

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Информационная безопасность

ПРИЛОЖЕНИЕ А *К КУРСОВОМУ ПРОЕКТУ НА ТЕМУ:*

Система моделирования дорожного движения

Студент ИУ8-31	(Подпись, дата)	Северов В.С
Руководитель курсового проекта	(Подпись, дата)	Бородин А.А

Оглавление

1	Титульна	я страница	1
2	Список за	адач	3
3	Алфавит	ный указатель пространств имен	5
	3.1 Про	странства имен	5
4	Иерархич	еский список классов	7
	4.1 Иера	архия классов	7
5	Алфавит	ный указатель классов	9
	5.1 Кла	ссы	9
6	Простран	ства имен	11
	6.1 Про	странство имен rtm	11
	6.1.1	Подробное описание	18
	6.1.2	Типы	18
		6.1.2.1 Directions	18
		6.1.2.2 LinesCounts	18
		6.1.2.3 DirectionSignals	18
		6.1.2.4 CrossroadSignals	19
		6.1.2.5 SignalSprites	19
		6.1.2.6 SignalsSprites	19
		6.1.2.7 DirectionsSignalSprites	19
	6.1.3	Перечисления	19
		6.1.3.1 AngleType	19

іі ОГЛАВЛЕНИЕ

	6.1.3.2	DirectionType	20
	6.1.3.3	CoatingUnionType	20
	6.1.3.4	DirectionSignalIndex	21
	6.1.3.5	SignalType	21
	6.1.3.6	StateType	21
	6.1.3.7	CoatingType	22
	6.1.3.8	RoadType	22
	6.1.3.9	SignalFileId	22
6.1.4	Функци	и	23
	6.1.4.1	$\operatorname{CheckCollisions}()$	23
	6.1.4.2	SameCoordinates()	23
	6.1.4.3	RoundCoordinate()	23
	6.1.4.4	RoundToCenter() 	24
	6.1.4.5	$\operatorname{InCenter}() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	24
	6.1.4.6	DistanceToNextCenter()	25
	6.1.4.7	CenterIsCrossed() 	25
	6.1.4.8	SameAngles()	25
	6.1.4.9	$\operatorname{RoundAngle}()$	26
	6.1.4.10	$Normalize Angle () \hspace{0.1in} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	26
	6.1.4.11	PixelToCell()	27
	6.1.4.12	CellToPixel()	27
	6.1.4.13	$AngleToAngleType() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	27
	6.1.4.14	AngleToDirection()	28
	6.1.4.15	$AngleTypeToAngle() \dots \dots \dots \dots \dots \dots \dots \dots \dots $	28
	6.1.4.16	AngleTypeToDirection()	28
	6.1.4.17	DirectionToAngle()	29
	6.1.4.18	$Direction To Angle Type () \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	29
	6.1.4.19	${\tt GetFilename}() \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	29
	6.1.4.20	SumAngleTypes()	30
	6.1.4.21	$Count Deceleration () \ \ldots \ $	30
6.1.5	Перемен	ные	31
	6.1.5.1	NEAR_DELTA	31
	6.1.5.2	DEFAULT_CROSSROAD_SIGNALS	31
	6.1.5.3	DEFAULT_DIRECTIONS_SIGNAL_SPRITES	31
	6.1.5.4	COATING_INDEXES	32
	6.1.5.5	ROADS_RESISTANCES	32
	6.1.5.6	ROADS_DIRECTIONS	32
	6.1.5.7	CARS_MAX_SPEEDS	33
	6.1.5.8	CARS_ACCELERATIONS	33

ОГЛАВЛЕНИЕ

7	Кла	ссы			35
	7.1	Класс	AppDele	gate	35
		7.1.1	Подробн	ное описание	36
		7.1.2	Методы		36
			7.1.2.1	$application Did Finish Launching () \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	36
	7.2	Класс	rtm::Buil	$\operatorname{ddingObject}$	36
		7.2.1	Подробн	пое описание	37
		7.2.2	Констру	уктор(ы)	37
			7.2.2.1	BuildingObject() [1/3]	37
			7.2.2.2	BuildingObject() [2/3]	37
			7.2.2.3	BuildingObject() [3/3]	38
	7.3	Класс	rtm::Bus	hObject	38
		7.3.1	Подробн	пое описание	39
		7.3.2	Констру	уктор(ы)	39
			7.3.2.1	$BushObject () \ [1/3] \ \dots $	40
			7.3.2.2	BushObject() [2/3]	40
			7.3.2.3	BushObject() [3/3]	40
	7.4	Класс	rtm::Car	Object	41
		7.4.1	Подробн	пое описание	43
		7.4.2	Констру	уктор(ы)	43
			7.4.2.1	CarObject() [1/3]	43
			7.4.2.2	CarObject() [2/3]	44
			7.4.2.3	CarObject() [3/3]	44
		7.4.3	Методы		44
			7.4.3.1	$MovementStart_() \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	45
			7.4.3.2	$MovementTick_() \ \dots $	45
			7.4.3.3	$MovementEnd_() $	45
			7.4.3.4	LineChangingStart()	45
			7.4.3.5	CheckCoatingAhead_()	47
			7.4.3.6	$CheckCoatingUnionAhead_()$	47

iv ОГЛАВЛЕНИЕ

		7.4.3.7	$\operatorname{CheckRoadAhead}_{-}()$	 47
		7.4.3.8	${\bf GetClassMaxSpeed}_() \qquad \dots \qquad \dots \\$	 48
		7.4.3.9	$\operatorname{GetClassAcceleration}()$	 48
7.5	Класс	rtm::Coa	atingObject	 48
	7.5.1	Подробн	ное описание	 50
	7.5.2	Констру	уктор(ы)	 50
		7.5.2.1	CoatingObject() [1/2]	 50
		7.5.2.2	CoatingObject() [2/2]	 51
	7.5.3	Методы		 51
		7.5.3.1	GetSprite()	 51
		7.5.3.2	GetResistance()	 51
		7.5.3.3	HasDirection()	 51
		7.5.3.4	IsDirectionAvailable()	 52
		7.5.3.5	SetDirectionAvailability()	 52
		7.5.3.6	SetSprite_()	 52
		7.5.3.7	SetX_()	 53
		7.5.3.8	SetY_()	 53
7.6	Класс	rtm::Coa	atingUnion	 53
	7.6.1	Подробн	ное описание	 55
	7.6.2	Констру	уктор(ы)	 55
		7.6.2.1	CoatingUnion()	 55
	7.6.3	Методы		 55
		7.6.3.1	GetType()	 56
		7.6.3.2	GetWidth()	 56
		7.6.3.3	$\operatorname{GetHeight}()$	 56
		7.6.3.4	GetCoatingObject()	 56
		7.6.3.5	GetLength()	 57
		7.6.3.6	IsCorrectColumn()	 57
		7.6.3.7	IsCorrectRow()	 57
		7.6.3.8	ShowSprites()	 57

ОГЛАВЛЕНИЕ

| | | 7.6.3.9 | ReleaseSprit | es() . | |
 |
58 |
|-----|-------|-----------|-------------------------------|-------------------------|------|------|------|------|------|------|------|------|--------|
| | | 7.6.3.10 | $\mathbf{GetColumn}_{_}$ | _() | |
 |
58 |
| | | 7.6.3.11 | $\operatorname{GetRow}_{-}()$ | | |
 |
58 |
| 7.7 | Класс | rtm::Con | trolUnit | | |
 |
59 |
| | 7.7.1 | Подробн | ое описание | | |
 |
60 |
| | 7.7.2 | Констру | ктор(ы) | | |
 |
60 |
| | | 7.7.2.1 | ControlUnit(| [) [1/2] | |
 |
60 |
| | | 7.7.2.2 | ControlUnit(| [) [2/2] | |
 |
61 |
| | 7.7.3 | Методы | | | |
 |
61 |
| | | 7.7.3.1 | Update() . | | |
 |
61 |
| | | 7.7.3.2 | operator boo | 1() | |
 |
61 |
| | | 7.7.3.3 | GetSignal() | | |
 |
62 |
| | | 7.7.3.4 | ShowSprites(|) | |
 |
62 |
| | | 7.7.3.5 | ReleaseSprit | es() . | |
 |
62 |
| | | 7.7.3.6 | UpdateSigna | 1_(). | |
 |
62 |
| | | 7.7.3.7 | SetState_() | | |
 |
63 |
| 7.8 | Класс | rtm::Cro | $\operatorname{ssroadObject}$ | | |
 |
63 |
| | 7.8.1 | Подробн | ое описание | | |
 |
64 |
| | 7.8.2 | Констру | ктор(ы) | | |
 |
64 |
| | | 7.8.2.1 | CrossroadOb | ject() [| 1/2] |
 |
65 |
| | | 7.8.2.2 | CrossroadOb | ject() [| 2/2] |
 |
65 |
| | 7.8.3 | Методы | | | |
 |
65 |
| | | 7.8.3.1 | CrossroadMa | $\operatorname{trix}()$ | |
 |
65 |
| | | 7.8.3.2 | TCrossroadN | Iatrix() |) |
 |
66 |
| | | 7.8.3.3 | $\operatorname{GetNullDirec}$ | etion() | |
 |
66 |
| | | 7.8.3.4 | $\operatorname{GetControlU}$ | nit() | |
 |
67 |
| | | 7.8.3.5 | ShowSprites(|) | |
 |
67 |
| | | 7.8.3.6 | ReleaseSprit | es() . | |
 |
67 |
| 7.9 | Класс | rtm::Driv | rewayObject | | |
 |
68 |
| | 7.9.1 | Подробн | ое описание | | |
 |
69 |

оглавление

	7.9.2	Констру	иктор (н	л)																 69
		7.9.2.1	Drive	vayOb	ject()															 69
	7.9.3	Методы																		 70
		7.9.3.1	Drive	vayMa	atrix()															 70
		7.9.3.2	GetLe	ngth())															 70
		7.9.3.3	GetLi	nesCo	unt()															 71
		7.9.3.4	isRigh	$_{ m tLine}($) [1/2]															 71
		7.9.3.5	isRigh	$_{ m tLine}($) [2/2]															 71
		7.9.3.6	isLeft	Line()	[1/2]															 72
		7.9.3.7	isLeft	Line()	[2/2]															 72
		7.9.3.8	Count	Lengt	h_()															 72
		7.9.3.9	Count	$\operatorname{Lines}_{_}$	_() .															 73
7.10	Класс	rtm::Dyn	amicO	bject																 73
	7.10.1	Подробн	ное опи	сание																 75
	7.10.2	Констру	иктор(н	ı)																 75
		7.10.2.1	Dynar	nicOb _.	ject()	[1/2]														 75
		7.10.2.2	Dynar	nicOb	ject()	[2/2]														 76
	7.10.3	Методы																		 76
		7.10.3.1	GetSp	eed()																 76
		7.10.3.2	GetLa	$\operatorname{st}\operatorname{Delt}$	$\mathbf{a}()$															 77
		7.10.3.3	HasCo	ollision	ι() .															 77
		7.10.3.4	Updat	e() .																 77
		7.10.3.5	IsNea	:Other	·s()															 77
		7.10.3.6	\mathbf{SetSp}	eed_())															 78
		7.10.3.7	SetCo	llision	Flag_{-}	() .														 78
		7.10.3.8	IsBeh	olding	_() .															 78
		7.10.3.9	IsInte	rsectin	.g_()															 79
		7.10.3.10) IsNea	:_() .																 79
	7.10.4	Докумен	нтация	по др	узьям	и кла	acca	иф	þун	кци	ям,	ОТЕ	кэог	щи	мся	K I	кла	ссу		 80
		7.10.4.1	Check	Collisi	ions															 80

ОГЛАВЛЕНИЕ vii

7.11	Класс	rtm::Map	pOl	oject					 	 	 		 				 8	0
	7.11.1	Подробн	ное	опис	ани∈	e			 	 	 	 	 				 8	1
	7.11.2	Констру	ykt:	ор(ы))					 	 	 	 				 8	1
		7.11.2.1	M	apOt	oject/	() [1/	′2] .		 	 	 	 	 				 8	1
		7.11.2.2	M	apOt	oject/	() [2/	· ·2] .		 	 	 	 	 				 8	1
7.12	Класс	rtm::Pud	ldl∈	eCoat	ing				 	 	 	 	 				 8	3
	7.12.1	Подробн	ное	опис	аниє	e			 	 	 	 	 				 8	4
	7.12.2	Констру	ykt:	ор(ы))					 	 	 	 				 8	4
		7.12.2.1	Ρι	ıddle	Coat	ing() [1/3	3] .	 	 	 	 	 				 8	4
		7.12.2.2																4
		7.12.2.3																5
7.13	Класс	rtm::Roa																5
	7.13.1	Подробн	ное	опис	аниє	e			 	 	 	 	 				 8	6
		Констру																6
		7.13.2.1		- ` '														6
		7.13.2.2																7
		7.13.2.3	\mathbf{R}_{0}	$\operatorname{ad} C_{\ell}$	$_{ m oatin}$	ng() [[3/3]		 	 	 	 	 				 8	7
	7.13.3	Методы								 	 	 	 				 8	7
		7.13.3.1	G	etCla	m ssRe	sista	$_{ m ince}$	()	 	 	 	 	 				 8	8
		7.13.3.2						- ''										
7.14	Струк	тура rtm:					_	- ''										8
	7.14.1	Подробн	ное	опис	аниє	e			 	 	 	 	 				 8	9
7.15	Класс	rtm::Stat	tic()bjec	t					 	 	 	 				 8	9
	7.15.1	Подробн	ное	опис	аниє	e			 	 	 	 	 				 9	0
	7.15.2	Констру	ykt:	ор(ы`)					 	 	 	 				 9	0
				aticC													9	0
		7.15.2.2															9	0
7.16	Класс	rtm::Turi															9	1
		Подробн															9	
		Констру																
		1 0		- \ /														

оглавление

•	7.16.2.1 TurnObject()	92
7.16.3	Методы	92
,	7.16.3.1 RightTurnMatrix()	92
,	7.16.3.2 LeftTurnMatrix()	93
,	7.16.3.3 IsRight()	93
,	7.16.3.4 GetAngle()	94
7.17 Класс г	tm::VehicleObject	94
7.17.1	Тодробное описание	97
7.17.2	Конструктор(ы)	97
•	7.17.2.1 VehicleObject() [1/2]	97
,	7.17.2.2 VehicleObject() [2/2]	98
7.17.3	Методы	98
•	7.17.3.1 Update()	98
•	7.17.3.2 MoveForward_()	99
•	7.17.3.3 Stop_()	99
7	7.17.3.4 Rotate_()	99
•	7.17.3.5 ChangeLine_()	100
•	7.17.3.6 IsMovement_()	100
•	7.17.3.7 IsRotation_()	100
7	7.17.3.8 IsLineChanging_()	100
•	7.17.3.9 IsBraking_()	101
	7.17.3.10 GetMaxSpeed_()	101
	7.17.3.11 GetFinalSpeed_()	101
	7.17.3.12 SetFinalSpeed_()	101
	7.17.3.13 SetBrakingFactor_()	102
	7.17.3.14 StopAtDistance_()	102
7	7.17.3.15 CheckForwardCoating_()	102
•	7.17.3.16 CheckForwardCoatingUnion_()	103
,	7.17.3.17 CheckForwardArea_ ()	103
•	7.17.3.18 CheckMovingArea_()	103

ОГЛАВЛЕНИЕ

	7.17.3.19 CheckTurnArea_()
	7.17.3.20 CheckRotationArea_()
	7.17.3.21 CheckCrossroadArea_()
	7.17.3.22 CheckLineChangingArea_()
	7.17.3.23 BeforeMoving_()
	7.17.3.24 AfterMoving_()
	7.17.3.25 MovementStart_()
	7.17.3.26 MovementTick_()
	7.17.3.27 MovementEnd_()
	7.17.3.28 RotationStart_()
	7.17.3.29 RotationTick_()
	7.17.3.30 RotationEnd_()
	7.17.3.31 LineChangingStart()
	7.17.3.32 LineChangingTick_()
	7.17.3.33 LineChangingEnd_()
	7.17.3.34 LineChanging_()
	7.17.3.35 Rotation_()
	7.17.3.36 Movement_()
	7.17.3.37 SpeedChanging_()
	7.17.3.38 SmoothBrakingCounter()
7.18 Класс	rtm::WorldController
7.18.1	Подробное описание
7.18.2	Конструктор(ы)
	7.18.2.1 WorldController() [1/3]
	7.18.2.2 WorldController() [2/3]
	7.18.2.3 WorldController() [3/3]
7.18.3	Методы
	7.18.3.1 Update()
	7.18.3.2 GetLayer()
	7.18.3.3 GetColumnsCount()

х ОГЛАВЛЕНИЕ

7.18.3.4 GetRowsCount()
7.18.3.5 GetDeltaTime()
7.18.3.6 GetTimeFactor()
7.18.3.7 GetCoatingObject()
7.18.3.8 GetCoatingUnion()
7.18.3.9 GetStaticObject()
7.18.3.10 GetDynamicObjects()
7.18.3.11 IsPause()
7.18.3.12 IsCorrectColumn()
7.18.3.13 IsCorrectRow()
7.18.3.14 IsAllowableColumn()
7.18.3.15 IsAllowableRow()
7.18.3.16 IsVisibleColumn()
7.18.3.17 IsVisibleRow()
7.18.3.18 SetTimeFactor()
7.18.3.19 LoadMap() [1/2]
7.18.3.20 LoadMap() [2/2]
7.18.3.21 IsEmpty_()
7.18.3.22 GenerateObject_()
7.18.3.23 AddCoatingUnion_()
7.18.3.24 AddDriveway_()
7.18.3.25 AddCrossroad_()
7.18.3.26 AddTCrossroad_()
7.18.3.27 AddLeftTurt_()
7.18.3.28 AddRightTurt_()
7.18.3.29 AddControlUnit_()
7.18.3.30 AddStaticObject_()
7.18.3.31 AddBuilding_()
7.18.3.32 AddBush_()
7.18.3.33 AddDynamicObject_()

ОГЛАВЛЕНИЕ хі

$7.18.3.34~{ m AddCar}_{-}()$	27
$7.18.3.35~{ m GetVectorColumn}$ ()	27
$7.18.3.36 \mathrm{GetVectorRow}$ ()	28
$7.18.3.37~\mathrm{GetRealColumn}_{_}()$	28
$7.18.3.38\mathrm{GetRealRow}$ ()	28
7.19 Класс rtm::WorldObject	29
7.19.1 Подробное описание	31
7.19.2 Конструктор(ы)	31
7.19.2.1 WorldObject() [1/2] $\dots \dots 1$	31
7.19.2.2 WorldObject() [2/2] $\dots \dots 1$	32
7.19.3 Методы	32
7.19.3.1 GetSprite()	32
7.19.3.2 GetX_()	32
7.19.3.3 GetY_()	33
7.19.3.4 $GetAngle()$	33
7.19.3.5 $\operatorname{GetWidth}()$	33
7.19.3.6 GetHeight()	33
7.19.3.7 SetSprite_()	33
7.19.3.8 SetX_()	34
7.19.3.9 SetY_()	34
7.19.3.10 SetAngle_ ()	34
$7.19.3.11~\mathrm{SetWidth}$ ()	35
$7.19.3.12~\mathrm{SetHeight}$ ()	35
7.19.3.13 SetSpriteX_()	35
7.19.3.14 SetSpriteY_()	35
7.19.3.15 SetSpriteAngle_()	36
$7.19.3.16\mathrm{SetSpriteWidth}$ ()	36
7.19.3.17 SetSpriteHeight_()	36
7.20 Класс rtm::WorldScene	37
7.20.1 Подробное описание	39
7.20.2 Методы	39
7.20.2.1 $Create()$	39
7.20.2.2 init()	40
$7.20.2.3 \hspace{.1in} \mathrm{update}() \hspace{.1in} \ldots \ldots \ldots \ldots \hspace{.1in} 1$	40
7.20.2.4 $GetMainLayer()$	40
7.20.2.5 SetBackground() [1/2] $\dots \dots 1$	40
7.20.2.6 SetBackground() [2/2] $\dots \dots 1$	41
$7.20.2.7 \hspace{0.1cm} \mathrm{GetMap}_() \hspace{0.1cm} \ldots \hspace{0.1cm} \ldots \hspace{0.1cm} \ldots \hspace{0.1cm} 1$	41
Алфавитный указатель	43

Титульная страница

Этот проект представляет из себя систему для моделирования дорожного движения.

В нём можно тестировать системы управления светофорами, машинами (в ближайшем будущем это понадобится) и многое другое.

А также можно просто позалипать на машинки, интересно катающиеся по дорогами, которые может создать любой человек! с:

Версия

0.1.0

Автор

Владимир Северов (Vladimir Severov)

Необходимо сделать Предстоит ещё много работы для серьезного использования данной системы, однако в рамках курсового проекта этот проект можно считать успешным.

