Gradient Descent Optimization

Deep Learning Pre-Work

Local Minimums

Agenda

- Epochs
- Batch size
- Learning rate
- Optimizers

Epochs

Epochs

Training Data

0	0.0	0.0	1.00000
1	1.0	0.0	1.00000
2	1.0	0.0	0.67065
3	1.0	0.0	0.97467
4	1.0	0.0	0.28409
		•••	
240	0.0	0.0	1.00000
241	1.0	0.0	0.00000
242	1.0	0.0	1.00000
243	1.0	0.0	0.94701
244	0.0	0.0	0.00000

245 rows × 35 columns

Batch Size

Gradient Descent Steps

Step 1 Start at a random bias and weight and calculate the loss

Step 2 Take a step in the direction with the steepest gradient

Step 3 Calculate the new loss

Step 4 Repeat steps 2 and 3

Batch size

Mini-Batch Gradient Descent

Stochastic Gradient Descent

0	0.0	0.0	1.00000
1	1.0	0.0	1.00000
2	1.0	0.0	0.67065
3	1.0	0.0	0.97467
4	1.0	0.0	0.28409
240	0.0	0.0	1.00000
241	1.0	0.0	0.00000
242	1.0	0.0	1.00000
243	1.0	0.0	0.94701
244	0.0	0.0	0.00000

245 rows × 35 columns

Batch size

Batch Gradient Descent

Batch size: 245

Mini-Batch Gradient Descent

Batch size: 35

Stochastic Gradient Descent

Batch size: 1

Training sample size: 245 Epochs:10

Learning Rate

Learning Rate

Little step

Big step

Optimizers

Momentum

new = old - gradient * learning rate

Adagrad

new = old - gradient * learning rate

RMSprop

new = old - gradient * learning rate

Adam

