CSCI567 Machine Learning (Fall 2016)

Dr. Yan Liu

yanliu.cs@usc.edu

September 26, 2016

Outline

- Linear regression
 - Motivation
 - Algorithm
 - Univariate solution
 - Probabilistic interpretation
 - Solution
 - Multivariate solution in matrix form
- 2 Perceptron

Regression

Predicting a continuous outcome variable

- Predicting a company's future stock price using its past and existing financial info
- Predicting the amount of rain fall
- Predicting ...

Regression

Predicting a continuous outcome variable

- Predicting a company's future stock price using its past and existing financial info
- Predicting the amount of rain fall
- Predicting ...

Key difference from classification

- We measure prediction errors differently.
- This will lead to quite different learning models and algorithms.

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

Correlation between square footage and sale price

(Unlike classification, the colors of the dots in this scatterplot do not mean anything.)

Possibly linear relationship

 $\mathsf{Sale}\ \mathsf{price} \approx \mathsf{price_per_sqft}\ \times\ \mathsf{square_footage}\ +\ \mathsf{fixed_expense}$

How to learn the unknown parameters?

training data (past sales record)

sqft	sale price			
2000	800K			
2100	907K			
1100	312K			
5500	2,600K			

Reduce prediction error

How to measure errors?

- The classification error(hit or miss) is not appropriate for continuous outcomes.
- We can look at the absolute difference: | prediction sale price|

However, for simplicity, we look at the *squared* errors: $(prediction - sale price)^2$

sqft	sale price	prediction	error	squared error
2000	800K	710K	80K	$80K^{2}$
2100	907K	800K	107K	$107K^{2}$
1100	312K	350K	38K	$38K^{2}$
5500	2,600K	2,600K	0	0

Minimize squared errors

Our model

Sale price = price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff

Training data

sqft	sale price	prediction	error	squared error
2000	800K	720K	80K	$80K^{2}$
2100	907K	800K	107K	$107K^2$
1100	312K	350K	38K	$38K^{2}$
5500	2,600K	2,600K	0	0
• • •	• • •			
Total				$80K^2 + 107K^2 + 38K^2 + 0 + \cdots$

Aim

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the residual/remaining unexplainable_stuff is

Linear regression

Setup

- Input: $x \in \mathbb{R}^{\mathsf{D}}$ (covariates, predictors, features, etc)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$
- Model: $f: \boldsymbol{x} \to y$, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$ $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathrm{D}}]^{\mathrm{T}}$ is called *weights*, *parameters*, or *parameter* vector

 w_0 is called *bias*.

We also sometimes call $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$ parameters too! So please pay attention to contexts when you read papers, textbooks, or assigned reading material.

Goal

Minimize prediction error as much as possible

Residual sum of squares

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - f(\boldsymbol{x}_n)]^2 = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2$$

 Other definitions of errors are also possible We will see an example very soon.

A simple case: x is just one-dimensional

Identify stationary points, by taking derivative with respect to parameters, and setting to zeroes

$$\left\{ \begin{array}{l} \frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{array} \right. \Rightarrow \left(\begin{array}{cc} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array} \right) \left(\begin{array}{c} w_0 \\ w_1 \end{array} \right) = \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array} \right)$$

Why minimizing RSS is a sensible thing?

Probabilistic interpretation

Noisy observation model

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0, \sigma^2)$ is a Gaussian random variable

• Likelihood of one training sample (x_n, y_n)

$$p(y_n|x_n) = N(w_0 + w_1 x_n, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2}}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_{n} \log p(y_n|x_n)$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n|x_n) = \sum_{n} \log p(y_n|x_n)$$
$$= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\begin{split} \log P(\mathcal{D}) &= \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n) \\ &= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\} \\ &= -\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{\mathsf{N}}{2} \log \sigma^2 - \mathsf{N} \log \sqrt{2\pi} \end{split}$$

Log-likelihood of the training data \mathcal{D} (assuming i.i.d)

$$\begin{split} \log P(\mathcal{D}) &= \log \prod_{n=1}^{\mathsf{N}} p(y_n | x_n) = \sum_n \log p(y_n | x_n) \\ &= \sum_n \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\} \\ &= -\frac{1}{2\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 - \frac{\mathsf{N}}{2} \log \sigma^2 - \mathsf{N} \log \sqrt{2\pi} \\ &= -\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \log \sigma^2 \right\} + \mathsf{const} \end{split}$$

i.i.d stands for independently and identically distributed.

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s=\sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

Maximum likelihood estimation

Estimating σ , w_0 and w_1 are decoupled

• Maximize over w_0 and w_1

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \mathsf{That} \mathsf{ is } \mathsf{RSS}(\tilde{\boldsymbol{w}})!$$

• Maximize over $s=\sigma^2$ (we could estimate σ directly)

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_n [y_n - (w_0 + w_1 x_n)]^2 + \mathsf{N} \frac{1}{s} \right\} = 0$$

$$\to \sigma^2 = s = \frac{1}{\mathsf{N}} \sum_n [y_n - (w_0 + w_1 x_n)]^2$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Additionally

$$\sigma^{2} = \frac{1}{N} \sum_{n} [y_{n} - (w_{0}^{LMS} + w_{1}^{LMS} x_{n})]^{2}$$

Interpretation

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} w_0^{LMS} \\ w_1^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

Additionally

$$\sigma^{2} = \frac{1}{N} \sum_{n} [y_{n} - (w_{0}^{LMS} + w_{1}^{LMS} x_{n})]^{2}$$

Remarks

- LMS is the same as the maximum likelihood estimation when the noise is assumed to be *Gaussian*.
- The remaining residuals provide a maximum likelihood estimate of the noise's variance.

NB. We sometimes call it least square solutions too.