Список задач

раде Титульная страница

Предстоит ещё много работы для серьезного использования данной системы, однако в рамках курсового проекта этот проект можно считать успешным.

4 Список задач

Алфавитный указатель пространств имен

3.1	Пространства	имен
J. I	TIPUCTPARCIBA	имен

Полный список документированных пространств из	мен
--	-----

	4	_

Пространство имен для проекта 🤉	a RTM	11
---------------------------------	-------	----

Алфавитный	указатель	пространств	имен
TITOUDITION	. yrasarchb	iipoci pancib	FINICII

Иерархический список классов

4.1 Иерархия классов

Иерархия классов.

TT			
иер	архический	список	классов

Алфавитный указатель классов

5.1 Классы

Классы с их кратким описанием.

AppDelegate
Приложение, основанное на Cocos2d
rtm::BuildingObject
Класс, описывающий строения (здания)
rtm::BushObject
Класс, описывающий кусты
rtm::CarObject
Класс, описывающий машины
rtm::CoatingObject
Класс покрытия секции карты
rtm::CoatingUnion
Класс объединения покрытий
rtm::ControlUnit
Класс управляющего блока (светофор)
rtm::CrossroadObject
Класс пересечения дорог
rtm::DrivewayObject Класс прямой дороги
класс прямой дороги
Класс динамического объекта (который двигается, обновляется)
тtm::MapObject
Класс статического объекта карты
rtm::PuddleCoating
Класс, описывающий лужи
rtm::RoadCoating
Класс, описывающий дороги
rtm::SpawnType
Структура, описывающая параметры точки генерации объектов
rtm::StaticObject
Класс статического объекта (который не обновляется)
rtm::TurnObject
Класс поворота дороги
rtm::VehicleObject
Класс транспорта (динамического объекта карты)
rtm::WorldController
Класс контроллера карты, связующее звено всех объектов

rtm::WorldObject	
Класс объекта мира (родитель всех условно объемных объектов)	129
rtm::WorldScene	
Класс главной сцены, на которой всё и происходит (для отрисовки)	137

Пространства имен

6.1 Пространство имен rtm

Пространство имен для проекта RTM.

Классы

• class BuildingObject

Класс, описывающий строения (здания)

• class BushObject

Класс, описывающий кусты

• class CarObject

Класс, описывающий машины

• class CoatingObject

Класс покрытия секции карты

• class CoatingUnion

Класс объединения покрытий

• class ControlUnit

Класс управляющего блока (светофор)

• class CrossroadObject

Класс пересечения дорог

• class DrivewayObject

Класс прямой дороги

• class DynamicObject

Класс динамического объекта (который двигается, обновляется)

• class MapObject

Класс статического объекта карты

• class PuddleCoating

Класс, описывающий лужи

• class RoadCoating

Класс, описывающий дороги

• struct SpawnType

Структура, описывающая параметры точки генерации объектов

• class StaticObject

Класс статического объекта (который не обновляется)

12 Пространства имен

• class TurnObject

Класс поворота дороги

• class VehicleObject

Класс транспорта (динамического объекта карты)

• class WorldController

Класс контроллера карты, связующее звено всех объектов

• class WorldObject

Класс объекта мира (родитель всех условно объемных объектов)

• class WorldScene

Класс главной сцены, на которой всё и происходит (для отрисовки)

Определения типов

 $\bullet \ \ using \ World Controller Unique = std:: unique_ptr < \ World Controller >$

Умный указатель для класса WorldController.

• using SpawnVector = std::vector < SpawnType >

Массив точек генерации объектов

• using CoatingUnique = std::unique_ptr< CoatingObject >

Умный указатель для класса CoatingObject.

• using CoatingVector = std::vector < CoatingUnique >

Массив объектов класса CoatingObject.

• using CoatingMatrix = std::vector < CoatingVector >

Матрица объектов класса CoatingObject.

• using CoatingUnionShared = std::shared_ptr< CoatingUnion >

Умный указатель для класса Coating Union.

• using CoatingUnionVector = std::vector < CoatingUnionShared >

Maccub объектов класса CoatingUnion.

• using CoatingUnionMatrix = std::vector< CoatingUnionVector >

Матрица объектов класса CoatingUnion.

• using ControlUnitShared = std::shared ptr< ControlUnit >

Умный указатель для класса ControlUnit.

• using ControlUnitVector = std::vector< ControlUnitShared >

Массив объектов класса ControlUnit.

• using StaticShared = std::shared ptr < StaticObject >

Умный указатель для класса StaticObject.

• using StaticVector = std::vector < StaticShared >

Массив объектов класса StaticObject.

• using StaticMatrix = std::vector < StaticVector >

Матрица объектов класса StaticObject.

• using DynamicShared = std::shared ptr< DynamicObject >

Умный указатель для класса DynamicObject.

• using DynamicVector = std::vector < DynamicShared >

Массив объектов класса DynamicObject.

• using Directions = std::array< bool, 8 >

Массив возможных направлений движений по кусочку объекта

• using LinesCounts = std::array< size_t, 4 >

Массив количества полос в каждом напрвлении для перекрестков

• using DirectionSignals = std::array< SignalType, 4 >

Массив сигналов из одного напрвлениия в каждое

• using CrossroadSignals = std::array< DirectionSignals, 4 >

```
Массив сигналов для всех напрвлений перекрестка
   • using SignalSprites = std::array< cocos2d::Sprite *, 5 >
        Массив всех текстур сигналов из одного направления в одно
   • using SignalsSprites = std::array< SignalSprites, 3 >
        Массив всех текстур сигналов из одного направления в каждое (вперед, влево, вправо)
   • using DirectionsSignalSprites = std::array < SignalsSprites, 4 >
        Массив всех текстур сигналов для перекрестка
Перечисления
   • enum AngleType {
     NullAngle = -1, Up = 0, Right, Down,
     Left, UpRight, DownRight, DownLeft,
     UpLeft }
        Тип для определения положения некоторых объектов и индикации разрешенных направлений на
        кусочке объекта
   • enum DirectionType {
     NullDirection = -1, Upward = 0, Rightward, Downward,
     Leftward }
        Тип для задания направления движения транспорта
   • enum CoatingUnionType {
     NoCoatingUnion = -1, DrivewayType, CrossroadType, TCrossroadType,
     TurnType }
        Возможные типы дорожных объединений
   • enum DirectionSignalIndex { ForwardSignalIndex = 0, LeftwardSignalIndex, RightwardSignalIndex
        Индексы массива для каждого типа сигнала
   • enum SignalType {
     NotWorking = 0, Allowed, Warning, Forbidden,
     Closed }
        Возможные сигналы светофора
   • enum StateType { NotStarted, MustStart, Started, MustStop }
        Возможные состояния для манёвров (движение, поворот, перестроение)
   • enum CoatingType { AsphaltCoating = 0, IceAsphaltCoating = 1 }
        Типы покрытий
   • enum RoadType {
     RoadTypeNo0 = 0, RoadTypeNo1, RoadTypeNo2, RoadTypeNo3,
     RoadTypeNo4, RoadTypeNo5, RoadTypeNo6, RoadTypeNo7,
     RoadTypeNo8, RoadTypeNo9, RoadTypeNo10, RoadTypeNo11.
     RoadTypeNo12, RoadTypeNo13, RoadTypeNo14, RoadTypeNo15,
     RoadTypeNo16, RoadTypeNo17 }
        Типы дорог
   • enum SignalFileId { ForwardSignalId = 1, LeftwardSignalId = 6, RightwardSignalId = 11 }
        Индексы, начиная с которых начинаются текстуры сигналоа определенного типа
Функции

    void CheckCollisions (WorldController *const world)

        Функция для вычисления столкновений в мире
   • std::string GetFilename (std::string const &mask, size t number)
        Функция для получения пути к файлу по маске
   • AngleType SumAngleTypes (AngleType a, AngleType b)
```

14 Пространства имен

Функция для суммирования двух угловых типов

• float CountDeceleration (float maxSpeed)

Функция для подсчёта рекомендуемого коэффициента замедления транспорта

Функции для работы с параметрами положения объектов

- bool SameCoordinates (float a, float b, float delta=COORD DELTA)
 - Функция для сравнения двух координат с определенной точностью
- float RoundCoordinate (float coordinate, float delta=COORD DELTA)

Функция пытается округлить координаты до центра клетки

• float RoundToCenter (float coordinate)

Функция для округления координаты до центра клетки

• bool InCenter (float coordinate, float delta=COORD DELTA)

Функция для проверки координаты на центральность

• float DistanceToNextCenter (float x, float y, float angle)

Функция для нахождения расстояния до следующего центра клетка по ходу движения

• bool CenterIsCrossed (float x, float y, float angle, float lastDelta)

Функция проверяет, пересек ли объект центр клетки (центральную линию, перпендикулярную направлению движения)

• bool SameAngles (float a, float b, float delta=ANGLE DELTA)

Фукнция для сравнения двух углов

• float RoundAngle (float angle, float delta=ANGLE DELTA)

Фукнция пытается округлить угол до одно из главных направлений (период $\pi/4$, т.е. 0, $\pi/4$, $\pi/2$, ...)

• float NormalizeAngle (float angle)

Функция для нормализации угла до диапазона $[-\pi/2;\pi/2)$

Конверторы схожих типов

• int PixelToCell (float coordinate)

Функция для конвертации координаты в номер ячейки

• float CellToPixel (int cellNumber)

Функция для конвертации номера ячейки в координату центра

• AngleType AngleToAngleType (float angle)

Функция для конвертации угла в угловой тип

• DirectionType AngleToDirection (float angle)

Функция для конвертации угла в напраление

• float AngleTypeToAngle (AngleType angle)

Функция для конвертации углового типа в угол

• DirectionType AngleTypeToDirection (AngleType angle)

Функция для конвертации углового типа в направление

• float DirectionToAngle (DirectionType direction)

Функция для конвертации направления в угол

• AngleType DirectionToAngleType (DirectionType direction)

Функция для конвертации направления в угловой тип

Переменные

• std::array< size t, 2 > const COATING INDEXES

Индексы, начиная с которых начинаются текстуры покрытий определенного типа

Константы для флага isRight

• bool const LEFT { false }
Влево

```
• bool const RIGHT { true }
Вправо
```

Заранее посчитанные операции над π

```
• float const F_PI_8 { 0.392699081698724154808f } \pi / 8 
• float const F_PI_4 { 0.785398163397448309616f } \pi / 4 
• float const F_PI_2 { 1.57079632679489661923f } \pi / 2 
• float const F_PI { 3.14159265358979323846f } \pi 
• float const F_2PI { 6.28318530717958647692f } 2*\pi
```

Константы для конвертации углов из радиан в градусы и обратно

```
    float const DEG_RAD { F_PI / 180.f }
        Коэффициент для перевода из градусов в радианы

    float const RAD_DEG { 180.f / F_PI }
        Коэффициент для перевода из радиан в градусы
```

Заранее посчитанные углы

```
• float const ANGLE UP { 0.f }
    Угол вверх
 float const ANGLE RIGHT { F PI 2 }
    Угол вправо
 float const ANGLE DOWN { -F PI }
    Угол вниз
  float const ANGLE LEFT { -F PI 2 }
    Угол влево
 float const ANGLE UP RIGHT { F PI 4 }
    Угол по диагонали вверх вправо
  float const ANGLE DOWN RIGHT { F PI - F PI 4 }
    Угол по диагонали вниз вправо
 float const ANGLE DOWN LEFT { -F PI + F PI 4 }
    Угол по диагонали вниз влево
• float const ANGLE UP LEFT { -F PI 4 }
    Угол по диагонали вверх влево
```

Допустимые погрешности

```
    float const ANGLE_DELTA { 1.f * DEG_RAD }
        Погрешность для углов
    float const COORD_DELTA { 1.f }
        Погрешность для координат
    float const NEAR_DELTA { 1.f }
        Максимальное расстояние до объектов, которые недалеко
```

Парамметры карт

```
    size_t const CELL_SIZE { 30 }
        Длина (ширина) ячейки карты
    size_t const ROTATION_RADIUS { CELL_SIZE }
```

Пространства имен

Желаемый радиус поворота транспорта

```
• float const MIN TIME FACTOR { 0.5f }
      Минимальный коэффициент ускорения времени. Если меньше 1, то замедлениие
   float const MAX TIME FACTOR { 4.f }
      Максимальный коэффициент ускорения времени
Номера слоев для разных объектов. Чем больше, тем выше (ближе к нам)
  • int const BACKGROUND LAYER Z ORDER { -1 }
      Номер слоя для слоя фона
   int const MAIN LAYER Z ORDER { 0 }
      Номер слоя для главного слоя (на нем все объекты)
   int const COATING OBJECT Z ORDER { -2 }
      Номер слоя для покрытий (дорог)
  • int const SIGNAL Z ORDER { -1 }
      Номер слоя для стрелок светофора
  • int const VEHICLE_OBJECT_Z_ORDER { 0 }
      Номер слоя для транспорта
  • int const MAP_OBJECT_Z_ORDER { 1 }
      Номер слоя для статичных объектов карты
Область видимости при движении вперед
  • float const VIEW RADIUS { 60.f }
      Радиус
  • float const VIEW_ANGLE { 25.f * DEG_RAD }
      Ширина угла в каждую сторону
  • float const VIEW ANGLE SHIFT { 0.f }
      Сдвиг области обзора
Область видимости при повороте
  • float const ROTATION VIEW RADIUS { 50.f }
      Радиус
   float const ROTATION VIEW ANGLE { 30.5f * DEG RAD }
      Ширина угла в каждую сторону
   float const ROTATION VIEW ANGLE SHIFT { 29.5f * DEG RAD }
      Сдвиг области обзора
Область видимости незадолго до поворота
  • float const TURN VIEW RADIUS { 60.f }
      Радиус
    float const TURN VIEW ANGLE { 30.f * DEG RAD }
      Ширина угла в каждую сторону
   float const TURN_VIEW_ANGLE_SHIFT { 10.f * DEG RAD }
      Сдвиг области обзора
Область видимости на нерегулируемом перекрестке
  • float const CROSSROAD VIEW RADIUS { 58.f }
      Радиус
   float const CROSSROAD VIEW ANGLE { 57.5f * DEG RAD }
      Ширина угла в каждую сторону
  • float const CROSSROAD VIEW ANGLE SHIFT { -17.5f * DEG RAD }
      Сдвиг области обзора
```

Область видимости до перестроения

```
• float const LINE CHANGING VIEW RADIUS { 60.f }
```

float const LINE CHANGING VIEW ANGLE { 30.f * DEG RAD }

Ширина угла в каждую сторону
• float const LINE_CHANGING_VIEW_ANGLE_SHIFT { $20.f*DEG_RAD$ } Сдвиг области обзора

Значения по умолчанию

• DirectionSignals const DEFAULT DIRECTIONS SIGNALS = { NotWorking, NotWorking, NotWorking }

Значения по умолчанию для массива сигналов в одном направлении (светофора в этом направлении нет)

• CrossroadSignals const DEFAULT CROSSROAD SIGNALS

Значения по умолчанию для массива сигналов всего перекрестка (светофора на перекрестке

• SignalSprites const DEFAULT SIGNAL SPRITES = { nullptr, nullptr, nullptr, nullptr, nullptr }

Пустой массив текстур сигналов для одного типа сигнала одного направления

SignalsSprites const DEFAULT SIGNALS SPRITES = { DEFAULT_SIGNAL_SPRITES, DEFAULT SIGNAL SPRITES, DEFAULT SIGNAL SPRITES }

Пустой массив текстур сигналов для одного направления

• DirectionsSignalSprites const DEFAULT DIRECTIONS SIGNAL SPRITES

Пустой массив текстур сигналов для всего перекрестка

Маски названий файлов

std::string const BACKGROUND FILENAME MASK { "res/background/Background \sigma No%No%.png" }

Маска файлов фонов

- std::string const MAP FILENAME MASK { "res/map/MapNo%No%.rtmm" } Маска файлов карт
- std::string const ROAD FILENAME MASK { "res/coating/road/RoadNo%No%.png" } Маска файлов текстур дорог
- std::string const PUDDLE FILENAME MASK { "res/coating/puddle/PuddleNo%No%.png"

Маска файлов текстур грязи

- std::string const SIGNAL FILENAME MASK { "res/signal/SignalNo%No%.png" }
- Маска файлов текстур сигналов std::string const BUILDING FILENAME MASK { "res/static/building/Building↔ No%No%.png" }

Маска файлов текстур зданий

- std::string const BUSH FILENAME MASK { "res/static/bush/BushNo%No%.png" } Маска файлов текстур кустов
- std::string const CAR FILENAME MASK { "res/dynamic/vehicle/CarNo%No%.png" } Маска файлов текстур машин

Параметры дорог

- std::array< float, 2 > const ROADS RESISTANCES
 - Массив коэффициентов трения для каждого типа объекта
- std::array< Directions, 18 > const ROADS DIRECTIONS

Массив возможных направлений для каждой типа кучоска дороги

Параметры машин

- std::array< float, 6 > const CARS_MAX_SPEEDS
 - Массив максимальных скоростей для машин
- std::array< float, 6 > const CARS_ACCELERATIONS

Массив ускорений для машин

6.1.1 Подробное описание

Пространство имен для проекта RTM.

6.1.2 Типы

6.1.2.1 Directions

```
using rtm::Directions = typedef std::array<bool, 8>
```

Массив возможных направлений движений по кусочку объекта

См. также

AngleType

6.1.2.2 LinesCounts

```
using rtm::LinesCounts = typedef std::array<size_t, 4>
```

Массив количества полос в каждом напрвлении для перекрестков

См. также

 ${\bf Direction Type}$

$6.1.2.3 \quad Direction Signals$

```
using rtm::DirectionSignals = typedef std::array<SignalType, 4>
```

Массив сигналов из одного напрвлениия в каждое

См. также

DirectionType

6.1.2.4 CrossroadSignals using rtm::CrossroadSignals = typedef std::array<DirectionSignals, 4> Массив сигналов для всех напрвлений перекрестка См. также DirectionType6.1.2.5 SignalSprites using rtm::SignalSprites = typedef std::array<cocos2d::Sprite*, 5> Массив всех текстур сигналов из одного направления в одно См. также SignalType 6.1.2.6 SignalsSprites using rtm::SignalsSprites = typedef std::array<SignalSprites, 3> Массив всех текстур сигналов из одного направления в каждое (вперед, влево, вправо) См. также ${\bf Direction Signal Index}$ 6.1.2.7 DirectionsSignalSprites using rtm::DirectionsSignalSprites = typedef std::array<SignalsSprites, 4> Массив всех текстур сигналов для перекрестка См. также Direction Type6.1.3 Перечисления

enum rtm::AngleType

6.1.3.1 AngleType

Тип для определения положения некоторых объектов и индикации разрешенных направлений на кусочке объекта

Элементы перечислений

NullAngle	Неинициализированный угол
Up	Вверх
Right	Вправо
Down	Вниз
Left	Влево
$\operatorname{UpRight}$	По диагонали вверх вправо
DownRight	По диагонали вниз влево
DownLeft	По диагонали вниз влево
UpLeft	По диагонали вверх вправо

6.1.3.2 DirectionType

 $enum\ rtm:: Direction Type$

Тип для задания направления движения транспорта

Элементы перечислений

NullDirection	Неинициализированное напрвление
Upward	Направление вверх
Rightward	Направление вправо
Downward	Направление вниз
Leftward	Направление влево

6.1.3.3 CoatingUnionType

 $enum\ rtm:: Coating Union Type$

Возможные типы дорожных объединений

Элементы перечислений

NoCoatingUnion	Неинициализированный тип
DrivewayType	Прямая дорога
${\it CrossroadType}$	Обычный перекресток
${ m TCrossroadType}$	Т-образный перекресток
TurnType	Поворот

$6.1.3.4 \quad Direction Signal Index$

 $enum\ rtm:: Direction Signal Index$

Индексы массива для каждого типа сигнала

Элементы перечислений

ForwardSignalIndex	Сигнал в прямом напрвлении
LeftwardSignalIndex	Сигнал в при повороте налево
RightwardSignalIndex	Сигнал в при повороте направо

6.1.3.5 Signal Type

enum rtm::SignalType

Возможные сигналы светофора

Элементы перечислений

NotWorking	Светофор не работает (равносильно его отсутствию)
Allowed	Зеленый сигнал
Warning	Желтый сигнал
Forbidden	Красный сигнал
Closed	В данном напрвлении движение запрещено

6.1.3.6 StateType

 $enum\ rtm::StateType$

Возможные состояния для манёвров (движение, поворот, перестроение)

Элементы перечислений

NotStarted	Не начато (не выполняется)
MustStart	Необходимо начать
Started	Начато
MustStop	Необходимо закончить

Пространства имен

6.1.3.7 CoatingType

 $enum\ rtm{::}Coating Type$

Типы покрытий

Элементы перечислений

AsphaltCoating	Асфальтовое покрытие
IceAsphaltCoating	Асфальтовое покрытие со льдом

