

CSCE 590-1: Trusted Al

Lecture 24: AI - Unstructured Text — Explanation and AI Testing

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 11^{TH} NOV, 2021

Carolinian Creed: "I will practice personal and academic integrity."

Organization of Lecture 24

- Introduction Segment
 - Recap from last lecture
 - Paper selection by graduate students
- Main Segment
 - Explanations for text
 - Al testing
- Concluding Segment
 - About next lecture Lecture 25
 - Ask me anything

Introductory Segment

	Oct 26 (Tu)	Review: Explanation Methods, AIX 360, Discussion	Quiz 3
	Oct 28 (Th)	Review: project presentations, Discussion	
	Nov 2 (Tu)	AI - Unstructured (Text): Analysis – Supervised ML – Trust Issues	
	Nov 4 (Th)	AI - Unstructured (Text): Analysis – Supervised ML – Mitigation Methods	
	Nov 9 (Tu)	AI - Unstructured (Text): Analysis – Rating and Debiasing Methods	
	Nov 11 (Th)	AI – Unstructured Text - Explanation Methods Trust: AI Testing	
	Nov 16 (Tu)	Trust: Human-AI Collaboration	
le	Nov 18 (Th)	Paper presentations – Graduate students	Final assignment for Graduate students
ot	Nov 23 (Tu)	Emerging Standards and Laws	Quiz 4

Schedule Snapshot

Recap of Lecture 23

- We looked at rating methods for characterizing machine translators
- We reviewed paper on de-biasing learned word representations

Main Segment

Explanation for Text Classification

LIME — Local Interpretable Model-Agnostic Explanations

Paper: "Why Should I Trust You?" Explaining the Predictions of Any Classifier, Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, ACM's Conference on Knowledge Discovery and Data Mining, KDD2016

Blogs:

- https://homes.cs.washington.edu/~marcotcr/blog/lime/
- https://www.oreilly.com/content/introduction-to-localinterpretable-model-agnostic-explanations-lime/

Code: https://github.com/marcotcr/lime

Figures credit: Marco Tulio Ribeiro

LIME Key Idea

- Generate a local, linear explanation for any model
- •How
 - Perturb near the neighborhood of a point of interest, X (Local)
 - Fit a linear function to the model's output (Linear)
 - Interpret coefficients of the linear function (Explain)
 - Visualize
- Applicability
 - Any classification model!

LIME on Text

Question: Why is a classifier with >90% accuracy predicting based on?

Task: classifying religious inclination from email text

Prediction probabilities

atheism 0.58 christian 0.42

atheism

christian

Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic) Subject: Another request for Darwin Fish

Organization: University of New Mexico, Albuquerque

Lines: 11

NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.

This is the same question I have and I have not seen an answer on the

net. If anyone has a contact please post on the net or email me.

"If we remove the words **Host** and **NNTP** from the document, we expect the classifier to predict **atheism** with probability 0.58 - 0.14 - 0.11 = 0.31"

Source: https://github.com/marcotcr/lime

Evaluation of Explanation Methods

- Text
 - Human-grounded Evaluations of Explanation Methods for Text Classification, Piyawat Lertvittayakumjorn, Francesca Toni, https://arxiv.org/abs/1908.11355, 2019
- Image
 - Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey, Arun Das, Paul Rad, https://arxiv.org/abs/2006.11371, 2020
- Many data types (image, text, audio, and sensory domains):
 - How Can I Explain This to You? An Empirical Study of Deep Neural Network Explanation Methods, Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, Mani Srivastava, Advances in Neural Information Processing Systems 33 (NeurIPS 2020), https://proceedings.neurips.cc/paper/2020/hash/2c29d89cc56cdb191c60db2f0bae796b-Abstract.html

One Class, Many Explanations

An example from the Amazon dataset, Actual: Pos, Predicted: Pos, (Predicted scores: Pos 0.514, Neg 0.486):

"OK but not what I wanted: These would be ok but I didn't realize just how big they are. I wanted something I could actually cook with. They are a full 12" long. The handles didn't fit comfortably in my hand and the silicon tips are hard, not rubbery texture like I'd imagined. The tips open to about 6" between them. Hope this helps someone else know ..."

Method	Top-3 evidence texts	Top-3 counter-evidence texts
LIME (W)	comfortably / wanted / helps	not / else / someone
LRP (W)	are / not / 6	: / tips / open
LRP (N)	are hard, not / about 6" between / not what I wanted	. The tips open /: These would / in my hand and
Grad-CAM-	comfortably in my hand / I wanted : These /	not what I wanted / not rubbery texture like /
Text (N)	. The tips open	Hope this helps someone
DTs (N)	imagined. The tips	'd imagined . / are . I wanted / would be ok

Table 3: Examples of evidence and counter-evidence texts generated by some of the explanation methods.

