Luís Pereira

University of Notre Dame

9/28/2017

Operads and equivariant operads

Elmendorf-Piacenza theorem

Operads and equivariant operads

Elmendorf-Piacenza theorem

Trees and equivariant trees

Operads and equivariant operads

Elmendorf-Piacenza theorem

Trees and equivariant trees

Genuine equivariant operads

Operads and equivariant operads

Elmendorf-Piacenza theorem

Trees and equivariant trees

Genuine equivariant operads

Operads and equiv. operads

An operad \mathcal{O} consists of:

$$ightharpoonup \Sigma_n$$
-spaces $\mathcal{O}(n)$ for $n \geq 0$;

Operads and equiv. operads

An operad \mathcal{O} consists of:

- ▶ Σ_n -spaces $\mathcal{O}(n)$ for $n \geq 0$;
- composition maps

$$\mathcal{O}(n) \times \mathcal{O}(k_1) \times \ldots \times \mathcal{O}(k_n) \to \mathcal{O}(k_1 + \ldots + k_n)$$

 $f, g_1, \cdots, g_n \mapsto f(g_1, \cdots, g_n)$

Operads and equiv. operads

An operad \mathcal{O} consists of:

- ▶ Σ_n -spaces $\mathcal{O}(n)$ for $n \geq 0$;
- composition maps

$$\mathcal{O}(n) \times \mathcal{O}(k_1) \times \ldots \times \mathcal{O}(k_n) \to \mathcal{O}(k_1 + \ldots + k_n)$$

 $f, g_1, \cdots, g_n \mapsto f(g_1, \cdots, g_n)$

satisfying associativity, unit and symmetry conditions.

Operads and equiv. operads

An operad \mathcal{O} consists of:

- ▶ Σ_n -spaces $\mathcal{O}(n)$ for $n \geq 0$;
- composition maps

$$\mathcal{O}(n) \times \mathcal{O}(k_1) \times \ldots \times \mathcal{O}(k_n) \to \mathcal{O}(k_1 + \ldots + k_n)$$

 $f, g_1, \cdots, g_n \mapsto f(g_1, \cdots, g_n)$

satisfying associativity, unit and symmetry conditions.

Example (Depicting composition)

$$\mathcal{O}(3) \times \mathcal{O}(1) \times \mathcal{O}(0) \times \mathcal{O}(3) \rightarrow \mathcal{O}(4)$$

 $f, g_1, g_2, g_3 \mapsto f(g_1, g_2, g_3)$

Operads and equiv. operads

An operad \mathcal{O} consists of:

- ▶ Σ_n -spaces $\mathcal{O}(n)$ for $n \geq 0$;
- composition maps

$$\mathcal{O}(n) \times \mathcal{O}(k_1) \times \ldots \times \mathcal{O}(k_n) \to \mathcal{O}(k_1 + \ldots + k_n)$$

 $f, g_1, \cdots, g_n \mapsto f(g_1, \cdots, g_n)$

satisfying associativity, unit and symmetry conditions.

Example (Depicting composition)

$$\mathcal{O}(3) \times \mathcal{O}(1) \times \mathcal{O}(0) \times \mathcal{O}(3) \rightarrow \mathcal{O}(4)$$

 $f, g_1, g_2, g_3 \mapsto f(g_1, g_2, g_3)$

Operads and equiv. operads

An algebra over an operad \mathcal{O} is a space X with compatible maps

$$\mathcal{O}(n) \times X^{\times n} \to X$$

0	$\mathcal{O}(n)$	O-algebras
Ass	$Ass(n) = \Sigma_n$	associative monoids
Com		commutative monoids

Operads and equiv. operads

An algebra over an operad \mathcal{O} is a space X with compatible maps

$$\mathcal{O}(n) \times X^{\times n} \to X$$

\mathcal{O}	$\mathcal{O}(n)$	\mathcal{O} -algebras
Ass	$Ass(n) = \Sigma_n$	associative monoids
Com	Com(n) = *	commutative monoids
E_{∞} -operads	$\mathcal{O}(n) \simeq E\Sigma_n$ i.e. Σ_n -free and contractible	homotopy commutative monoids

Operads and equiv. operads

An algebra over an operad $\mathcal O$ is a space X with compatible maps

$$\mathcal{O}(n) \times X^{\times n} \to X$$

\mathcal{O}	$\mathcal{O}(n)$	\mathcal{O} -algebras
Ass	$Ass(n) = \Sigma_n$	associative monoids
Com	Com(n) = *	commutative monoids
E_{∞} -operads	$\mathcal{O}(n) \simeq E\Sigma_n$ i.e. Σ_n -free and contractible	homotopy commutative monoids

Definition

A G-operad $\mathcal O$ is an operad in $\mathsf{Top}^{\mathcal G}$ (also, a G-object in operads).

- \triangleright $\mathcal{O}(n)$ is a $G \times \Sigma_n$ -space;
- composition maps are G-equivariant.

Operads and equiv. operads

Equivariant Operads

Definition

A G-operad $\mathcal O$ is an operad in Top^G (also, a G-object in operads).

- \triangleright $\mathcal{O}(n)$ is a $G \times \Sigma_n$ -space;
- composition maps are G-equivariant.

0	$\mathcal{O}(n)$	O-algebras
Com		commutative <i>G</i> -monoids

0000000

Operads and equiv. operads

Equivariant Operads

Definition

A G-operad $\mathcal O$ is an operad in Top^G (also, a G-object in operads).

