		No	No.		
		Da	ite ·		
随机变量整理 ン (期中	(前部分)				
	离散型随机变量数字特征				
	字字(如X)或小写春腊字早(如5)。				
2. 类型: 落散型,连续	型。				
3. 离散型随机度量分	布列(概率分布):对YK的P(X=Xk)=	pk.其中检算	b. px30 且	Σpk=	٠١.
4. 均值(数学期望): E	(X)= 名XiPi,刻画X平均取值。	•			
5. 方差:D(X)=ẫ[Xi-E(X)] ² pi = E(X ²) - E(X) ² , 刻画X离都程度	。杨稚玉小	×(x) .		
二. 随机度量间的关系					
1. 对Y= f(X),对确定	X有唯一确定Y,且二新对应概率相	जि .			
2. 27 Y= ax+b.					
(1) E(Y) = a E(X)+b	•				
	AP ND(Y) = aND(X).				
三. 随机变量大匙答题格					
多的所有可能取值为	1				
$P(\xi = 0) = (\frac{0}{2}(1-p)^2 =$					
$P(\xi = 1) = C_2 p(1-p)$	= 16 = 8				
$P(\xi = 2) = C_2^2 p^2 = 76$	9 6 1				
· 美知分布列为:	$E(\xi) = 0 \times \frac{9}{16} + 1 \times \frac{1}{16} + 2 \times \frac{1}{16}$				
P 76 8 76	= Ť 6				
四. 常见的概率分布(正為	= 豆。 ハたいたて多冷塩ヽ				
五爷	城境	敖沆	P(X=k)	TIVI	Nv)
伯努利 (两点)分布	-次独立试验,期望事件概率 p	ルル	0	E(A)	D(X)
二项分布	n. 水独立试验, 斯望事件 概率 p	χ~ <u>B</u> (n,p)	Ch k 1-p) nk	np	p(1-p)
to 2/6/4/7#27	さる、14440日 世間かれるしてかられいり	X 11/ · · · ·	CACA	nM	1W(-WV

伯努利(两点)分布	-次独立试验,期望事件概率 p	乱	ρ	P	p(t-p)
二项分布	n.沢独立试验,期望事件概率 p	$X \sim \beta(n,p)$	Ch D (1-D) nt	np	np(1-p)
超心何分布(不建议记)	总数N件物品,期望物M件.万放回抽M件	X~H(N,n,M)	CACA-M CO	×××	1M(-M)M
	(n,p) =np.met N(以,o2)		• •		

二项分布 个多次重复 两点分布 超心的冷布 正杂分布 东件概率有关公式 (人数选论2原文) 定义 PCA(B) = PCA(B) = PCAB)
PCB) PCB) 0 < PCAIB) < 1 P(AIA)=1 BAC = pat P(BUC) A) = P(BA) + PCCIA) PLAIB) + PLAIB) = 1 乘法公式 PLBA) = PCA)PCBIA) P(A,A,A,) = P(A,) P(A,) P(A,) P(A, 1A, A,2) 全概率公式 PCB)=P(A)PCB|A)+P(A)PCB|A) 淀裡1: A., A., ..., An⊆ ω满足 1. Ai Aj = Ø (i tj, i.j = 1, 2, ..., n) 2 A1+A2+-++ An = D ス P(Ai) >0、 i = 1,2,...,n ,

有 PCB) = $\sum_{i=1}^{n} P(BAi) = \sum_{i=1}^{n} P(Ai) P(B|Ai)$ 见时期公式 PCAIB) = P(A) PCBIA) = PCAI PCBIA) PCBIA) + PCAI PCBIA) 限理Z: AI.As,....An E 见满足 1. AiAj = \$ (i+j,i,j=1,2,...,n) 2. Ac+A2+ -- + An = 1 3-1>P(Ai)>0, i=1, 2, ...,n 对BEDJ且P(B)>0,有 PCAj |B) = PCAj) PCB | PCAj) PCB |Aj)

PCB)

PCB)

PCAj) PCB |Aj)

PCAj) PCB |Aj) 计截 知识提轫

1. 分类加热计数原理 N=m1+m2+…+mn)(基本计数原理 N=m1·m2····mn)

2. 排列数 A^m = <u>n!</u> = n(n-1)···(n-m+1) (排列數/A^x)
全排列敵 Aⁿ = n! 培殊规定 Aⁿ = 0! = 1 性质 A^m + mA^{m-1} = A^m

3. 組合數 $C_n^m = \frac{A_n^m}{A_n^m} = \frac{n(n-1)\cdots(n-m+1)}{m\cdot(m-1)\cdots(2\cdot 1)} = \frac{n!}{(n-m)!\,m!}$ (组合被公式) 特殊組合數 $C_n^m = 1$, $C_n^l = n$, $C_n^m = 1$.

(性质 $C_n^m = C_n^{n-m}$ $C_n^{m+1} + C_n^m = C_{n+1}^{m+1}$

4. 计数方法:

综合使用基本计数原理 转化为写价排列组合问题 将基本计数限理写排列组合有机结合 排除流 捆绑击 插座法 隔板法

5. 二项式定理 (a+b)ⁿ = Chaⁿ+ Chaⁿ⁻¹b+…+ Cha^{n-k}b^k+…+ Chbⁿ
二项展示式第k+1 项 Tie+1 = Cha^{n-k}b^k (二项展示式通项公式)
二项式分配性质 Ch+Ch+…+ Ch+…+ Ch=2ⁿ
Ch+Ch+Ch+… = Ch+Ch+Ch+…

Cn. Cn. Cn., Cn. 先度大后受小了的冷酷和。中间两二项或多数数数