Tartalomjegyzék

1.	Köz	önséges differenciálegyenletek	3		
	1.1.	Bevezető	3		
		Szétválasztható változójú differenciálegyenletek	4		
		1.2.1. Gyakorló feladatok	10		
	1.3.	Lineáris elsőrendű differenciálegyenlet	12		
		1.3.1. Gyakorló feladatok	15		
	1.4.	Új változó bevezetése	17		
		1.4.1. Gyakorló feladatok	20		
	1.5.	Iránymező, izoklinák	22		
		1.5.1. Gyakorló feladatok	24		
	1.6.	Magasabbrendű lineáris differenciálegyenletek	28		
		1.6.1. Homogén, állandó együtthatós differenciálegyenletek	28		
		1.6.2. Inhomogén, állandó együtthatós differenciálegyenletek	29		
		1.6.3. Gyakorló feladatok	33		
	1.7.	Lineáris rekurzió	37		
		1.7.1. Gyakorló feladatok	38		
	1.8.	Alkalmazások	39		
2	Függvénysorok 45				
4.	_		45		
	2.1.	2.1.1. Gyakorló feladatok	50		
	9 9	Weierstrass-kritérium függvénysorok egyenletes konvergenciájára	51		
	2.3.	Hatványsorok	51		
	4.0.	2.3.1. Hatványsorok konvergencia sugara, konvergenciatartománya	52		
		2.3.2. Hatványsorok összegfüggvénye	56		
		2.3.3. Gyakorló feladatok	58		
	2.4.	Taylor-polinom	60		
	2.4.		63		
	2.0.	Taylor-sor	03 72		
	2.6	2.5.1. Gyakorló feladatok			
	2.6.	Binomiális sorfejtés	75 79		
		2.6.1. Gyakorló feladatok	78		

	2.7.	Fourier-sor
		2.7.1. Gyakorló feladatok
3.	Töb	bváltozós függvények 80
	3.1.	Határérték, folytonosság
		3.1.1. Gyakorló feladatok
	3.2.	Parciális deriváltak, totális derivált
		3.2.1. Gyakorló feladatok
	3.3.	Érintősík, differenciál, iránymenti derivált
		3.3.1. Gyakorló feladatok
	3.4.	Összetett függvény deriválása
		3.4.1. Gyakorló feladatok
	3.5.	Szélsőértékszámítás
		3.5.1. Gyakorló feladatok
	3.6.	Kettős integrál
		3.6.1. Kétszeres integrál téglalap- és normáltartományokon
		3.6.2. Kettős integrálok transzformációja
		3.6.3. Gyakorló feladatok
	3.7.	Hármas integrál
		3.7.1. Gyakorló feladatok
4.	Kon	nplex függvénytan 133
		Differenciálhatóság, regularitás, harmonikus társ
		Elemi függvények, egyenletek megoldása
		Komplex vonalintegrál
		Cauchy-féle integrálformulák
		4.4.1. Gyakorló feladatok

1. fejezet

Közönséges differenciálegyenletek

1.1. Bevezető

Néhány egyszerű példa az alapfogalmak megértéséhez:

1.1.1. Feladat. Mutassuk meg, hogy

$$y = e^x \int_0^x e^{t^2} dt + 3 e^x$$

megoldása az alábbi differenciálegyenletnek!

$$y' - y = e^{x+x^2}$$

Megoldás:

(Ez egy elsőrendű differenciálegyenlet. Azt, hogy a függvény megoldása a differenciálegyenletnek, mondjuk úgy is, hogy kielégíti a differenciálegyenletet.)

A megadott függvény deriválható, mert deriválható függvények összetétele. (Felhívjuk a figyelmet az integrálfüggvényre, emlékezzünk az integrálszámítás II. alaptételére is, az integrandusz folytonos!)

$$y' = (e^x)' \cdot \int_0^x e^{t^2} dt + e^x \cdot \left(\int_0^x e^{t^2} dt \right)' + (3 e^x)' = e^x \cdot \int_0^x e^{t^2} dt + e^x \cdot e^{x^2} + 3 e^x$$

Behelyettesítve a differenciálegyenlet bal oldalába y-t és y'-öt:

$$y' - y = e^x \cdot e^{x^2} = e^{x+x^2}$$

Tehát valóban a jobb oldalt kaptuk.

1.1.2. Feladat.

$$y'' = e^{-3x} + 2x$$

- a) Adjuk meg a differenciálegyenlet általános megoldását!
- b) Adjuk meg azt a partikuláris megoldást, mely eleget tesz az alábbi kezdeti feltételeknek!

$$y(0) = 1, y'(0) = 2$$

Megoldás:

- a) A differenciálegyenletből: $y' = -\frac{1}{3} e^{-3x} + x^2 + C_1$ Ebből az általános megoldás: $y = \frac{1}{9} e^{-3x} + \frac{x^3}{3} + C_1 x + C_2$, $C_1, C_2 \in \mathbb{R}$
- b) y(0) = 1: a megoldásban x helyére 0-át, y helyére 1-et helyettesítve:

$$1 = \frac{1}{9} + C_2 \quad \Longrightarrow \quad C_2 = \frac{8}{9}$$

 $y^{\prime}(0)=2$: az y^{\prime} -re kapott egyenletben elvégezve a helyettesítést

$$(x = 0, y' = 2)$$

$$2 = -\frac{1}{3} + C_1 \quad \Longrightarrow \quad C_1 = \frac{7}{3}$$

Így a keresett partikuláris megoldás:

$$y = \frac{1}{9} e^{-3x} + \frac{x^3}{3} + \frac{7}{3}x + \frac{8}{9}$$

1.2. Szétválasztható változójú differenciálegyenletek

1.2.1. Feladat. Oldjuk meg az alábbi differenciálegyenletet!

$$y' = \frac{x}{y} e^{2x-3y^2}, \qquad y \neq 0$$

4

Megoldás:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^{-3y^2}}{y} x \, \mathrm{e}^{2x}$$

$$\implies \underbrace{\int \frac{y}{\mathrm{e}^{-3y^2}} \, \mathrm{d}y}_{\text{parciális integrálás}} = \underbrace{\int x \, \mathrm{e}^{2x} \, \mathrm{d}x}_{\text{parciális integrálás}}$$