- ▶ $\mathcal{O}(n)$ is a $G \times \Sigma_n$ -space;
- composition maps are G-equivariant.

O	$\mathcal{O}(n)$	\mathcal{O} -algebras
Com	Com(n) = *	commutative <i>G</i> -monoids
G-trivial E_{∞}	$\mathcal{O}(n) \simeq E\Sigma_n$ with G-trivial action	not the homotopy commutative <i>G</i> -monoids

0000000

Operads and equiv. operads

Equivariant Operads

Definition

A G-operad $\mathcal O$ is an operad in Top^G (also, a G-object in operads).

- ▶ $\mathcal{O}(n)$ is a $G \times \Sigma_n$ -space;
- composition maps are G-equivariant.

$\mathcal O$	$\mathcal{O}(n)$	\mathcal{O} -algebras
Com	Com(n) = *	commutative <i>G</i> -monoids
G-trivial E_{∞}	$\mathcal{O}(n) \simeq E\Sigma_n$	not the homotopy
G-trivial L_{∞}	with G-trivial action	commutative G-monoids

Operads and equiv. operads

Equivariant Operads

Definition

A G-operad \mathcal{O} is an operad in Top^G (also, a G-object in operads).

- ▶ $\mathcal{O}(n)$ is a $G \times \Sigma_n$ -space;
- composition maps are G-equivariant.

$\mathcal O$	$\mathcal{O}(n)$	\mathcal{O} -algebras
Com	Com(n) = *	commutative G -monoids
G-trivial E_{∞}	$\mathcal{O}(n) \simeq E\Sigma_n$ with <i>G</i> -trivial action	not the homotopy commutative <i>G</i> -monoids
G - E_{∞}	$\mathcal{O}(n) \simeq E \mathcal{F}_n^{\Gamma}$	homotopy commutative <i>G</i> -monoids

Operads and equiv. operads

G-trivial
$$E_{\infty}$$
 vs. G - E_{∞}

For
$$\Gamma \leq G \times \Sigma_n$$

 \triangleright A G-trivial E_{∞} operad has fixed points

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \leq G \\ \varnothing & \text{otherwise} \end{cases}$$

Operads and equiv. operads

OOOOOOO

Equivariant operads

G-trivial E_{∞} vs. G- E_{∞}

For
$$\Gamma \leq G \times \Sigma_n$$

ightharpoonup A G-trivial E_{∞} operad has fixed points

$$\mathcal{O}(n)^{\Gamma} \simeq egin{cases} * & \Gamma \leq G \\ \varnothing & \text{otherwise} \end{cases}$$

▶ A G-E_∞ operad has fixed points

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \cap \Sigma_n = * \\ \varnothing & \text{otherwise} \end{cases}$$

Operads and equiv. operads

G-trivial E_{∞} vs. G- E_{∞}

For
$$\Gamma \leq G \times \Sigma_n$$

 \triangleright A G-trivial E_{∞} operad has fixed points

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \leq G \\ \varnothing & \text{otherwise} \end{cases}$$

 \triangleright A G- E_{∞} operad has fixed points

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \cap \Sigma_n = * \\ \varnothing & \text{otherwise} \end{cases}$$

 $\Gamma \leq G$

 $\Gamma \leq G$

$$\Gamma \cap \Sigma_n = *$$

oo oo•ooooo Equivariant operads

Operads and equiv. operads

 $\Gamma \leq G$

$$\Gamma \cap \Sigma_n = *$$

Operads and equiv. operads

$$\Gamma \cap \Sigma_n = *$$

00000000

Operads and equiv. operads

$$\Gamma \cap \Sigma_n = *$$

Definition

 $\Gamma \leq G \times \Sigma_n$ such that $\Gamma \cap \Sigma_n = *$ is called a *graph subgroup*.

▶ These are graphs of partial homomorphisms $G \ge H \to \Sigma_n$;

00000000

Operads and equiv. operads

$$\Gamma \cap \Sigma_n = *$$

Definition

 $\Gamma \leq G \times \Sigma_n$ such that $\Gamma \cap \Sigma_n = *$ is called a *graph subgroup*.

- ▶ These are graphs of partial homomorphisms $G \ge H \to \Sigma_n$;
- Correspond to H-sets X with n elements;

Operads and equiv. operads

$$\Gamma \cap \Sigma_n = *$$

Definition

 $\Gamma \leq G \times \Sigma_n$ such that $\Gamma \cap \Sigma_n = *$ is called a *graph subgroup*.

- ▶ These are graphs of partial homomorphisms $G \ge H \to \Sigma_n$;
- Correspond to H-sets X with n elements;
- ▶ Given *H*-set *X*, write $\Gamma_X < G \times \Sigma_n$ for the graph subgroup.

Operads and equiv. operads

$$\Gamma \cap \Sigma_n = *$$

Definition

 $\Gamma < G \times \Sigma_n$ such that $\Gamma \cap \Sigma_n = *$ is called a graph subgroup.

- ▶ These are graphs of partial homomorphisms $G \ge H \to \Sigma_n$;
- Correspond to H-sets X with n elements;
- ▶ Given *H*-set *X*, write $\Gamma_X \leq G \times \Sigma_n$ for the graph subgroup.

