

单线 256 级灰度三通道 恒流 LED 驱动 IC

主要特点

- 输出端口耐压15 V.
- 芯片内置稳压管,24V以下电源端只需串电阻到IC VDD 脚,无需外加稳压管.
- 灰度调节电路(256级灰度可调).
- 内置信号整形电路,任何一个IC收到信号后经过.
- 其他各种LED灯饰产品.
- 波形整形再输出,保证线路波形畸变不会累加.
- 内置上电复位和掉电复位电路.
- PWM 控制端能够实现256 级调节,扫描频率不低于400Hz/s.
- 串行接口级联接口,能通过一根信号线完成数据的 接收与解码.
- 任意两点传传输距离超过10 米而无需增加任何 电路.
- 当刷新速率30 帧/ 秒时,低速模式级联数不小于512 点,高速模式不小于1024 点.
- 数据发送速度可达400Kbps 与800Kbps两种模式.

主要应用领域

- LED全彩发光字灯串, LED全彩模组.
- LED全彩软灯条硬灯条,LED护栏管.
- LED点光源, LED像素屏, LED异形屏.
- LED点光源, LED像素屏, LED异形屏.
- 各种电子产品,电器设备跑马灯.

产品概述

WS2811 是三通道LED驱动控制专用电路,芯片内部包含了智能数字接口数据锁存信号整形放大驱动电路,还包含有高精度的内部振荡器和15V高压可编程定电流输出驱动器。同时,为了降低电源纹波,3个通道有一定的延时导通功能,这样在帧刷新时,可降低电路纹波。

芯片采用单线归零码的通讯方式,芯片在上电复位以后,DIN端接受从控制器传输过来的数据,首先送过来的24bit数据被第一个芯片提取后,送到芯片内部的数据锁存器,剩余的数据经过内部整形处理电路整形放大后通过DO端口开始转发输出给下一个级联的芯片,每经过一个芯片的传输,信号减少24bit。 芯片采用自动整形转发技术,使得该芯片的级联个数不受信号传送的限制,仅仅受限信号传输速度要求。

芯片内部的数据锁存器根据接受到的24bit数据,在OUTR、OUTG、OUTB控制端产生不同的占空比控制信号,等待DIN端输入RESET信号时,所有芯片同步将接收到的数据送到各个段,芯片将在该信号结束后重新接受新的数据,在接受完开始的24bit数据后,通过DO口转发数据口,芯片在没有接受到RESET码前,OUTR、OUTG、OUTB管脚原输出保持不变,当接受到50µs以上低电平RESET码后,芯片将刚才接收到的24bit PWM数据脉宽输出到OUTR、OUTG、OUTB引脚上。提供S0P8和DIP8两种封装。

单线 256 级灰度三通道 恒流 LED 驱动 IC

引出端排列:

引出端功能:

序号	符号	管脚名	功 能 描 述
1	OUTR	LED 驱动输出	Red(红)PWM 控制输出
2	OUTG	LED 驱动输出	Green (绿) PWM 控制输出
3	OUTB	LED 驱动输出	Blue(蓝)PWM 控制输出
4	GND	地	接地
5	DOUT	数据输出	显示数据级联输出
6	DIN	数据输入	显示数据输入
7	SET	模式设定	接 VDD: 低速模式;悬空: 高速模式
8	VDD	逻辑电源	

最大额定值(如无特殊说明, T_A=25℃, V_{SS}=0V)

参数	符号	范围	单位
逻辑电源电压	$V_{ m DD}$	+6.0~+7.0	V
输出端口耐压	V _{OUT}	12	V
逻辑输入电压	V _I	-0.5~VDD+0.5	V
工作温度	Topt	-25~+85	$^{\circ}$
储存温度	Tstg	-55~+150	$^{\circ}$

http://www.world-semi.com

单线 256 级灰度三通道 恒流 LED 驱动 IC

电气参数(如无特殊说明, T_A=-20~+70℃, V_{DD}=4.5~5.5V, V_{SS}=0V)

参数	符号	最小	典型	最大	单位	测试条件
低电平输出电流	I_{OL}		18.5		mA	
低电平输出电流	I _{dout}	10			mA	Vo=0.4V, D _{OUT}
输入电流	I_{I}			±1	μА	$V_I = V_{DD}/V_{SS}$
高电平输入	V_{IH}	$0.7V_{DD}$			V	D _{IN} , SET
低电平输入	$V_{\rm IL}$			$0.3~\mathrm{V_{DD}}$	V	D _{IN} , SET
滞后电压	V _H		0.35		V	D _{IN} , SET

开关特性(如无特殊说明,T_A=-20~+70℃,V_{DD}=4.5~5.5V, V_{SS}=0V**)**

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	Fosc1		400		KHz	
7K707/05/44	Fosc2		800	800 — KHz		
传输延迟时 间	t _{PLZ}			300	ns	CL=15pF,DIN→DOUT,RL=10KΩ
下降时间	t_{THZ}			120	μs	CL=300pF,OUTR/OUTG/OUTB
数据传输率	F_{MAX}	400			Kbps	占空比50%
输入电容	C _I			15	pF	

高速模式时间

ТОН	0码, 高	电平时间	0.5 μs	±150ns
T1H	1码, 高	电平时间	2.0 μs	±150ns
TOL	0码, 低	:电平时间	2.0 μs	±150ns
T1L	1码, 低	:电平时间	0.5 μs	±150ns
RES	帧单位,但	氏电平时间	50µs以上	

注: 当为低速模式时,以上时间翻倍(RESET 码时间不变)

单线 256 级灰度三通道 恒流 LED 驱动 IC

时序波形图

输入码型:

连接方法:

数据传输方法:

注: 其中 D1 为 MCU 端发送的数据, D2、D3、D4 为级联电路自动整形转发的数据。

24bit 数据结构:

			-, , - -																				
R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	В5	В4	В3	В2	B1	В0

注: 高位先发,按照 RGB 的顺序发送数据。

单线 256 级灰度三通道 恒流 LED 驱动 IC

典型应用电路:

1. 电源电压 5V, 带单颗 LED, 恒定电流(18.5mA)输出.