Így a megoldás:

$$\frac{1}{6} e^{3y^2} = \frac{x}{2} e^{2x} - \frac{1}{4} e^{2x} + C, \qquad C \in \mathbb{R}$$

Nem kell erőltetni az y-ra való kifejezést. De, ha kifejezzük, akkor ne felejtsük el a \pm -t! Adott $y(x_0) = y_0$ kezdeti érték probléma megoldásánál természetesen csak az egyik előjel szerepel majd, hiszen a megoldás egyértelmű, mert $y_0 > 0$, vagy $y_0 < 0$.

1.2.2. Feladat.

$$y' = \frac{y-2}{xy}, \qquad x \neq 0, \qquad y \neq 0$$

- a) Oldja meg a differenciálegyenletet!
- b) Oldja meg az y(1)=2 , y(1)=3 , illetve az y(-1)=-3 kezdeti érték problémákat!

Megoldás:

a) $y \equiv 2 \mod \text{ás} (1.1 \text{ ábra})$. (Persze az x > 0, vagy x < 0 része!)

Ha $y \neq 2$:

$$\int \underbrace{\frac{y}{y-2}}_{1+\frac{2}{y-2}} \, \mathrm{d}y = \int \frac{1}{x} \, \mathrm{d}x$$

Innen a megoldás:

$$y + 2 \ln|y - 2| = \ln|x| + C$$

1.1. ábra. (1.2.2 feladathoz.) Az $y\equiv 2$ megoldás, valamint a nevző zérushelyei ($x\neq 0$, $y\neq 0$) hat téglalapra osztják a síkot. Ezeken a tartományokon belül a kezdeti érték problémák egyértelműen megldhatók.

 $\rm Az~1.1~\acute{a}bra$ azokat a tartományokat mutatja, ahol a kezdeti érték probléma egyértelműen megoldható.

b) A partikuláris megoldások:

$$y(1) = 2$$
: $y \equiv 2$

$$y(1) = 3$$
:

$$3+2\,\ln 1 = \ln 1 + C \quad \Longrightarrow \quad C = 3 \;, \; \text{tehát a megoldás:}$$

$$y + 2 \ln(y - 2) = \ln x + 3$$

$$y(-1) = -3$$
:

$$-3+2\,\ln 5 = \ln 1 + C \quad \Longrightarrow \quad C = -3+2\,\ln 5 \;, \; \text{tehát a megoldás:}$$

$$y + 2 \ln(2 - y) = \ln(-x) - 3 + 2 \ln 5$$

Figyelje meg, hogyan hagytuk el az abszolút érték jeleket!

1.2.3. Feladat. Oldjuk meg az alábbi differenciálegyenletet!

$$y' = \frac{y^2 + 4y + 9}{(x - 1)(x + 5)}, \qquad x \neq 1, \quad x \neq -5$$

Megoldás:

$$\int \frac{1}{(y+2)^2 + 5} \, dy = \int \frac{1}{(x-1)(x+5)} \, dx$$

:

$$\frac{1}{5}\sqrt{5} \arctan \frac{y+2}{\sqrt{5}} = \frac{1}{6} (\ln|x-1| - \ln|x+5|) + C$$

1.2.4. Feladat. A rádium bomlási sebessége arányos a pillanatnyi rádiummennyiséggel.

Tudjuk, hogy a rádium felezési ideje 1600 év.

A kiindulási anyag mennyiségének hány százaléka bomlik fel 100 év alatt?

Megoldás:

Jelöljük R(t)-vel a rádium mennyiségét a t időpontban, k-val az arányossági tényezőt (pozitívnak választjuk).

A kapott differenciálegyenlet:

$$\frac{\mathrm{d}R}{\mathrm{d}t} = -k R$$

(A negatív előjel mutatja, hogy a bomlás következtében a rádium mennyisége csökken.) A szétválasztható változójú differenciálegyenlet megoldása:

$$\cdots$$
 $R = C e^{-kt}$

Ha a t=0 időpontban a kiindulási anyag mennyisége R_0 , tehát az $R(0)=R_0$ kezdeti érték problémánk van:

$$R_0 = C e^{-k \cdot 0} \implies C = R_0$$

Tehát a keresett partikuláris megoldás: $R = R_0 e^{-kt}$.

Mivel ismerjük a felezési időt, meghatározható a k arányossági tényező:

$$\frac{1}{2} R_0 = R_0 e^{-k \cdot 1600} \implies k = \frac{\ln 2}{1600}$$

Tehát a rádium mennyisége az idő függvényében:

$$R(t) = R_0 e^{-\frac{\ln 2}{1600}t}$$

Így a 100 év múlva megmaradt mennyiség:

$$R(100) = R_0 e^{-\frac{\ln 2}{16}} = R_0 e^{-0.0433} \implies \frac{R(100)}{R_0} = e^{-0.0433} = 0.958$$

Vagyis 95,8%, tehát az eredeti mennyiség 4,2%- a bomlott el.

1.2.5. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = (3x - 1)^5 (y^2 - 4y)$$

Megoldás:

 $y \equiv 0$ és $y \equiv 4$ megoldás. Egyébként:

$$\int \frac{1}{y(y-4)} dy = \int (3x-1)^5 dx$$

:

$$\frac{1}{4} \left(-\ln|y| + \ln|y - 4| \right) = \frac{1}{3} \frac{(3x - 1)^6}{6} + C$$

Keresse meg az y(0)=2 , illetve az $y(0)=4\,$ kezdeti feltételeket kielégítő megoldásokat!

. .