00000000

Operads and equiv. operads

G-trivial E_{∞} vs. G- E_{∞}

 \triangleright G- E_{∞} is "as contractible as possible while being Σ_n -free";

- ▶ G- E_{∞} is "as contractible as possible while being Σ_n -free";
- ▶ *G*-trivial E_{∞} is "contractible only for graphs of trivial *H*-sets";

00000000

$$\begin{array}{c|c} \textit{G-trivial } \textit{E}_{\infty} & \textit{G-E}_{\infty} \\ \\ \mathcal{O}(\textit{n})^{\Gamma} \simeq \begin{cases} * & \Gamma \leq \textit{G} \\ \varnothing & \text{otherwise} \end{cases} \mathcal{O}(\textit{n})^{\Gamma} \simeq \begin{cases} * & \Gamma \cap \Sigma_{\textit{n}} = * \\ \varnothing & \text{otherwise} \end{cases}$$

- G- E_{∞} is "as contractible as possible while being Σ_n -free";
- G-trivial E_{∞} is "contractible only for graphs of trivial H-sets";
- \triangleright both Σ_n -free:

- ▶ G- E_{∞} is "as contractible as possible while being Σ_n -free";
- ▶ *G*-trivial E_{∞} is "contractible only for graphs of trivial *H*-sets";
- ▶ both Σ_n -free;
- both G-contractible.

00000000

Operads and equiv. operads

- G- E_{∞} is "as contractible as possible while being Σ_n -free";
- ▶ G-trivial E_{∞} is "contractible only for graphs of trivial H-sets";
- ▶ both Σ_n -free;
- both G-contractible.

Operads and equiv. operads

Why do graph subgroups matter?

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements:

Operads and equiv. operads

Why do graph subgroups matter?

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements:

there are G-equivariant norm maps

$$N^X R \to R$$
 or $R^{\wedge n} \to R$

Why do graph subgroups matter?

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements;

there are G-equivariant norm maps

$$N^X R \to R$$
 or $R^{\wedge n} \to R$

Note: The *G*-action on $N^X R$ is given by the Γ_X -action on $R^{\wedge n}$.

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements:

there are G-equivariant norm maps

$$N^X R \to R$$
 or $R^{\wedge n} \to R$

Note: The *G*-action on $N^X R$ is given by the Γ_X -action on $R^{\wedge n}$.

Replacing Com with a general operad \mathcal{O} get

$$\mathcal{O}(X)^{\mathsf{G}} \wedge N^{\mathsf{X}} R \to R$$
 or $\mathcal{O}(n)^{\mathsf{\Gamma}_{\mathsf{X}}} \wedge R^{\wedge n} \to R$

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements:

there are G-equivariant norm maps

$$N^X R \to R$$
 or $R^{\wedge n} \to R$

Note: The *G*-action on $N^X R$ is given by the Γ_X -action on $R^{\wedge n}$.

Replacing Com with a general operad $\mathcal O$ get

$$\mathcal{O}(X)^G \wedge N^X R \to R$$
 or $\mathcal{O}(n)^{\Gamma_X} \wedge R^{\wedge n} \to R$

i.e. $\mathcal{O}(X)^G = \mathcal{O}(n)^{\Gamma_X}$ is "the space of norm maps for the *G*-set *X*".

Given:

- ▶ (strict) commutative *G*-ring spectrum *R*, i.e. Com-algebra;
- ▶ finite *G*-set *X* with *n* elements;

there are G-equivariant norm maps

$$N^X R \to R$$
 or $R^{\wedge n} \to R$

Note: The *G*-action on $N^X R$ is given by the Γ_X -action on $R^{\wedge n}$.

Replacing Com with a general operad \mathcal{O} get

$$\mathcal{O}(X)^G \wedge N^X R \to R$$
 or $\mathcal{O}(n)^{\Gamma_X} \wedge R^{\wedge n} \to R$

i.e. $\mathcal{O}(X)^G = \mathcal{O}(n)^{\Gamma_X}$ is "the space of norm maps for the G-set X".

Hence:

- Com has unique norm maps for each H-set X;
- \triangleright G- E_{∞} -operads have homotopy unique norm maps for each H-set X

Hence:

- Com has unique norm maps for each H-set X;
- ▶ G- E_{∞} -operads have *homotopy unique* norm maps for each H-set X.

Theorem (Costenoble-Waner)

G- E_{∞} -operads encode G-ring spectra with all norm maps and equivariant infinite loop spaces.

On the other hand, G-trivial E_{∞} -operads encode G-ring spectra without non-trivial norm maps.

Hence:

Equivariant operads

- Com has unique norm maps for each H-set X;
- ▶ G- E_{∞} -operads have *homotopy unique* norm maps for each H-set X.

Theorem (Costenoble-Waner)

G- E_{∞} -operads encode G-ring spectra with all norm maps and equivariant infinite loop spaces.

On the other hand, G-trivial E_{∞} -operads encode G-ring spectra without non-trivial norm maps.

Operads and equiv. operads

Weak equivalences of equivariant operads

Upshot: weak equivalences of *G*-operads should account for norm maps.

A map of G-operads $\mathcal{O} \to \mathcal{O}'$ is called a graph equivalence if the

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \cap \Sigma_n = \Sigma_n$$

Equivariant operads

Upshot: weak equivalences of *G*-operads should account for norm maps.

Definition

A map of *G*-operads $\mathcal{O} \to \mathcal{O}'$ is called a *graph equivalence* if the maps

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \cap \Sigma_n = *$$

are weak equivalences.

► These are more restrictive than "genuine equivalences"

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \leq G$$

Weak equivalences of equivariant operads

Upshot: weak equivalences of *G*-operads should account for norm maps.

