force directed algorithm is proposed because It produces good quality result for 50–500 node size graph and simple for analysis. D3 is proposed as the tool best for this exercise.
F	Correlation Matrix showing the relationship between delay reasons and the overall arrival delays to identify primary effect on flight delay	Analysis will be performed. Correlation Matrix to be generated for various dimensions like whether, security, distance etc. over the predicted value of flight delay. The purpose of this exercise is to identify and calculate the correlation figures associated with each delay reasons (% effect of reasons). scatter plot utilising the ggPlot library in R is proposed as the best fit tool to carry out such analysis and visualisation.

3.3 Analysis processes and techniques of VA design

Table 3.3.1: Analysis techniques illustration of each visualization design

Label	Data Processing	Analysis Technique / Algorithm / Methods
A1	Primary Network Graph - Summarize and visualise 21 years of US domestic flight network data for flight delays Tables/Entities used: 1. Ontime 2. airports	K-core Betweenness centrality
A2	Interactive Visualisation to shows the networks of each airports / airlines by flight delay Tables/Entities used: 1. Ontime 2. Airports 3. Carriers	Out-degree Centrality
В	Calendar view of flight delay to show overall flight delay by day/month/year over 21 years Tables/Entities used: Ontime	Heat map
C	Bar Charts for representing top performing airports Tables/Entities used: 1. Ontime 2. Airports	Statistical analysis
D	Line Charts representing performance of best airport for a year Tables/Entities used: 1. Ontime 2. Airports	Statistical analysis
E	Force Bubble Charts for airlines comparison analysis for top performing airlines Tables/Entities used: 1. Ontime 2. Carriers	Force Directed algorithm
F	Correlation Matrix and scatter plots Table/Entities used: Ontime	Statistical Analysis /Correlation Calculation

3.4 Summary of Visualisation

Table 3.4.1: Summary of visualization system design

Label	Visualisation	Addressing Aims	Visualisation Layout	Tool Propos`1ed
A1	Primary Network Graph - Summarize and visualise 21 years of US domestic flight network data for flight delays	Any specific airport or routes to avoid while travelling	Geo-spacial Layout	PostgreSQL NetworkX ARCGIS
A2	Interactive Visualisation to show the networks of each airports / airlines by flight delay	 Any specific airport or routes to avoid while travelling 9/11 World trade centre terrorist attack effect on flight network Identify effect of Y2K bug during 1999-2000 period 	Geo-spacial Layout	PostgreSQL D3, python
В	Calendar view of flight delay to show overall flight delay by day/month/year over 21 years	 Identify seasonal patterns in flight network that may assist with avoiding specific months/weekdays/weekends while travelling. 1999-2000 Y2K bug effect on flight delay 9/11 World trade centre terrorist attack effect on flight network 	Calendar Layout	PostgreSQL, D3
C	Bar Charts for representing top performing airports	Best/Worst performing airport which should be avoided while booking for travel	Bar Charts	PostgreSQL Tableau

D	Line Charts representing performance of best airport for a year	Spotlight and visualise best airport(s) performance over a period	Line Charts	PostgreSQL Tableau
E	Bubble Charts for airlines comparison analysis for top performing airlines	Best/Worst performing airline/carriers	Bubble Chart Layout	PostgreSQL D3
F	Correlation Matrix depicting the relationship between delay reasons/factors to identify and quantify the overall flight delay	Quantify and calculate the % effect of various factors to the flight delay (e.g. 15% delays likely caused by bad weather)	Correlation Matrix Scatter Plot	PostgreSQL R ggPlot

4. Implementation

Initial brief of full implementation is given in following steps:

Step 1. Extract & Load of data

- **a.** Download all data files from websites and put it in local drive.
- **b.** Use PostgreSQL utility to import data into database.
- c. Load all 21 years of flight delay data into Ontime table.
- **d.** Load airport data into Airport table and carrier data into carrier table.
- e. Check errors and remediate error while loading data.

