

Algoritmica grafurilor

IV. Programare liniara, arbori si paduri

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Martie, 21, 2019

Continut

- Constrangeri si grafuri
 - Programare liniara
 - Constrangeri sub forma unui graf
- Drum de lungime minima intre toate perechile de varfuri
- Arbori si paduri
 - Definitii
 - Arbori de acoperire
 - Algoritmul lui Kruskal
 - algoritmul lui Prim
 - Prufer
 - codare Huffman

Programare liniară

Problema generală

fie o matrice \boldsymbol{A} de dimensiune \boldsymbol{m} \boldsymbol{x} \boldsymbol{n} , un vector \boldsymbol{b} de dimensiune \boldsymbol{m} și un vector \boldsymbol{c} de dimensiune \boldsymbol{n} . Trebuie găsit un vector \boldsymbol{x} de \boldsymbol{n} elemente care maximizează funcția obiectiv

$$\sum_{i=1}^n c_i x_i$$

si satisface *m* constrângeri date de

$$Ax < b$$
.

• în unele cazuri nu prezintă interes funcția obiectiv, se dorește găsirea unei soluții fezabile (orice vector x ce satisface $Ax \leq b$) sau sa se arate că nu există astfel de soluții

Sistem de constrângeri

- într-un sistem de constrângeri fiecare rând din matricea A conține o valoare -1, o valoare 1 și restul valorilor sunt 0
- astfel constrângerile date de $Ax \le b$ sunt un set de m constrângeri cu n necunoscute unde fiecare constrângere este o inecuație de forma

$$x_j - x_i \leq b_k$$

unde $1 \le i, j \le n, i \ne j$ și $1 \le k \le m$.

Exemplu

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \leq \begin{pmatrix} 0 \\ -0 \\ 1 \\ 5 \\ 4 \\ -1 \\ -3 \\ -3 \end{pmatrix}$$

Exemplu (II)

 problema cere să se găsească x₁, x₂, x₃, x₄, x₅ pentru cele 8 constrângeri

$$x_1 - x_2 \le 0,$$

 $x_1 - x_5 \le -1,$

• soluția nu este unică, două posibile soluții:

$$x = (-5, -3, 0, -1, -4)$$

 $x' = (0, 2, 5, 4, 1)$

Sistem de constrângeri (II)

Lema 4.1

fie $x=(x_1,x_2,...,x_n)$ o soluție pentru $Ax\leq b$ și d o constantă. Atunci și $x+d=(x_1+d,x_2+d,...,x_n+d)$ este o soluție pentru sistemul de constrângeri $Ax\leq b$ și d.

Demonstrație.

pentru fiecare x_i și x_j avem $(x_j + d) - (x_i + d) = x_j - x_i$. Dacă x satisface $Ax \le b$ atunci și x + d este o soluție.

Grafuri de constrângeri

Cum se poate modela problema sub forma unui graf?

Grafuri de constrângeri

- sistemul de constrângeri poate fi interpretat sub forma unui graf
- pentru un sistem $Ax \le b$ de constrângeri, matricea A de dimensiune $m \times n$ poate fi văzută ca transpusa unei matrici de incidență a unui graf cu n vârfuri și m arce
- fiecare vârf $v_i \in V, i = 1, 2, ..., n$ corespunde unei variabile x_i
- fiecare arc $(i,j) \in E$ corespunde unei inegalități

Definiție

fie un sistem $Ax \leq b$ de constrângeri, graful corespunzător acestui sistem este un graf ponderat și orientat G = (V, E) unde $V = \{\mathbf{v_0}, v_1, ..., v_n\}$ și

$$E = \{(v_i, v_j) \mid x_j - x_i \le b_k \text{ este o constrangere}\}\$$

$$\cup \{(v_0, v_1), (v_0, v_2), ..., (v_0, v_n)\}\$$

Grafuri de constrângeri (II)

- graful conține un vârf suplimentar v_0 , astfel fiecare vârf e accesibil din v_0
- $v_i \in V, i = 1,...,n$ pentru fiecare necunoscută x_i și un vârf suplimentar v_0
- E conține un arc pentru fiecare constrângere și (v_0, v_i) pentru fiecare necunoscută x_i
- dacă $(x_j x_i \le b_k \text{ atunci } w(v_i, v_j) = b_k$
- $w(v_0, v_i) = 0, \forall i = 1, ..., n$

Grafuri de constrângeri (III)

Teorema 4.1

fie un sistem $Ax \leq b$ de constrângeri și G = (V, E) graful constrângerilor. Dacă G nu conține circuite de pondere negativă, atunci

$$x = (\delta(v_0, v_1), \delta(v_0, v_2), ..., \delta(v_0, v_n))$$

este o soluție fezabilă pentru sistem. Dacă graful G conține un circuit negativ, sistemul nu are soluție.

