

Пространственные вложения графов знаний. Функция энергии.

Шустров Дмитрий

Национальный исследовательский университет «Высшая школа экономики»

27 июня 2022 г.

Введение

Мультиреляционные данные, которые относятся к графам, узлы которых представляют сущности, а ребра соответствуют отношениям, которые связывают эти сущности, играют ключевую роль во многих областях, таких как системы управления, семантические сети или вычислительная биология. Отношения моделируются в графах знаний, где отношение либо моделирует связь между двумя сущностями, либо между сущностью и значением атрибута. Зачастую, для нахождения более комплексных знаний в готовой сети, необходимо закодировать граф знаний понятным для компьютеря языком с помощью пространственных вложений.

Введение

Целью данной курсовой работы является изучение метода отображения графа знаний в векторные вложения с помощью функции энергии. В соответствии с целью были поставлены задачи:

- 1. Изучить математические модели, позволяющие осуществить получение векторных представлений, соответсвующих семантическим особенностям.
- 2. Изучить процесс обучения параметризированной нейронной сетью функции энергии.
- 3. Реализовать получение пространственных вложений графа знаний с помощью функции энергрии на языке Python.
- 4. Проверить качество полученных вложений (полученных семантических связей), создав диаграмму, на которой будут изображены географические данные из графа знаний WordNet.

Функция энергии.

Ключевые идеи.

Основные идеи, описывающие функцию энергии семантического соответствия, следующие:

- 1. Именованные сущности ставятся в соответствие с d-мерным веркторным пространством (i-я сущность приравнивается к вектору $E_i \in \mathbb{R}^d$).
- 2. Сущности группируются в тройки вида x = (lhs, rel, rhs). Для x определена функция энергии \mathcal{E} , специальным образом комбинирующая сущности в тройке.
- 3. Функция энергии \mathcal{E} оптимизирована таким образом, чтобы иметь малые значения для триплетов из тренировочного набора (для остальных, очевидно, это свойство выполняться не должно).

Функция энергии.

Параметризация нейронной сетью.

- (1) Определение вложения по индексу сущности.
- (2) Формирование комбинированного вложения, основаного на типе связи.
- (3) Получение энергии (скалярное умножение).

Функция энергии.

Линейная форма.

Линейная форма (далее SME_{lin}). В этом случае функции gявляются обычными линейными слоями:

$$\begin{split} E_{lhs(rel)} &= g_{left}(E_{lhs}, E_{rel}) = W_{l1}E_{lhs}^{\intercal} + W_{l2}E_{rel}^{\intercal} + b_{l}^{\intercal}, \\ E_{rhs(rel)} &= g_{right}(E_{rhs}, E_{rel}) = W_{r1}E_{rhs}^{\intercal} + W_{r2}E_{rel}^{\intercal} + b_{r}^{\intercal}. \end{split}$$

где $W_{l_1}, W_{l_2}, W_{r_1}, W_{r_2} \in \mathbb{R}^{p \times d}$ - веса и $b_l, b_r \in \mathbb{R}^p$ - нейроны смещения и E^{T} обозначает операцию транспонирования матрицы E.

Функция энергии. Линейная форма.

Линейная форма (далее SME_{lin}). В этом случае функции g являются обычными линейными слоями:

$$E_{lhs(rel)} = g_{left}(E_{lhs}, E_{rel}) = W_{l1}E_{lhs}^{T} + W_{l2}E_{rel}^{T} + b_{l}^{T},$$

$$E_{rhs(rel)} = g_{right}(E_{rhs}, E_{rel}) = W_{r1}E_{rhs}^{T} + W_{r2}E_{rel}^{T} + b_{r}^{T}.$$

где $W_{l_1}, W_{l_2}, W_{r_1}, W_{r_2} \in \mathbb{R}^{p \times d}$ - веса и $b_l, b_r \in \mathbb{R}^p$ - нейроны смещения и E^\intercal обозначает операцию транспонирования матрицы E.

После преобразований (слагаемые с нейронами смещения исключены):

$$\mathcal{E}(x) = -E_{lhs} \tilde{W_1} E_{rhs}^\intercal - E_{lhs} \tilde{W_2} E_{rel}^\intercal - E_{rel} \tilde{W_3} E_{rhs}^\intercal - E_{rel} \tilde{W_4} E_{rel}^\intercal.$$

Из этого следует, что энергия состоит из трех частей, кодирующих пары (lhs, rhs), (lhs, rel) и (rel, rhs), и дополнительного квадратичного члена (rel, rel).

Функция энергии. Линейная форма.

Билинейная форма (далее SME_{bil}). В этом случае функции g будут использовать тензоры третьего ранга в качестве весов:

$$\begin{aligned} E_{lhs(rel)} &= g_{left}(E_{lhs}, E_{rel}) = (W_l \bar{\times}_3 E_{rel}^\intercal) E_{lhs}^\intercal + b_l^\intercal, \\ E_{rhs(rel)} &= g_{right}(E_{rhs}, E_{rel}) = (W_r \bar{\times}_3 E_{rel}^\intercal) E_{rhs}^\intercal + b_r^\intercal. \end{aligned}$$

где $W_I, W_r \in \mathbb{R}^{p \times d \times d}$ - веса и $b_I, b_r \in \mathbb{R}^p$ - нейроны смещения. $\bar{\mathbf{x}}_3$ обозначает тензор-векторное произведение с суммированием вдоль 3-го индекса.