Step 2. Cleanse data & Create Indexes

- **a.** Verify data has been completely loaded and no errors.
- **b.** Correct data type for all columns.
- **c.** Create indexes for all important columns and combinations to allow fast retrieval of information (query performance).

```
# index samples

create index year on ontime(year);

create index date on ontime(year, month, dayofmonth);

create index flightorigin on ontime (origin);

create index flightdest on ontime (dest);

create index flightarrdelay on ontime (arrdelay);
```

Step 3. Develop & test queries for each visualisation

a. Develop gueries required for each visualisation.

```
# e.g. delay summary all airports
```

- **b.** Get additional calculated/transformed data (e.g. % delay, performance percentage etc.)
- c. Test and refine queries to get correct outputs
- **d.** Download query results in csv, excel, graphml formats for easy port and load in visualisation tools.

Step 4. Develop code or use software tools to visualise & perform testing

- **a.** Carry out network analysis in NetworkX (e.g. centrality calculations) where applicable.
- **b.** Develop code or use tool(s) to generate visualisations (e.g. JavaScript for D3).
- c. Generate an overview of the visualisation of complete data
- **d.** Reduce, refine and iterate through visualisations until satisfactory results are produced.
- **e.** Write code or use tool options to scale colour, size, text, resolution and layout of visualisations.
- f. Debug and QA code
- **g.** QA visualisations.
- h. Refine visualisations and finalise.

Step 5. Peer review

- **a.** Perform peer review of each visualisation.
- **b.** Select top 2 visualisations.

Step 6. Evaluate and finalise visualisation

- a. Perform Evaluation for each visualisation
- **b.** Finalize visualisations for VA system as well as final report.

5. Evaluation

The table below outlines the template to be utilised/followed for evaluation for each of the graphs and the related tasks/aims associated.

Table 5.1: Evaluation template of each visualisation

Data/Visualisation	Visualisation name (e.g. A1 – Primary Network Graph)	
Task(s)	Identify critical routes	
	Identify critical airports/nodes	
	Summary of overall network	
Evaluation	Peer Review	
framework/Methods	Feedback from focus group (questionnaire)	
	Cross validation utilising past references	
Pros/Cons Analysis	Identify and document pros/cons and limitations	

5.1 Details of Evaluation Methods

5.1.1 Perform Survey

Various visualisation for same data set will be taken to focus group for visualisation quality and provide feedback via simple questionnaire/survey. Visualisation which rated higher will be selected for final report.

Table 5.1.1: Evaluation survey table

Visualisation Versions	Probably Worst			Probably Best	Selected Option	
Version 1	1	2	3	4	5	
	0	0	0	0	0	
Version 2	1	2	3	4	5	
	0	0	•	0	0	

5.1.2 Feedback from Family and friends

Every team member to show and explain Visualisation to their family / friends and provide feedback to the group. Selection of Visualisation for final report based on feedback provided.

5.1.3 Cross Validation with related work

Perform comparison with flight delay data Visualisation outlined in related work section.

5.1.4 Pro and Cons Analysis

Analyse and document the pros and cons of each visualization alongside any limitations.

