

Contextual Parameter Generation for Universal Neural Machine Translation

Emmanouil Antonios Platanios

e.a.platanios@cs.cmu.edu

Mrinmaya Sachan mrinmays@cs.cmu.edu

Graham Neubig gneubig@cs.cmu.edu

Tom M. Mitchell tom.mitchell@cs.cmu.edu

Problem

Translate from one language to another.

A multilingual MT system can translate between any pair of languages.

Assuming L languages and P parameters in a pairwise MT model, we can use:

PAIRWISE

Separate model per language pair:

- O(L²P) parameters
- No parameter sharing
- Bad for limited/no training data

[Ha16, Johnson17] **UNIVERSAL** One shared model:

- O(P) parameters
- Lacks language-specific parameterization

PER-LANGUAGE [Luong16, Firat16] ENCODER/DECODER English — English Chinese — - Chinese German — German Greek — Greek – Hindi Hindi— - Japanese Japanese -

- O(LP) parameters
- Limited parameter sharing and use of attention difficult

Proposed Approach

LEGEND

- Trainable variables
- Computed values
- Language embeddings size
- Word embeddings size
- Number of parameters
- text Example input

FEATURES

Scalable

Constant number of parameters - O(MP)

Simple & Multilingual

Can be applied to most existing NMT systems with minor changes.

Semi-Supervised

Can use monolingual data by learning to translate back-and-forth → Learn language embeddings that encode meaningful priors / language models.

Zero-Shot

Can translate between unsupervised pairs of languages, as long as the languages have been seen in any supervised pairs.

Adaptable

Given a trained model, can adapt to support a new language by just learning the language embedding and fixing the rest of the model.

PARAMETER GENERATOR

Generates model parameters at inference time, given some context.

The source and target language represent the context in which translation happens:

We also decouple the encoder and the decoder, thus getting closer to a potential intelingua:

We choose to make g linear for simplicity and interpretability

We learn language embeddings

 $g^{(enc)}(\mathbf{l_s}) \triangleq \mathbf{W^{(enc)}}\mathbf{l_s}$ $g^{(dec)}(\mathbf{l_t}) \triangleq \mathbf{W^{(dec)}}\mathbf{l_t}$

For each language, the parameters are defined as a linear combination of the M columns of a weight matrix **W**, which makes for better interpretability.

OBSERVATIONS

where:

- The parameters often have some
 - "natural grouping" (e.g., first layer weights).
- Language embeddings represent all language-specific information and may need to be large.
- Only a small part of this information is relevant for each "group".

CONTROLLED SHARING

Let $\theta^{(enc)}=\{\theta_j^{(enc)}\}_{j=1}^G$, where $\theta_i^{(enc)}\in\mathbb{R}^{P_j^{(enc)}}$, and G is the number of groups. Then:

> $\theta_i^{(enc)} \triangleq \mathbf{W_i^{(enc)} P_i^{(enc)} l_s}$ $\mathbf{P_i^{(enc)}} \in \mathbb{R}^{M' \times M}$

and M' < M, and similarly for the decoder.

1 M ↑ Per-Language Information ↑ Shared Information ↑ M'

The proposed abstraction is a generalization over

previous methods

Our contribution does not depend on the choice of g. It would be interesting to design models that can use side-information about the languages, that may be available.

PAIRWISE: g picks a different parameter set based on the language pair **UNIVERSAL:** q picks the same parameters for all languages

All experiments were run on

a machine with a single

GBs of system memory.

The longest experiment

required ~10 hours.

Nvidia V100 GPU, and 24

PER-LANGUAGE: g picks different enc/dec parameters based on the languages

Experiments

Baseline Model

- 2-layer bidirectional LSTM encoder
- 2-layer LSTM decoder
- 512 units per layer / word embedding size
- Per-language vocabulary
- 20,000 most frequent words no BPE

Settings

- Supervised: Train using full parallel data
- Low-Resource: Limit the size of the parallel data
- Zero-Shot: No parallel data for some language pairs

Trained without Pairwise Google **IWSLT-15** Multilingual auto-encoding BLEU CPG⁸ - M=8 CPG*8 **GML** 15.92 16.88 17.22 14.89 En→Cs 25.25 26.44 24.43 27.37 Cs→En 25.92 26.41 26.77 > 25.87 En→De [Ha16] 29.60 31.24 31.77 30.93 De→En 38.25 34.40 38.10 38.32 En→Fr 35.14 37.11 37.89 Fr→En 23.62 22.22 En→Th 26.03 26.33 15.54 Th→En 14.03 16.54 26.77 28.33 29.03 25.54 > 28.07 En→Vi Huang18] 24.03 23.19 26.38 Vi→En 25.91 26.26 27.30 24.12 27.80 Mean 9.49 En→Cs 8.18 15.38 Cs→En 6.64 14.56 14.81 11.70 En→De 14.60 15.09 16.03 20.25 18.10 19.02 19.77 De→En 25.79 24.47 25.15 24.00 En→Fr 23.79 27.12 Fr→En 25.02 24.55 7.86 17.65 En→Th 15.58 18.41 9.11 10.14 10.19 Th→En En→Vi 17.51 18.90 18.92 Vi→En 16.00 16.86 16.28 13.01 16.47 17.04 17.76 Mean

~90,000-220,000 train / ~500-900 val / ~1,000 test