 ⇒ soluția unui sistem de constrângeri poate fi găsită ca și drumul de pondere minimă din graful constrângerilor

Exemplu

- valoarea $\delta(v_0, v_i)$ apare în fiecare nod
- o posibilă soluție x = (-5, -3, 0, -1, -4)

Drum de lungime minimă între toate perechile de vârfur

Din motive de organizare această parte va fi discutată în cursul 5.

Arbori și păduri

Arbori și păduri

• un arbore

Arbori și păduri (II)

• o pădure

Arbori și păduri

• un graf care nu este arbore sau pădure

Arbori și păduri - definiții

Definiții

Un arbore este un graf simplu care nu are cicluri.

O **pădure** este un graf G = (V, E) simplu în care fiecare componentă este un arbore.

Arbori și păduri - definiții (II)

Definiție

un vârf u al unui graf simplu G = (V, E) se numește **frunză** dacă $d_G(u) = 1$. Un vârf care nu este frunză se numește **vârf intern**.

Multe proprietăți asociate arborilor pot fi derivate din următoarea teoremă

Teorema 4.2

fiecare arbore cu minim două vârfuri are cel puțin două frunze.

Arbori și păduri - definiții (III)

Demonstrație.

- fie T un arbore cu $n \ge 2$, fie p lanțul de lungime maximă din T și u, v vârfurile lui p
- se arată că u și v sunt frunze, d(u) = d(v) = 1, este suficient să se demonstreze pentru un singur vârf
- dacă $d(u) \ge 2 \Rightarrow \exists e \in E, e \notin p$, având vârfurile $u, w \in V$
- avem două cazuri:
 - ① $w \notin p \Rightarrow$ lanțul compus p' = (w, e, u)p este un lanț din T având lungimea lanțului p plus $1 \longrightarrow$ contradicție (p lanțul de lungime maximă)
 - ② $w \in p$, dacă p'' este lanțul de la u la v atunci avem un ciclu c = (w, e, u)p'' de lungime cel puțin 3 în $T \longrightarrow T$ nu este arbore
- $\bullet \Rightarrow d(u) = 1$

Arbori și păduri - definiții (IV)

Fie G = (V, E) un graf de ordin $n \ge 2$, afirmațiile următoare sunt echivalente și caracterizează un arbore:

- G este un arbore
- ② G este fără cicluri și are n-1 muchii
- **3** G este conex și are n-1 muchii
- G este conex și suprimând o muchie nu mai este conex
- 🧿 între oricare două vârfuri ale grafului există un singur lanț
- G este fără cicluri și prin adăugarea unei muchii între două vârfuri neadiacente se formează un singur ciclu

Arbori și păduri - definiții (V)

Teorema Erdős-Szekeres

dacă $(x_1, x_2, ..., x_{hk+1})$ este o secvență de numere reale distincte, atunci există o subsecvență crescătoare de h+1 elemente sau o subsecvență descrescătoare de k+1 elemente.

Corolar

fiecare secvență de numere reale distincte de lungime n conține o subsecvență de lungime $\lceil \sqrt{n} \rceil$ strict crescătoare sau strict descrescătoare.

Arbori și păduri - definiții (VI

Centrul unui arbore

fie G = (V, E) un graf și $u \in V$

• excentricitatea $\epsilon_G(u)$ a lui u în G este distanța de la u la vârful cel mai îndepărtat de u din G,

$$\epsilon_G(u) = \max(\delta_G(u, v) | v \in V)$$

• centrul lui G este vârful pentru care

$$\min_{u\in V}(\epsilon_G(u))$$

Arbori și păduri - definiții (VII)

Rădăcina unui arbore

fie T un arbore și $r \in V(T)$. Un arbore cu rădăcină este perechea ordonată (T, r), vârful r se numește **rădăcina** arborelui.

Arbori și păduri - definiții (VIII)

Arbore binar

un **arbore binar** este un arbore ce are o rădăcină, este ordonat și în care fiecare vârf are cel mult doi succesorii. Succesorii fiecărui vârf sunt ordonați, fiul stâng și fiul drept.

Arbori de acoperire (spanning trees)

Ex. realizarea unui circuit electronic

- terminalele mai multor componente electronice trebuie interconectate
- pentru a conecta n terminale e nevoie de n-1 conexiuni, fiecare conectând două terminale
- dintre toate aranjamentele cel mai dezirabil este cel care folosește cât mai puțin cupru pentru a conecta terminalele

Arbori de acoperire (II)

problema poate fi rezolvată cu ajutorul unui graf

Definire problemă

fie un graf G=(V,E) simplu neorientat unde V este setul terminalelor și E este setul conexiunilor posibile între terminalele componentelor. Pentru fiecare muchie $(u,v)\in E$ avem o pondere w(u,v) ce specifică costul legăturii (ex. cantitatea de cupru folosită). Vrem să găsim un subset aciclic $T\subseteq E$ care leagă toate vârfurile având costul total

$$w(t) = \sum_{(u,v)\in T} w(u,v)$$

minim.