Definition

A map of G-operads $\mathcal{O} \to \mathcal{O}'$ is called a *graph equivalence* if the maps

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \cap \Sigma_n = *$$

are weak equivalences.

▶ These are more restrictive than "genuine equivalences"

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \leq G$$

▶ Graph equivalences distinguish between G-trivial E_{∞} and G- E_{∞} , while genuine equivalences do not.

Weak equivalences of equivariant operads

Upshot: weak equivalences of *G*-operads should account for norm maps.

Definition

A map of G-operads $\mathcal{O} \to \mathcal{O}'$ is called a *graph equivalence* if the maps

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \cap \Sigma_n = *$$

are weak equivalences.

▶ These are more restrictive than "genuine equivalences"

$$\mathcal{O}(n)^{\Gamma} \xrightarrow{\sim} \mathcal{O}'(n)^{\Gamma}, \qquad \Gamma \leq G$$

▶ Graph equivalences distinguish between G-trivial E_{∞} and G- E_{∞} , while genuine equivalences do not.

Definition (Blumberg-Hill)

A G-operad \mathcal{O} is called a N_{∞} -operad if

$$\mathcal{O}(n)^{\Gamma} \simeq \left\{ egin{array}{ll} * & \Gamma \in \mathcal{F}_n \\ \varnothing & \text{otherwise} \end{array} \right.$$

where each \mathcal{F}_n is a family of graph subgroups of $G \times \Sigma_n$.

 \triangleright N_{∞} -operads are G-operads "with only some norm maps";

Operads and equiv. operads

Definition (Blumberg-Hill)

A G-operad \mathcal{O} is called a N_{∞} -operad if

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \in \mathcal{F}_n \\ \varnothing & \text{otherwise} \end{cases}$$

where each \mathcal{F}_n is a family of graph subgroups of $G \times \Sigma_n$.

 \triangleright N_{∞} -operads are G-operads "with only some norm maps";

Operads and equiv. operads

Definition (Blumberg-Hill)

A G-operad \mathcal{O} is called a N_{∞} -operad if

$$\mathcal{O}(n)^{\Gamma} \simeq \begin{cases} * & \Gamma \in \mathcal{F}_n \\ \varnothing & \text{otherwise} \end{cases}$$

where each \mathcal{F}_n is a family of graph subgroups of $G \times \Sigma_n$.

▶ N_{∞} -operads are G-operads "with only some norm maps";

▶ $\mathcal{F} = \{\mathcal{F}_n\}$ is not arbitrary. Must satisfy *indexing system* closure conditions (BH);

Operads and equiv. operads

Definition (Blumberg-Hill)

A G-operad \mathcal{O} is called a N_{∞} -operad if

$$\mathcal{O}(n)^{\Gamma} \simeq egin{cases} * & \Gamma \in \mathcal{F}_n \\ \varnothing & \text{otherwise} \end{cases}$$

where each \mathcal{F}_n is a family of graph subgroups of $G \times \Sigma_n$.

▶ N_{∞} -operads are *G*-operads "with only some norm maps";

- ▶ $\mathcal{F} = \{\mathcal{F}_n\}$ is not arbitrary. Must satisfy *indexing system* closure conditions (BH);
- ▶ Building N_{∞} -operads for all indexing systems \mathcal{F} is not trivial.

Operads and equiv. operads

Definition (Blumberg-Hill)

A G-operad \mathcal{O} is called a N_{∞} -operad if

$$\mathcal{O}(n)^{\Gamma} \simeq egin{cases} * & \Gamma \in \mathcal{F}_n \ \varnothing & \text{otherwise} \end{cases}$$

where each \mathcal{F}_n is a family of graph subgroups of $G \times \Sigma_n$.

▶ N_{∞} -operads are G-operads "with only some norm maps";

- ▶ $\mathcal{F} = \{\mathcal{F}_n\}$ is not arbitrary. Must satisfy *indexing system* closure conditions (BH);
- ▶ Building N_{∞} -operads for all indexing systems \mathcal{F} is not trivial.

Definition

The orbital category O_G is the category of orbital G-sets G/H.

Theorem (Elmendorf-Piacenza)

There is a Quillen equivalence $\mathsf{Top}^{\mathsf{O}_G^{op}} \longleftarrow \mathsf{Top}$ $(G/H \mapsto Y(G/H)) \longmapsto Y(G/H) \mapsto Y(G/H)$

Definition

The orbital category O_G is the category of orbital G-sets G/H.

Theorem (Elmendorf-Piacenza)

There is a Quillen equivalence

$$\mathsf{Top}^{\mathsf{O}_G^{op}} \xleftarrow{\hspace{1cm}} \mathsf{Top}^G$$
 $(G/H \mapsto Y(G/H)) \longmapsto \hspace{1cm} Y(G)$
 $(G/H \mapsto X^H) \longleftarrow \hspace{1cm} X$

▶ w.e.s on Top^{O°p} are levelwise;

Definition

The orbital category O_G is the category of orbital G-sets G/H.

Theorem (Elmendorf-Piacenza)

There is a Quillen equivalence

$$\mathsf{Top}^{\mathsf{O}_G^{op}} \xleftarrow{\hspace{1cm}} \mathsf{Top}^G$$
 $(G/H \mapsto Y(G/H)) \longmapsto Y(G)$
 $(G/H \mapsto X^H) \longleftarrow X$

- ▶ w.e.s on Top^{O°p} are levelwise;
- w.e.s on Top^G are genuine, i.e. detected on all fixed points.

Definition

The orbital category O_G is the category of orbital G-sets G/H.

