

EL EXAMEN SE APRUEBA CON 3 EJERCICIOS CORRECTAMENTE RESUELTOS

Apellido:	 . Nombres	:	 	
Padrón: .				

- 1. Se sabe que el producto de dos números positivos es 4 y la suma de sus cuadrados es 16.
 - a) Plantear el problema como un sistema de ecuaciones no lineales.
 - b) Estimar el valor de dichos números tomando como valor inicial $x_0 = (3.7, 1.0)^t$, utilizar dos iteraciones del método de *Newton* para sistemas no lineales. Trabajar con tres decimales y redondeo.
- 2. Si la resistencia del aire es proporcional al cuadrado de la velocidad instantánea, entonces la velocidad v de una masa m que se deja caer desde una cierta altura se determina por la ecuación: $m\frac{dv}{dt} = mg kv^2 \text{ con } k > 0. \text{ Sea } v(0) = 0, \ k = 0.125, \ m = 87.56kg \text{ y } g = 9.8\frac{m}{s^2}.$
 - a) Demostrar que el problema tiene solución única en el intervalo [0,6]
 - b) Usar el método de Euler para estimar la velocidad en t=2.0 seg. Usar h=0.5 y cinco decimales con redondeo.
- 3. a) Sea el sistema $\mathbf{A}x = \mathbf{b}$, con $\mathbf{A} = \begin{pmatrix} 1 & 1.01 \\ 0.99 & 1 \end{pmatrix}$ y $\mathbf{b} = (-0.01, -0.01)^t$. Se obtiene con aritmética de 3 dígitos una aproximación $\tilde{x} = (0.981, -0.981)^t$. Estimar el número de condición de la matriz.
 - b) Obtener una mejor aproximación de la solución haciendo un paso de refinamiento iterativo.
- 4. a) Teniendo en cuenta que no es conocida una primitiva de la función $f(x) = e^{x^2}$. Calcular el valor de la integral definida $\int_0^1 e^{x^2} dx$, usar le regla de los trapecios compuesta con N = 8, trabajar con 5 decimales y redondeo.
 - b) Sabiendo que el error en la fórmula de los Trapecios es: $|E_T| = \frac{h^3}{12}NL$, donde $f''(\xi) \leq L$ decidir justificando la respuesta si el error en la aproximación realizada en a) es menor que 10^{-3} .
- 5. a) Use la serie de Taylor para aproximar f'(x) y f''(x) en un entorno de x. Indique claramente todas las hipótesis que usa.
 - b) Con lo hecho en el punto anterior resolver por diferencias finitas el siguiente problema de valores en la frontera: El potencial electrostático u entre dos esferas concéntricas de radios r=1 y r=4 se determina a partir de la ecuación:

$$\frac{d^2u}{dr^2} + \frac{2}{r}\frac{du}{dr} = 0, u(1) = 50, u(4) = 100$$

Usar N=4, para aproximar el potencial. Usar toda la precisión de la calculadora.