

3-5 三角形的邊角關係新課網

(1) 若三角形的三邊長為 7、16、x,則

$$\sqrt{(9-x)^2} + \sqrt{(23-x)^2} = \underline{14}$$
 °

(2) 若三角形的三邊長為 $a+1 \cdot a+5 \cdot a+7$,

則 a 的範圍為a > 1。

解:(1) ::23>x>9

$$\therefore \sqrt{(9-x)^2} + \sqrt{(23-x)^2}$$

$$= x - 9 + 23 - x$$

$$= 14$$

(2) (a+1)+(a+5)>a+7a>1

右圖 $\triangle ABC$ 中,D為

 \overline{BC} 的中點,且 \overline{AD}

 $<\frac{1}{2}$ \overline{BC} ,則 $\triangle ABC$

為鈍角、直角或銳角三角形?

$$\overrightarrow{BD} < \frac{1}{2} \overline{BC} = \overline{BD} = \overline{CD}$$

 $\therefore \angle B < \angle 1 \perp \angle C < \angle 2$

$$\Rightarrow \angle B + \angle C < \angle 1 + \angle 2$$

$$\Rightarrow \angle B + \angle C < \angle A$$

 $\Rightarrow \angle A > 90^{\circ}$

故△ABC 為鈍角三角形.....答

如圖, $\overline{AB} = 25$, $\overline{AD} = 21$

,
$$\overline{BC} = 23$$
, $\overline{CD} = 18$,則

 $\angle A$ 和 $\angle C$ 的大小關係為

 $\angle A < \angle C$ •

解: $\triangle ABC$ 中

 $\therefore \overline{AB} > \overline{BC}$, $\therefore \angle ACB > \angle CAB$

 $\triangle ACD \neq$

 $\therefore \overline{AD} > \overline{CD}$, $\therefore \angle ACD > \angle CAD$

$$\angle BAD = \angle CAB + \angle CAD$$

 $< \angle ACB + \angle ACD = \angle BCD$

故 $\angle A < \angle C$

在 $\triangle ABC$ 中,若 $2 \angle B = 3 \angle A$ 、 $2 \angle C = \angle A$,試

比較 \overline{AB} 、 \overline{BC} 、 \overline{CA} 的大小為

 $\overline{AB} < \overline{BC} < \overline{CA}$ \circ

解:由 $2 \angle B = 3 \angle A$,得 $\angle A = \frac{2}{3} \angle B$

因此
$$2 \angle C = \angle A = \frac{2}{3} \angle B$$

設 $\angle C = x^{\circ}$,則 $\angle A = 2x^{\circ}$, $\angle B = 3x^{\circ}$

 $\therefore \angle C < \angle A < \angle B$

故 $\overline{AB} < \overline{BC} < \overline{CA}$

 $\triangle ABC \stackrel{.}{\pitchfork}$, $\overline{AB} > \overline{BC} >$

 \overline{AC} \circ $\stackrel{\text{\tiny #}}{=}$ \overline{AD} \circ \overline{BE} \circ \overline{CF}

分別為三內角的角平分

線,且交於同一點I,

則 \overline{IA} 、 \overline{IB} 、 \overline{IC} 的大小關係為何?

 $\therefore \angle ACB > \angle BAC > \angle ABC$

分別平分三內角

- \therefore $\angle 1 > \angle 2$
- $\therefore \overline{IB} > \overline{IA}$

同理 ∠4> ∠3

 $\therefore \overline{IA} > \overline{IC}$

故 $\overline{IB} > \overline{IA} > \overline{IC}$

答: $\overline{IB} > \overline{IA} > \overline{IC}$

例題 €

<u>忻澄</u>手中有七根不同長度的竹籤,分別為 $\sqrt{2}$ 公分、 $\sqrt{3}$ 公分、 $\sqrt{4}$ 公分、 $\sqrt{5}$ 公分、 $\sqrt{6}$ 公分、 $\sqrt{7}$ 公分、 $\sqrt{8}$ 公分,若從其中拿出三根竹籤組成直角三角形,則共可以組成幾種不同的直角三角形?

