(19) World Intellectual Property Organization International Bureau

10 (1816 1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816) (1816)

(43) International Publication Date 18 April 2002 (18.04.2002)

PCT

(10) International Publication Number WO 02/30268 A2

(51) International Patent Classification7: A61B

Brisbane, CA 94005 (US). HEVEZI, Peter; 1360 11th Avenue, San Francisco, CA 94122 (US).

- (21) International Application Number: PCT/US01/32045
- (22) International Filing Date: 12 October 2001 (12.10.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

60/288,589

Priority Data:		
09/687,576	13 October 2000 (13.10.2000)	US
09/733,742	8 December 2000 (08.12.2000)	US
09/733,288	8 December 2000 (08.12.2000)	US
60/263,957	24 January 2001 (24.01.2001)	US
60/276,888	16 March 2001 (16.03.2001)	US
60/276,791	16 March 2001 (16.03.2001)	US
60/281,922	6 April 2001 (06.04.2001)	US
60/286,214	24 April 2001 (24.04.2001)	US
09/847,046	30 April 2001 (30.04.2001)	US

4 May 2001 (04.05.2001)

- (71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080-7019 (US).
- (72) Inventors: GISH, Kurt, C.; 40 Perego Terrace #2, San Francisco, CA 94131 (US). MACK, David, H.; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). WILSON, Keith, E.; 219 Jeter Street, Redwood City, CA 94062 (US). AFAR, Daniel; 435 Visitacion Avenue,

- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111-3834 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3 A2

(54) Title: METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in prostate cancer. Also described are such genes whose expression is further up-regulated or down-regulated in drug-resistant prostate cancer cells. Related methods and compositions that can be used for diagnosis and treatment of prostate cancer are disclosed. Also described herein are methods that can be used to identify modulators of prostate cancer.

METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

5.

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority from the following applications: USSN 09/687,576 filed October 13, 2000, USSN 60/276,791 filed March 16, 2001; USSN 60/288,589, filed May 4, 2001; USSN 09/733,742, filed December 8, 2000; USSN 09/733,288, filed December 8, 2000; USSN 09/847,046, filed April 30, 2001; USSN 60/276,888, filed March 16, 2001; USSN 60/286,214, filed April 24, 2001; USSN 60/281,922, filed April 6, 2001; USSN 60/263,957, filed January 24, 2001, which are incorporated herein by reference in their entirety.

15

20

25

10

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in prostate cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis and therapy of prostate cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit prostate cancer.

BACKGROUND OF THE INVENTION

Prostate cancer is the most commonly diagnosed internal malignancy and second most common cause of cancer death in men in the U.S., resulting in approximately 40,000 deaths each year (Landis et al., *CA Cancer J. Clin.* 48:6-29 (1998); Greenlee et al., *CA Cancer J. Clin.* 50(1):7-13 (2000)), and incidence of prostate cancer has been increasing rapidly over the past 20 years in many parts of the world (Nakata et al., *Int. J. Urol.* 7(7):254-257 (2000); Majeed et al., *BJU Int.* 85(9):1058-1062 (2000)). It develops as the

result of a pathologic transformation of normal prostate cells. In tumorigenesis, the cancer cell undergoes initiation, proliferation and loss of contact inhibition, culminating in invasion of surrounding tissue and, ultimately, metastasis.

Deaths from prostate cancer are a result of metastasis of a prostate tumor. Therefore, early detection of the development of prostate cancer is critical in reducing mortality from this disease. Measuring levels of prostate-specific antigen (PSA) has become a very common method for early detection and screening, and may have contributed to the slight decrease in the mortality rate from prostate cancer in recent years (Nowroozi et al., Cancer Control 5(6):522-531 (1998)). However, many cases are not diagnosed until the disease has progressed to an advanced stage.

5

10

15

20

25

Treatments such as surgery (prostatectomy), radiation therapy, and cryotherapy are potentially curative when the cancer remains localized to the prostate. Therefore, early detection of prostate cancer is important for a positive prognosis for treatment. Systemic treatment for metastatic prostate cancer is limited to hormone therapy and chemotherapy. Chemical or surgical castration has been the primary treatment for symptomatic metastatic prostate cancer for over 50 years. This testicular androgen deprivation therapy usually results in stabilization or regression of the disease (in 80% of patients), but progression of metastatic prostate cancer eventually develops (Panvichian et al., Cancer Control 3(6):493-500 (1996)). Metastatic disease is currently considered incurable, and the primary goals of treatment are to prolong survival and improve quality of life (Rago, Cancer Control 5(6):513-521 (1998)).

Thus, methods that can be used for diagnosis and prognosis of prostate cancer and effective treatment of prostate cancer, and including particularly metastatic prostate cancer, would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of prostate cancer. Further provided are methods that can be used to screen candidate bioactive agents for the ability to modulate, e.g., treat, prostate cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in prostate cancer and other cancers.

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are up- and down-regulated in prostate cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate prostate cancer, such as hormones or antibodies. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the present invention provides a method of determining the level of a prostate cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1-16.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label.

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat prostate cancer. In another embodiment, the patient is suspected of having metastatic prostate cancer.

In one embodiment, the patient is a human.

In one embodiment, the patient is suspected of having a taxol-resistant cancer.

In one embodiment, the prostate cancer associated transcript is mRNA.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

5

10

15

20

25

30

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of prostate cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a prostate cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic prostate cancer. In a further embodiment, the patient has a drug resistant (e.g., taxol resistant) form of prostate cancer.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the prostate cancer-associated transcript to a level of the prostate cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1-16.

In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-16.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid.

In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a prostate cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to prostate cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1-16.

In another aspect, the present invention provides a method for identifying a compound that modulates a prostate cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a prostate cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect.

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of a prostate cancer-associated cell to treat prostate cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having prostate cancer or to a cell sample isolated therefrom; (ii) comparing the level of gene expression of a

polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of prostate cancer.

5

10

15

20

25

30

In one embodiment, the control is a mammal with prostate cancer or a cell sample therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal.

In one embodiment, the test compound is administered in varying amounts or concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

In another aspect, the present invention provides a method for treating a mammal having prostate cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having prostate cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in a prostate cancer. In one embodiment, a gene is selected from Tables 1-16. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate, wherein the concentration of the drug

candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the prostate cancer modulatory protein, or an animal lacking the prostate cancer modulatory protein, for example as a result of a gene knockout.

5

10

15

20

25

30

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1-16, wherein the biochip comprises fewer than 1000 nucleic acid probes. Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

Furthermore, a method of diagnosing a disorder associated with prostate cancer is provided. The method comprises determining the expression of a gene of Tables 1-16, in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with prostate cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in prostate cancer.

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of a prostate cancer modulating protein (prostate cancer modulatory protein) or a fragment thereof and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining a prostate cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. The method further includes determining the binding of said prostate cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits prostate cancer.

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an

individual a composition comprising a prostate cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises a prostate cancer modulating protein, preferably encoded by a nucleic acid of Tables 1-16, or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding a prostate cancer modulating protein, preferably selected from the nucleic acids of Tables 1-16, and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

Also provided are methods of neutralizing the effect of a prostate cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

In another aspect of the invention, a method of treating an individual for prostate cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of a prostate cancer modulating protein. In another embodiment, the method comprises administering to a patient having prostate cancer an antibody to a prostate cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for prostate cancer (PC), including metastatic prostate cancer, as well as methods for screening for compositions which modulate prostate cancer. Also provided are methods for treating prostate cancer.

In addition to the other nucleic acid and peptide sequences, the present invention also relates to the identification of PAA2 as a gene that is highly over expressed in prostate cancer patient tissues. PAA2 sequence is identical to the zinc transporter ZNT4. Results presented herein demonstrate that PAA2/ZNT4 is highly expressed in prostate cancer cells. The prostate gland is unique in that it has the highest capacity of any organ in the body

to accumulate zinc. Zinc uptake is regulated by prolactin and testosterone, which induce the expression of a member of the ZIP family of zinc transporters (Costello et al., 1999, J. Biol. Chem. 274:17499-17504). Zinc accumulation in the prostate functions to inhibit citrate oxidation, which results in a decrease in cellular ATP production (Costello and Franklin, 1998, Prostate 35:285-296). Cancer cells are more sensitive to decreased ATP production and have evolved to prevent zinc accumulation. Without wishing to be bound by theory, the up-regulation of ZNT4 in prostate cancer cells may result in protection of the cells from high zinc levels by its ability to pump accumulated zinc out of the cells.

The present invention also relates to nucleic acid sequencess encoding PBH1. PBH1 is related to human TRPC7 (transient receptor potential-related channels, NP_003298), a putative calcium channel highly expressed in brain (Nagamine et al., Genomics 54:124-131 (1998)). Trp is related to melastatin, a gene down-regulated in metastatic melanomas (Duncan et al., Cancer Res. 58:1515-1520 (1998)), and MTR1, a gene locallized to within the Beckwith-Wiedemann syndrome/Wilm's tumor susceptability region (Prawitt et al., Hum. Mol. Genet. 9:203-216 (2000)). Without wishing to be bound by theory, it is believed that PBH1 functions as a calcium channel.

10

20

25

30

As a calcium channel, PBH1 is an ideal target for a small molecule therapeutic, or a therapeutic antibody that disrupts channel function. CD20, the target of Rituximab in non-Hodgekin's lymphoma (Maloney et al., Blood 90:2188-2195 (1997); Leget and Czuczman, Curr. Opin. Oncol. 10:548-551 (1998)), is a plasma membrane calcium channel expressed in B cells (Tedder and Engel, Immunol. Today 15:450-454 (1994)). Similarly, a small molecule, or antibody that inhibits or alters a calcium signal mediated by PBH1, will result in the death of prostate cancer cells.

PBH1, and other genes of the invention, are also be useful as targets for cytotoxic T-lymphocytes. Genes that are tumor specific, or that are expressed in immune-privileged organs, are currently being used as potential vaccine targets (Van den Eynde and Boon, Int. J. Clin. Lab. Res. 27:81-86 (1997)). The expression pattern of PBH1 indicates that it is an ideal target for cytotoxic T-lymphocytes. Thus, therapies that utilize PBH1-specific cytotoxic T-lymphocytes to induce prostate cancer cell death are also provided by this invention. See, e.g., U.S. Patent No. 6,051,227 and WO 00/32231, the disclosures of which are herein incorporated by reference.

The present invention is also related to the identification of PAA3 as a gene that is important in the modulation of prostate cancer and or breast cancer.

Tables 1-16 provide unigene cluster identification numbers, exemplar accession numbers, or genomic nucleotide position numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in prostate cancer samples.

Definitions

5

10

15

20

25

30

The term "prostate cancer protein" or "prostate cancer polynucleotide" or "prostate cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1-16 and conservatively modified variants thereof or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "prostate cancer polypeptide" and a "prostate cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" prostate cancer protein or nucleic acid refers to a prostate cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type prostate cancer

polynucleotide or polypeptide sequences. For example, a full length prostate cancer nucleic acid will typically comprise all of the exons that encode for the full length, naturally ocurring protein. The "full length" may be prior to, or after, various stages of post-translation processing or splicing, including alternative splicing.

5

10

15

20

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a prostate cancer protein, polynucleotide or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions

and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

5

10

15

20

25

30

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul *et al.*, *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul *et al.*, *J. Mol. Biol.* 215:403-410 (1990). BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of

the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

5

10

15

20

25

30

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

10

15

20

25

30

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogenous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding

naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.

10

15

20

25

30

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the

only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.

5

10

15

20

25

30

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid.

Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5)

Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3rd ed., 1994) and Cantor & Schimmel, Biophysical Chemistry Part I: The Conformation of Biological Macromolecules (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds.. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g. to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

10

15

20

25

30

A variety of references disclose such nucleic acid analogs, including, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all

of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate 10 Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby 15 expressly incorporated by reference.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

20

25

30

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and

combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g. the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The radioisotope may be, for example, 3H, 14C, 32P, 35S, or 125I. In some cases, particularly using antibodies against the proteins of the invention, the radioisotopes are used as toxic moieties, as described below. The labels may be incorporated into the prostate cancer nucleic acids, proteins and antibodies at any position. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982). The lifetime of radiolabeled peptides or radiolabeled antibody compositions may extended by the addition of substances that stablize the radiolabeled peptide or antibody and protect it from degradation. Any substance or combination of substances that stablize the radiolabeled peptide or antibody may be used including those substances disclosed in US Patent No. 5,961,955.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear

form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the *in vivo* cellular machinery of the host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

10

15

20

25

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

30

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a

particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

5

10

15

20

25

30

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence that is determinative of the presence of the nucleotide sequence, in a heterogeneous population of nucleic acids and other biologics (e.g., total cellular or library DNA or RNA). Similarly, the phrase "specifically (or selectively) binds" to an antibody or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay or nucleic acid hybridization conditions, the specified antibodies or nucleic acid probes bind to a particular protein nucleotide sequences at least two times the background and more typically more than 10 to 100 times background.

Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to a particular protein, polymorphic variants, alleles, orthologs, and conservatively modified variants, or splice variants, or portions thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the desired prostact cancer protein and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in

5

10

15

20

25

30

Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize

under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a prostate cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the prostate cancer protein or nucleic acid, e.g., a functional, physical, or chemical effect, such as the ability to decrease prostate cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. "Functional effects" include in vitro, in vivo, and ex vivo activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a prostate cancer protein sequence, e.g., functional, enzymatic, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the prostate cancer protein; measuring binding activity or binding assays, e.g. binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on prostate cancer can also be performed using prostate cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for prostate cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of prostate cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of prostate cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of prostate cancer proteins, e.g., antagonists. Antisense nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate prostate cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of prostate cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the prostate cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of prostate cancer can also be identified by incubating prostate cancer cells with the test compound and determining increases or decreases in the expression of 1 or more prostate cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more prostate cancer proteins, such as prostate cancer proteins encoded by the sequences set out in Tables 1-16.

Samples or assays comprising prostate cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%,

preferably 50%, more preferably 25-0%. Activation of a prostate cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. *See, e.g.*, Freshney, *Culture of Animal Cells a Manual of Basic Technique* pp. 231-241 (3rd ed. 1994).

5

10

15

20

25

30

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that

specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

10

15

20

25

30

Identification of prostate cancer-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue (e.g., normal prostate or other tissue) may be distinguished from cancerous or metastatic cancerous tissue of the prostate, or prostate cancer tissue or metastatic prostate cancerous tissue can be compared with tissue samples of prostate and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different prostate cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained.

The identification of sequences that are differentially expressed in prostate cancer versus non-prostate cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate prostate cancer, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of prostate cancer in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to

mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the prostate cancer expression profile. This may be done by making biochips comprising sets of the important prostate cancer genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, protein expression levels of the prostate cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the prostate cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the prostate cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in prostate cancer, herein termed "prostate cancer sequences." As outlined below, prostate cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in prostate cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the prostate cancer sequences are from humans; however, as will be appreciated by those in the art, prostate cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other prostate cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.). Prostate cancer sequences from other organisms may be obtained using the techniques outlined below.

Prostate cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, prostate cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the prostate cancer sequences can be generated.

A prostate cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying prostate cancer-associated sequences, the prostate cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing prostate cancer samples with metastatic cancer samples from other cancers, such as lung, breast, gastrointestinal cancers, ovarian, etc. Samples of different stages of prostate cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g. from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal prostate, but also including, and not limited to lung, heart, brain, liver, breast, kidney, muscle, colon, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the prostate cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, prostate cancer sequences are those that are up-regulated in prostate cancer; that is, the expression of these genes is higher in the prostate cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

In another preferred embodiment, prostate cancer sequences are those that are down-regulated in prostate cancer; that is, the expression of these genes is lower in prostate

cancer tissue as compared to non-cancerous tissue (see, e.g., Tables 8, 12 and 14). "Down-regulation" as used herein often means at least about a 1.5-fold change more preferrably a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being most preferred.

5

10

15

20

25

30

Informatics

The ability to identify genes that are over or under expressed in prostate cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with prostate cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson, Pharmaceutical Proteomics: Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing prostate cancer, i.e., the identification of prostate cancer-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount et al., Bioinformatics (2001); Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., eds., 1999); Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Baxevanis & Oeullette eds., 1998)); Rashidi & Buehler, Bioinformatics: Basic Applications in Biological Science and Medicine (1999); Introduction to Computational Molecular Biology (Setubal et al., eds 1997); Bioinformatics: Methods and Protocols (Misener & Krawetz, eds, 2000); Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Higgins & Taylor, eds., 2000); Brown, Bioinformatics: A Biologist's Guide to Biocomputing and the Internet (2001); Han & Kamber, Data Mining: Concepts and Techniques (2000); and Waterman, Introduction to Computational Biology: Maps, Sequences, and Genomes (1995).

5

10

15

20

25

30

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for prostate cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment,

the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the

degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

25

30

20

5

10

Characteristics of prostate cancer-associated proteins

Prostate cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the prostate cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such

proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell (Alberts, ed., 3rd ed., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

5

10

15

20

25

30

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman et al., Nuc. Acids Res. 28:263-266 (2000); Sonnhammer et al., Proteins 28:405-420 (1997); Bateman et al., Nuc. Acids Res. 27:260-262 (1999); and Sonnhammer et al., Nuc. Acids Res. 26:320-322-(1998)).

In another embodiment, the prostate cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described

for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

5

10

15

20

25

30

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL-1 receptor, IL-2 receptor,

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also

bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Prostate cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the prostate cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Prostate cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests.

Use of prostate cancer nucleic acids

5

10

15

20

25

30

As described above, prostate cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either

homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The prostate cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the prostate cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., supra. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

10

15

20

25

30

Once the prostate cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire prostate cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant prostate cancer nucleic acid can be further-used as a probe to identify and isolate other prostate cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant prostate cancer nucleic acids and proteins.

The prostate cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the prostate cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, and/or antisense applications. Alternatively, the prostate cancer nucleic acids that include coding regions of prostate cancer proteins can be put into expression vectors for the expression of prostate cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to prostate cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the prostate cancer nucleic acids, *i.e.* the target sequence (either the target

sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

5

10

15

20

25

30

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical

equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

10

15

20

25

30

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to,

amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g. using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

10

15

25

30

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of prostate cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, a prostate cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of prostate cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for

quantitative PCR are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications (1990).

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu & Wallace, Genomics 4:560 (1989), Landegren et al., Science 241:1077 (1988), and Barringer et al., Gene 89:117 (1990)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)), self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA 87:1874 (1990)), dot PCR, and linker adapter PCR, etc.

Expression of prostate cancer proteins from nucleic acids

10

15

20

25

30

In a preferred embodiment, prostate cancer nucleic acids, e.g., encoding prostate cancer proteins are used to make a variety of expression vectors to express prostate cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Gene Expression Systems (Fernandez & Hoeffler, eds, 1999)) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the prostate cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.

Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the prostate cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

10

15

20

25

30

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g. in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the

appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The prostate cancer proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a prostate cancer protein, under the appropriate conditions to induce or cause expression of the prostate cancer protein. Conditions appropriate for prostate cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the prostate cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. One expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, supra). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory

regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlyation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, prostate cancer proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the prostate cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez & Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, prostate cancer proteins are produced in insect cells.

Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, prostate cancer protein is produced in yeast cells.

Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The prostate cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the prostate cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the prostate cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the prostate cancer protein is a prostate cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the prostate cancer protein is purified or isolated after expression. Prostate cancer proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the prostate cancer protein may be purified using a standard anti-prostate cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, *Protein Purification* (1982). The degree of purification necessary will vary depending on the use of the prostate cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the prostate cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

10

15

20

25

Variants of prostate cancer proteins

10

15

25

30

In one embodiment, the prostate cancer proteins are derivative or variant prostate cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative prostate cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the prostate cancer peptide.

Also included within one embodiment of prostate cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the prostate cancer protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant prostate cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the prostate cancer protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed prostate cancer variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of prostate cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the prostate cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the prostate cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the prostate cancer protein is altered. For example, glycosylation sites may be altered or removed.

10

15

20

25

30

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

Covalent modifications of prostate cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a prostate cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a prostate cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking prostate cancer polypeptides to a water-insoluble support matrix or surface for

use in the method for purifying anti-prostate cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

5

10

15

20

25

30

Other modifications include dearnidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (Creighton, *Proteins: Structure and Molecular Properties*, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the prostate cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence prostate cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence prostate cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express prostate cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to prostate cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence prostate cancer polypeptide (for O-linked glycosylation sites). The prostate cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the prostate cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the prostate cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin & Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the prostate cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of prostate cancer comprises linking the prostate cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

10

15

20

25

30

Prostate cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a prostate cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a prostate cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the prostate cancer polypeptide. The presence of such epitope-tagged forms of a prostate cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the prostate cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a prostate cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular Biology 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al.,

Protein Engineering 3(6):547-553 (1990)). Other tag polypeptides include the Flag-peptide (Hopp et al., BioTechnology 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al., Science 255:192-194 (1992)); tubulin epitope peptide (Skinner et al., J. Biol. Chem. 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA 87:6393-6397 (1990)).

Also included are other prostate cancer proteins of the prostate cancer family, and prostate cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related prostate cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the prostate cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to prostate cancer proteins

10

15

20

25

30

In a preferred embodiment, when the prostate cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the prostate cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller prostate cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment; the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow & Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It

may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler & Milstein, Nature 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-16 fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a

protein encoded by a nucleic acid Tables 1-16 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to prostate cancer protein are capable of reducing or eliminating a biological function of a prostate cancer protein, as is described below. That is, the addition of anti-prostate cancer protein antibodies (either polyclonal or preferably monoclonal) to prostate cancer tissue (or cells containing prostate cancer) may reduce or eliminate the prostate cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the prostate cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)). Humanization

can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom & Winter, J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol. 222:581 (1991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, p. 77 (1985) and Boerner et al., J. Immunol. 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995).

10

15

20

25

30

By immunotherapy is meant treatment of prostate cancer with an antibody raised against prostate cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic

acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the prostate cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted prostate cancer protein.

5

10

15

20

25

30

In another preferred embodiment, the prostate cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the prostate cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane prostate cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the prostate cancer protein. The antibody is also an antagonist of the prostate cancer protein. Further, the antibody prevents activation of the transmembrane prostate cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the prostate cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, prostate cancer is treated by administering to a patient antibodies directed against the transmembrane prostate cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the prostate cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the prostate cancer protein. The therapeutic moiety

may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with prostate cancer.

5

10

15

20

25

30

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to prostate cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with prostate cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against prostate cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane prostate cancer proteins not only serves to increase the local concentration of therapeutic moiety in the prostate cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the prostate cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the prostate cancer protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The prostate cancer antibodies of the invention specifically bind to prostate cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of prostate cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the prostate cancer phenotype. Expression levels of genes in normal tissue

(i.e., not undergoing prostate cancer) and in prostate cancer tissue (and in some cases, for varying severities of prostate cancer that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

10

15

20

25

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus prostate cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart, Nature Biotechnology 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the prostate cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to prostate cancer genes, i.e., those identified as being important in a prostate cancer phenotype, can be evaluated in a prostate cancer diagnostic test.

5

10

15

20

25

30

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the prostate cancer protein are detected. Although DNA or RNA encoding the prostate cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a prostate cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a prostate cancer protein is detected by binding the digoxygenin with an anti-digoxygenin

secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, prostate cancer proteins, including intracellular, transmembrane or secreted proteins, find use as markers of prostate cancer. Detection of these proteins in putative prostate cancer tissue allows for detection or diagnosis of prostate cancer. In one embodiment, antibodies are used to detect prostate cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the prostate cancer protein is detected, e.g., by immunoblotting with antibodies raised against the prostate cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the prostate cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the prostate cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the prostate cancer protein(s) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of prostate cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing prostate cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of prostate cancer proteins.

Antibodies can be used to detect a prostate cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous prostate cancer protein.

In a preferred embodiment, in situ hybridization of labeled prostate cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including prostate cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to prostate cancer, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, prostate cancer probes may be attached to biochips for the detection and quantification of prostate cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Assays for therapeutic compounds

5

10

15

20

25

30

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The prostate cancer

proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94, 1996).

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified prostate cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the prostate cancer phenotype or an identified physiological function of a prostate cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

10

15

20

25

30

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in prostate cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the prostate cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing prostate cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in prostate cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in prostate cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the prostate cancer protein and standard

immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein..

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

10

15

20

25

30

Expression monitoring can be performed to identify compounds that modify the expression of one or more prostate cancer-associated sequences, e.g., a polynucleotide sequence set out in Tables 1-16. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate prostate cancer, modulate prostate cancer proteins, bind to a prostate cancer protein, or interfere with the binding of a prostate cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the prostate cancer phenotype or the expression of a prostate cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a prostate cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a prostate cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of

more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

In one aspect, a modulator will neutralize the effect of a prostate cancer protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

10

15

20

25

30

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a prostate cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound

length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop *et al.*, *J. Med. Chem.* 37(9):1233-1251 (1994)).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, 5 peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 10 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbamates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates 15 (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3):309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small 20 organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (*see, e.g.*, 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka,

Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

5

10

15

20

25

30

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of prostate cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

5

10

15

20

25

30

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of prostate cancer can also be nucleic acids, as defined below. As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For

example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In certain embodiments, the activity of a prostate cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a prostate cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the prostate cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

10

15

20

25

30

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for prostate cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein & Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of prostate cancer-associated nucleotide sequences. A ribozyme is an

RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

5

10

15

20

25

30

The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Polynucleotide modulators of prostate cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of prostate cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

As noted above, gene expression monitoring is conveniently used to test candidate modultors (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription

with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

10

15

20

25

30

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

10

15

20

25

30

Screens are performed to identify modulators of the prostate cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a prostate cancer expression pattern leading to a normal expression pattern, or to modulate a single prostate cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated prostate cancer tissue reveals genes that are not expressed in normal tissue or prostate cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for prostate cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the

PCT/US01/32045 WO 02/30268

agent induced proteins and used to target novel therapeutics to the treated prostate cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of prostate cancer cells, that have an associated prostate cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

10

15

20

30

Thus, e.g., prostate cancer tissue may be screened for agents that modulate, e.g., induce or suppress the prostate cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on prostate cancer activity. By defining such a signature for the prostate cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular 25 differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins" or a "prostate cancer modulatory protein". The prostate cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of Tables 1-16. Preferably, the prostate cancer modulatory protein is a fragment. In a preferred embodiment, the prostate cancer amino acid sequence which is used to determine

sequence identity or similarity is encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are sequence variants as further described herein.

5

10

15

20

25

30

Preferably, the prostate cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.

In one embodiment the prostate cancer proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the prostate cancer protein is conjugated to BSA.

Measurements of prostate cancer polypeptide activity, or of prostate cancer or the prostate cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the prostate cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of prostate cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian prostate cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, a prostate cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the prostate cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the prostate cancer

polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

5

10

15

20

25

30

Alternatively, a reporter gene system can be devised using the prostate cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins." The prostate cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the prostate cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a prostate cancer protein and a candidate compound, and determining the binding of the compound to the prostate cancer protein. Preferred embodiments utilize the human prostate cancer protein,

although other mammalian proteins may also be used, e.g. for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative prostate cancer proteins may be used.

5

10

15

20

25

30

Generally, in a preferred embodiment of the methods herein, the prostate cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the prostate cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the prostate cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the prostate cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the prostate cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

5

10

15

20

25

30

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (i.e., a prostate cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the prostate cancer protein and thus is capable of binding to, and potentially modulating, the activity of the prostate cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the prostate cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the prostate cancer protein.

5

10

15

20

25

30

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the prostate cancer proteins. In this embodiment, the methods comprise combining a prostate cancer protein and a competitor in a first sample. A second sample comprises a test compound, a prostate cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the prostate cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the prostate cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native prostate cancer protein, but cannot bind to modified prostate cancer proteins. The structure of the prostate cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a prostate cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background

interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a prostate cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising prostate cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a prostate cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

5

10

15

20

25

30

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate prostate cancer agents are identified.

Compounds with pharmacological activity are able to enhance or interfere with the activity of the prostate cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting prostate cancer cell division is provided. The method comprises administration of a prostate cancer inhibitor. In another embodiment, a method of inhibiting prostate cancer is provided. The method comprises administration of a prostate cancer inhibitor. In a further embodiment, methods of treating cells or individuals with prostate cancer are provided. The method comprises administration of a prostate cancer inhibitor.

In one embodiment, a prostate cancer inhibitor is an antibody as discussed above. In another embodiment, the prostate cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example,

transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of prostate cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994), herein incorporated by reference. See also, the methods section of Garkavtsev et al. (1996), supra, herein incorporated by reference.

Contact inhibition and density limitation of growth

10

15

20

25

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. *See* Freshney (1994), *supra*. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a prostate cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), supra.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Insti. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

Tumor specific markers levels

10

15

20

25

30

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305-312 (1980); Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney Anticancer Res. 5:111-130 (1985).

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate prostate cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some

other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

5

10

15

20

25

30

Tumor growth in vivo

Effects of prostate cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the prostate cancer gene is disrupted or in which a prostate cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous prostate cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous prostate cancer gene with a mutated version of the prostate cancer gene, or by mutating the endogenous prostate cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a prostate cancer-associated sequences are injected subcutaneously. After a

suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Methods of identifying variant prostate cancer-associated sequences

10

15

20

25

30

Without being bound by theory, expression of various prostate cancer sequences is correlated with prostate cancer. Accordingly, disorders based on mutant or variant prostate cancer genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant prostate cancer genes, e.g., determining all or part of the sequence of at least one endogenous prostate cancer genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the prostate cancer genotype of an individual, e.g., determining all or part of the sequence of at least one prostate cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced prostate cancer gene to a known prostate cancer gene, i.e., a wild-type gene.

The sequence of all or part of the prostate cancer gene can then be compared to the sequence of a known prostate cancer gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the prostate cancer gene of the patient and the known prostate cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the prostate cancer genes are used as probes to determine the number of copies of the prostate cancer gene in the genome.

In another preferred embodiment, the prostate cancer genes are used as probes to determine the chromosomal localization of the prostate cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the prostate cancer gene locus.

PCT/US01/32045 WO 02/30268

Administration of pharmaceutical and vaccine compositions

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a prostate cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will 5 depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery, Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); and Pickar, Dosage Calculations (1999)). As is known in the art, adjustments for prostate cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. U.S. Patent Application N. 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in prostate cancer is hereby expressly incorporated by reference.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the prostate cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the prostate cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a prostate cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the

biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

10

15

20

25

30

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that prostate cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a prostate cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may

be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacologial Basis of Therapeutics (Hardman et al., eds., 1996)).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, supra.

10

15

20

25

30

The compositions containing modulators of prostate cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic

treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

It will be appreciated that the present prostate cancer protein-modulating compounds can be administered alone or in combination with additional prostate cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

5

10

15

20

25

30

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1-16, such as antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of prostate cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo or in vivo (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger & Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 (Berger), Ausubel et al., eds., Current Protocols (supplemented through 1999), and Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd ed., Vol. 1-3, 1989.

In a preferred embodiment, prostate cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, prostate cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the prostate cancer coding regions) can be administered in a gene therapy application. These prostate cancer genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Prostate cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses.. Such vaccine

compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, A. et al., J. Clin. Invest. 95:341 (1995)), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, (1991); Alonso et al., Vaccine 12:299-306 (1994); Jones et al., Vaccine 13:675-681 (1995)), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875 (1990); Hu et al., Clin Exp Immunol. 113:235-243 (1998)), multiple antigen peptide systems (MAPs) (see, e.g., Tam, Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413 (1988); Tam, J. Immunol. Methods 196:17-32 (1996)), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., In: Concepts in vaccine development (Kaufmann, ed., p. 379, 1996); Chakrabarti, et al., Nature 320:535 (1986); Hu et al., Nature 320:537 (1986); Kieny, et al., AIDS Bio/Technology 4:790 (1986); Top et al., J. Infect. Dis. 124:148 (1971); Chanda et al., Virology 175:535 (1990)), particles of viral or synthetic origin (see, e.g., Kofler et al., J. Immunol. Methods. 192:25 (1996); Eldridge et al., Sem. Hematol. 30:16 (1993); Falo et al., Nature Med. 7:649 (1995)), adjuvants (Warren et al., Annu. Rev. Immunol. 4:369 (1986); Gupta et al., Vaccine 11:293 (1993)), liposomes (Reddy et al., J. Immunol. 148:1585 (1992); Rock, Immunol. Today 17:131 (1996)), or, naked or particle absorbed cDNA (Ulmer, et al., Science 259:1745 (1993); Robinson et al., Vaccine 11:957 (1993); Shiver et al., In: Concepts in vaccine development (Kaufmann, ed., p. 423, 1996); Cease & Berzofsky, Annu. Rev. Immunol. 12:923 (1994) and Eldridge et al., Sem. Hematol. 30:16 (1993)). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides;

polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

5

10

15

20

25

30

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode prostate cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata et al., Mol Med Today 6:66-71 (2000); Shedlock et al., J Leukoc Biol 68:793-806 (2000); Hipp et al., In Vivo 14:571-85 (2000)).

Methods for the use of genes as DNA vaccines are well known, and include placing a prostate cancer gene or portion of a prostate cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a prostate cancer patient. The prostate cancer gene used for DNA vaccines can encode full-length prostate cancer proteins, but more preferably encodes portions of the prostate cancer proteins including peptides derived from the prostate cancer protein. In one embodiment, a patient is

immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a prostate cancer gene. For example, prostate cancer-associated genes or sequence encoding subfragments of a prostate cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the prostate cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

10

15

20

25

30

In another preferred embodiment prostate cancer genes find use in generating animal models of prostate cancer. When the prostate cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed to the prostate cancer gene will also diminish or repress expression of the gene. Animal models of prostate cancer find use in screening for modulators of a prostate cancer-associated sequence or modulators of prostate cancer. Similarly, transgenic animal technology including gene knockout technology, e.g. as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the prostate cancer protein. When desired, tissue-specific expression or knockout of the prostate cancer protein may be necessary.

It is also possible that the prostate cancer protein is overexpressed in prostate cancer. As such, transgenic animals can be generated that overexpress the prostate cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of prostate cancer and are additionally useful in screening for modulators to treat prostate cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits

may include any or all of the following: assay reagents, buffers, prostate cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative prostate cancer polypeptides or polynucleotides, small molecules inhibitors of prostate cancer-associated sequences *etc.* A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of prostate cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a prostate cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing prostate cancer-associated activity. Optionally, the kit contains biologically active prostate cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

20

5

10

15

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

5 Purifying total RNA from tissue sample using TRIzol Reagent

10

15

20

25

The sample weight is first estimated. The tissue samples are homogenized in 1 ml of TRIzol per 50 mg of tissue using a homogenizer (e.g., Polytron 3100). The size of the generator/probe used depends upon the sample amount. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. A larger generator (e.g., 20 mm) is suitable for tissue samples weighing more than 0.6 g. Fill tubes should not be overfilled. If the working volume is greater than 2 ml and no greater than 10 ml, a 15 ml polypropylene tube (Falcon 2059) is suitable for homogenization.

Tissues should be kept frozen until homogenized. The TRIzol is added directly to the frozen tissue before homogenization. Following homogenization, the insoluble material is removed from the homogenate by centrifugation at 7500 x g for 15 min. in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The cleared homogenate is then transferred to a new tube(s). Samples may be frozen and stored at -60 to -70°C for at least one month or else continue with the purification.

The next process is phase separation. The homogenized samples are incubated for 5 minutes at room temperature. Then, 0.2 ml of chloroform per 1ml of TRIzol reagent is added to the homogenization mixture. The tubes are securely capped and shaken vigorously by hand (do not vortex) for 15 seconds. The samples are then incubated at room temp. for 2-3 minutes and next centrifuged at 6500 rpm in a Sorvall superspeed for 30 min. at 4oC.

The next process is RNA Precipitation. The aqueous phase is transferred to a fresh tube. The organic phase can be saved if isolation of DNA or protein is desired. Then 0.5 ml of isopropyl alcohol is added per 1ml of TRIzol reagent used in the original homogenization. Then, the tubes are securely capped and inverted to mix. The samples are then incubated at room temp. for 10 minutes an centrifuged at 6500 rpm in Sorvall for 20 min. at 4°C.

The RNA is then washed. The supernatant is poured off and the pellet washed with cold 75% ethanol. 1 ml of 75% ethanol is used per 1 ml of the TRIzol reagent used in the initial homogenization. The tubes are capped securely and inverted several times to loosen pellet without vortexing. They are next centrifuged at $<8000\,$ rpm ($<7500\,$ x g) for 5 minutes at 4° C.

5

10

15

20

25

The RNA wash is decanted. The pellet is carefully transferred to an Eppendorf tube (sliding down the tube into the new tube by use of a pipet tip to help guide it in if necessary). Tube(s) sizes for precipitating the RNA depending on the working volumes. Larger tubes may take too long to dry. Dry pellet. The RNA is then resuspended in an appropriate volume (e.g., 2 -5 ug/ul) of DEPC H₂0. The absorbance is then measured.

The poly A+ mRNA may next be purified from total RNA by other methods such as Qiagen's RNeasy kit. The poly A + mRNA is purified from total RNA by adding the oligotex suspension which has been heated to 37°C and mixing prior to adding to RNA. The Elution Buffer is incubated at 70°C. If there is precipitate in the buffer, warm up the 2 x Binding Buffer at 65°C. The the total RNA is mixed with DEPC-treated water, 2 x Binding Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook and next incubated for 3 minutes at 65°C and 10 minutes at room temperature.

The preparation is centrifuged for 2 minutes at 14,000 to 18,000 g, preferably, at a "soft setting," The supernatant is removed without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. The supernatant is saved until satisfactory binding and elution of poly A+ mRNA has been found.

Then, the preparation is gently resuspended in Wash Buffer OW2 and pipetted onto the spin column and centrifuged at full speed (soft setting if possible) for 1 minute.

Next, the spin column is transferred to a new collection tube and gently resuspended in Wash Buffer OW2 and centrifuged as described herein.

Then, the spin column is transferred to a new tube and eluted with 20 to 100 ul of preheated (70°C) Elution Buffer. The Oligotex resin is gently resuspended by pipetting up and down. The centrifugation is repeated as above and the elution repeated with fresh elution buffer or first eluate to keep the elution volume low.

The absorbance is next read to determine the yield, using diluted Elution Buffer as the blank.

Before proceeding with cDNA synthesis, the mRNA is precipitated before proceeding with cDNA synthesis, as components leftover or in the Elution Buffer from the Oligotex purification procedure will inhibit downstream enzymatic reactions of the mRNA. 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol is added and the preparation precipitated at -20°C 1 hour to overnight (or 20-30 min. at -70°C), and centrifuged at 14,000-16,000 x g for 30 minutes at 4°C. Next, the pellet is washed with 0.5 ml of 80% ethanol (-20°C) and then centrifuged at 14,000-16,000 x g for 5 minutes at room temperature. The 80% ethanol wash is then repeated. The last bit of ethanol from the pellet is then dried without use of a speed vacuum and the pellet is then resuspended in DEPC H₂0 at 1 ug/ul concentration.

Alternatively the RNA may be purified using other methods (e.g., Qiagen's RNeasy kit).

No more than 100 ug is added to the RNeasy column. The sample volume is adjusted to 100 ul with RNase-free water. 350 ul Buffer RLT and then 250 ul ethanol (100%) are added to the sample. The preparation is then mixed by pipetting and applied to an RNeasy mini spin column for centrifugation (15 sec at >10,000 rpm). If yield is low, reapply the flowthrough to the column and centrifuge again.

Then, transfer column to a new 2 ml collection tube and add 500 ul Buffer RPE and centrifuge for 15 sec at >10,000 rpm. The flowthrough is discarded. 500 ul Buffer RPE and is then added and the preparation is centriuged for 15 sec at >10,000 rpm. The flowthrough is discarded. and the column membrane dried by centrifuging for 2 min at maximum speed. The column is transferred to a new 1.5-ml collection tube. 30-50 ul of RNase-free water is applied directly onto column membrane. The column is then centrifuged for 1 min at >10,000 rpm and the elution step repeated.

The absorbance is then read to determine yield. If necessary, the material may be ethanol precipitated with ammonium acetate and 2.5X volume 100% ethanol.

First Strand cDNA Synthesis

10

15

20

25

30

The first strand can be make using using Gibco's "SuperScript Choice System for cDNA Synthesis" kit. The starting material is 5 ug of total RNA or 1 ug of polyA+ mRNAl. For total RNA, 2 ul of SuperScript RT is used; for polyA+ mRNA, 1 ul of SuperScript RT is used. The final volume of first strand synthesis mix is 20 ul. The RNA should be in a volume no greater than 10 ul. The RNA is incubated with 1 ul of 100 pmol T7-T24 oligo for 10 min at 70°C followed by addition on ice of 7 ul of: 4ul 5X 1st Strand Buffer, 2 ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. The preparation is then incubated at 37°C for 2 min before addition of the SuperScript RT followed by incubation at 37°C for 1 hour.

10

15

20

25

Second Strand Synthesis

For the second strand synthesis, place 1st strand reactions on ice and add: 91 ul DEPC H₂0; 30 ul 5X 2nd Strand Buffer; 3 ul 10mM dNTP mix; 1 ul 10 U/ul E.coli DNA Ligase; 4 ul 10 U/ul E.coli DNA Polymerase; and 1 ul 2 U/ul RNase H. Mix and incubate 2 hours at 16°C. Add 2 ul T4 DNA Polymerase. Incubate 5 min at 16°C. Add 10 ul of 0.5M EDTA.

Cleaning up cDNA

The cDNA is purified using Phenol:Chloroform:Isoamyl Alcohol (25:24:1) and Phase-Lock gel tubes. The PLG tubes are centrifuged for 30 sec at maximum speed. The cDNA mix is then transferred to PLG tube. An equal volume of phenol:chloroform:isamyl alcohol is then added, the preparation shaken vigorously (no vortexing), and centrifuged for 5 minutes at maximum speed. The top aqueous solution is transferred to a new tube and ethanol precipitated by adding 7.5X 5M NH4OAc and 2.5X volume of 100% ethanol. Next, it is centrifuged immediately at room temperature for 20 min, maximum speed. The supernatant is removed, and the pellet washed with 2X with cold 80% ethanol. As much ethanol wash as possible should be removed before air drying the pellet; and resuspending it in 3 ul RNase-free water.

In vitro Transcription (IVT) and labeling with biotin

10

15

20

25

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5 ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2 ul T7 10xATP (75 mM) (Ambion); 2 ul T7 10xGTP (75 mM) (Ambion); 1.5 ul T7 10xCTP (75 mM) (Ambion); 3.75 ul 10 mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75 ul 10 mM Bio-16-CTP (Enzo); 2 ul 10x T7 transcription buffer (Ambion); and 2 ul 10x T7 enzyme mix (Ambion). The final volume is 20 ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned. Clean-up follows the previous instructions for RNeasy columns or Qiagen's RNeasy protocol handbook. The cRNA often needs to be ethanol precipitated by resuspension in a volume compatible with the fragmentation step.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range.

For hybridization, 200 ul (10 ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50 ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1 mg/ml herring sperm DNA; 0.5 mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

The hybridization reaction is conducted with non-biotinylated IVT (purified by RNeasy columns) (see example 1 for steps from tissue to IVT): The following mixture is prepared:

IVT antisense RNA; 4 µg: µl
Random Hexamers (1 µg/µl): 4 µl
H₂O: <u>µl</u>
14 µl

5 Incubate the above 14 μl mixture at 70°C for 10 min.; then put on ice.

The Reverse transcription procedure uses the following mixture:

0.1 M DTT: 3 μl
50X dNTP mix: 0.6 μl
H₂Q: 2.4 μl
10 Cy3 or Cy5 dUTP (1mM): 3 μl
SS RT II (BRL): 1 μl

The above solution is added to the hybridization reaction and incubated for 30 min., 42°C. Then, 1 µl SSII is added and incubated for another hour before being placed on ice.

The 50X dNTP mix contains 25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP and is made by adding 25 μl each of 100mM dATP, dCTP, and dGTP; 10 μl of 100mM dTTP to 15 μl H₂O.]

RNA degradation is performed as follows. Add 86 µl H2O, 1.5 µl 1M NaOH/
20 2 mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 µl TE/sample spin at 7000 g
for 10 min, save flow through for purification. For Qiagen purification, suspend u-con
recovered material in 500 µl buffer PB and proceed using Qiagen protocol. For DNAse
digestion, add 1 ul of 1/100 dilution of DNAse/30 ul Rx and incubate at 37°C for 15 min.
Incubate at 5 min 95°C to denature the DNAse.

25

15

Sample preparation

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10 mg/ml Herring sperm DNA; 1 ul of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂0. Add 0.38 μ l 10% SDS. Heat

95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 ml 20X SSC+0.75ml 10% SDS in 250ml H₂O; 1X SSC: 5 min., 12.5 ml 20X SSC in 250ml H₂O; 0.2X SSC: 5 min., 2.5 ml 20X SSC in 250ml H₂O. Dry slides and scan at appropriate PMT's and channels.

Example 2: Taxol resistant Xenograft Model of Human Prostate Cancer

5

10

15

20

25

30

Treatment regimens that include paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) have been particularly successful in treating hormone-refractory prostate cancer in the phase II setting (Smith et al., Semin. Oncol. 26(1 Suppl 2):109-11 (1999)). However, many patients develop tumors which are initially, or later become, resistant to taxol. To identify genes that may be involved with resistance to taxol, or are regulated in response to taxol resistance, and therefore may be used to treat, or identify, taxol resistance in patients, the following experiments were carried out.

The androgen-independent human cell line CWR22R was grown as a xenograft in nude mice (Nagabhushan et al., Cancer Res. 56(13):3042-3046 (1996); Agus et al., J. Natl. Cancer Inst.91(21):1869-1876 (1999); Bubendorf et al., J. Natl. Cancer Inst. 91(20):1758-1764 (1999)). Initially, these xenograft tumors were sensitive to therapeutic doses of taxol. The mice were treated continuously with sub-therapeutic doses, and the tumors were allowed to grow for 3-4 weeks, before surgical removal of the tumors. The tumor from an individual mouse was then minced, and a small portion was then injected into a healthy nude mouse, establishing a second

passage of the tumor. This mouse was then treated continuously with the same sub-therapeutic dose of taxol. This process was repeated 14 times, and a portion of each generation of xenograft tumor was collected. There was increasing resistance to therapeutic doses of taxol with each generation. Bythe end of the process, the tumors were fully resistant to therapeutic doses of taxol. RNA from each generation of tumor was then isolated, and individual mRNA species were quantified using a custom Affymetrix GeneChip® oligonucleotide microarray, with probes to interrogate approximately 35,000

unique mRNA transcripts. Genes were selected that showed a statistically significant upregulation, or down-regulation, during the subsequent generations of increasingly taxol-resistant tumors. Only one gene was significantly up-regulated, whereas 24 genes were down-regulated; these are presented in Table 10.

The gene sequences identified to be overexpressed in prostate cancer may be used to identify coding regions from the public DNA database. The sequences may be used to either identify genes that encode known proteins, or they may be used to predict the coding regions from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev, 2000, Genome Res. 10:516-522). In addition, one of ordinary skill in the art would understand how to obtain the unigene cluster identification and sequence information according to the exemplar accession numbers provided in Tables 1-16. (see,

10 http://www.ncbi.nlm.nih.gov/UniGene/).

TABLE1: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu01 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

10	Pkey: ExAcon:	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
	Unigene Title:	Unigene gene title
	Ω1·	Ratio of tumor to normal horly tissue

				•	
15					
10	Pkey	UnigenelD	ExAccn	Uningene Title	R1
	•	•	4	-	
		Hs.272458		ESTs	37.2
	120328	Hs.290905	AA196979	ESTs; Weakly similar to (defline not ava	32.6
20	105201	Hs.31412	AA195626	ESTs .	30.1
	101486	Hs.1852	M24902	acid phosphatase; prostate	25.2
	119073	Hs.279477	R32894	ESTs	24.8
	133428	Hs.183752	M34376	microseminoprotein; bata-	23.8
	128180	Hs.171995	AA595348	kallikrein 3; (prostate specific antigen	21.4
25		Hs.57771		Homo sapiens mRNA for serine protease (T	18.9
		Hs.162859		ESTs	18.6
	131665	Hs.30343	R22139	ESTs	17.4
		Hs.1832	K01911	neuropeptide Y	17.3
		Hs.1915		folate hydrolase (prostate-specific memb	17
30		Hs.40808		ESTs	16.9
-		Hs.262476		S-adenosylmethionine decarboxylase 1	16.7
		Hs.33287		ESTs	16.5
		Hs.11260		ESTs	16.4
				Antigen, Prostate Specific, Alt. Splice	16
35		Hs.181350		kallikrein 2; prostatic	15.4
33		Hs.99872		fetal Alzheimer antigen	15
		Hs.62192		coagulation factor ill (thromboplastin;	13.9
		Hs.8236	D62633	ESTs	12.7
			AA045870	ESTs	12.5
40		Hs.193380		ESTs	12.3
40		Hs.2178	X57985	H2B histone family; member Q	11.8
		Hs.182339		ESTs	11.8
_		Hs.172129		yp19h1.r1 Soares breast 3NbHBst Homo sap	11.8
		Hs.102720		ESTs	11.6
45				ESTS	11.4
43		Hs.14846			11
		Hs.78045		actin; gamma 2; smooth muscle; enteric	10.9
		Hs.268744		ESTs; Moderately similar to KIAA0273 [H.	10.7
		126645	Al167942	Homo sapiens BAC done RG041D11 from 7q2	10.7
50		Hs.95420		Homo sapiens mRNA for JM27 protein; comp	10.6
50		Hs.113314		ESTs	
	118417		N66048	ESTs; Weakly similar to polymerase [H.sa	10.5
		Hs.293960		ESTs	10.2
		Hs.8364	AA406542	ESTs	10.1
		Hs.92381		ESTs; Weakly similar to !!!! ALU CLASS A	10.1
55		Hs.30652		ESTs	10.1
		Hs.15641		ESTs	10.1
		Hs.59622		ESTs	10
		Hs.203270		ESTs	9.9
		Hs.121017		H2A histone family; member A	9.8
60		Hs.83883		ESTs	9.7
		Hs.80296		Purkinje celi protein 4	9.7
	117984	Hs.106778	N51919	ESTs	9.7
			AA398533	ESTs	9.4
		Hs.274509		T-cell receptor; gamma cluster	9.4
65	132964	Hs.167133	AA031360	ESTs	9.2
	121853	Hs.98502	AA425887	ESTs	9

	115764	Hs.91011	AA421562	anterior gradient 2 (Xenopus laevis; sec	8.9
		Hs.55999	W47380	ESTs	8.9
	100552	Hs.301946	HG2167-HT2237	Protein Kinase Ht31, Camp-Dependent	8.9
		Hs.23317	AA281245	ESTs	8.8
5	101461	Hs.76422	M22430	phospholipase A2; group IIA (platelets;	8.7
	131725	Hs.31146	AA456264	ESTs; Highly similar to (defline not ava	8.5
	124526	Hs.293185	N62096	yz61c5.s1 Soares_multiple_sclerosis_2NbH	8.5
		Hs.49397	N67889	ESTs	8.2
10		Hs.76704	T68510	ESTs	8.2
10		Hs.334762		ESTs; Weakly similar to KIAA0319 [H.sapi	8.1
		Hs.20415	AA402000	ESTs; Weakly similar to GS3786 [H.sapien	8
		Hs.278695		ESTs	8 8
		Hs.66052	D84276	CD38 antigen (p45)	7.9
15		Hs.24192 Hs.301527	Z38688	ESTs tumor necrosis factor (ligand) superfami	7.7
10		Hs.23023	AA456135	ESTs	7.6
		Hs.105700		secreted frizzled-related protein 4	7.5
,		Hs.72472	AA250737	ESTs	7.4
		Hs.22627	R43162	ESTs	7.1
20	102398		U42359	Human N33 protein form 1 (N33) gene, exo	7
		Hs.2256	L22524	matrix metalloproteinase 7 (matrilysin;	6.9
	109272	Hs.288462	AA195718	ESTs	6.9
	103145	Hs.169849	X66276	myosin-binding protein C; slow-type	6.9
		Hs.155691		pre-B-cell leukemia transcription factor	6.8
25		Hs.302267		ESTs; Weakly similar to W01A6.c [C.elega	6.8
		Hs.257924		ESTs	6.8
		Hs.326416		ESTs	6.7
		Hs.173684		ESTs; Weakly similar to (defline not ava	6.7
20		Hs.171995		kallikrein 3; (prostate specific antigen	6.6 6.6
30		Hs.26691		ESTs Homo sapiens mRNA; cDNA DKFZp586B211 (fr	6.6
		Hs.16193 Hs.59838	AA281591 AA490969	ESTs	6.6
		Hs.323378		H.sapiens mRNA for transmembrane protein	6.6
		Hs.75746	U07919	aldehyde dehydrogenase 6	6.5
35		Hs.278628		ESTs; Moderately similar to APXL gene pr	6.5
-		Hs.108787		Homo sapiens Mcd4p homolog mRNA; complet	6.5
		Hs.126085		ESTs	6.5
		Hs.3383	AA010163	upstream regulatory element binding prot	6.5
	133376	Hs.7232	T23670	ESTs	6.4
40		Hs.8768	AA236559	ESTs; Weakly similar to neuronal thread	6.4
		Hs.26289	AA009527	ESTs	6.4
		Hs.334786		Human HF.12 gene mRNA	6.3
		Hs.15113		homogentisate 12-dioxygenase (homogenti	6.3
45		Hs.278428		Homo sapiens mRNA for KIAA0896 protein;	6.3 6.3
43		Hs.250528		ESTs; Weakly similar to ANKYRIN; BRAIN V prostate differentiation factor	6.3
		Hs.296638 Hs.279923		ESTs; Weakly similar to similar to GTP-b	6.2
	101233		L29008	sorbitol dehydrogenase	6.2
		Hs.37744	AA011176	ESTs	6.2
50	127248		AA325029	EST27953 Cerebellum II Homo sapiens cDNA	6.2
		Hs.179902		ESTs; Weakly similar to (defline not ava	6.2
		Hs.222399		ESTs	6.1
	131463	Hs.2714	X74142	forkhead (Drosophila)-like 1	6.1
	132116	Hs.40289	AA234767	ESTs	6
55		Hs.203213		ESTs	5.9
	115357	Hs.72988	AA281793	ESTs	5.8
		Hs.301997		ESTs	5.7
		Hs.48948		ESTs ESTs	5.7 5.7
60		Hs.61539 Hs.125019	AA034020 739839	ESTS; Weakly similar to IIII ALU SUBFAMI	5.6
UU		Hs.289072		ESTS, Weakly surman to the ALO SOBPANNI ESTS	5.6
		Hs.170195		bone morphogenetic protein 7 (osteogenic	5.6
		Hs.140237		ESTs: Weakly similar to neuronal thread	5.6
		Hs.337616		phosphodiesterase 3B; cGMP-inhibited	5.6
65		Hs.62354		Human beige-like protein (BGL) mRNA; par	5.5
-		Hs.45107		ESTs	5.5
	132387	Hs.281434	R70914	heat shock 70kD protein 1	5.5
		Hs.98732		Homo saplens Chromosome 16 BAC clone CIT	5.5
	133723	Hs.262476	AA088851	S-adenosylmethionine decarboxylase 1	5.5

	113938		W81598	ESTs	5.4
		Hs.246315		ESTs	5.4
		Hs.75722	Al283493	ribophorin II	5.4
5		Hs.80120		UDP-N-acetyl-alpha-D-gatactosamine:potyp	5.4
3		Hs.7780 Hs.21223	AA056482 D17408	ESTs calponin 1; basic; smooth muscle	5.3 5.3
		Hs.326392		Human guanine nucleotide exchange factor	5.3
		Hs.98944	AA365031	ESTs	5.3
		Hs.167531		ESTs; Weakly similar to (defline not ava	5.3
10		Hs.108336		ESTs; Weakly similar to IIII ALU SUBFAMI	5.3
	102805	Hs.25351	U90304	iroquols-class homeodomain protein	5.3
		Hs.194369		Homo sapiens chromosome 1 atrophin-1 rel	5.3
		Hs.109201		ESTs; Highly similar to (defiine not ava	5.2
15		Hs.79428	U15174	BCL2/adenovirus E1B 19kD-interacting pro	5.2 5.2
13	10/240	Hs.159872	AA027317	ESTs ESTs; Weakly similar to IIII ALU SUBFAMI	5.2
		Hs.108327		damage-specific DNA binding protein 1 (1	5.2
		Hs.194228		ESTs; Moderately similar to !!!! ALU SUB	5.2
		Hs.195850		keratin 5 (epidermolysis bullosa simplex	5.1
20	116188	Hs.184598	AA464728	ESTs; Weakly similar to IIII ALU SUBFAMI	5.1
		Hs.281428		ESTs; Moderately similar to IIII ALU SUB	5.1
		Hs.169119		ESTs	5.1
		Hs.54416	X91868	sine oculis homeobox (Drosophita) homolo	5.1
25		Hs.106778 Hs.148932		ESTs; Highly similar to (define not ava ESTs; Moderately similar to semaphorin V	5.1 5.1
23		Hs.226434		ESTs	5.1
		Hs.47144		ESTs	5
		Hs.80342	X07696	keratin 15	5
		Hs.326035	X52541	early growth response 1	5
30	126023		H58881	yr36d09.r1 Soares fetal liver spleen 1NF	5
		Hs.13804	AA037316	ESTS	5
		Hs.39288	N93839	ESTs; Weakly similar to !!!! ALU SUBFAMI	5 5
		Hs.89732 Hs.23311	X78932 AB002365	zinc finger protein 273 Human mRNA for KIAA0367 gene; partial cd	4.9
35		Hs.3796	D83492	EphB6	4.9
23		Hs.177537		ESTs	4.9
		Hs.74519		primase; polypeptide 2A (58kD)	4.8
		Hs.71119	U42360	Human N33 mRNA; complete cds	4.8
	104776		AA026349	ESTs	4.8
40		Hs.128749		Homo sapiens alpha-methylacyl-CoA racema	4.8
		Hs.143087		ESTS	4.8 4.8
		Hs.26009 Hs.3585	W86307 AA233168	Homo sapiens mRNA for KIAA0860 protein; ESTs; Weakly similar to coded for by C.	4.8
		Hs.284186		ESTs	4.8
45		Hs.183390		ESTs; Weakly similar to ZINC FINGER PROT	4.8
		Hs.288126		ESTs	4.8
	125982		R98091	RAE1 (RNA export 1; S.pombe) homolog	4.8
		Hs.26243	W44682	ESTs	4.8
50		Hs.117950		multifunctional polypeptide similar to S	4.7
50	129735	Lie 102200	W80701	ESTs; Weakly similar to HERV-E envelope	4.7 4.7
	103731	Hs.106390	AA070545	ESTs zm7c3_r1 Stratagene neuroepithelium (#93	4.7
		Hs.127602		ESTs -	4.7
		Hs.231500		Human glucose transporter-like protein-i	4.7
55	130617	Hs.1674	M90516	glutamine-fructose-6-phosphate transamin	4.7
	116752	Hs.91622	H06373	Homo sapiens clone 24456 mRNA sequence	4.7
		Hs.82007	D42084	Human mRNA for KIAA0094 gene; partial cd	4.7
		Hs.89576 Hs.32990	Al479264 AA610086	ESTs ESTs	4.7 4.7
60		Hs.239489		TIA1 cytotoxic granule-associated RNA-bi	4.7
VV		Hs.91011	AA055768	ESTs	4.6
	103806		AA130614	zo1f2.r1 Stratagene neuroepithelium NT2R	4.6
	130529		AA173238	small inducible cytokine A5 (RANTES)	4.6
		Hs.82065	AA406546	ESTs	4.6
65		Hs.293798		ESTs	4.6
		Hs.29679	AA452411	ESTs	4.6
		Hs.14158 Hs.100070	W86835	copine III EST	4.6 4.6
		Hs.89603	HG371-HT1063	Mucin 1, Epithelial, Alt. Splice 6	4.6

	400000	11- 440000	DODGE LITTOR 40	Dat Transforming Cone	4.6
				Ret Transforming Gene	
	132015	Hs.3731	D11900	ESTs	4.6
	126086		H70975	yr73g01.r1 Soares fetal liver spleen 1NF	4.6
	130888	Hs.173094	F03819	ESTs	4.6
5		Hs.20166		Prostate stem cell antigen	4.6
,		115.20100		ESTs; Moderately similar to !!!! ALU SUB	4.5
	126959		AA199853		
	131584	Hs.29117	X91648	H.sapiens mRNA for pur alpha extended 3'	4.5
	104838	Hs.20953	AA039481	ESTs	4.5
	125661		R50319	ESTs	4.5
10		Hs.234726		alpha-1-antichymotrypsin	4.5
10					
		Hs.199160		ESTs	4.5
	102899	Hs.75730	X06272	signal recognition particle receptor ('d	4.5
	100892	Hs.180789	HG4557-HT4962	Small Nuclear Ribonucleoprotein U1, 1snr	4.5
		Hs.7956	AA425906	ESTs	4.5
15				ESTs	4.5
15		Hs.317584			
		Hs.24758		ESTs	4.5
	132316	Hs.44566	U28831	Human protein immuno-reactive with anti-	4.4
	132056	Hs.38176	T89386	Homo saplens mRNA for KIAA0606 protein;	4.4
		Hs.198760		neurofilament; heavy polypeptide (200kD)	4.4
20					4.4
20		Hs.1846	M22898	tumor protein p53 (Li-Fraumeni syndrome)	
	131904	Hs.284296	AA143019	ESTs; Highly similar to surface 4 integr	4.4
	105804	Hs.22514	AA383142	ESTs	4.4
		Hs.119394		ESTs	4.4
				ESTs	4.4
25		Hs.29894		=:	
25		Hs.98518		ESTs	4.4
	134401	Hs.211577	AA243746	ESTs; Highly similar to CG1 protein [H.s	4.4
	126458	Hs.288969	AA815252	ESTs; Weakly similar to IIII ALU SUBFAMI	4.4
		Hs.323966		ESTs; Moderately similar to IIII ALU SUB	4.4
					4.3
20		Hs.21941		ESTs	
30	127315		AA640834	nr27b06_r1 NCI_CGAP_Pr3 Homo sapiens cDN	4.3
	132645	Hs.54424	X87870	H.sapiens mRNA for hepatocyte nuclear fa	4.3
	116162	Hs.282990	AA461487	ESTs: Weakly similar to F52C12.2 [C.eleg	4.3
		Hs.47567		EST	4.3
					4.3
25		Hs.278427		cerebellar degeneration-related protein	
35		Hs.114688		ESTs	4.3
	123061	Hs.105130	AA482030	EST	4.3
		Hs.184245		ESTs	4.3
	109175		AA180496	ESTs	4.3
		11- 470540			4.3
40		Hs.173540		ESTs; Wealdy similar to (defline not ava	
40	102547	Hs.46638		chromosome 11 open reading frame 8	4.3
	134208	Hs.79993	U88871	peroxisomal biogenesis factor 7	4.3
	104258	Hs.5462	AF007216	solute carrier family 4; sodium bicarbon	4.3
		Hs.18946		ESTs; Weakly similar to (defline not ava	4.3
					4.3
4 ~		Hs.295923		seven in absentia (Drosophila) homolog 1	
45	135062	Hs.93872	AA174183	ESTs	4.3
	126510	Hs.334762	R49702	ESTs; Weakly similar to KIAA0319 [H.sapi	4.2
		Hs.98747		EST	4.2
		Hs.6574	AF007165	suppressin (nuclear deformed epidermal a	4.2
					42
50		Hs.20843		ESTs	
50		Hs.69997	R79723	H.sapiens mRNA for translin associated z	4.2
	134436	Hs.83190	S80437	fatty acid synthase (3' region) [hurnan,	4.2
	107375	Hs.251064	U88573	NBR2	4.2
		Hs.27413	AA436158	ESTs -	4.2
					4.2
~ ~		Hs.248210		H.sapiens Mahlavu hepatocellular carcino	
55	120125	Hs.59815	W99362	EST	4.2
	128969	Hs.283978	T65327	ESTs; Highly similar to (define not ava	4.2
		Hs.1179	D90359	TATA box binding protein (TBP)-associate	4.2
			AA455921	ESTs; Weakly similar to !!!! ALU SUBFAM!	4.2
	106566	11× 00000			42
CO		Hs.29852		ESTs	
60	103364	Hs.279929		H.sapiens mRNA for gp25L2 protein	4.2
	132811	Hs.57419	U25435	transcriptional repressor	4.2
		Hs.326292		ESTs	42
		Hs.94109		ESTs	4.2
					4.1
~~		Hs.105938		lactotransferrin	
65	129133	Hs.108850	R56728	yg95c6.r1 Soares infant brain 1NIB Homo	4.1
	133167	Hs.6641	N98707	kinesin family member 5C	4.1
		Hs.14051	AA351779	ESTs	4.1
				ESTs	4.1
			AA192157		4.1
	10/3/6	Hs.327179	しおいち45	solute carrier family 17 (sodium phospha	7.1

	128517	Hs.100861	AA280617	ESTs; Weakly similar to p60 katanin [H.s	4.1
	130555	Hs.116774	AA450324	ESTs	4.1
	105765	Hs.24183	AA343514	ESTs	4.1
		Hs.26369		ESTs	4.1
5					
)		Hs.181889		ESTs	4.1
	117280	Hs.172129	N22107	ESTs; Moderately similar to IIII ALU SUB	4.1
	100234	Hs.3085	D29677	KIAA0054 gene product	4.1
		Hs.118127		actin; alpha; cardiac muscle	4.1
40		Hs.12913		ESTs; Wealdy similar to (defline not ava	4.1
10	105035	Hs.8859	AA128486	ESTs	4.1
	126735	Hs.226795	·AA808949	glutathione S-transferase pi	4.1
		Hs.8036	T26471	ESTs; Moderately similar to !!!! ALU SUB	4
		Hs.211582		Homo sapiens myosin light chain kinase (4
		Hs.26813		ESTs; Weakly similar to (defline not ava	4
15	123107	Hs.104207	AA486071	ESTs	4
	127256	Hs.267967	AA327550	ESTs; Weakly similar to !!!! ALU SUBFAMI	4
		Hs.22862		ESTs	4
		Hs.42736	AA291946	ESTs	4
				· -	
00		Hs.97293	AA293656	ESTs	4
20	103576	Hs.94560	Z26317	desmoglein 2	4
	127889	Hs.144941	AI147408	ESTs	4
		Hs.25320		ESTs	4
	128046	1102000	AA873285	ESTs	4
					
~ -	103391	Hs.114366		pyrroline-5-carboxylate synthetase (glut	4
25	106448	Hs.27004	AA449455	ESTs	4
	126513	Hs.86276	W27601	ESTs; Moderately similar to (define not	4
		Hs.98314	AA487015	ESTs; Weakly similar to !!!! ALU SUBFAMI	3.9
					3.9
		Hs.31608	H18836	ESTs	
		Hs.8645	AA235303	ESTs	3.9
30	104791	Hs.301871	AA029046	ESTs	3.9
	123442	Hs.111496	AA598803	ESTs	3.9
		Hs.79428		BCL2/adenovirus E1B 19kD-interacting pro	3.9
					3.9
		Hs.167904		ESTs	
	122138	Hs.163960	AA435549	ESTs	3.9
35	129565	Hs.198726	X77777	vasoactive intestinal peptide receptor 1	3.9
	103471	Hs.75216	Y00815	protein tyrosine phosphatase; receptor t	3.9
		Hs.325474		caldesmon 1	3.9
		Hs.301985		ESTs	3.9
	134285	Hs.81086	AA460012	solute carrier family 22 (organic cation	3.9
40	134125	Hs.50421	R38102	KIAA0203 gene product	3.9
	125628	Hs.241493	AA418069	natural killer-tumor recognition sequenc	3.9
		Hs.186600		ESTs	3.9
				Caldesmon 1, Alt. Splice 6, Non-Muscle	3.9
	104334	Hs.78771	D82614	ESTs	3.9
45	110242	Hs.19978	H26417	ESTs	3.9
	125298	Hs.289008	Z39255	ESTs	3.9
		Hs.303193		zt87e9.r1 Soares_testis_NHT Homo sapiens	3.9
		Hs.293960		ESTs	3.9
	126499	Hs.110445	AA315671	ESTs; Moderately similar to unknown [M.m	3.9
50	130752	Hs.18895	D50927	KIAA0137 gene product	3.8
-	123494	Hs.112110	AA599786	ESTs	3.8
		Hs.32478		ESTs	3.8
			AA142913	ESTS	- 3.8
		Hs.71721			
	115506	Hs.45207	AA292537	ESTs	3.8
55	100452	Hs.241552	D87742	Human mRNA for KIAA0268 gene; partial cd	3.8
	104454	Hs.129228	MRAAA3	galactokinase 2	3.8
		Hs.102859		ESTs	3.8
		Hs.24427	AA24778B	ESTs; Highly similar to (defitne not ava	3.8
	104784	Hs.269228	AA027055	ESTs	3.8
60	104946	Hs.73848	AA069549	ESTs .	3.8
		Hs.9394	AA495926	ESTs	3.8
	101724		M69225	bullous pemphigoid antigen 1 (230/240kD)	3.8
		Hs.14912	AA424524	Homo sapiens mRNA for KIAA0286 gene; par	3.8
	128135	Hs.269721	AA913491	ESTs .	3.8
65	120030	Hs.58694	W92051	ESTs	3.8
		Hs.50382	AA007489	zh98g04.r1 Soares_fetal_liver_spleen_1NF	3.8
		Hs.112969		EST	3.7
				=	
		Hs.17752	H95978	Homo saplens phosphatidylserine-specific	3.7
	130577	ris.162	M35410	insulin-like growth factor binding prote	3.7

				The state of the same and the state of the same	0.7
		Hs.44708	N39214	ser-Thr protein kinase related to the my	3.7
		Hs.39712	N77278	ESTs; Weakly similar to BONE/CARTILAGE P	3.7
		Hs.278721		Homo sapiens mRNA for membrane protein w	3.7
_		Hs.305971		ESTs	3.7
5		Hs.193700		ESTs; Moderately similar to IIII ALU SUB	3.7
		Hs.1592	U18291	CDC16 (cell division cycle 16; S. cerevi	3.7
		Hs.183475		ESTs; Moderately similar to IIII ALU SUB	3.7
		Hs.272531		EST	3.7
10		Hs.23837	N22222	yw34b06.s1 Morton Fetal Cochlea Homo sap	3.7
10		Hs.60293	AA496037	ESTs	3.7
		Hs.15683	T92030	ESTs	3.7
		Hs,279952		ESTs; Highly similar to (defline not ava	3.7
		Hs.19347	AA248406	ESTS	3.7
4 ~		Hs.291025		EST	3.7
15		Hs.22380		ESTs .	3.7
		Hs.75295	X66534	guanylate cyclase 1; soluble; alpha 3	3.7
		Hs.109390		ESTs	3.7
		Hs.54900		ESTs	3.7
00		Hs.7337	AA512802	ESTs	3.7
20		Hs.31707	AA256616	ESTs	3.7
		Hs.194283		Homo saplens putative GR6 protein (GR6)	3.7
		Hs.35699	R97219	ESTs	3.7
		Hs.105273		ESTs	3.6
05		Hs.6363	AA206625	ESTs	3.6
25				Transcription Factor lia	3.6
		Hs.166994		FAT tumor suppressor (Drosophila) homolo	3.6
	103520	11 000700	Y10511	H.sapiens mRNA for CD176 protein	3.6
		Hs.302738		ESTs	3.6 3.6
20		Hs.75511		connective tissue growth factor	
30	113702	11. 40400	T97307	ESTs; Moderately similar to IIII ALU SUB	3.6 3.6
		Hs.48428		EST	3.6
		Hs.68554		EST ESTs; Moderately similar to UDP-GLUCOSE:	3.6
		Hs.22983			3.6
25		Hs.170291		ests oc26h07.s1 NCI_CGAP_GCB1 Homo saplens cD	3.6
35		Hs.27973			3.6
	101964	Hs.326416	S81578	dioxin-responsive gene (putative polyade ESTs	3.6
		Hs.337434		EST\$	3.6
		Hs.142296		ESTS	3.6
40				V-Erba Related Ear-3 Protein	3.6
		Hs.164018		ESTs	3.6
		Hs.274265		talin	3.6
		Hs.44155	T52099	creatine kinase; mitochondrial 2 (sarcom	3.6
		Hs.183639		ESTs	3.6
45		Hs.184325		ESTs	3.6
		Hs.270696		ESTs; Moderately similar to !!!! ALU SUB	3.6
		Hs.199067		v-erb-b2 avian erythroblastic leukemia v	3.6
		Hs.44829		ESTs; Moderately similar to IIII ALU SUB	3.6
		Hs.35841	AA436459	nuclear factor I/X (CCAAT-binding transc	3.6
50		Hs.279780	N52232	ESTs	3.6
		Hs.73793		vascular endothelial growth factor	3.6
		Hs.334641		ESTs	3.6
	135357	Hs.79572	AA235803	ESTs -	3.5
	457951		Al369384	arylsulfatase D	3.5
55	108407		AA075519	zm87h9.s1 Stratagene ovarian cancer (#93	3.5
	126659		T16245	a disintegrin and metalloproteinase doma	3.5
	104189	Hs.301804	AA485805	ESTs	3.5
	125956	Hs.129014	N53276	ESTs .	3.5
		Hs.79386		Human mRNA for a 64 Kd autoantigen expre	3.5
60		Hs.171921		sema domain; immunoglobulin domain (Ig);	3.5
		Hs.26176		ESTs	3.5
		Hs.169359		yr57e06.r1 Soares fetal liver spleen 1NF	3.5
		Hs.306915		ESTs	3.5
		Hs.42179		ESTs	3.5
65		Hs.30127		ESTs; Highly similar to !!!! ALU SUBFAM!	3.5
		Hs.145807		ESTs; Moderately similar to IIII ALU SUB	3.5
		Hs.26771		ESTs	3.5
		Hs.18953		phosphodiesterase 9A	3.5
	117473	Hs.155560	N3U15/	ESTs	3.5

	102663	Hs.168075	1170322	karyopherin (importin) beta 2	3.5
		Hs.13531		ESTs; Weakly similar to (defline not ava	3.5
		Hs.41119		ESTs (Vocaty canalize to (consiste receive	3.5
					3.5
. 2		Hs.30696		transcription factor-like 5 (basic helix	
·5		Hs.163191		EST	3.5
		Hs.189810		Human DNA sequence from PAC 388M5 on chr	3.5
	119071		R31180	ESTs	3.5
		Hs.96593		ESTs	3.5
	110721	Hs.31319	H97678	ESTs	3.5
10	126586	Hs.43086	AA011247	EST8	3.5
	103106	Hs.1857	X62025	phosphodiesterase 6G; cGMP-specific; rod	3.5
		Hs.90797	AA504806	Homo sapiens clone 23620 mRNA sequence	3.5
		Hs.4104	AA233790	ESTs	3.5
		Hs.19525	-	ESTs	3.5
15		Hs.52184	AA167708	ESTs	3.5
13			X65724	Norrie disease (pseudoglioma)	3.5
		Hs.2839		adenovirus 5 E1A binding protein	3.5
		Hs.301449			
		Hs.49418		ESTs	3.5
		Hs.11223	U62389	Human putative cytosolic NADP-dependent	3.4
20		Hs.6456	T69868	chaperonin containing TCP1; subunit 2 (b	3.4
		Hs.301997		ESTs	3.4
	105327	Hs.211593	AA234440	ESTs	3.4
	106586	Hs.57787	AA456598	ESTs	3.4
	122635		AA454085	EST	3.4
25		Hs.260116	AA132969	metalloprotease 1 (pitrilysin family)	3.4
		Hs.34956	AA283620	ESTs	3.4
		Hs.182793		ESTs	3.4
		Hs.292503		ESTs; Weakly similar to KIAA0601 protein	3.4
		Hs.184298		cyclin-dependent kinase 7 (homolog of Xe	3.4
30					3.4
30		Hs.237658		ESTs; Highly similar to apolipoprotein A	3.4
	118475		N66845	ESTs; Weakly similar to IIII ALU CLASS B	
		Hs.88959		ESTs; Weakly similar to !!!! ALU SUBFAMI	3.4
		Hs.132005		ESTs	3.4
		Hs.25829		ESTs	3.4
35	125408	Hs.89578	N72353	yv37e12.r1 Soares fetal liver spleen 1NF	3.4
	109834	Hs.175955	H00604	ESTs	3.4
	130844	Hs.20191	D12122	seven in absentia (Drosophila) homolog 2	3.4
	127143	Hs.20843	AA533553	ni68h04.s1 NCI_CGAP_Pr10 Homo sapiens cD	3.4
		Hs.42500		ESTs	3.4
40		Hs.295978		stimulated trans-acting factor (50 kDa)	3.4
		Hs.187983		ESTs	3.4
		Hs.92127		ESTs	3.4
		Hs.8868	AA481414	golgi SNAP receptor complex member 1	3.4
		Hs.166196		ESTs	3.4
45		Hs.155983		H.saplens mRNA for 5'UTR for unknown pro	3.4
73				calcium channel; voltage-dependent; L ty	3.4
		Hs.89925			3.4
		Hs.16085		ESTs; Highly similar to (defline not ava	
		Hs.15978		ESTs	3.4
50		Hs.10653		ESTs	3.4
50		Hs.21893	-	ESTs	3.4
		Hs.35828	R98192	ESTs	3.4
	127815	Hs.255015		ob93c10.s1 NCI_CGAP_GCB1 Homo sapiens cD	3.4
	100144	Hs.75616	D13643	KIAA0018 gene product -	3.4
	101129	Hs.247992	L10405	Homo sapiens DNA binding protein for sur	3.4
55	130874	Hs.20621	T08287	ESTs	3.4
	106882	Hs.26994	AA489009	EST8	3.4
	103855	Hs.302267	AA195179	ESTs	3.4
	125957		H45213	voO3b08.r1 Soares adult brain N2b5HB55Y	3.3
		Hs.146085		ESTs	3.3
60		Hs.75354	F13702	ESTs	3.3
50		Hs.170098		ESTs; Highly similar to KIAA0372 [H.sapi	3.3
		Hs.170090		ESTs; Weakly similar to glioma amplified	3.3
			D49396	Human mRNA for Apo1 Human (MER5(Aop1-Mou	3.3
		Hs.75454		p21 (CDKN1A)-activated kinase 2	3.3
65		Hs.30692	U24153		3.3
65		Hs.88201	AA481256	ESTs; Weakly similar to (defline not ava fibromodulin	
		Hs.230	U05291		3.3
		Hs.14658	R99606	Human chromosome 5q13.1 clone 5G8 mRNA	3.3
		Hs.159456		ESTs; Highly similar to (defline not ava	3.3
	128707	Hs.104105	AA136474	Meis (mouse) homolog 2	3.3

	115048	Hs.190057	AA252668	ESTs	3.3
		Hs.31110		ESTs	3.3
		Hs.24192	R31679	ESTs	3.3
_		Hs.2877	X63629	cadherin 3; P-cadherin (placental)	3.3
5		Hs.62604		ESTs	3.3
		Hs.79284	D78611	mesoderm specific transcript (mouse) hom	3.3
		Hs.301804		ESTs	3.3
		Hs.159627		Death associated protein 3	3.3
10		Hs.182575		solute carrier family 15 (H+/peptide tra	3.3 3.3
10		Hs.140942		ESTs	3.3
		Hs.61635	HG3264-HT3441	Homo sapiens BAC done RG041D11 from 7q2	3.3
		Hs.65114		keratin 18	3,3
		Hs.283558		ESTs	3.3
15		Hs.129781		ESTs	3.3
		Hs.31652		ESTs	3.3
	114956	Hs.87113	AA243681	ESTs ·	3.3
		Hs.112227		ESTs	3.3
00		Hs.12315		ESTs	3.3
20		Hs.178604		ESTs	3.3
		Hs.155995		Homo sapiens mRNA for KIAA0643 protein;	3.3 3.3
		Hs.284294	WU2877 T26893	ESTs EST	3.3
		Hs.7569 Hs.82318		Brush-1	3.3
25		Hs.333256		ESTs; Moderately similar to IIII ALU SUB	3.3
20		Hs.294105		ESTs	3.3
		Hs.194215		ESTs	3.3
		Hs.299867		hepatocyte nuclear factor 3; alpha	3.3
	120408	Hs.190151	AA235045	ESTs	3.3
30		Hs.47402		ESTs; Weakly similar to IIII ALU SUBFAMI	3.3
		Hs.11500	AA437118	ESTs .	3.3
		Hs.126494		ESTS	3.3
	127265	11- 44440	AA332751	EST37214 Embryo, 8 week I Homo sapiens c	3.3 3.2
35		Hs.41143 Hs.293691	AA011027	Homo sapiens mRNA for KIAA0581 protein; ESTs	3.2
22		Hs.250655		H.sapiens mRNA for Ptg-12 protein	3.2
		Hs.334334		ESTs	3.2
		Hs.251946		ESTs	3.2
		Hs.44481		forkhead (Drosophila)-like 6	3.2
40	106880	Hs.32425	AA488889	ESTs	3.2
		Hs.169780		homologous to yeast nitrogen permease (c	3.2
		Hs.292581		ESTs	3.2
		Hs.284207		ESTs	3.2
45		Hs.105116		EST	3.2 3.2
43		Hs.63908 Hs.194657		ESTs H.sapiens gene encoding E-cadherin, exon	32
		Hs.270016		ESTs	3.2
		Hs.74137		Homo sapiens (clone s153) mRNA fragment	3.2
	101183		L19779	H2A histone family; member O	3.2
50	125596	-	R25698	yg44h11.r2 Soares infant brain 1NIB Homo	3.2
	127261		AA661567	nu86b02.s1 NCI_CGAP_Alv1 Homo sapiens cD	3.2
		Hs.59554		ESTs	3.2
		Hs.166982		phosphatidylinositol glycan; class F	3.2
E E		Hs.97129	AA382283	ESTS	3.2
55		Hs.274256		ESTs	3.2 3.2
		Hs.191185 Hs.99913		ESTs adrenergic; beta-1-; receptor	3.2
		Hs.278634		Human mRNA for KIAA0146 gene; partial cd	3.2
		Hs.192803		xeroderma pigmentosum; complementation g	3.2
60		Hs.84072		transmembrane 4 superfamily member 3	3.2
		Hs.116774		Integrin; alpha 1	3.2
	113867	Hs.24095	W68845	ESTs	3.2
		Hs.70937	Z83735	H3 histone family; member K	3.2
~~		Hs.189716		ESTs	3.2
65		Hs.104696		ESTS	3.2
		Hs.6639 Hs.334335	W28406	ESTs ESTs	3.2 3.2
		Hs.185766		ESTS	3.2
		Hs.130760		Homo sapiens mRNA; cDNA DKFZp586N0318 (f	3.2
	10,012			tioning amplication and amplication advanced to for	

	100041	U- 00004	LIDOZEO	CDV Janu data-mining malon VI hav 11	3.2
		Hs.32964	U23752	SRY (sex-determining region Y)-box 11	3.2
	123147		AA487961	ab11h6.s1 Stratagene lung (#93721) Homo	3.2
		Hs.272138		ye87g03.r1 Soares fetal liver spleen 1NF	
_		Hs.250646		ESTs; Highly similar to ubiquitin-conjug	3.2
5		Hs.180789		Homo sapiens (clone \$164) mRNA; 3' end o	3.2
		Hs.78344		myosin; heavy polypeptide 11; smooth mus	3.2
	124866	Hs.304389	R68571	ESTs	3.2
	133205	Hs.67619	AA089559	Homo sapiens mRNA; chromosome 1 specific	3.2
	102986	Hs.182378	X17648	colony stimulating factor 1 (macrophage)	3.2
10	101232	Hs.242894	128997	ADP-ribosylation factor-like 1	3.1
	132906	Hs.234896	AA142857	ESTs; Highly similar to geminin [H.sapie	3.1
		Hs.5669	C14290	ESTs	3.1
			AA621348	ESTs; Highly similar to (defline not ava	3.1
		Hs.239720		ESTs; Weakly similar to Rga [D.melanogas	3.1
15		Hs.16346		ESTs	3.1
				Serine/Threonine Kinase (Gb:Z25431)	3.1
			AA259102	ESTs; Highly similar to (defline not ava	3.1
		Hs.300855		ESTs	3.1
		Hs.123642		ESTs	3.1
20		Hs.98968		ESTs	3.1
20				Human breast cancer; estrogen regulated	3.1
		Hs.79136			3.1
		Hs.47334		ESTs; Moderately similar to !!!! ALU SUB	3.1
		Hs.296842		ESTs; Moderately similar to non-muscle m	
05			AA299096	Homo sapiens mRNA; cDNA DKFZp564M0916 (f	3.1
25		Hs.286192		ESTs	3.1
			AA104023	ESTs	3.1
		Hs.178294		ESTs	3.1
		Hs.183297		ESTs	3.1
		Hs.109653		EST8	3.1
30	100384	Hs.90800	D83646	matrix metalloproteinase 16 (membrane-in	3.1
	109063	Hs.38972	AA161043	tetraspan 1	3.1
	133284	Hs.182828	U09367	zinc finger protein 136 (done pHZ-20)	3.1
	131839	Hs.33010	H80622	Homo sapiens mRNA for KIAA0633 protein;	3.1
	117606	Hs.44698	N35115	ESTs	3.1
35	418998	Hs.287849	F13215	ESTs	3.1
		Hs.103120		ESTs	3.1
	100789			Phosphoglucomutase 1, Alt. Splice	3.1
		Hs.159440		ESTs	3.1
		Hs.247324		Homo sapiens DNA sequence from PAC 262D1	3.1
40		Hs.108479		ESTs	3.1
70		Hs.181368		U5 snRNP-specific protein (220 kD); orth	3.1
		Hs.118258		ESTs	3.1
	123465	115.1 102.00	AA599033	ESTs	3.1
		Un 450016	AA345339	EST51345 Gall bladder II Homo sapiens cD	3.1
45		Hs.167031		za36d05.r1 Soares fetal liver spieen 1NF	3.1
43					
		Hs.43234		ESTS	3.1 3.1
		Hs.38057	AA203742	ESTS	
			AA971439	ESTS	3.1
60		Hs.223241		yb15c11.s1 Stratagene placenta (#937225)	3.1
50			AA249334	J312.seq.F Human fetal heart, Lambda ZAP	3.1
			AA463737	ESTS	3.1
		Hs.20993	AA442604	ESTs; Wealdy similar to Ydr374cp [S.cere	3
			W92779	ESTs -	3
	128835	Hs.106390	W15528	ESTs	3
55	103667	Hs.247815	Z80788	H.sapiens H4/I gene	3
	126264	Hs.250614	N42897	yy13h06.r1 Soares melanocyte 2NbHM Homo	3
	132626	Hs.21275	D25755	ESTs	3
	131107	Hs.75354	N87590	ESTs	3
	126780	Hs.5811	R12421	ESTs	3
60		Hs.22116	AA307744	Homo sapiens Cdc14B1 phosphatase mRNA; c	3
			AA016186	ESTs	3
		Hs.8867	U62015	Homo sapiens Cyr61 mRNA, complete cds	3
		Hs.24336		ESTs	3
		Hs.301404		RNA binding motif protein 3	3
65			AA292689	ESTs	3
55		Hs.79411	J05249	replication protein A2 (32kD)	3
		Hs.248177		Human histone H3 gene	3
		Hs.30738		ESTs	3
		Hs.33287	U85193	nuclear factor I/B	3
	10110/	10.00207		HENDER ROWLED	•

	107001	Hs.241551	VIGENGGO	ESTs	3
				ESTs	3
		Hs.24104	R26708		3
		Hs.3066	U26174	granzyme K (serine protease; granzyme 3;	3
_		Hs.21291		Serine/Threonine Kinase (Gb:Z25428)	3
5		Hs.58915	W86838	EST	
		Hs.118281		zinc finger protein 266	3
		Hs.76152	M14219	decorin	3
		Hs.14449	AA010889	ESTs	.3
	126371	Hs.304139	N57645	EST	3
10		Hs.116346		ESTs	3
	128434	Hs.143880	Al190914	ESTs	3
	435761	Hs.187555	AA701941	ESTs	3
	125025	Hs.50748	T71561	ESTs	3
	124940	Hs.103804	R99599	heterogeneous nuclear ribonucleoprotein	3
15		Hs.251531		proteasome (prosome; macropain) subunit;	3
		Hs.10450	AA621125	Homo sapiens chromosome 2; 10 repeat reg	3
	112068	Hs.22545	R43910	ESTs	3
		Hs.263727	AA235465	ESTs; Moderately similar to IIII ALU SUB	3
		Hs.21739	AA370302	Homo sapiens mRNA; cDNA DKFZp586I1518 (f	3
20		Hs.274407	AA149987	thymus specific serine peptidase	3
20		Hs.75847	N79435	ESTs	3
		Hs.227949		ESTs; Highly similar to SEC13-RELATED PR	3
		Hs.44189	N30426	ESTs	3
		Hs.112699		ESTs	3
25		Hs.63290		EST114219 HSC172 cells II Homo sapiens c	3
23		Hs.7367	AA112222	ESTs; Moderately similar to (defline not	3
		Hs.80975	AA255903	CD39-like 4	2.9
			S72370	pyruvate carboxylase	2.9
		Hs.89890		ESTs; Weakly similar to !!!! ALU SUBFAMI	2.9
20		Hs.101810		ESTs Weakly suiting to the ALO GOD! AND	2.9
30		Hs.7980 Hs.112575	F09570	ESTs	2.9
				ESTs	2.9
		Hs.32793	AA609943		2.9
		Hs.88556	D50405	histone deacetylase 1	2.9
25		Hs.82689	H99801	tumor rejection antigen (gp96) 1	2.9
35		Hs.174139		H. sapiens RNA for CLCN3	
		Hs.14512	AA461495	ESTS	2.9 2.9
	108555		AA084963	zn13e12.s1 Stratagene hNT neuron (#93723	
		Hs.2110	HG945-HT945	Nucleic Acid-Binding Protein (Gb:L12693)	2.9
40		Hs.16492	AA173998	ESTs; Weakly similar to weakly similar t	2.9
40		Hs.139226		replication factor C (activator 1) 2 (40	2.9
	106636		AA459950	ESTS	2.9
		Hs.108708		calcium/calmodulin-dependent protein kin	2.9
	125819	Hs.251871		stromal cell-derived factor 1	2.9
		Hs.9857	AA433946	ESTs; Weakly similar to (defline not ava	2.9
45	100386	Hs,301636	D83703	peroxisomal biogenesis factor 6	2.9
	114546	Hs.98074	AA056263	ESTs; Moderately similar to IIII ALU SUB	2.9
	105914	Hs.9701	AA402224	Homo sapiens growth arrest and DNA-damag	2.9
	108552		AA084912	zn11c7.s1 Stratagene hNT neuron (#937233	2.9
	126505	Hs.190057	W26894	16a11 Human retina cDNA randomly primed	2.9
50	134098	Hs.79086	X06323	Human MRL3 mRNA for ribosomal protein L3	2.9
	129721	Hs.211539	L19161	eukaryotic translation initiation factor	2.9
	100076	Hs.277422	AB000897	Homo sapiens mRNA for cadherin FIB3, par	2.9
		Hs.44104	N29862	ESTs ·	2.9
		Hs.36688	AA437258	ESTs; Moderately similar to WAP four-dis	2.9
55	134510	Hs.250870	U25265	protein kinase; mitogen-activated; kinas	2.9
		Hs.32995	AA398412	ESTs	2.9
		Hs.26267	AA458904	ESTs; Weakly similar to torsinA [H.sapie	2.9
	134087	Hs.173824	U51166	thymine-DNA glycosylase	2.9
	100641	Hs 182183	HG2743-HT2846	Caldesmon 1, Alt. Splice 4, Non-Muscle	2.9
60	104602		R86920	ESTs	2.9
		Hs.42738		ESTs	2.9
		Hs.34073		BH-protocadherin (brain-heart)	2.9
		Hs.155212		methylmalonyi Coenzyme A mutase	2.9
		Hs.5724	AA279422	ESTs	2.9
65		Hs.287912		lectin; mannose-binding; 1	2.9
05	1107/0	Hs.19762	H99675	ESTs	2.9
		Hs.285728		H.sapians mRNA for ArgBPIB protein	2.9
		Hs.132390		ESTs	2.9
		Hs.161002		absent in melanoma 1	2.9
	104/12	118.101002	500110	Worth #1 House the t	

	131710	Hs.30985	AA233225	ESTs; Highly similar to (defline not ava	2.9
	125231	Hs.268903	W84714	ESTs	2.9
	127380	Hs.15535	Al417137	Homo sapiens clone 24582 mRNA sequence	2.9
_	104229	Hs.61289	AB002346 -	inositol phosphate 5'-phosphatase 2 (syn	2.9
5	126600	Hs.191385	AA699949	ESTs	2.9
		Hs.303030		EST	2.9
		Hs.34578	AA187045	ESTs; Weakly similar to IIII ALU SUBFAMI	2.9
		Hs.78961	U14575	protein phosphatase 1; regulatory (inhib	2.9
10		Hs.107815		ESTs	2.9
10		Hs.303125		ESTs	2.9
		Hs.218329		heat shock 70kD protein 1	2.9 2.9
		Hs.75462	U72649	Human BTG2 (BTG2) mRNA; complete cds	2.9
		Hs.18271 Hs.232068	AA191014	ESTs; Weakly similar to Ydr372cp [S.cere Human mRNA for transcription factor AREB	2.9
15		Hs.336901		ESTs	2.9
IJ		Hs.37637	N59645	ESTs	2.9
		Hs.11805	N66066	ESTs	2.9
		Hs.102897		ESTs	2.9
		Hs.79265	AA114183	ESTs; Moderately similar to glutarnate py	2.9
20		Hs.267812		sorting nextn 4	2.9
		Hs.279609		pigment epithelium-derived factor	2.9
	103803	Hs.106149	AA127696	ESTs	2.9
	102139	Hs.2128	U15932	dual specificity phosphatase 5	2.9
	128104		AA971000	op87g11.s1 Soares_NFL_T_GBC_S1 Homo sapi	2.8
25		Hs.337631		nz22d08.s1 NCI_CGAP_GCB1 Homo sapiens cD	2.8
		Hs.180952		ESTs	2.8
		Hs.217916		ESTS	2.8
		Hs.93883	D10537	myelin protein zero (Charcot-Marie-Tooth	2.8 2.8
30		Hs.68644 Hs.145696	N45014	yy80g06.r1 Soares_multiple_sclerosis_2Nb ESTs	2.8
30		Hs.98684	AA432141	ESTs	2.8
		Hs.322645		ESTs	2.8
		Hs.99915	M23263	androgen receptor (dihydrotestosterone r	2.8
		Hs.129998		ESTs	2.8
35		Hs.109019		ESTs	2.8
		Hs.12186	R45480	cyclin K	2.8
		Hs.32149	H45968	ESTs	2.8
	104261	Hs.5409	AF008442	RNA polymerase I subunit	2.8
	105366	Hs.282093	AA236356	ESTs	2.8
40		Hs.5957	AA417761	Homo sapiens clone 24416 mRNA sequence	2.8
		Hs.25960	M13241	v-myc avian myelocytomatosis viral relat	2.8
		Hs.26255	R42714	EST	2.8
		Hs.250175		Homo sapiens clone 23904 mRNA sequence	2.8 2.8
45		Hs.33130 Hs.72085	H44825 AA236843	ESTs; Weakly similar to unknown [S.cerev	2.8
47	128152	NS./2000	R20353	yg20f10.r1 Soares infant brain 1NiB Homo	2.8
		Hs.23740	AA598710	ESTs	2.8
		Hs.97101	AA215333	ESTs	2.8
		Hs.184510		stratifin	2.8
50		Hs.293845		ESTs	2.8
		Hs.292566		ESTs	2.8
	125867	Hs.12372	H98141	ESTs	2.8
		Hs.98541	AA282787	ESTs; Highly similar to (delline not ava -	2.8
		Hs.46847	AA256524	Human DNA sequence from clone 30M3 on ch	2.8
55	133865	Hs.170290	F09315	discs; large (Drosophila) homolog 5	2.8
		Hs.110826		Homo saplens CAGF9 mRNA; partial cds	2.8 2.8
		Hs.23767 Hs.10299	Z38910	ESTs ESTs; Moderately similar to !!!! ALU SUB	2.8
		Hs.66731	U81599	homeo box B13	2.8
60		Hs.336629		ESTs; Weakly similar to zinc finger prot	2.8
50		Hs.25067		EST	2.8
		Hs.173694		ESTs; Moderately similar to (defline not	2.8
		Hs.6019	AA430108	ESTs	2.8
		Hs.22564		myosin VI	2.8
65	111383	Hs.40919		EŚTs	2.8
		Hs.1594	U14518	centromere protein A (17kD)	2.8
	102722	Hs.79981	U79242	Human clone 23560 mRNA sequence	2.8
		Hs.274324		PCAF associated factor 65 alpha	2.8
	126663	Hs.181297	MA/14635	ESTs	2.8

			****		0.0
		Hs.134342		ESTs; Weakly similar to seventransmembra	2.8
	107316	Hs.193700	T63174	ESTs; Moderately similar to IIII ALU SUB	2.8
	128059	Hs.145098	AA972446	ESTs	2.8
_	124447		N48000	ESTs	2.8
5	111398	Hs.125565	R00086	deafness; X-linked 1; progressive	2.8
	134085	Hs.79018	U20979	chromatin assembly factor I (150 kDa)	2.8
	124788	Hs.100912	R43543	ESTs	2.8
	112248	Hs.326416	R51361	ESTs .	2.8
		Hs.97312		ESTs	2.8
10		Hs.75319		ribonucleotide reductase M2 polypeptide	2.8
		Hs.35198		ESTs	2.8
		Hs.35380		ESTs	2.8
		Hs.62245		solute carrier family 25 (mitochondrial	2.8
		Hs.29669		ESTs	2.8
15		Hs.97694		ESTs	2.8
15				ESTs	2.8
		Hs.243901		ESTS	2.8
		Hs.22869		ESTs; Moderately similar to roundabout 1	2.8
		Hs.168818			2.8
00		Hs.181444		ESTs; Weakly similar to R12C12.6 [C.eleg	
20		Hs.190478		ESTs	2.8
		Hs.530	M81379	collagen; type IV; alpha 3 (Goodpasture	2.8
		Hs.1313	L09753	tumor necrosis factor (ligand) superfami	2.8
	123000	Hs.105640		ESTs	2.8
	121329	Hs.1755	AA404324	ESTs	2.8
25	100481	Hs.121489	HG1098-HT1098	Cystatin D	2.7
	113803	Hs.283683	W42789	ESTs	2.7
	110934	Hs.169001	N48708	ESTs; Weakly similar to cytochrome P-450	2.7
	432888		T86823	ESTs	2.7
		Hs.188898	AA424328	ESTs	2.7
30		Hs.155313		Human mRNA for KIAA0333 gene; partial cd	2.7
-		Hs.97697		ESTs; Weakly similar to (defiine not ava	2.7
		Hs.23240		ESTs	2.7
		Hs.272429		calcium-sensing receptor (hypocalciuric	2.7
		Hs.87819		ESTs: Weakly similar to keratin 9; cytos	2.7
35		Hs.25318		ESTs	2.7
JJ		Hs.173334		ESTs	2.7
		Hs.40639		yx92a07.r1 Soares melanocyte 2NbHM Homo	2.7
		Hs.75262		cathepsin O	2.7
				Homo sapiens Opa-interacting protein OIP	2,7
40		Hs.274170			2.7
40		Hs.84072		transmembrane 4 superfamily member 3	2.7
		Hs.167489		ESTS	2.7
		Hs.77873		ESTs	2.7
		Hs.9973	W92797	ESTs	
		Hs.132967		ESTs	2.7
45		Hs.85963		ESTs; Moderately similar to !!!! ALU SUB	2.7
		Hs.256301		ESTs	2.7
	132037	Hs.332541	AA203649	ESTs; Weakly similar to HEM45 [H.sapiens	2.7
	130542	Hs.179825	U64675	Human sperm membrane protein BS-63 mRNA,	2.7
	122851	Hs.99598	AA463627	ESTs	2.7
<i>5</i> 0		Hs.196384		prostaglandin-endoperoxide synthase 2 (p	2.7
	120537	Hs,160422	AA262790	ESTs	2.7
	131036	Hs.174140	X64330	ATP citrate lyase	2.7
		Hs.211582		ESTs	2.7
		Hs.106529		zv81e01.r1 Soares_total_fetus_Nb2HF8_9w	2.7
55	112755	Hs.306044	R93802	ESTs	2.7
JJ	423239		AA323591	EST26392 Cerebellum II Homo saplens cDNA	2.7
		Hs.12321	AA127240	ESTs	2.7
		Hs.187516		ESTs	2.7
	102116		U13706	Human ELAV-like neuronal protein 1 isofo	2.7
60		Hs.237225		ESTs; Weakly similar to (defline not ava	2.7
JU		Hs.278439		ESTs	2.7
				ESTs; Highly similar to (defline not ava	2.7
		Hs.40241	AA004878		2.7
		Hs.1259	X55283	asialoglycoprotein receptor 2	2.7
<i>CE</i>		Hs.283309		ESTs; Weakly similar to !!!! ALU SUBFAM!	2.7
65	128422		T85681	yd60c06.r1 Soares fetal liver spieen 1NF	
		Hs.43899	AA233702	ESTS	2.7
		Hs.292284		Homo sapiens RNA polymarase III largest	2.7
		Hs.36727	AA416963	ESTs; Highly similar to histone H2A [H.s	2.7
	104440	Hs.284380	1.20492	gamma-glutamyltransferase 1	2.7

	129426	Hs.111323	AA412087	EST; Highly similar to (defline not avai	2.7
					2.7
	123798		AA620411	small inducible cytokine A5 (RANTES)	
	106716	Hs.238928	AA464962	ESTs	2.7
			Z78291	Z78291 Homo saplens brain fetus Homo sap	2.7
~	103663				
5	114162	Hs.22265	Z38909	ESTs	2.7 .
	113063	Hs.5027	T32438	ESTs	2.7
		110.0021			2.7
	127897		AA773857	af80c09.r1 Soares_NhHMPu_S1 Homo sapiens	
	130621	Hs.16803	AA621718	ESTs; Wealdy similar to (defilne not ava	2.7
					2.7
• •		Hs.42796	AA479958	ESTs, Highly similar to (defline not ava	
10	125499		R11878	yl49d11.r1 Soares infant brain 1NIB Homo	2.7
		Hs.77899	M19267	tropomyosin 1 (alpha)	2.7
	104470	Hs.246358	N28843	ESTs; Weakly similar to Similar to colla	2.7
	134982	Hs.92308	N45086	ESTs	2.7
- -		Hs.284295		ESTs	2.7
15	104899	Hs.285574	AA054726	ESTs	2.7
		Hs.337585		ESTs; Moderately similar to KIAA0350 [H.	2.7
	111253	Hs.15768	N70042	ESTs; Moderately similar to !!!! ALU SUB	2.7
	118449	Hs.164478	N68413	ESTs; Weakly similar to (defline not ava	2.7
					2.7
~~		Hs.84318	M63488	replication protein A1 (70kD)	
20	121609	Hs.98185	AA416867	EST	2.7
		Hs.27475	W56590	ESTs	2.7
	113962	Hs.285290	W86375	ESTs; Highly similar to (defline not ava	2.7
	121013	Hs.98558	AA428062	ESTs	2,7
	108194	Hs.216717	AAU5/250	ESTs	2.7
25	130799	Hs.12696	AA464273	ESTs	2.7
		Hs.18166	AA489072	Homo saptens mRNA for KIAA0870 protein;	2.7
	103420	Hs.173497	X97065	SEC23-like protein B	2.7
	106186	Hs.6315	AA427398	acetylserotonin N-methyltransferase-like	2.7
		113,0010			
	101349		L77559	Homo sapiens DGS-B partial mRNA	2.7
30	112954	Hs.6655	T16559	ESTs	2.7
		Hs.291079	D07876	ESTs; Weakly similar to unknown [S.cerev	2.7
	128131	Hs.25640	Al283162	claudin 3	2.6
	101864	Hs.75777	M95787	transgelin	2.6
				=	2.6
		Hs.26303	R40752	ESTs	
35	130145	Hs.151051	U07620	protein kinase mitogen-activated 10 (MAP	2.6
		Hs.23964	Al362218	ESTS	2.6
	117903	Hs.47111	N50740	ESTs	2.6
	116345	Hs.199067	AA496981	ESTs	2.6
					2.6
40		Hs.4248	AA412620	ESTs	
40	125746	Hs.274256	H03574	yi42b06.r1 Soares placenta Nb2HP Homo sa	2.6
	105073	Hs.89463	AA137034	ESTs	2.6
		110,000			
	102764		U82310	Homo sapiens unknown protein mRNA, parti	2.6
	131367	Hs.173933	AA456687	ESTs	2.6
				nuclear localization signal deleted in v	2.6
4.5		Hs.19500			
45	107427	Hs.46736	W26975	ESTs	2.6
	117/77	Hs.44175	N30328	ESTs	2.6
	106290	Hs.16364	AA435542	ESTs	2.6
	126829	Hs.7910	R11547	ESTs	2.6
		Hs.173001		ESTs	2.6
EΛ					
50	100147	Hs.136348	D13666	osteoblast specific factor 2 (fasciclin	2.6
	104278	Hs.109253	C02582	ESTs; Highly similar to (defline not ava	2.6
				ESTs	2.6
		Hs.83484			
	126081	Hs.227835	AJ346024	collagen; type I; alpha 1	2.6
	123579		AA608983	at5d4.s1 Soares_testis_NHT Homo sapiens	2.6
EE					
55	130115	Hs.149923	M31627	X-box binding protein 1	2.6
	101434	Hs.1430	M20218	coagulation factor XI (plasma thrombopla	2.6
				ESTs; Moderately similar to IIII ALU SUB	
		Hs.104720			2.6
	126151	Hs.40808	AA324743	ESTs	2.6
		Hs.21851	D61676	Homo sapiens mRNA; cDNA DKFZp586J2118 (f	2.6
60					
60		Hs.103391		insulin-like growth factor binding prote	2.6
	130296	Hs.154103	R09286	LIM protein (similar to rat protein kina	2.6
		Hs.191637		ESTs	2.6
	129273	Hs.109968	W63783	ESTs	2.6
		Hs.7788	F07759	ESTs	2.6
65					
65		Hs.321264		ESTs	2.6
	130963	Hs.21639	U57099	nuclear protein; marker for differentiat	2.6
		Hs.194154		ESTs; Weakly similar to !!!! ALU SUBFAMI	2.6
	123251	Hs.103267	AA490858	ESTs; Moderately similar to Rabin3 (R.no	2.6
	121710	Hs.96744	AA419011	ESTs	2.6
	121110				

	125428	Hs.851	W74608	ESTs; Highly similar to (defline not ava	2.6
		Hs.82302	AA436616	ESTs	2.6
	108432		AA076626	Homo sapiens clone 23851 mRNA sequence	2.6
5		Hs.191911		ESTS	2.6 2.6
J		Hs.281434		ESTs ESTs	2.6
		Hs.268615 Hs.173840		ESTs	2.6
	102565	113.170040	U59748	Human desert hedgehog (hDHH) mRNA, parti	2.6
		Hs.13109	AA194973	ESTs	2.6
10		Hs.334609		ESTs	2.6
	106236	Hs.21104	AA429951	ESTs	2.6
		Hs.321709		purinergic receptor P2X; ligand-gated to	2.6
		Hs.29889		ESTs	2.6
15		Hs.8535	AA303088	ESTs; Weakly similar to transformation-r	2.6
15		Hs.97967 Hs.155485		ESTs	2.6 2.6
		Hs.102329		Human huntingtin interacting protein (HI ESTs	2.6
		Hs.97199		ESTs	2.6
		Hs.180591		ESTs; Weakly similar to weak similarity	2.6
20		Hs.11463		ESTs; Wealdy similar to (defline not ava	2.6
		Hs.26904		ESTs	2.6
		Hs.112981		ESTs	2.6
		Hs.104835		ESTs	2.6
25		Hs.110637		Homo sapiens homeobox protein A10 (HOXA1	2.6
25		Hs.153934	M24470	core-binding factor; runt domain; alpha	·2.6 2.6
		Hs.1435		guanosine monophosphate reductase Trithorax Homolog Hrx	2.6
		Hs.30177		ESTs	-2.6
		Hs.46485	N45201	EST	2.6
30		Hs.48712		ESTs	2.6
	111299	Hs.74313	N73808	ESTs	2.6
		Hs.32971		phosphoinositide-3-kinase; class 3	2.6
		Hs.195614		KIAA0017 gene product	2.6
35		Hs.169977		ESTs	2.6
22	100858	Hs.301927		Forkhead Family Afx1 T-cell receptor; alpha (V;D;J;C)	2.6 2.6
		Hs.133865		ESTs	2.6
		Hs.92137		v-myc avian myelocytomatosis viral oncog	2.6
		Hs.10247	U30999	Human (memc) mRNA, 3'UTR	2.6
40	105586	Hs.191538	AA279137	ESTs	2.6
		Hs.34136	AA307443	ESTs	2.6
		Hs.268601		ESTs; Wealdy similar to (defline not ava	2.6
		Hs.21201	Z39338	ESTs; Highly similar to (defline not ava	2.6
45		Hs.40022		EST ESTs	2.6 2.6
45		Hs.306995 Hs.78202		SWI/SNF related; matrix associated; acti	2.6
				Caldesmon 1, Alt. Splice 3, Non-Muscle	2.6
		Hs.285996		ESTs	2.6
		Hs.6540	Z40861	ESTs	2.6
50	106060	Hs.171391	AA417287	C-terminal binding protein 2	2.5
		Hs.60772		EST	2.5
	100134		D13264	macrophage scavenger receptor 1	2.5
	133969		U13044	GA-binding protein transcription factor;	2.5 2.5
55		Hs.74316 Hs.291701	AA455001 AAROROR1	ests oc39a08.s1 NCL_CGAP_GCB1 Homo sapiens cD	2.5
33		Hs.203961		ESTs	2.5
		Hs.44583	N34415	EST	2.5
		Hs.109654		ESTs	2.5
		Hs.2785	Z19574	keratin 17	2.5
60		Hs.5897	AA047151	ESTs	2.5
		Hs.82643	U02680	protein tyrosine kinase 9	2.5
		Hs.20159	AA454156	ESTs ESTs	2.5
		Hs.193784 Hs.24908		ESTs ESTs	2.5 2.5
65		Hs.75275	D50916	homolog of yeast (S. cerevisiae) ufd2	2.5
-		Hs.121524		glutathione reductase	2.5
		Hs.6166	AA047616	ESTs	2.5
	130869	Hs.2057	AA128100	uridine monophosphate synthetase (orotat	2.5
	129645	Hs.118131	L38928	5;10-methenyttetrahydrofolate synthetase	2.5

	126399	Hs.83883	AA128075	zi16d08.r1 Soares_pregnant_uterus_NbHPU	2.5
	134069	Hs.78935	U29607	Homo sepiens eIF-2-associated p67 homolo	2.5
	109816	Hs.61960	F11013	ESTs: Weakly similar to KIAA0176 [H.sapi	2.5
	134801	Hs.89695	X02160	insulin receptor	2.5
5	104232	Hs.10587	AB002351	Human mRNA for KIAA0353 gene; partial cd	2.5
	107361	Hs.159486	U72513	Human RPL13-2 pseudogene mRNA; complete	2.5
	106057	Hs.289074	AA417067	ESTs	2.5
	134252	Hs.80720	AA031782	Homo sapiens mRNA; cDNA DKFZp586B1722 (f	2.5
	128062	Hs.105547	AA379500	ESTs	2.5
10	110009	Hs.6614	H10933	ESTs	2.5
	111375	Hs.20432	N93696	ESTs	2.5
	122642	Hs.99361	AA454186	ESTs	2.5
	127999	Hs.69851	AA837495	ESTs; Wealdy similar to Wiskott-Aldrich	2.5
	105029	Hs.13268	AA126855	ESTs	2.5
15	400000	11-00705	4 4 4 4 4 7 7 7 7 7	POT-, Missis, similarda Cimilarda C	25

TABLE 1A show the accession numbers for those primekeys lacking unigeneID's for Table 1. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	CAT number: Ge		nique Eos probeset Identifier number ene cluster number enbank accession reumbers				
15	Pkey	CAT number	Accessions				
20	126023	111555_1 1596090_1 1606216_1	AA071210 AA069899 AA071438 AA084912 AA084803 AA079371 AA079370 H57661 H58881 H75681 H70975				
20	102565 101964	32479_1 481587 1562851_1	AB010994 U59748 AA064660 \$81578 H10543 R11878				
25		1708455_1 37186_1	R25698 R56582 R56018 AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547 Al680833 Al633818 N29996 U87592 U87593 U87590 U87591 S46404 U87597 AA463992 AW206802 Al970376 Al583718 Al672574 N25695 AW665466 Al818326 AA126128 Al480345 AW013827 AA246638 Al214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al667418 AW867418 AW86140 AA502500 Al206199 AB71282				
30	195661	327827_1	Al352545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354 Al493192 AA491830 R50173 R55192 R50320 Al732306 Al732305 Al820727 Al820728 R55191 R50319 R50227				
35	125957 125982	1583542_1 1766315_1 227560 1	H41694 H45213 R98091 W92898 AA364195 AA325029 AW962050				
55	103731 127261 127265	112052_1 231687_1 232391_1	AA070545 AA131490 AA131373 AA330501 AA681567 AA331503 AA332751 AW982542				
40	127315 103806 128104 104602	1541209_1 37938_1 112618_1 502608_1 524482_2	T16245 R19694 F13545 H10299 T66048 T65279 H18006 AF116622 Al114507 AA640834 AA377999 AA130614 AA071410 AA906093 AA971000 H47610 R66920 F07973 R20353 AA442660				
45	128422 127897	297868_1 1811283_1 446527_1 120358_1	T77794 T85681 AA773681 AA773857 BE298210 AI672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 AI333584 AI369742 AI039658 AI885095 AI476470 AI287650 AI885299 AI985381 AW592624 AW340136 AI266556 AA456390 AB10815 AA484951				
50	129735	44573_2	AI950087 N70208 R97040 N36809 AI308119 AW967677 N35320 AI251473 H59397 AW971573 R97278 W01059 AW967671 AA908598 AA251875 AI820501 AI820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725 AA884922 BE328517 AI219788 AA884444 N92578 F13493 AA927794 AI560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488984 AA283144 AI890387 AI950344 AI741346 AI689062 AA282915 AW102898 AI872193 AI763273 AW173586 AW150329 AI653832 AI762688 AA988777 AA488892 AI356394 AW103813 AI539642 AA642789				
55			AA856975 AW505512 AI961530 AW629970 BE612881 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 AI819225 AW205862 AI883338 AI858509 AW276905 AI633006 AA972584 AA908741 AW072629 AW513996 AA293273 AA969759 N75628 N22388 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005				
60	130529 123579 109175	2198022 158447_1 genbank_AA60 genbank_AA18 tigr_HT4163	AA487961 AA178953 AA192740 8983 AA608983				
65		tigr_HT4515	U10072				

	123798	579959_1	AA620411 AA287491
	102116	entrez_U13706	U13706
	102398	entrez_U42359	U42359
	102764	entrez_U82310	U82310
5	118475	genbank_N66845	N66845
	104776	genbank_AA026349	AA026349
	104787	genbank_AA027317	AA027317
	113702	genbank_T97307	T97307
	113938	genbank_W81598	W81598
10	122635	genbank_AA454085	AA454085
	108407		AA075519
	108432	genbank_AA076626	AA076626
	108555	genbank_AA084963	AA084963
	101349	entrez_L77559	L77559
15	124447	genbank_N48000	N48000
	119071	genbank_R31180	R31180
	103520	entrez_Y10511	Y10511
	103663	genbank_Z78291	Z78291
	128046	877605_1	AA873285 Al025762
20	126959	546044_1	AA199853 AA206355
	123465	conhank AA599033	AA599033

MISSING AT THE TIME OF PUBLICATION

TABLE 2: shows a preferred subset of the Accession numbers for genes found in Table 1 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

5 Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number 10 Unigene Title: Unigene gene title Ratio of tumor to normal body tissue (Relaxed ratio (87/70) R1: UnigeneiD Unigene Title R1 Pkey ExAcen 15 131919 AA121266 Hs.272458 ESTs 37.2 120328 AA196979 Hs.290905 ESTs; Weakly similar to (defline not ava 32.6 101486 M24902 Hs.1852 acid phosphatase; prostate 25.2 119073 R32894 Hs.279477 ESTs 24.8 20 133428 M34376 Hs.183752 microseminoprotein; beta-23.8 128180 AA595348 Hs.171995 kallikrein 3; (prostate specific antigen 21.4 Hs.57771 Homo sapiens mRNA for serine protease (T 18.9 104080 AA402971 127537 AA569531 Hs.162859 ESTs 18.8 Hs.30343 ESTs 131665 R22139 17.À 25 101050 K01911 Hs.1832 neuropeptide Y 17.3 folate hydrolase (prostate-specific memb 130771 N48056 Hs.1915 17 107485 W63793 Hs.262476 S-adenosylmethionine decarboxylase 1 16.7 106155 AA425309 Hs.33287 **ESTs** 16.5 129534 R73640 Hs.11260 30 100569 HG2261-HT2351 Antigen, Prostate Specific, Alt. Splice 16 101889 S39329 Hs.181350 kallikrein 2; prostatic 15.4 135389 U05237 Hs.99872 fetal Alzheimer antigen 15 12.5 133944 AA045870 Hs.7780 **ESTs** H2B histone family; member Q 130974 X57985 Hs.2178 11.B 35 114768 AA149007 Hs.182339 ESTs 11.8 Hs.14846 11.4 104660 AA007160 **ESTs** 131061 N64328 Hs.268744 ESTs; Moderately similar to KIAA0273 [H. 10.9 Homo sapiens BAC clone RG041D11 from 7q2 10.7 Hs 61635 126645 Al167942 Homo sapiens mRNA for JM27 protein; comp 10.6 135153 N40141 Hs.95420 40 107033 AA599629 Hs.113314 ESTs 118417 N66048 ESTs; Weakly similar to polymerase [H.sa 10.5 126758 W37145 Hs.293960 ESTs 10.2 107102 AA609723 Hs.30652 **ESTs** 10.1 116787 H28581 Hs.15641 **ESTs** 10.1 45 10 115719 AA416997 Hs.59622 **ESTs** 123209 AA489711 Hs.203270 ESTs 9.9 101664 M60752 Hs.121017 H2A histone family; member A 8.8 Hs.83883 9.7 112971 T17185 **ESTs** Hs.106778 ESTs 117984 N51919 9.7 50 Hs.274509 T-cell receptor; gamma cluster 129523 M30894 9.4 132964 AA031360 Hs.167133 ESTs 9.2 121853 AA425887 119617 W47380 Hs.98502 **ESTs** 9 89 Hs.55999 **ESTs** 105627 AA281245 Hs.23317 **ESTs** 8.8 55 phospholipase A2; group IIA (platelets; 101461 M22430 Hs.76422 8.7 124526 N62096 Hs.293185 yz61c5.s1 Soares_multiple_sclerosis_2NbH 133845 T68510 Hs.76704 ESTs 133354 AA055552 Hs.334762 ESTs; Weakly similar to KIAA0319 [H.sapi 119018 N95796 Hs.278695 ESTs 60 100394 D84276 Hs.66052 CD38 antigen (p45) 106579 AA456135 Hs.23023 **ESTs** 7.6 114965 AA250737 Hs.72472 **ESTs** 7.4 112033 R43162 Hs.22627 7.1 **ESTs** 102398 U42359 Human N33 protein form 1 (N33) gene, exo 101201 L22524 matrix metalloproteinase 7 (matrilysin; 65 6.9 Hs.2256

Hs.155691 pre-B-cell leukemia transcription factor

Hs.302267 ESTs; Weakly similar to W01A6.c [C.elega

101803 M86546 120562 AA280036

	109112	AA169379	Hs.257924	ESTs	8.8
	109795	F10707	Hs.326416	ESTs	6.7
	130336	X07730	Hs.171995	kallikrein 3; (prostate specific antigen	6.6
	131425	AA219134	Hs.26691	ESTs	6.6
5	132902	AA490969	Hs.59838	ESTs	6.6
	133724	U07919	Hs.75746	aldehyde dehydrogenase 6	6.5
	120215	Z41050	Hs.108787	Homo sapiens Mod4p homolog mRNA; comp	let 6.5
	131881	AA010163	Hs.3383	upstream regulatory element binding prot	6.5
	100727	X07290	Hs.334786	Human HF.12 gene mRNA	6.3
10	121770	AA421714	Hs.278428	Homo sapiens mRNA for KIAA0896 protein;	6.3
	123475	AA599267	Hs.250528	ESTs; Weakly similar to ANKYRIN; BRAIN V	6.3
	133061	AB000584	Hs.296638	prostate differentiation factor	6.3
	116429	AA609710	Hs.279923	ESTs; Weakly similar to similar to GTP-b	6.2
	101233	L29008	Hs.878	sorbitol dehydrogenase	6.2
15	104691	AA011176	Hs.37744	ESTs	6.2
	127248	AA325029		EST27953 Cerebellum II Homo sapiens cDN/	A6.2
	105500	AA256485	Hs.222399	ESTs	6.1
	130828	AA053400	Hs.203213	ESTs	5.9
	115357	AA281793	Hs.72988	ESTs	5.8
20	116334	AA491457	Hs.48948	ESTs	5.7
	120132	Z38839	Hs.125019	ESTs; Weakly similar to !!!! ALU SUBFAMI	5.6
	106375	AA443993	Hs.289072	ESTs	5.6
	124777	R41933	Hs.140237	ESTs; Weakly similar to neuronal thread	5.6
	101791	M83822	Hs.62354	Human beige-like protein (BGL) mRNA; par	5.5
25	117698	N41002	Hs_45107	ESTs	5.5
	122041	AA431407	Hs.98732	Homo sapiens Chromosome 16 BAC clone C	IT 5.5
	133723	AA088851	Hs.262476	S-adenosylmethionine decarboxylase 1	5.5
	113938	W81598		ESTs	5.4
	133015	AA047036	Hs.246315	ESTs	5.4
30		AA056482	Hs.7780	ESTs	5.3
	104466	N25110	Hs.326392	Human guanine nucleotide exchange factor	5.3
	104033	AA365031	Hs.98944	ESTs	5.3
	110844	N31952	Hs.167531	ESTs; Weakly similar to (defline not ava	5.3
	129056	H70627	Hs.108336	ESTs; Weakly similar to !!!! ALU SUBFAMI	5.3
35	133493	AA284143	Hs.194369	Homo sapiens chromosome 1 atrophin-1 rel	5.3
	129184	W26769	Hs.109201	ESTs; Highly similar to (defline not ava	5.2
	101448	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	5.1
	116188	AA464728		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.1
	105921	AA402613	Hs.169119		5.1
40	103375	X91868	Hs.54416	sine oculis homeobox (Drosophila) homolo	5.1
		AA400271		ESTs; Highly similar to (defline not ava	5.1
		AA479362	Hs.47144	ESTs	5
		X07696	Hs.80342	keratin 15	5
		X52541		early growth response 1	5
45	118981	N93839	Hs.39288	ESTs; Weakly similar to IIII ALU SUBFAMI	5

TABLE 2A shows the accession numbers for those primekeys lacking unigeneID's for Table 2. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10 Pkey: CAT nu Accessi		ber: Ger	que Eos probaset identifier number ne cluster number nbank accession numbers		
15	Pkey	CAT number	Accession		
20	118417	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547 Al680833 Al633818 N29986 U87592 U87593 U87590 U87591 \$46404 U87587 AA463992 AW206802 Al970376 Al583718 Al672574 N25695 AW665466 Al818326 AA126128 Al480345 AW013827 AA248638 Al214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418 AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465726 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703398 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354 Al493192		
25	127248 107033	227560_1 235652_1	BE466611 AI2U34A AA5/4397 AA346364 AI495192 AA364195 AA325029 AW962050 A1141999 AA730176 R44544 R41778 AW300793 AW966157 AA918501 AA599629 AI082195 AI198537 AW006520 AW236683 AW151420 AI826987 AI810832 AI669102 AI201981 N27331 AA335566 T84622 BE085347 BE085269		
	102398 113938	entrez_U42359 genbank_W815	U42359 98W81598		

TABLE 3: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu02 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

10 15	Pkey: ExAccn: Unigene Unigene R1:	ID:	Exemplar A Unigene nu Unigene ge			
13			44	Halama Wala	P.4	
	Pkey	ExAccn	Unigenein	Unigene Title	R1	
20	100235 100570 100819	D12485 D29954 HG2261-HT23 HG4020-HT42	90	phosphodiesterase l/nucleotide pyrophosp KIAA0056 protein Hs.171995 Hs.2387	6.3 5.1 Antigen, Prostate Specific, Alt. Splice Transglutaminase 10.5	9
25	101247 101416 101447	L00354 L33801 M17254 M21305		cholecystokinin glycogen synthase kinase 3 beta v-ets avian erythroblastosis virus E26 o Human alpha satelliite and satelliile 3 ju	8.5 4.7 4.7 11	
30	101514 101626 101663	M24736 M28214 M57399 M60750	Hs.44 Hs.2178	selectin E (endothelial adhesion molecul RAB3B; member RAS oncogene family pleiotrophin (heparin binding growth fac H2B histone family; member A	9.8 6.2 8.4 4.9	
	101768 101817	M77836 M81118 M88163 M99701	Hs.79217 Hs.78989 Hs.152292 Hs.95243	pyrroline-5-carboxylate reductase 1 SWI/SNF related; matrix associated; acti transcription elongation factor A (SII)-	5.4 7.5 5.5 5.7	
35	102031 102052 102221 102233	U04898 U07559 U24576 U26173	Hs.2156 Hs.505 Hs.3844 Hs.79334	RAR-related orphan receptor A ISL1 transcription factor, LIM/homeodoma LIM domain only 4 nuclear factor, interleukin 3 regulated	13.2 8.9 5.6 7.4	
40	102348 102457 102473	U33052 U37519 U48807 U49957 U71207	Hs.69171 Hs.87539 Hs.2359 Hs.180398 Hs.29279	protein kinase C-like 2 aldehyde dehydrogenase 8 dual specificity phosphatase 4 LIM domain-containing preferred transloc eyes absent (Drosophila) homolog 2	8.2 5.9 5.1 5.7 9	
45	102698 102751 102823 102869	U75272 U80034 U90914 X02544	Hs.1867 Hs.68583 Hs.5057 Hs.572	progastricsin (pepsinogen C) mitochondrial intermediate peptidase carboxypeptidase D orosomucoid 1	10.6 15.6 4.9 22.6	
50	103043 103093 103376	X54667 X55733 X60708 X92098 X95240	Hs.123114 Hs.93379 Hs.44926 Hs.323378 Hs.54431	eukaryotic translation initiation factor	4.7 4.9 5.8 - 5.2 7.4	
55	103613 103677 103962 104084	Z46629 Z83806 AA298180 AA410529 AF006265	Hs.2316 Hs.83243 Hs.30732 Hs.9222	SRY (sex-determining region Y)-box 9 (ca H.sapiens mRNA for axonemal dynein heavy ESTs ESTs estrogen receptor-binding fragment-assoc	5.2 4.9 6 6.4 6.8	
60	104301 104769 104851 104896	D45332 AA025887 AA040882 AA054228	Hs.6783 Hs.293943 Hs.10290 Hs.23165	ESTs ESTs; Weakly similar to IIII ALU SUBFAMI U5 snRNP-specific 40 kDa protein (hPrp8- ESTs	10.5 6.3 4.9 5.8	
65	104957 104967 105099	AA074880 AA074919 AA084506 AA150776 AA233459	Hs.20509 Hs.10026 Hs.291000 Hs.23729 Hs.26369	ESTs; Weakly similar to hypothetical pro ESTs; Weakly similar to ORF YJL063c [S.c ESTs Homo sapiens clone 24405 mRNA sequence ESTs	6.4 4.8 6.5 7 5.1	

		AA233553	Hs.190325		4.7
		AA236476	Hs.22791	ESTs; Weakly similar to transmembrane pr	10.3
		AA251330	Hs.28248	ESTs	5
_		AA261858		ESTs; Weakly similar to heat shock prote	8.8
5		AA281251	Hs.79828		5.5
		AA281623	Hs.6685	ESTs; Weakly similar to KIAA0742 protein	8
		AA282138	Hs.11325	ESTs	14
		AA287097		transcription factor 4	6.3
40		AA292701	Hs.5364	DKFZP564l052 protein	4.9
10		AA393808		KIAA0438 gene product	7
		AA398243		ESTs; Moderately similar to similar to N	5
		AA401433		ESTs; Wealdy similar to diphosphoinosito	9.9
	105906	AA401633	Hs.22380	ESTs .	11.5
			Hs.25206		5.1
15		AA419481	Hs.23317	ESTs	10.9
		AA425367	Hs.34892	ESTs	6.6
		AA426643	Hs.10762	ESTs	8.5
		AA428240	Hs.126083		8.4
		AA428258	Hs.8769	Homo sapiens mRNA; cDNA DKFZp564E153 (fr	
20	106272	AA432074	Hs.323099		5.8
		AA443828	Hs.288856		6.3
		AA447621	Hs.94109	ESTs	5.4
		AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	
~~		AA452584			5.6
25		AA453441	Hs.31511		4.7
		AA453628	Hs.37443	ESTs	4.7
		AA455087	Hs.22247		5.7
		AA456039	Hs.105421		7.2
00		AA459249	Hs.8715		5.6
30		AA481037	Hs.12592		5.4
		AA485223	Hs.34892	ESTs	5.3
		AA505141	Hs.11923	Human DNA sequence from clone 167A19 on	7.5
		AA609952	Hs.12784	KIAA0293 protein	6.1
25		AA620504	Hs.179898		7.1
35		AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	5.2
		D51095	Hs.35861	DKFZP586E1621 protein	15.1
		U78294		arachidonate 15-lipoxygenase; second typ	4.7
		AA007218	Hs.60178	ESTs	5.3
40		AA016225	Hs.7517	ESTs	4.8 7.6
40		AA018042	Hs.252085		
		AA037388	Hs.82223	Human DNA sequence from clone 141H5 on c	10.5 6.5
		AA039616	Hs.173334	ESTS .	7.9
		AA084138	Hs.46786		5.6
45		AA088276	Hs.68826	ESTs ESTs	5.0 6
70		AA100967	Hs.69165	EST	6.3
		AA113349	Hs.69588 Hs.118531		5.9
		AA115629	Hs.49376	ESTS: Weakly similar to PROTEIN PHOSPHAT	
		AA129968 AA136590	H5.48370	ESTS, WEARY SEIDED TO THE PROSPING	5
50		AA147224	Hs.337232		12.7
50		AA149579	Hs.118258	and the second s	6.8
		AA156790	Hs.262036		15.3
		AA171529	Hs.183887		6.1
		AA176438	Hs.41295	ESTs	5.1
55		AA196332		ESTs	5.5
-		AA213620	,,0.000	Homo sapiens mRNA; cDNA DKFZp586M1418 (16
		F01811	Hs.187931	ESTs; Moderately similar to voltage-gate	10.8
		F01930	Hs.23648	ESTs	7
		F04600	Hs.7154	ESTs	9.9
60		F10770		Homo sapiens clone 669 unknown mRNA; com	6.4
		H02308	Hs.20792	ESTs	5.3
		H20276	Hs.31742	ESTs	16.8
		N32919	Hs.27931	ESTS	10
		N47938	Hs.12940	yy84a09.s1 Soares_multiple_sclerosis_2Nb	5.6
65		N55514	Hs.318584		6.9
		N59858	Hs.33032	Homo sapians mRNA; cDNA DKFZp434N185 (fr	
		N66613	Hs.99364	ESTs	5
		N66857		ESTs; Wealdy similar to !!!! ALU CLASS C	5.6
		N68869	Hs.15119	ESTs	6.2

	111348	N90041	Hs.9585	ESTs	5.4
	111353		Hs.6616	ESTs	5.3
	111495	R07210	Hs.9683	ESTs	5.8
_	111540	R08850	Hs.9786	ESTs	6
5	111579	R10657	Hs.167115	KIAA0830 protein	12.6
	111581	R10684	Hs.5794	ESTs	7.1
	111734	R25375	Hs.128749	ESTs	6.2
	111861	R37460	Hs.25231	ESTs	9.4
	111870	R37778	Hs.18685	ESTs; Weakly similar to hypothetical pro	6.5
10	111937		Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	4.8
,		R42036	Hs.6763	KIAA0942 protein	6.4
		R49173	Hs.330242		5.6
		R53765	Hs.158135	KIAA0981 protein	9.3
		R59740		ESTs	4.7
15	112452		Hs.157461		6
	112601			annexin A1	5.4
		R93696	Hs.169882	ESTs	5.8
	112902		Hs.129190		5.1
	112984		Hs.289014		4.9
20	113021			KIAA1028 protein	10.8
	113083			ESTs; Weakly similar to heat shock prote	5.7
	113200		Hs.10263	ESTs	7.3
	113494		Hs.86538	ESTs	8.7
		W60439	Hs.8858	ESTs; Moderately similar to cbp146 [M.mu	4.9
25		W72382		oxidative 3 alpha hydroxysteroid dehydro	4.7
20		W85765	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	
		W87462	Hs.21894	ESTs	5.9
		W87544	Hs.268828		4.7
		Z38595		ESTs; Highly similar to KIAA0886 protein	21.3
30		Z41395	Hs.143611		9.6
50		Z41450	Hs.130489		5.2
		AA018216		Bicaudal D (Drosophila) homolog 1	7.4
		AA025370		KIAA0872 protein	8.2
		AA101416		ESTs; Weakly similar to PTB-ASSOCIATED S	5.4
35		AA131450	Hs.103822		4.8
55		AA133527		ESTs; Weakly similar to The KIAA0138 gen	5.1
		AA234362	Hs.87159	ESTs; Moderately similar to CGI-66 prote	5.5
		AA235112	Hs.42179	ESTs; Moderately similar to similar to m	6.3
		AA235811	Hs.293672		5.2
40		AA236177		KIAA0887 protein	4.7
		AA236545		ESTs	5.2
		AA242751	Hs.16218	KIAA0903 protein	5.7
		AA255566	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	
		AA258030		ESTs; Weakly similar to supported by GEN	5.9
45		AA287061	Hs.48499	ESTs; Highly similar to Bdelight protein	4.7
		AA398913	Hs.45231	LDOC1 protein	7.6
		AA412519	Hs.58279	ESTs	4.8
		AA423972	Hs.131740		5
		AA424029		ESTs; Moderately similar to dynamin; int	5.4
50		AA424038	Hs.81897	ESTs	5
		AA427528		ESTs; Weakly similar to ZINC FINGER PROT	13.7
		AA446121	Hs.44198		10.6
		AA451748	Hs.83883	Human DNA sequence from clone 718J7 on c	6.8
		AA457566	Hs.28777	ESTs	6
55 .		AA459117	Hs.31575	SEC63; endoplasmic reticulum translocon	7.3
		AA460701	Hs.15423	ESTs	5.5
		AA489033	Hs.62601	Homo sapiens mRNA; cDNA DKFZp586K1318 (5.7
		AA521472	Hs.71252	ESTs	5.9
		AA599463		protein phosphatase 2 (formerly 2A); reg	5.9
60		AA599963	Hs.59698	ESTs	7.9
•		AA609219	Hs.39982	ESTs	9.2
		D59325	Hs.121429		5.2
		D80055	Hs.45140	ESTs	4.9
		F09156	Hs.66095	ESTs	7.2
65		F13654		HSFIH32 Stratagene cat#937212 (1992) Hom	5.5
55		H13260	Hs.95097	ESTs	5.9
		N29568		thyroid hormone receptor-associated prot	6.9
		N33920	Hs.44532	diubiquitin	4.8
		N45114	Hs.126280		6.3
				· ·	-

	440004	NICOACA	11- 4-44	PAT-	11.4
		N52151 N62339	Hs.47447	ESTS	6.2
				heat shock 90kD protein 1; alpha	5.8
		N69207 N70358	Hs.203697		7.1
5		N89881	Hs.44577	growth hormone receptor ESTs	6
,		N94303	Hs.55028		9.3
		R42424	Hs.63841	ESTs	6
		R45175	Hs.117183		17.9
		T16387	Hs.65328	ESTs	6
10		T78324	Hs.250895		5
		W69440	Hs.48376	ESTs	15.4
		W70205	Hs.43670	kinesin family member 3A	10.1
		W72967			5.3
		Z41078	Hs.66035		4.8
15		AA173939			8.8
		AA190888			4.9
		AA236010	Hs.26613		
		AA253400			5.6
	120524	AA261852	Hs.192905	ESTs	4.9
20	120571	AA280738	Hs.34892	ESTs	8.8
	120596	AA282074	Hs.237323	ESTs	6.2
	120713	AA292655	Hs.96557	ESTs	9.9
	120992	AA398246	Hs.97594	ESTs	16.4
	121429	AA406293	Hs.41167	ESTs	6.9
25	121503	AA412049	Hs.290347		7.6
		AA412105	Hs.193736		5.8
		AA424814	Hs.48827		4.6
		AA431302	Hs.98721		5.6
20		AA437311	Hs.98927		5.7
30		AA446859	Hs.99083		6.5
		AA460158		KIAA1028 protein	12.4
		AA460225			5.1
		AA478539	Hs.104336		4.9
35		AA485724			5.4 5
22		AA485957			5 4.7
		AA495981	Hs.250830 Hs.105069		4.1 7.4
		AA496252 AA609006	Hs.111240		9.1
		AA609200	113,111240		4.7
40		AA609310	Hs.188691		4.8
-10		AA609651	Hs.112742		7
		C14333			5
		H45996	Hs.97101		6.6
		N21626	Hs.102406		10.2
45		N22401		yw37g07.s1 Morton Fetal Cochlea Homo sap	10.6
	124515	N58172	Hs.109370	ESTs	14.2
	124911	R88992	Hs.174195	ESTs	4.8
	125154	W38419		ESTs	4.7
		W01626			5.1
50		AA947601	Hs.97056		5.1
	126812				4.6
		AA662913	Hs.190173	•	5
		AA507628	Hs.334390		4.8
55		Al024352			4.7
55		Al457411	Hs.106728	== =	4.8
		AA828760	Hs.292059		4.8
		A1400862	Hs.265130 Hs.279009		5 5.8
		Al039722 Al088155		ESTs; Weakly similar to unknown [H.sapie	3.6 17
60		AA176446		ESTs; Weakly similar to hypothetical 43.	4.8
00	128610		Hs.10247		7.9
		AA242816		ESTs; Weakly similar to KIAA0437 [H.sapi	8.1
		AA446990	Hs.103135		6.5
		AA215971			5.2
65	129136		Hs.250723		5.1
		AA234048	Hs.7753	a	5.8
		AA211941			5.8
		N27524			5.2
		AA410311	Hs.44208	ESTs	5.1

	129564	H22136	Hs.75295	guanylate cyclase 1; soluble; alpha 3	16.3
		AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	9.2
	129821		Hs.12696	cortactin SH3 domain-binding protein	8.6
5	129823	X00948 W46767		relaxin 2 (H2) ESTs; Weakly similar to RNA POLYMERASE I	9.1 5.4
5		AA047344		ESTs; Highly similar to NY-REN-6 antigen	6.5
	129958		Hs.1378	annexin A3	5.1
	129977	J04076	Hs.1395	early growth response 2 (Krox-20 (Drosop	8.6
10	130061			arginase; type II	7.4
10	130241 130466		Hs.153203 Hs.180059	MyoD family inhibitor	4.9 5.8
	130541			neurofilament; light polypeptide (68kD)	6.7
		AA477739	Hs.12532	ESTS	6.4
	130925	N71935		multiple PDZ domain protein	7.9
15		AA013250	Hs.21398	ESTs; Moderately similar to PUTATIVE GLU	6.2
	130971 131066		Hs.22588	signal sequence receptor; gamma (translo ESTs	6.4 5
	131126			myotubularin related protein 2	6.4
	131310		Hs.2551	adrenergic; beta-2-; receptor; surface	7.9
20		AA253220	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (
	131561		Hs.294101		7.6 5.1
	131562 131579		Hs.28777 Hs.29088	H2A histone family; member L ESTs	11
		AA442119	Hs.238809		4.9
25		AA428368	Hs.30654	ESTs	4.8
	131699		Hs.90421	ESTs; Moderately similar to IIII ALU SUB	6.5
	131795 132053		Hs.32317 Hs.38085	Sox-like transcriptional factor ESTs; Weakly similar to putative glycine	5.6 7.2
	132122		Hs.40403	Cbp/p300-interacting transactivator, wit	5.6
30		AA449431		KIAA0741 gene product	8 '
		AA608856	Hs.431	murine leukemia viral (bml-1) oncogene h	5.5
		AA429478 AA021608	Hs.238126 Hs.172510	ESTs; Highly similar to CGI-49 protein [6.6 5.8
		AA448297		signal recognition particle 72kD	6.2
35		R42266	Hs.52256	ESTs; Weakly similar to beta-TrCP protei	16
		N47109	Hs.5521	ESTs	6.8
	132701 132725	AA279359	Hs.55220	BCL2-associated athanogene 2 splicing factor, arginine/serine-rich 7	5.3 7.8
		N74897		DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	5.9
40		X75535	Hs.168670	peroxisomal farmesylated protein	8
		U76189	Hs.61152	exostoses (multiple)-like 2	5.2
	133142		Hs.65874 Hs.7138	ESTs cholinergic receptor, muscarinic 3	5.2 10.3
		U29589 AA278852	Hs.30212	ESTs	5.8
45		M68941	Hs.73826	protein tyrosine phosphatase; non-recept	4.9
	133520		Hs.74519	primase; polypeptide 2A (58kD)	13.1
		T33873	Hs.74624	protein tyrosine phosphatase; receptor t	4.6 4.8
		D13315 H75939	Hs.75207 Hs.75277	glyoxalase I Homo sapiens mRNA; cDNA DKFZp586M141 (fr	
50		D21262	Hs.75337	nucleolar phosphoprotein p130	6.3
	133797	S66431	Hs.76272	retinoblastoma-binding protein 2	6
		N34096	Hs.7766	ubiquitin-conjugating enzyme E2E 1 (homo	5.4 5.2
		U47414 N89827	Hs.79069 Hs.80667	cyclin G2 RALBP1 associated Eps domain containing	6.5
55		AA418230	Hs.8172	ESTs	7
	134453	X70683	Hs.83484	SRY (sex determining region Y)-box 4	4.7
		X57025	Hs.85112	insulin-like growth factor 1 (somatomedi	7.7
		U66615 U82613	Hs.172280	SWI/SNF related; matrix associated; acti Alu-binding protein with zinc finger dom	6.4 5.4
60		W23625	Hs.8739	ESTs; Weakly similar to ORF YGR200c [S.c	5
	134666	AA482319	Hs.8752	putative type II membrane protein	5.4
		Z49099	Hs.89718	spermine synthase	6.7
		AA431480 X04602	Hs.169358 Hs.93913	ESTs interleukin 6 (interferon; beta 2)	9.8 5.7
65		AA358268		ESTs; Moderately similar to transcriptio	4.9
		L10333	Hs.99947	reticulon 1	5.3
		M10098	11- #8445	AFFX control: 18S ribosomal RNA	4.6
		AW079607 AW013907	Hs.55610	ESTs; Weakly similar to ZnT-3 [H.sapiens ESTs; Moderately similar to predicted us	7.8 11.5
	300213	VAIO 1920\	115.10/551	re to annual annual to bloating as	112

	300319	AW157646	Hs.153506	ESTs; Weakly similar to microtubule-acti	8.5
		H86709		son of seveniess (Drosophila) homolog 1	5.8
					4.4
		AI989417	Hs.134289		
J	300671	Al239706	Hs.93810	ESTs	7.9
5.	300675	AA039352	Hs.125034	ESTs; Wealdy similar to ORF YDL040c [S.c	4.5
J .		AW468066	Hs.24817	ESTs; Weakly similar to KIAA0986 protein	5.2
				·	6.4
	300762	A1497778	Hs.20509	ESTs	
	300810	AI076890	Hs.146847	ESTs	5.8
	300813	AA406411	Hs 208341	ESTs; Wealdy similar to KIAA0989 protein	10.6
10				ESTs; Weakly similar to putative zinc fi	5.6
10		A1863068			
	300834	AF109300	Hs.147924		6.7
	300923	AW136372	Hs.1852	ESTs	7.6
		AA593373	Hs.293744	FSTs	5.5
				ESTs; Weakly similar to Chain A; Cdc42hs	7
1.5		AA947682	Hs.20252		
15	301042	Al659131	Hs.197733		24.9
	301242	AW161535	Hs.23782	ESTs	11.8
		A1049624	Hs.283390	EST cluster (not in UniGene) with exon h	4.3
		H29500	Hs.7130	ESTs; Moderately similar to N-copine [H.	4.3
					6.6
		AA156879		ESTs; Weakly similar to ZINC FINGER PROT	
20	301563	Al802946	Hs.44208	ESTs; Weakly similar to match to ESTs AA	5.7
	301656	AW008475	Hs.151258	EST cluster (not in UniGene) with exon h	6.8
		Z44810		ESTs; Weakly similar to similar to C.ele	6.3
					6.2
		AL046347	Hs.83937		-
	301805	A1800004	Hs.142846	ESTs; Weakly similar to MesP1 [M.musculu	8.5
25	301846	R20002	Hs.6823	ESTs; Weakly similar to Intrinsic factor	4.6
		AF131855		Homo saplens clone 25056 mRNA sequence	6.3
			Hs.123119		36.8
		A1869666			
	302056	A1457532	Hs.30488	ESTs; Moderately similar to ROSA26AS [M.	9.5
	302067	H05698	Hs.222399	ESTs; Weakly similar to protein-tyrosine	5.8
30		AL021397		ribosomal protein L34 pseudogene 1	8.8
50		AB022680		KIAA0437 protein	5.9
					4.3
		AJ001454		Homo sapiens mRNA for testican-3	
	302236	Al128606	Hs.6557	zinc finger protein 161	4.3
	302358	D81150	Hs.322848	EST cluster (not in UniGene) with exon h	5.5
35		NM_004917		EST cluster (not in UniGene) with exon h	26.8
55		_		multiple UniGene matches	8.2
		AC003682			6.4
		NM_000522		EST cluster (not in UniGene) with exon h	
	302785	AA425562	Hs.11065	EST cluster (not in UniGene) with exon h	5
	302792	AA343696	Hs.46821	ESTs; Weakly similar to putative [H.sapi	4.8
40		AA508353	Hs 105314	relaxin 1 (H1)	78.8
••		N58545	Hs.42346	histone deacetylase 3	8.5
					7.4
		AW118352		EST cluster (not in UniGene) with exon h	
	302977	AW263124	Hs.315111	EST cluster (not in UniGene) with exon h	5.5
	303029	AF199613		EST cluster (not in UniGene) with exon h	4.6
45		AF161352	He 111782	EST duster (not in UniGene) with exon h	5.8
73					4.3
		Al571580	Hs.170307		
	303306	AA215297	Hs.61441	EST cluster (not in UniGene) with exon h	6.4
	303309	AL134164	Hs.145416	ESTs	6.6
	303344	AA255977	Hs.250646	ESTs; Highly similar to ubiquitin-conjug	19.5
50		AA298471		EST cluster (not in UniGene) with exon h	6.6
20					6.8
		AA758552	Hs.309497		
	303525	AW516519	Hs.273294	ESIS	4.8
	303526	AA348111	Hs.96900	ESTs	12.1
		AA355607	Hs.309490	ESTs; Weakly similar to MMSET type I [H.	8.2
55			Hs.242540		8.4
JJ	303572	AW338520			4.9
		AW500106	Hs.23643	EST cluster (not in UniGene) with exon h	
	303699	D30891	Hs.19525	EST cluster (not in UniGene) with exon h	15.7
	303702	AW500748	Hs.224961	ESTs; Weakly similar to 73 kDA subunit o	6.3
		AI741397	Hs.114658		4.6
60			Hs.145010		12.5
60		AA521510	HS. 145010	EO15	
		AW502405	Hs.125759	ESTs; Weakly similar to tumor suppressor	4.3
	303735	AA707750	Hs.169055	ESTs; Weakly similar to cis-Golgi matrix	5.4
		AI017286	Hs.5957	EST cluster (not in UniGene) with exon h	5.3
		AW503733	Hs.9414	ESTs	13
C F			13.8414		
65		AI275850	MS.174656	EST cluster (not in UniGene) with exon h	7.8
		R00493	Hs.125565	translocase of inner mitochondrial membr	4.8
	304218	N66373	Hs.27973		6
	SUESUL	AA668128	Hs.45207		5.7
	الكامات	AINDANA			5.7
	306716	AI024916	Hs.251354	E018	9.7

	207948	Al364186		EST singleton (not in UniGene) with exon	7.3
		Al368665	Hs.31476		5.4
		Al460004		EST singleton (not in UniGene) with exon	8.1
		Al613519		EST singleton (not in UniGene) with exon	5.5
5		AI863051	Hs.279815		4.4
-		Al927149	Hs.29797		4.5
		AW075342	Hs.9271	EST singleton (not in UniGene) with exon	7.4
		AW205604		ESTs; Wealdy similar to IIII ALU SUBFAMI	5
		Al921750	Hs.144871		5
10		AI685841	Hs.161354		11.6
		Al478629	Hs.158465		5.8
		AJ262148	Hs.145569		9.7
		A1734009		EST cluster (not in UniGene)	10.4
		AI612775	Hs.145710		4.6
15	310431	A1420227	Hs.149358	ESTs	72.9
	310573	AW292180	Hs.156142	ESTs	7.6
	310598	Al338013	Hs.140546	ESTs	9.2
	310639	AW269082	Hs.175162	ESTs	4.5
_	310787	AW262580	Hs.147674	ESTs	4.9
20	310816	Al973051	Hs.224965		7.6
	311251	A1655662	Hs.197698	ESTs	41.3
	311280	A1767957		ESTs; Weakly similar to Y38A8.1 gene pro	4.5
	311330	A1679524		ESTs; Moderately similar to IIII ALU SUB	4.6
		AW136713		ESTs	5.9
25	311574	A1824863	Hs.211420		4.8
		A1828254	Hs.271019		5.8
		A1682088	Hs.79375	ESTs	26.4
		AI809519	Hs.27133	ESTs	6.4
		AW025661	Hs.240090		7.4
30		A1682478	Hs.13528		4.6
		AA765470	Hs.85092	ESTs	6.7
		AW014013	Hs.107056		5.3
		R16890	Hs.137135		5.6
25		AW451654	Hs.257482		4.3
35		AA759250		cytochrome b-561	11 16.9
		AA834800		EST cluster (not in UniGene)	4.7
		Al380207	Hs.125276 Hs.127128		5.3
		C01367 R46180	Hs.153485		6.2
40		AA847398	Hs.291997		4.8
+0		R49353	Hs.293892		5.2
		R68651	Hs.144997		9.5
		C17785	Hs.182738		6.3
		AA033609	Hs.239884		11.2
45		AI695522	Hs.191271		4.7
		Al004377	Hs.200360		7
		Al623511	Hs.118567		5.1
		AA976064	Hs.180842	ESTs	6.5
	312623	AA694607	Hs.176956	EST cluster (not in UniGene)	10.8
50	312857	AA772279	Hs.126914	ESTs	5
	312890	AI813654	Hs.5957	ESTs	5.8
	312903	AA939266	Hs.278626	ESTs	7.7
		H92571	Hs.234478		6.5
		AA836271	Hs.125830	==	4.6
55		A1079278	Hs.269899		5.1
		AA249018		EST duster (not in UniGene)	7
		N36417	Hs.144928		6.3
		Al801098	Hs.151500		4.3
60		AI039702		collagen; type I; alpha 2	4.8
60		AA827805	Hs.124296		5
		Al200281	Hs.123910		5.9
		Al420611	Hs.127832		4.6
		AI088120	Hs.122329	EXIS	7.4
CF		AA745689		ESTs; Weakly similar to similar to zinc	6.3
65		Al261390	Hs.146085		5.6 5.0
		Al797301	Hs.5740	ESTS	5.9
		AW467376	Hs.129840	ECTs: Weakly similar to 71/1059 5 IC sla-	4.3 4.6
		Al273419 AW460110		ESTs; Weakly similar to ZK1058.5 [C.eleg	4.b 6.8
	313003	AW468119	HS.28/031	EST cluster (not in UniGene)	0.0

	219015	AW295194	He 201007	DKFZP434N126 protein	5.2
		AW468402			7.8
		AA688292			4.4
		AA507227		ESTs	8.1
5		Al753075	Hs.104627		6.7
_	313670	C16690		EST cluster (not in UniGene)	4.4
	040074	IMMOOO	U= 404040	ECT-	4.4
	313676	AAB61697	Hs.120591	ESTs cluster (not in UniGene) ESTs; Weakly similar to KIAA0525 protein ESTs	13.4
	313703	Al161293	Hs.280380	ESTs: Weakly similar to KIAA0525 protein	10
10	313712	AA768553	Hs.74170	ESTs	5.2
	313800	AW296132	Hs.55098	ESTs	5.4
		Al535895	Hs.221024	ESTs	4.3
_		Al732100	Hs.187619		13.6
	314123	AW245993	Hs.223394		6.4
15	314171	AI821895	Hs.193481		29.4
	314188	AL138431 AL036001 AA743396	Hs.164243		4.6
	314219	AL036001	Hs.48376		5.7
	314236	AA743396	Hs.189023		4.9
20	314237	AA732359 AA731431 Al280112	Hs.96264		4.4
20	314284	AA/31431	HS293464	EST duster (not in UniGene)	6.4
	314305	AI2803 12	Hs.125232		5.3
	314343	Al754701 Al052358	Hs.193726	ESTs; Weakly similar to alternatively sp	6.2 4.5
	314000	AW207206	Hs.136319		17
25		AW502698	Hs.118152		8.9
25		AI538226			9.4
	314801	AAAR1027	Hs 109045		8
	314864	AA493R11	Hs.294068	ESTs; Weakly similar to ORF YGR245c [S.c ESTs	6 .
	314907	Al672225	Hs.222888	ESTs	19.3
30	314916	AA548906 AA521381 AA524953	Hs.122244	ESTs	4.5
	314954	AA521381	Hs.187726	ESTs	5.3
	314981	AA524953	Hs.293334	EST8	4.6
	315021	AA5:3447	HS.312989	EST duster (not in UniGene)	5.1
	315051	AW292425	Hs.163484	LOI	15.5
35	315052	AW292425 AA876910	Hs.134427		20
	315073	AW452948	Hs.257631		5.3
	315084	Al821085		ESTs	8.2
	315214	Al915927	Hs.34771		5.4
40		Al420753	Hs.66731		5.1
40		Al985544	Hs.12450		5.8
		Al222165	Hs.144923 Hs.104696		4.5
		AW291563			8 4.8
	915970	AA764918 APS63303	Hs.145008		6.2
45	315370	Al263393 Al378329	Hs.126629		5.4
		AW293424			5.1
		AA977935	Hs.127274		6.6
		AW003416	Hs.160604		5.5
	315528	R37257	Hs.184780		8.1
50	315593	AW198103	Hs.158154	ESTs	9.9
	315634	AA837085 AW449285	Hs.220585	ESTs	7.8
	315705	AW449285	Hs.313636	ESTs	8.8
	315707	Al418055 AA744015	Hs.161160		5.1 -
	315714	AA744015	Hs.298138	EST cluster (not in UniGene)	6.1
55		T05558		EST cluster (not in UniGene)	6.8
		Al391470	Hs.158618		5.3
		AA744875	Hs.189413		5_
		AA679430	Hs.191897		5.7
60		A1800041 AA764950	Hs.190555 Hs.119898		9.2 4.3
JU		AA708016	Hs.190389		4.3 5.9
		AA693880		EST cluster (not in UniGene)	6.7
		AW517542	Hs.293273		5.5
		AW203986			5.1
65		Al127483	Hs.120451		8.2
		AA760894	Hs.153023	ESTs	17.1
		AA766025	Hs.186854	EST	4.6
		AW135854			4.3
	316667	AW015940	Hs.232234	ESTs	7.6

	_ :				
	316854	AA831215	Hs.159066	ESTs; Weakly similar to predicted using	5.1
	316905	AW138241	Hs.210846	ESTs	6.4
		AW051597	Hs.143707	FSTe	4.4
_		AA864968	Hs.127699		11
5	317194	AW445167	Hs.126036	ESTS.	13.5
	317224	D56760	Hs.93029	ESTs	8.7
		AI806867	Hs.126594		8.7
		AA931245	Hs.137097		11.1
	317548	Al654187	Hs.195704	ESTs	14.2
.10	317651	AW292779	Hs.169799	ESTs	5.8
		AI733277	Hs.128321		5.4
		N29974		EST cluster (not in UniGane)	11.4
	317869	AW295184	Hs.129142	ESTs; Weakly similar to DEOXYRIBONUCLEAS	
	317902	A1828602	Hs.211265	ESTs	5.3
15		AI565071	Hs.159983		7.7
10					13.1
		AI085198	Hs.164226		
	318268	AI817736	Hs.182490	ESTS	6.2
	318327	AW294013	Hs.200942	ESTs	4.6
		R45530		gamma-aminobutyric acid (GABA) A recepto	6
20					
20		A1949409	Hs.194591		12.3
	318464	Al151010	Hs.157774	ESTs	4.3
	318524	AW291511	Hs.159066	ESTs	25.9
	318540			EST duster (not in UniGene)	7
^-		AW206806	Hs.115325		4.8
25	318615	Al133617	Hs.10177		5.5
	318646	AW175665	Hs.278695	ESTs	5.7
		A1493742	Hs.165210		11
					5.9
		W26276	Hs.136075		
	318753	AA578265	Hs.7130	copine IV	5.5
30	319080	Z45131	Hs.23023	ESTs	16.9
		F06504	Hs 27384	EST cluster (not in UniGene)	4.6
				prostate epithelium-specific Ets transcr	6.6
		AF071538			
	319233	R21054	Hs.180532	ESIS	4.9
	319586	D78808	Hs.283683	ESTs	8.2
35	319750	AA621606	Hs.117956	ESTs	9.3
JJ		AA460775	Hs.6295	ESTs	14.3
		AA424266		EST cluster (not in UniGene)	12.8
	319838	AA337642	Hs.95262	nuclear factor related to kappa B bindin	5.1
	319913	AA179304	Hs.271586	ESTs; Moderately similar to !!!! ALU SUB	4.3
40	319964		Hs.290270		5.8
70					8.5
		Al653733	Hs.271593		
	320102	AW296219	Hs.115325	RAB7; member RAS oncogene family-like 1	9.8
	320187	T99949	Hs.303428	EST cluster (not in UniGene)	9.8
		AL039402		DEME-8 protein	7.9
45				ATP-binding cassette; sub-family C (CFTR	56.2
45		AF071202			-
		R49889		EST cluster (not in UniGene)	8.3
	320464	Al089817	Hs.237146	ESTs	5.4
		NM_006953		EST cluster (not in UniGene)	7
		AL049443	He 151000	Homo sapiens mRNA; cDNA DKFZp586N2020 (I	
50			115.101203	Libert appears military volta DVC7_CC40400 (L	67
50		AL049977		Homo sapiens mRNA; cDNA DKFZp564C122 (fr	
	320654	AW263086	Hs.118112	EST8	6
	320796	AF038966	Hs.31218	secretory carrier membrane protein 1	13.5
		Al681006	Hs.71721	ESTs	6.2
				ESTs	9.3
FF		AW360847	Hs.16578		
55		AI473796	Hs.135904		8.1
	320856	D59945	Hs.65366	EST cluster (not in UniGene)	6
	320899	AA633772	Hs.116796	ESTs	9.2
		AW195012	Hs.293970		5
					5.9
~		H19732	Hs.247917		
60		AA018386	Hs.64341	ESTs	4.6
	321190	H52462	Hs,163872	EST cluster (not in UniGene)	5.8
		AB033041		EST cluster (not in UniGene)	8.4
		AW372449		EST cluster (not in UniGene)	7.3
		AW297633	Hs.118498		14.7
65	321538	H80483	Hs.46903	EST cluster (not in UniGene)	9.2
		H86021	Hs 182538	ESTs; Weakly similar to hMmTRA1b [H.sapi	4.8
		Al791838 -			5.5
			Hs, 193465		
		Al356352	Hs.108932		4.6
	321644	Al204177	Hs.237396	ESTs	6.6

	321681	AA233821 .	Hs.190173	EST cluster (not in UniGene)	4.6
	321726	X91221		EST cluster (not in UniGene)	5
		U29112		EST cluster (not in UniGene)	6.2
5		AL109784		EST cluster (not in UniGene)	4.6
5		N55158 AA746374	Hs.29468 Hs.145010		4.6 8.2
		AW410646	Hs.164649		5.1
		AL137646		EST cluster (not in UniGene)	4.3
	322092	AF085833		EST cluster (not in UniGene)	4.3
10		AI890619	Hs.179662	nucleosome assembly protein 1-like 1	4.4
		AF086283	11- 407004	EST duster (not in UniGene)	5.8
		W07459 AW393804		EST cluster (not in UniGene) ESTs; Weakly similar to rabaptin-4 [H.sa	22 4.4
		AF143235		EST cluster (not in UniGene)	7.2
15		AA056060		EST cluster (not in UniGene)	18.4
	322811	AA782292	Hs.105872		6.9
		AW043782	Hs.293616		10.7
		A1807883	Hs.180059		5
20		A1986306 AA081924	Hs.124918	ESTs; Weakly similar to KIAA0969 protein	11.9 7.1
20		AA669253	Hs.136075		4.5
		AJ351191	Hs.128430		6.6
	322994	AA422116	Hs.191461	ESTs	4.7
05		AA336609	Hs.10862		6.9
25		AL118747	Hs.26691		8.3
		AA148950 AL118923	Hs.188836	EST cluster (not in UniGene)	4.6 7.5
		AA157726	Hs.264330		7.5
		AA157867	Hs.5722	ESTs	4.7
30		Z44354	Hs.296261	guanine nucleotide binding protein (G pr	4.9
		AA176982		EST cluster (not in UniGene)	6.1
		AL120351		EST cluster (not in UniGene)	4.3
		Al827137 AF131846	Hs.336454		6.2 6.3
35		AF055019	Hs.21906	Homo sapiens clone 25028 mRNA sequence Homo sapiens clone 24670 mRNA sequence	12.6
55		AA363148	Hs.293960		10.9
		AI829770	Hs.190642		7.6
		AA836452	Hs.323822		7.6
40		AA639902	Hs.104215		24.7
40		Al655499 AL134875	Hs.161712 Hs.108646		14.1 5.3
		AL135067	Hs.117182	= - · · ·	6.1
		C05278		ESTs; Moderately similar to [PYRUVATE DE	8.5
	323496	AI826801	Hs.300700		4.5
45	323507		Hs.128387		4.4
		AI814405	Hs.224569		5.8
		AA314280 AW263526	Hs.243023	EST cluster (not in UniGene)	5 7.7
		AA317581		EST duster (not in UniGene)	5.9
50		AA740405	Hs.108806		6.2
		AA337621	Hs.137635		6
		AA354940	Hs.145958		10.7
		Al636775 AA367032	Hs.6831	ESTs	5.4
55		AA844907	Hs.217882 Hs.274454	EST cluster (not in UniGene)	5.8 4.4
		AW177009	110211101	EST cluster (not in UniGene)	4.6
		AL046575	Hs.130198		11
		Al146686	Hs.143691		13.7
60		Al524039	Hs.192524		6.8
60		AA627642 AA884766	Hs.4994	transducer of ERBB2; 2 (TOB2) EST cluster (not in UniGene)	4.9 4.3
	324385		Hs.284247	EST cluster (not in UniGene)	4.7
		AA464018	Hs.184598	EST cluster (not in UniGene)	13.6
		AW014022	Hs.170953	ESTs	7.6
65		AW501974	Hs.74170		5.6
		AW016378	Hs.292934		24.2
		AA508552 Al346282	Hs.195839 Hs.87159		54 4.6
		AA448021	Hs.94109	EST cluster (not in UniGene)	5.7
	OF ACED	TO STRUCK		man annual fraction areasonal	V.,

```
324626 Al685464
                                                                                 9
        324658 Al694767
                            Hs.129179 ESTs
                                                                                 22
        324676 AW503943
                            Hs.112451 ESTs
                                                                                 4.9
                            Hs.293341 ESTs; Wealdy similar to Pro-a2(XI) [H.sa
                                                                                 10.6
        324691 Al217963
 5
                                                                                 10.2
                            Hs.257339 ESTs
        324696 AA641092
                                                                                 5.5
7.2
                            Hs.163440 ESTs
        324713 AW340249
                             Hs.131798 EST cluster (not in UniGene)
        324715 AI739168
                                                                                 34.4
        324718 Al557019
                             Hs.116467 ESTs
                             Hs.292437 ESTs
                                                                                 4.8
        324720 AA578904
10
                             Hs.272072 ESTs; Moderately similar to !!!! ALU SUB
                                                                                 7.9
        324752 Al279919
                            Hs.144871 EST cluster (not in UniGene)
                                                                                 5.2
        324753 AA612626
                             Hs.159337 ESTs
                                                                                 7.6
        324790 Al334367
                            Hs.14553 ESTs
        324801 Al819924
                                                                                 12.6
                                       ESTs
                                                                                 6.5
        324804 Al692552
                                                                                 4.5
15
        324845 AA361016
                            Hs.337533 ESTs
                            Hs.136102 KIAA0853 protein
                                                                                 4.4
        324888 Al564134
                            Hs.125350 ESTs
                                                                                 6.5
        324929 Al741633
                                       EST cluster (not in UniGene)
        324961 AA613792
                                                                                 5.1
        325108 AA401863
                            Hs.22380
                                       ESTs
                                                                                 7.1
20
                                       CH.20_hs gl[6552458
                                                                                 3.6
        326816
        326997
                                       CH.21_hs gij5867660
                                                                                 4.8
                                       CH.21_hs gij6682516
                                                                                 4.3
        327098
                                       CH.07_hs gij5868455
                                                                                 5.8
        328492
                                       CH.X_hs gij5868837
                                                                                 4.3
        329362
                                       CH.16_p2 gi|6165201
25
                                                                                 5.5
        320020
                                       CH.16_p2 gi|5091594
CH.16_p2 gi|6671887
                                                                                 7.6
        329960
                                                                                 6
        330020
                                                                                 12.6
                                       CH.05_p2 gi|6013592
        330211
                                       androgen receptor (dihydrotestosterone r
        330384 M23263
30
                                       Hs.321110
                                                                                 Antigen, Prostate Specific, Alt. Splice
                                                                                                                           13.8
        330430 HG2261-HT2352
                             Hs.299867 guanine nucleotide binding protein 4
        330546 U31382
                                                                                 4.9
        330551 U39840
                                       hepatocyte nuclear factor 3; alpha
                            Hs.30732
        330658 AA319514
                                       EST8
                                                                                 R
        330700 AA037415
                             Hs.20999
                                       ESTs
                                                                                 5.5
35
        330704 AA056557
                             Hs.6759
                                       ESTs
                                                                                 5.1
                                                                                 11.7
        330705 AA102571
                             Hs.157078 ESTs
        330706 AA121140
                             Hs.177576 ESTs; Moderately similar to kynurenine a
                                                                                 14.5
        330712 AA167269
330725 AA252033
                             Hs.52620 ESTs
                                       ESTs; Weakly similar to IIII ALU SUBFAMI
                                                                                 7.2
                             Hs.24052
        330732 AA281092
40
                             Hs.35254
                                       ESTs
                                                                                  4.9
                             Hs.15251 Human DNA sequence from clone 437M21 on
                                                                                 18.5
        330762 AA449677
                             Hs.143187 FK506-binding protein 3 (25kD)
                                                                                 4.3
        330763 AA450200
                             Hs.11356 ESTs
                                                                                 5.8
        330772 AA479114
                                                                                 4.6
        330786 D60374
                                       EST
45
                             Hs.91202 ESTs
                                                                                 15.3
        330892 AA149579
                                                                                 10.3
        330949 H01458
                             Hs.142896 ESTs
        330977 H20826
                             Hs.315181 ESTs
                                                                                 4.4
        331017 N24619
                             Hs.108920 ESTs
                                                                                 11.8
        331099 R36671
                             Hs.14846 ESTs
                                                                                 11.6
50
                             Hs.268714 ESTs
                                                                                 4.8
        331128 R51361
                             Hs.268838 ESTs
                                                                                  13
        331151 R82331
                             Hs.168439 ESTs
        331195 T64447
                                                                                 4.9
        331320 AA262999
                             Hs.300141 ESTs
                                                                                 4.8
        331321 AA278355
331337 AA287662
                             Hs.87929 ESTs
                                                                                 6.1
55
                             Hs.118630 ESTs
                                                                                 9.2
        331348 AA400596
                             Hs.88143 ESTs
                                                                                 9.9
                             Hs.81897
                                                                                 4.3
         331359 AA416979
                                       ESTs
                             Hs.43543 ESTs
                                                                                 4.6
        331383 AA454543
                             Hs.237339 ESTs; Moderately similar to IIII ALU SUB
                                                                                 4.9
        331422 F10802
60
                             Hs.41223 ESTs
         331442 H77381
                                                                                 7.5
        331466 N21680
                             Hs.43455 ESTs
                                                                                 5.4
         331479 N27154
                             Hs.44076 ESTs
                                                                                 6.5
                             Hs.291039 ESTs; Weakly similar to hypothetical 43.
        331490 N32912
                                                                                  12.5
                             Hs.93817 ESTs
                                                                                  4.6
         331493 N34357
65
                             Hs.48703 ESTs
                                                                                  9.2
         331561 N62780
                             Hs.5472
                                        ESTs
         331615 N92352
                                                                                  4.6
                             Hs.334305 ESTs
        331659 W48868
                                                                                  8.7
                             Hs.65949 KIAA0888 protein
         331696 Z38907
                                                                                  10.3
         331811 AA404500
                             Hs.187958 ESTs
                                                                                  4.8
```

	331848	AA417039	Hs.98268	signal recognition particle 72kD	7.5
		AA429445	Hs.98640	ESTs	6.5
•		AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clone CIT	33.6
5		AA460158	Hs.99589		6.8
J		AA464518 AA490831	Hs.105322 Hs.201591		5.3 10.8
		AA599477	Hs.291156		4.4
	332173		Hs.100725		5.5
	332247			ESTs	14.2
10	332249	N62096	Hs.194140		7.2
	332325		Hs.339667		5.6
		AA340504		ESTs; Weakly similar to similar to human	21.2
	332434		Hs.56729	transcription factor 4	15.3 7.1
15	332493 332522			ESTs; Highly similar to GTP-binding prot glutathlone S-transferase theta 2	6.6
15		AA281753	Hs.17731	inositol 1;4;5-triphosphate receptor; ty	5.8
		M31682	Hs.19280	Inhibin; beta B (activin AB beta polypep	5.5
	332533	M99487		folate hydrolase (prostate-specific memb	38.1
		N48715	Hs.20991	ESTs	6.5
20		D84454	Hs.22587	solute carrier family 35 (UDP-galactose	4.8
		AA279313	Hs.32951	methyl CpG binding protein 2	5.6 5.6
		AA412405 N95742	Hs.40513 Hs.6390	ESTs; Weakly similar to BETA GALACTOSIDA ESTs	6.9
	332697		Hs.75725	carboxypeptidase E	24.3
25		D26070	Hs.79306	inositol 1;4;5-triphosphate receptor; ty	9.9
	332716	L00058	Hs.79630	v-myc avian myelocytomatosis viral oncog	5.6
	332726		Hs.83428	synaptophysin-like protein	5
		AA233258		ESTs; Weakly similar to D1007.5 [C.elega	4.5
30	332797 332798			CH22_FGENES.6_2 CH22_FGENES.6_5	30.8 66.8
30	332799			CH22_FGENES.6_6	19.8
	332933			CH22_FGENES.38_7	5.6
	332980			CH22_FGENES.54_1	5.5
~-	332984			CH22_FGENES.54_6	4.9
35	333168			CH22_FGENES.94_1	4.7
	333169 333452			CH22_FGENES.94_2 CH22_FGENES.157_1	4.4 4.8
	333456			CH22_FGENES.157_5	4.3
	333458			CH22_FGENES.157_7	4.6
40	333611			CH22_FGENES.217_6	4.7
	333621			CH22_FGENES.219_5	5.5
	333814			CH22_FGENES.282_2	7.1
	333849			CH22_FGENES.290_8 CH22_FGENES.303_5	6.2 4.3
45	333949 333951			CH22_FGENES.303_7	4.9
1.5	333955			CH22_FGENES.303_11	5.6
	334150			CH22_FGENES.339_1	5.1
	334223	•		CH22_FGENES.360_4	20.3
50	334297			CH22_FGENES.372_3	9.4
50	334443 334444			CH22_FGENES.387_2 CH22_FGENES.387_4	4.6 5.6
	334447			CH22_FGENES.387_7	13.1
	334570			CH22_FGENES.405_11	5.4
	334749			CH22_FGENES.427_1	5.3
55	334777			CH22_FGENES.430_9	4.7
	334960			CH22_FGENES.465_29	5.2
	335179			CH22_FGENES.504_9 CH22_FGENES.527_6	8.8 4.7
	335293 335550			CH22_FGENES.576_11	5.1
60	335581			CH22 FGENES.581_19	5.7
30	335586			CH22_FGENES.581_25	4.3
	335809			CH22_FGENES.617_6	6.2
	335810			CH22_FGENES.617_7	5.8
65	335822			CH22_FGENES.619_7	7.1
65	335824 335853			CH22_FGENES.619_11 CH22_FGENES.626_5	8.5 4.3
	335886			CH22_FGENES.632_4	4.3
	336034			CH22_FGENES.678_5	6.8
	336441			CH22_FGENES.827_7	7.6

	336624	CH22_FGENES.6-3	43.3
	336625	CH22_FGENES.6-4	37.9
	336679	CH22_FGENES.43-7	5.3
	337577	CH22_C65E1.GENSCAN.8-1	4.9
5	338255	CH22_EM:AC005500.GENSCAN.276-3	13.4
_	338260	CH22_EM:AC005500.GENSCAN.279-10	4.6
	338561	CH22 EM:AC005500.GENSCAN.421-5	4.6
	338562	CH22 EM:AC005500.GENSCAN.421-6	4.3
	338759	CH22 EM:AC005500.GENSCAN.517-6	5.1
10	338763	CH22 EM:AC005500.GENSCAN.517-16	5.5
	338764	CH22 EM:AC005500.GENSCAN.517-17	7.1

TABLE 3A shows the accession numbers for those primekeys lacking unigeneID's for Table 3. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey; CAT number: Accession:		Unique Eos probeset identifier number Gene duster number Genbank accession numbers				
15	Pkey	CAT number		Accession			
20	116722 103677 125992	371681_1 143512_1 41847_1 1589048_1		AA602864 AA609200 Z24878 AA494098 F13654 AA494040 AA143127 Z83806 AJ132091 AJ132090 H48372 W01626			
25	125154 101447 124357	genbank_AA2 genbank_W38 entrez_M2130 genbank_N22	419 5 401	AA213620 W38419 M21305 N22401			
25	322278 315084 324019	genbank_AA1: 47271_1 350959_1 262792_1 300543_1		AA136590 W69304 AF086283 W69200 AI821085 AW973484 AA554802 AI821831 AA657438 AA640756 AA650339 AW177009 AI381610 AA884766 AW974271 AA592975 AA447312			
30	324626 303029 324804	336411_1 37699_1 398093_1 376239_1		AI685464 AW971336 AA513587 AA525142 AF199613 AF108756 AI692552 AI393343 AI800510 AI377711 F24263 AA661876 AA613782 AW182329 T05304 AW858385			
35	336625 336679	CH22_4071FG CH22_4072FG CH22_4157FG	6_4_				
40	338260 329929 329960 338561	CH22_6863F6 c16_p2 c16_p2 CH22_7294F6	LINK_EM:AC00				
45	338763 338764 333168 333169	CH22_7585FG CH22_7586FG CH22_400FG CH22_401FG	G_LINK_EM:AC00 G_LINK_EM:AC00 G_LINK_EM:AC00 94_1_LINK_EM:A 94_2_LINK_EM:A				
50 _.	333456 333458 333611 333621	CH22_706FG_ CH22_708FG_ CH22_872FG_ CH22_882FG_	_157_1_LINK_EM: _157_5_LINK_EM: _157_7_LINK_EM: _217_6_LINK_EM: _219_5_LINK_EM: _282_2_LINK_EM:				
55 ·	333849 335179 333949 333951	CH22_1118FG CH22_2515FG CH22_1225FG CH22_1227FG	0 202				
60	335293 326816 326997 335550	CH22_2635FG c20_hs c21_hs CH22_2905FG	i_527_6_LINK_EM i_576_11_LINK_E				
65			i_581_19_LINK_E i_581_25_LINK_E				

	328492	c_7_hs	
		CH22_3181FG_617_6_LINK_EN	1
		CH22_3182FG_617_7_LINK_EN	
		CH22_3195FG_619_7_LINK_EN	
5		CH22_3197FG_619_11_LINK_E	
5			
		CH22_3228FG_626_5_LINK_EN	
		CH22_3261FG_632_4_LINK_EN	
		c16_p2	
10		c_5_p2	
10		CH22_5864FGLINK_C65E1.G	
		Al364186	•
		CH22_13FG_6_2_LINK_C4G1.G	
		CH22_14FG_6_5_LINK_C4G1.G	
4 ~		CH22_15FG_6_6_LINK_C4G1.G	
15		CH22_1429FG_339_1_LINK_EN	
		CH22_154FG_38_7_LINK_C20H	
		CH22_204FG_54_1_LINK_EM:A	
		CH22_208FG_54_6_LINK_EM:A	
		CH22_1507FG_360_4_LINK_EN	
20	334297	CH22_1588FG_372_3_LINK_EN	
		c21_hs	
	334443	CH22_1742FG_387_2_LINK_EN	
	334444	CH22_1743FG_387_4_LINK_EN	
	334447	CH22_1746FG_387_7_LINK_EN	\mathbf{I}
25	334570	CH22_1875FG_405_11_LINK_E	
	334749	CH22_2061FG_427_1_LINK_EN	1
	334777	CH22_2089FG_430_9_LINK_EN	
	336034	CH22_3419FG_678_5_LINK_DJ	
	334960	CH22_2281FG_465_29_LINK_E	
30		CH22_3861FG_827_7_LINK_DJ	
	330551	9851_2	U39840 NM_004496 AW135807 BE087458 BE087567 AA177116 AW195705 AW750756 Al811008 Al694151
			BE348594 AW971075 Al347950 Al201455 Al073898 AA652680 AA613671 Al318364 AA507550 AA693692
			AI032599 AA991871 AI269801 AW948974 T74639 AA532907 AW949173
	330786	53973_3	BE379594 AI192455 AL039862 AI744012 AI761735 AW243181 AI743687 AI928223 AI423022 AI627855
35			AI636059 AI651571 AW802044 AI826995 AI431733 AI539125 AA863056 AW270910 AI768930 AW008835
			AW615183 AW591147 Al695294 Al672106 AA506358 Al308060 AA011556 AA962437 Al935488 BE219625
			AI004356 AW151394 AI218466 N66178 AI419784 AW242519 AW946907 D60374 AA989263 AI698799
			AA470460 Al824167
	332247	372969_1	AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172
40	332396	20265_1	AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798
			R17370 Al908947 AA382932 R58449 H18732 AA371231 AW952899 AA713530 AW892946 R53463 H11063
			AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497 AW954769 AA036808
			BE168063 AW382073 AW382085 AL041475 H80748 AI078161 BE463983 AI805213 AI761264 W94885
			N94502 AI623772 AI419532 AI810302 AI634190 AW002516 AW150777 AI352312 AI367474 AW204807
45			Al675502 Al337026 AW134715 BE328451 Al123157 Al560020 Al300745 Al608631 Al248873 AA742484
			AW051635 H18646 Al245045 AA507111 Al640510 Al925594 AA115747 AA143035 AA151106
	332781	32044_1	AKO01764 BE313896 AA380199 AA380151 AA194996 AW118089 AA495871 AW975219 AW085598
		-	Al378909 AW992310 AW992409 Al911857 AA657643 Al804471 Al242589 Al623968 R09556 Al129100
			Al206500 AA680094 AA677784 Al023178 Al277519 AA424742 Al240654 AA232846 Al804273 Al382376
50			AA001729 W90790 BE090656 AW295015 Al674596 Al431734 Al420517 AW769185 Al128355 Al192474
			AI820001 AA001929 AA706925 AI076676 AI499119 AI200493 AI695919 AI376217 W69195 W69261
			AW305099 W90320 BE048357 Al658856 AA838534 AA233258 Al753393 AA709227 Al674387 Al872616
			4

TABLE 3B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 3. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5

60

65

336625 Dunham, I. et.al. Minus

336679 Dunham, I. et.al. Minus

338255 Dunham, I. et.al. Minus

338561 Dunham, I. et.al. Minus

338759 Dunham, I. et.al. Minus

338763 Dunham, I. et.al. Minus

338764 Dunham, I. et.al. Minus

Dunham, I. et al. Minus

338562

229124-229024

2035790-2035681

15242294-15242231

22311966-22311856

22312594-22312465

26582475-26582199

26628148-26628009

26641232-26641101

Unique number corresponding to an Eos probeset Pkey: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. 10 Indicates DNA strand from which exons were predicted. Nt_position: Indicates nucleotide positions of predicted exons. Pkey Ref Strand Nt position 15 333611 Dunham, I. et.al. Plus 6548368-6548507 333621 Dunham, I. et.al. Plus 8597414-8597560 7894165-7894252 333814 Dunham, I. et.al. Plus 8018323-8018472 333849 Dunham, I. et.al. Plus 20 333949 Dunham, I. et.ai. Plus 8589634-8589791 333951 Dunham, I. et.al. Plus 8592501-8592637 333955 Dunham, I. et.al. Plus 8597414-8597560 10529221-10529854 334150 Dunham, I. et.al. Plus 334297 Dunham, I. et.al. Plus 13420934-13421058 25 334443 Dunham, I. et.al. Plus 14298981-14299056 334444 Dunham, I. et.al. Plus 14306433-14306492 334447 Dunham, I. et.al. Plus 14308764-14308824 334570 Dunham, I. et.al. Plus 14994868-14994943 16259586-16260166 334777 Dunham, I. et.al. Plus 30 21634405-21634526 335179 Dunham, I. et.al. Plus 335581 Dunham, I. et.al. Plus 24976198-24976334 335586 Dunham, I. et.al. Plus 24990333-24990497 335809 Dunham, I. et.al. Plus 26310772-26310909 335810 Dunham, I. et.al. Plus 26314767-26314849 35 335822 Dunham, I. et.al. Plus 26364087-26364196 335824 Dunham, I. et.al. Plus 26376860-26376942 335886 Dunham, I. et.al. Plus 26934235-26934364 336034 Dunham, I. et.al. Plus 29014404-29014590 336441 Dunham, I. et.al. Plus 34187606-34187663 40 337577 Dunham, I. et.al. Plus 595377-595678 15458919-15459257 338260 Dunham, I. et.al. Plus 216964-216798 332797 Dunham, I. et.al. Minus 232147-231974 332798 Dunham, I. et.al. Minus 332799 Dunham, I. et al. Minus 232421-232307 45 332933 Dunham, Let.al. Minus 2035790-2035681 332980 Dunham, I. et.al. Minus 5136165-5136019 332984 Dunham, I. et.al. Minus 2632606-2632457 333168 Dunham, I. et.al. Minus 3729896-3729788 333169 Dunham, I. et.al. Minus 3730864-3730767 50 333452 Dunham, I. et.al. Minus 5136165-5136019 333456 Dunham, I. et.al. Minus 2631933-2631797 333458 Dunham, I. et.al. Minus 5143942-5143806 334223 Dunham, I. et.al. Minus 12734365-12734269 334749 Dunham, I. et.al. Minus 16090686-16090106 55 334960 Dunham, I. et.al. Minus 20160968-20160795 335293 Dunham, I. et.al. Minus 22316408-22316275 335550 Dunham, I. et.al. Minus 24668714-24668658 335853 Dunham, I. et.al. Minus 26614629-26614506 336624 Dunham, I. et.al. Minus 227714-227577

	329960	5091594	Minus	1031-1162
	329929	6165201	Minus	156410-156553
	330020	6671887	Plus	172397-172491
_	326816	6552458	Plus	198354-198436
5	326997	5867660	Minus	71389-72147
	327098	6682516	Minus	1061684-1062361
	330211	6013592	Pius	59158-59215
	328492	5868455	Minus	46094-46241
	329362	5868837	Minus	65688-68173
10				

TABLE 4: shows a preferred subset of the Accession numbers for genes found in Table 3 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

Pkey: Unique Eos probeset Identifier number
ExAccn: Exemplar Accession number, Genbank accession number
UnigeneID: Unigene number
Unigene Title: Unigene gene title
R1: Ratio of tumor to normal body tissue

Ĺ

5

15	Pkey	ExAccn	UnigeneiD	Unigene Title	R1
	100819	HG4020-HT42	90Hs.2387	Transglutaminase	10.5
	102698	U75272	Hs.1867	progastricsin (pepsinogen C)	10.6
	102869	X02544	Hs.572	crosomucoid 1	22.6
	105370	AA236476	Hs.22791	ESTs; Weakly similar to transmembrane pr	10.3
20	105645	AA282138	Hs.11325	ESTs	14
	106094	AA419461	Hs.23317	ESTs	10.9
	109014	AA156790	Hs.262036	ESTs	15.3
	109562	F01811	Hs.187931	ESTs; Moderately similar to voltage-gate	10.8
	113021	T23855	Hs.129836	KIAA1028 protein	10.8
25	114124	Z38595	Hs.125019	ESTs; Highly similar to KIAA0886 protein	21.3
	122791	AA460158	Hs.129836	KIAA1028 protein	12.4
	124352	N21626	Hs.102406	ESTs	10.2
		Al659131	Hs.197733		24.9
		AI869666	Hs.123119		36.8
30		NM_004917	Hs.218366	EST duster (not in UniGene) with exon h	26.8
		AA508353		relaxin 1 (H1)	78.8
		AA255977		ESTs; Highly similar to ubiquitin-conjug	19.5
		AW503733	Hs.9414	ESTs .	13
0.5		A1420227	Hs.149358		72.9
35		A1655662	Hs.197698		41.3
		A1682088	Hs.79375	ESTs	26.4
		AA759250		cytochrome b-561	11
		AA033609	Hs.239884		11.2
40		AA861697		EST cluster (not in UniGene)	13.4
40		AI821895	Hs.193481		29.4
		Al672225	Hs.222886		19.3
		AW292425	Hs.163484		15.5
		AAB76910 Al654187	Hs.134427 Hs.195704		20 14.2
45		AW295184		ESTs; Weakly similar to DEOXYRIBONUCLE.	
73		AV1293104 Al949409	Hs.194591		12.3
		AW291511	Hs.159066		25.9
	319080		Hs.23023	ESTs	16.9
		AA460775	Hs.6295	ESTs	14.3
50		AF071202		ATP-binding cassette; sub-family C (CFTR	56.2
50		AW297633	Hs.118498		14.7
		W07459		EST duster (not in UniGene)	22
		AA056060		EST cluster (not in UniGene)	18.4
		AW043782	Hs.293616		10.7
55		AA639902	Hs.104215	ESTs	24.7
	324603	AW016378	Hs.292934	ESTs	24.2
	324617	AA508552	Hs.195839	ESTs	54
	324658	A1694767	Hs.129179	ESTs	22
	324691	Al217963	Hs.293341	ESTs; Weakly similar to Pro-a2(XI) [H.sa	10.6
60	324696	AA641092	Hs.257339	ESTs	10.2
	324718	Al557019	Hs.116467	ESTs	34.4
	330211			CH.05_p2 gi[6013592	12.6
				0 Antigen, Prostate Specific, Alt. Splice	13.8
		AA121140	Hs.177576	ESTs; Moderately similar to kynurenine a	14.5
65		AA449677		Human DNA sequence from clone 437M21 on	
		AA149579	Hs.91202		15.3
	330949	H01458	Hs.142896	ESTs	10.3

	331099	R36671	Hs.14846	ESTs	11.6
	331151	R82331	Hs.268838	ESTs	13
	331889	AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clone	CIT 33.6
_	332247	N58172		ESTs	14.2
5	332396	AA340504		ESTs; Weakly similar to similar to human	21.2
	332533	M99487	Hs.325825	fotate hydrolase (prostate-specific memb	38.1
	332697	T94885	Hs.75725	carboxypeptidase E	24.3
	332797			CH22_FGENES.6_2	30.8
	332798			CH22_FGENES.6_5	66.8
10	332799			CH22_FGENES.6_6	19.8
	334223			CH22_FGENES.360_4	20.3
	336624			CH22_FGENES.6-3	43.3
	336625			CH22 FGENES 6-4	37.9

TABLE 4A shows the accession numbers for those primekeys lacking unigeneID's for Table 4. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers	
15	Pkey	CAT number		Accession
20	336625 330211 332797 332798 332799	CH22_14FG_ CH22_15FG_		
25	332247	372969_1 20265_1		AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172 AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 AI908947 AA382932 R58449 H18732 AA371231 AW982899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497 AW984769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 AI078161 BE463983
30				AI805213 AI761264 W94985 N94502 AI823772 AI419532 AI810302 AI634190 AW002516 AW150777 AI352312 AI367474 AW204807 AI675502 AI337026 AW134715 BE328451 AI123157 AI560020 AI300745 AI608631 AI248873 AA742484 AW051635 H18646 AI245045 AA507111 AI640510 AI925594 AA115747 AA143035 AA151106

TABLE 4B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 4. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkøy: Ref:	Sequer	ice source. Ti	rresponding to an Eos probeset he 7 digit numbers in this column are Genbank Identifier (GI) numbers.	"Dunham I. et al." refers to the publication entitled "Th
	Strand: Nt_position	Indica	tes DNA stra	man chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Ind from which exons were predicted. le positions of predicted exons.	
15	Pkey	Ref	Strand	Nt_position	
	332797	Dunham, I. et.al.	Minus	216964-216798	
	332798	Dunham, I. et.al.	Minus	232147-231974	
	332799	Dunham, I. et.al.	Minus	232421-232307	
20	334223	Dunham, I. et.al.	Minus	12734365-12734269	
	336624	Dunham, I. et.al.	Minus	227714-227577	
	336625	Dunham, I. et.al.	Minus	229124-229024	•
	330211	6013592	Ptus	59158-59215	

TABLE 5: 1170 GENES UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

Table 5 shows 1170 genes up-regulated in prostate cancer compared to normal adult tissues. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" prostate cancer to "average" normal adult tissues was greater than or equal to 3.44. The "average" prostate cancer level was set to the 85th percentile amongst 73 prostate cancers. The "average" normal adult tissue level was set to the 85th percentile amongst 162 non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 7.5th percentile value amongst the 162 non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

15	ExAccn:	Ě	Exemplar Accession number, Genbank accession number				
	UnigenelD:		Unigene number				
	Unigene Title:		Unigene gene title				
	R1:		Ratio of tumor to normal tissue				
20	Pkey	ExAcon	UnigeneiD	Unigene Title .	R1		
	446057	Al420227	Hs.149358	ESTs, Weakly similar to A46010 X-linked	86.42		
	400302	N48056	Hs.1915	folate hydrolase (prostate-specific memb	66.46		
	414569	AF109298	Hs.118258	prostate cancer associated protein 1	58.36		
25	417407	AA923278	Hs.290905	ESTs, Weakly similar to protease [H.sapi	56.16		
	431579	AW971082	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	53.38		
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	48.28		
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	45.24		
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.48		
30	420154	AI093155	Hs.95420	JM27 protein	41.12		
	433466	AA508353	Hs.105314	relaxin 1 (H1)	39.88		
	400296	AA305627	Hs.139336	ATP-binding cassette, sub-family C (CFTR	38.42		
	400292	AA250737	Hs.72472	ESTs	38.00		
0.5	432887	Al926047	Hs.162859	ESTs	36.48		
35	439176	Al446444	Hs.190394	ESTs, Weakly similar to B28096 line-1 pr	36.45		
	430722	AW968543	Hs.203270	ESTs, Weakly similar to ALU1_HUMAN ALU S	33.20		
	437052	AA861697	Hs.120591	ESTs	33.02		
	418396	Al765805	Hs.26691	ESTs	32.68		
40	434036	AI659131	Hs.197733	hypothetical protein MGC2849	32.44		
40	407709	AA456135	Hs.23023	ESTs	32.10		
	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	31.80		
	407168	R45175		ESTs	31.72		
	440260	A1972867	Hs.7130	copine IV	30.52		
AE	421513	X00949	Hs.105314	relaxin 1 (H1)	30.10		
45	416370	N90470	Hs.203697	ESTs, Weakly similar to 138022 hypotheti	29.68		
	407122	H20276	Hs.31742	ESTs	29.24		
	400287	S39329	Hs.181350	kallikrein 2, prostatic	28.90		
	432244	AI669973	Hs.200574	ESTs	28.74		
50	451939	U80456	Hs.27311	single-minded (Drosophila) homolog 2	28.74		
20	415989	A1267700	Hs.111128	ESTs ESTs	28.34 27.34		
	418961	AW867646	Hs.23023	folate hydrolase (prostate-specific memb	27.34		
	425628	NM_004476	Hs.1915 Hs.282906	ESTs	27.24		
	458509	AA654650	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone PL	27.16		
55	448290 428336	AK002107 AA503115	Hs.183752	microseminoprotein, beta-	26.17		
55	426330 450096	AI682088	Hs.223368	holocarboxylase synthetase (biotin-[prop	25.60		
			Hs.171995	kallikrein 3, (prostate specific antigen	24.91		
	400299	X07730 AA760894	Hs.153023	ESTs	24.51		
	437571 453160	AA760694 Al263307	Hs.146228	H2B histone family, member L	24.74		
60	453096	AW294631	Hs.11325	ESTs	24.46		
50	433090 425075	AA506324	Hs.1852	acid phosphatase, prostate	24.23		
	423075 407202	N58172	Hs.109370	ESTs	24.18		
	401202	1400112	115. TU30/U	LUID	24.10		

Unique Eos probeset identifier number

Pkey:

	424846	AU077324	Hs.1832	neuropeptide Y	23.57
	453370	AJ470523	Hs.182356	ATP-binding cassette, sub-family C (CFTR	23.16
	422805	AA436989	Hs.121017	H2A histone family, member A	22.52
	444917	R68651	Hs.144997	ESTs	22.26
5	408826	AF216077	Hs.48376		
,	413597			Homo sapiens clone HB-2 mRNA sequence	22.02
	426429	AW302885	Hs.117183	ESTs	21.76
	_	X73114	Hs.169849	myosin-binding protein C, slow-type	21.32
	435981	H74319	Hs.188620	ESTs	21.12
10	432956	AA650114		ESTs	21.07
10	418848	Al820961	Hs.193465	ESTs	21.06
	405685				20.90
	443271	BE568568	Hs.195704	ESTs	19.98
	418819	AA228776	Hs.191721	ESTs	19.94
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	19.72
15	418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecul	19.56
	429918	AW873986	Hs.119383	ESTs	19.04
	415539	AI733881	Hs.72472	ESTs	18.43
	450382	AA397658	Hs.60257	Homo sapiens cDNA FLJ13598 fis, clone PL	18.34
	418829	AA516531	Hs.55999	NK homeobox (Drosophila), family 3, A	18.28
20	429984	AL050102	Hs.227209	hypothetical protein FLJ21617	17.82
	443822	Al087412	Hs.143611	ESTs, Weakly similar to 2004399A chromos	17.66
	431676	Al685464	Hs.292638	gb:tt88f04_x1 NCI_CGAP_Pr28 Homo sapiens	17.64
	410330	AW023630	Hs.46786	ESTs	
	432441	AW292425	Hs.163484	ESTs	17.52
25	452792	AB037765	Hs.30652		17.41
ديد	445472			KIAA1344 protein	17.39
		AB006631	Hs.12784	Homo sapiens mRNA for KIAA0293 gene, par	17.00
	414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82
	430487	D87742	Hs.241552	KIAA0268 protein	16.72
20	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60
30	419536	AA603305		gb:np12d11.s1 NCI_CGAP_Pr3 Homo sapiens	16.50
	439677	R82331	Hs.164599	ESTs	16.46
	449625	NM_014253	Hs.23796	odz (odd Oz/ten-m, Drosophila) homolog 1	16.32
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28
~ ~	447033	Al357412	Hs.157601	ESTs	16.02
35	453006	A1362575	Hs.167133	ESTs	15.74
	431474	AL133990	Hs.190642	ESTs	15.70
	420218	AW958037	Hs.22437	ribosomal protein L4	15.64
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54
	416208	AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	15.48
40	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	15.40
	415263	AA948033	Hs.130853	ESTs	15.38
	432437	W07088	Hs.293685	ESTs	15.26
	428398	Al249368	Hs.98558	ESTs	15.21
	429900	AA460421	Hs.30875	ESTs	14.90
45	449156	AF103907	Hs.171353	prostate cancer antigen 3	14.89
	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	14.81
	435974	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor	14.76
	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	14.76
	422728	AW937826	Hs.103262		
50	418601	AA279490		ESTs, Weakly similar to ZN91_HUMAN ZINC	14.60
J			Hs.86368	calmegin	14.56
	448999 44EBBE	AF179274	Hs.22791	transmembrane protein with EGF-like and	14.55
	445885	AI734009	Hs.127699	KIAA1603 protein	14.44
	452712	AW838616		gb:RC5-LT0054-140200-013-D01 LT0054 Homo*	14.22
55	432189	AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sapiens	14.12
22	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
	429290	AF203032	Hs.198760	neurofilament, heavy polypeptide (200kD)	13.57
	419264	AA877104	Hs.293672	ESTs, Weakly similar to ALUB_HUMAN !!!!	13.40
	416445	AL043004	Hs.300678	KIAA0135 protein	13.32
	407275	Al364186		gb:qw34h07.x1 NCI_CGAP_Ut4 Homo sapiens	13.24
60	408369	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra	13.21
	446720	Al439136	Hs.140546	ESTs	13.06
	434988	Al418055	Hs.161160	ESTs	13.02
	448172	N75276	Hs.135904	ESTs	12.98
	416182	NM_004354	Hs.79069	cyclin G2	12.94
65	420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79
	445413	AA151342	Hs.12677	CGI-147 protein	12.64
	452588	AA889120	Hs.110637	homeo box A10	12.62
	407819	R42185	Hs.274803	ESTs	12.60
	433444	AW875324	Hs.129816	ESTs	12.60
	700777	/11/0/ UUL T	· 10. 1200 IO	2010	12.00

	401000	AICE A100	Ha 20210	thursid receptor internating protein 15	12.30
	421059	AI654133	Hs.30212	thyroid receptor interacting protein 15	12.24
	420077	AW512260	Hs.87767	ESTs	
	453930	AA419466	Hs.36727	hypothetical protein FLJ10903	12.22
_	441610	AW576148	Hs.148376	ESTs	12.20
5	451009	AA013140	Hs.115707	ESTs	12.18
	433764	AW753676	Hs.39982	ESTs	12.16
	440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
	443912	R37257	Hs.184780	ESTs	11.92
	419526	Al821895	Hs.193481	ESTs	11.91
10	423073	BE252922	Hs.123119	MAD (mothers against decapentaplegic, Dr	11.87
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86
	414422	AA147224	Hs.71814	ESTs	11.76
	450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68
	436679	Al127483	Hs.120451	ESTs. Weakly similar to unnamed protein	11.60
15	440901	AA909358	Hs.128612	ESTs	11.60
	448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51
	433887	AW204232	Hs.279522	ESTs	11.50
				sterol O-acyltransferase (acyl-Coenzyme	11.38
	434980	AW770553	Hs.293640		11,33
20	425905	AB032959	Hs.161700	novel C3HC4 type Zinc finger (ring finge	
20	434680	T11738	Hs.127574	ESTs	11,32
	449650	AF055575	Hs.297647	calcium channel, voltage-dependent, L ty	11.18
	431173	AW971198	Hs.294068	ESTs	11.16
	434539	AW748078	Hs.214410	ESTs, Weakly similar to MUC2_HUMAN MUCIN	11.16
	410037	AB020725	Hs.58009	KIAA0918 protein	11.14
25	417708	N74392	Hs.50495	ESTs	11.14
	458332	Al000341	Hs.220491	ESTs	11.12
	420381	D50640	Hs.301782	phosphodiesterase 3B, cGMP-inhibited	11.10
	425665	AK001050	Hs.159066	hypothetical protein FLJ10188	11.08
	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08
30	428728	NM_016625	Hs.191381	hypothetical protein	11.04
50		U52077	113,131301	gb:Human mariner1 transposase gene, comp	11.02
	407021		Hs.66052		11.02
	410733	D84284	r18.00U32	CD38 antigen (p45)	
	401714	*1000544	11-440505	COT-	10.90
25	434485	Al623511	Hs.118567	ESTs	10.89
35	415786	AW419196	Hs.257924	hypothetical protein FLJ13782	10.87
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85
	453628	AW243307	Hs.170187	hypothetical protein	10.72
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	10.67
	417687	Al828596	Hs.250691	ESTs	10.64
40	434666	AF151103	Hs.112259	T cell receptor gamma locus	10.53
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	10.50
	428819	AL135623	Hs.193914	KIAA0575 gene product	10.48
	413409	AI638418	Hs.21745	DEAD/H (Asp-Giu-Ala-Asp/His) box polypep	10.44
	428775	AA434579	Hs.143691	ESTs	10.21
45	436556	Al364997	Hs.7572	ESTs	10.20
	441690	RB1733	Hs.33106	ESTs	10.14
	419852	AW503756	Hs.286184	hypothetical protein dJ551D2.5	10.10
			Hs.110488	KIAA0990 protein	10.04
	421991	NM_014918			10.02
50	423698	AA329796	Hs.1098	DKFZp434J1813 protein	10.00
20	452039	Al922988	Hs.172510	ESTs	
	433043	W57554	Hs.125019	ESTs	9.98
	433927	Al557019	Hs.116467	small nuclear protein PRAC	9.97
	445424	AB028945	Hs.12696	cortactin SH3 domain-binding protein	9.96
	432240	A1694767	Hs.129179	Homo sapiens cDNA FLJ13581 fis, clone PL	9.88
55	433104	AL043002	Hs.128246	ESTs, Moderately similar to unnamed prot	9.84
	452744	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	9.82
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	9.75
	427398	AW390020	Hs.20415	chromosome 21 open reading frame 11	9.70
	446896	T15767	Hs.22452	Homo sapiens mRNA for KIAA1737 protein,	9.70
60	421470	R27496	Hs.1378	annexin A3	9.64
	406554	,			9.60
	401424				9.58
	407902	AL117474	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (fr	9.56
	407802	AP000692	Hs.129781	chromosome 21 open reading frame 5	9.54
65				ESTs	9.51
U.J	439024	R96696	Hs.35598		
	431548	AI834273	Hs.9711	novel protein	9.48
	409262	AK000631	Hs.52256	hypothetical protein FLJ20624	9.45
	446271	D82484	Hs.100469	ESTs	9.42
	448692	AW013907	Hs.224276	methylcrotonoyl-Coenzyme A carboxylase 2	9.26

	414140	AA281279	Hs.23317	hypothetical protein FLJ14681	9.24
	435980	AF274571	Hs.129142	deoxyribonuclease II beta	9.24
	421246	AW582962	Hs.300961	CGI-47 protein	9.20
	427304	AA761526	Hs.163853	ESTs	9.16
5	442914	AW188551	Hs.99519	hypothetical protein FLJ14007	9.16
	413627	BE182082	Hs.246973	ESTs	9.14
	439699	AF086534	Hs.187561	ESTs, Moderately similar to ALU1_HUMAN A	9.10
	437718	Al927288	Hs.196779	ESTs	9.07
4.0	439820	AL360204	Hs.283853	Homo sapiens mRNA full length insert cDN	9.06
10	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	9.05
	446223	BE300091	Hs.119699	hypothetical protein FLJ12969	9.04
	410001	AB041036	Hs.57771	kallikrein 11 tumor protein 63 kDa with strong homolog	9.03 9.03
	424012 441791	AW368377 AW372449	Hs.137569 Hs.175982	hypothetical protein FLJ21159	9.02
15	448206	BE622585	Hs.3731	ESTs, Moderately similar to 138022 hypot	9.02
15	414269	AA298489		olfactory receptor, family 51, subfamily	8.99
	442081	AA401863	Hs.22380	ESTs	8.98
	420092	AAB14043	Hs.88045	ESTs	8.85
	411630	U42349	Hs.71119	Putative prostate cancer tumor suppresso	8.80
20	421863	A1952677	Hs.108972	Homo sapiens mRNA; cDNA DKFZp434P228 (fr	8.80
	454141	AW138413	Hs.182356	ATP-binding cassette, sub-family C (CFTR	8.80
	418278	Al088489	Hs.83937	hypothetical protein	8.78
	428330	L22524	Hs.2256 Hs.289014	matrix metalloproteinase 7 (matrilysin,	8.76 8.75
25	432415	T16971 Al566086	Hs.153716	ESTs, Weakly similar to A43932 mucin 2 p Homo sapiens mRNA for Hmob33 protein, 3'	8.74
43	424906 415245	N59650	Hs.27252	ESTs	8.72
	442409	BE208843	Hs.129544	hypothetical protein MGC15438	8.70
	404571	522000			8.66
	418033	W68180	Hs.259855	elongation factor-2 kinase	8.64
30	456497	AW967956	Hs.123648	ESTs, Weakly similar to AF108460 1 ubinu	8.56
	405876				8.54
	448807	Al571940	Hs.7549	ESTs	8.52
	445372	N36417	Hs.144928	ESTs	8.48
35	425171	AW732240	Hs.300615	ESTs	8.44 8.36
33	419968	X04430 AA610150	Hs.93913 Hs.272072	interleukin 6 (interferon, beta 2) ESTs, Weakly similar to I38022 hypotheti	8.31
	407385 433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30
	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.27
	412719	AW016610	Hs.129911	ESTs	8.24
40	418849	AW474547	Hs.53565	Homo saplens PIG-M mRNA for mannosyltran	8.22
	444922	Al921750	Hs.144871	Homo sapiens cDNA FLJ13752 fis, done PL	8.22
	427674	NM_003528	Hs.2178	H2B histone family, member Q	8.20
	432101	Al918950	Hs.11092	EphA3	8.17
45	416288	H51299		gb:yp07c06.s1 Soares breast 3NbHBst Homo	8.15 8.08
45	404915 440106	AA864968	Hs.127699	KIAA1603 protein	8.07
	442861	AA243837	Hs.57787	ESTs	8.06
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (translo	8.06
	443250	AI041530	Hs.132107	ESTs	8.06
50	437267	AW511443	Hs.258110	ESTs	8.04
	452891	N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILI	8.02
	422219	AW978073		regulator of mitotic spindle assembly 1	8.00
	453049	BE537217	Hs.30343	ESTs -	8.00 7.98
55	439731 408554	AI953135 AA836381	Hs.45140 Hs.7323	hypothetical protein FLJ14084 nuclear receptor co-repressor/HDAC3 comp	7.94
<i>JJ</i>	406354 421154	AA284333	Hs.287631	Homo sapiens cDNA FLJ14269 fis, clone PL	7.94
	430107	AA465293	Hs.105069	ESTs	7.94
	433404	T32982	Hs.102720	ESTs	7.93
	450813	AI739625	Hs.203376	ESTs	7.90
60	416239	AL038450	Hs.48948	ESTs	7.85
	448212	Al475858		gb:tc87d07.x1 NCI_CGAP_CLL1 Homo sapiens	7.82
	449532	W74653	Hs.271593	ESTs, Moderately similar to A47582 B-cel	7.82
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	7.80
65	458191	A1420611	Hs.127832	ESTs ESTs, Weakly similar to ALUA_HUMAN !!!!	7.80 7.78
UJ	444858 457498	Al199738 Al732230	Hs.208275 Hs.191737	ESTs REGISTER TO ALUA_HUMAN HIII	7.78 7.78
	457486 407235	D20569	Hs.169407	SAC2 (suppressor of actin mutations 2, y	7.76
	433759	AA680003	Hs.109363	Homo sapiens cDNA: FLJ23603 fis, done L	7.74
	433805	AA706910	Hs.112742	ESTs	7.74

	426485	NM_006207	Hs.170040	platelet-derived growth factor receptor-	7.72
	446028	R44714	Hs.106795	Homo saplens cDNA FLJ13136 fis, clone NT	7.72
	418555	Al417215	Hs.87159	hypothetical protein FLJ12577	7.70
_	447499	AW262580	Hs.147674	protocadherin beta 16	7.70
5	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.68
	416857	AA188775	Hs.292453	ESTS	7.68 7.66
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	7.66
	425480	AB023198	Hs.158135 Hs.95243	KIAA0981 protein transcription elongation factor A (SII)-	7.64
10	420120 424099	AL049610 AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	7.64
10	446307	T50083	Hs.9094	ESTs	7.63
	429220	AW207206	Hs.136319	ESTs	7.59
	420345	AW295230	Hs.25231	ESTs	7.54
	429208	AA447990	Hs.190478	ESTs	7.54
15	447247	AW369351	Hs.287955	Homo sapiens cDNA FLJ13090 fis, clone NT	7.53
	440995	T57773	Hs.10263	ESTs	7.53
	448706	AW291095	Hs.21814	interleukin 20 receptor, alpha	7.52
	410227	AB009284	Hs.61152	exostoses (multiple)-like 2	7.49
	431616	AA508552	Hs.195839	ESTs, Weakly similar to I38022 hypotheti	7.46
20	434217	AW014795	Hs.23349	EST8	7.44
	431467	N71831	Hs.256398	Homo sapiens mRNA; cDNA DKFZp434E0528 (f	7.42
	448519	AW175665	Hs.244334	Homo sapiens prostein mRNA, complete cds	7.42 7.40
	446791	A1632278	Hs.34981	ESTS	7.40
25	419743	AW408762 BE247129	Hs.127478 Hs.145569	Homo sapiens clone 24416 mRNA sequence ESTs	7.36
23	445855 425211	M18667	Hs.1867	progastricsin (pepsinogen C)	7.35
	419131	AA406293	Hs.301622	ESTs	7.34
	400294	N95796	Hs.179809	Homo sapiens prostein mRNA, complete cds	7.33
	441736	AW292779	Hs.169799	ESTs	7.28
30	427701	AA411101	Hs.221750	nuclear autoantigenic sperm protein (his	7.24
	457733	AW974812	Hs.291971	ESTs	7.24
	418432	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi	7.22
	441201	AW118822	Hs.128757	ESTs	7.21
~~	419953	BE267154	Hs.125752	ESTs	7.20
35	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
	425018	BE245277	Hs.154196	E4F transcription factor 1	7.20 7.18
	424560	AA158727	Hs.150555 Hs.192221	protein predicted by clone 23733 ESTs	7.14
	435380 420658	AA679001 AW965215	Hs.130707	ESTs	7.12
40	408291	AB023191	Hs.44131	KIAA0974 protein	7.10
40	409110	AA191493	Hs.48778	niban protein	7.10
	414485	W27026	Hs.182625	VAMP (vesicle-associated membrane protei	7.10
	430039	BE253012	Hs.153400	ESTs, Weakly similar to ALU1_HUMAN ALU S	7.10
	450832	AW970602	Hs.105421	ESTs	7.10
45	417153	X57010	Hs.81343	collagen, type II, alpha 1 (primary oste	7.08
	412446	A1768015	Hs.92127	ESTs	7.07
	412953	Z45794	Hs.238809	ESTs	7.06
	418051	AW192535	Hs.19479	ESTs	7.06
50	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	7.04 7.04
J U	446999	AA151520	Hs.279525 Hs.16478	hypothetical protein MGC4485 Homo sapiens cDNA: FLJ21718 fis, clone C	7.04
	440529 441111	AW207640 AI806867	Hs.126594	ESTs	7.01
	451027	AW519204	Hs.40808	ESTs -	7.00
	408432	AW195262	113.40000	gb:xn67b05.x1 NCI_CGAP_CML1 Homo sapiens	7.00
55	432223	AA333283	Hs.285336	Homo sapiens, clone IMAGE:3460280, mRNA	7.00
	444805	AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas	6.99
	414212	AA136569	Hs.295940	KIAA0187 gene product	6.98
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98
	449685	AW296669	Hs.66095	ESTs	6.97
60	447313	U92981	Hs.18081	Homo sapiens done DT1P1B6 mRNA, CAG rep	6.96
	424590	AW966399	Hs.46821	hypothetical protein FLJ20086	6.94
	449655	AI021987	Hs.59970	ESTS	6.92
	419563	AA526235	Hs.193162	Homo sapiens cDNA FLJ11983 fis, clone HE group XII secreted phospholipase A2	6.90 6.89
65	434163 415809	AW974720 Z32789	Hs.25206 Hs.46601	group XII secreted prospriorpase A2 ESTs	6.86
UJ	425782	U66468	Hs.159525	cell growth regulatory with EF-hand doma	6.85
	417958	AA767382	Hs.193417	EST8	6.84
	427408	AA583206	Hs.2156	RAR-related orphan receptor A	6.79
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytoplasmic 1-l	6.74

	410718	AJ920783	Hs.191435	ESTs	6.74
	432363	AA534489	110.101400	gb:nf76g11.s1 NCI_CGAP_Co3 Homo sapiens	6.74
			No 010000	ESTs	6.73
	436521	AW203986	Hs.213003	uncharacterized bone marrow protein BM04	6.73
5	435604	AA625279	Hs.26892		6.72
J	419083	AI479560	Hs.98613	Homo sapiens cDNA FLJ12292 fis, clone MA	
	418245	AA088767	Hs.83883	transmembrane, prostate androgen induced	6.70
	420714	BE172704	Hs.222746	KIAA1610 protein	6.70
	412707	AW206373	Hs.16443	Homo sapiens cDNA: FLJ21721 fis, clone C	6.67
	421896	N62293	Hs.45107	ESTs	6.66
10	411078	A1222020	Hs.182364	CocoaCrisp	6.66
	452465	AA610211	Hs.34244	ESTs	6.66
	422763	AA033699	Hs.83938	ESTs, Moderately similar to MAS2_HUMAN M	6.66
	444618	AV653785	Hs.300171	ELL-RELATED RNA POLYMERASE II, ELONGATIO	6.64
	450164	Al239923	Hs.30098	ESTs	6.63
15	431060	AF039307	Hs.249171	homeo box A11	6.62
	408031	AA081395	Hs.42173	Homo sapiens cDNA FLJ10366 fis, clone NT	6.62
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	6.62
	444670	H58373	Hs.37494	hypothetical protein MGC5370	6.62
	444489	AJ151010	Hs.157774	ESTs	6.60
20		AW779829	Hs.263436	gb±nn88a05.x1 NCI_CGAP_Kid11 Homo saplen	6.60
20	445685			ESTs, Weakly similar to TSGA RAT TESTIS	6.59
	435677	AA694142	Hs.293726		6.59
	452221	C21322	Hs.11577	hypothetical protein FLJ22242	
	431510	AA580082	Hs.112264	ESTs	6.56
~~	415874	AF091622	Hs.78893	KIAA0244 protein	6.54
25	418405	AI868282	Hs.11898	ESTs, Highly similar to KIAA1370 protein	6.54
	452768	AW069459	Hs.61539	ESTs	8.54
	401451				6.52
	416289	W26333		ESTs	6.52
	431778	AL080276	Hs.268562	regulator of G-protein signalling 17	6.51
30	409089	NM_014781	Hs.50421	KIAA0203 gene product	6.50
	442833	AA328153	Hs.88201	ESTs, Weakly similar to A Chain A, Cryst	6.50
	431992	NM_002742	Hs.2891	protein kinase C, mu	6.49
	418833	AW974899	Hs.292776	ESTs	6.48
	429163	AA884766		gb:am20a10.s1 Soares_NFL_T_GBC_S1 Homo s	6.46
35	430403	AF039390	Hs.241382	tumor necrosis factor (ligand) superfami	6.46
-	443058	AW451642	Hs.16732	ESTs	6.46
	418564	AA631143	Hs.179809	Homo sapiens prostein mRNA, complete cds	6.44
	432674	AA641092	Hs.257339	ESTs, Weakly similar to I38022 hypotheti	6.44
	423600	AI633559	Hs.29076	ESTs	6.44
40	404253	VIOCOCCO	11020070	2013	6.42
70	433610	AA806822	Hs.112547	ESTs	6.42
		AF026692	Hs.105700	secreted frizzled-related protein 4	6.41
	421552			ESTs, Weakly similar to Z223_HUMAN ZINC	6.40
	407118	AA156790	Hs.262036		6.40
15	408608	N79738	Hs.136102	KIAA0853 protein	6.40
45	421452	Al925946	Hs.104530	fetal hypothetical protein	
	433285	AW975944	Hs.237396	ESTs	6.40
	434926	BE543269	Hs.50252	mitochondrial ribosomal protein L32 ,	6.40
	446189	H85224	Hs.214013	ESTs	6.40
50	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	6.38
50	416467	H57585	Hs.37467	ESTs	6.36
	453403	BE466639	Hs.61779	Homo sapiens cDNA FLJ13591 fis, clone PL	6.34
	429769	NM_004917	Hs.218366	kaliikrein 4 (prostase, enamel matrix, p	6.34
	423642	AW452650	Hs.157148	hypothetical protein MGC13204	6.32
	425843	BE313280	Hs.159627	death associated protein 3	6.32
55	439221	AA737106	Hs.32250	ESTs, Moderately similar to 178885 serin	6.32
	428194	AA765603	Hs.180877	H3 histone, family 3B (H3.3B)	6.30
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	6.30
	439366	AF100143	Hs.6540	fibroblast growth factor 13	6.30
	452789	AW081626	Hs.242561	ESTs	6.30
60	416836	D54745	Hs.80247	cholecystokinin	6.30
	436962	AW377314	Hs.5364	DKFZP564I052 protein	6.29
	433383	AF034837	Hs.192731	double-stranded RNA specific adenosine d	6.29
	418636	AW749855		gb:QV4-BT0534-281299-053-c05 BT0534 Homo	6.26
	450728	AW162923	Hs.25363	presenilin 2 (Alzheimer disease 4)	6.25
65	440293	AI004193	Hs.22123	ESTs	6.24
55		AA952989	Hs.63908	hypothetical protein MGC14726	6.24
	453745 426505	AW971980	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	6.24
	426595	AVV971960 Al147652	Hs.216381	Homo saplans clone HH409 unknown mRNA	6.24
	444412 413384		Hs.75334	exostoses (multiple) 2	6.22
	413384	NM_000401	1757 3334	awamaa (ummha) c	عمر

	426320	W47595	Hs.169300	transforming growth factor, beta 2	6.22
	423349	AF010258	Hs.127428	homeo box A9	6.20
	429165	AW009886	Hs.118258	prostate cancer associated protein 1	6.18
5	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18 6.16
J	409564 438796	AA045857 W67821	Hs.54943 Hs.109590	fracture callus 1 (rat) homolog genethonin 1	6.16
	425451	AF242769	Hs.157461	mesenchymal stem cell protein DSC54	6.14
	451663	AI872360	Hs.209293	ESTs	6.14
	413623	AA825721	Hs.246973	ESTs	6.12
10	452232	AW020603	Hs.271698	radial spoke protein 3	6.12
	453390	AA862496	Hs.28482	ESTs	6.12
	435542	AA687376	Hs.269533	ESTs	6.12
	420424	AB033036	Hs.97594	KIAA1210 protein hypothetical protein MGC13170	6.11 6.10
15	407103 409734	AA424881 BE161664	Hs.256301 Hs.56155	hypothetical protein	6.10
13	432686	8E223007	Hs.152460	Homo sapiens cDNA FLJ12909 fis, clone NT	6.10
	438361	AA805666	Hs.146217	Homo sapiens cDNA: FL123077 fis, clone L	6.10
	411479	AW848047		gb:lL3-CT0214-291299-052-A12 CT0214 Homo	6.10
	438849	W28948	Hs.10762	ESTs	6.08
20	452726	AF188527	Hs.61661	ESTs, Weakly similar to AF174605 1 F-box	6.08
	445895	D29954	Hs.13421	KIAA0056 protein	6.08
	440774	A!420611	Hs.127832	ESTS KIAA0874 protein	6.07 6.06
	422583 427500	AA410506 AW970017	Hs.118578 Hs.293948	ESTs, Weakly similar to S65657 alpha-1C-	6.04
25	443646	AI085198	Hs.298699	ESTs	6.04
	410566	AA373210	Hs.43047	Homo sapiens cDNA FLJ13585 fis, clone PL	6.02
	417845	AL117461	Hs.82719	Homo sapiens mRNA; cDNA DKFZp586F1822 (f	6.02
	430273	Al311127	Hs.125522	ESTs	6.02
20	434792	AA649253	Hs.132458	EST8	6.01
30	442490	AW965078	Hs.30212 Hs.166676	thyroid receptor interacting protein 15 ESTs	6.01 6.00
	420026 437782	A1831190 A1370876	Hs.123163	exportin 1 (CRM1, yeast, homolog)	6.00
	447359	NM_012093	Hs.18268	adenviate kinase 5	6.00
	447713	AJ420733	Hs.207083	ESTs	6.00
35	451073	Al758905	Hs.206063	ESTs	6.00
•	451640	AA195601	Hs.26771	Human DNA sequence from done 747H23 on	6.00
	410889	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97
	441222	Al277237	Hs.44208 Hs.161318	hypothetical protein FLJ23153 ESTs	5.96 5.96
40	447732 437756	AI758398 AA767537	Hs.197096	ESTs	5.95
40	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-0-sulfot	5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.94
	414085	AA114016	Hs.75746	aldehyde dehydrogenase 1 family, member	5.93
45	408875	NM_015434	Hs.48604	DKFZP434B168 protein	5,92
45	439451	AF086270	Hs.278554	heterochromatin-like protein 1	5.92 5.91
	423853 453060	AB011537 AW294092	Hs.133466 Hs.21594	slit (Drosophila) homolog 1 hypothetical protein MGC15754	5.91
	420407	AA814732	Hs.145010	lipopolysaccaride-specific response 5-li	5.91
	450480	X82125	Hs.25040	zinc finger protein 239	5.90
50	408446	AW450669	Hs.45068	hypothetical protein DKFZp434I143	5.88
	421039	NM_003478	Hs.101299	cullin 5	5.88
	451684	AF216751	Hs.26813	CDA14	5.88
	436063	AK000028	Hs.250867	ribosomal protein S24 transitional epithelia response protein	5.86 5.86
55	410507 420179	AA355288 N74530	Hs.271408 Hs.21168	ESTs	5.84
<i>JJ</i>	453878	AW964440	Hs.19025	DC32	5.84
	452270	AW975014	Hs.26	ferrochelatase (protoporphyria)	5.83
	435867	AA954229	Hs.114052	ESTs	5.82
۷۵	417683	AW566008	Hs.239154	ankyrin repeat, family A (RFXANK-like),	5.82
60	432005	AA524190	Hs.120777 Hs.288036	ESTs, Weakly similar to ELL2_HUMAN RNA P tRNA isopentenylpyrophosphate transferas	5.81 5.80
	406815 437980	AA833930 R50393	Hs.278436	KIAA1474 protein	5.80
	437960 425856	AA364908	Hs.98927	hypothetical protein FLJ13993	5.79
	400301	X03635	Hs.1657	estrogen receptor 1	5.78
65	446261	AA313893	Hs.13399	hypothetical protein FLJ12615 similar to	5.78
	410141	R07775	Hs.287657	Homo sapiens cDNA: FLJ21291 fis, clone C	5.77
	427258	AA400091	Hs.39421	ESTS	5.76 5.76
	419108	AA389724 AW956698	Hs.191264 Hs.14456	ESTs, Weakly similar to ALU7_HUMAN ALU S neural precursor cell expressed, develop	5.76 5.76
	442029	VA1230020	175.14430	tentra hiporitori cesi evhiposoari mazaich	J./U

	407783	AW996872	Hs.172028	a disintegrin and metalloproteinase doma	5.75
	434408	AI031771	Hs.132586	ESTs	5.74
	415077	L41607	Hs.934	glucosaminyi (N-acetyl) transferase 2, I	5.74
5	432435	BE218886	Hs.282070	ESTs	5.74 5.73
5	433313 431740	W20128 N75450	Hs.296039 Hs.183412	ESTs ESTs, Moderately similar to AF116721 67	5.73
	412991	AW949013	113.100-12	gb:QV4-FT0005-110500-201-e12 FT0005 Homo	5.72
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	5.72
10	446867	AB007891	Hs.16349	KIAA0431 protein	5.72
	437866	AA156781	Hs.83992	metallothionein 1E (functional)	5.72
	410232	AW372451	Hs.61184	CGI-79 protein	5.70
	414452	AA454038	Hs.29032	ESTS	5.70
15	422762 428730	AL031320 AA625947	Hs.119976 Hs.25750	Human DNA sequence from clone RP1-20N2 o ESTs	5.70 5.70
13	431571	AW500486	Hs.180610	splicing factor proline/glutamine rich (5.70
	433393	AF038564	Hs.98074	itchy (mouse homolog) E3 ubiquitin prote	5.70
	450616	AL133067	Hs.25214	hypothetical protein	5.70
	443774	AL117428	Hs.9740	DKFZP434A236 protein	5.69
20	446100	AW967109	Hs.13804	hypothetical protein dJ462O23.2	5.69
	419168	Al336132	Hs.33718	Homo sapians cDNA FLJ12841 fis, clone NT	5.68
	416653	AA768553	Hs.77496	metallothionein 1E (functional)	5.67 5.66
	452679 450244	Z42387 AA007534	Hs.4299 Hs.125062	transmembrane, prostate androgen induced ESTs	5.66
25	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8	5.65
	450325	Al935962	Hs.26289	ESTs	5.65
	439671	AW162840	Hs.6641	kinesin family member 5C	5.64
	452387	Al680772	Hs.4316	trinucleotide repeat containing 12	5.64
20	413992	W26276	Hs.136075	RNA, U2 small nuclear	5.63
30	444151	AW972917	Hs.128749	alpha-methylacyl-CoA racemase	5.63 5.62
	417791 410196	AW965339 Al936442	Hs.111471 Hs.59838	ESTs hypothetical protein FLJ10808	5.60
	415123	D60925	11323000	ESTs	5.60
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	5.60
35	434415	BE177494		gb:RC6-HT0596-270300-011-C05 HT0596 Homo	5.60
	440738	A1004650	Hs.225674	WD repeat domain 9	5.60
	443830	Al142095	Hs.143273	ESTs	5.60
	449603	A1655662 AA742181	Hs.197698	ESTs KIAA0257 protein	5.60 5.59
40	414342 422634	NM_016010	Hs.75912 Hs.118821	CGI-62 protein	5.56
-10	435047	AA454985	Hs.54973	cadherin-like protein VR20	5.55
	400268				5.55
	452055	Al377431	Hs.293772	hypothetical protein MGC10858	5.54
4.5	437073	A1885608	Hs.94122	ESTs	5.54
45	434072	H70854	Hs.283059	Homo sapiens PRO1082 mRNA, complete cds	5.53
	418339	AA639902	Hs.104215	ESTs, Moderately similar to SPCN_HUMAN S	5.52 5.52
	434551 439569	BE387162 AW602166	Hs.280858 Hs.222399	ESTs, Highly similar to A35661 DNA excis CEGP1 protein	5.51
	441102	AA973905	Hs.16003	intermediate filament protein syncollin	5.50
50	448310	Al480316		gb:tm26h09.x1 Soares_NFL_T_GBC_S1 Homo s	5.50
	413173	BE076928	Hs.70980	ESTs	5.48
	436246	AW450963	Hs.119991	ESTs	5.48
	449300	AI656959	Hs.222165	ESTS -	5.48
55	452823 451403	AB012124 AA885569	Hs.30696 Hs.15727	transcription factor-like 5 (basic helix Homo sapiens cDNA FLJ14511 fis, clone NT	5.48 5.46
55	417061	Al675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	5.44
	429126	AW172356	Hs.99083	ESTs	5.44
	431316	AA502663	Hs.145037	ESTs	5.44
60	439192	AW970536	Hs.105413	EST8	5.44
60	431938	AA938471	Hs.115242	specific granule protein (28 kDa); cyste	5.44
	451552	AA047233	Hs.33810	ESTs	5.43 5.42
	416991 427638	N36389 AA406411	Hs.295091 Hs.208341	KIAA0226 gene product ESTs, Weakly similar to KIAA0989 protein	5.42
	427718	AJ798680	Hs.25933	EST8	5.42
65	438710	AAB33907	Hs.178724	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.42
	406076	AL390179	Hs.137011	Homo sapiens mRNA; cDNA DKFZp547P134 (fr	5.40
	431263	AW129203	Hs.13743	ESTs	5.40
	421264	AL039123	Hs.103042	microtubule-associated protein 1B	5.38
	421685	AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37

	408460	AA054726	Hs.285574	ESTs	5.36
	409091	AW970386	Hs.269423	ESTs	5.36
	421987	AV1370300 Al133161	Hs.286131	CGI-101 protein	5.36
	428002	AA418703	F15.200101	gb:zv98c03.s1 Soares_NhHMPu_S1 Homo sapi	5.36
5	441217	Al922183	Hs.213246	ESTs .	5.36
9	426006	R49031	Hs.22627	ESTs	5.35
	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	5.34
	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	5.32
	451982	F13036	Hs.27373	Homo saplens mRNA; cDNA DKFZp56401763 (f	5.32
10	421129	BE439899	Hs.89271	ESTs	5.31
10	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
	410150	AW382942	Hs.6774	ESTs	5.30
	423952	AW877787	Hs.136102	KIAA0853 protein	5.30
	452822	X85689	Hs.288617	hypothetical protein FLJ22621	5.30
15	447752	M73700	Hs.347	lactotransferrin	5.29
	441766	R53790	Hs.23294	hypothetical protein FLJ14393	5.29
	431359	AW993522	Hs.292934	ESTs	5.27
	427212	AW293849	Hs.58279	ESTs, Weakly similar to ALU7_HUMAN ALU S	5.27
	449916	T60525	Hs.299221	pyruvate dehydrogenase kinase, isoenzyme	5.27
20	454014	AW016670	Hs.233275	ESTs	5.27
	419714	AA758751	Hs.98216	ESTs	5.26
	428845	AL157579	Hs.153610	KIAA0751 gene product	5.26
	417333	AL157545	Hs.42179	bromodomain and PHD finger containing, 3	5.24
	419986	Al345455	Hs.78915	GA-binding protein transcription factor,	5.24
25	407182	AA312551	Hs.230157	ESTs	5.22
	420111	AA255652		gb:zs21h11.r1 NCI_CGAP_GCB1 Homo sapiens	5.22
	428058	AI821625	Hs.191602	ESTs	5.22
	459551	A1472808		gb:tj70e07.x1 Soares_NSF_F8_9W_OT_PA_P_S	5.22
••	432524	Al458020	Hs.293287	ESTs	5.22
30	436207	AA334774	Hs.12845	hypothetical protein MGC13159	5.22
	410870	U81599	Hs.66731	homeo box B13	5.22
	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
	409757	NM_001898	Hs.123114	cystatin SN	5.21
25	441124	T97717	Hs.119563	ESTs	5.21
35	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
	436401	A1087958	Hs.29088	ESTS	5.20 5.20
	437113	AA744693	11-004000	gb:ny26c10.s1 NCI_CGAP_GCB1 Homo sapiens	5.20
	450947	AI745400	Hs.204662	ESTs ESTs	5.20
40	453279	AW893940	Hs.59698	ESTs, Weakly similar to ALU4_HUMAN ALU S	5.19
40	445467	Al239832	Hs.15617	atrophin-1 interacting protein 1; activi	5.19
	448944 412198	AB014605 AA937111	Hs.22599 Hs.69165	ESTs	5.18
	422646	H87863	Hs.151380	ESTs, Weakly similar to T16584 hypotheti	5.18
	438986	AF085888	Hs.269307	ESTs	5.18
45	453954	AW118336	Hs.75251	DEAD/H (Asp-Glu-Ala-Asp/His) box binding	5.18
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
	434029	AA621763	Hs.170434	Homo sapiens cDNA FLJ14242 fis, clone OV	5.16
	459294	AW977286	Hs.169531	RBP1-like protein	5.16
	429441	AJ224172	Hs.204096	lipophilin B (uteroglobin family member)	5.16
50	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	427359	AW020782	Hs.79881	Homo sapiens cDNA: FLJ23006 fis, clone L	5.15
	419872	A1422951	Hs.146162	ESTs	5.15
	429422	AK001494	Hs.202596	Homo sapiens cDNA FLJ10632 fis, cloné NT ^	5.14
	448902	Z45998	Hs.22543	Homo sapiens mRNA; cDNA DKFZp76111912 (f	5.14
55	459055	N23235	Hs.30567	ESTs, Weakly similar to B34087 hypotheti	5.14
	431318	AA502700	Hs.293147	ESTs, Moderately similar to A46010 X-lin	5.14
	452953	Al932884	Hs.271741	ESTs, Weakly similar to A46010 X-linked	5.13
	428372	AK000684	Hs.183887	hypothetical protein FLJ22104	5.12
60	434401	AI864131	Hs.71119	Putative prostate cancer tumor suppresso	5.12
60	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	5.11
	410268	AA316181	Hs.61635	six transmembrane epithelial antigen of	5.10
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate pol	5.10
65	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09 5.08
U.J	407945	X69208	Hs.606 Hs.154850	ATPase, Cu++ transporting, alpha polypep collagen, type IX, alpha 1	5.08
	425154 412863	NM_001851 AA121673	Hs.59757	zinc finger protein 281	5.06
	420807	AA121673 AA280627	Hs.57846	ESTs	5.06
	430568	AA769221	Hs.270847	delta-tubulin	5.06
	100000		. 10.2		2.00

	433687	AA743991		gb:ny57g01.s1 NCL_CGAP_Pr18 Homo sapiens	5.06
	438375	AW015940	Hs.232234	ESTs	5.06
	418092	R45154	Hs.106604	ESTs	5.06
-	418576	AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
5	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	5.04
	414271	AK000275	Hs.75871	protein kinase C binding protein 1	5.04
	432729	AK000292	Hs.278732	hypothetical protein FLI20285	5.04
	433433	Al692623	Hs.121513	Homo sapiens clone Z'3-1 placenta expres	5.04
10	439662	H97552	Hs.269060	ESTs	5.04
10	439743	AL389956	Hs.283858	Homo sapiens mRNA full length insert cDN	5.04
	417511	AL049176	Hs.82223	chordin-like	5.02
	437814	Al088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	5.02 5.02
	426342	AF093419	Hs.169378	multiple PDZ domain protein	5.02
15	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
15	429975	Al167145	Hs.165538	ESTs	5.02
	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prot	5.02
	438571	AW020775	Hs.56022	ESTS	5.02
	450223	AA418204	Hs.241493 Hs.267705	natural killer-tumor recognition sequenc tubulin-specific chaperone e	5.01
20	408267	AW380525	HS.207705	gb:HSC28F061 normalized infant brain cDN	5.00
20	417730	Z44761	Hs.1904	protein kinase C, iota	5.00
	425465	L18964	Hs.247118	phosphatidylinositol glycan, class B	5.00
	430599	NM_004855 AW978813	Hs.250867	metallothionein 1E (functional)	5.00
	450961		Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
25	451386	AB029006	Hs.102406	ESTs	4.99
23	420380	AA640891 R77952	Hs.239625	ESTs, Weakly similar to alternatively sp	4.99
	424947 442653	BE269247	Hs.170226	gb:601185486F1 NIH_MGC_8 Homo sapiens cD	4.98
		AW972565	Hs.32399	ESTs. Weakly similar to S51797 vasodilat	4.97
	457211			glucosaminyi (N-acetyl) transferase 1, c	4.97
30	425851	NM_001490 AA490770	Hs.159642 Hs.182382	ESTs	4.96
50	446279 433377	Al752713	Hs.43845	ESTs	4.96
	450218	R02018	Hs.168640	ankylosis, progressive (mouse) homolog	4.96
	412715	NM_000947	Hs.74519	primase, polypeptide 2A (58kD)	4.94
	448164	R61680	Hs.26904	ESTs, Moderately similar to Z195_HUMAN Z	4.94
35	420121	AW968271	Hs.191534	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.94
55	421689	N87820	Hs.106826	KIAA1696 protein	4.93
	445808	AV655234	Hs.298083	ESTs, Moderately similar to PC4259 ferri	4.92
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.92
	418049	AA211467	Hs.190488	Homo sapiens, Similar to nuclear localiz	4.92
40	436039	AW023323	Hs.121070	ESTs	4.92
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	420324	AF163474	Hs.96744	prostate androgen-regulated transcript 1	4.91
	403047				4.91
	436899	AA764852	Hs.291567	ESTs	4.90
45	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	4.90
	427617	D42063	Hs.179825	RAN binding protein 2	4.88
	428804	AK000713	Hs.193736	hypothetical protein FLJ20706	4.88
	433050	Al093930	Hs.163440	Homo sapiens cDNA: FLJ21000 fis, clone C	4.88
	418575	AA225313	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	4.86
50	432615	AA557191	Hs.55028	ESTs, Weakly similar to 154374 gene NF2	4.86
	412652	AI801777	Hs.6774	ESTs	4.86
	432473	Al202703	Hs.152414	ESTs	4.86
	449071	NM_005872	Hs.22960	breast carcinoma amplified sequence 2	4.86
	450654	AJ245587	Hs.25275	Kruppel-type zinc finger protein	4.85
55	418866	T65754	Hs.100489	gb:yc11c07.s1 Stratagene lung (937210) H	4.85
	407596	R86913		gb:yq30f05.r1 Soares fetal liver spleen	4.84
	456516	BE172704	Hs.222746	KIAA1610 protein	4.84
	426501	AW043782	Hs.293616	ESTs	4.84
	448730	AB032983	Hs.21894	KIAA1157 protein	4.84
60	458339	AW976853	Hs.172843	ESTs	4.83
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	420159	Al572490	Hs.99785	Homo sapiens cDNA: FLJ21245 fis, clone C	4,82
	424103	NM_001918	Hs.139410	dihydrolipoamide branched chain transacy	4.82
~	449535	W15267	Hs.23672	low density lipoprotein receptor-related	4.82
65	422048	NM_012445	Hs.288126	spondin 2, extracellular matrix protein	4.82
	416737	AF154335	Hs.79691	LIM domain protein	4.82
	419972	AL041465	Hs.294038	golgin-67	4.81 4.81
	420235	AA256756	Hs.31178	ESTs prostate cancer associated protein 5	4.80
	423412	AF109300	Hs.147924	hioarate cauces gasociared biorem a	. 4.00

	429598	AA811257	Hs.269710	ESTs	4.80
	457114	AI821625	Hs.191602	ESTs	4.80
	421828	AW891965	Hs.289109	histone deacetylase 3	4.79
	424602	AK002055	Hs.301129	hypothetical protein FLJ11193	4.78
5	428364	AA426565	Hs.160541	ESTs, Moderately similar to ALU1_HUMAN A	4.78
	452335	AW188944	Hs.61272	ESTs	4.78
	410765	Al694972	Hs.66180	nucleosome assembly protein 1-like 2	4.77
	421040	AA715026	Hs.135280	ESTs	4.76
10	421518	AI056392	Hs.208819	ESTs	4.76
10	452560	BE077084		ESTS	4.76
	409752 439703	AW963990 AF086538	Hs.196245	gb:EST376063 MAGE resequences, MAGH Homo ESTs	4.75 4.75
	418836	AI655499	Hs.181712	ESTS ESTS	4.74
	450642	R39773	Hs.7130	copine IV	4.74
15	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	411440	AW749402		gb:QV4-BT0383-281299-061-c06 BT0383 Homo	4.74
	450649	NM_001429	Hs.297722	E1A binding protein p300	4.74
	408738	NM_014785	Hs.47313	KIAA0258 gene product	4.73
20	435020	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8	4.72
20	411624	BE145964		KIAA0594 protein	4.72
	439360	AA448488	Hs.55346	ribosomal protein L44	4.72
	440491	R35252	Hs.24944	ESTs, Weakly similar to 2109260A B cell	4.72 4.72
	442611 443555	BE077155 N71710	Hs.177537 Hs.21398	hypothetical protein DKFZp761B1514 ESTs, Moderately similar to A Chain A, H	4.72
25	453800	BE300741	Hs.288416	hypothetical protein FLJ13340	4.72
20	457528	AW973791	Hs.292784	ESTs	4.72
	416795	Al497778	Hs.168053	HBV pX associated protein-8	4.71
	407302	R74206	Hs.268755	ESTs, Weakly similar to 178885 serine/th	4.71
	404721			•	4.70
30	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
	431924	AK000850	Hs.272203	Homo sapiens cDNA FLI20843 fis, clone AD	4.70
	435256	AF193766	Hs.13872	cytokine-like protein C17	4.70
	438295	Al394151	Hs.37932	ESTs	4.70 4.70
35	442655 415788	AW027457 AW628686	Hs.30323 Hs.78851	ESTs, Weakly similar to B34087 hypotheti	4.70
33	442760	BE075297	Hs.10067	KIAA0217 protein ESTs, Weakly similar to A43932 much 2 p	4.69
	432432	AA541323	Hs.115831	ESTs	4.68
	454398	AA463437	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	4.68
	452741	BE392914	Hs.30503	Homo sapiens cDNA FLJ11344 fis, done PL	4.67
40	424853	BE549737	Hs.132967	Human EST clone 122867 mariner transposo	4.67
	419706	C04649	Hs.77899	tropomyosin 1 (alpha)	4.66
	412088	Al689496	Hs.108932	ESTs	4.65
	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
45	429281	AA830856	Hs.29808	Homo sapiens cDNA: FLJ21122 fis, clone C	4.64
40	448207 408374	A1475490 AW025430	Hs.170577 Hs.155591	ESTs forkhead box F1	4.64 4.64
	447162	BE328091	Hs.157396	ESTs, Weakly similar to A48010 X-linked	4.64
	451900	AB023199	Hs.27207	KIAA0982 protein	4.63
	421437	AW821252	Hs.104336	hypothetical protein	4.63
50	418624	AI734080	Hs.104211	ESTs	4.63
	426172	AA371307	Hs.125056	ESTs	4.62
	439831	AW136488	Hs.25545	ESTs	4.61
	452994	AW962597	Hs.31305	KIAA1547 protein -	4.61
55	457726	AI217477	Hs.194591	ESTs	4.60
JJ	434629	AA789081	Hs.4029	glioma-amplified sequence-41	4.60
	403764 410659	AI080175	Hs.68826	ESTs	4.58 4.58
	432383	AK000144	Hs.274449	Homo saplens cDNA FLI20137 fis, clone CO	4.58
	451246	AW189232	Hs.39140	cutaneous T-cell lymphoma tumor antigen	4.58
60	433234	AB040928	Hs.65366	KIAA1495 protein	4.57
	424983	A1742434	Hs.169911	ESTs	4.56
	437812	Al582291	Hs.16846	ESTs, Weakly similar to O4HUD1 debrisoqu	4.56
	438447	AI082883	Hs.167593	hypothetical protein FLJ13409; KIAA1711	4.55
65	434715	BE005346	Hs.116410	ESTs	4.55
65	447673	Al823987	Hs.182285	ESTs	4.54
	408897	N50204 AW023424	Hs.283709 Hs.156520	lipopolysaccharide specific response-7 p ESTs	4.54
	436645 421247	BE391727	Hs.102910	general transcription factor IIH, polype	4.54 4.53
	450377	AB033091	Hs.24936	KIAA1265 protein	4.53
				F	

	433644	AW342028	Hs.256112	gb:hb75d03.x1 NCI_CGAP_Ut2 Homo sapiens	4.53
	408321	AW405882	Hs.44205	cortistatin	4.53
	439225	AA192669	Hs.45032	ESTs	4.52
	440348	AW015802	Hs.47023	ESTs	4.52
5	446351	AW444551	Hs.258532	x 001 protein	4.52
•	451212	AW902672	Hs.287334	ESTs	4.52
				guanine nucleotide binding protein 4	4.52
	430294	AI538226	Hs.135184	<u> </u>	
	435005	U80743	Hs.4316	trinucleotide repeat containing 12	4.52
	448072	A1459306	Hs.24908	ESTs .	4.50
10	403721				4.50
	451018	AW965599	Hs.247324	mitochondrial ribosomal protein S14	4.50
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	4.49
	417412	X16896	Hs.82112	interleukin 1 receptor, type I	4.48
					4.48
15	439735	A1635386	Hs.142846	hypothetical protein	4.48
15	435663	AI023707	Hs.134273	ESTs	
	424036	AA770688	Hs.81946	H2A histone family, member L	4.48
	426386	AA748850	Hs.174877	bladder cancer overexpressed protein	4.48
	408622	AA056060	Hs.202577	Homo sapiens cDNA FLJ12166 fis, clone MA	4.47
	444269	AI590346	Hs.146220	ESTs	4,47
20	430187	A1799909	Hs.158989	ESTs	4.46
	427761	AA412205	Hs.140996	ESTs	4.46
				— · · ·	4.46
	430261	AA305127	Hs.237225	hypothetical protein HT023	
	444169	AV648170	Hs.58756	ESTs	4.44
~=	430598	AK001764	Hs.247112	hypothetical protein FLJ10902	4.44
25	412903	BE007967	Hs.155795	ESTs	4.44
	417048	A1088775	Hs.55498	geranylgeranyl diphosphate synthase 1	4.44
	442710	Al015631	Hs.23210	ESTs	4.44
	457413	AA743462	Hs.165337	ESTs	4.44
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.42
30				hypothetical protein FLJ12496	4.42
30	443268	AI800271	Hs.129445		
	438209	AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.42
	431724	AA514535	Hs.283704	ESTs	4.41
	412280	AW205116	Hs.272814	hypothetical protein DKFZp434E1723	4.40
	440801	AA906366	Hs.190535	ESTs	4.40
35	452959	AI933416	Hs.189674	ESTs	4.40
-	453861	AI026838	Hs.30120	ESTs, Weakly similar to NUCL_HUMAN NUCLE	4.40
	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	4.40
				general transcription factor IIIC, polyp	4.38
	447270	AC002551	Hs.331		
40	433641	AF080229		gb:Human endogenous retrovirus K clone 1	4.38
40	447078	AW885727	Hs.301570	ESTs	4.38
	424242	AA337476		hypothetical protein MGC13102	4.37
	408170	AW204516	Hs.31835	ESTs	4.36
	448757	Al366784	Hs.48820	TATA box binding protein (TBP)-associate	4.36
	420021	AA252848	Hs.293557	ESTs	4.36
45	449694	A1659790	Hs.253302	ESTs	4.36
73					4.36
	453867	Al929383	Hs.108196	hypothetical protein DKFZp434N185	
	458712	A1347502	Hs.173066	hypothetical protein FLJ20761	4.38
	417251	AW015242	Hs.99488	ESTs, Weakly similar to YK54_YEAST HYPOT	4.35
	434423	NM_006769	Hs.3844	LIM domain only 4	4.35
50	423427	AL137612	Hs.285848	KIAA1454 protein	4.34
	415715	F30364		ESTs	4.33
	404561				4.32
	422969	AA782536	Hs.122647	N-myristoyitransferase 2 -	4.32
		BE350494	Hs.49753	uveal autoantigen with colled coll domai	4.32
E E	423685			Cora Marka de la la constanta de la contra del contra de la contra del la contra de la contra de la contra de la contra del la c	4.32
55	443977	AL120986	Hs.150627	ESTs, Weakly similar to I38022 hypotheti	
	425071	NM_013989	Hs.154424	deiodinase, lodothyronine, type II	4.32
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
	411379	AI816344	Hs.12554	ESTs, Weakly similar to NPL4_HUMAN NUCLE	4.30
	421476	AW953805	Hs.21887	ESTs	4.30
60	425178	H16097	Hs.161027	ESTs	4.30
55	439262	AA832333	Hs.124399	ESTs	4.30
				hypothetical protein FLJ10879	
	442818	AK001741	Hs.8739		4.30
	421977	W94197	Hs.110165	ribosomal protein L26 homolog	4.29
~~	437114	AA836641	Hs.163085	ESTs	4.28
65	420195	N44348	Hs.300794	Homo sapiens cDNA FLJ11177 fis, clone PL	4.28
	418330	BE409405	Hs.94722	ESTs	4.27
	419750	AL079741	Hs.183114	Homo sapiens cDNA FLJ14236 fis, clone NT	4.26
	437065	AL036450	Hs.103238	ESTs	4.26
	455276	BE176479		gb:RC3-HT0585-160300-022-b09 HT0585 Homo	4.24
	TOOLIV	5507/0		g ave 1110000 110110	

	416292	AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility	4.24
	423740	Y07701	Hs.132243	aminopeptidase puromycin sensitive	4.24
	442023	Al187878	Hs.144549	ESTs	4.24
5	426764	AA732524	Hs.151464	ESTs, Weakly similar to ALUC_HUMAN !!!!	4.23
3	454058 456511	Al273419 AA282330	Hs.135146	hypothetical protein FLJ13984	4.23 4.22
	448330	AL038449	Hs.145668 Hs.207163	ESTs ESTs	4.22
	424701	NM_005923	Hs.151988	mitogen-activated protein kinase kinase	4.21
	432621	Al298501	Hs.12807	ESTs, Weakly similar to T46428 hypotheti	4.20
10	445707	A1248720	Hs.114390	ESTs	4.20
	419910	AA662913	Hs.190173	ESTs, Wealdy similar to A46010 X-linked	4.20
	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40	4.20
	440749	W22335	Hs.7392	hypothetical protein MGC3199	4.20
15	442787 443414	W93048 R54594	Hs.227203 Hs.25209	hypothetical protein MGC2747 ESTs	4.20
13	443556	AA256769	Hs.94949	methylmalonyl-CoA epimerase	4.20 4.20
	444170	AW613879	Hs.102408	ESTs	4.20
	446751	AA766998	Hs.85874	Human DNA sequence from clone RP11-16L21	4.20
	421041	N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	4.19
20	447476	BE293466	Hs.20880	ESTs, Weakly similar to I38022 hypotheti	4.19
	448543	AW897741	Hs.21380	Homo saplens mRNA; cDNA DKFZp586P1124 (f	4.18
	410294	AB014515	Hs.288891	KIAA0615 gene product	4.18
	433607 435552	AA602004 Al668636	Hs.23260 Hs.193480	ESTs ESTs, Moderately similar to ALUS_HUMAN A	4.18 4.18
25	447124	AW976438	Hs.17428	RBP1-like protein	4.18
	453308	AW959731	Hs.32538	ESTs	4.17
	439328	W07411	Hs.118212	ESTs, Moderately similar to ALU3_HUMAN A	4.16
	430473	AW130690	Hs.299842	ESTs	4.16
20	437257	Al283085	Hs.290931	ESTs, Wealdy similar to YFJ7_YEAST HYPOT	4.16
30	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857 446711	AI089292 AF169692	Hs.287621 Hs.12450	hypothetical protein FLJ14069 protocadherin 9	4.15 4.15
	419103	Z40229	Hs.96423	hypothetical protein FLJ23033	4.14
	405403	_ 10220	110.00420	nyposiciaan produit i Engago	4.14
35	407378	AA299264		ESTs, Moderately similar to I38022 hypot	4.14
	408986	AW298602	Hs.197687	ESTs	4.14
	418727	AA227609	Hs.94834	ESTs	4.14
	434400	Al478211	Hs.186896	Homo sapiens cDNA FLJ11417 fis, clone HE	4.14
40	438578 450459	AA811244 Al697193	Hs.164168 Hs.299254	ESTS	4.14
70	429887	AW366286	Hs.145696	Homo sapiens cDNA: FLJ23597 fis, clone L splicing factor (CC1.3)	4.14 4.13
	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	450316	W84446	Hs.17850	hypothetical protein MGC4643	4.12
40	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
45	431592	R69016	Hs.293871	hypothetical protein MGC10895s	4.12
	432463	AA548518	Hs.186733	ESTs	4.12
	433613 434739	AA836126 AA804487	Hs.5669 Hs.144130	ESTs ESTs	4.12 4.12
	438259	AW205969	Hs.131808	ESTs	4.12
50	425810	Al923627	Hs.31903	ESTs	4.10
	432672	AW973775	Hs.130760	myosin phosphatase, target subunit 2	4.10
	433345	Al681545	Hs.152982	hypothetical protein FLJ13117	4.10
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta	4.09
55	453020	AL162039	Hs.31422	Homo sapiens mRNA; cDNA DKFZp434M229 (fr	4.09
JJ	412045 435114	AA099802 AA775483	Hs.4299 Hs.288936	transmembrane, prostate androgen induced mitochondrial ribosomal protein L9	4.09 4.08
	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	4.08
	445459	Al478629	Hs.158465	likely ortholog of mouse putative IKK re	4.08
	438938	H46212	Hs.137221	ESTs	4.07
60	454119	BE549773	Hs.40510	uncoupling protein 4	4.06
	411000	N40449	Hs.201619	ESTs, Wealdy similar to S38383 SEB4B pro	4.06
	418926	AA232658 AB037821	Hs.87070 He 146959	UDP-glucose:glycoprotein glucosyltransfe	4.06
	424432 449673	AA002064	Hs.146858 Hs.18920	protocadherin 10 ESTs	4.06 4.06
65	429299	AI620463	Hs.99197	hypothetical protein MGC13102	4.06
	422174	AL049325	Hs.112493	Homo sapiens mRNA; cDNA DKFZp584D036 (fr	4.05
	455497	AA112573	Hs.285691	Homo sapiens prostein mRNA, complete cds	4.05
	415138	C18356	Hs.78045	tissue factor pathway inhibitor 2	4.04
	402791				4.04

	426792	AL044854	Hs.172329	KIAA0576 protein	4.04
	438660	U95740	Hs.6349	Homo sapiens, clone IMAGE:3010666, mRNA,	4.04
	442768	AL048534	Hs.48458	ESTs, Wealdy similar to ALU8_HUMAN ALU S	4.04
	44756B		Hs.18885		4.04
~		AF155655		CGI-116 protein	
5	428342	Al739168	Hs.131798	Homo sapiens cDNA FLJ13458 fis, done PL	4.04
	453439	Al572438	Hs.32976	guanine nucleotide binding protein 4	4.02
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	4.02
	428249	AA130914	Hs.183291	zinc finger protein 268	4.02
10	432015	AL157504	Hs.159115	Homo sapiens mRNA; cDNA DKFZp586O0724 (f	4.02
10	445495	BE622641	Hs.38489	ESTs, Weakly similar to 138022 hypotheti	4.02
	451746	M86178		ESTs	4.02
	452211	Al985513	Hs.233420	ESTs	4.02
	453046		Hs.219441		4.02
		AA284040		ESTs, Highly similar to CA5B_HUMAN CARBO	
	456038	AA203285	Hs.294141	ESTs, Weakly similar to alternatively sp	4.02
15	452449	AW068658	Hs.20943	ESTs	4.02
	407204	R41933	Hs.140237	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.01
	428046	AW812795	Hs.155381	ESTs, Moderately similar to 138022 hypot	4.01
	438520	AA706319	Hs.98416	ESTs	4.01
	443292	AK000213	Hs.9196	hypothetical protein	4.01
20	432715	AA247152	Hs.200483	ESTs, Wealdy similar to KIAA1074 protein	4.00
	403797				4.00
		A 401C 410	Lis nennne	abmetCoO2 at NOt OCAD Det Home continue	4.00
	418347	AA216419	Hs.269295	gb:nc16e03.s1 NCI_CGAP_Pr1 Homo sapiens	
	419459	AW291128	Hs.278422	DKFZP586G1122 protein	4.00
	420911	U77413	Hs.100293	O-linked N-acetylglucosamine (GlcNAc) tr	4.00
25	425176	AW015644	Hs.301430	TEA domain family member 1 (SV40 transcr	4.00
	447505	AL049266	Hs.18724	Homo saplens mRNA; cDNA DKFZp564F093 (fr	4.00
			113.10/24		
	453773	AL133761		gb:DKFZp761C1413_r1 761 (synonym: harny2)	4.00
	434384	AA631910	Hs.162849	ESTs	3.99
	422471	AA311027	Hs.271894	ESTs, Weakly similar to 138022 hypotheti	3.99
30	427386	AW836261	Hs.177486	ESTs	3.98
	433394	Al907753			
			Hs.93810	cerebral cavernous malformations 1	3.98
	441269	AW015206	Hs.178784	ESTs	3.97
	419629	AB020695	Hs.91662	KIAA0888 protein	3.96
	435008	AF150262	Hs.162898	ESTs	3.96
35	456649	R74441	Hs.117176	poly(A)-binding protein, nuclear 1	3.96
JJ					
	418723	AA504428	Hs.10487	Homo sapiens, clone IMAGE:3954132, mRNA,	3.96
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430456	AA314998	Hs.241503	hypothetical protein	3.95
	422017	NM_003877	Hs.110776	STAT induced STAT inhibitor-2	3.95
40	409960		Hs.153028	hexokinase 1	3.95
TU		BE261944	175.100020		
	455309	AW894017		gb:RC4-NN0027-150400-012-g04 NN0027 Homo	3.85
	450295	AJ766732	Hs.201194	ESTs	3.94
	456660	AA909249	Hs.112282	solute carrier family 30 (zinc transport	3.94
	410908	AA121686	Hs.10592	ESTs	3.94
45					
43	447145	AA761073	Hs.192943	TRAF family member-associated NFKB activ	3.94
	449318	AW236021	Hs.108788	Homo sapiens, Similar to RIKEN cDNA 5730	3.94
	449869	W57990	Hs.60059	Homo sapiens cDNA FLJ11478 fis, clone HE	3.94
	411887	AW182924	Hs.128790	ESTs	3.93
	437531	Al400752	Hs.112259	T cell receptor gamma locus	3.93
50					
JU	452238	F01811	Hs.187931	ESTs	3.93
	410486	AW235094	Hs.193424	zinc finger protein	3.92
	424882	Al379461	Hs.153636	far upstream element (FUSE) binding prot	3.92
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	3.92
55	427043	AA397679	Hs.298460	ESTs	3.92
22	440404	AJ015881	Hs.125616	mitochondrial ribosomal protein S5	3.92
	452762	AW501435	Hs.171409	v-akt murine thymoma viral oncogene homo	3.92
	453058	AW612293	Hs.288684	Homo sapiens cDNA FLJ11750 fis, clone HE	3.92
				KIAA1028 protein	
	423583	AL122055	Hs.129836		3.92
~	408001	AA04645B	Hs.95296	ESTs	3.92
60	419197	N48921	Hs.27441	KIAA1615 protein	3.91
	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	3.91
	401747			• • • • • • • • • • • • • • • • • • •	3.91
		AD000044	He 57050	DETAIDE aminin kinnen 1	
	410011	AB020641	Hs.57856	PFTAIRE protein kinase 1	3.91
~~	432205	AI806583	Hs.125291	ESTs	3.91
65	447857	AA081218	Hs.58608	Homo sapiens cDNA FLJ14206 fis, clone NT	3.91
	446494	AA463276	Hs.288906	WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
	424790	AL119344	Hs.13326	ESTs, Weakly similar to 2004399A chromos	3.90

	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
	431325	AW026751	Hs.5794	ESTs, Weakly similar to 2109260A B cell	3.89
				==:::	3.89
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	
_	401045				3,89
5	433023	AW864793	Hs.34161	thrombospondin 1	3.89
•					3.89
	452160	BE378541	Hs.279815	cysteine sulfinic acid decarboxylase-rel	
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.89
	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	3.88
					3.88
40	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	
10	422660	AW297582	Hs.237062	hypothetical protein FLJ22548 similar to	3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	3.88
					3.88
	453047	AW023798	Hs.286025	ESTs	
	433891	AA613792		gb:no97h03.s1 NCI_CGAP_Pr2 Homo sapiens	3.88
	401785				3.88
15	431088	AA491824	Hs.196881	ESTs	3.88
IJ					
	451952	AL120173	Hs.301663	ESTs	3.87
	422089	AA523172	Hs.103135	ESTs, Weakly similar to SFR4_HUMAN SPLIC	3.87
	452277	AL049013	Hs.28783	KIAA1223 protein	3.87
	438279	AA805166	Hs.165165	HIV-1 rev binding protein 2	3.86
20	458229	A1929602	Hs.177	phosphatidylinositol glycan, class H	3.86
	406414			• • • • •	3.86
		11000400	11- 000000	towards affect and also Et 100000	
	417193	Al922189	Hs.288390	hypothetical protein FLJ22795	3.85
	413174	AA723564	Hs.191343	ESTs	3.85
	433332	Al367347	Hs.127809	Homo sapiens clone TCCCTA00151 mRNA sequ	3.85
25					
25	411089	AA456454	Hs.118637	cell division cycle 2-like 1 (PITSLRE pr	3.85
	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1	3.84
	413530	AA130158	Hs.19977	ESTs, Moderately similar to ALU8_HUMAN A	3.84
		AL037421	Hs.208746	ESTs, Moderately similar to pot. ORF1	3.84
	459592				
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.83
30	451468	AW503398	Hs.210047	ESTs, Moderately similar to I38022 hypot	3.83
••	434804	AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens	3.83
		777040000		go.na-Houst Notocka _Alf Fromo acquais	
	401819				3.82
	424179	F30712		Homo sapiens, done IMAGE:4285740, mRNA	3.82
	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
25					
35	426472	BE246138	Hs.30853	ESTs	3.82
	426625	T78300	Hs.171409	serologically defined colon cancer antig	3.82
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.82
	427756	A1376540	Hs.15574	EST8	3.82
	444701	Al916512	Hs.198394	ESTs	3.82
40	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	3.82
		AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	3.82
	429259				
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (3.82
	433586	T85301		gb:yd78d06.s1 Soares fetal liver spleen	3.81
	438527	Al969251	Hs.143237	RAB7, member RAS oncogene family-like 1	3.81
15					
45	410297	AA148710	Hs.159441	turnican	3.81
	429898	AW117322	Hs.42366	ESTs	3.81
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130,	3.80
				KIAA0007 protein	3.80
	419423	D26488	Hs.90315		
	429643	AA455889	Hs.187548	FYVE-finger-containing Rab5 effector pro	3.80
50	431499	NM 001514	Hs.258561	general transcription factor IIB	3.80
	445060	AAB30811	Hs.88808	ESTs	3.80
	449419	R34910	Hs.119172	ESTs	3.80
	450584	AA040403	Hs.60371	ESTs -	3.80
	426137	AL040683	Hs.167031	DKFZP566D133 protein	3.79
55	420185	AL044056			3.79
22			Hs.158047	ESTs	
	410076	T05387	Hs.7991	ESTs	3.78
	444078	BE246919	Hs.10290	U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
	417318	AW953937	Hs.12891	ESTs	3.78
	414664	AA587775	Hs.66295	multi-PDZ-domain-containing protein	3.78
60	410275	U85658	Hs.61796	transcription factor AP-2 gamma (activat	3.77
-	410503	AW975746	Hs.188662	KIAA1702 protein	3.77
	434170	AA626509	Hs.122329	ESTs	3.77
	421838	AW881089	Hs.108806	Homo sapiens mRNA; cDNA DKFZp566M0947 (f	3.77
	425268	AI807883	Hs.156932	Homo sapiens cDNA FLJ20653 fis, clone KA	3.76
65				protein phosphatase 1, regulatory (Inhib	3.76
UJ	431696	AA259068	Hs.267819		
	411990	AW963624	Hs.31707	ESTs, Weakly similar to YEW4_YEAST HYPOT	3.76
	430291	AV660345	Hs.238126	CGI-49 protein	3.76
	448779	BE042877	Hs.177135	ESTS	3.76
	452682	AA456193	Hs.155606	progesterone membrane binding protein	3.75

	452598	AI831594	Hs.68647	ESTs, Weakly similar to ALU7_HUMAN ALU S	3.75
	43949B	AA908731	Hs.58297	CLLL8 protein	3.75
	440258	Al741633	Hs.125350	ESTs .	3.74
	456848	AL121087	Hs.296406	KIAA0685 gene product	3.74
_					
5	415082	AA160000	Hs.137396	ESTs, Weakly similar to JC5238 galactosy	3.74
	420653	Al224532	Hs.88550	ESTs	3.74
	431637	AI879330	Hs.265960		3.74
				hypothetical protein FLJ10563	
	440411	N30256	Hs.156971	hypothetical protein DKFZp434G1415	3.74
	405917			., ,	3.74
10		4000000	U- 00440	I/IA 40000	
10	419440	AB020689	Hs.90419	KIAA0882 protein	3.74
	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
			_		
	430144	AI732722	Hs.187694	ERGL protein; ERGIC-53-like protein	3.72
	438394	BE379623	Hs.27693	peptidytorolyl isomerase (cyclophilin)-l	3.72
15			Hs.184164		3.72
10	440527	AV657117		ESTs, Moderately similar to S65657 alpha	
	449433	A1672096	Hs.9012	ESTs, Weakly similar to S26650 DNA-bindi	3.72
	456228	BE503227	Hs.134759	ESTs	3.72
					3.72
	448663	BE614599	Hs.106823	hypothetical protein MGC14797	
	415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
20	433544	Al793211	Hs.165372	ESTs, Moderately similar to ALU1_HUMAN A	3.71
	418293	Al224483	Hs.16063	hypothetical protein FLJ21877	3.71
	449897	AW819642	Hs.24135	transmembrane protein vezatin; hypotheti	3.71
	420297	AI628272	Hs.88323	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.70
	423065	R96158	Hs.194606	Homo saplens, done MGC:5406, mRNA, comp	3.70
25	429340	N35938	Hs.199429	Homo sapiens mRNA; cDNA DKFZp434M2216 (f	3.70
	437777	AA768098	Hs.189079	ESTs	3.70
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
	443603	BE502601	Hs.134289	ESTs, Weakly similar to KIAA1063 protein	3.70
	446965	BE242873	Hs.16677	WD repeat domain 15	3.70
20					
30	412350	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept	3.70
	433852	Al378329	Hs.126629	ESTs	3.70
	433142	AL120697	Hs.110640	ESTs	3.69
	419994	AA282881	Hs.190057	ESTs	3.69
	412628	A1972402	Hs.173902	hypothetical protein MGC2648	3:69
35	431416	AA532718	Hs.178604	ESTs	3.69
JJ				· ·	
	439444	A1277652	Hs.54578	ESTs, Weakly similar to I38022 hypotheti	3.68
	414709	AA704703	Hs.77031	Sp2 transcription factor	3.68
					3.68
	447397	BE247676	Hs.18442	E-1 enzyme	
	405718			•	3.68
40	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pombe, h	3.68
					3.68
	442242	AV647908	Hs.90424	Homo sapiens cDNA: FLJ23285 fis, clone H	
	424690	BE538356	Hs.151777	eukaryotic translation initiation factor	3.68
	421734	Al318624	Hs.107444	Homo sapiens cDNA FLJ20562 fis, clone KA	3.67
					3.67
45	427221	L15409	Hs.174007	von Hippel-Lindau syndrome	
45	439864	AI720078	Hs.291997	ESTs, Weakly similar to A47582 B-cell gr	3.66
	402408			•	3.66
		W03242	Hs.44898	Home contone close TOCOTAMIES mDNA negu	3.66
	426327			Homo sapians clone TCCCTA00151 mRNA sequ	
	427119	AW880562	Hs.114574	ESTs	3.66
	427356	AW023482	Hs.97849	ESTs	3.66
50	452946	X95425		EphA5	3.66
JU			Hs.31092		
	419078	M93119	Hs.89584	insulinoma-associated 1	3.66
	416295	AI064824	Hs.193385	ESTs	3.65
		X95097		vasoactive intestinal peptide receptor 2	3.65
	427144		Hs.2126		
	447500	Al381900	Hs.159212	ESTs	3.65
55	453127	A1696671	Hs.294110	ESTs	3.65
	423396	Al382555	Hs.127950	bromodomain-containing 1	3.65
			113.121000		
	419346	AI830417		polybromo 1	3.64
	441540	C01367	Hs.127128	ESTs	3.64
		Al302616	Hs.150819	ESTs	3.64
6 0	446501				
60 -	459527	AW977556	Hs.291735	ESTs, Weakly similar to 178885 serine/th	3.63
	446320	AF126245	Hs.14791	acyl-Coenzyme A dehydrogenase family, me	3.63
					3.63
	435706	W31254	Hs.7045	GL004 protein	
	400110				3.62
	410313	R10305	Hs.185683	ESTs	3.62
65		BE465243		ESTs	
UJ	414713		Hs.12664		3.62
	436279	AW900372	Hs.180793	ESTs, Weakly similar to S65657 alpha-1C-	3.62
	439818	AL360137	Hs.19934	Homo sapiens mRNA full length insert cDN	3.62
		AW663858	Hs.56120		3.62
	451797			small inducible cytokine subfamily E, me	
	451294	AI457338	Hs.29894	ESTs	3.62

	434194	AF119847	Hs.283940	Homo sapiens PRO1550 mRNA, partial cds	3.62
	404939	*********			3.62
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	3.62
5	435846	AA700870	Hs.14304	ESTs	3.61 3.61
J	432833 427276	N51075 AA400269	Hs.47191 Hs.49598	ESTs ESTs	3.61
	433495	AW373784	Hs.71	alpha-2-glycoprotein 1, zinc	3.60
	403137	MISISION	113.71	alpha-2-grycoprotein i, zinc	3.60
	404165				3.60
a 10	409571	AA504249	Hs.187585	ESTs	3.60
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	3.60
	412924	BE018422	Hs.75258	H2A histone family, member Y	3.60
	434228	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	3.60
	436797	AA731491	Hs.178518	hypothetical protein MGC14879	3.60
15	437162	AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	437444	H46008	Hs.31518	ESTs	3.60
	404210				3.59
	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	3.59
00	437587	Al591222	Hs.122421	Human DNA sequence from clone RP1-187J11	3.58
20	423147	AA987927	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	3.57
	452226	AA024898	Hs.296002	ESTs	3.56
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	3.56
	452501	AB037791	Hs.29716	hypothetical protein FLJ10980	3.56
25	428647	AA830050	Hs.124344	ESTs	3.56
25	422443	NM_014707	Hs.116753	histone deacetylase 78	3.55
	447966	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	3.55 3.55
	420892 420230	AW975076 AL034344	Hs.172589 Hs.298020	nuclear phosphoprotein similar to S. cer forkhead box C1	3.55
	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
30	428949	AA442153	Hs.104744	hypothetical protein DKFZp434J0617	3.54
50	444929	Al685841	Hs.161354	ESTs	3.54
	433339	AF019226	Hs.8036	glioblastoma overexpressed	3.54
	424369	R87622	Hs.26714	KIAA1831 protein	3.54
	433002	AF048730	Hs.279906	cyclin T1	3.53
35	435425	H16263	Hs.31416	ESTs	3.53
	415621	Al648602	Hs.131189	ESTs	3.53
	416974	AF010233	Hs.80667	RALBP1 associated Eps domain containing	3.53
	405793			·	3.52
40	409770	AW499536		gb:UI-HF-BR0p-aji-c-12-0-ULr1 NIH_MGC_5	3.52
40	425305	AA363025	Hs.155572	Human clone 23801 mRNA sequence	3.52
	428939	AW236550	Hs.131914	ESTs	3.52
	438388	AAB06349	Hs.44698	ESTs	3.52
	443703	AV646177	Hs.213021	ESTs	3.52
45	457940	AL360159	Hs.30445	Homo saplens TRipartite motif protein ps	3.52
43	402444	AVAILATIONNE	U- OCTORO	Ent.	3.52
	409643	AW450866	Hs.257359	ESTs	3.51 3.51
	418250	U29926 A1821926	Hs.83918 Hs.269507	adenosine monophosphate deaminase (isofo gb:nt78f05.x5 NCI_CGAP_Pr3 Homo saplens	3.51
	432745 414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
50	430061	AB037817	Hs.230188	KIAA1396 protein	3.51
50	421491	H99999	Hs.42736	ESTs	3.50
	422384	AA224077	Hs.42438	Sm protein F	3.50
	434565	T52172		ESTs	3.50
	438379	N23018	Hs.171391	C-terminal binding protein 2	3.50
55	439741	BE379646	Hs.6904	Homo sapiens mRNA full length insert cDN	3.50
	447311	R37010	Hs.33417	Homo sapiens cDNA: FLJ22806 fis, clone K	3.50
	447805	AW627932	Hs.19614	gemin4	3.50
	454265	H03556	Hs.300949	ESTs, Weakly similar to thyroid hormone	3.50
60	418838	AW385224	Hs.35198	ectonucleotide pyrophosphatase/phosphodi	3.50
60	448804	AW512213	Hs.42500	ADP-ribosylation factor-like 5	3.50
	409617	BE003760	Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	3.49
	434075	AW003416	Hs.160604	ESTs	3.49
	444190	AI878918	Hs.10526	cysteine and glycine-rich protein 2	3.49
65	435017 423445	AA336522 NM_014324	Hs.12854 Hs.128749	angiotensin II, type I receptor-associat alpha-methylacyl-CoA racemase	3.48 3.48
UJ	423445 420271	AI954365	Hs.42892	ESTs	3.48
	443684	AI681307	Hs.166674	ESTs	3.48
	444168	AW379879	. 10. 10017	gb:RC1-HT0256-081199-011-f01 HT0256 Homo	3.48
	446074	AA079799	Hs.29263	hypothetical protein FLJ11896	3.48
				••	

	452582	AL137407	Hs.29911	Homo sapiens mRNA; cDNA DKFZp434M232 (fr	3.48
	431542	H63010	Hs.5740	ESTs	3.48
	432697	AW975050	Hs.293892	ESTs, Weakly similar to ALU4_HUMAN ALU S	3.48
	435572	AW975339	Hs.239828	ESTs, Weakly similar to GAG2_HUMAN RETRO	3.47
5	407192	AA609200		gb:af12e02.s1 Soares_testis_NHT Homo sap	3.47
	413435	X51405	Hs.75360	carboxypeptidase E	3.46
	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipas	3.46
	447958	AW796524	Hs.68644	Homo sapiens microsomal signal peptidase	3.46
	425312	AA354940	Hs.145958	ESTs	3.46
10	442007	AA301116	Hs.142838	nucleolar phosphoprotein Nopp34	3.46
	417455	AW007066	Hs.18949	ESTs, Wealty similar to CA2B_HUMAN COLLA	3.45
	426931	NM 003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	3.45
	408739	W01556	Hs.238797	ESTs, Moderately similar to 138022 hypot	3.45
	436024	Al800041	Hs.190555	ESTs	3.45
15	408418	AW963897	Hs.44743	KIAA1435 protein	3.45
	409151	AA306105	Hs.50785	SEC22, vesicle trafficking protein (S. c	3.44
	418626	AW299508	Hs.135230	ESTs	3.44
	420560	AW207748	Hs.59115	ESTs	3.44
	420686	Al950339	Hs.40782	ESTs	3.44
20	428870	AA436831	Hs.36049	ESTs	3.44
	436754	AI061288	Hs.133437	ESTs	3.44
	437960	Al669586	Hs.222194	ESTs	3.44
	452300	AW628045	Hs.28896	Homo sapiens mRNA full length insert cDN	3.44
	421887	AW161450	Hs.109201	CGI-86 protein	3.44
25				·	

TABLE 5A shows the accession numbers for those primekeys lacking a unigeneID in Tables 5, 6, and 7. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkev:		Unique Eos probeset identifier number
	CAT number:		Gene cluster number
10	Accession:		Genbank accession numbers
10	Pkey	CAT number	Accession
	407596	1003489_1	R86913 R86901 H25352 R01370 H43764 AW044451 W21298
	408432	1058667_1	AW195262 R27868 AW811262
15	409752	115301_1	AW963990 AA078196 AW749482 AA077468 BE151571 AA376917
	409770	1154048_1	AW499538 AW499553 AW502138 AW499537 AW502136 AW501743
	411440	124577_1	AW749402 AW749403 Z45743 R80376 AA093358
	411479	1247077_1	AW848047 AW848202 AW848631 AW848142 AW848702 AW848121 AW848632 AW848140 AW848571 AW848009 AW848067 AW848069 AW848905 AW848214
20	411624	1252166_1	BE145964 BE146286 AW854564
	412991	134248_1	AW949013 AA126111
	414269	143133_1	AA298489 AA137165
	415123	1523390_1	D60925 D60828 D80787
	415715	1548818_1	F30364 F36559 T15435
25	416288	1585983_1	H51299 H44619 H46391 R86024 H51892 T72744
	416289	1586037_1	W26333 R05358 H44682
	417730	1695795_1	Z44761 R25801 R11926 R35604
	418636	177402_1	AW749855 AA225995 AW750208 AW750206
	419346	184129_1	AIB30417 AA236612
30	419536	185688_1	AA803305 AA244095 AA244183
	420111	190755_1	AA255652 AA280911 AW967920 AA262684
	422219	213547_1	AW978073 AW978072 AA807550 AA306587
	424179	236389_1	F30712 F35665 AW263888 AI904014 AI904018 AA336927 AA336502
35	424242	237181_1	AA337476 AW966227 AA450376 AW960222 AA381051
33	428002	285602_1	AA418703 AA418711 BE071915 BE071920 BE071912
	429163	300543_1	AA884766 AW974271 AA592975 AA447312
	432189	342819_1 345248 1	AA527941 AI810608 AI620190 AA635266 AA534222 AA632632 TB1234
	432340		AA534489 AW970240 AW970323
40	432363 432966	345469_1 356839 1	AASS9408 AVI970240 AVV970325 AA650114 AW974148 AA572946
40	432900 433586	370470 1	T85301 AW517087 AA601054 BE073959
	433641	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547
	453041	3/ 100_1	AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 AI970376
			AI583718 AI672574 N25695 AW665466 AI818326 AA126128 AI480345 AW013827 AA248638 AI214968
45			AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418
			AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866
			AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734
			H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354
			Al493192
50	433687	373061_1	AA743991 AA604852 AW272737
	433891	376239_1	AA613792 AW182329 T05304 AW858385
	434415	385931_1	BE177494 AW276909 AA632849
	434565	38898_1	T52172 AF147324 T52248
	434804	393481_1	AA649530 AA659316 H64973
55	437113	433234_1	AA744693 AW750059
	444168	593829_1	AW379879 A1126285 H12014
	448212	755099_1	Al475858 AW969013
	448310	757918_1	Al480316 AW847535
	451746	883303_1	M86178 Al813822 D56993
			160

	452560	922216_1	BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212
		_	AW806207 AW806208 AW806210 Al907497
	452712	928309_1	AW838616 AW838660 BE144343 Al914520 AW888910 BE184854 BE184784
	453773	980699_1	AL133761 AL133767
5	455276	1272541_1	BE176479 BE176678 BE176357 BE176550 AW886079 BE176676 BE176615 BE176555 BE176489 BE176610
			BE176362
	455309	1278153_1	AW894017 AW893956 AW894032

TABLE 5B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Tables 5, 6, and 7. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Unique number corresponding to an Eos probeset

Pkey:

10	O Ref:		publication en	sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I, et al." refers to the sublication entitled "The DNA sequence of human chromosome 22." Dunham I, et al., Nature (1999) 402:489-495.				
	Strand:			strand from which exons were predicted.				
	Nt_position	on:	Indicates nucl	eotide positions of predicted exons.				
15								
	Pkey	Ref	Strand	Nt_position				
	401045	8117619	Plus	90044-90184.91111-91345				
20	401424	8176894	Plus	24223-24428				
	401451	6634068	Minus	119926-121272				
	401714	6715702	Plus	98484-96681				
	401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097- 131258,131866-131932,132451-132575,133580-134011				
25	401785	7249190	Minus	165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942				
	401819	7467933	Minus	28217-28486				
	402408	9796239	Minus	110326-110491				
	402444	9796614	Plus	28391-28517				
	402791	6137008	Minus	51036-51207				
30	403047	3540153	Minus	59793-59968				
	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337				
	403721	7528046	Minus	156647-157366				
	403764	7717105	Minus	118692-118853				
	403797	8099896	Minus	123065-125008				
35	404165	9926489	Minus	69025-69128				
	404210	5006246	Plus	169926-170121				
	404253	9367202	Minus	55675-56055				
	404561	9795980	Minus	69039-70100				
	404571	7249169	Minus	112450-112648				
40	404721	9856648	Minus	173763-174294				
	404915	7341766	Minus	100915-101087				
	404939	6862697	Pius	175318-175476				
•	405403	6850244	Minus	37491-37670,40951-41031				
	405685	4508129	Minus	37956-38097				
45	405718	9795467	Pius	113080-113266				
	405793	1405887	Minus	89197-89453				
	405876	6758747	Plus	39594-40031				
	405917	7712162	Minus	106829-107213				
	406414	9256407	Plus	49593-49850				
50	406554	7711566	Plus	106956-107121				

TABLE 6:286 GENES ENCODING EXTRACELLULAR OR CELL SURFACE PROTEINS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

5

Table 6 shows 286 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be extracellular or cell-surface proteins. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g. egf, 7tm domains).

