aを定数とするとき、以下の不等式を解け.

- (1) ax + 3 < 2x 5
- (2) $ax > x + a^2 1$
- (3) $a^2x < -3x + 4$

・ ひろとのとき

$$x < \frac{-8}{\alpha - 2}$$

ひ= こっとき

- Q<2 a€=

$$x > \frac{-8}{\alpha - 2}$$

$$(3) (\alpha - 1) x > \alpha_{3} - 1$$

ひ>しゃとき

1+D < E

Ω=(のとき

かなる

a<1 ax=

X< Q+1

a+3> 0 thaz"

つぎの条件をみたす定数 a,b の値を求めよ.

- (1) 関数 y = ax + b が x = -2 のとき 3, x = 1 のとき 5 である.
- (2) 関数 y = -2x + a (-1 < x < b) の値域が 3 < y < 5 で

(1)
$$y = f(x) = ax + b$$
 $et3$

$$f(-2) = -2\alpha + b = 3$$

$$\int -2a + b = 3$$

$$a + h = 5$$

$$C = \frac{3}{5}$$
 $P = \frac{3}{13}$

(2) $-2 \times (-1) + \alpha = 5$ $\alpha = 3$

û=3, **b** = 0

ある放物線を原点に関して対称移動し、x 軸方向に-2、y 軸方向に 1 平行移動させたとき $y = -x^2 + 7x - 5$ になる. もとの放物線の方程 式を求めよ.^a

a もとの放物線を $y = ax^2 + bx + c$ などとおいてみよ

もとの方程式

y=f(x)=(x-p)+2 $y = -f(-x) = -(-x-7)^{2} = 8$ $= -(x+b)_{3}-8$ | 大軸にーン、分動にナー y = -f(-(x+2)) + 1= - (x + p+2)2 - g+ $= -\chi_{s} - 5(4+5)\chi - (4+5)_{5} - 8+1$ -2(7+2)=7, 震散比較 $A = \left(X + \frac{3}{11}\right) - \frac{32}{5}$

= X+11x+24 = 0 1

A= x3+11 x +24 (= 1 = 29)

頂点だけできる

_) (على - على الله ع الله على ال

不能拉急引

No.08

$y = f(x) = ax^2 + bx + C$

- 間 4 -

2 次関数 $y = ax^2 + bx + c$ のグラフが以下の図で与えられるとき、次の値の符号を求めよ.

(1) a (2) b (3) c (4) a+b+c (5) -a+b-c

(1)上に凸なるで

$$-3\sigma(>0)$$
 年型ゴドかけい (5) 軸 $x=-\frac{2\sigma}{p}<0$

(3) $y = f(x) = 0x^2 + bx + c + d3$

y = f(0) = c > 0

グラフののでの出版を下

問5-

 $y = x^2 - 3x + 2$ をどのように平行移動すると、 $y = x^2 + 7x - 5$ に移るか.

 $= (x - \frac{3}{3})_{5} - \frac{4}{6}$ $= (x - \frac{3}{3})_{5} - \frac{4}{6}$

五道に $\left(-\frac{5}{3}, -\frac{4}{66}\right)$ ・ $A = \left(x + \frac{5}{3}\right)_{3} - \frac{4}{66}$

(-\frac{9}{2}, -\frac{69}{4})

ス動方のに ~5

- 間 6

- aを定数とする.
 - (1) 不等式 $-2 < ax \le 3$ を解け.
 - (2) $-2 < ax \le 3$ を満たす x のうちで最大の整数が 6 のとき,定数 a の範囲をもとめよ.

(1) 0>0のだ $-\frac{2}{a}< \chi \leq \frac{3}{a}$ 0=0のだ 全ての実数 0<0のだ $3\leq \chi < -\frac{2}{a}$

(2) a=0のとき最大値なしなので×

· 0>0 att

$$6 \leq \frac{3}{\alpha} < \Gamma \rightarrow \frac{3}{7} < \alpha \leq \frac{1}{2}$$

· aco a 6+