Theorem (Elmendorf-Piacenza)

There is a Quillen equivalence

$$\mathsf{Top}^{\mathsf{O}_G^{op}} \stackrel{\longrightarrow}{\longleftarrow} \mathsf{Top}^G$$
 $(G/H \mapsto Y(G/H)) \longmapsto Y(G)$
 $(G/H \mapsto X^H) \longleftarrow X$

- ▶ w.e.s on Top^{O^{op}_G are levelwise;}
- w.e.s on Top^G are genuine, i.e. detected on all fixed points.

Theorem (Bergner, Bergner-Gutierrez)

More generally, there are Quillen equivalences

$$ightharpoonup sCat^G
ightharpoonup sCat^G$$
for sCat the category of simplicial categories

Theorem (Bergner, Bergner-Gutierrez)

More generally, there are Quillen equivalences

- $ightharpoonup \operatorname{sCat}^{O_G^{op}} \rightleftarrows \operatorname{sCat}^G$ for sCat the category of simplicial categories;
- $ightharpoonup sOp^{G_G^{op}} \rightleftarrows sOp^G$ for sOp the category of simplicial operads.

Theorem (Bergner, Bergner-Gutierrez)

More generally, there are Quillen equivalences

- $ightharpoonup \operatorname{sCat}^{O_G^{op}} \rightleftarrows \operatorname{sCat}^G$ for sCat the category of simplicial categories;
- ► $sOp^{O_G^{op}} \longleftrightarrow sOp^G$ for sOp the category of simplicial operads.

Remark

These results use genuine equivalences, which in the sOp case ignore all non trivial norm maps.

Theorem (Bergner, Bergner-Gutierrez)

More generally, there are Quillen equivalences

- $ightharpoonup sCat^{O_G^{op}} \rightleftarrows sCat^G$ for sCat the category of simplicial categories;
- $ightharpoonup sOp^{G_G^{op}} \longleftrightarrow sOp^G$ for sOp the category of simplicial operads.

Remark

These results use genuine equivalences, which in the sOp case **ignore all non trivial norm maps**.

Main Goal: Formulate an Elmendorf-Piacenza result for operads with graph equivalences.

Issue: The levels of $\mathcal{Q} \in \mathsf{sOp}^{\mathsf{O}_{\mathcal{G}}^{\mathsf{op}}}$ only encode trivial norm

Main Goal: Formulate an Elmendorf-Piacenza result for operads

with graph equivalences.

Issue: The levels of $\underline{\mathcal{O}} \in \mathsf{sOp}^{\mathsf{O}_{\mathsf{G}}^{op}}$ only encode trivial norm

maps.

Idea: Replace $sOp^{O_G^{op}}$ with a (larger) category where the

levels of objects encode all norm maps.

Main Goal: Formulate an Elmendorf-Piacenza result for operads with graph equivalences.

Issue: The levels of $\mathcal{O} \in \mathsf{sOp}^{\mathsf{O}_G^{op}}$ only encode trivial norm maps.

Idea: Replace sOp^O^{op} with a (larger) category where the levels of objects encode all norm maps.

$$sOp_G \rightleftharpoons sOp_G$$

Main Goal: Formulate an Elmendorf-Piacenza result for operads with graph equivalences.

Issue: The levels of $\underline{\mathcal{O}} \in \mathsf{sOp}^{\mathsf{O}_{\mathcal{G}}^{op}}$ only encode trivial norm maps.

Idea: Replace $sOp^{O_G^{op}}$ with a (larger) category where the levels of objects encode all norm maps.

$$\mathsf{sOp}_G \rightleftarrows \mathsf{sOp}^G$$

 sOp_{G} is the category of genuine equivariant operads.

The key: Each genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ will come with composition maps.

To define these, need to understand how composition interacts with norm maps for each $\mathcal{O} \in \mathsf{sOp}^G$.

Main Goal: Formulate an Elmendorf-Piacenza result for operads with graph equivalences.

Issue: The levels of $\underline{\mathcal{O}} \in \mathsf{sOp}^{\mathsf{O}_{\mathsf{G}}^{op}}$ only encode trivial norm maps.

Idea: Replace $sOp^{O_G^{op}}$ with a (larger) category where the levels of objects encode all norm maps.

$$\mathsf{sOp}_G \rightleftarrows \mathsf{sOp}^G$$

 sOp_G is the category of *genuine equivariant operads*.

The key: Each genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ will come with composition maps.

To define these, need to understand how composition interacts with norm maps for each $\mathcal{O} \in \mathsf{sOp}^\mathsf{G}$.

Solution: Those interactions are encoded by equivariant trees.

Main Goal: Formulate an Elmendorf-Piacenza result for operads with graph equivalences.

Issue: The levels of $\underline{\mathcal{O}} \in \mathsf{sOp}^{\mathsf{O}_{\mathcal{G}}^{op}}$ only encode trivial norm maps.

Idea: Replace $sOp^{O_G^{op}}$ with a (larger) category where the levels of objects encode all norm maps.

$$\mathsf{sOp}_G \rightleftarrows \mathsf{sOp}^G$$

 sOp_G is the category of *genuine equivariant operads*.

The key: Each genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ will come with composition maps.

To define these, need to understand how composition interacts with norm maps for each $\mathcal{O} \in \mathsf{sOp}^\mathsf{G}$.

Solution: Those interactions are encoded by equivariant trees.

