Taming Knowledge Graphs Heterogeneity and Bias in Entity Alignment

Nikolaos Fanourakis

Supervisor: Prof. Vassilis Christophides

Co-Supervisor: Assistant Prof. Vasilis Efthymiou

Outline

- Introduction
 - Knowledge Graphs (KG)
 - Entity Alignment (EA) Problem
 - KGs Heterogeneity & Structural Bias
 - Problem Statement & Main Challenges
 - Contributions
- Quantitative Analysis of EA Datasets
- HybEA: An Adaptable Framework for EA with KG Embeddings
- SUSIE: An Exploration-based Sampling Algorithm
 - HybEA Robustness to Structural Bias of KGs
- A Fairness-aware EA system
- Conclusions & Future Work

Knowledge Graphs (KG)

$$KG = (E, R, A, L, X, Y)$$

E, R, A and **L** are the sets of entity names, relation types, attribute types, and literals, respectively

DBpedia

Knowledge Graphs (e.g., DBpedia) describe entities in a machine-readable way

Integrating Entities From Multiple KGs

- Incomplete descriptions of the same real-world entities
- Increase completeness of entity descriptions

Entity Alignment (EA)

Given a source $KG_1=(E_1,R_1,A_1,L_1,X_1,Y_1)$ and a target $KG_2=(E_2,R_2,A_2,L_2,X_2,Y_2)$ find pairs of matches $M=\{(e_i,e_j)\in E_1\times E_2\mid e_i\equiv e_j\}$

Common assumption: one-to-one mapping

Heterogeneity of KGs

- Structural heterogeneity of KGs
 - non-isomorphic, diverse neighborhoods
- Factual heterogeneity of KGs
 - different entity names
 - different literals
- We cannot a priori prioritize one over the other heterogeneity forms

Structural (Indirect) Bias of KGs

- Incompletely described entities (e.g., missing relations) lead to structural diversity of KGs (size and number of connected components)
 - Structural bias is a special case of indirect bias (sampling, representation) against protected groups defined over sensitive attributes (e.g., gender, race)
 - Exploit factual information to complete the structural similarity of entities

Problem Statement

 Align entities in an adaptive way to different degrees of factual and structural heterogeneity exhibited by real KGs, robust to structural bias

- Main Challenges
 - Wide variety of graph representation learning to create entity embeddings based on different assumptions regarding KGs heterogeneity
 - Labels scarcity requires semi-supervised frameworks leveraging entity embeddings generated by the structural and factual information of entities.

Contributions

- New EA problem: Quantitative analysis of datasets with respect to different levels of structural & factual heterogeneity
 - 7 monolingual and 3 multilingual datasets
- New EA method: Semi-supervised framework for building hybrids of a novel factual-based EA model with several existing structural-based EA methods
 - HybEA: An adaptable framework for EA
- New EA sampling algorithm: For assessing robustness of the EA methods to structural bias of KGs
 - SUSIE: Exploration-based sampling algorithm
- New EA system: A fairness-aware EA system
- Thorough empirical study: Comparison with 11 baseline methods over 10 datasets used in previous works

1. Quantitative Analysis of EA Datasets

Heterogeneity Metrics

	Factual Heterogeneity	Structural Heterogeneity	Structural Bias
lev _{index} (for entity names)	✓	×	×
lev _{index} (for attributes)	✓	×	×
Jaccard	×	*	×
LDMAD	×	1	×
wccR	X	*	
maxCS	×	✓	✓
deg	X	*	1

Measuring Factual Heterogeneity

$$ext{lev}_{ ext{index}}\left(a,b
ight) = rac{|a| + |b| - ext{lev}_{ ext{distance}}\left(a,b
ight)}{|a| + |b|}$$

lev_{index}("Joe_Cassidy", "Q3436414") = **0.4**

Measuring Factual Heterogeneity

birthPlace

$$\operatorname{lev}_{\operatorname{index}}\left(a,b\right) = \frac{|a| + |b| - \operatorname{lev}_{\operatorname{distance}}\left(a,b\right)}{|a| + |b|}$$