1.2.6. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = \frac{\operatorname{sh} y}{\operatorname{ch} y} \ x (2x^2 + 1)^6$$

Megoldás:

 $y \equiv 0$ megoldás. Ha $y \neq 0$:

$$\int \frac{\operatorname{ch} y}{\operatorname{sh} y} \, dy = \int x (2x^2 + 1)^6 \, dx$$
$$\ln|\operatorname{sh} y| = \frac{1}{4} \frac{(2x^2 + 1)^7}{7} + C$$

1.2.7. Feladat. Oldja meg az alábbi kezdeti érték problémákat!

$$y' = (\operatorname{ctg} y) \ln(x - 2), \quad y(3) = \pi/3, \text{ illetve } y(3) = \pi/2$$

Megoldás:

 $x>2\,,\quad y\neq k\,\pi$ $y\equiv\frac{\pi}{2}+k\,\pi\quad\text{megold\'as. Egy\'ebk\'ent:}$

$$\int \underbrace{\frac{\sin y}{\cos y}}_{f'/f \text{ alakú}} dy = \underbrace{\int \ln (x-2) dx}_{\text{parciális integrálás}}$$

 $-\ln|\cos y| = x \ln(x-2) - x - 2 \ln(x-2) + C$

$$\begin{array}{lll} y(3) = \pi/3 : & \ldots & C = 3 + \ln 2 \;, \; \mathrm{fgy} \\ & - \ln \left(\cos y \right) \; = \; x \; \ln \left(x - 2 \right) \, - \, x \, - \, 2 \, \ln \left(x - 2 \right) \, + \, 3 + \ln 2 \;, \\ & y \in \left(0, \frac{\pi}{2} \right) \; \mathrm{\acute{e}s} \; \; x > 2 \end{array}$$

$$y(3) = \pi/2$$
 : $y \equiv \frac{\pi}{2}$ $x > 2$ része

1.2.8. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = \frac{2y^2 + 3}{y} 2x e^{-4x^2}, \quad y \neq 0$$

Megoldás:

$$\int \underbrace{\frac{y}{2y^2 + 3}}_{f'/f} dy = \int \underbrace{2x e^{-4x^2}}_{f' e^f} dx$$

$$\frac{1}{4} \int \frac{4y}{2y^2 + 3} \, dy = -\frac{1}{4} \int -4 \cdot 2x e^{-4x^2} dx$$

$$\frac{1}{4}\ln(2y^2+3) = -\frac{1}{4}e^{-4x^2} + C$$

Vagyis

$$\ln\left(2y^2 + 3\right) = -e^{-4x^2} + C$$

1.2.1. Gyakorló feladatok

1.2.9. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = (y+3)^2 \arcsin x$$
, $|x| < 1$

 $Megold\'{a}s:$

 $y \equiv -3$, |x| < 1 része megoldás. Ha $y \neq -3$:

$$\int \frac{1}{(y+3)^2} dy = \int 1 \cdot \arcsin x dx$$

Jobb oldalon: parciális integrálás $(u'=1 , v=\arcsin x)$

. . .

$$\frac{(y+3)^{-1}}{-1} = x \arcsin x + \frac{1}{2} \frac{\sqrt{1-x^2}}{\frac{1}{2}} + C$$

1.2.10. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = \frac{y^2 + 3}{y^2 + 1} \quad 2x \arctan 2x$$

Megoldás:

$$\int \frac{y^2 + 1}{y^2 + 3} \, \mathrm{d}y = \int 2x \, \arctan 2x \, \, \mathrm{d}x$$

Bal oldal: racionális törtfüggvény, de áltört.

Jobb oldal: parciális integrálás $(u' = 2x, v = \operatorname{arctg} 2x)$

. . .

$$y - \frac{2}{3} \frac{\arctan \frac{y}{\sqrt{3}}}{\frac{1}{\sqrt{3}}} = x^2 \arctan 2x - \frac{1}{2} \left(x - \frac{\arctan 2x}{2} \right) + C$$

1.2.11. Feladat.

$$y' = \frac{(2y^2 - 8) \arctan x}{y(1 + x^2)}, \quad y \neq 0$$

- a) Határozza meg az $x_0=0\,,\ y_0=-1\,$ ponton áthaladó megoldást!
- b) Határozza meg az $x_0=0\,,\ y_0=-2\,$ ponton áthaladó megoldást!

Megoldás:

 $y\equiv\pm 2\,$ megoldás. Ha $|y|\neq 2\,$:

$$\frac{1}{4} \int \underbrace{\frac{4y}{2y^2 - 8}}_{f'/f} dy = \int \underbrace{\frac{1}{1 + x^2} \operatorname{arctg} x}_{f'f^1} dx$$

$$\implies \frac{1}{4} \ln|2y^2 - 8| = \frac{\arctan^2 x}{2} + C, \quad C \in \mathbb{R}$$

a)
$$y(0) = -1$$
: behelyettesítéssel: $C = \frac{1}{4} \ln 6$

$$\frac{1}{4} \ln|2y^2 - 8| = \frac{\arctan^2 x}{2} + \frac{1}{4} \ln 6, \quad y < 0$$

b)
$$y(0) = -1 : y \equiv -2$$

1.2.12. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = \frac{y^2 - 9}{x^2 + 25}$$

Megoldás:

. . .

1.2.13. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y' = y (\ln^2 y) \ln x$$
, $x > 0$, $y > 0$

Megoldás:

. .

1.2.14. Feladat. Írjuk fel azoknak az első negyedbe eső síkgörbéknek az egyenletét, melyekre teljesül,hogy bármely pontjában húzott érintőjének a koordinátatengelyek közötti szakaszát az érintési pont felezi.

Megoldás:

1.3. Lineáris elsőrendű differenciálegyenlet

Mint tudjuk az előadásról:

 $y_{i\acute{a}} = y_H + y_{ip}$, y_H : szétválasztható változójú, y_{ip} : állandó variálásával A homogén egyenlet megoldásánál nem alkalmazható a képlet, minden esetben végig kell csinálni az alábbi két példában mutatott módszerek valamelyikével.