6.1.3.8 RoadType

enum rtm::RoadType

Типы дорог

Элементы перечислений

RoadTypeNo0	Однополосная прямая
RoadTypeNo1	Однополосная левая прямая
RoadTypeNo2	Однополосная средняя прямая
RoadTypeNo3	Перекресток 1 на 1.
RoadTypeNo4	Угол перекрестка 1 на N.
RoadTypeNo5	Угол перекрестка N на N.
RoadTypeNo6	Центральная часть перекрестка
RoadTypeNo7	Т-образный перекресток 1 на 1.
RoadTypeNo8	Левый угол Т-образного перекрестка 1 на N.
RoadTypeNo9	Заблокированный край Т-образного перекрестка N на N.
RoadTypeNo10	Правый угол Т-образного перекрестка 1 на N.
RoadTypeNo11	Расширение дороги
RoadTypeNo12	Сужение дороги
RoadTypeNo13	Однополосный поворот
RoadTypeNo14	Внешний ряд поворота
RoadTypeNo15	Средний ряд поворота
RoadTypeNo16	Внутренний ряд поворота
RoadTypeNo17	Обочина поворота (угла перекрестка)

6.1.3.9 SignalFileId

enum rtm::SignalFileId

Индексы, начиная с которых начинаются текстуры сигналоа определенного типа

Элементы перечислений

ForwardSignalId	Индекс сигнала для движения вперед
LeftwardSignalId	Индекс сигнал для поворота налево
RightwardSignalId	Индекс сигнал для поворота направо

6.1.4 Функции

6.1.4.1 CheckCollisions()

```
void rtm::CheckCollisions (  \label{eq:constroller} WorldController *const world )
```

Функция для вычисления столкновений в мире

Аргументы

world контроллер мира, в котором будут происходить вычисления

6.1.4.2 SameCoordinates()

```
bool rtm::SameCoordinates ( \label{eq:float} \begin{array}{l} \mbox{float a,} \\ \mbox{float b,} \\ \mbox{float delta} = \mbox{COORD\_DELTA} \mbox{)} \end{array}
```

 Φ ункция для сравнения двух координат с определенной точностью

Аргументы

a,b	координаты, которые будут сравниваться
delta	максимальная разность между координатами

Возвращает

результат сравнения

6.1.4.3 RoundCoordinate()

```
float rtm::RoundCoordinate ( float\ coordinate, float\ delta = \ COORD\_DELTA\ )
```

Пространства имен

Функция пытается округлить координаты до центра клетки

Аргументы

coordinate	координата, которую будем пытаться округлить
delta	максимальное расстояние до центра клетки

Возвращает

если координата достаточно близка к центру, то координаты центра, иначе саму координату

6.1.4.4 RoundToCenter()

Функция для округления координаты до центра клетки

Аргументы

${\rm coordinate}$	округляемая координата	
--------------------	------------------------	--

Возвращает

координата ближайшего центра клетки

6.1.4.5 InCenter()

```
bool rtm::InCenter ( float\ coordinate, float\ delta = \ COORD\_DELTA\ )
```

Функция для проверки координаты на центральность

Аргументы

coordinate	координата, которую проверяем
delta	максимальное расстояние до центра клетки

Возвращает

true, если в центре клетки, иначе false

6.1.4.6 DistanceToNextCenter()

```
\label{eq:float_rtm::DistanceToNextCenter} \begin{tabular}{ll} float $x$, \\ float $y$, \\ float angle \end{tabular} \end{tabular}
```

Функция для нахождения расстояния до следующего центра клетка по ходу движения

Аргументы

x,y	координаты объекта
angle	направление движения (угол)

Возвращает

расстояние до центра

6.1.4.7 CenterIsCrossed()

```
bool rtm::CenterIsCrossed (
float x,
float y,
float angle,
float lastDelta)
```

Функция проверяет, пересек ли объект центр клетки (центральную линию, перпендикулярную направлению движения)

Аргументы

x,y	координаты объекта
angle	направление движения (угол)
lastDelta	расстояние, которое объект прошёл за последнее перемещение

Возвращает

true, если пересек какой-либо центр

6.1.4.8 SameAngles()

```
bool rtm::SameAngles ( float \ a, float \ b, float \ delta = ANGLE \ DELTA )
```

Фукнция для сравнения двух углов

Пространства имен

Аргументы

a,	b	углы, которые будут сравниваться
dε	$_{ m elta}$	максимальная разность между углами

Возвращает

результат сравнения

6.1.4.9 RoundAngle()

```
float rtm::RoundAngle ( float \ angle, float \ delta = ANGLE \ DELTA )
```

Фукнция пытается округлить угол до одно из главных направлений (период $\pi/4$, т.е. 0, $\pi/4$, $\pi/2$, ...)

Аргументы

angle	угол, который будем пытаться округлить
delta	максимальная разность между исходным углом и округленным углом

Возвращает

округленный угол, если исходный был достаточно близок, иначе исходный угол

6.1.4.10 NormalizeAngle()

```
float rtm::NormalizeAngle (
float angle )
```

Функция для нормализации угла до диапазона [- $\pi/2$; $\pi/2$)

Аргументы

angle	угол, который будем нормализовывать
-------	-------------------------------------

Возвращает

нормализованный угол

```
6.1.4.11 PixelToCell()
```

Функция для конвертации координаты в номер ячейки

Аргументы

```
coordinate координата, которая будет конвертирована
```

Возвращает

номер ячейки

```
6.1.4.12 CellToPixel()
```

```
float rtm::CellToPixel ( int cellNumber )
```

Функция для конвертации номера ячейки в координату центра

Аргументы

```
cellNumber номер ячейки, который будет конвертирован
```

Возвращает

координата центра

```
6.1.4.13 AngleToAngleType()
```

Функция для конвертации угла в угловой тип

Аргументы

angle | угол, который будет конвертирован

```
Возвращает
```

соответствующий угловой тип

```
6.1.4.14 AngleToDirection()
```

Функция для конвертации угла в напраление

Аргументы

```
angle угол, который будет конвертирован
```

Возвращает

соответствующее напраление

6.1.4.15 AngleTypeToAngle()

```
float rtm::AngleTypeToAngle (
AngleType angle )
```

Функция для конвертации углового типа в угол

Аргументы

```
angle | уголовой тип, который будет конвертирован
```

Возвращает

соответствующий угол

6.1.4.16 AngleTypeToDirection()

```
\begin{tabular}{ll} $rtm::DirectionType & $rtm::AngleTypeToDirection ( \\ & AngleType & angle \end{tabular} ) \end{tabular}
```

Функция для конвертации углового типа в направление

Аргументы

```
angle | уголовой тип, который будет конвертирован |
```

Возвращает

соответствующее направление

```
6.1.4.17 DirectionToAngle()
```

```
\label{eq:control} \begin{aligned} \text{float rtm::DirectionToAngle (} \\ & \quad \quad \quad \\ & \quad \\ &
```

Функция для конвертации направления в угол

Аргументы

```
direction | направление, которое будет конвертировано
```

Возвращает

соответствующий угол

6.1.4.18 DirectionToAngleType()

Функция для конвертации направления в угловой тип

Аргументы

```
direction направление, которое будет конвертировано
```

Возвращает

соответствующий угловой тип

```
6.1.4.19 GetFilename()
```

Функция для получения пути к файлу по маске

Аргументы

mask	маска названия файла
number	номер объекта

Возвращает

путь к файлу

```
6.1.4.20 SumAngleTypes()
```

```
\label{eq:tm::AngleType} \begin{split} \text{rtm}::& \text{AngleType rtm}:: \text{SumAngleTypes (} \\ & \text{AngleType a,} \\ & \text{AngleType b )} \end{split}
```

Функция для суммирования двух угловых типов

Аргументы

```
а, в угловые типы, которые будут складываться
```

Возвращает

```
сумма угловых типов (a + b)
```

6.1.4.21 CountDeceleration()

```
\label{eq:countDeceleration} \begin{array}{l} \mbox{float rtm::} CountDeceleration ( \\ \mbox{float maxSpeed} ) \end{array}
```

Функция для подсчёта рекомендуемого коэффициента замедления транспорта

Аргументы

```
maxSpeed | максимальная скорость транспорта
```

Возвращает

рекомендуемый коэффициент замедления

6.1.5 Переменные

```
6.1.5.1 NEAR DELTA
```

```
float const rtm::NEAR DELTA { 1.f }
```

Максимальное расстояние до объектов, которые недалеко

См. также

DynamicObject

```
6.1.5.2 DEFAULT_CROSSROAD_SIGNALS
```

 ${\bf Crossroad Signals\ const\ rtm::} {\bf DEFAULT_CROSSROAD_SIGNALS}$

Инициализатор

Значения по умолчанию для массива сигналов всего перекрестка (светофора на перекрестке нет)

```
6.1.5.3 \quad {\tt DEFAULT\_DIRECTIONS\_SIGNAL\_SPRITES}
```

 ${\tt DirectionsSignalSprites\ const\ rtm::DEFAULT_DIRECTIONS_SIGNAL_SPRITES}$

Инициализатор

```
= {
    DEFAULT_SIGNALS_SPRITES
    , DEFAULT_SIGNALS_SPRITES
    , DEFAULT_SIGNALS_SPRITES
    , DEFAULT_SIGNALS_SPRITES
}
```

Пустой массив текстур сигналов для всего перекрестка

32 Пространства имен

```
6.1.5.4 COATING INDEXES
```

```
std::array<size t, 2> const rtm::COATING INDEXES
```

Инициализатор

Индексы, начиная с которых начинаются текстуры покрытий определенного типа

```
6.1.5.5 ROADS_RESISTANCES
```

std::array<float, 2> const rtm::ROADS RESISTANCES

Инициализатор

Массив коэффициентов трения для каждого типа объекта

См. также

CoatingType

6.1.5.6 ROADS DIRECTIONS

```
std::array<Directions, 18> const rtm::ROADS DIRECTIONS
```

Инициализатор

```
Directions { true, false, true, false, false, false, false, false }
Directions { true, false, true, false, true, true, true, false, false }
Directions { true, false, true, false, true, false, false, false, false, priections { true, true, true, true, false, false, false, false, false, true, true, true, true, false, false, false, false, priections { true, true, true, true, false, false, false, false, priections { false, true, true, true, false, false, false, false }
Directions { false, true, true, true, false, false, false, false, priections { false, true, true, true, false, false, false, false, false, true, true, true, false, false, false, false, false, false, true, true, false, false, false, false, false, true, true, false, fal
```

Массив возможных направлений для каждой типа кучоска дороги

См. также

RoadCoating

```
6.1.5.7 CARS_MAX_SPEEDS
```

 $std::array\!<\!float,\;6\!>\;const\;rtm::CARS_MAX_SPEEDS$

Инициализатор

Массив максимальных скоростей для машин

```
См. также
```

 ${\bf Car Object}$

6.1.5.8 CARS_ACCELERATIONS

 $std::array < float, \; 6 > \; const \; rtm:: CARS_ACCELERATIONS$

Инициализатор

```
= \{ \\ 0.f \\ , 3.f \\ , 4.f \\ , 6.f \\ , 8.25f \\ , 12.f \\ \}
```

Массив ускорений для машин

См. также

 ${\bf Car Object}$

Глава 7

Классы

7.1 Класс AppDelegate

Приложение, основанное на Cocos2d.

#include <AppDelegate.h>

Граф наследования: AppDelegate:

Открытые члены

• AppDelegate ()

Конструктор по умолчанию

• virtual ~AppDelegate ()

Деструктор

• virtual void initGLContextAttrs ()

Функция для установки атрибутов OpenGL (красный, зеленый, синий, альфа-канал...)

• virtual bool applicationDidFinishLaunching ()

Функция для инициализации Director'a и Scene'ы

• virtual void applicationDidEnterBackground ()

Функция вызывается, когда приложение скрывается

• virtual void applicationWillEnterForeground ()

Функция вызывается при первом запуске приложения

36

7.1.1 Подробное описание

Приложение, основанное на Cocos2d.

7.1.2 Методы

7.1.2.1 applicationDidFinishLaunching()

bool AppDelegate::applicationDidFinishLaunching () [virtual]

Функция для инициализации Director'а и Scene'ы

Возвращает

true Инициализация успешна, приложение продолжает выполняться false Инициализация провалилась, приложение закроется

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/AppDelegate.h$
- C:/Users/Vladimir/Documents/Visual Studio 2017/Projects/RTM/Classes/AppDelegate.cpp

7.2 Kласс rtm::BuildingObject

Класс, описывающий строения (здания)

#include <BuildingObject.h>

Граф наследования:rtm::BuildingObject:

Открытые члены

• BuildingObject ()

Конструктор по умочанию

- BuildingObject (cocos2d::Sprite *const sprite, int column, int row, float angle)
 - Конструктор с использованием уже готового спрайта
- BuildingObject (std::string const &filename, int column, int row, float angle)

Конструктор из файла

• BuildingObject (size_t type, int column, int row, float angle)

Конструктор стандартного строения

• virtual ~BuildingObject ()=default

Деструктор по умолчанию

Дополнительные унаследованные члены

7.2.1 Подробное описание

Класс, описывающий строения (здания)

7.2.2 Конструктор(ы)

7.2.2.1 BuildingObject() [1/3]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт
column	колонка, в которой необходимо отрисовать строение
row	строка, в которой необходимо отрисовать строение
angle	угол поворота строения

7.2.2.2 BuildingObject() [2/3]

```
rtm::BuildingObject::BuildingObject (
std::string const & filename,
```

38

```
int column,
int row,
float angle )
```

Конструктор из файла

Аргументы

filename	путь к файлу инициализации	
column	колонка, в которой необходимо отрисовать строение	
row	строка, в которой необходимо отрисовать строение	
angle	угол поворота строения	

7.2.2.3 BuildingObject() [3/3]

Конструктор стандартного строения

Аргументы

type	стандартный тип строения
column	колонка, в которой необходимо отрисовать строение
row	строка, в которой необходимо отрисовать строение
angle	угол поворота строения

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/BuildingObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/BuildingObject.cpp$

7.3 Класс rtm::BushObject

Класс, описывающий кусты

#include <BushObject.h>

Граф наследования:rtm::BushObject:

Открытые члены

• BushObject ()

Конструктор по умочанию

 $\bullet \ \, \textbf{BushObject} \ (\textbf{cocos2d::Sprite} * \textbf{const sprite}, \, \textbf{int column}, \, \textbf{int row}, \, \textbf{float angle})$

Конструктор с использованием уже готового спрайта

• BushObject (std::string const &filename, int column, int row, float angle)

Конструктор из файла

• BushObject (size_t type, int column, int row, float angle)

Конструктор стандартного куста

• virtual ~BushObject ()=default

Деструктор по умолчанию

Дополнительные унаследованные члены

7.3.1 Подробное описание

Класс, описывающий кусты

7.3.2 Конструктор(ы)

7.3.2.1 BushObject() [1/3]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт
column	колонка, в которой необходимо отрисовать куст
row	строка, в которой необходимо отрисовать куст
angle	угол поворота куста

7.3.2.2 BushObject() [2/3]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации	
column	колонка, в которой необходимо отрисовать куст	
row	строка, в которой необходимо отрисовать куст	
angle	угол поворота куста	

7.3.2.3 BushObject() [3/3]

Конструктор стандартного куста

Аргументы

type	стандартный тип куста	
column	колонка, в которой необходимо отрисовать куст	
row	строка, в которой необходимо отрисовать куст	
angle	угол поворота куста	

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/BushObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/BushObject.cpp$

7.4 Класс rtm::CarObject

Класс, описывающий машины

#include <CarObject.h>

Граф наследования:rtm::CarObject:

Открытые члены

- CarObject ()
 - Конструктор по умочанию
- CarObject (cocos2d::Sprite *const sprite, int column, int row, float angle, float maxSpeed, float acceleration)

Конструктор с использованием уже готового спрайта

• CarObject (std::string const &filename, int column, int row, float angle, float maxSpeed, float acceleration)

Конструктор из файла

• CarObject (size t type, int column, int row, float angle)

Конструктор стандартной машины

• virtual ~CarObject ()=default

Деструктор по умолчанию

Защищенные члены

• virtual bool MovementStart_ (WorldController *const world) override

Функция, которая просто пропускает выполнение родителя

• virtual bool MovementTick_ (WorldController *const world) override

Функция для вычисления скорости

• virtual bool MovementEnd_ (WorldController *const world) override

Функция обнуляет финальную скорость

• virtual bool LineChangingStart (WorldController *const world) override

Функция, описывающая движение перед перестроением

Закрытые члены

• void SetDesiredSpeed_ (float speed)

Функция для установки желаемой скорости

• void ResetDesiredSpeed ()

Функция для сброса желаемой скорости

• void CheckCoatingAhead (WorldController *const world)

Функция для проверки объекта (повороты и т.д.)

 $\bullet \ \ void \ \ CheckCoatingUnionAhead_\ \ (WorldController *const \ world)$

Функция для проверки объединения покрытий (заранее тормозим перед светофорами и т.д.)

• void CheckRoadAhead_ (WorldController *const world)

Функция для проверки дороги спереди (принятие решений)

Закрытые статические члены

• static float GetClassMaxSpeed (size t id)

 Φ ункция для получения максимальной скорости стандартной машины по номеру

• static float GetClassAcceleration (size t id)

Функция для получения ускорения стандартной машины по номеру

Закрытые данные

• float recommendedSpeed_

Рекомендованная скорость

• float desiredSpeed

Желаемая скорость (приоритетнее рекомендуемой)

• bool hasDesiredSpeed

Задана ли желаемая скорость

• bool isTurnNear

Далеко ли следующий поворот

• bool isRightTurn

Напрвление следующего поворота

• bool waitForSignal_

Происходит ли сейчас ожидание сигнала светофора

• bool waitForTurn

Происходит ли сейчас ожидание освобождения нерегулируемого перекрестка

• AngleType desiredDirection_

Желаемое направление движения (при первой возможности машина повернет)

7.4.1 Подробное описание

Класс, описывающий машины

7.4.2 Конструктор(ы)

7.4.2.1 CarObject() [1/3]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт	
column	колонка, в которой необходимо отрисовать машину	
row	строка, в которой необходимо отрисовать машину	
angle	угол поворота машины	
$\max Speed$	максимальная скорость машины	
acceleration	ускорение машины	

7.4.2.2 CarObject() [2/3]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации	
column	колонка, в которой необходимо отрисовать машину	
row	строка, в которой необходимо отрисовать машину	
angle	угол поворота машины	
$\max Speed$	максимальная скорость машины	
acceleration	ускорение машины	

7.4.2.3 CarObject() [3/3]

Конструктор стандартной машины

Аргументы

type	стандартный тип машины	
column	колонка, в которой необходимо отрисовать машину	
row	строка, в которой необходимо отрисовать машину	
angle	угол поворота машины	

7.4.3 Методы

```
7.4.3.1 MovementStart ()
```

```
bool\ rtm:: CarObject:: MovementStart\_\ (\\ WorldController\ *const\ world\ )\quad [override],\ [protected],\ [virtual]
```

Функция, которая просто пропускает выполнение родителя

Аргументы

```
world контроллер мира, в котором находится объект
```

Переопределяет метод предка rtm::VehicleObject.

```
7.4.3.2 MovementTick ()
```

Функция для вычисления скорости

Аргументы

```
world контроллер мира, в котором находится объект
```

Переопределяет метод предка rtm::VehicleObject.

```
7.4.3.3 MovementEnd ()
```

Функция обнуляет финальную скорость

Аргументы

```
world контроллер мира, в котором находится объект
```

Переопределяет метод предка rtm::VehicleObject.

7.4.3.4 LineChangingStart()

```
bool\ rtm:: CarObject:: Line Changing Start\ (  World Controller\ *const\ world\ )\quad [override],\ [protected],\ [virtual]
```

Классы 46 Функция, описывающая движение перед перестроением

Аргументы

```
world контроллер мира, в котором находится объект
```

Переопределяет метод предка rtm::VehicleObject.

```
7.4.3.5 CheckCoatingAhead ()
```

```
\label{lem:condition} \begin{tabular}{ll} void $rtm::CarObject::CheckCoatingAhead\_($ & WorldController *const world.) & [private] \end{tabular}
```

Функция для проверки объекта (повороты и т.д.)

Аргументы

world контроллер мира, в котором находится объект

7.4.3.6 CheckCoatingUnionAhead ()

Функция для проверки объединения покрытий (заранее тормозим перед светофорами и т.д.)

