Charles Lesire-Cabaniols (ONERA / DCSD) charles.lesire@onera.fr

3A-SEM - 2010-2011

Systèmes Hybrides

Utilisations

Propriétés

**Automates Hybrides** 

Propriétés

Systèmes Hybrides

Utilisations

| Systèmes Hybrides | Automates Hybrides | Propriétés<br>00000000 | Utilisations<br>0000000 |
|-------------------|--------------------|------------------------|-------------------------|
| Rappel            |                    |                        |                         |
| Systèmes Hybrid   | des                |                        |                         |
| Rappel            |                    |                        |                         |
| Historique        |                    |                        |                         |
| Automates Hybr    | rides              |                        |                         |
| Introduction      |                    |                        |                         |
| Définitions       |                    |                        |                         |
| Trajectoire       |                    |                        |                         |
| Propriétés        |                    |                        |                         |
| Trajectoires      |                    |                        |                         |
| Zénon             |                    |                        |                         |
| Accessibilité     |                    |                        |                         |
| Stabilité         |                    |                        |                         |
| Utilisations      |                    |                        |                         |
| Contrôle          |                    |                        |                         |
| Algorithme        |                    |                        |                         |

◆ロト ◆部 → ◆注 → 注 りへで

00000000

# Types de variables

Le modèle mathématique d'un système est caractérisé par :

- ▶ la nature de ses variables d'état :
  - variables continues : prennent leurs valeurs sur le domaine des réels  $\mathcal{R}$ .

- variables discrètes : prennent leurs valeurs sur un domaine représenté par un ensemble dont le nombre d'éléments est fini (ex : les entiers naturels  $\mathcal{N}$ , variables booléennes)/
- la nature de la variable indépendante qui représente le temps

00000000

# Types de systèmes

## Systèmes continus

- temps : variable continue (temps dense)
- variables d'état continues, évolution dictée par le temps
- équations algébro-différentielles  $\dot{x}(t) = Ax(t) + Bu(t)$ , transformée de Laplace
- ► Ex : température d'une pièce



000000000

## Types de systèmes

## Systèmes échantillonnés

- temps : variable discrète  $\theta_0, \theta_1 \dots \theta_{n-1}, \theta_n, \theta_{n+1} \dots$
- variables d'état continues (observées à  $\theta_i$ )
- équations aux différences  $X_{k+1} = A_k X_k + B_k U_k$ transformée en Z



000000000

# Types de systèmes

#### Systèmes à événements discrets

- représentés par une suite d'événements discrets (ex : un plan)
- temps : relation de précédence
- variables d'état discrètes : valeur x(k+1) calculé directement à partir de x(k), sans considérer le temps (fonction des événements)
- automates, réseaux de Petri
- ex : nombre de pièces dans un système de manufacture

000000000

# Types de systèmes

## Systèmes discrets

- temps : variable continue (temps dense)
- variables d'état discrètes (ex : machine libre ou occupée, ventilateur ON/OFF)
- automates (temporisés), réseaux de Petri (temporels)



Systèmes Hybrides

000000000

# Types de systèmes

### Systèmes hybrides

- évolution à la fois en fonction
  - du temps continu et
  - des événements discrets
- variables d'état continues et variables d'état discrètes
- automates hybrides, réseaux de Petri hybrides ; Simulink et StateFlow

# Systèmes Hybrides

- Evolution technologique :
  - systèmes distribués, réseaux : sous-systèmes interconnectés ;
  - ▶ 98% des microprocesseurs sont intégrés sur des systèmes physiques : BMW (72  $\mu$ P en réseau), Boeing 777 (1280  $\mu$ P en réseau);
  - avancées sur les technologies de capteurs et d'actionneurs
- 2 visions :
  - ► Théorie du Contrôle : systèmes continus, controllabilité, stabilité, atteignabilité, robustesse, ...Résultats en modélisation : switched control system, supervisory control system, piecewise affine systems (PWA)
  - ▶ Informatique : systèmes de état-transition, composition et abstraction, concurrence, ... Résultats en modélisation : automates hybrides, réseaux de Petri hybrides



# Systèmes Hybrides

- juin 1991 : First workshop on Hybrid Systems, R.L. Grossman and A. Nerode, Cornell University, USA
- oct. 1992 : 2nd workshop, Technical University of Lyngby, Danemark
- ▶ 1993 : Hybrid Systems (Grossman et al.), Lecture Notes in Computer Science
- avril 1998 : First Hybrid Systems : Computationand Control (HSCC) (Henzinger and Sastry), Berkeley
- 2003 : IFAC conference on Analysis and Design of Hybrid Systems (ADHS), France
- de nombreux problèmes ouverts : modélisation, analysé, vérification, synthèse de controleur, simulation, génération de code, complexité, . . .