Image source: Human-grounded Evaluations of Explanation Methods for Text Classification, Piyawat Lertvittayakumjorn, Francesca Toni, https://arxiv.org/abs/1908.11355, 2019

Explanation Evaluation Tasks

	Task 1 (Section 3.1)	Task 2 (Section 3.2)	Task 3 (Section 3.3)			
Assumption	Good explanations can reveal model behavior	Good explanations justify the predictions	Good explanations help humans investigate uncertain predictions			
Model(s)	Two classifiers with different performance on a test dataset	One well-trained classifier	One well-trained classifier			
Input text	A test example for which both classifiers predict the same class					
Information displayed	 The input text The predicted class (Highlighted) top-m evidence texts of each model 	1. Top- m evidence texts	 The predicted class The predicted probability p Top-m evidence and top-m counter-evidence texts 			
Human task	Select the more reasonable model and state if they are confident or not	Select the most likely class of the document which contains the evidence texts and state if they are confident or not	Select the most likely class of the input text and state if they are confident or not			
Scores to the explanation method	(-)1.0: (In)correct, confident (-)0.5: (In)correct, unconfident 0.0: No preference	(-)1.0: (In)correct, confident (-)0.5: (In)correct, unconfident 0.0: No preference	(-)1.0: (In)correct, confident (-)0.5: (In)correct, unconfident			

Table 1: A summary of the proposed human-grounded evaluation tasks.

Image source: Human-grounded Evaluations of Explanation Methods for Text Classification, Piyawat Lertvittayakumjorn, Francesca Toni, https://arxiv.org/abs/1908.11355, 2019

UI to Provide Feedback

	T 1 4 (C							
Task 1 (Section 3.1)								
Assumption	Good explanations can reveal							
1	model behavior							
Model(s)	Two classifiers with different							
Wiodel(5)	performance on a test dataset							
Input text	A test example for which both classifiers predict the same class							
	1. The input text							
Information	2. The predicted class							
displayed	3. (Highlighted) top- <i>m</i> evidence texts of each model							
	texts of each model							
	Select the more reasonable							
Human task	model and state if they are							
	confident or not							
Scores to the	(-)1.0: (In)correct, confident							
explanation	(-)0.5: (In)correct, unconfident							
method	0.0: No preference							

Image sources: Human-grounded Evaluations of Explanation Methods for Text Classification, Piyawat Lertvittayakumjorn, Francesca Toni, https://arxiv.org/abs/1908.11355, 2019

Example of Task 1: Both Robot S and Robot H classify that the following review has a "**Positive**" sentiment.

Robot S:

Easy to use for my 8 nyear old : only had it a week , but <u>sturdy</u> pieces , well packaged , <u>easy</u> to follow directions , <u>good</u> description of what was learned from building the project .

Robot H:

Easy to use for <u>my</u> 8 nyear old : only had it a week , but sturdy pieces , <u>well</u> packaged , easy to follow directions , <u>good</u> description of what was learned from building the project .

Your answer:

Robot S seems clearly more reasonable than Robot H.

Robot S seems slightly more reasonable than Robot H.

I can't say which robot is more reasonable.

Robot H seems slightly more reasonable than Robot S.

Robot H seems clearly more reasonable than Robot S.

