

Algoritmos e Estrutura de Dados I

Árvore Binária de Pesquisa

Vanessa Cristina Oliveira de Souza

Operações em Árvores Binárias

- As principais operações sobre as árvores binárias são:
 - Inserir um elemento
 - Excluir um elemento
 - Buscar um elemento
 - Encontrar o maior
 - Encontrar o menor
 - Buscar o elemento sucessor e o predecessor
 - Percorrimento
 - Em pré-ordem
 - ▶ Em ordem
 - ▶ Em pós-ordem

A remoção de um nó da árvore binária de pesquisa depende da quantidade de filhos que ele possui.

Sendo assim:

- Nó folha (sem filhos)
- Nó com um único filho
- Nó com dois filhos

- Nó folha (Grau 0)
 - A remoção de um nó folha é a mais simples.
 - 1. Busca o nó a ser removido
 - 2. Faz seu pai apontar pra NULL
 - 3. Remove o nó

Nó folha

- 1. Busca o nó a ser removido
- 2. Faz seu pai apontar pra NULL
- 3. Remove o nó

- Nó folha
 - Remover o nó 7
 - Busca o elemento
 - Faz seu pai apontar pra NULL
 - Remove o nó

Nó com um filho (Grau 1)

- 1. Busca o nó a ser removido
- 2. Faz o pai do nó apontar para seu único filho
- 3. Remove o nó

- Nó com um filho
 - Remover o nó 6
 - 1. Busca o nó a ser removido
 - 2. Faz o pai do nó apontar para seu único filho
 - 3. Remove o nó

- Nó com um filho
 - Remover o nó 6
 - 1. Busca o nó a ser removido
 - 2. Faz o pai do nó apontar para seu único filho
 - 3. Remove o nó

Nó com dois filhos (Grau 2)

- Essa é a remoção mais complexa.
- A remoção 'física' do nó é muito cara computacionalmente.
- Utilizamos um algoritmo chamado 'remoção por cópia'
- Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

- Remover o nó 8
- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

Sucessor:

- Próximo elemento maior que 8
- Nesta árvore, o sucessor é o 10
- Elemento mais à esquerda da subárvore à direita

- Remover o nó 8
- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

Predecessor:

- Elemento imediatamente menor que 8
- Nesta árvore, o predecessor é o 4
- Elemento mais à direita da sub-árvore à esquerda

- Remover o nó 8
- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

O nó sucessor ou predecessor sempre terá grau 0 ou 1!!!

- Remover o nó 8
- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

Vamos adotar o predecessor como padrão

- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - Dbs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

- Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - ▶ Obs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

- 1. Busca o nó a ser removido
- 2. Encontra o sucessor ou predecessor do nó
- 3. Copia o valor do nó (chave + dados satélite) para o lugar do nó removido
- 4. Remove o nó sucessor ou predecessor
 - Dbs.: deve-se sempre escolher a priori o sucessor ou o predecessor.

Árvore original e árvore após a remoção dos elementos 7, 6 e 8, nessa ordem!

- Exercício
- ▶ Remover os elementos 6, 7 e 8 usando o sucessor.

▶ E quando a árvore tem elementos repetidos?

Exercício

Dada a árvore binária abaixo, remova os elementos 12, 2, 4,
10 e 15, nessa ordem. Use o predecessor.

Implementação Remoção

Implementação

- void removeElementoIt(abp *A, int elemento);
 - Encontra o nó a ser removido e envia para a função removelt

- void removelt(abp *A, noArvore *no, noArvore *pai);
 - Remove o nó da árvore