## Automates hybrides

- Les automates temporisés décrivent un type de systèmes hybrides
- Automates hybrides pour représenter des horloges asynchrones !
- A l'origine : Alur, Henzinger, Sifakis, Yovine, ...
- École française performante : Sifakis, Yovine, Maler (VeriMAG), Asarin (LIAFA / Paris 7)
- ▶ Inspiration d'un cours de Claire Tomlin (http://www.stanford.edu/class/aa278a/)
- ▶ Références, approfondissemnets → "Google is vour friend!"

## Exemples

Systèmes Hybrides

#### Bouncing ball

$$x_{1} = 0 \land x_{2} \leq 0$$

$$x_{2} := -c x_{2}$$

$$q_{0}$$

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -g$$

$$x_{1} \geq 0$$

- x<sub>1</sub> : position verticale de la balle ;
- ► x<sub>2</sub> : vitesse vertical de la balle ;
- ▶ g : accélération ;
- $c \in [0,1]$ : coefficient de restitution ;
- transitions discrètes lors des rebonds :
- Propriétés :
  - non-bloquant ;
  - ▶ si c < 1, l'automate est Zénon.

Introduction

Systèmes Hybrides

## **Exemples** Pilote automatique





- Équations de la dynamique du vol,
- ► Modes de vol, i.e. stratégies de contrôle.



# Automates Hybrides

Un Automate hybride (autonome) est défini par :

- ▶ un ensemble d'états discrets Q,
- ▶ un espace d'état continu  $X \subset \mathbb{R}^n$ ,
- ▶ un ensemble d'état initiaux  $Init \subset Q \times X$ ,
- ▶ des invariants  $Inv \subset Q \times X$ ,
- ▶ une dynamique continue  $f: Q \times X \rightarrow X$ ,
- ▶ une dynamique discrète  $R: Q \times X \rightarrow 2^{Q \times X}$ .

# Comportement dynamique d'un AH

Une succession de phases séparées par des événements

- au cours d'une phase : les variables discrètes n'évoluent pas ; les variables continues évoluent continûment dans le temps
- lors d'un événement : les variables discrètes évoluent : les variables continues peuvent changer de valeur ( \sim \text{discontinuité}, variable non dérivable en ce point) ; la structure du modèle continu peut être modifiée!!

# Ensemble temporel hybride

Un ensemble temporel hybride (Hybrid Time Set) est une séquence d'intervalles  $\tau = \{I_i\}_{i>0}$  telle que  $\forall i$ :

$$I_i = [\tau_i, \tau_i']$$

$$ightharpoonup < au>=\sup i\;(N\;\mathrm{ou}\;+\infty)\;\;;\;|| au||=\sum_{i=0}^{N}( au_i'- au_i)$$

▶ si 
$$<\tau>=\infty$$
 et  $||\tau||<\infty$ ,  $\tau$  est Zénon.

# Trajectoire hybride

L'exécution d'un automate hybride est une trajectoire hybride  $(\tau, q, x)$  telle que :

- $\triangleright$   $(q_0, x_0) \in Init$ ,
- $(q_{i+1}(\tau_{i+1}), x_{i+1}(\tau_{i+1})) \in R((q_i(\tau_i'), x_i(\tau_i'))),$
- $\triangleright \forall i$ :
  - $ightharpoonup q_i: I_i \to Q$  est constante (i.e.,  $q_i(t) = q_i(\tau_i) \forall t \in I_i$ ),
  - $x_i: I_i \to X$  est une solution de l'équation différentielle

