Section Week 10: Artificial Bee Colony (ABC)

Ahmed Métwalli

May 11, 2025

Artificial Bee Colony (ABC) Parameters

ABC is a metaheuristic optimization algorithm inspired by the foraging behavior of honey bees. Below are detailed explanations of each ABC parameter:

- Colony Size: Total number of bees (employed + onlooker + scout). More bees provide better exploration but increase computation.
- Employed Bees: Each bee is associated with a particular food source (solution) and searches its neighborhood.
- Onlooker Bees: Bees that select food sources based on shared information (better solutions have higher chances).
- Scout Bees: Bees that randomly search new food sources when an old source becomes abandoned.
- Limit Parameter: If a food source is not improved after a certain number of trials, it is abandoned.
- Food Source Position (x_i) : Represents a candidate solution in the search space.
- Fitness Function $(f(x_i))$: Measures the quality of a food source (solution).

Aspect	ABC	PSO
Exploration	Strong (scouts search randomly)	Moderate (may get stuck early)
Exploitation	Good	Very strong
Parameters	Few, easy to tune	Needs careful tuning
Best for	Rugged, multimodal, discrete problems	Smooth, continuous problems
Speed	Slower	Faster

Table 1: Quick Comparison between ABC and PSO

Comparison of Bee Roles in ABC

Aspect	Employed Bees	Onlooker Bees	Scout Bees
Main Activity	Exploit assigned food	Select food sources based Randomly search f	
	sources and search nearby	on shared information and	food sources
		exploit them	
Location	Outside hive (exploring	Inside hive (observing	Outside hive (free explo-
	known food sources)	dances)	ration)
Selection Mechanism	Fixed assignment to a	Probability-based selec-	Random search without
	food source	tion (better food sources	prior information
		more likely)	
Role in Exploration-	Focused exploitation (lo-	Biased exploitation (to-	Pure exploration (diver-
Exploitation Balance	cal search)	wards best sources)	sity maintenance)
Trigger for Action	Regular update of as-	Based on quality informa-	Triggered when food
	signed source	tion from employed bees	source limit is exceeded
			(abandonment)
Importance	Improve known solutions	Reinforce and refine	Discover entirely new so-
		promising areas	lutions

Key Equations in ABC Algorithm

The Artificial Bee Colony (ABC) algorithm mainly uses three key operations based on equations:

1. Neighbourhood Search (Employed and Onlooker Bees)

Each employed or onlooker bee generates a new food source v_{ij} by modifying the current food source x_{ij} as:

$$v_{ij} = x_{ij} + \phi_{ij}(x_{ij} - x_{kj})$$

Where:

- x_{ij} : Current solution (food source) of bee i at dimension j.
- x_{ki} : Randomly selected neighbour's solution (different from i).
- $\phi_{ij} \in [-1,1]$: Random number controlling the step size and direction.

Meaning: This formula perturbs the current solution slightly towards or away from a neighboring solution, allowing local exploration.

2. Fitness Calculation

The fitness value fit_i of a food source is calculated based on the objective function value $f(x_i)$:

$$fit_i = \begin{cases} \frac{1}{1 + f(x_i)}, & \text{if } f(x_i) \ge 0\\ 1 + |f(x_i)|, & \text{if } f(x_i) < 0 \end{cases}$$

Meaning: Higher fitness corresponds to better solutions. It ensures that fitness is always positive and inversely proportional to the objective function when $f(x) \ge 0$.

3. Probability of Selection (Onlooker Phase)

Each onlooker selects a food source based on a probability P_i proportional to its fitness:

$$P_i = \frac{fit_i}{\sum_{n=1}^{SN} fit_n}$$

Where:

- fit_i : Fitness of the *i*-th food source.
- \bullet SN: Number of food sources (solutions).

Meaning: Better solutions have a higher chance of being selected by onlooker bees.

4. Scout Bee Update Rule

If a food source cannot be improved for a number of trials (greater than the limit), it is abandoned and a scout bee generates a new random solution:

$$x_{ij} = x_j^{\min} + rand(0, 1) \times (x_j^{\max} - x_j^{\min})$$

Where:

- x_i^{\min} and x_i^{\max} : Lower and upper bounds of dimension j.
- rand(0,1): Random number between 0 and 1.

Meaning: Scout bees introduce randomness to explore completely new areas in the search space.

Summary: - **Exploration**: Achieved through scouts and random perturbations. - **Exploitation**: Achieved by employed and onlooker bees searching near good food sources. - **Balance**: Controlled by how often poor food sources are abandoned and replaced.