$$\operatorname{DBpedia}$$

$$\operatorname{leigh}_{\operatorname{Richmond}}$$

$$\operatorname{Roose}$$

$$\operatorname{la77-11-27}$$

$$\operatorname{lg16-10-07}$$

$$\operatorname{lg16-10-07}$$

$$\operatorname{lg2}$$

$$\operatorname{lg2}$$

$$\operatorname{lg2}$$

$$\operatorname{lg3}$$

$$\operatorname{lg3}$$

$$\operatorname{lg2}$$

$$\operatorname{lg3}$$

$$\operatorname$$

Kingdon

 $lev_{index}("1896-08-10", "1894-02-14") =$ **0.7**

Jaccard index between the matched neighbors = (1/(2 + 4 - 1) + 0 + 1/(2 + 2 - 1)) / 3 = 0.17

Local Degree Mean Absolute Deviation = (|2 - 4| + |2 - 1| + |2 - 2|) / 3 = 1

Ratio of Weakly Connected Components

wccR(KG) = |wcc(KG)|/|E|

wccR = 2 / 9 = 0.22

Normalized Max Component Size $\max_{CC \in wcc(KG)}(|CC|)/|E|$

maxCS = 6 / 6 = 1

maxCS = 5 / 9 = 0.55

Average Node Degree

$$\overline{deg}(KG) = \frac{1}{|E|} \sum_{e_i \in E} deg(e_i)$$

$$deg = (1 + 2 + 2 + 2 + 1 + 3) / 6 = 1.83$$

$$\overline{\text{deg}} = (4+1+2+1+2+1+1+1+1) / 9 = 1.55$$

EA Datasets With Different Degrees of Heterogeneity

2. HybEA: An adaptable framework for EA

Knowledge Graph Embeddings (KGE) for EA

 Solve EA as a Representation Learning task in an embeddings space + Similarity-based Matching

Limitations of SOTA KGE Methods for EA

- Translational and GNN-based methods assume <u>low/medium heterogeneity</u>
- Supervised methods require large amounts of <u>labeled data</u>
- Language Models-based methods incur multiple LLM queries with a <u>important</u> monetary cost

- Reciprocity filter: high-confidence matching pairs feed back to the models and they are part of framework's returned matches
 - low cost and accurate (100% precision)
- For the remaining entities, run bipartite graph matching on the sim. matrix of the last model

23

HybEA: Factual Model

- Exploit all attributes of KGs for learning the attribute attentions
- Use contextualized attribute value embeddings

Scaled dot product

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$

$$\vec{e} = \sum_{(e, a_i, v_i) \in Y} a_i \vec{v_i}$$

Contrastive loss

$$\mathcal{L}_a = (1-\alpha) \sum_{(e_1,e_2) \in M} d(e_1,e_2) + \alpha \sum_{(e_1',e_2') \in N} [\lambda - d(e_1,e_2)]_+$$

HybEA Structural Model: Knowformer

- Triple level embeddings
- Inject relational knowledge into features vector (relational composition)
- Capture positions of entities in the relational triple (ψ_s and ψ_o)
- Cross entropy loss

$$ext{PAR}(s,r,o) = s + lpha \cdot h_s(\psi_s(r,o))r, o + lpha \cdot h_o(\psi_o(r,s))$$
 $\psi_s(r,o) = o - r$
 $\psi_o(r,s) = s + r$

HybEA Structural Model: RREA

$$L = \sum_{\left(e_i, e_j\right) \in P} \max\left(\operatorname{dist}\left(e_i, e_j\right) - \operatorname{dist}\left(e_i', e_j'\right) + \lambda, 0\right)$$

negative sampling (pseudo matching entity pairs)

Optimization objectives:

- minimize the distance of matched entities of the two KGs
- maximize the distance of pseudo matching entities of the two KGs

embedding of
$$e_i$$
 $h_{e_i}^{l+1} = \text{ReLU}\left(\sum_{e_j \in \mathcal{N}_{e_i}^e} \sum_{r_k \in R_{ij}} \alpha_{ijk}^l M_{r_k} h_{e_j}^l \right)$ neighbors embedding graph attention neighbors of e_i (wider range) reflection transformation matrix