Функция энергии. Линейная форма.

Билинейная форма (далее SME_{bil}). В этом случае функции g будут использовать тензоры третьего ранга в качестве весов:

$$\begin{split} E_{lhs(rel)} &= g_{left}(E_{lhs}, E_{rel}) = (W_l \bar{\times}_3 E_{rel}^\intercal) E_{lhs}^\intercal + b_l^\intercal, \\ E_{rhs(rel)} &= g_{right}(E_{rhs}, E_{rel}) = (W_r \bar{\times}_3 E_{rel}^\intercal) E_{rhs}^\intercal + b_r^\intercal. \end{split}$$

где $W_I, W_r \in \mathbb{R}^{p \times d \times d}$ - веса и $b_I, b_r \in \mathbb{R}^p$ - нейроны смещения. $\bar{\mathbf{x}}_3$ обозначает тензор-векторное произведение с суммированием вдоль 3-го индекса.

После преобразований (слагаемые с нейронами смещения исключены):

$$\mathcal{E}(x) = -E_{lhs}^{\mathsf{T}} \tilde{W}_{rel} E_{rhs}^{\mathsf{T}}.$$

Очевидно, что энергия составлена из единственного слагаемого, которое зависит от всех элементов тройки.

Критерий обучения.

Условия, ограничивающие значение функции энергии можно записать следующим образом:

$$\begin{aligned} \forall x &= (x_{lhs}, x_{rel}, x_{rhs}) \in \mathcal{D} : \\ \mathcal{E}(x) &< \mathcal{E}(i, x_{rel}, x_{rhs}) \quad \forall i \in \mathcal{C} : (i, x_{rel}, x_{rhs}) \notin \mathcal{D}, \\ \mathcal{E}(x) &< \mathcal{E}(x_{lhs}, i, x_{rhs}) \quad \forall i \in \mathcal{R} : (x_{lhs}, i, x_{rhs}) \notin \mathcal{D}, \\ \mathcal{E}(x) &< \mathcal{E}(x_{lhs}, x_{rel}, i) \quad \forall i \in \mathcal{C} : (x_{lhs}, x_{rel}, i) \notin \mathcal{D}. \end{aligned}$$

Чтобы эти условия выполнялись, нужно минимизировать следующий стохастический критерий:

$$\sum_{x \in \mathcal{D}} \sum_{\tilde{x} \sim Q(\tilde{x}|x)} \mathsf{max}(\mathcal{E}(x) - \mathcal{E}(\tilde{x}) + 1, 0)$$

где \tilde{x} - негативный триплет, а $Q(\tilde{x}|x)$ - процесс, генерирущий множесво негативных триплетов из нормального, беря в расмотрения все сущности тренировочного набора \mathcal{D} .

Из графа знаний WordNet были выбраны 120 сущностей, которые относятся к странам всего мира. Было выбрано именно такое подмножество, так как оно имеет очевидную и понятную семантическую структуру. После этого, мы отображаем полученные в ходе обучения SME_{lin} и SME_{bil} эмбеддинги в двумерное пространство с помощью алгоритма t-SNE. Далее на изображениях представлены результаты сравнений: различные цвета использованы для различных континентов; суффиксы POS-тэгирования и номера смысла слова удалены для ясности. Для построения представлений были использованы триплеты вида x = (lhs, rel, rhs), где $rel \in \{ part of, has part \}$ и *Ihs*, *rhs* ∈ {Africa, Asia, Europe, North America, Central America, South America, Russian Federation, Orient, Eurasia, West \}.

Представление вложений **SME** $_{lin}$ после 1000 эпох обучения.

Представление вложений **SME**_{lin} после 4500 эпох обучения.

Представление вложений SME_{bil} после 1000 эпох обучения.

Представление вложений SME_{bil} после 4500 эпох обучения.

Спасибо за внимание!

Список литературы.

- [1] A. Bordes, J. Weston, R. Collobert и Y. Bengio, «Learning structured embeddings of knowledge bases», в *Twenty-fifth AAAI conference on artificial intelligence*, 2011.
- [2] X. Glorot, A. Bordes, J. Weston u Y. Bengio, «A semantic matching energy function for learning with multi-relational data», arXiv preprint arXiv:1301.3485, 2013.
- [3] A. Bordes, X. Glorot, J. Weston ν Y. Bengio, «A semantic matching energy function for learning with multi-relational data», Machine Learning, τ. 94, № 2, c. 233—259, 2014.
- [4] D. P. Kingma и J. Ba, «Adam: A method for stochastic optimization», arXiv preprint arXiv:1412.6980, 2014.
- [5] H. Ren, H. Dai, B. Dai и др., «SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs», arXiv preprint arXiv:2110.14890, 2021.