解: $(\sqrt{2}, \sqrt{3}, \sqrt{5})$ 、 $(\sqrt{2}, \sqrt{4}, \sqrt{6})$ 、 $(\sqrt{2}, \sqrt{5}, \sqrt{7})$ 、 $(\sqrt{2}, \sqrt{6}, \sqrt{8})$ 、 $(\sqrt{3}, \sqrt{4}, \sqrt{7})$ 、 $(\sqrt{3}, \sqrt{5}, \sqrt{8})$ 所以共可以組成 6 種不同的直角三角形

1. 嘉嘉參加機器人設計活動,需操控機器人在 5×5 的方格棋盤上從 A 點行走至 B 點,且每個小方 格皆為正方形。主辦單位規定了三條行走路徑 $R_1 \, \cdot \, R_2 \, \cdot \, R_3$,其行經位置如圖(-)與表(-)所示。 已知 $A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G$ 七點皆落在格線的交點上,且兩點之間的路徑皆為直線,試回答 下列問題:

Q1:觀察圖(一),兩點之間的路徑 \overline{AC} 、 \overline{CD} 、 \overline{DB} 、 \overline{AE} 、 \overline{ED} 、 \overline{DF} 、 \overline{FB} 、 \overline{AG} 、 \overline{GB} 中,哪些線段的長度相等?(請寫出所有的答案)

觀察方格可知,
$$\overline{AC} = \overline{ED} = \overline{DB} = \overline{BG}$$
、 $\overline{CD} = \overline{AE}$

答:
$$\overline{AC} = \overline{ED} = \overline{DB} = \overline{BG} \cdot \overline{CD} = \overline{AE}$$

Q2:在無法使用任何工具測量的條件下,請判斷 $R_1 imes R_2 imes R_3$ 這三條路徑中,最長與最短的路徑 分別為何?請寫出你的答案,並完整說明理由。

設每個小方格的邊長為1

$$R_1 = \overline{AC} + \overline{CD} + \overline{DB}$$

$$R_2 = \overline{AE} + \overline{ED} + \overline{DF} + \overline{FB}$$

$$R_3 = \overline{AG} + \overline{BG}$$

$$\therefore \overline{DB} = \overline{BG} = \sqrt{3^2 + 1^2} = \sqrt{10}$$

$$\nabla \overline{AD} = \overline{AG} = \sqrt{2^2 + 4^2} = \sqrt{20}$$

目 AC + CD > AD (三角形兩邊之和大於第三邊)

 $R_1 > R_3 \cdots$

$$\therefore \overline{AC} + \overline{CD} = \overline{ED} + \overline{AE} = \sqrt{1^2 + 3^2} + \sqrt{1^2 + 1^2} = \sqrt{10} + \sqrt{2}$$

又
$$\overline{DB}$$
 < \overline{DF} + \overline{FB} (三角形兩邊之和大於第三邊)

$$R_1 < R_2 \cdots 2$$

中①、②可知 $R_2 > R_1 > R_3$,故 R_2 最長, R_3 最短

答: R₂ 最長, R₃ 最短

ー・選擇題(毎題6分,共30分)

(\mathbf{C}) 1.	若△ABC為等腰三角形:	其三邊長分別為 7、x、	15,則 x	$\mathfrak{c}=?$
---	--------------	------	--------------	--------------	--------	------------------

(A) 7

(B) 8

(C) 15

(D) 22

(C) 2. 下列各組長度中,何者<u>不可以</u>作為三角形的三邊長?

(A) $4 \cdot 6 \cdot 7$ (B) $5 \cdot 6 \cdot 10$ (C) $4 \cdot 6 \cdot 10$ (D) $4 \cdot 7 \cdot 10$

(\mathbf{B}) 3. 若 $4 \cdot 9 \cdot 2x - 1$ 三個線段長可圍成三角形,則下列何者正確?

(A) x > 9 (B) 3 < x < 7 (C) 6 < x < 14

(D) 5 < x < 13

(D) 4. 下列哪一個線段長<u>不可以</u>和 2 公分、3 公分這兩個線段長圍成一個三角形?

 $(A)\sqrt{2}$ 公分 $(B)\sqrt{3}$ 公分 $(C)\sqrt{23}$ 公分

(D) $\sqrt{32}$ 公分

(C)5.四根吸管長度分別是2公分、3公分、4公分、5公分,則拿掉哪一根吸管後, 剩下的三根吸管不能拼成一個三角形?

(A) 2 公分 (B) 3 公分 (C) 4 公分

(D) 5 公分

二·填充題(每格8分,共56分)

1. 若三角形的三邊長分別為 $3 \times 8 \times x$,則 x 的範圍為 5 < x < 11 。

2. $\triangle ABC$ 中, $\overline{AB} = 4$, $\overline{BC} = 6$, $\overline{AC} = x$,且 x 為偶數,則 $\triangle ABC$ 的周長最長為 18

3. 已知三角形的兩個邊長各為 12 和 2, 且其周長為偶數, 則此三角形的第三邊長為 12

 $2(\overline{PA} + \overline{PB} + \overline{PC})$ 和 $\overline{AB} + \overline{BC} + \overline{CA}$ 的大小關係。 說明:

$$\triangle PBC \Leftrightarrow \overline{PB} + \overline{PC} > \overline{BC} \cdots 3$$

