Last lesson Angles Distances

Lecture 4: Angles and distances

Table of contents

- 1 Last lesson
 - Intersection of a line and a plane
 - Intersection of two lines
- 2 Angles
 - Angle between two lines
 - Angle between a line and a plane
 - Angle between two planes
- Oistances
 - Distance between 2 planes
 - Distance between a line and a plane
 - Distance from a point to a line
 - Distance between 2 lines

Angles and distances

Cross product

Computation

$$[\vec{u} \ \vec{v}] = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{bmatrix} \Rightarrow \vec{u} \times \vec{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

Cross product

Computation

$$[\vec{u} \ \vec{v}] = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{bmatrix} \Rightarrow \vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

- Geometric properties
 - $\mathbf{0}$ $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}
 - $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta = \text{area of parallelogram formed by } \vec{u}, \vec{v}|$

Cross product

Computation

$$[\vec{u} \ \vec{v}] = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{bmatrix} \Rightarrow \vec{u} \times \vec{v} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - u_1v_3 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

- Geometric properties
 - ① $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}
 - $||\vec{u} \times \vec{v}|| = ||\vec{u}|||\vec{v}||\sin\theta = \text{area of parallelogram formed by } \vec{u}, \vec{v}|$
- Algebraic properties
 - $\vec{u} \times \vec{v} = \vec{0} \Leftrightarrow \vec{u}$ and \vec{v} are parallel
 - ② $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u}) \Rightarrow$ same length and opposite directions.

Intersections

We will study intersections of

- Two planes
- A line and a plane
- Two lines

Intersection of 2 planes

To find the intersection of α, β , we solve for common points on both α, β

• No solution $\Rightarrow \alpha \parallel \beta$.

• Infinitely many solutions \Rightarrow same plane or intersection = a line

Intersection of line and plane by solving equations

To find intersection of l and β , we solve for common points on l and β .

 $\textbf{ 0} \ \, \text{No solution} \Rightarrow l \, \, \text{is parallel to} \, \, \beta$

2 Infinitely many solutions $\Rightarrow l$ lines on β

3 1 solution $\Rightarrow l$ and β intersect at a point

Example 1

Find the intersection of the line l and the plane β in following cases.

$$\beta: 3x-2y-z = -4 \text{ and } l: (x,y,z) = (2,1,4)+t \begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$$

Question

Assume l contains point P and has direction \vec{d} . Assume β has normal \vec{n}_{β} . When is $l \parallel \beta$? When is l on β ? When does l intersect β ?

Summary

Let l be a line through a point P and having direction \vec{d} . Let β be a plane with normal vector \vec{n} . Then

- l is a line on $\beta \Leftrightarrow P$ is on β and $\vec{d} \cdot \vec{n} = 0$
- l is parallel to $\beta \Leftrightarrow P$ is not on β and $\vec{d} \cdot \vec{n} = 0$
- l intersects β at a unique point $\Leftrightarrow \vec{d} \cdot \vec{n} \neq 0$

Example 2

Find the intersection of

$$\beta: 3x-2y-z = -4 \ \ \text{and} \ \ l: (x,y,z) = (1,2,3)+t \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

Lines in \mathbb{R}^3

• In \mathbb{R}^2 , two different lines either "parallel" or "intersect at a point".

Lines in \mathbb{R}^3

- In \mathbb{R}^2 , two different lines either "parallel" or "intersect at a point".
- The situation in \mathbb{R}^3 is different .

Intersection of 2 lines in \mathbb{R}^3

Assume l_1, l_2 have directions \vec{v}_1, \vec{v}_1 .

Solving for common points on l_1 and l_2 , we have 3 cases

Example 7

Find the relative position (parallel, intersecting, skew) and the intersection of

$$k: \begin{cases} x = 1 + t \\ y = 2 + 2t \\ z = 3 - t \end{cases} \text{ and } m: \begin{cases} x = 7 + r \\ y = 13 + 4r \\ z = -3 - 3r \end{cases}$$

Example 7

Angle between intersecting lines

- Let l_1 and l_2 be two lines which intersect at P.
- The angle α between l_1 and l_2 is the smallest angle at P

Remark.

$$0^{\circ} \leq \alpha \leq 90^{\circ}$$
 and $\alpha = 0^{\circ}$ if $l_1 \parallel l_2$

Angle between skew lines

- Pick a point P and draw lines l'_1, l'_2 parallel to l_1, l_2
- ② The angle between l_1, l_2 is equal to the angle between l_1', l_2'