Аргументы

```
world контроллер мира, в котором находится объект
```

7.4.3.7 CheckRoadAhead_()

Функция для проверки дороги спереди (принятие решений)

Аргументы

world контроллер мира, в котором находится объект

```
7.4.3.8 GetClassMaxSpeed ()
```

```
\label{local_continuity} float \ rtm:: CarObject:: GetClassMaxSpeed\_ \ ( \\ size\_t \ id \ ) \quad [static], \ [private] \\
```

Функция для получения максимальной скорости стандартной машины по номеру

Аргументы

id номер стандартной машины

Возвращает

максимальная скорость машины

```
7.4.3.9 GetClassAcceleration ()
```

Функция для получения ускорения стандартной машины по номеру

Аргументы

id номер стандартной машины

Возвращает

ускорение машины

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CarObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CarObject.cpp$

7.5 Класс rtm::CoatingObject

Класс покрытия секции карты

#include <CoatingObject.h>

Граф наследования:rtm::CoatingObject:

Открытые члены

• CoatingObject ()

Конструктор по умолчанию

• CoatingObject (cocos2d::Sprite *const sprite, int column, int row, AngleType angle, float resistance, Directions directions)

Конструктор с использованием уже готового спрайта

• CoatingObject (std::string const &filename, int column, int row, AngleType angle, float resistance, Directions directions)

Конструктор из файла

• virtual ~CoatingObject ()=default

Деструктор по умолчанию

• cocos2d::Sprite * GetSprite () const

Функция для получения спрайта

• float GetResistance () const

Функция для получения коэффициента сопротивления на покрытии

• bool HasDirection (AngleType angle) const

Функция для проверки существования направления

• bool IsDirectionAvailable (AngleType angle) const

Функция для проверки разрешенности направления

• void SetDirectionAvailability (AngleType angle, bool status)

Функция установки разрешенности направления

Защищенные члены

• void SetSprite_ (cocos2d::Sprite *const sprite)

Функция для установки спрайта

Закрытые члены

• void SetX (float x)

Функция для установки абсциссы

• void SetY (float y)

Функция для установки ординаты

Закрытые данные

cocos2d::Sprite * sprite_
 Указатель на спрайт

• float x_

Абсцисса

• float y

Ордината

• float resistance_

Сопротивление на покрытии

• Directions directions

Доступные направления

• Directions availableDirections_

Разрешенные направления

7.5.1 Подробное описание

Класс покрытия секции карты

7.5.2 Конструктор(ы)

7.5.2.1 CoatingObject() [1/2]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт	
column	колонка, в которой необходимо отрисовать объект	
row	строка, в которой необходимо отрисовать объект	
angle	угол поворота объекта	
resistance	коэффициент сопротивления на покрытии	
directions	доступные направления для движения	

7.5.2.2 CoatingObject() [2/2]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации	
column	колонка, в которой необходимо отрисовать объект	
row	строка, в которой необходимо отрисовать объект	
angle	угол поворота объекта	
resistance	коэффициент сопротивления на покрытии	
directions	доступные направления для движения	

7.5.3 Методы

7.5.3.1 GetSprite()

cocos2d::Sprite * rtm::CoatingObject::GetSprite () const

Функция для получения спрайта

Возвращает

указатель на спрайт

7.5.3.2 GetResistance()

 $float\ rtm:: Coating Object:: Get Resistance\ (\)\ const$

Функция для получения коэффициента сопротивления на покрытии

Возвращает

сопротивление

7.5.3.3 HasDirection()

```
bool rtm::CoatingObject::HasDirection (
AngleType angle ) const
```

Функция для проверки существования направления

Аргументы

angle	направление
-------	-------------

Возвращает

true, если доступно (существует), иначе false

7.5.3.4 IsDirectionAvailable()

```
bool\ rtm:: CoatingObject:: Is Direction Available\ ( Angle Type\ angle\ )\ const
```

Функция для проверки разрешенности направления

Аргументы

```
angle направление
```

Возвращает

true, если разрешено ехать в данном направлении, иначе false

7.5.3.5 SetDirectionAvailability()

```
\label{eq:coatingObject::SetDirectionAvailability} \begin{tabular}{ll} \textbf{AngleType angle,} \\ \textbf{bool status )} \end{tabular}
```

Функция установки разрешенности направления

Аргументы

angle	направление
status	разрешено ли ехать

```
7.5.3.6 SetSprite_()
```

Функция для установки спрайта

Аргументы

```
sprite указатель на спрайт
```

```
7.5.3.7 \text{ Set X}_{-}()
```

Функция для установки абсциссы

Аргументы

```
х абсцисса
```

```
7.5.3.8 SetY_()
```

Функция для установки ординаты

Аргументы

у ордината	
------------	--

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CoatingObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CoatingObject.cpp$

7.6 Класс rtm::CoatingUnion

Класс объединения покрытий

#include <CoatingUnion.h>

Граф наследования:rtm::CoatingUnion:

Открытые члены

• CoatingUnion ()

Конструктор по умолчанию

• CoatingUnion (CoatingUnionType type, int column, int row, CoatingMatrix &&objects)

Конструктор по матрице покрытий

• virtual ~CoatingUnion ()=default

Деструктор по умолчанию

• CoatingUnionType GetType () const

Функция для получения типа объединения

• size t GetWidth () const

Функция для получения ширины объединения

• size_t GetHeight () const

Функция для получения высоты объединения

• CoatingUnique const & GetCoatingObject (int column, int row) const

Функция для получения объекта

• virtual float GetLength () const

Функция для получения длины (количества покрытий)

• bool IsCorrectColumn (int column) const

Функция для проверки корректности колонки в данном объединении

• bool IsCorrectRow (int row) const

Функция для проверки корректности строки в данном объединении

• virtual void ShowSprites (cocos2d::Layer *const layer)

Функция для добавления спрайтов на сцену

• virtual void ReleaseSprites (cocos2d::Layer *const layer)

Функция для удаления спрайтов со сцены

Защищенные члены

• int GetColumn_ () const

 Φ ункция для получения левой колонки объединения

• int GetRow_ () const

Функция для получения нижней строки объединения

Закрытые данные

• CoatingUnionType type_

Тип объединения покрытий (получившегося элемента)

• int column

Левая колонка объединения

• int row

Нижняя строка объединения

• size_t width_

Ширина объединения

• size_t height_

Высота объединения

• CoatingMatrix objects_

Матрица объектов покрытий

7.6.1 Подробное описание

Класс объединения покрытий

См. также

CoatingObject

7.6.2 Конструктор(ы)

7.6.2.1 CoatingUnion()

Конструктор по матрице покрытий

Аргументы

type	тип объединения покрытий (получившегося элемента)
column	левая колонка объединения
row	нижняя строка объединения
objects	матрица объектов покрытий

7.6.3 Методы

```
7.6.3.1 GetType()
```

```
rtm::CoatingUnionType rtm::CoatingUnion::GetType ( ) const
```

Функция для получения типа объединения

Возвращает

тип объединения

```
7.6.3.2 GetWidth()
```

```
size t rtm::CoatingUnion::GetWidth ( ) const
```

Функция для получения ширины объединения

Возвращает

ширина объединения

```
7.6.3.3 GetHeight()
```

```
size\_t\ rtm::CoatingUnion::GetHeight ( ) const
```

Функция для получения высоты объединения

Возвращает

высота объединения

7.6.3.4 GetCoatingObject()

```
\begin{tabular}{ll} $\tt rtm::CoatingUnion::GetCoatingObject ($$ int column, \\ int row ) const \end{tabular}
```

Функция для получения объекта

Аргументы

column	колонка (относительно всей карты), в которой находится объект
row	строка (относительно всей карты), в которой находится объект

```
Возвращает
     умный указатель на объект
7.6.3.5 GetLength()
float rtm::CoatingUnion::GetLength ( ) const [virtual]
Функция для получения длины (количества покрытий)
Возвращает
     длина
Переопределяется в rtm::DrivewayObject.
7.6.3.6 IsCorrectColumn()
bool rtm::CoatingUnion::IsCorrectColumn (
            int column ) const
Функция для проверки корректности колонки в данном объединении
Возвращает
     true, если объединение содержит данную колонку, иначе false
7.6.3.7 IsCorrectRow()
bool rtm::CoatingUnion::IsCorrectRow (
            int row ) const
Функция для проверки корректности строки в данном объединении
Возвращает
     true, если объединение содержит данную строку, иначе false
7.6.3.8 ShowSprites()
```

void rtm::CoatingUnion::ShowSprites (

cocos2d::Layer *const layer) [virtual]

Функция для добавления спрайтов на сцену

Аргументы

layer | слой, на который надо добавить спрайты управляющего блока

Переопределяется в rtm::CrossroadObject.

```
7.6.3.9 ReleaseSprites()
```

Функция для удаления спрайтов со сцены

Аргументы

layer | слой, с которого надо удалить спрайты управляющего блока

Переопределяется в rtm::CrossroadObject.

```
7.6.3.10 GetColumn_()
```

int rtm::CoatingUnion::GetColumn_ () const [protected]

 Φ ункция для получения левой колонки объединения

Возвращает

левая колонка объединения

```
7.6.3.11 \; \text{GetRow}_{\_}()
```

int rtm::CoatingUnion::GetRow () const [protected]

Функция для получения нижней строки объединения

Возвращает

нижняя строка объединения

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CoatingUnion.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CoatingUnion.cpp$

7.7 Класс rtm::ControlUnit

```
Класс управляющего блока (светофор)
#include <ControlUnit.h>
Открытые члены
   • ControlUnit ()
        Конструктор по умолчанию
   • ControlUnit (size t type, int column, int row, LinesCounts linesCounts)
        Конструктор управляющего блока перекрестком
   • ControlUnit (size t type, int column, int row, LinesCounts linesCounts, AngleType nullDirection)
        Конструктор управляющего блока перекрестком
   • virtual ~ControlUnit ()=default
        Деструктор по умолчанию
   • void Update (WorldController *const world)
        Функция обновления
   • operator bool () const
        Оператор преобразования в логический тип
   • SignalType GetSignal (DirectionType from, DirectionType to) const
        Функция для получения сигнала (статуса направления)
   • void ShowSprites (cocos2d::Layer *const layer)
        Функция для добавления спрайтов на сцену
   • void ReleaseSprites (cocos2d::Layer *const layer)
        Функция для удаления спрайтов со сцены
Закрытые члены
   • void InitSignals ()
        Функция для инициализации сигналов
   • void ResetSprites ()
        Функция для отображения спрайтов в зависимости от массива сигналов
   • void UpdateSignal_ (size_t i, size_t j, SignalType signal)
        Функция для безопасной установки сигнала (если направление не закрыто)
   • void IncState ()
        Функция для инкремента номера состояния
   • void SetState_ (size_t state)
        Функция для установки номера состояния
   • void ResetState ()
```

Функция для сброса номера состояния

Закрытые данные

• size_t type_

Номер типа управляющего блока (задает логику)

• int column

Левая колонка перекрестка

• int row

Нижняя строка перекрестка

• LinesCounts linesCounts

Количество полос в каждом направлении

• AngleType nullDirection

Сторона, в направлении которой нельзя двигаться

• CrossroadSignals signals_

Все сигналы управляющего блока

• DirectionsSignalSprites sprites

Все спрайты управляющего блока

• float time_

Время, прошедшее с последней смены сигнала

• size_t state_

Номер состояния (для последовательного включения сигналов разных направлений)

7.7.1 Подробное описание

Класс управляющего блока (светофор)

7.7.2 Конструктор(ы)

7.7.2.1 ControlUnit() [1/2]

Конструктор управляющего блока перекрестком

Аргументы

type	номер типа управляющего блока
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении

7.7.2.2 ControlUnit() [2/2]

Конструктор управляющего блока перекрестком

Аргументы

type	номер типа управляющего блока
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении
nullDirection	сторона, в направлении которой нельзя двигаться

7.7.3 Методы

7.7.3.1 Update()

```
void rtm::ControlUnit::Update (  \label{eq:WorldController *const world } WorldController *const world )
```

Функция обновления

Аргументы

world	контроллер	мира, в	котором	находится	объект
-------	------------	---------	---------	-----------	--------

7.7.3.2 operator bool()

rtm::ControlUnit::operator bool () const

Оператор преобразования в логический тип

Возвращает

true, если управляющий блок работает (меняются сигналы), иначе false

7.7.3.3 GetSignal()

Функция для получения сигнала (статуса направления)

Аргументы

from	направление, в котором транспорт движется
to	направление, в котором транспорт поедет дальше

Возвращает

сигнал в нужном направлении

7.7.3.4 ShowSprites()

```
\label{eq:controlUnit::ShowSprites} void \ rtm::ControlUnit::ShowSprites \ ( \\ cocos2d::Layer *const \ layer \ )
```

Функция для добавления спрайтов на сцену

Аргументы

layer | слой, на который надо добавить спрайты управляющего блока

7.7.3.5 ReleaseSprites()

```
\label{eq:controlUnit::ReleaseSprites} \begin{tabular}{ll} void $ttm::ControlUnit::ReleaseSprites ( & cocos2d::Layer *const layer ) \end{tabular}
```

Функция для удаления спрайтов со сцены

Аргументы

layer слой, с которого надо удалить спрайты управляющего блока

7.7.3.6 UpdateSignal ()

void rtm::ControlUnit::UpdateSignal (

```
\label{eq:size_t j, size_t j, SignalType signal } signal) \quad [private]
```

Функция для безопасной установки сигнала (если направление не закрыто)

Аргументы

i	индекс массива для исходного направления
j	индекс массива для конечного направления
signal	новый сигнал

Функция для установки номера состояния

Аргументы

```
state новый номера состояния
```

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/ControlUnit.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/ControlUnit.cpp$

7.8 Класс rtm::CrossroadObject

Класс пересечения дорог

#include < CrossroadObject.h >

Граф наследования:rtm::CrossroadObject:

Открытые члены

• CrossroadObject ()

Конструктор по умолчанию

• CrossroadObject (CoatingType type, int column, int row, LinesCounts linesCounts, size_t control UnitType=0)

Конструктор для обычного перекрестка

• CrossroadObject (CoatingType type, int column, int row, LinesCounts linesCounts, AngleType nullDirection, size t controlUnitType=0)

Конструктор для Т-образного перекрестка

• virtual ~CrossroadObject ()=default

Деструктор по умолчанию

• AngleType GetNullDirection () const

Функция для получения стороны, в направлении которой нельзя двигаться

• ControlUnitShared GetControlUnit () const

Функция для получения управляющего блока, привязанного к данному объекту

• virtual void ShowSprites (cocos2d::Layer *const layer) override

Функция для добавления спрайтов на сцену

• virtual void ReleaseSprites (cocos2d::Layer *const layer) override

Функция для удаления спрайтов со сцены

Открытые статические члены

• static CoatingMatrix CrossroadMatrix (CoatingType type, int column, int row, LinesCounts lines← Counts)

Функция для получения матрицы покрытий перекрестка

• static CoatingMatrix TCrossroadMatrix (CoatingType type, int column, int row, LinesCounts linesCounts, AngleType nullDirection)

Функция для получения матрицы покрытий Т-образного перекрестка

Закрытые данные

• LinesCounts linesCounts

Количество полос в каждом направлении

• AngleType nullDirection_

Сторона, в направлении которой нельзя двигаться

• ControlUnitShared controlUnit

Умный указатель на управляющий блок

Дополнительные унаследованные члены

7.8.1 Подробное описание

Класс пересечения дорог

7.8.2 Конструктор(ы)

7.8.2.1 CrossroadObject() [1/2]

```
\label{eq:constraint} \begin{split} rtm:: & CrossroadObject:: CrossroadObject \ ( \\ & & CoatingType \ type, \\ & int \ column, \\ & int \ row, \\ & & LinesCounts \ linesCounts, \\ & & size\_t \ controlUnitType = 0 \ ) \end{split}
```

Конструктор для обычного перекрестка

Аргументы

type	тип покрытия
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении
controlUnitType	номер типа управляющего блока

7.8.2.2 CrossroadObject() [2/2]

Конструктор для Т-образного перекрестка

Аргументы

type	тип покрытия
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении
nullDirection	сторона, в направлении которой нельзя двигаться
${\rm control} {\rm Unit} {\rm Type}$	номер типа управляющего блока

7.8.3 Методы

7.8.3.1 CrossroadMatrix()

```
\label{lem:coatingMatrix} \begin{split} \text{rtm::} \textbf{CoatingMatrix} & & \textbf{rtm::} \textbf{CrossroadObject::} \textbf{CrossroadMatrix} & \textbf{(} \\ & & \textbf{CoatingType type,} \end{split}
```

```
\label{eq:continuous} \begin{tabular}{ll} int \ row, \\ \end{tabular} \begin{tabular}{ll} LinesCounts \ linesCounts \ ) & [static] \end{tabular}
```

Функция для получения матрицы покрытий перекрестка

Аргументы

type	тип покрытия
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении

Возвращает

матрица покрытий

7.8.3.2 TCrossroadMatrix()

Функция для получения матрицы покрытий Т-образного перекрестка

Аргументы

type	тип покрытия
column	левая колонка перекрестка
row	нижняя строка перекрестка
linesCounts	количество полос в каждом направлении
nullDirection	сторона, в направлении которой нельзя двигаться

Возвращает

матрица покрытий

7.8.3.3 GetNullDirection()

 ${\tt rtm::AngleType\ rtm::CrossroadObject::GetNullDirection\ (\)\ const}$

Функция для получения стороны, в направлении которой нельзя двигаться

Возвращает

угол, соответствующий запрещенной стороне

```
7.8.3.4 GetControlUnit()
```

rtm::ControlUnitShared rtm::CrossroadObject::GetControlUnit () const

Функция для получения управляющего блока, привязанного к данному объекту

Возвращает

умный указатель на управляющий блок

```
7.8.3.5 ShowSprites()
```

Функция для добавления спрайтов на сцену

Аргументы

layer | слой, на который надо добавить спрайты управляющего блока

Переопределяет метод предка rtm::CoatingUnion.

```
7.8.3.6 ReleaseSprites()
```

```
\label{lem:coss} $$ void rtm::CrossroadObject::ReleaseSprites ( $$ cocos2d::Layer *const layer ) $$ [override], [virtual] $$
```

Функция для удаления спрайтов со сцены

Аргументы

```
layer слой, с которого надо удалить спрайты управляющего блока
```

Переопределяет метод предка rtm::CoatingUnion.

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CrossroadObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/CrossroadObject.cpp$

7.9 Класс rtm::DrivewayObject

Класс прямой дороги

#include <DrivewayObject.h>

Граф наследования:rtm::DrivewayObject:

Открытые члены

• DrivewayObject ()

Конструктор по умолчанию

• DrivewayObject (CoatingType type, int column, int row, size_t width, size_t height, AngleType angle)

Конструктор по размерам

• virtual ~DrivewayObject ()=default

Деструктор по умолчанию

• virtual float GetLength () const override

Функция для получения длины объекта (для вычисления кратчайшего пути)

• size t GetLinesCount () const

 Φ ункция для получения количества полос

• bool isRightLine (int column, int row) const

Функция для проверки: находится ли объект в правой полосе

• bool isRightLine (float x, float y) const

Функция для проверки: находится ли объект в правой полосе

• bool isLeftLine (int column, int row) const

Функция для проверки: находится ли объект в левой полосе

• bool isLeftLine (float x, float y) const

Функция для проверки: находится ли объект в левой полосе

Открытые статические члены

• static CoatingMatrix DrivewayMatrix (CoatingType type, int column, int row, size_t width, size← _t height, AngleType angle)

Функция для получения матрицы покрытий дороги

Закрытые статические члены

```
    static float CountLength_ (size_t width, size_t height, AngleType angle)
    Функция для вычисления длины объекта
    static size_t CountLines_ (size_t width, size_t height, AngleType angle)
    Функция для получения количества полос
```

Закрытые данные

• AngleType angle_

Направление движения

• float length

Длина объекта (для вычисления кратчайшего пути)

• size_t linesCount_

Количество полос

Дополнительные унаследованные члены

7.9.1 Подробное описание

Класс прямой дороги

7.9.2 Конструктор(ы)

7.9.2.1 DrivewayObject()

Конструктор по размерам

Аргументы

type	тип покрытия
column	левая колонка объекта
row	нижняя строка объекта
width	ширина объекта
height	высота объекта
angle	направление движения

7.9.3 Методы

```
7.9.3.1 DrivewayMatrix()
```

Функция для получения матрицы покрытий дороги

Аргументы

type	тип покрытия
column	левая колонка объекта
row	нижняя строка объекта
width	ширина объекта
height	высота объекта
angle	направление движения

Возвращает

матрица покрытий

7.9.3.2 GetLength()

 $float\ rtm::DrivewayObject::GetLength\ (\)\ const\quad [override],\ [virtual]$

Функция для получения длины объекта (для вычисления кратчайшего пути)

Возвращает

длина

Переопределяет метод предка rtm::CoatingUnion.

