

星・惑星系形成領域における 水の重水素比

古家健次 筑波大・計算科学研究センター

星•惑星形成過程

宇宙における水

- ▶酸素の主要な形態 (~40 % of volatile oxygen)
- ▶星間氷・彗星氷の主成分
 - → 惑星の材料物質地球の海・生命の起源

100% = 宇宙存在度[O/H]~10-3

分子雲(コア)における 酸素の存在形態

(Whittet+ 2007)

Water chemistry: well studied

(van Dishoeck et al. 2013)

(Original ref. Jensen+2000; Miyauchi+2008; Ioppolo+2008; Oba+2012 and many others)

The formation of water on interstellar dust particles

prof. Ewine F. van Dishoeck, PhD, A.L.M. "Thanja" Lamberts, MSc

Discover the world at Leiden University

Deuterium fractionation

Probe of formation environments of molecules

- \rightarrow The [D/H] elemental ratio in the local ISM $\sim 10^{-5}$ (Linsky 2003)
- ➤ Molecules formed at low temperatures, XD/XH >> 10⁻⁵

$$H_3^+ + HD \implies H_2D^+ + H_2 + 230 \text{ K}$$

$$\rightarrow$$
 H₂D⁺/H₃⁺>> 10⁻⁵

$$H_2D^+ + e \rightarrow D + H_2$$

- High atomic D/H
- → High D/H in Icy molecules

(e.g., Watson+1976; Tielens 1983)

- Reaction cordinate
- > CO freeze-out, higher density, lower H₂ o/p
 - > enhanced deuterium fractionation

HDO/H₂O observations

Water is enriched in deuterium

Detection of D₂O in the inner region of a solar-type protostar

- First interferometric detection of D₂O towards the Class 0 protostar NGC1333 IRAS2A with the PdBI (Coutens et al. 2014)
- LTE modeling (HDO, D₂O, H₂¹⁸O)
- D₂O/HDO ~ 1.2 × 10⁻²
- HDO/H₂O ~ 1.7 × 10⁻³

$D_2O/HDO \sim 7 \times HDO/H_2O$

(別の1天体も同様な傾向)

Coutens et al. (2014, ApJL)

Slide of Audrey Coutens

小質量原始星周りの 高温ガス(>100 K)の観測

$$\frac{D_2O}{HDO} \sim 7 \frac{HDO}{H_2O}$$

原始星周りのガス組成から 星形成前に生成された氷の層構造の推定が可能

Constant atomic D/H case

i.e., assumes quasi-steady state

contradicts with the observational relation $\frac{D_2O}{HDO} \sim 7 \frac{HDO}{H_2O}$

→ time-dependency of the atomic D/H

Let's consider chemical evolution

 $R(HDO) \propto R(H_2O)^*(atomic D/H)$ $R(D_2O) \propto R(H_2O)^*(atomic D/H)^2$

→ Production rates of HDO and D₂O do not necessarily follow that of H₂O

If the production of HDO and D₂O are dominated in late times

 D_2O/HDO in the whole ice ~ atomic D/H in late times HDO/H_2O in the whole ice << atomic D/H in late times

$$\frac{D_2O}{HDO} \gg \frac{HDO}{H_2O}$$

Let's consider chemical evolution

If the production of HDO and D₂O are dominated in late times

 D_2O/HDO in the whole ice ~ atomic D/H in late times HDO/H_2O in the whole ice << atomic D/H in late times

$$\frac{D_2O}{HDO} \gg \frac{HDO}{H_2O}$$

Required conditions for reproducing the observations

- (i) drop of $R(H_2O)$ by a factor of >10
- (ii) enhancement of the atomic D/H by a factor of >100
 - → very inhomogeneous

Molecular cloud formation

Accumulation of HI gas by accretion flows

→ molecular cloud formation

(e.g., Hartmann+2001; Inoue&inutsuka 2012)

Ice layered structure

1D shock model + gas-ice chemical model

まとめ

小質量原始星周りの 高温ガス(>100 K)の観測

$$\frac{D_2O}{HDO} \sim 7 \frac{HDO}{H_2O}$$

原始星周りのガス組成から 星形成前に生成された氷の層構造の推定が可能