1.3.1. Feladat. Oldjuk meg az alábbi differenciálegyenletet!

$$y' - \frac{x}{x^2 + 4} y = 6x$$
, $y(0) = 4$

Megoldás:

$$y_{i\acute{a}} = y_H + y_{ip}$$

$$y_{i\acute{a}} = y_H + y_{ip}$$
(H): $y' - \frac{x}{x^2 + 4} \ y = 0 \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{x^2 + 4} \ y \ , \qquad y \equiv 0 \text{ megold\'as}$
Ha $y \neq 0$:
$$\int \frac{\mathrm{d}y}{y} = \frac{1}{2} \int \frac{2x}{x^2 + 4} \ \mathrm{d}x$$

$$\implies \ln|y| = \frac{1}{2} \ln(x^2 + 4) + C_1 \implies |y| = \mathrm{e}^{C_1} \, \mathrm{e}^{\ln\sqrt{x^2 + 4}}$$

$$\implies y = \pm \mathrm{e}^{C_1} \sqrt{x^2 + 4} \ , \text{ illetve } y \equiv 0$$

Tehát a homogén egyenlet általános megoldása:

$$y_{H\acute{a}lt} = C\sqrt{x^2 + 4}$$
, $C \in \mathbb{R}$

Az inhomogén egyenlet egy partikuláris megoldásának keresése:

$$y_p = c(x)\sqrt{x^2 + 4}$$
, $y_p' = c'(x)\sqrt{x^2 + 4} + c(x)\frac{1}{2\sqrt{x^2 + 4}} 2x$

Behelyettesítve (I)-be: · · ·

$$c'(x) = \frac{6x}{\sqrt{x^2 + 4}} \qquad \Longrightarrow \quad c(x) = 3 \int 2x \cdot (x^2 + 4)^{-1/2} \, dx = 6\sqrt{x^2 + 4} + K$$

Mivel egyetlen y_p megoldást keresünk, K=0 választható, így $y_p = 6(x^2 + 4)$.

Az inhomogén egyenlet általános megoldása:

$$y_{\text{Lált}} = C\sqrt{x^2 + 4} + 6(x^2 + 4)$$
 $(C \in \mathbb{R})$

Az y(0)=4 kezdetiérték probléma megoldása:

$$4 = C \cdot 2 + 24 \implies C = -10 \implies y = -10\sqrt{x^2 + 4} + 6(x^2 + 4)$$

1.3.2. Feladat.

$$y' - \frac{2}{x} y = x , \qquad x \neq 0$$

- a) Általános megoldás?
- b) y(1) = 3 kezdeti feltételt kielégítő megoldás?
- c) $y(-e) = 3e^2$ kezdeti feltételt kielégítő megoldás?

Megoldás:

a) Minden olyan tartományban, melyben $x \neq 0$ a differenciálegyenlet egyértelműen megoldható.

(H):
$$y' - \frac{2}{x}y = 0 \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{x}y$$

Az előadásból tudjuk, hogy $y_{Hált} = C \cdot Y(x)$ alakú, ahol Y a homogén egyenlet egy megoldása, mely seholse nulla. Ezt kihasználva a megoldás kevesebb munkával is megkapható.

$$\int \frac{\mathrm{d}y}{y} = \int \frac{2}{x} \, \mathrm{d}x \quad \Longrightarrow \quad \ln y = 2 \ln x \;, \qquad \text{igy } y = x^2 \quad (Y = x^2)$$

Tehát a homogén egyenlet általános megoldása:

$$y_{H\acute{a}lt} = C x^2, \quad C \in \mathbb{R}$$

Kérdés:

 $Y(x) = x^2$ vesz fel 0 értéket, márpedig a bizonyításban e^{...} alakúra jött ki (a jegyzetben Y(x) helyett $\varphi(x)$ jelölés van), tehát nem lehetne 0. Hol az ellentmondás? Válasz:

Az elején beszéltünk róla, hogy az x>0, vagy az x<0 félsíkon dolgozunk és ekkor már valóban teljesül, hogy $Y(x)\neq 0$ a vizsgált tartományban.

Az inhomogén egyenlet egy partikuláris megoldásának keresése:

$$y_p = c(x) x^2$$
, $y'_p = c'(x) x^2 + c(x) 2x$

Behelyettesítve (I)-be: · · ·

$$c'(x) = \frac{1}{x} \implies c(x) = \ln|x|$$

$$y_p = x^2 \ln|x| \implies y_{Ialt} = C x^2 + x^2 \ln|x|$$

b) y(1) = 3 kezdeti érték probléma megoldása:

$$3 = C + \ln 1$$
, tehát $C = 3$.

Így a keresett megoldás: $y = 3x^2 + x^2 \ln x$

c) $y(-e) = 3e^2$ kezdeti érték probléma megoldása:

$$3e^2 = Ce^2 + e^2 \cdot 1$$
, tehát $C = 2$.

Így a keresett megoldás: $y = 2x^2 + x^2 \ln(-x)$

(Itt már ne szerepeljen abszolút érték a megoldásban!)