Angle b.w. lines vs angle b.w. direction vectors

- ullet $ec{d}_1,ec{d}_2=$ direction vectors of l_1,l_2
- Put $\theta = \angle(\vec{d_1}, \vec{d_2})$ and $\alpha = \angle(l_1, l_2)$

• The angle α between l_1, l_2 is

$$\alpha = \min(\theta, 180^{\circ} - \theta) = \begin{cases} \theta \text{ if } 0 \le \theta \le 90^{\circ} \\ 180^{\circ} - \theta \text{ if } \theta \le 90^{\circ} \end{cases}$$

Observation

Observation

$$\begin{split} \alpha = \theta \quad \Rightarrow \quad \cos \alpha = \cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{||\vec{d_1}||||\vec{d_2}||} \\ \alpha = 180^o - \theta \quad \Rightarrow \quad \cos \alpha = -\cos \theta = -\frac{\vec{d_1} \cdot \vec{d_2}}{||\vec{d_1}||||\vec{d_2}||} \end{split}$$

Observation

Observation

$$\begin{split} \alpha = \theta \quad \Rightarrow \quad \cos \alpha = \cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{||\vec{d_1}||||\vec{d_2}||} \\ \alpha = 180^o - \theta \quad \Rightarrow \quad \cos \alpha = -\cos \theta = -\frac{\vec{d_1} \cdot \vec{d_2}}{||\vec{d_1}||||\vec{d_2}||} \end{split}$$

• In any case $\cos \alpha \ge 0$ (note that $0^{\circ} \le \alpha \le 90^{\circ}$)

$$\cos \alpha = \frac{|\vec{d_1} \cdot \vec{d_2}|}{||\vec{d_1}|| ||\vec{d_2}||}$$

Formula for angle between 2 lines

Theorem 1

Assume l_1, l_2 have direction vectors $\vec{d_1}, \vec{d_2}$. Put $\theta = \angle(\vec{d_1}, \vec{d_2})$. Then

(a) The angle α between l_1 and l_2 is

$$\alpha = \min \left(\theta, 180^o - \theta \right)$$

(b) α can be computed by

$$\cos a = \frac{|\vec{d_1} \cdot \vec{d_2}|}{||\vec{d_1}||||\vec{d_2}||}$$

Example 3

Find the angle between any two of the following lines

(a) In \mathbb{R}^2 :

$$l_1: 2x + y + 1 = 0, \quad l_2: (x, y) = (1, 0) + t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Example 3

(b) In \mathbb{R}^3 :

$$l_1: (x, y, z) = (1, 0, 1) + t \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ l_2: \begin{cases} x = 1 \\ y = 2 + 5t \\ z = 3 + 6t \end{cases}$$

- ullet Let l be a line and let lpha be a plane.
- The angle a between l and α is the angle between l and its orthogonal projection l' onto α .

Remark

$$0^{\circ} \leq a \leq 90^{\circ}$$
 and $a=0^{\circ}$ if $l \parallel \alpha$

• Put $\vec{d}=$ direction vector of $l,\ \vec{n}=$ normal vector of $\alpha,\ \theta=\angle(\vec{d},\vec{n})$

- Put $\vec{d}=$ direction vector of $l,\ \vec{n}=$ normal vector of $\alpha,\ \theta=\angle(\vec{d},\vec{n})$
- The angle between l and α is $a=\begin{cases}90^\circ-\theta \text{ if }\theta\leq 90^0\\\theta-90^\circ \text{ if }\theta>90^\circ\end{cases}$. So

$$a = \left| \theta - 90^0 \right|$$

Theorem 2

Let l be a line with direction \vec{d} and let α be a plane with normal \vec{n} . Put $\theta = \angle(\vec{n}, \vec{d})$. The angle $a \in [0^0, 90^0]$ between l and α is

$$a = |\theta - 90^{\circ}|$$

Example 4

Find the angle a between l and α in the following case

$$l: \begin{cases} x = 1 + 2t \\ y = 3 - 5t \\ z = 2 + 10t \end{cases}, \quad \alpha: (x, y, z) = (1, 2, -1) + s \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 3 \\ -5 \\ -1 \end{bmatrix}$$

• Let α_1, α_2 be two planes which intersect at the line l. Let β be any plane which is *perpendicular* to l.

• Let α_1, α_2 be two planes which intersect at the line l. Let β be any plane which is *perpendicular* to l.

• $m_1, m_2 =$ intersections between β and α_1, α_1 . The angle θ between α_1 and α_2 is the angle between m_1 and m_2 .