Definition (Moerdijk-Weiss)

A tree diagram T defines a colored operad such that:

- objects are the edges of T;
- operations are generated by the nodes of T.

Example ▶ objects: a, l

 \triangleright objects: a, b, c, d, e, f, g, h, r

Definition (Moerdijk-Weiss)

A tree diagram T defines a colored operad such that:

- objects are the edges of T;
- operations are generated by the nodes of T.

- ▶ objects: a, b, c, d, e, f, g, h, r
- generating operations:

$$ab
ightarrow f$$
 , $\emptyset
ightarrow g$, $cde
ightarrow h$, $fgh
ightarrow r$

Definition (Moerdijk-Weiss)

A tree diagram T defines a colored operad such that:

- objects are the edges of T;
- operations are generated by the nodes of T.

- ▶ objects: a, b, c, d, e, f, g, h, r
- generating operations: $ab \rightarrow f$, $\emptyset \rightarrow g$, $cde \rightarrow h$, $fgh \rightarrow r$
- composite operations:

Definition (Moerdijk-Weiss)

A tree diagram T defines a colored operad such that:

- objects are the edges of T;
- operations are generated by the nodes of T.

- ▶ objects: a, b, c, d, e, f, g, h, r
- generating operations: $ab \rightarrow f$, $\emptyset \rightarrow g$, $cde \rightarrow h$, $fgh \rightarrow r$
- composite operations: $abgh \rightarrow r$, $fh \rightarrow r$, $fgcde \rightarrow r$, $abh \rightarrow r$ $abgcde \rightarrow r$, $fcde \rightarrow r$, $abcde \rightarrow r$

Definition (Moerdijk-Weiss)

The *dendroidal category* Ω consists of trees and operad maps.

Definition (Moerdijk-Weiss)

The dendroidal category Ω consists of trees and operad maps.

The dendroidal category Ω consists of trees and operad maps.

Example

 $\mathsf{Hom}(T,\mathcal{O}) \longrightarrow \mathsf{Hom}(C,\mathcal{O})$

The dendroidal category Ω consists of trees and operad maps.

Example

$$\begin{array}{cccc} \operatorname{\mathsf{Hom}}(T,\mathcal{O}) & \longrightarrow & \operatorname{\mathsf{Hom}}(C,\mathcal{O}) \\ \mathcal{O}(3) \times \mathcal{O}(2) \times \mathcal{O}(0) \times \mathcal{O}(3) & \longrightarrow & \mathcal{O}(5) \end{array}$$

The dendroidal category Ω consists of trees and operad maps.

Example

Maps in Ω encode operadic composition, associativity, etc.

The dendroidal category Ω consists of trees and operad maps.

Example

Maps in Ω encode operadic composition, associativity, etc.

The category Ω_G of G-trees

Want: A generalization Ω_G of Ω that encodes compositions of norm maps;

The category Ω_G of G-trees

Want: A generalization Ω_G of Ω that encodes compositions

of norm maps;

First guess: Consider Ω^G , the category of G-objects in Ω .

The category Ω_G of G-trees

Want: A generalization Ω_G of Ω that encodes compositions

of norm maps;

First guess: Consider Ω^G , the category of G-objects in Ω .

Remark

As it turns out $\Omega^G \hookrightarrow \Omega_G$, but $\Omega^G \neq \Omega_G$.

$$\text{Hom}(C, \mathcal{O}) = \mathcal{O}(6)^{\lceil \{a,b,a+2,a+1,b+1,a+3\}}$$

$$\mathsf{Hom}(\mathit{C},\mathcal{O}) = \mathcal{O}(6)^{\Gamma_{\{a,b,a+2,a+1,b+1,a+3\}}} = \mathcal{O}(\mathit{G} \coprod \mathit{G}/2)^{\mathit{G}}$$

$$\mathsf{Hom}(\mathit{C},\mathcal{O}) = \mathcal{O}(6)^{\Gamma_{\{a,b,a+2,a+1,b+1,a+3\}}} = \mathcal{O}(\mathit{G} \amalg \mathit{G}/2)^{\mathit{G}}$$

$$G \cdot a \setminus (G/2G) \cdot b$$

$$(G/G) \cdot r$$

$$\operatorname{\mathsf{Hom}}(C,\mathcal{O}) = \mathcal{O}(6)^{\Gamma_{\{a,b,a+2,a+1,b+1,a+3\}}} = \mathcal{O}(G \coprod G/2)^G$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

Equiv. trees

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

$$\operatorname{Hom}(T,\mathcal{O}) = \mathcal{O}(2)^{\lceil \{c,c+1\}} \times \mathcal{O}(3)^{\lceil \{a,b,a+2\}}$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

$$\operatorname{\mathsf{Hom}}(T,\mathcal{O}) = \mathcal{O}(2)^{\lceil \{c,c+1\}} \times \mathcal{O}(3)^{\lceil \{a,b,a+2\}} = \mathcal{O}(G/2G)^G \times \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

Luís Pereira

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

$$\operatorname{\mathsf{Hom}}(T,\mathcal{O}) = \mathcal{O}(2)^{\Gamma_{\{c,c+1\}}} \times \mathcal{O}(3)^{\Gamma_{\{a,b,a+2\}}} = \mathcal{O}(G/2G)^G \times \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

Luís Pereira

Trees and equiv. trees 0000000

Example (general $G, K_1 \leq H \leq G, K_2 \leq H \leq G$)