1.3.3. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását!

$$y' - 3x^2y = 6x^2$$

Megoldás:

A differenciálegyenlet lineáris elsőrendű, de ugyanakkor szeparábilis is. Így rövidebb a megoldás, ezért most így oldjuk meg:

$$y' = 3x^2 y + 6x^2 \implies \frac{dy}{dx} = 3x^2 (y+2)$$

 $y \equiv -2$ megoldás. Ha $y \neq -2$:

$$\int \frac{\mathrm{d}y}{y+2} = \int 3x^2 \, \mathrm{d}x \quad \Longrightarrow \quad \ln|y+2| = x^3 + C_1$$

. . .

$$y+2 = \pm e^{C_1} e^{x^3}$$
, illetve $y \equiv -2 \implies y = -2 + C e^{x^3}$, $C \in \mathbb{R}$

1.3.4. Megjegyzés. Oldja meg a differenciálegyenletet lineáris elsőrendűként is és hasonlítsa össze az eredményeket!

1.3.1. Gyakorló feladatok

1.3.5. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását:

$$y' + 2e^x y = 3e^{-2e^x}$$

Megoldás:

(H)
$$y' + 2e^x y = 0$$
 ... $y_H = Ce^{-2e^x}$, $C \in \mathbb{R}$

(H)
$$y' + 2e^{x} y = 0$$
 ... $y_{H} = C e^{-2e^{x}}$, $C \in \mathbb{R}$
(I) $y_{p} = c(x) e^{-2e^{x}}$... $c(x) = 3x$
 $\implies y_{I \text{ alt }} = y_{H} + y_{p} = C e^{-2e^{x}} + 3x e^{-2e^{x}}$

1.3.6. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását:

$$y' = -\frac{2}{x}y + \frac{1}{1+x^2}, \qquad x \neq 0$$

Megoldás:
(H)
$$y' + \frac{2}{x}y = 0$$
 ... $y_H = \frac{C}{x^2}$, $C \in \mathbb{R}$

(I) $y_p = \frac{c(x)}{r^2}$... $c'(x) = \frac{x^2}{1+r^2} \implies c(x) = x - \operatorname{arctg} x$

$$\implies y_{I\acute{a}lt} = y_H + y_p = \frac{C}{r^2} + \frac{1}{r} - \frac{\arctan x}{r^2}$$

1.3.7. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását:

$$y' + \frac{5}{x}y = e^x x^{-4}, \qquad x \neq 0$$

Megoldás: (H)
$$y' + \frac{5}{x}y = 0$$
 ... $y_H = \frac{C}{x^5}$, $C \in \mathbb{R}$

(I) $y_p = \frac{c(x)}{x^5}$... $c'(x) = x e^x \implies c(x) = (x-1) e^x$ (parc. integrálással)

$$\implies y_{\text{Iált}} = y_H + y_p = \frac{C}{x^5} + \frac{(x-1)e^x}{x^5}$$

1.3.8. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását:

$$y' - \frac{1}{x}y = \frac{x^2}{1+x^2}, \qquad x \neq 0$$

Megoldás:

. . .

$$y_{I\acute{a}lt} = y_H + y_p = Cx + \frac{x}{2} \ln{(1+x^2)}$$

. . .

1.4. Új változó bevezetése

Mi mindig megadjuk, hogy milyen helyettesítést alkalmazzunk.

1.4.1. Feladat. $u = \frac{y}{x}$ helyettesítéssel oldja meg az alábbi differenciálegyenletet!

$$xy' = y(1 + \ln y - \ln x),$$
 $x > 0,$ $y > 0$

Megoldás:

$$y(x) = u(x) \cdot x \implies y' = u' \cdot x + u \cdot 1$$

Behelyettesítve az $y' = \frac{y}{x} \left(1 + \ln \frac{y}{x}\right)$ differenciálegyenletbe:

$$u'x + u = u(1 + \ln u) \implies u'x = u \ln u$$
 (szeparábilis)

x > 0, y > 0 miatt u > 0.

 $u \equiv 1$ egyensúlyi helyzet , tehát y = x megoldás.

Ha $u \neq 1$:

$$\int \underbrace{\frac{1}{u \cdot \ln u}}_{f'/f \text{ alak\'u}} du = \int \frac{1}{x} dx$$

Innen a megoldás:

$$\ln |\ln u| = \ln |x| + C_1 \quad (C_1 \in \mathbb{R}) \implies |\ln u| = e^{C_1} |x| = K |x| \quad (K > 0)$$

$$\implies \ln u = \pm K x \implies u = e^{\pm K x}, \quad \text{illetve} \quad u \equiv 1$$

Így írhatjuk a következő alakban is: $u = e^{C \, x} \;,\;\; C \in \mathbb{R}$

A visszahelyettesítést elvégezve kapjuk a végeredményt:

$$y = x e^{Cx}, \quad C \in \mathbb{R}$$

1.4.2. Feladat. Oldja meg az alábbi differenciálegyenleteket! Szükség esetén alkalmazza az u=x+y helyettesítést!

a)
$$y' = x + y$$

$$b) \quad y' = \frac{1}{x+y}$$

Megoldás:

a) Ez lineáris elsőrendű differenciálegyenlet. (Hf.)

b) Ez csak helyettesítéssel oldható meg:
$$(x + y \neq 0)$$

 $u(x) := x + y(x) \implies y = u - x \implies y' = u' - 1$

Behelyettesítve:

$$u'-1=\frac{1}{u} \implies u'=1+\frac{1}{u} \implies \frac{\mathrm{d}u}{\mathrm{d}x}=\frac{u+1}{u}$$

Ez szeparálható differenciálegyenlet.

 $u \equiv -1 \mod$ megoldás, tehát $y = -1 - x \mod$ megoldja a differenciálegyenletet. Ha $u \neq -1$:

$$\int \underbrace{\frac{u}{u+1}}_{\frac{u+1-1}{u+1} = 1 - \frac{1}{u+1}} du = \int dx \implies u - \ln|u+1| = x + C$$

A visszahelyettesítést elvégezve kapjuk a végeredményt:

$$|x + y - \ln |x + y + 1| = x + C$$
,

azaz
$$y - \ln|x + y + 1| = C$$
, illetve $y = -1 - x$

1.4.3. Feladat. $u=y^4$ helyettesítéssel oldja meg az alábbi differenciálegyenletet!

$$xy' + y = \frac{\ln x}{y^3}$$
, $y \neq 0$, $x > 0$

Adja meg az y(1) = -1 kezdeti feltételnek eleget tevő megoldást!