$$\dot{x}_i = f(q_i(t), x_i(t))$$

 $\forall t \in [\tau_i, \tau'_i], x_i(t) \in Inv(q_i(t)).$ 

| Systèmes Hybrides | Automates Hybrides | Propriétés       | Utilisations<br>0000000 |
|-------------------|--------------------|------------------|-------------------------|
|                   |                    |                  |                         |
| Systèmes Hybrides |                    |                  |                         |
| Rappel            |                    |                  |                         |
| Historique        |                    |                  |                         |
| Automates Hybride |                    |                  |                         |
| Introduction      |                    |                  |                         |
| Définitions       |                    |                  |                         |
| Trajectoire       |                    |                  |                         |
| Propriétés        |                    |                  |                         |
| Trajectoires      |                    |                  |                         |
| Zénon             |                    |                  |                         |
| Accessibilité     |                    |                  |                         |
| Stabilité         |                    |                  |                         |
| Utilisations      |                    |                  |                         |
| Contrôle          |                    |                  |                         |
| Algorithme        |                    |                  |                         |
| Filtrage          |                    |                  |                         |
| Outils            |                    | 4□ > 4₫ > 4불 > 4 | <b>₹</b>                |
| SEM IN310 - SH    |                    |                  |                         |

## Propriétés Trajectoires

Systèmes Hybrides

#### Non-bloquant

Un automate hybride est non-bloquant si  $\forall (q_0, x_0) \in Init$ , il existe une trajectoire infinie partant de  $(q_0, x_0)$ .

#### Déterminisme

Un automate hybride est déterministe si  $\forall (q_0, x_0) \in Init$ , il existe au plus une trajectoire maximale partant de  $(q_0, x_0)$ .

Systèmes Hybrides

#### **Trajectoires**

Dans le cas continu :

- ▶ non-bloquant  $\Leftarrow f$  continue
- $\blacktriangleright$  déterministe  $\Leftarrow f$  lipschitzienne

Dans le cas hybride :

- ▶ Plus de "souplesse" : une transition discrète peut débloquer l'automate!
- non-bloquant

$$\Leftarrow \forall (q,x) \in \mathit{Trans} \cap \mathit{Reach}, \exists \ q' \in \mathit{Q} \ / \ \mathit{R}(q,x) = (q',x')$$

► Trans ensemble des états de transition : l'équation différentielle n'admet pas de solution dans l'invariant ;

 $Q \times Inv$  ouvert et f localement lipshitzienne  $\Rightarrow Trans = (Q \times Inv)^c$ 

000000000

# Propriétés

Systèmes Hybrides

#### Zénon

Un automate est Zénon si pour  $(q_0, x_0) \in \mathit{Init}$ , toutes les trajectoires infinies  $\tau$  depuis  $(q_0, x_0)$  sont Zénon :

$$ightharpoonup < au>=\infty$$

$$|\tau|<\infty$$

Du à la modélisation du système, qui est une abstraction du système réel.

Pose des problèmes pour la simulation (et donc pour la vérification).

000000000

**7**énon

# Propriétés

Systèmes Hybrides

## Régularisation

On peut régulariser un automate hybride Zénon H en construisant une famille d'automates  $H_{\epsilon}$ .

- $\phi:Q_\epsilon \times X_\epsilon \to Q \times X$  fait correspondre un état de  $H_\epsilon$  à un état de H ;
- ▶  $H_{\epsilon}$  "tend vers H" quand  $\epsilon \to 0$ .

Systèmes Hybrides

#### Zénon



$$\phi(q_0,(x_1,x_2,x_3))=\phi(q_1,(x_1,x_2,x_3))=(q,(x_1,x_2))$$

## Propriétés États

Systèmes Hybrides

#### Accessibilité

Un état  $(q, x) \in Q \times X$  est accessible s'il existe une trajectoire finie  $\sigma$  qui finie en (q, x) (i.e.  $\langle \tau \rangle = N \langle \infty$  et  $(q_N(\tau'_N), x_N(\tau'_N)) = (q, x).$ 

#### Invariants

L'ensemble  $M \subset Q \times X$  est appelé invariant si  $\forall (q_0, x_0) \in M$  et pour toute trajectoire  $\sigma$  partant de  $(q_0, x_0)$ :

$$\forall i, \forall t \in I_i, (q_i(t), x_i(t)) \in M$$

# Automates hybrides rectangulaires

#### Rectangle

Un ensemble  $R \subset \mathbb{R}^n$  est un rectangle si  $R = \prod_{i=1}^n R_i$  où  $R_i$  est un intervalle dont les bornes sont rationnelles.