Example (general G, $K_1 \leq H \leq G$, $K_2 \leq H \leq G$)

$$G/K_1 \bigvee G/K_2$$

$$G/H \qquad G/K_1 \bigvee G/K_2$$

$$G/G \qquad G/G \qquad G/G$$

$$\mathcal{O}(G/H)^G \times \mathcal{O}(H/K_1 \coprod H/K_2)^H \longrightarrow \mathcal{O}(G/K_1 \coprod G/K_2)^G$$

$$\Omega_G \neq \Omega^G$$

$$G \cdot a \bigvee (G/2G) \cdot b$$

$$(G/2G) \cdot c$$

$$(G/G) \cdot r$$

$$\mathsf{Hom}(T,\mathcal{O}) = \mathcal{O}(G/2G)^G \times \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ S

$$\Omega_G \neq \Omega^G$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

$$\mathsf{Hom}(T,\mathcal{O}) = \mathcal{O}(G/2G)^G \times \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ S

$$\mathsf{Hom}(S,\mathcal{O}) = \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

Equiv. trees

$$\Omega_G \neq \Omega^G$$

$$G \cdot a$$
 $(G/2G) \cdot b$ $(G/2G) \cdot c$ $(G/G) \cdot r$

$$\mathsf{Hom}(T,\mathcal{O}) = \mathcal{O}(G/2G)^G \times \mathcal{O}(2G \coprod 2G/2G)^{2G}$$

Example ($G = \mathbb{Z}_{/4}$. Example not in Ω^G)

 $\mathsf{Hom}(S,\mathcal{O}) = \mathcal{O}(2G \coprod 2G/2G)^{2G}$

Definition (Bonventre-P.)

A G-tree is a G-object in the category of forests that is G-indecomposable.

 Ω_G if the category of G-trees and G-operad maps

Definition (Bonventre-P.)

A G-tree is a G-object in the category of forests that is G-indecomposable.

 Ω_G if the category of *G*-trees and *G*-operad maps.

- ► The orbital representation of a *G*-tree "always looks like a tree".
- ▶ Maps in Ω_G encode compositions of norm maps, as well as associativity, etc.

Definition (Bonventre-P.)

A G-tree is a G-object in the category of forests that is G-indecomposable.

 Ω_G if the category of *G*-trees and *G*-operad maps.

- ► The orbital representation of a *G*-tree "always looks like a tree".
- ▶ Maps in Ω_G encode compositions of norm maps, as well as associativity, etc.

Definition (Bonventre-P.)

A genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ has levels $\mathcal{P}(X)$ for each H-set X.

Further, the $\mathcal{P}(X)$ mimic the combinatorics of the norm map spaces $\mathcal{O}(n)^{\Gamma_X} = \mathcal{O}(X)^G$ of $\mathcal{O} \in \mathsf{sOp}^G$. Explicitly:

▶ for $K \leq H$, there are restriction maps $\mathcal{P}(X) \to \mathcal{P}(X|_K)$;

Definition (Bonventre-P.)

A genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ has levels $\mathcal{P}(X)$ for each H-set X.

Further, the $\mathcal{P}(X)$ mimic the combinatorics of the norm map spaces $\mathcal{O}(n)^{\Gamma_X} = \mathcal{O}(X)^G$ of $\mathcal{O} \in \mathsf{sOp}^G$. Explicitly:

- ▶ for $K \leq H$, there are restriction maps $\mathcal{P}(X) \to \mathcal{P}(X|_K)$;
- ▶ for $g \in G$ there are isomorphisms $\mathcal{P}(X) \simeq \mathcal{P}(gX)$;

Definition (Bonventre-P.)

A genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ has levels $\mathcal{P}(X)$ for each H-set X.

Further, the $\mathcal{P}(X)$ mimic the combinatorics of the norm map spaces $\mathcal{O}(n)^{\Gamma_X} = \mathcal{O}(X)^G$ of $\mathcal{O} \in \mathsf{sOp}^G$. Explicitly:

- ▶ for $K \leq H$, there are restriction maps $\mathcal{P}(X) \to \mathcal{P}(X|_K)$;
- ▶ for $g \in G$ there are isomorphisms $\mathcal{P}(X) \simeq \mathcal{P}(gX)$;
- ▶ there are composition maps as encoded by *G*-trees.

Definition (Bonventre-P.)

A genuine equivariant operad $\mathcal{P} \in \mathsf{sOp}_G$ has levels $\mathcal{P}(X)$ for each H-set X.

Further, the $\mathcal{P}(X)$ mimic the combinatorics of the norm map spaces $\mathcal{O}(n)^{\Gamma_X} = \mathcal{O}(X)^G$ of $\mathcal{O} \in \mathsf{sOp}^G$. Explicitly:

- ▶ for $K \leq H$, there are restriction maps $\mathcal{P}(X) \to \mathcal{P}(X|_K)$;
- ▶ for $g \in G$ there are isomorphisms $\mathcal{P}(X) \simeq \mathcal{P}(gX)$;
- ▶ there are composition maps as encoded by *G*-trees.

