17a) 01111001₂ \rightarrow decimal

First bit is 0, so the number is positive. Magnitude is 1111001

 $1111001_2 = 1+2^3+2^4+2^5+2^6 = 121$

 $01111001_2 \rightarrow 121_{10}$

17b) $10000011_2 \rightarrow decimal$

First bit is 1, so the number is negative.

10000011 negated → 01111100

 $011111100+1 = 011111101 = 1+2^2+2^3+2^4+2^5+2^6 = 125_{10} = magnitude$

 $10000011_2 \rightarrow -125_{10}$

17c) $10011001_2 \rightarrow \text{decimal}$

First bit is 1, so the number is negative.

 $10011001 \text{ negated} \rightarrow 01100110$

 $01100110+1 = 01100111 = 1+2^1+2^2+2^5+2^6 = 103_{10} = magnitude$

 $10011001_2 \rightarrow -103_{10}$

18a) F017 (16 bit two's complement hex) \rightarrow decimal

F017 → binary two's complement = 1111 0000 0001 0111

First bit is 1 so the number is negative

1111 0000 0001 0111 negated \rightarrow 0000 1111 1110 1000

0000 1111 1110 1000+1 = 0000 1111 1110 1001 = 4073_{10} = magnitude

F017 (16 bit two's complement hex) \rightarrow -4073₁₀

18b) 20B5 (16 bit two's complement hex) \rightarrow decimal

 $20B5 \rightarrow binary two's complement = 0010 0000 1011 0101$

First bit is 0 so the number is positive. Magnitude is 0010 0000 1011 0101.

 $0010\ 0000\ 1011\ 0101_2 = 8373_{10}$

20B5 (16 bit two's complement hex) \rightarrow 8373₁₀

20a A2 (8 bit unsigned) → decimal

 $A2 = 1010\ 0010_2$

 $1010\ 0010_2 = 162_{10}$

A2 (8 bit unsigned) \rightarrow 162₁₀

20b) A2 (8 bit signed two's complement) → decimal

 $A2 = 1010\ 0010_2$

First bit is 1 so number is negative.

1010 0010 negated \rightarrow 0101 1101

 $0101\ 1101+1 = 0101\ 1110$

 $0101\ 1110_2 = 94_{10} = magnitude$

A2 (8 bit signed two's complement) \rightarrow -94₁₀

20c) A2₁₆ \rightarrow binary

$$A_{16} = 10_{10} = 1010_2$$

$$2_{16} = 2_{10} = 0010_2$$

 $A2_{16} = 1010\ 0010_2$