	Pkey: Unique Eos probeset identifier number ExAccn: Exemplar Accession number, Genbank accession number								
	UnigenelD:		Unigene numb						
	Unigene Title	:		Unigene gene title					
	R1:	•		Ratio of tumor to normal tissue					
10	Pkey	ExAcon	UnigenelD	Uningene Title	R1				
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	48.28				
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	45.24				
15	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.48				
15	420154	Al093155	Hs.95420	JM27 protein	41.12				
	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	31.80				
	400299	X07730	Hs.171995	kallikrein 3, (prostate specific antigen	24.91				
	425075	AA506324	Hs.1852	acid phosphatase, prostate	24.23				
20	424846 405685	AU077324	Hs.1832	neuropeptide Y	23.57 20.90				
20	400000	X78592	Hs.99915	andragan maantar (dibudrahastastastastas r	19.72				
	418994	AA296520	Hs.89546	androgen receptor (dihydrotestosterone r selectin E (endothelial adhesion molecul	19.72				
	452792	AB037765	Hs.30652	KIAA1344 protein	17.39				
	445472	AB006631	Hs.12784	Homo sapiens mRNA for KIAA0293 gene, par	17.00				
25	414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82				
	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60				
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28				
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54				
	430226	BE245562	Hs.2551	adrenemic, beta-2-, receptor, surface	15.40				
30	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	14.76				
	418601	AA279490	Hs.86368	calmegin	14.56				
	448999	AF179274	Hs.22791	transmembrane protein with EGF-like and	14.55				
	416182	NM_004354	Hs.79069	cyclin G2	12.94				
	420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79				
35	445413	AA151342	Hs.12677	CGI-147 protein	12.64				
	453930	AA419466	Hs.36727	hypothetical protein FLJ10903	12.22				
	440286	U29589	Hs,7138	cholinergic receptor, muscarinic 3	12.04				
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86				
40	450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68				
40	448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51				
	449650	AF055575	Hs.23838	calcium channel, voltage-dependent, L ty	11.18				
	420381	D50640	Hs.337616	phosphodiesterase 3B, cGMP-inhibited	11.10				
	425665	AK001050 AF030880	Hs.159066	hypothetical protein FLJ10188	11.08				
45	425710 428728	NM_016625	Hs.159275	solute carrier family, member 4	11.08				
73	407021	U52077	Hs.191381	hypothetical protein gb:Human mariner1 transposase gene, comp	11.04 11.02				
	410733	D84284	Hs.66052	CD38 antigen (p45)	11.02				
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85				
	428819	AL135623	Hs.193914	KIAA0575 gene product	10.48				
50	421991	NM_014918	Hs.110488	KIAA0990 protein	10.04				
-	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	9.75				
	421470	R27496	Hs.1378	annexin A3	9.64				
	409262	AK000631	Hs.52256	hypothetical protein FLJ20624	9.45				
	435980	AP274571	Hs.129142	deoxyribonuclease II beta	9.24				
55	421246	AW582962	Hs.102897	CGI-47 protein	9.20				
	410001	AB041036	Hs.57771	kallikrein 11	9.03				
	441791	AW372449	Hs.175982	hypothetical protein FLJ21159	9.02				

	404571				8.66
	456497	AW967956	Hs.123648	ESTs, Weakly similar to AF108460 1 ubinu	8.56
	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
E	433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30 8.27
5	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.20
	427674 404915	NM_003528	Hs.2178	H2B histone family, member Q	8.08
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (translo	8.06
	452891	N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILIA	8.02
10	439731	AI953135	Hs.45140	hypothetical protein FLJ14084	7.98
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.68
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-	7.64
	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	7.64
15	448706	AW291095	Hs.21814	interleukin 20 receptor, alpha	7.52 7.49
13	410227 425211	AB009284 M18667	Hs.61152 Hs.1867	exostoses (multiple)-like 2 progastricsin (pepsinogen C)	7.35
	441736	AW292779	Hs.169799	ESTs	7.28
	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
	425018	BE245277	Hs.154196	E4F transcription factor 1	7.20
20	424560	AA158727	Hs.150555	protein predicted by clone 23733	7.18
	409110	AA191493	Hs.48778	niban protein	7.10
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	7.04
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98 6.85
25	425782 427408	U66468 AA583206	Hs.159525 Hs.2156	cell growth regulatory with EF-hand doma RAR-related orphan receptor A	6.79
23	435604	AA625279	Hs.26892	uncharacterized bone marrow protein BM04	6.73
	415874	AF091622	Hs.78893	KIAA0244 protein	6.54
	401451			·	6.52
20	431778	AL080276	Hs.268562	regulator of G-protein signalling 17	6.51
30	409089	NM_014781	Hs.50421	KIAA0203 gane product	6.50
	431992	NM_002742	Hs.2891	protein kinase C, mu	6.49 6.42
	404253 421552	AF026692	Hs.105700	secreted frizzled-related protein 4	6.41
	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	6.38
35	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	6.30
	439366	AF100143	Hs.6540	fibroblast growth factor 13	6.30
	416836	D54745	Hs.80247	cholecystokinin	6.30
	433383	AF034837	Hs.192731	double-stranded RNA specific adenosine d	6.29
40	450728	AW162923	Hs.25363	presentiin 2 (Alzheimer disease 4)	6.25 6.22
40	413384 423349	NM_000401 AF010258	Hs.75334 Hs.127428	exostoses (multiple) 2 homeo box A9	6.20
	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18
	425451	AF242769	Hs.157461	mesenchymal stem cell protein DSC54	6.14
	447359	NM_012093	Hs.18268	adenylate kinase 5	6.00
45	410889	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-O-sulfot	5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.94 5.92
	408875 450480	NM_015434 X82125	Hs.48604 Hs.25040	DKFZP434B168 protein zinc finger protein 239	5.90
50	451684	AF216751	Hs.26813	CDA14	5.88
-	400301	X03635	Hs.1657	estrogen receptor 1	5.78
	415077	L41607	Hs.934	glucosaminyl (N-acetyl) transferase 2, I	5.74
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
E E	446867	AB007891	Hs.16349	KIAA0431 protein	5.72
55	410232	AW372451	Hs.61184 Hs.119976	CGI-79 protein Human DNA sequence from clone RP1-20N2 o	5.70 5.70
	422762 450616	AL031320 AL133067	Hs.302689	hypothetical protein	5.70
	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8	5.65
	439671	AW162840	Hs.6641	kinesin family member 5C	5.64
60	410196	Al936442	Hs.59838	hypothetical protein FLJ10808	5.60
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	5.60
	440738	A1004650	Hs.225674	WD repeat domain 9	5.60
	414342 422634	AA742181	Hs.75912 Hs.118821	KIAA0257 protein CGI-62 protein	5.59 5.56
65	422034	NM_016010	110.11002.1	earar hioga	5.55
U U	439569	AW602166	Hs.222399	CEGP1 protein	5.51
	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	5.48
	431938	AA938471	Hs.54431	specific granule protein (28 kDa); cyste	5.44
	427638	AA406411	Hs.208341	ESTs, Weakly similar to KIAA0989 protein	5.42

	421264	AL039123	Hs.103042	microtubule-associated protein 1B	5.38
	421685	AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37
	421987	Al133161	Hs.286131	CGI-101 protein	5.36
	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	5.34
5	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	5.32
_	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (f	5.32
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
	447752	M73700	Hs.105938	lactotransferrin	5.29
	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
10	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
	459294	AW977286	Hs.17428	RBP1-like protein	5.16
	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	416434	AW163045	Hs.79334	nuclear factor, Interleukin 3 regulated	5.11
15	410268	AA316181	Hs.61635	six transmembrane epithalial antigen of	5.10
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate pol	5.10
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09
	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	5.08
20	418576	AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	5.04
	432729	AK000292	Hs.278732	hypothetical protein FLJ20285	5.04
	426342	AF093419	Hs.169378	multiple PDZ domain protein	5.02
	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
25	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prot	5.02
	430599	NM_004855	Hs.247118	phosphatidylinositol glycan, class B	5.00
	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
	457211	AW972565	Hs.32399	ESTs, Wealdy similar to S51797 vasodilat	4.97
20	425851	NM_001490	Hs.159642	glucosaminyi (N-acetyl) transferase 1, c	4.97 4.93
30	421689	N87820	Hs.106826	KIAA1696 protein	4.82
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.91
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	403047	4.5000500	11-050500	delta (Drosophila)-like 1	4.90
25	431117	AF003522	Hs.250500	RAN binding protein 2	4.88
35	427617	D42063	Hs.199179 Hs.193736	hypothetical protein FLJ20706	4.88
	428804	AK000713	Hs.22960	breast carcinoma amplified sequence 2	4.86
	449071	NM_005872	NS.22500	gb.yq30f05.r1 Soares fetal liver spieen	4.84
	407596	R86913	Hs.222746	KIAA1610 protein	4.84
40	456516	BE172704 AW976853	Hs.172843	ESTs	4.83
40	458339 422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	449535	W15267	Hs.23672	low density lipoprotein receptor-related	4.82
	422048	NM_012445	Hs.288126	spondin 2, extracellular matrix protein	4.82
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	4.78
45	410765	Al694972	Hs.66180	nucleosome assembly protein 1-like 2	4.77
43	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	450649	NM_001429	Hs.25272	E1A binding protein p300	4.74
	411624	BE145964	Hs.103283	KIAA0594 protein	4.72
	404721	52110001	*************		4.70
50	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
-	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
	408374	AW025430	Hs.155591	forkhead box F1	4.64
	451900	AB023199	Hs.27207	KIAA0982 protein	4.63
	421437	AW821252	Hs.104336	hypothetical protein	4.63
55	434629	AA789081	Hs.4029	glioma-amplified sequence-41	4.60
	403764				4.58
	421247	BE391727	Hs.102910	general transcription factor IIH, polype	4.53
	403721				4.50
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	4.49
60	417412	X16896	Hs.82112	interleukin 1 receptor, type I	4.48
	439735	AI635386	Hs.142846	hypothetical protein	4.48
	430261	AA305127	Hs.237225	hypothetical protein HT023	4.46
	430598	AK001764	Hs.247112	hypothetical protein FL 10902	4.44
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.42
65	438209	AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.42
	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	4.40
	447270	AC002551	Hs.331	general transcription factor IIIC, polyp	4.38 4.35
	434423	NM_006769	Hs.3844	LIM domain only 4	4.32
	404561				4,32

	422969	AA782536	Hs.122647	N-myristoyitransferase 2	4.32
	423685	BE350494	Hs.49753	uveal autoantigen with collect coil domai	4.32
	425071	NM_013989	Hs.154424	deiodinase, iodothyronine, type II	4.32
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
5	442818	AK001741	Hs.8739	hypothetical protein FLJ10879	4.30
3	423740	Y07701	Hs.293007	aminopeptidase puromycin sensitive	4.24
	424701	NM_005923	Hs.151988	mitogen-activated protein kinase kinase	4.21
	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40	4.20
	410294	AB014515	Hs.323712	KIAA0615 gene product	4.18
10	447124	AW976438	Hs.17428	RBP1-like protein	4.18
10	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857	Al089292	Hs.287621	hypothetical protein FLJ14069	4.15
	446711	AF169692	Hs.12450	protocadherin 9	4.15
	405403				4.14
15	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
	433345	Al681545	Hs.152982	hypothetical protein FLJ13117	4.10
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta	4.09
	435114	AA775483	Hs.288936	mitochondrial ribosomal protein L9	4.08
20	445459	Al478629	Hs.158465	likely ortholog of mouse putative IKK re	4.08
	402791				4.04
	438660	U95740	Hs.6349	Homo sepiens, clone IMAGE:3010666, mRNA,	4.04
	447568	AF155655	Hs.18885	CGI-116 protein	4.04
	452211	Al985513	Hs.233420	ESTs	4.02
25	443292	AK000213	Hs.9196	hypothetical protein	4.01
	420911	U77413	Hs.100293	O-linked N-acetylgiucosamine (GlcNAc) tr	4.00
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430456	AA314998	Hs.241503	hypothetical protein	3.95
	437531	Al400752	Hs.112259	T cell receptor gamma locus	3.93
30	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	3.91
	410011	AB020641	Hs.57856	PFTAIRE protein kinase 1	3.91
	446494	AA463276	Hs.288906	WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
35	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.89
	401045				3.89
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.89
40	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	3.88
40	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	3.88
	453047	AW023798	Hs.286025	ESTs	3.88
	401785	41000000			3.88
AE	458229	A1929602	Hs.177	phosphatidylinositol glycan, class H	3.86
45	406414	41 400000	11- 700	ADD -The substitute faculty demands protein 4	3.86
	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1	3.84 3.83
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.82
	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
50	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.82
30	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	3.82
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (3.80
	419423	D26488	Hs.90315	KIAA0007 protein	3.80
	429643	AA455889	Hs.167279	FYVE-finger-containing Rab5 effector pro general transcription factor IIB	3.80
55	431499	NM_001514 BE246919	Hs.258561 Hs 10290	U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
33	444078		Hs.238126	CGI-49 protein	3.76
	430291 431637	AV660345 A1879330	Hs.265960	hypothetical protein FLJ10563	3.74
		N30256	Hs.151093	hypothetical protein DKFZp434G1415	3.74
	440411	NOUZOU	ns.101000	hypothetical protein total 2p-10-14-15	3.74
60	405917 451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
00	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
	429597 415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
	443603	BE502601	Hs.134289	ESTs, Weakly similar to KIAA1063 protein	3.70
65	443603 446965	BE242873	Hs.16677	WD repeat domain 15	3.70
5 5	412350	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept	3.70
	433852	A1378329	Hs.126629	ESTs	3.70
	447397	BE247676	Hs.18442	E-1 enzyme	3.68
	405718	3227, 474	. 10110 176	,n.w	3.68

	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pombe, h	3.68
	421734	Al318624	Hs.107444	Homo sapiens cDNA FLJ20562 fis, done KA	3.67
	427221	L15409	Hs.174007	von Hippel-Lindau syndrome	3.67
	402408				3.66
5	452946	X95425	Hs.31092	EphA5	3.66
	419078	M93119	Hs.89584	Insulinoma-associated 1	3.66
	427144	X95097	Hs.2126	vasoactive intestinal peptide receptor 2	3.65
	423396	Al382555	Hs.127950	bromodomain-containing 1	3.65
	446320	AF126245	Hs.14791	acyi-Coenzyme A dehydrogenase family, me	3.63
10	404939				3.62
	403137				3.60
	437162	AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	404210				3.59
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	3.56
15	452501	AB037791	Hs.29716	hypothetical protein FLJ10980	3.56
	422443	NM_014707	Hs.116753	histone deacetylase 7B	3.55
	420230	AL034344	Hs.284186	forkhead box C1	3.55
	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
	433002	AF048730	Hs.279906	cyclin T1	3.53
20	405793				3.52
	457940	AL360159	Hs.306517	Homo sapiens TRIpartite motif protein ps	3.52
	402444				3.52
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	3.51
	414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
25	422384	AA224077	Hs.42438	Sm protein F	3.50
	447805	AW627932	Hs.19614	gemin4	3.50
	454265	H03556	Hs.300949	ESTs, Weakly similar to thyroid hormone	3.50
	423445	NM_014324	Hs.128749	alpha-methytacyl-CoA racemase	3.48
	413435	X51405	Hs.75360	carboxypeptidase E	3.46
30	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipas	3.46
	426931	NM_003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	3.45
	408418	AW963897	Hs.44743	KIAA1435 protein	3.45
	421887	AW161450	Hs.109201	CGI-86 protein	3.44

Table 7: 42 GENES ENCODING SMALL MOLECULE TARGETS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

5 Table 7 shows 42 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be small molecule targets. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of a drugable structure (e.g. protease, kinase, phosphatase, receptor). The functional domain is indicated for each gene.

10	Pkey:	Unique Eos probeset identifier number
	ExAcon:	Exemplar Accession number, Genbank

Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title PSDomain: Protein Structural Domain Ratio of tumor vs. normal tissue R1:

15

	Pkey	ExAcen	UnigenelD	Unigene Title	PSDomain	R1	
20	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	trypsin	31.80	
		X07730		kallikrein 3, (prostate specific antigen	trypsin	24.91	
		X78592	Hs.99915	androgen receptor (dihydrotestosterone r	Androgen_recep,hormone_rec,zf-C4	19.72	
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	DPPIV_N_term.Peptidase_S9	16.28	
		BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	7tm_1	15.40	
25	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	Peptidase_M3	14.81	
	440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	7tm_1	12.04	
	420381	D50640	Hs.337616	phosphodiesterase 3B, cGMP-inhibited	PDEase	11.10	
	407021	U52077		gb:Human mariner1 transposase gene, comp	SET,Transposase_1	11.02	
	401424				arginase	9.58	
30	410001	AB041036	Hs.57771	kallikrein 11	trypsin	9.03	
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	Peptidase_M10	8.76	
	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	ABC_tran,ABC_membrane	7.64	
	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	Hydrolase	7.20	
		NM_002742	Hs.2891	protein kinase C, mu	pkinase,DAG_PE-blnd,PH	6.49	
35	447359	NM_012093	Hs.18268	adenylate kinase 5	adenylatekinase	6.00	
	400301	X03635	Hs.1657	estrogen receptor 1	Oest_recep,zf-C4,hormone_rec	5.78	
		AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	E1-E2_ATPase,Hydrolase	5.37	
		NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	ABC_tran	5.31	
		M73700		lactotransferrin	transferrin,7tm_1	5.29	
40	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	E1-E2_ATPase,Hydrolase,HMA	5.08	
	403047				trypsin	4.91	
		D42063		RAN binding protein 2	Ran_BP1,zf-RanBP,TPR,pro_isomeras		4.88
		NM_001141		arachidonate 15-lipoxygenase, second typ	lipoxygenase,PLAT	4.82	
4 ~		W15267	Hs.23672	low density lipoprotein receptor-related	ldl_recept_b.ldl_recept_a,EGF	4.82	
45		NM_013989		deiodinase, lodothyronine, type II	T4_delodinase	4.32	
	423740			aminopeptidase puromycin sensitive	Peptidase_M1	4.24	
		NM_005923		mitogen-activated protein kinase kinase	pkinase	4.21	
		NM_002914		replication factor C (activator 1) 2 (40	AAA,Viral_helicase1	4.20	
50		NM_003157	Hs.1087	serine/threonine kinase 2	pkinase	4.12	
50		Al355647		purinergic receptor (family A group 5)	7tm_1	3.91	
		AB020641		PFTAIRE protein kinase 1	pkinase	3.91	
		AA151057		chromosome 18 open reading frame 1	kd_recept_a	3.82	
		Al659306	Hs.73826	protein tyrosine phosphatase, non-recept	Y_phosphatase,Band_41,PDZ	3.70	
55		BE247676		E-1 enzyme	Hydrolase	3.68	
33	452946		Hs.31092	EphA5	EPH_lbd,fn3,pkinase,SAM	3.66	
	427144		Hs.2126	vasoactive intestinal peptide receptor 2	7tm_2	3.65 3.56	
		AF291664		matrix metalloproteinase 26	Peptidase_M10		
	45/940	AL360159	Hs.83918	Homo sapiens TRipartite motif protein ps adenosine monophosphate deaminase (isolo	SPRY,7tm_1	3.52 3.51	
- 60	418230		Hs.75360	carboxypeptidase E	Zn_carbOpept	3.46	
- 00		AF035269	Hs.17752	phosphatidylserine-specific phospholipas	Zn_caroopept lipase	3.46 3.46	
	44/210	AFU33208	110.17702	huoshiganisamisasbaciic huoshimibas	ιψαοσ	J.40	

TABLE 8: 136 GENES SIGNIFICANTLY DOWN-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL PROSTATE

Unique Eos probeset identifier number

Exemplar Accession number, Genbank accession number

10

Pkey: ExAccn:

Table 8 shows 136 genes significantly down-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 2. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

15	Laruai.		a respect				
IJ	UnigenelD:		gene number gene gene title				
	Unigene Title: R1:		normal prostate to prostate cancer				
	nı.	riado di	normal prosider to proside central				
20	Pkey ExAccr	n UnigeneiD	Unigene Title	R1			
20	425932 M81650	Hs.1968	semenogelin I	57.69			
	425545 N98529	Hs.158295	Human mRNA for myosin light chain 3 (MLC	19.70			
	426752 X69490			15.25			
	442082 R41823		ESTs; calsyntenin-2	10.05			
25	407245 X90568			9.38			
	422711 D60641		Homo sapiens mRNA; cDNA DKFZp586l1518 (f	9.05			
	420813 X51501		protectin-induced protein	8.18			
			"ESTs, Moderately similar to ALU7_HUMAN	7. 4 5			
	404567		=,	5.62			
30	416030 H15261	Hs.21948	ESTs	5.51			
	444892 Al6206			5.27			
	444573 AW043			5.20			
	428068 AW016	437 Hs.233462	ESTs	5.08			
	437440 AA8468			4.95			
35	404113			4.75			
		344 Hs.61260	hypothetical protein FLJ13164	4.75			
	421058 AW297			4.63			
			*ESTs, Weakty similar to K02F3.10 [C.ele	4.53			
	405163			4.49			
40	405227			4.45			
	454059 NM 00	3154Hs.37048	statherin	4.45			
	450152 Al1386		ESTs	4.40			
	407013 U35637		"gb:Human nebulin mRNA, partial cds"	4.03			
	403612		6	4.02			
45	440089 AA8644	168 Hs.135646	ESTs	4.00			
			Homo sepiens clone TUA8 Cri-du-chat regi	3.98			
			*ESTs, Weakly similar to KIAA0465 protei	3.95			
	459367 BE1488		gb:CM4-HT0244-111189-040-h12 HT0244 Hom	3.95			
			zinc transporter	3.92			
50	411762 AW860	972	"gb:QV0-CT0387-180300-167-h07 CT0387 Hom	3.85			
	418668 AW407	987 Hs.87150	Human done A9A2BR11 (CAC)n/(GTG)n repea	3.75			
	458311 AF0694		*gb:AF069478 Homo saplens astrocytoma li	3.61			
	403649		, ,	3.60			
	419682 H13139	Hs.92282	paired-like homeodomain transcription fa	3.58			
55	412519 AA1962	241 Hs.73980	"troponin T1, skeletal, slow"	3.51			
	414206 AW276	887 Hs.46609	ESTs	3.45			
	427419 NM_00			3.37			
	420777 AA2802			3.3 5			
	428134 AA4217			3.31			
60	450218 R02018		*Ank, mouse, homolog of	3.30			
	433474 Al1921		*EST, Highly similar to ubiquitin-protei	3.30			
	418833 AW974			3.26			
	400440 X83957			3.16			

	449770	A A0000005	Un TEEDE	*munoin light not montide () gogulatons	3.06
			ns./0000	*myosin, light polypeptide 2, regulatory	3.05
		AW838068	11- 00000	*gb:QV3-LT0048-010300-109-f02 LT0048 Hom	2.98
			Hs.88808		
_			Hs.192480		2.95
5		H00093		*gb:ph8f12u_19/1TV Outward Alu-primed hn	2.92
	405678				2.85
	406707	S73840	Hs.931	"myosin, heavy polypeptide 2, skeletal m	2.81
	444105	AW189097	Hs.166597	ESTs	2.78
	433968	AL157518	Hs.90421	PRO2463 protein	2.73
10	438522	AAR09431	Hs.258886		2.73
		H71937		"complement component 1, s subcomponent"	2.68
			Hs.42175		2.67
		BE072259		*gb:QV4-BT0536-271299-059-g04 BT0536 Hom	2.65
		F07953	Hs.16085	putative G-protein coupled receptor	2.65
15				hypothetical protein FLJ10619	2.64
15			ns.191430		2.63
		AW207734		"gb:UI-H-BI2-age-h-01-0-UI.s1 NCI_CGAP_S	2.63
			MS.152108	transcriptional unit N143	
		BE072092		*gb:PM4-BT0532-160200-003-b11 BT0532 Hom	2.63
00			Hs.929	"myosin, heavy polypeptide 7, cardiac mu	2.62
20			Hs.246882		2.60
			Hs.42745		2.58
			Hs.124764		2.58
			Hs.292402		2.52
<u> </u>	458090	Al282149	Hs.56213	"ESTs, Highly similar to FXD3_HUMAN FORK	2.51
25	432003	Al689154	Hs.122972	EST8	2.50
	436915	AA737400	Hs.142230	ESTs	2.50
	410028	AW576454	Hs.258553	ESTs .	2.46
	448920	AW408009	Hs.22580	alkylgtycerone phosphate synthase	2.45
	422046	A1638562		"gb:ts50a10.x1 NCI_CGAP_Ut1 Homo sapiens	2.44
30			Hs.193587		2.40
		H87863	Hs.151380		2.36
		AW600293		"gb:EST00049 pGEM-T library Homo sapiens	2.36
	400001			AFFX control: BioB-3	2.36
	415835	745365		"gb:HSC2NF061 normalized infant brain cD	2.36
35			Hs.59761		2.36
55			Hs.252495		2.36
			Hs.120633		2.35
		AJ002784	. 10.120000	gb:Homo sapiens mRNA; fetal brain cDNA 5	2.33
			Hs.136345		2.32
40	401974	707174000	110,100010	2010	2.31
TU		A) 044400	He 122262	"ESTs, Weakly similar to PH0217 reverse	2.31
				transient receptor potential channel 5	2.25
					2.25
			Hs.153089		2.25
45		R15337	Hs.21958	"Homo sapiens cDNA FLJ10532 fis, clone N	2.24
43		A1/62250	Hs.211347	E918	2.23
	405420			B. I. II. o. OTTANAS (CONSIS DAS LIGO OTTANAS III	
		AW851258		"gb:IL3-CT0220-160200-066-H06 CT0220 Hom	2.23
		AA933999		gb:on91f04.s1 Soares_NFL_T_GBC_S1 Homo	2.23
~~		BE008347		"gb:CM0-BN0154-080400-325-h04 BN0154 Hom	2.23
50		BE252470		"gb:601108292F1 NIH_MGC_16 Homo sapiens	2.23
			Hs.291434		2.23
	435111	Al914279	Hs.213740	ESTs .	2.22
	403375			•	2.21
	455060	AW853441		"gb:RC1-CT0252-030100-023-g09 CT0252 Hom	2.21
55	409792	AW854153		*gb:RC3-CT0254-060400-029-d03 CT0254 Hom	2.20
	421154	AA284333	Hs.287631	"Homo sapiens cDNA FLJ14269 fis, clone P	2.19
	401963				2.18
		AF168711	Hs.159397	x 010 protein	2.18
				KIAA0553 protein	2.18
60			Hs.255667		2.17
			Hs.129124		2.17
			Hs.188716		2.16
		H91800	Hs.124156		2.16
		R54109	Hs.26096		2.16
65			Hs.38664		2.15
5 5			Hs.165210		2.15
		AA425562	110, 1002 10	gb:zw46e05.r1 Soares_total_fetus_Nb2HF8	2.15
			Hs.120610		2.15
				"ESTs, Highly similar to collapsin-2-lik	2.15
	460100	HUUMIUI	10.200013	ented sident outside to condens a sur	

	415708	H56475		"gb:yt87d11.r1 Soares_pineal_gland_N3HPG	2.13
	459619				2.12
	427506	AK000134	Hs.179100	hypothetical protein FLJ20127	2.12
	452508	AA804174	Hs.184354	ESTs	2.10
5	410881	AW809157		"gb:RC0-ST0118-041099-031-c07_1 ST0118 Homo sapiens cDNA, mRNA sequence"	2.10
	403087			•	2.10
	403869				2.10
	445028	D81194	Hs.282499	ESTs	2.10
	447884	H29505		"gb:ym60d10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone 5', mRNA sequence"	2.10
10	414575	H11257	Hs.295233	ESTs	2.09
	420351	BE218221	Hs.190044	ESTs	2.08
	426998	BE274360		"gb:601121068F1 NIH_MGC_20 Homo sapiens cDNA clone 5', mRNA sequence"	2.08
	405455			•	2.08
	423843	AA332652		"gb:EST36627 Embryo, 8 week I Homo sapiens cDNA 5' end similar to similar to	
15				monoamine oxidase B, mRNA sequence"	2.08
	406135				2.07
	427046	BE246180	Hs.121385	ESTs	2.07
	403493				2.05
	444514	AI682905	Hs.270431	"ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE	
20				CONTAMINATION WARNING ENTRY [H.saplens]*	2.05
	435884	AA701443	Hs.192868	ESTs .	2.05
	419629	AB020695	Hs.91662	KIAA0888 protein	2.03
	405900				2.03
	457350	AW974438	Hs.194136	"ESTs, Moderately similar to AF091457 1 zinc finger protein RIN ZF [R.norvegicus]"	2.02
25	400007			AFFX control: BioDn-5	2.01
	406978	M6435B		"ab:Human morn-3 gene, exon."	2.00

TABLE 8A shows the accession numbers for those primekeys lacking a unigeneID in Table 8. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT nui Accession		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accessions
		1014849_1	BE008347 BE008320 BE083307 BE083311 AW075968
		1064753_1	AW207734 D60164 D81150 D81078 D61356 AW996804
		1154677_1	AW854153 AW500210 BE145772 AW501310
20		1225682_1	AW809157 AW812181 AW812175 AW812172 AW812161 AW812165
		1256908_1	AW860972 AW862598 AW860988 AW860983 AW860998 AW860925 AW860922 AW860986 AW860984 AW860989
		1353792_1	BE072092 BE072106 BE072088 BE072098 BE072103
			BE252470 BE147573
05		1548209_1	H56475 F29401 F34552
25		1558511_1	Z45365 R25905 H05203 T77496
		210744_1	AI638562 T16929 H13401 F07773 R55836
		225415_1	AW839068 AW837986 AW838067 AA322487 AW837936
			AA332652 AA331633 AW999369 AW902993 BE170475 AA378845 AW964175 AI475221
30		243504_1	AA425582 AI880208 AA346646 N22655 AW811775 AW811786
30		2742591	BE274360 H00093 H00079 H00070 H00054 H00049 H00063 AW905306 AW905241 AW905410 AW905307 AW905411 AW905240
	432456 AW9052	347718_2	HU0093 HU00/9 HU00/0 HU0094 HU0093 HU0093 AVISIOSUB AVISIOSET AVISIOSET ATTRICET ATTRICET
	WAAAA	210	AW905352 AW905304 AW905239 AW905242 AW905243 H00097
	499994	452658_1	ANSCESSE ANSCESSE ANSCESSE ANSCESSE ANSCESSE FIGURE /
35		740749 1	H29505 R18575 Z43580 T48738 Al435454 BE004683
23		863269_1	AW600293 Al767468
		12493741	AW851258 AW851435 AW851106 AW851421
		1251259_1	AW853441 BE145228 BE145218 BE145162 BE145283
		1335127_1	BE072259 BE072230 BE007911
40		543550 1	AF069478 AF069479 AF069480
10		U-10000_1	18 ABA 11 A 12 ABA 11 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1

TABLE 8B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in table 8. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5									
	Pkey: Ref:		Sequence soun publication entit	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA"					
10	Strand: Nt_position	n:	sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.						
15	Pkey	Ref	Strand	Nt_position					
	401963	3126783	Plus	51382-51521					
	401974	3126777	Plus	85330-85683					
	403087	8954241	Plus	169511-169795					
20	403375	9255944	Minus	92554-92795					
	403493	7341425	Plus	157568-159084					
	403612	8469060	Minus	94723-94859					
	403649	8705159	Minus	27141-27247					
_	403869	7280046	Minus	34379-34583					
25	404113	9588571	Minus	13446-13646					
	404567	7249169	Minus	101320-101501					
	405163	9966267	Minus	161171-161299					
	405227	6731245	Minus	22550-22802					
	405420	7211837	Minus	13428-13582					
80	405455	7656675	Plus	134112-134671					
	405678	4079670	Plus	151821-152027					
	405900	6758795	Minus	71181-71535					
	406135	9164918	Minus	6548 9-65 715					

TABLE 9: 1001 GENES SIGNIFICANTLY UP-REGULATED IN NORMAL PROSTATE **COMPATED TO PROSTATE CANCER**

Table 9 shows 1001 genes significantly up-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip 5 array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 8.14. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

10

15	Pkey: ExAcon: UnigeneID: Unigene Title: R1:		Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of prostate cancer to normal prostate					
20	Pkey	ExAccn	UnigenelD	Unigene Title	R1			
20	451000	AAD13299	Hs.8018	ESTs, Weakly similar to ALU3_HUMAN ALU S	1684.00			
		AA689465	Hs.188999		738.00			
		AI078027	Hs.169338		246.86			
		AA928116	Hs.272065		245.20			
25		AK000185	1102112000	gb:Homo sapiens cDNA FLJ20178 fls, clone	222.00			
	405932	741000100			221.33			
		AA864330	Hs.166520	ESTs	212.00			
		Al686550	Hs.174481	ESTs	163.20			
		Al474866	Hs.193237		149.45			
30		NM_002118	Hs.1162	major histocompatibility complex, class	126.11			
50		M36860	Hs.9295	elastin (supravalvular aortic stenosis,	123.27			
		AW138330	Hs.233778		120.00			
		X02994	Hs.1217	adenosine deaminase	106.75			
	404407	702004	110.1211		105.71			
35		Al652926	Hs.128395	ESTs	100.53			
55		AA608684		ESTs, Moderately similar to ALUC_HUMAN!	94.00			
		U83527		gb:HSU83527 Human fetal brain (M.Lovett)	89.18			
		F06495		gb:HSC1AB051 normalized infant brain cDN	87.73			
		M67439	Hs.143526	dopamine receptor D5	86.82			
40		AW747996	Hs.160999		86.43			
••	401672	,			<i>77.2</i> 6			
		AW383947	Hs.246381	CD68 antigen	68. 4 7			
		BE074959		gb:PM0-BT0582-310100-001-f08 BT0582 Homo	68.00			
		AI766053	Hs.188346	ESTs	61.26			
45		BE540279		gb:601059857F1 NIH_MGC_10 Homo sapiens c	<i>57.7</i> 1			
	409653	AW451693	Hs.220826	ESTs	- 56.40			
	402964				54.67			
	422673	N59027		gb:yv59d11.r1 Soares fetal liver spleen	54.00			
	422568	AA372275	Hs.279800	Homo sapiens cDNA FLJ11383 fis, clone HE	54.00 ·			
50	438907	R32704	Hs.301298	ESTs	52.96			
	405172				52.96			
	444897	AW137088	Hs.144857	ESTs	52.32			
		AW592931	Hs.256298		51.63			
	405275	AB028989	Hs.88500		50.98			
55	457815	AA703679	Hs.106999	ESTs, Weakly similar to SYT5_HUMAN SYNAP	49.60			
	424385	AA339666		gb:EST44776 Fetal brain I Homo saplens c	48.90			
	407172	T54095		gb:ya92c05.s1 Stratagene placenta (93722	47.98			
		AA424163	Hs.156895		46.83			
		A1700148	Hs.283626		43.57			
60	420283	AA485224	Hs.57734	G protein-coupled receptor kinase-intera	43.00			
	417016	AA837098	Hs.269933		42.70			
	438854	AF074994	Hs.24240	ESTs	42.67			

	406134				42.43
		AA480895	He 201552	ESTs, Weakly similar to T17288 hypotheti	42.31
		AA070266	113201332	gb:zm69d04.r1 Stratagene neuroepithelium	42.25
	401124	AA010200		An Thiograph I on a talk on a man on business in	41.61
5		Al371157	Hs.178538	ECT	40.00
,				KIAA0290 protein	39.64
		AB006628	FIS.80403		39.60
		AW062439		gb:MR0-CT0060-120899-001-f08 CT0060 Homo	38.73
		AA923278		ESTs, Weakly similar to protease [H.sapi	
10		BE221682	Hs.178364		38.06
10		W79114	Hs.58558		36.69
		AA604799		ESTs, Moderately similar to ALU1_HUMAN A	36.29
		AW963705		ESTs, Weakly similar to ALU7_HUMAN ALU S	36.18
		AA936282	Hs.120397		36.10
	416908	AA333990	Hs.80424		36.08
15	426264	BE314852	Hs.168694	hypothetical protein FLJ10257	36.00
	415911	H08796	Hs.124952		36.00
	457502	AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	35.23
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	35.20
	401468				34.89
20	458561	Al220150	Hs.211195	ESTs	34.60
		BE350738	Hs.123993	ESTs, Wealdy similar to T00366 hypotheti	33.24
		AW848032		gb:IL3-CT0214-231299-053-D11 CT0214 Homo	32.96
	402828			Q-1	32.93
		AW518944	Hs.76325	Homo sapiens cDNA: FLJ23125 fls, clone L	31.76
25	402842	711010011	110.110000	10000 000000 0014 0 1 2020 120 100 100 0000 0	31.68
25		AA285363		gb:HTH280 HTCDL1 Homo sapiens cDNA 51/31	31.59
	401631		Hs.1799	CD1D antigen, d polypeptide	31.26
		AW139565	110.1700	gb:UI-H-BI1-aea-d-04-0-UI.s1 NCI_CGAP_Su	31.24
		H81795		gb:ys68a10.r1 Soares retina N2b4HR Homo	31.20
30		T87479	Hs.291797		31.09
30					29.78
		AF103907		prostate cancer antigen 3	29.76
		AU076734	HS.193005	solute carrier family 28 (sodium-coupled	
		Al907039		gb:PM-BT134-020499-566 BT134 Homo sapien	29.59
25		BE244074		regulator of Fas-induced apoptosis	29.53
35		Al870175	Hs.13957		29.47
		R07566	Hs.73817		29.22
		W07808		gb:zb03a12.r1 Soares_fetal_lung_NbHL19W	29.20
		AW102670	Hs.122464		29.13
40		U80456	Hs.27311		28.74
40		W84893	Hs.9305	angiotensin receptor-like 1	28.61
	457324	AB028990		KIAA1067 protein	28.24
	424247	X14008		lysozyme (renal amyloidosis)	28.18
	457140	Al279960	Hs.178140	EST8	28.12
	444151	AW972917	Hs.128749	alpha-methylacyl-CoA racemase	28.06
45	457669	AW104257	Hs.123426	ESTs, Weakly similar to putative serine/	27.61
	412429	AV650262	Hs.75765	GRO2 oncogene	27.36
	405495				27.33
	406516				27.25
		AW135429	Hs.243577	ESTs	26.96
50		AW452332	Hs.257554		26.36
		T97490	Hs.50002	small inducible cytokine subfamily A (Cy	26,34
	402838			, , , , , , , , , , , , , , , , , , , ,	26,32
		Al979284	Hs.200552	ESTs -	26.21
		X57010	Hs.81343		26.20
55		NM_014856	Hs.6684	KIAA0476 gene product	25.91
JJ		A1682088	Hs.223368		25.60
		AL133660		Homo sapiens mRNA; cDNA DKFZp434M0927 (f	25.57
		BE391090	Hs.280278		25.57
		NM_005188		Cas-Br-M (murine) ecotropic retroviral t	25.48
60		AA251048		lymphocyte antigen 9	25.42
JU		AA063426	113, 133042	gb:zf70c08.s1 Soares_pineal_gland_N3HPG	25.42
		AW083491	Hs.31196		25.22
			175.01 180	gb:51f10 Human retina cDNA randomly prim	25.01
		W28573	Un DEAD	ESTs. Weakly similar to CO3_HUMAN COMPLE	24.85
65		T74588	Hs.8509	EDIS, WERRY SHIRE IN OCO_HUMAN COMPLE	
65		BE077458	11. 400000	gb:RC1-BT0606-090500-015-b04 BT0606 Homo	24.76
		AA760894	Hs.153023		24.74
		A1014723	Hs.131770	Livery DAIA company from sizes DDA FOODAT	24.57
		BE019557	HS.11900	Human DNA sequence from clone RP4-583P15	24.53
	421552	AF026692	HS.105700	secreted frizzled-related protein 4	24.49

	449000	U25758	Hs.134584	ECT.	24.49
		AL035588		MyoD family inhibitor	24.10
		AA357001	Hs.34045	hypothetical protein FLJ20764	24.04
		AL122081		cadherin related 23	24.00
5		Al208611	Hs.12066		23.89
_		AA215672		gb:zr96e09.s1 NCI_CGAP_GCB1 Homo sapiens	23.83
	408583	AW449674	Hs.47359	ESTs	23.73
		AF204231	Hs.182982		23.62
10		AA136301		gb:zk93g04.s1 Soares_pregnant_uterus_NbH	23.39
10		NM_001327		cancer/testis antigen	23.20 22.68
		AF123050	Hs.44532	diubiquitin ATPase, Na+/K+ transporting, beta 3 poly	22.65
		BE243877 AA279530	Hs.76941 Hs.83968	integrin, beta 2 (antigen CD18 (p95), ly	22.38
		R68651	Hs.144997		22.26
15		BE387335	Hs.283713		22.08
		AW628686	Hs.78851	KIAA0217 protein	22.04
		AW809637		gb:MR4-ST0124-261099-015-b07 ST0124 Homo	22.00
		Al431708	Hs.820	homeo box C6	21.95
20		AV653846	Hs.126261	Homo sapiens Chromosome 16 BAC clone CIT	21.94
20		BE071874	U- 47404	gb:RC2-BT0522-120200-014-a06 BT0522 Homo	21.84 21.26
		J05500 H14487	Hs.47431	spectrin, beta, erythrocytic (includes s gb:ym18c10.r1 Soares infant brain 1NIB H	21.24
		Al207936	Hs.7195	gamma-aminobutyric acid (GABA) A recepto	21.14
		AI623698		Homo sapiens cDNA: FLJ23529 fis, clone L	21.11
25		X89887		HIR (histone cell cycle regulation defec	21.10
		AW502139		gb:UI-HF-BR0p-ajr-e-05-0-UI.rl NIH_MGC_5	21.07
	405685				20.90
		Al983207		ESTs, Wealdy similar to SYPH_HUMAN SYNAP	20.84
20		AA321355	Hs.285401		20.74 20.73
30	422355 401201	AW403724	Hs.140	immunoglobulin heavy constant gamma 3 (G	20.73
		W28912	Hs.129019	FSTs	20.68
		H66948	113.120010	gb:yr86d10.r1 Soares fetal liver spleen	20.67
		H42679	Hs.77522	major histocompatibility complex, class	20.66
35	400926		. •		20.66
		NM_004197	Hs.444	serine/threonine kinase 19	20.64
		AW500221	Hs.43616	Homo sapiens mRNA for FLJ00029 protein,	20.61
		X60992	Hs.81226	CD6 antigen	20.61 20.51
40	405777	AW966158	Hs.58582	Homo sapiens cDNA FLJ12702 fis, clone NT	20.20
70		X58288		protein tyrosine phosphatase, receptor t	20.10
		BE568568	Hs.195704		19.98
		Al245432		turnor necrosis factor, alpha-induced pro	19.98
		AA228776	Hs.191721		19.94
45		AA584854		gb:no09h11.s1 NCI_CGAP_Phe1 Homo sapiens	19.90
	404426	1140440	11- 74040	for calched becomes the cond	19.84
		U43143		fms-related tyrosine kinase 4 integrin, alpha 11	19.79 19.62
		NM_012211 NM_006732	Hs.75678		19.57
50		AA296520	Hs.89546		19.56
-		AW090198	Hs.4779	KIAA1150 protein	19.52
	437866	AA156781	Hs.83992	ESTs	19.44
		AL138201	Hs.82120		- 19.34
55		X15675		Human pTR7 mRNA for repetitive sequence	19.22
22	421730	AW449808	Hs.164036	glucosamine (N-acetyl)-6-sulfatase (Sanf	19.21
		AA284477 A1247422	Hs.96618 Hs.129966		18.77 18.76
		AL355743		Homo sapiens EST from clone 41214, full	18.65
		AI807264		ESTs, Weakly similar to AF117610 1 inner	18.64
60	437820	AA769062		ESTs, Weakly similar to alternatively sp	18.62
	450923	AW043951	Hs.38449	ESTs	18.59
		AW247430	Hs.84152		18.58
		AI673027	Hs.143271		18.55
65		AF113925		caspase recruitment domain 4	18.52 18.47
65		R42863 AA912815	Hs.7124 Hs.222078	ESTs FSTs	18.40
		A/085846	Hs.25522		18.32
		U51166		thymine-DNA glycosylase	18.28
		AW501751	Hs.279733		18.15

	417240	N57568	Hs.176028	EST	18.13
		AF229178		leucine rich repeat and death domain con	18.12
	436896	AW977385	Hs.278615	ESTS	18.12
	A32485	N90866	Hs 276770	CDW52 antigen (CAMPATH-1 antigen)	17.90
5					
3	423490	Al971131		ESTs, Weakly similar to alternatively sp	17.82
	429984	AL050102	Hs.227209	DKFZP586F1019 protein	17.82
		AI889114	Hs.195663		17.75
	433867	AK000596	Hs.3618	hippocalcin-like 1	17.72
	431735	AW977724	Hs.75968	thymosin, beta 4, X chromosome	17.71
10		******		.,	17.67
10	401515				
	444045	AI097439	Hs.135548	ESIS	17.58
	442754	AL045825	Hs.210197	ESTs	17.55
					17.54
		AB001914		paired basic amino acid cleaving system	
	432415	T16971	Hs.289014	ESTs	17.50
15	427829	AJ188225	Hs.127462	ESTs	17.50
15					17.44
		R08003	Hs.188013		
	435259	AA152106	Hs.4859	cyclin L ania-6a	17.36
	414989	TRICCO		gb:yd29c04.r1 Soares fetal liver spieen	17.31
			41. 4=44=6		
	444880	AW118683	Hs.154150		17.30
20	417651	R06874	Hs.268628	ESTs	17 <i>.</i> 27
		AL037103		ESTs, Weakly similar to unnamed protein	17.22
	424246	AW452533	Hs.143604	Kaiso	17.22
		M93119		Insulinoma-associated 1	17.18
					17.14
~-		BE241624		CD69 antigen (p60, early T-cell activati	
25	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	17.14
		AW877015		gb:QV2-PT0010-250300-096-f12 PT0010 Homo	17.14
	425782	U66468	HS.159525	cell growth regulatory with EF-hand doma	17.12
	426678	H08170	Hs.113755	ESTs	17.12
		NM_000361	Hs.2030	thrombomodulin	17.01
20					
30	425905	AB032959	Hs.161700	KIAA1133 protein	17.00
	438867	AW451157	Hs.181157	ESTs	16.98
		AA830664	Hs.143974		16.94
			NS. 1409/4		
	459234	Al940425		gb:CM0-CT0052-150799-024-c04 CT0052 Homo	16.92
	404756				16.91
25		1140044	U- 440000	and the second of the state of	
35		U18244		solute carrier family 1 (high affinity a	16.90
	420568	F09247	Hs.167399	protocadherin alpha 5	16.88
		Al076765	Hs.269899		16.80
		Al803373	Hs.31599	ESIS	16.78
	411424	AW845985		gb:RC2-CT0163-200999-002-H08 CT0163 Homo	16.70
40	402895			~	16.69
40			11. 440404	F 40 all and that a book and below a combined as	
		NM_006441	HS.118131	5,10-methenylitetrahydrofolate synthetase	16.68
	447108	AW449602	Hs.217953	ESTs, Moderately similar to NK-TUMOR REC	16.65
		AB002367		doublecortin and CaM kinase-like 1	16.54
	438567	AW451955	Hs.153065		16.52
45	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	16.50
		R23534	Hs.2730	heterogeneous nuclear ribonucleoprotein	16.50
	437133	AB018319	Hs.5460	KIAA0776 protein	16.40
	408182	AA047854		gb:zf49g04.r1 Soares retina N2b4HR Homo	16.32
		AI080042	He 18MEN	ribosomal protein S24	16.30
50					
50	431840	AA534908	Hs.2860	POU domain, class 5, transcription facto	16.28
	439882	AA847856	Hs.124565	ESTs	16.20
		AW135221	Hs.130812		16.09
			113.100012		
	410688	AW796342		gb:PM2-UM0027-230200-002-h02 UM0027 Homo	16.04
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-	16.04
55		NM 003816	Hs.2442		16.02
JJ					
	447033	Al357412		EST - not in UniGene	16.02
	4216R4	BE281591	Hs.106768	hypothetical protein FLJ10511	15.94
		AA055800	Hs.222933		15.93
		AV656098	MS.172382	hypothetical protein FLJ20001	15.86
60	409871	AA076769		gb:7B02B10 Chromosome 7 Fetal Brain cDNA	15.85
	405934				15.84
			11- 400400	management of all doubt P	
	426108	AA622037		programmed cell death 5	15.84
	416208	AW291168	Hs.41295	ESTs	15.48
				Homo sapiens cDNA: FLJ22756 fis, clone K	15.42
C E		AA534370			
65	447342	Al199268	H8.19322	ESTs; Weakly similar to IIII ALU SUBFAMI	15.38
	454563	AW807530		gb:CM0-ST0081-130999-054-d02 ST0081 Homo	15.37
				gb:lL3-CT0219-261099-023-D11 CT0219 Homo	15.36
		AW850140	11- 46466		
	438170	Al916685	Hs.194601	to18	15.29
		AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility	15.26

	406638	M13861		gb:Human T-cell receptor active beta-cha	15.26
	446686	AW138043	Hs.156307		15.25
		Al623511	Hs.118567		15.24
5		AW292830	Hs.255609		15.22
3		BE147740	Hs.104558		15.22
		BE244854 AA279956	Hs.88672	Homo sapiens mRNA for FLJ00020 protein,	15.16 15.14
		AA410506		H.sapiens mRNA for ribosomal protein L18	15.14
		AB023185		calcium/calmodulin-dependent protein kin	15.12
10		Al862096	Hs.60640		15.12
		BE177778		gb:RC1-HT0598-310300-012-f07 HT0598 Homo	15.12
		Al239832	Hs.15617	ESTs, Weakly similar to ALU4_HUMAN ALU S	15.06
	418305 402812	AW006783	Hs.6686	ESTs	15.03 15.02
15		AA732480	Hs.293581	FSTs	15.02
~~	400991	751102100	1101200001	2010	15.00
		BE314524	Hs.78776	Human putative transmembrane protein (nm	14.96
	429900	AA460421	Hs.30875	ESTs	14.90
00	403683				14.84
20		NM_004293		guanine deaminase	14.80
		AL120173 J05070	Hs.301663	matrix metalloproteinase 9 (gelatinase B	14.72 14.69
		BE617135	113.131700	gb:S01441677F1 NIH_MGC_65 Homo sapiens c	14.67
		AB021225	Hs.159581	matrix metalloproteinase 17 (membrane-in	14.65
25		Al638449	Hs.173031		14.63
		BE041395	Hs.283676	ESTs, Weakly similar to unknown protein	14.60
		A1903354	U- 0070 /7	gb:RC-BT029-100199-117 BT029 Homo sapien	14.55
•	449050	AF055575	MS.297647	ESTs, Moderately similar to calcium chan	14.54 14.46
30		AJ734009	Hs.127699	EST cluster (not in UniGene)	14,44
		AA905097		phospholamban	14.42
		AI685464	Hs.292638		14.40
		AA311443		Homo sapiens mRNA; cDNA DKFZp586E2317 (f	14.36
35		AB023199 AA126419	Hs.301632	KIAA0982 protein	14.36 14.32
		AW945992		immunoglobulin lambda tocus	14.31
		AW304028	Hs.300578		14.23
		W57550		Homo sapiens cDNA FLJ13181 fis, clone NT	14.22
40		AL049278		Homo sapiens mRNA; cDNA DKFZp564I153 (fr	14.22
40		BE242639 Al934365	Hs.75425	ubiquitin associated protein osteoglycin (osteoinductive factor, mime	14.22 14.22
		AW838616	115.105405	gb:RC5-LT0054-140200-013-D01 LT0054 Homo	14.22
		AW503398	Hs.210047		14.16
	406038	Y14443	Hs.88219	zinc finger protein 200	14.14
45	424909			cell division cycle 25B	14.07
		AW880709	Hs.283683		14.07
•		AI815831 AI745649	Hs.184378	ESTs, Weakly similar to T00066 hypotheti	14.05 14.02
	410020		Hs.728	ribonuclease, RNase A family, 2 (liver,	13.98
50		NM_002890	Hs.758	RAS p21 protein activator (GTPase activa	13.98
		AF145439	Hs.225946	chemokine (C-C motif) receptor 9	13.95
		BE159999		gb:QV1-HT0412-270300-123-d10 HT0412 Homo	13.90
	400125	AW406289	No neena	hypothetical protein	- 13.88
55		A1479094	Hs.170786		13.85 13.80
00		AA315158	110.170700	gb:EST186956 HCC cell line (matastasis t	13.80
	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
	458048			Homo sapiens cDNA: FLJ22050 fls, clone H	13.78
60		A1935400	Hs.217286		13.76
oo	454093 410889	AW860158 X91662	Hs.66744	gb:RC0-CT0379-290100-032-b04 CT0379 Homo twist (Drosophila) homolog (acrocephalos	13.75 13.74
		AI908236	11000144	gb:IL-BT166-180399-010 BT166 Homo sapien	13.72
		AW857913		gb:RCO-CT0323-231199-031-b05 CT0323 Homo	13.69
<i>C</i> 5		AW015238	Hs.128453	ESTs	13.67
65		AA365752	Hs.155965	ESIS	13.62
	402359 401044				13.60 13.53
		AW502498	Hs 157150	ESTs, Weakly similar to zinc finger prot	13.53
		AA329648	Hs.23804	ESTs	13.49
			-		

	430685	A1690234		ESTs, Weakly similar to reverse transcri	13.47
		AW578849		ESTs, Weakly similar to unnamed protein	13.46
		AW080339	Hs.211911		13.44
_		AI573283	Hs.38458	ESTs	13.44
5		H56389		gb:yt87c03.r1 Soares_pineal_gland_N3HPG	13.43
	402788	4.4000440	11a 440070	FOT	13.40
		AA886446	Hs.146278	E518	13.40 13.38
	405411	AW188574	Hs.24218	ECTo	13.34
10		AA132818		ESTs, Weakly similar to coded for by C.	13.33
10		AL043004		Human serine/threonine kinase mRNA, part	13.32
		Al074149		ESTs, Weakly similar to chondroitin 4-su	13.32
	403838				13.32
	427337	Z46223	Hs.176663	Fc fragment of IgG, low affinity IIIb, r	13.30
15	434318	AW207552		ESTs, Weakly similar to dJ134E15.1 [H.sa	13.28
		N41359	Hs.218107		13.28
		AW451101		ESTs, Moderately similar to hexokinase I	13.27
		AF043722		RAS guanyl releasing protein 2 (calcium	13.26
20		AA418850	Hs.44410		13.25 13.25
20	403851	NM_002984	HS./5/03	small inducible cytokine A4 (homologous	13.24
		W07492	Hs.157101	FSTc	13.21
		Al762836		ESTs, Moderately similar to ALU2_HUMAN A	13.21
		AB033113		KIAA1287 protein	13.20
25		R21966	Hs.57734		13.19
	439367	BE386844	Hs.248746	ESTs	13.17
	451957	A1796320	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL	13.16
		AA278362		Homo sapiens cDNA FLJ12334 fis, clone MA	13.14
20		BE262802	Hs.4909	dickkopf (Xenopus laevis) homolog 3	13.07
30		NM_001621		aryl hydrocarbon receptor	13.06
		AA155859	Hs.79708 Hs.26369		13.05 13.04
		BE387790 T99719		Homo sapiens cDNA: FLt22389 fis, clone H	13.03
		AW964806	Hs.38085		13.02
35		A1660552		ESTs, Weakly similar to A56154 Abi subst	13.00
		H20276	Hs.31742		13.00
		AL137466	Hs.97277	Homo sapiens mRNA; cDNA DKFZp434H1322 (f	12.99
	448172	N75276	Hs.135904		12.98
40		AA032197	Hs.102558		12.96
40		BE267154	Hs.125752		12.96
		NM_004354	Hs.79069		12.94 12.93
		AA015879 AW903830	Hs.33536	ESTs gb:CM4-NN1037-250400-155-h04 NN1037 Homo	12.93
		AW161319	Hs.12915		12.92
45		D63480		KIAA0146 protein	12.92
		NM_001259	Hs.38481	cyclin-dependent kinase 6	12.92
		AA534163	Hs.5476	serine protease Inhibitor, Kazal type, 5	12.90
	416098	H41324	Hs.31581	ESTs, Moderately similar to ST1B_HUMAN S	12.88
	424897	D63216	Hs.153684	frizzled-related protein	12.88
50		AU076649	Hs.76556	growth arrest and DNA-damage-inducible 3	12.88
		AA587775	Hs.66295	Homo sapiens HSPC311 mRNA, partial cds	12.84
		BE077084	11- 75500	gb:RC5-BT0603-220200-013-C07 BT0603 Homo	12.84
		NM_000878	Hs.75596	interleukin 2 receptor, beta	12.80
55		BE167229 BE265839	Hs.29206 Hs.12126	Homo sapiens clone 24659 mRNA sequence hepatocellular carcinoma-associated anti	12.80 12.78
33		U97018	Hs.12451	echinoderm microtubule-associated protei	12.78
		W26786	110.12-101	gb:15d7 Human retina cDNA randomly prime	12.77
		AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	12.76
	447769	AW873704	Hs.48764	ESTs	12.76
60	414478	Al306389	Hs.76240	adenylate kinase 1	12.76
		D83407		Down syndrome critical region gene 1-lik	12.68
		H85157	Hs.40696	ESTs	12.66
	405856	D. E. O. O. C.	11- 7000	b.b	12.66
65		BE267045	Hs.75064	tubulin-specific chaperone c	12.65
65	402802	AA889120	He 110027	Homeo box A10	12.62 12.62
		NM_001454	Hs.93974	forkhead box J1	12.62
	403137		. 1000017		12.60
		BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	12.57
		·		• • • •	

		AJ133123	Hs.20196	adenylate cyclase 9	12.56
		F07097	HS.300828	Homo sapiens mRNA full length insert cDN	12.54
	405236	AA071051		shamesans of Cimboson Sharklast (1997	12.52
5		AA767669	Hs.10242	gb:zm58e05.s1 Stratagene fibroblast (937 ESTs	12.47 12.47
,		AW978731	Hs.301824		12.44
		Al039201	Hs.54548	ESTs	12,42
		BE077546	Hs.31447	ESTs	12.42
		AW984111		gb:RC0-HN0007-160300-011-f09 HN0007 Homo	12.40
10		Al926047	Hs.162859		12.37
		M36564	Hs.64016	protein S (alpha)	12.36
		R96696	Hs.35598	ESTs	12.36
	451246	AW189232	Hs.39140	cutaneous T-cell lymphoma tumor antigen	12.36
		AL042615	Hs.15995	ESTs	12.35
15		AI348838	Hs.13073	ESTs	12.35
		Al307802	Hs.279551		12.34
		BE410734	11- 40004	gb:601301619F1 NIH_MGC_21 Homo sapiens c	12.29
		AL048542	Hs.16291	ESTs	12.28
20	401286		Us occcoz	FOT-	12.26
20		AW962845	Hs.256527	ESTs	12.24
		AW512260 Al984625	Hs.87767 Hs.9884	spindle pole body protein	12.24
		X64979	115.5004	gb:H.sapiens mRNA HTPCRX01 for olfactory	12,24 12,23
		AF249744	Hs.25951	Rho guanine nucleotide exchange factor (12.22
25		AW973653	Hs.20104	hypothetical protein FLJ00052	12.20
	405325			Typestelland product to books	12.20
		AA013140	Hs.115707	ESTs	12.18
		Y18264	Hs.120171		12.17
	439556	Al623752	Hs.163603	ESTs	12.16
30	443062	N77999	Hs.8963	Homo sapiens mRNA full length insert cDN	12.15
		AA250970		Homo sapiens cDNA: FLJ23107 fis, clone L	12.14
		AW836724		Homo sapiens mRNA expressed only in plac	12.11
		AA864968	Hs.127699		12.10
25		AF006809	Hs.82294	·	12.10
35		U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
		AW024937	Hs.29410	ESTS	12.02
		Al022813 Al222658	Hs.92679		11.96
		U29926	Hs.83918	ESTs, Weakly similar to la costa [D.mela adenosine monophosphate deaminase (isoto	11.95 11.94
40		Al990287	Hs.270798		11.93
		D11928	Hs.76845	phosphoserine phosphatase-like	11.92
		AW075485		phosphoserine aminotransferase	11.92
		R37257	Hs.184780		11.92
		AA343936		gb:EST49786 Gall bladder I Homo sapiens	11.90
45	434217	AW014795	Hs.23349	ESTs	11.90
		NM_004657	Hs.26530	serum deprivation response (phosphatidy)	11.90
		AF283777	Hs.116481	CD72 antigen	11.89
		AW386461		gb:PM4-PT0019-121299-004-F02 PT0019 Homo	11.89
50		AB011537		stit (Drosophila) homolog 1	11.82
<i>3</i> 0		Al074413	Hs.14220	•• · · · · · · · · · · · · · · · · · ·	11.80
	414341	D80004	Hs.75909	KIAA0182 protein	11.80
		AW450502	Hs.24218	ESTs	11.79
		BE247676	Hs.18442	E-1 enzyme	- 11.79 11.78
55		AF216751	Hs.26813	CDA14	11.76
		R23765	Hs.23575	ESTs	11.74
		NM_014363		spastic ataxia of Charlevoix-Saguenay (s	11.72
		AL048842	Hs.194019		11.72
	433037	NM_014158	Hs.279938	HSPC067 protein	11.72
60	447476	BE293466	Hs.20880		11.72
		BE245374	Hs.27842	hypothetical protein FLJ11210	11.72
		M60721	Hs.74870	H2.0 (Drosophila)-like homeo box 1	11.72
		NM_005578	Hs.180398	LIM domain-containing preferred transloc	11.69
65		BE548555		CGI-83 protein	11.68
us		AF097994	rts.30152B	L-kynurenine/alpha-aminoadipate aminotra	11.68
		AW752953	He 117107	gb:QV0-CT0224-261099-035-g02 CT0224 Homo Homo sapiens cDNA: FLJ23067 fis, clone L	11.67
		W28517 AI750878	Hs.87409	thrombospondin 1	11.66 11.64
	400557	A100010	. 1007740	managanum i	11.62
	100001			•	1142

	440400	DE453000	U- 70070	v-myc avian myelocytomatosis viral oncog	11.60
		BE157260			
	419047	AW952771	Hs.90043	ESTs	11.59
	420441	Al986160	Hs.88446	ESTs	11.59
	400885				11.57
5		AW502327		gb:UI-HF-BR0p-aka-a-07-0-UI.rl NIH_MGC_5	11.56
9	400802	MITOCOLI		gotorra briop and a or o our rangineo_o	11.56
		ADA 04004E	11- 5404	Tild decemble beneden	11.55
		NM_016045	Hs.5184	TH1 drosophila homolog	
	431449	M55994		tumor necrosis factor receptor superfami	11.55
	425928	S55736	Hs.238852	ESTs, Weakly similar to hypothetical pro	11.54
10		AA460479	Hs.4096	KIAA0742 protein	11.53
		Z42047		ESTs; KIAA0738 gene product	11.52
			Hs.290825		11.52
		AW964897			
		AA426080	Hs.98489		11.50
	433887	AW204232	Hs.279522	ESTS	11.50
15	414812	X72755	Hs.77367	monokine induced by gamma interferon	11.46
	457718	F18572	Hs.22978	ESTs	11.44
		AA453208		RAB9, member RAS oncogene family	11.42
				fibroblast growth factor 12	11.42
		AA131376			
~~		Al127958	Hs.83393		11.39
20		AW975944	Hs.237396		11.38
	449186	AW291876	Hs.196986	ESTs	11.37
	447861	A1434593	Hs.164294	ESTs	11.37
		R00028		gb:ye70a06.s1 Soares fetal liver spleen	11.36
		AI277652	Hs.54578		11.31
25		MIZ1100Z	115,34370	Lois	11.31
25	401163				
	430886	L36149		chemokine (C motif) XC receptor 1	11.28
	450784	AW246803	Hs.47289	ESTs	11.28
	452391	AL044829	Hs.29331	carnitine palmitoyltransferase I, muscle	11 <i>.</i> 27
		NM_014253	Hs.23796		11.26
30		AA075687		epidermal growth factor receptor substra	11.24
50					11.24
		W07411	ns.116212	ESTs, Moderately similar to ALU3_HUMAN A	
		H28383		gb:yl52c03.r1 Soares breast 3NbHBst Homo	11.24
	407335	AA631047	Hs.158761	Homo sapiens cDNA FLJ13054 fis, clone NT	11.23
	442501	AA315267	Hs.23128	ESTs	11.22
35		AJ237672	Hs 214142	5,10-methylenetetrahydrofolate reductase	11.21
23		R35398		gb:yg64g10.r1 Soares infant brain 1NIB H	11.20
			H- 20000		11.20
		X84908	Hs.78060		
		AV660122	Hs.282675		11.20
	452221	C21322	Hs.11577	ESTs	11.20
40	418261	W78902	Hs.293297	ESTs	11.17
	433332	AJ367347	Hs.127809	ESTs	11.16
		AW748078	Hs.214410		11.16
			1134 14410	gb:CM4-HT0137-220999-017-d11 HT0137 Homo	11.14
		BE142098	11- F0000		11.14
45		AB020725	HS.56009	KIAA0918 protein	
45	405601				11.13
	458332	A1000341	Hs.220491	ESTs	11.12
	427654	AA410183	Hs.137475	ESTs	11.12
		N77624	Hs 173717	phosphatidic acid phosphatase type 2B	11.10
		Al567669	Hs.287316		11.10
50					11.08
JU		AF030880		solute carrier family, member 4	
		AW104057	Hs.19193		11.07
	409208	Y00093	Hs.51077	integrin, alpha X (antigen CD11C (p150),	11.07
	457278	W92745	Hs.193324	ESTs	- 11.03
	407021	U52077		gb:Human mariner1 transposase gene, comp	11.02
55		AF055581	Hs.13131	lymphocyte adaptor protein	11.02
55		AW867079		gb:MR1-SN0033-120400-002-c10 SN0033 Homo	10.95
			Ue orneo	v-myc avian myelocytomatosis viral relat	10.95
		BE382701	Hs.25960		
		AW006969	Hs.6311	hypothetical protein FLJ20859	10.94
		AW591783	Hs.36131	collagen, type XIV, alpha 1 (undulin)	10.94
60	421562	AA530994	Hs.105803	ghrelin precursor	10,92
-		AW246428	Hs.75355	ubiquitin-conjugating enzyme E2N (homolo	10.92
	400132				10.92
			Lie Steam	ESTs	10.90
		AA443966	Hs.31595		
65		NM_000328		retinitis pigmentosa GTPase regulator	10.88
65		D85782	Hs.3229	cysteine dioxygenase, type I	.10.88
	429842	Al366213	Hs.173422	KIAA1605 protein	10.87
	412405	AW948126		gb:RC0-MT0013-280300-031-a12 MT0013 Homo	10.85
	400615			-	10.80
		BE245277	He 154108	E4F transcription factor 1	10.80
	-EU010	West 1			

	456011	BE243628		gb:TCBAP1D1053 Pediatric pre-B cell acut	10.79
		BE176862		gb:RC4-HT0587-170300-012-a04 HT0587 Homo	10.74
		BE218418	Hs.201802		10.73
5		AW803564	Hs.288850		10.72
)		AW377314	Hs.5364	DKFZP564I052 protein	10.70
		Al383497 R40978		ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs, Moderately similar to ALU1_HUMAN A	10.70 10.70
		AA694070	Hs.268835		10.78
		NM_006558	Hs.13565		10.68
10		U24578		complement component 4A	10.66
		AW863261	Hs.15036		10.64
	420090	AA220238	Hs.94986		10.64
	451593	AF151879	Hs.26706		10.62
1.5		AF075031	Hs.29327		10.62
15		AW080953		gbxx28c12.x1 NCI_CGAP_Co18 Homo sapiens	10.61
		AL359652		Homo sapiens EST from clone DKFZp434A041	10.58
		AA715328	Hs.291205		10.57
		AA128423 D50918	Hs.90998	calpain 3, (p94) KIAA0128 protein; septin 2	10.57 10.56
20		R10184		ESTs, Weakly similar to ALU1_HUMAN ALU S	10.56
20		Al142350	Hs.146735		10.55
		AA178955	Hs.271439		10.54
		AW248508	Hs.279727		10.52
	406577			•	10.52
25	408405	AK001332	Hs.44672	hypothetical protein FLJ10470	10.51
		AF059214	Hs.194687	cholesterol 25-hydroxylase	10.50
	400880				10.48
		AA894876	Hs.5687	protein phosphatase 1B (formerly 2C), ma	10.48
30		BE005346	Hs.116410		10.46
JU		AA609784 Al638418	Hs.21745	major histocompatibility complex, class ESTs	10.44 10.44
		U76421	Hs.85302		10.44
		AW500239	Hs.21187	Homo sapiens cDNA: FLJ23068 fis, clone L	10.44
		Al909154	11021101	gb:QV-BT200-010499-007 BT200 Homo sapien	10.44
35		Y18418	Hs.272822	RuvB (E coll homolog)-like 1	10.44
	413822	R08950	Hs.272044	ESTs, Weakly similar to ALU1_HUMAN ALU S	10.42
	437446	AA788946		ESTs, Moderately similar to CA1C RAT COL	10.41
		NM_003878	Hs.78619		10.41
40		NM_003500	Hs.9795	acyl-Coenzyme A oxidase 2, branched chai	10.40
40		AW150717		STAT induced STAT inhibitor 3	10.38
		AA160000 AW505086	Hs.137396		10.37 10.36
		AB011151		minor histocompatibility antigen HA-1 KIAA0579 protein	10.34
		AW067805		methylenetetrahydrofolate dehydrogenase	10.34
45		NM_000030		alanine-glyoxylate aminotransferase homo	10.33
		T93096	Hs.17126		10.32
		NM_014324		alpha-methylacyl-CoA racemase	10.31
		AW960597	Hs.30164		10.30
=0		AW022715		ESTs, Weakly similar to ALU4_HUMAN ALU S	10.30
50		AA172106	Hs.110950	Rag C protein	10.30
	406189	414144400	11- 444044	ODO4# (self-fill-translate (F. O seconda	10.29
		AW411307		CDC45 (cell division cycle 45, S.cerevis	10.26
		AA172106 T89832	Hs.170278	Rag C protein	- 10.26 10.26
55				Lysosomal-associated multispanning membr	10.24
JJ				colony stimulating factor 1 receptor, fo	10.24
	401384		***************************************	one of the state o	10.23
		D13168	Hs.82002	endothelin receptor type B	10.22
	426928	AF037062		retinol dehydrogenase 5 (11-cisand 9-cis	10.21
60		Al684746	Hs.119274		10.20
		Al364997		ESTs	10.20
		BE243026		KIAA0246 protein	10.19
		AA757196	Hs.121190	ESIS	10.19
65	403690	BE152393		gb:CM2-HT0323-171199-033-a08 HT0323 Homo	10.17 10.16
J		AA305599	He 23R20E	hypothetical protein PRO2013	10.16
		AW975009	Hs.292274	ESTs	10.16
		Z68128		Rho GTPase activating protein 4	10.16
		Al288430	Hs.64004		10.14

				•		
		AW084176	Hs.223296			10.14
		AI245701	Un 170001	gb:qk31f05.x1 NCi_CGAP_Kid3 Homo sapiens		10.13
•		AA626142 A)174603		ESTs, Weakly similar to KPCE_HUMAN PROTE		10.13
5		A1038989	Hs.24809	enolase 1, (alpha) hypothetical protein FLJ10826		10.12 10.12
•		NM_006056	110.24003	hypothetical protein i to toozo		10.12
		AA807346	Hs.288581	Homo sapiens cDNA FLJ14296 fis. clone PL		10.11
		AW118822	Hs.128757			10.10
		AW014605	Hs.179872	ESTs		10.10
10	417308	H60720	Hs.81892	KIAA0101 gene product		10.09
		Al204266	Hs.179303			10.05
		Al433833		ESTs, Weakly similar to ALU1_HUMAN ALU S		10.04
		BE614599		H.saptens gene from PAC 42616, similar t		10.04
15		BE552368 AA329796	Hs.1098	Homo sapiens cDNA FLJ13445 fis, done PL DKFZp434J1813 protein		10.04
13		AW206373		Homo sapiens cDNA: FLI21721 fis, clone C		10.02 10.00
		X58528		ATP-binding cassette, sub-family D (ALD)		10.00
		NM_016098		HSPC040 protein		10.00
		M90516	Hs.1674	glutamine-fructose-6-phosphate transamin		10.00
20	452039	Al922988	Hs.172510			10.00
	434673	AW137442	Hs.136965	ESTs		10.00
		AA418280		Homo saplens cDNA: FLI22439 fis, clone H		10.00
		BE501815	Hs.198011			9.99
25		AA425310	Hs.155766			9.98
25		A1147652		Homo sapiens clone HH409 unknown mRNA		9.98
		N72394 M62505	Hs.44862 Hs.2161	_		9.96 9.96
		AB028945	Hs.12696	complement component 5 receptor 1 (C5a I contactin SH3 domain-binding protein		9.96
		AW009605	Hs.231923			9.96
30		AW474513		ESTs, Weakly similar to 848013 proline-r		9.94
		AA704703	Hs.77031	Sp2 transcription factor		9.94
		T59538		gb:yb65g12.s1 Stratagene ovary (937217)		9.94
		BE276115		ESTs, Weakly similar to CA13_HUMAN COLLA		9.93
25		AA033813	Hs.79018			9.92
35		AF010258		homeo box A9		9.92
		AW975531		minichromosome maintenance deficient (S.		9.92
		AW192307 AA481003	Hs.80042 Hs.97128			9.90 9.90
		D87450		KIAA0261 protein		9.90
40		AW976507	Hs.293515			9.90
		AW972187		hypothetical protein FLJ22215		9.89
		NM_005291		G protein-coupled receptor 17		9.88
		AI097570	Hs.71222			9.87
45		AW801383		H.sapiens mRNA for ribosomal protein L18		9.86
45		Al278802	Hs.25661	ESTS		9.85
		AW117416	Hs.245484			9.85
		AL043002 Al962552	Hs.226765	ESTs, Moderately similar to unnamed prot		9.84 9.84
		Al267652		Homo sapiens mRNA; cDNA DKFZp434E082 (fr		9.82
50		AF026273		Interleukin-1 receptor-associated kinase		9.82
		AW894667		chimerin (chimaerin) 1		9.80
		Al792888	Hs.145489			9.80
	437159	AL050072		gb:Homo sapiens mRNA; cDNA DKFZp566E1346	•	9.75
		D13635	Hs.155287	KIAA0010 gene product		9.74
55		N67619	Hs.43687			9.74
		Al590401	Hs.21213			9.73
		Al381659 AW748265	Hs.267086			9.72
		AVV/46265 AL120659		flavohemoprotein b5+b5R KIAA0307 gene product		9.72 9.72
60		AA807228	Hs.225161			9.72
		AA311152		ESTs; Weakly similar to KIAA0226 [H.sapi		9.72
		Al289619	Hs.13040			9.72
		AK001451		CD2-associated protein		9.70
	446896	T15767	Hs.22452	Homo sapiens cDNA: FLJ21084 fis, clone C		9.70
65		AW977540	Hs.269254			9.70
	423301		Hs.1645	cytochrome P450, subfamily IVA, polypept		9.67
		AW118645	Hs.160004			9.67
		Al393657 AF061871	Hs.159750	collagen, type XII, alpha 1		9.66
	46 1044	AFU010/1	113.101002	massart isha viit aihira 1		9.66

	414726	BE466863	Hs.280099	ESTs		9.66
		R91679	Hs.124981			9.66
	433480	X02422		immunoglobulin lambda locus		9.65
_	441530	Al248301	Hs.127112			9.65
5	433533	D53304	Hs.65394	ESTs		9.65
	421470	R27496	Hs.1378	annexin A3		9.64
		C05569		hypothetical protein FLJ13057 similar to		9.64
		AA488101		inactivation escape 1		9.62
10		AA007534	Hs.125062			9.62
10		AW063190	Hs.279101	ESTS		9.61
	406554	A A 0.7770077	11- 070400	FMT-		9.60
		AA377607 AW392394	Hs.273138			9.58 9.58
		AK001578		KIAA0064 gene product hypothetical protein FLJ10716		9.58
15		Al494332	Hs.196963			9.58
		AL117474		Homo sapiens mRNA; cDNA DKFZp727C191 (fr		9.56
		AV659151	Hs.282961			9.56
		BE242623	Hs.31939	manic fringe (Drosophila) homolog		9.55
	423545	AP000692	Hs.129781	chromosome 21 open reading frame 5		9.54
20		BE266134	Hs.76927	translocase of outer mitochondrial membr		9.54
		AW807057		gb:MR4-ST0062-031199-018-b03 ST0062 Homo		9.52
		NM_005574		LIM domain only 2 (rhombotin-like 1)		9.52
	427308			KIAA0033 protein		9.52
25		NM_004573 AW295389	Hs.994 Hs.119768	phospholipase C, beta 2		9.51 9.51
23		AA742181		Homo sapiens cDNA: FLJ22199 fis, done H		9.50
	416959			ubiquitin-conjugating enzyme E2A (RAD6 h		9.50
		AA094538	Hs.6588	ESTs		9.50
		AA833902	Hs.270745			9.48
30	449375	R07114	Hs.271224	ESTs		9.48
	436357	AJ132085		gb:Homo sapiens mRNA for axonemal dynein		9.44
		AW137726		ESTs, Moderately similar to laminin alph		9.44
		AW450584	Hs.192131	ESTs, Weakly similar to RIBB [H.sapiens]		9.43
35	404741	NIA COLICO	Us 440007			9.43
33	403708	NM_005428	IIS.11023/	vav 1 oncogene		9.43 9.42
		AW847814	He 289005	Homo sapiens cDNA: FLJ21532 fis, clone C		9.42
	417380		1 1020000	gb:EST04698 Fetal brain, Stratagene (cat		9.42
		AA354690	Hs.144967			9.42
40	426197	AA004410	Hs.167835	acyl-Coenzyme A oxidase 1, palmitoyi		9.42
	452624	AU076606	Hs.30054	coagulation factor V (proaccelerin, labi		9.42
		AW893569		gb:RC0-NN0021-040400-021-c10 NN0021 Homo		9.41
		AA361623		Homo sapiens cDNA FLJ13900 fis, clone TH		9.41
45		AW968504		CDC2-related protein kinase 7		9.40
43		AA360328	Hs.865 Hs.78934	RAP1A, member of RAS oncogene family		9.40 9.40
	415947	BE262745	ПS.70934	mutS (E. coli) homolog 2 (colon cancer, gb:601153869F1 NIH_MGC_19 Homo sapiens c		9.39
		AI689987	Hs 177669	ESTs, Weakly similar to RMS1_HUMAN REGUL		9.39
		BE514362		FK506-binding protein 3 (25kD)		9.39
50	402835					9.38
	404632					9.38
	446566	H95741	Hs.17914	Homo sapiens cDNA: FLJ22801 fis, clone K		9.37
		AW903533		gb:CM1-NN1031-060400-178-d05 NN1031 Homo	•	9.37
55		AI095087		ESTs, Moderately similar to ALU5_HUMAN A		9.36
55		Al420611	Hs.127832			9.36
		BE258532 AA283981		CTP synthase prostaglandin E receptor 4 (subtype EP4)		9.34 9.33
	407061		110.100240	gb:H.sapiens PTX3 gene promotor region.		9.33
		BE616731	Hs.80645	interferon regulatory factor 1		9.33
60		AW875443	Hs.22209	secreted modular calcium-binding protein		9.33
		AA693960	Hs.103158	ESTs		9.33
		BE513731		Human DNA sequence from clone 967N21 on		9.32
		AA033699	Hs.83938	ESTs, Moderately, similar to MASP-2 [H.sa		9.32
65		NM_007274	Hs.8679	cytosolic acyl coenzyme A thioester hydr		9.32
65		Al300555	rts.288158	Homo sapiens cDNA: FLJ23591 fis, clone L		9.32 9.32
	403237	AW025529	He 230812	ESTs, Weakly similar to CALM_HUMAN CALMO		9.31
		AW976410		Homo sapiens cDNA: FLJ21016 fis, done C		9.30
	419066		Hs.6975	PRO1073 protein		9.30
				•		

		AW167128	Hs.231934	ESTs	9.30
	405125				9.30
		AW499566 Al191811	Hs.54629	gb:Ul-HF-BR0p-aji-h-03-0-Ul.r1 NIH_MGC_5 ESTs	9.28 9.28
5		AF000652	Hs.8180	syndecan binding protein (syntenin)	9.27
-		AJ250839	Hs.58241		9.26
		AW013907		ESTs, Moderately similar to predicted us	9.26
		AF164142	Hs.82042		9.25
10		D29642	Hs.1528	KIAA0053 gene product	9.25
10		AA281279	Hs.23317		9.24
		AF274571 BE395035		ESTs; Weakly similar to DEOXYRIBONUCLEAS ESTs, Weakly similar to KIAA0874 protein	9.24 9.24
	402585		115.155005	ES15, Weakly Sillinal to NIPADO74 protein	9.24
		AA280700		gb:zs95h11.s1 NCL_CGAP_GCB1 Homo sapiens	9.23
15		AA431791	Hs.183001		9.22
	411630	U42349	Hs.71119	Putative prostate cancer tumor suppresso	9.22
		AW582962		ESTs, Highly similar to AF151805 1 CGI-4	9.20
		BE514514		coronin, actin-binding protein, 1A	9.19
20		AL039185 Al206589	Hs.116243	thyroid hormone receptor interactor 7	9.18 9.17
20		U61412		PTK6 protein tyrosine kinase 6	9.17
		H55709	Hs.2250		9.16
		AW080356	Hs.293684	ESTs, Weakly similar to alternatively sp	9.15
~~		BE182082	Hs.246973		9.14
25		AA528402		activated RNA polymerase II transcriptio	9.14
		AW151660 U54727	Hs.31444 Hs.191445		9.14 9.14
		Al911527	Hs.11805		9.14
		BE075281	113.11000	gb:PM1-BT0585-290200-005-d07 BT0585 Homo	9.12
30		Z99716	Hs.75372	N-acetylgalactosaminidase, alpha-	9.12
		BE221533	Hs.257858		9.12
		AA810021	Hs.136906		9.12
		M24283 AA402307		Intercellular adhesion molecule 1 (CD54) ubiquinol-cytochrome c reductase hinge p	9.11
35		AA913736	Hs.126715		9.10 9.10
-		NM_014720		Ste20-related serine/threonine kinase	9.10
		AF086534		ESTs, Moderately similar to ALU1_HUMAN A	9.10
		C19035	Hs.164259		9.09
40		M88700 - AW190920	Hs.150403 Hs.19928	dopa decarboxylase (aromatic L-amino aci ESTs	9.08 9.08
70		T68073		serine (or cysteine) proteinase inhibito	9.08
		Al624436	Hs.194488		9.07
		BE328153	Hs.240087	ESTs	9.06
45		R71543	Hs.18713		9.05
45		AA065131 BE300091		ESTs, Weakly similar to ALU7_HUMAN ALU S hypothetical protein FLJ12969	9.05 9.04
		AW369351		Homo sapiens cDNA FLJ13090 fis, clone NT	9.04
		Al174947		Homo sapiens mRNA: cDNA DKFZp564D1164 (f	9.04
	432012	AW301344	Hs.195969		9.04
50		AU076730		kinesin 2 (60-70kD)	9.02
		BE386750	Hs.86978		9.02
		M81590 AA326108	Hs.53631	5-hydroxytryptamine (serotonin) receptor	9.02 - 9.02
		BE622585	Hs.3731	ESTs	9.02
55		AW572659	Hs.261373	adenosine A2b receptor pseudogene	9.01
		R99876	Hs.269882	ESTs .	9.01
		AW972330		triggering receptor expressed on myeloid	9.01
		AW295840 AB008681	Hs.14555 Hs.23994	Homo sapiens cDNA: FLJ21513 fis, clone C activin A receptor, type IIB	9.00 9.00
60		AA902386	Hs.286	ribosomal protein L4	8.99
		AW341130		ESTs, Moderately similar to FGFE_HUMAN F	8.99
	421326	AF051428	Hs.103504	estrogen receptor 2 (ER beta)	8.97
		AA883316	Hs.255221		8.96
65		BE000707	Hs.29567	ESTs	8.96
U J		AI051313 BE614387	Hs.143315 Hs.47378	ESTs	8.96 8.96
		Al084125		transcription factor	8.95
	438707		Hs.5326	porcupine	8.95
	402240				8.95

	444152	Al125694	Hs.149305	Homo sapiens cDNA FLJ14264 fis, clone PL	8.95
		AW501758		gb:UI-HF-BR0p-ajm-c-09-0-UI.r1 NIH_MGC_5	8.94
				<u>v</u> = =	
	416277	W78765	Hs.73580	ESTs	8.94
	456697	AI908006	Hs.111334	ferritin, light polypeptide	8.94
5					8.92
J		AF226053		HSKM-B protein	
	412942	AL120344	Hs.75074	mitogen-activated protein kinase-activat	8.92
	442320	Al287817	Hs.129636	FSTs	8.92
					8.91
		AA002064	Hs.18920		
	411486	N85785	Hs.181165	eukaryotic translation elongation factor	8.90
10	437916	BE566249	Hs.20999	Homo sapiens cDNA: FLJ23142 fis, clone L	8.90
10					
		AA257161	Hs.8658	hypothetical protein DKFZp434E0321	8.89
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	8.89
	411490	AW849292		gb:lL3-CT0215-020300-090-E06 CT0215 Homo	8.89
			U- 0000F0		
		AW971228	Hs.290259		8.89
15	414922	D00723	Hs.77631	glycine cleavage system protein H (amino	88.8
	418036	Z37976	Hs.83337	latent transforming growth factor beta b	8.87
	406422		-	•	8.87
			11- 404540	.t C	
	422926	NM_016102	HS.121/48	ring finger protein 16	8.87
	435220	D50030	Hs.104	HGF activator	8.86
20		X54942	Hs.83758	CDC28 protein kinase 2	8.86
20					
	418613	AA744529	Hs.86575	mitogen-activated protein kinase kinase	8.85
	439250	H66566	Hs.271711	ESTs	8.85
		AA076049		Homo sapiens cDNA FLJ10229 fis, clone HE	8.84
	450000	Al952797	Hs.10888	.Homo sapiens cDNA: FLJ21559 fis, clone C	8.83
25	425657	T89839	Hs.119471	ESTs	8.83
		U51333		hexokinase 3 (white cell)	8.82
	419972	AL041465		ESTs, Moderately similar to ALU2_HUMAN A	8.82
	436396	Al683487	Hs.299112	Homo sapiens cDNA FLJ11441 fis, clone HE	8.82
		D82520		Homo sapiens cDNA FLJ10952 fis, clone PL	8.82
20					
30		AA435997	Hs.104930		8.82
	415839	R40611	Hs.137565	ESTS	8.81
	419553	N34145	Hs.250614	ESTs	8.80
		AW043637	Hs.21766		8.80
~ ~		A1952677		Homo sapiens mRNA; cDNA DKFZp434P228 (fr	08.8
35	447965	AW292577	Hs.94445	ESTs	8.80
	450172	BE063380		gb:PM0-BT0275-291099-002-g10 BT0275 Homo	8.80
		DE00000		30. HIS DIOCIO ED 1000 DOL 810 DIOCIO HOMO	8.78
	403259				
	411534	AW850473		gb:IL3-CT0219-280100-061-B11 CT0219 Homo	8.78
	456161	BE264645	Hs.282093	Homo sapiens cDNA: FLJ21918 fis, clone H	8.77
40		AA331881	Hs.75454	peroxiredoxin 3	8.76
40		MA331001	HS./ 3434	heioynegowii a	
	401744				8.76
	42534R	AL137477	Hs.155912	cadherin-like 24	8.76
		Al382555		bromodornain-containing 1	8.75
	450649	NM_001429	HS.297722	Human DNA sequence from clone RP1-85F18	8.75
45	408331	NM_007240	Hs.44229	dual specificity phosphatase 12	8.74
		AB020316		uronyl 2-sulfotransferase	8.74
	424906	AI566086		Homo sapiens mRNA for Hmob33 protein, 3	8.74
	427596	AA449506	Hs.179765	Homo sapiens mRNA; cDNA DKFZp586H1921 (f	8.73
	432488	AA551010	Hs.216640	ESTs	8.72
50				Homo sapiens mRNA; cDNA DXFZp434P1018 (f	8.72
JU		AL137527			
	429455	Al472111	Hs.292507	ES18	8.71
	429855	AW385597	Hs.138902	ESTs, Weakly similar to B34087 hypotheti	8.71
		H59955	Hs.127829		- 8.70
	411945	AL033527		v-myc avian myelocytomatosis viral oncog	8.70
55	413492	D87470	Hs.75400	KIAA0280 protein	8.70
	435706	W31254	Hs.7045	GL004 protein	8.70
			Hs.159343		8.70
		AA609019			
	426340	Z97989	Hs.169370	FYN oncogene related to SRC, FGR, YES	8.69
	422779	AA317036	Hs.41989	ESTs	8.67
60		Al225235		Homo saplens cDNA: FLJ23231 fis, clone C	8.67
UU					
		AA811813	Hs.119421		8.66
	420235	AA256756	Hs.31178	ESTs	8.66
		NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	8.66
		BE244076		Homo sapiens mRNA for FLJ00020 protein,	8.65
65					
0.1	AT LAND	BE246449	Hs.2157	Wiskott-Aldrich syndrome (eczema-thrombo	8.64
00				41 DNIA DO MARAGO C1 MT	8.64
00		W68180	Hs.259855	Homo sapiens cuna HLJ125U/ IIS, cione N I	0.04
05	418033			Homo sapiens cDNA FLJ12507 fis, clone NT splicing factor 3b, subunit 3, 130kD	
00	418033 429084	AJ001443	Hs.195614	splicing factor 3b, subunit 3, 130kD	8.64
00	418033 429084 417094	AJ001443 NM_006895	Hs.195614 Hs.81182	splicing factor 3b, subunit 3, 130kD histamine N-methyltransferase	8.64 8.64
	418033 429084 417094	AJ001443	Hs.195614 Hs.81182	splicing factor 3b, subunit 3, 130kD	8.64

	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.63
	410879	AW795196		ring finger protein 14	8.63
		BE242803		hypothetical protein FLJ10326	8.62
		DEZ42003	113.202023	Hypothesical protein i co rocco	8,62
-	401851			•	8.62
5	401866				
	407783	AW996872		a disintegrin and metalloproteinase doma	8.62
	408242	AA251594	Hs.43913	PIBF1 gene product	8.62
	422250	AW408530	Hs.113823	ClpX (caseinolytic protease X, E. coli)	8.62
		BE550182		RalGEF-like protein 3, mouse homolog	8.62
10		Al831594	Ha 60647	ESTs, Weakly similar to ALU7_HUMAN ALU S	8.62
10			HS.00047		8.60
		AW749617		gb:RC3-BT0502-130100-012-g07 BT0502 Homo	
		A1767756	Hs.82302		8.60
	429328	AA829402	Hs.47939		8.60
	451491	Al972094	Hs.286221	Homo sapiens cDNA FLJ13741 fis, clone PL	8.60
15	452561	Al692181	Hs.49169	KIAA1634 protein	8.60
		AF009746		ATP-binding cassette, sub-family D (ALD)	8.60
		X54136		immunogiobulin lambda locus	8.60
					8.60
		U91939	TIS.240123	G protein-coupled receptor 25	8.59
••	405074				
20	437991	Al479773	Hs.181679		8.59
	436346	BE328882	Hs.193096	ESTs, Moderately similar to U119_HUMAN U	8.58
	411079	AA091228		gb:cchr2152.seq.F Human fetal heart, Lam	8.57
		BE379749	Hs 85201	C-type (calcium dependent, carbohydrate-	8.56
		AL008637		neutrophii cytosolic factor 4 (40kD)	8.56
25			Hs.195641		8.56
25		AW947164		T-1::-	8.55
		AW204272	Hs.199371		
	431180	H55883		gb:yq94h03.r1 Soares fetal liver spleen	8.54
	445988	BE007663	Hs.13503	Inactivation escape 2	8.54
	405876				8.54
30	407235	D20569	Hs.169407	SAC2 (suppressor of actin mutations 2, y	8.54
50		Al738616	He 77349	hydroxyprostaglandin dehydrogenase 15-(N	8.54
				tunatic fringe (Drosophila) homolog	8.54
٠		AF193612	Hs.212715		8.54
		AW082633			8.53
0.5		AA446183	Hs.91885		8.52
35		A1955765	Hs.146907		
	415102	M31899	Hs.77929	excision repair cross-complementing rode	8.51
	405552				8.51
	418068	AW971155	Hs.293902	ESTs, Weakly similar to prolyl 4-hydroxy	8.50
	420133	AA426117	Hs.14373	ESTs	8.50
40	4388R7	R68857	Hs.265499	ESTs	8.50
		AI765890	Hs 16341	ESTs; Moderately similar to IIII ALU SUB	8.50
		AV659397	Hs.282948		8.50
			113.202.570	gb:CM3-NT0090-040500-173-b02 NT0090 Homo	8.50
		AW891873	11- 400770		8.48
45		Al927288	Hs.196779		8.48
45		AA279098	Hs.187636		
	429303	AW137635	Hs.44238	ESTS	8.48
	450624	AL043983	Hs.125063	Homo sapiens cDNA FLJ13825 fis, clone TH	8.48
	452573	Al907957	Hs.287622	Homo sapiens cDNA FLJ14082 fis, clone HE	8.48
		AA229126		N-myristoyitransferase 2	8.48
50		AA593731	He 75613	CD36 antigen (collagen type I receptor,	8.47
50			LIA 4EEDAT	ESTs, Weakly similar to ALU1_HUMAN ALU S	8,46
		AL038704	FIS. 10002/	ESTS, VIERNY SEIMEN & ALD I_ TOWNER ALD S	8.46
		AL080276	MS.268562	regulator of G-protein signalling 17	
	400268				8.48
	421828	AW891965	Hs.289109	dimethylarginine dimethylaminohydrolase	8.45
55	417022	NM_014737	Hs.80905	Ras association (RalGDS/AF-6) domain fam	8.44
	421029	AW057782	Hs.293053	ESTs	8.44
		AW732240	Hs.300615	ESTs	8.44
		AI814302		gb:wj71c12.x1 NCI_CGAP_Lu19 Homo sapiens	8.42
	406006			80ml. (6.5mm - 7 = mm - 1 = mm - 1	8.42
60			Hs.293982	ECTe	8.42
UU		AW971239			8.42
		AB014540	⊓S. 153020	SWAP-70 protein	
		AW136083		ESTs, Weakly similar to S59501 interfero	8.42
	448043	Al458653	Hs.201881	ESTS	8.41
	407183	AA358015		gb:EST66864 Fetal lung III Homo sapiens	8.40
65		AW978439	Hs.69504	ESTs	8.40
		AA013051	Hs.91417		8.40
		AW972830		gb:EST384925 MAGE resequences, MAGL Homo	8.40
		AA305688	Hs 267605	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	8.40
		AI521310	He SESSE	ESTs, Weakly similar to ALU5_HUMAN ALU S	8.40
	4500002	AUE IOIU	1 13,200000		

	447685	AL122043	Hs.19221	hypothetical protein DKFZp566G1424	8.40
	459119	AW844498	Hs.289052	Homo saplens LENG8 mRNA, variant C, part	8.38
	400817			,,,	8.37
		BE245297		gb:TCBAP1E2482 Pediatric pre-B cell acut	8.37
5					8.36
J		AA071267	11. 44904	gb:zm61g01.r1 Stratagene fibroblast (937	
		BE047779	Hs.44701	ESTs	8.36
		X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
	408327	AW182309	Hs.249963	ESTs, Highly similar to dJ1170K4.4 [H.sa	8 .3 5
	403976				8.34
10	448064	AA379036		gb:EST91809 Synovial sarcoma Homo sapien	8.33
		AW188551	Hs.99519	Homo sapiens cDNA FLJ14007 fis, clone Y7	8.33
		AW997704	Hs.11493		8.32
				Homo sapiens PRO1550 mRNA, partial cds	8.32
		AF119847			
15		AW937670	Hs.254379		8.32
15		NM_015698	Hs.100391		8.30
		T70298		gb:yd26g02.s1 Soares fetal liver spleen	8.30
	416852	AF283776	Hs.80285	Homo sapiens mRNA; cDNA DXFZp586C1723 (f	8.30
	430676	AF084866		gb:Homo sapiens envelope protein RIC-3 (8.30
		Al732694	Hs.98520	ESTs	8.29
20		AW194962	Hs.199028	ESTs	8.29
		BE266695		gb:601190242F1 NIH_MGC_7 Homo sapiens cD	8.29
	404946	DL200000		Spront torract the Timeo Time or or or	8.28
		A COC 4000	U- 400E40	Automore O	8.28
		AF054839		tetraspan 2	
05		AA037675	Hs.152675		8.28
25		AA744488	Hs.132842	ESTs, Moderately similar to ALU1_HUMAN A	8.28
	443907	AU076484	Hs.9963	TYRO protein tyrosine kinase blinding pro	8. 2 7
	401930	AF106069	Hs.23168	ubiquitin specific protease 15	8.26
	446554	AA151730	Hs.301789	ESTs, Weakly similar to similar to C.ele	8.26
		AB007918		KIAA0449 protein	8.25
30		AA974411	Hs.18672	ESTs	8.25
50		AW958264		ESTs, Weakly similar to TRHY_HUMAN TRICH	8.24
		AI963740	Hs.46826	ESTs	8.24
		AW020782	Hs.79881	Homo sapiens cDNA: FLJ23006 fis, clone L	8.24
05		D87682		KIAA0241 protein	8.24
35		U63830		TRAF family member-associated NFKB activ	8.24
	442604	BE263710	Hs.279904		8.22
	442992	Al914699	Hs.13297	ESTs	8.22
	427210	BE396283	Hs.173987	eukaryotic translation initiation factor	8. 2 2
	457229	BE222450	Hs.266390	ESTs	8.21
40		AA330214		gb:EST33935 Embryo, 12 week II Homo sapi	8.21
. •		AA888624	Hs.19121		8.20
		AA835868		Homo sapiens cDNA: FLJ20935 fis, clone A	8.20
		R40739	Hs.21326	ESTs	8.20
				— · · ·	8.20
45		W25760	Hs.77631		8.20
43		AU077143		minichromosome maintenance deficient (S.	
		AV654978	Hs.19904		8.19
		A1828596	Hs.250691		8.18
	423218	NM_015896		BLu protein	/ 8.18
	425397	J04088	Hs.156346	topoisomerase (DNA) il alpha (170kD)	8.18
50	406964	M21305	Hs.247946	Human alpha satellite and satellite 3 ju	8.18
	402401	U42349	Hs.71119	Putative prostate cancer tumor suppresso	8.18
		NM_001838	Hs.1652	chemokine (C-C motif) receptor 7	8.18
		AL133017	Hs.2210	thyroid hormone receptor interactor 3	- 8.17
	401519	712.0001.		aryrota riollitorio rosopial alactical	8.17
55		UCE AND	Hs.17631	Homo sapiens cDNA FLJ20118 fis, clone CO	8.16
JJ		H65423			
		AI263293	ns. 152090	cytochrome P450, subfamily IIJ (arachido	8.16
		AJ278120	Hs.4996	DKFZP564D166 protein	8.14
		AW885606	Hs.5064	ESTs	8.14
		AA278536	Hs.23262	ribonuclease, RNase A family, k6	8.14
60	453124	Al139058	Hs.23296	ESTs	8.14
	442812	Al018406	Hs.131284	ESTs	8.14
	421129	BE439899	Hs.89271	ESTs	8.14
	-				

TABLE 9A shows the accession numbers for those primekeys lacking a unigeneID in Table 9. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

```
10
        Pkey:
                            Unique Eos probeset identifier number
        CAT number:
                            Gene cluster number
        Accession:
                            Genbank accession numbers
15
        Pkey
               CAT number Accession
        408057 1035720_-1
                            AW139565
        408069 103655_1
                            H81795 Z42291 R20973 AA046920
        408182
               104479_1
                            AAD47854 AAD57506 AAO53841
20
        408338 1052148_1
                           AW867079 AW867086 AW182772
        408828 108463_1
                            BE540279 AW410659 AA057857 R77693 BE278674
        409126 110159_1
                           AA063426 AW962323 AW408063 AA063503 AA772927 AW753492 BE175371 AA311147
        409292 111586 1
                            AA071051 AA070584 AA069938 AA102136 AA074430
        409314 111841_1
                            AA070266 AA084957 AA126998
25
        409385 112523_1
                            AA071267 T65940 T64515 AA071334
                           AW386461 AW876408 AW386672 AW386599 AW876258 AW386619 AW386289 AW876136 AW876203 AW876213 AW876301
        409398 1126716_1
                            AW876295 AW876349 AW876365 AW876160 AW876369 AW876352 AW876271
                           AA076769 AA076781 Al087968
        409671 114731_1
                           AW499566 AW502378 AW499522 AW502046 AW502671 AW501917 AW501868 AW501721 AW502813
        409768 1154035_1
30
        409841 1156088_1
                           AW502139 AW502432 AW502235 AW501683 AW502647
        409842 1156119_1
                           AW501756 AW502096 AW502465 AW501715
               1156226_1
                           AW502327 AW502488 AW501829 AW502625 AW502687
        409853
        410531 1207200_1
                           AW752953 H88044 BE156092
        410688
               1216101_1
                           AW796342 AW796356 BE161430
35
                           AW807057 AW807054 AW807189 AW807193 AW807369 AW807429 AW807364 AW807365 AW807078 AW807256 AW807180
        410846 1223902_1
                            AW807331
        410896 1226053_1
                           AW809637 AW809697 AW810554 AW809707 AW809885 AW810000 AW810088 AW809742 AW809816 AW809749 AW809639
                           AW809722 AW809836 AW809774 AW810023 AW810013 AW809813 AW809660 AW809728 AW809768 AW809951 AW809657
                           AWR09954
40
                           AA091228 H71860 H71073
       411079 123128_1
                           AW845985 AW845991 AW845962
        411424 1245497_1
                           AW849292 AW849431 AW849422 AW849428 AW849420 AW849424 AW849427
        411499 1248105_1
        411507
               1248607_1
                           AW850140 AW850195 AW850192
        411534 1248827_1
                           AW850473 AW850471 AW850431 AW850523
45
       411972
               1268491_1
                           BE074959 AW880160
                           AW893569 AW893571 AW893588 AW893593
        412110 1277844_1
                            W26786 AW998612 AW902272
        412226
               1284289_1
        412257 1285376 1
                           AW903830 BE071916
                           AW948126 AW948139 AW948196 AW948145 AW948162 AW948134 AW948127 AW948124 AW948153 AW948157 AW948125
       412405 1293012_1
50
                           AW948131 AW948158 AW948164 AW948151
        413260 1356003 1
                           BE075281 BE075219 BE075123 BE075119 BE075046
       413471 1371778_1
                           BE142098 BE142092
                           BE159999 BE160056 BE160107 BE160139
               1385114_1
       413729
                           AA136301 Al381776 AA136321
        414182 142409_1
55
        414989 1511339_1
                           T81668 C19040 C17569
        415354
               1534763_1
                           F06495 R24336 R13046
        416011 1566439_1
                           H14487 R50911 Z43216
               1596398_1
                           T70298 H58072 R02750
        416475
       417380 1672461_1
                           T06809 N75735
               1843934_-1
       419392
                           W28573
       419541 185724_1
                           AW749617 R64714 AA244138 AA244137 BE094019
                           Al909154 AA526337 AA244193 Al909153
       419544 185760_2
                           AA280700 AW975494 AA687385
        420819 196721_1
                           AA285363 AA285333 AA285359 AA285326 AA285350
        421245 200620_1
                           N59027 AA314694 N53937 R08100
        422673 219674_1
```

```
422695 219996_1
                            AA315158 AW961298 N76067 AW802759 AI858495 W04474
        422858 222209_1
                            R35398 BE252178 AA318153
        422940 223106_1
                            BE077458 AA337277 AA319285
                            AA330214 AW962519 T54709
        423730 231462_1
  5
                            BE152393 AA330984 BE073904
        423790 232031_1
        424385 238731_1
                            AA339666 AW952809 AA349119
        424606 241409_1
                            AA343936 AA344060 AW963081
        425265 249175_1
                            BE245297 AA353976 AW505023
        426959 273830_-1
                            BE262745
10
                            AF084866 AF084870 AF084864 AF084867 AF084869 AF084865 AF084868 AW818206 AW812038 BE144813 BE144812
        430676 32168 1
                            AW812041 AW812040 AW812067 BE061583 BE061604 T05808 AI352469 AA580921 BE141783 BE141782 BE061601
                            AW814393 AW885029
                            AW972830 AA527647 AA489820 AA570362
        430968 326269_1
                            H55883 AW971249 AA493900 H55788
        431180 328906_1
15
                           H28383 AW972670 H28359 AA525808
        432093 341283_1
                            T59538 T59589 T59598 T59542 AF147374
        434596 38937_1
                            AJ132085 Z83805
        436357 41842_1
        437159 43393_1
                            AL050072 AW900148
        437495 43765_1
                            BE177778 BE177779 AL390180 AA359908
20
        439097 46858_1
                            H66948 AF085954 H66949
        439120 46879_1
                           H56389 AF085977 H56173
        440134 48675_1
                           BE410734 BE560117 BE270054 BE296330 BE267957 Al003007 BE545259
        441896 52842_1
                           AW891873 AW891897 BE564764
                           Al245701 BE272724
        445629 645767_1
                           BE617135 AW504051 AW504283
25
        447229 71288_1
                           AA379036 AA150589 Al696854 BE621316
        448064 74761_1
                           BE266695 BE265474 N53200 BE267333
        450783 84655_1
        451045 85673_1
                            AA215672 Al696628 AA013335 H86334 AA017006
        452549 921802_1
                            Al907039 Al907081
30
        452560 922216_1
                           BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212 AW806207 AW806208
                           AW806210 Al907497
                           AW838616 AW838660 BE144343 Al914520 AW888910 BE184854 BE184784
        452712 928309_1
                            U83527 AL120938 U83522
        453758 980026 1
                           AW860158 AW862385 AW860159 AW862386 AW862341 AW821869 AW821893 AW062660 AW062656
        454093 1007366_1
35
                           AW807530 AW807540 AW807537 AW846086 BE141634 AW846089 AW807499 AW807533 AW838499
        454563 1224342 1
                           BE071874 BE071882 AW820782 AW821007
        454791 1234759 1
                           AW848032 AW848630 AW848478 AW848623 AW848484 AW848169 AW848830 AW848149 AW848119 AW848893 AW848903
        454977 1247099 1
                           AW848407
                           AW857913 AW857916 AW857914 AW861627 AW861626 AW861624
        455131 1254674_1
40
                           AW984111 AW863918 AW863856
        455183 1259023_1
        455254 1266449_1
                           AW877015 AW877133 AW876978 AW877071 AW876988 AW877069 AW877063 AW877013
        455369 1285173_16
                           AW903533 AW903516 AW903562 BE085202 BE085215 BE085214 BE085209 BE085172 BE085175 BE085193 BE085211
                           BE085199
        455982 1396849_1
                           BE176862 BE176876 BE176947 BE176878
45
        456011 1410860_1
                           BE243628 BE246081 BE247016 BE241984 BE241534 BE246091 BE245679 BE243620 BE245998 BE242329 BE241417
                           BE241457 BE242522 BE241989 BE241464
        456023 1416335_1
                           R00028 BE247630
        457586 360505_1
                           AW062439 AW751554 AA579463
        457595 364225 -1
                           AA584854
50
        457751 399422_1
                           Al908236 AA663731
        459070 883688_1
                           AI814302 AI814428
        459081 889426_1
                           W07808 AI822066
                           AI903354 AI903489 AI903488
        459145 918957_1
        459172 921149_1
                           BE063380 BE063346 Al906097
55
        459234 945240_-1
                           A1940425
```

TABLE 9B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 9. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey:
Ref:
Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.

Strand:
Indicates DNA strand from which exons were predicted.
Indicates nucleotide positions of predicted exons.

	Pkey	Ref	Strand	Nt_position	
15	400452	8113550	Minus	90308-90505	
	400557	9801261	Plus	208453-208528,209633-209813	
	400615	9908994	Pius	118036-118166,118681-118807	
	400802	8567867	Minus	174571-174856	
	400817	8569994	Plus	170793-170948	
20	400880	9931121	Plus	29235-29336,36363-36580	
	400885	9958187	Minus	58242-58733	
	400926	7651921	Minus	52033-52158,53956-54120,54957-55052,55420-55480,56452-56666,57221-57718	
		7658481	Plus	192667-192826,194387-194876	
~~		8096825	Plus	159197-159320	
25		8117619	Plus	73501-73674	
		8570296	Minus	124181-124391	
		6981820	Plus	5302-5545	
		9743387	Minus	138534-138629,139234-139294,140121-140335,142033-142479	
20	401286	9801342	Minus	147036-147318	
30		6850939	Minus	58360-58545	
		6433826	Plus	13056-13482	
		7630851	Plus	29929-30126	
		6649315	Plus	157315-157950	
25		9838136	Plus	128526-128704,130755-130860	
35		2576349	Plus	14595-14751	
		7770425	Minus Plus	146443-146664,147794-147971,148351-148480,148980-149111,149801-149949	
		8018106	Pius Pius	73126-73623	
		7690131 9211204	Minus	104382-104527,106136-106372 40403-41961	
40		9908890		174893-175050,183210-183435	
70		9796102	Plus	98273-101430	
		3287156	Minus	53242-53432	
		6010110	Plus	25026-25091,25844-25920	
		8918414	Plus	69071-69642	
45		9187337	Plus	26961-27101	
		9369121		32589-32735,35478-35666	
		9369121	Minus	76355-76479	
		9967547	Plus	85537-85671,86379-86469	
		9581599	Minus	48624-46784	
50	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337	
	403237	7637807	Plus	7271-7527	
	403259	7770585	Plus	4693-4857	
		7331517	Plus	217175-217446	
	403690	7387384	Minus	78627-79583	
55		5705981		134394-134812	
		4176355	Pius	19197-19502	
	403851	7708872	Plus	22733-23007	
		7657840	Plus	24755-24969	
60		7329316	Minus	48154-48499	
60		7407959	Plus	77842-77954	
		9796668	Plus	45096-45229	
		8574139	Plus	143025-143467	
		7706327	Plus	82849-83627	
65		7382189	Plus	134445-134750	
QJ		7770440	Plus Plus	44340-44559,44790-45059 197112-197814	
		8247873 9966752	Plus Plus	137113-137814 153027-153262	
	400172	9900132	(-IU3	100001-100000	

	405236 7249076	Minus	151699-151915
	405325 6094661	Minus	25818-26380
	405411 3451356	Minus	17503-17778,18021-18290
	405495 8050952	Minus	72182-72373
5	405552 1552506	Plus	45199-45647
	405601 5815493	Minus	147835-147935,149220-149299
	405685 4508129	Minus	37956-38097
	405777 7263187	Minus	104773-105051
	405856 7653009	Plus	101777-102043
10	405876 6758747	Plus	39694-40031
	405932 7767812	Minus	123525-123713
	405934 6758795	Plus	159913-160605
	406006 8247801	Minus	42640-42776
	406134 9163473	Plus	153291-153452
15	406189 7289992	Minus	22007-22234
	408422 9256411	Plus	163003-163311
	406516 7711422	Minus	128375-128449,128560-128784
	406538 7711478	Pius	35196-35367.38229-38476.40080-40216.43522-43840
	406554 7711566	Plus	106956-107121
20	406577 7711730	Plus	11377-11509

TABLE 10: shows genes, including expression sequence tags differentially expressed in taxol resistant prostate tumor xenografts as compared to taxol sensitive prostate tumor xenografts. The genes are indicated as either being upregulated or downregulated during the induction of taxol resistance in sequential passages of the grafts.

10	Pkey: ExAccn: UnigenelD: Unigene Title: Eos: F00-F14:		Exemplar A Unigene nu Unigene ge Internal Eos	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Internal Eos name passage number																
1,7																				
	Pkey	ExAcon	UnigenelD	UnigenTitle	Eos	Resp.	F00	F00	F02	F02	F05	F05	F07 -	F09	F10	F11	F13	F14		
20	117921	N51002	Hs.47170	Liprin A2	PM28	UP	1	9	8	9	32	20	34	122	105	82	71	111		
	112971	T17185	Hs.4299	ESTs	CHA1	down	290	281	267	335	270	284	150	157	83	89	49	75		
	126645	AJ167942	Hs.61635	STEAP	PAA5	down	106	111	103	71	34	67	33	14	2	1	1	1		
	119018	N95798	Hs.179809	ESTs	PAB2	down	765	841	757	909	742	704	478	428	253	175	228	238		
	110844	N31952	Hs.167531	ESTs	PAV7				147	141	123	129	73	65	55	48	54	84		
25	100654	HG2841-HT29	169	Hs.75442	Album	in, A	PM01	l down	666	605	504	728	357	445	602	187	117	127	117	113
	100655	HG2841-HT29	170	Hs.75442	Album	iin, A	PM ₀₂	2down	620	653	486	688	368	386	606	175	101	95	115	97
	102076	U09579	Hs.252437	cyclin-dep	PM03	down	101	94	143	190	105	107	88	40	34	31	46	22		
	102208	U22961	Hs.75442	albumin	PM04	down	495	424	323	518	252	296	467	188	169	143	165	145		
	103739	AA075779	-	mitochondr	PM05	down	75	190	606	230	378	106	218	88	69	192	69	99		
30		AA599690	Hs.15725	SBBI48	PM06	down	87	124	115	188	132	111	66	71	49	70 ′	38	50		
		AA062746	_	ESTs	PM07	down	14	20	252	13	22	43	193	10	10	104	21	18		
	108282	AA065143	-	sotute car	PM08	down	27	54	178	73	108	37	53	24	14	53	15	34		
•	108679	AA115963	_ '	beta-1-glo	PM09	down	680	893	1292	656	869	389	1	74	118	662	359	409		
		AA126313	Hs.107476	ATP syntha	PM10	down	10	19	185	25	60	1	32	3	7	14	1	1		
35	110675	H89355	Hs.6598	adrenergic				334	237	239	231	220	119	145	93	64	56	124		
	115412	AA283804	Hs.193552	ESTs	PM12	down	146	316	282	271	340	334	115	238	100	196	83	207		
	115844	AA430124	Hs.234607	MDM2	PM13	down	49	93	94	154	132	91	23	54	23	76	14	41		
	120588	AA281591	Hs.16193	ESTs	PM14	down	80	157	58	141	159	127	39	83	35	37	16	46		
	132349	Y00705	Hs.181286	serine pro	PM15	down	146	217	214	150	106	128	177	85	54	63	66	56		
40	132888	AA490775	Hs.5920	N-acetylma	PM16	down	92	150	132	178	126	139	53	94	48	67	41	80		
-	132967	AA032221	Hs.61635	STEAP	PM17			208	203	215	205	180	132	65	68	50	48	63		
	133063	AA283085	Hs.64065	ESTs	PM18	down	85	148	161	150	92	108	42	99	42	65	29	126		
	134374	D62633	Hs.8236	ESTs	PM19	down	230	240	194	212	231	189	89	123	107	95	68	91		
		M23263	Hs.99915	androgen r	PM20	down	36	167	99	178	132	101	23	71	26	122	14	44		
45	,			•																

TABLE 11: shows genes, including expression sequence tags that are up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5 Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number Unigene number UnigenelD: Unigene Tille: Unigene gene title Background subtracted normal prostate : prostate tumor tissue R1 Pkey ExAcon UnigenelD Unigene Title 101336 L49169 Hs.75678 FBJ murine osteosarcoma viral oncogene homolog B 0.012 10 M63438 Hs.156110 Immunoglobulin kappa variable 10-8 0.015 130842 glyceraldehyde-3-phosphate dehydrogenase Hs.195188 0.017 133512 X01677 133436 H44631 immediate early protein 0.017 Hs.737 Hs.1101 POU domain; class 2; transcription factor 2 0.019 129292 X13810 HG2566-HT4792 Microtubule-Associated Protein Tau, Alt. Splice 3, Exon 8 100610 0.02 15 Hs.170116 0.021 M34516 immunoglobulin lambda-like polypeptide 3 133448 CD74 antigen (invariant polypeptide of major histocompatibility Hs.84298 125193 W67577 0.022 complex; class II antigen-associated) 133456 T49257 Hs.183704 ubiquitin C 0.022 Homo sapiens mRNA; cDNA DKFZp586L1722 (from clone 134546 AA459310 Hs.8518 20 DKFZp586L1722) 0.023 102131 U15085 Hs.1162 major histocompatibility complex; class II; DM beta 0.023 Hs.84298 CD74 antigen (invariant polypeptide of major histocompatibility 101375 M13560 0.023 complex; class II antigen-associated) HG3033-HT3194 Spliceosomal Protein Sap 62 0.024 100674 syntaxin 3A ESTs 25 Hs.82240 0.027 134365 R32377 132335 D60387 Hs.189885 0.027 110303 H37901 Hs.32706 0.028 **ESTs** 0.028 N59162 **ESTs** Hs.30542 131678 0.029 Hs.250879 D80046 116599 **ESTs** 0.029 30 Hs.75968 133769 M17733 thymosin; beta 4; X chromosome 0.03 107904 AA026648 Hs.61389 129427 T80746 Hs.111334 ferritin; light polypeptide 0.03 105987 AA406631 Hs.110299 mitogen-activated protein kinase kinase 7 0.03 F03233 Hs.27189 0.032 131466 35 X00274 Human HLA-DR alpha-chain mRNA 0.032 102859 Hs.76807 caldecrin (serum calcium decreasing factor; elastase IV) 0.032 134626 S82198 Hs.8709 134170 M63138 Hs.79572 cathepsin D (lysosomal aspartyl protease) 0.033 0.034 131713 X57809 Hs.181125 Immunoglobulin lambda gene cluster 100748 HG3517-HT3711 Alpha-1-Antitrypsin, 5' End 0.034 40 N74496 **ESTs** 0.034 118769 R25375 0.036 111734 Hs.126916 **ESTs** 0.036 Hs.85840 ESTs; Weakly similar to stac [H.sapiens] AA192755 109221 133846 0.036 AA480073 Hs.76719 U6 snRNA-associated Sm-like protein 0.037 AA401575 135281 Hs.97757 45 0.037 119073 R32894 Hs.45514 v-ets avian erythroblastosis virus E26 oncogene related HG3576-HT3779 0.037 100760 Major Histocompatibility Complex, Class Ii Beta W52 101426 M19483 Hs.25 ATP synthase; H+ transpring; mitochndrl F1 complex; beta polypept 0.038 AA428025 Hs.114360 transforming growth factor beta-stimulated protein TSC-22 0.038 129568 Z38468 Hs.21036 ESTs; Moderately similar to F25965_3 [H.sapiens] 0.039 130900 50 v-raf murine sarcoma 3611 viral oncogene homolog 1 0.039 133879 M13829 Hs.77183 100627 HG2702-HT2798 Serine/Threonine Kinase (Gb:Z25424) 0.039 129424 M55593 Hs.111301 matrix metalloproteinase 2 (gelatinase A; 72kD gelatinase; 0.039 72kD type IV collagenase) ESTs; Weakly similar to similar to SP:YR40_BACSU [C.elegans] 128652 AA621245 Hs.103147 0.039 0.039 55 129979 T72635 Hs.13956 major histocompatibility complex; class II; DQ beta 1 0.04 13346B XUSUES Hs.73931 U67092 Human ataxia-telangiectasia locus protein (ATM) gene, exons 102636 1a, 1b, 2, 3 and 4, partial cds 0.04 0.04 129536 M33493 Hs.184504 tryptase; alpha 0.041 60 133599 M64788 Hs.75151 RAP1; GTPase activating protein 1

1871-04						
193446		102104	U12139		Human alpha 10(I) collagen (COI 11A1) gene 5' region and even 1	0.041
19444				Hs.25817		
101852						
12999						
130161 R58592	5					
134071	J					
108129					Homo sapiens cione 23622 mRNA sequence	0.042
108129		134071	Z14093	Hs.78950	branched chain keto acid dehydrogenase E1; aipha polypeptide	
103129					(maple syrup urine disease)	0.042
130511		108129	AA053252	Hs.185848	ESTs: Weakly similar to II ALU SUBFAMILY J WARNING	
130511	10					0.048
133386		130511	1 32137	He 1504		0.040
133386		100011	COLIU	113,1004		
138982		400000	4 4004 450	11. =4465		
131880						0.043
193540	1.5				immunoglobulin lambda-like polypeptide 2	0.044
130540	13	131880	AA047034	Hs.33818	RecQ protein-like 5	0.044
134467 A-226898 Hs.37361 Major histocompatibility complex class it; DO bets 1 0.044		130540	U35234	. Hs.159534	protein tyrosine phosphatase; receptor type; S	0.044
1011911 L20888		133467	AA258595	Hs.73931		
101880 MS6610 Hs.37165 Colleger; type IX; alpha 2 O.044 Human endogenous retrovined IX probase/firitigrase-derived ORF1 mPNA, complete cds, and putative envelope prot mRNA, partial cds O.044 FSTs O.045 O.045						
107290						
107200	20			110.07 100		0.044
107200 203350 hs.5628 ESTs D.044	20	102188	000000			
101166 L14927 H22099 Ipocalin 1 (protain migrating faster than abumin'; tear prealbumin) 0.044					mRNA, complete cds, and putative envelope prot mRNA, partial cds	0.044
134289					ESTs	0.044
134289		101166	L14927	Hs.2099	lipocalin 1 (protein migrating faster than albumin; tear prealbumin)	0.044
135229		134289	M54915	Hs.81170		
124850 T03786	25		AA436026			
102919						0.044
102919		121000	100100	110.101001		
100574		400040	V46447	11- 400000		
131286				MS.183760		0.044
102675 U72512	20					0.045
131332	<i>3</i> 0			Hs.25300	Homo sapiens clones 24718 and 24825 mRNA sequence	0.045
131332 R50487		102675	U72512		Human B-cell receptor associated protein (hBAP) alternatively	
13132					spliced mRNA nartial 3'UTR	0.045
101634 M57731 H3.75765 GRC2 oncogene 0.046 124884 R77276 H3.120911 ESTs 0.046 130523 W76097 H3.214507 ESTs 0.046 130523 W76097 H3.214507 ESTs 0.046 130523 W76097 H3.214507 ESTs 0.046 131932 AA454980 H3.25601 chromodomain helicase DNA binding protain 3 0.046 132509 H09751 H3.5038 neuropathy target esterase 0.046 13372 AA291139 H3.72242 ESTs 100817 HG4011-H74804 Dystrophin-Associated Glycoprotain, 50 Kda, Alt. Splice 2 0.047 105746 AA476438 H3.169271 carboxyl ester lipase-like (bite salt-stimulated lipase-like) 0.047 105746 AA476438 H3.169271 carboxyl ester lipase-like (bite salt-stimulated lipase-like) 0.047 12529 U2015 H3.8867 cystelne-rich; angiogenic inducer, 61 0.047 121521 AA412165 H3.97358 EST 0.048 135340 AA425137 H3.99033 Homo saplens clone 23770 mRNA sequence 0.048 13536 AA4222 H3.45073 ESTs 0.048 101278 L38487 H3.10849 estrogen-related receptor alpha 0.048 101278 L38487 H3.10849 estrogen-related receptor alpha 0.048 101284 K00200 H3.8375 TNF receptor-associated factor 4 0.048 100564 H02239-H72324 H3.45073 ESTs 0.048 101386 F7854 H3.238831 ESTs; Weakly similar to collagen [C.elegans] 0.048 129613 AA278481 H3.238831 ESTs; Weakly similar to collagen alpha 1(XVIII) chain [M.musculus] 0.049 120111 W58641 H3.238831 ESTs; Weakly similar to dalagen alpha 1(XVIII) chain [M.musculus] 0.049 10068 Z39741 H3.2288 ESTs; Weakly similar to Miz-1 protein [H.saplens] 0.049 10068 Z39741 H3.2288 ESTs; Weakly similar to Miz-1 protein [H.saplens] 0.049 10068 Z39741 H3.2288 ESTs; Weakly similar to Miz-1 protein [H.saplens] 0.049 10068 Z39741 H3.2288 ESTs; Weakly similar to Miz-1 protein [H.saplens] 0.049 10068 Z39741 H3.2288 ESTs; Weakly similar to Miz-1 protein [H.saplens] 0.050 116431 AA609878 H3.55289		131332	R50487	He 25717	FSTe	
113118						
1248B4 R77276	35					
180523 W76097	JJ	-				
110244						
131932					ESTs	0.046
132509		110244	H26742	Hs.25367	ESTs; Weakly similar to ALR [H.sapiens]	0.046
132509		131932	AA454980	Hs.25601	chromodomain helicase DNA binding protein 3	0.046
133372	40	132509	H09751	Hs.5038		
100817		133372	AA291139			
105746				11011 05-15		
135401				Un 7004		
130479						
102589	15					
121521	43					0.047
135340 AA425137 Hs.9993 Homo saplens chromosome 19; cosmid R28379 0.048 132336 AA342422 Hs.45073 ESTs 0.048 101278 L38487 Hs.110849 estrogen-related receptor alpha 10284 X80200 Hs.8375 TNF receptor-associated factor 4 0.048 100564 HG2239-HT2324 Potassium Channel Protein. (Gb:Z11585) 0.048 133132 Z40883 Hs.85588 ESTs; Weakly similar to d.1393P12.2 [H.saplens] 0.048 129813 AA279481 Hs.238831 ESTs; Weakly similar to d.1393P12.2 [H.saplens] 0.048 129813 AA279481 Hs.238831 ESTs; Weakly similar to collagen alpha 1(XVIII) chain [M.musculus] 0.049 130468 S79854 Hs.49322 delodinase; todothyronine; type III 0.049 120111 W95841 Hs.136031 ESTs 103668 Z83741 Hs.248174 H2A histone family; member M 0.049 103668 Z83741 Hs.248174 H2A histone family; member M 0.049 104275 C02170 Hs.39387 ESTs; Weakly smilr to weak smirrity to ribosomal prot L14 [C.elegans] 0.049 106305 AA436146 Hs.12828 ESTs 116431 AA609878 Hs.55289 ESTs; Weakly smilr to Miz-1 protein [H.saplens] 0.05 118821 A79070 Hs.94789 ESTs 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs			U62015	Hs.8867	cysteine-rich; angiogenic inducer; 61	0.047
135340		121521	AA412165	Hs.97358	EST	0.048
132336		135340	AA425137	Hs.99093	Homo sapiens chromosome 19: cosmid R2R379	
115368		132336	AA342422	Hs.45073		
101278	50		AA282133			
103284 X80200 Hs.8375 TNF receptor-associated factor 4 0.048 100564 HG2239-HT2324 Potassium Channel Protein.(Gb:Z11585) 0.048 133132 Z40883 Hs.65588 ESTs; Weakly similar to dJ393P12.2 [H.sapiens] 0.048 129513 AA24535 Hs.98416 ESTs 129513 AA279481 Hs.238831 ESTs; Weakly similar to collagen alpha 1(XVIII) chain [M.musculus] 0.049 120111 W95841 Hs.136031 ESTs deiodinase; lodothyronine; type III 0.049 120111 W95841 Hs.248174 H2A histone family; member M 0.049 130386 F10874 Hs.234249 mitogen-activated protein kinase 8 interacting protein 1 0.049 104275 C02170 Hs.39387 ESTs; Weakly smilr to weak smirity to ribosomal prot L14 [C.elegans] 0.049 16305 AA436146 Hs.12828 ESTs ESTs; Weakly smilr to weak smirity to ribosomal prot L14 [C.elegans] 0.049 16305 AA436146 Hs.12828 ESTs; Weakly smilr to weak smirity to ribosomal prot L14 [C.elegans] 0.049 16431 AA609878 Hs.55289 ESTs; Weakly smilr to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.051 18821 A79070 Hs.94789 ESTs; Highly simillar to Miz-1 protein [H.sapiens] 0.051 18978 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.051 18978 W78776 Hs.90375 ESTs						
100564 HG2239-HT2324 Potassium Channel Protein. (Gb.Z11585) 0.048 133132 Z40883 Hs.65588 ESTs; Weakly similar to dJ393P12.2 [H.sapiens] 0.048 129613 AA279481 Hs.238831 ESTs; Weakly similar to collagen atpha 1 (XVIII) chain [M.musculus] 0.049 130468 S79854 Hs.49322 delodinase; todothyronine; type 0.049 120111 W95841 Hs.136031 ESTs 103668 Z83741 Hs.248174 H2A histone family; member M 0.049 103668 Z83741 Hs.248174 H2A histone family; member M 0.049 104275 C02170 Hs.39387 ESTs; Weakly smir to weak smirrity to ribosomal prot L14 [C.elegans] 0.049 106305 AA436146 Hs.12828 ESTs ESTs; Weakly smir to weak smirrity to ribosomal prot L14 [C.elegans] 0.049 116431 AA609878 Hs.55289 ESTs; Weakly smir to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.05 114427 AA017063 EST ESTs; Weakly smilar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118979 N93798 Hs.43666 protein tyrosine phosphalase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs						
133132				H8.03/3		
121811					Potassium Channel Protein (Gb:Z11585)	
121811					ESTs; Weakly similar to dJ393P12.2 [H.sapiens]	0.048
129613	22	121811	AA424535	Hs.98416	ESTs	0.048
132468 S79854 Hs.49322 delodinase; todothyronine; type III 0.049 120111 W95841 Hs.136031 ESTs 0.049 103668 Z83741 Hs.248174 H2A histone family; member M 0.049 130386 F10874 Hs.234249 miltogen-activated protein kinase 8 interacting protein 1 0.049 104275 C02170 Hs.39387 ESTs; Weakly smir to weak smirity to ribosomal prot L14 [C.elegans] 0.049 106305 AA436146 Hs.12828 ESTs 0.05 116431 AA609878 Hs.55289 ESTs; Weakly smir to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sepiens] 0.813 120339 AA206465 Hs.256470 EST 120339 AA206465 Hs.256470 EST; Highly similar to Miz-1 protein [H.sepiens] 0.05 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sepiens] 0.05 118821 N78070 Hs.94789 ESTs 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs		129613	AA279481	Hs.238831	ESTs; Weakly similar to collagen alpha 1(XVIII) chain (M.musculus)	0.049
120111		132468	S79854	Hs.49322	deiodinase: todothyronine: type III	
103668 Z83741 Hs.248174 H2A histone familty; member M 0.049 130386 F10874 Hs.234249 mitogen-activated protein kinase 8 interacting protein 1 0.049 104275 C02170 Hs.39387 ESTs; Weakly smlr to weak smirtly to ribosomal prot L14 [C.elegans] 0.049 106305 AA436146 Hs.12828 ESTs 0.05 116431 AA609878 Hs.55289 ESTs; Weakly smlr to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.813 120339 AA206465 Hs.256470 EST ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 118979 N93788 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs		120111	W95841			
60 130386 F10874 Hs.234249 mitogen-activated protein kinase 8 interacting protein 1 0.049 104275 C02170 Hs.39387 ESTs; Weakly smlr to weak smlrity to ribosomal prot L14 [C.elegans] 0.049 106305 AA436146 Hs. 12828 ESTs 116431 AA609878 Hs.55289 ESTs; Weakly smlr to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.05 120339 AA206465 Hs.256470 EST 120339 AA206465 Hs.256470 EST 118821 N79070 Hs.94789 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 118979 N93788 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs						
104275 C02170 Hs.39387 ESTs; Weakly smir to weak smirity to ribosomal prot L14 [C.eiegans] 0.049 106305 AA436146 Hs.12828 ESTs 0.05 116431 AA609878 Hs.56289 ESTs; Weakly smir to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.05 120339 AA206465 Hs.256470 EST ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs	60				mitogon-oriested protein biseco O internating partials 4	
106305 AA436146 Hs.12828 ESTs	00				CCT Works and a mark and the Tarana Andrews	
116431 AA609878 Hs.55289 ESTs; Weakly smlr to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens] 0.813 120339 AA206465 Hs.256470 EST 120339 AA207063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118979 N93798 Hs.94789 ESTs 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs						
120339 A206465 Hs.256470 EST 0.05 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 0.05 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs 0.051						0.05
120339 A206465 Hs.256470 EST 0.05 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 0.05 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs 0.051					ESTs; Weakly smir to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens]	0.813
65 114427 AA017063 ESTs; Highly similar to Miz-1 protein [H.sapiens] 0.05 118821 N79070 Hs.94789 ESTs 0.05 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs 0.051			AA206465	Hs.256470		
118821 N79070 Hs.94789 ESTs 0.05 118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs 0.051	65	114427	AA017063		ESTs; Highly similar to Miz-1 protein [H.sapiens]	
118979 N93798 Hs.43666 protein tyrosine phosphatase type IVA; member 3 0.05 107495 W78776 Hs.90375 ESTs 0.051			N79070	Hs.94789		
107495 W78776 Hs.90375 ESTs 0.051						
1000 to 744700 II annu mar						
110.0040 E510 : 0.051						
		150540	ATTIOL	110.00048	EQ10	0.051

	44.8004	744000	H- 40400	EOT-	0.051
	114331	Z41309	Hs.12400	ESTs	0.051
	130947	R40037	Hs.21506	ESTs	
	129242	W81679	Hs.5174	ribosomal protein S17	0.052
-	131413	AA482390	Hs.26510	ESTs; Modly smlr to vacuolar prot sorting homolog r-vps33b [R.norveglcus]	0.052
5	112304	R54798	Hs.26239	ESTs	0.052
	101416	M17254	Hs.45514	v-ets avian erythrobiastosis virus E26 oncogene related	0.052
	131201	AA426304	Hs.24174	ESTs	0.052
	101054	K02405	Hs.73933	Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2); complete cds	0.052
	101306	L41143	Hs.232069	T-cell leukemia translocation altered gene	0.053
10	129311	T55087		yb45c08.r1 Stratagene fetal spleen (#937205) Homo sapiens cDNA	
				clone IMAGE:74126 5', mRNA sequence.	0.053
	129942	U95301	Hs.144442	phospholipase A2; group X	0.053
	119210	R93340	Hs.92995	ESTs	0.053
	101046	K01160		Accession not listed in Genbank	0.053
15	114086	Z38266	Hs.12770	Homo sepiens PAC clone DJ0777O23 from 7p14-p15	0.053
10	110171	H19964	Hs.31709	ESTs	0.053
	101004	J04101	Hs.248109	v-ets avian erythroblastosis virus E28 oncogene homolog 1	0.053
	129715	N58479	Hs.12126	ESTs; Weakly similar to LR8 [H.sapiens]	0.053
	101581	M34996	Hs.198253	major histocompatibility complex; class II; DQ alpha 1	0.053
20	,	T66830	Hs.182712	ESTs	0.053
20	113285			ESTs	0.054
	127537	AA569531	Hs.162859		0.054
	100813	HG3995-HT4265	11- 70000	Cpg-Enriched Dna, Clone S19	0.054
	101841	M93107	Hs.76893	3-hydroxybutyrate dehydrogenase (heart; mitodfiondrial)	0.054
05	135053	R77159	Hs.93678	ESTs S4	
25	101419	M17886	Hs.177592	ribosomal protein; large; P1	0.054
	119724	W69468	Hs.47622	ESTs	0.055
	102673	U72509		Human alternatively spliced B8 (B7) mRNA, partial sequence	0.055
	129877	AA248589	Hs.13094	ESTs; Weakly similar to ORF YGR101w [S.cerevisiae]	0.055
	114788	AA156737	Hs.103904	EST	0.055
30	123812	AA620607	Hs.111591	ESTs	0.055
	117669	N39237	Hs.44977	ESTs	0.055
	123782	AA610111	Hs.162695	EST	0.055
	102395	U41767	Hs.92208	a disintegrin and metalloproteinase domain 15 (metargidin)	0.055
	133795	M12529	Hs.169401	apolipoprotein E	0.055
35	123193	AA489228	Hs.136956	ESTS	0.056
	132595	AA253369	Hs.155742	glyoxytate reductase/hydroxypyruvate reductase	0.056
	104161	AA456471	Hs.7724	KIAA0963 protein	0.056
	115330	AA281145	Hs.88827	ESTs	0.056
	112893	T08000	Hs.194684	bassoon (presynaptic cytomatrix protein)	0.056
40	133475	L29217	Hs.73987	CDC-like kinase 3	0.056
40	128699	K03207	Hs.103972	proline-rich protein BstNI subfamily 4	0.056
	102940	X13956	Hs.24998	Hu 12S RNA induced by poly(rl); poly(rC) and Newcastle disease virus	0.056
	131299	AA431464	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.057
	102495	U51240	Hs.79356	Lysosomal-associated multispanning membrane protein-5	0.057
45	129594		Hs.115396	Human germline IgD chain gene; C-region; C-delta-1 domain	0.057
. 42		R70379 N69020		EST .	0.057
	118593		Hs.207689	keratin 17	0.057
	126702	U54602	Hs.2785		0.007
	124386	N27368	Hs.212414	sema domain; immunoglobulin domain (lg); short basic domain;	0.057
50		1100000	11- 450500	secreted; (semaphorin) 3E	0.057
50	130538	M20786	Hs.159509	alpha-2-plasmin inhibitor	
	114299	Z40782	Hs.22920	similar to \$68401 (cattle) glucose induced gene	0.057
	115604	AA400378	Hs.49391	ESTs	0.057
	106052	AA416947	Hs.6382	ESTs; Highly similar to KIAA0612 protein [H.sapiens]	0.057
	131730	U05681	Hs.31210	B-cell CLL/lymphoma 3	0.057
55	131285	AA479498	Hs.25274	ESTs; Modily smir to putative seven pass transmembrane prot [H.sapiens]	0.058
	129705	X78706	Hs.12068	camitine acetyltransferase	0.058
	123175	AA489010	Hs.178400	ESTs	0.058
	103592	Z30644	Hs.123059	chioride channel Kb	0.058
	118196	N59478	Hs.48396	ESTs; Moderately similar to tumor necrosis factor-alpha	
60				-Induced protein B12 [H.sapiens]	0.058
	104886	AA053348	Hs.144626	growth differentiation factor 11	0.058
	104250	AF000575	Hs.105928	leukocyte immunoglobulin-like receptor, subfamily B (with TM	
			•	and ITIM domains); member 3	0.058
	113301	T67452	Hs.13104	EST	0.058
65	110441	H50302	Hs.19845	ESTs; Highly smlr to prot phosphatase 2A BR gamma subunit [H.sapiens]	0.058
	125297	Z39215	Hs.159409	ESTs	0.058
	135258	AA292423	Hs.97272	ESTs; Weakly similar to dJ281H8.2 [H.saptens]	0.058
	130633	T92363	Hs.178703	ESTs	0.058
	112006	R42607	Hs.22241	hypothetical protein	0.058
	I ILUU	. 176007	· 10-LLD-7 1		

	130805	U12194	Hs.170238	sodium channel; voltage-gated; type 1; beta polypeptide	0.058
	134907	D80002	Hs.178292	KIAA0180 protein	0.058
	132619	AA404565	Hs.53447	ESTs; Moderately similar to kinesin light chain 1 [M.musculus]	0.058
_	135115	N35489	Hs.94653	neurochondrin	0.058
5	100531	HG1872-HT1907		Major Histocompatibility Complex, Dg	0.058
	124530	N62256	Hs.102727	EST	0.058
	119960	W87533	Hs.32699	ESTs; Moderately similar to LIV-1 protein [H.sapiens]	0.058
	132793	AA478999	Hs.56966	KIAA0906 protein	0.058
	101076	L04270	Hs.1116	lymphotoxin beta receptor (TNFR superfamily; member 3	0.058
10	130655	N92934	Hs.17409	cysteine-rich protein 1 (intestinal)	0.058
	134458	AA192614	Hs.83577	cysteine and glycine-rich protein 3 (cardiac LIM protein)	0.058
	105904	AA401452	Hs.32060	ESTs	0.059
	132878	AA026793	Hs.58679	ESTs; Weakly similar to 4F2/CD98 light chain [M.musculus]	0.059
	121828	AA425166	Hs.98497	ESTs	0.059
15	133418	U76366	Hs.172727	Treacher Collins-Franceschetti syndrome 1	0.059
	129317	N46244	Hs.110373	ESTs	0.059
	130153	D85815	Hs.15114	ras homolog gene family; member D	0.059
	124403	N31745	Hs.102493	ESTS	0.059
	127683	AA668123	Hs.134170	ESTs	0.059
20	129814	W20070	Hs.168625	KIAA0979 protein	0.059
	131770	D59682	Hs.31833	ESTs	0.06
	117557	N33920	Hs.44532	diubiquitin	0.06
	103522	Y10514	TION TOOL	H.sapiens mRNA for CD152 protein	0.06
	120029	W91960	Hs.250640	sequence-specific single-stranded-DNA-binding protein	0.06
25	102135	U15460	Hs.41691	activating transcription factor B	0.06
23	123617	AA609183	Hs.181131	ESTs	0.06
	112136	R46100	Hs.9739	ESTs	0.061
	133725	V00563	Hs.179543	immunoglobulin mu	0.061
	102069	U09196	Hs.82520	Hu 1.1 kb mRNA upregitd in retinoic acid treated HL-60 neutrophilic cells	0.061
30	106555	AA455000	Hs.16725	ESTS	0.061
50	123269	AA491226	Hs.105280	ESTs; Weakly similar to d.1963K23.2 [H.sapiens]	0.061
	109088	AA166837	Hs.72620	DKFZP4341114 protein	0.061
	129399	AA263028	Hs.111076	malate dehydrogenase 2; NAD (mitochondrial)	0.061
	129375	W79850	Hs.11081	ESTs; Weakly similar to HPBRII-7 protein [H.sapiens]	0.061
35	135271	AA397763	Hs.97562	ESTs	0.061
JJ	132958	W90398	Hs.6147	KIAA1075 protein	0.061
	129364	AA477106			0.061
	123427	AA598548	Hs.110757 Hs.112471	DNA segment on chromosome 21 (unique) 2056 expressed sequence ESTs	0.061
	105236	AA219179	Hs.19105	translocase of inner mitochondrial membrane 17 (yeast) homolog B	0.061
40	101012	J04444	Hs.697	cylochrome c-1	0.062
TU	134791	L18983	Hs.89655		0.062
		K01396	Hs.75621	protein tyrosine phosphatase; receptor type; N	0.062
	133700 123887	AA621065	Hs.112943	protease inhibitor 1 (anti-elastase); alpha-1-antitrypsin ESTs	0.062
	129363	H05704	Hs.110746		0.062
45		AA291644		H saplens HCR (a-halix coiled-coil rod homologue) mRNA; complete cds	0.062
TJ	105719 124226	H62396	Hs.36793 Hs.190266	ESTs ESTs	0.062
			HS.190200		0.002
	117437	N27645		yw5e3.s1 Weizmann Olfactory Epithelium H sapiens cDNA clone	0.062
	132741	AA394133	Hs.55898	IMAGE:255676 3' smir to contains L1.13 L1 repetitive element ;, mRNA seq	0.062
50		M26041	Hs.198253	ESTs; Highly similar to OASIS protein [M.muscutus]	0.062
20	134437	M20U41 AA010594	Hs.5326	major histocompatibility complex; class II; DQ alpha 1	0.062
	107664		Hs.96917	ESTs; Moderately similar to pim-1 protein [H.sapiens]	0.062
	120844	AA349417	Hs.158029	ESTS	0.062
	101574	M34182		protein kinase; cAMP-dependent; catalytic; gamma	
55	131219	C00476	Hs.24395	small inducible cytokine subfamily B (Cys-X-Cys); member 14 (BRAK)	0.062
23	103495	Y09022	Hs.153591	Not56 (D. melanogaster)-like protein	0.062
	129607	AA404594	Hs.11607	ESTS	0.062
	106467	AA450040	Hs.154162	ADP-ribosylation factor-like 2	0.062
	128841	T16358	Hs.106443	ESTS	0.062
60	100515	HG1723-HT1729		Macrophage Scavenger Receptor, Alt. Splice 2	0.062
00	119332	T54095	Ha 00410	ESTs; Weakly similar to II ALU SUBFAMILY J WARNING ENTRY II [H.sapiens]	0.062
	134516	AA171939	Hs.23413	ESTs	0.062
	135012	X73608	Hs.93029	sparc/osteonectin; cwcv and kazal-like domains proteoglycan (testican)	0.063
	103575	Z26256	Lie CEOOO	H.saplens isoform 1 gene for L-type calcium channel, exon 1	0.063
65	115514	AA297739	Hs.55609	ESTS; Weakly similar to ISOLEUCYL-TRNA SYNTHETASE;	0.000
U.J	400000	A A004055		CYTOPLASMIC (H.sapiens)	0.063
	103996	AA321355	Na SOLOE	EST2393 Bone marrow Homo sapiens cDNA 5' end, mRNA sequence	0.063
	110505	H55992	Hs.20495	DKFZP434F011 protein	0.063
	133912	X62744	Hs.77522	major histocompatibility complex; class II; DM alpha	0.063
	129581	M33600	Hs.180255	major histocompatibility complex; class II; DR beta 1	0.063

	130139	R38280	Hs.150922	BCS1 (yeast homolog)-like	0.064
	105817	AA397825	Hs.5307	synaptopodin	0.064
	134658	AA410617	Hs.178009	ESTs	0.064
					0.064
_	100306	D50495	Hs.80598	transcription elongation factor A (SiI); 2	0.004
5	100277	D42053	Hs.75890	site-1 protease (subtilistn-like; sterol-regulated; cleaves sterol regulatory	
				elament binding proteins)	0.064
	133116	D61259	Hs.6529	ESTs	0.064
	134809	AA521488	Hs.90998	KIAA0128 protein	0.064
4.0	130319	X74794	Hs.154443	minichromosome maintenance deficient (S. cerevisiae) 4	0.064
10	132057	AA102489 -	Hs.173484	ESTs	0.064
	108334	AA070473		zm7c8.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA	
	,			cione IMAGE:5399 3', mRNA sequence	0.064
	400700	Figure	11- 40070		
	129763	F10815	Hs.12373	KIAA0422 protein	0.064
	135112	T67464	Hs.94617	ESTs; Weakly simitar to predicted using Genefinder [C.elegans]	0.064
15	122269	AA436856	Hs.98910	ESTs	0.064
	133082	AA457129	Hs.6455	RuvB (E coli homolog)-like 2	0.064
	113213	T58607		ya94a02.s1 Stratagene placenta (#937225) Homo sapiens cDNA clone	
	113213	100007			0.005
				IMAGE:69290 3', mRNA sequence.	0.065
	106228	AA429290	Hs.17719	ESTs	0.065
20	130192	Y12661	Hs.171014	VGF nerve growth factor inducible	0.065
	104894	AA054087	Hs.18858	phospholipase A2; group IVC (cytosolic; calcium-independent)	0.065
			113.10030		0.065
	103508	Y10141		H.sapiens DAT1 gene, partial, VNTR	
	128474	U40671	Hs.100299	ligase III; DNA; ATP-dependent	0.065
	134012	AA417821	Hs.237924	ESTs; Highly similar to CGI-69 protein [H.sapiens]	0.065
25	134536	AA457735	Hs.850	IMP (inosine monophosphate) dehydrogenase 1	0.065
		R23146	Hs.23466	ESTs	0.065
	111714				
	110521	H57060	Hs.108268	ESTs	0.065
	103282	X80198	Hs.77628	steroidogenic acute regulatory protein related	0.065
	113921	W80730	Hs.28355	ESTs	0.065
30	129331	N93465	Hs.110453	ESTs; Highly similar to CGI-38 protein (H.sapiens)	0.065
50	111316	N74597	Hs.180535	ESTs; Weakly similar to mitogen inducible gene mig-2 [H.saplens]	0.065
	135138	AA036794	Hs.95196	ESTs; Weakly similar to T20B12.3 [C.elegans]	0.065
	107289	T10792	Hs.172098	ESTs	0.065
	121405	AA406083	Hs.98007	ESTs	0.065
35	124965	T16275	Hs.106359	ESTs	0.065
JJ				ESTs	0.066
	106595	AA456933	Hs.174481		
	100106	AF015910		Homo sapiens unknown protein mRNA, partial cds	0.066
	134715	AA282757	Hs.89040	prepronociceptin	0.066
	135367	AA480109	Hs.9963	TYRO protein tyrosine kinase binding protein	0.066
40	111533	R08548	Hs.251651	EST	0.066
TU				==:	0.066
	128509	R53109	Hs.247362	dimethylarginine dimethylaminohydrolase 2	
	101030	J05037	Hs.76751	serine dehydratase	0.066
	102753	U80226		Human gamma-aminobutyric acid transaminase mRNA, partial cds	0.067
	126991	R31652	Hs.821	bigiyean	0.067
45	109583	F02322	Hs.26135	ESTs	0.067
73					
	119241	T12559	Hs.221382	ESTs	0.067
	130569	AA156597	Hs.256441	EST; Moderately similar to CGI-136 protein [H.sapiens]	0.067
	112926	T10316	Hs.4302	ESTs	0.067
	120495	AA256073	Hs.190626	ESTs	0.067
50		AA278412	Hs.21346	ESTs; Weakly similar to F42C5.7 gene product [C.elegans]	0.067
50	130931				
	129982	M87789	Hs.140	immunoglobulin gamma 3 (Gm marker)	0.067
	133832	H03387	Hs.241305	estrogen-responsive B box protein	0.067
	110697	H93721	Hs.20798	ESTs -	0.067
	121183	AA400138	Hs.97703	ESTs	0.067
55					0.067
JJ	130953	U12707	Hs.2157	Wiskott-Aldrich syndrome (ecezema-thrombocytopenia)	
	102218	U24183	Hs.75160	phosphofructokinase; muscle	0.067
	114181	Z39079	Hs.8021	KIAA1058 protein	0.067
	116581	D51287	Hs.82148	ribosomal protein S12	0.067
	132498	T87708	Hs.50098	ESTs	0.068
60					
UU	103788	AA096014	Hs.9527	ESTs; Highly similar to HSPC013 [H.sapiens]	0.068
	102459	U48936		Human amiloride-sensitive epithelial sodium channel gamma subunit mRNA,	
				5' end, partial cds	0.068
	100373	D79999	Hs.77225	ADP-ribosytransferase (NAD+; poly (ADP-ribose) polymerase)-like 1	0.068
	132717	AA203321	Hs.151696	DKFZP727G051 protein	0.068
65				BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)	0.068
UJ	128863	D87462	Hs.106674		
	115193	AA262029	Hs.88218	ESTs	0.068
	124558	N66046	Hs.141605	ESTs	0.069
	117225	N20392	Hs.42846	ESTs	0.069
		H83380	Hs.32757	ESTs	0.069
	110665	1100000	110.06141	LUIQ	4.0 00

					0.000
	132905	U70663	Hs.182965	Kruppel-like factor 4 (gut)	0.069
	105778	AA348910	Hs.153299	DOM-3 (C. elegans) homolog Z	0.069
	134770	R72079	Hs.89575	CD79B antigen (immunoglobulin-associated beta)	0.069
	123097	AA485869	Hs.105671	ESTs	0.069
5	100750	HG3523-HT4899		Proto-Oncogene C-Myc, Alt. Splice 3, Orf 114	0.069
,	125091	T91518		ye20f05.s1 Stratagene lung (#937210) H sapiens cDNA clone IMAGE:	
	123091	191010		3' similar to contains Atu repetitive element; contains MER12 repetitive element;	
					0.069
				mRNA sequence.	
	100756	HG3565-HT3768		Zinc Finger Protein (Gb:M88357)	0.069
10	113483	T87768	Hs.16439	ESTs	0.069
	101119	L09708	Hs.2253	complement component 2	0.069
	102286	U31628	Hs.12503	interleukin 15 receptor, alpha	0.07
	135349	D83174	Hs.9930	collagen-binding protein 2 (colligen 2)	0.07
		J03764	Hs,82085	plasminogen activator inhibitor; type i	0.07
1 5	100991	••••			0.07
15	133675	AA443720	Hs.7551	ESTs; Weakly similar to T25G3.1 [C.elegans]	
	105422	AA251014	Hs.12210	ESTs	0.07
	102932	X13334	Hs.75627	CD14 antigen	0.07
	119147	R58878	Hs.65739	ESTs	0.07
	104900	AA055048	Hs.180481	ESTs; Weakly similar to ACROSIN PRECURSOR [H.sapiens]	0.07
20	133185	AA481404	Hs.6686	ESTs	0.07
20	115496	AA290674	Hs.71819	eukaryotic translation initiation factor 4E binding protein 1	0.07
			Hs.97613	ESTs	0.07
	121005	AA398332		ESTs; Weakly similar to F55A12.9 [C.elegans]	0.071
	124869	R69088	Hs.28728	ESTS; Weakly Similar to PosAtz.6 [C.elegans]	
	129154	N23673	Hs.108969	mannosidase; alpha; class 2B; member 1	0.071
25	112161	R48295	'	ESTs; Wkly smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.071
	125251	W87486	Hs.141464	ESTs	0.071
	134298	J00116	Hs.81343	collagen; type II; alpha 1 (primary osteoarthritis; spondyloepiphyseal	
				dysplasia; congenital)	0.071
	119745	W70264	Hs.58093	ESTs	0.071
30			Hs.25489	ESTs	0.071
30	131306	AA232686			0.071
	107776	AA018820	Hs.221147	ESTS	0.071
	134271	AA199630	Hs.184456	ESTs; Wkly smir to !! ALU SUBFAMILY SX WARNING ENTRY !! [H.sapiens]	
	101798	M85220		Accession not listed in Genbank	0.071
	135402	S76942	Hs.99922	dopamine receptor D4	0.071
35	118742	N74052	Hs.50424	EST	0.071
	131867	N64656	Hs.3353	Homo sapiens done 24940 mRNA sequence	0.071
	102923	X12517	Hs.1063	small nuclear ribonucleoprotein polypeptide C	0.072
	100775	HG371-HT26388	110,1000	Mucin 1, Epithelial, Alt. Splice 9	0.072
		N54361	Hs.185726	ESTs	0.072
40	111020				0.072
40	134224	X80822	Hs.163593	ribosomal protein L18a	0.072
	124059	F13673	Hs.99769	ESTS	0.072
	133972	AA160743	Hs.78019	Homo sepiens clone 24432 mRNA sequence	
	129681	AA436009	Hs.178186	ESTs; Weakly similar to WASP-family protein [H.sapiens]	0.072
	103065	X58399	Hs.81221	Human L2-9 transcript of unrearranged immunoglobulin V(H)5 pseudogene	0.072
45	124966	T19271	Hs.155560	calnexin	0.072
	112270	R53021	Hs.203358	ESTs	0.072
	116704	F10183	Hs.66140	EST	0.072
		M13699	Hs.111461	ceruloplasmin (ferroxidase)	0.072
	129890			ESTs; Highly similar to KIAA0478 protein [H.sapiens]	0.072
50	127345	AA972008	Hs.166253		0.072
50	112436	R63090	Hs.28391	ESTs	
	114531	AA053033	Hs.203330	ESTs	0.072
	135122	H99080	Hs.94814	ESTs	0.072
	103934	AA281338	Hs.134200	Homo sapiens mRNA; cDNA DKFZp564C186 (from clone DKFZp564C186)	0.072
	109363	AA215369	Hs.185764	ESTs; Weakly similar to hypothetical protein [H.sapiens]	0.072
55	112647	R83329	Hs.33403	ESTs	0.073
55	127083	Z44079	Hs.91608	otoferlin	0.073
		AA402624	Hs.63236	synuclein; gamma (breast cancer-specific protein 1)	0.073
	133027				0.073
	122086	AA432121	Hs.250986	EST	0.073
C C	110405	H47542	Hs.33962	ESTs	
60	128697	AB002344	Hs.103915	KIAA0346 protein	0.073
	112221	R50380	Hs.25670	ESTs	0.073
	100478	HG1067-HT1067		Mucin (Gb:M22406)	0.073
	115598	AA400129	Hs.65735	ESTs	0.073
	132491	AA227137	Hs.4984	KIAA0828 protein	0.073
65	101655	M60299		Human alpha-1 collagen type II gene, exons 1, 2 and 3	0.073
05			Hs.34737	ESTs	0.073
	106018	AA411887			0.073
	129683	W05348	Hs.158196	DKFZP434B103 protein	0.073
	134137	F10045	Hs.79347	KIAA0211 gene product	
	114008	W89128	Hs.19872	ESTs .	0.073
					7

	107653	AA010210	Hs.47041	ESTs	0.073
	104798	AA029462	Hs.17235	ESTs	0.073
	134082	L16991	Hs.79006	deoxythymidylate kinase	0.073
_	119180	R80413	Hs.92520	ESTs	0.073
5	107741	AA016982	Hs.64341	ESTs	0.073
	133683	AA335223	Hs.75558	pepsinogen 5; group I (pepsinogen A)	0.073
	111694	R22035	Hs.23331	ESTs	0.073
	120764	AA338729	Hs.133096	ESTs	0.073
10	119389	T88826	Hs.90973	ESTs	0.074
10	100929	HG688-HT688		Major Histocompatibility Complex, Class II, Dr Beta 2 (Gb:X65561)	0.074
	119388	T88798	11. 404404	plasminogen activator inhibitor; type I	0.074
	133019	AF009674	Hs.184434	axin	0.074
	105185	AA191495	Hs.189937	ESTS	0.074 0.074
15	133413	\$72043 J04599	Hs.73133 Hs.821	metallothionein 3 (growth inhibitory factor (neurotrophic)) biglycan	0.074
13	101017 132865	K02765	Hs.251972	complement component 3	0.074
	110882	N36001	Hs.17348	ESTs; Wkly smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	0.074
	129197	T90303	Hs.109308	ESTs; Wkfy smir to leucine-rich glioma-inactivated prot precursor [H.sapiens]	0.074
	101184	L19871	Hs.460	activating transcription factor 3	0.075
20	134910	AA431320	Hs.9100	ESTs	0.075
	119411	T96621	Hs.203656	EST	0.075
	102000	U01824	Hs.380	solute carrier family 1 (glial high affinity glutamate transporter); member 2	0.075
	114691	AA121893	Hs.103779	ESTs; Weakly similar to envelope protein [H.saptens]	0.075
	134179	U53204	Hs.79706	plectin 1; intermediate filament binding protein; 500kD	0.075
25	134503	U34880	Hs.84183	diptheria toxin resistance protein required for diphthamide	
				biosynthesis (Saccharomyces)-like 1	0.075
	129719	N66396	Hs.167766	ESTs; Moderately similar to Pro-a2(XI) [H.sapiens]	0.075
	113916	W80464	Hs.31928	ESTs; Wkly smlr to alternatively spliced product using exon 13A [H.sapiens]	0.075
20	113897	W73926	Hs.4947	ESTs	0.075
30	129697	R00841	Hs.172069	DKFZP434C212 protein	0.075
	112078	R44155	Hs.112218	ESTs ESTs: Weakly similar to coded for by C, elegans cDNA vk173c12.5 (C.elegans)	0.075 0.075
	121980	AA429886 HG4638-HT5050	Hs.110407	Spliceosomal Protein Sap 49	0.075
	100898 121626	AA416974	Hs.98174	ESTs	0.075
35	133670	AA243416	Hs.75470	hypothetical protein; expressed in osteoblast	0.075
33	131879	AA017161	Hs.33792	ESTs	0.075
	100254	D38037	Hs.77643	FK506-binding protein 1B (12.6 kD)	0.075
	133194	AA291726	Hs.67201	ESTs	0.075
	106081	AA418394	Hs.25354	ESTs	0.075
40	115544	AA351433	Hs.66187	Homo sapiens clone 23700 mRNA sequence	0.076
	119955	W87460	Hs.58989	ESTs	0.076
	104407	H61361	Hs.102171	immunoglobutin superfamily containing leucine-rich repeat	0.076
	135019	X58431	Hs.98428	Human Hox2.2 gene for a homeobox protein	0.076
	114815	AA161488	Hs.103931	DKFZP434B0335 protein	0.076
45	119471	W31352	Hs.55445	ESTs	0.076
	117788	N48292	Hs.46849	ESTs	0.076
	119406	T95064	Hs.193771	EST	0.076 0.076
	130777	R61742	Hs.256554	ESTs	0.076
50	130494	L13197	Hs.75874	pregnancy-associated plasma protein A T-cell lymphoma invasion and metastasis 2	0.076
JU	104107 121483	AA424111 AA411981	Hs.12598 Hs.25274	ESTs; Modly smir to putative seven pass transmembrane prot [H.sapiens]	0.076
	104451	M13299	Hs.102119	blue cone pigment	0.076
	118027	N52770	Hs.75968	thymosin; beta 4; X chromosome	0.076
	109419	AA227560	Hs.86987	receptor-Interacting serine-threonine kinase 3	0.076
55	115783	AA424487	Hs.72289	ESTs; Weakly similar to LIV-1 protein [H.sapiens]	0.076
	110585	H62223	Hs.133526	ESTs; Wkty smlr to !!!ALU SUBFAMILY SB1 WARNING ENTRY !!![H.sapiens]	0.076
	123165	AA48863	Hs.105216	ESTs; Weakly smir to !!ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.077
	103966	AA303166	Hs.127270	ESTs	0.077
	109549	F01528	Hs.21192	Homo sapiens clone 25155 mRNA sequence	0.077
60	106730	AA465520	Hs.22313	ESTs	0.077
	120310	AA193676	Hs.118926	DKFZP586K0919 protein	0.077
	104078	AA402801	Hs.222010	ESTS	0.077
	117624	N35978	Hs.82364	ESTs	0.077
65	112421	R62441	Hs.23127	ESTS	0.077
65	106958	AA497026	Hs.22059	ESTs ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	0.077 0.077
	129984	W92811 AA431456	Hs.183927 Hs.98736	ESTS; Weakly similar to !! ALU SUBPAMILT J WARNING ENTITY !! [IT. sapiens]	0.077
	122044 123280	AA491285	Hs.175144	ESTS	0.077
	115710	AA412535	Hs.55235	sphingomyelin phosphodiesterase 2; neutra	
	1 10, 10			-bA A b-re-abreament and -d	

				i membrane (neutral sphingomyelinase)	0.077
-	134129	D87444	Hs.79305	KIAA0255 gene product	0.077
	129321	AA224502	Hs.206501	Homo sapians clone 643 unknown mRNA; complete sequence	0.078
	130513	AA460257	Hs.15866	ESTs	0.078
5	100996	J03909	Hs.14623	interferon; gamma-inducible protein 30	0.078
-	128358	Al095718	Hs.135015	ESTs	0.078
	128544	R59352	Hs.119273	KIAA0296 gene product	0.078
	106040	AA412681	Hs.125139	ESTs	0.078
	106495	AA452113	Hs.32454	ESTs; Moderately similar to KIAA0544 protein [H.saplens]	0.078
10	131833	R40899	Hs.32973	glycine receptor; beta	0.078
	119219	R97176	Hs.110783	ESTs	0.078
	135415	X60655	Hs.99967	even-skipped homeo box 1 (homolog of Drosophila)	0.078
	109457	AA232646	Hs.68061	ESTs; Weakly similar to sphingosine kinase [M.musculus]	0.078
	117137	H96670	Hs.42221	ESTs	0.078
15	107094	AA609614	Hs.5241	ESTs	0.078
	130165	T90529	Hs.251613	EST	0.078 0.078
	124072	H05252	Hs.101637	EST; Weakly similar to hypothetical protein [H.sapiens]	0.078
	126151	AA324743	Hs.40808	ESTs	0.078
20	119035	R01779	Hs.7740	ESTs ESTs	0.078
20	110157	H18987	Hs.169731	ESTs; Highly similar to HYPOTHETICAL PROTEIN KIAA0195 [H.sapiens]	0.078
	128515	AA149044 U94836	Hs.10086 Hs.6430	protein with polyglutamine repeat	0.078
	133069 112209	R49644	Hs.24865	ESTs =	0.078
	133361	R28279	Hs.71848	Human clone 23548 mRNA sequence	0.078
25	134714	U89922	Hs.890	lymphotoxin beta (TNF superfamily; member 3)	0.078
45	129905	T86796	Hs.132875	ESTs; Weakly similar to predicted using Genefinder [C.elegans]	0.079
	120421	AA236166	Hs.132957	ESTs; Weakly similar to chondromodulin-I precursor [H.sapiens]	0.079
	100885	HG4490-HT4876	710770000	Proline-Rich Protein Prb4. Allele	0.079
	102789	U86759	Hs.158336	netrin 2 (chicken)-like	0.079
30	120139	Z39273	Hs.77876	Human DNA from chromosome 19-specific cosmid R30923; genomic sequence	0.079
••	135238	U76343	Hs.96970	Human liver GABA transport protein mRNA; 3' end	0.079
	129618	N54845	Hs.173030	ESTs	0.079
	132960	AA609742	Hs.6150	KIAA0521 protein	0.079
	108751	AA127063	Hs.203717	ESTs	0.079
35	134060	D42039	Hs.78871	KIAA0081 protein	0.079
	111338	N79778	Hs.35094	extracellular matrix protein 2; female organ and adipocyte specific	0.079
	112345	R56880	Hs.26563	ESTs	0.079
	126456	W00881		za56d02.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA done	0.070
40				IMAGE:296547 5', mRNA sequence.	0.079 0.079
40	128937	Z39939	Hs.10726	ESTs	0.079
	103485	Y08409 ·	Hs.248415	thyroid hormone responsive SPOT14 (rat) hormolog	0.079
	111202	N68280	Hs.107922	ESTs	0.079
	132625	AA429890	Hs.166066	cisplatin resistance associated	0.079
45	103434	X98085	Hs.54433	tenascin R (restrictin; janusin) ribosomal protein L3-like	0.079
43	102616	U65581 U70867	Hs.159191 Hs.83974	solute carrier family 21 (prostaglandin transporter); member 2	0.079
	102667 111422	R01127	Hs.19104	ESTs	0.079
	101411	M16938	Hs.820	homeo box C8	0.08
	113267	T65058	Hs.12725	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.08
50	103559	Z19585	Hs.75774	thrombospondin 4	80.0
50	131588	AA258613	Hs.29189	KIAA1021 protein	80.0
	107821	AA020991	Hs.172856	ESTs	80.0
	134278	H82839	Hs.81001	ESTs; Weakly similar to DY3.6 [C.elegans]	80.0
	120893	AA369800	Hs.97058	EST; Highly similar to CMP-N-acetylneuraminic acid hydroxylase [H.sapiens]	80.0
55	108786	AA128999		zo8f12.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens	
				cDNA clone IMAGE:567119 3'. mRNA sequence	0.08
	106890	AA489245	Hs.88500	KIAA1066 protein; JSAP1 homolog (mouse); JIP3 homolog (mouse)	80.0
	119760	W72267	Hs.58219	ESTs	80.0
<i>~</i>	132999	Y00787	Hs.624	interleukin 8	80.0
60	129156	AA028195	Hs.108973	dolichyl-phosphate mannosyltransferase polypeptide 2; regulatory subunit	80.0 80.0
	121171	AA400008	Hs.161814	ESTs	0.08
	103864	AA207264	Hs.181077	ESTs; Weakly similar to Miller-Dieker lissencephaly gene [H.sapiéns] ESTs: Weakly similar to O-linked GlcNAc transferase [H.sapiens]	0.08
	128591	AA255537	Hs.102057		0.08
65	122172	AA435753	Hs.161854 Hs.174855	EST	80.0
UJ	112802	R97647 AA015967	Hs.60680	EST	80.0
	107723 113011	T23737	Hs.1600	chaperonin containing TCP1; subunit 5 (epsilon)	0.081
	131279	AA089853	Hs.25197	STIP1 homology and U-Box containing protein 1	0.081
	103190	X70083	Hs.58414	filamin C; gamma (actin-binding protein-280)	0.081

	103956	AA292411	Hs.233348	ESTs	0.081
	112706	R89828	Hs.138493	ESTs	0.081
	126126	M85370		EST01884 Fetal brain, Stratagene (cat#936206) Homo sapiens cDNA	
-		1140000		clone HFBCH10, mRNA sequence.	0.081
5	130094	H43286	Hs.167017	gamma-aminobutyric acid (GABA) B receptor; 1	0.081
	100800	HG3945-HT4215	Un C404C	Phospholipid Transfer Protein	0.081
	108675 129420	AA115240 AA234259	Hs.61816 Hs.99816	ESTs ESTs	0.081
	129666	M77349	Hs.118787	transforming growth factor; beta-induced; 68kD	0.081
10	101645	M59807	Hs.943	natural killer cell transcript 4	0.081
10	130536	T17045	Hs.159492	spastic ataxia of Charlevoix-Saguenay (sacsin)	0.081
	107732	AA0161B1	Hs.59752	ESTs	0.081
	123071	AA482593	Hs.104285	ESTs	0.081
	113537	T90457	Hs.191293	ESTs	0.081
15	101250	L34060	Hs.79133	cadherin 8	0.081
	122521	AA449433	Hs.149227	ESTs; Weakly similar to PROLINE-RICH PROTEIN MP-3 [M.musculus]	0.081
	133914	N32811	Hs.77542	ESTs	0.081
	102038	U05659	Hs.477	hydroxysteroid (17-beta) dehydrogenase 3	0.081
20	110336	H40338	Hs.174094	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.081
20	118637	N70274	Hs.49822	ESTs ESTs	0.081 0.082
	117966 104424	N51589 H87671	Hs.94012 Hs.182320	ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	0.082
	100381	D78361	Hs.125078	Human mRNA for omithine decarboxylase antizyme; ORF 1 and ORF 2	0.082
	112974	T17291	Hs.101174	microtubule-associated protein tau	0.082
25	132832	D63482	Hs.57734	KIAA0148 gene product	0.082
	132039	Z39489	Hs.3781	Homo saplens BAC clone RG118D07 from 7q31	0.082
	113272	T65383	Hs.12807	ESTs	0.082
	104924	AA058532	Hs.28774	ESTs .	0.082
••	111061	N58054	Hs.36859	ESTs	0.082
30	129269	R45977	Hs.163593	ribosomal protein L18a	0.082
	102453	U48437	Hs.74565	amyloid beta (A4) precursor-like protein 1	0.082
	126204	Al080388	Hs.134296	ESTs	0.082 0.082
	116615 128856	D80666 AA219552	Hs.45203 Hs.204144	ESTs ESTs: Modily smir to tumor necrosis factor-alpha-induced prot B12 [H.sapiens]	0.082
35	112776	R95850	Hs.34494	ESTs Mouly strill to tulinor necrosis ractor-alpha-trauced prof. b12 [illisapiens]	0.082
33	105494	AA256273	Hs.29288	Homo sapiens mRNA; cDNA DKFZp434P174 (from clone DKFZp434P174)	0.082
	117000	H84718	Hs.112236	ESTs; Weakly similar to repressor protein [H.sapiens]	0.082
	112656	R85260	Hs.133151	transient receptor potential channel 7	0.082
	128963	J03890	Hs.1074	surfactant; pulmonary-associated protein C	0.083
40	116957	H79292	Hs.39960	ESTs	0.083
	101057	K03430		Human complement C1q B-chain gene, exon A+1	0.083
	121948	AA429452	Hs.98582	ESTs	0.083
	130822	M80647	Hs.2001	thromboxane A synthase 1 (platelet; cytochrome P450; subfamily V)	0.083 0.083
45	122743 114569	AA458674 AA063316	Hs.99478	EST zm2d1.s1 Stratagene comeal stroma (#937222) Homo sapiens cDNA clone	U.U03
43	114309	AAU03310		IMAGE:512947 3' similar to TR:E198281 E198281 THIOREDOXIN	
				REDUCTASE ;contains Aiu repetitive element;, mRNA sequence	0.083
	132270	U70671	Hs.43509	ataxin 2 related protein	0.083
	108126	AA052951	Hs.47413	ESTs	0.083
50	102880	X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32; Charcot-Marie-Tooth	
				neuropathy; X-linked)	0.083
	115365	AA282089	Hs.88599	ESTs .	0.083
	114529	AA052980	Hs.206704	ESTs -	0.083
E E	135017	AA249586	Hs.9315	ESTs; Weakly similar to NEURONAL OLFACTOMEDIN-RELATED	0.000
55	400770	A A C 4 O O 7 4	Ha 440040	ER LOCALIZED PROTEIN [H.sapiens]	0.083 0.083
	123776 114454	AA610071 AA021091	Hs.112813 Hs.226208	ESTs ESTs	0.083
	101246	L33799	Hs.202097	procollagen C-endopeptidase enhancer	0.083
	107366	U78310	Hs.13501	pescadillo (zebrafish) homolog 1; containing BRCT domain	0.083
60	132779	T89601	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPORTER TYPE 5;	
				SMALL INTESTINE [H.sapiens]	0.083
	129709	AA112209	Hs.1209	acyl-Coenzyme A dehydrogenase; long chain	0.083
	115244	AA278767	Hs.914	Human mRNA for SB classII histocompatibility antigen alpha-chain	0.083
C.F	123253	AA490878	Hs.111334	ferritin; light polypeptide	0.083
65	128469	T23724	Hs.258677	EST	0.083
	132220	AA431847	Hs.42409 Hs.22344	ESTs; Highly similar to CGI-146 protein [H.saplens] ESTs	0.083
	111664 102354	R17939 U38268	N3.22344	Human cytochrome b pseudogene, partial cds	0.084
	112828	R98774	Hs.194338	ESTs	0.084
					

	110410	H47868	Hs.34024	EST8	0.084
	102620	U66052		Human clone W2-6 mRNA from chromosome X	0.084
	102550	U58087	Hs.14541	cullin 1	0.084
	108417	AA075716		zm89e5.s1 Stratagene ovarlan cancer (#937219) H sapiens cDNA clone	
5				IMAGE:54512 3' similar to gb:X14723 CLUSTERIN PRECURSOR	
•				(HUMAN);, mRNA sequence	0.084
	113299	T67285	Hs.13089	ESTs	0.084
	117869	N49947	Hs.46990	ESTs	0.084
		T98484	Hs.18377	EST	0.084
10	113734	C00424	Hs.7101	periodontal ligament fibroblast protein	0.084
10	133325		Hs.124838	ESTs	0.084
	123368	AA505022		transglutaminase 2 (C polypeptide; protein-glutamine	0.001
	101615	M55153	Hs.8265		0.084
			11 400007	-gamma-glutamyltransferase)	0.004
	119352	T65972	Hs.193365	ESTs; Moderately similar to alternatively spliced product	0.004
15				using exon 13A (H.sapiens)	0.084
	123828	AA620686	Hs.112884	EST	0.084
	103611	Z38133	Hs.113973	myosin; heavy polypeptide 8; skeletal muscle; perinatal	0.084
	131289	AA485697	Hs.25334	ESTs; Weakly similar to ION CHANNEL HOMOLOG RIC	
				PRECURSOR [M.musculus]	0.084
20	128678	T15896	Hs.103535	ESTs	0.084
	130814	AA256695	Hs.19813	ESTs '	0.084
	133391	X57579	Hs.727	inhibin; beta A (activin A; activin AB alpha polypeptide)	0.084
	129322	AA437153	Hs.110407	ESTs; Weakly similar to coded for by C. elegans cDNA yk173c12.5 [C.elegans]	0.084
	109284	AA196995	Hs.86092	ESTs	0.084
25	116689	F09222	Hs.66099	ESTs	0.085
20	100545	HG2147-HT2217	110.0000	Mucin 3, Intestinal (Gb:M55405)	0.085
	102634	U66711	Hs.77667	lymphocyte antigen 6 complex; locus E	0.085
	111735	R25389	Hs.23856	ESTs; Weakly similar to FAST kinase [H.saplens]	0.085
	105181	AA190676	Hs.10974	ESTs; Moderately similar to unknown [R.norvegicus]	0.085
30	122681	AA455350	Hs.99401	EST	0.085
50	114543	AA056121	Hs.158419	ESTs	0.085
	133597	AA425908	Hs.75139	partner of RAC1 (arriaptin 2)	0.085
	121064	AA398647	Hs.97406	ESTs	0.085
	122231	AA436369	Hs.197728	ESTs; Weakly similar to ZINC FINGER PROTEIN 135 [H.sapiens]	0.085
35	100309	D50550	Hs.95659	lethal giant larvae (Drosophila) homolog 1	0.085
33		M73481	Hs.73883	gastrin-releasing peptide receptor	0.085
	101727		Hs.24476	ESTs	0.085
	131226	AA165400 AA095041	Hs.181073	ESTS	0.085
	133580			GTP binding protein 1	0.085
40	102792	U87964	Hs.227576	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.085
40	104976	AA086480	Hs.183669	EST	0.085
	120865	AA350631	Hs.96963		0.085
	106080	AA418046	Hs.35124	ESTs .	0.085
	128571	AA416819	Hs.101661	ESTs .	0.085
45	101838	M92934	Hs.75511	connective tissue growth factor ESTs; Weakly similar to similar to GTP-binding protein [C.elegans]	0.085
45	128514	H84261	Hs.100843		0.085
	123099	AA485931	Hs.79	aminoacylase 1	0.085
	134067	Y08200	Hs.78920	Rab geranylgeranyltransferase; alpha subunit	0.085
	116967	H80336	Hs.40124	EST	0.085
	110053	H12586	Hs.89563	nuclear cap binding protein 1; 80kD	-
50	114395	AA007313	Hs.110155	ESTs	0.085
	107465	W44681	Hs.251385	murine retrovirus integration site 1 homolog	0.085
	101983	S85655	Hs.75323	prohibitin	0.085
	112544	R70948	Hs.29153	ESTs -	0.086
	111423	R01165	Hs.188507	ESTs	0.086
55	127918	AA806043	Hs.115396	Human germline IgD chain gene; C-region; C-delta-1 domain	0.086
	107300	T40348	Hs.90488	ESTs	0.086
	134947	R51194		yi71a08.r1 Soares breast 2NbHBst Homo sapiens cDNA done IMAGE:154166	
				5' similar to gb:111284 DUAL SPECIFICITY MITOGEN-ACTIVATED PROTEIN	
_				KINASE KINASE 1 (HUMAN);, mRNA sequence.	0.086
60	124579	N68345	Hs.127179	ESTs; Weakly similar to TERATOCARCINOMA-DERIVED GROWTH	
_				FACTOR 1 [H.sapiens]	0.086
	130471	Z68280	Hs.183706	adducin 1 (alpha)	0.086
	116596	D60755	Hs.92955	ESTs	0.086
	105069	AA136345	Hs.23617	ESTs; Weakly similar to ZFOC1 gene product [H.sapians]	0.086
65	102491	U51010		Human nicotinamide N-methyltransferase gene, exon 1 and 5' flanking region	0.086
	130069	AA055896	Hs.146428	collagen; type V; alpha 1	880.0
	130234	AA280413	Hs.157441	spleen focus forming virus (SFFV) proviral integration oncogene spi1	0.086
	120540	AA262992	Hs.96417	ESTs	980.0
	122508	AA449221	Hs.20432	ESTs	0.086
		· · · · · · · · · · · · · · · · · · ·			

	128054	Al205718	Hs.125416	ESTs	0.086
	133020	AA053248	Hs.185182	ESTs; Highly similar to 40S RIBOSOMAL PROTEIN S10 [H.saplens]	0.086
	130056	AA017356	Hs.171900	armadillo repeat gene deletes in velocardiofacial syndrome	0.086
	130504	U48865	Hs.158323	CCAAT/enhancer binding protein (C/EBP); epsilon	0.086
5	133978	W73859	Hs.78061	transcription factor 21	0.086
•	105265	AA227941	Hs.26088	ESTs	0.086
	133035	T15965	Hs.6333	ESTs	0.086
		HG3636-HT3846	115.0333	Myosin, Heavy Polypeptide 9, Non-Muscle	0.086
	100768		11- 47074		
10	129338	T56800	Hs.47274	Homo sapiens mRNA; cDNA DKFZp564B176 (from clone DKFZp564B176)	0.086
10	132789	W23761	Hs.56876	ESTs	0.086
	116099	AA456309	Hs.58831	regulator of Fas-induced apoptosis	0.086
	100721	HG3355-HT3532	*	Peroxisome Proliferator Activated Receptor (Gb:Z30972)	0.087
	112569	R73150	Hs.75270	GTP-binding protein homologous to Saccharomyces cerevisiae SEC4	0.087
	130645	AA020942	Hs.17200	STAM-like protein containing SH3 and ITAM domains 2	0.087
15	100751	HG3527-HT3721		Luteinizing Hormone, Beta Subunit	0.087
	134550	M27161	Hs.85258	CD8 antigen; alpha polypeptide (p32)	0.087
	130885	AA338646	Hs.20912	adenomatous polyposis coli fike	0.087
	101446	M21302	Hs.56306	small proline-rich protein 2A	0.087
	116287	AA487856	Hs.155829	KIAA0676 protein	0.087
20	134034	X89267			0.087
20			Hs.78601	uroporphyrinogen decarboxylase	
	130860	U66061	Hs.241395	protease; serine; 1 (trypsin 1)	0.087
	109901	H04992	Hs.30499	ESTs	0.087
	107537	Z 20777	Hs.9857	ESTs; Weakly similar to peroxisomal short-chair alcohol	
				dehydrogenase [H.sapiens]	0.087
25	133232	AA496030	Hs.6845	ESTs	0.087
	108559	AA085161		zn12c5.s1 Stratagene hNT neuron (#937233) H sapiens cDNA clone	
				IMAGE:54728 3' similar to TR:G1151228 G1151228 LPG1P.;, mRNA seq	0.087
	121288	AA401735	Hs.97340	EST	0.087
	108844	AA132916	Hs.177961	Human Chromosome 16 BAC clone CIT987SK-A-388D4	0.087
30	129874	AA406488	Hs.181551	ESTs	0.087
50	105139	AA164543	Hs.110082	ESTs	0.088
	124789	R43803	Hs.78110	ESTs; Weakly similar to F17A9.2 [C.elegans]	0.088
	115923	AA441929	Hs.38205	ESTs	0.088
25	123640	AA609292	Hs.112681	EST8	880.0
35	131607	AA351409	Hs.172740	microtubule-associated protein; RP/EB family; member 3	0.088
	130064	T67053	Hs.181125	immunoglobulin lambda gene cluster	0.088
	108752	AA127070	Hs.71055	ESTs	880.0
	124249	H68077	Hs.108211	EST ₈	0.088
	100109	AJ000480	Hs.143513	phosphoprotein regulated by mitogenic pathways	880.0
40	104642	AA004662	Hs.184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	0.088
	131752	AA453311	Hs.31566	ESTs	0.088
	114727	AA132545	Hs.190202	E\$Ts	0.088
	120965	AA398089	Hs.179715	ESTs	0.088
	100396	D84361	Hs.151123	Human mRNA for p52 and p64 isoforms of N-Shc; complete cds	0.088
45	106218	AA428451	Hs.91146	DKFZP586E0820 protein	880.0
-13	111562	R09567	Hs.187569	ESTs	0.088
		AA400606	Hs.144344	EST	0.088
	121219				
	101187	L20316	Hs.208	glucagon receptor	880.0
50	101513	M28210	Hs.27744	RAB3A; member RAS oncogene family	0.088
50	116454	AA621071	Hs.42034	ESTs; Moderately similar to T-complex protein 10A [H.sapiens]	0.088
	116171	AA463434	Hs.42658	ESTs	0.089
	117500	N31909	Hs.44278	ESTs .	0.089
	119978	W88623	Hs.59190	EST -	0.089
	132005	D58231	Hs.173091	DKFZP434K151 protein	0.089
55	109914	H05529	Hs.194704	leucine-rich; glioma inactivated 1	0.089
	130370	M55265	Hs.155140	caseln kinase 2; alpha 1 polypeptide	0.089
-	104262	AF009801	Hs.105941	bagpipe homeobox (Drosophila) homolog 1	0.089
	129708	AA417181	Hs.120858	ESTs	0.089
	106398	AA447545	Hs.18268	adenylate kinase 5	0.089
60	120884	AA365356	Hs.97041	ESTs	0.089
00	130404	X72012	Hs.76753		0.089
				endoglin (Osler-Rendu-Weber syndrome 1)	
	114072	Z38184	Hs.123633	ESTs	0.089
	131470	X54938	Hs.2722	inositol 1;4;5-trisphosphate 3-kinase A	0.089
C F	124573	N67935	Hs.194703	adaptor-related protein complex 4; mu 1 subunit	0.089
65	114717	AA131240	Hs.252014	EST	0.089
	133806	M12759	Hs.76325	Human Ig J chain gene	0.09
	130470	AA398552	Hs.15711	KIAA0639 protein	0.09
	133182	Z 80787	Hs.240135	H4 histone family; member J	0.09
	116036	AA452572	Hs.43866	ESTs	0.09

	132404	AA393903	Hs.4768	ESTs	0.09
	122695	AA456048	Hs.99403	ESTs; Moderately similar to undulin 2 [H.saplens]	0.09
	125975	AA495891	Hs.152290	ESTs: Highly similar to PACAP type-3/VIP type-2 receptor [H.sapiens]	0.09
	110783	N23669	Hs.26407	ESTs	0.09
5	129860	AA410343	Hs.129826	tetraspan transmembrane 4 super family	0.09
J	120740	AA302650	Hs.96654	EST	0.09
		W38206	113300007	Accession not listed in Genbank	0.09
	119564	AA054746	He 0070	ESTs	0.09
	134474		Hs.8379		0.09
10	119014	N95435	Hs.55144	ESTs	0.09
10	109791	F10669	Hs.13228	DRE-antagonist modulator; calsenilin	
	117605	N35073	Hs.44433	ESTs	0.09
	121589	AA416627	Hs.191598	ESTs	0.09
	104326	D81655	Hs.143067	ESTs	0.09
	129861	N69507	Hs.129849	DKFZP564M182 protein	0.09
15	102795	U88667	Hs.198396	ATP-binding cassette; sub-family A (ABC1); member 4	0.09
	118626	W49499	Hs.184456	ESTs; Wkty smlr to II ALU SUBFAMILY SX WARNING ENTRY II [H.sapiens]	0.09
	110516	H56894	Hs.37368	EST	0.09
	105382	AA236853	Hs.111801	Homo sapiens mRNA; cDNA DKFZp564H2023 (from clone DKFZp564H2023)	0.09
	123754	AA609964	Hs.102021	ESTs	0.09
20	108008	AA039430	Hs.61920	ESTs	0.09
	121057	AA398619	Hs.142375	ESTs: Moderately similar to putative envelope protein [H.sapiens]	0.091
	123675	AA609474	Hs.112713	EST	0.091
	135194	C20975	Hs.9613	ESTs; Highly similar to angiopoietin-related protein [H.sapiens]	0.091
	127070	AA641812	Hs.190037	ESTs	0.091
25		S67070	Hs.78846	heat shock 27kD protein 2	0.091
23	134051			ESTs	0.091
	133382	AA112532	Hs.7247 Hs.115460	calicin	0.091
	103615	Z46967			0.091
	118457	N66593	Hs.49230	EST	0.091
20	118504	N67334	Hs.50158	ESTs	0.091
30	112915	T10176	Hs.4254	ESTs	
	132088	AA470121	Hs.243960	HLA-B associated transcript-3	0.091
	101504	M27288	Hs.248156	oncostatin M	0.091
	112550	R71391	Hs.29074	ESTs	0.091
	128551	H09058	Hs.237323	N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	0.091
35	112879	T03541	Hs.115960	ESTs	0.091
	127079	Al364691	Hs.128628	ESTs; Moderately similar to CL3BC [R.norvegicus]	0.091
	101993	U01062	Hs.77515	inositol 1;4;5-triphosphate receptor; type 3	0.091
	113020	T23830	Hs.7303	ESTs; Weakly similar to PROHIBITIN [H.sapiens]	0.091
	120465	AA251505	Hs.130861	ESTs	0.091
40	130152	U32645	Hs.151139	E74-like factor 4 (ets domain transcription factor)	0.091
	104941	AA065169	Hs.17805	ESTs	0.091
	110090	H16076	Hs.6915	ESTs	0.091
	135375	AA480888	Hs.99741	ESTs; Weakly similar to BRAIN PROTEIN H5 [H.sapiens]	0.091
	123799	AA620418	Hs.112861	ESTs	0.092
45	118966	N93438	Hs.76907	ESTs; Highly similar to HSPC002 [H.sapiens]	0.092
	116969	H80633	Hs.143038	ESTs	0.092
	125147	W38150		Accession not listed in Genbank	0.092
	100836	HG4113-HT4383		Olfactory Receptor Or17-201	0.092
	114726	AA132509	Hs.103827	EST	0.092
50	107311	T57738	Hs.174112	ESTs	0.092
50	112863	T03148	Hs.4610	EST	0.092
	129290	AA521407	Hs.110095	ESTs	0.092
		X92762		tafazzin (cardiomyopathy; dilated 3A (X-linked); endocardial	0.002
	103384	YA51.05	Hs.79021		0.092
55	440500	D00040	11- 000 47	fibroelastosis 2; Barth syndrome)	0.000
33	112508	R68213	Hs.28847	ESTS	0.092
	111863	R37495	Hs.23578	ESTs	0.092
	131184	AA452705	Hs.23954	ESTs; Weakly similar to KIAA0584 protein [H.sapians]	0.092
	107420	W26567	Hs.4775	ESTS	
60	111768	R27606	Hs.24185	ESTs	0.092
60	112290	R53940	Hs.26016	ESTS	0.092
	130581	AA481982	Hs.16258	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-5A [H.sapiens]	0.092
	120744	AA302772	Hs.228649	EST	0.093
	112226	R50761	Hs.25738	ESTs	0.093
	116154	AA460951	Hs.57100	ESTs	0.093
65	102640	U67674	Hs.194783	solute carrier family 10 (sodium/bile acid cotransporter family); member 2	0.093
	129797	X53595	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	0.093
	102705	U77180	Hs.50002	small inducible cytokine subfamily A (Cys-Cys); member 19	0.093
	132408	AA035547	Hs.47822	KIAA0380 gene product; RhoA-specific guanine nucleotide exchange factor	0.093
	108441	AA079079		zm97c9.s1 Stratagene coton HT29 (#937221) Homo sapiens cDNA clone	
				•	

				IMAGE:545872 3' similar to contains element MER22 MER22 repetitive	
				etement ;, mRNA sequence	0.093
	108145	AA054133	Hs.63085	ESTs	0.093
_	106466	* AA449990	Hs.76057	lysophospholipase II	0.093
5	101697	M64358		Human rhom-3 gene, exon	0.093
	121294	AA401958	Hs.240170	ESTs; Moderately similar to alternatively spliced product using	0.000
				exon 13A [H.sapiens]	0.093
	117824	N49065	Hs.125201	ESTs; Weakly similar to B7 [M.musculus]	0.093
10	115771	AA422049	Hs.40780	ESTs .	0.093
10	102303	U33053	Hs.2499	protein kinase C-like 1	0.093
	131405	U79255	Hs.26468	amyloid beta (A4) precursor protein-binding; family A; member 2 (X11-like)	0.093
	112909	T10069	Hs.101094	ESTs	0.093
•	124173	H41281	Hs.107619	ESTs	
15	112488	R66896	Hs.28788	ESTs	0.093
13	130554	X593Q3 AA447964	Hs.159637	valyI-IRNA synthetase 2	0.093
	106413	R22891	Hs.6311	ESTs ESTs	0.094
	111711		Hs.7093 Hs.44664	EST EST	0.094
	117595 113813	N34933 W45174	Hs.31382	ESTs	0.094
20		AA018449	Hs.125220	Homo sapiens DNA from chromosome 19-cosmids R30102:R29350:R27740	U.U04
20	107769	MUIDHAS	113, 123220	containing MEF2B; genomic sequence	0.094
	114966	AA250743	Hs.92198	ESTs; Highly similar to calcium-regulated heat stable protein	0.054
	114900	MAZ3U143	U2'95 190	CRHSP-24 [H.sapiens]	0.094
	130297	H94949	Hs.171955	trophinin-assisting protein (tastin)	0.094
25	109589	F02429	Hs.6581	ESTs	0.094
23	112592	R77631	Hs.29126	ESTs	0.094
	102314	U34038	Hs.154299	coagulation factor II (thrombin) receptor-like 1	0.094
	116128	AA459915	Hs.112193	mutS (E. coli) homolog 5	0.094
	106809	AA479704	Hs.220324	Human DNA sequence from clone 283E3 on chromosome 1p36.21-36.33.	••••
30	100000	701110104	TIDIEEUUET	Contains the alternatively spliced gene for Matrix Metalloproteinase in the	
-				Female Reproductive tract MIFR1; -2; MMP21/22A; -B and -C; a novel gene;	
				the alternatively spliced CDC2L2 gene for	0.094
	130607	AA043894	Hs.16603	ESTs	0.094
	120592	AA281929	Hs.143974	ESTs	0.094
35	117230	N20535	Hs.43265	melastatin 1	0.094
	105948	AA404597	Hs.7133	ESTs	0.094
	101333	L47738	Hs.80313	p53 inducible protein	0.094
	101909	S69265 .		Homo sepiens mRNA for PLE21 protein; complete cds	0.094
	106959	AA497031	Hs.8657	ESTs; Highly similar to CTG7a [H.sapiens]	0.094
40	127034	AA352389		ESTs; Wkly smlr to glucose-6-phosphatase catalytic subunit [R.norvegicus]	0.095
	134430	H52105	Hs.8309	KIAA0747 protein	0.095
	120342	AA207105	Hs.45068	Homo sapiens mRNA; cDNA DKFZp434I143 (from clone DKFZp434I143)	0.095
	104450	L77564	Hs.103978	serine/threonine kinase 22B (spermiogenesis associated)	0.095
	130902	AA424530	Hs.21061	ESTs	0.095
45	102708	U77594	Hs.37682	retinoic acid receptor responder (tazarotene induced) 2	0.095
	107373	U85773	Hs.154695	phosphomannomutase 2	0.095
	123569	AA608952	Hs.195292	ESTs; Weakly similar to RNA helicase HDB/DICE1 [H.sapiens]	0.095
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.095
~^	128888	AA034951	Hs.106893	ESTs	0.095
50	100283	D43642	Hs.2430	transcription factor-like 1	0.095
	102747	U79303	Hs.82482	protein predicted by clone 23882	0.095
	107798	AA019346	Hs.6091B	EST	0.095
	123565	AA608907	Hs.112614	EST -	0.095
E E	116010	AA449450	Hs.56421	ESTs; Weakly similar to Similarity to H.influenza ribonuclease PH [C.elegans]	0.095
55	117155	H97536	Hs.42391	EST	0.095
	133094	AA115572	Hs.64746	chloride intracellular channel 3	0.095 0.095
	113174	T54659	Hs.9779	ESTs	0.095
	102016	U03270	Hs.122511	centrin; EF-hand protein; 1	0.095
60	130126	AB002318 X14767	Hs.150443 Hs.89768	KIAA0320 protein gamma-aminobutyric acid (GABA) A receptor; beta 1	0.095
w	134813	N69440		ESTs	0.095
	132055	AA436198	Hs.38132 Hs.103902	EST8	0.096
	122229	AA907314	Hs.188905	ESTs	0.096
	127574	AA053022		ESTs	0.096
65	134432 128052	AA878398	Hs.8312 Hs.190491	ESTS	0.096
Û,	128052	M58285	Hs.132834	hematopoletic protein 1	0.096
	103386	X92972	Hs.80324	protein phosphatase 6; catalytic subunit	0.096
	133079	AA477561	Hs.6449	ESTs	0.096
	120328	AA196979	Hs.104129	ESTs: Weakly similar to protease [H.saplens]	0.096
	150050	LATINACIO	1 100 1 107 1240	mand transfer to branches in makening	000

		•			
	107640	AA009615	Hs.257808	ESTs	0.096
	123389	AA521176	Hs.221231	ESTs	0.096
	103222	· X74795	Hs.77171	minichromosome maintenance deficient (S. cerevisiae) 5 (celi division cycle 46	0.096
	111704	R22450	Hs.23396	ESTs; Highly similar to ZINC FINGER PROTEIN 140 [H.sapisns]	0.096
5	126856	AA306523		EST177475 Jurkat T-cells VI Homo sapiens cDNA 5' end, mRNA sequence.	0.733
•	127071	AA250806		ESTs	0.096
	114550	AA056755	Hs.151714	ESTs	0.096
	125955	Al356943	Hs.143761	ESTs	0.096
	134363	M37033	Hs.82212	CD53 antigen	0.096
10				ESTs	0.036
10	128550	W76492	Hs.170142		0.096
	122598	AA453465	Hs.99329	ESTs	
	118898	N90703	Hs.4236	KIAA0478 gene product	0.096
	117661	N39092	Hs.44940	ESTs	0.096
1.5	120996	AA398281	Hs.143684	ESTs	0.096
15	123388	AA521172	Hs.134417	ESTs	0.096
	106700	AA463929	Hs.28701	ESTs	0.096
	112962	T16814	Hs.6828	ESTs	0.096
	121262	AA401372	Hs.97723	ESTs	0.096
	134551	R44839	Hs.8526	i-beta-1;3-N-acetylglucosaminy/transferase	0.096
20	112060	R43754	Hs.21164	ESTs	0.096
	134678	AA039935	Hs.182595	dynein; axonemal; light polypeptide 4	0.096
•	100855	HG4234-HT4504		Methylenetetrahydrofolate Reductase	0.097
	132414	N91183	Hs.48145	ESTs	0.097
	112900	T08758	Hs.3813	ESTs	0.097
25	115989	AA447777	Hs.93135	ESTs	0.097
	103561	Z21488	Hs.143434	contactin 1	0.097
	131087	AA009738	Hs.22824	ESTs: Weakly similar to p160 myb-binding protein [M.musculus]	0.097
	120293	AA190859	Hs.191428		0.097
				ESTs	0.097
30	111830	R36081	Hs.25085	EST .	0.097
30	113654	T95770	Hs.17666	ESTs	
	132675	AA179338	Hs.5476	serine proteinase inhibitor	0.097
	120182	Z40125	Hs.91968	ESTs	0.097
	132879	U16282	Hs.5881	ELL gene (11-19 lysine-rich leukemia gene)	0.097
25	134211	AA056681	Hs.80021	ESTs; Weakly similar to 62D9.p [D.melanogaster]	0.097
35	115448	AA284845	Hs.165051	ESTs	0.097
	118118	N56901	Hs.47995	ESTs	0.097
	107598	AA004528	Hs.169444	ESTs	0.097
	128933	H01824	Hs.760	GATA-binding protein 2	0.097
	114892	AA235988	Hs.86024	ESTs	0.097
40	101922	S75168	Hs.274	megakaryocyte-associated tyrosine kinase	0.097
	105444	AA252374	Hs.19333	ESTs; Wealdy similar to ATP(GTP)-binding protein [H.sapiens]	0.097
	128155	AA926843	Hs.143302	ESTs	0.097
	116276	AA485870	Hs.44914	ESTs	0.097
	111964	R41227	Hs.21860	ESTs .	0.097
45	135100	AA398926	Hs.251108	Homo sapiens mRNA; chromosome 1 specific transcript KIAA0493	0.097
	124872	R69251	Hs.101506	EST	0.097
	103084	X59932	Hs.77793	c-src tyrosine kinase	0.097
	124138	H23199	Hs.107010	ESTs	0.098
	130048	R31745	Hs.211612	SEC24 (S. cerevisiae) related gene family; member A	0.098
50	100208	D26129	Hs.78224	ribonuclease; RNase A family; 1 (pancreatic)	0.098
50	123537	AA608775	Hs.112589	ESTs	0.098
	118999	N95019	Hs.55092	ESTs .	0.098
	119847	W80384	Hs.9853	ESTs -	0.098
		R98618	Hs.35984	ESTs	0.098
55	112819				
22	131080	J05008	Hs.2271	endothelin 1	0.098
	127353	AA190853	Hs.155360	ESTs	0.098
	132068	X66365	Hs.38481	cyclin-dependent kinase 6	0.098
	105744	AA293436	Hs.12909	ESTs	0.098
4 0	133680	M92357	Hs.101382	tumor necrosis factor; alpha-induced protein 2	0.098
60	122899	AA469960	Hs.178420	ESTs; Highly similar to WASP interacting protein [H.sapiens]	0.098
	128700	U59286	Hs.103982	small inducible cytokine subfamily B (Cys-X-Cys); member 11	0.098
	104393	H46486	Hs.226499	nesca protein	0.098
	123320	AA486792	Hs.139572	EST	0.098
~~	129169	N31641	Hs.109058	ribosomal protein S6 kinase; 90kD; polypeptide 5	0.098
65	135093	U51333	Hs.159237	hexokinase 3 (white cell)	0.098
	113269	T65159	Hs.85044	ESTs	0.098
	124283	H86783	Hs.194136	ESTs; Moderately similar to zinc finger protein RIN ZF [R.norvegicus]	0.098
	114376	GMCSF		Accession not listed in Genbank	0.099
	100881	HG4458-HT4727		Immunoglobutin Heavy Chain, Vdjc Regions (Gb:123563)	0.099

				•	
	116572	D45654	Hs.65582	DKFZP586C1324 protein	0.099
	123956	AA621747	Hs.112847	EST	0.099
	100818	HG4018-HT4288		Opioid-Binding Cell Adhesion Molecule	0.099
	132754	W47419	Hs.56007	Human DNA from chromosome 19-specific cosmid F25965; genomic sequence	0.099
5	112741	R93080	Hs.35035	ESTs	0.099
•	112748	R93299	Hs.166492	ESTs	0.099
	130858	S57235	Hs.246381	CD68 antigen	0.099
	124870	R69233	Hs.101504	ESTs	0.099
	125304	Z39833	Hs.124940	GTP-binding protein	0.099
10	121297	AA401995	Hs.97860	ESTs	0.099
	128602	AA046103	Hs.102367	ESTs	0.099
	124062	H00440	Hs.144524	ESTs; Weakly similar to signal transducer and activator of	
				transcription 2 [M.musculus]	0.099
	100547	HG2149-HT2219		Mucin (Gb:M57417)	0.099
15	105652	AA282505	Hs.19015	ESTs	0.099
	133390	AA459945	Hs.72660	KIAA0585 protein	0.099
	133503	M33195	Hs.743	Fc fragment of IgE; high affinity I; receptor for; gamma polypeptide	0.099
	109461	AA232667	Hs.58210	ESTs	0.099
	102068	U09117	Hs.80776	phospholipase C; delta 1	0.099
20	113464	T86931	Hs.16295	ESTs	0.099
	104240	AB002368	Hs.70500	KIAA0370 protein	0.099
	121113	AA399109	Hs.161813	ESTs	0.1
	122896	AA469952	Hs.97899	ESTs; Weakly similar to dat2; len:343; CAI: 0.17; ALC_YEAST P25335	
				ALLANTOICASE IS CORREVISION	0.1
25	102405	U43148	Hs.159526	patched (Drosophila) homolog	0.1
	103599	Z33905	Hs.81218	receptor-associated protein of the synapse; 43kD	0.1
	121079	AA398719	Hs.14169	ESTs: Weakly similar to CREB-binding protein [H.sapiens]	0.1
	115820	AA427487	Hs.39619	ESTs; Weakly similar to RETICULOCALBIN 1 PRECURSOR [H.sapiens]	0.781
	125106	T95766	Hs.189760	ESTs	0.1
30	131373	N68116	Hs.26146	Down syndrome critical region gene 3	0.1
-	120224	Z41239	Hs.106960	ESTs	0.1
	133090	AA448228	Hs.6468	EST8	0.1
	132300	AA133244	Hs.44234	ESTs	0.1
	113129	T49384	Hs.8988	EST	0.1
35	110638	H73197	Hs.17241	ESTs	0.1
	131364	R53255	Hs.26010	ESTs	0.1
	105370	AA236476	Hs.22791	ESTs; Weakly similar to transmembrane protein with EGF-like and two	
		. === : -		follistatin-like domains 1 [H.sapiens]	0.238

WO 02/30268

TABLE 11A shows the accession numbers for those primekeys lacking unigeneID's for Table 11. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US01/32045

10	Pkey: CAT nu Accessi		Unique Eos probeset identifier number Gene ctuster number Genbank accession numbers				
15	Pkey	CAT number	Accession				
20	100610	19864_1	AW161357 AI879062 AI928938 AW161097 AW161167 BE314465 AA351715 F07096 AA179034 F08510 F00853 AI936671 AA476718 AW772454 AI807703 R44253 AA976687 AI985186 AI650254 H38942 R84829 AA018724 AA001000 H85934 AA019126 H85609 AA017000 AA339355 AW950356 D51397 AA213981 BE548002 AI056359 AA001560 AW952113 AA317769 AI857477 AI857475 AW249771 AW162661 H38943 AA018628 R85885 AI984613 AI934765 AI796172 AW157488 AI929191 R85523 D51221 D53851 H85610 AI749674 F21582 AA323145 AA019127 AA687444 T06745 AI699293 H29532 AA214029 AA223656 NM_016834 X14474 R19697 H09695 R17455 R13812 R19056 AI681231 AI590200 R37671 AA861828				
25	100674	21517_2	Al990023 Al935669 AW005821 AA324581 H17335 R37659 R42802 R46242 R60936 R59731 H28993 AA479907 R44570 Al890696 AA308884 AA507078 R41274 Al365507 T16348 Al560453 F03259 F04722 T16312 AA016081 AW073061 BE314824 W28930 R44098 R51045 AW403342 AW248986 BE561709 AA357312 BE311834 BE389496 BE294887 AW732696 BE047868 Al702383 BE019155				
30		_	Al702367 BE408966 BE260458 BE313759 BE513492 BE535404 BE280258 AC005263 NM_007165 L21990 AW732711 Al564920 AW249094 BE265365 AW607186 AW607346 BE005217 H27211 U46230 BE260066 BE207043 BE546782 AW248659				
	100721 100748	41469_9 19818_1 41861_1 15759_1	AA085228 AA085161 L40904 NM_005037 X90563 AB005526 H21598 AA088517 X06096 X05826 BE157260 BE157265 R48118 H43827 Z17877 AW379070 AW291778 M20605 J03253 M14206 V00568 AI860465 AW296022				
35	100100	10.00_1	M13930 AL047400 J00120 BED18476 AW675223 T26980 F06694 R22709 R24720 H22753 AI903100 AI903094 AW937623 X00364 D10493 K01904 K01906 K00535 L00058 AA410662 AW384760 AA304930 AI680985 X00198 H58025 AW998901 AV653447 N31654 AW610357 AW610369 AW662480 BE223010 AW384172 AW384219 AW384171 AW384218 AA298522 BE140421 AW945162 AW751711 AA514409 AW747912 AI214214 W87741 AA972406 AA554513 BE302087 AI249030				
40			AA477850 AV653129 Al281360 Al274110 W87881 AA641368 X66258 Al051600 AA877139 AA527483 AA657219 Al250782 AA625531 AA807892 Al278811 Al224033 H24033 AA593398 AW129709 R45453 N22772 AA235530 T29737 Al016409 Al688907 AA568370 AA722760 Al539329 AA550843 AW674698 Al538452 Al538453 Al337957 AA477744 AA464600 Al140319 AW949294 Al339781 Al828736 AA923634 AA344094 Al278350 AA975567 AA908416 AA657170 AW023520 R43413 R48040 F02958 Al989439 R11207 AA73737 D10493 AW950652 Al989842 Al47424 AA703369 R11264 M13930				
45	100751	24700_1	M13930 M13930 M13930 M13930 M13930 J00120 M13930 M13930 X00364 J00120 R19507 AA639812 N32759 N29730 N30831 N32604 N31955 Al206390 H87574 R23494 Al186215 N30036 Al741512 J00117 NM_000737 Al453626 AA330974 Al188729 Al188604 Al188964 N30276 Al188947 Al188830 Al188303 Al200457 Al219166 Al192459 Al183280 Al189275 Al188639 Al186353 Al189616 Al184224 Al130720 Al188454 Al186391 Al148857 Al192447 Al209155 Al190013 Al206355 Al188721 Al189429 Al189364 Al186330 Al431595 Al189595 Al188781 Al148647 Al200022 Al221552				
50	,		Al220923 Al188728 AA233034 Al189807 Al189641 Al219044 Al148774 Al200658 W71989 Al207360 Al188224 Al200559 Al200270 AA644163 Al199943 Al151301 Al189555 Al262724 Al148590 Al148695 Al126906 Al149163 K03183 K03189 Al188842 Al221014 N30608 Al188485 Al220865 Al188498 Al138226 Al189968 Al221019 Al138197 Al149426 Al148904 Al188218 Al188348 Al160579 Al198460 Al149039 Al160936 Al219055 Al184784 Al221580 Al161082 Al16094 Al123896 Al417614 Al126101 Al188872 Al149571 Al168533 Al149072 Al149467 Al131286 N30684 Al160705 Al160692 Al149559				
55			Al273580 Al189442 Al138448 Al149591 N27302 AA400910 Al138431 Al138435 Al128407 N30216 Al128296 Al219589 Al188492 Al149447 Al168482 H95374 Al219009 N31616 Al276216 N32233 Al291937 N30741 Al188689 N27111 R23214 Al221605 Al184348 Al200375 H94451 N26397 Al871881 AA232905 N30833 Al220780 H94446 N30822 H87464 R68815 N30280 Al128424 H12587 T47334 H87631 H87156 Al219133 Al868741 AA330859 H86993 AA330413 H93656 N30817 T90191 H93688 Al200054 H95207 T47316 H95381 T49170 R00880 T49171 N27381 H94107 R63352 T85053 AW451899				
60	100700	1334.7	H95142 N30313 H94015 H86987 T28278 N29701 C18834 AA331267 AA330939 Al654493 N27073 N29831 R68113 N30758 R26086 N32108 H95135 AA330414 AA330978 Al219422 Al189453 Al199951 X00264 NM_000894 AA371909 AA063496 T29543 AA371971 AA372026 AA371978 AA371346 Al051683 Al186418 Al220659 Al189068 Al219268 Al186552 Al188715 Al149156 AV794626 M27126 M27014				
65		18179_3	J05581 M61170 T27692 M34088 M34089 AW860335 AW579047 AW610437 AW610386 AW610422 AW610473 AW579078 AW604897 AW860163 AW579067 AW862410 AB16584 AW177757 AW602769 AI909790 AW860331 AI909787 AI909811				

5			AI909913 AW845083 AI905920 AW387919 BE140766 AI909279 AW369405 AA428321 AA429320 AA367451 AA847972 AW001137 AI567905 T84561 AI631295 AA151351 H02932 AI884519 AA367457 AW369421 AI678846 AW391803 AI610869 AW192838 AI922289 AI952140 AI910233 AI479474 AW001395 AA486073 AI985760 AW130017 AI858369 AA827845 AW001805 AA158865 AI624443 AA344985 AA569783 R72486 AI589329 AI903204 AI269893 AA641284 AI279932 AA149270 AI697120 AA729146 AI589353 AA480067 AI923310 AA530908 AI275395 AA425062 AA580280 AA889527 AA158866
			AW131341 AA573028 AA877326 T29335 AW951288 H04235 AA099243 AA994659 Al659618 AA887919 Al299297 AW001116 AW263844 Al270578 AA970828 AW572126 AA775299 AW369449 AW369398 AW369452 Al933677 Al870710 Al092911 Al582464 Al497674 AA937026 AA885865 L38597 AA908325 AW369432 AW026623 AA627778 Al264942 AA932409 Al187328 Al672970 Al886098 AW440471 AW138860 Al866858 Al802528 Al926172 AW243914 Al933690
10	100800 24	735_1	AA996114 AA538189 AW009937 Al918060 Al270379 Al973169 AW175638 AW369413 NM_008227 L26232 R50649 AU077024 AL008726 AAA11079 R35151 BE278153 BE278139 Al459777 R88036 Z43210 F07326 AF052157 R17844 BE615476 T82160 R71985 H21963 AA299158 AW368246 R48123 R50628 R70441 H27245 H72015 R72345 R39392 Al809738 BE612778 BE613234 D52116 D52136 D52132 D52067 D51922 D51995 D51905 N34249 N25459 AA464438 AA297350 AA297466 R81736 H02737 AW582505 R27523 Al834241 AW130867 W72668 W76428
15		,	AA358363 R50262 AW473860 H52335 H43953 H21864 T39505 AI887517 AW156925 AW839850 H02628 AW007705 AI561008 F22392 R71279 AA995433 R50725 W24462 R71931 AA464437 AW591731 R25667 R52695 R50810 AI560805 AI089266 H68386 H41353 H28590 AW001860 AI141623 AA250773 AI284778 AW511412 AW083975 AA130377 AW026047 R50551 R81494 AI357668 AI078272 F32666 F36981 AW304865 H43906 AA931068 R48010 AI540217 AI017339 AI281812
20	•	,	AI741954 AA458490 AI088378 AA298764 H61168 AA358362 AA298725 AA298515 AA464148 AA443538 R43046 AA084314 T40641 T47608 T48940 AI082477 AW470145 N92284 AI758985 AA298512 AA284586 AI597777 AA480277 AI832559 AI869081 AA476615 AA503651 AI656024 AW168522 AI682051 AI669106 AI274592 AI520917 BE258916 BE615861 BE280282 R53366 BE278255 BE278398 T47607 AA477662 H68395 100817 19648_1 L34355 L46810 NM_000023 U08895 AA424260 AI097272 AA424162 N79764 F19290 F25278 AI479385
			AA460662 AA432059 AW016935 F25770 F32549 F36677 F33016 F35992 F36010 AW172497 AA835076 F28727 AA211643
25			AA453282
	100818 19		U79251 AA843851 R38201 R66461 R44908 AA683289 H17477 R37364 R52832 AW298336 AA351391 NM_002545 L34774 AA296886 AW967001 T28889 R13451 T77331 AL119196 AL118830 H08459 AW892812 AW905838 H17585 R52878 BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832
			BE269598 BE559865 BE396881 BE560031 BE514199 BE560037 BE560454
30	100885 12		X07881 NM_006249 X07637 AA376715 AA376677 X07715 X07704 S80916
	100898 85	42_1	BE387614 R51501 AA199714 AW674779 F08178 BE269071 AA376313 H08264 AA380420 H18785 AL042151 BE277758 BE267438 NM_005850 L35013 BE540833 BE390902 BE391494 BE277459 BE385592 BE390612 BE384263 BE387779
			BE388647 BE537373 BE547158 AW409585 AW374033 AW602185 AA355725 AW577548 AW935015 AW935160 W40232
			AW938647 AW374332 AA434040 BE293488 AL138361 BE560260 Al745075 AA317980 AW949382 Al834311 Al653582
35			AIB31042 AI361878 AA618606 AA729052 AI424969 AA199715 AW769374 AI828422 AW044307 AI862816 AI203583
			AW084461 AW514655 AA831883 AA290672 AA831286 AA578510 AW089965 AW150746 AA292743 H22232 AI469275 AW439312 AA292744 AW471443 AI473989 AA593336 AA464070 AI678937 AW069451 AA970763 AA610480 AA593328
			AA64009 AA768985 Al288928 AA436600 AA464718 AA699361 D61482 D55935 Al389591 AA470695 Al809135 AA640627
			Al568446 R51502 W45467 Al655316 AA463934 AW168609 AW518663 BE045525 Z41251 Al868091 AA908160 Al026697
40			Al886259 Al612932 AA215437 Al956014 BE541087 BE255652 BE265878 BE394102 W27502
	102459 35		U48936 L36592 X87160 NM_001039 AL036606 AL036420 U35630 AW298574
	126126 16 102620 16		W80551 M85370 AA976427 U66052
	102673 24		A457548 U72509
45	102675 51		U72512 T98357 R31335 F18090
	102753 22		L32961 NM_000663 U80226 S75578 AA425061 AA429317 AI815143 AA910669 AI286022 AI286019
	102799 34 127034 51		U88896 U88898 AA916056 T03285 Al341594 Al359534 Al834031 U88897 BE397750 AA232171 BE562900 BE384894 BE242228 BE206819 BE261742 AA296488 AW959763 BE276164 BE264109
	12/034 51	140_2	BE392626 BE256735 AA301453 N55872 H01676 AA292746 AA427485 AA498400 AA352389
50	103522 21	640_1	Y10518 Y10514 Z83935 Y10508 AK000055 Y10519 Al142012 Al681175 BE222219 AA890586 BE504347 BE328064 N63044
			N51226 Al151248 Al521996 Al924777 AW375954 Al860275 W00549 Al742673 AW612288 Al763062 AA632510 Al087347
			Al088070 Al214349 AAB90297 Al494156 Al698598 AA631658 AA504593 AA860733 Al266761 AW663214 AW771231 AA639610 Al769806 Al769746 AW014326 Al288611 -
	127071 18	8097 1	AA250806 AA459220
55	126456 29		AA429212 W00881
	119388 17		T88798 R92430
	126856 20	669_1	A1084125 A1083773 A1479687 A1939609 A1968662 AF129507 NM_013282 AW971840 AW298508 AA744240 AA811217
			AA827671 AA811055 AA806587 AA488977 AA908902 AI637637 AA927056 AI870139 AW340492 AA488755 AA129794 AA306523 AA354253 BE256277 AC053467 AW962084
60	103996 22	4545_1	AA321355 AW964592 R23284 H73883 R23382 N47914 C01377 H04668 AW606248 R34447 AA847136 Al684489 Al523112 AW044269 Al379138 N29366 AA761543 N79248 AA960845 AA768316 Al147926 Al718599 Al880620 R67467 Al216016
	113213 23	798_1	AI738663 H04648 NM_001395 Y08302 AI434619 AI470328 AI261807 AW024965 AI806537 AI830549 AI640337 AI219065 AW271700
65		•	AW028488 AH33339 AH859205 R51175 U87167 BE378324 BE392008 AA340819 AA343110 T57275 D59164 AW299312
65			Al434422 Al936390 AW024975 R40262 AW269126 R09430 T56590 Al367247 Al253132 BE464248 T58658 AW207785 T58607
	134947 84	4579 1	R51194 AI732276 R53587 AI820697
	129311 16		AK000526 BE550084 W30689 AW271859 AA411456 AI341551 AA242990 AA243027 H87046 D20360 AI184053 AA146956
		_	AI721023 AI718944 AA146955 F18215 AA903890 AI700355 AI075430 AA411584 AA878210 AI476760 AW945637 AA630596

			AA431522 AA301989 AI909058 D12149 N41960 BE222214 AA609922 AA828176 AA393359 AA398693 AW024956
			BE467805 AW298623 AW264085 AI024454 AI024719 AI431927 T55087 AI611014 T64920 AA131253 AI436344
	114427		AA017176 Al359979 AA047836 AA017063 AA016303 AA001545
_		110077_1	AA063315 AA063316
.5		156215	AF015910
	100515	342_1	AA305746 D90187 T63943 AW951154 T29182 AI734941 D13264 AI299239 Z18812 AW299859 W24476 AA933064
			AA489759
		46038_1	AW888554 AW607282 AA319986 M28590
		22955_11	M55405 AW752552
10	100574	17320_2	AA326895 M10036 NM_000365 N84665 H69414 N84657 AA380453 AA329743 AA357367 AA188770 AA376532 AA353653
			AA158953 AA083176 BE537313 AA181433 D53373 R57376 AA206698 R14807 H18899 H11191 H93892 R25593 T61134
			N93285 AA083081 AA831789 H13137 AA497014 AA079330 AA182861 H13138 W47161 R62913 AA687089 AA211112
			AAA29237 AL035923 AA100070 AW392898 AI566433 AA866006 AA214002 AW392865 N79454 AA197181 AI680371
15			AA176501 AA737967 AI089225 F34874 AW571437 AI620620 AA573489 AA423816 AA164917 AA458455 T47072 AI569087
15			A1261656 AA730919 A1633741 AW195182 A1351622 AW243465 A1872649 A1359227 A4987941 A1693770 T47073 AW779948
			AW510580 Al635626 AW627601 AA864326 AA953578 Al341418 BE222653 Al241963 Al094663 AA928380 AA493373 AW043762 Al377783 AW958987 BE619760 AA385240 BE277975 BE280095 AW631443 AA581048 BE618715 BE299610
			C14874 BE559858 BE378455 BE618290 BE544585 Al525575 BE548897 BE267110 AA804738 BE269821 AA918133
			BE277647 AA599947 BE280735 BE390239 N74150 T12504 AI208197 AW955527 AA113897 N40081 H73835 H70393
20			AL434041 W22950 AL192661 BE264461 W26486 AA626424 AA196694 T69209 AA857976 AL540287 AA410599 AA864287
20			AW950564 AA013320 T49283 Al541438 AW804703 AA335534 AA335659 BE562269 BE618802 BE277850 BE546413
			BE280994 AA204813 BE561694 BE543524 BE253847 AW001452 W19116 BE542508 AA205894 BE254875 BE270033
			AI525906 BE251792 AA975700 BE272138 AW607671 N87686 M10036 BE515060 BE298607 AI745178 U47924 H03193
	100627	tigr_HT2798	725424
25		.tigr_HT3768	M88357
		tigr_HT3846	L29141 M69180 M81105
		tigr_HT4265	L33999
			U04688
	100855	tigr_HT4504	U09806
30		entrez_U12139	
	125091	genbank_T91518	
		tigr_HT688	X65561
		_entrez_W38150	
25		entrez_U38268	
35		entrez_U51010	
		entrez_U67092	
		genbank_N74496	
		entrez_K01160 entrez_K03430	
40		genbank_AA0704	
40			AA070853 AA075749 AA075716
		genbank AA0790	
		genbank_AA1289	
		entrez_M60299	
45	101697	entrez_M64358	M64358
	117437	genbank_N27645	N27645
		entrez_M85220	
		entrez_S69265	
~^			Y10141
50		entrez_Z26256	
		genbank_T54095	
		genbank_R48295	
		NOT_FOUND_en	
55		tigr_HT1067	M22406
رر		tigr_HT2219	M57417
		tigr_HT2324	Z11585
	100004	~g:	

TABLE 12: shows genes, including expression sequence tags, that are down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

	Pkey:			Unique Eos probeset identifier number					
		ExAcon:		Exemplar Accession number, Genbank accession number					
10	Unigene		Unigene number						
		Unigene Title:		ne title					
	R1:		Background	d subtracted normal prostate: prostate tumor tissue					
15	Pkey	ExAccn	UnigenelD	Unigene Title	R1				
	100522	HG1763-HT1	1780	Prolactin-Induced Protein	17,4				
		M81650	Hs.1968	semenogelin I	16.785				
		N53943	Hs.13743	FSTe	13.225				
20		Z39898	Hs.21948	ESTs =	12.7				
	112134	R46025	Hs.7413	ESTs	8.735				
	101436	M20642	Hs.158295	Human alkali myosin light chain 3 mRNA; complete cds	8.175				
	. 104028	AA361094	Hs.221128	ESTs	8.15				
		AA149204		ESTs; Highly similar to growth arrest inducible gene product [H.sapiens]	7.535				
25		AA174173	Hs.12622	ESTs	7.212				
		AA251741	Hs.25882	DKFZP586M1824 protein	7.175				
		H29231	Hs.27384	ESTS	6.701				
		AA761378	Hs.192013		6.642				
20		N35229	Hs.7037	pallid (mouse) homolog; pallidin	6.411				
30		U48807	Hs.2359	dual specificity phosphatase 4	6.395				
		W90385	Hs.15082	ESTs	6.15				
		L33881 AA491209	Hs.1904	protein kinase C; lota ESTs; Weakly similar to reverse transcriptase [M.musculus]	6 6				
		T49655		ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	5.95				
35		M61906	Hs.6241	phosphoinositide-3-kinase; regulatory subunit; polypeptide 1 (p85 alpha)	5.925				
55		· AA399218	Hs.92423	ESTs	5.7				
		AA281780		ESTs; Weakly similar to similar to Kruppel-like zinc finger protein [C.elegans]	5.7				
		F10192		Tubulin; alpha; brain-specific	5.625				
		X80507	Hs.8939	yes-associated protein 65 kDa	5.5				
40	129171	AA234048	Hs.7753	calumenin	5.486				
	120390	AA233122	Hs.111460	ESTs; Highly similar to multifunctional calcium/calmodufin-dependent protein					
				kinase II delta2 isoform [H.sapiens]	5.4				
		R68657	Hs.90421	ESTs; Modly smir to !! ALU SUBFAMILY SX WARNING ENTRY !! [H.sapiens]	5. 2 79				
45		N71503	Hs.43087	ESTs; Weakly similar to dysferlin [H.sapiens]	5.266				
45		U14528	Hs.29981	solute carrier family 26 (sulfate transporter); member 2	5.151				
		AA196635	Hs.86081	ESTS	5.134				
		F09739		Homo sapiens mRNA full length insert cDNA done EUROIMAGE 21920	5.075				
		AA045709	Hs.40545	ESTS	5.075 5.055				
50		M21665 R80664	Hs.929 Hs.77067	myosin; heavy polypeptide 7; cardiac muscle; beta ESTs	5.033				
50		R62444		KIAA0931 protein	4.675				
		M20543	Hs.1288	actin; alpha 1; skeletal muscle	4.626				
		R93943	113,1200	yt72c12.r1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:275735 5',					
		W87544	Hs.221184		4.559				
55		J03460		prolactin-induced protein	4.451				
		R56068	Hs.4268	ESTs	4.45				
		R16833	Hs.53106	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	4.45				
•		R40873		KIAA0432 gene product	4.301				
	122484	AA448286	Hs.98074	ESTs; Highly similar to atrophin-1 interacting protein 4 [H.sapiens]	4.2				
60	104142	AA447006		ESTs; Moderately similar to II ALU SUBFAMILY SQ WARNING	4.175				
		N32787	Hs.11123		4.1				
		Z84483		Human DNA sequence from PAC 46H23, BRCA2 gene region chromosome 13q1					
		Z40186		ESTs	4.05				
		AA262491	Hs.186572		4.048				
65		AA609749		ESTs; Highly similar to unknown protein [R.norvegicus]	4.041				
	129130	H97993	Hs.172788	ESTs; Wealdy similar to KIAA0512 protein [H.sapiens]	4.028				

	120217	7/1070	Hs.66035	ESTs	4.028
		AA084524	118.00033	zn19d8.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA	4.023
		AA400030	Hs.8360	ESTs; Weakly similar to II ALU CLASS 8 WARNING ENTRY II [H.sapiens]	3.925
		AA236010	Hs.26613	Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	3.91
5		N74897	Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 15	3.889
-	125052		Hs.222779	ESTs; Moderately similar to similar to NEDD-4 [H.sapiens]	3.85
		AA099585	Hs.41175		3.833
	103099	X61100	Hs.8248	NADH dehydrogenase (ubiquinone) Fe-S protein 1 (75kD) (NADH-coenzyme	3.818
	134948	H06773	Hs.93850	protein kinase; AMP-activated; gamma 2 non-catalytic subunit	3.792
10		AA258144	Hs.221576		3.779
		R37460	Hs.25231		3.768
		W86600	Hs.9842	ESTs	3.75 3.708
		AA481254	Hs.30120		3.707
15		R94659 H20568	Hs.12420	phospholipase A2-activating protein	3.7
15		R87160	Hs.33665		3.7
		AA375791	Hs.131894		3.674
		W92797		DKFZP434G162 protein	3.653
•		AA252079		dachshund (Drosophila) homolog	3.625
20	114932	AA242751	Hs.16218	KIAA0903 protein	3.62
	106865	AA487228	Hs.19479		3.614
		AA024664		NADH dehydrogenase (ubiquinone) 1 aipha subcomplex; 5 (13kD; B13)	3.613
		R42493	Hs.220839		3.6
25		AA025399	Hs.169737	· · · · · · · · · · · · · · · · · · ·	3.592 3.568
25		AA211320		neuron-specific protein ESTs; Weakly similar to 78 KD GLUCOSE REGULATED PROTEIN	3.300
	104160	AA455706	ns.99722	PRECURSOR	3.559
	105524	AA258158	He 22153	ESTs; Weakly similar to KIAA0352 [H.sapiens]	3.542
		H19673	Hs.176586		3.525
30		AA233299	Hs.72158		3.522
		F02367	Hs.27252		3.5
	115134	AA257107	Hs.194331	ESTs	3.5
		AA455653		ESTs; Weakly similar to HEAT SHOCK 70 KD PROTEIN 6 [H.sapiens]	3.459
25		AA261852	Hs.192905		3.45
35		H74330	Hs.150000		3.425
		AA256976		ESTs; Wealdy similar to KIAA0579 protein [H.sapiens]	3.42 3.417
	107513	N70298	Hs.49829	Human alkali myosin light chain 3 mRNA; complete cds	3.407
		AI028384	Hs.127331		3.399
40		AA159953		ESTs; Weakly similar to arysulfatase B precursor [H.sapiens]	3.325
		AA600116	Hs.112526		3.318
		N50866	Hs.47135	ESTs	3.317
	105691	AA287097		transcription factor 4	3.315
. ~		H85897	Hs.27755		3.309
45		AA342104	Hs.96777		3.3
		AA278824	Hs.19218		3.295 3.292
		AA946876 HG4020-HT42	Hs.148376	Transglutaminase	3.288
		D29956		ubiquitin specific protease 8	3.273
50		AA608903		KIAA0336 gene product	3.269
-		L07515	Hs.89232	chromobox homolog 5 (Drosophila HP1 alpha)	3.266
		H29209	Hs.151231	ESTs; Highly similar to FYVE finger-containing phosphoinositide kinase [M.muscu	tus] 3.26
	127354	AA418880	Hs.185797		3.212
		R60523	Hs.109087		3.197
55		AA970504	Hs.146103		3.179
		R94500	Hs.108046		3.175 3.151
		AA448164		ESTs; Highly similar to CGI-73 protein [H.sapiens] EST; Weakly similar to N-copine [H.sapiens]	3.151
		AA431302 X85134	Hs.72984		3.15
60		M95767		chitobiase; di-N-acetyl-	3.15
-		AA057341		halicase-moi	3.15
		AA018219	Hs.226923		3.125
	121775	AA421773	Hs.161008		3.125
		AA149007	Hs.182339	Eis homologous factor	3.12
65		N48818	Hs.46884		3.11
		AA485973	Hs.143947		3.104 3.1
		AA400080 T80620	Hs.97774		3.075
	_	AA401739	Hs.186473 Hs.5111	ESTs	3.066
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. ~~ 111		

	119767	W72562	Hs.58119	ESTs	3.057
	115776	AA424038	Hs.58197	ESTs	3.056
		R22988	Hs.220950	ESTs	3.05
		AA280047	Hs.43948		3.05
5		N66412	Hs.49189	·-	3
,					2.995
		AA456598	Hs.256269		
		H48239	Hs.29739	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-3A [H.saplens]	2.979
		AA182030	Hs.8364	ESTs	2.978
	101102	L07594	Hs.79059	transforming growth factor; beta receptor III (betaglycan; 300kD)	2.976
10	110543	H58383	Hs.258544	ESTs	2.976
	125593	R24464	Hs.202949	KIAA1102 protein	2.964
		HG4058-HT43		Oncogene Amil1-Evi-1, Fusion Activated	2.957
		AA481068	Hs.31835	ESTs	2.95
		D11930	Hs.3592	ESTs	2.95
15			Hs.15119		2.936
13		N68869			
		T93795	Hs.17252		2.917
		AA210695	Hs.17212		2.917
		AA490227	Hs.105252		2.904
	125250	W87465	Hs.222926	ESTs; Weakly similar to D2092.2 [C.elegans]	2.9
20	116196	AA465160	Hs.63386	ESTs	2.9
	122100	AA432243	Hs.41086	ESTs; Weakly similar to OXYSTEROL-BINDING PROTEIN [H.sapiens]	2.896
		R22905	Hs.113716	ESTs	2.895
		W78107		ESTs; Wealdy similar to Yer140wp [S.cerevisiae]	2.895
				ESTs; Highly similar to unknown function [H.sapiens]	2.894
25		N64378			
23		AA280300	Hs.191346		2.886
		AA152263		KIAA0849 protein	2.883
		H03686		Ras-GTPase-activating protein SH3-domain-binding protein	2.879
	119805	W73788	Hs.43213	ESTs	2.875
	125721	R59881	Hs.7503	ESTs	2.871
30	103704	AA028171	Hs.153688	ESTs	2.868
		AI088155	Hs.14146	ESTs; Weakly similar to unknown [H.sapiens]	2.866
		AA280738	Hs.128679		2.863
		AA482019	Hs.238202		2.86
		D84239		IgG Fc binding protein	2.856
35					2.854
33		W45491	ns.1/2009	nucleobindin 1	
		W01626		za36e07.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	2.852
		AA227972	Hs.43635	ESTs	2.85
	105077	AA142919	Hs.5558	ESTs	2.847
	131388	R34531	Hs.92200	KIAA0480 gene product	2.846
40		AA398720	Hs.177953		2.838
		R73816	Hs.17385		2.836
		R26206		KIAA0701 protein	2.825
		AA427783	Hs.77910	3-hydroxy-3-methylgiutaryl-Coenzyme A synthase 1 (soluble)	2.816
					2.813
AE		AA504356	Hs.88650	ESTs	
45		AA280627	Hs.57846	ESTS	2.806
		U48736		serine/threonine-protein kinase PRP4 homolog	2.8
		H20332	Hs.28707	signal sequence receptor; gamma (translocon-associated protein gamma)	2.799
	115054	AA252863	Hs.87729	ESTs	2.795
	130285	AA063546	Hs.202968	ESTs	2.792
50	124308	H93575	Hs.227146	Homo sapiens mRNA; cDNA DKFZp564J142 (from clone DKFZp564J142)	2.783
-		AA732329	Hs.191959		2,778
		AA159825		ESTs; Weakly similar to ORF YNL227c [S.cerevisiae]	2.768
		AA242816		ESTs; Weakly similar to KIAA0437 [H.sapiens]	2.766
•					2.75
55		H51098		PDZ domain protein (Drosophila inaD-like)	2.742
JJ		AA620504	Hs.22119		
		T90746	Hs.15233		2.734
		AA004622	Hs.18214	ESTs	2.727
	127609	AA622559	Hs.150318	ESTs	2.726
	106922	AA490964	Hs.10056	ESTs	2.725
60	124825	R52088		yg85c3.s1 Soares infant brain 1NIB Homo sapiens cDNA clone	2.725
		H98683	Hs.154054		2.708
		N36421		ESTs; Weakly similar to SODIUM- AND CHLORIDE-DEPENDENTGLYCINE	
	11,004		TRANSP		2.706
	101000	M54927	Hs.1787	proteolipid protein 1 (Pelizaeus-Merzbacher disease; spastic paraplegia 2;	, 00
65	101009	INDHOLI			. 2.704
O)	44-44-	Honono	uncomplica		
		H96908	Hs.42251		2.7
		R79147	Hs.203365		2.695
		AA481505	Hs.13797	ESTS	2.68
	124377	N25996	Hs.179833	ESTs	2.675

	404000	104070		androus mantidace I.I	2.675
		J04970 N66393	Hs.102754	carboxypeptidase M ESTs	2.675
		H02494	Hs.101615	<u></u>	2.671
		R12777		ESTs; Weakly similar to ARGINYL-TRNA SYNTHETASE [H.sapiens]	2.66
5		N49602	Hs.13308	` •	2.65
		N54839	Hs.221085	ESTs; Highly similar to mediator [H.sapiens]	2.633
	121770	AA421714		KIAA0896 protein	2.63
		U32519		Ras-GTPase-activating protein SH3-domain-binding protein	2.626
10		R62452	Hs.191265		2.625
10		AA451679	Hs.194410		2.625 2.624
		X90568	Hs.172004 Hs.9238	ESTs	2.619
		N63391 AA459242		ESTs; Weakly similar to Kelch motif containing protein [H.saplens]	2.615
		R44164	Hs.23014		2.6
15		AA481271	Hs.193945		2.591
		H52617	Hs,144167	ESTs	2.586
	125873	H14437		y/25a04.rl Soares breast 3NbHBst Homo sapiens cDNA clone	2.58
		N40184		ESTs	2.575
20		D30037		phosphotidylinositol transfer protein; beta	2.575
20		AA215647	Hs.200332		2.568 2.564
		U71203 N40467		Ric (Drosophila)-like; expressed in many tissues ESTs	2.557
		N78582		protein kinase; AMP-activated; beta 2 non-catalytic subunit	2.552
		AA405657	Hs.128791	Human DNA sequence from clone 967N21 on chromosome 20p12.3-13. Contains	
25		AA235112	Hs.106227	ESTs; Moderately similar to similar to murine RNA-binding protein [H.sapiens]	2.549
		AA426017		ESTs; Highly similar to DNA-REPAIR PROTEIN COMPLEMENTING	2.548
		H20560	Hs.244624		2.548
		AA045333		ESTs; Weakly similar to !! ALU SUBFAMILY SB2 WARNING ENTRY !! [H.sapiens]	2.542
20	109706		Hs.12780		2.537
30		AA410391		klotho	2.525 2.525
		R37027 R73588	Hs.5737 Hs.101533	KIAA0475 gene product	2.525
		AA174190	Hs.50932		2.525
		R22196	Hs.34492		2.519
35		AA234362		ESTs; Moderately similar to CGI-66 protein [H.sapiens]	2.507
	112998	T23555	Hs.103288	ESTs	2.5
		AA496258	Hs.99601		2.499
		AA426270		splicing factor (CC1.3)	2.491
40		AA496884		ESTs	2.491 2.483
40		AA018042 U60808	Hs.95078	CDP-diacy/glycerol synthase (phosphatidate cytidylyttransferase) 1	2.481
	103053		Hs.5947	mel transforming oncogene (derived from cell line NK14)- RAB8 homolog	2.475
		R38100	Hs.106294		2.475
	112936		Hs.6185	ESTs; Weakly similar to BcDNA.GH12174 [D.meianogaster]	2.475
45	125178	W58202	Hs.125731		2.475
	112423		Hs.22123		2.471
		AA600323	Hs.112535	 -	2.462
		U95020			2.457 2.455
50	113187	U42390 TECOEC	Hs.9992		2.452
50	131687		Hs.3069		2.448
		AA280583	Hs.256501		2.437
		Al206427			2.43
	134281		Hs.81047	aldehyde oxidase 1	2.425
55		AA447709		ESTs; Moderately similar to putative transcription factor CA150 [H.sapiens]	2.425
	111348		Hs.9585	ESTS	2.418
		AA258842		Homo sapiens clone 23777 putative transmembrane GTPase mRNA; partial cds	2.418
		C13990	Hs.76930	synuclein; alpha (non A4 component of amyloid precursor) ESTs; Weakly similar to !! ALU CLASS C WARNING ENTRY !! [H.sapiens]	2.417 2.416
60		N66857 AA257056	Hs.14808 Hs.7972	KIAA0871 protein	2.412
50		M55047		synaptotagmin 1	2.408
-	114219			ESTs	2.406
		H94043		DKFZP586l1419 protein	2.403
		AA034325	Hs.54320	ESTs	2.4
65		N62506	Hs.21958		2.4
		AA195405		Homo sapiens mRNA for alpha integrin binding protein 80; partial	2.397
		N69998	Hs.21801		2.394 2.389
		AA608955 AA608893	Hs.109653 Hs.190065		2.388
	124302	~~~~~	110.10000	E019	

	404540	4.4000004	1 to 00170	annual abita di Managara Bita Sitti	
		AA262821	Hs.28578	muscleblind (Drosophila)-like	2.385
		X66141	Hs.75535	myosin; light polypeptide 2; regulatory; cardiac; slow	2.384
		AA609310	Hs.188691		2.383
_		AA001835		zinc finger protein 262	2.379
5		AA428368	Hs.30654		2.378
		AA436666	Hs.59761		2.375
		W45574	Hs.252497		2.372
		C14805	Hs.182151	ESTs	2.361
••		U76456		Homo sapiens tissue inhibitor of metalloproteinase 4 mRNA, complete cds	2.357
10	118689	N71545	Hs.184544		2.357
	107734	AA016225	Hs.93386	ESTs .	2.354
	124590	N69220	Hs.41381	ESTs; Weakly similar to ubiquitin hydrolyzing enzyme I [H.sapiens]	2.35
	111163	N66850	Hs.17606	ESTs	2.348
	112349	R58877	Hs.22665	ESTs; Moderately similar to dJ83L6.1 [H.saptens]	2.345
15	129076	AA262179	Hs.169343	ESTs	2.345
	134238	R81509	Hs.184571	splicing factor, arginine/serine-rich 11	2.341
	116766	H13260	Hs.95097	ESTs	2.336
	106331	AA436853	Hs.34795	ESTs	2.333
	129003	AA443752	Hs.10784	EST8	2.332
20	132368	AA599814	Hs.46637	ESTs; Weakly similar to cDNA EST yk289g5.5 comes from this gene [C.elagans]	2.332
	124697	R06273		ESTs; Modily smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.322
	120273	AA176688	Hs.221139	ESTs	2.313
	127110	AA304993	Hs.100861	ESTs; Weakly similar to p60 katanin [H.sapiens]	2.307
	105450	AA252621	Hs.93842	ESTs	2.301
25	119819	W74371	Hs.58383	ESTs	2.297
	102302	U33052	Hs.69171	protein kinase C-like 2	2.288
		N74353	Hs.16475	ESTs	2.282
	114161	Z38904	Hs.22385	ESTs; Weakly similar to KIAA0970 protein [H.sapiens]	2.278
	130542	U64675		Human sperm membrane protein BS-63 mRNA, complete cds	2.277
30	104491	N71513	Hs.39328	ESTs	2.275
	116988	H82527		ys69e12.s1 Soares retina N2b4HR Homo sapiens cDNA done	2.275
		AA370120	Hs.7870	ESTs; Weakly similar to Ylr350wp [S.cerevisiae]	2.273
	108800	AA129731	Hs.90424	ESTs	2.273
	101310		Hs.934	glucosaminyi (N-acetyl) transferase 2; I-branching enzyme	2.269
35		W19498	Hs.21085		2.255
		AA936428	Hs.128638		2.251
		N91947	Hs.125033		2.249
		Al143906	Hs.125103		2.247
		S82597		UDP-N-acetyl-alpha-D-galactosamine:polypeptide	2.246
40		AA398302	Hs.127437		2.245
		AA599583		HMBA-inducible	2.243
		W88678		heterogeneous nuclear protein similar to rat helix destabilizing protein	2.243
	124222	H61053	Hs.222844		2.24
		H90914	Hs.128629		2.236
45		AA479101		ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	
-	126160			ESTs; Weakly similar to transformation-related protein [H.sapiens]	2.229
		AA001976	Hs.19603		2.228
		AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from clone DKFZp564C053)	2.226
	113096		Hs.8345	ESTs	2.225
50	135336	AA452822	Hs.99027	ESTs	2.225
	135344	R62976		ESTs; Moderately similar to TRF1-interacting ankyrin-related	2.225
	126156	AA508354		ESTs; Moderately similar to AKT3 protein kinase [H.sapiens]	2.222
	128885	AA397841		cofilin 2 (muscle)	2.218
		AA026385		ESTs; Moderately similar to II ALU SUBFAMILY SB2 WARNING	2.217
55		AA033562	Hs.151572		2.212
	109292	AA199828	Hs.188662		2.212
		AF006265	Hs.9222	estrogen receptor-binding fragment-associated gene 9	2.209
	132932	T15482	Hs.6093	ESTs	2.204
		AA262728		Homo sapiens clone 24590 mRNA sequence	2.204
60		AA004652	Hs.18564	ESTs	2.2
	122529	AA449828		ESTs	2.195
	124307			proline synthetase co-transcribed (bacterial homolog)	2.193
	133601		Hs.75155		2.193
		W85709		ESTs; Weakly similar to !! ALU SUBFAMILY SP WARNING ENTRY !! [H.sapiens]	
65	100348		Hs.4994	transducer of ERBB2; 2 (TOB2)	2.185
		AA351779	Hs.200334		2.18
		Al298835		ESTs: Weakly similar to transcription regulator Staf-50 [H.saplens]	2.178
		AA169253	Hs.8958	ESTs	2.177
		AA405648		zw39g8.s1 Soares_total_fetus_Nb2HF8_9w H sapiens cDNA clone IMAGE:77247	

	111836 R36228	Hs.25119		2.175
	133394 R16759		ribosomal protein S5 pseudogene 1	2.175
	123207 AA489697	Hs.145053		2.175
_	129801 F11087	Hs.239666	ESTs	2.175
5	103393 X94612	Hs.41749	protein kinase; cGMP-dependent; type II	2.161
	132415 AA043223	Hs.4815	nudix (nucleoside diphosphate linked molety X)-type motif 3	2.157
	106369 AA443828	Hs.25324	ESTs	2.157
	122963 AA478446	Hs.69559	KIAA1096 protein	2.156
	133473 M19309	Hs.73980	troponin T1; skeletal; slow	2.155
10	134257 C06270	Hs.8078	Homo sapiens mRNA; cDNA DKFZp586L081 (from clone DKFZp586L081)	2.155
	135156 AA056012	Hs.9552	binder of Arl Two	2.151
	104055 AA393755	Hs.117211	ESTs; Highly similar to CGI-62 protein [H.sapiens]	2.15
	102313 U33921		HSU33921 Clontech adult lung cONA library (HL1158a) Homo sapiens cONA	2.15
	109788 F10638	Hs.12432	Homo sapiens clone 24407 mRNA sequence	2.15
15	103507 Y10032		serum/glucocorticoid regulated kinase	2.15
	116000 AA448710	Hs.41327	;	2.15
	105858 AA399164		ESTs; Moderately similar to !! ALU SUBFAMILY SQ	2.137
	103153 X66534			2.137
	126202 AA652238	Hs.199726		2.135
20	115955 AA446121		Homo sapiens BAC clone RG054D04 from 7q31	2.134
20	104164 AA458770		KIAA0917 protein	2.132
		Hs.82960	ECTo	2.128
	108692 AA121270	Hs.99640		2.126
	122878 AA465341			2.125
25	134771 L13939		adaptor-related protein complex 1; beta 1 subunit	2.125
25	104298 D31120	Hs.40368		2,125
	104840 AA039595	HS.42458	Homo sapiens mRNA; cDNA DKFZp586C1817 (from clone DKFZp586C1817)	2.125
	122180 AA435798		ESTs; Moderately similar to putative ring zinc finger protein	
	131012 H01992		KIAA1102 protein	2.125
00	134092 H17490	Hs.7905	ESTs; Highly similar to sorting nexth 9 [H.sapiens]	2.123
30	118617 N69666		ESTs; Modify smlr to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.123
	107155 AA621202	Hs.7946	DKFZP586D1519 protein	2.12
	130925 N71935		multiple PDZ domain protein	2.12
	135167 U63717		osteoclast stimulating factor 1	2.118
	105952 AA405263	Hs.181400		2.109
35	110308 H38148	Hs.32775		2.108
	116368 AA521186	Hs.94217	ESTs	2.107
	132939 U76189	Hs.61152	exostoses (multiple)-like 2	2.102
	117881 N50073	Hs.84926	ESTs; Highly similar to B-IND1 protein [M.muscutus]	2.1
	121723 AA419622	Hs.104800	ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	2.096
40	103500 Y09443	Hs.22580	alkylglycerone phosphate synthase	2.094
	121429 AA406293	Hs.193498	ESTS	2.093
	134632 AA398710	Hs.174139	chloride channel 3	2.091
	129785 F10980	Hs.184780	ESTs	2.09
	111065 N58193	Hs.18740	ESTs; Wealdy similar to 1-evidence	2.089
45	114710 AA129931	Hs.79081	protein phosphatase 1; catalytic subunit; gamma isoform	2.083
•••	132711 N73702	Hs.238927		2.083
	133377 R05490	Hs.7239	SEC24 (S. cerevisiae) related gene family; member B	2.079
	124773 R40923	Hs.106604		2.078
	117759 N47587		ESTs; Weakly similar to TROPOMODULIN [H.sapiens]	2.076
50	127386 Al457411	Hs.106728		2.076
••	101167 L15309		zinc finger protein 141 (clone pHZ-44)	2.075
	109597 F02582	Hs.14474		2.074
	124390 N29325	Hs.7535	ESTs; Highly similar to COBW-like placental protein [H:sapiens]	2.07
	116225 AA478609		Human Chromosome 16 BAC clone CIT987SK-A-735G6	2.07
55	131243 R16667		spectrin SH3 domain binding protein 1	2.069
55	130557 T90830	Hs 15981	ESTs; Weakly similar to line-1 protein ORF2 [H.saplens]	2.067
	134103 D14826	Hs 155924	cAMP responsive element modulator	2.064
	108833 AA131866		ESTs; Weakly similar to DY3.6 [C.elegans]	2.063
	112286 R53765		KIAA0981 protein	2.063
60	125624 AA165411	110-100 100	zq49a01.rl Stratagene hNT neuron (#937233) Homo sapiens cDNA clone	2.061
00	124612 N72200	Hs.13913		2.058
		Hs.87013		2.057
	116335 AA495830	Hs.23423		2.056
	112248 R51361			2.056
65	115789 AA424754	Hs.43149	ESTs; Weakly similar to ALR [H.sapiens]	2.056
65	107029 AA599219			2.054
	110294 H30270	Hs.165062		2.054
	120532 AA262354	Hs.186648		2.052
	118180 N59249	Hs.48349		2.052
	132018 AA293194	Hs.3737	ESTs	LAUL

	400047	4.4.74040	Lie Cooo	and ante anhudence VII	0 0E
		AA171913	Hs.5338	carbonic anhydrase XII	2.05
		N36167	Hs.28274		2.05
		T64438	Hs.11449	•	2.05
5		AA459978	Hs.99508		2.05
J		D20426	Hs.5656	EST	2.05
		AA291321		ESTs; Moderately similar to KIAA1006 protein [H.sapiens]	2.046
		D82675		Homo sapiens clone 25007 mRNA sequence	2.042
		R43845		DKFZP566E2346 protein	2.04
••		AA600253	Hs.55601		2.04
10		AA526849	Hs.82109		2.039
		AA279442	Hs.143460	protein kinase C; nu	2.037
		W70205	Hs.43670	kinesin family member 3A	2.037
	101449	M21494	Hs.118843	creatine kinase; muscle	2.036
	107109	AA609943	Hs.32793	ESTs	2.034
15	117040	H89112		yw25e5.s1 Morton Fetal Cochlea Homo sapiens cDNA clone IMAGE:25328	2.034
	132906	AA142857	Hs.234896	ESTs; Highly similar to geminin [H.sapiens]	2.031
	105479	AA255546	Hs.23467	ESTs	2.027
	102031	U04898	Hs.2156	RAR-related orphan receptor A	2.027
	119846	W80363	Hs.58446		2.024
20	124809	R46482	Hs.106875	ESTs	2.024
		AA041548	Hs.154023	KIAA0573 protein	2.023
	124457	N50114	Hs.128704		2.017
		W37999	Hs.24336		2.017
		AA281257	Hs.125868		2.014
25		AA062731		thyroid hormone receptor-associated protein; 150 kDa subunit	2.012
		AA278846	Hs.187634		2.011
		W81362	Hs.30567		2.011
		AA485041	Hs.104308		2.009
		AA609323	Hs.112689		2.008
30		H67749	Hs.161022		2.003
50		X69398		CD47 antigen (Rh-related antigen; integrin-associated signal transducer)	1.995
		Y07755	Hs.38991		1.995
		N53378	Hs.22543		1.995
		AA251797	I ISLEEU-KS		1.989
35			He sente	zs118.s1 NCI_CGAP_GCB1 Homo saptens cDNA clone	
<i>J</i> J		R53457		ESTs; Weakly similar to fatty acid omega-hydroxylase [H.sapiens]	1.989
		Z38652		ESTs; Weakly similar to TYL [H.sapiens]	1.988
		AA151005	FIS. 1290/2	sperm surface protein	1.988
		AA436608	11- 74044	ESTs .	1.988
40		AA147224	Hs.71814		1.986
40		AA401633	Hs.22380		1.982
		AA157911	Hs.72200		1.982
		N66769	Hs.82781		1.975
		AA281886	Hs.88923		1.975
AF		AA279060	HS.193516	B-cell CLL/lymphoma 10	1.974
45		AA719776		zh38g04.s1 Soares_pineal_gland_N3HPG Homo sapiens cDNA clone IMAGE:414	
	109547		Hs.26966		1.973
		AA805726	Hs.220509		1.969
	101266		Hs.73964		1.966
50		AA037467	Hs.30340		1.965
50		AA428240	Hs.126083		1.962
		R93696	Hs.169882	The state of the s	1.961
		AA255538	Hs.190504		1.959
		AA458578		KIAA0439 protein; homolog of yeast ubiquitin-protein ligase Rsp5	1.956
		AA251129		ESTs .	1.953
5 5	134740			opioid receptor; kappa 1	1.95
	109324	AA210700	Hs.86405	Homo sapiens mRNA; cDNA DKFZp564P056 (from clone DKFZp564P056)	1.95
		H93043	Hs.107070		1.95
		U36922		Human fork head domain protein (FKHR) mRNA, 3' end	1.948
	109441	AA228100	Hs.86998	nuclear factor of activated T-cells 5	1.946
60	127364	AA179573	Hs.90061	progesterone binding protein	1.942
	105255	AA227498	Hs.3623	ESTs	1.942
	130672	L19783	Hs.177	phosphatidylinositol glycan; class H	1.942
	104301	D45332	Hs.6783	ESTS	1.94
	132442	R62589	Hs.167419	ESTs	1,939
65	105519	AA258063	Hs.23438	ESTs	1.937
		AA490969	Hs.168147	ESTs	1.936
	118873		Hs.44577		1.936
	114124			ESTs; Highly similar to KIAA0886 protein [H.sapiens]	1.934
		AA255486	Hs.88045		1.933
				•	

	440000	U00400	11- 101777	FOTA.	4 024
		H93483	Hs.124777		1.931
		AA236209	Hs.187626		1.931
		T56013		3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	1.929
_		AA424814	Hs.187509		1.927
5	111717	R23241	Hs.110776	STAT induced STAT inhibitor-2	1.925
	128874	H06245	Hs.106801	ESTs	1.925
	109391	AA219699	Hs.184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	1.913
		H82165	Hs.40334		1.911
		AA389027	Hs.71414		1.905
10		W44928	Hs.4878	ESTs	1.905
		AA070906	110.4010	zm66d1.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA clone	1.904
		AA251875	He 104479	ESTs; Weakly similar to Gag-Pol polyprotein [M.musculus]	1.903
					1.901
		D80063	Hs.241673		
15		AA399371		ESTs; Weakly similar to zinc finger protein SALL1 [H.sapiens]	1.9
15		AA401804	Hs.114574		1.896
		F01831	Hs.14838		1.894
		W72982	Hs.58262		1.894
		AA428090	Hs.26102	ESTs	1.893
	131313	C17938	Hs.22370	Homo sapiens mRNA; cDNA DKFZp564O0122 (from clone DKFZp564O0122)	1.891
20	105583	AA278907	Hs.24549	ESTs	1.891
	122825	AA461195	Hs.99580	ESTs	1.887
		W35390	Hs.55533		1.886
		AA134289		Homo sapiens BAC clone RG114B19 from 7q31.1	1.886
		AA418069		natural killer-tumor recognition sequence	1.886
25		H66947	Hs.14671		1.885
23		N22569	Hs.43215		1.884
		N92239		Wnt inhibitory factor-1	1.881
		AA013312	Hs.64988	ESTs	1.881
20		AA182882		titin-cap (telethonin)	1.878
30		R91753	Hs.17757		1.878
		X63679	Hs.4147	translocating chain-associating membrane protein	1.875
	124381	N26765	Hs.109008	ESTs	1.875
	117226	N20468	Hs.177322	ESTs; Weakly similar to putative p150 [H.sapiens]	1.875
	105610	AA279991	Hs.124691	ESTs; Weakly similar to trithorax homologue 2 [H.sapiens]	1.875
35	111229	N69113	Hs.110855	ESTs	1.875
_		AA285079	Hs.190474	ESTs	1.873
		AA600012		ESTs; Moderately similar to KIAA0400 [H.sepiens]	1.872
		AA381902		RNA binding protein	1.872
		AA258366		ras GTPase activating protein-like	1.872
40		U26726	Hs.1376	hydroxysteroid (11-beta) dehydrogenase 2	1.87
70		M10098		ol: 18S ribosomal RNA	1.868
		AA191353		ESTs; Weakly similar to KIAA0970 protein [H.sapiens]	1.867
		S72869			1.867
			HS.107932	DNA segment; single copy; probe pH4 (transforming sequence; thyroid-1; KIAA0552 gene product	1.866
45		R44479			
43		N26175	Hs.93405		1.864
		AA053027	Hs.191797		1.863
		AA608794	Hs.112592		1.863
		R78618		ESTs; Wealty similar to RAS-RELATED PROTEIN RAB-8 [H.sapiens]	1.862
		AA233511		ATP-binding cassette; sub-family G (WHITE); member 2	1.861
50	103560		Hs.182787	myosin; heavy polypept 6; cardiac muscle; alpha (cardiomyopathy; hypertrophic 1)	1.861
	113073	T33637	Hs.6841	ESTs	1.86
	120407	AA235040	Hs.107283	ESTs	1.859
	103892	AA243523	Hs.17155	ESTs -	1.858
	123795	AA620381	Hs.70488	ESTs	1.857
55	108524	AA084323	Hs.68138	ESTs	1.857
	113953	W85812	Hs.187554	ESTs	1.856
•		H97678	Hs.31319		1.856
		AA412087		EST; Highly smir to prot inhibitor of activated STAT prot PIASx-alpha [H.sapiens]	1.853
		R44840	Hs.21303		1.852
60		N67317	Hs.50150		1.852
UU		AA004955			1.851
			Hs.60015		1.85
		D87446		KIAA0257 protein	
		AA287312	Hs.191648		1.85
C E		AA417078	Hs.193767		1.843
65	117387		Hs.53810		1.843
	132084		Hs.3886	karyopherin alpha 3 (importin alpha 4)	1.843
	124449		Hs.121820		1.841
		AA173440	Hs.193919		1.838
	127226	AA731036	Hs.3463	ribosomal protein S23	1.838

				•	
		R36447	Hs.24453	ESTs	1.835
		M64174	Hs.50651	Janus kinase 1 (a protein tyrosine kinase)	1.834
		AA018937	Hs.128629		1.833
5		U35637	11- 440000	Human nebulin mRNA, partial cds	1.83
3		W72979	Hs.146082		1.83
		U37122 Z39848	Hs.8110 Hs.12079	adducin 3 (gamma) ESTs	1.83 1.828
		D17532	Hs.316	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 6 (RNA helicase; 54kD)	1.823
		AA136521	Hs.71148	ESTs; Weakly similar to putative p150 [H.sapiens]	1.823
10		AA255566	Hs.42484		1.823
10		AA609008	Hs.183232		1.822
		D12485	Hs.11951	·	
	100101	DIETO	110.11001	1 (homologous to mouse Ly-41 antigan)	1.822
	124163	H30539	Hs.189838		1.821
15		N59859	Hs.48443		1.821
		AA016021		DKFZP434K151 protein	1.82
	100357	D78156		RAS p21 protein activator 2	1.82
	116295	AA489016	Hs.91216		1.82
	124833	R54112	Hs.128697	ESTs	1.817
20	122587	AA453255	Hs.6968	ESTs	1.817
		Z41589		ESTs; Moderately similar to H1 chloride channel [H.sapiens]	1.815
		N72253	Hs.238246		1.813
		N30068	Hs.15347		1.812
~~		AA422123	Hs.42457		1.811
25		AA055404		ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.253
		AA432080	Hs.81200	==:=	1.81
		AA056140	Hs.122684		1.81
		N53158	Hs.102682	-*·*	1.809
20		HG3740-HT40		Basic Transcription Factor 2, 34 Kda Subunit	1.806
30		AA421053 AA287596	Hs.34395		1.806
		AA456635	Hs.78524	zs52h09.s1 NCI_CGAP_GCB1 H sapiens cDNA clone IMAGE:701153 ESTs	1.804 1.804
		Z39050	Hs.21963		1.804
		N59764	Hs.5398	guanine-monophosphate synthetase	1.803
35		R49548		death effector domain-containing	1.802
<i>J J</i>		N91087	Hs.28728		1.801
		AA177138	Hs.161671		1.8
		N25427	Hs.108812		1.8
	103571	Z25535	Hs.211608	nucleoporin 153kD	1.8
40	105978	AA406367	Hs.15973		1.8
	125904	H22372	Hs.163586	ESTs	1.799
	133883	AA397915	Hs.77221	choline kinase	1.798
		AA348412	Hs.23096		1.797
45		H19480	Hs.174309		1.796
45		AA130273	Hs.7584	ESTs; Weakly similar to hypothetical protein; similar to [H.sapiens]	1.796
		AA251330	Hs.28248		1.795
		AA279757			1.794
		L13698	Hs.65029	growth arrest-specific 1	1.794
50		N48674 D13540	Hs.23796 Hs.22868	Human DNA sequence from done 1052M9 on chromosome Xq25. Contains the	1.792 1.791
Ju		AA331157	U255000	protein tyrosine phosphatase; non-receptor type 11 EST35035 Embryo, 6 week, subtracted (total cDNA) I Homo sapiens cDNA	1.79
	114157		Hs.24979		1.79
		AI096717		KIAA0525 protein	1.788
		N66818		ESTs	1.787
55		R63925	Hs.28464		1.787
		N69682		SC35-interacting protein 1	1.786
		AA600057		KIAA0905 protein	1.784
		R40096	Hs.176578		1.784
	132056	T89386	Hs.38176	KIAA0606 protein; SCN Circadian Oscillatory Protein (SCOP)	1.783
60		AA262710	Hs.108614	KIAA0627 protein	1.783
		AA489020	Hs.193424		1.782
		AA441792			1.781
		HG2463-HT25	59	Guanine Nucleotide-Binding Protein G25k	1.779
6 5		AA374532		EST86676 HSC172 cells I Homo sapiens cDNA 5' end, mRNA sequence	1.778
65		AA436475	Hs.190104		1.777
		AA151771		ATPase; Na+/K+ transporting; beta 3 polypeptide	1.776
		AA004636	Hs.50223		1.776
		W68255 N66413		DKFZP434K171 protein ESTs; Weakly similar to KIAA0775 protein [H.saplens]	1.776 1.776
	110440	1100710	113.172400	Lote, Fredrik entman in introduce protein [ch.oaptens]	1.770

		AA034030		methylmalonyl Coenzyme A mutase	1.775
		AA342079	Hs.252055		1.775
	132471	T16305	Hs.49349	beta-site APP-cleaving enzyme	1.775
_	105966	AA406105	Hs.5344	adaptor-related protein complex 1; gamma 1 subunit	1.774
5	127548	AA373091	Hs.93832	Homo sapiens clone 24483 unknown mRNA; parital cds	1.774
	106217	AA428379	Hs.24870	ESTs .	1.773
		N26777	Hs.172635		1.773
		AA435664	Hs.8583	similar to APOBEC1	1.773
		AA436705	Hs.28020		1.772
10		N93797	Hs.3090	EphB1	1.772
10		AA479166	Hs.105633		1.772
		AA291946	Hs.42736		1.771
		AA180208	Hs.16606		1.767
		AA188618		ariadne; Drosophila; homolog of	1.766
15		AA398290	Hs.21965	ESTs	1.764
13					1.764
		M86917	Hs.24734	oxysterol binding protein	1.764
		D13628	Hs.2463	angiopoletin 1	
		R07335	11 400000	,	1.763
20		AA442257	Hs.192076		1.762
20		H02566		Homo sapians mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.761
		AA428069		KIAA1046 protein	1.758
		AA620782	Hs.23247		1.757
		AA338960	Hs.28170		1.756
		AA435536	Hs.24336	ESTs	1.756
25	103968	AA304566	Hs.3542	EST8	1.756
		AA234945	Hs.11360	ESTs	1.756
	117885	N50112	Hs.47023	ESTs	1.754
	107032	AA599472	Hs.247309	succinate-CoA ligase; GDP-forming; beta subunit	1.754
	124807	R45963	Hs.233811	ESTs; Wealthy similar to ORF2 [M.musculus]	1.753
30	100276	D42047	Hs.82432	KIAA0089 protein	1.753
	110924	N47938		w84a09.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	1.751
		AF006082	Hs.62461	ARP2 (actin-related protein 2; yeast) homolog	1.751
		AA455917	Hs.50785		1.75
		N21671	Hs.19025		1.75
35		AA424515	Hs.33264		1.75
55		U43701		ribosomal protein L23a	1.75
		AA432162		DKFZP586B2022 protein	1.749
		AA194075		nuclear receptor coactivator 4	1.747
		W19222	Hs.7041	ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.saplens]	
40		X98330		ryanodine receptor 2 (cardiac)	1.745
70		T10132	Hs.4236	KIAA0478 gene product	1.744
		AB002346	Hs.61289		1.743
		AA461556		KIAA1102 protein	1.743
		AA284252	Hs.58372		1.743
45			Hs.54973		1.742
43		AA236545			1.741
		AA470941	Hs.143162		
		Z38807	Hs.22870		1.739 1.738
		T88908	Hs.189746		
50		F10577	Hs.70312		.1.735
50		R51476		yg76f04.r1 Soares infant brain 1NIB Homo sapiens cDNA clone	1.733
		AA279654	Hs.194524		1.733
		U18242		calcium modulating ligand	1.732
		H88157	Hs.41105		1.731
		R22212	Hs.23361		1.731
55		H72240		ESTs; Moderately similar to KIAA0745 protein [H.sapiens]	1.731
		AA412063	Hs.6065	ESTs	1.728
		AA101984		G-protein coupled receptor	1.726
	111614	R12581	Hs.191146	ESTs	1.726
	134134	L76703	Hs.173328	protein phosphatase 2; regulatory subunit B (B56); epsilon isoform	1.725
60	106886	AA489086	Hs.36545	ESTs	1.725
	117998	N52136	Hs.93828	ESTs	1.725
		AA400422	Hs.55896		1.725
		AA404995	Hs.192480		1.725
		R27296	Hs.23240		1.725
65		AA479181	Hs.186726		1.725
		U44754		small nuclear RNA activating complex; polypeptide 1; 43kD	1.724
		H29050	Hs.24096		1.722
		AA127395	Hs.222414		1.722
		H88477	Hs.191178		1.721
	110016	. 100 11 1			•

	120271	AA176404	Hs.111092	ESTs; Weakly similar to ZINC FINGER PROTEIN 136 [H.sapiens]	1.72
	100227	D28915	Hs.82316	interferon-induced; hepatitis C-associated microtubular aggregate prot (44kD)	1.719
		W69459	Hs 109655	sex comb on midleg (Drosophila)-like 1	1.719
			Hs.8750		1.717
_		W73367		ESTs	
5		AA055475		clathrin; light polypeptide (Lca)	1.717
	120582	AA281290	Hs.125287	ESTs; Weakly similar to BC331191_1 [H.sapiens]	1.717
	134891	F03517	Hs.90787	ESTs	1.716
		AA428567		Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	1.715
			Hs.13854		1.713
10		AA521311			
10		AA001870		N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	1.713
	106198	AA427816	Hs.11803	ESTs	1.712
	125136	W31479	Hs.129051	ESTs	1.712
		AA085676	Hs.6763	KIAA0942 protein	1.712
					1.711
1.5		J04813		cytochrome P450; subfamily IIIA (niphedipine oxidase); polypeptide 5	
15		D20899	Hs.107127	Homo sapiens mRNA; cDNA DKFZp564G022 (from done DKFZp564G022)	1.711
	127871	AA766511	Hs.128848	ESTs	1.71
	116089	AA455933	Hs.41324	ESTs	1.709
		AA504153		ESTs; Wealdy similar to ORF YGL050w [S.cerevisiae]	1.708
			Hs.162686		1.708
20		AA609200			
20		AA026617		ESTs; Highly similar to BAI1-associated protein 1 [H.saplens]	1.707
	115114	AA256468	Hs.88148	ESTs	1.705
	117852	N49408	Hs.136102	KIAA0853 protein	1.705
		T57570		ribosomal protein S3A	1.704
					1.702
05		N91273	Hs.27179		
25		L36644	Hs.31092	EphA5	1.7
	132438	F08925	Hs.48610	ESTs	1.7
	132476	N67192	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat region mRNA	1.7
	130990			KIAA0768 protein	1.7
					1.698
20		AA487503	Hs.100636		
30		AA342337		ESTs; Modtly smir to II ALU SUBFAMILY SQ WARNING ENTRY II [H.sapiens]	1.697
	132920	L06133	Hs.606	ATPase; Cu++ transporting; alpha polypeptide (Menkes syndrome)	1.696
	135037	U77948	Hs.184122	general transcription factor II; i	1.696
		H11297	Hs.31050	ESTs	1.695
		AA329274	Hs.82911	protein tyrosine phosphatase type IVA; member 2	1.694
25					1.007
35	102223	U24685	HS.146226	Human anti-B cell autoantibody IgM heavy chain variable V-D-J region (VH4)	
				gene; clone E11; VH4-63 non-productive rearrangement	1.694
	126712	AA205862	Hs.7942	ESTs	1.694
	101507	M27492	Hs.82112	interlaukin 1 receptor; type I	1.692
		AA435551	Hs.30824	ESTs	1.691
40					1.001
40	116826	H58691	Hs.8215	ESTs; Weakly similar to double-stranded RNA-binding nuclear	4 00
				protein DRSBP76 [H.sapiens]	1.69
	135339	D59269	Hs.127842	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 783848	1.69
	118250	N62602		yz75b6.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	
				IMAGE:288851 3' similar to contains Alu repetitive element, mRNA sequence	1.689
45	100170	AA450116	Un 100100		1.688
45			Hs.188180		
		AA057678	Hs.63408		1.687
	119748	W70313	Hs.126906	ESTs	1.686
	116576	D51228	Hs.79404	nauron-specific protein	1.683
		AA481392	Hs.105166		1.683
50		AA011616	Hs.184086		1.681
50					
		M28209		RAB1; member RAS oncogene family	1.678
	102704	U76638	Hs.54089		1.677
	126218	AA256386	Hs.13649	Novel human gene mapping to chomosome 13; similar to rat RhoGAP	1.676
	111180	N67277	Hs.9403	ESTs	1.676
55		AA404342	Hs.173531		1,675
55		Z38520	Hs.175930	==	1.675
		AA190634		endoplasmic reticulum membrane protein	1.675
	125245	W86608	Hs.7243	ubiquitin specific protease 24	1.675
	102906	X06956	Hs.75318	tubulin: alpha 1 (testis specific)	1.675
60	125914	AA262925	He 180034	cleavage stimulation factor; 3' pre-RNA; subunit 3; 77kD	1.674
		U63289	He R12/12	CUG triplet repeat; RNA-binding protein 1	1.674
					1.673
		F10108	Hs.183333		
		D63876		KIAA0154 protein	1.673
	104079	AA402937	Hs.103238	ESTs	1.671
65		AA001386	Hs.59844	ESTs	1.671
0.5		AA243139	Hs.4863	Homo sapiens clone 25088 mRNA sequence	1.669
		N58172			1.668
			Hs.109370		
		H92575		ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	1.668
	126809	AA743475	Hs.171693	EST8	1.667

	106095	AA419547	Hs.11713	ESTs	1.664
	101754	M77142	Hs.239489	TIA1 cytotoxic granule-associated RNA-binding protein	1.663
	105188	AA192306	Hs.23926	ESTs	1.663
		T91371	Hs.16824		1.661
5		W38197		Accession not listed in Genbank	1.661
-		W87535	-Hs.59015	ring finger protein 9	1.657
		AA490890	Hs.105273		1.657
		N59230	Hs.186574		1.655
		T40528	Hs.8246		1.654
10		W44692	Hs.124177		
		D53639	Hs.77904		1.652
		X59417	Hs.74077		1.65
	_	N35314	Hs.107265		1.65
					1.65
15		AA096157 T92767	FIS. 102304	ESTs; Weakly similar to 25 kDa trypsin inhibitor [H.sapiens]	1.65
IJ	119400	192/6/		ye27d06.s1 Stratagene lung (#937210) Homo sapiens cDNA clone	. 4 0=
	101001	A A 400000	H= 00000	IMAGE:118955 3', mRNA sequence.	1.65
		AA486868	Hs.29802		1.65
		N62339		heat shock 90kD protein 1; aipha	1.649
20		N67954	Hs.49413		1.648
20		AA476307	MS.194035	KIAA0737 gene product	1.647
		X60708		dipeptidylpeptidase IV (CD26; adenosine deaminase complexing protein 2)	1.647
		U69140		fasciculation and elongation protein zeta 2 (zygin II)	1.646
		T15530	Hs.221439		1.646
06		AA056263	Hs.132747		1.645
25		AA579377		heat shock 90kD protein 1; alpha	1.644
		AA007595	Hs.220937		1.642
		N79820	Hs.50854		1.64
		D85423		Homo sapiens mRNA for Cdc5, partial cds	1.64
		AA284865	Hs.171228	KIAA1040 protein	1.639
30	132526	AA460128	Hs.5074	similar to S. pombe dim1+	1.639
	133809	AA034002	Hs.76359	catalase	1.639
	115968	AA447083	Hs.134522		1.637
	116370	AA521256	Hs.236204	ESTs; Moderately similar to NUCLEAR PORE COMPLEX	
				PROTEIN NUP107 [R.norvegicus]	1.631
35	109644	F04477	Hs.204802	ESTs; Moderately similar to GLYCERALDEHYDE 3-PHOSPHATE	
				DEHYDROGENASE; LIVER [H.sapiens]	1.627
	103427	X97303		H.sapiens mRNA for Ptp-12 protein	1.627
	132186	T33888	Hs.221040	KIAA1038 protein	1.626
	131428	U17838	Hs.26719	PR domain containing 2; with ZNF domain	1.626
40	126638	AA649257	Hs.188602		1.625
	114503	AA039568	Hs.188083	ESTs	1.625
	121242	AA400857	Hs.97509	EST	1.625
		AA446885		ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.625
	110632		Hs.171635		1.624
45	111389			ESTs; Weakly similar to L82A [D.melanogaster]	1.624
	112449			ring finger protein 2	1.623
	113070		Hs.6298	ESTs	1.622
	107229		Hs.34644		1.618
		W93726		protease inhibitor 5 (maspin)	1.617
50	124664		He 33540	ESTs; Weakly similar to KIAA0765 protein [H.sapiens]	1.617
-		AA350690	He 151411	KIAA0916 protein	1.616
	125040		Hs.199961		1.615
	132972				
		AA433916		heat shock 70kD protein 4	1.615 1.611
55		AA235045	Hs.190151		
,,		AA383773	Hs.191500		1.61
		AA279071		splicing factor 3b; subunit 1; 155kD	1.61
				ESTs; Highly similar to CGI-44 protein [H.sapiens]	1.609
	134330	AA256492			1.607
50				poly(A) polymerase	1.606
J U	125162		Hs.109896		1.605
		AA285246		ESTs; Weakly similar to Prt1 homolog [H.sapiens]	1.604
		AA166917	Hs.72639		1.603
		AA342301		ESTs; Weakly similar to !! ALU CLASS B WARNING ENTRY !! [H.sapiens]	1.602
55	129704		IIS.12004	ublquitin specific protease 22	1.602
J		AA206800		ESTs; Moderately similar to zinc finger protein dp [H.sapiens]	1.601
	130457		Hs.155976		1.6
		AA485211	Hs.190046		1.6
		AA256460	Hs.44810		1.6
	117731	IV40433	Hs.46609	EDIS	1.6

	123344	AA504338	Hs.171857	ESTs	1.599
	131798	X86098	Hs.3238	adenovirus 5 E1A binding protein	1.597
	125370	AA256743	Hs.151791	KIAA0092 gene product	1.596
		AA236813	Hs.72324		1.596
5		AA160805	Hs.199832		1.596
-		AA151593	Hs.10130		1.594
			115.10150		1,004
	120004	T60120		yb68f02.s1 Stratagene ovary (#937217) Homo sapiens cDNA clone	4 500
				IMAGE:76347 3', mRNA sequence.	1.592
10		AA282914	Hs.10176	ESTs	1.589
10	110455	H52172		yt85e8.s1 Soares_pineal_gland_N3HPG Homo sapiens cDNA clone	
				IMAGE:23111 3' similar to contains Alu repetitive element, mRNA sequence	1.589
	119780	W72967	Hs.191381	ESTs; Weakly similar to hypothetical protein [H.sapiens]	1.587
		AA211537		zn55d01.r1 Stratagene muscle 937209 Homo sapiens cDNA clone	
				IMAGE:562081 5', mRNA sequence.	1.586
15	12/675	AA250745	Hs.87773	protein kinase; cAMP-dependent; catalytic; beta	1.584
13		AA252033	Hs.15036	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.584
					1.584
		Z40251	Hs.56974		
		AA428137		ESTs	1.581
20		AA456311	Hs.93961	ESTs; Wealdy similar to II ALU CLASS A WARNING ENTRY II [H.sapiens]	1.581
20	122997	AA479295	Hs.106290	Kelch motif containing protein	1.581
	119707	W67569	Hs.44143	ESTs; Weakly similar to SNF2alpha protein [H.sapiens]	1.58
	131934	D80948	Hs.34922	ESTs	1.58
	106141	AA424558	Hs.9302	phosducin-like	1.58
		AA279422	Hs.5724	ESTs	1.579
25		R27598	Hs.27197	KIAA0797 protein	1.577
45		R98173	Hs.23763	and the state of t	1.575
				Max-interacting protein ESTs	1.575
		N21680	Hs.43047		
		M33772		troponin C2; fast	1.575
00		AA459703	Hs.79070	v-myc avian myelocytomatosis viral oncogene homolog	1.575
30		W90625			1.575
	117512	N32157	Hs.82207		1.574
	106511	AA452865	Hs.206713	UDP-Gal:betaGlcNAc beta 1;4- galactosyltransferase; polypeptide 2	1.573
	116415	AA609204	Hs.27973	KIAA0874 protein	1.573
		AA810215	Hs.189079		1.571
35		W72798		ESTs; Wkly smlr to cDNA EST EMBL:D32579 comes from this gene [C.elegans]	1.571
55		AA135638	Hs.223756		1.571
		AA456112	Hs.99410		1.57
					1.568
		H12636		ESTs; Weakly similar to reverse transcriptase [H.sapiens]	
40		AA609828		ESTs; Highly similar to tetracycline transporter-like protein [M.musculus]	1.568
40		Z41366	Hs.40109		1.567
	111005	N53076	Hs.5996	ESTs	1.567
	128135	AA913491	Hs.189143	ESTs; Modrity smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.567
	112046	R43365	Hs.22273	ESTs	1.566
	132160	AA281770	Hs.184081	seven in absentia (Drosophila) homolog 1	1.566
45		R10153	Hs.20561		1.566
		H04106		ESTs; Wealdy similar to NG22 [H.sapiens]	1.566
		AA281936	Hs.88914		1.566
		AA425734			1.565
•			113.103000	ESTs; Weakly similar to hypothetical protein [H.saplens] ESTs; Weakly similar to REGULATOR OF MITOTIC SPINDLE	
50	12/634	AA769520			1 50/
50	40000-		11- 44444	ASSEMBLY 1 [H.sapiens]	1.564
		AA187679	Hs.111114		1.563
		AA243012	Hs.75928		1.562
	126716	AA031700	Hs.251962		1.562
	134161	U97188		IGF-II mRNA-binding protein 3	1.561
55	125390	H95094	Hs.75187	translocase of outer mitochondrial membrane 20 (yeast) homolog	1.561
		AA281244	Hs.65300		1.559
		T97931	Hs.18190		1.558
		AA236177	Hs.76591		1.558
		T62571		microtubule-associated protein 7	1.558
60		AA039616	Hs.61933	ESTs	1.558
00					1.557
		AA156499	Hs.8454	protein kinase; cAMP-dependent; regulatory; type II; alpha	
		R82074		syndecan 1	1.557
		D51401	Hs.70333		1.553
		AA490899	Hs.24462		1.553
65	118744	N74075	Hs.94293		1.552
	126489	W20016	Hs.144228	ESTs; Weakly similar to ZINC FINGER PROTEIN 83 [H.sapiens]	1.55
		AA436720	Hs.65487		1.55
		AA025234	Hs.61260		1.55
		N21407	Hs.257325		1.55