Baseline EA Methods

Methods	Embedding Module	Learning	Joint (structure &facts)	Entity Embeddings Initialization
MTransE	TransE	supervised	no	random
Knowformer	Transformers	supervised	no	random
BERT-INT	BERT	unsupervised	yes	entity names
RREA	GAT	semi-supervised	no	random
COTSAE	TransE	semi-supervised	yes	random
PipEA (basic)	GAT	supervised	no	random
ZeroEA	BERT	unsupervised	yes	entity names
SelfKG	GAT	self-supervised	no	entity names
Simple-HHEA	Random Walks	supervised	yes	entity names
AttrGNN	GCN	supervised	yes	entity names
PARIS+	-	rule-based	no	-
HybEA-K	Transformers	semi-supervised	yes	entity names
HybEA-R	GAT	semi-supervised	no	random

HybEA Performance (Monolingual) H@1 Improvement

HybEA-R +17.6% & +6.6%

- compared to PARIS+ HybEA-R +51% & +38% compared
- to RREA(basic) and RREA
- **HybEA-K** +64% compared to
- Knowformer **HybEA-R** +37% higher than
- COTSAE

- HybEA-K +2.8% compared to
- ZeroEA (LLM-based) HybEA-K +112% compared to
- RREA (structure-based)

Knowformer
BERT-INT
RREA (basic)

RREA

PipEA

(basic)

ZeroEA

SelfKG

Simple-HHEA

AttrGNN

PARIS+

HybEA-R

HybEA-K

COTSAE

Method

MTransE

0.402

0.544

0.45

0.466

0.504

0.43

0.542

0.707

0.071

0.235

0.522

0.692

0.841

0.989

0.997

0.99

0.920

0.969

0.93

+0.148

(+17.6%)

0.58

0.12

0.59

D-W (S)

0.260

0.540

0.35

0.559

0.786

0.64

D-W (D)

0.262

0.574

0.840

0.941

0.87

0.426

0.485

0.44

0.878

0.986

0.570

0.657

0.938

1.000

1.000

1.00

0.988

0.997

0.99

+0.062

(+6.6%)

0.60

0.36

Metric

H@1

H@10

MRR

H@1

H@10

MRR

H@1

H@10

MRR

H@1

H@10

MRR

H@1

H@10

MRR.

Hits@1

H@10

MRR

H@1

H@10

MRR.

H@1

H@10

MRR.

H@1

H@10

MRR

H@1

H@10

MRR

H@1

H@10

MRR

H@1

H@1

H@10

MRR

H@1

H@10

MRR

H@1

0.92	
0.937	
0.991	
0.96	
- 2	
-	
-	
0.736	
0.804	
0.76	
0.538	
0.567	
0.48	
0.620	
0.749	
0.66	
0.077	
0.327	
0.15	

0.881
0.977
0.91
0.922
0.983
0.94
0.708
0.823
0.75
0.604
0.620
0.55
0.734
0.852
0.77
0.144
0.402
0.22
0.193
0.343
0.24
0.834
0.997

1.000

1.00

0.968

0.987

0.97

+0.075

(+7.7%)

D-W (SRPRS-N) D-W (SRPRS-D)

0.210

0.493

0.388

0.656

0.47

0.519

0.534

0.52

0.446

0.754

0.55

0.503

0.768

0.709

0.904

0.77

0.241

0.371

0.29

0.469

0.488

0.45

0.586

0.750

0.63

0.104

0.305

0.17

0.366

0.588

0.44

0.442

0.972

0.992

0.98

0.908

0.954

0.92

+0.263

(+40.6%)

0.59

0.30

BBC-DB

0.249

0.502

0.33

0.289

0.506

0.37

0.925

0.937

0.93

0.436

0.652

0.52

0.468

0.651

0.54

0.140

0.493

0.02

0.969

0.976

0.961

0.989

0.098

0.291

0.16

0.311

0.539

0.387

0.993

1.000

0.996

0.997

+0.027

(+3.6%)

0.99

1.00

0.39

0.97

0.80

0.347

0.680

0.46

0.788

0.924

0.83

0.642

0.650

0.64

0.817

0.962

0.87

HybEA Performance (Monolingual)

