

IN THE CLAIMS:

Claims 1-2 (Canceled)

3. (Currently Amended) A method for determining the likelihood of observing a feature vector o_t employing performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each time period t, estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ calculating the time and frequency weighting to get weighting coefficient γ_{tf} , wherein γ_{tf} is a function of $\eta_{t,f}$;

using an inverse DCT matrix M^{-1} to transform a cepstral distance $(o_t - \mu)$ associated with the speech time period t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix G_t which represents the weighting coefficient γ_{tf} ;

transforming the weighted spectral distance to a weighted cepstral distance employing a forward DCT matrix M to get a transformation matrix T_t and

calculating a likelihood of observing the feature vector o_t by providing the transformation matrix T_t and the original MFCC feature vector o_t which is unmodified, to a probability function θ_t that contains the information about the SNR to a recognizer that performs Viterbi-decoding; and performing weighted Viterbi-recognition $b_t(o_t)$.

4. (Previously Presented) The method of claim 3 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a pronunciation probability estimation.

5. (Previously Presented) The method of claim 3 wherein the estimating the SNR to get

time and frequency SNR information $\eta_{t,f}$ is a transmission over a noisy communication channel reliability estimation.

6. (Original) The method of claim 3 wherein

$$\gamma_{t,f} = \frac{\sqrt{\eta_{t,f}}}{1 + \sqrt{\eta_{t,f}}} ,$$

which guarantees that $\gamma_{t,f}$ is equal to 0 when $\eta_{t,f} = 0$ and $\gamma_{t,f}$ approaches 1 when $\eta_{t,f}$ is large.

7. (Currently Amended) A method for determining the likelihood of observing a feature vector o_t employing performing time and frequency SNR dependent weighting in speech recognition comprising the steps of:

for each speech frame t , estimating SNR to get time and frequency SNR information $\eta_{t,f}$ calculating the time and frequency weighting to get weighting coefficient $\gamma_{t,f}$, wherein $\gamma_{t,f}$ is a function of $\eta_{t,f}$;

transforming a cepstral distance ($o_t - \mu$) associated with the speech frame t to a spectral distance;

computing a weighted spectral distance by applying time and frequency weighting to the spectral distance employing a time-varying diagonal matrix that represents the weighting coefficient $\gamma_{t,f}$;

transforming the weighted spectral distance to a weighted cepstral distance to get a transformation matrix T_t ; and

calculating a likelihood of observing the feature vector o_t by providing the transformation matrix T_t and the original MFCC feature vector o_t , which is unmodified, to a probability function Θ_t that contains the information about the SNR to a recognizer that performs Viterbi decoding; and

performing weighted Viterbi recognition $b_j(o_t)$.

8. (Previously Presented) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a pronunciation probability estimation.

9. (Previously Presented) The method of claim 7 wherein the estimating the SNR to get time and frequency SNR information $\eta_{t,f}$ is a transmission over a noisy communication channel reliability estimation.

10. (New) A method of determining a likelihood of observing a feature vector o_t in speech recognition, comprising:

estimating a SNR for each unit t of a feature vector o_t to obtain time and frequency SNR information;

determining a transformation matrix T_t based on said time and frequency SNR information;
weighting a combination of said feature vector o_t and a speech model parameter μ by said transformation matrix T_t to obtain a weighted cepstral distance $T_t(o_t \cdot \mu)$;

and

employing said weighted cepstral distance $T_t(o_t \cdot \mu)$ to determine a likelihood of observing said feature vector o_t .

11. (New) The method of Claim 10 wherein said unit t represents a frame t of said feature vector o_t .

12. (New) The method of Claim 10 wherein said unit t represents a time period t of said feature vector o_t .