Process Mining: Data Science in Action

Event Logs and Process Models

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Play-Out

- Simulation
- Workflow automation
- Management games
- Model checking
- •

Play-In

Process discovery: learning de facto process models from observed behavior.

Replay

- extended model showing times, frequencies, etc.
- diagnostics
- predictions
- recommendations

Aligning modeled/discovered and observed behavior:

- The most important form of process mining!
- Confrontation between model and reality.

The three main types of process mining: discovery, conformance, and enhancement

Getting the "right" data ...

Event log

- We assume the existence of an event log where each event refers to a case, an activity, and a point in time.
- An event log can be seen as a collection of cases.
- A case can be seen as a trace/sequence of events.

Event data may come from ...

- a database system (e.g., patient data in a hospital),
- a comma-separated values (CSV) file or spreadsheet,
- a transaction log (e.g., a trading system),
- a business suite/ERP system (SAP, Oracle, etc.),
- a message log (e.g., from IBM middleware),
- an open API providing data from websites or social media, ...

An example log

student name	course name	exam date	mark
Peter Jones	Business Information systems	16-1-2014	8
Sandy Scott	Business Information systems	16-1-2014	5
Bridget White	Business Information systems	16-1-2014	9
John Anderson	Business Information systems	16-1-2014	8
Sandy Scott	BPM Systems	17-1-2014	7
Bridget White	BPM Systems	17-1-2014	8
Sandy Scott	Process Mining	20-1-2014	5
Bridget White	Process Mining	20-1-2014	9
John Anderson	Process Mining	20-1-2014	8

case id

activity name

timestamp

other data

Another event log: order handling

order number	activity	timestamp	user	product	quantity
9901	register order	22-1-2014@09.15	Sara Jones	iPhone5S	1
9902	register order	22-1-2014@09.18	Sara Jones	iPhone5S	2
9903	register order	22-1-2014@09.27	Sara Jones	iPhone4S	1
9901	check stock	22-1-2014@09.49	Pete Scott	iPhone5S	1
9901	ship order	22-1-2014@10.11	Sue Fox	iPhone5S	1
9903	check stock	22-1-2014@10.34	Pete Scott	iPhone4S	1
9901	handle payment	22-1-2014@10.41	Carol Hope	iPhone5S	1
9902	check stock	22-1-2014@10.57	Pete Scott	iPhone5S	2
9902	cancel order	22-1-2014@11.08	Carol Hope	iPhone5S	2
			4		

case id

activity name

timestamp

resource

other data

Another event log: patient treatment

patient	activity	timestamp	doctor	age	cost
5781	make X-ray	23-1-2014@10.30	Dr. Jones	45	70.00
5541	blood test	23-1-2014@10.18	Dr. Scott	61	40.00
5833	blood test	23-1-2014@10.27	Dr. Scott	24	40.00
5781	blood test	23-1-2014@10.49	Dr. Scott	45	40.00
5781	CT scan	23-1-2014@11.10	Dr. Fox	45	1200.00
5833	surgery	23-1-2014@12.34	Dr. Scott	24	2300.00
5781	handle payment	23-1-2014@12.41	Carol Hope	45	0.00
5541	radiation therapy	23-1-2014@13.57	Dr. Jones	61	140.00
5541	radiation therapy	23-1-2014@13.08	Dr. Jones	61	140.00

case id

activity name

timestamp

resource

other data

not always so clear ...

Question: Take your mail box

An e-mail has:

- a sender ("From"),
- a set of receivers ("To"),
- a subject,
- a timestamp ("Date"),
- a body,
- etc.

- Assume an e-mail represents an event.
- What is a possible mapping onto an event log (which field is the case id, which field is the activity name, etc.)?

Answer: Several possible mappings!

Mapping: resource a sender ("From"),¹ activity name - a set of receivers ("To"), other data a subject, case id a timestamp ("Date"), timestamp - a hody Problems: other data Unclear what the cases are (senders, subjects, etc.). Unclear what the activities are.

Context and questions needed.

TU/e

Question

student id	course	exam date	gender	nationality	mark
884362	Logic	15-4-2014	male	Dutch	6
884978	Logic	15-4-2014	female	Chinese	8
884362	Statistics	17-4-2014	male	Dutch	9
885087	Statistics	17-4-2014	female	German	9
882876	Statistics	17-4-2014	female	Dutch	5
			••		

- Assume each row (an exam attempt) represents an event.
- What is a possible mapping onto an event log (which field is the case id, etc.)?

Answer

- Again alternative mappings possible!
 For example, the course is the case, the student is the activity, and the nationality is the resource.
- Context and questions needed.

Extensions

Transactional information on activity instances:

An event can represent a start, complete, suspend, resume, abort, etc.

- Case versus event attributes:
 - case attributes do not change, e.g., the birth date or gender of a patient,
 - event attributes are related to a particular step in the process.

XES (eXtensible Event Stream)

- Adopted by the IEEE Task Force on Process Mining.
- The format is supported by tools such as ProM and Disco (used in this course).
- Predecessors: MXML and SA-MXML.
- Conversion from other formats (CSV) is easy if the right data are available.
- XML syntax and OpenXES library available.
- See www.xes-standard.org.

Selecting the "right" representation...

Just control-flow (represented as a Petri net)

- Case starts with a and ends with **g** or **h**.
- Activity d is concurrent with b or c.
- Activity e has to wait until (d and b) or (d and c) have completed.
- There are three possible decisions: f, **g**, or **h**.

Additional perspectives

- control-flow
- data-flow
- time
- resources
- costs
- risks
- •

Alternative control-flow notations

- BPMN (Business Process Model and Notation) diagrams
- UML activity diagrams
- Event-driven process chains
- Petri net variants
- Causal nets (C-nets)
- Transition systems
- (Hidden) Markov cha
- Process algebras (C
- Fuzzy models
- YAWL models
- Declare models

Notation:

- search space: finding a model that captures reality well
- visualization: what do endusers need to see?

• • • •

Class of "Fuzzy models"

Fuzzy models are not executable like Petri nets, but they allow for a simpler representation.

Install ProM and Disco

ProM: 600+ plug-ins

XES, MXML, CSV files

www.promtools.org

www.processmining.org

Disco: Simple, fast, and easy

XES, MXML, CSV files

www.fluxicon.com

www.fluxicon.com/academic/

Part I: Preliminaries Chapter 2 Chapter 1 Process Modeling and Introduction Analysis Part II: From Event Logs to Models Chapter 4 Chapter 5 Getting the Data Process Discovery: An Introduction

Chapter 3

Data Mining

Part III: Beyond Process Discovery

Chapter 7 Conformance Checking

Chapter 8 Mining Additional Perspectives

Chapter 9 **Operational Support**

Part IV: Putting Process Mining to Work

Chapter 10 **Tool Support**

Chapter 11 Analyzing "Lasagna Processes"

Chapter 12 Analyzing "Spaghetti Processes"

Part V: Reflection

Chapter 13 Cartography and Navigation

Chapter 14 **Epilogue**

Wil M. P. van der Aalst

Process

Mining