Exploration Numérique 3

07/09/2020

1 Test de Cramer-von Mises

On rappelle que pour une suite de réels x_1, \dots, x_q , la notation $x_{\ell:q}$ désigne la suite ordonnée : on a $x_{1:q} \le x_{2:q} \le \dots \le x_{q:q}$. Soient (X_1, \dots, X_n) n variables aléatoires réelles, i.i.d. de fonction de répartition inconnue F continue. On considère F_0 une fonction de répartition donnée. On souhaite tester $H_0: F = F_0$, contre $H_1: F \ne F_0$. Nous considérons la statistique de test

$$CvM_n = n \int_{\mathbb{D}} [\hat{F}_n(t) - F_0(t)]^2 dF_0(t)$$

où \hat{F}_n est la fonction de répartition empirique des observations

$$\hat{F}_n(t) := \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{X_k \le t}.$$

1. Montrer que:

$$CvM_n = \frac{1}{12n} + \sum_{i=1}^{n} \left(F_0(X_{i:n}) - \frac{2i-1}{2n} \right)^2,$$

où les $X_{i:n}$ sont les statistiques d'ordre du n-échantillon. $Indication: découper l'intégrale sur <math>\mathbb{R}$ en les intervalles $]-\infty, X_{1:n}[,]X_{1:n}, X_{2:n}[, \cdots,]X_{n:n}, +\infty[$.

2. Montrer que sous l'hypothèse nulle, la loi de $\{F_0(X_{k:n})\}_{1 \le k \le n}$ est la loi des statistiques d'ordre de n v.a. uniformes sur [0,1] et indépendantes.

Nous allons tout d'abord estimer cette distribution numériquement afin de calibrer notre procédure de test. Nous prenons n = 100.

- 3. Générer n v.a. indépendantes uniformes sur [0,1], calculer leurs statistiques d'ordre (il suffit de les trier dans l'ordre croissant), et calculer la statistique CvM_n .
- 4. Répéter la procédure précédente 10000 fois et afficher un histogramme des valeurs de CvM_n .
- 5. Déterminer le seuil de rejet c de niveau $\alpha = 5\%$?
- 6. Appliquer le test pour déterminer si l'échantillon suivant est distribué suivant une distribution exponentielle d'intensité 3 :

0.29784954	0.47939223	0.19111109	0.50207630
0.83354954	0.37791948	0.24905201	0.02811509
0.84478883	0.17690113	0.08009389	0.36426210
0.36524716	0.52432997	0.31812757	0.15602891
0.85855163	0.97771573	0.70186801	1.10252667
1.27519836	0.30650497	0.69684126	0.07010545
0.31871251	0.19331045	1.35746190	0.22420814
0.82678227	0.15491093	0.21369146	0.19342244
0.09815713	0.86205776	0.21838889	0.46708510
1.13110154	0.20892878	0.55366663	0.90786993
0.36839363	0.37423771	0.88426066	0.92937971
0.47508868	0.56127745	0.29514290	0.24813732
0.00708819	2.01464849	0.67259826	2.18737572
0.82703831	0.48212793	0.25528751	0.07072400
0.10114985	1.14164157	0.07772498	0.08474889
0.01233414	0.83936627	0.17177708	0.68974044
0.10027836	0.94787697	0.01411881	0.38130669
0.30634430	0.77046861	0.28654510	1.27378032
0.52634981	1.20385966	0.75388808	0.86076864
0.87955788	0.32543268	0.78302207	0.26435740
0.05410405	0.06027252	0.05816601	0.32995204
1.58668386	0.35831370	0.28405587	0.21705105
0.08659743	0.08844747	0.60938507	0.34315738
1.32512124	0.08308201	0.13342500	0.33121101
0.67762117	1.05277350	0.21861053	0.02127186