Composition in genuine equivariant operads

Example (general
$$G, K_1 \leq H \leq G, K_2 \leq H \leq G$$
)
$$G/K_1 \bigvee G/K_2 \bigvee G/H \bigvee G/K_2 \bigvee G/K_1 \bigvee G/K_2 \bigvee G/G \bigvee$$

Hence, a genuine equivariant operad $\mathcal{P} \in \mathsf{Op}_{\mathcal{G}}$ has maps

$$\mathcal{P}(G/H) \times \mathcal{P}(H/K_1 \coprod H/K_2) \rightarrow \mathcal{P}(G/K_1 \coprod G/K_2)$$

Composition in genuine equivariant operads

Example (general $G, K_1 \leq H \leq G, K_2 \leq H \leq G$)

Hence, a genuine equivariant operad $P \in \mathsf{Op}_G$ has maps

$$\mathcal{P}(G/H) \times \mathcal{P}(H/K_1 \coprod H/K_2) \to \mathcal{P}(G/K_1 \coprod G/K_2)$$

Similarly, for $L \leq K \leq H$ there are also maps

$$\mathcal{P}(H/K) \times \mathcal{P}(K/L) \to \mathcal{P}(H/L)$$

Composition in genuine equivariant operads

Example (general G, $K_1 < H < G$, $K_2 < H < G$)

$$G/K_1 \bigvee G/K_2$$

$$G/H \qquad G/K_2$$

$$G/G \qquad G/K_1 \bigvee G/K_2$$

$$G/G \qquad G/G$$

$$\mathcal{O}(G/H)^G \times \mathcal{O}(H/K_1 \coprod H/K_2)^H \longrightarrow \mathcal{O}(G/K_1 \coprod G/K_2)^G$$

Hence, a genuine equivariant operad $P \in \mathsf{Op}_{G}$ has maps

$$\mathcal{P}(G/H) \times \mathcal{P}(H/K_1 \coprod H/K_2) \to \mathcal{P}(G/K_1 \coprod G/K_2)$$

Similarly, for $L \leq K \leq H$ there are also maps

$$\mathcal{P}(H/K) \times \mathcal{P}(K/L) \to \mathcal{P}(H/L)$$

More generally, compositions in $\mathcal{P} \in \mathsf{Op}_{\mathcal{G}}$ have the form

$$\mathcal{P}(H/K_1 \coprod \cdots \coprod H/K_n) \times \\ \times \mathcal{P}(K_1/L_{11} \coprod \cdots \coprod K_1/L_{1m_1}) \times \cdots \times \mathcal{P}(K_n/L_{n1} \coprod \cdots \coprod K_n/L_{nm_n}) \\ \downarrow \\ \mathcal{P}(H/L_{11} \coprod \cdots \coprod H/L_{1m_1} \coprod \cdots \coprod H/L_{n1} \coprod \cdots \coprod H/L_{nm_n})$$

Main result

Theorem (Bonventre-P.)

There is a Quillen equivalence

$$\mathsf{sOp}_{\mathcal{G}} \rightleftarrows \mathsf{sOp}^{\mathcal{G}}$$

where w.e.s on sOp_G are levelwise and w.e.s on sOp_G are graph equivalences.

Remarks:

▶ If follows that for $\mathcal{O} \in \mathsf{sOp}^{\mathsf{G}}$, $\mathsf{ho}(\mathcal{O}) \in \mathsf{Op}_{\mathsf{G}}$;

Main result

Theorem (Bonventre-P.)

There is a Quillen equivalence

$$\mathsf{sOp}_G \rightleftarrows \mathsf{sOp}^G$$

where w.e.s on sOp_G are levelwise and w.e.s on sOp_G are graph equivalences.

Remarks:

- ▶ If follows that for $\mathcal{O} \in \mathsf{sOp}^\mathsf{G}$, $\mathsf{ho}(\mathcal{O}) \in \mathsf{Op}_\mathsf{G}$;
- (the proof of) this result can be used to build explicit models for the NF-operads of Blumberg-Hill (this generalizes the construction of universal EF-spaces).

Main result

Theorem (Bonventre-P.)

There is a Quillen equivalence

$$\mathsf{sOp}_G \rightleftarrows \mathsf{sOp}^G$$

where w.e.s on sOp_G are levelwise and w.e.s on sOp_G are graph equivalences.

Remarks:

- ▶ If follows that for $\mathcal{O} \in \mathsf{sOp}^\mathsf{G}$, $\mathsf{ho}(\mathcal{O}) \in \mathsf{Op}_\mathsf{G}$;
- ▶ (the proof of) this result can be used to build explicit models for the *NF*-operads of Blumberg-Hill (this generalizes the construction of universal *EF*-spaces).

Thanks for listening.

- [BH15] Andrew J. Blumberg and Michael A. Hill. Operadic multiplications in equivariant spectra, norms, and transfers. Adv. Math., 285:658-708, 2015.
- [BP17] Peter Bonventre and Luís A. Pereira. Genuine equivariant operads. arXiv preprint: 1707.02226, 2017.
- [CM11] Denis-Charles Cisinski and leke Moerdijk. Dendroidal sets as models for homotopy operads. J. Topol., 4(2):257-299, 2011.
- [CM13a] Denis-Charles Cisinski and leke Moerdijk. Dendroidal Segal spaces and \(\infty\)-operads. J. Topol., 6(3):675-704, 2013.
- [СМ13Ы] Denis-Charles Cisinski and leke Moerdiik. Dendroidal sets and simplicial operads. J. Topol. 6(3):705-756, 2013.
- [CW91] Steven R. Costenoble and Stefan Waner. Fixed set systems of equivariant infinite loop spaces. Trans. Amer. Math. Soc., 326(2):485-505, 1991.
- [MW09] I. Moerdijk and I. Weiss. On inner Kan complexes in the category of dendroidal sets. Adv. Math.. 221(2):343-389, 2009.
- [Per17] Luís Alexandre Pereira. Equivariant dendroidal sets. arXiv preprint: 1702.08119, 2017.