25

The Assembly Process

Introduction to FEM Role of the Assembler in a FEM Code Model definition data: geometry element connectivity Ŕ material K **Equation Modify Eqs** Assembler fabrication Solver for BCs freedom activity Some equation solvers apply BCs merge and solve simultaneously loop \mathbf{K}^{e} Nodal displacements **Element ELEMENT Stiffness LIBRARY** Matrices To postprocessor

Simplified Assembly Process is Possible If

All elements are of the same type; e.g. 2-node bars

The number and configuration of DOFs at each node is the same

There are no gaps in the node numbers

Restrictions removed in Chapter

There are no multifreedom constraints (MFCs)

The master stiffness matrix is stored as a full symmetric matrix

Not addressed in Chapter

Assemblers Presented in Chapter

Simplified Assembler

Meets all restrictions of previous slide

MET Assembler

Allows multiple element types

MET-VFC Assembler

Allows multiple element types & variable freedom configurations at nodes (in particular, gaps in node numbers)

Plane Truss Assembly Process

Start by clearing the master stiffness array K

Form stiffness of bar (1)

and merge

Γ	1500	0	-1500	0	0	0	0	0 7	1
١	0	0	0	0	0	0	0	0	2
l	-1500	0	1500	0	0	0	0	0	3
l	0	0	0	0	0	0	0	0	4
	0	0	0	0	0	0	0	0	
١	0	0	0	0	0	0	0	0	
١	0	0	0	0	0	0	0	0	
	_ 0	0	0	0	0	0	0	0_	

Plane Truss Assembly Process (cont'd)

Form stiffness of bar (2)

$\begin{bmatrix} 1500 & 0 & -1500 & 0 \\ 0 & 0 & 0 & 0 \\ -1500 & 0 & 1500 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$

and merge

	1500	0	-1500	0	0	0	0	0 _	
	0	0	0	0	0	0	0	0	
İ	-1500	0	3000	0	-1500	0	0	0	3
	0	0	0	0	0	0	0	0	4
	0	0	-1500	0	1500	0	0	0	5
	0	0	0	0	0	0	0	0	6
	0	0	0	0	0	0	0	0	
	_ 0	0	0	0	0	0	0	0_	

Form stiffness of bar (3)

$$\begin{bmatrix} 768 & -576 & -768 & 576 \\ -576 & 432 & 576 & -432 \\ -768 & 576 & 768 & -576 \\ 576 & -432 & -576 & 432 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 7 \\ 8 \end{bmatrix}$$

and merge

Plane Truss Assembly Process (cont'd)

Form stiffness of bar (4)

and merge

Form stiffness of bar (5)

and merge

$$\begin{bmatrix} 2268 & -576 & -1500 & 0 & 0 & 0 & -768 & 576 \\ -576 & 432 & 0 & 0 & 0 & 0 & 576 & -432 \\ -1500 & 0 & 3000 & 0 & -1500 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2000 & 0 & 0 & 0 & -2000 \\ 0 & 0 & -1500 & 0 & 2268 & 576 & -768 & -576 \\ 0 & 0 & 0 & 0 & 576 & 432 & -576 & -432 \\ -768 & 576 & 0 & 0 & -768 & -576 & 1536 & 0 \\ 576 & -432 & 0 & -2000 & -576 & -432 & 0 & 2864 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 & 768 & -576 & 1536 & 0 \\ -576 & -432 & 0 & -2000 & -576 & -432 & 0 & 2864 \end{bmatrix}$$

Plane Truss Assembly Process (cont'd)

Because all elements have been processed

$$\mathbf{K} = \begin{bmatrix} 2268 & -576 & -1500 & 0 & 0 & 0 & -768 & 576 \\ -576 & 432 & 0 & 0 & 0 & 0 & 576 & -432 \\ -1500 & 0 & 3000 & 0 & -1500 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2000 & 0 & 0 & 0 & -2000 \\ 0 & 0 & -1500 & 0 & 2268 & 576 & -768 & -576 \\ 0 & 0 & 0 & 0 & 576 & 432 & -576 & -432 \\ -768 & 576 & 0 & 0 & -768 & -576 & 1536 & 0 \\ 576 & -432 & 0 & -2000 & -576 & -432 & 0 & 2864 \end{bmatrix}$$

is the master stiffness matrix

Eigenvalue check shows 3 zeros.

Plane Truss Assembler Module

Plane Truss Assembler Script & Results

```
nodxyz = \{\{-4,3\}, \{0,3\}, \{4,3\}, \{0,0\}\};
elenod= {{1,2},{2,3},{1,4},{2,4},{3,4}};
elemat= Table[3000,{5}]; elefab= Table[2,{5}]; eleopt= {True};
K=PlaneTrussMasterStiffness[nodxyz,elenod,elemat,elefab,eleopt];
Print["Master Stiffness of Plane Truss of Fig 25.2:"];
K=Chop[K]; Print[K//MatrixForm];
Print["Eigs of K=",Chop[Eigenvalues[N[K]]]];
Master Stiffness of Plane Truss of Fig 25.2:
  2268.
         -576.
                -1500.
                                   0
                                                       576.
                                          0
                                               -768.
                                          0
                                                       -432.
  -576.
          432.
                   0
                           0
                                   0
                                               576.
 -1500.
           0
                 3000.
                           0
                                -1500.
                                          0
                                                 0
                                                         0
                                                 0
           0
                         2000.
                                   0
                                          0
                                                      -2000.
    0
                   0
    0
           0
                -1500.
                                                      -576.
                           0
                                 2268.
                                         576.
                                               -768.
    0
           0
                                 576.
                                         432.
                                               -576.
                                                       -432.
                   0
                           0
          576.
  -768.
                   0
                           0
                                -768.
                                        -576.
                                               1536.
                                                        0
  576.
         -432.
                   0
                        -2000.
                                -576.
                                        -432.
                                                 0
                                                       2864.
Eigs of K={5007.22, 4743.46, 2356.84, 2228.78, 463.703, 0, 0, 0}
```

Multiple Element Type (MET) Assembler

bar (3)

Useful for problems such as this plane stress example.

