Trabalho 1 - Inteligência Artificial

Alisson Hayasi, 726494 Bruna Zamith, 628093

May 17, 2019

Apresentação

- Modelagem
- 2 Regras
- 3 Execução

1. Modelagem - Estados e Transição

- Estado: Posição atual do AADP (X,Y);
- Transição: Baseada nas regras de movimentação para o AADP (vertical e horizontal);
- Ações tratadas na regra de busca (Simplificação).

Fonte: Baseado no Material de Apoio, professor Dr. Murilo Naldi Coelho.

1. Modelagem - Busca Cega

- Busca em Profundidade;
- Combinação de diferentes buscas:

Cenário	Meta
Capacidade máxima não	
foi atingida, ainda existem	Encontrar sujeira
sujeiras no cenário	
Capacidade máxima foi	
atingida, ainda existem	Encontrar lixeira
sujeiras no cenário	
Não existem sujeiras no cenário	Encontrar Dock
	Station. Encerra.

2. Regras - Ambiente

- Escalável (Genérico);
- Tamanho mxn do cenário;
- Capacidade máxima do AADP;
- Lista de sujeiras.

```
cenario(10,5).
parede(4,0).
elevador(1,0).
dockStation(0,0).
lixeira(4,4).
sujeiras([[2,3],[6,1],[6,4]]).
capacidadeMax(2).
```

2. Regras - Gerais

- Manipulação de listas;
- Presentes no corpo de regras futuras;

```
pertence(Entrada1,Entrada2).
concatena(Entrada1,Entrada2,Saida).
pop(Entrada,Saida1,Saida2).
reverse(Entrada,Saida).
```


- moveDir
- sobeElev
- moveEsq
- desceElev


```
% moveDir(Entrada1, Entrada2, Saida1, Saida2)
% Move para direita
% Entradal: X inicial
% Entrada2: Y inicial
% Saidal: X final
% Saida2: Y final
moveDir(Xin,Y,Xout,Y) :-
    cenario(Lim, ),
    LimDir is Lim −1, % Eixo comeca no 0
    Xin < LimDir,
    X is Xin + 1,
    not (parede (X, Y)),
    Xout is X.
```



```
% sobeElev(Entrada1, Entrada2, Saida1, Saida2)
% Sobe pelo elevador
% Entradal: X inicial
% Entrada2: Y inicial
% Saidal: X final
% Saida2: Y final
sobeElev(X,Yin,X,Yout) :-
    elevador(X, Yin),
    cenario(,Lim),
    LimSup is Lim - 1, % Eixo comeca no 0
    Yin < LimSup,
    Yout is Yin + 1.
```



```
% moveEsq(Entrada1, Entrada2, Saida1, Saida2)
% Move para esquerda
% Entrada1: X inicial
% Entrada2: Y inicial
% Saida1: X final
% Saida2: Y final
moveEsq(Xin,Y,Xout,Y) :-
    Xin > 0,
    X is Xin - 1,
    not(parede(X,Y)),
    Xout is X.
```



```
% desceElev(Entrada1, Entrada2, Saida1, Saida2)
% Desce pelo elevador
% Entrada1: X inicial
% Entrada2: Y inicial
% Saida1: X final
% Saida2: Y final
desceElev(X,Yin,X,Yout) :-
    elevador(X,Yin),
    Yin > 0,
    Yout is Yin - 1.
```

2. Regras - Transição

- Regras de transição de estados;
- Baseadas nos movimentos anteriormente vistos;
- Sucessor.

```
% s(Entrada, Saida)
% Transicao de estado
% Entrada: Estado inicial
% Saida: Estado final (sucessor)
s([X,Y],[X1,Y]) :-
    moveDir(X,Y,X1,Y).
s([X,Y],[X,Y1]) :-
    sobeElev(X,Y,X,Y1).
s([X,Y],[X1,Y]) :-
    moveEsq(X,Y,X1,Y).
s([X,Y],[X,Y1]) :-
    desceElev(X,Y,X,Y1).
```


Busca em profundidade: meta e busca.

```
meta(Estado, Meta) :- Meta == Estado.

busca(Caminho, Estado, Final, [Estado|Caminho]) :-
    meta(Estado, Final).

busca(Caminho, Estado, Final, Solucao) :-
    s(Estado, Sucessor),
    not(pertence(Sucessor, [Estado|Caminho])),
    busca([Estado|Caminho], Sucessor, Final, Solucao).
```


- 3 definições para limpa;
- Recebe:
 - Estado atual:
 - Capacidade atual do AADP;
 - Lista de sujeiras no cenário;
 - Caminho atual (ou inicial);
- Retorna: Caminho percorrido até a meta.

- Quando n\u00e3o tiver mais sujeira, vai para a Dock Station;
- Regra base.

```
limpa(Estado,_,[],Caminho,SolucaoFinal) :-
   dockStation(X,Y),
   busca([],Estado,[X,Y],Solucao),
   concatena(Solucao,Caminho,SolucaoSaida),
   reverse(SolucaoSaida,SolucaoFinal).
```


 Busca sujeira se a capacidade atual for menor que capacidade máxima.

 Esvazia na lixeira se a capacidade atual for igual à capacidade máxima.

Chamada pelo usuário: Estado Final -> Caminho.

Fonte: Baseado no Material de Apoio, professor Dr. Murilo Naldi Coelho.


```
% Tamanho Cenario
cenario (10,5).
% Paredes
parede (4,0).
parede(7,1).
parede (4,2).
parede (5, 4).
% Elevadores
elevador (1,0).
elevador (1,1).
elevador (1, 2).
elevador (1,3).
elevador (1, 4).
elevador (8,0).
elevador (8,1).
elevador (8,2).
elevador (8,3).
elevador(8,4).
```



```
% Dock Station
dockStation(3,0).
% Lixeira
lixeira(4,4).
% Sujeiras
sujeiras([[2,3],[6,1],[6,4]]).
% Capacidade AADP
capacidadeMax(2).
```


?- solucao([9,0],Solucao).
Solucao = [[9,0], [8, 0], [8, 1], [8, 2], [8, 3], [7, 3], [6, 3], [5, 3], [4, 3], [3, 3], [2, 3], [2, 3],
[1, 3], [1, 2], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [6, 1], [5, 1], [4, 1], [3, 1], [2, 1],
[1, 1], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4], [4, 4], [4, 4], [3, 4], [2, 4], [1, 4], [1, 3], [2, 3],
[3, 3], [4, 3], [5, 3], [6, 3], [7, 3], [8, 3], [4, 4], [7, 4], [6, 4], [6, 4], [7, 4], [8, 4], [8, 3], [7, 3], [6, 3], [5, 3], [4, 3], [2, 3], [1, 3], [1, 2], [1, 1], [1], [1], [2, 0], [3, 0]]

Fonte: Baseado no Material de Apoio, professor Dr. Murilo Naldi Coelho.

?- solucao([3,0],Solucao).
Solucao = [[3, 0], [2, 0], [1, 0], [0, 0], [0, 0], [1, 0], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1]
, [6, 1], [5, 1], [4, 1], [3, 1], [2, 1], [1, 1], [1, 2], [1, 3], [1, 4], [2, 4], [3, 4], [4, 4], [4, 4], [3, 4], [2, 4], [1, 4], [1, 3], [2, 3], [2, 3], [1, 3], [1, 2], [1, 1], [2, 1], [3, 1], [4, 1], [5, 1], [6, 1], [7, 1], [8, 1], [9, 1]] .

Fonte: Baseado no Material de Apoio, professor Dr. Murilo Naldi Coelho.

?- solucao([3,0],Solucao). false.

Dúvidas?