SHUTTLE DERIVED ATMOSPHERE

John Findlay, Flight Mechanics & Control, Inc.

The shuttle descends along a rather shallow path, thus providing some information on the horizontal structure of the atmosphere. Small scale structures have been suggested (shears, "potholes"). The best estimates of the shuttle drag coefficient and projected areas are used to go from accelerometer data to density through the use of BET's (Best Estimated Trajectories). Data are from the IMU's (Inertial Measurement Unit) and the HiRAP (High Resolution Accelerometer Package).

PRECEDING PAGE BLANK NOT FILMED

SHUTTLE ATMOSPHERE PRESENTATION AT THE USRA/MSFC JOINTLY SPONSORED WORKSHOP ON UPPER AND MIDDLE ATMOSPHERIC DENSITY MODELING REQUIREMENTS FOR SPACECRAFT DESIGN AND OPERATIONS

November 19-21, 1985 Huntsville, Alabama J. T. Findlay Flight Mechanics & Control, Inc.

PRECEDING PAGE SLANK NOT FILMED

JTF-2 FM&C,INC, Nov, 1985

• Ambient parameters determined as:

•
$$\rho_{CN} = \frac{2m A_N}{C_{Np} V_A^2 S_{ref}}$$

• Shuttle descent shallow when compared to usual sounding devices thus, implications in the vertical necessarily includes some horizontal structure.

- , profile applicable to vehicles such as AOTV's, ERV's, etc.
- small scale structure (shears, "potholes") suggested as vertical implications

METHODOLOGY AND LIMITATIONS FOR SHUTTLE DERIVED ATMOSPHERES

BETs	1	reconstructed trajectory fit to entry tracking data
		defining inertial position, velocity and attitude
		history

Ws - mg instruments (tri-redundant set)

HIRAP - µg instrument

ORBITER AERODYNAMIC DATA BASE (vintage 1978, upgrading to '82 pre-Op ADDB) PRE-0P

Predicted normal force coefficient good to ±5 percent

DFI - pressure data for STS-3, STS-5

JTF-3 FM&C,INC, Nov, 1985

COMPARISON SOURCES

- Atmospheric data
- ROBIN spheres, thermistors launched in support of entry aerothermodynamic research (time and spatially optimum)
- Two separate treatments are utilized (by others)
 to translate these NWS data to the Shuttle ground
 track and vertical profile
- Langley Atmospheric Information Retrieval System (LAIRS) files by Price of LaRC
- NOAA "totem-pole" atmospheres by Gelman of the NWS (for JSC)
- Models (latitudinal and seasonal dependent)
- GRAM (P, T, winds)
- AF'78 (₽, T), see Cole, Kantor USGRL

JTF-4 FM&C, INC. Nov, 1985

Shuttle Flight Data Base

1.1								~_								
Date	April 14, 1981	November 14, 1981	March 30, 1982	July 4, 1982	November 16, 1982	April 9, 1983	June 24, 1983	September 5, 1983	December 8, 1983	February 11, 1984	April 13, 1984	September 5, 1984	October 13, 1984	November 16, 1984	April 19, 1985	May 6, 1985
STS	1 A	2 NG	. 3	ال 4	5 NC	6 AL	7 Ju	8 Se	9 De	11 Fe	13 Ap	14 Se	17 0c	19 NOV	23 Apı	24 May

6 spring 4 summer 5 fall 1 winter

SHUTTLE GROUND-TRACKS IN MIDDLE ATMOSPHERE, 16 FLIGHTS THRU STS-24

SHUTTLE DERIVED DENSITIES IN MIDDLE ATMOSPHERE

JTF-7
FM&C, INC.
Nov. 1985

JTF-11 FM&C,INC. NOV, 1985

CONCLUSIONS

SHUTTLE PROVIDES ACCURATE SOURCE OF ATMOSPHERIC DATA

INTERESTING STRUCTURE INDICATED

APPLICABLE FOR FUTURE NASA VEHICLE/DESIGN STUDIES

IMPROVEMENTS SUGGESTED IN MEAN LATITUDINAL/SEASONAL

DEPENDENCE OF EXISTING MODELS