• $\vec{n}_1, \vec{n}_2 =$ normal vectors of α_1, α_2 . Put $\theta = \angle(\vec{n}_1, \vec{n}_2)$

• The angle between α_1, α_2 is

$$a = \min\left(\theta, 180^0 - \theta\right)$$

• $\vec{n}_1, \vec{n}_2 =$ normal vectors of α_1, α_2 . Put $\theta = \angle(\vec{n}_1, \vec{n}_2)$

• The angle between α_1, α_2 is

$$a = \min\left(\theta, 180^0 - \theta\right)$$

• a can be computed by $\cos a = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{||\vec{n}_1||||\vec{n}_2||}$

Theorem 3

Let α_1, α_2 be planes with normal vectors \vec{n}_1, \vec{n}_2 . Put $\theta = \angle(\vec{n}_1, \vec{n}_2)$. Then

(a) The angle between α_1 and α_2 is

$$a = \min\left(\theta, 180^o - \theta\right)$$

(b) a can be computed by

$$\cos a = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{||\vec{n}_1||||\vec{n}_2||}$$

Question

Can we take any two lines l_1, l_2 from α_1, α_2 and define the angle between α_1, α_2 to be the angle between l_1 and l_2 ?

Example 5

Find the angle between 2 planes

$$\alpha_1: x+3y-z=1 \text{ and } \alpha_2: (x,y,z)=(1,0,-1)+s\begin{bmatrix}2\\2\\3\end{bmatrix}+t\begin{bmatrix}1\\-3\\0\end{bmatrix}$$

Distance

- The distance between any two geometrical objects (points, lines, planes) is the shortest direct path which connect one object to the other.
- Question: What if the two objects have a common point?

Zero distance

In any of the following cases, the distance is $\boldsymbol{0}$

- Distance from a point to a line containing it
- Distance from a point to a plane containing it
- Distance between two intersecting lines
- Distance between two intersection planes
- Distance between a line and a plane intersecting it

Distance in \mathbb{R}^2

In \mathbb{R}^2 , there are 3 distances all of which we knew how to compute.

① The distance between $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

② The distance from $P = (x_0, y_0)$ to l : ax + by + c = 0 is

$$d(P,l) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

- **3** The distance between 2 different lines l_1 and l_2
 - l_1 and l_2 intersect $\Rightarrow d(l_1, l_2) = 0$
 - l_1 and l_2 are parallel

$$d(l_1, l_2) = d(P, l_2)$$
 with $P =$ any point on l_1 .

Geometric objects and distances in \mathbb{R}^3

We would like to measure the distances between Points, Lines, Planes

Point-point and point-plane distances

• Points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• Point $P = (x_0, y_0, z_0)$ and plane $\alpha ax + by + cz + d = 0$

$$d(P,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Distance between 2 planes Distance between a line and a plane

Distance from a point to a line

Distance between 2 planes

Consider 2 planes α and β . There are 2 cases

ullet α and β intersect

$$d(\alpha,\beta) = 0$$

ullet α and eta are parallel

$$d(\alpha, \beta) = d(P, \beta)$$
 with $P =$ any point on α .

Last lesson Angles Distances

Distance between 2 planes

Distance between a line and a plane Distance from a point to a line Distance between 2 lines

When α and β are parallel?

Assume

lpha : through P and normal vector \vec{n}_{lpha}

eta : through Q and normal vector $ec{n}_eta$

Distance between 2 planes

Distance between a line and a plane
Distance from a point to a line

When α and β are parallel?

Assume

 α : through P and normal vector \vec{n}_{α}

eta : through Q and normal vector $ec{n}_eta$

- ullet α and eta are parallel if and only if
 - lacktriangledown $ec{n}_{lpha} \parallel ec{n}_{eta}$ and
 - $\ 2$ P is not on β

Distance between 2 planes
Distance between a line and a plane

Distance between a line and a plane
Distance from a point to a line

Example 6

Find the distance between two planes α and β in following cases.