Solution when x is one-dimensional

Least mean square (LMS) solution (minimizing residual sum of errors)

$$\begin{pmatrix} \sum_{n} 1 & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{pmatrix} \begin{pmatrix} w_{0} \\ w_{1} \end{pmatrix} = \begin{pmatrix} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} w_{0}^{LMS} \\ w_{1}^{LMS} \end{pmatrix} = \begin{pmatrix} \sum_{n} 1 & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{pmatrix}^{-1} \begin{pmatrix} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{pmatrix}$$

NB. We sometimes call it least square solutions too.

$RSS(ilde{oldsymbol{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

$RSS(ilde{oldsymbol{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n) (y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$

$RSS(ilde{oldsymbol{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n) (y_n - \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}})$$
$$= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2y_n \tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} + \text{const.}$$

$RSS(ilde{oldsymbol{w}})$ in matrix form

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n]^2$$

where we have redefined some variables (by augmenting)

$$\tilde{\boldsymbol{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}, \quad \tilde{\boldsymbol{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_{\mathsf{D}}]^{\mathrm{T}}$$

which leads to

$$\begin{split} RSS(\tilde{\boldsymbol{w}}) &= \sum_{n} (y_{n} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}) (y_{n} - \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}) \\ &= \sum_{n} \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - 2 y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} + \mathrm{const.} \\ &= \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} - 2 \left(\sum_{n} y_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \right) \tilde{\boldsymbol{w}} \right\} + \mathrm{const.} \end{split}$$

$RSS(\tilde{m{w}})$ in new notations

Design matrix and target vector

$$m{X} = \left(egin{array}{c} m{x}_1^{
m T} \ m{x}_2^{
m T} \ dots \ m{x}_N^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes D}, \quad m{ ilde{X}} = (m{1} \quad m{X}) \in \mathbb{R}^{{\sf N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_N \end{array}
ight)$$

$RSS(\tilde{\boldsymbol{w}})$ in new notations

Design matrix and target vector

$$m{X} = \left(egin{array}{c} m{x}_1^{
m T} \ m{x}_2^{
m T} \ dots \ m{x}_N^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes D}, \quad m{ ilde{X}} = (m{1} \quad m{X}) \in \mathbb{R}^{{\sf N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_N \end{array}
ight)$$

Compact expression

$$RSS(\tilde{\boldsymbol{w}}) = \left\{ \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - 2 \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} \right)^{\mathrm{T}} \tilde{\boldsymbol{w}} \right\} + \mathrm{const}$$

Solution in matrix form

Normal equation

Take derivative with respect to $ilde{m{w}}$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}}} \propto \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} = 0$$

This leads to the least-mean-square (LMS) solution

$$ilde{oldsymbol{w}}^{LMS} = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

Solution in matrix form

Normal equation

Take derivative with respect to $ilde{m{w}}$

$$\frac{\partial RSS(\tilde{\boldsymbol{w}})}{\partial \tilde{\boldsymbol{w}}} \propto \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{w} - \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} = 0$$

This leads to the least-mean-square (LMS) solution

$$ilde{oldsymbol{w}}^{LMS} = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

Verify the solution when D=1

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} \sum_n 1 & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

Mini-Summary

• Linear regression is the linear combination of features.

$$f: \boldsymbol{x} o y$$
, with $f(\boldsymbol{x}) = w_0 + \sum_d w_d x_d = w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$

- If we minimize residual sum squares as our learning objective, we get a closed-form solution of parameters.
- Probabilistic interpretation: maximum likelihood if assuming residual is Gaussian distributed
- Other interpretations exist: if interested, please consult the slides from last year's lectures.

Outline

- Linear regression
- Perceptron
 - Intuition
 - Alogrithm

Main idea

Consider a linear model for binary classification

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}$$

is used to distinguish two classes $\{-1, +1\}$.

Our goal

$$\varepsilon = \sum_n \mathbb{I}[y_n \neq \mathsf{sign}(\boldsymbol{w}^\mathrm{T}\boldsymbol{x}_n)]$$

i.e., at least the errors on the training dataset are reduced.

Hard, but easy if we have only one training example

How to change $oldsymbol{w}$ such that

$$y_n = \mathsf{sign}(oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

Two cases

- If $y_n = \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, do nothing.
- If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$,

$$oldsymbol{w}^{ ext{NEW}} \leftarrow oldsymbol{w}^{ ext{OLD}} + y_n oldsymbol{x}_n$$

Why would it work?

If
$$y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$$
, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

Why would it work?

If $y_n \neq \operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)$, then

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) < 0$$

What would happen if we change to new $\boldsymbol{w}^{\text{NEW}} = \boldsymbol{w} + y_n \boldsymbol{x}_n$?

$$y_n[(\boldsymbol{w} + y_n \boldsymbol{x}_n)^{\mathrm{T}} \boldsymbol{x}_n] = y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n + y_n^2 \boldsymbol{x}_n^{\mathrm{T}} \boldsymbol{x}_n$$

We are adding a positive number, so it would be possible for the new $oldsymbol{w}^{ ext{NEW}}$

$$y_n(\boldsymbol{w}^{\text{NEWT}}\boldsymbol{x}_n) > 0$$

i.e., classify correctly!

Perceptron

Iteratively solving one case at a time

- REPEAT
- Pick a data point x_n (can be a fixed order of the training instances)
- Make a prediction $y = \text{sign}(\boldsymbol{w}^T \boldsymbol{x}_n)$ using the current \boldsymbol{w}
- If $y = y_n$, do nothing. Else,

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

UNTIL converged.

Properties

- If the training data is linearly separable, the algorithm stops in a finite number of steps.
- The parameter vector is always a linear combination of training instances.