7.9.3.3 GetLinesCount()

size t rtm::DrivewayObject::GetLinesCount () const

Функция для получения количества полос

Возвращает

количество полос

7.9.3.4 isRightLine() [1/2]

```
\begin{array}{c} bool \ rtm::DrivewayObject::isRightLine \ (\\ int \ column,\\ int \ row \ ) \ const \end{array}
```

 Φ ункция для проверки: находится ли объект в правой полосе

Аргументы

column	колонка, в которой находится объект
row	строка, в которой находится объект

Возвращает

true, если объект находится в правой полосе, иначе false

7.9.3.5 isRightLine() [2/2]

```
\label{eq:bool_problem} \begin{split} bool\ rtm:: Drive way Object:: is Right Line\ (\\ float\ x,\\ float\ y\ )\ const \end{split}
```

Функция для проверки: находится ли объект в правой полосе

Аргументы

X	абсцисса объекта
у	ордината объекта

Возвращает

true, если объект находится в правой полосе, иначе false

7.9.3.6 isLeftLine() [1/2]

 Φ ункция для проверки: находится ли объект в левой полосе

Аргументы

column	колонка, в которой находится объект
row	строка, в которой находится объект

Возвращает

true, если объект находится в левой полосе, иначе false

7.9.3.7 is Left Line() [2/2]

```
\begin{array}{c} bool\ rt\,m::DrivewayO\,bject::isLeft\,Line\ (\\ float\ x,\\ float\ y\ )\ const \end{array}
```

Функция для проверки: находится ли объект в левой полосе

Аргументы

X	абсцисса объекта
у	ордината объекта

Возвращает

true, если объект находится в левой полосе, иначе false

7.9.3.8 CountLength_()

```
\label{lem:continuous} \begin{split} \text{float } \text{rtm::DrivewayObject::CountLength}\_ \ ( \\ \text{size}\_t \ \text{width}, \\ \text{size}\_t \ \text{height}, \\ \text{AngleType angle} \ ) \quad [\text{static}], \ [\text{private}] \end{split}
```

Функция для вычисления длины объекта

Аргументы

width	ширина объекта
height	высота объекта
angle	направление движения

Возвращает

длина объекта

7.9.3.9 CountLines_()

```
 \begin{split} size\_t \ rtm::& DrivewayObject::CountLines\_\ (\\ size\_t \ width, \\ size\_t \ height, \\ & AngleType \ angle\ ) \quad [static], \ [private] \end{split}
```

Функция для получения количества полос

Аргументы

width	ширина объекта
height	высота объекта
angle	направление движения

Возвращает

количество полос

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/DrivewayObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/DrivewayObject.cpp$

7.10 Класс rtm::DynamicObject

Класс динамического объекта (который двигается, обновляется)

#include <DynamicObject.h>

Граф наследования:rtm::DynamicObject:

Открытые члены

• DynamicObject ()

Конструктор по умочанию

• DynamicObject (cocos2d::Sprite *sprite, float x, float y, float angle, float speed)

Конструктор с использованием уже готового спрайта

• DynamicObject (std::string const &filename, float x, float y, float angle, float speed)

Конструктор из файла

• virtual ~DynamicObject ()=default

Деструктор по умолчанию

• float GetSpeed () const

Функция для получения скорости

• float GetLastDelta () const

Функция для получения последнего приращения положения

• bool HasCollision () const

Функция для проверки наличия столкновений у данного объекта

• virtual void Update (WorldController *const world)

Функция обновления

• bool IsNearOthers (WorldController *const world)

Функция для поиска объектов неподалеку

Защищенные члены

• void SetSpeed (float speed)

Функция для установки скорости

• void SetCollisionFlag_ (bool flag)

Функция для сохранения информации о столкновениях

• bool IsBeholding_ (WorldObject const *const other, float radius=VIEW_RADIUS, float angle=VIEW_ANGLE, float angleShift=VIEW_ANGLE_SHIFT) const

Функция для проверки попадания объекта в зону видимости

• bool IsIntersecting (WorldObject const *const other) const

Функция для проверки наличия столкновения с other.

Закрытые члены

• bool IsNear_ (WorldObject const *const other) const

Функция для проверки, находится ли other рядом с данным объектом

Закрытые данные

• float speed

Текущая скорость

• float lastDelta

Длина последнего смещения

• bool hasCollision

Наличие столкновений у данного объекта

Друзья

• void CheckCollisions (WorldController *const world)

Функция для вычисления столкновений в мире

7.10.1 Подробное описание

Класс динамического объекта (который двигается, обновляется)

7.10.2 Конструктор(ы)

7.10.2.1 DynamicObject() [1/2]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт
X	абсцисса будущего объекта
У	ордината будущего объекта
angle	угол поворота строения
speed	первоначальная скорость

7.10.2.2 DynamicObject() [2/2]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации
X	абсцисса будущего объекта
у	ордината будущего объекта
angle	угол поворота строения
speed	первоначальная скорость

7.10.3 Методы

7.10.3.1 GetSpeed()

 ${\it float\ rtm::} DynamicObject:: GetSpeed\ (\)\ const$

Функция для получения скорости

Возвращает

скорость объекта

```
7.10.3.2 GetLastDelta()
float rtm::DynamicObject::GetLastDelta ( ) const
Функция для получения последнего приращения положения
Возвращает
     длина последнего смещения
7.10.3.3 HasCollision()
bool rtm::DynamicObject::HasCollision () const
Функция для проверки наличия столкновений у данного объекта
Возвращает
     true, если после последней проверки была столкновение, иначе false
7.10.3.4 Update()
void rtm::DynamicObject::Update (
            WorldController *const world ) [virtual]
Функция обновления
Аргументы
 world
         контроллер мира, в котором находится объект
Переопределяется в rtm::VehicleObject.
7.10.3.5 IsNearOthers()
```

Создано системой Doxygen

bool rtm::DynamicObject::IsNearOthers (

WorldController *const world)

Функция для поиска объектов неподалеку

Аргументы

```
world контроллер мира, в котором находится объект
```

Возвращает

true, если какой-нибудь объект находится рядом, иначе false

```
7.10.3.6 SetSpeed_()

void rtm::DynamicObject::SetSpeed_ (
float speed ) [protected]

Функция для установки скорости
Аргументы

speed новая скорость
```

```
7.10.3.7 SetCollisionFlag_()

void rtm::DynamicObject::SetCollisionFlag_(
bool flag) [protected]
```

Функция для сохранения информации о столкновениях

Аргументы

```
flag | есть ли столкновение
```

```
7.10.3.8 IsBeholding_()
```

Функция для проверки попадания объекта в зону видимости

Аргументы

other	указатель на второй объект
radius	радиус видимости
angle	угол видимости (в каждую из сторон)
angleShift	сдвиг области видимости

Возвращает

true, если other находится в области видимости данного объекта, иначе false

7.10.3.9 IsIntersecting ()

```
bool\ rtm:: DynamicObject:: IsIntersecting \_ (  WorldObject\ const\ *const\ other\ )\ const\ \ [protected]
```

Функция для проверки наличия столкновения с other.

Аргументы

other	указатель на второй объект
-------	----------------------------

Возвращает

true, если объект пересекается с other, иначе false

```
7.10.3.10 IsNear_()
```

 Φ ункция для проверки, находится ли other рядом с данным объектом

Аргументы

other	указатель на второй объект

Возвращает

true, если other рядом, иначе false

7.10.4 Документация по друзьям класса и функциям, относящимся к классу

7.10.4.1 CheckCollisions

```
void CheckCollisions (

WorldController *const world ) [friend]
```

Функция для вычисления столкновений в мире

Аргументы

world контроллер мира, в котором будут происходить вычисления

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/DynamicObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/DynamicObject.cpp$

7.11 Класс rtm::MapObject

Класс статического объекта карты

#include <MapObject.h>

Граф наследования:rtm::MapObject:

Открытые члены

• MapObject ()

Конструктор по умочанию

 $\bullet \ \ \underline{\textbf{MapObject}} \ \ (\textbf{cocos2d::Sprite} \ *\textbf{sprite}, \ \textbf{int} \ \ \textbf{column}, \ \textbf{int} \ \ \textbf{row}, \ \textbf{float} \ \ \textbf{angle})$

Конструктор с использованием уже готового спрайта

• MapObject (std::string const &filename, int column, int row, float angle)

Конструктор из файла

• virtual ~MapObject ()=default

Деструктор по умолчанию

Дополнительные унаследованные члены

7.11.1 Подробное описание

Класс статического объекта карты

7.11.2 Конструктор(ы)

7.11.2.1 MapObject() [1/2]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт
column	колонка, в которой необходимо отрисовать объект
row	строка, в которой необходимо отрисовать объект
angle	угол поворота объекта

7.11.2.2 MapObject() [2/2]

Классы 82 Конструктор из файла

Аргументы

filename	путь к файлу инициализации
column	колонка, в которой необходимо отрисовать объект
row	строка, в которой необходимо отрисовать объект
angle	угол поворота объекта

Объявления и описания членов классов находятся в файлах:

- C:/Users/Vladimir/Documents/Visual Studio 2017/Projects/RTM/Classes/MapObject.h
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/MapObject.cpp$

7.12 Класс rtm::PuddleCoating

Класс, описывающий лужи

#include < PuddleCoating.h >

Граф наследования:rtm::PuddleCoating:

Открытые члены

• PuddleCoating ()

Конструктор по умочанию

• PuddleCoating (cocos2d::Sprite *const sprite, int column, int row, AngleType angle)

Конструктор с использованием уже готового спрайта

• PuddleCoating (std::string const &filename, int column, int row, AngleType angle)

Конструктор из файла

• PuddleCoating (size_t id, int column, int row, AngleType angle)

Конструктор стандартного лужи

• virtual \sim PuddleCoating ()=default

Деструктор по умолчанию

84

Дополнительные унаследованные члены

7.12.1 Подробное описание

Класс, описывающий лужи

7.12.2 Конструктор(ы)

7.12.2.1 PuddleCoating() [1/3]

```
\label{eq:conting:puddleCoating} The interpolation of the continuous constant of the continuous c
```

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт	
column	колонка, в которой необходимо отрисовать лужу	
row	строка, в которой необходимо отрисовать лужу	
angle	угол поворота лужи	

7.12.2.2 PuddleCoating() [2/3]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации
column	колонка, в которой необходимо отрисовать лужу
row	строка, в которой необходимо отрисовать лужу
angle	угол поворота лужи

7.12.2.3 PuddleCoating() [3/3]

```
\label{eq:coating:puddleCoating} $$\operatorname{rtm}::PuddleCoating ($$\operatorname{size\_t}$ id, $$ \operatorname{int column}, $$ \operatorname{int row}, $$ AngleType angle )
```

Конструктор стандартного лужи

Аргументы

id	номер стандартной лужи	
column	колонка, в которой необходимо отрисовать лужу	
row	строка, в которой необходимо отрисовать лужу	
angle	угол поворота лужи	

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/PuddleCoating.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/PuddleCoating.cpp$

7.13 Класс rtm::RoadCoating

Класс, описывающий дороги

#include < RoadCoating.h >

Граф наследования:rtm::RoadCoating:

Открытые члены

- RoadCoating ()
 - Конструктор по умочанию
- RoadCoating (cocos2d::Sprite *const sprite, int column, int row, AngleType angle, float resistance, Directions directions)

Конструктор с использованием уже готового спрайта

• RoadCoating (std::string const &filename, int column, int row, AngleType angle, float resistance, Directions directions)

Конструктор из файла

• RoadCoating (CoatingType type, size t id, int column, int row, AngleType angle)

Конструктор стандартного дороги

• virtual ~RoadCoating ()=default

Деструктор по умолчанию

Закрытые статические члены

• static float GetClassResistance (CoatingType type)

Функция для получения коэффициента сопротивления на стандартной дороге по номеру

• static Directions const & GetClassDirections (size t id)

Функция для получения доступных направлений стандартной дороги по номеру

Дополнительные унаследованные члены

7.13.1 Подробное описание

Класс, описывающий дороги

7.13.2 Конструктор(ы)

7.13.2.1 RoadCoating() [1/3]

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт	
column	колонка, в которой необходимо отрисовать дорогу	
row	строка, в которой необходимо отрисовать дорогу	
angle	угол поворота дороги	
resistance	коэффициент сопротивления на дороге	
directions	доступные направления для движения	

7.13.2.2 RoadCoating() [2/3]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации	
column	колонка, в которой необходимо отрисовать дорогу	
row	строка, в которой необходимо отрисовать дорогу	
angle	угол поворота дороги	
resistance коэффициент сопротивления на дороге		
directions	доступные направления для движения	

7.13.2.3 RoadCoating() [3/3]

Конструктор стандартного дороги

Аргументы

type	стандартный тип покрытия
id	номер стандартной дороги
column	колонка, в которой необходимо отрисовать дорогу
row	строка, в которой необходимо отрисовать дорогу
angle	угол поворота дороги

7.13.3 Методы

```
7.13.3.1 GetClassResistance ()
```

```
\label{localing:GetClassResistance} float \ rtm::RoadCoating::GetClassResistance\_\ ($ CoatingType \ type \ ) \quad [static], \ [private]
```

Функция для получения коэффициента сопротивления на стандартной дороге по номеру

Аргументы

```
type тип покрытия
```

Возвращает

сопротивление

```
7.13.3.2 GetClassDirections ()
```

Функция для получения доступных направлений стандартной дороги по номеру

Аргументы

```
id номер стандартной дороги
```

Возвращает

доступные направления

Объявления и описания членов классов находятся в файлах:

- C:/Users/Vladimir/Documents/Visual Studio 2017/Projects/RTM/Classes/RoadCoating.h
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/RoadCoating.cpp$

7.14 Структура rtm::SpawnТуре

Структура, описывающая параметры точки генерации объектов

```
#include <General.h>
```

Открытые атрибуты

• int column

Номер столбца

• int row

Номер строки

• float angle

Первоначальный угол для транспорта

7.14.1 Подробное описание

Структура, описывающая параметры точки генерации объектов

Объявления и описания членов структуры находятся в файле:

 $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/General.h$

7.15 Класс rtm::StaticObject

Класс статического объекта (который не обновляется)

#include <StaticObject.h>

Граф наследования:rtm::StaticObject:

Открытые члены

• StaticObject ()

Конструктор по умочанию

• StaticObject (cocos2d::Sprite *sprite, float x, float y, float angle)

Конструктор с использованием уже готового спрайта

• StaticObject (std::string const &filename, float x, float y, float angle)

Конструктор из файла

• virtual ~StaticObject ()=default

Деструктор по умолчанию

Дополнительные унаследованные члены

7.15.1 Подробное описание

Класс статического объекта (который не обновляется)

7.15.2 Конструктор(ы)

7.15.2.1 StaticObject() [1/2]

```
\label{eq:cocos2d::Sprite} $$ rtm::StaticObject::StaticObject ( \\ cocos2d::Sprite * sprite, \\ float x, \\ float y, \\ float angle )
```

Конструктор с использованием уже готового спрайта

Аргументы

sprite	указатель на готовый спрайт
X	абсцисса будущего объекта
У	ордината будущего объекта
angle	угол поворота строения

7.15.2.2 StaticObject() [2/2]

Конструктор из файла

Аргументы

	$_{ m filename}$	путь к файлу инициализации
	X	абсцисса будущего объекта
Ī	у	ордината будущего объекта
	angle	угол поворота строения

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/StaticObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/StaticObject.cpp$

7.16 Класс rtm::TurnObject

Класс поворота дороги

#include <TurnObject.h>

Граф наследования:rtm::TurnObject:

Открытые члены

• TurnObject ()

Конструктор по умолчанию

• TurnObject (bool isRight, CoatingType type, int column, int row, size_t linesCount, AngleType angle)

Конструктор по размерам

• virtual \sim TurnObject ()=default

Деструктор по умолчанию

• bool IsRight () const

Функция для получения типа поворота

• AngleType GetAngle () const

Функция для получения угла поворота объекта

Открытые статические члены

• static CoatingMatrix RightTurnMatrix (CoatingType type, int column, int row, size_t linesCount, AngleType angle)

Функция для получения матрицы правого поворота

• static CoatingMatrix LeftTurnMatrix (CoatingType type, int column, int row, size_t linesCount, AngleType angle)

Функция для получения матрицы левого поворота

92

Закрытые данные

• bool isRight_

Тип поворота

• AngleType angle_

Угол поворота объекта

Дополнительные унаследованные члены

7.16.1 Подробное описание

Класс поворота дороги

7.16.2 Конструктор(ы)

7.16.2.1 TurnObject()

Конструктор по размерам

Аргументы

isRight тип поворота (false - левый, true - пра	
type	тип покрытия
column	левая колонка объекта
row	нижняя строка объекта
linesCount количество полос	
angle	угол поворота объекта

7.16.3 Методы

7.16.3.1 RightTurnMatrix()

```
\label{thm:coatingMatrix} \begin{split} \text{rtm::} & \text{CoatingMatrix rtm::} \\ & \text{CoatingType type,} \end{split}
```

```
int column,
int row,
size_t linesCount,
AngleType angle ) [static]
```

Функция для получения матрицы правого поворота

Аргументы

type	тип покрытия
column	левая колонка объекта
row	нижняя строка объекта
linesCount	количество полос
angle	угол поворота объекта

Возвращает

матрица покрытий

7.16.3.2 LeftTurnMatrix()

Функция для получения матрицы левого поворота

Аргументы

type	тип покрытия
column	левая колонка объекта
row	нижняя строка объекта
linesCount	количество полос
angle	угол поворота объекта

Возвращает

матрица покрытий

7.16.3.3 IsRight()

bool $\operatorname{rtm}::\operatorname{TurnObject}::\operatorname{IsRight}$ () const

Функция для получения типа поворота

Возвращает

true, если правый поворот, false, если левый

7.16.3.4 GetAngle()

rtm::AngleType rtm::TurnObject::GetAngle () const

Функция для получения угла поворота объекта

Возвращает

угол поворота объекта

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/TurnObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/TurnObject.cpp$

7.17 Класс rtm::VehicleObject

Класс транспорта (динамического объекта карты)

#include < VehicleObject.h >

Граф наследования:rtm::VehicleObject:

Открытые члены

• VehicleObject ()

Конструктор по умочанию

• VehicleObject (cocos2d::Sprite *const sprite, int column, int row, float angle, float maxSpeed, float acceleration, float deceleration)

Конструктор с использованием уже готового спрайта

• VehicleObject (std::string const &filename, int column, int row, float angle, float maxSpeed, float acceleration, float deceleration)

Конструктор из файла

• virtual ~VehicleObject ()=default

Деструктор по умолчанию

• virtual void Update (WorldController *const world) override

Функция обновления

Защищенные члены

• bool MoveForward ()

Функция для сообщения о необходимости начать движение

• bool Stop ()

Функция для сообщения о необходимости остановиться

• bool Rotate (float angle=ANGLE RIGHT)

Функция для сообщения о необходимости повернуть

• bool ChangeLine (bool isRight=LEFT)

Функция для сообщения о необходимости перестроиться

• bool IsMovement () const

Функция, сообщающая о движении объекта

• bool IsRotation () const

Функция, сообщающая о повороте объекта

• bool IsLineChanging_ () const

Функция, сообщающая о перестроении объекта

• bool IsBraking () const

Функция, сообщающая о торможении объекта перед светофором и т.д.

• float GetMaxSpeed () const

Функция для получения максимальной скорости

• float GetFinalSpeed () const

Функция для получения финальной скорости (к которой объект будет стремиться)

• void SetFinalSpeed (float speed)

Функция для установки финальной скорости (к которой объект будет стремиться)

• void SetBrakingFactor (float factor)

Функция для установки коэффициента торможения

• void StopAtDistance (float distance)

Функция для установки тормозого пути (объект будет пытаться остановиться за данную дистанпию)

Зрение у машин

Функции для просмотра окружающего мира

- CoatingObject * CheckForwardCoating_ (WorldController *const world, int delta=1)
 - Функция для получения следующего по ходу движения покрытия
- CoatingUnion * CheckForwardCoatingUnion (WorldController *const world, int delta=1)

Функция для получения следующего по ходу движения объединения покрытий

• DynamicObject * CheckForwardArea_ (WorldController *const world, float radius, float angle, float angleShift)

Функция для проверки области видимости спереди

• DynamicObject * CheckMovingArea (WorldController *const world)

Функция для проверки области видимости во время движения по прямой

• DynamicObject * CheckTurnArea (WorldController *const world, bool isRight)

Функция для проверки области видимости перед поворотом

• DynamicObject * CheckRotationArea_ (WorldController *const world)

Функция для проверки области видимости во время поворота

• DynamicObject * CheckCrossroadArea (WorldController *const world)

Функция для проверки области видимости перед нерегулируемым перекрестком

• DynamicObject * CheckLineChangingArea_ (WorldController *const world)

Функция для проверки области видимости перед перестроением

Маневры

Функции выполняющиеся во время маневров

• virtual void BeforeMoving_ (WorldController *const world)

Функция, выполняющаяся непосредственно перед перемещением объекта

• virtual void AfterMoving_ (WorldController *const world)

Функция, выполняющаяся непосредственно после перемещением объекта

• virtual bool MovementStart (WorldController *const world)

Функция, выполняющаяся перед началом движения

• virtual bool MovementTick (WorldController *const world)

Функция, выполняющаяся во время движения

• virtual bool MovementEnd_ (WorldController *const world)

Функция, выполняющаяся после движения (перед началом остановки)

• virtual bool RotationStart (WorldController *const world)

Функция, выполняющаяся перед поворотом

• virtual bool RotationTick (WorldController *const world)

Функция, выполняющаяся во время поворота

• virtual bool RotationEnd (WorldController *const world)

Функция, выполняющаяся после поворота

• virtual bool LineChangingStart (WorldController *const world)

Функция, выполняющаяся перед перестроением

• virtual bool LineChangingTick (WorldController *const world)

Функция, выполняющаяся во время перестроения

• virtual bool LineChangingEnd (WorldController *const world)

Функция, выполняющаяся после перестроения

Закрытые члены

• void LineChanging (WorldController *const world)

Функция, выполняющая различные этапы при перестроении

• void Rotation_ (WorldController *const world)

Функция, выполняющая различные этапы при повороте

• void Movement (WorldController *const world)

Функция, выполняющая различные этапы при движении

• void SpeedChanging_ (WorldController *const world)

Функция, выполняющая изменение скорости в зависимости от ускорения, тормозного пути и т.д.