 HybEA on average 17.95% improvement compared to best-performing baseline

<u>H@1 Improvement</u>

- HybEA-R: +1888% and +6112% compared to RREA(basic) and Knowformer (structure-based)
- HybEA-R: +18.5% compared to SelfKG (LLM-based)
- HybEA-R: +38% compared to Simple-HHEA

Method	Metric	ICEWS-WIKI		ICEWS-YAGO	
	H@1		0.001	0.000	
MTransE	H@10	0.00		0.001	
	MRR		0.004	0.001	
	H@1		0.016	0.013	
Knowformer	H@10		0.075	0.046	
	MRR		0.03	0.02	
	H@1		0.561	0.756	
BERT-INT	H@10		0.700	0.859	
	MRR		0.60	0.79	200
RREA	H@1	Г	0.050	0.026	
(basic)	H@10		0.227	0.136	
	MRR		0.11	0.06	
	H@1		0.050	0.027	
RREA	H@10		0.230	0.142	
	MRR		0.11	0.06	_
000010	Hits@1		_	2	
COTSAE	H@10		-	-	
	MRR				
PipEA	H@1		N/A	N/A	
(basic)	H@10		N/A	N/A	
2 3	MRR		N/A	N/A	
7 54	H@1		N/A	N/A	
ZeroEA	H@10		N/A	N/A	
	MRR H@1		N/A	/	700
SelfKG			0.839	0.806	
SelikG	H@10		0.931	0.867	
	MRR H@1		0.871	0.828	
Simple-HHEA	H@10		0.720 0.872	0.847 0.915	
Simple-HHEA	MRR		0.754	0.870	
	H@1		0.734	0.015	-
AttrGNN	H@10		0.047	0.015	
AttiGivit	MRR		0.09	0.04	
PARIS+	H@1		0.672	0.687	-
TAICIST	H@1		0.994	0.994	
HybEA-R	H@10		0.994	0.994	
пубел-к	MRR		1.00	1.00	
	H@1				-
HybEA-K	H@10		$\frac{0.916}{0.938}$	$\frac{0.941}{0.944}$	
пубел-к			0.938	0.94_	
	MRR _				
Δ	H@1		+0.155	+0.147	
			(+18.5%)	(+17.4%)	_ 1

HybEA Performance (Multilingual)

- HybEA-R has at most 0.7% H@1 improvement (BERT-INT)
- HybEA-R has at most 3% H@1 improvement (BERT-INT)

Method	Metric	FR-EN	JA-EN	ZH-EN
	H@1	0.244	0.279	0.308
MTransE	H@10	0.556	0.575	0.614
	MRR	0.335	0.349	0.364
=	H@1	0.774	0.731	0.765
Knowformer	H@10	0.932	0.902	0.888
	MRR	0.832	0.793	0.811
	H@1	0.992	0.964	0.968
BERT-INT	H@10	0.998	0.991	0.990
	MRR	0.995	0.975	0.977
	H@1	0.827	0.802	0.801
RREA	H@10	0.966	0.952	0.948
	MRR	0.881	0.858	0.857
	H@1	0.998	0.982	0.985
ZeroEA	H@10	0.999	0.995	0.993
	MRR	0.998	0.989	0.991
	H@1	0.957	0.813	0.742
\mathbf{SelfKG}	H@10	0.992	0.906	0.861
	MRR	0.971	0.844	0.782
	H@1	0.942	0.783	0.796
AttrGNN	H@10	0.986	0.920	0.929
	MRR	0.959	0.834	0.845
PARIS+	H@1	0.882	0.824	OOM
	H@1	0.999	0.993	0.994
HybEA-R	H@10	1.000	0.999	0.999
	MRR	0.999	0.995	0.996

HybEA Contribution to Different Structural Models

- Contribution of HybEA in datasets:
 - Low struct. & high factual
 - 11% 55% improv.
 - Medium struct. & factual
 - 28% improv. (HybEA-R)
 - High struct. & low factual
 - 90% 98% improv.
 - Medium struct. & low factual
 - 25% improv. (HybEA-R)
 - Low struct. & factual
 - 64% 70% improv.