Results of Human Evaluation

Explanation	Task 1				Task 2						Task 3							
Method	Amazon			ArXiv			Amazon			ArXiv			A	mazo	n	ArXiv		
Method	\mathcal{A}	~	×	$\mathcal A$	~	X	\mathcal{A}	~	×	${\cal A}$	~	X	\mathcal{A}	~	X	${\cal A}$	~	×
Random (W)	.02	.00	.04	11	05	<u>17</u>	.06	.10	.02	.07	.09	.04	.05	.53	43	.01	.32	30
Random (N)	.02	.02	.02	12	16	07	.12	.13	.12	.29	.32	.25	.01	.54	55	02	29	25
LIME (W)	02	.02	<u>06</u>	<u>.03</u>	.02	.03	.69	.74	.64	<u>.70</u>	.75	.64	.02	.50	45	02	.31	- 34
LRP(W)	.00	01	.02	03	01	05	.13	.26	01	.26	.36	.16	02	.50	54	06	.33	<u>44</u>
LRP(N)	07	<u>04</u>	09	<u>.12</u>	.24	<u>01</u>	.26	.45	.08	.44	.49	.39	.08	.60	<u>43</u>	<u>.17</u>	<u>.60</u>	<u>26</u>
DeepLIFT (W)	<u>.04</u>	.03	.04	<u>.07</u>	.13	.00	.21	.37	.04	.26	.35	.16	<u>03</u>	<u>.47</u>	<u>53</u>	08	.28	<u>44</u>
DeepLIFT (N)	<u>.06</u>	.06	<u>.05</u>	<u>.06</u>	.22	<u>10</u>	.23	.47	01	.38	.47	.28	.05	.59	<u>49</u>	.02	.33	<u>30</u>
Grad-CAM-T (N)	<u>.07</u>	<u>.11</u>	.03	<u>03</u>	04	<u>01</u>	<u>.65</u>	<u>.64</u>	<u>.66</u>	.53	.65	<u>.41</u>	.05	<u>.51</u>	<u>42</u>	<u>.06</u>	<u>.56</u>	<u>45</u>
DTs (N)	05	<u>02</u>	<u>08</u>	13	22	03	<u>.64</u>	.68	<u>.59</u>	.51	.69	.32	<u>.10</u>	<u>.60</u>	<u>40</u>	11	.29	50
Fleiss κ (Amazon)	0.05	50 / 0.0	054		N/A		0.27	4 / 0.:	371		N/A		0.21	2/0.4	499		N/A	

Table 4: The average scores of the three evaluation tasks. The score range is [-1,1] in which 1 is better. \mathcal{A} , \checkmark , and \checkmark are for all, correctly classified, and misclassified input texts, respectively. Boldface numbers are the highest average scores in the columns. A number is underlined when there is no statistically significant difference between the scores of the corresponding method and the best method in the same column (at a significance level of 0.05). The last row reports inter-rater agreement measures (Fleiss' kappa) in the format of α / β where α considers answers with human confidence levels (5 categories for task 1-2 and 4 categories for task 3) and β considers answers regardless of the human confidence levels (3 categories for task 1-2 and 2 categories for task 3).

Image source: Human-grounded Evaluations of Explanation Methods for Text Classification, Piyawat Lertvittayakumjorn, Francesca Toni, https://arxiv.org/abs/1908.11355, 2019

Al Testing

Types of Evaluation

- Technical evaluation: is the (new) method accurate?
 - Concern is bug-free implementation
- Business evaluation: is the (new) method beneficial?
 - Usually done in a small time horizon
 - Other factors may correlate with success or failure
- Causal evaluation: did the (new) method really work?
 - No other factor but this method contributed to business success

Al *for* Testing

- Al for testing
 - Test case and data generation
 - "Value" based testing
- Sample of work
 - **Blogs**: https://www.testingxperts.com/blog/AI-in-software-testing; https://www.testingxperts.com/blog/AI-in-software-testing; https://www.testingxperts.com/blog/AI-in-software-testingxperts.com/blog/AI-in-software-testingxperts.com/blog/AI-in-software-testingxperts
 - Papers: Artificial Intelligence in Software Test Automation: A Systematic Literature Review, Anna Trudova, Michal Dolezel, Alena Buchalcevová, Published in ENASE 2020, https://www.semanticscholar.org/paper/Artificial-Intelligence-in-Software-Test-A-Review-Trudova-Dolezel/ccbe24b348194905edeca78477625500786e55d6;
 - T. M. King, J. Arbon, D. Santiago, D. Adamo, W. Chin and R. Shanmugam, "Al for Testing Today and Tomorrow: Industry Perspectives," *2019 IEEE International Conference On Artificial Intelligence Testing (AITest)*, 2019, pp. 81-88, doi: 10.1109/AITest.2019.000-3.

Table 4: Mapping AI techniques and testing activities (x = technique is applicable).

