ME705 - Prova 1 - 26/04/2022

Profa. Mariana Rodrigues Motta DE - UNICAMP Coloque nome e RA.

Não é permitido o uso de celular como calculadora.

- 1. Você tem uma gaveta cheia de dados de 4, 6, 8, 12 e 20 lados. Você suspeita que eles são na proporção 1:2:10:2:1. Seu amigo escolhe um dado aleatoriamente e joga o dado duas vezes, obtendo o lado 5 ambas as vezes. Seja θ a proporção de dados.
 - (a) Preencha a tabela abaixo:

lados	priore de θ	verossililhança	posteriori de θ	posteriori de θ
	não normalizada		não normalizada	normalizada
4		0		0
6				
8	10	$(1/8)^2$		
12				
20				
Total	16			

- (b) Usando a tabela em (a), qual é a probabilidade de seu amigo ter escolhido o dado de 8 lados?
- (c) Qual é a probabilidade de que na próxima jogada seja novamente o valor 5? Considere que a nova jogada é independente das duas anteriores. Para isso encontre a distribuição preditiva preenchendo a tabela abaixo.

lados	posteriori de θ	verossililhança	preditiva
	normalizada	para $x = 5$	
4	0	0	0
6		1/6	0.04058
8		,	
12			
20			
Total			

- 2. Rege a lenda que os alunos preferem inferência frequentista a Bayesiana. Uma professora do Departamento de Estatística escolhe uma amostra aleatória de 10 alunos da turma do ano de 2018 e pergunta a cada aluno qual a preferência. A professora começa com uma priori $f(\theta) \sim beta(2,2)$, onde θ é a proporção que prefere inferência Bayesiana.
 - (a) Seja x_1 o número de alunos na amostra que prefere inferência Bayesiana. Qual é a distribuição de probabilidade de x_1 ?
 - (b) A não ser por uma constante de proporcionalidade c, encontre a distribuição a posteriori de θ dado que $x_1 = 6$ e indique quem é c.
 - (c) Suponha que a média da distribuição a posteriori em (b) seja 0.57. Você fica a favor ou contra a hipótese da preferência ser por inferência Bayesiana? Justifique sua resposta.
 - (c) A professora decide obter outra amostra de 10 alunos e refaz a pesquisa. Seja x_2 o número de alunos na segunda amostra que prefere inferência Bayesiana. Escreva detalhadamente a expressão para a probabilidade preditiva a posteriori de que a maioria $(x_2 > 5)$ dos alunos na segunda amostra prefere inferência Bayesiana. O resultado será uma integral com vários termos. Não se preocupe em calcular a integral, deixe indicada.

4. O tempo de espera do cliente (em horas) em um restaurante popular pode ser modelado como uma variável aleatória exponencial com parâmetro λ . Suponha que a priori $\lambda(0,\infty)$ e tem função de densidade

$$f(\lambda) = \frac{1}{4!} \lambda^4 e^{-\lambda} \tag{1}$$

Suponha que observamos o tempo de espera de 5 clientes, dados por $x_1=0.23, x_2=0.80, x_3=0.12, x_4=0.35, x_5=0.5$, respectivamente. Calcule a função de densidade a posteriori de λ . Dica: $\int_0^\infty y^{a-1}e^{-by}dy=\frac{(a-1)!}{b^a}.$