	109703	F09684	Hs.24792		1.55
	120288	AA187938	Hs.55189	ESTs; Weakly similar to F25B5.3 [C.elegans]	1.548
	106356	AA443277	Hs.31034	peroxisomal biogenesis factor 11A	1.548
		AA235627		APG5 (autophagy 5; S. cerevisiae)-like	1.547
5		D11961	Hs.77823		1.546
•		Al400862	Hs.142607		
					1.546
		Z38909	Hs.22265		1.545
		M86546		pre-B-cell leukemia transcription factor 1	1.544
10		T93630	Hs.17207		1.542
10		AA054228	Hs.23165	ESTs	1.541
	114477	AA032013	Hs.144260	EST	1.54
	110731	H98653	Hs.188006	KIAA0878 protein	1.54
	130367		Hs.8768	ESTs; Widy smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	1,538
	130539			Homo sapiens calcium/calmodulin-dependent protein kinase II mRNA; partial cds	1.538
15		W60186	He 160/97	Kreisler (mouse) mai-related leucine zipper homolog	
10					1.537
	130303	W24957	Hs.16281	,	
				encoded in cosmid T20D3 [H.sapiens]	1.537
		AA088851	Hs.75744		1.537
	106450	AA449469	Hs.11859	ESTs	1.536
20	104120	AA429838	Hs.89519	KIAA1046 protein	1.536
	100533	HG1879-HT19	19	Ras-Like Protein Tc10	1.535
	130664	R09049	Hs.17625	ESTs	1.535
		AA279153	Hs.190049		1.535
	134264		Hs.8087	ESTs	1.535
25		AA418682	Hs.44625		
2,				· ·	1.535
		AA286941	Hs.43691	ESTs	1.533
	125003		Hs.100445		1.532
	102273		Hs.75981	ublquitin specific protease 14 (tRNA-guanine transglycosylase)	1.532
	121875	AA426299	Hs.98510	ESTs	1.532
30	114366	Z41747	Hs.469	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.531
	132944	AA054515	Hs.6127	ESTs; Weakly similar to prostate-specific transglutaminase [H.sapiens]	1.53
	111199	N68210	Hs.29822		1.53
	113494		Hs.258738		1.529
		AA490882	Hs.112227		1.528
35		AA156049	Hs.65490		
55					1.528
		AA027163	Hs.7942	ESTs	1.526
		AA279408	Hs.25866		1.526
	130198		Hs.151988	mitogen-activated protein kinase kinase kinase 5	1.526
40	114297			DKFZP434K151 protein	1.525
40	112876	T03488	Hs.4842	ESTs `	1.525
	127500	AA525014	Hs.162115	ESTs	1.525
	120519	AA258585	Hs.129887	cadherin 19 (NOTE: redefinition of symbol)	1.525
	119859	W80702	Hs.58461		1.525
	129944	L00389	Hs.1361	cytochrome P450; subfamily I (aromatic compound-inducible); polypeptide 2	1.524
45	118864		Hs.42148		1.523
	123964		Hs.210115		1.523
	111676		Hs.166459		1.522
			Hs.134173		1.522
50	130455			N-acetyltransferase 1 (arylamine N-acetyltransferase)	1.521
50	125181		Hs.12396	ESTs	1.521
	127093	AA768241		oa72d02.s1 NCI_CGAP_GCB1 Homo sapiens cDNA done	
		_		IMAGE:1317795 3', mRNA sequence.	1.521
	132156	AA157401	Hs.4113	S-adenosylhomocysteine hydrolase-like 1 -	1.521
	125303	Z39821	Hs.107295	ESTs	1.52
55	132697	AA281951	Hs.5518	Homo sapiens mRNA; cDNA DKFZp566J2146 (from clone DKFZp566J2146)	1.52
	117086		Hs.41840		1.519
	113355		Hs.14480		1.518
			Hs.69506		1.518
60			Hs.86849		1.518
UU	128510			RAB28; member RAS oncogene family	1.517
	132968			myosin X	1.515
	117035		Hs.41182		1.515
	116781		Hs.52132	ESTs	1.513
	108677	AA115629	Hs.118531	ESTs .	1.513
65	130214		Hs.15266		1.513
				golgi SNAP receptor complex member 1	1.512
	116618		Hs.45224		1.508
	126257			tumor necrosis factor receptor superfamily; member 10b	1.508
				ubiquitin-conjugating enzyme E2D 3 (homologous to yeast UBC4/5)	
	120003	AA806808	113.110/8/	andami-roulabamis errano erra a fimilionôlogs to legist ODC442)	1.508

	113837	W57698	Hs.8888	ESTs	1.50
	114317	Z41038	Hs.469	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.50
	100311	D50640	Hs.184653	phosphodiesterase 3B; cGMP-inhibited	1.50
_	126802	AA947601	Hs.97056	ESTs	1.50
5	128661	R82837	Hs.103329	KIAA0970 protein	1.50
	134194	AA233231	Hs.79828	ESTs	1.500
	108953	AA149652	Hs.42128	ESTs	1.504
	133240	D31161	Hs.68613	ESTs	1.502
	132671	X76302	Hs.54649	putative nucleic acid binding protein RY-1	1.50
10	132609	Z48923	Hs.53250	bone morphogenetic protein receptor; type II (serine/threonine kinase)	1.501
	105574	AA278678	Hs.258567	ESTs	1.5
	113718	T97782	Hs.256268	ESTs	1.5
	127824	Al208365	Hs.127811	ESTs	1.5
	130132	U55936	Hs.184376	synaptosomal-associated protein; 23kD	1.5
15	127394	AA453224		ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	1.5
	100485	HG1111-HT11	11	Ras-Like Protein Tc21	1.5
	101078	L04510	Hs.792	ADP-ribosylation factor domain protein 1; 64kD	1.5
	128611	AAAFER45	He 102471	KIAANSRO gang product	1.5

TABLE 12A shows the accession numbers for those primekeys lacking unigeneID's for Table 12. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT nui Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accession
20	117040 100782	119811_1 46956_1 18457_1	AA084524 AA339253 AW966289 AW970600 AA503323 H89218 AF086031 H89112 AA355435 NM_001516 Z30093 T28405 AW949486 AA461142 AA410532 Al652073 AA521208 Al970141 Al968234 Al026102 AA713583 AW135876 AA936814 AA770300 Al242635 AA377033 AW960263 AW607683 Al273603 AA410287 Al040513 AA460838 Al803916 AW294095 AW449680 AW798677 AW675048 BE542116 AL120521
25	100819	<u>-</u> -	L34840 NM_003241 U31905 Al546931 Al791616 Al973065 Al792321 Al546937 Al685880 Al732835 Al682360 AA420653 AA564047 Al682323 Al824614 Al659889 Al680052 Al970887 Al623108 AA420692 Al418074 AA631018 Al810595 AW291463 AW449930 Al688908 Al970818 Al393237 Al521317 Al761348 AF025841 D43968 AW994987 L34598 AF025841 D89789 D89788 D89780 AW998932
30	TOOLY	0,33	AI971742 AI310238 X90976 AW139668 AW674280 AI365552 AA877452 AV657554 C75229 AA376077 AI798066 AW609213 W25586 H30149 BE075089 BE075190 AW580858 H99598 AA425238 AA133916 AW363478 BE158121 BE158127 AW467960 BE158135 BE158126 BE158145 N92860 AA847246 AI981688 AI361423 AA878154 AA043767 AI863712 AI559226 AW339007 AI371266 AI368901 AAD46624 AA134739 AW449154 AA130232 AI458720 AA962511 AI700627 R70437 AW004008 AA045229 AI671572 H99599 AA043768 AI685454 AI871685 N29937 X90977 AA524240 AI142114 AI825750 AI567805 AI631385 AI347893 AA134740 P20669 AA046707 AW793216 AW963288 AW9659380 AA363265
35		264197_1 27608_1 553_1	AI784593 AI268201 R69451 AV657618 AI695588 BE312163 AI230798 AA374482 AI926059 AA622653 AI860704 BE139185 AW296884 T60238 T60120 U33921 AI190489 AA573311 AI814663 AA806761 AA765241 AA019317 AA092255 AA035405 T85079 AA890151 AI373959 T85080 BE153728 AA740848 BE080682 AL048137 AW182316 AI699468 AW274481 AW407538 AA306562 AW950024 AW949943 AL045703 AW843196 W25132 BE612794 AA304266 AW958054 H25673 AV646563 AV646573 BE172890 AW593488 AA385181 AA164988
40			Al246476 AA345406 Al277554 AA134749 AAB56824 BE613247 AA299003 AL048138 AA028121 T92510 Al923835 AW020440 Al401594 Al889401 N33280 AA044247 AA028100 Al582845 AA811151 AI741811 Al925878 AA448277 AA172221 Al214783 BE220783 AA022746 Al082882 AA022849 Al928385 AA573472 Al420686 AW072802 AI789493 AI873506 Al468977 Al192079 Al468976 AA044272 AW015701 AW316979 AA933042 AA699017 AI318393 Al424571 Al934945 AA172023 AW050917 AA846180 AA134748 Al003947 AI766769 AW003697 AA653517 AW575680 Al474214 AA401478
45			U36922 AA927064 AA868000 D62654 T91745 AW500202 AA194764 AA746346 AA130464 AW117498 AA054526 N26432 H02534 H04964 AW303367 BE300931 Al218049 Al208073 AW182749 AA983630 A1147585 AA194765 AA054534 AA922720 Al36585 Al346535 AA134269 AA280923 AA897422 AA019559 AW274010 AA035406 AA917879 H99327 W32908 Al216046 AW496823 AA019414 H82288 W35284 Al936621 A1767113 AA866177 AW367674 H82388 AF032865 AW300151 AW467069 AA809346 Al188507 Al494178 AA872752 Al631631 U02310 NM_002015 AA815006 Al382453 AW197658 Al761654
50			A1804396 A1382221 A1813640 A1439635 A1523901 AW517242 A1221705 AW298104 AW204560 AW573095 AW028783 AW014650 A1766744 A1808294 A1698758 A1041809 A1766667 A1479103 AA872797 AA769305 AA765080 AA334168 A1472322
55	116988 124825 110455	292319_1 185904_1 330773_1 46874_1	R07335 R07640 AW953678 AW953680 AA244436 H82527 AA361046 AA244483 H82526 AA501669 R52088 H52576 AF085971 H52172
60	125624 104038	182217_1 154135_1 264235_1 43892_1	N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815 AW968363 AA465492 R34539 AA165411 AA374532 AA421255 BE514383 AA071273 AW247987 AW673286 BE312102 AW749824 BE071985 AW577383 BE071945 BE072005 AW577355
υυ		113242_1 47721_1	BE071965 AW239231 BE072000 BE071960 AW577360 AW749830 AW373020 X97303 AW999522 BE000192 BE562219 BE266655 BE264970 AA074713 AA447006 AW977549 AA256038 AL365415 AW500455 AA768241 AW988097 Z17849 AA256104

	125873	10492_1	AW271838 AL133605 C01646 H29959 AA999896 D60676 AW999454 AW961176 AA315244 H14437 AW386118 N46512 AW272021 AI768516 BE466421 AI082809 AI804454 AA905101 AW173368 N38942 AW614169 AI080483 N29489 AI500550 AA994475 AA614464 AA707388 AA593145 AA589473 AW627815 AI828244 N63226 N42300
5	125954	4457_1	NM_016353 AB023584 W44753 R09585 AA382865 R23772 AI814257 AA974046 AK001608 AI835638 AW440609 AI420022 AA777388 AA806969 AI554876 AI584006 AI688556 AI688634 AI697997 AI014540 AI806683 AI741202 AW263154 AW297238 AI149951 AI689076 AW082158 AW614265 AA931887 AA781969 R09490 AA484643 AI207121 AI088390 AI538065 AI619547 AI741925 AI702846 H40846 R93943 AW747979 AA461348 U30163 AA326023 AI535992 AW242870 AI244025 AI222558 W38425 AW473830 AI624599 AI821226 AI683152 AI096458 AI123822 AW170802 C16447 AI337674 D25726 AW339386 AW771259 AA461174
10		1589048_1	H48372 W01626
	127210	15307_6	AA305278 AA223833 110924 6443_1 AW058463 AF195766 AA680145 T86901 W60373 W60281 NM_007222 AF106862 AI000795 AA167188 AW884503 AW891313 AW891332 AW891312 AI984924 AI123518 N75170 AA131614 H25330 AI913358 AI742277 W25576 R58771 AW445159 AW988628 AW888627 AW274674 AI088482 N52314 N34282 AW001769 AI338943 T66784 AI288983
15			AW468676 AW237528 H25289 N71690 AA610128 A1143458 A1082599 N49144 AA654773 AW663411 AW610151 N47938 AW601626 AA167189 AA918304 AA805205 BE069496 AA652836 BE069499 A169298 AW249926 AW888578 BE567635 T10726 AW604715 D54245 D53062 D55610 D55555 AA301376 A1133498 N777788 A1936320 AW090734 A1269977 N50828 AA550814 A1421993 A1005384 N50813 D60292 D59349 AA131710 D61698 D81699
	127263	232161_1	AA331156 AA331157 AA331155
20		29440_1	U76456 NM_003256 AF057532 AA193414 AW293304 AW963378 AA313095 Al359841 Al969312 Al080163 AW448926 Al671136 BE468399 Al637967 Al671873 AW196583 AW071635 Al634427 AW296872 AW292470 AA193650
		304844_1 1860_2	BE161832 AA453224 AA485772 D90391 M55575 AI652268 AA719776
		171841_1	AA524886 AW971347 AA211537
25		188975 1	AW971327 AA524988 AW628653 AA251797
		443883_1	AW976798 AA769520
		280429_1	AA432071 AA405648 AW000908 T16347
	106320	6435_1	AB028957 AL120001 Al267678 H10928 R19844 AW970334 AA393182 F05472 F11711 H09908 N50250 Al815411 BE463679
20			D61468 AW970253 D60889 C15548 D61011 D60867 AIB15795 AA534831 D81386 AW235039 Al382158 D81174 AA416899
30			AA852310 H09789 H10929 H09813 F09369 R44721 D51515 Z38456 R14004 T66255 F12148 F12139 AW351702 M85350
	115470	201515_1	AI016713 AW972450 AW972645 AA514964 T66172 F09785 F09776 AA436608 T05327 T07118 AA339352
		11075_1	AW301608 N46706 AA649093 AA287595 AW811753 AA287596 N39260 NM_001874 J04970 T91426 AW205201 T84979 AA255727 AA847837 R02164 T91339 AV651884 AV651835 AV651350
	101020	110/5_1	AV650118 AV651338 Al272002 Al367796 AA830651 AA262112 AW151198
35	100401	24827 1	AU076696 AA219720 AL135197 AA305877 N56376 AA318063 AA130725 AW954903 BE541230 AW383312 U86753 D85423
			Al679458 Al122932 AB007892 Al583919 BE160134 F08104 R34903 F13440 AA095444 AA262453 AA191036 R17895
			T81266 BE149776 Al279537 Al143113 AA361072 AW959030 AW268817 AA811533 BE275179 Al221677 T65147 R49293 AA249176 BE000290 AA768053 F09494 BE092645 BE172099 Z41177 AA044750 Al909768 BE140795 BE140574 AW845210
40			AW752452 BE243244 AA843664 Al300080 BE169032 AW189979 BE004869 AA621872 Al951772 Al678897 Al926598
40			N62813 Al350912 AW608791 Al309602 Al983138 AW875592 Al655073 AW875626 AA130606 Al370827 C75528 C75554
			AW263335 AI344426 BE004788 AA576220 AA604824 AI431405 AA749378 R38882 AW955075 AA173821 C75657 AA219672 AW768408 R43141 AI431414 AA483343 AI673792 T17294 AW770187 N74285 AI478404 AI088288 AA654152
			AW974864 BE617311 BE243328 BE168049
	130542	28089_3	U64675 AW167507 AW167508 BE218568 AA778360 W85722 AL044843 BE159404 AF012086 AW898611 AW898610
45			BE159405 BE092191 AW890826 AW369841 AW368064 AW606702 AL044731 R82691 AA419346 AA416558 H96045
			AL040450 Al640531 Al808434 AL046613 AW855784 AW362469 AL048881 AL049015 AA094272 AA888908 AA417294
			AW237786 R59783 AL044916 D82402 Al216854 Al079342 H96406 AL037845 Al915900 AA972133 Al478783 T31074
			Z21135 Z21396 AA352182 R13918 AA430178 C17811 Al371824 Al742256 AA926801 N79156 AA350610 AA081971 N83639
50			R35544 AA312292 AW952080 N42322 AA171957 AA565297 R89207 AA504106 Al630782 AA826482 Al301579 T36241
30			AW966618 Z28426 AL043480 Al124636 AA393449 T19504 AW887823 Al289814 N53979 AL043571 Al632764 Al859613
			AI986308 AI683212 AI984499 AI133258 C05898 AW512761 AI041260 BE466240 Z19161 AI351190 N67549 AI373374 AA400873 AW440914 AW514879 AA770146 AI358754 R51113 AI283773 AA649886 T30543 D54358 R37750 T03358
			T15451 T15880 AA999689 N67396 Al056289 T85597 N62441 R89099 R00035 T85596 R61335 R00128 N63359 Al535964
	100485	30576_2	Al207768 M31468 NM_012250 W01322 AA253280 AA253233 AA293148 AW582106 R79880 AA459547 AA363459
55			AA234396 N31669 H44468 AA434587 AW363088 AW993541
	108345	112277_6	AA070906 AA070934
	100522	19669_1	X51501 NM_002652 Y10179 J03460 Al791618 Al821473 AA916588 AA564296 AA916110 Al972286 Al420470 Al568790
			AI597724 AW205207 AI659305 AI791620 AA532383 AI821475 AA526498
60	100533	32905_1	NM_012249 M31470 AL043108 AA262561 AA178883 T29433 AA313329 W48807 AW404323 AA453560 AW403227 H94816
OU	400500	00000 0	W17101 AA165152 W23989 AA091310
	100090	23902_2	AL121734 D54896 AA424269 BE242906 AA362118 BE018454 Al280348 AL048769 M35543 AA757734 Al128865 H20289 H23728 Al203445 H41481 H18237 H44081 H92839 Al928621 H75675 D51148 Al796198 AW390453 D55579 D54145 D53996
			D54015 R37664 H17541 AA668681 T65061 R15867 AW468123 R16049 H69030 AA054226 H16070 F09655 R92144 T03521
			R05473 H92840 AA018186 R91707
65	102332	14745_3	U35637 AA112989 Z19308
	118250	genbank_N62602	
	103678	entrez_Z84483	Z84483
	119400	genbank_T92767	T92767
	119559	entrez_W38197	W38197

MISSING AT THE TIME OF PUBLICATION

TABLE 13: shows genes, including expression sequence tags, up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

308023 Al452732

Unique Eos probeset identifier number Pkey: ExAcon: Exemplar Accession number, Genbank accession number UnigeneID: Unigene number 10 Unigene Title; Unigene gene title Background subtracted normal prostate: prostate tumor tissue Pkey **ExAccn** UnigenelD Unigene Title R1 15 333516 CH22_FGENES.173_1 0.028 337954 CH22 EM:AC005500.GENSCAN.96-3 0.029 Hs.204354 ras homolog gene family; member 8 CH22_EM:AC005500.GENSCAN.89-7 332496 R73299 0.03 337944 0.033 CH22_FGENES.330_10 334111 0.033 20 333657 CH22_FGENES.241_2 0.034 -327718 CH.04_hs gi|6525284 0.034 336355 CH22_FGENES.817_5 0.035 322011 AL137354 EST cluster (not in UniGene) 0.035 CH22_FGENES.821_5 336377 0.036 25 AW079607 Hs.188417 ESTs; Weakly similar to ZnT-3 [H.sapiens] 300254 0.037 CH.19_p2 gt|6015278 CH22_FGENES.507_6 330096 0.037 335191 0.038 CH22_FGENES.322_8 0.039 334040 333586 CH22_FGENES.204_2 0.04 30 CH22_FGENES.132_2 333295 0.042 313326 Al088120 Hs.122329 ESTs 0.043 CH.10_p2 gij3983513 329517 0.043 333403 CH22_FGENES.144_21 0.043 335226 CH22_FGENES.513_11 0.044 35 335976 CH22_FGENES.652_11 0.045 333637 CH22_FGENES.229_2 0.046 334582 CH22_FGENES.407_5 0.046 CH22_FGENES.826_4 0.047 336437 CH22_FGENES.782-1 337461 0.047 40 302892 N58545 Hs.6975 histone deacetylase 3 0.049 338689 CH22 EM:AC005500.GENSCAN.475-3 0.049 CH22_FGENES.421_32 0.049 334721 305867 AA864572 EST singleton (not in UniGene) with exon hit 0.049 CH22_FGENES.571_7 335498 0.05 45 311596 Al682088 0.05 Hs.223368 ESTs 326959 CH.21_hs gi|6469836 0.051 311688 AW025661 Hs.240090 ESTs 0.052 317298 Al922374 Hs.158549 ESTs 0.052 332984 CH22_FGENES.54_6 0.052 50 EST duster (not in UniGene) 0.053 321039 AW247083 CH22_FGENES.623_4 0.053 335844 325371 CH.12_hs gij5866920 0.054 CH22_FGENES.590_18 335667 0.054 333635 CH22_FGENES.228 2 0.054 55 336736 CH22_FGENES.110-2 0.055 CH22 FGENES.635 1 0.055 335893 CH22_FGENES.94_5 0.055 333170 CH.14_p2 gi|6015501 CH22_FGENES.320_2 0.055 329768 0.055 334030 60 323359 AA234172 Hs.137418 ESTs 0.055 300453 AW051431 0.055 Hs.113029 ribosomal protein S25 CH22_FGENES.367_12 0.055 334262 306590 Al000246 EST singleton (not in UniGene) with exon hit 0.055 331087 R22520 Hs.23398 **ESTs** 0.055 65 338620 CH22_EM:AC005500.GENSCAN.450-18 0.056 CH22_DA59H18.GENSCAN.28-5 0.056

0.057

EST singleton (not in UniGene) with exon hit

	339067	•		CH22_DA59H18.GENSCAN.33-3	0.057
	335689			CH22_FGENES.596_4	0.057
	339069			CH22_DA59H18.GENSCAN,33-5	0.057
	338176	}		CH22_EM:AC005500.GENSCAN.219-4	0.057
5	328159	1		CH.06_hs gi 5868065	0.058
	335655	,		CH22_FGENES.590_6	0.058
	336371			CH22_FGENES.820_1	0.058
	336558			CH22_FGENES.842_3	0.059
10	337738			CH22_EM:AC000097.GENSCAN.100-4	0.059
10	334273			CH22_FGENES.369_2	0.059
	335889			CH22_FGENES.633_3	0.059
	327807			CH.05_hs gf 5867968	0.059
	333315			CH22_FGENES.138_7	0.059
15	338825			CH22_DJ246D7.GENSCAN.4-6	0.06
15	337612			CH22_C20H12.GENSCAN.22-5	0.06
	333897			CH22_FGENES.293_4	0.06
	335990			CH22_FGENES.655_4	0.06
	334264			CH22_FGENES.367_15	0.06
20	338653			CH22_EM:AC005500.GENSCAN.460-39	0.061
20		W07459		EST cluster (not in UniGene)	0.061
	333498			CH22_FGENES.168_8	0.061
	336522	AUMOCCOT	Un 197040	CH22_FGENES.839_3	0.061
	301337	AW295677	NS.13/040	ESTs; Moderately similar to HOMEOBOX	0.000
25	205017	AA876469	Uc 101957	PROTEIN SIX1 [H.saptans] laminin receptor 1 (67kD; ribosomal protein SA)	0.062
23	338143	PANO / 0405	118.101337	CH22_FGENES.705_5	0.062
	333493			CH22_FGENES.168_2	0.063 0.063
	_	M99487	Hs.1915	folate hydrolase (prostate-specific membrane antigen) 1	0.063
	325844	11100-101	. 10.1010	CH.16_hs gi 6552453	0.063
30	336402			CH22 FGENES.823 17	0.063
	335767			CH22_FGENES.607 1	0.064
		T80334		EST cluster (not in UniGene) with exon hit	0.064
		AW177009		EST cluster (not in UniGene)	0.064
	305801	AA845997		EST singleton (not in UniGene) with exon hit	0.064
35	335188			CH22_FGENES.507_3	0.065
	337533			CH22_FGENES.828-2	0.065
	333311			CH22_FGENES.138_3	0.065
	335668			CH22_FGENES.590_19	0.065
40		AI041589		EST singleton (not in UniGene) with exon hit	0.066
40		AA962086		EST singleton (not in UniGene) with exon hit	0.066
		AA933840		EST singleton (not in UniGene) with exon hit	0.066
	335018			CH22_FGENES.474_6	0.066
	333594			CH22_FGENES.210_3	0.066
45	333900			CH22_FGENES.293_7	0.066
43	325207			CH.10_hs gij6552430	0.067
	329888			CH.15_p2 gij6067149	0.067
	326238			CH.17_hs gij5867260	0.067
	333658 335809			CH22_FGENES.241_4	0.067
50		Al243437		CH22_FGENES.617_6 EST singleton (not in UniGene) with exon hit	0.068
50		Al949409	Hs.224583		0.068 0.069
	327005	740-10-10-0	I NALL TOO	CH.21_hs gi[5867664	0.069
		HG998-HT998		Sulfotransferase, Phenol-Preferring	0.069
	333318			CH22_FGENES.138_10	0.003
55	333313			CH22_FGENES.138_5	0.07
	325937			CH.16_hs gi 5867132	0.07
	335663			CH22_FGENES.590_14	0.07
	335349			CH22_FGENES.539_2	0.07
	303396	AA224470	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.07
60	332603	N66681	Hs.33470	ESTs	0.07
	333310			CH22_FGENES.138_2	0.071
		AW340812		EST singleton (not in UniGene) with exon hit	0.071
	336340			CH22_FGENES.814_15	0.071
<i>~</i> =		Al453365	Hs.172928	collagen; type I; alpha 1	0.071
65		AI055966		EST singleton (not in UniGene) with exon hit	0.071
	335499			CH22_FGENES.571_8	0.071
	329669			CH.14_p2 gi[6272129	0.071
	321666	D28390		EST cluster (not in UniGene)	0.071
	338174			CH22_EM:AC005500.GENSCAN.219-2	0.072

	336556	6		CH22_FGENES.842_1	0.072
		1 AA738105	Hs.140	immunoglobulin gamma 3 (Gm marker)	0.072
	336684	1		CH22_FGENES.46-1	0.072
	326943	3		CH.21_hs gi 6004446	0.073
5	333947	7		CH22_FGENES.303_1	0.074
	333214	,		CH22_FGENES.104_5	0.074
	331917	7 AA446572	Hs.174007	FESTs; Moderately similar to !!!! ALU SUBFAMILY J WARNING	0.074
	339102	2		CH22_DA59H18.GENSCAN.44-9	0.074
10	328122			CH.06_hs gi]5868031	0.075
10		N62712	Hs.226223	KIAA0618 gene product	0.075
	328506			CH.07_hs gij5868471	0.075
		AA291468	Hs.98504	ESTs	0.075
	335193			CH22_FGENES.507_8	0.076
15		AA971718	Hs.128141		0.076
15		AA458708		hemoglobin; alpha 2	0.076
		Al565766	Hs.124960		0.076
	326145			CH.17_hs gi 5867204	0.076
	336394			CH22_FGENES.823_6	0.077
20		AA989542	Un 455404	EST singleton (not in UniGene) with exon hit	0.077
20	300028	AA152119	HS. 100 IUI	ATP synthase; H+ transporting; mitochondrial F1 complex; alpha	
	333160			Isoform 1; cardiac muscle	0.077
	337490			CH22_FGENES.91_2	0.077
		AA723748		CH22_FGENES.799-5	0.077
25		AA281765	Hs.193689	EST singleton (not in UniGene) with exon hit	0.077
23	332792		113.133003	CH22_FGENES.3_2	0.077
		M81057	He 180884	carboxypeptidase B1 (tissue)	0.078
		AI859636	Hs.8102	ribosomal protein S20	0.078
	337419	7400000	113.0102	CH22_FGENES.759-4	0.078
30	333459			CH22_FGENES.157_8	0.078 0.078
	334851			CH22_FGENES.440_3	0.078
	329046			CH.X_hs gil5868569	0.078
	327879			CH.06_hs gi[5868142	0.079
	305830	AA857665			0.079
35	302928	AL137719		EST cluster (not in UniGene) with exon hit	0.079
	304321	AA136698	Hs.113029	ribosomal protein S25	0.079
	326390			CH.19_hs gi 5867340	0.079
	335230			CH22_FGENES.514_2	0.08
40	334622			CH22_FGENES.412_6	0.08
40	335331			CH22_FGENES.535_4	0.08
		AA578840	Hs.77961	major histocompatibility complex; class I; B	0.08
		AJ418863		EST cluster (not in UniGene) with exon hit	0.081
	336561			CH22_FGENES.842_6	0.081
45	335611	4.400		CH22_FGENES.583_5	0.081
43		AA635771		EST singleton (not in UniGene) with exon hit	0.081
		AA905130		EST singleton (not in UniGene) with exon hit	0.082
		Al571211		EST singleton (not in UniGene) with exon hit	0.082
	334365 335496			CH22_FGENES.378_13	0.082
50	332634	539053		CH22_FGENES.571_4	0.082
50	332034	030533		Human unidentified gene complementary to P450c21 gene; partial cds	0.000
	337824			GH22_EM:AC005500.GENSCAN.13-18	0.082
	335822			CH22_FGENES.619_7	0.082 0.082
	334758			CH22_FGENES.428_7	0.082
55		AW194230	Hs.253100		
	333064			CH22_FGENES.75_7	0.082
	338695			CH22_EM:AC005500.GENSCAN,477-25	0.083
		AA402482		ESTs	0.083
	326138			CH.17_hs gi 5867203	0.083
60	328304			CH.07_hs gi 6004478	0.083
	330570	U60276	Hs.165439	arsA (bacterial) arsenite transporter, ATP-binding; homolog 1	0.083
	334305			CH22_FGENES.373_8	0.083
	335885			CH22_FGENES.632_3	0.083
	325839			CH.16_hs gi 6552452	0.083
65	333531			CH22_FGENES.175_18	0.084
	330385	AA449749	Hs.31386	ESTs; Highly similar to secreted apoptosis related protein	
				1 [H.sapiens]	0.084
		AA811351		Homo sapiens clone 24812 mRNA sequence	0.084
	331698	Z39929	Hs.65843	ESTS	0.084

				•	
	335888			CH22_FGENES.633_2	0.084
	306008	AA894390		EST singleton (not in UniGene) with exon hit	0.084
	334249			CH22_FGENES.365_15	0.084
		AW451197	Hs.113418		0.084
5		A11401101	113.113410		
J	330171			CH.02_p2 gij6648220	0.084
	336662			CH22_FGENES.41-1	0.085
	320506	Al815668	Hs.157476	suc1-associated neurotrophic factor target 2	
				(FGFR signalling adaptor)	0.085
	316974	Al740721	Hs.128292	ESTs	0.085
10	336492			CH22_FGENES.832_9	0.085
	335750			CH22_FGENES.602_4	0.085
	335676			CH22_FGENES.594_1	0.086
	336093			CH22_FGENES.691_2	0.086
		AI933861	Hs.222852		0.086
15	335160	7000001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CH22_FGENES.502_4	0.086
10	334306			CH22_FGENES.373_9	0.086
	334793			CH22_FGENES.433_5	0.086
	333936			CH22_FGENES.301_2	0.087
20	336413			CH22_FGENES.823_35	0.087
20	333775			CH22_FGENES.272_6	0.087
	335971				0.087
	301737	Al815981		EST duster (not in UniGene) with exon hit	0.087
	339101			CH22_DA59H18.GENSCAN.44-6	0.087
	327612			CH.04_hs qi 6525283	0.087
25	326241			CH.17_hs glj5867260	0.088
	338386			CH22_EM:AC005500.GENSCAN.331-4	0.088
	327762			CH.05_hs gi 5867961	0.088
		AA679772		EST singleton (not in UniGene) with exon hit	0.088
	334359			CH22_FGENES.378_4	0.088
30	335500			CH22_FGENES.571_10	0.088
50	329687				0.088
				CH.14_p2 glj6117856	
	333654	A A 404010		CH22_FGENES.240_2	0.088
		AA464018		EST cluster (not in UniGene)	0.088
25	325999			CH.16_hs gij5867073	0.089
35	334832			CH22_FGENES.439_1	0.089
	339115			CH22_DA59H18.GENSCAN.49-3	0.089
	300896	Al916902	Hs.213882	ESTs	0.089
	328784			CH.07_hs gi 5868309	0.089
	335044			CH22_FGENES.480_1	0.089
40	329791			CH.14_p2 gi 6469354	0.089
	333656			CH22_FGENES.240_4	0.089
	326180			CH.17_hs gij5867211	0.089
	333391			CH22_FGENES.144_6	0.089
	338324			CH22_EM:AC005500.GENSCAN.306-3	0.089
45	305396	AA721052		EST singleton (not in UniGene) with exon hit	0.089
	337483			CH22_FGENES.795-7	0.09
	326424			CH.19_hs gij5867369	0.09
		AA977992		EST singleton (not in UniGene) with exon hit	0.09
	338893	70011002		CH22_DJ32I10.GENSCAN.7-6	0.09
50	327470				0.09
50	333165			CH.02_hs gij5867772 CH22_FGENES.91_7	0.09
		Al186738	Un 100400		
		AA233926		ribosomal protein S2	0.09
		AA233920	Hs.23635	ESTs -	0.09
E E	335334			CH22_FGENES.535_10	0.09
55	335907			CH22_FGENES.636_2	0.09
	333885			CH22_FGENES.292_7	0.09
	331034	N51868	Hs.31965	ESTs; Moderately similar to 40S RIBOSOMAL	
				PROTEIN \$20 [H.saplans]	0.09
	304660	AA534416	Hs.162185	ESTs	0.09
60	328217			CH.06_hs gif5868096	0.091
	336068			CH22_FGENES.684_13	0.091
	302833	AA295381	Hs.44423	ESTs	0.091
	328668			CH.07_hs gij5868254	0.091
	335309			CH22_FGENES.532_2	0.091
65	338481			CH22_EM:AC005500.GENSCAN.377-5	0.091
-		AA936892		EST singleton (not in UniGene) with exon hit	0.091
		AA639783		EST singleton (not in UniGene) with exon hit	0.091
		AA594811	Hs.119122	ribosomal protein L13a	0.091
		AA968589	Hs.944	glucose phosphate Isomerase	0.091
	55565		- 1010-17	Surrent broads and annual	

	323789	AI459812	Hs.170460	ESTs; Wealty similar to KIAA0990 protein [H.sapiens]	0.092
	334910			CH22_FGENES.455_3	0.092
	326382			CH.19_hs gij5867327	0.092
		AA489630	Hs.119004	KIAA0665 gene product	0.092
5	338534			CH22_EM:AC005500.GENSCAN.402-7	0.092
-	336449			CH22_FGENES.829_6	0.092
	333709			CH22_FGENES.250_24	0.092
	336559			CH22_FGENES.842_4	0.092
				CH22_FGENES.107_10	0.093
10	333230				0.093
10	333133			CH22_FGENES.83_9	
	334885			CH22_FGENES.451_11	0.093
		X02419	Hs.77274	plasminogen activator; urokinase	0.093
	336392			CH22_FGENES.823_4	0.093
	334083			CH22_FGENES.327_38	0.093
15	325469			CH.12_hs gi 6017034	0.093
	331077	R09531	Hs.19039	ESTs	0.093
		AW500732		EST cluster (not in UniGene) with exon hit	0.093
	334218			CH22_FGENES.358_3	0.093
	336542			CH22_FGENES.840_6	0.093
20	337151			CH22_FGENES.546-1	0.093
20				CH22_FGENES.231_2	0.093
	333642				0.093
	336863			CH22_FGENES.297-4	
	334680			CH22_FGENES.419_2	0.093
~=	326365			CH.18_hs gl 5867297	0.093
25	338952			CH22_DJ32I10.GENSCAN.23-22	0.093
	337539			CH22_FGENES.832-4	0.094
	333546			CH22_FGENES.180_2	0.094
	335258			CH22_FGENES.518_3	0.094
	336786			CH22_FGENES.168-19	0.094
30		Al204177	Hs.237396	ESTs	0.094
•	335943			CH22_FGENES.646_17	0.094
	327918			CH.06_hs gij5868165	0.094
		AA970548		EST singleton (not in UniGene) with exon hit	0.094
	335671	MAST VONO		CH22_FGENES.592_3	0.094
25					0.094
35	335033			CH22_FGENES.475_11	
	338277			CH22_EM:AC005500.GENSCAN.290-2	0.094
		AA504812		early B-cell factor	0.094
	305153	AA654582	Hs.77039	ribosomal protein S3A	0.094
	333880			CH22_FGENES.292_2	0.094
40	323940	A1864428	Hs.170880		0.094
	313779	AA648796	Hs.129771	ESTs	0.095
	323109	AA169345		EST cluster (not in UniGene)	0.095
	332930			CH22_FGENES.38_4	0.095
	335368			CH22_FGENES.543_6	0.095
45		R72672	Hs.193484	ESTs; Weakly similar to Similarity with yeast gene	
	00000.			L3502.1 [C.elegans]	0.095
	336223			CH22_FGENES.727_3	0.095
		Al767957	He 107737	ESTs; Wealty similar to Y38A8.1 gene product [C.elegans]	0.095
		Ful Ol 931	113.157707	CH22_FGENES.648-3	0.095
50	337256	A1040009		EST singleton (not in UniGene) with exon hit	0.095
JU	-	Al819263			0.095
	334659			CH22_FGENES.418_7	0.095
	335895	4141000004	11- 4050	CH22_FGENES.635_3	0.095
	-	AW388061	Hs.4953	golgi autoantigen; golgin subfamily a; 3	
~ ~	336010			CH22_FGENES.668_8	0.096
55		U21260		EST duster (not in UniGene) with exon hit	0.096
	333612			CH22_FGENES.217_7	0.096
	304823	AA584837		EST singleton (not in UniGene) with exon hit	0.096
	335665			CH22_FGENES.590_16	0.096
	306518	AA989598		EST singleton (not in UniGene) with exon hit	0.096
60	335243			CH22_FGENES.516_4	0.096
	335436			CH22_FGENES.559_5	0.096
		Al420256	Hs.161271		0.096
	332810			CH22_FGENES.7_12	0.097
		AJ735634		EST singleton (not in UniGene) with exon hit	0.097
65	335818	- 37 00007		CH22_FGENES.618_6	0.097
U D	325838			CH.16_hs gl[6552452	0.097
	337482			CH22 FGENES.795-6	0.097
	336645			CH22_FGENES.26-1	0.097
				CH22_FGENES.675-1	0.098
	337293			OUST LACINEDIDIO.	0.000

	329893			CH.15_p2 gil6525313	0.098
	326533			CH.19_hs gli5867441	0.098
	334905			CH22 FGENES.452 20	0.098
		AA961144		EST singleton (not in UniGene) with exon hit	0.098
5		7/4301 144			0.098
5	336676			CH22_FGENES.43-4	
	339166			CH22_DA59H18.GENSCAN.69-7	0.098
	335774			CH22_FGENES.607_10	0.098
	339216			CH22_FF113D11.GENSCAN.6-11	0.098
	335311			CH22_FGENES.532_4	0.098
10	329632			CH.11_p2 gi]6729060	0.098
	328595			CH.07_hs gl[5868224	0.098
	326928			CH.21_hs gli6456782	0.098
		AI079680	Hs.120770		0.098
		AA908508	110.120770		0.098
15				EST singleton (not in UniGene) with exon hit	0.038
13		AA826544		EST singleton (not in UniGene) with exon hit	
		T30280		EST cluster (not in UniGene)	0.099
	337553			CH22_C4G1.GENSCAN.2-1	0.099
	320951	AA344069	Hs.202699	neurexophilin 4	0.099
	303845	T08033		EST duster (not in UniGene) with exon hit	0.099
20	338981			CH22_DA59H18.GENSCAN.2-5	0.099
		R87365	Hs.26058		0.099
	328348	. 10. 000		CH.07_hs gij5868383	0.099
		H49388	Hs.102082		0.099
			H\$.102002		0.099
25		R07064	11- 400004	EST cluster (not in UniGene) with exon hit	
25		AA608838	Hs.162681		0.099
	333227			CH22_FGENES.107_5	0.099
	316442	AA760894	Hs.153023	TELE	0.099
	326001			CH.16_hs gl 5867073	0.099
	334363			CH22_FGENES.378_11	0.099
30	338895			CH22_DJ32I10.GENSCAN.9-2	0.099
	327460			CH.02_hs gij6004455	0.099
		T59161	Hs.76293	thymosin; beta 10	0.1
		Al351739		EST singleton (not in UniGene) with exon hit	0.1
		F25037	Hs.225175		0.1
35		AA602697	I M.EEU ! ! U		0.1
<i>JJ</i>		MM002037		EST singleton (not in UniGene) with exon hit	0.1
	334327	4100=100		CH22_FGENES.375_4	
		Al097439	Hs.135548		0.1
	326644			CH.20_hs gi 5867559	0.1
	334454		•	CH22_FGENES.388_3	0.1
40	327959			CH.06_hs g\$5868210	0.1
	323783	AA330586	Hs.131819	ESTs	0.1
	309198	Al955915	Hs.248038	major histocompatibility complex; class I; C	0.1
	339265			CH22_BA354I12.GENSCAN.10-3	0.1
	-	AL049977	Hs.162209	Homo sapiens mRNA; cDNA DKFZp564C122	
45				(from clone DKFZp584C122)	0.1
	338132			CH22_EM:AC005500.GENSCAN.200-2	0.1
	333163			CH22_FGENES.91_5	0.101
	337584			CH22_C20H12.GENSCAN.5-1	0.101
50		Al285535		EST singleton (not in UniGene) with exon hit	0.101
50	336969			CH22_FGENES.378-2	0.101
	327535			CH.02_hs gi 6525279	0.101
	328732			CH.07_hs gi[5868289	0.101
	336686			CH22_FGENES.46-3	0.101
	335777			CH22_FGENES.607_13	0.101
55	332944			CH22_FGENES.47_3	0.101
	333174			CH22 FGENES.95_1	0.101
	336380			CH22_FGENES.821_8	0.101
		U60800	Hs.79089	sema domain; immunoglobulin domain (lg);	0.101
	330371	000000	113.7 5005	cytoplasmic domain; (semaphorin) 4D	0.401
60	004700	A A000704	Un 100740		0.101
JU	-	AA398721	Hs.186749		0.101
	338915			CH22_DJ32I10.GENSCAN.12-1	0.101
	334844			CH22_FGENES.439_24	0.101
	336642			CH22_FGENES.23-4	0.101
	334906			CH22_FGENES.452_21	0.101
65	333188			CH22_FGENES.98_8	0.101
		AW299993		EST cluster (not in UniGene) with exon hit	0.101
	329373	-		CH.X_hs gl[6682537	0.102
		R46576	Hs.23239	ESTs	0.102
	335856			CH22_FGENES.628_1	0.102

	331888	AA431337	Hs.98017	ESTs .	0.102
	333154			CH22_FGENES.89_4	0.102
	335989			CH22_FGENES.655_2	0.102
		AA235602		EST singleton (not in UniGene) with exon hit	0.102
5	338016	MEDOUL		CH22_EM:AC005500.GENSCAN.133-1	0.102
J					
	335190			CH22_FGENES.507_5	0.102
	318595	T39486	Hs.6137	ESTs	0.102
	333697			CH22_FGENES.250_11	0.102
		AA989713		EST singleton (not in UniGene) with exon hit	0.103
10		74 0007 10		CH.07_hs gij5868289	0.103
10	328734	41005040	11- 70740		
		Al205612	Hs.73742	ribosomal protein; large; PO	0.103
	327424			CH.02_hs gl 5867751	0.103
	335872			CH22_FGENES.630_3	0.103
	333572			CH22_FGENES.189_1	0.103
15	334774			CH22_FGENES.430_6	0.103
10					0.103
	338660			CH22_EM:AC005500.GENSCAN.462-1	
	326713			CH.20_hs gi[5867595	0.103
	333994	•		CH22_FGENES.310_18	0.103
	335800			CH22_FGENES.613_4	0.103
20		Al187943	Hs.132322		0.103
	337278	74.0.040	, 10, 1020	CH22_FGENES.665-1	0.103
	336386			CH22_FGENES.822_6	0.103
	334790	•		CH22_FGENES.432_15	0.103
	303778	AW505368		EST cluster (not in UniGene) with exon hit	0.104
25	336524			CH22_FGENES.839_5	0.104
	328936			CH.08_hs gij5868500	0.104
				CH22_FGENES.494_7	0.104
	335102				0.104
	300935	AA513644	HS,222815	ESTs; Weakly similar to Wiskott-Aldrich Syndrome	
				protein [H.sapiens]	0.104
30	307581	Al284415		EST singleton (not in UniGene) with exon hit	0.104
	317301	AW291683	Hs.226056		0.104
	335330	7111201000		CH22_FGENES.535_3	0.104
					0.104
	337968	_		CH22_EM:AC005500.GENSCAN.103-2	
~ -	335627	_		CH22_FGENES.584_7	0.104
35	336274			CH22_FGENES.762_2	0.104
	334730			CH22_FGENES.424_5	0.105
	334409			CH22_FGENES.383_6	0.105
					0.105
	327237			CH.01_hs gij5867544	
40	333321			CH22_FGENES.138_13	0.105
40	303181	AA452366		EST cluster (not in UniGene) with exon hit	0.105
	333738			CH22_FGENES.261_2	0.105
	338255			CH22_EM:AC005500.GENSCAN.276-3	0.105
	334282			CH22_FGENES.369_12	0.105
					0.105
15	330190	414704 4040	11- 450000	CH.05_p2 gi 6165182	
45		AW014249	Hs.158698		0.105
	338150			CH22_EM:AC005500.GENSCAN.207-2	0.105
	336719			CH22_FGENES.82-6	0.105
	330228			CH.05_p2 gij6013527	0.105
	327801			CH.05_hs gij5867924	0.105
50		S75168	Hs.274	megakaryocyte-associated tyrosine kinase	0.105
JU		2/3/00	115.274		
	334972			CH22_FGENES.468_2	0.105
	335111			CH22_FGENES.494_19	0.106
	334483			CH22_FGENES.395_5	0.106
	328829			CH.07_hs gi 5868337	0.106
55	302753	M74299		EST cluster (not in UniGene) with exon hit	0.106
	334512	1200		CH22_FGENES.398_10	0.106
	330024				0.106
		41500000	11 000047	CH.16_p2 gij6671908	0.100
	321030	A1769930	HS.233617	Homo sapiens (clone B3B3E13) Huntington's	
				disease candidate region	0.107
60	338410			CH22_EM:AC005500.GENSCAN.341-6	0.107
	334353			CH22_FGENES.376_5	0.107
	338276			CH22_EM:AC005500.GENSCAN.288-9	0.107
					0.107
	329053			CH.X_hs gij5868574	
	336560			CH22_FGENES.842_5	0.107
65	332158	AA621363	Hs.112980		0.107
	336447			CH22_FGENES.829_4	0.107
	333703			CH22_FGENES.250_17	0.107
	326207			CH.17_hs gi[5867222	0.107
				CH22_FGENES.108_1	0.107
	333232			VIEE_I GENES.IVO_I	J. 107
					,

				Outes Formire ton 4	- 407
	334802			CH22_FGENES.435_1	0.107
		AA704983		EST cluster (not in UniGene) with exon hit	0.107
	338847			CH22_DJ246D7.GENSCAN.10-2	0.107
~	339407			CH22_DJ579N16.GENSCAN.1-9	0.108
5	337635			CH22_C20H12.GENSCAN.32-8	0.108
	334650			CH22_FGENES.417_17	0.108
		Al687580		EST singleton (not in UniGene) with exon hit	0.108
	333392			CH22_FGENES.144_8	0.108
	325840			CH.16_hs gi]6552452	0.108
10		AW205664	Hs.129568	ESTs	0.108
	333298			CH22_FGENES.133_4	0.108
	335157			CH22_FGENES.501_7	0.108
	333305			CH22_FGENES.137_2	0.108
	326379			CH.19_hs gij5867327	0.108
15	335050			CH22_FGENES.482_1	0.108
	305185	AA663985	Hs.248038	major histocompatibility complex; class I; C	0.108
	335658			CH22_FGENES.590_9	0.108
	323040	AA336609	Hs.10862	ESTs	0.108
	337326			CH22_FGENES.699-6	0.108
20	339262			CH22_BA354I12.GENSCAN.9-6	0.108
	321202	H54052	Hs.163639	ESTs; Weakly similar to INTERCELLULAR ADHESION	
				MOLECULE-1 PRECURSOR [H.sapiens]	0.109
	331792	AA398968	Hs.97548		0.109
	333806			CH22_FGENES.278_2	0.109
25		AB033100		EST cluster (not in UniGene)	0.109
		AA435513	Hs 178170	ESTs; Weakly similar to DUAL SPECIFICITY	
	-0.0.0			PROTEIN PHOSPHATASE 3	0.87
	328775			CH.07_hs gi[5868309	0.109
	335105			CH22_FGENES.494_10	0.109
30		Al283548	Hs.149668		0.109
-		T31940		EST cluster (not in UniGene)	0.109
	333397			CH22_FGENES.144_15	0.109
	336484			CH22_FGENES.831_3	0.109
	335507			CH22_FGENES.571_22	0.109
35	336373			CH22_FGENES.820_3	0.109
-	336188			CH22_FGENES.717_12	0.109
		AW081702	Hs.137329		0.109
	335185			CH22_FGENES.506_4	0.109
		AJ066577		EST singleton (not in UniGene) with exon hit	0.109
40		Al632322	Hs.195306		0.109
		AW080339	Hs.211911		0.109
		Al346359	Hs.135209		0.11
		AW135925		biphenylhydrolase-like (serine hydrolase; breast epithelial	····
	000212		. 10. 10 1002	mucin-assoc.	0.11
45	325675			CH.14_hs gl[5867014	0.11
	330095			CH.19_p2 gil6015278	0.11
		AA453261	Hs.99309	ESTs	0.11
	334723	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11330000	CH22_FGENES.421_34	0.11
	333614			CH22_FGENES.217_9	0.11
50	337316			CH22_FGENES.692-1	0.11
50		AA635626	Hs.62954		0.11
	338704	70.000020	113,02,004	CH22 EM:AC005500.GENSCAN.480-3	0.11
	335385			CH22_FGENES.543_27 -	0.11
	338012			CH22_EM:AC005500.GENSCAN.128-10	0.11
55	329449			CH.Y_hs gi[5868886	0.11
33	338980			CH22_DA59H18.GENSCAN.2-4	0.11
	336553			CH22_FGENES.841_10	0.111
	330021			CH.16_p2 gij6671889	0.111
	327579			CH.03_hs gij5867824	0.111
60	333099			CH22_FGENES.79_4	0.111
50	337076			CH22_FGENES.453-4	0.111
		AA456852	Hs.43543	suppressor of white apricot homolog 2	0.111
		Al005542		heat shock 70kD protein 10 (HSC71)	0.111
		AA884409	. 10. 100717	EST singleton (not in UniGene) with exon hit	0.111
65		AA419217	Hs.15911	DKFZP586E1422 protein	0.111
	333780	4 4 14 10E 17	5. 100 11	CH22_FGENES.273_2	0.111
		AI702835		EST cluster (not in UniGene)	0.111
		AI868157	Hs.224226		0.111
		AW026946		eukaryofic translation elongation factor 1 alpha 1	0.111
	~~~~	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

				OLIV LNegotoma	0.110
	329317			CH.X_hs gq6381976	0.112
	333518			CH22_FGENES.173_3	0.112
		Al127883		EST singleton (not in UniGene) with exon hit	0.112
_	338225			CH22_FGENES.728_2	0.112
5	333698			CH22_FGENES.250_12	0.112
	302173	Al417947	Hs.14068	ESTs	0.112
	335510			CH22_FGENES.571_25	0.112
	328042			CH.06_hs gi 5902482	0.112
	336512			CH22_FGENES.834_7	0.112
10	328541			CH.07_hs gi 5868486	0.112
	311265	AW205118	Hs.199214	ESTs	0.112
		AF131846	Hs.13396	Homo sapiens clone 25028 mRNA sequence	0.112
	302002	AF013956	Hs.123085	chromobox homolog 4 (Drosophila Pc class)	0.112
	315088	AA557351	Hs.152448	ESTs; Moderately similar to MULTIFUNCTIONAL PROTEIN ADE2 ESTs	0.112
15	312581	A1937242	Hs.176590	ESTs	0.112
	322246	AW384710	Hs 125258	FSTs	0.112
	333659	ATTOOTITO	110.120200	CH22_FGENES.241_5	0.113
	327510			CH.02_hs gij6117815	0.113
				CH22_FGENES.839_1	0.113
20	336520			CH22_EM:AC005500.GENSCAN.472-1	0.113
20	338682				0.113
	334508	~~~~		CH22_FGENES.398_6	
		T59538		EST cluster (not in UniGene)	0.113 0.113 ~
		Al086929		EST singleton (not in UniGene) with exon hit	
25	336040			CH22_FGENES.679_2	0.113
25		T23215		EST cluster (not in UniGene) with exon hit	0.113
		AW294868	Hs.187226		0.113
	335186			CH22_FGENES.506_5	0.113
	333607			CH22_FGENES.216_2	0.113
	305549	AA773530		EST singleton (not in UniGene) with exon hit	0.113
30	333686			CH22_FGENES.249_4	0.113
	334352			CH22_FGENES.376_3	0.113
	338195			CH22_EM:AC005500.GENSCAN.233-18	0.114
	333588			CH22_FGENES.206_2	0.114
	339233			CH22_BA354I12.GENSCAN.2-3	0.114
35	337455			CH22_FGENES.777-1	0.114
		Al925108		EST singleton (not in UniGene) with exon hit	0.114
	328522	•		CH.07_hs gij5868477	0.114
		AI537333	Hs.252782		0.114
	333517			CH22_FGENES.173_2	0.114
40	329935			CH.16_p2 gl 6165200	0.114
	326226			CH.17_hs glj5867230	0.114
	335890			CH22_FGENES.633_4	0.114
	336715			CH22_FGENES.77-1	0.114
	327640			CH.04_hs gl[5867890	0.114
45	338842			CH22_DJ246D7.GENSCAN.7-1	0.114
43		AA991487		EST singleton (not in UniGene) with exon hit	0.114
	336597	704351407		CH22_FGENES.266_1	0.114
		V47/E0	Un 227150	Homo sapiens LSFR2 gene; last exon	0.114
		Y17456		isocitrate dehydrogenase 2 (NADP+); mitochondrial	0.114
50		AA159213		inositol 1;4;5-triphosphate receptor; type 3	0.114
JU		N44238	118.77515	CH.01_hs gi[6552411	0.114
	327358	A1045460	Un 10E100	glyceraldehyde-3-phosphate dehydrogenase	0.115
		M010103	DS. 180 100		0.115
	325886			CH.16_hs gi 5867087 - CH22_FGENES.272-11	0.115
55	336850	4.4000400			0.115
55		AA863103		EST singleton (not in UniGene) with exon hit	
		AC004472		multiple UniGene matches	0.115
	336158			CH22_FGENES.707_2	0.115
	327866			CH.06_hs gij5868131	0.115
<b>C</b> 0	339157			CH22_DA59H18.GENSCAN.67-3	0.115
60	339258			CH22_BA354I12.GENSCAN.8-3	0.115
	336129			CH22_FGENES.701_17	0.115
	333684			CH22_FGENES.249_2	0.115
		AW190162		ribosomal protein L23a	0.115
	312926	AA954097	Hs.127523	ESTS	0.115
65	302640	AB035698		EST cluster (not in UniGene) with exon hit	0.115
	328968			CH.08_hs gi 6456775	0.115
	327902			CH.06_hs gij5868158	0.115
	321927	AJ223366		EST cluster (not in UniGene)	0.115
	335962			CH22_FGENES.651_4	0.115

	334927			CH22_FGENES.460_1	0.115
	330535	U11872		Human Interleukin-8 receptor type B (IL8RB) mRNA,	
	***************************************	•		splice variant ILBRB1	0.856
	328591			CH.07_hs gij5868227	0.115
5					0.115
J	334902			CH22_FGENES.452_16	
	328525			CH.07_hs gi 5868482	0.115
	325870			CH.16_hs gi 6682492	0.116
	337522			CH22_FGENES.819-1	0.116
	305079	AA641329		EST singleton (not in UniGene) with exon hit	0.116
10	327343			CH.01_hs gij6017017	0.116
	333918			CH22_FGENES.296_7	0.116
	333600			CH22_FGENES.213_2	0.116
					0.116
	335846			CH22_FGENES.623_6	
15	333510			CH22_FGENES.171_4	0.116
15	327629			CH.04_hs gi 5867872	0.116
	333470			CH22_FGENES.161_6	0.116
	326855			CH.20_hs gi 6552460	0.116
	327008			CH.21_hs gi 5867684	0.117
	337480			CH22_FGENES.795-3	0.117
20	336425			CH22_FGENES.824_10	0.117
20		AL079687	Hs.171065		0.117
		ALUISUOI	118.17 1003		
	335651		17- 404400	CH22_FGENES.590_2	0.117
	308164	A1521574	HS.181165	eukaryotic translation elongation factor 1 alpha 1	0.117
	337927			CH22_EM:AC005500.GENSCAN.80-3	0.117
25	300341	H45095	Hs.153524	ESTs	0.117
	300154	Al245127	Hs.179331	ESTs	0.117
		AA937331		EST singleton (not in UniGene) with exon hit	0.117
	329670			CH.14_p2 gi 6272129	0.117
				CH22_FGENES.583_6	0.117
30	335612	41000450			0.117
<b>3</b> 0		Al363450		EST singleton (not in UniGene) with exon hit	
	330401	D28383		Human mRNA for ATP synthase B chain, 5 UTR (sequence from the	
				5'cap to the start codon)	0.117
	327127			CH.21_hs gi 6682520	0.117
	333843			CH22_FGENES.290_1	0.117
35	331083	R17762	Hs.22292	ESTs	0.117
	329140			CH.X_hs gij6017060	0.117
	339338			CH22_BA354I12.GENSCAN.27-3	0.117
		AA464518	Hs.99616		0.117
		AA404310	110.05010	CH22 EM:AC005500.GENSCAN.454-2	0.117
40	338631			<b>-</b>	
40	330299			CH.06_p2 gi 2905881	0.117
	330351			CH.09_p2 gi 3056622	0.117
	305377	AA715714	Hs.181357	laminin receptor 1 (67kD; ribosomal protein SA)	0.117
	333106			CH22_FGENES.79_12	0.117
	338514			CH22_EM:AC005500.GENSCAN.392-4	0.117
45	327335			CH.01_hs gi 5902477	0.117
		AB028962	Hs 120245	KIAA1039 protein	0.118
		ADUZUOUE.	113.1202-10	CH.17_hs gi 6056311	0.118
	326339	V45070	11-00174	1 luman and announce when the a ACD (A)	
		X15673	ns.93174	Human endogenous retrovirus pHE.1 (ERV9)	0.118
50	334178			CH22_FGENES.350_6	0.118
50	328008			CH.06_hs gi[5902482	0.118
	329976			CH.16_p2 g4878063	0.118
	320952	AA897432	Hs.130411	ESTs	0.118
	305621	AA789095		EST singleton (not in UniGene) with exon hit -	0.118
	337850			CH22_EM:AC005500.GENSCAN.34-3	0.118
55	333626			CH22_FGENES.224_2	0.118
33				CH22 EM:AC000097.GENSCAN.67-1	0.118
	337672			CH.07_hs gil6004475	0.118
	328803				
	325922			CH.16_hs gi 5867122	0.118
<b>~</b>	334489			CH22_FGENES.397_1	0.118
60		R54766	Hs.101120		0.118
	321932	AA569229		EST cluster (not in UniGene)	0.118
	336958			CH22_FGENES.367-1	0.118
		AA600176	Hs.112345		0.118
		AA889992		EST singleton (not in UniGene) with exon hit	0.118
65	336803			CH22_FGENES.194-1	0.118
<del>5</del> 5		AIOOEOOO		EST singleton (not in UniGene) with exon hit	0.118
		AJ925823			
	336859			CH22_FGENES.293-9	0.118
	337935			CH22_EM:AC005500.GENSCAN.85-6	0.118
	326492			CH.19_hs gi 5867422	0.118

	327289			CH.01_hs gi 5867481	0.119
	325818			CH.14_hs gi 6682490	0.119
		AW262580	Hs.159040		0.119
		AMEULOUV	113.1030-10	CH.16_p2 gij6671908	0.119
5	330028	•			0.119
,	325317			CH.11_hs gij5866878	
	335279			CH22_FGENES.523_7	0.119
		AA192173	Hs.221530	TILL	0.119
	329186			CH.X_hs gi 5868711	0.119
	316012	AA764950	Hs.119898	ESTs	0.119
10	338316			CH22_EM:AC005500.GENSCAN.304-2	0.119
	326033			CH.17_hs gij5867178	0.119
	334745			CH22_FGENES.426_3	0.119
	333051			CH22_FGENES.73_5	0.119
		R01279		EST cluster (not in UniGene) with exon hit	0.12
15		AA454809	He 172028	collagen; type I; alpha 1	0.12
	335680	701101000		CH22_FGENES.594_5	0.12
		A SE 4GEEG		EST singleton (not in UniGene) with exon hit	0.12
		AA548556			0.12
	335441			CH22_FGENES.560_4	
20	336187			CH22_FGENES.717_11	0.12
20		AW087175		EST singleton (not in UniGene) with exon hit	0.12
	336047			CH22_FGENES.679_9	0.12
	309651	AW195850		EST singleton (not in UniGene) with exon hit	0.12
	308547	Al695385	Hs.201903	EST	0.12
	304443	AA399444		EST singleton (not in UniGene) with exon hit	0.12
25	336245			CH22_FGENES.746_3	0.12
		H72333		EST cluster (not in UniGene) with exon hit	0.12
	335690	1172000		CH22_FGENES.596_5	0.12
	328941			CH.08_hs gij6456765	0.12
					0.12
30	333873	4141405000	U- 455000	CH22_FGENES.291_9	0.12
30		AW105092	Hs.155690		0.12
	339288			CH22_BA354I12.GENSCAN.16-6	
	337996			CH22_EM:AC005500.GENSCAN.116-3	0.12
	333304			CH22_FGENES.137_1	0.121
	308332	Al591235		EST singleton (not in UniGene) with exon hit	0.121
35	329319			CH.X_hs gij6381976	0.121
	302086	X57138		multiple UniGene matches	0.121
	333290			CH22_FGENES.129_2	0.121
	323825	A1793080	Hs.123525	ESTs; Wealty similar to NEUTROPHIL GELATINASE-ASSOCIATE	Ð
				LIPOCALIN PRECURSOR [R.norvegicus]	0.121
40	330575	U64105	Hs.252280	Rho guanine nucleotide exchange factor (GEF) 1	0.121
		AA679990		eukaryotic translation elongation factor 1 alpha 1	0.121
	333647			CH22_FGENES.235_2	0.121
		AA333340		EST cluster (not in UniGene) with exon hit	0.121
		7740000		CH.14_p2 gij6002090	0.121
45	329777				0.121
43	333155			CH22_FGENES.89_5	
	326122			CH.17_hs gij5867194	0.121
	335310			CH22_FGENES.532_3	0.121
	335453			CH22_FGENES.562_13	0.122
~~	305103	AA643329	Hs.111334	ferritin; light polypeptide	0.122
50	337284			CH22_FGENES.667-2	0.122
	337418			CH22_FGENES.758-4	0.122
		A1963740	Hs.46826	ESTs	0.122
	303759	AW504164		EST cluster (not in UniGene) with exon hit	0.122
	300017				
55		M33197		AFFX control: GAPDH	0.122
	316725	AW135084	Hs.127264		0.122
		AA293153		nuclear receptor co-repressor 2	0.122
	336466	7.5.200		CH22_FGENES.829_25	0.122
	335956			CH22_FGENES.647_3	0.122
60		AA780564	Hs.189053		0.122
00		, 470 000007	, 10.10000	CH22_DJ32I10.GENSCAN.14-3	0.122
	338925				0.122
	334969	A1 407500		CH22_FGENES.466_2	
		AL137589		EST cluster (not in UniGene)	0.122
<b>6</b>	339084			CH22_DA59H18.GENSCAN.38-2	0.122
65	338323			CH22_EM:AC005500.GENSCAN.306-2	0.122
	337003			CH22_FGENES.419-7	0.122
	325470			CH.12_hs gi 6017034	0.123
	336503			CH22_FGENES.833_10	0.123
	330786	D60374	Hs.258712	EST	0.123
		•			

	329446			CH.Y_hs gi 5868886	0.123
	303326	AA229433	Hs.222634	ESTs; Moderately similar to ubiquitin-like protein /	
				ribosomal protein S30	0.123
	309067	Al916313	Hs.212788	EST	0.123
5	317464	AA968472	Hs.130463	ESTs '	0.123
	328755			CH.07_hs gi 5868301	0.123
	326036			CH.17_hs gi 5867178	0.123
	327208			CH.01_hs gi 5867447	0.123
	326124			CH.17_hs gi 5916395	0.123
10	327509			CH.02_hs gij6117815	0.123
	338398			CH22_EM:AC005500.GENSCAN.336-5	0.123
	304652	AA527782	Hs.84298	CD74 antigen (invariant polypeptide of major	
				histocompatibility complex; class II antigen-associated)	0.123
15	335797			CH22_FGENES.612_6	0.124
15	336714			CH22_FGENES.76-29	0.124
	327204	A A 4000000	11. 400770	CH.01_hs gl 5867447	0.124
		AA430672	Hs.123778		0.124
		Al126509		EST singleton (not in UniGene) with exon hit	0.124 0.124
20	336174			CH22_FGENES.710_1	0.124
20	338126			CH22_FGENES.701_13	0.124
	329129	ANNANTEEN		CH.X_hs gi 6588026	0.124
	335778	AW407562		EST cluster (not in UniGene) with exon hit CH22_FGENES.607_14	0.124
	336601			CH22_FGENES.369_2	0.124
25	334340			CH22_FGENES.375_17	0.124
23	337436			CH22_FGENES.767-1	0.124
		AA896990		EST singleton (not in UniGene) with exon hit	0.124
	339213	7000000		CH22_FF113D11.GENSCAN.6-8	0.124
	335355			CH22_FGENES.541_2	0.124
30	336552			CH22_FGENES.841_9	0.124
-	336384			CH22_FGENES.822_4	0.124
		Al286202	Hs.149800		0.125
	335840			CH22_FGENES.622_3	0.125
	336444			CH22_FGENES.827_10	0.125
35	315703	N36070		EST cluster (not in UniGene)	0.125
	327763			CH.05_hs gi 5867961	0.125
	336383			CH22_FGENES.822_3	0.125
	333496			CH22_FGENES.168_6	0.125
	328662			CH.07_hs gij6004473	0.125
40	338986			CH22_DA59H18.GENSCAN.5-1	0.125
	328311			CH.07_hs gl[5868371	0.125
	337241			CH22_FGENES.644-2	0.125
	336933			CH22_FGENES.350-7	0.125
45		AW294432	Hs.144252		0.125
45	326116	110000 I ITOOO		CH.17_hs gi[5867193	0.125
		HG363-HT363		Epidermal Growth Factor Receptor-Related Protein	0.125
		Al268539	11-00047	EST singleton (not in UniGene) with exon hit	0.125
•	331832	AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (from clone DKFZp586L0120)	0.125
50	990469	HG944-HT944		Doparnine Receptor D4	0.125
50	-	AA284508		EST singleton (not in UniGene) with exon hit	0.125
	336385	A4204000		CH22_FGENES.822_5	0.125
	336793			CH22_FGENES.176-3 -	0.125
	326243			CH.17_hs gij5867261	0.125
55	327266			CH.01_hs gl 5867462	0.125
-		AF070579	Hs.181544	Homo sapiens clone 24487 mRNA sequence	0.125
	336960	7 0 02 0		CH22_FGENES.369-5	0.125
	329667			CH.14_p2 gi 6272129	0.125
	328168			CH.06_hs gli5868071	0.125
60	336534			CH22_FGENES.839_16	0.125
	339289			CH22_BA354I12.GENSCAN.16-9	0.126
		A1970747		EST singleton (not in UniGene) with exon hit	0.126
	339190			CH22_FF113D11.GENSCAN.1-2	0.126
	337086			CH22_FGENES.458-14	0.126
65	319233	R21054	Hs.211522	ESTs	0.126
	339396			CH22_BA232E17.GENSCAN.6-8	0.126
	331930	AA449077	Hs.179765	Homo sapiens mRNA; cDNA DKFZp586H1921	
				(from clone DKFZp586H192	0.126
	308099	Al475914		EST singleton (not in UniGene) with exon hit	0.126

	338477			CH22_EM:AC005500.GENSCAN.373-5	0.126
	334286			CH22_FGENES.369_16	0.126
		AI025039	Hs.131732		0.126
	335249	75525555	110110110	CH22_FGENES.516_10	0.126
5	333327				0.126
,		A A 0 0 0 0 0 0		CH22_FGENES.138_20	
		AA009802		EST singleton (not in UniGene) with exon hit	0.126
	335464			CH22_FGENES.562_26	0.126
	335236			CH22_FGENES.515_8	0.126
	334154			CH22_FGENES.340_4	0.126
10	309257	AI984183		EST singleton (not in UniGene) with exon hit	0.126
		Al220122	Hs 201981	ESTs; Weakly similar to breast carcinoma-associated antigen	
	0.00.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110201001	[H.sapiens]	0.126
	200000				0.126
	328280	*****		CH.07_hs gij5868352	
15		AA831819		EST singleton (not in UniGene) with exon hit	0.126
15	327430			CH.02_hs gi[5867754	0.126
	328323			CH.07_hs gi 5868373	0.126
	333274			CH22_FGENES.123_2	0.126
	337193			CH22_FGENES.575-3	0.127
	334820			CH22_FGENES.437_2	0.127
20	328706			CH.07_hs gi 5868270	0.127
		W67267	Hs.174911		0.127
			113.174311	and the second s	0.127
		Al192479		EST singleton (not in UniGene) with exon hit	
	337123			CH22_FGENES.519-3	0.127
~~	326201			CH.17_hs gi 5867216	0.127
25	335276			CH22_FGENES.523_2	0.127
	331202	T81115	Hs.191136	ESTs	0.127
	330532	U03187	Hs.121544	Interleukin 12 receptor; beta 1	0.127
	321235	N49521		EST cluster (not in UniGene)	0.127
	301743		Hs 204529	ESTs; Weakly similar to reverse transcriptase [H.saplens]	0.127
30	328175		110,201000	CH.06_hs gi[5868073	0.127
50		A A071005			0.127
		AA971985		EST singleton (not in UniGene) with exon hit	
	327145			CH.01_hs gi 5867548	0.127
	327649			CH.04_hs gi 5867899	0.127
~~	335142			CH22_FGENES.498_12	0.127
35	333909			CH22_FGENES.295_2	0.127
	330608	X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32;	
				Charcot-Marie-Tooth neuropathy; X-linked)	0.127
	330158			CH.21_p2 gi 6580367	0.127
		AF064594	He 120360	phospholipase A2; group Vi	0.127
40		AA098835	Hs.224432		0.127
70		777030000	113224406		0.127
	333383	4 1770 40 40	11-044690	CH22_FGENES.143_22	
		A1734242	Hs.244473		0.128
	326233			CH.17_hs gij5867232	0.128
	326598			CH.20_hs gi 5867634	0.128
45	335174			CH22_FGENES.504_4	0.128
	319843	H29920	Hs.99486	ESTs; Wealty similar to aralar1 [H.sapiens]	0.128
	335458			CH22_FGENES.562_18	0.128
	332997	•		CH22_FGENES.58_4	0.128
	334188			CH22_FGENES.352_3	0.128
50	329759			CH.14_p2 gi[6048280	0.128
50					0.128
	330348			CH.09_p2 gi 4544475	
	326958			CH.21_hs gi 6469836	0.128
	305263	AA679467		EST singleton (not in UniGene) with exon hit -	0.128
	337693			CH22_EM:AC000097.GENSCAN.78-14	0.128
55	326812			CH.20_hs gi 6682504	0.128
	333237			CH22_FGENES.108_7	0.128
	333699			CH22_FGENES.250_13	0.128
		AI768677	He 209888	ESTs; Weakly similar to phosphatidylserine	
	300			synthase-2 [M.musculus]	0.128
60	336499			CH22 FGENES.833 4	0.128
50		A E090007	Un 11200F		0.128
		AF032387		small nuclear RNA activating complex; polypeptide 4; 190kD	
		Al184186	Hs.197813		0.128
		AW298468	Hs.250461		0.128
	337011			CH22_FGENES.427-6	0.128
65	315052	AA876910	Hs.134427	ESTs	0.128
	301611	W22172	Hs.59038	ESTs	0.128
	336497			CH22_FGENES.833_2	0.129
	302068	Y16280	Hs.132049	endothelin type b receptor-like protein 2	0.129
	334502			CH22_FGENES.397_18	0.129
	JU-1006			a. magm .ma.a10	

	904999	AA158884		ECT singleton (not in UniCone) with over hit	0.129
		AA465405		EST singleton (not in UniGene) with exon hit EST singleton (not in UniGene) with exon hit	
			U- 450405		0.129
		R46180	Hs.153485		0.129
5		Al685841	Hs.161354		0.129
J		AF142579	11- 00054	EST cluster (not in UniGene) with exon hit	0.129
		Al985821	Hs.62954		0.129
	330989	H42142	Hs.226396	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 19	
				(Dbp5; yeast; homolog)	0.129
10	336949			CH22_FGENES.361-4	0.129
10	330115			CH.19_p2 gi[6015202	0.129
	339212			CH22_FF113D11.GENSCAN.6-7	0.129
	326951			CH_21_hs gi 6004446	0.129
		AA662939		EST singleton (not in UniGene) with exon hit	0.129
		Al559492		EST singleton (not in UniGene) with exon hit	0.129
15	337140			CH22_FGENES.537-5	0.13
		U29112		EST cluster (not in UniGene)	0.13
		AA515554		ribosomal protein L3	0.13
		AA745289	Hs.173088		0.13
	339017			CH22_DA59H18.GENSCAN.20-6	0.13
20	330116			CH.19_p2 gij6015202	0.13
	333312	•		CH22_FGENES.138_4	0.13
	338004			CH22_EM:AC005500.GENSCAN.121-1	0.13
	314141	AA232134	Hs.190028	ESTs	0.13
	300509	A1239845	Hs.128494	ESTs; Wealty similar to EG:9587.2 [D.melanogaster]	0.13
25	338530			CH22_EM:AC005500.GENSCAN.398-11	0.13
	335968			CH22_FGENES.652_1	0.13
	314121	Al732100	Hs.187619	ESTs	0.13
	337593			CH22_C20H12.GENSCAN.6-8	0.13
	332881			CH22_FGENES.33_1	0.13
30	305836	AA858043		EST singleton (not in UniGene) with exon hit	0.13
	339059			CH22_DA59H18.GENSCAN.30-5	0.13
	305610	AA782319		EST singleton (not in UniGene) with exon hit	0.13
	305852	AA862455		EST singleton (not in UniGene) with exon hit	0.13
	327409			CH.02_hs gij5867750	0.13
35	312751	Al613089	Hs.164178		0.13
	308726	Al799268	Hs.209929	EST	0.13
	325961			CH.16_hs gi[5867147	0.13
	311159	AW025919	Hs.197636		0.13
		AA057230	Hs.182135	ESTs	0.13
40	336441			CH22_FGENES.827_7	0.13
	336339			CH22_FGENES.814_12	0.13
	306911	AI095365		EST singleton (not in UniGene) with exon hit	0.13
	333613			CH22_FGENES.217_8	0.13
	338489			CH22_EM:AC005500.GENSCAN.384-17	0.131
45	326904			CH.21_hs gij5867684	0.131
	337337			CH22_FGENES.717-1	0.131
	326752			CH.20_hs gi 5867615	0.131
		AW512978		EST singleton (not in UniGene) with exon hit	0.131
		AA595235		EST cluster (not in UniGene) with exon hit	0.131
50	338448			CH22 EM:AC005500.GENSCAN.359-22	0.131
	333774			CH22_FGENES.272_5	0.131
	332986			CH22_FGENES.54_8	0.131
	335362			CH22_FGENES.541_12	0.131
	335896			CH22_FGENES.635_4	0.131
55	337825			CH22 EM:AC005500.GENSCAN.13-19	0.131
	325257			CH.11_hs gi 5866895	0.131
	331188	T50240	Hs.167837		0.131
	330645			dual specificity phosphatase 9	0.131
		AA292721		ESTs; Weakly similar to unknown [H.sapiens]	0.131
60		AA513829		ribosomal protein L10	0.131
	335497			CH22_FGENES.571_5	0.131
	334824			CH22_FGENES.437_6	0.131
		R06933	Hs.184221		0.131
	334842	-		CH22_FGENES.439_21	0.131
65	333335			CH22 FGENES.139 4	0.131
		AA905178	Hs.130124		0.131
	329034			CH.X_hs gi[5868561	0.131
		AA664230		EST singleton (not in UniGene) with exon hit	0.131
	335755			CH22_FGENES.604_4	0.131

	302143	H15270	Hs.189847	putative neuronal cell adhesion molecule	0.131
	334939			CH22_FGENES.465_3	0.131
		C15110	Hs.17802	ESTs	0.131
		CISTIO	115.11002		
_	334498			CH22_FGENES.397_14	0.131
5	333413			CH22_FGENES.146_2	0.132
	329676			CH.14_p2 gij6272128	0.132
	327277			CH.01_hs gij5867473	0.132
		AA627416		EST singleton (not in UniGene) with exon hit	0.132
		MA02/410			
10	336805			CH22_FGENES.196-3	0.132
10	320121	T93657		EST cluster (not in UniGene)	0.132
	334761			CH22_FGENES.428_10	0.132
	339400			CH22_BA232E17.GENSCAN.7-6	0.132
	330301			CH.06_p2 gij2905862	0.132
		4.4007004	LI- 400007		0.102
4 =	316822	AA827691	HS.12990/	ESTs; Weakly similar to neuronal thread protein	
15				AD7c-NTP [H.sapiens]	0.132
	328020			CH.06_hs gi 5902482	0.132
	325327			CH.11_hs gij5866875	0.132
		AA209530		EST cluster (not in UniGene)	0.132
		7712.00000			0.132
20	336393			CH22_FGENES.823_5	
20	325905			CH.16_hs glip5867104	0.132
	305237	AA676286	Hs.2186	eukaryotic translation elongation factor 1 gamma	0.132
	339046			CH22_DA59H18.GENSCAN.28-6	0.132
	325375			CH.12_hs gij5866920	0.132
	333961				0.132
25				CH22_FGENES.304_7	
25	335450			CH22_FGENES.562_8	0.133
	302286	R58438		EST cluster (not in UniGene) with exon hit	0.133
	335116			CH22_FGENES.496_3	0.133
	327333			CH.01_hs ql 5902477	0.133
		AJ470948		EST singleton (not in UniGene) with exon hit	0.133
30					
<i>3</i> 0		Al581855		EST singleton (not in UniGene) with exon hit	0.133
	320813	AW360847	Hs.208839		0.133
	323665	AW248307		EST cluster (not in UniGene)	0.133
	328318		-	CH.07_hs glij5868373	0.133
		R51419		EST cluster (not in UniGene)	0.133
35		101415			
33	332791		11. 400400	CH22_FGENES.3_1	0.133
		AA524725	Hs.162108		0.133
	303309	AL134164	Hs.224868	ESTs	0.133
	320581	R39753	Hs.170187	ESTs	0.133
	333944			CH22_FGENES.302_2	0.133
40		Al733512	Hs.130901		0.133
TU					
		F02383	Hs.26492	beta-1;3-glucuronyltransferase 3 (glucuronosyltransferase I)	0.133
	336659			CH22_FGENES.36-5	0.133
	338887			CH22_DJ32I10.GENSCAN.6-10	0.133
	305273	AA679979	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	0.133
45	333566			CH22_FGENES.183_2	0.134
15		AMMEDOOD	Hs.163312		0.134
		AW450033	ITS. 103312		
	333818			CH22_FGENES.283_1	0.134
	328687			CH.07_hs gi 5868262	0.134
	302879	H11802		EST cluster (not in UniGene) with exon hit	0.134
50	336557			CH22_FGENES.842_2	0.134
-	335222			CH22_FGENES.513_5	0.134
	338094			CH22_EM:AC005500.GENSCAN.179-3	
					0.134
	337384			CH22_FGENES.745-1	0.134
	327360			CH.01_hs gi 6552411	0.134
55	328132			CH.06_hs gi 5868038	0.134
	323604	Al751438	Hs.182827	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ	
				WARNING ENTRY !!!!	0.134
	997504			CH22_C20H12.GENSCAN.6-6	0.134
	337591	41440000			
<b>C</b> 0		Al140639		EST singleton (not in UniGene) with exon hit	0.134
60	326896			CH.21_hs gi 5867680	0.134
	333479			CH22_FGENES.163_5	0.134
	337915	•	-	CH22_EM:AC005500.GENSCAN.61-3	0.134
	335110			CH22_FGENES.494_18	0.134
					0.134
65	333481			CH22_FGENES.163_9	
65	327512			CH.02_hs gij6117815	0.134
		AW328639	Hs.83575	ESTs; Weakly similar to ZC328.3 [C.elegans]	0.134
	330163			CH.02_p2 gi 6042042	0.135
	335752			CH22_FGENES.604_1	0.135
	334857			CH22_FGENES.443_1	0.135

	301872	H84730		EST cluster (not in UniGene) with exon hit	0.135
	337529			CH22_FGENES.823-29	0.135
	335734		•	CH22_FGENES.601_4	0.135
	337551	•		CH22_FGENES.847-8	0.135
5		Al920965	Hs.77961	major histocompatibility complex; class 1; B	0.135
•	335513	7402000	110111001	CH22_FGENES.571_28	0.135
	339078			CH22_DA59H18.GENSCAN.37-6	0.135
		N56660	Un 1/0700	ESTs; Weakly similar to large tumor suppressor 1 [H.sapiens]	0.135
		עטטטטנאו	115.1407ZZ		0.135
10	337189			CH22_FGENES.571-32	
10	329635	41740000		CH.12_p2 gil5302817	0.135
		Al719930		EST singleton (not in UniGene) with exon hit	0.135
		AA627248	Hs.2064	vimentin	0.135
	333894			CH22_FGENES.293_1	0.135
10	322465	AA137152	Hs.3784	ESTs: Highly similar to phosphoserine aminotransferase	
15				[H.sapiens]	0.135
	305601	AA780975		EST singleton (not in UniGene) with exon hit	0.135
	332186	H10781	Hs.141051	ESTs; Moderately similar to IIII ALU SUBFAMILY SB	
				WARNING ENTRY	0.135
	327822			CH.05_hs gi 5867968	0.135
20	310087	Al393914	Hs.160624	ESTs; Weakly similar to similar to CR16; SH3 domain	
				binding protein	0.135
	328752			CH.07_hs gij5868298	0.135
	337611			CH22_C20H12.GENSCAN.19-4	0.135
	334470			CH22 FGENES.394 1	0.136
25	335115			CH22 FGENES.496 2	0.136
23	328730			CH.07_hs gi[5868289	0.136
				CH.09_p2 git3056622	0.136
	330350			¬. v.	0.136
	336971	ALCOCOAO		CH22_FGENES.378-6	
30		AI565612		EST singleton (not in UniGene) with exon hit	0.136
<i>3</i> 0	326745			CH.20_hs gi[5867611	0.136
	335440			CH22_FGENES.560_3	0.136
		AA330746		EST cluster (not in UniGene)	0.136
	328677			CH.07_hs gij5868256	0.136
~~	329731			CH.14_p2 gi 6065783	0.136
35	315950	AA700553	Hs.206974	ESTs	0.136
	330049			CH.17_p2 gi 4567182	0.136
	337070			CH22_FGENES.448-3	0.136
,	304095	H11324	Hs.31059	EST	0.136
	309304	AW005527	Hs.232820	EST	0.136
40	333458			CH22_FGENES.157_7	0.136
	329899			CH.15_p2 gi 6563505	0.136
	322202	Al275056	Hs.200133	ESTs	0.136
	333991			CH22_FGENES.310_15	0.136
		AW247252	Hs.75514	nucleoside phosphorylase	0.136
45		Al341586	Hs.195588		0.136
		M23323	Hs.3003	CD3E antigen; epsilon polypeptide (TiT3 complex)	0.136
		AW194694		EST singleton (not in UniGene) with exon hit	0.138
	331068		Hs.191199		0.136
	334285	1100071	110.101100	CH22_FGENES.369_15	0.136
50	332178	E19000	Hs.100725		0.136
50			ΠS. 100723	EST singleton (not in UniGene) with exon hit	0.136
		AA827608	Hs.8594		
		AL138110	NS.0034	Homo sapiens mRNA containing (CAG)4 repeat; clone CZ-CAG-7	
	334543			CH22_FGENES.403_8	0.136
55	335384			CH22_FGENES.543_26	0.136
SS	336527			CH22_FGENES.839_8	0.136
	334951			CH22_FGENES.465_20	0.136
	325882			CH.16_hs gl 5867087	0.137
		AA653159		EST singleton (not in UniGene) with exon hit	0.137
<b>CO</b>		Al148709		EST singleton (not in UniGene) with exon hit	0.137
60		AA453418	Hs.178272		0.137
		R44780	Hs.22634	ESTs	0.137
		AA908877		EST singleton (not in UniGene) with exon hit	0.137
	333561			CH22_FGENES.180_18	0.137
	321439	H61962		EST cluster (not in UniGene)	0.137
65	324594	AA497090		EST cluster (not in UniGene)	0.137
•	337926			CH22_EM:AC005500.GENSCAN.77-4	0.137
	337353			CH22_FGENES.726-1	0.137
		AA412295	Hs.104774	EST	0.137
		Al873242		EST singleton (not in UniGene) with exon hit	0.137

	329424			CH.Y_hs gi[5868879	0.137
	325829			CH.15_hs gij5867052	0.137
	331845	AA416863	Hs.98183	ESTs	0.137
_	333854			CH22_FGENES.290_13	0.137
5	306591	A1000248		EST singleton (not in UniGene) with exon hit	0.137
	328948			CH.08_hs gl[6456765	0.137
	338935			CH22_DJ32I10.GENSCAN.18-12	0.137
	325960			CH.16_hs gij5867147	0.137
10	328377			CH.07_hs gil5868390	0.138
10		Al829820	11-040000	EST singleton (not in UniGene) with exon hit	0.138
		AA424352	Hs.210586		0.138
	337592			CH22_C20H12.GENSCAN.6-7	0.138
	338684	A A 400400	Us 07540	CH22_EM:AC005500.GENSCAN.472-3	0.138
15		AA400498 AA505535	Hs.97543		0.138 0.138
1.7	333981	A4505555		EST singleton (not in UniGene) with exon hit CH22_FGENES.310_4	0.138
		AA040369	Hs.11170		0.138
		AA835278	113.11110	EST singleton (not in UniGene) with exon hit	0.138
		T65554	Hs.251591		0.138
20	333783			CH22_FGENES.273_5	0.138
	337406			CH22_FGENES.754-14	0.138
	327976		•	CH.06_hs glj5868212	0.138
	325593			CH.13_hs glj5866992	0.138
	339425			CH22_DJ579N16.GENSCAN.14-4	0.138
25	304475	AA428879		EST singleton (not in UniGene) with exon hit	0.138
	309488	AW131104		EST singleton (not in UniGene) with exon hit	0.138
	337532			CH22_FGENES.827-6	0.138
		AA904448	Hs.126368		0.138
20		AA854425	Hs.144455		0.138
30	328927			CH.08_hs gi[5868500	0.138
	336424			CH22_FGENES.824_9	0.138
	326667			CH.20_hs gi 6552455	0.138
	325988	A14/200007		CH.16_hs gl 5867084 EST cluster (not in UniGene)	0.138 0.139
35	336511	AW300287		CH22_FGENES.834_6	0.139
55	335204			CH22_FGENES.508_13	0.139
		AA147472		EST duster (not in UniGene) with exon hit	0.139
		AA115804	Hs.187593		0.139
	329376			CH.X_hs gij5868859	0.139
40	304703	AA563898		EST singleton (not in UniGene) with exon hit	0.139
	333653			CH22_FGENES.239_2	0.139
	306799	Al051696		EST singleton (not in UniGene) with exon hit	0.139
		AA595289		EST singleton (not in UniGene) with exon hit	0.139
40		AA013001	Hs.60563	ESTs	0.139
45	329568			CH.10_p2 gij3962490	0.139
		AA253074	Hs.146261		0.139
	334320	41040040	Us 440740	CH22_FGENES.374_5	0.139
		Al916949	MS.149/48	ESTs; Weakly similar to weak similarity to collagens [C.elegans]	0.139
50		AA864533 AA984364	Hs.119064	EST singleton (not in UniGene) with exon hit	0.139 0.139
50		M99439		transducin-like enhancer of split 4; homolog of Drosophila E(sp1)	0.139
		Al076204	Hs.135440		0.139
		AW072970	110.100110	EST singleton (not in UniGene) with exon hit	0.139
		AA316069		EST cluster (not in UniGene) with exon hit	0.139
55		AW274696	Hs.143921	ESTs	0.139
	333239			CH22_FGENES.111_1	0.139
	307126	Al184951		EST singleton (not in UniGene) with exon hit	0.139
	316813	AA826505	Hs.124517	ESTs	0.139
		AA281365		ESTs; Weakly similar to KIAA0386 [H.sapiens]	0.139
60		Al700145		poly(A)-binding protein; cytoplasmic 1	0.139
		AW086142	Hs.159017		0.139
		AA335715	Hs.200299		0.139
		Al318342		EST singleton (not in UniGene) with exon hit	0.139
65		Al318327		EST cluster (not in UniGene)	0.139
65	327934	A A670050	He 105100	CH.06_hs gl 5868184	0.139
	334756	AA670052	130.100	glyceraldehyde-3-phosphate dehydrogenase CH22_FGENES.428_5	0.139 0.139
		AA451B67	Hs.99255		0.139
		Al474722		ESTs; Weakly similar to KIAA0644 protein [H.sapiens]	0.139

PCT/US01/32045

	312005	T78450		ESTs	0.139
	338431	T00 400		CH22_EM:AC005500.GENSCAN.351-4	0.14 0.14
	331214	190496	Hs.16757	ES15 CH22_FGENES.213_4	0.14
5	333601	AA278449	Hs.137429	=	0.14
3	336911	MEIOTO		CH22_FGENES.344-4	0.14
	338157			CH22_EM:AC005500.GENSCAN.209-5	0.14
	327845			CH.05_hs gi 6531962	0.14
	319109	Z45662		Homo sapiens clone 23620 mRNA sequence	0.14
10	334763			CH22_FGENES.428_12	0.14
	329384			CH.X_hs gi 5868869	0.14 0.14
		AF054663	Hs.209824	EST cluster (not in UniGene) with exon hit	0.14
٠.	323751	AW452656		CH.16_p2 gi]6223624	0.14
15	301993	N49828	Hs.18602	ESTs	0.14
	338129			CH22_EM:AC005500.GENSCAN.197-2	0.14
	325704			CH.14_hs gi 5867028	0.14
	335656			CH22_FGENES.590_7	0.14
00		W72366	Hs.40033	ESIS	0.14 0.14
20		Al018331	Hs.172444 Hs.158665	ESTs; Highly similar to transcription regulator [M.musculus]	0.14
	310743	AW449754		CH.21_hs gij6004446	0.14
	328809			CH.07_hs gij5868327	0.14
		Al653164	Hs.128665		0.14
25		AA564064		EST singleton (not in UniGene) with exon hit	0.14
	325666			CH.14_hs glj6469822	0.14
	333747			CH22_FGENES.265_6	0.14
		AW015616	Hs.143321		0.141 0.141
30	332972	AA825266		CH22_FGENES.51_5 EST singleton (not in UniGene) with exon hit	0.141
30		AW182805	Hs 189183	ESTs; Weakly similar to Nod1 [H.sapiens]	0.141
	327296	ATTICLOS	1 100 100	CH.01_hs gi 5867492	0.141
	336400			CH22_FGENES.823_15	0.141
	321033	H26214	Hs.20733	ESTs; Weakly similar to IIII ALU SUBFAMILY SX	
35				WARNING ENTRY	0.141
		Al475995	Hs.122910		0.141 0.141
	335715			CH22_FGENES.599_15 CH22_FGENES.650_2	0.141
	335959 333259			CH22_FGENES.118_7	0.141
40	337382			CH22_FGENES.744-8	0.141
		AA227618	Hs.10882	HMG-box containing protein 1	0.141
	325378			CH.12_hs gi 5866920	0.141
	338500			CH22_EM:AC005500.GENSCAN.390-1	0.141 0.141
45	338460	A16/E44400	Hs.256581	CH22_EM:AC005500.GENSCAN.362-5	0.141
45		AW511138 Al539443	Hs.137447		0.141
	333624	NIJUJITU	110.107-17	CH22_FGENES.222_3	0.141
	329237			CH.X_hs gl 5868729	0.141
	330117			CH.19_p2 gij6015201	0.141
50	338017			CH22_EM:AC005500.GENSCAN.134-1	0.141
	337854			CH22_EM:AC005500.GENSCAN.38-12	0.142 0.142
	329984	AA622328	Hs.162762	CH.16_p2 gi 4646193	0.142
		N40373	ns.102/02	EST cluster (not in UniGene) with exon hit	0.142
55	327823	1440010		CH.05_hs gi 5867968	0.142
	326753			CH.20_hs gl[5867616	0.142
	301201	AA904482	Hs.197775		0.142
	334303			CH22_FGENES.373_6	0.142 0.142
60	326453	A1004F04	U- 01E/77	CH.19_hs gl[5867399	0.142
60		Al864581 Al802711	Hs.215477 Hs 210337	EST; Weakly similar to aldolase A [H.sapiens]	0.142
		H63959	Hs.142722		0.142
	338010			CH22_EM:AC005500.GENSCAN.128-8	0.142
_	336326			CH22_FGENES.812_4	0.142
65		R44308	Hs.242302		0.142
		R55421		EST cluster (not in UniGene)	0.142 0.142
	325855		724	CH.16_hs gij5867067 Non-Specific Cross Reacting Antigen (Gb:D90277),	J. 142
	330425	HG1728-HT1	104	All. Splice Form 2	0.142

					0.440
		AA425411	Hs.22581		0.142
	326268			CH.17_hs gi 5867267	0.142
		AA460341	Hs.45008		0.142
~	338904			CH22_DJ32I10.GENSCAN.10-16	0.143
5	333096		11: 440040	CH22_FGENES.79_1	0.143 0.143
		AA446869	Hs.119316		0.143
		Al248004	Hs.125187		0.143
		AW179174	Hs.7984	ESTs	0.143
10		Al204001		ribosomal protein L31	0.143
10		AA885317	Hs.190511		0.143
	337392 325543			CH22_FGENES.747-3	0.143
		A A 07200E		CH.12_hs gij6682452 EST singleton (not in UniGene) with exon hit	0.143
		AA873085	Un 174105	phosphodiesterase l'inucientide pyrophosphatase 2 (autotaxin)	0.143
15	332707 337913	L30034	NS. 174 100	CH22_EM:AC005500.GENSCAN.59-10	0.143
IJ		AA961061	Hs.131696		0.143
		MASSIUSI	HS. 13 1030	CH22_FGENES.486_6	0.143
	335078 338451			CH22_EM:AC005500.GENSCAN.359-39	0.143
		AJ230640		EST cluster (not in UniGene) with exon hit	0.143
20	330464		He 70202	N-acylaminoacyl-peptide hydrolase	0.143
20		H41411	Hs.33855		0.143
	328939	1741411	115,20000	CH.08_hs gi[6004481	0.143
		Al440174	He 228007	EST; Weakly similar to GUANINE NUCLEOTIDE-BINDING	-
	300015	73440174	115,220307	PROTEIN BETA SUBUNIT-LIKE PROTEIN	
25				12.3 [H.sapiens]	0.143
23	328504			CH.07_hs gi[5868471	0.143
		AA402891	Hs.32951	solute carrier family 29 (nucleoside transporters); member 2	0.143
	335744	747402031	113.02301	CH22_FGENES.601_15	0.143
		AF077208		EST cluster (not in UniGene)	0.143
30		AL042661		EST cluster (not in UniGene)	0.143
50		A1939323	He 157714	ESTs; Weakly similar to NEURONAL ACETYLCHOLINE	
	310443	MODOLLO	110.101114	RECEPTOR PROTEIN; ALPHA-5 CHAIN PRECURSOR	
				[H.sapiens]	0.143
	336568			CH22_FGENES.843_7	0.143
35		H08815	Hs.159824		0.143
55	327672	1100010	110.100027	CH.04_hs gij5867843	0.143
	335900			CH22_FGENES.635_8	0.144
	336044			CH22_FGENES.679_6	0.144
		Al815951	Hs.33183		
40	0.00.0		efp [H.sapi		0.144
	333483			CH22_FGENES.165_2	0.144
	333337			CH22_FGENES.139_6	0.144
	305993	AA889197		EST singleton (not in UniGene) with exon hit	0.144
	335719			CH22_FGENES.599_22	0.144
45	325682			CH.14_hs gi]6138923	0.144
	327350			CH.01_hs gi 6249563	0.144
	339291			CH22_BA354I12.GENSCAN.18-1	0.144
	326358			CH.18_hs gi 5867293	0.144
	330316			CH.08_p2 gi 6007576	0.144
50	308150	A1499346	Hs.174131	ribosomal protein L6	0.144
	338065			CH22_EM:AC005500.GENSCAN.164-1	0.144
	339009			CH22_DA59H18.GENSCAN.18-7	0.144
	327776			CH.05_hs gi 5867964	0.145
	336664			CH22_FGENES.41-8	0.145
55		AF070619		EST cluster (not in UniGene)	0.145
		T70147	Hs.12024	ESTs	0.145
		AA062892		EST singleton (not in UniGene) with exon hit	0.145
		Z45986	Hs.250178		0.145
<b>60</b>	327498			CH.02_hs gi 6017023	0.145
60	335227			CH22_FGENES.513_13	0.145
	339022	Lieroe:	11-00000	CH22_DA59H18.GENSCAN.22-1	0.145
	302597	H55661	Hs.33026	ESTs; Weakly similar to similar to Enterococcus faecalis	0145
		41007000	TRAB [C.el		0.145 0.145
65		A1697008	Hs.201811	Homo sapiens chromosome 19; cosmid R29381	0.145
65		AA262760	rts. 156015		0.145
		AA156760		EST cluster (not in UniGene) with exon hit CH22 FGENES.757-2	0.145
	337414	A1724000		EST duster (not in UniGene)	0.145
	329333	A1734009		CH.X_hs gij5868806	0.145
	368333			OLITACIO BIROCOCO	UTU

				GUIDO FOENICO CON T	0445
	336857	4.400.4000	11-05050	CH22_FGENES.291-7	0.145
		AA234896	Hs.25272	• •	0.145
		Al928098	Hs.156832		0.145
_	336318			CH22_FGENES.801_1	0.145
5		Al923551	Hs.170843		0.145
	335346			CH22_FGENES.537_2	0.145
	331196	T65416	Hs.12826	ESTs	0.145
	337607	_		CH22_C20H12.GENSCAN.17-3	0.146
	331206	T84096	Hs.15284	ESTs	0.146
10	301793	T80698		EST cluster (not in UniGene) with exon hit	0.146
	319590	AA210878		EST cluster (not in UniGene)	0.146
	311394	Al695374	Hs.256231	ESTs	0.146
	324773	AA632554	Hs.163401	ESTs	0.146
	324841	Al142359	Hs.155316	ESTs	0.146
15	332260	N70088	Hs.138467	ESTs	0.146
	329276			CH.X_hs gij5868762	0.146
	335887			CH22_FGENES.633_1	0.146
	338294			CH22_EM:AC005500.GENSCAN.297-1	0.148
	336993			CH22_FGENES.409-4	0.146
20	334135			CH22_FGENES.336_2	0.146
	326251			CH.17_hs gij5867263	0.146
	337398			CH22_FGENES.749-1	0.146
	339167			CH22_DA59H18.GENSCAN.69-8	0.146
		AW135418	Hs.161210		0.146
25	325313			CH.11_hs gij5866865	0.146
		N66918	Hs.32205		0.146
		AL043362		EST cluster (not in UniGene)	0.146
		AF062275		EST cluster (not in UniGene) with exon hit	0.146
		AA947909		EST singleton (not in UniGene) with exon hit	0.146
30	334399	72 10 47 000		CH22_FGENES.382_5	0.146
50	326472			CH.19_hs gij5867404	0.146
	333061			CH22_FGENES.75_4	0.146
	337072			CH22_FGENES.448-5	0.146
	334328			CH22_FGENES.375_5	0.146
35	327039			CH.21_hs gl[6531965	0.146
55	325576			CH.12_hs gl[6552443	0.147
		Al075804	Hs.132660		0.147
		AA323758	113.102.000	EST cluster (not in UniGene)	0.147
	334501	AFIDEDIO		CH22_FGENES.397_17	0.147
40	338238			CH22_EM:AC005500.GENSCAN.264-4	0.147
70		Al744063			0.147
	336567	70744000		CH22_FGENES.843_6	0.147
	335819			CH22_FGENES.619_2	0.147
	336950			CH22_FGENES.361-8	0.147
45		Al148477		EST singleton (not in UniGene) with exon hit	0.147
73		AW504854	Hs.126714		0.147
	335834	ANSOHOUT	110.120714	CH22_FGENES.621_1	0.147
	327870			CH.06_hs gi5868131	0.147
		AA332011	He 250138	protein phosphatase 2C; magnesium-dependent; catalytic subunit	
50	329412	PURDOZUTI	113230130	CH.X_hs gi 6682553	0.147
50		AA333068		EST cluster (not in UniGene)	0.147
				EST cluster (not in UniGene)	0.147
		AA385315			0.147
	327865 333445			CH.06_hs gij5868130 CH22_FGENES.154_2	0.147
55		AA021351	Un 150407	KIAA0724 gene product	0.147
22		MAUZIOSI	175.100497	CH22_FGENES.118-9	0.147
	336744	AA323414		EST duster (not in UniGene)	0.148
				EST duster (not in UniGene)	0.148
		H07989 AA749000		EST singleton (not in UniGene) with exon hit	0.148
60			Hs.62954	ferritin; heavy polypeptide 1	0.148
oo		AA780594	112,02304		0.148
		H11295		EST singleton (not in UniGene) with exon hit	0.148
		AW296368		EST cluster (not in UniGene)	0.148
	339034			CH22_DA59H18.GENSCAN.28-2 CH22_FGENES.398_2	0.148
65	334504			CH22_FGENES.395_2 CH22_FGENES.431_2	0.148
U)	334778	1177404	He 110007	RAN binding protein 8	0.148
	-	U77494	Hs.203401		0.148
		AW173759	10.203401		0.148
	325826	T55192	He 150574	CH.15_hs gi[5867048 ESTs; Highly similar to IGF-II mRNA-binding protein 2 [H.sapiens]	
	331 182	T55182	1 10. 1020/ 1	cora, rightly string in recall introventional brother s furgebonal	J. 140

	325785			CH.14_hs gl 6381957	0.148
	333166			CH22_FGENES.91_8	0.148
	336548			CH22_FGENES.841_5	0.148
_	337552			CH22_C4G1.GENSCAN.1-4	0.148
<b>5</b> .	331775	AA382742	Hs.97151	EST	0.148
	338936			CH22_DJ32I10.GENSCAN.19-6	0.148
	331869	AA428554	Hs.104894	ESTs; Weakly similar to fibronectin precursor [H.saplens]	0.148
	332865			CH22_FGENES.28_5	0.148
	328663			CH.07_hs glj6004473	0.148
10	328436			CH.07_hs gi 5888417	0.148
	311158	A1634864	Hs.250789	ESTs; Highly similar to similar to NEDD-4 [H.sapiens]	0.148
	336942			CH22_FGENES.354-2	0.148
	302262	R53169	Hs.246091	ESTs	0.149
	333296			CH22_FGENES.132_3	0.149
15	333365			CH22_FGENES.142_2	0.149
	311706	AW452392	Hs.252854	ESTs	0.149
	337109			CH22_FGENES.489-2	0.149
	315062	AW173300	Hs.190201	ESTs	0.149
	333454			CH22_FGENES.157_3	0.149
20	334784	-		CH22_FGENES.432_9	0.149
	333255			CH22_FGENES.118_3	0.149
	337518			CH22_FGENES.814-7	0.149
	320651	AA489268		EST cluster (not in UniGene)	U.149
	323437	AA287567		EST cluster (not in UniGene)	0.149
25	328761			CH.07_hs gij5868302	0.149
	328787			CH.07_hs gl[5868309	0.149
	335261			CH22_FGENES.520_2	0.149
	300827	R16689	Hs.106004	ESTs	0.149
	339263			CH22_BA354I12.GENSCAN.10-1	0.149
30	337412			CH22_FGENES.756-6	0.149
-	334414			CH22_FGENES.384_1	0.149
	332931			CH22_FGENES.38_5	0.149
	310801	AW270980	Hs.106346	novel centrosomal protein RanBPM	0.149
	305216	AA669056		EST singleton (not in UniGene) with exon hit	0.149
35	314779	AA470122	Hs.190261	ESTs	0.149
	338414		•	CH22_EM:AC005500.GENSCAN.341-27	0.149
	303342	AW247361		EST cluster (not in UniGene) with exon hit	0.149
	337509			CH22_FGENES.806-4	0.149
	306631	AI001149		EST singleton (not in UniGene) with exon hit	0.149
40		L36149	Hs.248116	chemokine (C motil) XC receptor 1	0.149
	336536			CH22_FGENES.839_18	0.149
	324666	T32458	Hs.14285	ESTs	0.149
	310173	Al767433	Hs.170013	ESTs	0.149
	333595			CH22_FGENES.211_2	0.149
45	335975			CH22_FGENES.652_9	0.15
	306654	AI003654		EST singleton (not in UniGene) with exon hit	0.15
	335025			CH22_FGENES.475_3	0.15
	328711			CH.07_hs gij5868271	0.15
	328274			CH.07_hs gi 5868219	0.15
50	325505			CH.12_hs gij6682451	0.15
	329641			CH.14_p2 gij6468233	0.15
	304955	AA613504		EST singleton (not in UniGene) with exon hit	0.15
	339103			CH22_DA59H18.GENSCAN.44-10	0.15
	329636			CH.12_p2 gi 5302817	0.15
55	310118	Al203293	Hs.157489		0.15
	326056			CH.17_hs gi[5867184	0.15
		AA769074		EST cluster (not in UniGene) with exon hit	0.15
	303153	U09759	Hs.8325	mitogen-activated protein kinase 9	0.15

TABLE 13A shows the accession numbers for those primekeys lacking unigeneID's for Table 13. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

10	Pkey: CAT number: Accession:		Unique Eos probeset Identifier number Gene cluster number Genbank accession numbers					
15	Picey	CAT number	Accession					
		24275_1 1599424_1	AL137589 AA423949 BE222949 BE222694 Al199615 AW873116 Al277950 AW044290 AW630096 H61982 W01567 N75711					
20	321666	13653_22	BE259906 AA232518 AA013359 AL035788 AW160822 BE387134 BE002954 BE391839 AW161565 AIB78841 BE616458 BE409981 BE387308 BE297438 BE315536 AA206924 R12012 AA214169 BE312812 BE387093 H11710 BE312009 BE260569 AA345566 AA219528 R34757 AA219749 BE336733 AA219751 AW411099 AA232408 BE018716 BE398089 AA206253 AA053497 AA114224 AV655868 AW732566 BE394087 AW732574 AA313442 BE336875 AA070548 BE259840 BE019828 AW732341 AA299916 BE019253 BE018238 BE387109 AA232304 BE255589 AW732585 AA181436 AA308777					
25			AA075802 AW732521 AA314526 AA226747 BE409513 AA206168 BE388292 BE298782 BE387086 AA305310 AV652723 AA314918 BE615510 AW951763 BE338104 BE385195 BE407165 BE391336 BE390187 BE389189 BE540650 BE249884 BE385985 BE274245 BE391124 BE260080 AA182600 BE512821 BE390090 BE278398 BE279589 BE263454 BE515194 BE293569 BE272531 BE388814 BE384659 BE271685 BE561043 BE278449 BE302572 AW239076 A1750583 AA376179 AA112632 BE266324 BE266614 F13105 AA132286 BE296305 A1220355 AA206606 AA219527 AA219519 AW804310					
30	322303	622937_1 704603_1 27492_1	AA083286 BE171208 T19693 AA338328 BE185868 AA903024 T92162 AA330119 BE410404 BE314668 AW576245 BE207878 AW299993 Al199558 Al285442 AW299994 AW394242 AW394184 Al357412 Al870708 Al590539 W07459 AW068287 AA310079 BE336702 AA356318 AA306059 AA348785 AW402633 AA311210 AW402909 N76879 AW402913					
35			AW401920 AA321636 AA354474 C17297 C16938 AA311774 M29871 NM_002872 ZB2188 AW405674 H94176 RB9281 AA214723 AI014482 AW949347 T27749 AW804226 AW796964 AW404581 AF077208 NM_014029 W68830 W79652 AA353375 AW575218 AA552192 AA521232 AA702695 AA033975 AW407827 AA829948 N94402 AW628604 AI523308 N57605 AA641662 H42477 N52784 AI753478 AA768493 AA845729 W47391 N5270 AI090117 R89282 BE206172 AA076650 AA595650 AI218931 BE049397 AI433110 W74114 H94277 AI358827 AI085221 AI862818 AA835957 AW103905 AI640644 AA835507 AA856887 AA694392 AW337542 AI524410 BE045500 AI440060 AI358801 AW028238 AW205248					
40		44275_1 155498_1	A1718264 R48618 AA357358 A1695002 AA897549 AW081065 A1433360 A1810783 A1620963 Z82188 AA360224 U29112 A1656540 A1364875 A1656246 A1990940 AA169345 A1762857 A1949997 A1809601 A1681948 A1221079 AW167404 A1347614 A1611090 A1023472 A1347683 A1027467 AW591788 A1380665 AA835735 AA836654 A1244028 AW193159 A1500112 A1918722 A1738693 A1702308 AA805365 A1766842					
45	321921	38937_1 34680_1 21620_1	T59538 T59589 T59598 T59542 AF147374 AF070619 R20302 T80358 AJ223366 BE305086 AW820106 AA621983 BE305208 AI738475 AJ380189 AW590847 AJ127232 AA622706 AJ380858 AA621975 AJ587036 AA665743 AW204003 AJ692234 AJ002242 AJ692219 AW137282 AW268783 AW295910 AJ308015 AW301462 AJ318288 AJ318575 AJ318117 AJ345591 AJ249650 AJ246934 AJ246864 AJ246971 AW268311 AJ249654 BE041907					
50		265316_1 14694_7	AW732776 N72324 N52825 W19526 BE143464 AA376060 M33687 NM_005195 S63168 M83667 AW068039 AW630649 Al338577 Al018125 Al269878 AW242440 Al887823 Al342581 BE222416 AL682847 Al651011 Al660815 Al699574 BE550201 Al926996 AW665855 Al827752 Al761857 BE328168					
55			BE222451 Al762201 AW000929 AW007207 BE042962 BE551843 BE465373 Al279179 Al949945 BE551862 AW051667 BE328076 BE222296 AW007229 AW772332 Al279801 Al934526 Al631938 Al770103 BE041412 Al417800 Al692655 Al869943 AW270119 Al431739 Al703347 AW770568 AW025473 Al701497 Al128026 BE328147 AW203980 BE046793 AW087704 Al674597 Al650732 Al813691 Al472092 Al695224 Al241217 AW207746 Al206840 Al271362 Al631788 Al911883 Al914619 Al380385 Al767501 Al823759 Al564116 Al190991 Al377369 Al814122 Al221623 Al334793 Al081988 Al391740 Al337435 BE467386 Al824347 Al565325 Al280038 Al640455 Al819744 BE467803 BE327524 Al149402 Al313187 BE219684					
60			AW611948 AW665821 Al091260 AW044492 BE220366 AW025381 AW183264 Al694865 Al498474 Al129780 Al202028 Al566792 BE220659 Al928040 Al830696 Al493021 AW612488 Al913152 BE042965 Al631837 Al693373 Al498925 Al768668 Al401544 BE327023 Al693383 Al769874 Al744013 AW082273 Al686501 Al798177 Al985196 Al090033 Al432342 Al688918 Al638308 BE486806 BE219588 Al912119 BE219787 AW005392 BE326564 Al589039 Al860187 Al758143 Al338168 Al702936 BE221985 Al498727 Al918196 Al278735 AW771497 Al860133 AW237834 AW681759 AW028111 BE503416					
65			Al360180 AW611715 Al871777 BE045447 BE326444 Al266547 Al800237 Al823315 Al478368 Al264281 Al675841 Al690041					

	•	Al498018 Al554124 Al239893 Al864054 Al280099 Al192815 Al620465 Al080201 AW002057 BE500986 Al341131 Al818991 Al566137 Al123403 BE219192 AW183844 Al499842 AW137971 AW138720 AW015526 AW138160 AW243163 AW138705 AW139927 AW140006 AW138810 AW137450 AW206970 AW135419 AW205974 AA043494 BE465106 AW139955 Al741112 BE326942 AA043506 Al078957 Al842432 Al382802 Al097047 Al470599 AA514553 AA884008 N47949 Al654114 AA884832
5		AI798752 AI765290 AI301155 AW470358 BE222764 AI823569 AI651188 AI692695 AI476643 BE504307 AI767573 BE219719 AI932249 AW467075 AI913633 BE221966 AI091025 AA969215 AI799810 AA931170 BE048559 AI809606 AI138614 AI739456 AI674605 AW772068 AI089286 AI625787 AI263418 AW008638 AI928389 AW628997 AI470010 AI914168 AI760003 AI203050 AI334069 AI694788 BE045337 AI948659 AI912982 AI867131 AI192102 AI767583 AI347518 AI566005 AI625884
10	·	Al215888 Al633904 AW182265 AW614357 Al128030 Al343685 Al914283 Al985003 Al823578 Al493053 Al380285 Al633895 Al267880 Al538162 Al991552 BE219479 BE219296 Al302178 AW779296 Al913805 Al631644 Al566772 Al885498 Al842289 Al935659 Al39092 Al247432 Al686472 Al766886 Al017228 Al33272 AW301668 Al972218 AW082027 Al632974 Al474761 Al766127 AW236578 AW000986 Al870734 Al222399 Al871249 Al703448 BE464210 Al768037 Al871585 Al767871 Al738757 Al220732 Al681633 Al768783 Al684463 Al307339 Al263203 AW665264 BE463969 Al768786 Al439118 Al127913 BE218324 Al672342 BE220052 Al786163 Al221662 AW197672 AW025300 Al769681 AW612448 BE219757 AW072420 Al669980
15		AI830418 AW204353 AA047011 AA913868 AI739146 AI669954 AW470507 AW614835 AW302151 AW772372 AI762427 AW339902 AW303370 BE464775 AW299818 AW236072 AW195060 AW274737 AW283062 AW183846 AI868894 AW300493 AW172509 AW516876 AW593773 AW299474 AW303546 AI817323 AI823624 AI694005 AI934589 AI343479 AI961825 AI962726 AI765845 AW080318 AI840227 AI763042 AI768903 AW235386 AA738489 AW341293 AA588585 BE221732 AI914179 AW611669 AI572789 AW194735 AW236122 AW236007 AW612789 AW197501 AW195046 AI797145 AI864423
20	•	AI458934 AI342848 AI693227 AI912642 AI689993 AA932572 AA740269 AW470392 AW086020 AI221701 T69326 T70461 AI765579 AI338263 AI431721 AI394249 AI186462 AI823571 AI953665 AI497954 AI761057 AI678228 AI840302 AI948742 AA594626 AA883155 AI975682 AI804774 AI300407 AI433524 AA897341 AI401175 AI27071 AA021213 AI126509 AI948955 AI218835 AA913938 AA502610 AI498320 AA584267 AA835285 AI476253 AA489658 AA975053 AA715326 AA557319 AI498738 AA911438 AI913637 AA494506 N90793 AI990724 AA131667 AA128164
25		AA046840 Al262557 AA131729 AA594926 T59467 AA436907 AA044630 Al589177 Al279237 Al880498 Al431892 AA708934 AW612558 Al634069 W03610 Al192272 BE550862 Al400879 AA708507 Al128003 Al378308 Al271423 Al199552 AA125977 Al366498 AA458662 Al694382 AA044627 Al636263 Al788270 T90146 AW014724 Al870812 Al948781 AA369965 Al094721 AW271817 Al262898 Al244680 T69252 Al934148 AA046357 W19109 AA028157 AW021924 AA253491 Al189397 Al934388 D58282 W21323 W24288 Al682972 AA293683 AA284566 AV659511 AA434184 H87089 AA040038 N57464 AA343709
30	301119 33384_1	AW805815 R89837 BE621320 BE266806 BE276582 AW516729 AF142579 AW451687 AK000069 AA325236 BE168997 W73105 AA715365 BE278873 AA808894 AA386371 AW517942 AW750993 BE140314 BE392384 BE621757 AA318192 BE548173 AW152607 AW166898 AA352215 AW841506 T59802 AF147378 AA335719 AW956069 T59668 AA826382 AJ961329 AI290469 AW197375 AJ805651 AA160748 AA581089 AJ968889 AA581100 AA501478 AJ621069 AA468534 AA503715 AA658457
35		Al144504 BE387827 AA159880
	324019 262792_1	AW177009 AI381610
	323437 189513_1	AA287567 AA252404 AW967735 AA287568 AA761222 AA865644 AA831245 BE514807 R43224 Al363450 AA450226 AF030942
	307845 19804_10 324126 272259_1	AA385315 AI627453 AI050685 AI348281
40	309101 7570_1	Al340462 Al583268 AA079086 Al950777 Al301868 Al925108 AW876954 AW877000 AA525418 AA888549 Al934220
		AW380220 AA804858 AI927576 T61151 AW384053 BE391691 AA533856 AA248400 T48202 N57156 R68346 R26020 AL050332 W30806 H61369 AA092592 AA230324 BE271217 AW372903 T48772 AA358002 AA094302 AA559856 AW373308 AW373315 AW373297 AW373311 AW373314 AW373319 AW877055 AW770140 AW379805 AI581609 AW364144 AA078921 AA715432 AA654210 AI004899 AA602209 W47464 AA506588 R26822 AU076528 AI535743 AI535704 AI535681
45	315703 119175_1	AA402307 D60405 D61237 D59891 AW964877 AA325215 AI459739 N36070 N25658 AA083684 AW293368 A1761958 A1741205 AI693175 AW873803 A1143269 A1187124 N25199 H18323 AI650842 AW316825 AA083842 AW383650 AW298404 AI472001 AI648568 R17676 R41625 A1123237 R17677 AI206866 F36920 AI654713 F34084 AA618029 AI915139 AW275194 AW514577 D80420 AW149850 Z40953 AI867881 AA927547 AA974344 AI825793 AI636565 AI652157 BE504748 AW295759 F16800 AW839796 F01781 AA909730 AA984010
50	301373 368214_1	AA595235 AW973839 T03040
	323665 54093_1	AW248307 AA313452 AW951927 AA355981 BE566080
	323676 220254_1	A1702835 A1758919 A1685405 A1952108 A1299207 A1400767 AW105389 A1952710 AA845312 A1784118 A1537315 X57138 NM_003514 Z98744 BE253911 BE256314 A1095013 A1138475
	302086 23306_1 323731 226193 1	AA323414 AW664013 AI809377 AI276041 AW296883 AI798340
55	323791 232336_1	AA333068 AA331863 AA331838 AW962531 AA331442
-	325040 23854_1	AW296368 AA247632 AK002030 R15304 T08775 AW975664 AI186801 AA730688 AW190918 AI141176 AW513211 AI275071 AA988601 BE042933 BE045713 AW087176
	324430 312113_1	AA464018 AA464079 AA468142 AA846318 W15478 AL042661
60	323892 477253_1 309488 1030131_1	AW131104 BE246610
50	302251 27216_4	AA333340 AW955834 R49755 U33428 .
	302286 22717_6	R58438 AA358612
	323915 110063_1	AL043362 AA350031 AW751972 BE549118
	324594 330528_1	AA497090 Al351879 Al350914
65	301737 65_1	AIB15981 AF287269 BE260960 BE263991 AA311733 F12145 F07345 Z43604 T29948 H64102 Z43611 T35364 N40667 AI909783 AW751045 AA160594 AIB16064 AI307240 AI951554 AA641031 AA293045 AI942492 AI687077 R78689 H12368 AA894728 AI124930 AI423498 AA777759 AA614585 AW071822 T66288 AI418558 H21480 AI335011 AI051728 AA293436 AW302233 AW188628 N26393 AI076557 AI311022 AW451505 H62593 Z39666 H12315 AI761351 AI364142 F02935
		AW571491 T35366 AI240745 H64151 AA503793 AA831948 AI627686 AI761531 F03591 F09782

	301763 16 301780 18		R01279 R05896 T86522 R05735 BE349600 R37388 N79751 R10115 AA702039 AA836147 AA505716 AI049681 AI499239 R54072 AI023394 AA827710 W60285 W500038 AI884786 AA827191 AA810075 AW005088 R70248 AI858560 AW078678 AA631306 H52839 AW085835 AI656182 AA737178 AW136923 AA281028 AA570316 AA722871 AA362737 AI217268 BE242373 R01113
5			AA628946 Al394527 AW402308 Al361110 Al917585 T99639 AA805326 N44577 Al394021 AW403385 T23949 Al497766 T96602 AA834947 Al693908 Z33450 T92127 BE541896 Al933301 BE251540 BE252269 N50968 Al695531 AW575523 AW296889 N83796 N89924 Al361804 Al085251 AA810694 BE303011 AA743784 R13478 AA358771 AA325294 AW964880 BE258953 R54116 AW881039 AW602593
10	301793 23 303049 10 301863 19 301872 27	)2592_1 )477_1	BE265837 AA340632 T96304 T96075 T72780 H51978 R09868 AW408042 AW407562 BE172835 BE396893 BE269184 AA045741 BE004187 AW751261 W74283 BE263301 Al418863 NM_005194 X52560 AW328683 BE298869 D63161 H84730 T73262
15	301893 65	561_Ī	T80334 BE282758 AK000854 H16996 BE253691 R88508 AA357663 AW955288 AW579550 N98864 AA595201 AI742967 AA602658 Al091433 AA813367 AI983217 AW298007 AI628490 AI708037 AI560654 AI032983 R88509 R38972 AI687783 AI560153 AW874581 N69891 AA993617 H51180 AI269042 AI281358 AW591213 AI017724 AI262859 H16997 R38991 AI804355 AI868988 AI669525 AW023081 AL047848
••	310382 65 303181 74 302569 17	1060_2 7513_2	AI734009 AI263076 AW272255 AI792912 AA452366 AA351338 BE262590 BE262591 AA074050 AA389667 BE161346 AC004472 BE312721 BE273942 F11928 T65358 BE612432 BE261576 BE179884
20	324893 46	i70_1	AA324119 AW246199 BE395368 BE261676 BE382334 BE394701 BE304548 T31940 BE398128 BE398019 BE296693 BE379564 BE269460 BE397065 Z42029 BE305028 AK000549 BE536182 BE314372 AW393349 T50987 AA069735 BE386997 AW381699 T51050 W95025 AA477678 AA348306 AW956831 AW062919 AL040397 BE305160 AA315419 AW249929 AA295944 AI635946 AI870259 AI951125 AW028250 AI885184 AW873113 AI077544 AW025091 AI817594 AI401718 AW008245 AI499064 AA599687 AI016890 AA765638 W93340 AA588708 AW519173 R51917 AA676778 AI084871
25	303244 93	334_1	AA687684 AI860840 AI811921 AW514730 AA477561 N78845 AA778894 AA778559 AI968953 T16188 T32828 AA991426 AI474472 AI473542 AI828972 AW247906 AA977415 AW591489 AA876008 AW191893 AA074278 AW874099 Z40196 AW083615 F01544 T55984 AI290413 AI972167 AI365049 T36028 AI042568 BE560076 W17119 AA196376 T47999 R54309 AK001269 AL354613 AA147472 AA490803 BE207628 AW816113 AA085574 AW803392 AA299910 AW750305 BE079539 AK001269 AL354613 AA147472 AA490803 BE207628 AW816113 AA085574 AW803392 AA299910 AW750305 BE079539
30			BE079484 BE512838 AK001593 AW968772 AW967440 AW206280 AA251270 Al627886 AA303599 AA147473 BE206616 AA490811 AA715039 AW590868 AW590447 Al864512 AA204731 AA894490 BE001136 AA612785 AA237035 AA149960 Z44257 R12986 AA448446 Al734041 AA422167 BE22051 R66041 R32927 R32942 AA258773 AW388142 R53730 N54624 AW880296 AA253485 AW954441 H98989 AW614348 Al654838 AA779793 AW237213 N66635 Al166812 AA947479 BE158011 Al859480 AW805579 N52010 AA666305 Al628445 AW270990 AA778165 AA149849 Al650728 AA749108 AA687257 Al261661 AA747442 AA481351 AA206339 AA903407 AW473306 Al688930 AA262281 AA448310 AA748820
35	000000 44	10000 a	Al347430 BE465692 R32839 AW510564 AA436408 AA257971 AA253362 AA938330 AA513150 AA976840 AA687117 Al281547 AA046243 R32825 Al631554 AW139818 Al244538 R52946 AW235443 R40183 AA299909 AA811958 Al302918 Z40213 BE158047 BE158060 AA767245 AW748159 AW500735 AA094074 AW393348 AW393350 AW386713 AW384705
40	303252 14 303273 67 302640 21	7758_1	AA316069 BE274224 AL120803 BE170052 BE170039 AI906340 BE091310 AA491506 AW836675 AW863111 AW973784 AW843642 AA557573 AA578088 AI125161 AA349349 AI372794 BE312586 BE312777 T32148 AW239077 AI906357 Z42685 AW288772 R18578 AA780425 AA325971 AI372794 R10658 AA285021 AW885349 AW885288 BE271987 AW366519 AA349350 AA233207 R88464 AA434299 R02058 R02059 R02059 R02059 AW368321 AW802152 W79803 H12809 AA028951 AW367382 AA295247 H46355 AA905620 R54564 H12765 AW950608 AA028952 AA366908 AJ085652 R43207 R77954 AI672848 T28547 AA427734 AA572853 AA769934 AI242108 R00020 R02059 R10659
45	303342 18	B9 <b>722_</b> 1	A1185270 A1041890 NM_000080 X66403 F03854 A1652442 A1766431 AA976913 A1989882 AA471024 A1802727 A1824112 F02169 A1890843 BE250876 BE252859 AL157418 R78326 AW088570 AW247361 AA252638 A1751982 BE260758 BE293073 AW293303
50	302703 70	075_1	AB040951 AK002094 AA676593 W44644 N42376 Z45942 AW841844 BE541378 AA358274 AA213391 T88771 NM_015493 AL117489 N88228 N31714 N88273 N31721 AW576263 AA449380 Al366135 AA551576 AW149789 Z17418 AW474331 AA056181 AI753611 AA046428 AA488007 AA300764 N44732 AA377697 AA346752 AA485787 AA894546 AA115295 AA299914 R88096 AA367342 AW884666 W84522 AA46825 AI883849 AA673315 AA873307 AI355170 AA534678 AA989227 AI127202 AW083323 AI338244 AW020877 AA780019 N33426 AW069314 N63079 AI926527 AA115270
55			AW886601 A357402 AA599312 AI460358 AI926969 AA429402 N33197 AW886733 R88205 N52803 AW021988 AA213392 BE139656 AI142383 AA427844 AA954743 AA233622 AW073382 AA426326 AA493560 AA425133 N24819 AI419516 AI571515 AI147373 AI628677 AI214877 AA992123 H71599 AA029095 AA622262 AW117398 AW275286 AI911337
			AA864950 T94173 Al475634 Al701411 Al287696 T94091 AA505746 Al184310 Al350967 Al083596 W74274 Al954381 Al832767 Al368443 AA195578 AW874416 Al005421 AW014339 AA908660 Al350791 AW241382 Al473104 Al275186 AA515528 AA194897 AA782901 AW069414 F20248 AA426011 Al305169 Al832109 Al570082 AW072984 Al492474 AA919076 AL049024 W79889 N42400 AA625435 AW963887 AA233420
60	318446 60 302815 42		AW779971 AW300287 AW152002 AW069505 AI866447 AI298231 AI146920 AI692267 AI872876 BE397032 AL292829 N40973 N34073 AA321112 AW959902 AA258103 AW860213 BE549059 BE296027 BE296657 AA300789 AI971491 AW513665 AA909530 AI951045 AW058103 AI971506 AI061239 AA600054 AI000807 AA969975 AA281492 AW593654 AA321111 AW298633 AI278754 AI863862 AI285506 AA989727 F33114 T16079 AI762625 AI492103 AW770346 AW026768 AI468710 AI49987 AA310412 AA622784 AA642297 AI866427
65	302879 36 318540 10 302928 22	018709_2	H11802 T66097 AF042831 R42185 AW939055 T30280 Z43366 R54166 AA938905 AA574056 AA714466 AI805592 AI123431 AA229723 AA620759 AI004450 AW299820 AI949299 AW874308 AA626037 A974112 AA931563 AF073924 AA995769 AI766441 AI367730 AI081342 AA235800 AA235801 AI138970

		AA719797 AA759343 X89673 AA759344 AA312909 X87825 Y10529 AC006271 AA758739 BE501015 AA909905 AF065857
		AC006271 AA970044
	304332 28696_41	AA158883 AA171835 AA187049 AA143546 BE299538 BE614280 BE621705 BE299684 BE619550 BE613099 BE619558
5		BE514331 BE617716 BE612920 BE615742 BE258739 BE621539 A4434511 BE546696 BE614324 BE379359 BE250106 BE250681 BE299592 BE300272 BE616805 BE397385 BE562024 BE271246 BE250556 BE280311 BE561995 BE618755
3		BE276126 BE546275 BE311547 BE262155 BE281082 BE513087 BE546891 BE514289 BE397389 BE267442 BE545455
		BE614483 BE293447 BE270710 BE281071 BE267458 BE542095 BE262701 BE513634 BE548116 BE299546 BE619604
		BE512885 BE616639 BE266173 BE258933 BE259710 BE268569 BE563861 BE614871 BE537509 BE250108 BE515323
10		BE538868 BE550081 BE277706 BE410127 BE619445 BE250753 BE304969 BE616348 BE546878 BE544962 BE410346 BE267256 X17206 NM_002952 BE304541 BE619171 BE259655 BE549186 BE314944 BE613101 BE378069 BE621110
10		BE542752 BE257029 BE531315 BE619306 BE267328 BE259439 BE297093 BE280651 BE407684 BE250201 BE312819
		BE535432 BE279917 BE312626 BE531118 BE378744 BE275370 BE250195 BE409980 BE274432 BE266637 BE279321
		BE622382 BE280232 BE263816 BE378977 BE300145 BE250204 BE547609 BE264377 BE266688 BE259746 BE260829
1.5		BE619517 BE388097 BE264025 BE618945 BE614758 BE312249 BE294359 BE531121 BE622300 BE615109 BE544354
15		BE614998 BE393239 BE297520 BE393221 BE278818 BE279309 BE265476 BE618772 BE615185 BE265144 BE249837 BE312230 BE407843 BE253884 BE407645 BE615804 BE619058 BE559512 BE383249 BE613497 BE294351 BE295062
		BE622385 BE390654 BE535438 BE563186 BE396374 BE270842 BE386110 BE260368 BE250186 BE265875 BE537229
		BE253369 BE256997 BE269482 BE264959 BE279072 AA662160 BE280733 AA858428 BE561308 BE267285 BE561422
•		BE5631B1 BE304614 BE295437 BE619424 BE275863 BE394315 BE408109 BE541866 BE253772 BE618236 BE535261
20		BE296490 BE278212 BE563154 BE257245 BE262274 BE513032 BE378567 BE394152 BE618947 BE269302 BE546516 BE536792 BE615187 BE261186 BE615367 BE619289 BE261184 T49376 AL031671 BE273400 BE563457 BE545597
		BE615169 AA150323 AA158723 AA079033 BE313333 AA160100 BE271115 BE294302 BE273051 BE273048 BE622390
		AAB37947 BE387721 AW973277 AA808731 BE280792 AA160444 BE256723 AI745920 AA643017 BE549441 BE293858
		AW975249 AI620819 AW089494 AI434549 BE305231 AA081262 BE280101 AA522507 AI950880 AA187460 BE386860
25		AW859229 BE170489 BE620149 BE548218 AA316696 AA484426 Al567740 AA160605 AW939805 AA089573 BE300194
		BE391331 AW975419 H26808 BE545544 BE615974 AW800241 BE616222 W17343 BE387865 T53897 C03943 BE617637 BE315130 T52942 T50588 N74693 AA187107 T59919 AW797397 AA206447 AA854619 T57175 AI570296 AW517964
		AA158269 Al282220 W25297 Al580710 BE262453 Al185868 AA526485 Al288051 Al582513 AA100675 AW615567
		BE395354 Al472725 BE314881 BE621281 N99921 Al282689 Al432725 AW732011 AA872254 BE205807 T59435 Al282712
30		AA650505 Al004374 AA725260 BE313161 T60173 AI371260 BE385641 AW751812 AA078827 AI491858 AI433622
		AA219118 Al002092 AA996003 AA064604 Al250287 Al304397 Al453213 AA653630 Al524573 Al440306 H48802 AA157843 AA715629 AW973788 AA932493 Al347563 AA181309 T67880 AA643033 AW467498 AA115904 AA935410 AA483032
		AAD84568 W25246 AJ567588 AA155732 AA158614 AA888319 AA158568 AA188422 Al309183 AA084817 AA157995
		AI859659 AA188008 AI287379 AI540675 AA085212 AW028391 AA173297 BE256792 AA182854 BE378771 BE538571
35		AA079037 BE281597 AA643926 W81011 AA159344 AA320691 AA877597 T57107 AW263819 AI690413 AI619605 AI687579
		AA970560 Al368942 Al927104 AW419220 Al620051 AA128490 AA120825 AA079520 AA199648 AW188403 BE045224 AW265533 AA074338 AA102685 AW778399 AA192451 AA182771 AW366812 BE281418 AA211094 AA131073 AA487924
		AW674848 Al568103 AA171934 F30349 AW088785 AA581370 AA205482 AW352286 AW517565 Al376249 AA158884
		AI340509 T59965 AA085193 AA071570 AI874045 AA852755 BE045217 AW189428 AA211141 AA652134 AI497729
40		AA994817 AI811459 BE535857 AW769697 AW167892 AW149305 AI864981 AW272126 AW023245 AI439266 AI953196
		AA160912 AI718580 BE537547 AA501448 AA069308 L07393 AA353007 AA079235 AI539140 AA740154 W58341 AA888403 BE299000 AA196413 BE613327 BE261523 AA866599 AW844713 AI691159 AI079975 AW327479 BE180731 AA984805
	303701 1155179_1	AW500732 AW504061
	303759 447287_1	AA774672 AW504164
45	303773 356632_1	AA769074 AA570769 AA808585 AA808682
	303778 174437_1	AW505368 AA218610 F11852 T65345 AA397806 BE297711 AW505574 AA704983
	303784 414659_1 303845 50211_2	F07942 T08033
	303898 162688_3	BE386286 BE148823 T23215 Al906290 AA299906 BE207197 AW074114 Al760368 Al005358 AW662201 AA188988
50		Al690711 AA775103 AW072931 Al684269 AW129364 AW615634 Al049941 AW874040 Al352633 AA188989 Al287775
	20121 452027 1	AA868774 AA599660 AA780365 AA909233 Al275542
	319590 171338_1	AA210878 AA215684 R11101
	305186 17456_1	M13560 AA336951 AA161015 R72814 T69687 R75705 T61319 AA158454 R50579 T56649 Al214156 T70375 R31655
55		H64997 AW800487 H49110 AA634206 H42384 H21783 AI560152 AA664230 H42302 R48708 AA013277 T61901 T92417
		AA875985 T61962 T63055 AA430725 AA458964 AA578746 AI582385 T63000 AI499875 H64998 AA022538 AI364804 AI865211 AI439714 AI224059 AI249917 T59256 AA477806 AA715834 AA916120 R38304 R35899 R82985 H25524 H82984
		AW516728 T54642 AA079866 H27555 AA455820 T63919 R79450 AI431241 AA937349 AA127213 AA421729 H61196
		T63894 AA013050 AA079133 W96364 AA487926 A1762796 H26377 A1433386 A1865423 AW371475 R98189 AA643978
60		Al718204 AW381954 Al862735
	319638 226485_1 320257 163534_1	AA323758 R12731 R14082 R17531 AW960899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654
	320289 115941_1	H07989 A1239462 H24544 AA078369 R74153
	304703 33971_42	BE512926 BE304794 AA129140 AA052922 AA092258 BE378058 BE615391 BE615218 BE616188 Al214126 H05675
65		W56857 AI028525 BE517241 BE531271 AW856227 T56489 AA322005 AW794148 AF170577 BE615738 AA005138 L76930
		L76932 L76933 X95410 AW389462 BE563092 AW997837 AA263158 AI520992 AW947350 AA522535 AW945921 AV653776 AW884835 AW947338 AI687178 AW945799 AI905627 AW948449 AV653751 AW945924 AA563898 AW945810 AW945832
		AW371449 AW945864 AW948447 AW945910 AA643002 AA522680 AA522715 AA578840 AA523279 AA826150 AW945809
		AW405998 AA551909 R23173 AA595545 AW389497 AI933770 AI125053 AI471803 AW795856 AW796937 W30675 H70317

5	321039 26338_2	H88296 T59240 AA397650 H59852 AA938072 AA978010 R35643 T89735 AW361585 AW196153 Al538069 AA604540 Al434259 R49181 T59717 AW062486 AW796966 Al648384 R77733 Al623502 BE171342 BE171303 R35658 AW974883 AW149898 AL500045 Al540710 Al540392 AW009172 AW277199 Al371312 AL500096 Al470297 AW372940 AW844562 AW844560 AW797865 Al691146 X07062 AW799199 H60686 AA837684 AF130734 T25952 Al933771 Al914860 AW391925 AW783843 AW795012 AW366709 AW750987 AW750986 RA5765 AW844942 AW750986 H64920 R34651 X86703 AW7618103 BE201803 BE293253 AW247083 BE207643 BE514793 BE183238 AA376427 AW273850 AW043786 BE439973 AL045428 Al889050 AA026496 Al4222924 Al884485 W96068 AA020872 F37119 AA714378 AA021107 AA011141 AL554001 AL375841 Al469097 AA335219 AW967315 Al692177 AA410448 AL568858 AA582647 AA026419 AA281639 AW515248 AW007777 AA010840 AW188439 Al805423 Al148210 BE301590 AA744414 AA745392 AW167423 AA622659 AW000878
10	·	Al432387 AA760930 BE047189 AA021605 AV658045 Al093347 AA588594 H63143 AA639556 Al308976 AA379270 AA633407 Al874329 Al206484 Al493895 Al694103 Al249682 AA973765 AA672445 Al125446 AA287272 AW069761 AA682569 AW009712 BE542774 R50167 BE301574 AA991202 AA502006 Al219819 AW074373 AA617996 Al521242 F25241 AW615812 R16774 AA335218 AW673800 H26778 Al468557 Al866986 Al560759 Al460075 AA502988 AA503273 AA610680 AA287274 AA554020 AA284889 AA916868 AW469457 AW273250 AW673708 AW512948 AL041071 Al446042 AA903535
15 20	306051 19085_3	BE172441 Al282411 AW265021 AA810799 Al559865 AA729332 AW004611 AW129451 AA659019 BE208239 AA610825 H03511 BE383995 R16474 AA281701 AW009244 AA287424 AA558139 AW364081 F08147 AW408359 AW949429 R23785 AW247442 AA305512 T29095 AA905130 BE246361 BE244981 AA220199 BE504058 X80878 AA533727 AA608601 AW005964 AI811627 Al367037 AI277985 AI493719 AI277848 AA854982 AW247298 AI216345 AI041295 AI887378 AA781241 AI674270 AW628959 AI383083 BE504391 AA729421 AA552188 AA373387 AW880360 AW875262 AW875369 AW581540 AW875388 AW851568 R23735 AW134768
20	321163 171122_1 321235 1102181_1	W03912 AW971410 AA506385 AA209530 H73495 H48629 W56149 H56752 AW340384 N49521
25	320603 4297_1	AA853680 AK001668 BE386425 BE563549 BE298124 BE298950 R51419 U46295 BE147292 AA360056 R48018 AW845348 N47383 AI817280 AI671902 AA988104 AA479464 N56996 AI192374 AI927558 AA659888 AI799903 AA548397 AI161167 AI656333 AI418829 AW592671 BE327906 AW513346 AI888579 AW469410 AW512809 D25682 AA576079 AA479354 T30342 R51307 T16044 H29063 AW079357 AI339477 R47914 AI986068 AI870065 AI868489 AI521099 AI582732 AA995540 AW957299 AA352608 AA676752 AA410510 AA358874 AI865724 AA853679 AI699265 AW188789 N47380 AA233715
30	320641 185591_1 320651 58648_1	BE258194 R55421 R55643 H42362 AA243884 AW886407 AA489268 R57015 R58094 BE077459 BE077423 BE546995 AW849216 T69383 AW938111 H60337 BE221073 AB033100 AA347036 BE260325 AW961669 AL047207 AA347037 AI766894 AA601045 Al559897 AW139033 AW274622
30	321325 28266_1 305704 4647591	ABU172884 AW089070 AA804340 AW798925 AA825266
	322011 23158_1 306407	AL137354 AL043375 AA971985 `
35	306454	AA977992 AA98542
	306516 306518	AA989598
	306526 306534	AA989713 AA991487
40	306590 306591	A1000246 A1000248
	306631	A1001149 A1003654
	306654 <b>30678</b> 6	AI041589
45	306799 308023	A1051696 A1452732
	308070	Al470948 Al475914
	308099 306805	AI055966
50	306814 306873	A1086577 A1086929
	306911	AI095365
	306982 308238	A1127883 - A1559492
55	308258	Al565612 Al571211
	308289 308311	Al581855
	308332 308511	AI591235 AI687580
60	308601	Al719930
	308612 308636	A1735634 A1744063
	308814 308851	AI819263 AI829820
65	308981	AI873242
	310570 1071946_1 305022	Al318327 Al318328 Al318495 AA627416
	305060	AA635771
	305070	AA639783

	305079		AA641329
	305134		AA653159
	303977		AW512978
	305216		
_			AA669056
5	305263		AA679467
	305266		AA679772
4	305396		AA721052
	305403		AA723748
	305488		AA749000
10	305549		-AA773530
	305601	* *	AA780975
	305610		AA782319
	305621		AA789095
	305710		AA826544
15	305724		AA827608
	305744		AA831819
	305752		AA835278
	307018		Al140639
	307055		Al148477
20			
20	307058		AI148709
	305801		AA845997
	305830		AA857665
	305836		AA858043
	305852		AA862455
25	305858		AA863103
	305866		AA864533
	305867		AA864572
	307126		Al184951
20	305903		AA873085
30	328803		
	328809	c_7_hs	
	305949	AA884409	
	328829	c 7 hs	
	330021		
35	330024		
33			
	330028		
	330049		
	305993	AA889197	
	330095	c19_p2 ·	
40	330096	c19_p2	
	307205	_	AJ192479
	307427		Al243437
	307491		Al268539
			Al284415
45	307581		
43	307588		Al285535
	337672		_LINK_EM:AC00
•	337693	CH22_6030FG_	_LINK_EM:ACOO
	337738	CH22_6083FG_	_LINK_EM:AC00
	307692		Al318342
50	307806		Al351739
	309107		Al925823
	309230		AI970747
	339338	CH22_8300FG_	
		CHZZ_03UUFG_	_LINK_BA354I1
EE	309257		Al984183
55	309366		AW072970
	309422		AW087175
	325207	c10_hs	
	325257		
	309646	V. 1.2.10	AW194694
60	309651		AW195850
<del>UU</del>		a44 ba	A11100000
	325313	CII_NS	4140 40040
	309924		AW340812
			.320_2_LINK_EM
	334040	CH22_1318FG_	322_8_LINK_EM
65		CH22_1361FG_	
		CH22_26FG_7_	
	302747		AF062275 L03830
		33029_1	M74299 M74302 M74303
			AJ230640 AJ230648
	302777	33803_1	プリアンクシャク マグアンク

	304094		H11295
	302824	35372_1	U21260 U21258
	302996	41196_1	AF054663 AF124197 R70292
	325870		
5	304240		AA009802
	304410		AA284508
	304443		AA399444
	304475		AA428879
	304522		AA465405
10	304678		AA548556
	304705		AA564064
	306004		AA889992
	306008		AA894390
	306013		AA896990
15	306082		AA908508
	336174	CH22_3567FG_7	10_1_UNK_DA
	306094		AA908877
	304823		AA584837
	304872		AA595289
20	304918		AA602697
	304955		AA613504
	306249		AA933840
	306286		AA936892
	306295		AA937331
25	306317	•	AA947909
	306347		AA981144
	306365		AA952086
	306398		AA970548
-00		entrez_D28383	D28383
30	330463	460_2	NM_001055 AA332948 U26309 U09031 L19955 L10819 Al366043 X84654 U71086 AV654451 AJ007418 AA053625
			BE168856 AA376730 H12894 AA810348 AA621972 AI818950 AV645367 AI818966 AA910602 AW512449 H57893 AI310497
			Al304330 Al339217 AW193588 AW438688 Al818970 AW316799 AA906527 AA777570 N47673 Al336428 AW945133
			AIO38606 R29692 AW194197 AI304748 H12639 AA053178 AA493213 AA676958 AA113154 AI313469 AI368239 R93183
25	00000	4074 0	W24532 U52852 U54701 AL046864 AA365795
35		13748	U11872
	332634	10404_2	U24488 NM_007116

TABLE 13B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 13. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5

)	Pkey: Ret: Strand: Nt_posit	S In	equence : dicates D	riber corresponding to an Eos probeset source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers in this column are Genbank Identifier (GI) numbers INA strand from which exons were predicted. ucleotide positions of predicted exons.
	Pkey	Ref	Strand	Nt_position
	332791	Dunham, L et.al.	Plus	72720-73315
		Dunham, I. et.al.		73381-73768
		Dunham, I. et.al.		304296-304384
	332944	Dunham, I. et.al.	Plus	2414825-2414932
l	332972	Dunham, I. et al.	Plus	2572152-2572236
	333133	Dunham, I. et.al.	Plus	3360058-3360195
	333154	Dunham, I. et.al.	Plus	3615887-3616019
	333155	Dunham, I. et.al.	Plus	3616832-3617003
	333227	Dunham, I. et.al.	Plus	3992866-3992968
	333230	Dunham, I. et.al.	Plus	3995507-3996507
	333298	Dunham, I. et.al.	Plus	4581537-4581947
			Plus	4629943-4630242
			Pius	4630388-4630645
		Dunham, I. et.al.		4786883-4787283
		Dunham, I. et.al.	Pius	4907179-4907277
		Dunham, I. et.al.	Plus	4916697-4916780
		Dunham, I. et.al.	Plus	4918294-4918433
		Dunham, I. et.al.		4922466-4922635
		Dunham, I. et.al.		4925140-4925256
		Dunham, I. et.al.	Plus	4943824-4943974
			Plus	5097827-5097885
		Dunnam, I. et.al.		5272855-5272939
		Dunham, I. et.al.		5286358-5286505
		Dunham, I. et.al.	Plus	5297945-5298105
		Dunham, I. et.al.	Plus	5570204-5570390
		Dunham, I. et.al.	Plus	5570729-5570925
		Dunham, I. et.al.		5571761-5572025
		Dunham, I. et.al.	Plus	5622622-5622684
		Dunham, I. et.al.	Plus	5954226-5954473
		Dunham, I. et.al.	Pius	6026896-6027189
		Dunham, I. et.al.		6246834-6247314 6055445-6055770
		Dunham, I. et al.	Plus Dh∽	6255445-6255779 6308990-6309450
		Dunham, I. et.al. Dunham, I. et.al.		6323103-6323348
		Dunham, I. et.al.		6355629-63555925
		Dunham, I. et.al.		6360075-6360442
		Dunham, I. et.al.		6504431-6504690
		Dunham, I. et.al.		6549563-6549697
		Dunham, I. et al.		6550643-6550748
		Dunham, I. et.al.		6551227-6551389
		Dunham, I. et.al.		6595146-6595244
		Dunham, I. et.al.		6614174-6614467
		Dunham, I. et.al.		6663683-6663973
		Dunham, I. et.al.		6674968-6675134
		Dunham, I. et.al.	Plus	6708760-6709139
		Dunham, I. et.al.		6772502-6772779
		Dunham, I. et.al.		6811130-6811392
		Dunham, I. et.al.		6816731-6816993
		Dunham, I. et.al.		6822087-6822406
		Dunham, I. et.al.		6831369-6831445
	333658	Dunham, I. et.al.	Plus	6835282-6835474

	333659	Dunham, I. et.al.	Plus	6836179-6836248
	333684	Dunham, I. et.al.	Plus	7169561-7169742
	333686	Dunham, I. et.al.	Plus	7177117-7177302
_	333697	Dunham, I. et.al.	Plus	7203859-7203934
5	333698	Dunham, I. et.al.	Plus	7205279-7205383
	333699	Dunham, I. et.al.	Plus	7206101-7206175
	333703	Dunham, I. et.al.	Plus	7215559-7215663
	333709	Dunham, I. et.al.	Plus	7229730-7229835
10	333747	Dunham, I. et.al.	Plus	7605884-7606206
10	333774	Dunham, I. et.al.	Plus Plus	7716509-7716636 7729983-7730149
	333775 333806	Dunham, I. et.al. Dunham, I. et.al.	Plus	7877475-7877666
	333843	Dunham, I. et.al.	Plus	7978762-7978887
	333854	Dunham, I. et.al.	Plus	8029446-8029524
15	333873	Dunham, I. et.al.	Plus	8133266-8133429
	333880	Dunham, I. et.al.		8151923-8152133
	333885	Dunham, I. et.al.	Plus	8154352-8154437
	333918	Dunham, I. et.al.	Plus	8307124-8307215
	333947	Dunham, I. et.al.	Plus	8579888-8579966
20	333961	Dunham, Let.al.	Plus	8617999-8618104
	333981	Dunham, I. et.al.	Plus	8782374-8782643
	333991	Dunham, I. et.al.	Plus	8837419-8837551
	333994	Dunham, I. et.al.	Plus	8852749-8852894
05	334030	Dunham, i. et.al.	Plus	9288463-9288782
25	334083	Dunham, I. et.al.	Plus	9837016-9837081
	334111	Dunham, I. et.al.	Plus	10279365-10279531
	334135	Dunham, Letal.	Plus Plus	10457085-10457183 12680289-12680378
	334218	Dunham, I. et.al.	Plus	13190430-13190574
30	334249 334262	Dunham, I. et.al. Dunham, I. et.al.	Pius	13231452-13231581
50	334264	Dunham, I. et.al.	Plus	13234447-13234544
	334327	Dunham, I. et.al.	Plus	13577413-13577496
	334328	Dunham, I. et.al.	Plus	13589868-13589936
	334340	Dunham, I. et.al.	Plus	13642407-13642522
35	334454	Dunham, I. et.al.	Plus	14326506-14326738
	334504	Dunham, I. et.al.	Plus	14510206-14510398
	334508	Dunham, I. et.al.	Plus	14514936-14515122
	334512	Dunham, I. et.al.	Plus	14545933-14546366
40	334582	Dunham, I. et.al.	Plus	15026255-15026371
40	334659	Dunham, I. et.al.	Plus Plus	15460624-15460726 15796816-15796987
	334721 334723	Dunham, I. et.al.	Plus	15805317-15805399
	334730	Dunham, I. et.al. Dunham, I. et.al.	Pius	15967830-15967934
	334774	Dunham, I. et.al.	Pius	16251857-16252178
45	334778	Dunham, I. et.al.	Plus	16276180-16276395
	334851	Dunham, I. et.al.	Plus	17820110-17820810
	334885	Dunham, I. et.al.	Plus	19233667-19233787
	334902	Dunham, I. et.al.	Plus	19317083-19317195
	334905	Dunham, I. et.al.	Plus	19322553-19322680
50	334906	Dunham, I. et.al.	Plus	19323493-19323590
	334910	Dunham, I. et.al.	Plus	19398155-19398684
	335018	Dunham, I. et.al.	Plus	20688288-20688415
	335025	Dunham, I. et.al.	Plus	20743941-20744050 20753188-20753314
55	335033	Dunham, I. et.al.	Plus	20842088-20842682
JJ	335044 335142		Plus Plus	21465105-21465186
	335157		Plus	21543302-21544341
	335160		Plus	21573388-21573497
	335174		Plus	21631301-21631447
60	335188		Plus	21669118-21669328
	335190		Plus	21680807-21680876
	335191	Dunham, I. et.al.	Plus	21681110-21681183
	335193			21692208-21692362
	335204			21750636-21750726
65	335222			21885542-21885608
	335226			21890838-21890930
	335227			21892145-21892289
	335309			22500158-22500276
	335310	Dunham, Letal.	Plus	22500714-22500831

	335311 Dunham, I. et.al. Plus	22501602-22501676
	335355 Dunham, I. et.al. Plus	22779222-22779516
	335362 Dunham, I. et.al. Plus	22809167-22809461
	335368 Dunham, I. et.al. Plus	22843040-22843184
5	335384 Dunham, I. et.al. Plus	22918150-22918263
•	335385 Dunham, I. et.al. Plus	22919072-22919339
	335436 Dunham, I. et.al. Plus	23427793-23427923
	335440 Dunham, I. et al. Plus	23458702-23459017
	335441 Dunham, I. et.al. Plus	23460632-23460724
10	335450 Dunham, I. et.al. Plus	23480190-23480270
	335453 Dunham, I. et.al. Plus	23483333-23483459
	335458 Dunham, I. et.al. Plus	23490034-23490143
	335464 Dunham, I. et.al. Plus	23500331-23500496
	335496 Dunham, I. et.al. Plus	24164386-24164545
15	335497 Dunham, I. et.al. Plus	24167666-24167869
	335498 Dunham, I. et.al. Plus	24172082-24172161
	335499 Dunham, I. et.al. Plus	24176698-24176869
	335500 Dunham, I. et.al. Plus	24178236-24178326
20	335507 Dunham, I. et al. Plus	24219973-24220039 24222975-24223118
20	335510 Dunham, I. et.al. Plus 335513 Dunham, I. et.al. Plus	24224272-24224496
	335513 Dunham, Letal. Plus 335627 Dunham, Letal. Plus	25150005-25150061
	335651 Dunham, I. et.al. Plus	25317560-25317696
	335655 Dunham, I. et.al. Plus	25333211-25333369
25	335656 Dunham, I. et.al. Plus	25333601-25333751
	335658 Dunham, I. et.al. Plus	25336315-25336406
	335663 Dunham, I. et.al. Plus	25342680-25342802
	335665 Dunham, I. et.al. Plus	25344096-25344287
	335667 Dunham, I. et.al. Plus	25345735-25345856
30	335668 Dunham, I. et.al. Plus	25346313-25346447
	335689 Dunham, I. et.al. Plus	25454350-25454604
	335690 Dunham, I. et.al. Plus	25455442-25455625
	335715 Dunham, I. et.al. Plus	25565941-25566052
25	335719 Dunham, I. et.al. Plus	25593936-25594101
35	335734 Dunham, I. et.al. Plus	25688723-25688869
	335744 Dunham, I. et.al. Plus	25716483-25716615 26310772-26310909
	335809 Dunham, I. et.al. Plus 335819 Dunham, I. et.al. Plus	26356341-26356470
	335819 Dunham, I. et.al. Plus 335822 Dunham, i. et.al. Plus	26364087-26364196
40	335872 Dunham, I. et.al. Plus	26820760-26820943
40	335885 Dunham, I. et.al. Plus	26933436-26933534
	335988 Dunham, I. et.al. Plus	27743843-27744029
	335971 Dunham, I. et.al. Plus	27752808-27753017
	335975 Dunham, I. et.al. Plus	27801321-27801391
45	335976 Dunham, I. et.al. Plus	27809041-27809187
	335989 Dunham, I. et.al. Plus	27983788-27983860
	335990 Dunham, I. et.al. Plus	27988532-27988608
	336010 Dunham, I. et.al. Plus	28570239-28570330
50	336093 Dunham, I. et.al. Plus	29556922-29557002
50	336126 Dunham, I. et.al. Plus	30057891-30058105
	336129 Dunham, I. et.al. Plus	30082259-30062348 30433494-30433585
	336187 Dunham, Letal. Plus 336188 Dunham, Letal. Plus	30434870-30435004
	336188 Dunham, I. et.al. Plus 336225 Dunham, I. et.al. Plus	30833614-30833788
55	338371 Dunham, I. et.al. Plus	33968108-33968204
55	336373 Dunham, I. et.al. Plus	33976308-33976504
	336377 Dunham, I. et al. Plus	33994489-33994599
	336380 Dunham, I. et.al. Plus	33995323-33995434
	336383 Dunham, I. et.al. Plus	34005784-34005984
60	336384 Dunham, I. et.al. Plus	34007429-34007559
	336385 Dunham, I. et.al. Plus	34007879-34008159
	336386 Dunham, I. et.al. Plus	34012965-34013115
	336441 Dunham, I. et.al. Plus	34187606-34187663
<b>C</b> F	336444 Dunham, I. et.al. Plus	34190585-34190718
65	336484 Dunham, I. et.al. Plus	34237425-34237505 34267190-34267245
	336497 Dunham, I. et.al. Plus 336499 Dunham, I. et.al. Plus	34267504-34267572
	000-100 Builtimili it summit in	34271306-34271372
	336503 Dunham, I. et.al. Plus 336548 Dunham, I. et.al. Plus	34353881-34354826
	SOUTO Dumain, t. Com. 1 103	3-1000001 4-100 1000

	336552 Dunham, I. et.al.	Plus	34356420-34356527
	336553 Dunham, I. et.al.	Plus	34356683-34356753
	336567 Dunham, I. et.al.	Plus	34428228-34428395
_	336568 Dunham, I. et.al.	Plus	34428521-34428637
5	336659 Dunham, I. et.al.	Plus	1896402-1896478
	336715 Dunham, I. et.al.	Plus	3110198-3110314
	336803 Dunham, I. et.al.	Pius	6106904-6106990 6126661-6126786
	336805 Dunham, I. et.al. 336850 Dunham, I. et.al.	Pius Pius	7745284-7745355
10	336850 Dunham, I. et.al. 336857 Dunham, I. et.al.	Plus	8130457-8130612
10	336911 Dunham, I. et.al.	Plus	11035818-11035984
	336949 Dunham, I. et.al.	Plus	12818687-12818891
	336950 Dunham, I. et.al.	Ptus	12875843-12875912
	336958 Dunham, I. et.al.	Plus	13203550-13203973
15	336993 Dunham, I. et.al.	Plus	15096270-15096324
	337076 Dunham, I. et.al.	Plus	19338177-19338679
	337109 Dunham, I. et.al.	Plus	21166580-21166650 22052874-22052942
	337123 Dunham, I. et.al.	Plus Plus	23106433-23106510
20	337151 Dunham, I. et.al. 337189 Dunham, I. et.al.	Plus	24225887-24225954
20	337241 Dunham, I. et.al.	Plus	27280182-27280313
	337337 Dunham, I. et.al.	Plus	30395182-30395285
	337353 Dunham, I. et.al.	Plus	30804624-30804780
	337384 Dunham, I. et.al.	Plus	31333399-31333580
25	337396 Dunham, I. et.al.	Plus	31585902-31586067
	337414 Dunham, Letal.	Plus	31953012-31953205
	337418 Dunham, I. et.al.	Plus	32014049-32014131
	337461 Dunham, I. et.al.	Plus Plus	32803968-32804028 33219714-33219779
30	337480 Dunham, I. et.al. 337482 Dunham, I. et.al.	Plus	33227865-33227946
50	337483 Dunham, I. et.al.	Plus	33237292-33237427
	337490 Dunham, I. et.al.	Plus	33318571-33318644
	337522 Dunham, I. et.al.	Plus	33963188-33963979
	337532 Dunham, Letal.	Plus	34187269-34187366
35	337552 Dunham, I. et.al.	Plus	19497-19600
	337584 Dunham, I. et.al.	Plus	945236-945452
	337611 Dunham, Letal.	Plus	1482883-1483016 3331236-3331313
	337672 Dunham, Letal.	Plus Plus	3575975-3576153
40	337693 Dunham, I. et.al. 337738 Dunham, I. et.al.	Plus	3865738-3865814
40	337926 Dunham, I. et.al.	Plus	6286377-6286470
	337927 Dunham, I. et.al.	Plus	6343033-6343172
	337935 Dunham, I. et.al.	Plus	6534661-6534782
	337944 Dunham, I. et.al.	Pius	6589383-6589450
45	337954 Dunham, I. et.al.	Plus	6831483-6831620
	337996 Dunham, I. et.al.	Plus	7445532-7445633
	338004 Dunham, I. et.al.	Plus Plus	7601363-7601520 7863131-7863310
•	338016 Dunham, I. et.al. 338174 Dunham, I. et.al.	Plus	12771102-12771268
50	338176 Dunham, I. et.al.	Plus	12774072-12774223
-	338238 Dunham, I. et.al.	Plus	14661936-14662015
	338277 Dunham, I. et.al.	Plus	16167622-16167962
	338294 Dunham, I. et.al.	Plus	16463958-16464539
~~	338316 Dunham, L et.al.	Plus	17089711-17089988
55	338323 Dunham, I. et.al.	Plus	17154655-17154792
	338324 Dunham, I. et.al.	Plus Plus	17155309-17155574 18611213-18611407
	338386 Dunham, I. et.al. 338398 Dunham, I. et.al.	Plus	18953492-18953581
	338410 Dunham, I. et.al.	Plus	19292807-19292916
60	338414 Dunham, i. et.al.	Plus	19345573-19345660
-	338460 Dunham, I. et al.	Plus	20233372-20233488
	338481 Dunham, I. et.al.	Plus	20942659-20942873
	338489 Dunham, I. et.al.	Plus	21142605-21143049
	338500 Dunham, I. et.al.	Plus	21253847-21253974
65	338514 Dunham, I. et.al.	Plus	21379420-21379655
	338530 Dunham, I. et al.	Plus	21636361-21636509 23540239-23540334
	338620 Dunham, I. et.al. 338631 Dunham, I. et.al.	Plus Plus	23540235-23540334
	338631 Dunham, I. et.al. 338653 Dunham, I. et.al.	Plus	24219427-24219509

	338660	Dunham, I. et.al.	Plus	24387122-24387266
	338704	Dunham, I. et.al.	Plus	25230432-25230548
	338847	Dunham, I. et.al.	Pius	27995337-27995420
_	338887	Dunham, I. et al.	Plus	28465244-28465384
5	338895	Dunham, I. et.al.	<b>Pius</b>	28598893-28599135
	338915	Dunham, L. et.al.	Plus	28824881-28824977
	338925	Dunham, I. et.al.	Plus	28883892-28884036
	338936	Dunham, I. et.al.	Plus	29148022-29148160
40	338952	Dunham, I. et.al.	Plus	29418831-29418968
10	338980	Dunham, i. et.al.	Plus	29896789-29896874
	338981	Dunham, I. et.al.	Plus	29897917-29898008
	338986	Dunham, I. et.al.	Plus	30007287-30007415
	339009	Dunham, I. et.al.	Plus	30348477-30348598 30420896-30421090
15	339017	Dunham, I. et.al.	Plus	30744286-30744356
13	339045	Dunham, I. et.al.	Plus Plus	30746269-30746420
	339046	Dunham, I. et.al. Dunham, I. et.al.	Pius	30814655-30814801
	339059 339067	Dunham, I. et.al.	Plus	30869347-30869412
	339069	Dunham, I. et.al.	Plus	30880975-30881070
20	339078	Dunham, I. et.al.	Plus	30914310-30914423
20	339084	Dunham, I. et.al.	Plus	30944556-30944803
	339101	Dunham, L. et.al.	Plus	31158047-31158123
	339102	Dunham, L. et.al.	Plus	31169321-31169563
	339103	Dunham, I. et.al.	Plus	31170343-31170454
25	339115	Dunham, I. et.al.	Plus	31459869-31459927
	339157	Dunham, L. et.al.	Plus	32131701-32131833
	339166	Dunham, I. et.al.	Plus	32210902-32211008
	339167	Dunham, I. et.al.	Plus	32213567-32213730
	339288	Dunham, I. et.al.	Plus	33169611-33169691
30	339289	Dunham, I. et.al.	Plus	33186756-33186903
	339291	Dunham, I. et.al.	Pius	33205057-33205247
	339407	Dunham, I. et.al.	Plus	34189461-34189620
	332865	Dunham, I. et.al.	Minus	1391482-1391218
~~	332881	Dunham, I. et.al.	Minus	1563520-1563184
35	332930	Dunham, I. et.al.	Minus	2022565-2022497
	332931	Dunham, L et.al.	Minus	2023651-2023562
	332984	Dunham, I. et.al.	Minus	2632606-2632457
	332986	Dunham, I. et.al.	Minus	2635398-2635206
40	332997	Dunham, I. et.al.	Minus Minus	2710509-2710375 2991973-2991840
40	333051 333061	Dunham, I. et.al. Dunham, I. et.al.	Minus	3029631-3029527
	333064	Dunham, I. et.al.	Minus	3030722-3030623
	333096	Dunham, I. et.al.	Minus	3184234-3184118
	333099	Dunham, L et.al.	Minus	3206796-3206674
45	333106	Dunham, L et.al.	Minus	3230744-3230547
	333160	Dunham, I. et.al.	Minus	3654893-3654678
	333163	Dunham, I. et.al.	Minus	3665124-3664962
	333165	Dunham, I. et.al.	Minus	3674052-3673905
	333166	Dunham, I. et.al.	Minus	3694664-3694567
50	333170	Dunham, I. et.al.	Minus	3733394-3733299
	333174	Dunham, I. et.al.	Minus	3764284-3764210
	333188	Dunham, I. et.al.	Minus	3826990-3826863
	333214		Minus	3966559-3966437
	333232	Dunham, I. et.al.	Minus	4001551-4001365
55		Dunham, I. et.al.	Minus	4003326-4003219
	333239	Dunham, I. et.al.	Minus	4095861-4094462
	333255		Minus Minus	4297883-4297716 4306769-4306639
	333259		Minus	4389146-4388954
60	333274		Minus	4530734-4530554
w	333290		Minus	4549290-4549198
	333295		Minus	4550766-4550644
	333296 333310		Minus	4637315-4637232
	333311		Minus	4637933-4637844
65	333312			4638794-4638635
55	333313			4639397-4639277
	333315			5405980-5405876
	333318			4842636-4642564
	333321			4649080-4648934

	333327	Dunham, I. et.al.	Minus	4657947-4657828
	333335	Dunham, I. et.al.	Minus	4672656-4872564
	333337	Dunham, i. et.al.	Minus	4677930-4677841
	333454	Dunham, i. et.al.	Minus	5137007-5136880
5	333458	Dunham, I. et.al.	Minus	5143942-5143806
	333459	Dunham, I. et.al.	Minus	5144548-5144344
	333470	Dunham, I. et al.	Minus	5223319-5223088
	333493	Dunham, I. et.al.	Minus	4637315-4637232
10	333496 333498	Dunham, I. et al.	Minus Minus	5404643-5404523 5405980-5405876
10	333510	Dunham, I. et.al. Dunham, I. et.al.	Minus	5557628-5557469
	333546	Dunham, I. et.al.	Minus	5886643-5886442
	333561	Dunham, I. et.al.	Minus	5903659-5903590
	333738	Dunham, I. et.al.	Minus	7552160-7552084
15	333780	Dunham, I. et.al.	Minus	7750387-7750277
	333783	Dunham, I. et.al.	Minus	7751850-7751777
	333818	Dunham, I. et.al.	Minus Minus	7911959-7911762 8188855-8188709
	333894 333897	Dunham, I. et.al. Dunham, I. et.al.	Minus	8194390-8194284
20	333900	Dunham, I. et al.	Minus	8200268-8200122
	333909	Dunham, I. et.al.	Minus	8229639-8229477
	333936	Dunham, I. et.al.	Minus	8512805-8512564
	333944	Dunham, I. et.al.	Minus	8557051-8556936
05	334040	Dunham, I. et.al.	Minus	9342895-9342934
25	334154	Dunham, I. et.al.	Minus	10570714-10570572
	334178 334188	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	11755052-11754971 11925963-11925834
	334273	Dunham, L et.al.	Minus	13265608-13265522
	334282	Dunham, I. et.al.	Minus	13285293-13285178
30	334285	Dunham, I. et.al.	Minus	13289990-13289793
	334286	Dunham, I. et.al.	Minus	13291759-13291569
	334303	Dunham, I. et.al.	Minus	13454331-13454217
	334305	Dunham, I. et.al.	Minus	13456310-13456209
35	334306 334320	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	13461157-13461049 13496857-13496717
33	334352	Dunham, I. et.al.	Minus	13675908-13675828
	334353	Dunham, I. et.al.	Minus	13683722-13683596
	334359	Dunham, I. et al.	Minus	13728664-13728534
	334363	Dunham, I. et.al.	Minus	13740004-13739812
40	334365	Dunham, I. et.al.	Minus	13742078-13741971
	334399	Dunham, I. et.al.	Minus	14186289-14186163
	334409 334414	Dunham, Letal	Minus Minus	14195181-14195075 14234033-14233932
	334470	Dunham, I. et.al. Dunham, I. et.al.	Minus	14389581-14389442
45	334483	Dunham, I. et.al.	Minus	14428355-14428281
	334489	Dunham, I. et.al.	Minus	14455428-14454288
	334498	Dunham, I. et.al.	Minus	14483789-14483700
	334501	Dunham, I. et.al.	Minus	14487509-14487356
50	334502	Dunham, I. et.al.	Minus	14488605-14488526
30	334543	Dunham, I. et.al.	Minus Minus	14834496-14834116 15191678-15191609
	334622 334650	Dunham, I. et.al. Dunham, I. et.al.	Minus	15371251-15371178
	334680	Dunham, I. et.al.	Minus	15520047-15519887
	334745	Dunham, I. et.al.	Minus	16049960-16049653
55	334756	Dunham, I. et.al.	Minus	16128678-16128528
	334758		Minus	16132368-16132233
	334761	Dunham, I. et.al.	Minus	16138424-16138319 16148136-16148077
	334763 334784		Minus Minus	16294548-16294360
60	334790		Minus	16307576-16307509
-	334793		Minus	16330748-16330681
	334802		Minus	16413158-16413026
	334820	• • • • • • • • • • • • • • • • • • • •	Minus	16764338-16764249
65	334824		Minus	16857777-16857674
65	334832	•	Minus	17173957-17173760
	334842 334844		Minus Minus	17464352-17464181 17503891-17503768
	334857	•	Minus	18488368-18488242
	334927		Minus	19988711-19987853

	334939	Dunham, I. et.al.	Minus	20131162-20131054
		Dunham, I. et.al.	Minus	20147708-20147502
		Dunham, I. et.al.	Minus	20188176-20188020
	334972	Dunham, I. et.al.	Minus	20294734-20294611
5		Dunham, I. et.al.	Minus	20884109-20883951
	335078	Dunham, I. et.al.	Minus	21059529-21059458
	335102	Dunham, I. et.al.	Minus	21313841-21313598
	335105	Dunham, I. et.al.	Minus	21320563-21320440
••	335110	Dunham, I. et.al.	Minus	21334136-21333811
10	335111	Dunham, I. et.al.	Minus	21335946-21335809
	335115	Dunham, I. et.al.	Minus	21388250-21388146
	335116	Dunham, I. et.al.	Minus	21388573-21388414
	335185	Dunham, I. et.al.	Minus	21651593-21651522
15	335186	Dunham, I. et al.	Minus	21656436-21656338 21899517-21898678
13	335230 335236	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	21915016-21914870
	335243	Dunham, I. et.al.	Minus	21933519-21933365
	335249	Dunham, I. et.al.	Minus	21950851-21950669
	335258	Dunham, I. et.al.	Minus	22043431-22043262
20	335261	Dunham, I. et.al.	Minus	22063937-22063772
	335276	Dunham, I. et.al.	Minus	22154036-22153937
	335279	Dunham, I. et.al.	Minus	22168834-22168638
	335330	Dunham, I. et.al.	Minus	22556589-22556422
	335331	Dunham, I. et.al.	Minus	22556823-22556708
25	335334	Dunham, I. et.al.	Minus	22560390-22560136
	335346	Dunham, I. et.ai.	Minus	22641097-22640918
	335349	Dunham, I. et.al.	Minus	22661861-22661271
	335611	Dunham, I. et al.	Minus	25070825-25070706
30	335612	Dunham, I. et.al.	Minus	25072328-25072142
30	335671 335676	Dunham, I. et al.	Minus Minus	25358629-25358533 25395274-25395152
	335680	Dunham, I. et.al. Dunham, I. et.al.	Minus	25402437-25402361
	335750	Dunham, I. et.al.	Minus	25732501-25731972
	335752	Dunham, I. et.al.	Minus	25757026-25756890
35	335755	Dunham, I. et.al.	Minus	25763806-25763747
	335767	Dunham, I. et.al.	Minus	25819547-25819218
	335774	Dunham, I. et.al.	Minus -	25883733-25883572
	335777	Dunham, I. et.al.	Minus	25885770-25885599
40	335778	Dunham, I. et.al.	Minus	25888469-25886334
40	335797	Dunham, L et al.	Minus	25958182-25958030
	335800	Dunham, I. et.al.	Minus	25985373-25985280 26323886-26323744
	335818 335834	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	26391707-26391530
	335840	Dunham, I. et.al.	Minus	26420596-26420538
45	335844	Dunham, I. et.al.	Minus	26433427-26433344
	335846	Dunham, I. et.al.	Minus	26436727-26436621
	335856	Dunham, I. et.al.	Minus	26662452-26662346
	335887	Dunham, I. et.al.	Minus	26939225-26938782
<b>5</b> 0	335888	Dunham, I. et.al.	Minus	26943037-26942820
50	335889	Dunham, I. et.al.	Minus	26946988-26946901
	335890	Dunham, I. et al.	Minus	26949087-26948665
	335893	Dunham, I. et.al.	Minus	26973898-26973747 26975307-26975239
	335895 335896	Dunham, I. et.al.	Minus	26977639-26977558
55	335900	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	26980354-26980238
55	335907	Dunham, I. et.al.	Minus	27013352-27013273
	335943	Dunham, I. et.al.	Minus	27446610-27446378
	335956	Dunham, I. et al.	Minus	27653729-27653635
	335959	Dunham, I. et.al.	Minus	27682313-27682145
60	335962	Dunham, I. et.al.	Minus	27704276-27704144
	336040	Dunham, I. et.al.	Minus	29036458-29036300
	336044	Dunham, I. et.al.	Minus	29043828-29043727
	336047	Dunham, I. et.al.	Minus	29050617-29050466
65	336068	Dunham, I. et.al.	Minus	29252077-29251969
65	336143	Dunham, I. et al.	Minus	30135948-30135854
	336158 336174	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	30163730-30163610 30241988-30241839
	336223	Dunham, I. et.al.	Minus	30816306-30816195
	336245	Dunham, I. et al.	Minus	31420569-31420509

	336274	Dunham, I. et.al.	Minus	32085468-32085303
	336318	Dunham, I. et.al.	Minus	33364452-33364338
	336326	Dunham, I. et.al.	Minus	33567328-33567201
_	336339	Dunham, I. et.al.	Minus	33798479-33798330
5	336340	Dunham, I. et.al.	Minus	33812069-33811915
	336355	Dunham, I. et.al.	Minus	33874750-33874649
	336392			34015868-34015736
		Dunham, I. et.al.	Minus	
	336393	Dunham, I. et.al.	Minus	34016145-34015951
	336394	Dunham, I. et.al.	Minus	34016457-34016298
10	336400	Dunham, I. et.al.	Minus	34023437-34023298
10				34024090-34023981
	336402	Dunham, I. et.al.	Minus	
	336413	Dunham, I. et.al.	Minus	34046702-34046576
	336424	Dunham, I. et.al.	Minus	34055549-34055491
	336425	Dunham, I. et.al.	Minus	34058544-34058446
15	336437		Minus	34074154-34074090
IJ		Dunham, I. et.al.		
	336447	Dunham, L et.al.	Minus	34198207-34197996
	336449	Dunham, I. et.al.	Minus	34204707-34204577
	336466	Dunham, Letal.	Minus	34213195-34213046
	336492	Dunham, I. et.al.	Minus	34255578-34255437
20				
20	336511	Dunham, I. et.al.	Minus	34277480-34277351
	336512	Dunham, i. et.al.	Minus	34278373-34278275
	336520	Dunham, I. et.al.	Minus	34319184-34319101
	336522	Dunham, I. et.al.	Minus	34320169-34320056
		_		
~=	336524	Dunham, I. et.al.	Minus	34321055-34320921
25	336527	Dunham, I. et.al.	Minus	34322071-34321966
	336534	Dunham, I. et.al.	Minus	34326797-34326620
	336536	Dunham, I. et.al.	Minus	34327678-34327538
				34331316-34331183
	336542	Dunham, I. et.al.	Minus	
	336556	Dunham, I. et.al.	Minus	34375244-34374907
30	336557	Dunham, I. et.al.	Minus	34375443-34375341
	336558	Dunham, I. et.al.	Minus	34375825-34375698
	336559	Dunham, I. et.al.	Minus	34376430-34376261
	336560	Dunham, I. et.al.	Minus	34376814-34376596
	336561	Dunham, I. et.al.	Minus	34377168-34376928
35	336597	Dunham, I. et.al.	Minus	7627912-7627757
	336601	Dunham, I. et.al.	Minus	13265853-13265654
			Minus	1304281-1304212
	336642	Dunham, I. et.al.		
	336645	Dunham, I. et al.	Minus	1351268-1351168
	336662	Dunham, I. et.al.	Minus	2158060-2157993
40	336684	Dunham, I. et.al.	Minus	1993558-1993481
	336676	Dunham, I. et.al.	Minus	2022565-2022497
	336684		Minus	2158060-2157993
		Dunham, I. et.al.		
	336686	Dunham, I. et.al.	Minus	2160698-2160486
	336714	Dunham, I. et.al.	Minus	3094026-3093871
45	336719	Dunham, I. et.al.	Minus ·	3331631-3331503
	336736	Dunham, i. et.al.	Minus	4093128-4093041
	336744	Dunham, L. et.al.	Minus	4333001-4332848
	338786	Dunham, i. et.al.	Minus	5419973-5419873
	336793	Dunham, Letal.	Minus	5631345-5631237
50	336859	Dunham, L et.al.	Minus	8201756-8201561
50	336863		Minus	
		Dunham, Let.al.		8396673-8396425
	336933	Dunham, I. et.al.	Minus	11760045-11759981
	336942	Dunham, I. et.al.	Minus	12027537-12027455
	336960	Dunham, I. et.al.	Minus	13267243-13267172
55	336969	Dunham, I. et.al.	Minus	13725722-13725643
JJ				
	336971	Dunham, I. et.al.	Minus	13732308-13732221
	337003	Dunham, i. et.al.	Minus	15523541-15523422
	337011	Dunham, I. et.al.	Minus	16106423-16106080
		Dunham, I. et.al.	Minus	19034423-19034321
60			Minus	19077452-19077323
JU	337072	Dunham, I. et.al.		
	337086	Dunham, I. et.al.	Minus	19657011-19656881
	337140	Dunham, I. et.al.	Minus	22849450-22849388
	337193		Minus	24594969-24594874
	337256	Dunham, I. et.al.	Minus	27659956-27659876
65			Minus	
O)		Dunham, I. et.al.		28429017-28428848
	337284	Dunham, I. et.al.	Minus	28491414-28491094
	337293	Dunham, I. et.al.	Minus	28846334-28845873
	337316	Dunham, L et.al.	Minus	29857129-29656997
	337326	Dunham, I. et.al.	Minus	30017199-30017069
	W/ JED	wantanih is creas	1441117	22011100-00011000

	337382	Dunham, i. et.al.	Minus	31233666-31233579
	337392	Dunham, I. et.al.	Minus	31442311-31442229
	337406	Dunham, I. et.al.	Minus	31864840-31864588
_	337412	Dunham, Letal.	Minus	31916487-31916312
5	337419	Dunham, I. et.al.	Minus	32021496-32021170
	337436	Dunham, I. et al.	Minus	32257869-32257739
	337455	Dunham, I. et.al.	Minus	32434517-32434425
	337509	Dunham, I. et.al.	Minus	33414613-33414498
	337518	Dunham, I. et.al.	Minus	33798750-33796647
10	337529	Dunham, I. et.al.	Minus	34043668-34043546
	337533	Dunham, I. et.al.	Minus	34193388-34193261
	337539	Dunham, I. et.al.	Minus	34254490-34254322
	337551	Dunham, I. et.al.	Minus	34524446-34524362
	337553	Dunham, I. et.al.	Minus	24230-24160
15	337591	Dunham, I. et.al.	Minus	1006414-1006184
	337592	Dunham, I. et.al.	Minus	1007791-1007634
	337593	Dunham, I. et.al.	Minus	1009460-1009291
	337607	Dunham, I. et.al.	Minus	1355719-1355637
	337612	Dunham, I. et.al.	Minus	1570235-1570142
20	337635	Dunham, I. et.al.	Minus	2169690-2169569
	337824	Dunham, I. et.al.	Minus	4559540-4559266
	337825	Dunham, L et al.	Minus	4567155-4567005
	337850	Dunham, I. et al.	Minus	5077143-5076943
	337854	Dunham, I. et.al.	Minus	5153435-5153272
25	337913	Dunham, I. et.al.	Minus	6149843-6149786
	337915	Dunham, I. et.al.	Minus	5922748-5922690
	337968	Dunham, I. et.al.	Minus	7095797-7095680
	338010	Dunham, I. et.al.	Minus	7754282-7754184
	338012	Dunham, I. et.al.	Minus	7761421-7761351
30	338017	Dunham, I. et.al.	Minus	7864521-7864401
<b>J</b> U	338065	Dunham, I. et.al.	Minus	7235048-7234950
	338094	Dunham, I. et.al.	Minus	9595602-9595440
	338129	Dunham, I. et.al.	Minus	10915338-10915237
	338132	Dunham, I. et al.	Minus	10989617-10989530
35	338150	Dunham, I. et.al.	Minus	11478551-11478355
<i>JJ</i>	338157	Dunham, I. et.al.	Minus	11731444-11731375
	338195	Dunham, I. et.al.	Minus	13484103-13483972
	338255	Dunham, I. et.al.	Minus	15242294-15242231
	338276	Dunham, I. et.al.	Minus	16109555-16109398
40	338431	Dunham, I. et.al.	Minus	19747608-19747496
	338448	Dunham, I. et.al.	Minus	20151152-20151054
	338451	Dunham, I. et.al.	Minus	20174286-20174193
	338477	Dunham, i. et.al.	Minus	20821897-20821838
	338534	Dunham, L. et.al.	Minus	21771238-21771170
45	338682	Dunham, L et.al.	Minus	24800712-24800461
	338684	Dunham, L. et.al.	Minus	24827522-24827428
	338689	Dunham, I. et.al.	Minus	24893073-24892972
	338695	Dunham, I. et.al.	Minus'	25104153-25104016
	338825	Dunham, I. et.al.	Minus	27664798-27664712
50	338842	Dunham, L. et.al.	Minus	27824238-27824079
	338893	Dunham, L. et.al.	Minus	28491807-28491631
	338904	Dunham, I. et.al.	Minus	28766345-28766253
	338935	Dunham, I. et.al.	Minus	29071537-29071461
	339022	Dunham, I. et.al.	Minus	30523414-30523289
55	339034	Dunham, I. et.al.	Minus	30621603-30621422
	339190	Dunham, I. et.al.	Minus	32403103-32402985
	339212	Dunham, I. et.al.	Minus	32494335-32494210
	339213	Dunham, I. et.al.	Minus	32496590-32496440
	339216	Dunham, I. et.al.	Minus	32504250-32504109
60	339233	Dunham, I. et al.	Minus	32751331-32751238
	339258	Dunham, I. et.al.	Minus	32934756-32934615
	339262	Dunham, I. et.al.	Minus	32971258-32971090
	339263		Minus	32974634-32974452
	339265		Minus	32975943-32975806
65	339338		Minus	33468728-33468606
	339396		Minus	34017306-34017205
	339400		Minus	34045024-34044940
	339425		Minus	34407911-34407798
	325207	6552430	Plus	140049-140170

	329568	3962490	Plus	36331-36750
	329517	3983513	Minus	53197-53269
	325313	5866865	Minus	27385-28192 75189-75264
5	325327 325317	5866875 5866878	Plus Minus	156551-156649
J	325257	5866895	Plus	10867-10955
	329632	6729060	Plus	192813-193017
•	325371	5866920	Minus	1035422-1035538
10	325375	5866920	Minus	1165503-1165810
10	325378	5866920	Minus Plus	1187981-1188167 286823-286991
	325469 325470	6017034 6017034	Plus	287578-287663
	325576	6552443	Minus	137769-137894
	325505	6682451	Minus	240852-240946
15	325543	6682452	Plus	151873-152057
	329835	5302817	Minus	62522-62622 64969-65078
	329636 325593	5302817 5866992	Minus Minus	469726-469860
	325675	5867014		955517-955711
20	325704	5867028	Plus	156198-156387
	325682	6138923	Plus	370618-370763
	325785	6381957	Plus	61849-62003
	325666 325818	6469822 6682490	Plus Minus	16769-16857 120278-120559
25	329777	6002090	Minus	191389-191479
	329768	6015501	Plus	118315-118422
	329759	6048280	Minus	37647-37730
	329731	6065783	Plus	158772-158900
30	329687 329676	6117856 6272128	Minus Minus	22165-22288 142207-142359
50	329667	6272129	Plus	101355-101745
	329669	6272129	Plus	131223-131291
	329670	6272129	Plus	131351-131495
25	329641	6468233	Minus	105995-106107
35	329791 325826	6469354 5867048	Minus Minus	131982-132089 46361-46458
	325829	5867052	Plus	232674-233060
	329888	6067149	Minus	37227-37473
40	329893	6525313	Minus	166123-166791
40	329899	6563505	Minus	111058-111783 17349-17606
	325988 325855	5867064 5867067	Plus Plus	276141-276251
	325999	5867073	Plus	149115-149192
	326001	5867073	Plus	155223-155348
45	325886	5867087	Plus	194694-194915
	325882 325905	5867087 5867104	Minus Plus	8178-8347 78779-78876
	325922	5867122	Minus	329063-329134
	325937	5867132	Minus	152633-152902
50	325960	5867147	Minus	162506-162635
	325961	5867147	Minus	165106-165209
	325838 325839	6552452 6552452	Pius Pius	171451-171532 181964-182037
	325840	6552452	Pius	184380-184547
55	325844	6552453	Minus	14188-14332
	325870	6682492	Plus	228209-228297
	329984	4646193	Minus	139780-139890 62584-62691
	329976 329935	4878063 6165200	Minus Minus	69059-69127
60	329916	6223624	Plus	36396-37195
•	330021	6671889	Plus	120938-121032
	330024	6671908	Minus	1005-1270
	330028	6671908	Minus	30015-30144
65	326033 326036	5867178 5867178	Plus Minus	37261-37333 120215-120273
UJ	326056	5867184	Minus	181553-181690
	326116	5867193	Plus	45548-45604
	326122	5867194	Plus	144397-144683
	326138	5867203	Minus	179374-179436

	326145 5867204	Minus	52599-52814
	326180 5867211	Minus	182758-183222
	326201 5867216 326207 5867222	Minus Plus	166168-166959 48139-48219
5	326226 5867230	Plus	52644-52705
-	326233 5867232	Plus	124788-124863
	326238 5867260	Plus	64282-64338
	326241 5867260	Minus	181648-181916
10	326243 5867261	Plus	123838-123978
10	326251 5867263	Minus Plus	82716-82822 122114-122765
	326268 5867267 326124 5916395	Plus	407102-407560
	326339 6056311	Minus	164637-165251
	330049 4567182	Minus	314662-315210
15	326358 5867293	Plus	9122-9195
	326365 5867297	Minus	96630-96764 32299-32402
	326379 5867327 326382 5867327	Plus Minus	50420-50503
	326390 5867340	Minus	108814-110592
20	326424 5867369	Minus	168329-168409
	326453 5867399	Plus	86222-86423
	326472 5867404	Plus	293739-293940
	326492 5867422	Plus	120768-120991 .532153-532280
25	326533 5867441 330117 6015201	Minus Minus	7340-7680
23	330117 6015201	Plus	11403-11677
	330116 6015202	Plus	12109-12418
	330095 6015278	Plus	15343-15814
20	330096 6015278	Plus	49370-49458
30	326644 5867559 326713 5867595	Plus Plus	42684-42819 121511-121798
	326713 5867595 326745 5867611	Plus	127130-127318
	326752 5867615	Minus	1214-1562
	326753 5867616	Plus	12454-12511
35	326598 5867634	Plus	68955-69014
	326667 6552455	Plus Minus	142311-142441 111390-111463
	326855 6552460 326812 6682504	Pius	189811-189941
	327005 5867664	Plus	610847-610907
40	327008 5867664	Plus	928737-928811
	326896 5867680	Minus	12032-12122
	326904 5867684	Minus	9280-9606
	326951 6004446 326941 6004446	Plus Plus	193812-193998 62018-62896
45	326943 6004446	Minus	89242-89427
	326928 6456782	Minus	291007-291219
	326958 6469836	Minus	42952-43082
	326959 6469836	Minus	43159-43301 694486-694998
50	327039 6531965 327127 6682520	Plus Plus	41925-42083
30	330158 6580367	Plus	81966-82456
	327204 5867447	Plus	165135-165239
	327208 5867447	Plus	180805-180864
EE	327266 5867462	Minus	82400-82615
55	327277 5867473 327289 5867481	Minus Plus	165616-165715 49296-49536
	327296 5867492	Plus	7627-8166
	327237 5867544	Minus	59702-59813
	327145 5867548	Minus	40482-40551
60	327333 5902477	Minus	141448-141609
	327335 5902477 327343 6017017	Minus Minus	142979-143124 12288-12395
	327350 6249563	Minus	41890-41985
	327358 6552411	Minus	3802-3950
65	327360 6552411	Minus	6255-6422
	327409 5867750	Minus	52949-53011
	327424 5867751	Pius Pius	160442-160598 1320-1403
	327430 5867754 327470 5867772	Pius Pius	150910-150973
	JE1410 3001112	Lina	.000101010

	327460 6004455	Plus	175245-175343
	327498 6017023	Minus	42178-42283
	327509 6117815	Minus	54882-55053
_	327510 6117815	Minus	56824-56944
5	327512 6117815	Plus	176258-176325 19105-19175
	327535 6525279 330163 6042042	Plus Minus	20321-20385
	330171 6648220	Plus	110889-111575
	327579 5867824	Minus	37229-38335
10	327672 5867843	Minus	69649-69740
	327629 5867872	Plus	49692-49811
	327640 5867890	Plus Plus	9448-9566 205871-205927
	327649 5867899 327612 6525283	Plus	2747-2924
15	327718 6525284	Plus	86123-86186
	327801 5867924	Plus	23239-23348
	327762 5867961	Minus	50303-50439
	327763 5867961	Plus	229347-229478
20	327776 5867964 327822 5867968	Minus Minus	164308-164486 168886-169633
20	327823 5867968	Minus	170359-170433
	327807 5867968	Plus	33745-33811
	327845 6531962	Plus	193402-193549
~=	330228 6013527	Minus	3719-3787
25	330190 6165182	Plus Plus	36103-36243 158474-158656
	328122 5868031 328132 5868038	Minus	126737-126839
	328159 5868065	Minus	52957-53162
	328168 5868071	Ptus	60321-60479
30	328175 5868073	Plus	208-271
	328217 5868096	Minus	3742-4362
	327865 5868130	Plus Minus	61503-62205 2893-3046
	327866 5868131 327870 5868131	Plus	53558-53757
35	327879 5868142	Minus	77722-77793
	327902 5868158	Minus	133339-133467
	327918 5868165	Plus	547530-547591
	327934 5868184	Pius	41830-42036 46497-46682
40	327959 5868210 327976 5868212	Minus Minus	348301-349409
40	328020 5902482	Minus	556386-556652
	328042 5902482	Minus	1985085-1986626
	328008 5902482	Plus	296663-297151
45	330301 2905862	Minus	4420-5781
45	330299 2905881 328274 5868219	Minus Minus	1020-1382 31244-31439
	328595 5868224	Pius	148738-148967
	328591 5868227	Minus	237647-237726
	328668 5868254	Minus	10888-10984
50	328677 5868256	Minus	58708-58950
	328687 5868262 328706 5868270	Plus Plus	624479-624585 165501-165614
	328711 5868271	Minus	97797-97990
	328730 5868289	Plus	8068-8214
55	328732 5868289	Plus	37437-37550
	328734 5868289	Plus	50559-50747
	328752 5868298 328755 5868301	Minus Minus	114911-115087 145959-146446
	328761 5868302	Minus	239308-239412
60	328775 5868309	Plus	12845-12920
	328784 5868309	Minus	74523-74604
	328787 5868309	Plus	135772-135963
	328809 5868327	Plus	91792-91849
65	328829 5868337 328280 5868352	Plus Plus	36309-36630 160563-160631
O)	328311 5868371	Minus	170560-170826
	328318 5868373	Plus	414945-415620
	328323 5868373	Minus	1080089-1080235
	328348 5868383	Minus	260272-260379

	328377 5868390	Plus	16947-17023
	328436 5868417	Plus	203760-203904
	328504 5868471	Plus	47064-47217
	328506 5868471	Plus	60716-60830
5	328522 5868477	Plus	1972307-1972452
	328525 5868482	Plus	12387-14313
	328541 5868486	Plus	130956-131050
	328662 6004473	Plus	1184773-1184855
	328663 6004473	Plus	1185279-1186634
10	328803 6004475	Minus	291716-291948
	328304 6004478	Minus	3884-3952
	328927 5868500	Minus	428829-428893
	328936 5868500	Minus	1352202-1352259
	328939 6004481	Minus	131139-131320
15	328941 6456765	Minus	9817-9885
	328948 6456765	Plus	28227-28413
	328968 6456775	Plus	117442-118283
	330316 6007576	Minus	119761-119931
	330350 3056622	Minus	26413-26820
20	330351 3056622	Minus	27522-27614
	330348 4544475	Minus	19855-19962
	329034 5868561	Minus	32819-32939
	329046 5868569	Plus	18971-19030
	329053 5868574	Plus	426453-426541
25	329186 5868711	Minus	13108-13225
	329237 5868729	Plus	133238-133339
	329276 5868762	Minus	222629-222709
	329333 5868806	Plus	392666-392748
	329376 5868859	Plus	52356-52694
30	329384 5868869	Minus	116524-116662
	329140 6017060	Plus	290842-290905
	329317 6381976	Plus	614823-615209
	329319 6381976	Plus	721390-721470
	329129 6588026	Plus	144569-144712
35	329373 6682537	Minus	38950-39301
	329412 6682553	Minus	68948-69041
	329424 5868879	Plus	362196-362344
	329446 5868886	Plus	84776-84899
	329449 5868886	Plus	97697-97771

**TABLE 14:** shows genes, including expression sequence tags, down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

	Pkey:			probeset identifier number					
10	ExAccn:			ccession number, Genbank accession numbe					
10	UnigeneiD:		Unigene number						
	Unigene	Title:		Unigene gene title					
	R1:		Backfround	i subtracted normal prostate : prostate tumor tissue					
15	Pkey	ExAcen	UnigeneiD	Unigene Title	R1				
		AA281133	Hs.88808		18.53				
	320875	D60641	Hs.131921		14.55				
		Al251936	Hs.146298	= 7 · 7	12.17				
20		AA418762	Hs.190044		10.55				
20		AA947682		ESTs; Weakly similar to Chain A; Cdc42hs-Gdp Complex [H.sapiens]	10.17				
		AA543096	Hs.13648	ESTs; Highly similar to mitogen-induced [M.musculus]	9.2				
	323486	C05278	Hs.166800	ESTS; Moderately similar to [PYRUVATE DEHYDROGENASE(LIPOAMIDE)] KINASE ISOZYME 4 PRECURSOR [H.saplens]	8.87				
	324882	AW419080	Hs.250645	ESTs	8				
25	330569	U57796	Hs.57679	zinc finger protein 192	7.88				
	330126			CH21_p2 gi 6093735	7.8				
	316265	AA737400	Hs.142230		7.7				
	323045	AA148950	Hs.188836		7.64				
		R58399	Hs.146217		7.4				
30		AA465192	Hs.16514		7.15				
		AI766732	Hs.201194		7				
		AW341754	Hs.189305		6.83				
		AW452118	Hs.257533		6.74				
25		AA743396	Hs.189023		6.49				
35	329192			CH.X_hs gi 5868716	6.1				
		AA627642	Hs.4994	transducer of ERBB2; 2 (TOB2)	5.99 5.82				
		AW500106	11-007504	EST cluster (not in UniGene) with exon hit	5.8				
		AW452382	Hs.257564		5.68				
40		AA679001	Hs.192221	ESTS; Weakly similar to !!!! ALU CLASS B WARNING ENTRY !!!! [H.sapiens]	5.43				
40		AA034364 AW298141	Hs.157975		5.4				
		F30712	U2'191919	EST cluster (not in UniGene) with exon hit	5.35				
		AI627358	Hs.148367		5.31				
	•	D84454		solute carrier family 35 (UDP-galactose transporter); member 2	5.25				
45	334719	DOMO	115.21000	CH22 FGENES.421_30	5.25				
75		AA813958	He 207727	ESTs; Moderately similar to KIAA0071 [H.sapiens]	5.22				
		AI625304	Hs.190312		5.22				
		AW511298	Hs.256067		5.19				
		H86747		KIAA1116 protein	5.11				
50		Al739168		EST duster (not in UniGene)	4.97				
		AW206435	Hs.146057		4.97				
		N50080	Hs.117827	ESTs	4.78				
	316160	AW197887	Hs.253353	ESTs	4.63				
	313833	AA766825		EST cluster (not in UniGene)	4.58				
55	315850	AW270550	Hs.116957	ESTs	4.53				
	303124	AF161350		EST cluster (not in UniGene) with exon hit	4.46				
	323346	AL134932	Hs.143607	ESTs	4.4				
		AA913591	Hs.126480		4.35				
<b>~</b>		AW501678	Hs.164577		4.28				
60		AA331906		EST cluster (not in UniGene) with exon hit	4.25				
		AA301270		EST duster (not in UniGene)	4.22				
		AW468119	11 45515	EST cluster (not in UniGene)	42				
		AI733395	Hs.129124		4.1 4.08				
65		R42049	Hs.195473		4.03				
UJ		AW451570	Hs.126850		4.03				
	318/50	AA621606	Hs.117956	EO19	7.00				

	322520			EST cluster (not in UniGene)	4
		AW026761	Hs.134374		4
		Al990652	Hs.208973		3.96
5		Al939339	Hs.146883		3.95
5		Al364186	Hs.257125	EST singleton (not in UniGene) with exon hit	3.94
		AW449204 W60843	Hs.31570		3.93
		Al679131	Hs.201424		3.9
		AA541323	Hs.115831		3.88
10		N53442	Hs.143443		3.83
		AW203986	Hs.213003		3.79
		AA481027	Hs.127336	ESTs; Wealty similar to ORF YGR245c [S.cerevisiae]	3.75
		D59945		EST cluster (not in UniGene)	3.74
	313188	AI039702	Hs.179573	collagen; type I; alpha 2	3.73
15	314187	AA804409	Hs.118920		3.73
		AA765470	Hs.122826		3.7
		D81150		EST cluster (not in UniGene) with exan hit	3.68 3.66
		Z38720	Hs.151014		3.59
20		AA011603	U. 400000	EST cluster (not in UniGene)	3.52
20		H95082	Hs.102332	EST cluster (not in UniGene)	3.5
		AA631739 AA317561		EST cluster (not in UniGene)	3.49
		AW516519	Hs.115130		3.47
		AW242630	110.110100	EST singleton (not in UniGene) with exon hit	3.46
25	300038	AULTEOOD		AFFX control: MuriL4	3.38
		AI088192	Hs.135474	ESTs; Weakly similar to ATP-DEPENDENT RNA HELICASE A [H.sapiens]	3.36
		AA731520	Hs.170504		3.35
	304356	AA196027	Hs.195188	glyceraldehyde-3-phosphate dehydrogenase	3.34
	314610	A1948688	Hs.191805	ESTs .	3.33
30	329815			CH.14_p2 gi 6624888	3.32
		A1745387	Hs.239124		3.31 3.3
		N53574	Hs.158932		3.28
	329218	4144440740	Un 4FFFF	CH.X_hs gij5868726	3.28
35		AW440742	Hs.155556	EST cluster (not in UniGene) with exon hit	3.25
33		AW503637 Al347274		EST singleton (not in UniGene) with exon hit	3.25
		AA324975	He 128993	ESTs; Weakly similar to KIAA0465 protein [H.sapiens]	3.25
		AA700439	Hs.188490		3.25
	334061	7411 00 100		CH22_FGENES.327_14	3.23
40	336036			CH22_FGENES.678_7	3.23
	321477	H67818	Hs.222059	ESTS	3.21
	315760	AW139383	Hs.245437		3.2
		AA811713	Hs.163222		3.2 3.2
4 =		AW235248	Hs.79828		3.2 3.19
45		AA304986	Hs.145704		3.17
		AA740616		EST cluster (not in UniGene) EST cluster (not in UniGene)	3.16
		AA814859 AI833131	Hs.179100		3.11
	321217	AA258222	Hs.87757		3.1
50	317991	AI989538	Hs.191074		3.08
50		AA749062	Hs.180285		3.08
		H26953		EST cluster (not in UniGene)	3.08
		AI824829		EST singleton (not in UniGene) with exon hit	3.08
	300778	AA236233	Hs.188716		3.07
55	316667	AW015940	Hs.232234		3.07
		AW503101		EST cluster (not in UniGene)	3.07
		AW293046	Hs.255158		3.07 3.06
		Al239706	Hs.189886		3.05
60		AW297967	Hs.188181 Hs.236993		3.03
w		AW043620 AA247755	(13.230333	EST cluster (not in UniGene)	3.01
		AA830053	Hs.126798		3.01
		AA009660	Hs.251948	ESTs; Moderately similar to T07D3.7 [C.elegans]	2.99
		T27119		EST cluster (not in UniGene)	2.98
65		AI076370	Hs.134037		2.97
	331389	AA458637	Hs.152207	ESTs	2.96
		AA053294		EST singleton (not in UniGene) with exon hit	2.95
		AW340014		EST singleton (not in UniGene) with exon hit	2.95
	319661	H08035	Hs.21398	ESTs; Moderately similar to PUTATIVE GLUCOSAMINE-6-PHOSPHATE	

				ISOMERASE [H.sapiens]	2.95 2.93
		A1699484	LI- 400000	EST cluster (not in UniGene)	2.93
	332864	AA149508	Hs.103288	ES18 CH22_FGENES.28_4	2.92
5	300027			O(£2_1 d1116020_4	
-	OUGE	M11507		AFFX control: transferrin receptor	2.91
	324330	AA884766		EST cluster (not in UniGene)	2.88
		AA137114	Hs.170291		2.88 2.88
Λ	333916	710070		CH22_FGENES.296_5	2.87
.0	318885	AI040125	Hs.150521	EST cluster (not in UniGene)	2.87
		AA233056	Hs.191518		2.85
		AA825148		F-box protein Fow1b	2.84
	335862			CH22_FGENES.629_7	2.83
5		AW205409	Hs.127748		2.82
		Al610397	Hs.159560		2.81 2.81
		Al419909	Hs.160994		2.81
		AA382603 R84237		EST cluster (not in UniGene) EST cluster (not in UniGene)	2.8
20		AA864468	Hs.135646	'	2.8
-		AA913887	Hs.126511		2.78
		AW277121	Hs.254881	ESTs -	2.78
	312479	A1950844	Hs.128738	ESTs; Weakly similar to non-lens beta gamma-crystallin like protein [H.sapiens]	2.77
. ~	332808			CH22_FGENES.7_10	2.75
25		AW293826	Hs.250610		2.75 2.73
		C06003	Hs.116456 Hs.208382		2.73
		AW517542 AW296076	NS.200302	EST singleton (not in UniGene) with exon hit	2.73
		AA683529	Hs.143119	ESTs	2.73
30		AW294020	Hs.117721	ESTs	2.72
		AA062971	Hs.181161	ESTs; Weakly similar to INHIBITOR OF APOPTOSIS PROTEIN 1 [M.musculus]	2.72
	322139	H53744		EST cluster (not in UniGene)	2.72
		H77679		EST singleton (not in UniGene) with exon hit	2.72 2.71
25	325602		11- 400000	CH.13_hs gi 5866994	2.71
35		R59096	Hs.136698	EST cluster (not in UniGene) with exon hit	2.71
		N75450 AA831215	He 150066	ESTs; Weakly similar to predicted using Genefinder [C.elegans]	2.69
		AI091458	Hs.134559		2.68
		R38715		Homo sapiens clone 24540 mRNA sequence	2.68
40		AI823999	Hs.162000	ESTs	2.68
	304968	AA614308		EST singleton (not in UniGene) with exon hit	2.67
		AI431345	Hs.161784		2.67 2.67
		AW193466	Hs.136525		2.65
45		A1057369	Hs.122536 Hs.250739		2.65
+3		AA135565 Al308989	Hs.156939		2.65
		AA704457		ESTs; Moderately similar to gag [H.sapiens]	2.65
		AW292417		ESTs; Moderately similar to high-risk human papilloma viruses E6	
				oncoproteins targeted protein E6TP1 alpha [H.sapiens]	2.64
50		N29974		EST cluster (not in UniGene)	2.64 2.64
	339047			CH22_DA59H18.GENSCAN.28-7	2.63
		AA492588	Hs.209584	EST cluster (not in UniGene)	2.62
		A!817933 R06841	N\$.ZV330*	EST cluster (not in UniGene)	2.62
55 .	300793	AI248571	Hs.186837		2.61
		AA836116	***************************************	EST cluster (not in UniGene)	2.6
	326505			CH.19_hs gi 5867435	2.6
	314987	AW015506	Hs.130730		2.6
<b>~</b>		AF090948		EST cluster (not in UniGene) with exon hit	2.59 2.58
60		H24244		ESTs; Weakly similar to Iprediction	2.57
		Al209108	Hs.143946	CH.X_hs gij5868728	2.56
	329224 328018			CH.06_hs gi 5902482	2.56
		AA324437	Hs.177230		2.55
65		AW157377	Hs.132910		2.55
	315183	AW136134	Hs.220277		2.55
•		AJ479011	Hs.170783		2.54 2.54
		AI743261 AW203174	Hs.131860		2.53
			ロスノンハンハ	FOIR	

	313966	Al807551	Hs.189061		2.53
	331263	AA015718		ze31a12.s1 Soares retina N2b4HR Homo sapiens cDNA clone	
			•	IMAGE:36574 3', mRNA sequence	2.51
_		AW055233	Hs.160870		2.5
5	302566	AA085996	Hs.248572	Human PAC clone DJ404F18 from Xq23	2.5
		AJ001408		EST cluster (not in UniGene) with exon hit	2.5
		Al613519		EST singleton (not in UniGene) with exon hit	2.49
	322347	AF086538		EST cluster (not in UniGene)	2.49
	316240	AA974253	Hs.120319	ESTs	2.49
10	323208	AA203415	Hs.136200	ESTs	2.48
	321643	W76005	Hs.32094	ESTs	2.48
	330723	AA243617		ESTs; Highly similar to db83 [R.norvegicus]	2.48
	323455	AA256675	Hs.200438	ESTs; Weakly similar to atypical PKC specific binding protein [R.norvegicus]	2.47
	308383	Al624497		EST singleton (not in UniGene) with exon hit	2.47
15	328744			CH.07_hs gl 5868290	2.47
		W45574	Hs.252497	ESTs	2.47
	328121			CH.06_hs gl 5868031	2.47
		AI670955	Hs.200151		2.46
	314954	AA521381	Hs.187726		2.45
20	302821	AA188868	Hs.173933	ESTs; Weakly similar to NUCLEAR FACTOR 1/X [H.sapiens]	2.45
	329454			CH.Y_hs gi 5868887	2.45
	336605			CH22_FGENES.420_4	2.45
		AI444628	Hs.256809		2.44
		AL135067	Hs.117182		2.44
25		M10098		ol: 18S ribosomal RNA	2.44
		Al671168	Hs.12285		2.43
		Al148353	Hs.120849		2.43
		Al765182	Hs.119903		2.43
20		M78276	Hs.255917		2.43
30		AA041455	Hs.209312		2.43 2.42
		AW135854	Hs.132458		2.42
	319401		Un oneens	EST cluster (not in UniGene)	2.42
	327871	AI744361	NS.200081	ESTs; Weakly similar to zinc finger protein Png-1 [M.musculus] CH.06 hs qli5868131	2.41
35	337173			CH22_FGENES.565-3	2.41
,,,		AA465635		EST cluster (not in UniGene) with exon hit	2.41
		AL118754		EST cluster (not in UniGene)	2.4
		AI791138	Hs.116768		2.4
		AA830515	Hs.222917		2.4
40		AA253351		STAT induced STAT inhibitor-4	2.4
		AA017595		ESTs	2.4
		Al701559		EST singleton (not in UniGene) with exon hit	2.39
	313035	N36417	Hs.144928	ESTs	2.37
	322114	AA643791	Hs.191740	ESTs	2.37
45	313671	W49823	Hs.145553	ESTs	2.37
	303211	AA099548	Hs.191436	ESTs; Highly similar to dJ1118D24.4 [H.sapiens]	2.37
	301256	AA932948		EST cluster (not in UniGene) with exon hit	2.36
	338165			CH22_EM:AC005500.GENSCAN.212-3	2.36
		AA557952		EST cluster (not in UniGene)	2.35
50		AA779704	Hs.168830		2.35
	312378			retinal degeneration B beta	2.35
	318625		Hs.193162		2.35
		AA663726	Hs.116922		2.35
		AA286678		EST duster (not in UniGene) with exon hit	2.34
55		AW292740	Hs.254815		2.34
		AA682305	Hs.133268		2.33
		AA642912		EST singleton (not in UniGene) with exon hit	2.33
		Al000320 Al651016	Un 040044	EST singleton (not in UniGene) with exon hit	2.33 2.33
50	321348		Hs.246311		2.33
50		Al903770	Hs.124344	EST duster (not in UniGene)	2.32
	336679	74000770	110.164044	CH22_FGENES.43-7	2.32
		AJ002574		EST cluster (not in UniGene)	2.32
	337357			CH22_FGENES.730-6	2.31
55		AW468066	Hs.257719	ESTs: Weakly similar to KIAA0986 protein (H.saplens)	2.31
	327120			CH.21_hs gij6531970	2.31
		AW250553		EST cluster (not in UniGene) with exon hit	2.3
		Al475490	Hs.170577		2.3
	315639	AA827652		EST cluster (not in UniGene)	2.3

	312189	T95594	Hs.187435	ESTs	2.3
		AA991705		EST singleton (not in UniGene) with exon hit	2.3
	327061	71.201.00		CH.21_hs gi 6531965	2.3
		AA759098	Hs.192007		2.3
5		Al968646	Hs.33862	<del></del>	2.29
J		AA203339	Hs.220750		2.29
					2.28
		Al680915	Hs.201379		2.28
	335250			CH22_FGENES.516_11	2.28
10		<b>Z</b> 38907		KIAA0888 protein	
10		AW294013	Hs.200942		2.28
	324980	AA969121	Hs.254296		2.28
	319429	Al608881	Hs.11482	ESTs; Highly similar to junctional adhesion molecule [H.sapiens]	2.28
	310601	Al970543	Hs.192605	ESTs	2.28
	318905	Z43395		EST cluster (not in UniGene)	2.28
15		AA252753	Hs.164039		2.27
		AA342250		ubiquitin specific protease 16	2.27
		AW292127	Hs.144758		2.27
		AA766025	Hs.238794		2.27
		AI697668	Hs.202241		2.26
20					2.26
20		AA229781	Hs.221962		2.26
		Al004614	Hs.130577		2.25
		AW474196	Hs.221604	ET 11.	
		AA769123		EST cluster (not in UniGene)	2.25
		AA968799	Hs.150289	in the second control of the second control	2.25
25		AA330095		EST cluster (not in UniGene)	2.25
	306620	Al000929		EST singleton (not in UniGene) with exon hit	2.24
	329109			CH.X_hs gij5868626	2.24
	311043	AI871209	Hs.177128	ESTs	2.24
	300228	Al458372	Hs.158748	ESTs; Weakly similar to synapsin lb [M.musculus]	2.24
30		Al193698		ribosomal protein L23a	2.24
		AI888045		EST singleton (not in UniGene) with exon hit	2.23
		Al493675	Hs.170332		2.23
		Al914939	Hs.212184		2.22
		AA358195	110,212101	EST duster (not in UniGene)	2.21
35	333149	77000100		CH22_FGENES.87_8	2.21
"		M86125	Hs.137487		2.21
			Hs.145068		22
		AI791617			2.2
		Al863952		arginyltransferase 1	22
40		R67430	Hs.172787		2.2
40		D78667		EST cluster (not in UniGene)	2.2
	328903			CH.08_hs gi[5868514	
		T19204		EST cluster (not in UniGene) with exon hit	22
		T08845		EST cluster (not in UniGene)	2.2
		A1865455	Hs.211818	ESTs; Moderately similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.saple	insj 2.19
45	335109			CH22_FGENES.494_15	2.18
	330878	AA131471	Hs.71440	ESTs	2.18
	311289	Al971362	Hs.231945	ESTs	2.18
	304608	AA513456		EST singleton (not in UniGene) with exon hit	2.18
	337393			CH22_FGENES.747-4	2.18
50	332812			CH22_FGENES.7_14	2.18
	327665			CH.04_hs gij5867839	2.18
		AW504859	Hs.237849		2.17
	326508	711100 1000		CH.19_hs gij6682496	2.17
		AW161535	Hs.258803		2.17
55			Hs.172900		2.17
<i>J J</i>		Al765651 AW276810	Hs.254859		2.16
		A1880843	Hs.223333		2.16
					2.16
		AI084182	Hs.186895		2.16
<i>c</i> n		AI015203	Hs.118015		2.15
60		AW139117	Hs.117494		
		AA406539	Hs.190958		2.15
		AA463262		EST cluster (not in UniGene)	2.15
		AF156548		EST cluster (not in UniGene)	2.15
~~		C03864		EST cluster (not in UniGene)	2.15
65	321205	AA002047		EST cluster (not in UniGene).	2.14
	320406	AA353895	Hs.152983	HUS1 (S. pombe) checkpoint homolog	2.14
	337646			CH22_EM:AC000097.GENSCAN.11-2	2.13
		AF174008		EST cluster (not in UniGene) with exon hit	2.13
		AA654772	Hs.186564	ESTs	2.13

	000040	#1000F44		POT de date facilis Hallows built access bit	0.40	
		A1066544			2.13	
		AA602917	Hs.156974		2.12	0.40
		AI821782		ESTS; Moderately similar to IIII ALU SUBFAMILY SC WARNING ENTRY IIII [H.sapi		2.12
~		Al800041	Hs.190555	<del></del>	2.11	
5		R66867		—— · · · · · · · · · · · · · · · · · ·	2.11	
		Al167877	Hs.143716	<del></del>	2.11	
		AW015206	Hs.178784		2.11	
	304384	AA235482	Hs.62954		2.11	
	314544	AA399018	Hs.250835	ESTs .	2.1	
10	319881	T72744		EST cluster (not in UniGene)	2.1	
	328078			CH.06_hs glj5868008	2.1	
	317354	AW090770	Hs.192271		2.1	
		Al738720			2.09	
		AW439969	Hs.218177		2.09	
15		Al761786			2.09	
		AA848118	Hs.221216		2.08	
	332933	700.00	110221210		2.08	
	325498				2.08	
		AW296067	Hs.124106		2.08	
20				T-1-	2.08	
20		AW149321	Hs.105411			
		AA640770			2.07	
		AA347452			2.07	
		AW450674	Hs.114696	<del></del>	2.06	
^-	326920				2.06	
25	327574				2.06	
	323207	Al052785	Hs.192201		2.06	
	303753	AW503733	Hs.170315	ESTs	2.05	
	305235	AA670480		EST singleton (not in UniGene) with exon hit	2.05	
	316055	AA693880			2.05	
30		AW445167	Hs.126036		2.05	
		AW408683	Hs.32922		2.05	
	335146				2.05	
		AI678183	He 170917		2.04	
		AA120970	Hs.143199	F	2.04	
35		R62925	Hs.243665	<del></del>	2.04	
55		AA290875	Hs.30120	<del></del>	2.04	
		Al215643	Hs.171381		2.03	
			HS.171301		2.03	
		W23285	He cocco			
40		AA282197	HS.89002		2.03	
40		AA994530			2.03	
		Al298794	Hs.129130		2.03	
		AJ493742	Hs.165210		2.02	
		AW294522	Hs.149991		2.02	
		AW245528	Hs.134754		2.02	
45	331286	AA137062	Hs.103853		2.01	
	311262	Al989942	Hs.232150	ESTs	2.01	
	335601			CH22_FGENES.581_41	2.01	
	311351	Al682303	Hs.201274	ESTs :	2.01	
		AA249018		EST cluster (not in UniGene)	2.01	
50	328190			CH.06_hs gi[5868077	2	
	338030				2	
	333940				2	
	328227				2	
		N27448	Hs.43944	<del> </del>	2	
55	335288		110.10011		2	
00		Al274307			2	
		AL134620			2	
		R21945	Hs.256153		2	
		AA502583	Hs.197271		2	
60		AADUZDOS	NS.19/2/1		1.99	
UU	327489	AW/47E0/4	U= 400400			
		AW175841	Hs.192183		1,99	
		AW168096	rt5.195168		1.99	
	337043	410004=-	11 00-01-		1.98	
65		Al828174	Hs.227049		1.98	
65		Al370434			1.98	
	328656				1.98	
		AA813784	Hs.123001	<del></del>	1.98	
		W45302			1.98	
	315259	AA701499	Hs.148115	ESTs	1.98	

	313171	N67879	Hs.157695	ESTs	1.97
		Al241421	Hs.132236	ESTs	1.97
		N66393	Hs.102754	ESTs	1.97
		Al962180	Hs.226803		1.97
5	335864	72002.00			1.97
_		W00545	Hs.171785		1.97
		AA868267	Hs.85524		1.96
		H15474			1.96
		AA862973	Hs.220704	Tierne authoris diene der to the de la constant de	1.96
10		Al373163	Hs.170333	2010	1.96
IU			115.170555		1.96
		AW090537			1.96
		AW028820	Un 002004	To a succession of the success	1.95
		Al820675	Hs.203804	ESTs; Weakly similar to cDNA EST EMBL:T02216 comes from this gene [C.elegans	
15		AW373446	H2. 103000	CHOIC ENTACONEED CENECAN 185 OF	1.95
13	338112	4141400400	11-054000		1.95
		AW468402	Hs.254020		1.95
	325240			a. n. o _ a diament	1.95
		AA412102	HS.250911		1.85
20	332252	N63882		za21f9.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	4.05
20					1.95
		AW237425	Hs.253817	20.0	1.95
	326023			other Silvania	1.95
		H86021		Total stands as the state of the state of	1.94
	324183	AA402453	Hs.113011	-2010	1.94
25	336276			4,125 ⁻ , 42-12-11-12-1	1.94
•	334913			o: ==	1.94
	325417			41 11 12 11 10 Billionanna	1.94
	318489	AW043590	Hs.225023		1.94
	318455	AI148763		LOT GLOCAT (NOTAL GLACIA)	1.94
30	306890	Al092235		COT OR BOTON (HOLES OF DESCRIPTION	1.94
	315073	AW452948	Hs.257631	ESTs	1.94
	321289	R84687	Hs.226306	COIV	1.94
		Al689808		EST singleton (not in UniGene) with exon hit	1.93
		AA968967		EST singleton (not in UniGene) with exon hit	1.93
35	331320	AA262999	Hs.42788	ESTs	1.93
		AA501412	Hs.191688	ESTs; Weakly similar to Pro-Pol-dUTPase polyprotein [M.musculus]	1.93
		AW168753			1.93
	327014				1.93
		AW025860			1.93
40		AA995223	Hs.129559		1.92
		AA019806	Hs.108447		1.92
		N50545	Hs.159200		1.92
	327752	1100010			1.92
		AA295490		EST cluster (not in UniGene)	1.92
45		AW297762	Hs.255690		1.91
15		AA608787	Hs.112590	25.0	1,91
		AL036947	1.0.112000	<del></del>	1.91
		AA317554		<b>20</b> 1 <b>3000</b> (1.01 -1 010-010)	1.91
		AI765013	Hs.209128		1.91
50		Al246374	Hs.185861	20.0	1.91
<b>J</b> U		AA322155	110.100001		1.91
		AW286132	Hs.166674	Co. Giboto, frictin consecuto,	1.91
		AA489697	Hs.145053	20.0	1.91
		AW518573			1.91
55		AA354549			1.91
JJ			110.41101	tionic copies and a grant control of the control of	1.9
	334150		Un 005040		1.9
		AW450967	Hs.235240		1.9
		AW207642	Hs.174021	20.0	1.9
<b>6</b> 0		AI031771	Hs.132586	2010	1.9
60	326507			0.11407.10 Bilana. 100	1.9
		AA405696		and the state of t	
	336268		Lia 440.000	6.125. dr. 1201.005.	1.9 1.9
		A1985544	Hs.116429	40.0	
~=	325824		II- A4866	6111107-1-0 Bilannia 1-0	1.9
65		AA737780	Hs.213392	2010	1.9
		AA418583	Hs.143821	20.0	1.9
		AA961643	Hs.127716		1.89
		Al147341	Hs.146734		1.89
	จกระจัก	AI075803		FST signiaton (not in UniGene) with exon hit	1.89

	302426	AL049925	Hs.225984	DKFZP547G0910 protein	1.89
	320127	H72615	Hs.17268	ESTs	1.89
	337736				1.89
_		AA262755	Hs.194264	<del></del>	1.88
5		AJ377505	Hs.158835		1.88
		Al732169	Hs.105429		1.88
		AI004377	Hs.200360		1.88
		AW205604		ESTs; Weakly similar to !!!! ALU SUBFAMILY SP WARNING ENTRY !!!! [H.sapiens]	
10		Al627478	Hs.187670	=	1.88
10		Al972146	Hs.192756		1.88
		AA007374		(interest property	1.88
		U09060			1.88
	329511			annual and annual a	1.88
15		AI699412	Hs.201925		1.87
15		AI815985			1.87
	301153	AA725670	HS.120485	ESTs; Weakly similar to serine/threonine kinase with SH3 domain; leucine	1.87
	000000	N28271	Lla 470040	abben annum and kroning some annum by marketing	1.87
			Hs.176618		1.87
20		AA055475			1.87
20		Al159863	Hs.143713	<del></del>	1.87
		AW291847	ΠS.121/15		1.86
		Al827817	Un 19900	and the same of th	1.86
		R84768	LI27199		1.86
25	325587	A100.4040	Hs.158906		1.86
23		Al884313	FIS. 150900		1.86
		R13085 AA317915			1.86
		MA31/813			1.86
	338427	Al352293	Hs.191098		1.85
30		H85330	Hs.146060	25.5	1.85
<b>J</b> O .		F05865			1.85
		AJ230822	110.240100	—	1.85
		AJ679966	Hs.150603	Det englesen (norm energy mer energy m	1.85
		Al239811	Hs.157491		1.85
35		AW016437	Hs.233462		1.84
-		AA278347	Hs.126078		1.84
	335586				1.84
	339209				1.84
		Al419692			1.84
40		AF055136	Hs.248162		1.84
		H87213	Hs.158092		1.84
	301239	AA807558		EST cluster (not in UniGene) with exon hit	1.84
	332434	N75542	Hs.75356	transcription factor 4	1.84
	327192				1.83
45	310214	Al220072	Hs.165893		1.83
	320516	R33857	Hs.181479	20.0,	1.83
	324231	W60827			1.83
	336616				1.83
<b>50</b>	328799				1.83
50		AW504161			1.83
		AA766707	Hs.153039		1.83
		L28168		,	1.82
		AL021397	Hs.137576	The state of the s	1.82
5 E	320187				1.82
55		R78808			1.82
		AA829535			1.82
		AJ569349			1.81 1.81
		W78877	Hs.40111	<del></del>	1.81
60		AI915122			1.81
60		H90265	Hs.100636		1.81
	329519	AA220982			1.81
			Hs.139181		1.81
	320097	N62937	115.105101		1.81
65		AA481271	Hs.193945		1.81
<del>5</del> 5		AI420990	Hs.161303	2017	1.81
	325866	ハート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 13. 19 1903		1.81
		Z78343			1.8
	333712	2,000			1.8

				•	
	313457	AA576052	Hs.193223	FSTs .	1.8
		H85687	Hs.117927		1.8
	330260	1100001	113.111721		1.8
		41050000	11- 40 <del></del> 44	a. mar Zira 8 dans . mar .	
2		A1656320	Hs.197711	TEA 1	1.8
5	329522				1.8
	322889	AA081924	Hs.211417		1.8
	300175	Al275011	Hs.204877	ESTs	1.8
	330976	H20560	Hs.244624	ESTs	1.8
	300208	Al341180	Hs.196115	ESTs; Weakly similar to FIBRILLIN 1 PRECURSOR [H.sapiens]	1.79
10	319635				1.79
		AA730673	Hs.188634		1.79
					1.79
		AI400310	Hs.148958		1.79
		AW292760		and the state of t	
15	326506			and the second s	1.79
15	319845	AA649011	Hs.187902	<del></del>	1.79
	300280	Al623739	Hs.186387	ESTs	1.79
	312180	Al248285	Hs.118348	ESTs	1.79
	313058	D81015	Hs.125382	ESTs	1.79
	330120				1.78
20	328412				1.78
		NM_000565		o 2.10 8-10-00	1.78
					1.78
		A1475949	Lie DOTE14		1.78
		AW205705	Hs.207514		
05	330282				1.78
25		Z43011	Hs.21169		1.78
	312486	AA845630	Hs.117904		1.78
	325450			CH.12_hs gi 5866941	1.78
	321206	H54178	Hs.226469	ESTs	1.78
		H20826	Hs.31783	ESTs	1.78
30		AA333666			1.77
-		Al264671	Hs.164166		1.77
		AI540166	Hs.129563		1.77
					1.77
		AI683782	Hs.128245		
25		AL038841	MS.163313	ESTs; Weakly similar to IIII ALU SUBFAMILY SB WARNING ENTRY IIII [H.sapiens]	
35	336123			<u></u>	1.77
		AL286182	Hs.208484		1.77
	316002	AW451733	Hs.119824		1.77
	319850	AA001811	Hs.83722	ESTs	1.77
	329941			CH.16_p2 gij6165199	1.77
40	328329		•		1.77
. •		AJ493054	Hs.158968		1.77
	325902	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1.76
		W01813	He 12100		1.76
			Hs.258744	1 p	1.76
45		AI274851			1.76
43		AI025527	Hs.222097		
		AA437300	Hs.178210		1.76
		H92449	Hs.116406	20.0	1.76
	301618	T52760			1.76
	319592	AA627356	Hs.163315		1.76
50	318511	T26528	Hs.227175	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sapiens]	1.76
	327183				1.76
	313516	AA029058	Hs.135145		1.76
		A)752482			1.76
		AA419617			1.76
55		AW451142	Hs.255628		1.76
JJ					1.75
		AW449374	Hs.257149		1.75
		AA504429	Hs.6211		
		Al149880	Hs.188809		1.75
	337460				1.75
60		AW297444		EST singleton (not in UniGene) with exon hit	1.75
		AA995014	Hs.129544		1.75
		Al318426	Hs.155925		1.75
		H15355	Hs.60887		1.75
	326495				1.75
65	337497				1.75
55		AA004534	Hs.153981		1.75
					1.75
		F10812	Hs.101433		1.75
	326930	4 4 11 11 11 11 11			1.75 1.75
	316893	AA837332		EST duster (not in UniGene)	1.70

	324826	AA704806	Hs.143842	ESTs	1.75
	311269	Al656924	Hs.174257	ESTs	1.75
	309375	AW075342		EST singleton (not in UniGene) with exon hit	1.75
	314171	AI821895	Hs.193481		1.75
5		Al990741	Hs.252809		1.75
•	334387		***********		1.75
		Al300101	Hs.252222		1.75
		Al418055	Hs.161160		1.74
			115.101100		1.74
10		AW501470	11-000404		1.74
IO		Al762929	HS.206134	20,0,000,000,000	
		AW339340		To the state of th	1.74
		AW501336		and a color of the	1.74
	318704	Z24981			1.74
	303027	AF111178		EST cluster (not in UniGene) with exon hit	1.74
15	322601	W92924		EST cluster (not in UniGene)	1.74
	319382	H93199	Hs.33665	ESTs	1.74
		AA737345		EST cluster (not in UniGene)	1.74
		N55484	Hs 220540	ESTs; Highly similar to ARYL HYDROCARBON RECEPTOR NUCLEAR	
		1100 101		TRANSLOCATOR [H.sapiens]	1.74
20	220051	H02566	He 191268	Homo sapiens mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.74
20			Hs.211519		1.73
		AL045752	H8.211318		1.73
		AA199847		EST cluster (not in UniGene)	
	327288			CH.01_hs gi 5867481	1.73
~~		Al201367	Hs.142860		1.73
25		H17255	Hs.144515		1.73
	326278				1.73
	302552	H49792		EST cluster (not in UniGene) with exon hit	1.73
	322322	AF086431		EST cluster (not in UniGene)	1.73
	327075			CH.21_hs gi 6531965	1.73
30	317392	Al797588	Hs.145459	ESTs	1.73
		Al076890	Hs.186949		1.73
		AA830893	Hs.119769		1.73
		AA773580	Hs.193598		1.73
		AA004699		putative translation initiation factor	1.73
35		AW296802	Hs.255580		1.73
55		AI689617	Hs.200934		1.73
		F09774	Hs.175971		1.73
		Al984592	Hs.15088		1.73
					1.73
40		AA663560	FIS.233073	ESTs; Weakly similar to K11C4.2 [C.elegans]	1.72
40		AW303457	11- 75440	EST duster (not in UniGene)	
		171739	Hs.75442		1.72
		A1033922	Hs.122517		1.72
	334379			CH22_FGENES.379_11	1.72
	305854	AA862733		EST singleton (not in UniGene) with exon hit	1.72
45	313031	N34927	Hs.186566	ESTs	1.72
	329728			CH.14_p2 gij6065785	1.72
	312090	N57692	Hs.118064	ESTs	1.72
	323341	AL134875	Hs.192386	ESTs	1.72
	302077	AA310580	Hs.132898	Homo sapiens chromosome 11; BAC CIT-HSP-311e8 (BC269730)	
50				containing the hFEN1 gene	1.71
	310766	AI971438	Hs.158824		1.71
		Al809985	Hs.203340		1.71
		AW238064	Hs.253909		1.71
		H71999	113233303	EST cluster (not in UniGene)	1.71
55		T78791	Un 2/1550	ESTs; Moderately smir to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sapiel	
<i>JJ</i>			115.241303	EST cluster (not in UniGene) with exon hit	4 794
		R56151		CH.X_hs gij5868614	1.71
	329089	45000400			
		AF086467		EST cluster (not in UniGene)	1.71
<b>_</b>		Al080361	Hs.134217		1.71
60		AA489792		EST singleton (not in UniGene) with exon hit	1.71
		AI028149		pyruvate dehydrogenase kinase; isoenzyme 3	1.71
		Al478629	Hs.158465		1.71
	338178			CH22_EM:AC005500.GENSCAN.219-6	1.71
	338910			CH22_DJ32I10.GENSCAN.11-2	1.71
65	321225	AL080073	Hs.251414	Homo sapiens mRNA; cDNA DKFZp564B1462 (from clone DKFZp564B1462)	1.7
		AA534550	Hs.539	ribosomal protein S29	1.7
		Al701489	Hs.202501		1.7
		AW452420	Hs.248678		1.7
		AA515602	Hs.152330		1.7
	U . TOU!				

	300580	AA761322	Hs.220538	ESTs		1.7
	304398	AA262785		EST singleton (not in UniGene) with exon hit		1.7
	313421	AW339515	Hs.163700	ESTs		1.7
_	309763	AW270182		EST singleton (not in UniGene) with exon hit		1.7
5	322092	AF085833		EST cluster (not in UniGene)		1.7
	315603	AA764768	Hs.121158			1.7
	325031	T08597	•	EST cluster (not in UniGene)		1.7
	327157			CH.01_hs gij5866841		1.7
	314809	Al741461	Hs.161904			1.7
10		H67220	Hs.146406			1.69
		AW402302	Hs.43616			1.69
	328624			CH.07_hs gi[5868246		1.69
		AA255977		ESTs; Highly similar to ubiquitin-conjugating enzyme [M.musculus]		1.69
1 5	328960			CH.08_hs gi 6456775		1.69 1.69
15		AA657501	Hs.146315			1.68
		AJ224172	MS.204096	lipophilin B (uteroglobin family member); prostatein-like		1.68
		R14537		EST duster (not in UniGene)		1.68
		AW137700	U. E7007	EST singleton (not in UniGene) with exon hit		1.68
20		D84424	Hs.57697 Hs.125286	hyaluronan synthase 1		1.68
20		AA876905	ris. 123200			1.68
	328538	A AGE 4 4 4 C		CH.07_hs gij5868485 EST cluster (not in UniGene)		1.68
		AA354146 AL079289	Un 19715/	Homo sepiens mRNA full length insert cDNA clone EUROIMAGE 35971	-	1.68
		AL075265 Al927068		ESTs; Weakly similar to R10D12.12 [C.elegans]		1.68
25		A1472124	Hs.157757			1.68
23		Al273815	Hs.242463			1.68
	338506	A1273013	110.242400	CH22_EM:AC005500.GENSCAN.390-10		1.68
		AA195405	He 110347	Homo sapiens mRNA for alpha integrin binding protein 80; partial		1.68
		R05385	113.110071	EST cluster (not in UniGene) with exon hit		1.68
30		Z42977	Hs.21062			1.68
50		AW244073	Hs.145946			1.68
		AW137772	Hs.185980			1.68
	325780		1101100	CH.14_hs gi[6381953		1.67
		AL080280		EST cluster (not in UniGene)		1.67
35		T58960		EST cluster (not in UniGene)		1.67
		AA249037		EST cluster (not in UniGene)		1.67
		AA424754	Hs.43149	EST8		1.67
	316443	AI797592	Hs.207407	ESTs		1.67
	322878	AA081820		EST cluster (not in UniGene)		1.67
40	330320			CH.08_p2 gi 5932415		1.67
	329081			CH.X_hs gi[5868602		1.67
	334026			CH22_FGENES.318_3		1.67
		AJ801500	Hs.128457			1.67
4.50		AF086106		EST cluster (not in UniGene)		1.66 1.66
45		R73816	Hs.17385	ESTS		1.66
	325452	*********		CH.12_hs gi 5866941		1.66
		AW452184	Hs.232100			1.66
	326014	41405004		CH.16_hs gij5867160		1.66
50		AI185234	U= 004000	EST singleton (not in UniGene) with exon hit		1.66
50		AA524545 W21298	Hs.224630	EST cluster (not in UniGene)		1.66
			Un 170/27	ESTs; Weakly similar to hyperpolarization-activated; cyclic		
	310009	Al457946	F15.170437	nucleotide-gated channel 2 [H.sapiens]		1.66
	999971	AL135118		EST diuster (not in UniGene)		1.66
55	335568	ALISSTIC		CH22_FGENES.581_4		1.66
<i>JJ</i>		AW263086	Hs.118112			1.66
	338983		110.110112	CH22_DA59H18.GENSCAN.3-1		1.65
	330002			CH.16_p2 gij6623963		1.65
		AW205477	Hs.179891			1.65
60	334487			CH22_FGENES.395_9		1.65
- <del>-</del>		AI064824	Hs.193385			1.65
		AW204480	Hs.253414			1.65
		AW148928	Hs.248895	EST		1.65
	307965	Al421641		EST singleton (not in UniGene) with exon hit		1.65
65		AW369770	Hs.130351			1.65
		AA401858	Hs.224843			1.65
	338763			CH22_EM:AC005500.GENSCAN.517-16		1.65
		AA232729	Hs.154302			1.65
	313231	AW139993	Hs.163682	ESTs		1.65

	334073				1.65
	319901	T77136	Hs.8765	I II 47 I IONOGOO TOMMA PIONON.	1.65
	326530				1.65
_	301126	AI802877	Hs.210843		1.65
5	314043	AA827082		COT GLOCAL CHOCAL OF ACCUSED	1.65
	304387	AA236027		201 diligious (not in Gradollo) with order	1.65
	322932	AA099732		Edi dasai (not il olidono)	1.65
	337272			O. 122_1 GENEO.000 1	1.64
	332694	AA262768		tarritor promit	1.64
10		Z44266		Lot door has a cheery	1.64
		AW342028	Hs.256112	Loro	1.64 1.64
		AW293704	Hs.122658	2013	1.64
		AW295409	Hs.137945	2010	1.64
15		AI538438	Hs.159087	ESTS; Weakly similar to CELLULAR NUCLEIC ACID BINDING PROTEIN [H.sapien:	
15		AA378974	HS.130/20	EST singleton (not in UniGene) with exon hit	այ 1.0- 1.63
		AW074330		Lot angown (not at otherway mar over the	1.63
		AW402236	Hs.145958	Eot door have a circuity	1.63
		AA354940 AA885502	Hs.187032	LOIG	1.63
20	333942	MM0033U2	115.10/032	Luia	1.63
20	327469				1.63
		AA476777		EST cluster (not in UniGene) with exon hit	1.63
		AI744068	Hs.160712		1.63
		AA282572			1.63
25		Al341594		ESTs; Moderately similar to env protein [H.sapiens]	1.63
		F11623		EST cluster (not in UniGene)	1.63
		Al962234	Hs.196102	ESTs	1.63
		Al348076	Hs.831	3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase (hydroxymethylglutaricaciduria	1.6
		AA989230		EST singleton (not in UniGene) with exon hit	1.63
30	320807	AA086110	Hs.188536	Homo sapiens clone 24838 mRNA sequence	1.83
	303710	Al269069	Hs.250852	CO 12' Lithinh cultion of anidomy share-land eventures (see the contract)	1.63
	328291			Ot 1:01 7:10 Bilacoccoc	1.63
	304236	W93278		COT STRUCTUL (HOURI CIRCUIO) WITH SHOTTING	1.63
		Al791700	Hs.127893	6013	1.63
35		AW440133	Hs.189690		1.62
		A1028309	Hs.114246	LUIG	1.62 1.62
	325326			Ci I. I Lius Biposcore	1.62
		Al953261	Hs.169813	CO10	1.62
40	327526		11- 450700	Ot 1:0E_io Bilaco roce	1.62
40		AW449679	ns. 156/39	EST singleton (not in UniGene) with exon hit	1.62
		AA663131	Hs.122138	CO1 Suidions from a consecutive and a consecutive	1.62
		A1021996	NS. 122 100		1.62
	329666	A!744130	Hs.131201	O. P. 1-The Silver second	1.62
45		AL031709	115.101201	multiple UniGene matches	1.62
7.5		Al307229	Hs.184304		1.62
		AA496019	Hs.201591		1.62
		Al183686	(10201001	EST singleton (not in UniGene) with exon hit	1.62
		N49476		FST cluster (not in UniGene)	1.62
50		R87650	Hs.33439	ESTs; Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	1.61
	338220			CH22_EM:AC005500.GENSCAN.246-9	1.61
	315763	AW515270	Hs.118342	ESTs	1.61
	323571	AA984133	Hs.153260	o-Cbl-interacting protein .	1.61
	312240	R28628	Hs.203669		1.61
55	304569	AA490934		EST singleton (not in UniGene) with exon hit	1.61
		Al076101	Hs.131704	<del></del>	1.61
	326858			CH_20_hs gi[6552462	1.61
		AI823847	Hs.129986		1.61 1.61
<b>60</b>		AA350125	Hs.187499		1.61
60		AW451654	Hs.257482		1.61
		AA452310		ESTs; Weakly similar to T20B12.1 [C.elegans]	1.61
		A1636253	Hs.196511		1.61
		Al620617	Hs.148565	CH22 EM:AC000097.GENSCAN.121-2	1.61
65	337780			CH22_EM:AC000087.GENSCAN.121-2 CH.05_hs gij5867982	1.61
UJ	327796			EST singleton (not in UniGene) with exon hit	1.61
		Al610791 Al378032	Hs.125892		1.61
		AA437414	. 10. 120032	EST cluster (not in UniGene) with exon hit	1.61
	003004			CH22 FM-AC005500 GENSCAN 54-2	1.61

	303620	AA397546	Hs.119151	ESTs :	1.61
		AA336839		EST cluster (not in UniGene) with exon hit	1.61
		AA548589	Hs.105846	EST8	1.61
_	300327	Al908894	Hs.245893	ESTs	1.6
5	323473	AA262442		EST cluster (not in UniGene)	1.6
	326154			CH.17_hs gi 5867170	1.6
		AA446885	Hs.99087 -	ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.6
		AW406878		EST cluster (not in UniGene)	1.6
••	322452	W56710		EST cluster (not in UniGene)	1.6
10		AI739071	Hs.158515	ESTs	1.6
	307871	Al368665	•	EST singleton (not in UniGene) with exon hit	1.6
		AF088005		EST cluster (not in UniGene)	1.6
	318420	Al139857	Hs.143837	ESTs	1.6
4.5		H98987	Hs.102383		1.6
15		M79230	Hs.192398		1.6
		AF052176	Hs.158529	Homo saplens clone 24457 mRNA sequence	1.6
		AW467388		EST cluster (not in UniGene) with exon hit	1.6
		Al241331	Hs.131765		1.6
20		R24204		EST duster (not in UniGene)	1.6
20		A1379982	Hs.158944		1.6
		AW072861	11 0.0000	EST singleton (not in UniGene) with exon hit	1.6
		AW451454		adenylate kinase 3	1.6
		AA376936	Hs.20998		1.6
25		AA382661	11.047044	EST cluster (not in UniGene) with exon hit	1.6
43		AL138357	Hs.247514		1.6
		AW300144		EST duster (not in UniGene)	1.6
	333193			CH22_FGENES.98_15	1.6
	336433	A1050000	II. 457400	CH22_FGENES.825_12	1.6
30		A1352096	Hs.157169		1.6
30		AW204237		ESTs; Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	
		Al361722	Hs.192410		1.59
		Al498991 AA017492	Hs.135655	EST singleton (not in UniGene) with exon hit	1.59
					1.59
35		AA902488	Hs.122952		1.59 1.59
JJ	326983	AW205298	Hs.202372	CH.21_hs gij5867657	1.59
	328397	AVVZUDZSO	N32023/2		1.59
		AA461084	Hs.187677	CH.07_hs gi 5868397	1.59
		N91419	Hs.12028		1.59
40		Al292181	Hs.150036		1.59
10		Al147545	Hs.114172		1.59
		A1928242	Hs.144383		1.59
		AA731518	1141177000	EST cluster (not in UniGene) with exon hit	1.59
		AI026836	Hs.114689		1.59
45	319142		110.1117000	EST cluster (not in UniGene)	1.59
		AW152263	Hs.249243		1.59
		AA883238	110270270	EST singleton (not in UniGene) with exon hit	1.58
	330123			CH.19_p2 gij6671869	1.58
	327819			CH.05_hs gi[5867968	1.58
50		AJ478814	Hs.134603		1.58
		AI034094		tubulin; alpha; ubiquitous	1.58
		AA220235	Hs.246836		1.58
		AI690269	Hs.201345		1.58
		AA703319	Hs.120967		1.58
55		AW292247	Hs.255052		1.58
	334893			CH22 FGENES.452_7	1.58
		AA398215		EST cluster (not in UniGene)	1.58
		AW271639	Hs.221744		1.58
	303702	AW500748	Hs.224961	ESTs; Weakly similar to 73 kDA subunit of cleavage and polyadenylation	
50				specificity factor [H.sapiens]	1.57
		Al492660	Hs.170935		1.57
	332514	AA156499	Hs.8454	protein kinase; cAMP-dependent; regulatory; type II; alpha	1.57
	335549			CH22_FGENES.576_10	1.57
	329532			CH.10_p2 gij3983505	1.57
55	323140	AA180467		EST cluster (not in UniGene)	1.57
		AI801098	Hs.151500		1.57
	337896			CH22_EM:AC005500.GENSCAN.56-3	1.57
		AA319514	Hs.211093		1.57
	324585	AI823969	Hs.132678	ESTs	1.57

	317151	AW298195	Hs.255735	FSTe	1.57
		Al819700	Hs.208231		1.57
	326547			CH.19_hs gl[5867307	1.57
_	318833	H06234	Hs.24888	ESTs	1.57
5		R31386		EST cluster (not in UniGene)	1.57
-		Al124514		EST singleton (not in UniGene) with exon hit	1.57
		A1124014			
	338083			CH22_EM:AC005500.GENSCAN.174-1	1.57
,	316868	Al660898	Hs.195602	ESTs	1.57
	310937	AI472880	Hs.170480	ESTs	1.57
10	328638			CH.07_hs gij6004473	1.57
		AICE4000	Un 140550		
		Al651039	Hs.148559		1.56
	327058			CH.21_hs gi 6531965	1.56
	320076	Al653733	Hs.204079	ESTs	1.56
	322345	AF086529		EST cluster (not in UniGene)	1.56
15		AI745498	Hs.204579		
IJ					1.56
		H49619	Hs.127301		1.56
	303841	Ai934464		EST cluster (not in UniGene) with exon hit	1.56
	302370	AJ009849	Hs.199297	Homo saplens GNAS1 gene encoding NESP55	1.56
		AF156271		EST cluster (not in UniGene)	1.56
20			Ha 199190		· · · · · · · · · · · · · · · · · · ·
20		A1052093	Hs.133132		1.56
	303388	AL039604		EST cluster (not in UniGene) with exon hit	1.56
	323758	AA833858		EST cluster (not in UniGene)	1.56
	328369			CH.07_hs gij5868388	1.56
	329415				1.56
35		*********		CH.Y_hs gij5868874	
25		AW468839	Hs.257767		1.56
	338794			CH22_EM:AC005500.GENSCAN.528-1	1.56
	303074	AA243481	Hs.127320	ESTs; Weakly similar to KIAA0346 [H.sapiens]	1.56
		F08434		EST cluster (not in UniGene)	1.56
		1 00-10-7			
20	334287			CH22_FGENES.369_17	1.56
30	311928	AW024798	Hs.233374	ESTs	1.55
	304592	AA505833	Hs.162017	EST	1.55
	300785	AA682913	He 247179	ESTs; Weakly similar to KIAA0319 [H.sapiens]	1.55
		AA603092			1.55
			11- 0400-0	EST singleton (not in UniGene) with exon hit	
35		AW502851	Hs.249978		1.55
35	324473	AW501163		EST cluster (not in UniGene)	1.55
	300566	H86709	Hs.21371	son of sevenless (Drosophila) homolog 1	1.55
		AA761265	Hs.221281		1.55
			. 10.22 1207		1.55
		AA157392		EST cluster (not in UniGene) with exon hit	
40		Al299137	Hs.154214	ESTS	1.55
<del>1</del> 0	325389			CH.12_hs gi 5866921	1.55
	331849	AA417078	Hs.193767		1.55
		AA331732	Hs.137224		1.55
			113.10/224	TI'''	
		AA258033		EST cluster (not in UniGene) with exon hit	1.55
		AA744875	Hs.189413	ESTs	1.55
<del>1</del> 5	317031	AA973297	Hs.126101	ESTs	1.55
-		AI827065	Hs.224877		1.55
			11022-1077		1.55
	304037			EST singleton (not in UniGene) with exon hit	
	322613	AW160507		EST cluster (not in UniGene)	1.54
	317987	AW138174	Hs.130651	ESTs '	1.54
50	322313	AF086386		EST cluster (not in UniGene)	1.54
		AW411383	Hs.169688		1.54
		A11411000	115.100000		
	325303			CH.11_hs gij5866908	1.54
	312701	Al457663	Hs.128127	ESTs	1.54
	304787	AA582678		EST singleton (not in UniGene) with exon hit	1.54
55		AA861571		EST singleton (not in UniGene) with exon hit	1.54
			Hs.128647		
		AA401367			1.54
		Al381515	Hs.158381		1.54
	315023	AA533505	Hs.185844	ESTs	1.54
	314920	AA513406	Hs.152307		1.54
50	323097			guanine nucleotide binding protein (G protein); q polypeptide	1.54
-0					
		W27919		inositol polyphosphate-4-phosphatase; type I; 107kD	1.54
		Al376086	Hs.158759		1.54
	324573	AA491600	Hs.161942	ESTs	1.54
		AI923673	Hs.212827	<del></del>	1.54
55		AA641092	Hs.257339		1.54
,,,			10.20/009		
		AF098363		EST cluster (not in UniGene) with exon hit	1.54
	317158	Al459140	Hs.129109	ESTs	1.54
		AW151933		EST singleton (not in UniGene) with exon hit	1.54
		AI146423	Hs 146700		1.53

	315674	AA651923	Hs.191850	ESTs	1.53
	321861	N79341		EST cluster (not in UniGene)	1.53
	310890	Al184510	Hs.143728		1.53
	330036				1.53
5		AA843868	Hs.190567		1.53
_		AA972712	Hs.174818		1.53
	331128		Hs.23423		1.53
		AA663591	113.20420		1.53
		MOOOOO			1.53
10	337685				
10	335290	1100000m			1.53
		AIB58667			1.53
		AJ418246			1.53
		AW340374	Hs.121033		1.53
	335320				1.53
15	329841				1.53
	317916	Al565071	Hs.159983		1.53
	332901			CH22_FGENES.36_2	1.53
	305413	AA724659		EST singleton (not in UniGene) with exon hit	1.53
	316707	AI016387	Hs.184406	ESTs	1.53
20	313693	AW469180	Hs.170651	ESTs	1.53
		AA922236	Hs.221037		1.53
		AF038966			1.53
		Al248615	110-10-10-10		1.53
		A1679968	Hs.152060	· · · · · · · · · · · · · · · · · · ·	1.53
25				• · · · · · · · · · · · · · · · · · · ·	1.53
23		N27515	Hs.40296	—	
		Al023175	Hs.167022		1.53
	325958				1.53
		AA664265	Hs.230213		1.53
20		AW015667	Hs.119427	——···	1.52
30		AA224368	Hs.185164		1.52
	301646	AA313954			1.52
	338752			CH22_EM:AC005500.GENSCAN.513-10	1.52
	309314	AW009312		EST singleton (not in UniGene) with exon hit	1.52
	301445	Al208364	Hs.128233	ESTs; Weakly similar to REGULATOR OF CHROMOSOME	
35					1.52
	308501	AI685263	Hs.201150		1.52
		AA635305	Hs.121574		1.52
		AI018150	Hs.148781		1.52
	336205	71010100	110.140701	<del></del>	1.52
40	325701				1.52
TU		A18/100/CO	Hs.208358	and . C	1.52
		AW189460			1.52
		AW407585	HS.27709		
		Al986221			1.52
45	328385				1.52
45		Al318545			1.52
	314591	AW103292	Hs.245328	==	1.52
		AA432067	Hs.258373		1.52
	304382	AA232873			1.52
	304232	W52674		EST singleton (not in UniGene) with exon hit	1.52
50	309853	AW298169	Hs.57553	tousled-like kinase 2	1.52
	312504	AW207346	Hs.143202	ESTs	1.52
		N63406	Hs.258697		1.52
		AF015950			1.52
		AIB73046	Hs.258775		1.51
55		AA887293	110200710		1.51
<i>J J</i>		N85789	No 22/155		
	301103	1403703	115.224 100	ESTs; Weakly similar to PTERIN-4-ALPHA-CARBINOLAMINE DEHYDRATASE [H.sapiens]	1.51
	000010	A1000004	He DADODA		1.51
		Al932294			
<i>د</i> ٥		Al554212		ESTs; Weakly similar to SERINE/THREONINE-PROTEIN KINASE NRK2 [H.sapiens	
60		A1458207	Hs.174181		1.51
		AL043148	Hs.186257		1.51
		AW139500	Hs.116135		1.51
		A1022056			1.51
	337976		•		1.51
65	306855	A1083982		EST singleton (not in UniGene) with exon hit	1.51
		AI569399	Hs.174746	ESTs	1.51
		AA531082	Hs.240049		1.51
		AW025248	Hs.202445		1.51
		AW/125024	He 224002		1 51

	310954	AW449044	Hs.171298	ESTs	1.51
	312019	T77046	Hs.188750	ESTs	1.51
	334773			CH22_FGENES.430_5	1.51
_	332043	AA490831	Hs.125056	ESTs	1.51
5	322950	AA296219		EST cluster (not in UniGene)	1.51
	337920			CH22_EM:AC005500.GENSCAN.67-3	1.51
	328993			CH.09_hs gl 5868536	1.51
	309245	AI972447		EST singleton (not in UniGene) with exon hit	1.51
	312172	Al222168	Hs.191168	ESTs	1.51
10	304039	T47349		EST singleton (not in UniGene) with exon hit	1.5
	301329	Al149653	Hs.190496		1.5
	313376	Al949246	Hs.200381	ESTs	1.5
	324248	AW504918		EST cluster (not in UniGene)	1.5
	308771	Al809301		EST singleton (not in UniGene) with exon hit	1.5
15	334935			CH22_FGENES.464_3	1.5
	319764	AA019827		EST cluster (not in UniGene)	1.5
	318519	T27135		EST cluster (not in UniGene)	1.5
	332807			CH22_FGENES.7_9	1.5
	322310	AF086376		EST cluster (not in UniGene)	1.5
20	324557	AA489166	Hs.156933	ESTs	1.5
	332118	AA609585	Hs.162689	EST	1.5
	319539	R09027		EST cluster (not in UniGene)	1.5
	313149	AW291092	Hs.201058	ESTs	1.5
	329722			CH.14_p2 gi[6065785	1.5
25	323514	AA861209		EST cluster (not in UniGene)	1.5
	308078	Al472621		EST singleton (not in UniGene) with exon hit	1.5
	337965			CH22_EM:AC005500.GENSCAN.100-10	1.5
	335905			CH22_FGENES.635_13	1.5

TABLE 14A shows the accession numbers for those primekeys lacking unigeneID's for Table 14. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT nu Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accession
	•		
20	321409	234514_1 197898_1 46678_1	BE261997 Z78343 BE176419 AA383657 N90640 AA334052 AW955761 BE536232 AA374087 AA584776 N71838 AA28203 T54072 AA761419 H92966 AI831371 AI095435 AI690247 R99331 AW964110 AA975590 AA346128 H94196 C03864 AF085933 R69889 AW341677 AA923375 BE327566 AW630415 R69601 AW615339
		212379_2	AW862489 H64300 AA329527
		199797_1	AA284333 AW468119 AA284334 AA810992
25	320856	36098_1	AB040928 T94673 Al289313 Al536039 Z44366 BE141499 D60116 D61488 D59945 AA419503 R28090 R72986 H03255 A1189112 Al912312 AW511018 Al401349 AW470144 C14624 Al335797 Z40300 Al014456 D60269 D60115 T16722 Al370673 D60270
		46806_1	H53744 AF075088 H53797
		552826_1	BE004271 AI248023 AI022157 H71999
30		441212_1 47002_1	AA766346 AA809877 AA836116 AW469598 AW977404 AF088005 N51816 N51731
30		47002_1 47070_1	AF086106 AI193589 AW665594 N71795 AA722627 AW665373 AI300251
		286374 1	AW812795 AA419617 H87827 AW299775 AW382168 AW382133 BE171659 AW392392 BE171641 AA541393
		120893_1	AA766825 AA811180 AA085906 AI762946 AW977820
	322310	47376_1	AF086376 W77804 W72689 AA837735
35		47386_1	AF086386 W77947 W72708
		47434_1	AF086431 AA886756 AL557237
		47467_1	AF086457 W81444 W81445
		47537_1 47545_1	W95298 AF086529 Al912190 AW294159 Al458747 W94782 AF086538 W95969 Al631911 W95835
40		187612_1	AA330095 W25112 AA249401
		43998_1	AL080280 T73124 H02689 AL080281
		1511778_1	D78667 D78871 C18258
		280469_1	AA904776 AA405696 AA405962
45		635249_1	AW028820 Al219068
45		497108_2	A1147202 W56755 W56710
		1651920_1	N79341 N99082 N47551 AA180467 AA449184 AA464831 AA505048
		159551_1 38916_1	T55958 T57205 AF147346
		85114 1	AA011603 N58604 N58611
50		22297 1	NM_016102 AF156271 AA781868 AW152318 AW770403 AA909463 AA482996 AA758672
	322574	39412_1	AF156548 AA639797 AI675267 AI825497 AI823355
		311451_1	AA463262 AA463615 AW160405 AW407583
	300370	.3910_2	AW136181 AA581839 AK001221 AA694538 AA424043 Al016272 AA098960 AA884473 Al356180 BE391633 AA437086
55			Al277866 AA098827 AA992680 BE172624 AA424101 AA320776 AW962967 N77431 AW858960 AW858897 T85649
33	222201	577912 1	AA357743 AI827817 AI905672 AI082395 W92924 BE048524 AW005302 AI084474 AI369330 AI827710 AW135506 AW298694
		34330_1	AW160507 NM, 013367 AF191338 AA364939 AI445790 AA730309 BE397003 BE267753 AI979163 N50386 AW583671
		0.550	AW563608 BE074466 BE074479 BE074471 AW976283 AA604393 AW162122 W73648 AI823475 N75898 W73713
			AW470099 AW513236 AW025055 AW613115 Al923379 W58081 AW664525 AW196795 Al143619 Al565152 AA025406
60			AA505846 AI685494 AA829964 N59156 N59163 R15442 AA826919 AI610221 AI200120 AA603279 AW150822 AI189513
			AI807122 AI016368 AI335868 AW583389 AI193892 AI956157 AI628879 AW591589 AW583446 AI955406 AW148396
	6400==	400000 4	AI340255 AI867942 AA748525 AA876991 Z38516 AI874002 AI869474 N63100 AA429094 AA082443
		409389_1 981458 1	AW105663 AA693880 AW517398 Al768507 BE220851 AW978538 AA831489 BE219300 BE327455 AL134620 R36741 R17996
65		981458_1 25768_1	AL031709 Al249061 AA907658 Al420444
55	300492	20/00_1	CEMOTI DO CIENDOS O CINEDAM

	323371	423880_2 117336_2 30923_11	AW303457 AA972713 AA724265 N45114 N51465 BE087338 A1083551 AL135118 BE395609 BE280398 BE254670 BE294951 BE564979 AW405364 AA069256 AA129837 Al559667 BE281405 AW410850 BE041153
5			A1254811 AW301340 A1813335 AW301411 A1609469 A1611607 A1611616 A1377623 A1335509 A1613544 BE043165 A1371663 A1340452 A1612066 AW0072890 A1254558 A1349884 A1370095 A1613383 A1611946 A1613353 A1307414 A1318229 A1612685 AW305327 AW266924 A137063 A1349292 BE049068 A1569098 AW274098 A1344845 AW075187 A1053401 A1345220 BE138515 A1613386 A1583302 AW301955 A1349611 A1307432 A1054168 A1223313 A1612081 A1348942 A1334539 A1309366 A1370098 A1252360 AW086316 AW268911 AW073482 A1379802 A1224284 A1053661 A1334538 A1309369 A1309688 A1310023
10			A1492709 A1335418 A1053999 A1366989 AW0773478 A1247058 A1249584 A1305875 A1308585 AW071272 A1271487 A1340719 A1366995 A1223673 AW271066 A1611936 AW071296 A1270796 A1254385 A1251393 A1252562 AW286236 A1254858 AW071317 A1309102 A1609897 AW268971 A15835407 A1792484 AW075168 BE138443 A1254126 A1309822 A1310872 A1611953 A1251054 AW276658 A1335405 AW075039 A1311768 A1612028 AW271895 A1612030 A1312240 AW271082 A1371642 A1334879 A1310194 A1310772 A1345419 A1334675 A1223914 A1284707 A1284813 A1349140 A1254853 A131094 A1310170 A1309499 A1312476 A1376484 A1335467 A1340802 A1309815 A1310188 A1611446 A1345824 BE327775 A1318545
15			F17185 AW614950
		792518_1	AW998989 Al613519
		697809_1	AI347274 AW844024
		427238_1	AA731518 AA765714
20	324094	270098_1	BE395109 AW663898 AW237041 Al492154 BE048906 Al651285 Al983290 AW002590 Al201040 F32424 AA992272
20	200023	4737_1	AW271836 AF180681 NM_015313 AA229509 AA225792 AA216413 AI888045 BE005205 AB002380 T55518 BE276097 AW380669
	505025	4/3/_1	RE142836 AW370976 AA479384 R96425 A680999 AA595138 H54582 A022709 T§5440 AI04176 AA861144 AW392028 AA479287 AA824634 Al638446 H54691 R96382 AA770352 Al640467 AW283491 AA779138 R28298 AA970562 C15590
			R84455 AAC20769 ALG36394 H8G566 BE548861 AA301207 AW959414 Al284253 AAC43173 W52429 BE544571 R24852
25			Z42603 F13120 R24340 R24326 T75305 H70110 N56255 AA334210 F11453 AW947285 H80345 AA298992 AW380831
			Al267175 Z45421 AW380981 W86113 AA663590 AA167577 BE566760 BE169166 AA449904 AA459205 N31126 W03564
			N31208 AW993277 N44765 AW605275 D61449 W68572 AA258190 D60496 AW992964 U46277 H04097 AA370360
			AW957211 AA159775 Al631243 H83367 H21671 D61077 AW392712 N21112 H98522 N45298 N83629 Al393509 AW022043
30			AA744886 AI580482 AA723286 AI422244 AI423984 D62804 AI088349 AA587890 AI144172 N33275 BE074397 H03399
30			D62578 Al056639 Al829918 AA579584 Al089460 Al350124 W68573 Al580828 H98897 Al570468 H83715 W86114 AA923123 D57446 AA043174 AW337721 Al266551 Al140017 AW022358 D79855 D79650 D79393 D60495 AA788666 AA693443
			AW516977 W60139 Al628156 AW473223 Al608892 AA159670 AW440366 Al421529 T50751 Al174374 AA912234 AA724248
			AW780400 AA907218 H80514 D57452 AA863419 AA552618 D29614 R44556 T16452 R44935 Z41132 D2918B H69692
			Al250176 Al078860 AA370359 AW183108 H74200 AA258183 F10723 C00323 R86148 AA860570 AW130073 AL078946
35		67	AA410327 AA532614 AA234500 AI151507 AA410288 AW969839 AA483232 AI383200 AA236540 AI807672 H73441
		193878_1	AA262442 AA768862 AA262443
		392767_1	AA827650 AA827652 AW629526 BE044585 AW974451 AA761439 AA648505 AA765803
		117013_1 457668_1	AA081820 AA082191 AA079811 AA807558 AA827117 AW629567
40		16720_1	NM_016603 AF251038 A1124624 AA776579 AW298470 Al304868 AW082724 Al348442 BE218336 N20641 AI018013
			AW858832 AW978157 AA815187 AA932948 AF157316 Al444958 W00848 W02935 Al434933 N26335 AA428681 AW971059
			Al651612 AW134937 AW968911 AA488815 AL157523 W48766 AW936954 AW936941 AW579205 AW936886 AW936889
			N74541 AW936953 AW578421 AW604352 AW367088 AW849258 AW849453 AW371606 Al554921 W49785 H99814
45			AA805957 AA904606 AW206696 BE169229 AA333951 AA190704 AW836944 AA463219 AA430306 AW805704 N48503
43			BE222307 AI638612 BE550045 AI805304 AI690987 AA776841 H12690 AW183731 AI380760 AI636261 AA812641
			AW592656 Al686132 AA843424 H99220 AW084996 AW128879 Al600871 AA610135 AA191524 A1150076 AJ474530 AA748461 N29013 AA746372 N59606
	300611	337193_1	N75450 AAB77636 AW137945 W05248 AA514763 AW972398 AI758397 AW195051
		247225_2	AW402931 BE393099
50		967739_1	AL036947 T93676 T85475
		197787_1	AA641735 AA281881 AA861209 AA934756 AA835887 AA641795 AA748822 AW295703
		466093_1	AW467388 A826954
	322932	39838_1	AF168711 AA099732 BE019157 AI380212 BE298159 AA249097 AA305112 AW962349 AW962353 AW401801 BE292961 AI439469 AA442919 AI630537 AA724473 AI814288 AW966815 AI376871 AI860202 AI683132 AA099733 AW627633
55			AI754022 BE206347 AW183349 AI378222 BE178926 AI473282 W52944 AW752469 AW966817
	323591	209807_1	AA301270 AA301379 AA301366
	322950	10774_1	R85652 AA114024 AA296219 AA375304 AW963796 AW885952 AW020969 AA114025 AI804930 BE350971 AI765355
			AW317067 AW974763 H85930 AW172600 Al310231 AW612019 D62908 D62864 AA652738 Al674617 Al494064 AW138666
<i>6</i> 0			Al147620 Al147629 AW611793 Al688922 Al971005 Al864742 AA174171
60	322957	29014_1	AK001701 AA134337 AA356202 BE163251 AW875175 AW875181 AW875177 BE163389 AK000741 AA247755 AA120819
			AW868040 AA309118 AW962348 AA471267 AW986843 AK001452 BE005344 BE617899 AA186588 AA120820 AW363311 AA648105 N71529 BE168417 AW673900 AI858160 AA134338 AA659697 N22162 AI335437 AI311237 AI343171 AI336661
			AN268074 AW274348 AA935005 AW576295 AW262626 AW593153 AA730055 AA662650 AA782687 AW84855 AI933533
			AW193002 AW899448 AW890142 AW812670 AA085664 AA334191 BE178085 BE180553 AA389680 AA984772 AA442527
65			W26560 BE384359 AA847210 AW304931 AI669606 AA085613 AW197240 AI632828 AA581646 AW129348 AI017643
			AW089030 D20893 Al382955 Al557148 AW489979
		975669_1	W60827 AL079968 AL047234
		977901_1 221757_1	AW504918 N55410 AL118584 AW839266 AA317581 AI793000 AW235111 AI793178 AA767397 AI263113 AA719462
	الاستعب		UNDITION INTO THE INTEGRAL INTO THE INTEGRAL INTEGRAL INTO THE INTO THE INTEGRAL INTO THE INTEGRAL INTO THE INTEGRAL INTO THE INT
			***

	045050	400004	A
		406384_1	AA737345 AA682286 AI799378
		569736_1 233842_1	R05385 Al061251
			AL118754 AA333202 H38001
5		300543_1 41537_2	AA8B4766 AW974271 AA592975 AA447312 BE152396 BE152395 AA287515 BE001834 AA286678 AW406477
,		41537_2 1154015 1	AW501470 AW502931 AW499500
	323715	225129_1	AA322155 AA326396 AA326538
		23273 -3	AW009312
		229624_1	AA833858 AW978090 AA327679 AA810436
10	309375		AF286598 AW075342 AB028994 AL043713 AW378914 AA340650 N57166 AW956914 R17961 AA336481 BE393734
			AW977867 AW294638 AA927857 AA961627 AW303969 AW894416 AA812119 AA912758 AA424355 AA490582 W30941
			AA476693 AA131029 AA127777 AL043714 AA496984 T51117 AA127722 AA594012 Al492876 N76483 AW119061 BE464926
		•	AW303419 Al972370 Al768172 Al826550 Al435432 Al379516 AA778421 Al276089 AA424521 N59361 AA723153 AA723176
			Al867487 AA090677 Al827221 Al351027 W02732 Al810729 AA142848 Al082110 N59379 N29744 Al283747 Al148665
15			AW779845 Al382967 F34319 Al369934 Al282438 AW183449 AA863467 AA813469 Al092645 Al870701 AA863119
		266373_2	T65475 R07576 T17017 F08143 Z43546
		1534945_1	T08845 Z43538 F06691
		38795_1	BE560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 BE241715 Al910774
20		235506_1	AW406878 AW966560 AW966151 AW966496 AA336174 AA335376 AA335537
20		1734192_1	R56151 W91936
		10967_5	T52761 T52760
	301646	42154_1	A1277841 A1630669 A1804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 H56997 W84688
			AA491201 W84636 AA706815 AI131055 AA483636 AI005075 AW340034 AI332372 AW118195 AI338932 AI191968 AA693932 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI832188 AW946555
25			AAB33838 Z40564 AAB61563 F01447 AAB87937 AI933559 AW973250 AA566018 AA313954
رع	222022	249295_1	AA354146 Al184230 AA643525
		328264 1	AA492588 AA492498 AA492571
		463723 1	AAB14859 AAB14857 Al582623
		6483_6	AW902251 AW168753
30		29533_1	X12830 NM_000565 AW503691 X58298 S72848 AA193347 AW503481 AW177946 AW178192 AW178188 AA285233
			AA410577 ĀA193465 AW177939 AW365459 BE221693
	302358	1064753_1	AW207734 D60164 D81150 D81078 D61356 AW996804
		215437_1	AW503101 AA309184 N56323 R70998
25		385257_1	AW504161 AW503601 AW505509
35	324685	41003_1	AF226667 AA207032 AA100804 AA121287 AA488316 Al808218 AW419048 Al911097 AW132123 AA502311 AW089948
			AA100952 Al075431 AW083432 Al990554 BE466029 F28643 AF086422 W79581 AW439007 F37179 W79780 AW439035
			AA731381 AW750380 AA251012 AW569846 AA730238 AA329792 AW087255 AA220982 AA082469 AA877260 AA232380
	00.4000	054007 4	BE298910 AAEETOEN AAETTEON AAESTAEN
40		351987_1 473541_1	AA557952 AA677593 AA618150 AW979189 AA837332 AA856946 AA876935
70		21796_1	AF111178 NM_005708 AF105267 AW590040 AI979280 AA001322 BE146329 AA702430 AA702429 AA694221 Al206348
	OOCIOE	21700_1	Al206285 AW770197 AA923032 Al379586 AA701165 AW594643 AA001909 AW002368
	324715	290035_2	AI739168 AA426249 AI199636 AW505198 AW977291 AA824583 AA883419 AA724079 AI015524 AI377728 AW293682
			Al928140 AA731438 Al092404 Al085630 AA731340
45	324771	385085_1	AA631739 AA768584 AW134477
	324783	389615_1	AA640770 Al683112 AA913009
	303114	37417_1	AF090948 AI064898 AI111182
	303124	21112_1	AB018257 BE148640 AA081832 AK001915 AF150217 AF161350 AI219174 AW074664 D60040 AA346065 H28750
			AW151783 BE613360 BE612628 BE502031 AW183790 AA992580 AA505815 Al310432 Al678015 AW592679 AA879181
50			AA806708 AI744110 H24681 C16064 D62900 AI285033 AA346064 AI865123 AW467798 BE221231 AL120676 N89877
			AI928370 AI358387 AA748486 AV647478 AV647460 AA312313 AI279340 AW505099
		82290_1	AA005122 H49792 AA476777 T86049
		316229_1 20474_1	AAA37414 AA131479 AA086182 AB037775 AW161063 AW514393 AA332331 AW136197 BE150789 AA425533 AA249605
55	303232	20474_1	N88308 Al016201 BE004662 AA291027 R57567 AA424277 AA476391 W07532 T97036 AA218898 AW162629 R57770
33			W01278 W90204 W90156 AL119197 R84513 AA280103 AA334994 AW965504 AA460868 AA447470 AW138594 W38898
			W90028 AI078353 W90078 AA699696 N35523 AA704225 AA035059 AW134892 AA115140 AI142854 H90084 AA826342
			AA460694 N46339 AA425344 N56953 AA035569 AI761083 AI658696 AI524818 AI338965 AW069249 AW299871 BE464061
			Al189720 AW340682 Al423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 Al192947 AW271286 Al623122
60			Al922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11540 Al265915 Al681773
			Al091748 BE220636 AW841861 Al702181 Al468447 AA907544 Al273941 AW244034 R37769 AA446663 T96929 BE045884
			AA476341 H89994 H29043 AW051211 N49522 AA306977
	302696	33570_1	AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW955588 W44974 AA279599 AW298762 AA452666
65			AA443355 Al337273 AA446931 Al752977 AA661554 W42674 Al292172 R41163 AA621381 Al244157
65		43219_1	AJ001409 AJ001410
		57485_2	ANS40014 AW866993 AV651649
		192210_1 193138_1	AA258033 AA459485 AA382661 AW958642 AA259088
		690880_1	AA362601 AW938642 AA259088 AW300144 Al338491 Al798381 BE220076
	010055		THIS THE PROPERTY IN COURT DECEMBER

		969232_1	AL039604 AL039497
		45074_1 606341 1	AW250553 L07876 Z36843 R30693 A119097 AW965317 A1148763 A1903763 A1903753 A1903762 A1903800 A1903801
5		363835_1	A1681545 A1951714 A1570397 AW873588 AA836396 A135986 A1499790 AA773477 A1951615 T07547 AW304709 AF114041 BE176829 Z44580 T30422 T32690 AW953065 H10602
-	303431	32082_1	NM_000539 AA019013 AA019367 AA056154 H38735 AA057003 AA021051 H38102 AA015774 AA059291 AA019439 H84843 HB3375 AA019914 AA017288 R84449 W26519 H38258 AA018736 H84147 AA018577 AA059353 U49742 H38767 AA318341 AA317553 H86646 H91989 AA317398 AA317378 W29024 W23034 T27877 AW950059 AA017195 R84262 AA057177
10		•	H89941 AA019904 H84662 AA015775 AA019368 AA020976 H37900 C20733 H38662 H85197 AA018578 AA017252 AA019440 AA059059 H38651 H84148 AA018560 W25754 C20752 AA317915 AW952115 AA317369 AA018945 R85402 AA019492 AA017196 AA056093 AA056094 AA058836 AA056155 W25957 W23027 AA056159 W23043 W21890 W28951 AA317978 W26459 AA317285
		1653640_1	N49476 Z45911 R21061
15		232749_1 31534_1	AA331906 AA332484 AK001952 AA336839 AW249271 BE247287 AF182002 BE613472 AW962673 AA332235 AW849937 AW849814 H49893
		<u>-</u> -	AA477148 AW968944 AF182003 AW007897 BE246145 W76100 Al480141 AW410205 AA609339 Al209111 AW000979 AA330280 AW961554 W72865 H49894 AA514317 AA620407 AA504522 AW472833 AA716609 AW129282 AA347351 AA628378 AW589860 Al636696 AA464632 AA464533 AW874189 AA757076 AA479654 AW517910 AW292357 AW872638 AW262288 Al910666 AW513749 AW238771 AA215797 BE387073
20	303487	20890_1	BE143533 AW850432 AK000042 AA333666 AA385314 AW966616 AW783068 AW783414 AA361103 AW390841 AA040095 AW385058 AW799162 AI383115 AI990745 AI653703 BE503893 AW150758 AI949919 AW190450 AW512348 AI625970 AW501057 N52854 AI281378 AI401710 AI648409 AW002659 AI687639 AI093943 R33960 AA040062 AI826267 AI240425
	202400	90000 1	A1520911 A1093428 R52943
25	303408	36085_1	AI040372 AB040915 W40569 BE158910 BE158914 D63226 AW025860 AW583088 AA334307 AA210942 AW753212 AW805322 AA362635 BE158911 AW391225 AW994862 AA805451 R28541 AA229347 N48266 AI377788 R28682 R36122 AA811941 AI240742 AI632001 T99965 W01976 AW891205 AW891177 T97433 C15571 AA346850 AA504293 W07500 AI694503 AA489216 AA327725 AW959917 AA694146 N68514 AI076285 AW016246 T07783 AA642400 AA716133 AA805332 R00312 AA705021 AW498605 AW891723 AW891906 AA808025 N29039 N74897 W60393 AA810184 AI627460 AW057516 AA807436 AA760966 AI359295 N78642 N20682 AA830300 W81705 AA832258 AW891718 AI811796 AW515523 Z41735
30			AA449978 AW891714 AI684539 AW891896 AW071701 AI890916 AI924994 AI039743 AA888524 AA244214 AI015736
	303404	236389_1	Al270105 Al865077 F30712 F35665 AW263888 Al904014 Al904018 AA336927 AA336502
		164820_1	H08370 Z46168 F07366 AA193168 AA193138
35		12593_1	AK000290 Al476034 AA465309 BE148761 AW303607 AW958665 AW469635 Al819365 Al243857 AW469326 AA157110 AA278626 AA496257 AA306656 F29732 AA831859 AA312210 AA564476 AA579065 AA769522 AA740386 Al205635 AA491643 AA810400 AA417708 Al567332 AA157392 N53817 AA374229
		1205335_1 434741 1	R68545 T27119 R25687 AW750672 H13384 T27135 R61679 AA746905
		7249410	H77679
40		21445_1 244351_1	AB038995 NM_016530 AK001111 AA465635 AW968716 U66624 AA885459 AA703019 Al040266 Al018689 Al692886 Al125372 Al376796 Al192040 N58161 AL133607 AW503673 AW505479 AA362265 AJ404671 F11623 H17552 AA347728
45		17700_1	BE311816 AK000916 AW868037 AW868039 AF228527 AI752482 AW868041 AA077049 AI201537 W55873 AA206019 AA077918 AW968729 AI978828 AW139620 AI093053 AW204025 AI418805 AA598926 AA586345 AA045669 BE314455
47	318674	204968_1	AA045668 W01166 AW996900 BE184300 Z44887 T34535 R51495 AW886575 AA295490 AA295162 AA295163 AW937125 T56951
		20640_2	BE386106 W52674
50	303685	8088_1	AW500108 BE241915 AW503971 NM_ 016542 AB040057 AA313812 AK000556 W16504 AB22088 AA259107 AA191319 BE085957 AA308584 BE122687 AW952435 T84469 BE088132 AB268562 BE092674 AA263102 T39634 AW992380 R79391 R24392 H03060 AW675066 Al299952 AW020325 D25953 R75199 AA361425 AW612302 AW236333 AW673897 AW952368 N22323 AA649166 AB377099 H03061 AJ660072 AW276405 AA809779 AJ803430 AW297484
			AW510384 AA814816 AA371522 D63035 AA953567 R79392 R24282 AA876831 AW297542 AI699023 AA992652 AI041436
		799152_1 275116_1	Al631602 AW589676 Z28684 Z24981 Z32887 BE349923 AA398215 AA399231
55	303714	1155758_1	AW501336 AW501337
		183612_1 10169_1	AA236027 BE003275 AA195509 BE394661 AV660757 AA489161 BE165972 AW503705 AA262785 AF123320 Z78357 NM 014171 AF161488
	304330	10109_1	AA248971 BE568575 AA461410 AA165108 Al637731 H75454 AA372934 AW339334 BE568754 BE564697 BE567299
60			AI681606 BE537269 AW197204 AA290890 AI189393 AW292463 AW470227 F27399 AW611942 BE566888 AW301701 AI875761 AI628429 AA164711 AI797753 AI656879 AI912690 AI675277 AI695099 AI094095 AW014158 BE091059 AI201748 AW236961 AI038003 AI083606 AA401606 AI079405 AI073516 AI655537 AA401475 AI814532 AI079862 AI093789 AI422084 AI216476 AI392760 AA926989 AA781782 Z25198 AI086377 AI185511 AI185539 Z28843 AI223782 AI378563 AA706253
			Al433798 Al921885 H75455 AW025269 Al224100 Al083611 Al225057 AW196334 Al572254 AA761628 Al472801 AA283784
65		468554_1 1323199_1	AAB30149 AW978407 M85983 AW503637 W00973 N56457 AW992226 T84921 R01342
	319402	1003489_1	R86913 R86901 H25352 R01370 H43764 AW044451 W21298
		1536467_1	F08434 Z42573 H28810
		765461_1 1534581_1	AI524124 R06841 R06842 Z43108 F06295 R13085
		-	

		94880_2 79133_1	AA742999 Z43272 AA345258 AW956677 AA031942 W19657 BE616760 BE259848 BE382680 BE615587 AI934464 AA322745 T07155 AW961174 AA307302 Z41888 AA621992 AA188400 AW770608 AI147458 AI148408 AI696291 AA972591
5	319539	1777183_1 63198_1	T19204 T36109 T36107 R09027 AA344892 AA329574 AW955648 AW978708 Al567804 Al378935 AW014657 Al804134 R08922 N92947 BE546788
	320187	1536408_1 396254_1 65715_1	F08365 Z43395 R54298 T99949 AA654769 AA664550 AW975264 Z44266 H06384 AV655948
10	319699	163534_1 747196_1 1699356_1	R17531 AW960899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654 AI458682 H24240 R14537 R18426 AW867082 R24204 R15712 T84695
	319761 319764	75324_2 88596_1	AW630974 BE005208 R84237 AA724997 AA334867 AW955777 R18816 AA019827 R18947 H46852
15	321040	7069_3 193331_1 43709_1	T58960 AA609180 AA621130 Al927236 AA431075 AA261830 AW967855 H26953 AA262478 AA226869 AA296516 AW959753 AA186390 AL359619 AA356195 AA148427 R22748 Al033624 BE548853 H95327
20			AW579751 BE561649 AA397533 BE617136 AA236444 T89946 AA247450 N55777 W38725 AI743846 AI808406 AA922229 AI051464 W04713 R11251 W18656 AI042319 AA489276 AI224533 H95274 AW269958 T89311 AI890088 AI862754 AI830968 AI669336 AI589780 AA534557 AW273839 AI338155 AI126632 N83542 BE046048 AA807028 AA848107
20			AW167978 AA976930 AA148428 Al289304 Al524262 Al625961 AA773469 Al222288 Al280054 Al242371 AA227222  AA973329 AA296517 AA829436 AA234526 Al149769 Al567865 AA936939 Al590881 AW469308 Al689531 AA486419  A4422051 Al057252 AA626941 Al475352 AW247913 Al222370 AA670122 AW198034 AA486418 Al863794 AA380739
		1585983_1	H51299 H44619 H46391 R86024 H51892 T72744
25		368456_1	AI817336 R32883 AA595590 AI743065 R31386
23		1545647_1 81249_1	W23285 H42714 F25381 F37215 AA002047 N72537 H54142 H81580
		375160_1	AA610649 Al699484 H59558
		155125_1	AA827082 AA732246 AA167611 AA830741
		17685_2	AA199847 AA410224 R53323 AW936567 AW936569 AW936568 AW936571
30		443527_1	AA769123 AA831715 AW977666 W92553
		82292_1	AA005125 W95019 W93335 AA249037
		82811_1 41762_1	AA007374 AA007466 Al816886 Z49979 D61703 U3016B
		179960_1	AA740616 AA654854 AA229923
35		57156_2	R66867 R65678 R82673 W73128 R83101
	321383	41924_1	AW968556 AJ238555 AW968731 AJ002574 AA459446 H70260 AW977557 AA767351 AW268572 AA810719 Al698677
			Al300460 AA907450 AA649224 T07415 Al536896 BE018515 Al279865 BE047421
		187327_1	AW368634 AI702169 AI245179 AW368646 BE545574 AA249018 AW368633 N27553
40	306513 306537	*	AA989230 AA991705
40	306557		AA994530
	306598		A1000320
	306620		A1000929
	306700		A1022056
45	308078		AJ472621
	306813		A1066544
	306830 306855		A1075803 A1083982
		c14_p2	A1003902
50	329728		
	306890	-	AI092235
	308100		A1475949
	308147		AI498991
55	306929 308352		A124514 A1640701
55	308383		AIG10791 AIG24497
	308521		AI689808
	308561		AI701559
	308617		A1738720
60	308771		A1809301
	308828		A1824829 A1826627
	308896	41850_1	AI658667 AF098363 AF098365
		44211_1	AF174008 AF174027 AF174106
65		AA642912	
	305169		AA663131
	305177	-	AA663591
	305235		AA670480
	305413		AA724659

	305849	AA861571
	305854	AA862733
	307113	Al183686
	307130	· Al185234
5	305937	AA883238
•	305977	AA887293
	307451	Al248615
	307513	Al274307
	307848	Al364186
10	307871	Al368665
	307881	Al370434
	307832	AJ230822
	307944	Al418246
	307954	Al419692
15	307965	Al421641
	309245	AI972447
	309271	Al986221
	309365	AW072861
	309372	AW074330
20	309435	AW090537
	309506	AW137700
	309536	AW151933
	309709	AW242630
	325417 c12 hs	
25	325450 c12_hs	
	325452 c12 hs	
	309815	AW292760
	309839	AW296076
	309849	AW297444
30	309906	AW339340
	302705 31765_1	U09060 U09061
	304037 -	T26438
	304039	T47349
	304236	W93278
35	304257	AA053294
	304382	AA232873
	304405	AA282572
	304561	AA489792
	304569	AA490934
40	304787	AA582678
	304921	AA603092
	327819 c_5_hs	
	304968	AA614308
4 ~	306382	AA968967
45	331263 47479_1	AW780192 AA015718 W02571
	332252 1663967_1	N63882 T91174

**TABLE 14B** shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 14. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique number corresponding to an Eos probeset  Ref: Sequence source. The 7 digit numbers in this colu  10 Strand: Indicates DNA strand from which exons were predi  Nt position: Indicates nucleotide positions of predicated exons.	mn are Genbank Identifier (GI) numbers
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------

5

Please					
	15	Pkey	Ref	Strand	Nt_position
322812   Durham, I. et.al.   Plus   305888-310561   334160   Durham, I. et.al.   Plus   357417-3574413   334160   Durham, I. et.al.   Plus   9198549-916681   334407   Durham, I. et.al.   Plus   918549-916681   334407   Durham, I. et.al.   Plus   918549-916681   334407   Durham, I. et.al.   Plus   918549-916681   334479   Durham, I. et.al.   Plus   918549-916681   334779   Durham, I. et.al.   Plus   9185849-16681   334779   Durham, I. et.al.   Plus   334779   Durham, I. et.al.   Plus   15778689-1577906   33493   Durham, I. et.al.   Plus   1390275-19302891   33493   Durham, I. et.al.   Plus   1390275-19302891   335385   Durham, I. et.al.   Plus   2169126-21491457   235589   Durham, I. et.al.   Plus   226913-22490497   22592413-22524246   235589   Durham, I. et.al.   Plus   2259432-22524246   235589   Durham, I. et.al.   Plus   2259432-22524246   235589   Durham, I. et.al.   Plus   2359432-225045157   Plus   237780   Durham, I. et.al.   Plus   2301879-2301877   336030   Durham, I. et.al.   Plus   2301879-2301877   337730   Durham, I. et.al.   Plus   337780   Durham, I. et.al.   Plus   337860   Durham, I. et.al.   Plus   338940   Durham, I. et.al.		332807	Dunham, I. et.al.	Plus	297686-297808
332901   Durham, I. et.al.   Plus   1841854-1842090   33491   Durham, I. et.al.   Plus   2828934-8299169   334973   Durham, I. et.al.   Plus   3574317-3377413   334973   Durham, I. et.al.   Plus   9782201-9782774   334973   Durham, I. et.al.   Plus   378231-1978274   334973   Durham, I. et.al.   Plus   13908351-13908467   334973   Durham, I. et.al.   Plus   13908251-13908467   334935   Durham, I. et.al.   Plus   16235169-1623528   335583   Durham, I. et.al.   Plus   225427-220424   2491282-221491457   225427-22446   235520   Durham, I. et.al.   Plus   2489332-12494590947   2489332-12494590947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-1249490947   2489332-124949094				Plus	298277-298360
33496		332812	Dunham, I. et.al.	Plus	309688-310561
33496		332901	Dunham, I. et.al.	Pius	1841954-1842090
333916   Dunham, Let.al.   Plus   334061   Dunham, Let.al.   Plus   9185549-91989   9185549-91989   9185549-91989   9185549-91989   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919881   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-919882   9185549-	20				
334(26 Dunham, I. et.al. Plus 9838941-9887077 334073 Dunham, I. et.al. Plus 9838941-9887077 334179 Dunham, I. et.al. Plus 10528221-10528954 334779 Dunham, I. et.al. Plus 10528221-10528954 334779 Dunham, I. et.al. Plus 10528251-10528954 334779 Dunham, I. et.al. Plus 13908355-13908467 334783 Dunham, I. et.al. Plus 13908235-13908467 334833 Dunham, I. et.al. Plus 16235328 335320 Dunham, I. et.al. Plus 20108275-15902881 3353485 Dunham, I. et.al. Plus 21491292-21491457 335566 Dunham, I. et.al. Plus 2495021-24934657 335566 Dunham, I. et.al. Plus 2495021-24934659 335663 Dunham, I. et.al. Plus 2495023-24990497 336033 Dunham, I. et.al. Plus 2495023-24990497 336036 Dunham, I. et.al. Plus 25044922-2504557 336036 Dunham, I. et.al. Plus 30051083-9001978 337780 Dunham, I. et.al. Plus 30051083-9001978 337780 Dunham, I. et.al. Plus 3054822-2524244 337780 Dunham, I. et.al. Plus 30548242-248300197 33780 Dunham, I. et.al. Plus 30548242-248300197 33780 Dunham, I. et.al. Plus 30548693-2583395 33780 Dunham, I. et.al. Plus 30548693-2583395 33780 Dunham, I. et.al. Plus 3197565-3198040 45 337970 Dunham, I. et.al. Plus 3253198-2253395 337970 Dunham, I. et.al. Plus 3253198-2253395 339770 Dunham, I. et.al. Plus 3197565-3198040 45 337970 Dunham, I. et.al. Plus 3253198-2253395 339770 Dunham, I. et.al. Plus 3250000-25877 339877 Dunham, I. et.al. Plus 3250000-25877 339977 Dunham, I. et.al. Plus 3250000-25877 339977 Dunham, I. et.al. Plus 3250000-25877 339979 Dunham, I. et.al. Plus 3250000-25877 339979 Dunham, I. et.al. Plus 3250000-25877 339970 Dunham, I. et.al. Plus 3250000-25877 339999990 Dunham, I. et.al. Plus 3250000-25877 33999990 Dunham, I. et.al. Plus 3250000-25877 33999990 Dunham, I				Plus	8298994-8299169
25   334179   Dumham, I. et.al.   Plus   9782201-9782774				Plus	
344150 Durham, I. et.al. 3434779 Durham, I. et.al. 3434779 Durham, I. et.al. 3434779 Durham, I. et.al. 343478 Durham, I. et.al. 34578 Durham, I. et.al. 34579 Durham, I. et.al					
334779 Dunham, I. et.al. Plus 157865-1590467 334773 Dunham, I. et.al. Plus 157865-1579026 1623518-1623528 133483 Dunham, I. et.al. Plus 1623518-1623528 1302753-19302881 335485 Dunham, I. et.al. Plus 2106247-20108373 355146 Dunham, I. et.al. Plus 2405128-21491457 335320 Dunham, I. et.al. Plus 2493033-24990497 335560 Dunham, I. et.al. Plus 2990333-24990497 336036 Dunham, I. et.al. Plus 290333-24990497 336036 Dunham, I. et.al. Plus 30051083-30051186 336280 Dunham, I. et.al. Plus 30051083-30051186 336785 Dunham, I. et.al. Plus 30051083-30051186 336773 Dunham, I. et.al. Plus 3457161-3547245 337775 Dunham, I. et.al. Plus 3457161-3547245 337776 Dunham, I. et.al. Plus 3457161-3547245 337976 Dunham, I. et.al. Plus 3457161-3547245 337976 Dunham, I. et.al. Plus 3457161-3547245 337976 Dunham, I. et.al. Plus 36500385043 337976 Dunham, I. et.al. Plus 376001-7166119 338000 Dunham, I. et.al. Plus 3857161-3547245 339112 Dunham, I. et.al. Plus 376001-7166119 338012 Dunham, I. et.al. Plus 3857161-3547245 339112 Dunham, I. et.al. Plus 38500385043 33918 Dunham, I. et.al. Plus 38500385043 33919 Dunham, I. et.al. Plus 38500385043 33919 Dunham, I. et.al. Plus 38500385043 33910 Dunham, I. et.al. Plus 38500385		334073	Dunham, I. et.al.	Ptus	9792201-9792374
334719 Durham, I. et.al. 334719 Durham, I. et.al. 334719 Durham, I. et.al. 334833 Durham, I. et.al. 34833 Durham, I. et.al. 34833 Durham, I. et.al. 35514 Durham, I. et.al. 335140 Durham, I. et.al. 335560 Durham, I. et.al. 35560 Durham, I. et.al. 35760 Durham, I. et.al. 357780 Durham, I. et.al. 35780 Durham, I. et.al. 35800 Durham, I. et.al. 35800 Durham, I. et.al. 35800 Durham, I. et.al. 35800 Durham, I. et.al. 358010 Durham, I. et.al. 368010 Durham, I. et.al. 368	25	334150	Dunham, I. et.al.	Ptus	10529221-10529854
334773 Dunham, I. etal. Plus 1623518-1623528   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   1830		334379	Dunham, I. et.al.	Plus	13908356-13908467
334773 Dunham, I. etal. Plus 1623518-1623528   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   18302753-1830281   1830		334719	Dunham, I. et.al.	Plus	15778859-15779026
330 334935 Dunham, I. etal. 335146 Dunham, I. etal. 335568 Dunham, I. etal. 335568 Dunham, I. etal. 335569 Dunham, I. etal. 33560 Dunham, I. etal. 336010 Dunham, I. etal. 336020 Dunham, I. etal. 337780 Dunham, I. etal. 337965 Dunham, I. etal. 337970 Dunham, I. etal. 3380020 Dunham, I. etal. 3380120 Dunham, I. etal. 338020 Dunham, I. etal. 3				Plus	16235169-16235328
335146 Dunham, I. etal. 335586 Dunham, I. etal. 335586 Dunham, I. etal. 335586 Dunham, I. etal. 335586 Dunham, I. etal. 335603 Dunham, I. etal. 336036 Dunham, I. etal. 337173 Dunham, I. etal. 337785 Dunham, I. etal. 337786 Dunham, I. etal. 337780 Dunham, I. etal. 337780 Dunham, I. etal. 337780 Dunham, I. etal. 337780 Dunham, I. etal. 33780 Dunham, I. etal. 338030 Dunham, I. etal. 33800 Dunha		334893	Dunham, I. et al.	Plus	19302753-19302881
335520 Dunham, I. et.al. 335585 Dunham, I. et.al. 335585 Dunham, I. et.al. 335585 Dunham, I. et.al. 335601 Dunham, I. et.al. 336122 Dunham, I. et.al. 336123 Dunham, I. et.al. 336263 Dunham, I. et.al. 337173 Dunham, I. et.al. 337173 Dunham, I. et.al. 337780 Dunham, I. et.al. 337785 Dunham, I. et.al. 337785 Dunham, I. et.al. 337780 Dunham, I. et.al. 33780 Dunham, I. et.al. 338000 Dunham, I. et.al. 338000 Dunham, I. et.al. 338011 Dunham, I. et.al. 338178 Dunham, I. et.al. 338180 Dunham, I. et.al. 338178 Dunham, I. et.al. 338180 Dunham, I. et.al. 3	30	334935	Dunham, I. et.al.	Plus	20108247-20108373
335568 Dunham, I. et.al. Plus 24935021-24935655  335608 Dunham, I. et.al. Plus 2493033-24990497  336038 Dunham, I. et.al. Plus 25044922-25045157  336268 Dunham, I. et.al. Plus 30051089-30051186  337173 Dunham, I. et.al. Plus 3024127-23624224  40 337460 Dunham, I. et.al. Plus 3254127-23624224  337785 Dunham, I. et.al. Plus 3254127-23624224  337785 Dunham, I. et.al. Plus 3477161-3547245  337780 Dunham, I. et.al. Plus 3655600-385043  337985 Dunham, I. et.al. Plus 71034267-7034392  45 337985 Dunham, I. et.al. Plus 71034267-7034392  45 337985 Dunham, I. et.al. Plus 8072708-8072827  338112 Dunham, I. et.al. Plus 10391398-10391600  338112 Dunham, I. et.al. Plus 12205719-12205875  3388427 Dunham, I. et.al. Plus 21226719-12205875  338942 Dunham, I. et.al. Plus 21226719-12205875  338947 Dunham, I. et.al. Plus 21226719-12205875  338940 Dunham, I. et.al. Plus 21226719-12205875  338940 Dunham, I. et.al. Plus 21226719-12205875  338940 Dunham, I. et.al. Plus 21221871-2121953  338940 Dunham, I. et.al. Plus 21221871-2121953  338940 Dunham, I. et.al. Plus 21221871-2121953  338940 Dunham, I. et.al. Minus 332933-383249  33940 Dunham, I. et.al. Minus 332933-383249  33940 Dunham, I. et.al. Minus 332933-383249  339470 Dunham, I. et.al. Minus 332933-383249  339487 Dunham, I. et.al. Minus 3832933-383249  33949 Dunham, I. et.al. Minus 3832933-383249  33949 Dunham, I. et.al. Minus 3832933-383249  33949 Dunham, I. et.al. Minus 3832933-383249  33940 Dun		335146	Dunham, I. et.al.	Plus	21491292-21491457
35568 Dunham, I. et.al. 7 Plus 2504423-25045157 336038 Dunham, I. et.al. 7 Plus 2504423-25045157 336038 Dunham, I. et.al. 7 Plus 30051089-30051186 337173 Dunham, I. et.al. 7 Plus 30051089-30051186 337173 Dunham, I. et.al. 7 Plus 32524127-23624224 7 Plus 32536159-3253355 33768 Dunham, I. et.al. 7 Plus 32536159-3253355 337780 Dunham, I. et.al. 7 Plus 3550500-3850843 337780 Dunham, I. et.al. 7 Plus 360500-3850843 337976 Dunham, I. et.al. 7 Plus 7034267-7034392 7 Plus 7		335320	Dunham, I. et.al.	Plus	22542132-22542246
35 35601 Dunham, I. et.al. 336036 Dunham, I. et.al. 336036 Dunham, I. et.al. 336036 Dunham, I. et.al. 336268 Dunham, I. et.al. 336268 Dunham, I. et.al. 337737 Dunham, I. et.al. 40 337738 Dunham, I. et.al. 337780 Dunham, I. et.al. 337780 Dunham, I. et.al. 337780 Dunham, I. et.al. 337976 Dunham, I. et.al. 41 Plus 3850500-3850843 337976 Dunham, I. et.al. 41 Plus 3850500-3850843 337976 Dunham, I. et.al. 41 Plus 3850500-3850843 337976 Dunham, I. et.al. 41 Plus 7034267-7034392 71 Plus 338112 Dunham, I. et.al. 41 Plus 7034267-7034392 71 Plus 338112 Dunham, I. et.al. 41 Plus 7034267-7034392 71 Plus 338112 Dunham, I. et.al. 41 Plus 7034267-7034392 71 Plus 7034267 Plus 7034267-7034392 71 Plus 7034267-70				Plus	24935021-24935655
336123 Dunham, I. et.al. Plus 30051089-30051186 336268 Dunham, I. et.al. Plus 30051089-30051186 337460 Dunham, I. et.al. Plus 23624127-23624224 40 337460 Dunham, I. et.al. Plus 32536159-32536395 337760 Dunham, I. et.al. Plus 35536159-32536395 337780 Dunham, I. et.al. Plus 35536169-32536395 337780 Dunham, I. et.al. Plus 365050-3850643 337780 Dunham, I. et.al. Plus 4113793-4113990 337805 Dunham, I. et.al. Plus 4113793-4113990 338030 Dunham, I. et.al. Plus 8072708-6072827 338112 Dunham, I. et.al. Plus 8072708-6072827 338178 Dunham, I. et.al. Plus 8072708-6072827 338178 Dunham, I. et.al. Plus 10391399-10391600 338427 Dunham, I. et.al. Plus 12800037-12800181 338990 Dunham, I. et.al. Plus 21221871-212205875 339047 Dunham, I. et.al. Plus 21221871-21221953 339047 Dunham, I. et.al. Plus 2121871-2121953 332864 Dunham, I. et.al. Plus 28795375-28795551 332864 Dunham, I. et.al. Minus 30760793-30769688 332933 Dunham, I. et.al. Minus 303398-1390296 333940 Dunham, I. et.al. Minus 303293-3332494 333712 Dunham, I. et.al. Minus 3823993-3832494 333937 Dunham, I. et.al. Minus 3823993-3832494 334387 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14482191-144422132 334913 Dunham, I. et.al. Minus 1488390-19463815		335586	Dunham, I. et.al.	Plus	24990333-24990497
336123   Dunham, I. et.al.   Plus   30051089-30051186   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   31997555-31989040   3199755   Dunham, I. et.al.   Plus   32536159-32536395   3199756   Dunham, I. et.al.   Plus   7034267-7034392   4113793-4113990   319976   Dunham, I. et.al.   Plus   7034267-7034392   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-4113990   4113793-	35	335601	Dunham, I. et.al.	Plus	25044923-25045157
336268 Dunham, I. et.al. Plus 31997555-31989040 337740 Dunham, I. et.al. Plus 23624224 340 337780 Dunham, I. et.al. Plus 3553195-32536395 337780 Dunham, I. et.al. Plus 3553195-32536395 337780 Dunham, I. et.al. Plus 365050-3850043 337780 Dunham, I. et.al. Plus 4113793-4113990 337865 Dunham, I. et.al. Plus 7034267-7034392 45 337976 Dunham, I. et.al. Plus 7166011-7166119 338012 Dunham, I. et.al. Plus 8072708-807287 338112 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205719-12205875 338794 Dunham, I. et.al. Plus 27114697-27114763 339040 Dunham, I. et.al. Plus 28795375-28795551 339040 Dunham, I. et.al. Plus 28795375-28795551 339040 Dunham, I. et.al. Minus 30760793-30760968 55 332864 Dunham, I. et.al. Minus 30760793-30760968 60 333942 Dunham, I. et.al. Minus 383293-3832494 333487 Dunham, I. et.al. Minus 382393-3822494 33487 Dunham, I. et.al. Minus 382393-8523671 60 333487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 139463091-94463815 Minus 1346309-19463815		336036	Dunham, I. et.al.	Plus	29019798-29019877
40 337460 Dunham, I. et.al. Plus 32536159-32536395 337460 Dunham, I. et.al. Plus 32536159-32536395 337760 Dunham, I. et.al. Plus 3655600-3850643 337760 Dunham, I. et.al. Plus 3655600-3850643 337976 Dunham, I. et.al. Plus 7034267-7034392 45 337976 Dunham, I. et.al. Plus 7034267-7034392 45 338030 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 10391388-10391600 338165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205071-12205875 338506 Dunham, I. et.al. Plus 12800037-12800181 338794 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 27114697-27114763 339047 Dunham, I. et.al. Plus 30760793-30760968 55 322864 Dunham, I. et.al. Minus 303593-30852491 333930 Dunham, I. et.al. Minus 303293-3832494 33319 Dunham, I. et.al. Minus 382293-3832494 333487 Dunham, I. et.al. Minus 852330-8523671 334487 Dunham, I. et.al. Minus 13244161-13293871 334497 Dunham, I. et.al. Minus 13246121-134945761 334497 Dunham, I. et.al. Minus 14432191-1442132 34491 Dunham, I. et.al. Minus 14432191-1442132 34613 Dunham, I. et.al. Minus 14432191-1442132		336123	Dunham, I. et.al.	Pius	30051089-30051186
40 337/66 Dunham, I. et.al. Plus 32536159-32536395 337736 Dunham, I. et.al. Plus 33547161-3547245 337778 Dunham, I. et.al. Plus 4113793-4113990 337965 Dunham, I. et.al. Plus 7034267-7034392 45 337976 Dunham, I. et.al. Plus 7034267-7034392 338112 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 10391398-10391600 339165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12800037-12800181 50 338427 Dunham, I. et.al. Plus 19685043-19685354 338506 Dunham, I. et.al. Plus 21221871-21221953 338794 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 30760783-30760968 55 332864 Dunham, I. et.al. Minus 303691-390296 333912 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 3832933-3832494 333940 Dunham, I. et.al. Minus 3832933-3832494 333487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 119463909-19483815					31997555-31998040
337685 Dunham, I. et.al. 337780 Dunham, I. et.al. 337780 Dunham, I. et.al. 337865 Dunham, I. et.al. 337865 Dunham, I. et.al. Plus 3850500,3850643 3379766 Dunham, I. et.al. Plus 7034267-7034392  45 337976 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12205719-12205875 338970 Dunham, I. et.al. Plus 21221871-21221953 338910 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 28795375-28795551 332864 Dunham, I. et.al. Plus 30760793-30760968 332933 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 383293-3832494 333940 Dunham, I. et.al. Minus 1390386-13293871 33487 Dunham, I. et.al. Minus 132931-13293871 33487 Dunham, I. et.al. Minus 13294116-13293871 334913 Dunham, I. et.al. Minus 1340309-19453815 334913 Dunham, I. et.al. Minus 1432191-14432132 334913 Dunham, I. et.al. Minus 1432191-14432132 334913 Dunham, I. et.al. Minus 14325792-21325867	4.0	337173	Dunham, I. et.al.	Plus	23624127-23624224
337736 Dunham, I. et.al. Plus 3850500-3850843 337786 Dunham, I. et.al. Plus 4113793-4113990 3379765 Dunham, I. et.al. Plus 7034267-7034392 338030 Dunham, I. et.al. Plus 8072708-6072827 338112 Dunham, I. et.al. Plus 8072708-6072827 338115 Dunham, I. et.al. Plus 10391398-10391600 338165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12800037-12800181 338506 Dunham, I. et.al. Plus 19685043-19685354 338506 Dunham, I. et.al. Plus 2121871-21221953 338794 Dunham, I. et.al. Plus 27114697-27114763 339047 Dunham, I. et.al. Plus 27114697-27114763 339393 Dunham, I. et.al. Minus 1390386-1390296 332933 Dunham, I. et.al. Minus 1390386-1390296 333940 Dunham, I. et.al. Minus 382293-3832494 333712 Dunham, I. et.al. Minus 8523330-8523671 334287 Dunham, I. et.al. Minus 8523330-8523671 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 134432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 1946309-19463815	40	337460	Dunham, I. et.al.		32536159-32536395
337780 Dunham, I. et.al. Plus 7034267-7034392 45 337976 Dunham, I. et.al. Plus 7034267-7034392 338030 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 10391398-10391600 338165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12200371-12205875 338270 Dunham, I. et.al. Plus 1260037-12200181 50 338427 Dunham, I. et.al. Plus 21221871-21221953 338794 Dunham, I. et.al. Plus 2121871-21221953 338910 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 28795375-28795551 332933 Dunham, I. et.al. Minus 30760793-30760968 332933 Dunham, I. et.al. Minus 30760793-30760968 333930 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 852833-8523671 333427 Dunham, I. et.al. Minus 8528330-8523871 334287 Dunham, I. et.al. Minus 8528330-8523871 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315					
45 337965 Dunham, I. et.al. Plus 7186011-7166119 338030 Dunham, I. et.al. Plus 8072708-8072827 338112 Dunham, I. et.al. Plus 8072708-8072827 338165 Dunham, I. et.al. Plus 10391398-10391600 338178 Dunham, I. et.al. Plus 12800037-12800181 50 338427 Dunham, I. et.al. Plus 12800037-12800181 338794 Dunham, I. et.al. Plus 21221871-21221953 338910 Dunham, I. et.al. Plus 27114697-27114763 339910 Dunham, I. et.al. Plus 28795375-28795551 332864 Dunham, I. et.al. Plus 30760793-30760968 55 332864 Dunham, I. et.al. Minus 1390386-1390296 332933 Dunham, I. et.al. Minus 2035790-2035681 333132 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 852330-8523671 60 333942 Dunham, I. et.al. Minus 852330-8523671 33487 Dunham, I. et.al. Minus 13946021-13945781 33487 Dunham, I. et.al. Minus 13946021-13945781 33487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315					
45 337976 Dunham, I. et.al. Plus 7166011-7166119 338030 Dunham, I. et.al. Plus 8072708-8072927 338112 Dunham, I. et.al. Plus 10391393-10391600 338165 Dunham, I. et.al. Plus 1220037-12800181 50 338427 Dunham, I. et.al. Plus 12800037-12800181 50 338506 Dunham, I. et.al. Plus 19685043-19685354 338910 Dunham, I. et.al. Plus 2121871-21221953 338910 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 27914697-27114763 338930 Dunham, I. et.al. Plus 30760793-30760968 55 332864 Dunham, I. et.al. Minus 1390386-1390296 332933 Dunham, I. et.al. Minus 2035790-2035681 333131 Dunham, I. et.al. Minus 823830-4823671 60 333942 Dunham, I. et.al. Minus 8523830-4823671 60 333942 Dunham, I. et.al. Minus 8523830-4823671 334287 Dunham, I. et.al. Minus 8523830-4823671 334287 Dunham, I. et.al. Minus 1394021-13945781 334487 Dunham, I. et.al. Minus 1394021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 3344913 Dunham, I. et.al. Minus 14432191-14432132 3344913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14963909-19463315					
338030 Dunham, I. et al. Plus 8072708-8072827 338112 Dunham, I. et al. Plus 10391399-10391600 338165 Dunham, I. et al. Plus 12205719-12205875 338178 Dunham, I. et al. Plus 12800037-12800181 Dunham, I. et al. Plus 19885043-19685354 338506 Dunham, I. et al. Plus 21221871-21221953 338794 Dunham, I. et al. Plus 27114697-27114763 338910 Dunham, I. et al. Plus 2795375-28795551 332864 Dunham, I. et al. Plus 30760793-30760968 332933 Dunham, I. et al. Minus 1390386-1390296 332933 Dunham, I. et al. Minus 3832993-3832494 333712 Dunham, I. et al. Minus 3832993-3832494 333712 Dunham, I. et al. Minus 852330-8623671 60 333940 Dunham, I. et al. Minus 852330-8523671 33487 Dunham, I. et al. Minus 852369-8552330 33487 Dunham, I. et al. Minus 13945116-13293871 33487 Dunham, I. et al. Minus 14432191-14432132 334487 Dunham, I. et al. Minus 13945021-13945781 334487 Dunham, I. et al. Minus 14432191-14432132 3344913 Dunham, I. et al. Minus 14432191-14432132 3344913 Dunham, I. et al. Minus 14432191-14432132 334913 Dunham, I. et al. Minus 14432191-14432132	45				
338112 Dunham, I. et.al. Plus 10391398-10391600 338165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12800037-12800181 338506 Dunham, I. et.al. Plus 19885043-19685354 338910 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 28795375-28795551 339047 Dunham, I. et.al. Plus 28795375-28795551 332933 Dunham, I. et.al. Minus 30760793-30760968 332933 Dunham, I. et.al. Minus 1390386-1390296 333910 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 3832933-3832494 333940 Dunham, I. et.al. Minus 8528330-8623671 333932 Dunham, I. et.al. Minus 852829-8552330 33493 Dunham, I. et.al. Minus 852829-8552330 33493 Dunham, I. et.al. Minus 1394516-13293871 33493 Dunham, I. et.al. Minus 13945021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 3344913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315	45				
338165 Dunham, I. et.al. Plus 12205719-12205875 338178 Dunham, I. et.al. Plus 12800037-12800181 338427 Dunham, I. et.al. Plus 19885043-19865354 338506 Dunham, I. et.al. Plus 21221871-21221953 338910 Dunham, I. et.al. Plus 27114697-27114763 339047 Dunham, I. et.al. Plus 28795375-28795551 339047 Dunham, I. et.al. Plus 30760793-30760968 33293 Dunham, I. et.al. Minus 1390386-1390296 33293 Dunham, I. et.al. Minus 3832993-8832494 333712 Dunham, I. et.al. Minus 3832993-8832494 333940 Dunham, I. et.al. Minus 7286177-7286073 33940 Dunham, I. et.al. Minus 852330-8523671 60 333942 Dunham, I. et.al. Minus 13294116-13293871 334387 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 1346021-13945781 334487 Dunham, I. et.al. Minus 14329309-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867					
50       338178 Dunham, I. et.al.       Plus 19685043-19685364         338427 Dunham, I. et.al.       Plus 19685043-19685364         338794 Dunham, I. et.al.       Plus 27114697-27114763         338910 Dunham, I. et.al.       Plus 28795375-28795551         339047 Dunham, I. et.al.       Plus 28795375-28795551         332864 Dunham, I. et.al.       Minus 1390386-1390296         332933 Dunham, I. et.al.       Minus 2035790-203681         333193 Dunham, I. et.al.       Minus 3832993-3832494         333712 Dunham, I. et.al.       Minus 38293-3832494         333940 Dunham, I. et.al.       Minus 852330-8523671         60 333942 Dunham, I. et.al.       Minus 852320-8552330         334287 Dunham, I. et.al.       Minus 13294116-13293871         33487 Dunham, I. et.al.       Minus 13946021-13945781         33487 Dunham, I. et.al.       Minus 14432191-14432132         33487 Dunham, I. et.al.       Minus 143293671         33487 Dunham, I. et.al.       Minus 1294116-13293871         33487 Dunham, I. et.al.       Minus 1294196787					
50       338427 Dunham, I. et.al.       Plus       19685043-19685354         338794 Dunham, I. et.al.       Plus       21221871-21221953         338910 Dunham, I. et.al.       Plus       27114697-27114763         338910 Dunham, I. et.al.       Plus       28795375-28785561         339047 Dunham, I. et.al.       Plus       30760793-30760968         55       332864 Dunham, I. et.al.       Minus       1390386-1390296         332933 Dunham, I. et.al.       Minus       3332993-3832494         333712 Dunham, I. et.al.       Minus       8523830-8523671         60       333942 Dunham, I. et.al.       Minus       8523830-8523671         60       334287 Dunham, I. et.al.       Minus       852629-8552330         334487 Dunham, I. et.al.       Minus       13294116-13293871         334487 Dunham, I. et.al.       Minus       1343217-14345781         334913 Dunham, I. et.al.       Minus       14432191-14432132         334913 Dunham, I. et.al.       Minus       14463919-19463315         65       335109 Dunham, I. et.al.       Minus       21325792-21325667					
338506 Dumham, I. et.al. Plus 21221871-21221953 338794 Dumham, I. et.al. Plus 27114697-27114763 338910 Dumham, I. et.al. Plus 28795375-28795551 339047 Dumham, I. et.al. Plus 30760793-30760968 332933 Dumham, I. et.al. Minus 1390386-1390296 333913 Dumham, I. et.al. Minus 3832993-3832494 333712 Dumham, I. et.al. Minus 3832993-3832494 333940 Dumham, I. et.al. Minus 852330-8523671  60 333942 Dumham, I. et.al. Minus 8523697-1 334287 Dumham, I. et.al. Minus 852629-8552330 334287 Dumham, I. et.al. Minus 13294116-13293871 334387 Dumham, I. et.al. Minus 13346021-13345781 334487 Dumham, I. et.al. Minus 14432191-14432132 334913 Dumham, I. et.al. Minus 14432191-14432132 334913 Dumham, I. et.al. Minus 19463909-19463315	50				
338794 Dunham, I. et.al. Plus 27114697-27114763 338910 Dunham, I. et.al. Plus 28795375-28795551 332964 Dunham, I. et.al. Minus 30760793-30760968 332933 Dunham, I. et.al. Minus 2035790-2035681 333193 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 3832993-3832494 333940 Dunham, I. et.al. Minus 8523830-8523671 334287 Dunham, I. et.al. Minus 852629-8552330 334287 Dunham, I. et.al. Minus 13294116-13293871 334387 Dunham, I. et.al. Minus 133946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 12925667	30				
338910 Dunham, I. et.al. 339047 Dunham, I. et.al. Plus 30760793-30760968  55 332684 Dunham, I. et.al. Minus 1390386-1390296 332933 Dunham, I. et.al. Minus 2035790-2035681 333712 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 7286177-7286073 333940 Dunham, I. et.al. Minus 8523830-8523671  60 333942 Dunham, I. et.al. Minus 8523830-8523671 334387 Dunham, I. et.al. Minus 13284116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432132 334913 Dunham, I. et.al. Minus 19463909-19463815  65 335109 Dunham, I. et.al. Minus 21325792-21325867					
339047 Dunham, I. et.al. Minus 30760793-30760968 332933 Dunham, I. et.al. Minus 2035790-2035681 333193 Dunham, I. et.al. Minus 3832993-3832494 333712 Dunham, I. et.al. Minus 7286177-7286073 333940 Dunham, I. et.al. Minus 852330-8523671 60 333942 Dunham, I. et.al. Minus 852330-8523671 334387 Dunham, I. et.al. Minus 13294116-13293871 334387 Dunham, I. et.al. Minus 13294176-13293871 334487 Dunham, I. et.al. Minus 1346221-13945781 334487 Dunham, I. et.al. Minus 14329191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315					
332864 Dunham, I. et.al. Minus 1390386-1390296 332933 Dunham, I. et.al. Minus 2035790-2035681 333712 Dunham, I. et.al. Minus 3832993-3832494 333940 Dunham, I. et.al. Minus 852380-8523671 60 333942 Dunham, I. et.al. Minus 852380-8523671 334287 Dunham, I. et.al. Minus 852629-8552330 334287 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315 65 335109 Dunham, I. et.al. Minus 21325792-21325867					
332933 Dunham, I. et.al. Minus 2035790-2035681 333193 Dunham, I. et.al. Minus 3832993-3832494 333940 Dunham, I. et.al. Minus 8523830-8523671 333942 Dunham, I. et.al. Minus 8523630-8523671 334287 Dunham, I. et.al. Minus 13294116-13293871 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 134621-13456781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463315 65 335109 Dunham, I. et.al. Minus 21325792-21325667	55				
333193 Dunham, I. et.al. Minus 3332993-3832494 333940 Dunham, I. et.al. Minus 7286177-7286073 333940 Dunham, I. et.al. Minus 8523330-8523671 334287 Dunham, I. et.al. Minus 852629-8552330 334387 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867	33				
333712 Dunham, I. et.al. Minus 7286177-7286073 333940 Dunham, I. et.al. Minus 8523830-8523671 334927 Dunham, I. et.al. Minus 8523830-8523230 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867					
333940 Dunham, I. et.al. Minus 8523830-8523671 334287 Dunham, I. et.al. Minus 852629-8552330 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334913 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 21325792-21325867					
60 333942 Dunham, I. et.al. Minus 8552629-8552330 334287 Dunham, I. et.al. Minus 13294116-13293871 334487 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 134623132 334913 Dunham, I. et.al. Minus 19463909-19463315 65 335109 Dunham, I. et.al. Minus 21325792-21325867					
334287 Dunham, I. et.al. Minus 13294116-13293871 334387 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867	60				
334387 Dunham, I. et.al. Minus 13946021-13945781 334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867	00				
334487 Dunham, I. et.al. Minus 14432191-14432132 334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867					***************************************
334913 Dunham, I. et.al. Minus 19463909-19463815 65 335109 Dunham, I. et.al. Minus 21325792-21325867					77 17 17 17 17 17 17 17 17 17 17 17 17 1
65 335109 Dunham, Letal. Minus 21325792-21325867					
	65				

	335288	Dunham, I. et.al.	Minus	22304275-22303770
		Dunham, I. et.al.	Minus	22309950-22309891
	335549		Minus	24666203-24666128
5	335862	Dunham, I. et.al.	Minus	26690300-26690125
3		Dunham, I. et.al.	Minus	26694537-26694382
	335905	Dunham, I. et.al. Dunham, I. et.al.	Minus	26988888-26988719
		Dunham, I. et.al.	Minus Minus	30477456-30477311 32093320-32093181
		Dunham, I. et.al.	Minus	34067540-34067425
10		Dunham, I. et.al.	Minus	15616509-15616358
	336616		Minus	26021027-26020848
	336679	Dunham, I. et.al.	Minus	2035790-2035681
		Dunham, I. et.al.	Minus	17407330-17407251
15	337272		Minus	28241476-28241307
15	337357		Minus	30906179-30906109
		Ounham, I. et.al. Dunham, I. et.al.	Minus Minus	31471747-31471569 33371317-33371258
		Dunham, I. et.al.	Minus	2648689-2648632
		Dunham, I. et.al.	Minus .	6051648-6051510
20		Dunham, I. et.al.	Minus	9318438-9318301
		Dunham, I. et.al.	Minus	14166440-14166104
	338752	Dunham, I. et.al.	Minus	26421374-26421135
		Dunham, I. et.al.	Minus	26628148-26628009
25	338983		Minus	29908865-29908702
25	339209	,	Minus	32492953-32492593
	329532	5866848 3983505	Minus Plus	32301-32650 42937-43014
	329522	3983507	Minus	35265-35458
		3983510	Plus	18407-18597
30	329511		Plus	20965-21325
	325326	5866875	Plus	47726-48024
	325303		Minus	73556-73630
	325389		Plus	239672-239759
35	325417		Minus	110635-110745
55	325450	5866941 5866941	Minus Minus	435379-435552 704103-704202
	325498	5866967	Plus	173372-173930
	325587	6682462	Plus	126724-126967
	325602		Plus	79122-79251
40	325701	5887028	Minus	72936-73046
	325780		Plus	63634-63873
	329722		Minus	112713-112992
	329728 329666		Minus Plus	207544-207741 98307-98446
45	329815	6624888	Minus	68431-68720
75	329841	6672062	Minus	40181-40331
	325824		Minus	42450-42833
	325866	5867076	Minus	94358-94628
<b>~</b> ^	325902	5867101	Minus	127729-127842
50	325958		Phus	53437-53550
	326014		Minus	10358-10447
	329941 330002	6165199 6623963	Minus Plus	34319-34411 46097-46158
	326154		Minus	7103-7179
55	326023	5867245	Plus	171799-171896
	326278	5867269	Plus	75250-75903
	330036	6042048	Plus	117120-117216
	326547		Minus	623677-623870
<b>6</b> 0		5867423	Plus	11843-11930
60		5867435 5867435	Minus Minus	13038-13111 8818-8949
		5867435	Minus	9368-9509
		5867441	Minus	303000-303122
		6682496	Plus	78904-79112
65	330120	6671864	Minus	127553-127656
		6671869	Minus	35311-35406
		6552462	Minus	69337-69670
		5867657 5867664	Minus	16023-16581
	32/014	3001004	Plus	1017630-1017788

	326930 6456782	Ptus	606950-607705
	326920 6456782	Minus	42425-42519
	327058 6531965	Plus	2384268-2384835
	327061 6531965	Minus	3486389-3486673
5	327075 6531965	Plus	4041318-4041431
	327120 6531970	Minus	6-1088
	330126 6093735	Plus	82458-82623
	327157 5866841	Minus	4408-4746
	327183 5867442	Plus	84317-84531
10	327192 5867445	Minus	194652-194764
	327288 5867481	Plus	48583-48773
	327469 5867772	Plus	145549-145708
	327489 6004459	Minus	57796-58015
	327526 6381882	Minus	97010-97123
15	327574 5867818	Pius	68767-69126
13	327665 5867839	Pius	141736-141800
	327752 5867949	Pius	93721-94421
	327819 5867968	Minus	92202-92717
	327798 5887982	Pius	85267-85405
20	330260 6671884	Pius Pius	45203-45269
20			3982-4114
	330282 6671910	Plus	
	328078 5868008	Plus	72807-72865
	328121 5868031	Plus	153782-153850
25	328190 5868077	Plus	21082-21165
23	328227 5868105	Minus	21082-21242
	327871 5868131	Minus	88889-89221
	328018 5902482	Minus	542547-543133
	328624 5868246	Minus	120666-120836
20	328744 5868290	Plus	138639-138722
30	328799 5868316	Minus	80771-80923
	328291 5868363	Minus	144244-144434
	328329 5868375	Plus	191709-192239
•	328369 5868388	Plus	75371-75583
~~	328385 5868395	Plus	369952-370155
35	328397 5868397	Plus	344967-345063
	328412 5868405	Plus	86427-86519
	328538 5868485	Plus	3814-4243
	328656 6004473	Plus	792616-792729
40	328638 6004473	Plus	284618-294903
40	328903 5868514	Plus	23625-24468
	328960 6456775	Plus	38547-38837
	330320 5932415	Minus	54458-54697
	328993 5868536	Plus	49160-50084
	329081 5868602	Plus	93368-93510
45	329089 5868614	Plus	25805-26923
	329109 5868626	Plus	102168-102273
	329192 5868716	Plus	166936-167020
	329218 5868726	Minus	71408-71707
	329224 5868728	Plus	27422-27664
50	329246 5868732	Minus	250541-250792
	329415 5868874	Plus	1011438-1011818
	329454 5868887	Plus	51342-51593

### TABLE 15: 169 GENES WITH SEQUENCE INFORMATION DEPICTED IN TABLE 16

Table 15 depicts UnigeneID, UnigeneTitle, Primekey, Predicted Cellular Localization, and Exemplar Accession for all of the sequences in Table 16. The information in Table 15 is linked by EosCode to Table 16.

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number

Pkey: ExAccn: UnigeneiD: Unigene Title: 10

5

Unigene number Unigene gene title Internal Eos name

EosCode: Localization:

Predicted cellular localization of gene product

15	Pkey	ExAccn	UnigenelD	Unigene Title	EosCode	Localization
٠.	100204	D84276	Hs.66052	CD38 antigen (p45)	PBC1	plasma membrane
٠,		D87742		KIAA0268 protein	PAB7	not determined
		L33881	Hs.1904	protein kinase C, iota	OAA1	cytoplasmic
20		M24736	N3, 1304	selectin E (endothelial adhesion molecul	ACC5	plasma membrane
20		M28214	No 402072	RAB3B, member RAS oncogene family	PFJ2	cytoplasmic
		M94250	Hs.82045	midkine (neurite growth-promoting factor	LBH9	cytopiasinic secreted
		U42359	F18.02U40	ab:Human N33 protein form 1 (N33) gene.		Secretar
		U53347	Hs.183556		PFJ4	plasma membrane
25		U71207	Hs.29279	eyes absent (Drosophila) homolog 2	LEM9	cytoplasmic
23		X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	LBG2	plasma membrane
		AA037316		hypothetical protein dJ462023.2	PDO6	plastia mettorate
		AA402971		kallikrein 11	PBA6	secreted
				hypothetical protein FLJ13590	PDM3	secreted
30		AA011176		Homo sapiens beta-1 adrenergic receptor		piasma membrane
50		AA236476		transmembrane protein with EGF-like and		plasma membrane
		AA424881		hypothetical protein MGC13170	PDO8	plastila tricinistatio
		AA456135		ESTs	PAA4	plasma membrane
		AA609723		KIAA1344 protein	PAA3	not determined
35		D51095	110.00002	DKFZP586E1621 protein	PDG8	IN deferment
55		AA054237	He 40000	ESTs	PBF1	plasma membrane
		AA156790		ESTs, Weakly similar to Z223_HUMAN ZI		PDG7
		AA169379		hypothetical protein FLJ13782	BCU4	not determined
		H04649	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone F		PDG4
40		H18836	Hs.31608	hypothetical protein FLJ20041	PAV9	plasma membrane
70		T17185	Hs.83883	transmembrane, prostate androgen induce		CHA1 not determined
		T23855		KIAA1028 protein	PDO3	CHATISOL determined
		AA236545	Hs.54973	cadherin-like protein VR20	PFJ6	plasma membrane
		AA250737	Hs.72472	ESTs	BCY2	mitochondrial
45		AA599463	118.16412	hypothetical protein MGC2648	PDV3	sacreted
TJ		AA609219	Nº 30003	ESTs	OAB6	Secreted
		N41002	Hs.45107	= 1 ± 1	PDT9	ER
		N51919		ATPase, Ca++ transporting, type 2C, mem		PAJ5 not determined
		N94303	Hs.55028			LV99 Hot detailmied
50		N95796		Homo sapiens prostein mRNA, complete o		-PAB2 plasma membrane
50		R45175	Hs.117183		PBF8	-PADZ plasifia filofillulario
		AA398246		KIAA1210 protein	PDG5	
		AA419011	116.87354	prostate androgen-regulated transcript 1	PDV5	
		AA428062		ESTs; protease inhibitor 15 (Pl15)	BCU7	vesicular
55			Hs.98732	Homo sapiens Chromosome 16 BAC clone		PAZ1 not determined
55				alpha-methylacyl-CoA racemase	PD01	FA21 Not determined
				ESTs, Weakly similar to ALU1_HUMAN AL		PAA2 plasma membrane
		N62096		ESTs, Weakly similar to JC7328 amino aci		plasma membrane
		AA128075	N6.293 100	transmembrane, prostate androgen induce		PDY4
60		AA126075 Al167942	Hs.61635		PAA5	plasma membrane
<del>50</del>		R38438		solute carrier family 15 (H+/peptide tra	PDO5	plasma membrane
			Hs.162859		PAA6	not determined
				secreted frizzled-related protein 4	BCX2	secreted
				calcium/calmodulin-dependent protein kin		2011.010
65		W26769		CGI-86 protein	PAV6	vesicular
<del>U</del> J			115.105201			
	128309	AA621604		spondin 2, extracellular matrix protein	CJA5	not determined

	129404	AA172056		ESTs	PAB4	
		R73640	Hs.11260	hypothetical protein FLJ11264	PAJ3	secreted
		AA128997		phosphodiesterase 9A	PEE6	nuclear
_	131425	AA219134	Hs.26691	ESTs	PBA7	
5		AA031360		ESTs	PAA7	plasma membrane
		AA032221		six transmembrane epithelial antigen of	PM17	plasma membrane
		U81599	Hs.66731	homeo box B13	PFJ5	nuclear
		U42360 X74331	Hs.71119 Hs.74519	Putative prostate cancer tumor suppresso primase, polypeptide 2A (58kD)	PDM2	plasma membrane
10		U07919	Hs,75746	aldehyde dehydrogenase 1 family, membe		PDT1 mitochondrial
		U07919	Hs.75746	aldehyde dehydrogenase 1 family, membe		PDT1 mitochondrial
		AA045870		Homo sapiens mRNA; cDNA DXFZp564A0		PAB9 cytoplasmic
	134110	U41060	Hs.79136	LIV-1 protein, estrogen regulated	BCR4	plasma membrane
1.5		AI800004		hypothetical protein	PEU4	nuclear
15		AI869666		MAD (mothers against decapentaplegic, Di		cytoptasmic
				relaxin 1 (H1)	PBH3	secreted
		AA340605 D30891	Hs.19525	ESTs, Weakly similar to Homolog of rat Z hypothetical protein FLJ22794	PBM4	not determined
		AW503733		KIAA1488 protein	PBY3	not determined
20		Al460004		hypothetical protein FLJ20041	PEU5	plasma membrane
	310382	A1734009		KIAA1603 protein	PCQ8	•
•		AJ420227		ESTs, Weakly similar to A46010 X-linked	PBH1	plasma membrane _
			Hs.156142		PEN3	plasma membrane
25		Al338013	Hs.140546		PCW3	
25		AI973051 AI682088	Hs.224965	holocarboxylase synthetase (blotin-[prop	PET5 PBH8	
			Hs.120591		PBY2	
		AI732100	Hs.187619		PBY1	
			Hs.136319		BFF8	not determined
30	314785	Al538226	Hs.32976		CBO7	cytoplasmic
		AJ672225	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TI		PBM2not determined
		AW292425	11: 404407	ESTs	PBM9	
			Hs.134427		PBJ7 PBJ9	plasma membrane
35		Al654187	Hs.153023 Hs.195704		PBQ6	
55				deoxyribonuclease II beta	PBQ7	
				hypothetical protein FLJ10188	PBJ1	cytoplasmic
	319191	AF071538		prostate epithelium-specific Ets transcr	PEN1	
40		AA460775		ESTs, Weakly similar to T17248 hypotheti		
40				ATP-binding cassette, sub-family C (CFTR		plasma membrane
		AF038966	3Hs.159330	secretory carrier membrane protein 1	PEL9 PBY4	plasma membrane not determined
				Homo sapiens LUCA-15 protein mRNA, sp		PBY8 not determined
		W07459	Hs.157601		CBF9	secreted
45				Homo sapiens cDNA FLJ12166 fis, clone M	/A	PBQ1 not determined
			Hs.293616		PCQ7	plasma membrane
		AF055019		Homo sapiens clone 24670 mRNA sequen		PCI2 not determined
		AA639902 A1146686	Hs.104215 Hs.143691	ESTs, Moderately similar to SPCN_HUMAI	PBQ9	PBJ5 not determined
50				Homo sapiens cDNA: FLJ23241 fis, clone		PBY6 not determined
-			Hs.292934		PBM3	. 5 . 0 . 10 . 00
				ESTs, Weakly similar to 138022 hypotheti	PBH4	cytoplasmic
	324626	A1685464		gb:tt88f04.x1 NCI_CGAP_Pr28 Homo sapi		PCW6
E E		A1694767	Hs.129179	Homo sapiens cDNA FLJ13581 fis, clone F		PBJ4 plasma membrane
55		AI557019	HS.116467	small nuclear protein PRAC	CBK1	nuclear not determined
	330211	U31382	He 200867	guanine nucleotide binding protein 4	PBJ2 PEW1	cytoplasmic
		AA449677		hypothetical protein	PBM1	not determined
		T48536		TMPRSS2, transmembrane protease, serir		PEL3 plasma membrane
60		AA149579		ESTs	PBQ4	plasma membrane
		R36671	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D0		PCQ1cytoplasmic
		N32912	Hs.291039		PCI4	nuclear
		AA431407	Hs.98802	ESTs, Moderately similar to T14342 NSD1		not determined nuclear
65		N58172 AA340504		gb:za21f09.s1 Soares fetal liver spleen gb:hw31a09.x1 NCI_CGAP_Kid11 Homo s	PBQ5 enien	PBJ8 not determined
55		T94885		transgelin 2	PBQ8	secreted
	332798				PBH2	nuclear
	334447				PBY9	not determined
	338255				PBY7	not determined

	401424				PFG2	mitochondrial
	407122	H20276	Hs.31742	ESTs	PEW7	
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	PEZ3	plasma membrane
_	408826	AF216077	Hs.48376	Homo sapiens clone HB-2 mRNA sequence	8	PEY1
5		AK000631		hypothetical protein FLJ20624	PFG1	nuclear
	409361	NM_00598	2Hs.54416	sine oculis homeobox (Drosophila) homolo	PEW3	nuclear
	411098	U80034	Hs.68583	mitochondrial intermediate peptidase	PEZ9	mitochondrial
	413125	BE244589	Hs.75207	glyoxalase I	PFJ3	cytopiasmic
	413623	AA825721	Hs.246973	ESTs	OBH6	• •
10	414422	AA147224	Hs.337232	Homeo box A13	PFC6	
	415263	AA948033	Hs.130853	ESTs	PEZ5	
	417153	X57010	Hs.81343	"collagen, type II, alpha 1 (primary ost	PFJ1	secreted
	418601	AA279490	Hs.86368	calmagin	PFA1	ER
	418848	Al820961	Hs.193465	ESTs	PEY4	
15	418882	NM_00499	6Hs.89433	ATP-binding cassette, sub-family C (CFTR	OBH2	
	419839	U24577	Hs.93304	"phospholipase A2, group VII (platelet-a	PFH9	secreted
	421887	AW161450	Hs.109201	CGI-86 protein	PFH2	plasma membrane
	422083	NM_00114	1Hs.111256	"arachidonate 15-lipoxygenase, second ty	PFH5	cytoplasmic
	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	PFA3	.,,
20	425071	NM_013989	9Hs.154424		PFH6	secreted
	425710	AF030880		solute carrier family, member 4	PFD4	plasma membrane
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	PFH1	plasma membrane
	428819	AL135623	Hs.193914	KIAA0575 gene product	PFD6	nuclear
	429900	AA460421	Hs.30875	ESTs	PEZ7	
25	429918	AW873986	Hs.119383	ESTs	PEY5	
		BE245562		adrenergic, beta-2-, receptor, surface	PEZ4	plasma membrane
	431217	NM_01342	7Hs.250830	Rho GTPase activating protein 6	PFG6	nuclear
	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	PEZ1	
	431992	NM_00274	2Hs.2891	protein kinase C. mu	PFH4	cytoplasmic
30	432189	AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sap		PFA2
	432244	Al669973	Hs.200574		PEW8	
	432437	W07088	Hs.293685	ESTs	PFG3	•
	432966	AA650114	Hs.325198	ESTs	PEY3	
	439176	A1446444	Hs.190394	ESTs, Weakly similar to B28096 line-1 pr	PEW5	
35	440260	AJ972867	Hs.7130	copine IV	PEW6	
	440901	AA909358	Hs.128612	ESTs	PFC8	
	445424	AB028945		cortactin SH3 domain-binding protein	PEZ6	
	446320	AF126245	Hs.14791	"acyl-Coenzyme A dehydrogenase family, i	n	PFH7
	447210	AF035269			PFH8	
40	449156	AF103907	Hs.171353	prostate cancer antigen 3, non-coding DD	PEZ8	
		NM_014253		odz (odd Oz/ten-m, Drosophila) homolog 1		plasma membrane
	449650	AF055575	Hs.23838	calcium channel, voltage-dependent, L ty	PFD2	plasma membrane
	451939	U80456	Hs.27311	single-minded (Drosophila) homolog 2	PFJ8	
	451982		Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401		PFG9plasma membrane
45		AI922988		ESTs	PFD8	F
_		NM 002202	2Hs.505	ISL1 transcription factor, LIM/homeodoma		nuclear
		BE463857				cytoplasmic
	452946		Hs.31092	EphA5	PFH3	plasma membrane
				<b>-</b> r	-	

TABLE 15A shows the accession numbers for those primekeys lacking a unigeneID in Table 15. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10			
	Pkey: CAT nu Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15			
13	Pkey	CAT number	Accession
20	116393	131543_1	AI972402 AI634409 AI523716 AI799749 W44518 AI424438 AI688513 AI971048 AI688324 AW013854 AA588483 AA528111 AI627428 AI582200 AI669296 AI826926 AI620526 AI669958 AI972459 AI924500 AA512903 W44517 AA335363 AW238997 BE300165 BE250665 AA284185 AA523420 W52834 AI471970 AI952824 AW003820 AW009483 AA669796 AA114966 AI653342 AA115038 AI342150 AI092100 AI968211 W51994 AI804005 AI201420 AI123210 AI738405 AI674964 AI970341 AW027500 AI493316 AI333193 AI39353 AA599463 AI655163 AI804200 AI365321 AI990213 AI657011 AA650025 AI968810 AI341978 AA599839 AW592602 AA644289 AI468578 AI565265 AI565228 BE221535 AW973052
25	101485	18113_1	AA296520 AL021940 M30840 NM_000450 M24736 M61894 AL047443 H39560 Al694691 AA916787 Al214796 AA939085 Al150616 AA412553 AA412545 Al051015 T27654 AA694430
	126399	17331_1	AA088767 AF224278 AA128075 AL035541 AA027926 AI761441 AI972096 AW071693 AI742327 AI377498 AI804815 AI640802 AI885001 AI921394 AA595115 N71820 AI921217 AW007283 AI467828 AI369306 AA917446 AI493698 AA088701 AA126889 AI936228 AW204238 AI039567 AI925027 BE138909 AW452945 AW135998 AA310984 AA027860 AW073519 AI537597 AA953976 AI521341
30			AW273589 AW050740 AA536113 AA559064 AI474392 AW135709 AA535181 AW572959 AA570597 AI905464 AI677810 AI587642 AW975102 AA424310 AA482527 NG4192 AA658276 AW889117 AA486591 AW889172 AI381990 AI381991 AI673419 AI990950 AA487031 AI272934 AI150565 AA229168 AW316722 AI142707 BE222396 AA614168 AA122026 AW338227 AA632457 AI988726 AW369662 AA512956 AA541675 AA451748 AI250993 BE146418 AA122025
35		94346_1 21074_1	A3362575 AI805082 AW263421 AI432462 AA135870 AA031360 AA031604 AA298475 AA298464 NM_012445 AB027466 BE407510 BE047605 AA047125 AW084003 AA149494 AA149490 AA292528 AA570505 AA526186 AW006250 AW007762 AI341557 AI799666 AI972710 AI377966 AI962810 AI084783 AI458032 AI190971 AW148913 AA372354 AW970032 AW007426 AA650188 AI123203 AI122890 AL80975 W73495 AI863238 AA374109 AA603986 AW149089 AW957523 AI307748 AI921067 AI336463 F24537 AI380460 AI367500 AI189309 AI814701 AI766921 AW572106 AA037024 AW072576 AA578293
40			Al288103 AA235464 AW450642 AA574230 AW294024 AI589229 AI580733 AW512227 AA877009 AI660255 AW188597 AA558228 AI572782 AA658397 AI274628 AI866359 AA864573 AI264439 AA621604 AW515493 AW243333 Z39737 AI567038 AA573997 AA573559 AW236431 AI652870 AI684973 AA034505 AA047126
45	129404 107217	156454_1 9836_1	Al267700 Al720344 AA191424 Al023543 Al469633 AA172056 AW958465 AA172236 AW953397 AA355086 AL080235 AA031750 D81382 Al480231 Al095947 Al560953 BE010721 Al870290 AA374945 AA125792 D51527 D51556 Al685541 D51559 AW117286 AA195741 Al675138 AW593439 Al201885 T30590 AW952100 D51095 AA523864 W70043 AA987586 Al421515 Al205532 AA127069 Al337367 D51595 Al453785 AW075677 AW088359 C14287 C14284
	121710	19266_1	AF163474 NM_016590 AF163475 AI761105 AI770098 AA410580 AA411616 AI590343 AI739050 AL050198 AI882645 AA419104 AA513809 AA333032 AI816915 AW139625 AA640889 AI311391 AI627693 AW135514 AA418011 AI269149 AI245259 AI970008 AI970017 AW139445 AA569503 AI761072 AI766179 AI759995 AI300776 AI870129 AW150770 AA226501 AA226220
50		291015_1	Al249368 Al742316 AA428062 AA442089 Al864189 BE349478 Al803475 Al584049 BE552085 Al088609 Al264197 Al886144 Al129474 Al307145 BE181300 AW058403 Al696838 AW748598 AA442196 Al216428
	315051 324626	entrez_U42359 347217_1 336411_1	AW292425 BE467167 Al702953 BE550961 BE222309 Al299348 Al693336 AA541708 Al685464 AW971336 AA513587 AA525142
55	319191	16065_1	NM_012391 AF071538 AB031549 Al685592 Al745526 AA662204 AW130657 AA662164 AW971121 Al668916 AA513274 Al991223 Al979170 AW289436 AA639821 Al859010 AW513942 Al687669 AA662521 AA548598 Al345056 Al305374 BE043418 Al432856 Al334840 Al379796 Al492693 Al307915 BE042082 Al307834 Al307858 Al309488 BE042210 Al435670 Al371605 Al862491 Al284563 Al306872 Al255044 Al254601 Al251236 Al473073 Al473042 Al432760 Al435664 Al336826 Al289365 Al369096 Al862274 Al334871 Al349863 Al250405 Al377617 Al308895 Al313017 Al862291 Al311936 Al378718 Al305722 Al306769 Al308888 Al334565 Al862296 Al344230 Al435685 Al344087 Al378696 Al311209 Al435775 Al310611 Al311154 Al432289 Al431561 Al492281 Al432867 Al335288
60			Al492796 Al432769 Al310299 Al432273 Al379820 Al275319 Al435753 Al609441 Al432767 Al369100 Al311420 Al349974 Al247157 Al334677 Al270910 Al224320 Al305608 Al334489 Al377152 Al350012 Al370086 Al335053 Al306781 Al306750 Al334849 Al334874 Al340380 Al307876 Al305974 Al305972 Al311521 Al334872 Al862509 Al311498 Al335051 Al289684 Al310859 Al311862 Al862483 Al492775 Al307906 Al492708 Al289693 Al340373 Al307910 Al311359 Al435683 Al334865 Al311492 Al492809 Al491576 Al862268 Al311879 Al308435 Al492792 Al862512 Al275321 Al431568 Al431564 Al307885 Al307826 Al435682 Al435778 Al310182
65			Al308894 Al492707 Al492713 Al308560 Al307829 Al343234 Al580598 AW472796 Al340918 Al310243 Al309368 Al307820 Al289665

			ALGOSTIT AMIGOSTO AMIGOSTO AMIGOSTO MOLOCOTO MOLOCOTO MOLOCOTO ALGOSTO ALGOSTO ALGOSTO ALGOSTO DE CONSTITUTO DE
			Al306777 AW086318 AW086292 AW086378 Al310027 Al275293 Al369082 Al340900 Al306749 Al371558 AW086287 BE043803 Al306793 Al306272 Al287948 Al270917 Al284816 Al336813 Al284546 Al308044 Al275290 Al270872 Al306795 Al289697 Al223570
			AI305303 AI289677 AI287742 AI275284 AI306812 AI336701 AI371554 AI378719 AI344988 AI223631 AI335141 AI343222 AI284568
_			Al305357 Al275270 Al345932 Al436549 Al307925 Al311502 Al344238 Al343182 Al308508 Al305988 Al270790 Al379792 Al305647
5			AI305410 AI432251 AI436517 AI343227 AI305534 AI340387 AI271043 AI305499 AI271048 AI305962 AI289465 AI305378 AI289725
			AI310848 AI305848 AI289362 AI252984 AI307049 AI310831 AI306993 AI306796 AI224659 AI305969 AI349855 AI306164 AI306948
			Al284676 Al309155 Al343202 Al432785 Al306815 Al369081 Al270885 Al289699 Al435704 Al309647 Al305716 Al311281 Al287927
			A1472995 A1340423 A1270958 A1307069 A1305364 A1270807 A1275306 A1311890 A1275263 A1432750 A1289371 A1432861 A1255113
10			Al305709 Al473008 Al311168 Al309711 Al377164 Al271201 Al289560 Al309710 Al306195 Al311201 Al287741 Al271066 Al432876 Al275281 Al379795 Al472972 Al311967 Al306826 Al305465 Al270792 Al473019 Al305340 Al270822 Al305995 Al305462 Al254144
			AI270969 AI473012 AI305390 AI275278 AI223644 AI289692 AI250318 AI305372 AI289691 AI250521 AI306283 AI306814 AI307933
			Al473160 Al432903 Al223720 Al254979 Al334862 Al306926 Al289541 Al432248 Al435722 Al435698 Al432859 Al310683 Al473175
			Al335144 Al289467 Al436489 Al306928 Al473033 Al305783 Al307888 Al307882 Al348959 Al435736 Al432857 Al432896 Al435735
15			Al432283 Al473086 Al432863 Al473081 Al432825 Al307840 Al473164 Al432885 Al473166 Al472982 Al435734 Al473060 Al473171
13			A1432279 A1432882 A1334670 A1436512 A1432827 A1432852 A1473051 A1473077 A1435697 A1271509 A1492781 A1472883 A1473018
			Al432897 Al473043 Al432871 Al436536 Al473157 Al349715 Al432777 Al473016 Al473158 Al340369 Al307941 Al432773 Al377146 Al492791 Al270950 Al305342 Al284604 Al306269 Al284811 Al270811 Al289347 Al334869 Al334852 Al311759 Al260382 Al309520
			Al289550 Al305721 Al340870 Al270901 Al308575 Al307804 Al340715 Al270941 Al30808 Al246867 Al473014 Al307039 Al289360
			Al473069 Al492786 Al344013 Al305876 Al436510 Al340742 Al473028 Al307891 BE041871 BE041268 BE042340 BE041946
20			BE041783 Al306173 Al201948 Al926972 Al275769
			G_LINK_EM:AC00
		c_5_p2	2 - 1 BW - 2-12-2
			<u>6.5 Link C4G1.G</u> G. 387. 7 Link Em
25		372969_1	
		20265_1	AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW3678811 AW367798 R17370 AI908947
			AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155
			W23952 W92188 AW374883 AA303497 AW954769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 Al078161
30			BE463983 Al805213 Al761264 W94885 N94502 Al623772 Al418532 Al810302 Al634190 AW002516 AW150777 Al352312 Al367474
30			AW204807 AI675502 AI337026 AW134715 BE328451 AI123157 AI560020 AI300745 AI608631 AI248873 AA742484 AW051635 H18646 AI245045 AA507111 AI640510 AI925594 AA115747 AA143035 AA151106
	332697	13699_1	X51405 NM_001873 T11322 AL118886 BE328175 AW136009 BE467445 AW470313 AA774852 BE504139 AW501046 AA082792
	002007	10000_1	AW389231 AA370044 R36841 AA371457 C04813 R25791 R25556 AW895854 AW903819 AW895671 AW895677 BE159723
~=			AW895664 AW895597 AW895595 AW895665 AW888518 Al903724 F06081 F08503 AL119462 AW895730 AW888518 F26511
35			R26489 AA334126 AA327626 N85713 AW895998 AA223622 F05488 AA370749 W05590 M78202 AA371073 AW498607 R15017
			T16991 AA001282 AA001138 AA551568 AA330159 AI922855 AA383512 AA029603 D82246 D82171 T94933 H56545 AA348060
			AA176888 R98764 AW451817 AA385766 AA452618 Al690057 AA988822 BE549928 AA150901 W57992 AW899925 C05281 AA932042 AA370980 AW962877 W04741 AA369982 AW385948 AA922466 N75882 A4422070 Al361256 Al680224 D57122 T94885
			R53266 R46713 T19071 AW796277 AA325333 F04719 F02334 AA358146 AA626597 AA358304 AW028099 AL119570 D57290
40			D58273 D57796 N48555 Al361969 AA329457 D57225 AW024046 AA992606 AW022118 AW021538 AA935845 H89870 H56546
			AW961219 AA453239 AW837541 N45521 BE218029 AA318877 AA327740 AW961809 T92139 D53216 D52365 D53363 D53312
			D53116 AJ547267 AA679935 AW026552 AW026418 AW190507 AJ927710 AW244108 D50948 AW054991 AW021063 AW022511
			AA493436 Al365636 BE464751 AW149384 AA102442 AW771388 AIB18251 Al126368 D51049 Al421542 AI559467 AW079779
45			AW021048 AW023969 AW044214 A458264 AA027274 A1620254 AW028917 BE219511 AA326242 N67561 A1971273 AA878328 D57131 AA770662 A1309299 A1796767 AA613338 W58076 A1568287 A1445573 A1880260 AA001919 AW339259 A1492610 A1492611
••			R97692 AI301425 AA722603 D58361 AI350323 AA973926 AI431263 AA516126 AA865467 AI925177 N39443 AA001943 AI299371
			AI082412 AA665090 AA583433 H89871 AA977231 AI362219 AI056096 AI270446 NB7524 N22103 AW614224 AA744054 AW243622
			Al613188 Al929173 Al350243 Al362138 AA744004 AA176661 D56787 Al955625 Al393109 Al094769 Al479728 Al423107 Al955617
50			AI034036 AI582196 AW264534 AI418961 AA570761 AI343538 AA650341 AA992503 AA770004 AL039666 AI862675 AW190335
30			AA610274 AW418627 BE467472 D56786 T28749 A1217610 A1359556 T23523 AL040189 AA846222 AA651636 D51280 A1888986
			Al521167 Al340177 AW612815 Al625285 AA621607 AA177059 AA229768 AA829788 Al749682 AW190631 N75299 AA230089 Al915632 BE069542 AA890020 AA528397 AA995390 BE503860 AA570812 AW339396 Al197986 Al203725 Al282379 AA670375
			AA461513 F01728 AW243599 C00856 N75567 R95995 AA150932 FB5961 AA648060 AA833800 AA927073 AA101126 AA864190
			T93566 BE167472
55	425710	25529_1	AF030880 NM_000441 AC002467 AA385554 H23053 AW891838 AI139968 AA653057 AI695233
		342819_1	AA527941 AI810608 AI620190 AA635266
	445424	6391_1	AB028945 T77648 F13328 AL157605 Z46212 AA304736 F11855 T66098 T30174 AW954164 AW176301 AW748243 AA456428
			Al369958 AA938565 AW959613 Z42008 AA994779 Al683909 F11019 F10926 Al769597 Al752550 T65015 Al884314 AA643954 Z41838 AW020147 Al038822 AW571822 AA299781 AA894928 AF131790 BE005411 Al902476 AW082695 AA464384 R42750
60			AW902301 AA464273 R05837 Z38294 H41098 AL134507 M86079
	447210	7119_1	AF035269 AF035268 NM_015900 T96213 U37591 AA156832 AA299371 Al084325 H95977 Al765967 BE221465 AA156726 Al969563
			AW024539 Al436791 Al949451 AA843093 Al452756 AA824232 Al306667 T96131 AW207447 AW243556 AW957032 Al084332
	44000	0440 4	H95978 U30998
65	449625	8113_1	NM_014253 AF100772 BE088769 AL022718 BE161779 AW863569 BE161640 AL039060 BE168542 AW296554 AA323193 AA235370
<del>5</del> 5			AW779760 N48674 Al375997 R45432 D59344 Al203107 F07491 R35360 R25094 Al913631 Al498402 T61382 Al016320 N45526 T61415 AA331486
	452039	89513_1	AI922988 H05475 AA021608 AW169947 AA913750 Z41614 AW800012

TABLE 15B shows the genomic positioning for those primekeys lacking unigene  ${
m ID}$ 's and accession numbers in Table 15. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Strand:		Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank identifier (GI) numbers. "Dunham I. et al." refers to t publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.				
15	Pkey	Ref	Strand	Nt_position .			
20	332798 338255 330211	Dunham, I. et.al Dunham, I. et.al Dunham, I. et.al 6013592 8176894	. Minus	14308764-14308824 232147-231974 15242294-15242231 59158-59215 24223-24428			

5

### **TABLE 11 AND SEQUENCE LISTING**

SEQ ID NO:1 BCU4 DNA SEQUENCE

5 13-1890 (underlined sequences correspond to start and stop codons) Coding sequence: 41 51 31 ATTGGATCAA ACATGTCACA AGAGTCGGAC AATAATAAAA GACTAGTGGC CTTAGTGCCC 60 10 ATGCCCAGTG ACCCTCCATT CAATACCCGA AGAGCCTACA CCAGTGAGGA TGAAGCCTGG 120
AAGTCATACT TGGAGAATCC CCTGACAGCA GCCACCAAGG CCATGATGAT CATTAATGGT 180 GATGAGGACA GTGCTGCTGC CCTCGGCCTG CTCTATGACT ACTACAAGGT TCCTCGAGAC 240
AAGAGGCTGC TGTCTGTAAG CAAAGCAAGT GACAGCCAAG AAGACCAGGA GAAAAGAAAC 300
TGCCTTGGCA CCAGTGAAGC CCAGAGTAAT TTGAGTGGAG GAGAAAACCG AGTGCAAGTC 360 15 CTAAAGACTG TTCCAGTGAA CCTTTCCCTA AATCAAGATC ACCTGGAGAA TTCCAAGCGG 420 GAACAGTACA GCATCAGCTT CCCCGAGAGC TCTGCCATCA TCCCGGTGTC GGGAATCACG 480 GTGGTGAAAG CTGAAGATTT CACACCAGTT TTCATGGCCC CACCTGTGCA CTATCCCCGG 540 GGAGATGGGG AAGAGCAACG AGTGGTTATC TTTGAACAGA CTCAGTATGA CGTGCCCTCG 600 CTGGCCACCC ACAGCGCCTA TCTCAAAGAC GACCAGCGCA GCACTCCGGA CAGCACATAC 660 AGCGAGAGCT TCAAGGACGC AGCCACAGAG AAATTTCGGA GTGCTTCAGT TGGGGCTGAG 720 20 GAGTACATGT ATGATCAGAC ATCAAGTGGC ACATTICAGT ACACCCTGGA AGCCACCAAA 780
TCTCTCCGTC AGAAGCAGGG GGAGGGCCCC ATGACCTACC TCAACAAAGG ACAGTTCTAT 840
GCCATAACAC TCAGCGAGAC CGGAGACAAC AAATGCTTCC GACACCCCAT CAGCAAAGTC 900 AGGAGTGTGG TGATGGTGGT CTTCAGTGAA GACAAAAACA GAGATGAACA GCTCAAATAC 960 25 TGGAAATACT GGCACTCTCG GCAGCATACC GCGAAGCAGA GGGTCCTTGA CATTGCCGAT 1020
TACAAGGAGA GCTTTAATAC GATTGGAAAC ATTGAAGAGA TTGCATATAA TGCTGTTTCC 1080
TTTACCTGGG ACGTGAATGA AGAGGCGAAG ATTTTCATCA CCGTGAATTG CTTGAGCACA 1140 GGGAAAGGC AGGCCTCCCA AACTCAATGC AACAGCTCCT CTGATGGGAA CTTGGCTGCC 1380 30 ATACCTTTAC AGAAGAAGAG TGACATCACC TACTTCAAAA CCATGCCTGA TCTCCACTCA 1440 CAGCCAGTTC TCTTCATACC TGATGTTCAC TTTGCAAACC TGCAGAGGAC CGGACAGGTG 1500 TATTACAACA CGGATGATGA ACGAGAAGGT GGCAGTGTCC TTGTTAAACG GATGTTCCGG 1560 35 CCCATGGAAG AGGAGTTTGG TCCGGTGCCT TCAAAGCAGA TGAAAGAAGA AGGGACAAAG 1620 CGAGTGCTCT TGTACGTGAG GAAGGAGACT GACGATGTGT TCGATGCATT GATGTTGAAG 1680 TCTCCCACAG TGATGGGCCT GATGGAAGCG ATATCTGAGA AATATGGGCT GCCCGTGGAG 1740 AAGATAGCAA AGCTITTACAA GAAAAGCAA AAAGGCATCT TGGTGAACAT GGATGACAAC 1800
ATCATCGAGC ACTACTCGAA CGAGGACACC TTCATCCTCA ACATGGAGA CATGGTGGAG 1860
AGCTTCAAGG TCACGCTCAT GGAAATCTAG CCCTGGGTTT GGCATCCGCT TTGGCTGGAG 1920
CTCTCAGTGC GTTCCTCCCT GAGAAGACA GAAGCCCCAG CCCCAGAACC TGGAGAGACCCA 1980
TCTCCCCCAT CTCACAACTG CTGTTACAAG ACCGTGCTGG GGAGTGGGGC AAGGCACAG 2040
CCCCACAGTC GGTGTGCTTG GCCCATCCAC TGGCACCTAC CACGGACCG AAGCCTGAGC 2100 40 COCTCAGGAA GGTGCTTAG GCCCATCCAC TOGACCTAC CAGGAGCCA AARCCTGGAGC 2160
CCCAGGTCCA GGCCCGCCAG GACTCTGCAG GTCACTGCTA GCTCCACGATT AGACCGTCCA 2220
GCGTTCCCCC TTCAAGAGAA ACACTCATCC CGAACAGCCT AAAAAATTCC CATCCCTTCT 2280
TTCTCACCCC TCCATATCTA TATCTCCCGA GTGGCTGGAC AAAATGAGCT ACGTCTGGGT 2340 45 GCAGTAGTTA TAGGTGGGGC AAGAGGTGGA TGCCCACTTT CTGGTCAGAC ACCTTTAGGT 2400
TGCTCTGGGG AAGACGTTCT TGCTAAATAC CTCCAGGGTT CCCAGCAAGT GGCCACCAGG 2460
CCTTGTACAG GAAGACATTC AGTCACCGTG TAATTAGTAA CACAGAAAGT CTGCCTGTCT 2520
GCATTGTACA TAGTGTTTAT AATATTGTAA TAATATATTTT TACCTGTGGT ATGTGGGGTTTT 2540
GCTCTGTGC ACTGGCCTAG AGGAGACACA GACCTGGAGA CCGTTTTAAT GGGGGGTTTT 2640
GCCTCTGTGC CTGTTCAAGA GACTTGCAGG GCTAGGTAGA GGGCCTTTGG GATGTTAAGG 2700 50 TGACTGCAGC TGATGCCAAG ATGGACTCTG CAATGGGCAT ACCTGGGGGC TCGTTCCCTG 2760
TCCCCAGAGG AAGCCCCCTC TCCTTCTCCA TGGGCATGAC TCTCCTTCGA GGCCACCACG 2820
TTTATCTCAC AATGATGTGT TTTGCCTGAC TTTCCCTTTG CGCTGTCTCG TGGGAAAGGT 2880 55 THATCICAC ANIGATISTICT THE CUITAGE THE CUITAGE GENERAL GREAT AGE TO SCHOOL THE GENERAL GREAT THE CUITAGE CONTINUE OF THE CONTI 60 TGGCTCCTGT GAAACCAGCC TCAGGAGGGA AACTGGGAGA GAGAAGCTGT GGTCTCCTGC 3300 TACATGCCT GGGAGCTGGA AGAGAAAAA ACTACTCCCTAA ACAATCGCAA AATGATGAAC 3360
CATCATGGGC CACTGTTCTC TTTGAGGGGA CAGGTTTAGG GGTTTGCGTT CGCCCTTGTG 3420
GGCTGAAGCA CTAGCTTTTT GATAGCTAGA CACATCCTGC ACCCAAAAGGT TCTCTACAAA 3480
GGCCCAGATT TGTTTTGTAAA GCACTTTGAC TCTTACCTGG AGGCCCGCTC TCTAAGGGCT 3540
TCCTGCGCTC CCACCTCATC TGTCCCTGAG ATGCAGAGCA GGATGGAGGG TCTGCTTCTA 3600 65 70 GGGTACTAAT GGGGCTCTGT TCTGAGATGG ACAAATTCAG TGTTGGAAAT ACATGTTGTA 3900 CTATGCACTT CCCATGCTCC TAGGGTTAGG AATAGTTTCA AACATGATTG GCAGACATAA 3960 CAACGGCAAA TACTCCGACT GGGCCATAGG ACTCCAGAGT AGGAAAAAGA CAAAAGATTT 4020 GGCAGCCTGA CACAGGCAAC CTACCCCTCT CTCTCCAGCC TCTTTATGAA ACTGTTTGTT 4080
TGCCAGTCCT GCCCTAAGGC AGAAGATGAA TTGAAGATGC TGTGCATGTT TCCTAAGTCC 4140
TTGAGCAATC ATGGTGGTGA CAATTGCCAC AAGGGATATG AGGCCAGTGC CACCAGAGGG 4200

Nucleic Acid Accession #: NM_024915

TGGTGCCAAG TGCCACATCC CTTCCGATCC ATTCCCCTCT GTATCCTCGG AGCACCCCAG 4260

TTTGCCTTTG ATGTGTCCGC TGTGTATGTT AGCTGAACTT TGATGAGCAA AATTTCCTGA 4320 GCGAAACACT CCAAAGAGAT AGGAAAACTT GCCGCCTCTT CTTTTTTGTC CCTTAATCAA 4380 ACTCAAATAA GCTTAAAAAA AATCCATGGA AGATCATGGA CATGTGAAAT GAGCATTTTT 4440 5 TICTITICTT TITTITITT TITTITTAAC AAAGTCTGAA CTGAACAGAA CAAGACTTTT 4500 TCCTCATACA TCTCCAAATT GTTTAAACTT ACTTTATGAG TGTTTGTTTA GAAGTTCGGA 4560 CCAACAGAAA AATGCAGTCA GATGTCATCT TGGAATTGGT TTCTAAAAGA GTAAGGCATG 4620 TCCCTGCCCA GAAACTTAGG AAGCATGAAA TAAATCAAAT GTTTATTTTC CTTCTTATTT 4680 AAAATCATGC TAATGCAACA GAAATAGAGG GTTTGTGCCA AATGCTATGA ACGGCCCTTT 4740 10 CTTAAAGACA AGCAAGGGAG ATTGATATAT GTACAATTTG CTCTCATGTT TTT SEQ ID NO:2 BCU4 Protein sequence: NP_079191.1 Protein Accession #: 15 MSQESDNNKR LVALVPMPSD PPFNTRRAYT SEDEAWKSYL ENPLTAATKA MMUNGDEDS 60 MSQESDNNKR LVALVPMPSD PFFNTRRAYT SEDEAWKSYL ENPLTAATKA MMINGDEDS 60
AAALGILYDY YKYPPOKRLL SVSKASDSQE DQEKRNCLGT SEAQSNLSGG ENRVQVI.KTV 120
PVNLSLNQDH LENSKREQYS ISFPESSAII PVSGITVVKA EDFTPVFMAP PVHYPRGDGE 180
EQRVVIFEQT QYDVPSLATH SAYLKDDQRS TPDSTYSESF KDAATEKRRS ASVGAEEYMY 240
DQTSSGTFQY TLEATKSLRQ KQGEGPMTYL NKGQFYAITL SETGDNKCFR HPISKVRSVV 300
MVVFSEDKNR DEQLKYWKYW HSRQHTAKQR VLDIADYKES FNTIGNIEEI AYNAVSFTWD 360
VNEEAKIFIT VNCLSTDFSS QKGVKGLPLM IQIDTYSYNN RSNKFHIRAY CQIKVFCDKG 420
AEB KTDBEGO KONDFUNGKCO ACTOCANSES DGKI AABI O KYSDITVEFT MED 1400 20 25 AERKIRDEEQ KONKKOKGG ASQTQCNSSS DGKLAAIPLQ KKSDITYFET MPDLHSQPVL 480, FIPDVHFANL QRTGQVYYNT DDEREGGSVL VKRMFRPMEE EFGPVPSKQM KEEGTKRVLL 540 YVRKETDDVF DALMLKSPTV MGLMEAISEK YGLPVEKIAK LYKKSKKGIL VNMDDNIIEH 600 YSNEDTFILN MESMVEGFKV TLMEI 30 SEQ ID NO:3 BCU7 DNA SEQUENCE VARIANT 1: Nucleic Acid Accession #: AA428062 Coding sequence: 1-777 (entire sequence represents open reading frame) 35 ATGATAGCAA TCTCTGCCGT CAGCAGTGCA CTCCTGTTCT CCCTTCTCTG TGAAGCAAGT ACCGTCGTCC TACTCAATTC CACTGACTCA TCCCCGCCAA CCAATAATTT CACTGATATT 40 GAAGCAGCTC TGAAAGCACA ATTAGATTCA GCGGATATCC CCAAAGCCAG GCGGAAGCGC
TACATTTCGC AGAATGACAT GATCGCCATT CTTGATTATC ATAATCAAGT TCGGGGCAAA 180 240 GTGTTCCCAC CGGCAGCAAA TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG GCAGAGGCTT GGGCGCCTAC TTGCATTTGG GACCATGGAC CTTCTTACTT ACTGAGATTT
TTGGGCCAAA ATCTATCTGT ACGCACTGGA AGATATCGCT CTATTCTCCA GTTGGTCAAG 420 45 CCATGGTATG ATGAAGTGAA AGATTATGCT TTTCCATATC CCCAGGATTG CAACCCCAGA TGTCCTATGA GATGITTTGG TCCCATGTGC ACACATTATA CGCAGATGGT TTGGCCCACT TCCAATCGGA TAGGATGCGC AATTCATGCT TGCCAAAACA TGAATGTTTG GGGATCTGTG 540 600 TGGCGACGTG CAGTITACTT GGTATGCAAC TATGCCCCAA AGGGCAATTG GATTGGAGAA GCACCATATA AAGTAGGGGT ACCATOTTCA TCTTGTCCTC CAAGTTATGG GGGATCTTGT ACTGACAATC TGTGTTTTCC AGGAGTTACG TCAAACTACC TGTACTGGTT TAAATAA 50 SEQ ID NO:4 BCU7 DNA SEQUENCE VARIANT 2: AA428062 Nucleic Acid Accession #: 1-777 (entire sequence represents open reading frame) Coding sequence: 55 21 31 41 60 ATGATAGCAA TCTCTGCCGT CAGCAGTGCA CTCCTGTTCT CCCTTCTCTG TGAAGCAAGT ACCOTOCTOC TACTOANTIC CACTGACTOA TOCCOGCCAA CCAATAATTT CACTGATATT GAAGCACCTC TGAAAGCACA ATTAGATTCA GOGGATATCC CCAAAGCCAG GOGGAAGCGC 180 TACATTTCGC AGAATGACAT GATCGCCATT CTTGATTATC ATAATCAAGT TCGGGGCAAA GTGTTCCCAC CGGCAGCAAA TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG GCAGAGGCTT GGGCGGCTAC TTGCATTTGG GACCATGGAC CTTCTTACTT ACTGAGATTT 300 65 360 TTGGGCCAAA ATCTATCTGT ACGCACTGGA AGATATCGCT CTATTCTCCA GTTGGTCAAG CCATGGTATG ATGAAGTGAA AGATTATGCT TTTCCATATC CCCAGGATTG CAACCCCAGA 420 480 TGTCCTATGA GATGTTTTGG TCCCATGTGC ACACATTATA CGCAGATGGT TTGGGCCACT TCCAATCGGA TAGGATCCGC AATTCATACT TGCCAAAACA TGAATGTTTG GGGATCTGTG
TGGCGACGTG CAGTTTACTT GGTATGCAAC TATGCCCCAA AGGGCAATTG GATTGGAGAA 600 70 660 GCACCATATA AAGTAGGGGT ACCATGTTCA TCTTGTCCTC CAAGTTATGG GGGATCTTGT ACTGACAATC TGTGTTTTCC AGGAGTTACG TCAAACTACC TGTACTGGTT TAAATAA SEQ ID NO:5 BCU7 Protein sequence Variant 1: 75 Protein Accession #: 21 51 MIAISAVSSA LLPSLLCEAS TVVLLNSTDS SPPTNNFTDI BAALKAQLDS ADIPKARRKR 60

120



YISONDMIAI LDYHNOVRGK VFPPAANMEY MVWDENLAKS AEAWAATCIW DHGPSYLLRF

LGONLSVRTG RYRSILOLVK PWYDEVKDYA FPYPODCNPR CPMRCPGPMC THYTOMYWAT

SEQ ID NO:13 CJA5 DNA SEQUENCE

305

276-1271 (underlined sequences correspond to start and stop codons)

31

YEELVDVNCS AVLRFFFCAM YAPICTLEFL HDPIKPCKSV CQRARDDCEP LMKMYNHSWP 120 ESLACDELPV YDRGVCISPE AIVTDLPEDV KWIDITPDMM VOERPLDVDC KRLSPDRCKC 180 KKVKPTLATY LSKNYSYVIH AKIKAVQRSG CNEVTTVVDV KEIFKSSSPI PRTQVPLITN 240 SSCQCPHILP HQDVLIMCYE WRSRMMLLEN CLVEKWRDQL SKRSIQWEER LQEQRRTVQD 300 5 KKKTAGRTSR SNPPKPKGKP PAPKPASPKK NIKTRSAQKR TNPKRV SEQ ID NO:9 C8K1 DNA SEQUENCE Nucleic Acid Accession #: NM 032391 10 129-302 (underlined sequences correspond to start and stop codons) Coding sequence: 15 GICCITCCIC ICCIAGCCIA AGGCGIGCAA ACAGAGCGCC ACIGGGAGGC IGAAACCIII 60 AGGCCGATGC TTGCTTGCAA GGTCAGGCAA GCTGGATTCT GGTCCCCACC TTTGCAGAGA 120 GAACAGCGAT GITGTGCGCC CATTTCTCAG ATCAAGGACC GGCCCATCTT ACTACCTCCA 180 AGAGTECTTT TOTOTOTAAT AAGAAAACAT CTACTTIGAA ACATCTACTG GGCGAGACCA GGAGTGATGG CTCAGCCTGT AATTCTGGAA TTTCGGGAGG CCGAGGCAGG AAGATTCCTT 240 300 20 GAGCACAGGA GTTCCAGACC AGCCTGGGCA ATGTAGCAAG ACGCTGTCTC TATTTATACA ATAAAATTTT TTTAAAAAAG G SEQ ID NO:10 CBK1 Protein sequence:
Protein Accession #: NP_115767 25 30 MLCAHFSDOG PAHLTTSKSA FLSNKKTSTL KHLLGETRSD GSACNSGISG GRGRKIP SEQ ID NO:11 CHA1 DNA SEQUENCE Nucleic Acid Accession #: NM 020182 35 96-854 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 51 40 TCCTTGGGTT CGGGTGAAAG CGCCTGGGGG TTCGTGGCCA TGATCCCCGA GCTGCTGGAG AACTGAAGGC GGACAGTCTC CTGCGAAACC AGGCAATGGC GGAGCTGGAG TTTGTTCAGA TCATCATCAT COTGGTGGTG ATGATGGTGA TGGTGGTGGT GATCACGTGC CTGCTGAGCC ACTACAAGCT GTCTGCACGG TCCTTCATCA GCCGGCACAG CCAGGGGGCGG AGGAGAGAAG ATGCCCTGTC CTCAGGAAGGA TGCCTGTGGC CCTCGGAGAG CACAGTGTCA GGCAACGGAA 240 300 45 TCCCAGAGCC GCAGGTCTAC GCCCGCCTC GGCCCACCGA CCGCCTGGCC GTGCCGCCCT TOGCCCAGGG GGAGGGCTTC CACCGCTTCC AGCCCACCTA TCGGTACCTG CAGCACGAGA
TCGACCTGCC ACCCACCATC TCGCTGTCAG ACGGGGAGGA GCCCCCACCC TACCAGGGCC 420 480 CCTGCACCCT CCAGCTTCGG GACCCCGAGC AGCAGCTGGA ACTGAACCGG GAGTCGGTGC GCGCACCCCC AAACAGAACC ATCTTCGACA GTGACCTGAT GGATAGTGCC AGGCTGGGCG GCCCCTGCCC CCCCAGCAGT AACTCGGGCA TCAGCGCCAC GTGCTACGGC AGCGGCGGGC 600 50 660 GCATGGAGGG GCCGCCCC ACCTACAGCG AGGTCATCGG CCACTACCCG GGGTCCTCCT TCCAGCACCA GCAGAGCAGT GGGCCCCCCT CCTTGCTGGA GGGGACCCGG CTCCACCACA CACACATCGC GCCCTAGAG AGCGCAGCCA TCTGGAGCAA AGAGAAGGAT AAACAGAAAG 780 840 GACACCCTCT CTAGGGTCCC CAGGGGGGCC GGGCTGGGGC TGCGTAGGTG AAAAGGCAGA 55 ACACTCCGCG CTTCTTAGAA GAGGAGTGAG AGGAAGGCGG GGGGCGCAGC AACGCATCGT GTGGCCCTCC CCTCCCACCT CCCTGTGTAT AAATATTTAC ATGTGATGTC TGGTCTGAAT 960 1020 GCACAAGCTA AGAGAGCTTG CAAAAAAAAA AAGAAAAAAG AAAAAAAAA ACCACGTTTC TTTGTTGAGC TGTGTCTTGA AGGCAAAAGA AAAAAAATTT CTACAGTAAA AAAAAAAAA 1140 60 SEQ ID NO:12 CHA1 Protein sequence: Protein Accession #: 65 11 21 31 MAELEFVQII IIVVVMMVMV VVITCLLSHY KLSARSFISR HSQGRRREDA LSSEGCLWPS RABLEVQII IVVVHAVVA VVITLISHI KLSARSISK BOGRREBIK DESPESCEMPS ESTYSCRGIP BPOVYAPPRP TORLAVPPPA OREPHREPO TYPYLGHEID LPPTISLSDG EEPPPYQGPC TLQLRDPEQQ LELNRESVRA PPNRTIFDSD LMDSARLGGP CPPSSNSGIS 120 70 ATCYGSGGRM EGPPPTYSEV IGHYPGSSFQ HQQSSGPPSL LEGTRLHHTH IAPLESAAIW 240 SKEKDKOKGH PL

75

80

Nucleic Acid Accession #: NM_012445

Coding sequence:

```
GCACGAGGGA AGAGGGTGAT CCGACCCGGG GAAGGTCGCT GGGCAGGGCG AGTTGGGAAA
         GCGGCAGCCC CCGCCGCCCC CGCAGCCCCT TCTCCTCCTT TCTCCCACGT CCTATCTGCC
TCTCGCTGGA GGCCAGGCCG TGCAGCATCG AAGACAGGAG GAACTGGAGC CTCATTGGCC
                                                                                            180
         GGCCCGGGGC GCCGGCCTCG GGCTTAAATA GGAGCTCCGG GCTCTGGCTG GGACCCGACC
                                                                                            240
         GCTGCCGGCC GCGCTCCCGC TGCTCCTGCC GGGTGATGGA AAACCCCAGC CCGGCCGCCG
                                                                                            300
         CCCTGGGCAA GGCCCTCTGC GCTCTCCTCC TGGCCACTCT CGGCGCCGCC GGCCAGCTTC
                                                                                            360
         TTGGGGGAGA GTCCATCTGT TCCGCCAGAG CCCCGGCCAA ATACAGCATC ACCTTCACGG
                                                                                            420
         GCAAGTGGAG CCAGACGGCC TTCCCCAAGC AGTACCCCCT GTTCCGCCCC CCTGCGCAGT
         GGTCTTCGCT GCTGGGGGCC GCGCATAGCT CCGACTACAG CATGTGGAGG AAGAACCAGT
                                                                                            540
10
         ACGTCAGTAA CGGGCTGCGC GACTTTGCGG AGCGCGGCGA GGCCTGGGCG CTGATGAAGG
                                                                                            600
         AGATCGAGGC GGCGGGGGAG GCGCTGCAGA GCGTGCACGC GGTGTTTTCG GCGCCCGCCG
         TCCCCAGCGG CACCGGGCAG ACGTCGGCGG AGCTGGAGGT GCAGCGCAGG CACTCGCTGG
TCTCGTTTGT GGTGCGCATC GTGCCCAGCC CCGACTGGTT CGTGGGCGTG GACAGCCTGG
                                                                                            720
                                                                                            780
         ACCTGTGCGA CGGGGACCGT TCGCCGGGAC AGGCCGCCCT GGACCTGTAC CCCTACGACG
15
         CCGGGACGGA CAGCGGCTTC ACCTTCTCCT CCCCCAACTT CGCCACCATC CCGCAGGACA
CGGTGACCGA GATAACGTCC TCCTCTCCCA GCCACCCGGC CAACTCCTTC TACTACCGGC
                                                                                            900
                                                                                            960
         GGCTGAAGGC CCTGCCTCCC ATCGCCAGGG TGACACTGGT GCGGCTGCGA CAGAGCCCCA
         GGGCCTTCAT CCCTCCCGCC CCAGTCCTCC CCAGCAGGGA CAATGAGATT GTAGACAGCG
CCTCAGTTCC AGAAACGCCG CTGGACTGCC AGGTCTCCCT GTGGTCGTCC TGGGGACTGT
                                                                                          1080
                                                                                           1140
20
         GCGGAGGCCA CTGTGGGAGG CTCGGGACCA AGAGCAGGAC TCGCTACGTC CGGGTCCAGC
         CCGCCAACAA CGGGAGCCCC TGCCCCGAGC TCGAAGAAGA GGCTGAGTGC GTCCCTGATA
ACTGCGTCTA AGACCAGAGC CCCGCAGCCC CTGGGGCCCC CGGAGCCATG GGGTGTCGGG
                                                                                           1260
                                                                                           1320
         GGCTCCTGTG CAGGCTCATG CTGCAGGCGG CCGAGGCACA GGGGGTTTCG CGCTGCTCCT
         GACCGCGGTG AGGCCGCCC.GACCATCTCT GCACTGAAGG GCCCTCTGGT GGCCGGCACG
GGCATTGGGA AACAGCCTCC TCCTTTCCCA ACCTTGCTTC TTAGGGGCCC CCGTGTCCCG
                                                                                          1440
25
                                                                                           1500
         TCTGCTCTCA GCCTCCTCCT CCTGCAGGAT AAAGTCATCC CCAAGGCTCC AGCTACTCTA
        AATTATGGTC TCCTTATAAG TTATTGCTGC TCCAGGAGAT TGTCCTTCAT CGTCCAGGGG
CCTGGCTCCC ACGTGGTTGC AGATACCTCA GACCTGGTGC TCTAGGCTGT GCTGAGCCCA
                                                                                          1620
                                                                                          1680
         CTCTCCCGAG GGCGCATCCA AGCGGGGGCC ACTTGAGAAG TGAATAAATG GGGCGGTTTC
30
         GGAAGCGTCA GTGTTTCCAT GTTATGGATC TCTCTGCGTT TGAATAAGA CTATCTCTGT
         TGCTCAC
35
         SEQ ID NO:14 CJA5 Protein sequence:
         Protein Accession #:
        40
         PLFRPPAQWS SLLGAAHSSD YSMWRKNOYV SNGLRDFAER GEAWALMKEI EAAGEALOSV
                                                                                            120
        HAVFSAPAVP SGTGQTSAKL EVQRRESLVS FVVRIVPSPD WFVGVDSLDL CDGDRWREQA
ALDLYPYDAG TDSGFTFSSP NFATIPQDTV TEITSSSPSH PANSFYYPRL KALPPIARVT
                                                                                            180
                                                                                            240
         LVRLRQSPRA FIPPAPVLPS RDNEIVDSAS VPETPLDCEV SLWSSWGLCG GHCGRLGTKS
45
         RTRYVRVOPA NNGSPCPELE EEAECVPDNC V
                                                            SEQ ID NO:15 LBH9 DNA SEQUENCE
         Nucleic Acid Accession #: NM 002391
50
         Coding sequence:
                              26-457 (underlined sequences correspond to start and stop codons)
                      11
                                   21
                                                 31
        CGGGCGAAGC AGCGCGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
55
        CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                                           120
         CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                                            180
         CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
        GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                                            300
         TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                                            360
60
        CARTGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCT TGCACCCCCA AGACCAAAGC AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA
                                                                                            480
         GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC
                                                                                            540
        CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT
                                                                                            600
                                                                                            660
65
         TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
         ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
        TAATAT
        SEQ ID NO:16 LBH9 Protein sequence:
70
         Protein Accession #:
                                   21
                                                                            51
75
        MQHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT
        CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAOCOETI
        RVTKPCTPKT KAKAKAKKGK GKD
```

### SEQ ID NO:17 LEM9 DNA SEQUENCE

```
Nucleic Acid Accession #: NM_005244
        Coding sequence:
                            1-1617 (underlined sequences correspond to start and stop codons)
  5
                     11
                                  21
                                               31
                                                                        51
        ATGGTAGAAC TAGTGATCTC ACCCAGCCTC ACTGTAAACA GCGATTGTCT GGATAAACTG
        AAGTTTAACC GTGCTGACGC TGCTGTGTGG ACTCTGAGTG ACAGACAAGG CATCACCAAA
                                                                                       120
10
        TCGGCCCCC TGAGAGTGTC CCAGCTCTTC TCCAGATCTT GCCCACGTGT CCTCCCCCGC
        CAGCCTTCCA CAGCCATGGC AGCCTACGGC CAGACGCAGT ACAGTGCGGG GATCCAGCAG
                                                                                       240
        GCTACCCCCT ATACAGCTTA CCCACCTCCA GCACAAGCCT ATGGAATCCC TTCCTACAGC
        ATCAAGACAG AAGACAGCTT GAACCATTCC CCTGGCCAGA GTGGATTCCT CAGCTATGGC
                                                                                       360
        TOCAGCTTCA GCACCTCACC CACTGGACAG AGCCCATACA CCTACCAGAT GCACGGCACA
                                                                                       420
15
        ACAGGGTTCT ATCAAGGAGG AAATGGACTG GGCAACGCAG CCGGTTTCGG GAGTGTGCAC
        CAGGACTATC CTTCCTACCC CGGCTTCCCC CAGAGCCAGT ACCCCCAGTA TTACGGCTCA
                                                                                       540
        TCCTACAACC CTCCCTACGT CCCGGCCAGC AGCATCTGCC CTTCGCCCCT CTCCACGTCC
                                                                                       600
        ACCTACGTCC TCCAGGAGGC ATCTCACAAC GTCCCCAACC AGAGTTCCGA GTCACTTGCT
                                                                                       660
        GGTGAATACA ACACACACA TGGACCTTCC ACACCAGCGA AAGAGGGAGA CACAGACAGG
                                                                                       720
20
        CCGCACCGGG CCTCCGACGG GAAGCTCCGA GGCCGGTCTA AGAGGAGCAG TGACCCGTCC
                                                                                       780
        CCGGCAGGGG ACAATGAGAT TGAGCGTGTG TTCGTGTGGG ACTTGGATGA GACAATAATT
        ATTTTCACT CCTTACTCAC GGGGACATTT GCATCCAGAT ACGGGAAGGA CACCACGACG
                                                                                       900
        TCCGTGCGCA TTGGCCTTAT GATGGAAGAG ATGATCTICA ACCTTGCAGA TACACATCTG
                                                                                       960
        TTCTTCAATG ACCTGGAGGA TTGTGACCAG ATCCACGTTG ATGACGTCTC ATCAGATGAC
25
        AATGECCAAG ATTTAAGCAC ATACAACTTC TCCGCTGACG GCTTCCACAG TTCGGCCCCA
                                                                                      1080
        GGAGCCAACC TGTGCCTGGG CTCTGGCGTG CACGGCGGCG TGGACTGGAT GAGGAAGCTG
                                                                                      1140
        GCCTTCCGCT ACCGCCGGT GAAGGAGATG TACAATACCT ACAAGAACAA CGTTGGTGGG
                                                                                      1200
        1260
        ACAGACCTCT GGCTGACCCA CTCCCTGAAG GCACTAAACC TCATCAACTC CCGGCCCAAC
TGTGTCAATG TGCTGGTCAC CACCACTCAA CTAATTCCTG CCCTGGCCAA AGTCCTGCTA
                                                                                     1320
30
        TATGCCTGG GGTCTGTGTT TCCTATTGAG AACATCTACA GTGCAACCAA GACAGGGAAG
                                                                                     1440
        GAGAGCTGCT TCGAGAGGAT ANTGCAGAGA TTCGGCAGAA AAGCTGTCTA CGTGGTGATC
                                                                                     1500
        GGTGATGGTG TGGAAGAGGA GCAAGGAGCG AAAAAGCACA ACATGCCTTT CTGGCGGATA
        TOCTGCCACG CAGACCTGGA GGCACTGAGG CACGCCCTGG AACTGGAGTA TTTA<u>TAG</u>
35
        SEQ ID NO:18 LEM9 Protein sequence:
        Protein Accession #:
40
                     11
                                  21
                                               31
        MVELVISPSL TVMSDCLDKL KFMRADAAVW TLSDRQGITK SAPLRVSQLF SRSCPRVLPR
        OPSTAMAAYG OTOYSAGIOO ATPYTAYPPP AQAYGIPSYS IKTEDSLNHS PGQSGFLSYG
SSPSTSPTGQ SPYTYOMHGT TGFYQGGNGL GNAAGFGSVH QDYPSYPGFP QSQYPQYYGS
                                                                                       120
                                                                                       180
       SYNPPYVPAS SICPSPLSTS TYVLQBASHN VPNQSSBSLA GBYNTHNGPS TPAKEGDTDR
        PHRASDGKLR GRSKRSSDPS PAGDNEIERV PVWDLDETII IFHSLLTGTF ASRYGKDTTT
                                                                                       300
        SVRIGLAMEE MIPNLADTHL FFNDLEDCDQ IHVDDVSSDD NGQDLSTYNF SADGFHSSAP
GANLCLGSGV HGGVDWMRKL AFRYRRVKEM YNTYKNNVGG LIGTFKRETW LQLRAELEAL
                                                                                       360
        TDLMLITSLK ALNLINSRPN CVNVLVTTTQ LIPALAKVLL YGLGSVFPIE NIYSATKIGK
ESCPERIMOR FGRKAVYVVI GDGVEEEGGA KKHNMPFWRI SCHADLEALR HALELEYL
                                                                                       480
50
                                                        SEQ ID NO:19 OAA1 DNA SECUENCE
        Nucleic Acid Accession #: NM_002740
55
                            178-1968 (underlined sequences correspond to start and stop codons)
        Coding sequence:
60
         CCGCGGTTCC GGCTGCTCCG GCGAGGCGAC CCTTGGGTCG GCGCTGCGGG CGAGGTGGGC
         AGGTAGGTGG GCGGACGGCC GCGGTTCTCC GGCAAGCGCA GGCGGCGGAG TCCCCCACGG
         CGCCCGAAGC GCCCCCGCA CCCCCGGCT CCAGCGTTGA GGCGGGGAG TGAGGAGATG
CCGACCCAGA GGGACAGCAG CACCATGTCC CACACGGTCG CAGCGGCGG CAGCGGGGAC
         CATTCCCACC AGGTCCGGGT GAAAGCCTAC TACCGCGGGG ATATCATGAT AACACATTTT
65
         GAACCTTCCA TCTCCTTTGA GGGCCTTTGC AATGAGGTTC GAGACATGTG TTCTTTTGAC AACGAACAGC TCTTCACCAT GAAATGGATA GATGAGGAAG GAGACCCGTG TACAGTATCA
                                                                                        360
         TCTCAGTTGG AGTTAGAAGA AGCCTTTAGA CTTTATGAGC TAAACAAGGA TTCTGAACTC
                                                                                        480
         TTGATTCATC TGTTCCCTTG TGTACCAGAA CGTCCTGGGA TGCCTTGTCC AGGAGAAGAT AAATCCATCT ACCGTAGAGG TGCACGCCGC TGGAGAAAGC TTTATTGTGC CAATGGCCAC
                                                                                        540
70
         ACTITICAAG CCAAGCGTTT CAACAGGCGT GCTCACTGTG CCATCTGCAC AGACCGAATA
         TGGGGACTTG GACGCCAAGG ATATAAGTGC ATCAACTGCA AACTCTTGGT TCATAAGAAG
                                                                                        720
         TGCCATAAAC TCGTCACAAT TGAATGTGGG CGGCATTCTT TGCCACAGGA ACCAGTGATG
         CCCATGGATC AGTCATCCAT GCATTCTGAC CATGCACAGA CAGTAATTCC ATATAATCCT
                                                                                        940
         TCAACTCATG AGAGTTTGGA TCAAGTTGGT GAAGAAAAG AGGCAATGAA CACCAGGGAA
                                                                                        900
75
         AGTGGCAAAG CTTCATCCAG TCTAGGTCTT CAGGATTTTG ATTTGCTCCG GGTAATAGGA
         AGAGGAAGTT ATGCCAAAGT ACTGTTGGTT CGATTAAAAA AAACAGATCG TATTTATGCA
                                                                                       1020
         ATGAAGTTG TGAAAAAAGA GCTTGTTAAT GATGATGAGG ATATTGATTG GGTACAGACA
                                                                                       1080
         GAGAAGCATG TGTTTGAGCA GGCATCCAAT CATCCTTTCC TTGTTGGGCT GCATTCTTGC
         TITCAGACAG AAAGCAGATT GITCTITGIT ATAGAGTATG TAAATGGAGG AGACCTAATG
TITCATATGC AGCGACAAAG AAAACTITCCI GAAGAACATG CCAGATTITA CTCTGCAGAA
                                                                                      1200
80
```

	GACAATGTA GAAGGATTA	T TACTGGACT C GGCCAGGAG	C TGAAGGCCA A TACAACCAG	C ATTAAACTC C ACTTTCTGT	A CTGACTACGO G GTACTCCTA	A TTTGAAACTG 3 CATGTGTAAG A TTACATTGCT	1380 1440
5	CTCATGTTT CCTGACCAG CCACGTTCT	G AGATGATGG A ACACAGAGG C TGTCTGTAA	C AGGAAGGTC A TTATCTCTT A AGCTGCAAG	T CCATTTGAT. C CAAGTTATT T GTTCTGAAG.	A TTGTTGGGA T TGGAAAAAC A GTTTCTTA	C TCTTGGAGTG CTCCGATAAC A AATTCGCATA A TAAGGACCCT C ACACCCGTTC	1560 1620 1680
10	AATATTTCT CAGCTCACT TTTGAGTAT	G GGGAATTTG C CAGATGACG A TCAATCCTC	G TTTGGACAA A TGACATTGT T TTTGATGTC	C TTTGATTCT G AGGAAGATT T GCAGAAGAA	C AGTTTACTA G ATCAGTCTG T GTGTC <u>TGA</u> TY	C CTTTAAACCA A TGAACCTGTC A ATTTGAAGGT C CTCATTTTTC G CAAGCCTGGA	1860 1920 1980
15	ACTATATGA TCCAGACAA	A TCAATTATT	A CATCTGTTT A TTTAGTTGA	T ACTATGAAA A CTGGTTTTY	A AAAAATTAA! C AGTTTTTAA!	r TCTCTTGTAG r ACTACTAGCT A AGGCCTACAG	2160
20	SEQ ID NO:20 Q Protein Accessio	OAA1 Protein sequ n#: NP_00					
	ļ	11	21	31	41	51	
25	 	 GDHSHQVRVK	 AVVPCDTMTM	 HPPDCTCPDC		PINIPOL PRIME	60
		VSSQLELEEA					120
		GHTFQAKRFN					180
		VMPMDQSSMH					240
30		IGRGSYAKVL SCFQTESRLF					300 360
-		KLDNVLLDSE					420
	YGFSVDWWAL	GVLMPEMMAG	RSPFDIVGSS	DNPDQNTEDY	<b>LPQVILEKQI</b>	RIPRSLSVKA	480
		DPKERLGCHP				KPNI SGEFGL	540
35	DNFDSQFTNE	PVQLTPDDDD	IVRKIDQSEF	EGFEYINPLL	MSAEECV		
	Nucleic Acid Acc	ession #: L05628		SE	2 ID NO:21 08H2	DNA SEQUENCE	
40	Coding sequence	n 197-47	92 (underlined sec	quences correspon	d to start and stop	codons)	
	1	11	21	31	41	51	
	1	1	<u> </u>	1	1	1	
45		TTGCGGCCCCC					60 120
		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC					180
	CGCCCGCGCC	ACCGGC <u>ATG</u> G	CGCTCCGGGG	CTTCTGCAGC	GCCGATGGCT	CCGACCCGCT	240
		AATGTCACGT					300
50	CACGGICCIC			CCTCTCCCCC			
-						TCTACTTCCT	360
	CTATCTCTCC	CGACATGACC	GAGGCTACAT	TCAGATGACA	CCTCTCAACA	AAACCAAAAC	360 420
	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG	CGACATGACC TTTTTGCTGT GGCATATTCC	GAGGCTACAT GGATCGTCTG TGGCCCCAGT	TCAGATGACA CTGGGCAGAC GTTTCTGGTC	CCTCTCAACA CTCTTCTACT AGCCCAACTC	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT	360
	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC	360 420 480 540 600
55	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC	360 420 480 540 600 660
55	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCGTG	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT	360 420 480 540 600
55	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCT ACAGCCTTAA TTTTCCCTCT TCGGAAACCA	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT	360 420 480 540 600 660 720 780 840
55	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGTCGAGG	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTAA ACAGCCTTAA TTTTCCCTCT TCGGAAACCA ATCACCTTCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT	AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCCTGAGATC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC	360 420 480 540 600 660 720 780 840 900
	CTATCTCCC TGCCTTGGGA AAGAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTTCCGAGG CCTGGAGGGC	CGACATGACC TTTTTGCTGT GGCATATTCC CTGACTTTCA ACAGCCTTCA ATCACCTTCT TCGGAAACCA ATCACCTTCT AGTGACCTCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTCCTTAAA	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCAC CTGTTTCCTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACGTCGGAAC	AAACCAAAAC CTTTCTGGGA TCTTGGCAT TCCTGAGATC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTGCC	360 420 480 540 600 660 720 780 840 900 960
55 60	CTATCTCCC TGCCTTGGGA AAGAGTCGG CACACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGTCGGGGC CCTGGAGGGC TGTTTTGGTA	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTAA ACAGCCTTAA TTTTCCCTCT TCGGAAACCA ATCACCTTCT	GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGAATG	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT	CCTCTCAACA CTCTTCTACT AGCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACGTCGGAAC AGGAAGCAGC	AAACCAAAAC CTTTCTGGGA TCTTGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC ACGCCAGCC CGGTGAAGGT	360 420 480 540 600 660 720 780 840 900
	CTATCTCCC TGCCTTGGGG AAGGAAGTCGG CACCACGCTG AGGGATCATG CTACGTCTAC ACCCCTGTTC CCTGTGGAGG CCTGGAGGGC TGTTTTGGTA TGTGTACTCC GGAGGTGGAG	CGACATGACC TTTTTGCTGT GGCATATTCC CTCACTTCT ACACCTTTA TTTTCCTCT TCGGAAACCA ATCACCTTCT AGTGACCTCT AAGAACTGA TCCAAGGATC GCTTTGATCG	GAGGETACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCCACGGACCC GGTGGATCAC GGTCCTTAAA AGAGGATGC TCCCCGAGCC TCACGCCC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT ACAGACAGACT ACAGAAGAGAGAC ACAGAAGAGAGACACACACACACAC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGAG GCCCTAGCCA CTGTTTCCTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACGTAGGAAC AGGRAGCAGC TCCAGGGTGG TCCAGGGTGG TGGAACCCCT	AAACCAAAAC CTITCTGGGA TCTTGGGCAT TCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT AACGCCAGCC AAGTCGTGCC CGGTGAAGGT ATGCGAATGA CTCTGTTTAA	360 420 480 540 600 660 720 840 900 960 1020 1080 1140
	CTATCTCTCC TGCCTTGGGA AGGAGTCAG CAACACTCTA AGGGATCATC CAACACTCTAC CCACTCTAC ACCCTGTTC CCTGTCGAGG CCTGGAGGGC TGTTTTGGTA TGTGTACTGCAGGGC GGGGTGGAGGGGGGGGGG	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCT ATTTTCCACT TCGGAAACCA ATCACCTTCT AAGAACTGA TCCAAGGATC GCTTTGATCG AAGAACTTGT AAGAACTTGT	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCACGACCC GGTGGTACAC GGTCCTTAAA AGAAGGAATG CTGCACGACCC GGTGCTTAAA GGAAGGAATG CTGCAGGCC GGCCTACTT	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGATGTGT TCAGTGTGT TAATCCCTGC AGGGTTGAT TAATCCCTGC AGGGTTGAT TAAGAGGAC CGCCAAGACT GAAAGAGGAC CGCCAAGACT GAAAGACGAC CCTCATGAGC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGAG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA ACGTCGGGAC ACGTAGCAG TCCAAGGTGG TCGAAGCTGG TGGAACCCCT TTCTTCTTCA	AAACCAAAAC CTTTCTGGGA TCTGAGATC TCCTGAGATC ACATCACTTT CAGATCGCT GCGCTTCCTT ACCGCCAGCC AAGTCGTGCC CGGTGAAGGT ATCGGATTAA AGGCCATCCA	360 420 480 540 600 660 720 780 900 960 1020 1080 1140 1200
60	CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACCTCTTCC CCTGCAGGG CCTGCAGGG TGTTTTGGTA TGTGTACTCC GGAGGTGGAG GGGTGTTATCC CGACCTGATG	CGACATGACC TTTTTGCTGT GGGATATTCC CTGACTTCT ACACCTTAA ACACCTTAA ATCACCTTCT ACACCTTCT ATCTTTCCCA ACCTTCTCA ACACCTTCC ACCTTCT ACCTTCTCCA ACCTTCTCA ACCTTCA ACCTTCTCA ACCTTCA ACCTTCTCA ACCTTCA ACCT	GAGGCTACAT GGATCGTCTG TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCCC GGCGTACTTCA GGCCCTACAT CGCCCGCAGAT GGCCCTACAT GGCCCTACAT	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTTGGTCAGTCGTC GCTAGTGTGTC CCAGGTGGAC TAATCCCTGC AGGGTTGATT CAAGGAGAC CAGCAGAGAGAGAGAGAC GAAAGAGAGAG	CCTCTCACA CTCTTCTACT AGCCCAACTC AGGRAGGGA GCCCTAGCCA CTCTTTCGTG TCCAGAGTCCA GTCCGGGGCT ACGTAGCAG AGGRAGCAGC TCCAAGAGCAGC TCCAAGAGCAGC TCCAACAAGT TTCTTCTTCAAC CTCATCAAGT	AAACCAAAAC CTTTCTGGGAT TCTTGGGAT TTCAGTCTTC TCCTGAGATC ACATCACTTT ACCGCCAGCC AAGTCGTCC CGGTGAAGGT ATGCGAATGA CTCTGTTTAA ACGCCATCA TCCTGAATGA CTCTGTTTAA	360 420 480 540 600 720 780 840 900 960 1020 1080 1140 1200 1260
	CTATCTCTCC TGCCTTGGGA AGGAGTCATG CAACACTCTA AGGGATCATG CAACACTCTAC ACCCTGTTC CCTGTCTAC ACCCTGTTC CCTGTCAGAG CTGTTTTGGTA TGTTTACTC GGAGGTGGAG GGTGTTATAC CGACCTGATG CACCAAGCC CCTCCAGACC CCTCCAGACC CCTCCAGACC CCTCCAGACC	CGACATGACC TTTTTGCTGT GGCATATTCC CCTGCTACCT CCACCTTCA ACACCTTCA ATTTTCCCTCT TCGGAACCA ATCACCTCT AAGAACTGGA TCCAAGGAT CCCAAGGATC AAGACCTCT AAGAACTGCA CCTTTTTTCCG CCTTTGATCG CCAGACTGCC CCCAGCTCGCC CCTCGTGCTCC	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCCAGACC GGTGCATTCA GGTGGATCAC GGTCCTTAAA AGAAGGAATG CTCCCCAGCC GGCCTACAT TCAAGTCCCC GGCCTACAT AGGCCTACTT ACCAGTACTT	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTCGAGAGGG CCTAGATGTGT TAATCCCTGC AGGGTTGACT CAAGGAGGAC CGCCAAGACT GAAAGAGGAC CGCCAAGACT GAAAGAGGAC CTCAATGAGC CTTCAAAGTTG CTTACACCGTG CTACACCGTG CCACATCTGC CCACATCTGC CCACATCTGC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAAGGTGGA ACGTCGGAAC AGGAAGCAGC TCCAAGGTGG TGGAACCCT TTCTTCTTCA CTCATCAAGT TCTATCAAGT TCTATCAACT TTCTTCTTCA TCTATCAAGT TTCTTCTTCAT TTCGTCAGT	AAACCAAAAC CTTTCTGGGA TCTGAGGCAT TCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCTCAGATCA AAGTCGTGCC CGGTGAAGGT ATCCGAATCA AGGCCATCCA TCCTGAATCA TCACTGCCTC GCATCAGATCA TCACTGCCTG	360 420 480 540 600 660 720 780 900 960 1020 1080 1140 1200
60	CTATCTCTCC TGCCTTGGGA AAGAAGTCGC CACACGCTG AGGGATCATG CCAAAATTATG CCTGCTGTCCAGG CCTGCAGGGC TGTTTTGGTA TGTGTACTCC GGAGGTGAG GGTGTTATAC CACGAGGCC CAGGAGGCC CCTGCAGACC CAAGACCGCT CAGCAGCCC CAAGACCGCT CAAGACCGCT CAAGACCGCT	CGACATGACC TTTTTGCTGT GGCARATTCC CTCACTTCT ACACCTTCA ATTTCCCTCT TCGGAAACCA ATCACCTTCT AAGAACTGGA TCCAAGGATC CCTTTGATCG ATGACTTTGATCG ATGACTTTGATCG CCTGAGACTGGC CCAGACTGGC CCCAGACTGGC CCTCGTGCTGC	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAAAGGATGC TCACCAGACCC GGTGGATCAC AGAAGGATGA CTGCCCAGCC TGCCCAGCC GGCCTACTT GGCCGCAGAT AGGGCTACTT GCCCGAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCCCAGCT CTGCTACTT CTGCTATCC	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGTGTGT CCTAGTGTGT TAATCCCTGC AGGGTTGATT CAAGGAGACT GAAAGAGAGACT GAAAGAGAGACT GAAAGAAGACACT CCTCATCAGC CTTAAAGTTG CTACACCGTG CAAAGCCCTG GAAAGCCCG CCACATCTGC CACACTCTGC GAAGGCCCTG CACACTCTGC GAAGGCCCTG GAAGCCCCTG GAAGGCCCTG CCACATCTGC GAAGCCCCTG GAAGCCCCTG GAAGCCCCTG GAAGCCCCTG	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGCCAACTC AGCAAGGAG GCCCTAGCCA CTCTTTCCTG CCAGAGTCCA GTCCGGGGCT TCCAAGGAG TCCAAGGTGG TGGAACCCCT TTCTTCTTCA CTCATCAAGT CTCATCAAGT CTCATCAAGT CTCATCAAGT CTCATCAAGT CTGCTCATTG GTGAACACCA GTGATCAACA GTGATCAACA GTGATCAACA GTGATCAACA GTGATCAACA GTGATCAACA	AAACCAAAAC CTTTCTGGGA TCTAGGCAT TTCAGTCTTC TCCTGGGATC ACACCAGCTCTT ACCGCCAGCC GGGCTTCCTT ACCGCAGCC CGGTGAAGGT ATCCGAATGA CTCTGTTTAA AGGCCATCCA TCGTGAATGA TCACTGCCTG	360 420 480 540 600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440
60	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCTGTTC CCTGTCGAGG CCTGGAGGGC TGTTTTGGTA TGTGAGGGGC GGAGTTGATG GGAGGTGGAG GGTGTTATAC CACGAGGCC CACGAGGCC CACGAGCC CAAGACCCCT AAAATCCTCC	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTCAT TTTTCCCTCT TCGGAACCA ATCACCTTCA AGAACTGCA AGAACTGCA AGAACTGT AGAACTGCT AGAACTGCT AGAACTTGCA CCTTTGATCC AGACCTTTC CCTTGATCC CCAGACTGCC CTCGTGCTGC CTCGTGCTGC ACGTTGGGGA ACGGTCGGGG ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA ACGGTCGGGGA	GAGGCTACAT GGATCOTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTGATCC TACTGATCA TCCACGACCC GGTCCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCC GGCCCTACTT ACCAGTACT ACCAGTACT CCGGCCTACTT ACCAGTACT CTGTCTATCA AGAGTACTT CCGGTACTT ACCAGTACTT ACCAGTACT A	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAAGAGAG CCTCATGAG CCTCATGAG CCTCATGAG CTTAAAGTTG CTACACCGTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CAAGGCCTG GAAGGCCTG CATCATGTC CCTCATGTTCT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGG GCCCTACCCA TCTGTTTCT CCAGAGTCCA GCACGTCT ACCTCGGAAC AGGRAGCAGC TCCAGCTGG TCCAGCTGG TCCAGCTGG TCCACGTG TCCACGTG TCCACGTG TCCACGTG TCCACGTG TCCACGTG TCCACGTG TCCACGTG TTCTTCTTCA CTCACTCTTTT TTCTTCAGTG GTGATCACCA GTGGACCCCT	AAACCAAAAC CTITICTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT CAGATCGTCC CGGTGAAGGT ATCCGAATGA CTCTGTTTAA AGGCCATCCA TCGTGAATGA TCGTGAATGA TCGTGAATGA TCACTGCCTG TCACTGCCTG TCACTGCCTG ATCAGAGGAT ATTCAGCAG AGAGGTTCAT	360 420 480 540 600 660 720 780 900 960 1020 1140 1200 1320 1380 1440 1500
60	CTATCTCCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CAAAATTATG CCTGCTGTC CCTGCAGGGC TGTTTTGGTA TGTGTATCC CGACCTGATC CACGAGGCC CGAGGGGAGGAGGCC CCTGCAGAGCC CACGAAGGCC CAGAACCCT AAAATCCTCC GGACTTGGCC GGACTTGGCC	CGACATGACC TTTTTGCTGT GGCARATTCC CTCACTTCT ACACCTTCA ATTTCCCTCT TCGGAAACCA ATCACCTTCT AAGAACTGGA TCCAAGGATC CCTTTGATCG ATGACTTTGATCG ATGACTTTGATCG CCTGAGACTGGC CCAGACTGGC CCCAGACTGGC CCTCGTGCTGC	GAGGCTACAT GGATCOTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGAATC TCCACGACC GGTGCATCA GGTGCTTAAA AGAAGGAATC CTGCCCAGCC GGCCTACTT ACCAGTACTT ACATGATCTC ACATGATCTC ACATGATCTC ACAGTACTT ACATGATCTC ACAGTACTT ACATGATCTC ACAGTACTT ACAGTACT ACAGT	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTCGAGAGGG CCTAGATGAGC CCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAAGAAGGAG CCTCATGAGC CTTAAAGTTG CTACACCGTG CAACTTGC GAAGGCCCTG CAACTTGC GAAGGCCCTG CCACATCTGC GAAGGCCCTG GTCAGCCCCC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGA GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA GCAGCAGGAC AGGAAGCAGC TCCAAGGTGG TGGAACCCT TTCTTCTTCA CTCATCAAGTTG TTCGTTCATCA TTCGTCAGTTTG TTCGTCAGTTG TTCGTCAGTTG GTGAACCCC GTGATCACCA GTGGACCCC CTCTCTCTCTCC CTCATCAGTTTC CTCATCAGTTTC CTCAGTGTTTC CTCAGTGTTC CTCAAGTCACCA GTGGACCCCC CTGCAAGTCA	AAACCAAAAC CTITICTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GGGCTTCCTT ACCGCAGCC AAGTCGTGCC CGGTGAAGGT ATCCGAATCA ACGCCATCCA TCCTGATTCA TCCTGAATCA TCCTGAATCA ATCACTGCCTG GCATGAAGGA TTCACTGCCTG GCATGAGGAT ATTCACCCGG AGAGGTTCAT TCCTTGCTTT	360 420 480 540 600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440
60 65	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CCTTCCTGAGG CCTGCGGGGC TGTTTTGGTA TGTGTACTCC GGAGGTGGAG GGTGTTATAC CACAAGGCC CCTGCAGACC CAAGACCCCT AAAATCCTCC AAGACCTCCT CAAGACCCC TAAGACCCC TAACTCCCC CTACCTCCCC CTACCTCCCTC	CGACATGACC TTTTTGCTGT GGCATATTCC CCTGCTACCT CTGCACCTTCA ACACCTTCA ATTTTCCCTCT AGGAACCA ATCACCTCT AGGAACTGA CCTTGATGA ACGACTCT AAGACTGC CCTTGATCG AAGACCTTC AAGACCTTC AAGACCTTC CCAGACTGC CCAGACTGC CTCGTGCTGC GTCATTGGGG ACGTTCGGGG ACGTTCGGGG ACGTACATTA	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCACCAGACCC GGTGGTACAC TCACGACCC GGTGCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCC GGCCTACTT GGCCCAGCT ACCAGTACTT ACCAGTACTT CTGTCTATCG AGATTGTCAA AGATTGTCAA AGATTGTCAA AGATTGTCAA AGATTGTCAA AGATTGTCAA AGATTGTCTA	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGAC CGCCAAGACT GAAAGAGGAC CCTCATCAGC CTTAAAGTTG CTAACACGTG GAAGGCCTG CAACACTCTGC GAAGGCCCTG CCACATCTCTC GTCATGCCCCC CGTCCTGGCT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGAG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAAGGTGG TGGAACCCCT TTCTTCTTCA CTCATCAAGT CTCATCATTG GTGATCACCA GTGGACCCCT CTCCAAGTCACA GTGATCACCA GTGATCACCA GTGATCACCA GTGATCACCA GTGATCACCA GTGATCACCA GTGATCACCA GGAGTGCCGG GGAGTGCCCG	AAACCAAAAC CTTTCTGGGA TCTGAGATC TCCTGAGATC ACATCACTTT CAGATCGCT GCGCTTCCTT ACCGCCAGCC AAGTCGTGCC CGGTGAAGGT ATCCGAATGA TCTTTTAA AGGCCATCCA TCGTGAATGA TCATTCATTTAA AGGCCATCCA TCATGATGA TCATTCATGCTG GCATGAGGAT ATTCAGCCAG AGAGGTTCAT TCATGCTGT TGATGCTTT TGATGCTTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT TGATGGTCTT	360 420 480 540 600 660 720 840 900 900 1020 1080 1140 1200 1320 1380 1440 1500 1560
60 65	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGGTCATG CTACGTCTAC ACCCTGTTC CCTGCAGGGC TGTTTTGGTA TGTGTATTCC GGACCTGATG CGACCTGATG CGACCTGATG CGACCTGATG CACGAGGCC CCTGCAGACC CAGAACCCCT AAAATCCTCC GGACTTGCC CTACCTCCTG CGACTTGCC CTACCTCCTG CGACTTGCC CTACGTGCC CTACGTGCC CTACGTGCC CTACGTGCC CTACGTGCC CAGAGACAAA	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTGACTTTAA TTTTCCCTCT TCGGAACCA ATCACCTCT AGGAACTGA TCCAAGGATC CGTTTGATCG AAGACTGC CTTGTGTCC CTAGTGATCG CTAGTGTCC CTCGTGCTGC CTCATTGGG ACGTCGGGG ACGTACATTA TGGCTGAATC GACAATCGGC GTCATATCGGG GACAATCGGC GTCATATCGGG ACGACATTCGGGGGAACGTCGCC GTCATTCGGGGGAACGTCGCC GTCATTCGGGGGAACGTCACATTA TGGCTGAATCC GACAATCGGG	GAGGCTACAT GGATCOTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AACAGGACC GGTCCTTAAA AGAAGGAATG CTGCCCAGCC GGCCTACTT ACCGCAGACT AGGCCTACTT ACCGCAGACT CTCAGTACT TCAAGTCCCT TCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT TCTGCCCCTC TGGCCCTTC TGGCCCTTC TGGAGGCCTTC TGAAGGCCTTC TGAAGGCCTTC TGAAGGCCTTC	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGATGAGC CCTCAGTTGAT TAATCCCTGC AGGGTTGATT CAAGGAGGAC GCCAAGACT GAAAGGAGGC CTCATGAGC CTTAAAGTTG CAACTGC GAAGGCCTG GAAGGCCTG GTAGCCCCC GTCCTGGCT GAGGCCCTG GAAGGCCAGA GAAGGAAATT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGA GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAAGTGG TCGAACCCT TTCTTCTTCA CTCATCAAGTTG TTCGTACAGT TTCGTACAGT TTCGTACAGT TTCGTACAGT TTCGTACAGT TTCGTACAGT TCGTATCACG GTGAACCCC CTCAAGTCAG GTGGACCCT CTCATCAGGG AGGAGCAG CTCAAGTGAG CTCAAGTGAG CTCAAGTGAG CTCAAGTGAG CTCAAGTCAGG CTCAATGGGA	AAACCAAAAC CTITICTGGGCAT TCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCT GGGCTTCCTT ACCGCAGCC AAGTCGTCC CGGTGAAGGT ATCCGAATCA ATCCTGATCA TCCTGAATCA TCCTGAATCA TCACTGCCTG GCATGAGGT ATTCACTGCTT TCATTGCCTG TCATTGCCTT TCATTGCTCT TCATTGCT TCATTG	360 420 480 540 6600 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1560 1560 1680 1740
60 65	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CAAAATTATG CCTGCTGTAC ACCCTGTTC CCTGTCGAGG CTGTTTGGTA TGTGTACTGC GGAGGTGGG GGTGTTATAC CGACCTGATG CACGAAGCC CAAGAACCCT AAAATCCTCC CAAGACCC CAAGACCC CAAGACCCT CAAGACCT CAAGACCAAAAAAAAAA	CGACATGACC TTTTTGCTGT GGCATATTCC CCTGCTACCT CCACCTTCA ACACCTTCT ACGCCTTAA ATTTTCCCTCT TCGGAACCA ATCACCTCT AAGAACTGA TCCAAGGATC CCATGAGATC CCAGACCTCT AAGACCTCT AAGACCTTT AAGACCTTT AAGACCTTT AAGACCTTT ATGTTTTCCG CCAGACTGCC CTCATGCTGC GCAATTGATCG GCAATTGATCG ACGTCAGGA ACGTCAGAT TGCCTGAATCCTG GACAATCGG GACAATCGG GACAATCGG GACAATCGG GACAATCGG	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC GGTGGTACC GGTGGTACC GGTGGTACC GGTGGTACC GGTGGTACC GGCCTACAT ACAGACC GGCCTACAT ACCAGACC TCAAGTCCC GGCCTACAT ACCAGACC TCAAGTCC TCAGGCCTACAT ACCAGTACAT CTGCCTACT TCGCCGCAGAT ACATGACT TCGCCAGC TGGCCTACT TCGCCAGC TCGCCTACT TCGCCAGC TCGCCTACT TCGCCATC TCAAGCCTACT TCAAGCCAT TCAAGCCAT	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTGGAGAGG CCTAGATGTGT TCAGTCTTGT TAATCCCTGC AGGGTTGACT CAAGGAGGAC CGCCAAGACT GAAAGAGGAC CCTCATCAGC CTTAAAGTTG CTACACCGTG GAAGGCCCTG CAAGGCCCTG CACACTCTGC GAAGGCCCTG CACACTCTGC GAAGGACCAAG GACCAAATT GACCAAATT GACCAAATT GAACGAAATT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAAGGTGG ACGTCGGAAC AGGAAGCAGC TCCAAGGTGG TGGAACCCT TTCTTCTTCA CTCATCAAGT TTCGTCAGTG GTGATCACA GCTCAATCA GCTCAATCA GCTCAATCA GCTCAATCA CTCCAATCA CTCCAATCA CTCAATCA	AAACCAAAAC CTTTCTGGGA TCCTGGGCAT TCCAGACTC TCCTGGGATC CAGATCGCC GCGCTTCCTT ACCGCCAGCC ACGCCAGCC CGGTGAAGGT ATCCGAATCA ACGCCATCC TCCTGGATCA TCACTGCCT GCATCAGCA TCACTGCCT TCACTGCCT TCACTGCT TCATCGCT TCACACGCACAG ACAGGAGA ACAGGAGA ACAGGAGA ACAGGAGA ACACGCT TCACACAGGAGA	360 420 540 660 720 780 900 900 1020 1140 1260 1320 1440 1500 1620 1620 1620 1620
60 65	CTATCTCCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCTGTTC CCTGTCGAGG CCTGGAGGGC TGTTTTGGTA TGTGTATGTA GGAGGTGAG GGTGTTATAC CGACCTGATG CGACCTGATG CACGAGGCC CAAGACCGCT AAAATCCTCC GGACTTCGCC CTACCTCCTC CATGGTGCCC CAAGAGCAAA AAACTTTAT GCTGAAGGTT	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTCAT TTTTCCCTCT AGGAACCA ATCACCTTCA AGGACCTCT AGGAACCA AGGACCTTGA TCCAAGGAC CCTTGATCG CCAGGACCA AGGACCTTGG CTCAGGACCTTG GCTTGATCG CAGGACTGGC CTCAGTGCTGC ACGACTGGGG ACGTCGGGG ACGTCGAGT GCTGAATCG GCTCAATGGGG GCAATCGGA GCCTGGGGGC CTCAATGGGG GCCTGGGGGAC TCGACGGAACCT GCCTGAACC TGCACTGAACC TGCACTGAACC CTCAAGGAACT CGCTGGGGAGC CTCAAGGAACT CCCAGAAACGGA CCTCAAGGAACT CCCAGAAACGGAACT CCCAGAAACGGAACT CCCAGAAACGAACT CCCAGAAACGAACT CCCAAGGAACT CCCAAGAACT CCCAAGGAACT CCCAAGAACAACAACAACAACAACAACAACAACAACAACA	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTGATACA GACAGACCC TCACGACCC TCACGACCC TCACGCCC TCACGCCC TCACGCCC TCACGCCC TCACGCCC TCACGCCC TCACGCCC TCACGTCCC TCACGTCCC TCACGTCCC TCACGTCCT TCACGTCCT TCACGTCCT TCACGTCCT TCACGTCCT TCACGCCTTCT TCACGCCTTCCT TCACCTCCT TCACCTC TCACCTC TCACCTC TCACCTC TCACCTC TCACCTC TCACCT TCACCTC TCACCT	TCAGATGACA CTGGGCAGAC GTTTCTTGGTC GCTTGGTGAGAGG CCTAGTGTGT TAATCCCTGC CAGGTGACACACT CAAGGAGGAC CGCCAAGACT ACAGAGAGGAC CCTCATCAGC CCTCATCAGC CCTACAACT CCTACACTGC CAAGGCCTG GAAGGCCTG GAAGGCCTG GAAGGCCTG GTCAGCCCC GAAGACCAAGAGT GTCAGCCAAGAGT GAAGACCAAGTG GAAGACCAAGTG GTCAGCCCT GAAGACCAAGTG GTCAGCCCTG GTCAGCCCT GAAGACCAAGGTG GTCAGCCGTC GTCAGCCCTC GAAGACCAAGGTG GTCAGCCCTG GTCAGCCCTC GTCAGCCCTG GTCAGCCCTG GTCAGCCCTG GTCAGCCCTG GTCAGCCCTG GTCAGCCCTG GTCAGCCCGTG GTCAGCCCTG GTCAGCCTG GTCAGCCCTG GTCAGCCTG GTCAGCCTG GTCAGCCTG GTCAGCCCTG GTCAGCCTG GTCAGCCCTG GTCAGCCCTG GTCAGCCTG GTCAGCTG GTCAGCCTG GTCAGCCTG GTCAGCCTG GTCAGCTG GTC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGRAGGGG GCCCTACCCA TCTGTTTCT CCAGAGTCCA AGGRAGCAGC TCCTGGTTCT TCCAGGGGT TCCAGGGGT TCCAGGGGT TCCAGGTGG TGGAACCCCT TTCTTCTTCA CTCACTCAGTGG TTGCTACTCAGTG GTGATCACCA GTGGACCCCT CTCCAAGTCA GTGGACCCT CTCCAAGTCA GGAGTGGCGG ACCTATCAGGA CTCAATGGGA CTCAATGGGA CTCAATGGGA CTCACCATCA GGCACCTTCA	AAACCAAAAC CCTITICTGGGA TCTGAGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT CAGATCGTCC CGGTGAAGGT ATCCGAATGA CCTCTTTTAA AGGCCATCCA TCGTGAATGA TCGTGAATGA TCACTGCTT TCGTGAATGA TCACTGCTT TCATGAGGTT TCATTGCTT TCATGGCCACT TCATGCTCT TGGCCCACAT TCAGAGGTT TCATGGTCCT TGGCCCACAT TCAAGGTCT TCGCACACT TCGAGGGTCT CGCCAGGAGGA CCTGGGTCTC	360 420 480 540 660 720 780 900 960 1080 1140 1200 1320 1320 1500 1560 1680 1740 1680 1740 1860
60 65 70	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CTACGTCTAC ACCCTGTTAC CCTGTGGGGC TGTTTTGGTA TGTGTACTCC GGACCTGATG CCTGCAGGGC CGTGTACTCC CGACCTGATG CCTGCAGGC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCAGACCCTTT GGACTTGGC CTACCTCCTG CATGGTGCC CAAGAGCAAA AAACCTTTAT CCTGAAGGTC CCACCCCTTT CCTGCAGACC CAAGAGCAAA AAACCTTTAT CCTGAAGGTC CCACCCCTTT	CGACATGACC TTTTTGCTGT GGCATATTCC CCTGCTACCT CCACCTTCA ACACCTTCT ACGCCTTAA ATTTTCCCTCT TCGGAACCA ATCACCTCT AAGAACTGA TCCAAGGATC CCTTGTGATCG ACGTTTTTTCCG CCAGACTGCC CTCGTGCTGC GCACATCGCG ACGTCGGGG ACGTCGGGG ACGTCGGGG ACGTCAATCCTG GCACATCGG ACGTCAATCCTG GCACATCGG ACGTCAATCCTG GCACATCGGGA GCCTGGGGGGGG GCCTGGGGGGGG	GAGGCTACAT GGATCOTOTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGTACC GGTGCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCCC GGCCTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT CTGCCCCAGCT TGAGTCCCC TCAAGTCCAT TCAAGTCCAT TCAAGTCCAT TCAAGTCCAT TCAAGTCCAT TCAAGTCCAT TCAAGCTACT TCAAGCTACT TGATGCGCATTCAA CCTGCCTACCT TGTGCACCATT	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC CAGGTGATC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAAGGAGGAC CTCATGAGC CTTAAAGTTG CTACACCGTG CAACTTGC GAAGGCCCTG GAAGGCCCTG GTAGGCCCCC CGTCCTGGCT GTAGCCCCC GGTCAGAGT GAACGAAGTT GGACAAGGTG GAACGAAGTT GGCCAAGGCCTT GCCGTCTTAC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGA GCCCTAGCCA AGGAAGGGA TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAAGTCG TCCAAGTCG TCCAAGTCCA TCTCTTCTTCA TCTCTTCTTCA TCTCTTCTTCA TCTCTCATTC TTCTTCATC TTCTCATCA GTGAACCCT TTCTTCATC GTGATCACCA GTGAGCCTC CTCCAAGTCA GGAGTGCGGG CTCCAATCAGGA CTGCACCTTCA GGATCACCA CTCAATCAGGA CTGCACCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA GGACCCTTCA	AAACCAAAAC CTITICTGGGCAT TTCAGTCTTC TCCTGAGATC TCCTGAGATC CGGCTTCCTT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGTC AAGTCCTGCC CGGTGAATGA CTCTGTTTAA AGGCCATCCA TCGTGAATGA TTCACTGCTT GCATGAGTA ATTCACTGCTT TCATTGCTCT TCGTTGTTCT TTCATTGCTCT TTGGTCCACAT TTCACAGGT TTGGTCCT TTGGTCCT TTGGTCCT TTGGTCCT TTGGTCCT TTGGTCCT TTGAAGTGCT TTGGACGAGAGA ACGAGAACAA	360 420 540 660 720 780 900 900 1020 1140 1260 1320 1440 1500 1620 1620 1620 1620
60 65 70	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGTCGAGG CCTGGAGGGC TGTTTTTGGTA TGTGTACTAC GGAGTTGAG GGTGTTATAC CACGAGCC CAAGACCCCT AAAATCCTCC GGACTTGCCC CAAGACCCCT CATGGTCCCC CATGTCCCC CATGGTCCCC CATGCTCCCC CATGGTCCCC CATGGTCCC CATGGTCCCC CATGGTCCCC CATGGTCCCC CATGGTCCCC CATGGTCCCC CATGGTCCC CATGGTCCCC CATGGTCCC CATGCTCCC CATGCTCCCC CATGCTCCC CATGCTCCC CATGCTCC CATGCTCC CATGCTCC CATGCTCC CATGCTCC CATGCTCC CATGCTC CATGCTC CATGCTC CATGCTC CATGCTC CATGCTC CATGCTC CATGCTC CATGCT C	CGACATGACC TTTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTCT TTTTCCCTCT TCGGAACCTA ATTTCCCTCT AGGACCTCT AGGACCTCT AGGACCTTGA TCCAGGGAT CCTTGATCG CCAGGACTGGC CTCGTGCTGC CTCAGGACTGGC ACGACTGGC ACGACTGGC ACGACTGGC ACGACTGGC ACGACTGGC ACGACTGGC CTCGTGCTGC CTCGTGCTGC CTCAGACTGGC CTCAGACTGGC CTCAGACTGGC CTCAGACTGGC CTCGAGACTGC CTCGAGGACT CTGGTGGCCT CTCGCTGGCCCT CTCCCCAGACAC CTCCCCATGGC CTCCCCATGGC CTCCCCATGGC CTCTCCCATGC CTTCCCCATGC CTTCCCCATGC CTCTCCCATGGC CTTCCCCATGC CTCTCCCATGC CTTCCCCATGC CTCTCCCATGC CTCTCCCATGC CTCTCCCATGC CTCTCCCATGC CTCCCCATGC CTCTCCCATGC CTCCCCATGC CTCTCCCATGC CTCCCCATGC CTCCCATGC CTCCCCATGC CTCCCCATCC CTCCCATGC CTCCCATCT CTCCCCATCT CTCCCCATCT CTCCCCATCT CTCCCATCT CTCCCATC CTCCCATCT CTCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCCATCT CTCCT CTCCCATCT CTCCATCT CTCT CTCC	GAGGCTACAT GGATCOTOTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTGATACA GACAGACCC TCACGACCC TCACGACCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCCC TCAAGTCTCA AGATGTCTA ACAGTACTT TCATCAGCTGAT TCAAGCTGAT TCAAGCTGAT TCACAGCTACT TCACCTACT TGGCACATT TCATCACAT CCTTCCTTACT TCATCACAT TCATCACAT TCATCACAT TCATCACAT TCATCACAT TCATCACAT TCATCACAT TCATCACAT TCATCACAGC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCTGC CAGGTGACACACT CAAGGAGGAC CGCCAAGACT ACAGGAGGAC CCTCATCAGC CCTCATCAGC CAACACT CCAACACT GCAACACT GTCAACCC GAAGGCCT GAAGGCCCT GAAGACCAC GAAGACCAC GAAGACCAC GAAGACCAC GAAGACCAC GAAGACCAC GAAGACCAC TGCCCTCAC TCGCCTCAC TCGCCTCAC TTCGCCTTC CATCTCCAC CATCTCAC CATCTCCAC CATCTCAC CATCTCAC CATCTCCAC CATCTCCAC CATCTCAC CATCTCAC CATCTCAC CAT	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA AGGAAGGGAG TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAAGGGG TGGAACCACT TCTTCTTCTCA CTCAACTCAA	AAACCAAAAC CTITICTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTTC CGGCTTTCCTT CAGATCGTCC CGGTGAGGT ACTGCAACG ACTGCAACG ACTGCAACG ACTGCAACG ACTGCAACG TCACTTAA AGGCCATCCA TCACTGCAACG TCACTGCTAC TCACTGCAACG TCACTGCTCT TCGTCAACG TCACTGCCTC TCGTCAACG TCACTGCTCT TCGTCAACG TCACTGCCTC TCGCCACAT TCATGCCTC TCGCCACAT TCAAGGTCC TCGCGAGACAA TCCGCGTCTC ACGAGAACAA TCCCCCTCAAACG	360 420 480 540 660 720 780 900 960 1080 1140 1200 1320 1320 1500 1560 1560 1680 1740 1860 1920 1980 2040
60 65 70	CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCTGTTAC CCTGTGGGGC TGTTTTGGTA TGTGTACTCC GGAGGTGGAG GGTGTTATAC CGACCTGATG CACGAGGCC CACGAGGCC CACGAGGCC CAGGAGGCC CTACCTCTGC GAACTTCTC GGACTTGGC CATGCTCTCTG CATGGGCC CAAGAGCTTTA CCTGAGACTT CCTGAGACT CCTGAGACAT CCTGAGACT CCTGAGACAT CCTGAGACT CCTGACT CCTCTC CCTCACC CCTCC CCTCC C	CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTCT TCGCAACCA ATTTCCCTCT AGAACTGA ATTTCCCTCT AGAACTGA TCCAAGGATC CCAGACTGA AGGTCACTTTT AGATGACCTTTT CCAGACTGAC CTCAGACTGAC CTCAGACTGC CTCAGACTGGC GTCATTGGGG ACGTCGGGG ACGTCGGGG ACGTCGGGG CCTCAGACTGAC CTCAGACTGAC CTCAGACTGC CCCAGACAG CTCCCCAGACAG CTTCCCCATGG	GAGGCTACAT GGATCGTCTG TTTTAATTCA GGCTGGTAGC TACTGGTAGC TACTGGTAGC TACTGATACA GGATGATCA GGGTGGTAGC TCACGACCC GGTGGTACC TCACGACCC TCAAGTCCCC TCAAGTCCCC GGCCCTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT TCATCAGCTACTT TGATGGGGT TCAAGCTCT TGATGGGATTCCA TGATGGTACTT TGATGGGGT TCAAGCTACT TGTGCACATT TCATCAGCAG TTCATCAGCAG TTCATCAGCAG ATTAGGCAGAT TCATCAGCAG TCATCAGCAGAT TCATCAGCAG TTCATCAGCAG ATTAGGCAGAT TCATCAGCAG TTCATCAGCAG ATTAGGCAGAT TCATCAGCAG ATTAGGCAGAT TCATCAGCAG ATTAGGCAGAGCT	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC CAGGTGGAC GCTCGTCTTC TAAGGAGGAC CGCCAAGACT GAAAGGAGGAC CTCAATCAGC CTTAAAGTTG CAACTAGC CTTAAAGTTG CAACTTGC GAAGGCCCTG GTACACTGC GTACATCTGC GAAGGCCCTG GTACACCTGC TTAGCCCCC CGTCCTGGCT GTCAGCCCC CGTCAGAGTT TGGCCAAGGTT TGGCCTTAC TTTGGCCTTG CATCTGCCT CATCTGCCT CTCCTGCTT CCCGTCTAC TTTGGCCTTG CATCTGCCT CATCTGCCT CATCTGCCTG CATCTGCCT CATCTGCCT CATCTGCCT CATCTGCCAG GAACCTAAC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGG GCCCTAGCCA AGGAAGGGGC TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAGGGCT TCCTTCTTCTA TCCAGGGCT TTCTTCTTCA CTCATCAGT TTCATCAGT TTCAAGTCA GGAGTGCGGG CTGCACTCA GGAGTCCT TTCAACATCC GGAGTGTT TTCAACATCC GCGAGTGTCT AGCATCAGGA	AAACCAAAAC CTITICTGGGCAT TTCAGTCTTC TCCTGAGATC TCCTGAGATC ACCACCACC GGGCTTCCTT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCACTC AAGTCCTGCC CGGTGAAGGT ATGCGAATGA TCGTGAATGA TCGTGAATGA TCACTGCTT TCACTGCTT TCACTGCTT TCACTGCTT TCACTGCTCT TCACTGCTCT TCACTGCTCT TCACTGCTCT TCACTGCTCT TCACTGGTCCT TCACTGGTCCT TCACAGGTCAC TCGCCCACAT TCACAGGTCCT CCCTGGGTCAC ACGAGAACAA TCCGGTTTCC CCCTCAAACG GACGACCTTT	360 420 480 540 660 720 780 960 1020 1140 1260 1320 1380 1440 1500 1560 1560 1740 1860 1740 1860 1920 1980 2040 2100
60 65 70	CTATCTCTCC TGCCTTGGGA AGGAGTCATG CAACACCTG AGGGATCATG CAACACTCTCACGG CCTGCAGGGC TGTTTTGGTA TGTGTATCC CGACCTGATC CGACCTGATC CGACCTGATC CGACCTGATC CGACCTGATC CACGAGGCC CTGCAGACC CAAGACCCT CAACACCTCTG CATCTTCGCC CAACACCCTTTT CATCCTCTG CATGGTGCC CTACCTCTG CATGGTGCC CTACCTCTG CATGGTGCC CAAGACGCAA AAACCTTTAT GCTGAAGGTC CACCCCTTT CATCCTGGAT CCTGAACATT CCTGAACATT CCTGAACATT CCTGAACATT CCTAAGAGGCC CAAAGACGCC CAAAGACCGC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCGC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCGCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCC CAAAGACCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCCC CAAAGACCC CACCC CAAAGACCC CAAAACCC CAAAACC CAAAACCC CAA	CGACATGACC TTTTTGCTGT GGGATATTCC CTGACTTCT CGGCATATTCT ACAGCTTAA TTTTCCCTCT TCGGAACCA ATCACCTCTA AGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT AGGACCTCT CCGAGCACT CCAGACTGGC CTCATTGCGG ACGTTCGGG ACGTTCGGG ACGTACATTA TGGCTGAATC GCACATGGG CCTGAGAGAC CTCAAGAACT CTCAAGAACT CTCAAGAACT CTGGGGGCC CCCGAGCAG CCCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCATGG CTCCCCATGG CTCCCATGG CTCCCCATGG CTCCCCATGG CTCCCATGG CTCCCATGG CTCCCCATGG CTCCCCATGG CTCCCCATGG CTCCCCATGG CTCCCATGG CTCCCATGC CTCCCATGG CTCCCATGC CTCCC	GAGGCTACAT GGATCGTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCACGACC GGTGCATTCA TCCACGACC GGTCCTTAAA AGAAGGAATG CTCACCAGCC GGCCTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT ACCAGTACTT TCAGGCCCTACTT ACCAGTACTT CTGTCTATCG AGATTGTCAA ACATGATCTC TGGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGAGCCCTTC TGTGCACATT CCTTCCTTCTT CCTTCCTTCT TCTTCACCAG ACTAGCACTAC ACAGCATCAC ACAGCATCAC	TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGAGTGGAC CCTCAGTGTGTT TAATCCCTGC AGGGTGAC CGCCAAGACT CAAGGAGGAC CGCAAGACT CAAGAGGAC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CCTCATGAGC CTTCAGCCCTG GAAGACCAAG GAACCAAAATT GGACAAGGTG TCCGCTCTAC TTTGGCCTTG CATGTGCTTAC CATGTGTCAGC CGTCAGCAGAC CTTGGCGAGACCAAG CCTCATGAGACCAAG CCTCAGGAACTAGC CATGTGCAGAC CGTCAGGAACTAGC CGTCAGGAACTAGC CGTCAGGAACTAGC	CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGG GCCCTAGCCA CTGTTTCGTG TCCTGTTTCT CCAAGGTGGA AGGAAGCAGC TCCAAGGTGG TCGAACCCT TTCTTCTTCA CTGATCAAGTGG GTGAACCCT TTCTTCTTCA GTGATCAAGT TTCGTCAGTG GTGAACCCT CTGCAAGTGGG CTGCAAGTGGG CTCCAATGGG CTCAATGGG CTCAATGGG CTCAATGGG CTGACCTTCA GGCACCTTCA GGCACCTTCA GGCACCTTCA GCACCTTCA CGCACTTCA CCCACATTCA CCCACATTCA CCCACATTCA CCCACATTCA CCCCACATTCA CCCCCACATTCA CCCCCACATTCA CCCCCACATTCA CCCCCCCACATTCA CCCCCCACATTCA CCCCCCCC	AAACCAAAAC CTITICTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTTC CGGCTTTCCTT CAGATCGTCC CGGTGAGGT ACTGCAACG ACTGCAACG ACTGCAACG ACTGCAACG ACTGCAACG TCACTTAA AGGCCATCCA TCACTGCAACG TCACTGCTAC TCACTGCAACG TCACTGCTCT TCGTCAACG TCACTGCCTC TCGTCAACG TCACTGCTCT TCGTCAACG TCACTGCCTC TCGCCACAT TCATGCCTC TCGCCACAT TCAAGGTCC TCGCGAGACAA TCCGCGTCTC ACGAGAACAA TCCCCCTCAAACG	360 420 540 660 720 780 900 900 1020 1140 1260 1320 1440 1500 1620 1620 1620 1860 1800 1800 1920 2040 2160

```
CGTGGTGGGC CAGGTGGGCT GCGGAAAGTC GTCCCTGCTC TCAGCCCTCT TGGCTGAGAT 2280
GGACAAAGTG GAGGGGCACG TGGCTATCAA GGGCTCCGTG GCCTATGTGC CACAGCAGGC 2340
        CTGGATTCAG AATGATTCTC TCCGAGAAAA CATCCTTTTT GGATGTCAGC TGGAGGAACC
                                                                                    2400
        ATATTACAGG TCCGTGATAC AGGCCTGTGC CCTCCTCCCA GACCTGGAAA TCCTGCCCAG
TGGGGATCGG ACAGAGATTG GCGAGAAGGG CGTGAACCTG TCTGGGGGC AGAAGCAGCG
                                                                                    2460
                                                                                    2520
        CGTGAGCCTG GCCCGGGCCG TGTACTCCAA CGCTGACATT TACCTCTTCG ATGATCCCCT
                                                                                    2580
        CTCAGCAGTG GATGCCCATG TGGGAAAACA CATCTTTGAA AATGTGATTG GCCCCAAGGG
GATGCTGAAG AACAAGACGC GGATCTTGGT CACGCACAGC ATGAGCTACT TGCCGCAGGT
                                                                                    2700
                                                                                    2760
        GGACGTCATC ATCGTCATGA GTGGCGGCAA GATCTCTGAG ATGGGCTCCT ACCAGGAGCT
10
        2820
                                                                                    2880
        AATGGAGAAT GGCATGCTGG TGACGGACAG TGCAGGGAAG CAACTGCAGA GACAGCTCAG
                                                                                    2940
        CAGCTCCTCC TCCTATAGTG GGGACATCAG CAGGCACCAC AACAGCACCG CAGAACTGCA
GAAAGCTGAG GCCAAGAAGG AGGAGACCTG GAAGCTGATG GAGGCTGACA AGGCGCAGAC
                                                                                    3000
                                                                                    3060
15
        AGGGCAGGTC AAGCTTTCCG TGTACTGGGA CTACATGAAG GCCATCGGAC TCTTCATCTC
        CTTCCTCAGC ATCTTCCTTT TCATGTGTAA CCATGTGTCC GCGCTGGCTT CCAACTATTG
                                                                                    3180
        GCTCAGCCTC TGGACTGATG ACCCCATCGT CAACGGGACT CAGGAGCACA CGAAAGTCCG
                                                                                    3240
        GCTGAGCGTC TATGGAGCCC TGGGCATTTC ACAAGGGATC GCCGTGTTTG GCTACTCCAT
                                                                                    3300
        GGCCGTGTCC ATCGGGGGGA TCTTGGCTTC CCCCTGTCTG CACGTGGACC TGCTGCACAG
CATCCTGCGG TCACCCATGA GCTTCTTTGA GCGGACCCC AGTGGGAACC TGGTGAACCG
                                                                                    3360
20
                                                                                    3420
        CTTCTCCAAG GAGCTGGACA CAGTGGACTC CATGATCCCG GAGGTCATCA AGATGTTCAT
                                                                                    3480
        GGCCTCCCTG TTCAACGTCA FTGGTGCCTG CATCGTTATC CTGCTGGCCA CGCCCATCGC
CGCCATCATC ATCCCGCCCC TTGGCCTCAT CTACTTCTTC GTCCAGAGGT TCTACGTGGC
                                                                                    3540
                                                                                    3600
        TTCCTCCCGG CAGCTGAAGC GCCTCGAGTC GGTCAGCCGC TCCCCGGTCT ATTCCCATTT
25
        CAACGAGACC TTGCTGGGGG TCAGCGTCAT TCGAGCCTTC GAGGAGCAGG AGCGCTTCAT CCACCAGAGT GACCTGAAGG TGGACGAGAA CCAGAAGGCC TATTACCCCA GCATCGTGGC
                                                                                    3720
                                                                                    3780
        CARCAGGIGG CIGGCCGIGC GGCTGGAGIG IGTGGGCAAC IGCAICGITC IGTITGCIGC
                                                                                    3840
        CCTGTTTGCG GTGATCTCCA GGCACAGCCT CAGTGCTGGC TTGGTGGGCC TCTCAGTGTC
                                                                                    3900
        TTACTCATTG CAGGTCACCA CGTACTTGAA CTGGCTGGTT CGGATGTCAT CTGAAATGGA
                                                                                    3960
30
        AACCAACATC GTGGCCGTGG AGAGGCTCAA GGAGTATTCA GAGACTGAGA AGGAGGCGCC
                                                                                    4020
        CTGGCAAATC CAGGAGACAG CTCCGCCCAG CAGCTGGCCC CAGGTGGGCC GAGTGGAATT
                                                                                    4080
        CCGGAACTAC TGCCTGCGCT ACCGAGAGGA CCTGGACTTC GTTCTCAGGC ACATCAATGT
                                                                                    4140
        CACGATCAAT GGGGGAGAAA AGGTCGGCAT CGTGGGGCGG ACGGGAGCTG GGAAGTCGTC
                                                                                    4200
        CCTGACCCTG GGCTTATTTC GGATCAACGA GTCTGCCGAA GGAGAGATCA TCATCGATGG
                                                                                    4260
35
        CATCAACATC GCCAAGATCG GCCTGCACGA CCTCCGCTTC AAGATCACCA TCATCCCCCA
                                                                                    4320
        GGACCCTGTT TTGTTTTCGG GTTCCCTCCG AATGAACCTG GACCCATTCA GCCAGTACTC
                                                                                    4380
        GGATGAAGAA GTCTGGACGT CCCTGGAGCT GGCCCACCTG AAGGACTTCG TGTCAGCCCT
                                                                                    4440
        TCCTGACAAG CTAGACCATG AATGTGCAGA AGGCGGGGAG AACCTCAGTG TCGGGCAGCG
                                                                                    4500
        CCAGCTTGTG TGCCTAGCCC GGGCCCTGCT GAGGAAGACG AAGATCCTTG TGTTGGATGA
                                                                                    4560
40
        GGCCACGGCA GCCGTGGACC TGGAAACGGA CGACCTCATC CAGTCCACCA TCCGGACACA
                                                                                    4620
        GTTCGAGGAC TGCACCGTCC TCACCATCGC CCACCGGCTC AACACCATCA TGGACTACAC
        AAGGGTGATC GTCTTGGACA AAGGAGAAAT CCAGGAGTAC GGCGCCCCAT CGGACCTCCT
                                                                                    4740
        GCAGCAGAGA GGTCTTTTCT ACAGCATGGC CAAAGACGCC GGCTTGGTGT GAGCCCCAGA
                                                                                    4800
        GCTGGCATAT CTGGTCAGAA CTGCAGGGCC TATATGCCAG CGCCCAGGGA GGAGTCAGTA
                                                                                    4860
45
        CCCCTGGTAA ACCAAGCCTC CCACACTGAA ACCAAAACAT AAAAACCAAA CCCAGACAAC
                                                                                    4920
        CAAAACATAT TCAAAGCAGC AGCCACCGCC ATCCGGTCCC CTGCCTGGAA CTGGCTGTGA
                                                                                   4980
        AGACCCAGGA GAGACAGAGA TGCGAACCAC C
50
        SEQ ID NO:22 OBH2 Protein sequence:
        Protein Accession #:
                           AAB46616
                                 21
                                             31
       55
       DRGYIOMTPL NKTKTALGPL LWIVCWADLF YSPWERSRGI FLAPVFLVSP TLLGITTLLA
TFLIQLERRK GVQSSGIMLT FWLVALVCAL AILRSKIMTA LKEDAQVDLF RDITFYVYFS
                                                                                    180
        LLLIQLVLSC PSDRSPLPSE TIHDPNPCPE SSASPLSRIT FWWITGLIVR GYRQPLEGSD
       LMSLNKEDTS EQVVPVLVKN WKKECAKTRK OPVKVVYSSK DPAOPKESSK VDANEEVEAL
IVKSPOKEWN PSLFKVLYKT FGPYFLMSFF FKALHDLMMF SGPQILKLLI KFVNDTKAPD
                                                                                     300
60
                                                                                    360
        WQGYFYTVLL FVTACLQTLV LHQYFHICFV SGMRIKTAVI GAVYRKALVI TNSARKSSTV
        GETVNIMSVD AORFMDIATY TOMTWSAPIO UTLAIVIJMI, NIGPSVIAGV AUMUIMUPUN
                                                                                     480
        AVMAMKTKTY QVAHMKSKON RIKLMNEILN GIKVLKLYAW BLAFKOKVLA IRQEELKVLK
                                                                                     540
        KSAYLSAVGT FTWVCTPFLV ALCTFAVYVT IDENNILDAQ TAFVSLALFN ILRFPLNILP
                                                                                     600
65
        MVISSIVQAS VSLKRLRIPL SHEELEPDSI ERRPVKDGGG TNSITVRNAT FTWARSDPPT
                                                                                     660
        LNGITFSIPE GALVAVVGQV GCGKSSLLSA LLAEMDKVEG HVAIKGSVAY VPQQAWIQND
                                                                                     720
        SLRENILFGC QLEEPYYRSV IQACALLPDL ETLPSGDRTE IGEKGVNLSG GQKQRVSLAR
                                                                                     780
        AVYSNADIYL PDDPLSAVDA HVGKHIFENV IGPKGMLKNK TRILVTHSMS YLPQVDVIIV
                                                                                     840
        MSGGKISEMG SYQELLARDG AFAEFLRTYA STEQEODAEE NGVTGVSGPG KEAKOMENGM
70
        LVTDSAGKQL QRQLSSSSY SGDISRHINS TAELQKAEAK KEETWKLMEA DKAOTGOVKL
                                                                                     960
        SVYWDYMKAI GLFISPLSIP LPMCNHVSAL ASNYWLSLWT DDPIVNGTQE HTKVRLSVYG
                                                                                    1020
        ALGISQGIAV FGYSMAVSIG GILASRCLHV DLLHSILRSP MSFFERTPSG NLVNRFSKEL
        DTVDSMIPEV IKMPMGSLFN VIGACIVILL ATPIAAIIIP PLGLIYFFVQ RFYVASSRQL
                                                                                    1140
        KRLESVSRSP VYSHFNETLL GVSVIRAFEE QERFIHQSDL KVDENQKAYY PSIVANRWLA
                                                                                   1200
75
        VRLECVGNCI VLPAALFAVI SRHSLSAGLV GLSVSYSLQV TTYLNWLVRM SSEMETNIVA
       VERLKEYSET EKEAPWOIGE TAPPSSWPOV GRVEFRNYCL RYREDLDFVL RHINVTINGG
                                                                                   1320
        EKVGIVGRTG AGKSSLTLGL PRINESAEGE IIIDGINIAK IGLHDLRPKI TIIPODPVLF
                                                                                    1380
       SGSLRMNLDP FSQYSDEEVW TSLELAHLKD FVSALFDKLD HECAEGGENL SVGQRQLVCL
ARALLRKTKI LVLDEATAAV DLETDDLIOS TIRTOFEDCT VLTIAHRLNT IMMYTRVIVL
                                                                                    1440
80
        DKGEIQEYGA PSDLLQQRGL FYSMAKDAGL V
```

#### SEQ ID NO:23 PAA2 DNA SEQUENCE Nucleic Acid Accession #: NM_013309 5 1-1290 (underlined sequences correspond to start and stop codons) Coding sequence: 31 ATGCCCGGCT CTGGCGCGTG GAAGCGCCTC AAATCTATGC TAAGGAAGGA TGATGCGCCG 10 CTOTTTTTAA ATGACACCAG CGCCTTTGAC TTCTCGGATG AGGCGGGGGA CGAGGGGCTT TCTCGGTTCA ACAAACTTCG AGTTGTGGTG GCCGATGACG GTTCCGAAGC CCCGGAAAGG 180 CCTGTTAACG GGGCGCACCC GACCCTCCAG GCCGACGATG ATTCCTTACT GGACCAAGAC TTACCTTTGA CCAACAGTCA GCTGAGTTTG AAGGTGGACT CCTGTGACAA CTGCAGCAAA CAGAGAGAGA TACTGAAGCA GAGAAAGGTG AAAGCCAGGT TGACCATTGC TGCCGTTCTG 360 15 TACTTGCTTT TCATGATTGG AGAACTTGTA GGTGGATACA TTGCAAATAG CCTAGCAATC ATGACAGATG CACTICATAT GTTAACTGAC CTAAGCGCCA TCATACTCAC CCTGCTTGCT TTGTGGCTAT CATCAAAATC ACCAACCAAA AGATTCACCT TTGGATTTCA TCGCTTAGAG 540 GTTTTGTCAG CTATGATTAG TGTGCTGTTG GTGTATATAC TTATGGGATT CCTCTTATAT GAACCTOTGC AAAGAACTAT CCATATGAAC TATGAAATAA ATGGAGATAT AATGCTCATC ACCGCAGCTG TTGGAGTTGC AGTTAATGTA ATAATGGGGT TTCTGTTGAA CCAGTCTGGT 20 720 CACCGTCACT COCATTCCCA CTCCCTGCCT TCAAATTCCC CTACCAGAGG TTCTGGGTGT GAACGTAACC ATGGGCAGGA TAGCCTGGCA GTGAGAGCTG CATTTGTACA TGCTTTGGGA GATTTGGTAC AGAGTGTTGG TGTGCTAATA GCTGCATACA TCATACGATT CAAGCCAGAA 900 TACAAGATTG CTGATCCCAT CTGTACATAC GTATTTTCAT TACTTGTGGC TTTTACAACA 960 25 TTTCGAATCA TATGGGATAC AGTAGTTATA ATACTAGAAG GTGTGCCAAG CCATTTGAAT 1020 GTAGACTATA TCABAGAAGC CTTGATGABA ATAGAAGATG TATATTCAGT CGAAGATTTA 1080 AATATCTGGT CTCTCACTTC AGGAAAATCT ACTGCCATAG TTCACATACA GCTAATTCCT 1140 GGAAGTTCAT CTAAATGGGA GGAAGTACAG TCCAAAGCAA ACCATTTATT ATTGAACACA 1200 TTTGGCATGT ATAGATGTAC TATTCAGCTT CAGAGTTACA GGCAAGAAGT GGACAGAACT 1260 30 TGTGCAAATT GTCAGAGTTC TAGTCCCTGA SEQ ID NO:24 PAA2 Protein sequence: 35 Protein Accession #: NP 037441 11 31 MAGSGAWKRL KSMLRKDDAP LFLNDTSAFD PSDEAGDEGL SRFNKLRVVV ADDGSEAPER 40 PVNGAHPTLQ ADDSLLDQD LPLTNSQLSL KVDSCDNCSK QREILKQRKV KARLTIAAVL YLLFMIGELV GGYIANSLAI MTDALHMLTD LSAIILTLLA LWLSSKSPTK RFTFGFFRLE 180 VLSAMISVLL VYILMGFLLY EAVORTIHMN YEINGDIMLI TAAVGVAVNV IMGFLLNOSG 240 HRHSHSHSLP SNSPTRGSGC ERNHGODSLA VRAAFVHALG DLVQSVGVLI AAYITRFRPE YKIADPICTY VFSLLVAFTT FRIIWDTVVI ILEGVPSHLN VDYIKRALMK IEDVYSVEDL 360 45 NIWSLTSGKS TAIVHIQLIP GSSSKWEEVQ SKANHLLLAT FGMYRCTIQL QSYRQEVDRT CANCOSSSP SEQ ID NO:25 PAA3 DNA SEQUENCE 50 Nucleic Acid Accession #: AB037765 375-2798 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 41 51 55 GCCGAGTCGG TGGCGGCTGC AGGCTGGGAG GGAGAAGTGC TACGCCTTTG CAGGTTGGCG AAGTGGTTCC AGGCTACCCG GCTAGTCTGG CACGGCCCCG TCTTCTGCCT CCTCCTCCGT CGCGTGGCGG CGGGAACTGT TGGCCGCGC GCCTCGGGAA CGGCCCAGGT CCCCGCCCGC AGGTCCCGGG CAGATAACAT AGATCATCAG TAGAAAACTT CTTGAAGTTG TTCAAGAAAA 240 60 ATTTGAAAGT AGCAAAATAG AAAATAAAGA ATTAACAGCA GATACAGAGG ACAGCATGGA 300 AGTGTTGTCT TAGGAAACAG AACACAGCAG TGAAAAAACA GACAAAATCC GCTCAGATAC AACTGCAGCT GATAATGTTT TCCGGCTTCA ATGTCTTTAG AGTTGGGATC TCTTTTGTCA 420 TAATGTGCAT TTTTTACATG CCAACAGTAA ACTCTTTACC AGAACTGAGT CCTCAGAAAT 480 ATTITACTAC ATTOCAACCA GGTCTTGAAG AACTGAATGA GGCTGTTAGA CCTCTGCAGG ACTATGGAAT TTCAGTTGCC AAGGTTAATT GTGTCAAAGA AGAAATATCA AGATACTGTG 65 600 GAAAAGAAA GGATTIGATG AAAGCATATT TATTCAAGGG CAACATATTG CTCGAGAAA TCCCTACTGA CACCTTGTTT GATGTGAATG CCATTGTCGC CCATGTTCTC TTTGCTCTTC TTTTTAGTGA AGTGAAATAT ATTACCAACC TGGAAGACCT TCAGAACATA GAAAATGCTC 660 720 780 TGAAAGGAAA AGCAAATATT ATATTCTCAT ATGTAAGAGC CATTGGAATA CCAGAGCACA 840 70 GAGCAGTCAT GGAAGCCGGT TTTGTGTATG GGACTACATA CCAATTTGTC TTAACCACAG AAATTGCCCT TTTGGAAAGT ATTGGCTCTG AGGATGTGGA ATATGCACAT CTCTACTTTT 900 960 TTCATTGTAA ACTAGTCTTG GACTTGACCC AGCAATGTAG AAGAACACTA ATGGAACAGC CATTGACTAC ACTGAACATT CACCTGTTTA TTAAGACAAT GAAAGCACCT CTGTTGACTG 1080 AAGTTGCTGA AGATCCTCAA CAAGTTTCAA CTGTCCATCT CCAACTGGGC TTACCACTGG 1140 75 TITITATIGT TAGCCAACAG GCTACTTATG AAGCTGATAG AAGAACTGCA GAATGGGTTG CTTGGCGTCT TCTGGGAAAA GCAGGACTTC TACTCTTGTT AAGGGACTCT TTGGAAGTGA 1200 1260 ACATTCCTCA AGATGCTAAT GTGGTCTTCA AAAGAGCAGA AGAGGGAGTT CCAGTGGAAT 1320 TTTTGGTATT ACATGATGTT GATTTAATAA TATCTCATGT GGAAAATAAT ATGCACATTG 1380 AGGAAATACA AGAAGATGACA TGGAAGGTCC AGATATAGAT GTTCAGGATG ATGAAGTGGC AGAAACTGTT TTCAGAGGATA GGAAGAGAAA ATTACCTTTG GAACTTACAG 1500 80

```
TCTATGCTGG TTGGCAAGCA GTATCCATGG CATTTTTGCA ATCCTATATT GATGTGGCAG
                                                                                                1620
         TTARACTGAR AGGCACATCT ACTATGCTTC TTACTAGART ARACTGTGCA GATTGGTCTG
         ATGTATGTAC TAAGCAAAAT GTTACTGAAT TTCCTATCAT AAAGATGTAC AAGAAAAGGCG AGAACCCAGT ATCTTATGCT GGAATGTTAG GAACCAAAGA TCTCCTAAAA TTTATCCAGC
                                                                                                1740
                                                                                                1800
         TCAACAGGAT TTCATATCCA GTGAATATAA CATCGATCCA AGAAGCAGAA GAATATTTAA
         GTGGGGAATT ATATAAAGAC CTCATCTTGT ATTCTAGTGT GTCAGTATTG GGACTATTTA
GTCCAACCAT GAAAACAGCA AAAGAAGATT TTAGTGAAGC AGGAAACTAC CTAAAAGGAT
                                                                                                1920
                                                                                                1980
         ATGTTATCAC TGGAATTTAT TCTGAAGAAG ATGTTTTGCT ACTGTCAACC AAATATGCTG
10
         CAAGTCTTCC AGCCCTGCTG CTTGCCAGAC ACACAGAAGG CAAAATAGAG AGCATCCCAC
                                                                                               2100
         TAGCTAGCAC ACATGCACAA GACATAGTTC AAATAATAAC AGATGCACTA CTGGAAATGT
                                                                                               2160
         TTCCGGAAAT CACTGTGGAA AATCTTCCCA GTTATTTCAG ACTTCAGAAA CCATTATTGA
         TTTTGTTCAG TGATGGCACT GTAAATCCTC AATATAAAAA AGCAATATTG ACACTGGTAA AGCAGAAATA CTTGGATTCA TTTACTCCAT GCTGGTTAAA TCTAAAGAAT ACTCCAGTGG
                                                                                               2280
                                                                                               2340
15
         GGAGAGGAAT CTTGCGGGCA TATTTTGATC CTCTGCCTCC CCTTCCTCTT CTTGTTTTGG
                                                                                                2400
         TGAATCTGCA TTCAGGTGGC CAAGTATTTG CATTTCCTTC AGACCAGGCT ATAATTGAAG
AAAACCTTGT ATTGTGGCTG AAGAAATTAG AAGCAGGACT AGAAAATCAT ATCACAATTT
                                                                                               2460
                                                                                               2520
         TACCTGCTCA AGAATGGAAA CCTCCTCTTC CAGCTTATGA TTTTCTRAGT ATGATAGATG
         CCGCAACATC TCAACGTGGC ACTAGGAAAG TTCCCAAGTG TATGAAAGAA ACAGATGTGC
AGGAGAATGA TAAGGAACAA CATGAAGATA AATCGGCAGT CAGAAAAGAA CCGATTGAAA
                                                                                               2640
20
                                                                                               2700
         CTCTGAGAAT AAAGCATTGG AATAGAAGTA ATTGGTTTAA AGAAGCAGAA AAATCATTTA
         GACGTGATAA AGAGTTAGGA TGCTCAAAAG TGAACTAATT TTATAGGGCT GTGGTTTCCA
AAATTTTTTT GGCATGATAG ACTTAATTTA TTTCCTTAAA GAATAATATT AAATCATTTC
                                                                                               2820
                                                                                               2880
         AAGTTTGCAG ACTAGTGCCA TCCAATAGAA TTATAATATA AGTCACATAT TTTATTTAAA
25
         ATTITCTAGT AACTACATTA AACAAAGTAA AAGTGAGCAG GGCAAAATAA TITTGATATT ACTITTCACC CAGTAGTATA CCCAAAATAG CGAAATATAG AAATTATTAA TGAGATATTT
                                                                                               3000
                                                                                               3060
         TACATCCTIT TITGTACCAA GICTICTAAA IGCAGTACAT ATTITATACI TACIGCATIT
         CTTACTTCCG AGTAGCCATA TTTCAAGTGT TCATTGCCAC ATGTGGCCTG TGACTACTGT
                                                                                               3180
         ATTGGACAGT TCAGTACTAG ACAAAAACTA GCATAATTAA CTTAGTTCTA GCCATGATTT
                                                                                               3240
30
         CTATTTGGAT TAAAATTAAA CTCTAATCAC AGTTAACTCC ACAGTGCATT CATGCAGCTG
         ACAGTTATAT TTGTTTATT GGAGTCATGA TATTAAAATC AGCGTTTGTC AACCTCAGGG
GATATTTAGC AATTGTCGGG AGACATTTTT GATGTCATGA CTAGGGCAGT TATTGACATT
                                                                                               3360
                                                                                               3420
         TAGTGAGTAG AGGCCATGGA TCCTGCTAAA TAACCTGCAT TGGACAGCGC CCCACAACAA
         AGANTTATCC TECCCGANAT GETAGTCETE CCAAGGCTGA GTAACCTTET ETTAAAAGTA
ACCTETEGCA GACTAGGTTT CCAGANTTC CTGETTCTGC TCACGTATCA TETTTGAAAA
                                                                                               3540
35
                                                                                               3600
         AATTTTGGCT ATTAAAGATA TGTATTAGAT GGTCTTATCC TGATTATTAC CTGGATACAA
         CTTGATCTIT TCTAATATIT TCAGAAAGTG ATGGGATAAC CCTAGAAGAG GACTCAGAAT
GATATTTATA TTTTAAGTGA GTCTTAAAAC CTCCTCTTAT TTCTACAAGT TATATGGCTA
                                                                                               3720
                                                                                               3780
         AATTTCAGAT TGAACAGGGA TTCAGCATTC TGCCATCTCC TCATGGAAAG AGAGGCTCCC
40
         TCATCTGAAG CGTCTCTGAA ATCTACCCTT GCAAGCTTCA GACAAATCAG TTGATCTCCC
TGAGCCACAC GGCCTCATTC TGTGAGGGAG GGAAAGATTA GCCAAAGAGT TAATTTTCAT
                                                                                               3900
                                                                                               3960
         TCCAAATCAC TTAGCTGTTA GACTGATCTG TTTGTAGCAG TTGTTTGTCT CATTTTTGCT
         CTGTGCATTT TTTGAGACAT TTGTTGAGAA TATTCTATTT GGTGCTCTAC TGTATTTTTC
TTTTTAATAT CTACTTGATA TCTTGTTCTT TAAATTTTCT TCACATATGG TTTGCCTGAT
                                                                                               4080
                                                                                               4140
45
         ACAACTGATT TTTATAACTG AAATTTAAGG AATCTAACAG CTAAAACTCA GTAAGTGCAT
         MTATTICCIT ATAACATAGA CCCGTTGCTA CTCTCAGCAC CCTCTCCTCA ATTTTTTTTC
CTGTAGCATG TGATGCCTGA TTAAACTCAT TTTCATTTGC TTTTATTTCT AATATGGGAA
                                                                                               4260
                                                                                               4320
         CAATGAGAGT GAACTCTAAA TATAGGTTGT AGTAATAAAA CATCATTAGC CTAATTATTA
         GARANTECTA ATTANGTACC AGCACATAGA AACATGAAAT TGCTTAGTCA TTGTACCTTT
GTCAGCAATT TTGACAGTCA TTAATGTTTG TCATAATTTT AAATAAAGTG TCTGGGTTTC
                                                                                               4440
50
         АGAATACCTT САААААААА ААААА
         SEQ ID NO:26 PAA3 Protein sequence:
         Protein Accession #:
55
                                                                 41
                                                   31
        MPSGPNVPRV GISPVINCIP YMPTVNSLPE LSPOKYPSTL OPGLEELNEA VRPLODYGIS
         VAKVNCVKEE ISRYCGKEKD LMKAYLPKGN ILLREFPTDT LFDVNAIVAH VLFALLFSEV
                                                                                                120
60
         KYITNLEDLQ NIENALKGKA NIIFSYVRAI GIPEHRAVME AGPVYGTTYQ FVLTTEIALL
         ESIGSEDVEY AHLYPPHCKL VLDLTQQCRR TLMEQPLTTL NIHLFIKTMK APLLTEVAED PQQVSTVHLQ LGLPLVPIVS QQATYEADRR TAEWVAWRLL GKAGVLLLLR DSLEVNIPQD
                                                                                                240
                                                                                                300
         ANVVFKRAEE GVFVEFLVLH DVDLIISHVE NNMHIEEIQE DEONDMEGPD IDVQDDEVAE
         TVFRDRKRKL PLELTVELTE ETFNATVMAS DSIVLFYAGW OAVSMAFLOS YIDVAVKIKG
                                                                                                420
65
         TSTMLLTRIN CADWSDVCTK ONVTEPPIIK MYKKGENPVS YAGMLGTKDL LKFIQLNRIS
                                                                                                480
         YPVNITSIQE AEEYLSGELY KOLILYSSVS VLGLFSPTMK TAKEDFSEAG NYLKGYVITG
         IYSEEDVLLL STKYAASLPA LILARHTEGK IESIPLASTH AODIVOIITD ALLEMPPEIT
                                                                                                600
         VENLPSYFRL OKPLLILFSD GTVNPOYKKA ILTLVKOKYL DSFTPCWLNL KNTPVGRGIL
                                                                                                660
         RAYFDFLPFL PLLVLVNLHS GGQVFAFPSD QAIIEENLVL WLKKLEAGLE NHITILPAQE
70
         WKPPLPAYDP LSMIDAATSQ RGTRKVPKCM KETDVQENDK EQHEDKSAVR KEPIETLRIK
         HWNRSNWFKE AEKSFRRDKE LGCSKVN
                                                              SEQ ID NO:27 PAA5 DNA SEQUENCE
         Nucleic Acid Accession #: NM_012449
75
        Coding sequence:
                               66-1085 (underlined sequences correspond to start and stop codons)
        CCGAGACTCA CGGTCAAGCT AAGGCGAAGA GTGGGTGGCT GAAGCCATAC TATTTTATAG
80
        AATTAATGGA AAGCAGAAAA GACATCACAA ACCAAGAAGA ACTTTGGAAA ATGAAGCCTA
```

TGGAACTAAC AGAAGAACA TTTAATGCAA CAGTGATGGC TTCTGACAGC ATAGTACTCT 1560

	GGAGAAATTT	AGAAGAAGAC	GATTATTTGC	ATAAGGACAC	GGGAGAGACC	AGCATGCTAA	180
	AAAGACCTGT	GCTTTTGCAT	TTGCACCAAA	CAGCCCATGC	TGATGAATTT	GACTGCCCTT	240
_						CACCCTTTAG	300 360
5						AAAGTCTTGC	
						GCAGCAATTG	480
		TAATGGAACC					540
		CCCAATGAGG				GCAATTTATA	600 660
10		AAATAAAGAA					720
		GGGAATTGTG					780
						AAGCTAGGAA	840
						AAGTGGATAG TTCCTTCCAA	900
15						AAGATACTGA	960 1020
						TGTTCCCAGT	1080
	TGTAGAATTA	CTGTTTACAC	ACATTTTTGT	TCAATATTGA	TATATTTTAT	CACCAACATT	1140
	TCAAGTTTGT	ATTTGTTAAT	AAAATGATTA	TTCAAGGAAA	AAAAAAAAA	AAAAA	
20	SEO ID NO:28 P	AA5 Protein seque	ence				
	Protein Accession						
		_					
	1	11	21	31	41	51	
25	   MPGDEDT#NI	 	NT PPDDVT.U	ע האינים אינים אינים אינים אינים		 A HADEFDCPSE	60
						P ILVINKVLPM	
	VSITLLALV	Y LPGVIAAIV	LHNGTKYKK	F PHWLDKWML	RKOFGLLSF	F FAVLHAIYSL	180
						L ALLAVTSIPS	
30		P HYIQSKLGIV			KOFVWYTPP	r fmlavflpiv	300
	V DZE KOLDE	o remander.	L MIGHEDVIK	, AKIBICSUD			
				SE	Q ID NO:29 PAA7	DNA SEQUENCE	
		ession#: NM_0					
35	Coding sequence	: 1-863 (	unaeninea sequei	nces correspond to	stant and stop co	ionsj	
55	1	11	21 .	31	41	51	
		Ī	Ī	Ĩ	Ĭ	Ĭ	
		GCAACTTCAC					60
40		TCTGGGTTGG					120
70		TGGTCTTCAT TGCTTGCAGC					180 240
		TCTGGTTTGA					300
		ATGCCCTCTC					360
45		CCATCTGCCA					420
7,7		GCATCGTGGC GGCTGGCCTT					480 540
		TGAAGTTGGC					600
		TGGTCATGGG					660
50		TTCTGCAACT					720
50		GAAACAGCCT					780 840
		CTGTCATCAA					900
		CTATGTTCAA					960
55		CACTACACTT					1020
<i>JJ</i>		ATTTCCAGTT				ATACTAATGA	1080 1140
	AGTATTACAT	GATTTAAAGA	CTACAATAAA	ACCAAACATG	CTTATAACAT	TAAGAAAAAC	1200
		CATGATTGAA					1260
60		AATGATTTAG					1320 1380
00		TTAGCTGTCA GGAGTGCAGT					1440
	GAAGTAATTC	TTCTGCCTCA	GCCTCCCGAG	TAGCTGGGAC	TAGAGGAACG	TGCCACCATG	1500
		TTTCTGTATT					1560
65		CTGACCTTGT					1620
05		TGCACCTATA					1680 1740
	AGTCCAGGAG	TTTGAGGTTA	CAGTGATCCA	CGATCGTACC	ACTACACTCC	AGCCTGGGCA	1800
	ACAGAGCAAG	ACCCTGTCTC	AAAGCATAAA	ATGGAATAAC	ATATCAAATG	AAACAGGGAA	1860
70						TATTATGCAT	1920
						TGTGTGCTCA TAACTTTATG	1980 2040
	GAGTAGGTAC	CATTTGTGTC	TCTTTATTAT	AAGTGAGAGA	AATGAAGTTT	ATATTATCAA	2100
	GGGGACTAAA	GTCACACGGC	TTGTGGGCAC	TGTGCCAAGA	<b>TTTAAAATT</b> A	AATTTGATGG	2160
75						TGCCATTTAT	2220
						AATGGCTTTG ATAATCCTGT	2280 2340
							2400
	TTGTCTATTT	GTCTCTTACA	TCTCCTTGAT	CATGTCTTCA	TTTTTTAATG	TGCTCTGTAC	2460
80				CTATTGTCTG	aacttgagta	Taagataaaa	2520
υV	TAAAATTITA	TTTTAAATTT	T				

## SEQ ID NO:30 PAA7 PROTEIN SEQUENCE Protein Accession #: NP_110401

	Protein Accession	n#: NP_	10401			_	
5	1	11 }	21 }	31 	41 	51 I	
			Kahfwygfpl Lalfwfdsre				
			AQIGIVAVVR				
10	<b>QDVMKLAYAD</b>	TLPNVVYGLT	AILLVMGVDV	MFISLSYFLI	IRTVLQLPSK	SERAKAFGTC	240
		YVPLIGLSV\ DKDLQAVGGI	HRPGNSLHPI	VRVVMGDIYL	LLPPVINPII	YGAKTKQIRT	300
15	Alicel -le Acid Ace		05000	SI	Q ID NO:31 PAV	DNA SEQUENCE	•
13	Coding sequence	ession#: XIM_ e: 1-100	,050837 10 (underlined sequ	ences correspond	to start and stop o	codons)	
	1	11	21	31	41	51	
20	ATGAACTGGG	AGCTGCTGCT	GIGGCIGCIG	GTGCTGTGCG	CCCACCACCAL	CONTRACTIC	60
			GGCTGACGGC				
	GGACGACGCC	CAGAATGGGA	GCTGACTGAT	ATGGTGGTGT	GGGTGACTGG	AGCCTCGAGT	180
	GGAATTGGTG	AGGAGCTGGC	TTACCAGTTG	TCTAAACTAG	GAGTTTCTCT	TGTGCTGTCA	240
25			GGAAAGGGTG				
23			TTTGCCCCTT				
			GGAGTTTGGT				
			CATGGATACC GTCCTTGACA				
			TGTGAATAGC				
30			GCATGCTCTC				
			AATAGTTTCT				
			TGGAGAAGTC				
	TCCCACAAGA	TGACAACCAG	TCGTTGTGTG	CGGCTGATGT	TAATCAGCAT	GGCCAATGAT	840
35	TTGAAAGAAG	TTTGGATCTC	AGAACAACCT	TTCTTGTTAG	TAACATATTT	GTGGCAATAC	900
33	ATGCCAACCT AAGAGTGGTG	GGGCCTGGTG TGGATGCAGA	GATAACCAAC CTCTTCTTAT	AAGATGGGGA TTTAAAATCT	AGAAAAGGAT TTAAGACAAA	TGAGAACTTT ACATGAC <u>TGA</u>	960
40	SEQ ID NO:32 P Protein Accession		ence 50837				
	1	11	21	31	41	51	
	1	1	İ	1	1	İ	
	MNWELLLWLL	VLCALLLLLV	QLLRFLRADG	DLTLLWAEWQ	GRRPEWELTD	MVVWVTGASS	60
45			ARRVHELERV MSQRSLCMDT				
			IGYCASKHAL				
			SHKMTTSRCV				
			NF KSGVDAD				•••
50	Nucleic Acid Aco	nocion #: NTM (	M.co.e3	SE	Q ID NO:33 PBA6	DNA SEQUENCE	
	Coding sequence		(underlined seque	ences correspond (	lo start and stop co	odons)	-
55	1	11	21	31	41	51	
JJ	)	-	CGCAGATGCA	CACCOMOCACC	monomoocco.	1	60
			CAGCCAAGGA				120
	CATGAGGATT	CTGCAGTTAA	TCCTGCTTGC	TCTGGCAACA	GGCCTTGTAG	GGGGAGAGAC	180
	CAGGATCATC	AAGGGGTTCG	AGTGCAAGCC	TCACTCCCAG	CCCTGGCAGG	CAGCCCTGTT	240
60	CGAGAAGACG	CGGCTACTCT	GTGGGGCGAC	GCTCATCGCC	CCCAGATGGC	TCCTGACAGC	300
	AGCCCACTGC	CTCAAGCCCC	GCTACATAGT	TCACCTGGGG	CAGCACAACC	TCCAGAAGGA	
			GGACAGCCAC				420
	CAGCCTCCCC	AACAAAGACC	ACCGCAATGA	CATCATGCTG	GTGAAGATGG	CATCGCCAGT	480
65			GACCCCTCAC				540
J.J			GGGGCAGCAC CCATCATTGA				600 660
	CAACATCACA	GACACCATCG	TGTGTGCCAG	CGTGCAGGAA	CCCCCCAACC	ACTIVETICAL	720
			TGGTCTGTAA				
<b>5</b> 0	CCAGGATCCG	TGTGCGATCA	CCCGAAAGCC	TGGTGTCTAC	ACGAAAGTCT	GCAAATATGT	840
70	GGACTGGATC	CAGGAGACGA	TGAAGAACAA	TTAGACTGGA	CCCACCCACC	ACAGCCCATC	900
	ACCCTCCATT	TCCACTTGGT	CTTTGGTTCC	TGTTCACTCT	GTTAATAAGA	AACCCTAAGC	960
			CTTTGGGCCT				
			TCAGTGAGAC				
75			CTGGTTTGTT			CAAAGACAGC	1140
	ACCIDITION OF THE	WINICHURE.	TTCAATAAAT	IUCTAAA	TAMOTA		

# SEQ ID NO:34 PBA6 PROTEIN SEQUENCE Protein Accession 4: NP_006844

	1	11	21 	31 	41 	51 	
5		LATGLVGGET					60
,		HLGQHNLQKE LSSRCVTAGT					120 180
	NITDTMVCAS	VQEGGKDSCQ					240
4.0	DWIQETMKNN						
10	Mumbala Anid Ana	coolen & NR C	W1776	SE	Q ID NO:35 PBC1	DNA SEQUENCE	
	Coding sequence	ession #: NM_0 :: 70-972	(underlined seque	ences correspond (	to start and stop c	odons)	
15	1	11	21	31	41	51	
15	CTAAAGCTCT	CTTGCTGCCT	AGCCTCCTGC	CGGCCTCATC	TTCGCCCAGC	CAACCCCGCC	60
		TGGCCAACTG GAGCCCAACT					120 180
		TGGTCGTCCC					240
20		AGACCGTCCT					300
		ACTGCCAAAG TTACTGAAGA					360 420
		AGATTCTTCT					480
25		ACATGTTCAC					540
43		GTGAATTCAA GCAACAACCC					600 660
		GTGATGTGGT					720
		CTTTTGGGAG					780
30		GGGTGATACA AGCTGGAATC					840 900
		CTGACAAGTT					960
		GAGCCAGTCG					1020
		GACTCAGCAT AATGCCAGAG					1080 1140
35		CCTTTATTGT					1200
	AATGAAAATT	GTATGTTAAG	TTACTTCCTT	TAG			
	SEQ ID NO:36 P	BC1 Protein seque	ence				
40	Protein Accession						
40	1	11	21	31	41	51	
	î	i	1	ĵ.	ī	1	
		GDKPCCRLSR					60
45	POTOT. ARCVKY						
41						KLGTQTVPCN	120
43	KILLWSRIKD	LAHOPTOVOR TVSRRFARAA	DMFTLEDTLL	GYLADDLTWC	GEFNTSKINY	QSCPDWRKDC	120 180 240
40	KILLWSRIKD SNNPVSVFWK	LAHOFTOVOR	DMFTLEDTLL CDVVHVMLNG	GYLADDLTWC SRSKIFDKNS	GEFNTSKINY TFGSVEVHNL	QSCPDWRKDC QPEKVQTLEA	180
	KILLWSRIKD SNNPVSVFWK WVIHGGREDS	LAHOFTOVOR TVSRRFABAA RDLCQDPTIK	DMFTLEDTLL CDVVHVMLNG ELESIISKRN	GYLADDLTWC SRSKIFDKNS IQFSCKNIYR	GEFNTSKINY TFGSVEVHNL PDKPLQCVKN	QSCPDWRKDC QPEKVQTLEA	180
50	KILLWSRIKD SNNPVSVFWK WVIHGGREDS	LAHOFTOVOR TVSRRFABAA RDLCQDPTIK  ession #: XM_0	DMFTLEDTLL CDVVHVMLNG ELESIISKRN	GYLADDLTWC SRSKIFDKNS IQFSCKNIYR SE	GEFNTSKINY TFGSVEVHNL PDKFLQCVKN 2 ID NO:37 PBH1	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE	180
	KILLWSRIKD SNNPVSVFWK WVIHGGREDS	LAHOFTOVOR TVSRRFABAA RDLCQDPTIK  ession #: XM_0	DMFTLEDTLL CDVVHVMLNG ELESIISKRN 17718	GYLADDLTWC SRSKIFDKNS IQFSCKNIYR SE	GEFNTSKINY TFGSVEVHNL PDKFLQCVKN 2 ID NO:37 PBH1	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE	180
50	KILLWSRIKD SAMPYSVFWK WVIEGGREDS Nucleic Acid Acoc Coding sequence	LAHOFTOVOR TVSRRFABAA RDLCQDFTIK ession #: XM_0 : 1-3315	DMFTLEDTLL CDVVHVMLNG ELESIISKRN  17718 (underlined seque	GYLADDLTWC SRSKIFDKNS IQFSCKNIYR SEI Inces correspond to 31	GEFNTSKINY TFGSVEVHNL PDKFLQCVKN Q ID NO:37 PBH1 o start and stop co 41	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE Mons) 51	180 240
	KILLWSRIKD SAMPYSVFWK WVIEGGREDS  Nucleic Acid Acco Coding sequence  1   ATGTCCTTTC	LAHOFTOVOR TVSRRFAEAA RDLCQDPTIK ession #: XM_0 : 1-3315	DMFTLEDTLL CDVVHVMLNG ELESIISKRN  17718 (underlined seque	GYLADDLTWC SRSKIFDKNS IQFSCKNIYR SE moces correspond to 31 i AGGAACAGAA	GEFNTSKINY TPGSVEVENL PDKFLQCVKN Q ID NO:37 PBH1 o start and stop co 41 i GGAATGACAC	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE MORS) 51   TCTGGACAGC	180
50	KILLWSRIKD SANTPUSVEWK WVIHGGREDS  Nucleic Acid Acco Coding sequence  1   ARGTCCTTTC ACCCGGACCC TTGGTGAATT	LAHOFTQVQR TVSRRFABAA RDLCQDPTIK ession #: XM_0 : 1-3315 11   GGGCAGCCAG TGTACTCCAG TTATTCAAGC	DMFTLEDTLL CDVVHVMLNG ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GCGCTCTCGG AAATTTTAAG	GYLADDLTMC SREKIFDKNS IQFSCKNIYR SEI noes correspond b 31 AGGAACAGAA AGGACAGAA AGCACAGACT AAACGAGAAT	GEPNTSKINY TPGSVEVENL PDKPLQCVKN DID NO:37 PBH1 o start and stop co 41   GGGAATGACAC TGTCTTACAG GTGTCTTCTT	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE MONS) 51   TCTGGACAGC TGAAAGCGC TACCAAAGAT	180 240 60 120 180
50	KILLWSRIKD SNNPVSVPWK WVIHGGREDS Nucleic Acid Acci Coding sequence 1 1 1 ATGTCCTTTC ACCOGGACCC TTGGTGAATT TTGCAAGGCCA	LAHOPTOVOR TVSRRFAEAA RDLCQDPTIK ession #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHVMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG CGCCTCTCGG ANATTTAAG GTCCAAGTGT	GYLADDLTWC SREKIFDKNS IQFSCKNIYR SEI moes correspond b 31   AGGAACAGAA AGCACAGACA AGCACAGACAT AGCACAGACAT AGCACAGACAT AGCACAGACAT AGCACAGACAT AGCACAGACAT	GEFNTSKINY TYSSVEVENL PDRFLQCVKN  ID NO:37 PBH1 o start and stop or  41   GGAATGACAC TOTOTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTCTTACAGAGCCAGCA	QSCPDWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE MOORS) 51   TCTGGACAGC TGAAAGCCAC TACCAAAGAT CATGGAAGGC	60 120 180 240
50	KILLWSRIKD SMNPVSVPWK WVIKGGREDS Nucleic Acid Acoc Coding sequence 1 1 ATGTCCTTTC ACCCGGACCC TYGGTGAATT TCCAAGGCACA ACCCAGATCA	LAHOFTQVQR TVSRRFABAA RDLCQDPTIK ession #: XM_0 : 1-3315 11   GGGCAGCCAG TGTACTCCAG TTATTCAAGC	DMFTLEDTLL CDVVHVMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GCGTCTCGG AAATTTTAAG GTGCAAGGGT GTGCAAGGTG GAAATGGAAAC	GYLADDLTWC SREKIFPKNS IQFSCKNIYR SEI mces correspond to 1 1 AGGAACAGAA AGCAACAGAACA AAACAGAACA AAACAGAACA AAACAGAACA CGCTATCAC TACAAGAAAAC	GEPNTSKINY TPGSVEVENL PDKPLQCVKN DINOST PBH1 o start and stop or 41 i GGRATGACAC TGTCTTACAG GTGTCTTACAG AGRGCCAGAGA ACACCAAGGA	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE dons) 51   TCTGGACAGC TGAAAGCGAC TACCAAAGAT TACCAAAGAT CATGGAAGGC ATTTCCTACC	180 240 60 120 180
50 55	KILLWSRIKO SNNPVSVPWK WVIEGGREDS Nucleic Adid Acoc Coding sequence 1 1 ATGTCCTTTC ACCGGACCT TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTTG GACGCCTTTG	LAHOFTOVOR TVSRRFAEAA RDLCQDFTIK  ESSION #: XM_0 : 1-3315  11  GGGCAGCCAG TOTACTCCAG TTATTCAAGC CGGAGAATGTA ACCAAAGTGA GGGATATTCA CGGACGCGGA CGGACGCGGA	DMFTLEDTLL CDVHVMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG CGCCTCTCGG GAAATTTTAAG GTGCAAGTGT GAAATGGAAC GTTTGAGACA AATCCTTTAC	GYLADDLINC SREKIFIKNS SEI TOPSCRNIYR SEI TOPSCRNIYR 31 AGGACAGAC AGGACAGAC AAGGAACAGAA GGCTATGCCC TACAAGAAAC GGCTATGCCC TACAAGAAAC GAGAAGAAC GAGAAGAAC GAGAACAGAAC GCTATGCCC TACAAGAACA GAGCTCCTGA	GEFATSKINY TPGSVEVENL PDRFLQCVKN  D ID NO:37 PBH1  o start and stop or  41    GGAATGACAC TGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG ACACCAAGGA AAGGGAAGTA AAGGGAAGTA CCCCAGCACTG	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE MONS) 51   TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGARA	60 120 180 240 300 360 420
50 55	KILLWSRIKD SMNPVSVPWK WVIEGGREDS Nucleic Acid Acoc Coding sequence 1 1 ATGTCCTITC ACCGGACCC TTGGTGAATT TCCRAGGCCA ACCCAGATCA GACCCCTITG TCCTGGGACA ACACCCAACC	LAHOPTOVOR TVSRRFARAA RDLCQDPTIK ession #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHVMLNG ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GGCTCTGGG AAATTTTAAG GTTCAAGTGT GAAATGGAAC GTTTGAGACA AATCCTTTAC TGTGACCGGG	GYLADDLTWC SREKIFIKNS IQFSCKNIYR SEI moes correspond to 31   AGGAACAGAA AGCACAGAAT AAACAGAAAT CACAGAAAT CACAGAAAC CTGGGGAAGA GAGCTGCTGA GAGCTGCTGA GAGCTGCTGA	GEPNTSKINY TPGSVEVENL PDKPLQCVKN DINOST PEHI DISTRICT STATE GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA CCCCAGCACTA ACTTCGCCT ACTTCCCCT	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE MOOS) 51   TCTGGACAGC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTGAAAGC ATTTCCTACC TATACCTGAAAAGAAAGCACCGCC	60 120 180 240 300 360 420 480
50 55 60	KILLWSRIKO SNINFVSVFWK WVIHGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ACCOGGACCC TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACCCCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACACCCAACC ATGCGCAAGA ACACCCAACC ATGCGCAAGA	LAHOFTOVOR TVSRRFAEAA RDLCQDFTIK  ESSION #: XM_0 : 1-3315  11  GGGCAGCCAG TOTACTCCAG TTATTCAAGC CGGAGAATGTA ACCAAAGTGA GGGATATTCA CGGACGCGGA CGGACGCGGA	DMFTLEDTLL CDVVHVMLNG ELESIISKRN  17718 (underlined seque	GYLADDLYNC SREKIFDKNS SEI TOPSCRNIYR SEI AGGAACAGAA AGGAACAGAA AGGAACAGAA CGCACAGACT AAACGAGAAC CTGGGGAAGA CTGGGGAAGA ATCCCCCAAGA ATCCCCCAAGA ATCCCCCAAGA ATCCCCCAG	GEFATSKINY TFGSVEVENL PDRFLQCVKN O ID NO37 PBH1 o start and stop oc 41   GGAATGACAC TGTCTTACAG GTGTCTTACAG GTGTCTTACTA AGAGCAAGGA AAGGGAAGTA CCCAGCACTG ACTCCCCCT CCAAAGGTGC CCAAAGGTGC	QSCPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE Vons) 51   TCTGGACAGC TGAAAGCAC CATGGAAGC CATGGAAGC CATGGAAGC CATTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGAATCTCT	60 120 180 240 300 360 420
50 55	KILLWSRIKD SMNPVSVPWK WVIEGGREDS  Nucleic Acid Acoc Coding sequence  1   ATGTCCTITIC ACCCGGACCC TTGGTGAATT TCCAAGGCCA ACCCAGATCA ACCCAGATCA ACCCGACCA ACCCGACCA ACCCGACCA ATCGCCAAGA ATCAGCAAGA ATCAGCAGGA ATCAGCAGGA	LAHOPTOVOR TVSRRFARAR RDLCQDPTIK  ession #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHVMLNG ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GCTCAGCATG GCTCAGCATG GTTAGAGCA AATCTTAC GCTTTAG GATTAGAGCA TGTGACCAG GCTCATCTAC TGTGACCAG GCTCATCTAC GCTGATCAAC GAATTGTG	GYLADDLINC SREKIFIKINS IQFSCKNIYR SE  MICES COMESPOND II  AGCAACAGAAT AGCACAGAAT AGACAGAAT GGCTATCCCC TACAAGAAAC CTGGGGAAGA ATCCCCAGT TACAACCAGA ATCCCCAGT TACACTCGGG GCCATTGGGG GCCATTGGGG	GEPNTSKINY TYGSVEVENL PDRFLQCVKN  ID NO.37 PBH1  osian and stop of  41    GGAATGACAC TGTCTTTACAG GTGTCTTTACAG ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCACC CCAAGGAGTTG ACTTCGCCCT CCAAAGGTTGC ACGTGCTCAG TACCAGCTTG	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE MOOS) 51   TCTGGACAGC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATACCACC GGGCATGGTC GGGCATGGTC	60 120 180 240 300 420 480 540 600 660
50 55 60	KILLWSRIKO SNINFVSVFWK WVIHGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ACCOGGACCC TTGGTGAATT TCCAAGGCCA ACACCCAACCA ACACCCAACCA ATCAGCAAGA ACGGGAGCA ATCAGCAGGAG TCCAACCGG	LAHOPTOVOR TVSRFARAA RDLCQDPTIK  ESSION #: XM_0 I-3315  11   GGGCAGCCAG TTATTCAAGC CGGAGAATGTA ACCAAAGTGA GGGATATTCA TGGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCGTCATTCA TCTTCAGCCG CCTTCATAGG ACACCTCAT	DMFTLEDTLL CDVHYMLING ELESIISERN  17718 (underlined seque	GYLADDLYNC SREKIPDKNS SEI  31  AGGAACAGAA AGGAACAGAA AGGAACAGAA TACAGAGAAT TACAGGAGAT TACAAGAAAC CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCCGCCAAGA ATCCGCGAG TACATCGGGAGA ATCCTCAGGGAGA ATCCTCAGGGAGA ATCCTCAGGGAGA ATCCTCAGGGAGA	GEFATSKINY TFGSVEVENL PDRFLQCVKN O ID NO37 PBH1 o start and stop co 41 i GGRATGACAC TGTCTTACAG GTGTCTTACAG GTGCTGTCTA AGAGCAGCA AAGGGAAGTA ACCCAAGGTAG ACTCGCCCT CCAAAGGTGC AGGTGGTCAG TAGCAGCTGG GCTATTTTT	QSEPOWREDC QPERVQTLEA PEDSSCTSET DNA SEQUENCE vions) 51   TCTGGACAGC TGAAAGCCAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC AGATAACACC AGGCCATGTC AGCCCAGTAC	60 120 180 240 300 360 420 480 540 600 720
50 55 60	KILLWSRIKO SNIPVSVPWK WVIEGGREDS  Nucleic Add Acce Coding sequence  1   ATGTCCTTTC ACCCGGACA ACCCAACC ACCCAACCA ACACCCAACC ACACCCAACCA ACACCCAACC ACACCCAACCA ACACCCAACCA ACACCCAACCA ACCGCAACCA ACCGCAACCA ACCGCAACCA ACCGCAACCA ACCGCAACCA ACCGCAACCA ACCACCAACC ATCACCAACCA ACCACCAACCA	LAHOPTOVOR TVSRRFARAR RDLCQDPTIK  ession #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHYMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG CGCGTCTCGG GARATGATGAAG GTTCAGGACA GATCCTTAC TGTGACCAGG CCTGATGAC GARATGTTAC CGCGCTCATCTAC CGCGATGAC CCTGATGAAG GARTATTGTG CAGGAATTGC CAGGAATTGC	GYLADDLINC SREKIFIKNS SEI  JOFSCHNIYR  31  AGGAACAGAA AGCACAGAAT AAACGAGAAT GGCTATGCCC TACAAGAAC GGCGCCAGA GAGCTCCTGA GGCGCCAGGA TACACCAGGT TACACTGGGG GCCATTGGCA GATGCTGAGG TATACTCCTGG	GEFATSKINY TFGSVEVENL PERFLQCVKN DINO37 PBH1 O STATE AND STATE GGAATGACAC TGTCTTTACAG GTTCTTTACAG GTTCTTTATAG GTTCTTTATAG ACACCAAGGA ACACCAAGGA ACACCAAGGA ACTACCAGCACTG ACTACCAGCTAC ACTACCAGCTAC ACTACCAGCTAC ACTACCAGCTTTTTTTTTT	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE dons) 51   TCTGGACAGC TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTICCTACC TATACGTTG GCACCTGARA GAAGCCGGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC AGCCCAGTAC ACCCAGTAC CACCCATTTG	60 120 180 240 300 420 480 540 600 660
50 55 60 65	KILLWSRIKO SNINFVSVFWK WVIHGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ACCOGGACCC TTGGTGAATT TCCAAGGCCA ACCCGGACCA ACCCCACCC ATGCGAAGA ACACCCAACC ATGCGCAAGA ACGCAGGAGCA ACGCAGGAGCA TCCAACCGG CTTATGGATG CTGCTCGTCG CTGCTCGTCG CTGCTCGTCG CTGCTCGTCG CTGCTCGTCG CTGCTCGTCG CTACAGAAGT	LAHOPTOVOR TVSRRFARAA RDLCQDPTIK  2250n #: XM_0 1-3315  11   GGGCAGCCAG TTATTCAAGC GGGATATTCA GGGATATTCA TGGTCATTCACT TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACTTCACAAG ACACCCTCAT ACTTCACAAG ACACCTCAT ACTTCACAAG ACACCTCAT ACATCTCACAAG ACACCTCTCAT ACACCTCAT ACACTCACAAG ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACACCTCAT ACAC	DMFTLEDTLL CDVVHVMLNG ELESIISERN  17718 (underlined seque 21   GCTCAGCATG GCGCACTTGG ARATTITAAG GTTCAAGTAT GTTGAACGAG ARTCTTTAC GTTTGACCGG GCTCATCTAC CCTAATGAAG CATATTATGAG GATATTTTAG GATATTATG GATATTAGAG GATATTGTG AGATTGCACT GCAGGAATTGC AGGACTTATT GCGCACTTATT GCCCCACTTATT	GYLADDLYNC SREKIFPKNS SEI  31  AGGAACAGAA AGGAACAGAA AGGAACAGAA TACAGAGAAC CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAAGA ATCGCGCAGT TACATCGGG GATGCTGAG GATGCTGAG GATGCTGAG GATGCTGAG GATGCTGAG GATGCTGAG GATGCTGAG GATGCTGAG	GEFATSKINY TFGSVEVENL PDRFLQCVKN O ID NO37 PBH1 o start and stop oc 41   GGRATGACAC TGTCTTACAG GTGCTTCTT AGAGCCAGCA ACACCAAGGA ACACCAAGGA ACTCGCCCT CCAAAGGTGC AGGTGGTCAG TAGCAGCTG GCTATTTTT ACAACAACCA AAGCAAAAGCT ACTATGGTGG ACTATGGTGTGAG ACTATGGTGTGAAAGAT ACACAACCA AAGCAAAAGCT ACTATGGTGGT	QSEPOWREDC QPERVQTLEA PEDSSCTSEI DNA SEQUENCE MOOS)  51   TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGC ATTTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CCAACATTG CCAACATTG CCAACATTG CAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCAACATCAG CCA	60 120 180 240 300 360 420 660 720 780 840 900
50 55 60	KILLMSRIKO SNIPVSVPWK WVIEGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ACCOGGACTA ACCCAACCA ACCCAACCA ACACCAACCA ACACCCAACCA ACACCCAACCA ACACCCAACCA ACACCCAACCA ACACCCAACCA ACACCCAACCA ACACCCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ACACCAACCA ATCACCAGGA CTCAACGAACA ATCACCAGAC CTTATGCATG CTCACAGAACA ATTTTTTTTTT	LAHOPTOVOR TVSRRFARAA RDLCQDPTIK  SSION #: XM_0 : 1-3315  11   GGGCAGCCAG TTATTCAAGC GGGAGAATGT ACCAAAGTGA CCGAAGTGA TCGTCATTCC CCGATTATCC CCCATTATCC CCCATTATCG CTCAAGGGA ACACCTCAT ACTTCACAGA ACAACTCAAA ACACCTCAT ACTTCACAGAG ACAATGCGTG TTGCCCAAGCTGA ACTTCACAAG ACAATGCGTG TTGCCCAAGCTGAT ACTTCACAAGC TTGCCCAAGCTGAT ACTTCACAAGC ACAATGCGTG TTGCCCAAGCTTCTCAAGCTTCTCAAAGCTTCTCAAGAGCAACCTAATTCCTCAAGAGCAACCAAC	DMFTLEDTLL CDVHYMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GCAGCATG GARATGATGAAG GTTCAGGATG GARATGAAG GTTTGAGCAGG GATTGACGAGG CCTGATGACGAG CCTGATGAAG GATATATTGT CAGGAATTGC AGATTGCACTG TCATGGACAT TCATGGACAT TCATGGACAT AGGTCGACAT AGGTCGACAT AGGTCGACAT AGGTCGACAT AGGTCGACAAA	GYLADDLYNC SREKIFPKNS SE  TOPSCRNIYR  31  AGGAACAGAA AGGACAGAA AGGACAGAA GACTATGCC TACAAGAAC GGCCCAGT TACATCGG GGCCCAGG TACATCGG GCCATTGGG GATCTTGGG GATCTTGGG GATCTTGGG GATCTTGGG GATCTTGGG GATCTTGGG GATCTTGGA GATCTTGG	GEFATSKINY TFGSVEVENL PDRFLQCVKN DINO37 PBH1 DISTANCAC GGAATGACAC TGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTCTT AGAGCCAGCAA AACGAAAGTA CCCAAAGGTA CAAAGGTAC AACCAAAGGTA AACTAAGGTA AACTAAGGTA AACTAAGGTA AACTAAGGTA AACTAAGGTA AACTAAGGTA AACTAAAGGTA AACTAAAGGTA AACTAAAGGTA AACTAATGTA AACTATAGTA AACTATCAA	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE dons) 51   TCTGGACAGC TGAAAGCCAC TATACGAAGGA ATTICCTACC TATACGTCTG GCACCTGARA GAAGCCGGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCACTTC CACCACTTC	60 120 180 240 300 420 480 600 660 6720 780 840 900
50 55 60 65	KILLWSRIKD SNIPVSVPWK WVIEGGREDS  Nucleic Adid Acce Coding sequence  1   ATGTCCTTTC ACCGGRACCT TTCCRAGGCCA ACCAGATCA ACACCCAACC AATGCCAACA ACACCCAACC ATGCGCAAGA ACGGCAAGA ACGCGAGGCA ACACCGGAC CTTATGGATG CTTATGGATG CTTCCTTGGTG CTTATGGATG ATTGTCTTTT AAAAATAAAA	LAHOPTOVOR TVSRRFAEAA RDLCQDPTIK  SSION #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHYMING ELESIISKRN  17718 (underlined seque 21	GYLADDLINC SREKIFPKNS SE IOFSCRNIYR  31   AGGACAGACT   AGGACAGACT AAACGAGAA GGCTAGTCCC TACAAGAAAC GGCTAGTCCC TACAAGAAC GGCTCTGA GGCGCCAAGA ATTCCCGGG GCCCTTGCC AGATTCTGCA CAGATTCCTCC CAAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGATTCCA CAGACTTTTGA GGCCCCGGCC GGCCCGGCC GGCCCGGCC	GEFNTSKINY TYSSVEVENL PERFLQCYKN  ID NO.37 PEH1  Start and stop of  41  GGAATGACAC GTGTCTTTACAG GTGTCTTACAG GTGTCTTACAG ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA TAGCAGCTG ACTTGTCGCCT CCTAGCAGCTTG ACTTGTTGC ACACCAAGCTTG ACACCAAAGCTAC ACACAAAGCT ACACAAACCA AAGCAAAGCT ACTTGTGG ACTTGTTGA ACACCAAAGCT ACACCAAAACCA AAGCAAAGCT ACACCAAAACCA AAGCAAACCA AAGCAAAACCA AAGCATCAA AAGCATCAA AAGCATCAA	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE dons) 51   TCTGGACAGC TGAAAGCCAC TATACGAAGGA ATTICCTACC TATACGTCTG GCACCTGARA GAAGCCGGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCAGTTC CACCACTTC CACCACTTC	60 120 180 240 300 360 420 660 720 780 840 900
50 55 60 65	KILLMSRIKO SNIPVSVPWK WVIEGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ATGTCACTC ACCCAGATCA ACCCAGATCA ACACCAACC ACACCAACC ACCCAACCA ACACCAACC ATCAGCAGACA ACACCAACC ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATCAGCAGGA ATTAGGATG ATTAGGATG TTAGAGAAGT AAAAAAAA	LAHOPTOVOR TVSRRFARAR RDLCQDPTIK  SSION #: XM_0  1-3315  11    GGGCAGCCAG TTATTCAGC TGGACTCAG ACCARACTICA ACCARACTICA CCGATTATCC CCCATTATCC CCCATTATCC CCCATTATCG TTTTCACAGGGA ACACCTCAT ACTTCACAGG ACACCTCAT ACTTCACAGG TTCCTCAGGGA ACACCTCAT ACTTCACAGG TTCCTCAGGGA ACACCTCAT ACTTCACAGG TTCCTTCAGGGGA ACACCTCAT ACTTCACAGG ACACGTCTG TTCCCCTGAGGGA TTCCTTGTGT AGGTGGAGGA GCACGTTGTC	DMFTLEDTLL CDVHYMLING ELESIISKRN  17718 (underlined seque 21   GCTCAGCATG GCGCATCTGG ARATTITAG GTTCAGCAGG GATTGAGACA GTTGAGCAGG GATTGACGGG GATTGACGGG GATTGACGGG GATTGACGGG CCTGATGACG CCTGATGAC GATATTGTG CAGGAATTGC AGATTGACAT GCGCACTATT AGGTGGAAA GGTGGTGGAA GGTGGTGGAA GGTGGTGGAA GGTGGTGGAA GGTGGTGGAA GGTGGTGGAA GGTGGTGGAA CGCGCTGCCC CCGGCTCCCT	GYLADDLYNC SREKIFPKNS SEI  31  AGGAACAGAA  AGGAACAGAA  AGGAACAGAA  GGCTATGCCC TACAAGAAC  GACCCAGAGA  GACCCCAGG  TACATCGGG GCCATGGA  GATCCTGGG GCATTGCCA  TACATCGGG CCACTTTGC CCACATTCCA  GAGCTCTCG GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCATCCC GAGCACC GACC  GEFATSKINY TFGSVEVENL PDRFLQCVRN DINO37 P8H1 DISTANCE GGAATGACAC GTGTCTTACAG GTGTCTTACAG GTGTCTTACAG GTGTCTTACAG GTGTCTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG GTGTCTTTACAG ACACCAAGGGA AGGTGCAG AGGTGCAG TACCAGGTTG ACACAAGCTTG ACACAACCA AACAAAGCTT ACAACAACCA AACAACCA AACAACCA AACAACCA AACAAC	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE dons)  51   TCTGGACAGC TGAAAGCCAC TATCCAAAGAT CATGGAAGCGAC TATTCCTACC TATACCATCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGCCAGGTAC AGCCAGGTAC CACACATTTG CCGGAATCAG CAGGATCAG C	60 120 180 240 300 420 480 540 600 660 780 840 960 1020 1080 1140	
50 55 60 65 70	KILLWSRIKD SNIPVSVPWK WVIEGGREDS  Nucleic Adid Acco Coding sequence  1   ATGTCCTTTC ACCOGGACCT TTCGAGGAATT TCCAAGGCCA ACCCCAAGT ACACCCAAC ACACCCAACC ATCACCAACC ATCACCAACC ATCACCAACC ATCACCAACC ATCACCAACC TCTAAGCATC TTCTTGATGATG CTGCTCGTGG CTAAGAGAAT AAAATAAAA AGCCTGCTGG CTTATTGTTT AAAAATAAAA AGCCTGCTGG CTTTTTTACCCC CTCAAAGAAA	LAHOPTOVOR TVSRRFAEAA RDLCQDPTIK  ESSION #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHYMLING ELESIISKRN  17718 (underlined seque 21	GYLADDLINC SRESIFICKNS SEI  JOFSCRNIYR  31  AGGACAGAC  AGCACAGAC  AAACGAGAA  GGCTATCCC  TACAAGAAC  GGCCCAAGA  ATCCCCCAAG  ATCCCCACT  TACATCGGG  GCCATTGGCA  GATTCTGAC  GATTCTGAC  GATTCTGAC  GAGATTCCTGA  GGCTCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCCTGAC  GAGATTCTGAC  GAGATTCTACACAC  TTTAACACTTA	GEFNTSKINY TYSSVEVENL PDRFLQCVRN  DI NO.37 PEH1  Start and stop of  41  GGAATGACAC GTGTCTTTACAG GTGTCTTACAG GTGCTTACAG ACACCAAGGA ACACCAAGGA ACACCAAGGA ACACCAAGGA TAGCAGCTG GCTATTTTTT ACACACAC ACACAAGCT ACACACAC ACACAAGCT ACACACAC ACACAC ACAC A	QSCPOWREDC QPERVOTLEA PEDSSCTSEI DNA SEQUENCE MOOS)  51   TCTGGACAGC TGAAAGCGAC TATCCAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACTGATAC GGGCATGGTC AGCCCAGTAC CACACATTG CCAGAATCAG CAAGATCCC TACCTCCATC TGCTGATCCCT TGCTGCATC TGCTGATCGCT GCTGATCGCT GCTGATCGGT AGAAATCGG AGAAGCTCGG	60 120 120 300 360 420 480 540 660 660 720 840 900 960 1020 1080 1080
50 55 60 65	KILLWSRIKO SNINFVSVFWK WVIHGGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCTTTC ACCOGGACCC TTGGTGAATT TCCAAGGCCA ACCCGGACCA ACCCCAACCC ATGCGCAAGA ACACCCAACC ATCCACCGAG TCCAACCGG CTTATGGATG CTGCTGAGTG ATTGGTGTG TTGTGTTTT ACACCGG CTTATGGATG CTGCTGGTGGTG CTGCTGGTGGTG CTTCAAGGAGT ATTTGTGTTT AAAAATAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAA GATGAAATTG	LAHOPTOVOR TVSRFARAA RDLCQDPTIK  ESSION #: XM_0 I-3315  11   GGGCAGCCAG TTATTCAAGC CGGAGAATGTA ACCAAAGGAATGTT TCGTCATTCACAG GCTTCAGAGGAATGTT TCTTCACAGC CCTTTCACAGC CCTTCACAGGAATGTT TTCCTTCACAGGAATGTT TTCCTTACAGGAATGTT TTCCTTGTAT ACTTCACAGGAATGTT TTCCTTGAATGAAGGAAGAAGCACTTGTAT AGGTGGAAGGAAGCACTTGTAT TTCCTTGAATGAAGAATGCT TGAGCAATGCT TGAGCAATG	DMFTLEDTLL CDVHYMLNG ELESIISERN  17718 (underlined seque 21   GCTCAGCATG GCGCTCTGG ARATTTAAG GTTCGAGCTG GAATGGAAC GTTGGACCGG GCTCATCTTAC CCTATCATG ARATCATAG GAATATATG CCTATGATGAA GAATATATG CCTATGATGAA GAATATATG CCTATGACAG GAATATATG CCTATGACAG GAATATATG CCTGATGACA GGAGTATT AGGTGGAAA TGCCCTACC CCGCTGCCT CTTCTCACCT CATCACCTA	GYLADDLYNC SREKIFDKNIS IQFSCRNIYR SEI  31 AGGAACAGAA AGGAACAGAA AGGAACAGAA TACAGAGAAT TACAAGAGAA CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCCCGCAAGA TACATCGGG GACATTGCA GATTCCTG CAAGATTCCTG GACACTTTGA GGCTCTTGA GGCTCTTGA GGCTCTTGA GGCTCTCGGGC CAAGATTCCA GAGACTTCCA GAGACTTCCA GAGACTTCCA GAGACTTCCCG GAGAGAGAA TTTTCCTCCG GCCCACTTCCCG GCCCACTTCCCA GAGACTTCCA GCCTCTTCCCG GAGAGAGAA GCTCTATACA GCTCTATACA	GEFATSKINY TFGSVEVENL PORFLQCVEN DINO37 PBH1 O SEAT AND STOPP GGRATGACAC TGTCTTACAG GTGCTCTTACAG GTGCTCTCTT AGAGCAGCA AAGCGAAGTA ACCCAAGCACTG ACTCGCCCTT ACAACACCA AGGGAAGTA ACCCATCAG ACCCATCAG ACCCATCAG ACCCATCAA ACCCATCAA ACCATCAGCATTT ACAACACCA ACTCAGCATTTT ACAACACCA ACTCAGCATTTTT ACAACACCA ACTCAGCATTG ACACACCATCAA ACCATCAAA TCAAGGAGAA TCAAGGAGAA TTAAAAATGGA AACCCTTCAG AACCCTTCAG	QSCPOWREDC QPERVQTLEA PEDSSCTSET DNA SEQUENCE vions)  51   TCTGGACAGC TGGAAGCCAC TACCAAAGAT CATGGAAGCC ATTTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATACACC AGACATTTG CAGCACATTAC CAGAATCCC TACCTCCATC TGTGATCGCT GCTGGTGCGC GATCAAATGG CAGATCAACACTGATCGC GATCAAATGG CACACTGAGC GACACTGAGC GACACTGAGC	60 120 180 240 300 360 420 660 720 780 960 960 1080 1140 1260
50 55 60 65 70	KILLWSRIKO SNIPVSVPWK WVIEGGREDS  Nucleic Add Acoc Coding sequence  1   ATGTCCTTTC ACCGGACCT TTGGTGAATT TCCAAGGCCA ACCCCAACC AACCCCAACC AACCCCAACC ATGCGCAGAC ATGCGCAGAC ATGCGCAGGC TTCATGGTG CTTATGGTG CTTATGGTG CTTATGGTG TTTTTACCC CTCAAGAAA AGCTGGTGGTG TTTTTTACCC CTCAAGAAAA AGCTGAATG CTAAGAATTG CAAGACAAG CTAAGAAATG CAAGACAAG CTAAGAAAAA AGCTGAAGAAG CTTAAGCAACA	LAHOPTOVOR TVSRRFAEAA RDLCQDPTIK  SSION #: XM_0 : 1-3315  11	DMFTLEDTLL CDVHVMLING ELESIISKRN  17718 (underlined seque 21	GYLADDLINC SRESTIFIKNS IQFSCRNIYR SE  TOPSCRNIYR  31   AGGACAGAC   AGGACAGAC GGCTATGCCC TACAAGAAAC GGCACAGAC TACAAGAAC GGCACAGAC TACAAGAAC GGCACAGAC TACAAGAAC GGCACAGAC TACACGGGG GCCATTGGCA GATGCTGAG GCCCACTTGC CAAGATTCCA GGCTCGGGCC TCTTCTCCCC GGAGACTTGA GGCTCGGGCC TCTTCTCCCC GAGACTTTGA GCCCGATTTGC CACGTTTGC CACGTTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTTGC CCCCATTCGC CCCCATTCTCC CCCCATTCGC CCCCATTCGC CCCCATTCTCC CCCCATTCGC CCCCATTCCC CCCATTCCC CCCATTCCC CCCCCATTCCC CCCCATTCCC CCCCATTCCC CCCCATTCCC CCCCCATTCCC CCCCATTCCC CCCCATTC	GEFATSKINY TFGSVEVENL PDRFLQCVKN  ID NO37 PBH1  o start and stop or  41    GGAATGACAC TGTCTTTACAG GTGTCTTTACAG GTGTCTTACAG ACACCAAGGA AAGGGAAGTA ACTACAGGTGC CCAAGGGTGAG TACCAGCTTG ACTACTTTTTT ACAACAACA AAGCAAAGCT ACTATGTGG GTATTTTTTT ACAACAACA AAGCAAAGCT ACTATGTGG TCAAGGGAGAA AGTCAGCTGA TCAAGGAGTTG TCAAGGAGTTG TCAAGGAGTTG TCAAGGAGTTG TTAAAATGGA AAGCCTTCAG TGGAGTTGGA AAGCCTTCAG	QSCPOWREDC QPERVOTLEA PEDSSCTSET DNA SEQUENCE dons)  51   TCTGGACAGC TGAAAGCCAC TACCAAAGAT CATGGATCTG GCACCTGARA GAAGCCGGC TTGGATCTC AGGATACACC GGGCAGTAC AGGCCAGTAC CACACATTG CCAGAATCAG CCAGATCAG CCAGCATTAG CCAGCATTAG CCAGCATTAG CCAGCATTAG CAGCATTAG CAGCATCAG CAGCATTAG CAGCATTAG CAGCATTAG CAGCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CCAGCAGTAGA CCAGCTGAA	60 120 120 300 360 420 480 540 900 660 720 1020 1020 1030 1230 1230 1380
50 55 60 65 70	KILLWSRIKO SNINFVSVFWK WVIHGGREDS  Nucleic Add Acoc Coding sequence  1   ATGTCCTTTC ACCCGGACCC TTGGTGAATT TCCAAGGCCA ACCCGATCA ACCCGACCA ATGGCAACA ATGGCAACA ATGGCAACA ATGGCAACA ATGGCAACA ATGGCAACA ATGGCAACA ATGGCAACA TCCAACCGG CTTATGGATG CTGCAGAAGT AAAATAAAA AAAATAAAA AAAATAAAA AAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAA GATGAAATTG CAAGCAAGG TTAGCCAATG CTCACCCAATG CTCACCCAATG CTCAAGCAAAGG TTAGCCAATG CTCAAGCAAAGG TTAGCCAATG CTCAAGCAAAGG TTAGCCAATG CTCAATGTTTA	LAHOPTOVOR TVSRFFARAA RDLCQDPTIK  ESSION #: XM_0 I-3315  11   GGGCAGCCAG TTATTCAAGC TGGACATCCAG TTATTCAAGC GGGAATGTT TGGTCATTCA TGGTCATTCA TGGTCATTATCACAG CCTATATGAGA ACACCCTCAT ACTTCACAGA ACTTCACAGA TTACTCACAG TTACTCACAG CCTACTAGGAA TCTCTCAGAGGA TCTCCTGAT TGGCCAAGC TTCCTTGAGT AGGTGGAGGA TCCTCAGATC TGAGCAATGC ATAACTGGAAT TGAGCAATGC ATAACTGGAA ATGAGAATTC CGGCTCTCAT CGGCCTCCAT CGGCCTCCAT CGGCCTCCAT CGCCCTCCAT CCCCCTCCAT CCCCCTCCAT CCCCCTCCAT CCCCCCTCCAT CCCCCCTCCAT CCCCCCTCCAT CCCCCCCC	DMFTLEDTLL CDVVHVMLNG ELESIISERN  17718 (underlined seque	GYLADDLYNC SREKIPDKNS SEI  JOPSCRNIYR  31  AGGAACAGAA AGGAACAGAA AGGAACAGAA AACGAGAAT AAACGAGAAT AAACGAGAAT AAACGAGAAT AAACGAGAAT AAACGAGAAA ATCGCCCAAGA GATCCTGCAG GATCCTGCG CCAACTTCG CCAACTTCC GAGACTTCCA GAGACTTCCA GAGACTTCCA GAGACTTCCA GAGACTTCCA GAGACTTCCA AACGTTAAC AACGTTAACA AACGTTAACA AACGTTCCCC GACGACGACGACA AACGTTCCCC CCCAACTTCCC CCCACTTCCC CCCACCTCCC CCCCACCTTCC CCCCACCTCCC CCCCACCTTCC CCCCACCTCCC CCCCACCTTCC CCCACCTTCC CCCACCTTCC CCCACCTTCC CCCACCTTCC CCCACCTTCC CCCCACCTTCC CCCCCCCC	GEFNTSKINY TFGSVEVENL PORFLQCVEN DINO37 PBH1 O STAT AND STATE GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCAGCA AACGAAGAA AACGAAGAA AACGAAGAA ACTCAGCATGA AACAACAA AACAACAACA AACAACATGA AACAACATTTTT ACAACAACA AACAACATGA AACAACATTTTTT ACAACACTTA ACTAAGGTGG AACCCATCAA TCAAGGTGGA TCAAGGTGGA TCAAGGTGGA AACCCTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGGACTTCAG TGCACTTCAG TCCACCTCTT	QSCPOWREDC QPERVQTLEA PEDSSCTSET DNA SEQUENCE vions)  51   TCTGGACAGC TGGAAGGCAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGARA GAAGCCGCGC TTGGATTCTC AGATAACACC CAGCACATTTG CAGCACATTTG CAGCACATTGG CAGCATCAGC CAGCATCAGC CAGCATCAGC CAGCATCAGC GATCAACATTGG CAGCATCAGC CACACATGGC CACACATGGC CACCACTGGC CACCACTGGG CACCACTGGG CACCACTGGG CACCACTGGAC CCTTCAAGGA TCTGCAGGAAT	60 120 180 240 300 360 420 720 780 960 1080 1140 1260 1320 1380 1440
50 55 60 65 70	KILLMSRIKO SNIPVSVPWK WVIHEGREDS  Nucleic Add Acco Coding sequence  1   ATGTCCGTATC TCCAGACCA ACCCGGACCA ACCCGGACCA ACCCCAACCA ACCCCGGGC CTTATGGATG CTCACACCAGACA ACTCGTGGTGG TTTTTACCCC CTCAAAGAAA GATGAAATTAAA GATGAAATTA GATGACCAATTA GGCTTGAACCAACCA GTCAAACTATTA GGCTTGAACC GCCTGAACCAACCA GTCAAATTA GGCTTGAACCAACC GCCTGAACCAACCA GTCAAATTA GGCTTGAACCAACC GCCTCAAACCAACC GCCTCAAACCAATTA GGCTCGAACCAACC GCCATGAACCAACC GCCTCAAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCCTCAACCAACC GCCTCAACCAACC GCCCAACCAACC GCCCCAACCAACC GCCTCAACCAACC GCCTCAACCAACC GCCCCAACCAACC GCCCCAACCAACC GCCCCAACCAA	LAHOPTOVOR TVSRFARAA RDLCQDPTIK  SSION #: KM_0 1-3315  11   GGGCAGCCAG TGTATCCAG TGTACTCAG GGGATATTCA GGGCAGCAGT TGTACTCAG GGGATATTCA CGGAGCAGT TGTACTCAG GGGATATTCA CGATCAGGGA ACACCTCAT ACTCACAGG ACACTCAT ACTCACAGG TTCCTCAGAGGA ACACCTCAT ACTCACAGG TTCCTCAGAGGA TTCCTTGATTC TTCCCCAAGG TTCCTTGATTC TTCTCGATGG GCACGCTGTC TTCTCGAATGC ATACCTGGAA ACACCTCTTTTTT TTCCCCAAGG TTCCTTGGATT TCCGCATGT TGCCCAAGG TTCCTTGTATT TGCCCAAGG TTCCTTGTAT TTCCGCATGC ATACCTGGAA ACAGGTTTT TGCCCCAAGG TTCCTCCAT TGCCCCAAGG TTCCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCTCTCCAT TCCGCAAGGT TCCCGCTCTCCAT TCCCGCTCTCCAT TCCGCAAGGT TCCCGCTCTCCAT TCCCGCAAGGT TCCCGCTCTCCAT TCCCGCAAGGT TCCCCAAGGT TCCCCAAGGT TCCCCCAAGGT TCCCCCAAGGT TCCCCCAAGGT TCCCCCAAGGT TCCCCCCCCCC	DMFTLEDTLL CDVVHVMLING ELESIISERN  17718 (underlined seque	GYLADDLYNC SREKIFDKNS SEI  SEI  31  AGGAACAGAA AGGAACAGAA AGGAACAGAA AGGACAGACT AAACGAGACT AAACGAGACT AAACGAGACT ACACGAGAC ATCCCCCAGT TACATCGGG GCCATTGGCA GATCTCTGGG CCAGATTCCCA GAGACTTCG GAGACTTCG GAGACTTCA GGCTCAGGGC CTATACACTGC GAGACTTCAC GAGACTTCAC GAGACTTTCAC GAGACTTTCAC GAGACTTTCAC GAGACTTCAC GAGACTTCAC CCAGATTCAC AAACCTTCTGC CCCCAGATTGC CCCCAGATTGC CCCCAGATTGC GCCCCAGATTGC GCCCCAGTTCG CCCCAGATTGC GATGCC CCCCAGATTGC GATGCC CCCCAGATTGC GATGCCCCCAGATTGC GATGCC CCCCAGATTGC GATGCC GCCCAGATTGC GATGCC CCCAGATTGC GATGCC CCCCAGATTGC GATGCC CCCCAGATTGC GATGCC CCCCAGATTGC GATGCC CCCCACTCT GATGCC CCCCAGATTGC GATGCC CCCCACTCT GATGCC CCCACTCT CACTCT CCCCACACTCT CACTCT CACTCT CCCCACACTCT CACTCT	GEFATSKINY TFGSVEVENL PDRFLQCVRN O ID NO37 P8H1 o start and stop or  41   GGAATGACAC TGTCTTACAG GTGTTTACAG GTGTTTACAG AGGCAGCAG AAGCCAGCA AGCAGCAG AGGGGAGTA CCAAAGCT TACAAGACCA AGCAAAGCT ACTATGTGG AAGCCATCAA AGATCAGTGT CTAAAATGGAA CTAAGGGAA CTAAGGGATT TTAAAATGGA AGACTTCAG TGAGAGTTC TTAAAATGGA AGCCTTCAG TGAGAGTTC TTAAAATGGA AGCCTTCAG TGAGAGTTC TTAAAATGGA AGCCTTCAG TGAGAGTTGAA AGTTCGTGAA AGTCGCTGAA AGTCGCTGAA AGTCGCTGAA AGTCGCTGAA AGTCGCGGAA AGCCTTCAG TGAGAGTTGAA AGTCGCGTGA AGTCGCGCTCTT CTGAACTCTT CTGAACTCTT	QSCPOWREDC QPERVOTLEA PEDSSCTSET DNA SEQUENCE dons)  51   TCTGGACAGC TGAAAGCCAC TACCAAAGAT CATGGATCTG GCACCTGARA GAAGCCGGC TTGGATCTC AGGATACACC GGGCAGTAC AGGCCAGTAC CACACATTG CCAGAATCAG CCAGATCAG CCAGCATTAG CCAGCATTAG CCAGCATTAG CCAGCATTAG CAGCATTAG CAGCATCAG CAGCATTAG CAGCATTAG CAGCATTAG CAGCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CACCATTAG CCAGCAGTAGA CCAGCTGAA	60 120 180 240 300 360 420 720 780 960 1080 1140 1260 1320 1380 1440

	er rue ut nuu	er Crimmali 2	**************************************	* TVIN-GVETA	C 1	· -	
	1	11     EPCLLLNOFS	21   RAVAAKWKDD	i	1	51   TWEETERS	60
13	Protein Accession	-					
75			3H3 PRO	TEIN SEC	<u>UENCE</u>		
	CTTGCTAAA1	ATTGCTGA					
70	GCAGACAGCA	ATCCTTCAGA	ATTAAAATAC	TTAGGCTTGG	ATACTCATTC	TCAAAAAAAG	480
70			ATCATTACCA AGAATTTAAG			TGCATTAAAG	360 420
	ACAGAAACTA	TAATTATCAT		ATTGCTAATT	TGCCACCGGA	GCTGAAGGCA	
65	CGCGCGCAGA	TTGCCATTTC	CGGCATGAGC	ACCTGGAGCA	AAAGGTCTCT	GAGCCAGGAA	180
	ATGCCTCGCC	TGTTCTTGTT	CCACCTGCTA GAAGGACGAT	GAATTCTGTT	TACTACTGAA	CCAATTTTCC	60 120
	1	11	21 	31 	41 	51 -	
60		,		•	•	·	
		:ssion #: XIM_0 : 1-558 (i	11804 underlined sequen	ces correspond to	start and stop cod	ons)	
	Numbria 4-1-4		11004	SEC	2 ID NO:39 P8H3	DNA SEQUENCE	
<i>J</i>	RFROLDTKLN	DLKGLLKEIA	NKIK				
55	FYMVVKKCFK	CCCKEKNMES	SVCCPKNEDN	ETLAWEGVMK	ENYLVKINIK	ANDTSEEMRE	1080
			GTTYDFAHCT YTVGTVQENN				960 1020
	LRLIHIFTVS	RNLGPKIIML	QRMLIDVFFF	LFLFAVWMVA	FGVARQGILR	QNEQRWRWIF	900
50	RKLLWYYVAF	PTSPPVVPSW UNVPTDIAMI	NVVPYIAFLL MDTLGLFYFI	LFAYVLLMDF	HSVPHPPELV	LYSLVPVLPC	780 840
	VEATDOHPIA	<b>OPGVQNFLSK</b>	QWYGEISRDT	KNWKIILCLF	IIPLVGCGFV	SFRKKPVDKH	720
	NGRDEMDIEL	HDVSPITRHP	LQALFIWAIL YETRAVELFT	<b>QNKKELSKVI</b>	WEQTRGCTLA	ALGASKLLKT	600 660
45	GLNLRKFLTH	DVLTELFSNH	PSTLVYRNLQ	IAKNSYNDAL	LTFVWKLVAN	PRRGPRKEDR	480 540
	FLPRTVSRLP	EEETESWIKW	LKEILECSHL LANDEIFTND	LTVIRMERAG	DEIVSNAISY	ALYKAFSTSE	420
			LLVDNGCHGH KNKIPCVVVE				300 360
40	TGGTHYGLMK	YIGEVVRDNT	ISRSSEENIV	AIGIAAWGMV	SNRDTLIRNC	DAEGYPLAQY	240
	SCDTDAEILY	ELLTQHWHLK	TQINQSEKWN TPNLVISVTG	GAKNFALKPR	MRKIPSRLIY	IAQSKGAWIL	120 180
			TRTLYSSASR				60
J.J	1	11	1	1	1	1	
35	1		21	31	41	51	
	Protein Accession	BH1 Prolein seque n#: XP_01					
		_	anca				
30	AATAAAATCA		www.tiwil	GWICICHWING.	GICIICIGAA	monunt TGCT	2200
			CAACACAAAA			AATGAGGCAT AGAGATTGCT	3240 3300
	TCTGTCTGCT	GTTTCAAAAA	TGAAGACAAT	GAGACTCTGG	CATGGGAGGG	TGTCATGAAG	3180
43			CCGCCTCAAT GTGCTTCAAG				3060 3120
25	TACACGGTGG	GCACCGTCCA	GGAGAACAAT	GACCAGGTCT	GGAAGTTCCA	GAGGTACTTC	3000
			CCTGCCCCGG				2880 2940
-	GGTACCACGT	ATGACTTTGC	CCACTGCACC	TTCACTGGGA	ATGAGTCCAA	GCCACTGTGT	2820
20			GATCCTTAGG CTACCTGGCC				2700 2760
	CAGAGGATGC	TGATCGATGT	GTTCTTCTTC	CTGTTCCTCT	TTGCGGTGTG	GATGGTGGCC	2640
			TGGACGAGTC TACTGTAAGC				2520 2580
15	ATGGACACGC	TOGGGCTTTT	TTACTTCATA	GCAGGAATTG	TATTTCGGCT	CCACTCTTCT	2460
1.5	Gatgaagtga	GACAGTGGTA	CGTAAATGGG	GTGAATTATT	TTACTGACCT	GTGGAATGTG	2340 2400
			CTTCCTCCTG				2280
	AAGAAGCTGC	TTTGGTACTA	TGTGGCGTTC	TTCACCTCCC	CCTTCGTGGT	CTTCTCCTGG	2220
10			CCGAGACACC TGGCTTTGTA				2100 2160
	GTGGAGGCCA	CAGACCAGCA	TTTCATCGCC	CAGCCTGGGG	TCCAGAATTT	TCTTTCTAAG	2040
	GAACAGCTGC	TGGTCTATTC	CTGTGAAGCT	TGGGGTGGAA	GCAACTGTCT	GGAGCTGGCG	1920
3			CATCAATGCT GCTGTTCACT				1860 1920
5	TGGGAGCAGA	CCAGGGGCTG	CACTCTGGCA	GCCCTGGGAG	CCAGCAAGCT	TCTGAAGACT	1800
			GCCATTCTT				1680 1740
			GGTTGCGAAC				1620

		EIVPSFINKD KLIRNRQSEA					120 180
5				SE	Q ID NO:41 PBH5	DNA SEQUENCE	
	Nucleic Acid Acc Coding sequence	ession #: NM_0 a: 1-3978		ences correspond	to start and stop ca	odons)	
10	1	11 	21 	31 i	41 	51 }	
	ATGCTGCCCG	TGTACCAGGA	GGTGAAGCCC	AACCCGCTGC	AGGACGCGAA	CCTCTGCTCA	60
		TCTGGTGGCT					120
		TGTATTCAGT					180
15		GGGATAAAGA TCATAAAGTG					240 300
10		GTGCCAAAGT					360
		ATCCCATGGA					420
	CTGACTTTTT	GCACGCTCAT	TTTGGCTATA	CTGCATCACT	TATATTTTTA	TCACGTTCAG	480
20	TGTGCTGGGA	TGAGGTTACG	AGTAGCCATG	TGCCATATGA	TTTATCGGAA	GGCACTTCGT	540
20		TGGCCATGGG					600
		AGTTTGATCA CAGTGACTGC					660 720
		TAATCATTCT					780
~~		AAACTGCAAC					840
25		GGATAATAAA					900
		AGAAGGAGAT					960
		TTTTCAGTGC GTGTGATCAC					1020
		CGGTTACCCT					1080 1140
30		GAAGAATCCA					1200
		CAGATGGTAA					1260
		AGACCCCAAC					1320
		TCGGCCCCGT					1380
35		CAAGTCACGG TGTTCTCGGG					1440 1500
JJ .		ATGAAAAAGT					1560
		ATCTGACTGT					1620
		ACCTTGCAAG					1680
40		CAGTAGATGC					1740
40		AGAAGATCAC					1800
		TGATATTGAA GTATAGATTT					1860 1920
		CAGGAACTCC					1980
		CTTCTAGACC					2040
45	AATGTCCCAG	TTACACTATC	AGAGGAGAAC	CGTTCTGAAG	GAAAAGTTGG	TTTTCAGGCC	2100
		ACTTCAGAGC					2160
		CTCAGGTTGC					2220
		TGCTAAATGT					2280 2340
50		TATTGGTATT					2400
• •		CAATTCTGAA					2460
		GTTTCTCCAA					2520
		TCCAGACATT					2580
55		TCGCAATACC					2640
55		AAACGTCAAG TGTCATCTTC					2700 2760
		AGGAACTGTT					2820
		CGTCCCGCTG					2880
60		CCTTTGGGTC					2940
60		CCTATGCCCT					3000
		AGAATATGAT CTTGGGAATA					3060 3120
		ACAATGTGAA					3180
		TCATTAAATC					3240
65		TCATCTCAGC					3300
		TGACAACTGA					3360
		CIGITITGIT					3420
		AGGAACTGTG GTAAAATGGA					3480
70		TGGTGTGCCT					3540 3600
-		CGGCAAATGT					3660
	GAGAAATTTG	CCCACTGCAC	CGTGCTAACC	ATTGCACACA	GATTGAACAC	CATTATTGAC	3720
		TAATGGTTTT					3780
75		ATAAAGAGAG					3840
15		TCACTGAAAC ACCACATGGT					3900 3960
	TTCGAGACAG						2230

## SEQ ID NO:42 PBH5 PROTEIN SEQUENCE Protein Accession #: NP_005836

	Frutein Accessio	n w: NP_UC	12830				
_	1	11	21	31	41	51	
5	M maron man		 RVFFWWLNPL	]	<u> </u>		
			TRAIIKCYWK				60 120
			LTFCTLILAI				180
10			DVNKFDQVTV				240
10	MAVLIILLPL MI.DYYPTCYT	QSCFGKLFSS I.DCCCI.DCMN	LRSKTATFTD LASFPSASKI	ARIRTMNEVI	TGIRIIKMYA	WEKSPSNLIT	300 360
			VSIRRIQTFL				420
	Kasetptlog	LSFTVRPGEL	LAVVGPVGAG	KSSLLSAVLG	<b>ELAPSHGLVS</b>	VHGRIAYVSQ	480
15			KERYEKVIKA				540
15	SOILILEDGE	MACKGLALKE	LKSGIDFGSL	LKKONERSEO	PERFECTEL P	THQLQYLKAA	600 660
			NVPVTLSEEN				720
	NTAAQVAYVL	QDWWLSYWAN	KQSMLNVTVN	GGGNVTEKLD	LNWYLGIYSG	LTVATVLFGI	780
20			MPESILKAPV IPWIAIPLVP				840
20			ERCQELFDAH				900 960
			LALSYALTLM				1020
			IIFDNVNFMY				1080
25			DKILTTEIGL DLPGKMDTEL				1140 1200
			EKFAHCTVLT				1260
			AAALTETAKQ				1320
	FETAL						
30				SE.	O ID NO-43 DRO3	DNA SEQUENCE	
-	Nucleic Acid Acce	ession#: NM_0	21233	GL.	a 10 110.45 1 02)	DITA SEQUENCE	
	Coding sequence	: 34-111	9 (underlined sequ	rences correspond	to start and stop o	codons)	
	1	11	21	31	41	51	
35	î	Ī	ĺ	j.	1	1	
	ATGGGGAAAG	TGTCCTGCTG	TGGCATGAAA	TAAATGAAAC	AGAAAATGAT	GGCAAGACTG	60
			GCTCTTCCTT				120
	AAAAGACAAA	ACAAGGAAAG	AGGGAAAGCT TGGAGAGACT	GCGTTAGAGT	ACCTUTIVA	TAAGTTACCT	180 240
40	ACTAGAAGCT	GGAGGAAGAG	TGAGCAACTA	ATGAATGACA	CCAAGAGTGT	TTTGGGAAGG	300
			AGCATATGCC				360
			ACCTGTGAAT TCAAGGGTTC				420
			TGATTATCCA				480 540
45	ATCTGCATAA	CTTTCAAGTA	CAACCAGTAT	GAGGCAATAG	ATTCTCAGCT	CTTGGTCTGC	600
			CTCCATCCCA				660
			CAGCTCATCA ATTCCTCCAT				720 780
<b>~</b> 0	ATCTTTGCAG	CCTGGATGGC	TCAACGGCTG	AAGACACACT	TGTTAACAGA	AACCTGGCAG	840
50	CGAAAAAGAC	AAGAGCTTCC	TTCAAACTGC	TCCCTTCCTT	ACCATGTCTA	CAATATAAAA	900
			CTCTTATTTC				960
			AAATCGCTGG AGGATTCATT				1020 1080
			CTATGAAAGC				2000
55	0000000000	202 D-1-1					
	Protein Accession	BQ7 Protein seque					
60	1	11	21	31	41	51	
UU	MMARI.I.RTSP	ALLPIGLEGU	 LGAATISCRN	RECKAUTIMET	PVKI DKDOM	PECPTOLEVI.	60
			SVLGRTLQQL				120
	GHTKGLLLWN	RVQGFWLIHS	IPQFPPIPEE	GYDYPPTGRR	NGQSGICITE	KYNQYEAIDS	180
65	QLLVCNPNVY	SCSIPATFHQ	ELIHMPQLCT TETWQRKRQE	RASSSEIPGR	LLTTLQSAQG	QKFLHFAKSD	240
05	HAKWCISOKO	TKNRWTCIG	D LNRSPHQAI	FR SGGFICTON	W OIYOAROG	LV LYYESCK	300
	_		•				
	Absolute Anid Acon	ssion #; XM_0:	30453	SEC	2 ID NO:45 PCQ8	DNA SEQUENCE	
70	Coding sequence:		3 (underlined sequ	ences correspond	to start and stop c	odons)	
	1	11	21	31	41	51	
	Ī	Ī	1	1	1	1	
75	CGGTGCCCTG	GGGTGGAATA	TCCCCTACGA	ATTTAACCAA	GCGGACTTTA	ATGCCACTGT	60
,,	CATCCCCTAC	CARARCCACT ATCATACGAC	TGG <u>ATG</u> ACAT AGATTCAATA	GGATGTCAAA TGGAGGCAGA	AAGGGTGTCT	CCTGGACCAC	120
						actatgataa Gaccagattt	180 240
	CAGTTTTTAC	CAAGGATACA	ATATTCCAAA	ATGCAGCACA	GTGGATAACT	ATCTTCAGTA	
	TATCCAGAGT	TTGCCTGCCT	ATGACAGCCC	TGAGGTGTTT	GGGCTGCACC	CCAATGCTGA	360

420

```
CAAGGACACC TCTGGTGGAG GGGATGAGAC CCGGGAGGCG GTGGTGGCCC GGCTGGCTGA
         TGATATGCTG GAGAAGCTGC CCCCAGACTA TGTCCCCTTT GAAGTAAAAG AGAGGCTGCA
                                                                                          540
        GAAGATGGGG CCATTCCAGC CTATGAACAT TTTCCTCAGG CAGGAAATAG ACAGAATGCA
                                                                                          600
  5
        AAGGGTACTC AGCCTTGTCC GCAGCACCCT CACTGAGCTG AAACTTGCTA TTGATGGCAC
         CATCATCATG AGCGAAAATC TGCAAGATGC ATTGGATTGC ATGTTTGATG CTAGAATCCC
                                                                                           720
        TGCTTGGTGG AAAAAGCTT CTTGGGTTTT TAGTACACTG GGTTTCTGGT TTACTGAACT
TATAGAAGA AACAGCCAGT TTACCTCGTG GGTTTTCAAT GGCCGACCTC ACTGCTTTTG
                                                                                           780
                                                                                           840
         GATGACGGGT TTTTTTAACC CCCAGGGATT TTTAACTGCA ATGCGACAGG AAATAACTCG
10
        GGCCAACAAA GGCTGGGCTC TGGACAATAT GGTGCTTTGC AATGAAGTCA CCAAATGGAT
GAAGGACGAC ATTTCTACCC CTCCCACAGA GGGTGTCTAT GTCTATGGCT TATATCTTGA
                                                                                          960
                                                                                         1020
         AGGTGCTGGC TGGGACAAGA GGAACATGAA ACTCATTGAA TCAAAGCCAA AAGTGCTCTT
        TGAGTTGATG CCTGTCATAA GGATTTATGC AGAAAACAAT ACTTTACGAG ATCCTCGGTT
TTACTCCTGT CCCATCTATA AGAAGCCAGT TCGAACGGAC TTGAACTACA TTGCCGCTGT
                                                                                         1140
                                                                                         1200
15
         GGATCTCAGG ACAGCCCAGA CCCCTGAACA CTGGGTGCTC CGTGGGGTTG CCCTTCTGTG
                                                                                         1260
        TGATGTCAAG TAACATGTGG GGAGTGTCCC CACCCAATGC TTTGGAAAAT GCAAGATCTA AATTATTGTA ACCTTTATTT CTGTATGACT GCTGGACAGT GTATGTTAGG TCGTTTATGC
                                                                                         1320
                                                                                         1380
         AATTAATGAG CTGCATAGGT TITCCCCACT CCTTAATTGG ATGCTTATAT TITACTTGTT
                                                                                         1440
        TCATCATTAG TGACCAATGT CTGAGTTTGT TGAAAATGTT ATTTAGTGAT ATAAAAGTAA
                                                                                        1500
20
        ATTTACAGCA TOCTAATGAA GTGTGGCCCT CAAATCCACA GTAGTATATT TTCTTCTTAC
                                                                                         1560
         TTCGCTCCGA AGACTGACTG TGATTATAAC AGCAAATATA TTTGCATGTG GACAAAGATT
                                                                                         1620
        AGATGGCAAG ATAGAAAAAT AAGAACAGAT GTGATAGCAA GAATTATAGT TGGCTTGAAA
                                                                                        1680
        AAATGTGATG ATCAGGAGAA AAAATAAAAA AAGGGTAGAA ATATTAGACG GTGCGTAGGG
                                                                                         1740
         ACTITCTATG GACTITTATT AATTAGGAAA CATTATCAAA GGAACTITTC ACGTATTTTT
                                                                                         1800
25
        CTTTAAATTC TGGTTAGATG TTATTAATAA TTCTTCATCT AACCTACTGA CTAGAAAATA TAGTCAGTAC TAAATTAGAA TTGTGGTTTA TAAACTTTTG GTTAGCTCTG GATCTGTATA
                                                                                        1860
                                                                                         1920
         ACTGCATTIT TITGGATAAA CAGTTITTGG TAGGTGGATA CCGGGAGACA AGTGTGGGTC
                                                                                         1980
        CCTCTCACTG GGCTTCATTC TGTGGACCAG GATCATTATT TCATGCTCAT GATCATGAGA
GTTAGGACTG AGTGGCTCCT GTGACTCCCA CCATCTTAGA TGATACTGTT TTCTTGTAGA
                                                                                        2040
                                                                                         2100
30
        TTCTTTCTTT TGGTGTGGAT TAGTATATCA GTTGATTTGT GTGAAATTGTG GTGAAACAAT
        CATTICATIT TGAAAGCAA GTAATGAAAA TGTCAGCATC ATAGGAATTA ATAAAATGTT
                                                                                        2220
        TTTACTAAAA AAAAAAAA AAA
        SEQ ID NO:46 PCQ8 Protein sequence
Protein Accession #: BAB15543
35
                                                31
                                                                           51
        MDVKKGVSWT TIRYMIGEIQ YGGRVTDDYD KRLLNTFAKV WFSENMFGPD FSFYQGYNIP
40
        KCSTVDNYLQ YIQSLPAYDS PEVFGLHPNA DITYQSKLAK DVLDTILGIQ PKDTSGGGDE
                                                                                          120
        TREAVVARIA DIMLEKLPPD YVPFEVKERL OKMGPFOPMN IFLROEIDRM ORVLSLVRST
                                                                                          180
         LTELKLAIDG TIIMSENLQD ALDCMPDARI PAWWKKASWV FSTLGFWFTE LIERNSQFTS
        WVFNGRPHCF WMTGFFNPQG FLTAMRQEIT RANKGWALDN MVLCNEVTKW MKDDISTPPT
                                                                                          300
        EGVYVYGLYL EGAGWDKRNM KLIESKPKVL FELMFVIRIY AENNTLRDPR FYSCPIYKKP
                                                                                          360
45
         VRTDLNYIAA VDLRTAQTPE HWVLRGVALL CDVK
                                                          SEQ ID NO:47 PDG5 DNA SEQUENCE
        Nucleic Acid Accession #: AB033036
                             68-3349 (underlined sequences correspond to start and stop codons)
        Coding sequence:
50
                       11
                                    21
                                                 31
                                                               41
                                                                            51
         GGAGCAGCCT ACAACTTCAC AACCAGAAAC CACTACCCCT CAGGGGTTGC TTTCAGATAA
         AGATGACATG GGAAGGAGAA ATGCTGGCAT AGATTTCGGA TCCAGAAAAG CATCAGCAGC ACAGCCCATA CCTGAAAACA TGGACAATTC CATGGTTAGT GATCCACAAC CATACCATGA
                                                                                           120
55
         AGATGCAGCT TCTGGAGCTG AGAAGACAGA AGCCAGAGCT TCTCTCTCAC TGATGGTGGA
                                                                                            240
         AAGCCTTTCT ACAACCCAAG AGGAGGCCAT TCTCTCAGTA GCAGCAGAGG CTCAGGTGTT
         TATGAATCCT TCTCATATCC AGTTAGAAGA TCAAGAAGCT TTCAGCTTTG ATTTACAAAA
         GGCCCAATCC AAAATGGAGT CAGCCCAGGA TGTTCAAACT ATCTGCAAAG AAAAGCCTTC
                                                                                            420
60
         TGGAAATGTT CACCAGACCT TTACAGCAAG TGTTTTGGGT ATGACAAGTA CTACAGCCAA
         AGGAGATGTT TATGCCAAGA CTCTGCCTCC CAGAAGCCTT TTTCAGTCCT CAAGGAAGCC
         TGATGCTGAA GAAGTCTCCT CAGATTCAGA GAATATTCCT GAGGAGGGGG ATGGTTCTGA
AGAACTGGCT CATGGTCACT CTTCCCAGTC CTTGGGGAAG TTTGAAGATG AACAAGAAGT
                                                                                            600
         CTTCTCAGAA TCAAAAAGTT TTGTTGAGGA CTTGAGCAGC TCTGAGGAGG AGCTGGACCT
65
         CAGATGCCTC TCCCAGGCTT TAGAGGAGCC TGAAGATGCA GAAGTCTTCA CAGAATCAAG
                                                                                            780
         CAGTTATGTT GAAAAGTACA ACACTTCTGA TGATTGCAGC AGCTCAGAGG AAGACCTGCC
          TCTCAGACAC CCTGCTCAGG CCTTGGGAAA GCCCAAAAAC CAACAAGAAG TCTCCTCTGC
                                                                                            900
         TYCARATAAT ACTCCTGAAG AGCAGAATGA TTTTATGCAG CAGCTGCCTT CCAGATGCCC
                                                                                            960
         TTCTCAGCCC ATTATGAATC CTACTGTTCA GCAACAAGTC CCCACCAGTT CAGTGGGCAC
70
         TTCTRTAAAA CAGAGCGATT CCGTGGAGCC AATCCCTCCA AGACACCCTT TCCAGCCATG
GGTGAACCCT AAAGTGGAGC AAGAAGTTTC CTCATCTCCA AAGAGCATGG CTGTTGAAGA
                                                                                          1080
                                                                                          1140
         GAGCATTTCT ATGAAGCCTC TGCCTCCTAA ACTTCTTTGC CAGCCCTTGA TGAATCCTAA
         AGTTCAACAA AACATGTTCT CAGGTTCAGA GGACATTGCT GTTGAGAGAG TCATTTCTGT
                                                                                          1260
         GGAGCCACTA CTCCCCAGAT ATTCTCCTCA GTCCTTGACA GATCCTCAAA TCCGGCAAAT
                                                                                          1320
75
         CTCAGAAAGC ACAGCTGTTG AGGAAGGCAC TTATGTGGAA CCGCTGCCTC CCAGATGCCT
         TTCCCAGCC TCGGAGAGGC CTAAGTTCCT GGACTCAATG AGTACTTCTC CAGAATGGAG
CAGTCCTGTG GCACCAACAC CTTCCAAATA CACTTCCCCG CCATGGGTGA CCCCTAAATT
                                                                                          1440
                                                                                          1500
          TGAGGAACTG TATCAACTCT CTGCACATCC AGAAAGCACT ACTGTTGAAG AGGACATTTC
         TRAGGAGCAG CTGCTTCCCA GACATCTTTC CCAGTTGACT GTGGGARATA AAGTCCAGCA
ACTGTCCTCA AATTTCGAGC GGGCTGCTAT TGAGGCAGAC ATTTCTGGGA GTCCATTGCC
                                                                                          1620
80
```

CATCACCTAC CAGAGCAAGC TGGCCAAGGA CGTGCTGGAC ACCATCCTAG GCATCCAACC

80	 EQPTTSQPET T	TTPQGLLSDK I		) PGSRKASAA (	PIPENMONS I	 MVSDPQPYHE	60
	Protein Accession	F: BAA8652	4 :1 3	1 4	11 :	51	
75		ATATGCAAAG	CAAATAAATT				3000
	CCAATAACAA	TTTCTTTTCC	ACAGTTAACA	ACAAAGTTCT	GTTTTTAAAT	GAAGAGATTA TAACTTTTTT	5940 6000
70		GAACTCTCCA				TGAGAACTCT	5820 5880
	TGGTAGATTA	GCTGTTACAC	CTCCCTTCCC	TTTTTTACAG	TGAACCTGTA	TTCAGTTATT	5760
		CTGTGCCTTT					5640 5700
65	ATAATGTGAC	ACAGTACAAT	TACATGCTAA	ATTTTGCATT	TTCTCTATAT	AACATCTATT	5580
	GCCTGGACAT CCAGAGAGGT	CTGACTGTGC AGTGAGGTGT	CAGAGCTAAA	TGAGTGGGGT	GCTGCCCCAT	GCAAAAAAAT TGATGCTGGT	5460 5520
	GTAGTTATCA	CTGTGTCTGC	CTCTGTTACA	CTGTGCTGCT	TTGCTTAAAC	AGAAATGCAG	5400
60							5280 5340
<i>4</i> 0	GAGATGCAGA	CCACCCTAGA	ATCTCATCTA	GGTTCACTAG	aagttagtta	AATCTTCCTT	5220
						CTCCTCGGCT	
	GGGATGGTCA	GCTGTGAGGG	GAGGGGGCAA	GTGGCCCAGC	AAATGTTGAT	GCCTCCCTTC	5040
55						GTGACCCACT GAGGATGAGA	4920 4980
	ATGAACTTTC	CGCTACCTGG	AAGCTTTAAG	TGAGTAAATC	AGCTTTTCCC	CTCTCATTCC	4860
						TCCCCTCAGC CCACAGAGAA	4740 4800
50	ATCAGGCAGA	TGGCAAGCTT	ACTGCCTTGA	TGCACATCTG	GAGCCACTGG	AGCTCCTTCC	4680
							4560 4620
	CTTCTTGGGA	ATTATCTTAC	TCCTCTGGAG	GGTTAGTCCA	TCAATGTTTT	GCTTCTTGTC	4440 4500
45	CTTTCTCCTT	GGGTGATAGT	AACATGCAGA	GCACTTACAC	AAAGCTCCCT	CTTTGGACAT	4380
45	TCTCCAATCA	GCCTATCACC	CCTTGAAACA	TCTTCCCTGT	GTCCCTGGGG	CACAGCCAGT GCCCCTGATG	4320
	TTATGAGCCT	AGATAGATGC	CGCAATTATT	TGGTTGTTGC	TCTAAGCTTT	GCAAGGGATC	4200
TU						CCCTCAACCA	
40	CGAAAACATT	TGCACTGCTG	TAAAATTGCA	AAATCTTTAA	CTTTGGACAA	TGTGCTTTAG	4020
						ATGAATGCTT TTAAAACTAT	
-	AAATAAGTAT	TAAGCAAACT	AAGAATTTAT	TAAGCAAAAT	AAGAATTTAT	TAAGCAAAAT	3840
35						AATGATAATT GTATTAAGCA	
	TTGGCCAGGA	TGGTCTTGAT	CTCCTGACCT	CGTGATCCGC	CCGCCTCAGC	CTCCCAAAAG	3660
	CGCCATCACG	CCCGGCTAAT	TITGTTTTCG	TATTTTTAGT	AGAGACGGGG	TACAGGCGCC TTTCACCATG	
30	CTCGCTCTGT	TACCCAGATT	GGAGTGCAGT	GGCGCGATCT	CCGCTCACTG	CAAGCTCCGC	3480
	GTGGAGCATC	AGCATTTATT	TTATTTAGTT	TTTTTTTTT	TITTITTT	GAGCTCTTGT GAGACAGAGT	
	TCTCCCAGCC	AAGTTCCAGA	ACCCAGTTGA	GCCAATTGAG	CCTGTCTGGT	TCTCACTGGC	3300
43						CAGTTGGATT	
25	ATATGAGGGA	GCTGGCTCTG	CAAATGAAAA	CCAACCTAAA	AAGATGTTCA	CTTCCAGTGT	3120
						CCCACATTTC AGGAGCCTAA	
	GCAACCTGCT	TGCAAGACCC	CAGGAAAGCC	TGCTGGTCAA	CAGTCAGATT	ATGCTGTCTC	2940
20						ACCTCACCAA TGGCCAAGAA	
	AGATAACTTC	ACCCAGCTTG	CTTCAGTGCC	CTCGGGCCCA	ATTTCATCCT	CTGTAGGCAG	2760
						ATGTTGAAAA GTGAGAAACA	
15	TGCTCCTGTC	AGGCAAACAT	CCACTTCTGG	GGGCATTTAC	TCTAAGAAAG	AAGATCTTGA	2580
						TCAGCCAAGG AGTTCACCAT	2460 2520
	GGTTCATTCA	AGTTCTGTGA	ATGCTGCTGC	TAGGCGATCT	GTTTTTGAGA	GCAATTCTGA	2400
10						CAGTGAATGT	
10	TGCCAGTTCT	CCTAAAGAGT	GGAGGAATTC	TAAAAAGCAG	CTGCCTCCCA	AACATTCTTC	2220
						AGCTGTCTCC	
J						TTTCTTCAAA	
5						AGCCTGAAGT	
						GTCCGACCCA TTAAGAGGGG	
						CCTCACGACT	