Mapping
Al
Methods
to Test
Activities

AI technique \ Testing activity	Publications	Test case	Test oracle	generation	Test	execution	Test data	Test results	reporting	Test repair	Test case	selection	Flaky test prediction	Test order
Non-maximum suppression method (NMS)	R32	DG			F	L	JJ=	,	ζ .	=A	T	C	NC	5
SIFT, FAST, and FNCC algorithms	R24, R37					7				X				
Contour detection, OCR	R37									X				
Bayesian Network	R7, R28	X		1	7						X		X	
Particle swarm optimization (PSO)	R18										х			
Hybrid genetic algorithms	R14, R16	X		1			X							
Ant colony optimization (ACO)	R2, R8	X					X							
Artificial Neural Network (ANN)	R3, R11, R22, R23	X	х											
Graphplan algorithm	R9, R26	X	X											
Support vector machine (SVM)	R36, R38	X	X											
AdaBoostM1 and Incremental Reduced Error Pruning (IREP) algorithms	R33		x											
Convolutional Neural Networks (CNN)	R29		X				X							
Template-matching algorithm	R32, R35		X											
Decision tree algorithm (C4.5)	R4	X												
Markov model	R31	X												
MF-IPP (Multiple Fact Files Interference Progression Planner)	R15	X												
Algorithm from NLP field	R25	X												
Q-learning	R12, R17, R30	X												
Recurrent neural network (RNN)	R13						X							
L*	R39				X		X							
Fuzzing algorithm	R20				X									
k-means	R21				X							\perp		
KStar classifier	R19				X									
Heuristics algorithms	R27													X

Testing for Al

Papers

- A. Aggarwal, S. Shaikh, S. Hans, S. Haldar, R. Ananthanarayanan and D. Saha, "Testing Framework for Black-box AI Models," 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), 2021, pp. 81-84, doi: 10.1109/ICSE-Companion52605.2021.00041. Video: https://youtu.be/984UCU17YZI
- Machine Learning Testing: Survey, Landscapes and Horizons, Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu, https://arxiv.org/abs/1906.10742, 2019
- Software Engineering for Al-Based Systems: A Survey, Silverio Martínez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol, Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, Stefan Wagner, https://arxiv.org/abs/2105.01984, 2021

What is Al Being Tested For?

Figure Source: Machine Learning Testing: Survey, Landscapes and Horizons, Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu, https://arxiv.org/abs/1906.10742, 2019

ML Testing

Figure 5: Idealised Workflow of ML testing

Comparison of Testing Needs

Table 1: Comparison between Traditional Software Testing and ML Testing

Characteristics	Traditional Testing	ML Testing
Component to test	code	data and code (learning program, framework)
Behaviour under test	usually fixed	change overtime
Test input	input data	data or code
Test oracle	defined by developers	defined by developers and labelling companies
Adequacy criteria	coverage/mutation score	unknown
False positives in bugs	rare	prevalent
Tester	developer	data scientist, algorithm designer, developer

Figure Source: Machine Learning Testing: Survey, Landscapes and Horizons, Jie M. Zhang, Mark Harman, Lei Ma, Yang Liu, https://arxiv.org/abs/1906.10742, 2019

Causal Evaluation

Randomized Control Trial

- The population is *randomly* divided in two groups
- Control group gets <u>placebo</u> (nothing changes)
- Treatment group gets actual benefit that is being tested
- The difference in outcomes from the two groups are checked for statistical significance

Notes:

- population has to be large
- the split has to be random
- difference in treatment has to be ethical
- Considered gold standard in testing in critical domains like medicine, public policies

Example

Impact of mask on COVID cases

• https://theconversation.com/a-new-data-driven-model-shows-that-wearing-masks-saves-lives-and-the-earlier-you-start-the-better-149621

RCT for Al-based Systems

- Not very common for AI but increasing; against the prevalent culture
- Takes more effort than technical or business evaluation

Concluding Segment

Lecture 24: Concluding Comments

- We looked at how to evaluate explanation methods
- Al and testing has two connotations
 - How AI has been used for software testing?
 - How software testing for AI has to be done?
- We looked at current testing practices
- There is need for randomized control trial to build lasting trust in AI

About Next Lecture – Lecture 25

Oct 26 (Tu)	Review: Explanation Methods, AIX 360, Discussion	Quiz 3						
Oct 28 (Th)	ct 28 (Th) Review: project presentations, Discussion							
Nov 2 (Tu)	AI - Unstructured (Text): Analysis – Supervised ML – Trust Issues							
Nov 4 (Th)	AI - Unstructured (Text): Analysis – Supervised ML – Mitigation Methods							
Nov 9 (Tu)	AI - Unstructured (Text): Analysis – Rating and Debiasing Methods							
Nov 11 (Th)	Explanation Methods Trust: AI Testing							
Nov 16 (Tu)	Trust: Human-AI Collaboration							
Nov 18 (Th)	Paper presentations – Graduate students	Final assignment for Graduate students						
Nov 23 (Tu)	Emerging Standards and Laws	Quiz 4						

Schedule Snapshot

Lecture 25:

- Human AI Collaboration
- Chatbots
- Trust issues with Chatbots