## Automate rectangulaire

Un automate rectangulaire est un automate hybride tel que :

- $\triangleright Q = \{q_1, \ldots, q_m\}$ ;
- ▶  $Init = \bigcup_{i=1}^{m} \{q_i\} \times Init(q_i)$  où  $Init(q_i)$  est un rectangle ;
- f(q,x) = F(q) où F(q) est un rectangle;
- Inv(q) est un rectangle.
- → Automates rectangulaires initialisés : plus grande classe d'AH pour laquelle l'accessibilité est décidable (mais PSPACE) !

## Stabilité

Systèmes Hybrides

#### Equilibre

L'état continu  $x_e$  est un point d'équilibre de H si :

- ▶  $f(q, x_e) = 0$  pour tout  $q \in Q$ ;
- $ightharpoonup R(q, x_e) \subset Q \times \{x_e\}.$

#### Equilibre stable

L'état continu  $x_e$  est un point d'équilibre stable si  $\forall \epsilon > 0, \exists \delta > 0$  tel que pour toute trajectoire  $(\tau, (q, x))$  partant de  $(q_0, x_0)$ ,

$$||x_0 - x_e|| < \delta \Rightarrow \forall t \in \tau, ||x(t) - x_e|| < \epsilon$$

 $x_e$  stable pour f(q), pour tout  $q \not\Rightarrow x_e$  stable pour H !!même si les variables ne sont pas réinitialisés  $(R(q,x) \subset Q \times \{x\})$ 

Utilisations

Systèmes Hybrides

## Théorème de Lyapunov pour les SH

Soit H un automate tel que  $x_e$  est un point d'équilibre et  $R(q,x) \in Q \times \{x\}, \forall q$ . Soit D un ouvert de  $\mathbb{R}^n$  tel que  $x_e \in D$ .  $x_e$ est stable s'il existe  $V:D\to\mathbb{R}$  une fonction  $C^1$  telle que :

$$V(x_e) = 0$$

$$V(x) > 0 \forall x \in D \setminus \{(x_e)\}$$

## Système linéaire par morceaux

Pour un système linéaire par morceaux, i.e.  $f(q_i, x) = A_i x$ .  $x_e$  est stable s'il existe une solution P symétrique définie positive au système de LMI

| Systèmes Hybrides | Automates Hybrides | Propriétés<br>00000000 | Utilisations |
|-------------------|--------------------|------------------------|--------------|
|                   |                    |                        |              |
| Systèmes Hybrides | 5                  |                        |              |
| Rappel            |                    |                        |              |
| Historique        |                    |                        |              |
| Automates Hybrid  |                    |                        |              |
| Introduction      |                    |                        |              |
| Définitions       |                    |                        |              |
| Trajectoire       |                    |                        |              |
| Propriétés        |                    |                        |              |
| Trajectoires      |                    |                        |              |
| Zénon             |                    |                        |              |
| Accessibilité     |                    |                        |              |
| Stabilité         |                    |                        |              |
| Utilisations      |                    |                        |              |
| Contrôle          |                    |                        |              |
| Algorithme        |                    |                        |              |
| Filtrage          |                    |                        |              |
| Outile            |                    |                        |              |
| CENTINISTO CIT    |                    |                        |              |

## Contrôle

Systèmes Hybrides

#### Automate hybride

Un automate hybride H est défini par :

- ► Q. X.
- Init ⊂ Q × X un ensemble d'états initiaux.
- ▶ In un ensemble fini de variables d'entrées,  $In = \Sigma \cup W$ ,
  - $\Sigma = \Sigma_U \times \Sigma_D$ , avec  $\Sigma_U$  les entrées discrètes et  $\Sigma_D$  les perturbations discrètes,
  - $ightharpoonup W = U \times D$ , avec U les entrées continues (contrôlables) et D les perturbations continues (bruits),
- $f: Q \times X \times W \to \mathbb{R}^n$  un champ vectoriel,
- ▶ Inv :  $Q \rightarrow 2^{X \times W}$  les invariants de H.
- $ightharpoonup R: Q \times X \times In \rightarrow 2^{Q \times X}$  la fonction de transition.
- $ightharpoonup Out = P \cup Y$  l'ensemble des variables de sortie, discrètes (P) et continues (Y).

