

3253 Analytic Techniques and Machine Learning

Module 2: End to End Machine Learning Project

Course Plan

Module Titles

Module 1 – Introduction to Machine Learning

Current Focus: Module 2 – End to End Machine Learning Project

Module 3 – Classification

Module 4 – Clustering and Unsupervised Learning

Module 5 – Training Models and Feature Selection

Module 6 – Support Vector Machines

Module 7 – Decision Trees and Ensemble Learning

Module 8 – Dimensionality Reduction

Module 9 – Introduction to TensorFlow

Module 10 – Introduction to Deep Learning and Deep Neural Networks

Module 11 – Distributing TensorFlow, CNNs and RNNs

Module 12 – Final Assignment and Presentations (no content)

Learning Outcomes for this Module

- Perform all of the steps of building a simple machine learning project:
 - Conduct exploratory analysis and visualization
 - Prepare data
 - Set aside a testing set
 - Select and train a model
 - Deploy, monitor and maintain it

Topics for this Module

- 2.1 Loss functions
- 2.2 Feature scaling
- **2.3** Test sets
- 2.4 Geographical data
- 2.5 Correlation
- 2.6 Encoding features
- 2.7 Cross-validation
- 2.8 Searching for hyperparameters
- 2.9 Running the application
- 2.10 Resources and Wrap-up

Module 2 – Section 1

Loss Functions

Notations

m is the number of instances in dataset

$$x^{(1)} = \begin{pmatrix} -118.29 \\ 33.91 \\ 1416 \\ 38,372 \end{pmatrix}$$

X is a matrix containing all feature values

•
$$\mathbf{X} = \begin{pmatrix} (x^1)^T \\ (x^{(2)})^T \\ \dots \\ (x^{100})^T \end{pmatrix} = \begin{pmatrix} -118.29 & 33.91 & 1416 & 38,372 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Predictions

- h is system's prediction function, aka a hypothesis
- When system is given an input x⁽ⁱ⁾, it outputs a predicted value y_hat(i) = h(x⁽ⁱ⁾)
- For a regression task, will often use Root Mean Squared Error (RMS-E) or Mean Absolute Error (MAE) as the cost function

Performance Measures

 Root Mean Square Error (RMS-E) measures standard deviation c of errors in prediction

•
$$RMSE(X,h) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

- In housing example, assuming a normal distribution, σ =50,000 implies that
 - ~68% of system's predictions fall within \$50,000 of actual value
 - ~95% of predictions fall within \$100,000 of actual value

Performance Measures (cont'd)

Mean Absolute Error (MAE) measures standard deviation c of errors in prediction

$$MAE(X,h) = \frac{1}{m} | h(x^i) - y^i) |$$

Module 2 – Section 2

Feature Scaling

Feature Scaling

- ML algorithms usually perform poorly when input features have different scales
- Normalization or min-max scaling:
 - values are shifted and rescaled so result is in range [0,1]

$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Example: If X = [0, 50, 100], what is X_{scaled} ?

Feature Scaling

- ML algorithms usually perform poorly when input features have different scales
- Normalization or min-max scaling:
 - values are shifted and rescaled so result is in range [0,1]

$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Example: If X = [0, 50, 100], what is X_{scaled} ?

$$0_{scaled} = \frac{0-0}{100-0} = 0,$$

$$0_{scaled} = \frac{0-0}{100-0} = 0,$$
 $50_{scaled} = \frac{50-0}{100-0} = 0.5,$ $100_{scaled} = \frac{100-0}{100-0} = 1$

$$100_{scaled} = \frac{100 - 0}{100 - 0} = 1$$

Normalization in Python

[[0.] [0.5] [1.]]

```
x = [[0], [50], [100]]
 2 x
[[0], [50], [100]]
    #import MinMaxscaler
    from sklearn.preprocessing import MinMaxScaler
    #create scaler object
    scaler = MinMaxScaler()
 5
    # fit scaler object
    scaler.fit(x)
 6
 7
 8
    #now, we can transform x using the trained/fitted scaler
    x scaled = scaler.transform(x)
    print(x scaled)
10
```

Review code in "Module 2 - Standardization code.ipynb"

Standardization

Standardization

- Two operations:
 - Subtract mean (giving zero mean)
 - Divide by variance (unit mean)

$$Z=rac{x_i-\mu}{\sigma}$$
 , μ is mean $\& \sigma$ is variance

Standardization

Pay attention to *fit_transform()* function. Is it combination of fit and transform?

```
1 \times = [[0], [50], [100]]
   X
[[0], [50], [100]]
    from sklearn.preprocessing import StandardScaler
   StandardScaler = StandardScaler()
    x ss = StandardScaler.fit transform(x)
    X SS
```

2 numpy.std(x_ss)

import numpy

Normalization vs Standard Scaler

- Standardization does not bound values to a specific range
- Can be problematic for certain ML methods neural nets work well with input range [0,1]
- Much less affected by outliers than min-max
 - one large value will "crush" all other values into a very limited range

Module 2 – Section 3

Test Sets

Create a Test Set

- **Data snooping bias** -- studying the test set might result in observing some interesting pattern, which when accounted for in model means that model will not generalize as well
- Pick some instances randomly from dataset randomly and set them aside
- Typically 20% of the dataset
- Important to set aside subset before training starts, don't randomly generate each run
 - over time, your algorithm will see whole dataset, which will invalidate the whole validation process

Create a Test Set (cont'd)