1 ABC vs PSO vs ACO: Combined Comparison

Feature / Stage	ABC (Bee Colony)	PSO (Particle Swarm)	ACO (Ant Colony)	
Inspiration	Bee foraging and dancing	Bird flocking and fish schooling	Ant pheromone-based foraging	
Representation	Food sources (solutions) and bee	Particles moving in continuous	Ants traversing graph paths	
	agents space			
Movement Rule	Random neighbor search around	Update velocity based on per-	Probabilistic transitions based	
	food sources	sonal/global best	on pheromone	
Memory	Each bee remembers its food	Each particle remembers per-	Indirect memory in pheromone	
	source	sonal and global best	trails	

			T-1	
Exploration-	Scout bees for exploration, on-	Inertia weight and random	Pheromone evaporation and	
Exploitation	looker bees for exploitation	scalars	heuristic bias	
Control				
Convergence	Limit on non-improving sources	Balancing inertia and coefficients	Pheromone levels regulate con-	
Control	triggers exploration		vergence	
Application Do-	Scheduling, clustering, optimiza-	Neural networks, continuous op-	Routing, scheduling, combinato-	
mains	tion	timization	rial problems	
Initialization	Random food sources	Random positions and velocities	Random initial placement and	
			pheromone	
Communication	Shared probability-based selec-	Sharing global best position	Indirect via pheromone deposi-	
Mechanism	tion by onlookers		tion	
Update Mecha-	New food source generation:		0	
nism	$v_{ij} = x_{ij} + \phi_{ij}(x_{ij} - x_{kj})$	$v_i^{t+1} = wv_i^t + c_1 r_1 (p_i^{best} - x_i^t)$	$P_{ij} = \frac{\tau_{ij}^{\alpha} \eta_{ij}^{\beta}}{\sum \tau_{ik}^{\alpha} \eta_{ik}^{\beta}}$	
	where k is a randomly selected	$+ c_2 r_2 (g^{best} - x_i^t)$		
	neighbor and ϕ is a random num-	(0		
	ber in $[-1,1]$			
Termination	Maximum cycles or convergence	Maximum iterations or conver-	Maximum iterations or no im-	
Condition		gence	provement	
End Comparison	Robust search, slow convergence	Fast convergence, sensitive to lo-	Good for discrete and combina-	
		cal optima	torial tasks	

2 Symbol Notation

Symbol	Description
x_i	Position of the <i>i</i> -th food source (solution)
$f(x_i)$	Fitness value of the <i>i</i> -th food source
ϕ_{ij}	Random number in range $[-1,1]$ used to perturb the solution
k	Randomly chosen neighbor index
limit	Maximum trials without improvement before abandoning food source

Table 4: Notation for Symbols in ABC

Figure 1: ABC

Worked Example: Three ABC Cycles on Rastrigin (2-D) Objective.

$$\min_{\mathbf{x} \in [-5.12, 5.12]^2} f(\mathbf{x}) = 20 + \sum_{j=1}^{2} [x_j^2 - 10\cos(2\pi x_j)], \qquad f(0, 0) = 0.$$

Global ABC Settings

- Food sources $SN = 2 \Longrightarrow 2$ employed + 2 onlookers.
- Dimension D = 2; limit = 3 failed trials.
- Neighbour factor $\phi \sim \mathcal{U}[-1,1]$ (one fresh draw per move).
- Bound repair: $x_j \leftarrow \min(5.12, \max(-5.12, x_j))$.
- Fitness $fit_i = 1/(1 + f_i)$ (safe because $f_i \ge 0$ on this domain).

Cycle 0 — Initialisation

Src	$\mathbf{x} = [x_1, x_2]$	$f(\mathbf{x})$	trials
1	[3.50, -2.00]	$20 + (3.5^{2} - 10\cos 7\pi) + [4 - 10\cos(-4\pi)] = 36.25$	0
2	[-1.00, 4.20]	$20 + (1 - 10\cos(-2\pi)) + (17.64 - 10\cos 8.4\pi) = 25.55$	0

Note: $\cos 8.4\pi = \cos(0.4\pi) = 0.30902$.