• void SmoothBrakingCounter (WorldController *const world)

Функция, выполняющая декрементирование тормозного пути (если задан)

Закрытые данные

```
• StateType isMovement
    Этап выполнения движения (стоит, движется)
• StateType isRotation
    Этап выполнения поворота
• StateType isLineChanging_
    Этап выполнения перестроения
• float const maxSpeed
    Максимальная скорость
• float const acceleration
    Ускорение
• float const deceleration
    Скорость замедления
```

• float finalSpeed

Финальная скорость

• float brakingFactor

Коэффициент торможения

• float brakingDistance_

Тормозной путь

• float rotationAngle

Угол, на который надо повернуться

• float rotationRadius

Радиус окружности, по которой двигается объект

• float remainingOffset

Оставшийся перпендикулярный движению сдвиг при перестроении

• float remainingOffsetAngle

Направление перестроения (перпендикулярно движению)

7.17.1Подробное описание

Класс транспорта (динамического объекта карты)

7.17.2 Конструктор(ы)

7.17.2.1 VehicleObject() [1/2]

```
rtm::VehicleObject::VehicleObject (
                cocos2d::Sprite *const sprite,
                int column,
                int row,
                float angle,
                float maxSpeed,
                float acceleration,
                float deceleration )
```

Конструктор с использованием уже готового спрайта

98

Аргументы

sprite	указатель на готовый спрайт
column	колонка, в которой необходимо отрисовать машину
row	строка, в которой необходимо отрисовать машину
angle	угол поворота машины
$\max Speed$	максимальная скорость машины
acceleration	ускорение машины
deceleration	скорость замедления машины

7.17.2.2 VehicleObject() [2/2]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации
column	колонка, в которой необходимо отрисовать машину
row	строка, в которой необходимо отрисовать машину
angle	угол поворота машины
$\max Speed$	максимальная скорость машины
acceleration	ускорение машины
deceleration	скорость замедления машины

7.17.3 Методы

7.17.3.1 Update()

```
\label{eq:const_void} \begin{tabular}{ll} void $\operatorname{rtm}::VehicleObject::Update ( & WorldController *const world ) & [override], [virtual] \end{tabular}
```

Функция обновления

Аргументы

```
world контроллер мира, в котором находится объект
```

Переопределяет метод предка rtm::DynamicObject.

```
7.17.3.2 MoveForward ()
```

bool rtm::VehicleObject::MoveForward_ () [protected]

Функция для сообщения о необходимости начать движение

Возвращает

true, если возможно начать движение, иначе false

```
7.17.3.3 Stop_()
```

bool rtm::VehicleObject::Stop_ () [protected]

Функция для сообщения о необходимости остановиться

Возвращает

true, если возможно остановиться, иначе false

```
7.17.3.4 Rotate_()
```

```
bool \ rtm::VehicleObject::Rotate\_ \ ( float \ angle = \ ANGLE\_RIGHT \ ) \quad [protected]
```

Функция для сообщения о необходимости повернуть

Аргументы

```
angle угол, на который необходимо повернуть
```

Возвращает

true, если возможно повернуть, иначе false (если поворот уже начат)

```
7.17.3.5 ChangeLine_()
```

```
bool \ rtm::VehicleObject::ChangeLine\_ \ ( bool \ isRight = LEFT \ ) \quad [protected]
```

Функция для сообщения о необходимости перестроиться

Аргументы

isRight сторона, в которую надо перестроиться (можно использовать константы rtm::LEFT и rtm::RIGHT)

Возвращает

true, если возможно перестроиться, иначе false

```
7.17.3.6 IsMovement ()
```

bool rtm::VehicleObject::IsMovement_ () const [protected]

Функция, сообщающая о движении объекта

Возвращает

true, если объект движется, иначе false

```
7.17.3.7 IsRotation ()
```

 $bool\ rtm:: VehicleObject:: IsRotation_\ (\)\ const\quad [protected]$

Функция, сообщающая о повороте объекта

Возвращает

true, если объект поворачивает, иначе false

```
7.17.3.8 IsLineChanging ()
```

 $bool\ rtm:: VehicleObject:: IsLineChanging_\ (\)\ const\quad [protected]$

Функция, сообщающая о перестроении объекта

Возвращает

true, если объект перестраивается, иначе false

```
7.17.3.9 IsBraking_()
bool\ rtm:: VehicleObject:: IsBraking\_\ (\ )\ const\quad [protected]
Функция, сообщающая о торможении объекта перед светофором и т.д.
Возвращает
     true, если объект тормозит, иначе false
7.17.3.10 GetMaxSpeed ()
float rtm::VehicleObject::GetMaxSpeed () const [protected]
Функция для получения максимальной скорости
Возвращает
     максимальная скорость
7.17.3.11 GetFinalSpeed_()
float rtm::VehicleObject::GetFinalSpeed_ ( ) const [protected]
Функция для получения финальной скорости (к которой объект будет стремиться)
Возвращает
     конечная скорость
7.17.3.12 SetFinalSpeed_()
void\ rtm:: VehicleObject:: SetFinalSpeed\_\ (
             float speed ) [protected]
Функция для установки финальной скорости (к которой объект будет стремиться)
Аргументы
 _{\mathrm{speed}}
         новая скорость
```

102

```
7.17.3.13 SetBrakingFactor_()
```

Функция для установки коэффициента торможения

Аргументы

```
factor новый коэффициент торможения (1 - торможение с обычным ускорением)
```

```
7.17.3.14 StopAtDistance_()
```

Функция для установки тормозого пути (объект будет пытаться остановиться за данную дистанцию)

Аргументы

```
distance | дистанция, за которую необходимо остановиться
```

7.17.3.15 CheckForwardCoating ()

```
\label{eq:contingObject} $$ rtm::VehicleObject::CheckForwardCoating_ ($$ WorldController *const world, $$ int delta = 1 ) [protected]
```

Функция для получения следующего по ходу движения покрытия

Аргументы

world	контроллер мира, в котором находится объект
$_{ m delta}$	сдвиг в клетках относительно данного объекта (1 - следующая, 2 - через одну)

Возвращает

указатель на покрытие

7.17.3.16 CheckForwardCoatingUnion ()

```
\label{eq:contingUnion} $$ rtm::CoatingUnion * rtm::VehicleObject::CheckForwardCoatingUnion_ ($$ WorldController *const world, $$ int delta = 1 ) [protected]
```

 Φ ункция для получения следующего по ходу движения объединения покрытий

Аргументы

world	контроллер мира, в котором находится объект
delta	сдвиг в клетках относительно данного объекта (1 - следующее, 2 - через одно)

Возвращает

указатель на объединение покрытий

7.17.3.17 CheckForwardArea_()

Функция для проверки области видимости спереди

Аргументы

world	контроллер мира, в котором находится данный объект
radius	радиус видимости
angle	угол видимости (в каждую из сторон)
angleShift	сдвиг области видимости

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

7.17.3.18 CheckMovingArea_()

Функция для проверки области видимости во время движения по прямой

104

Аргументы

world	контроллер мира, в котором находится данный объект
-------	--

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

7.17.3.19 CheckTurnArea_()

Функция для проверки области видимости перед поворотом

Аргументы

world	контроллер мира, в котором находится данный объект
isRight	сторона, в которую совершается поворот (тип поворота)

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

7.17.3.20 CheckRotationArea ()

 Φ ункция для проверки области видимости во время поворота

Аргументы

world контроллер мира, в котором находит	я данный объект
--	-----------------

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

```
7.17.3.21 CheckCrossroadArea ()
```

```
\begin{tabular}{ll} $\tt rtm::DynamicObject*rtm::VehicleObject::CheckCrossroadArea\_( &WorldController*const world) & [protected] \end{tabular}
```

Функция для проверки области видимости перед нерегулируемым перекрестком

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

7.17.3.22 CheckLineChangingArea ()

```
\label{lem:continuous} $\operatorname{rtm}::\operatorname{DynamicObject} * \operatorname{rtm}::\operatorname{VehicleObject}::\operatorname{CheckLineChangingArea}_{-}$ ( $\operatorname{WorldController} * \operatorname{const} \operatorname{world}$) [protected]
```

Функция для проверки области видимости перед перестроением

Аргументы

```
world контроллер мира, в котором находится данный объект
```

Возвращает

указатель на объект, находящийся в области видимости nullptr, если нет объектов в области видимости

```
7.17.3.23 BeforeMoving_()
```

```
\label{lem:void_relation} $$ void \ rtm::VehicleObject::BeforeMoving_($ WorldController *const \ world ) \ [protected], [virtual] $$
```

Функция, выполняющаяся непосредственно перед перемещением объекта

Аргументы

world контроллер мира, в котором находится данный объект

```
7.17.3.24 AfterMoving_()
```

```
\label{lem:void_total} $$ void rtm::VehicleObject::AfterMoving_ ( $$ WorldController *const world ) [protected], [virtual] $$
```

Функция, выполняющаяся непосредственно после перемещением объекта

Аргументы

world контроллер мира, в котором находится данный объект

```
7.17.3.25 MovementStart ()
```

```
bool\ rtm:: VehicleObject:: MovementStart\_ ( \\ WorldController *const world ) \quad [protected], [virtual]
```

Функция, выполняющаяся перед началом движения

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится MovementTick) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

Переопределяется в rtm::CarObject.

```
7.17.3.26 MovementTick ()
```

Функция, выполняющаяся во время движения

Аргументы

```
world контроллер мира, в котором находится данный объект
```

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится MovementEnd) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

Переопределяется в rtm::CarObject.

```
7.17.3.27 MovementEnd ()
```

Функция, выполняющаяся после движения (перед началом остановки)

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (движение на этом закончится) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

Переопределяется в rtm::CarObject.

```
7.17.3.28 RotationStart ()
```

Функция, выполняющаяся перед поворотом

Аргументы

```
world контроллер мира, в котором находится данный объект
```

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится RotationTick) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

```
7.17.3.29 RotationTick ()
```

Функция, выполняющаяся во время поворота

108

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится RotationEnd) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

```
7.17.3.30 RotationEnd ()
```

Функция, выполняющаяся после поворота

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (поворот на этом закончится) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

7.17.3.31 LineChangingStart()

Функция, выполняющаяся перед перестроением

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится LineChangingTick) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

Переопределяется в rtm::CarObject.

```
7.17.3.32 LineChangingTick ()
```

Функция, выполняющаяся во время перестроения

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (в следующий раз выполнится LineChangingEnd) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

7.17.3.33 LineChangingEnd ()

Функция, выполняющаяся после перестроения

Аргументы

world контроллер мира, в котором находится данный объект

Возвращает

true, если шаг успешно завершён (перестроение на этом закончится) false, если необходимо повторить этот шаг (в следующий раз выполнится опять эта функция)

7.17.3.34 LineChanging_()

Функция, выполняющая различные этапы при перестроении

Аргументы

world контроллер мира, в котором находится данный объект

```
7.17.3.35 Rotation_()
void rtm::VehicleObject::Rotation (
            WorldController *const world ) [private]
Функция, выполняющая различные этапы при повороте
Аргументы
 world
         контроллер мира, в котором находится данный объект
7.17.3.36 Movement ()
void rtm::VehicleObject::Movement_ (
             WorldController *const world ) [private]
Функция, выполняющая различные этапы при движении
Аргументы
         контроллер мира, в котором находится данный объект
 world
7.17.3.37 SpeedChanging ()
void rtm::VehicleObject::SpeedChanging (
             WorldController *const world ) [private]
Функция, выполняющая изменение скорости в зависимости от ускорения, тормозного пути и т.д.
Аргументы
 world
         контроллер мира, в котором находится данный объект
7.17.3.38 SmoothBrakingCounter()
void rtm::VehicleObject::SmoothBrakingCounter (
             WorldController *const world ) [private]
Функция, выполняющая декрементирование тормозного пути (если задан)
```

Аргументы

world контроллер мира, в котором находится данный объект

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/VehicleObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/VehicleObject.cpp$

7.18 Kласс rtm::WorldController

Класс контроллера карты, связующее звено всех объектов

#include <WorldController.h>

Открытые члены

• WorldController ()

Конструктор по умолчанию

• WorldController (WorldScene *const scene)

Конструктор без загрузки какой-либо карты

• WorldController (WorldScene *const scene, std::string const &filename)

Конструктор с загрузкой карты

• WorldController (WorldScene *const scene, size_t mapNumber)

Конструктор с загрузкой карты

• void Update (float time)

Функция обновления

• cocos2d::Layer * GetLayer () const

Функция для получения основного слоя сцены (на нём вся движуха)

• size t GetColumnsCount () const

Функция для получения количества столбцов карты

• size t GetRowsCount () const

Функция для получения количества строк карты

• float GetDeltaTime () const

Функция для получения последней разницей между обновлениями

• float GetTimeFactor () const

Функция для получения коэффициента ускорения времени

• CoatingObject * GetCoatingObject (int column, int row)

Функция для получения объекта в определенной клетке

• CoatingUnion * GetCoatingUnion (int column, int row)

Функция для получения объединения покрытий в определенной клетке

• StaticObject * GetStaticObject (int column, int row)

Функция для получения статического объекта в определенной клетке

• std::vector< DynamicShared > & GetDynamicObjects ()

Функция для получения массива движущихся объектов

• bool IsPause ()

Функция сообщает, происходят ли обновления

• bool IsCorrectColumn (int column)

Функция проверяет корректность столбца

• bool IsCorrectRow (int row)

Функция проверяет корректность строки

• bool IsAllowableColumn (int column)

Функция проверяет, можно ли двигаться в столбце

• bool IsAllowableRow (int row)

Функция проверяет, можно ли двигаться в строке

• bool IsVisibleColumn (int column)

Функция проверяет видимость столбца

• bool IsVisibleRow (int row)

Функция проверяет видимость строки

• void SetTimeFactor (float factor)

Функция для установки коэффициента ускорения времени

• bool LoadMap (std::string const &filename)

Функция для загрузки карты из файла

• bool LoadMap (size t number)

Функция для загрузки карты по номеру

• void SpawnCar ()

Функция для добавления машины на карту

• void RemoveAccidents ()

Функция для удаления аварий

• void RemoveVehicles ()

Функция для удаления всего транспорта

• void Play ()

Функция для продолжения выполнения обновлений

• void Pause ()

Функция для временной остановки обновлений

• void Reset ()

Функция для перезагрузки карты

Закрытые члены

• bool IsEmpty (int column, int row, size t width=1, size t height=1)

Функция проверяет доступность зоны для генерации статических объектов и объектов объекта

• bool GenerateObject_ (uint8_t *params, uint8_t count)

Функция для парсинга параметров и генерации объектов

• bool AddCoatingUnion (int column, int row, CoatingUnionShared coatingUnion)

Функция для генерации объединения покрытий

• bool AddDriveway_ (CoatingType type, int column, int row, size_t width, size_t height, Angle← Type angle)

Функция для генерации прямой односторонней дороги

• bool AddCrossroad_ (CoatingType type, int column, int row, LinesCounts linesCounts, size_t controlUnitType=0)

Функция для генерации перекрестка

• bool AddTCrossroad_ (CoatingType type, int column, int row, LinesCounts linesCounts, Angle← Type nullDirection, size t controlUnitType=0)

Функция для генерации т-образного перекрестка

• bool AddLeftTurt (CoatingType type, int column, int row, size t linesCount, AngleType angle)

Функция для генерации левого поворота

• bool AddRightTurt (CoatingType type, int column, int row, size t linesCount, AngleType angle)

```
Функция для генерации правого поворота
   • bool AddControlUnit (ControlUnitShared controlUnit)
        Функция для добавления управляющего блока в общий массив (для обновлений)
   • bool AddStaticObject (int column, int row, StaticShared staticObject)
        Функция для генерации статического объекта
   • bool AddBuilding (size t type, int column, int row, float angle)
        Функция для генерации строения
   • bool AddBush (size t type, int column, int row, float angle)
        Функция для генерации куста
   • bool AddDynamicObject (int column, int row, DynamicShared dynamicObject)
        Функция для генерации динамического объекта
   • bool AddCar (size t type, int column, int row, float angle)
        Функция для генерации машины
   • size_t GetVectorColumn_ (int column)
        Функция для получения столбца в массиве
   • size t GetVectorRow (int row)
        Функция для получения строки в массиве
   • int GetRealColumn (size t column)
        Функция для получения столбца объекта
   • int GetRealRow (size t row)
        Функция для получения строки объекта
   • void CloseMap ()
        Функция закрытии карты
   • void ClearSpawns ()
        Функция для очистки массива точек генерации
   • void ClearCoatingObjects ()
        Функция для очистки матрицы покрытий
   • void ClearControlUnits ()
        Функция для очистки движущихся объектов
   • void ClearStaticObjects ()
        Функция для очистки статических объектов
   • void ClearDynamicObjects ()
        Функция для очистки движущихся объектов
Закрытые данные
   • WorldScene * scene
        Сцена, к которой привязан контроллер
   • \cos 2d::Layer * \min Layer_{\_}
        Основной слой сцены (на нём вся движуха)
```

```
    bool isPause

    Происходят ли обновления (точнее стоит ли пауза)
• uint8 t hiddenArea
    Размер скрытой зоны
• uint16 t columnsCount
    Количество колонок (включая скрытую зону)
• uint16 t rowsCount
    Количество строк (включая скрытую зону)
• SpawnVector spawns
```

Массив точек генерации транспорта

• float deltaTime

Последняя разница между обновлениями

• float spawnTime_

Время, прошеднее с последней автоматического генерации транспорта

• float cleanTime

Время, прошеднее с последнего автоматического удаления аварий

• float timeFactor

Коэффициент ускорения времени

• std::string lastMapFile

Последняя загруженная карта (путь к файлу)

• CoatingUnionMatrix coatingUnions

Матрица покрытий

• ControlUnitVector controlUnits_

Матрица объединений покрытий

• StaticMatrix staticObjects

Матрица статических объектов

• DynamicVector dynamicObjects

Массив движущихся объектов

7.18.1 Подробное описание

Класс контроллера карты, связующее звено всех объектов

7.18.2 Конструктор(ы)

```
7.18.2.1 WorldController() [1/3]
```

Конструктор без загрузки какой-либо карты

Аргументы

```
scene сцена, к которой привязан контроллер
```

```
7.18.2.2 WorldController() [2/3]
```

Конструктор с загрузкой карты

Аргументы

scene	сцена, к которой привязан контроллер
filename	путь к карте

7.18.2.3 WorldController() [3/3]

```
\label{eq:controller} \begin{split} rt\,m::&WorldController::WorldController \;(\\ &WorldScene *const scene,\\ &size\_t \; mapNumber \;) \end{split}
```

Конструктор с загрузкой карты

Аргументы

scene	сцена, к которой привязан контроллер
mapNumber	номер стандартной карты

7.18.3 Методы

7.18.3.1 Update()

Функция обновления

Аргументы

time время, прошедшее с момента прошлого обновления (в секундах)

7.18.3.2 GetLayer()

 ${\tt cocos2d::Layer*rtm::WorldController::GetLayer}$ () ${\tt const}$

Функция для получения основного слоя сцены (на нём вся движуха)

