OPERAÇÕES UNITÁRIAS I

PROF° KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 17

Exercícios de Transportadores Mecânicos

EX28:(Gomide, Aplicação 3, pg 127): Projetar um T. Correia com capacidade de transportar 70 t/h de sal comum, à uma distância horizontal de 197 m e uma altura de 17 m. à 80 m/min.

1°- Calcular a inclinação: $tg\theta = \frac{17}{197} = 0,0863$

2°- Densidade (Tab. IV-2) $\rho = 1.2t / m^3$

$$\rho = 1,2t / m^3$$

3º- Calcular a Capacidade de projeto (inclinado):

$$C_i = \frac{C}{k}$$

$$C_i = \frac{C}{k}$$
 $C_i = \frac{70}{0,985} = 71,1\frac{t}{h}$

Tabel	- ITT C
1 abeu	1 I V • J

θ0	0	2	4	6	8	10	12	14	16	18	20	22	24
k	1,00	1,00	0,99	0,98	0,97	0,95	0,93	0,91	0,89	0,85	0,81	0,76	0,71

4º- Calcular a Capacidade Nominal:

$$C_N = C_i \frac{30}{V} = 71, 1\frac{30}{80} = 26, 7\frac{t}{h}$$

5°- Selecionar a largura:

L= 16"

	Tabela IV-4								
Largura da correia	Velocidade normal de operação	Capacidades de transportadores de correia operando na horizontal a 30 m/min (t/h) para diversas densidades (t/m³).							
(pol)	(m/min)	0,48	0,80	1,2	1,6	2,0	2,4		
14	60	0	16	24	32	40	47		
16	60	13	21	31	42	52	63		
18	75	16	27	40	53	67	80		
20	75	20	33	50	67	83	100		

Pela correlação de Liddel:

$$L = \sqrt{\frac{500 \cdot C}{K \cdot V \cdot \rho_S}} = \sqrt{\frac{500 \cdot 70}{1, 5 \cdot 80 \cdot 1, 2}} = 15, 6 \sim 16$$
"

6°- Cálculo da Potência (Liddel):

$$P = \frac{\left(0,0003 \cdot \left(16\right)^2 80 + 0,08 \cdot 70\right) 198 + 70 \cdot 17}{300} = 11,7HP$$

Potência instalada= 1,2*11,7=14 HP

EX29: (Gomide, Aplicação 4, pg 136): Projetar um T. de Caçambas basculante para transportar 12 t/h de cavacos de madeira, à uma distância horizontal de 80 m e um desnível de 20 m.

1°- Densidade (Tab. IV-2) $\rho = 0.35t / m^3$

2º- Calcular a Capacidade Nominal:

$$C_N = C \frac{0.8}{\rho} = 12 \frac{0.8}{0.35} = 27.43 \frac{t}{h}$$

3°- Definir Ve a geometria da caçamba (Tab. IV-11):

Tabela IV-11
MATERIAL DE DENSIDADE 0,8 t/m³

	das da caçamba ra x comprimento (cm)	Capacidade (t/h)	Velocidade (m/min)			
	45 x 40	15 - 20	10 - 12			
	45 x 45	20 - 25	10 – 12			
	45 x 55	25 - 30	10 - 12			
	60 x 45	35 - 45	12 15			
	60 x 60	50 - 60	12 - 15			
	60 x 75	60 - 75	12 - 15			

Caçamba: 45 x 55 cm e V=11 m/min

4º- Cálculo da potência

distância horizontal de transporte (m)

densidade do solido = 0,8 1/m³ largura = distância entre cocombas = 45 cm comprimentos das coçambas : 40cm, 45cm, 55cm

$$P^* = P \frac{0.8}{\rho} = 9 \frac{0.8}{0.35} = 3.94 HP$$

EX30:(Gomide, Aplicação 7 e 8, pg 136): Projetar um T. Helicoidal: 38 t/h de sal moído, à uma distância horizontal de 20 m.

- 1°- Densidade (Tab. IV-2) $\rho = 1,2t/m^3$
- 2º- Classificar o material: CLASSE C: Semi-abrasivo, F=1
- **3°- Capacidade Nominal:** $Q_N = \frac{C}{\rho} = \frac{38}{1,2} = 31,7 \frac{m^3}{h}$
- 4°- Potência: 90% eficiência transmissão e P<4HP $P = C\left(\frac{LF}{273}\right) = 38\left(\frac{20 \cdot 1}{273}\right) = 2,78HP$ 1,1*1,5*2,8=4,63~ 5HP