Cycle 1

1. Employed phase Source 1 chooses k = 2, $\phi = -0.50$:

$$\mathbf{v}_1 = \mathbf{x}_1 - \frac{1}{2}(\mathbf{x}_1 - \mathbf{x}_2) = [1.25, 1.10] \quad \text{(in bounds)}$$

$$f(\mathbf{v}_1) = 20 + [1.25^2 - 10\cos(2.5\pi)] + [1.10^2 - 10\cos(2.20\pi)]$$

$$= 20 + (1.5625 - 0) + (1.2100 - 10(-0.80902))$$

$$= 20 + 1.5625 + 9.3002 = 30.863 (< 36.25) \implies \text{accept, tr}_1 = 0.$$

Source 2 chooses k = 1, $\phi = +0.60$ (new \mathbf{x}_1 already):

$$\mathbf{v}_2 = \mathbf{x}_2 + 0.60(\mathbf{x}_2 - \mathbf{x}_1) = [-2.35, 6.06] \xrightarrow{\text{clip}} [-2.35, 5.12]$$

$$f(\mathbf{v}_2) = 20 + \left[(-2.35)^2 - 10\cos(-4.70\pi) \right]$$

$$+ \left[26.2144 - 10\cos(10.24\pi) \right]$$

$$= 20 + \left(5.5225 + 5.8779 \right) + \left(26.2144 - 7.2897 \right) = 50.325$$

$$> 25.55 \implies \text{reject, tr}_2 = 1.$$

2. Onlooker phase Current f's (30.863, 25.55) give $P_1 = 0.630$, $P_2 = 0.370$.

One onlooker picks Source 1 ($\phi = +0.40, k = 2$):

$$\mathbf{v} = [2.15, -0.14], \quad f = 20 + (4.6225 - 10\cos 5.6\pi) + (0.0196 - 10\cos(-0.28\pi)) = 12.404$$

(better) \Rightarrow **accept**; new $\mathbf{x}_1 = [2.15, -0.14], f_1 = 12.404, trials_1 = 0.$

3. Scout check none triggered.

$$\mathbf{x}_1 = [2.15, -0.14], f = 12.404; \ \mathbf{x}_2 = [-1.00, 4.20], f = 25.55, \text{tr}_2 = 1$$

Cycle 2

1. Employed phase Src 1 $(k = 2, \phi = -0.30)$:

$$\mathbf{v}_1 = [1.205, \ 1.162], \ f = 20 + \underbrace{\left(1.4520 - 10\cos 2.41\pi\right)}_{=3.191} + \underbrace{\left(1.349 - 10\cos 2.324\pi\right)}_{=4.988} = 28.179$$

worse \Rightarrow reject, trials₁ = 1.

Src 2 $(k = 1, \phi = -0.50)$:

$$\mathbf{v}_2 = [0.575, 2.03], f = 20 + (0.3306 - 10\cos 1.15\pi) + (4.1209 - 10\cos 4.06\pi) = 24.522$$

better than $25.55 \Rightarrow \text{accept}$, trials₂ = 0.

2. Onlookers (2 bees) Fitness now $(12.404, 24.522) \Rightarrow P_1 = 0.655$.

Both onlookers pick Src 1:

$$1. \ \phi = +0.40 \Rightarrow \mathbf{v} = [2.78, -1.008] \ f = 20 + (7.728 - 10\cos 5.56\pi) + (1.016 - 10\cos -2.016\pi) = 20.494 \ (\text{worse}): \ \text{reject, trials}_1 = 2.$$

2.
$$\phi = -0.60 \Rightarrow \mathbf{v} = [0.26, 2.464]$$
 $f = 20 + (0.5909) + (15.660) = 36.251$ (worse): reject, trials₁ = 3 (hits limit).

<u>Scout on Source 1</u> Random sample $\mathbf{x}_1 = [-4.10, 4.60]$ $f = 20 + (16.81 - 10\cos(-8.20\pi)) + (21.16 - 10\cos(9.20\pi)) = 78.288$, $\text{tr}_1 = 0$.

3. Scout check complete.

$$\mathbf{x}_1 = [-4.10, 4.60], f = 78.288; \ \mathbf{x}_2 = [0.575, 2.03], f = 24.522$$

Cycle 3 (illustrative)

We allow Src 2 to improve once more (normal employed + onlooker steps):

$$\mathbf{x}_2 \to [0.05, 0.05], \quad f = 20 + 2 \times (0.0025 - 10\cos 0.1\pi) = 0.984$$

while Src 1 undergoes ordinary exploration.

$$\mathbf{x}_1 \approx [-4.10, 4.60], f \approx 78; \ \mathbf{x}_2 \approx [0.05, 0.05], f \approx 0.984$$

The colony is now firmly inside the global basin; more cycles will push $\mathbf{x}_2 \to (0,0)$ and $f \to 0$.

Notes

- 1. Every f value is the sum of x_i^2 and $-10\cos(2\pi x_j)$; writing both parts lets you audit numerical accuracy.
- 2. Clipping prevents illegal coordinates from skewing the run.
- 3. Trial counters + scout restarts protect against stagnation.
- 4. Even with SN = 2, the swarm found f < 1 by cycle 3.