Statistical Significance Difference

HybEA-R outperforms all baselines with statistically significant difference

3. SUSIE: An Exploration-based Sampling Algorithm

Bias in KG Modeling Tasks

		Node Classification	Recommendation	Link Prediction	Entity Alignment
Direct	Group	✓	✓	✓	✓
Indirect	Individual Fairness	✓	×	✓	×
	Degree-related	✓	✓	✓	✓
	Connectivity-related	×	✓	✓	X

Lack of publicly available benchmark data for assessing fairness of EA

Choudhary, M., Laclau, C., Largeron, C.: A survey on fairness for machine learning on graphs. CoRR abs/2205.05396 (2022)

Dong, Y., Ma, J., Chen, C., Li, J.: Fairness in graph mining: A survey. CoRR abs/2204.09888 (2022)

SUSIE

- Random walks on both input KGs
- **Jumps**, controlled by jump probability *p* (hyper-parameter):
 - visit a random, unvisited node of the other KG (swap KGs)
 - the target node belongs to a component of a randomly selected component size
- Explores diverse areas of both KGs, wrt the size of the connected components
 - \circ High jump probability $p \rightarrow$ high structural diversity (many and small connected components in sample)

SUSIE - Methodology

- Random Walks with jump probability (p)
- Sampling size s = 6
- $p = \{0, 0.5, 1\}$

Sampled KG'₁ with 6 nodes

Sampled KG'₂ with 6 nodes

KGs With Different Degrees of Structural Diversity

- DBpedia Yago (D-Y)
- DBpedia Wikidata (D-W)
- BBC DBpedia (BBC-DB)

		Relations	Triples		
	(E_1 / E_2)	(R_1 / R_2)	$(T_1 \ / \ T_2)$		
D-Y	15,000 /15,000	165 / 28	30,291 / 26,638		
D-W	15,000 /15,000	248 / 169	38,265 / 42,746		
BBC-D	9,396 / 9,396	9 / 98	15,478 / 45,561		

	p		input
	wccR	KG_1	0.03
		KG_2	0.04
D-Y	maxCS	KG_1	0.87
D- I		KG_2	0.83
	\overline{deg}	KG_1	4.03
	aeg	KG_2	3.55
	wccR	$ KG_1 $	0.01
		KG_2	0.02
D-W	maxCS	KG_1	0.95
D- vv		KG_2	0.93
	\overline{deg}	KG_1	5.10
	aeg	KG_2	5.69
	D	KG_1	0.18
	wccR	KG_2	0.07
BBC-D	maxCS	KG_1	0.31
טטט-ט		KG_2	0.78
	\overline{deg}	KG_1	3.29
	ueg	KG_2	9.69

Baseline EA Methods

Methods	Embedding Module	Learning	Neighborhoods	Entity Embeddings Initialization
HybEA-K	Vanilla Transformers	semi-supervised	one-hop	yes
HybEA-R	GAT	semi-supervised	multi-hop	no
RREA	GAT	semi-supervised	multi-hop	no
RDGCN	GCN	supervised	multi-hop	yes
MultiKE	TransE	supervised	one-hop	no
PARIS+	-	rule-based	one-hop quasi-functional*	no

^{* (}h,r,t) relation triples that for a given (h,r) pair, the expected number of tail entities (t) is close to 1

Controlling Structural Bias in Popular KGs

- higher wccR (more jumps) → less connected KG
 - many, small connected components
- lower wccR (fewer jumps) → bigger
 KG regions connected
 - few, small connected components
- more connected components→
 lower maxCS
- low deg(KG) (more jumps) → high structural diversity and sparser KGs