Método2:

$$D = \frac{Q^{0,385}}{15} = 0,252m$$

$$N = \frac{92,2}{D^{0,4}} = 160rpm$$

Método3:

$$D = \frac{Q^{0,5}}{15,2} = 0,37m$$

$$N = \frac{18,75}{D} = 50,6rpm$$

Método4: Material pesado e abrasivo:

$$D = 0.35m \qquad N = 55rpm$$

	Tabela IV-16								
·	D Diāmetro	L Compri- mento	Materiais leves não abrasivos		Materiais não ab	pesados rasivos	Materiais pesados abrasivos		
	(m)	padrão (m)	C (m ³ /h)	(rpm)	C (m³/h)	(rpm)	C (m³/h)	N (rpm)	
	0,10	2,50	4,84	220	2,44	110	1,30	90	
	0,15	3,00	14,2	200	7,22	100	3,82	80	
	0,20	3,00	33,4	180	16,7	90	8,50	75	
	0,25	3,00	58,1	160	29,2	80	14,6	65	
	0.30	3.50	93.5	150	470	75	23.2	60_	
	0,35	3,50	113	140	56,6	70	34,0	55	
	0,40	3,50	198	130	9 6,3	65	46,2	50	
	0,45	3,50	255	120	127	60	59,5	45	
	0,50	3,50	340	115	164	55	81,0	40	

EX31:Projetar um T. Helicoidal para transportar 12 t/h de cavacos de madeira, à uma distância horizontal de 80 m e um desnível de 20 m.

1°- Densidade (Tab. IV-2) $\rho = 0.35t / m^3$

2º- Classificar o material:

CLASSE B: Não abrasivos, em grãos pequenos misturados com finos, ps<0,8 t/m3. F=0,6

3º- Ângulo de Inclinação (<AR)

$$tg\theta = \frac{20}{80} = 0.25$$
 $\theta = 14.04^{\circ}$ AR=25° (Tab. IV-2)

4º- Capacidade Nominal Volumétrica

$$Q_{N} = \frac{12}{0,35 \cdot 0,72}$$

$$Q_{N} = 47,62 \frac{m^{3}}{h}$$

5°- Potência: L>20: (x1,15) e P<4(x1,5)= **6,4HP**

$$P = C\left(\frac{LF}{273} + \frac{H}{152}\right) = 12\left(\frac{80 \cdot 0, 6}{273} + \frac{20}{152}\right) = 3,7HP$$

6°- Dimensões e rotação do TH (Tab. IV-15)

Método4	Tabela IV-16							
D = 0,25m	D Diâmetro	L Compri- mento	MÃO ANTAMUOR		Materiais pesados não abrasivos		Materiais pesados abrasivos	
N = 160rpm	(m) padi	padrão (m)	C (m³/h)	N (rpm)	C (m ³ /h)	(rpm)	C (m³/h)	N (rpm)
	0,10 0,15 0,20	2,50 3,00 3,00	4,84 14,2 33,4	220 200	2,44 7,22 16,7	110 100 90	1,30 3,82 8,50	90 80 75
	0,25	3,00	58,1	160	29,2	80	14,6	65

93,5

47,0

75

EX32: (Gomide, Aplicação 5, pg 144): Projetar um T. Calha com capacidade de transportar 30 t/h de sabão em escamas, à uma distância horizontal de 20 m e uma inclinação de 20° com a horizontal.

1°- Densidade (Tab. IV-2) $\rho = 0.16t / m^3$

$$\rho = 0.16t / m^3$$

2º- Calculando p (efeito da inclinação) (Tab. IV-13)

Tabela IV-13					
α = ângulo de inclinação com a horizontal	p = fração da capaci dade máxima				
200	0,77				
300	0,55				
400	0,33				

H=6,84 m

3°- Chutando V=30 m/min e D=0,4m, calcular o Peso nominal por compartimento:

$$P_{N} = \frac{13,33CD}{\rho V p} = \frac{13,33 \cdot 30 \cdot 0,4}{0,16 \cdot 30 \cdot 0,77} = 43,3kg$$

4º- Geometria

Método1: 20x60

Recalculando V:

$$V = 30 \frac{43,3}{41} = 31,7 \frac{m}{\min}$$

Tabela IV-12 PARA MATERIAIS DE DENSIDADE 0,8 t/m³

Dimensões das raspadeiras altura x largura (cm)	P = peso nominal por compartimento (kg)
20 × 50	32
20 x 60	41
25 x 60	52

Método 2:

$$S = \frac{4,4CD}{\rho Vp} = \frac{4,4 \cdot 30 \cdot 40}{0,16 \cdot 31,7 \cdot 0,77} = 1352cm^2$$

Se Altura 20 cm → largura de 66 cm

Tempo de transporte:
$$t = \frac{L}{60V} = \frac{20}{60 \cdot 31,7} = 0.1h$$

Número de compartimentos: $N_c = \frac{L}{D} = \frac{20}{0.4} = 50$

$$N_c = \frac{L}{D} = \frac{20}{0.4} = 50$$

5°- Cálculo da Potência (Liddel):

$$P = \frac{KCL + CH}{300} = \frac{0,933 \cdot 30 \cdot 20 + 30 \cdot 6,84}{300} = 2,55HP$$

Raspadeiras em sapatas→ K=0,933

Potência instalada= 1,2*2,55= 3 HP