```
DAASGAEKTE ARASLSLMVE SLSTTQEEAI LSVAAEAQVF MNPSHIQLED QEAFSFDLQK
                                                                                       120
        AQSKMESAQD VQTICKEKPS GNVHQTPTAS VLGMTSTTAK GDVYAKTLPP RSLFQSSRKP
        DAEEVSSDSE NIPREGDGSE PLANGHSSOS LGKFEDEORY PSESKSFVED LSSSEEELDL
                                                                                       240
        RCLSQALEEP EDAEVFTESS SYVEKYNTSD DCSSSEEDLP LRHPAQALGK PKNQQEVSSA
                                                                                        300
  5
        SNNTPEEOND PMOQLPSRCP SOPIMNPTVQ QQVPTSSVGT SIKQSDSVEP IPPRHPPQPW
        VNPKVEQBVS SSPKSMAVEE SISMKPLPPK LLCQPLMNPK VQQNMPSGSE DIAVERVISV
EPLLPRYSPO SLTDPQIRQI SESTAVEEGT YVEPLPPRCL SOPSERPKFL DSNSTSABWS
                                                                                        420
                                                                                        480
        SPVAPTPSKY TSPPWVTPKF EELYQLSAHP ESTTVEEDIS KEQLLPRHLS QLTVGNKVQQ
        LSSNFERAAI EADISGSPLP PQYATQFLKR SKVQEMTSRL EKMAVEGTSN KSPIPRRPTQ
                                                                                        600
10
        SPVKFMAOOI PSESSALKEG SDVAPLPPNL PSKSLSKPEV KHOVFSDSGS ANPKGGISSK
                                                                                        660
        MLPMKHPLQS LGRPEDPQKV FSYSERAPGK CSSPKEQLSP RQLSQALRKP EYEQKVSPVS
        ASSPKEWRNS KKQLPPKHSS QASDRSKPQP QMSSKGFVNV FVKQSSGEKH LPSSSPFQQQ
                                                                                        780
        VHSSSVNAAA RRSVFESNSD NWFLGRDEAF AIKTKKPSOG SKNFIKSIPA PATKPGRFTI
APVROTSTSG GIYSKKEDLE SGDGNNNOHA NLSNODDVEK LPGVRLKRAP PSOKYKSEKO
                                                                                       840
                                                                                       900
15
        DNFTQLASVP SGPISSSVGR GHKIRSTSQG LLDAAGNLTK ISYVADKQQS RPKSESMAKK
                                                                                       960
        QPACKTPGKP AGQQSDYAVS EPVWITMAKQ KOKSPKAHIS VKELKTKSNA GADABTKEPK
YEGAGSANEN QPKKMFTSSV HKQEKTAQMK PPKPTKSVGP RAQKILQVPA MEKETKRSST
                                                                                      1020
        LPAKFONPVE PIEPVWPSLA RKKAKAWSHM AEITO
20
                                                        SEQ ID NO:49 PAB7 DNA SEQUENCE
        Nucleic Acid Accession #: D87742
                            208-3582 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                     11
25
        GCTTTCCTTT CTAAAGTAGA AGAGGATGAT TATCCCTCTG AAGAACTACT AGAGGATGAA
        AACGCTATAA ATGCAAAACG GTCTAAAGAA AAAAACCCTG GGAATCAGGG CAGGCAGTTT
        GATGTTAATC TGCAAGTCCC TGACAGAGCA GTTTTAGGGA CCATTCATCC AGATCCAGAA
                                                                                       180
        ATTGARGARA GCARGCARGA RACTAGTATG ATTTTGGATA GTGARARARA ARGTGAGACT
GCTGCCARAG GGGTCARCAC AGGAGGCAGG GRACCARATA CARTGGTGGA ARARGRACGC
                                                                                       240
30
        CCTCTGGCAG ATAAGAAAGC ACAGAGACCA TTTGAACGAA GTGACTTTTC TGACAGCATA
AAAATTCAGA CTCCAGAATT AGGTGAAGTG TTTCAGAATA AAGATTCTGA TTATCTGAAG
                                                                                       360
                                                                                        420
        AACGACAACC CTGAGGAACA TCTGAAGACC TCAGGGCTTG CAGGGGAGCC TGAGGGAGAA
        CTCTCAAAAG AGGACCATGG GAACACAGAG AAGTACATGG GCACAGAAAG CCAGGGGTCT
                                                                                       540
35
        GCTGCTGCAG AACCTGAAGA TGACTCGTTC CACTGGACTC CACATACAAG TGTAGAGCCA
                                                                                        600
        GGGCATAGTG ACAAGAGGGA GGACTTACTT ATCATAAGCA GCTTCTTTAA AGAACAACAG
        TCTTTGCAGC GGTTCCAGAA GTACTTTAAT GTCCATGAGC TGGAAGCCTT GCTACAAGAA
                                                                                       720
        ATGTCATCAA AACTGAAGTC AGCGCAGCAG GAGAGCCTGC CCTATAATAT GGAAAAAGTC
        CTAGATAAGG TCTTCCGTGC TTCTGAGTCA CAAATTCTGA GCATAGCAGA AAAAATGCTT
40
        GATACTCGTG TGGCTGAAAA TAGAGATCTG GGAATGAACG AAAATAACAT ATTTGAAGAG
GCTGCAGTGC TTGATGACAT TCAAGACCTC ATCTATTTTG TCAGGTACAA GCACTCCACA
                                                                                       900
                                                                                       960
        GCAGAGGAGA CAGCCACACT GGTGATGGCA CCACCTCTAG AGGAAGGCTT GGGTGGAGCA
                                                                                      1020
        ATGGAAGAGA TGCAACCACT GCATGAAGAT AATTTCTCAC GAGAGAAGAC AGCAGAACTT
AATGTGCAGG TTCCTGAAGA ACCCACCCAC TTGGACCAAC GTGTGATTGG GGACACTCAT
                                                                                      1080
                                                                                      1140
45
        GCCTCAGAAG TGTCACAGAA GCCAAATACT GAGAAAGACC TGGACCCAGG GCCAGTTACA
                                                                                      1200
        ACAGARGACA CTCCTATGGA TGCTATTGAT GCARACAAGC AACCAGAGAC AGCCGCCGAA
GAGCCGGCAA GTGTCACACC TTTGGAAAAC GCAATCCTTC TAATATATTC ATTCATGTTT
                                                                                      1260
                                                                                      1320
        TATTTAACTA AGTCGCTAGT TGCTACATTG CCTGATGATG TTCAGCCTGG GCCTGATTTT
                                                                                      1380
        TATGGACTGC CATGGAAACC TGTATTTATC ACTGCCTTCT TGGGAATTGC TTCGTTTGCC
                                                                                      1440
50
        ATTTTCTTAT GGAGAACTGT CCTTGTTGTG AAGGATAGAG TATATCAAGT CACGGAACAG
                                                                                      1500
        CARATTICIG AGRAGITGAN GACTATCATG ARAGARANTA CAGRACTIGI ACRARANTIG
                                                                                      1560
        TCARATTATG ARCAGAAGAT CAAGGAATCA AAGAAACATG TTCAGGAAAC CAGGAAACAA
                                                                                      1620
        AATATGATTC TCTCTGATGA AGCAATTAAA TATAAGGATA AAATCAAGAC ACTTGAAAAA
        AATCAGGAAA TICTGGATGA CACAGCTAAA AATCITCGTG TTATGCTAGA ATCTGAGAGA
GAACAGAATG TCAAGAATCA GGACTTGATA TCAGAAAACA AGAAATCTAT AGAGAAGTTA
                                                                                      1740
55
                                                                                      1800
        AAGGATGTTA TITCAATGAA TGCCTCAGAA TITTCAGAGG TTCAGATTGC ACTTAATGAA
        GCTAAGCTTA GTGAAGAGAA GGTGAAGTCT GAATGCCATC GGGTTCAAGA AGAAAATGCT
                                                                                     1920
        AGGCTTAAGA AGAAAAAAGA GCAGTTGCAG CAGGAAATCG AAGACTGGAG TAAATTACAT
                                                                                      1980
        GCTGAGCTCA GTGAGCAAAT CAAATCATTT GAGAAGTCTC AGAAAGATTT GGAAGTAGCT
60
        CTTACTCACA AGGATGATAA TATTAATGCT TTGACTAACT GCATTACACA GTTGAATCTG
                                                                                     2100
        TTAGACTUTG AATCTGAATC TGAGGGTCAA AATAAAGGTG GAAATGATTC AGATGAATTA
                                                                                      2160
        GCAAATGGAG AAGTGGGAGG TGACCGGAAT GAGAAGATGA AAAATCAAAT TAAGCAGATG
        ATGGATGTCT CTCGGACACA GACTGCAATA TCGGTAGTTG AAGAGGATCT AAAGCTTTTA
                                                                                      2280
        CAGCTTAAGC TAAGAGCCTC CGTGTCCACT AAATGTAACC TGGAAGACCA GGTAAAGAAA
                                                                                      2340
65
        TTGGAAGATG ACCGCAACTC ACTACAAGCT GCCAAAGCTG GACTGGAAGA TGAATGCAAA
                                                                                      2400
        ACCTTGAGGC AGAAAGTGGA GATTCTGAAT GAGCTCTATC AGCAGAAGGA GATGGCTTTG
                                                                                      2460
        CAAAAGAAAC TGAGTCAAGA AGAGTATGAA CGGCAAGAAA GAGAGCACAG GCTGTCAGCT
                                                                                      2520
        GCAGATGAAA AGGCAGTTTC GGCTGCAGAG GAAGTAAAAA CTTACAAGCG GAGAATTGAA
GAAATGGAGG ATGAATTACA GAAGACAGAG CGGTCATTTA AAAACCAGAT CGCTACCCAT
                                                                                      2580
                                                                                      2640
70
        GAGAAGAAG CTCATGAAAA CTGGCTCAAA GCTCGTGCTG CAGAAAGAGC TATAGCTGAA
        GAGAAAAGGG AAGCTGCCAA TTTGAGACAC AAATTATTAG AATTAACACA AAAGATGGCA
                                                                                      2760
        ATGCTGCARG ARGACCTGT GATTGTAAAA CCAATGCCAG GAAAACCAAA TACACAAAAC
                                                                                      2820
        CCTCCACGGA GAGGTCCTCT GAGCCAGAAT GGCTCTTTTG GCCCATCCCC TGTGAGTGGT
        GGAGAATGCT CCCCTCCATT GACAGTGGAG CCACCCGTGA GACCTCTCTC TGCTACTCTC
                                                                                      2940
75
        ARTCGARGE ATATCCCTAG ARGTGARTTT GGATCAGTGG ACGGGCCTCT ACCTCATCCT
                                                                                      3000
        CGATGGTCAG CTGAGGCATC TGGGAAACCC TCTCCTTCTG ATCCAGGATC TGGTACAGCT
                                                                                      3060
        ACCATGATGA ACAGCAGCTC AAGAGGCTCT TCCCCTACCA GGGTACTCGA TGAAGGCAAG
                                                                                      3120
        GTTAATATGG CTCCAAAAGG GCCCCCTCCT TTCCCAGGAG TCCCTCTCAT GAGCACCCCC
                                                                                      3180
        ATGGGAGGCC CTGTACCACC ACCCATTCGA TATGGACCAC CACCTCAGCT CTGCGGACCT
80
        TTTGGGCCTC GGCCACTTCC TCCACCCTTT GGCCCTGGTA TGCGTCCACC ACTAGGCTTA
```

						CCCTCGGGGA	3360
						AGAGTACTTT	3420
		CCCGATTACC					3480
5		ACTTACTGCC ACTGTTCACA					3540 3600
J		AGAAAGTGTA					3660
		AGTTTATTTT					3720
		CCAAACAATT					3780
		TCCTTACAAC					3840
10	GTAGCATATG	TAATTGCAAA	ATGATTTAGA	ATGTCATGAA	AAATATGAAC	ATTTCCTGTG	3900
		AAGAACATGT					3960
		TGTTTATAAG					4020
		CTAAAAGATC					4080
<b>15</b> .		AAATTTGTTT TGCCATTTGG					4140 4200
10 .		ACTTCCGGCT					4260
		AAGTTTATTT					4320
	ATTGTCTATT	TGAGAATGGT	TTTCTGAGAG	TGAGTTTACA	TTAGTAGCAA	GAGTTGTTTG	4380
20		CCATTGTTTT					4440
20		TCATGGCCAT					4500
						AAAAGATTGG	4560
		TGCCATGAGA AAGGGTTGAA					4620 4680
		AATTAATATT					4740
25		TCTGGAATTG					4800
		TCTTTAAATA					4860
		ATAGCACTCC					4920
		ACTITITITI					4980
30		TTGAAACCTA					5040
JU		AAAAAGGAGC ATAGATAGTT					5100 5160
		GAATATAAAA					5220
		AGAATAGAAG					5280
0.5		AAAAATAAGA					5340
35		CACAAAACAA					5400
		ATGCCATCTA					5460
		TTAGAGTATT AGAAACTGGT					5520 5580
		ATAACTGCTT					5640
40		TGCCAATATG					5700
		AAAGTTTCAT					5760
		ATTGTCTTAT					5820
						agtaaattta	5880
45					GATAATCACT	CATTTTCTCG	5940
43	TTATATTCAG	GTCTGAATTA	AMGITAAGIT	AATCAC			
	SEQ ID NO:50 P	AB7 Protein seque	ence				
	Protein Accession						
50							
	1	11	21	31	41	51	
		YPSEELLEDE		Y TO TO TO TO TO TO TO TO TO TO TO TO TO			60
		ILDSEKTSET					120
55		FONKDSDYLK					180
		HWTPHTSVEP					240
		<b>ESLPYNMEKV</b>					300
		Typyrykhst					360
60	MIMIOPPOTH					A A TOP CODE TO BAR A SO	420
OU					TEDTPMDAID		
	EPASVTPLEN	AILLIYSPMP	YLTKSLVATL	PDDVQPGPDF	YGLPWKPVFI	TAPLGIASPA	480
	EPASVTPLEN IPLWRTVLVV	AILLIYSFMF KDRVYQVTEQ	YLTKSLVATL QISEKLKTIM	PDDVQPGPDF KENTELVQKL	YGLPWKPVF1 SNYEQKIKES	TAPLGIASPA KKHVQETRRQ	480 540
	EPASVTPLEN IFLWRTVLVV NMILSDEAIK	AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK	YLTKSLVATL QISEKLKTIM NQEILDDTAK	PDDVQPGPDF KENTELVQKL NLRVMLESER	YGLPWKPVFI SNYEQKIKES EQNVKNQDLI	TAPLGIASPA KKHVQETRRQ SENKKSIEKL	480 540 600
	EPASVTPLEN IPLWRTVLVV NMILSDEAIK KDVISMNASE	AILLIYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS	PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQKENA	YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ	TAPLGIASPA KKHVQETRRQ SENKKSIEKL	480 540 600 660
65	EPASVTPLEN IPLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF	AILLIYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE	YLTKSLVATL QISEKLRTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA	PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL	YGLFWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL	480 540 600 660
65	EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA	AILLIYSFMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN	PDDVQPGPDF KENTELVQKL NLRVMLESER BCHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL	YGLFWKFVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA	480 540 600 660 720 780 840
65	EPASVTPLEN IFLWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE	AILLIYSFMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRRIE	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE	PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH	YGLFWKFVFI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAB	480 540 600 660 720 780 840 900
65	EPASVTPLEN IPLWRTVLVV NMTLSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH	AILLIYSFMF KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKKGKDLEVA AKAGLEDECK EVKTYKRRIE KLLELTQKMA	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDRLQKTE MLQEEPVIVK	PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN	YGLPWKPVPI SNYEQKIKBS EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG	480 540 600 660 720 780 840 900
	EPÄSVTPLEN IPLWRTVLVV NMILSDEAIL KDVISMNASE ABLSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAS EKREAANLRH GECSPPLTVE	AILLIYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRRI KLLELTQKMA PPVRPLSATL	YLTKSLVATL QISEKLRTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE MLQEEPVIVK NRRDMPRSEF	PDDVQPGPDF KENTELVQKL NLRVMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHP	YGLPWKPVPI SNYEQKIKES EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA	480 540 600 660 720 780 840 900 960
65 70	EPÄSVTPLEN IPLWRTVLVV NMILSDEAIK KDVISMNASE ABLSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREANLRH GECSPPLTVE TMMSSSRGS	AILLIYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKOLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRRIE KLLELTQKM APVRPLSATL SPTRVLDEGK	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE MLQEEPVIVE MRCDHPRSEP VMMAPKGPPP	PDDVQPGPDF KENTELVQKL NLRVMLESER BCHRVQEENA LTNCITQLNL SVVEEDLKLL BLYQQKPMAL RSFKNQIATH PMPGKPMTQN GSVDGPLPHP FPGVPLMSTP	YGLPWKPVPI SNYEQKIKBS EQNVKNQDLI RLKKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKP MGGFVPPPIR	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP	480 540 600 660 720 780 840 900 960 1020
	EPASVTPLEN IPHWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMNSSRGS FGPRPLPPPF	AILLIYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMKNQIKQM AKAGLEDECK EVKTYKRRI KLLELTQKMA PPVRPLSATL	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG	PDDVQPGPDF KENTELVQKL NLRVMLESER BCHRVQBERA LTNCITQLNL SVVEEDLKLL RLYQQKEMAL RSFKNQIATH PMPGKPNTQN GSVDGPLPHIP FPGVPLMSTP RRDLPLHPRG	YGLPWKPVFI SNYEQKIKES EQNVKNQDLI RLKKKEQLQ LECESESEGQ QLKLRASVST QKKLSQEEYE EKKAHENWLK PPRRGPLSQN RWSAEASGKW MGGPVPPPIR FLPGHAPFRP	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF	480 540 600 660 720 780 840 900 960
	EPASVTPLEN IPHWRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSAAE EKREAANLRH GECSPPLTVE TMMNSSRGS FGPRPLPPPF	AILLIYSFMP KDRVYQVTEQ YRDKIKTLEK FSEVQIALNE EKSQKDLEVA EKMRNQIKQM AKAGLEDECK EVKTYKRRIE KLLELTQKMA PPVRPLSATL SPTRVLDEGK GPGMRPPLGL	YLTKSLVATL QISEKLKTIM NQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE MLQEEPVIVK NRRDMFRSEF VNMAPKGPPP REFAPGVPPG	PDDVQPGPDF KENTELVQKL NLKYMLESER ECHRVQEENA LITKCITQLNL SVVEEDLKLL ELYQQKENAL RSFKNQLATH PMPGKENTQN GSVDGPLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS	YGLFMKPUPI SNYBOKIKES BONVKNODLI RLKKKKBQLQ LECESESEQ QKKLSQEBYE EKKARENWLK PPRRGPLSQN MGGPVPPPIR FLFGHAPPRP TSQDCSQALK	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNESDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAB GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYP QSP	480 540 600 660 720 780 840 900 960 1020
70	EPASVTPLEN IFLERTVLVV MNILSDEAIK KDVISMRASE AELSEQIKSF ANGSVGGDRN LEDDRNSLQA ADEKAVSAAE EKREANLRH GECSPPLTVE TMMNSSSRGS FGPRLPPPF IPGTRLPPPT	AILLYSFMP KDRVYQVTEQ YKDKIKTLEK YSDVQIALNE EKSQKDLEVA EKHROLIGM AKAGLEDECK EVKTYKRIE KLLELTQKMA PFVRPLSATL SPTKVLDEGK GPGMRPPLGL HGPQEYPPPP	YLTKSLVATL QISEKLETIM NQEILDDTAK AKLSEEKVKS LTHKODNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDHPRSEP REFAPGVPPG AVRDLLPSGS	PDDVQPGPDF KENTELVQKL NLKYMLESER ECHRVQEENA LITKCITQLNL SVVEEDLKLL ELYQQKENAL RSFKNQLATH PMPGKENTQN GSVDGPLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS	YGLFMKPUPI SNYBOKIKES BONVKNODLI RLKKKKBQLQ LECESESEQ QKKLSQEBYE EKKARENWLK PPRRGPLSQN MGGPVPPPIR FLFGHAPPRP TSQDCSQALK	TAPLGIASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAE GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYF	480 540 600 660 720 780 840 900 960 1020
	EPÄSVTPLEN IPLMRTVLVV NMILSDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSLQA ADEKAVSABE EKRERANLÆH GECSPPLTVE TMMNSSSRGS FGPRFLPPPF IPGTRLPPPT Nucleic Add Acco	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSKOKDLEVA EKMENQIKOM AKAGLEDECK EVKTYKRRIE EVLLELTORMA FPVRPLSATL SPTRVLDEGK GPGMRPPLGL HGPQEYPPPP ESSION #: NMLO	YLTKSLVATL QISEKLKTIM NOETLIDDTAK AKLSEEKVKS LTHKDDNINA MUVSRYOTA TLRQXVEILN EMEDDELQKTE MIQEEPVIVK NRRDHPRSEF VNMAPKGPPP REFAFGVPPG AVRDLLPSGS	PDDVOPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LITKCITQIANL ELYQQKEMAL RSFKNQIATH PMPGKENTQN GSVDGFLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS	YGLFMKPUPI SNYEQKIKES SNYEQKIKES SQNYKNODLI RLKKKKEQLQ LECESESEGQ QKKLSQEEYE EKKAHEWILK PPPRGPLSON RWSAEASGKP MGGPUPPIR TSQDCSQALK Q ID NO:51 PABS	TAPLGTASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAB GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYP QSP DNA SEQUENCE	480 540 600 660 720 780 840 900 960 1020
70	EPASVTPLEN IFLERTVLVV MNILSDEAIK KDVISMRASE AELSEQIKSF ANGSVGGDRN LEDDRNSLQA ADEKAVSAAE EKREANLRH GECSPPLTVE TMMNSSSRGS FGPRLPPPF IPGTRLPPPT	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSKOKDLEVA EKMENQIKOM AKAGLEDECK EVKTYKRRIE EVLLELTORMA FPVRPLSATL SPTRVLDEGK GPGMRPPLGL HGPQEYPPPP ESSION #: NMLO	YLTKSLVATL QISEKLETIM NQEILDDTAK AKLSEEKVKS LTHKODNINA MDVSRTQTAI TLRQKVEILN EMEDELQKTE MLQEEPVIVK NRRDHPRSEP REFAPGVPPG AVRDLLPSGS	PDDVOPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LITKCITQIANL ELYQQKEMAL RSFKNQIATH PMPGKENTQN GSVDGFLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS	YGLFMKPUPI SNYEQKIKES SNYEQKIKES SQNYKNODLI RLKKKKEQLQ LECESESEGQ QKKLSQEEYE EKKAHEWILK PPPRGPLSON RWSAEASGKP MGGPUPPIR TSQDCSQALK Q ID NO:51 PABS	TAPLGTASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAB GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYP QSP DNA SEQUENCE	480 540 600 660 720 780 840 900 960 1020
70	EPASVTPLEN IPLIMITULV INTLISDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRIN LEDDRNSLQA ADEKAVSAAE EKREANILRH GECSPPLTVE TMMNSSSRGS FGPRPLPPPF IPGTRLPPPT Nucleic Acid Acci Coding sequence	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSKOLEVA EKSKOLEVA AKAGLEDECK EVKTYKRRIB KLLELTQKMA PFVRPLSATA SPTRVLDEGK GPGRRPFLGL HGPQEYPPPP  SSION #: NM_0 C: 84-187	YLTKSLVATL QISEKLETIM MQEILDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTQTAI TLRQKVEILN EMEDBLQKTE MLQBEPVIVK MRRDHPRSEP VNMAPKGPPP REFARGVPPG AVRDLLPSGS 06457 4 (underlined sequ	PDDVQPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LTNCITQLNL SVVEEDLKLL ELYQQEENAL RSFKNQLATH PMGKFNTQN GSVDGPLPHP FPGVPLMSTP RRDLPLHPRG RDEPPPASQS SE ences correspond	YGLFMKPUPI SNYEQKIKES SNYEQKIKES SQNYKNODLI RLKKKKEQLQ LECESESEGQ QKKLSQEEYE EKKAHEWILK PPPRGPLSON RWSAEASGKP MGGPUPPIR TSQDCSQALK Q ID NO:51 PABS	TAPLGTASPA KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREHRLSA ARAAERAIAB GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYP QSP DNA SEQUENCE	480 540 600 660 720 780 840 900 960 1020
70 75	EPASVTPLEN IPLIMITULV INTLISDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSIQA ADEKAVSAAE EKKEAANLRH GECSPPLTVE TMMNSSSRGS FGPRLPPPF IPGTRLPPPT Nucleic Add Acce Coding sequence	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSCKOLEVA AKAGLEDECK EVKYYKRRIB KLLELTQKMA KLLELTQKMA KLLELTQKMA FYVRPLSATL SPTRVLDEGK GPGMRPPLGL HGPQEYPPPP  SSSION #: NM_0  11	YLTKSLVATL QISEKLKTIM NOETLIDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTYTAI TLRQKVEILN EMEDELQKTE MILQEEPVIVK NRRDMPRSEP VNMAPKGPPP REFAPGVPPG AVROLLPSGS  06457 4 (underlined sequence)	PDDVQPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LITNCITQLNL SVVEEDLKLL ELYQ0KENAL RSFKNQLATH PMPGKPNTQN FROUPHFPF RRDLPLHPRG RDEPPPASQS SE ences correspond	YGLPMKPUPI SNYEQXIKES SONYKNODLI RLKKKKEQLQ LECESESEQQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLFGHAPFRP TSQDCSQALK Q ID NO:51 PAB9 to start and slop of	TAPLGIASPA KKHVQETRRQ KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAB GSFGPSPVSG SFSDFGSGTA YGPPFQLCGP LGSLGFREYF QSP DNA SEQUENCE	480 540 600 660 720 780 840 900 960 1020
70	EPASVTPLEN IPLIMITULV INTLISDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSIQA ADEKAVSAAE EKKEAANLRH GECSPPLTVE TMMNSSSRGS FGPRLPPPF IPGTRLPPPT Nucleic Add Acce Coding sequence	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSCKOLEVA AKAGLEDECK EVKYYKRRIB KLLELTQKMA KLLELTQKMA KLLELTQKMA FYVRPLSATL SPTRVLDEGK GPGMRPPLGL HGPQEYPPPP  SSSION #: NM_0  11	YLTKSLVATL QISEKLKTIM NOETLIDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTYTAI TLRQKVEILN EMEDELQKTE MILQEEPVIVK NRRDMPRSEP VNMAPKGPPP REFAPGVPPG AVROLLPSGS  06457 4 (underlined sequence)	PDDVQPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LITNCITQLNL SVVEEDLKLL ELYQ0KENAL RSFKNQLATH PMPGKPNTQN FROUPHFPF RRDLPLHPRG RDEPPPASQS SE ences correspond	YGLPMKPUPI SNYEQXIKES SONYKNODLI RLKKKKEQLQ LECESESEQQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLFGHAPFRP TSQDCSQALK Q ID NO:51 PAB9 to start and slop of	TAPLGIASPA KKHVQETRRQ SENKKSLEKL QEIEDWSKLH NKGGNDSDEL KCNLEDQVKK RQEREIRLSA ARAAERAIAB GSFGPSPVSG SPSDFOSGTA YGPPPQLCGP LGSLGPREYF QSP DNA SEQUENCE	480 540 600 660 720 780 840 900 960 1020
70 75	EPASVTPLEN IPLIMITULV INTLISDEAIK KDVISMNASE AELSEQIKSF ANGEVGGDRN LEDDRNSIQA ADEKAVSAAE EKKEAANLRH GECSPPLTVE TMMNSSSRGS FGPRLPPPF IPGTRLPPPT Nucleic Add Acce Coding sequence	AILLYSPMP KDRVYQVTEQ YKDKIKTLEK FSEVQIALNE EKSCKOLEVA AKAGLEDECK EVKYYKRRIB KLLELTQKMA KLLELTQKMA KLLELTQKMA FYVRPLSATL SPTRVLDEGK GPGMRPPLGL HGPQEYPPPP  SSSION #: NM_0  11	YLTKSLVATL QISEKLKTIM NOETLIDDTAK AKLSEEKVKS LTHKDDNINA MDVSRTYTAI TLRQKVEILN EMEDELQKTE MILQEEPVIVK NRRDMPRSEP VNMAPKGPPP REFAPGVPPG AVROLLPSGS  06457 4 (underlined sequence)	PDDVQPGPDF KENTELVQKL NLRYMLESER ECHRVQEENA LITNCITQLNL SVVEEDLKLL ELYQ0KENAL RSFKNQLATH PMPGKPNTQN FROUPHFPF RRDLPLHPRG RDEPPPASQS SE ences correspond	YGLPMKPUPI SNYEQXIKES SONYKNODLI RLKKKKEQLQ LECESESEQQ QLKLRASVST QKKLSQEYE EKKAHENWLK PPPRRGPLSQN RWSAEASGKP MGGPVPPPIR FLFGHAPFRP TSQDCSQALK Q ID NO:51 PAB9 to start and slop of	TAPLGTASPA KKHVQETRRQ KKHVQETRRQ SENKKSIEKL QEIEDWSKLH NKGGNDSDEL KCNLEDGVKK RQEREHRLSA ARAAERAIAB GSFGPSPVSG SPSDPGSGTA YGPPPQLCGP LGSLGPREYP QSP DNA SEQUENCE Oddons)  51   TTTTTCTGTCA	480 540 660 720 780 840 900 960 1020 1080 1140

```
CTMGGGGTTT CCGGCTGCAG GGCGGTAAGG ATTTCAACAT GCCTCTGACA ATCTCTAGTC
                                                                                                    180
           TAAAAGATGG CGGCAAGGCA GCCCAGGCAA ATGTAAGAAT AGGCGATGTG GTTCTCAGCA
          TTGATGGAAT AAATGCACAA GGAATGACTC ATCTTGAAGC CCAGAATAAG ATTAAGGGTT GTACAGGCTC TTTGAATATG ACTCTGCAAA GAGCATCTGC TGCACCCAAG CCTGAGCCGG
                                                                                                    300
  5
                                                                                                    360
           TTCCTGTTCA AAAGGGAGAA CCTAAAGAAG TAGTTAAACC TGTGCCCATT ACATCTCCTG
           CTGTGTCCAA AGTCACTTCC ACAAACAACA TGGCCTACAA TAAGGCACCA CGGCCTTTTG
                                                                                                     ARO
           GTTCTGTGTC TTCACCAAAA GTCACATCCA TCCCATCACC ATCGTCTGCC TTCACCCCAG
                                                                                                    540
           CCCATGCGAC CACCTCATCA CATGCTTCCC CTTCACCCGT GGCTGCCGTC ACTCCTCCCC
10
           TGTTCGCTGC ATCTGGACTG CATGCTAATG CCAATCTTAG TGCTGACCAG TCTCCATCTG
                                                                                                     660
           CACTGAGGGC TGGTAAAACT GCAGTTAATG TCCCACGGCA GCCCACAGTC ACCAGCGTGT
                                                                                                    720
           GTTCCGAGAC TTCTCAGGAG CTAGCAGAGG GACAGAGAAG AGGATCCCAG GGTGACAGTA
           AACAGCAAAA TGGCCCACCA AGAAAACACA TTGTGGAGCG CTATACAGAG TTTTATCATG
                                                                                                    840
          TACCCACTCA CAGTGATGCC AGCAAGAAGA GACTGATTGA GGATACTGAA GACTGGCGTC CAAGAACTGG AACAACTCAG TCTCGCTCTT TCCGCATCCT TGCCCAGATC ACTGGGACTG
                                                                                                    900
15
          AACATITIGAA AGAATCIGAA GCCGATAATA CAAAGAAGGC AAATAACTCT CAGGAGCCTT
CTCCGCAGIT GGCTTCCTTG GTAGCTTCCA CACGGAGCAT GCCCGAGAGC CTGGACAGC
                                                                                                   1020
                                                                                                   1080
           CAACCTCTGG CAGACCAGGG GTTACCAGCC TCACAACTGC AGCTGCCTTC AAGCCTGTAG
          GATCCACTGG COTCATCAAG TCACCAAGCT GGCAACGGCC AAACCAAGGA GTACCTTCCA
CTGGAAGAAT CTCAAACAGC GCTACTTACT CAGGATCAGT GGCACCAGCC AACTCAGCTT
                                                                                                   1200
20
                                                                                                   1260
           TGGGACAAAC CCAGCCAAGT GACCAGGACA CTTTAGTGCA AAGAGCTGAG CACATTCCAG
           CAGGGAAACG AACTCCGATG TGCGCCCATT GTAACCAGGT CATCAGAGGA CCATTCTFAG
                                                                                                   1380
           TGGCACTGGG GAAATCTTGG CACCCAGAAG AATTCAACTG CGCTCACTGC AAAAATACAA
                                                                                                   1440
           TGGCCTACAT TGGATTTGTA GAGGAGAAAG GAGCCCTGTA TTGTGAGCTG TGCTATGAGA
                                                                                                   1500
25
           AATTCTTTGC CCCTGAATGT GGTCGATGCC AAAGGAAGAT CCTTGGAGAA GTCATCAATG
                                                                                                   1560
           CGTTGAAACA AACTTGGCAT GTTTCCTGTT TTGTGTGTGT AGCCTGTGGA AAGCCCATTC
                                                                                                   1620
           GGAACAATGT TITTCACTTG GAGGATGGTG AACCCTACTG TGAGACTGAT TATTATGCCC
                                                                                                   1680
           TCTTTGGTAC TATATGCCAT GGATGTGAAT TTCCCATAGA AGCTGGTGAC ATGTTCCTGG
                                                                                                   1740
           ABGUTUNGG CTACACCTGG CATGACACTT GCTTTGTATG CTCAGTGTGT TGTGAAAGTT
                                                                                                   1800
30
           TGGAAGGTCA GACCTTTTC TCCAAGAAGG ACAAGCCCCT GTGTAAGAAA CATGCTCATT
                                                                                                   1860
          1920
                                                                                                   1980
           AGTGGCCCTG AAGGAATAAA TTCCAGCTTT AAAAACCAAG TCTGAGGAAA TATTTGGCTT
          CATAAAGTAA AGAGACGGTT TGGCATTTAT TATTACTTTT TCCTGTATTT TATGCCCATA
AAATAAGCTT TATAAAAACC AATTTCCTGA TGGACTATTA AATTCATCTT AGAATAAATT
                                                                                                   2100
35
                                                                                                   2160
           AGTGAAGAAT TTAATTTAG AATAAATAAT CCAATCTGAA ATAATTATAC CTTCTTTCCT
           TGTTAGGTAG TTATGAGTAA ATCTGCAAAA GGCAATGAAA ATGCCTTAAA TTTTATCAAT
                                                                                                   2280
           AACAGAATTA TYGTATTTAA AAAAAAACTA ATACTTATCT TTAAAATAGT AAATAGGATT
                                                                                                   2340
           TTAAACAGAG AATTTTATCA GTAATAGGTG TCAGTTTTTA AAAAATTGCT TGTAGGCTGA
                                                                                                   2400
40
          GCGCGGTGGC TCACGCCTGT AATCCCAGCA CTTTGGGAGG CCAAGGTGGG TGGACCACAT
GAGGTCAGGA GTTTGAGATC AGCCTGGCCA ACATGGTGAA ACCCCATCTC TACTAAAAAT
                                                                                                   2460
                                                                                                   2520
           ACAAAATTA GCCGGACGCA GTGGCACGCG CCTGTAATCC CAGCTACTCA AGAGGCTGAG
          GCACGAGAAT CACTTGAACC CGGGAGGGAG AGGTTGCAGT GAGCCAAGAT CGTACCACTG
CACTCCAGCC TGGGTGACAG AGTGAGACTC CGTCTCCAAA AAAAAACTTT GCTTGTATAT
                                                                                                   2640
                                                                                                   2700
45
           TATTTTTGCC TTACAGTGGA TCATTCTAGT AGGAAAGGAC AATAAGATTT TTTATCAAAA
          TGTGTCATGC CAGTAAGAGA TGTTATATTC TTTTCTTATT TCTTCCCCAC CCAAAAATAA
GCTACCATAT AGCTTATAAG TCTCAAATTT TTGCCTTTTA CTAAAATGTG ATTGTTTCTG
                                                                                                   2820
                                                                                                   2880
           TTCATTGTGT ATGCTTCATC ACCTATATTA GGCAAATTCC ATTTTTTCCC TTGCGCTAAG
                                                                                                   2940
          GTARAGATTT AATTAAATAA TTITGGCCTC TCATAGTTTT CTCTCTCTT AAAGAGAATA
AATAGAGGGC CAGGTGTGGT GGCTCACGCC TGTGATCCCA GCACTTTGGG AGGCCAAGAC
                                                                                                   3000
50
                                                                                                   3060
          GGGCGGATCA TGAGGTCAAG AGATCAAGAT CATCCTGGCC AACATGGTGA AACCCTGTCT
CTACTAAAAA TACAAAAATG AGCTGGGCAT GGTGGGGCGT GCCTGTAGTC CCATGTACTT
                                                                                                   3120
                                                                                                  3180
           GGGAGGCTGA GGCAGGAAAA TTCTTGAACC CAGGAGACGG AAGTTGCAGT GAGCTGAGAT 3240
           CACACCACTG CACTCCAGCC TGGTGACAGA GCAAGACTCC GGCTCTT
55
         SEQ ID NO:52 PAB9 Protein sequence
                               NP 006448
         Protein Accession #:
                                                            31
                                                                           41
60
            1 MENYSVSLVG PAPWGFRLQG GKDFNMPLTI SSLKDGGKAA QANVRIGDVV LSIDGINAQG
61 MTHLEAQNKI KGCTGSLNMT LQRASAAPKP EFVFVQKGEP KEVVKPVPIT SPAVSKVTST
121 NNMAYNKAPR PFGSVSSPKV TSIPSPSSAF TPAHATTSSH ASPSPVAAVT PPLFAASGLH
                                                                                                           180
            181 AMANLSADOS PSALSAGKTA VAVPROPTVT SVCSETSOEL ABGORRGSOG DSKOONGPPR
241 KHIVERYTEF YHVPTHSDAS KKRLIEDTED WRPRTGTTOS RSFRILAQIT GTEHLKESEA
                                                                                                           240
65
            301 DNTKKANNSQ EPSPQLASLV ASTREMPESL DSPTSGRPGV TSLTTAAAPK PVGSTGVIKS
361 PSWORPNOGV PSTGRISNSA TYSGSVAPAN SALGOTOPSD ODTLVORAEH IPAGKRTFMC
                                                                                                           360
                                                                                                           420
            421 AHCNOVIRGP FLVALGKSWH PEEFNCAHCK NIMAYIGFVE EKGALYCELC YEKFFAPECG
            481 RCQRKILGEV INALKQTWHV SCFVCVACGK PIRNNVFHLE DGEPYCETDY YALFGTICHG
541 CEPPIEAGDM FLEALGYTWH DTCFVCSVCC ESLEGQTFFS KKDKPLCKKH AHSVNF
                                                                                                           540
70
                                                                SEQ ID NO:53 PBH7 DNA SEQUENCE
         Nucleic Acid Accession #: AA431407
                                1-864 (underlined sequences correspond to start and stop codons)
         Coding sequence:
75
                                       21
                                                      31
                                                                    41
          ATGGCCAACT GTAAAATGAC CAAAAGCATC AGGTTCCCTG CCCTGGAGCA CTGCTATACT
GGCGGGGAGG TCGTGTTGCC CAAGGATCAG GAGGAGTGGA AAAGACGGAC GGGCCTTCTG
CTCTACGAGA ACTATGGGCA GTCGGAAACG GGACTAATTT GTGCCACCTA CTGGGGAATG
80
```

TTGGACTTTG AGCCATTAGA ACCATGAGCA ACTACAGTGT GTCACTGGTT GGCCCAGCTC

5 10 15	GAGGCCTCAG GGCATCACAG ACCACAGAGA TGCTATGAGG GGGACAGAG ATCATTAATC CACCAGCGG GTGAAGGCCC AAGGAACTCGT AAAAAGGAGI CAAATCCCTT TGTTGATTTAATC AATTCAGTTT AATTCAGTTT AATTCAGTTT AATTCAGTTT AATTCAGTTT AATTCAGTTT AATTCAGTTT AATTCAGTTT	TTGAAAACT ACAGCTOTT GAAACATG GGAACCAG GGAACCAG GGAACCAG GGAACCAG TTATTGTCC ACAGCATG CAGAGCTGC CTGGTCAGA GGCACTTAC GGCACTTAC GGCACTTAC GGCAACTAGC CTCGTCAGA GCCACTTTAC	CATTATTOM GCTACAGOM GARACAGC ATGAAGAGGG ATGAAGAGGG CAGCCCACAG GACCCCACAG CAAGCAGT GACCCCACAG CAAGACCAT GTAATCGGC TCAAGTCAGT GTAATCGGC TCAAGAGGGGGCCC TCAAGAGGGGCCC TCAAGAGCGTCCC TCCAAGTCAGT TTCCACCAC TCCAAGTCAGT TTCCACCAC TCCAAGTCAGT TTCCACCAC TCCAAGTCAGT TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCCC TCCAAGTCC TCCAAGTCCC TCCAAGTCC TCCAAGTCCC TCCAAGTCC	G AGCATGAACI C ATTGATGACI C ATTGATGACI C AAACCTGTCI C AAACTGGAAT C TACATTTGTT G CCTGCAGAGC G GGCAGCCCAG C TTCCTGTCCC ACAGCCCCAG ACAGCCCAG C ACAGCCCAG C ACAGCCAG C ACTGGTAACT C ATGGTTAGGG A TGATTCCAGT C TCTGTATCTTC C CTGTATCTTT C CTGTATCTTT C CTGTATCTTT C CTGTATCTTT C CTGTATCTTT C CTGTATCTTT C CTGTATCTTT C C CTGTATCTTT C C C C C C C C C C C C C C C C C	A CCGCTGACCO A AGGCAGCA A GGCCTGTGA GGCCTGTGA T GTGGGGACT T TCCTGGGGAC T TCAAAGCG A TTGAAAGCG A TTGAAAGCG A TTGAACGGA T TGAACGGATTC A TTGAACGGA A CCAGGGTGGC G ACCGCTTCCTTC T CCTTTCCTTC T CGGCTGGC T GTTTTCCTTC	A GITTCATATG C TGGCAGCAG C TGGCACCT G CCTGCCACCT G CATCAACACT G CAGTGATGAC G TTTGGTGGAG G AGGGAGGTG A TCAGCTGACC A AGGAAGGTG A GGAACTTCGG G ACACCTGAGG G GCATTGAGAG TTTTAAATTA C AGGTAGCAC	360 420 480 540 600 660 720 780 840 900 960	
20	TCATAACGCA AGTAATAAAA TACTGATATC AACAA  SEQ ID NO:54 PBH7 Protein sequence Protein Accession #: FGENESH predicted							
20	1	11	21	31	41	51		
25	 MANCKMTKSI KIKPGFMGKA NTEGNIGIRI IINASGYRIG	RFFALERCYT TPPYDVQFHM KPVRFVSLFM PABVESALVE TAPYKYPRKV	GGEVVLPKDQ EASVENCIIV CYEGDPEKTA HPAVAESAVV	EEWKRRTGLL SMNTADPGSQ KVECGDFYNT GSPDPIRGEV	 LYENYGQSET GITHSLLLQV GDRGKMDEEG VKAFIVLTPQ	GLICATYWGM IDDKGSILPP YICFLGRSDD	60 120 180 240	
	SEQ ID NO:55 PBJ5 DNA SEQUENCE							
30	Nucleic Acid Accession #: AF388200							
	Coding sequence: 33-137 (underlined sequences correspond to start and stop codons)							
	1	11	21	31	41	51		
~=	1	I	1	į	1	1		
35		GGCAGAAGAG					60	
		AATGGAGAAA					120	
		TCACTGAAAT TGAAGAAAGC					180 240	
		AATCCTGGTT					300	
40						TTCAACAAAA	360	
						AACTCTCCAC	420	
		GTGAAAGGTA					480	
	TAAGCCATAC	TTTATGTTCA	ATAAAAAGAG	AATAAGCAGG	A			
45								
45	SEQ ID NO:56 PBJ5 Protein sequence Protein Accession #: AAK83352							
	1	11	21	31	41	51		
<b>50</b>	Ī	Ī	1	Ĭ	Î	Ī		
50	MCCETYYRLL	VLKMEKKSEE	LRNMDGLGNV	EKGH	•	·		
	SEQ ID NO:57 PBJ7 DNA SEQUENCE  Nucleic Acid Accession #: AA876910							
55	Coding sequence: 1-2064 (underlined sequences correspond to start and stop codons)							
	Coding sequence	: 1-2064		inces correspond i	o start and stop co	odons)		
"			(underlined seque	•	·	•		
	1	11	(underlined seque 21 	31 	41	51 		
	1     ATGGACAGTT	11      GCCTGCAACA	(underlined seque 21   TATGAGAGAC	31   CTACTTTACC	41   TCCTTCAGGA	51   GCTCAGGTGT	60	
	1   ATGGACAGTT TTAAATCCAG	11     GCCTGCAACA   CTACACTACT	(underlined seque 21   TATGAGAGAC CCCTGATCCA	31   CTACTTTACC GACTCCACTA	41   TCCTTCAGGA CTCCTGTTCA	51   GCTCAGGTGT TGACTGTCAG	120	
60	1     ATGGACAGTT   TTANATCCAG   GATCTGTTGG	11 GCCTGCAACA CTACACTACT AAACTACCAA	(underlined sequence) 21	31 CTACTTTACC GACTCCACTA CCTGATCTTC	41 TCCTTCAGGA CTCCTGTTCA AAGATGTGCC	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG	120 180	
	1   ATGGACAGTT TTAAATCCAG GATCTGTTGG GCAGATGCCA	11 GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC	(underlined seque 21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC	31   CTACTTTACC GACTCCACTA CCTGATCTTC AGCTTCCTCG	41 TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG ACGAAAAGCT	120 180 240	
	1   ATGGACAGTT TTAAATCCAG GATCTGTTGG GCAGATGCCA GTTCTTTTC	11 GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC CACAGCCAGA	(underlined seque 21   TATGAGAGAC CCCTGATCGA AACTGGCCAA AGATGGTAGC TCTGCCTGAC	31   CTACTTTACC GACTCCACTA CCTGATCTTC AGCTTCCTCG AATCCCACAT	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA ACTCAACAGA	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG CCTAGAAAAGCT AGAAGAAAAAA	120 180	
60	1   ATGGACAGTT TTARATCCAG GATCTGTTGG GCAGATGCCA GTTTCTTTTC CTGGCTTCAG	11 GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC	(underlined seque 21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTGCCTGAC AAATAAAAAT	31   CTACTTTACC GACTCACTA CCTGATCTTC AGCTTCCTCG AATCCCACAT CAGGAAGGAC	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA ACTCAACAGA GTGTATTCGC	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG CCTAGAAAAGCT AGAAGAAAAA AAACACTACT	120 180 240 300	
	1     ATGGACAGTT TTRAATCCAG GATCTGTTGG GCAGATGCCA GTTTCTTTTC CTGGCTTCAG TGGAGGGCCG GAGCCAGCTC	11 	(underlined seque 21   TATGAGAGAC CCCTGATCCA ACATGGCCAA AGATGGTAGC TCTGCCTGAC AAATAAAAAT GGAAGTCTCC AGAGCAACAT	31   CTACTITACC GACTCCACTA CCTGATCTTC AGCTTCCTCG AATCCCACAT CAGGAGTTG TTTGCAGTTG AATTTGCCGG	41     TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA ACTCAACAGA ACTCTATCGC ATTTATGTGT TCATAGGAGC	51     GCTCAGGTGT TGACTGTCAG CCTAGAAAAG ACGAAAAAGCT AGAAGAAAAA AAACACTACT ACTGTTCCCA AGGAAGTGTC	120 180 240 300 360 420 480	
60	1   ATGGACAGTT TTAAATCCAG GATCTGTTGG GCAGATGCCA GTTTCTTTTC CTGGAGGGCCG TGGAGGGCCG GACCTTGCAG	11     GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC CACAGCCAGA ATGTTGGAGC GTACCTCCAA GTACCCATGA CAGGATTTGG	(underlined seque 21 	31   CTACTITACC GACTCCACTA CCTGATCTIC AGCTTCCCACAT CAGGAAGGAC TITICCAGTIG AATTTGCCGG AGCCAAACTG	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC ACTCAACAGA ACTCAACAGA GTGTATTCGC ATTTATGTGT TCATAGGAGC GATGTGGAAG	51     GCTCAGGTGT TGACTGTCAG CCTAGAAAAG ACGAAAAAAA AACACTACT ACTGTTCCCA ACGAACTGT CCCCAAAGGT	120 180 240 300 360 420 480 540	
60	1   ATGGACAGTT TTARATCCAG GATCTGTTGG GCAGATCCCA GTTTCTTTTC CTGGCTTCAG TGGAGGGCCG GAGCCAGCTC GACCTGCAG GCACTTCCAG GCAGAAAAAAG	11     GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC CACAGCCAGA ATGTTGGAGC GTACCTCCAA GTACCCATGA CAGGATTTGG GGCTCCAAAA	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTCCCTGAC AAATAAAAAT GGAAGTCTCC AGACCACAT ACACTCTGGG TGTTGACTTTTGACTTTTGACTTTTGACTTTTGGT TGTTTGACTTTTGACTTTTTTTTTT	31   CTACTITACE GACTCCACTA CCTGATCTTC AGCTACCACAT CAGGAAGGAC TTTGCAGTTG AATTTGCCGG TAGCCAAACTG TACCTCTGTC	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA ACTCAACAGA GTGTATTCGC ATTTATGTGT TCTTATGGAGC GATGTGGAAG CTGGAAATCA	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG ACGAAAAGCT AGAAGAAAAA AAACACTACT ACTGTTCCCA AGGAAGTGTC CTCCAAAGGT CCCTCAAAGGT	120 180 240 300 360 420 480 540 600	
60	1   ATGGACAGTT TTARATCCAG GATCTOTTGG GCAGATGCCA GTTYCTTTC CTGGAGGGCCG GAGCCAGCTC GACCTTGCAG GCAGAAAAAA AGCTGTAGAA	11   GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC CACAGCCAGA ATCTTGCAGC GTACCTCCAAGA GTACCCATGA CAGGATTGG GGCTCCAAAA ATACTTACCA	21   TATGAGAGAC CCCTGATCCA AGATGGTAGC TCTGCCTGAC AAATAAAAAT GGAAGTCTCC AGAGCACAT ACACTCTGGG TGTTGACTTT GTTTTTCTGC	31 	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AGCAGGGAGA ACTCAACAGA GTCTAATCGG TCATAGGAGC GATGTGGAAG CTGGAAATCA CATGTGTAAC	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG ACGAAAAAGCT AGAAGAAAAA AAACACTACT ACTGTTCCCA AGGAAGTGTC CTCCAAAGGT CCCTGACGCT TTTAGCCACC	120 180 240 300 360 420 480 540 600 660	
60	1   ATGGACAGTT TTARATCCAG GATCTOTTGG GCAGATGCCA GTTTCTTTC CTGGGGCCCG GAGCCAGCTC GACCTTGCAG GCAGAARAAG AGCTGTAGAG TACTCTGGGG	11     GCCTGCAACA CTACACTACT AAACTACCAA CTGTGTTCAC CACAGCCAGA ATGTTGGAGC GTACCTCCAA GTACCCATGA CAGGATTTGG GGCTCCAAAA	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTGCCTGAC AAATAAAAAT GGAAGTCTCC AGAGCAACAT ACACCTGGG TGTTGACTTT	31 	41	51   GCTCAGGTGT TGACTGTCAG CCTAGRARAG ACGARARGCT AGARGARARA ARACACTROT ACTGTTCCCA AGGARGTGTC CCTCARAGGT CCTTAGCCAC TCATCCTARA	120 180 240 300 360 420 480 540 600	
60 65	1   ATGGACAGTT TTARAATCCAG GATCTGTTGG GCAGATGCCA GTTTCTTTTC CTGGCTTCAG TGGAGGGCCG GACCTAGCAG GCAGARARAG GCAGARARAG AGCTGTAGAG TACTCTGGGG	11 	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTCCCTGAC AAATAAAAAT GGAAGTCTCC AGACCACAT ACACTCTGGG TGTTGACTTTGTTTTTTCTGC TATCTCAACT TAATCCTCTT	31   CTACTTTACC GACTCCACTA AGCTTCCTCG AATCCACAT CAGGAAGGAC TTTTCCAGTA AGCCAAACTG TACCTCTGTC CCTGATTGGA CTTTCCATAA ACTATAACTG	41   TCCTTCAGGA CTCCTGTTCA AGCAGGGAGA ACTCAACAGA GTGTATTCGC ATTTAGGAGC GATGTGGAAG CATGGAAATCA CATGTGTTAC GTCGTGTTCC TCCATGACC	51   GCTCAGGTGT TGACTGTCAG CCTAGANAAG ACGANAAGCT AGAAGANAAA ANACACTACT ACTGTTCCCA AGGAAGTGTC CTCCANAGGT CCCTGACGCT TTTAGCCAC TCATCCTANA TANTGCAGCT	120 180 240 300 360 420 480 540 600 660 720	
60 65	1   ATGGACAGTT TTARATCCAG GATCTOTTGG GCAGATGCCA GTTTCTTTC CTGGAGGGCCG GAGCCAGCTC GACCTTGCAG GCAGAAAAAG TACTCTGGG TTATGTACTA CAATGGTATT CAATGGTATT	11	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTGCCTGAC AAATAAAAAT GGAAGTCTCC AGAGCAACAT ACACCTGGG TGTTGACTTT TATCTGC ATCTTCAACT TAATCCTCTT ATGGGATTA GGAAAATCTTG GAAAATCTTG	31 	41   TCCTTCAGGA CTCCTGTTCA AAGATGTGCC AAGATGTGCC ACTCAACAGA ACTCAACAGA ACTCTATTCGC ACTTTATTCGC ACTTGGAAG CTGGAAATCA CTGGAAATCA GTCGTGTTAC GTCGTGTTAC TCCATGAGCCC TCCATGACCCC ACTCCCCAA	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAAG CCTAGAAAAA AACACTACT AGAAGAAAAA AAACACTACT CCCCAAAGGT CCCTAAAGGT TCTTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTGGG GCCAATCGGG	120 180 240 300 360 420 480 540 600 660 720 780 840 900	
60 65	1   ATGGACAGIT TTARANTCAG GATCHOTTIGG GCAGATCCCA GTTICTITIC CTGGGTTCAG TGGAGGGCCC GACCTAGCAG GCAGARARAA AGCTGTAGAG TACTCTGGGG TACTCTGGGG TACTCTGGGG TACTCTGGGC TACTGTAGTACTA ACTATGTTCA ACTATGTTCA CCTTTAACTG	11	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTGCCTGAC TCTGCCTGAC AGAGTCTCC AGAGCACAT GGAAGTCTCC TGTTTGACTTT TTTTTTCTGC TATCCTCAACT TAATCCTCTT ATGGGGATTA GAAAATCTTC GAAAATCTTC GCCCTATATTC	31   CTACTITACC GACTCCACTA AGCTTCCTCG AATCCACAT AATTICCAGG AATCAGAAGGA TITECAGTIG AATTIGCCGG TACCTCTGTC CCTGAATGGA CTTTCCAGTA ACTATAACTG AGACTATAACTG AGACTATATA	41   TCCTTCAGGA CTCCTGTTCA AGCAGGGAGA ACTCAACAGA GTGTATTGG ATTTATGTGT TCATAGGAG CTGGAAATCA CATGTGTAC GTCGTGTTCC TCCATGACC TCCAGGATT GCTCCCCCAA CTGACAAAGT	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAGCT AGGAAAAGCT AGGAACAAAAAAAAAA	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960	
60 65 70	1   ATGGACAGTT TTARATCCAG GATCTGTTGG GCAGATCCCA GTTCTTTCC TGGAGGGCCG GACCAGCTC GACCTTCCAG GCAGGANANAG AGCTGTAGAG TACTCTGGGG TTATGTACTA CARTGGTATTA CCTTTAACTG GTTCCTGGG	11	21   TATGAGAGA CCCTGATCCA AGATGGTAGC TCTCCCTGAC AGATGGTAGC TCTCCCTGAC AGAGCACCAT AGACCACCAT ACACTCTGGG ATCTTCAACT TGTTGACTTT ATTGGGGATTA GAAAATCTTG CACATTTCAACT TCAATCCTT ATGGGGATTA CACATTTATCT CCCTAGACCT TCCTAGACCT TCCTAGACT TCCTAGACCT TCCTAGACT TCCTAGACCT TCCTAGACT TCCTAG	31   CTACTTTACC GACTCCACTA CCTGATCTTC AGCTTCCCGA AATCCACAT CAGGAAGGAC AGCCAAACTG CTGACTGTC CCTGATTGGA CTTTCCATAGA ACTATAACTG AGACTTTATA GTCTCATTGGA CAGGAAACACC CAGGAAACACC	41	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAGC ACGAAAAGCT AGAAGAAAAA AAACATACT ACTGTTCCCA AGGAGTGTC CCCTGACGCT TCTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTGGG GCCAATCGGG TGATGTTAGCT TCATCCCAGC	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020	
60 65	1   ATGGACAGTT TTARATCCAG GATCTOTTGG GCAGATGCCA GTTYCTTTC CTGGCTTCAG GCAGACAGCC GACCAGCTC GACCTTGCAG GCAGAAAAAG TACTCTGGGG TTATGTACTA ACTATGTTCA CCTTTAACTG GTTCCTCTCC CTAATGTTCA	11	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTCAA AGATGGTCAC AAATAAAAAT AGAAGTCTCC AGACCAACAT TGTTTTTCTGC ATCTTCAACT TAATCCTCTT ATGGGGATTA GCAAAATCTTG GCAAAATCTTG ATGGGATTA GAAAATCTTG CCCTATATTC CCCTATATTC AGTACACCAA AGTACACCAC	31 	41   TCCTTCAGGA CTCCTGTTCA AAGATGTCCC AAGAGAGAGA ACTCAACAGA ACTTCATCGGT TCATAGGAGC GATTTGGAAG CTGGAAATCA CATGTGTAAC CTCCAGGATT CCCAGGATT GCTCCCCAA CTGCACAAAGT AACAACATCT TCACCAGCC TCACCAGCCC TCACCAGCCC TCACCAGCCC TCACCAGCCC	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAG CCTAGAAAGC AGGAAAAGCT AGAAGAAAAA AAACACTACT ACTGTCCCA AGGAAGTGTC CCCTGACGGT TCTTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTGGG GCCAATCGGG TGATTTTAACT TCAACCCAGC TCAACCCAGC TCAACCCAGC TAAACTAGCC	120 180 240 360 420 480 540 660 720 780 840 900 960 1020 1080	
60 65 70	1   ATGGACAGIT TTARANTCAG GATCHGTTGG GCAGATCCCA GTTICTITTCA CTGGGTCCAG GACCTGCCAG GACCTGCAG GCAGAAAAAA AGCTGTAGAG TACTCTGGGG TTATGTACTA ACTATGTTCA CCTTTAACTG GTTCCTCTGC CTAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA CAAGATTGTTCA	11	21   TATGAGAGAG CCCTGATCCA AACTGGCCAA AGATGGTCAC AAATAAAAA GGAAGTCTCC AAAGAGCACACA AGAGCAACAT ACACTCTGG TGTTGACTTT ATGGGATTA ATGAGATCTT ATGCGTATT ATGCATTT CCCTATATTC CCCTATATTC CCCTATATTC CCCTATATTC AGTACACCAT AAAAGCAAAA	31   CTACTTTACC GACTCCACTA AGCTTCCTCG AATCCACAT AATTTECCAG ATTTCCAGTT AATTTGCCG TACCTCTTC CCTGAATAGA CTTTCCAGTA ACTATAACTG AGACTATAACTG AGACTATATA ACTATAACTG AGACTACAAC CAGCTACAAC CAGCTACAAC CACCTACAAC CCCCCTTATT	41   TCCTTCAGGA CTCCTGTTCA AGGAGGGAGA ACTCAACAGA GTGTATTGC AGTTATGTGT TCATAGGAGC CTGGAAATCA CATGTATGCAC TCCATGGAAC TCCATGGAAC TCCAGGATT GCTCCCCAA CTGACAAAGT AACAACATCT TCACCAGGATT TCACCCAGCA TTACCAGGAT ATCACCAGCA TTACCAGCA	51   GCTCAGGTGT TGACTGTCAG CCTAGANAAG ACGANAAGCT AGAAGANAAA ANACACTACT ACTGTTCCCA AGGAAGTGTC CCTCANAGGT CCCTGACGCT TTTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTGGG GCCANTGGGG TGATTTAACT TCAACCCAGC TAAACTAGCC TAAACTAGCC TAAACTAGCAAAAACTAGCC AGGAGTTGAAA	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140	
60 65 70	1	11	21   TATGAGAGAC CCCTGATCCA AGATGGTAGC AGATGGTAGC TCTCCCTGAC AGAGGACACAT AGACACAT AGACACAT ACACTCTGGG TGTTGACTTT GTTTTTCTGC ATCTTGACT ATAGCGGATTA AGAGATTT ATGGGGATTA GAAAATCTTG GAAATCTTG CCCTAGACCC AGTACACCAT AAAAGCAAA AAAAGCAAAA AAAAGCAAAA	31   CTACTTTACC GACTCACTA CCTGATCTTC AGCTTCACTA AGCTTCCACAT CAGGAAGGAC AGCAAACTG CCTGATTGCATGA ACTATAACTG AGCATTCATAAA ACTATAAACTG AGCATACAC AGCAAACAC CCCCTTAAC CCCCCTTAAC CATACACGAC	41   TCCTTCAGGA CTCCTGTTCA AGCAGGGAGA ACTCTACAGA ACTCTACAGA CTGTATTCGC ATTTATGGAGC GATGTGAAC CATGTGTAAC CATGTGTAAC CTCCATGACC TCCATGACC TCCAGGATT GCTCCCCAA AACT AACAACT TCACCAGCC ATGTAGAACT TCACCAGCC TCCCAGGATT CCCCTGCC	51   GCTCAGGTGT TGACTGTCAG ACGAAAAGC ACGAAAAAGCT ACAGGTGTCCCA AGGAACTACT ACTGTTCCCA AGGAACTGTC CCCTCAAAGGT TCATCCTAAAG TAATGCACC TCATCCTAAA TAATGCAGCT TGATGTTGGG GCCAATCGGG TGATTTAACT TCAACCAGC TAAACTAGCC AGGAGTAGGA CACATTAGGA CACATTAGGA CACATTAGGA	120 180 240 300 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200	
60 65 70	1   ATGGACAGTT TTARATCCAG GATCTGTTGG GCAGATCCCA GTTCTTTTC CTGGCTTCAG GACCAGCTC GACCAGCAT GACCAGCAT AGCTGTAGAG TATCTGGGG TTATGTACTA ACTATGTTCA CCTTAACTG CTTCACTG CTTAACTG CTTAACTG CTTAACTG CTAATGTCTA CAGCAGTTTT CAGCATTGTT CAGCACTTA GCCACACTTA GATGTCTCTGC	11	21   TATGAGAGAC CCCTGATCCA AACTGGCCAA AGATGGTGAC AAATAAAAAT GGAAGTCTCC AGACACATCAGC TGTTGACTTT ATCCTCTTCACTTCA	31   CTACTTTACC GACTCCACTA CCTGATCTTC AGCTTCCCCG AATCCACAT CAGGAAGGAC AGCAAACTG CCTGATTGCA AGCTACTGC CCTGATTGCA AGCTATAACTG AGCATCTATA ACTATAACTG AGAACACC CAGCTACACA CTCCTTAAC CCCCCTTATAC CCCCCTTATAC CCCCCTTATAC CATACAGAA AGTACAGGA AGTACAGGA AGTACAGGA AGTACAGGA AGTACAGGA AGTACAGGGA AGTACAGGGA AGTACAGGGA AGTACAGGGA AGTACAGGGA	41   TCCTTCAGGA CTCCTGTTCA AGARTGTGCC AGCAGGAGA ACTCACAGA GTGTATTCGC GATTGGAAG CTGGAAATCA CATGTGTAAC CTCCAGGATT CCCAGGATT CCCAGGAT GCTGCCAA CTGACAAGT CTGACAAGT TCACCAGAT CTGACAAGT CTGACAAGT CTGACAAGT CTGACAAGT CTGACAAGT CCCAGGAT CCCAGGAT CCCAGGCAT CCCAGCC ATGTAGGAT CCCCTGCT ATAACTTATC	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAG CCTAGAAAGC AGGAAGAAAAA AAACACTACT AGGAAGTGTC CTCCAAAGGT CTCCAAAGGT TTTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTAGG GCCAATGGG TGATTTAACT TCAACCAGC TGATGTAGA TAATGCAGCT TGATGTTAGC AGGAGTAGAA CACAATAGGA TGATTACCT TCAACCAGC TAAACTAGCC AGGAGTAGAA CACAATAGGA TGCTTCTCCT	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260	
60 65 70	1   ATGGACAGIT TTARANTCAG GATCHOTTIGG GCAGATCCCA GTITCATTTCA TGGAGGGCCC GACCTAGCAG GCAGARARA AGCTGTAGAG TACTTTGAG TACTTTGAG TACTTAGAG TACTTAGAT ACTATGTTCA CCTTTAACTG GTTCATCTCAC CTTAACTTC CARACTTTTCAGCT CARACTTTTCAGCT CTAACTTCTCTC CTAACTTCTCTC CTAACTTCTTCACTC CTAACTTCTTCACTC CTAACTTCTTCACTC CTAACTTCTTCACTC CTAACTTCTTCACTC CTTTAACTCTTCTCTC CARACATTTTCAGGCTA	11	21   TATGAGAGAG CCCTGATCCA AACTGGCCAA AGATGGTAGC TCTGCCTGAC AAATAAAAAT AGAGCAACAT ACACTCTGG TGTTGACTTT ATGGGATTA ATGATTTTCTGC TAATCCTCTT ATGAGATTTC GAAATATTC GCCATATTTC TCCTAGACCA AAAAGCAACAT TCCTAGACCA AAAAGCAACAT TCTTAGACCT TCCTAGACCT AATCTTGT CCTATATTCT CCTAGACCT CCTATATTCT CCTAGACCAT CCTGTTGACT CCTGTTGTCTGATT CTGTCTGATT	31   CTACTTTACC GACTCCACTA AGCTTCCTCG AATCCACATA ACTTTCCAGGT GACTCACTG AATTTCCAGGT GACTCACTG AATTTGCAGT AATTTGCAGT TACCTCTGT CCTGAATTGGA ACTATAACTG AGACTTATAA GTCTATAGA CTCTATAGA CTCCTTAACC CAGCTACAAC CCCCCTTATT CATACACGAC AGTACCAGA AGTACCAGC AGTACCAC CCCCTTATT CATACACGAC AGTACCACA AGTACCACA AGTACCACAC CCCCCTTATT CATACACCACA AGTACCACATAA	41   TCCTTCAGGA CTCCTGTTCA AGGAGGGAGA ACTCAACAGA GTGTATTGG ATTTATGTGT TCATAGGAG CTGGAAATCA CATGTTAAC GTCCTGTCAC TCCAGGATT GCTCCCCAA CTGACAAAC TTCACCAGGAT TCACCAGGAT TCACCAGGAT CCCGGGAT CCCGGGTT TCACCAGGAT TCACCAGGAT TCACCAGGAT TCACCAGCA TTAGGAGT TCACCAGCA ATTAGGATT CCCGTGCTCT ATAACTTATC GCACCTCAGT GCACCTCAGT TCACCAGCA TTCACCAGCA TTAGGATT CCCGTGCTCT ATAACTTATC GCACCTCAGT	51   GCTCAGGTGT TGACTGTCAG CCTAGAAAG CCTAGAAAGC AGGAAGAAAAA AAACACTACT AGGAAGTGTC CTCCAAAGGT CTCCAAAGGT TTTAGCCACC TCATCCTAAA TAATGCAGCT TGATGTTAGG GCCAATGGG TGATTTAACT TCAACCAGC TGATGTAGA TAATGCAGCT TGATGTTAGC AGGAGTAGAA CACAATAGGA TGATTACCT TCAACCAGC TAAACTAGCC AGGAGTAGAA CACAATAGGA TGCTTCTCCT	120 180 240 300 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200	

	GGACCAGAAG	CTCTCCTGTG GACGACAACT TGGTTCCCCT	CATCGCTCCC	CCTGAGTTAC	ATCCCAGGTT	GCACCAAGCT	1440 1500 1560		
5	GATTTTAGTA GAAGTAGTTC TGTGCAGCTC	TGGTTCAAGG ACCTCCAGTC TTCAAAACTG TAGGAGAAAG	TGCCATAGAT CCGATGCTTA TTGTTGCTTC	ATACTACATT GATCTGCTAT TATGCCAATC	CCCAGGTAGA TCCTCTCTCA AATCTGGAGT	GTCTCTGGCT AGGAGGTTTA CATAAAAGGT	1620 1680 1740 1800		
10	CCCTGGTATC GCTGGACCTC TTTCTTAATT	AAGTTCGAGA AAAGCATGTT TCCTCATCCT TTATAAAACA TTGTTAATAA	TAACTGGAAC ACTATTAAGT ACGCATAGCT	CCATGGCTAA TTAATTTTTG	CTACTTTAAT GGCCTTGTAT	CACTGGGTTA ATTAAATTCG	1860 1920 1980 2040		
15	SEQ JD NO:58 P Prolein Accession	BJ7 Protein seque	nce SH predicted						
	1	11  -	21 ·	31 j	41 i	51 			
20	ADATVPTDGS WRAGTSKEVS AEKGLONVDF LCTRKNCNPL	LLYLLOELRC SPLEOGERKA PAVDLCVLPP YLCPGNHPDA TITVHDPNAA	VSFPQPDLPD EPARTHEEQH SCRDTYQFFC QWYYGMSWGL	NPTYSTEERK NLPVIGAGSV PDWTCVTLAT RLYIPGFDVG	Lasdvgankn Dlaagfgesg Ysggstrsst Tnftiokkil	QEGRVFANTT SQTGCGSSKG LSISRVFHPK VSWSSPKPIG	60 120 180 240 300		
25	QDCWLCLKAK FQATCNQSLL GPEGRQLIAP DFSNLQSAID	QKHPDRVDLT PPYYVGLGVE TSISTSVSYQ PELHPRLHQA ILHSQVESLA RHQQERENNI	ATLKRGPLSC APNNTWLACT VPLLVPLLAG EVVLQNCRCL	ETRPRALTIG SGLTRCINGT LSIAGSAAIG DLLPLSQGGL	DVSGNASCLI EPGPLLCVLV TAALVQGETG CAALGESCCF	STGYNLSASP HVLPQVYVYS LISLSQQVDA YANQSGVIKG	360 420 480 540 600 660		
30		SVKLTYLKTQ							
	Nucleic Acid Accession #: NM_019005  Coding sequence: 182-1885 (underlined sequences correspond to start and stop codons)								
35	Coding sequence	11	21	31	41	51			
		AATTTCTTGA					60		
40		ACACAGAATC AAACTTGAAA					120 180		
		ACCAAACCTG GAACTAAGTC					240 300		
	TGGATCTTTA	CGTTTATCTG AAATGTGTTG	AAGACTCTGC	AGCTACATTA	CTGTCAATAA	ATTCAGATAC	360 420		
45	TGGACAAGCA	AATGGTCGAG	TTGTACTTAC	AAGCCTTGGT	CAAGATCATA	ACTCAAAGTT	480		
		ATAGGAAAAG CTGGATAGTA					540 600		
	TTCAGTGCTA	ATATGGGATA	TCTGCAGCAA	ATATACTCCT	GATATAGTTC	CCATGGAAAA	660		
50		TCAGCAGGTG AATGATGCTT					720 780		
		ATGCATCGTA ACAAAAGCTG					840 900		
	TGCTTCCTTC	TATGAAGGTC	AGGTTGCAAT	ATGGGATCTT	AGAAAATTTG	AGAAGCCAGT	960		
55		ACTGAGCAAC GCCACTTTAA					1020 1080		
	TACACCCACT	CCCATTGGGG	atgaaactga	ACCCACAATA	ATTGAAAGAA	GTGTGCAACC	1140		
		TACATTGCTT AACCGAACAA					1200 1260		
60		ACATCTTTAA					1320		
00		AATTCTTTAG CTTGATACAG					1380 1440		
		AAGTCACTCT TCTCCAGGCA					1500 1560		
C E	AAAGTCATCG	TTGGGAATGG	TGGAAAGCAG	CAGACATAAT	TGGAGTGGGT	TGGATAAGCA	1620		
65		CAAAACTTAA ACGGATGTAG					1680 1740		
	ATGGGAAAGA	GCTGCTGCTG	TGGCATTGTT	CAACTTGGAT	ATTCGCCGAG	CAATCCAAAT	1800		
		GGGGCATCTT GGGTTATACG					1860 1920		
70	TGCGATTACA	GCTAAATAAC	CCGTATTTGT	GTGTCATGTT	TGCATTTCTG	ACAAGTGAAA	1980		
						AGAGTGGCAT TGAAATGAAA	2040 2100		
	GAGGCTGGAA	ATTTGGAAGG	AATTTTGCTT	ACAGGCCTTA	CTAAAGATGG	AGTGGACTTA	2160		
75		TAGATGTTCT				TATGTTACAG GAATTATAGA	2220 2280		
	AATTTATTAG	ATGCCTGGAG	GTTTTGGCAT	AAACGAGCTG	AATTTGATAT	TCACAGGAGT	2340		
	AAGTCAATCT		TTCAGCTGTG	CCTCATCAGG	GCAGAGGTTT	TAGTCAGTAT			
80						TCGAAAACCA CTGTCCTGGA			
	CTTCCTCCUTI		-oronz ruut.	occurrent					

5	GGAACCAAAT AACTGGTTTA TGGTTCAGGG GATACAACGG AGAGAACCCT TCAGAACAAG AAAAAAAAA	CATGGTGTCA ACCATGCAGA GGAATCTGGT TCAAGTGTGG CCATTCATGA	TAATTGCAGG GTGCCCTGTG ACCTGCAGAG AGCTTTCTAG	CACGGTGGAC TCTGCATGCA ACTGTCCAGC TAGGTGTCCT	ATGCTGGACA CGTGTAAATG CATAAAATGT TCATAGCTCA	TATGCTTAGT TATGCAGTTG TACCACCTTA	2640 2700 2760 2820 2880 2940
10	SEQ ID NO:60 Pt Protein Accession						
	1	11	21	31	41	51	
15	MSGTKPDILW PYMKCVAWYL WNPLDSNWLA LGONDACLSL	NYDPECLLAV AGLDKHRADF	GQANGRVVLT SVLIWDICSK	SLGQDHNSKF YTPDIVPMEK	KDLIGKEFVP VKLSAGETET	KHARQCNTLA TLLVTKPLYE	60 120 180 • 240
20	ASFYEGOVAI TPTPIGDETE SPITSLMWAC POLKSLWYTL SDIONLNEER LNEGASSEKG	PTI IERSVQP GRHLYECTEE HFMKQYTEDM ILALQLCGWI	CDNYTASFAW ENDNSLEKDI DQKSPGNKGS KKGTDVDVGP	HPTSQNRMIV ATKMRLRALS LVYAGIKSIV	VTPNRTMSDF RYGLDTEQVW KSSLGMVESS	TVFERISLAW RNHILAGNED RHNWSGLDKQ	300 360 420 480 540
25				SEC	D ID NO:61 PDG3	DNA SEQUENCE	
	Nucleic Acid Acce Coding sequence			ences correspond			
20	1	11	21	31	41	51	
30	GATCAGCCCA GAGTCCTGGC	CAGTACACAT TTTGTAAAAT	CATTGATGAG GACTTATAAA	AATTTCACTG	GTCTCAACCT TTTAGAGATG	ATGGTGTGAT TTCTCATGCT ATTAAGAGAT TAAAGAATGT	60 120 180 240
35	AGTGCTAAAT CCATATTGTT TGTGATTTGG CTGAGCCTCA	CTTGTAATAA GTATTTCATT ACCATGGCAC GTTTTCCTCA	TATTGTACAA GTGGTGTATT TTAAAAACTC TTTTTCAAAT	ATGGAAATTC GGAAAGTGAT TATAACCTCA ATAGAGAGTA	AATCTTAAGG CTGGACTTTG GGCAAGTCTT TAACATTTAT	ATTATTTTT AGTGAGAAGA TTAATCTTCT CTCATAAGAC	300 360 420 480
40	TTCCAGTCTT TACCAAAAGA CAAATATACT AAATATTTTT	ACATTATTAT CTGACACGTG TTCTTTAACT TAATTCTATC	GTTTATCTGC GAGTTAATCA TCTGTGTGGG TTAGGAAAA	CACAGGGAGA TTTGACAGAT TATCACTTAG TTGTAGNCAA	AGTCCTCAGA GCAAATGCTT GGAAAAAAA ATCTTTTNT	AGATTCCATA TAAAAATGTC CCACCCCCAA GCAGGCAACA CCCATTAACA AAACAGGTAA	540 600 660 720 780 840
45	CTTACTTGAA SEQ ID NO:62 PI	AACTTT  G3 Protein seque	nce		11110101100		040
50	Protein Accession	#: AAB18	5373				
50	1     MGARGAPSRR   SRRSIFRMNG	 RQAGRRLRYL	 PTGSFPFLLL	rrrciórec 	 GQKKKENLLA		60 120
55	AFCNKLFFSM WIADRTDVHI AMTSGOMWNH AATSKGDVGK	VDYDEGTDVF RVFRPFNYSG IRGPPYAHKN	QQLNMNSAPT TIALALLVSL PHNGQVSYIH	PXHXPPKGRP VGGLLYXRRN GSSQAQFVAB	kradtfolor Nlbfiynktg Shiilvlnaa	igfaaeqlak Wamvslcivf	180 240 300
60	Nucleic Acid Acce Coding sequence:			SEC		DNA SEQUENCE	
	- January Joques No.	270-430		•	- June wie only C		
~=	1	11	21 	31 	41 i	51 	
65	GGGGCGCCCA CAGGGCGAGC CCGGGCTGGC	CCGCGCTGCC CGCTGCATTT GGCTGAACCG	AGCCTACCCC CTGCTGCCTA TAAGCCCATT	GCGGCCGAGC GACTTCAGCC GAGTCCACGC	CGCCCGGGCC TGGAGGAGCT TGGTGGCCTG	CGCCACCGCC GCTGTGGCTG GCAGGGCGAG CTTCATGACC	60 120 180 240
70	TTCCTGCCCA GCCGCAGTGC GCGGCCGTCA	ACGGCATGGA CCGCAGGGAC CTTCGGGGGT	ACAGCGCCGG CACCGCAGCC GGCGACCAAG	ACCACCGCCA GCCGCCGCCG TGACCCGCTC	GCACCACCGC CCGCCGCTGC CGCTCCTCCC	CATCGCCGCC AGCCACCCCC CGCCGCCGCCCC TGTGTCCGTC	
						CTTCGTGCTG	540 600
75	AAGCAAGGTT GGGTGGGATC CATCCCCTG CCAAATCCTG	TGTGCTGCGC GCAGCTCCGA CCCGACTCCT TGTATTTGTT	TTCCAGTTCC AGACGGAGAG TCCCCGCACC TTATATATTT	GAAAAGCAGA GAGGGAAATG CACGTGCCCT AATAACTGTT	TGTTTAAGCC GGGCCCTTTC AGATTCATGG TTAAATGAAA	CTTGGACTGA CCCTCTATTG CAGAAAATGA GTTTTAGTAA	660 720 780 840
80						GGGGGGAGGG	900 960

	TCCAAGTTG		r GACGTGGCC	r getegeeet	TCTTCTTGT	T ATGAACCTTT A CTTATGTGGT	
5	SEQ ID NO:64 P Protein Accession	DG8 Protein sequent: CAB4					
10	PGWRLNRKPI	11   AAPSAAAATA ESTLVACPMT A AAAAAAAA	LVIVVWSVAA	LIWPVPIIAG			60 120
15	Nucleic Acid Acc Coding sequence	ession #: NM_0 : 149-11	06765 95 (underlined sec			DNA SEQUENCE codons)	
20 '	. 1	11	21	31	41	51	
20	TCCCGGAGGC	CCGGGTCCCT TGGCCGGGCA AGACACTGCC	GCCGTGGTGC	GCGGTAGGAG	CTGGGCGCGC	ACGGCTACCG	60 120 180
25	GCAAGCGGGG GCTGCTGCTC AAAAGTAGAG	CGGCGGCTGC TGCATCCAGC CAGCTGATGG AAATTTATAA	GGTACCTGCC TCGGGGGAGG AATGGAGTTC	CACCGGGAGC ACAGAAGAAA CAGACGCTCA	TTTCCCTTCC AAGGAGAATC ATCTTCCGAA	TTCTCCTGCT TTTTAGCTGA TGAATGGTGA	240 300 360 420
30	TGCTCTTCAG ACTGGCGAAC GGACTATGAT	CCTCAGCGGC TCCTGGCGCT	AGTGTTCTGT ATTCATCTGC ACGTTTTTCA	GTGCAGGCAA TTTTTGTAAC GCAGCTCAAC	GCTAATGAAG AAGCTCTTCT ATGAACTCTG	AATATCAAAT TCAGTATGGT CTCCTACATT	480
35	TGGATTTGCA GGTTTTCAGA TGGAGGTTTG	GCTGAGCAAC CCACCCAACT CTTTATTNGA	TAGCAAAGTG ACTCTGGTAC GAAGGAACAA	GATTGCTGAC CATTGCTTTG CTTGGAGTTC	AGAACGGATG GCCCTGTTAG ATCTATAACA	TTCATATTCG TGTCGCTTGT AGACTGGTTG	720 780 840
),)	CCGTGGACCT GAGCAGCCAG CACCATGGGG	TCTCTGTGTA CCATATGCTC GCTCAGTTTG ATGGTTCTTC	ATAAGAACCC TGGCAGAATC TAAATGAAGC	ACACATTATT AGCAACTTCG	CAAGTGAGCT CTGGTACTGA AAAGGCGATG	ACATTCATGG ATGCCGCTAT TTGGAAAAAG	900 960 1020 1080
40	AATATTTCGT TGTGATTTGG CAAGTGGGAT	TGCCTAGTGG TCCAAGTACC ACCATGGCAC TTGCATAAAG	ACGGCTATCC TTARARACTC TGAATGTTTA	TTATAGTGAT TATAACCTCA CCATGAAGAT	CTGGACTTTG GCTTTTTAAT AAACTGTTCC	AG <u>TGA</u> GAAGA TAAATGAAGC TGACTTTATA	1140 1200 1260 1320
45	AACTGTGGGT ACAAAGGAAA	TTCATTCATT TTTCCTAGTA TATCAAAGTG CAATGTAATT	AATTTAATTT TTTTTCAAGC	ACAGAAATCA	ATGGTAGCAT	TTAGTAATCT	1380 1440 1500
50	SEQ ID NO:66 P Protein Accession	DM1 Protein secu n#: NP_00	ence: 06756				
	1 	11 	21 	31 	41 	51 	
55	SRRSIFRMNG APCNKLPPSM WIADRTDVHI		PRNYSMIVMF QQLNMNSAPT TIALALLVSL	TALOPOROCS FXHXPPKGRP VGGLLYXRRN	VCRQANEBYQ KRADTFDLQR NLEFIYNKTG	ILANSWRYSS IGPAAEQLAK WAMVSLCIVF	120 180 240 300
50		RRIICLVGLG		SIPRSKYHGY	PYSDLDFE	DNA SEQUENCE	
55	Nucleic Acid Acc Coding sequence	ession #: NM_0 e: 88-161	00947 7 (underlined sequ				
70	1       GGTTTCATAT	11   GAACTCTCCC	21      GCCACCCGGG	31   AACAGCTGGC	41   TGCCACCGTT	51   TGTGTTTTCC	60
70	AGGTTGGCAG CCACCTTCTG TTGTTAAAAT	CAGTTGAAAA	GAATGCTTCC TTTAACAGAA TCTTGGAGTG	TACCCTCATT TTTGAAAACT AGCTATGTGA	GCCTTCAGTT TGGCTATTGA AAGGAACTGA	TTACTTGCAG TAGAGTTAAA ACAATACCAG	120 180 240 300
75	GAATATGAAC CAGTCTGAAG TTTAGTATTT	CACGAAGAAG AACTTAGACG TACCCAAGGA	AGATCATATT CTGGTTCATT TAAAATTCAG	TCTCATTTTA CAACAAGAAA GATTTCTTAA	TTTTGCGGCT TGGATCTCCT AGGATAGCCA	GCTAGAAGAT TGCTTATTGC TCGATTTAGA ATTGCAGTTT	360 420 480 540
80	GAGGCTATAA AGTTTAAGTG	GTGATGAAGA GACTTAAGTT	GAAGACTCTT GGGGTTCGAG	CGAGAACAGG TCCATTTATA	AGATTGTTGC AGATCCCTTT	CTCATCACCA TGCTGATGCT CGTACCACTT	600 660

```
AAGGACATTG TGGCAATCAT CCTGAATGAA TTTAGAGCCA AACTGTCCAA GGCTTTGGCA
        TTARCAGCCA GOTCCTTGCC TGCTGTGCAG TCTGATGAAA GACTTCAGCC TCTGCTCAAT CACCTCAGTC ATTCCTACAC TGGCCAAGAT TACAGTACCC AGGGAAATGT TGGGAAGATT
                                                                                       900
         TCTTTAGATC AGATTGATTT GCTTTCTACC AAATCCTTCC CACCTTGCAT GCGTCAGTTA
  5
        CATAAAGCCT TGCGGGAAAA TCACCATCTT CGTCATGGAG GCCGAATGCA GTATGGCCTA
                                                                                      1020
        TTTCTGAAGG GCATTGGTTT AACTTTGGAA CAGGCATTGC AGTTCTGGAA GCAAGAATTT
                                                                                      1080
        ATCAAAGGAA AGATGGATCC AGACAAGTTT GATAAAGGTT ACTCTTACAA CATCCGTCAC
        AGCTTTGGAA AGGAAGGCAA GAGGACAGAC TATACACCTT TCAGTTGCCT GAAGATTATT
CTGTCCAATC CACCAAGCCA AGGGGATTAT CATGGGTGCC CATTCCGTCA CAGTGATCCA
                                                                                      1200
                                                                                      1260
10
        GAGCTGCTGA AGCAAAAGTT GCAGTCATAC AAGATCTCTC CTGGAGGGAT AAGCCAGATT
        TTGGATTTAG TAAAGGGGAC ACATTACCAG GTAGCCTGTC AAAAATACTT TGAGATGATA
                                                                                      1380
        CACANTOTOG ATGATTOTOG CTTTTCTTTG AATCATCCTA ATCAGTTCTT TTGTGAGAGC
                                                                                      1440
        CARCGTATTC TARATGGTGG TARAGACATA ARGAAGGAAC CTATCCAACC AGAAACTCCT
                                                                                      1500
        CAACCCAAAC CAAGTGTCCA GAAAACCAAG GATGCATCAT CTGCTCTGGC CTCTTTAAAT
                                                                                     1560
15
        TCCTCTCTCG AAATGGATAT GGAAGGACTA GAAGATTACT TTAGTGAAGA TTCTTAGGCA
                                                                                      1620
        GTTTTATAAC CCTTTTCCT CAATAGCCTG TTTCCTGTTT TTAAGATTTT GCCTTTGTTG
        TTGAAAAAGG CTTTCACTGT CACCAAGGCT TAGTGCAGTG ACACAATTAC AGCTGATTGC AGCCTTGACC TTCCCAGGTC AAGTGATCCT CCTACCTCAG CCTCCCAAGT AGTTAGGACA
                                                                                      1740
                                                                                      1800
        CACAGGTGTG CACCTCATAT CCAGATAATT TTTTTCAATT TTTTTTGTA GAGGTGGGGG
                                                                                      1860
20
        GTCTCCCTAT GTTGCCCAGG CAGATCTCAG ACTCCTGGGC TCAAGCGATC CTCACACCTC
                                                                                      1920
        AGCGTCCCAG AGTGCTGGGA TTACAGTTGT GAGCCACTGT GCCTGGCCTT TTTTTTTTT
                                                                                      1980
        TAACCTTTTC GTTTAACTTC TCTCTTCACT GCATCCCAAT CCATCTACAG GCATGCACAC
                                                                                      2040
        TTATTAGGAA AGGAGGTTTG AGGTAACAAC AGAGACTTTC ACTATATTTT GCTTTGACAG
                                                                                      2100
        AAGGAAAGAG GAGGAGTTTC TATTAAAATC TGTCACTTGA GTGATGTCAT TTAAGTCCTA
                                                                                      2160
25
        TTTTAGGAGA TAAAAACAGC TTTGGGGACT GGTTAAAGTC CCCCAGAAAC TACAATAAAG
                                                                                     2220
        AACAACTTT GTTTTAACTC TTAATCACTT TGTAATTTTG ACTCAATCCT TTTCTGGACC 2280
        ATTTTTTTA ATAAATATCA AAGTGT
        SEQ ID NO:68 PDM2 Protein sequence:
30
         rotein Accession #:
                                  21
                                               31
                                                            41
                                                                        51
35
        MEFSGRKRRK LRLAGDORNA SYPHCLOFYL OPPSENISLT EFENLAIDRY KLLKSVENLG
        VSYVKGTEQY QSKLESELRK LKFSYREKLE DEYEPRRRDH ISHFILRLAY CQSEELRRWF
        IQQEMDLLRF RYSILPKDKI QDFLKDSQLQ FEAISDEEKT LREQEIVASS PSLSGLKLGF
                                                                                       180
        ESTYKTPFAD ALDLFRGRKV YLEDGFAYVP LKDIVAIILN EFRAKLSKAL ALTARSLPAV
                                                                                       240
        QSDERLQPLL NHLSHSYTGQ DYSTQGNVGK ISLDQIDLLS TKSFPPCMRQ LHKALRENHK
40
        LRHGGRMQYG LFLKGIGIJL EQALQFWKQE FIKGKMDFDK FDKGYSYNIR HSFGKEGKRT
DYTFFSCLKI ILSNPPSQGD YHGCPFRHSD PELLKQKLQS YKISPGGISQ ILDLVKGTHY
                                                                                       360
        QVACQKYFEM IHNVDDCGFS LNHPNQFFCE SQRILNGGKD IKKEPIQPET PQFKPSVQKT
        KDASSALASL NSSLEMDMEG LEDYFSEDS
45
                                                        SEQ ID NO:69 PDM3 DNA SEQUENCE
        Nucleic Acid Accession #: NM_024840
                            108-491 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                                                31
50
         AATTCATACA GGAGAGAAGT CATATATATG CAGTGATTGT GGAAAAGGCT TCATCAAGAA
         GTCTCGGCTC ATTANTCATC AGAGAGTTCA TACAGGAGAG AAACCACATG GATGCAGCCT
GTGTGGGAAG GCCTTCTCCA AAAGGTCCAG GCTCACTGAA CACCAGAGAA CTCATACAGG
                                                                                        120
                                                                                        180
         AGAGAAGCCC TATGAATGCA CTGAATGTGA CAAAGCATTC CGCTGGAAAT CACAGCTCAA
55
         TGCACATCAG AAAGCTCACA CAGGAGAGAA GTCATATATA TGCCGTGATT GTGGAAAAGG
CTTCATTCAG AAGGGAAATC TCATTGTACA TCAGCGAATT CATACTGGAG AAAAACCCTA
                                                                                        300
                                                                                        360
         TATATGCAAT GAATGTGGAA AAGGCTTCAT CCAAAAGGGC AACCTCCTTA TTCATCGACG
                                                                                         420
         TACTCACACT GGAGAGAAC CCTATGAATG CAATGAATGT GGGAAAGGCT TCAGCCAGAA
                                                                                         480
         GACATGITTA ATATCCCATC AGAGATITCA CACAGGAAAG ACACCCITTG TATGTACTGA
60
          GTGTGGAAAA TCCTGCTCAC ACAAGTCAGG TCTCATTAAC CACCAGAGAA TTCACACAGG
                                                                                         600
         AGAGAAACCC TATACATGCA GTGACTGTGG GAAAGCTTTC AGAGATAAAT CATGTCTCAA
                                                                                        660
         CAGACATCGG AGAACTCATA CAGGGGAGAG ACCGTATGGA TGCTCTGATT GTGGGAAAGC
                                                                                         720
         TITCTCCCAC TIGTCATGCC TIGTTTATCA TAAGGGAATG CIGCATGCAA GAGAGAATG
TGTAGGTTCA GTCAAATTGG AAAATCCTTG CTCAGAGAGT CATAGCTTAT CACATACACG
                                                                                        780
                                                                                        840
65
          TGATCTCATA CAGGATAAAG ACTCTGTTAA CATGGTGACT CTGCAGATGC CTTCTGTGGC
         AGCTCAGACC TCATTAACTA ACACTGCGTT CCAAGCAGAG AGCAAAGTAG CCATTGTGAG
CCAGCCTGTT GCCAGAAGTT CAGTCTCAGC AGATAGTAGA ATTTGCACAG AATAAAAACC
                                                                                        960
                                                                                       1020
          ATATGAATGC AGTGAATGTG GTAGTGCTTT CAGTGATCAA TTACATCATA TGTCACAAAA
                                                                                       1080
         AACACAGAGG AACAAACTGA TATATTCAAG GTGGAAAGCC CTTGAATAAA ACCTTATGGC
                                                                                       1140
70
         TAATAAGCAT ATACTCAGAG AAAAATAGTA TGAAGTGGAG ACTGGGAAAT TCTTTTATGG
                                                                                       1200
          GAAGATAGAT CTTCTCATCA GTGACCATAG ATCACATCTT CAGTGAGCTT ATAGTTGGTA
                                                                                       1260
         GAAATATAAT GATCATGGAA AAGTCCTTGT TCAGAAACAG TACGCCAGTA GGTATCAGGG
                                                                                       1320
         GGTTTACACA GGAGAGAAC TTTTGGAAGA CCTTTGAAGG CTATGAATGT GGCAGGGTTG
                                                                                       1380
         CTAGTGGTAC ATTCTCCTT ATCCTCAGAG GGAATCATAT AGAAATAAAA CTATGAAAAT
GTAACTAGAA CATCTTCATC AAAATATGAA AGAACACACG AAGCAAATAA GCCCTGTGAA
                                                                                       1440
75
                                                                                       1500
         AAGGAGTATT TTAGAGATTT CGATCAGAAA TCTAACATCA TTATATGGCA GATAATATAC
          AGGATGTGTA TTTTAGGACA ATATACCTTG AATCACTAGT TGATATGTCA ATGACTAATT
                                                                                       1620
         AAAAGGGTT GTCAGTGTTA CACATCATTG GTTAAATTTA TAGCACAATG TACCTCTTCC
                                                                                       1680
         CCCTTTTTG ATAAGAGTCT TCTATTCCCA ACCAAGATCA TTATATGATT AGCTCTTGTG
80
         TITCTITGAT TCCAAATTTC TTCACTTGTT ATTTCAGACT ACTGAAGCTC TTCAAAAGGA
                                                                                       1800
```

амалтотитт таатттаата атотаасаса асаасттос атототттаа стутатааат 1860 аатсасссса дассаатсаа стусааласт тотсаатаас с

5	SEQ ID NO:70 P Protein Accession	DM3 Protein secu n#: NP_0					
	1	11	21	31	41	51	
10		PKGPGSLNTR ISLYISEFIL				 TQERSHIYAV NPMNAMNVGK	60 120
				SE	O ID NO:71 PDM	DNA SEQUENCE	:
15	Nucleic Acid Acce Coding sequence	ession #: NM_0 : 341-95			to start and stop		•
	1	11 .	.21	31	41	51	
20	   	CGGGGGGGAG	GCACAGTGAG	TOTAL TREESE	CACGGCAGCG	TCTA ACCCAC	60
	AAGCCGACTG	ACATAAGCCA	GGTCCTAACG	GAGCCTATGT	GTAAGTCCAC	TACTGGTGCA	120
		CTTCTAAGAA GTCCCCTGTG					180 240
25		CGGGAACTGC ACTGCAGGAG					300 360
23	GTTCATCAAG	AGGACCATCT	TGAAAATCCC	CATGAATGAA	CTGACAACAA	TCCTGAAGGC	420
		TTGTCTGAAA CACTTGATCC					480 540
20	CCTGTTAGAC	ATCATTTATA	TGCAATTTCA	TCAGCACCAG	AAAGTTTGGG	ATGTTTTTCA	600
30		GGACCAGGTG				TTAAAAATTC GAGAAACTGA	660 720
	GGAGAATGCA	GTCTGGATTC	GAATTGCCTG	GGGAACACAG	TACACAAAGC	CAAACCAGTA	780
		TACGTGGTGT				CCTCCTCCAT	840 900
35	CCGACAAGAG	GAGATCATTT	TAGATATTAC	CGAAATGAAG	AAAGCTTGCA	ATTAGTGAAC	960
	ATGAAAGGAA	TTAAAAATAA	CCTCACAGTC	AAAAAAAAA	AAAAA		
40	SEQ ID NO:72 P	DM8 Protein sequents: NP_06					
	1	11	21	31	41	51	
		RTILKIPMNE					60
45		IIYMQFHQHQ VWIRIAWGTQ				NTPLLGQELE	120 180
		BIILDITEMK				<b>-</b>	
	Abustain Antal Anna			SE	Q ID NO:73 PDM9	DNA SEQUENCE	
50	Coding sequence	ession #: NM_0 : 1-1125		ences correspond (	to start and stop co	odons)	
	1	11	21	31	41	51	
	 ATGGTGCTGT	GGGAGTCCCC	GCGGCAGTGC	AGCAGCTGGA	CACTTTGCGA	GGGCTTTTGC	60
55	TEGCTECTEC	TECTECCCET	CATGCTACTC	ATCGTAGCCC	GCCCGGTGAA	GCTCGCTGCT	120
		CCTTAAGTGA ATGATCTCTT					180 240
	TTAAGAATTG	GAGACACTGT	GACTTGCGTC	TGTCAGTTCA	AGTGCAACAA	TGACTATGTG	300
60		GCTCCAATGG AGAGTGAGAT					360 420
	TCAGGATCTG	GAGATGGAGT	CCATGAAGGC	TCTGGAGAAA	CTAGTCAAAA	GGAGACATCC	480
		TTTGCCAGTT					540 600
65	TCTTATGATA	ATGCATGCCA TGGGTCGATG	AATCAAAGAA	GCATCGTGTC	AGAAACAGGA	GAAAATTGAA	660 720
05		GAACAGATTA					780
		CTTGTCCGGA					840 900
70	GAAAAAAAGG	TGCAGGAGCC ACTACAGTGT	TCTATACGTT	GTTCCCGGTC	CTGTACGATT	TCAGTATGTC	960
70	TTAATCGCAG	CTGTGATTGG AATGCCCCAG	AACAATTCAG	ATTGCTGTCA	TCTGTGTGGT	GGTCCTCTGC	1020 1080
		ACAATACAAC				AMAGGGCAC	1080

```
SEQ ID NO:74 PDM9 Protein sequence:
           otein Accession #:
                                            21
                                                                         41
                                                                                      51
  5
              1 MVLWESPRQC SSWTLCEGFC WLLLLFVMLL IVARPVKLAA FPTSLSDCQT PTGWNCSGYD
           61 DRENDLFICD TWYCKFDGEC LRIGDTVTCV CQFKCNNDYV PVCGSNGESY QNECYLRQAA
121 CKQQSEILVV SEGSCATDAG SGSGDGVHEG SGETSQKFTS TCDICQFGAE CDEDAEDVWC
                                                                                                       120
           181 VCNIDCSQTN FNFLCASDGK SYDNACQIKE ASCQKQEKIE VMSLGRCQDN TTTTTKSEDG
                                                                                                       240
10
           241 HYARTDYAEN ANKLEESARE HHIPCPEHYN GFCMHGKCEH SINMOEPSCR CDAGYTGOEC
301 EKKDYSVLYV VPGPVRPQYV LIAAVIGTIQ IAVICVVVLC ITRKCPRSNR IHRQKQNYGH
                                                                                                       300
                                                             SEQ ID NO:75 PDO1 DNA SEQUENCE
15
         Nucleic Acid Accession #: NM_014324
         Coding sequence:
                               89-1237 (underlined sequences correspond to start and stop codors)
                                     21
                      11
20
         GGCGCCGGGA TTGGGAGGGC TTCTTGCAGG CTGCTGGGCT GGGGCTAAGG GCTGCTCAGT
         TTCCTTCAGC GGGGCACTGG GAAGCGCCAT GGCACTGCAG GGCATCTCGG TCGTGGAGCT
         STCCGGCCTG GCCCCGGGCC GTNTCTGTGC TATGGTCCTG GCTGACTTCG GGGCGCGTGT
                                                                                               180
         GGTACGCGTG GACCGGCCCG GCTCCCGCTA CGACGTGAGC CGCTTGGGCC GGGGCAAGCG
                                                                                               240
         CTCGCTAGTG CTGGACCTGA AGCAGCCGCG GGAGCCGCGT GCTGCGGCGT CTGTGCAAGC
25
         GGTCGGATGT GCTGCTGGAG CCCTTCCGCC GCGGTGTCAT GGAGAAACTC CAGCTGGGCC
                                                                                               360
         CAGAGATTCT GCAGCGGGAA AATCCAAGGC TTATTTATGC CAGGCTGAGT GGATTTGGCC
                                                                                               420
         AGTTCAGGAA AGCTTCTGCC GGTTAGCTGG CCACGATATC AACTATTTGG CTTTGTCAGG
         TGTTCTCTCA AAAATTGGCA GAAGTGGTGA GAATCCGTAT GCCCCGCTGA ATCTCGTGGC
                                                                                               540
        TGACTTTGCT GGTGGTGGCC TTATGTGTGC ACTGGGCATT ATAATGGCTC TTTTTGACCG CACACGCACT GACAAGGGTC AGGTCATTGA TGCAAATATG GTGGAAGGAA CAGCATATTT
                                                                                               600
30
                                                                                               660
         AAGTTCTTTT CTGTGGAAAA CTCAGAAATC GAGTCTGTGG GAAGCACCTC GAGGACAGAA
                                                                                               720
         CATGITIGGAT GGTGGAGCAC CITITCIATAC GACTITACAGG ACAGCAGATG GGGAATICAT GGCTGITIGGA GCAATAGAAC CCCAGITCIA CGAGCIGCIG ATCAAAAGGAC ITGGACTAAA
                                                                                               780
                                                                                               900
         GTCTGATGAA CTTCCCAATC AGATGAGCAC GGATGATTGG CCAGAAATGA AGAAGAAGTT
35
         TECAGATOTA TITECAAAGA AGACGAAGGC AGAGTGGTGT CAAATCTITG ACGGCACAGA
TECCTOTOTG ACTCCGGTTC TGACTTTTGA GGAGGTTGTT CATCATGATC ACAACAAGGA
                                                                                               960
         ACGGGGCTCG TTTATCACCA GTGAGGAGCA GGACGTGAGC CCCCGCCTTG CACCTCTGCT
                                                                                              1080
         GTTANACACC CCAGCCATCC CTTCTTCCAA AGGGGATCCT TTCATAGGAG AACACACTGA
                                                                                              1140
         GGAGATACTT GAAGAATTTG GATTCAGCCG AGAAGAGATT TATCAGCTTA ACTCAGATAA
                                                                                              1200
40
         AATCATTGAA AGTAATAAGG TAAAAGCTAG TCTCTAACTT CCAGGCCCAC GGCTCAAGTG
                                                                                              1260
         AATTYGAATA CTGCATTTAC AGTGTAGAGT AACACATAAC ATTGTATGCA TGGAAACATG
                                                                                              1320
         GAGGAACAGT ATTACAGTGT CCTACCACTC TAATCAAGAA AAGAATTACA GACTCTGATT
                                                                                              1380
         CTACAGREAT GATTGAATIC TAAAAATGGT TATCATTAGG GCTTTTGATT TATAAAACTT
TGGGTACTTA TACTAAATTA TGGTAGTTAT TCTGCCTTCC AGTTTGCTTG ATATATTTGT
                                                                                              1440
                                                                                              1500
45
         TGATATTAAG ATTCTTGACT TATATTTTGA ATGGGTTCTA GTGAAAAAGG AATGATATAT
                                                                                              1560
         TCTTGAAGAC ATCGATATAC ATTTATTTAC ACTCTTGATT CTACAATGTA GAAAATGAGG
                                                                                              1620
         ARATGCCACA ARTTGTATGG TGATARARGT CACGTGRARC AGAGTGATTG GTTGCATCCA
GGCCTTTTGT CTTGGTGTTC ATGATCTCCC TCTARGCACA TTCCARACTT TAGCARACGT
                                                                                              1680
         TATCACACTT TGTAATTIGC AAAGAAAAGT TTCACCTGTA TTGAATCAGA ATGCCTTCAA
CTGAAAAAAA CATATCCAAA ATAATGAGGA AATGTGTTGG CTCACTACGT AGAGTCCAGA
                                                                                              1800
50
                                                                                              1860
         GGGACAGTCA GITTIAGGGI TGCCTGTATC CAGTAACTCG GGGCCTGTTT CCCCGTGGGT
                                                                                              1920
         CTCTGGGCTG TCAGCTTTCC TTTCTCCATG TGTTTGATTT CTCCTCAGGC TGGTAGCAAG 1980
TTCTGGATCT TATACCCAAC ACACAGCAAC ATCCAGAAAT AAAGATCTCA GGACCCCCCA 2040
         AAAAAAA AAAAAAAA AAAAAAAA
55
         SEQ ID NO:76 PDO1 Protein sequence
                           NP_055139
         Protein Accession #:
                                                        31
                                                                      41
60
              1 MALQGISVVE LSGLAPGRXC AMVLADPGAR VVRVDRPGSR YDVSRLGRGK RSLVLDLKQP
             61 REPRAAASVQ AVGCAAGALP PRCHGETPAG PRDSAAGKSK AYLCQAEWIW PVQESFCRLA
                                                                                                       120
           121 GRDINYLALS GVLSKIGRSG ENPYAPLNLV ADPAGGGLMC ALGIIMALFD RTRTDKGQVI
            181 DANMYEGTAY LSSPLWKTOK SSLWEAPRGO NMLDGGAPFY TTYRTADGEF MAVGALEPOF
                                                                                                       240
65
           241 YELLIKGIGI KSDELPNOMS TODWIPEMKKK FADVPAKKTK ABWCQIFDGT DACVTFVLTF
301 EEVVHIDHNK ERGSFITSEE ODVSPRLAFI LINTPAIPSS KGDFFIGEHT EEILEEFGFS
                                                                                                       300
            361 REETYQLNSD KIIESNKVKA SL
                                                             SEQ ID NO:77 PDO3 DNA SEQUENCE
70
         Nucleic Acid Accession #: AB028951
                               97-1128 (underlined sequences correspond to start and stop codons)
         Coding sequence:
75
         GTTARATCCT TACTITACCA GATTCTTGAT GGTATCCATT ACCTCCATGC AAATTGGGTG
         CTTCACAGAG ACTTGAAACC AGCAAATATC CTAGTAATGG GAGAAGGTCC TGAGAGGGGG
         AGAGTCAAAA TAGCTGACAT GGGTTTTGCC AGATTATTCA ATTCTCCTCT AAAGCCACTA
                                                                                               180
         AGRICATING ATCLAGTAGT TETGRICATIT TGGTATGGG CTCCAGAACT TTTGCTTGGT
GCAAGGCATT ATACAAAGGC CATTGATATA TGGGCAATAG GTTGTATATT TGCTGAATTG
80
         TIGACTICGG AACCTATITT TCACTGTCGT CAGGAAGATA TAAAAACAAG CAATCCCTTT
```

	CATCATGATC	AACTGGATCG	GATATTTAGT	GTCATGGGGT	TTCCTGCAGA	TAAAGACTGG	420
		GAAAGATGCC					480
		GTAGCCTCAT					540
		TGCTTCAGAA					600
5		AGGATCCCTA					660
3		TTCCATACCC					720
		ATCAGCAACA					780
		CCCCTCCACA					840
10		GGGCTGGGGC					900
10		TGAACCAGGT					960
						CCTGAATTAC	1020
	CAAAGCAGCG	TTCAGGGATC	CTCTCAGTCC	CAGAGCACAC	TTGGCTACTC	TTCCTCCTCT	1080
	CAGCAGAGCT	CACAGTACCA	CCCATCTCAC	CAGGCCCACC	GGTACTGACC	AGCTCCCGTT	1140
	GGGCCAGGCC	AGCCCAGCCC	AGAGCACAGG	CTCCAGCAAT	ATGTCTGCAT	TGAAAAGAAC	1200
15	CAAAAAAATG	CAAACTATGA	TGCCATTTAA	AACTCATACA	CATCGGAGGA	AAACCTTATA	1260
						ATTCTTGTGA	
						TAAAGCGTCT	
		CAGCACTTCT					1440
						ATAGGATTIT	
20							
20						CTGATTTAGC	1560
						ACTGTTCTGC	1620
						TACGTTCGTA	
		TTCAGGGAAG					1740
~-	AACCAAAAAC	TGCCTAGATC	TTTGCAGTTA	TGTGCTTTAT	GCCACGAAGA	ACTGAAGTAT	1800
25	GTGGTAATTT	TTATAGAATC	ATTCATATGG	AACTGAGTTC	CCAGCATCAT	CTTATTCTGA	1860
	ATAGCATTCA	GTAATTAAGA	ATTACAATTT	TAACCTTCAT	GTAGCTAAGT	CTACCTTAAA	1920
						AAGAGAGTAA	1980
						ACTTCCCTTT	
						AACCATTGGT	
30						CTCAAGTAGA	
50						TATTTGTATT	
						ATGTTTAAAG	
						TCAAGAATCT	
35						TTGTGCCTAA	
33						ATTTCCATTA	
						ACTCCCCAGA	
						AGAAATTTGT	
						GAGCTAGAAG	
40	AAATAGCTGA	TTATTGTATA	TGCAAATTAC	ATGCATTTTT	AAAAACTATT	CTTTCTGAAC	2700
40	TTATCTACCT	GGTTATGATA	CTGTGGGTCC	ATACACAAGT	AAAATAAGAT	TAGACAGAAG	2760
	CCAGTATACA	TTTTGCACTA	TTGATGTGAT	ACTGTAGCCA	GCCAGGACCT	TACTGATCTC	2820
						GACTGAAGAT	2880
						TTTTACCCCT	
						TATATGCAGT	3000
45		GCCCTAAAGC					3060
73						GCATACTTCT	3120
	CCCTCACCAT	GIGCCIGGIG	CCCIGCIGGG	TWOUGHUCHC	MOCON MOMOR	GTGCCATGTG	
						TTCTAAACCC	
50						GGGTTTCTAT	
20						ACGTATCTTT	3360
		CAGCAGCCTT					3420
		TTGTAGGAAA					3480
		ATAAAAGAAG					3540
	TTAATACTTT	ATAAGCAGCA	TTGTTAAATA	GTTCTTACGC	TTATACATTC	ACAGAACTAC	3600
55	CCTGTTTTCC	TTGTATATAA	TGACTTTTGC	TGGCAGAACT	GAAATATAAA	CTGTAAGGGG	3660
	ATTTCGTCAG	TTGCTCCCAG	TATACAATAT	CCTCCAGGAC	ATAGCCAGAA	ATCTCCATTC	3720
		TGAGTTCCTA					3780
	CTCAGGGTTC	GTGCTACCCA	CTGATTCCCT	TTACCCTTAG	TAATAATTT	GGATCATTTT	3840
		AAGGGGAACA					3900
60	CCAAGCTGGA	GTGCAGTGGC	ACGATCTTGG	CTCACTCCAA	CCTCCACCTT	CCAGGTTCAA	3960
						CACCACGTCT	
						GCTGGTCTTG	
						ATTATAGGTG	4140
							4200
65	1010000000	,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		TIGIGGICCC	4260
05							
						AAGGGTACAG	
						ACAGGAAGGA	
						AGTTAGCTTT	
70						AGCTCAAGGT	
70						TGATGAAGTA	
						CTGTGGTTTT	
						r acgaacataa	
	TGGACTCTT	AGAATGGAAA	GGGATGACAT	TTACCTATGT	GTGCTGCCT	ATTCCTGGTG	4740
	AAGCAACTGC	TACTTGTTCT	CTATGCCTCT	AAAATGATGC	TGTTTTCTCT	CTARAGGTA	4800
75						TTTGAGTAAA	
						AATCCAAAAC	
						TAGACCAACA	
							5040
						TTTTTAAAAA	
80							
30	ALGIGITIGT?	CUIMMOGUCA	IACITACICI	CIATGUTAT	. CHUIGGHAA	G GGGTGATATG	2100

5	TTAATACTA ATCTGGACTA AGTATATCC ACCTGTTCT GAGATGACTA AGCGAGGCC TTTTGAGTTA	TTAATTTTT  AAGGTGTCC  TTCTAAACT  GTCTCTTTT  TAGCTTTTC  GTCTCATGGI	I TAAAGATTN I TTTTAACAA G CCTAGTTTG I TCAGTCATT G TGCTCCACT A GTGCAGGAC C CTTCTTGAA	G TCTGTGTAGG C AATTTAAAG T ATATTCCTA T TCTGCACGC G CGAGGTTTG G AGCTACTGC A TGACTGTTA	A CACTAAAAG T ACTTTTAT T AATTCCTAT A TCCCCCTTT T GCTCAGAGC T TTGGAGCGA A AACTAAAAT	I ATTTAGTAAA I ATTACACAAA A TATGTTATGT I TOTGAAGTGT C GCTGCACCCC G GGTTTCCTGC A AATTACATTG	5220 5280 5340 5400 5460 5520 5580 5640
20	SEQ ID NO:78 P Protein Accession	DO3 Protein seque n #: BAA8					
15	ADLDPVVV' HHDQLDRI	rf wyrapelli Ps Vmgfpadki	LG ARHYTKAI DW EDIRKMPE	DI WAIGCIFA YP TLQKDFRR:	EL LTSEPIFH FT YANSSLIK	51   PA RLPNSPLKPI CR QEDIKTSNPI YM EKHKVKPDSI	F 120 K 180
20	CDKING COC	ON OHOOPTAP! PN KKPRLGPS(	PQ QAAAPPQA	PP PQQNSTQTI SD YQHSSSRLI	ng taggagag Ny QSSVQGSS	RE FLNEDDPÆE VG GTGAGLQHS QS QSTLGYSSS	300
25	Nucleic Acid Acc Coding sequence	ession#: XIM_0 :: 1-2190			Q ID NO:79 PDO: to start and stop c	5 DNA SEQUENCE odons)	
	1	11	21	31	41	51	
30	   	TCCAGAAAAA	TGAGTCCAAG	Cy yy Calcalant	datate. V Contactu	CTCCATTCAA	60
	GAGGTACCAC	CTCGACCACC	TAGCCCTCCA	AAGAAGCCAT	CTCCGACAAT	CTGTGGCTCC	120
		TGAGCATTGC					180 240
		CTATATACCA					300
35		CTGACTCGTG					360
		GCCATGTGAT TCCTATCATT					420 480
		TGGCAGCTTT					540
40		TCTCAGTCTT					600
40		TGCTGAGAGG CAGGACTGCT					660 720
		AACCACCCC					780
		CCAATCGTTT					840
45		CAGCTGAGAA					900 960
	TCACGATGGA	CTTTGCAAGC	CATCAGGATG	AATAGGAATT	TGGGGTTTTT	TGTGCTTCAG	1020
		TCCAGGTTCT					1080 1140
		TGATCCTAGC					1200
50	ATAAATGAAA	TGGCCCCAGC	CCAGTCAGGT	CCCCAGGAGG	TTTTCCTACA	AGTCTTGAAT	1260
		ATGAGGTGAA AATCCTTTCA					1320 1380
		TTCACTTCCA					1440
55		AGAACTGGTA					1500
JJ		AGGATACAGA ATAAAGATGT					1560 1620
	GAAGACTATG	GTGTGTCTGC	TTATAGAACT	GTGCAAAGAG	GAGAATACCC	TGCAGTGCAC	1680
		AAGATAAGAA					1740
60		TTATTACTAA ACAAAATGTC					1800 1860
••	GGGGAGGTCA	TGTTCTCTGT	CACAGGTCTT	GAGTTTTCTT	ATTCTCAGGC	TCCCTCTAGC	1920
		TGCTCCAGGC CACAGTTCAG					1980 2040
						TCCTGTAAAG	
65	ACAGAGGATA	TGCGGGGTCC	AGCAGATAAG	CACATTCCTC		GAACATGATC	
•	AAACTAGAGA	CCAAGAAGAC	AAAACTCTGA				
70	SEQ ED NO:80 P Protein Accession	DO5 Protein seque n#: XP_00					
70	1	11	21	31	41	51	
	ī	i	ī	Ĭ	Ī	ī	
		ETLFSPVSIE					60
75		FLYFLHWNED GALPILGGQV					120 180
, ,		INAGSLISTP					240
	IYNKPPPEGN	IVAQVFKCIW	FAISNRFKNR	SGDIPKRQHW	LDWAAEKYPK	QLIMDVKALT	300
		MFWALLDQQG					360
80		GINFSSLRKM VGNENNSLLI					420 480

5	EDYGVSAYRT IPANKMSIAW	VQRGEYPAVH QLPQYALVTA	MMVKDTESKT CRTEDKNFSL GEVMFSVTGL LLLVICLIFS	NLGLLDFGAA EFSYSQAPSS	YLFVITNNIN MKSVLQAAWL	QGLQAWKIED LTIAVGNIIV	540 600 660 720
	Nucleic Acid Acc	ession#: NM_0	20448	SE	Q ID NO:81 PDO	DNA SEQUENCE	
10	Coding sequence		(underlined seque	ences correspond	to start and stop c	odons)	
	1	11	21	31	41	51	
			AGCCCTGAAG				60
15			CAGCATTGCA				120 180
	CTGGCAGGCT	CCAAGGATCC	CCGGGCCTAT	TTCAAGACCA	AGACATGGTG	GCTGGGCCTG	240
			GCTGGGTGTG AGTTTCTGTG				300 360
20	ATCAAGGAAA	AGTGGAAACC	GAAAGACTTT	CTGAGGCGCT	ACGTCTTGTC	CTTTCTTGGC	420 480
20			CACCAGGCAC				540
			CTGCTTGCTG				600 660
			TGTCTTGTCC				720
25	ATCTTCTACG	TGATGTTCGT	GTGCATGGTG	GCAACCGCCG	TCTATCAGGC	TGCGTTTTTG	780
			CGACTCCTCT				840 900
	CTGCACATCT	GCATGTTTGC	ACTGGGGTGC	CTCATTGCAT	TCTTGGGCGT	CTTCTTAATC	960
30			CATTCCATTT				1020 1080
50						TECCACCCTE	1140
			CGGCTCCAGA	AGTGCCTCTG	GGGTCCCCTA	CCGAGTCCTA	1200
	GAGCACACCA	agaaggaa <u>tg</u>	<u> </u>				
35	SEQ ID NO:82 P Protein Accession	DO6 Protein sequi n #: NP_06					
	1	11	21	31	<b>41</b>	51	
40	MDGSHSAALK	LQQLPPTSSS	SAVSEASFSY	KENLIGALLA	IFGHLVVSIA	LNLQKYCHIR	60
			FLMLLGELGV				120
			CGLAVVGTYL NIVVILLLVA				180 240
45			SQASQMYDSS				300
43			TRNRKKPIPF PVMQEEHGSR			TVQPELKASF	360
				SE	2 ID NO:83 PDO8	DNA SEQUENCE	
50		ession #: NM_0	32712 B (underlined sequ	onen enmanand	to about and alone	andonn'	
50	Coding sequence		•				
	1 1	11	21 I	31 1	41	51 !	
			GCTGCCTGT				60
55			GTGGCTGCAG				120 180
			TGCTCCTGCT				240
			AGCTGCTGCT				300
60			CAAGGCCCTG				360 420
	CCCTTCCAGC	CCCAGCCCAC	CATGGACAGG	GGTATCCAGC	TTCCTCCTCA	ACCTCGTCCT	480
			CCCAAGGACA GTGCTGGAGG				540 600
~=			CCAGGGCCCG				660
65			CTGCTGAGCC				720
			CTAGGGGAGG ATACGCCACC				780 840
	ACACCGCCTG	GCCTGGTGCT	CCAGGGGTGA	AGCAGGCCAG	AATCCTGGGG	GAGCTGCTCC	900
70			AAGTGCGGGA TTCGGTGTCC				960 1020
	CAAGGGTACC	GGAAGAGAAG	GGTGTCTGCC	CCCAACCTCC	CCTGTGGGTG	TCACTGGCCA	1080
			CCTTGTGAGT				1140
			CCATGTTGCA ACCACATGGG				1200 1260
<b>7</b> 5			AAGCATCTTG				
	SEQ ID NO:84 P Protein Accession	008 Protein seque					
80	1	11	21	31	41	51	
				-	33		

	1	1	l	1	1	1	
	MTVLEAVLEI						60
	CRLGEEPPPL	PYCDQAYGEE	LSIRHRETWA	WLSRTDTAWP (	GAPGVKQARI	LGELLLV	
5	•			SEU	ID NO:85 POT1	DNA SEQUENCE	
•	Nucleic Acid Acce	ssion#: NM 00	0693	GEO	10.00.00	DINGEQUENCE	
	Coding sequence:	· · · · · · · · · · · · · · · · · · ·		ences correspond	to start and stop c	odons)	
	• • • • • • • • • • • • • • • • • • • •			·		·	
10	1	11	21	31	41	51	
10	!						
						TGCCGCGCCC	60 120
						GGCACGAATC	180
_						TATGTGAAGT	240
15						TTGCCTTCCA	300
						TGCACCAGCT	360
						TGGATACAGG	420
						CCCTCAGATA	480
20						ACAACGTCGT	540 600
20						GGAACTTCCC	660
						TCAAAGAGGC	720
						TGGGAGCAGC	780
						AGGTTGGAAA	840
25						AGCTGGGGGG	900
						AGTGTGCCCA	960
						TGTTCGTGGA	
						ACCGCCCGT	1080 1140
30						AATGCGGGGG	1200
50						AAGTCACAGA	1260
						TGAAGTTCAA	1320
						CAGCAGCCGT	1380
25						CTGGAACGGT	1440
35						TTAAAATGTC	1500
						TGAAAACTGT	1560 1620
						TTCTGACCTT	
						GCTGTTTTCC	1740
40						TGAAATCGCA	1800
	GTCCTGCCTG	GGGAGGGAGC	TGTTGGCCAT	TTCTGTGTTT	CCCTTTAAAC	CAGATCCTGG	1860
						TCCAGCAGTT	1920
						CCTGTGTGTT	1980
45						CAGAGCAAGC	2040 2100
45						CAGTAAGGTT TGAGAAAGTT	
						TTGACATTGA	
						AATAGCCCAG	2280
=0						TTAAGCAGAA	2340
50						CAACAGCATA	
	GCAAATCCTA	GGATAATTCA	CCTCCTCATT	TGACAAATCA	GAGCTGTAAT	TCACTTTAAC	2460
						AGTCTTCCTT	2520 2580
						ATTAGTTAGT	2640
55						GAGTATTTCA	2700
						GTGCAATTTC	2760
						AAACAAATGT	2820
						GAAAGTAGTG	2880
60						TAACAGAACC	2940
UU						CCAATAACTT	3000 3060
						AGTAGATATA	3120
						ACGATAATGT	3180
							3240
65						GAAATGGAAA	3300
						GTTTAAAAAT	3360
				CAGATCGCAT	CCCACAATGC	GAGAATGATA	3420
	AAATAAAATI	GGATATTTGA	GA				
<b>~</b> 0	CEO ID	10 0C DE	.m	CONT ODG	AT TENATOR		
70	SEQ ID			TEIN SEC	DUENCE		
	Protein Accession	#: NP_000	0684				
	_						
	1	11	21	31	41	51	
75	MAMANGATES.	CORDGEDDS	 DDDTDMT ETW	 	 	  WWW.DEMBEOT	60
, ,	MATANGAVEN CEVEEGDKPD						120
						IGVCGAITPW	180
	NFPLLMLVWK						240
	GAAISSHPQI						300

5	QFDKILELIE KFKSIEEVIK	SGRKEGAKLE RANSTDYGLT	FVEEQVYSEF CGGSAMEDKG AAVFTKNLDK KTVTIKLGDK	LPIKPTVPSE ALKLASALES	VTDNMRIAKE	BIFGPVQPIL	360 420 480
_				SE	Q ID NO:87 PDV3	DNA SEQUENCE	
	Nucleic Acid Acco Coding sequence	ession #: NM_0 : 184-12	32642 63 (underlined sec	puences correspon	d to start and stop	codons)	
10	1 '	11	21	31	41	51	
	4	1	1 .	1	i	]	
			GCCTGTCTTT				60 120
			GAAACTGTCA				180
15			GCTGTTCACG				240
			GTGGTCATTA CGTGTGCAGT				300 360
			GGAGCACATG				420
20			GTTCCGGCAG				480
20			CATGCAGATA				540 600
			GGCGCGGCCC				660
	GCCTGTGGGG	ACAACGTGGA	GTACGGCTAC	CGCTTCGCCA	AGGAGTTTGT	GGATGCCCGG	720
25			CAAAGGATCA				780 840
25			CAGCCTCAAG				900
	AAGGTCGGGG	ACCGGCTGAA	GGAGAAGTAC	GACAGCGCGG	CCGCCATGCG	COTCACCCGC	960
			CAACAGCCGC				1020
30			CTACTGCCTG				1080 1140
-	GGCCTGGCT	ACAACCAGTT	CAAGAGCGTG	CAGGTGGAGC	GCTGCCACTG	CAAGTTCCAC	1200
			TAAGAAGTGC				1260
			CGGCCCCCCC				1320 1380
35			AAGAGCTTAT				1440
			CTTGGTGGGT				1500
			GACTTGGAAA GGAGGAGATG				1560 1620
			CCTGGCCACT				1680
40			TCTTCAGGGT				1740
			CTTTCATCCA ATGAGAAGTC				1800
			TTCAGGCCTG				1860 1920
45	GGTTCACTAG	CTCCTACCTG	AAGAGGAAAG	GGGGCCATTT	GACCTGACAT	GTCAGGAAAG	1980
45			CCTGGGCTGC				2040
			CACCCCCGGG CAAACCACAG				2100 2160
			CCCAGGTGTA				2220
50	TGGAAAAAA	AAAAAGAAAA	AKAAAAAAA	AA			
50	SEQ ID NO:88 P Protein Accession	DV3 Protein seque				•	
	1	11 .	21	31	41	51	
55	1	l	1	i	1	1	
			TDANSWWSLA KECCHOFROR				60 120
			CGCSRTARPK				180
60			nneagrravy				240
OU			GRLELVNSRF RGYNOFKSVO				300
	GRIKINISEG	MIGCELIACO	WG1WG1K24G	VERCITATION.	CCFVRCARCI	BIVDQIICK	
				SE	Q ID NO:89 PDT9	DNA SEQUENCE	
65	Nucleic Acid Acce Coding sequence	ssion #: NM_0 : 58-638	33280 (underlined seque	inces correspond t	to start and stop co	odons)	
	1	11	21	31	41	51	
	COCYCOCOUC	monocos occ	NCXCCCCCCC	CCCCCCWrcc	TOCCCCCACA		60
70			AGAGCCGGCG GGCTCATCTC				60 120
	CTGAAGAAGA	TGAACAAGCG	CCAGCTCTAT	TACCAGGTTT	TAAACTTCGC	CATGATCGTG	180
			GAAAGGCTTG				240
			TATGGAGCCG AATCAGAGCT				300 360
75	CGAGACATTC	CAATAGTTCA	CAGAGTAATC	AAAGTTCATG	AAAAAGATAA	TGGAGACATC	420
	AAATTTCTGA	CTARAGGAGA	TARTARTGAR	GTTGATGATA	GAGGCTTGTA	CAAAGAAGGC	480
			GGACGTGGTG GAATGACTAT				540 600
00	ATGGGTGCAT	ATGTGTTACT	AAAACGTGAA	TCCTAAAATG	AGAAGCAGTT	CCTGGGACCA	660
80			aaaaagagaa				720
					22	A	

	TGTATAAAAG AAAAAAAAAA		GGAGATGTTT	TTGTCTTGTC	CAAATAAAAG	ATTCACCAGT	780
5	SEQ ID NO:90 P	DT9 Protein seque					
	1	11	21	31	41	51	
	1		1	I		.1	
10				YYQVLNFAMI			60
10				AGBIVVFKVE			120
	VMGAYVLLKR		GÖNMPRKKDA	VGRARGFLPY	AGWALTIWND	YPKFKYALLA	180
	VMGATVLLKK	55					
				SE	Q ID NO:91 PDV5	DNA SEQUENCE	
15	Nucleic Acid Acce	ssion#: NM_0	16590				
	Coding sequence	: 691-97	5 (underlined sequ	ences correspond	to start and stop o	odons)	
	_						
	1	11	21	31	41	51 1	
20	CATTACTCAC	PUPCHUTTER	ACATCCAATG	TCAGCTATTT	AGGACAGAAA	CATCCAAGGC	60
				CATTAAGGCA			120
				ACGCTGGGCT			180
	CCAGAGCCAG	CCAATCACTT	AGCTCCTCAT	AACAAGTCTA	ACTGGCTCTG	GAAAGCTGAA	240
25				ATTCTACAÇA			300
25				ACAGCTTCCT			360
				GAGCAAGGTC			420
				GTCCCAGAAA			480
				CTATATGAGA CAGAGATAAC			540 600
30				CACAGACTCC			660
•				ATGTTCAAAT			720
				AGTCATTTCA			780
				CTCCGAAGAA			840
26				TGGAAGCTTT			900
35				TCCCCTGGCT			960
				CTCATCTGTT			1020 1080
				GACCAGCACT CTGGGACTCG			1140
				GGGGCAACCT			1200
40				CATAATATGC			1260
• •				AAACTAAAAA			1320
				CACGTCAGTC			1380
				TCTGGCTAGA			1440
15				CAGGCCCTAT			1500
45				TTGCTCATAT			1560
				AAAAATTGCT ATTAGAGCAA			1620 1680
				GGTCCATAAG			1740
				AGTAAACTAT			1800
50	CTGTTAGTAT	GTCAAATCAA	CTAAGACTGG	CAGGGTATTA	ACTCCATTCC	AGGTGACATG	1860
				AGCCTCTACC			1920
				AGTTTCAATG			1980
				GCTTTTTAAA			2040
55		CAAAGCAAAA	AAAAATGCTT	TAATTCAAAT	TAAAAATCAT	GATACTAAAA	2100
,,	AAAAAAA						
	SEQ ID NO:92 P Protein Accession	DV5 Protein seque					
60	1	11	21	31	41	51	
00	†	†*	1	1	ĭ	1 .	
	MOCOLERTE	T SKAVSELNY	D YICIKAGTG	R PQGTPTIGL	v LLVRWAIIY	E TELOSOPIT	
				SE	Q ID NO:93 PEE6	DNA SEQUENCE	
65		ession#: NM_0					
	Coding sequence	c 61-184	12 (underlined seq	uences correspon	d to start and stop	codons)	
			•		44		
	1	11	21	31	41	51	
70	1	CCCCARCCCS	A A COUNT A COURT	AAAAGTCCGA	GACCACCCCC	LGGGGGGG	60
				AAGGCCATCT			120
				AACTCCAGCG			180
				ATCTCCCTGC			240
	GTCTCCATCG	ACCCCACCAT	GCCCGCGAAT	TCAGAACGCA	CTCCGTACAA	AGTGAGACCT	300
75				GAGGACAAGA			360
	TCTGCTGAGA	GACCACTGAG	GGACAGACGG	GTTGTGGGCC	TGGAGCAGCC	CCGGAGGGAA	420
				AGGCCCAGAG			480
				GAATTAATCC			540
80				AATGAACTGA GAAGGACTAA			600 660
~~	111111111111111111111111111111111111111		- OT PARTIES IN		MUULUUL	CALL TOWNSHIP	~~~

```
TGCAAGAGTG ACATTAAGAA GATGAGGGAG GAGCTGGCGG CCAGAAGCAG CAGGACCAAC
        TGCCCCTGTA AGTACAGTTT TTTGGATAAC CACAAGAAGT TGACTCCTCG ACGCGATGTT CCCACTTACC CCAAGTACCT GCTCTCCCA GAGACCATCG AGGCCCTGCG GAAGCCGACC
        TTTGACGTCT GGCTTTGGGA GCCCAATGAG ATGCTGAGCT GCCTGGAGCA CATGTACCAC
                                                                                              900
 5
        GACCYCGGGC TGGTCAGGGA CTTCAGCATC AACCCTGTCA CCCTCAGGAG GTGGCTGTTC
                                                                                              960
        TGTGTCCACG ACAACTACAG AAACAACCCC TTCCACAACT TCCGGCACTG CTTCTGCGTG
        GCCCAGATGA TGTACAGCAT GGTCTGGCTC TGCAGTCTCC AGGAGAAGTT CTCACAAACG
                                                                                             1080
        GATATCCTGA TCCTAATGAC AGCGGCCATC TGCCACGATC TGGACCATCC CGGCTACAAC
                                                                                             1140
        AACACGTACC AGATCAATGC CCGCACAGAG CTGGCGGTCC GCTACAATGA CATCTCACCG
                                                                                             1200
10
        CTGGAGAACC ACCACTGCGC CGTGGCCTTC CAGATCCTCG CCGAGCCTGA GTGCAACATC
        TTCTCCAACA TCCCACCTGA TGGGTTCAAG CAGATCCGAC AGGGAATGAT CACATTAATC
                                                                                             1320
        TTGGCCACTG ACATGCCAAG ACATGCAGAA ATTATGGATT CTTTCAAAGA GAAAATGGAG
                                                                                             1380
        AATTTTGACT ACAGCAACGA GGAGCACATG ACCCTGCTGA AGATGATTTT GATAAAATGC
                                                                                             1440
        TOTGATATCT CTAACGAGGT CCGTCCAATG GAAGTCGCAG AGCCTTGGGT GGACTGTTTA
                                                                                             1500
        TTAGAGGAAT ATTTTATGCA GAGCGACCGT GAGAAGTCAG AAGGCCTTCC TGTGGCACCG
15
                                                                                             1560
        TTCATGGACC GAGACAAAGT GACCAAGGCC ACAGCCCAGA TTGGGTTCAT CAAGTTTGTC
                                                                                             1620
        CTGATCCCAA TETTTGAAAC AGTGACCAAG CTCTTCCCCA TGGTTGAGGA GATCATGCTG
CAGCCACTTT GGGAATCCCG AGATCGCTAC GAGGAGCTGA AGCGGATAGA TGACGCCATG
                                                                                             1680
        AAAGAGTTAC AGAAGAAGAC TGACAGCTTG ACGTCTGGGG CCACCGAGAA GTCCAGAGAG
                                                                                             1800
20
        AGRACCAGAG ATGTGAAAAA CAGTGAAGGA GACTGTGCCT GAGGAAAGCG GGGGGCGTGG
CTGCAGTTCT GGACGGGCTG GCCGAGCTGC GCGGGATCCT TGTGCAGGGA AGAGCTGCCC
                                                                                             1860
                                                                                             1920
        TGGGCACCTG GCACCACAAG ACCATGTTTT CTAAGAACCA TTTTGTTCAC TGATACAAAA
25
        SEQ ID NO:94 PEE6 Protein sequence
Protein Accession #: NP_00259
        MGSGSSSYRP KATYLDIDGR IQKVIPSKYC NSSDIMDLPC IATGLPRNTT ISLLTTDDAM
VSIDPIMPAN SERTPYKVRP VAIKQLSAGV EDKRTTSRGQ SAERPLRDRR VVGLEQPRRE
30
        GAPESGOVEP RPREPOGCYO EGORIPPERB ELIQSVLAGV ABOPSRAPKI NELKAEVANH
LAVLEKRVEL EGLKVVEIEK CKSDIKKMRE ELAARSSRIN CPCKYSFLDN HKKLTPRRDV
PTYPKYLLSP ETIEALRKPI PDVWLMEPNE MLSCLEHMYH DLGLVRDFSI NFVILRRWLF
                                                                                              180
                                                                                               240
                                                                                               300
35
        CVEINTRINF FINFRICECV ACMYSMWL CSLOEKFSOT DILLIMITAL CHOLDHEGYN
NTYQINARTE LAVRYNDISP LENHECAVAF QILAEFECNI PSNIPPDGFK QIRQGMITLI
                                                                                              360
                                                                                               420
        LATDMARHAE IMDSPKERME NFDYSNEEHM TLLKMILIKC CDISNEVRPM EVAEPWVDCL
        LEEYFMOSDR EKSEGLPVAP FMDRDKVTKA TAQIGFIKFV LIPMFETVTK LFPMVEEIML
                                                                                               540
        OPLWESRDRY EELKRIDDAM KELOKKTDSL TSGATEKSRE RSRDVKNSEG DCA
40
                                                             SEO ID NO:95 PEG4 DNA SEQUENCE
        Nucleic Acid Accession #: none
                              41-559 (underlined sequences correspond to start and stop codons)
        Coding sequence:
45
                                    21
                                                   31
        CAGTCACAGG CGAGAGCCYT GGGATGCACC GGCCAGAGGC ATGCTGCTGC TGCTCACGCT
        TECCCTCCTG GGGGCCCCA CCTGGGCAGG GAAGATGTAT GGCCCTGGAG GAGCCAAGTA
TTTCAGCACC ACTGAAGACT ACGACCATGA AATCACAGGG CTGCGGGTGT CTGTAGGTCT
50
        TCTCCTGGTG AAAAGTGTCC AGGTGAAACT TGGAGACTCC TGGGACGTGA AACTGGGAGC
                                                                                               240
        CTTAGGTGGG ANTACCCAGG AAGTCACCCT GCAGCCAGGC GAATACATCA CAAAAGTCTT
        TGTCGCCTTC CAAGCTTTCC TCCGGGGTAT GGTCATGTAC ACCAGCAAGG ACCGCTATTT
        CTATTITIGG AAGCTIGATG GCCAGATCTC CTCTGCCTAC CCCAGCCAAG AGGGGCAGGT
GCTGGTGGGC ATCTATGGCC AGTATCAACT CCTTGGCATC AAGAGCATTG GCTTTGAATG
                                                                                               420
55
                                                                                              540
        GAATTATCCA CTAGAGGAGC CGACCACTGA GCCACCAGTT AATCTCACAT ACTCAGCAAA
        CTCACCCGTG GGTCGCTAGG GTGGGGTATG GGGCCATCCG AGCTGAGGCC ATCTGTGTGG
                                                                                               600
        TGGTGGCTGA TGGTACTGGA GTAACTGAGT CGGGACGCTG AATCTGAATC CACCAATAAA
        TARACCTTCT GCAGAATCAG TGAAAAAAA A
        SEQ ID NO:96 PEG4 Protein sequence
Protein Accession #: FGENESH predicted
60
                                     21
                                                   31
                                                                41
                      11
65
         MLLLLTLALL GGPTWAGKMY GPGGGKYPST TEDYDHEITG LRVSVGLLLV KSVQVKLGDS
         WDVKLGALGG NTQEVTLQPG EYITKVFVAF QAPLRGMVMY TSKDRYFYFG KLDGQISSAY
         PSQEGQVLVG IYGQYQLLGI KSIGPEWNYP LEEPTTEPPV NLTYSANSPV GR
70
                                                             SEO ID NO:97 PEL9 DNA SEQUENCE
         Nucleic Acid Accession #: NM_006953
                              33-896(underlined sequences correspond to start and stop codons)
         Coding sequence:
75
         COSTICUEGE CICIGEGES TOCICCEGES CENTECCICE SCICIGESCO CIECUESCOC
         TCGGCTGCCT GCGGTTCGGC TCGGCTGTGA ACCTGCAGCC CCAACTGGCC AGTGTGACTT
TCGCCACCAA CAACCCCACA CTTACCACTG TGGCCTTGGA AAAGCCTCTC TGCATGTTTG
         ACAGCAAAGA GGCCCTCACT GGCACCCACG AGGTCTACCT GTATGTCCTG GTCGACTCAG
80
         CCATTTCCAG GAATGCCTCA GTGCAAGACA GCACCAACAC CCCACTGGGC TCAACGTTCC
```

```
TACAAACAGA GGGTGGGAGG ACAGGTCCCT ACAAAGCTGT GGCCTTTGAC CTGATCCCCT
       GCAGTGACCT GCCCAGCCTG GATGCCATTG GGGATGTGTC CAAGGCCTCA CAGATCCTGA
ATGCCTACCT GGTCAGGGTG GGTGCCAACG GGACCTGCCT GTGGGATCCC AACTTCCAGG
                                                                                  420
                                                                                  480
        GCCTCTGTAA CGCACCCCTG TCGGCAGCCA CGGAGTACAG GTTCAAGTAT GTCCTGGTCA
        ATATGTCCAC GGGCTTGGTA GAGGACCAGA CCCTGTGGTC GGACCCCATC CGCACCAACC
                                                                                  600
        660
        TCATCACTIC CATCCTGGGC TCCCTGCCCT TCTTTCTACT TGTGGGTTTT GCTGGCGCCA
        TTGCCCTCAG CCTCGTGGAC ATGGGGAGTT CTGATGGGGA AACGACTCAC GACTCCCAAA
                                                                                  780
        TCACTCAGGA GGCTGTTCCC AAGTCGCTGG GGGCCTCGGA GTCTTCCTAC ACGTCCGTGA
                                                                                  840
10
        ACCGGGGGCC GCCACTGGAC AGGGCTGAGG TGTATTCCAG CAAGCTCCAA GACTGAGCCC
                                                                                  900
        AGCACCACCC CTGGGCAGCA GCATCCTCCT CTCTGGCCTT GCCCCAGGCC CTGCAGCGGT
                                                                                  960
        GGTTGTCACA CCCTGACTTC AGGGAAGGTG AAACAGGGCT TGTCCCTCCA ACTGCAGGAA 1020
        AACCCTTAAT AAAATCTTCT GATGAGTTCT AAAAAAAAA
        SEQ ID NO:98 PEL9 Protein sequence
Protein Accession #: NP_008884
15
                                21
                                            31
                                                        41
                                                                    51
        20
        VYLYVLVDSA ISRNASVQDS TNTPLGSTFL QTEGGRTGPY KAVAFDLIPC SDLPSLDAIG
                                                                                  120
        DVSKASOILN AYLVRVGANG TCLWDPNFQG LCNAPLSAAT EYRFKYVLVN MSTGLVEDQT
                                                                                  180
        LWSDPIRTNO LTPYSTIDTW PGRRSGGMIV ITSILGSLPF FLLVGFAGAI ALSLVDMGSS
        DGETTHDSQI TQEAVPKSLG ASESSYTSVN RGPPLDRAEV YSSKLQD
25
                                                     SEQ ID NO:99 PEN1 DNA SEQUENCE
        Nucleic Acid Accession #: NM_012391
        Coding sequence:
                          416-1423 (underlined sequences correspond to start and stop codons)
30
        GTCTGACTTC CTCCCAGCAC ATTCCTGCAC TCTGCCGTGT CCACACTGCC CCACAGACCC
       AGTOCTOCAA GOOTGOTGOO AGOTOCOTGO AAGOCOCOTCA GGTTGGGCOT TGCCACGGTG
        CCAGCAGGCA GCCCTGGGCT GGGGGTAGGG GACTCCCTAC AGGCACGCAG CCCTGAGACC
                                                                                  180
35
        TCAGAGGGCC ACCCCTTGAG GGTGGCCAGG CCCCCAGTGG CCAACCTGAG TGCTGCCTCT
        GCCACCAGCC CTGCTGGCCC CTGGTTCCGC TGGCCCCCCA GATGCCTGGC TGAGACACGC
        CAGTGGCCTC AGCTGCCCAC ACCTCTTCCC GGCCCCTGAA GTTGGCACTG CAGCAGACAG
CTCCCTGGGC ACCAGGCAGC TAACAGACAC AGCCGCCAGC CCAAACAGCA GCGGCATGGG
                                                                                  360
                                                                                   420
        CAGCGCCAGC CCGGGTCTGA GCAGCGTATC CCCCAGCCAC CTCCTGCTGC CCCCCGACAC
40
        GGTGTCGCGG ACAGGCTTGG AGAAGGCGGC AGCGGGGGCA GTGGGTCTCG AGAGACGGGA
                                                                                   540
        CTGGAGTCCC AGTCCACCCG CCACGCCCGA GCAGGGCCTG TCCGCCTTCT ACCTCTCCTA
                                                                                   600
        CTTTGACATG CTGTACCCTG AGGACAGCAG CTGGGCAGCC AAGGCCCCTG GGGCCAGCAG
                                                                                   660
        TCGGGAGGAG CCACCTGAGG AGCCTGAGCA GTGCCCGGTC ATTGACAGCC AAGCCCCAGC
                                                                                   720
        GGGCAGCCTG GACTTGGTGC CCGGCGGGCT GACCTTGGAG GAGCACTCGC TGGAGCAGGT
                                                                                   780
45
        GCAGTCCATG GTGGTGGGCG AAGTGCTCAA GGACATCGAG ACGGCCTGCA AGCTGCTCAA
                                                                                   840
        CATCACCGCA GATCCCATGG ACTGGAGCCC CAGCAATGTC CAGAAGTGGC TCCTGTGGAC AGAGCACCAA TACCGGCTCC CCCCCATGGG CAAGGCCTTC CAGGAGCTGG CGGCCAAGGA GCTGTGCGCC ATGTCGGAGG AGCAGTTCCG CCAGGCCTCC CCCCTGGGTG GGGATGTGCT
                                                                                  900
                                                                                 1020
        GCACGCCCAC CTGGACATCT GGAAGTCAGC GGCCTGGATG AAAGAGCGGA CTTCACCTGG
                                                                                 1080
50
        GGCGATTCAC TACTGTGCCT CGACCAGTGA GGAGAGCTGG ACCGACAGCG AGGTGGACTC
        ATCATGCTCC GGGCAGCCCA TCCACCTGTG GCAGTTCCTC AAGGAGTTGC TACTCAAGCC
                                                                                 1200
        CCACAGCTAT GCCCCCTTCA TTAGGTGGCT CAACAAGGAG AAGGGCATCT TCAAAATTGA
GGACTCAGCC CAGGTGGCCC GGCTGTGGGG CATCCGCAAG AACCGTCCCG CCATGAACTA
                                                                                 1260
        CGACAAGCTG AGCCGCTCCA TCCGCCAGTA TTACAAGAAG GGCATCATCC GGAAGCCAGA
                                                                                 1380
55
        1440
        GGGGAAAACG GGCAGTCTGC TCTGCTGCTC TGACCTTCCA GAGCCCAAGG TCAGGGAGGG
                                                                                 1560
        GCAACCAACT GCCCCAGGGG GATATGGGTC CTCTGGGGCC TTCGGGACCA TGGGGCAGGG
GTGCTTCCTC CTCAGGCCCA GCTGCTCCCC TGGAGGACAG AGGGAGACAG GGCTGCTCCC
                                                                                 1620
                                                                                 1680
60
        CARCACCTGC CTCTGACCCC AGCATTTCCA GAGCAGAGCC TACAGAAGGG CAGTGACTCG
                                                                                 1740
        ACAMAGGCCA CAGGCAGTCC AGGCCTCTCT CTGCTCCATC CCCCTGCCTC CCATTCTGCA
                                                                                 1800
        CCACACCTGG CATGGTGCAG GGAGACATCT GCACCCCTGA GTTGGGCAGC CAGGAGTGCC 1860
        CCCGGGAATG GATAATAAAG ATACTAGAGA ACTG
65
        SEQ ID NO:100 PEN1 Protein sequence
        Protein Accession #:
                    11
                                            31
                                                         41
70
        MGSASPGLSS VSPSHLLLPP DTVSRTGLEK AAAGAVGLER RDWSPSPPAT PEQGLSAFYL
        SYPOMLYPED SSWAAKAPGA SSREEPPEEP EQCPVIDSQA PAGSLDLVPG GLTLEEHSLE
        QVQSMVVGEV LKDIETACKL LNITADPMDW SPSNVQKWLL WTEHQYRLPP MGKAFQELAG
                                                                                   180
        KELCAMSEEQ FRORSPLGGD VLHAHLDIWK SAAWMKERTS PGAIHYCAST SEESWTDSEV
                                                                                   240
        DSSCSGOPIH LWOPLKELLL KPHSYGRFIR WLNKEKGIPK IEDSAGVARL WGIRKNRPAM
75
        NYDKLSRSIR QYYKKGIIRK PDISQRLVYQ FVHPI
                                                     SEQ ID NO:101 PEN3 DNA SEQUENCE
        Nucleic Acid Accession #: NM_000742
                           555-2144 (underlined sequences correspond to start and stop codons)
        Coding sequence:
80
```

```
GAGAGAACAG CGTGAGCCTG TGTGCTTGTG TGCTGAGCCC TCATCCCCTC CTGGGGCCAG
        GCTTGGGTTT CACCTGCAGA ATCGCTTGTG CTGGGCTGCC TGGGCTGTCC TCAGTGGCAC
  5
        CTGCATGAAG CCGTTCTGGC TGCCAGAGCT GGACAGCCCC AGGAAAACCC ACCTCTCTGC
                                                                                    180
        AGAGCTTGCC CAGCTGTCCC CGGGAAGCCA AATGCCTCTC ATGTAAGTCT TCTGCTCGAC
                                                                                    240
        GGGGTGTCTC CTAAACCCTC ACTCTTCAGC CTCTGTTTGA CCATGAAATG AAGTGACTGA
                                                                                    300
        GCTCTATTCT GTACCTGCCA CTCTATTTCT GGGGTGACTT TTGTCAGCTG CCCAGAATCT
                                                                                    360
        CCAAGCCAGG CTGGTTCTCT GCATCCTTTC AATGACCTGT TTTCTTCTGT AACCACAGGT
TCGGTGGTGA GAGGAAGCCT CGCAGAATCC AGCAGAATCC TCACAGAATC CAGCAGCAGC
                                                                                    420
10
                                                                                    480
        TCTGCTGGGG ACATGGTCCA TGGTGCAACC CACAGCAAAG CCCTGACCTG ACCTCCTGAT
                                                                                    540
        GCTCAGGAGA AGCCATGGGC CCCTCCTGTC CTGTGTTCCT GTCCTTCACA AAGCTCAGCC
                                                                                    600
        TGTGGTGGCT CCTTCTGACC CCAGCAGGTG GAGAGGAAGC TAAGCGCCCA CCTCCCAGGG
                                                                                    660
        CTCCTGGAGA CCCACTCTCC TCTCCCAGTC CCACGGCATT GCCGCAGGGA GGCTCGCATA
15
        CCGAGACTGA GGACCGGCTC TTCAAACACC TCTTCCGGGG CTACAACCGC TGGGCGCGCC
                                                                                    780
        840
        TCGATGTGGA TGAGAAGAAC CAAATGATGA CCACCAACGT CTGGCTAAAA CAGGAGTGGA
                                                                                    900
        GCGACTACAA ACTGCGCTGG AACCCCGCTG ATTTTGGCAA CATCACATCT CTCAGGGTCC
                                                                                    960
        CTTCTGAGAT GATCTGGATC CCCGACATTG TTCTCTACAA CAATGCAGAT GGGGAGTTTG
                                                                                  1020
20
        CAGTGACCCA CATGACCAAG GCCCACCTCT TCTCCACGGG CACTGTGCAC TGGGTGCCCC
                                                                                   1080
        CGGCCATCTA CAAGAGCTCC TGCAGCATCG ACGTCACCTT CTTCCCCTTC GACCAGCAGA
                                                                                  1140
        ACTGCAAGAT GAAGTTTGGC TCCTGGACTT ATGACAAGGC CAAGATCGAC CTGGAGCAGA
                                                                                  1200
        TGGAGCAGAC TGTGGACCTG AAGGACTACT GGGAGAGCGG CGAGTGGGCC ATCGTCAATG
                                                                                   1260
        CCACGGGCAC CTACAACAGC ÁAGAAGTACG ACTGCTGCGC CGAGATCTAC CCCGACGTCA
CCTACGCCTT CGTCATCCGG CGGCTGCCGC TCTTCTACAC CATCAACCTC ATCATCCCCT
                                                                                  1320
25
                                                                                  1380
        GCCTGCTCAT CTCCTGCCTC ACTGTGCTGG TCTTCTACCT GCCCTCCGAC TGCGGCGAGA
                                                                                  1440
        AGATCACGCT GTGCATTTCG GTGCTGCTGT CACTCACCGT CTTCCTGCTG CTCATCACTG
                                                                                  1500
        AGATCATCCC GTCCACCTCG CTGGTCATCC CGCTCATCGG CGAGTACCTG CTGTTCACCA
                                                                                  1560
        TGATCTTCGT CACCCTGTCC ATCGTCATCA CCGTCTTCGT GCTCAATGTG CACCACCGCT
                                                                                  1620
30
        CCCCAGGAC CCACACCATG CCCCACTGGG TGCGGGGGGC CCTTCTGGGC TGTGTGCCCC
                                                                                  1680
        GGTGGCTTCT GATGAACCGG CCCCACCAC CCGTGGAGCT CTGCCACCCC CTACGCCTGA
                                                                                  1740
        AGCTCAGCCC CTCTTATCAC TGGCTGGAGA GCAACGTGGA TGCCGAGGAG AGGGAGGTGG
                                                                                  1800
        TGGTGGAGGA GGAGGACAGA TGGGCATGTG CAGGTCATGT GGCCCCCTCT GTGGGCACCC
                                                                                  1860
        TCTGCAGCCA CGGCCACCTG CACTCTGGGG CCTCAGGTCC CAAGGCTGAG GCTCTGCTGC
                                                                                  1920
35
        AGGAGGGTGA GCTGCTGCTA TCACCCCACA TGCAGAAGGC ACTGGAAGGT GTGCACTACA
                                                                                   1980
        TTGCCGACCA CCTGCGGTCT GAGGATGCTG ACTCTTCGGT GAAGGAGGAC TGGAAGTATG
                                                                                  2040
        TTGCCATGGT CATCGACAGG ATCTTCCTCT GGCTGTTTAT CATCGTCTGC TTCCTGGGGA
                                                                                  2100
        CCATCGGCCT CTTTCTGCCT CCGTTCCTAG CTGGAATGAT CTGACTGCAC CTCCCTCGAG
                                                                                  2160
        CTGGCTCCCA GGGCAAAGGG GAGGGTTCTT GGATGTGGAA GGGCTTTGAA CAATGTTTAG
                                                                                  2220
40
        ATTTGGAGAT GAĞCCCAAAG TGCCAGGGAG AACAGCCAGG TGAGGTGGGA GGTTGGAGAG
                                                                                  2280
        CCAGGTGAGG TCTCTCTAAG TCAGGCTGGG GTTGAAGTTT GGAGTCTGTC CGAGTTTGCA
                                                                                  2340
        GGGTGCTGAG CTGTATGGTC CAGCAGGGA GTAATAAGGG CTCTTCCCGA AGGGGAGGAA
                                                                                  2400
        GCGGGAGGCA GGCCTGCACC TGATGTGGAG GTACAGGCAG ATCTTCCCTA CCGGGGAGGG
        ATGGATGGTT GGATACAGGT GGCTGGGCTA TTCCATCCAT CTGGAAGCAC ATTTGAGCCT
                                                                                  2520
45
        CCAGGCTTCT CCTTGACGTC ATTCCTCTCC TTCCTTGCTG CAAAATGGCT CTGCACCAGC
                                                                                  2580
        CGGCCCCAG GAGGTCTGGC AGAGCTGAGA GCCATGGCCT GCAGGGGCTC CATATGTCCC 2640
        TACGCGTGCA GCAGGCAAAC AAGA
        SEQ ID NO:102 PEN3 Protein sequence
50
                                            31
                                21
        MGPSCPVFLS PTKLSLWWLL LITPAGGEEAK RPPPRAPGDP LSSPSPTALP QGGSHTETED
55
        RLFKHLFRGY NRWARPUPNT SUVVIVRFGL SIAOLIDVDE KNOMMTTNVW LKOEWSDYKI.
                                                                                   120
        RWNPADPGNI TSLRVPSEMI WIPDIVLYNN ADGEFAVTHM TKAHLPSTGT VHWVPPAIYK
       SSCSIDVTFF PFDQQNCKMK PGSWTYDKAK IDLEQMEQTV DLKDYWESGE WAIVNATGTY
NSKKYDCCAE IYFDVTYAFV IRRLPLFYTI NLIIPCLLIS CLTVLVFYLP SDCGEKITLC
                                                                                   240
                                                                                   300
        ISVLLSLTVF LLLITEIIPS TSLVIPLIGE YLLFTMIFVT LSIVITVFVL NVHHRSPSTH
60
        TMPHWVRGAL LGCVPRWLLM NRPPPPVELC HPLRLKLSPS YHWLESNVDA ERREVVVEEE
DRWACAGHVA PSVGTLCSHG HLHSGASGFK ARALLQEGEL LLSPHMQKAL EGVHYIADHL
                                                                                    420
        RSEDADSSVK EDWKYVAMVI DRIFLWLFII VCFLGTIGLF LPPFLAGMI
                                                     SEQ ID NO:103 PEU4 DNA SEQUENCE
65
        Nucleic Acid Accession #: NM_018670
        Coding sequence:
                           87-893 (underlined sequences correspond to start and stop codons)
70
         CACGAGGCTG GAAGGGGCCA CTTCACACCT CGGGCTCGGC ATAAAGCGGC CGCCGGCCGC
         CGGCCCCCAG ACGCGCCGCC GCTGCCATTGG CCCAGCCCCT GTGCCCGCCG CTCTCCGAGT
         CCTGGATGCT CTCTGCGGCC TGGGGCCCAA CTCGGCGGCC GCCGCCCTCC GACAAGGACT
GCGGCCGCTC CCTCGTCTCG TCCCCAGACT CATGGGGCAG CACCCCAGCC GACAGCCCCG
                                                                                    180
         TGGCGAGCCC CGCGCGGCCA GGCACCCTCC GGGACCCCCG CGCCCCCTCC GTAGGTAGGC
75
         GCGGCGCGC CAGCAGCCGC CTGGGCAGCG GGCAGAGGCA GAGCGCCAGT GAGCGGGAGA
AACTGCGCAT GCGCACGCTG GCCCGCGCCC TGCACGAGCT GCGCCGCTTT CTACCGCCGT
                                                                                    360
         CCGTGGCGCC CGCGGGCCAG AGCCTGACCA AGATCGAGAC GCTGCGCCTG GCTATCCGCT
                                                                                     480
        ATATCGCCCA CCTGTCGGCC GTGCTAGGCC TCAGCGAGGA GAGTCTCCAG CGCCGGTGCC
GGCAGCGCGG TGACGCGGGG TCCCCTCGGG GCTGCCCGCT GTGCCCCGAC GACTGCCCCG
                                                                                    540
80
         CGCAGATGCA GACACGGACG CAGGCTGAGG GGCAGGGGCA GGGGCGCGGG CTGGGCCTGG
```

	CTGCACCCG/ AGGCGATGG/	A GCCGCGCGAC A GCCAAGCCC	CCGCCTGCGC	TCTTCCCCG	GGCGGCGTGC GGACGTGCTG	GGAGCCCGAG CCGGAAGGGC GCTCTGTTGG	720 780 840
5	CAACTGACGO CCTTGGCAGA	C CGTCTCTGT(	AGCACCGAGG TGGAAGAGGG	CACGGGCGAT	TCAGCACCTT CCCGACGGGG	TGACAAGGGA CGAAGTGGTT GCATTCCTGC	900 960 1020
	ATAGGGCTAG		GCAAGCAGG	GCTCTCCCT	PARTGTGART	GGAGGGACCC TATTTATTTG	1080 1140
10	SEQ ID NO:104   Protein Accession	PEU4 Protein secu					
		_			44	E1	
15	1	11	21 	31 	41	51 	
20	LRDPRAPSVG TKIETLRLAI EGQGQGRGLG	ESWMLSAAWG RRGARSSRLG RYIGHLSAVL LVSAVRAGAS LETWMPLSPL	SGQRQSASER GLSEESLQRR WGSPPACPGA	EKLRMRTLAR CRQRGDAGSP	ALHELRRFLP RGCPLCPDDC	PSVAPAGQSL PAQMQTRTQA	60 120 180 240
20	·	Delmieuseu	BHUFBBFA	SEC	ID NO:105 PEUS	DNA SEQUENCE	
25	Nucleic Acid Acce Coding sequence	ession #: NM_0 : 324-33	17636 74 (underlined seq	wences correspon	d to start and stop	codons)	
	1	11	21 .	31 i	41	51 !	
		GCCCACCGAT					60
30		CCTCCGGCTC					120 180
	GCCCCGTCCT	CCAGACCTGG	CTGCAGGACC	TGCTGCGTCG	TEGECTEGTE	CGGGCTGCCC	240
	AGAGCACAGG	AGCCTGGATT ACGGGACCAT	CAGATGGCCA	GTCTGCACAC	CACCAAGGTG	CGGCATGTTG GTGGCCATGG	300 360
35	GTGTGGCCCC	CTGGGGTGTG	GTCCGGAATA	GAGACACCCT	CATCAACCCC	AAGGGCTCGT	420
22		GTACCGGTGG					480 540
	ACCGCTTCCG	CTTGCGCCTG	GAGTCCTACA	TCTCACAGCA	GAAGACGGGC	GTGGGAGGGA	600
		CATCCCTGTC					660 720
40	CTGCGGACTG	CCTGGCGGAG	ACCCTGGAAG	ACACTCTGGC	CCCAGGGAGT	GGGGGAGCCA	780
		AGCCCGAGAT GGTGGAGAGG					840 900
	AGGATGGGTC	TGAGGAATTC	GAGACCATAG	TTTTGAAGGC	CCTTGTGAAG	GCCTGTGGGA	960
45		CTCAGCCTAC GAGTGAACTC					1020 1080
	CTTCCCTCAT	GGACGCCCTG	CTGAATGACC	GCCTGAGTT	CGTGCGCTTG	CTCATTTCCC	1140
		CTCGCTCATC					1200 1260
<b>5</b> 0	AAGCCCCAGC	CCTAAAAGGG	GGAGCTGCGG	AGCTCCGGCC	CCCTGACGTG	GGGCATGTGC	1320
50	TGAGGATGCT	GCTGGGGAAG CCAGGGCTTC	ATGTGCGCGC	CGAGGTACCC	CTCCGGGGGC	GCCTGGGACC	1380 1440
		GGATGCTGGC					1500
	TGTTGCTGAA	CAGGGCACAG	ATGGCCATGT	ACTTCTGGGA	GATGGGTTCC	AATGCAGTTT	1560
55		TGGGGCCTGT ACGGAGGAAA					1620 1680
	TTGGCGAGTG	CTATCGCAGC	AGTGAGGTGA	GGGCTGCCCG	CCTCCTCCTC	CGTCGCTGCC	1740
		GGATGCCACT TGGGGTACAG					1800 1860
60	CTACACCCAT	CTGGGCCCTG	GTTCTCGCCT	TCTTTTGCCC	TCCACTCATC	TACACCCGCC	1920
OU		CAGGAAATCA TAATGGGGAA					1980 2040
•	TGGGGGTCCC	GCGCCAGTCG	GCCCGTCCGG	GTTGCTGCGG	GGGCCGCTGC	GGGGGGCGCC	2100
	GGTGCCTACG	CCGCTGCTTC	CACTTCTGGG	TCTCGCGGGT	GACCATCTTC	ATGGGCAACG	2160 2220
65	CGGCGCCGCC	CGGCTCCCTG	GAGCTGCTGC	TCTATTTCTG	GGCTTTCACG	CTGCTGTGCG	2280
		CCAGGGCCTG					2340 2400
	GCGACCTAGT	GGCTCTCACC	TGCTTCCTCC	TGGGCGTGGG	CTGCCGGCTG	ACCCCGGGTT	2460
70		GGGCCGCACT					2520 2580
, 0		GTTCTTCTTC					2640
	CCACGGAGGG	GCTCCTGAGG	CCACGGGACA	GTGACTTCCC	AAGTATCCTG	CGCCGCGTCT	2700
		CTACCTGCAG CAGCAACTGC					2760 2820
<b>7</b> 5	AGGCGGGCAC	CTGCGTCTCC	CAGTATGCCA	ACTGGCTGGT	GGTGCTGCTC	CTCGTCATCT	2880
-		GGCCAACATC ACAGGGCAAC					2940 3000
	GGGAATTCCA	CTCTCGGCCC	GCGCTGGCCC	CGCCCTTTAT	CGTCATCTCC	CACTTGCGCC	3060
80		GCAATTGTGC GGTTTACCTT				CCGGCCCTCG	3120 3180
50	MOUNTTICUL	GGTT TACCLL.	TCTMOGRAG	CCGMGCGGMA	GCIGCIANCG	TAGGWILLAG	3230