注:上图采用恒流方式,可以在电压不断下降的同时达到亮度和色温不变的理想效果。为了防止电源尖峰和电源反接需在 IC 供电端(VDD)串接一个不大于 100 欧的电阻,104 的电容为旁路电容。IC 的输入与输出端各串入一个 33 的电阻提供热插拔保护和阻护匹配。

2. 电源电压 12V, 带三颗 LED, 恒定电流 (18.5mA) 输出.

注:上图采用恒流方式,可以在电压不断下降的同时达到亮度和色温不变的理想效果。R1=3.3K为 IC内部 LD0 分压电阻,104 的电容为旁路电容。IC 的输入与输出端各串入一个 33 的电阻提供热插拔保护和阻护匹配。 $RR(K\Omega)$ 的计算公式为: $RR = \frac{12 \quad 3V_{LEDR}}{18.5}$ 。

http://www.world-semi.com

单线 256 级灰度三通道 恒流 LED 驱动 IC

3. 电源电压 12V, 带 3 颗 LED, 输出电流可设定.

注:采用外扩三极管模式,Vcc的最高耐压值取决于 NPN 三极管的 Vceo,一般在 25V 以上。每个通道的电流由电阻 RR/RG/RB 来设定,计算公式如下:

$$I_R = \frac{V_{CC} \ 3V_{LEDR} \ V_{CE}}{RR}$$

上式中 I_R 为 OUTR 输出端电流,RR 为红色分压电阻, V_{CC} 为 LED 供电电压(此处为 12V), V_{LEDR} 为红色 LED 正常工作时的电压,VCE 为晶体管的饱和管压降。同理可以设定 OUTG 与 OUTB 端的电流。

基极电阻 RL 可取 5KΩ,NPN 晶体管放大倍数 β >150,按上图方法连接电路,MCU 发送的亮度数据和实际亮度是相反的。

R1 为 IC 内部 LD0 分压电阻 (R1=3.8KΩ),104 的电容为旁路电容,IC 的输入与输出端各串入一个 33 的电阻 提供热插拔保护和阻护匹配。

单线 256 级灰度三通道 恒流 LED 驱动 IC

4. 电源电压 24V, 带 6颗 LED, 输出电流可设定

注:采用外扩三极管模式, V_{CC} 的最高耐压值取决于 NPN 三极管的 V_{CEO} ,一般在 25V 以上。每个通道的电流由电阻 RR/RG/RB 来设定,计算公式如下:

$$I_R = \frac{V_{CC} \ 6V_{LEDR} \ V_{CE}}{RR}$$

上式中 I_R 为 OUTR 输出端电流,RR 为红色分压电阻, V_{CC} 为 LED 供电电压(此处为 24V), V_{LEDR} 为红色 LED 正常工作时的电压,VCE 为晶体管的饱和管压降。同理可以设定 OUTG 与 OUTB 端的电流。

基极电阻 RL 可取 5KΩ,NPN 晶体管放大倍数 β >150,按上图方法连接电路,MCU 发送的亮度数据和实际亮度是相反的。

R1 为 IC 内部 LD0 分压电阻 (R1=3.8KΩ),104 的电容为旁路电容,IC 的输入与输出端各串入一个 33 的电阻 提供热插拔保护和阻护匹配。

单线 256 级灰度三通道 恒流 LED 驱动 IC

封装图与参数

DIP8 封装:

Symbo	Dim	ensions In Millm	Dimensions In Inches				
1	Min	Nom	Max	Min	Nom	Max	
A	_		4.31	_	_	0.170	
A1	0.38			0.015			
A2	3.15	3.40	3.65	0.124	0.134	0.144	
В	0.38	0.46	0.51	0.015	0.018	0.020	
B1	1.27	1.52	1.77	0.050	0.060	0.070	
С	0.20	0.25	0.30	0.008	0.010	0.012	
D	8.95	9.20	9.45	0.352	0.362	0.372	
Е	6.15	6.45	6.65	0.242	0.252	0.262	
E1		7.62		_	0.300	_	
e		2.54			0.1		
L	3.00	3.30	3.60	0.118	0.130	0.142	
θ	0°		15°	0°	_	15°	

单线 256 级灰度三通道 恒流 LED 驱动 IC

SOP8 封装:

Cramb al	Dimensions	In Millmeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A	1.350	1.750	0.053	0.069		
A1	0.100	0. 250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
с	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
Е	3.800	4.000	0.150	0.157		
E1	5. 800	6. 200	0. 228	0. 244		
e	1.2	270	0.0	0.050		
L	0.400	1.270	0.016	0.050		
θ	$0^{\rm o}$	8°	0°	8°		