6. Planning/Schedule & Role Assignments

Table 6.1: Assignment time schedule

Tasks	Start Date	End Date	Actual Start Date	Actual End Date	Member Involved	Status
Analyse data sets and finalize data set	14/09	15/09	14/09	15/09	All	Completed
Decide on visualisation aims	16/09	18/09	16/09	18/09	All	Completed
Visualisation draft preparation and finalize	19/09	21/09	19/09	21/09	All	Completed
Initial report 1 documentation	21/09	28/09	21/09	28/09	All	Completed
Initial Draft	21/09	23/09	21/09	23/09	Xinan, Girish	Completed
Review revise	24/09	26/09	24/09	26/09	All	Completed
Finalize initial report	26/09	28/09	26/09	28/09	All	Completed
Design	21/09	28/09				In Progress
Flight delay visualisation (Heat Map)	21/09	28/09	21/09		Qiushi, Alan	In Progress
Airport causing flight delay (K-Core)	21/09	28/09	21/09		Nagib, Xinan	In Progress
Airport causing flight delay interactive visualisation (Out-Degree Centrality)	21/09	28/09	21/09		Nagib, Girish	In Progress
Weather Impact on Flight Delay (Co-relation Matrix)	21/09	28/09	21/09		Xinan, Nagib, Young	In Progress
Flight Delay due to various parameters e.g. Security, Weather etc. (ggPlot scatter plot)	21/09	28/09	21/09		Xinan, Nagib, Young	In Progress
Airline Performance Comparison (Bubble Chart)	21/09	28/09	21/09		Xinan, Alan	In Progress
Best airport visualisation (Bar charts and line chart)	21/09	28/09	21/09		Young, Girish	In Progress
Implementation	14/09	12/10	15/09			Not Started
Extract and load of data	15/09	22/09	16/09	22/09	All	Completed
Cleanse data and create indexes	22/09	25/09	22/09	26/09	All	Completed
Develop & test queries for each visualisation	26/09	30/09	26/09		All	In Progress
Coding / Use software						
Flight delay visualisation (Heat Map)	29/09	10/10	25/09		Qiushi, Alan	In-Progress
Airport causing flight delay (K-Core)	29/09	10/10			Nagib, Xinan	Not Started
Airport causing flight delay interactive visualisation (Out-Degree Centrality)	29/09	10/10	25/09		Nagib, Girish	In-Progress
Weather impact on flight delay (Co-relation Matrix)	29/09	10/10	25/09		Xinan, Young	Not Started

Flight delay due to various parameters e.g.				
Security, Whether	29/09	10/10	Xinan, Young	Not Started
etc. (ggPlot scatter plot)				
Airline performance comparison	29/09	10/10	Xinan, Alan	Not Started
(Bubble Chart)	29/09	10/10	Alliali, Alali	Not Started
Best Airport Visualisation	20/00	10/10	Vous Cirish	Not Stantad
(Bar Charts and Line Chart)	29/09	10/10	Young, Girish	Not Started
Peer Review	10/10	12/10	All	
Evaluation	13/10	19/10	All	Not Started
Presentation	29/10	5/10	TBD	Not Started
Initial Draft	29/10	5/10	TBD	Not Started
Movie Creation	29/10	5/10	TBD	Not Started
Review	29/10	5/10	TBD	Not Started
Finalize Presentation	29/10	5/10	TBD	Not Started
Final Submission Documentation	5/10	19/10	TBD	Not Started
Initial Draft	5/10	19/10	TBD	Not Started
Review	5/10	19/10	TBD	Not Started
Finalize Initial Report	5/10	19/10	TBD	Not Started

Table 6.2: Assignment roles schedule

Roles	Team Members
Designer	Nagib, Xinan, Young
Developer	Nagib, Xinan, Qiushi, Alan, Young, Girish
Technical Writer	Qiushi, Girish, Young
Reviewer	Nagib, Xinan, Qiushi, Alan, Young, Girish
Evaluation Team Members	Nagib, Xinan, Qiushi, Alan, Young, Girish

7. References

Following are website/documents referred for this assignment.

- Force Layout Multiples https://bl.ocks.org/mbostock/1804889
- Congestion in the sky Data expo winner http://stat-computing.org/dataexpo/2009/posters/wicklin-allison.pdf
- Data Expo runner up flight data http://stat-computing.org/dataexpo/2009/posters/hofmann-cook.pdf
- Data Expo runner up 2 flight data http://stat-computing.org/dataexpo/2009/posters/wickham.pdf
- Minimizing Flight Delay Tanujit Dey David Phillips Patrick Steele http://stat-computing.org/dataexpo/2009/posters/dey-phillips-steele.pdf
- Circular Heat map https://github.com/prcweb/d3-circularheat
- Interactive flight network visualisation http://mbostock.github.io/d3/talk/20111116/airports.html
- Interactive flight network visualisation using google fusion tables http://xliberation.com/googlecharts/d3flights.html
- Circular Visualisation D3 https://github.com/nicgirault/circosjs