Megoldás:

$$u' = 4 y^3 y'$$

Ezért átrendezzük a differenciálegyenletet: $x y^3 y' + y^4 = \ln x$ Behelyettesítünk:

$$\frac{1}{4}xu' + u = \ln x \implies u' + \frac{4}{x}u = \frac{4}{x}\ln x$$
 Lineáris elsőrendű differenciálegyenletet kaptunk.

(H):
$$u' + \frac{4}{x}u = 0$$
 \cdots $u_H = \frac{C}{x^4}$; $C \in \mathbb{R}$

(I):
$$u_{ip} = \frac{c(x)}{x^4} \quad \cdots \quad c' = 4x^3 \ln x$$

Innen parciális integrálással kapjuk:

$$c(x) = x^4 \ln x - \frac{x^4}{4} \implies u_{ip} = \ln x - \frac{1}{4}$$

Tehát
$$u_{i\acute{a}} = u_H + u_{ip} = \frac{C}{r^4} + \ln x - \frac{1}{4}$$

Visszahelyettesítéssel az eredeti differenciálegyenlet általános megoldása:

$$y^4 = \frac{C}{x^4} + \ln x - \frac{1}{4} \;, \quad C \in \mathbb{R}$$

$$y(1) = -1 : 1 = C + 0 - \frac{1}{4} \implies C = \frac{5}{4}$$

Így a keresett partikuláris megoldás:

$$y = -\sqrt[4]{\frac{5}{4x^4} + \ln x - \frac{1}{4}}$$

1.4.4. Feladat. $u(x) = y^3(x) + x^2 \,$ helyettesítéssel oldja meg az alábbi kezdeti érték problémát!

$$3y^2y' = -2x + \frac{\cos x}{\sin(y^3 + x^2)}$$
, $y(0) = \sqrt[3]{\frac{\pi}{4}}$

Megoldás:

$$u' = 3y^2y' + 2x \implies 3y^2y' = u' - 2x$$

Elvégezve a behelyettesítést:

$$u' - 2x = -2x + \frac{\cos x}{\sin u} \implies \int \sin u \, du = \int \cos x \, dx$$

A megoldás:

$$-\cos u = \sin x + C \implies -\cos(y^3 + x^2) = \sin x + C$$

$$y(0) = \sqrt[3]{\frac{\pi}{4}}:$$

$$-\cos(y^3 + x^2) = \sin x - \frac{1}{\sqrt{2}}, \quad \text{vagyis}$$

$$y = \sqrt[3]{\arccos\left(-\sin x + \frac{1}{\sqrt{2}}\right) - x^2}$$

1.4.1. Gyakorló feladatok

1.4.5. Feladat. Az u = x + y új változó bevezetésével oldja meg az alábbi differenciálegyenletet!

$$y' = \frac{2}{x+y}$$
, $x > 0$, $y > 0$

Megoldás:

$$y = u - x \implies y' = u' - 1$$

Behelvettesítve:

$$u'-1=\frac{2}{u} \implies u'=\frac{u+2}{u}$$
: szeparábilis differenciálegyenlet.

Ezt megoldja:

$$u \equiv -2$$
 (egyensúlyi helyzet) $\implies x+y=-2$: ez nem felel meg a kikötéseknek.

 $u \neq -2$:

$$\int \frac{u}{u+2} du = \int dx \qquad \dots \qquad u - \ln(u+2)^2 = x + C$$

Így a megoldás:

$$x + y - \ln(x + y + 2)^2 = x + C, \qquad C \in \mathbb{R}$$

1.4.6. Feladat. Vezesse be az $u=y^3$ új változót az alábbi differenciálegyenletbe, majd határozza meg az $y(0)=\frac{1}{2}$ kezdeti értékhez tartozó megoldását:

$$3y^2y' - 2y^3 = e^{2x} + x$$

Megoldás:

$$u' = 3 y^2 y'$$

Behelvettesítve:

 $u'-2u=\,\mathrm{e}^{2x}+x\,$: lineáris elsőrendű differenciálegyenlet.

$$u_{I\text{alt}} = C e^{2x} + x e^{2x} - \frac{x}{2} - \frac{1}{4}$$

Így az eredeti differenciálegyenlet általános megoldása:

$$y^{3} = C e^{2x} + x e^{2x} - \frac{x}{2} - \frac{1}{4}$$
$$y(0) = \frac{1}{2} : \frac{1}{8} = C - \frac{1}{4} \implies C = \frac{3}{8}$$

Tehát a keresett partikuláris megoldás:

$$y^{3} = \frac{3}{8}e^{2x} + xe^{2x} - \frac{x}{2} - \frac{1}{4}$$

$$\left(y = \sqrt[3]{\frac{3}{8}e^{2x} + xe^{2x} - \frac{x}{2} - \frac{1}{4}}\right)$$

1.4.7. Feladat. Hajtsa végre az $u=y^3+2x$ helyettesítést az alábbi kezdeti érték problémánál!

$$3y^2y' = (y^3 + 2x + 1)^3 \cos(\pi x) - 2, \qquad y(1) = -1$$

Milyen differenciálegyenlethez jutott?

Ne oldja meg a kapott differenciálegyenletet!

Megoldás:

$$u' = 3y^2y' + 2 \implies 3y^2y' = u' - 2$$

Elvégezve a behelyettesítést:

$$u' - 2 = (u+1)^3 \cos(\pi x) - 2 \implies u' = (u+1)^3 \cos(\pi x)$$

Szétválasztható változójú differenciálegyenletet kaptunk.

$$y(1) = -1$$
: $u(1) = y^3 + 2x|_{x=1, y=-1} = -1 + 2 = 1$

1.2. ábra. (1.5.1 feladathoz.) A K=0-hoz és a K=-1-hez tartozó izoklina és néhány vonalelem.