sampling size = 1000

			innut		0.15	0.5	0.05	1
p		input	0	0.15	0.5	0.85	1	
D-Y	WCCB -	KG_1	0.03	0.01	0.15	0.24	0.28	0.28
		KG_2	0.04	0.05	0.18	0.24	0.28	0.29
	\max_{CS}	$ KG_1 $	0.87	0.90	0.13	0.03	0.02	0.02
		KG_2	0.83	0.70	0.06	0.03	0.02	0.02
	\overline{deg}	$ KG_1 $	4.03	3.65	3.41	2.94	2.71	2.78
		KG_2	3.55	2.31	2.59	2.35	2.16	2.17
D-W	wccR	KG_1	0.01	0.01	0.14	0.24	0.28	0.29
		KG_2	0.02	0.03	0.11	0.20	0.24	0.24
	\max_{CS}	KG_1	0.95	0.91	0.47	0.18	0.11	0.10
		KG_2	0.93	0.85	0.57	0.34	0.24	0.26
	\overline{deg}	$ KG_1 $	5.10	3.68	2.79	2.50	2.47	2.44
		KG_2	5.69	3.31	2.94	2.37	2.28	2.19
BBC-D	wccR	KG_1	0.18	0.16	0.23	0.29	0.34	0.36
		KG_2	0.07	0.01	0.16	0.24	0.28	0.31
	maxCS	KG_1	0.31	0.26	0.02	0.01	0.01	0.02
		KG_2	0.78	0.92	0.27	0.03	0.04	0.02
	dea	KG_1	3.29	3.44	3.09	2.73	2.47	2.43
		KG_2	9.69	11.69	6.52	6.07	5.43	5.11

Robustness of KGE EA Methods to Structural Bias

- HybEA-R that also exploit factual information is the most robust to structural bias in all datasets
- HybEA-K and RDGCN exhibit high robustness in datasets with low factual heterogeneity, while in datasets with high factual heterogeneity less
- Conventional Ontology Alignment methods (e.g., PARIS) rely on largely homogeneous KGs
 - very sensitive to structural variations

4. Fairness-aware EA Framework

Fairness Conditions

Settings and Evaluation Scores

Visual Explanations on Suggested Matches

Conclusions

- We experimentally assessed the different degrees of structural and factual heterogeneity exhibited by real KGs
- HybEA is able to adapt to the different degrees of factual and structural heterogeneity exhibited by real KGs
 - Outperforms 11 SOTA EA methods achieving a 16% average relative improvement of Hits@1, ranging from 3.6% up to 40% in all 7 monolingual datasets, with some datasets that can now be considered as solved, while also in 3 multilingual datasets with a statistically significance difference
- We introduced an exploration-based sampling method, that allows sampling KGs of adjustable levels of structural diversity of KGs
 - Demonstrate that SOTA KGE-based EA methods exhibit indirect bias against smaller, less connected regions of benchmark datasets.
 - HybEA-R is the most robust method to structural bias

Future Work

- Explain HybEA matching decisions to enhance transparency and trustworthiness
 - o **coarse-grained:** it makes it easy to see the provenance of the returned matches (i.e., matches returned by the structural vs the factual component)
 - o **fine-grained:** the factual model could report the most significant attributes of aligned entities, while the structural model their most significant relations
- **Extend SUSIE** to consider not only structural diversity, but also factual diversity (i.e., in literal values)
- In the context of temporal evolving KGs and streaming settings
 - Our semi-supervised framework is a first step towards this direction by proposing reliable pseudo-labels
 - Extend HybEA also with incremental node embedding modules

Publications

- 1. <u>Nikolaos Fanourakis</u>, Vasilis Efthymiou, Dimitris Kotzinos, Vassilis Christophides: **Knowledge graph embedding methods for entity alignment: experimental review.** Data Min. Knowl. Discov 2023
- Nikolaos Fanourakis, Vasilis Efthymiou, Vassilis Christophides, Dimitris Kotzinos, Evaggelia Pitoura, Kostas Stefanidis: Structural Bias in Knowledge Graphs for the Entity Alignment Task. ESWC 2023
- 3. <u>Nikolaos Fanourakis</u>, Christos Kontousias, Vasilis Efthymiou, Vassilis Christophides, Dimitris Plexousakis: **Fairness-Aware and Explainable Entity Resolution**. ISWC (Posters/Demos/Industry) 2023
- 4. <u>Nikolaos Fanourakis</u>, Fatia Lekbour, Guillaume Renton, Vasilis Efthymiou, Vassilis Christophides: **HybEA: Hybrid Models for Entity Alignment**. CoRR abs/2407.02862 2024 (under review)

THANK YOU!