

INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Projeto e Seminário Licenciatura em Engenharia Informática e Computadores

Ana Carolina Baptista

41487@alunos.isel.ipl.pt

960314580

Eliane Almeida 41467@alunos.isel.ipl.pt 960271968

Orientadores:

Cátia Vaz, ISEL, <u>cvaz@cc.isel.ipl.pt</u>

José Simão, ISEL, <u>jsimao@cc.isel.ipl.pt</u>

Alexandre P. Francisco, IST, <u>aplf@ist.utl.pt</u>

19 de Março de 2018

1 Introdução

Atualmente, com o grande crescimento e propagação de dados na internet, surge a necessidade de que a informação seja descrita e transmitida por meio de uma linguagem *standard*, sendo esta de fácil entendimento tanto para computadores quanto para humanos.

Uma das técnicas de descrição de informação que se está a tornar muito popular é baseada em ontologias [1]. Esta permite especificar explicitamente uma conceptualização ou um conjunto de termos de conhecimento para um domínio particular. Apesar da popularidade das ontologias, há em geral dificuldade em transformar o conhecimento pré-definido num caso concreto.

Na área da bioinformática, existem recursos científicos que necessitam de ser partilhados entre a comunidade científica por meio de ontologias. Sendo as ontologias normalmente definidas através de OWL [2] (*Web Ontology Language*), em várias situações poderá não ser uma tarefa simples para os bioinformáticos representar o seu conhecimento do domínio através das ontologias.

Atualmente existem algumas ferramentas de edição de ontologias que permitem ao utilizador inserir um ficheiro referente a uma ontologia e criar novos dados de acordo com este ficheiro, como por exemplo *Protégé* [3]. Contudo, não temos conhecimento da

existência de uma ferramenta que também permita a transformação de dados semiestruturados.

Desta forma, de modo a ajudar os utilizadores – como por exemplo, os biólogos - desenvolveremos uma aplicação que tenha uma interface intuitiva que permita esta transformação de dados semiestruturados em dados anotados com ontologias definidas em OWL. Nesta interface também teria a possibilidade de anotar valores aos vários conceitos da ontologia ou apenas editar os existentes.

2 Arquitetura e Requisitos

A figura 1 representa a arquitetura da aplicação. Esta será desenvolvida de modo a que o utilizador (*User*) insira um ficheiro com definição de uma ontologia (*Ontology File*) e, opcionalmente, um segundo ficheiro (*Real Case File*). Estes ficheiros irão ser submetidos a uma aplicação externa designada Chaos Pop ¹ através do módulo *FileUploader*. De seguida irá ser gerada uma interface gráfica onde o user poderá anotar valores aos vários conceitos presentes no *Ontology File* ou anotar os conceitos do *Real Case File* com os termos do *Ontology File*. No final deste processo, é gerado um novo ficheiro OWL que contém os dados descritos de acordo com *Ontology File*. Iremos também dar a opção ao user de guardar os ficheiros de input e output numa base de dados remota.

Figura 1 - Arquitetura da aplicação: fluxo de execução

¹ A API da aplicação Chaos Pop ainda está em desenvolvimento pelo que iremos explicar melhor o seu funcionamento no relatório

Desta forma, este projeto tem como requisitos obrigatórios:

- Realizar uma versão remota da aplicação descrita anteriormente em tecnologia Node.js. Nesta será permitida a inserção de ficheiros CWL [4] (JSON) ou XML para Real Case File e irá existir a persistência dos ficheiros de input e de output numa base de dados remota documental.
- Realizar uma versão local utilizando a tecnologia *Electron* ² onde o ficheiro de *output* será salvo em disco.
- Definir em OWL a descrição de ferramentas bioinformáticas, previamente definidas em CWL.

Os requisitos seguintes só serão realizados como sejam concluídos com sucessos os obrigatórios:

- Definir em OWL workflows, previamente definidos em CWL.
- Adicionar ao módulo externo Chaos Pop um *parser* para CWL descrito em YAML.
- Criar um sistema de autorização/autenticação para a versão Web.

3 Calendarização

Os termos utilizados nesta calendarização correspondem ao da Figura 1.

Data de início	Semana	Descrição
19/02/2018	1-2	- Compreensão da necessidade da ferramenta nos dias atuais
		- Estudo do Chaos Pop
05/03/2018	3-4	- Estudo da ferramenta Electron
		- Desenvolvimento da proposta
19/03/2018	5	- Entrega da proposta do projeto
		- Utilização do Chaos Pop em alguns exemplos
26/03/2018	6-7	- Desenvolvimento do módulo <i>FileUploader</i> e
		OWLDownloader
09/04/2018	8-10	- Realização do esqueleto da <i>Main App</i>
		- Desenvolvimento da <i>Graphic Interface</i>
30/04/2018	11	- Apresentação individual e entrega do relatório de progresso
07/05/2018	12-13	- Definição da descrição de ferramentas em OWL
21/05/2018	14	- Desenvolvimento da aplicação <i>desktop</i>
		- Criação do cartaz
28/05/2018	15 - 17	- Entrega do cartaz e da versão beta
		- Otimização dos módulos
18/06/2018	18	- Testes de escalabilidade
25/06/2018	19-21	- Finalização do relatório e entrega da versão final

² https://electronjs.org/docs/tutorial/about

O relatório, os testes unitários e a documentação serão atualizados constantemente ao longo das 20 semanas.

Marcos / Entregas	Data limite
Proposta do projeto	19/03/2018
Relatório de progresso e	30/04/2018
apresentação individual	
Cartaz e versão beta	28/05/2018
Versão final e documentação	14/07/2018

Referências

- [1] "W3C," [Online]. Available: https://www.w3.org/standards/semanticweb/ontology. [Acedido em 19 03 2018].
- [2] "W3C," [Online]. Available: https://www.w3.org/OWL/. [Acedido em 09 03 2018].
- [3] "Protege," [Online]. Available: https://protege.stanford.edu/. [Acedido em 15 03 2018].
- [4] "Common Workflow Language," [Online]. Available: http://www.commonwl.org/draft-3/UserGuide.html;. [Acedido em 09 03 2018].

Bibliografia

Jamie Taylor, Colin Evans, Toby Segaran. (2009). Programming the Semantic Web.

Jim R. Wilson. (2013). Node.js the Right Way: Practical, Server-side JavaScript that Scales.