## Contrôle Hypothèses

On fait les hypothèses suivantes :

- ▶ f est lipshitzienne sur X et continue sur W ;
- $\triangleright \forall q, \ Inv(q) \text{ est un ouvert} ;$
- ▶  $\forall (q,x), \forall (\sigma_u,u) \in \Sigma_U \times U, \ \exists (\sigma_d,d) \in \Sigma_D \times D \ \text{tel que}$

$$(x,(\sigma_u,\sigma_d),(u,d)) \in Inv(q) \ \lor \ R(q,x,(\sigma_u,\sigma_d),(u,d)) \neq \emptyset$$

## Contrôle Principe

Systèmes Hybrides

On veut satisfaire une propriété de sûreté, i.e. calculer l'invariant contrôlé maximal  $F_C \subset F \subset Q \times X$ .

On appréhende le problème comme un jeu, dans lequel :

- ▶ les perturbations essaient de fuir *F* en
  - 1. faisant des sauts (discrets) hors de F,
  - 2. tirant (continument) le système hors de F;
- ▶ le contrôleur essaie de rester dans F en
  - 1. tirant le système dans F (en évitant les sauts),
  - 2. faisant des sauts dans F (évitant les sorties continues).

## Contrôle Principe

▶  $Pre_u: 2^{Q \times X} \rightarrow 2^{Q \times X}$  prédécesseurs contrôlables : une action contrôlable peut forcer à rester dans K

$$Pre_{u}(K) = \{(q,x) \in K / \exists u \in In_{U}, \forall d \in In_{D}, (x,u,d) \notin Inv(q) \land R(q,x,u,d) \subset K\}$$

▶  $Pre_d: 2^{Q \times X} \rightarrow 2^{Q \times X}$  prédécesseurs incontrôlables : des actions incontrôlables peuvent forcer à sortir de K

$$Pre_d(K) = \{(q,x) \in K / \forall u \in In_U, \exists d \in In_D, R(q,x,u,d) \cap K^c \neq \emptyset\} \cup K^c \}$$

▶  $Reach: 2^{Q \times X} \times 2^{Q \times X} \to 2^{Q \times X}$  : états depuis lesquels G est accessible sans atteindre E

 $Reach(G,E) = \{(q(0),x(0))/\forall u \in \mathcal{U}, \exists d \in \mathcal{D}, (q(t),x(t)) \in G \text{ and } (q(s),x(s)) \in Inv \setminus E \ \forall s \in [0,t]\}$ 

où (q(s), x(s)) est la trajectoire d'équation  $\dot{x} = f(g(s), x(s), u(s), d(s))$ 

## Contrôle Principe

Systèmes Hybrides

#### Algorithme

Point fixe de l'équation :

$$W^0 = F$$
  
 $W^{i-1} = W^i \setminus Reach(Pre_d(W^i), Pre_u(W^i))$ 

Calcul de Pre: inversion de la fonction R.

Calcul de *Reach*: résolution d'un équation d'Hamilton-Jacobi sous contrainte.

→ algorithme semi-décidable pour des automates hybrides linéaires f linéaire en x, gardes et resets (R) polyédriques



## Filtrage

Systèmes Hybrides

À partir des observations y de l'état continu, estimer l'état hybride  $(\hat{q}, \hat{x}).$ 

#### Approches:

- Filtres de Kalman étendus sur des automates hybrides probabilistes concurrents (Hofbaur & Williams, 2004)
- ► Filtrage particulaire sur automates hybrides (Koutsoukos et al., 2006; Funiak & Williams, 2003; Pfeffer & Dearden, 2007; ...)
- Filtre ensembliste sur automates hybrides (Benazera, 2004).

#### Outils

Systèmes Hybrides

- ► HyTech (U. Berkeley) : vérification de propriété temporelle (LTL) sur des automates hybrides linéaires (composés) ;
- d/dt (VeriMAG) : accessibilité dans les AH linéaires ; synthèse de contrôleur discret ;
- ► CHARON (U. Pennsylvanie) : hiérarchisation, simulation.