Three element types: bar, triangle & quadrilateral, but all nodes have 2 DOFs (u_x, u_y) and no numbering gaps are allowed.

For implementation details see Notes. Here we go directly to the next level of assembler (most complicated type considered in Chapter)

MET-VFC Assembler (allows Multiple Element Types & Variable Freedom Configuration)

Allows element type mixing in one FEM model Nodes may have different freedom configurations identified by a signature

Additional data structures needed

For the MET part:

Element Type List

For the VFC part:

Node Freedom Arrangement

Node Freedom Signature

Node Freedom Allocation table

Node Freedom Map table

Element Freedom Signature

Detailed definitions in Notes. Here most are introduced through an application example

Trussed Frame Structure to Illustrate MET-VFC Assembly

Two element types: Beam-column & bar

Nodes 1, 3 and 5 have 3 DOFs each

Node 2 has 2 DOF

Node 4 is not defined (numbering gap)

Trussed Frame Structure (cont'd)

Some Definitions

Node Freedom Arrangement (NFA): u_x , u_y , u_z , θ_x , θ_y , θ_z (standard in general-purpose 3D FEM codes) position never changes: u_x always at #1, u_y always at #2, etc

Node Freedom Signature (NFS): a sequence of six zeros and ones packed into an integer:

- 1 freedom at that NFA position is allocated,
- 0 freedom at that NFA position is not used

110001: means u_x , u_y , θ_z allocated but u_z , θ_x , θ_y not used

A zero NFS means node is undefined or an orientation node.

More Definitions

The lists of the NFS for all nodes is the Node Freedom Allocation Table or NFAT (program name: nodfat)

Adding node freedom counts taken from the NFAT one builds the Node Freedom Map Table or NFMT (program name: nodfmt). The n-th entry of NFMT points to the global DOF number before the first global DOF for node n (0 if n=1)

The Element Freedom Signature or EFS is a list of freedoms contributed to by the element, in node-by-node packed integer form

NFAT and NFMT for Trussed Frame Structure

NFAT { 110001, 110000,110001,000000,110001}
DOF count { 3, 2, 3, 0, 3}
NFMT { 0, 3, 5, 8, 8}

EFS for beam-columns: {110001,110001} EFS for bars: {110000,110000}

From this info the Element Freedom Table (EFT) of each element may be constructed on the fly by the assembler (next slides)

Element Freedom Tables of Trussed Frame

Elem	Type	Nodes	EFS	EFT
(1)	Beam-column	{1,3}	{110001,110001}	{1,2,3,6,7,8}
(2)	Beam-column	{3,5}	{110001,110001}	{6,7,8,9,10,11}
(3)	Bar	{1,2}	{110000,110000}	{1,2,4,5}
(4)	Bar	{2,3}	{110000,110000}	{4,5,6,7}
(5)	Bar	{2,5}	{110000,110000}	{4,5,9,10}

Trussed Frame Assembly Process

Beam-column (1)

$$\mathbf{K}^{(1)} = \begin{bmatrix} 150. & 0. & 0. & -150. & 0. & 0. \\ 0. & 22.5 & 45. & 0. & -22.5 & 45. \\ 0. & 45. & 120. & 0. & -45. & 60. \\ -150. & 0. & 0. & 150. & 0. & 0. \\ 0. & -22.5 & -45. & 0. & 22.5 & -45. \\ 0. & 45. & 60. & 0. & -45. & 120. \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{8} \end{bmatrix}$$

Beam-column (2)

$$\mathbf{K}^{(2)} = \begin{bmatrix} 150. & 0. & 0. & -150. & 0. & 0. \\ 0. & 22.5 & 45. & 0. & -22.5 & 45. \\ 0. & 45. & 120. & 0. & -45. & 60. \\ -150. & 0. & 0. & 150. & 0. & 0. \\ 0. & -22.5 & -45. & 0. & 22.5 & -45. \\ 0. & 45. & 60. & 0. & -45. & 120. \end{bmatrix} \begin{bmatrix} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{bmatrix}$$

Bar (3)

$$\mathbf{K}^{(3)} = \begin{bmatrix} 25.6 & -19.2 & -25.6 & 19.2 \\ -19.2 & 14.4 & 19.2 & -14.4 \\ -25.6 & 19.2 & 25.6 & -19.2 \\ 19.2 & -14.4 & -19.2 & 14.4 \end{bmatrix} \begin{bmatrix} \mathbf{I} \\ \mathbf{2} \\ \mathbf{4} \\ \mathbf{5} \end{bmatrix}$$

Trussed Frame Assembly Process (cont'd)

Bar (4)

$$\mathbf{K}^{(4)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 200. & 0 & -200. \\ 0 & 0 & 0 & 0 \\ 0 & -200. & 0 & 200. \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$$
EFT

Bar (5)
$$\mathbf{K}^{(5)} = \begin{bmatrix} 25.6 & 19.2 & -25.6 & -19.2 \\ 19.2 & 14.4 & -19.2 & -14.4 \\ -25.6 & -19.2 & 25.6 & 19.2 \\ -19.2 & -14.4 & 19.2 & 14.4 \end{bmatrix} \begin{bmatrix} \mathbf{4} \\ \mathbf{5} \\ \mathbf{9} \\ \mathbf{10} \end{bmatrix}$$

Master Stiffness Matrix