(a)
$$\alpha:3x-2y-z=-4$$
 and $\beta:3x+2y+z=4$

Distance between 2 planes

Distance between a line and a plane
Distance from a point to a line
Distance between 2 lines

Example 6

(b)
$$\alpha:(x,y,z)=(1,2,3)+s\begin{bmatrix}1\\0\\1\end{bmatrix}+t\begin{bmatrix}2\\3\\2\end{bmatrix} \ \text{and} \ \beta:x-z=1.$$

Summary on point-point, point-plane and plane-plane distances

• The distance between $P=(x_1,y_1,z_1)$ and $Q=(x_2,y_2,z_2)$ is

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• The distance from $P_0=(x_0,y_0,z_0)$ to $\mathcal{P}:ax+by+cz+d=0$ is

$$d(P_0, \mathcal{P}) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

- ullet Consider 2 planes lpha and eta
 - **1** α and β intersect $\Rightarrow d(\alpha, \beta) = 0$
 - $oldsymbol{\omega}$ α and β are parallel

$$d(\alpha, \beta) = d(P, \beta)$$
 for any point P on α

Distance between a line and a plane

Consider the line l and the plane α

1 and α intersect:

$$d(l,\alpha) = 0$$

2 l parallel to α :

$$d(l,\alpha)=d(P,\alpha)$$
 for any point P on l .

Question

When are l and α parallel?

Distance between a line and a plane

Theorem 4

Let
$$l:(x,y,z)=(x_0,y_0,z_0)+t\vec{d}$$
 be a line and let

$$\alpha: ax+by+cz+d=0$$
 be a plane. Let $\vec{n}=\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ be a normal vector to

 α .

43 / 56

Distance between a line and a plane

Theorem 4

Let $l:(x,y,z)=(x_0,y_0,z_0)+t\vec{d}$ be a line and let

$$\alpha: ax+by+cz+d=0$$
 be a plane. Let $\vec{n}=\begin{bmatrix} a\\b\\c \end{bmatrix}$ be a normal vector to

 α .

(a) If $\vec{n} \cdot \vec{d} = 0$ (that is $l \parallel \alpha$), then

$$d(l,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

43 / 56

Distance between a line and a plane

Theorem 4

Let $l:(x,y,z)=(x_0,y_0,z_0)+t\vec{d}$ be a line and let

$$\alpha: ax+by+cz+d=0$$
 be a plane. Let $\vec{n}=\begin{bmatrix} a\\b\\c \end{bmatrix}$ be a normal vector to $\alpha.$

(a) If $\vec{n} \cdot \vec{d} = 0$ (that is $l \parallel \alpha$), then

$$d(l,\alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

(b) If $\vec{n} \cdot \vec{d} \neq 0$ (that is $l \not\parallel \alpha$), then

$$d(l, \alpha) = 0.$$

43 / 56

Example 7

Find the distance between the line l and the plane α in the following cases

(a)
$$l:(x,y,z)=(2,1,4)+t\begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$$
 and $\alpha:3x-2y-z=-4$.

Last lesson Angles Distances Distance between 2 planes

Distance between a line and a plane

Distance from a point to a line

Distance between 2 lines

(b)
$$l:(x,y,z)=(1,2,3)+t\begin{vmatrix} 1\\2\\-1\end{vmatrix}$$
 and $\alpha:3x-2y-z=-4$.

Remaining distances

- 1 Distance between a point to a line
- 2 Distance between lines

Distance from a point to a line

ullet Point P, line l: through Q and direction $ec{v}$

Distance from a point to a line

ullet Point P, line l: through Q and direction $ec{v}$

• d(P, l) = height h of parallelogram

$$d(P,l) = \frac{\mathsf{Area~of~parallelogram}}{||\vec{v}||} = \frac{||\overrightarrow{QP} \times \vec{v}||}{||\vec{v}||}$$

Distance from a point to a line in \mathbb{R}^3

Theorem 5

The distance from the point P to the line $l:(x,y)=Q+t\vec{v}$ is

$$d(P,l) = \frac{||\overrightarrow{QP} \times \overrightarrow{v}||}{||\overrightarrow{v}||}$$

Remark. To use this formula, we need

- lacksquare A point Q on l and
- 2 A direction vector \vec{v} of l

Example 8

Find the distance from
$$P=(1,1)$$
 to the line $l:$
$$\begin{cases} x=1+5t\\ y=-6+7t\\ z=2+2t \end{cases}$$

Distance between 2 lines in \mathbb{R}^3

 l_1 : through Q_1 and direction $ec{d_1}$, l_2 : through Q_2 and direction $ec{d_2}$

 $oldsymbol{0}$ l_1 and l_2 intersect $\Rightarrow d(l_1, l_2) = 0$

Distance between 2 lines in \mathbb{R}^3

 l_1 : through Q_1 and direction $\vec{d_1},\,l_2$: through Q_2 and direction $\vec{d_2}$

- **1** l_1 and l_2 intersect $\Rightarrow d(l_1, l_2) = 0$
- 2 $l_1 \parallel l_2 \Rightarrow d(l_1, l_2) = d(P, l_2)$ for any point P on l_1