```
TGCATAAGGA GAACTTTCTG CTGGCACGCG CTAGGGACAA GCGGGAGAGC GACTCCGAGC
          GTCTGGAGCG CACGTCCCAG AAGGTGGACT TGGCACTGAA ACAGCTGGGA CACATCCGCG
AGTACGAACA GCGCCTGAAA GTGCTGGAGC GGGAGGTCCA GCAGTGTAGC CGCGTCCTGG
                                                                                                      3300
                                                                                                      3360
          GGTGGGTGAC GTAGGCCGTT AGCAGCTCTG CCATGTTGCC CTCAGGTGGG CCGCCACCCC
          TTGACCTGCA TGGGTCCAAA GAGTGAGCCA TGCTGGCGGA TTTTAAGGAG AAGCCCCCAC
                                                                                                      3480
          AGGGGATTTT GCTCTTAGAG TAAGGCTCAT GTGGGCCTCG GCCCCCCAC CTGGTGGCCT
                                                                                                      3540
          TGTCCTTGAG GTGAGCCCCA TGTCCATCTG GGCCACTGTC AGGACCACCT TTGGGAGTGT
          CATCCTTACA AACCACAGCA TGCCCGGCTC CTCCCAGAAC CAGTCCCAGC CTGGGAGGAT 3660
CAAGGCCTGG ATCCCGGGCC GTTATCCATC TGGAGGCTGC AGGGTCCTTG GGGTAACAGG 3720
GACCACAGAC CCCTCACCAC TCACAGATTC CTCACACTGG GGAAATAAAG CCATTTCAGA 3780
10
          GGAAAAAAA AAAAAAAAA AAAAAAAAAA
          SEQ ID NO:106 PEU5 Protein sequence
          Protein Accession #:
15
                                                                                      51
                         11
                                                        31
                                                                       41
          MASTGGTKVV AMGVAPWGVV RNRDTLINPK GSPPARYRWR GDPEDGVOPP LDYNYSAFFL
          VDDCTHGCLG GENRFRLRLE SYISQOKTGV GGTGIDIFVL LLLIDGDEKM LTRIENATQA
QLPCLLVAGS GGAADCLAET LEDTLAPGSG GARQGEARDR IRRFFFKGDL EVLQAQVERI
                                                                                                        120
20
          MTRRELLTVY SSEDGSEEP TIVLKALVKA CGSSEASAYL DELRLAVAKN RVDIAQSELF
RGDIQWRSFH LEASLMDALL NDRPEFVRLL ISHGLSLGHP LTPMRLAQLY SAAPSNSLIR
NLLDQASHSA GTKAPALKGG AAELRPPDVG HVLRMLLGKM CAPRYPSGGA WDPHPGQGFG
                                                                                                        240
                                                                                                        300
          ESMYLLSDKA TSPLSLDAGL GQAPWSDLLL WALLLNRAQM ANYFWEMGSN AVSSALGACL
LLRVMARLEP DABEAARRKD LAFKFEGMEV DLFGECYRSS EVRAARLLLR RCPLWGDATC
                                                                                                        420
25
                                                                                                        480
          LQLAMQADAR AFFAQDGVQS LLTQKWWGDM ASTTPIWALV LAFFCPPLIY TRLITFRKSE
          EEPTREELEF DMDSVINGEG PVGTADPAEK TPLGVPROSG RPGCCGGRCG GRRCLRRWFH
FWGAPVTIFM GNVVSYLLFL LLFSRVLLVD FOPAPPGSLE LLLYPWAPTL LCEELROGLS
                                                                                                        600
                                                                                                        660
          GGGGSLASGG PGPGHASLSQ RLRLYLADSW NQCDLVALTC FLLGVGCRLT PGLYHLGRTV
30
          LCIDPMVFTV RLLHIFTVNK OLGPKIVIVS KMMKDVFFPL FFLGVWLVAY GVATEGLLRP
RDSDFPSILR RVFYRPYLOI FGOIPOEDMD VALMEHSNCS SEPGFWAHPP GAOAGTCVSO
                                                                                                        780
                                                                                                        840
          YANWLVVLLL VIFLLVANIL LVNLLIAMFS YTFGKVQGNS DLYWKAQRYR LIREFHSRPA
          LAPPPIVISH LRLLLRQLCR RPRSPQPSSP ALEHPRVYLS KEAERKLLTW ESVHKENPLL
                                                                                                        960
          ARARDKRESD SERLERTSOK VDLALKOLGE IREYEORLKV LEREVOOCSR VLGWVT
35
                                                                  SEQ ID NO:107 PEW3 DNA SEQUENCE
          Nucleic Acid Accession #: NM 005982
                                 276-1130 (underlined sequences correspond to start and stop codons)
          Coding sequence:
40
                                                       31
          GGTAGCAGCA TCCACCGGGC GGGAGGTCGG AGGCAGCAAG GCCTTAAAGG CTACTGAGTG
          CGCCGGCCGT TCCGTGTCCA GAACCTCCCC TACTCCTCCG CCTTCTCTTC CTTGGCCGCC CACCGCCAAG TTCCGACTCC GGTTTTCGCC TTTGCAAAGC CTAAGGAGGA GGTTAGGAAC
                                                                                                        120
45
          AGCCGCCCC CCCTCCCTGC GGCCGCCCCC CCCTGCCTCT CGGCTCTGCT CCCTGCCGCG
          TECECCTEGE COSTECECC CEGCAGGCE CAGCCATETC GATECTECCE TCGTTTGECT
TTACGCAGGA GCAAGTGGCG TECETTSTECE AGGTTCTECA GCAAGGCGGA AACCTGGAGC
                                                                                                        300
                                                                                                        360
          GCCTGGGCAG GTTCCTGTGG TCACTGCCCG CCTGCGACCA CCTGCACAAG AACGAGAGCG
          TACTCAAGGC CAAGGCGGTG GTCGCCTTCC ACCGCGGCAA CTTCCGTGAG CTCTACAAGA
TCCTGGAGAG CCACCAGTTC TCGCCTCACA ACCACCCCAA ACTGCAGCAA CTGTGGCTGA
                                                                                                        480
50
                                                                                                        540
          AGGCGCATTA CGTGGAGGCC GAGAAGCTGC GCGGCCGACC CCTGGGCGCC GTGGGCAAAT
          ATCGGGTGCG CCGAAAATTT CCACTGCCGC GCACCATCTG GGACGGCGAG GAGACCAGCT
ACTGCTTCAA GGAGAAGTCG AGGGGTGTCC TGCGGGAGTG GTACGCGCAC AATCCCTACC
                                                                                                        660
                                                                                                        720
          CATCGCCGCG TGAGAAGCGG GAGCTGGCCG AGGCCACCGG CCTCACCACC ACCCAGGTCA
55
          GCAACTGGTT TAAGAACCGG AGGCAAAGAG ACCGGGCCGC GGAGGCCAAG GAAAGGGAGA
ACACCGAAAA CAATAACTCC TCCTCCAACA AGCAGAACCA ACTCTCTCCT CTGGAAGGGG
                                                                                                        840
                                                                                                        900
          1020
                                                                                                      1080
60
          ACTOTOTECT CGGCCCCCTC ACCTCCAGTC TGGTGGACTT GGGGTCC<u>TAA</u> GTGGGGAGGG
ACTGGGGCCT CGAAGGGATT CCTGGAGCAG CAACCACTGC AGCGACTAGG GACACTTGTA
                                                                                                      1140
                                                                                                      1200
          AATAGAAATC AGGAACATTT TTGCAGCTTG TTTCTGGAGT TGTTTGCGCA TAAAGGAATG
          GTGGACTITC ACAAATATCT TITTAAAAAT CAAAACCAAC AGCGATCTCA AGCITAATCT 1320
          CCTCTTCTCT CCAACTCTTT CCACTTTTGC ATTTTCCTTC CCAATGCAGA GATCAGGG
65
          SEQ ID NO:108 PEW3 Protein sequence
                                 NP 005973
          Protein Accession #:
                         11
                                        21
                                                       31
                                                                       41
                                                                                      51
70
          MSMLPSPGPT QEQVACVCEV LQQGGNLERL GRPLWSLPAC DHLHKNESVL KAKAVVAFHR
          GNFRELYKIL ESHOFSPHNH PKLQQLWLKA HYVEAEKLRG RPLGAVGKYR VRRKFPLPRT
IWDGEPTSYC FKEKSRGVLR EWYAHNPYPS PREKRELAEA TGLTTTQVSN WFKNRRQRDR
                                                                                                       120
                                                                                                        180
          AAEAKERENT ENNNSSSNKQ NQLSPLEGGK PLMSSSEEEF SPPQSPDQNS VLLLQGNMGH
75
          ARSSNYSLPG LTASQPSHGL QTHQHQLQDS LLGPLTSSLV DLGS
                                                                   SEQ ID NO:109 PFJ8 DNA SEQUENCE
          Nucleic Acid Accession #: NM 005069
                                 57-2060 (underlined sequences correspond to start and stop codons)
          Coding sequence:
80
```



KLIFLDSRVT EVTGYEPQDL IEKTLYHHVH GCDVFHLRYA HHLLLVKGQV TTKYYRLLSK 300 RGGWVWVQSY ATVVINISRSS RPHCIVSVNY VLTEIBYKEL QLSLEQVSTA KSQDSWRTAL 360 RGGWVWVQSY ATVVINISRSS RPHCIVSVNY VLTEIBYKEL QLSLEQVSTA KSQDSWRTAL 360 LYTSSYSLPF SYHYGHFPLD SHVFSSKMP LPAKFGQPQG SPCEVARFFL 480 LYPHSSESDL LYTFSYSLPF SYHYGHFPLD SHVFSSKMPM LPAKFGQPQG SPCEVARFFL 480 STLPASGECQ WHYANPLVPS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRFGEDTAP 540 PSFFSCGHYR EEPALGPAKA ARQAARDGAR LALARAAPBC CAPPTPEAPG APAQLPFVLL 600 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYLGAS 660 VIITNGR

10

SEQ ID NO:111 PFJ7 DNA SEQUENCE Nucleic Add Accession #: NM 006549 15 1-1254 (underlined sequences correspond to start and stop codons) Coding sequence: 31 41 51 21 ATGAACGGAC GCTGCATCTG CCCGTCCCTG CCCTACTCAC CCGTCAGCTC CCCGCAGTCC 60 20 TCGCCTCGGC TGCCCCGGCG GCCGACAGTG GACTCTCACC ACGTCTCCAT CACGGGTATG 120 CAGGACTGTG TGCAGCTGAA TCAGTATACC CTGAAGGATG AAATTGGAAA GGGCTCCTAT 180 GGTGTCGTCA AGTTGGCCTA CAATGAAAAT GACAATACCT ACTATGCAAT GAAGGTGCTG 240 TCCAAAAAGA AGCTGATOCG GCAGGCCGGC TTTCCACGTC GCCCTCCACC CCGAGGCACC 300 CGGCCAGCTC CTGGAGGCTG CATCCAGCCC AGGGGCCCCA TTGAGCAGGT GTACCAGGAA 360 ATTGCCATCC TCAAGAAGCT GGACCACCCC AATGTGGTGA AGCTGGTGGA GGTCCTGGAT 420 25 GACCCCAATG AGGACCATCT GTACATGGTG TTCGAACTGG TCAACCAAGG GCCCGTGATG 480 GAAGTGCCCA CCCTCAAACC ACTCTCTGAA GACCAGGCCC GTTTCTACTT CCAGGATCTG 540 ATCAAAGGCA TOGAGTACTT ACACTACCAG AAGATCATCC ACCGTGACAT CAAACCTTCC 600 AACCTCCTGG TCGGAGAAGA TGGGCACATC AAGATCGCTG ACTTTGGTGT GAGCAATGAA 660 30 TTCAAGGGCA GTGACGCGCT CCTCTCCAAC ACCGTGGGCA CGCCCGCCTT CATGGCACCC 720
GAGTCGCTCT CTGAGACCCG CAAGATCTTC TCTGGGAAGG CCTTGGATGT TTGGGCCATG 780
GGTGTGACAC TATACTGCTT TGTCTTTGGC CAGTGCCCAT TCATGGACGA GCGGATCATG 840 TGTTTACACA GTAAGATCAA GAGTCAGGCC CTGGAATTTC CAGACCAGCC CGACATAGCT 900 GAGGACTIGA AGGACCTGAT CACCCGTATG CTGGACAAGA ACCCCGAGTC GAGGATCGTG 960
GTGCCGGAAA TCAAGCTGCA CCCCTGGGTC ACGAGGCATG GGGCGGAGCC GTTGCCGTCG 1020 35 GAGGATGAGA ACTGCACGCT GGTCGAAGTG ACTGAAGAGG AGGTCGAGAA CTCAGTCAAA 1080 GAGGATGAGA ACTGCACGCT GGTCGAAGTG ACTGAAGAGG AGGTCGAGAA CTCAGTCAAA 1080
CACATTCCCA GCTTGGCAAC CGTGATCCTG GTGAAGACCA TGATACGTAA ACCCTCCTTC 1140
GGGAACCCAT TCGAGGGCAG CCGGCGGGAG GAACGCTCAC TGTCAGCGCC TGGAAACTTG 1200
CTCACCAAAA AACCAACCAG GGAATGTGAG TCCCTGTCTG AGCTCAAGAC CTAGAAAAAA 1260
AGTCCCCTTC CTGCCTGTTG CAAAGTAACG TAAGAGTTCC CTCACCCGAG TGGATGCAGA 1320
CGTTCTTGCT GTCAGCCACC TTCCTTCATA CACATAGCCA GCCCAGGGTG ACCAGAACGT 1380
CCCAGGACAG ATGAGGCTTT GTGTCCTTCAT ACACATAGCCA GCCCAGGGTG ACCAGAACGT 1380
CCCAGGACAG ATGAGGCTTT GTGTCCTTTAT GAGAGTGGGA GAACCTGGTG GCACCCCTG 1440
GTGCAGGTGC TGTGGTGGT GGGGACCCCA CTGCCTTTCC CACTGAGCAC ATCATGGCTA 1500
CCTGACTTGG TGGGAGTTCC ATTCAGTCAC TTCTGTTTCT TAAACATAGC TTTACTGAGG 1560
TACAATTCAC ATACCATGTA ATTCACCCAC GGGAAGTGTA TGATTCAGGC CCCAAGAAGAC 1680 40 45 CACACTTCTG CAGCCATTAC CACCGTCAAC TTTACGACAT TTTCATCAGC CCAAGAAGAC 1680 ACCETACACT CCTTAGCTGT CCCCATCCAA CTCCCCCACC CCAGTAACCA CTCAGAATAG 1740 GTATGGATTT GCCTATTCTG GACGTTTCGT ATAAATGGCG TCATACACTA AAAAAAAAA 1800 AAAA 50 SEQ ID NO:112 PFJ7 Protein sequence: Protein Accession #: 55 31 MNGRCICPSL PYSPVSSPOS SPRLPRRPTV ESHHVSITGM ODCVOLNOYT LKDEIGKGSY 60 GVVKLAYNEN DNTYYAMKVL SKKKLIRQAG FFRRPPPRGT RPAPGGCIQP RGPIEQVYQE 120 IAILKKLDHP NVVKLVEVLD DPNEDHLYMV FELVNQGPVM EVPTLKPLSE DQARFYFQDL 180 IKGIEYLHYQ KIHRDIKPS NLLVGEDGHI KIADFGVSNE FKGSDALLSN TVGTPAFMAP 240 60 ESISETRKIF SGKALDVWAM GYTLYCFYFG QCPFMDERIM CLHSKIKSQA LEFPDQPDIA 300 EDLKDLITRM LDKNPESRIV VPEIKLHPWV TRHGAEPLPS EDENCTLVEV TEEEVENSVK 360 HIPSLATVIL VKTMIRKRSF GNPFEGSRRE ERSLSAPGNL LTKKPTRECE SLSELKT 65 SEQ ID NO:113 PFJ6 DNA SEQUENCE Nucleic Acid Accession #: NM_021810 70 Coding sequence: 1-429 (underlined sequences correspond to start and stop codons) ATGAAACCTC TGATATGGAC ATGGTCAGAT GTTGAAGGCC AGAGGCCGGC TCTGCTCATC 60
TGCACAGCTG CAGCAGGACC CACGCAGGAG GTTAAGGGTT ATGGCAAGCC CTTTGAGCCA 120
AGAAGTGTGA AAAACATACA CTCTACTCCT GCTTACCCAG ATGCCACAAT GCACAGACAA 180
CTCCTGGCTC CGGTGGAAGG AAGGATGGCA GAGACATTGA ATCAGAAACT CCATGTTGCC 240 75 AATGTGCTGG AAGATGACCC CGGCTACCTA CCTCACGTCT ACAGCGAGGA AGGGGAGTGT 300 GGAGGGGCCC CATCCCTCAG CTCTCTGGCC AGCTTGGAAC AGGAGTTGCA ACCTGATTTG 360

CTGGACTCTT TGGGTTCAAA AGCGACTCCG TTTGAGGAAA TATATTCAGA GTCAGGTGTT 420 CCTTCC<u>TAA</u>



AGCGCTTGAG CCCCTTCGTC TTCCCGGGCG AGCTGCTGCT GCGTCTGCTG CGGATGATCA 900
TCTTGCCGCT GGTGGTGTGC AGCTTGATCG GCGGCGCCCC CAGCCTGGAC CCCGGCGCGCC 960
TCGGCCGTCT GGGCGCCTGG GCGCTGCTCT TTTTCCTGGT CACCACGCTG CTGGCGTCGG 1020
CGCTCGGAGT GGGCTTGGCG CTGGCTCTGC AGCCGGGCGC CGCCTCCGCC GCCATCAACG 1080 5 CCTCCGTGGG AGCCGCGGGC AGTGCCGAAA ATGCCCCCAG CAAGGAGGTG CTCGATTCGT 1140
TCCTGGATCT TGCGAGAAAT ATCTTCCCTT CCAACCTGGT GTCAGCAGCC TTTCGCTCAT 1200 ACTICTACCAC CTATGAAGAG AGGAATATCA CCGGAACCAG GGTGAAGGTG CCCGTGGGGC 1260
AGGAGGTGGA GGGGATGAAC ATCCTGGGCT TGGTAGTGTT TGCCATCAT TTTGGTGTGG 1320
CGCTGCGGAA GCTGGGGCCT GAAGGGGAGC TGCTTATCCG CTTCTCAAC TCCTTCAATG 1380
AGGCCACCAT GGTTCTGGTC TCCTGGATCA TGTGGTACGC CCCTGTGGGC ATCATGTTCC 1440 10 TGGTTGGCTGG CAAGATCGTG GAGATGGAGG ATGTGGGTTT ACTCTTTGCC CGCCTTGGCA 1500
AGTACATTCT GTGCTGCCTG CTGGGTCACG CCATCCATGG GCTCCTGGTA CTGCCCCTCA 1560
TCTACTTCCT CTTCACCCGC AAAAACCCCT ACCGCTTCCT GTGGGGGCATC GTGACGCCGC 1620 TGGCCACTGC CTTTGGGACC TCTTCCAGTT CCGCCACGCT GCCGCTGATG ATGAAGTGCG 1680 15 TGGAGGAGAA TAATGGCGTG GCCAAGCACA TCAGCCGTTT CATCCTGCCC ATCGGCGCCA 1740 CCGTCAACAT GGACGGTGCC GCGCTCTTCC AGTGCGTGGC CGCAGTGTTC ATTGCACAGC 1800 TCAGCCAGCA GTCCTTGGAC TTCGTAAAGA TCATCACCAT CCTGGTCACG GCCACAGCGT 1860 CCAGCGTGGG GGCAGCGGGC ATCCCTGCTG GAGGTGTCCT CACTCTGGCC ATCATCCTCG 1920
AAGCAGTCAA CCTCCCGGTC GACCATATCT CCTTGATCCT GGCTGTGGAC TGGCTAGTCG 1980 20 ACCEGTOCTG TACCGTCCTC AATGTAGAAG GTGACGCTCT GGGGGCAGGA CTCCTCCAAA 2040 ATTATGTGGA CCGTACGGAG TCGAGAAGCA CAGAGCCTGA GTTGATACAA GTGAAGAGTG 2100
AGCTGCCCCT GGATCCGCTG CCAGTCCCCA CTGAGGAAGG AAACCCCCTC CTCAAACACT 2160
ATCGGGGGCC CGCAGGGGAT GCCACGGTCG CCTCTGAGAA GGAATCAGTC ATGTAAACCC 2220 CGGGAGGGAC CITCCCTGCC CTGCTGGGGG TGCTCTTTGG ACACTGGATT ATGAGGAATG 2280 25 GATAAATGGA TGAGCTAGGG CTCTGGGGGT CTGCCTGCAC ACTCTGGGGA GCCAGGGGCC 2340 CCAGCACCCT CCAGGACAGG AGATCTGGGA TGCCTGGCTG CTGGAGTACA TGTGTTCACA 2400 AGGGTTACTC CTCAAAACCC CCAGTTCTCA CTCATGTCCC CAACTCAAGG CTAGAAAACA 2460 GCAAGATIGA GAAATAATGT TCTGCTGCGT CCCCACCGTG ACCTGCCTGG CCTCCCCTGT 2520 CTCAGGGAGC AGGTCACAGG TCACCATGGG GAATTCTAGC CCCCACTGGG GGGATGTTAC 2580 AACACCATGC TGGTTATTTT GGCGGCTGTA GTTGTGGGGG GATGTGTGT TGCACGTGTG 2640 30 TGTGTGTGTG TGTGTGTGTGTGTGTGTGTGTTGTGTGACC TCCTGTCCCC ATGGTACGTC 2700 CCACCCTGTC CCCAGATCCC CTATTCCCTC CACAATAACA GAAACACTCC CAGGGACTCT 2760 GGGGAGAGGC TGAGGACAAA TACCTGCTGT CACTCCAGAG GACATTTTTT TTAGCAATAA 2820 AATTGAGTGT CAACTATTTA AAAAAAAAA AAAAAA 35 SEQ ID NO:118 PFJ4 Protein sequence; Protein Accession #: 40 -31 MVADPPRDSK GLAAAEPTAN GGLALASIED QGAAAGGYCG SRDQVRRCLR ANLLVLLTVV 60 AVVAGVALGL GVSGAGGALA LGPERLSAFV FPGELLIRLI RMILPLVVC SLIGGAASLD 120 PGALGRLGAW ALLFFLVTTL LASALGVGLA LALQPGAASA AINASVGAAG SAENAPSKEV 180 LDSFLDLARN IFPSNLVSAA FRSYSTTYEE RNITGTRVKV PVGQEVEGMN ILGLVVFAIV 240 45 FGVALRKLGP EGELLIRFFN SFNEATMVLV SWIMWYAPVG IMFLVAGKIV EMEDVGLLFA 300 RLGKVILCCL LCHAIHGLLV LPLIYFLFTR KNPYRFLWGI VTPLATAFGT SSSSATLPLM 360 MKCVEENNGV AKHISRFILP IGATVNMDGA ALFQCVAAVF IAQLSQQSLD FVKIITILVT 420 ATASSVGAAG IPAGGVLTLA IILEAVNLPV DHISLILAVD WLVDRSCTVLNVEGDALGAG 480 50 LLQNYVDRTE SRSTEPELIQ VKSELPLDPL PVPTEEGNPL LKHYRGPAGD ATVASEKESV 540 55 SEQ ID NO:119 PFJ3 DNA SEQUENCE Nucleic Add Accession #: NM_006708 Coding sequence: 88.642 (underlined sequences correspond to start and stop codons) 51 31 41 60 CTAGTTAAGG CGGCACAGGG CCGAGGCGTA GTGTGGGTGA CTCCTCCGTT CCTTGGGTCC 60 CGTCGTCTGT GATACTGCAG TTCAGCCATG GCAGAACCGC AGCCCCCGTC CGGCGGCCCC 120
ACGGACGAGG CCGCCCTCAG TTGCTGCTCC GACGCGGACC CCAGTACCAA GGATTTTCTA 180 TTGCAGCAGA CCATGCTACG AGTGAAGGAT CCTAAGAAGT CACTGGATTT TTATACTAGA 240 65 GTTCTTGGAA TGACGCTAAT CCAAAAATGT GATTTTCCCA TTATGAAGTT TTCACTCTAC 300 TTCTTGGCTT ATGAGGATAA AAATGACATC CCTAAAGAAA AAGATGAAAA AATAGCCTGG 360 GCGCTCTCCA GAAAAGCTAC ACTTGAGCTG ACACACAATT GGGGCACTGA AGATGATGCG 420 ACCCAGAGTT ACCACAATGG CAATTCAGAC CCTCGAGGAT TCGGTCATAT TGGAATTGCT 480 GTTCCTGATG TATACAGTISC TTGTAAAAGG TTTGAAGAAC TGGGAGTICAA ATTTGTGAAG 540
AAACCTGATG ATGGTAAAAT GAAAGGCCTG GCATTTATTC AAGATCCTGA TGGCTACTGG 600 70 ATTGAAATTT TGAATCCTAA CAAAATGGCA ACCTTAATGT AGTGCTGTGA GAATTCTCCT 660 TTGAGATTTC AGAAGAAAGG AAACAATGTG ATTCAAGATA TITACATACC AGAAGCATCT 720 AGGACTGATG GATCACTGTC CCGATTCAAA TTATTCTTCA GTCCATTTCC CCTTCCTATT 780 TCAGCTGTTC CTTTTCACCT AACTGTTCAG TCATTCTGGT TTTCAAGCAG TGCTTTATCT 840
CATGTCCTTG AATATAGTTG TGTAACTTTA TTTTTTAGGT AATAATTAGA ACAGTTCCCT 900
TCAGAGGCTG CATTTGCCTT CTTCTGCCAC CTAAATATTA CTTCCCTTCA AATCTGCCTT 960 75 



AGGGGAACAA GGACCCAGAG GGGATCGTGG TGACAAAGGT GAAAAAGGTG CCCCTGGACC 600 TOGAGGACAT GOACCCAGAG GGGATCHOU TOXCAAAGGH GAAAAAGGH CECHOACC TOGAGGAGAGAAC CTGGGACCC TGGAAATCCT GGCCCCCTGG GTCCTCCCGG 660 CCCCCTGGT CCCCCTGGTC TTGGTGGAAA CTTTGCTGCC CAGATGGCTG GAGGATTTGA 720 TGAAAAGGCT GGTGGCGCCC AGTTGGGAGT AATGCAAGGA CCAATGGGCC CCATGGGACC 780 TOGAGGACCT CCAGGCCCTG CAGGTGCTCC TGGGCCTCAA GGATTTCAAG GCAATCCTGG 840 5 TGAACCTGGT GAACCTGGTG TCTCTGGTCC CATGGGTCCC CGTGGTCCTC CTGGTCCCC 900
TGGAAGCCT GGTGATGATG GTGAAGCTGG AAAACCTGGA AAAGCTGGTG AAAGGGGTCC 960
GCCTGGTCCT CAGGGTGCTC GTGGTTTCCC AGGAACCCCA GGCCTTCCTG GTGTCAAAGG 1020 TCACAGAGGT TATCCAGGCC TGGACGGTGC TAAGGGAGGG GCGGTGCTC CTGGTGTGAA 1080
GGGTGAGAGT GGTTCCCCGG GTGAGAACGG GATCCCGGGC CCAATGGGTC CTCGTGGCCT 1140
GCCTGGTGAA AGAGGACGGA CTGGCCCTGC TGGCGCTGCG GGTGCCCGAG GCAACGATGG 1200
TCAGCCAGGC CCCGCAGGTC CTCCGGGTCC TGTCGGTCCT GCTGGTGTC CTGGCTTCCC 1260 10 TGGTGCTCCT GGAGCCAAGG GTGAAGCCGG CCCCACTGGT GCCCGTGGTC CTGAAGGTGC 1320 TCAAGGTCCT CGCGGTGAAC CTGGTACTCC TGGGTCCCCT GGGCCTGCTG GTGCCTCCGG 1380 TAACCCTGGA ACAGATGGAA TTCCTGGAGC CAAAGGATCT GCTGGTGCTC CTGGCATTGC 1440 15 TIGTIGCTCCT GGCTTCCCTG GGCCACGGGG TCCTCCTGGC CCTCAAGGTG CAACTGGTCC 1500 TCTGGGCCCG AAAGGTCAGA CGGGTGAACC TGGTATTGCT GGCTTCAAAG GTGAACAAGG 1560 CCCCAAGGGA GAACCTGGCC CTGCTGGCCC CCAGGGAGCC CCTGGACCCG CTGGTGAAGA 1620 AGGCAAGAGA GCTGCCCGTG GAGAGCCTGG TGGCGTTGGG CCCATCGGTC CCCCTGGAGA 1680 20 AAGAGGTGCT CCCGGAAACC GCGGTTTCCC AGGTCAAGAT GGTCTGGCAG GTCCCAAGGG 1740
AGCCCTGGA GAGCGAGGGC CCAGTGGTCT TGCTGGCCC AAGGGAGCCA ACGGTGACCC 1800
TGGCCGTCCT GGAGAACCTG GCCTTCCTGG AGCCCGGGGT CTCACTGGCC GCCCTGGTGA 1860 TGCTGGTCCT CAAGGCAAAG TTGGCCCTTC TGGAGCCCCT GGTGAAGATG GTCGTCCTGG 1920 ACCTCCAGGT CCTCAGGGGG CTCGTGGGCA GCCTGGTGTC ATGGGTTTCC CTGGCCCCAA 1980 AGGTGCCAAC GGTGAGCCTG GCAAAGCTGG TGAGAAGGGA CTGCCTGGTG CTCCTGGTCT 2040 25 GAGGGGTCTT CCTGGCAAAG ATGGTGAGAC AGGTGCTGCA GGACCCCCTG GCCCTGCG 2100
ACCTGCTGGT GAACGAGGCG AGCAGGGTGC TCCTGGGCCA TCTGGGTTCC AGGGACTTCC 2160
TGGCCCTCCT GGTCCCCCAG GTGAAGGTGG AAAACCAGGT GACCAGGGTG TTCCCGGTGA 2220 AGCTGGAGCC CCTGGCCTCG TGGGTCCCAG GGGTGAACGA GGTTTCCCAG GTGAACGTGG 2280 30 CTCTCCGGT GCCCAGGGCC TCCAGGGTCC CCCTGGCACTC CTGGCACTGA 2340
TGGTCCCAAA GGTGCATCTG GCCCAGCAGG CCCCCTGGC GCACAGGGCC CTCCAGGTCT 2400
TCAGGGAATG CCTGGCGAGA GGGGAGCAGC TGGTATCGCT GGGCCCAAAG GCGACAGGGG 2460 TGACGTTGGT GAGAAAGGCC CTGAGGGAGC CCCTGGAAAG GATGGTGGAC GAGGCCTGAC 2520 AGGTCCCATT GGCCCCCCTG GCCCAGCTGG TGCTAACGGC GAGAAGGGAG AAGTTGGACC 2580
TCCTGGTCCT GCAGGAAGTG CTGGTGCTCG TGGCGCTCCG GGTGAACGTG GAGAGACTGG 2640
CCCCCCCGGA CCAGCGGGAT TTGCTGGGCC TCCTGGTGCT GATGGCCAGC CTGGGGCCAA 2700 35 GGGTGAGCAA GGAGAGGCCG GCCAGAAAGG CGATGCTGGT GCCCCTGGTC CTCAGGGCCC 2760 CTCTGGAGCA CCTGGGCCTC AGGGTCCTAC TGGAGTGACT GGTCCTAAAG GAGCCCGAGG 2820 TGCCCAAGGC CCCCCGGGAG CCACTGGATT CCCTGGAGCT GCTGGCCGCG TTGGACCCCC 2880 40 AGGETCCAAT GGCAACCCTG GACCCCCTGG TCCCCTGGT CCTTCTGGAA AAGATGGTCC 2940
CAAAGGTGCT CGAGGAGACA GCGGCCCCC TGGCCGAGCT GGTGAACCCG GCCTCCAAGG 3000
TCCTGCTGGA CCCCCTGGCG AGAAGGGAGA GCCTGGAGAT GACGGTCCCT CTGGTGCCGA 3060 AGGTCCACCA GGTCCCCAGG GTCTGGCTGG TCAGACAGGC ATCGTCGGTC TGCCTGGGCA 3120
ACGTGGTGAG AGAGGATTCC CTGGCTTGCC TGGCCCATCG GGTGAGCCCG GCAAGCAGGG 3180
TGCTCCTGGA GCATCTGGAG ACAGAGGTCC TCCTGGCCCC GTGGGTCCTC CTGGCCTGAC 3240 45 GGGTCCTGCA GGTGAACCCG GACGAGAGGG AAGCCCCGGT GCTGATGGCC CCCCTGGCAG 3300 AGATGGCGCT GCTGGAGTCA AGGGTGATCG TGGTGAGACT GGTGCTGTGG GAGCTCCTGG 3360
AGCCCCTGGG CCCCCTGGCT CCCCTGGCCC CGCTGGTCCA ACTGGCAAGC AAGGAGACAG 3420
AGGAGAAGCT GGTGCACAAG GCCCCATGGG ACCCTCAGGA CCAGCTGGAG CCCGGGGAAT 3480 50 CCAGGGTCCT CAAGGCCCCA GAGGTGACAA AGGAGAGGCT GGAGAGCCTG GCGAGAGAGG 3540 CCTGAAGGGA CACCGTGGCT TCACTGGTCT GCAGGGTCTG CCCGGCCCTC CTGGTCCTTC 3600 TGGAGACCAA GGTGCTTCTG GTCCTGCTGG TCCTTCTGGC CCTAGAGGTC CTCCTGGCCC 3660 TOTAGACACAA GOTOCTTCG GICCTGCTGG TCCTTCTGGC CCTAGAGGTC CTCCTGGCCCC 3720
TCCCCGTGGA CGATCAGGCG AAACCGGTCC TGCTGGTCCT CCTGGAAATC CTGGGCCCCC 3780
TGGTCCTCCA GGTCCCCCTG GCCCTGGCAT CGACATGTCC GCCTTTGCTG GCTTAGGCCCC 3840
GAGAGAGAG GGCCCCGACC CCCTGCAGTA CATGCCGGCC GACCAGGCAG CCGGTGGCCT 3940 55 GAGACAGCAT GACGCCGAGG TGGATGCCAC ACTCAAGTCC CTCAACAACC AGATTGAGAG 3960 CATCCGCAGC CCCGAGGGCT CCCGCAAGAA CCCTGCTCGC ACCTGCAGAG ACCTGAAACT 4020 CTGCCACCCT GAGTGGAAGA GTGGAGACTA CTGGATTGAC CCCAACCAAG GCTGCACCTT 4080 60 GGACGCCATG AAGGTTTTCT GCAACATGGA GACTGGCGAG ACTTGCGTCT ACCCCAATCC 4140
AGCAAACGTT CCCAAGAAGA ACTGGTGGAG CAGCAAGAGC AAGGAGAAGA AACACATCTG 4200
GTTTGGAGAA ACCATCAATG GTGGCTTCCA TTTCAGCTAT GGAGATGACA ATCTGGCTCC 4260 CAACACTGCC AACGTCCAGA TGACCTTCCT ACGCCTGCTG TCCACGGAAG GCTCCCAGAA 4320 CATCACCTAC CACTGCAAGA ACAGCATTGC CTATCTGGAC GAAGCAGCTG GCAACCTCAA 4380 GAAGGCCCTG CTCATCCAGG GCTCCAATGA CGTGGAGATC CGGGCAGAGG GCAATAGCAG 4440 65 GAAGGEZETG CTCATCAGG GETCZAATGA CGTIGGAGATE CGGGCAAGG GEAATAGCAG 4440
GTTCACGTAC ACTGCCCTGA AGGATGGCTG CACGAAACAT ACCGGTAAGT GGGGCAAGAC 4500
TGTTATCGAG TACCGGTCAC AGAAGACCTC ACGCCTCCCC ATCATTGACA TTGCACCCAT 4560
GGACATAGGA GGGCCCGAGC AGGAATTCGG TGTGGACATA GGGCCGGTCT GCTTCTTGTA 4620
AAACCTGAA CCCAGAAACA ACACAAATCCG TTGCAAACCCC AAAGGACCCA AGTACTTTCC 4680 70 AATCTCAGTC ACTCTAGGAC TCTGCACTGA ATGGCTGACC TGACCTGATG TCCATTCATC 4740
CCACCCTCTC ACAGTTCGGA CTTTTCTCCC CTCTCTTTCT AAGAGACCTG AACTGGGCAG 4800
ACTGCAAAAT AAAATCTCGG TGTTCTATTT ATTTATTGTC TTCCTGTAAG ACCTTCGGGT 4860 CAAGGCAGAG GCAGGAAACT AACTGGTGTG AGTCAAATGC CCCCTGAGTG ACTGCCCCCA 4920
GCCCAGGCCA GAAGACCTCC CTTCAGGTGC CGGGCGCAGG AACTGTGTGT GTCCTACACA 4980
ATGGTGCTAT TCTGTGTCAA ACACCTCTGT ATTTTTTAAA ACATCAATTG ATATTAAAAA 5040 75 TGAAAAGATT ATTGGAAAGT



SEQ ID NO:127 PFH8 DNA SEQUENCE

## 5 Nucleic Acid Accession #: NM_015900 Coding sequence: 32-1402 (underlined sequences correspond to start and stop codons) 21 31 CACGAGCGGC ACGAGGATTT CCAGCTCAGC GATGCCCCCA GGTCCCTGGG AGAGCTGCTT 60 CTGGGTGGGG GGCCTCATTT TGTGGCTCAG CGTTGGAAGT TCAGGGGATG CACCTCCTAC 120 10 CCCACAGCCA AAGTGCGCTG ACTTCCAGAG CGCCAACCTT TTTGAAGGCA CCGATCTCAA 180 AGTCCAGTTT CTCCTCTTTG TCCCTTCGAA TCCTAGCTGT GGGCAGCTAG TAGAAGGAAG 240 CAGTGACCTC CAAAACTCTG GGTTCAATGC CACTCTGGGA ACCAAACTAA TTATCCATGG 300 15 ATTICAGGGTT TTAGGAACAA AGCCTTCCTG GATTGACACA TTTATTAGAA CCCTTCTGCG 360 TGCAACGAAT GCTAATGTGA TTGCCGTGGA CTGGATTTAT GGGTCTACAG GAGTCTACTT 420 CTCAGCTGTG AAAAATGTGA TTAAGTTGAG CCTCGAGATC TCCCTTTTCC TCAATAAACT 480 CCTGGTGCTG GGTGTGCGG AATCCTCAAT CCACATCATT GGTGTTAGCC TGGGGGCCCA 540 CGTTGGGGGC ATGGTGGGAC AGCTCTTCGG AGGCCAGCTG GGACAGATCA CAGGCCTGGA 600 CCCCGCTGGA CCTGAGTACA CCAGGGCCAG TGTGGAAGAG CGCTTGGATG CTGGAGATGC 660 CCTCTTCGTG GAAGCCATCC ACACAGACAC CGACAATTTG GGTATTCGGA TTCCCGTTGG 720 20 ACATGTGGAC TACTTCGTCA ACGGAGGCCA AGACCAACCT GGCTGCCCCA CCTTCTTTTA 780 CGCAGGTTAT AGTTATCTGA TCTGTGATCA CATGAGGGCT GTGCACCTCT ACATCAGCGC 840 CCTGGAGAAT TCCTGTCCAC TGATGGCCTT TCCCTGTGCC AGCTACAAGG CCTTCCTTGC 900 25 TGGACGCTGT CTGGATTGCT TTAACCCTTT TCTGCTTTCC TGCCCAAGGA TAGGACTGGT 960 GGAACAAGGT GGTGTCAAGA TAGAGCCGCT CCCCAAGGAA GTGAAAGTCT ACCTCCTGAC 1020 TACTTCCAGT GCTCCGTACT GCATGCATCA CAGCCTCGTG GAGTTTCACT TGAAGGAACT 1080 GAGAAACAAG GACACCAACA TCGAGGTTAC CTTCCTTAGC AGTAACATCA CCTCTTCATC 1140 TAAGATCACC ATACCTAAGC AGCAACGCTA TGGGAAAGGA ATCATAGCCC ATGCCACCCC 1200 ACAATGCCAG ATAAACCAAG TGAAATTCAA GTTTCAGTCT TCCAACCGAG TTTGGAAAAA 1260 AGACCGGACT ACCATTATTG GGAAGTTCTG CACTGCCCTT TTGCCTGTCA ATGACAGAGA 1320 30 AGACCORCT ACCATTATIO GUARGITCTO CACCIOCCTT TIGCCTOTICA ATGACCARGA 1380 AAAGATGGTC TGCTTACCTG AACCAGTGAA CTTACAGCA AGTGTGACTG TTACCTGTGA 1380 CCTGAAGATA GCCTGTGTGT_AGTTTAACCT GGGCAGGACA CATCTCCCTG CATTTTTTT 1440 TTTTTTTTTT GAGAGAGAGG TGTGATGAGG GATGTGTGT TGCAGCTTAT TGTAGACCAT 1500 TACTACTAAG GAGAAAAGCA AAGCTCTTTC TTATTTTCCT CATAATCAGC TACCCTGGAG 1560 35 GGGAGGGAGA ACTCATTTTA CAGAACTTGG TTTCCTTTGC CGATCTTATG TACATACCCA 1620 TTTTAGCTTT CCCATGCATA CTTAACTGCA CTTGCTTTAT CTCCTTGGGC ATTCGTACTT 1680 AGGATTCAAT AGAAACATGT ACAGGGTAAA CAATTTTTTA AAAATAAAAC TTCATGGAGT 1740 ΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑ 40 SEQ ID NO:128 PFH8 Protein sequence: Protein Accession #: 45 21 31 WIYOSTGYYF SAVKNVIKLS LEISLFLNKL LVLGVSESSI HIIGVSLGAH VGGMVGQLFG 180 GQLGQITGLD PAGPEYTRAS VEERLDAGDA LFVEAIHTDT DNLGIRIPVG HYDYFVNGGQ 240 DQPGCPTFFY AGYSYLICDH MRAVHLYISA LENSCPLMAF PCASYKAFLA GRCLDCFNPF 300 50 LLSCPRIGLY EQGGVKIEPL PKEVKVYLLT TSSAPYCMHH SLVEFHLKEL RNKDTNIEVT 360 FLSSNITSSS KITIPKQQRY GKGIIAHATP QCQINQVKFK FQSSNRVWKK DRTTIIGKFC 420 TALLPVNDRE KMVCLPEPVN LQASVTVSCD LKIACV 55 SEQ ID NO:129 PFH7 DNA SEQUENCE Nucleic Acid Accession #: NM_014384 60 89-1336 (underlined sequences correspond to start and stop codons) Coding sequence: 31 41 51 65 CGTTGCCGGG TCGCAGGTCC CGCCAGTGCG AGCGCAACGG AGGTCGAAGG CGTTCAGACT 60 CTTAGCTGAA CGCGGAGCTG CGGCGGCT<u>AT G</u>CTGTGGAGC GGCTGCCGGC GTTTCGGGGC 120 GCGCCTCGGC TGCCTGCCCG GCGGTCTCCG GGTCCTCGTC CAGACCGGCC ACCGGAGCTT 180 GACCTCCTGC ATCGACCCTT CCATGGGACT TAATGAAGAG CAGAAAGAAT TTCAAAAAGT 240 GGCCTTTGAC TTTGCTGCCC GAGAGATGGC TCCAAATATG GCAGAGTGGG ACCAGAAGGA 300 GCTGTTCCCA GTGGATGTGA TGCGGAAGGC AGCCCAGCTA GGCTTCGGAG GGGTCTACAT 360 70 ACAAACAGAT GTGGGCGGGT CTGGGCTGTC ACGTCTTGAT ACCTCTGTCA TTTTTGAAGC 420 CTTGGCTACA GGCTGCACCA GCACCACAGC CTATATAAGC ATCCACAACA TGTGTGCCTG 480 GATGATTGAT AGCTTCGGAA ATGAGGAACA GAGGCACAAA TTTTGCCCAC CGCTCTGTAC 540 CATGGAGAAG TITGCTTCCT ACTGCCTCAC TGAACCAGGA AGTGGGAGTG ATGCTGCCTC 600 75 TCTTCTGACC TCCGCTAAGA AACAGGGAGA TCATTACATC CTCAATGGCT CCAAGGCCTT 660 CATCAGTGGT GCTGGTGAGT CAGACATCTA TGTGGTCATG TGCCGAACAG GAGGACCAGG 720 CCCCAAGGGC ATCTCATGCA TAGTTGTTGA GAAGGGGACC CCTGGCCTCA GCTTTGGCAA 780

GAAGGAGAAA AAGGTGGGGT GGAACTCCCA GCCAACACGA GCTGTGATCT TCGAAGACTG 840 TGCTGTCCCT GTGGCCAACA GAATTGGGAG CGAGGGGCAG GGCTTCCTCA TTGCCGTGAG 900

TGTCATCCTC ACCCGAGACC ACCTCAATGT CCGGAAGCAG TTTGGAGAGC CTCTGGCCAG 1020
TAACCAGTAC TTGCAATTCA CACTGGCTGA TATGGCAACA AGGCTGGTGG CCGCGCGGCT 1080
GATGGTCCGC AATGCAGCAG TGGCTCTGCA GGAGGAGAGG AAGGATGCAG TGGCCTTGTG 1140 5 CTCCATGGCC AAGCTCTTTG CTACAGATGA ATGCTTTGCC ATCTGCAACC AGGCCTTGCA 1200 GATGCACGGG GGCTACGGCT ACCTGAAGGA TTACGCTGTT CAGCAGTACG TGCGGGACTC 1260 CAGGGTCCAC CAGATTCTAG AAGGTAGCAA TGAAGTGATG AGGATACTGA TCTCTAGAAG 1320 CCTGCTTCAG GAGTAGAACC CACACTTGTT CTGGCCTGGT GTTCAGTGCG ACTGCAGTCA 1380 CTIGATIGATIGATICA ANDIADARCE CACACITETT CTIGACTIGAT THE CAGTIGAT AT A CACACITET 1580
GTGTTGAGTIG GTGCCATGTIG GGCCGCTCTA TTCCAAAGGA ATCATGGATT AGACCCAAGG 1440
GCTGAGCTCC TCTAGGGCAG GACCTGCACC CTGTGTGTTIG GCACCAGCAT CGGGTCTTTGG 1500
ACTGGGGCAG AATCCCCAGT GGAACCGGAA GAGCTGGACT GATGAGAAAC ATCAGAAGAA 1560
CACATACTAC CTTGTTTTCC TAATGCCAGA AGGGTGACCA GTGAAGATTC ACCGTCAAAC 1620 10 CATGAAAGTC CTTTCTTGGA TCCACTTTAT CTTGATTAGT CTGCATTTA CTAGTTCACT 1680
GGATCCCTCC TCTAGGGGCC TGGGGACTTT CACTGATGCT CTTCCTGATT CTAGAGCAAA 1740
GGTGTGGGAA GGGGAAATGG AGGAATGCCC TCCTGTCTGT GTCGTTCTCT GTGCCACAGC 1800 15 TACAGATGCA GAAGGTTTCT CTGGATAGCA CACCTCTGAA TOTAAATCAT GATAAAATGG 1860 ATATTTGGAA ACTTACTCCT AAGCTGTGAT GTAGGGTGTA TTTCTACTTC TGGACTGCCT 1920 CAATATCAAG GGCTGAGACT TTTGAATGTT GAATATTCGT TGGGTTTCAT GTTAAGACGC 1980 CTGTGGTCCA GGAGTGCTAT TCAGTGTTTC TGTTCCTGAT AAACACTTTG AATATTTTTT 2040 20 TGTGTTTTTG TTTCCTTTTC TGAAGCTGTT CCTCCTTTTA AATATTTTTA ATCACATTGA 2100
TAAAATCTAT CCTTCATCCA CCTCTGGTTC TACTATAGTT GATTTTTATT TTAAATGTTT 2160
AATTGTATTT GATTAAACAC TTAACTGGAT TTTGGAATAA TAAAACTCTC GTCCAATTTG 2220 GCTTTTAAAA AAAAAAAA 25 SEQ ID NO:130 PFH7 Protein sequence Protein Accession #: NP_055199.1 30 11 21 31 41 MLWSGCRRFG ARLGCLPGGL RVLVQTGHRS LTSCIDPSMG LNEEQKEFQK VAFDFAAREM 60 APNMAEWDOK ELFPVDVMRK AAQLGFGGVY IQTDVGGSGL SRLDTSVIFE ALATGCTSTT 120 AYISIHNMCA WMIDSFGNEE QRHKFCPPLC TMEKFASYCL TEPGSGSDAA SLLTSAKKQG 180 DHYILNGSKA FISGAGESDI YVVMCRTGGP GPKGISCIVV EKGTPGLSFG KKEKKVGWNS 240 35 QPTRAVIFED CAVPVANRIG SEGQEFIJAV RGLNGGRINI ASCSLGAHA SVILTRDHLN 300 VRKQFGEPLA SNQYLQFTLA DMATRLVAAR LMVRNAAVAL QEERKDAVAL CSMAKLFATD 360 ECFAICNQAL QMHGGYGYLK DYAVQQYVRD SRVHQILEGS NEVMRILISR SLLQE 40 SEQ ID NO:131 PFH6 DNA SEQUENCE Nucleic Acid Accession #: NM 013989 Coding sequence: 707-1105(underlined sequences correspond to start and stop codons) 45 21 31 GCCTGCAGAG AGAGGCACTT TGCACCACAG ACAGATAGCA AGAAGGGAAA GACAGAGAGT 60 50 55 CTCCAACTIC TGGGCTGGAG AGACTGGACT TAGTCTTGCC ATTTCTGCTT CTTTGAAAGA 540
GGAGACAACT TGGGCTTCCT TTTAATTTAG TTTTTTTTCC CCTTCTCCCC CAACCCCCAA 660
CCTTCCCCCT TACCTCCCCC ACCCCCTTTA TCACCACCCC CCTTTTAAAT AAGAGGGTGA 660 AGGGGAACCA GAGCGCACAA GGGAACTGAC TCAGGAGGCA GAGAAGATGG GCATCCTCAG 720 60 CGTAGACTIG CTGATCACAC TGCAAATTCT GCCAGTTTTT TTCTCCAACT GCCTCTTCCT 780
GGCTCTCTAT GACTCGGTCA TTCTGCTCAA GCACGTGGTG CTGCTGTTGA GCCGCTCCAA 840
GTCCACTCGC GGAGAGTGGC GGCGCATGCT GACCTCAGAG GGACTGCGCT GCGTCTGGAA 900 GAGCTTCCTC CTCGATGCCT ACAAACAGGT GAAATTGGGT GAGGATGCCC CCAATTCCAG 960
TGTGGTGCAT GTCTCCAGTA CAGAAGGAGG TGACAACAGT GGCAATGGTA CCCAGGAGAA 1020
GATAGCTGAG GGAGCCACAT GCCACCTTCT TGACTTTGCC AGCCCTGAGC GCCACTAGT 1080 65 GGTCAACTIT GGCTCAGCCA CTTGACCTCC TTTCACGAGC CAGCTGCCAG CCTTCCGCAA 1140
ACTGGTGGAA GAGTTCTCCT CAGTGGCTGA CTTCCTGCTG GTCTACATTG ATGAGGCTCA 1200
TCCATCAGAT GGCTGGGCGA TACCGGGGGA CTCCTCTTTG TCTTTTGAGG TGAAGAAGCA 1260
CCAGAACCAG GAAGATCGAT GTGCAGCAGC CCAGCAGCTT CTGGAGCGTT TCTCCTTGCC 1320
GCCCCAGTGC CAGCTTGTGG CTGACCGCAT GGACAACATAA CGCCAACATAG CTTACCGGGGT 1380
AGCCTTTGAA CCTGTGTGCA TTGTGCAGAG ACAGAAAATT GCTTATCTGG GAGGAAAGGG 1440 70 AGCETTATCTG GAGGGAAAGGG 1440
CCCCTTCTCT CACAACCTTC AAGAAGTCCG GAGTGATGGCTG GAGGAAAGGG 1500
ATGAAAGAAA ACTAGATTAG CTGGTTAAAG GTATGATTAT AAGAAGAACATT ATTGTTTTAA 1560
AAAGTTATAT AAAGGCAAGG AAATTAAGAA CTGAATCCAT ATTTCAACAG AGCCCTATTG 1620
CCTTACTGAA AGAACAGGAGT TTATCTATCG GAAGAACATG AATCCTAAC AGCTCCATAC 1680
TTCTTCACT ACTCAAATGG CATTGGCTG AGTAAGTAAC CATATCACCT CTCTTCTTAG 1740
TAAAAAGCCC TATGTGAAAA GATCCCAAGA TGGAGAGGAA GAAACCGTAA TTCAGCATGT 1800 75 GTTCATTCTG CATTGAGAAG GAACTGATAC ATCTGATGCA TGCTTTGAGA CCAGAAGAAA 1860 AGACTTACCT GAATAATTAC TACATTAGGG AAGCTACTGT CTACGTTAAG ATAAAGGGTA 1920

AGGACTGAAC GGAGGGAGGA TCAATATTGC TTCCTGCTCC CTGGGGGCTG CCCACGCCTC 960

TTGCCTTGGC TCTATTTGGC ATGGATGGAG CCCAGTTGGA AAATTCCCAA ATATTACAAC 1980 AAGTCCTTGA ACCCAGGCCA TGTGGTTAGA CGTTGGTGTT AAGGTTAGAC CTTATGTTAG 2040 AGTCATTTCT GATGTTCCAG CTTCTAGCCA TGTAGTGCTC TCAGTCTTCA TACCCCAGAA 2100 ATTATTGGTA TATTTGTAGA TACCGAGAAT GATCCCTCAG TCTGAGAGGT TAGAATGATC 2160 5 ATCTGTAATC TGAGGGTTAA TTTCTAGGCA GGTGGAGAGA GTGGTAAAAA AGAAATGAAA 2220 TTGACAAGCT AGGAAAGAGG AGGCAGAAAG ATTTGGAAAA TTCACAGAGT TTCACCCTTA 2280 AGCTGTAGAG AGTGGGTCAC ATTTGTTAGC CACGGAAACA TAGAAACATA CACAAGGCCA 2340 GAAAAAGAAG AAGGAGCTCA ACTAAAAGTG GCATAGAGAA TACACATATA AAAACAATAT 2400 ATTTGTCATA TGCTCCTAGA GAGGAGAAAG GGGTGATTGA AAGAAAAAA AATACITAAA 2460 10 TATTTGTAAT TGTGAGGGGT TTCTTTTGGA AATAATTACT TTTGAACCAT GTATGTGGGTA 2520 TGTATATTTT CAGTGGGTTA ATTATACCCC ATGATACCTA TTAAAGGAAA ACCAGTGGGT 2580 CTGGTGGTGC TGGTCTTTTC CTCCCCATTC CTACAATTTC TATGTGGCCC AAGTCATTCC 2640 TAATCTTGGT CTCTATAGCA GTGTTCTCTC TGAATGCTGA GCTGAAGAAA TTATACGTAC 2700 ATACACACAT ACATACATAC ATACAAATAT ATGTATATAT ATTCTCAGCT GCTGCGGGAG 2760 GTAGGTACCA TGGCCATTCA GCACAGCCTT GATTTCCTCC CAAAGTAGGT GAGCTATAGT 2820 15 GAAGAATAGG TGCAAACAAA CAAGCTTACT TCCATTGCAA AATAGAAGAA GAGGAAGTTA 2880 GAGATAATTC TGATCAATCA TTTTGGAGGC TTTGTTATAA GGCAACCCCC GGTATATCAT 2940 GGAATTTCCA TTGACATTTG AATTTGGACT TGGATCTTCC CTTGGTCCCA TTAGCTGAGG 3000 TTTAGTAATC TAAAGTCCCT ATAGTATATG ATTATAATGC TATTTTAAAA AATATATA 3060
TAAAATATTT TTTTCTTTTT AAAATAGACA CTATAGTTTT ACCCATAAGT AATATTTAAA 3120
GATTATAGCT CCCAAAAGAA TGGACCAACC ACTTTCGTAT CATAATTTCT TTTTGGTAAA 3180 20 TATGAGACTA TTATGAAATC ATAGTATATG ATTGTATTTA AAGGTACAAT CAAAGGATCT 3240 TTTGTCCATT CCATTAATAA CTGAATAAAA AATAAATAAA ATGGATAGAA AAAAACTAAA 3300 GTTGAAAATA CATTCTTAAA CTAGTTGTCT GAAATGAGAA AAGAGTGAGA ACTAGGTGTG 3360 25 CAAGAACCAA ACGTATTTTA TTTTATTTTT TAAATGGGAG CAACATATCA GTCGTGTCAC 3420 CAGCTGGTAT ATTGTGTAAA TATTAAAGCT CCATTGGGAC TGATTTTTCA TGGCAACATC 3480 AGCTTTCTAA TGTTCTAAAT TCTATAAAAA CCACCCACAA AGAAACAAAG CAAATTTCAT 3540 TATCTAATGA GTTGCTGGAA AATCATATTG AGAATAATTA TTTCAGATTC CTCAGTTGTT 3600 AACTICTACA TICAAGGGCT TATCTCTGCC CCCATTGATT TITAACCTCA AAATGGTGTG 3660 30 AGATTTACTG TGGAACCCTA AAGCAGTAAA ATAAAAAACC TGGTTGCAGC ACATTCACAC 3720 TGTTGTCCTT AAAATTCCCC TTTTTTCTCT ATGTACGATA AAGTAACAGT ATGTCAGATA 3780 AGCCGGTGGG GGGATGAGAT TAGGCTGAGG CAGTGCTAGT CAACTGGGGG AAAAGGATGA 3840 TGGAAAAATC ACCCAGTTGT GCTATATTTT TAAAGAAGGA GGTCGTTTAT GTGTGCAGAC 3900 AATTCTCCCT GAGGTTAGCC CAATGGAGAA ATGAAGCAGA GGAAGGAAAC ATAGAAAGAC 3960 ATGGGCTATC AGGGAGGAAG ATGTTCAATA GAACATGCAA GAATTTCTGG AAGAAAGGCT 4020 35 GTGGAAGGGC CAATGGAGAA AATGAATGGA CAAAGCTCAG GAATCCCTAC GCTATGTAGA 4080 ATGITICTIGG TGTTATCAGG GTTAAGCCCT GTAATTATGT AACCTATTTA TCGCAACATG 4140 AATTITTATG ATTICTTGTG ATGITATICTT TTATGAAATT AACAAGAACT CATTATTTTG 4200 AGGTAGAGGA AAATCAATGC TTTATCTGAT ATGCTGAGAA ATTATTAGAT TGCCAATACT 4260 40 CATGTGCGTT TCATGTGTTT TATAAGGTTT GTTCCTTTGA AGAATTGTAG TTCTTAGTCC 4320 CACAGGGAAA TGTGTATCTA TTTATATATC ATAGTATAAA TCTATGATAT ATTTATATCA 4380 TATATAAAAG TCTGAGTTCT CTTTCTTAGT CCCTAATCAT GTTTCTCCCA TAGGCTGTGT 4440 TTACATGGAG CTATCGGTTT AGCCTTTTAA GCTTCATTAG CTTGTCTATT ATTGAAATAG 4500 TTTCCAAGAA ATTTTAGATA TTATCATAAC ATCTGGGTCT ACTCAAACAC TTATTGTTTG 4560 AAAGACTTAT GTCTTGGACC TATCAAAAAC TGACTTTATT TATTGCTTAG TGAAAATACT 4620 45 AGTGGGATCA ACAATGATTT TCTTGAATGG GCATGAATGG AGATGCCCGC ACAGTAATGT 4680 TTGGGTCTCT GGTCCTGTGT CTTCACCTCA TTTATAGCAC GTCTCCTTGA TTTTTGGTAG 4860 50 TATCAACTTC CCAGTGATCT GTTCAGTTAA GTTCTTCTCC CGTTAACCAG GAAGTGCTTA 4920 TTCTCTCATC ACAGTGGGAA GAATAGCCTA TTGTCTTTCA TTTTGCCTGA GTGTATTTTA 4980 CTATTTGGGC TCTGAAATAA AAATTATGAA ATATGGTGAG GTCACATGTT GGTGCTGCCT 5040 TGCTGCATAA AATTCTAGGA GGGCAGGTTA GGAGACAGTT ATGTATGGCC TTTCGGGAAA \$100 ATTCAAAGGG TGGGATTACA AGGGTGTTCC TCAGGCATGC CCCTATGGGC CCTATGTGGA \$160 AGCAAGAAGA ATTGACTGAT TTACAGGACT TCTCTTTATG TCAATCTTAA GAGGATGGAT \$220 55 GAATCTGGAC ATTTGTTCCA CCCGACCTCT GACTGATGGT TTGGAAAAATA ACTTTAATTA 5280
GGATCATATG ACCATTGAAA AAGGAAAAAT GTAGACTCTG ACTTCCGTCC CACTGAAGGA 5340
TTAATGAAAA CCTTTACTAG CATTTAGAGC TTTTCAGAAC ATCCCCACTG TCATGTGTCT 5400 60 CTTAAGTACC AATCTCTGCT TIGCAATGGG CACAATCTTG GTCATGTCCT GAGGCTCTCT 5640 AAGAAAAGAG AGGATCTAGG ATGGGAGAGC TAGAAAGTTG CTAACTGGGA AGAACAAGGC 5700 CCTGAGGGGT TGGTCTACCA ATCTGGGAAG ATTTGAAAAC AAACTTCTCG CAACTGAAGG 5760 65 AAGGCTGAAG GCTGCTGCAA GTCATTGAGT GACTTTAGGA TGAGCAAAAC ATTGGGCCAC 5820 TTCCTAATGC CCTATGTGTA TAGTACCAGA AGCAAGGTCT CAGACTTAAC AGACCCAGCT 5880 CTGTTCCAAG GTGAGTCTGA ACCAATAGAA AGCAAACATG TGCAGATATC CAAACAAGAC 5940 TGCTCATGCA AGTOGGGGCT GGCTACCCGT CTTAGGCAGC AACAGCAGAG CTCCAGGGAG 6000 CTTATTCAAT ATTTACTGAG ACTTCGAAGA CCCAGCAGAT GTTTAATGAA GTCACTATTT 6060 TGGCTCAAAAC CCTCCACTTC TCCCCCTCCC CTCAAAAAGC CAACAGGTAA ACACATAAAT 6120 70 GAAAGAAACC CACAGAAGGG GATGGGAAAT AAAGAAAATT CTCTCAAGAC TTCTCCAGGC 6180 CCATGTCACT GGTCAGCGTG GTTTTTATGT GTATTAGGAT TGGGGGATGT GAAGAAATAA 6240 GTATCCAGTA CTTTATAACC AAAGCAATTA AATGATATTG GGGTAGGGAA TGTTGGCCAG 6300 TTTTGTTTAG TTTTGCCATC ACATTGTCAC CCAGACCTCA CCTAGCCCCA AGTAATCGGG 6360 75 CGCCCCGAAG AGGGAGACAG AGATGTGCCA GAGTTGACCC AGTGTGCGGA TGATAACTAC 6420 TGACGAAAGA GTCATCGACC TCAGTTAGTG GTTGGATGTA GTCACATTAG TTTGCCTCTC 6480 CCCATCTTTG TCTCCCTGGC AAGGAGAATA TGCGGGACAT GATGCTAAGA GCCCTGGGTA 6540 AATGTGGTGA GAATGCACGC GTGCATATGC TACACATATG TGCTTCTCAG TTGCAGAAAA 6600 TGAACTGCTT TGGGAGATTA TCAGTAGAAA GAGTGTTATC ATATTGGTGC TGAGTGCTAT 6660

GTGTGCTTAT ACAATTTGTT CTTGTATTTT AATAAACTTT GAATAAAAGA ATAAAAAAA 6720 AAAAAAAAAA AAAAA



NANFYLQAGS AFAEMKIKGL LDRKGLWRSL NEMKRIFNFR RTPAAEHAFE HWQEDAFFAS 240
QFLNGLNPVL IRRCHYLPKN FPVTDAMVAS LLGPGTSLQA ELEKGSLFLV DHGILSGIQT 300
NVINGKPQFS AAPMILLYQS PGCGPLLPLA IQLSQTPGPN SPIFLPTUK HINTLARELL 420
IVRGQVVDRS TGIGIEGFSE LIQRNMKQLN YSLLCLPEDI RTRGVEDIPG YYYRDDGMQI 480
WGAVERFVSE IIGIYYPSDE SVQDDRELQA WVREIFSKGF LNQESSGIPS SLETREALVQ 540
YVTMVIFTCS AKHAAVSAGQ FDSCAWMPNL PPSMQLPPT SKGLATCEGF IATLPPVNAT 600
CDVILALWILL SKEPGDQRPL GTYPDEHFTE EAPRRSIATF QSRLAQISRG IQERNRGLVL 660
PYTYLDPPLI ENSVSI

SEQ ID NO:135 PFH4 DNA SEQUENCE

Nucleic Acid Accession #: NM_002742
Coding sequence: 236-2974 (underlined sequences correspond to start and stop codons)

5

10

15

51 21 31 41 GAATTOCTTC TCTCCTCCTC CTCGCCCTTC TCCTCGCCCT CCTCCTCCTC CTCGCCCTCC 60 CCTCCCGATC CTCATCCCCT TGCCCTCCCC CAGCCCAGGG ACTTTTCCGG AAAGTTTTTA 120 20 TTTTCCGTCT GGGCTCTCGG AGAAAGAAGC TCCTGGCTCA GCGGCTGCAA AACTTTCCTG 180 CTGCCGCGCC GCCAGCCCCC GCCTCCGCT GCCCGGCCCT GCGCCCCGCC GAGCGATGAG 240
CGCCCTCCG GTCCTGCGGC CGCCCAGTCC GCTGCTGCCC GTGGCGGCGG CAGCTGCCGC 300
AGCGGCCGCC GCACTGGTCC CAGGGTCCGG GCCCGGGCCC GCGCCGTTCT TGGCTCCTGT 360 25 CGCGGCCCCG GTCGGGGGCA TCTCGTTCCA TCTGCAGATC GGCCTGAGCC GTGAGCCGGT GCTGCTGCTG CAGGACTCGT CCGGGGACTA CAGCCTGGCG CACGTCCGCG AGATGGCTTG 480 CTCCATTGTC GACCAGAAGT TCCCTGAATG TGGTTTCTAC GGAATGTATG ATAAGATCCT 540 GCTTTTTCGC CATGACCCTA CCTCTGAAAA CATCCTTCAG CTGGTGAAAG CGGCCAGTGA 600 TATCCAGGAA GGCGATCTTA TIGAAGTGGT CTTGTCACGT TCCGCCACCT TTGAAGACTT 660 30 TCAGATTCGT CCCCACGCTC TCTTTGTTCA TTCATACAGA GCTCCAGCTT TCTGTGATCA 720 CTGTGGAGAA ATGCTGTGGG GGCTGGTACG TCAAGGTCTT AAATGTGAAG GGTGTGGTCT 780 GAATTACCAT AAGAGATGTG CATTTAAAAT ACCCAACAAT TGCAGCGGTG TGAGGCGGAG 840 AAGGCTCTCA AACGTTTCCC TCACTGGGGT CAGCACCATC CGCACATCAT CTGCTGAACT 900 CTCTACAAGT GCCCCTGATG AGCCCCTTCT GCAAAAATCA CCATCAGAGT CGTTTATTGG 960 TCGAGAGAAG AGGTCAAATT CTCAATCATA CATTGGACGA CCAATTCACC TTGACAAGAT 1020 35 TITIGATGICT AAAGTTAAAG TGCCGCACAC ATTIGTCATC CACTICTACA CCGGCCCAC 1080
AGTGTGCCAG TACTGCAAGA AGCTTCTGAA GGGGCTTTC AGGCAGGGCT TGCAGTGCAA 1140
AGATTGCAGA TTCAACTGCC ATAAACGTTG TGCACCGAAA GTACCAAACA ACTGCCTTGG 1200
CGAAGTGACC ATTAATGGAG ATTTGCTTAG CCCTGGGGCA GAGTCTGATG TGGTCATGGA 1260
AGAAGGGAGT GATGACAATG ATAGTGAAAG GAACAGTGGC CAGAACGACA GTGGCGAGAT 1320
AGCAATGGTC CAAGATGCAG AGATGGCAAT GCCAGAACGACA GTGGCGAGAT 1320 40 GCAAGATOCA GACOCAGACC ACGAGGACGC CAACAGAACC ATCAGTCCAT CAACAAGCAA 1440 CAATATCCCA CTCATGAGGG TAGTGCAGTC TGTCAAACAC ACGAAGAGAG AAAGCAGCAC 1500 AGTCATGAAA GAAGGATGGA TGGTCCACTA CACCAGCAAG GACACGCTGC GGAAACGGCA 1560 45 CTATTGGAGA TTGGATAGCA AATGTATTAC CCTCTTTCAG AATGACACAG GAAGCAGGTA 1620 CTACAAGGAA ATTCCTTTAT CTGAAATTTT GTCTCTGGAA CCAGTAAAAA CTTCAGCTTT 1680 AATTCCTAAT GGGGCCAATC CTCATTGTTT CGAAATCACT ACGGCAAATG TAGTGTATTA 1740 TGTGGGAGAA AATGTGGTCA ATCCTTCCAG CCCATCACCA AATAACAGTG TTCTCACCAG 1800 TGGCGTTGGT GCAGATGTGG CCAGGATGTG GGAGATAGCC ATCCAGCATG CCCTTATGCC 1860 CGTCATTCCC AAGGGCTCCT CCGTGGGTAC AGGAACCAAC TTGCACAGAG ATATCTCTGT 1920 GAGTATTTCA GTATCAAATT GCCAGATTCA AGAAAATGTG GACATCAGCA CAGTATATCA 1980 50 GAGTATTICA GIATCAAATI GCCAGATTCA AGAAATGTG GALATCAGCA CAGTATACA 2940
TCGTAAAACA GGAAGAGTAT TAGCTATTAA AATCATTGAC AAATTACGAT TTCCAACAAA 2100
ACAAGAAAGC CAGCTTCGTA ATGAGGTTGC AATTCTACAG AACCTTCATC ACCCTGGTGT 2160
TGTAAATTTG GAGTGTATGT TTGAGACGCC TGAAAGAGTG TTTGTTGTTA TGGAAAAACT 2220 55 CCATGGAGAC ATGCTGGAAA TGATCTTGTC AAGTGAAAAG GGCAGGTTGC CAGAGCACAT 2280 AACGAAGTTT TTAATTACTC AGATACTCGT GGCTTTGCGG CACCTTCATT TTAAAAATAT 2340 COTTCACTGT GACCTCAAAC CAGAAAATGT GTTGCTAGCC TCAGCTGATC CTTTTCCTCA 2400 GGTGAAACTT TGTGATTTTG GTTTTGCCCG GATCATTGGA GAGAAGTCTT TCCGGAGGTC 2460 AGTGGTGGGT ACCCCGCTT ACCTGGCTCC TGAGGTCCTA AGGAACAAGG GCTACAATCG 2520 60 CTCTCTAGAC ATGTGGTCTG TTGGGGTCAT CATCTATGTA AGCCTAAGCG GCACATTCCC 2580 ATTTAATGAA GATGAAGACA TACACGACCA AATTCAGAAT GCAGCTTTCA TGTATCCACC 2640
AAATCCCTGG AAGGAAATAT CTCATGAAGC CATTGATCTT ATCAACAATT TGCTGCAAGT 2700
AAAAATGAGA AAGCGCTACA GTGTGGATAA GACCTTGAGC CACCCTTGGC TACAGGACTA 2760 65 TCAGACCTGG TTAGATTTGC GAGAGCTGGA ATGCAAAATC GGGGAGCGCT ACATCACCCA 2820 TGAAAGTGAT GACCTGAGGT GGGAGAAGTA TGCAGGCGAG CAGCGGCTGC AGTACCCCAC 2880 ACACCTGATC AATCCAAGTG CTAGCCACAG TGACACTCCT GAGACTGAAG AAACAGAAAT 2940 GAAAGCCCTC GGTGAGCGTG TCAGCATCCT CTGAGTTCCA TCTCCTATAA TCTGTCAAAA 3000 CACTGTGGAA CTAATAAATA CATACGGTCA GGTTTAACAT TTGCCTTGCA GAACTGCCAT 3060 TATTTTCTGT CAGATGAGAA CAAAGCTGTT AAACTGTTAG CACTGTTGAT GTATCTGAGT 3120 TGCCAAGACA AATCAACAGA AGCATTTGTA TTTTGTGTGA CCAACTGTGT TGTATTAACA 3180 AAAGTTCCCT GAAACACGAA ACTTGTTATT GTGAATGATT CATGTTATAT TTAATGCATT 3240 AAACCTGTCT CCACTGTGCC TTTGCAAATC AGTGTTTTTC TTACTGGAGC TTCATTTTGG 3300 TAAGAGAGAA AATGTATCHT TIGAAATIC AGTOTTTIC TIACTIGGAGC TICATTTIGG 3300
TGTAAACAAA CTCTTGAAGA GTCGATTATT TCCAGTGTTG TGTCCCATTG GTGTTGTCAT 3360
TGTAAACAAA CTCTTGAAGA GTCGATTATT TCCAGTGTTC TATGAACAAC TCCAAAACCC 3420
ATGTGGGAAA AAAATGAATG AGGAGGGTAG GGAATAAAAT CCTAAGACAC AAATGCATGA 3480
ACAAGTTTTA ATGTATAGTT TTGAATCCTT TGCCTGCCTG GTGTGCCTCA GTATATTTAA 3540 75 ACTCAAGACA ATGCACCTAG CTGTGCAAGA CCTAGTGCTC TTAAGCCTAA ATGCCTTAGA 3600

AATGTAAACT GCCATATATA ACAGATACAT TTCCCTCTTT CTTATAATAC TCTGTTGTAC 3660

TATGGAAAAT CAGCTGCTCA GCAACCTTTC ACCTTTGTGT ATTTTTCAAT AATAAAAAAT 3720 ATTCTTGTCA AAAAAAAAA AA

5

SEQ ID NO:136 PFH4 Protein sequence

NP 002733.1 Protein Accession #: 41 51 11 21 31 . 10 MSAPPVLRPP SPILPVAAAA AAAAAALVPG SGPGPAPFLA PVAAPVGGIS FHLQIGLSRE 60 PVLLLQDSSG DYSLAHVREM ACSIVDQKFP ECGFYGMYDK ILLFRHDPTS ENILQLVKAA 120 SDIQEGDLIE VVLSRSATFE DFQIRPHALF VHSYRAPAFC DHCGEMLWGL VRQGLKCEGC 180 GLNYHKRCAF KIPNNCSGVR RRRLSNVSLT GVSTIRTSSA ELSTSAPDEP LLQKSPSESF 240 IGREKRSNSQ SYIGRPIHLD KILMSKVKVP HTFVIHSYTR PTVCQYCKKL LKGLFRQGLQ 300 CKDCRFNCHK RCAPKVPNNC LGEVTINGDL LSPGAESDVV MEEGSDDNDS ERNSGLMDDM 360 15 EEAMVQDAEM AMAECONDSG EMODPDPDHE DANKTISPST SNNIPLMRVV QSVKHTKRKS 420 STYMKEGWMV HYTSKDTLRK RHYWRLDSKC ITLFONDTGS RYYKEIPLSE ILSLEPVKTS 480 ALIPNGANPH CFEITTANVV YYVGENVVNP SSPSPNNSVL TSGVGADVAR MWEIAIQHAL 540 20 MPVIPKGSSV GTGTINLHRDI SVSISVSNCQ IQENVDISTV YQIFPDEVLG SGQFGIVYGG 600 KHRKTGRDVA IKIIDKLRFF TKQESQLRNE VAILQNLHEP GVVNLECMFE TPERVFVVME 660 KLHGDMLEMI LSSEKGRLPE HITKFLITQI LVALRHLHFK NIVHCDLKPE NVLLASADPF 720 POVKLCDFGF ARIIGEKSFR RSVVGTPAYL APEVLRNKGY NRSLDMWSVG VIIVVSLSGT 780 FPFNEDEDIH DQIQNAAFMY PPNPWKEISH EAIDLINNLL QVKMRKRYSV DKTLSHPWLQ 840 25. DYQTWLDLRE LECKIGERYI THESDDLRWE KYAGEQRLQY PTHLINPSAS HSDTPETEET 900 EMKALGERVS IL 30 SEQ ID NO:137 PFH3 DNA SEQUENCE Nucleic Actd Accession #: X95425 Coding sequence: 712-3825 (underlined sequences correspond to start and stop codons) 35 GCACACATAA TGACTCACTG CTGGAAGAAG GGTGCATCAG TGAATTAAAA AATGTCCCTC 120 CCCTCTTCAG CACTCAGCGC GCAGCTATTT CCTTCTGCCA GTCTCTTTGA ACTCTGGATC 180 TTTGCTTTTG CTCGCTGCTC TCCTGTTTTT CATTCTCCAC ATTTTCTCAA TCCTCTTTCT 240 40 TTATCCTTAG CCACCCTGCT TTTTTCCTCC TTTTTTAAAA AATCGGAGAT TTCGTCTTAA 300 AATGATTIGT CTTCCTTACC TTCGTCCATT TCAACACTGA AGGCTGCAAA GAACTTCACC 360 TTTCCCCTAG TGGTATTTAA AAATTCTCAA TCCGTAAAAA GTCTTTTTGA AAGGCAAAGG 420 AACAGGACCC AGACCCTCTC GACACCCTTG ATCCGAGTCA GATCTGCACT AGCAACCAGA 480
ACTAATATTT CATTTAACCC ACCAAAAGGG GGAGGCGAGA GGAGCCAGAA GCAAACTTCA 540
TCTGTCTCAG ACGGATCCGT GGTTCCTACA TTTGGAGGAG CCGCGTGTCA GAAGGCGTAG 600 45 GACCICAG AGGALCAGI GOTTCCTACA TITUGAGGACCGACTACA GAAGGACCGAA 660
GACGICAGAG AGGACTCCCG AGTCTCCCTT CTCCGCTCTC CGAGACCGAA 660
GAGGTGGACT GAGCCGCTCG GGACACGGGC ACCCGAGGAG GCTCGGAGAA GATGCCGGGC 720
TCGGGGCCCC GGGGTGCGGG ACACCGGCGG CCCCCAAGCG GCGCGCGA CACCCCCATC 780
ACCCCAGCGT CCCTGGCCGG CTGCTACTCT GCACCTCGAC GGGCTCCCCT CTGGACGTGC 840 50 CTTCTCCTGT GCGCCGCACT CCGGACCCTC CTGGCCAGCC CCAGCAACGA AGTGAATTTA 900
TTGGATTCAC GCACTGTCAT GGGGGACCTG GGATGGATTG CTTTTCCAAA AAATGGGTGG 960
GAAGAGATTG GTGAAGTGGA TGAAAATTAT GCCCCTATCC ACACATACCA AGTATGCAAA 1020 GTGATGGAAC AGAATCAGAA TAACTGGCTT TTGACCAGTT GGATCTCCAA TGAAGGTGCT 1880 TCCAGAATCT TCATAGAACT CAAATTTACC CTGCGGGACT GCAACAGCCT TCCTGGAGGA 1140 CTGGGGACCT GTAAGGAAAC CTTTAATATG TATTACTTTG AGTCAGATGA TCAGAATGGG 1200 AGAAACATCA AGGAAAACCA ATACATCAAA ATTGATACCA TTGCTGCCGA TGAAAGCTTT 1260 ACAGAACTTG ATCTTGGTGA CCGTGTTATG AAACTGAATA CAGAGGTCAG AGATGTAGGA 1320 CCTCTAAGCA AAAAGGGATT TTATCTTGCT TTTCAAGATG TTGGTGCTTG CATTGCTCTG 1380 GTTTCTGTGC GTGTATACTA TAAAAAATGC CCTTCTGTGG TACGACACTT GGCTGTCTTC 1440
CCTGACACCA TCACTGGAGC TGATTCTTCC CAATTGCTCG AAGTGTCAGG CTCCTGTGTC 1500
AACCATTCTG TGACCGATGA ACCTCCCAAA ATGCACTGCA GCGCCGAAGG GGAGTGGCTG 1560 60 GTGCCCATCG GGAAATGCAT GTGCAAGGCA GGATATGAAG AGAAAAATGG CACCTGTCAA 1620 GTGTGCAGAC CTGGGTTCTT CAAAGCCTCA CCTCACATCC AGAGCTGCGG CAAATGTCCA 1680 CCTCACAGTT ATACCCATGA GGAAGCTTCA ACCTCTTGTG TCTGTGAAAA GGATTATTTC 1740 AGGAGAGAT CTGATCCACC CACAATGGCA TGCACAAGAC CCCCCTCTGC TCCTCGGAAT 1800 GCCATCCAA ATGTTAATGA AACTAGTGTC TTTCTGGAAT GGATTCCGCC TGCTGACACT 1860 GGTGGAAGGA AAGACGTGTC ATATTATATT GCATGCAAGA AGTGCAACTC CCATGCAGGT 1920 65 GTGTGTGAGG AGTGTGGCGG TCATGTCAGG TACCTTCCCC GGCAAAGCGG CCTGAAAAAC 1980 ACCTCTGTCA TGATGGTGGA TCTACTCGCT CACACAAACT ATACCTTTGA GATTGAGGCA 2040 GTGAATGGAG TGTCCGACTT GAGCCCAGGA GCCCGGCAGT ATGTGTCTGT AAATGTAACC 2100 GTGAATGGAG TGTCCGACTT GAGCCCAGGA GCCCGGCAGT ATGTGTCTGT AAATGTAACC 2100
ACAATCAAG CAGCTCCATC TCCAGTCACC AATGTGAAAA AAGGGAAAAT TGCAAAAAAC 2160
AGCATCTCTT TGTCTTGGCA AGAACCAGAT CGTCCCAATG GAATCATCCT AGAGTATGAA 2220
ATCAAGCATT TTGAAAAGGA CCAAGAGACC AGCTACACGA TTATCAAATC TAAAGAGACA 2280
ACTATTACTG CAGAGGGCTT GAAACCAGCT TCAGTTTATG TCTTCCAAAT TCGAGCACGT 2340
ACAGCAGCAG GCTATGGTGT CTTCAGTCGA AGATTTGAGT TTGAAACCAC CCCAGTTTT 2400
GCAGCATCCA GCGATCAAAG CCAGATTCCT GTAATTGCTG TGTCTGTGAC AGTAGGAGTC 2460
ATTTGTTGG CAGTGGTTAT CGGCGTCCTC CTCAGTGGAA GTTGCTGCGA ATGTGGCTGT 2520
GGGAGGGCTT CTTCCCTGTG CGCTGTTGCC CATCCAATCC TAATATGGCG GTGTGCTAC 2580
AGCAAAGCAA AACAAGATCC AGAAGAGGAA AAGATGCATT TTCATAATTGG GCACATTAAA 2640 75

PCT/US01/32045 WO 02/30268

CTGCCAGGAG TAAGAACTTA CATTGATCCA CATACCTATG AGGATCCCAA TCAAGCTGTC 2700 CACGAATTTG CCAAGGAGAT AGAAGCATCA TGTATCACCA TTGAGAGAGT TATTGGAGCA 2760 GGTGAATTTG GTGAAGTTTG TAGTGGACGT TTGAAACTAC CAGGAAAAAG AGAATTACCT 2820 GTGGCTATCA AAACCCTTAA AGTAGGCTAT ACTGAAAAGC AACGCAGAGA TTTCCTAGGT 2880 GAAGCAAGTA TCATGGGACA GTTTGATCAT CCTAACATCA TCCATTTAGA AGGTGTGGTG 2940 ACCAAAAGTA AACCAGTGAT GATCGTGACA GAGTATATGG AGAATGGCTC TTTAGATACA 3000 5 TTTTTGAAGA AAAACGATGG GCAGTTCACT GTGATTCAGC TTGTTGGCAT GCTGAGAGGT 3060 ATCTCTGCAG GAATGAAGTA CCTTTCTGAC ATGGGCTATG TGCATAGAGA TCTTGCTGCC 3120
AGAAACATCT TAATCAACAG TAACCTTGTU TGCAAAGTGT CTGACTTTGG ACTTTCCCGG 3180
GTACTGGAAG ATGATCCCGA GGCAGCCTAC ACCACAAGGG GAGGAAAAAT TCCAATCAGA 3240 10 TGGACTGCCC CAGAAGCAAT AGCTTTCCGA AAGTTTACTT CTGCCAGTGA TGTCTGGAGT 3300 TATGGAATAG TAATGTGGGA AGTTGTGTCT TATGGAGAGA GACCCTACTG GGAGATGACC .3360 AATCAAGATG TGATTAAAGC GGTAGAGGAA GGCTATCGTC TGCCAAGCCC CATGGATTGT 3420 CCTGCTGCTC TCTATCAGTT AATGCTGGAT TGCTGGCAGA AAGAGCGAAA TAGCAGGCCC 3480 AAGTTTGATG AAATAGTCAA CATGTTGGAC AAGCTGATAC GTAACCCAAG TAGTCTGAAG 3540 ACGCTGGTTA ATGCATCCTG CAGAGTATCT AATTTATTGG CAGAACATAG CCCACTAGGA 3600 TCTGGGGCCT ACAGATCAGT AGGTGAATGG CTAGAGGCAA TCAAGATGGG CCGGTATACA 3660 15 GAGATTITICA TGGAAAATGG ATACAGTTCA ATGGACGCTG TGGCTCAGGT GACCTTGGAG 3720 GATTTGAGAC GGCTTGGAGT GACTCTTGTC GGTCACCAGA AGAAGATCAT GAACAGCCTT 3780 20 CAAGAAATGA AGGTGCAGCT GGTAAACGGA ATGGTGCCAT TGTAACTTCA TGTAAATGTC 3840 GCTTCTTCAA GTGAATGATT CTGCACTTTG TAAACAGCAC TGAGATTTAT TTTAACAAAA 3900

25

## SEQ ID NO:138 PFH3 Protein sequence CAA64700.1 Protein Accession #:

30 21 31 41 11 . MRGSGPRGAG HRRPPSGGGD TPITPASLAG CYSAPRRAPL WTCLLLCAAL RTLLASPSNE 60

VNLLDSRTVM GDLGWIAFPK NGWEEIGEVD ENYAPIHTYQ VCKVMEQNQN NWLLTSWISN EGASRIPIEL KFTLRDCNSL PGGLGTCKET FNMYYFESDD QNGRNIKENQ YIKIDTTAAD 180 ESFTELDLGD RVMKLNTEVR DVGPLSKKGF YLAFQDVGAC IALVSVRVYY KKCPSVVRHL 240 AVFPDTTTGA DSSQLLEVSG SCVNHSVTDE PPKMHCSAEG EWLVPIGKCM CKAGYEEKNG 300 35 TCQVCRPGFF KASPHIQSCG KCPPHSYTHE EASTSCVCEK DYFRRESDPP TMACTRPFSA 360 PRNAISNVNE TSVFLEWIPP ADTGGRKDVS YYIACKKCNS HAGVCEECGG HVRYLPRQSG 420 LKNTSVMMVD LLAHTNYTFE IEAVNGVSDL SPGARQYVSV NVTTNQAAPS PVTNVKKGKI 480

40 AKNSISISWQ EPDRPNGIIL EYEIKHFEKD QETSYTIKS KETITTAEGI KPASVYVPQI 540
RARTAAGYGV FSRRFEFETT PVFAASSDQS QIPVIAVSVT VGVILLAVVI GVILSGSCCE 600
CGCGRASSLC AVAHPILIWR CGYSKAKQDP EEEKMHFENG HIKLPGVRTY IDPHTYEDPN 660 QAVHEFAKEI EASCITIERV IGAGEFGEVC SGRLKLPGKR ELPVAIKTLK VGYTEKORRD 720 FLGEASIMGQ FDHPNIIHLE GVVTKSKPVM IVTEYMENGS LDTFLKKNDG QFTVIQLVGM 780 LRGISAGMKY LSDMGYVHRD LAARNILINS NLVCKVSDFG LSRVLEDDPE AAYTTRGGKI 840 45

PIRWTAPEAI AFRKFTSASD VWSYGIVMWE VVSYGERPYW EMTNQDVIKA VEEGYRLPSP 900 MDCPAALYQL MLDCWQKERN SRPKFDEIVN MLDKLIRNPS SLKTLVNASC RVSNLLAEHS 960 PLGSGAYRSV GEWLEAIKMG RYTEIFMENG YSSMDAVAQV TLEDLRRLGV TLVGHQKKIM 1020 NSLOEMKVOL VNGMVPL

50

65

70

75

SEQ ID NO:139 PFH2 DNA SEQUENCE

55 Nucleic Acid Accession #: NM 016029 Coding sequence: 78-1097 (underlined sequences correspond to start and stop codons)

41 51 31 21 60

CTGCGATCCC GCAGGGCAGC GACGCGACTC TGGTGCGGGC CGTCTTCTTC CCCCCGAGCT 60 GGGCGTGCGC GGCCGCA<u>ATG</u> AACTGGGAGC TGCTGCTGTG GCTGCTGGTG CTGTGCGCGC 120 TGCTCCTGCT CTTGGTGCAG CTGCTGCGCT TCCTGAGGGC TGACGGCGAC CTGACGCTAC 180 TATGGGCCGA GTIGGCAGGGA CGACGCCCAG AATGGGAGCT GACTGATATC GTIGGTGGTGGG 240
TGACTGGAGC CTCGAGTGGA ATTGGTGAGG AGCTGGCTTA CCAGTTGTCT AAACTAGGAG 300
TTTCTCTTGT GCTGTCAGCC AGAAGAGTGC ATGACCTGGA AAGGGTGAAA AGAAAGATGC 360
TAGAGGAATGG CAATTTAAAA GAAAAAGATA TACTTGTTTT GCCCCTTGAC CTGACCGACA 420
CTGGTTCCCA TGAAGCGGA ACCAAAGCTG TTCTCCAGGA GTTTGGTAGA ATCGACATTC 480
TGGTCAACAA TGGTGGAATG TCCCAGCGTT CTCTGTGCAT GGATACCAGC TTGGATGTCT 540 ACAGAAAGCT AATAGAGCTT AACTACTTAG GGACGGTGTC CTTGACAAAA TGTGTTCTGC 600 CTCACATGAT CGAGAGGAAG CAAGGAAAGA TTGTTACTGT GAATAGCATC CTGGGTATCA 660 TATCTGTACC TCTTTCCATT GGATACTGTG CTAGCAAGCA TGCTCTCCGG GGTTTTTTTA 720 ATGGCCTTCG AACAGAACTT GCCACATACC CAGGTATAAT AGTTTCTAAC ATTTGCCCAG 780
GACCTGTGCA ATCAAATATT GTGGAGAATT CCCTAGCTGG AGAAGTCACA AAGACTATAG 840
GCAATAATGG AGACCAGTCC CACAAGATGA CAACCAGTCG TTGTGTGCGG CTGATGTTAA 900

TCAGCATGGC CAATGATTTG AAAGAAGTTT GGATCTCAGA ACAACCTTTC TTGTTAGTAA 960
CATATTTGTG GCAATACATG CCAACCTGGG CCTGGTGGAT AACCAACAAG ATGGGGAAGA 1020
AAAGGATTGA GAACTTTAAG AGTGGTGTGG ATGCAGACTC TTCTTATTTT AAAATCTTTA 1080 AGACAAAACA TGACTGAAAA GAGCACCTGT ACTTTTCAAG CCACTGGAGG GAGAAATGGA 1140 AAACATGAAA ACAGCAATCT TCTTATGCTT CTGAATAATC AAAGACTAAT TTGTGATTTT 1200 ACTITITAAT AGATATGACT TIGCTTCCAA CATGGAATGA AATAAAAAAT AAATAAATAAA 1260 AGATIGCCAT GAATCTTGCA AA





GCAGGAGAAG TCACCATCCG GCAGCTTTCA CTTTGACTAT GAGGTTCCCC TGGGTCGCGG 1260 CGGCCTCAAG AAGAGCATGG CCTGGGACCT GCCTTCTGTC CTGGCCGGGC CAGCCAGTAG 1320 CCGAAGCGCT TCCAGCATCC TCTGTTCATC CGGGGGAGGC CCCAATGGCA TCTTCGCTTC 1380 TCCTAGGAGG TGGCTCCAGC AGAGGAAGTT CCAGTCCCCA CCCGACAGTC GCGGGCACCC 1440
CTACGTCGTG TGGAAATCCG AGAGGAAGTT CACGTGCACCA CCCGACAGTC GCGGGCACCC 1440
CTACGTCGTG TGGAAATCCG AGGGTGATTT CACCTGGAAC AGCATGTCAG GCCGCAGTGT 1500
GCGGCTGAGG TCAGTCCCCA TCCAGAGTCT CTCAGAGCTG GAGAGGGCCC GGCTGCAGGA 1560
AGTGCCTTTT TATCAGTTGC AACAGGACTG TGACCTGAGC TGTCAGATCA CCATTCCCAA 1620
AGATGGACAA AAGAGAAAGA AATCTTTAAG AAAGAAACTG GATTCACTAG GAAAGGAGAA 1680 5 AAACAAAGAC AAAGAATTCA TCCCACAGGC ATTTGGAATG CCCTTATCCC AAGTCATTGC 1740
GAATGACAGG GCCTATAAAC TCAAGCAGGA CTTGCAGAGG GACGAGCAGA AAGATGCATC 1800
TGACTTTGTG GCTTCCCTCC TCCCATTTGG AAATAAAAGA CAAAACAAAG AACTCTCAAG 1860 10 CAGTAACTCA TCTCTCAGCT CAACCTCAGA AACACCGAAT GAGTCAACGT CCCCAAACAC 1920 CCCGGAACCG GCTCCTCGGG CTAGGAGGAG GGGTGCCATG TCAGTGGATT CTATCACCGA 1980 TCTTGATGAC AATCAGTCTC GACTACTAGA AGCTTTACAA CTTTCCTTGC CTGCTGAGGC 2040 15 TCAAAGTAAA AAGGAAAAAG CCAGAGATAA GAAACTCAGT CTGAATCCTA TTTACAGACA 2100 GGTCCCTAGG CTGGTGGACA GCTGCTGTCA GCACCTAGAA AAACATGGCC TCCAGACAGT 2160 GGGGATATTC CGAGTTGGAA GCTCAAAAAA GAGAGTGAGA CAATTACGTG AGGAATTTGA 2220 GGGGATATTIC CIGAGT TIGGAA GCTCAAAAAA GAOAGTGAGA CAATTACGTG AGGAATTTIGA 222
CCGTGGGATT GATGTCTCTC TGGAGGAGGA GCACAGTGTT CATGATGTTG CAGCCTTGCTC 2280
GAAAGAGTTC CTGAGGGACA TGCCAGACCC CCTTCTCACC AGGGAGCTGT ACACAGCTTT 2340
CCTTCTACCT CTCTTGTTGG AGCCGGAGGA ACAGCTGGGC ACCTTGCAGC TCCTCATATA 2400
CCTTCTACCT CCCTGCAACT GCGACACCCT CCACCGCCTG CTACAGTTCC TCTCCATCGT 2460 20 GGCCAGGCAT GCCGATGACA ACATCAGCAA AGATGGGCAA GAGGTCACTG GGAATAAAAT 2520 GACATCTCTA AACTTAGCCA CCATATTTGG ACCCAACCTG CTGCACAAGC AGAAGTCATC 2580
AGACAAAGAA TTCTCAGTTC AGAGTTCAGC CCGGGCTGAG GAGAGCACGG CCATCATCGC 2640
TGTTGTGCAA AAGATGATTG AAAATTATGA AGCCCTGTTC ATGGTTCCCC CAGATCTCCA 2700 25 GAACGAAGTG CTGATCAGCC TGTTAGAGAC CGATCCTGAT GTCGTGGACT ATTTACTCAG 2760 AAGAAAGGCT TCCCAATCAT CAAGCCCTGA CATGCTGCAG TCGGAAGTTT CCTTTTCCGT 2820 GGGAGGGAGG CATTCATCTA CAGACTCCAA CAAGGCCTCC AGCGGAGACA TCTCCCCTTA 2880 TGACAACAAC TOOCCAGTGC TGTCTGAGCG CTCCCTGCTG GCTATGCAAG AGGACGCGGC 2940 CCCGGGGGGGC TCGGAGAAGC TTTACAGAGT GCCAGGGCAG TTTATGCTGG TGGGCCACTT 3000 GTCGTCGTCA AAGTCAAGGG AAAGTTCTCC TGGACCAAGG CTTGGGAAAG ATCTGTCAGA 3060 30 GGAGCCTTTC GATATCTGGG GAACTTGGCA TTCAACATTA AAAAGCGGAT CCAAAGACCC 3120
AGGAATGACA GGTTCCTCTG GAGACATTTT TGAAAGCAGC TCCCTAAGAG CGGGGCCCTG 3180
CTCCCTTTCT CAAGGGAACC TGTCCCCAAA TTGGCCTCGG TGGCAGGGGA GCCCCGCAGA 3240 35 GCTGGACAGC GACACGCAGG GGGCTCGGAG GACTCAGGCC GCAGCCCCCG CGACGGAGGG 3300 CAGGGCCCAC CCTGCGGTGT CGCGCCCTG CAGCACGCCC CACGTCCAGG TGGCAGGGAA 3360 AGCCGAGCGG CCCACGGCCA GGTCGGAGCA GTACTTGACC CTGAGCGGCG CCCACGACCT 3420 CAGCGAGAGT GAGCTGGATG TGGCCGGGCT GCAGAGCCGG GCCACACCTC AGTGCCAAAG 3480 ACCICATGGG AGTGGGAGGG ATGACAAGCG GCCCCGCCT CCATACCCGG GCCCAGGGAA 3540 GCCCGCGGCA GCGGCAGCCT GGATCCAGGG GCCCCCGGAA GGCGTGGAGA CACCCACGGA 3600 CCAGGGGAGGC CAAGCAGCCG AGCGAGAGCA GCAGGTCACG CAGAAAAAAC TGAGCAGCGC 3660 40 CAACTCCCTG CCAGCGGGCG AGCAGGACAG TOCGCGCCTG GGGGACGCTG GCTGGCTCGA 3720 CTGGCAGAGA GAGCGCTGGC AGATCTGGGA GCTCCTGTCG ACCACAACC CCGATGCCCT 3780
GCCCGAGACG CTGGTCTGAG CCCGCACCCA GCCGAGCCCC CCCTGCCCCG AGCCCCCCGC 3840
CCTCCAGCCC AGGGGGGACC GTGGGTGGTG GCCACTGGCA CACTTAGTGT TCTTCTTTCA 3900 45 CACTTCTCAA AAGTGACACA AGAGAAATCC AGTTCACCTA CACAGGTAGA GCACTCACGC 3960 CCCCGCCATT GAGAATAAGG TTCCATTGCG TAGCCAGCCT TAGGAAAAAC AAACAGAACC 4020 CAAACCAGAT GGCAATGTCC AATCTAAAAA CGTCCCTCTT GGCTCTATAA TATAAGATAC 4080 AACTETTGCT TGGTATAGCC TAACCGTATT TATGTGTCTT CGGTTTTGAC TATTGTGTAT 4140
TCTGTAACAG-ATTATGTATA ATCATATATG ATATATTCAC AAAGAGAAAA CAAAAGGAAC 4200
TTTTAAAAAA AAAATCACTT CACTTATATT AAGCAATGAG ATATACTAAA CAATGAGATT 4260 50 CTATAGAATG TICTAGAATG TGCACAAGCG GGTTTCTGTG CTTTTGCCAT AGCTTTATAA 4320 CTGGGGATAA CCCTTCCTTC GATACCAAAC ACTAACAAGA GGAAGCAGAA TATGAGAAGC 4380 CATATTTTTA CATAGGAGTC AGATACAAAA AGAAAAATCA CTGAATGCTT TTAGATATTG 4440 AATACGTTTT CAGGAAAATG CTAAATCTGA TAGATTACGA AATATATTTT TAGAACTTGT 4500 55 TTAGAAAGGA TTCAGTTAAC CAAACAAGAA AAAGGCAGTG CCTCACAAAG AAATTAAGAA 4560 GTTGTCCGTC CCACGTTACA TCAAATTCAG TTTTATATAG GCCATATATA ATATATATTT 4620 ATAATGTATA ATTTTTATGT ATTTTTCAAA ACTACAAACT GGAATCCAAC TATAAAGTGT 4680 TTAAGAATCT ACACAGAATA TTCAAATTAT AGAACATGIT TTTTCCCTTT GCCCCATAAT 4740 CAGTATTIGC CAAATTACAT GCAATTCCTT AAAAACTAAA TCACATTGGT AAAAGGCCTA 4800 CAGCTTTGTA CITACATTGT GCCAAAGGCT GAGGAAATGT TTTCTTTCGA ATTTTTATGT 4860 60 GTATTGTAAA ATGTTCTACC GTACTTTAGT AGTTTGAAGT TTTCAAGTGC ATAACTATTT 4920 TTGACCAGCA GAAGGCGATA CGCTTCAGTA TTTTATGCAA TTTTTTTTCA CTTCGAAGGG 4980 AAAGTGTATT ATAAAAAAAG ATTTTTTTT TTTAAAACAT GCTACTCTTA ATTTTCATGT 5040 65 TGGTGATGAA ATTCCCAGTG GTGTTTCTTA AGGTTCTATC TTGTGCCATG ATGAATAAAA 5100 ΑGTTAAGCAA ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑΛΑ ΑΛΑ

70 SEQ ID NO:146 PFG6 Protein sequence:
Protein Accession #: NP_038286.1

11 21 31 41 51

MSAQSILHSV FSCSSPÄSSS ÄASAKGFSKR KLRQTRSLDP ALIGGCGSDE AGAEGSARGA 60
TAGRLYSPSL PAESLGPRLA SSSRGPPPRA TRLPPPGPLC SSFSTFSTFQ EKSPSGSFHF 120
DYEVPLGRGG LKKSMAWDLP SVLAGPASSR SASSILCSSG GGPNGIFASP RRWLQQRKFQ 180
SPPDSRGHPY VVWKSEGDFT WNSMSGRSVR LRSVPIQSLS ELERARLQEV FFYQLQQDCD 240
LSCQITIPKD GQKRKKSLRK KLDSLGKEKN KDKEFIPQAF GMPLSQVIAN DRAYKLKQDL 300
QRDEQKDASD FVASILPFGN KRQNKELSSS NSSLSSTSET PNESTSPNTP EPAPRARRRG 360

AMSVDSITDL DDNQSRILEA LQLSLPAEAQ SKKEKARDKK LSLNPTYRQV PRLVDSCCQH 420
LEKHGLQTVG IFRVGSSKKR VRQLREEFDR GIDVSLEEPH SVHDVAALLK EFLRDMPDPL 480
LTRELYTAFI NTLLLEPEEQ LGTLQLLIYL LPPCNCDTLH RLLQFLSIVA RHADDNISKD 540
GQEVTGNKMT SLNLATHEGP NLLHKQKSSD KEFSVQSSAR AEESTAILAV VQKMENYEA 600
LFMVPPDLQN EVLISLLETD PDVVDYLLRR KASQSSSPDM LQSEVSFSVG GRHSSTDSNK 660
ASSGDISPYD NNSPVLSERS LLAMQEDAAP GGSEKLYRVP GQFMLVGHLS SSKRESSPG 720
PRLGKDLSEE PFDIWGTWHS TLKSGSKDPG MTGSSGDIFE SSSLRAGPCS LSQGNLSPNW 780
PRWQGSPAEL DSDTQGARRT QAAAPATEGR AHPAVSRACS TPHVQVAGKA ERPTARSEQY 840
LTLSGAHDLS ESELDVAGLQ SRATPQCQRP HGSGRDDKRP PPPYPGFGKP AAAAAWIQGP 900
PEGVETPTDQ GGQAAEREQQ VTQKKLSSAN SLPAGEQDSP RLGDAGWLDW QRERWQIWEL 960
LSTDNPDALP ETLV



## SEQ ID NO:149 PFG2 DNA SEQUENCE

Coding sequence: 39-1103 (underlined sequences correspond to start and stop codons) 5 31 51 GOGGAGCTCT GCCTTGGAGA TTCTCAGTGC TGCGGATCAT GTCCCTAAGG GGCAGCCTCT 60 CGCGTCTCCT CCAGACGCA GTGCATTCCA TCCTGAAGAA ATCCGTCCAC TCCGTGGCTG 120 TGATAGGAGC CCCGTTCTCA CAAGGGCAGA AAAGAAAAGG AGTGGAGCAT GGTCCCGCTG 180 10 CCATAAGAGA AGCTGGCTTG ATGAAAAGGC TCTCCAGTTT GGGCTGCCAC CTAAAAGACT 240 TTGGAGATTT GAGTTTTACT CCAGTCCCCA AAGATGATCT CTACAACAAC CTGATAGTGA 300
ATCCACGCTC AGTGGGTCTT GCCAACCAGG AACTGGCTGA GGTGGTTAGC AGAGCTGTGT 360
CAGATGGCTA CAGCTGTGTC ACACTGGGAG GAGACCACAG CCTGGCAATC GGTACCATTA 420 GTGGCCATGC CCGACACTGC CCAGACCTTT GTGTTGTCTG GGTTGATGCC CATGCTGACA 480 15 TCAACACACC CCTTACCACT TCATCAGGAA ATCTCCATGG ACAGCCAGTT TCATTTCTCC 540
TCAGAGAACT ACAGGATAAG GTACCACAAC TCCCAGGATT TCCTGGATC AAACCTTGTA 600 TCTCTTCTGC AAGTATTGTG TATATTGGTC TGAGAGACGT GGACCTCCT GAACATTTTA 660
TTTTAAAGAA CTATGATATC CAGTATTTTT CCATGAGAGA TATTGATCGA CTTGGTATCC 720
AGAAGGTCAT GGAACGAACA TTTGATCTGC TGATTGGCAA GAGACAAAGA CCAATCCATT 780 20 TGAGTTTTGA TATTGATGCA TITGACCCTA CACTGGCTCC AGCCACAGGA ACTCCTGTTG 840 TCGGGGGACT AACCTATCGA GAAGGCATGT ATATTGCTGA GGAAATACAC AATACAGGGT 900 TGCTATCAGC ACTGGATCTT GTTGAAGTCA ATCCTCAGTT GGCCACCTCA GAGGAAGAGG 960 CGAAGACTAC AGCTAACCTG GCAGTAGATG TGATTGCTTC AAGCTTTGGT CAGACAAGAG 1020 AAGGAGGGCA TATTGTCTAT GACCAACTTC CTACTCCCAG TTCACCAGAT GAATCAGAAA 1080 ATCAAGCACG TOTGAGAATT TAGGAGACAC TOTGCACTGA CATGTTTCAC AACAGGCATT 1140
CCAGAATTAT GAGGCATTGA GGGGATAGAT GAATACTAAA TGGTTGTCTG GGTCAATACT 1200
GCCTTAATGA GAACATTTAC ACATTCTCAC AATTGTAAAG TTTCCCCTCT ATTTTGGTGA 1260
CCAATACTAC TOTAAATGTA TTTGGTTTTT TGCAGTCAC AGGTATTAA TATGCTACAG 1320
TACTATGTAA ATTTAAAGAA GTCATAAACA GCATTTATTA CCTTGGTATA TCATACTGGT 1380
CTTGTTGCTG TGTTCCTTC ACATTTAAGT GGTTTTTCATCTCTCC TCCTCCCACA 1440 25 30 GCCTGGCTAT ACAGTGCATC CTTGAACTGT CAGCCCACAG CAGCAATATG CTTATTCTAT 1500 CCACATCCCT AACATCATGC ATTCACAAGG TCAAAGTTCT GGTCCACAAA CCCTTCCCTA 1560 TAGAAGTTCA ATGGCTGCGA AAGAATTTGT AGTAAACCAG GCCTCCCAGG ATGGCGAGCT 1620 CCAGTAAGAT GATAATGGAA AGCAGCAGCT TGTTGGTTGT CACTCTACAA AGAGAAGCAA 1680 35 AGTGGGGAGT AGTCAGAAGT TTGGATAAACC TTCCTTCTAA ACATTTGGGG GTTAGACCTG 1740 GGACCACGGC TGGATACTCT GAGGCTGTAT GTTTGATCAC ACAGCCACTT AGCAGGAAGT 1800 ACTCATAAGG TTCTTTAGCT GTCACTTAGG GATAACACTG TCTACCTCAC AGAAATGTTA 1860 AACTGAGACA ATAAAACCCA AAGCAT 40 SEQ ID NO:150 PFG2 Protein sequence: rotein Accession #: NP_001163.1 21 41 11 31 45 MSLRGSLSRL LQTRVHSILK KSVHSVAVIG APFSQGQKRK GVEHGPAAIR EAGLMKRLSS 60 MSIRGSISKI. LUTKVHSILK KSVHSVAVIG APFSQGQKRK GVEHGPAAIR EAGLMIKRISS 60
LIGCHLKDFGD LISFTPVPKDD LYNNLIVNPR SVGLANQELA EVVSRAVSDG YSCVTLGGDH 120
SLAIGTISGH ARHCPDLCVV WYDAHADINT FLTTSSGNLH GQPVSFILRE LQDKVPQLPG 180
FSWIKPCISS ASIVYIGLRD VDPPEHFILK NYDIQYFSMR DIDRLGIQKV MERTFDLLIG 240
KRQRPIHLSF DIDAFDPTLA PATGTPVVGG LTYREGMYIA EBIHNTGLLS ALDLVEVNPQ 300 50 LATSEEEAKT TANLAVDVIA SSFGQTREGG HIVYDQLPTP SSPDESENQA RVRI 55 **SEQ ID NO:151 PFG1 DNA SEQUENCE** Nucleic Acid Accession #: NM 017908 80-1255 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 41 51 60 AATTATATAT TITTACTCTA TGTTTCTCTA CATGTTTTTT TCTTTCCGTT GCTGGCGGAA 60
GAGGCACGTG CGCTGCTGA<u>A TG</u>GAGCTGGT CGCTGGTTGC TACGAGCAGG TCCTCTTTGG 120
GTTCGCTGTA CACCCGGAGC CCAAGGCTTG CGGCGACCAC GAGCAATGGA CTCTTGTGGC 180 TIGACTICAC CACCATGCTC ACACTGCTC CTTGTCAGCA GAGCATIGA CTCTTT 240
TGTGGTCACT GGGAGCAAAG ATGAAACAAT TCACATTTAT GACATGAAA AAAAGAGATTGA
GCATGGGGCT CTAGTGCATC ACAGTGGTAC AATAACTTGC CTGAAATTCT ATGGCAACAG
GCATTTAATC AGTGGAGCGG AAGATGGACT CATCTGTATC TGGGATGCAA AGAAATTGGGA
420 65 ATGCCTGAAG TCAATTAAAG CTCACAAAGG ACAGGTGACC TTCCTTTCTA TTCACCCATC 480
TGGCAAGTTG GCCCTGTCGG TTGGTACAGA TAAAACTTTA AGAACGTGGA ATCTTGTAGA 540
AGGAAGATCA GCATTCATAA AAAATATAAA ACAAAATGCT CACATAGTAG AATGGTCCCC 600 70 AAGAGGAGAG CAGTATOTAG TTATCATACA GAATAAAATA GACATCTATC AGCTTGACAC 660
TGCATCCATT AGTGGCACCA TCACAAATGA AAAGAGAATT TCCTCTGTTA AATTTCTTTC 720
AGAGTCTGTC CTTGCAGTGG CTGGAGATGA AGAAGTTATA AGGTTTTTTG ACTGTGATTC 780 ACTAGTGTGC CTCTGCGAAT TTAAAGCTCA TGAAAACAGG GTAAAGGACA TGTTCAGTTT 840
TGAAATTCCA GAGCATCATG TTATTGTTTC AGCATCGAGT GATGGTTTCA TCAAAATGTG 900
GAAGCTTAAG CAGGATAAGA AAGTTCCCCC ATCTTTACTC TGTGAAATAA ACACTAATGC 960 **75** CAGGCTGACG TGTCTTGGAG TGTGGCTAGA CAAAGTGGCA GACATGAAAA GCCTTCCTCC 1020
AGCTGCAGAG CCTTCTCCTG TAAGTAAAGA ACAGTCCAAA ATTGGCAAAA AGGAGCCTGG 1080
TGACACAGTG CACAAAGAAG AAAAGCGGTC AAAACCTAAC ACAAAGAAAC GCGGTTTAAC 1140

Nucleic Acid Accession #: NM_001172

AGGTGACAGT AAGAAAGCAA CAAAAGAAAG TGGCCTGATA TCAACCAAGA AGAGGAAAAT 1200
GGTAGAAATG TTGGAAAAGA AGAAGGAAAAA GAAGAAAATA AAAACAATGC AGTGAATCAC 1260
AGATGTCCC TGAAAGAACT CTTTTAGATGA AAATCATTCT TCTCAAATGT ACCTTAATTT 1320
TTTTTTTTCC CTGAGTAAAA GCAAGAAATT TCTTCCTTTG GAAAAAATAT ATATATTAAA 1380
AAACCACTIT TAGATGGTTT TTTTTAAAAA AAAAAAAAAA ACTGGTAAAA TTACTTTTGG 1440
CAGACAGTGT TTTATGAATT ATGTATCATG TTGATATATA ATATGTTAAT GTGTCATGTA 1500
ATTTTTACTT TGTACAAAAGC AAATAAAGAT CTTTCTCAAA AAAAAAAAA AAAA

10 SEQ ID NO:152 PFG1 Protein sequence: Protein Accession #: 51 31 41 15 MELVAGCYEQ VLFGFAVHPE PKACGDHEQW TLVADFTHHA HTASLSAVAV NSRFVVTGSK 60 DETHHYDMK KKIEHGALVH HSGTITCLKF YGNRHLISGA EDGLICIWDA KKWECLKSIK 120 AHKGQVTFLS IHPSGKLALS VGTDKTLRTW NLVEGRSAFI KNIKQNAHIV EWSPRGEQYV 180 VIIQNKIDIY QI.DTASISGT TINEKRISSV KFLSESVLAV AGDEEVIRFF DCDSLVCI.CE 240
FKAHENRVKD MFSFEIPEHH VIVSASSDGF IKMWKLKQDK KVPPSLLCEI NTNARLTCLG 300 20 VWLDKVADMK SLPPAAEPSP VSKEQSKIGK KEPGDTVHKE EKRSKPNTKK RGLTGDSKKA 360 TKESGLISTK KRKMVEMLEK KRKKKKIKTM Q 25 SEQ ID NO:153 PEDS DNA SEQUENCE Nucleic Add Accession #: NM 014668 Coding sequence: 110-2953 (underlined sequences correspond to start and stop codons) 30 51 11 21 31 GATGTCTTGG ACATGCTCTG GCTGGCTAAT CTCCATGTTC TAGCCGACTG AAAATACGGT 60 GGCCAAGTGG ATGGTGTGCT TATTTGCAGT CTAAAGAAAT TTCCTTTTGA TGTGGCAGAA 120 AATCGAGGAT GTGGAGTGGA GACCCCAGAC TTACTTGGAG CTGGAGGGTC TGCCTTGCAT 180 AATCAGGAT GTGGAGTIGGA GACCCCCAGAC TTACTTIGGAG CTGGAGGGTC TGCCTTTCAT 180
CCTGATCTTC AGTGGGATGG ACCCCCAGAC TTACTTIGGAG CTGGAGGGTC TGCCTTTCAT 180
TGACCTIGCAG ATGGATAAACT CCTCCTGCTT GGTGAGAACA GCCTTTGGAGC AGGAGCTGGG 300
CCTGGCTGCC TACTTTGTGA GCAACGAGGT TCCCTTGGAG AAGGGGGCTA GGAACGAGGC 360
CTTGGAGAGT GATGCTGAGA AGCTGAGCAG CACAGACAAC GAGGATGAGG AGCTGGGGAC 420
AGAAGGCTCT ACCTCGGAGA AGAGAAGCCC CATGAAAAGG GAGAGGTCCC GCTCCCACGA 480
CTCAGCATCC TCATCCCTCT CCTCCAAGGC TTCCGGTTCA GCGCTCGGTC GCGAGTCCTC 540
GGCTCAGCCC ACAGCACTCC CCCAGGGAGA ACAGAGGCCC CGGGCCAAGTC AGGGGCCACC 660
CCCAGAGGAG GGCAGAGCCC CTGGTGAGAA ACAGAGGCCC CGGGCCAAGTC AGGGGCCACC 660
CTCGGCCATC AGCAGGCACA GTCCCGGCCC GACGCCCCCAG CCCGACTGTA CCCTCTCCTCC 780 35 40 CGGCCAGAGG AGGGTCCAGG TGTCGGTCAC CTCCTCGTGC TCCCAGCTGT CCTCCTCCTC 780
GGGCTCATCC TCCTCATCCG TGGCGCCCGC TGCCGGCACG TGGGTCCTGC AGGCCTCCCA 840
GTGCTCCTTG ACCAAGGCCT GCCGCCAGCC ACCCATTGTC TTCTTGCCCA AGCTCGTGTA 900 45 CGACATGGTT GTGTCCACTG ACAGCAGTGG CCTGCCCAAG GCCGCCTCCC TCCTGCCCTC 960
CCCCTCGGTC ATGTGGGCCA GCTCTTTCCG CCCCTGCTC AGCAAGACCA TGACATCCAC 1020
CGAGCAGTCC CTCTACTACC GGCAGTGGAC GGTGCCCCGG CCCAGCCACA TGGACATCGG 1080 50 CAACCGGGCC GAGGGCCGCG TGGACGGCTT CCACCCCGC AGGCTGCTGC TCAGCGGCCC 1140 CCCTCAGATC GGGAAGACAG GTGCCTACCT GCAGTTCCTC AGTGTCCTGT CCAGGATGCT 1200
TGTTCGGCTC ACAGAAGTGG ATGTCTATGA CGAGGAGGA ATCAATATCA ACCTCAGAGA 1260 AGAATCTGAC TIGGCATTATC TCCAGCTTAGA CGAGCCGTGG CCAGACCTGG AGCTGTTCAA 1320
GAAGTTGCCC TITGACTACA TCATTCACGA CCCGAAGTAT GAAGATGCCA GCCTGATTTG 1380
TTCGCACTAT CAGGGTATAA AGAGTGAAGA CAGAGGGATG TCCCGGAAGC CGGAGGACCT 1440
TTATGTGCGG CGTCAGACGG CACGGATGAG ACTGTCCAAG TACGCAGCGT ACAACACTTA 1500 55 GGAGAGCATG CGACTACCCC TCGTGACAGA CAAGAGCCAT GAATATATAA AAAGTCCGAC 1740 ATTCACTCCA ACCACCGGCC GTCACGAACA TGGGCTCTTT AATCTGTACC ACGCAATGGA 1800 CGGTGCCAGC CATTTGCACG TGCTGGTTGT CAAGGAATAC GAGATGGCAA TTTATAAGAA 1860 60 ATATTGGCCC AACCACATCA TGCTGGTGCT CCCCAGTATC TTCAACAGTG CTGGAGTTGG 1920
TGCTGCTCAT TTCCTCATCA AGGAGCTGTC CTACCATAAC CTGGAGCTCG AGCGGAACCG 1980
GCAGGAGGAG CTGGGAATCA AGCCGCAGGA CATCTGGCCT TTCATTGTGA TCTCTGATGA 2040 65 CTCCTGCTG ATGTGGAACG TGGTGGATGT CAACTCTGCT GGGGAGAGAA GCAGGGAGTT 2100 CTCCTGGTCG GAAAGGAACG TGTCTTTGAA GCACATCATG CAGCACATCG AGGCGGCCCC 2160 CGACATCATG CACTACGCCC TGCTGGGCCT GCGGAAGTGG TCCAGCAAGA CCCGGGCCAG 2220 CGAGGTGCAA GAGCCCTTCT CCCGCTGCCA COTGCACAAC TTCATCATCC TGAACGTGGA 2280
CCTGACCCAG AACGTGCAGT ACAACCAGAA CCGGTTCCTG TGTGACGATG TAGACCTTCAA 2340
CCTGCGGGTG CACAGCGCCG GCCTCCTGCT CTGCCGGTTC AACCGCTTCA GCGTGATGAA 2400 70 GAAGCAGATC GTGGTGGGCG GCCACAGGTC CTTCCACATC ACATCCAAGG TGTCTGATAA 2460 CTCTGCCGCG GTCGTGCCGG CCCAGTACAT CTGTGCCCCG GACAGCAAGC ACACGTTCCT 2520 CGCAGCGCCC GCCCAGCTCC TGCTGGAGAA GTTCCTGCAG CACCACAGCC ACCTCTTCTT 2580 CCCGCGGCCC GCCAACHCL INCIGAGAA GITC INCAG LACLACAGC ACCICITIT 2580
CCCGCTGTCC CTGAAGAACC ATGACCACCC AGTGCTGTCT GTCGACTGTT ACCTGAACCT 2640
GGGATCTCAG ATTTCTGTTT GCTATGTGAG CTCCAGGCCC CACTCTTTAA ACATCAGCTG 2700
CTCGGACTTG CTGTTCAGTG GGCTGCTGCT GTACCTCTGT GACTCTTTTG TGGGAGCTAG 2760
CTTTTTGAAA AAGTTTCATT TTCTGAAAAGG TGCGACGTTG TGTGTCATCT GTCAGGACCC 2820 75

GAGCTCACTG CGCCAGACGG TCGTCCGCCT GGAGCTCGAG GACGAGTGGC AGTTCCGGCT 2880

GCGCGATGAG TTCCAGACCG CCAATGCCAG GGAAGACCGG CCGCTCTTTT TTCTGACGGG 2940 ACGACACATC TGAGGAAGAC AGCGGCGAGT TTTCTGAAGA GATGAGTGCT CAGAGCCCTC 3000 ATGCTGTTGA GGCTAAAGGG AGGCCTGGAA CGGTGGGGCG TTTGACTGGA ATGGACCCCA 3060 GGGACTGTCC AGGTGCAGCC CCTCCTAGTA CACATGGGCC CCCGAGGCCG TGGTCCTGGG 3120 AGCCAGGAAG ACTCCGCAGT GGGTGAGAAT GAAAACTTGA GACTCCCAAG TTCTGGGCCA 3180 GCCCATTGCT CTGGGCTGTT TTAAAGCCCA TTTCACGAGG AACAAAGATT TACTTCCTGT 3240 GCCATTGCT CTGGGCTGTT TTAAAGCCCA TITCACGAGG AACAAAGATT ACTICLTGT 3240
CCTGCCATTC GTGTGCTTCC ATGGACAAAC CTGATTTTTT TCTCTTAGTT CTAAAGAATC 3300
TTGGGTTATT TTGTAGCGGT GCCAGTATTT CAGTAGATGG GATTTCAGCC AAGTAGGTTC 3360
CCTGTAACC TCCTACAAAG CAATATTCCA AAGGAACATT TTAACTGTAA AGGCTGGAGA 3420
CAAGAAAAA TAAGTAGATC GTTTTAATAA CAATTATTTA ATTGCCTATA AGTTTGCTGT 3480
TTCAGAGGCT AGCCCAAAGG CATCAAATTT AATAAAGTTA AACAAATTGA TTTACTTCAG 3540
AGCAAATATG ATCCTATTAA AATAATATAG GGTAAATACC CTACCTCTTA GAAAGGGCAA 3600 10 AAATGCAAAG AAGCTTTCTT TAAAACTAAA AGGGTTTTTT GGGGGGGGAG TTGGCGGGGA 3660 GGAAATAAGG CTAACAGAGG TTGACCTAAA ATTAGCCTTA CAAAGGAGAA AGGACCACAT 3720 TGCTTACTTG AAACAGACAA TGAAAACAAC CAAAGTGATA TATAAAATAG TTGATGAGAA 3780 15 CTAGACTTAT GACTGTAGTT TACTAGAGTT TAGTTTTCAG TTGCTGAAGT AGCTCATTTT 3840 CTCTTACTAA TGTTTGGTTC CTCAGGGAAG AATCTCACTT GACTAGAGAG GAGGTGGGAA 3900 CAGAAGAGAG AAGGAGGCAG GGAGATGTAT TTCTTAGGGC TCACCCCTTC ACAGACTGAC 3960 AGAATGGTTT TGTTTTGTTT TGTTTTGTTT TGTTTTGTTT TTGAGATGGA CTCTAGCTCT 4020 20 GTCACCCAGG CTGGAGTGCA GTGGTGCGAT CTCGGCTCAC TGCAAGCTCC GCCTCCCGGG 4080
TTCTCACCAT TCTCCTGCCT CAGCCTCCCG AGTAGCTGGG ACTACAGGCG CCCACCACCA 4140
CGCCCGGCTA ATTTTTTGTA TTTTTTAGTA GAGACGGGGT TTCACCATGT TAGCCAGGAT 4200 GGTCTCGATC TCCTGACCTC GTGATCCGCC CGCCTCGGCC TCCCAAAGTG CTGGGATTAC 4260 AGGCGTGAGC CACCGTGCCT GCCCCAGAAT GGTTTTTAAA GCCACAGTTG AGAGGCCACC 4320 CATTGCCCGG CGCCTGGACA GTGATCATCT TGTTCATCTT GTTCAGTCCT TTCTTGTGTG 4380 ATTGGAATTA TTCATCCCCT TTGAAAGATG AGAAGGTTGA GATGCAAAGA GTCTACCTTT 4440 25 CCAAGTTCTC ACTGCTGGAA AGAGCTAGAA GCACAGTTCA AAGTTCTGGC TTCTGGACTC 4500 TGCAGTCCAG GTCTCCCTTC TCCCACTTGC CTACCCTCAA TGCCACACTG TTTTTGAAGT 4560 GGCCCATAAC TTGAAGGAAA AGTTTAAAGA CAGTTCAATT TAATCATCAG AATGCATTCT 4620 30 TITITITITE GGAGACGGAG TITCACTCTT GCTGCCCAGG CTGGAGTGCA ATGGTGCAAT 4680
GATCTCGGCT CACTGCAACC TCTGCCTCCT GGGTTCAAGT GATTCTCCAG CCTCAGCCTC 4740
CCGAGTAGCT GGGATTATGG GCGCCCACCA CCATGCCCAG CTAATTTTTG TATTTTTTT 4800 TTTTAGTAGA GATGGGGTTT CGCCAGGTTG GCCAGGCTGG TCTTGTGAAC TCCTGGCCTC 4860 AGGTGATCTG CCCACCTCAT CCTCCAAAAG TGCTGGGATT ACAGGCATGA GCCACTGCGC 4920 CTGGCCTCAG AATGCATTCT TACACATCTA TCCTAGACAT TTATAAGCAC TCTAATGGAT 4980 35 AACAATCCAA GAATAAATGA TTGTAAAAGA TGATGCCGAA GAGTTGATGT CAATCTTTTT 5040 TTCCTAAGAA AAAAAGTCCG CGAGTATTAA ATATTTAGAT CAATGTTTAT AAAATGATTA 5100 CTTTGTATAT CTCATTATTC CTATTTTGGA ATAAAAACTG ACCTTCTTTA ATCATATACT 5160 TGTCTTTTGT AAATAGCAGC TTTTGTGTCA TTCTCCCCAC TTTATTAGTT AATTTAAATT 5220 40 GGAAAAACC CTCAAACTAA TATTCTTGTC TGTTCCAGTC TTATAAATAA AACTTATAAT 5280 CCATG 45 SEQ ID NO:154 PFD6 Protein sequence: Protein Accession #: 31 41 50 MWQKIEDVEW RPQTYLELEG LPCILIFSGM DPHGESLPRS LRYCDLRLIN SSCLVRTALE 60 OELGLAAYFV SNEVPLEKGA RNEALESDAE KLSSTDNEDE ELGTEGSTSE KRSPMKRERS 120 RSHDSASSSL SSKASGSALG GESSAQPTAL PQGEHARSPQ FRGPAEEGRA PGEKQRPRAS 180 QGPPSAISRH SPGPTPQPDC SLRTGQRSVQ VSVTSSCSQL SSSSGSSSSS VAPAAGTWVL 240 QASQCSLTKA CRQPPIVFLP KLVYDMVVST DSSGLPKAAS LLPSPSVMWA SSFRPLLSKT 300 55 MTSTEQSLYY RQWTVPRPSH MDYGNRAEGR VDGFHPRRLL LSGPPQIGKT GAYLQFLSVL 360 SRMLVRLTEV DVYDEEEINI NLREESDWHY LQLSDFWPDL ELFKKLPFDY IIHDPKYEDA 420 SLICSHYQGI KSEDRGMSRK PEDLYVRQT ARMRLSKYAA YNTYHHCEQC HQYMGFHPRY 480 OLYESTLHAF AFSYSMLGEE IQLHFIIPKS KEHHFVFSQP GGQLESMRLP LVTDKSHEYI 540
KSPITFITTG RHEIGLFRLY HAMDGASHLH VLVVKEYEMA IYKKYWPNHI MLVLPSIFNS 600
AGVGAAHFLI KELSYHNLEL ERNRQEELGI KPQDIWPFIV ISDDSCVMWN VVDVNSAGER 660 60 AGVGAARPIL KELST HILLEL EKNRÜGELGI NYGUWFITV SIDUSCYWW YVDYNSAUER 600
SREFSWISERN VSIKHIMQHI EAAPDIMITYA LLGILRKWSSK TRASEVQEFF SRCHVHNFII 720
LNVDLTQNVQ YNQNRFLCDD VDFNLRVHSA GLILCRFNRF SVMKKQIVVG GHRSFHITSK 780
VSDNSAAVVP AQYICAPDSK HTFLAAPAQL LLEKFLQHHS HLFFPLSIKN HDHPVLSVDC 840
YINLGSQISV CYVSSRPHSL NISCSDLIFS GLILTYLCDSF VGASFLKKFH FLKGATLCVI 900
CQDRSSLRQT VVRLELEDEW QFRLRDEFQT ANAREDRPLF FLTGRHI 65 SEQ ID NO:155 PEC6 DNA SEQUENCE Nucleic Acid Accession #: NIM 000522 70 Coding sequence: 1-1167 (underlined sequences correspond to start and stop codons) 51 31 ATGACAGCCT CCGTGCTCCT CCACCCCGC TGGATCGAGC CCACCGTCAT GTTTCTCTAC 60
GACAACGCCG GCGGCCTGGT GGCCGACGAG CTCAACAAGA ACATGGAAGG GGCGGCGGC 120
GCTGCAGCAG CGGCGGCAGC GGCGGCGCCG GGGGCGGGGC CTCCCCAC 180
CCGGCCGCCGCTG CGGCGGCAGG GGGCAACTTC TCGGTGGCGG CCGCGGCCCG GGCTGCGGCC 240
GCCGCCGCGGCCCG CCAACCAGTG CCGCAACCTG ATGGCGCACCC CGGCGCCCTT GGCGCCAGGA 300 75

GCCGCGTCCG CCTACAGCAG CGCCCCCGGG GAGGCGCCCC CGTCGGCTGC CGCCGCTGCT 360

GCCGCGGCTG CCGCTGCAGC CGCCGCCGCC GCCGCCGCT CGTCCTCGGG AGGTCCCGGC 420 COGGOGGGC CGGCGGCGC AGAGGCGGCC AAGCAATGCA GCCCCTGCTC GGCAGCGGCG 480 CAGAGCTCGT CGGGGCCCGC GGGCCTGCCC TATGGCTACT TCGGCAGCGG CTACTACCCG 540
TGCGCCCGCA TGGGCCCGCC CCCCAACGCC ATCAAGTCGT GCCCCCAGCC CCCCTCGGCC 600
GCCGCCGCCG CCGCCTTCGC GGACAAGTAC ATGGATACCG CCGGCCCAGC TGCCGAGGAG 660 5 TTCAGCTCCC GCGCTAAGGA GTTCGCGTTC TACCACCAGG GCTACGCAGC CGGGCCTTAC 720
CACCACCATC AGCCCATGCC TGGCTACCTG GATATGCCAG TGGTGCCGGG CCTCGGGGGC 780
CCCGGCGAGT CGCGCCACGA ACCCTTGGGT CTTCCCATGG AAAGCTACCA GCCCTGGGCG 840 CTGCCCAACG GCTGGAACGG CCAAATGTAC TGCCCCAAAG AGCAGGCGCA GCCTCCCCAC 900 CTCTGGAGT CCACTCTGCC CGACGTGGTC TCCCATCCCT CGGATGCCAG CTCCTATAGG 960
AGGGGGAGAA AGAAGCGCGT GCCTTATACC AAGGTGCAAT TAAAAGAACT TGAACGGGAA 1020 10 TACGCCACGA ATAAATTCAT TACTAAGGAC AAACGGAGGC GGATATCAGC CACGACGAAT 1080 CTCTCTGAGC GGCAGGTCAC AATCTGGTTC CAGAACAGGA GGGTTAAAGA GAAAAAAGTC 1140 ATCAACAAAC TGAAAACCAC TAGT<u>TAA</u> 15 SEQ ID NO:156 PFC6 Protein sequence NP 000513.1 Protein Accession #: 20 41 MTASVLLHPR WIEPTVMFLY DNGGGLVADE LNKNMEGAAA AAAAAAAAA AGAGGGGFPH 60 PAAAAAGGNF SVAAAAAAA AAAANQCRNI, MAHPAPLAPG AASAYSSAPG EAPPSAAAAA 120 AAAAAAAAA AAASSSGGPG PAGPAAAEAA KQCSPCSAAA QSSSGPAALP YGYFGSGYYP 180 CARMGPPPNA IKSCPQPPSA AAAAAFADKY MDTAGPAAEE FSSRAKEFAF YHQGYAAGPY 240 25 HHHQPMPGYL DMPVVPGLGG PGESRHEPLG LPMESYQPWA LPNGWNGQMY CPKEQAQPPH 300 LWKSTLPDVV SHPSDASSYR RGRKKRVPYT KVQLKELERE YATNKFITKD KRRRISATIN 360 LSERQVITWF QNRRVKEKKV INKLKITS 30 SEQ ID NO:157 PFA3 DNA SEQUENCE Nucleic Acid Accession #: AW102723 Coding sequence: 523-2676 (underlined sequences correspond to start and stop codons) 35 51 CCCTTATGGC GATTGGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG 60 CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAGAGTT 120 40 TTCCTACACT TTTCCTGCGC TACAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC 180
ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGGCG TGATCTCACC 240
ATGTGCGGAT TTGCGAGGCG CGCCCTGGAG TGCTAGAGA TCCGGAAGCA CAGCCCCGAG 300 GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCGG 360
TCTCCGGCCT GTCTGCACCC TGTCGCCTGA GCTGCCTGAC AGTGACAATG ACATCCCAGT 420
TACCAGTGTC CTTGAATTGA TAGTGGCTTC TGTTTGTCAG TCTCATATAA GAACTACAGC 480 45 TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACCAACA CCATGTTCTG CACGAAGGTC 540
AAGGATCTCA AGATCACAGG AGAGTGTCCT TTCTCCTTAC TGGCACCAGG TCAAGTTCCT 600
AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGCAAC CGTGCCCATC 660 TGTCAAGACA TTCCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAGAAA AACCAGTCGG 720 50 AGCCGAGTET ATCTTCACAC TTTGGCAGAG AGTATTTGCA AACTGATTTT CCCAGAGTTT 780
GAACGGCTGA ATGTTGCACT TCAGAGAACA TTGGCAAAGC ACAAAATAAA AGAAAGCAGG 840
AAATCTTTGG AAAGAGAAGA CTTTGAAAAA ACAATTGCAG AGCAAGCAGT GCAGCAGAGT 900 CCACTGGAGT TATCAAAGAA TCTCTTGGTG AAGAGGTTTT TAAAATATGT TACGAGGAAG 960 ATGAAAACAT CCTTGGGGTG GTTGGAGGCA CCCTTAAAGA TTTTTAAACA GCTTCAGTAC 1020 CCTTCTGAAA CAGAGCAGCC ATTGCCAAGA AGCAGGAAAA AGGGGCAGCT TGAGGACGCC 1080 55 TCCATTCTAT GCCTGGATAA GGAGGATGAT TTTCTACATG TTTACTACTT CTTCCCTAAG 1140
AGAACCACCT CCCTGATTCT TCCCGGCATC ATAAAGGCAG CTGCTCACGT ATTATATGAA 1200
ACGGAAGTGG AAGTGTCGTT AATGCCTCCC TGCTTCCATA ATGATTGCAG CGAGTTTGTG 1260 AATCAGCCCT ACTTGTTGTA CTCCGTTCAC ATGAAAAGCA CCAAGCCATC CCTGTCCCCC 1320 60 AGCAAACCCC AGTCCTCGCT GGTGATTCCC ACATCGCTAT TCTGCAAGAC ATTTCCATTC 1380 CATTTCATGT TTGACAAAGA TATGACAATT CTGCAATTTG GCAATGGCAT CAGAAGGCTG 1440 ATGAACAGGA GAGACTTTCA AGGAAAGCCT AATTTTGAAT ACTTTGAAAT TCTGACTCCA 1500 AAAATCAACC AGACCTITAG CGGGATCATG ACTATGTTGA ATATGCAGTT TGTTGTACGA 1560 GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA 1620 ATGATCTACA TTGTTGAATC CAGTGCAATC TTGTTTTTGG GGTCACCCTG TGTGGACAGA 1680 65 TTAGAAGATT TTACAGGACG AGGGCTCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG 1740
AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGGCCTGAA GAAGAGGCTG 1800
GGGAAGCTGA AGGCTACCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA GAAGAAAAAG 1860 ACAGTAGACC TICTOTIGCTC CATATTICCC TGTGAGGTTG CTCAGCAGCT GTGGCAAGGG 1920
CAAGTTGTGC AAGCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCTCAGA CATCGTTGGG 1980
TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACCT 2040 70 THEACTGCCA TOTAL CAMBELLACTOR CTOCAGGICA TEACTATOCATICACTOR 2000
ATGCCTATTG TOTGGCTTTGG GGGATTACAC AAAGAAGTG ATACTCATGC 2100
ATGCCTATTG TOTGGCTTTGG GGGATTACAC AAAGAAGAGTG ATACTCATGC TOTTCAGATA 2160
GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCTCC CCATGGAGAA 2220
CCTATCAAGA TGCGAATTGG ACTGCACTCT GGATCAGTTT TTGCTGGCGT CGTTGGAGTT 2280 75 AAAATGCCCC GTTACTGTCT TTTTGGAAAC AATGTCACTC TGGCTAACAA ATTTGAGTCC 2340 TGCAGTGTAC CACGAAAAAT CAATGTCAGC CCAACAACTT ACAGATTACT CAAAGACTGT 2400

CCTGGTTTCG TGTTTACCCC TCGATCAAGG GAGGAACTTC CACCAAACTT CCCTAGTGAA 2460 ATCCCCGGAA TCTGCCATTT TCTGGATGCT TACCAACAAG GAACAAACTC AAAACCATGC 2520

- 10

5

#### SEQ ID NO:158 PFA3 Protein sequence: Protein Accession #: NP 000847.1

15

35

40

45

50

55

60

65

70

75

11 21 31 41 51

20
20 QRKTSRSRYY LHTLAESICK LIPPEFERLN VALQRTLAKH KIKESRKSLE REDFEKTIAE 120
QRKTSRSRYY LHTLAESICK LIPPEFERLN VALQRTLAKH KIKESRKSLE REDFEKTIAE 120
QRVQQSPVEL SKNLLVKRFL KYVTRKMKTS LGWLEAPLKI FKQLQYPSET EQPLPRSRKK 180
GQLEDASILC LDKEDDFLHY YYFFPKRTTS LILPGIIKAA AHVLYETEVE VSLMPPCFHN 240
DCSEFVNQPY ILYSVHMKST KPSLSPSKPQ SSLVIPTSLF CKTFPFHFMF DKDMTILQFG 300
NGIRRLMNRR DFQCKPNFEY FELTPKINQ TFSGIMTMLN MQFVVRVRRW DNSVKKSSRV 360
MDLKGQMIYI VESSAILFLG SPCVDRLEDF TGRGLYLSDI PHNALRDVV LIGEQARAQD 420
GLKKRIGKILK ATLEQAHQAL EEEKKKTVDL LCSIFFCEVA QQLWQGQVVQ AKKFSNVTML 480
FSDIVGFTAI CSQCSPLQVI TMLNALYTRF DQQCGELDVY KVETIAMPIV WLGGLHKESD 540
THAVQIALMA LKMMELSDEV MSPHGEPIKM RIGLHSGSVF AGVVGVKMPR YCLIGNNVTL 600
ANKFESCSVP RKINVSPTTY RLLKDCPGFV FTFRSREELP PNIPSEIPGI CHELDAYQQG 660
TNSKPCPQKK DVEDASQFFR QSIRNRLATY IPIYKSLGFD SLKMCRASES TLGIVDG

# SEQ ID NO:159 PFA1 DNA SEQUENCE

Nucleic Acid Accession #: NIM_004362
Coding sequence: NIM_004362
102-1934 (underlined sequences correspond to start and stop codors)

1 11 21 31 41 51

CGCCGGCGGG ACTGGTCTGA AGAGACGCGG GGACAAAGTG GCAACGACTT GGACATCTGA GCTGTCACTG CCGAAAACAG GCCGCAAGAG AGATAATCAA TATGCATTTC CAAGCCTTTT 120
GGCTATGTTT GGGTCTTCTG TTCATCTCAA TTAATGCAGA ATTTATGGAT GATGATGTTG 180 AGACGGAAGA CTTTGAAGAA AATTCAGAAG AAATTGATGT TAATGAAAGT GAACTTTCCT 240 CAGAGATTAA ATATAAGACA CCTCAACCTA TAGGAGAAGT ATATTTTGCA GAAACTTTTG 300 ATAGTGGAAG GTTGGCTGGA TGGGTCTTAT CAAAAGCAAA GAAAGATGAC ATGGATGAGG 360 ATAGTGGAAG GTTGGCTGGA TGGGTCTTAT CAAAAGCAAA GAAAGATGAC ATGGATGAG 360
AAATTTCAAT ATACGATGGA AGATGGGAAA TTGAAGAGTT GAAAAGCAAC CAGGTACCTG 420
GTGACAGAGG ACTGGTATTA AAATCTAGAG CAAAGCATCA TGCAATATCT GCTGTATTAG 480
CAAAACCATT CATTTTTGCT GATAAACCCT TGATAGTTCA ATATGAAGTA AATTTTCAAG 540
ATGGTATTGA TTGTGGAGGT GCATACATTA AACTCCTAGC AGACACTGAT GATTTGATTC 600
TGGAAAACCT TTATGATAAA ACATCCTATA TCATTATGTT TGGACCAGAT AAATGTGGAG 660
AAGATTATAA ACTTCATTTT ATCTTCAGAC ATAAACATCC CAAAACTGGA GTTTTCGAAG 720
AGAAACATGC CAAACCTCCA GATGTAGACC TTAAAAAAGTT CTTTACAGAC AGGAAGACTC 780 ATCTTTATAC CCTTGTGATG AATCCAGATG ACACATTTGA GGTGTTAGTT GATCAAACAG 840 TTGTAAACAA AGGAAGCCTC CTAGAGGATG TGGTTCCTCC TATCAAACCT CCCAAAGAAA 900 TTGAAGATCC CAATGATAAA AAACCTGAGG AATGGGATGA AAGAGCAAAA ATTCCTGATC 960 CTTCTGCCGT CAAACCAGAA GACTGGGATG AAAGTGAACC TGCCCAAATA GAAGATTCAA 1020 GTGTTGTTAA ACCTGCTGGC TGGCTTGATG ATGAACCAAA ATTTATCCCT GATCCTAATG 1080 CTGAAAAACC TGATGACTGG AATGAAGACA CGGATGGAGA ATGGGAGGCA CCTCAGATTC 1140 TTAATCCAGC ATGTCGGATT GGGTGTGGTG AGTGGAAACC TCCCATGATA GATAACCCAA 1200 AATACAAAGG AGTATGGAGA CCTCCACTGG TCGATAATCC TAACTATCAG GGAATCTGGA 1260 GTCCTCGAAA AATTCCTAAT CCAGATTATT TCGAAGATGA TCATCCATTT CTTCTGACTT 1320 CTTTCAGTGC TCTTGGTTTA GAGCTTTGGT CTATGACCTC TGATATCTAC TTTGATAATT 1380 THATTATCTG TTCGGAAAAG GAAGTAGCAG ATCACTGGGC TGCAGATGGT TGGAGATGGA 1440
AAATAATGAT AGCAAATGCT AATAAGCCTG GTGTATTAAA ACAGTTAATG GCAGCTGCTG 1500
AAGGGCACCC ATGCCTTTGG TTGATTTATC TTGTGACAGC AGGAGTGCCA ATAGCATTAA 1560
TTACTTCATTT TTGTTGGCCA AGAAAAGTAA AGAAAAAAAACA TAAAAGATACA GAGTATAAAAA 1620
AAACCGACCT ATGTATACCA CAAACAAAAG GAGTACTAGA GCAGAGAGAA AAGGAGAGAGA 1680
AAGCAGCCCT GGAAAAACCA ATGGACCTGG AAGAGGAAAAA AAAGCAAAAT GATGGTGAAA 1740 TGCTTGAAAA AGAAGAGGAA AGTGAACCTG AGGAAAAGAG TGAAGAAGAA ATTGAAATCA 1800 TAGAAGGGCA AGAAGAAAGT AATCAATCAA ATAAGTCTGG GTCAGAGGAT GAGATGAAAG 1860 AAGCAGATGA GAGCACAGGA TCTGGAGATG GGCCGATAAA GTCAGTACGC AAAAGAAGAG 1920 TACGAAAGGA CTAAACTAGA TTGAAATATT TTTAATTCCC GAGAGGATGT TTGGCATTGT 1980 AAAAATCAGC ATGCCAGACC TGAACTTTAA TCAGTCTGCA CATCCTGTTT CTAATATCTA 2040 GCAACATTAT ATTCTTTCAG ACATTTATTT TAGTCCTTCA TTTCCGAGGA AAAAGAAGCA 2100 ACTTTGAAGT TACCTCATCT TTGAATTTAG AATAAAAGTG GCACATTACA TATCCGATCT 2160 AAGAGATTAA TACCATTAGA AGTTACACAG TTTTAGTTGT TTGGAGATAG TTTTGGTTTG 2220 TACAGAACAA AATAATATGT AGCAGCTTCA TTGCTATTGG AAAAATCAGT TATTGGAATT 2280 TCCACITAAA TGGCTATACA ACAATATAAC TGGTAGTTCT ATAATAAAAA TGAGCATATG 2340 TTCTGTTGTG AAGAGCTAAA TGCAATAAAG TTTCTGTATG GTTGTTTGAT TCTATCAACA 2400 ATTGAAAGTG TTGTATATGA CCCACATTTA CCTAGTTTGT GTCAAATTAT AGTTACAGTG 2460 AGTTGTTTGC TTAAATTATA GATTCCTTTA AGGACATGCC TTGTTCATAA AATCACTGGA 2520

TTATATTGCA GCATATITTA CATTIGAATA CAAGGATAAT GGGTTTTATC AAAACAAAAT 2580 GATGTACAGA TTTTTTTCA AGTTTTTATA GTTGCTTTAT GCCAGAGTGG TTTACCCCAT 2640 TCACAAAATT TCTTATGCAT ACATTGCTAT TGAAAATAAA ATTTAAATAT TTTTTCATCC 2700 TGAAAAAAA 5 SEQ ID NO:160 PFA1 Protein sequence: Protein Accession #: NP_004353.1 10 11 21 41 51 31 MHFQAFWLCL GLLFISINAE FMDDDVETED FEENSEEIDV NESELSSEIK YKTPOPIGEV 60 YFAETFDSGR LAGWVLSKAK KDDMDEEISI YDGRWEIEEL KERQYFGDRG LVLKSRAKHH 120
AISAVLAKPF IFADKPLIVQ YEVNFQDGID CGGAYIKLLA DTDDLILENF YDKTSYIIMF 180
GPDKCGEDY'K LHFIFRHKHP KTGVFFEKHA KPFDVDLKKF FTDRKTHLYT LVMNPDDTFE 240
VLVDQTVVNK GSLLEDVVPP IKPPKEIEDP NDKKFEEWDE RAKIPDPSAV KPEDWDESEP 300
AQIEDSSVVK PAGWLDDEPK FIFDPNAEKP DDWNEDTDGE WEAPQILNFA CRIGGGEWKP 360
PMIDNPKYKG VWRPPLVDNP NYQGIWSPRK IPNPDYFEDD HPFLLTSFSA LGLELWSMTS 420 15 DIYFDNFIIC SEKEVADHWA ADGWRWKIMI ANANKPGVLK QLMAAAEGHP WLWLIYLVTA 480 GYPIALITSF CWPRKYKKH KOTISYKKTDI CIPOTKGYLE QEEKERKAAL EKPMDLEEEK 540 KQNDGEMLEK EEESPEEKS EEEIEIEGQ EESNQSNKSG SEDEMKEADE STGSGDGPIK 600 20 25 SEQ ID NO:161 PEZ9 DNA SEQUENCE Nucleic Acid Accession #: NM 005932 Coding sequence: 75-2216 (underlined sequences correspond to start and stop codons) 51 31 41 30 TCAGCACCAG CTGGTCTCCC GTGGGCCCCC CCTTCAATGT CAAGCCCCAG GGCAGCCGCT 240
TGGACCTGTT CGGCGAGCGG GCGCGTCTTT TTGGAGTTCC TGAGCCCAGTGGT GCCCCAGAAG 300
GATTTCATAT TGCACAAGAA AAAGCCTTGA GAAAGACAGA ATTGCTTGTG GACCGTGCAT 360
GTTCCACCC ACCTGGGCCC CAGACCGTGC TGATCTTCGA TGAGCTCTCG GATTCCTTAT 420
GCAGAGTGGC CGACTTGGCT GATTTTTGTA AAATCCTCA CCCTGAGCCA GCATTCAGAG 480
AAGCTGCGGA AGAAGCTTGT AGAAGTATTG GCACCATGGT AGAGAAGTTG AACACAAATG 540 35 40 TGGATTTATA TCAAAGTTTG CAAAAATTAC TAGCTGATAA AAAACTTGTG GATTCCCTTG 600 ATCCAGAAAC AAGGCGAGTG GCTGAACTGT TTATGTTTGA TTTTGAAATT AGTGGAATCC 660 ATCTAGACAA ACAAAAGCGT AAAAGAGCAG TGGACCTCAA TGTTAAAATC TTGGATTTGA 720 GTAGTACATT TCTTATGGGA ACCAATTTTC CCAACAAGAT TGAGAAGCAT CTCTTACCAG 780
AACACATTCG TCGTAACTTT ACATCTGCTG GGGATCATAT CATAATTGAT GGTCTCCACG 840
CAGAATCACC AGATGACTTG GTGCGAGAAG CTGCTTATAA AATTTTTCTT TATCCCAATG 900 45 CTGGTCAATT GAAATGTTTA GAAGAATTGC TCAGCAGCAG AGATCTTCTG GCAAAGTTGG 960 TGGGGTATTC CACGTTTTCT CACAGGGCTC TCCAAGGAAC GATAGCTAAA AATCCAGAGA 1020 CTGTCATGCA GTTCCTTGAA AAACTATCTG ACAAACTTTC TGAAAGAACT CTGAAAGATT 1080 TTGAGATGAT ACGAGGGATG AAAATGAAAC TGAATGCTCA AAATTCCGAA GTAATGCCCT 1140 50 GGGACCCCC TTACTACAGT GGTGTGATTC GTGCAGAAAG GTATAATATT GAGCCCAGGC 1200 TATATTGCCC GTTTTTCTCT CTTGGAGCAT GCATGGAAGG CCTGAATATT TTGCTTAACA 1260 GACTGTTGGG GATTTCATTA TATGCAGAGC AGCCTGCAAA AGGAGAGGTG TGGAGCGAAG 1320 GACTIGUEGG GATTICATTA TATGCAGAGC AGCCTGCAAA AGGAGAGGTG TGGAGCGAAG 1320
ATGTCCGAAA ACTGCCTGTT GTTCATGAAT CTGAAGGATT GTTGGGGTAC ATTTACTGTG 1380
ATTTTTTCA GCGAGCAGAC AAACCACATC AGGATTGCCA TTTCACTATC CGTGGAGGCA 1440
GACTAAAGGA AGATGGAGAC TATCAACTCC CACTTGTAGT TCTTATGCTG AATCTTCCCC 1500
GTTCCTCAAG GAGTTCTCCA ACTTTGCTAA CTCCTGGCAT GATGGAAAAT CTTTTCCATG 1560
AAATGGGACA TGCCATGCAT TCAATCCTAG GACGTACTCG TTACCAACAC GTCACTGGGA 1620
CCAGGTGCCC TACTGATTTT GCTGAGGTTC CTTCTATTCT GATGGAGTAC TTTGCAAATG 1680
ATTATCGAGT AGTTAACCAA TTTGCCAGAC ATTATCAGAC TGGACAGCCA CTGCCAAAAA 1740 55 60 ATATGGTGTC TCGTCTTTGT GAATCTAAAA AGGTTTGTGC TGCAGCTGAT ATGCAACTTC 1800 AGGTCTTTTA TGCCACTCTG GATCAAATCT ACCATGGGAA GCATCCCCTG AGGAATTCAA 1860 CCACAGACAT TCTCAAGGAA ACACAAGAGA AATTCTATGG CCTACCATAT GTTCCAAATA 1920 CTGCCTGGCA GCTGCGATTC AGCCACCTCG TGGGGTATGG TGCTAGATAT TACTCTTACC 1980 TCATGTCCAG AGCGGTCGCC TCCATGGTTT GGAAGGAGTG TTTTCTACAG GATCCTTTCA 2040 ACAGGGCTGC CGGGGAGCCC TATCGCAGGG AGATGCTGGC CCACGGTGGA GGCAGGGAGC 2100 65 CCATGCTCAT GGTTGAAGGT ATGCTTCAGA AGTGTCCTTC TGTTGATGAC TTCGTAAGTG 2160
CCCTCGTTTC CGACTTGGAT CTGGACTTCG AAACTTTCCT CATGGATTCT GAATAAAAGA 2220
AACACTCTAC ACCTCTAATC AAGGTCATGT AGTAATGACT TTGTTATAAA TGCTACAGCT 2280 GTGAGAGCTT GTTTCTGATT GTTTCATTGT TCGCTTCTGT AATTCTGAAA AACTTTAAAC 2340 70 SEQ ID NO:162 PEZ9 Protein sequence: Protein Accession #: NP 005923. NP 005923.1 75 11 21 31 MLCVGRLGGL GARAAALPPR RAGRGSLEAG IRARRYSTSW SPVGAAFNVK PQGSRLDLFG 60 ERARLFGVPE LSAPEGFHIA QEKALRKTEL LVDRACSTPP GPQTVLIFDE LSDSLCRVAD 120

LADFVKIAHP EPAFREAAEE ACRSIGTMVE KLNTNVDLYQ SLQKLLADKK LVDSLDPETR 180
RVAELFMFDF EISGIHLDKQ KRKRAVDLNV KILDLSSTFL MGTNFPNKIE KHLLPEHIRR 240
NFTSAGDHII DIGIHAESPD DLVREAAYKI FLYPNAGQLK CLEELLSSRD LLAKLVGYST 300
FSHRALQGTI AKNPETVMQF LEKLSDKLSE RTILKDFEMIR GMKMKLNAQN SEVMPWDPPY 360
YSGVIRAERY NIEPSLYCPF FSLGACMEGL NILLNRLLGI SLYAEQPAKG BVWSEDVRKL 420
AVVHESEGLL GYTYCDFFQR ADKPHQDCHF TIRGGRLKED GDYQLPLVVL MLNLPRSSRS 480
SPTLLTRGMM ENLFHEMGHA MHSMLGRTRY QHVTGTRCPT DFABVPSILM BYFANDYRVV 540
NQFARHYQTG QPLPKNMVSR LCESKKVCAA ADMQLQVFYA TILDQIYHGKH PLRNSTTDIL 600
KETQEKFYGL PYVPNTAWQL RFSHLVGYGA RYYSYLMSRA VASMVWKECF LQDPFNRAAG 660
ERYRREMLAH GGGREPMLMV EGMLQKCPSV DDFVSALVSD LDLDFETFILM DSE

# SEQ ID NO:163 PEZB DNA SEQUENCE

Nusteic Acid Accession #: AF103907

Coding sequence: AF103907

none (underlined sequences correspond to start and step codons)

21 31 41 20 ACAGAAGAAA TAGCAAGTGC CGAGAAGCTG GCATCAGAAA AACAGAGGGG AGATTTGTGT GGCTGCAGCC GAGGGAGACC AGGAAGATCT GCATGGTGGG AAGGACCTGA TGATACAGAG 120
GAATTACAAC ACATATACTT AGTGTTTCAA TGAACACCAA GATAAATAAG TGAAGAGCTA 180 GTCCGCTGTG AGTCTCCTCA GTGACACAGG GCTGGATCAC CATCGACGGC ACTTTCTGAG 240 TACTICAGTIGC AGCAAAGAAA GACTACAGAC ATCTCAATIG CAGGGGTGAG AAATAAGAAA 300 GGCTGCTGAC TTTACCATCT GAGGCCACAC ATCTGCTGAA ATGGAGATAA TTAACATCAC 360 TAGAAACAGC AAGATGACAA TATAATGTCT AAGTAGTGAC ATGTTTTTGC ACATTTCCAG 420 25 CCCTTTAAA TATCCACACA CACAGGAAGC ACAAAAGGAA GCACAGAGAT CCCTGGGAGA 480 AATGCCCGGC CGCCATCTTG GGTCATCGAT GAGCCTCGCC CTGTGCCTGG TCCCGCTTGT 540 GAGGGAAGGA CATTAGAAAA TGAATTGATG TGTTCCTTAA AGGATGGGCA GGAAAACAGA 600 30 TCCTGTTGTG GATATTTATT TGAACCGGGAT TACAGATTTG AAATGAAGTC ACAAAGTGAG 660 CATTACCAAT GAGAGGAAAA CAGACGAGAA AATCTTGATG GCTTCACAAG ACATGCAACA 720 AACAAAATGG AATACTGTGA TGACATGAGG CAGCCAAGCT GGGGAGGAG TAACCACGG 780 GCAGAGGGTC AGGATTCTGG CCCTGCTGCC TAAACTGTGC GTTCATAACC AAATCATTTC 840 ATATTICTAA CCCTCAAAAC AAAGCTGTTG TAATATCTGA TCTCTACGGT TCCTTCTGGG 900 CCCAACATTC TCCATATATC CAGCCACACT CATTTTTAAT ATTTAGTTCC CAGATCTGTA 960 CTGTGACCTT TCTACACTGT AGAATAACAT TACTCATTTT GTTCAAAGAC CCTTCGTGTT 1020 35 GCTGCCTAAT ATGTAGCTGA CTGTTTTTCC TAAGGAGTGT TCTGGCCCAG GGGATCTGTG 1080 AACAGGCTGG GAAGCATCTC AAGATCTTTC CAGGGTTATA CTTACTAGCA CACAGCATGA 1140 TCATTACGGA GTGAATTATC TAATCAACAT CATCCTCAGT GTCTTTGCCC ATACTGAAAT 1200 40 TCATTICCCA CITTTGTGCC CATTCTCAAG ACCTCAAAAT GICATTCCAT TAATATCACA 1260
GGATTAACTT TITTTTTTAA CCTGGAAGAA TTCAATGTTA CATGCAGCTA TGGGAATTTA 1320
ATTACATATT TTGTTTTCCA GTGCAAAGAT GACTAAGTCC TITTATCCCTC CCCTTTGTTT 1380
GATTTTTTT CCAGTATAAA GTTAAAATGC TTAGCCTTG TCTGAGGCTG TATACCAGCAC 1440
AGCCTCTCCC CATCCCTCCA GCCTTATCTG TCATCACCAT CAACCCCTCC CATACCACCT 1500 45 AAACAAAATC TAACTTGTAA TTCCTTGAAC ATGTCAGGAC ATACATTATT CCTTCTGCCT 1560 GAGAAGCTCT TCCTTGTCTC TTAAATCTAG AATGATGTAA AGTTTTGAAT AAGTTGACTA 1620
TCTTACTTCA TGCAAAGAAG GGACACATAT GAGATTCATC ATCACATGAG ACAGCAAATA 1680
CTAAAAGTGT AATTTGATTA TAAGAGTTTA GATAAATATA TGAAATGCAA GAGCCACAGA 1740 CTAAAAGIGT AATTIGATTA TAAGAGGTTTA GATAAATATA TGAAATGCAA GAGCCACAGA 1740
GGGAATGTTT ATGGGGCACG TITGTAAGCC TGGGATGTGA AGCAAAGGCA GGGAACCTCA 1800
TAGTATCTTA TATAATATAC TTCATTTCTC TATCTCTATC ACCAATATCCA ACCAAGCTTTT 1860
CACAGAATTC ATGCAGTGCA AATCCCCAAA GGTAACCTTT ATCCATTTCA TGGTGAGTGC 1920
GCTTTAGAAT TTTGGCAAAT CATACTGGTC ACTTATCTCA ACTTTGAGAT TGTTTTGTCC 1980
TTGTTAGTTAA TTGAAAGAAA TAAGGGCACTCT TGTGTGGCAC CTTTAGGGTT CACTCCTGGC 2040
AATAAAGAAT TTACAAAGAG CTACTCAGGA CCAGTTGTTA AGAGCTCTTG TGTGTGTGTT
GTGTGTTGTT GAGTGTACAT GCCAAAGTGT GCCTCTCTCT CTTGACCCAT TATTTCAGAC 2160 50 55 TTAAAACAAG CATOTTTTCA AATGGCACTA TGAGCTGCCA ATGATGTTATC ACCACCATAT 2220 CTCATTATTC TCCAGTAAAT GTGATAATAA TGTCATCTGT TAACATAAAA AAAGTTTGAC 2280 TTCACAAAAG CAGCTGGAAA TGGACAACCA CAATATGCAT AAATCTAACT CCTACCATCA 2340 GCTACACACT GCTTGACATA TATTGTTAGA AGCACCTCGC ATTTGTGGGT TCTCTTAAGC 2400 AAAATACTTG CATTAGGTCT CAGCTGGGGC TGTGCATCAG GCGGTTTGAG AAATATTCAA 2460 TTCTCAGCAG AAGCCAGAAT TTGAATTCCC TCATCTTTTA GGAATCATTT ACCAGGTTTG 2520 60 GAGAGGATTC AGACAGCTCA GGTGCTTTCA CTAATGTCTC TGAACTTCTG TCCCTCTTTG 2580
TGTTCATGGA TAGTCCAATA AATAATGTTA TCTTTGAACT GATGCTCATA GGAGAGAATA 2640
TAAGAACTCT GAGTGATATC AACATTAGGG ATTCAAAGAA ATATTAGATT TAAGCTCACA 2700 TAGGACACIA GAGGACCAGA TACAAAGAAC TCTGAGCTGT CATCGTCCCC ATCTCTGTGA 2760
GCCACAACCA ACAGCAGGAC CCAACGCATG TCTGAGATCC TTAAATCAAG GAAACCAGTG 2820
TCATGAGTTG AATTCTCCTA TTATGGATGC TAGCTTCTGG CCATCTCTGG CTCTCCTCTT 2880
GACACATATT AGCTTCTAGC CTTTGCTTCC ACGACTTTTA TCTTTTCTCC AACACATCGC 2940 65 TTACCAATCC TCTCTCGCT CTGTTGCTTT GGACTTCCCC ACAAGAATTT CAACGACTCT 3000
CAAGTCTTTT CTCCATCCC CACCACTAAC CTGAATGCCT AGACCCTTAT TTTTATTAAT 3060
TTCCAATAGA TGCTGCCTAT GGGCTATATT GCTTTAGATG AACATTAGAT ATTTAAAGCT 3120
CAAGAGGTTC AAAATCCAAC TCATTATCTT CTCTTTCTTT CACCTCCCTG CTCCTCCCC 3180
TATATTACTG ATTGCACTGA ACAGCATGGT CCCCAATGTA GCCATGCAAA TGAGAAACCC 3240 70 AGTIGGTECT TGTIGGTACAT GCATGCAAGA CTIGCTGAAGC CAGAAGGATG ACTIGATTACG 3300
CCTCATGGGT GGAGGGGACC ACTCCTGGGC CTTCGTGATT GTCAGGAGCA AGACCTGAGA 3360
TGCTCCCTGC CTTCAGTGTC CTCTGCATCT CCCCTTTCTA ATGAAGATCC ATAGAATTTG 3420 75 CTACATTIGA GAATTCCAAT TAGGAACTCA CATGTTTTAT CTGCCCTATC AATTTTTTA 3480
ACTTGCTGAA AATTACGTT TTTCAAAATC TGTCCTTGTA AATTACTTT TCTTACAGTG 3540
TCTTGGCATA CTATATCAAC TTTGATTCTT TGTTACACT TTTCTTACTC TTTTATCACC 3600

AAAGTGGCTT TTATTCTCTT TATTATTATT ATTTCTTTT ACTACTATAT TACGTTGTTA 3660
TTATTTTGTT CTCTATAGTA TCAATTTATT TGATTTAGTT TCAATTTATT TTTATTGCTG 3720
ACTTTTAAAA TAAGTGATTC GGGGGGTGGG AGAACAGGG AGGGAAGCA TTAGGACAAA 3780
TACCTAATGC ATGTGGGACT TAAAACCTAG ATGATGGGTT GATAGGTGCA GCAAACCACT 3840
ATGGCACACG TATACCTGTG TAACAAACCT ACACATTCTG CACATGTATC CCAGAACGTA 3900
AAGTAAAATT TAAAAAAAAG TGA

10 PEZB Protein sequence:
Protein Accession #: none

SEQ ID NO:164 PEZ6 DNA SEQUENCE Nucleic Acid Accession #: AB028945 1-3765 (underlined sequences correspond to start and stop codons) Coding sequence: 15 11 21 51 ATGATGATGA ACGTCCCCGG CGGAGGAGCG GCCGCGGTGA TGATGACGGG CTACAATAAT 60 GGTCGCTGTC CCCGGAATTC TCTCTACAGT GACTGCATTA TTGAGGAGAA GACGGTGGTC 120 CTGCAGAAAA AAGACAATGA GGGCTTTGGA TTCGTGCTTC GAGGGGCCAA AGCTGACACA 180 20 CCCATTGAAG AATTCACACC AACACCGGCT TTCCTGCTTC GAGGACCA AGCCCGTG 240
GATGAAGGTG GGGTGCGTG GCAAGCCGGA CTAAGGACCC GAGACTCCTTGATTGAGGTT 300
AACAATGAGA ATGTTGTCAA AGTCGGCCAC AGGCAGGTGG TGAACATGAT CCGGCAGGGGA 360
GGGAATCACC TGGTCCTTAA GGTGGTCACG GTGACCAGGA ATCTGGACCC CGACGACACC 420 25 GCCAGGAAGA AAGCTCCCCC GCCTCCAAAG CGGGCACCGA CCACAGCCCT CACCCTGCGC 480 TCCAAGTCCA TGACCTCGGA GCTGGAGGAG CTCGTGGATA AAGATAAACC CGAGGAGATA 540 GTCCCGGCCT CCAAGCCCTC CCGCGCTGCT GAGAACATGG CTGTGGAACC GAGGGTGGCG 600 ACCATCAAGC AGCGGCCCAG CAGCCGGTGC TTCCCGGCGG GCTCAGACAT GAACTCTGTG 660 TACGAACGCC AAGGAATCGC COTGATGACG CCCACTGTTC CTGGGAGCCC AAAAGCCCCG 720
TTTCTGGGCA TCCCTCGAGG TACGATGCGA AGGCAGAAAT CAATAGACAG CAGAATCTTT 780
CTATCAGGAA TAACAGAGGA AGAGCGGCAG TTTCTGGCTC CTCCAATGCT GAAGTTCACC 840 30 AGAAGCCTGT CCATGCCGGA CACCTCTGAG GACATCCCCC CTCCACCGCA GTCTGTGCCC 900
CCGTCCCCAC CACCACCTTC CCCAACCACT TACAACTGCC CCAAGTCCCC AACTCCAAGA 960
GTCTACGGGA CGATTAAGCC TGCGTTCAAT CAGAATTCTG CCGCCAAGGT GTCCCCCGCC 1020 ACCAGGTOCG ACACCGTGGC CACCATGATG AGGGAGAAGG GGATGTACTT CAGGAGAGAG 1080
CTGGACCGCT ACTCCTTGGA CTCTGAAGAC CTCTACAGTC GGAATGCCGG CCCGCAAGCC 1140
AACTTCCGCA ACAAGAGAGG CCAGATGCCA GAAAACCCAT ACTCAGAGGT GGGGAAGATC 1200 35 GCCAGCAAAG CCGTCTACGT CCCCGCCAAG CCCGCCAGGC GGAAGGGGAT GCTGGTGAAG 1260 CAGTCCAACG TEGAGGACAG COCCGAGAAG ACGTGCTOCA TCCCTATOCC GACCATCATC 1320
GTGAAGGAGC CGTCCACCAG CAGCAGCGGC AAGAGCAGCC AGGGCAGCAG CATGGAGATC 1380 40 GACCCCCAGG CCCCGGAGCC ACCGAGCCAG CTGCGGCCTG ACGAAAGCCT GACCGTCAGC 1440 GACCCCAGG CCCCGGAGCC ACCGAGCCAG CTGCGGCCTG ACGAAAGCCT GACCGTTCAGC 1440
AGCCCCTTTG CCGCCGCACA CCCCAGAGCCAG CTGCGGACC GTGAGAAGCC GCTGGAGGCC 1500
AGGAGGAACT CCCCGGCGTT CCTCTCCACA GACCTGGGGG ATGAGGAATGT GGGCCTGGGG 1500
CCACCCGCC CCAGGACCGC GCCCTCCATG TTCCCCGAGG AGGGGGATTT TGCTGACGAG 1620
GACAGCCCTG AGCAGCTGTC ATCCCCATG CCGAGTGCCA CGCCCAGGGA GCCCGAAAAC 1680
CATTTCGTGG GTGGGCCCAG GGCCAGTGCT CCAGCTGCCA CTGCGAGGCC GCTGAATTCC 1740
ACGTCCAAAG CCCAGGGGCC CGAGAGCAGC CCAGCAGTGC CTCCCGCGAG CAGCGGCACA 1800
GCCGGCCCCG GGAATTATGT CCACCCACTC ACAGGGCGCG TGCTTGAATC CAGCTCCCCG 1860 45 CTGGCCCTGG CACTCTCCCC AAGGGACCGA GCCATGAAGG AGTCTCAACA GGGACCCAAA 1920 GGGGAGGCCC CCAAGGCCGA CCTCAACAAA CCTCTTTACA TTGATACCAA AATGCGGCCC 1980 AGCCTGGATG CCGGCTTCCC TACGGTCACC AGGCAGAACA CCCCGGGGACC CCTGAGGCGG 2040 50 CAGGAGACGG AGAACAAGTA CGAGACCGAC CTGGGCCGAG ACCGGAAAGG CGATGACAAG 2100 AAGAACATGC TGATCGACAT CATGGACACG TCCCAGCAGA AGTCGGCTGG CCTGCTGATG 2160 GTGCACACCG TGGACGCCAC TAAGCTGGAC AACGCCCTGC AGGAAGAGGA CGAGAAGGCA 2220 GAGGTTGGAGA TGAAGCCAGA CAGCTCGCCG TCCGAGGTTGC CAGAAGGTGT TTCCGAAACC 2280
GAAGGTGCTT TACAGATCTC CGCTGCCCCC GAGCCCACCA CCGTGCCCGG CAGAACCATC 2340
GTCGCGGTGG GCTCCATGGA AGAGGCGGTG ATTTTGCCAT TCCGCATCCC TCCTCCCCCT 2400 55 CTGGCATCCG TGGACTIGGA TGAGGATTT ATTITACAG AGCCATTGCC TCCTCCCCTG 2460
GAATTTGCAA ATAGTTTTGA TATCCCCGAT GACCGGCAG CTTCTGTCCC GGCTCTCCA 2520
GACTTAGTGA AGCAGAAGAA AAGCGACACC CCTCAGTCCC CTTCGTTGAA CTCCAGCCAA 2580 60 CCAACCAACT CTGCAGACAG CAAGAAGCCA GCCAGTCTTT CAAACTGTCT GCCTGCCTCA 2640 TTCCTGCCAC CCCTGAAAG CTTTGACGCC GTCGCCGACT CTGGGATCGA GGAGGTGGAC 2700
AGCCGGAGTA GCAGCGACCA CCACCTGGAG ACGACCAGCA CTATCTCCAC CGTGTCTAGC 2760
ATCTCCACCC TGTCTTCCGA AGGTGGAGAG AATGTGGACA CCTGCACAGT CTATGCAGAT 2820 GGGCAAGCAT TTATGGTTGA CAAACCCCCA GTACCTCCTA AGCCAAAAAT GAAGCCCATC 2880 ATTCACAAAA GCAATGCACT TTATCAAGAC GCGCTCGTGG AAGAAGATGT AGATAGCTTT 2940 GTTATCCCCC CGCCCGCTCC CCCGCCCCCC CCGGCCAGTG CCCAGCCTGG GATGGCCAAG 3000 65 GTTCTCCAGC CAAGGACCTC CAAGTTGTGG GGCGACGTCA CAGAGATCAA AAGCCCGATT 3060 CTCTCAGGCC CAAAGGCAAA CGTTATTAGT GAATTGAACT CTATCCTACA GCAAATGAAC 3120 CGAGAGAAAT TGGCAAAGCC GGGGGAAGGA CTGGATTCAC CAATGGGAGC CAAGTCCGCC 3180 AGCCTCGCTC CAAGAAGCCC GGAGATCATG AGCACCATCT CAGGTACACG GAGCACGACG 3240
GTCACCTTCA CTGTTCGCCC CGGCACCTCC CAGCCCATCA CCCTGCAGAG CCGGCCCCCC 3300
GACTATGAAA GCAGGACCTC AGGAACAAGA CGTGCCCCAA GCCCTGTGGT CTCGCCAACA 3360 GAGATGAACA AAGAGACCCT GCCCGCCCCC CTGTCTGCTG CCACCGCCTC TCCTTCTCCC 3420
GCTCTCTCAG ATGTCTTTAG CCTTCCAAGC CAGCCCCCTT CTGGGGATCT ATTTGGCTTG 3480
AACCCAGCGG GACGCAGTAG GTCGCCATCC CCCTCGATAC TGCAACAGCC AATCTCAAAT 3540 75 AAGCCTTTTA CAACTAAACC TGTCCACCTG TGGACTAAAC CAGATGTGGC CGATTGGCTG 3600
GAAAGTCTAA ACTTGGGTGA ACATAAAGAG GCCTTCATGG ACAATGAGAT CGATGGCAGT 3660
CACTTACCAA ACCTGCAGAA GGAGGACCTC ATCGATCTTG GGGTAACTCG AGTCGGGCAC 3720

AGAATGAACA TAGAAAGGGC TTTGAAACAG CTGCTGGACA GA<u>TAA</u>GGACG GCTGCTCTCC 3780 ACCTCGCAGA CTGCTCTTGT TATAAGTAGA GATGGGCTCG TGCTGAAACA TCTGAATGCC 3840 AAGCGAAGTC TGTGAGCATC AACCCCACTC CATGGGTTTG TCTCCTGGTA CCCAAAGAAA 3900 TACTGAGTTIG TOTOCACAAC ATGGCTGGGT CTTCAGACCC CTGGCTCACC ATGTGGGTGT 3960 CTTGGGCAGT TTCTATCACA CATGGGACAA GGGGAGGGAG TTTTTCTAAC ATGGAAAAAG 4020 ATTCCCAGCC TGCCGCCCAG CATGCAGGTG GCCTCGCTTT GCCGGGTCCG AGAGGCTCCC 4080 CGTCAATTTT GCACGGGATC CTAGCTCTTG TAGGCAGACA CCAGTGCACT CTAGATACCT 4140 CCTGAGACCT CCGTCCTCTG CTTTCCGGGC AGCTCTCACC ACCCCAGGCC CCGGCATGAG 4200 GCCTTTCCTC AGTCCTGTGG CCTCTCAGAG GACACCTGAT GCTCACCTGC CCCTCTTTCT 4260 10 CCTGCACTTG GCTTGCAGTG AGATGCTCCC AGATGCATTT GTCCAGTGCC CCATCATGGG 4320
CCTGAAAGGC AGAGAAACTT TITICCTACAC AGATTCTTTT CCCCATCTCC TCCTGTGGTT 4380
TGCATCCATG GCTCTTTGGC CATGAGGTTC CTGGCAGTGC TGGGAGTTTG GATGGGATCG 4440 TGCCCAGCTT TGCTTAGCTT TCTTTATTTC TGCAAATCTG TTAGCATAAT TCCAAGGTGG 4500 CCAAGCAGAT GTCACATGGA GTTAGTCAAA GCACAAAGTC ACGATTCCAC AATGGAGGGG 4560 AGACCTGGCC AAGGGAGCCA GCCAGCGTGC AACTGCCCAA GCTCCAGGTC TCCAGGACAA 4620 GAGCAGTTGT CTGCCATGAG CACCCATCCA GGATGGAGAA TAAGGGCTTC TCTGCCTCTC 4680 15 AGAATTCTTT TTAATTGAAG ATGTCTTGAG CTCTGCAAAG ATCAGAGCAG GTGAGCATCC 4740
ACTTTGACAT GAAGGACAAG AAGACGCATG GCTCATGGC GGCACATGCG GCTGCCAGTG 4800
AGACAGCGTC TCCTCTGGGA GCTGGGCGGG CACAGCATCC TCAGTTCTGT GCCCAGCCAA 4860 20 GGGTGAGCAT CTCTGCTGAG ACAGTCCTTT TGCTCTCGGA GGCCAGGGAA GATGGTACTT 4920 AGAGGCTTTT CCCCTATCGC TCTGGGTGTC TAGGAATCCC ACCAGCTTGT CTTAACAGTA 4980
CAACAGCTTC TTTGAGGACC CAGTGGGTAT GGAGTATAGA CAGAACCCAG GGTTGAGAAC 5040 AGAAGGTGGG CGGCAGGATC AGAGTGAAAG CAGAGGCGTG AGGAGAGGAA AGCAGGGAGG 5100 TCTCCTGGGC TGCCAGGTCA GCCTCTCTGG CAAGGCCTTTCTTGAGCCCCG CCCCTTTCTT 5160
TCCCCGGAGT CCCTCCCACCC CATAACAATA CCTCGAATTT CCAAAAGAGG TCACCAGGTG 5220
CACATGGGCC GCAAAACACA CAGTCAGGCT TCCAGCACAT TCTCCCCCAT TTGGAGGATA 5280
CTCGAATGTC AGGTTTTTGG TTTTATTATT ATTTCAGAAC TAGCTCAGCC CATCTCTAAT 5340 25 TATAAAACAT GGTTTTGTTT TTTTTTTTC CTTTTTTCT TGATTAGGTC TGGAACAGCT 5400 CTAGAATGAA CACATAAAAT TTAGCAATTT AAAATCTTTC TTTACTGCAA GTTTAAATAG 5460 TTGTACAGAT AGTTTATAAG CACAATATTT TAAGAAAAAA AAGTGGCTGG TCTACTAGGC 5520 30 AGCCTTTGTG CCACTTCAGT GCTAGAAAGT TAAAGAAAAA AAAACTTTTG TGATTTAATA 5580 ATACTATTTC TGTGGAATAA TTATAAAAGT ATGACCTTTT TAAATCAACC TTATTTGGAT 5640 GCATCTGAAC CAGCAGAGCT GTGTTATATT TTCTATCTTT GCTAGAACTT CGTCATTGAA 5700 GGACAATTIC TICAAAGTIGI TIACAATTCA TAATGCAGCA GTTTCTCCAA AAACAAAAAC 5760
AAAACACACA CCACACACAC GCGCTTTTCC AGTCACACAC CCCTGATGTT GGAACCAAAAC 5820
TTTTGGACCT TCTGTTCCAA AACCTTTGC AGGTCAATCT TTGTATTTGA AATGATCCAA 5880
TCCAACTTGA AGTCAATTGA ATATTAAGGC GCTTTACTTC CGTGTGCTTT CAGTTTTTCC 5940 35 ATCATGAGAT GAATGAGCAT TACTCTAGAT AAATTTCAAG ACAGGATACT ACAGGTGGCC 6000 TGCTGAGGCT GCCCCATATT TTAGAAAATG TAAAAATGGT GGTTTGGCCA TTAATTTGTC 6060 TTCCATTTGA TGATACCGCA AAATTCCGTG AGTCCATTCC TTTGGCATGG CACTTTCCCT 6120 40 GGGCCTACAG TIGGTATTAC CICTGTGCTC AGTGCCAGGC AAAACACTAG CICAAAGGAG 6180
AGTCAAGGAA ACCGCTGGCA GACGATAACC AGTCGAAACT CGTGACTTCG GTTTGTTGAA 6240
CTTTGGCAGC CAGTTGGTGA GGGCCAGATG TTATTCCCTT TCTTAAAGAT ACTCCAAGCC 6300 ACATGCCACT AACCACAAGC AAGCTGGCTG CAAGACTAAA GAGCTGATAA CATAGTTTAT 6360
TTTTACACTG TCTTATTATA GAGAAGTAAT AGACCTATCA GAACCTGCAC TGACCAACAA 6420
ATAAACACAT GTTGCCAAGA TGAATCGGTC TCTATCTCTA TCTGCTTATT TTGGTACTGA 6480 45 AAGCAATAGT TCCTCATTCA AATCACCACC CACTGTTCTC CCCCTTTGGG ACATGTTAGG 6540
ACGAGGCCCT ATTCCATGCC CCTCTTTAAT GGTGGAACAA ATGTTAAACT GCTCATCTAA 6600
AGATCATGTT GATATTATTC CAGGTTTTAA GATCAACTTT TGTTACATAC TGTAATTTAA 6660 50 ATAAACTGCA TITACATGCC TAGTTTCTGT AATATTGTGT ATACAAAACC CAAATCTCTC 6720 AAAATGTAAA TTATGTATAC CTGCCAAGAT ACCTTTTCCA GGGTGTCTGC GCACATTTTA 6780 AGTTAATTCA CATAATATAA AAATTACTCA ATGTGACTGT TGATTTGCTG AACTTTACAT 6840 ATCACAAAGT GAATTATTTG TGATACTTTA GTTAATAAAA TGGTAAATTT TTTTCTCAGT 6900 TATTGAACAA GCAAGCATTA TCCAGTTGAT CTGGCAATGA CTTTTTGTGT GTGGGCCACA 6960 ATATTGATTT TCCCATTAAC AATTTTTTTT TGTTTTTTAA ATACTAATAT GTTTCACACT 7020 ATAGTTTGTG TAACAACACG TGTTCGCATT ATCTATGTTG CTGTTACTTT TGTGCTTTTA 7080 55 TICTITITAG ACTITATAAA AAAAAAAAA AGCICCIGTA ATTIGCACTI TCICCCAATC 7140
CTTAAATCTC TIGTATGGCA ACCAAAATTA CTGTAAAAAA ATAAATATAC TATTGCACTA 7200
AGGTTGTGGT TCTGATTGCA AACAAACAGT GAACACTGTC TGAATTAAAC AAAAAGCTGC 7260 CCGACTTGCA ATCTAATGTA GATTATCTCA GGCATTGTGG CCAGCTCTGC CTCTCTAAAA 7320 CTGACCAGAA AAATCTCTCT CATCGAGTAA ACAGGCTCCT GTCACTGAGC TAATCTGCCT 7380 TGGTTCCATT TCCTTATTCT CAATTTATCA ATGGATACGT GCATGTTATT TCAGAATTAT 7440 60 GCAAAACGTC AAAATCTGCT TCTGTGACCG CTGCTATAGG CGTGGAGCTG AGGCTCGGCT 7500 TTTCCTTTTG TTCTGGGTGG AAGCAGCGGT GCCGCGGAGG GCCAGCCAGA TCCGGACCCT 7560
TCCCTTAGGG TCCAGTCTCC CCACACCCCA GCAGGGTGTC TTCTAGCCAT AAGGCCAAGG 7620 65 GAGTGGCAGA ACTGGGCCGC CTCTCTGGTT GACAAGCAAA CCACATGCTA AGGCTTGGAG 7680 CAAGAGAGAA TTTGTGTCTA TTGGCAAAGA ACTAAGCCAG GAAGACATGG GCCATCCCTC 7740 CGCTTTAGGG AAGCATATTT TAAACCTAAA CGTTGAACTT CTTCTTTGGC CTCACCAGTG 7800 AAAACTTGTT GTCTTTAGTT CCTAAAGTTT CTTCTACTTT GGCACATTCC CCAGTTGAGC 7860 70 AGCAGCCTCT ATGCTTCCAC GTTCAGGAAA AATTCCAGTC CTCATATCTT TTGTAGTTCA 7920 CCCTCAAGCT CTCCCGCTTC ACCATCCAAT AGTTTCTCCC AAACCTTGGC ACCCCCCTAG 7980 ACTTTGCTTC CAATGGTTTC TTCCAGACCA CTTTTCCTAG ATGAATATAT TCGTTTACCT 8040 TACTAGGAAA ATTATTGGAA GATTTTTCT TTTACTTGAA ATTGGAGGCA TTTTAATAAC 8100
TGGCGAACTG GAATGTGTTT CTGTATTTGT AGACAACCAT GTACCCATGC AAGTAGGTGA 8160
ACATTCCACA GTGGCTGGGT GACCACAGCA GCTGCATGCA GACAGGACTG CCCGTGCTTT 8220 75 ACATICCACA GIGGETIGAT GACCACAGCA GUIGATIGAA GACAGACA GUIGATIGA GACAGACA GUIGATIGA GACAGACA GUIGATIGA GACAGACA GUIGATIGA GACAGACA GUIGATIGA GACAGACA GUIGATIGA GACAGACA GACAGACAT CATCACATT GACACATT TATTACAATA CATCATT TATTACAACAT TACAACAATC CCTGTCCATT GATTCCACTC 8400 TGGAACTCTT TGTTCATGCC AATTTTGAAA TTTTAATACG AGCCTTCAAA TAAACACAGA 8460

### ΑΛΑΓΙΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛ

5 SEQ ID NO:165 PEZ6 Protein sequence; Protein Accession #: BAA82974.1

21 31 41 10 MMMNVPGGGA AAVMMTGYNN GRCPRNSLYS DCIEEKTVV LQKKDNEGFG FVLRGAKADT 60 PIEEFTPTPA FPALQYLESV DEGGVAWQAG LRTGDFLIEV NNENVVKVGH RQVVNMIRQG 120 GNHLVLKVVT VTRNLDPDDT ARKKAPPPPK RAPTTALTLR SKSMTSELEE LVDKDKPEEI 180 VPASKPSRAA ENMAVEPRVA TIKQRPSSRC FPAGSDMNSV YERQGIAVMT PTVPGSPKAP 240 FLGIPRGTMR RQKSIDSRIF LSGITEEERQ FLAPPMLKFT RSLSMPDTSE DIPPPPQSVP 300 PSPPPPSPTT YNCPKSPTPR VYGTIKPAFN ONSAAKVSPA TRSDTVATMM REKGMYFRRE 360 LDRYSLDSED LYSRNAGPQA NFRNKRGOMP ENPYSEVGKI ASKAVYVPAK PARRKGMLVK 420 15 QSNVEDSPEK TCSPPTII VKEPSTSSSG KSSQGSSMEI DPQAPEPPSQ LRPDESLTVS 480
SPFAAALAGA VRDREKRLEA RRNSPAFLST DLGDEDVGLG PPAPRTRPSM FPEEGDFADE 540
DSAEQLSSPM PSATPREPEN HFVGGAEASA PGEAGRPLNS TSKAQGPESS PAVPSASSGT 600 DSAEQLSSPM PSATPREPEN HEVGGAEASA PGEAGRPLAS ISKAQGPESS PAVPSASSUT 600
AGPGNYVHPL TGRLLDPSSP LALALSARDR AMKESQQPK GEAPKADLNK PLYIDTKIMRP 660
SIDAGFPTVT RQNTRGPILRR QETENKYETD LGRDRKGDDK KNMILDIMDT SQQKSAGILM 720
VHTVDATKLD NALQEEDEKA EVEMKPDSSP SEVPEGVSET EGALQISAAP EPTTVPGRTI 780
VAVGSMEEAV ILPFRIPPPP LASVOLDEDF IFTEPLPPPL EFANSFDIPD DRAASVPALS 840 20 VAVSMEEAV ILPFRIPTP LASYDLDEDF IT IEPLPPPL EPARSFOILD DRAASVPALS 840
DLVKQKKSDT PQSPSLNSSQ PTNSADSKKP ASLSNCLPAS FLPPPESFDA VADSGIEEVD 900
SRSSSDHHLE TTSTISTVSS ISTLSSEGGE NVDTCTVYAD GQAFMVDKPP VPPKPKMKPI 960
HIKSNALYQD ALVEEDVDSF VIPPPAPPPP PGSAQPGMAK VLQPRTSKLW GDVTEIKSPI 1020
LSGPKANVIS ELNSILQQMN REKLAKPGEG LDSPMGAKSA SLAPRSPEIM STISGTRSTT 1080 25 VTFTVRPGTS QPITLQSRPP DYESRTSGTR RAPSPVVSPT EMNKETLPAP LSAATASPSP 1140 ALSDVFSLPS QPPSGDLFGL NPAGRSRSPS PSILQQPISN KPFTTKPVHL WTKPDVADWL 1200 ESLNLGEHKE AFMDNEIDGS HLPNLQKEDL IDLGVTRVGH RMNIERALKQ LLDR 30

# SEQ ID NO:166 PEZ4 DNA SEQUENCE

Nucleic Acid Accession #: NM_000024
Coding sequence: NM_000024
220-1461 (underlined sequences correspond to start and slop codons)

41 51 21 31 ACTGCGAAGC GGCTTCTTCA GAGCACGGGC TGGAACTGGC AGGCACCGCG AGCCCCTAGC 60 ACCCGACAAG CTGAGTGTGC AGGACGAGTC CCCACCACAC CCACACAC AGCCGCTGAAT 120 40 GAGGCTTCCA GCGTCCGCT CGCGGCCCGC AGAGCCCCGC CGTGGGTCCG CCCGCTGAGG 180
CGCCCCAGC CAGTGCGCTT ACCTGCCAGA CTGCGCCGCA TGGGGCAACC CGGGAACGC 240
AGCGCCTTCT TGCTGGCACC CAATAGAAGC CATGCGCCGG ACCACGACGT CACGCAGCA 300 AGGGACGAGG TGTGGGTGGT GGGCATGGGC ATCGTCATGT CTCTCATCGT CCTGGCCATC 360 45 GTGTTTGGCA ATGTGCTGGT CATCACAGCC ATTGCCAAGT TCGAGCGTCT GCAGACGGTC 420
ACCAACTACT TCATCACTTC ACTGGCCTGT GCTGATCTGG TCATGGGCCT GGCAGTGGTG 480
CCCTTTGGGG CCGCCCATAT TCTTATGAAA ATGTGGACTT TTGGCAACTT CTGGTGCGAG 540 TTTTGGACTT CCATTGATGT GCTGTGCGTC ACGGCCAGCA TTGAGACCCT GTGCGTGATC 600
GCAGTGGATC GCTACTTTGC CATTACTTCA CCTTTCAAGT ACCAGAGCCT GCTGACCAAG 660
AATAAGGCCC GGGTGATCAT TCTGATGGTG TGGATTGTGT CAGGCCTTAC CTCCTTCTTG 720 50 COCATTCAGA TGCACTGGTA COGGGCCACC CACCAGGAAG CCATCAACTG CTATGCCAAT 780
GAGACCTGCT GTGACTTCTT CACGAACCAA GCCTATGCCA TTGCCTCTTC CATCGTGTCC 840
TTCTACGTTC CCCTGGTGAT CATGGTCTTC GTCTACTCCA GGGTCTTTCA GGAGGCCAAA 900 AGGCAGCTCC AGAAGATTGA CAAATCTGAG GGCCGCTTCC ATGTCCAGAA CCTTAGCCAG 960
GTGGAGCAGG ATGGGCGGAC GGGGCATGGA CTCCGCAGAT CTTCCAAGTT CTGCTTGAAG 1020
GAGCACAAAG CCCTCAAGAC GTTAGGCATC ATCATGGGCA CTTTCACCCT CTGCTGGCTG 1080 55 CCCTTCTTCA TCGTTAACAT TGTGCATGTG ATCCAGGATA ACCTCATCCG TAAGGAAGTT 1140 TACATOCTCC TAAATTIGGAT AGGCTATGTC AATTCTGGTT TCAATCCCCT TATCTACTGC 1200 CGGAGCCCAG ATTTCAGGAT TGCCTTCCAG GAGCTTCTGT GCCTGCGCAG GTCTTCTTTG 1260 AAGGCCTATG GGAATGGCTA CTCCAGCAAC GGCAACACAG GGGAGCAGAG TGGATATCAC 1320 60 AAGGCTATG GGAATGGCTA CTCCAGCAAC GGCAACACAG GGGAGCAGAG TGGATATCAC 1320
GTGGAACAGG AGAAAGAAAA TAAACTGCTG TGTGAAGACC TCCCAGGCAC GGAAGACTTT 1380
GTGGGCCATC AAGGTACTGT GCCTAGCGAT AACATTGATT CACAAGGGAG GAATTGTAGT 1440
ACAAATGACT CACTGCTGTA AAGCAGTTTT TCTACTTTTA AAGACCCCC CCCCCCAAC 1500
AGAACACTAA ACAGACTATT TAACTTGAGG GTAATAAACT TAGAATAAAA TTGTAAAAAT 1560
TGTATAGAGA TATGCAGAAG GAAGGGCATC CTTCTGCCTTTTTTATTTTT TTAAGCTGTA 1620
CATGGAATTT GTAAGTTATT GAGTGATTAT TTGTTATTTTT GTACAGTTCAG TTCCTCTTTG 1680
CATGGAATTT GTAAGTTTAT GTCTAAAGAG CTTTAGTCCT AGAGGACCTG AGTCTGCTAT 1740
ATTTTCATGA CTTTTCCATG TATCTACCTC ACTATTCAAG TATTAGGGGT AATATATTGC 1800
TGCTGGTAAT TTGTATCTGA AGGAGATTTT CCTTCCTACA CCCTTGGACT TGAGGATTTT 1860
TGCTGGTAAT TTGTATCTGG AGGAGATTTT CCTTCCTACA CCCTTGGACT TGAGGATTTT 1860 65 70 GAGTATCTCG GACCTTTCAG CTGTGAACAT GGACTCTTCC CCCACTCCTC TTATTTGCTC 1920 ACACGGGGTA TTTTAGGCAG GGATTTGAGG AGCAGCTTCA GTTGTTTTCC CGAGCAAAGG 1980 TCTAAAGTTT ACAGTAAATA AAATGTTTGA CCATG

75 SEQ ID NO:167 PEZ4 Protein sequence: Protein Accession 6: NP_000015.1

1 11 21 31 41 51

MGQPGNGSAF LLAPNRSHAP DHDVTOORDE VWVVGMGIVM SLIVLAIVFG NVLVITAIAK 60 FERLQTVTNY FITSLACADL VMGLAVVPFG AAHILMKMWT FGNFWCEFWT SIDVLCVTAS 120 IETLCVIAVD RYFAITSPFK YQSLLTKNKA RVILMVWIV SGLTSFLPIQ MHWYRATHQE 180 AINCYANETC CDFFINQAYA IASSIVSFYV PLVIMVFVYS RVFQEAKRQL QKIDKSEGRF 240 HVQNLSQVEQ DGRTGHGLRR SSKFCLKEHK ALKTLGIIMG TFTLCWLPFF IVNIVHVIQD 300 5 NLIRKEYYIL LAWIGYYNSG FNPLIYCRSP DFRIAFQELL CLRRSSLKAY GNGYSSNGNT 360 GEQSGYHVEQ EKENKLLCED LPGTEDFVGH QGTVPSDNID SQGRNCSTND SLL 10 SEQ ID NO:168 PEZ1 DNA SEQUENCE Nucleic Acid Accession #: NIM_004457 15 Coding sequence: 143-2305 (underlined sequences correspond to start and stop codons) 11 21 31 41 51 20 GAATTCGTTG TTGGGAAGGA CTGGGGAAAC AGCTGTAACA TTTGCCACCC TCAGAAGCTG 60 CTGGTCCTGT GTCACACCAC CTTAGCCTCT TGATCGAGGA AGATTCTCGC TGAAGTCTGT 120
TAATTCTACT TTTTGAGTAC TT<u>ATG</u>AATAA CCACGTGTCT TCAAAACCAT CTACCATGAA 180
GCTAAAACAT ACCATCAACC CTATTCTTTT ATATTTTATA CATTTTCTAA TATCACTTTA 240 TACTATTITA ACATACATTC CGTTTTATTT TTTCTCCGAG TCAAGACAAG AAAAATCAAA 300 25 CCGAATTAAA GCAAAGCCTG TAAATTCAAA ACCTGATTCT GCATACAGAT CTGTTAATAG 360 TTTGGATGGT TTGGCTTCAG TATTATACCC TGGATGTGAT ACTTTAGATA AAGTTTTTAC 420 ATATGCAAAA AACAAATTTA AGAACAAAAG ACTCTTGGGA ACACGTGAAG TTTTAAATGA 480 GGAAGATGAA GTACAACCAA ATGGAAAAAT TTTTAAAAAG GTTATTCTTG GACAGTATAA 540 TIGGCTTTCC TATGAAGATG TCTTTGTTCG AGCCTTTAAT TTTGGAAATG GATTACAGAT 600 GTTGGGTCAG AAACCAAAGA CCAACATCGC CATCTTCTGT GAGACCAGGG CCGAGTGGAT 660 30 GATAGCTGCA CAGGCGTGTT TTATGTATAA TTTTCAGCTT GTTACATTAT ATGCCACTCT 720
AGGAGGTCCA GCCATTGTTC ATGCATTAAA TGAAACAGAG GTGACCAACA TCATTACTAG 780
TAAAGAACTC TTACAAACAA AGTTGAAGGA TATAGTTTCT TTGGTCCCAC GCCTGCGGCA 840 CATCATCACT GTTGATGGAA AGCCACCGAC TTGGTCCCAAGG GCATCATTGT 900
GCATACCATG GCTGCAGTTGG AGGCCCTGGG AGCCAAGGGCA GCATCATTGT 900
GCATACCATG GCTGCAGTTGG AGGCCCTGGG AGCCAAGGCC AGCATGGAAA ACCAACCTCA 960
TAGCAAACCA TTGCCCTCAG ATATTGCAGT AATCATGTAC ACAAGTGGAT CCACAGGACT 1020
TCCAAAGGGA GTCATGATCT CACATAGTAA CATTATTGCT GGTATAACTG GGATGGCAGA 1080 35 AAGGATTICCA GAACTAGGAG AGGAAGATGT CTACATTIGGA TATTTGCCT GGCCCATGT 1140
TCTAGAATTA AGTGCTGAGC TIGTCTGTCT TTCTCACGGA TGCCGCATTG GTTACTCTTC 1200
ACCACAGACT TTAGCAGATC AGTCTTCAAA AATTAAAAAA GGAAGCAAAA GGGAATCATC 1260
CATGTTGAAA CCAACACTGA TGCCAGCAGT TCCCGGAAATCATGGATCGGA TCTACAAAAA 1320
TGTCATGAAT AAAGTCAGTG AAATGAGTAG TTTTCAACGT AATCTGTTTA TTCTGGCCTA 1380
TAATTACAAA ATGGAACAGA TTTCCAAAAGG ACGTAATACT CCACTGTGCG ACAGCTTTGT 1440 40 TTTCCGGAAA GTTCGAAGCT TGCTAGGGGG AAATATTCGT CTCCTGTTGT GTGGTGGCGC 1500 TCCACTTTCT GCAACCACGC AGCGATTCAT GAACATCTGT TTCTGCTGTC CTGTTGGTCA 1560 GGGATACGGG CTCACTGAAT CTGCTGGGGC TGGAACAATT TCCGAAGTGT GGGACTACAA 1620 45 TACTGGCAGA GTGGGAGCAC CATTAGTTTG CTGTGAAATC AAATTAAAAA ACTGGGAGGA 1680 AGGTGGATAC TITAATACTG ATAAGCCACA CCCCAGGGGT GAAATTCTTA TTGGGGGCCA 1740
AAGTGTGACA ATGGGGTACT ACAAAAATGA AGCAAAAACA AAAGCTGATT TCTCTGAAGA 1800 50 TGAAAATGGA CAAAGGTGGC TCTGTACTGG GGATATTGGA GAGTTTGAAC CCGATGGATG 1860 CTTAAAGATT ATTGATCGTA AAAAGGACCT TGTAAAACTA CAGGCAGGGG AATATGTTTC 1920 TCTTGGGAAA GTAGAGGCAG CTTTGAAGAA TCTTCCACTA GTAGATAACA TTTGTGCATA 1980 TGCAAACAGT TATCATTCTT ATGTCATTGG ATTTGTTGTG CCAAATCAAA AGGAACTAAC 2040 TGAACTAGCT CGAAAGAAAG GACTTAAAGG GACTTGGGAG GAGCTGTGTA ACAGTTGTGA 2100 AATGGAAAAT GAGGTACTTA AAGTGCTTTC CGAAGCTGCT ATTTCAGCAA GTCTGGAAAA 2160 GTTTGAAATT CCAGTAAAAA TTCGTTTGAG TCCTGAACCG TGGACCCCTG AAACTGGTCT 2220 55 GGTGACAGAT GCCTTCAAGC TGAAACGCAA AGAGCTTAAA ACACATTACC AGGCGGACAT 2280
TGAGCGAATG TATGGAAGAA AA<u>TAA</u>TTATT CTCTTCTGGC ATCAGTTTGC TACAGTGAGC 2340
TCACATCAAA TAGGAAAATA CTTGAAATGC ATGTCTCAAG CTGCAAGGCA AACTCCATTC 2400 60 CTCATATTAA ACTATTACTT CTCATGACGT CACCATTTTT AACTGACAGG ATTAGTAAAA 2460 CATTAAGACA GCAAACTTGT GTCTGTCTCT TCTTTCATTT TCCCCGCCAC CAACTTACTT 2520 TACCACCTAT GACTGTACTT GTCAGTATGA GAATTTTTCT GAATCATATT GGGGAAGCAG 2580 TGATTTTAAA ACCTCAAGTT TTTAAACATG ATTTATATGT TCTGTATAAT GTTCAGTTTG 2640 TAACTITITA AAAGTITIGGA TGTATAGAGG GATAAATAGG AAATATAAGA ATTGGTTATT 2700 TGGGGGCTIT TTTACTTACT GTATTTAAAA ATACAAGGGT ATTGATATGA AATTATGTAA 2760 65 ATTTCAAATG CTTATGAATC AAATCATTGT TGAACAAAAG ATTTGTTGCT GTGTAATTAT 2820 ATTICAAATG CITATGAATC AAATCATGT TGAACAAAAA ATTIGTTGCT GTGTAATTAT 2820
TGTCTTGTAT GCATTTGAGA GAAATAAATA TACCCATACT TATGTTTTAA GAAGTTGAGA 2880
TCTTGTGAAT ATATGCCTGT CAGTGTCTTC TTTATATATT TATTTTTATA GAAGAAAAAT 2940
GAAGTTTGGT TGGTGATGCA TGAAACAAAA TAGCAAGAGA GGGTTATAGT TTAATAGTAA 3000
GGGAGATAAC ACAGCATGTG TAGCACCAGT TGATAATTGG TCTCTAGTAG CTTACTGTCA 3060
AAATGTTCAA TGAAGTCTTC TGTTCATCTG TTGAAACTAG GAAAATAACCC AAACTTAAAT 3120
GGAAGATTC TGAAAGAGAG GATAGAAATTT AAAGAACAAG AGTATATAAA GTTATTCTTT 3180
GAATATTTCG TTGACTATAT GTACATTGAG TTATCTATAT TTGTAAAACAA ATTAGTCATC 3240
GAAAATTATT CTATTCCAAA GTCTCCTTTT AGTCTAGATA ATCATTATTT CATTTTAAAA 3300
TTAGTGTTTT TCATAGTTTG CACTGATGCG TGTATGGAGT TGTGTGAGATA ATGAAAAA AGAACACTTATC CTTTCTTCCATA TACTTTTTT ACATTAGATTTGCT 3340 70 75 TATTTAAAAA GCACCTTATC CTTTCTCCCA TAACCTTTGT ACACTAAAAA ATGAAAGAAT 3420 TTAGAATGTA TTTGATGATA GCATTCTCAC TAAGACACAT GAGAATTTAA CTTTATAACC 3480 GCGTGAGTTA AGATTTAATT CATAGGTTTT GATGTCATTG TTGAAGTTAT TTGTAATTCA 3540 GAAACCTTGC TTGTGTGATA CATAGTAAGT CTCTTCATTT ATTACTGCTT GCCTGTTGTT 3600

ATATCTGGAT TATCAAAAGC AATAGTGCAC CAATTAAGAT GTGCTCAAAT CAGGACTTAA 3660 ATCATAGGCA CCACATTTTT CATGTCAGAC TAGTTACTTT GTTGATTCTC AGTTACTGTA 3720 GGCATCAAAA GGCAAAAATC A

SEQ ID NO:169 PEZ1 Protein sequence:
Protein Accession #: NP_004448.1

15

20

NSKPDSAYRS VNSLDGLASV LYPGCDTLDK VFTYAKNKFK NKRLIGTREV LNEEDEVQPN 120
GKIFKKVILG QYNWLSYEDV FVRAFNFONG LQMLGQKPKT NIAIFCETRA EWMIAAQACF 180
MYNFQLVTLY ATLGGPAIVH ALNETEVINI ITSKELLQTK LKDIVSLVPR LRHIITVDGK 240
PPTWSDFPKG IIVHTMAAVE ALGAKASMEN QPHSKPLPSD IAVIMYTSGS TGLPKGVMIS 300
HSNILAGTIG MAERIPELGE EDVYIGYLPL AHVLELSAEL VCLSHGCRIG YSSPQTLADQ 360
SSKIKKGSKG DTSMLKPTLM AAVPEINDRI YKNVMINKVSE MSSPQRNLFI LAYNYKMEQI 420
SKGRNTPLCD SFVFRKVRSL LGGNIRLLLC GGAPLSATTQ RFMNICFCCP VGQGYGLTES 480
AGAGTISEVW DYNTGRVGAP LVCCEIKLKN WEBGGYFNTD KPHERGELL GGQSVTMGYY 540
KNEAKTKADF SEDENGQRWL CTGDIGEFEP DGCLKIIDRK KDLVKLQAGE YVSLGKVEAA 600
LKNLPLVDNI CAYANSYHSY VIGFVVFNQK ELTELARKKG LKGTWEELCN SCEMENEVLK 660

25 Nucleic Acid Accession #: none found Coding sequence: 38-1075(underlined sequence corresponds to start and stop codon)

VLSEAAISAS LEKFEIPVKI RLSPEPWTPE TGLVTDAFKL KRKELKTHYQ ADIERMYGRK

11 21 31 41 51 30 AGCAACGACG CCGGGCAGCG GGAGCGGCGG CCGCCCATG TGGCTGCTGG GGCCGCTGTG CCTGCTGCTG AGCAGCGCCG CGGAGAGCCA GCTGCTCCCC GGGAACAACT TCACCAATGA 120 GTGCAACATA CCAGGCAACT TCATGTGCAG CAATGGACGG TGCATCCCGG GCGCCTGGCA 180 GTGTGACGGG CTGCCTGACT GCTTCGACAA GAGTGATGAG AAGGAGTGCC CCAAGGCTAA 240 35 GTCGAAATGT GGCCCAACCT TCTTCCCCTG TGCCAGCGGC ATCCATTGCA TCATTGGTCG CTTCCGGTGC AATGGGTTTG AGGACTGTCC CGATGGCAGC GATGAAGAGA ACTGCACAGC
AAACCCTCTG CTTTGCTCCA CCGCCCGCTA CCACTGCAAG AACGGCCTCT GTATTGACAA 360 420 GAGCTTCATC TGCGATGGAC AGAATAACTG TCAAGACAAC AGTGATGAGG AAAGCTGTGA AAGTTCTCAA GAACCCGGCA GTGGGCAGGT GTTTGTGACT TCAGAGAACC AACTTGTGTA
TTACCCCAGC ATCACCTATG CCATCATCGG CAGCTCCGTC ATTTTTTGTGC TGGTGGTGGC 540 40 600 CCTGCTGGCA CTGGTCTTGC ACCACCAGCG GAAGCGGAAC AACCTCATGA CGCTGCCCGT GCACCGGCTG CAGCACCCTG TGCTGCTGTC CCGCCTGGTG GTCCTGGACC ACCCCCACCA CTGCAACGTC ACCTACAACG TCAATAATGG CATCCAGTAT GTGGCCAGCC AGGCGGAGCA 720 780 GAATGCGTCG GAAGTAGGCT CCCCACCCTC CTACTCCGAG GCCTTGCTGG ACCAGAGGCC 45 TECGTEGIAT GACCITICCTC CACCGCCCTA CTCTTCTGAC ACGGAATCTC TGAACCAAGC CGACCTGCCC CCCTACCGCT CCCGGTCCGG GAGTGCCAAC AGTGCCAGCT CCCAGGCAGC 900 960 CAGCAGCCTC CTGAGCGTGG AAGACACCAG CCACAGCCCG GGGCAGCCTG GCCCCCAGGA GGGCACTGCT GAGCCCAGGG ACTCTGAGCC CAGCCAGGGC ACTGAAGAAG TATAAGTCCC
AGTTATTCCA AAGTCCATAT GGGTTAATCT GCTCTGACTT GTTGCCATTC TAACAATTTG 1080 1140 50 TGCTCATGGG AAGCTCTTTA AGCACCTGTA AGGATGTCTC AAGTTACAGT TTGGGATATT AACTATCTCT GCATTCCCCT CCTCCCCAG ACTTCAGAGA TGTTTTTCTG GCGTCTCAGT
TGACATGATC TGTTGTGCGT CTTTTCTGTC AGGTCACTCT TCCCTTGGGA CCCGAGATCA 1260 1320 CACCCTCATT TTTCACATTA TTCTGTTTCT GTTGGAGAGA CAGCATATAA AACAGTATTG ANATAGGCTG GGAGAGAGCA ATCTTTCTGT GCTATATTGG ATGCTCAGAA GTGCAGGAGA 1440 CGCTGGACCC AATTCTCTCT GCTGGGTAGT TACCTTATAG CATTTGGGGA TTTGGGTTAG 1500 55 ATGATCTAAC CAGGAGGCCA TCACTGGATG GTCACCCCCC CAAAAAAATT CCATTTGAGC 1560 ATCARARCCT GCTTTGCACA ATCCTATTTG ATGCCCCCAG TTCAGCAGAG TCAGTGGCCA
AAGAAAACTT TGGACGTGAG TAACACCCTT CAGCAGTCGC AACGTTATTT TGGTTTTGTG 1620 1680 AAGGACTCTG AAACCATCTA CCCTGTATAA ATTCTGGCTT TAGAAATTTG CCCAAGAATG 1740 60 CTCATTCTGA GAGCTTTCCT CAGCAGCATA TATCATCAGC CTCATCCTAA AATAGGCAGG GAGCCCCTCC CATGAGTTTA TCCAAGTTCT CAGCTCCTAA AATGCAGGCT GCCAAGACCC 1800 1860 TACACCTGCC CTGGCTCTAC AGCCACTTAC CTGGTTTCTG GACTGTCACC CTCCCAGCTG 1920 ACCTGCCCGT AGCCAAGGAA TGAGGACCTA ACTTGAGTTG GCCCAAAGTC TGACCTGGCT GTATGTCCCT GTGGCCCACA CCCAGCCTGT CTTGCTCATT CATGCAGCCT CAACACTGGC 1980 2040 65 CTCCAAAGTT CCCTTAACAC TTGCAAAGTC CTTTTTACCT GTGCATTTGG ACTTGAGGAC ACTGGTTTCT ATCACAGGTG AGAGCCATGT TCAATACCTC CAGCAAGCTC TCCTGGCTCC CTGCACTGTG CACGCTCCTC TTCCCAAGGT CCCAATACCA GCACCTCTAG TTAGAGTTAG 2100 2160 GGTCAGGGTC AGGCCTCTCC CAACATCCCA GTAGTTTCTC CTCTGAGACA CATGGGCAAG AGACAATTTG GAGTCAAGAT TTTCCATTTG GATCTATTTT AAATCTTTTA GAAATGCATT 2280 2340 70 TGAAACAGTG TGTTTGTTTT TTCCCTTCTA GTTAAGGGAC TATTTATATG TGTATAGGAA AGCTGTCTCT TTTTTTGTTT TTCCTTTAAC AAGGTCCAAA GAAAGATGCA AAAGGAGATC ACACCCTTGC CCCGCTGAGC CCCGTGATAA CAAGTCACTC CAGACTAACC TGTGTGCCAG 2460 2520 ACATTTGTGC ATTGTTGCAC TTTGAGGTTA TTATTTATCA AGTTCTTGAA GGAAGCAGAA 2580 AGAGGGACTC CTCTCTCCCT CCGTGTATAG TCTCTATGTT TGTGCTAGTT TTTCTTTTTT 2640 75 TTCTCTGTGT CCAGTCAGCC ACAGGGCCCG CCTCCCTGCA GGAATAAGGG GTAAAACGTT 2700 AGGTGTTGTT TGGCAAGAAA CCACACTGAC TGATGAGGGG TAAAATGGAA CCAGGTAGAG CCACTCCGGG CAGCTGTCAC CCATTCAGAA CTTCTTTCCG CAGCTGAAGA AATGTTCAGT AACCTGTTTG ACGCTAATTA AAACAGAGCC TGCAGGAAGT GGGGCTAAAG TGGCATTCAG 2820 TGATCCTGTT CTGTAGACTT TTCTTTCTTT TTTTAACCAA ATCCAAAGGA TGTTACAGAA 2940

	AAGCTAGCCA	CTGGTATTTT	GTTTTGTTTA	АЛАЛАЛАЛА	GARAGAAAGA	AAGAAAGAAA	3000
		AACCTAGCTG					3060
						TCTGGCTGAA	
5						CCCCTTCTTC	3180 3240
•						TGGTTTTAGT	
						ATTATAGATT	
						GCCAGGGTTT	
10						CCAGCAATAT	
10						CGCCAACCAG GCATTAAATT	3540
						GAAATTGACA	3600 3660
						ATGTAAACTG	3720
	GAAAGGTTGT	GTGTCGTTGC	TTTTTGTGTT	TTGGTTAGGC	TTGGTTTTGT	TTTTTAATTT	
15						GWMCTAMARM	
						CCACTTCGGG	
						ACCCCAGAAG ACGCGCCGGG	
						CACACAAGCG	
20		AGGAGGACCC					
							•
	SEO ID NO-171 I	PCQ7 Protein sea	itence.			• •	
25	Protein Accession		are to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of	none found		•	
	1	11  -	21	31	41	51	
30	MWIIGHTOIL.	LSSAAESQLL	DCMMETS/BCM	TROMEMOSNIC	PCTPGAWOOD	CT.BUCKUKSU	60
-		CGPTFFPCAS					120
	KNGLCIDKSF	ICDGQNNCQD	NSDEESCESS	QEPGSGQVFV	TSENQLVYYP	SITYAIIGSS	180
						VTYNVNNGIQ	240
35						PPYRSRSGSA	300
<i>JJ</i>	NSASSQAASS	LLSVEDTSHS	PGQPGPQEGT	AEPROSEPSQ	GIEEV		
					Q ID NO:172 PEL:	DNA SEQUENCE	
	Nucleic Acid Acc	ession #:		NM 005658.1			
<i>1</i> 0							
40			57-1535 (u		es correspond to s	start and stop codo	ns)
40	Co	ding sequence:		nderlined sequenc	•	•	ns)
40			21	nderlined sequenc	es correspond to s	start and stop codor	ns)
	<b>Co</b>	ding sequence:	21 	nderlined sequence	<b>41</b>	51 	
40 45	Co  1   GTCATATIGA	ding sequence:	21   TACCTATCAT	nderlined sequence 31	41   TGTTGATAAC	51   AGCAAGATGG	60 120
	1   GTCATATTGA CTTTGAACTC CGGAAAACCC	ding sequence:  11   ACATTCCAGA AGGGTCACCA CTATCCCGCA	21   TACCTATCAT CCAGCTATTG CAGCCCACTG	31 TACTCGATGC GACCTTACTA TGGTCCCCAC	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG	51   AGCAAGATGG GGATACCAAC GTGCATCCGG	60
	Co  1   GTCATATIGA CTTIGAACTC CGGAAAACCC CTCAGTACTA	ding sequence:  11	21   TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT	adefined sequences  31  TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG	51   AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA	60 120 180 240
	CO  1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT	ding sequence:  11   ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG	21   TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC	31   TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGGAC	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC	51   AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA	60 120 180 240 300
45	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT	ding sequence:  11   ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC	21   TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC TTGACCCTGG	31	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCTGACG AGTGTGCACC CGTGGGAGCT	51   AGCAAGATGG GGATACCAAC GTGCATCCGA CAGGCTTCCA TCAAAGACTA GCGCTGGCCG	60 120 180 240 300 360
	Co  1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT	ding sequence:  11   ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCC CTGCACGCAC CTGGAAGTTC	21   TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC TTGACCCTGG ATGGGCAGCA	31	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGAG AGTGTGCACC CGTGGGAGCT CTCTGGGATA	51   AGCAAGATGG GGATACCAAC GTGCATCCGA CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT	60 120 180 240 300
45	1   GTCATATTGA CTCTTGAACTC CGGAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT CTGGCCTACT CCTCAGGTAC	ding sequence:  11   ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC	21   TACCTATCAT CAGCCTATTG CAGCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT	31   TACTCGATGC GACCTTACTA TGGTCCCAC ACGCCCCAG CATCCGGAC CATCCGGAC AGGCCTTCCT AGTGCTCCAC AGTGCTCCAC	41   TGTTGATAAC TGTATACGAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CTCTGGGATA CGTGTCACAC	51   AGCAAGATGG GGGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCG GAGTGCGACT TGCCCCGGCG	60 120 180 240 300 360 420
45	1	11	21   TACCTATCAT CCAGCTATTG CAGCCCAGT CCCAAATCCC TTGACCCTGG ATGGGCAGCA CCCTCTAACT GTTCGCCTCT CTCGCCTCTGC	31   TACTCGATGC GACCTTACTA TGGTCCCCAA ACGCCCCGAG CATCCGGGAC CATCCGGAC AGTCCTCCAA GGTCTTCCTAA AGTGCTCCAA GCCAAGACGAA GCCAAGACGA	41   TGTTGATAAC TGAAAACCAT TGTCTACGAC GGTCCTGACG CGTGGGACC CTCTGGGATA CGTGTGCATCCTT CTTCATCCTT CTGGAACCAC	51   AGCARGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCCCTGGCCG GAGTGCGACT TGCCCCGGCCG CAGATGTACT AACTACCGGC	60 120 180 240 300 360 420 480 540
45 50	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGGCGCCTGC	11 1 ACATTCCAGA AGGGTCACCA CTATCCCCCA CTGCACCACG CTGCACCACG CTGCACGCAG GTCCATCACC CTGCACGCAG GAAGTTC CTGCATCACC GAAGTCCTCG GAAGTCCTCG CAGGGACATC	21   TACCTATCAT CAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGGCAGCA CCCTCTAACT GTTGGCCTCT CACCCTGTGT CACCCTGTGT	31 i TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGGAC GGACCTACT AGTGCTCCAA GGTGTCCAA AGGGACCAAA ACGAACAAA ATAATTTTA	41       TGTTGATAAC TGAAAACCAT TGTCTACCAG AGTGTGCACC CGTGGGACTA CGTGTCACCAC CTTCATCCTT CTGGAACGAC CTCTAGCCAA	51   AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT AACTACGGC GGAATAGTGG	60 120 180 240 300 360 420 480 540 660
45	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGGCGGCCGAC ATGACAACCGG	ding sequence:  11    ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCC CTGCACCCAG GTCCATCACC CTGCAAGTTC CTGCATCAAC GAATCCTCG GAATCCTCG CAGGGACATG ATCCACCACC	21   TACCTATCAT CCAGCTATG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT CACCCTGTGT GGCTATAAGAAC	31   TACTCGATGC GACCTTACTA TGGTCCCAG CATCCGGGAC CATCCGGGAC GGACCTTCCT AGTCTCCAA GGTCTGATGA GCCAAGACGA ACTAGTCATATTTTA TGAACACAAG	41   TGTTGATAAC TGAAAACCAT TGTCTACGAG AGTCTGCACC CGTGGGAGCT CTCTGGGATCACC CTTCATCCTT CTGGAACCAG CTTCTAGCCAA TGCCGGCAAT	51   AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA GCCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT AACTACGGGG GGAATAGTGG GGAATAGTGG GTCGATTATCT	60 120 180 240 300 360 420 480 540 660 720
45 50	1	11	21   TACCTATCAT CCAGCTATTG CAGCCCAGT GTGCCCCAGT TTGACCCTGG ATGGGCAGCA CCTCTAACT CACCCTGTGT CACCCTGTGT CACCCTGTGT CACCCTGTGT GATTCAACAAC GATTCCATCTATA	31    TACTCGATGC GACCTTACTA TGGATCCCAA ACGCCCCGAG CATCCGGGAC AGTCCTCCTA AGTCCTCCAA GGTCTTCATA GCCAAGACGA ATAATTTTA TGAACACAAG CTTCAAAAGC CTTCAAAAGC	41   TOTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG CGTGGGAGCT CCTGGGATA CGTGTCACAC CTTCATCCTT CTGGAACGAG CTCTAGCCAA TGCCGGCAAAAAAAAAA	51   AGCARGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCCTGGCCG GAGTGCGACT CAGATGTACT AACTACGGC GGAATAGTGG GTGCATATCT TTACGCTGTT	60 120 180 240 300 360 420 480 540 660
45 50	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC CGGAGGACGA CATCTCAGAG AGGCGGCCTG ATGACAACAC TAGCTCCGGT TAGCTCCGGG CGCTCCCCGGG CGCTCCCCGGG	ding sequence:  11     ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCC CTGCACCCAG GTCCATCACC CTGCATCACC CTGCATCTACC CAGGACTCT GAATCCTGCA GAATCCTGC GAACCCACG GTACCACAGT GTCCACCAGT GGCCAACTTG GGCCACGGCCC	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA GTTCGCCTCT CACCCTGTAACT CACCCTGTGT GGCTATAAGAAC GATGCCTGTT AACTCAAGCC TGGCAGGTCA	31  TACTCGATGC GACCTTACTA TGGTCCCAG CATCCGGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGA GCCAAGACGA ATAATTTTTA TGAACACAAG CCTCAAAAGC GCCAGAGACGA GCCAGAGACGA GCCAGAGACGA GCCAGAGACGA GCCACAAGCGA GCCACAAGCGA GCCACAAGCCAG GCCACACGA	41   TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTTGTCACCA CGTGGGAGCAT CTCTGGGATA CTTCATCCTT CTGGAACCAG TGCCGCAAT AGTGGTTTCT GATCGTTTCT GATCGTTCT GATCGTTCT GATCGTTCT CTCAACCAC CTCTAGCACAC CTCTAGCCAC CTCTAGCCAC CCCCACAACCAC CCCACAACCAC CCCACAACCAC CCCACAACCAC CCCACAACCAC CCCACAACCAC CCCACAACCAC	51  AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCCTGGCCG GAGTGGCACT GCCCCGGCG CAGATGTACT AACTACCGGCG GGATAGTGGG GTTCGATTT TTACCGTGTT GGTGAGAGCC CACGTGTGCGC CACGTGTGCC	60 120 180 240 360 420 480 540 600 720 780
45 50 55	1	11	21   TACCTATCAT CCACCTATG CCACCTATG CTGCCCCAGT TTGACCCTGG ATGGCAGCA CCCTCTAACT CACCCTGTT CACCCTGTT CACCCTGTT AACTCAGCC GATGCAGCC GATGCATCC	31    TACTCGATGC GACCTTACTA ACGCCCCGAG CATCCGGAGC ACGCCCCCAA GGTCTTCCTA AGTCCTCCAA GGTCTTCATA GCCAAGACGA ACGACCAAA TAAATTTTA TGAACACAAG CCTTCAAAAGC GCCAGGACCAC TGAACCAC TGAACCCC TGAAC	41    TGTTGATAAC TGAAAACCAT TGTTGACAG GGTCTTGACGA GGTCTGACGA CGTGGGATA CGTGTCACAC CTTCATCCTT CTGGAACGA CTCTAGCCAA AGTGGTCTTCT GGCAGCAACGTC CCAGAACGTC CCAGAACGTC CCAGACCGTC	51  AGCAAGATEG GGATACCAAC GTCCATCCGG CAGGCTTCCA GTCCATCGGCGCG GAGTGCGACT GCCCTGGCGC CAGATTGACT AACTACGGG GGAATAGTGG GGAATAGTGG GGTCGATTATCT TTACGCTGTT GGTTAGAGCC CACGTGTGCCC CACGTGTGCCC CACGTGTGCCC CACGTGTGCCC CACGTGTGCC	60 120 180 240 300 420 480 540 600 720 780 840 900
45 50	1	11	21   TACCTATCAT CCAGCTATTC CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGGCAGCA CCCTCTAACT GACCCTGGTT CACCCTGGTT CACCCTGGTT ACCCTGGTAAGA CGCTATAAGA CGATGCAGGTCA GATGGATCA GATGGATCA GACGGCATTTG	31  TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTCCCAG CATCGGGAC CATCGGGAC GGACCTAAA GGTGTCCAA GGTGTGATGG ACGAACCAAA ACGAACCAAA CTTCAAAAC CTTCAAAAC GCCAGAGCA GCCAGACCAC CTTCAAAAC CCCGGGATTTT	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CCTTCATCCTT CTGGAACCAC CTTCATCCTT TGGAACCAC CTCTCATCCTT GACGACCAC CTCTAGCCAA TGCCGGCAAT AGTGGTTTCT GATCGTTCCT GATCGTCGCT CCACTGCGTC GAGAACCAC CCACTGCGTC GAGAACCAC	51     AGCANGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCGGCG CAGATGTACT TTACGCATATTG GGTGAGAGCG CACGTGTGCG CACGTGTGCG CACGTGTGCG GAAAACCTC TTCATGTTCT TTCTATGTTCT	60 120 180 240 300 360 480 540 600 660 720 780 840 900 960 1020
45 50 55	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTAGAGG GGGCGGCCTG ATGACAGCGG ATGACAGCGG GGCGCCTCGGG GGGCGCCTCGGG GGGCTCCGGG GAGGCTCCAT TTACCACACCC ATGACACACCC ATGACACCC	ding sequence:  11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATTGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTGT AACTCAAGA TTTATGAAAC GATCCCTGTT AACTCAAGCC GATGGGATCA AACTGAAGCA AAGGGATCA AAGAAACTGA	31  TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTCCT AGGCCCCGAG CATCCGGGAC GGACCTACT AGGCCCAAA GGTGTGATGG ACGGACCAAA GCCAAGACGA ATAATTTTA TGAACACAG GCCAGAGCGA GCCAGAGCGA CCTCAAAAGCG GCCAGAGCGA CCCAGAGCGA CCCAGACGATTT TTTCTCATCC	41   TOTTGATAAC TGAAAACCAT TGTCTACCAG GGTCCTCACCG AGTCTGCACC CCTCTGCACCAG CTTCATCCTT CTGCAACCAG TGCCGCAAT AGTCGTTCT GATCGTTCT GATCGTGCGC CCAGAACGTC CCAGCACCTG GAGCACATCT GAGCACATCT	51  AGCAAGATG GGATACCAAC GTGCATCCG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCACT AACTACCGGC CAGATGTACT TAACGCGTT TTACGCGTGT TTACGCGTGT TTACGCGTGT CAGATACTC CACGTTGCG GAAAAACCTC TTCAAGACCA	60 120 180 240 300 360 420 480 540 660 720 780 840 900 900 91020 1080
45 50 55	1	ding sequence:  11	21   TACCTATCAT CCACCTATG CCACCTATG CCCCAATTG CCCAAATCCC TTGACCCTGG ATGGCCACCT CCCTCTAACT CACCCTGTGT GGCTATAAGGA GATGCCTGT AACTCAACCT GATCAGCCC GATGGATCA CACGGCCATTG CACAGGCCA CACGGCATTG CAAAAAGTGA ATGAACCTGC	31    TACTCGATGC GACCTTACTA TGGATCCCAA ACGCCCCGAG CATCCGGGAC ACGCCTCCTA AGTGCTCCTA AGTGCTCCTA AGTGCTCCAA GCCAAGACCAA ATAATTTTA TGAACACAAG CCTTCAAAAGC CCCAGGACCAG TGACTACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAG TGACACCAC AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT AGAAGCCTCT	41    TGTTGATAAC TGAAAACCAT TGTTGACGA GGTCTTGACGA GGTCTTGACGA CGTGGAACCAC CTTCATCCTT CTGGAACCAC CTCTAGCCAA TGCCGGACGAC CTCTGGCACCAC CCACACCACC CACACCACC CACACCACC CACACCAC	51  AGCAAGATEG GGATACCAAC GTCCATCCGG CAGGCTTCCA GCCTGGCCG GAGTGGCACT AACTACGGGC CAGATGTACT AACTACGGGC GGTCGATATCT TTACGCTGTT GGTTAGAGCCG CACATGTGCG CACATGTGCG GAAAACCTC TTCCATGTCT TTCCAAGACCA GACCTAGTGG	60 120 180 240 300 360 420 540 600 660 720 780 840 900 960 1020 1080
45 50 55 60	1	ding sequence:  11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG GTTGCCTCTACT GTTCGCCTCT GGCTATAGAA CCCTCTAAGA TTTATGAAAC GATCCTGGT GGCTATAAGA CACCTGGTCA GATCCAGTCA GATCGAGTCA GATCGATCA CACGCATTTTC CAAAAACTGA ATGAAGCTCC CCAGGCATGA	31  TACTCGATGC GACCTTACTA TGGTCCCAG GACCTTACTA ACGCCCCGAG CATCCGGGAC GACCTTACTC ACGCACCAA ACGACCAA ACGACCAA ACGACCAA ACGACCAA ATAATTTTA TGAACACAAG GCCAGGACGA CTTCCAAAAGC CCCAGGACGA CTTCCAACC CCCGGGATTTT TTTCTCATCC TGCTGCACCC TGCTGCACCC	41 TGTTGATAAC TGAAAACCAT TGTCTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTACCAT TGGCACCAC CTCTAGCCAA AGTGTTTCT GATCGTT GATCGTT GATCGTGGCC CCACTGCGCAC CCACTGCGTC GAGACACTC AAATTATCAC GACTTTCAAC GACTTTCAAC GACTTTCAAC AGAACACCTC	51  AGCANGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCGGCG CAGATAGTGG GTCAATAGTGG GTCAATAGTG GTCAGTTTACGCTGTTT GGTGAGAGCC CACGTGTGCC GAAAAACCC TTCAAGACCA GACTAGTGA GACCTAGTGA GACCTAGTGA	60 120 180 240 360 420 480 540 660 720 780 840 900 1020 1020 1140 1200
45 50 55	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC AGCAGGAGACGA CATCTCAGGTAC GGGAGGACGA CATCTCAGGT ATGACACGG GGCGCCTG ATGACAGCG GGCTCCCGG GAGCTCCAT TTAACCAATCC ATGGAGCCG AGAACAATGA AACCAGTGTC CCGGGTGGGG CCGGGTGGGG	ding sequence:  11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTAT ACTCAACT GATCCCTGTT AACTCAAGC TGGCAGGTCA GATGGATCG ACGCATTTG CAAAAAGTGA ATGAAGCT CCAGGCATGA CCAGGCATGA GAGAAAGGGA AAGAAAGGGA	31  TACTCGATGC GACCTTACTA TGGTCCCCAC GGACCTTACTA TGGTCCCAC GGACCTTACTA AGTGCTCCAA GGTGTGATGG ACGGACCAAA GGTGTCCAA ACGACCAAA CCTACAAAGCCA CCTCCAAAAGC GCCAGAGCAG GCCAGAGCAG TGACAGCAG TGACAGCCT TGCAGCTT TTTCTCATCC AGAAGCTT TTTCTCATCC AGAACCTCAA	41    TGTTGATAAC TGAAAACCAT TGTTTACCAG GGTCCTCACG AGTGTGCACC CGTGGGACGT CTCTGGCACAC CTCTATCCTT CTGGAACGAG TGCCGGCAAT TGCCGGCAAT TGCCGGCAAT TGCCGGCAAT TGCAGCAT TGCAGAACGTC CCACTTGCATC AAATTATGAC GACTTTCAAC AGTACTACAA	51  AGCANGATGG GGATACCAAC GTGCATCCAG CAGGCTTOCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT AACTACCGGC CAGATGTACT TTACCGGCT GTCGATATCT TTACGCTGTT TTACAGCTGTT TTCACTGTT TCCAGAGACCA GACCTAGTGG GAACCAC GACCTAGTGG GACCTAGTGG GACCTAGTGG	60 120 180 240 300 360 420 540 600 660 720 780 840 900 960 1020 1080
45 50 55 60	1	11	21    TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG GTTGCCTCT GTTGCCTCT GGCTATAAGA TTTATGAAAC CACCTGTGT GGCTATAAGA TTTATGAAAC GATCCAGTCA GATCGAGTCA GATGGATCA GATGGATCA CCAGGCATTA CAAAAAGTGA ATGAAACTGC CCAGGCATGA GAGAAAGGGA ATGCAACGA TTCCTGCAGG AGATGCAACA TTCCTGCAGG	31  TACTCGATGC GACCTTACTA TGGTCCCAG GACCTTCCTAC ACGCCCCAGG CATCCGGGAC GGACCTTCCTA ACGCACCAAAAGC GGTCTGATA GCCAAGACGA ACGAACAAAG CCTCCAAAAGC CTTCCAAAAGC GCCAGGACGC GCGGGATTTT TTTCATCC TGGTGCAGC AGACCTCAGA AGAAGCACAC AGAACTCAAA	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTATCCTT CTGGAACGAC CTCTAGCCAA AGTGTTTCT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT AAATTATCAC GACTTTCAAC AGACAGCT AGACAGCT AGTGCTGAAC CTCTAGCCAA CTCTACCAACT CTCATCACCAT CTCATCACCAT CTCATCACCAT CTCATCACAC CTCTATCAAC CTCTATGACAAC CTCTATGACAAC TTCTTCCCAG	51  AGCANGATGG GGATACCAAC GTGCATCCGG GGATACTAA CCGCTGGCCG GAAGACTA GCCCTGGCCG CAGATGTACT TGCCCGGCG CAGATACTGG GGATAGTGG GTGATACTG GGTGAGAGCG CACGTGTGCCG GAAAAACCTC TTACGCTGTTCC TTCAAGACCA GACCTAAGGC GACCTAGTGC GGCTGTGCG GCCTGGCG GCCTGGCG GCCTGGCG GCCTGGCG GCCTGCCAGG CCTGCCCAGG CCTGCCCAGG CCTGCCCAGG CCTGCCCAGG CCTGCCCAGG CCTGCCCAGG CGTGCCCAGG CGTGCCCAGG CGTGCCCAGG CGTGCCCAGG CGTGCCAGG CGTGCCCAGG CGTGCCCAGC CGTGCCCAGC CGTGCCCAGC CGGTGCCCAGC CGTGCCCAGC CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACG CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCCACC CGTGCCACC CGTGCCCACC CGTGCCACC CGTGCCCACC CGTCCCCCC CGTCCCACC CGTCCCACC CGTCCCACC CGTCCCCC CGCCCCC CGCCCCCCC CGCCCCCCC CGCCCCCC	60 120 180 300 360 420 480 540 660 720 780 840 900 1020 1140 1200 1260 1380
45 50 55 60	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAGCACT CCTCAGGTAC CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGGCGCCTG ATGACAGAG GGGCGCCTC TAGCCTGCGG GAGGCTCCAT TTAACCAACAC ATGAGACCG AGAACATCA AACCAGTGTG CCGGGTGCGG TGCTTCTCAT CAGCCTCAT CAGCCATGAT CAGCCATGAT CAGCACTCAT	11 1 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTCCATCACC CTGCACGCAG GTCCATCACC CAGGGACATCAC CAGGGACATG GAAGTCCTG GAAGTCCTG GAAGTCCAC GTCCACCAC GTCCACCAC GTCCACACT GTCCACCAC GTCCACACT GTCCACCAC CATCACCCC ATCACCC ATCACCC CATCACCC CATCACCC CATCACCC CATCACC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACC CATCACCC CATCACCC CATCACC ATCACC CATCACC CATCAC C	21    TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCACCA CCCTCTAACT CACCCTGTGT TTATGACAC GGCTATAAGA TTTATGAAAC GATCCCTGTT AACTCAAGCC TGGCAGGTCA GATGGATCG AAGAAGTGA ATGAAAGTGA ATGAAAGTGA ATGAAAGTGA ATGAAAGTGA ATGAAAGTGA TTCTTGCAGG AGATGCAACA TTCCTGCAGG AACAACAATA	31  TACTCGATGC GACCTTACTA TGGTCCCAG GACCTTACTA ACGCCCCAG CATCCGGGAC GGACCTACT GGTGTCCAA GGTGTCCAA GGTGTCAAAAGC CATCAAAAGC GCCAGAGCAG GCCAGAGCAG TGACAGCAG GCCAGAGCAG GCCAGAGCAG GCCAGAGCAG GCCAGAGCAG TGACAGCAG GCAGAGCAG GCAGAGCAG TGCTGCAGC AGAAGCTCAA AGACCTCAG GCAGATATGT GGAACGTCGA TCTGGTGCGCT	41	51  AGCANGATGG GGATACCAAC GTGCATCCAG CTGCATCCAG CCAGCCTTCCA TCAAAGACTA GCGCTGGCCC CAGATGTACT TGCCCCAGCC CAGATATTACT TTACGCGCT TTACGCGTTT TTACGCTGTT TTCAAGACCA GACATACTCC GAAAAACCTC TCCAAGACCA GACCTACTGA GACCTACTGA GACCTACTGA CTGCTGCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCCAAGC CTGATCAAGC ACAAGCTGGG ACAAGCTGGG ACAAGCTGGG ACAAGCTGGG	60 120 180 240 300 360 420 540 660 720 780 900 900 900 1020 1080 1140 1260 1380 1440
45 50 55 60	1	11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT GTGCCCCAGT ATGGCACCA ATGGGCACCA ATTGCCTCT CACCCTGTAA GTTCGCCTCT CACCCTGTT AACTCAAAGC ATTGAAGC CAAAAAGTGA ATGAGCTCA CAAAAAGTGA ATGAAGCTG CCAGGCATTA ATGAAGCTG CCAGGCATGA ATGAAGCTG ACAAAAATGA ATGAAGCAG AGAACGAA AGATGCAACA TTCCTGCAGG AACAACAATA TACAGGACCAG	31  1 TACTCGATGC GACCTTACTA AGGCCCCGAG CATCCGGAGC AGGCCTCCTA AGGCCCCAAG AGGCCCCAAG ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACCACACA CCTCCACACCAC AGACCTCCT AGAAGCTCT CA AGACCTCACA AGACCACA AGACCTCACA AGACCTCACA AGACCTCACA AGACCTCACA AGACCTCACA AGACC	41    TOTTGATAAC TGAAAACCAT TGTTTACGAG GGTCCTTGACGA GGTCTGCACC CTTCATCCTT CTGGAACGAG TGCCGCAAT AGTGGTTCT GATCGTTCT GATCGTTCT GATCGTTCT GATCGTTCT GATCGTTC CACAGACGTC CACAGACGTC CACAGACGTC CACAGCACT GAGCATATTCAAC AGATCACTAC GATCAGCTAC GATCAGCTAC CTATTGACAA CTATTGACAAC CTATTGACAAC CTATTGACAAC CTATTGACAAC GATAGGGGAT TTCTTGCCAG GATAGGGGAT GAATGTCATC	51  AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCGCTGGCCG GAGTGCACT AGCTACCGGC CAGATGTACT AACTACCGGC GGATAGTACT TTACGCGTT TTACGCGTT TTACGCTGTT TTACGCTGTT TTACGCTGTT TCAAGACA GACATGTTCT TCCAAGACA GACCTAGTGA GCCTGCTGCT GCTGCTTCAGTGACTGC GCTGATCACAC GCTGACACT GCTGCTAGTGA ACAAGCTGCG GTTATCACAC GCTGACACGC ACAAGCTGGC GTTATCACAC GCTGACCACG GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTATCACAC GCTACAC GCTACAC GCTACAC GCTACAC GCTACAC GCTACAC GCTACAC GCTACAC GCTACC GCTACAC  60 120 180 240 300 360 420 540 600 720 780 960 1020 1080 1140 1260 1320 1320 1340 1500	
45 50 55 60	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CGGAAAACCC CTCAGGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT CGGAGGAGCAG GGGGGGCTG ATGACAAGCACT TTAACAACCC ATGACACCAG AGACAAGTAC AGACAAGTAC AGACAAGTAC CCGGGTGGGG TGCTTCTCAT CCGGCTGGGG TGCTTCTCAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATTAT CAGCCATTAT CAGCCATTAT CAGCCATTAT CAGCCATTAT CAGCCATTAT CAGCGATTTA	11	21    TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG GCTATACT GTTCGCCTCT GGCTATAGA TTTATGAAAC GATCCCTGGT GGCTATAGAA GATCCAGGCATTA GAACTCAGC CAGGCATTG CAAAAAGTGA ATGAAGCTG CCAGGCATGA ATGAAGCAA TTCCTGCAGG AACAAAAATA TTCCTGCAGG AACAAAAATA TACAGACCAT AAGGCAAAAC	31  TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTCCTAC ACGCCCCGAG CATCCGGGAC GGACCTTACTA ACGCACCCAAA GCTGACACAA ACGCACCAAA ACGCACCAA ACGCACCAAA ACGCACCAAAA CCTCCAAAAGC GCCAGGACCAA ACGCACCACACACAAAGC CCCAGGACCAA ACGCACCCACACACA	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTACCACC CTCTACCACC CTCTACCCT AGTGTCACAC CTCTAGCCAA GCGGCAAT GCCGGCAAT GACAGCGGC CCACTGCGTC GAGACATC AAATTATCAC GACTTTCAAC CTATGACAC CTATGACAC TCTAGCCAAC GATAGCTC AGACAGCT AGTGCTGAAC CTATGACAAC TTCTTGCCAG GATAGGGGAT GAATGTGATA CATGCTTTCCA	51    AGCANGATGG GGATACCAAC GTGCATCCGG GGATACTAG CCCTGGCCG GAATAGTGA TGCCCGGCG CAGATGTACT TGCCCGGCG GGATAGTGG GTCAGTATCT TTACGCTGTT GGTGAGAACCT GAAAACCT TCCATGGCG GAAAACCT TCCATGGTT TCCATGGTT TCCATGGTT GCTGGATT CCTGCAAG	60 120 180 300 360 420 480 540 660 720 840 900 1020 1140 1200 1200 1200 1380 1440 1560
45 50 55 60	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT CTCAGGTACT CTGGCCTACT CCTCAGGTAC CATCTCAGGA CATCTCAGGA CATCTCAGGA CATCTCAGGA CATGACGCGG CGGCCTCGG ATGAAAAACT TAACCAGCGG AGGACTCCAT TTAACAATCC ATGGAGCCGG AGGACTCTCAT CAGCCAGGAT CAGCGGCTTCGAT CAGCCATGAT CAGCGATTTA CAGCCATGAT CAGCGATTTA CAGCATGAT CAGCGATTTA CAGCATTTA CAGCATCA CATGATTTA CAGCATTTA CAGCATTA CAGTTTTACAA CATGATTCAGA CATTTTACAA CATGATTCAGA CATTTTCAGA CATTTCAGA CATTCAGA CATTTCAGA CATTCAG CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTCAG CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTCAG CATTTCAGA CATTCAG CATTTCAGA CATTTCAGA CATTTCAGA CATTTCAGA CATTCAGA CATTTCAGA CATTCAG CATTTCAGA CATTTCAG CATTTCAGA CATTCAG CATTTCAGA CATTCAG CAT	ding sequence:  11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT GTGCCCCAGT CCCAAATCCC TTGACCTGG ATTGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTTA ATTAGAAAC GATCCCTGTT AACTCAAGCC AAGTGGATCA AAGTGAACTG AAGAAAATGA ATGAAGCTGC CCAGGCATGA ATGAAGCAACA ATCCAGGAACAACA AAGCCAACA AAGCCAACACTGCTT TTTTTATTAA	31  TACTCGATGC GACCTTACTA ACGCCCCGAG CATCCCCCAA ACGCCCCCAA ACGCCCCAA ACGCCCCAA ACGCCCCAA ACGCCCCAA ACGCCCCAA ACGACCAA ACGACCAA ACCAACAAA ACCAACAAA CCTTCAAAAGC CCTTCAAAAGC CCCAGAGCAA ATAATTTTA TGAACACAAG GCCAGAGCAC TGACACCAC AGACCTCACA AGACCTCACA GCAGATTT TCTCATCC AGAACCTCAA GCAGATATGT GGAACGTCAA GCAGATATGT GGAACGTCAA TCTCGTGCACCT GCAGATTATCCAC CGAGATTACCAC TCTCTCCCCC ACACTACCAA ACACTGAACT	41    TOTTGATAAC TGAAAACCAT TGTTTACCAG GGTCCTCACCAG AGTCTGCACCAC CCTCATCCTT CTGCAACCAG TCTCATCCTT CTGCAACCAG TGCCGCAAT AGTCGTTCT GATCGTTCT GATCGTTCT GATCGTTCACCA AGTCGTTCACC CCACAACCAC GACACACT CCACAACCAC TCTCACCT GAGCAATCA GACTTTCAAC AGATCACCT CACTTTCAAC AGATCACCT CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC TTCTTGCCAG GATAGTCATC ATGCTTTCAC TGCATGATTT TGCATGATTT TGCATGATTT TGCATGATTT TGCATGATTT TGCTCTGCCTT	51  AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCACT AACTACCGGC CAGATGTACT TTACGCGGT GTCGATACTC TTACGCTGTT TTCAAGACCA GACCTAGTGG GAAAAACCTC TCCAAGACCA GACCTAGTGA GCTGCCACTGCGGATTACAC GGTGACAGTG GCTGCCACTGCGGTTCC GGTATCACTGC TTCATGCATTCT TCCAAGACCA GACCTTAGTGA TGCTGCTTTCACGG TTCATCACG GTTACACG GTTACTCACG TCCTTTACAGT TCCTTTACAGT TCCTTTACAGT TCCCTCTTTACAGT	60 120 180 240 300 360 420 540 600 720 780 960 1020 1080 1140 1260 1320 1320 1340 1500
45 50 55 60	1   GTCATATTGA CTTTTGAACTC CTGAGAAACCC CTCAGTACTA ACCCGTGGT AGAAAGCACT CTGGCCTACT CCTCAGGTAC GGGGGGACGA ATGACAACGC GGCGGCTGG ATGACACGGG GGGGGCTCCAG ATGACACGGG GGGGGCTCCAG TTAACAATCC ATGGACCGG AGACCAATGA AACCAGTGTG CCGGTGGGG TGCTTTTACAA CCGGTTGGG TGCTTTTCCT CAGCCATGAT GAGGCCTCT GTTTTGCCTG TTTTTACAA TCGATTTTACAA ATGATTCAGA ATGATTTAACAA TCGATTTTACAA ATGATTCAGA TCCCATACTG TTCCATACTA	11	21    TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG GCTCATACT GTTCGCCTCT GCTCTAACT GTTCGCCTCT AACTCAGCC GGCTCAACG GGCTATAAGA TTTATGAAAC ACGCAGTTG AACTCAAGCC CAGGCATTG CAAAAACTGA ATGAACGGA ATCCAGCATGA AGGCAATA TTCCTGCAGG AACAACAATA TTCCTGCAGG AACAACAATA TTCCTGCAGG AACAACAATA TTCCTGCAGG AACAACAATA TTCTTCAGG GGCTGGTTT TTTTTTATTAA AGTGGCTCCC	31  TACTCGATGC GACCTTACTA TGGTCCCAG GACCTTCCTAC ACGCCCCGAG CATCCGGGAC GACCTTCCTA ACGCCCCAG GACCTTCCTA ACGCACCAAAAGC GCTAGACGA ACGAACCAAAA GCCAGAGCGA ATAATTTTA TGAACACAAG GCCAGGACGA CCTCCAAAAGC CCGGGGATTT TTTCTATCC AGACCTCAG GCAGACCAC AGACCTCAG GCAGACTCAC GCAGACTCAC AGACCTCAG GCAGATATGT GGAACCTCAG GCAGATATGT GGAACCTCAC GCTAATCCAC GCTAATCCAC TCCCCAGCC CTGCCCAGCC CTGCCCAGCC CTCCCCAGCC  CTCCCCAGC CTCCCCCAGC CTCCCCAGC CTCCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCCAGC CTCCCCAGC CTCCCCCAGC CTCCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCAGC CTCCCCCAGC CTCCCCCCACC CTCCCCCACC CTCCCCCACC CTCCCCCACC CTCCCCCACC CTCCCCCCCC	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTACCACC CTCTACCACC CTCTACCACC CTCTACCACC CTCTACCACC CTCTACCCT GACCACC CCACACCT CACACCT GACACCT GACACCT AAATTATCAC GACTTCACC GACTTCACC CTATGACAA CTCTACCACC GACTTCACC GACTTCACC GATTACCAC GATTACCC GATTGCTCAC CTATGACAAC TCTCTTCCCC TGCATGATTT TGCTCTGCTT TGCTCTGCTT TGCTCTCCCT TGCATGATTT TGCTCTCCCT TGCTCTCCCT TGCATGATTT TGCTCTCCCT TGCATCCCTT	51  AGCANGATGG GGATACCAAC GTGCATCCAG GTGCATCCAG CCAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCCGCGC CAGATAGTGG GTGATAGTGG GTGATAGTG GTGAGAGCC TTACGCCTTTCC TCCAAGACCA TCCTGACCA TCCTGACTAC TCCAAGACCAG TCCTGACTAC TCCAAGACCAG TCCTGACTAC TCCTAAGACCAG TCCTACTCACG TCCTTACAGC TCCTTACAGC TCCTTTACAGC TCCTTTTACAGC TCCTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAGC TCCTTTTACAG	60 120 180 300 360 480 540 660 720 840 900 1020 1180 1200 1260 1380 1440 1560 1560 1680 1740
45 50 55 60	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCGTCAT AGAAGCACT CTGGCCTACT AGAAGCACT CTTGAGTACA CGGAGGAGCAGA ATAAAAACT TAGCCTCGG GAGGCTCCT TAGCCTCGG GAGGCTCCAT TAGCATCGG GAGGCTCCAT CAGGAGCCGG AGACAATGA AACCAGTGTG CCGGATGGG GTCTTGCGT CAGCCATGAT CAGCATGAT CAGCATGAT CAGCATGAT CAGCATGAT CAGCATACT CAGCATACT CAGCATACT CTTTTACAA ATGATTCAGA TGCATACTAG TGCCATACT CCGCAAGGGG	ding sequence:  11	21   TACCTATCAT CAGCTATTG CAGCCACTG CAGCTATTG CAGCCACTG CTCAAATCCC TTGACCTGG ATGGCCACT CACCTGTGT CACCTGTGT CACCTGTGT AACTCAAGCC GGCTATAAGA TTANGAAAC GATGCAGTCA AAGTCAAGCC CCAGGCATGA GAGAAAGGGA AGAGAAACAATA TACAGACCAG AAGAACAATA TACAGACCAG AAGACAACA AGGCAATTTTCTTCAGACCA CAGGCATTATTCTTCAGACCA CAGGCATTATTCTTCTGAAAAACTTACAGACCAG AAGAAACAATA TACAGACCAG AAGGCAAACC CTGGTTTTTTTTTT	31  TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTACTA ACGCCCCGAG CATCCGGGAC GGACCTAAC GGTGTGATGC GCCAGAGCAA ACGACCAAA ACGACCAAC ACGACCAAA ACGACCAAC ACTACAAAGC GCCAGAGCAA ACTACACAGC GCCAGAGCAC ACGACACAC GCCAGAGCAC GCCAGAGCAC GCCAGAGCAC TTCTCAAC GCAGACTTT TTCTCATCC AGACCTCCAG GCAACTGCAC TCTCGTGCC GCAATATCT CCAGTGCAC TCTCCCCC CCTCCCCC CCACTCCCCC GCACTGCACC CCACTGCCCC GCACTGCCCG GCACTGCCCC GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCGCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCGCG GCACTGCCGCG GCACTGCCCG GCACTGCCGCG GCACTGCCCG GCACTGCCCG GCACTGCCGCG GCACTGCCCG GCACTGCCGCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCC GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTCCCCC GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTCCCC GCACTGCCCG GCACTCCCC GCACTGCCCG GCACTGCCCG GCACTGCCCG GCACTGCCCC GCACTGCCCG GCACTGCCC GCACTCCC GCACTCCC GCACTCCC GCACTCCC GCACTCCC GCACTCCC GCACTCCC GCACTCC CACTCC GCACTCC GCACTC GCA	41 TGTTGATAAC TGAAAACCAT TGTTTACCAG AGTGTGCACC AGTGTGCACC CGTGGGACCT CTCTGGGACCT CTCTGACCAG CTCTACCCT GATGTCACCT GATGTCACCT GATGTTCT GATCTT GATCTT GATCTT AATTATCAC GACTTTCAC GACTTTCAC GACTTTCAC GACTTTCAC GACTTTCAC GACTTTCAC GATGCTGAA GAACAGCT AGAACAGCT AGAACAGCT AGAACAGCT GATGCTGAAC GATTGCTGAC GATTGCTGAC GATTGCTGAC GATGCTGAC GATGCTGCT TCCTTCCCT TGCATGATT TGCTTGCGCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCT TCCATTTCTCCT TCCATTTCTCCT TCAATTCTTCC TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCCT TCAATTCTTCT TCATTCTTCT TCATTCT TCAT	51  AGCANGATEG GGATACCAAC GTGCATCCAG GTGCATCCAG CAGGCTTOCA TCAAAGACTA GCGCTGGCCG CAGATGTACT TGCCCCGCGC CAGATGTACT TTACGCGTGTT TTACGCTGTT TTACGCTGTT TCCAAGACCA GACCTAGTGC GAAAAACCTT TCCAAGACCA GACCTAGTGC GACCTAGTGC GACCTAGTGC GACCTAGTGC ACCTTGCCG TCCTTGCCAAGG CTGATCACAC ACCCTTGTCACGT TCCTTGCGG TACTTCACGT TCCTTGACGT ACCCCTTGT AACCCACTTC AACCCCTTTT AACGCAAGAGG	60 120 180 240 300 360 420 780 660 720 780 900 900 1020 11260 1260 11260 11260 11260 11380 1140 11560 11560 11560 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620 11620
45 50 55 60 65	1	11	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG ATTGGCACCA GCTCTTAACT GTTCGCCTCT CACCCTGTAAT TTATGAAAC GATCCCTGTG AACTCAAGCC AAGTGGATCG ACGCATTG CAAAAAGTGA ATGAAGCTAC CCAGGCATGA ATGAAGCAACA TTCCTGCAGG AGATCGAACACA TTCCTTCCAGG AGACAACAATA TACAGACCAG AAGGCAACAT TTCTTCAGGG TTCTTTTTTTTTT	31  TACTCGATGC GACCTTACTA ACGCCCCGAG CATCCCCCAG CATCCCCCAG ACGCCCCCAG ACGCCCCCAG ACGCCCCCAG ACGCCCCCAG ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACGACCACA ACCACCACC ACGACCACC ACGACCACC ACGACCACC ACACTACCAC ACCCCCCC ACACTCCCC ACACTCCCC ACACTCCCC ACACTGACC ACCACTCACC ACACTGACC ACACTCACC ACACTGACC ACACTGACC ACACTCACC AC	41    TGTTGATAAC TGAAAACCAT TGTTTACCAG GGTCCTCACG AGTGTGCACC CGTGGGACCAT CGTGTACCAC CTTCATCCTT CTGGAACCAG TGCCGCAAT AGTGGTTCAC GATCATGCTG GATCATGCTG GATCATGCTG GATCATGCTG GATCATGCTG GAGACAGCTC CAGAACGTC CAGAACGTC CAGTTTCAAC AGTCTTTCAAC AGTCTTTCAAC AGTCTTTCCAC GATAGGACAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC TTCTTGCCAG GATAGGTCTTTC TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TGCATGCTT TCCAAGGGCT TCCAATTGTGG TTCCAGGGGCT	51  AGCARGATG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGTGCACT AACTACCGGC CAGATGTACT TTACGCGTGT TTACGCGTGT TTACGCTGTT TTCAAGACA GACCTAGTGC GAAAAACCTC TCCAAGACCA GACCTAGTGA GACCTAGTGATT GCTGCATTT ACCACACAC GACACCACAC GACACCACAC GACACCACAC GACACCAC GACACCAC GACACCAC GACCTTAGAC GTTACACAC GTTACACAC GTTACACAC GCTACTCACAC GCTACTCACAC GACACCTTT AACCACACC CAATTTTGGA	60 120 180 240 300 360 420 540 600 720 780 960 1080 1140 1260 1380 1500 1560 1560 1680 1740 1860
45 50 55 60	1   GTCATATTGA CTTTTAACTC CTGAGAAACCC CTCAGTACTA ACCCGTGGT AGAAAGCACT CTGGCCTACT CCTCAGGTAC GGGAGGACGA ATGACACGGG GGGGGCGGCTG ATGACACGGG GGGGGCGGCT TTAACAATCC ATGAGACGG AGACCAATGA AACCAGTGT CCGGGTGGGG TGCTTCTCAT CAGCCATGAT CCGCTTCGAC ATGACATTTA CGTTTTACAA ATGATTCAA ATGATTCAA ATGATTCACA CGTTCAGCCT GTTCAGCCT GTTCAGCCT GTTCAGCCT CTCAGCCATGAT CGTTTTACAA ATGATTCAGA CTTCAGACCT CCGCAAGGG CTTCGAGCCT CCTTCAGCCT CTTCAGCCT CTTCAGCACT CTTCAGCCT CTTCAGCT CTTCAGCCT CTTCAGCT CTTCAGCCT CTTCAGCT CTTCAGCCT CTTCAGCCT CTTCAGCCT CTCAGCCT CTTCAGCT CTCAGCT CTCAGCT CTCAGCT CTTCAGCT CTCAGCT CTTCAGCT CTCAGCT CTCA	ding sequence:  11    ACATTCCAGA AGGGTCACCA CCCGTCCCCC CTGCACCAG GTCCATCACC CTGGAAGTTC CTGGAAGTTC CTGCATCACC GAAGTCCTGG CAGGGACATG GTACCACGAG GTACCACGAG GTACCACGAG GTACCACGAG GTACCACGAG CATGGCATGAC CATGGCATGAC CATGGCATGAC CATGGCATGAC CATGGCATGAC CTGCACCAAG GTCAACTAC GGCCACCAGG GTCAACTAC GGCAACAGT TCGACAAATG GAAAACAATG GAAAACAATG GATAGCCCC TGCACGAACT TCGACCAAACT TCGACCAAACT TCGACCAATG GGTCACTCC TGACGACTCC TGCACGCTC TGCACCATTC TGCACGCTC TGCACGCTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACGCTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACCACTC TGCACCACTC TGCACGCTC TGCACCACTC GCACCACTC TGCACCACTC TGCACCACTC TGCACCACTC TGCACCACTC TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TG	21   TACCTATCAT CAGCTATTG CAGCTATTG CAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG GCTCACACT GTTCGCCTCT ACTCGCTCTT AACTCAGCT GGCTATAAGA TTTATGAAAC CACCTGTGT AACTCAAGCC GAGTGGATCA GAGTGGATCA GAGTGGATCA AACAAAACAA	31  TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTCCTAC ACGCCCCGAG CATCCGGGAC GACCTTCCTA ACGCCCCAG GACCTTCCTA ACGCACCGAC GACCTTCCTA GCTCGACAC GCTCAAAAGC CCCAGACCA ATAATTTTA TGAACACAAG GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCCAGACCA GCAGATATGT TCTCCATCC GGAACCTCAGA GCAGATATGT GGAACCTCAGA CCAGATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC CCCCAGCC GCACTGCACC GCACTGCACC GCACTGCACC GCACTGCACC GCACTGCACC GCACTGCACC GCACTGCCC GCACTGCCC GCACTGCCC GCACTGCCC GCACTGCCC GCACTGCCC GCACTGCCC GCACACCTC GCACTCCCC GCACACC GC	41 TGTTGATAAC TGAAAACCAT TGATCTACGAG AGTGTGCACC CGTGGGACCA CGTGGGACA CGTCTCACCAC CTCTACCACC CTCAACCAC CTCTAGCCAA AGTGGTTTCC GAACGAC CCACTGCGCACA AGTGCTTTCAC AGACAACGTC GACTTTCACC GACTTTCACC GACTATCACC CTATGCCAA AGACAACTC AGACAACGTC AGATCATCAC GACTTCCAC GATTGACAAC TTCTTGCCAG GATTGACAC TGCATGATTT TGCTCTGCTT TGCTTCGCTT TGCTTCGCTT TGCTTCGCTT TGCTTCGCTT TGCTCTCCCT TCAATTGTGG AGATTACAGGGC AGATTGACAC TTCCAGGGGC AGATGATTT TGCCTCCCT TCAATTGTGG TTCCAGGGGC AGATGAAAAA	51    AGCANGATGG GGATACCAAC GTGCATCCAG GTGCATCCAG CCAGCCTTCCAG CCAGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCCGCGC CAGATAGTGG GTGATAGTG GTGAGAGCC TTACGCCTTTCC TCAAGACCA GACATACTC TCCAAGACCA GCCTAGTGC GTGATACTC TCCAAGACCA GCTGACCAG GCTGACCAG TCCTGACCAG GCTGACCAG TCCTTAGAG TCCTTTAGAG TGCACCTTTAGAG TGCACCTCTTAGAG ACACCTTTTAGAG TGCACCTCTTTAAAGACTCAG CCACTTTTAGAG TGCACCTCTTTAAAGACTAGAC ACCCCTTTTTAGAG TGCACCTTCT AACACCCCTTTTAAAGACTAGAC CAATTTTTTTTAAAC CAGGAAAGAGC CAATTTTTTTTTT	60 120 180 300 360 480 540 660 720 840 900 1020 1180 1200 1260 1560 1560 1680 1740 1680 1740 1860 1920
45 50 55 60 65	CO  T  T  GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCAT AGAAAGCACT CTGGCCTACT AGAAGCACT CTCAGGTAC CGGAGGAGCGA ATGACAGGG GGGCGCCTG ATGACAGGG GGGCGCCTG ATGACAGGG GAGGCTCCAGG AGACATCA ATGACTCGG AGACATCA AGACATCA AGACATTCA CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCATTACAG CGGTTTTACAA ATGATTCAGA TCATTTACAG TCCCCAAGGGG GTTGAGGCT TTGAGCGCT TTGAGCGCT TTGAGCGCT TTGAGGGG TTGAGGAGGGG GTTGAGGAGGGG GGAAAGGGA GGAAAGGGA GGAAAGGGA GGAAAGGGA	ding sequence:  11	21   TACCTATCAT CAGCTATTG CAGCCACTG CAGCTATTG CAGCCACTG CTCAAATCCC TTGACCTGG ATGGCCACT CACCTGTGT CACCTGTGT CACCTGTGT CACCTGTGT CACCTGTGT AACTCAAGCC TGGCAGTAAGA ACTCAAGCC TGGCAGTCA AAGGCATTG CAAAAAGTGA CAGCATTG CAAAAAGTGA CAGCATTTG CAAAAAGTGA CAGCATTTG CAAGAACAATA TACAGACCAG AAGAACAATA TACAGACCAG AAGACAACA AGGCATTTTTTTTTT	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTACTA ACGCCCCGAG CATCCGGGAC AGTCCTCCAA GGTGTCCCAA GGTGTCATAG GCCAGAGCAA ATAATTTTA TGAACACAAG GCCAGAGCAA ATAATTTTA TGAACACAAG GCCAGAGCAA AGAGCACTACAC GCCAGAGCAC AGAACCTCAGA GCAGAGCATTT TTCTCATCC AGAAGCTCT TGCTGCAC TGCTGTGCCC GCATTCTCCCC ACACTGACC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCTAATCCAC GCACTGCAC GCTAATCCAC GCACTGCAC GCCACTGCCCC GCACTGCCCC GCGCTCCCC	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC GGTGGGAGCT CTCTGGGACCT CTGGAACGAG CTCTAGCGA CTCTAGCCAA TGCGGCAAT AGTGGTTCT GATCTTT GAACGAG GAACGAT GAACGAG CCAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC AGTGCTGAAC GATTTCAAC GATTTCAGC GATAGCACAC GATAGCACAC TTCTTGCCAG GATAGGGGAT TGCTCTGGCTT TGCTTGGCTT TGCATTGTGG TTCCAGGGGC TCCAATTCTGG TTCCAGGGGC TTCCAGGGGC TCCAATTCTGG TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TCCAATTCTGG TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGC TTCCAG	51  AGCANGATG GGATACCAAC GTGCATCCAG GTGCATCCAG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG GAGAGCACC GAGATAGTGG GTCATAATCT TTACGCTGTT TTACGCTGTT TTACGCTGTT TCCAAGACCA GACATAGTGC GAAAAACCTC TCCATGTGCA GACATACTACTA TCCAAGACCA GACCTAGTGA ACACCTTGCTGACGT ACACCCTTGCTGACGT TCCTTGACGT ACCCCTTGT AACCCACTTC AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT AACCCCTTGT CAAGGAACAGC CAATTTTGGA GGGAGACATCT CTTGGTTAGTGT CTTGGTTAGTGT CTTGGTTAGTGT CTTGGTTAGTT	60 120 180 240 300 360 480 540 660 720 780 900 900 1020 11200 1260 1260 1380 1440 1560 1680 1680 1680 1780 1800 1800 1800 1800 1800 1800 18
45 50 55 60 65	1	ding sequence:  11    ACATTCCAGA AGGGTCACCA CCCGTCCCCC CTGCACCAG GTCCATCACC CTGGAAGTTC CTGGAAGTTC CTGCATCACC GAAGTCCTGG CAGGGACATG GTACCACGAG GTACCACGAG GTACCACGAG GTACCACGAG GTACCACGAG CATGGCATGAC CATGGCATGAC CATGGCATGAC CATGGCATGAC CATGGCATGAC CTGCACCAAG GTCAACTAC GGCCACCAGG GTCAACTAC GGCAACAGT TCGACAAATG GAAAACAATG GAAAACAATG GATAGCCCC TGCACGAACT TCGACCAAACT TCGACCAAACT TCGACCAATG GGTCACTCC TGACGACTCC TGCACGCTC TGCACCATTC TGCACGCTC TGCACGCTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACGCTC TGCACGCTC TGCACCACTC TGCACGCTC TGCACCACTC TGCACCACTC TGCACGCTC TGCACCACTC GCACCACTC TGCACCACTC TGCACCACTC TGCACCACTC TGCACCACTC TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TGCACCACT TG	21   TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGG CCCAAATCCC TTGACCTGG ATGGCCACTG GTCCCCATCT CACCCTGTACT CACCCTGTAT ATTATGAAAC GGTTATAAGA TTTATGAAAC GATCCCTGTT AACTCAAGCC TGGCAGGTCA GATGGATCG CCAGCCATTG CAAAAAGTGA ATGAAGCTGC CCAGCGATTTG CAAGAACTGA AGGCAATCA AGGCAACA TTCCTGCAGG AAGAACAACA TTCCTGCAGG CGGCTGTT TTTTTATTAA AGTGCTACC CTCGGTTGTGG AGATCTCCT CTCAGCTGCT CTCAGCTGCT GGCACTTCCT CGCACCTCCA GGCACTTTCC CCCAGCTCCT CCAGCTCCT CCACCCCCC CCACCTCCA CCACCCCCC CCACCCCCC CCACCCCCC CCACCCCC CCACCCCC CCACCCCC CCACCCCC CCACCCC CCACCCC CCACCCCC CCACCCC CCACCCC CCACCCC CCACCCC CCACCC CACCC CACCC CACCC CACCC CCACCC CCACCC CCACCC CCACCC CCACC CCACCC	31  TACTCGATGC GACCTTACTA TGGATCCCAA ACGCCCCGAG CATCCGGAC ACGCCCCAA ACGCCCCAA ACGCCCCAA ACGCCCCAA ACGACCAA ACGACCAC ACGACCAC ACGACCAC ACGACCAC ACGACCAC ACGACTCC ACGACTCC ACGACTCC ACGACTCC ACCACCAC ACACCCCAC ACACCCCAC ACACCCCAC ACACCCCAC ACACCCCAC ACACCCCC ACACCCC CACCC ACACCC ACACCC ACACCC ACACCC ACACC AC	41	51  AGCANGATGG GGATACCAAC GTGCATCCAG CTGCATCCAG TCAAAGACTA GCGCTGGCCG GAGTGCACT AACTACCGGC CAGATGTACT TTACGCGTT TTACGCTGTT TTACGCTGTT TTCATGTACT TCCAAGACCA GACCTAGTGA GACCTAGTGA GACCTAGTGA GACCTAGTGA GACCTAGTGA TGCTGGATTT GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC GCTGCATTC TCCTTGCT ACCCCTTGT AACCCCTTGT AACCCATCCT TTGGTAGTG GGGAGGACAT CTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTGCTTGCTTTC ACCCCCTTC TTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTGCTTCTACCCCTTC TTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTGCTTCTACCCCTTC TTTGGTAGTG CCTTTGGTAGTG CCTTTGGTAGTG CCTGCTTCTACCT CTTTGGTAGTG CCTTTGCTTGTAGTAC CCTTTGGTAGTG CCTTTGCTTGTAGTAC CCTTTGCTTGCTACCC TTTGGTAGTAC CTTTGGTAGTAC CTTTGGTAGTAC CTTTGGTAGTAC CCTTTGCTTGCTACCC TTTGGTAGTAC CTTTGGTAGTAC CTTTGGTAGTAC CTTTGGTAGTAC CTTTGCTTGCTACCC TTTGCTTGCTACCC CTTTGCTTGCTACCC CTTTGCTTCC CTTTGCTTGCTACCC CTTTGCTTCC CTTTCC  60 120 180 300 360 480 540 660 720 840 900 1020 1180 1200 1260 1560 1560 1680 1740 1680 1740 1860 1920	
45 50 55 60 65	1   GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCGTCATC CTCAGTACTA CCTCAGTACTA CCTCAGTACT CTGGCCTACT CCTCAGGTAC CATCTCAGA CATCTCAGA CATCTCAGA CATCACAGA CATCACAGA CATCACAGA CATCACAGA CATCACAGA CATCACAGA CATCACAGA CAGACAGA CAGACAGA CAGACAGA CAGACAGA	11	21    TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG ATGGGCAGCA CCCTCTAACT GTTCGCCTCT GACTCTGGT GGCTATAAGA TTTATGAAAC GATCGCAGTTG AACTCAAGCC AGGCATTG CAAAAAGTGA ATGAAAAGTGA ATGAACAACAATA TTCCTGCAGG AACAACAATA TACAGACAG GGGCTGGTTT TTTTTATTAA AGTGGCACC CTGGTGTTGG GGACTCTCC CTCAGCTCCC GGCACTTCC GGCACTTCC CTCAGCTCCC GGCACTTCC CTCAGCTCCC GGCACTTCC GGCACTTCCAC GGCACTTCCAC GGGACTACCC GGGACCACCCC GGGACCACCCC GGGACCACCCC GGGACCACCCC GGGACCACCCC CTGAGCCACCC GGGACCACCCC GGGACCACCCC GGGACCACCCC CTGAGCCACCC GGGACCACCCC GGGACCACCCC GGGACCACCCC CTGAGCCACCC GGGACCACCCC GGGACCACCCC GGGACCACCCC CTCAGCCACCC GGGACCACCCC GGGACCACCCC GGCACCACCC CTCAGCCACC GGGACCACCC GGGACCACCCC CTCAGCACCC GGCACCACCC GGGACCACCCC GGCACCACCC CTCAGCACCC GGCACCACCC GGCACCACCC GGCACCACCC GGCACCACCC CTCAGCACCC CTCAGCACCC CACACCACC CACACCACC CACACCACC CACACCAC	31  TACTCGATGC GACCTTACTA TGGTCCCAG GACCTTACTA ACGCCCCGAG CATCCGGGAC AGTCCTCCAA GCTGTGATGG GGACCTTACT AGTGCTCCAA GCTGTGATGG ACGCACGAC ACGACCAA ACGACCAA ACGACCAA GCCAGACGA ATAATTTTA TGAACACAAG GCCAGACGA GCCAGACCAA GCCAGACCAG GCCTAGACCA GCCTCCAGC GGGGATTT TCTCTCATCC GGACCTCCAG GCCTCAGC GCATTCCCC GCATTCCCC GCATTCCCC GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCT TTCCATGCGT TTCCATGCGT TTCCATGCGT TTCCATGCT TTCCATGCCT TTCCATGCT  TTCCATGCT TTCATGCT TTCCATGCT TTCCATG	41 TGTTGATAAC TGAAAACCAT TGTTTAGCAG AGTGTGCACC CGTGGGACCA CGTGGCACA CGTGTCACCAC CTTCATCCTT CTGGAACCAC CTCTAGCCAA AGTGGTTTCACAC CTCTAGCCAA AGTGGTTTCAC GATCGTGGAACGTC CACAGCGGCAAT AAATTATCAC AGACAGCTC AGACAGCTC AGACAGCTC GATAGCAAC AGACAGCTC TCTAGCCAA AGTGGTTTCAC AGTCTGAAC TTCTTGCCAG GATAGAGGCT TGCATGGTTT TGCTCTGCTT TGCTTTGCCTT TGCATGGTT TGCTCGCTT TCAATTGTGG AGATGATAT TTGCTGGGCCA TTCCAGGGGCC AGATGAAAAAA TCTGGGGCCA TTGACAGGCCT TTCAACGGGCCA TTGACAGGGCCA TTGACAGGCCT TTGACTGGGCCA TTGACAGGCCT TTGACAGGGCCA TTGACAGGCCT TTGACAGGGCCA TTGACAGGGCCA TTGACAGGGCCA TTGACAGGGCCA TTGACAGGCCTT TGACAGGGCCT TTGACAGGGCCT TTGACAGGGCT TTGACGGGCT TTGACAGGGCT TTGACGGGCT TTGACGGGCT TTGACGGGCT TTGACGGGCT TTGACGGGGCT TTGACGGGGCT TTGACGGGCT TTGACGGGCT TTGACGGGCT TTGACGGGGCT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGT TTGACGGGGGGT TTGACGGGGGG	51  AGCANGATGG GGATACCAAC GTGCATCCAG GTGCATCCAG CCAGCCTTCCAC TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCCGCGC CAGATGTACT TTACGCCTGTCCG GGATACTGC GGATACTGC GGATACTC TTACGCTGTTCC TCAAGACCA TGCTGGATTT TCCAAGACCA TGCTGGATTT TCCAAGACCAG TGCTGATCAC GGTGACAGC GGTATCACG GTTATCACG GTTATCACG GTTATCACG TTCCTTAGAG TGCACCTTTAACG TTGCACCTTTAACG TTGCACCTTTAACG TTGCACCTTTTAACG TTGCACCTTTTAACG TTGCACCTTTTTAACG TTGCACCTTTTTAACG CAATTTTTGGA ACCCCTTTTTTTGGA ACCACCTTTTTTTGTAGT AACGACCTCT AACGACACAC TCTTGTTAGTC TCTTGTTAGTC AGCACCCTC AGCACACCTC AGCACCCTC AGCACCTTC AGCACCCTC AGCACCTC AGCACCTC AGCACCTC AGCACCTC AGCACCCTC AGCACCCTC AGCACCTC AGCACC AGCACCTC AGCACC AGCACC AGCACCTC AGCACC AGCACC AGCACC AGCACC AGCACC AGCACC AGCACCTC AGCACC AGCACC AGCACC AGCACC AGCACC AGCACC AGCA	60 120 180 240 300 360 420 540 600 720 780 900 910 1080 1140 1260 1320 1380 1500 1560 1560 1680 1740 1680 1740 1860 1980 1980 1980 1980

5	CATTGGGTGG TCCTAGCACC ATGTCGGCCT	GGCTCCTGGG CTGGAGAGTG CTTCAGGCCT TAAGGTACAC	AACTTGCCCT AGGGAGACTC AATGCCCCTT GATAGTCATT TGTTTCCATG	AGCCTTCCTC GGTCCCTGGC GGAAATTGAG	CTCATCCTCC AGGGCGCCAA GTCCATGGGG	CTGACCCTGC GTTTGGCACC	2220 2280 2340 2400 2460	
10	SEQ ID NO:173 Protein Accession	PEL3 Protein seat n #:	ience:	NP_005647.1				
	1	11	21	31	41	51		
15	SNPVVCTQPK DSSGTCINPS	SPSGTVCTSK NWCDGVSHCP	QPENPYPAQP TKKALCITLT GGEDENRCVR	LGTFLVGAAL LYGPNFILOM	AAGLLWKFMG YSSQRKSWHP	SKCSNSGIEC VCQDDWNENY	60 120 180	
20	CLACGVNLNS PLNNPWHWTA VKPVCLPNPG	SRQSRIVGGE FAGILRQSFM MMLQPEQLCW QGNVDSCQGD	VDDSGSTSFM SALPGAWPWQ FYGAGYQVQK ISGWGATEEK SGGPLVTSNN	VSLHVQNVHV VISHPNYDSK GKTSEVLNAA	CGGSIITPEW TKNNDIALMK KVLLIETQRC	IVTAAHCVEK LQKPLTFNDL NSRYVYDNLI	240 300 360 420 480	
25	DMIINGERA	NG					•	· ·
	Shudala Aald Saa	andra de			Q ID NO:174 PBJ4	DNA SEQUENCE		
	Nucleic Acid Acc	ession #:	Co	AI694767 ding sequence:		1:	30-1086 (	underlined sequences correspond to start and stop codons)
30	1	11	21	31	41	51		
			GCAGCCTGCC				60	
~~			TACGGTTGAG				120 180	
35			AGAGGCTCAG				240	•
			TAACTTGACA ATTTCTTTGC				300 360	
	ACCTCATCCA	TGCCCAAAAT	GCTGGCCATC	TTCTGGTTCA	ATTCCACTAC	CATCCAGTTT	420	
40			GTTTGCCATC				480	
40			CCGCTATGTG				540 600	
	CTGATGGCAC	CCCTTCCTGT	CTTCATCAAG	CAGCTGCCCT	TCTGCCGCTC	CAATATCCTT	660	
			CCAAGATGTC				720 780	
45			TCTTAAGACT				840	
			CTCTCATGTG				900	
			TCGCTTTAGC			TGGAGTGAAG	960 1020	
50						CGCTTCAGAG		
50						AGATTTTAAT		
						TACAACTCAG		
						GGGTTATTAC		
55						ACAGCATTCT CAAAGGAAAA		
55						CCTCTTCAGA		
						TACAGAGAAG		
						AGCCTTGAAA TTCACAGCAT		
60						AAAGATATTA		
						TGAATTAAAT		
			CAACAGGGTA			CATATGATGT	1920	
65	TTCTARAGGA	GGTATTTAAT	TTCTTCTCAC	TCATCCAGTG	TTGTATTTAG	GAATTTCCTG	1980	
03						TCCAATTGCC ATTCTTATTC		
						TAGGTGTTTC		
						TGGCAGGTGT		
70						AATCTTCAGG CGGGAAAGCA		
	ATCTGACTTA	GGCATGGGAA	TCAGGCATTT	TTGCTTCTGA	GGGGCTATTA	CCAAGGGTTA	2400	
						AAATTACATA CCTCAGGTTC		
						CATATTTGGA		
75	AATGCCTATT	Taatacttgt	ATTTGCTGCT	GGACTGTAAG	CCCATGAGGG	CACTGTTTAT	2640	
						ATCCCCCAGC TCAAACCTGA		
						TTGGGTATTA		
٥٥	TTAAATTTTA	GCCATTACTT	CCAATGTGAG	TGGAAGTGAC	ATGTGCAATT	TTTATACCTG	2880	
80	GCTCATAAAA	CCCTCCCATG	TGCAGCCTTT	CATGTTGACA	TTAAATGTGA	CTTGGGAAGC	2940	

```
TATGTGTTAC ACAGAGTTAA TTAACCNGAA AGGCCTGGNA ATTTTTTGNN AANNAAACTG 3000
       TGGCCNNGAG GCCCNCAACC CTTTTNNNA ATTTGGCAAN NTCCCACTTT GTANTTTGGT 3060
       AAGGAGGCCA GTTGGATAAG TGAAAAATAA AGTACTATTG TGTC
 5
                                                   SEQ ID NO:175 PBJ4 PROTEIN SEQUENCE
       Protein Accession #:
                                             not available, cloned at Eos
10
                   11
                               21
                                           31
                                                        41
                                                                   51
       NVDPMGNESS ATYFILIGLP GLEEAQFWLA PPLCSLYLIA VLGNLTIIYI VRTEHSLHEP
                                                                                   60
       MYIFICMLSG IDILISTSSM PKMLATPWFN STTIQFDACL LQMFAIHSLS GMESTVLLAM
AFDRYVAICH PLRHATVLTL PRVTKIGVAA VVRGAALMAP LPVFIKQLPF CRSNILSHSY
                                                                                  120
15
                                                                                  180
       CLHQDVMKLA CDDIRVNVVY GLIVIISAIG LDSLLISFSY LLILKTVLGL TREAQAKAFG
       TCVSHVCAVF IFYVPFIGLS MVHRFSKRRD SPLPVILANI YLLVPFVLNP IVYGVKTKEI
                                                                                  300
       RORILRIPHY ATHASEP
20
                                                    SEQ ID NO: 176 PM72 DNA SEQUENCE
                                             NM 004624.1
       Nucleic Acid Accession #:
                                             57-1544 (underlined sequences correspond to start and stop codons)
       Coding sequence:
25
        TOGGAGOOTG CGGAGGGTGG TGGTGGTGGT GGTGGTGGCC CTCGCCCGCC TCACTCATGC
        CTCCTCCTCC TCTGCTCTCG CTCAGGCGCC TCGGTGGCGG TTGGTCGGCG GTTACGCGGC
        TGGTGGTCGC GGCGGCCGGG GCTCGCTCTC GGGGAGGCCG GGGCGGATCT CGCGGCGCAG
                                                                                   180
        GCGGCGGCGG CCGAGGTGGG GTCGCGCGGC GGAGGCGGCT CGAGCTTCGT GCTGCGCGCT
        CGCTCTTGGG CTCCTCGCTG CAGGAGGAGT GTGACTATGT GCAGATGATC GAGGTGCAGC
                                                                                   300
30
        ACAAGCAGTG CCTGGAGGAG GCCCAGCTGG AGAATGAGAC AATAGGCTGC AGCAAGATGT
GGGACAACCT CACCTGCTGG CCAGCCACCC CTCGGGGCCA GGTAGTTGTC TTGGCCTGTC
                                                                                   360
        CCCTCATCTT CAAGCTCTTC TCCTCCATTC AAGGCCGCAA TGTAAGCCGC AGCTGCACCG
                                                                                   480
        ACGAAGGCTG GACGCACCTG GAGCCTGGCC CGTACCCCAT TGCCTGTGGT TTGGATGACA
AGGCAGCGAG TTTGGATGAG CAGCAGACCA TGTTCTACGG TTCTGTGAAG ACCGGCTACA
                                                                                   540
35
        CCATTGGCTA CGGCCTGTCC CTCGCCACCC TTCTGGTCGC CACAGCTATC CTGAGCCTGT
                                                                                   660
         TCAGGAAGCT CCACTGCACG CGGAACTACA TCCACATGCA CCTCTTCATA TCCTTCATCC
                                                                                   720
         TGAGGGCTGC CGCTGTCTTC ATCAAAGACT TGGCCCTCTT CGACAGCGGG GAGTCGGACC
         AGTGCTCCGA GGGCTCGGTG GGCTGTAAGG CAGCCATGGT CTTTTTCCAA TATTGTGTCA
                                                                                   840
                                                                                   900
         TGGCTAACTT CTTCTGGCTG CTGGTGGAGG GCCTCTACCT GTACACCCTG CTTGCCGTCT
40
        CCTTCTTCTC TGAGCGGAAG TACTTCTGGG GGTACATACT CATCGGCTGG GGGGTACCCA
         GCACATTCAC CATGGTGTGG ACCATCGCCA GGATCCATTT TGAGGATTAT GGTCTGCTCA
                                                                                  1020
         GGTGCTGGGA CACCATCAAC TCCTCACTGT GGTGGATCAT AAAGGGCCCC ATCCTCACCT
                                                                                  1080
         CCATCTTGGT AAACTTCATC CTGTTTATTT GCATCATCCG AATCCTGCTT CAGAAACTGC
         GGCCCCCAGA TATCAGGAAG AGTGACAGCA GTCCATACTC AAGGCTAGCC AGGTCCACAC
                                                                                  1200
45
         TCCTGCTGAT CCCCCTGTTT GGAGTACACT ACATCATGTT CGCCTTCTTT CCGGACAATT
                                                                                  1260
         TTAAGCCTGA AGTGAAGATG GTCTTTGAGC TCGTCGTGGG GTCTTTCCAG GGTTTTGTGG
                                                                                  1320
         TGGCTATCCT CTACTGCTTC CTCAATGGTG AGGTGCAGGC GGAGCTGAGG CGGAAGTGGC
                                                                                  1380
         GGCGCTGGCA CCTGCAGGGC GTCCTGGGCT GGAACCCCAA ATACCGGCAC CCGTCGGGAG
                                                                                  1440
         GCAGCAACGG CGCCACGTGC AGCACGCAGG TTTCCATGCT GACCCGCGTC AGCCCAGGTG
50
         CCCGCCGCTC CTCCAGCTTC CAAGCCGAAG TCTCCCTGGT CTGACCACCA GGATCCCAGC
                                                                                  1560
         CCAAGCGGCC CCTCCCGCCC CTTCCCACTC GCAGCAGACG CCGGGGACAG AGGCCTGCCC
                                                                                  1620
         GGGCGCCCA GCCCCGGCCC TGGGCTCGGA GGCTGCCCCC GGCCCCCTGG TCTCTGGTCC
                                                                                  1680
         GGACACTCCT AGAGAACGCA GCCCTAGAGC CTGCCTGGAG CGTTTCTAGC AAGTGAGAGA
                                                                                  1740
         GATGGGAGCT CCTCTCCTGG AGGATGCAGG TGGAACTCAG TCATTAGACT CCTCCTCCAA
                                                                                  1800
55
         AGGCCCCCTA CGCCAATCAA GGGCAAAAAG TCTACATACT TTCATCCTGA CTCTGCCCCC
         TGCTGGCTCT TCTGCCCAAT TGGAGGAAAG CAACCGGTGG ATCCTCAAAC AACACTGGTG
                                                                                  1920
         TEACCTEAGE GCAGAAAGGT TCTGCCCGGG AAGGTCACCA GCACCAACAC CACGGTAGTG
                                                                                  1980
         CCTGAAATTT CACCATTGCT GTCAAGTTCC TTTGGGTTAA GCATTACCAC TCAGGCATTT
         GACTGAAGAT GCAGCTCACT ACCCTATTCT CTCTTTACGC TTAGTTATCA GCTTTTTAAA
                                                                                  2100
60
         GTGGGTTATT CTGGAGTTTT TGTTTGGAGA GCACACCTAT CTTAGTGGTT CCCCACCGAA
                                                                                  2160
         GTGGACTGGC CCCTGGGTCA GTCTGGTGGG AGGACGGTGC AACCCAAGGA CTGAGGGACT
         CTGAAGCCTC TGGGAAATGA GAAGGCAGCC ACCAGCGAAT GCTAGGTCTC GGACTAAGCC TACCTGCTCT CCAAGTCTCA GTGGCTTCAT CTGTCAAGTG GGACTCTGTC ACACCAGCCA
                                                                                  2280
                                                                                  2340
         TTCTTATCTC TCTGTGCTGT GGAAGCAACA GGAATCAAGA GACTGCCCTC CTTGTCCACC
                                                                                  2400
65
         CACCTATGTG CCAACTGTTG TAACTAGGCT CAGAGATGTG CACCCATGGG CTCTGACAGA
                                                                                  2460
         AAGCAGATCC TCACCCTGCT ACACATACAG GATTTGAACT CAGATCTGTC TGATAGGAAT
                                                                                  2520
         GTGAAAGCAC GGACTCTTAC TGCTAACTTT TGTGTATCGT AACCAGCCAG ATCCTCTTGG
         TTATTTGTTT ACCACTTGTA TTATTAATGC CATTATCCCT GAATTCCCCT TGCCACCCCA
                                                                                  2640
         CCCTCCCTGG AGTGTGGCTG AGGAGGCCTC CATCTCATGT ATCATCTGGA TAGGAGCCTG
                                                                                  2700
70
         CTGGTCACAG CCTCCTCTGT CTGCCCTTCA CCCCAGTGGC CACTCAGCTT CCTACCCACA
         CCTCTGCCAG AAGATCCCCT CAGGACTGCA ACAGGCTTGT GCAACAATAA ATGTTGGCTT 2820
         GCAAAAAA AAAA
        SEQ ID NO:177 PM72 Protein sequence:
75
       Protein Accession #:
                                             JC2195
                                            31
                                                        41
                                                                    51
                                21
        MPPPPLLSLR RLGGGWSAVT RLVVAAAGAR SRGGRGGSRG AGGGGRGGVA RRRRLELRAA
80
        RSLIGSSLOE ECDYVOMIEV OHKOCLEEAO LENETIGCSK MWDNLTCWPA TPRGOVVVLA
```

```
CPLIPKLESS IQGRNVSRSC TDEGWTHLEP GPYPIACGLD DKAASLDEQQ TMFYGSVKTG
         YTIGYGLSLA TLLVATAILS LPRKLHCTRN YIHMHLFISP ILRAAAVPIK DLALPDSGES
                                                                                             240
         DOCSEGSVGC KAAMVFFOYC VMANFFWLLV EGLYLYTLLA VSFFSERKYF WGYILIGWGV
                                                                                             300
         PSTFTMVWTI ARIHFEDYGL LRCWDTINSS LWWIIKGPIL TSILVNFILF ICIIRILLQK
  5
         LRPFDIRKSD SSPYSRLARS TLLLIPLFGV HYIMFAFFPD NFKPEVKMVP ELVVGSFQGF
         VVAILYCFLN GEVOAELRRK WRRWHLOGVL GWNPKYRHPS GGSNGATCST OVSMLTRVSP
         GARRSSSFOA EVSLV
                                                            SEQ ID NO:178 BFF8 DNA SEQUENCE
10
         Nucleic Acid Accession #:
                                                   AL133619
                                         1-2070 (underlined sequences correspond to start and stop codons)
                    Coding sequence:
         ATGAGGGTG CGGGGGTGGC GGCTGGGACC CGGGCCTCT
15
         CGGCGCCGGC GCCAGCGCCC CTCTGTGGGC GTCCAGTCCT TGAGGCCGCA GAGCCCGCAG
         CTCAGGCAGA GCGACCCGCA GAAACGGAAC CTGGACCTGG AGAAAAGCCT GCAGTTCCTG
CAGCAGCAGC ACTCGGAGAT GCTGGCCAAG CTCCATGAGG AGATCGAGCA TCTGAAGCGG
                                                                                             180
         GAAAACAAGG GTGAGCCGGC GCGGGGCCCT AGGCCGGCCC TGCCTCCCCA GGCACACTCA
20
         ACACTGCCGC TCCCGCAGCA CAGAAACACA GCCATCAACT CCAGCACACG CCTGGGCTCA
GGGGGAACAC AGGACGGGGA GCCCCTCCAG ACTGTCCTTG CCCACCTGGC TGCACTGGCC
                                                                                             360
         CCTGTATGCC AACCCAGTGG GTACAGGTTC TGGGGGACCT GGACAGATGC CGCTACCTCT
         AGCCGTGGCT GGACGATGTT ATGCAGCCAA GCACAGCACG TGCTGCTCTC GGGAAGCCCA
GGGCCTGAGG TCATTGCAGG GCGGCAGGTG GCCACAGGGT GCTCCCCAGA CCTCCCTCCT
                                                                                             540
                                                                                              600
25
         CCTCAGATTG CTGCTGTGGC CAGGCCCAGG ATTTCCAGCC CTATGGCTCT GAGTCCTCAC ATGCTGGGGG CCCAGGGGAT ATGGACACAC TCCATCCAGG GATCCCTTCC TGCCATCTGG
                                                                                             720
                                                                                             780
         GCAGCAACCA TGGGGACAAA GGGAGGAAGC AGAGTCCTGT TTCCTTGCCA CTTGTCCAAG
         GCACTTCCCC ATCCTGACAG CGGCCCCAC CCAGCCCAGG ATCCTGGGCT GTGGTCTCAA
GCTCACTTCC CATTATCTTT GGGGCTGGGG CTGACATCAG GAGGACATCT GACTGGTGGA
                                                                                             900
30
                                                                                             960
         TGGAGCCAGC CTGGGAACAT CGCAGCTGGG GCAGTGCCTA GGGCTCTCCC TTCCCAGGGA
         GACATGGAGA AGGGGGTTGA GGGAGGGCCC TTCCCTAGCC GCTGTGGCAA CTCCAGTGAG
CTGTTCTGGG CAAAGTGTGG CCCAAGTCGG CAGCCCCAGC CCTGCAGTGC TGGGGACGCT
                                                                                            1080
                                                                                            1140
         GACAGGACAC GGGAAGAGGC CATGCTTTCC CTCGGGACCT GCTGTTCCAT GTGTCCCAAG
                                                                                            1200
35
         CCCTCCTGCT TTCCAGATGG CCCCTCAGGA AACCACCTTT CCAGGGCCTC TGCTCCCTTG
GGCGCTCGCT GGGTCTGCAT CAACGGAGTG TGGGTAGAGC CGGGAGGACC CAGCCCTGCC
                                                                                            1260
                                                                                            1320
         AGGCTGAAGG AGGGCTCCTC ACGGACACAC AGGCCAGGAG GCAAGCGTGG GCGTCTTGCG
                                                                                            1380
         1440
                                                                                            1500
40
         TCCTTCAACA AGCAAGATTC AAAAGCTGAC GTCTCCCAGA AGGCGGACCT GGAAGAGGAG
                                                                                            1560
         CCCCTACTTC ACAACAGCAA GCTGGACAAA GTTCCTGGGG TACAAGGGCA GGCCAGAAAG
GAGAAAGCAG AGGCCTCTAA TGCAGGAGCT GCCTGTATGG GGAACAGCCA GCACCAGGGC
                                                                                            1620
                                                                                            1680
         AGGCAGATGG GGGCGGGGC ACACCCCCCA ATGATCCTGC CCCTTCCCCT GCGAAAGCCC
                                                                                            1740
         ACCACACTTA GGCAGTGCGA AGTGCTCATC CGCGAGCTGT GGAATACCAA CCTCCTGCAG
ACCCAAGAGC TGCGGCACCT CAAGTCCCTC CTGGAAGGGA GCCAGAGGCC CCAGGCAGCC
                                                                                            1800
45
                                                                                            1860
         CCGGAGGAAG CTAGCTTTCC CAGGGACCAA GAAGCCACGC ATTTCCCCAA GGTCTCCACC
                                                                                            1920
         AAGAGCCTCT CCAAGAAATG CCTGAGCCCA CCTGTGGCGG AGCGTGCCAT CCTGCCCGCA
CTGAAGCAGA CCCCGAAGAA CAACTTTGCC GAGAGGCAGA AGAGGCTGCA GGCAATGCAG
                                                                                            1980
         AAACGGCCC TGCATCGCTC AGTGCTTTGA
50
         SEQ ID NO:179 BFF8 Protein sequence:
         Protein Accession #:
                                                    T43457
55
                                                  31
                                                                41
                                    21
         MSGAGVAAGT RPPSSPTPGS RRRRORPSVG VOSLRPOSPO LROSDPOKRN LDLEKSLOFL
         QQQHSEMLAK LHEBIEHLKR ENKGEPARGP RPALPPQAHS TLPLPQHRNT AINSSTRLGS
         GGTQDGEPLQ TVLAHLAALA PVCQPSGYRF WGTWTDAATS SRGWTMLCSQ AQHVLLSGSP
                                                                                             180
60
         GPEVIAGROV ATGCSPDLPP PSRAEMGRNP WDSPCPARSL PQIAAVARPR ISSPMALSPH
                                                                                             240
         MLGAQGIWTH SIQGSLPAIW AATMGTKGGS RVLFPCHLSK ALPHPDSGPH PAQDPGLWSQ
         AHFFLSLGLG LITSGGHLITGG WSQPGNIAAG AVPRALPSQG DMEKGVEGGP FPSRCGNSSE
LFWAKCGPSR QPQPCSAGDA DRITREBANLS LGTCCSMCPK PSCFPDGPSG NHLSRASAPL
                                                                                             360
                                                                                              420
         GARWYCINGV WVEPGGPSPA RLKEGSSRTH RPGGKRGRLA GGSADTVRSP ADSLEMSSPQ
65
         SVKSISNSAN SQCKARPQPG SPNKQDSKAD VSQKADLEEE PLLHNSKLDK VPGVQGQARK
EKARASNAGA ACMGNSQHQG RQMGAGAHPP MILPLPLRKP TTLRQCEVLI RELMNTNLLQ
                                                                                             540
                                                                                             600
         TOELRHLKSL LEGSORPOAA PEEASFPRDO EATHFPKVST KSLSKKCLSP PVAERAILPA
         LKOTPKNNFA EROKRLOAMO KRRLHRSVL
70
                                                            SEQ ID NO:180 BCR4 DNA SEQUENCE
                                                    NM_012319.2
         Nucleic Acid Accession #:
                                                                                          138-2405 (underlined sequences correspond to start and stop codons)
                                               Coding sequence:
75
                                                  31
         CTCGTGCCGA ATTCGGCACG AGACCGCGTG TTCGCGCCTG GTAGAGATTT CTCGAAGACA
         CCAGTGGGCC COTGTGGAAC CAAACCTGCG CGCGTGGCCG GGCCGTGGGA CAACGAGGCC
                                                                         374
```

180

```
GCGGAGACGA AGGCGCAATG GCGAGGAAGT TATCTGTAAT CTTGATCCTG ACCTTTGCCC TCTCTGTCAC AAATCCCCTT CATGAACTAA AAGCAGCTGC TTTCCCCCAG ACCACTGAGA
         AAATTAGTCC GAATTGGGAA TCTGGCATTA ATGTTGACTT GGCAATTTCC ACACGGCAAT
                                                                                            300
         ATCATCTACA ACAGCTTTTC TACCGCTATG GAGAAAATAA TTCTTTGTCA GTTGAAGGGT
TCAGAAAATT ACTTCAAAAT ATAGGCATAG ATAAGATTAA AAGAATCCAT ATACACCATG
                                                                                            360
  5
         ACCACGACCA TCACTCAGAC CACGAGCATC ACTCAGACCA TGAGCGTCAC TCAGACCATG
                                                                                            480
         AGCATCACTC AGACCACGAG CATCACTCTG ACCATGATCA TCACTCTCAC CATAATCATG CTGCTTCTGG TAAAAATAAG CGAAAAGCTC TTTGCCCAGA CCATGACTCA GATAGTTCAG
                                                                                            540
                                                                                            600
         GTAAAGATCC TAGAAACAGC CAGGGGAAAG GAGCTCACCG ACCAGAACAT GCCAGTGGTA
10
         GAAGGAATGT CAAGGACAGT GTTAGTGCTA GTGAAGTGAC CTCAACTGTG TACAACACTG
                                                                                            720
         TCTCTGAAGG AACTCACTTT CTAGAGACAA TAGAGACTCC AAGACCTGGA AAACTCTTCC
                                                                                            840
         CCAAAGATGT AAGCAGCTCC ACTOCACCCA GTGTCACATC AAAGAGCCGG GTGAGCCGGC
         TGCTGGTAG GAAAACAAAT GAATCTGTGA GTGAGCCCCG AAAAGGCTTT ATGTATTCCA
GAAACACAAA TGAAAATCCT CAGGAGTGTT TCAATGCATC AAAGCTACTG ACATCTCATG
                                                                                            900
                                                                                            960
15
         GCATGGGCAT CCAGGTTCCG CTGAATGCAA CAGAGTTCAA CTATCTCTGT CCAGCCATCA
                                                                                           1020
         TCAACCAAAT TGATGCTAGA TCTTGTCTGA TTCATACAAG TGAAAAGAAG GCTGAAATCC
CTCCAAAGAC CTATTCATTA CAAATAGCCT GGGTTGGTGG TTTTATAGCC ATTTCCATCA
                                                                                           1080
                                                                                           1140
         TCAGTTTCCT GTCTCTGCTG GGGGTTATCT TAGTGCCTCT CATGAATCGG GTGTTTTTCA
         AATTICTCCT GAGTTTCCTT GTGGCACTGG CCGTTGGGAC TTTGAGTGGT GATGCTTTTT
                                                                                           1260
20
         TACACCTTCT TOCACATTCT CATGCAAGTC ACCACCATAG TCATAGCCAT GAAGAACCAG
                                                                                           1320
         CARTGGAAAT GAAAAGAGGA CCACTTTTCA GTCATCTGTC TTCTCAAAAC ATAGAAGAAA
                                                                                           1380
         GTGCCTATTT TGATTCCACG TGGAAGGGTC TAACAGCTCT AGGAGGCCTG TATTTCATGT
                                                                                           1440
         TTCTTGTTGA ACATGTCCTC ACATTGATCA AACAATTTAA AGATAAGAAG AAAAAGAATC
                                                                                           1500
         AGAAGAAACC TGAAAATGAT GATGATGTGG AGATTAAGAA GCAGTTGTCC AAGTATGAAT
                                                                                           1560
25
         CTCAACTTTC AACAARTGAG GAGAAAGTAG ATACAGATGA TCGAACTGAA GCCTATTTAC
                                                                                           1620
         GAGCAGACTC ACAAGAGCCC TCCCACTTTG ATTCTCAGCA GCCTGCAGTC TTGGAAGAAG
                                                                                           1680
         AAGAGGTCAT GATAGCTCAT GCTCATCCAC AGGAAGTCTA CAATGAATAT GTACCCAGAG
                                                                                           1740
        GGTGCAAGAA TAAATGCCAT TCACATTTCC ACGATACACT CGGCCAGTCA GACGATCTCA
TTCACCACCA TCATGACTAC CATCATATTC TCCATCATCA CCACCACCAA AACCACCATC
                                                                                           1800
                                                                                           1860
30
         CTCACAGTCA CAGCCAGCGC TACTCTCGGG AGGAGCTGAA AGATGCCGGC GTCGCCACTT
                                                                                           1920
         TGGCCTGGAT GGTGATAATG GGTGATGGCC TGCACAATTT CAGCGATGGC CTAGCAATTG
                                                                                          1980
         GTGCTGCTTT TACTGAAGGC TTATCAAGTG GTTTAAGTAC TTCTGTTGCT GTGTTCTGTC
                                                                                           2040
         ATGAGTTGCC TCATGAATTA GGTGACTTTG CTGTTCTACT AAAGGCTGGC ATGACCGTTA
                                                                                           2100
         AGCAGGCTGT CCTTTATAAT GCATTGTCAG CCATGCTGGC GTATCTTGGA ATGGCAACAG
                                                                                          2160
35
         GAATTTCAT TGGTCATTAT GCTGAAAATG TTTCTATGTG GATATTTGCA CTTACTGCTG
                                                                                           2220
         GCTTATTCAT GTATGTTGCT CTGGTTGATA TGGTACCTGA AATGCTGCAC AATGATGCTA
                                                                                           2280
         GTGACCATGG ATGTAGCCGC TGGGGGTATT TCTTTTTACA GAATGCTGGG ATGCTTTTGG
                                                                                          2340
         GTTTTGGAAT TATGTTACTT ATTTCCATAT TTGAACATAA AATCGTGTTT CGTATAAATT
                                                                                           2400
        TCTAGTTAAG GTTTAAATGC TAGAGTAGCT TAAAAAGTTG TCATAGTTTC AGTAGGTCAT AGGGAGATGA GTTTGTATGC TGTACTATGC AGCGTTTAAA GTTAGTGGGT TTTGTGATTT
                                                                                           2460
40
                                                                                          2520
         TTGTATTGAA TATTGCTGTC TGTTACAAAG TCAGTTAAAG GTACGTTTTA ATATTTAAGT
         TATTCTATCT TGGAGATAAA ATCTGTATGT GCAATTCACC GGTATTACCA GTTTATTATG
                                                                                          2640
         TAAACAAGAG ATTTGGCATG ACATGTTCTG TATGTTTCAG GGAAAAATGT CTTTAATGCT
                                                                                          2700
         TTTTCAAGAA CTAACACAGT TATTCCTATA CTGGATTTTA GGTCTCTGAA GAACTGCTGG
45
         TGTTTAGGAA TAAGAATGTG CATGAAGCCT AAAATACCAA GAAAGCTTAT ACTGAATTTA
                                                                                          2820
         AGCAAAGAAA TAAAGGAGAA AAGAGAAGAA TCTGAGAATT GGGGAGGCAT AGATTCTTAT
                                                                                          2880
         AAAAATCACA AAATTTGTTG TAAATTAGAG GGGAGAAATT TAGAATTAAG TATAAAAAGG
        CAGAATTAGT ATAGAGTACA TTCATTAAAC ATTTTTGTCA GGATTATTTC CCGTAAAAAC GTAGTGAGCA CTCTCATATA CTAATTAGTG TACATTTAAC TTTGTATAAT ACAGAAATCT
                                                                                          3000
                                                                                          3060
50
         AAATATATTT AATGAATTCA AGCAATATAC ACTTGACCAA GAAATTGGAA TTTCAAAATG
                                                                                           3120
        TTCGTGCGGG TTATATACCA GATGAGTACA GTGAGTAGTT TATGTATCAC CAGACTGGGT
TATTGCCAAG TTATATATCA CCAAAAGCTG TATGACTGGA TGTTCTGGTT ACCTGGTTTA
                                                                                          3180
                                                                                          3240
         CAAAATTATC AGAGTAGTAA AACTTTGATA TATATGAGGA TATTAAAACT ACACTAAGTA
        TCATTTGATT CGATTCAGAA AGTACTTTGA TATCTCTCAG TGCTTCAGTG CTATCATTGT
GAGCAATTGT CTTTATATAC GGTACTGTAG CCATACTAGG CCTGTCTGTG GCATTCTCTA
                                                                                          3360
55
         GATGTTTCTT TTTTACACAA TAAATTCCTT ATATCAGCTT G
                                                         SEQ ID NO:181 BCR4 PROTEIN SEQUENCE
60
                                                  NP_036451
        Protein Accession #:
                      11
                                   21
                                                 31
                                                              41
                                                                            51
65
         Marklsvili ltfalsvtnp lhelkaaapp qttekispnw esginvdlai stroyhlool
         FYRYGENNSL SVEGFRKLLO NIGIDKIKRI HIHHDHDHHS DHEHHSDHER HSDHEHHSDH
                                                                                           120
         EHHSDHDHHS HHNHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD
        SVSASEVTST VYMTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT
NESVSEPRKG FMYSRNTNEN PORCFNASKL LITSHGMGIOV FLNATEFNYL CPAILNQIDA
                                                                                            300
70
         rsclihtsek kabippktys lqiawvggfi aisiisflsl lgvilvplmn rvffkfllsf
        LVALAVGTLS GDAFLHLLPH SHASHHHSHS HEEPAMEMKR GPLPSHLSSQ NIEESAYFDS
TWKGLTALGG LYFMPLVEHV LTLIKOFKOK KKKNOKKPEN DDDVEIKKQL SKYESQLSTN
                                                                                            420
                                                                                            480
         EEKVDTDDRT EGYLRADSQE PSHFDSQQPA VLEEEEVMIA HAHPQEVYNE YVPRGCKNKC
        HSHPHDTLGQ SDDLIHHHHD YHRILMHHHH QNHHPHSHSQ RYSREELKDA GVATLAMMVI
MGDGLHNFSD GLAIGAAPTE GLSSGLSTSV AVFCHELPHE LGDFAVLLKA GMTVKQAVLY
                                                                                            600
75
                                                                                            660
         NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS
         RWGYFFLONA GMLLGPGIML LISIPEHKIV FRINF
```



```
CAGGAAGTGA AGGCAAGAAT CAAGAGGATG GTTTTCAAAG GAGGGCGCAC GGAGACGGAA
        CTTGCTCTGA AATACCTTCT GCACAGAGGG TTGCCTGGAG GCAGAAATGC TTCTGTGCCC
                                                                                                       780
        CAGATCCTCA TCATCGTCAC TGATGGGAAG TCCCAGGGGG ATGTGGCACT GCCATCCAAG
        CAGCTGAAGE AAAGGGTET CACTGTGTTT GCTGTGGGG TCAGGTTTCC CAGGTGGAG
GAGCTGCATG CACTGCCAG CGAGCCTAGA GGGCAGCACG TGCTGTTGGC TGAGCAGGTG
                                                                                                       960
                                                                                                      1020
        GAGGATGCCA CCAACGGCCT CTTCAGCACC CTCAGCAGCT CGGCCATCTG CTCCAGCGCC
        ACGCCAGACT GCAGGGTCGA GGCTCACCCC TGTGAGCACA GGACGCTGGA GATGGTCCGG
GAGTTCGCTG GCAATGCCCC ATGCTGGAGA GGATCGCGGC GGACCCTTGC GGTGCTGGCT
                                                                                                      1080
                                                                                                      1140
        GCACACTGTC CCTTCTACAG CTGGAAGAGA GTGTTCCTAA CCCACCCTGC CACCTGCTAC
                                                                                                      1200
        AGGACCACT GCCCAGGCC CTGTGACTIC CAGCCCTGC AGAATGGAGG CACATGTTTT
CCAGAAGGAC TGGACGCTA CCAGTGCCTC TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC
0.
                                                                                                      1260
                                                                                                      1320
        TETECCETER ACCTERACET GGAATGERGG GTCGACCTC TCTTCCTGCT GGACAGCTCT GCGGGCACCA CTCTGGACGG CTTCCTGCGG GCCAAAGTCT TCGTGAAGGC GTTTGTGCGG
                                                                                                      1380
         GCCGTGCTGA GCGAGGACTC TCGGGCCCGA GTGGGTGTGG CCACATACAG CAGGGAGCTG
                                                                                                      1500
        CTGGTGGCGG TGCCTGTGGG GGAGTACCAG GATGTGCCTG ACCTGGTCTG GAGCCTCGAT
                                                                                                      1560
        GECATTCCCT TCCGTGGTGG CCCCACCTG ACGGCAGTG CCTTGCGGCA GGCGGCAGAG
CGTGGCTTCG GGAGCGCCAC CAGGACAGGC CAGGACCGC CACGTAGAGT GGTGGTTTTG
                                                                                                      1680
         CTCACTGAGT CACACTCCGA GGATGAGGTT GCGGGCCCAG CGCGTCACGC AAGGGCGCGA
                                                                                                      1740
        GAGCTGCTCC TGCTGGGTGT AGGCAGTGAG GCCGTGCGG CAGAGCTGGA GGAGATCACA
GGCAGCCCAA AGCATGTGAT GGTCTACTCG GATCCTCAGG ATCTGTTCAA CCAAATCCCT
                                                                                                      1800
                                                                                                      1860
20
                                                                                                      1920
         GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG CGGCCAGGGT GCCGGACACA AGCCCTGGAC
        CHCGTCTTCA TGTTGGACAC CTCTGCCTCA GTAGGGCCCG AGAATTTTGC TCAGATGCAG
AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT GAGGTGAACC CTGACGTGAC ACAGGTCGGC
                                                                                                      2040
         CTGGTGGTGT ATGGCAGCCA GGTGCAGACT GCCTTCGGGC TGGACACCAA ACCCACCCGG
                                                                                                      .2100
         25
                                                                                                      2220
         GTCCCCAAAG CTGTGGTGGT GCTCACAGGC GGGAGAGGCG CAGAGGATGC AGCCGTTCCT
                                                                                                      2280
        GCCCAGAAGC TGAGGAACAA TGGCATCTCT GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA
AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC CGGGATTCCC TGATCCACGT GGCAGCTTAC
                                                                                                      2400
30
         GCCGACCTGC GGTACCACCA GGACGTGCTC ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG
                                                                                                      2460
         CCAGTCAACC TCTGCAAACC CAGCCCGTGC ATGAATGAGG GCAGCTGGGT CCTGCAGAAT
GGGAGCTACC GCTGCAAGTG TCGGGATGGC TGGGAGGGCC CCCACTGCGA GAACCGTGAG
                                                                                                      2580
         TGGAGCTCTT GCTCTGTATG TGTGAGCCAG GGATGGATTC TTGAGACGCC CCTGAGGCAC
                                                                                                      2640
         TREAGGETCH GENERAL TRIBUTES ACCORDONA GENERALIS MANAGECTE GEORGETCHARA TEGETCCTIC CAGGETCCTIA GRATGETCHE GRONDIANA TEGETCCTIC CTCTEGGAAT GTCTGTCCC CAGGTCCTIA GAATGTCTGC
                                                                                                      2700
35
                                                                                                      2760
         TTCCCGCCGT GGCCAGGACC ACTATTCTCA CTGAGGGAGG AGGATGTCCC AACTGCAGCC
                                                                                                      2820
         ATTOCTOCTEA GRACAAGRA ACACTGAT GTCACCACA AACGATGTTG TTGAAAGTT
TTGATGTGTA AGTAATACC CACTTTCTGT ACCTGCTGTG CCTTGTTGAG GCTATGTCAT
                                                                                                       2880
                                                                                                       2940
         CTGCCACCTT TCCCTTGAGG ATAAACAAGG GGTCCTGAAG ACTTAAATTT AGCGGCCTGA
                                                                                                       3000
         CETTCCTTTG CACACAATCA ATGCTCGCCA GAATGTTGTT GACACAGTAA TGCCCAGCAG
AGGCCTTTAC TAGAGCATCC TTTGGACGGC GAAGGCCACG GCCTTTCAAG ATGGAAAGCA
10
                                                                                                       3120
         GCASCITITC CACTICCCCA GAGACATICI GGATGCATT GCATTGAGTC TGAAAGGGGG
CTTGAGGGAC GITTGTGACT TCTTGGCGAC TGCCTTTTGT GTGTGGAAGA GACTTGGAAA
GGTCTCAGAC TGAATGTGAC CAATTAACCA GCTTGGTTGA TGATGGGGGA GGGGCTGAGT
                                                                                                       3180
                                                                                                       3300
15
         TGTGCATGGG CCCAGGTCTG GAGGGCCACG TAAAATCGTT CTGAGTCGTG AGCAGTGTCC
         ACCTTGAAGG TCTTC
                                                                                                                             SEQ ID NO:185 CBF9 Protein sequence
                                                                                                                  Protein Accession #:
                                                                                                                                                      none tound
50
                                                       31
                                                                       41
                                                                                      51
         MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
         SVGKGSFERS KHFAITVCDG LDISPERVRV GAPOPSSTPE LEFPLDSPST QQBVKARIKR
MVPKGGRTET ELALKYLLER GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
PAVGVRPPRW EELHALASEP RGQHVLLAEQ VEDATNGLPS TLSSSAICSS ATPDCRVEAH
55
                                                                                                        240
         PCCHRILEMY REFAGNAPON RGSRRTLAVI AARCPFYSMK RYFLYTHPATC YRTYCPGPCD SQPCQNGGTC VPEGLDGYQC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL
50
         RAKVYVKRPV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIFFRGGPT
                                                                                                         420
         RAKYPYKRPY RAVISEDSKA RYGVATTAKE ILVAVYGEI (MYDDUVISI)
LTGSALRQAA ERGPGSATRT GQDRPRRVVV LLTESHSEDE VAGPARHARA RELLLEGYGS
EAVRAELEEI TGSPKHVMYY SDPQDLFNQI PELGGKLCSR QRPGCRTQAL DLVFMLDTSA
                                                                                                         540
                                                                                                         600
         SVGPENPAQM QSFVRSCALQ PEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
          APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
65
          SYLVYGYGPY LSEGLERLAG PROSLIHYAA YADLEYHOOV LIEWLCGEAK QPVNLCKPSP
         CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR EWSSCSVCVS QGWILETPLR HMAPVQEGSS
          RTPPSNYREG LGTEMVPTFW NVCAPGP
70
         SEQ ID NO:186 PAV1 DNA sequence
          Nucleic Acid Accession #:
                                             AF272890 '
                                              87-1520 (underlined sequences correspond to start and stop codons)
          Coding Sequence:
                                                        31
                                         21
75
         120
```

<b></b> .	CGCTGTCTCA TCGTGGCGGG	GCAGTGGACA CAATGTGCTG	CCCGCCTCGT GCGGGCATGG GTGATCGTGG TCCCTGGCCA	GTCTGCTGAT CCATCGCCAA	GGCGCTCATC GACGCCGCGG	GTGCTGCTCA CTGCAGACGC	240 300 360 420		
5 ⁻	AGCTGTGGAC TTGCCCTGGA GCGCGCGGGC	CTCAGTGGAC CCGCTACCTC GCGGGGCCTC	GTGGTGTGGG GTGCTGTGCG GCCATCACCT GTGTGCACCG	TGACGGCCAG CGCCCTTCCG TGTGGGCCAT	CATCGAGACC CTACCAGAGC CTCGGCCCTG	CTGTGTGTCA CTGCTGACGC GTGTCCTTCC	480 540 600 660		
10	ACCCCAAGTG CCTTCTACGT AGAAGCAGGT	CTGCGACTTC GCCCCTGTGC GAAGAAGATC	TGGCGGGCGG GTCACCAACC ATCATGGCCT GACAGCTGCG CCCGTCCCCG	GGGCCTACGC TCGTGTACCT AGCGCCGTTT	CATCGCCTCG GCGGGTGTTC CCTCGGCGGC	TCCGTAGTCT CGCGAGGCCC CCAGCGCGGC	720 780 840 900 960		
15	CCGCCGCCGC CGCGCCTCGT TCTTCACGCT AGCTGGTGCC	CGCCGCCACC GGCCCTACGC CTGCTGGCTG CGACCGCCTC	GCCCCGCTGG GAGCAGAAGG CCCTTCTTCC TTCGTCTTCT	CCAACGGGCG CGCTCAAGAC TGGCCAACGT TCAACTGGCT	TGCGGGTAAG GCTGGGCATC GGTGAAGGCC GGGCTACGCC	CGGCGGCCCT ATCATGGGCG TTCCACCGCG AACTCGGCCT	1020 1080 1140 1200		•
20	GCTGCGCGCG CGGGCTGTCT ACGACGATGT	CAGGGCTGCC GGCCCGGCCC CGTCGGGGCC	CGCAGCCCCG CGCCGGCCCCGC ACGCCGCCCG AGCGACTCGA	ACGCGACCCA CATCGCCCGG CGCGCCTGCT	CGGAGACCGG GGCCGCCTCG GGAGCCCTGG	CCGCGCGCCT GACGACGACG GCCGGCTGCA	1260 1320 1380 1440 1500		
25	CCTCGGAATC GGGAACGAGG CCTCGTCTGA	CAAGGTG <u>TAG</u> AGATCTGTGT ATCATCCGAG	GGCCCGGCGC TTACTTAAGA	GGGGCGCGGA CCGATAGCAG AAGCCACGGA	CTCCGGGCAC GTGAACTCGA CCGTTGCACA	GGCTTCCCAG	1560 1620 1680	•	
30							Protein Accession #:	SEQ ID NO:187 PAV1	Protein sequence AA011176
35			21     PLPDGAATAA   VAIAKTPRLQ				60 120	,	
40	TVWAISALVS AFVYLRVFRE LANGRAGKRR FFNWLGYANS	FLPILMHWWR AQKQVKKIDS PSRLVALREQ AFNPIIYCRS	CVTASIETIC AESDEARRCY CERRFLGGPA KALKTLGIIM PDFRKAFQGL PARLLEPWAG	NDPKCCDFVT RPPSPSPSPV GVFTLCWLPF LCCARRAARR	NRAYAIASSV PAPAPPPGPP FLANVVKAFH RHATHGDRPR	VSPYVPLCIM RPAAAAATAP RELVPDRLFV ASGCLARPGP	180 240 300 360 420		
45	SEQ ID NO:188 Nucleic Acid Acco		nce AJ400877 sequence:		31-3080 (underline	d sequences corres	spond to start and stop c	codons)	
50	GGCGTCCGC CCGCAACCG	 G CACACCTCC C TGAGCCATC	CC ATGGGGGT	rcg cggccc	CAA COGTCC	TCCG CCGCCTY CGGG GCGGCC GGG GCCGTCC	CTGGG 120		
55	CGGGTCGGG ATGACTGCC AGCCTGGCT TCAATGGAG TTGATGGCT	G CCGTGCCG A TGCCGACGG A CCAAGGGG G CTGTGTCCA I CATGTTGGC	CG GGGCCGC. CC CTGTGTCA AA GGCAGGC. AT GACTGTTT T CATGACGG	AGG AGGATG GA ACACACC AGT GTGAGG GA ATATTCC/ IC ATAATTGT	TAGA TGAGTO CAC CTCCTAC ACAT CGATGA AGG CAATTAT CT TGATGTG	STGCC CAAGG CAAG TGCTCCT AATGT GGAAA CGT TGCACTT GAC GAGTGCC	GCTAG 240 IGCA 300 TGAGC 360 GTT 420 ITGG 480		
60	GCAAGGAGG GCCTGAGCTCG GCAGCGTCG TCTTGACCTC	G GITTITCCT G CATGAATA/ C CTGTGAGT( G TAACCATGG	TG AGTGACAA AG GATCACGO BC AGGCCTGO BG AACGGTGG	ATC AGCACAC GCT GTAGTCA GTT TTGAGCT GGT GCCAGCA	CTG CATTCA( CAT CTGCAA( GGC CAAGAA( CTC CTGTGA(	CTAT GAGTGC CCGC TCGGAA GGAG GCCCCA CCAG AGAGAC CGAT ACAGCO	GAGG 600 LAGGG 660 CTGCA 720 GATG 780		
65	AGCGAGAGG ATAAACGGG ACCGCACCT	A CACTGTCC T GAAACGGC G TAAGGATA(	TG GAGGTGA GG CTGCTCA CT TCGACAGO	CAG AGAGCA IGG AAACGTO ITG TCCACTG	ACAC CACATO STGC TGTCAA CAG TTGTCCT	GAGG AGCTG CAGTG GTGGA CAAT GGAGG GTT GGATTCA CCGC AATGGA	TGGGG 900 CTGTG 960 ACTC 1020		
70	GTGATCATTT AATTATTAAG GTGACCACAG CCCTGTATGG	T CTGCAAAAA C AGATGAGAA G CTGCATCAA G CTTCACCCA	AC ATCGTGGG AG TCTTGCCA AC CACCCTGG AC TGTGGAGA	CA GITTIGA AG ATGTGGA CA CATTIGC CA CCAATGA	CTG CGGCTGC TGA GTGCTC TTG TGCTTGC GTG CAGCATC	AAG AAAGGA ITTG GATAGG AAC CGAGGG CAAC AACGGA CCAC CCTGGG	TTTA 1140 ACCT 1200 FACA 1260 GGCT 1320		
75	CACCCGTGT GTCACTCTGG AGCTAAATG CAGCACTAO	I GTCCCTGCA G CATTCACCT A AGGCAAGT C AGAGAAGC	C TGCGGTAA C TCTTCAGA1 GT AGTTTGAA AC AGCTCAG	GA GTGGTGG IG TCACCACO AAA ATGCTGA IAA AAGAGA	AGG AGACGG AT CAGGACA AGCT GTTTCC GCTT CCGCTA	GCCC ACAAGT GTGC TTCCTC. AGT GTAACCT CGAG GGTCTG CGTA AACCTT	AGAT 1500 TTA 1560 CGAC 1620 FACAT 1680		
80						CCCT AAGGA/ AGCT TCTTGTC 8			

TGAGCTGCAT CGTAAAGCGA ACCGAGAAGC GGCTCCGTAA AGCCATCCGC ACGCTCAGAA 1860 AGGCCGTCCA CAGGGAGCAG TTTCACCTCC AGCTCTCAGG CATGAACCTC GACGTGGCTA 1920 AAAAGCCTCC CAGAACATCT GAACGCCAGG CAGAGTCCTG TGGAGTGGGC CAGGGTCATG 1980 CAGAAAACCA ATGTGTCAGT TGCAGGGCTG GGACCTATTA TGATGGAGCA CGAGAACGCT 2040 5 GCATTTTATG TCCAAATGGA ACCTTCCAAA ATGAGGAAGG ACAAATGACT TGTGAACCAT 2100 GCCCAAGACC AGGAAATTCT GGGGCCCTGA AGACCCCAGA AGCTTGGAAT ATGTCTGAAT 2160 GTGGAGGTCT GTGTCAACCT GGTGAATATT CTGCAGATGG CTTTGCACCT TGCCAGCTCT 2220 GTGCCCTGGG CACGTTCCAG CCTGAAGCTG GTCGAACTTC CTGCTTCCCC TGTGGAGGAG 2280
GCCTTGCCAC CAAACATCAG GGAGCTACTT CCTTTCAGGA CTGTGAAACC AGAGTTCAAT 2340
GTTCACCTGG ACATTTCTAC AACACCACCA CTCACCGATG TATTCGTTGC CCAGTGGAA 2400 10 CATACCAGCC TGAATTTGGA AAAAATAATT GTGTTTCTTG CCCAGGAAAT ACTACGACTG 2460 ACTITIGATEG CTCCACAAAC ATAACCCAGT GTAAAAACAG AAGATGTGGA GGGGAGCTGG 2520
GAGATTTCAC TGGGTACATT GAATCCCCAA ACTACCCAGG CAATTACCCA GCCAACACCG 2580 AGTGTACGTG GACCATCAAC CCACCCCCA AGCGCCGCAT CCTGATCGTG GTCCCTGAGA 2640 15 TCTTCCTGCC CATAGAGGAC GACTGTGGGG ACTATCTGGT GATGCGGAAA ACCTCTTCAT 2700 CCAATTCTGT GACAACATAT GAAACCTGCC AGACCTACGA ACGCCCCATC GCCTTCACCT 2760 CCAGGTCAAA GAAGCTGTGG ATTCAGTTCA AGTCCAATGA AGGGAACAGC GCTAGAGGGT 2820 TCCAGGTCCC ATACGTGACA TATGATGAGG ACTACCAGGA ACTCATTGAA GACATAGTTC 2880 GAGATGGCAG GCTCTATGCA TCTGAGAACC ATCAGGAAAT ACTTAAGGAT AAGAAACTTA 2940 TCAAGGCTCT GTTTGATGTC CTGGCCCATC CCCAGAACTA TTTCAAGTAC ACAGCCCAGG 3000 20 AGICCOGAGA GATGITTICCA AGATCGTICA TCCGATTGCT ACGITTCCAAA GTGTCCAGG 3060
TTTTGAGACC TTACAAATGA CTCAGCCCAC GTGCCACTCA ATACAAATGT TCTGCTATAG 3120
GGTTGGTGGG ACAGAGCTGT CTTCCTTCTG CATGTCAGCA CAGTCGGGTA TTGCTGCCTC 3180
CCGTATCAGT GACTCATTAG AGTTCAATTT TTATAGATAA TACAGATATT TTGGTAAATT 3240 25 GAACTTGGTT TTTCTTTCCC AGCATCGTGG ATGTAGACTG AGAATGGCTT TGAGTGGCAT 3300 CAGCTTCTCA CTGCTGTGGG CGGATGTCTT GGATAGATCA CGGGCTGGCT GAGCTGGACT 3360 TTGGTCAGCC TAGGTGAGAC TCACCTGTCC TTCTGGGGTC TTACTCCTCC TCAAGGAGTC 3420 TGTAGTGGAA AGGAGGCCAC AGAATAAGCT GCTTATTCTG AAACTTCAGC TTCCTCTAGC 3480
CCGGCCCTCT CTAAGGGAGC CCTCTGCACT CGTGTGCAGG CTCTGACCAG GCAGAACAGG 3540
CAAGAGGGGA GGGAAGGAGA CCCCTGCAGG CTCCCTCCAC CCACCTTGAG ACCTGGGAGG 3600 ACTCAGTTTC TCCACAGCCT TCTCCAGCCT GTGTGATACA AGTTTGATCC CAGGAACTTG 3660 AGTTCTAAGC AGTGCTCGTG AAAAAAAAA GCAGAAAGAA TTAGAAATAA ATAAAAACTA 3720 AGCACTTCTG GAGACAT 35 SEQ ID NO:189 BCO2 Protein sequence CAR92285 11 21 31 41 51 40 MGVAGRNRPG AAWAVILLLI ILPPILILAG AVPPGRGRAA GPQEDVDECA QGLDDCHADA 60 LCONTPTSYK CSCKPGYQGE GRQCEDIDEC GNELNGGCVH DCLNIPGNYR CTCFDGFMLA 120 HDGHNCLDVD ECLENNGGCO HTCVNVMGSY ECCCKEGFFL SDNOHTCHR SEBGLSCMNK 180 DHGCSHICKE APRGSVACEC RPGFELAKNQ RDCILTCNHG NGGCQHSCDD TADGPECSCH 240 45 PQYKMHTDGR SCLEREDTVL EVTESNTTSV VDGDKRVKRR LLMETCAVNN GGCDRTCKDT 300 STGVHCSCPV GFTLQLDGKT CKDIDECQTR NGGCDHPCKN IVGSFDCGCK KGFKLLTDEK 360 SCQDVDECSL DRTCDHSCIN HPGTFACACN RGYTLYGFTH CGDTNECSIN NGGCQQVCVN 420 TVGSYECQCH FGYKLHWNKK DCVEVKGLP TSVSRVSLH CGKSGGGDGC FLRCHSGHL 480 SSDVTTIRTS VTFKLNEGKC SLKNAELFPE GLRPALPEKH SSVKESFRYV NLTCSSGKQV 540 PGAPGRPSTP KEMFITVEFE LETNQKEVTA SCDLSCIVKR TEKRLRKAIR TLRKAVEREQ 600 50 PHAGAURYSTP KEMPHIVEFE LEINQAEVIA SUDISLIVAR TERKURAAR ILKAAVBRUG 000
FHLQLSGMINL DVAKKPPRTS ERQAESCGVG QGHAENQCVS CRAGTYYDGA RERCILCPNG 660
TRQNEEGQMT CEPCPRPGNS GALKTPEAWN MSECGGLOP GBYSADGRAP CQLCALGTTQ 720
PEAGRTSCFP CGGGLATKHQ GATSFQDCET RVQCSPGHFY NTTTERCIRC PVGTYQPEFG 780
KNNCVSCPGN TITDFDGSTN ITQCKNRRCG GELGDFTGYI ESPNYPGNYP ANTECTWTIN 840 55 PPPKRRILIV VPEIFLPIED DCGDYLVMRK TSSSNSVTTY ETCQTYERPI AFTSRSKKLW 900 IQFKSNEGNS ARGFQVPYVT YDEDYQELIE DIVRDGRLYA SENHQEILKD KKLIKALFDV 960 LAHPONYFKY TAQESREMFP RSFIRLLRSK VSRFLRPYK SEQ ID NO:190 BFG1 DNA sequence Nucleic Acid Accession #: 60 AF007170 Coding sequence: 1-1725 (underlined sequences correspond to stop codon) 31 65 AAGGAGGCGG CCTCCGGGAA AAGCGACCGC AGGACTCCTG AGAGCAGCCT CCATGAGGCC 60 CTGGACCAGT GCATGACCGC CCTGGACCTC TTCCTCACCA ACCAGTTCTC AGAAGCACTC 120 AGCTACCTCA AGCCCAGAAC CAAGGAAAGC ATGTACCACT CACTGACATA TGCCACCATC 180 CTGGAGATGC AGGCCATGAT GACCTTTGAC CCTCAGGACA TCCTGCTTGC CGGCAACATG 240 ATGAAGGAGG CACAGATGCT GTGTCAGAGG CACCGGAGGA AGTCTTCTGT AACAGATTCC 300 TTCAGCAGCC TGGTGAACCG CCCCACGCTG GGCCAATTCA CTGAAGAAGA AATCCACGCT 360 70 GAGGTCTGCT ATGCAGAGTG CCTGCTGCAG CGAGCAGCCC TGACCTTCCT GCAGGACGAG 420
AACATGGTGA GCTTCATCAA AGGCGGCATC AAAGTTCGAA ACAGCTACCA GACCTACAAG 480
QAGCTGGACA GCCTTGTTCA GTCCTCACAA TACTGCAAGG GTGAGAACCA CCCGCACTTT 540 GAAGGAGGAG TGAAGCTTGG TGTAGGGGCC TTCAACCTGA CACTGTCCAT GCTTCCTACT 600
AGGATCCTGA GGCTGTTGGA GTTTGTGGGG TTTTCAGGAA ACAAGGACTA TGGGCTGCTG 660
CAGCTGGAGG AGGGAGCGTC AGGGCACAGC TTCCGCTCTG TGCTCTGTGT CATGCTCCTG 720 75 CTGTGCTACC ACACCTTCCT CACCTTCGTG CTCGGTACTG GGAACGTCAA CATCGAGGAG 780
GCCGAGAAGC TCTTGAAGCC CTACCTGAAC CGGTACCCTA AGGGTGCCAT CTTCCTGTTC 840
TTTGCAGGGA GGATTGAAGT CATTAAAGGC AACATTGATG CAGCCATCCG GCGTTTCGAG 900

GAGTGCTGTG AGGCCCAGCA GCACTGGAAG CAGTTTCACC ACATGTGCTA CTGGGAGCTG 960 ANGIGETIGE AGGECCACCA GEACTIGAAG CACITICACE ACATGIGETA CIGGGAGETO 560
AGGAAGGAGA ACTGCTGGTC CAAGGCCACC TACATTTACA TGAAGGCCGC CTACCTCAGC 1080
ATGTTTGGGA AGGAGGACCA CAAGCCGTTC GGGGACGACG AAGTGGAATT ATTTCGAGCT 1140
GTGCCAGGCC TGAAGCTCAA GATTGCTGGG AAATCTCTAC CCACAGAGAA GTTTGCCATC 1200 CGGAAGTCCC GGCGCTACTT CTCCTCCAAC CCTATCTCGC TGCCAGTGCC TGCTCTGGAA 1260 ATGATGTACA TCTGGAACGG CTACGCCGTG ATTGGGAAGC AGCCGAAACT CACGGATGGG 1320
ATACTTGAGA TTATCACTAA GGCTGAAGAG ATGCTGGAGA AAGGCCCAGA GAACGAGTAC 1380 TCAGTGGATG ACGAGTGCTT GGTGAAATTG TTGAAAGGCC TGTGTCTGAA ATACCTGGGC 1440 10 CGTGTCCAGG AGGCCGAGGA GAATTTTAGG AGCATCTCTG CCAATGAAAA GAAGATTAAA 1500 TATGACCACT ACTTGATCCC AAACGCCCTG CTGGAGCTGG CCCTGCTGCT TATGGAGCAA 1560 GACAGAAACG AAGAGGCCAT CAAACTTTTG GAATCTGCCA AGCAAAACTA CAAGAATTAC 1620 TCCATGGAGT CAAGGACACA CTTTCGAATC CAGGCAGCCA CACTCCAAGC CAAGTCTTCC 1680 CTAGAGAACA GCAGCAGATC CATGGTCTCA TCAGTGTCCT TGTAGCTTTG TGCAGCAGTT 1740 CCGGGCTGGA AGACAGAGAC AGCTGGACAG AGCTCCTGAA AACATTTCAA AATACCCCCT 1800 15 CCCCCTGCCC TGCCCTGCCT TTGGGGTCCA CCGGCACTCC AGTTGGATGG CACAACATAG 1860 TGTATOCOTG CAGAAGCCGA GCTGGCATTT TCACCAGTGT AGCCAAGGGC CTTTGCCAAG 1920 GGCAGAGCAG GTGGAGCCCT CTGCCTGCCC TATCACACAT ACGGGTACTT GCTTTTCACT 1980 GTGATGTTTA AGAGAATGTA TGAACAGTTT ACATTTTCCT TAGAAATACA TTGATGGGAT 2040 20 CACAGTTGGC TTTAAAAACC AACAACAATC AACCACCTGT AAGTCTTTGT CTTCACCTAT 2100
TATCATCTGG AGGTAAATCT CTTTATATGA TGATGCCAAA GGGCAAATTG CTTTTCAAAT 2160
TCAGCAAGTT CTCAGCTTGT GTGACGGAAG GTCCTTCAGA GGACCTGAGG AATGCCTGGG 2220 AGAGGCTAAG CCTCAGGCTT CAATGCTTCT GGGGTTGGGC ATGAGGATGT ACACAGACAC 2280 CCACTACCTT ACTACTCACA CTTCATTTCA CTCCTTTTGT AAATTTCCAA TTTAAAAATC 2340 AAGCACGTCT TTTTAGTGAG ATAAAATCTG AGCTCTTCTG TAGAAAAATC AATCTCTACC 2400 AGTAGAAAAT GCCAGGGCTT GATGGAAGAG CTGTGTAGCC CTTTCTATGC CAAAGCCAGG 2460 25 AAATTTGGGG GGCAGGAGGA GGTTCTCAGA ATCCAGTCTG TATCTTTGCT GTATGCCAAA 2520 CTGAAACCAC TGGGAATAAT TTATGAAACA TAAAAATCTT CTGTACTTCA CTCCAAGGTA 2580 CATTTGCTTA CTGACAGCAT TITTIGTTAAA ACTGTTATTC TTGAAAAAA AAAAAAAAA 2640 30 SEQ ID NO:191 BFG1 Protein sequence Protein Accession #: AAC39582 35 11 21 31 41 51 MTALDLFLTN QFSEALSYLK PRTKESMYHS LTYATILEMQ AMMTFDPQDI LLAGNMMKEA 60 OMLCORHRRK SSYTDSFSSL VNRPTLGQFT EEEIHAEVCY AECLLQRAAL TFLQDENMVS 120 FIKGGIKVRN SYQTYKELDS LVQSSQYCKG ENHPHFEGGV KLGVGAFNLT LSMLPTRILR 180 LLEFVGFSGN KDYGLLQLEE GASGHSFRSV LCVMLLLCYH TFLTFVLGTG NVNIEEAEKL 240 LKPYLNRYPK GAIFLFFAGR IEVIKGNIDA AIRRFEECCE AQQHWKQFHH MCYWELMWCF 300 40 TYKGQWKMSY FYADLLSKEN CWSKATYIYM KAAYLSMFGK EDHKPFGDDE VELFRAVPGL 360 KLKIAGKSLP TEKFAIRKSR RYFSSNPISL PVPALEMMYI WNGYAVIGKQ PKLITDGILEI 420 ITKAEEMLEK GPENEYSVDD ECLVKLLKGL CLKYLGRVQE AEENFRSISA NEKKIKYDHY 480 45 LIPNALLELA LLIMEQDRNE EAIKLLESAK ONYKNYSMES RTHFRIQAAT LQAKSSLENS 540 SRSMVSSVSL 50 SEQ ID NO:192 BFO6 DNA sequence NM 0325R3 Vucteic Acid Accession #: 1-4044 (underlined sequences correspond to start and stop codors) Coding sequence: 41 55 ATGACTAGGA AGAGGACATA CTGGGTGCCC AACTCTTCTG GTGGCCTCGT GAATCGTGGC 60 ATCGACATAG GCGATGACAT GGTTTCAGGA CTTATTTATA AAACCTATAC TCTCCAAGAT 120
GGCCCCTGGA GTCAGCAAGA GAGAAATCCT GAGGCTCCAG GGAGGGCAGC TGTCCCACCG 180
TGGGGGAAGT ATGATGCTGC CTTGAGAACC ATGATTCCCT TCCGTCCCAA GCCGAGGTTT 240 60 CCTGCCCCC AGCCCCTGGA CAATGCTGGC CTGTTCTCCT ACCTCACCGT GTCATGGCTC 300
ACCCCGCTCA TGATCCAAAG CTTACGGAGT CGCTTAGATG AGAACACCAT CCCTCCACTG 360
TCAGTCCATG ATGCCTCAGA CAAAAATGTC CAAAGGCTTC ACCGCCTTTG GGAAGAAGAA 420 GTCTCAAGGC GAGGGATTGA AAAAGCTTCA GTGCTTCTGG TGATGCTGAG GTTCCAGAGA 480
ACAAGGTTGA TTTTCGATGC ACTTCTGGGC ATCTGCTTCT GCATTGCCAG TGTACTCGGG 540
CCAATATTGA TTATACCAAA GATCCTGGAA TATTCAGAAG AGCAGTTGGG GAATGTTGTC 600 65 CATGGAGTGG GACTCTGCTT TGCCCTTTTT CTCTCCGAAT GTGTGAAGTC TCTGAGTTTC 660
TCCTCCAGTT GGATCATCAA CCAACGCACA GCCATCAGGT TCCGAGCAGC TGTTTCCTCC 720
TTTGCCTTTG AGAAGCTCAT CCAATTTAAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780 TITIGCCTITIG AGAAGCTCAT CCAATTTAAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780
ATCAGCTTCT TCACCGGTGA TGTAAACTAC CTGTTGAAG GGGTGTGCTA TGGACCCCTA 840
GTACTGATCA CCTGCGCATC GCTGGTCATC TGCAGCATTT CTTCCTACTT CATTATTGGA 900
TACACTGCAT TTATTGCCAT CTTATGCTAT CTCCTGGTTT TCCCACTGGC GGTATTCATG 960
ACAAGAATGG CTGTGAAGGC TCAGCATCAC ACATCTGAGG TCAGCGACCA GCCGCATCCGT 1020
GTGACCAGTG AAGTTCTCAC TTGCATTAAG CTGATTAAAA TGTACACATG GGAGAAACCA 1080
TTTGCAAAAA TCATTGAAGG TATGGAAAGT CTGACTTTCT GCTCCAAAACC TGGTGATGGC 1140
ATGGCCTTCA GCATGCTGGC CTCCTTGAAT CTCCTTCGGC TGTCAGTGTT CTTTGTGGCCT 1200 70 75 ATTICAGTCA AAGGTCTCAC GAATTCCAAG TCTGCAGTGA TGAGGTTCAA GAAGTTTTTC 1260 CTCCAGGAGA GCCCTGTTTT CTATGTCCAG ACATTACAAG ACCCCAGCAA AGCTCTGGTC 1320 TTTGAGGAGG CCACCTTGTC ATGGCAACAG ACCTGTCCCG GGATCGTCAA TGGGGCACTG 1380 GAGCTGGAGA GGAACGGGCA TGCTTCTGAG GGGATGACCA GGCCTAGAGA TGCCCTCGGG 1440

CCAGAGGAAG AAGGGAACAG CCTGGGCCCA GAGTTGCACA AGATCAACCT GGTGGTGTCC 1500 AAGGGGATGA TGTTAGGGGT CTGCGGCAAC ACGGGGAGTG GTAAGAGCAG CCTGTTGTCA 1560 GCCATCCTGG AGGAGATGCA CTTGCTCGAG GGCTCGGTGG GGGTGCAGGG AAGCCTGGCC 1620
TATGTCCCCC AGCAGGCCTG GATCGTCAGC GGGAACATCA GGGAGAACAT CCTCATGGGA 1680
GGCGCATATG ACAAGGCCCG ATACCTCCAG GTGCTCCACT GCTGCTCCCT GAATCGGGAC 1740 5 CTGGAACTTC TGCCCTTTGG AGACATGACA GAGATTGGAG AGCGGGGCCT CAACCTCTCT 1800 GGGGGGCAGA AACAGAGGAT CAGCCTGGCC CGCGCCGTCT ATTCCGACCG TCAGATCTAC 1860 CTGCTGGACG ACCCCCTGTC TGCTGTGGAC GCCCACGTGG GGAAGCACAT TTTTGAGGAG 1920 TGCATTAAGA AGACACTCAG GGGGAAGACG GTCGTCCTGG TGACCCACCA GCTGCAGTAC 1980 TTAGAATTTT GTGGCCAGAT CATTTTGTTG GAAAATGGGA AAATCTGTGA AAATGGAACT 2040 CACAGTGAGT TAATGCAGAA AAAGGGGAAA TATGCCCAAC TTATCCAGAA GATGCACAAG 2100 10 GAAGCCACTT CGGACATGTT GCAGGACACA GCAAAGATAG CAGAGAAGCC AAAGGTAGAA 2160 AGTCAGGCTC TGGCCACCTC CCTGGAAGAG TCTCTCAACG GAAATGCTGT GCCGGAGCAT 2220 CAGCTCACAC AGGAGGAGGA GATGGAAGAA GGCTCCTTGA GTTGGAGGGT CTACCACCAC 2280 TACATCCAGG CAGCTGGAGG TTACATGGTC TCTTGCATAA TTTTCTTCTT CGTGGTGCTG 2340 15 ATCGTCTTCT TAACGATCTT CAGCTTCTGG TGGCTGAGCT ACTGGTTGGA GCAGGGCTCG 2400 GGGACCAATA GCAGCCGAGA GAGCAATGGA ACCATGGCAG ACCTGGGCAA CATTGCAGAC 2460
AATCCTCAAC TGTCCTTCTA CCAGCTGGTG TACGGGCTCA ACGCCCTGCT CCTCATCTGT 2520
GTGGGGGTCT GCTCCTCAGG GATTTTCACC AAAGTCACGA GGAAGGCATC CACGGCCCTG 2580 20 CACAACAAGC TOTTCAACAA GGTTTTCCGC TGCCCCATGA GTTTCTTTGA CACCATCCCA 2640
ATAGGCCGGC TTTTGAACTG CTTCGCAGGG GACTTGGAAC AGCTGGACCA GCTCTTGCCC 2700
ATCTTTTCAG AGCAGTTCCT GGTCCTGTCC TTAATGGTGA TCGCCGTCCT GTTGATTGTC 2760 AGTGTGCTGT CTCCATATAT CCTGTTAATG GGAGCCATAA TCATGGTTAT TTGCTTCATT 2820 TATTATATGA TGTTCAAGAA GGCCATCGGT GTGTTCAAGA GACTGGAGAA CTATAGCCGG 2880 TCTCCTTTAT TCTCCCACAT CCTCAATTCT CTGCAAGGCC TGAGCTCCAT CCATGTCTAT 2940 25 GGAAAAACTG AAGACTTCAT CCICAATICT CIGCAAGGC TGAGCICCAT CCATGCTAT 2500
GGAAAAACTG AAGACTTCAT CAGCCAGTTT AAGAGGCTGA CTGATGCGCA GAATAACTAC 3000
CTGCTGTTGT TTCTATCTTC CACACGATGG ATGGCATTGA GGCTGGAGAT CATGACCAAC 3060
CTTGTGACCT TGGCTGTTGC CCTGTTCGTG GCTTTTGGCA TTTCCTCCAC CCCCTACTCC 3120
TTTAAAGTCA TGGCTGTCAA CATCGTGCTG CAGCTGGCGT CCAGCTTCCA GGCCACTGCC 3180 30 CGGATTGGCT TGGAGACAGA GGCACAGTTC ACGGCTGTAG AGAGGATACT GCAGTACATG 3240
AAGATGTGT TCTCGGAAGC TCCTTTACAC ATGGAAGGCA CAAGTTGTCC CCAGGGGTGG 3300
CCACAGCATG GGGAAATCAT ATTTCAGGAT TATCACATGA AATACAGAGA CAACACACC 3360 ACCOTGCTTC ACGCCATCAA CCTGACCATC COCGGCCACG AAGTGGTGGG CATCGTGGGA 3420
AGGACGGGCT CTGGGAAGTC CTCCTTGGGC ATGCCTCTCT TCCGCCTGGT GGAGCCCATG 3480
GCAGGCCGGA TTCTCATTGA CGGCGTGGAC ATTTGCAGCA TCGGCCTGGA GGACTTGCGG 3540 35 TCCAAGCTCT CAGTGATCCC TCAAGATCCA GTGCTGCTCT CAGGAACCAT CAGATTCAAC 3600 CTAGATOCCT TTGACCGTCA CACTGACCAG CAGATCTGGG ATGCCTTGGA GAGGACATTC 3660 CTGACCAAGG CCATCTCAAA GTTCCCCAAA AAGCTGCATA CAGATGTGGT GGAAAACGGT 3720 GGAAACTTCT CTGTGGGGGA GAGGCAGCTG CTCTGCATTG CCAGGGCTGT GCTTCGCAAC 3780 40 TCCAAGATCA TCCTTATCGA TGAAGCCACA GCCTCCATTG ACATGGAGAC AGACACCCTG 3840 ATCCAGCGCA CAATCCGTGA AGCCTTCCAG GGCTGCACCG TGCTCGTCAT TGCCCACCGT 3900 GTCACCACTG TGCTGAACTG TGACCACATC CTGGTTATGG GCAATGGGAA GGTGGTAGAA 3960 TTTGATCGGC CGGAGGTACT GCGGAAGAAG CCTGGGTCAT TGTTCGCAGC CCTCATGGCC 4020 ACAGCCACTT CTTCACTGAG A<u>TAA</u>GGAGAT GTGGAGACTT CATGGAGGCT GGCAGCTGAG 4080 CTCAGAGGTT CACACAGGTG CAGCTTCGAG GCCCACAGTC TGCGACCTTC TTGTTTGGAG 4140 45 ATGAGAACTT CTCCTGGAAG CAGGGGTAAA TGTAGGGGGG GTGGGGATTG CTGGATGGAA 4200 ACCCTGGAAT AGGCTACTTG ATGGCTCTCA AGACCTTAGA ACCCCAGAAC CATCTAAGAC 4260 ATGGGATTCA GTGATCATGT GGTTCTCCTT TTAACTTACA TGCTGAATAA TTTTATAATA 4320 AGGTAAAAGC TTATAGTTTT CTGATCTGTG TTAGAAGTGY TGCAAATGCT GTACTGACTT 4380 50 TGTAAAATAT AAAACTAAGG AAAACTCAAA AAAAAAAAA AAAAAAA

# SEQ ID NO:193 BFO6 Protein sequence Protein Accession #: NP_115972.1

FDRPEVLRKK PGSLFAALMA TATSSLR

1		<b>SEQ ID NO:194</b>	BHB8 DNA seque					
1	_	Nucleic Acid Acc	ession #:	AA983251				
### ATCORDICTOR GUTTCTTRIAT GARTCCCATT ACCCAGGACA GAGCACAGTA CACTCCCGGA GAGAAGAAAC TOCOGGAGAGA GGGTTCCATTC GUTTGGGAC GCGGAGCCCGAGC GGGAGCCCGAGCCCGAGCCCGAGCCCGAGCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCCGAGCCCGAGCCCCGAGCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCCC	5	Coding sequence	Ľ	1-1749 (un	derlined sequence	s correspond to st	art and stop codons	3)
### ATCORDICTOR GUTTCTTRIAT GARTCCCATT ACCCAGGACA GAGCACAGTA CACTCCCGGA GAGAAGAAAC TOCOGGAGAGA GGGTTCCATTC GUTTGGGAC GCGGAGCCCGAGC GGGAGCCCGAGCCCGAGCCCGAGCCCGAGCCGAGCCCGAGCCCGAGCCCGAGCCCGAGCCCCGAGCCCGAGCCCCGAGCCCGAGCCCCGAGCCCCGAGCCCCGAGCCCCCC				••	••			
GRAAGABAR TYCCOTGGGG GGGTCCCCGCGGCTCC CTCCCGGGCTCCCCCCCC		1	11	21	31	41	51	
GRAAGABAR TYCCOTGGGG GGGTCCCCGCGGCTCC CTCCCGGGCTCCCCCCCC		Paracarcarcarc	Contained and C Value	CACTOCCACT	ACCCAGCACA	CACCACACTA	CACTCCCCGA	60
GROCGGGGGG   GGGAGGGGG   GCGGGGGGGGG   GCGCCGCGC   GGGGCCGCC   GGGGGGGG	10							
GOGGAGGGCC   CACAGCAGC   CACAGCAGC   CACAGCAGC   CACAGCAGC   CACAGCAGCAGC   CACAGCAGCAGCAGCAGCAGCAGCAGCAGCACCAGCAGCA								
15 TOCGGACCA CACCCOGGG GEOTTCYNAG TECHNOLOGY ACTYCATA ACCASTOCA 420 ACTYCATANG CAGTOCCTAN GEGALOGGG CACACGGCT AGRACOGGGA TGGCTTAGGA CTCCTGGAC CTAGGGCCC GCCTCTAGGA CACCGGGC TGCCCTAGGA CTCCTGGAC CTAGGGCCCC GCCTCTGAG CACCGGCCT AGGACGGGA GGGGAGGGG CTCCTGGAG ACCGCCCTCG GCCTCTGGA GACCGCCTG CGCGCCAG GGGGGCCAG TGCCGCGCGG GACAGTCAGT GACCGGCCT GCCGCCAG GGGGGCCAG GGGGGCCAG TGCCTGGCCAC GCCGCCCTC GCCTCTGGA GACCGCCTG CGCGCCAG GGGGCCAG GGGGGCCAG GGGGGCCAG CCCCGCCAG GGGGGCCAG GGGGGCCAG GGGGGCCAG GGGGGCCAG GGGGGCCAG GGGGGGCCAG CGCGGGGCCA CCATCTGCG GGCGCACTG CGCGCCACAG GGGGGCCAG GGGGCCAG GGGGGCCAG GGGGCCAG GGGGGCCAG GGGGGCCAG GGGGGCCAG GGGGGCCAG GGGGCCAG GGGGCCAG GGGGGCCAG GGGGCCAG GGGGGCCAG GGGGCCAG GGGGCCAG GGGGAGAG TCCCCACAGGGCC CCCACCCGGG GGGGAGAG AGACGCCACA GGGGCCAG GGGGGCCAG GGGGCCAG GGGGAGAG TCCCCACAGGAG TCCCCACAGGAG TCCCCCACAGGAG GAGACGCCCA CCCCCACACGGGC CCCCACCCCAGAG GAGACCCCCA GCGCACACCGCCCACACGAGAG GCCCCAGAGAG GCCCACACCGCCCACACGAGAC GCCCACACCGAGAG GCCCAGGAGCCAC CCCCACACGAGAG GCCCAGAGCACCCA GGGGGCCGG GCCCCAGAGAGACACACAC								
ACCOCAGACA ASCOCCAGAGA GEOTACTANA TECANOCAGA ANTITICANE ASCAAGTGCA 480 ACTICATARAGA CAGTACCTANA GEGARACGAGA CACACGACTA AGRACAGGAAT TECATAGAGACCAGA CACACGACTA AGRACAGGAAT TECATAGAGACCAGA CACACGACTA AGRACAGGAAT TECATAGAGACCAGA AGRACAGAACACA CACACGACTA AGRACAGACCACA CACACGACTACA CACACGACTACA CACACGACTACA CACACGACTACA CACACGACTACACACACACACACACACACACACACACACA								300
ACTICATARGE CASTOCCTAR GOGRACOGO CACAGOGOTA GORGAGGA TROCTTAGA 480 COCCOCCAGA AGCOCCCCAGA GOCTOSTOCA CTCCTORGAGA TOCCCCAGA GOGRAFIACA 540 COCCCCAGA AGCOCCCCAGA GOCTOSTOCA CTCCTAGGAC TOCCCCCAGA GOGRAFIACA 540 COCCCCCAGA GOGRAFIACA 540 COCCCCCAGA GOCTOSTOCA CTCCTAGGAC CTCCTAGGAC 540 COCCCCAGA CACAGOCCACA CACACACACACA A CACACACACACACACA CACACACACACACACACACACACACACACACACACACACA	15							
COCCOGGRA ACCIOCCO GENERATOR GENERAL COCCOCCAS GENERAL GENERAL COCCOCCAS ACCIOCCAS  ACCIOCCACA ACCIOCCAS ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCACA ACCIOCCAC	15							
COCGEGGGA AGGGCCCCCCCAC GENERATE GACGAGGCC GEGGTAGGC GEGGCAGGA GENERATE GATTERTOR GACGACCAGA GENERATE GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GATTERTOR GA		ACTCATAAGG	CAGTCCCTAA	GGGGACCGGG	CCACCGGCTG	AGGACGGGGA	TGGCTTAGGA	
CTITITICIDAD ACCONCRICE GENETICIDAD GENEGOCIO COCCICCAS GENETICCAS (720)   TRETEGOCIO TECCOCCIO TECCOCCOCC CANCEGGOA COCCICCATO CTICCACCOCC TECCOCCOCC CANCEGGOA CECCOCCAGO CONTECTO COCCICCACCOCC CANCEGGOA GEOCAGGOA COCCICCACOCC CANCEGGOA GEOCAGGOA COCCACCOCC CANCEGGOA GEOCAGGOA COCCACCOCC CANCEGGOA GEOCAGGOA COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC CACCOCCCAC COCCACCOCC COCCACCOCC COCCACCOCC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCCAC COCCACCOCC CACCOCCAC CACCOCCCAC COCCACCOCC CACCOCCCAC CACCOCCCAC CACCOCCAC CACCOCACCAC CACCOCCAC CACCOCCAC CACCOCCAC CACCACCAC CACCACACAC CACCACACAC CACCAC								
TOTOGREGOCO TOGOCOCOTOS GOGOGOGOGO GRAGGOCO GUGGOGAGIA COCCOCAGO 780 TOCOTROTOGO TOGOCOTOS GOGOGOGOGO GRAGGOCO GUGGOGAGIA COCCOCAGO 780 TOGOTOGACO COLOCTOCO GOGOGOGOGO GRAGGOCO GUGGOGAGIA COLOCOCAGO 780 GOGOGOCOGO COLOCOCATO GOGOCAGO GOGOGOCOTOS GOCOCOCAGO 780 GOGOGOCOGO COCACOCOGO GOGOGOCOCOCA GOGOGOCOCOCA GOGOGOGOCOCOCACO COCACOCOGO AGOGOCOCOCA GOGOGOGOCOCOCACOCOCOCA TOCOCOCOCACOCOCOCA GOGOGOGOCOCOCACOCOCOCACOCOCOCACOCOCOCA GOGOGOCOCOCACOCOCOCACOCOCOCACOCOCOCA GOGOGOCOCOCACOCOCOCACOCOCOCACOCOCOCACOCOCOCO								
TRECTEGICS   TRECTEGIC   GOSGOGGGG   CRAGGGGCCA   GOSGOGGGTA   CTRCCACGGC   780	20							
GEGEGEGCE CCCATCHECTS CGEGEACTE CGETTCCAST GTCCCGAGCG CTTCCACGGC 840 GEGEGECTGG ACCAGGCGC CGEGACATC GCCTCCCCT ACCGCTCCTC CCAGCCCCAGC 960 GEGEGEGCAC ACCAGGCGC CCCACCCCTG GACGGCTT CATCTTTAG GGACACCCCAA GGACGCCTGC CCCACCCCTG AGGCCTGC CCATCTTCAGG CCCACCCCGTG AGGCCTGC ACGCTGCTC CCCACAGGCT TCCCCGAAAG GAAGGCAGCT CCCACCCCGTG AGGCCTGCC ACCGCTCCC CTCCAAGGC 1080 TCCCCGAAAG GAAGGCAGCT CCTCAGGCT TTCCCGGGC TCCTCCCCC TCCAGGGCC TCCCTCAAGCC 1140 CCGGGATTCC CCTCTCCCCA TCTTGCCTCC TCTTGCCTGC CCCACCCCC TCCACGGCC CCCTTCCCC TCCAGGGC CCCTTCCCC TCCAGGGC CCCTTCCCC TCCAGGGC CCCTTCCCC TCCAGGGC CCCTTCCCC TCCAGGGC CCCTTCCCC TCCAGGGC CCCTTCCCC CCCACCCCCAA CCCCCCAACCCC TCCAGCACA CCCCCCCAACCCC CTCCACCCCA GCCCCCCAAC CCCCCCCAAC CCCCCCCAAC CCCCCCCAAC CCCCCC								
COGCOCCOGG ACCAGGOCC   COGACCARC   AGGGCGCTGC   CAGCOCTGC   COGACGGCTC								840
CGGGGGGCA ARGACGGGCC   CCCACCGGCCC   GGCAGGCCT   CARGITITIAG   GGGTACCCAA   1020		GGCGACGCCA	CCATCTGCTG	CGGCAGCTGC	GCGTTGCGCT	ACTGCTGCTC	CAGCGCCGAG	900
GRIGAGEGG AGGSTROCCC CCACCOSTR AGGSCTEGG AGCGSTROCT CATAGAGE   1140	25							
TCCCCGAAAG GAAGCAGCT CCTCAGGCGC TCCTCCCCC TGCAGCGCC C200 ACCTACTCC CATCTTCTCC ACGGCGGGC CCCCTCCCCC TGCAGCGGC CGCCTAGCC 1200 ACCTACGTGC CGTTCCTCAT TGTTGCCTCC GTGTTTGTGC CCTTTATCAT CTTTGGGTCC 1260 CTGGTGGCAG CCGTTGCTG CAGATGTCC GGCCTAACC AGGATCCCCA GCAGACCCA 1220 GCCCCAGGGG GTAACCGCTT GATGGAACA GCGCCATGA TCCCAGTGC CAGCACTCC 1440 GGGGGCCCGG CGCCCCAAC AAGGTCACCA GCTCCACTG TCCCAGTGC CAGCACCTC 1440 GGGGGCCCGG CGCCCCAAC AAGGTCACCA GCTCCAGTT CCCAGCTCCG CAGCACCTC 1440 ACACAGTGTA TATCTCAACAT GCCCACGAAT TTCTTGTCC TGAACTTCA GCAGCCACC 1560 ACACACTCT ATCTCAACAT GCCCACGAAT TTCTTGTC TGAACTTCA GCAGCCACC 1560 ACACACGTTA AGTCCACCAT ACGTGGCTA ACGTGGGGTC ACGGCCACC 1660 ACACACTTCT TCCCATGAC AGCTTGCCC AACAGTGAAC AGGAGCACAT ACGTGGGTT CACACACTCA ACGTGCACT ACGTGGGGTT CACACACTCA ACACTGAAC AGAGAGTAAC AGGACCACT 1680 ACGTTCATTG CCCCCAGACT GCACACTCT CTTCACAC ACACAGTGAAC AGAGAGTGT ACCCTGCGGTT 1740 ACTGTATAAC CGAGAGTCAC TGGTGGGTT CTTTACTGA ACGGCCTCC ACCAGGGTT 1800 GATTCTCAGG GTGGAAGTC CCACACTTC GCACACTTC GCACACTTC GCACACTTC GCACACTCA GCACACTCA ACCGGGTT ACCTTGATT TACCACACACACACACACACACACACACACACACAC	25							
CCCCGGGGTCC CATCTCTCAT TOTTGCTCC CTTCTCCCC TGCAGCCGC CGCCTTCCC								
ANCHAIGRAG COTTITICTA TOTTGCTCA TOTTGCTCA COTTITATACA TITTGGGTCC 1260  GCCCCAGGGG GTAACCGCTT GARGAGACC ACCCCATAA TCCCCAGTC CAGAGACCCCA 1320  GCCCCAGGGG GTAACCGCT GARGAGACC ACCCCATAA TCCCCAGTC CAGCACCCCCC 1380  GCCCCAGGGG GTAACCGCCA GTCCAGCACA GCTCCCAGTA TCCCCAGTC CAGCACCCCCC 1440  GGGGCCCGG CCCCCCACA AGGTCACACA ACCTCCCATA TCCCCAGTC CAGCACCTCC 1440  AACAACGTT ATTTCAACAT CCCCAGAAT TTCTCTGTCC TGAACTGCAG CAGCACCTC 1550  AACAACGTT ATTTCAACAT CCCCAGAAT TTCTCTGTC TGAACTGTCA GCAGGCCACC 1550  AACAACGTT AGTCCACCCA CAGGTCACAC ACACGTTCC TGAACTGTCA GCAGGCCACC 1550  AACAACGTT AGTCCACCCA CAGTTCTC CATCCCCAT ACTGGGGTA CACGGTCAC 1560  AGGCAGATTCA AGTCCCCTT CCCTCACCC AACAGTGAAC AGAAGTATA CCCAGGGTG 1620  AGGCAGATTCA AGTCCCCTT CCCTCACCC TTTTACTCAG AGGCACCACA GCCAGGGTG 1660  AGGCAGATTCA CAGTCCCCCT CCCTCACCC TTTTACTCAG AGGAGCCAAA GCCAGGGTG 1660  AGGCTCATTTG CCCCCAGACT GTAAGAAAAC ATCTCCGAAT TAGCATTTCT GGATATTTT TTCTTTATACA AATCCTTGAG ACCGGCTC ACCTTGGAGT 1660  GCTTCATTGAT TAACTGATA AATTAAGGAT TTTTATTATAT TAGCATTTCT GAACTTTCTT TTTTTTTTTT								
CTGGTGGGGG CTGTTGCTG CAGATGTGCC GCCCCAGGGG GTAACCGCT GATGGAGAC GCGCGGGGTCCT CTCACCGCA GTCCAGCACA GCTGCCAGTT CCAGCTACG CAGAACCCC 1380 GGGGCCCGG CGCCCCAC AAGGTCACA GCTGCCAGTT CCAGCTCCAG GCGCAACTCC 1440 AACAACGTT ATGTCAACAT GCCACGAAT TCCTCTGTG CAGCACCGA AGGGCCACT 1500 AACAACGTT ATGTCAACAT GCCACGAAT TCCTCTGTG CTAACCTCCAG ACAGCTCCAG GCCAACTCC 1560 CAGGATCTC CACATCAAGG GCAGTATCT CATCCCCAT ACGTGGGGAA ACAGGCCAC 1560 CAGGACTCTG TGCCCATAC AGCTGTGCCA CTTTCATGG CAGGCCACC ACAGCGCACC 1660 AGGCAGATTC AGTCCCCTT CCCTCACACC AACAGTGAAC AGAAGATGTAC CACGCGGGTG 1620 CACGACTCTG CCCCCAGAC TGGGGTT CTTTTATGG ACGGGCCACA GCCAGGGGTG 1740 ACTGTATAAC CGGAGATCA TGGTGGGTT CTTTTATGG AGGGACGAA GCCAGGGGTG 1740 ACTGTATAAC CGCCCAGAC TGAAGAAAC ATCCCCCAT AGGGAGAGAA GCCAGGGGTG 1740 ACTGTATACC CCCCCAGAC TGAAGAACA ACAGTGAAC AGAAGATGTAC CCCCCAGGGGT 1740 ACTGTATACC CCCCCAGACT GTAATAAAAA ACTCCCCAAT TAGGATTCTC GGATATGTT 1920 CATCCAGGGT ATCATTGAT TATGATGGAA AACCGGCCTC AGCTGGAGTA GCCAGGGGT 1800 CATCCAGGGT ATCATTGAT TATGATGGAA AACCGGCCTC AGCTGGAGTA GCCTGGATGTT 1920 CATCCAGGGT ATCATTGAT TATGATGGAA AACCGGCCTC AGCTGGAGTA GCCTGGATGT 1980 TTGTTGTTGTA CTGCACAGGA TCAAAATGCC TGGATTTTTTTTTT								
GCCCAGGGG GTAACCGCTT GATGGAGACC ATCCCAGTA TCCCAGTGC CAGCACCTCC 1380  GGGGCCGGG GCCCCCCAAC AAGGTCACAG ACCACTGTT CAGCTCCAG AGGACCACC 1500  AACAACGTGT ATGTCAACAT GCCCAAGAAT TCCCTATGC TAACATGTA GCTTGCCGGA AGGGACCATG 1500  AACAACGTGT ATGTCAACAT GCCCAAGAAT TCCCCATT CAGCTCCAG AGGGACCACC 1500  CAGGATTCTG TGCCCATGAC AGGTGTGCCA CATCCCCCAT ACGTGGGGTA CAGGGCCCAG 1620  AGGCAGATTCA AGCCCCCTT CCCTCACACC ACCAGTGATA GCAGGCCTACA GCTGGCGTGCAG 1680  AGGCAGATTAAC CGAGAGTCAC TGGTGGGTTC CTTTACTGAG AGGGAGGAA GCCAGGGGTG 1800  ACTGTATAAC CGAGAGTCAC TGGTGGGTTC CTTTACTGAA GGGAGCGAA GCCAGGGGTG 1800  ACTGTATAAC CGAGAGTCAC TGGTGGGTTC CTTTACTGAA GGGAGCGAA GCCAGGGGTG 1800  ACTGCATTCA CCCCCAGACT GATGGAAAAAC ACAAGATATA CCCTTTGGATG 1860  GCTCATTTC CCCCCAGACT GATGAAAAAC ACTCCCCAAAT TAGCATTTCT GGATAGTTT 1920  AAGAATTTA TAAACTGATA AATTAAGGAT TTTTATTATT TTTTTTTTTT	30							
GGGGGCCCGG CGCCCCAC AAGGTCACAG ACAACTGTT CCAGCTCCAG CGCCACACCTC 1500 AACAACGTTT ATGTCAACAT GCCCACGAAT TCTCTCTCTC TAAACTGTCA GCGGGCCACC 1560 AACAACGTTT TGCCCATGAC GCCCACGAAT TCTCTCTCTC TAAACTGTCA GCGGGCCACC 1560 CACGACTCTG TGCCCATGAC AGCTGTGCCA CATCACCCAAT ACGTGGGGTA CACGGGCCACC 1680 AGGCACATTC AGTCCCCCTT CCCTCACACC CACCGGTGA CACGGCTCA CCAGCGGTG 1740 ACGTATAAAC CGAGGTCAC TGCTGGGTTC CCTTTCATGG ACGGCCTCA CCACCGGTG 1740 ACGTTCATGGA GTGGAAGTCC TGCTGTGCTAC TTTTACTGAA GGGACACGAA GCCACGGGTG 1800 GATTCTCAGG GTGGAAGTCC GCACATGTCG GTGTATTTA TGGCACGAT CCTTTGATGT 1860 GCTTCATTTG CCCCCAGACT GTATGAAAAA ATCTCCGAAT TAGCATTCTT GGGATATGTT 1920 CATCCAGGGT ATCATTGAT TAGGATGAAA ATCTCCGAAT TAGCATTCTT GGGATATGTT 1920 AAGAATTTA TAAACTGATA AATGCTTGAG TCCGAAGTGC CCTTTGAGATA TAGTTTCTTTT 200 AAGAATTTA TAAACTGATA AATGCTTGAG TCCGAAGTGC CCTTTGAGATA TATTTCTTTT 2100 AAGAATTTTA TAAACTGATA AATTAAGGAT TTTTATTATAT TTGTTTATTAT TATTTCTTTT 2100 TTGTTGTTGA CTGCACAGGA TCAAAAATGCC TGTTTACTCC CTTTTACTGG GACTTTTTTT 2100 TTGTTGTGAGATG CGGCTCACT GCAACTTCAG CCTCCACGAT TCGCACAGC TGCACGACGG TTTTTTTTTT	••							
AACAACGTGT ATTGCACACA GCCACGAAT TTCTCTGTGC TGAACTGTCA GCAGGCCAC 1560 CACGTTTTTGC CACACTAAGG GCAGTACTG CATCCCCCAT ACGTGGGGTA CACGGTGCAG 1620 CACGGATTC GCCCATGAC ACGTGTGCCA CTTTCATGG ACGGCCTGCA GCCTGCAGCA GCAGGGGTTCA 1620 AGGCAGATTC AGTCCCCTT CCCTCACAC AACAGTGAAC AGGAGACGAA GCCAGGGGTG 1740 ACTGTATAGC CGGAGGTCAC TGGTGGGTTC CTTTACTGAA GGGAGACGAA GCCAGGGGTG 1800 GCTTCATTTG CCCCCAGACT GTATGAAAAC ATCTCCCAAT TGGCACGATT CCTTTGATGT 1800 GCTTCATTTG CCCCCAGACT GTATGAAAAC ATCTCCCGAAT TGGCACGATT CCTTTGATGT 1800 CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCT AGCTGGAGAT GCATGTGATT 1920 AAGAATTTTA TAAACTGATA AATTGATGGAA AACCGGCCT AGCTGGAGAT GCATGTGATG 1980 AAGAATTTTA TAAACTGATA AATTGATGGAA AACCGGCCT AGCTGGAGAT GCATGTGATG 1980 AAGAATTTTA TATAACTGATA AATTGATGGAA AACCGGCCT AGCTGGAGAT GCATGTGATG 1980 AAGAATTTTA TATAACTGATA AATTGATGGAA TATGCATCAGAT TAGGAACAG GCATGTGATG 1980 AAGAATTTTA TATAACTGATA AATTGATGAGA TATTGATATTA TATTTCTTTT 2100 AAGAATTTTA TAAACTGATA AATTGATGAGA TCCAGAGTGC CTTTGACTGA GCACTTGATT TTTTTTTTTA TATTTTTTTT 2110 ATTGTTGTTGA CTCGACAGGA TCAAAATGC TGTTGATCAC TTTGCCCAGC TGGGGTCAG 2220 TGGTGCCACC GTGGCTCACT GCAACTTCAG CTCCCCCCAT GCCTAAGATA TATTTCTTTT TTTTTTTTTAA TCAGACAGGC TCTCCCCCAT GCCTAAGATA TATTTCTTTT TTTTTTTTAA TCAGACAGGC TCTCCCCCAT GCCTAAGATA TATTCTTTTT TTTTTTTTTAA TCAGACAGGC CTCCCCCCAC GTGCCCACCC CAACTTCAG GCACCTCTT TTTTTTTCTA ATGCATCCAA GCTTTCCTCTGA CTCCAGCAA CACCTCCCACC 2460 TGGGCCTATT TTTTTTTCTA ATGCATCAA GGTTAAGAGG GTAAGCCACCT TAATTCCACA ATCCATCATC AATTCCAACA AACCATT TAAAAAATAA ATTGTATATT TATAATATTTT GTGCTTTTCG GCGCCCACCC TAATTCCACA ACCGCTCAACACA TCCCCCCAC CAACACTCA TCCACCACACA TACAAGACA TCCACCACACACA TCCACCACACACA TCCACCACACACA								1440
CAGATTGTGC CACATCAAGG GCAGTATCTG CATCCCCCAT ACGTGGGGTA CACGGTGCAG CACATCATGT ACGTCCATGA ACGTGGCCAC CATTTCATGG ACGGCCTGCA GCATGCCAGCA ACGTGGCACA ACGTGGACA ACGAGGAGTATA COCACCGGTG 1740  40 GCTTCATTGC CCCCCAGACAC TGGTGGGTTC CTTTACTGAA GGGAGACGAA GGCAGGGGTG 1800 CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCTC AGCTGGAGAT CTTTTGGATG 1860 CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCTC AGCTGGAGAT GCTTGGATG 1980 AAGAATTTTA TAAACTGATA AATTAAGGAT TTTTATTATTAT TATGATTGAT								
CACGACTCTE TSCCCATGAC AGCTGTGCA CCTTTCATGG ACGGCCTGCA GCCTGGCTAC 1680 AGGCAGATTC AGTCCCCTT CCCTCACACC AACAGTGAAC AGAAGATGTA CCCAGGGGTG 1740 ACTGTATALAC CGAGAGATCAC TGGTGGGTTC CTTTACTGAA AGGAAGATGTA CCCAGGGGTG 1740 GATTCTGAG GTGGAAGTC GCACATGTCG GTGGTATTA TGGCACGATT CCTTTGGATC 1860 GATTCATTG CCCCCAGACT GTATGAAAAC ATCTCCGAAT TAGCACTTCT GGATAGTTT 1920 CATCCAGGGT ATCATTCACAT TAGAGAGAAC ACCAGTTCA GCCTGCAGAT GCCTTGAGAT GCCTCTAGAT TGCCATTCT 1920 AGAATTTTA TAAACTGATA AATTAAGGGAT TTTTATTATT TGTTTTTTTT 12100 TTGTTGATGG GTGTATAACA AATGCCTTGAG TCCGAAGTGC CCTTTGAGATA TGGTTGACGA 2040 AAGAATTTTA TAAACTGATA AATTAAGGGAT TTTTATTATT TTTTTTTTTT	25							
AGGCAGATTC AGFICCCCTT CCCTCACACC AACAGTAGAC AGAAGATGTA CCCAGCGGTG 1740 ACTGTATAC CGAGAGTCAC TGGTGGGTTC CTTTACTGAA GGGAGACGAA GGAGAGCGAT GATGTGGTG TGGTGGTTTTA TGGCAGGATT CCTTTGGATT 1800 GCTTCATTTG CCCCCAGACT GTATGAAAAC ATCTCCGAAT TAGCACGAT CCTTTGGATG 1860 CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCTC AGCTGGAGTA GACTGTGATT 1920 AAGAATTTA TAAACTGATA AATGATGAA AACCGGCCTC AGCTGGAGTA GACTGTGATG 1980 AAGAATTTA TAAACTGATA AATTAAGGAT TTTTATTATTA TTATTCTTTT 2100 AAGAATTTA TATAACTGATA AATTAAGGAT TTTTATTATTA TTATTCTTTT 2110 TTGTTGTTGA CTCCACAGGA TCAAAATGCC TGTTTACTTGG GACTTTTTTT 2110 TTGTTGTTGA CTCCACAGGA TCAAAATGCC TGTTTACTTC CTTTTACTGG GACTTTTTTT 2110 TTGTTGTTGA CTGCACAGGA TCAAAATGCC TGTTTACTCC CTTTTACTGG GACTTTTTTT 2110 TGTTGAGAGT GGGTTTCACC GAACTTCAG CTCCTCCGACT TCAGGCAACA CTCCTGCCCCC 2280 AGCCTCCCAC GTGGCTCGCA TTACAGGTGC CTCCTCCCAT TCAGGCAACA CTCCTGCCCCC 2280 TGTAGAGATG GGGTTTCACC AAGTGCTCG GCTTGGTCC ACCTCAAGCA CTCCTGCCCCC 2280 GCCCACCTTT TTTTTTTCTA ATGCATCCAA GGTTAAGGGG AAGACCGACA CTCCTGCCCCC 2280 GCGCACCCTTT TTTTTTTCTA ATGCATCCAA GGTTAAGGGG AAGACCGACA CTCCAGCC 2460 TCTGCCTGTC TCAGCCCCCC AAAGTGCTG GCTTGGTCC ATCCCCCAC GCCCCAGCC 2460 GCGCCCTTTT TTTTTTTCTA ATGCATCCAA GGTTAAGGGG AAGACCGAAA TAACAGGACT 2520 ATTCTAAAAGGA ACTGAATATA ATTGTATCTT GAAAACACTA TACAAGCCAC GCCCCAGCC 2460 GCGCCCTATTT TGTGCTTTT TACCTTATGT AGAGACTC TTCAGACAAC ATCAATCTCA ATTTCTACAC 2580 GCGCCCCTATTT TGTGCTTTTT TACCTTATGT TACCTTAATTTTT TGTCATTTTTG CTCTTTTTTGCTTTTTTTTCACTTTTTTTTTT	23							
40 GCTCCTCGAG GTGGAGGTC GCACATGTCG GTGGTATTA TGGCACGAT GCTTGGATG 1860 GCTCCATCTG GCACATGTCG GTGGTATTA TGGCACGAT CCTTTGGATG 1860 GCTCCATCTG GTGTATTAA TGGCACGATT CGTTGGATG 1860 GCTCCATCTG GTGTATGAAAC ATCCCGCAT TGGCACGATT GGATATGTT 1920 CATCCAGGGT ATCATGATA TATGATGGAT ACCCGCACT TGGCACATGT GACATGTCGAT ACCCGACAT TGGTGAGGA AAGCATCAAA AATGCTTGGA CCCCAGAGGA CCTTGAGGAA AGCAGGCCCC AGCTGGAGAT GGCTTTTTT 2100 AAGAATTTT TATAACATAAA AATAGGAT TTTTATTATTA TATTTCTTTT 2100 TTTTTTTTTTA TATAACTAGAA TATAAAATGC TGTTACCAC GCACATCACA AAGCACGCCC CCTTGGAGAT TGGTTGACGA 2040 AAGAATTTT TTTTTTTTATA TCAGACAGGG TTTTTTTTTT								
40 GATTCTGGG GTGGAAGTCC GCACATGTCG GTGGTATTA TGGCACGATT CUTTTGGATG 1860 CTTCATTTG CCCCCAGACT GTATGAAAAC ATCCCGAAT TAGCATTTCT GGATATGTT 1920 CATCCAGGGT ATCATTGATT TAGCATGGAA ACCGGCCTC AGCTGGGAAT GACTTGATG 1980 AGAATTTTA TAAACTGATA AATTGATGGAA ACCGGCCTC AGCTGGGAAT GACTTGATG 1980 AGAATTTTA TAAACTGATA AATTAAGGAT TTTTATTATT TATTATTTTTT TATTTTTTTT								
GCTTCATTTE CCCCCAGACT GTATGAAAAC ATCTCCGAAT TAGCATTTCT GGATATGTT 1920 CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCT AGCTGGAGAT GACTTGTATG 1980 TTGCTGARGG GTGTATAACA AATGCTTGAA CCCGAAGTGC CCTTGGAGAT GGGTGTAGAG 2040 AAGAATTTA TAAACTGATA AATTAAGGAT TTTTATTATT TATTTCTTTT 2100 TTGTTGTTGA CTCCACAGGA TCAAAATGCC TGTTAACTCC CTTTTACTGG GACTTTTTTT 21100 TTGTTGTTGA CTCCACAGGA TCAAAATGCC TGTTACTCC CTTTTACTGG GACTTTTTTT 21100 TGGTGCGATC TCGGCTACT GCAACTTCAG CCTCCTGGAT TCGGCCAGC TGGGATGCAG 2220 AGCCTCCAC GTGGCTAGGA TTACAGGAGG CTTCTGCTCTG TTGCCCAGGC TGGGATGCAG 2220 TCTGCCCTCT CTGGCTCCC AAAGTCCTCG GCTTGCTCCTG TTGCCCAGC CCCCAGCC 2460 TCTGCCCTCT CTGGCCCCC AAAGTCCTC GACTTCACACC GTCGCCCCAC GGCTAATTT TTGTATTTTT 2340 TCTGCCTTC TCAGCCTCC AAAGTCCTC GACTTCACACC GTCACCCCC CCCCACC 2460 AATCTAAAAG AACCCTTT TAAACTCATT TAAAACATTT TAGACTATT GTCATTTTTT GTGCTTTTCG GGCACCCTT AATTCCATT TAAACATCAT GAGAACACAT TACATCACACA ACCCCCCAC GCCCCACC CCCCACC  CCCCACC CCCCACC CCCCACCC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACC CCCCACCC CCCCACCC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCAC CCCCACCCCACC CCCCACCCCACC CCCCACCCACC CCCCACCCACC CCCCACCCCACC CCCCACCCACC CCCCACCCACC CCCCACCCACC CCCCACCCACC CCCCACCCACC CCCCACCCCACC CCCCACCCACC CCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCC								
CATCCAGGGT ATCATTGATT TATGATGGAA AACCGGCCTC AGCTGGAGAT GACTGTGATGG 2040 AAGAATTTA TAAACTGAAA AATTATAGGAT TITTATTATA TATTTCTTTT 2100 TITGTTGTGA CTGCACAGGA TCAAAATGCC TITTATTATTA TATTTCTTTTT 21100 TITTTTTTTTT TITTTTTAA TCAGCACAGG TCTTCATCCC CTTTTACTGG GACTTTTTT 2100 AGCCTCCCAC GTGGCTGGGA TCAAAATGCC TGTTACTCC CTTTTACTGG GACTTTTTT 2100 AGCCTCCCAC GTGGCTGGGA TCAACATCGC CTCCCCCCAT GGCTAATTTT TGTATTTTT 2340 TGTGGAGGAT GGGTTTCACC ARGTTGGGTG GCTCCCCCCAT GGCTAATTTT TTGTATTTTT 2340 TGTGAGAGAG GGGTTTCACC ARGTTGGGTG GCTCCCCCCAT GGCTAATTTT TTGTATTTTT 2340 TGTGCCTGTT TTTTTTTCTA ATGCATCCAA GGTTAAGGGG AGACCCCAC CCCCCAGCC 2460 AACCCCTTT TTTTTTTCTA ATGCATCCAA GGTTAAGGGG AGACCCCAC ACCCCCAGCC 2460 GGCCCACACCTT AATTTCATTG TGAACACTAT TGAACAAAATAA TATCATAATTT GTCTATTTTT GTGCTTTTC TAACAAGGAA ATACCAGAACAA 2400 TTAAAAAAGAG ACTGAAAATAA ATTGCATCATG GAGACCACAC ATCACCCCCC ACCCCAGCC 2560 TGAGGCAACACTT TAACTTTCA AGTACTAAGGTA TATACATTTT GTCTATTTTT GTGCTTTTC TAACAAAACATA TATCATAACATA ATGCATCACA 2700 TTAAAAAAGAG ACTGAAAAAAA ATGCATAAGATA TATATATTTT GTCTATTTTT GTGCTTTTT TACCATCAGCAA 2700 TGGGTTAAGGT TATACTTCAA GTGATAAGGTA GTATACAGAACAT TTCAGCAACAA 2700 TGGTTAAGGT TTGACCTTTC TGCCTTCTTAAGGGACTCT ATTACATAGAT ATTTCACACAACAA 2700 TGGTTAAGAT TATACTTCAA GTAATAAGATA TATCATAGATA ATGCATACAC TCCCCCCCCC GGGTGCAAGT TATACTTTCA TCCCCGCCG CTCCCCCCACCCC ACCCCCACCCC CTCCCCCACCCC CTCCCCACCCC CTCCCCACCCC CTCCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCCACCCC	40							
45 TIGITGITGA CICACAGGA TCAAAATGC TGTTATTAT TATTTCTTTT 2100 TIGITGITGA CICACAGGA TCAAAATGC TGTTATCC CITTTACTGG GACTITTTTT 2160 TIGITGITGA CICACAGGA TCAGAATGC TGTTACTCC CITTTACTGG GACTITTTTT 2160 TIGITGGATC TCGGCTCACT GCAACTTCAG CCTCCTCGAT TCAGGCAACA CTCCTGCCC 2280 AGCCTCCCAC GIGGCTGGGA TTACAGGTC CICACCCCAT GGCTAATTT TTGTATTTTT 2340 TCTGCCTGTC TCAGCCTCC AAAGTCCTG GACTACAGGA ACCCCCAT GCCTAATTT TTGTATTTTT 2340 TCTGCCTGTC TCAGCCTCC AAAGTCCTG GATTACAGGC GTAGACCAC GCCCCAGCC 2460 TCTGCCCTTC TCAGCCTCC AAAGTCCTG GATTACAGGC GTAGACCAC GCCCCAGCC 2460 ATTCTAAAAG GAAACCTGTT TGAACTCTGT GAGATCAGTA ATCAGTCCAC GCCCCAGC 2200 ATTCTAAAAG GAAACCTGTT TGAACTCTGT GAGATCAGTA ATCAGTCCAC GCCCCAGCC 2460 GGCCCACCTT AATTCCATT TAAACTCTGT GAGATCAGTA ATCAGTCCAC GCCCCAGCC 2460 GGCCCACCTT AATTCCATT TAAACTCTGT GAGATCAGTA ATCAGTCCAC GCCCCAGCC 2460 GGCCCACCTT TTGTCTTTT TACCTTATT TACCTTATTT GTCTTATTTT GTCTTTTTTG GTCTTTTTG GTCTTTTTG GTCTTTTTG GTCTTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT GTCTTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT GTCCTTTTT TACCTTATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTTTTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATTT TACCTTATATATT TACCTTATATTT TACCTTATATTT TACCTTATTT								1980
45 TITITITITE CICACAGGA TCAAAATGC TOTTATCCC CITTACTGG GACTITITIT 2160 TITITITITIT TITITITIA TCAGACAGG TCTTGCTCTC TTGCCCAGC TGGAGTGCAG 2220 TGGGGCGATC TCGGCTCACC GACACTTCAG CCTCCTGGAT TCAGGCAACA CTCCTGCCTC 2280 AGCCTCCAC GTGCTGGGA TTACAGGTGC CTCCCCCAT GGCTAATTT TTGTATTTT 2340 TGTAGAGATG GGGTTCACC AAGTCAGC GCCCCCAC GGCTAATTT TTGTATTTT 2340 TGTAGAGATG GGGTTCACC AAGTCAGCA GGCTGGTCC ACTCTCCTCA CCTCAGCAA 2400 TCTGCCTGTC TCAGCCCCCC AAGTCAGGG GGTAGAGCAC GCCCCAGCC 2460 ATTCTAAAAG GAAACCTGT TGAACACCAT GGTTAAGGG AAGACCGAAC TAACAGGACT 2520 ATTCTAAAAG GAAACCTGT TGAACACCAT GGAACCACA ATTCCCCCCCAC 260 GGCCCAACCTT AATTCCTTC TAAAAAGATA ATTATATTT GTCTATTTTT GTCGTTTTGC 2640 GGGCCTATT TGTGCTTTC TAAAAAGATA ATTGTATAAT TTTACAAAAGTA ATTTTCCACA 2700 TTAAAAAAGAG ACTGAAATAA ATTGTATAGT TACTTAACTA ATGAACCACT TCAACCACCT 2760 TGGGATGATT TTAACTTCA AGTACTAGGT GGTAAGCACA TAAAAACCAT TCAAAACCAT CTACCCCCTC 2820 TTGATTGTAT CTTAATTTC TGGCTTTC CTCTGTTAG GTGCTCTGAG CCACCACCTT AGTCCCTCC 2820 TGGTTATGGT TTGGCGTTC CTCTGTTAG GTGCACACCA GCAGTCATA ATTACCTTA CTCCCCCCC CTCCCTAGC CTCCCCCCCC CTCCCTAGC CACACCACA AATTACTATA CTCTGTAATG AAGACCAGT ATTACTTTTA ATTTCCCTG 2940 AAAAATTTC TTGCCTTC CTCTGTTAG GTGCACACCT AGACCAGACC								
TITITITIT TITITITA ACCAGGG TOTINGCING TIGGCCAGG TEGAGTGCAG 2220 TIGGCCACC GIGGCTIGGG TRAGGGGC COCCAGGAT TCAGGCAACA CITCCTGCCTC 2280 AGCCCCCAC GIGGCTIGGG TRAGGGGC CIGCCCCAT GGCTAATTT TIGGATTTT TIGGATTTT TIGGATTTT TIGGACTCC ACTORGCACA CITCCTGCAC 2280 TOTAGAGATG GGGTTACACC ANGINERG GGTAGAGGCACG GCCCAGCC 2460 TCTGCCCTCT TAGCCTCCC ANAGTGCTAG GATTACAGG GTAAGTCT TIGGACTCTT TITITITACA AGCACTCAG GATTACAGG ANAGCCACC GCCCCAGCC 2460 ATTCTAAAAG GAAACCTGTT TGAACTCTG GATTACAGG ANAGCCACCA ATACCAGGAC TACCCAGCA 2460 GGCCACACCTT AATTCATTC TAGACTCTG GAGATCAGT ATCACAGGAC TACCAGCAC 2580 GGCCACACCTT AATTCATTC TAAAAAGATA TATATATTTT GTCTATTTTT GTCTTTTCGAC 2580 GGCCACACCTT TATACTCTGA ACTACTAGAT TACCAAGACA TACCAGCAC 2580 GGCCACACCTT TATACCTTGA ACTACTAGAT TACCAAGATC ATTCCACAC 2580 TTAAAAAGAG ACTGAAATAA ATTCTATAGT TACCATACTA ATGAAGACAT TACCAGACAC 2760 TTAAAAAGAG ACTGAAATAA ATTCTATAGT TACCATACTA ATGAAGACAT CATCCCCTTC 2820 TAGATTCAATA CTAAAACTA TCACCCGCTG CTCTCTCTGAG TTACCTATTTT TACCACACT CATCCCCTTC 2940 TGGTTAAGGT TAGCGCTTTC CTCTCTTTTTG GTTTTCTCAGA TACACAGCACA CATCCTTTTT 2880 GAAGACCAAG AATTACATAA CTCTGATAATA AAGAACAAGT ATTCTCCCTC 2940 GAAGACCAAG AATTACATAA CTCTGTAAATA AAGAACAAGT ATTCTCCTCT 2940 GAAGACCAAG AATTACATAA CTCTGTAAATA AAGAACAAGTA TATCCCAGCT AATTACTATAAAAACAA TCACAGAGAA AAGACATTAAAAAAAAAA								
TGGTGCGATC TCGGCTCACT GCAACTTCAG CCTCCTGGAT TCAGGCAACA CTCCTGCCTC 2280 AGCCTCCAC GTGGCTGGGA TTACAGGTCC CTGCCCCCAT GGCTAATTTT TTGTTTTTT 2340 TGTAGAGATG GGGTTTACAC ATGTTTGCCTG CTCCCCCAT GCCTAATTTT TTGTTTTTT 2340 TCTGCCTGCT TCAGCCTCC AAAGTGCTGG GATTACAGGC GTGAGCCACC GCCCCAGCC 2460 TCTGCCTGTC TCAGCCTCC AAAGTGCTGG GATTACAGGC GTGAGCCACC GCCCCAGCC 2460 ATTCTAAAAG GAACCTGTT TGAACTCTGT GAGATCAGTC ATCAGTCTCA GTATTCCACA 2580 GGCCACACCTT AATTCCATC TAAAAAGATA ATTATATTTT GTCATTTTTT GTGCTTTTGG 2640 GGGCCTATTT TGTGCTTTTT TACCTTATGT AGAGATCTAT TTACAAAAGTA ATTTTCTACA 2700 TTAAAAAGAG ACCAGATATA ATTGTATAGT TACCTAACTA ATGAAAGAACT CATCCCCTTC 2820 TGGATGATT TCAACTTTCA AGTAGATGAGT GTGTAATACTA ATAAAACAAT TCACCACATC CATCCCCTTC 2820 TTGATTGTAT CTTAATTTTC TGGCTTTAG GTGTAATGCA AGAGGGAACT CATCCCCTTC 2820 GAGTGCAAGT TATGCATTAC CTTCGTTAG GTTTCCAGA GTTCTTTTA TTTTCCCTTC 2940 AAAAATTTC TTGCCTTAGT TAAAAAAAAT CAAAGAAAA TCATCACATC CTCCTTTCTTTC GTTTTCAGAG CCCCATGCT AGATCAGTC 3000 AAAAATTTC TTGCCTTAGT TAAAAAAAT CAAAGAAATG TTTCCCCCA GATCTAGTA 3000 AAAAATTTC TTGCCTTAGT TAAAAAAAT CAAAGAAATG TTTCCCCCA GATCTAGTA 3120 GATTGCTCAA GCCATAACCT GAGACTTGGG ATGAAATCAAT GATTTCCTCA GACTTAGTA 3200 GATTGCTCAA AGGCTTTTTA TACCTTTTGT ATCAAAAAGT TTTCCCCCA GACTTAGTT 3180 GCAATCTATA AGGCTTTTTA TACCTTTTGT ATCAAAAAGT TTTCCCCAC ACTGTCTT G3300 ATTTCCCCCT CTTTCCAGC CCCAAACAGGC ACTGTTTTC AGGCACTAAG 3240 ATTTCCCCCT CTTTCCAGC CCCAACAGGC ACTGTTTTC AGGCACTAAG 3240 ATTTCCCTC TCTTCCACA CTCAACAGGC ACTGTTTTC TTCCCCAC ACTGTCTTC 3300 ATTTCCTCT CTTTCCACA CTCAACAGGC ACTGTATTT TTTTCTCCCAC ACTGTCTTC 3300 ATTTCCTTC TCTTCCACA CATTTCCTT TTCACTACATATA TTCACAATAAA ACAAATCACT TCTCTCTACC CAAATCATA 3360 ATTTCTATGA GAATTACAC CATTTACTC TAAAACAGT TTTCACAATAA ACAAATCACT TTCATACAA ACAAATCACT TTCAATCACA GAATCAATTA TTCACTACAATAAT ACAAATCACT TTCAATCACA GAATCAAT TTTTACTATA AAAAAAAAT ACCTTAATCC TAAAACCAGT TTTTTACTACT TAAAAAATA TTTTTACTATA TTTTTACTATC TAAAACCAGT TTTTTACTACT TAAAAAATA TTTTTTACTATC TTTTTACTATC TTTTTTACTATC TAAAACCAGT TTTTTACTACT TTTTTACTATC TTTTTACTACA ATGTTTACATC ATGTTTACTACA ATGTTTACATC ATGTTTA	15							
AGCCTCCAC GTGGCTGGGA TTACAGGTGC CTGCCCCAT GGCTAATTT TTGTATTTT	43							
TOTAGAGATO GEOTTICACC ATCTIVEGEO GEOTEGICTE ACCITICATE CUTCAAGCAA 2400  TOTACCITIT TOTACCTICE AAAGTGCING GATTAGAGG GIGAGGCACC GEOCCAGCC 2460  TOTACCITIT TOTTITTICTA AGGCATCCIA GATTAGAGG AGAGGCAAA TAACAGGACT 2520  ATTCTAAAAG GAAACCTGIT TGAACTCIT GAGATCAG ATCAGTCICA GTATTCCACA 2580  GGCACACCTI AATTCCATIC TAAAAAGATA TATATATTTT GICTATTTIT GIGCTITTICG 2640  GGCACACCTI TOTACCTATATA AGAGATCTA TACACAGGAC ATTTCCACA 2700  TTAAAAAGAG ACTGAAATAA ATTGTATAGT TACTTAACTA ATGAAGACT TTCAGAAGT ATTTTCTACA 2700  TTGATTGTAT CITAATTTTC TGCCTTTAG GAGATCTAT CAACACCTC CATCCCCTC 2820  TATATTGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTTAA CATCAGTCT 2940  TATATTGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTTAA CATCAGTCT 2940  TAGGTCAAGT AAATTACTATA CTTGTATATA GAGAACCAGT TTTCTCACAG AGACCAGAT CATCCTTTT 3180  GAGAGCCAAGT AAATTACATAC CTTGTAAAACTA TCAGACAGATC GATCTAGTAA 3000  GAAAAATTTC TTGCTTTAGT TATAAAAATT CAAAGAGAACAGTA TTTCTCCCAC ACTCTTTAT 3180  GATTGCTAAG AGGCATTATA TTTCTCTT ATCAAAAAG CTTATTTTTT 3180  GATTGTTAAG AGGCATTTTA TACTCTTCTT ATCAAAATG CTTACTTTTT 3180  GATTGTTAAG AGGACTTTTA TACTCTTCTT ATCAAAATG CTTACTTTTTC 3300  ATTTCCCCTC TCTTTCAGGC CCAAACAGGC ACTGTATCT TTCCCACACAGG ACCAATTAT 3360  ATTTCCCTC TCTTTCAGGC CCCAAACAGGC ACTGTATCT TCCAAAATTAT 3360  ATTTCCCTTC TCTTTCAGGC CCCAAACAGGC ACCAGTTAT TTCCCACACAGTA 3420  ATTTCCCTTC TCTTCTAGC CCCACACAGC ACCATTATT TTCTCACACAGG ACCAGTTATT TCCAAAATTAT 3360  ATTTCCAAGT GAAATTCAAC CTGCAACAGGC ACCAGTTAT TTCTCACACA ACCAGTTAT TTCTAAATAAA ACCAAATACCA 3420  TCTTTTCAATG GCTTTCTACA CATTTATTC TAAAAAATT TTTTACTATA ACCAAATACCA 3600  TTTTTTAATATA ACCAAAGGCA GAGGAAAATA ATTTTACTTA TTAATAAAAT TTTTATCATTA 3600  TTTTTTAATATA ACCAAAGGCA GAGGAAAATA ATTTTACTTA TTAATAAAAT TTTTATCATTA 3600								
TCTGCCTGTC TCAGCCTCCC AAAGTGCTGG GATTACAGGC GTGAGCCCC GCCCCAGCC 2460 TGAGCCTTT TTTTTTCTA ATGCATCCAA GGTTAAGGGG AAGACGCAAA TAACAGGACT 2520 ATTCTAAAAG GAAACCTGTT TGAACTCTG GAGATCAGTC ATCAGCTCTG GTATTCCACA 2580 GGCACACCTT AATTCATTG TAAAAAGATA TATATATTTT GTCTATTTTT GTGCTTTTGG 2640 GGGCCTATTT TGTGCTTTTT TACCTTATGT AGAGACTCTA TTACAAAAGGA ATTTCTACAC 2700 TTAAAAAGAG ACTGAAATAA ATTGTATAGT TACTTAACA ATGAAGACAT CATCCCCTTC 2820 TTGATTCTAT CTTAATTTTC TGGCTTTAG GGTATACTCA TAAAACACAT CATCCCCTTC 2820 TTGATTCTAT CTTAATTTC TGGCTTTAG GTGCACTC AGAGGCATAT CATCCCCTTC 2820 TGGTATAGTT TTAACTTTCA ACTGATACGG CTTCTCTGAG TTACTTTAAT TTTCCCTTC 2940 TGGTATAGTT TTGGCTTTC CTTCTTTTG GTTTCAGAG CCCCATGCTT ATATAGCCTC 3000 GAGTGCAAGT AATTACTATA CTTGTAAATG AAGAACAGT TTCTCTCCAA GACCTCT ATATAGCCTC 3000 GAGTGCAAGT AATTACTATA CTTGTAAATG AAGAACAGTA TTCTCCCTA GATCTGATAA 3060 AAAAATTTTC TTGTCTTAGT TATAAAAAATT CAAAGAAATG TTTCTCCCAA GATCTTAGTA 3120 GCAGATCATA AGGCTTTTTA TACCTTTGGT ATCAAAAAGG CTTATTTTC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TTCAACGGAG ACTGTATTTC AGGCACTAAG 3240 GATTGTTAAG TGAATTATT TTCACTAGGC ACCGTATTC TTCTCCCAA ACTGTTCTC 3300 ATTTCCTCTC TCTTCCACA CTCAACAGGC ACCGTATTC TTCTCCCAC ACTGTTCTC 3300 ATTTCCTCTC TCTTCCACA CTCAACAGGC ACCGTATTC TTCTCCCAC ACTGTTCTC 3300 ATTTCCTCTC TCTTCCACA CTCAACAGGC ACCGTATTC TTCTCCCAC ACTGTTCTC 3300 ATTTCCTCTC TCTTCCACA CTCAACAGGC ACCGTATTC TTCTCCCAC ACTGTTCTC 3480 GTATGGTATG GTCTTCTACA CTCAACAGGC ACCGTATTC TTCTCCCAC ACTGTTCTTC 3400 ATTTTCTATAG GTATTTATT TGTGTTCTT TTACTTATATA AAAAAAAATA ACCTAATATA 3660 TTTTTTATATA ACCAAAGGCA GAGGAAAACCAGT GTATGATTA TTTTATCATCA TTTTATATAA ACCAATAGTC AAATCACTA TTTTATCATCA TAAAACCAGT GTATCATTA TTTTATCATCA TTTTATCATCA 3600 TTTTTTATATA ACCAAAGGCA GAGGAAAAACCAGT GTTGCGAATTA TTTTATCATCA TTTTATCATCA TTTTATCATCA 3600 TTTTTTATATAA ACCAAAGGCA GAGGAAAACCAGT GTTTCTACTTA TTTTATCATCA TTTTATCATCA 3600 TTTTTTATATAA ACCAAAGGCA GAGGAAAACCAGT GTTTCTACTTA TTTTATCATCA TTTTATCATCA 3600								
TGAGCCTITT TITTITCTA ANGCARCAG GGITAAGGG AAGACGCAAA TAACAGGACT 2520 ATTCTAAAAG GRAACCTGTT TGAACTCTAT GAGCATCAGC ATCAGTCTCA GTATTCCACA 2580 GGCACACCTT AATTCTATT TGAACTCATT GAGACTCAT GCATATTTT GTGCTTTTGG 2640 GGGCCTATTT TGTGCTTTT TAACCTATGT AGAGATCAGT TGCATATTTT GTGCTTTTGG 2640 TTAAAAAGAG ACTGAAATAA ATTGTATAGT TACTTAACTA ATGAAGACAT TTCAGAACTC 2760 TGGATGATT TTAATCTTGA AGTAGTAGGT GGTATAGTCA TAAAACCAT CATCCCCTC 2820 TTGATTGATA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTAA TTTTGCCTTG 2840 TGGTTATGGT TTGGCGTTTC CTTCTGTTTG GTTTTCAGGA CCCCATGTCT AGATCAGTACA 3000 GAGTGCAAGT AATTACTATA CTTGTTAAGT AAGACAAGT TTTCTGCCTA GATCTGATAA 3060 AAAAATTTTC TTGTCTTAGG TATAAAAATT CAAAGAAATG TTTTCACCATA GATCTGATAA 3060 GATGCAAGT AATTACTATA CTTGTTAAGT AAGACAAGT TTTCTCCCAC ACTGTTATATTACTTT GCAGATCATA AGGCTTTTAT TACTCTTGTT ATCAAAAAGG CTTATTTTC AGGCACTAAG 3240 GATTGTCAGA GAAAAGCCT TCAAACAGG ACTGTATTTC AGCCAATTACT 3300 ATTTCCCTC TCTTCAGGC CCCAACAGCG ACTGTTATT TTCCCCAC ACTGTCTT GAGCACTAAG 3260 ATTTCCCTC TCTTCAGGC CCCAACAGGC ACTGTATTA TTCCCAAATTAC AGCTTTACTT 3360 ATTTCCCTC TCTTCCAGC CCCAACAGGC ACTGTATTA TTCCCAATT TCCAAAATTAC 3360 ATGTGCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTAT TTGTAATAAA ACAAATCGCT 3480 GTATGGTATG GTATTCAAC CATTTACTTC TACACAATAC TACATAATAA ACAAATCGCT 3480 GTATGGTATG GTATTCAAC CATTTACTTC TACACAATATA TACATTAAAG 3420 TGTTTCATGA GAAATTACA CAATTACAT CAAATTACAT TTGTAATTAAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTACTTC TATACGATAAT TTTTATCATTC 3540 TGTTTCATGA CCAAATCAA GAAAACCAGT GTTTCACTCA TTTTCATTCT 3540 TTTTTTATATA ACCAAAGGCA GAGGAAAAAC ATTTTACTTA TTATAATAAAA TTTTTATCATCA 3660								
GGCACACCTT AATTCATTG TAAAAAGRA TATATATTT GTCTATTTT GTGCTTTTGG 2640 GGGCCTATTT TGTGCTTTTT TACCTTAGT AGACATCTA TTACAAAAGR ATTTCTACA 2700 TTAAAAAGAG ACTGAAATAA ATTGTATAGT TACATAACTA ATGAAGACAT TTACAAAACTC 2760 TTGATTGTAT TTAAATTTCA AGTGATAGT GGTATAGTCA TAAAACCAT CATCCCCTTC 2820 TTGATTGTAT CTTAATTTCA TGGCTTTAGG GTGACATCG AGAGGTAAGG CATCTCTTTT 2880 TGGTTATGGT TTGGCGTTTC CTTCTGTGG TTTCTCTGGG TTTTTAATTTTAT TTTTGCCTTG 3000 GAGTGCAAGT AATTACTATA CTTGTAAATG AGAGTCAGT ATTCTGCCTT ATATAGAGTCCT 3000 GAGTGCAAGT AATTACTATA CTTGTAAATG AGAGTCAGTA TTTCTGCCTA GATCTGATAA 3060 AAAAATTTTC TTGTCTTAGT TATAAAAATT CAAAGAAATG TTTTCACAAAG ATACTTAGTA 3120 GCAGATCATA AGGCTTTTTA TACCTTGGT ATCAAAAAGG CTCATTTTCT 3180 GCAGATCATA AGGCTTTTTA TACCTTTGTT ATCAAAAATG CTTATTTTTC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TTCAACGAAG GATTGCCTT CTCCCAC ACTGTTCTG 3300 ATTTCCTCT TCTTTCAGG CTCAACAGGC ACTGTATTCA TTCCAAATTA ACAAATTAT 3360 CAAAATCAAG TGAATTATT TTGGTGTTCT TTACTTATATA AAAAAAATA ACCTTAAAGG 3420 ATGTGCAAGT ACATTTCCAA CTCAACAGGC ACCGTTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATATGAATAT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATATGAATAT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATATGAATAT TTTTATGATCA 3600 TTTTTTATATA ACCAAAGGCA GGGGAAAAAT ATTTTACTATA TATAAAAATA TTTTATCATCA 3600 TTTTTTTATATA ACCAAAGGCA GGGGAAAAAT ATTTTACTATA TATAAAAATA TTTTATCATCA 3600	50							2520
GGGCCTATTT TGTCCTITTT TACCTTATCT AGAGATCTA TEACAAAGTA ATTITCTACA 2706 TTAAAAAGAG ACTGAAATAA ATTGTATAGT TACCTTAACTA ATGAAGACTA TTACAGAACTC 2766 TGGGATGATT TTAATCTTGA AGTAGAGGG GGTATAGTCA ATGAAGACTA TACAGAACTC 2766 TTGATTGTAT CTTAATTTC TGGCTTTAG GTGCACTCG AGAGGTAATG CATTCTTTT 2880 TATATTGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTTAA TTTTGCCTTG 2940 TGGTTATAGGT TTGGCGTTTC CTTCTGTTTG GTTTTCAGAG CCCCATGTCT AGATAGACCC 3006 AAAAATTTC TTGTCTTAGT TATAAAAATT CAAAGAAATG TTTCTCCCTA GATCTAGTA 3120 TAGCTCCTCA GCCATAACCT GAGACTTGGG ATGAAATTAA AACCAGATAC GATTTACTTA 3180 GCAGATCATA AGGCTTTTTA TACCTTTGTT ATCAAAATG CTTATTTTC AGGCACTAAG 3240 GATTGCTCCTC TCTTCAGGC CTCAACAGGC ACTGTATTTC AGGCACTAAG 3240 ATTTCCTCTC TCTTCAGGC CTCAACAGGC ACTGTATTTC AGGCACTAAG 3360 ATTTCCTCTC TCTTCAGGC CTCAACAGGC ACTGTATTT CTCACAATTAC 3360 ATGTGCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTATT TTGTAAATTAA ACAAATCAGT 3480 GTAGGTATG GTGTTCTACA CATTTATGTC TATAGATATAT TTGTAATTAA ACAAATCACC 3480 GTAGGTATG GTCTTCTACA CATTTATGTC TATAGATATAT TTGTAATTAA ACAAATCACC 3480 TTTTTTAATGA ACCAATAGGCA GGGGAAAAAC ATTTTACTTA TTATAATAATA TTTTATCATTCA 3660 TTTTTTTAATA ACCAAAGGCA GGGGAAAAAC ATTTTACTTA TTATAATAATA TTTTATCATCA 3660								
THAAAAGAG ACTGAAATAA ATTGTATAGT TACTTAACTA ATGAAGACAT TYCAGAACTC 2760 TGGGATGATT TATAACTTGA AGTAGTAGG GGTATAGTAC ATGAAGCAT TYCAGAACTC 2820 TTGATTGAT CTTAATTTTC TGGCTTTAG GGTATAGTAGA GARGGTAAG CATTCTTTTT 2880 TATATTGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTTAA TTTTGCCTTG 2940 TGGTTAAGGT TATGCGTTTC CTTCTGTTTG GTTTTCAGAG CCCCATGCTC ATATAGTCCT 3000 GAGGCAAGT AAATACTATAC CTTGTAAATG AGAGTCAGATA TTTTCTGCCTT ATATAGTCCT 3000 AAAAATTTC TTGTCTTAGT TATAAAAATT CAAAGAAATG TTTCTGCCTA GATCTGATAA 3120 TAGCTCCTCA GCCATAACCT GAGACTTGGG ATGAAATTTA AACCGAATAC GATTTACTTT 3180 GATTGTTAAG AGGACTTTTA ATCTCTTGTT ATCAAAATG CTTATTTCTC AGGCACTAGA 3240 GATTGTTAAG AGGACTTTAAT TACTCTTGTT ATCAAAATG CTTATTTCTC AGGCACTAGA 3240 ATTTCCCTCT TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAATT TCCAAAATTAT 3360 ATGTCCAAGT TGAATTATAT TGTGTGTTCT TTACTTATATA AAAAAAAAGAT ACCTTAAGG 3420 ATGTCCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACCAAATGCCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGAATATA TACAATTACCA 3600 TTTTTTAATAA ACCAAAAGGCA GGGAAAAAT ATTTTACTATA TTAATAAATA TTTTATGATCA 3600 TTTTTTTAATA ACCAAAGGCA GGGGAAAAAT ATTTTACTTA TTAATAAATA TTTTTATGATC 3600								
TIGGATGATT THANCTIGA AGTAGIAGGT GGTATAGICA TAAAACCAIT CATCCCCTIC 2820 TIGATITATATTIC TGGCTITAAG GTGACAICTG AGAGGTAAGG CATICTITTIT 2880 TATATIGAAA TCATAAACTA TCACCGCIG CTICTCIGAG TIACTITTAA TITTIGCCTIG 2940 TGGTTAGGT TIGGCGTTTC CTICTGTTIG GTTTTCAGAG CCCCATGICT ATATAGICCT 3000 GAGGGCAAGT AATTACTATA CITGTAAAAT GAGATCAGAT ATTCTGCCTA GATCGATAAA TAGCTCCTCA GCCATAACCT GAGACTIGGG ATGAAATTA AACCAGATAC GATTTACTT 3120 GCAGATCATA AGGCTITTTA TACTCTTGT ATCAAAATG CTTATTTTC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TCAACGAAG GATTGCCTTT CTCCCCAC ACTGTTCTTG 3300 ATTTCCTCTC TCTTTCAGGC CTCAACAGGC ACTGTTATTA TAGCAAATTA AACCAAGATTA AGCACATATA 3360 CAAAATTCAAG TGAATTATT TGTGGTTCT TTACTTATATA AAAAAAAATA ACCTTAAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTAGCCA AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATCTC TATAGGATAT CTTCTCATCT 3540 TGTTTCATGA CTGAATAACT AAAAACCAGT GTTGGCAATT TGGTAATCAT CTTTCTATTC 3540 TGTTTCATGA CTGAATAACT TAAAACCAGT GTTGGCAATT TGGTAATCAT ATGATACTAC 3660 TTTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAATA TTTTATGATC 3660								
TIGATTGTAT CITAATTIC TEGCTITAAG GIGACATCIG AGAGGTAATG CATICITITY 2880 TATATTGAAA TCATAAACTA TCACCCGCTG CITICICIAGA TITACTITITA TITICCCTTG 2940 TEGGTIANGST TIGGCGSTTTC CITICITYTEG TITICIAGAG CCCCARGOTTA ATATAGICCT 3000 GAGTGCAAGT AATTACTATA CITGTAAATG AAGATCAGTA TITCTGCCTA GATCTGATAA 3060 AAAAATTITC TITCTCTAGF TATAAAAATT CAAAGAAATG TITCTGCCTA GATCTAGATAA 3120 GCAGATCATA AGGCTITTITA TACCTTTGTT ATCAAAATGG CITATTITIC AGGCACTAAG 3240 GATGTCATA AGGCTITTITA TACCTTTGTT ATCAAAATGG CITATTITIC AGGCACTAAG 3240 ATTICCTCT TCTTCAGGG CTCAACAGGC ACTGTATTIC CAGCACTAAG 3360 ATTICCTCT TCTTCAGG CTCAACAGGC ACTGTATTAT TACCAAATTAT 3360 CAAATTCAAG TGAATTATT TGTGTGTTCT TACCTTATTCA TGCCAATTA TACAAATTAT 3460 GTATGGTATG GTCATTCAAC CTCATAGCAC AACCAGTATT TGTAAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGGATAT TGTAAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGGATAT TGTAAATTAA ACAAATCGCT 3540 TGTTTCATGA CTGAATAATG TAAAACAGT GTTGGCAATT GTGAATCATCA ATGATACTCA 3600 TTTTTTTAATTA ACCAAAGGCA GGGGAAAATA ATTTTACTTA TTAATAAATA TTTTATCATCA 3600	55							
TATATTGAAA TCATAAACTA TCACCCGCTG CTTCTCTGAG TTACTTTAA TTTTGCCTTG 2940 TGGTTATAGGT TTAGCGTTTC CTTCTGTTTG GTTTTCAGAG CCCCATGTCT ATATGCCCT 3000 GAGGGAAGT AATTACTATA CTGTGTAATG AAGATCAGTA TTTCTGCCTA GATCTGATAA 3060 AAAAATTTC TTGTCTTAGT TATAAAAATT CAAAGAAATG TTTCTGCCTA GATCTAGTAA 3120 TAGCTCCTCA GCCATAACCT GAGACTTGGG ATGAAATTA AACCAGATAC GATTACTTT 3180 GCAGATCATA AGGCTTTTAT TACTCTGTT ATCAAAATG CTTATTTCA GGCACTAG 3240 ATTTCCTCT TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAATT TCCAAATTAT 3360 ATTTCCATC TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAATT TCCAAATTAT 3360 CAAATTCAG TGAATTATAT TTGTGTTCT TTACTTATATA AAAAAAAGAT ACCTTAAGG 3420 ATGTGCAAGT ACATTTCAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACCAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATA TCTTATATA ACCAAATCAC 3600 TTTTTTAATGA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATCA 3600	JJ							
60 GAGIGAGT ANTACTATA CTICTATITE GITTICAGAG CCCCATGICT ATATAGICCT 3000 GAGIGCAGT ANTACTATA CTIGTANANG AGARCAGTA TITCICCCTA GATCIGATAA 3060 AAAAATITIC TITGICTAGT TATAAAAATT CAAAGAAATG TGTTACAAAG ATACTAGTA 3120 GAGIGATCATA AGGCTITTA TACTCTTGT ATCAAAATG CTITATTTC AGGCACTAGG 3240 GATGITAGTA AGGCTITTA TACTCTTGT ATCAAAATG CTTATTTTC AGGCACTAGG 3240 GATGITAGAAG AGAAAGCTI TICAACGAAG GATTGCCTT CTCTCCCCA ACTGITCTTG 3300 ATTICCTCTC TCTTCAGC CTCAACAGGC ACTGITATTCA TICCAAATTAT 3360 CAAAATCAAG TGAATTATTT TAGTGTTTCT TACTTATATA AAAAAAAAA AAAATAAGG 3420 ATGICAAGT ACATTTACCAA CTGCCAAGCA CACGGTATT TICTAATTAA ACAAATCGCT 3480 GATGICAAGA ACCATTTCCAA CTGCTCAATCA CTGCTCAATCA CTGCTCAATCA CTGTTCATTC 3540 TGTTCAAGA CTGAATAATG TAAAACAGT GTTGGCAATT GGTATCAACA ATGATACTCA 3660 TTTTTTATATA ACCAAAGGCA GGGGAAAATC ATTITACTTA TAATAAATA TTTTATGATC 3660								
60 GAGTGCAAGT AATTACTATA CTTGTAAATG AAGATCAGTA TTTCTGCCTA GATCTGATAA 3060 AAAAATTTTC TITGCTTAGT TATAAAAAATT CAAAGAAAT TATATCAAAG ATACTTAGTA 3120 TAGCTCCTCA GCCATAAACT CAGACTTGG ATGAAATTA AACCAGATAG GATTTACTTT 3180 GCAGATCATA AGGCTTTTA TACCTTGTT ATCAAAATGG CTTATTTTC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TCCAACGAAG GATTGCCTT CTTCTCCCAC ACTGTTCTTG 3300 ATTTCCTCT TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAAATTA TCCAAATTATA 3360 CAAAATCCAAG TGAATTTATT TGTGTGTTCT TTACTTATAT AAAAAAAGTA ACCTTAAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTAGCA AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGGATAAT CTTTCTATTC 3540 TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGCGAATT GGTATCATCA ATGATACTCA 3660 TTTTTTAATA ACCAAAGGCA GGGGAAAAAT ATTTTACTATA TTTAATAAATA TTTTATGATG 3660								
TAGCTCCTCA GCCATAACCT GAGACTTGGG ATGAAATTTA AACCAGATAC GATTTACTTT 3180 GCAGATCATA AGGCTTTTTA TACTCTTGTT ATCAAAATGG CTTATTTTC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TTCAACGAAG GATTGCCTTT CTTCTCCCAC ACTGTTCTTG 3300 ATTTCCTCTC TCTTTCAGGC CTCAACAGGC ACTGTATTCA TTGCCAATGT TCCAAATTAT 3360 CAAATTCAAG TGAATTTATT TGTGTGTTCT TTACTTATATA AAAAAAAGAT AACTTTAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTTAGCTA ACCAGTTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATAC CATCGATCAT CTTTTCTATTC TGTTTCATGA CTGAATTATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATC 3660	<b>.</b>	GAGTGCAAGT	AATTACTATA	CTTGTAAATG	AAGATCAGTA	TTTCTGCCTA	GATCTGATAA	3060
GCAGATCATA AGGCTITITA TACTCTTGTT ATCAAAATGG CITATTITC AGGCACTAAG 3240 GATTGTTAAG AGAAAAGCTT TICAACGAAG GATTGCCTT CITCTCCCAC ACTGTTCTTG 3300 ATTTCCTCT TCTTCAGGC CTCAACAGGC ACTGTTATTCA TITGCCAAATGT TCCAAAATTAT 3360 CAAAATCCAAG TGAATTTAAT TATGTGTTCT TATCTTAATA AAAAAAAAAA	60							3120
65 GATTGTTAAG AGAAAGCTT TTCAACGAAG GATTGCCTTT CTTCTCCCAC ACTGTTCTTC 3300 ATTTCCTCTC TCTTTCAGGC CTCAAACGCAC ACTGTTCTA TTGCCAATGT TCCAAATTAT 3360 CAAATTCAAG TGAATTATT TGGGTATTCA TTACTTATAT AAAAAAAGAT AACTTTAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTARGGTATG GTCTTCTACA CATTTATGTC TATAGGATAT CTTTCTATTC 3540 TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATG 3660								
ATTICCTUTE TETTICAGGE CTCAACAGGE ACTGTATICA TIGCCAATGT TCCAAATTAT 3360 CAAATTCAAG TGAATTATT TOTGTGTTCT TTACTTATAT AAAAAAAGAT AACTATAAGG 3420 ATGTGCAAGT ACATTTCCAA CTGCTAGGCA CAACAGTATT TGTAAATAA ACAAATGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATC TGTATCATCA TCTTTCTATTC 3540 TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATG 3660								
CAAATTCAAG TGAATTTATT TGTGTGTTCT TTACTTATAT AAAAAAAAT AACTTTAAGG 3420 ATGTGCAAGT ACATTTACAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATC TATCGATCAT CTTTCTATTC TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATC 3660		GATTGTTAAG	AGARAAGCTT	TTCAACGAAG	ACTOCCTTT	CTICICCCAC	ACTG1*TCTTG	
ATGTGCAAGT ACATTTCCAA CTGCTAGCAC AACCAGTATT TTGTAATTAA ACAAATCGCT 3480 GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATC TATCGATCAT CTTTCTATTC 3540 TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTAT TTTAATAAATA TTTTATGATG 3660	65							
GTATGGTATG GTCTTCTACA CATTTATGTC TATAGATATC TATCGATCAT CTTTCTATTC 3540 TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATG 3660	JJ							
TGTTTCATGA CTGAATAATG TAAAACCAGT GTTGGCAATT GGTATCATCA ATGATACTCA 3600 TTTTTTTAATA ACCAAAGGCA GGGGAAAATC ATTTTACTTA TTAATAAATA TTTTATGATG 3660								
		TGTTTCATGA	CTGAATAATG	TAAAACCAGT	GTTGGCAATT	GGTATCATCA	ATGATACTCA	3600
/U TGAAAAAAA AAAAAAAAA AAAAAAAAAA	70				ATTTTACTTA	<b>TTAATAATA</b>	TTTTATGATG	3660
	/υ	TGAAAAAAA	АЛАЛАЛАЛА	ааааааааа				

### SEQ ID NO:195 BHB8 Protein sequence

