Lecture 1

Biggest motivation: the Lebesgue integral.

Problem #1 with Riemann integration

It can't handle unbounded functions.

Example
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$

Technically, this isn't Riemann integrable. What we really mean when we write this is $\lim_{t\to 0+} \int_{-1}^{1} \frac{1}{\sqrt{x}} dx$.

However, Lebesgue integration can handle the original form of the integral.

Problem #2 with Riemann integration

It can't handle many discontinuities.

$$\mathbf{1}_{\mathbb{Q}}(x) := \begin{cases} 1, & \text{if } x \in \mathbb{Q}, \\ 0, & \text{if } x \notin \mathbb{Q}. \end{cases}$$

and the integral

$$\mathbf{1}_{\mathbb{Q}}(x) dx$$

Since this function is zero everywhere except on a countable set, the integral "should be" zero. But it's not Riemann integrable.

Problem #3 with Riemann integration

It doesn't work well with limits.

Example

Let q_1, q_2, \ldots be an enumeration of the rational numbers in [0, 1], and let

$$f_k = \mathbf{1}_{\{q_1, q_2, \dots, q_k\}}$$

Then
$$\lim_{k\to\infty}\int_0^1 f_k(x)\,dx=0$$
, but $\int_0^1\lim_{k\to\infty}f_k(x)\,dx$ doesn't exist.

This example shows that the space of Riemann integrable functions on [0,1] is **not complete**.

Intuition for how the Lebesgue integral works

Measure Theory, EDGE 2020

Lecture 1

Biggest motivation: the **Lebesgue integral**.

Problems with the Riemann integral:

- It can't handle unbounded functions.
- It can't handle many discontinuities.
- It doesn't work well with limits / lack of completeness.

These problems come from the way we rely on partitioning the domain into intervals.

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals.

"Wish list" for measuring sets in $\mathbb R$ Measure Theory, EDGE 2020 Lecture 1

The bad news...

2.22 nonexistence of extension of length to all subsets of R

There does not exist a function μ with all the following properties:

- (a) μ is a function from the set of subsets of \mathbf{R} to $[0, \infty]$.
- (b) $\mu(I) = \ell(I)$ for every open interval I of \mathbf{R} .

(c)
$$\mu\Big(\bigcup_{k=1}^{\infty}A_k\Big)=\sum_{k=1}^{\infty}\mu(A_k)$$
 for every disjoint sequence A_1,A_2,\ldots of subsets of ${\bf R}$.

(d)
$$\mu(t+A) = \mu(A)$$
 for every $A \subset \mathbf{R}$ and every $t \in \mathbf{R}$.

(source: Axler)

Biggest motivation: the **Lebesgue integral**.

Problems with the Riemann integral:

- It can't handle unbounded functions.
- It can't handle many discontinuities.
- It doesn't work well with limits / lack of completeness.

 These problems come from reliance on partitioning the domain into

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals... but we can't measure every set in \mathbb{R} .

To describe which sets are measurable, and which functions $\mathbb{R} \to \mathbb{R}$ are Lebesgue integrable, we start with studying σ -algebras, which are certain well-behaved collections of subsets.

intervals.

2.23 **Definition** σ -algebra

Suppose X is a set and S is a set of subsets of X. Then S is called a σ -algebra on X if the following three conditions are satisfied:

- $\bullet \ \varnothing \in \mathcal{S};$
- if $E \in \mathcal{S}$, then $X \setminus E \in \mathcal{S}$;
- if E_1, E_2, \ldots is a sequence of elements of S, then $\bigcup_{k=1}^{\infty} E_k \in S$.

Examples.

• Let
$$X = \{a, b, c\}$$
, $S = \{\emptyset, \{a\}, \{b, c\}, X\}$. Then S is a σ -algebra on X .

- Let $X = \{a, b, c\}$, $S = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$. Then S is not a σ -algebra on X.
- Let X be any set. Then $\mathcal{P}(X)$ is a σ -algebra.
- Let X be any set. Then $\{X,\emptyset\}$ is a σ -algebra.
- ullet Let X be any set. Then $\mathcal{A}:=\{E\subseteq X:E \text{ is countable or } X\backslash E \text{ is countable}\}$ is a σ -algebra.

.27 smallest σ -algebra containing a collection of subsets

Suppose X is a set and \mathcal{A} is a set of subsets of X. Then the intersection of all σ -algebras on X that contain \mathcal{A} is a σ -algebra on X.

Examples.

• Let
$$X = [0,1]$$
 and $\mathcal{A} = \{[0,\frac{1}{4}], [\frac{1}{2},1]\}$. Find $\sigma(\mathcal{A})$.

The word *measurable* is used in the terminology below because in the next section we introduce a size function, called a measure, defined on measurable sets.

2.26 Definition measurable space; measurable set

- A *measurable space* is an ordered pair (X, S), where X is a set and S is a σ -algebra on X.
- An element of S is called an S-measurable set, or just a measurable set if S is clear from the context.

Biggest motivation: the **Lebesgue integral**.

For Lebesgue integration, we need to define the "size" or **measure** of sets more complicated than intervals... but we can't measure every set in \mathbb{R} .

To describe which sets are measurable, and which functions $\mathbb{R} \to \mathbb{R}$ are Lebesgue integrable, we start with studying σ -algebras, which are certain well-behaved collections of subsets.

The usefulness of Lebesgue integration goes far beyond addressing the problems with Riemann integration on \mathbb{R} and \mathbb{R}^n . Because the Lebesgue integral only uses measurable subsets of the domain (not intervals), it lets us integrate functions on all kinds of weird/interesting/important spaces (where there is no such thing as an interval).