Distance between skew lines

 l_1 : through Q_1 and direction $\vec{d_1}$, l_2 : through Q_2 and direction $\vec{d_2}$

 \mathbf{Q} l_1 and l_2 are skew

ullet $\alpha =$ plane containing l_2 and parallel to l_1

$$\alpha: (x, y, z) = Q_2 + s\vec{d}_1 + t\vec{d}_2$$

Distance between skew lines

 l_1 : through Q_1 and direction $\vec{d_1}$, l_2 : through Q_2 and direction $\vec{d_2}$

 \mathbf{Q} l_1 and l_2 are skew

• $\alpha =$ plane containing l_2 and parallel to l_1

$$\alpha: (x, y, z) = Q_2 + s\vec{d_1} + t\vec{d_2}$$

•
$$d(l_1, l_2) = d(l_1, \alpha) = d(Q_1, \alpha)$$

Summary on distance between lines

 l_1 : through Q_1 and direction $\vec{d_1}$, l_2 : through Q_2 and direction $\vec{d_2}$

• Case 1: $\vec{d_1} \parallel \vec{d_2} \Rightarrow l_1 \parallel l_2$. So

$$d(l_1, l_2) = d(Q_1, l_2) = \frac{||\overrightarrow{Q_2Q_1} \times \overrightarrow{d_2}||}{||\overrightarrow{d_2}||}$$

Summary on distance between lines

 l_1 : through Q_1 and direction $\vec{d_1}$, l_2 : through Q_2 and direction $\vec{d_2}$

- ullet Case 2: $ec{d_1}
 ot\parallel ec{d_2} \Rightarrow l_1$ and l_2 are not parallel
 - Find the plane lpha through Q_2 and parallel to l_2 lpha goes through Q_2 and has normal $\vec{n}=\vec{d_1}\times\vec{d_2}$
 - **2** $d(l_1, l_2) = d(Q_1, \alpha)$

Example 9

Find the distance between

$$l_1: \begin{cases} x = 2 - 4t \\ y = 3 + 4t & \text{and} \quad l_2: (x, y, z) = (1, 1, 2) + t \\ z = 3 \end{cases}$$

Distance between 2 lines in \mathbb{R}^3 (another way)

Theorem 6

Let $l_1:(x,y,z)=Q_1+t\vec{d_1}$ and $l_2:(x,y,z)=Q_2+t\vec{d_2}$ be 2 lines.

(a) If l_1 and l_2 are parallel $(\vec{d_1} \parallel \vec{d_2})$, then

$$d(l_1, l_2) = \frac{||\overrightarrow{Q_2Q_1} \times \overrightarrow{d_1}||}{||\overrightarrow{d_1}||}$$

(b) If l_1 and l_2 are not parallel (intersect, or skew), then

$$d(l_1, l_2) = ||\operatorname{proj}_{\vec{d_1} \times \vec{d_2}}(\overrightarrow{Q_1Q_2})||$$

Example 10

Using Theorem 6, find the distance between

$$l_1: \begin{cases} x = 2 - 4t \\ y = 3 + 4t & \text{and} \quad l_2: (x, y, z) = (1, 1, 2) + t \begin{bmatrix} 1 \\ -1 \\ -3/4 \end{bmatrix} \end{cases}$$

Summary on distance between 2 lines

Assume
$$l_1:(x,y,z)=Q_1+t\vec{d_1}$$
 and $l_2:(x,y,z)=Q_2+t\vec{d_2}$

- Method 1

 - $\vec{d_1} \not\parallel \vec{d_2}$

 $\alpha =$ plane containing l_2 & parallel to $l_1 \Rightarrow d(l_1, l_2) = d(Q_1, \alpha)$

Summary on distance between 2 lines

Assume
$$l_1:(x,y,z)=Q_1+t\vec{d_1}$$
 and $l_2:(x,y,z)=Q_2+t\vec{d_2}$

Method 2 (use Theorem 6)

$$d(l_1, l_2) = \begin{cases} \frac{||\overrightarrow{Q_2Q_1} \times \overrightarrow{d_1}||}{||\overrightarrow{d_1}||} \text{ if } \overrightarrow{d_1} \parallel \overrightarrow{d_2} \\ ||\operatorname{proj}_{\overrightarrow{d_1} \times \overrightarrow{d_2}}(\overrightarrow{Q_1Q_2})|| \text{ if } \overrightarrow{d_1} \not\parallel \overrightarrow{d_2} \end{cases}$$