```
Protein Accession #:
                                      none found
  5
                                  21
                                               31
                                                                        51
        MLSGFLMSPS TOHRAQYTPG GKKLPWEASI GAHTSRGRGS DRERESRPEA AGLLWDRAAA
        GEAEKGNRGE PPAMIRAQQQ PRPPPAGQAP GTAAGGAQDF RLRPGRSRGR VRLPVKPPEA
SGRQPRGPSD CIPRFPSASA THKAVPKGTG PPAEDGDGLG APGPRARRR LLGVAAEGSG
                                                                                       120
10
                                                                                       180
        PRGKRRGTVS DEARGSPGPR LLGDRPALSG DALSAPRVVP CGALAARPSP HPGTPLRSCS
                                                                                       240
        CCWLRCWRRG RGPSGEYCHG WLDAQGVWRI GFQCPERFDG GDATICCGSC ALRYCCSSAE
ARLDOGGCDN DROQGAGEPG RADKDGPRRL GRASCLRGTQ GDGEGAPPFV RAWQRCSPEG
                                                                                       300
                                                                                       360
        SPKGROLLRA FPGLLPRARR RGFPSSPRGG PSPLQRPALP IYVPFLIVGS VFVAFIILGS
                                                                                       420
15
        LVAACCCRCL RPKODPOOSR APGGNRLMET IPMIPSASTS RGSSSROSST AASSSSSANS
GARAPPTRSO THECLPEGTM NIVYVNMPIN PSVLNCQOAT QIVPHQGQYL HPPYVGYTVQ
                                                                                       480
                                                                                       540
        HDSVPMTAVP PFMDGLQPGY RQIQSPFPHT NSEQKMYPAV TV
                                                        SEQ ID NO:196 COA5 DNA SEQUENCE
20
                                                AA088458
        Nucleic Acid Accession #:
                                            Coding sequence:
                                                                                   862-1995 (underlined sequences correspond to start and stop codons)
                                               31
                                                           41
25
        GCCCTTGGAC ACTGACATGG ACTGAAGGAG TAGAATGGAG CACGAGGACA CTGACATGGA
        CTGAAGAAAA AGGAGCTGGA GCAGGAGAAG GAGGTGCTGC TGCAGGGTTT GGAGATGATG
                                                                                       120
        COCCEGGGCC COCACTGGTA CCAGCAGCAG CTGCAACGAG TGCAGGAGCG CCAGCGCCGC
                                                                                       180
        CTGGGCCAGA GCAGAGCCAG CGCCGACTTT GGGGCTGCAG GGAGCCCCCG CCCACTGGGG
30
        CGCTACTEC CCAAGGTACA AGAGGTGGCC CGGTGCCTGG GGGAGCTGCT GGCTGCAGCC
TGTGCCAGCC GGGCCCTGCC CCCGTCCTCC TCCGGGCCCC CCTGCCCTGC CCTGACGTCC
                                                                                       300
                                                                                       360
        ACCTCACCCC CGGTCTGGCA GCAGCAGACC ATCCTCATGC TGAAGGAGCA GAACCGACTC
        CTCACCCAGG AGGTGACCGA GAAGAGTGAG CGCATCACGC AGCTGGAGCA GGAGAAGTCG
                                                                                       480
        GCGCTCATTA AGCAGCTGTT TGAGGCCCGC GCCCTGAGCC AGCAGGACGG GGGACCTCTG
                                                                                       540
35
        GATTCCACCT TCATCTAGTC CTTGTGGGCC GCGTGGGCCC CCAGGGCCAG CCTGGCACTC
                                                                                       600
        AGCCCTTCGA GGGTGGCCGC CCCATCGCAC CCACCCTCTC TGGCTGGAGA CCCCCGGCAG
                                                                                       660
        GCCCAGGCAC AGTCCCGGAG TGGGCGCCTT CCTGCCGCCC TTGCCAGATG GGCTCCCCAG
                                                                                       720
        GCCTGCCCCC GGCTGGTCCC CGCACCGAGC GCTTGACTCC GTTTKGGCTC CTGGTTGYTG
                                                                                       780
        ACATGGGCTG GGGGCTCTCT TGAGTCCGCA TAGTCCGCAG CTACTACTGG CCGCTGTCAG
                                                                                       840
40
        TEGACAGTEG GETACCCCTC CATGAGTTAG CETCCCCCCG TTTCCAGCGG TGCCGCCCTG
        GETCCCATCT TCAGGGAAAG GCACTGCCCA CGCCAGGCTG CACTTCCAAC AACGGGCAGC
                                                                                       960
        AGAGGGCGCG GCCCGCTCC GACGCGGGTC CAAGGGCAGC TTCCCGCTCA ACCAGGGCAC
                                                                                      1020
        CAGGACGAGG TEGCTGTAGC TCGGACGGAC GGAAGTAGAT GGAGGGGGTG GGGACGGCCT
        GTAAGCGGGG GGTGCCTGCC TGGCTGGGGA GCCCCAGGGA TAGCGGTCGG ACTTCAGGTT
                                                                                      1140
45
        CTGGCCAAGG CTGAGGGACC CTGGCTGCAG CGGATCGGCA CGCCGGGTGG GCGAGAGCTT
GGCCTGCATG TGCCTCCCAC AGACCCTGGG GTGATGGCCT TCCCCCTCTT GGCCGGGACG
                                                                                      1200
        TTGCCCCACG TTGAGTCCCA CACAACATCC TGTGAGCCTG GCTCCCCAGG AGGGCCCCCA
                                                                                      1320
        GACAGCTCCC AGGCACGTCA TAGGCAAAGC CTGTTTCCCC CGACTCAGGA TTTCCAAGGC
                                                                                      1380
        CTGGGGTCCT GCTCACCCCC CTTTGCTCTC ACGCCCAGCC TGTCCCCAGG TTTCAGCTGG
                                                                                      1440
50
        GAGAGGCCAC CTCCCTCAGC CAAGGAAAAC GAGAACCCCC AGGGTACAGG AGGAGGCTGG
                                                                                      1500
        GGCAGGTCCC CTTGGGTGTC ACTCCCTCAG CCCCTGCCCA GGCCCACTCC CGCTGGTGCT
                                                                                      1560
        GGAGTACGCA CTGGTGGGGG GGCCCTGCTC AGCCCAACCT GGAGGGTCCC AGTGTCACCA
                                                                                      1620
        GRACCAGGGG CACGGCAACA GCATCGATGG GTTCTGCAGC CCAGGGCCCC CGATGCGGGG
                                                                                      1680
        TCAGTGTGTG TGGGGCGCAG GGCCTCCGAT GCGGGGTCAG TGCGTGGGGG GCGCAGGGCC
                                                                                      1740
55
        CCCGATGCGG GGTCAGTGCG TGGGGGGGGCC AGGGCCCCCT CGTGTCCAGG GCACTTTGGT
                                                                                      1800
        ACACTOTOCO ACAAGGCACO TGTOTOAGAG GAGGGGCCCT GGCAGGCAGO GTGGCAACTO
                                                                                      1860
        CCTTCCGGAG CCCAGCTCCA TGCTAACCTG CCCACAGCAA CCCCACAGAG CCACATTCCC
                                                                                      1920
        TECTECACCT GETCTECAGE GETCTCCCAE GACAGGCCCA AGTCAGCCCA GCATGCAGCT
                                                                                      1980
        TECTECACT GETCHECAGE GENERALES GENERALES GENERALES GENERALES COMMANDA GENERALES GENERALES GENERALES TROCAGGIA CATALAGGAT TRAGGOCTIGA ACCTICCIGG CAGGARAGGG TECAGGITCT GAGGGCCTGT GCCCCACAGC CCCAGCACC
                                                                                      2040
60
        AGGTGGACTG CAGCGCAGTG GGTGGGCCAG TGGCAGCCAG GGAGAAGCCC CCCGTCAGCA
                                                                                      2160
        GGCTGGGGTC TGCCCACCAG GGCCTCCCCA CGTCTGCCTT TGAGGGTGCC TGCCATGCCC
                                                                                      2220
        TGGGGGATCC TGGCATCTTT ACTGGACTGG AAGCAGGAGA CAGAACAGTG TCTGTCCCGG
                                                                                      2280
        GGTGACTTCA TCAGGAGACC GCCCACATAG AGCTGGACCC CGCAGCTGAA GCGGAAATGT
                                                                                      2340
65
        GAGACAGGCT GGCACCTCCG GAAAAACTGC CTTTCAGCCT TGGTGTTCCG TGCAAGGTGA
                                                                                      2400
        ARAGARATAG GTCCTCCCAG TTTACAGCTT GARATCAGGC TAGTGAGTGG
                                                                        CCCTGGAGAC
                                                                                      2460
        CACGAGGGGA GAATTTAAAG GCCCCGGCTG GCAGGGTCTA GGTGGCTGGC AGAGGCACAT
                                                                                      2520
        GCAGACCCTG CCTGGAGCCT GCCCTAGGAC GCTGGGCGGG TCAGTCTCCG TGCAGGATGT
                                                                                      2580
        GAGCAGCGTC CCTGGGCTCT ATCCGCGAGG TGCCAGTAGC GTGTGCAGGT ACATACACGT
                                                                                      2640
70
        CCGTCACAC TGTGATGACA CCCGGAAATG TCTCAGGATG TTGAAATGTG TCCTTGGGGG
                                                                                      2700
        CAGAAGTGTC CCCAGTTGAG AATCTGCCCC AGAGGAACAC ACCCACACCA GGCCTCAGGA
                                                                                      2760
        TTTTGTGTTG ATCAAGTTCC AAGGAAAAGG AACATCTCAG CCGGGCGTGG TGGTTCACGC
CTGGAATCCC AGCACTTGAG GCCAGGAGTT CCAGAGCAGC CTGGGCAACG CAGTGAGAGA
                                                                                      2820
                                                                                      2880
        CCCCATCTCT ACAARAAAA AAAAAGAAAG AAAGAAAATG AGAGATCCAG GTTTAAAAAT
                                                                                      2940
75
        TCATABACAC CACAAGGABA CABTACACTA TGAGACCCAG CAGAAGCAAC AGATTGACTC
                                                                                      3000
```

TAGACCCAGA TACTAGAATT ATCAGAGAGA ATATAAAGTA ACAGTGTTTT ATATATCTAA

AGAAATAAAA GAGATTTCTG GAAACATGAA AAAAAA

#### SEQ ID NO:197 LBG2 DNA SEQUENCE



# GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTILLVF 780 DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD

_	SEQ ID NO:199 OBI5 DNA SEQUENCE						
5	Nucleic Acid Acce Coding sequence		NM_01: 43-1104		ences correspond	to start and stop co	tons)
		••	••	•		F4	
10	1 j	11	21	31	41	51	
10		Unintersisted Application	GGATGTTCAC	Automotion 7	CDATCBATCB	GTGTCACTAT	60
			TTATAATAGG				120
						TATTTTTTT	180
			GGCAGTGATC				240
15						TGTATTCCTG	300
						TCTCCGTCAG	360
	GGGCTTCTGG	ACAGTAGCTT	GACTGCTTCC	CTCACCAACT	TGCTGGTTAT	CGCCGTGGAG	420 480
			GGCCATCGCC			GAGGGTGACA	540
20			CTCTGCCTGC				600
20			GTCCAACCTC				660
	CTGCGGATCT	ACGTGTACGT	CAAGAGGAAA	ACCAACGTCT	TGTCTCCGCA	TACAAGTGGG	720
	TCCATCAGCC	GCCGGAGGAC	ACCCATGAAG	CTAATGAAGA	CGGTGATGAC	TGTCTTAGGG	780
05	GCGTTTGTGG	TATGCTGGAC	CCCGGGCCTG	GTGGTTCTGC	TCCTCGACGG	CCTGAACTGC	840
25						GCTCAACTCC	900
	GTCGTGAACC	CCATCATCTA	CTCCTACAAG	GACGAGGACA	TGTATGGCAC	CATGAAGAAG	960
						CCCCTCCACA	
						CCAAGGTGCA GGTGATGACT	
30	GTCTTAGG	AMAGCACTIC	CIMARCICIG	GAIGCEICIC	GGCCCACCCA	GGIGAIGALI	1140
-							
						•	
	<b>SEQ ID NO:200 (</b>	OBIS Protein sequ					
25	Protein Accession	1#:	NP_038	284			
35	_						
	1	11	21	31	41	51	
			THE PROPERTY OF THE PARTY.	TATAL CARSES	CT.PTPPCNCI.	VLAAVIKNRK	60
						SSLTASLTNL	120
40	LVIAVERHMS	IMRMRVHSNL	TKKRVTLLIL	LVWAIAIPMG	AVPTLGWNCL	CNISACSSLA	180
	PIYSRSYLVF	WTVSNLMAFL	IMVVVYLRIY	VYVKRKTNVL	SPHTSGSISR	RRTPMKLMKT	240
						IIYSYKDEDM	300
	YGTMKKMIC	C FSQENPERR	P SRIPSTVLSR	SDTGSQYIED	SISQGAVCNK	STS	
45				65	O ID MO-201 DAA	6 DNA SEQUENCE	
40	Nucleic Acid Acc	occion #	AA569531	32	Q ID NO.201 1 700	DIM SECULIOL	
	Coding sequence	E	1-504 (underlin	ned sequences co	rrespond to start a	nd stop codons)	
	0028004	•				,	
=0	1	11	21	31	41	51	
50	1	1	1	1		1	
	<u>ATG</u> ACCTACA	GTTACTCATT	TTTCAGGCCT	GAGTTGATCG	TTAATCATCT	TAATTATGTT	60
	CATTCTGAAG	CCAACAGGAG	AACCAAGACC	AAAACTTTAT	TGICICIGCI	TTCATTTCTT	120 180
	GATGAAACCT	CIGGACTAAG	CCCCARCATCIT	CONCRETANT	CICICICAAA	GGAGTGTGGA ACAGTCTTCC	240
55						GATGAGCCTC	300
-	ATACCCAGAG	GGAACAAACG	CTCCCCAAAA	AGAGTTACAG	AAACCATCCT	GAGAGATTTT	360
	AAGCAGAAGC	AAAGTTCAAA	GATCCAAGAG	GAGAGACGAA	GAGAGTCTGC	AGGACCAAAC	420
	CTCTCTTCAT	TCTGGTTTGT	GGGGAATGCT	GGAAGAGGAG	ACAGGCCCCA	GATTTGGGCA	480
<b>6</b> 0	GGAAGTAAAC	AGTTTTCAGG	CTGAGGCCAA	TCTGAGCAGG	AACATTCCAA	TATTTCTTCA	540
60	CCTACCTTCT	CCCAGCACTT	CACTGGTTAA	CCTTTTATGT	CCACCATTTG	TGGATTTCAC	600
	AGCTACTTGT	CAATGGTGAA	TATTGATCAT	CATCATTATC	TACTGAGCTG	CTACCATATE	660 720
	CCAGCTACTC	CATGCATGTT	GTICATIATI	CCACAACAC	TOWGONIALIA	TGCAATATGT GCCAAACATC	780
	TATGINAIAI	CALAGACAAG	ACCENTURA	AACCAGGATT	GTCTGATTCC	AACATCTCTG	840
65	CONCOMPT	CACTCTGATA	TGCTGCAATT	AAAAAGCCAT	TTCTAAGACT	GT	
-	0010011			•••			
70		PAA6 Protein seq					
70	Protein Accessio	N #;	none found				
		11	21	31	41	51	
	†	i ·	1	1		ī	
	MTYSYSPFR	P ELIVNHIMV	V HSEANRETE	T KTLLSLLSF	L DETSGLSTH	L PCLSLSKECG	60
75	VLHLDIHGK	K EDMRITOOS	S QLYLWDMGG	P TIFKNLWMS	L IPRGNKRSP	K RVTETILRDF	120
	KQKQSSKIQ	E ERRRESAGP	N LSSFWFVGN	ia grgdrpqi	WA GSKQFSG		

SEQ ID NO:203 PAB2 DNA SEQUENCE

```
Nucleic Acid Accession #:
                                         XM_050197
         Coding sequence:
                                         310-1971 (underlined sequences correspond to start and stop codons)
  5
         TCACACGTGC CAAGGGGCTG GCTCAGCGGA ACCAGCCTGC ACGCGCTGGC TCCGGGTGAC
          AGCCGCGCC CTCGGCCAGG ATCTGAGTGA TGAGACGTGT CCCCACTGAG GTGCCCCACA
          GCAGCAGGTG TTGAGCATGG GCTGAGAAGC TGGACCGGCA CCAAAGGGCT GGCAGAAATG
                                                                                                   180
10
         GGCGCCTGGC TGATTCCTAG GCAGTTGGCG GCAGCAAGGA GGAGAGGCCG CAGCTTCTGG
                                                                                                    240
          AGCAGAGCCG AGACGAAGCA GTTCTGGAGT GCCTGAACGG CCCCCTGAGC CCTACCCGCC
         TEGECCACTA TEGTCCAGAG GCTGTGGGTG AGCCGCCTGC TGCGGCACCG GAAAGCCCAG
CTCTTGCTGG TCAACCTGCT AACCTTTGGC CTGGAGGTGT GTTTGGCCGC AGGCATCACC
                                                                                                   360
                                                                                                    420
         TATGTGCCGC CTCTGCTGCT GGAAGTGGGG GTAGAGGAGA AGTTCATGAC CATGGTGCTG
15
         GGCATTGGTC CAGTGCTGGG CCTGGTCTGT GTCCCGCTCC TAGGCTCAGC CAGTGACCAC
TGGCGTGGAC GCTATGGCCG CCGCCGGCCC TTCATCTGGG CACTGTCCTT GGGCATCCTG
                                                                                                   540
                                                                                                    600
          CTGAGCCTCT TTCTCATCCC AAGGGCCGGC TGGCTAGCAG GGCTGCTGTG CCCGGATCCC
         AGGCCCCTGG AGCTGGCACT GCTCATCCTG GGCGTGGGGC TGCTGGACTT CTGTGGCCAG
GTGTGCTTCA CTCCACTGGA GGCCCTGCTC TCTGACCTCT TCCGGGACCC GGACCACTGT
                                                                                                    720
                                                                                                    780
20
         CGCCAGGCCT ACTCTGTCTA TGCCTTCATG ATCAGTCTTG GGGCTGCCT GGGCTACCTC
                                                                                                    840
         CTGCCTGCCA TTGACTGGGA CACCAGTGCC CTGGCCCCCT ACCTGGGCAC CCAGGAGGAG
TGCCCCTTTG GCCTGCTCAC CCTCATCTTC CTCACCTGCG TAGCAGCCAC ACTGCTGGTG
                                                                                                   900
                                                                                                   960
         GCTGAGGAGG CAGCGCTGGG CCCCACCGAG CCAGCAGAAG GGCTGTCGGC CCCCTCCTTG
                                                                                                  1020
          TOGOCCOACT GOTGTCCATG COGGCCCGC TTGGCTTTCC GGAACCTGGG CGCCCTGCTT
                                                                                                  1080
25
                                                                                                  1140
         CCCCGGCTGC ACCAGCTGTG CTGCCGCATG CCCCGCACCC TGCGCCGGCT CTTCGTGGCT
         GAGCTGTGCA GCTGGATGGC ACTCATGACC TTCACGCTGT TTTACACGGA TTTCGTGGGC
         GAGGGGCTGT ACCAGGCCGT GCCCAGAGCT GAGCCGGGCA CCGAGGCCCG GAGACACTAT
                                                                                                  1260
         GATGAAGGCG TICGGATGGG CAGCCTGGGG CTGTTCCTGC AGTGCGCCAT CTCCCTGGTC
                                                                                                  1320
          TTCTCTCTGG TCATGGACCG GCTGGTGCAG CGATTCGGCA CTCGAGCAGT CTATTTGGCC
30
          AGTGTGGCAG CTTTCCCTGT GGCTGCCGGT GCCACATGCC TGTCCCACAG TGTGGCCGTG
                                                                                                  1440
          GTGACAGCTT CAGCCGCCCT CACCGGGTTC ACCTTCTCAG CCCTGCAGAT CCTGCCCTAC
                                                                                                  1500
          ACACTGGCCT CCCTCTACCA CCGGGAGAAG CAGGTGTTCC TGCCCAAATA CCGAGGGGAC
                                                                                                  1560
         ACTGGAGGTG CTAGCAGTGA GGACAGCCTG ATGACCAGCT TCCTGCCAGG CCCTAAGCCT
GGAGCTCCCT TCCCTAATGG ACACGTGGGT GCTGGAGGCA GTGGCCTGCT CCCACCTCCA
                                                                                                  1620
                                                                                                  1680
35
          CCCGCGCTCT GCGGGGCCTC TGCCTGTGAT GTCTCCGTAC GTGTGGTGGT GGGTGAGCCC
                                                                                                  1740
         ACCGAGGCCA GGGTGGTTCC GGGCCGGGGC ATCTGCCTGG ACCTCGCCAT CCTGGATAGT
GCCTTCCTGC TGTCCCAGGT GGCCCCATCC CTGTTTATGG GCTCCATTGT CCAGCTCAGC
                                                                                                  1800
                                                                                                  1860
          CAGTOTGTCA CTGCCTATAT GGTGTCTGCC GCAGGCCTGG GTCTGGTCGC CATTTACTTT
                                                                                                  1920
         GCTACACAGG TAGTATTTGA CAAGAGCGAC TTGGCCAAAT ACTCAGCGTA GAAAACTTCC
AGCACATTGG GGTGGAGGGC CTGCCTCACT GGGTCCCAGC TCCCCGCTCC TGTTAGCCCC
                                                                                                  1980
40
                                                                                                  2040
          ATGGGGCTGC CGGGCTGGCC GCCAGTTTCT GTTGCTGCCA AAGTAATGTG GCTCTCTGCT
                                                                                                  2100
         GCCACCTGT GCTGCTGAGG TGCGTAGCTG CACAGCTGGG GGCTGGGGCG TCCCTCTCTC
CTCTCCCCAG TCTCTAGGGC TGCCTGACTG GAGGCCTTCC AAGGGGGTTT CAGTCTGGAC
                                                                                                  2160
                                                                                                  2220
          TTATACAGGG AGGCCAGAAG GGCTCCATGC ACTGGAATGC GGGGACTCTG CAGGTGGATT
                                                                                                  2280
45
         ACCCAGGCTC AGGGTTAACA GCTAGCCTCC TAGTTGAGAC ACACCTAGAG AAGGGTTTTT GGGAGCTGAA TAAACTCAGT CACCTGGTTT CCCATCTCTA AGCCCCTTAA CCTGCAGCTT
                                                                                                  2340
                                                                                                   2400
          COTTTAATGT AGCTCTTGCA TGGGAGTTTC TAGGATGAAA CACTCCTCCA TGGGATTTGA
                                                                                                  2460
         ACATATGAAA GTFATTTGTA GGGGAAGAGT CCTGAGGGGC AACACACAAG AACCAGGTCC
                                                                                                  2520
         CCTCAGCCCC ACAGGCACTG GTCTTTTTTG CTMGANTCCA CCCCCCCCT CTTTACCCTT
50
          SEQ ID NO:204 PAB2 Protein sequence:
XP_050197
55
                                                       31
                          11
           MVORLMVSRL LRHRKAQLLL VNLLTFGLEV CLAAGITYVP PLLLEVGVEE KFMTMVLGIG
60
           PVIGLVCVPL LGSASDHWRG RYGRRRPFIW ALSLGILLSL FLIPRAGWLA GLLCPDPRPL
ELALLILGVG LLDFCGQVCF TPLEALLSDL FRDPDHCRQA YSVYAFMISL GGCLGYLLFA
           IDWDTSALAP YLGTQEECLF GLLTLIFLTC VAATLLVAEE AALGPTEPAE GLSAPSLSPH
                                                                                                     240
           CCPCRARLAP RNIGALLPRL HQLCCRMPRT LRRLFVAELC SWALLMTFTL FYTDFVGEGL
YQGVPRAEPG TEARRHYDEG VRMGSLGLFL QCAISLVFSL VMDRLVQRFG TRAVYLASVA
                                                                                                     300
65
           AFFYAGATC LSHSVAVVTA SAALTGFTFS ALQILFYTLA SLYHREKQVF LFKYRGDTGG
ASSEDSLMTS FLPGPKPGAP FFNGHVGAGG SGLLPPPPAL CGASACDVSV RVVVGEPTEA
RVVPGRGICL DLAILDSAFL LSQVAPSLFM GSIVQLSQSV TAYMVSAAGL GLVAIYPATQ
                                                                                                     420
                                                                                                     480
           VVFDKSDLAK YSA
70
                                                                SEQ ID NO: 205 PAJ3 DNA SEQUENCE
                                         AK002126
          Nucleic Acid Accession #:
                                         1-1593 (underlined sequences correspond to start and stop codons)
          Coding sequence:
75
                          11
                                        21
                                                       31
                                                                      41
                                                                                    51
           ATGGTTCGCC GGGGCTGCT TGCGTGGATT TCCCGGGTGG TGGTTTTGCT GGTGCTCCTC
           TECTGTGCTA TCTCTGTCCT GTACATGTTG GCCTGCACCC CAAAAGGTGA CGAGGAGCAG
CTGGCACTGC CCAGGGCCAA CAGCCCCACG GGGAAGGAGG GGTACCAGGC CGTCCTTCAG
                                                                                                     120
80
            GACTGGGAGG AGCAGCACCG CAACTACGTG AGCAGCCTGA AGCGGCAGAT CGCACAGCTC
                                                                                                     240
```

		TGCAGGAGAG TGGGTCTGGA					300 360
		CGCAGGTGGA					420
_		TGCCTTTCGA					480
5						GTTGGTGGAA	540
						CAATCACCGT	600 660
						CATCTTATTT	720
4.0		GCCCCATCAT					780
10						CATGCAGAAT	840
		TGTGCATTGA					900
		TAAATGAAGT					960 1020
		TCTGGAAGGG					1080
15		AATTCCTCAA					1140
		TTTTCAGTCA					1200
		AACAGCAGCT					1260
		CGTGTCAGTA GGGGCGGAGA					1320 1380
20						GCGCTGCATG	1440
						GAACGAGGCA	1500
					TAGAGGCTCA	CCTTCGCAAA	1560
	CAGAAACAGA	AGACAAGTAG	CAAAAAAACA	<u>TGA</u>			
25							
23	SEQ ID NO:206 P	A.l3 Protein seque	nce:				
	Protein Accession		NP_060841				
	1	11 :	21 :	31	41	51	
30	1	<u></u>		l		<u> </u>	
	MVRRGLLAWI : EWEEOHRNYV :						60 120
	FLHSQVDKAE						180
	AIESALETLN						240
35	RPFGPIMKVK 1						300
	KEEINEVKGI						360
	FTSEFLNTCR						420 480
	FGMTCQYRSD : DELTPEQYKM						400
40	DELLIE	CONTROLL BURNE	ar orredocure	··· ···	ere diration	LALA	
••				SEC	ID NO:207 PAJ5	DNA SEQUENCE	
••	Nucleic Acid Acce		AF189723				
	Nucleic Acid Acces Coding sequence:				ID NO:207 PAJS respond to start a		
45							
	Coding sequence:	11 	1-2712 (underling 21	aed sequences con	respond to start a	nd stop codons)	
45	Coding sequence:  1   ATGATTCCTG	11 i TATTGACATC	1-2712 (underling) 21   AAAAAAAGCA	31   AGTGAATTAC	respond to start at 41   CAGTCAGTGA	51 AGTTGCAAGC	60
	1   ATGATTCCTG	11   TATTGACATC CTGATCTTCA	1-2712 (underlin 21   AAAAAAAGCA GAATGGTCTA	31   AGTGAATTAC AACAAATGTG	tespond to start at 41   CAGTCAGTGA AAGTTAGTCA	51   AGTTGCAAGC	120
45	1   ATGATTCCTG ATTCTCAAG	11   TATTGACATC CTGATCTTCA GGAATGAGTT	1-2712 (underling) 21	31   AGTGAATTAC ARCAAATGTG GAAGATGAGC	tespond to start at 41   CAGTCAGTGA AAGTTAGTCA CACTGGAA	51   AGTTGCAAGC TRAGGCGAGCC GAAGTATATT	120 180
45	1   ATGATICCEG ATTCTCAAG	11   TATTGACATC CTGATCTTCA GGAATGAGTT AAAATCCCCT	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC GAAGATGAGC CTTCTGGCTT	41   CAGTCAGTGA AAGTTAGTCA CACTGGAA CACTGGGAA CTGCAGTCAT	51   AGTTGCAAGC GAAGTATATT CAGTGTTTTA	120
45	1   ATCATTCCTG ATTCTCAAG TTCAGTTTA ATGCATCAAG	11   TATTGACATC CTGATCTTCA GGAATGAGTT TAATGATGC TTGATGATGC	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31 AGTGAATTAC AACAAATGTG GAAGATGAC CTTCTGGCTA ACTGTGGCTA ACTGTGTAAGA TCTCTTGAAG	41   CAGTCAGTGA AAGTTAGTGA CACTGTGGAA CACTGTGGAA TACTTATCGT AATTGAGTAA	51   ACTTGCAAGC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTTGTGCCA	120 180 240
45	1   ATGATTCCTG ATTCTCAGGTT TCTCAGGTTA ATGCATCAGTTA ATGCATCAGT ATGCATCAGTCCCAGATAGCC CCAGAATGCC	11   TATTGACATC CTGAATGACTT AAAATCCCCT TTGATGATGC AGGAATATCG ATTGTGTGCG	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31 	41 	51   AGTTGCAAGC TAAGCGAAGC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTTGTGCCA AGACTTGGTT	120 180 240 300 360 420
45	1	11 i TATTGACATC CTGATCTTCA GGAATGACT TTGATCATCC TTGATCATCC AGGAATATCG CAGTTTGCCC CAGTTTGCCC	1-2712 (underlin 21   AAAAAAAGCA GAATGGTCTA TGATATTAGT CGTCAGTAAC TTCAGAAAAA TCAGGAAAA TTCTGTTAGG	31 	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTTGTGCCA AGACTTGGTTT ACGCTTGTTTT ACGCTTGTTTT	120 180 240 300 360 420 480
45	1	11 † TATTGACATC CTGATCTTCA GGAATGAGT AAAATCCCCT TTGATGATGC AGGAATATCG ATTGTTGCCG CAGTTTGCCT ATCTTTCCAT	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGRATTAC RACARATGTG GRAGATGAGC CTTCTGGCTA ACTGTGGCRA TCTCTTGRAG TTGGGGCATA GRAGAGTTC	41   CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CTGCAGTCAT TACTTATCGT TACTTATCGT TACTTGCCCG CTGCTGACTT CTGCTGACTT CTGCTGACTAT	51   ACTTGCAAGC GAAGTATATT CAGTGTTTCA ACTTGTGCCA AGACTTGTGCCA AGACTTGTTT ACGCTTGTTTT ACGCTTGTTTT	120 180 240 300 360 420 480 540
45 50 55	1   ATGATTCCTG ATTCTCTAGT ATTCTCTAGT ATTCTCTAGT ATTCTCTAGT ATTCTCTAGT ATGCATCAGT CCCAGGATCAC CCAGGTGATA GAGGCTGTGG AAGGTGACAG	11   TATTGACATC CTGATCTTCA GGAATGAGTT AAAATCCCCT TTGATGATGC AGGAATATCG ATTGTGTCCG CAGTTTCCAT ATCTTTCCAT CTCCTCAGCC	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGRATTAC ARCARATTAC GRAGATGRAC CTTCTGGAT ACTGTGRAA TTGGAGCATA GATGRAGATTC AGCTTGACAG ARTGRAGAT	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGCAA AGACTTGCTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT	120 180 240 300 360 420 480 540 600
45	1	11 † TATTGACATC CTGATCTTCA GGAATGAGT AAAATCCCCT TTGATGATGC AGGAATATCG ATTGTTGCCG CAGTTTGCCT ATCTTTCCAT	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31 	41	51   AGTTGCAAGC TAGGCGAGCC TAGGCGAGCT CAGTGTTTTA TGTTACAGTT ACTTGTGCGA AGACTTGGTT ACGCTTGTTT ACGCTTGTTCT ACGCTTGTTCT TGGAACAGGA	120 180 240 300 360 420 480 540
45 50 55	1   ATGATTCCTG ATTCTCTAGTTTA ATGCATCAGTTTA ATGCATCAGTTTA ATGCATCAGTTTA ATGCATCAGTTTA ATGCATCAGTTTATC CCAGGTTATAG GAGCTTGTAGG GAAAATTCTC CCTCTGCAGA	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT AGGTACAGT AGACAGGA ACCAAAAACC CTTTGGTATA	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	1	11 i TATTGACATC CTGATCATCA GGAATGAGTT TTGATGATACCCT TTGATGATACC AGGATATACG CAGTTTGCCT ATCTTTCCAT CTCCTCAGCC GAACACTCGT AATTTGGGA AATTTGGGA AATACGT TAGACATTGA	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31	41	51   AGTTGCAAGC TAGGCGAGC TAGGCGAGC GAAGTATATT CAGTGTTTTA ACTTGTGCA AGACTTGGTT ACGCTTGTTT TGCAACAGT TTGGAACAGGA ACCAAAAACC CTTTGGTATA AATGATATA	120 180 240 300 360 420 480 540 660 720 780 840
45 50 55 60	1	11 † † TATTGACATC CTGATCTTCA GGAATGACT TTGATCATCC TTGATCATCC AGGTTTGCCT ACTTTCCAT CTCCTCACCC CAGCTTGCGA AGACACTGGA AGACACTGGA TCATGTTGGGGA AGACCATTGG	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGG GAAGATGAG CTTCTGGCTA TCTCTGAAG TCTCTGAAG TGGGAAAAC AATGGAATC AAGCAAAGG ATGATGCAAAG AAGAAACTC TCTGGAAAAC CCTGAAAGG CCTGAAAGG CCTGAAAGG	41   CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGCCG AATTGCCCG GTGACTT GTGACATCAG GTGACATCAG GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGACATCAC GTGATCATCAC CAGAAGAGGC CCTTTTACTC CAGAAGAGGC CCTTTTACTC CACATTGT	51   AGTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTCCA AGACTGGTT ACCTTGTTCT ACGCTTGTTCT AAGTACATT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTACT GGTCACAGTG	120 180 240 300 360 420 480 540 660 720 780 840 900
45 50 55	1   ATGATTCCTG ATTCTCAGGT ATTCTCAGGT ATTCTCAGGT ATTCTCAGGTTA ATGCATCAGT ATGCATCAGT ATGCATCAGT CCAGGATGCC CCAGGTGATA GAGGCTGATGG GAAAATTCTG CCTCTGCAGA ATTAGGGTAA ATTAGTGTAA ACGCTAGCTA	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31	41	51   AGTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTCCA AGACTGGTT ACCTTGTTCT ACGCTTGTTCT AAGTACATT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTACT GGTCACAGTG	120 180 240 300 360 420 480 540 660 720 780 840 900 960
45 50 55 60	1	11   TATTGACATC CTGATCTTCA GGAATGACTT AAAARCCCT TTGATGATCG AGGTATCACC CAGTTTGCCT ATCTTTCCAT CTCCTCACCC GAACACTGGA AGACCATGGA TCATTTGGGGA TCATTTGGCTG TTGATGTGTTTC CTCTGGCTGT TTGGTGTTTAT CTCAGGCTC TTGACTGTTTAC	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGTG GAAGATGAGC CTTCTGGCTA ACTGTGGCTA ACTGTGAAG TTGGGACAG GATAGACTAC AAGCAAAGG AATGAAAGG AACACTTT CTGGGAAAAG CTTGAAGAGTC AGAAAAGGG AAAAAGGAAAGG	41   CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGTGCAG TACTGTATCGT TACTGTATCGT GTGAGACAAC TTGCATCGAG CAGAAGAGGC CCTTTTACCT CAGAAGAGGC CCTTTTTACTC CCATTGTGAA TCCCCATTGTAA TCCCCATTGTAAA TCCCATTGTAAA TCCCATTGTAAA TCCCATTGTAAA	51   ACTTGCAAGC GAAGTATATT CAGTGTTTCA ACTCTGTCCA AGACTGGTT ACGCTTGTTCT AAGTACACT TTGGAACAGGA ACCAAAAACC CTTTGGTACA AATGTTTACA AATGTTTACT AAGCTGCTTACT AAGACAGGA AACGTTACT AAGCTGCCT AAGACACTGCC TTAGGTACA AAGCTGCCT TAGGACACACTGCC TTAGGTACACTGCC TTAGGTACACTGCC TTAGGTACACTGCCT TAGACACTGCCT TAGACACTGCCT TAGACACTGCCT TAGAGGTTACT	120 180 240 300 360 420 480 540 660 720 780 840 900 960
45 50 55 60	1   ATGATTCCTG ATTCTCCAGG ATTCTCCAGG TTTCATCGCT TCTCAGTTTA ATGCATCAGT TCTCAGGTGATA CAGGCTGATA GAGGCTGATA GAGGCTGATA GAGGTGATA GAGATTATGG GAAAATTCTG CCTCTGCAGA ATTAGTGTAA ACGCTAGCTC ATTGTTGAA AGGATTAAA AGGATTAAA AGGATTAAA	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGTG GAAGATGAGC CTTCTGGCTT ACTGTGGCAA ATTGGAGCATA AGCTGACAG AATGGAGATC AAACAACTTT CTGGGAAAAG CCTGGAAAAG CCTGAAGGTC AAGAAACTTT CTGGGAAAAG AACAACTTT CTGGAAAAG AACAACTTT CTGGAAAAG AACAACTTT CTGGAAAAG AACACTTT CTGGAAAAG AACTTCTTCAGATG ATTGTTCAGATG ATTGTTCAGATG ATTGTTGATG	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTACAGTT ACTCTGTCT AGACTTGCTT AGACAGCA AGACAGCA ACCAAAAGCA CCTTTGGTATA AATGTTTACA	120 180 240 300 420 480 540 600 720 780 840 900 900 1020 1080
45 50 55 60	1	11 i TATTGACATC CTGATCATCA GGAATGAGTT TGATGATCATC ATTGATGATCATC ATTTTTCCAT ATTTTTCCAT ATTTTTCCAT ATTTTGGCA ATTTTGGCTA TCATGTTGGT TTGATGTTAT TTGGCTGT TTGATGTTAT CTCTCGCCTG TGACATTTAC TTGATGTTAC TTGATGCTTAT CTCTTAGCAT TCATTAGATT CTCTTAGCAT CTGATACAATT CTGATACAATT CTGTTAGCAG TCATATAGCAG	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGRATTAC ARCARATTAG GRAGATTAG ACTOTGGCAT ACTOTGGCAT ACTOTGGCAT ACTOTGGCAT ACTOTGACAG ATGACATTC ARACARAG ATGACATTC CTGGARAGC CTTGGGARAAG ATTGTTCAG ACTTCTCAGAG ATTGTTCAG ACTTCTCAGAG ACTTCTCAGAG ACTTCTCAGAG CCGGCCTTTG	41	51   AGTTGCAAGC TAGGCGAGC TAGGCGAGC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGGTT ACCCTTGTTT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACT GGTCACAGTG TCACAGTG TCACAGTT TCATGGCT TCATGGTTAT TCATGGTTAT TCATGGTTAT TCATGGTTAT TCATGGTTAT TCATGGTTAT TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTT	120 180 240 300 360 420 480 540 660 720 780 840 960 1020 1020 1140 1200
45 50 55 60 65	1	11 i TATTGACATC CTGATCATCA GGAATGACTT TTGATGATGAC AGGAATATCG ATTGTGCCC ATCTTTCCAT CTCCTCAGCC CACCTTGACTGAC AGGACACTGGA AGACACTGGT AATTTGGCTG TTGATGTTTTT TCCTGCTGTTTAT TCCTGCTGCTTTACCAG CTCTATAGCAG CTCTATAGCAG CTCTATATGG	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGG GAAGATGAGC CTTCTGGCTA TCTCTGGAA TCTCTGAAG TGGGAAAA GGCTGACAA AATGAAGAC AAAGAAATGA AACAACTT CTGGGAAAAG AATGATGAAA AATTGTTGAAG ACTTCAGAAAAGGAAATC CTGGAAAAGG AATTGTTCAGAAAAGGAACTTT CTGGAAAAGGAACTTT	41   CAGTCAGTGA AAGTTAGTGA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGTGCAG CATCATTGCCG TGGAGACAA CTGCATCAT CAGAAGAGC CCTTTTACTC CAGAAGAGC CCTTTTACTC CATTGTGAA TCCCCATTGT CCATTGTGAA TCCCCATTGT CATTGTGAA CTGGAAGACTG GTGATGTTGAA TTAGAACTGG TGAATGTTGT TTGTCCATTGT TAGTCAATGA TAATTGCATTG TAATTGCATT	51   AGTTGCAAGC GAAGTATATT CAGTGTTTCA AGTTACAGTT ACCTTGTCCA AGACTGGTT TGGAACAGGA ACCAAAAACC CTTTGGTACA AATGTTACAGTT AAGACTAGTACATT TGGAACAGGA AACACTACAC AAAGCTCCTT AACACTGACA CTAGGATACT CTAGGGTACT CTAGGGTACT CTAGGGTACT CTAGGATTACT TCATGGATTACT TCATGGATTC TCCTGTAATT TCCAATGAAG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1080 1140 1200 1260
45 50 55 60	1   ATGATTCCTG ATTCTCCAGG ATTCTCCAGG TTTCATCGCT TCTCAGGTTA ATGCATCAGT TCCAGGTGATA CCCAGGTGATA GAGGCTGATA GAGGCTGATA GAGGTGATA GAGGTGATA ATAGGTAATA ATTAGTGTA ACCCTAGCTA ATAGATCA ATAGATCA ATAGATCA ATAGATCA ATAGATCA AGAACATA AAGAACATA AAGAACATA AAGAACATA ATAGATCTTG	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGRATTAC RACATGROCT ACTOTGCAT ACTOTGCAT ACTOTGCAT ACTOTGCAT ACTOTGCAT ACTOTGCAT ACTOTGCAT ACTGRACAT ACCARAGAT AAGAACTT CTGGAARAG CCTGGARAGG CCTGAAGGT AAGAACTTT CTGGGARAGG ACTTCAGAT ACTTCTTCAG ATTGTTCAG ACTTCAGAT ACTTCTTCAG ACTTCTTCAG ACTTCAGAT ACTTCAGAT ACTTCAGAT ACTCAGAT ATCAGARAAAGGC ATCAGARAAAGGC ATCAGARAAAG	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGGTT AGGCTAGTT TGGAACAGGA ACCAAGAACC CTTTGGTATA AATGTTTACA AATGTTTACA TGGTACAGTG AAAGCTGCTT AAGTACAGTG TGACAGTG TGACAGTG TCATGGGTTCT TCATGGTTCT TCCATGATTC TCCATGATA TTCTTGGTATA TTCCATGATTC TCCATGATTC TCCATGATTC TCCATGATA TTTTAGCTCT	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1140 1200 1260 1320
45 50 55 60 65	1	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGRATTAC ARCARATTAC ARCARATTAC ACTOTGGCAT ACTOTGGCAT ACTOTGGCAG TTGGAGGATTAC ARGCARAGG ANTGAGATTC ARACCARAGG ANTGAGATTC CTGGGRAAAG ANTGAGATTC ARACCARAGG ATTGTTCAGATG ACTTCAGATG CCTGAGGGCCT GAGGGGCCT GAGGGGCCT ACCGARACAC CACCGARACAC CACCGARACAC	41	51   AGTTGCAAGC TAGGCGAGC GAAGTATATT CAGTGTTTTA ACTTGTGCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT TGGAACAGGA ACCAAAAAC CTTTGGTATA AATGTTTACT GGTCACAGTA AAAGGTTACT TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGATTACT TGCAATGAG TTTTACCT TGCAATGAG TTTTACCT TGCAATGAAG TTTTACCT TCATGAATT TGCAATGAAG TTTTACCTCT ACCAGAGATT	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1140 1200 1260 1320
45 50 55 60 65	1   ATGATTCCTG ATTCTCCAG ATTCTCCAG ATTCTCCAG ATTCTCCAG TTCCAGTTTA ATGCATCAGT CCAGGATCAC CCAGGTCATA GAGGCTGACA GAGGTGACAG GCCTTTATGG GAAAATTCTG CCTCTGCAGA ATTAGTGTAA ACGCTAGCTC ATTGTTGAAA AAGAATCAAA AAGAATCAAA AAGAATCAAA AAGAATCAAA AAGAACAATA AAGGGTCTTG GAGCAAAAGT TGTTTTATGA GGGCAAAACT GGGCAGACCT GGGCAGACCT GGGCAGACCT	11    TATTGACATC CTGATCTTCA GGAATGAGTT AAAATCCCCT TTGATGATCCC AGGAATATCC ATTGTGTCCC CAGTTTGCCT ATCTTCCAT CTCCTCACCC GAACACTGGA TCATGTTGCGT ATTTGGGGTA TGATGTTTAC TTGGTGTTAT CTCTTAGCAG ATAATCAATT CTGTTACCAG ATAATCAATT CTGTTACCAG ATGACTTCA ATAATCAATT AGCACTTTAC GGATGCTTTA TGGACACTTCA TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TGACACTTAC TTTTACACACTTAC TTTTTTTTTT	21	31	41	51  AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTCA AGTTGTCCA AGACTAGTT ACGCTTGTTT AGGTAACATT TGGAACAGT ACCAAAAACC CTTTGGTATA AATGTTTACA AATGTTTACA TGTCACAGTG AAAGCTGCTT TAGGTACAGTG AAAGCTGCCT TACACTGACT TCATGGATTACT TCCATGACT TCCATGACT TCCAGAGATT CCAGAGCACA GAAGGCACCC	120 180 240 300 360 420 540 660 720 780 960 1020 1080 1140 1260 1320 1380 1440 1500
45 50 55 60 65 70	1   I   I   I   I   I   I   I   I   I   I	11 i TATTGACATC CTGARCTTCA GGAATGAGTT GGAATATGC AAGATCCCT TTGARGATGC ATTTTGCCT ATCTTTCCAT ATCTTTCCAT ATCTTTCAGC GAACACTGGT AAGTCTGGG TCATGTTGGCT TTGGTTTT CTTTGGCTGT TTGGTGTTAT CTCTTAGCAG CTCTTAATGGG ATGACTTCA GGGACTTCA GGGACTCAG CGGGACTCAG CGGGACTCAG CGGGACTCAG CGGGACTTCA	1-2712 (underlin 21 AAAAAAAGCA GAATGGTCTA TGATGATCAT TGATGATGCT GGTCAGTATC TTCAGAAAAA TCAGTGGATCC TGATGAGTCC CGGTTTTTAGA TGAGGAACA TGCTGTTAGGA TGGCTGGAACA TGGCTGGAACA TGGCAACT TGAGGAACA TGGCAACT TGAGAATGTGC CTGTAATGTG TGGGAAATGTG AATTGTTGAG AACAACATCA TAAGTGTTCA TGAACAACTA TAAGTGTTCA TCAGCAACTA TCAGCAACTA TCAGCAACTA TCAGCAACTA TCAGCAACTA TCAGCAACTA AGTTCTTCCT	31    AGTGRATTAC RACARATGRO CTTCTGGCTT ACTOTGGCAT ACTOTGGCAT ACTOTGGCAT ACTGRAGATCAG ATGRAGACTCA ARGCARAGG ATGRAGACTC CCTGRAGTC ARACCARAGG ATTGTCAGATG ARACCARAGG ATTOTTCAGATG CCTGRAGGTC GAGGGCCTTG GAGGGGCCT ATCAGATG CACCGARACAC ATTARAGTACT TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTGCCTTCTG TTCAGATTG TTGCCTTCTG TTGCTTCTG TTGCCTTCTG TTTTTTCTCTTCTTCTTCTCTTCTTCTTCTTCTTTTCTTCTTCTTTT	41    CAGTCAGTCA AAGTTAGTCA CACTGGAA CTGCAGTCAT TACTTATCAT TACTTATCAT CACTTGCAG CTGCAGTCAT TACTTATCAT CACTTGCAC CTGCATGCAT CAGAAGAGGC CTTTTACTC ATATCCTGGA ATATCCTGGA TCCCATTGT TCCCATTGT TCCCATTGT TGTGCATGC GTGATGTTAT TATTGCATT TGTGCATGC AGAAGAGGG CTACTTACATA ACAACAACA ACCAACAACA ACCAACAACAC GTCCTGAACT	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTCTGCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGCTAGACAGC CTTTGGTATA CCCTAGATTACACT AGACAGGA AATGTTACA AATGTTACA CCTTTGGTATA AATGTTACAT GGTACAGTG AACACTGACG TCAGGGTTACT TCATGGATTC TCATGAATT TCCAATGAAG TTTTAGCT ACCAGAGATT CCAGAGCAAA GAAGGCACC GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG GGGACAGCTG	120 180 300 360 420 480 540 660 720 780 840 900 1020 1140 1200 1240 1380 1440 1560
45 50 55 60 65	1	11  i TATTGACATC CTGATCATCA GGAATGACTT TTGATGACATC TTGATGATCC TTGATGATCC TTGATGATCC TTGATGATCC TTGATGATCC AGGATATTCC CAGTTTGCCT ATCTTTCCAT CTCCTCAGC GAACACTGT ATTTGGCTA TTGGCTGTTAC TTGGTGTTAC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCAC CTCTATGCC CTCTATGCC CTCTATGCC CTCTATGCC CTCTATGCC AGGATCAC AGGATCAC AGGATCAC CCGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTCAC	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGG GAAGATGAG CTTCTGGCTT ACTGTGGTA TCTCTGGAA TCTCTTGAAG TTGGGAAAA AACAAATGT CTGGGAAAA CCTGAAAAGG AAAAAAGG AAAAAAGG AAAAAAGG AATAATTAC CTGGAAAAG AATTATTCAAG AATTATTCAAG ACTTCAGATG ACCGAACAC ACCGAACAC ACTTAAGTACT AGAGATGTTT TTGGCTTCTTG CCACCTAGAA	41   CAGTCAGTGA AAGTTAGTGA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGTGCCG GTGATCAT GTGAGACAAC CTGCCATGAT CAGAGACAAC CAGTTAGTCA CAGAGACAAC CCATTGTCAG CCATTGTCAG CCATTGTCAG TCACCATGTGA TCACCATGTGA TTACCAGAGACAC GTGATATCA TAATTGCTC CAGAAGACAC GTACTACATA ACCAACAAGA GTCCTCAACT CTGCTGTGAAC CTCCTGTGTGAA	51   AGTTGCAAGC GAAGTATATT CAGTGTTTTACAGTT ACTTGTGCA AGACTGGTT ACGCTTGTTCT AAGTACAGT TGGAACAGGA ACCAAAAACC CTTTGGTACA AAAGTTACT AACACTGACA AAAGTTACT TCAAGAGTACT TCATGACAGT ACACTGACG TTAGAGAT TCATGATT TCAATGATT TCAATGATT TCAATGATT TCAATGATT TCAATGATT TCAATGATT TCAATGATT ACACGAGAT TCAATGATT ACACGAGAT TCCAGAGAT ACAGGACACC GGGACAGCTT AGAGCTGTT AGAGCAGCTG AGAGCTGT AGAGCTGTT AGAGCTGTT	120 180 240 300 360 420 480 540 660 720 780 900 900 1020 1260 1260 1320 1440 1560 1620
45 50 55 60 65 70	1   ATGATTCCTG ATTCTCAAG TTTCATCAAG TTTCATCAAG TTTCATCAAG TTCATCAGTTTA ATGCATCAGT TCCAGGTGATA CAGGCTGAGA AAGGTGACAG GCCTTTATGG GAAAATTCTG CCTCTGCAGA ATTAGTGTAA ACGCTAGCTC ATTGTTGAAA AAGAATCAAA AGAATCAAA AGAATCAAA AGAACAATA ATAGGTCTTG GAGCAAAAGT TGTTTATGA AGGCAAAAGT TGTTTATGA AGGCAAAAGT TGTTTATGA AGGCAAAAGT TGTTTATGA AGGCAAAAGT TGTTTATGA AGGCAAAAGT ATGGGCTCAG ACATTTCTTG ACAACACTCA	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31	41	51    AGTTGCAAGC GAAGTATATT CAGTGTTTCA AGTATATT CAGTGTTTTA AGTACAGT ACGCTTGTTCT AAGTACAGT ACGCTTGTTCT AAGTACAGT ACGCTGTTT AAGTAACATT TGGAACAGG ACAGTGAGT AAAGCTGCCT AACACTGACG CTTTGGTATA AATGTTTACT TCGTACAGT TAGAGAGTTACT TCCATGAGT TCCAGAGATT TCCAGAGAGT TCCAGAGAGT CCAGAGAGT CCAGAGAGT AAAGCCCC GGGACAGCTG AGAAGCTGTT ACAGAGAGTT ACAGAGAGATT	120 180 240 300 360 420 540 660 720 780 960 1080 1140 1260 1320 1380 1500 1500 1620
45 50 55 60 65 70	1   I   I   I   I   I   I   I   I   I   I	11  i TATTGACATC CTGATCATCA GGAATGACTT TTGATGACATC TTGATGATCC TTGATGATCC TTGATGATCC TTGATGATCC TTGATGATCC AGGATATTCC CAGTTTGCCT ATCTTTCCAT CTCCTCAGC GAACACTGT ATTTGGCTA TTGGCTGTTAC TTGGTGTTAC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCATC TTGATCAC CTCTATGCC CTCTATGCC CTCTATGCC CTCTATGCC CTCTATGCC AGGATCAC AGGATCAC AGGATCAC CCGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTTAC CGGGACTCAC	1-2712 (underlin 21 AAAAAAAGCA GAATGGTCTA TGATGTCTA TGATGATCA TCAGGAAAAA TCAGTGGAACAA TGATGATCA CAGATGTCGC GGTTTTTAGA TGAGGAACA AGCAGCAACT AGCAGCAACT CAGATGTGC CTGTAATGTG CTGTAATGTG CTGTAATGTG CAGATGTGAC AATTGTTGAG AACAACACT TAAGTGTTA TCAGGAACTA TCAGCACT TAAGTGTTA CGAACAACTA TCAGCACCA ACATTTTTAGA AGCACACT TAAGTGTTA CGAACAACTA TCAGCACCA ACTATTTTTAGA CAGTCTCTCA TCAGCACCA ACTATTCTTCACACA TCAGCACCA ACTATCATTA TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG TCTGGGATTG	31    AGTGRATTAC RACARATGRO GARGATGRO CTTCTGGAT ACTGRAGAT TTGRAGCATA GATGRACAT ARGAGATCAG ARTGRAGAT ARACCARAG ARTGRAGAT ARACCARAG ARTGRAGAT CCTGRAGAT TTGGTTGAT TTGGTTTGAT TTGGCTTCTG CCACCTAGRA ARACGATAT TATTCCARAA	41	51   AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTCTTGCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT AGGACAGGA ACCTAGACA ATGTTACAT GGTACAGTA AATGTTACAT GGTCACAGTA AAACTGCCT TCATGGATTAC TCATGGATTAC TCATGGATTC TCATGGATTC TCCTGTAATT TCCAAGTACT ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACTGACG ACACGCACA ACACGCACA ACACGCACAC ACAGGCACA ACAGGCACAC ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACT ACAGGCACC ACACTCCACGC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCAC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACCC ACACTCCACC ACACTCCACCC ACACTCCACC ACACTCACC ACACTCCACC ACACTCACC ACACTCCACC ACACTCCACC ACACTCCACC ACACTCCACC ACACTCCACC ACACTCACC ACACTCCACC ACACTCCACC ACACTCCACC ACACTCCACC ACACTCACCAC ACAC	120 180 240 300 360 420 480 540 660 720 780 900 900 1020 1260 1260 1320 1440 1560 1620
45 50 55 60 65 70	1	11	1-2712 (underling the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	31   AGTGAATTAC AACAAATGG GAAGATGAG CTTCTGGCTA TCTCTTGAAG TCTCTTGAAG TCTCTTGAAG ATGATGACAA AACAAATGT CTGGGAAAA CCTGAAAAGG ATGATGAAAGG ATGATGAAAGG ATGATGAAAGG ATTATTCAGAT ACTGAAAAGG ACTTCAGATG ACTTCAGATG ACTTCAGATG ACTGAGAAAAG CACCAACAC ATTAAGTACT AGAAAAGC CCCCAAACAC ATTAAGTACT AGAAAAGAC CTTCAGAAAAA AAAATGATTA TTGCCTTCAGAA AAAATGATTA TATTCCAAAA	41   CAGTCAGTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGTGCAG CAGTCAT TACTTATCGT AATTGAGTAA CACTTGCCGG GTGATCAT CAGAGACAAC CCATTGTCAG CCATTGTCAG TCCCCATTGT CCATTGTCAG TCCCCATTGT TGTCCAATCA TAATTGCTC TGAATACCC TGAATACCC TGAATACCC TGAATACCC TGCGTGAATC CTCGGAGTTC CTCGGAGTTC CTTCCCAGTC CTTCCCAGTC CTTCCCAGTC CTTCCCAGTC	51   ACTTGCAAGC GAAGTATATT CAGTGTTTTACAGTT ACTTGTGCA AGACTGGTT ACGCTTGTTCT AAGACAGGA ACCAAAAACC CTTTGGTACA AAAGTTACATT TGGAACAGGA AAAGTTACT TACAGGTACACTGACAGTACACTGACAGTACACTGAAGT TCATGGATTACT TCATGGATTAC TCATGGATTAC TCATGGATTAC TCATGGATTAC TCATGGATTAC TCCAGAGATA ACAGGAGAAA GAAGGCACC GGGACAGCTTA ACACGGAGACAT ACACGGAGACTTACAGGAGCTTA ACACGGAGACTTACAGGAGCTTA ACTCTCAGGA	120 180 300 360 480 540 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1680 1740

```
ATTGGAGTTG CGATGGGCCA GACTGGTACA GATGTTTGCA AAGAGGCAGC AGACATGATC 1980 CTAGTGGATG ATGATTTTCA AACCATAATG TCTGCAATCG AAGAGGGTAA AGGGATTTAT 2040
          AATAACATTA AAAATTTCGT TAGATTCCAG CTGAGCACGA GTATAGCAGC ATTAACTTTA
                                                                                            2100
         ATCTCATTGG CTACATTAAT GAACTTTCCT AATCCTCTCA ATGCCATGCA GATTTTGTGG
ATCAATATTA TTATGGATGG ACCCCCAGCT CAGAGCCTTG GAGTAGAACC AGTGGATAAA
                                                                                            2160
 5
          GATGTCATTC GTAAACCTCC TCGCAACTGG AAAGACAGCA TTTTGACTAA AAACTTGATA
                                                                                            2280
         CTTAAAATAC TTGTTTCATC AATAATCATT GTTTGTGGGA CTTTGTTTGT CTTCTGGCGT
GAGCTACGAG ACAATGTGAT TACACCTCGA GACACAACAA TGACCTTCAC ATGCTTTGTG
                                                                                            2340
                                                                                            2400
         TTTTTTGACA TGTTCAATGC ACTAAGTTCC AGATCCCAGA CCAAGTCTGT GTTTGAGATT
                                                                                            2460
10
         GGACTCTGCA GTAATAGAAT GTTTTGCTAT GCAGTTCTTG GATCCATCAT GGGACAATTA
CTAGTTATTT ACTTTCCTCC GCTTCAGAAG GTTTTTCAGA CTGAGAGCCT AAGCATACTG
                                                                                            2520
                                                                                            2580
         GATCTGTTGT TTCTTTTGGG TCTCACCTCA TCAGTGTGCA TAGTGGCAGA AATTATAAAG
                                                                                            2640
          AAGGTTGAAA GGAGCAGGGA AAAGATCCAG AAGCATGTTA GTTCGACATC ATCATCTTTT
                                                                                            2700
         CTTGAAGTAT GA
15
        SEQ ID NO:208 PAJ5 Protein sequence;
Protein Accession #: AAF27813
                     11
                                   21
                                                 31
                                                               41
                                                                            51
20
        SOPKNPLIML LLASAVISVL MHOFDDAVSI TVAILIVVTV AFVQEYRSEK SLEELSKLVP
PECKUREGK LEHTLARDLY PEDIVCLSVG DRVPADLRLF EAVDLSIDES SLIGETTPCS
                                                                                            120
        KVTAPQPAAT NGDLASRSNI AFMGTLVRCG KAKGVVIGTG ENSEFGEVFK MMQAEEAPKT
25
        PLOKSMOLIG KOLSFYSFGI IGIIMLVGWL LGKDILEMFT ISVSLAVAAI PEGLPIVVTV
TLALGVMRMV KKRAIVKKLP IVETLGCCNV ICSDKTGTLT KNEMTVTHIF TSDGLHAEVT
                                                                                             300
                                                                                             360
        GVGYNQFGEV IVDGDVVHGP YNPAVSRIVE AGCVCNDAVI RNNTLMGKPT EGALIALAMK
        MGLDGLQQDY IRKAEYPPSS BOKWMAVKCV HRTQQDRPEI CFMKGAYBQV IKYCTTYQSK
GQTLTLTQQQ RDVYQQEKAR MGSAGLRVLA LASGPELGQL TPLGLVGIID PPRTGVKEAV
                                                                                             480
                                                                                             540
30
        TTLIASGVSI KMITGDSQET AVAIASRLGL YSKTSQSVSG EEIDAMDVQQ LSQIVPKVAV
                                                                                             600
        Fyrasprhrm Kiikslorng svvamtedgv ndavalkaad igvamgotet dvckraadmi
Lydddfotim saieeekgiy nniknfvrfq Lstsiaaltl islatlmnff nplnamqilw
                                                                                             660
                                                                                             720
         INIIMDGPPA QSLGVEPVDK DVIRKPPRNW KDSILTKNLI LKILVSSIII VCGTLFVFWR
                                                                                             780
         ELRUNVITER DTTMTFTCFV FFDMFNALSS RSQTKSVFEI GLCSNRMFCY AVLGSIMGQL
                                                                                             840
35
        LVTYFPPLOK VFQTESLSIL DLLFLIGLTS SVCIVAETIK KVERSREKIQ KHVSSTSSSF
                                                       SEQ ID NO:209 PAV4 VARIANT 1 DNA SEQUENCE
                                           N62096
        Nucleic Acid Accession #:
40
                                           1-1284 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                     11
                                   21
                                                 31
45
         ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGGATTGCC TTATTCAATG
         AAGCAAGCTG GGTTTCCTTT GGGAATATTG CTTTTATTCT GGGTTTCATA TGTTACAGAC
                                                                                            120
         TTTTCCCTTG TTTTATTGAT AAAAGGAGGG GCCCTCTCTG GAACAGATAC CTACCAGTCT
                                                                                            180
         TIGGICAATA AAACTITCGG CTTICCAGGG TATCIGCTCC TCTCTGTTCT TCAGTITTTG
        TATCCTTTA TAGCAATGAT AAGTTACAAT ATAATAGCTG GAGATACTTT GAGCAAAGTT
TTTCAAAGAA TCCCAGGAGT TGATCCTGAA AACGTGTTTA TEGGTCGCCA CTTCATTATT
GGACTTTCCA CAGTTACCTT TACTCTGCCT TTATCCTTGT ACCGAAATAT AGCAAAGCTT
                                                                                             300
50
                                                                                             360
         GGAAAGGTCT CCCTCATCTC TACAGGTTTA ACAACTCTGA TTCTTGGAAT TGTAATGGCA
                                                                                             480
         AGGGCAATTT CACTGGGTCC ACACATACCA AAAACAGAAG ACGCTTGGGT ATTTGCAAAG
                                                                                             540
         CCCAATGCCA TTCAAGCGGT CGGGGTTATG TCTTTTGCAT TTATTTGCCA CCATAACTCC
55
          TTCTTAGTTT ACAGTTCTCT AGAAGAACCC ACAGTAGCTA AGTGGTCCCG CCTTATCCAT
          ANGICCATCG TGATTTCTGT ATTTATCTGT ATATTCTTTG CTACATGTGG ATACTTGACA
                                                                                              720
          TTTACTGGCT TCACCCAAGG GGACTTATTT GAAAATTACT GCAGAAATGA TGACCTGGTA
          ACATTIGGAA GATTITGITA TGGTGTCACT GTCATTITGA CATACCCTAT GGAATGCTTT
                                                                                              840
          GTGACAAGAG AGGTAATTGC CAATGTGTTT TTTGGTGGGA ATCTTTCATC GGTTTTCCAC
                                                                                              900
60
          ATTGTTGTAA CAGTGATGGT CATCACTGTA GCCACGCTTG TGTCATTGCT GATTGATTGC
         CTCGGGATAG TTCTAGAACT CAATGGTGTG CTCTGTGCAA CTCCCCTCAT TTTTATCATT CCATCAGCCT GTTATCTGAA ACTGTCTGAA GAACCAAGGA CACACTCCGA TAAGATTATG
                                                                                            1020
                                                                                             1080
          TCTTGTGTCA TGCTTCCCAT TGGTGCTGTG GTGATGGTTT TTGGATTCGT CATGGCTATT
                                                                                             1140
          ACAAATACTC AAGACTGCAC CCATGGGCAG GAAATGTTCT ACTGCTTTCC TGACAATTTC
                                                                                             1200
65
          TCTCTCACAA ATACCTCAGA GTCTCATGTT CAGCAGACAA CACAACTTTC TACTTTAAAT
          ATTAGTATCT TTCAACTCGA GTAA
         SEQ ID NO:210 PAV4 Variant 1 Protein sequence:
70
                                           none found
         75
         LVNKTPGPPG YLLLSVLQFL YPFIAMISYN IIAGDTLSKV FQRIPGVDPE NVFIGRHFII
         GLSTVTFTLP LSLYRNIAKL GKVSLISTGL TTLILGIVMA RAISLGPHIP KTEDAWVFAK
PNAIQAVGVM SFAPICHHNS PLVYSSLBEP TVAKWSRLIH MSIVISVFIC IFFATCGYLT
         FTGFTQGDLF ENYCRNDDLV TFGRFCYGVT VILTYPMECF VTREVIANVF FGGNLSSVFH
                                                                                             300
         IVVTVMVITV ATLVSLLIDC LGIVLELNGV LCATPLIFII PSACYLKLSE EPRTHSDKIM
                                                                                             360
80
         SCYMLPIGAV VMVFGFVMAI TNTODCTHGO EMFYCFPDNF SLTNTSESHV QQTTQLSTLN
```

ISIPOLE

```
SEQ ID NO:211 PAV4 VARIANT 2 DNA SEQUENCE
  5
         Nucleic Acid Accession #:
                                           N62096
         Coding sequence:
                                            1-1203 (underlined sequences correspond to start and stop codons)
                      11
10
        ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGT TTTCCCTTGT TTTATTGATA
AAAGGAGGG CCCTCTCTGG AACAGATACC TACCAGTCTT TGGTCAATAA AACTTTCGGC
         TTTCCAGGGT ATCTGCTCCT CTCTGTTCTT CAGTTTTTGT ATCCTTTTAT AGCAATGATA
                                                                                             180
         AGTTACAATA TAATAGCTGG AGATACTTTG AGCAAAGTTT TTCAAAGAAT CCCAGGAGTT
                                                                                             240
15
         GATCCTGAAA ACGTGTTTAT TGGTCGCCAC TTCATTATTG GACTTTCCAC AGTTACCTTT
                                                                                             300
         ACTOTGCCTT TATCCTTGTA CCGAAATATA GCAAAGCTTG GAAAGGTCTC CCTCATCTCT
                                                                                             360
         ACAGGTTTAA CAACTCTGAT TCTTGGAATT GTAATGGCAA GGGCAATTTC ACTGGGTCCA
         CACATACCAA AAACAGAAGA CGCTTGGGTA TTTGCAAAGC CCAATGCCAT TCAAGCGGTC
                                                                                             480
         GGGGTTATGT CTTTTGCATT TATTTGCCAC CATAACTCCT TCTTAGTTTA CAGTTCTCTA
                                                                                             540
20
         GAAGAACCCA CAGTAGCTAA GTGGTCCCGC CTTATCCATA TGTCCATCGT GATTTCTGTA
                                                                                             600
         TITATCTGTA TATTCTTTGC TACATGTGGA TACTTGACAT TTACTGGCTT CACCCAAGGG
                                                                                             660
         GACTPATTIC ARACTTACTIC CAGRAATGAT GACCTGGTAA CATTTGGAAG ATTTTGTTAT
                                                                                             720
         GGTGTCACTG TCATTTTGAC ATACCCTATG GAATGCTTTG TGACAAGAGA GGTAATTGCC
                                                                                             780
         AATGTGTTTT TTGGTGGGAA TCTTTCATCG GTTTTCCACA TTGTTGTAAC AGTGATGGTC
                                                                                             840
25
         ATCACTOTAG CCACGCTTGT GTCATTGCTG ATTGATTGCC TCGGGATAGT TCTAGAACTC AATGGTGTGC TCTGTGCAAC TCCCCTCATT TTTATCATTC CATCAGCCTG TTATCTGAAA
                                                                                             900
         CTGTCTGAAG AACCAAGGAC ACACTCCGAT AAGATTATGT CTTGTGTCAT GCTTCCCATT
                                                                                            1020
         GGTGCTGTGG TGATGGTTTT TGGATTCGTC ATGGCTATTA CAAATACTCA AGACTGCACC CATGGGCAGG AAATGTTCTA CTGCTTTCCT GACAATTTCT CTCTCACAAA TACCTCAGAG
                                                                                            1080
30
         TCTCATGITC AGCAGACAAC ACAACTTTCT ACTTTAAATA TTAGTATCTT TCAACTCGAG
         SEQ ID NO:212 PAV4 Variant 2 Protein sequence:
Protein Accession #: none found
35
                                                                41
                                                  31
                       11
                                    21
40
         MGYOROEPVI PPOPSLVLLI KGGALSGTDT YQSLVNKTFG PPGYLLLSVL QPLYPPIAMI
         SYNIIAGDTL SKYFORIFOV DEENVFICRH TYJICLSTVYFF TLPLSLYRNI AKLEKVSLIS
TGLTTLILGI VMARAISLGP HIPKTEDAWV PAKPNAIQAV GVMSPAFICH HNSPLVYSSL
                                                                                             180
         EEPTVAKWSR LIHMSIVISV FICIFFATCG YLTFTGFTQG DLFENYCRND DLVTFGRFCY
                                                                                             240
         GVTVILTYPM ECFVTREVIA NVFFGGNLSS VPHIVVTVMV ITVATLVSLL IDCLGIVLEL
45
         ngvlcatpli fiipsacylk lseeprthsd kimscymlpi gavvmvfgfv maitntodct
         HGQEMFYCFP DNFSLTNTSE SHVQQTTQLS TLNISIFQLE
                                                        SEQ ID NO:213 PAV4 VARIANT 3 DNA SEQUENCE
                                            N62096
         Nucleic Acid Accession #:
50
                                            1-1140 (underlined sequences correspond to start and stop codors)
         Coding sequence:
                                                  31
                       11
                                    21
         ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGG TCAATAAAAC TTTCGGCTTT
55
         CCAGGGTATC TGCTCCTCTC TGTTCTTCAG TTTTTGTATC CTTTTATAGC AATGATAAGT
         TACAATATAA TAGCTGGAGA TACTTTGAGC AAAGTTTTTC AAAGAATCCC AGGAGTTGAT
                                                                                             180
         CCTGAAAACG TGTTTATTGG TCGCCACTTC ATTATTGGAC TTTCCACAGT TACCTTTACT
                                                                                             240
         CTGCCTTTAT CCTTGTACCG AAATATAGCA AAGCTTGGAA AGGTCTCCCT CATCTCTACA
60
         GGTTTAACAA CTCTGATTCT TGGAATTGTA ATGGCAAGGG CAATTTCACT GGGTCCACAC
                                                                                             360
         ATACCAAAAA CAGAAGACGC TTGGGTATTT GCAAAGCCCA ATGCCATTCA AGCGGTCGGG
                                                                                             420
         GTTATGTCTT TTGCATTTAT TTGCCACCAT AACTCCTTCT TAGTTTACAG TTCTCTAGAA
         GAACCCACAG TAGCTAAGTG GTCCCGCCTT ATCCATATGT CCATCGTGAT TTCTGTATTT ATCTGTATAT TCTTTGCTAC ATGTGGATAC TTGACATTTA CTGGCTTCAC CCAAGGGGAC
                                                                                             540
                                                                                              600
65
         TTATTTGAAA ATTACTGCAG AAATGATGAC CTGGTAACAT TTGGAAGATT TTGTTATGGT
         GTCACTOTCA TITTGACATA CCCTATGGAA TGCTTTTGTGA CAAGAGAGGT AATTGCCAAT
GTGTTTTTTG GTGGGAATCT TTCATCGGTT TTCCACATTG TTGTAACAGT GATGGTCATC
                                                                                             720
         ACTOTAGOCA COCTTOTOTO ATTOCTGATT GATTGCCTCG GGATAGTTCT AGAACTCAAT
GGTGTGCTCT GTGCAACTCC CCTCATTTT ATCATTCCAT CAGCCTGTTA TCTGAAACTG
                                                                                             840
                                                                                             900
70
         TCTGAAGAAC CAAGGACACA CTCCGATAAG ATTATGTCTT GTGTCATGCT TCCCATTGGT
         CCTOTGGTGA TGGTTTTTGG ATTCGTCATG GCTATTACAA ATACTCAAGA CTGCACCCAT
GGGCAGGAAA TGTTCTACTG CTTTCCTGAC AATTTCTCTC TCACAAATAC CTCAGAGTCT
                                                                                            1020
                                                                                            1080
         CATGTTCAGC AGACAACACA ACTTTCTACT TTAAATATTA GTATCTTTCA ACTCGAGTAA
75
         SEQ ID NO:214 PAV4 Variant 3 Protein sequence:
                                            none found
                                                                              51
80
                                                                          389
```

5	PENVFIGRHF IPKTEDAWVP ICIFFATCGY VFFGGNLSSV	PPQVNKTFGF IIGLSTVTFT AKPNAIQAVG LTFTGFTQGD FHIVVTVVI IMSCVMLPIG LNISIFQLE	LPLSLYRNIA VMSFAFICHH LFENYCRNDD TVATLVSLLI	klgkvslist NSFLVYSSLE LVTFGRFCYG DCLGIVLELN	GLTTLILGIV EPTVAKWSRL VTVILTYPME GVLCATPLIF	MARAISLGPH IHMSIVISVF CFVTREVIAN IIPSACYLKL	60 120 180 240 300 360
10				, 0E0 ID 8/	ME DAVIATADI	ANT A DNA CEOUE	NOE.
10	Nucleic Acid Acce	ession #:	N62096		5213 FAV4 VARI	ANT 4 DNA SEQUE	NÇE.
	Coding sequence	:	1-1389	underlined sequer	ices correspond to	start and stop code	ns)
15	_						
13	1 	11 	21 	<b>31</b> 	<b>41</b> 	51 	
20	ACCCTTGTTT GTTGTCAACT	CTGAACATGA CGATTATAGG	GTATAAAGAG ATCTGGTATA	AAAACCTGTC ATAGGATTGC	AGTCTGCTGC	TGACAGAGAA TCTTTTTAAT GAAGCAAGCT	120 180
20						CTTTTCCCTT	240 300
	AAAACTTTCC	GCTTTCCAGG	GTATCTGCTC	CTCTCTGTTC	TTCAGTTTTT	GTATCCTTTT	360
						TTTTCAAAGA TGGACTTTCC	420 480
25	ACAGTTACCT	TTACTCTGCC	TTTATCCTTC	TACCGAAATA	TAGCAAAGCT	TGGAAAGGTC	540
						AAGGGCAATT CCCCAATGCC	600 660
	ATTCAAGCGG	TCGGGGTTAT	GTCTTTTGC	TTTATTTGCC	ACCATAACTO	CTTCTTAGTT	720
30						TATGTCCATC ATTTACTGGC	780 840
50	TTCACCCAAG	GGGACTTATT	TGAAAATTAC	TGCAGAAATG	ATGACCTGGT	AACATTTGGA	900
						TGTGACAAGA CATTGTTGTA	960 1020
						CCTCGGGATA	1080
35						TCCATCAGCC	1140 1200
	ATGCTTCCCA	AACTGTCTGA A TTGGTGCTGT	GGTGATGGTT	TTTGGATTCG	TCATGGCTAT	TACAAATACT	1260
	CAAGACTGCA	CCCATGGGCA	GGAAATGTTC	TACTGCTTTC	CTGACAATTI	CTCTCTCACA	1320
40	AATACCTCAG TTTCAATGA	AGTCTCATGT	TCAGCAGAC	ACACAACTTI	CTACTITAA	TATTAGTATC	1380
45	SEQ ID NO:216 F Protein Accession	PAV4 Variant 4 Pro	otein sequence: none fo	md			
			110.10				
	1	11	21	31	41	51	
	i	11 	21 	31 	1	1	60
50	 MGYQRQEPVI GFPLGILLLF	11     PPQRDLDDRE WVSYVTDFSL	21   TLVSEHEYKE VLLIKGGALS	31     KTCQSAALFN GTDTYQSLVN	 VVNSIIGSGI KTFGFPGYLL	   IGLPYSMKQA   LSVLQFLYPF	120
50	 MGYQRQEPVI GFPLGILLLF IAMISYNIIA	11   PPQRDLDDRE WVSYVTDFSL GDTLSKVFQR	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF	31     KTCQSAALFN   GTDTYQSLVN   IGRHFIIGLS	 VVNSIIGSGI KTFGFPGYLL TVTFTLPLSL	iglpysmkoa LSVLOFLYPF YRNIAKLGKV	120 180
50	 MGYQRQEPVI GFPLGILLLF IAMISYNIIA SLISTGLTTL YSSLEEPTVA	11     PPQRDLDDRE   WVSYVTDFSL   GDTLSKVFQR   ILGIVMARAI   KWSRLIHMSI	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVP SLGPHIPKTE VISVFICIFF	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWYAKFNA ATCGYLTFTG	 VVNSIIGSGI KTFGPPGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHHNSPLV CRNDDLVTFG	120 180 240 300
	MGYOROEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVTVIL	11 	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVIANVFFGG	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWYFAKPNA ATCGYLTFTG NLSSVPHIVV	 VVNSIIGSGI KTFGFPGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY TVMVITVATL	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHHNSFLV CRNDDLVTFG VSLLIDCLGI	120 180 240 300 360
50 55	MGYOROEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVTVIL VLELNGVLCA	11     PPQRDLDDRE   WVSYVTDFSL   GDTLSKVFQR   ILGIVMARAI   KWSRLIHMSI	21   TILVSEHEYKE VLLIKGGALS IPGVDPENVP SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWYAKPHA ATCGYLTFTG NLSSVPHTVV THSDKIMSCV	 VVNSIIGSGI KTFGFPGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY TVMVITVATL MLPIGAVVMV	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHHNSFLV CRNDDLVTFG VSLLIDCLGI	120 180 240 300
	MGYOROEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVTVIL VLELNGVLCA	11	21   TILVSEHEYKE VLLIKGGALS IPGVDPENVP SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWFAKPNA ATCGYLTFTG NLSSVPHIVV THSDKIMSCV TQLSTLNISI	 VVNSIIGSGI KTFGFPGYLL TVTFTLPLSL IQAVGYMSPA FTQGDLFENY TVMVITVATL MLPIGAVVMV PQ	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHHNSFLV CRNDDLVTFG VSLLIDCLGI	120 180 240 300 360
55 _.	MGYQRQEFVI GFFLGILLLF IAMISYNIIA SLISTGLTTL YSSLEEPIVA RFCYGVTVIL VLELNGVLCA QDCTHGQEMF Nucleic Acid Acce	11	21   TLYSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVLANVFFGG CYLKLSEEPR NTSESHVQQT NM_017	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWYFAKPNA ATCGYLTFTG NTSDKYLKSCV TQLSTLNISI SEC 636	VVNSIIGSGI KTFGPPGYLL TVTFTLPLSL IQAVGVMSPA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ	IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV PICHHNSPLV CRNDDLVTFG VSLLIDCLGI FGFVMAITNT DNA SEQUENCE	120 180 240 300 360 420
	 MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVTVIL VLELNGVLCA QDCTHGQEMF	11	21   TLYSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVLANVFFGG CYLKLSEEPR NTSESHVQQT NM_017	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWYFAKPNA ATCGYLTFTG NTSDKYLKSCV TQLSTLNISI SEC 636	VVNSIIGSGI KTFGPPGYLL TVTFTLPLSL IQAVGVMSPA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHENSFLV CRNDDLVTFG VSLLIDCLGI FGFVMAITNT	120 180 240 300 360 420
55 _.	MGYQRQEFVI GFFLGILLLF IAMISYNIIA SLISTGLTTL YSSLEEPIVA RFCYGVTVIL VLELNGVLCA QDCTHGQEMF Nucleic Acid Acce	11   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   GDTLSKVFQR   ILGIVMARAI   KWERLHIMSI   TYPMECFUNT   TPLIFTIPSA   YCFFDNFSLT   PSSION #:	21   TLVSEHEYKE	31   KTCQSAALFN KTCQSAALFN GRHFIIGLS DAWYFAKPNA ATCGYLTPTG NLSSVPHIVV THEDKILESCV TQLSTLNISI SEC 636 underlined sequent	I VVNSIIGSGI KTFGFPGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ ID NO:217 PAVS ICES CORRESPOND IN	IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV PICHENSFLV CRNDDLVTFG VSLLIDCLGI FGFVMAITNT DNA SEQUENCE o start and stop code	120 180 240 300 360 420
55 _.	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVIVIL VLELNGVLCA QDCTHGQEMP Nucleic Ackd Acce Coding sequence	11   PPORDLDDRE   PPORDLDDRE   PPORDLDRE   PPORDLDRE   PPORDLDRE   PROPORTION   PRO	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFP EVIANVFFGG CYLKLSEEPR NTSESHVQQT NM_011 1-3501	31   KTCQSAALFN KTCQSAALFN GENEFIGLS DAWFAKPNA ATCGYLTFTG NLSSVFRIVV THSDKIMSCV TQLSTLNISI SEC 636 undedined sequen	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ ID NO:217 PAVS ces correspond to	IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV CRNDDLVTFG VSLLTLDCLGI FGFVMAITNT DNA SEQUENCE D start and stop code	120 180 240 300 360 420
55 _.	MGYQRQEPVI MGYQRQEPVI GFPLGILLLP IAMISYMIIA SLISTGLTTL YSSLEEPTVA RFCYGVTVIL VLELNGVLCA QDCTHGQEMF Nucleic Acid Acce Coding sequence	11   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   PROVINCE	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPEIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR NTSESHVQQT NM.01: 1-3501: 21   AGCCGTGGTG	31   KTCQSAALFN KTCQSAALFN GEREFIIGLS DAWYPAKPNA ATCGYLTPTG ULSVLFILV THEDKIMSCV TQLSTLNISI SEC 636 underlined sequent 31   ACCGTGTGGG	VVNSIIGSGI KTFGPFGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY MLPIGAVVMV FQ ID NO:217 PAVS ICES COMESPOND IN 41   ACAGCGATGC	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHENSFLV CRNDDLVTFG VSLLIDCLGI FGFVMAITNT DNA SEQUENCE start and stop code	120 180 240 300 360 420
55 _.	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA PFCYGVIVIL VLELNGVLCA QDCTHGQEMP Nucleic Acid Acce Coding sequence	11   PPORDLDDRE   PPORDLDDRE   WYSYVTDFSL   GDTLSKVFQR   ILGIVMARA    TYPMECFVTR   TPLLFILPSA   YCFFDNFSLT   CCTTCGGGGC   CCGATGCCTA   GGCTCTTGA	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR NTSESHVQQT  NM_011 1-3501   AGCCGTGGTG CGGAGGAGCTG CCGGAACGGAT CCGGAACGGAT	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWFAKPNA ATCGYLTFTG NLSSVFHIVV THEOKIMSCV TQLSTLNISI SEG ACCTTCACGG GACTTCACGG CCAGCTGCAG CCAGCTGCAG	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY MLPIGAVVMV FQ ID NO:217 PAVS CES COMESPOND II  41   ACAGCGATGC GGGCCGGCCG TTTATAGTCT	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV CRNDDLVTFG VSLLTDCLGI FGFVMAITNT  DNA SEQUENCE D start and stop code  51 ACACCACCAC CAAGCACCACG CAAGCACCACG CGTCACACGC	120 180 240 300 360 420 ms)
55 _.	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVIVIL VLELNGVLCA QDCTHGQEMF  Nucleic Acid Acce Coding sequence  1   ATGGAGGATG GAGAAGCCCA AATTTCCCCC ACATGGGCT	11   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   PPORDLSKYFQR   ILGIVMARAI   KWERLIMMSI   TYPMEPFVTR   TPLIFIIPSA   YCFFDNPSLT   SSION #:	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPEIPKTE VISUPICIFF EVIANUFFGG CYLKLSEEPR NTSESHVQQT  NM_01; 1-3501;  21   AGCCGTGGTG CGGAGAGCTG CCGAACGGAT GAACCTGGTG GAACCTGGTG	31   KTCQSAALFN KTCQSAALFN GETDTYQSLVN IGRHFIIGLS DAWWFAKPNA ATCGYLITFG NLSVVPHIVV THSDKIMSCV TQLSTLNISI SEC 636 underlined sequent 31   ACCGTGTGGG GACTTCACGG CACTGCAGG GTGTCACTGC	VVNSIIGSGI KTFGPFGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFEMY MLPIGAVVMV FQ ID NO:217 PAVS CCS COMESPOND IN  41  ACAGCGATGC GGGCCGCCG TTTTATAGTCT TGGGGGGGATC	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHENSPLV CRNDDLVTFG VSLLIDCLGI FGFVMAITNT DNA SEQUENCE Start and stop code  S1 ACACACCACG CAAGCACAGG CGGCACACGC GGGGGGCCCC	120 180 240 300 360 420 120 180 240
55 _.	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPIVA RFCYGVTVIL VLELNGVICA QDCTHGQEMF  Nucleic Acid Acce Coding sequence  1   ATGGAGGATG GAGAAGCCCA AATTTCCTCC AACTTTCCTCC GTCCTCCAGA	11   PPORDLDDRE   PPORDLDDRE   WYSYVTDFSL   GDTLSKVFQR   ILGIVMARA    TYPMECFVTR   TPLLFILPSA   YCFFDNFSLT   CCTTCGGGGC   CCGATGCCTA   GGCTCTTGA	21   TLVSEHEYKE VILIKGGALS IPGVDPENVP SLGPHIPKTE VISVPICIFP EVIANVPFGG CYLKLSEPR NTSESHVQQT  NM.01: 1-3501:  21   AGCCGTGGTG CCGGAGGGCTG CCGGACGGAT GAACCTGGTG GAACCTGGTG GAACCTGCTG	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWWYAKPNA ATCGYLPTG NLSSVPHIVV THEDKIMSCV TQLSTLNISI SEC 636 underlined sequent 31   ACCGTGTGGG GACTTCACGG GCAGTCCAG GCAGTCCAG GCGTGTGGGGC CCGTCGTGGGC	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGLLEFA TVMVITVATL MLPIGAVVMV FQ  LE NO:217 PAVS CCS COMESPOND IS  41   ACAGCGATGC GGGCCGGCCG TTTGGGGGGATCT TTGGGGGGGATCT TTGGGGGGGATCT TTGGGGGGGATCT TTGGGGGGGATCT TTGGGGGGGATCT TTGGGGGGGGATCT TTGGGGGGGGATCT TGGGTGCGGGC	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV FICHENSFLV CRNDDLVTFG VSLLIDCLGI FGFVMAITHT  DNA SEQUENCE Start and stop code  Start and stop code CACACCACCAC CAAGCACCACG CGGTCACACGC GGTCACACGC TGCCCAGAGC TGCCCAGAGC	120 180 240 300 360 420 ms)
55 ₀ 60 65	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA RFCYGVIVIL VLELNGVLCA QDCTHGQEMF  Nucleic Ackl Accc Coding sequence  1   ATGGAGGATG GAGAAGCCCA AATTTCCTCC ACATGGGGCT GTCCTCCAGA ACAGGAGCCT GCTGTACGGG	11   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   PPORDLDRE   GDTLSKVFQR   ILGIVMARAI   KWSRLIHMSI   TYPMEFPVTR   TPLIFIIPSA   YCFFDNFSLT   CCTTCGGGGC   CCATCGGGGC   CCATCGGGGC   CCTTCGCGCGCA   CCTTCGCCCC   CCTGGCTGCA   CCCTTCTCA   ACCATCAGAT	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPEIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR NTSESHVQQT  NM_011 1-3501   AGCCGTGGTG CGGAGAGCTG CGGACCGGAT GGACCTGCTG GGACCTGCTG GGCCACCGCTTG GGCCACCACTG	31   KTCQSAALFN KTCQSAALFN GENEFIIGLS DAWFARPNA ATCGYLTFTG UNLSVYPHIVV THSDKIMSCV TQLSTLNISI SEC 31   ACCGTGTGGG GACTTCACGG CAGCTCCAG CGTCTCAGGG CGTCCAGGGC CGACCAGGGCC CGACCAGGGCC CGCGGGCCACCA	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGMSFA FTQGDLFENY TVMVITVATL MLFIGAVVMV FQ  ID NO:217 PAVS  ACAGCGATGC GGGCCGCCG TTTTATAGTCT TGGGGGGATC TGGGGGGATC TGGTGCGGGC AGGTGCGGCA AGGTGGTGGG	IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV PICHENSPLV CRNDDLVTFG VSLLIDCLGI FGFVMAITHT  DNA SEQUENCE D START and stop code	120 180 240 360 420 120 180 240 300 420
55 ₀ 60 65	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPIVA RFCYGVIVIL VLELNGVLCA QDCTHGQEMF  Nucleic Acid Acce Coding sequence  1   ATGGAGGATG GAGAAGCCCA AATTTCCTCC GACTAGGGCT GTCTCCAGA ACAGGGCCT GCCCCCTYGGG GCCCCCTYGGG GCCCCCTYGGG GCCCCCTYGGG GCCCCCTYGGG	11   PPORDLDDRE WYSYVTDFSL GDTLSKVFQR ILGIVARASI TYPMECFVTR TPLIFIIPSA YCFPDNFSLT  255ion #: :: 11   CCTTCGGGGC CCGATGCCTA GGCTCTCGA TCGGTGCCCC CCTGGCTGCA GGATTGTCAC ACCATCAGAT GTCTGCCCC	21   TLVSEHEYKE VILIKGGALS IPGVDPENVP SLGPHIPKTE VISVPICIFF EVIANVPFGG CYLKLSEPR NTSESHVQQT  NM.01: 1-3501:  21   AGCCGTGGTG CCGAACGGAT CACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCTGGTG GAACCAGAT GAACCAGAT GAACCAGAT GAACAGAAC GAATAGAGAC GAATAGAGAC	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWWYAKPNA ATCGYLFFTG NLSSVPHIVV THEDKIMSCV TQLSTLNISI SEC 636 underlined sequent 31   ACCGTGTGGG GACTTCACGG CCACGGCAC CGGCGCACCA ACCCTCATCA ACCCTCATCA	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGLESH TVMVITVATL MLPIGAVVMV FQ  ID NO:217 PAVS CCCCAAGGGATGC GGGCCGGCCG TTTATAGTCT TGGGGGGATC TGGGGGGATC TGGGGCGGCA AGGTGGTGGGA ACCCCAAGGG	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV FICHENSFLV CRNDDLVTFG VSLLIDCLGI FGFVMAITHT  DNA SEQUENCE Start and stop code start and stop code CACACCACCAC CAAGCACCACG CGGTCACACGC GGTCACACGC TGCCCAGAGC TGTTGGTGTG CATGGGTGTG CTCGFTTCCCT	120 180 240 300 360 420 120 180 240 240 360
<ul><li>55</li><li>60</li><li>65</li><li>70</li></ul>	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA PECYGVIVIL VLELNGVLCA ODCTHGQEMP   Nucleic Acid Acce Coding sequence   1	11   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   PPORDLDDRE   COTLSKVFQR   ILGIVMARAI   KWSRLIHMSI   TYPMECFVTR   TPLIFIIPSA   YCFFDNFSLT   CCTTCGGGGC   CCGATGCCTA   TCCGTGCCCC   CCTGGCTGCA   ACCATCAGAT   GTGTGCTCGA   ACCATCAGAT   GTGTGCCCG   TCTTCCTGGT	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR NTSESHVQQT  NM_011 1-3501   AGCCGTGGTG CGGAGGACTG CGGAGGACTG GGACCTGGTG GGACCTGGTG GGACCTGCTG GGACCTGCTG GGACCTGCTG GGACCTGCTG GGACCTGCTG GGACCACCTGATAGAGAC TGACCCGGAG GAACCGGAC GAACAGGAC GGACGACGGC GAACAGGAC GGACGACGGC	31    KTCQSAALFN KTCQSAALFN GENEFIIGLS DAWFAKPNA ATCGYLTFTG NLSSVFHIVV THSDKIMSCV TQLSTLNISI  \$E636  31    ACCGTGTGGG GACTTCACGG CCACCTGCAGG CGTCAGTGC CGTCGTGGGC CGTCGTGGGC CGTCGTGGGC ACCCTCATCA ACCCTCATCA ACCCCCACCACACCGCA ACCCCCACCACCGCA ACCCCCACCCGCA ACCCCCACCCGCA ACCCCCACCGCA ACCCCCCACCGCA ACCCCCCACCGCA ACCCCCCACCGCCA ACCCCCCCC	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGYMSFA FTQGDLFENY TUMVITVATL MLPIGAVVMV FQ  AD NO:217 PAVS  CES COTTESPOND IS  ACAGCGATGC GGGCCGGCA TCTGGGCGGGATC TGGGGGGATC TGGGCCGGCA AGGTGGTGG ACCCCAAGGG ACTCCCAAGGG ACTCTCCCCT GCCTGGGGGG	I IGLPYSMKQA LSVLQFLYPF YRNIAKLGKV FICHENSPLV FICHENSPLV CRNDDLVTFG VSLLLTDCLGI FGFVMAITNT  DNA SEQUENCE  Start and stop code  Start and stop code CAAGCACACG CAAGCACACG GGGGGCCCC TGCCCAGAGC TGCTCAGGC CATGGTTCCCT GGACTACAAC CGGGAAACCGC CGGGAAACCGC CGGGAAACCGC CGGGAAACCGC CGGGAAACCGC	120 180 300 360 420 120 180 240 300 420 480 540 600
55 ₀ 60 65	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPIVA RPCYGVIVIL VLELNGVLCA QDCTHGQEMF  Nucleic Acid Acce Coding sequence  1   ATGGAGGATC GAGAAGCCCA AATTTCCTCC GTCCTCCAGA ACAGGGGCCT GTCCTCCAGA CAGGAGCTT GCTCTTACGGC GCCCCTTSGG GCCAGGTTACC TACTCGGCCT TTCCGGCCTT	11   PPORDLDDRE WYSYVTDFSL GDTLSKVFQR ILGIVARANI TYPMECFVTR TPLIFIIPSA YCFPDNFSLT  11   CCTTCGGGGC CCGATGCCTA GGCTCTCTGA TCCGTGCCCC GGATGTCCA GGTTGTCAC GGTTGTCAC GGTTGTCAC GCTTGCGCGC GGTTGTCAC GCTTGCGCGC GGTTGCCCC GGTCCCCGG GCTCCCGGG GCTCCCGGG GCCCCGGAGTC CCTCCCAGGT CCCTCCAGGT GCCCCGGAGTC	21   TLVSEHEYKE VILIKGGALS IPGVDPENVF SLGPHIPKTE EVIANVFFGG CYLKLSEPR NTSESHVQQT  NM.01: 1-3501  21   AGCCGTGGTG CCGAGACGGAT CACCTGGTG GAACCTGGTG GAACCAGACGAC TGACACCTG GAATAGAGAC TGACACCGGAG GGACGACGGC CTACATCTCA	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWWYAKPNA ATCGYLTPTG NLSSVPHIVV THEDKIMSCV TQLSTLNISI SEC 636 underlined sequet  31   ACCGTGTGGG GACTTCACGG CCAGCTGCAGGCA CACACGGCTA ACCCTCATCA GACGGGTCC ACCGTGTCC CACACGGCTC CACACGAGAGA	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGYMSFA FTQGLESFA FTQGLESFA TVMVITVATL MLPIGAVVMV FQ  ID NO:217 PAVS CCC COMESPOND IS  41   Acascgatic GGGCCGCCG TTTATAGTCT TGGGGGGAT TGGGGGGAT TGGGGGGAT TGGGGCGGCA ACCCCTAGGG ACCCCTAGGG ACTCTTCCCCT GCCTGGGGGC CCGGCCTGGGC	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV  120 180 240 300 360 420 420 180 120 180 240 300 360 420 420 480 540 660	
<ul><li>55</li><li>60</li><li>65</li><li>70</li></ul>		11   PPORDLDDRE   WYSYVTDFSL   GDTLSKVFQR   ILGIVMARAI   KWSRLIHMSI   TYPMECFVTR   TPLIFIIPSA   YCFFDNFSLT  11   CCTTCGGGGC   CCGATGCCTA   TCGTGCCCC   CCTGCTCCA   ACCATCAGAT   GTGTGCTCG   GCTCTGGATGCTGA   ACCATCAGAT   GCTTGCTGGGCGCGG   GCTTGGATGCCCG   GCTGGATGTCCCGCTCCAGATCCCTGGTCCCGCCCCCCCC	21   TLVSEHEYKE VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKLSEEPR NTSESHVQQT  NM_011 1-3501   AGCCGTGGTG CGGAGGACTG CGGAGGACTG GGACCTGGTG GGACCTGGTG GGACCTGGTG GGACCTGGTG GGACCTGGTG GGACCACCTGATT AGCCGGAC CTACATCTCA CCTCCTGATT GCTCCCATGT	31   KTCQSAALFN   KTCQSAALFN   KTCQSAALFN   IGRHFIIGLS   DAWFAKPNA   ATCGYLTFTG   NLSSVFHIVV   THEDKIMSCV   TQLSTLNISI   SEC   S636   ACCGTGTGGG   GACTTCACGG   CACACTGGGC   CGTCAGTGC   CGTCAGTGC   CGTCAGTGC   CGTCAGTGC   CGCGGGCACCA   ACCCTCATCA   CACACAGGCT   CACCAGAAGA   ACCCTCATCA   CATCGTGATG   CTCCTCCTGG	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGMSFA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ  AD NO:217 PAVS  ACAGCGATGC GGGCCGGCA TCGGCCGGCA AGGTGGTGGC ACCCAAGGG ACCTCAAGGG ACCTCAAGGG ACCTCAAGGG CCTGGCGGC CCGCCAAGGG CCCTGGCGGG CCCTGGCGGG CCCCAAGGG CCCTGGCGGG CCCCAAGGACTCT CTGGCCTCCCT CCTGCCCGCC CCGCCAAGGG CCTGGCGGGC CCGCCAAGGACTCT CTGGCCTCCCT CCTGCCCGCC CCGCCTCCCCC CCCTGCCCGCC CCGCCCTCCCCCC CCCTGCCCCC CCCTGCCCCC CCCTCCCCCC CCCTCCCCCCC CCCTCCCCCC CCCCCC	IGLPYSMKQA LGVLQFLYPF YRNIAKLGKV FICHENSPLV FICHENSPLV CRNDDLVTFG VSLLLTDCLGI FGFVMAITNT  DNA SEQUENCE  Start and stop code CAGCACCACG CAAGCACACG GGGGGCCCC TGCCCAGAGC TGTTGGTGT CATGGTTGC CAGGGACTACAAC CGGGGACTACAAC CGGGGACTGCAAC GGGGACTGCA AGGGACTGCA AGGGACTGCA GGGACTGCA GGGACTGCA GGGACTGCA GGGGACTGCA GGGGACTGCA GGGGACTGCA GGGGACTGCC GGGGACTACAAC	120 180 300 360 420 120 120 240 300 360 420 480 660 660 660 720 720 7780
<ul><li>55</li><li>60</li><li>65</li><li>70</li></ul>	MGYQRQEPVI GFPLGILLLP IAMISYNIIA SLISTGLITLL YSSLEEPIVA RPCYGVIVIL VLELNGVICA QDCTHGQEMF  Nucleic Acid Acce Coding sequence  1   ATGGAGGATG GAGAAGCCCA AATTTCCTCC GTCTTCCAGA ACAGGGGCT GTCCTCCAGA ACAGGAGCT GTCCTCCAGA ACAGGAGCT TACTCGGCCT TTCCGCCTT TTCCGCTTGC ATTACAATCC GAGAACCCCA GACAGCCCT GGAGACCCCC GAGAACCCCA GACTCCCTGG	11   PPORDLDDRE WYSYVTDFSL GDTLSKVFQR ILGIVARARI ILGIVARARI TYPMECFVTR TPLIFIIPSA YCFPDNFSLT  255ion #: :: 11   CCTTCGGGGC CCGATGCCTA GGCTCTCGA GGATGTCA GGTTGCGCG GGATGTCCG GGTTGGCGC GGTTGGCGC GGTTGGCGCG GGTTGCCCC CCGGGGCCCG GGTTGCCCC CCGGGGCCCG GGTTGCCCC CCGGGGCCCG GGTTGCCCC CCGGGGCCCG GCTGCAGTC CCCAGGCCCC CCGGGGCCCG CCCGGGGCCCC CCGGGGCCCC CCGGGGCCCC CCGGGGCCCC CCGGGGCCCC CCCGGGCCCC CCCGGGGCCCC CCCGGGGCCCC CCCGGGGCCCC CCCGGGGCCCC CCCAGGCCCC CCAGGCCCC CCCAGCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCAGGCCCC CCCCCC CCCCC CCCCC CCCCC CCCCC CCCC	21   TLVSEHEYKE VILIKGGALS IPGVDPENVP SLGPHIPKTE VISVPICIFP EVIANVPFGG CYLKLSEPR NTSESHVQQT  NM.011 1-3501  21   AGCCGTGGTG CCGAACGAT GAACCTGGTG GGACCTGCTG GGACCGACGAC GAACCGACAC TGACCTGCTG GGACACCAC TGACCACAC TGACCACAC TGACCACAC TGACCCGAG GGACGACAC CTCCCTGATT GCTCCCATGTT GCGCAACACACT	31   KTCQSAALFN GTDTYQSLVN IGRHFIIGLS DAWWYAKPNA ATCGYLFTG NLSSVPHIVV THEDKIMSCV TQLSTLNISI SEC 636 underlined sequet  31   ACCGTGTGGG GACTTCACGG CCACCGGCAC GGGGGCACCA ACCCTCATCA GACGGGACCA ACCCTCATCA GACGGGACGA CCACACAGGGT CCACACAGGGACA ACCCTCATCA GACGACACGGCT CACCACAGGAGA GATGGTGATG CTCCTCGTGG CTTCCTCGTGG CTTCCTCGTGG CTTCCTCGTGG CTTCCTCGTGG CTTCCTCGTGG CTTCCTCGTGG CTTCCCCCCAG CTTCTCCCCCCC	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGLESPA FTQGLESPA TVMVITVATL MLPIGAVVMV FQ  ID NO:217 PAVS CCS COMESPOND IS ACAGCGATGC GCGCCCGC TTTATAGTCT TGGGGGGGAT TGGGGGGGAT ACGTCGGGGG ACGTCGGGGGA ACGTTTCCCT GCCTGGGGGG ACAGAGAGATGT CTGGCTCAGG GGAGTGGGG  GGAGTGGGG GGAGTGGGG GGAGTGGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGG GGAGTGGGGG GAGTGGGGG GAGTGGGGG GGAGTGGGGG GGAGTGGGGG GGAGTGGGGG GGAGTGGGGG GGAGTGGGGG GGAGTGGGG GAGTGG GGAGTGGG GGAGTGG GGAGTGG GGAGTGG GGAGTGG GGAGT GGAGT GGAG GGAGT GGAG GGAGT GGAG GGAGT GGAG GGAGT GGAG GGAGT GGAG GGAGT GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGAG GG G	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV  120 180 300 360 420 120 180 300 360 420 480 480 660 660 720 780 880	
<ul><li>55</li><li>60</li><li>65</li><li>70</li></ul>		11   PPORDLDDRE WYSYVTDFSL GDTLSKVFQR ILGIVMARAI TYPMECFVTR TPLIFIIPSA YCPPDNFSLT  11   CCTTCGGGGC CCGATGCCTA GGCTCTCTGA GCCTTCTCA GGATTCTCAC GGATTCTCAC GGATTCTCAC GGATTCTCAC GCCTGGAGTC CCTTCCTGCT CCCAGGCTCA CCATCGCAC GGATTCTCAC GGCTGGAGTC CCTGGCTCAC CCAGGCTCA CCGAGGCTCA CCGAGGCTCA CCGAGGCTCA CCGAGACCCT CCGAGGCTCA CCGAGACCCT GCGAGACCCT GCGAGACCCT GCGAGACCCT GAGATCCAAT	21   TLVSEHEYKE VILIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF EVIANVFFGG CYLKISEPPR NTSESHVQQT  AGCCGTGGTG CGGAGAGGTG CGGAGAGGTG GACCTGGTG GGACTGGTG GGACTGGTG GGACTGGTG GGACTGGTG GGACTGGTG GGACTGTGTG GGACTGGTG GGACTGTGTG GGACTAGTTG GGACTAGTTG GGACTAGTTG GCTCCATT GGAGGACGGC CTACATCTCA CCTCCTGATT GCTCCATGT GGAGGACGTTC CAGGCGTTTC CAGGCGTTC CAGGCGTTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTC CAGGCT CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCTTC CAGGCTTTC CAGGCT CAGGCTTC CAGGCTTTC CAGGCTTTC CAGGCTTTC CAGGCT	31   KTCQSAALFN   KTCQSAALFN   GRHFIIGLS   DAWPAKPNA ATCGYLFTG   NLSSVFHIVV THEDKIMSCV TQLSTLNISI  31   ACCGTGTGGG   ACCGTGCAG GCGGGCACCA ACCGGCTCAGGG CCACCGGCTCAGG GGGGGCACCA ACCACAGGGT CACACGGGT CACACAGGGT CACACAGGGT CACACAGGGT CACACAGGGT CACACAGGGT CACCAGAAGA GATGGTCATG GATGGTCATG GATGGTCATG GATGGTCATG CTCCTCGTGG CTGCCCAACAGGT CTCCCTCGG	VVNSIIGSGI KTFGFFGYLL TVTFTLPLSL IQAVGVMSFA FTQGDLFENY TVMVITVATL MLPIGAVVMV FQ  ID NO:217 PAVS CES COMESPOND IS ACAGCGATGC GGGCCGGCCG TTTATAGTCT TGGGGGGAT TTGGTGCGGG AGCTGTGGGG AGCTGTGGGGAGT GCGGCCTGGGGGA AGTTTCCCT GCGGCGTGGG AGAAGATGTT CTGGTCAGG GGAGTGGCGG GGAGTGGCGG GGAGTGGCGG GGAGTGGCGG GGAGTGGCGG GGGACTTGA	I IGLFYSMKQA LSVLQFLYFF YRNIAKLGKV FICHENSFLV  120 180 300 360 420 120 120 180 240 360 420 420 420 720 780 840 900	

```
GGGTCTGAGG AATTCGAGAC CATAGTTTTG AAGGCCCTTG TGAAGGCCTG TGGGAGCTCG 1020
         GAGGCCTCAG CCTACCTGGA TGAGCTGCGT TTGGCTGTGG CTTGGAACCG CGTGGACATT
                                                                                                    1080
          GCCCAGAGTG AACTCTTTCG GGGGGACATC CAATGGCGGT CCTTCCATCT CGAAGCTTCC 1140
         CTCATGGACG CCCTGCTGAA TGACCGGCCT GAGTTCGTGC GCTTGCTCAT TTCCCACGGC
CTCAGCCTGG GCCACTTCCT GACCCCGATG CGCCTGGCCC AACTCTACAG CGCGGCGCCC
                                                                                                    1200
          TCCAACTCGC TCATCCGCAA CCTTTTGGAC CAGGCGTCCC ACAGCGCAGG CACCAAAGCC
                                                                                                    1320
         CCAGCCCTAA AAGGGGGAGC TGCGGAGCTC CGGCCCCCTG ACGTGGGGCA TGTGCTGAGG
ATGCTGCTGG GGAAGATGTG CGCGCCGAGG TACCCCTCCG GGGGCGCCTG GGACCCTCAC
                                                                                                    1380
          CCAGGCCAGG GCTTCGGGGA GAGCATGTAT CTGCTCTCGG ACAAGGCCAC CTCGCCGCTC
                                                                                                    1500
10
         TOGCTGGATG CTGGCCTCGG GCAGGCCCCC TGGAGCGACC TGCTTCTTTG GGCACTGTTG
CTGAACAGGG CACAGATGGC CATGTACTTC TGGGAGATGG GTTCCAATGC AGTTTCCTCA
                                                                                                    1560
          GCTCTTGGGG CCTGTTTGCT GCTCCGGGTG ATGGCACGCC TGGAGCCTGA CGCTGAGGAG
                                                                                                    1680
          GCAGCACGGA GGAAAGACCT GGCGTTCAAG TTTGAGGGGA TGGGCGTTGA CCTCTTTGGC
                                                                                                    1740
         GAGTGCTATC GCAGCAGTGA GGTGAGGGCT GCCCGCCTCC TCCTCCGTCG CTGCCCGGCTC
                                                                                                    1800
15
          TGGGGGGATG CCACTTGCCT CCAGCTGGCC ATGCAAGCTG ACGCCCGTGC CTTCTTTGCC
                                                                                                    1860
         CAGGATGGGG TACAGTCTCT GCTGACACAG AAGTGGTGGG GAGATATGGC CAGCACTACA
CCCATCTGGG CCCTGGTTCT CGCCTTCTTT TGCCCTCCAC TCATCTACAC CCGCCTCATC
                                                                                                    1920
          ACCITCAGGA AATCAGAAGA GGAGCCCACA CGGGAGGAGC TAGAGTTTGA CATGGATAGT
                                                                                                    2040
         GTCATTAATG GGGAAGGGCC TGTCGGGACG GCGGACCCAG CCGAGAAGAC GCCGCTGGGG
GTCCCGCGCC AGTCGGGCCG TCCGGGTTGC TGCGGGGGCC GCTGCGGGGG GCGCCGGTGC
                                                                                                    2100
20
         CTACGCCGCT GGTTCCACTT CTGGGGGGGG CCGGTGACCA TCTTCATGGG CAACGTGGTC
                                                                                                   2220
         AGCTACCTGC TGTTCCTGCT GCTTTTCTCG CGGGTGCTGC TCGTGGATTT CCAGCCGGCC CCGCCCGGCT CCCTGGAGCT GCTGCTCTAT TTCTGGGCTT TCACGCTGCT GTGCGAGGAA
                                                                                                   2280
          CTCCCCCAGG GCCTGAGCGG AGGCGGGGGC AGCCTCGCCA GCGGGGGCCC CGGGCCTGGC
                                                                                                   2400
25
         CATGCCTCAC TEAGCCAGCG CCTGCGCCTC TACCTCGCCG ACAGCTGGAA CCAGTGCGAC
CTAGTGGCTC TCACCTGCTT CCTCCTGGGC GTGGGCTGCC GGCTGACCCC GGGTTTGTAC
                                                                                                    2460
          CACCTGGGCC GCACTGTCCT CTGCATCGAC TTCATGGTTT TCACGGTGCG GCTGCTTCAC
                                                                                                    2580
         ATCTTCACGG TCAACAAACA GCTGGGGCCC AAGATCGTCA TCGTGAGCAA GATGATGAAG
GACGTGTTCT TCTTCCTCTT CTTCCTCGGC GTGTGGCTGG TAGCCTATGG CGTGGCCACG
                                                                                                   2640
                                                                                                    2700
30
          GAGGGGCTCC TGAGGCCACG GGACAGTGAC TTCCCAAGTA TCCTGCGCCG CGTCTTCTAC
                                                                                                    2760
         CGTCCCTACC TGCAGATCTT CGGGCAGATT CCCCAGGAGG ACATGGACGT GGCCCTCATG
GAGCACAGCA ACTGCTCGTC GGAGCCCGGC TTCTGGGCAC ACCCTCCTGG GGCCCAGGCG
                                                                                                    2820
          GGCACCTGCG TCTCCCAGTA TGCCAACTGG CTGGTGGTGC TGCTCCTCGT CATCTTCCTG
                                                                                                    2940
                                                                                                    3000
          CTCGTGGCCA ACATCCTGCT GGTCAACTTG CTCATTGCCA TGTTCAGTTA CACATTCGGC
35
          AAAGTACAGG GCAACAGCGA TCTCTACTGG AAGGCGCAGC GTTACCGCCT CATCCGGGAA
          TTCCACTCTC GGCCCGCGCT GGCCCCGCCC TTTATCGTCA TCTCCCACTT GCGCCTCCTG
                                                                                                   3120
          CTCAGGCAAT TGTGCAGGCG ACCCCGGAGC CCCCAGCCGT CCTCCCCGGC CCTCGAGCAT
                                                                                                    3180
          TTCCGGGTTT ACCTTTCTAA GGAAGCCGAG CGGAAGCTGC TAACGTGGGA ATCGGTGCAT
         AAGGAGACT TTCTGCTGGC ACGCGCTAGG GACAAGCGG AGAGCGACTC CGAGCOTCTG
AAGCGCACGT CCCAGAAGGT GGACTTGGCA CTGAAACAGC TGGGACACAT CCGCGAGTAC
GAACAGCGCC TGAAAGTGCT GGAGCGGGAG GTCCAGCAGT GTAGCCGCGT CCTGGGGTGG
                                                                                                    3300
40
                                                                                                    3360
          GTGGCCGAGG CCCTGAGCCG CTCTGCCTTG CTGCCCCCAG GTGGGCCGCC ACCCCCTGAC 3480
          CTGCCTGGGT CCAAAGACTG A
45
         SEQ ID NO:218 PAV9 Protein sequence:
                                               none found
          Protein Accession #:
                                                      31
                                                                      41
                                                                                    51
50
         MEDAFGAAVV TVWDSDAHTT EKPTDAYGEL DFTGAGRKHS NFLRLSDRTD PAAVYSLVTR
         TWGFRAPNIN VSVLGGSGGP VLQTWLQDLL RRGLVRAAQS TGAWIVTGGL HTGIGRHVGV
AVRDHOMAST GGTKVVAMGV APWGVVRNRD TLINPKGSPP ARYRWRGDPE DGVQFPLDYN
          YSAFFLVDDG TEGCLGGENR FRLRLESYIS QQKTGVGGTG IDIPVLLLLI DGDEKMLTRI
                                                                                                      240
55
         ENATOAQLPC LLVAGSGGAA DCLAETLEDT LAPGSGGARQ GEARDRIRRF FFKGDLEVLQ
AQVERIMTRK ELLTVYSSED GSEEPETIVL KALVKACGSS EASAYLDELR LAVANNRVDI
                                                                                                      300
         AQSELFRGDI QWRSFHLEAS IMDALLNDRP EFVRLLISHG LSLGHFL/TPM RLAQLYSAAP
         SNSLIRNLLD QASHSAGTKA PALKGGAAEL RPPDVGHVLR MLLGKMCAPR YPSGGAWDPH
PGOGFGESMY LLSDKATSPL SLDAGLGQAP WSDLLLMALL LNRAQMAMYP WEMGSNAVSS
                                                                                                      480
60
          ALGACLLLRV MARLEPDAEE AARRKDLAPK FEGMGVDLFG ECYRSSEVRA ARLLLRRCPL
         WGDATCLQLA MQADARAFFA QDGVQSLLTQ KWMGDMASTT PIWALVLAFF CPPLIYTRLI
TFRKSEBEPT REBLEPDMDS VINGEGPUGT ADPABKTPLG VPRQSGRPGC CGGRCGGRRC
          LRRWFHFWGA FVTIFMGNVV SYLLPLLLFS RVLLVDFQPA PPGSLELLLY FWAFTLLCEE
                                                                                                      780
         LRGGLSGGG SLASGGPGPG HASLSGRIRL YLADSWAGCD LVALTCFILG VGCRLTPGLY
HLGRTVLCID FMVFTVRLLH IFTVNKQLGP KIVIVSKMMK DVFFPLFFLG VWLVAYGVAT
                                                                                                      840
65
         EGLLAPROSD FPSILRRVFY RPYLQIFGQI PQEDMDVALM EHSNCSSEPG FWAHFPGAQA
GTCVSOYANW LVVLLLVIFL LVANILLVNL LIAMFSYTFG KVQGNSDLYW KAQRYRLIRE
                                                                                                      960
                                                                                                    1020
          PHSRPALAPP FIVISHLRLL LRQLCRRPRS PQPSSPALEH FRVYLSKEAE RKLLTWESVE
          KENFILARAR DKRESDSERL KRTSOKVDLA LKOLGHIREY EQRLKVLERE VQQCSRVLGW 1140
70
          VAEALSRSAL LPPGGPPPPD LPGSKD
                                                                 SEQ ID NO:219 PBF1 DNA SEQUENCE
                                          AA054237
         Nucleic Acid Accession #:
                                          1-894 (underlined sequences correspond to start and stop codons)
         Coding sequence:
75
                        11
                                       21
                                                      31
         ATGGAGCCGC GGGCGCTCGT CACGGCGCTC AGCCTCGGCC TCAGCCTGTG CTCCCTGGGG
CTGCTCGTCA CGGCCATCTT CACCGACCAC TGGTACGAGA CCGACCCCCG GCGCCACAAG
80
          GAGAGETGEG AGEGEAGEEG EGEGGGEGEE GACCECCEG ACCAGAAGAA CEGECTGATG
```

5	GGCCCGGGGC GCCGAGTGCG CTGGGCATCG GCCATCAAGT AAGACCATAC CTCGGCATGG TGGGAGGAGA TGCACCATTT AAGCTAATTT GCCTGGTGCA	ACCTGCCGCT GCGCCGCCCT ACCGGGACAT ACCACTITIC AGCAAGATGA CCGTGACCCA CCCTCTGTAC ATAGCCTGCC GTTTAGCCTT CCAAGATTGC	CGAGTCCTGG CTTCGCCACC CGACACCCTC TCAGCCCATC GTGGCACCTG CCTTCTCTGC GCACGTGGCT TTATGCCGCC TGCTGATGTG TATTGTGGCA	CGCTCGCTCC TACTCGGGCC ATCCTGAAAG CGCTTGCGAA CTTCATTTAA GGCTGCATTG GGACTCCTGT AGTATCTCGT GAACATGGTT GCTGGAGGTC	TGGGGCTCGG TCTGGAGGAA GTATTGCGCA ACATTCCTTT GAAGAATCAGT TCCTCATGAC ATGATTTGAA ACAGCTGGTC TCTGCATCGC	CGGGCTGGAC GTGCTACTTC GCGATGCACG TRATTTAACC TGCTGGCTTC CAGTTTCTTC AGGGATATTT CCGGCTCCCA CATCTTTTGC TTATCCGTTT	240 300 360 420 540 600 660 720 780 840
15	SEQ ID NO:220 I Protein Accession	PBF1 Protein sequ 1 #:	none lound				
20	PLSHLPLRDS LGIDRDIDTL LGMAVAVLLC	PPLGRRLLPG	GPGRADPESW AIKYHPSQPI WEESLTQHVA	RSLLGLGGLD RLRNIPPNLT GLLFLMTGIF	AECGRPLFAT KTIQQDEWHL CTISLCTYAA		60 120 180 240
25							
30	Nucleic Acid Acc Coding sequence		NM_016570 1- 1134 (under		Q ID NO:221 PCM orrespond to start	DNA SEQUENCE and stop codons)	
	1	11   TGAATCGGAA	21	31	41	51   	60
35	AAGGTTCCTG TTTACAACTA AAGTATGAAT ACTGTTGCCA	AGAGCTATGT TGGCTTTATT ACGAAGTAGA TGAAGTGTCA	AGAGACTTCA AACCATAATG CAAGGATTTT ATATGTTGGA	GCCAGTGGAG GAATTCTCAG TCTAGCAAAT GCGGATGTAT	GTACAGTTTC TATATCAAGA TAAGAATTAA TGGATTTAGC	TCTAATAGCA TACATGGATG TATAGATATT	120 180 240 300 360
40	AAAGAGTGGC CAAGATGTGA GATGATTCAT GTAGCAGGGA	AGAGGATGCT TATTTAAAAG CACAGTCTCC ATTTTCACAT	GCAGCTGATT TGCTTTTAAA AAATGCATGC AACAGTGGGC	CAGAGTAGGC AGTACATCAA AGAATTCATG AAGGCAATTC	TACAAGAAGA CAGCTCTTCC GCCATCTATA CACATCCTCG	GCATTCACTT ACCAAGAGAA TGTCAATAAA TGGTCATGCA AGATCATTTG	420 480 540 600 660
45	TCTTTTGGAG ATAGATCACA TATAAAATAT CATGCTGCAG	AGCTTGTTCC ACCAGATGTT CAGCAGACAC GCAGCCATGG	AGCAATTATT CCAATATTTT CCATCAGTTT AGTCTCTGGG	AATCCTTTAG ATTACAGTTG TCTGTGACAG ATATTTATGA	ATGGAACTGA TGCCAACAAA AAAGGGAACG AATATGATCT	AAAAATTGCT ACTACATACA TATCATTAAC CAGTTCTCTT	720 780 840 900
50	ATTGTTGGAG GAAATAATTT		AACAACAGGC CAGACTTGGA	ATGTTACATG TCCTATAAAC	GAATTGGAAA CTGTCAATTC	ATTTATAGTT TGTTCCTTTT	960 1020 1080
55	SEQ ID NO:222 Protein Accession	PCI4 Protein sequ n #:	ence: NP_057654				
60	KYEYEVDKDF KEWQRMLQLI	SSKLRINIDI	TVAMKCQYVG QDVIFKSAFK	ADVLDLAETM STSTALPPRE	VASADGLVYE DDSSQSPNAC	51   EFSVYQDTWM PTVFDLSPQQ RIHGHLYVNK NPLDGTEKIA	60 120 180 240
65	IDHNOMFOYF MVTVTEEHMP EDGHTDNHLP	ITVVPTKLHT FWQFFVRLCG LLENNTH	YKISADTHQF IVGGIFSTTG	SVTERERIIN MLHGIGKFIV	HAAGSHGVSG EIICCRFRLG	IFMKYDLSSL SYKPVNSVPP	300 360
70	Nucleic Acid Acc Coding sequence		NM_001935.1 76-2301 (unde			3 DNA SEQUENCE t and stop codons)	•
75	GAGGAGACGC	11   CGCCGCCCGC CGACGATGAA CCATCATCAC	GACACCGTGG	AAGATTCTTC	TGGGACTGCT	51   GCTCACTTCC GGGTGCTGCT AGATGATGCT	60 120 180
80	ACAGCTGACA	GTCGCAAAAC	TTACACTCTA	ACTGATTACT	TAAAAAATAC	TTATAGACTG AGAAAATAAT	240 300

		TCAATGCTGA					360
		GACATTCTAT					420
		ACTACGTGAA					480
5		AAAGGCAGCT					540
J		CAGTGGGTCA					600 660
		ATTTACCAAG CTGACTGGGT					720
		ACGGCACTTT					780
		CCTTCTACTC					840
10		CAGGAGCTGT					900
10		TCACCAATGC					960
		ACTTGTGTGA					1020
		TTCAGAACTA					1080
		GCTTAGTGGC					1140
15		CTTCAGAACC					1200
		AAGGTTACAG					1260
		AAGGCACCTG					1320
		GTAATGAATA					1380
20		ATACAAAAGT					1440
20		TGTCATTCAG					1500
		TCTATACTCT					1560
		CTTTGGATAA TGAATGAAAC					1620 1680
•		AATATCCTCT					1740
25		TCAGACTGAA					1800
23		ATGGCAGAGG					1860
		GAACATTTGA					1920
		TGGACAACAA					1980
		TCCTGGGATC					2040
30		GGGAGTACTA					2100
		ACCTTGACCA					2160
		AGTACCTCCT					2220
	TCAGCTCAGA	TCTCCAAAGC	CCTGGTCGAT	GTTGGAGTGG	ATTTCCAGGC	AATGTGGTAT	2280
25	ACTGATGAAG	ACCATGGAA <u>T</u>	<u>AG</u> CTAGCAGC	ACAGCACACC	AACATATATA	TACCCACATG	2340
35		TAAAACAATG					2400
		AAACTCATTT					2460
		AATACACACT					2520
		TCTTAAGTAG CGGTCGGGTT					2580 2640
40	TIGAATTATC	TTGTTTTAT	TATIGITIA	CAMACAMMOC	CTCACCACCA	CCLOWNSTAN	2700
70	CAAATAGGAA	GACTGGTTCA	AMOUNTACTURE	CHIMONITICS	AGGGATGGCA	AGATICTICGC	2760
		CTAGGGCAGG					2820
		CCCAAGTCCA					2880
	AGAAGAGCTG	TTCACCACGA	GACTGGCACA	GTTTTCTGAG	AAAGACTATT	CAAACAGTCT	2940
45		AATATCGAAA					3000
	AAAGAAATGT	AAGGGAAACT	GCCAGCAACG	CAGCCCCCAG	GTGCCAGTTA	TGGCTATAGG	3060
		ACACAGCAAG					3120
		CCTAGTGAAA					3180
£0		ATGAAAATAT					3240
50	TTTTTCTTAT	TTCATTTCTT	TGAGTGTCTT	AATTAAAAGA	ATATTTTAAC	TTCCTTGGAC	3300
						ATTCTACATA	3360
	CTATGGAATT	TCTCCCAGTC	ATTTAATAAA	TGTGCCTTCA	TITITIC		
55	ero (D.NO.004)	DE79 Ombole com	10000				
JJ	Protein Accessio	PEZ3 Protein seal	NP_001926.1				
	Protein Accessio	II <b>e.</b>	NF_001520.1				
	1	11	21	31	41	51	
	i	ī	ī	ī	ĩ	ī	
60	MKTPWKTLLG	LLGAAALVTI	ITVPVVLLNK	GTDDATADSR	KTYTLTDYLK	NTYRLKLYSL	60
••		KQENNILVFN					120
		SYDIYDLNKR					180
	PSYRITWICK	EDIIYNGITD	WVYEEEVPSA	YSALWWSPNG	TFLAYAQFND	TEVPLIEYSF	240
~ =		TVRVPYPKAG					300
65		ISLQWLRRIQ					360
		PYKIISNEEG					420
		LYKIQLIDYT					480
		LRVLEDNSAL					540
70		CSQKADIVFR					600
70		ROFSKMGFVD					660
		MGLPTPEDNL				VHFQQSAQIS	720
	KALVUVGVDP	QAMWYTDEDH	GIASSTAHQH	TTHESHFIK	OCL ONL		
				ec	O ID NO:225 PR.I	2 DNA SEQUENCE	
75	Nucleic Acid Acc	ession #:	none fo				
13	Coding sequence				ces correspond to	start and stop code	nas)
	Committy and not see	-	1-63-1		to		··· <del>···</del> ,
	1	11	21	31	41	51	
80	Ī	1	1	1	1	1	
	•				22	2	
					39	כי	

5	AGAAGTGTGA AGAAACCCTC GTGGAAATGA	TTAAAGTGCG AGGAGCTCTG	TGCTAACCAG GATGGGCCTG AGTCTGGTCC	TGTTCCCTGC CTCCTCTTGA	ATGAGGCAGA TGGGGGTCCT	AGAAGCATGT	120 180 240
	SEQ ID NO:226 Protein Accession	PBJ2 Protein sequ	ence: none fo	und			
10		••		24	41	51	
	1 	11	21	31 i	41	21	
			RSVIKVRANQ	CSLHEAESES	RNPQELWMGL	LLLMGVLEAC	60
<b>L</b> 5	VEMRPLSVW	S LRDDKEQSF	H QPTLDV				٠.
					ID NO:227 PBM:	2 DNA SEQUENCE	
	Nucleic Acid Acc Coding sequence		none to		ne correction to	start and stop code	ne\
•	Opening sequence	•	1-10- (1	anacianca andresi	oco oun capona to	out and out to	
20	1	11	21	31	41	51	
	1 '	1	1	1	1	1	
25	CTCATACTY ATTGATGTAS ATCATGTGG	CTGTATGTTY CTTCTCAAG CCAGTTTTG	TGGATCAGCA TCTGGACAGA GGAAGACAA	A AATATAGTCA A CGGCCAGAGA F CTTTCCATGG	A GCCCTCTACT A GTATGCTGTT G GCTGGGGGAI	T AAAAACTGCT T TGAGCAAAAT T TCTAGTCATC A GCTAGAAGAT	120 180 240
	AACCTGACT	A ATGGTGCCGC	TGCTGGCAA?	P GGTGATGATO	GATTAATTC	ATTCCCAGAA C TCCAAGGAAG A TCACAGGTTT	
30			AGATATGCG				
	SEQ ID NO:228 Protein Accession	PBM2 Protein seg n#:	<u>vence:</u> none fo	und			
35							
,,,	1	11	21	31	41	51	
			LILAVCCGSA	NTUCHI I PON	THECODED		60
10	IMWISFVEDN	LSMGWGKLED	PMAIEEPMKK VKDQIVVDM	HGSTHVGFPE			120
	Ab1-2- A-14 A		1114 044050	SEC	2 ID NO:229 PEZ	DNA SEQUENCE	
	Nucleic Acid Acc Coding sequence		NM_014253 65-8242 (unde	rlined sequences o	orrespond to start	and stop codons)	
15	٠.		•	-	•		
	1 	11	21 	31 	41 	51 ]	
50			TTCCTCATCC				60 120
,0			GCAAACCCTA CTTCTGATGA				180
	ATACAACTCC	AGGGAGACCC	TGCACGAGTA	TAACCAGGAG	CTGAGGATGA	ATTACAATAG	240
			AAGTAGAAAA GCTACCAAAC				300 360
55	CCAGCTAGAG	ATGGGATCTG	ATGTGGACAC	AGAGACAGAA	GGTGCTGCCT	CACCTGACCA	420
			GGGGAATGAA TGACTGACAC				480 540
	TGGTTTCAAA						600
50							
,,		AGCCCACACA	ACCAGTTCAC	CTTCAGACCC	CTCCCACCGC	CACCTCCGCC	660
	TCCTCATGCC	AGCCCACACA TGCACCTGTG		CTTCAGACCC ACCCCTGCA	CTCCCACCGC GCGGACTCTC	CACCTCCGCC TTCAGAGGAG	
	TCCTCATGCC ATCAATGACT GGATTCAGTC	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA	ACCAGTTCAC CCAGGAAGCC AGCCCAGCCC ACAGCTGGGT	CTTCAGACCC ACCCCTGCA AGCTGCTCCA CCTGAACAGC	CTCCCACCGC GCGGACTCTC GCTCCCCCAA AACATACCAT	CACCTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG	660 720 780 840
	TCCTCATGCC ATCAATGACT GGATTCAGTC GCATTCCCTG	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG	ACCAGTTCAC CCAGGAAGCC AGCCCAGCCC	CTTCAGACCC ACCCCTGCA AGCTGCTCCA CCTGAACAGC CTCTGCGATC	CTCCCACCGC GCGGACTCTC GCTCCCCCAA AACATACCAT TTCAGTGCAG	CACCTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA	660 720 780
55	TCCTCATGCC ATCAATGACT GGATTCAGTC GCATTCCCTG CTACCCTCTG CTTTTCCCGA	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG ACATCCAATA CCTGCCTTTA	ACCAGTTCAC CCAGGAAGCC AGCCCAGCCC ACAGCTGGGT GATCTGGTTC CCGTGTACTC CCTTTAACAA	CTTCAGACCC ACCCCTGCA AGCTGCTCCA CCTGAACAGC CTCTGCGATC GCCCCTCCC ACCTTACAGG	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT	CACCTCOGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC	660 720 780 840 900 960 1020
55	TCCTCATGCC ATCAATGACT GGATTCAGTC GCATTCCCTG CTACCCTCTG CTTTCCCGA AGCATTGAGC	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG ACATCCAATA CCTGCCTTTA GCCACTGCAA	ACCAGTTCAC CCAGGAAGCC AGCCCAGCCC ACAGCTGGGT GATCTGGTTC CCGTGTACTC CCTTTAACAA TCACAGTGAC	CTTCAGACCC ACCCCTGCA AGCTGCTCCA CCTGAACAGC CTCTGCGATC GCCCCTCCC ACCTTACAGG TTTGGCCTTG	CTCCCACCGC GCGGACTCTC GCTCCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCT	CACCTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC ATGTGATTGC	660 720 780 840 900 960 1020 1080
55	TCCTCATGCC ATCAATGACT GGATTCAGTC GCATTCCCTG CTATCCCTCTG CTTTTCCCGA AGCATTGAGC AGTGCATTTG TGGAGTTAGC	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG ACATCCCATTA CCTGCCTTTA GCCACTGCAA TTCGGCCTGA AAAGGGAACA	ACCAGTTCAC CCAGGAAGCC ACCCCAGCCC ACACCTGGGT GATCTGGTTC CCGTGTACTC CCTTTAACAA TCACAGTGAC CTTGGCAGTT GGGGGACCGA	CTTCAGACCC ACCCCTGCA AGCTGCTCCA CCTGAACAGC CTCTGCGATC GCCCCTCCC ACCTTACAGG TTTGGCCTTG GCAACCAGTT GTCCATGGAC	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAC AGGCCTCTTC TGCTGCAACT TTACTAGCCT GAAGGAGAGC ACTACTTACT	CACCTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTCCAC ATGTGATTGC TGTATTGCAAA CTCCAATTGG	660 720 780 840 900 960 1020 1080 1140 1200
55 70	TCCTCATGCC ATCAATGACT GGATTCACT GCATTCCCTG CTACCCTCTG CTTTTCCCGA AGCATTGAGC AGTGCATTTG TGGAGGTTAGC AGGAAAAGTT	AGCCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATA ACATCCAATA CCTGCCTTTA GCCACTGCAA TTCGGCCTGA AAAGGGAACA TCTGATAAATA	ACCAGTTCAC CCAGGAAGCC AGCCCAGCCC ACACCTGGGTT CCGTGTACTC CCTTTAACAA TCACAGTGAC CTTGGGACCGA CAGAGAAAAA	CTTCAGACCC ACCCCTGCA AGCTGCTACA CCTGACAGC CTCTGCGATC GCCCCTCCC ACCTTACAGG TTTGGCCTTG GCAACCAGTT GTCCATGGAC AGTGTTTCAG	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTAACTAGCCT GAAGGAAGC ACTACTTACT AAGGGACGG	CACCTCCGCC TTCAGAGGAG CCAGCAGGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC TGTATTGC TGTATTGC CGATAGAAA CTCCAATTGG CGATAGACAC	660 720 780 840 900 960 1020 1080 1140
	TCCTCATGCC ATCAATGACT GGATTCAGTC GCATTCCCTG CTACCCTCTG CTTTTCCCGA AGCATTGAGC AGTGCATTTG TGGAGTTAGC AGGAAAGTT TTGGAGAAGTT TTTGCAGATT	AGCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG ACATCCAATA CCTGCCTTTA GCCACTGCAA TTCGGCCTGA AAAGGGAACA TCTGATAAAAT TCTGATAAAT TCTGATAAAT ACATCACACA	ACCAGTTCAC CCAGGAAGCC ACAGCCC ACAGCCC ACAGCTGGGT GATCTGGTTC CCGTGTACTA TCACAGTGAC CTTGGCAGTTA GGGGGACCGA CACAGGAAAAA ACCAAGTCAC ATCCAATATA ATCCAATATA	CTTCAGACOC ACCCCTGCA ACCCCCTCCA CCTGAACAGC CTCTGCGATC GCCCCTCCC ACCTTTGCGCTTG GCAACCAGTT GTCCATGGA AGTGTTTCAG GCAGCCATT TCTGAAGTT TCTGAAGTT	CTCCACCGC GCGGACTCTC GCGCACTCTC TCAGTGCAG TGCTGCAACT TTACTAGCCT TACTAGCCT GAAGGAGAG ACTACTTACT AAGGACGG CCACCTGGTT AATATTCT	CACTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC GGAAGTGCAC TGTATGCATAGA CTCCAATTGG CGATAGACAC TATTCTGGCG TATTCTGGCG TAGCCAAGGA	720 780 840 900 960 1020 1140 1200 1260 1320
	TCCTCATGCC ATCAATGACT GGATTCCTG GCATTCCTG CTACCCTCTG CTACCCTCTG AGCATTGAGC AGTGCATTTG TGGAGTTAGC AGGAAAAGTT TGGAGAAGTT TTTCCAGATT CTCTCTCCTG	AGCCACACA TGCACCTGTG ACCCGCAGC CATCTGCATA TTCAAACATG ACATCCAATA CCTCCCTTTA GCCACTGCAA TTCGGCTGA AAAGGGAACA TCTGATAAAT GACATTGCTG ACTATCCACC GGAATTTATG	ACCAGTTCAC CCAGGAAGCC ACAGCTGGGT GATCTGGTTC CCGTGTACTA CCACAGTGAC CTTGGAGT CCGGGACCGA CAGAGAAAA CACAGGTCAT ATCCAATATA GCAGAGAAAA GCAGAGAAAAA GCAGAGAAAAA	CTTCAGACOC ACCCCTGCA ACCCCTGCA CCTGAACAGC CTTGAGCATC GCCCCTCCC ACCTTACAGG TTTGGCCTTG GCAACCAGTT GCAACCAGTT TCTGAACAGT CTTGAAGTTCAG GCAGACCATT CTGAAGTTC CATTCCACCT CATTCCACCT CATTCCACCT CATTCACACT CATTCCACT	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCT GAAGGACGGC ACTACTTACT AAGGGACGGG CCACCTGGTT AATATTTCTT AACACATACTC	CACCTCCGCC TTCAGAGGAG CCAGCAGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC ATGTGATTGC TGTATTGCATATTGC CTCCAATTGG CGATAGACAC TATTCTGGCG TAGCCAAGGA AGGTTCAATTT	720 780 840 900 960 1020 1140 1200 1260 1320 1380 1440
70	TOCTCATECC ATCAATGACT GGATTCCGG GCATTCCCTG CTATCCCTCG AGCATTGAGC AGGATTAGG AGGATAGG AGGAAAGTT TGGAGAAGT TTTCCAGATT CTCTCAGATT CTCTCAGATT ACAGCACTCC	AGCCACACA TGCACCTGTG ACCCGCAGCC CATCTGCATA TTCAAACATG ACATCCAATA CCTGCCTTTA GCCACTGCAA AAAGGGAACA TCTGATAAAT GACATTGGTG GACATTGGTG GACATTGGTG GACATTGTC GGAATTTATG ATGGATGCAC CCTGCGAACC	ACCAGTACA CCAGGAGCC ACAGCTGGGT GATCTGGTTC CCTTTACAA TCACAGTACA CTTGGCAGTACT CCTTGACAGTACA CAGGAGAAA ACAGGAGAAA AACAGCTAGA TGACAGTAAT TGACAGTAAT ATCCAATAAT ACAGGAGAAA AACAGCTGGT TGATCTTAAC	CTTCAGACOC ACCCCTGCA ACCCCTGCA CCTGAACAGC CTTGACAGC CTTGACAGC TTTGCCCTTG GCACCAGTT GTCCATGGAC AGTOTTTCAG GCAGCCATT TCTGAACTT CATTCCACCT CATTCCACCT CATTCCACCT TTTCCACCT TTTCCACCT TTTCCACCT TTTCATCTACACT TTTCCATCT TTTCCATCT	CTCCACCG GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTCCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCT TAACTAGCAG ACTACTTACT AAGGAGGGG CCACCTGGTT ACACATACTC TCCAAGGGCT TCCAAGGGCT GCACAGGGCT TCCAAGGGCT GCACAGGCT TCCAAGGGT	CACTCCGCC TTCAGAGGAG CCAGCAGCAC TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC GGAAGTGCAC GGAAGTGCAC TGTATGCAATAGG CGATAGACAC TATTCTGGCG TATCTCTGGCG TAGCCAAGGA AGTTTGATTTC TCTGATTGATTTCTGGCGT TAGCCAAGGA AGTTTGATTTCTGGCGT TAGCCAAGGA AGTTTGATTTCTGGCGT TAGCCAAGGA	720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500
	TCCTCATGCC ATCAATGACT GGATTCCTG GCATTCCTG CTACCTCTG CTACCTCTG AGCATTGAGC AGGATTAGC AGGAAAGTT TGGAGAAGTT TTCCAGATT TTCCAGATT TCTCTCTCTG TGTAAAACTA ACAGCACTCC TATGGACAACT TATGAGATCA	AGCCACACA TGCACCTGTG ACCCGCAGC CATCTGCATA TTCAAACATG ACATCCAATA CCTCCCTTTA GCCACTGCAA TTCGGCCTGA TTCGGCAAC TCTGATAAAT TCTGATAAAT TCTGATAAAT ACATTGGTG ACTATCACC GGAATTTATG ACGATGCAA CCTCGGAACT GCGGAACTTGGTG GGACCTTGGT	ACCAGTTCAC CCAGGAGCC ACAGCTGGGT GATCTGGTTC CCTTTAACAA TCACAGTGAC CCTGGACACAC CAGGACACAA ACAGGTCAT GCAGGAAAAA ACAGGTCAT GCAGAAAAA ACAGCTGGT TGATCTTAACCA ATCCAATATA GCAGAAGAAA ACAGCTGGT TGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGGT ATCTGGGGT  ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGT ATCTGGGGT ATCTGGGT ATCTGGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTG	CTTCAGACOC ACCCCTGCA ACCCCCTGCA ACCTGAACAGC CTTGAGCATC GCCCCTCCC ACCTTACAGG TTTGGCCTTG GCAACCAGTT GTCCATGGAC AGTGTTCAG GCAACCAGTT CTGAAGGTC CATCCACCT CAACCAGGAC TTTCGCTTCAG TTACAAGTTC TTACAATGAT TTACAATGAT TTACAATGAT	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGGAACT TTACTAGCCT GAAGGAGAG ACTACTTACT AAGGGACGG CCACCTGGTT ACACATACTC TCCAAGGGCT GGAAAAAAAAAA	CACCTCCGCC TTCAGAGGAG CTAGAGCAC TGGAGACCAG CCAGTCAGAA CTCGAAGTCAC GGAATTGCA TGTATTGC TGTATTGCAC TGTATTGCAC TTCTAGACAC TATTCTGGCG TAGTCTTCAGCA AGTTTGATTT CTGATGATAT TCAGAGGA TCATAGAGTA TCAGCAAGT TCAGCAAGTA TCGAGCAAGT	720 780 840 990 1020 1080 1140 1200 1320 1380 1440 1500 1560 1620
70	TCCTCATGCC ATCAATGACT GGATTCCTG CTACCCTCTG CTACCCTCTG CTTTTCCCGA AGCATTGAGC AGGACTTAGC AGGAAAAGTT TGGAGAAAGTT TTTCCAGATT TTTCCAGATT CTCTCTCTG TGTAAAACTA ACAGCACTCC TATGGATCATTA	AGCCACACA TGCACCTGTG ACCCGCAGC CATCTGCATA TTCAAACATG ACATCCAATA CCTGCCTTTA GCCACTGCAA TTCGGCAGA TCTGATAAAT GCATTGCATA ACATTGGTG ACATTGCAC ACATTGCAC ACTATACACC ACTATACACC ACTATACACC ACTATACACC ACTACGAACC ACTACAGCAA ACTACACCAA ACTACACCAA ACTACACCAA ACTACACCAA ACTACACCAA ACTACACCAA	ACCAGTTCAC CCAGGAGCC ACAGCTGGGT GATCTGGTTC CCTTTAACAA TCACAGTGAC CCTGGACACAC CAGGACACAA ACAGGTCAT GCAGGAAAAA ACAGGTCAT GCAGAAAAA ACAGCTGGT TGATCTTAACCA ATCCAATATA GCAGAAGAAA ACAGCTGGT TGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGT ATGATCTTAAC ATCTGGGGGT ATGATCTTAAC ATCTGGGGGT ATGATCTTAAC ATCTGGGGGT ATGATCTAACAC ATCTGGGGGT ATCTGGGGT ATCTGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGT ATCTGGGGGT ATCTGGGT ATCTGGGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGGT ATCTGGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGGT ATCTGGT ATCTGGT ATCTGGGGT ATCTGGT ATCTGGT ATCTGGGT ATCTGGT ATCTG	CTTCAGACOC ACCCCTGCA ACCCCTGCA ACCCCTCCA CCTGAACAGC CTTGAGCATC GCCCCCTCCC ACCTTCAGG TTTGGCCTTG GCAACCAGTT TCGCACTG GCAGCCATT CTGAAGTTC CATTCACC CAAGCAGGAC TTCGCTTCAG CTAGCACTT CCATTCACT CAAGCAGGAC TTCCCTTCAG GGATGACTGT TGAACTGT CAAGCAGGAC TTACAATGAC GGATGACTGT GGATGACTGT	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCT GAAGGACAGC CCACCTGGTT AATATTTCTT AACGGACAGGT AATATTTCTT TCCAAGGGCT GAGACAGGTT GAGAAAAAGA TCAACCAATT	CACCTCCGCC TTCAGAGGAG CCAGCAGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC ATGTGATTGC TGTATTCCATA CTCCAATTGG CGATAGACAC TATTCTGGCG TAGCCAAGGA AGTTTCATTT CTGATGATAC TCATTGATTA	720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500
70	TCCTCATGCC ATCAATGACT GGATTCCTG GCATTCCCTG CTATCCCTAACCCTCTG AGCATTGAGC AGGATTAGC AGGAAAAGTT TGGAGAAAGTT TTCTCAGATT CTCTCAGCTT TGTAAAACTA ACAGCACTCC TATGGATCAAA ATTCGTATTA TGGAGAATTT TGGAGAATTT TGGAGAATTT TAGAGATTT TAGAGATTT TGGAGAGTTT TGAGAGATTT TGAGAGATTT TGAGAGATTTCT TGAGAGATTTCT TGAGAGATTTCT TGAGAGATTCT TAGAGATTCCT TAGAGATTCCT TGAGAGATTCCT TGAGAGATTCCT TGAGAGATTCCT TAGAGATTCCT TGAGAGATTCCT TAGAGATTCCT TAGAGATTCCT TAGAGATTCCT TAGAGATTCCT TAGAGATTCCT TGAGAGATTCCT TAGAGATTCCT TGAGAGATTCCT TGAGAGATTCCT TGAGAGATTCCT TAGAGATTCCT TGAGAGATTCCT TAGAGATTCCT TAGAGATTCT TAGAGATTCT TAGAGATTCT TAGAGATTCT TAGAGATTCT TAGAGATTCT TAGAGA	AGCCACACA TGCACCTGTG ACCGGCAGC CATCTGCATA TTCAAACATG ACATCAATA TCCACCATA TCCGCCTGA TTCGGCCTGA TCGGTATAATA TCGATAAAT TCGATATAAT TCGATATAAT TCGATATAAT TCGATGATG GGATTTATG ACTATCACC GGACTTGGT ACTACACCAA ACTCGCCTAGT ACTCACCACA TCTCGGCC TCGCACAC TCCCCCACAC TCCCCCACAC TCCCCCTAGT ACTCTGGCC TCCCCTTGGC TCCCCTTGGC TCCCCTTGGC TCCCCTTGCC TCCCCTTTGC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCCTTTCC TCCCTTTCC TCCTTTCT TCCCTTTCC TCCTTTCC TCCTTTCC TCCTTTCC TCCTTTCC TCCTTTCT TCCTTTCT TCCTTTTC TCCTTTCT TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTC TCCTTTTTT	ACCAGTTCAC CCAGGAGCC ACAGCTGGGT GATCTGGTTC CCTTTAACAA TCACAGTGAC CCTGGGGACCGA CAGGAGAAAAA CACAGGTCAT GCAGGAACAAAA ACCAGTTAAC ATCCAATATA GCAGAAGAAAA ACCAGGTCAT TGAACTTAAC ATCTGGCGTT TTGAAATATA ATCTGGCGTT TTGAAATATAT TGTGTGGTGT	CTTCAGACOC ACCCCTGCA ACCCCTGCA CCTGAACAGC CTTGAGCATC CCTGAACAGC TTTGGCCTTG GCACCAGTT GTCCATGGAC AGTGTTTCAG GCAGACAGTT CTGAAGAGTT CATTCCACCT CAACCAGGAC TTACCAGGAC TTACAATGAT GGATGACTGT TTCCCTCAG TTACAATGAT TTCCACGG TTACAATGAT TTCCCAGGA GAATGGAGGA GAATGGAGGAG AATGGAGGAG AATGGAGGAGAA GAATGGAGAGAA GAATGGAGAGAA GAATGGAGAA	CTCCACCGC GCGGACTCTC GCTGCCCAA AACATACCAT TTCAGTGCAA GGCCTCTTC TGCTGCAACT TTACTAGCCT GAAGGAGAGC ACTACTTACT AAGGGACGG CCACCTGGTT ACACATACTC TCCAAGGGCT GGAAAAAGA TCAACCAATT TTCCTTGGAAC TACCAGAAAAG TCAACCAATT	CACTCCGCC TTCAGAGGAG CTAGCAGCA TGGAGACCAG CCAGTCAGAA CTCGAAGCAC GGAAGTGCAC GGAAGTGCAC TGTATGCAAA CTCCAATTGG CGATAGACAC TATTCTGGCG TAGCCAAGGA AGTTTGATTT CTGATGATAT TCAGAGGAA TGGATGAAA TGGAGGAAGT TGGAGGAAGT TGGATGAAA TGGAGCAAGT CCAATGGAAA TGGACTGTGC GAACTGTGC GACACTGTGT	720 780 840 900 960 1020 1140 1200 1320 1320 1440 1500 1620 1620 1740 1800
70	TCCTCATGCC ATCAATGACT GGATTCCTG GCATTCCCTG CTACCCTCTG CTACCCTCTG CTACCCTCTG AGCATTGAGC AGGAAAAGTT TGGAGAAAAGTT TTTCCAGACT TCTCAGACT TGTAAAACTA ACAGCACTCC TATGGAGAAGTT TATGGAGAATGT TAGGAGATGT TAGGAGATGT TAGGAGATGT TAGGAGATTCC CTGCCGGCAT CCTGCCGGCAT CCTGCCGCCAT	AGCCACACA TGCACCTGTG ACCGGCAGC CATCTGCATA TTCAAACATG ACATCCAATA CCTCCCTTTA GCCACTGCAA TTCGGCTGA ATAGGGAACA TCTGATAAAT GACATTGCTG ACTATCCACC GGAATTTATG ATGGATGGA ACTATCGACC ACTACAGCAA ACTCTGGAACG ACTACTGGT ACTACAGCAA ACTCTGGCC GGACCTTGGT ACTACAGCAA ACTCTGGCC GGCCTGGAAGG GGCCTGGAAGG	ACCAGTTCAC CCAGGAAGCC ACAGCTGGGT GATCTGGTTC CCTTTAACAA TCACAGTGAC CTTGGAGTACA CAGAGAAAAA CACAGGTCAT ATCCAATATA GCAGAAGAAAA ACAGGTCAT TGATCTTACA TGATCTTACA TTGATCTTACA TTGATCTTACA TGATCTTAACA TTGATCTTAACA TTGATCTTAC TTGAAATAAT ATTGTCATTG GGCCAGAGTG GGCCAGAGTG GGCCAGAGTG	CTTCAGACOC ACCCCTGCA ACCCCTGCA ACCCCTCCA CCTGAACAGC CTTGGCGTTC GCCACCTTCC ACCTTACAGG TTTGGCCTTG GCAACCAGTT TCTGAACAGT TCTGAACTTCAG GCAGACCATT CCTAACAGT CATTCCACT CAACCAGGAC TTCGCTTCAG TTACAATTCT GATGACTTC TTACAATTGT TTACCAGGA GATGACTGT TTTCCCAGGA TGACTTCCC TTTCCAGGA TGACTTCCAGGA TGACGTTCCA	CTCCACCGC GCGGACTCTC GCTCCCCAA AACATACCAT TTCAGTGCAG AGGCCTCTTC TGCTGCAACT TTACTAGCCT GAAGGACAGC CCACCTGCTT AATATTTTTT AAACATACTT ACACATACT TCAAGGGCT GAACAGGTT TCAACCAATT TTCATTGGAAC TCAACCAATT TTCCTTGGAAC TACAAGAAAAGA GAACAACAACT	CACTCCGCC TTCAGAGGAG CCAGCACGCA TGGAGACCAG CCAGTCAGAA CCAGTCAGAA CTGGAAGTGCAC GGAAGTGCAC GGAAGTGCAC GGAAGTGCAC TGTATGCTAAT CTCCAATTGG CGATAGACAC TATTCTGCG TAGCCAAGGA AGTTTGATTT CTGATGATTAC TCGATGAGTA TCGAGGAAA TCATAGAGTA TGGAGCAAGT CCAATTGGAGTA TGGAGCAAAG CTGACTGTGC	660 720 780 840 900 960 1080 1140 1260 1320 1380 1440 1500 1660 1680 1740 1800

	AGGAGAAATA	TGCGAGGAAG	AGGACTGCCT	AGACCCAATG	TGTTCCAACC	ATGGCATCTG	1980
	TGTAAAAGGA	GAATGTCACT	GTTCTACTGG	CTGGGGAGGA	GTTAACTGTG	AAACACCACT	2040
						CTGGAGTATG	2100
~						CCATGGAGTG	
5						GGGTAGGACC	2220
						GCAAAGATGG	2280
						ACTACTTAGA	2340
						CCCTGGATCA	2400
10		CACTGTGTGT					2460
10						actgtgtgga	2520
						GCTCACCAGA	2580
		CTCATTCAGC					2640
		ATCAAATTCC					2700
1.5		AGCAGGCGTG					2760
15						TTACCATCAG	2820
						TCTTAATCTT	2880
		CCTTTCCTGC					2940
		AAAGTCACCA					3000
20		AGCCCAAACC					3060
20		AGGGGAACTA					3120
		TTTGTGAGGC					3180
		CTTCTGACAC					3240
						ATCTTGTCTA	3300
25	CACATTTGCT						3360
25		GTGGGATATG					3420
						GGTCTTTGAA	3480
						GAGAAAATAT	3540
						ACCAAAGGAG	3600
20		ACCAACTGCA					3660
30		GCCCTGATG					3720
		GGAAACTCCG					3780
						ATACTCGCAA	3840
		TTGAAATCTC					3900
25						ATGGTGGGAG	3960
35	AGCATCGGAA						4020
		GATGGGACTA					4080
		AATGGTCTGA					4140
		CGATTAGAGT					4200
40						TTCGGATCAT	4260
40						TCAGCAAGGT	4320
		TCCACTCTAG					4380
		GAAACAGACG					4440
		ATCATCGCTG					4500
45	TGACTGTTTT						4560
73						TTCGAATTCG	4620 4680
		GAACTGTACC					4740
		GACTATGTTT					4800
		AATGGCAATT					4860
50						GAGTCCTGAA	4920
50		GCCCAAGGCT					4980
		AAAAGTAACG					5040
						GTGACCTGGA	5100
		AAAGTGGAGC					5160
55		ACTAGTACCA					5220
-						TCGGCCTCAG	5280
						GCAACATCTC	
						AGCAAAACAA	5400
	AGGCAATGTT	TCGGCTTTTG	AAAGGAGGCT	GAGGGCCCAC	AACAGAAACC	TACTCTCCAT	5460
60		CATATAACCC					5520
		TATGACCAGA					5580
						GAGGAACGTG	5640
		ATGGAATATG					5700
		AGCTATACCT					5760
65	GCGTTACATC	TTTGAGTATG	ACCARTCAGA	TTGCCTGCTG	TCAGTTACCA	TGCCTAGCAT	5820
		AGCTTACAAA					5880
	ACCGGACAGT	AGCACTTCTT	TTATCCAAGA	CTATAGTCGA	GATGGCCGAT	TGCTACAGAC	5940
	CCTGCATCTG	GGGACAGGGC	GCAGAGTCTT	ATACAAGTAC	ACCAAGCAAG	CAAGGCTTTC	6000
<b>-</b> 0	TGAGGTTCTC	TATGATACCA	CTCAGGTCAC	ATTAACATAT	GAAGAGTCTT	CTGGAGTGAT	6060
70	TAAGACAATA	CACCTGATGC	ATGACGGATT	CATCTGCACA	ATCAGATACA	GGCAAACAGG	6120
	ACCTCTTATT	GGACGCCAGA	TTTTCAGATT	CAGTGAAGAA	GGCCTTGTGA	ATGCACGGTT	6180
	CGACTACAGC	TACAACAATT	TCCGAGTCAC	AAGCATGCAA	GCTGTAATCA	ATGAAACCCC	6240
	TTTGCCTATA	GATCTTTACC	GATATGTTGA	TGTCTCTGGC	AGAACAGAGC	agtttggaaa	6300
~~	ATTCAGTGTA	ATTAATTACG	ATTTAAATCA	GGTCATAACT	ACTACAGTGA	TGAAACACAC	6360
75		AGTGCCAATG					6420
	TGCCTACTGG	ATGACCATTC	AATATGATAA	TGTGGGCCGA	CATGGTAATA	TGTGCATAAG	6480
		GATGCCAATA					6540
		TCTGTAAATG					6600
00	CATCAACCTC	TTAAGCCATG	GGAAGAGTGC	TCGTCTTACT	CCTCTCCGAT	ATGACCTCCG	6660
80	AGACCGCATC	ACCAGATTAG	GAGAAATTCA	GTATAAAATG	GATGAAGATG	GCTTTCTGAG	6720

TRAGECTICT GEGEGGACE ACCTICATE TECTROTOGICA GEGACICAGE ACCCARAGE (6)00  AGITACCICA TATECCACA ACCTACAGE ACCTACAGE CONCACAGE GEGACICAGE ACCCCATAGE AGITACACCATAGE ACCACCATAGE AGITACACCATAGE AGITACACCATAGE AGITACACCATAGE AGITACACCATAGE AGITACACCATAGE AGITACACCATAGACACCATAGACACCATACACCATAGACACCATACACCATAGACACCATACACCATAGACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCATACACCAC				TTGAATATAA				
AGTINACION TITOTACIANCE AGACIANGETE GIRGARITACIA TOTOTRITTA TROBITICICA 6956   AGGICACIOTTA TOTOTACIONG GITTAGEGIC TOGGIGATACA TOTOTACIONA TOTOTACIONA TRADEGICA COCACIONA TRADEGICA TRA								
SOURCETTA ATTOCCATOR ACTIVATIONS OF GRANAMA TATANTAMO CONTORNATA 7000 CREACCITAN GOCARATICE ATTACCATION GOCARACTOR GOCARATICA 7000 CREACCITAN GOCARATICE ATTACCATION GOTATION 7000 TOTTOTTOTTO GOCARATICE ATTACCATION TOTTOCCATOR TATACCATION GOGATITATICA 7200 TOTTOCCANAG TATACCACION CANCOCTUTE ATTACCATION GOGATITATICA 7200 TOTTOCCANAG TATACCACION CANCOCTUTE ATTACCATION GOGATITATICA 7200 TOTTOCCANAG TATACCACION CANCOCTUTE ATTACCATION CONTOCCATOR ATTACACACION CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR CONTOCCATOR								
TREAGGRAC COACTAGETS TOTTCHAGGS COAGGRAG GEARANGE ARATECTATY 7100 CARCECTARS GEOGRAFICS AND TECTHACA TATAGET TATAGET TATAGET 7110 TOTTGAGGGA CICTARGATT TCCTTRATA ATTAGETCA TRAGGGATA TATAGETCA TATAGETT 7110 TOTTGAAGCA TTCAACCTCT ACTCCTTTCA AATTAGETCA TRAGGACTA TRAGGACTA TATAGETCA 7200 TOTTGAAGCA TTCAACCTCT ACTCCTTTCA AATTAGETCA TRAGGACTA TRAGGACTA TATAGETCA 7200 CANTOTACTA COTGGATTIC COAAACCTGA AATTAGETCA COATGGAT TATAGETCA TATAGETCA 7330 CANTOTACTA COTGGATTIC COAAACCTGA AATTAGETCA COATGGAT TCCATAGATA CATAGAGAGT GEARTCTGGA COATGGAT TCCATAGATA CATAGAGAGT GEARTCTGGA AAGACTATA COAGGATTA 7500 TOTTGAACC CAGAAACCG TATAGAGAGT GEARTCTGGA AAGACTATA COAGGATTA 7500 TOTTGAACT CAGAAACCG TATAGAGAGT GEARTCTGA AAGACTATA COAGGATTA 7500 TOTTGAACT CAGAAACCG TATAGAGAGT GEARTCTGA AAGACTATA COAGCACTA 7500 TOTTGAACT CAGAAACCG TATAGAGAGT GEARTCTGA AAGACTATA COAGCACTA 7500 TOTTGAACT CAGAAACCG TATAGAGAGG GAGAGAGGA CAGAGATT CACATAGAA CAGAGAGGT TATAGAGTA AAGACTATA 7740 COAGCAGAGAG AAGACAGC TATAGAGTA CAGAGAGAG CAGAGAGAG AAGACGA CAGAGAGAGA	5							
CREMENTIAN   GOGGARATICE   ATCAMCAGE   TITACCITERA   TIT	5							
TCAMAGGAGA CICIAMGAT TCCCTITICAN ANTAGENCIA GEGGACANA GOGATIANCA TOLOGOTICA TOCAMACCA TICAACCTCI ACCICCTUTEA ANATACTIC CONTITUCA GOGATICA TOLOGOTICA TRANSCACCIC TACACCCANA GOTTOTICA TRANSCACCA TACACCCCT ACCICCATOR CANACCAGA TRANSCACCA TACACCCCANA CONTITUCA TOLOGOTICA TOLOGOT								
TOTAMACCA TYCARCCTCT ACTOCTTURA ANATHACTAC COSTITIGOS ANATICAMES 7320 CANTERANS CATEGORITE CONANCINA THEORY OF THE TOTAMICA 7330 CANTERANS CATEGORITE CONANCINA THEORY OF THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE TOTAMICA THE								
15 CANTECAMO ENTECCANCE ACINCAGAN TREGETICAGE CENTTUGTT TCCANTACCA ATTACACTA ATTACACATA AT	10							
CANTERICATE COGGATITIC CHARACCEG ANTIGORAM TRAGAMETAC CIDEGOCATICA 7500 COGGAGACTA COGGAMACACC TEAGGAMETA CATTECTEO GACCACTAC CENTRACTICC 7550 COGGAGACTAC COGGAMETAC TEAGGAMETA CATTECTEO GACCACTAC CENTRACTICC 7550 COGGAGACC CATACACTAC TRAGAGES GACCACTAC CANTERCACTAC TEAGGACTAC CATACACTAC TRAGACCACTAC TRAGACCACTAC TRAGAGES GACCACTAC CACTACACTAC TRAGAGES GACCACTAC TRAGACCACTAC TRAGAGES GACCACTACACTAC TRAGACCACTAC TRAGAGES GACCACTACACTAC TRAGACCACTAC TRAGACCACTAC TRAGACCACTAC CACTACACTAC TRAGACCAC CACTACACTAC TRAGACCAC CACTACACTAC TRAGACCAC CACTACACTAC TRAGACCAC CACTACACTAC TRAGACCAC CACTACACTAC TRAGACCAC CACTACACTAC CTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTACACTA	10							
15 GORGAGANA CARAGASTO CATTOCTTO ACCIDENTACION CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACATO CONTRACA								
COGGAMACIC CHANANCIAC TEAGGANTH CATTECTHO GACCANCTAC CRATGACTIC 7550 TOTOSTITH GGGANAGGTA TANANTHOC CATCANGGA GGGATAGTAA CAGCTGATHA 7680 TOTOSTITH GGGANAGGTA TANANTHOC CATCANGGA GCATAGTAA CAGCTGATHA 7680 COTGGANAGC CHACATTHA CATCANGGG GATGCTCCANTA ATAGCACATTA 7780 COTGGANAGC CHACATTHA CATCANGGG GATGCTCCANTA ATAGCACATTA 7780 TOTOGGANAGC CHACATTHA CATCANGGG GATGCACCATCA 7780 GGATGCAGATT CAGCTCACG CHACACACGG GATGCACCG CACTACTTCA TANACGTGG 7800 GGATGGANAT CACCACCAC ATAGCACGG GATGCACCGG ATAGCAGGA THEOGRAPA 7800 GGATAGGAN ANGANTCAC TOTTGGANT TECCAGACG COCCAGTGG CCCAGGAGGA THEOGRAPA 7800 GGATANGGAN CACCACCAC ATAGCACCAC TOTTGGANG GATCANGGAT THEOGRAPA 7800 GGATANGGAN CACCACCAC ATAGCAGCC TOTTGCACA ANACACACT THEOGRAPA 7800 GGATANGGAN CACCACAC ATAGCAGGAG GATGCACCACA ANACATACCAC THEOGRAPA 7800 GGATANAGCAC CACCATTHAG CACCACACACCAC THACACACAC THACACACCAC CACCACACACACACACACACACACACACA								
155 CCGATACANI GATGGAGGT GCCTTGAAGG AGGGAGCAA CCAAGGTTIG CTGCTTCC 7520 TATAGGAGTA GCCANGANG ATAGCAGGG GCTTGCTGC ATTCTCANTA ATGCCCATA 7740 CCTGGAAAC CTACATTTIA CCATAGAGG GCTTGCTGC ATTCTCANTA ATGCCCATA 7740 CCTGGAAAC CTACATTTIA CCATAGAGG GCTTGCTGCA ATTCTCANTA ATGCCCATA 7740 GCTGCTGGAG GAAGACCTG TGCTCATCGG CTTGCTCATCA ATAGCGGAT 7770 TGCAGATAT CAGCTCAGG TGCTCATCGG TACACTGGG GGGAGGGGA TTAGGAGAA 7860 TGCAGAGGAA AGAACCTGG TGCTCATCGG TACACTGGG GGGAGGGGA TTAGGAGAA 7860 TGCAGAGGAA AGAACCAG TCCAAGAGG CTGCAGAGAG CCAGCAGG CCAGAGGGT 7880 GAAAACCAG CACATTTAG CACACTGGGAG GGAGAGGGG CTGAGAGGG TGCAGAGGG CAGAGGGAT AGAGGGAA AGAACCAG CACACTGGAG CCAGAGGGAA CAGACTGGAT 7880 GAAAACCAG CACATTTAG ACTTTCTGA CAGACGCAG CCACAGGGC CAGAGGAGG GAAAACGA CACACTGC TTCAAGAGG GGAAAACGA TACACTGC TTCATAGAACGA TACACTGCAT TACACTGCGT TTCATAGAACGA GAGGAAATA GCCAGAGGT AACATTCTGA CACACTCC TTCATACAGGA TACACTGCAT TACACTGCA TACACTGCA TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACTGCAT TACACT								
20 STREAGNACE CREATITH COLLARGES GASCACCE ANTOCIANTA ATROCCATEA 7740 CONGRANAC CREATITH COLLARGES GASCACCE ANTOCIANTA ATROCCATES TO TREATCH TO THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES AND THE COLLARGES	15							
COTIGNAMAC CHACKTUTH CONTAGNOS GASGACACT CACTACTICA THANCOTTES 7800 TOGGATCHE TOTACTORES GASGACCTOST TOCTACACTOR TOTACTORES GASGAGGAT TETACACTORE TOCACACTORES GASGAGGAT TOTACACTORES GASGAGGAT TOTACACTORES GASGAGGAT TOTACACTORES GASGAGGAT TOTACACTORES GASGAGGAT TOTACACTORES GASGAGGAT TOTACACTORES GASGAGGAT GASCAGGAT TOTACACTORES GASGAGGAT GASCAGGAT TOTACACTORES GASGAGGAT GASCAGGAT GASCAGGAT GASCAGGAT GASCAGGAT GASCAGGAT GASCAGGAT GASCAGGAT GASCAGGAGGAT GASCAGGAGGAGGAGGAGAGGAGGAGGAGGAGGAGGAGGAGGA								
20         GRANCHORG         GRANCHORG         TEACHARGE         GRANGGGA         ARTHURAGGGA         7560           20         TOCAGRICAT         CACAGRIGA         CACAGRIGAT         TOCAGRICAT         GRANGGGA         ARGARCACT         ARCAGRICAT         GRANGGGA         ARGARCACT         ARCAGRICAT         GRANGGGA         ARGARCACT         CACAGRICAT         GRANGGGA         GRANGGGA         GRANGGGA         GRANGGGA         GRANGGGA         GRANGGGAGA         ARTHURAGACT         ARCATTUCTA         ARCATTUCAC         ARCATTUCACA         ARCATTUCACAA         ARCATTUCACAA         ARCATTUCACAACACACCATTUCA         ARGACTCACAA         ARCATTUCACAACACACCATTUCACAACACACACACACACAC								
100,000,000,000,000,000,000,000,000,000								
TOCAGAMENT CAGCTCCAGA   ATTOCAGACCCT GROCTCAGACAGA GOCCAGGCCT GOCCAGGCCT GOCAGGCCT GOCAGGCT TOCAGGCT TAGCCCT GOCAGGCT TAGCCCT TAGCCCCT ATTOCAGCT GOCAGGCT ACCAGGCT TAGCCCT TAGCCCCC AGACCTCCC 3280 GOCAGGCT ACCAGGCT TAGCCCCC AGACCTCCC 3280 GOCAGGCT ACCAGGCT TAGCCCCC AGACCTCCC 3280 GOCAGGCT ACCAGGCT TAGCCCCC AGACCCCC 3280 ACCAGGCT ACCAGGCT ACCAGCCC TAGCCCC TAGCCCCC AGACCCCCC 3280 ACCAGCCCC AGACCCCC ACCAGCCC TAGCCCC TAGCCCC TAGCCCCC AGACCCCC 3280 ACCAGCCCCC AGACCCCC ACCAGCCC TAGCCCC AGACCCCC ACCACCCC AGACCCCC ACCACCCC AGACCCCC AGACCCCCC ACCACCCC AGACCCCCC ACCACCCC AGACCCCCC ACCACCCC AGACCCCCC ACCACCCC ACCACCCC ACCACCCC ACCACC	20							
CANAGAGGAA ANGANTACO   TOTTGCAGAT TGCCAGACAG   GCCAGAGCAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA								
GGAMAGCA CAGCTTTIGA GCACTGGGG GGTACARGGT TAGGATGGAT ATTITUTTT 8160 GAGCGAATA GGCAGGAGT AACANAANTA TCTCTCCCTT TCGCTACA ARGACTCCTA GAGCGAATA GGCAGGAGT AACANAANTA TCTCTCCCTT TCGCTACA ARGACTCCTA ARATAGGAG GAAAAACATA TCCACTCCTAT TCGCTACA ARGACTCCTA ARATAGGAG GAAAACACTA TCCAACTCCCA TTTCAATGTC ACGGAGATG GTATTTATAT AACACTTT TAGAACACCTT AAAACACGT TTCCAATGTC ACGGAGATG GTATTTATAT TTGCGGGG CCATGCATAT GTCCAATAT CCAGAAGAGA CCCAAGGTC TCTAATCTCTA TTGTGCAGG CCATGCATAT GTCCAATAT CCAGAAGAGA CCCAATCTCAT TTGTGCAGG CCATGCATAT GTCCAATAT CCAGAAGAGA CCCAAGGTC TCTATCTCTA GCCACTATT TAGAACACCT TCTAACTGTC GGCGGAACTT TGAATGGGG GTCCAATGAT ATCTGAAACT TCCTTTCCA AAAACACGTT TAGGCACACTT TCTAATCTCA GCCACATAT AACACTCATA AAAACAGTGTA AAAACAGTGTA TAGGCACACAT TCCTAGAGAGG TCGTTATAG GAAACTAAA AAAACAGTGTA AAAACAGTGTA TGACTAGAGAG TTGTTTAGCT GTCTTTTCCC GTCTGGGTCCC TGGGTCCTCT CTAACACTTA GACCACCACT TCCTAGGGG TTGTTAGCAG CCCCTACTT GCTCTGGTCCC TGGGTCCTC CTACACTCT TCCTAGGGG TTGTGTAACC AGACCTGAAT GCCCCTATT GCCCCTCTC TTGATATGAAC GCCACCATA CCCCCTCCT TCTTAATATA TCCTCCTTCC TAGGACACATA TCCTAGAGGG TTGTGTACC AGACCTAATA GCCCCTATT GCCCCTCTC TCCTAGCG 880 GCCACCATAC CCCCCTCTC TCTTAACTTC GCCCCTCTC CTACACTCC TCCTGGGG ATTATGCAGAC CACCACACA ACCACCACTAC TCCTCTCCACA AAGAGCTT TAGACTCACA ACCACCACTAC TCCTCTCCACACAC ACCACACAAA CACCACACAC ATCACCTTT TAGACTCACA TTTTATCACACAC AAAAGCCTT TAGACTCACAC ATCACCTTT TATAACCTC ACCACACACAC		CGAAGAGGAA	AAGAATCACG	TGTTGGAGAT	TGCCAGACAG	CGCGCAGTGG	CCCAGGCCTG	
GRICHTINGS CARTATTING AACTHICTICA CACTSCOAR ANALYCACT THANGSCACE \$280 GRICHARD GEOGRAGES AACAAAANAT ACCINCTITY TOSCHICACA ABACKTICE \$280 ATTITIANA CATAANATOG TITAITICAT TOSCHICACA ABACKTICE \$280 ATTITIANA CATAANATOG TITAITICAT TOSCHICACA ABACKTICE \$280 ATTITICATION TARACTATA TOCAACTOC TITCANTON AGGARGES CITAITICANT \$400 ATTITICATION TARACTATA TOCAACTOC TITCANTON AGGARGES CITAITICANT \$400 ATTITICAGA CARTEGARA TOCAACTOC TITCANTON AGGARGES TITAITICAT \$400 ATTITICAGA CARTEGARA TOCAACTOC TITCANTON AGGARGES TITCAGAAGA ACCACTITICA \$580 ATTITICAGAAG CARTICAGAC TARACAGACT AGGARGEST TITCAGAAGA ACCACTITICA \$580 TOTOTICAGAAC TOCATOCATAC AGGARGES ACCACTOT TOTATACTOR \$580 TOTOTICAGAAC TOCATOCATAC ACCAGANGES TOTATACAGAG COCTITICACAGA \$600 TOTOTICAGAAC TOCATOCATAC ACCAGAGAGA ACCACTOT TOCATAGAGG \$700 TOTOTICAGA GARCOTATA AACAGGTOR AAAACAGTOR \$700 TOTOTICAGA GARCOTATA ACCAGACTOR TOCATAGAGG \$700 TOTOTICAGAC GARCOTATA ACAGACTOR TOCATAGAGG \$700 TOTOTICAGA COCTITATO COCCACTITY COCTOTOR AAAACAGCOR \$880 GCOGACOTA COCTITACA ACAGACCORT TOCACAGAGG \$880 GCOGACOTA COCTITACA ACAGACCORT TOCACAGAGG \$890 ACAGACGAT ACCACAGAA ACCATACATA CATACACTAC TOCACAGAGG \$890 ACAGAGGAC ACCACAGAC ACCACAGAC ACCAGACCAGA ACCACAGAGGAC ACCACAGACA ACCAGACAGA								
GRICCHARTH   GECAGGAGGT   ARCANARTA   TCTCTICCTT   TGGTTCTCA   ARGACTROCT   8340	25							
ANALYGING GAMANACAM CTORACTOC TITCANTON ACGUAGAM GANTITUM 8400  ATTGITTGT TAACCTCTT AAGAARGA ACGAARTA COGAGAMA GATTITUM 8400  ATTGITTGT TAACCTCTT AAGAARGAC ACGACTTTCAATTCA ACGAAGAMA GACACTTTCA 8520  ATTGCCGG CAARGATA TATCCAATAC CAGAAGATA ACGACATTTCA 8580  TITGCCGG CAARGATA TATCCAATAC CAGAAGATA ACGACATTTCA 8580  TITGCCGG CAARGATA TATCCATACA AGACATCA ACGACATT TAAAAAGGT GTATTAAAA ACAGATGAT ACGACATAT TATCAAAGAT CAGAAGATACA ACCACATT TAAAAAGAT TATCAATACA ACAGACATCA ACGACATAC TACTAAGAGT TATCAAAAAAAAAA	23							
ANAMARGAG GAMANACATA TCCAACROC TTTCAANTO ACGARATO TOCACOPATA 8860 CAMARTACA CAGGRAGAT GTTCCAACROCT AMAACAGTT TRACAGAGA CCACTTCA 8520 TIGTGCAGG CCANGEART GTTCCAACROCT AMAACAGTT TCCAGAGAG ACCACTTCA 8520 TIGTGCAGG CCANGEART GTTCCAACROCT GAMAACAGTT TCCAGAGAG ACCACTTCA 8520 GTGCAARGA ACCTGACACT TCCTAACTGTT GGCAGAACTT ACGGGCTATT TGAATAGGTG 8760 GTGCTARAG ATCTGAAACT TCCTTTCCA AGACTCCCA GCCGCTATCA TCCAGAGGG 8760 TIGTGTATAG GAAACTAMA AACAGGGTGA AAAATGTCTTC ACCACACAC TCCAGAGGG 8760 AGGACCAAT TCCCTTCCT TCTGATATT TCCTCTTCC TTGTTAAAGT AAAGCCACACA TCCACAGGGTT TCCAGAGGGT TTGTTGTGCT GTGTTTTGGC GTGTGTGCC TGGTTCTC TCTCATAGTGA AAAGCCACACA TCCACAGACT TCCAGAGGT TAGAGGTCAA ACGTACTTCA AGAGGTCAACA ACGTACTTCA AAAGCTTTA AAAGCACCTA AAAGCACTT TAGAGGAAA ACCTGAAAAAA AATAGACCT GAAAGACACT TAAAGACACT TAAAGAACA TCCACAGAGA TCCACAGAGA TCCACAGAGA TCCACAGAGA TCCACAGAGA ACCTGAAAAAA AATAGAACCA AACAGAGAAA AAATAGAACAA TCCACAGAGA TTCCACAGAAA AAATAGAACCT GAACAGAAAA AAATAGAACAA AAAAGAACAA AAAATAGAACAT TAAAATATAA AAAATAGAACAA AAAATAGAACAA TCCACAGAGA TTCCACAGAAA AAATAGAACAT TAAAATATAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA TCCACAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAA AAATAGAACCA AACAAGAAAAAAAAAA								
ATTICOCAGO CONTOCAMA GITTOCAMATA CAGAMACAGET TAGAMAGEA CACACITTEA 8580 TIGGRAMA CAGAGETTAM GITTOCAMATA CAGAMAGAA COCAMGETT CONTOCAMAGA TOCAMAGAT CAGAMAGAA COCAMGETT CONTOCAMAGA COCAMGETT COCAMAGA REACTIVA AGACACTOCA AGACACTICA COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC COCACACAC CACACACA								
TTTTGCAGG CATGLATAT GTTCCAATAT CCAGAAAGAT CCAAGGTTC TCTATCTCTA 8580 GTGCAATAGT ATCTGAAACT CTTAACTGT GGCAGAACT AGGGCTATT TGAATAGGG 8640 GTGCAATAGT ATCTGAAACT TGCCTTTCTA AGGACTAT AGGGCTATT TGAATAGGG 8700 AGGACCCAAT TCCCTTCTAA AACAGGTGTA AAATGTCTTA AGGACCCACAT CTCAGAGGG 8700 TCTGTTATAG GAACCTTAAA AACAGGTGTA AAATGTCTTA AGCACCCACAT CTCAGAGGG 8700 TGTGTAACC AGACCTATAA AACAGGTGTA AAATGTCTTA CCCCCTGC TCGTGTAACT AAATGCATA 8820 TGTGTAACC AGACCTATAA CCCCCTATTT TCCTCCTTGC TTGTTAAAACT AAATGCATA 8820 GCCAGCGTGA CCTCTCTCAC CCCCCTATTT CCTCCTTGC TCACCAGCT TCCCTGTGGG 8840 GCCAGCGTGA CCTCTCCAC ACGACCTT TTGACTCAT TTTTACTAA AAGTTTTAC 9000 GCTGTTATTG TACCATGTAA ACATGCTTT TATTAACCT GGTAGAATT TCCTCTTTAT 9000 AAGGGTTATTG TCACATGAA ACATGCTTT TTTTAACCT AGGTAGAATT TCCTCATTTAT 9000 AAGGGTATTG TCACATGAA ACCTTAAAAA AATAGCCT GTACTTAAA AAGTGTTTAT 9000 AAGGGAAACC AACACCAAA ACCTTAAAAA AATAGACCT GTACTTAAA AAAAACCA 9180 AAGAATTCAT AAAGGACCAAA ACCTTAAAAA AATAGACCT GTACTTAAGT GAAAAACCA 9180 AAGGGAAACA ACCTTAAAAA AATAGACCA CATACATAAA AAATGACAAA CATACATTAAA TCACATCAGC 9240 AATCAAGTAAA TCCTTTCCAA CCGAAAAACAT TTCAACTAC CATATTATCTGC CACACTACCA TTATCAAAAAAACAA CATACATATAA AAATTATAAC AGTTAACCA GAAAACAT TTCAACTAC CATATTATCTC AGGAAATCCA 9300 AACATCATGA AATCTTCCAA CATACAACAA TTCAACTACA TATATTACAC CATATTATCTC 9540 AATCTACAAGAAA AAATTATAACA GATAAGACAA CCCCTAGACGAA AATTTTATCATC CAGAACAAT CAATATTATCC 9540 TATTTAAACCA AATCTTCAA CAGAAACAA TCAACATATC CATATTATCTC CAGACACAA TCAAAAACAA CAAAACAAT TCAAACAAC CCCTAGACCAA AATTTTATCAT CAGACACAA TCAAAAACAA CCCTAAAAACAA CCCCTAGACCA AATTTTATCAT CAGACACAA TCAAAAACAA CCCTAAAAACAA CCCTAGACCA CATTTACCACAA TCAAAAACAA CCCTAAAAACAA CCCTAGACCA CATTACCACAA TCAAAACAAC CCCTAGACAC AATTTTATCAT CAGACCACCA CTTTCAACCAC 9840 AACAATTTAT TTCAAAAC TCTCAGATTA TAACCTCTCAC CCCTAGACC CTTTCCACCAC 9840 AACAATATTAT CAGAAATCAT CTCCGGTTAG AATCCCCTA CACTATATTTA CCACACACA TCAAAAACAA CCACACACA	20	ATTGTTTGTT	TARACTCTTT	AAGAAATGAC	AGAGATTTTT	AGTTCTTGTG	TGGCAGTATT	
TTOTRIGAGA CAGTITICATIC CTTAACTOTT GGCAGACTT AGGGCTATT TGATAGGTG 8700 TCGCTATAGT ATCCAAACT TGCCTTTCCA AGACACCCA GCCCTTTGAC GTTTTCCAGA 8700 TCGCTTATAG GAAACTTAAA AACAGGTGTA AAATGCCTC AGCCACCAT TCCTAGAGGG 8760 AGGACCCAAT TGCCCTTCCT TCTTGATTAT TCCTCCTTGC TGTTTAAACT AAATGCCATA 820 TGTGGTAACC AGACTGTATA GCGCGCTATTT GCTCGTGTGT CTCCTAGGGG 8880 TGTGGTAACC AGACTGTATA GCCGCCTATTT GCTCGTGTGT CTCCTAGGG 8880 TGTGGTAACC AGACTGTATA GCCGCCTATTT GCTCGTGTGT ACAGAGATCC TCCCTTAGG 8880 TGTGGTAACC AGACTGTATA GCCGCTATTT GCTCGTGTGT ACAGAGATC TCCCTAGGG 8880 ATCAGGGTGT TGCCCTACCAC ACGACTGTT TTAACCACA ATTTTTACTAA AAGTTTTTCA 9000 CCTGTATTGG TACCACTGTA ACAGCTCTT TATAACCTG GGTAGGAATT TCTCATTTCA 9000 AAAGGGTT TAGCAGGCAT ACATGTACA ATTAGTTACTA CAGTACTACA 9180 ACAAAGGCTT TAGCAGGCAT ACGTGACCTT TCTTAAAACTA CAGTACTACA ACAAAACAA 9180 AAAAGGGTT TAGCAGGCAT ACGTGACCTG GATCACCTAA CAACAATTAA CAACTACCC 9240 AAAAGGGAACAC ACGACCAAAC ACCTAAAAAA AAAAGACCA GTACTACAGA AAAAGACAA AAAAGACAA TCCACAGCAG TTCCTCCCA GTACTTACT GAAAAACAA 9300 AAAGGGAACAC AAAAGACAT TCCTCACAC GTACTTAAC GAACAATCAC GAACAATTAAC TAATTAACCT GAAAACAAC TTTAACCTACAC AATTTTACCT AGAAAATCAC 9300 AACAATTAAA TAATTATAC AGTTAACTTAA ACAACTACC ACCACTCTTC AGGAAAACAA 9300 AACAATTAAA TAATTATAC AGTTAACTAAC TAATAGAACAA CACACACAC ATTTTACCTACC CACACTCTAC 9340 AAAAGGTAAAA TCCTTACAAA ACAATTACA CAGACAACC CACACTCAT 9480 AAAACAAAAAAA AAAACAACAT TTCAACACAA CACACACA	30							
GTECARIAGT ANCIGARACT TECCTITICA ARACTERICA GCCCTTTACA GTTTTCCAGA 8700 TCTGTTATAG GAACCTATAA AACAGGTGTA AAATGTCTTC AGCACCATC TCCTAGAGTG 8760 AGGACCCAAT TGCCCTTCCT TCTTGATTAT TCCTCCTTGC TTGTTAAAGT AAATGCCATA 8820 TTGGTAGCA GACCTGATA GCCGCTATTT TCCTCCTTGC TTGTTAAAGT AAATGCCATA 8820 GTGGTAACC AGACCTGATA GCCGCTATTT GCTCGTGTGT CACATGCT TCCCTGTGGG 8880 GTGGTAACC AGACCTGATA GCCGCTATTT GCTCGTGTGT ACATGATACA AAGTGGTTCA 9000 GCTGTANTIGG TATCATGTAA ACATACCTT TATAAACTG GGTAGGAATT TCCCATTGCA 9000 GCTGTATTGG TATCATGTAA ACATACCTT TATAAACTG GGTAGGAATT TCCCATTGCA 9000 AATGGTTTTG TGCACATGAA CGGTAAATTA CTTAAAACTA TGATTCTGC GATAGGAATT ATCAATTAA CCATGACCC 9120 AATGGTTTTG TGCACATGAA ACCTTAAAAA AATGGACTG GTACTAAGT ACAAAAACCAA 9180 ACAAAAGCGTT TACACGGCCAAA ACCTTAAAAA AATGGACTG GTACTAAGT GAAAACCAA 9180 AGGAAATCAT AACAGCCAAA ACCTTAAAAA AATGGACTG GTACTAAGT GAAAACCAA 9180 AGGAGAGCA CACACCAAAC ATCACAGGAG TTGCTGCCC ATGGTTTCAG CCACTTAGAG 9360 ATCAGGTAAA TCATTTCCAA CCGAAAACAT TCCACACAAC ATTAGGAGGG AGACCTTTCA GGAAACCAT ATTACATACAA TATTTATACT AGTTAGTTAT TTTCGTTCTC CAGCCACACAAC AGTTACTACCA ATTAGATGAGG CAGACCATAC AGTTACTTAC CATTACTTCC 9840 TTATCATAAA TAAATTTGAA AGTTAGTTAT TTTCGTTCTC CAGCACCACAC AGACCATCAC AGTTACTTAC CAGGACACACACACACACACACACACACACACACACA								
35 AGGACCANT TECCETTECT TETTGATTAT TECTECTTE TIGTTANGT ANAGECANE 820 TIGGTRACE AGGACCANT TECTAGATTAT TECTECTTE TIGTTANGT ANAGECANA 8820 TIGGTRACE AGGACTITATA GCCGCTATT GCTCGTGT ACATGATAC ANAGECATG 8940 GCCAGGGTGA CACACTCTAC ACGACCTGT TEGACTACAT TETTGATA ANAGECATG 8940 GCCAGGGTGA CACACTCTAC ACGACCTGT TEGACTACAT TETTTACAA ANAGECATG 8940 GCCAGGTGA CACACTCTAC ACGACCTGT TEGACTACAT TETTTACAA ANAGETTA 9060 ATATAGGAT TETTGATCA ACATGATCA ACATGATCA ATATAGGAT TETTACAA ACATGACCA 9120 ANAGETTTA GCCACACTAA CACACTCTAC ATTAGGATA TETTACAA ACATGACCA 9120 ANAGETTAT TEGACACTAA CACTACAAAA ATATAGCAG GTACATTAA CACTACACAA ACCTACAAAA ACCTACAAAA AATAGACCA ACCTACAAAA AATAGACCA GTACATTAA CACTACACAA ACCTACAAAA AATAGACCA GCCACACAA ACCTACAAAA AATAGACCA GTACATTAA CACTACACAA ACCTACAAAA AATAGACCA GTACATTAA CACTACACAA ACCTACAAAA AATAGACCA GTACATTAA CACTACACAA ACCTACAAAA AATAGACCA GTACATTAA CACTACACAA ACCTACAAAA AATAGACTAC GACAACAAC ATACATCAC AGCAAAATAA ACCTACATAAA AATAGACTACA AGCACAAAA ACCTACATAAA AATAGACTAC AGCAAAATAA ACCTACATAAA AATAGACTACA AGGAAAATAA TACATATTAC CAGAACAGA CATACATTAA CACTACAAAA AACAACAA TACACACAA ACATACACAA AATACACACA CATACATA								
AGGACCANT TECCOTTECT TCTIGATEM TECTECTEC TTGTTAAAGT AMATECATA 8820 TTGTGTACC GIGTTTTGCC GIGTGGGCC TGGGTCCTT CACATGCT TCCCTGTGC 8840 GCGAGGTGA CAGACTGTATA GCCGCTATTT GCTCGTGGTA ACATGATACA AMACAGCTG 8940 GCTGATTTG TACATGTAA ACATAGCTTT TATTAAACTG GATAGGANT TCTAATTTAT 9060 GCTGATTTG TACATGTAA ACATAGCTTT TATTAAACTG GGTAGGANT TCTAATTTAT 9060 AATGGTTTTG TGCACATGAA CAGTACTTTAT TATTAAACTG GGTAGGANT TCTAATTAT 9060 AATGGTTTTG TGCACATGAA CAGTACTTGC GATAGCGANT TCTAATTAT 9060 AATGGAAGCCT TACACGGAA ACATTAAAATA AATGGACTG GATACTATAA CACATGACCC 9120 AATGAATTAT AACAGCCAAA ACCTTAAAAA AATGGACTG GATACTAATAA CACATGACCA 9180 AAGGGAAGCA AACATCAACAGCAG TTGCTGCCA ATTGTTTCAG CCACATTAGG 9360 AAGGGAAGCA AACATCAACAGCAG TTGCTGCCA ATTGTTTCAG CCACATTAGG 9360 AATCAAGTAAA TCCTTTCCAA CCGAAAACAT TCCAACTAAC TATGGTCCC ATGGTACTAC GAGAAACAT 9480 TTTATATATC TCCTACTGC CTAGGAAACAT TCCAACTAAC TATGGTGAG CAGACCAATT 9480 TTATATAACA AATATTATAC AGTAAATTATT TTTOGTTCC CGTACTTACC CATTATATTTT 9480 TATTAAAGA AATATTATAC CATAAAAACAC CCCTTGGTCA GCTGGAAGAT TTTTGTCCCAG 9720 GCGATCATTT AAAATTTGGA GAAAACACA CCCTTGGTCA GCTGGAAGAT TTTTGTCCCAG 9600 GCGATCATTT AAAATTTGGA GAAAACAC CCCTTGGTCA GCTGGAAGAT TTTTGTCCCCAG 9720 TGACAAAGGA ATAGTTTGTA AAATGCTGTG TAATTGTAAG TATCACACAA TAAAAATACA 9780 TGACAGCACA ATTGTGTATA CAGACAAATC CCCTAGGCA GCTTCTGCCA TCTAAAATTCAC 9840 GAATCTGGAC ATTTGCTATA CAGACAAATC CCCTGAGCCA GCTTCTGCCA TCTACACCA 9750 TTCCAAGACA ATTTGCTATA CAGACTAATT TAAGGTAC GCAAAGTTAC TTACACTAAA GAAATTCA TAACTGCAC TTCCACCACAA TAAAATTCAA TAACACCACAT TAAAATTCAA TAACACCACAC TAACACCACAA TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC TAACACCACAC CCTCACACAC ACTACACCAC ACCACACAC TAACACCACAC TAACACCAC TAACACCACA								
40 GCCAGGOTGA CATCACTACA ACGACATATT GCTCGTOTTA ACAGGARGA AAGAGACTO 9940  40 GCTGTATTGG TATCATCATA ACATAGCTT THACTANA TATTACTAN AAGTGTTA 9000  ATATAGGAT TETTTTGGTC ATAGTTTACA ATTATACTAN ACATTACTAN POOL  ANAGOTTTA TECACATANA CGGTAATTTA CTTANAAGTA TGATTCAGTA ACATTACTAT POOL  ANAGOTTTA TECACATANA CGGTAATTTA CTTANAAGTA TGATTCAGTA ACATGACCA 9120  ACAAAGCCT TAGCAGCATA ACGTGATTTA CTTANAAGTA TGATTCAGTA ACATGACCA 9120  ACAAAGCCT TAGCAGCAA ACGTGATTA CTTANAAGTA TGATTCAGTA ACAAAACAA 9180  ACAAAGCATT TAGCAGCAA ACCTTAAAAA AATAGACCTG GTACTTATA CTACAACAAA 9180  ACAAAGCATA TCCTTTCCAA ACCTTAAAAA AATAGACCTG GTACTTAAGT GAAAGACAA 9180  ATCATCAGAA TCCTTACAA TTCTGTATTG AACATCCCC ACTTTATCTG GAAAACAA 9420  ATCACAAGTAAA TAATTTATAC ACTTACACTA TTCAACTAAC TATTAGATCAA TATTTACATCA TTTACATCAA TATTCATCCC CTAGGAAACAT TTCAACTAAC TATTTACATCA TCTTTACACTAC CCGAAAACAT TTCAACTAAC TATTTACATCA TCTTTACACTAC CTAGGAAACAT TTCAACTAAC TATTTACATCA TCTTTACACTAC CTAGGAAACAT TTCAACTAAC TATTTACATCA TCTTTACACTAC CAGGAAACAT TTCAACTAC GAAACCAT TTCAACTAC CAGGACAGGT TATTTGTTCT 9660  AATCTCTAGG AATCCTCAG TAAAACAGC CCCTTGGTGA TATTCACCC 9720  TACCACAAAGA ATGGGGCCC TAGAAAACAT CCCTGGGCA TATTCACCC 9720  TACCACAAAGA ATGGGGCCC TAGAAACAT CCCTGGGCA GCTGGCAC TTTCACCACA 9720  TACCACAACA ATTGCCACC TAGAAACAT CCCTGGGCA GCTGGCAC TTTCACCACA 9720  TTCCAGAACT ATTGCTATC TCTGAAGCCA AATTTATATA GAAATTCAC TTCAACACA ATTTCACACAA AGCTCAGT TAATTCTAA GAAATTCAC TTCAACACA AGCTCAGCT TAATTCACACA TTCAACACA ACACTTCAC TTCAACACA ACACTTCAC TTCAACACA ACACTTCAC TTCAACACA ACACTTCAC TAAAACCAC TCTCAACTA TAACCACAA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TCTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACA TTCAACACAC TTCAACACAC TCTCAACACA CTCCAACACA TCCAACACTA TACCACACA TCCAACACAC TCCAACACAC TCCACACAC TCCAACACAC TCCAACA	35							
40 GCGGGGGGA CCTCTCTCACA CGGACCTGTT TTGACTCATA TTTTACTAA AAGTTGTTCA 9000 GCTGTATTGG TATCATGTAA ACATAGCTTT TATTACCTG GGTAGGATT TCTCATTTAT 9060 AAAGGGTT TGCACAGTAA CGGTAGTTCAC ATTAGTGATT CAGTACTAT ACACTGACCC 9120 AAAGGGTT TGCACAGCAA ACCTTAAAAA AATAGACCGAT TGACAAGTACA 9180 AGAAAGCGTT TAGCAGGCAA ACCTTAAAAA AATAGACCTG GTACTTAAG GAAAGTACTA 7AGAGCCAAA ACCTTAAAAA AATAGACCTG GTACTTAAG GAAAGTACAT 7AGAGGCAAA ACCTTAAAAA AATAGACCTG GTACTTAAG CCACATCTC AGGAAATCAA 7ACACAGCAG TTCCTCCCAC ATTGTTTCAG CCCACTTTCAG 9360 AAGGGAAAGAA TCCTTATTAT ACACTACCC ACCACTTCA AGGAAATCAA 7ACACAGCAG TTCCTCACC ATTGTTTCAC CACCACTCTC AGGAAATCAA 7ACACAGCAG TTCCTCCAC CATTGTTCAC CACTACTCA AGGAAATCAA TACTTTATTAC ACGTTACTTTC ACACTACC CACTACTCA CAGAAACAAA TACTTTATATCA CAGTTAGTTTA TTCCGTCCCC CACTACTCA CACTTACTCTC TCTCACAC CAGAAACAAT TTCCACACACAC CACTCTCAC CATTGTTCTC 9600 AAATCTCAAGA AAACACTCCCC CAGAAACAAT TTCCACACCAC CACTCTCACAC CACTTTACTCCC GCGACACAAAGAAAAACAAC ATACTCACCC GAAAACAAA ACACTCACAA TACACACACAC AATACTCTCC CACACAAAGAAAAACAAC CACACAAGGAA AAACAAAC								
40 GUTGTATUGG TATCATGTAA ACATAGCTUT TATTAACCTO GGTAGGAATT TCTCATTAT 9060 ATATRAGATG TISTUTGGTC ATTAGTUTCAC ATTRAGGATT CASTAGCTATA CACAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA								
ATATAGGATG TGTTTTTGTC ATAGTTTAC ATTAGTGATT CAGTATCTA ACACTGACC ATAGTGATT TGCACACCA CGGTAATTA CTTAAAGTA TGATTCTGT ACAAGACCA 9120 ACAAAGCCT TACCAGCAT ACGTTCTGG GATGCCGATA CATACATAAA CTACTACTCA 9240 AGGAATTCAT AAGAGCCAAA ACCTTAAAAA AATAGACCTG GTACTTAAGT GAAAGTCAT 39300 AAGGGAAGA CAGACCAAAC ATCACAGCAG TTGCTGCCA ATTGTTTCAG GAGAAACCA 1TCACTACTAC AGCACATCTC AGGAAATCAA 9420 ATCAAGTAAA TCCTTTCCAA CCGAAAACAT TCCACACCA ATCATTACC AGGAAATCAA 9420 ATCAAGTAAA TCCTTTCCAA CCGAAAACAT TCCACACCAC AGCCACTCTC AGGAAATCAA 9420 ATCAAGTAAA TCCTTTCCAA CGGAAACAT TCCACACCAC AGCCACCTTC AGGAAACCAT TTACCACACAC ACCACTTCC AGGAAACCAT TTTACCACACAC ACCACTTCC AGGAACCAT TTACCACACAC ACCACTTCC AGGAACCAT TTTACCACACAC ACCACTCTC CAGGACCACT TTACCACACAC ACCACTCTC CAGGACACCAT TTACCACACAC ACCACTCTC CAGGACACCAT TTACCACACAC ACCACACCAC								
ARTEGITITE TECACATGAN CEGTARITTA CITARANGTA TENTICISET ACAMARACAN ACATACACTIC GARCACAGA CATACATTA CITACATACAC ACGARCACA ACGIVETARA CATACACTACA CATACATTA CATACATTACACACAC	40							
45 MAGGAGAGA CAGACCANA ACCITANANA ANTAGACCTG GTACTTAGG CACACTTAGA 9360 AAGGGAGAGA CAGACCANAC ATCACAGCAG TIGCTGCAC ATTOTTTCAG CACACTTAGA 9360 ATCACAGTANA TACTTACAA TICTSTATTG AACATCTCC AGGAACTCCA AGGAAATCAA TITTACTATAAA TACTTTCAA CCGAAAACAT TICAACTAAC TATAGAGAGG CAGACTCATT 9480 TITTACTATAA TACTTTACA CCGAAAACAT TICAACTAAC TATAGAGAGG CAGACTCATT 9500 GCGATCATT AAAATTTGCA CAGAGAGATA TACTCTCTC CAGGACGGAT TATTTGTTCT 9500 AACACTTAGG AATCCTCCAG TAAAACAAGC CCCTTGGTGA CGCGACACAT TATTTGTTCT 9600 AACACTACAA ATTTGCTATG TACACAGAGA AATTTATGATA TACCCAGAACAGA TACTCCCAG 9720 TGACAAGAGA ATGTGGCCCG TAGAAAATAC CCCTGGAGCAA TACCACACAA TGAAAATAC 9780 TGACAAGAGA ATGTGGCCCG TAGAAAATTC CCCTGAGCCA GCTTCGCAC TTCCACACA 9780 GAAACTGAAA CACAAGCCAA AATTTATGATAG TACCACAAA TGAAAATAC 9780 AACATTCAAT TTCCAAAAC CAGTGGGG TACTTGCCT GCTTTCCACA TACCACACAA AGAAACAAC TACCACACAAA AGAAACACAC TACCACACAAA AGAAACACAC CCCCCCACAAC AACACTCCAT TACCACACAAA AGAAACACAC TACCACACAAAAATA CACAACACAA								
45 AGGGAAGAC CAGACCAAAC ATCACAGCAG TICCTGCCAC ATTOTTICAG CCCACTTAGA 9360 TITATCTITC ANAUTACAA TICTITATITG AACATACTCC AGGCATCTIC AGGAAATCAA TATACAGTAAAA TCATTICCAC CCGAAAACAA TICACACTAAC TATAGAGGAG CAGACCATT 9480 TITACTAAAAA TCATTICCAC CCGAAAACAA TATCAACTAAC TATAGAGGAG CAGACCATT 9540 TATTTAATCG CICTACTGC CTAGGAAAAT AACTATTTC CGGACGGGT TATTTGTTCT 9600 GCGATCATIT AAAATTTGGG GAAAGGTCAG GATTAGAGTAA CAGACTCACT 9720 TGACAAAGAG ATAGTTTCAA AAAACAAC CCCTTGGTGA GCTGGAAGAT TTGTGCCCAG 9720 TGACAAAGAG ATGTGGCCC TAGAAACAAC CCCTTGGTGA GCTGGAAGAT TTGTGCCCAG 9720 TGACAAAGAG ATTTGCTATA TACACACAAC CCCTTGGCAA GCTTCTGCAC TTTCATCACC 9840 GAAACTATACA ATTTGCTATA TCCAGAGGCA AATTTAGAAT GCAAATTCC 9840 GAAACTATACA TCCAAAACA CAGAGAGAA AGGAAATTCA CCCTGAGCCA GCTTCTGCAT TTTCAACACC 9840 CACAAAGGAA AGCAAAGTCAT CAGAGAGGAA AAGCTCAATTT TAGGGTTTT GCATACC 9950 CACAAAGGAA AGCAAACAC TCCAGAGCA AATTAGGAT GCAAAGTCAT 10020 CACAAAGGAA AGCAAACAC TCCAGTATA TAATTGGATTTT TAGAATTCA 10020 CACAAAGGAA AGCAAACAC TCCACTATATA CACACGCATT TAGAATTCA CCTCACTAA 10020 AACATTTCAT TTTCAAAACC TCCACTATATA CACACGCCTT GCATTACACT 10020 AACATTTATT CAGAAACT TCTCACTTTAT AACTGGAAAC AGTAGGGAGA GGTGTATTCA 10020 AACATTTATT CAGAAACAC TTCCACTATATA AACTGGAAAC AGTAGGGAAA TTTAATTGGAT 10080 AACATTTATT CAGAAACAC TTCACATTATA AACTGGAAAC TTCTGAATTCA 10080 AACATTTTATC CAGAAATGA CTCACATTATAC AGACCCTTT ACACAGAAC TTTGAATATCA 10020 CAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA								
TITATCTITC AAATGIACAA TICTGTATTG AACATCTCC AGCATCTTC AGGAAATCAA 9420 ATCAAGTAAA TCCTTTCCAA CCGAAAACAT TICTAACTAAC TATAGGAGG CAGACTCATT 9480 TITACTAAAA TAATTITACA GATTAGGTAT TICTGTACTC CGTACTTACC CATTTACTCT 9540 GCGATCATT AAAATTITGGA GAAAGGTCAG GATTAGTTT CAGGACGGGT TATTTGTTCT 9660 AAACTCTAAGG AATCCTGCAG TAAAACAAGC CCCTGGTGAG GCTGGAAGAT TIGTGCCCCG 9720 TGACAGCACA ATGTGGCCCG TAGAAAAATC CCCTAGGGAC GCTGCACAAA TIGAAAATACA 9780 TGACAGCACA ATGTGGCCCG TAGAAAAATC CCCTGAGGAC GCTGCACACA TIGACACACA ATTTCTACT CTCGAGGCCA AATTTATCATC CTCGAGACCA GATCTGCAC TTCAACCC 9840 GAACCTGCAAC ATTTCCTACT CTCGAGGCA AATTTATCAT GCAAAGTTCA 9760 TTCCAGAACC ATGGGACCA CCTGAGGCA AATTTATCATC GCAAGGCAC ATTTCCCAC 9960 TTCCAGAACC TACCTAAAAC CAGACCCA AATTTATCATC GCATCTCCAC TTCAACCC 9960 TTCCAGAACG AAGGGAA AGCCACAGCA AATTTATCATC GCAAGGTAC TTCGAGTCC 9960 TTCCACACAC CACAAGGGAA AGCCACAGCT GCATTGCCTT GCATCTCCAC 9960 AACATTCAT TTCCAAAAC TACCTCATTTAT AACAGGACA ACACCACCT GACAGTTCT 9960 AACATTCATC TAAAACAT TATTTGGGTT TACTGGCAC GCTCCCACTA 10020 AACATTCATC TAAAACAT TATTTGGGTT TTTCTCAAC ACACCACTA TCCAGGACAC GCTTCTACTA 10020 AAGAATCAGA ACAACCATA TCTCACATTTAT AACTGGAAC ACACCACGCT GATATATACC 10320 TCACACCAA CCAAAAAATG CACTCAAAATT ACTAACAAC TCCTGCAAC ACACCACTA TTTAATAGTAC 10320 ACGATTTTAC CAGAATGGAA TCCTAAAAATT ACTAACAAAC TCCTGAGAAC TCCTGAGATC TTTAAAATCC 10320 ACGATTTTAC CAGAATGGAA TCCTAAAAATG ACCCTCAAAAATT ACTAACAAAC TCCTAATATA TTATTAGTAC 10320 ACGTTTTTCC AATTCATCA TACTTAGAT TCCTAGAACA TCCTAATATA TCTAATATTA 10540 ACGATTTTTC CAGAACTGCA TCTGAAAAATT TCTAATATTA 10540 ACCATTTTTTACA ACTCCTAAAATT TCTAATATCA TTTTCTAAAC TTTTCTAAACT TCTTAATATTA TCGAGCAC ACACCTAAC TCTTAATATA TCGACTAACA TCCATTAATCA 10580 ACGTTTTTTCAA ACTCCTAAAACT TCTTAATATCA TCTAATATCA 10580 ACGTTTTTTACA ACTCCTAAAAC TTTACCTTGA ACTCCTCTAA TCTATATATA 10560 ACGATTTTTACA ACTCCTAAAAC TTTACCTTGA ACTCCTCTAA ACTCTATATCA 10680 GAAATATATT GAAGCTCTTA TCTTATATATA TCGACTACA TATTACATTCA 10680 GAAATATATT TCGAGAACA TTTTACCTTT TCTTATATAA TCAACCAC TTTTTTTCAT 10740 TCTTTTTACA ACTCCTAAAACTTA TCCTTTTACATT TCATTAGACCA TTTTTTCATA TCTTT								
ATCANGTARA TCCTITCCAA CCGARAACAT TICAACTARC TATAGRAGG CAGACTCATT 9480 TITTACIARAA TRATITATICA AGTTAGTTAT TITCGTITCT CGTACTIACC CATITACTT 9500 GCGATCATT AAAATTTGCA GAAAGGAAA AACAAAACAA	45							
TITACTARAR TARTITATAC AGTRAGITAT TITCOTICTC CGTACTICC CATTTACTCT 9540 TATITATACE TCICTACTSC CTAGGARART ARCTRATITC CAGGACGGT TATITATICTCT 9600 GCACTACTIT ARABITIGGA GARAGGTCAG GATRAGITAT ARABITACTCT 9700 ARTCCTAGG ARTCCTGCAG TARARCAGC CCCTTGGTGA GCTGGARGAT TITGTCCC 9720 TGACARAGGA ATGTGGCCG TAGARACTC CCCTGAGCCA GCTGCACAAA TGARARATACA 9780 GRATCGARC ATTIGCTATG TCIGARGGCA ARTTRIGAG GCTTCTGCAC TITCACACC 9840 TTCCAGARCC TACCTARATG CAGGACGAT TAGAGTTTAG TITCGAATCC 9960 CACAAAGGAA AGCAAGGCA AGGTAGGGG TATTGCCTT GCTTTGCAT TITCGAATCC 9960 CACAAAGGAA AGCAAGGCA AGGTACTAT TAGAGTTTT CAGAGATTA TITCACACA AGCTCATGT TAGAGTTTT CAGAGACAA AGCAAGGCA AGGARACTATA TITCACACAC TCCACGAAGGAA AGCAATCATA AGCTCATGT TAGAGTTTT CAGAGACAA TTTCACACA AGCTCATGT TAGAGTTTT CAGAGACAAA AGCAAACACA TTTCACACAC TCCACTATA AACTCGCACAA AGCAAGGGAA AGCAATCATA TATTGGGTTT TATTCCTGAAT CAGCACGTT GATATTCC 1020 AGCATTTATT CAGAAACC TCCGGGTTAG AATACCACT ACACAGGTAT TCCACAGAG CTACACACAAAACAAA								
GCGATCATTT AAAATTGGA GAAAGGTCAG GATTAGTGT AARACAGCT CAGAAGGAGAT TTGTGCCCAG 9720 TGACAAAGGA ATGTGGCCCG TAAAACAAACC CCCTTGGTGA GCTGGAAGAT TTGTGCCCAG 9720 TGACAGCACA ATGTGGCCCG TAGAAAATTC CCCTGAGCCA GCTTCTGCAC TTTCATCACC 9840 GAATCTGAAC ATTTGCTATG TCTGAAGGCA AATTTATGAT GCAATGTTAG TTTGATCTCT 9960 TTGACAACGA ATGTGCCCCG TAGAAAATTC CCCTGAGCCA GCTTCTGCAC TTTCATCACC 9840 GAACTGAAC TACCTAAAAT CAGATCGGGG TCATTGCCTT GCTTTTCCAT GACAGTCAT CACCAACAAT CAAAAATAAC CAGAGTCATG TAGAGGTCT GCTTTCCAT GACAGTCAT CACCAACAAC AGGAAAATAC CCTGGCAAAC AGGAAGTCAT CCCCTCACTA 10020 CACAAAGGAA AGCAAGGCAA AGGAAAATAC CCTGGCAAAC ACCAGGCTT GACAGTTATCA 10080 AACATTCAT TTCCAAAACC TCCGGGTTAG AAAACACAC TCCAGGTAGAA CACACGCTT TCAGAGGCA 10140 AGGATCATCAT ATGAGAACA TCCATCAAAT ACCACATGAT TCTCAGAGGCA 10140 AGGATCATCAT CAGAAATCAA TTATTGGGTT TTTTCAAAACA ACCACGCTT TTATAGGTAC 1020 TAATCCAACA CCTAAAAATG GACCTTAAAAT ACTAACAAC TCTGATAGAA TCTAAAAATA C10320 ACGTTTTTGC AATTCATCAA TCATAAATA ACTAACAAC TCTGATGTC TTATAACCAAA TCCAAAAATAT CAGAACAAC TCTAAAATA ACTAACAAC TCTAATATA TCTAAAATAT C10320 ACGTTTTTGC AATTCATCAA TCATAAATA ACTCAATTTA AACTAGCAAT TCTAAAATAT 10500 ACGTTTTTTC AACTCATTTA CTTATATAGT GATCATTTTG CATAATATA ACCAAATATT 10500 ACGTTTTTTC AACTCATTA TCTTAAAATA ACTCAATTTA AACTCAATT TCTAAAATAT ACCAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAATATAA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAAATATA TCGAATATAA TAGAGACAA TCTCTAAAGAA AATAAAACAA TTTTTATCAAA TCGAATATAA TAGAATAAAAAAAAAA								9540
ARICITAGG ARTCIGCAG TAAAACAAGC CCCTTGGTGA GCTGGAGGAT TTGTCCCCAG 9780 TGACAGCACAC ARTGTGGCCG TAGAAAATTC CCCTGAGCCA GCTTCTGCAC TTTCATCACC 9840 GAATCTGAAC ATTTGCTATG TCTGAAGGCA AATTTATGAT GGAATGTTA TTCCACACAA ATTGAAAATTC CCCTGAGCCA GCTTCTGCAC TTTCATCACC 9860 TTCCACACAC ATTTGCTATG TCTGAAGGCA AATTTATGAT GGAATGTTA TTTCGATTCT 9960 TTCCACACAC ACCCTAAATG CAGTCTGGG TCATTGCCTT GCTTTCCGAT GACAGTTTCT 9960 CACAAAGGAA AGCAAGGCAA AGGAAATCAC CCTGGCAAC ACCACAGGTTT TTGGATTCT 9960 CACAAAGGAA AGCAAGGCAA AGGAAATCAC CCTGGCAAC ACTTAGGGAAG GGTCTATTCA 10020 CACAAAGGAA AGCAACCAC CTCTCTTTAT AACTGGAAAC ACTTAGGAAG GGTCTATTCA 10020 AACATTCAT TTCCAAAACC TCCTCTTTAT AACTGGAACA ACACCAGCTT GATAATTGC 10200 TAAATCCATAC TAAAAACAT TTATTGGGTT TTTTCTAAAA CACCAGCTT TAAAGTAC 10220 AGTATTATT CAGAAACAT TCTATAAAATT ACTACAAAC TCCTAGAGAC 10140 AGAATCATTA CAGAAAATGT CACTAAAAATT ACTACAAAAC TCCTAGAAAC ACCACAGCTT TTATAGTGAC 10220 ACCATTTTTCC AATTCATCAA CTGTATATTGA GACTCTATT TTATAGTAC 10320 ACCATTTTTCC AATTCATCAA CTGTATATTGA GACTCCATT CATAAATCA TATTGATATT 1040 TTATCACAAA TCCAAAAATGT CAATAATTGA GTCTATTTTC CTTATAATTT ACAGATAATT ACCATTAGAAA 10550 ACCATTTTTCC AATTCATTGA TGATCTATCA TTTTCAAAAC GCTTTAAAAT TCCAATTAGAT 10500 ACCATTTTTCA AATTCATTGA TTATAGATG ATTACCTTGA ACTGTCCATT TCTAGATTAC 10680 ACCATTTTTCA ACCCCTAAAAC CTTGGGGGAG GAAAGAAAAA AAAAACAAAA TCTATTATTAC TAACAGTGA TTTTTTAAAAC TTCTTTAAAAC TCTTTTTTACA ACCCCATTAGAAA ACACACAGCAC TTCTTTATTAC TTATACATTAC TTTTCAAAAC TCTCTTAAATCA 10800 TATCACTTCC TATTCAGCTG AATAGAAAA AAAAAAAAAA								
TGACAAGAG ATAGTTTCTA AAARCCTOTC TAATTGTAAG TTACCACAAA TGAAAATACA 9840 GAATCGAAC ATGTGGCCCG TGAGAAAATTC CCCTAGCCC GCTTCTGCAC TTTCATCACC 9840 TTCCAGATCC ATGTGCCCG TGAGAAAATTC CCCTAGCAC GCTTCTGCAC TTTCATCACC 9940 TTCCAGATCC ATGTCCTATG TCCTAGAGCA AATTTAGGAT GCAATTTCT TTTGATTCT 9960 TTCCAGATCC TACCTAAATG CAGTGTGGGG TCATTGCCTT GCATTTCTT 10020 CACAAAGGAA ACCATCATA AAGCTCATGT TAAGGTTTT CAGGAGCTG CCTCCTACTA 10020 AACATTCAT TTCAAAACC TCCGGGTTAG AATACCACTT ACACATGTAT TCTGAGAGC 10140 AGAATCATCA TAAAATCATC TCTCTTTTAT AACTGGAAAC ACACCGGCTT GATATATTCC 10220 TAATCCATAC TAAAATCATA TTATTGGGTT TTTCTGAAA CAGCCGGTT TTTAAATTCC 10220 AGTATTTTT CAGAACCA TCTCATATAT ACTAACAAC TGTGTGAAAC ATTATGGTAC 10320 ACGTTTTTTC CAGAATGGAA TCCTAAAAATT ACTAACAACA TCTGTGAGAC TTTTAAAATTA 10380 ATGGAAAAAA ACCTATGAA CTGTAAAATT AGTAACAACA TCTGAGAGC TCTGAGTC TTTTAAATTA 10380 ATGGAAAAAT ATTTGTGAA CTGTATATAG GACTGTTATTTTT CATAAATTA 10560 ACCATTTTTC AATTCATGA TGATCTATCA TTTTCCAAAC TCTTAAAATTA TCCAATTAGA 10560 ACCATTTTTCC AATTCATGA TGATCTATCA TTTTCCAAAC TCCTATAAATT ACCAATTATT 10506 ACCATTTTTCC AATTCATGA TGATCTATCA TTTTCCAAAC TCCTATAAATT 10560 ACCATTTTTCC AATTCATGA TTACCATGA ATTACCTTTT AAGCCAATTAT 10680 GGAAATGCAC TTTTTATTAC TTACAGGGG GAAAAAAAAACAAAAC	50							
TGACAGCACA ARTIGECCCG TAGAAAATTC CCCTGACCCA GCTTTGCAC TTTCATCACC 9840 GRATCIGAAC ATTIGCTATG TCTGAAGGCA AATTIATGAT GCAATGTTAG TTTGGATTCT 9900 TTCCAGATGC TACCTAAATG CAGTGTGGGG TCATTGCTTT GCATTGCTT GACAGTTCT 9960 TTGAAAATAT GCAAAGTCAT AAGCTCATGT TAAGGTTTTT CAGAGGTCTG CCTCCTACTA 10020 CACAAAGGAA AGCAAGGCAA AGGAAAATCAC CCTGCCAAC ACTAGGGGAAG GGTTATTCA 10080 ACACTITCAT TTTCAAAACC TTCGGGTTAG AATACCACTT ACCAGTGTAT TCATGGGTAC 10140 AGAATTCATG AGGAACCATC TCTCTCTTAT AACTGGAAC ACCAGGCTT GTATATCACA 10080 TAATCCATAC TAAAAACCAT CTCTCTTTAT AACTGGAAC ACCAGGCTT TATAAGGTAC 1020 TAATCCACACA CCTAAAAATG GACCTTAAGT TCTCAGAGAC TCTCAAAAATA ACTAACAACC TCTGATAGAA TCTCAAAAATA ATTGAATACC 10320 ACGTTTTTGC CAGAAAGAAT CCAAAAATATA ACTAACAAC TCTGATATGG ATTAAAATATA 10380 ACGTTTTTGC AATTCATCAA TCTAAAATA TCTCAATATAA TCTAAAATATA 10440 ACGAAATATTT GGAAGGTTC GTGCTTTAGT CTTAATATTA AGCAATTAT 10500 ACGTTTTTCC AATTCATCAA TCTTAATAGTG ATTACCCTTGA ACCAGTCATT TCTAAGTTAT 10500 ACGAAATATTT GGAAGGTTC GTGCCTTTAG TTTCTTAAAATA TCCAATATAT 10500 ACGAAATATTT TGGTTGGTTC GTGCCTTTAG TTTCTTAAAATA TCCATTAGTAT 10500 AATACCAAAT TGGTTGGTTC GTGCCTTTAG TTTCTTAAAATA CTGCCTTGAA CTATTATATAT 10540 TCTTTTTTACA ACTCCTAAAG CTTGAGGGGA GAAAGAAAAA AAAAACAAAA CTACTAATCA 106800 GTAGGAAAATA ACTCCAAAGAC CTTGAGGGAG GAAAGAAAAA AAAAACAAAA CTACTAATCA 10800 GTAGGAAATATG AATACCAGT AATAGAAGA ATTCCTTGATATA TATATATTCA 106800 GTAGGAAATATG AATACCAGT AATAGAAGA AATACCAATA TCCTAAGAAC ATTTTCAGCT AATACGAGAA AATACCAATA TCCTTAAGAAC ATTTTCACTTA AATACCAGAAA AATACCAATA TCCTTTAAAGTGA GAAGGAAAAA AATACCAAATA CTGCCTTTAAATA TCGTTTGCAT TCCTCAAGAAC ATTTTCAGATA GAAGACAAT TCCTTTAAGAAC AATACAAATA TCCTTTAAGAAC AATACAAATA TCCTTTTCATA AATACCATAT CTTAAAGTGA AATACCAATT TCTTTAAGACC ATTTTTCATA TTTCATCATT AAAAGTGA AATTCACTTTC TTTCCTCTT TCCTCTTTAAGACCA TTTTTTCAGA AATTCACTTC TTTTCATCTTT CTTTTTCATA TCCTCTAAAAAAAA	J <b>U</b>							
GARTCIGARC ATTICCTAR CCAGAGGCA AATTARGAT GGARTGTAG TITGGATTCT 9966 TICGAGREC TACCTARANG CAGAGGGG TCATGCCTT GCTTTGCGRT GACAGTTCCT 9966 TICGAGAGGAA AGCAGGGAA AGGARATGAC CCTGGCAAC CAGAGGGAA GCAGAGGAA AGGARATCAC CCTGGCAAC AGTAGGGAAG CACACAGGAA AGCACAGGT TCTCAGAACT TITCAAAACT TITCAAAACT TCTCAGAGTCTT AACTGGAAC AGCACAGGTT CTTGAGAGTCT COTCATATA ACCACTGTAT TCTCAGAGC 10200 TAATCCATAC TAGAATCAT TTATTGGGTT TTTTCTGAAT CAGACCTGTA TTAATGGCAC 10200 AGGATTATT CAGAAACAT TTATTGGGTT TTTTCTGAAT CAGACCCTTA TTAATGGCAC 10200 AGGATTATT CAGAAACAT TCTTAAAATT ACTAACAAC TTGTTGAAAA TTTTGAATACC 10320 TCCACACCAA CCTAAAAATG GACCTTAAGT TCCTAGAGAC TCTGATGTTC TTTTAATGTAC 10320 ACGTITTTCC AATTCATGA TGAATATTAG AGGACTCATT CATAAATTT AACTCACACACAAAACTTTTTTCCAAACT CATAAAATGT CAGAAAAATATT GAAGCAATTATT ACTAACAACAC TTGTTAAAAT TCCATAGAAA TAGAAAAAATGT CAGAAAAATATT GAAGCATTAC CAGACCACAC CACACACACC TTCTTATTTC CAGAAATATT CAGAAAAAACAC TTTTTAAAACT ATTTCACAACAC TTGTTTACAA TCCATTAGAA 10560 ACGTITTTCA AATTCATGA TTACAGGGGAG GAAAGAAAAA AAAAACAAAA CACCACCACC TTCTTATTTCA TTACAGTTAC TTTCAAAACAC TTCTTTAAAAC CTCCTTAAAA TCCATTAGAA 10680 TCTTTTTACA ACCCCTAAAA CATTGAGGGAG GAAAGAAAAA AAAAACAAAA CACCACCACC TTCTTATTTAT 10740 TCTTTTTACA ACCCCTAAAA CATTGAGGGAG GAAAGAAAAA AAAAACAAAA CACCACCACC TTCTTATATTA 10740 TACACTTCC TATTCAGCTG AATAGAAAAA AAAAAAAAAA								
TIGAAATAT GCAAAGTCAT AAGCTCATGT TAAGGTTTT CAAGAGTCTG CCTCCTACTA 10020 CACAAAGGAA AGCAAGGAA AGGAAATGAC CCTGGCAAC AGTAGGGAAG GGTGTATTCA 10080 AACATTCAT TITCAAAACC TCCGGGTTAG AATACCACTT ACCAATGAT TCTGAGGAGC 10140 AGAATCATG AGGAACCATC CTCTCTTTAT AACTGGAAC ACACCAGCTT GTATATGGTAC 10200 TAATCCATAC TAAAAACATA TTATTGGGTT TTTTCTGAAAC ACACCAGCTT ATTAAAGGTAC 10200 TAATCCACAC CCTAAAAATG GACCTTAAGT TCCTGAGAAC TCTGATATTCC 103200 ACGTTTTTTC CAGAATGGAA TCCTAAAATTA CTGATATCAC TTTTTAAAATTA 103800 ACGTTTTTGC AATTCATTGA CTGTATTTTG AAGCTTTTATA 105800 ACGTTTTTGC AATTCATTGA TGATGTACTC ATTTCTAAACTA CTTATATATA 105800 ACGTTTTTCC AATTCATCA TGATGTACTC ACTGTATTTG AACTGTCATT TCTATATATA 105800 ACGAAATATTT GGAGAGTCT GGGCTTTAG TTTTCTAAACT ACTGTCATT TCTATATTAT 105400 ACAAATATTT TGGTTGGTTC GTGCCTTTAG TTTCTTAAAGT ACTGTCATT TCTATATTAT 105400 ACAAATATTT GGAGAGAAAA ATTTTGCCATT TCTTATAAACT ACTCCTTGAA CTCTTATATAT 105400 TCTTTTTACA ACTCCTAAAG CTTGAGGGAG GAAAGAAAAA AAAAACAAAA CTACTAATCA 106800 GAAAATATTA AAGAACAAA TCGTTTGCAT TCTTATAGAGA ATATTGATATA 105800 GAAACATATG AATTCCACTA ACCCAGCAGA CAGACCACCAAC ATATTCCAGTA ACTCCTATA ACTCCTTCAT ACCCAGCAGA CAGACCACCACCACCCCCCCCCC								
CACAAAGGAA AGCAAGGGAA AGGAAATGAC CCTGGCAAAC AGTAGGGAAG GGTGTATTCA 10080 AACATTICAT TITCAAAAC TTCGGGTTAG AATACCACTT ACACATGTAT TCTGAGAGAC 10140 AGAATCATA AGGAACTCAT CTCTCTTATA AACACAGAACA ACACCAGGTTA TCTAGAGAC 10260 TAATCCATAC TAAAAACAT TTATTGGGTT TTTTCTGAAT CAGGCCTGTA TTAATGGTAC 10260 AGTATTATA CAGAAAAACA TTCTAAAAATT ACTAACAAAC TTGTTAAAAA TTTGAATACC 10320 TCCACACCAA CCTAAAAAATG CAATATTAGA GGCCTTATA TCTTAAAAATT ACTAACCAAA TCCAAAAACAT TCTTAATATTA 10380 ACGTTTTTC AATTCATTCA CAGAAATGT CAATATTAGA GGCCTTAATTTT CATAAAATTA 10380 ACGTTTTTC AATTCATTCA TGATGTATCA TTTTCAAACT CATAAAATTA TCCATTAGAA 10560 ACGTTTTTC AATTCATTCA CTTAATAACT ATTCCATTAGA ACTGTGCATT TCTATATTAT 10500 ACGTTTTTCA CTTAATAACTG ATTCCCTTGA ACTGTGCATT TCTATATTAT 10680 GGAAATAGCA TTTTTATTCA TTACAGCTG TGTTTTAAAA TCCATTAGAA 10680 TCTTTTTACA ACTCCTAAAA CTTGAGGGAG GAAAGAAAAA AAAACAAAAA CACTCCTAAA CTTCCAGGGAG GAAAGAAAAA AAAACAAAAAC ATTCCAGTG AATTCCAGT TTCTTAAGAA AAAACACAAAACA TCCTTTAAA CTCCAGCAGA CAAGAAAAAA AAAAACAAAAAC ATTTCAGT AACCAGCAGA CAAGAAAAAA AAAACAAAAACA TCCTTTAAAA AAGAACAAAA AAAACAAAAACA TCCTTTTGCAT TCCTTGATGA ACACCTCCAAC 10480 ATTCCAGTAA GGAAAAACAA TCCTTTCCAT TCCTGATGA AAATTCAGGA AATTCCAGT AACTCCAAAA CAAAACAAA TCCTTTCCAT TCCTGATGA AAAACACAAC ATTTCAGATA ACCCAGCAGA CAAGAAAAAA AAAAACAAAA AAAACAAAAA AAAACAAAAACA TCCTTTTCCAT TCCTGATGA AAAAACAAAAA CAATTCCAG 10980 GAAAAAACA TCTTTTCCAT ACCCAGCAGA CAAGAACAAA AAAACAAAAA AAAACAAAAACA TTTTTCCATT TCCTTGATGA ACACTGCACA CCCACCACC 11040 ATTCAGATAA GGTAAAAGGA AGGCATAGCT CCTATGAAGA ACATTCTAGG 11100 CTGGGGCGA GGAATACTCC AGGCGATCACTT CCTATGAACAA ACATTCTGG 11100 CTGGGGCGA GGAATACTCC ATGGTTTTTT CTTTTTCCAT CTTAGACCA TTTTTTTTTT	E E							
ACATTICAT TITCAAAACC TICGGGTTAG ANTACCACTT ACACATGTAT TCTGAGAGC 10140 AGAATCATG AGGAACTCAT CICTCTTATA AACTGGAAAC ACACCAGGCTT GATATATAGC 10200 AGAATCATG TAAAATCATA TTATTGGGTT TITTCTGAAT CAGGCCCTATA TTAAAGTATATGC 10200 ACGATATTATT CAGAAATGGAA TICTAAAATT ACTAACAAAC TIGTGAAAA TTTGAATATA 10320 ATGGAAAAAA TCCAAAAATG GACCTTAAGT TCATAAAATG ATTATCACAAA TCCAAAAATGTAA CAAAAATGTAA CAAAAATGTAA TCAATATGAA GACTTTTTAC AATTCATCAA TCCAAAATGTA CAATATTAGA GTCAATTTTA CATAAAATG TAAAAATGTA TCTAATATTA 10380 ACGTTTTTGC AATTCATGAA TGATGTATCA TTTTCAAACT CATAAAATGTA ATTATCATTA 10500 ACGTTTTTGC AATTCATGAA TCAAAATGTA CAATATTAGA GTCATATTTA ACGCAATTAT 10500 ACGTATTTACA AATTCATGAA TCAATATGAA GTTTACATTAAA TCCAATTAGAA 10560 ACAAAATATT GGAGCTTTTA CTTAAAAGTA ATTACCATGAA CTCATATATAA TCCAATTAGAA 10560 ACAAAAAAATAT GAAGCTTTTA CTTAAAAGTA GTTTCATAAAA TCCAATTAGAA 10560 ACAAAAAAAC ACTCCTAAAA CATCCAAAAA AAAAAAAA	22							
AGANTICATE AGGARCTCAT CTCTCTTAT ARCTGGARAC ACACCAGCTT GATATATTGC 10200 TRATCCATAC TRARATCATA TTATTGGGTT TTTTCTGART CAGGCCGTTA TTRATGGTRC 10260 AGGARTICATE CAGGARGGAA TCCTARARATT ACTARACARAC TICTURARAA TTTGAATACC 10320 TCCACACCAA CCTARARATG GACCTTAAGT TCCTAGAACC TCTGATGTTC TTTTAATTA 10380 ATGGRARARAT ARTTGTGAA CCGTATATTG AGGACTTCAT CTATACACAAA TTATCACACAA ACCATTTTGC AATTCATTGAA TCCATATTAGA GCTATTTTG CAGATATTT AGGACTTTAT 10540 ACGTTTTTGC AATTCATTCA TGATGGTAGT ATTATCATTAT AGGACTTTA 10560 ACGARTATTT GAGACTTTTA CTTAATAGTG ATTACCTTGA ACTGTTCATT TCTAGATTT TCTAGATTAT 10560 GGAARTCCACT TGTTTATTCA CTTAATAGTG ATTACCTTGA ACTGTTCATT TCTAGATTAT 10570 GGAARTCCACT TGTTTATTCA CTTAATAGTG GAAGGAAAAA ACACCATATCA 10680 GTAGTAAATC GAAGGAAAA CATTTGGCAT TCCTTAGAAAA CTACTAATCA 10680 GTAGTAAATC GAAGGAAAAA CATTTGGCAT TCCTTAGAGAA GAAGCAAAAA CTACTAATCA 10800 GTAGTAAATC GAAGGAAAAA CATTTGGCAT TCCTTAGAGAA GAAGCAAAAA CTACTAATCA 10800 GAAACATATG AATTCCACTA ACCCAGCAGA CAGACCACCACCACCACCACCAC 10400 ATTCCAGGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTAGAGGAA CACTCCACCAC 11040 ATTCCAGGTAA GTTAAAGTGA GAGCATAGTG GTTGGACCT CCTAGAGGAA CACTCCACCAC 11040 ATTCCAGGTAA GTTAAAGTGA GAGCATAGTG GTTGGACCT CCTAGAGGAA CACTCCACCAC 11040 ATCCAGGAGA GCATACCC AGGGAAGACAT CCTATAGCCC TTTTTTTCTTTTTCT 11160 CCTGGAGGCAG GGAATACCC ATGGTTGTTT CTTTTTCCTA CCTAGAGGAC ACATTCCTG 11100 CCTGGAGGCAG GGAATACCC ATGGTTGTTT CTTTTTCCTA CCTAGAGCCA TTTTTTTTCTTTTTTT 11160 CCTGGAGGCAG GGAATACCC ATGGTTGTTT CTTTTTCCTA CCTAGAGCAC ACATTCCTG 11280 AAAAAAACAC TTTTAACACC ATTTAAATTAT GTTTTACTTTT ACTTTTTCTT CTTAACCCCA AAAAAAACCC TTTTAAATTAT TTTAAAATTAT TTTAAAATTAT TTTAACACCA AAATTAAACTC 11280 AAAAAAAACAC TTTTAACACC AATTAAAATTAT TACAATTAAT TAGACCAA AAAAAAACCA TTTTAAAATTAT TACAATTAAT TAGACCAA AAAAAAACCA TTTTAAAATTAT TACAATTAAT TAGACCAA AAAAAAACCA TTTTAAAATTAT TACAATTAAATTAT TTTTAACCCAA AAAAAAACCA TTTTAAAATTAT TACAATTAAATTAT TAGACCAA AAAAAAACCA TTTTAAAATTAT TACAATTAAATTAT TAGACTAACAT TATTAAAATTAT TAGACCAA AAAAAAACCA TTTTAAAATTAT TAGACTAACAT CTAAAAATTAAT TAGACCAAAAAAAACCA TTTTAAAATTAT TAGACTAACAT TATTAAAATTA								
TARTCCATAC TARANTCATA TTATTGGGTT TTTTCTGART CAGGCCTGTA TTARTGGTAC 10260 AGRATITATT CAGAATGGAA TTCTARARTAT ACTARCARAC TTGTTGARAA TTTGARATAC 10220 TCACACCAA CCTARARATG GACCTRAGGT CCTGAGAGCT CTGAGAGCT TTTTTARATTA 10380 ATGGAARAT ARTTGTGAA CTGTATATAG AGAGTGCATT CATARATTA 10440 TTATCACARA TCCARARATG CAGATATAGA GCTTATTTTG CTTATATTTT AGAGCATTAT 10500 ACGTTTTTGC ARTCATTGA TGATGTATCA TTTTCARACT CCTTATATTT TCAGATTGT 10620 ACAAATATT GAAGCTTTTA CTTAATAGG ATTACCTTGA ACTGTGCATT TCTAGTTTGT 10620 ACAAATAGCA TTTTTATTAC TTACAGCTG GGTTTTATAA CTGCCTTGAA CTATATATAT 10740 TCTTTTTACA ACTCCTAAAG CTTCAGGGGG GAAAGAAAAA ARAAACAAAAAC TACTTCCATAAAA ATTCCAGCAG ACTGCCATT TCCATTGAGA ATTCCAGTT 10920 TAAACTTCC TATTCAGCTG AATAGAAAAA ACAACTCCAC 11040 ATTCGAGGAG GGAATACTC AGGCCAGA CAGATGGCTG ACACTGCACA CTATTCAGAGA AAAACACAAAACAC TTTTTTTTTT								
TCCACACCAA CCTAAAAATG GACCTTAAGT TCCTAGAACC TCTGATGTTC TTTTAAATTA 10380 ATGGAAAAAT AATTTGTGAA CTGTATATAG AGAGTGCATT CATAAATGTA ATTATGTAAT 10440 TTATCACAAA TCCAAAAATGT CAAATATTAGA GTCTATTTTG CTTATATTAT AGCAATTAT 10560 ACGTTTTTGC AATTCATTGA TGATGCATTGA TTTTCAAACT GCTTTAAATA AGCAATTAT 10560 ACAAATATTT GAAGCTTTTA CTTAATAGTG ATTACCTTGA ACTGTCATT TCTAGTTTGT 10620 AATACCTAAT TGGTTGGTTC GTGCCTTTAG TTTGTTAAAG TTACATTTCA 10680 GGAAATGCAC TTTTTATTAC TTACAGCTG GGTTTTAATA CTGCCTTGAA CTATATATAT 10740 TCTTTTTACA ACTCCTAAAG CTTGAGGGAG GAAAGAAAAA AAAACAAAAC								
ATGGAAAAAT AATTIGTGAA CTGTATATAG AGAGTCCATT CATAAATGTG ATTATGTATT 10440 TTATCACAAA TCCAAAAATGT CAATATTAGA GTCTATTTTG CTTATATTTT AAGCAATTAT 10500 ACGTTTTACC AATTCATTGA TGATCATATCA TTTTCAAACT GCTTTAAAATA TCCAATTAGA 10560 ACAAATATTT GAAGCTTTA CTTAATAGTG ATTACCATGA ACTGTCCATT TCTAGTTTGT 10620 AATACCTATT GGGTTGGTC GTGCCTTTAG TTTGTTAAAG CTTCATATATCA 10680 GGAAATGCA TTTTTATTAC TACAGCTGT GGTTTTAAAA CTGCCTTGAA CTATATATCA 10680 GTAGTAAATC GAAGAGAAAA CATCTAAAG CTTCAGAGTA CTATATATAT 10740 TCTTTTTACA ACTCCTAAAG CTTCAGAGGA GAAAAAAAAA AAAAACAAAA CTACTAAAATCA 10880 GTAGTAAATC GAAGAGAAAA CATTTTGCAT TTCTTAAGAA GAAGAAAAAA CTACTACAGTT 10920 TAAAATTATTG AAAGAAAAA TCGTTTGCAT TTCCTGATGA AAGAAAAAAA CTACTACAGT 10920 GAAACAATATG AATTCCATA ACCCAGCAGA CAGATGCCTG ACACTGCACA GCCACACCC 11040 ATTCCAGATAA GTTAAAAGTGA GAGCATAGTA GTTTGACTCT CCTATAGACCA ACTTCTTGGG 11100 CTGGAGGCAG GGAATACTCC ATGGTTGTT CTTTTTCCTA CTTAAGCCCA TTTTTTTTTT	60							
TRATCACAAA TCCAAAARTGT CAATATTAGA GTCTATTTTG CTTATATTTT AAGCAATTAT 10500 ACGTITTTCC AATTCATTGA TGARGTATCA TTTTCAAACT GCTTTAAATTA TCCAATTAGAA 10560 ACAARTATT GAAGCTTTTA CTTAAATAGTG ATTACCTTGA ACTGTCCATT TCTAGATTTGT 10620 AATACGTATT TGGTTGGTTC GTGCCTTTAG TTTGTTAAAG TTACATTTGT ATTATATTCA 10680 GGAARTGCAC TTTTTATTAC TTACAGCTGT GGTTTTAATA CTGCCTTGAA CTACTATATTA 10740 TCTTTTTACA ACTCCTAAAG CTTGAGGGGAG GAAAGAAAAA AAAACAAAA CTACTATATTA 10860 GTAGTAAATC GAAGAGAAAA ATTTTGGCAT TTCTTAAGGA GAAGAAAAAA AATTTCAGATA 10860 TACACTTCC TATTCAGCTG AATAGAAAGA ATGCCTTCAT TGACTTGCAG TTCTCCAGTT 10920 TAAAACTTCC TATTCAGCTG AATAGAAAGA ATGCCTTCAT TGACTTGCAG TTCTCCAGTT 10920 AATCCAGTAG GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCCAGC GCCACACACC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCTTGG 11100 CTGGAGGCAG GGAATACTCC ATGGTTGTTT CTTTTTCTA CTTAAGCCCA TTTTTTTTTT								
ACCITITICE ANTICATICA TEATCATICA THITCANACT GCITHANATA TCCARTAGAN 10560 ACAMATATIT GAAGCTITIA CITAATAGIG ATTACCTIGA ACTGICATI TCTAGITITGT 10620 AATACCTATI TGGTTGGTTC GTGCCTTTAG ATTACCTIGA TTACATICA 10680 GGANATGCAC TITITATIAC TTACAGCTGT GGTTTAATA CTGCCTTGAA CTATATATA 10740 TCTTITIACA ACTCCTANAG CITGAGGGAG GAAAGANAA AANAACANAA CHACTAATCA 10800 GTAGTAANTA GAAGGARAA ATTITGGCAT TTCTTAGAGA GAAGAGAGA ATATTGAGATA 10860 GTAGATAATC TATTCAGCTG AATAGAAAGA ATGCCTTCAT TGACTTGCAG TATTCAGATA 10860 GAAACATATA AAAGACAAT TCGTTTGCAT TTCCTGATGA AAGATAAACA ATTITTCAGA 10980 GAAACATATA AATTCATCAT ACCCAGCAG ACGATGGCTG ACACTGCACG ACCCACACCC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCTGG 11100 CCTGGAGGCAG GGAATACTC ATGGTTGTTT CTTTTTCCTA CTTAAGCCCA TTTTTTTTTT								
ACAARTATT GAAGCTITTA CTTARTAGTG ATTACCTTGA ACTGTGCATT TCTAGTTGT 10620 ARTACCTATT TGGTTGGTTC GTGCCTTTAG TTTGTTAAAG TTACATTGT ACTATATCA 10680 GGAATGCAC TTTTTATTAC TTACAGCTGT GGTTTTATA CTCCCTTGAA CTACTTATA 10740 TCTTTTTACA ACTCCTAAAG CTTGAGGGAG GAARGAAAA AAAAACACAA CTACTAATCA 10800 GTAGTAAATC GAAGAGAAA ATTTGGCAT TTCTTAAGAA GAAGAGGAGA ATATTGAGTA 10860 TATCACTTCC TATTCAGCTG AATAGAAAGA ATGCCTTCAT TGACTTGCAG TTCTGCAGT 10920 TAAATTATTG AAAGAACAAT TCGTTTGCAT TTCCTGATGA AAGTAAAACA ATTTTTGCAG 10980 GAAACATATG AATTCTCAT ACCCAGCAGA CAGATGGCTG ACACTGCACA GCCACACCC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAGCA ACATTCTGG 11100 CTGGAGGCAG GGAATACTCC ATGGTTGTTT CTTTTTCCTA CTTAAGCCCA TTTTTGTTTTTTTTTT								
ARTACGTATT TIGGTTGGTTC GTGCCTTTAG TTTGTTAAAG TTACATTTGT ATTATATCA 10680 GGAARTGCAC TITTTATTAC TTACAGCTGT GGTTTTAATA CTGCCTTGAA CTACTTATTAT 10740 TCTTTTTACA ACTCCTAAAG CTACTGAGGAG GAAAGAAAAA AAAAACAAAAC	65							
TCTTTTTACA ACTCCTAAAG CTTGAGGGAG GAAGAAAAA AAAACAAAA CTACTAATCA 10800 GTAGTAAATC GAAGAGAAAC ATTTTGGCAT TTCTTAAGAA GAAGATGGAG ATATTGAGTA 10860 TATCACTTCC TATTCAGCTG AATAGAAAGA ATGCCTCAT TGACTTGCAG TTCTCAGATT 10920 TAAATTATC AAAGAACAAT TCGTTTGCAT TTCCTCATGA AAGTAAAAAC ATTTTCAGA 10980 GAAACATATG AATTCCAT ACCCAGCAGA CAGATGGTG ACACTGCACA GCCACACC 11040 ATTCCAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTAAGAGCA ACATTCTGG 11100 CTGGAGGCAG GGAATACTCA ATGGTTGTT CTTTTTCCTA CTTAAGACCA TTTTTGTTTGT 11160 GCTTTTCTT TTTGTTTTGT TTTCACTCTT GCACTACAGT CTAGAGCACA TATTAAACTG 11220 AAAAGTCAA AGTTTAACAC ATTTAAATTAT GTTTACTTTT AGTGTGCAT ACTAACTGC 11240 AACAAAACA CTTTTACCATA TAAATAAGTG AGTAATAAT TCCAAATCAT ACTAACTTGC 11340 AACAAAACA CTTTTACCATA TAAATAAGTA TATGATTATA TTTTAACCCA AAAAATGTAT 11460								
TAGGAGAAAC GAAGAGAAA CATTITGGCAT TICTITAAGAA GAAGATGGAG ATATIGAGTA 10860 TATCACTICC TATICAGCTG AATAGAAAGA ATGCCTICAT TGACTIGCAG TICTACAGTT 10920 TAAAATTATIG AAGGAACAAT TCGTITTGCAT TICCTGATGA AAGTAAAACA ATTITTCAGA 10980 GAAACATATG AATTICTCAT ACCCAGCAGA CAGATGGCTG ACACTGCACA GCCACACCC 11040 ATTICAGATAA GITAAAGTGA GAGCATAGTA GITTGGACTCT CCTATGAGCCA TITTTGTTTTTT 11160 CCTGGAGGCAG GGAATACTCC ATGGTTGTTT CTTITTCCTA CTTAAGCCCA TITTTGTTTTTT 11160 GCTTTTCTT TITTGTTTTGT TITCACTCTT GCACTACAGT CTAGAGCTCC AAATGAACTG 11220 AAAAGTTCAA AGTTTAACAC ATTTAAATAT GTTTACTTTT AGTTGCATT CTAATCGTT 11280 TICATTAGAA GCATGACTCC TGAAGGAAGAG GGAAATAAAT CTCAATTCAT ACTAACTGC 11340 AACAAAACAC TITTACCATTA TAAATAAGTA TATGATTAAT TTTTACACCCA AAAAATGTAT 11400 AAAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460								
TATCACTICC TATTCAGCTG AATAGAAAGA ATGCCTIVAT TGACTIGCAG TTCTCCAGTT 10920 TAAATTATTG AAGAACAAT TCGTTTGCAT TTCCTGATGA AAGTAAAAGC ATTTTCAGA 10980 GAAACATATG AATTCTCAT ACCCAGCAGA CAGATGGCTG ACACTGCACG GCCACACAC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCTGGG 11100 CTGGAGGCAG GGAATACTCC ATGGTTGTTT CTTTTTCCTA CTTAAGCCCA TTTTTTTTTT								
TARATTATTG AAAGAACAAT TCGTTTGCAT TTCCTGATGA AAGTAAAAGC ATTTTTCAGA 10980 GAAACATATG AATTTCTCAT ACCCAGCAGA CAGATGGCTG ACACTGCACA GCCACACACC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTA CCTATGAAGA ACATTCTGGG 11100 CTGGAGGCAG GGAATACTCC ATGGTTGTTT CTTTTTCCTA CTTAAGCCCA TTTTTTTTTT	70							
GAAACATATG AATTTCTCAT ACCCAGCAGA CAGATGGCTG ACACTGCACA GCCACACCC 11040 ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCTGGG 11100 CTGGAGGCAG GGAAFACTACC ATGGTTGTT CTTTTTCCTA CTTAAGCCCA TTTTTTTTT 11160 GCTTTTCTT TTTGTTTTGT TTTCACTCTT GCACTACAGT CTAGAGCACC AAATGAACTG 11220 AAAAGTTCAA AGTTTAACAC ATTTAAATAT GTTTACTTTT AGTGTCATT CTAAATCGTTA 11280 TTGATTAGAA GCATGACTCC TGAAGGAAGAG GGAAATAAAT CTCAATTCAT ACTAACTTGC 11340 AACAAAACA TTTTACCATA TAAATAAGTA TATGATTTAT TTTTAACCCA AAAAATCTAT 11400 AAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATTAT TAGACTACA 11460								
ATTCGAGTAA GTTAAAGTGA GAGCATAGTA GTTGGACTCT CCTATGAAGA ACATTCTGGG 11100 CTGGAGGCAG GGAATACTC. ATGGTTGTTT CTTTTTCTA CTTAAGCCCA TTTTGTTTGT 11160 GCTTTTCTGT TTTGTTTTGT TTTCACTCTT CCTAAGCCCA TTTTGTTTGT 11260 AAAAGTTCAA AGTTTAACAC ATTTAAATAT GTTTACTTTT AGTGCCAT AAATGAACT 11280 TTGATTAGAA GCATGACTCC TGAAGGAAGAG GGAAATAAAT CTCAATTCAT ACTAACTTGC 11340 AACAAAACAC TTTTAACCATA TAAATAAGTA TATGATTTAT TTTTAACCCA AAAAATGTAT 11400 AAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460								
75 GCTTTTCTGT TTTGTTTTGT TTTCACTCTT GCACTACAGT CTAGAGATCC AAATGAACTG 11220 AAAAGTCAA AGTTTAACAC ATTTAAATAT GTTTACTTTT AGTTGTCATT CTAATCGTTA 11280 TTGATTAGAA GCATGACTCC TGAAGGAAAG GGAAATAAAT CTCAATTCAT ACTACTTGC 11340 AACAAAACAC TTTTACCATA TAAATAAGTA TATGATTAT TTTTAACCCA AAAAATGTAT 11400 AAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460		ATTCGAGTAA	GTTAAAGTGA	GAGCATAGTA	GTTGGACTCT	CCTATGAAGA	ACATTCTGGG	11100
AMAGUTCAN AGUTTANCAC ATUTANATAT GUUTACTUTU AGUTGCATU CUANUCGUTA 11280 TUCATUAGAA GCATGACTCC TGAAGGANAG GGANATANAT CUCANUCAU ACHARCUTGC 11340 AACAANACAC TUTTACCATU ANATANGTA TAUGATUTAT TUTTANCCCA AAAAATGTAT 11400 AANATANG	75							
TIGATTAGAA GCATGACTCC TGAAGGAAAG GGAAATAAAT CTCAATTCAT ACTAACTTGC 11340 AACAAAACAC TITTACCATA TAAATAAGTA TATGATTTAT TITTAACCCA AAAAATGTAT 11400 AAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460	13							
AACAAAACAC TITTACCATA TAAATAAGTA TATGATITAT ITTTAACCCA AAAAATGTAT 11400 AAAATAAGTG TGTCCITTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460								
AAAATAAGTG TGTCCTTTAC TGTCAATTTA TCGAGAAGAT CTATAATATA TAGACTACAT 11460								
OU ATATATAATA TATACAACAT AGCCAAATGT ATGAAAACTT GACAATGTAT AATTTGGAAT 11520	00							
	οU	ATATATAATA	TATACAACAT	AGCCAAATGT	ATGAAAACTT	GACAATGTAT	AATTTGGAAT	11520

PCT/US01/32045 WO 02/30268

```
TCACATGCTA CCTATGTAGA CAGGTATGAA ATTAAGTTAT AATTTTCATG AGACATTTTC 11580
        ATCACTGTTG ACACAGTTTC AAGGCATTCC ATCATGTTAT TTTGACTCTT TTTCTTTTT 11640
TTTTCTTTAA AAATATATTT TTAACTAGAC CAGGCCCCAC TATAATATCA CTTAAGAGAG 11700
        TCAGGGCAAA GTTTTTGCAT TTATGAAGAT GTGTTCATGT AAGGGTGATT GTAATGGAGT 11760
        TCATTGGTAA TAGAAGCABA AGTACAGTAA CGAAGTATTG AAAAGAAAAT TTTGGAGACA 11820
        TTGGAGCATA TTATATATAG CTTGTGGAAA GACATAAGGC TACAGATGGA ATGGAACATT 11880
         CCTGTTTTCT TGAAGAAATT CACATACACA TAGCTGACCT GACTAGTACT TCAGCTCTTC 11940
        AAAAAAAAC AAAAAAGCG CAAAAAACAA AAAAACAAAA AAAAGCAAAG TAAAATTTAA 12060
10
        AAATACAGAA AACAAACAAC AAAAAAGAAT TCAACCATAA ATAGTGACTA TTATTTTCAG 12120
        TGTGTCCTTC ATGTGAAAGC TATTAAGGAC CAAATATACT ACTGTTCATA AGAAGAAATT 12180
        ACTITICIANA CAGINACIGA ANATACITAG AGITANACIT GCIGIGGATI TIGICITGGC
        AGTTGTCATC TTACATTATT TGTCAAAGGA AATGTGTTTG GCAGTTAAAA ATCTTTCCTT 12300
        AGATTTAGTG GTGGACTTTA ACCTCTTAAA TAAATGTTAG TATATCAGAT TGTGTCCTTG 12360
15
        AAAAATATTT TACTTGTATG AATCATGACA ACGTCTAAAT CTTTACTATT CTTCTGGCAA 12420
        AAGCATCAGT AAGAAAGAAG GCGAAAAAGA GAAGTATAGC CTTTATGTCA GAAAAACATT 12480
        CTITITIAGCT GCTTACTITIC TCATGARAAG TAAAGATGTT TACAGTGTAT GCCAAGTTTT 12540
CAGTTTCTGT ATAACAACAG GTAGAGGTTC TAATCATATT GAAAATTGTG TTATAATGGT 12600
        CTGAGCCATG TTGCTAGGAA ACAATAGGTT CCAATTTTGT ATTCCTGCTC TCCTGTGCTG 12660
20
        AAAAGTGACT GGATACTGTA CAGGTTCATG TTCTCTGGCT GCAGTTAAAT GGTCTTTTGC 12720
        ATTTTGCTCT GGCTTTCAGG CCAGAAGCAT GCATTTTTCT ACAAGAGCAT CACAACAACA 12780
        TGCTGTAAAT ATTTAAAGTT AAACATTATG TGTTGATATT TGAAAGAAAA GTACTTTGAA 12840
        TATTTCATTT TTAAAAAATA AAATTGCCAA TGAAAAAAA
25
        SEQ ID NO:230 PEZ2 Protein sequence:
NP_055068
30
                    11
                                 21
                                              31
                                                           41
                                                                        51
        MEQTDCKPYQ PLPKVKHEMD LAYTSSSDES EDGRKPRQSY NSRETLHEYN QELRMNYNSQ
        SRKRKEVEKS TORMEFCETS HTLCSGYOTD MHSVSRHGYO LEMGSDVDTE TEGAASPDHA
                                                                                       120
        LRMWIRGMKS EHSSCLSSRA NSALSLTDTD HERKSDGENG FKFSFVCCDM EAQAGSTQDV
35
        QSSPHNQFTF RPLPPPPPPP HACTCARKPP PAADSLQRRS MTTRSQPSPA APAPPTSTQD
                                                                                      240
        SUHLHNSWAL NSNIPLETRE SLEKEGSGSS AIFSAASONY PLTSNIVYSP PERPLPRSTP
                                                                                      300
        SRPAPTFNKP YRCCNWKCTA LSATAITVTL ALLLAYVIAV HLFGLTWQLQ PVEGELYANG
        VSKGNRGTES MDTTYSPIGG KVSDKSEKKV POKGRAIDTG EVDIGAQVMQ TIPPGLFWRF
OITHHPIYL KPNISLAKDS LLGIYGRRNI PPTHTOPDFV KLMDGKOLVK ODSKGSDDTO
                                                                                       420
                                                                                       480
40
        HSPRNLILTS LOFTGFIEYM DOGPWYLAFY NDGKKMEQVF VLTTAIEIMD DCSTNCNGNG
        ECISGECHCP PGFLGPDCAR DSCPVLCGGN GEYEKGHCVC RHGWKGPECD VPEBQCIDPT CFGHGTCIMG VCICVPGYKG EICEEEDCLD PMCSNHGICV KGECHCSTGW GGVNCETPLP
                                                                                       600
                                                                                       660
        VCQEQCSGHG TFLLDAGVCS CDPKWTGSDC STELCTMECG SHGVCSRGIC QCEEGWVGPT
        CEERSCHSHC TEHGQCKDGK CECSPGWEGD HCTIAHYLDA VRDGCPGLCF GNGRCTLDQN
                                                                                       780
45
        GWHCVCQVGW SGTGCNVVME MLCGDNLDND GDGLTDCVDP DCCQQSNCYI SPLCQGSPDP
                                                                                       840
        LDLIQQSQTL PSQHTSRLPY DRIKPLIGKD STHVIPPEVS FDSRRACVIR GQVVAIDGTP
                                                                                       900
        LVGVNVSFLH HSDYGFTISR QDGSFDLVAI GGISVILIFD RSPFLPEKRT LWLFWNQPIV
VEKYTMQRVV SDPPSCDISN PISFNPIVLP SPLTSFGGSC PERGTIVPEL QVVQEEIPIP
                                                                                       960
                                                                                     1020
        SSPVRLSYLS SRTPGYKTLL RILLTHSTIP VGMIKVHLTV AVEGRLTOKW FPAAINLVYT
                                                                                      1080
50
        FAMNKTDIYG QKVMGLABAL VSVGYBYETC PDFILWEQRT VVLQGFRIDA SNLGDMSLAK
HHILNPQSGI IHKGNGENMF ISQQPFVIST IMGNGHQRSV ACTNCNGPAH NNKLFAFVAL
                                                                                     1140
                                                                                     1200
        ASGPDGSVYV GDFNFVRRIF PSGNSVSILE LSTSPAHKYY LAMDFVSESL YLSDTMTRKV
                                                                                     1260
        YKLKSLVETK DLSKNFEVVA GTGDOCLPFD QSHCGDGGRA SEASLNSPRG ITVDRHGFIY
                                                                                     1320
        PVDGTMIRKI DENAVITTVI GSNGLTSTQP LSCDSGMDIT QVRLEWPTDL AVNPMDNSLY
                                                                                     1380
55
        VLDNNIVLQI SENRRVRIIA GRPIHCQVPG IDHFLVSKVA IHSTLESARA ISVSHSGLLF
                                                                                     1440
        IAETDERKVN RIQQVTINGE IYIIAGAPTD CDCKIDPNCD CFSGDGGYAK DAKMKAPSSL
                                                                                     1500
        AVSPDGTLYV ADLGNVRIRT ISRNQAHLND MNIYEIASPA DQELYQPTVN GTHLHTLNLI
                                                                                     1560
        TRDYVYNFTY MSBGDLGAIT SSNGMSVHIR RDAGGMPLWL VVPGGQVYWL TISSNGVLKR
                                                                                     1620
        VSAQGYNPAL MTYPGNTGLL ATKSNENGWT TVYEYDPEGH LTNATFPTGE VSSFHSDLEK
                                                                                     1680
60
        LTKVELDTSN RENVLMSTNL TATSTIYILK QENTQSTYRV NPDGSLRVTF ASGMEIGLSS
                                                                                     1740
        EPHILAGAVN PILGKCNISL PGEHNANLIE WRORKEONKG NVSAFERRLR AHNRNLLSID
                                                                                     1800
        PDHITRIGKI YDDHRKFTLR ILYDOTGRPI LWSPVSRYNE VNITYSPSGL VTFIORGTWN
                                                                                     1860
        EKMEYDQSGK IISRTWADGK IWSYTYLEKS VMLLLHSQRR YIFEYDQSDC LLSVTMPSMV
        RESLOTMLSV GYYRNIYTPP DSSTSFIQDY SRDGRLLQTL HLGTGRRVLY KYTKQARLSE
VLYDTTOVTL TYBESSGVIK TIHLMHDGFI CTIRYRQTGP LIGROIFRPS EBGLVNARFD
                                                                                     1980
65
                                                                                     2040
        YSYNDERVIS MOAVINETEL PIDLYRYVDV SGRIEGEGKF SVINYDLNOV ITTIVMKHIK
        IPSANGQVIE VQYEILKAIA YWMTIQYDNV GRHGNMCIRV GVDANITRYF YEYDADGQLQ
                                                                                     2160
        TVSVNDKTOW RYSYDLNGDI NLLSHGKSAR LTPLRYDLRD RITRLGEIOY KMDEDGPLRQ
                                                                                     2220
        RGNDIFEYNS NGLLQKAYNK ASGMTVQYYY DGLGRRVASK SSLGGHLQFF VDATANPIRV
THLYNHTSSE ITSLYYDLQG HLIAMELSSG EEYYVACDNT GTPLAVFSSR GQVIKEILYT
PYGDIYHDTY PDFQVIIGFH GGLYDPLTKL VHLGQRDYDV VAGRWTTAYH HIWKQLNLLP
                                                                                     2280
70
                                                                                     2340
                                                                                     2400
        KPPNLYSPEN NYPVGKIQDV AKYTTDIRSW LELPGFQLHN VLPGFPKPEL ENLELTYELL
RLOTKTOEWD PGKTILGIOC ELOKQLRNFI SLDQLFMTPR YNDGRCLEGG KOPRFAAVPS
                                                                                     2460
                                                                                     2520
        VPGKGIKFAI KDGIVTADII GVANEDSRRL AAILNNAHYL ENLHFTIEGR DTHYFIKLGS
                                                                                     2580
75
        LEEDLVLIGN TEGRRILENG VNVTVSQMTS LLNGRTRRFA DIQLQHGALC FNIRYGTTVE
                                                                                     2640
        EEKNHVLEIA RORAVAQAWT KEORRLOEGE EGIRAWTEGE KOOLLSTGRV OGYDGYFVLS 2700
        VECYLELSDS ANNIHPMROS BIGRR
                                                        SEQ ID NO:231 PFD4 DNA SEQUENCE:
```

80 Nucleic Acid Accession #: NM 000441

#### Coding sequence:

225-2567 (underlined sequences correspond to start and stop codons)

5	1 	11	21 	31 	41	51 	
		CCGGTTCGGG					60
		TGGGAAAGAC					120
		AATAAAACGT GGCATTCCGG					180 240
10		GCCGCCGCAG					300
		GCTCGCTTTC					360
		CCTGGCCAAG					420
		GCCCATCTTG					480
15		TTCGGGAGTT					540
13		TGCAGTTCCT CTTTGGAACA					600
		ATCTGTTGTT					660 720
		TGTATTAAAT					780
		CAGTGCCCTG					840
20		ATTCATAGTG					900
		CCAAGTGCTG					960
		AGTTCTCTCT					1020
		TGCTGATTTC					1080 1140
25		TGCTACTGCC					1200
		ATCCATCCCA					1260
	TCTCGGAGAT	GCTGGCTGCA	TCATTTTCCA	TCCCTGTGGT	GGCTTATGCT	ATTGCAGTGT	1320
		AGTATATGCC					1380
30		GATCAGCAAC					1440
<b>J</b> 0		CACGGCCGTC					1500 1560
		CTTGGCAGCT					1620
		TCGTCTGTGG					1680
05	GTATAGTGTC	CATCATTCTG	GGGCTGGATC	TCGGTTTACT	AGCTGGCCTT	ATATTTGGAC	1740
35		GGTCCTGAGA					1800
		CTACAAAAGT					1860
		ATTTTCCAGT					1920 1980
		GAAACTAATA					2040
40		TTCAACAAAT					2100
		CCCAACCAAG					2160
		CGTTCCCAAA					2220
		CGTTGTTGGA					2280
45		TGTGTATTTT					2340 2400
		ACAGAACCAA					2460
		TCAGGATTGT					2520
		TGTCCAGGAT					2580
50		GAGCAAGGAA					2640
JU		ACTCATTCTT ATTTATAAAA					2700
		TTTGGCAGCG					2760 2820
		GCTAATAATG					2880
	GTGCTGACCC	AACAGCCTCT	GTGGTCAAGC	GAGTCACGAA	TGATTAATCA	TAAAGAAAAA	2940
55		ACTGACCTGG					3000
		TGAAATAAAA					3060
		ATTGGAGTTT GCCGGAATTG					3120 3180
		CCAATATATT					3240
60		ATAAAAATCT					3300
		GACAGATTAT					3360
		GCATGGAGGC					3420
		GAGTGAAAAT					3480
65		TTCTCAAAAA AAAAAAAATC					3540 3600
		ACAAAGCATT					3660
	ATACTGAAAA	ATACAGGTTT	TTTTGACCAA	AAGTTTTTAT	ATCTTTTCTT	TTTATTTATT	3720
	TTTTTCCTAA	GTGCCAACAA	TTTTCTAGAT	ATTATATACA	ACACAGGCTT	TGATCTTGGG	3780
70		ATATATTTCA					3840
10		GGTCCCCAAT GGGATTGGTT					3900
		ACCCCTGCCT					3960 4020
		TGTGTCTATT					4080
75	CCTGAATTCT	GGTTGTAAAT	CTGGTTACAG	CATAACTAGG	ATTATAATGC	TGCCTCATTT	4140
75		ACTTGCTTAT					4200
		GCTCATGCCT					4260
		GATCGAGACC				CAGCTATTTG	4320 4380
						GAGCCGAGGT	4440
80		CACTOCAGOC					4500

