Full Name: Lee Taylor, ST Number: 190211479

CSC3831 Predictive Analytics Machine Learning House Price Prediction

First Model - Linear Regression (LR)

I implemented a grid search which attempts to find the best hyperparameters for the linear regression model on the dataset. The grid search takes in as hyper-parameters; fit_intercept, copy_x, and n_jobs to search over. The grid search returned a list of results for each set of hyperparameters.

Fit Intercept	Copy X	N jobs	MSE	R^2
TRUE	TRUE	1	0.37206	0.621966
TRUE	TRUE	2	0.37206	0.621966
TRUE	TRUE	3	0.37206	0.621966
TRUE	TRUE	4	0.37206	0.621966
TRUE	FALSE	-1	0.37206	0.621966
TRUE	FALSE	1	0.372047	0.621979
TRUE	FALSE	2	0.372047	0.621979
TRUE	FALSE	3	0.372047	0.621979
TRUE	FALSE	4	0.372047	0.621979
FALSE	TRUE	-1	0.372046	0.621981
FALSE	TRUE	1	0.372046	0.621981
FALSE	TRUE	2	0.372046	0.621981
FALSE	TRUE	3	0.372046	0.621981
FALSE	TRUE	4	0.372046	0.621981
FALSE	FALSE	-1	0.372046	0.621981
FALSE	FALSE	1	0.372046	0.621981
FALSE	FALSE	2	0.372046	0.621981
FALSE	FALSE	3	0.372046	0.621981
FALSE	FALSE	4	0.372046	0.621981

These results suggest that the choice of hyperparameters has a minimal impact on the model's performance. The MSE scores are relatively close together and the R^2 scores are all above 0.6, indicating that the model is performing relatively well, but there is still room for improvement.

Second Model – Multi-Layer Perceptron (MLP)

Another grid search is performed to find the best hyperparameters for the multi-layer perceptron model. The different hyper-parameters tested were number of units, activation function, number of layers. The grid search returned 192 results; the top 9 models are shown below.

Units Per	Activation						
Layer	Function	Layers	Optimizer	Epochs	Batch Size	MSE	MAE
128	relu	3	adam	10	64	0.203492	0.30959
512	relu	2	adam	10	64	0.204488	0.308437
256	relu	5	adam	10	8	0.204824	0.306975
512	relu	5	adam	10	32	0.205468	0.317355
256	relu	2	adam	10	32	0.206546	0.311331
128	relu	4	adam	10	16	0.206783	0.306865
256	relu	5	adam	10	16	0.2072	0.312006
512	relu	2	adam	10	32	0.207466	0.306897
128	relu	3	adam	10	16	0.207523	0.308899

The results show that more units, and layers does not necessarily lead to better performance. I then tested different epochs and optimizers with the hyperparameters of the best model from the first grid search.

Full Name: Lee Taylor, ST Number: 190211479

Units Per Layer	Activation Function	Lavers	Optimizer	Epochs	Batch Size	MSE	MAE
128	relu	3	adam	10	64	0.203516	0.30981
128	relu	3	adam	10	64	0.214913	0.326542
128	relu	3	adam	25	64	0.215211	0.305607
128	relu	3	adamax	25	64	0.215381	0.321018
128	relu	3	adam	50	64	0.218082	0.303142
128	relu	3	adamax	10	64	0.219988	0.327635
128	relu	3	rmsprop	50	64	0.220686	0.304911
128	relu	3	rmsprop	10	64	0.23416	0.334149
128	relu	3	rmsprop	25	64	0.253742	0.348849
128	relu	3	adagrad	50	64	0.257711	0.35942
128	relu	3	adagrad	25	64	0.283529	0.379947
128	relu	3	adagrad	10	64	0.305943	0.395837

Unexpectedly, increasing the epochs and changing the optimizer did not increase performance as shown the MSE increased with the different variations.

Third Model – Random Forest Regressor (RFR)

I performed a grid search on an RFR model searching the following hyperparameters; n_estimators, max_depth, min_samples_split, and min_samples_leaf. 20 of the 599 results are shown below.

