Co.Al.A.R. Computational Algebraic Analysis Results

THIS PAGE IS DEVOTED TO SOME RESULTS IN **CLIFFORD ANALYSIS** and related topics

last update: January, 5th 2006

for any question on this site or any of the CoAlA webpages, please contact adamiano@gmu.edu

==> NOETHERIAN OPERATORS [DSS]:

Some experiments performed using different algorithms, includes CPU times

variables	multiplicity	IDEAL	CPU TIME (CoCoA 4.5 on Toshiba Sat. 2455)	OPERATORS
			- 3.4 from [DSS], following an idea of [MMM]	
			- (40) from [Ob96], using linear algebra	
			- 3.8 from [DSS], using forward reduction	
			- 3.17 from [DSS], using backward reduction	
2	4	(x^2-y ,y^2)	0.75"	1 ,
			0.14"	dx , dx^2+dy , dx^3+dxdy
			0.37"	
			0.08"	
2	8	(x^4-xy-y, y^2)	8.31"	1,
			0.90"	dx , dx^2 ,
			0.28 "	dx^3 , dx^4+dy ,
			0.15"	dx^5+dx^4+dxdy ,
			0.13	dx^6+dx^5+dx^2dy, dx^7+dx^6+dx^3dy
2	9	(x^3-y, y^3)	2' 9"	1,
			1.53"	dx , dx^2 ,
			0.34"	dx^3+dy, dx^4+dxdy,
			0.22"	dx^5+dx^2dy , $dx^6+dx^3dy+dy^2$,
				$dx^7+dx^4dy+dxdy^2$
3	8	(v\) = v\) = =\(\alpha\)	12'	$dx^8+dx^5dy+dx^2dy^4$
3	O	(x^2-z, y^2-z, z^2)		1 , dy ,
			9.18"	dx , dxdy ,
			0.99"	dx^2+dy^2+dz ,
			0.19"	dx^2dy+dy^3+dydz ,

				dx^3+dxdy^2+dxdz, dx^3dy+dxdy^3+dxdydz
3	4	(x^2-ty ,y^2)	dim(I)>0	1 ,
			dim(I)>0	dx , tdx^2+dy ,
			0.64"	tdx^3+dxdy
			not yet available	
4	8	(x^4-txy-sy, y^2)	dim(I)>0	1,
			dim(I)>0	dx , dx^2 ,
			2.61"	dx^3 , sdx^4+dy ,
			not yet available	sdx^5+tdx^4+dxdy, sdx^6+tdx^5+dx^2dy, sdx^7+tdx^6+dx^3dy
5	8	(x^2-tz, y^2-sz, z^2)	dim(I)>0	1,
			dim(I)>0	dy, dx,
			12.73"	dxdy, sdy^2+tdx^2+dz,
			not yet available	sdy^3+tdx^2dy+dydz, sdxdy^2+tdx^3+dxdz, sdxdy^3+tdx^3dy+dxdydz

REFERENCES: (click on [XXX] to get the AMS reference #)

[DSS] A. Damiano, I. Sabadini, D. Struppa, Computational Methods for the Construction of a Class of Noetherian Operators, Submitted

[Ob96] U. Oberst, Finite-dimensional systems of partial differential or difference equations. Adv. in Appl. Math. 17 (1996), no. 3, 337--356.

[MMM] Marinari, M. G.; Möller, H. M.; Mora, T. On multiplicities in polynomial system solving. Trans. Amer. Math. Soc. 348 (1996), no. 8, 3283-3321.