```
AAAAAAAAA AGAGTGAATG TAATAGTCTT GCAGAAAATG AATGAATACC TTTGTTCAAT 4560
         AAAGGAAATA TGCACTGCTC ACTTTTTTGA AGGAAATGCC AAAGTTACGT TTTACAACAA
         GGCTAGAGTT TGTAAATTCT GGGTTCATTT GTGATGACAT AAGTCAGCAA ACTGCGGGAA
                                                                                                4680
         TACTGTCTCT TCTATGTATT TTGTGAATAG TAAGCATAAT TTTAGTTTTG TATTATCAAT GAAAATTCA CTTGAAATTA AAGCTGCCTT TTGTTATATT TTTAACCTAT AGGATAAGAT
                                                                                                4740
                                                                                                4800
         TCCAGTATTG TATATGAGTT TTAACAAATT AAAAAATCAA ATCATGTACA TTTGAAAATA
         TTTGCACACA TTTAAAAATA AATGTAAAGT TGTCTTTTAA ACTACTCGGA TGTGTCCTTT
                                                                                               4920
         CTGAACAAAA
10
         SEQ ID NO:232 PFD4 Protein sequence:
                                             043511
         Protein Accession #:
15
                        11
                                      21
                                                    31
                                                                                 51
         MAAPGGRSEP POLPEYSCSY MVSRPVYSEL AFQQQHERRL QERKTLRESL AKCCSCSRKR
         AFGVLKTLVP ILEWLPKYRV KEWLLSDVIS GVSTGLVATL QGMAYALLAA VPVGYGLYSA
                                                                                                  120
20
         PPPILITYFIF GTSRHISVGP FPVVSLMVGS VVLSMAPDEH FLVSSSNGTV LNTINIDTAA
         RDTARVLIAS ALTLLVGIIQ LIFGGLQIGF IVRYLADPLV GGPTTAAAFQ VLVSQLKIVL
         NVSTKNYNGV LSIIYTLVEI FONIGDYNLA DFTAGLLTIV VCMAVKELND RFRHKIPVPI
PIEVIVTIIA TAISYGANLE KNYNAGIVKS IPRGFLPPEL PPVSLFSEML AASFSIAVVA
YAIAVSVGKV YATKYDYTID GNOEFIAFGI SNIFSGFPSC FVATTALSRT AVQESTGGKT
                                                                                                 300
                                                                                                  360
25
         QVAGIISAAI VMIAILALGK LLEPLQKSVL AAVVIANLKG MFMQLCDIPR LWRQNKIDAV
IWVPTCIVSI ILGLDLGLLA GLIPGLLTVV LRVQFPSWNG LGSIPSTDIY KSTKNYKNIE
                                                                                                  480
                                                                                                  540
         BPQGVKILRF SSPIFYGNVD GFKKCIKSTV GFDAIRVYNK RLKALRKIQK LIKSGQLRAT
                                                                                                  600
         KNGIISDAVS TANAPEPDED IEDLEELDIP TKEIEIQVDW NSELPVKVNV PKVPIHSLVL
                                                                                                  660
         DCGAISFLDV VGVRSLRVIV KEFORIDVNV YFASLQDYVI EKLEQCGFFD DNIRKDTFFL
TVHDAILYLQ NQVKSQEGQG SILETITLIQ DCKDTLELIE TELTEEKLDV QDEAMRTLAS
                                                                                                  720
30
         ODEAMRTLAS
                                                               SEQ ID NO:233 PFH2 DNA SEQUENCE:
35
                                             NM 016029
         Nucleic Acid Accession #:
                                             228-1097 (underlined sequences correspond to start and stop codons)
         Coding sequence:
                                      21
                       11
                                                    31
                                                                                51
40
         CTGCGATCCC GCAGGGCAGC GACGCGACTC TGGTGCGGGC CGTCTTCTTC CCCCCGAGCT
GGGCGTGCGC GGCCGCAATG AACTGGGAGC TGCTGCTGTG GCTGCTGTG CTGTGCGCGC
                                                                                                  120
         TECTCCTECT CTTEGTECAG CTECTECECT TCCTEAGGGC TEACGGCGAC CTEACGCTAC
         TATEGECCGA GTGGCAGGGA CGACGCCCAG AATGGGAGCT GACTGATATG GTGGTGTGGG
TGACTGGAGC CTCGAGTGGA ATTGGTGAGG AGCTGGCTTA CCAGTTGTCT AAACTAGGAG
                                                                                                  240
45
                                                                                                 300
         TTTCTCTTGT GCTGTCAGCC AGAAGAGTGC ATGAGCTGGA AAGGGTGAAA AGAAGATGCC
         TAGAGAATGG CAATTTAAAA GAAAAAGATA TACTTGTTTT GCCCCTTGAC CTGACCGACA CTGGTTCCCA TGAAGCGGCT ACCAAAGCTG TTCTCCAGGA GTTTGGTAGA ATCGACATTC
                                                                                                  480
         TEGTCAACAA TEGTEGAATE TCCCASCETT CTCTGTGCAT GGATACCAGC TTGGATGTCT
50
         ACAGAAAGCT AATAGAGCTT AACTACTTAG GGACGGTGTC CTTGACAAAA TGTGTTCTGC
CTCACATGAT CGAGAGGAAG CAAGGAAAGA TTGTTACTGT GAATAGCATC CTGGGTATCA
                                                                                                  600
         TATCTGTACC TCTTTCCATT GGATACTGTG CTAGCAAGCA TGCTCTCCGG GGTTTTTTTA
         ATGGCCTTCG AACAGAACTT GCCACATACC CAGGTATAAT AGTTTCTAAC ATTTGCCCAG
GACCTGTGCA ATCAAATATT GTGGAGAATT CCCTAGCTGG AGAAGTCACA AAGACTATAG
                                                                                                  780
55
         GCAATAATGG AGACCAGTCC CACAAGATGA CAACCAGTCG TTGTGTGCGG CTGATGTTAA
                                                                                                  900
         TCAGCATGGC CAATGATTTG AAAGAAGTTT GGATCTCAGA ACAACCTTTC TTGTTAGTAA
                                                                                                 960
         CATATTTGTG GCAATACATG CCAACCTGGG CCTGGTGGAT AACCAACAAG ATGGGGAAGA
         AAAGGATTGA GAACTTTAAG AGTGGTGTGG ATGCAGACTC TTCTTATTTT AAAATCTTTA
                                                                                                1080
         AGACAAAACA TGACTGAAAA GAGCACCTGT ACTTTTCAAG CCACTGGAGG GAGAAATGGA
AAACATGAAA ACAGCAATCT TCTTATGCTT CTGAATAATC AAAGACTAAT TTGTGATTTT
                                                                                                1140
60
         ACTITITAAT AGATATGACT TIGCTICCAA CAIGGAATGA AATAAAAAAT AAATAATAAA 1260
         AGATTGCCAT GAATCTTGCA AA
65
         SEQ ID NO:234 PFH2 Protein sequence:
                                              NP_057113
         Protein Accession #:
                                                    31
70
         MNWELLLWIL VLCALLLLLY QLLRFLRADG DLTLLWAEWQ GRRPEWELTD MVVWVTGASS
         GIGEELAYOL SKLGVSLVLS ARRVHELERV KRRCLENGNL KEKDILVLPL DLTDTGSHEA
                                                                                                  120
         ATKAVLQEFG RIDILVNNGG MSQRSLCMDT SLDVYRKLIE LNYLGTVSLT KCVLPHMIER
                                                                                                  180
         KOCKIVTVNS ILGIISVPLS IGYCASKHAL RGFFNGLRTE LATYPGIIVS NICPGFVQSN
75
         IVENSLAGEV TKTIGNNGDQ SHKMTTSRCV RLMLISMAND LKEVWISEQP PLLVTYLWQY
         MPTWAWWITH KMGKKRIENF KSGVDADSSY FKIFKTKHD
                                                               SEQ ID NO:235 ACC5 DNA SEQUENCE
80
                                        NM_000450
         Mucielo Acid Accession #:
```

```
Coding sequence:
                                    1-1833 (underlined sequences correspond to start and stop codons)
                     11
 5
         ATGATTGCTT CACAGTTTCT CTCAGCTCTC ACTTTGGTGC TTCTCATTAA AGAGAGTGGA
         GCCTGGTCTT ACAACACCTC CACGGAAGCT ATGACTTATG ATGAGGCCAG TGCTTATTGT
                                                                                        120
         CAGCAAAGGT ACACACCCT GGTTGCAATT CAAAACAAAG AAGAGATTGA GTACCTAAAC
                                                                                         180
         TCCATATTGA GCTATTCACC AAGTTATTAC TGGATTGGAA TCAGAAAAGT CAACAATGTG
         TGGGTCTGGG TAGGAACCCA GAAACCTCTG ACAGAAGAAG CCAAGAACTG GGCTCCAGGT
                                                                                        300
10
        GAACCCAACA ATAGGCAAAA AGATGAGGAC TGCGTGGAGA TCTACATCAA GAGAGAAAAA
                                                                                         360
         GATGTGGGCA TGTGGAATGA TGAGAGGTGC AGCAAGAAGA AGCTTGCCCT ATGCTACACA
         GCTGCCTGTA CCRATACATC CTGCAGTGGC CACGGTGAAT GTGTAGAGAC CATCAATAAT
                                                                                         480
        TACACTTGCA AGTGTGACCC TGGCTTCAGT GGACTCAAGT GTGAGCAAAT TGTGAACTGT
                                                                                         540
         ACAGCCCTGG AATCCCCTGA GCATGGAAGC CTGGTTTGCA GTCACCCACT GGGAAACTTC
15
        AGCTACAATT CTTCCTGCTC TATCAGCTGT GATAGGGGTT ACCTGCCAAG CAGCATGGAG
ACCATGCAGT GTATGTCCTC TGGAGAATGG AGTGCTCCTA TTCCAGCCTG CAATGTGGTT
                                                                                         660
                                                                                         720
         GAGTGTGATG CTGTGACAAA TCCAGCCAAT GGGTTCGTGG AATGTTTCCA AAACCCTGGA
        AGCTTCCCAT GGAACACAAC CTGTACATTT GACTGTGAAG AAGGATTTGA ACTAATGGGA
GCCCAGAGCC TTCAGTGTAC CTCATCTGGG AATTGGGACA ACGAGAAGCC AACGTGTAAA
                                                                                         840
                                                                                        900
20
         GCTGTGACAT GCAGGGCCGT CCGCCAGCCT CAGAATGGCT CTGTGAGGTG CAGCCATTCC
        CCTGCTGGAG AGTTCACCTT CAAATCATCC TGCAACTTCA CCTGTGAGGA AGGCTTCATG
TTGCAGGGAC CAGCCCAGGT TGAATGCACC ACTCAAGGGC AGTGGACACA GCAAATCCCA
                                                                                       1020
                                                                                       1080
        GTTTGTGAAG CTTTCCAGTG CACAGCCTTG TCCAACCCCG AGCGAGGCTA CATGAATTGT
        CTTCCTAGTG CTTCTGGCAG TTTCCGTTAT GGGTCCAGCT GTGAGTTCTC CTGTGAGCAG
                                                                                       1200
25
        GGTTTTGTGT TGAAGGGATC CAAAAGGCTC CAATGTGGCC CCACAGGGGA GTGGGACAAC
                                                                                       1260
        GAGAAGCCCA CATGTGAAGC TGTGAGATGC GATGCTGTCC ACCAGCCCCC GAAGGGTTTG
        GTGAGGTGTG CTCATTCCCC TATTGGAGAA TICACCTACA AGTCCTCTTG TGCCTTCAGC
                                                                                       1380
        TGTGAGGAGG GATTTGAATT ATATGGATCA ACTCAACTTG AGTGCACATC TCAGGGACAA
                                                                                       1440
        TGGACAGAG AGGTTCCTTC CTGCCAAGTG GTAAAATGTT CAAGCCTGGC AGTTCCGGGA
30
        AAGATCAACA TGAGCTGCAG TGGGGAGCCC GTGTTTGGCA CTGTGTGCAA GTTCGCCTGT
CCTGAAGGAT GGACGCTCAA TGGCTCTGCA GCTCGGACAT GTGGAGCCAC AGGACACTGG
                                                                                       1560
                                                                                       1620
         TOTGGCCTGC TACCTACCTG TGAAGCTCCC ACTGAGTCCA ACATTCCCTT GGTAGCTGGA
        CTTTCTGCTG CTGGACTCTC CCTCCTGACA TTAGCACCAT TTCTCCTCTG GCTTCGGAAA
TGCTTACGGA AAGCAAAGAA ATTTGTTCCT GCCAGCAGCT GCCAAAGCCT TGAATCAGAC
                                                                                       1740
35
        GGAAGCTACC AAAAGCCTTC TTACATCCTT TAA
        SEQ ID NO:236 ACC5 Protein sequence:
NP_000441
40
                                  21
                                               31
45
        MIASOFLSAL TLVLLIKESG AWSYNTSTEA MTYDEASAYC OORYTHLVAI ONKEETEYLN
        SILSYSPSYY WIGIRKVNNV WVWVGTQKPL TEEAKNWAPG EPNNRQKDED CVEIYIKREK
                                                                                        120
        DVGMMNDERC SKKKLALCYT AACTWYSCSG HGECVETINN YTCKCDPGPS GLKCEQIVNC
        TALESPENGS LVCSHPLGNF SYNSSCSISC DRGYLPSSME TMOCMSSGEW SAPIPACNVV
                                                                                        240
        ECDAVINPAN GEVECFONEG SEPWATTOTE DOEEGFELMG AQSLOCTSSG NWDNEKETOK
                                                                                        300
50
        AVTCRAVROP QNGSVRCSHS PAGEPTFKSS CNFTCEEGFM LQGPAQVECT TQGQWTQQIP
        VCRAFQCTAL SNPERGYMNC LPSASGSFRY GSSCEFSCEQ GFVLKGSKRL QCGPTGEWIDN
                                                                                         420
        EKPTCEAVRC DAVHQPPKGL VRCAHSPIGE PTYKSSCAFS CEEGFELYGS TQLECTSQGQ
                                                                                         480
        WTEEVPSCOV VKCSSLAVPG KIMMSCSGEP VFGTVCKFAC PEGWTLNGSA ARTCGATGE
        SGLLPTCEAP TESNIPLVAG LSAAGLSLLT LAPFLLWLRK CLRKAKKFVP ASSCOSLESD
                                                                                        600
55
        GSYOKPSYIL
                                                        SEQ ID NO:237 PM28 DNA SEQUENCE
        Nucleic Acid Accession #:
                                    N51002
        Coding sequence:
                                    1-3793 (underlined sequences correspond to start and stop codons)
60
                                               31
        ATGATGTGTG AAGTGATGCC CACGATTAAT GAGGACACCC CAATGAGCCA AAGGGGGTCC
CAAAGCAGTG GCTCGGACTC AGACTCCCAT TTTGAGCAGC TGATGGTGAA TATGCTAGAT
65
        GAAAGGGATC GTCTTCTAGA CACCCTTCGG GAGACCCAGG AAAGCCTCTC ACTTGCCCAG
        CAAAGACTIC AGGATGICAT CIATGACCGA GACTCACTCC AGAGACAGCT CAATTCAGCC
                                                                                        240
        CTGCCACAGG ATATCGAATC CCTAACAGGA GGGCTGGCTG GTTCTAAGGG GGCTGATCCA
        CCGGAATTTG CTGCACTGAC AAAAGAATTA AATGCCTGCA GGGAACAACT TCTAGAAAAG
GAAGAAGAAA TCTCTGAACT TAAAGCTGAA AGAAACAACA CAAGACTATT ACTGGAGCAT
                                                                                        420
70
        TTGGAGTGCC TTGTGTCACG ACATGAAAGA TCACTAAGAA TGACGGTGGT AAAACGGCAA
        GCCCAGTCTC CCTCAGGAGT ATCCAGTGAA GTTGAAGTTC TCAAGGCACT GAAATCTTTG
TTTGAGCACC ACAAGGCCTT GGATGAAAAG GTAAGGGAGC GACTGAGGGT TTCTTTAGAA
                                                                                        540
                                                                                        600
        AGAGTOTOTG CACTGGAAGA AGAACTAGOT GOTGCTAATO AGGAGATTGT TGCCTTGCGT
        GAACAAAATG TYCATATACA AAGAAAAATG GCATCAAGCG AGGGATCCAC AGAGTCAGAA
                                                                                        720
75
        CATCTTGAAG GGATGGAACC TGGACAGAAA GTCCATGAGA AGCGTTTGTC CAATGGTTCT
                                                                                        780
        ATAGACTCAA CCGATGAAAC TAGTCAAATA GTTGAACTAC AAGAATTGCT TGAAAAGCAA
AACTATGAAA TGGCCCAGAT GAAAGAACGT TTAGCAGCCC TTTCTTCCCG AGTGGGAGAG
                                                                                        900
        GTGGAACAGG AAGCAGAGAC AGCAAGAAAG GATCTCATTA AAACAGAAGA AATGAACACC
                                                                                        960
        80
                                                                                       1080
```

```
ANTGATARAC TAGARARATGA GTTAGCARAT ARAGARGCTA TCCTACGGCA GATGGRAGAG 1140
ANARACAGAC AGTTACARGA ACGTCTTGAG CTAGCTGRAC ARAGGTTGCA GCAGACCATG 1200
        AGAAAGGCTG AAACCTTGCC TGAAGTAGAG GCTGAACTGG CTCAGAGAAT TGCAGCCCTA
        ACCAAGGCTG AAGAGAGACA TGGAAATATT GAAGAACGTA TGAGACATTT AGAGGGTCAA
                                                                                 1320
        CTTGAAGAGA AGAATCAAGA ACTTCAAAGA GCTAGGCAAA GAGAGAAAAT GAATGAGGAG
                                                                                 1380
        CATAACAAGA GATTATCGGA TACGGTTGAT AGACTTCTGA CTGAATCCAA TGAACGCCTA
                                                                                 1440
        CAACTACACT TAAAGGAAAG AATGGCTGCT CTAGAAGAAA AGAATGTTTT AATTCAAGAA
                                                                                 1500
        TCAGAAACTT TCAGAAAGAA TCTTGAAGAA TCTTTACATG ATAAGGAAAG ATTAGCAGAA
                                                                                 1560
        GAAATTGAAA AGCTGAGATC TGAACTTGAC CAATTGAAAA TGAGAACTGG CTCTTTAATT
                                                                                 1620
10
        GAACCCACAA TACCAAGAAC TCATCTAGAC ACCTCAGCTG AGTTGCGGTA CTCAGTGGGA
                                                                                 1680
        TUCCTAGTGG AURGUCAGTU TGATTACAGA ACARCTAAAG TAATAAGAAG ACCAAGGAGA
                                                                                 1740
        GGCCGCATGG GTGTGCGAAG AGATGAGCCA AAGGTGAAAT CTCTTGGGGA TCACGAGTGG
                                                                                 1800
        ANTAGANCTC ANCAGATTGG AGTACTANGC AGCCACCCTT TTGANAGTGA CACTGANATG
                                                                                 1860
        TCTGATATTG ATGATGATGA CAGAGAAACA ATTTTTAGCT CAATGGATCT TCTCTCTCCA
                                                                                 1920
15
        AGTGGTCATT CCGATGCCCA GACGCTAGCC ATGATGCTTC AGGAACAATT GGATGCCATC
                                                                                 1980
        AACAAAGAAA TCAGGCTAAT TCAGGAAGAA AAAGAATCTA CAGAGTTGCG TGCTGAAGAA
                                                                                 2040
        ATTGAAAATA GAGTGGCTAG TGTGAGCCTC GAAGGCCTGA ATTTGGCAAG GGTCCACCCA
                                                                                 2100
        GGTACCTCCA TTACTGCCTC TGTTACAGCT TCATCGCTGG CCAGTTCATC TCCCCCCAGT
                                                                                 2160
        GGACACTCAA CTCCAAAGCT CACCCCTCGA AGCCCTGCCA GGGAAATGGA TCGGATGGGA
20
        GTCATGACAC TGCCAAGTGA TCTGAGGAAA CATCGGAGAA AGATTGCAGT TGTGGAAGAA
                                                                                 2280
        GATGGTCGAG AGGACAAAGC AACAATTAAA TGTGAAACTT CTCCTCCTCC TACCCCTAGA
                                                                                 2340
        GCCCTCAGAA TGACTCACAC TCTCCCTTCT TCCTACCACA ATGATGCTCG AAGTAGTTTA
                                                                                 2400
        TOTGTOTOTO TIGAGOGAGA AAGCOTOGGG CITGGTAGTG COAACAGCAG COAAGACTOT
                                                                                 2460
        CTTCACAAAG CCCCCAAGAA GAAAGGAATC AAGTCTTCAA TAGGACGTTT GTTTGGTAAA
                                                                                 2520
25
        AAAGAAAAG CTCGACTTGG GCAGCTCCGA GGCTTTATGG AGACTGAAGC TGCAGCTCAG
                                                                                 2580
        GACTCCCTGG GGTFAGGCAA ACTCGGAACT CAAGCTGAGA AGGATCGAAG ACTAAAGAAA
                                                                                 2640
        AAGCATGAAC TTCTTGAAGA AGCTCGGAGA AAGGGATTAC CTTTTGCCCA GTGGGATGGG
                                                                                 2700
        CCAACTGTGG TCGCATGGCT AGAGCTTTGG TTGGGAATGC CTGCGTGGTA CGTGGCAGCC
                                                                                 2760
        TGCCGAGCCA ACGTGAAGAG TGGTGCCATC ATGTCTGCTT TATCTGACAC TGAGATCCAG
                                                                                 2820
30
        AGAGAAATTG GAATCAGCAA TCCACTGCAT CGCTTAAAAC TTCGATTAGC AATCCAGGAG
                                                                                 2880
        ATGGTTTCCC TAACAAGTCC TTCAGCTCCT CCAACATCTC GAACTCCTTC AGGCAACGTT
                                                                                 2940
        TGGGTGACTC ATGAAGAAT GGAAAATCTT GCAGCTCCAG CAAAAACGAA AGAATCTGAG
                                                                                 3000
        GAAGGAAGCT GGGCCCAGTG TCCGGTTTTT CTACAGACCC TGGCTTATGG AGATATGAAT
                                                                                 3060
        CATGAGTGGA TTGGAAATGA ATGGCTTCCC AGCTTGGGGT TACCTCAGTA CAGAAGTTAC
                                                                                 3120
35
        TTTATGGAAT GCTTGGTAGA TGCAAGAATG TTAGATCACC TAACAAAAA AGATCTCCGT
                                                                                 3180
        GTCCATTTAA AAATGGTGGA TAGTTTCCAT CGAACAAGTT TACAATATGG AATTATGTGC
                                                                                 3240
        TTAAAGAGGT TGAATTATGA CAGAAAAGAA CTAGAAAGAA GACGGGAAGC AAGCCAACAT
                                                                                 3300
        GAAATAAAAG ACGTGTTGGT GTGGAGCAAT GACCGAATTA TTCGCTGGAT ACAAGCAATT
                                                                                 3360
        GGACTTCGAG AATATGCAAA TAATATACTT GAGAGCGGTG TGCATGGCTC ACTTATAGCC
                                                                                 3420
40
        CTGGATGAAA ACTITGACTA CAGCAGCTTA ACTTTATTAT TACAGATTCC AACACAGAAC
                                                                                 3480
        ACCCAGGCAA GGCAGATTCT TGAAAGAGAA TACAATAACC TCTTGGCCCT GGGAACTGAA
                                                                                 3540
        AGGCGACTGG ATGAAAGTGA TGACAAGAAC TTCAGACGTG GATCAACCTG GAGAAGGCAG
                                                                                 3600
        TTTCCTCCTC GTGAAGTACA TGGAATCAGC ATGATGCCTG GGTCCTCAGA AACATTACCA
                                                                                 3660
        GCTGGATTTA GGTTAACCAC AACCTCTGGG CAATCAAGAA AAATGACAAC AGATGTTGCT
                                                                                 3720
45
        TCATCAAGAC TGCAGAGGTT AGACAACTCC ACTGTTCGCA CATACTCATG TCTCGAGTAA
        GCGCCCCTT TAA
        SEQ ID NO:238 PM28 Protein sequence:
50
        Protein Accession #:
                                 none found
                   11
                               21
                                            31
                                                        41
55
        MMCEVMPTIN EDTPMSQRGS QSSGSDSDSH FEQLMVNMLD ERDRLLDTLR ETQESLSLAQ
       ORLODVIYOR DSLORQLINSA LPODIESLIG GLAGSKGADP PEFAALIKEL NACREQLLEK
                                                                                  120
        BERISELKAE RANTRLLLEH LECLVSRHER SLRMTVVKRQ AQSPSGVSSE VEVLKALKSL
                                                                                  180
       PEHHKALDEK VRERLRVSLE RVSALERELA AANQEIVALR EQNVHIQRKM ASSEGSTESE
       HLEGMEPGOK VHEKRLSNGS IDSTDETSOI VELQELLEKO NYEMAQMKER LAALSSRVGE
                                                                                  300
60
        VEQEAFTARK DLIKTEEMNT KYQRDIREAM AQKEDMEERI TTLEKRYLSA QRESTSIHDM
        NDKLENELAN KEAILROMEE KNROLOERLE LAEOKLOOTM RKAETLPEVE AELAORIAAL
       TKABERRIGNI EERMRHLBGQ LEERNQELQR ARQREKMNEE HNKRLSDTVD RLLTESNERL
QLHLKERMAA LEEKNVLIQE SETFRKNLEE SLHDKERLAE EIEKLRSELD QLKMRTGSLI
                                                                                  480
                                                                                  540
       EPTIFRTHLD TSABLRYSVG SLVDSQSDYR TTKVTRRPRR GRMGVRRDEP KVKSLGDHEW
NRTQQIGVLS SHPFESDTEM SDIDDDDRET IFSSMDLLSP SGHSDAQTLA MMLQSQLDAI
65
                                                                                  660
        nkeirligee kestelrabe ienkvasvsl eglnlarvhp gtsitasvta sslassspps
       GHSTPKLTPR SPAREMORMG VMTLPSDLRK HRRKIAVVEE DGREDKATIK CETSPPPTPR
ALRMTHTLPS SYHNDARSSL SVSLEPESLG LGSANSSODS LHKAPKKKGI KSSIGRLPGK
                                                                                  780
                                                                                  840
        KEKARLGOLR GFMETEAAAQ ESLGLGKLGT QAEKDRRLKK KHELLEEARR KGLPFAQWDG
       PTVVANLEUM LGMPAWYVAA CRANVKSGAI MSALSDTEIQ REIGISNPLH RLKLRLAIQE
MVSLTSPSAP PTSRTPSGNV WVTHEEMENL AAPAKTKESE EGSWAQCPVF LQTLAYGDMN
70
                                                                                  960
                                                                                 1020
        HEWIGNEWLP SLGLPQYRSY FMECLVDARM LDHLTKKDLR VHLKMVDSFH RTSLQYGIMC
       LKRLNYDRKE LERRREASOH EIKDVLVWSN DRIIRWIQAI GLREYANNIL ESGVHGSLIA
                                                                                 1140
        LDENFDYSSL TLLLQIPTQN TOAROILERE YNNLLALGTE RRLDESDDKN PRRGSTWRRQ
                                                                                 1200
75
       PPPREVHGIS MMPGSSETLP AGPRLITTSG QSRKMTTDVA SSRLQRLDNS TVRTYSCLE
                                                     SEQ ID NO:239 PCI4 DNA SEQUENCE
       Nucleic Acid Accession #:
                                 NM 016570
       Coding sequence:
                                 1-1134 (underlined sequences correspond to start and stop codons)
80
```

```
ATGAGGCGAC TGAATCGGAA AAAAACTTTA AGTTTGGTAA AAGAGTTGGA TGCCTTTCCG
  5
           AAGGTTCCTG AGAGCTATGT AGAGACTTCA GCCAGTGGAG GTACAGTTTC TCTAATAGCA
                                                                                                                  120
           TTTACAACTA TGGCTTTATT AACCATAATG GAATTCTCAG TATATCAAGA TACATGGATG
                                                                                                                  180
           AAGTATGAAT ACGAAGTAGA CAAGGATTTT TCTAGCAAAT TAAGAATTAA TATAGATATT
                                                                                                                  240
           ACTOTTGCCA TGAAGTGTCA ATATGTTGGA GCGGATGTAT TGGATTTAGC AGAAACAATG
                                                                                                                  300
           GTTGCATCTG CAGATGGTTT AGTTTATGAA CCAACAGTAT TTGATCTTTC ACCACAGCAG
                                                                                                                  360
10
          AAAGAGTGGC AGAGGATGCT GCAGCTGATT CAGAGTAGGC TACAAGAAGA GCATTCACTT CAAGATGTGA TATTTAAAAG TGCTTTTAAA AGTACATCAA CAGCTCTTCC ACCAAGAGAA
                                                                                                                  420
           GATGATTCAT CACAGTCTCC AAATGCATGC AGAATTCATG GCCATCTATA TGTCAATAAA
                                                                                                                  540
          GTAGCAGGGA ATTITCACAT AACAGTGGGC AAGGCAATTC CACATCCTCG TGOTCATGCA CATTTGGCAG CACTTGTCAA CCATGAATCT TACAATTTTT CTCATAGAAT AGATCATTTG
                                                                                                                  600
15
           TCTTTTGGAG AGCTTGTTCC AGCAATTATT AATCCTTTAG ATGGAACTGA AAAAATTGCT
                                                                                                                  720
          ATAGATCACA ACCAGATGTT CCAATATTTT ATTACAGTTG TGCCAACAAA ACTACATACA
TATAAAATAT CAGCAGACAC CCATCAGTTT TCTGTGACAG AAAGGGAACG TATCATTAAC
                                                                                                                  780
                                                                                                                  840
          CATGCTGCAG GCAGCCATGG AGTCTCTGG ATATTTATGA AATATGATCT CAGTTCTCTT
ATGGTGACAG TTACTGAGGA GCACATGCCA TTCTGGCAGT TTTTTGTAAG ACTCTGTGGT
ATTGTTGGAG GAATCTTTC AACAACAGGC ATGTTACATG GAATTGGAAA ATTTATAGTT
                                                                                                                  900
                                                                                                                  960
20
           GAAATAATTT GCTGTCGTTT CAGACTTGGA TCCTATAAAC CTGTCAATTC TGTTCCTTTT
                                                                                                                1080
           GAGGATGGCC ACACAGACAA CCACTTACCT CTTTTAGAAA ATAATACACA TTGA
          SEQ ID NO:240 PCI4 Protein sequence:
NP_057654
25
                                            21
                           11
                                                             31
30
           mrrlnrkktl slvkeldapp kvpesyvets asggtvslia ptimalltim bpsvyodiwm
          KYBYBVDKDF SSKLRINIDI TVAMKCQYVG ADVLDLAETM VASADGLVYE PTVFDLSPQQ
KBWQRMLQLI QSRLQEEHSL QDVIFKSAFK STSTALPPRE DDSSQSPNAC RIHGHLYVNK
                                                                                                                 120
                                                                                                                  180
           VAGNFHITVG KAIPHPRGHA HLAALVNHES YNFSHRIDHL SFGELVPAII NPLDGTEKIA
                                                                                                                  240
          IDHNOMFOYF ITVVPTKLHT YKISADTHOF SVTERERIIN HAAGSHGVSG IFMKYDLSSL
MVTVTEEHMP PWOFFVRLCG IVGGIFSTTG MLHGIGKFIV EIICCRFRLG SYKPVNSVPF
                                                                                                                 300
35
           EDGHTDNHLP LLENNTH
                                                                         SEQ ID NO:241 PBA7 DNA SEQUENCE
           Nucleic Acid Accession#: AA219134
40
                                                                                    Coding sequence:
                                                                                                             24-1815 (underlined sequences correspond to start and stop codons)
          AATTCGCCCT TGCTTAATTA AGCATGTTTA CCTTCCTGTC ATCTGTCACT GCTGCTGTCA 60
GTGGCCTCCT GGTGGGTTAT GAACTTGGGA TCATCTCTGG GGCTCTTCTT CAGATCAAAA 120
45
           CCTTATTAGC CCTGAGCTGC CATGAGCAGG AAATGGTTGT GAGCTCCCTC GTCATTGGAG 180
          CCCTCCTTGC CTCACTCACC GGAGGGGTCC TGATAGACAG ATATGGAAGA AGGACAGCAA 240 TCATCTTGTC ATCCTGCCTG CTTGGACTCG GAAGCTTAGT CTTGATCCTC AGTTTATCCT 300
           ACACGGTTCT TATAGTGGGA CGCATTGCCA TAGGGGTTTC CATCTCCCTC TCTTCCATTG 360
          CCACTIGIGT TIACATCGCA GAGATIGCTC CTCAACACAG AAGAGGCCTT CTTGTGTCAC 420
TGAATGAGCT GATGATTGTC ATCGGCATTC TTTCTGCCTA TATTTCAAAT TACGCATTTIG 480
CCAATGTTTT CCATGGCTGG AAGTACATGT TTGGTCTTGT GATTCCCTTG GGAGTTTTGC 540
50
           AAGCAATTGC AATGTATTTT CTTCCTCCAA GCCCTCGGTT TCTGGTGATG AAAGGACAAG 600
          AGGGAGCTGC TAGCAAGGTT CTTGGAAGGT TAAGAGCACT CTCAGATACA ACTGAGGAAC 660
TCACTGTGAT CAAATCCTCC CTGAAAGATG AATATCAGTA CAGTTTTTGG GATCTGTTTC 720
GTTCAAAAGA CAACATGCGG ACCCGAATAA TGATAGGACT AACACTAGTA TTTTTTGTAC 780
55
          AAATCACTGG CCAACCAAAC ATATTGTTCT ATGCATCAAC TGTTTTGAAG TCAGTTGGAT 840 TTCAAAGCAA TGAGGCAGCT AGCCTCGCCT CCACTGGGGT TGGAGTCGTC AAGGTCATTA 900
          GCACCATCCC TGCCACTCTT CTTGTAGACC ATGTCGGCAG CAAAACATTC CTCTGCATTG 960
          GCTCCTCTGT GATGGCAGCT TCGTTGGTGA CCATGGGCAT CGTAAATCTC AACATCCACA 1020
TGAACTTCAC CCATATCTGC AGAAGCCACA ATTCTATCAA CCAGTCCTTG GATGAGTCTG 1080
TGATTTATGG ACCAGGAAAC CTGTCAACCA ACAACAATAC TCTCAGAGAC CACTTCAAAG 1140
60
           GGATTTCTTC CCATAGCAGA AGCTCACTCA TGCCCCTGAG AAATGATGTG GATAAGAGAG 1200
          GGGAGACGAC CTCAGCATCC TTGCTAAATG CTGGATTAAG CCACACTGAA TACCAGATAG 1260
TCACAGACCC TGGGGACGTC CCAGCTTTTT TGAAATGGCT GTCCTTAGCC AGCTTGCTTG 1320
65
           TTTATGTTGC TGCTTTTTCA ATTGGTCTAG GACCAATGCC CTGGCTGGTG CTCAGCGAGA 1380
          TCTTTCCTGG TGGGATCAGA GGACGAGCCA TGGCTTTAAC TTCTAGCATG AACTGGGGCA 1440 TCAATCTCCT CATCTCGCTG ACATTTTTGA CTGTAACTGA TCTTATTGGC CTGCCATGGG 1500
           TGTGCTTTAT ATATACAATC ATGAGTCTAG ATCTTATTGG CCTGCCATGG GTGTGCTTTA 1560
          TATATACAAT CATGAGTCTA GCATCCCTGC TTTTTGTTGT TATGTTTATA CCTGAGACAA 1620
AGGGATGCTC TTTGGAACAA ATATCAATGG AGCTAGCAAA AGTGAACTAT GTGAAAAACA 1680
70
           ACATTTGTTT TATGAGTCAT CACCAAGAAG AATTAGTGCC AAAACAGCCT CAAAAAAGAA 1740
          AACCCCAGGA GCAGCTCTTG GAGTGTAACA AGCTGTGTGG TAGGGGCCAA TCCAGGCAGC 1800
TTTCTCCAGA GACC<u>TAA</u>TGG CCTCAACACC TTCTGAACGT GGATAGTGCC AGAACACTTA 1860
GGAGGGTGTC TTTGGACCAA TGCATAGTTG CGACTCCTGT GCTCTCTTT CAGTGTCATG 1920
75
          GAACTGGTTT TGAAGAGACA CTCTGAAATG ATAAAGACAG CCTTTAATCC CCCTCCTCMC 1980
CAGAAGGAAC CTCAAAAGGT AGATGAGGTA CAAGGTCCTA AGTGATCTCT TTTTCTGAGC 2040
AGGATATCAG GTTAAAAAAA AAAAGTTACT GGCTGGTTTA ATACTTTCTA CCTTCTTCAC 2100
           AGAGCAGCCT TTGAATAGAC TATGTCCTAG TGAAGACATC AACCTCCGCC TTAAGCTATG 2160
           TATGTATGGA GGCCAGTCGC AGCTTTATTA TGCAGACACA CAAGTGGTCT GGACATGAGG 2220
80
           GTACAGTTTC TGCCTACCAA GACACTACTT GCACTGGATC TTACGCAAAA AAGAACCAGA 2280
```

ACACACAGTG TGGACAACTG CCCATATATT CTATCTAGAT TAGGAGAGGG TCCTGGCTAG 2340 ACACACAGU IGIACANA CICCUMATATT CIATCHAGAT TAGOAGAGG ICCTGOCHAG 2400
IGAACTATAA ACTATAATTT AATGCAAAAT ATCCTTITAT GAATTTCATG TTAATATTTTA 2400
IGAACTATAA ACTATAATTT AATGCAAAAT ATCCTTITAT GAATTTCATG TTAATATTGT 2460
IGAAATATTAA AATAATTCCR CAATAGTTGA GAAAAATGAG CATTTTTTTC CATTTTTAAA 2520
AAATGCATAG AAAAGACAAT TTTAAAATCC TGGGACCATA TTTATTTAGA AGTAGCTGTT 2580 AGTAAAACAT TAGAAAAGGA GTCAGGCCAT TAGGTTATTT ATCCAAATCT CTAAGCAATT 2640 AGGTTGAAGT TATTAAGTCA AGCCTAGAAA AGCTGCCTCC TTGTAAGGCT TTCATGACAA 2700 TGTATAGTAA TCCACAGTGT CCAATTCTTC ACACTCCTCA GGAATATCAC TACCTCAGGT 2760 TACGGTACAC AGGCTATAAT TGATGATGAT GTTCAGATAA CTGAAGACAC AATAAATGAC 2820 10 ATTCAGACAT CAGGAMAAWW CCCTCATGTT CTTTTCTATG ATGGCCACCT GTACCAGCAA 2880 CGTGGGTTTC ACCCACAA CGATGAACTG TTCTCTTACT TCTCCAGTTG ATTTTAAAGA 2940 CTTGTTAAGA GGTCTTACTA ATAAAATTTG GGTATGATAG AAAAWCCACA ATCAAAWCTT 3000 GAACCAAATA ACATATTAAA TTACTAATAT TTAAGTGATG GAAGACACAC AAAAAACTTA 3060 AAAGCACGAA CAACCTAACT TGAAAAAGAA TTTTAAAATA TGATTAACCT GAAGAAAAGA 3120 GAATCCTAAG AGCCAAAGCT CCTTTTATT TAGCTTGGAA TTTTCCTATT GGTTCCTAAC 3180 15 AAACTGTCCC AATGTCATAT AAGGAAACAT GATCTATTAC ATTCCTTTAT AACAATGTGG 3240
AGAGACTATA AACCTATGTA AGTAGTAAAA CTATATYAGA GACTCAGGAG ACTGACTAAA 3300
AGGCCTGGAT CTGCAGTGTA TTATCTGTAT AAAAATTGGC AGGGGGAAGC TAAAAGGAAA 3360 GGAGATTGGA GATCTCAATT CTATCATGGT GTATTTCATA CGCAAATCAG AGCATGCATT 3420 GTTTTTTGTT TTTGGAAAGA GAAGGGAAGT GTGTTCTGCC CCATGTTTCC TTCCGTGTTT 3480 ATAGTTCAAA CTCTATATAT ACTTCAGGTA TTTTTTGTTT AGCCCTTCAT TATAAATGGG 3540 20 CAGGAAATTG TITATCAACC TAGCCAGTTT ATTACTAGTG ACCTTGACTT CAGTATCTTG 3600 AGCATTICTT TATATTTTTC TITTATTATC CTGAGTCTGT AACTAAACAA TITTGTCTTC 3660 AAATTTTTAT CCAATATCCA TTGCACCACA CCAAATCAAG CTTCTTGATT TTCAAAAATA 3720 AAAAGGGGGA AATACITACA ACTTGTACAT ATATATTCAC AGTTTTTATT TATAAAAAAA 3780 25 ATTTACAGTA CTTATGGAGA GCCAGCAGAA GACATCAGAG CACTCACTTC TTCCCATCTT 3840 TGTTAAGGTT AGCGAATTAC CCATGGACAC TGTTAGGTGA GGCTCATTCG GCAGCCCTGA 3900 AAACAAACCT GGTCACACTG TCTTTACCCT CTCCCTTCAG ATAAAGCACT TCGATTATCT 3960 ATTGATCTGC CCAGTTTTCA AGTCATGCGA ATACTAAAAA GGTTACATCA TCTGGATCTG 4020 30 TACCTTGGCT ATATAAGCAT GTTTTCCCCC TATTCTATGT TTCTTTTTTT GGTGAACATT 4080 GAAAAACAGG AGGTGACTTA TTACTGTTAA TTAAAACTAA ATGAAAAATG TCAAGTCTTT 4140 AAAACAGTGA GCTTGTAACT CTTTCATGTA ATTTTATTCT CTATGAATTT GGCTATCCTA 4200 CTGAATCTTA AAATAAAGGA AATAAACACT TTTTTTTWAA AAAAAAGGAA AAATAMAARW 4260 MWAAAAATCT CAATGAAATA TTTCACAAGA AGGAAAAA 35

SEQ ID NO:242 PBA7 Protein sequence:

### Protein Accession #: AAF91431

40 MFTFLSSVTA AVSGLLVGYE LGIISGALLQ IKTILALSCH EQEMVVSSLV IGALLASLTG 60
GVLIDRYGRR TAIILSSCLL GLGSLVLILS LSYTVLIVGR IAIGVSISLS SIATCVYIAE 120
IAPQHERGIL VSLNELMIVI GILSAYISNY AFANVFHGWK YMFGLVIELG VLQAIAMYFL 180
PPSPRFLVMK GQEGAASKVL GRLRALSDIT EELTVIKSSL KDEPQVSFWD LFRSKDNMRT 240
RIMIGLTLVF FVQITGQPNI LFYASTVLKS VGFQSNEAAS LASTGVGVVK VISTIPATLL 300
VDHVGSKTFL CIGSSVMAAS LVTMGIVNLN HEMNFTHICR SENSINGSLD ESVYGPGONL 360
SINNNTLRDH FKGISSHSRS SLMPLRNDVD KRGETTSASL LNAGLSHTEY QIVTDPGDVP 420
AFLKWLSLAS LLVYVAAFSI GLGFMPWLVL SEIFPGGIRG RAMALTSSMN WGINLLISLT 480
FLTVTDLIGL PWVCFTYTIM SLDLIGLPWV CFTYTIMSLA SLLFVVMFIP ETKGCSLEQI 540
SMELAKVNYV KNNICFMSHH QEELVFKQPQ KRKPQEQLLE CNKLCGRGQS RQLSPET

SEQ ID NO:243 PAB4 DNA sequence: Nucleic Acid Accession#: AA172056

Coding sequence: 121-339 (underlined sequences correspond to start and stop codons)

55

75

SEQ ID NO:244 PBQ8 DNA SEQUENCE

Nucleic Acid Accession#: X51405

Coding sequence: 3-1721 (underlined sequence corresponds to start and stop codon)

1 11 21 31 41 51

PCT/US01/32045 WO 02/30268

	t	l .	1	1	ı	1	
	AAATGGCGTG	CCCGTCTCTC	CGCCGGCCCC	CTGCCTCGCA	GIGGITTCIC	CTGCAGCTCC	60
			GTGCAGCCCG				120
			GACACTCATT				180
5			CAGCAGCGCC				240
_			AGGCACGGCC				300
			GCTCTGTGCG				360
			GGGGCGCCCG				420
			TTCGAGTACC				480
10			ACCGCCATCA				540
	AGGCCCGGGA	GCTCCTGGTC	ATCGAGCTGT	CCGACAACCC	TGGCGTCCAT	GAGCCTGGTG	600
			GGGAATATGC				660
	TCATTTTCTT	GGCCCAGTAC	CTATGCAACG	AATACCAGAA	GGGGAACGAG	ACAATTGTCA	720
	ACCTGATCCA	CAGTACCCGC	ATTCACATCA	TGCCTTCCCT	GAACCCAGAT	GGCTTTGAGA	780
15			GAACTCAAGG				840
	GAATAGATCT	GAACCGGAAC	TTTCCAGACC	TGGATAGGAT	AGTGTACGTG	AATGAGAAAG	900
			CTGTTGAAAA				960
			GCTGTCATTC				1020
~~	CTGCCAATCT	CCATGGAGGA	GACCTTGTGG	CCAATTATCC	ATATGATGAG	ACGCGGAGTG	1080
20	GTAGTGCTCA	CGAATACAGC	TCCTCCCCAG	ATGACGCCAT	TTTCCAAAGC	TTGGCCCGGG	1140
			GCCATGTCTG				1200
			GATGGAACCA				1260
			TACCTTAGCA				1320
.25			GAAGAGACTC				1380
23			CAGATACACC				1440
			GCCACCATCT				1500
			TGGAGATTGC				1560
			ATAACAAAGA				1620
30			TCATTTTCTG				1680
30			TCAGAAACTT				1740
			TGTAGTATGA				1800
			TTTATTTTTT				1860
							1920
35			TTACACAAAA ATTCCTGGTA				1980 2040
55			GAAGTTCTTT				2100
			CAGATACAGC				2160
			GTCGTTTTTT				2220
			GAAGAAAAGG				2280
40			TTGTACATAT				2340
			AGGGTTTTCT				2400
			AAAAAATCCC				
15			10:245 PBQ8 Pro	ein sequence			
45	Protein Accession	#: P16870					

MAGRGGSALL ALCGALAACG WILGAEAQEP GAPAAGMRRR RRLQQEDGIS FEYHRYPELR 60
BALVSVWLQC TAISRIYTVG RSFEGRELLV IELSDNPGVH EPGEPEFKYI GNMHGNBAVG 120
RELLIFLAQY LCNEYQKGNE TIVNLIHSTR IHIMPSLNPD GFEKAASQPG ELKDWFVGRS 180
NAQGIDLNRN FFDLDRIVYV NEKEGGPNNH LIKNMKKIVD QNTKLAPETK AVHWIMDIP 240
NAQGIDLNRN FFDLDRIVYV NEKEGGPNNH LIKNMKKIVD QNTKLAPETK AVHWIMDIP 240
RKNDDDSSFV DGTTNGGAWY SVPGGMQDFN YLSSNCFEIT VELSCEKFPP EETILKTYWED 360
NKNSLISYLE QHRGVKGFV RDLQGNPIAN ATISVEGIDH DVTSAKDGDY WRLLIPGNYK 420
LTASAPGYLA ITKKVAVPYS PAAGVDFELE SFSERKEEEK EELMEWWKMM SETLNF

SEQ ID NO:246 PBY4 DNA sequence

50

	Nucleic Acid Acc	ession#: AF038	966				
60		Coding	sequence:	91-1107 (unde	ulined sequence c	orresponds to start	and stop codon)
	1	<b>11</b> 	21 ·	31	41	51 	-
	GGGGCGACGT	GAGCGCGCAG	GGGGGGGGG	GCCTCGCCTC	GTCTCTCTCT	CTGCGCCTGG	60
	GTCGGGTGGG	TGACGCCGAG	AGCCAGAGAG	ATGTCGGATT	TCGACAGTAA	CCCGTTTGCC	120
65	GACCCGGATC	TCAACAATCC	CTTCAAGGAT	CCATCAGTTA	CACAAGTGAC	AAGAAATGTT	180
	CCACCAGGAC	TTGATGAATA	TAATCCATTC	TCGGATTCTA	GAACACCTCC	ACCAGGCGGT	240
	GTGAAGATGC	CTAATGTACC	CAATACACAA	CCAGCAATAA	TGAAACCAAC	AGAGGAACAT	300
	CCAGCTTATA	CACAGATTGC	AAAGGAACAT	GCATTGGCCC	AAGCTGAACT	TCTTAAGCGC	360
70	CAAGAAGAAC	Tagaaagaaa	AGCCGCAGAA	TTAGATCGTC	GGGAACGAGA	AATGCAAAAC	420
70	CTCAGTCAAC	ATGGTAGAAA	Aaatatttgg	CCACCTCTTC	CTAGCAATTT	TCCTGTCGGA	480
	CCTTGTTTCT	ATCAGGAATT	TTCTGTAGAC	ATTCCTGTAG	AATTCCAAAA	GACAGTAAAG	540
	CTTATGTACT	ACTTGTGGAT	GTTCCATGCA	GTAACACTGT	TTCTAAATAT	CTTCGGATGC	600
	TTGGCTTGGT	TTTGTGTTGA	TTCTGCAAGA	GCGGTTGATT	TTGGATTGAG	TATCCTGTGG	660
75	TTCTTGCTTT	TTACTCCTTG	TTCATTTGTC	TGTTGGTACA	GACCACTITA	TGGAGCTTTC	720
75	AGGAGTGACA	GTTCATTTAG	ATTCTTTGTA	TTCTTCTTCG	TCTATATTTG	TCAGTTTGCT	780
	GTACATGTAC	TCCAAGCTGC	AGGATTTCAT	AACTGGGGCA	ATTGTGGTTG	GATTTCATCC	840
	CTTACTGGTC	TCAACCAAAA	TATTCCTGTT	GGAATCATGA	TGATAATCAT	AGCAGCACTT	900
	TTCACAGCAT	CAGCAGTCAT	CTCACTAGTT	ATGTTCAAAA	AAGTACATGG	ACTATATCGC	960
00	ACAACAGGTG	CTAGTTTTGA	GAAGGCCCAA	CAGGAGTTTG	CAACAGGTGT	GATGTCCAAC	1020
80	AAAACTGTCC	AGACCGCAGC	TGCAAATGCA	GCTTCAACTG	CAGCATCTAG	TGCAGCTCAG	1080

PCT/US01/32045 WO 02/30268

	AATGCTTTCA	AGGGTAACCA	GATTTAAGAA	TCTTCAAACA	ATACACTGTT	ACCTTTTGAC	1140				
	TGTACCTTTT	TCTCCAGTTA	CTGTATTCTA	CAAATATTTT	TATGTTCAAA	ACACACAGTA	1200				
	CAGACAGCAT	GGATATTTCC	TGTTCACTTG	TGCATGGGCT	AAAACCAGGA	AAACTTCCTT	1260				
_	GTCTTATTAC	TTTACCTAAT	AGTITCTTAA	TATTTCAGTG	CCCCTTGCAG	TTATAAAAAA	1320				
5	ACATGCTAAA	TAAATATTCT	CCATATTTTT	GGGGGATGAC	ATTCAGTGAA	TTATTTCAGT	1380				
	GGTGACCCAC	TGAAAATTAA	TAATGGTACT	TATGATTAAA	AACGCATTTA	ATACTAACTG	1440				
	CAGTAGTTCT	TTCAAGAATC	TTTAGAGATA	AGGATTGCAC	ATTGGAAAAG	TAAACCATGT	1500				
	TTCATTCCTT	TTTCCCTATT	TATATTGAAA	GAAATAGGCC	AGCAGAGACT	TAGGGATTTT	1560				
	AAATTGGCTT	GCTTTTTAGC	TGTTTCAGTC	ACCAGTGAAG	AGCCTATGTG	CATTTTGTAG	1620				
10	TAGATAATGT	AAAATTTGTC	ATCTTTTTCT	TITCTITITT	TTAGAATAGC	TGATATTTTG	1680				
	ATAACAATCT	CTAATTTGCA	TGGGCACCAC	ATTTCTTATA	TTAAAAGAAT	TAGTGTTTTG	1740				
	GCTTCTGTAC	TGCTTATGGT	TGTAGGATTC	AGGGGTTAAT	GGAATCACAG	AAATGATATT	1800				
	CTGCAAGAAT	TTCTTTTAAA	TAAAAAGTTT	GGGGGTGCAA	TATAAGAAGT	TTATATAATA	1860				
	TGCAGTACAT	TATCCAAAAG	AGAAGGTAGT	TAATGCAGTA	GAAAGTAGTG	GTAATAATTC	1920				
15	CITTIT										
	SEQ ID NO: 247 PBY4 Protein sequence;										

20

MSDFDSNPFA DPDLNNPFKD PSVTQVTRNV PPGLDEYNPF SDSRTPPPGG VKMPNVPNTQ 60 PAIMKPTEEH PAYTOJAKEH ALAQAELLKR QEELERKAAE LDRREREMON LSQHGRKNIW 120
PPLPSNFPVG PCFYQEFSVD IPVEFQKTVK LMYYLWMFHA VTLFLNIFGC LAWFCVDSAR 180
AVDFGLSILW FLLFTPCSFV CWYRPLYGAF RSDSSFRFFV FFFVYICQFA VHVLQAAGFH 240 25 NWGNCGWISS LTGLNQNIPV GIMMIIIAAL FTASAVISLV MFKKVHGLYR TTGASFEKAQ 300 QEFATGVMSN KTVQTAAANA ASTAASSAAQ NAFKGNQI

SEQ ID NO:248 PBH2 DNA sequence 30

Nucleic Acid Accession#: none found

1-613 (underlined sequence corresponds to start and stop codon)

ATGAGAGACA ATAAATCGTG TGCTTTTTTC ATGGGAAAGT TAAATGTTTG TTTTGAAGGC 60 ACAGTAATAG CAGGCTATTC AGTGTTTGCC ACTACCTGCA TCATTCATCT GGCTGTAGCT 120 35 ACAGTAATAG CAGGCTATTC AGTGTTTGCC ACTACTIGGA TCATTCATCT GGCTGTAGCT 120
AGTGCACTAC AATTTCCTAA AAAGTCTTCT CACCCTCACA GGACTGCTCT ACATCTGGCC 180
TCTGCCAATG GAAATTCAGA AGTAGTAAAA CTCCTGCTGG ACAGACGATG TCAACTTAAT 240
ATCCTTGACA ACAAAAAGAG GACAGCTCTG ACAAAGGCCG TACAATGCCA GGAAGATGAA 300
TGTGCGTTAA TGTTGCTGGA ACATGGCACT GATCCGAATA TTCCAGATGA GTATGGAAAT 360 ACCECTCTAC ACTATECTAT CTACAATGAA GATAAATTAA TEGCCAAAGA CATGCTCTTA 420
TACGGTGCTG ATATCGAATC AAAAAACAAG CATGGCCTCA CACCACTGTT ACTTGGTGTA 480
CATGAGCAAA AACAGCAAGT GGTGAAATTT TTAATCAAGA AAAAAGCAAA TTTAAATGCA 540
CTGGATAGAT ATGGAAGGTG TGTGACCTTG GGAACGTTAT TTACCACCAA ATATGTTGTC 600 40 ATATATGAAA AG<u>TAG</u>

45

### SEQ ID NO:249 PBH2 Protein sequence:

Protein Accession #:

MRDNKSCAFF MGKLNVCFEG TVIAGYSVFA TTCIIHLAVA SALQFPKKSS HPHRTALHLA 60 SANGNSEVVK LLLDRRCQLN ILDNKKRTAL TKAVQCQEDE CALMLLEHGT DPNIPDEYGN 120 TALHYAFYNE DKLMAKALLL YGADIESKNK HGLTPLLLGV HEQKQQVVKF LIKKKANLNA 180 50 LDRYGRCVTL GTLFTTKYVV IYEK

55

SEQ ID NO:250 PBJ1 DNA sequence

1-3043 (underlined sequence corresponds to start and stop codon)

ATGGTGATCA TCTATCTTTC TTTCTGCAAT TATTACATGG AGTTCTACAG AGAAGAGCTT 60
CCCCACATTG ACTATTTGAT TGACATTCAG TTTGCAACAG GAAAGGTTAC TCAGCCGGGA 120
GAGGACACTT CCTACCATCA ATGCGCTCAG CTTGAAGCCA GAGACGAAGG CACCGACAGT 180 60 THATTATTAA ACAATGCAG CAGCGCACG CTGAAGACAC GAACGCGCTG TTATGGAACC 240
CCCAGAGGTC TCCCCCATCG TAGCCTC CAGCCGACTC CGCCCACATG TAAAACGAAG 300
ATCAGGAGCA GATTTGAAGA ATTACAAAGT GAATTGGTGC CAGTCAGCAT GTCAGAGACA 360 65 GACCACATAG CCTCTACTTC CTCTGATAAA AATGTTGGGA AAACACCTGA ATTAAAGGAA 420
GACTCATGCA ACTTGTTTTC TGGCAATGAA AGCAGCAAAT TAGAAAATGA GTCCAAACTA 480
TTGTCATTAA ACACTGATAA AACTTTATGT CAACCTAATG AGCATAATAA TCGAATTGAA 540 GCCCAGGAAA ATTATATTCC AGATCATGGT GGAGGTGAGG ATTCTTGTGC CAAAACAGAC 600 70 ACAGGCTCAG AAAATTCTGA ACAAATAGCT AATTTTCCTA GTGGAAATTT TGCTAAACAT 660 ATTTCAAAAA CAAATGAAAC AGAACAGAAA GTAACACAAA TATTGGTGGA ATTAAGGTCA 720 TCTACATTTC CAGAATCAGC TAATGAAAAG ACTTATTCAG AAAGCCCCTA TGATACAGAC 780 TCTACATTTC CAGAATCAGC TAATGAAAAG ACTATTCAG AAAGCCCCTA TOGTACAGACAGC TOTTCTGGAA 840
GAAATAGAAT CTGAGCTCTT ATCTACCGAG TTTGCAGCAAC ATCGAGTACC AAATGGAATG
AATAAGGGAG AACATGCATT AGTTCTGTTT GAAAAGTGTG TGCAAGATAA ATATTTGCAG 960
CAGGAACATA TCATAAAAAAA GTTAATTAAA GAAAATAAGA AGCATCAGGA GCTCTTCGTA 1020 75 GACATTEGT CAGAAAAAGA CAATTAAGA GAAGAACTAA AGAAAAGAAC AGAAACTGAG 1080 AAGCAGCATA TGAACACAAT TAAACAGTTA GAATCAAGAA TAGAAGAACT TAATAAAGAA 1140 GTTAAAGCTT CCAGAGATCA ACTAATAGCT CAAGACGTTA CAGCTAAAAA TGCAGTTCAG 1200

CAGTTACACA AAGAGATGGC CCAACGGATG GAACAGGCCA ACAAGAAATG TGAAGAGGCA 1260 CGCCAAGAAA AAGAAGCAAT GGTAATGAAA TATGTAAGAG GTGAGAAGGA ATCTTTAGAT 1320 CTTCGAAAGG AAAAAGAGAC ACTTGAGAAA AAACTTAGAG ATGCAAATAA GGAACTTGAG 1380 AAAAACACTA ACAAAATTAA GCAGCTTTCT CAGGAGAAAG GACGGTTGCA CCAGCTGTAT 1440 AAAAACACIA ACAAAAIIAA GCAGGIIICI CAGGAAAAA GACGGIIIGA CCAGCIIIIA 1440
GAAACTAAGG AAGGCGAAAC GACTAGACTC ATCAGAGAAA TAGACAAATT AAAGGAAGAC 1500
ATTAACTCTC ACGTCATCAA AGTAAAGTGG GCACAAAACA AATTAAAAGC TGAAATGGAT 1560
TCACACAAGG AAACCAAAGA TAAACTCAAA GAAACAACAA CAAAATTAAC ACAAGCAAAG 1620
GAAGAAGCAG ATCAGATACG AAAAAACTGT CAGGATATGA TAAAAACATA TCAGGAGTCA 1680 5 GAAGAAATTA AATCAAATGA GCTTGATGCA AAGCTTAGAG TCACAAAAGG AGAACTTGAA 1740 AAACAAATGC AAGAAAAATC TGACCAGCTA GAGATGCATC ATGCCAAAAT AAAGGAACTA 1800 GAAGATCTGA AGAGAACATT TAAGGAGGGT ATGGATGAGT TAAGAACACT GAGAACAAAG 1860 10 GTGAAATGTC TAGAAGATGA ACGATTAAGA ACAGAAGATG AATTATCAAA ATATAAGGAA 1920 ATTATTAATC GCCAAAAAGC TGAAATTCAG AATTTATTGG ACAAGGTGAA AACTGCAGAT 1980 CAGCTACAGG AGCAGCTTCA AAGAGGTAAG CAAGAAATTG AAAATTTGAA AGAAGAAGTG 2040 15 GAAAGTCTTA ATTCTTTGAT TAATGACCTA CAAAAAGACA TCGAAGGCAG TAGGAAAAGA 2100 GAATCTGAGC TGCTGCTGTT TACAGAAAGG CTCACTAGTA AGAATGCACA GCTTCAGTCT 2160 GAATCCAATT CTTTGCAGTC ACAATTTGAT AAAGTTTCCT GTAGTGAAAG TCAGTTACAA 2220 GAATCCAATT CTTTGCAGTC ACAATTTGAT AAAGTTTGCT GTAGTGAAAG TCAGTTACAA 2220
AGCCAGTGTG AACAAATGAA ACAGACAAAT ATTAATTTGG AAAGTAGGTT GTTGAAAAGAG 2280
GAAGAACTGC GAAAAGAGGA AGTCCAAACT CTGCAAGCTG AACTCCCCTTG TAGACAAACA 2340
GAAGTTAAAG CATTGAGTAC CCAGGTAGAA GAATTAAAAG ATGAGTTAGT AACTCAGAGA 2400
CGTAAACATG CCTCTAGTAT CAAGGATCTC ACCAAACAAC TTCAGCAAGC ACGAAGAAAA 2460 20 TTAGATCAGG TTGAGAGTGG AAGCTATGAC AAAGAAGTCA GCAGCATGGG AAGTCGTTCT 2520
AGTTCATCAG GGTCCCTGAA TGCTCGAAGC AGTGCAGAAG ATCGATCTCC AGAAAATACT 2580 GGGTCCTCAG TAGCTGTGGA TAACTTTCCA CAAGTAGATA AGGCCATGTT GATTGAGAGA 2640 25 ACATIGGAGC TCTCTTTGGA AATCAACCGA AAATTACAGG CTGTTTTGGA GGATACGTTA 2940 CTAAAAAATA TTACTTTGAA GGAAAATCTA CAAACACTTG GAACAGAAAT AGAACGICTT 3000 30 ATTAAACACC AGCATGAACT AGAACAGAGG ACAAAGAAAA CCTAAAACAA GCCTCTTGCT 3060 CAGTAAAGAG ACAAAAGCCA CACAGGAGTA GGTGCCACTG ACCTCTATTG TTGGAGACTT 3120
TGTTCCACTT TTTGTTTCAG CCAGTAAAAA TATTGTTTTG CTTCATCTGT ACACAAAAAA 3180
ATACCCTTTT ACAATATGAA TGCATTGCTG TATATACTGT AAGACTGAAA GCTTTGATGA 3240 35 AATTTGTTTT TGTATGGTGC AATATGACAG CCTGTCATTG AATCTAAACA ACTTAATTTG 3300 CTTGTATTCA TAAGAAGTGT TGAACATTAC AAGGGCTTTT AT

# 40 Protein Accession #: SEQ ID NO:251 PBJ1 Protein sequence: NP_060487

MVIIYLSPCN YYMEFYREEL PHIDYLIDIQ FATGKVTQPG EDTSYHQCAQ LEARDEGTDS 60
LLLANGSSAT LKTRECYGT PRGLPHRSLL QPTPPTCKTK IRSREELQS ELVPYSMSET 120
DHIASTSSDK NVGKTPELKE DSCNLFSGNE SSKLENESKL LSLNTDKTLC QPNEHNNRIE 180
AQENYIPDHG GGEDSCAKTD TGSENSEQIA NFPSGNFAKH ISKTNETEGK VTQILVELRS 240
STFPESANEK TYSESPYDTD CTKKFISKIK SVSASEDLLE EIESELLSTE FAEHRVPNGM 300
NKGEHALVLF EKCVQDKYLQ QEHIIKKLIK ENKKHQELFV DICSEKDNILR EELKKRTETE 360
KQHMTIKQL ESKIEELINE VKASRDQLIA QDVTAKNAVQ QLHKEMAQRM EQANKKCEEA 420
RQEKEAMVMK YVRGEKESLD LRKEKETLEK KLRDANKELE KNTNKIKQLS QEKGRLHQLY 480
ETKEGETTRL IREIDKLIKED INSHVIKVKW AQNKLKAEMD SHKETKDKLK ETTTKLTQAK 540
EELADQIRKNC QDMIKTYQES EEIKSNELDA KLRVTKGELE KOMQEKSOLD EMHHAKIKEL 660
QLQEQLQRGK QEIENLÆEV ESLNSLINDL QKDIEGSRKR ESELLFTER LTSKNAQLQS 720
ESNSLQSQFD KVSCSESQLQ SQCEQMKQTN INLESRLLÆ ELRKEEVQT LQAELACRQT 780
EVKALSTQVE ELKDELVTQR RKHASSIKDL TKQLQQARRK LDQVESGYD KEVSSMGSRS 840
SSGSLNARS SAEDRSPENT GSSVAVDNPP QVDKAMLIER IVRLQKAHAR KNEKIEFMED 900
HIKQLVEEIR KKTKIUGSYI LREESGTLSS EASDFNKVHL SRRGGIMASL YTSHEADRIGL 960
TLELSLEINR KLQAVLEDTL LKNITLKENL QTLGTEIERL IKHQHELEQR TKKT

60
SEQ ID NO:252 PBJ6 DNA sequence
Nucleic Acid Accessionit: D83760

Coding sequence: 56-1459 (underlined sequence corresponds to start and stop codon)

65	1	11	21	31	41	51	
	1	ı	1	1	1	1	
	TTGCCGTGAA	GGGCTGTGCG	GTTCCCGTGC	GCGCCGGAGC	CTGCTGTGGC	CTCTTATGCA	60
	CTCCACCACC	CCCATCAGCT	CCCTCTTCTC	CTTCACCAGC	CCCGCAGTGA	AGAGACTGCT	120
<b>7</b> 0	AGGCTGGAAG	CAAGGAGATG	AAGAGGAAAA	GTGGGCAGAG	AAGGCAGTGG	ACTOTOTAGT	180
70	Gaagaagtta	AAGAAGAAGA	AGGGAGCCAT	GGACGAGCTG	GAGAGGGCTC	TCAGCTGCCC	240
	GGGGCAGCCC	AGCAAATGCG	TCACGATTCC	CCGCTCCCTG	GACGGGCGGC	TGCAGGTGTC	300
	CCACCGCAAG	GGCCTGCCCC	ATGTGATTTA	CTGTCGCGTG	TGGCGCTGGC	CGGATCTGCA	360
	GTCCCACCAC	GAGCTGAAGC	CGCTGGAGTG	CTGTGAGTTC	CCATTTGGCT	CCAAGCAGAA	420
	agaagtgtgc	ATTAACCCTT	ACCACTACCG	CCGGGTGGAG	ACTCCAGTAC	TGCCTCCTGT	480
75	GCTCGTGCCA	AGACACAGTG	AATATAACCC	CCAGCTCAGC	CTCCTGGCCA	AGTTCCGCAG	540
	CGCCTCCCTG	CACAGTGAGC	CACTCATGCC	ACACAACGCC	ACCTATCCTG	ACTCTTTCCA	600
	GCAGCCTCCG	TGCTCTGCAC	TCCCTCCCTC	ACCCAGCCAC	GCGTTCTCCC	AGTCCCCGTG	660
	CACGGCCAGC	TACCCTCACT	CCCCAGGAAG	TCCTTCTGAG	CCAGAGAGTC	CCTATCAACA	720
	CTCAGTTGAC	ACACCACCCC	TGCCTTATCA	TGCCACAGAA	GCCTCTGAGA	CCCAGAGTGG	780

	CCAACCTGTA	GATGCCACAG	CTGATAGACA	TGTAGTGCTA	TCGATACCAA	ATGGAGACTT	840
	TCGACCAGTT	TGTTACGAGG	AGCCCCAGCA	CTGGTGCTCG	GTCGCCTACT	ATGAACTGAA	900
				CTCCCGAAGT			960
~				TCTTGGACTT			1020
5				AGGAAAGGGT			1080
				CAGCAGCATC			1140
				CGTCTGCAAG			1200
				GCTCCTGGCC			1260
10				TACTATCCGG			1320
10				CAGCACCCCC			1380
				TCTGACTCAG			1440
	CATTICTICA	GIGICI <u>TAA</u> C	AGICATGICT	TAAGCTGCAT	TICCATAGGA	T	
15		SEO	NO:253 P <u>BJ6 Pr</u>	ntain commence			
10	Protein Accessin			Ment begaeine			
	. 1000111000000						
	MHSTTPISSL	FSFTSPAVKR	LLGWKOGDE	E EKWAEKAVI	S LVKKLKK	KG AMDELER	ALS 60
						PL ECCEFPFGS	
20						L MPHNATYPD	
	FQQPPCSALP	PSPSHAFSQS	PCTASYPHSP (	GSPSEPESPY Q	HSVDTPPLP Y	HATEASETQ :	240
	SGQPVDATA	D RHVVLSIPN	G DFRPVCYEE	P QHWCSVAY	YE LNNRVGE	TFQ ASSRSVLII	OG 300
						CV SDSSIFVQSI	
25						TK MCTIRMSF	VK 420
25	GWGAEYHRO	D ALZIBOMI	EI HLHGPLQW	LD KVLTQMG:	SPH NPISSVS		
	CEO ID NO.054	DD 10 DNA namen					
	Nucleic Acid Acc	PBJ8 DNA sequer					
30	Coding sequence			quence correspon	do to atast and ata	n endon)	
50	committy seducine	. 412-4	orr (unucializa ac	Ancerea concessors	na en arent entre am	poddiny	
	1	11	21	31	41	51	
	ī	ī	ī	ĭ	ī	ĭ	
~-	TGCAGGTTTG	CAGGGTCTGA	GATTACTTGG	GCTTTTCCTG	CCTTTTTCTT	TTGCTTAAGG	60
35	GATGGACAAG	GAGCTGAGAT	TTATGACCCT	TATTAGAGAA	AAAAATGTGC	CTTGCTAGGG	120
				TCTCTTTCTC			180
				AGTTTGTTTG			240
				CTGTCTTGTG			300
40				ATGAAGGCCA			360
40				TGCAGCCGTG			420
				CAAGAACATC			480
				CACGATGACC			540 600
				CCATCATCTT			660
45				TCCGAGGGCG			720
				CTCACAGCAT			780
				GTGCCTGCCT			840
	TCGACATTCA	GCCAGTTTAG	CCCGATCTCC	AGTGCTGAAG	AGTTTGATGA	CGACGAGAAG	900
EΛ				GACATGCGAT			960
50				GATAAGCTGA			1020
				AATGTGGAGA			1080
				GTTTATGAAC			1140
				GTGCTGGAAA CCCAGCGTTG			1200 1260
55				ATCGCGGCTC			1320
-				TCGAGGGAAT			1380
				TCTCCTGAAT			1440
				AGTCCCAGAA			1500
<b>60</b>	AGCAAAGGAT	CCCCGTCCTC	TCCCGCAGGG	TCCACACCAG	CAATCCCCAA	AGTCCGCATA	1560
60				AAGAGAACAG			1620
				GAGCAGACAG			1680
				GCCGTCCTTT			1740
	CTCCAGTCTG	CGGTCGTGAC	CAATGCAGTT	TCCCCTGCAG	AGCTCACCCC	CAAACAGGTC	1800
65				CCAGTGTCTG			1860
03						CATATCTGCT	1920 1980
						GACTGTGCAC	2040
						CCGCCAAGTG	2100
=-						CTCGCAACCC	2160
70	CCCAAAAAGG	TGTCTCGAGT	CCAGGTGGTG	TCGTCCTTGC	AGAGTTCTGT	GGTGGAAGCT	2220
	TTCAACAAGG	TGCTGAGCAG	TGTCAATCCA	GTCCCTGTTT	ACATCCCAAA	CCTCAGTCCT	2280
						GTGTGGGGAC	
						GCGCATCGAA	
75						CCTCCTTTCC	
<i>7</i> 5						AATTTTAAAG	
						TTCAACTTCC	
						GTCTGGCATA	
						GCCCCTAGAT TGAAGTCTTC	
80						TGGACAAAAG	
					- Characteria	_	2020

	שרייועבר:שרייום מיויא	TCTGCCAGAT	CONCOMMENT	AACCAGTGCA	COTATICCATIC	ACACCAGAGA	2880
		ACAAATCTCC					2940
		CCCACGTCAC					3000
		GCAATGTTGT					3060
5							
5		AAGTCTTCTA					3120
		CCCACGCCTA					3180
		GTTCCATGTG					3240
		acattgaaaa					3300
10		AGAAGCAACT					3360
10		GGCCTCCAAA					3420
		CAAATCAGAA					3480
	GAAAAGAAAT	CTCCATCTCC	TGTGAAAAA	TCAATGGAAA	CCAAGAAAGT	GGCCAGTCCT	3540
	GGGTGGACGT	GTTGGGAGTG	TGACTGCCTG	TTCATGCAGA	GAGATGTGTA	CATATCCCAC	3600
	GTGAGGAAGG	AGCACGGGAA	GCAAATGAAG	AAACACCCCT	GCCGCCAGTG	TGACAAGTCT	3660
15	TTCAGCTCGT	CCCACAGCCT	GTGCCGGCAC	AACCGGATCA	AGCACAAAGG	CATCAGGAAA	3720
		GCTCGCACTG					3780
		TCCAGCTGAT					3840
		AGGAGGAAAC					3900
		AACCAGTTCT					3960
20		AAATCAATGT					4020
20		TGCAATTCCA					4080
		AGTGTGGCCT					4140
		AGTTAAAGGA					4200
25		AGAACAAACC					4260
23		AAGTGTGCGC					4320
		GCATGGCCTT					4380
		atgaggaaaa					4440
		TATAATAGAG					4500
20		CCTTCACCTC					4560
30		TTTGTATATA					4620
		TAGTGGAAAA					4680
	TGTTTCTTTA	AAACAGAGTT	CTTAGTAACA	GGGGCAGTTC	CTGAATTCAA	ATAAACCATT	4740
	TTGTATGTTT	GGATTTTGAA	TGGGTTAACT	AATTACAGGC	TAAAATAATG	CCTTTTTTAG	4800
	TGTTTTTAAT	TTTTAGAATT	CACTACATAA	ATTGTAAGTA	ATTGTGGGTC	TCAAAAACAC	4860
35	TAGGAACTTT	TAAGTGTCTT	AGCACTTCCT	CGATGTGCCT	GCCCTGAGGG	AGTGAGTTCA	4920
	CATTTGAGAC	AACTGCACTC	CAGTGTGGAC	GTGCCTTTGT	CTTCAGGCCA	TGCCGAAGGG	4980
	TGTTTAAAGC	AGTCTTGCAG	GTCGCTCCTT	TCCCAGCCGT	GGATAAAAAC	TGAAGCTAGG	5040
	AATCTAATAA	GGAATGCTGA	TTTCCTCAGT	TCCATTTTGA	GGAATGGGGA	AGGCTATTCT	5100
		ATGGGATTTG					5160
40		TAACGAAAGG					5220
. •		ATAGTCAGGT					5280
		ATCAAGTATT					5340
		AAAGAGTTGG					5400
		GATGCACAAC					5460
45		TACCTTAAGC					5520
7.7		CGGTAGTTCT					
							5580
		TCTCTGAGAG					5640
		GTATTTATCC					5700
50		TCTTTTGTGT					5760
JU		AGGTCTTGCT			CCATCCATCA	TAACTGTATG	5820
	AAACACATTT	Catatgtaaa	TAAACGTGGG	ACATTTG			

## SEQ ID NO:255 PBJB Protein sequence: BAB13455

55 Protein Accession #:

MKTPDFDDLL AAFDIPDMVD PKAAIESGHD DHESHMKQNA HGEDDSHAPS SSDVGVSVIV 60 KNVRNIDSSE GGEKDGHNPT GNGLHNGFLT ASSLDSYSKD GAKSLKGDVP ASEVTLKDST 120 KNYRNIDSSE GGEKDGHNPT GNGLINGFILT ASSLDSYSKD GAKSLKGDVP ASEVTLKDST 120
FSQFSPISSA EEFDDDEKIE VDDPPDKEDM RSSFRSNVLT GSAPQQDYDK LKALGGENSS 180
KTGLSTSGNV EKNKAVKRET EASSINLSVY EPFKVRKAED KLKESSDKVL ENRVLDGKLS 240
EEKNDTSLPS VAPSKTKSSS KLSSCIAAIA ALSAKKAASD SCKEPVANSR ESSPLPKEVN 300
DSPRAADKSP ESQNLIDGTK KPSLKQPDSP RSISSENSSK GSPSSPAGST PAIPKVRIKT 360
IKTSGEHKR TVTRVLPEVD LDSGKKPSEQ TASVMASVTS LLSSPASAAV LSSPPRAPLQ 420
SAVVTNAVSP AELTPKQVTI KPVATAFLPV SAVKTAGSQV INLKLANNTT VKATVISAAS 480
VÇSASSAHIK AANAIQQQTV VVPASSLANA KLVPKTVHLA NINLIPQGAQ ATSELRQVLT 540
KPQQIKQAI INAASQPPK KVSRVQVVSS LQSSVVEAFN KVLSSVNPVP VYPPNLSPPA 600
NAGITLPTRG YKCLECGDSF ALEKSLTQHY DRRSVRIEVT CNHCTKNLVF YNKCSLLSHA 660
RGHKEKGVVM QCSHILLKPV PADQMIVSPS SINTSTSTSTL QSPVGAGTHT VTKIQSGTIG 720
TVISAPSSTP ITPAMPLDED PSKLCRHSLK CLECNEVFQD ETSLATHFQQ AADTSGQKTC 780
TICQMLIPNQ CSYASHQRH QHKSPYTCPE CGAICRSVHF QTHVTKNCLH YTRRVGFRCV 840
HCNVVYSDVA ALKSHUGGSH CEVFYKCPIC PMAFKSAPST HSHAYTOHPG KKIGPFKLY 900
KCSMCDTVFT LQTILLYRHD QHIENQKVSV FKCPDCSLLY AQKQLMMDHI KSMHGTLKSI 960
EGPPRILGINL PLSIKPATQN SANQNKEDTK SMNGKEKLEK KSPSPVKKSM ETKKVASPGW 1020
TCWECDCLFM QRDVYISHVR KEHGKQMKKH PCRQCDKSFS SSHSLCRHNR IKHKGIRKVY 1080
ACSHCPDSRR TFTKRIJMLEK HVQLMHGIKO PDLKEMTDAT NEEBTEIKED TKVPSPKRKL 1140
EEPVLEFRPP RGATIOPLKK LKINVFKVHK CAVCGFTTEN LLQFHEHIPQ HKSDGSSYQC 1200 60 65 70 75 EEPVLEFRPP RGAITOPLKK LKINVFKVHK CAVGGFTTEN LLOFHEHIPQ HKSDGSSYQC 1200 RECGLCYTSH VSLSRHLFIV HKLKEPQPVS KQNGAGEDNQ QENKPSHEDE SPDGAVSDRK 1260 CKVCAKTFET EAALNTHMRT HGMAFIKSKR MSSAEK

### SEQ ID NO:256 PBM1 DNA sequence Nucleic Acid Accession#: AF111847

Coding sequence: 58-1608 (underlined sequence corresponds to start and stop codon)

5	1	11	21	31	41	51	
•	Ī	ī	ī	Ī	ī	ī	
	TATALACCACCA	CTCTTACCGG	TTGGCTGGGC	CAGCTICCGCC	GCGCCTCACA	COTGACGATG	60
			CATCTTGACC				120
			TGGTGCCAAA				180
10			CTCAGGGTCC				240
			TTCCAACTGG				300
			TTCCTTTTTT				360
			TGCTGCTCAG				420
			TGGCACTGAT				480
15			GGAAGATTIT				540
			AATAGCAGAA				600
			AGGTGGACAA				660
			AGAGGTATCC				720
			AAAAGGAAGT				780
20			AGCTCAAGCT				840
			AGAATCAATT				900
			AGACGAAAAG				960
			ATTTGGAAAT				1020
			GCAGGAATCA				1080
25			ATATTTTACT				1140
			CTCTAGCTGG				1200
			AACAGTTCTG				1260
			TGAGCCAGTT				1320
			ATCAGATATG				1380
30			GAGGCTGTCG				1440
			GCCAGCAGGG				1500
			CAAGCAGGGA				1560
	TTTGCTAATG	GAGTCGTGAC	TTCAATTCAG	GATCGCTACG	GTTCTTAATA	CTGAAGTCAT	1620
			ATTCCTCTTT				1680
35			GCAGATTGTT				1740
			AGAAATTCTG				1800
			TCACACCCTC				1860
	ATTTTCTTGG	AACCTTTGAT	TTCAACACTG	AGGGCCTGGA	GACCTCGGCT	CCTCCTGCTC	1920
	CTGAACCAGG	AGGCTTCATG	TGGGGGAGGA	GGAGAGGTCT	CCATGTGACA	CATGGGCTCA	1980
40			TGCTGGATGG				2040
	TTCCTTCAAA	AGACCAAAAG	TGACTGGTGT	CTCGTGTGAC	AGATTGCTTC	ATTTATGTTT	2100
			CAAATAATAT				2160
	TTATATGACC	TATAAATTTA	AAAATGTTTT	TCAGTGAGTG	CTTTTAACAA	ACTTAAGCTT	2220
	CTGCCCTGCC	AAGGGAATTA	ATGTTATCTT	GTGAAAGGTG	TTGCTGTTTG	AATTGATGAG	2280
45	AAATGGAAGA	TGAGAACTCC	CTAAGAGTTC	TCATAATAAA	TCATCTCATC	ACAAATCAAT	2340
	ACGGTATACA	GAGTTAAAGT	GGAATGAGGT	AAGAAGATAC	AGCTACAGAA	AATAGTTGCG	2400
	TGTATGGGAG	AACAGTCATT	GTAATTGGGT	AGTTTTGTTA	ATAAATATTT	TTAAATCTTG	2460
	CTTTTCAGAA	ATTACCGAAT	GTGTATAAAC	AAATAAAGAA	AAATAATTTA	GCTGTGTTTT	2520
	AGACAGCATT	AGAATATATT	GTTCAGCACA	GTAAAATATA	TTTGAAATTT	GATAAGCCAA	2580
50	AAATGTGGTT	TTGAATGAAT	ATTTTGTGAA	TCTTTCTTAA	AAGCTCAAAT	TIGTAGACTI	2640
	CTAAATAGAA	TAAACACTTG	CAGCAGAAAA	AAAAAAAAA	алалалала	АААААААА	2700
	АЛАЛАЛАЛА	AAAAAAAA	AAAAAAAAA	ААААААААА	алалалала	AAAAAAAAA	2760
	ааааааааа	ААААААААА	AAAAAAA				
55							
	OFO ID NO OF DE	1944 Dealate energy					

SEQ ID NO:257 PBM1 Protein sequence: PBM1 Protein sequence: CAB76901

60 MGDPSKQDIL TIFKRLRSVP TNKVCFDCGA KNPSWASITY GVFLCIDCSG SHRSLGVHLS 60
FRSTELDSN WSWFQLRCMQ VGGNASASSF FHQHGCSTND TNAKYNSRAA QLYREKIKSL 120
ASQATRKHGT DLWLDSCVVP PLSPPPKEED FFASHVSPEV SDTAWASAIA EPSSLTSRPV 180
ETTLENNEGG QEQGSVEGL NVPTKATLEV SSIIKKKPNQ AKKGLGAKKG SLGAQKLANT 240
CFNEIEKQAQ AADKMKEQED LAKVVSKEES IVSSLRLAYK DLEIQMKKDE KMINSKKNV 300
DSDRLGMGFG NCRSVISHSV TSDMQTTEQE SPIMAKPRKK YNDDSDDSYF TSSSSYFDEP 360
VELRSSSFSS WDDSSDSYWK KETSKDTETV LKTTGYSDRP TARRKPDYEP VENTDEAQKK 420
FGNVKAISSD MYFGRQSQAD YETRARLERL SASSSISSAD LFEEPRKQPA GNYSLSSVLP 480
NAPDMAQFKQ GVRSVAGKLS VFANGVVTSI QDRYGS

70 SEQ ID NO:258 PBM4 DNA sequence
Nucleic Acid Accession#: D30891
Coding sequence: 1-4032 (underlined sequence corresponds to start and stop codon)

75
ATGGATACTG TCATGAAGCA GACACATGCT GACACACCTG TTGATCATTG TCTATCTGGC 60
ATAAGAAAGT GTAGCAGCAC CTTTAAGCTT AAAAGTGAAG TCAACAAGCA TGAAACAGCC 120
CTTGAAATGC AGAATCCAAA TTTGAACAAT AAAGAATGTT GTTTCACCTT TACGTTGAAT 180
GGAAACTCCA GAAAATTAGA CCGTAGTGTG TTTACAGCAT ATGGTAAACC CAGCGAGAGT 240
ATCTACTCAG CCCTGAGTGC TAATGACTAT TTCATGTGAAA GGATAAAAATT AGGTTAAAT
AAGAACATTA TTGTTTATGA AGAAAAGACA ATAGATGGAC ATAAAATTT AGGAATGCCT 360
CTCAAGTGCC TGCCTAGTGA TTCTCATTTT AAAATTACAT TTGGTCAAAG AAAGAGTAGC 420

AAAGAAGATG GACACATATT ACGCCAATGT GAAAATCCAA ACATGGAATG CATTCTTTT 480 CATGTTGTTG CTATAGGAAG GACAAGAAAG AAGATTGTTA AGATCAACGA ACTTCATGAA 540 AAAGGAAGTA AACTTTGTAT TTATGCCTTG AAGGGTGAGA CTATTGAAGG AGCCTTATGC 600 AAGGATGGCC GTTTTCGGTC TGACATAGGT GAATTTGAAT GGAAACTAAA GGAAGGTCAT 660 5 AAGAAAATTT ATGGAAAACA GTCCATGGTG GATGAAGTAT CTGGAAAAGT CTTAGAAATG 720 GACATTTCAA AAAAAAAAGC ATTACAACAG AAAGATATCC ATAAAAAAAT TAAACAGAAT 780
GAAAGTGCCA CTGATGAAAT TAATCACCAG AGTCTGATAC AGTCTAAGAA AAAAGTCCAC 840 AAACCAAAGA AAGATGGAGA GACCAAAGAT GTAGAACACA GCAGAGAGCA AATTCTCCCA 900 CCTCAGGATC TAAGCCATTA TATTAAAGAT AAAACTCGCC AGACAATTCC CAGGATTAGA 960 AATTATTACT TTTGTAGTTT GCCCCGAAAA TATAGGCAAA TAAACTCACA AGTTAGACGG 1020 AGGCCGCATC TGGGTAGGCG GTATGCTATT AATCTGGATG TCCAAAAGGA GGCAATTAAT 1080 10 CTCTTAAAGA ATTATCAAAC GTTGAATGAA GCCATAATGC ATCAGTATCC GAATTTTAAA 1140 GAGGAGGCAC AGTGGGTAAG AAAATATTTT CGGGAAGAAC AAAAGAGAAT GAATCTTTCA 1200 CCAGCTAAGC AATTCAACAT ATATAAAAAG GACTTCGGAA AAATGACTGC AAATTCTGTT 1260 15 TCAGTTGCAA CCTGCGAACA GCTTACATAT TATAGCAAGT CAGTTGGGTT CATGCAATGG 1320 GACAATAATG GAAACACAGG TAATGCTACT TGCTTTGTCT TCAATGGTGG TTATATTTTC 1380 ACCTGTCGAC ATGTTGTACA TCTTATGGTG GGTAAAAACA CACATCCAAG TTTGTGGCCA 1440 GATATAATTA GCAAATGTGC GAAGGTAACC TTCACTTATA CAGAGTTCTG CCCTACTCCT 1500 GACAATTGGT TITCCATTGA GCCATGGCTT AAAGTGTCCA ATGAAAATCT AGATTATGCC 1560 ATTTTAAAAC TAAAAGAAAA TGGAAATGCG TITCCTCCAG GACTATGGCG ACAGATTTCT 1620 CCTCAACCAT CTACTGGTTT GATTTATTTA ATTGGTCATC CTGAAGGCCA GATCAAGAAA 1680 20 ATAGATGGTT GTACTGTGAT TCCTCTAAAC GAACGATTGA AAAAATATCC AAACGATTGT 1740 CAAGATGGGT TGGTAGATCT CTATGATACC ACCAGTAATG TATACTGTAT GTTTACCCAA 1800 AGAAGTTTCC TATCAGAGGT TTGGAACACA CACACGCTTA GTTATGATAC TTGTTTCTCT 1860 25 GATGGGTCCT CAGGCTCCCC AGTGTTTAAT GCATCTGGCA AATTGGTTGC TTTGCATACC 1920 TTTGGGCTTT TTTATCAACG AGGATTTAAT GTGCATGCCC TTATTGAATT TGGTTATTCT 1980 ATGGATTCTA TTCTTTGTGA TATTAAAAAG ACAAATGAGA GCTTGTATAAA ATCATTAAAT 2040 GATGAGAAAC TTGAGACCTA CGATGAAGAG AAAGCCCGGC CCAGGCCAGC CTACCGGCGA 2100 CTAGGATGCT TTCGCTTTCG CTCTCGCTTT CCAATACTCG GGACTGGGGA AACCGGGAGA 2160 ATAGAAGCAG GCAAGGACCG CCGTGGGCAC GGGGTCAGTG AGACAGGGTC CTGCTCGCGG 2220 CGTCAAGGAG GAGCGCTGTG GGTGTCCCCA GCGCAGCCAA TCGGCTTCCG AAGTAGCTGG 2280 30 AGCTICTGGAG CCTTTGCTTC CTCAAATACG AGCGGGAACT GCGTTGAGCG CTGGATTCCA 2340 GGCCGAGTGC TGGCGAGGCG CGCAGTCTCT AAAGAGCAAC AGAATAATTG CAGTACTTCT 2400 CTAATGAGGA TGGAGTCTAG AGGAGACCCA AGAGCCACAA CTAATACCCA GGCTCAAAGA 2460 35 TTCCATTCAC CTAAGAAAAA TCCAGAAGAC CAGACCATGC CCCAAAATAG GACAATATAT 2520
GTTACCTTGA AGGCTGTCAG AAAAGAGATA GAAACTCACC AAGGCCAAGA AATGCTTGTG 2580
CGTGGCACAG AAGGAATCAA AGAGTACATA AACCTTGGAA TGCCCCTCAG TTGTTTCCCT 2640 GAAGGTGGCC AGGTGGTCAT TACATTTTCC CAAAGTAAAA GTAAGCAGAA GGAAGATAAC 2700 CACATATTTG GCAGGCAGGA CAAAGCATCG ACTGAATGTG TCAAATTTTA CATTCATGCA 2760 ATTGGAATTG GGAAGTGTAA AAGAAGGATT GTTAAATGTG GGAAGCTTCA CAAAAAGGGG 2820 40 CGCAAACTCT GTGTTTATGC TTTCAAAGGA GAAACCATCA AGGATGCACT GTGCAAGGAT 2880 GGCAGATTTC TTTCCTTTCT GGAGAATGAT GATTGGAAAC TCATTGAAAA CAATGACACC 2940 ATTTTAGAAA GCACCCAGCC AGTTGATGAA TTAGAAGGCA GATACTTTCA GGTTGAGGTT 3000 GAGAAAAGAA TGOTCCCCAG TGCAGCAGCT TCTCAGAATC CTGAGTCAGA GAAAAGAAAC 3060 ACCTGTGTGT TGAGAGAACA AATCGTGGCT CAGTACCCCA GTTTGAAAAG AGAAAGTGAA 3120 AAAATCATTG AAAACTTCAA GAAAAAAATG AAAGTAAAAA ATGGGGAAAC ATTATTTGAA 3180 45 TTGCATAGAA CAACGTTTGG GAAAGTAACA AAAAATTCTT CTTCGATTAA AGTAGTGAAA 3240 CTTCTTGTAC GTCTCAGTGA CTCAGTTGGG TACTTATTCT GGGACAGTGC AACTACGGGT 3300
TACGCCACCT GCTTTGTTTT TAAAGGATTG TTCATTTTAA CTTGTCGGCA TGTAATAGAT 3360
AGCATTGTGG GAGACGGAAT AGAGCCAAGT AAGTGGGCAA CCATAATTGG TCAATGTGTA 3420 50 AGGGTGACAT TTGGTTATGA AGAGCTAAAA GACAAGGAAA CAAACTACTT TTTTGTTGAA 3480 CCTTGGTTTG AGATACATAA TGAAGAGCTT GACTATGCTG TCCTGAAACT GAAGGAAAAT 3540 GGACAACAAG TACCTATGGA ACTATATAAT GGAATTACTC CTGTGCCACT TAGTGGGTTG 3600 ATACATATTA TIGGCCATC ATATGGAGAA AAAAAGCAGA TIGATGCTIG TGCTGTGATC 3660
CCTCAGGGTC AGCGAGCAAA GAAATGTCAG GAACGTGTTC AGTCTAAAAA AGCAGAAAGT 3720
CCAGAGTATG TCCATATGTA TACTCAAAAGA AGTTTCCAGA AAATAGTTCA CAACCCTGAT 3780
GTGATTACCT ATGACACTGA ATTTTTCTTT GGGGCTTCCCCTGT GTTTGATTCA 3840
AAAGGTTCAT TGGTGGCCAT GCATGCTGCT GGCTTTGCTT ATACTTACCA AAATGAGACT 3900
CGTAGTATCA TTGAGTTTGG CTCTACCATG GAATCCATCC TCCTTGATAT TAAGCAAAGA 3960 55 60 CATAAACCAT GGTATGAAGA AGTATTTGTA AATCAGCAGG ATGTAGAAAT GATGAGTGAT 4020 GAGGACTTGT GAGAATTCAG TCTACTGGAT TTAAGGGAAT GGCTTATGGA GTTGFTATTT 4080 CGTAGGCATT GAAAATGGTT TTCTAAACTC CAAAATGGTC ATCTTATCAA TAATAATAAT 4140 CGTAGGCATT GANAATGGTT TICTAAACTC CAAAATGGTC ATCTTATCAA TAATAATAAT 4140
ATTGACCATT TCCTTATCTGC CAGGCATTTT TCTTAGGACACA TGAAGAATT AGTCCTAACA 4200
ACACTATGAG ATGGACTATA ACTTGCCCAA ATTTTTTTTT TTTTTGAGAC TGAGTCTCAC 4260
TCTGTCGCCT GGGCTGGAGT ACAGTGGTGC GATCTCAGCT CACTGCAACT TCCACCTCCC 4320
AGGTTCAAGC GATTCTTATG CCTCAGTCTC CTGAGCAGCT GGGATTACAG GCAAACGCCA 4380
CCACACCCAG CTAAATTTTT TTTTTTTTTTTTTTTTTATTTTTA AGAGACAG GGTTTCACCA 4440
TGTTGGTCAG GCGGGTCTCC AACTCCTGAC CTCGTGATCC ACCTGCCTCG GCCTTCCAAA 4500 65 TGTTGGTCAG GCGGGTCTCG AACTCCTGAC CTCGTGATCC ACCTGCCTCG GCCTTCCAAA 4500 GTGCTGGGAT TACAAGTTTG AGCCACTGCC CTGGCTAAC TTGCCCTATT TTAAAGTCAA 4560 GCAATGGGAA GAATAACAAG ATTATATAGT AATCAGTTTC ATGACACTAA AAGTCATATA 4620 GTCATAGGGT TTTTCATCT TTCATATCTT TGCCTAAATT CATTTGCTAC AGTGCAGGAA 4680 CCAAAACTTG TTCATCAT GATTCCCTAC ATCTGACATA AGGAAAGTAA GTGCTCAGAA 4740 AAATGTGCAG GTCAATAAGT TGCAAAAGTT GGGGCTGCAA TTAATGCTAA CATAAGAGAC 74800 AAATGCTTGA TTAGAAAATGA TCCCAAAAACT TCCAAAAATCT TCATATTACT 4860 GAAACTGTCG GAATATATGG GTCCTTGAAAT TCAGAAGATG ATACTCACT TCCCCATATT 4920 ACCTCCAATTA TTAATGCTAG GATTCATCT AGATTCACT TCCTCATATTACT 4880 ACTCCAATTA TTAATGTTAT GTATTTCTCA TTGTTTTACT TCTTCATGT ATTATGAAGA 5040 CTATATAGAAT GATTCAACCA AGCCTGCAAA TCTCCCTCTT GTGGAATTCC ACCTGGACCCA 5100 ATCTGTTTTC CATTTCCATT TCCAATTACT 1600 70 75 ATCTGTTTTC CATTTCCATT GCAATACTAC TAAAGCCATA CAATATCAAG CACCCTCCCT 5160

CTAGGTCCAG GGACTATCAC AGAAGAAGCA GGCATGTAAG ATTTTAAGGA CTGGTTTCGA 5220 GGGGTCGAGT GTAGGAAAAC AGCCTGTTGC ATTGTAAGAG TGATGTCACC TTGAAGAGCA 5280
GCTGGCATGA TGACTGCTGT TTGACTCCTG CATACCAAGA TATTCTGCAG CAATGTCTTT 5340
AAACAGTGCC GGTAGTACAG ATAACCCCTC ATAAAGATGC TTATCTAACC TCCCCAGTGT 5400 5 TCAGGTGTTT CACAAGAAAG TCTGAGATAT GACTAGCTAC ACGTTTTGCC AAAAATGCTT 5460 GTTATATAAA GGGTACTTTT GGGAGGGTGA GTGCCGCCAT TTAGTGGCTG CTAGAAACAT 5520 TGCTTCTGTT TGTAAGTTCC TATTAAATGT TCTTTCTGAG AAAAAAAAA A

#### 10 SEQ ID NO:259 PBM4 Protein sequence: PBM4 Protein sequence: BAB67788

MDTVMKQTHA DTPVDHCLSG IRKCSSTFKL KSEVNKHETA LEMQNPNLNN KECCFTFTLN 60 GNSRKLDRSV FTAYGKPSES IYSALSANDY FSERIKNQFN KNIVYEEKT IDGHINLGMP 120 LKCLPSDSHF KITFGQRKSS KEDGHILRQC ENPNMECILF HVVAIGRTRK KIVKINELHE 180 15 KGSKILCIYAL KGBTIEGALC KDGRFRSDIG EFEWKLKEGH KKIYGKQSMV DEVSGKVLEM 240 DISKKKALQQ KDIHKKIKQN ESATDEINHQ SLIQSKKKVH KPKKDGETKD VEHSREQILP 300 PQDLSHYIKD KTRQTIPRIR NYYPCSLPRK YRQINSQVRR RPHLGRRYAI NLDVQKEAIN 360 LLENYQTI.NE AIMHQYPNFK EEAQWVRKYF REEQKRMNLS PAKQFNIYKK DFGKMTANSV 420 SVATCEQLTY YSKSVGFMQW DNNGNTGNAT CFVFNGGYFF TCRHVVHLMV GKNTHPSLWP 480 DIISKCAKVT FTYTEFCPTP DNWFSIEPWL KVSNENLDYA ILKLKENGNA FPPGLWRQIS 540 20 PQPSTGLIYL IGHPEGQIKK IDGCTVIPLN ERLKKYPNDC QDGLVDLYDT TSNVYCMFTQ 600 RSFLSEVWNT HTLSYDTCFS DGSSGSPVFN ASGKLVALHT FGLFYQRGFN VHALEFGYS 660 MDSILCDIKK TNESLYKSLN DEKLETYDEE KARPRPAYRR LGCFRFRSRF PILGTGETGR 720 25 IEAGKDRRGH GVSETGSCSR RQGGALWVSP AQPIGFRSSW SSGAFASSNT SGNCVERWIP 780 GRVLARRAVS KEQQNNCSTS LMRMESRODP RATINTOAQR FHSPKKNPED QTMPQNRTIY 840
VTLKAVRKEI ETHQGQEMLV RGTEGIKEYI NLGMPLSCFP EGGQVVITFS QSKSKQKEDN 900
HIFGRQDKAS TECVKFYIHA IGIGKCKRRI VKCGKLHKKG RKLCVYAFKG ETIKDALCKD 960 GRFLSFLEND DWKLIENNDT ILESTOPVDE LEGRYFQVEV EKRMYPSAAA SQNPESEKRN 1020
TCVLREQIVA QYPSLKRESE KIIENFKKKM KVKNGETLFE LHRTTFGKVT KNSSSIKVVK 1080
LLVRLSDSVG YLFWDSATTG YATCFVFKGL FILTCRHVID SIVGDGIEPS KWATIIGQCV 1140 30 RVITGYEELK DKETNYFFVE PWFEIHNEEL DYAVLKLKEN GQQVFMELYN GITFVPLSGL 1200 HHIGHPYGE KKQIDACAVI PQGQRAKKCQ ERVQSKKAES PEYVHMYTQR SFQKIVHNPD 1260 VITYDTEFFF GASGSPVFDS KGSLVAMHAA GFAYTYQNET RSIEFGSTM ESILLDIKQR 1320 35 HKPWYEEVFV NQQDVEMMSD EDL

## SEQ ID NO:260 PBQ1 DNA sequence Nucleic Acid Accession#: NM_01564

11

40

Coding sequence: 489-2489 (underlined sequence corresponds to start and stop codon)

31

21

	1	<del>1</del> 1	41	31	41	57	
45	1	1	!	<u> </u>	<u> </u>	1	
43	***************************************	AAAAATACAT					60
		GAACTCTGAG					120
		TGCTGTCTGA					180
		CTCTGCTCCC					240
50		aagagtgaca					300
50		GCCATCTGAG					360
		CTGCCTGAAC					420
		ACTGACAAAC					480
		GACCGAGCGC					540
~ ~	TCGAGACCCT	CAACGAGCAG	CGCAACCGTG	GCCACTTCTG	TGACGTAACG	GTGCGCATCC	600
55	ACGGGAGCAT	GCTGCGCGCA	CACCGCTGCG	TGCTGGCAGC	CGGCAGCCCC	TTCTTCCAGG	660
	ACAAACTGCT	CCTTCCCTAC	AGCGACATCG	AGATCCCGTC	GGTGGTGTCA	GTGCAGTCAG	720
	TGCAAAAGCT	CATTGACTTC	ATGTACAGCG	GCGTGCTACG	GGTCTCGCAG	TCGGAAGCTC	780
	TGCAGATCCT	CACGGCCGCC	AGCATCCTGC	AGATCAAAAC	AGTCATCGAC	GAGTGCACGC	840
<b>60</b>	GCATCGTGTC	ACAGAACGTG	GGCGATGTGT	TCCCGGGGAT	CCAGGACTCG	GGCCAGGACA	900
60	CGCCGCGGG	CACTCCCGAG	TCAGGCACGT	CAGGCCAGAG	CAGCGACACG	GAGTCGGGCT	960
	ACCTGCAGAG	CCACCCACAG	CACAGCGTGG	ACAGGATCTA	CTCGGCACTC	TACGCGTGCT	1020
	CCATGCAGAA	TGGCAGCGGC	GAGCGCTCTT	TTTACAGCGG	CGCAGTGGTC	AGCCACCACG	1080
	AGACTGCGCT	CGGCCTGCCC	CGCGACCACC	ACATGGAAGA	CCCCAGCTGG	ATCACACGCA	1140
~~	TCCATGAGCG	CTCGCAGCAG	ATGGAGCGCT	ACCTGTCCAC	CACCCCGAG	ACCACGCACT	1200
65	GCCGCAAGCA	GCCCCGGCCT	GTGCGCATCC	AGACCCTAGT	GGGCAACATC	CACATCAAGC	1260
	AGGAGATGGA	GGACGATTAC	GACTACTACG	GGCAGCAAAG	GGTGCAGATC	CTGGAACGCA	1320
	ACGAATCCGA	GGAGTGCACG	GAAGACACAG	ACCAGGCCGA	GGGCACCGAG	AGTGAGCCCA	1380
	AAGGTGAAAG	CTTCGACTCG	GGCGTCAGCT	CCTCCATAGG	CACCGAGCCT	GACTCGGTGG	1440
	AGCAGCAGTT	TGGGCCTGGG	GCGGCGCGGG	ACAGCCAGGC	TGAACCCACC	CAACCCGAGC	1500
70	AGGCTGCAGA	AGCCCCCGCT	GAGGGTGGTC	CGCAGACAAA	CCAGCTAGAA	ACAGGTGCTT	1560
	CCTCTCCGGA	GAGAAGCAAT	GAAGTGGAGA	TGGACAGCAC	TGTTATCACT	GTCAGCAACA	1620
	GCTCCGACAA	GAGCGTCCTA	CAACAGCCTT	CGGTCAACAC	GTCCATCGGG	CAGCCATTGC	1680
	CAAGTACCCA	<b>GCTCTACTTA</b>	CGCCAGACAG	AAACCCTCAC	CAGCAACCTG	AGGATGCCTC	1740
	TGACCTTGAC	CAGCAACACG	CAGGTCATTG	GCACAGCTGG	CAACACCTAC	CTGCCAGCCC	1800
75	TCTTCACTAC	CCAGCCCGCG	GGCAGTGGCC	CCAAGCCTTT	CCTCTTCAGC	CTGCCACAGC	1860
	CCCTGGCAGG	CCAGCAGACC	CAGTTTGTGA	CAGTGTCCCA	GCCCGGTCTG	TCGACCTTTA	1920
	CTGCACAGCT	GCCAGCGCCA	CAGCCCCTGG	CCTCATCCGC	AGGCCACAGC	ACAGCCAGTG	1980
	GGCAAGGCGA	AAAAAAGCCT	TATGAGTGCA	CTCTCTGCAA	CAAGACTTTC	ACCGCCAAAC	2040
	AGAACTACGT	CAAGCACATG	TTCGTACACA	CAGGTGAGAA	GCCCCACCAA	TGCAGCATCT	2100
80		CTTCTCCTTA					2160

5	TGCACATGCG TCTCTCACAA CCCCTGCAGG AGGGGACCACA ACGACCACAT AACAAAACG GAAATGTTTT TACATGAAGA ATAGTTTCCC	CCTCCACCGG GACCCTCCTG CACACCCCA TTACGTCTGG GAGGATGCAT AACAACAACA AGGTTTCATTT ACTGTTTTTTT CAGTCTCCCT	GGAGAGAAGT GGAGAGACG GGTGCCCGCC TCCGTCTGCC GTGTCTGCC AAAACACAAC TTACTTTCTC GCCTGCTGGT CGGATGGTGG	CCTACGAGTO TGGCCCTGC; CTGGCCCCCC CAGCAAAGTT GATAAGTAGT AACAAAAAA TTTTTGTTT ACATTACATT	CTACATCTGC CAGTGCCAGC AGGCGTGGTG TGACCAAATC ATCTTTCTT GCTATGCCAC TGTTTCGTTT TCCGGAGGCT TGGTAGTCCT TGGTAGTCCT TGGTAGTCCT	TCCCTCAACG ARANGAAGT ARTGGACCC GCCTGCACGG GCCTGCACGG GACCAGTTCA CTTTCTTATG TAGATTTAA CATTTTGTAC TGGGTGAATA TCAAGAGGTC ARANANARA	2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820
15	PBQ1 Protein seq		NO:261 PBQ1 Pr 3457	oteln sequence:			
20	LLGYSDIEIP S SQNVGDVFPG NGSGERSFYS QPRPVRIQTL SFDSGVSSSI	VVSVQSVQK IQDSGQDTPR GAVVSHHETA VGNIHIKQEM STEPDSVEQQ I	LIDFMYSGVL R GTPESGTSGC A LGLPRDHHM EDDYDYYGQ FGPGAARDSQ	RVSQSEALQI ) SSDTESGYLA IE DPSWITRIH Q RVQILERNE AEPTQPEQAA	LTAASILQIK T Q SHPQHSVDR E RSQQMERYI S EECTEDTDQ LEAPAEGGPQI	A AGSPFFQDKL VIDECTRIV 12x I YSALYACSMQ LS TTPETTHCRK A EGTESEPKGE I NQLETGASSP TSNLRMPLTL	0 180 240 300 360
25	TSNTQVIGTA LPAPQPLASS . SFSLKDYLIK !	GNTYLPALFT AGHSTASGQG HMVTHTGVR	TQPAGSGPKP EKKPYECTLA YQCSICNKR	FLFSLPQPLA NKTFTAKQN FTQKSSLNVH	GQQTQFVTVS Y VKHMFVHT M RLHRGEKS	S OPGLSTFTAQ GE KPHQCSICW YE CYICKKKFSI AK FDQIEQFNDI	480 7R 540 H 600
30							
25	SEQ ID NO: 262 I Nucleic Acid Acce Coding sequence:	ssion#: Al6541		ce corresponds to	start and stop cod	ion)	
35	1	11	21	31	41	51	
40	ATGGTGGAAG AACTCTACCA CGGAAAACTC GAATTGGTGGA AATGTTGGGA AGCAGCAAAT	AGGAAACAGG CTTCTGCGCC CCTCACGATG CAGTCAGCAT AAACACCTGA	CATATOTTAC CATATOTTACA CATAGAACGAAG CATAGAAGAACA ATTAAAGGAA CATCAAACTA	ATGGTGGCAG CCATATAAA ATCAGGAGCA GACCACATAG GACTCATGCA TTGTCATTAA	ACAAGGGACA ACGACCTATG GATTTGAAGA CCTCTACTTC ACTTGTTTTC ACACTGATAA	CCCTTCTACA CCGAACTGCGT ATTACAAAGT CTCTGATAAA TGGCAATGAA AACTTTATGT	60 120 180 240 300 360
45	GGAGGTGAGG AATTTTCCTA GTAACACAAA ACTTATTCAG	ATTCTTGTGC GTGGAAATTT TATTGGTGGA AAAGCCCCTA	CAAAACAGAC TGCTAAACAT ATTAAGGTCA TGATACAGAC	ACAGGCTCAG ATTTCAAAAA TCTACATTTC TGCACCAAGA	AAAATTCTGA CAAATGAAAC CAGAATCAGC AATTTATTTC	: AGATCATGGT ACAAATAGCT : AGAACAGAAA : TAATGAAAAG : AAAAATAAAG : ATCTACGGAG	420 480 540 600 660 720
50	TTTGCAGAAC GAAAAGTGTG	ATCGAGTACC TGCAAGATAA ATTTGCCATC	AAATGGAATG	AATAAGGGAG CAGGAACATA	AACATGCATT	AGTTCTGTTT A GGCCAGACTT TATCCCAAAT	780 840 900
55	SEQ ID NO:263 Protein Accession	#: NP_066	0170				
60	NQKLQEKMT	P QGECSVAET RLDVDSLFS1	l tpeeehhmi Viesvhqisak	CR MMAKREK LLSLLEEATT	IIK ELIQTEKD	GTL RRSQSDRTE YL NDLELCVRE G EVFLQIKOPL	V 120
65	SEQ ID NO:264 F Nucleic Acid Acce Coding sequence:	ssion#: NM_01 662-27	4323 25 (underlined sec		•	•	
70	 GGGCCTACTC CCTCCAGGCT	CCGGGACCCG	 GCCGCGCGCCA	CCGCCCCCT	GCGCGCCCCG	CCGCCGCCGC	60 120
75	CTTCGCCTTC GGGGACGCAG	CCCCCCCCC	CAGCGGGCCC	GGGAAAAGCC	GCGGCGCGCG	CGCGCGCCTG	180 240
75		GGGCGGGAGG CCCCCGGAA	GGAGGTGGCA GGTAGACCGG	GGCGCGTTTG GAAGGGGAGG	CAGGAGGGGC CGGGCGGGCG	GCACCTCTTC	300 360 420 480
80	TCTAGACAGT	CTGATCCGGG	CTGGGGGCGT	GTACACTCGG	CGCACCTGCG	AGACTACAGA TTCTCGCTGC	540 600

	max 00000110		0001000001	~~~~~~	ma.cmcoca.co	000000000	660
					TAGTGGGAGG TGCTACACAT		720
					CGCAAAAACG		780
					GCGCACCGCG		840
5					TTGGGCGACG		900
•					CCAGGCGGCG		960
					TTTGGGGACA		1020
					CCCGAACTCA		1080
					GAAGTCATCA		1140
10	CGTACAGATC	CTGGTACCCC	CTGCCCGCGC	CGATATAATG	CTCTTTCGCC	CCCCTGGGAC	1200
	CTCGGACTTG	GGCTTCCCTT	TGGACATGAC	CAACGGGGCA	GCCTTGGCAG	CCAACAGCAA	1260
					CGGGCGGCTG		1320
					CGCTTGCCCA		1380
1.5					GTGGCATCCA		1440
15					AACCTGCTGG		1500
					TGCGGTCTAT		1560
					CACGGTGTCA		1620 1680
					AATGGGCTAC		1740
20					CAGGTGGCTT		1800
20					AAGCTGTCCC AGAAAAGACC		1860
					ATCTGCCAGA		1920
					CAGGTGCACA		1980
					CGAGACCGTC		2040
25	COTCCCCTCT	CATGAAGACA	AGGTGCCCTG	CCAGGTGTGT	GGGAAGTACT	TGCGGGCAGC	2100
					AGCAACTTCT		2160
					GTTAAAACCC		2220
					AATGGGGGAG		2280 \
	CTGCGCCAGG	ACCTATGGCA	ACAAAGAAGG	CCAGAAATGC	TCACATCAGG	ATCCGATTGA	2340
30	GAGCTCTGAC	TCCTATGGTG	ACCTCTCAGA	TGCCAGCGAC	CTGAAGACGC	CAGAGAAGCA	2400
	GAGTGCCAAT	GGCTCTTTCT	CCTGCGACAT	GGCAGTCCCC	AAAAACAAAA	TGGAGTCTGA	2460
					TTCCGCTCTA		2520
					GCCCCCTGG		2580
25					TCTCTCCTCG		2640
35					GATCCTGAGG		2700
					CCCACGGAAA		2760 2820
					GTTTGGGTTC		2880
					TCTGCAGAAA		2940
40					CCAAGGCAAA		3000
70					TTCTTAGTGA		3060
					GTCCCCTCCC		3120
					CTAGGGTCTC		3180
					CATCCCATGG		3240
45					GGAGGGCTCC		3300
	GAGCCCTGCT	TGGAGGCGAG	CATTITCACT	GCTAGGACAA	GCTCAGCTGT	TGAGGACACC	3360
					AACATGCTGT		3420
	TTCTCTAATT	ATTATTATTA	TIGTTATTAT	TTTTTAGGAC	CAGTTGTAGT	GAATTGCTAC	3480
50					CAGTCACACA		3540
50					GTTGATTGTT		3600
	GGAAGAAATA	GITTTATGCA	AAATTTTAAA	AAATGCCAGT	CTGGTCAGGG	AAGTAGGGGG	3660
					AGGTAGGGAC		3720
					GATGTGAATT	GATCTGATCA	3780
55	GACTGTATTA	AAAATGTTAG	TACATTACTC	TA			
22							
	050 ID NO.005	nnam n					
	Protein Accessi	PBY7 Protein se					
	Protein Accessi	on#: NP_1	14439				
60	A GED VIDA PO	c procurvo	e ductement	NIT NOODENIC	CDECDVATD	GDE SFPAHRA	NT A 60
00						ITIS SKVFGDIL	
						DIMLFRPPGT	
	CUI CEDI DW.	TNGANIAN	N GIAGSMOP	FE EAARAAG	AL AGOASLEY	/LP GVDRLPMV	7AG 240
	PL SPOLLTSP	FPSVASSAPP I	TOKRORGRE	RKANILDSMI	GSPGGLREAG	ILPCGLCGKV	300
65						R TRKQVACEIC	
•	GKIFRDVYHI	NRHKLSHSG	E KPYSCPVCG	LRFKRKDRM	SY HVRSHDG	VG KPYICQSC	GK 420
	GFSRPDHLNO	HIKOVHTSE	R PHKCOTCNA	S FATRDRLRS	H LACHEDKY	PC QVCGKYLR	AA 480
						CT PĒKQSANGS	
	SCDMAVPKN	K MESDGEKK	YP CPECGSFF	RŠ KSYLNKHI	QK VHVRALG	GPL GDLGPALG	SP 600
70				VDQQPMGPE			
		PBY9 DNA seque					
95	Nucleic Acid Acc		12429				
75	Coding sequence	a: 174-13	85 (underlined se	quence correspon	ds to start and sto	p codon)	
					44		
	1	11	21	31	41	51	
	CCCLD CANCE	000000000	I COMPANY A CO	l Cocceccom	CCCTCCCACC	#CCCCCCCCC	60
80	CCCCTACTCCC	CULCUCUGGA	TOUTTTARGA	CCCCCCTCTT	GGCTGCCAGC CGAGTCTGTG	CACCAGCCCC	120
00	-	CIGGGACTIT	W1000010			CICCAICAGE	

```
TGCCGCACCC GCCGCCTCCC GCCCCCAAAC CCCATCCCCG CGGTTGAGCC ACGATGAGCG
            TOTAL CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE 
                                                                                                                                     300
             GAGCCAGAAG CTTCGACCTG CAGAAGTCGG AGGCCATGCT CCGGAAGCAT GTGGAGTTCC
                                                                                                                                     360
            GRANGCARA GACATTGAC ACATCATTA GCTGGCAGC TCCAGAGGTG ATCCAACAGT
ATCTGTCAGG GGGTATGTGT GGCTATGACC TGGATGGCTG CCCAGTCTGG TACGACATAA
                                                                                                                                     480
            TTGGACCTCT GGATGCCAAG GGTCTGCTGT TCTCAGCCTC CAAACAGGAC CTGCTGAGGA
CCAAGATGCG GGAGTGTGAG CTGCTTCTGC AAGAGTGTGC CCACCAGACC ACAAAGTTGG
                                                                                                                                     540
            GGAGGAAGGT GGAGACCATC ACCATAATTT ATGACTGCGA GGGGCTTGGC CTCAAGCATC
10
             TCTGGAAGCC TGCTGTGGAG GCCTATGGAG AGTTTCTCTG CATGTTTGAG GAAAATTATC
                                                                                                                                     720
            CCGAAACACT GAAGCGTCTT TTTGTTGTTA AAGCCCCCAA ACTGTTTCCT GTGGCCTATA
            ACCTCATCAA ACCCTTCCTG AGTGAGGACA CTCGTAAGAA GATCATGGTC CTGGGAGCAA
            ATTGGAAGGA GGTTTTACTG AAACATATCA GCCCTGACCA GGTGCCTGTG GAGTATGGGG
GCACCATGAC TGACCCTGAT GGAAACCCCA AGTGCAAATC CAAGATCAAC TACGGGGGTG
                                                                                                                                     900
15
            ACATCCCCAG GAAGTATTAT GTGCGAGACC AGGTGAAACA GCAGTATGAA CACAGCGTGC
                                                                                                                                  1020
             AGATTTCCCG TGGCTCCTCC CACCAAGTGG AGTATGAGAT CCTCTTCCCT GGCTGTGTCC
                                                                                                                                  1080
             TCAGGTGGCA GTTTATGTCA GATGGAGCGG ATGTTGGTTT TGGGATTTTC CTGAAGACCA
                                                                                                                                  1140
            AGATGGGAGA GAGGCAGCGG GCAGGGGAGA TGACAGAGGT GCTGCCCAAC CAGAGGTACA
                                                                                                                                   1200
            ACTOCCACOT GGTCCCTGAA 'GATGGGACCC TCACCTGCAG TGATCCTGGC ATCTATGTCC
TGCGGTTTGA CAACACCTAC AGCTTCATTC ATGCCAAGAA GGTCAATTC ACTGTGGAGG
                                                                                                                                  1260
20
                                                                                                                                  1320
            TCCTGCTTCC AGACAAAGCC TCAGAAGAGA AGATGAAACA GCTGGGGGCA GGCACCCCGA
                                                                                                                                  1380
             AATAACACCT TCTCCTATAG CAGGCCTGGC CCCCTCAGTG TCTCCCTGTC AATTTCTACC
                                                                                                                                  1440
            CCTTGTAGCA GTCATTTTCG CACAACCCTG AAGCCCAAAG AAACTGGGCT GGAGGACAGA
                                                                                                                                  1500
                                                                                                                                  1560
            CCTCAGGAGC TITCATTICA GITAGGCAGA GGAAGAGCGA CIGCAGIGGG TCTCCGIGTC
25
             TATCAAATAC CTAAGGAGTC CCCAGGAGCT GGCTGGCCAT CGTGATAGGA TCTGTCTGTC
                                                                                                                                  1620
            CTOTARACTO TOCCARCTTC ACCTOTCCAG GGACAGCGAA GCTGGGGGTG GCGGGGGCA
                                                                                                                                   1680
                                                                                                                                  1740
            TGTACCACAG GGTGGCAGCA GGGAAAAAA TTAGAAAAGG GTGAAAGATT GGGACTTAAC
             ACTTCAGGGA AGTCAGCTGC CGGGGAGAAA CTTGCTCCTA AATGAACACA TAAGTTTAGA
                                                                                                                                  1800
            TCCCAATGAG GAGTAGCAGG GTAGCTGGTT GCTAGAGTTA CGGTGGGGAT CAGAAACTCT
                                                                                                                                  1860
30
            TCCAAACATT TTAGCACTGA GGCTGGGGTA GCTTTTGGCT TTTCCCAGGT CTCAGGAGGT
                                                                                                                                   1920
             GGCCTGAGTC AGCACACATC TTCCCACTCG GTAGACAGGC TGGCCTCTCC CTCACTTTGA
                                                                                                                                  1980
            GACTITGGCA ACTCCTGGGC CACACGGCCT GCCTCTTTGA TTACTAATGA TTGTCAGTGA
                                                                                                                                  2040
            CTCAGAGCTT CCTGGGACTT CGGGTACCCA CCCGCTGTTC TCCATGCAAA CAAAGCGCCA
                                                                                                                                  2100
             GGGAAATGAC CCACAGGGAT CGCAGCTGCA GGGAGGGCCA GGGAGGTTGG GGGTGGGAGT
                                                                                                                                  2160
35
            GAATGCTAAA AGCAGATCGT CCAGTGCCCT TTTCAGTGCT ACCGGCCTCT CACCAAGCAG
                                                                                                                                   2220
            TCCTCCATGT GAGCAACCCC GAGACAAAAA TGCTAAGTGG GATCAAGAGA GCAGCACTCG
                                                                                                                                  2280
            GAGAGGGTGT TTGCCAGTCT GAGTGTCCCG CGGTGCCCGC CAACCCGCTT CCTGACTGAC
CTGAGCAAGG TCTTACTAAG CAGTCCCATC TCTGTGGGAG GCATGCAACG CGTGCAGGGA
                                                                                                                                  2340
                                                                                                                                  2400
            GTTCAGGTGC CGGTCGGCGT AGCCAGGCCT GGAGGCCCCC CAGGCAGGAG GCCGCCCAAA
                                                                                                                                  2460
40
            GCCGGGCCG GCGTCTCGCA GACTAGGGG TGGGGGCGGC CACAGACGGC CTCGAAACCA
CAGCCTTAC CCCAATCCCA CGAGCCCCGC CAACGAACCA CAGGTGCTGG GCTTTAGAGA
                                                                                                                                  2520
            ACATGGGAAG GCGGCCCCAG ACCTGGCGGG AACGCCTTTC CCTCAGAGCC AGGCCCCGGC
CCCTCTGGG AACCTCATCT TGCGAAGCTG AGGGAGCTCA GGGCAAAGGC CAGGCTAGCG
                                                                                                                                  2640
                                                                                                                                  2700
             CGGACCGGAA GGGGCCGAGG CTGCACGGGC CTCTGCCAGA ACGCTCAGGA CATCCCGGCC 2760
45
             TGGGTTTACA ACGCTGTTAG GAAAATTAAC CAATGAATAA AGCAACGTTC AGTGCGCA
            SEQ ID NO:267 PBY9 Protein sequence:
50
            MSGRVGDLSP RQKEALAKFR ENVQDVLPAL PNPDDYFLLR WLRARSFDLQ KSEAMLRKHV 60
            EFRKOKDIDN IISWOPPEVI QQYLSGGMCG YDLDGCPVWY DIIGPLDAKG ILFSASKQDL 120
LRTKMRECEL LLOECAHOTT KLGRKVETIT IIYDCEGLGL KHLWKPAVEA YGEFLCMFEE 180
            NYPETLKRLF VVKAPKLFPV AYNLIKPFLS EDTRKKIMVL GANWKEVLLK HISPDQVPVE 240
55
             YGGTMTDPDG NPKCKSKINY GGDIPRKYYV RDQVKQQYEH SVQISRGSSH QVEYEILFPG 300
CVLRWQFMSD GADVGFGIFL KTKMGERQRA GEMTEVLFNQ RYNSHLVFED GTLTCSDPGI 360
             YVLRFDNTYS FIHAKKVNFT VEVILPDKAS EEKMKOLGAG TPK
60
            SEQ ID NO:268 PBH8 DNA sequence
Nucleic Acid Accession#: XM_009756
                                          301-1440 (underlined sequence corresponds to start and stop codon)
             Coding sequence:
65
             GTGGGGACAG CCGAGCCGCG CCGGGCCCCT GGACGGCGTC GCCAAGGAGC TGGGATCGCA
             CTTGCTGCAG ACTTTGGATG GATTTGTTTT TGTGGTAGCA TCTGATGGCA AAATCATGTA
            TATATCCGAG ACCECTTCTG TCCATTTAGG CTTATCCCAG GTGGAGCTCA CGGGCAACAG
TATTTATGAA TACATCCATC CTTCTGACCA CGATGAGATG ACCECTGTCC TCACGGCCCA
                                                                                                                                     180
70
             CCAGCCGCTG CACCACCACC TGCTCCAAGG TATGAGATAG AGAGGTCGTT CTTTCTTCGA
                                                                                                                                     300
            ATGAANTOTO TCTTGGCGAA AAGGAACGCG GGCCTGACCT GCAGCGGATA CAAGGTCATC CACTGCAGTG GCTACTTGAA GATCAGGCAG TATATGCTGG ACATGTCCCT GTACGACTCC
                                                                                                                                     360
             TGCTACCAGA TTGTGGGGCT GGTGGCCGTG GGCCAGTCGC TGCCACCCAG TGCCATCACC
                                                                                                                                      480
             GAGATCAAGC TGTACAGTAA CATGTTCATG TTCAGGGCCA GCCTTGACCT GAAGCTGATA
                                                                                                                                     540
75
             TTCCTGGATT CCAGGGTGAC CGAGGTGACG GGGTACGAGC CGCAGGACCT GATCGAGAAG
            ACCCTATACC ATCACTICCA CGGCTGCGAC GTGTTCCACC TCGGCTACGC ACACCACCTC CTGTTGGTGA AGGGCCAGGT CACCACCAAG TACTACCGGC TGCTGTCCAA GCGGGGGGGG
                                                                                                                                     660
                                                                                                                                      720
```

TGGGTGTGGG TGCAGAGCTA CGCCACCGTG GTGCACAACA GCCGCTCGTC CCGGCCCCAC

TECATOSTGA GTGTCAATTA TGTACTCACG GAGATTGAAT ACAAGGAACT TCAGCTGTCC
CTGGAGCAGG TGTCCACTGC CAAGTCCCAG GACTCCTGGA GGACCGCCTT GTCTACCTCA

80

780

PCT/US01/32045 WO 02/30268

CAAGAAACTA GGAAATTAGT GAAACCCAAA AATACCAAGA TGAAGACAAA GCTGAGAACA
AACCCTTACC CCCCACAGCA ATACAGCTCG TTCCAAATGG ACAAACTGGA ATGCGGCCAG 960 1020 CTCGGAAACT GGAGAGCCAG TCCCCCTGCA AGCGCTGCTG CTCCTCCAGA ACTGCAGCCC CACTCAGAAA GCAGTGACCT TCTGTACACG CCATCCTACA GCCTGCCCTT CTCCTACCAT TACGGACACT TCCCTCTGGA CTCTCACGTC TTCAGGAGGA AAAAGCCAAT GTTGCCGGCC 1140 5 1200 AAGTTCGGGC AGCCCCAAGG ATCCCCTTGT GAGGTGGCAC GCTTTTTCCT GAGCACACTG 1260 CCAGCCAGCG GTGAATGCCA GTGGCATTAT GCCAACCCC TAGTGCCTAG CAGCTCGTCT CCAGCTAAAA ATCCTCCAGA GCCACCGGCG AACACTGCTA GGCACAGCCT GGTGCCAAGC 1320 1380 TACGAAGGCA AGCAGATGTC CTCTGCGGAG ATACCGCCAG CTCCCCAGGA CGCAGACTGA 10 CTCCTGTTTG CTCGCTGGAC CAAC SEQ ID NO:269 PBH8 Protein sequence: Protein Accession #: 15 MKEKSKNAAK TRREKENGEF YELAKLLPLP SAITSQLDKA SURLTTSYL KMRAVFPEGL 60 GDAWGQPSRA GPLDGVAKEL GSHLLQTLDG FVFVVASDGK IMYISETASV HIGLSQVELT 120 GNSIYEYIHP SDHDEMTAVL TAHQPLHHHL LQEYEIERSF FLRMKCVLAK RNAGLTCSGY 180 KVIHCSGYLK IRQYMLDMSI. YDSCYQIVGL VAVGQSLPPS AITEIKLYSN MFMFRASLDL 240 20 KLIFLDSRVT EVTGYEFQDL IEKTLYHHVH GCDVFHLRYA HHLLLVKGQV TTKYYRLLSK 300 RGGWVWVQSY ATVVHNSRSS RPHCIVSVNY VLTEIEYKEL QLSLEQVSTA KSQDSWRTAL 360 STSQETRKLV KPKNTKMKTK LRTNPYPPQQ YSSFQMDKLE CGQLGNWRAS PPASAAAPPE 420 LQPHSESSDL LYTPSYSLPF SYHYGHFPLD SHVFSSKKPM LPAKFGQPQG SPCEVARFFL 480 STLPASGECQ WHYANPLVPS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRFGEDTAP 540 PSFPSCGHYR EEPALGPAKA ARQAARDGAR LALARAAPEC CAPPTPEAPG APAQLPFVLL 600 25 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYLGAS 660 30 SEQ ID NO:270 PBJ9 DNA sequence: Nucleic Acid Accession#: AA760894 GGCACGAGGA GAAGATGTGG CTTGCTCATG CTTGACTTCT GCCATGGTTG TGAGGCCTCC 60 CCAGCCATGT GGAACTGTTT TCAGGTGCTG GTTCCATGGC TCTTCCTGAG CCGAAAATAA 120 GGAAACTCCA TAGACCTTGT CCACTGGAAC TCGTTCCCAT CTACCCTCCA CTCTATCCAG 180 35 GGTGATGGAT CTCTGCAGTA AGTGGAAGAG TTCTTCATGG CCCCCAAGGT TATATCCATC 240 TAGAACTICA GCACGTAATT TCATCTGGAA ATAGTGCCTT TGTGGATATA AGTTAGGTAA 300 AACTGAAGAT GAGATCATAC TGGATTAGGA TGGGATCTAA ATCCAATGAA AATGTCTTCA 360 TAAAAAACAG GAAAGAACCC ATAGAAACAC AAGGAAGAAG GTCATGTGAA GATGGAGGCA 420 40 GAGATTGGAG GGATGCAGCC ACCGGCCCAG GAATGCCAGC AGCCACCCAG AAGCTGGAAG 480
GAAATGAGGG ATTCTCTCCT AGAACCTTTA GAGAGRACAT GGTCCTGTGA ACAGCTTGAT 540
TTTGGACTTG CCCATAGCTT GTATACTCTT ACTTTGGATA CAATTTTATC CAAACTTGGC 600 TAAACAGTTT CTCAGCCTAT GGAAAATTTA AAATGGAGAA GATTCAACTC GATTCTTACA 660 GATTCAAAGC AAGAAAATGA TGGGAACATA GGAGGAGACC AAGAAAGCCT ATAAAAAGCA 720 AAAATATGAA GTGAACATTG TGGTAGCTTT AAGATGTTTA GTGTAGCTGC AGGCACCCTA 780 45 TACACATGAA AACCCCCAAG GGGAATCCCC ATATCACAGT GTAGTGTGAT ATTTGACATT 840 YGTGATCATY TAGAGATGTA CAGAAAAGGT GAATCTGTGT TCTGTATATT CTGCCTAAGG 900
CAAAGAAATG TTTAGCTYTC TTTAAAATAG TTCCATAATT TTTYYTAAAA AGCTTTGCT 960
GAAAACTGTA AGCTTCCCAT ATCTGGAGCA TTTCACTTTA AATATTTGGA TAAATATGTT 1020 50 ATCTTCTTAC TTGGACATTT CATGTGTTTA GGGATTGTYT TYTAAATTCT TCCTAATTCA 1080
TATAGCTGCT AACACTTCCC GCAGAGCTAA ACCATTACAG ANTATGAAAT AAAGACCCTA 1140 TTGATTTGAA CTTAAAAAAA AAAAMAMAAA AAAAAAAAA AAAAAAAAT GA SEQ ID NO:271 PBQ4 DNA sequence 55 Nucleic Acid Accession#: AA149579 Coding sequence: 1-1363 (underlined sequence corresponds to start and stop codon) 60 ATGGAATCAA TCTCTATGAT GGGAAGCCCT AAGAGCCTTA GTGAAACTTG TTTACCTAAT GGCATAAATG GTATCAAAGA TGCAAGGAAG GTCACTGTAG GTGTGATTGG AAGTGGAGAT 120 GOLARIAMA CATRACCAN TOCACTRATIA SCATGOGCT ATCATTGG CATAGGAAGT AGAATCCTA AGTTGCTTC TGAATTATTT CCTCATGTG TAGATGTAC TCATCATGAA 180 GATGCTCTCA CAAAAACAAA TATAATATTT GTTGCTATAC ACAGAGAACA TTATACCTCC CTGTGGGACC TGAGACATCT GCTTGTGGGT AAAATCCTGA TTGATGTGAG CAATAACATG 300 65 360 AGGATAAACC AGTACCCAGA ATCCAATGCT GAATATTTGG CTTCATTATT CCCAGATTCT 420 TTGATTGTCA AAGGATTTAA TGTTGTCTCA GCTTGGGCAC TTCAGTTAGG ACCTAAGGAT GCCAGCCGGC AGGTTTATAT ATGCAGCAAC AATATTCAAG CGCGACAACA GGTTATTGAA 480 540 CTTGCCCGCC AGTTGAATTT CATTCCCATT GACTTGGGAT CCTTATCATC AGCCAGAGAG ATTGAAAATT TACCCCTACG ACTCTTTACT CTCTGGAGAG GGCCAGTGGT GGTAGCTATA 70 660 AGCTTGGCCA CATTTTTTT CCTTTATTCC TTTGTCAGAG ATGTGATTCA TCCATATGCT 720 AGAAACCAAC AGAGTGACTT TTACAAAATT CCTATAGAGA TTGTGAATAA AACCTTACCT ATAGTTGCCA TTACTTTGCT CTCCCTAGTA TACCTCGCAG GTCTTCTGGC AGCTGCTTAT 780 840 CAACTTTATT ACGGCACCAA GTATAGGAGA TTTCCACCTT GGTTGGAAAC CTGGTTACAG 900 75 TGTAGAAAAC AGCTTGGATT ACTAAGTTTT TTCTTCGCTA TGGTCCATGT TGCCTACAGC CTCTGCTTAC CGATGAGAAG GTCAGAGAGA TATTTGTTTC TCAACATGGC TTATCAGCAG GTTCATGCAA ATATTGAAAA CTCTTGGAAT GAGGAAGAAG TTTGGAGAAT TGAAATGTAT 960

ATCTCCTTTG GCATAATGAG CCTTGGCTTA CTTTCCCTCC TGGCAGTCAC TTCTATCCCT TCAGTGAGCA ATGCTTTANA CTGGAGAGAA TTCAGTTTTA TTCAGTCTAC ACTTGGATAT

1020 1080

GTCGCTCTGC TCATAAGTAC TTTCCATGTT TTAATTTATG GATGGAAACG AGCTTTTGAG 1260 GARGAGTACT ACAGATTITA TACACCACCA AACTITGITC TIGCTCTTGT TITGCCCTCA 1320 ATTGTAATTC TGGATCTTTT GCAGCTTTGC AGATACCCAG ACTGA 5 SEQ ID NO:272 PBQ4 Protein sequence: Protein Accession #: 11 21 31 41 51 10 MESISMMGSP KSLSETCLPN GINGIKDARK VTVGVIGSGD FAKSLTIRLI RCGYHVVIGS RNPKFASEFF PHVVDVTHHE DALTKTNIIF VAIHREHYTS LWDLRHLLVG KILIDVSNNM RINQYPESNA EYLASLFPDS LIVKGFNVVS AWALQLGPKD ASRQVYICSN NIQARQQVIE 120 180 LARQLIFIPI DLGSLSSARE IENLPLRLPT LWRGPVVVAI SLATFFFLYS FVRDVIHPYA 15 RNQQSDFYKI PIEIVNKTLP IVAITLLSLV YLAGLLARAY QLYYGTKYRR FPPWLETWLQ CRKQLGLLSF FFAMVHVAYS LCLPMRRSER YLFLNMAYQQ VHANIENSWN EEBVWRIEMY 300 360 ISTGINSIGL LSLLAVTSIP SVSNALNWRE FSFIQSTLGY VALLISTFHV LIYGWKRAFE EEYYRFYTPP NFVLALVLPS IVILDLIQLC RYPD 20 SEQ ID NO:273 PBQ5 DNA SEQUENCE Nucleic Acid Accession#: NM_001973 150-1445 (underlined sequence corresponds to start and stop codon) Coding sequence: 25 CCGCCGCCTT CTACTCCGCC GCGGGGTCG CAGCGGCTGC CGCGCCGTCC TCGAGTTTCC AGCGTGAGGA GGAGGCTGAG GGCGGAGAGG CGCATCGTGT TCGAGGCGGA GACCGAGGGG 120 GAGCCCCGCG CGCGGCGTCG CTCATTGCTA TGGACAGTGC TATCACCCTG TGGCAGTTCC 180 TYCTYCAGCT CCTGCAGAAG CCTCAGAACA AGCACATGAT CTGTTGGACC TCTAATGATG 240 30 GGCAGTTTAA GCTTTTGCAG GCAGAAGAGG TGGCTCGTCT CTGGGGGATT CGCAAGAACA 300 AGCCTAACAT GAATTATGAC AAACTCAGCC GAGCCCTCAG ATACTATTAT GTAAAGAATA TCATCAAAAA AGTGAATGGT CAGAAGTTTG TGTACAAGTT TGTCTCTTAT CCAGAGATTT TGAACATGGA TCCAATGACA GTGGGCAGGA TTGAGGGTGA CTGTGAAAGT TTAAACTTCA 420 GTGAAGTCAG CAGCAGTTCC AAAGATGTGG AGAATGGAGG GAAAGATAAA CCACCTCAGC 540 35 CTGGTGCCAA GACCTCTAGC CGCAATGACT ACATACACTC TGGCTTATAT TCTTCATTA CTCTCAACTC TTTGAACTCC TCCAATGTAA AGCTTTTCAA ATTGATAAAG ACTGAGAATC 600 CAGCCGAGAA ACTGGCAGAG AAAAAATCTC CTCAGGAGCC CACACCATCT GTCATCAAAT 720 TTGTCACGAC ACCTTCCAAA AAGCCACCAG TTGAACCTGT TGCTGCCACC ATTTCAATTG 780 GCCCAAGTAT TTCTCCATCT TCAGAAGAAA CTATCCAAGC TTTGGAGACA TTGGTTTCCC 40 CAAAACTGCC TTCCCTGGAA GCCCCAACCT CTGCCTCTAA CGTAATGACT GCTTTTGCCA CCACACCACC CATTTCGTCC ATACCCCCTT TGCAGGAACC TCCCAGAACA CCTTCACCAC 900 960 CACTGAGTTC TCACCCAGAC ATCGACACAG ACATTGATTC AGTGGCTTCT CAGCCAATGG AACTICCAGA GAATITGICT CIGGAGCCIA AAGACCAGGA TICAGICITG CIAGAAAAGG ACAAAGTAAA TAATICAICA AGATCCAAGA AACCCAAAGG GITAGGACIG GCACCCACCC 1080 1140 45 TTGTGATCAC GAGCAGTGAT CCAAGCCCAC TGGGAATACT GAGCCCATCT CTCCCTACAG CTTCTCTTAC ACCAGCATTT TTTTCACAGA CACCCATCAT ACTGACTCCA AGCCCCTTGC
TCTCCAGTAT CCACTTCTGG AGTACTCTCA GTCCTGTTGC TCCCCTAAGT CCAGCCAGAC 1260 1320 TGCAAGGTGC TAACACACTT TTCCAGTTTC CTTCTGTACT GAACAGTCAT GGGCCATTCA 1380 CTCTGTCTGG GCTGGATGGA CCTTCCACCC CTGGCCCATT TTCCCCAGAC CTACAGAAGA CATAACCTAT GCACTTGTGG AATGAGAGAA CCGAGGAACG AAGAAACAGA CATTCAACAT 1440 50 1500 GATTGCATTT GAAGTGAGCA ATTGATAGTT CTACAATGCT GATAATAGAC TATTGTGATT TTTGCCATTC CCCATTGAA ACATCTITTT AGGATTCTCT TTGAATAGGA CTCAAGTTGG ACTATATGTA TAAAAATGCC TTAATTGGAG TCTAAACTCC ACCTCCTCT GTCTTTTCCT 1620 1680 TITCTITTIC TITCCITCCT TCCTITTCIT TTCTCCTTTA AAAATATTTT GAGCTITGTG 55 CTGAAGAACT TTTTGGTGGG CTTTAGTGAC TGTGCTTTGC AAAAGCAATT AAGAACAAAG 1800 TTACTCCTTC TGGCTATTGG GACCCTTTGG CCAGGAAAAA TTATGCTTAG AATCTATTAT AAA AAAAAAA 60 SEQ ID NO:274 PBQ5 Protein sequence: Protein Accession #: NP_001864 MDSATTLWOF LLQLLQKPQN KHMICWTSND GOFKLLQAEE VARLWGIRKN KPNMNYDKLS 60 RALRYYYVKN IIKKVNGQKF VYKFVSYPEI LNMDPMTVGR IEGDCESLNF SEVSSSSKDV 120 65 ENGGKDKPPQ PGAKTSSRND YIHSGLYSSF TLNSLNSSNV KLFKLIKTEN PAEKLAEKKS 180 POEPTPSVIK FYTTPSKKPP VEPVAATISI GPSISPSSEE TIQALETLVS PKLPSLEAPT 240 SASNVMTAFA TTPPISSIPP LQEPPRTPSP PLSSHPDIDT DIDSVASQPM ELPENLSLEP 300 KDQDSVLLEK DKVNNSSRSK KPKGLGLAPT LVITSSDPSP LGILSPSLPT ASLTPAFFSQ 360 70 TPIILTPSPL LSSIHFWSTL SPVAPLSPAR LQGANTLFQF PSVLNSHGPF TLSGLDGPST 420 PGPFSPDLOK T SEQ ID NO:275 PBY3 DNA SEQUENCE 75 Nucleic Acid Accession#: AB040921 131-2560 (underlined sequence corresponds to start and stop codon) Coding sequence: 416

	AATCAGGAAC	AGATCATATA	TTGACCGAGA	TTCTGAGTAT	CTCTTGCAAG	AAAATGAACC	60
	AGATGGAACT	TTAGACCAAA	AATTATTGGA	AGATTTACAA	AAGAAAAAA	ATGACCTTCG	120
	GTATATTGAA	ATGCAGCATT	TCAGAGAAAA	GCTGCCTTCG	TATGGAATGC	AAAAGGAATT	180
_	GGTAAATTTA	ATTGATAACC	ATCAGGTAAC	AGTAATAAGT	GGTGAAACTG	GTTGTGGCAA	240
5	AACCACTCAA	GTTACTCAGT	TCATTTTGGA	TAACTACATT	GAAAGAGGAA	AAGGATCTGC	300
	TTGCAGAATA	GTTTGTACTC	AGCCAAGAAG	AATTAGTGCC	ATTTCAGTTG	CGGAAAGAGT	360
	AGCTGCAGAA	AGGGCAGAAT	CTTGTGGCAG	TGGTAATAGT	ACTGGATATC	AAATTCGTCT	420
	CCAGAGTCGG	TTGCCAAGGA	AACAGGGTTC	TATCTTATAC	TGTACAACAG	GAATCATCCT	480
				CAGTGTTAGT			540
10				AATGACTGTT			600
				TGCAACATTG			660
				ACCTGGTTTT			720
				GTATGTTCCA			780
				TGTAAATAGA			840
15				TGTAAGGGAA			900
				GGATGATAAA			960
				AGAGGATGGT			1020
				TCTCTTGATG			1080
				ACTGATGCCT			1140
20				AATAGTAATT			1200
				GATAGATGGA			1260
				GTCCGCTGAG			1320
				TCAACCTGGT			1380
				TCAACTGCCA			1440
25				AAGGCTAGGT			1500
25				AGTGTTACTC			1560
				GACACCTCTT			1620
				TCTTTTTGGA			1680
				TTTCAAAGAT			1740
30				GGAATTGGCA			1800
50							1860
				GGAAGAGGCT			1920
	CGAAAAGGAC	TATTGCTGGG	ARTATTTTCT	GTCTTCAAAC	ACACTGCAGA	TOCTOCATAA	1980
				TGGAGCTGGA			2040
35				TAATGAGAAG			
<i>JJ</i>				TCGACTAAAT			2100
				GGTTGCTGTT			2160
						GAACAAGCAG	2220
						TTGGAGGTGA	2280
40				AACTATTGCT			2340
40				TAAGGAATTA			2400
	TCTGCAAGAG	AAGATTGAAA	GTCCTCATCC	TGTAGACTGG	AATGACACTA	AATCCAGAGA	2460
	CTGTGCAGTA	CTGTCAGCTA	TTATAGACTT	GATCAAAACA	CAGGAAAAGG	CAACTCCCAG	2520
	GAACTTTCCG	CCACGATTCC	AGGATGGATA	TTACAGC <u>TGA</u>	CAGCTTTTCA	GGGGTGGTCT	2580
45	GAAAAGCCAG	TTTGACAGCC	ATTCTTCATC	ATTGTTTĀĀĀ	TTTTGGCTGG	ATGCCAAACC	2640
45				TAGAAGCCTT			2700
				TATATATATA			2760
				GGTCATGCCC			2820
				AGAAATTCCT			2880
50				CACCAGTAAA			2940
50				CACATTTTTT			3000
	agtaaattaa	TTTGTTGTAA	TAAAGTCCAG	TATTTAATAA	AATGTACAAT	GTTAAATCTC	
	SEQ ID NO:276 PI	3Y3 Protein seque	nce:				
	Protein Accession	BAA960	12				
55							
	IRNRSYIDRD S	EYLLOENEP D	GTLDOKLLE	DLOKKKNDLR	YIEMOHFREI	LPSYGMQKE	L 60
						ISAISVAERV 1	
						VSHIVLDEI 1	
	HERNI OSDVI.	MIVVKDLLNI	FRSDI KVII M	ATINAEKES	E YEGNCPMIH	I PGFTFPVVEY	240
60	II FOVIEKIR Y	VPEOKEHRS (	FKRGEMOGH	VNROEKEEKI	AIYKERWPD	Y VRELRRRYS	A 300
00	CLYDALEWWE	DUKADI NI IA	AI ID VIVI EE	EDGAII VEI P	רוא דיפוארושיב	LLMSQVMFKS	360
						GGKIKETH 42	
						DY QLPEILRT	
65						TPLGVHLARL	
UJ						LAKDTRSDH (	
						HLL GAGFVSSF	
						VAVHPKSVN'	
						TIAVDEWIVE	
70			QEKIESPHP V	DWNDTKSRD	CAVLSAIIDL I	KTQEKATPR 8	54U
70	NFPPRFQDGY	YS					

SEQ ID NO:277 PBY6 DNA SEQUENCE

Nucleic Acid Accessional: AA464018
Coding sequence: 64-1669(underlined sequence corresponds to start and stop codon)

GATTTTATCC TOGAACATTA CAGTGAAGAT GGCTATTTAT ATGAAGATGA AATTGCAGAT 60 CTT<u>ATG</u>GATC TOAGACAAGC TTGTCGGACG CCTAGCCGGG ATGAGGCCGG GGTGGAACTG 120

## 30 SEQ ID NO:278 PBY6 Protein sequence: Protein Accession #: NP_149094

Nucleic Acid Accession#: AF107493

45

DFILEHYSED GYLYEDEIAD LMDLRQACRT PSRDEAGVEL LMTYFIQLGF VESRFFPPTR 60
QMGLLFTWYD SLTGVPVSQQ NILLEKASVL FNTGALYTQI GTRCDRQTQA GLESAIDARQ 120
RAAGVLNYLK DTFTHTPSYD MSPAMLSVLV KMMLAQAQES VFEKISLPGI RNEFFMLVKV 180
AQEAAKVGEV YQQLHAAMSQ AFVKENIPYS WASLACVKAH HYAALAHYFT AILLIDHQVK 240
PGTDLDHQEK CLSQLYDHMP EGLTPLATLK NDQQRRQLGK SHLRRAMAHH EESVREASLC 300
KKIRSIEVIQ KVLCAAQERS RLTYAQHQEE DDLLINLIDAP SVVAKTEQEV DIILPQFSKL 360
TVTDFFQKLG PLSVFSANKR WTPPRSIRFT AEEGDLGFTL RGNAPVQVHFLDPYCSASVA 420
GAREGDYIVS IQLVDCKWLT LSEVMKLLKS FGEDEHEMKV VSLLDSTSSM HNKSATYSVG 480
MQKTYSMICL AIDDDDKTDK TKKISKKLSF LSWGTNKNRQ KSASTLCLPS VGAARPQVKK 540
KLPSPFSLLN SDSSWY

### SEQ ID NO:279 PBY8 DNA SEQUENCE

1 11 21 31 41 51  GAATTCGGCA CGACCCTTGT TGGAGGTTCT GGGGCGCAGA ACCCCTACTG CTGCTT CTCTCTTGG GAAAAATAA AATTTGAACC TTTTGGAGGT GTGTGCTAAA TCTTCA GACAATGGGT TCAGACAAAA GAGTGAGTAG AACAGAGCGT AGTGGAAGAT ACGGTT CATAGACACG GATGACCATG ATGACCGTG ATCCCGAAGC AGCGGAGGG ACTACA CAAAAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACCTACT CCAGAGAGA GAGGGTGAAA GAAGGAACAG TGACCGATCC GAAGATGGCT ACCATT	GTGG 120
CTCTCCTTGG GAAAAATAA AATTTGAACC TTTTGGAGCT GTGTGCTAAA TCTTCA GACAATGGGT TCAGACAAAA GAGTGAGTAG AACACAGCGT AGTGGAAGAT ACGGTI CATAGACAGG GATGACCGTG ATGACCGTGA ATCCCGAAGC AGGCGGAGGG ACTCAG CAAAAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACTATG	GTGG 120
CTCTCCTTGG GAAAAATAA AATTTGAACC TTTTGGAGCT GTGTGCTAAA TCTTCA GACAATGGGT TCAGACAAAA GAGTGAGTAG AACACAGCGT AGTGGAAGAT ACGGTI CATAGACAGG GATGACCGTG ATGACCGTGA ATCCCGAAGC AGGCGGAGGG ACTCAG CAAAAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACTATG	GTGG 120
GACAATGGGT TCAGACAAAA GAGTGAGTAG AACAGAGCGT AGTGGAAGAT ACGGTT CATAGACAGG GATGACCGTG ATGAGCGTGA ATCCCGAAGC AGCGGAGGG ACTCAG CAAAAGATT AGTGATGATC GGAGGGGTGA TAGATATGAT AGCTACCGA ACTAYCG	
CATAGACAGG GATGACCGTG ATGAGCGTGA ATCCCGAAGC AGGCGGAGGG ACTCAG CAAAAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACTATG	
CARAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACTATG	
CAAAAGATCT AGTGATGATC GGAGGGGTGA TAGATATGAT GACTACCGAG ACTATG	
TO WORKER ON CHOCOMORN CRACER RESCREATER TO CARESTOCK ACCORD	
TGGTGACTAT GGTGAGCACG ACTATAGGCA TGACATCAGT GACGAGAGGG AGAGCA	
CATCATGCTG CGCGGCCTTC CCATCACCAT CACAGAGAGC GATATTCGAG AAATGA	
GTCCTTCGAA GGCCCTCAGC CTGCGGATGT GAGGCTGATG AAGAGGAAAA CAGGTG	
CTTGCTTAGT TCCTGATATT ATTGTTCTCT TCCCCATTCC CACCTCAGTC CCTAAA	
60 ATCCTGATTC CCCCAGTCTT CAAGCACATG AATTCAGAAT GAAAGGTTTG CCATGG	
GGAATGTGAC TCTTTGAAAA CCATGTTAGC ATCTGAGGAA CTTTTTTAAA CTTTGT	
GGGACTITIT TITCCTTAGG TAAGTAATGA TITATAAACT CCTTTTTTT TITGAC	
GTCGGTTGCA TGGTTACTTT AAGCGTGGAA TCAAATGGAG TGGCATTTAG TTCAGG	
TTGTTCCTTG CCATGGCAAA GTATCAAGAA GATCCCCAAG TCAAGTCACA TTTGTA	
65 TGCTTCCCAA TTGGCTTTGT CACGCAGTGT TGAAGCAGTG GGAGAGAGAT TCACCT	
TARAGGARCT GROTARCACA AGTATOCOGT CTATATOTGA ATGCTGTCTC TAGGTG	
CCGTGGTTTC GCCTTCGTGG AGTTTTATCA CTTGCAAGAT GCTACCAGCT GGATGG	
CAATCAGGTT GCTTCACTCA CCAAGTCTAG ATATTCATGA AAATGGAACA AGTCTG	
ATTITAAAA AAGGTTGAAG GAGTGGTTTG TTCCAAAGGA GTGACTITIT TITAAA	
70 AAGCTTTGTA TATATTAAAA TTGATGTTAC TAGAATAAGT ACAGTACCAA GGACTT	
ATAGAATITG TICTGCCTTT AAACATGGCT ACCTACCTGG CAGGGCTTTG TTAACT	
AATACCTGTC TGGTAATCAC TAAAACATCT TTATGTTTCC CTTTTTTCTA GTTTGT	
TTCCTATTAT GTCCATTGAG AGTAAGCTTA GTATATCAAA CTCTCCATTT GACAGT	
AGAACATAGT GAAAGTCTGT GGCGGCATTT TTATAAGTAA TTCCTTATTT CTGCCT	
75 ACCACAAAGC CTCCTGGAGG CGTAACTGCT CAGACCGGTC TTCAGGGAAT ATTTAP	
TTAGTGGAAT TTATGAACAA TAAGTCTGAT GAGATTAGCC TGGGAGTGGT GTCCTG	
TGTCTAATCT AGAGTGGCAT TAACATTCTA ATCTCCTTGA GAATGCCTTT TATAGT	
TCAAAGCAAG TCATTGATGG TTCTTCGAGG TAGTGTTAAC TGAAGTGTTC TTCAGT	TTGT 1740
CAAGATAATG TYCAGTGCTT GGCACTTAAA TAACATTTTT TGCAAGAACT CCAAGG	CACA 1800

```
TTATTGAATG CCTTTAACCA AGTGCATTCT GGGAAGTTTG CTTGACTCAT TATCTTGCTT 1860
        TYCTGCAGCA TYCTGTGATT TGAGTCATCC ATGAATCCAT GAATAAAAGT TACATTCTTT
         GATTGGTAAT ATTGCCATTT ATAACAAGAC TCACTAATGA GGGTATCACT TTGACTGACT
                                                                                           1980
        GATTTOTTAA AGTTTTTAAG CCTCACATT TCCTAACCCA GAAATCACAG CCTGATTTA
TTAAAAGTAG AGCTTCATTC ATTTCATACC ATAGATACCA TCCTAGTAAA TCCAGAACAT
                                                                                           2040
                                                                                           2100
         ATACAAGGTT CATGTGAGTC TGCTTTCTTG ACATGATAGC ATTGTTTGAT GCAGTGGATA
                                                                                           2160
         TGTCAGAATG ACTAACCTAG GAGTTTGAAA CTCCTAAGAA ACTAAAACCT GTAAGACATT
                                                                                           2220
        TARAAGTCTC CACAATTTTA ATGTATACAA AGCTATGTTA CTGTGTAACA CATTACAGTT
                                                                                           2280
        CARATTCACT CCAGAAATAA AAGGCCAGTA GGATTAGGGA CTCACTGGTA GTTTGGAGTC
                                                                                           2340
10
        TCCCAGCACA CATCCCTCCT AGTGGGATGA TCTATTCACA TATCTCCCAG CTTTTTTATT
TTTGCTTCTG TATATCACAG TGAGTGGATG GCCCTTCAGC TTTTTCTCTC CTGGCCAGAC
                                                                                           2400
                                                                                           2460
        ATGCAGTCTT GCCTTTAGAT ATCGCAGAGA CAAAATTCAC AGCATGTCTT AAATCTTCCA
                                                                                           2520
        GGATTTGCAA GAACCAAATT GCTCAACAGT ATGTATGTTT AGAGGGGTTA GACTCCTTTT
TAAAATCTGG ATATCTAACC ACCTACTTAA ATCTGTTTGA TAGTGTCAAA CCACCCCAC
                                                                                           2580
15
         CCTTGATCCT CCCACCCCA AAAAAAAAA AAAA
        SEQ ID NO:280 PBY8 Protein sequence:
20
        MGSDKRVSRT ERSGRYGSII DRDDRDERES RSRRRDSDYK RSSDDRRGDR YDDYRDYDSP 60
        ERERERRNSD RSEDGYHSDG DYGEHDYRHD ISDERESKTI MLRGLPTTTT ESDIREMMES 120
        FEGPOPADVR LMKRKTGESL LSS
25
                                                           SEQ ID NO:281 PCI2 DNA SEQUENCE
        Nucleic Acid Accession#: AF208291
                              109-3705 (underlined sequence corresponds to start and stop codon)
        Coding sequence:
30
                                                               41
                                    21
                                                 31
         CGCCCCTTT TTTCTCAAGA TGGCAGATTC CCACTGAGGC TGAGGGGGCC GAGCTCGCGC
        GCCGCGTTCC CTTCTCCGTT GCCATGAACC GCGGACACCC GGGCCCCGAT GGCCCCGTG
TACGAAGGTA TGGCCTCACA TGTGCAAGTT TTCTCCCCTC ACACCCTTCA ATCAAGTGCC
35
         TTCTGTAGTG TGAAGAAACT AAAAGTAGAG CCAAGTTCCA ACTGGGACAT GACTGGGTAC
        GGCTCCCACA GCAAAGTGTA CAGCCAGAGC AAGAACATAC CACCTTCTCA GCCAGCCTCC ACAACCGTCA GCACCTCCTT GCCGGTCCCA AACCCAAGCC TACCTTACGA GCAGACCATC
         GTCTTCCCAG GAAGCACCGG GCACATCGTG GTCACCTCAG CAAGCAGCAC TTCTGTCACC
                                                                                             420
         GGGCAAGTCC TCGGCGGACC ACACAACCTA ATGCGTCGAA GCACTGTGAG CCTCCTTGAT
                                                                                             480
40
        ACCTACCAAA AATGTGGACT CAAGCGTAAG AGCGAGGAGA TOGAGAACAC AAGCAGCGTG
        CAGATCATCG AGGAGCATCC ACCCATGATT CAGAATAATG CAAGCGGGGC CACTGTCGCC ACTGCCACCA CGTCTACTGC CACCTCCAAA AACAGCGGCT CCAACAGCGG GGGCGACTAT CAGCTGGTGC AGCATGAGGT GCTGTGCTCC ATGACCAACA CCTACGAGGT CTTAGAGTTC
         TTGGGCCGAG GGACGTTTGG ACAAGTGGTC AAGTGCTGGA AACGGGGCAC CAATGAGATC
                                                                                             780
45
         GTAGCCATCA AGATCCTGAA GAACCGCCCA TCCTATGCCC GACAAGGTCA GATTGAAGTG
         AGCATCCTGG CCCGGTTGAG CACGGAGAGT GCCGATGACT ATAACTTCGT CCGGGCCTAC
        GARTGCTTCC AGCACAAGAA CCACACGTGC TTGGTCTTCG AGATGTTGGA GCAGAACCTC
TATGACTTTC TGAAGCAAAA CAAGTTTAGC CCCTTGCCCC TCAAATACAT TCGCCCAGTT
                                                                                             960
                                                                                           1020
         CTCCAGCAGG TAGCCACAGC CCTGATGAAA CTCAAAAGCC TAGGTCTTAT CCACGCTGAC
                                                                                           1080
50
         CHCARACCEG ARRICATCET COTGOTOGET CONTOURS ACCUTACEG ACTURACCTO
                                                                                           1140
         ATCHACTITE GITCAGCCAG CCACGICTCC AAGGCIGIGT GCTCCACCIA CITGCAGTCC
                                                                                           1200
         AGATATTACA GGGCCCCTGA GATCATCCTT GGTTTACCAT TTTGTGAGGC AATTGACATG
                                                                                           1260
         TEGETCECTEG CETETETTAT TECAGAATTG TICCTGGGTT GGCCGTTATA TCCAGGAGCT
                                                                                           1320
         TOGGAGTATG ATCAGATTOG GTATATTTCA CAAACACAGG GTTTGCCTGC TGAATATTTA
                                                                                           1380
55
         TTAAGCGCCG GGACAAAGAC AACTAGGTTT TTCAACCGTG ACACGGACTC ACCATATCCT
                                                                                           1440
         TTGTGGGGGC TGAAGACACC AGATGACCAT GAAGCAGAGA CAGGGATTAA GTCAAAAGAA
                                                                                           1500
         GCAAGAAAGT ACATTITCAA CIGITTAGAT GATATGGCCC AGGTGAACAT GACGACAGAT
                                                                                           1560
         TTGGAAGGGA GCGACATGTT GGTAGAAAAG GCTGACCGGC GGGAGTTCAT TGACCTGTTG
                                                                                           1620
        AAGAAGATGC TGACCATTGA TGCTGACAAG AGAATCACTC CAATCGAAAC CCTGAACCAT
                                                                                           1680
60
         CCCTTTGTCA CCATGACACA CTTACTCGAT TTTCCCCACA GCACACACGT CAAATCATGT
         TTCCAGAACA TGGAGATCTG CAAGCGTCGG GTGAATATGT ATGACACGGT GAACCAGAGC
                                                                                           1800
         ARRACCCCTT TCATCACGCA CGTGGCCCCC AGCACGTCCA CCAACCTGAC CATGACCTTT
                                                                                           1860
         AACAACCAGC TGACCACTGT CCACAACCAG GCTCCCTCCT CTACCAGTGC CACTATTTCC
        TTAGCCANTC CCGAAGTCTC CATACTANAC TACCCATCTA CACTCTACCA GCCCTCAGCG
GCATCCATGG CTGCAGTGGC CCAGCGGAGC ATGCCCCTGC AGACAGGAAC AGCCCAGATT
                                                                                           1980
65
                                                                                           2040
         TGTGCCCGGC CTGACCCGTT CCAGCAAGCT CTCATCGTGT GTCCCCCGG CTTCCAAGGC
                                                                                            2100
         TTGCAGGCCT CTCCCTCTAA GCACGCTGGC TACTCGGTGC GAATGGAAAA TGCAGTTCCC
ATCGTCACTC AAGCCCCAGG AGCTCAGCCT CTTCAGATCC AACCAGGTCT GCTTGCCCAG
                                                                                           2160
                                                                                            2220
         CAGGCTTGGC CAAGTGGGAC CCAGCAGATC CTGCTTCCCC CAGCATGGCA GCAACTGACT
                                                                                            2280
70
         GGAGTGGCCA CCCACACATC AGTGCAGCAT GCCACCGTGA TTCCCGAGAC CATGGCAGGC
ACCCAGCAGC TGGCGGACTG GAGAAATACG CATGCTCACG GAAGCCATTA TAATCCCATC
                                                                                           2340
                                                                                           2400
         ATGCAGCAGC CTGCACTATT GACCGGTCAT GTGACCCTTC CAGCAGCACA GCCCTTAAAT
                                                                                            2460
         GTGGGTGTGG CCCACGTGAT GCGGCAGCAG CCAACCAGCA CCACCTCCTC CCGGAAGAGT
AAGCAGCACC AGTCATCTGT GAGAAATGTC TCCACCTGTG AGGTGTCCTC CTCTCAGGCC
                                                                                           2520
                                                                                            2580
75
         ATCAGCTCCC CACAGCGATC CAAGCGTGTC AAGGAGAACA CACCTCCCCG CTGTGCCATG
                                                                                           2640
         GTGCACAGTA GCCCGGCCTG CAGCACCTCG GTCACCTGTG GGTGGGGCGA CGTGGCCTCC
                                                                                           2700
         AGCACCACCC GGGAACGGCA GCGGCAGACA ATTGTCATTC CCGACACTCC CAGCCCCACG
                                                                                           2820
         GTCAGCGTCA TCACCATCAG CAGTGACACG GACGAGGAGG AGGAACAGAA ACACGCCCCC
         ACCAGCACTO TCTCCAAGCA AAGAAAAAAC GTCATCAGCT GTGTCACAGT CCACGACTCC CCCTACTCCG ACTCCTCCAG CAACACCAGC CCCTACTCCG TGCAGCAGCG TGCTGGGCAC
                                                                                            2880
80
```

```
CHARCCATCA TOGTGCCACC COTGAAAACC CAGGCCAGCG AAGTATTGGT GGAGTGTGAT
                                                                                                  3060
          AGCCTGGTGC CAGTCAACAC CAGTCACCAC TCGTCCTCCT ACAAGTCCAA GTCCTCCAGC
                                                                                                  3120
         AACGTGACCT CCACCAGCGG TCACTCTTCA GGGAGCTCAT CTGGAGCCAT CACCTACCGG
                                                                                                   3180
  5
         CAGCAGCGGC CGGGCCCCCA CTTCCAGCAG CAGCAGCCAC TCAATCTCAG CCAGGCTCAG
                                                                                                  3240
          CAGCACATCA CCACGGACCG CACTGGGAGC CACCGAAGGC AGCAGGCCTA CATCACTCCC
                                                                                                  3300
         ACCATGGCCC AGGCTCCGTA CTCCTTCCCG CACAACAGCC CCAGCCACGG CACTGTGCAC
                                                                                                  3360
         CCGCATCTGG CTGCAGCCGC TGCCGCTGCC CACCTCCCCA CCCAGCCCCA CCTCTACACC
                                                                                                   3420
         TACACTGGG CGGCGGCCCT GGGCTCCACC GGCACCGTGG CCCACCTGGT GGCCTCGCAA
GGCTCTGGC GCCACACCGT GCAGCACACT GCCTACCCAG CCAGCATCGT CCACCAGGTC
                                                                                                  3480
10
                                                                                                  3540
         CCCGTGAGCA TGGGCCCCCG GGTCCTGCCC TCGCCCACCA TCCACCCGAG TCAGTATCCA
                                                                                                   3600
          GCCCAATTTG CCCACCAGAC CTACATCAGC GCCTCGCCAG CCTCCACCGT CTACACTGGA
                                                                                                  3660
         3720
         CACCCACGA GCGAGGGAGA GAATGCCCCG AGGGAGGAGG GAGAGAAGGA GGGAGGCGCT
                                                                                                  3780
15
         3840
                                                                                                  3900
          TTAAAGAGGG TGGGAAATCT ATGGTTTTTA TTTTAAAAAA
20
         SEQ ID NO:282 PCI2 Protein sequence;
         Protein Accession #: NP_073577
         MAPVYEGMAS HVQVFSPHTL QSSAFCSVKK LKVEPSSNWD MTGYGSHSKV YSQSKNIPPS 60
25
         OPASTTYSTS LPYPNPSLPY EQTTYPPOST GHIVYTSASS TSYTGQVLGG PHNLMRRSTV 120
SLLDTYQKCG LKRKSEEIEN TSSVQIIEEH PPMIQNNASG ATVATATTST ATSKNSGSNS 180
         EGDYQLVQHE VLCSMTNTYE VLEFLGRGTF GQVVKCWKRG TNEIVAIKI KNRPSYARQG 240
QIEVSILARL STESADDYNF VRAYECFQHK NHTCLVFEML EQNLYDFLKQ NKFSPLPLKY 300
RPVLQQVAT ALMKLKSLGL IHADLKPENI MLVDPSRQPY RVKVIDFGSA SHVSKAVCST 360
30
          YLOSRYYRAP EULGLPFCE AIDMWSLGCV IAELFLGWPL YPGASEYDQI RYISQTQGLP 420
         AEYLLSAGTK TIRFPNRDTD SPYPLWRLKT PDDHBAETGI KSKEARKYIF NCLDDMAQVN 480
MTTDLEGSDM LVEKADRREF IDLLKKMLTI DADKRITPIE TLNHPFVTMT HLLDFPHSTH 540
VKSCFQNMEI CKRRVNMYDT VNQSKTPFIT HVAPSTSTNL TMTFNNQLTT VHNQAPSSTS 600
          ATISLANPEV SILNYPSTLY QPSAASMAAV AQRSMPLQTG TAQICARPDP FQQALIVCPP 660
         GFQGLQASPS KHAGYSVRME NAVPIVTQAP GAQPLQIQPG LLAQQAWPSG TQQLLPPAW 720
QQLTGVATHT SVQHATVIPE TMAGTQQLAD WRNTHAHGSH YNPIMQQPAL LTGHVTLPAA 780
35
          OPLNVGVAHV MRQQPTSTTS SRKSKQHQSS VRNVSTCEVS SSQAISSPQR SKRVKENTPP 840
         RCAMVHSSPA CSTSVTCGWG DVASSTTRER QRQTIVIPDT PSPTVSVITI SSDTDEEEEQ 900
KHAPTSTVSK QRKNVISCVT VHDSPYSDSS SNTSPYSVQQ RAGHNNANAF DTKGSLENHC 960
40
          TGNPRTIIVP PLKTQASEVL VECDSLVPVN TSHHSSSYKS KSSSNVTSTS GHSSGSSSGA 1020
         ITYRQQRPGP HFQQQQPLNL SQAQQHITTD RTGSHRRQQA YIIPTMAQAP YSFPHNSPSH 1080
GTVHPHLAAA AAAAHLPTQP HLYTYTAPAA LGSTGTVAHL VASQGSARHT VQHTAYPASI 1140
          VHQVPVSMGP RVLPSPTIHP SQYPAQFAHQ TYISASPAST VYTGYPLSPA KVNQYPYI
45
                                                                 SEQ ID NO:283 PBY1 DNA SEQUENCE
         Nucleic Acid Accession#: NM_017700
                                147-806 (underlined sequence corresponds to start and stop codon)
         Coding sequence:
50
         AGTCACAGCC AGGTAACCCT GGAGTGAAGC GGTTTAGTTA GAAGGGAGCA GATAAACTCG
TCACTCTAGT AGCTTTAACC CTCACCCTGA GGCACCTTAG CAATCAGCCA TTGCCTGCAA
                                                                                                    120
         GCCTCCAAAG CTTGTCTTTG CCTAATATGG AGCCCAAAGA AGCCACTGGG AAAGAAAACA
                                                                                                    180
         TGGTCACCAA GAAAAAGAAT CTGGCCTTCT TGAGGTCTAG ACTCTATATG CTGGAGAGAA
GGAAGACTGA CACTGTGGTT GAGAGCAGTG TTTCTGGGGA CCACTCTGGC ACCTTGAGGA
55
                                                                                                    300
          GGAGCCAATC TGACAGGACC GAATACAACC AGAAATTACA AGAAAAGATG ACTCCACAGG
         GTGAGTGTTC TGTAGCTGAG ACCTTAACCC CAGAGGAAGA GCATCATATG AAGAGGATGA
TGGCAAACCG GGAAAAGATC ATTAAGGAGC TGATACAGAC AGAAAAGGAT TATCTCAATG
                                                                                                    480
         ATCTAGAGCT GTGTGTTAGG GAAGTGGTTC AGCCCCTGAG AAATAAAAAG ACTGATAGGC
60
         TEGATOREGA TAGCTTOTTT AGCAACATTE AGTCCGTECA TCAGATATCA GCCAAGCTGC
TGTCATTGTT GGAAGAGGCC ACAACAGACG TGGAACCGC CATECAAGTA ATTGGAGAAG
                                                                                                    600
         TATTCTTGCA GATTAAAGGG CCACTGGAAG ATATTTATAA AATCTACTGC TATCACCATG
                                                                                                    720
         ATGAAGCACA TAGTATACTG GAGTCCTATG AAAAGGAAGA AGAGCTGAAG GAACATTTGA
GCCACTGTAT CCAGTCCTTA AAGTAAGGCC TTTTCAAATG ATGATTCCCA TCTCCTCTCA
                                                                                                    780
65
         GTTGCCTAGC AGGGAACATT TTAAATGGAT GTAGATGAAA GGTCTCACAT AAATCCTATG
                                                                                                    900
         TTTTATGAGA CTTGCTGGGA GCYCTGCTTT GCATTCCCTT TATAAAAAGC TGACATGCCA
GAAGCCCTGA TTGACTTTTT TTCCCCCTGC GAGAATGACT AAAAATAACA TGGAAGAAGA
                                                                                                    960
         TITAGAGCTC TECAGCGATT GAAAAATGCA ATATCAAAAT ATAAAATGTG GAAGAAAAGC
CTCTTCTTAA AGCTATTGTA ACTTGCCTGG CCCCACGTAG TTCAAGGATT ATGTGAGATA
                                                                                                  1080
                                                                                                  1140
70
         ACACGTGGCC CCATGACCAC TGGAGCACAT GGGTTAATGG AGTTAGGGGA ATGGCCTACA
         ACTOTOCATO GCCGTCTTCT TTCCCCAAAC TCACTGTGG GAGATGGGTG AAGACAAGTC AGGCCTTGTT AAAGTTAGTT TCAGAACAAT TACTCATGCC TTCCTTTCTC ATCCCTAAAA
                                                                                                  1260
                                                                                                  1320
         CATTGGTGGG GGAGCTACAC AATGTACTTT TTCTTTTCTA GAGGAAGTAT CTATTCACTG
          TGAAAATCTG AAAAATATAA CAAAGTATGT GTAAGATAAA AACCCCTTGC TATTTCAAAA
75
          AAAA AAAAAAAA AAAAAAAAA
          SEQ ID NO:284 PBY1 Protein sequence:
         Protein Accession #:
80
                        11
                                       21
                                                      31
                                                                    41
                                                                                   51
                                                                               420
```

AACAATGCCA ATGCCTTTGA CACCAAGGGG AGCCTGGAGA ATCACTGCAC GGGGAACCCC

```
MEPKEATGKE NMVTKKKNLA FLRSRLYMLE RRKTDTVVES SVSGDHSGTL RRSQSDRTEY
                                                                                                 60
         NOKLOEKMIP QGECSVAETL TPEEEHHMKR MMAKREKIIK BLIQIEKDYL NDLELCVREV
         VOPLRNKKTD RLDVDSLPSN IESVHQISAK LLSLLEEATT DVEPAMQVIG EVFLQIKGPL
                                                                                                180
         EDIYKIYCYH HDEAHSILES YEKEEELKEH LSHCIQSLK
                                                             SEQ ID NO:285 PBQ9 DNA SEQUENCE
         Nucleic Acid Accession#: X66534
10
                               523-2876 (underlined sequence corresponds to start and stop codon)
         Coding sequence:
                                                   31
15
         CCCTTATGGC GATTGGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG
         CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAGAGTT
TTCCTACACT TTTCCTGCGC TAGAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC
                                                                                                120
         ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGGCG TGATCTCACC
                                                                                                240
         ATGTGCGCAT TTGCGAGGCG CGCCCTGGAG CTGCTAGAGA TCCGGAAGCA CAGCCCCGAG
GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCG
                                                                                                300
20
         TCTCCGGCCT GTCTGCACCC TGTCGCCTGA GCTGCCTGAC AGTGACAATG ACATCCCAGT
                                                                                                420
         TACCAGTOTC CTTGAATTGA TAGTGGCTTC TGTTTGTCAG TCTCATATAA GAACTACAGC
TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACCAACA CCATGTTCTG CACGAAGCTC
                                                                                                480
         AAGGATOTCA AGATCACAGG AGAGTGTCCT TTCTCCTTAC TGGCACCAGG TCAAGTTCCT
                                                                                                600
25
         AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGCAAC CGTGCCCATC
TGTCAAGACA TTCCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAGAAA AACCAGTCGG
                                                                                                660
                                                                                                720
         AGCCGAGTCT ATCTTCACAC TTTGGCAGAG AGTATTTGCA AACTGATTTT CCCAGAGTTT
                                                                                                780
         GAACGCTGA ATCTTGCACT TCAGAGAACA TTGGCAAAGC ACAAAATAAA AGAAAGCAGG
                                                                                                840
         AAATCTTTGG AAAGAGAAGA CTTTGAAAAA ACAATTGCAG AGCAAGCAGT GCAGCAGAGT
30
         CCAGTGGAGT TATCAAAGAA TCTCTTGGTG AAGAGGTTTT TAAAATATGT TACGAGGAAG
                                                                                                960
         ATGRARACAT CCTTGGGGTG GTTGGAGGCA CCCTTARAGA TTTTTARACA GCTTCAGTAC CCTTCTGARA CAGAGGAGCC ATTGCCARGA AGCAGGARAR AGGGGCAGCT TGAGGACGCC
                                                                                              1020
         TCCATTCTAT GCCTGGATAA GGAGGATGAT TTTCTACATG TTTACTACTT CTTCCCTAAG
                                                                                              1140
         AGAACCACCT CCCTGATTCT TCCCGGCATC ATAAAGGCAG CTGCTCACGT ATTATATGAA
                                                                                              1200
35
         ACGGARGTGG ARGTGTCGTT ARTGCCTCCC TGCTTCCATA ATGATTGCAG CGAGTTTGTG
         AATCAGCCCT ACTTGTTGTA CTCCGTTCAC ATGAAAAGCA CCAAGCCATC CCTGTCCCCC
                                                                                              1320
         AGCAAACCCC AGTCCTCGCT GGTGATTCCC ACATCGCTAT TCTGCAAGAC ATTTCCATTC
CATTTCATGT TTGACAAAGA TATGACAATT CTGCAATTTG GCAATGGCAT CAGAAGGCTG
                                                                                              1380
         ATGAACAGGA GAGACTITCA AGGAAAGCCT AATTITGAAT ACTITGAAAT TCTGACTCCA
                                                                                              1500
40
         ARARTCARCE AGACCTTTAG CGGGATCATG ACTATGTTGA ATATGCAGTT TGTTGTACGA
GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA
                                                                                              1560
         ATGATCTACA TTGTTGAATC CAGTGCAATC TTGTTTTTGG GGTCACCCTG TGTGGACAGA
                                                                                              1680
         TTAGAAGATT TTACAGGACG AGGGCTCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGGCCTGAA GAAGAGGCTG
                                                                                              1740
                                                                                               1800
45
         GGGAAGCTGA AGGCTACCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA GAAGAAAAAG
                                                                                              1860
         ACAGTAGACC TTCTGTGCTC CATATTTCCC TGTGAGGTTG CTCAGCAGCT GTGGCAAGGG
                                                                                              1920
         CAAGTTGTGC AAGCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCTCAGA CATCGTTGGG
                                                                                               1980
          TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACTG
                                                                                              2040
         TACACTICATE TOTALCAGE CTOTICAGAG CTGGATGTCT ACAAGGTGGA GACCATTGCG
                                                                                               2100
50
         ATGCCTATTG TGTGGCTTGG GGGATTACAC AAAGAGAGTG ATACTCATGC TGTTCAGATA
                                                                                              2160
          GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCTCC CCATGGAGAA
                                                                                              2220
          CCTATCAAGA TGCGAATTGG ACTGCACTCT GGATCAGTTT TTGCTGGCGT CGTTGGAGTT
                                                                                               2280
         AAAATGCCCC GTTACTGTCT TTTTGGAAAC AATGTCACTC TGGCTAACAA ATTTGAGTCC
                                                                                              2340
          TGCAGTGTAC CACGAAAAAT CAATGTCAGC CCAACAACTT ACAGATTACT CAAAGACTGT
                                                                                              2400
         TECACITITIC CACGAAAAAT CAATSTCAGE CLAAAACTT CACAAAATTACT COCTAGTGAA
CCTGGTTTCG TGTTTACCCC TCGATCAAGG GAGGAACTT CACCAAACTT CCCTAGTGAA
ATCCCCGGAA TCTGCCATTT TCTGGATGCT TACCAACAAG GAACAAACTC AAAACCATGC
55
                                                                                              2460
                                                                                              2520
          TTCCAAAAGA AAGATGTGGA AGATGCAAGC CAATTTTTTA GGCAAAGCAT CAGGAATAGA
                                                                                              2580
         TTAGCAACCT ATATACCTAT TTATAAGTCT TTGGGGTTTG ACTCATTGAA GATGTGTAGA
                                                                                               2640
          GCCTCTGAAA GCACTTTAGG GATTGTAGAT GGC<u>TAA</u>CAAG CAGTATTAAA ATTTCAGGAG
                                                                                              2700
60
          CCAAGTCACA ATCTTTCTCC TGTTTAACAT GACAAAATGT ACTCACTTCA GTACTTCAGC
                                                                                              2760
         CCARGICACA RANARAMA ACCTEMANA GCTACTITIC TEGGACTATT TOTATTATAT
AACCAGCACT TACTACCTGT ACTCAAAATT CAGCACCTTG TACATATATC AGATAATTGT
                                                                                              2880
          AGTCAATTGT ACAAACTGAT GGAGTCACCT GCAATCTCAT ATCCTGGTGG AATGCCATGG
                                                                                               2940
          TTATTAAAGT GTGTTTGTGA TAGTTGTCGT CAAAAAAAAA AAAAAAAAA AAAAAAAAA
65
          SEQ ID NO:286 PBQ9 Protein sequence;
          Protein Accession #:
70
                                                    31
                       11
                                     21
                                                                  41
                                                                                51
         ORKTSKSKYV LHTLAESICK LIPPEPERLN VALORTLAKE KIKESKKSLE REDFEKTIAE
QAVAAGVPVE VIKESLGEEV FKICYEEDEN ILGVVGGTLK DFLNSFSTLL KQSSHCQEAG
                                                                                                180
75
          KRGRLEDASI LCLDKEDDFL HVYYFFPKRT TSLILPGIIK AAAHVLYETE VEVSLMPPCF
                                                                                                240
         KRURLEMASI KLEDKEDDFE MYYYFFRKT ISHILDGIIK ARANVIYETS VEVSEMPPCH
HNDCSEFVNQ FYLLYSVHMK STKPSLSPSK PQSSLVIPTS LFCKTFPFHP MPDKDMTILQ
PGNGIRRLMN RRDPQCKPMF EBYPEILTPK INOTFSGIMT MLMMGPVVKV RRWINSVKKS
SRVMDLKGQM IYIVESSAIL PLGSPCVDRL EDFTGRGLYL SDIPHMALR DVVLIGEQAR
                                                                                                360
                                                                                                420
          AODGLKKRLG KLKATLEOAH QALEEEKKKT VDLLCSIPPC EVAQQLWQGQ VVQAKKFSNV
80
          THLFSDIVGF TAICSQCSPL QVITMLMALY TRFDQQCGEL DVYKVETIGD AYCVAGGLHK
```

PCT/US01/32045 WO 02/30268

ESDTHAVOIA LMALKMMELS DEVMSPHGEP IKMRIGLHSG SVFAGVVGVK MPRYCLFGNN VTLANKFESC SVFRKINVSP TTYRLLKDCP GFVFTPRSRE ELPPNFPSEI PGICHFLDAY. OOGTNSKPCF OKKDVEDGNA NFLGKASGID

5

75

80

Nucleic Acid Accession#: NM_000720

### SEQ ID NO:287 PFD2 DNA SEQUENCE

119-6664 (underlined sequence corresponds to start and stop codon) Coding sequence: 10 21 31 11 AGAATAAGGG CAGGGACCGC GGCTCCTATC TCTTGGTGAT CCCCTTCCCC ATTCCGCCCC 60 CGCCTCAACG CCCAGCACAG TGCCCTGCAC ACAGTAGTCG CTCAATAAAT GTTCGTGGAT 120 15 GATGATGATG ATGATGATGA AAAAAATGCA GCATCAACGG CAGCAGCAAG CGGACCACGC GAACGAGGCA AACTATGCAA GAGGCACCAG ACTTCCTCTT TCTGGTGAAG GACCAACTTC 240 TURGUUGART AGUTULARGU ARACTUTUUT GTUTTUGGURA GUTGURATUG ATGUTGUTAG 300 ACAGGCCAAG GCTGCCCAAA CTATGAGCAC CTCTGCACCC CCACCTGTAG GATCTCTCTC 360 CCARAGARAA CGTCAGCAAT ACGCCAAGAG CARAARACAG GGTAACTCGT CCAACAGCCG
ACCTGCCCGC GCCCTTTTCT GTTTATCACT CAATAACCCC ATCCGAAGAG CCTGCATTAG 420 20 TATAGTGGAA TGGAAACCAT TTGACATATT TATATTATTG GCTATTTTTG CCAATTGTGT 540 GGCCTTAGCT ATTTACATCC CATTCCCTGA AGATGATTCT AATTCAACAA ATCATAACTT 600 GGAAAAAGTA GAATATGCCT TCCTGATTAT TTTTACAGTC GAGACATTTT TGAAGATTAT AGCGTATGGA TTATTGCTAC ATCCTAATGC TTATGTTAGG AATGGATGGA ATTTACTGGA 720 25 TITTGITATA GTAATAGTAG GATTGITTAG TGTAATTITG GAACAATTAA CCAAAGAAAC AGAAGGCGGG AACCACTCAA GCGGCAAATC TGGAGGCTIT GATGICAAAG CCCTCCGTGC 780 840 CTTTCGAGTG TTGCGACCAC TTCGACTAGT GTCAGGGGTG CCCAGTTTAC AAGTTGTCCT 900 GAACTCCATT ATAAAAGCCA TGGTTCCCCT CCTTCACATA GCCCTTTTGG TATTATTTGT 960 AATCATAATC TATGCTATTA TAGGATTUGA ACTITITATT GGAAAAATGC ACAAAACATG 1020 30 TTTTTTTGCT GACTCAGATA TCGTAGCTGA AGAGGACCCA GCTCCATGTG CGTTCTCAGG 1080 GAATGGACGC CAGTGTACTG CCAATGGCAC GGAATGTAGG AGTGGCTGGG TTGGCCCGAA 1140 CGGAGGCATC ACCAACTTTG ATAACTTTGC CTTTGCCATG CTTACTGTGT TTCAGTGCAT 1200 CACCATGGAG GGCTGGACAG ACGTGCTCTA CTGGGTAAAT GATGCGATAG GATGGGAATG 1260 GCCATGGGTG TATTTTGTTA GTCTGATCAT CCTTGGCTCA TTTTTCGTCC TTAACCTGGT 1320 35 TCTTGGTGTC CTTAGTGGAG AATTCTCAAA GGAAAGAGAG AAGGCAAAAG CACGGGGAGA 1380 TTTCCAGAAG CTCCGGGAGA AGCAGCAGCT GGAGGAGGAT CTAAAGGGCT ACTTGGATTG 1440 GATCACCCAA GCTGAGGACA TCGATCCGGA GAATGAGGAA GAAGGAGGAG AGGAAGGCAA 1500 ACGAAATACT AGCATGCCCA CCAGCGAGAC TGAGTCTGTG AACACAGAGA ACGTCAGCGG 1560 TGAAGGCGAG AACCGAGGCT GCTGTGGAAG TCTCTGGTGC TGGTGGAGAC GGAGAGGCGC 1620 40 GGCCAAGGCG GGGCCCTCTG GGTGTCGGCG GTGGGGTCAA GCCATCTCAA AATCCAAACT 1680 CAGCCGACGC TGGCGTCGCT GGAACCGATT CAATCGCAGA AGATGTAGGG CCGCCGTGAA GTCTGTCACG TTTTACTGGC TGGTTATCGT CCTGGTGTTT CTGAACACCT TAACCATTTC 1800 CTCTGAGCAC TACAATCAGC CAGATTGGTT GACACAGATT CAAGATATTG CCAACAAAGT 1860 CCTCTTGGCT CTGTTCACCT GCGAGATGCT GGTAAAAATG TACAGCTTGG GCCTCCAAGC 45 ATATTTCGTC TCTCTTTTCA ACCGGTTTGA TTGCTTCGTG GTGTGTGGTG GAATCACTGA 1980 GACGATCCTG GTGGAACTGG AAATCATGTC TCCCCTGGGG ATCTCTGTGT TTCGGTGTGT 2040 GCGCCTCTTA AGAATCTTCA AAGTGACCAG GCACTGGACT TCCCTGAGCA ACTTAGTGGC ATCCTTATTA AACTCCATGA AGTCCATCGC TTCGCTGTTG CTTCTGCTTT TTCTCTTCAT 2160 TATCATCTTT TCCTTGCTTG GGATGCAGCT GTTTGGCGGC AAGTTTAATT TTGATGAAAC GCAAACCAAG CGGAGCACCT TTGACAATTT CCCTCAAGCA CTTCTCACAG TGTTCCAGAT 2220 50 CCTGACAGGC GAAGACTGGA ATGCTGTGAT GTACGATGGC ATCATGGCTT ACGGGGGCCC ATCCTCTTCA GGAATGATCG TCTGCATCTA CTTCATCATC CTCTTCATTT GTGGTAACTA 2340 2400 TATTCTACTG AATGTCTTCT TGGCCATCGC TGTAGACAAT TTGGCTGATG CTGAAAGTCT GAACACTGCT CAGAAAGAAG AAGCGGAAGA AAAGGAGAGG AAAAAGATTG CCAGAAAAGA 2520 55 GAGCCTAGAA AATAAAAAGA ACAACAAACC AGAAGTCAAC CAGATAGCCA ACAGTGACAA 2580 CAAGGTTACA ATTGATGACT ATAGAGAAGA GGATGAAGAC AAGGACCCCT ATCCGCCTTG 2640 CGATGTGCCA GTAGGGGAAG AGGAAGAGGA AGAGGAGGAG GATGAACCTG AGGTTCCTGC 2700 CGGACCCCGT CCTCGAAGGA TCTCGGAGTT GAACATGAAG GAAAAAATTG CCCCCATCCC 2760 TGAAGGGAGC GCTTTCTTCA TTCTTAGCAA GACCAACCCG ATCCGCGTAG GCTGCCACAA 2820 60 GETCATCAAC CACCACATCT TCACCAACCT CATCCTTGTC TTCATCATGC TGAGCAGCGC 2880 TGCCCTGGCC GCAGAGGACC CCATCCGCAG CCACTCCTTC CGGAACACGA TACTGGGTTA 2940 3000 CTTTGACTAT GCCTTCACAG CCATCTTTAC TGTTGAGATC CTGTTGAAGA TGACAACTTT TGGAGCTTTC CTCCACAAAG GGGCCTTCTG CAGGAACTAC TTCAATTTGC TGGATATGCT 3060 GGTGGTTGGG GTGTCTCTGG TGTCATTTGG GATTCAATCC AGTGCCATCT CCGTTGTGAA 3120 65 GATTCTGAGG GTCTTAAGGG TCCTGCGTCC CCTCAGGGCC ATCAACAGAG CAAAAGGACT 3180 TRACCACCTC CTCCACTCCC TUTTCCTCCC CATCCCGACC ATCCCCAACA TCATGATCCT 3240 CACTACCCTC CTGCAGTTCA TGTTTGCCTG TATCGGGGTC CAGTTGTTCA AGGGGAAGTT 3300 CTATCGCTGT ACGGATGAAG CCAAAAGTAA CCCTGAAGAA TGCAGGGGAC TTTTCATCCT 3360 CTACAAGGAT GGGGATGTTG ACAGTCCTGT GGTCCGTGAA CGGATCTGGC AAAACAGTGA 3420 70 TTTCAACTTC GACAACGTCC TCTCTGCTAT GATGGCGCTC TTCACAGTCT CCACGTTTGA 3480 GGGCTGGCCT GCGTTGCTGT ATAAAGCCAT CGACTCGAAT GGAGAAACA TCGGCCCAAT 3540 CTACAACCAC CGCGTGGAGA TCTCCATCTT CTTCATCATC TACATCATCA TTGTAGCTTT

CTTCATGATG AACATCTTTG TGGGCTTTGT CATCGTTACA TTTCAGGAAC AAGGAGAAAA

AGAGTATAAG AACTGTGAGC TGGACAAAAA TCAGCGTCAG TGTGTTGAAT ACGCCTTGAA

AGCACGTCCC TTGCGGAGAT ACATCCCCAA AAACCCCTAC CAGTACAAGT TCTGGTACGT

GGTGAACTCT TCGCCTTTCG AATACATGAT GTTTGTCCTC ATCATGCTCA ACACACTCTG

CTTGGCCATG CAGCACTACG AGCAGTCCAÁ GATGTTCAAT GATGCCATGG ACATTCTGAA

CATGGTCTTC ACCGGGGTGT TCACCGTCGA GATGGTTTTG AAAGTCATCG CATTTAAGCC

TAAGGGGTAT TTTAGTGACG CCTGGAACAC GTTTGACTCC CTCATCGTAA TCGGCAGCAT

TATAGACGTG GCCCTCAGCG AAGCGGACCC AACTGAAAGT GAAAATGTCC CTGTCCCAAC

3600

3660

3720

3780

3840

3900

3960

4020

	TGCTACACCT	GGGAACTCTG	AAGAGAGCAA	TAGAATCTCC	ATCACCTTTT	TCCGTCTTTT	4140
			AGCTTCTCAG				4200
						CCATGCTGTT	
						GAGATAACAA	4320
5			ACTTCCAGAC				4380
			GGCAGGAGAT				4440
			ACCCCGGGGA				4500
			ACATGCTCTG				4560
10			ACTATCTGAC TATGGTCAGA				4620 4680
10			TGCTTCGACG				4740
			GCAAGAGATT				4800
			CAACCCTGTT				4860
			AAGCTAATGA				4920
15						ATGATGAGGT	4980
						AATTCAAGAA	5040
	ACGGAAAGAA	CAAGGACTGG	TGGGAAAGTA	CCCTGCGAAG	AACACCACAA	TTGCCCTACA	5100
	GGCGGGATTA	AGGACACTGC	ATGACATTGG	GCCAGAAATC	CGGCGTGCTA	TATCGTGTGA	5160
						TGTTCAAAAG	5220
20	AAATGGTGCC	CTGCTTGGAA	ACCATGTCAA	TCATGTTAAT	AGTGATAGGA	GAGATTCCCT	5280
			ACCGTCCCCT				5340
			TGTTTCCTCC				5400
			AGCAAGTTCC				5460
05	CAATATGTCC	AAAGCTGCCC	ATGGAAAGCG	GCCCAGCATT	GGGAACCTTG	AGCATGTGTC	5520
25			CCCACAAGCA				5580
			AAACTTACAT				5640
			CAGAGATACA				5700
			GTGAGGAATG				5760
30			ACAGCAGATA				5820
30			AAGGATTCTT				5880
			GACGCCTACT				5940 6000
			CCCTGCCTCT				6060
			AAGCCCAGAA				6120
35			CTCCCTACCG				6180
55			CCCTGGACCA				6240
			AGCCCGACAT				6300
						CGGACAGCTT	6360
			CCGAAGGCTT				6420
40	GTCAGCAACA	AAACACGAAA	TCGCTGATGC	CTGTGACCTC	ACCATCGACG	AGATGGAGAG	6480
			ATGGGAACGT				6540
	CCTCTCACAC	CGGCAGGACT	ATGAGCTACA	CGACTTTCGT	CCTGGCTACA	GCGACGAAGA	6600
			AGGAGGACCT				6660
			GACTGGCTCT				6720
45						TCAATTAATT	6780
			TCATGCCTCA				6840
			GAGTACCATG				6900
						ATTGTCCAGA	6960
50						ACCCAACTGA .	
JU						CACCTCGTGT	
			TAGCATATCA				7140
	CCCTTTCCCC	CAAATACACT	GCGTCCTGGT	TOCIGITIME	CIGITCIGAN	AIA	
	0EO ID NO-200 I	PFD2 Protein secu	ioneer				
55	Protein Accession						
J.J	FIGURE PLACESSO	II W. 100131	•				
	_					F4	
	1	11	21	31	41	51	
			ANEANYARGT	I DE GOMESTA	l .	I CHOLD TOOL	60
60			SORKROOYAK				120
UU			VALAIYIPFP				180
			DFVIVIVGLE				240
			LNSIIKAMVP				300
			GNGRQCTANG				360
65			WPWVYFVSLI				420
<b>0</b> 0			WITQAEDIDP				480
	GEGENEGCCG	SLWCWWRRRG	AAKAGPSGCR	RWGOAISKSK	LSRRWRRWNR	FNRRRCRAAV	540
			SSEHYNOPDW				600
			ETILVELEIM				660
70	ASLLNSMKSI	ASLLLLLFLF	IIIPSLLGMQ	LFGGKFNFDE	TOTKRSTFON	FPQALLTVFQ	720
	ILTGEDWNAV	MYDGIMAYGG	PSSSGMIVCI	YFIILFICGN	YILLNVFLAI	AVDNLADAES	780
	LNTAQKEEAE	EKERKKIARK	ESLENKKNNK	PEVNQIANSD	NKVTIDDYRE	EDEDKDPYPP	840
	CDVPVGEEEE	EEEEDEPEVP	AGPRPRRISE	LNMKEKIAPI	PEGSAFFILS	KTNPIRVGCH	900
	KLINHHIFTN	LILVFIMLSS	AALAAEDPIR	SHSFRNTILG	YFDYAFTAIF	TVEILLKMTT	960
75	<b>FGAFLHKGAF</b>	CRNYFNLLDM	LVVGVSLVSF	<b>GIQSSAISVV</b>	KILRVLRVLR	PLRAINRAKG	1020
	LKHVVQCVFV	AIRTIGNIMI	VTTLLQFMFA	CIGVQLFKGK	FYRCTDEAKS	NPEECRGLPI	1080
			DFNFDNVLSA				1140
			FFMMNIFVGP				1200
00	KARPLRRYIP	KNPYQYKFWY	VVNSSPFEYM	MEALTHUMENTE	CLAMOHYEOS	KMFNDAMDIL	1260
80	NAME AND ADDRESS OF TAXABLE PARTY.	RMVLKVTARK	DEGABGUSANI	TPDSI.TVIGS	TIDVALSEAD	PTESENVPVP	1320
00	DELAS IGAL I A		1 100 11 DEMINI	11.0002.100		·	

						PYVALLIAML	1380
						IMLACLPGKL	1440
						TRDWSILGPH LVAMNMPLNS	1500 1560
5						QVVPPAGDDE	1620
. •						GPEIRRAISC	1680
						LHVQRPSIPP	1740
						RPSIGNLEHV	1800
10						HGYFRDPHCL	1860
10						LEDDDSFVCY LHLMQQQIMA	1920 1980
						QVNGSLPSLH	2040
		ISYRTFTPAS					2100
						QDFGPGYSDE	2160
15		LADEMICITT			_	_	
	Bheolala Aaid Aan	ession#: NM_00	2010	SE	Q ID NO:289 OBI	5 DNA SEQUENCE	
	Coding sequence		2012 82 (underlined sec	WARCA COTTASTION	is in start and stor	codon)	
20	oomig codemic		(	,			
	1	11	21	31	41	51	
	Ī	ī	Ī	ĺ	ī	Ī	
25		TCGGGACGCC					60
25		GCGTCCGCCT					120
		TTTTCCTGAG					180
		GCCTCTGCTC					240 300
		GCTTGAGGCT					360
30		CACGGAGCGG					420
	ACCGGCTGCA	GGACTCTGGC	ACCTTCCAGT	GTGTGGCTCG	GGATGATGTC	ACTGGAGAAG	480
		TGCCAACGCC					540
		AGCCTCGGAA					600
35		GCACCCTCGG CAACCACACA					660 720
33		TAGTGGGCTG					780
		CTTCACCTTG					840
		GGTAGTAGCG					900
40		GAGCCTGCAG					960
40						CTGACCCAGG	1020
						GGCCCACCCA	1080
		AGCTGGCAGC				TTTGAGCCAC	1140 1200
		GTGGTGGGAG					1260
45		CGAGCTGGTG					1320
		CAACCTGGCT					1380
		GCTGAAGAAG					1440
		GACCCAGGCC					1500 1560
50		TGATGGGACA					1620
		CCCTGTCCAA					1680
	AGCAGTGCAT	GGAGTTTGAC	AAGGAGGCCA	CGGTGCCCTG	TTCAGCCACA	GGCCGAGAGA	1740
						GTGACAGACA	1800
55						TACACTTGCA	1860
JJ		CGGGCCGCAG CAAAGTGGAA					1920 1980
		GGCCCAGGGG					2040
						TCCCTGGTGA	2100
60						AACAGCTGCA	2160
60						GAGGAGTCGG	2220
		CAGCCCTCCC					2280 2340
		GCTGCAGAAG				AAGCGCTGCA	2400
		GCAGAACGGG					2460
65						AAGATGCACT	
						GGGGAGGTGT	2580
						CTTGTGAAGA	2640
						GAGATGTTTG	2700
70						GCTGAGCCCC AGGATTTCCA	2760 2820
70						GTGGCCCTAT	2880
						CATAAGGACT	2940
		TAACTGCCTG					3000
75	TCAGCAAGGA	TGTGTACAAC	AGTGAGTACT	ACCACTTCCG	CCAGGCCTGG	GTGCCGCTGC	3060
75						GATGTCTGGG	3120
						GGTGGGCAGG	3180
						CAGCCCGAGG	3240 3300
		CAGTGAGATT					3360
80						GGGAAGCTCÃ	3420
	_						

5	TTGCTGAGGT GGCTGACTTG CTCTTCCCCTT TTCTCCCCTT AGGCTTGGGA AGGGTTAATG ACACAGCAAG CCCCACCTT CTTTTGACAC TGCAGCGTGG GCCATCCTTA	GGCAAGATCC CTGAGCAGGG GACCCAAACT ATCAGGGACA GACCGGGTCC TGAGCTCGTC TGAGTCCTCC CTCTCCTTTC TATATAAACC GGTGGGTGGG CCCACACTT TTTACACTCG	CCTGGCCTTT GGGCGACTAG GTGTGGGTGC AACTCTGCCA TTGTGGGAG CCACTGGTCC CCACTCTGG CTCATCCTAA GCCCTTTTTTG CATGGGAGGT TTATTGTTGT	CCTCCTCTTC GGCTTTGAGC CACAGGTAAC CTCATCTGCC TTCCTTAATA ACTTGGGGT CTTGTGCACA TATGCACCAC AGGGTGGGC CGTTTTTTGT	CTCACCCTCA TGGGCAGTTT CCCAATTTCT AACTTTGCCT TTCTCAAGTT CTAGACCAGA CTGACCCAGA GATGAACGAGG GGGCGGCTTT CCTGGAGATG TTGTTTTGTT	TCCTTTGGA CCCTGCCAC GGCCTTCAG GGGAGGGCT CTGGGCACAC ATTATAGAGG CCCACGTCTT TTTTCAGGAG TATATGTAAT AGGAGGTGG	3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140
15	SEQ ID NO:290 g Protein Accession	OBI6 Protein sequ n #: NP_0			,		
00	1	11	21	31	41	51	
20	1		1	1	1	1	
05	VHVYWLLDGA IKWIEAGPVV KERNLTLRPA	PRRLPLLSVL PVQDTERRFA LKHPASEAEI GPEHSGLYSC	QGSSLSFAAV QPQTQVTLRC CAHSAFGQAC	DRLQDSGTFQ HIDGHPRPTY SSQNFTLSIA	CVARDDVTGE QWFRDGTPLS DESFARVVLA	EARSANASFN DGQSNHTVSS PQDVVVARYE	60 120 180 240
25	EAMFHCQFSA	QPPPSLQWLF	EDETPITNES	RPPHLRRATV	FANGSLLLTQ	VRPRNAGIYR	300
	CIGQGQRGPP	IILEATLHLA	RIEDMPLFEP	RVFTAGSEER	VTCLPPKGLP	EPSVWWEHAG	360
	VRLPTHGRVY	<b>QKGHELVLAN</b>	IAESDAGVYT	CHAANLAGOR	RODVNITVAT	VPSWLKKPQD	420
	SQLEEGKPGY	LDCLTQATPK	PTVVWYRNQM	LISEDSRFEV	FKNGTLRINS	VEVYDGTWYR	480
		EAQARVQVLE					540
30	GSSLPEWVTD	NAGTLHFARV	TRIDDAGNYTC	IASNGPQGQI	RAHVOLTVAV	PITFKVEPER	600
	TTVYQGHTAL	LOCEAQGDPK	PLIQWKGKDR	ILDPTKLGPR	MHIPQNGSLV	IHDVAPEDSG	660
	RYTCLAGNSC	NIKHTEAPLY	VVDKPVPEES	EGPGSPPPYK	MIQTIGLSVG	AAVAYIIAVL	720
		KAKRLQKQPE					780
	KRHSTSDKMH	<b>FPRSSLQPIT</b>	TLGKSEFGEV	PLAKAQGLEE	GVAETLVLVK	SLQTKDEQQQ	840
35	LDPRRELEMP	GKLNHANVVR	LLGLCREAEP	HYMVLEYVDL	<b>GDLKQFLRIS</b>	KSKDEKLKSQ	900
	PLSTKQKVAL	CTQVALGMEH	LSNNRFVHKD	LAARNCLVSA	QRQVKVSALG	LSKDVYNSEY	960
	YHFRQAWVPL	RWMSPEAILE	GDPSTKSDVW	AFGVLMWEVP	THGEMPHGGQ	ADDEVLADLQ	1020
	AGKARLPOPE	GCPSKLYRLM	QRCWALSPKD	RPSPSEIASA	LGDSTVDSKP		
40							
40							
70							
70				SEC	2 ID NO:291 AAB	DNA SEQUENCE	:
70	Nucleic Acid Acc		NIM_002205				i.
70	Nucleic Acid Acco			SEI ined sequences co			•
							:
45	Coding sequence	E	1-3150 (under	ined sequences co	prespond to start a	and stop codons)	:
							:
	Coding sequence	: 11 	1-3150 (under	ined sequences or	orrespond to start a	and stop codons) 51	
	Coding sequence  1   ATGGGGAGCC	11       GGACGCCAGA	1-3150 (under	ined sequences of 31   CACGCCGTGC	orrespond to start a	and stop codons)  51	60
45	Coding sequence  1   ATCGGGAGCC CGCCGACCCC	11     GGACGCCAGA   CGCTSSTGCC	1-3150 (under	31   CACGCCGTGC	41 i AGCTGCGCTGC	and stop codons)  51   GGGCCCCCGG CAGGGTCGGG	60 120
	1   ATGGGGAGCC CGCCGACCCC GGCTTCAACT	11     GGACGCCAGA   CGCTSSTGCC   TAGACGCGGA	1-3150 (under	31   CACGCCGTGC CTGCTSSTGC	41 i AGCTGCGCTG GGCCCCGGG	and stop codons)  51   GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC	60 120 180
45	Coding sequence  1	11 	1-3150 (under	31     CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGGG	41 i AGCTGCGCTG CGCCCCCGG TCAGTGTGCT	sind stop codons)  51   GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA	60 120 180 240
45	1   ATGGGGAGCC CGCCGACCCC GGCTTCAACT GGATTCTCACT CCCAAGGCTA	11     GGACGCCAGA   CGCTSSTGCC   TAGACGCGGC   TAGAGTTTTA   ATACCAGCCA	1-3150 (under	31   CACGCCGTGC CTACTCTGG ACAGACGGGG CTGCAGGGTG CTGCAGGGTG	41 i AGCTGCGCTG GGCCGCCGGG TCAGTGTGCTTA	sind stop codons)  51	60 120 180 240 300
45 50	1   ATGGGAGCC CGCCGACCCC GGCTTCAACT GGATTCTCAACT TGGGGTGCCA TGGGGTGCCA	11 	1-3150 (under	31     CACGCCGTGC CTGCTSSTGC GTACTCTGG ACAGACGGG CTGCAGGGTG ATTGAATTTG	41 i AGCTGCGCTG GGCCCCGGG TCAGTGTGCT ACAGGCAAAGG	51	60 120 180 240 300 360
45 50	1   ATGGGAGCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA CTGGAGCTCATGGGTGCTA TGGGGTGCTA TGGGGTGCCT	11   GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA GCCCCACACA CACTGTCCAG	1-3150 (under	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG	41   AGCTGCCCTC GGCCCCCGG TCAGTGTCT GTCTGTCTA ACACCAAAGG TGGAGTACAA	51   GGGCCCCCGG CTCCTTCTTC GGTGGAGCA CTCTCTGTCCT CTCTCGGCTC GTCCTTGCAG	60 120 180 240 300
45	1   ATGGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGTTCCT TGGTTCCGGT TGGTTCTGGGTTCT TGGTTCGGGT	11   GGACGCCAGA GGACGCCAGA TGGAGTTTA ATACCAGCCA GCCCCACACA CACTGTCCAG CACAGTTCCAG CACAGTTCCAG CACAGTTCCAG CACAGTTCCAG CACAGTTCCAG CACAGTTCCAG CACAGTTCCAG	1-3150 (under 21   GTCCCCTCTC GGCCCCAGCA CCGGCCGGGA GCCAGGAGTG GTGCACCCCC CTCAGAGGGA AGCCCATGGC	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG ACAGACGGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG	41  i AGCTGCGCTG GGCCCCGGG GGCCCCGGG GTCAGTGTGTTA ACACGAAGG TGGAGTACAA TGGAGTACAA TGGAGTACAA	51   GGGCCCCGG CAGGGTCGGG CTCTTCTTC CTCTCGGCTC GTCTTGCAC GTCCTGCACTTGCAC TCCACTGTAC	60 120 180 240 300 360 420
45 50	1   ATGGGGAGCC GGCTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA TGGGTTCCAG TGGGTTCCGGAGTCCT TGGTTCGGGA	11   GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA GCCCCACACA CACTGTCCAG	1-3150 (under 21	31   CACGCCTTGC CACGCCTTGC CTGCTSSTGC GTACTCTGGG ACAGAGGGG CTGCAGGGTG ATTGAATTTG GAGAGCCTG GACCACT GACCACT GACCCCTGG	41  AGCTGCGCTG GGCCCCGGG TCAGTGTGCT TCAGTGTGTT ACAGCAAGG TGCAGTACAA TGGCATGCGG TGGCATACAG GGCCCCGGG TGGCATACAG GGCCCCGGG TGGCATCCGGC	51  GGGCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC CTCTTGCAC GTCCTTGCAC CTCCATTGCAC CTCCATTGCAC CTCCATTGCAC CCTCTCACAC	60 120 180 240 300 360 420 480
45 50	1   ATGGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA CTGGAGTCCT TGGTTCGGG GATACTTCAG GATACTTCA	11   GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA GCCCCACACA CACCAGTCCA CACAGTCCA CAGAGAAGGA CCCGAATTCT	1-3150 (under 21   GTCCCCTCTC GCTCCCAGCA CCGCCCAGCA CCGCCCAGGA GCCCAGGGA AGCCCATGGC GCCACTGAGC GCCACTGAGC GCCACTGAGC GCCACTGAGC GCAGTATGCA	31   CACGCCGTGC CTGCTGSTGC GTACTCTGGG ACAGAGGGG CTGCAGGTT GAGGAGCTTG GAGGAGCTTG GACCCGTGG CCCTGCGCTTGCCCATCT	41	51	60 120 180 240 300 360 420 480 540
45 50 55	1	11   GGACGCCAGA GGCTSSTGCC TAGAGGTTTTA ATACCAGCCA GCCCCACACA GCCCCACACA CACTGTCCAG CAACAGTTCG CAACAGTTCG CAACAGTAGA	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA GCCAGGAGTG GTCCACCCC CTCAGAGGGA AGCCCATGGC GCCATGGC GCCATTGGC AGCCTTAGC AGCTTCAGT	31   CACGCCTGC CTGCTSFTGC GTACTCTCGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG GACGCCCTGCACCCGTGCCCCTTCCATCT GCCCCAGTTCA	41  AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTGCTGTCTA ACACCAAGG TGGATACAA TGGCATCGC GCACCTGCTA CAGATTCAG CAGATTCAG CCAAGACTGC	and stop codons)  51	60 120 180 240 300 360 420 480 540 600
45 50	1	11 GGACGCCAGA GGCCSSTGCC TAGAGCGCGA ATACCAGCCA ACACTOTCCAG CACAGTACCA CACAGTACCA CACAGTACCA CACAGTACA CACAGAA CACAGTACA CACAGT	1-3150 (under  21  GTCCCTCTC GCTCCTGTG GCCCCAGCA CCGGCCAGGAGTG GCCAGGAGTG GCCAGGAGTG GCCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTTCAGT TTTCTGGCAA	31   CACGCCGTGC CTGCTSSTGC GTACTCTGG GTACTCTGG ATTGAATTIG GAGGAGCCTG GACCCGTGCGCTGCGCGTGCGCGGTGCGGGTGCGGGTGCGGGTGCGGGTGCGGGTGGGGGG	41  i AGCTGCGCTG GGCCCCGGG GGCCCCGGG GTCCTGTCTA ACACCAAAGG TGGATTACAA TGGCATGCGC GCACCTGCTA CAGATTTCAG TGCATTCAG TGTCTGCAT CAGACTGG TGTCTGCCAC	51   GGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC GTCCTTGCAG CTCTTGCAG CCTCTTCACAC CCTCTGCAC CCTCTCCACA CCTCTCCACA CCTCTCCACA CCTGCGCAT CCAGGCAGCA CCTGCGCAT TCAGGAGCAG	60 120 180 240 300 360 420 480 540 600 660
45 50 55	1	11   GGACGCCAGA GGCTSSTGCC TAGAGGTTTTA ATACCAGCA GCCCCACACA CACTGTCCAG GCACAGTTCG CAGAGAAGGA CCCGAATTCT CAGGGAAGGA CCCGAAGCCAAGCACACACACACACACA	1-3150 (under 21	31   CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTG GAGGAGCTG GAGGAGCTG GACCCGTGG CCCTGCAGCTT GACCCGTGG GCCAGATTCA ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT ACTCAACTT	41    AGCTGCGCTG GGCCCCGCG TCAGTGTGCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	sind stop codons)  51	60 120 180 240 360 420 480 540 600 660 720
45 50 55	1   ATGGGGAGCC GGCTTCAACT GGGTTCAACT GGGTTCAACT TGGGGTGCCA CCCAAGGCTA TGGGTGCCA GGTTGGGG AGCTGCGCA ATTAGGTGAC ATTAGGTGAAC TTAGGTGAAC TTAGGTGAAC TTAGGTGAAC TTAGGTGAC TTAGGTGAC TTAGGTGAC TTAGGTGAC TTAGGTGGAC TTCAGTGGTG	11	1-3150 (under  21  GTCCCTCTC GCTGCTCTTG GCCCCAGCA CCGGCCGGGA GCCAGGAGTG GTGCACCCC CTCAGAGGGA AGCCCATGGC GCACTGAGC GCACTGAGC GCACTGAGC GGAGTATCCAGT TTTCTGGCAA CGAGTACCTG TGATGACAGC AGACTTTGTT	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG ATTGAATTTG GAGGAGCCTG GACCCGATCT GACCCGTGG CCCGAGTTCA GGCCAGATTCA GGCCAGATTCA GGCTGAGTTCA GGCTGGTGGCGCT ATCAACCTGG CCTGGTGTGG GCTGGTGTGG	41  i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTCCCCCGGG GTCCTGTCTA ACACCAAAGG TGGAGTACAA TGGAGTACAA TGGAGTACGC CCAAGACTGG TGTCTGCCAC TTCAGGGGCA TTCAGGGCA CCAAGACTGG CCAAGACTGG CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGAC	and stop codons)  51    GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC GTCCTTGCAG TCCACTGTACAC CCTCTCACAC CCTGTCGAC CCTGTCACAC CTGTGCAG TCCACACAC TCAGGAGCAG CCTGCAGACAC TCAGGAGCAG CCTCACACAC CCTGTGTGTAC CCTCACACAC CCTCACACAC	60 120 180 240 300 360 420 480 540 600 720 780
45 50 55	1   ATGGGGAGCC GGCTTCAACT GGGTTCAACT GGGTTCAACT TGGGGTGCCA CCCAAGGCTA TGGGTGCCA GGTTGGGG AGCTGCGCA ATTAGGTGAC ATTAGGTGAAC TTAGGTGAAC TTAGGTGAAC TTAGGTGAAC TTAGGTGAC TTAGGTGAC TTAGGTGAC TTAGGTGAC TTAGGTGGAC TTCAGTGGTG	11 GRACGCCAGA CGCTSSTGCC TAGAGCGCGA ATACCAGCCA ACACGTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CTCCAAGG CAGGAAGCTA CTTATTACCC GTTTCCATCTA	1-3150 (under  21  GTCCCTCTC GCTGCTCTTG GCCCCAGCA CCGGCCGGGA GCCAGGAGTG GTGCACCCC CTCAGAGGGA AGCCCATGGC GCACTGAGC GCACTGAGC GCACTGAGC GGAGTATCCAGT TTTCTGGCAA CGAGTACCTG TGATGACAGC AGACTTTGTT	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG ATTGAATTTG GAGGAGCCTG GACCCGATCT GACCCGTGG CCCGAGTTCA GGCCAGATTCA GGCCAGATTCA GGCTGAGTTCA GGCTGGTGGCGCT ATCAACCTGG CCTGGTGTGG GCTGGTGTGG	41  i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTCCCCCGGG GTCCTGTCTA ACACCAAAGG TGGAGTACAA TGGAGTACAA TGGAGTACGC CCAAGACTGG TGTCTGCCAC TTCAGGGGCA TTCAGGGCA CCAAGACTGG CCAAGACTGG CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGAC	and stop codons)  51    GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC GTCCTTGCAG TCCACTGTACAC CCTCTCACAC CCTGTCGAC CCTGTCACAC CTGTGCAG TCCACACAC TCAGGAGCAG CCTGCAGACAC TCAGGAGCAG CCTCACACAC CCTGTGTGTAC CCTCACACAC CCTCACACAC	60 120 180 240 300 360 420 540 600 660 720 780 840
45 50 55 60	1	11	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCAGCA CCGGCAGGAGTG GCCAGGAGGTG GCCACTGAGC GCCACTGAGC GCACTGAGC GCACTGAGC TTTCTGGCAA CGAGTACCTA TGATGACAGC TGATGACAGC TGATGACAGC CGATTACCTG TGATGACAGC CGATTACCTG TGATGACAGC CTATCCAGTG	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GACGCCGTG CCCGCGGGT GCCGAGATCC GCCGAGATCC GCCGAGATCC ATCAACTGG GCCAGATCC ATCAACTGG TACCTAGGAT GCTGGTGTGC ATTCGATCC GCCCCCACAG	41  AGCTGCGCTG GGCCGCCAC GGCCCCCGGG TCAGTGTGCTTA AGCAAAGG TGGATACAA TGGCATCCG CCAAGATTGA CCAAGATGA CCAAGATGA CCTCATGGCA ACTCTGGCA ACTCTGTGGC CCAAGATGA TCTACAAGGA ACTCTGTGCA ACTCTGTACA ACTCTACAACTT ACGTCAATGA	51	60 120 180 240 300 420 480 540 660 720 780 840 900
45 50 55	1	11	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCAGCA CCGGCAGGAGTG GCCAGGAGGTG GCCACTGAGC GCCACTGAGC GCACTGAGC GCACTGAGC TTTCTGGCAA CGAGTACCTA TGATGACAGC TGATGACAGC TGATGACAGC CGATTACCTG TGATGACAGC CGATTACCTG TGATGACAGC CTATCCAGTG	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GACGCCGTG CCCGCGGGT GCCGAGATCC GCCGAGATCC GCCGAGATCC ATCAACTGG GCCAGATCC ATCAACTGG TACCTAGGAT GCTGGTGTGC ATTCGATCC GCCCCCACAG	41  AGCTGCGCTG GGCCGCCAC GGCCCCCGGG TCAGTGTGCTTA AGCAAAGG TGGATACAA TGGCATCCG CCAAGATTGA CCAAGATGA CCAAGATGA CCTCATGGCA ACTCTGGCA ACTCTGTGGC CCAAGATGA TCTACAAGGA ACTCTGTGCA ACTCTGTACA ACTCTACAACTT ACGTCAATGA	51	60 120 180 240 300 360 420 480 540 660 720 780 900 960 900
45 50 55 60	1	11	1-3150 (under  21    GTCCCCTCTC GCTCCTCTG GCCCCAGCA CCGGCCAGCA CCGGCCAGGAGTG GCCAGGAGTG GCACTGAGG GCACTGAGC GCACTGAGC GCACTTAGC TTTTCTGGCAA CGAGTACCTG TGATGACAGC CTATGACAGC CTATGCAGTG CTACCTCCAGC CTACCTGCTC CTACCTGCAC	31   CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTG GACGCGGG GCCCGAGTTC ACTCCATCT GCCCGCGCG GCCAGATTCA ATCAACTGG CCTGCGGCT ATCAACTGG CCTGCTGGGG ATCAACTGG ATCAACTGG ATCAACTGG ATCAACTGG ATCAACTGG ATCAACTGG ATCAACTGG	41    AGCTGCGCTG GGCCCACC GGCCCACC GGCCCACC TCAGTGTGCT GTGCTGTCTA GGAGTACAA GGAATGCA CCAAGACTGG CCACAGACTGC TCTCTGCCA CTTCAGGGCA CTCAGGGCA CTCAGGGCA CTCAGGGCA CTCACAGGCA CTCACAGGCA CCCAAGGGCA CCCATAGGGCA CCCCTAACG GCATAGGGCA CCCCTAACGG GCATAGGGCA	sind stop codons)  51	60 120 240 300 420 480 540 660 720 780 840 960 1020 1080 1140
45 50 55 60	1	11	1-3150 (under  21    GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCCCGGGGA GCCAGGAGTG GTCACACCCC CTCAGAGGGA AGCCATGAG AGCCATGAG AGCCTTCAGT TTTCTGCCAA AGACTTCAGT TGATGACAG AGACTTTGTT TGGCTCAGAC CTATCCAGT ACCCTGCTG TGACTTCAGT TGATGACTT	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGG CTGCAGGTG ATTGAATTIG GAGGAGCCTG TCCTCCAGTG GCCGGGT GCCGGGTT ATCAACTG GCCGAGATCC GCCGAGATCC ATCAACTGG TACCTAGGAT GCTGGTGGC TACCTAGGAT GCTGGTGGC GCCGCACAG ATGGATCCG GCCGCACAG	41    AGCTGCCCTG GGCCCCCGGG GGCCCCCGGG TCAGTGTGCTTA ACAGCAAAGG TGGAGTACA TGGCATGCG CCAAGACTG CCAAGACTG TTCAGGGGCA ACTCTGCCAC CCAAAGGGAA ACTCTGTGCC CCAAAGGGAA TCTACAAGTT ACGTCAATGG CCCTGAAGGG CCCTGAAGGG CCCTGAAGGG CCCTTAGAGG	sind stop codons)  51    GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTTC GGTGGGAGCA CCTCTTGCCT GTCCTTGCAC TCACTGTAC CCTCTCACA CCTGTGGAGCAG CCTGGGAGCAG CCTGGGAGCAG CCTCAGGGAGCAG CCTCAGGGAGCAG CCTCAGGGAGCAG GGACGGCTG GCGGCCCAC CCCCCTGGGG	60 120 180 240 300 420 480 540 660 720 780 840 900 1020 1080 1140 1200
45 50 55 60	1	11 GGACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGA ATACCAGCA ACACGTTCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTACA CACAGTTCA ACTGCCAAGA CCACATTATACCC CTTACTATAA ATGACACAGA CCACATTAG CCACATTTGG TGGTGGGGG TGGTGGGGGG GGGTGCCATGA AGGAAGCTA AGGAAGCTA	1-3150 (under  21  GTCCCCTCTC GCTGCTGTG GCCCCAGCA CCGGCCGGG GCCAGGAGTG GTCCACCCC CTCAGAGGGAA AGCCCATGAG GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC CGACTTATCT TTTCTGGCAA CGAGTTACTG TGATCACAGC AGACTTTGTT TGGCTCAGAC CTAGCAGTG ACCCTCCCC CTAGCAGTGC CAATGATTTGGC CAATGATTTGGC CAATGATTTGGC CAATGATGTG CAATGATGTG CAATGATTTTGGC CAATGATGTG	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GACGCCGTGC CCCTGCAGGTT CCCCATCT GACCCCGTGG CCCAGATTCA GGCCAGATTCA GGCCAGATTCA GGCTGGTGGC ATTGACCTGG CCCCCACAGA ATGGATCGA ATGGATCGA CCCCCACCGG ATGGATCGA CCCCCACCGG CGCATTGGCA CGCCTCACGGG CACCAGCGG CGCCTCACGGG CACCAGCGG CGCCCACGGG CGCCCACGGG CGCCCACGGG CGCCCCACGGG CGCCCCACGGG CCCCCCACGGG	41  i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTCATGTGTA ACACCAAGG CCAAGACTG CCAAGACTG CCAAGACTG TTCAGGGTACA TGCATTCAG CCAAGACTG TTCAGGGGCA ACTCTGTGCC CCAAAGGGA TCTACAACTT TCAAGGGCA ACTCTGTGGC CCAAAGGGA CCTACAACT CCAAAGGCA CCCTTGAC CCCTTGAC CCCCTTTGGC CCTCCTTTGG	and stop codons)  51    GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC CTCTCTCACA CCTCTTCACA CCTCTTCACA CCTCTCACA CCTGTGCAGC CCTGTGGTT TCAGGGGCAGCA CCTCAGGGGCAGCA CCTCAGGGGCAGCA CCTCAGGGGCAGCCCACC CCCCCTGGGGCTGGCGCCCACC CCCCCTGGGG TGGGGAGACC	60 120 240 300 360 420 480 540 660 720 780 960 960 91020 1080 1140 1260
45 50 55 60 65	1	11	1-3150 (under  21    GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCCAGCA CCGGCAGGAGTG GCACTGAGG GCACTGAGG GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC CTATCCAGT TGCCTCAGAC CTACCTGCAG CCACTGCTC CACCTGCTC CAATGATGTG CAATGATGTG ATTTCCTGGG	31 31 CACGCCGTGC CTGCTSTGC GTACTCTGGG ACAGACGGG CTGCAGGTG ATGAATTG GAGGAGCTG ACCCCGTGC CCCTGCGCCT ATCAACTGA ATCAACTGG GCCAGATTCA ATCAACTGG ATCAACTGG ATCAACTGG ATTGAATCC GCCGCCACAG ATTGAATCC GCCGCCACAG ATTGAATCC GCCGCACAG	41    AGCTGCGCTG GGCCCACC GGCCCACC TCAGTGTGCT GTGCTGTCTG GTGCAAAGG TGGAGTACAA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGTTTCAG CCAAGACTGG TGTTTTGCAC TTCAGGGGCA ACTCTGTGGC CCAAAGGGAA TCTACAACT ACGTCAAAGG GCCATAGGGC GCCTTAGAGC GCCTTTAGAGC GCTTCCTTTAG	sind stop codons)  51	60 120 240 300 420 480 540 660 720 780 840 960 1020 1140 1200 1260 1320
45 50 55 60	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCCA CACAGTTCCA CACAGTTCA CCCACATCA ACTGCCAAGG CACGATGCTA ACTGCCAAGG CACGATCTTA ACGACACTA CCTACTTTAGC CCATCCTTAA CCTACTTTAG CCATCCTTAA CCTACTTTAG CCTACTTTGG TGGTGGGGC CTGGCCATGA AGGATGCTA TAGTGTTTGT TAGTGTTTTTT	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCACCCCC CTCAGAGGGA AGCCATGAG GGCACTGAGC GGAGTATCAG TTTCTGGCAA AGACTTTGTT TGGCTAACCAG AGACTTTGTT TGGCTCAGT ACCCTGCTG TGATGACTG TAACAGTG ACCCTGCTG CAACAGTTTGGC CAATGATTGG CAATGATTGG GGCAGCCAGC GGCAGCCAGC GGCCAGCCAGC	31   CACGCCGTGC CTGCTSFTGC GTACTCTCGG ACAGACGGG CTGCAGGTG ATTGAATTTG GAGGAGCCTG TCCTCCAGTTG GACCCGTGG TCCTCCAGTCT GCCGAGATTCA GCCGAGATCC ATCAACCTGG TACCTAGGAT GCTGGTGTGC GCCGCACAG ATGGATCGCA GCGATTTGGCA GCGATTTGGCA GCCACCGGG GCCCAGGGG CACCCCAGGGC CACCCCAGGAC CACCCCAGGAC CACCCCAGGAC CACCCCAGGAC CACCCCAGGAC CACCCCCAGGAC CACCCCCAGGAC CACCCCCAGGAC CACCCCCAGGAC CACCCCCAGGAC CACCCCCAGCAC CACCCCCAGGAC CACCCCCAGGAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCAGCAC CACCCCCACCCCAC CACCCCCACCCCAC CACCCCCACCCCACCCCCACCCCCC	41  AGCTGCCCTGC GGCCCACC GGCCCACC GGCCCACC GGCCCACC GGCCCACC GGCCCCACC GGCCCACAAGG TGGAGTACAA TGGCATGCA TGGCATCGC CCAAGACTGG CCAAGACTGG TTCAGGGGCA ACTCTTGCCAC CCAAAGGGAA TCTACAAGTT ACGTCAATGG CCCTTAACG CCCTTTGG GCCTCCTTTGG GCCTCCTTTGG ACTTCTTTGG	51	60 120 180 240 360 420 480 540 660 720 900 960 1020 1080 1200 1200 12320 1380
45 50 55 60 65	1	11 GGACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGA ATACCAGCA CACCACACA CACCACACA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA ACTGCCAAGA CCACACTTCA ACTGCCAAGA CCACACTTA ATGACACAGA CCACACTTTAG CCACACTTTAG TGGTGGGGG GGGTCTACGT AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA GAGACCTGGA AGCACCTGGA	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA GCCAGGAGTG GTCCACCCC CTCAGGAGGGA AGCCCATGGC GCACTGAGC GCACTTAGG GCACTTAGGT TTTCTGGCAA CGAGTACTGG AGACTTTGTT TGGCTAGAGT ACCCCTGCTC CTACCTCAGG ACCCTGCTC CTACCTCAGG ACCCTGCTC CTACCTCAGG CCAATGATTGG ACTTTCTTGGC CAATGATTGG CCAATGATTGG CCAATGATTGG TGGCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCAATGGA TGCCCAATGGA TCCCCCAATGGA TCCCCAATGGA TCCCCCAATGGA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCCCCCC	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGG CTGCAGGGG CTGCAGGGTG ATTGAATTTG GACGCCGGT CCCTGCAGCTG TCCTCATCT GACCCGGG TCCAGAGTCA GCCGAGATCA GCCGAGATCA GCCGCCAGAC ATGGATCGA ATGGATCGG ATCGATCG CCCCCACGG CGCCCACAG CGCCCACAG CGCCCAGGGG CGCCCAGGA CGCCCAGGGG CGCCCAGGA CGCCCAGGGG CGCCCAGGAG CGCCCAGGAG CGCCCAGGAG CACACCCAG CACACCCAGC CACACCCAGCA CACACCCAG	41  AGCTGCGCTG GGCCGCCAC GGCCCCCGGG TCAGTGTGTA ACACCAAGG TGGATACA TGGATACA TGGATACA TGGATCAC CCAAGACTG TTTCAGGGGCA ACTCTGTGCC CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTC CCCTTTGG GCTCCTTTGG GGCTGGCTC TGACTTGGG TGATTGTGGG	and stop codons)  51    GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGCCT CTCACACA CCTCTGCACA CCTCTGCACA CCTGGGAGCA CCTCTGCACA CCTGGGAGCA CCTCACTTAC CCTCACTTAC CCTCACTTAC CTCACGGGACA CCTCACTTAC CTCACGGGACA CTCACGGACT GGACGGGCT GGACGGCCTCAC CACCCCCCCT TAGCCCTCT TAGCCTTCC TAGCCCTCT CTCTCCCCTT GTCCTTTGGT CTCTCTCCCTT CTCCTTTGGT CTCTCTCCCTT	60 120 180 300 360 420 480 540 660 720 780 900 91020 1080 1140 1260 1320 1380 1340
45 50 55 60 65	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCCA CACAGTTCCA CACAGTTCA CCCACATCA ACTGCCAAGG CACGATGCTA ACTGCCAAGG CACGATCTTA ACGACACTA CCTACTTTAGC CCATCCTTAA CCTACTTTAG CCATCCTTAA CCTACTTTAG CCTACTTTGG TGGTGGGGC CTGGCCATGA AGGATGCTA TAGTGTTTGT TAGTGTTTTTT	1-3150 (under  21  GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA GCCAGGAGTG GTCCACCCC CTCAGGAGGGA AGCCCATGGC GCACTGAGC GCACTTAGG GCACTTAGGT TTTCTGGCAA CGAGTACTGG AGACTTTGTT TGGCTAGAGT ACCCCTGCTC CTACCTCAGG ACCCTGCTC CTACCTCAGG ACCCTGCTC CTACCTCAGG CCAATGATTGG ACTTTCTTGGC CAATGATTGG CCAATGATTGG CCAATGATTGG TGGCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCCAATGGA TGCCAATGGA TGCCCAATGGA TCCCCCAATGGA TCCCCAATGGA TCCCCCAATGGA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCAATGCA TCCCCCCCCCC	31   CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGG CTGCAGGGG CTGCAGGGTG ATTGAATTTG GACGCCGGT CCCTGCAGCTG TCCTCATCT GACCCGGG TCCAGAGTCA GCCGAGATCA GCCGAGATCA GCCGCCAGAC ATGGATCGA ATGGATCGG ATCGATCG CCCCCACGG CGCCCACAG CGCCCACAG CGCCCAGGGG CGCCCAGGA CGCCCAGGGG CGCCCAGGA CGCCCAGGGG CGCCCAGGAG CGCCCAGGAG CGCCCAGGAG CACACCCAG CACACCCAGC CACACCCAGCA CACACCCAG	41  AGCTGCGCTG GGCCGCCAC GGCCCCCGGG TCAGTGTGTA ACACCAAGG TGGATACA TGGATACA TGGATACA TGGATCAC CCAAGACTG TTTCAGGGGCA ACTCTGTGCC CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTGC CCAAGACTC CCCTTTGG GCTCCTTTGG GGCTGGCTC TGACTTGGG TGATTGTGGG	and stop codons)  51    GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGCCT CTCACACA CCTCTGCACA CCTCTGCACA CCTGGGAGCA CCTCTGCACA CCTGGGAGCA CCTCACTTAC CCTCACTTAC CCTCACTTAC CTCACGGGACA CCTCACTTAC CTCACGGGACA CTCACGGACT GGACGGGCT GGACGGCCTCAC CACCCCCCCT TAGCCCTCT TAGCCTTCC TAGCCCTCT CTCTCCCCTT GTCCTTTGGT CTCTCTCCCTT CTCCTTTGGT CTCTCTCCCTT	60 120 240 300 420 480 540 660 720 780 840 960 1020 1140 1200 1260 1320 1380 1440 1500
45 50 55 60 65	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCT ACTGCCAAGG CAGCATGCT ACTGCCATGA CCTACTTGG TGGTGGGGG CTGGCCATGA AGGATGCTA AGGACCTGGA AGGATGCTA AGGCCCTGTG AGGCCCTGTG AGCCCTGTG CATGTTCAA	1-3150 (under  21	31   CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTTG GACGCCGTGC CCCTGCCATCT GACCCCGTGG GCCAGATTCA GGCCAGATTCA GGCCAGATTCA GGCCAGATTCA GCTGGTGTGC GCCCACGCG GCCACCCG GCCACCGGG GCCACCGCG GCCACCGCG CGATTTGGCA GCCACCCCG	41  AGCTGGCCTG GGCCCCGGG TCAGTGTCTA ACAGCAAAGG TGGGTTCACA TGGCATCGC CCAGAGATCA TGTCTGCCAC CCAGAGATCA CCAGATTCAG CCAAAGGGCA ACTCTGCAC CCAAAGGGCA ACTCTGACG CCCATAAGGCA ACTCTACAG CCCATAAGGCA ACTCTTTGG CCCCTTAAGG CCCCTTTAGC CTCCTTTGG CTCCTTTGG CTCCTTTGG CTCCTTTGG GGCTGGCT	sind stop codons)  51    GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTTC GGTGGGAGCA CCTCTTGCCT CTCTTCCACA CTCGGCAGCA CCTCTTCACA CTGGGAGCAG CCTCTCACA CTGGGCAGCA CCTCACACTACA CCTCACACTAC CCTCACGGAGCAC CCTCACGGGAGACC CCCCCTGGG	60 120 180 240 360 420 480 540 660 720 1020 1020 1140 1200 1320 1380 1440 1560
45 50 55 60 65 70	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCT ACTGCCAAGG CAGCATGCT ACTGCCATGA CCTACTTGG TGGTGGGGG CTGGCCATGA AGGATGCTA AGGACCTGGA AGGATGCTA AGGCCCTGTG AGGCCCTGTG AGCCCTGTG CATGTTCAA	1-3150 (under  21	31   CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTTG GACGCCGTGC CCCTGCCATCT GACCCCGTGG GCCAGATTCA GGCCAGATTCA GGCCAGATTCA GGCCAGATTCA GCTGGTGTGC GCCCACGCG GCCACCCG GCCACCGGG GCCACCGCG GCCACCGCG CGATTTGGCA GCCACCCCG	41  AGCTGGCCTG GGCCCCGGG TCAGTGTCTA ACAGCAAAGG TGGGTTCACA TGGCATCGC CCAGAGATCA TGTCTGCCAC CCAGAGATCA CCAGATTCAG CCAAAGGGCA ACTCTGCAC CCAAAGGGCA ACTCTGACG CCCATAAGGCA ACTCTACAG CCCATAAGGCA ACTCTTTGG CCCCTTAAGG CCCCTTTAGC CTCCTTTGG CTCCTTTGG CTCCTTTGG CTCCTTTGG GGCTGGCT	sind stop codons)  51    GGGCCCCGG CAGGGTCGGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTTGCCT GTCCTTGCGT GTCCTTGCACA CTCGGCAGCA CCTGTGGTT TCAGGAGCA GCTGCAGACT TCAGGGGAGCA CTCAGCGGAGCA CTCAGGGGAAC CTCAGGGGAAC CCCCCTTGGGT CAGGCCCAC CCCCCTTGGGT TGGGGAAC TGGGGAAC TGGGGAAC TAAGCCTTCC CTCTGCCCTT	60 120 180 240 360 420 480 540 660 720 1020 1020 1140 1200 1320 1380 1440 1560
45 50 55 60 65	1	11  GGACGCCAGA GGCCSSTGCC TAGACGCGGA TGGAGTITTA ATACCAGCCA GCCCCACACA CACTGTCCAG GCCCACACA CACAGTTCG CAGAGAAGGA CCACACTACT CTTATTACCC GTTCCATCTA ATGACACAGA CCATCCTTAA ACTGACACAGG TGGTGGGGG GGGTCTACGT TAGTGTTGT AGCCCTGTG AGCACCTGGA CCATCTTGA CCATGTTCAT ACTGTTTGT TGGAACTTCA	1-3150 (under  21    GTCCCTCTC GCTGCTGTTG GCCCCAGCA CCGGCCGGGA GCCAGGAGTG GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC AGGCTTCAGT TTCTGCCAA AGCCTTGAT TGACTCAGT CTACCTGCAG TGAGTTTGGC CTACCTGCTG CTACCTGCTG CTACCTGCTG CTACCTGCTG ATTTCCTGGG GCCAGCAGG ACCCATGGA CAGGGCCGC CCCAGAGGAG CCTGCCTCAAT GCTGCACTCAAT GCTGGACTGAG CCTGCACTCAAT GCTGGACTGAG CCTGCACTCAAT GCTGGACTGAG GCTGCACTCAAT GCTGCACTCAAT GCTGGACTGAG GCTGCACTCAAT GCTGGACTGAG GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTGCACTCAAT GCTCAACTCAA	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGAGGGG CTGCAGGTG ATGAATTIG GAGGAGCTG CCCTGCGCCT GCCGAGTTCA GCCCCGTGCGCT ATCAACTGG GCCAGATCA ATCAACTGG ATCAACTGG ATCAACTGG ATCAACTGG ATTGGATCG GCCGCCACAG CCCACGGGG GCCCAGGAG CACACCCCAG CACCCCAGGAG CACACCCCAG CACCCAGGAG CACACCCCAG CACCCCAGGAG CACACCCCAG CACCCCAGGAG CACACCCCAG CACCCAGGAG CACACCCCAG CACCCAGGAG CACACCCCAG CACCCAGGAG CACACCCCAG CACACCCCAG CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCAC CACACCCCCAC CACACCCCCC	41    AGCTGCGCTG GGCCCCGC GGCCCCCC TCAGTGTGCT GTGCTGTCTG GTGCTGTCTAGAGTAGG TGGAGTACAA GGCATCCGC CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGTTCCG CCAGAGCC CCAGAGTTCCG CCCAGAGC CCCAGAGC CCCCTAGAGC GCCCTTAGAGC GCCTCCTTTGG GGCTGGCCT ACTTCTTTGG GCCTGGCCC CCCTAGAGC CCCCTAGAGC CCCCTAGAGC GCCCTAGAGC GCCCTAGAGC GCCCTAGAGC GCCCTAGGC CCCCTAGGC CCCCAGGC ACGCGGGGC ACGCGGGGGC ACGCGGGGGC ACGCGGGGGGC ACGCGGGGGGGG	sind stop codons)  51    GGGCCCCGG CAGGGTCGGG CAGGGTCGGG CTCCTTCTTC GTTGGGTGGAGCA CCTCTTGCCT GTCCTTGCAG CCTCTTGCAG CCTCTTGCAG CCTCTCCACA CTGGGCAGCA CCTGAGGGAGCA CTCAGGGGAGCA CTCAGGGGAGCA CTCAGGGGAA GCAGCCTCAG CCCCCTTGGG CAGGCCTCAG CAGGCCTCAG CAGGCCTCAG CCCCTTTGGT TGGGGAAC CTCAGGGGAA CAGCCCTAG CAGGCCTAG CAGCCTTCC CTCTGCCTT TGTCCTTTTGGT CTCCCTCAC GAACCCTGTG GACCCTGTG TCCCTCACC GAACCCTGTG TGACTCATT ACGGCGGGCA	60 120 180 240 360 420 480 540 660 720 1020 1020 1140 1200 1320 1380 1440 1560
45 50 55 60 65 70	1	11	1-3150 (under  21	31   CACGCCGTGC CTGCTSTIGC GTACTCTGGG ACAGACGGG CTGCAGGTTG ACAGACTTG GACGCCGTGC CCCTGCCATCT GACCCCGTGG GCCAGATTCA GGCCAGATTCA GGCCAGATTCA GCTGGTGTGC CACCCCGCG GCCACCGGG GCCACCGGG CACCCCAGGATCC GCCATCGGGG CACCCCAG ATGGATCGCA CACCCAGGAG CCCACGGGG CACCCCAG CCCATCGGGG CACCCCAG CCCACCGCAC CCCATCGGAA CACACCCAAC CAGAAGCAGA ACCCAGAACCAC ACCCAGACCCAAC CAGAAGCAGA ACCCAGACCC	41  AGCTGGCCTG GGCCCCGGG TCAGTGTCTA ACAGCAAAGG TGGGTTCGCCC GCAGCATCGC ACAGTTCAC TGCATGCC CCAGAGCTGG CCAGAGCTGG CCAGAGCTGG CCATGTGCAC CCAAAGGGAA ACTCTGTGGC CCAAAGGGCA ACTCTGACG CCCATGAGG CCCCTTAGG GCTCCTTTGG CTCCTTTGG CTCCTTTGG CTCCTTTGG CTCCTTTGG ACTCTTTGT GGCTAGTGG CCCTTAGAGG ACACGTTG	sind stop codons)  51    GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTTC GGTGGGAGCA CCTCTTCCCT CTCTCTCCACA CTCGGCAGCA CCTCTCCACA CCGCAGCAGCA CCTCTCCACA CCGCAGCAGCA CCTCAGCAGCA CCTCAGCAGCA CCTCACTACA CCCCTTGGG CAGCCCCAC CCCCTTGGG CAGCCCTAC CCCCTTGGG CTCCCTTTGGT CTCCTCTCACC CTCCCTCACC CACACCCTTTTGT CTCCTCTCACC CACACCCTTTTGT CACACCCTTTTGT CACACCCTTTTGT CACACCCTTTTTGT CACACCCTTTTTGT CACACCCTTTTTGT CACACCCTTTTTTGT CACACCCTTTTTTTTTT	60 120 180 360 360 420 480 540 660 720 840 900 1020 11200 1260 1320 1380 1440 1560 1560
45 50 55 60 65 70	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGCAGCTTTTA ATACCAGCCA CACTGTTCCAG CACCAGTACA CACTGTCCAG CACCAGTACA CACTGTCCAGG CAGGAGAGGA CAGGAGAGGA CCTTAATTACCC CTTATTACCC CTTACTTTAG TGGTGGGGG GGGTCTACGT TAGTGTTTGG TGGTGGGGGC TAGTGTTTTGG GAGACCTGA AGCCCTGTG GAGACCTGA ACCTTACTTA ACCCTTACTT TAGTGTTTGT CAGGCCATGA ACCTTACTT TGGAGACTTCA ACCTTACTT TGGAGACTTCA CCATGTTCA CCATGTTCA CCATGTTCA CCATGTTCA CCATGTTCA CCTCCAGGCA CCTCCAGCA CCTCCAGGCA CCTCCAGGCA CCTCCAGCA CCTCCAC CCTCCAC CCTCCACAC CCTCCAC CCCAC CCCCAC CCCCAC CCCCAC CCCCAC CCCCAC CCCCAC CC	1-3150 (under  21    GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA GCCAGGAGTG GCCAGGAGGGG AGCCCATGGC GCCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC CGAGTACCTG TTTCTGGCAA AGCCTTAGT TGCTCAGT TGCTCAGT CGATTACTG ACCCTGCTC CTACCTCCAG ACCCTGCTC CTACCTCCAG CCAATGATTG ATTTCCTGGG TGCCAATGGA CAGGGCCGC CCCAGAGGAC CTGCCTCAAT GCTGCAATGGA CAGGACCTGC CCCAGAGGAC CTGCCTCAAT GCTGCACCTG GAAGATCTAC GAAGATCTCA	31   CACGCCTGC CTGCTSTTGC GTACTCTGGG GTACTCTGGG ATTGAATTTG GACGCCTGT TCCTCATCT GACCCCTGG CCCGCAGATTC GCCGAGATTCA GCCGAGATTCA GCCGAGATCC GCCGCACAGATC GCCCCCACGA ATGGATCGA CACCCCAGGC GCCCCACAGACC GCCCCAGAGC TATCCTGATC CCACCCCAG CGCCCCAGAGC GCCCCAGGAC GCCCCAGGAC CACCCCAG TATCCTGATC CCCACCCCAG CGCCCCAGAAC CCCAGACC GCCCCAGAAC CCCAGACC CCCCAGAAC CCCAGACC CCCCAGAAC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCCAGAACC CCCCCCCC	41  AGCTGCGCTG GGCCGCCGCG GGCCCCCGGG TCAGTGTGCTG GTGCTGTCTA AGCAAAGG TGAGTTCAG CCAAGATTCAG CCAAGATTCAG CCAAGATTGAGCC CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG CCATAGACCT TCTACAACTT ACGTCAATGG CCCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTTGGC CCCTTAGGCG ACTCCTTTGGG ACTCCTTTGG AGGAGGGGT TGCTCAACTT AGGAGGG AACACTTTCC AGGAGAGT TGCTCAACACTT	sind stop codons)  51  GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CAGGGTCGGG GCTCTTCTC GCTCGGCTC CTCTGCCT CTCTGCAC TCACTGTAC CCTCTTCACA CCTCTGCAC CCTGTGGGG CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCTGGGGAAC CTCAGCGAAC CCCCTTGGGG TGGGGAACC TAGCCTTC CTCTCCCTTT GTCCTTTAGT GTCCTTTTGGT GTCCTTTTGGT GACCCTTT GTCCTTTAGT TGACTCCATT ACGCGGGCA TGACCCTGTT TGACTCCATT ACGCGGGCAAAA	60 120 240 300 360 420 480 540 660 720 900 1020 1080 1140 1200 1260 1380 1440 1560 1560 1620 1680 1680 1740 1800
45 50 55 60 65 70	1	11	1-3150 (under  21      GTCCCCTCTC GCTGCTGTTG GCTCCCAGCA CCGGCCGGGA GCCGAGGAGTG GCCAGGAGTG GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC TGATTACTG TGATGACAGC CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGTG CTATGCAGC CGAAGGATGAG CCCAGGCCAGC CCCAGAGGAGC CCCAGAGGAGC GCCAGACCTG GCCAACCTG GAGAACCTG GAAGATCTAC GAAGATCTAC TCTCAACTTC	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGAGGGG CTGCAGGTG ATGAATTIG GAGGAGCTG CCCTCCATCT CCTCCATCT CCTCCATCT ATCAACTGG CCCTGCGCCT ATCAACTGG CCCTGGGGGT ATCAACTGG ATTGAATCC GCCGCCACAG ATTGAATCC GCCGCCACAG ATTGAATCC GCCGCCACAG ATTGAATCC GCATCTGGGG CCCATCGGG GCCCAGGAG CACACCCCAG CACACCCCAG CACACCCCAG CACACCCCAG CACACCCAG CACACCCCAG CCCATCGGGC CCCATCGGGAC CACACAGAAC CCCATCGGAC CCCAGAACC CCCAGACCC CTCAGGAACC CTCAGGAACC CTCAGGAACC CTCAGGAACC CTCAGGAACC CTCAGGAACC CCCATCGACC CTCAGGAACC CTCAGCAC CTCACAC CTCACC CTC	41    AGCTGCGCTG GGCCCCGC GGCCCCCC GTGCTGTCTGTGT GTGTGTCTGTGTGTG	sind stop codons)  51	60 120 240 300 420 480 540 660 720 780 840 960 1020 1140 1260 1320 1380 1440 1500 1500 1680 1740 1860
45 50 55 60 65 70	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCA ACTGCCAGG CACGATACT ACTGCCAGG CACACTTTAG CCTACTTTGG TGGTGCGGC CTGCTCATGA AGCCCTGTG AGCCCTGTG ACCTTTAGTTTTCT CCATGTTTCA CCTTACTTTGG CACACTTTAGA CCTTACTTTGG CACACTTCAGA CCTTACTTTGG CACACTTCAGA CCTTACGGCA CCACGTCAGA CCTTACGTT TGGAACTTCA CCTCCAGGCA CCTCCAGGCA CCACAGGAGAT TTCACACTCC GCCCAGCCCT TTCACACTCC	1-3150 (under  21    GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCACCCCC CTCAGAGGGA AGCCATGAG CGCACTGAG TTTCTGGCAA AGGCTTCAGT TTGATGACAG AGACTTTAGT TGGCTCAGT CGATGACTG CTACCAGTG ACCCTGCTG CAATGAGTT ACCCTGCAG TGAGTTTGGC CAATGAGTG CAATGAGTG GCCAGCAGGGGCCAGC CGCAGAGGAG CTGCCAAT GCCTCAAT GCTGCAAT GCTGCAAT GCTCAAT CTCAACTTC CAATTATCAG CAATTATCAG CAATTATCAG CTCCAACTTC CAATTATCAG CTCCAACTTC CAATTATCAG	31   CACGCCGTGC CTGCTSTIGC GTACTCTGGG ACAGACGGG CTGCAGGTTG ACAGACTGG ACAGACGGG CTCCAGATTG GACCCCGTGC GCCAGATTCA GGCAGATCA GGCAGATCA GCCAGAGTCA GCCAGAGTCA GCCAGAGTCA GCCACGCG GCATTGGAC GCCACGCG CGATTTGGAC CCCATCGGGA CACACCCAG CACACCCAG CACACCCAG CACACCCAG CACACCCAG CCCATCGGGA CACACCCAG CCCATCGGGA CCCAGGAC CCCATCGGAA CCCAGGAAC CCCAGGAAC CCCAGGAAC CCCAGGAAC CCTCAGGAAC CTCAGGAAC CTCAGGAAC CTCAGGAAC CTCAGGAAC CCCAGGAGCC CTCAGGAAC CCCAGGAAC CTCAGGAAC CTCAGGAACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGACC CTCACC CTCACGACC CTCAGACC CTCAGACC CTCAGACC CTCAGACC CTCAGACC CTCACC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACC CTC	41  AGCTGGCCTG GGCCCCGG TCAGTGTCTA AGCAAAGG TGGGTTCAA TGGCATCGC GCACTGCC TCAGTGTCA TGGCATCAA TGGCATCGC CCAGAGCTGG CCACTGCTA ACTCTGCAC CCAAAGCGAA ACTCTGTGCA CCAAAGCGAA ACTCTGTGGC CCATAGGGC CCCTTAGC GCCTTGAC GCCTTGAC GCTTCTTTGG CTCCTTTGG TGATTGTGGC CTCCTTTGG TGATTGTGGC CTCCTTTGG TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC GCTTAGAGGG ACACGTTGC AGTCAGAATT CCCAAGAGCCC GGATAGAGCC GGATAGAGGG GGTATCCAAAGCCCC GGATAGAGGG GGATAGAGCC TCCCAAGAGGGG TGCCCATCCA AGTCAGAATT CCCAAGAGGGG TGCCATCCA AGTCAGAATT CCCAAGAGGGG GGTAGAGCCC GGATAGAGGG GGATAGAGGG GGATAGAGGG TGCCAAAGCCCC GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGG GGATAGAGGG GGATAGAGG GGATAGAGG GGATAGAGG GGATAGAGGG GGATAGAGGG GGATAGAGG GATAGAGG ATAGAGG GATAGAGG GATAGAG GATAGAGG GATAGAG GA	sind stop codons)  51    GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTTC GGTGGGGGCAGCA CCTCTTGCCT CTCTTGCAG TCCACTGTAC CCTCTTCACA CCGTGTGGTT TCAGGGAGCAG CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTGAC CCTCACTTAC CCCCTTGGG TGGGGAGAC CCTCCTTTGGT TGACTTAC CTCCCTTTAGC CTCCCTTTAGC CTCCCTTTAGC CTCCCTTAGC CTCCCTCACC CCCCTGGG AACCCTGTT TGACTCATT ACGCCGGCAA ACGGCGGCAA ACGGCGGCAA ACGGCACAC CCAAGGCTCAC CAAGGCTCAC CCACTCCCCCCCCCC	60 120 180 240 360 420 480 540 660 720 960 1020 1080 1200 1320 1380 1440 1560 1560 1680 1740 1860 1860 1920
45 50 55 60 65 70	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA TGGAGTTTTA ATACCAGCCA CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCG CACAGTTCA ACTGCCAGG CACGATACT ACTGCCAGG CACACTTTAG CCTACTTTGG TGGTGCGGC CTGCTCACTA AGGACCTGTG AGGCCCTGTG AGCCCTGTG CACAGTTCAA CCTTACTTCAC CTTACTTTCG CACAGTTCAA CCTTACTTTCG CACAGTTCAA CCTTACGTT CCATGTTCAA CCTTACGTT TGGAACTTCA CCTCCAGGCA CCACAGGAGAT TTCGAACTTCA CCTCCAGGCA CCACAGGAGAT TTCACACATCG GCCCAGCCCT TTCACACACCC CGCAGGCCT TTCACACACCC CGCAGGCCAT CCCACGCC CGCAGGCCAT TTCACACACCC CGCAGGCCAT TCCACACCC CGCAGGCCAT TTCACACACCC CGCAGGCCAT TTCACACACCC CGCACGCC CGCACGCC CGCACGCC CGCACCC CGCACCC CGCACCC CGCACCC CGCACCC CCCACCC CGCACCC CCCACCC CCCCC CCCACCC CCCACCC CCCCACCC CCCACCC CCCCC CCCCC CCCCC CCCCC CCCC CCCCC CCCC	1-3150 (under  21    GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCACCCCC CTCAGAGGGA AGCCATGAG CGCACTGAG TTTCTGGCAA AGGCTTCAGT TTGATGACAG AGACTTTAGT TGGCTCAGT CGATGACTG CTACCAGTG ACCCTGCTG CAATGAGTT ACCCTGCAG TGAGTTTGGC CAATGAGTG CAATGAGTG GCCAGCAGGGGCCAGC CGCAGAGGAG CTGCCAAT GCCTCAAT GCTGCAAT GCTGCAAT GCTCAAT CTCAACTTC CAATTATCAG CAATTATCAG CAATTATCAG CTCCAACTTC CAATTATCAG CTCCAACTTC CAATTATCAG	31   CACGCCGTGC CTGCTSTIGC GTACTCTGGG ACAGACGGG CTGCAGGTTG ACAGACTGG ACAGACGGG CTCCAGATTG GACCCCGTGC GCCAGATTCA GGCAGATCA GGCAGATCA GCCAGAGTCA GCCAGAGTCA GCCAGAGTCA GCCACGCG GCATTGGAC GCCACGCG CGATTTGGAC CCCATCGGGA CACACCCAG CACACCCAG CACACCCAG CACACCCAG CACACCCAG CCCATCGGGA CACACCCAG CCCATCGGGA CCCAGGAC CCCATCGGAA CCCAGGAAC CCCAGGAAC CCCAGGAAC CCCAGGAAC CCTCAGGAAC CTCAGGAAC CTCAGGAAC CTCAGGAAC CTCAGGAAC CCCAGGAGCC CTCAGGAAC CCCAGGAAC CTCAGGAAC CTCAGGAACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGGACC CTCAGACC CTCACC CTCACGACC CTCAGACC CTCAGACC CTCAGACC CTCAGACC CTCAGACC CTCACC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACAC CTCACC CTC	41  AGCTGGCCTG GGCCCCGG TCAGTGTCTA AGCAAAGG TGGGTTCAA TGGCATCGC GCACTGCC TCAGTGTCA TGGCATCAA TGGCATCGC CCAGAGCTGG CCACTGCTA ACTCTGCAC CCAAAGCGAA ACTCTGTGCA CCAAAGCGAA ACTCTGTGGC CCATAGGGC CCCTTAGC GCCTTGAC GCCTTGAC GCTTCTTTGG CTCCTTTGG TGATTGTGGC CTCCTTTGG TGATTGTGGC CTCCTTTGG TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC TGATTGTGGC GCTTAGAGGG ACACGTTGC AGTCAGAATT CCCAAGAGCCC GGATAGAGCC GGATAGAGGG GGTATCCAAAGCCCC GGATAGAGGG GGATAGAGCC TCCCAAGAGGGG TGCCCATCCA AGTCAGAATT CCCAAGAGGGG TGCCATCCA AGTCAGAATT CCCAAGAGGGG GGTAGAGCCC GGATAGAGGG GGATAGAGGG GGATAGAGGG TGCCAAAGCCCC GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGGG GGATAGAGG GGATAGAGGG GGATAGAGG GGATAGAGG GGATAGAGG GGATAGAGGG GGATAGAGGG GGATAGAGG GATAGAGG ATAGAGG GATAGAGG GATAGAG GATAGAGG GATAGAG GA	sind stop codons)  51	60 120 180 240 360 420 480 540 660 720 960 1020 1080 1200 1320 1380 1440 1560 1560 1680 1740 1860 1860 1920

```
GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC
          CAGAATGTGG GTGAGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG
                                                                                                     2100
          GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC
                                                                                                     2160
          TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA
                                                                                                     2220
          GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC
                                                                                                     2280
          ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT
                                                                                                     2340
          TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT
         GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG
GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT
                                                                                                     2460
                                                                                                     2520
10
          AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT
         GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG
GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC
                                                                                                     2640
                                                                                                     2700
          TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC
         TOTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG
                                                                                                     2820
15
                                                                                                     2880
          TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT
         CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG
ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC
                                                                                                     3000
                                                                                                     3060
          TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG
20
         CTCAAGCCTC CAGCCACCTC TGATGCCTGA
         SEQ ID NO:292 AAB1 Protein sequence:
NP_002196
25
                                         21
                                                        31
                                                                       41
           MGSRTPESPL HAVOLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
                                                                                                         60
           CFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
30
           LESSLSSEG EEFVEYKSLO WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
                                                                                                        180
           DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
                                                                                                        240
           IABSYYPEYL INLVQQQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVEKGNLTY
GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
EVGRVYVYLQ HPAGIEPTPT LTLTGHDEPG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
                                                                                                        360
                                                                                                        420
35
           QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
           VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSPCLN ASGKHVADSI
                                                                                                        540
           GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
           LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
           GEONHVYLGD KNALNLTFHA ONVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                                                        720
40
           FAVNOSRLLV COLGNEMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
           SPRLSVEAQA QVTLINGVSKP EAVLFFVSDW HPRDQPQKEE DLGPAVHHYY ELINQGPSSI SQGVLELSCP QALEGQQLLY VTRVTGLNCT TIMPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                                                        840
                                                                                                        900
           SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPPSLQCEAV
           YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
45
           YKLGFPKRSL PYGTAMEKAQ LKPPATSDA
                                                                  SEQ ID NO:293 LBH4 DNA SEQUENCE
         Nucleic Acid Accession #: 8C001291
50
         Coding sequence:
                                 44-541 (start and stop codons are underlined)
                               31
55
         GGGGGCGCCG CGCGCTGACC CTCCCTGGGC ACCGCTGGGG ACG<u>ATG</u>GCGC TGCTCGCCTT 60
         GCTGCTGGTC GTGGCCCTAC CGCGGGTGTG GACAGACGCC AACCTGACTG CGAGACAACG 120
         AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAT AGAGTGTGGT GTCATGTTTG 180
TGAGAGAGAA AACACTTTCG AGTGCCAGAA CCCAAGGAGG TGCAAATGGA CAGAGCCATA 240
CTGCGTTATA GCGGCCGTGA AAATATTTCC ACGTTTTTTC ATGGTTGCGA AGCAGTGCTC 300
60
         CGCTGGTTGT GCAGCGATGG AGAGACCCAA GCCAGAGGAG AAGCGGTTTC TCCTGGAAGA 360
GCCCATGCCC TTCTTTTACC TCAAGTGTTG TAAAAATTCGC TACTGCAATT TAGAGGGGCC 420
ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG 480
          GCTGTGGCTG GCCATCCTCC TGCTGCTGGC CTCCATTGCA GCCGGCCTCA GCCTGTCT<u>TG</u> 540
         AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC 600
ACCTGTTGCA TTAAACTTGT TTTCTGTTGA TTACCTCTTG GTTTGACTTC CCAGGGTCTT 660
65
          GGGATGGGAG AGTGGGGATC AGGTGCAGTT GGCTCTTAAC CCTCAAGGGT TCTTTAACTC 720
         ACATTCAGAG GAAGTCCAGA TCTCCTGAGT AGTGATTTTG GTGACAAGTT TTTCTCTTTG 780
AAATCAAACC TTGTAACTCA TTTATTGCTG ATGGCCACTC TTTTCCTTGA CTCCCCTCTG 840
          CCTCTGAGGG CTTCAGTATT GATGGGGAGG GAGGCCTAAG TACCACTCAT GGAGAGTATG 900
70
         TGCTGAGATG CTTCCGACCT TTCAGGTGAC GCAGGAACAC TGGGGGAGTC TGAATGATTG 960
GGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTCAGCATGG GGGCAGTGG GGCACACGTT 1020
AGGGCTGCCC CCATTCCAGT GGTGGAGGCG CTGTGGATGG CTGCTTTTCC TCAACCTTTC 1080
         CTACCAGATT CCAGGAGGCA GAAGATAACT AATTOTGTTG AAGAAACTTA GACTTCACCC 1140
ACCAGCTGGC ACAGGTGCAC AGATTCATAA ATTCCCACAC GTGTGTGTTC AACATCTGAA 1200
ACTTAGGCCA AGTAGAGAGC ATCAGGGTAA ATGGCGTTCA TTTCTCTGTT AAGATGCAGC 1260
75
         CATCCATGGG GAGCTGAGAA ATCAGACTCA AAGTTCCACC AAAAACAAAT ACAAGGGGAC 1320
         ТТСААААGTT CACGAAAAA АААААААА АААААААА ААААААА
```

SEQ ID NO:294 LBH4 Protein sequence: Protein Accession #: AAH01291

5 1 11 21 31 41 51 | MALLALLLVV ALPRVWTDAN LTARQRDPED SQRTDEGDNR VWCHVCEREN TFECQNPRRC 60 KWTEPYCVIA AVKIFPRFFM VAKQCSAGCA AMERPKPEEK RFILEEPMPF FYLKCCKIRY 120 CNLEGPPINS SVFKEYAGSM GESCGGLWLA IILLLASIAA GLSLS

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

## WHAT IS CLAIMED IS:

1 2

prostate cancer.

1	1.	A method of detecting a prostate cancer-associated transcript in a cell
2	from a patient, the	method comprising contacting a biological sample from the patient with a
3	polynucleotide that	selectively hybridizes to a sequence at least 80% identical to a sequence
4	as shown in Tables	1-16.
1	2.	The method of claim 1, wherein the polynucleotide selectively
2	hybridizes to a sequ	uence at least 95% identical to a sequence as shown in Tables 1-16.
1	3.	The method of claim 1, wherein the biological sample is a tissue
2	sample.	,
1	4.	The method of claim 1, wherein the biological sample comprises
2	isolated nucleic aci	ds.
1	5.	The method of claim 4, wherein the nucleic acids are mRNA.
1	6.	The method of claim 4, further comprising the step of amplifying
2	nucleic acids before	e the step of contacting the biological sample with the polynucleotide.
1	7.	The method of claim 1, wherein the polynucleotide comprises a
2	sequence as shown	in Tables 1-16.
1	8.	The method of claim 1, wherein the polynucleotide is labeled.
1	9.	The method of claim 8, wherein the label is a fluorescent label.
1	10.	The method of claim 1, wherein the polynucleotide is immobilized on
2	a solid surface.	
1	11.	The method of claim 1, wherein the patient is undergoing a therapeutic
2	regimen to treat pro	ostate cancer.
1	12.	The method of claim 1, wherein the patient is suspected of having

1	13. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated transcript in the
6	biological sample by contacting the biological sample with a polynucleotide that selectively
7	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16,
8	thereby monitoring the efficacy of the therapy.
1	14. The method of claim 13, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated transcript to a level of the prostate cancer-
3	associated transcript in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	15. The method of claim 13, wherein the patient is a human.
1	16. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated antibody in the
6	biological sample by contacting the biological sample with a polypeptide encoded by a
7	polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence
8	as shown in Tables 1-16, wherein the polypeptide specifically binds to the prostate cancer-
9	associated antibody, thereby monitoring the efficacy of the therapy.
1	17. The method of claim 16, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated antibody to a level of the prostate cancer-
3	associated antibody in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	18. The method of claim 16, wherein the patient is a human.

I	19. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated polypeptide in the
6	biological sample by contacting the biological sample with an antibody, wherein the antibody
7	specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to
8	a sequence at least 80% identical to a sequence as shown in Tables 1-16, thereby monitoring
9	the efficacy of the therapy.
1	20. The method of claim 19, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated polypeptide to a level of the prostate cancer-
3	associated polypeptide in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	21. The method of claim 19, wherein the patient is a human.
1	22. An isolated nucleic acid molecule consisting of a polynucleotide
2	sequence as shown in Tables 1-16.
1	23. The nucleic acid molecule of claim 22, which is labeled.
1	24. The nucleic acid of claim 23, wherein the label is a fluorescent label
1	25. An expression vector comprising the nucleic acid of claim 22.
1	26. A host cell comprising the expression vector of claim 25.
1	27. An isolated polypeptide which is encoded by a nucleic acid molecule
2	having polynucleotide sequence as shown in Tables 1-16.
1	28. An antibody that specifically binds a polypeptide of claim 27.
1	29. The antibody of claim 28, further conjugated to an effector component

1	30.	The antrody of claim 29, wherein the effector component is a
2	fluorescent label.	
1	31.	The antibody of claim 29, wherein the effector component is a
2	radioisotope or a c	ytotoxic chemical.
1	° 32.	The antibody of claim 29, which is an antibody fragment.
1	33.	The antibody of claim 29, which is a humanized antibody
1	34.	A method of detecting a prostate cancer cell in a biological sample
2	from a patient, the	method comprising contacting the biological sample with an antibody of
3	claim 28.	
1	35.	The method of claim 34, wherein the antibody is further conjugated to
2	an effector compor	nent.
1	36.	The method of claim 35, wherein the effector component is a
2	fluorescent label.	· · · · · · · · · · · · · · · · · · ·
1	37.	A method of detecting antibodies specific to prostate cancer in a
2	patient, the method	comprising contacting a biological sample from the patient with a
3	-	ed by a nucleic acid comprises a sequence from Tables 1-16.
1	38.	A method for identifying a compound that modulates a prostate cancer
2	associated polypep	tide, the method comprising the steps of:
3		contacting the compound with a prostate cancer-associated polypeptide, the
4		ed by a polynucleotide that selectively hybridizes to a sequence at least
5		sequence as shown in Tables 1-16; and
6		determining the functional effect of the compound upon the polypeptide.
1	39.	The method of claim 38, wherein the functional effect is a physical
2	effect	The medica of claim 50, wholesh the functional office is a physical

1		40.	The method of claim 38, wherein the functional effect is a chemical
2	effect.		
1		41.	The method of claim 38, wherein the polypeptide is expressed in a
2	eukaryotic ho	ost cell	or cell membrane.
1		42.	The method of claim 38, wherein the functional effect is determined by
2	measuring lig	gand bir	nding to the polypeptide.
1 .		43.	The method of claim 38, wherein the polypeptide is recombinant.
1		44.	A method of inhibiting proliferation of a prostate cancer-associated
2	cell to treat p	rostate	cancer in a patient, the method comprising the step of administering to
3	the subject a	therape	utically effective amount of a compound identified using the method of
4	claim 38.		
1		45.	The method of claim 44, wherein the compound is an antibody.
1		46.	The method of claim 45, wherein the patient is a human.
1		47.	A drug screening assay comprising the steps of
2		(i) ad	ministering a test compound to a mammal having prostate cancer or a
3	cell isolated t	herefro	m;
4		(ii) co	omparing the level of gene expression of a polynucleotide that selectively
5	hybridizes to	a seque	ence at least 80% identical to a sequence as shown in Tables 1-16 in a
6	treated cell o	r mamn	nal with the level of gene expression of the polynucleotide in a control
7	cell or mamn	nal, who	erein a test compound that modulates the level of expression of the
8	polynucleotic	le is a c	andidate for the treatment of prostate cancer.
1		48.	The assay of claim 47, wherein the control is a mammal with prostate
2	cancer or a ce	ell there	from that has not been treated with the test compound.

The assay of claim 47, wherein the control is a normal cell or mammal.

49.

1 50. A method for treating a mammal having prostate cancer comprising 2 administering a compound identified by the assay of claim 47. 1 51. A pharmaceutical composition for treating a mammal having prostate 2 cancer, the composition comprising a compound identified by the assay of claim 47 and a 3 physiologically acceptable excipient. 1 52. The method according to claim 1, wherein said biological sample is 2 contacted with a plurality of polynucleotides comprising a first polynucleotide that 3 selectively hybridizes to a sequence at least 80% identical to a first sequence as shown in 4 Tables 1-16; and a second polynucleotide that selectively hybridizes to a second sequence at least 80% identical to a second sequence as shown in Tables 1-16. 5 1 53. A method according to claim 52, wherein the plurality of 2 polynucleotides comprises a third polynucleotide that selectively hybridizes to a sequence at 3 least 80% identical to a third sequence as shown in Tables 1-16... 1 54. A method of detecting a prostate cancer associated transcript, the 2 method comprising contacting a biological sample from the patient with a plurality of 3 polynucleotides wherein at least two of said polynucleotides selectively hybridize to a 4 difference sequence at least 80% identical to a sequence as shown in Tables 1-16. 1 55. A method of detecting a prostate cancer, the method comprising the 2 steps of: 3 (i) providing a biological sample from a patient; 4 (ii) contacting the biological sample with a first polynucleotide that selectively 5 hybridizes to a sequence at least 80% identical to a first sequence as shown in Tables 1-16 to 6 determine the level of a prostate cancer-associated transcript in the biological sample; and

with a second polynucleotide that selectively hybridizes to a second sequence at least 80%

sequence is not substantially changed in prostate cancer, to determine the level of expression

identical to a sequence not shown in Tables 1-16; wherein the expression of said second

of a control transcript in the biological sample;

7 8

9

11 (iii) comparing the level of the prostate cancer-associated transcript to a level 12 of the normal tissue associated transcript in the biological sample. 1 56. A method of quantitating a prostate cancer-associated transcript in a 2 cell from a patient, the method comprising contacting a biological sample from the patient 3 with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16. 4 1 57. The method of claim 56, wherein the polynucleotide selectively 2 hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. 1 58. The method of claim 56, wherein the biological sample is a tissue 2 sample. 59. 1 The method of claim 56, wherein the biological sample comprises 2 isolated nucleic acids. 1 60. The method of claim 56, wherein the nucleic acids are mRNA. 1 61. The method of claim 59, further comprising the step of amplifying 2 nucleic acids before the step of contacting the biological sample with the polynucleotide. 1 62. The method of claim 56, wherein the polynucleotide comprises a 2 sequence as shown in Tables 1-16. 1 63. The method of claim 56, wherein the polynucleotide is labeled. 1 64. The method of claim 63, wherein the label is a fluorescent label. 1 65. The method of claim 56, wherein the polynucleotide is immobilized on 2 a solid surface. 1 . 66. The method of claim 56, wherein the patient is undergoing a

67. The method of claim 56, wherein the patient is suspected of having metastatic prostate cancer.

therapeutic regimen to treat metastatic prostate cancer.

2

1

1	68. A biochip comprising a plurality of polynucleotides that selectively
2	hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16.
1	69. A method of screening drug candidates comprising:
2	i) providing a cell that expresses an expression profile gene selected from the
3	group consisting of an expression profile gene set forth in Tables 1-16 or fragment thereof;
4	ii) adding a drug candidate to said cell; and
5	iii) determining the effect of said drug candidate on the expression of said
6	expression profile gene.
1	70. A method according to claim 59 wherein said determining comprises
2 .	comparing the level of expression in the absence of said drug candidate to the level of
3	expression in the presence of said drug candidate.
1	SF 1277890 v1