由①+②+③得,2(\overline{PA} + \overline{PB} + \overline{PC}) \rightarrow \overline{AB} + \overline{BC} + \overline{CA} 。

一、選擇題:(南進階)

- (B) 1. 若 $\triangle ABC$ 為等腰三角形,其中 \overline{AB} = 4 公分, \overline{BC} = 9 公分,則 \overline{AC} 為多少公分?
 - (A) 4 (B) 9 (C) 4 或 9 (D) 7
- (D) 2. 在 $\triangle ABC$ 中,已知 \overline{AB} < \overline{AC} , \overline{AH} 為 \overline{BC} 上的高,且 H 點在 \overline{BC} 上,則下列敘述何 者正確?
 - (A) $\angle B = \angle C$ (B) $\angle B < \angle C$
- - (C) $\angle BAH > \angle CAH$ (D) $\angle BAH < \angle CAH$
- (A) 3. 在 $\triangle ABC$ 中, $\angle A=90^{\circ}$, $\overline{AB}>\overline{AC}$,則下列關於 \overline{AB} 、 \overline{BC} 、 \overline{AC} 的大小關係何者 下確?
 - (A) $\overline{BC} > \overline{AB}$ (B) $\overline{AB} > \overline{BC}$

 - (C) $\overline{AC} > \overline{BC}$ (D) $\overline{BC} = \overline{AC}$
- (C) 4. $\triangle ABC$ 中,已知 $\angle A> \angle B> \angle C$,今作 $\overline{AD}\perp \overline{BC}$, $\overline{BE}\perp \overline{AC}$, $\overline{CF}\perp \overline{AB}$,則下 列關於 \overline{AD} 、 \overline{BE} 、 \overline{CF} 的大小關係何者正確?
 - (A) $\overline{AD} > \overline{CF}$ (B) $\overline{AD} > \overline{BE}$
 - (C) $\overline{CF} > \overline{BE}$ (D) $\overline{BE} > \overline{CF}$

二、填充題:

- 1. 已知 $\triangle ABC$ 的三邊長皆為正整數,周長為 11 公分,則 $\triangle ABC$ 三邊長所有可能情況共有 4 種。
- 2. 如右圖, $\triangle ABC$ 中, $\angle ABC = 90^{\circ}$ 。若 $\angle 1 > \angle 2$,則 \overline{BD} 和 \overline{BE} 的大小關係為 $\overline{BD} < \overline{BE}$ 。

54 數讀滿分(四)

4. $\triangle ABC$ 中,若 \overline{AB} = 17, \overline{AC} = 9 且 $\angle A$ 為最大角,則 \overline{BC} 的範圍為 \overline{BC} > 17 且 \overline{BC} < 26 。

5. 如右圖, $\overline{AB} > \overline{AD}$, $\angle 1 = \angle 2$,則 \overline{BC} 和 \overline{CD} 的大小關係為 $\overline{BC} > \overline{CD}$ 。

三、計算題:

1. 已知 $a \cdot b \cdot c$ 是 $\triangle ABC$ 的三邊長,且 $a^2 + b^2 + c^2 + x^2 - 8a - 16b - 2cx + 80 = 0$,則 x 值的範圍 為何?

 $\mathbf{F}: a^2+b^2+c^2+x^2-8a-16b-2cx+80=0$

$$\Rightarrow$$
 $(a-4)^2+(b-8)^2+(c-x)^2=0$

$$\Rightarrow a=4$$
, $b=8$, $c=x$,又 a 、 b 、 c 為△ ABC 的三邊長

$$\Rightarrow$$
 8-4< x <8+4

$$\Rightarrow$$
 4< x <12

九階數獨的基本規則

- 1、圖形由 9×9 的方格構成。
- 2、每排、每列或每個 3×3 的方格中,都必須填上 1~9,且不可重複。
- 3、所用的方法只需推理不必計算。
- 4、答案只能有一種。

新湖 m 數獨第 2 題 答案

	~~	3-3>14	2 /CS	ㅁภ	`		1	
3	9	2	1	5	4	6	7	8
8	7	1	2	9	6	3	5	4
6	4	5	3	8	7	2	9	1
4	2	7	5	3	1	9	8	6
1	6	9	7	4	8	5	3	2
5	3	8	9	6	2	4	1	7
2	8	3	6	1	9	7	4	5
9	1	6	4	7	5	8	2	3
7	5	4	8	2	3	1	6	9

新湖 m 數獨第 2 題 開始時間:

	9		1	4	6		
	7	1					4
6		5			2		
4		7		1			
1		9	7	8	5		2
			9		4		7
		3			7		5
9					8	2	
		4	8	3		6	