Arbori de acoperire (III)

- deoarece T este aciclic și leagă toate vârfurile, T este un arbore numit arbore de acoperire
- problema cere determinarea arborelui minim de acoperire

Arbori de acoperire (IV)

Un arbore de acoperire T are următoarele proprietăți

- T este conex
- T este aciclic
- T are n vârfuri
- T are n-1 muchii

Dacă un subgraf T al unui graf G = (V, E) are oricare trei astfel de proprietăți atunci T este un arbore de acoperire.

Arbori de acoperire - formula lui Cayley

Cayley

fie un graf complet K_n , numărul arborilor etichetați este n^{n-2}

Fie un graf simplu neorientat G = (V, E) cu funcția de pondere $w : E \to \mathbb{R}$ și vrem să găsim arborele minim de acoperire a lui G.

• generic, abordarea folosită este surprinsă de procedura

generic_mst(G)

- 1: $A = \emptyset$
- 2: while A nu este un arbore minim de acoperire do
- 3: găsește o muchie (u, v) sigură pentru A
- 4: $A = A \cup \{(u, v)\}$
- 5: return A
 - arborele minim de acoperire crește muchie cu muchie

Arbore de acoperire minimă - metoda generică (II)

- înainte de fiecare iterație A este un subset al unui arbore minim de acoperire
- în fiecare pas se găsește o muchie care împreună cu A formează un subset al unui arbore minim de acoperire (muchie sigură)
- partea dificilă: găsirea muchiei (u, v) astfel încât $A \subseteq T$
- ullet o tăietură (S,V-S) a unui graf neorientat G=(V,E) este o partiție a lui V

Arbore de acoperire minimă - metoda generică (III)

Teorema

fie G=(V,E) un graf simplu neorientat ponderat cu funcția de pondere $w:E\to\mathbb{R}$. Fie A un subset al lui E inclus într-un arbore minim de acoperire al lui G, fie (S,V-S) o tăietură a lui G ce respectă A și (u,v) muchia de pondere minimă ce traversează tăietura (S,V-S). În acest caz, muchia (u,v) este sigură pentru A.

Corolar

G=(V,E) un graf simplu neorientat ponderat cu funcția de pondere $w:E\to\mathbb{R}$. Fie A un subset al lui E inclus într-un arbore minim de acoperire al lui G, fie $C=(V_C,E_C)$ o componentă conexă (arbore) în pădurea $G_A=(V,A)$. Dacă (u,v) este o muchie de pondere minimă ce leagă componenta C de o altă componentă din G_A , atunci (u,v) este sigură pentru A.

Algoritmul lui Kruskal


```
mst_kruskal(G,w)
```

9: return A

```
1: A = \emptyset

2: for v \in V do

3: make_set(v)

4: sortare muchii crescător după ponderea w

5: for (u, v) \in E luate crescător după w do

6: if find_set(u) \neq find_set(v) then

7: A = A \cup (u, v)

8: union(u,v)
```

• implementarea folosește o structură de date de tipul disjoint-set (union-find, merge-find)

Algoritmul lui Kruskal - exemplu

Algoritmul lui Kruskal - exemplu (II)

Algoritmul lui Prim


```
mst_prin(G,w,r)
 1: for u \in V do
 2: u.key = \infty
 3: u.\pi = NIL
 4: r.key = 0
 5: Q = V
 6: while Q \neq \emptyset do
    u = extract_min(Q)
 7:
    for v \in Adj[u] do
 8:
           if v \in Q si w(u, v) < v.key then
 9:
10:
               v.\pi = u
               v.key = w(u, v)
11:
```


Codare Prüfer

CODARE_PRUFER(F)

- 1. $K = \emptyset$
- 2. **while** T conține și alte vârfuri decât rădăcina **do**
- 3. fie v frunza minimă din T
- 4. $K \leftarrow \operatorname{predecesor}(v)$
- 5. $T = T \setminus \{v\}$
- 6. **return** *K*

exemplu:

Decodare Prüfer


```
DECODARE_PRUFER(K, n)

1. T = \emptyset

2. for i = 1, 2, ..., n - 1 do

3. x primul element din K

4. y cel mai mic număr natural care nu se găsește în K

5. (x, y) \in E(T), x părintele lui y în T

6. șterg x din K, adaugă y în K

7. return T
```

Decodare Prüfer - exemplu

 $\begin{array}{c} 2,3,2,1,6,1 \parallel 4 \\ 3,2,1,6,1,4 \parallel 5 \\ 2,1,6,1,4,5 \parallel 3 \\ 1,6,1,4,5,3 \parallel 2 \\ 6,1,4,5,3,2 \parallel 7 \\ 1,4,5,3,2,7 \parallel 6 \end{array}$

Codare Huffman

HUFFMAN(C)

- 1: n = |C|
- 2: Q = C
- 3: **for** $1 \le i \le n 1$ **do**
- 4: alocă un nou vârf z
- 5: $z.stang = x = EXTRACT_MIN(Q)$
- 6: $z.drept = y = EXTRACT_MIN(Q)$
- 7: z.fr = x.fr + y.fr
- 8: INSERT(Q, z)
- 9: return EXTRACT_MIN(Q)