- Pick some instances randomly from dataset randomly and set them aside
- Typically 20% of the dataset
- Important to set aside subset before training starts, don't randomly generate each run
 - over time, your algorithm will see whole dataset, which will invalidate the whole validation process

Create a Test Set (cont'd)

- Using random sampling is usually acceptable if dataset is sufficiently large with respect to number of attributes
- For small datasets, purely random sampling may not work
- Example:
 - Population of USA composed of 51.3% females, 48.7% males
 - ensuring that a survey of the population maintains this ratio is referred to as *stratified sampling*

Module 2 – Section 4

Geographical Data

Visualizing Geographical Data

Visualizing Geographical Data (cont'd)

- As seen in previous image, strong correlation between population size and income
- Also related to distance to the coast
- Plotting data can be extremely useful to gain insights to test
- Scatterplots (as seen previously) can be helpful, histograms too
- Simple plotting may expose a relationship between variables

Module 2 – Section 5

Correlation

Correlation Coefficient

- Correlation is measure of the degree to which two variables have a linear relationship between them
- Correlation coefficient varies between [-1.0,1.0]
- Note that correlation coefficient only measures linear relationship between variables
- Pearson's correlation coefficient $\rho_{x,y} = \frac{cov(x,y)}{\sigma_x \sigma_y}$

Correlation Coefficient (cont'd)

Module 2 – Section 6

Encoding Features

How to deal with categorical features? Can I multiply 'Human' by a coefficient?

Sample	Category		
1	Human		
2	Human		
3	Penguin		
4	Octopus		
5	Alien		
6	Octopus		
7	Alien		

How to deal with categorical features? Can I multiply 'Human' by a coefficient?

Sample	Category	Numerical	
1	Human	1	
2	Human	1	
3	Penguin	2	
4	Octopus	3	
5	Alien	4	
6	Octopus	3	
7	Alien	4	

It looks working, right?

Do you have concern?

How to deal with categorical features? Can I multiply 'Human' by a coefficient?

Sample	Category	Numerical	
1	Human	1	
2	Human	1	
3	Penguin	2	
4	Octopus	3	
5	Alien	4	
6	Octopus	3	
7	Alien	4	

It looks working, right?

Do you have concern?

Let's create dummy variables then!

Sample	Category	Numerical	Sample	Human	Penguin	Octopus	Alien
1	Human	1	1	1	0	0	0
2	Human	1	2	1	0	0	0
3	Penguin	2	3	0	1	0	0
4	Octopus	3	4	0	0	1	0
5	Alien	4	5	0	0	0	1
6	Octopus	3	6	0	0	1	0
7	Alien	4	7	0	0	0	1

Curse of Dummy Variable

Let's create dummy variables then!

Sample	Category	Numeric al	Human	Penguin	Octopus	Alien
1	Human	1	1	0	0	0
3	Penguin	2	0	1	0	0
4	Octopus	3	0	0	1	0
5	Alien	4	0	0	0	1

Curse of Dummy Variable

Let's create dummy variables then!

Sample	Category	Numeric al	Human	Penguin	Octopus	Alien
1	Human	1	1	0	0	0
3	Penguin	2	0	1	0	0
4	Octopus	3	0	0	1	0
5	Alien	4	0	0	0	1

You should always drop one of the dummy variables, otherwise your dataset is cursed with excessive feature that has no value!!!

Module 2 – Section 7

Cross-Validation

Train, Test, Validation: Recap

Train, Test, Validation: Recap

Cross Validation

- As mentioned, splitting in train/test is insufficient and we are tempted to break it down into train/valid/test
- Splitting to train/valid/test crunches training dataset size if dataset is small
- Also, how can I prove that my model is not great on a cherry picked train/test dataset?

Solution?

Use cross-validation

Cross Validation

K-fold cross validation — randomly split training data into k distinct subsets called folds

Trains and evaluates model k times, picking different fold each time for validation and training on the k-1 other folds

Allows for estimate of model performance, but also estimate of how precise this estimate is (standard deviation)

Example with K = 5 (usually K can be 3, 5, 10)

Module 2 – Section 8

Searching for Hyperparameters

Searching for Hyperparameters

- Once a basic model has been trained, need to search for optimal hyperparameters (learning rate, weights to balance loss terms, etc)
- Randomized search: useful for large search spaces
- Evaluates a given number of random combinations by selecting a random value for each hyperparameter at each iteration
- Grid search: try every combination of the sets of hyperparameters provided

Grid Search

Grid Layout

Important parameter

Random Layout

Important parameter

Grid Search (cont'd)

- Each dict has keys that correspond to args for the model
- Associated dict is an exhaustive list of params to be tested
- Grid search finds best set of params

Module 2 – Section 9

Running the Application

Launch, Monitor and Maintain System

- Need to write code to monitor performance
- Not just monitoring for breakage, but ability of model to make accurate predictions as data evolves ("data rot")
- Make sure to monitor quality of inputted data: performance of model may degrade slowly
- Catching issues like malfunctioning sensor input or stale data from another team will allow for faster resolution of issues

Module 2 – Section 10

Resources and Wrap-up

Homework

Complete the notebook in the assignments section for this week

Next Class

- Classification
- Reading: Chapter 3

Follow us on social

Join the conversation with us online:

- facebook.com/uoftscs
- @uoftscs
- linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs

Any questions?

Thank You

Thank you for choosing the University of Toronto School of Continuing Studies