Aufgabe H33 Sei L eine kontextfreie Sprache. Dann gibt es eine Grammatik G in CNF, sodass L = L(G). Dann hat G also nur Produktionen der Form:

$$A \to BC$$
$$A \to a$$

 L^R ist definiert als $\{w^R \mid w \in L\}$. Beschreibe G^R , wieder als CNF, wie folgt:

$$A \to BC \in G \Rightarrow A \to CB \in G^R$$

 $A \to a \in G \Rightarrow A \to a \in G^R$

Zeige nun: $L^R = L(G^R)$ Beweis per Induktion über Anzahl der Ableitungen:

- I.A. 1) Sei $A \to a \in G$. Dann ist $(A \to a)^R = A \to a^R = A \to a \in G^R$.
 - 2) Sei $A \to BC \in G$ und $B \to b, C \to c \in G \cap G^R$. Dann ist $(A \to BC)^R = A \to B^RC^R \in G^R; B, C \in G$ $\Leftrightarrow A \to CB \in G^R; B, C \in G^R$.
- I.V. Die Behauptung gelte für eine beliebige, aber feste Anzahl an Ableitungen.
- I.S. Sei $X \to YZ \in G$ und $Y \to AB, Z \to CD \in G; A, B, C, D \in G$ mit $Y \to BA, Z \to DC \in G^R; A, B, C, D \in G^R$.

 Dann gilt $(X \to YZ)^R = X \to Z^RY^R \in G^R; YZ \in G$ $\Leftrightarrow X \to ZY \in G^R; YZ \in G^R$

Damit gilt $L^R = L(G^R)$, wodurch L^R durch eine CNF beschrieben werden kann, wodurch L^R kontextfrei ist, wodurch die kontextfreien Sprachen unter *Spiegelung* abgeschossen sind.

Aufgabe H34

Formale Systeme, Automaten, Prozesse \ddot{U} bungsblatt 10 Tutorium 11

Tim Luther, 410886 Til Mohr, 405959 Simon Michau, 406133

Aufgabe H35 Folgende Grammatik mit Startsymbol S beschreibt L:

O	v
$S \to \epsilon \mid S'$	$S' \to ABCS' \mid ABC$
//AB o BA	//BA o AB
$AB \to YB$	$BA \to YA$
$YB \to YZ$	YA o YZ
$YZ \to YA$	YZ o YB
$YA \to BA$	YB o AB
$//BC \to CB$	//CB o BC
$BC \to WC$	$CB \to CX$
$WC \to WX$	$CX \to WX$
$WX \to CX$	$WX \to WC$
$XC \to BC$	$WC \to BC$
$//AC \to CA$	//CA o AC
$AC \to UC$	CA o CV
$UC \to UV$	CV o UV
$UV \to CV$	$UV \to UC$
$CV \to CA$	$UC \to AC$
$A \rightarrow a$	
B o b	
$C \to c$	