1.5. Iránymező, izoklinák

1.5.1. Feladat.

$$y' = e^{y+2} - x$$

- a) Írja fel a differenciálegyenlet izoklínáinak egyenletét! Rajzoljon fel kettőt!
- b) Van-e lokális szélsőértéke a $P_{0}\left(\mathbf{e},-1\right)$ ponton áthaladó megoldásnak P_{0} -ban?

Megoldás:

a)
$$y' = e^{y+2} - x = K$$

$$\implies y = \ln{(x+K)} - 2 \quad \text{az izoklínák egyenlete}$$
 Pl. $K:=0: y = \ln{x} - 2$
$$K:=-1: y = \ln{(x-1)} - 2$$

Az 1.2 ábrán látható, hogy a K=0 izoklina mentén a vonalelemek vízszintesek, a K=-1 izoklina mentén pedig a vonalelemek hajlásszöge $-\frac{\pi}{4}$.

b)
$$y'(\mathbf{e})=\mathbf{e}^{y+2}-\left.x\right|_{x=\mathbf{e}\;,\;y=-1}=\mathbf{e}-\mathbf{e}=0$$
: lehet lokális szélsőérték

$$y'' = e^{y+2} y' - 1$$
; $y''(e) = e^1 \cdot 0 - 1 = -1 < 0 \implies lok. max.$

1.5.2. Feladat.

$$y' = (y^2 - 4) x + x - 1$$

1.3. ábra. (1.5.2 feladathoz.) A keresett izoklina és rajta néhány vonalelem.

- a) A sík mely pontjaiban párhuzamos az iránymező az y = -x egyenessel? Vázoljuk ezeket a pontokat és jelöljünk be néhány vonalelemet!
- b) Van-e lokális szélsőértéke vagy inflexiós pontja az $x_0 = 1$, $y_0 = 2$ ponton átmenő megoldásnak a szóbanforgó pontban? (Feltéve, hogy van ilyen megoldás.)

Megoldás:

a) y = -x meredeksége: -1

Az izoklínák egyenlete: $(y^2 - 4) x + x - 1 = K$

Most K = -1 érdekel bennünket:

$$(y^2 - 4) x + x - 1 = -1 \implies (y^2 - 4 + 1) x = 0$$

Ennek megoldása: $y^2 = 3$, tehát $y = \pm \sqrt{3}$, illetve x = 0 (1.3 ábra).

b) y(1) = 2

 $y'(1)=(y^2-4)\;x+x-1|_{x=1\,,\,y=2}=0$, tehát lokális szélsőérték lehet itt. $y''=2y\cdot y'\cdot x\,+\,(y^2-4)\cdot 1\,+\,1$

$$y'' = 2y \cdot y' \cdot x + (y^2 - 4) \cdot 1 + 1$$

$$y''(1) = 2y(1) \cdot y'(1) \cdot 1 + (y(1)^2 - 4) \cdot 1 + 1 = 1$$

Tehát az adott pontban lokális minimuma van a megoldásfüggvénynek.

(Inflexiós pont nem lehet, mert $y''(1) \neq 0$.)

1.5.3. Feladat. Az akárhányszor deriválható $y=y(x)\,,\;x\in\mathbb{R}$ megoldása az

$$y' = y^3 - x^2$$

differenciálegyenletnek és átmegy az (1,1) ponton.

- a) Van-e ennek a megoldásnak lokális szélsőértéke az x=1 helyen?
- b) Írja fel ennek a megoldásnak az $x_0=1$ pont körüli harmadfokú $T_3(x)$ Taylor polinomját!

 $Megold\'{a}s:$

a) y(1) = 1

y'(1) = 1 - 1 = 0, tehát lokális szélsőérték lehet itt.

$$y'' = 3y^2y' - 2x \implies y''(1) = 0 - 2 = -2 < 0$$

Tehát az adott pontban lokális maximuma van a megoldásfüggvénynek.

(y(1) = 1 értékkel.)

b) Az $x_0 = 1$ bázispontú harmadrendű Taylor polinom:

$$T_3(x) = y(1) + \frac{y'(1)}{1!}(x-1) + \frac{y''(1)}{2!}(x-1)^2 + \frac{y'''(1)}{3!}(x-1)^3$$

Még y'''(1) hiányzik a behelyettesítéshez.

$$y''' = 3(2yy')y' + 3y^2y'' - 2 \implies y'''(1) = -8$$

Elvégezve a behelyettesítést, kapjuk a keresett Taylor polinomot:

$$T_3(x) = 1 - \frac{2}{2}(x-1)^2 - \frac{8}{6}(x-1)^3$$

1.5.1. Gyakorló feladatok

1.5.4. Feladat.

$$y' = x - e^{3y}$$

- a) Mely pontokban van lokális minimuma a differenciálegyenlet megoldásainak, feltéve, hogy minden ponton halad át megoldás?
 (Ne próbálja megoldani a differenciálegyenletet!)
- b) Rajzolja le ennek a differenciálegyenletnek két izoklináját és jelölje be rajta az iránymezőt!

Megoldás:

. . .

1.5.5. Feladat. Tekintsük az alábbi differenciálegyenletet!

$$y' = y^3 - e^{3x}$$

Belátható, hogy minden kezdeti érték problémának van egyértelmű megoldása.

- a) Milyen szög alatt metszi az y tengelyt az $x_0=0,\ y_0=\sqrt[3]{2}$ ponton áthaladó megoldásgörbe?
- b) Mely pontokon áthaladó megoldásgörbéknek van lokális maximuma illetve minimuma a szóbanforgó pontban?

Megoldás:

. . .

1.5.6. Feladat (**).

$$y' = x^2 + y^2 - 2xy$$

- a) Rajzolja fel az (1,2) ponton áthaladó izoklinát! (Rajzoljon be néhány vonalelemet is!)
- b) A differenciálegyenlet megoldása nélkül vizsgálja meg, hogy hol lehet lokális szélső-értéke a megoldásgörbéknek! Ahol van, ott milyen jellegű a lokális szélsőérték?