Возвращает

основной слой

```
7.18.3.3 GetColumnsCount()
size t rtm::WorldController::GetColumnsCount ( ) const
Функция для получения количества столбцов карты
Возвращает
     количество столбцов
7.18.3.4 GetRowsCount()
size trtm::WorldController::GetRowsCount() const
Функция для получения количества строк карты
Возвращает
     количество строк
7.18.3.5 GetDeltaTime()
{\it float\ rt\,m}{::}{WorldController}{::}{GetDeltaTime\ (\ )\ const}
Функция для получения последней разницей между обновлениями
Возвращает
     разница во времени между обновлениями (в секундах)
7.18.3.6 GetTimeFactor()
float rtm::WorldController::GetTimeFactor ( ) const
Функция для получения коэффициента ускорения времени
Возвращает
     коэффициент ускорения времени (1 - реальная скорость)
```

```
7.18.3.7 GetCoatingObject()
rtm::CoatingObject * rtm::WorldController::GetCoatingObject (
             int column,
             int row )
Функция для получения объекта в определенной клетке
Возвращает
     указатель на объект объекта
7.18.3.8 GetCoatingUnion()
rtm::CoatingUnion * rtm::WorldController::GetCoatingUnion (
             int column,
             int row )
Функция для получения объединения покрытий в определенной клетке
Возвращает
     указатель на объект объединения покрытий
7.18.3.9 GetStaticObject()
rtm::StaticObject * rtm::WorldController::GetStaticObject (
             int column,
             int row )
Функция для получения статического объекта в определенной клетке
Возвращает
     указатель на статический объект
7.18.3.10 GetDynamicObjects()
std::vector< rtm::DynamicShared > & rtm::WorldController::GetDynamicObjects ( )
Функция для получения массива движущихся объектов
Возвращает
     массив движущихся объектов
```

```
7.18.3.11 IsPause()
bool rtm::WorldController::IsPause ( )
Функция сообщает, происходят ли обновления
Возвращает
     true, если происходят не происходят (стоит пауза), иначе false
7.18.3.12 IsCorrectColumn()
bool rtm::WorldController::IsCorrectColumn (
             int column )
Функция проверяет корректность столбца
Аргументы
 \operatorname{column}
           номер проверяемой колонки
Возвращает
     true, если столбец корректный, иначе false
7.18.3.13 Is Correct Row()
bool rtm::WorldController::IsCorrectRow (
             int row )
Функция проверяет корректность строки
Аргументы
 row
       номер проверяемой строки
```

Возвращает

true, если строка корректная, иначе false

7.18.3.14 IsAllowableColumn()

 $bool\ rtm::WorldController::IsAllowableColumn\ ($ $int\ column\)$

Функция проверяет, можно ли двигаться в столбце

Аргументы

column номер проверяемой колонки

Возвращает

true, если в столбце можно двигаться, иначе false

7.18.3.15 IsAllowableRow()

bool rtm::WorldController::IsAllowableRow (int row)

Функция проверяет, можно ли двигаться в строке

Аргументы

row номер проверяемой строки

Возвращает

true, если в строке можно двигаться, иначе false

7.18.3.16 IsVisibleColumn()

 $\label{local_controller::IsV} bool\ rtm::WorldController::IsVisibleColumn\ ($ $int\ column\)$

Функция проверяет видимость столбца

Аргументы

column номер проверяемой колонки

Возвращает

true, если столбец виден, иначе false

7.18.3.17 IsVisibleRow()

bool rtm::WorldController::IsVisibleRow ($int\ row\)$

Функция проверяет видимость строки

Аргументы

row | номер проверяемой строки

Возвращает

true, если строка видна, иначе false

7.18.3.18 SetTimeFactor()

 $\label{eq:controller::SetTimeFactor} \begin{tabular}{ll} void rtm::WorldController::SetTimeFactor (} \\ & float factor) \end{tabular}$

Функция для установки коэффициента ускорения времени

Аргументы

factor коэффициент ускорения времени (1 - реальная скорость)

7.18.3.19 LoadMap() [1/2]

Функция для загрузки карты из файла

Аргументы

filename полный путь к файлу с картой

```
7.18.3.20 LoadMap() [2/2]
```

```
\begin{array}{c} bool \ rtm::WorldController::LoadMap \ (\\ size \ t \ number \ ) \end{array}
```

Функция для загрузки карты по номеру

Аргументы

```
number | номер стандартной карты
```

```
7.18.3.21 IsEmpty ()
```

```
bool\ rtm::WorldController::IsEmpty\_\ ( int\ column, int\ row, size\_t\ width=1, size\_t\ height=1\ )\quad [private]
```

Функция проверяет доступность зоны для генерации статических объектов и объектов объекта

Аргументы

column	левая колонка проверяемой зоны
row	нижняя строка проверяемой зоны
width	ширина проверяемой зоны
height	высота проверяемой зоны

Возвращает

true, если можно сгенерировать объект в данной зоне, иначе false

7.18.3.22 GenerateObject_()

Функция для парсинга параметров и генерации объектов

122

Аргументы

params	массив параметров генерации
count	количество параметров генерации в массиве

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.23 AddCoatingUnion_()

```
\label{lem:controller:} bool\ rtm::WorldController::AddCoatingUnion\_\ ($$int\ column,$$ int\ row,$$$ CoatingUnionShared\ coatingUnion\ )$$ [private]
```

Функция для генерации объединения покрытий

Аргументы

column	левая колонка объединения покрытий
row	нижняя строка объединения покрытий
coatingUnion	умный указатель на объединение дорог

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.24 AddDriveway_()

Функция для генерации прямой односторонней дороги

Аргументы

type	тип объекта (асфальт, грязь)
column	левая колонка объекта дороги
row	нижняя строка объекта дороги
width	ширина объекта дороги
height	высота объекта дороги
angle	направление, в котором разрешенно движение

Возвращает

true, если объект получилось сгенерировать, иначе false

Функция для генерации перекрестка

Аргументы

type	тип объекта (асфальт, грязь)	
column	левая колонка перекрестка	
row	нижняя строка перекрестка	
linesCounts	количество полос в каждом направлении	
controlUnitType	тип управляющего модуля перекрестком (тип светофора)	

Возвращает

true, если объект получилось сгенерировать, иначе false

```
7.18.3.26 \quad {\rm AddTCrossroad}\_()
```

```
bool\ rtm::WorldController::AddTCrossroad\_\ ($$CoatingType\ type,$$ int\ column,$$ int\ row,$$$ LinesCounts\ linesCounts,$$$ AngleType\ nullDirection,$$ size\_t\ controlUnitType=0\ ) \ [private]
```

Функция для генерации т-образного перекрестка

Аргументы

type	тип объекта (асфальт, грязь)	
column	левая колонка перекрестка	
row	нижняя строка перекрестка	
linesCounts	количество полос в каждом направлении	
nullDirection	сторона, в направлении которой нельзя двигаться	
controlUnitType	тип управляющего модуля перекрестком (тип светофора)	

Создано системой Doxygen

124

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.27 AddLeftTurt_()

Функция для генерации левого поворота

Аргументы

type	тип объекта (асфальт, грязь)
column	левая колонка поворота
row	нижняя строка поворота
linesCount	количество полос
angle	угол поворота (самого поворота)

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.28 AddRightTurt ()

Функция для генерации правого поворота

Аргументы

type	тип объекта (асфальт, грязь)
column	левая колонка поворота
row	нижняя строка поворота
linesCount	количество полос
angle	угол поворота (самого поворота)

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.29 AddControlUnit_()

```
bool\ rtm::WorldController::AddControlUnit\_\ ( ControlUnitShared\ controlUnit\ )\quad [private]
```

Функция для добавления управляющего блока в общий массив (для обновлений)

Аргументы

```
controlUnit | умный указатель на управляющий блок
```

Возвращает

true, если объект получилось добавить, иначе false

7.18.3.30 AddStaticObject_()

Функция для генерации статического объекта

Аргументы

column	колонка статического объекта
row	строка статического объекта
staticObject	умный указатель на статический объект

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.31 AddBuilding_()

```
bool\ rtm::WorldController::AddBuilding\_\ ( size\_t\ type,
```

```
int column,
int row,
float angle ) [private]
```

Функция для генерации строения

Аргументы

type	тип строения
column	колонка строения
row	строка строения
angle	угол поворота строения

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.32 AddBush ()

Функция для генерации куста

Аргументы

type	тип куста
column	колонка куста
row	строка куста
angle	угол поворота куста

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.33 AddDynamicObject ()

Функция для генерации динамического объекта

Аргументы

column	колонка динамического объекта
row	строка динамического объекта
dynamicObject	умный указатель на динамический объект

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.34 AddCar_()

Функция для генерации машины

Аргументы

type	тип машины
column	колонка машины
row	строка машины
angle	угол поворота машины

Возвращает

true, если объект получилось сгенерировать, иначе false

7.18.3.35 GetVectorColumn ()

Функция для получения столбца в массиве

Аргументы

column	столбец объекта

```
Возвращает
     столбец в массиве
7.18.3.36 GetVectorRow_()
size\_t\ rt\,m::WorldController::GetVectorRow\_\ (
             int row ) [inline], [private]
Функция для получения строки в массиве
Аргументы
       строка объекта
Возвращает
     строка в массиве
7.18.3.37 GetRealColumn_()
int \ rtm::WorldController::GetRealColumn\_ \ (
             size_t column ) [inline], [private]
Функция для получения столбца объекта
Аргументы
 \operatorname{column}
           столбец в массиве
Возвращает
     столбец объекта
7.18.3.38 GetRealRow_()
```

 Φ ункция для получения строки объекта

size_t row) [inline], [private]

int rtm::WorldController::GetRealRow $_$ (

Аргументы

row	строка в массиве	

Возвращает

строка объекта

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldController.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldController.cpp$

7.19 Класс rtm::WorldObject

Класс объекта мира (родитель всех условно объемных объектов)

#include <WorldObject.h>

Граф наследования:rtm::WorldObject:

Открытые члены

• WorldObject ()

Конструктор по умолчанию

- WorldObject (cocos2d::Sprite *const sprite, float x, float y, float angle)
 - Конструктор с использованием уже готового спрайта
- WorldObject (std::string const &filename, float x, float y, float angle) Конструктор из файла

```
    virtual ~WorldObject ()=default
Деструктор по умолчанию
    cocos2d::Sprite * GetSprite () const
Функция для получения спрайта
    float GetX_ () const
Функция для получения абсциссы
    float GetY_ () const
Функция для получения ординаты
    float GetAngle () const
Функция для получения угла поворота
    float GetWidth () const
Функция для получения ширины
    float GetHeight () const
```

Функция для получения высоты

Защищенные члены

```
• void SetSprite (cocos2d::Sprite *const sprite)
    Функция для установки спрайта
• void Set X (float x)
    Функция для установки абсциссы
• void SetY (float y)
    Функция для установки ординаты
• void SetAngle (float angle)
    Функция для установки угла поворота
• void SetWidth (float width)
    Функция для установки ширины
• void SetHeight_ (float height)
    Функция для установки высоты
• virtual void PositionInit ()
    Функция, выполняемая во время инициализации
• virtual void PositionUpdate ()
    Функция, выполняемая во время обновления положения
• virtual void OnXUpdate ()
    Функция, выполняемая во время обновления абсциссы
• virtual void OnYUpdate ()
    Функция, выполняемая во время обновления ординаты
• virtual void OnAngleUpdate ()
    Функция, выполняемая во время обновления угла поворота
• virtual void OnWidthUpdate ()
    Функция, выполняемая во время обновления ширины
• virtual void OnHeightUpdate_ ()
```

Функция, выполняемая во время обновления высоты

```
Закрытые члены
   • void SetSpriteX (float x)
        Функция для установки абсциссы спрайта
   • void SetSpriteY (float y)
        Функция для установки ординаты спрайта
   • void SetSpriteAngle_ (float angle)
        Функция для установки угла поворота спрайта
   • void SetSpriteWidth (float width)
        Функция для установки ширины спрайта
   • void SetSpriteHeight_ (float height)
        Функция для установки высоты спрайта
Закрытые данные
   • \cos 2d::Sprite * sprite_
        Указатель на спрайт
   • float x
        Абсцисса
   • float prevX
        Абсцисса для отслеживания изменений
   • float y_
        Ордината

    float prevY_

        Ордината для отслеживания изменений
   • float angle
        Угол поворота
   • float prevAngle
        Угол поворота для отслеживания изменений
   • float width
        Ширина
   • float prevWidth
        Ширина для отслеживания изменений

    float height

        Высота

    float prevHeight

        Высота для отслеживания изменений
        Подробное описание
Класс объекта мира (родитель всех условно объемных объектов)
7.19.2 Конструктор(ы)
7.19.2.1 WorldObject() [1/2]
rtm::WorldObject::WorldObject (
             cocos2d::Sprite *const sprite,
             float x,
             float y,
```

Создано системой Doxygen

float angle)

Конструктор с использованием уже готового спрайта

132

Аргументы

sprite	указатель на готовый спрайт
X	абсцисса
У	ордината
angle	угол поворота объекта

7.19.2.2 WorldObject() [2/2]

Конструктор из файла

Аргументы

filename	путь к файлу инициализации
X	абсцисса
у	ордината
angle	угол поворота объекта

7.19.3 Методы

7.19.3.1 GetSprite()

 ${\tt cocos2d::Sprite*rtm::WorldObject::GetSprite()} \ const$

Функция для получения спрайта

Возвращает

указатель на спрайт

$$7.19.3.2 \text{ GetX}_{-}()$$

float rtm::WorldObject::GetX_ () const

Функция для получения абсциссы

Возвращает

абсцисса

```
7.19.3.3 \ \text{GetY}_{-}()
float rtm::WorldObject::GetY\_ ( ) const
Функция для получения ординаты
Возвращает
     ордината
7.19.3.4 GetAngle()
float\ rtm::WorldObject::GetAngle\ (\ )\ const
Функция для получения угла поворота
Возвращает
     угол поворота
7.19.3.5 GetWidth()
float rtm::WorldObject::GetWidth ( ) const
Функция для получения ширины
Возвращает
      ширина
7.19.3.6 GetHeight()
{\it float\ rt\,m}{::}{\bf WorldObject}{::}{\bf GetHeight\ (\ )\ const}
Функция для получения высоты
Возвращает
      высота
7.19.3.7 SetSprite_()
void rtm::WorldObject::SetSprite_ (
              cocos2d::Sprite *const sprite ) [protected]
Функция для установки спрайта
```

134

Аргументы

```
sprite | указатель на спрайт
```

```
7.19.3.8 SetX_()
```

```
\begin{tabular}{ll} void $\operatorname{rtm}::WorldObject::Set X\_ (\\ & float $x$ ) & [protected] \end{tabular}
```

Функция для установки абсциссы

Аргументы

```
х абсцисса
```

```
7.19.3.9 SetY_()
```

```
\begin{tabular}{ll} void $\operatorname{rtm}::WorldObject::SetY\_ ( \\ & float $y$ ) & [protected] \end{tabular}
```

Функция для установки ординаты

Аргументы

```
у ордината
```

7.19.3.10 SetAngle_()

```
\begin{tabular}{ll} void \ rt\,m::WorldO\,bject::Set\,Angle\_ \ (\\ float \ angle\ ) & [protected] \end{tabular}
```

Функция для установки угла поворота

Аргументы

angle | угол поворота

```
7.19.3.11 SetWidth_()
void \ rt\,m{::}WorldO\,bject{::}SetWidt\,h\_\ (
              float width ) [protected]
Функция для установки ширины
Аргументы
 \operatorname{width}
          ширина
7.19.3.12 SetHeight_()
{\tt void\ rtm::WorldObject::SetHeight\_(}
              float height ) [protected]
Функция для установки высоты
Аргументы
 height
           высота
7.19.3.13 SetSpriteX_()
void rtm::WorldObject::SetSpriteX_ (
              float x ) [private]
Функция для установки абсциссы спрайта
Аргументы
     абсцисса спрайта
7.19.3.14 SetSpriteY_()
{\tt void\ rtm::WorldObject::SetSpriteY\_(}
              float y ) [private]
```

Функция для установки ординаты спрайта

136 Классы

Аргументы

```
у ордината спрайта
```

```
7.19.3.15 SetSpriteAngle ()
```

```
void rtm::WorldObject::SetSpriteAngle_ (
float angle ) [private]
```

Функция для установки угла поворота спрайта

Аргументы

```
angle | угол поворота спрайта
```

```
7.19.3.16 SetSpriteWidth ()
```

Функция для установки ширины спрайта

Аргументы

```
width ширина спрайта
```

```
7.19.3.17 SetSpriteHeight_()
```

Функция для установки высоты спрайта

Аргументы

```
height высота спрайта
```

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldObject.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldObject.cpp$

7.20 Класс rtm::WorldScene

Класс главной сцены, на которой всё и происходит (для отрисовки)

#include < WorldScene.h >

Граф наследования:rtm::WorldScene:

Открытые члены

• ~WorldScene ()=default

Деструктор по умолчанию

• virtual bool init () override

Функция для инициализации полей

• virtual void update (float time) override

Функция для обновления сцены

• cocos2d::Layer * GetMainLayer () const

 Φ ункция для получения основного слоя, на котором находятся объекты

Функции для установки фона

• void SetBackground (std::string const &filename)

Функции для установки фона из файла

• void SetBackground (size_t number)

Функции для установки фона по номеру

Открытые статические члены

• static WorldScene * Create ()

Конструктор класса, поддерживающий RAII.

138 Классы

Закрытые члены

```
void OpenMap_ ()
```

Функция открытия карты

• void Restart ()

Функция перезагрузки карты

• void SetDefaultPosition ()

Функция для установки первоначальной позиции просмотра

• void ShiftUp ()

Функция сдвига области просмотра вверх

• void ShiftRight ()

Функция сдвига области просмотра вправо

• void ShiftDown_ ()

Функция сдвига области просмотра вниз

• void ShiftLeft_ ()

Функция сдвига области просмотра влево

• void UpdatePosition ()

Функция для обновления положения главного слоя в зависимости от области просмотра

• void SetDefaultScale ()

Функция для установки масштаба просмотра по умолчанию

• void IncreaseScale ()

Функция для увеличения масштаба просмотра

• void DecreaseScale ()

Функция для уменьшения масштаба просмотра

• void SetDefaultSpeed ()

 Φ ункция для установки скорости обработки (скорости объектов) по умолчанию

• void IncreaseSpeed_ ()

Функция для увеличения скорости обработки (скорости объектов)

• void DecreaseSpeed ()

Функция для уменьшения скорости обработки (скорости объектов)

• WorldControllerUnique & GetMap ()

Функция для получения контроллера данной сцены

Закрытые статические члены

• static void KeyPressed (cocos2d::EventKeyboard::KeyCode code, cocos2d::Event *event)

Функция-обработчик нажатий клавиш клавиатуры

• static void KeyReleased_ (cocos2d::EventKeyboard::KeyCode code, cocos2d::Event *event)

Функция-обработчик отпусканий клавиш клавиатуры

Закрытые данные

• cocos2d::Layer * mainLayer

Основной слой, на котором располагаются объекты

• cocos2d::Layer * backgroundLayer

Слой для фона, находится позади основного

• cocos2d::Sprite * background_

Картинка фона

• WorldControllerUnique map

Контроллер мира, привязанный к данной сцене

```
• float clickTime
        Время, прошедшее с последнего нажатия клавиш перемещения по карте (стрелочек)
   • int viewColumn
        Сдвиг по горизонтали при просмотре
   • int viewRow
        Сдвиг по вертикали при просмотре
   • bool isCtrlPressed
        Состояние клавиши CTRL.
   • bool isAltPressed
        Состояние клавиши АLT.
   • bool isUpArrowPressed_
        Состояние клавиши "вверх".
   • bool isRightArrowPressed
        Состояние клавиши "вправо".
   • bool isDownArrowPressed
        Состояние клавиши "вниз".
   • bool isLeftArrowPressed_
        Состояние клавиши "влево".
Закрытые статические данные
   • static WorldScene * globalScene { nullptr }
        Основная сцена, к которой адресуются нажатия клавиш и т.д.
7.20.1
       Подробное описание
Класс главной сцены, на которой всё и происходит (для отрисовки)
7.20.2 Методы
7.20.2.1 Create()
rtm::WorldScene * rtm::WorldScene::Create ( ) [static]
Конструктор класса, поддерживающий RAII.
```

указатель на созданный объект

Возвращает

140

```
7.20.2.2 init()
bool rtm::WorldScene::init ( ) [override], [virtual]
Функция для инициализации полей
Возвращает
      true в случае успешной инициализации, иначе false
7.20.2.3 update()
void rtm::WorldScene::update (
              float time ) [override], [virtual]
Функция для обновления сцены
Аргументы
         время, прошедшее с момента прошлого обновления
 _{
m time}
7.20.2.4 GetMainLayer()
cocos2d::Layer * rtm::WorldScene::GetMainLayer ( ) const
Функция для получения основного слоя, на котором находятся объекты
Возвращает
      основной слой
7.20.2.5 SetBackground() [1/2]
void rtm::WorldScene::SetBackground (
              \operatorname{std}::\operatorname{string}\ \operatorname{const}\ \&\ \operatorname{filename}\ )
Функции для установки фона из файла
Аргументы
```

полный путь к файлу с фоном (картинка)

filename

```
7.20.2.6 SetBackground() [2/2]
```

Функции для установки фона по номеру

Аргументы

number номер стандартного фона

7.20.2.7 GetMap ()

rtm::WorldControllerUnique & rtm::WorldScene::GetMap () [private]