The ten best RFR model hyper-parameters and results									
N_Estimators	Max Depth	Min Samples Split	es Split Min Samples Leaf		R^2				
300	None	2	2	0.192447	0.804463				
300	30	2	2	0.192721	0.804184				
100	None	2	2	0.193086	0.803814				
100	50	2	2	0.193178	0.80372				
300	30	5	2	0.19325	0.803647				
300	40	2	2	0.193306	0.803591				
200	50	2	2	0.193644	0.803246				
300	50	5	1	0.193743	0.803146				
300	None	5	2	0.193814	0.803074				
300	50	5	2	0.193816	0.803072				
	The ten worst RFR model hyper-parameters and results								
10	10	2	8	0.244633	0.751439				
10	10	15	4	0.244641	0.751431				
10	10	10	2	0.246019	0.750031				
10	10	5	1	0.24682	0.749217				
10	10	5	8	0.247924	0.748095				
10	10	20	4	0.248179	0.747836				
10	10	20	1	0.249479	0.746516				
10	10	15	2	0.250417	0.745562				
10	10	2	1	0.252138	0.743814				
10	10	10	1	0.252717	0.743225				

These results show that a relatively high number of n_estimators and low amount of min samples for both split and leaf are suitable hyper-parameters to fit an RFR to this dataset. I then tested the best hyper-parameters from these results with more different hyper-parameters; ccp_alpha, min_impurity_decrease, oob_score, and warm_start. From the 144 results the top 10 are shown:

Full Name: Lee Taylor, ST Number: 190211479

		Min	Min							
N	Max	Samples	Sample		OOB	Warm	Min Impurity	CCP		
estimators	Depth	split	Leaf	Bootstrap	Score	Start	decrease	alpha	MSE	R^2
300	None	2	2	TRUE	TRUE	FALSE	0	0	0.192787	0.804118
300	None	2	2	TRUE	FALSE	TRUE	0	0	0.193311	0.803585
300	None	2	2	TRUE	FALSE	FALSE	0	0	0.194445	0.802433
300	None	2	2	TRUE	TRUE	FALSE	0.1	0	0.657525	0.331917
300	None	2	2	TRUE	FALSE	FALSE	0	0.1	0.662386	0.326978
300	None	2	2	TRUE	TRUE	TRUE	0.1	0.1	0.663693	0.32565
300	None	2	2	TRUE	FALSE	TRUE	0	0.1	0.664503	0.324827
300	None	2	2	TRUE	TRUE	FALSE	0.1	0.1	0.664552	0.324777
300	None	2	2	TRUE	FALSE	TRUE	0.1	0.1	0.665614	0.323698
300	None	2	2	TRUE	TRUE	TRUE	0	0.1	0.666029	0.323276

The top three results show no improvement whereas a majority of the results show deterioration in the accuracy of the model as shown by the high MSE score jumping from ~0.19 to ~0.66.

Fourth Model – Decision Tree Regressor (DTR) Sample text

The ten best RFR model hyper-parameters and results										
		Min								
	Min Samples	Samples	Min Weight							
Max Depth	Split	Leaf	Fraction Leaf	Max Leaf Nodes	MSE	R^2				
20	20	8	0	None	0.275792	0.719779				
50	20	8	0	None	0.275795	0.719777				
None	20	8	0	None	0.275797	0.719775				
40	20	8	0	None	0.275809	0.719762				
30	20	8	0	None	0.275891	0.719679				
20	15	8	0	None	0.277281	0.718267				
20	10	8	0	None	0.277293	0.718254				
20	5	8	0	None	0.2773	0.718247				
20	2	8	0	None	0.277375	0.718171				
50	2	8	0	None	0.277416	0.718129				
	The	ten worst RFR n	nodel hyper-paramet	ers and results						
50	20	4	0.3	10	0.634208	0.355609				
50	20	4	0.3	20	0.634208	0.355609				
50	20	4	0.3	30	0.634208	0.355609				
50	20	4	0.3	40	0.634208	0.355609				
50	20	4	0.3	50	0.634208	0.355609				
50	20	8	0.3	None	0.634208	0.355609				
50	20	8	0.3	10	0.634208	0.355609				
50	20	8	0.3	20	0.634208	0.355609				
50	20	8	0.3	30	0.634208	0.355609				
50	20	8	0.3	40	0.634208	0.355609				
50	20	8	0.3	50	0.634208	0.355609				