Prof.: Elder de Oliveira Rodrigues - CEFET-MG - Timóteo - Campus VII

Curso: Engenharia de Computação

Disciplina: Sistemas Digitais para Computação

Lista de Exercícios - sem obrigação de entrega

Ensino Remoto Emergencial

ALUNO:

Parte 1:

1) Seja a tabela verdade a seguir.

-/-	1) Ocja a tabola verdade a seguir.								
Entradas				Saídas					
Α	В	С	D	F	G	S ₁	S_2	S_3	S ₄
0	0	0	0	0	0	1	Χ	0	Χ
0	0	0	1	0	1	Χ	Χ	0	0
0	0	1	0	1	0	Χ	1	0	Χ
0	0	1	1	1	1	Χ	0	1	1
0	1	0	0	0	0	1	Χ	Χ	1
0	1	0	1	0	1	0	1	Χ	Χ
0	1	1	0	0	0	Χ	0	1	0
0	1	1	1	1	1	Χ	1	0	1
1	0	0	0	1	1	Χ	1	Χ	0
1	0	0	1	1	0	1	0	1	1
1	0	1	0	1	1	Χ	Χ	0	0
1	0	1	1	0	0	1	1	0	Χ
1	1	0	0	0	1	Χ	0	1	1
1	1	0	1	1	0	Χ	1	0	1
1	1	1	0	1	1	1	1	Χ	1
1	1	1	1	0	0	0	Χ	1	Χ

- a) Represente as funções F(A, B, C, D) e G(A, B, C, D) conforme tabela verdade na forma
 - soma de produtos \rightarrow ? $(A, B, C, D) = \sum m(?, ...,?)$, e
 - produtos de somas \rightarrow ? $(A, B, C, D) = \prod M(?, ..., ?);$
- b) Minimize as funções G(A, B, C, D) e Sx(A, B, C, D) usando mapas de Karnaugh;

2) Simplifique as expressões por álgebra booleana.

- a) $S=\overline{A}.\overline{B}.\overline{C}+\overline{A}.B.C+\overline{A}.B.\overline{C}+A.\overline{B}.\overline{C}+A.B.\overline{C}$
- b) S=A.B.C+A.B.C+A.B.C+A.B.C+A.B.C
- c) $S=A.B.\overline{C}.D+\overline{A}.\overline{B}.C.\overline{D}+A.B.\overline{C}.\overline{D}+\overline{A}.B.C.\overline{D}+A.B.C.\overline{D}+A.B.C.\overline{D}+A.B.C.\overline{D}+A.B.C.D$
- d) $S=A.\overline{B.(C+D)}+\overline{A.(B+C)}+C.\overline{D}+A.\overline{B.C}+A.B$

- Respostas:
- a) $S = \overline{C} + \overline{A}B$
- b) $S = \overline{A}C + B$
- c) $S = AB + C\overline{D}$
- d) $S = D.A + \overline{D}C + AB$

3) Faça o circuito lógico que represente um codificador conforme figura e tabela.

. aşa o on	. aga e en eane legice que le							
Chave	Α	В	C	D				
Ch 0	0	0	0	0				
Ch 1	0	0	0	1				
Ch 2	0	0	1	0				
Ch 3	0	0	1	1				
Ch 4	0	1	0	0				
Ch 5	0	1	0	1				
Ch 6	0	1	1	0				
Ch 7	0	1	1	1				
Ch 8	1	0	0	0				
Ch 9	1	0	0	1				

4) Desenhe o circuito que executa a expressão:

$$S = \overline{A}. \overline{\left[\overline{B}.C + A.(\overline{C + \overline{D}}) + B.\overline{C}.D\right]} + (B.\overline{D} \oplus B.\overline{C})$$

5) Determine: a) A função lógica simplificada implementada pelo circuito abaixo. b) Um demultiplexador de 8 canais, a partir de 3 blocos demultiplex de 4 canais.

Prof.: Elder de Oliveira Rodrigues - CEFET-MG - Timóteo - Campus VII

Curso: Engenharia de Computação

Disciplina: Sistemas Digitais para Computação

PARTE 2: RESOLVA OS PROBLEMAS A SEGUIR

Obs: Para cada problema determine: a) Quantidade de variáveis de "Entrada e Saída"; b) Convenção de cada uma das variáveis; c) Tabela verdade conforme convenção adotada; d) Expressão da tabela e sua redução por Karnaugh; e) Circuito lógico.

- 1) Um circuito majoritário fornece saída 1 quando a maioria de suas entradas forem 1. Mostre a equação e o circuito para 5 entradas.
- 2) Projete um circuito de 4 entradas que sinalize quando 2 e apenas 2 de suas entradas forem 1.
- 3) Projete um circuito lógico para abastecer três tanques (T1, T2, e T3) de glicose em pavimentos distintos em uma Indústria de Balas e Biscoitos, através do controle de duas bombas conforme figura. O abastecimento principal é feito por caminhão-tanque que fornece o produto diretamente ao T1 disposto no piso térreo localizado à entrada da empresa. Desenvolva o projeto supondo que o nível máximo de T1 seja controlado pelo caminhão, coloque os sensores de controle nas caixas, convencione as variáveis e desenhe o circuito final simplificado. (ver resposta livro autor: Idoeta,

- 4) Considere um robô cuja plataforma possui um sistema de pára-choques com 4 sensores distribuídos conforme a figura abaixo (vista superior do robô). Projete um circuito combinacional que gere um código para os motores a fim de que o robô se desvie toda vez que se chocar com um obstáculo. Considere que este código é enviado aos motores durante o tempo de um segundo e depois o movimento original é restabelecido. O controle deverá obedecer a seguinte regra:
 - Se apenas o sensor F ou os 3 sensores frontais forem pressionados, o robô deverá andar para trás;
 - Se apenas F e D forem pressionados, giro para a esquerda;
 - Se apenas F e E forem pressionados, giro para a direita;
 - Se apenas D ou E for pressionado, giro para o lado oposto ao lado do choque;
 - Se apenas A for pressionado, movimento para frente;
 - Caso nenhum sensor seja pressionado e para as demais combinações (consideradas inválidas), o movimento original se mantém.

OBS: Especifique um código para os motores, construa a tabela verdade e encontre as expressões booleanas para o circuito combinacional do projeto. Não esquecer de montar o diagrama de portas lógicas correspondente.

5) Jesus é um funcionário que está sempre alegre com todos aqueles que conseguem passar pela <u>Porta</u> do CEU (Centro Esportivo Universitário). A porta do CEU possui 4 chaves, e é aberta somente pelos escolhidos funcionários consagrados como os Apóstolos do ano do CEU por Jesus. Jesus, com sua sabedoria distribuiu as chaves da seguinte forma:

Apóstolos	Chave(s)		
A→ João	1 e 2		
B→ Simão	2		
C→ Tiago	4		
D→ Mateus	2 e 4		
E → André	3		
F → Paulo	1 e 3		

Determine:

- a) Uma função P de Jesus, em forma de soma de produtos que faça a abertura da porta do CEU (considerando porta aberta igual a 1 (um), fechada 0 (zero);
- b) A expressão simplificada;
- c) O diagrama do circuito.