Функция для получения контроллера данной сцены

Возвращает

контроллер сцены

Объявления и описания членов классов находятся в файлах:

- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldScene.h$
- $\bullet \ C:/Users/Vladimir/Documents/Visual \ Studio \ 2017/Projects/RTM/Classes/WorldScene.cpp$

142 Классы

Предметный указатель

AddBuilding_	CARS_ACCELERATIONS
${\rm rtm::WorldController,\ 125}$	rtm, 33
$AddBush_$	${ m CARS_MAX_SPEEDS}$
rtm::WorldController, 126	${ m rtm},\ 32$
$AddCar_{\underline{}}$	${ m COATING_INDEXES}$
rtm::WorldController, 127	rtm, 31
AddCoatingUnion_	$\operatorname{CarObject}$
rtm::WorldController, 122	rtm::CarObject, 43, 44
AddControlUnit	$\operatorname{CellToPixel}$
rtm::WorldController, 125	rtm, 27
AddCrossroad	$\operatorname{CenterIsCrossed}$
rtm::WorldController, 123	rtm, 25
AddDriveway	${ m Change Line}$
rtm::WorldController, 122	rtm::VehicleObject, 99
AddDynamicObject	$\operatorname{CheckCoatingAhead}$
rtm::WorldController, 126	rtm::CarObject, 47
AddLeft Turt	CheckCoatingUnionAhead
rtm::WorldController, 124	rtm::CarObject, 47
AddRightTurt	CheckCollisions
rtm::WorldController, 124	rtm, 23
AddStaticObject	rtm::DynamicObject, 80
rtm::WorldController, 125	CheckCrossroadArea
AddTCrossroad	rtm::VehicleObject, 104
rtm::WorldController, 123	CheckForwardArea
AfterMoving	rtm::VehicleObject, 103
rtm::VehicleObject, 105	CheckForwardCoating
Allowed	rtm::VehicleObject, 102
	CheckForwardCoatingUnion
rtm, 21	_
AngleToAngleType	rtm::VehicleObject, 102
rtm, 27	CheckLineChangingArea_
AngleToDirection	rtm::VehicleObject, 105
rtm, 28	CheckMovingArea_
AngleType	rtm::VehicleObject, 103
rtm, 19	$\operatorname{CheckRoadAhead}_{-}$
AngleTypeToAngle	rtm::CarObject, 47
rtm, 28	CheckRotationArea_
AngleTypeToDirection	rtm::VehicleObject, 104
rtm, 28	CheckTurnArea_
AppDelegate, 35	rtm::VehicleObject, 104
applicationDidFinishLaunching, 36	Closed
applicationDidFinishLaunching	rtm, 21
AppDelegate, 36	CoatingObject
	rtm::CoatingObject, 50
BeforeMoving_	$\operatorname{CoatingType}$
rtm::VehicleObject, 105	rtm, 21
BuildingObject	$\operatorname{CoatingUnion}$
rtm::BuildingObject, 37, 38	rtm::CoatingUnion, 55
BushObject	${ m Coating Union Type}$
rtm::BushObject, 39, 40	${ m rtm},~20$

$\operatorname{ControlUnit}$	rtm::RoadCoating, 88
rtm::ControlUnit, 60	GetClassMaxSpeed
CountDeceleration	rtm::CarObject, 47
rtm, 30	$\operatorname{GetClassResistance}$
CountLength	rtm::RoadCoating, 87
rtm::DrivewayObject, 72	GetCoatingObject
CountLines	rtm::CoatingUnion, 56
rtm::DrivewayObject, 73	rtm::WorldController, 116
Create	GetCoatingUnion
rtm::WorldScene, 139	rtm::WorldController, 117
CrossroadMatrix	$\operatorname{GetColumn}$
rtm::CrossroadObject, 65	rtm::CoatingUnion, 58
CrossroadObject	GetColumnsCount
rtm::CrossroadObject, 64, 65	rtm::WorldController, 115
CrossroadSignals	GetControlUnit
rtm, 18	rtm::CrossroadObject, 67
	$\operatorname{GetDeltaTime}$
DEFAULT_CROSSROAD_SIGNALS	rtm::WorldController, 116
rtm, 31	GetDynamicObjects
DEFAULT_DIRECTIONS_SIGNAL_SPRITES	rtm::WorldController, 117
rtm, 31	GetFilename
${ m Direction Signal Index}$	rtm, 29
${ m rtm,20}$	GetFinalSpeed
${f Direction Signals}$	rtm::VehicleObject, 101
rtm, 18	GetHeight
${ m Direction To Angle}$	rtm::CoatingUnion, 56
${ m rtm,29}$	rtm::WorldObject, 133
${ m Direction To Angle Type}$	GetLastDelta
${ m rtm},29$	rtm::DynamicObject, 76
DirectionType	GetLayer
${ m rtm},20$	rtm::WorldController, 115
Directions	GetLength
rtm, 18	rtm::CoatingUnion, 57
${ m Directions Signal Sprites}$	rtm::DrivewayObject, 70
rtm, 19	GetLinesCount
$\operatorname{DistanceToNextCenter}$	rtm::DrivewayObject, 70
${ m rtm},24$	GetMainLayer
Down	rtm::WorldScene, 140
${ m rtm},20$	GetMap
Downward	rtm::WorldScene, 141
rtm, 20	GetMaxSpeed
DrivewayMatrix	rtm::VehicleObject, 101
rtm::DrivewayObject, 70	GetNullDirection
DrivewayObject	rtm::CrossroadObject, 66
rtm::DrivewayObject, 69	GetRealColumn_
Dynamic Object	rtm::WorldController, 128
rtm::DynamicObject, 75, 76	GetRealRow
D1:11	rtm::WorldController, 128
Forbidden	GetResistance
rtm, 21	rtm::CoatingObject, 51
${ m GenerateObject}$	GetRow
rtm::WorldController, 121	rtm::CoatingUnion, 58
GetAngle	GetRowsCount
rtm::TurnObject, 94	rtm::WorldController, 116
rtm::TurnObject, 94 rtm::WorldObject, 133	GetSignal
GetClassAcceleration	rtm::ControlUnit, 61
rtm::CarObject, 48	
GetClassDirections	GetSpeed rtm::DynamicObject, 76
O CO CTOOD DITECUION	rumDynamicObject, /O

GetSprite	rtm::DynamicObject, 77
rtm::CoatingObject, 51	IsPause
rtm::WorldObject, 132	rtm::WorldController, 117
GetStaticObject	$\operatorname{IsRight}$
rtm::WorldController, 117	rtm::TurnObject, 93
$\operatorname{GetTimeFactor}$	isRightLine
rtm::WorldController, 116	rtm::DrivewayObject, 71
GetType	IsRotation
rtm::CoatingUnion, 55	rtm::VehicleObject, 100
Get Vector Column	
	IsVisibleColumn
rtm::WorldController, 127	rtm::WorldController, 119
GetVectorRow_	IsVisibleRow 120
rtm::WorldController, 128	rtm::WorldController, 120
GetWidth	T C.
rtm::CoatingUnion, 56	Left
rtm::WorldObject, 133	rtm, 20
GetX_{-}	LeftTurnMatrix
rtm::WorldObject, 132	rtm::TurnObject, 93
$\operatorname{Get} Y_{-}$	Leftward
rtm::WorldObject, 132	${ m rtm,\ 20}$
	$\operatorname{LineChanging}_{-}$
HasCollision	rtm::VehicleObject, 109
rtm::DynamicObject, 77	$\operatorname{LineChangingEnd}$
HasDirection	rtm::VehicleObject, 109
rtm::CoatingObject, 51	LineChangingStart
	rtm::CarObject, 45
InCenter	rtm::VehicleObject, 108
rtm, 24	LineChangingTick
init	rtm::VehicleObject, 108
rtm::WorldScene, 139	LinesCounts
IsAllowableColumn	
rtm::WorldController, 118	rtm, 18
IsAllowableRow	LoadMap
rtm::WorldController, 119	rtm::WorldController, 120, 121
IsBeholding	M. Oli i
rtm::DynamicObject, 78	MapObject
IsBraking	rtm::MapObject, 81
	MoveForward_
rtm::VehicleObject, 100	rtm::VehicleObject, 99
IsCorrectColumn	$\operatorname{Movement}_{_}$
rtm::CoatingUnion, 57	rtm::VehicleObject, 110
rtm::WorldController, 118	$\operatorname{MovementEnd}$
IsCorrectRow	rtm::CarObject, 45
rtm::CoatingUnion, 57	${ m rtm}$::VehicleObject, 107
rtm::WorldController, 118	$MovementStart_$
${\bf Is Direction A vailable}$	rtm::CarObject, 44
rtm::CoatingObject, 52	rtm::VehicleObject, 106
$IsEmpty_$	MovementTick
rtm::WorldController, 121	$rtm::CarO\overline{b}ject, 45$
IsIntersecting	rtm::VehicleObject, 106
rtm::DynamicObject, 79	remit vemere do bjeck, 100
isLeftLine	NEAR DELTA
rtm::DrivewayObject, 71, 72	rtm, 31
IsLineChanging	NormalizeAngle
rtm::VehicleObject, 100	rtm, 26
IsMovement	10111, 20
rtm::VehicleObject, 100	aparatar haal
IsNear	operator bool
rtm::DynamicObject, 79	rtm::ControlUnit, 61
IsNearOthers	PixelToCell
TOTACOT OFFICE D	I IVCIIOOGII

${ m rtm},26$	DirectionSignalIndex, 20
PuddleCoating	DirectionSignals, 18
rtm::PuddleCoating, 84	DirectionToAngle, 29
-	DirectionToAngleType, 29
ROADS_DIRECTIONS	DirectionType, 20
${ m rtm,\ 32}$	Directions, 18
ROADS_RESISTANCES	Directions Signal Sprites, 19
$\mathrm{rtm},32$	DistanceToNextCenter, 24
ReleaseSprites	Down, 20
rtm::CoatingUnion, 58	Downward, 20
rtm::ControlUnit, 62	Forbidden, 21
rtm::CrossroadObject, 67	GetFilename, 29
Right	InCenter, 24
rtm, 20	Left, 20
RightTurnMatrix	Leftward, 20
rtm::TurnObject, 92	LinesCounts, 18
Rightward	NEAR_DELTA, 31
rtm, 20	$\overline{\text{NormalizeAngle}}, 26$
RoadCoating	PixelToCell, 26
rtm::RoadCoating, 86, 87	ROADS DIRECTIONS, 32
RoadType	ROADS RESISTANCES, 32
rtm, 22	Right, $\frac{\overline{}}{20}$
Rotate_	Rightward, 20
rtm::VehicleObject, 99	RoadType, 22
Rotation	RoundAngle, 26
rtm::VehicleObject, 109	RoundCoordinate, 23
RotationEnd	RoundToCenter, 24
rtm::VehicleObject, 108	SameAngles, 25
RotationStart	SameCoordinates, 23
rtm::VehicleObject, 107	SignalFileId, 22
RotationTick_ rtm::VehicleObject, 107	SignalSprites, 19
RoundAngle	SignalType, 21
rtm, 26	SignalsSprites, 19
Round Coordinate	Started, 21
rtm, 23	StateType, 21
RoundToCenter	SumAngleTypes, 30
rtm, 24	$\mathrm{Up}, 20$
rtm, 11	Upward, 20
Allowed, 21	Warning, 21
AngleToAngleType, 27	rtm::BuildingObject, 36
AngleToDirection, 28	BuildingObject, 37, 38
AngleType, 19	rtm::BushObject, 38
AngleTypeToAngle, 28	BushObject, $39, 40$
AngleTypeToDirection, 28	rtm::CarObject, 41
CARS_ACCELERATIONS, 33	CarObject, 43, 44
CARS_MAX_SPEEDS, 32	${ m CheckCoatingAhead_,\ 47}$
COATING_INDEXES, 31	CheckCoatingUnionAhead_, 47
CellToPixel, 27	${ m CheckRoadAhead_,\ 47}$
CenterIsCrossed, 25	${ m GetClassAcceleration},48$
CheckCollisions, 23	$GetClassMaxSpeed_, 47$
Closed, 21	LineChangingStart, 45
CoatingType, 21	$MovementEnd_, 45$
CoatingUnionType, 20	MovementStart_, 44
Count Deceleration, 30	$MovementTick_{-}, 45$
CrossroadSignals, 18	rtm::CoatingObject, 48
DEFAULT_CROSSROAD_SIGNALS, 31	CoatingObject, 50
$DEFAULT_DIRECTIONS_SIGNAL_SP {\leftarrow}$	GetResistance, 51
RITES, 31	GetSprite, 51

HasDirection, 51	rtm::MapObject, 80
Is Direction Available, 52	MapObject, 81
SetDirectionAvailability, 52	rtm::PuddleCoating, 83
$\operatorname{SetSprite}_{-}, 52$	PuddleCoating, 84
$\mathrm{SetX}_{_},53$	rtm::RoadCoating, 85
$\operatorname{SetY}_{-}, \frac{53}{}$	$GetClassDirections_, 88$
rtm::CoatingUnion, 53	${ m GetClassResistance}_{-},87$
CoatingUnion, 55	RoadCoating, 86, 87
GetCoatingObject, 56	rtm::SpawnType, 88
GetColumn , 58	rtm::StaticObject, 89
$\overline{\text{GetHeight}}, \overline{\overline{56}}$	StaticObject, 90
GetLength, 57	rtm::TurnObject, 91
$\operatorname{GetRow}_{-}, 58$	GetAngle, 94
$\operatorname{GetType}, \overline{55}$	IsRight, 93
GetWidth, 56	LeftTurnMatrix, 93
IsCorrect Column, 57	RightTurnMatrix, 92
IsCorrectRow, 57	TurnObject, 92
ReleaseSprites, 58	rtm::VehicleObject, 94
ShowSprites, 57	$AfterMoving_, 105$
rtm::ControlUnit, 59	$\operatorname{BeforeMoving}_{-}, 105$
ControlUnit, 60	ChangeLine , 99
GetSignal, 61	CheckCrossroadArea , 104
operator bool, 61	CheckForwardArea , 103
ReleaseSprites, 62	CheckForwardCoating , 102
SetState , 63	CheckForwardCoatingUnion , 102
ShowSprites, 62	CheckLineChangingArea , 105
Update, 61	CheckMovingArea , 103
UpdateSignal , 62	CheckRotationArea , 104
rtm::CrossroadObject, 63	CheckTurnArea , 104
CrossroadMatrix, 65	GetFinalSpeed, 101
CrossroadObject, 64, 65	GetMaxSpeed , 101
GetControlUnit, 67	IsBraking , 100
GetNullDirection, 66	IsLineChanging , 100
ReleaseSprites, 67	-
-	IsMovement_, 100
ShowSprites, 67	IsRotation_, 100
TCrossroadMatrix, 66	LineChanging_, 109
rtm::DrivewayObject, 68	LineChangingEnd_, 109
CountLines 72	LineChangingStart, 108
CountLines_, 73	LineChangingTick_, 108
DrivewayMatrix, 70	MoveForward_, 99
DrivewayObject, 69	Movement_, 110
GetLength, 70	Movement End_, 107
GetLinesCount, 70	MovementStart_, 106
isLeftLine, 71, 72	Movement Tick_, 106
isRightLine, 71	Rotate_, 99
rtm::DynamicObject, 73	Rotation_, 109
CheckCollisions, 80	RotationEnd_, 108
DynamicObject, 75, 76	$RotationStart_, 107$
GetLastDelta, 76	RotationTick_, 107
GetSpeed, 76	SetBrakingFactor_, 102
HasCollision, 77	$SetFinalSpeed_, 101$
IsBeholding_, 78	SmoothBrakingCounter, 110
IsIntersecting_, 79	$SpeedChanging_{-}, 110$
IsNear_, 79	$\mathrm{Stop}_{_}, 99$
IsNearOthers, 77	$StopAtDistance_,\ 102$
SetCollisionFlag_, 78	Update, 98
SetSpeed_, 78	VehicleObject, 97, 98
Update, 77	rtm::WorldController, 111

${ m AddBuilding_,125}$	Create, 139
$AddBush_, 126$	GetMainLayer, 140
$\operatorname{AddCar} \overline{, 127}$	${ m GetMap}$, 141
AddCoatingUnion_, 122	init, 139
$\operatorname{AddControlUnit}, 125$	SetBackground, 140, 141
$\operatorname{AddCrossroad}_{-}, \overset{-}{123}$	update, 140
AddDriveway_, 122	,
AddDynamicObject , 126	${ m Same Angles}$
AddLeftTurt , 124	${ m rtm},~25$
AddRightTurt , 124	${\bf Same Coordinates}$
AddStaticObject_, 125	rtm, 23
AddTCrossroad_, 123	${f SetAngle}_{f L}$
GenerateObject, 121	rtm::WorldObject, 134
——————————————————————————————————————	$\operatorname{SetBackground}$
GetCoatingObject, 116	rtm::WorldScene, 140, 141
GetCoatingUnion, 117	$\operatorname{SetBrakingFactor}$
GetColumnsCount, 115	rtm::VehicleObject, 102
GetDeltaTime, 116	$\operatorname{SetCollisionFlag}$
GetDynamicObjects, 117	rtm::DynamicObject, 78
GetLayer, 115	SetDirectionAvailability
GetRealColumn_, 128	rtm::CoatingObject, 52
GetRealRow_, 128	$\operatorname{SetFinalSpeed}$
GetRowsCount, 116	rtm::VehicleObject, 101
GetStaticObject, 117	$\operatorname{SetHeight}$
GetTimeFactor, 116	rtm::WorldObject, 135
$\operatorname{GetVectorColumn}_{-}, 127$	$\operatorname{SetSpeed}$
GetVectorRow_, 128	rtm::DynamicObject, 78
IsAllowableColumn, 118	$\operatorname{SetSprite}$
IsAllowableRow, 119	rtm::CoatingObject, 52
IsCorrect Column, 118	rtm::WorldObject, 133
IsCorrectRow, 118	$\operatorname{SetSpriteAngle}$
${\rm IsEmpty_,\ 121}$	rtm::WorldObject, 136
IsPause, 117	SetSpriteHeight
IsVisibleColumn, 119	rtm::WorldObject, 136
IsVisibleRow, 120	$\operatorname{SetSpriteWidth}$
LoadMap, 120, 121	rtm::WorldObject, 136
SetTimeFactor, 120	$\operatorname{SetSpriteX}$
Update, 115	${ m rtm::}\overline{ m WorldObject}, { m 135}$
WorldController, 114, 115	$\operatorname{SetSpriteY}$
rtm::WorldObject, 129	rtm::WorldObject, 135
GetAngle, 133	SetState
GetHeight, 133	rtm::ControlUnit, 63
GetSprite, 132	$\operatorname{SetTimeFactor}$
GetWidth, 133	rtm::WorldController, 120
$\mathrm{GetX}_{_},132$	$\mathbf{SetWidth}_$
$\mathrm{GetY}_{_}, 132$	rtm::WorldObject, 134
$SetAngle_, 134$	$\operatorname{Set} X$
$SetHeight_, 135$	rtm::CoatingObject, 53
SetSprite_, 133	rtm::WorldObject, 134
SetSpriteAngle_, 136	$\operatorname{Set} Y$
$SetSpriteHeight_, 136$	rtm::CoatingObject, 53
$SetSpriteWidth_, 136$	rtm::WorldObject, 134
$SetSpriteX_,135$	${ m ShowSprites}$
$SetSpriteY_, 135$	rtm::CoatingUnion, 57
$SetWidth_, 134$	rtm::ControlUnit, 62
$\mathrm{SetX}_{-},134$	${\rm rtm}{::}{\rm CrossroadObject}, 67$
$\operatorname{SetY}_{-}^{-}$, 134	$\operatorname{SignalFileId}$
WorldObject, 131, 132	rtm, 22
rtm::WorldScene, 137	${f Signal Sprites}$

```
rtm, 19
SignalType
    rtm, 21
{\bf Signals Sprites}
    rtm, 19
Smooth Braking Counter\\
    rtm::VehicleObject, 110
SpeedChanging
    rtm::VehicleObject, 110
Started
    rtm, 21
StateType
    rtm, 21
StaticObject
    rtm::StaticObject, 90
Stop_{\_}
    rtm::VehicleObject, 99
StopAtDistance
    rtm::VehicleObject, 102
SumAngleTypes
    rtm, 30
TCrossroadMatrix
    rtm::CrossroadObject, 66
TurnObject
    {\tt rtm::TurnObject,~92}
Up
    rtm, 20
Update
    rtm::ControlUnit, 61
    rtm::DynamicObject, 77
    rtm::VehicleObject, 98
    rtm::WorldController, 115
update
    rtm::WorldScene, 140
UpdateSignal
    rtm::ControlUnit, 62
Upward
    rtm, 20
VehicleObject
    rtm::VehicleObject, 97, 98
Warning
    rtm, 21
WorldController
    rtm::WorldController, 114, 115
WorldObject
    rtm::WorldObject, 131, 132
```