Megoldás:

a) y'(1) = f(1,2) = 1 = mAz izoklina: $x^2 + y^2 - 2xy = 1 \implies (y-x)^2 = 1$ $\implies y - x = \pm 1 \implies y = x \pm 1 \text{ (1.4 ábra)}$

1.4. ábra. (1.5.6 feladathoz.) Az (1,2) ponton áthaladó izoklina és néhány vonalelem.

b) Szükséges feltétel: $y' = x^2 + y^2 - 2xy = 0$

Tehát $(y-x)^2=0 \implies y=x$ pontjaiban lehet lokális szélsőérték. y''=2x+2yy'-2y-2xy'=2x-2y+2y'(y-x)

 \implies az y = x egyenes pontjaiban y'' = 0.

Így meg kell vizsgálni y'''-t is: y''' = 2 + 2y'y' + 2yy'' - 2y' - 2xy''Behelyettesítés (y = x, y' = 0, y'' = 0): $y''' = 2 \implies y = x$ pontjaiban nincs lokális szélsőérték.

 $y' = (y - x)^2 \ge 0 \implies \text{nincs lokális szélsőérték.}$ Jobb megoldás:

1.5.7. Feladat.

$$y' = 3x^2 + 6y^2 - 18$$

- a) Írja fel az $x_0 = 3$, $y_0 = 1$ ponton áthaladó megoldás adott pontbeli érintőegyenesének egyenletét!
- b) Írja fel a differenciálegyenlet izoklínáinak egyenletét!
- c) Hol lehet lokális szélsőértéke a megoldásfüggvényeknek? Rajzolja fel ezeket a pontokat!

Megoldás:

1.5.8. Feladat.

$$y' = x^2 - y^2$$
, $y(x_0) = y_0$

- a) Jelölje ki azokat a pontokat, melyeken a megoldásgörbe
 - lokálisan növekedően,
 - lokálisan csökkenően

halad át.

b) Mely pontokban van lokális szélsőértéke a megoldásgörbéknek? Milyen jellegű?

Megoldás:

. . .

1.5.9. Feladat. Tudjuk, hogy az

$$y' = y^2 - 2y + x^2$$

differenciálegyenletnek minden $y(x_0) = y_0$ kezdeti értékhez létezik pontosan egy megoldása, amely akárhányszor differenciálható.

- a) Milyen lokális tulajdonsága van a $P_0(-1\,,\,1)$ ponton átmenő megoldásgörbének ebben a pontban?
- b) Írja fel az izoklinák egyenletét! Rajzoljon fel néhányat! Hol lehet lokális szélsőértéke a megoldásfüggvényeknek?
- c) Vannak-e olyan megoldások, amelyeknek az x = 0 helyen inflexiós pontjuk van?

Megoldás:

. . .

1.6. Magasabbrendű lineáris differenciálegyenletek

1.6.1. Homogén, állandó együtthatós differenciálegyenletek

1.6.1. Feladat. Oldja meg az alábbi homogén differenciálegyenletet!

$$y''' + 2y'' + y' = 0$$

Megoldás:

$$\lambda^3 + 2\lambda^2 + \lambda = \lambda \ (\lambda + 1)^2 = 0 \implies \lambda_1 = 0 \ , \ \lambda_{2,3} = -1$$
 (belső rezonancia) $y_H = C_1 + C_2 e^{-x} + C_3 x e^{-x} \ , \qquad C_1 \ , \ C_2 \ , \ C_3 \ \in \mathbb{R}$

1.6.2. Feladat. Oldja meg az alábbi homogén differenciálegyenletet!

$$y''' + 4y'' + 13y' = 0$$

Megoldás:

$$\lambda^{3} + 4\lambda^{2} + 13\lambda = \lambda (\lambda^{2} + 4\lambda + 13) = 0 \implies \lambda_{1} = 0, \ \lambda_{2,3} = -2 \pm j3$$
$$y_{H} = C_{1} + C_{2} e^{-2x} \cos 3x + C_{3} e^{-2x} \sin 3x, \qquad C_{1}, C_{2}, C_{3} \in \mathbb{R}$$

1.6.3. Feladat. Írjon fel egy olyan legalacsonyabbrendű valós konstans együtthatós homogén lineáris differenciálegyenletet, melynek megoldásai az alábbi függvények! Írja fel az adott differenciálegyenlet általános megoldását is!

a)
$$2e^{5x} - e^{-3x}$$

b)
$$6x^2 + 5e^{2x}$$

c)
$$7x$$
, $\sin 5x$

d)
$$3x^2e^{2x}$$
, e^{3x}

e)
$$6 + e^{3x} \sin x$$

 $Megold\'{a}s$:

a) e^{5x} miatt $\lambda_1 = 5$, e^{-3x} miatt $\lambda_2 = -3$

Így a karakterisztikus egyenlet:

$$(\lambda - 5)(\lambda + 3) = 0 \implies \lambda^2 - 2\lambda - 15 = 0$$

A differenciálegyenlet:

$$y'' - 2y' - 15y = 0$$

A differenciálegyenlet általános megoldása:

$$y_H = C_1 e^{5x} + C_2 e^{-3x}, \qquad C_1, C_2 \in \mathbb{R}$$

b) x^2 miatt $\lambda_1 = \lambda_2 = \lambda_3 = 0$, e^{2x} miatt $\lambda_4 = 2$

Így a karakterisztikus egyenlet:

$$(\lambda - 0)^3 (\lambda - 2) = 0 \implies \lambda^4 - 2\lambda^3 = 0$$

A differenciálegyenlet:

$$y^{IV} - 2y''' = 0$$

A differenciálegyenlet általános megoldása:

$$y_H = C_1 + C_2 x + C_3 x^2 + C_4 e^{2x}, \qquad C_1, C_2, C_3, C_4 \in \mathbb{R}$$

c) a karakterisztikus egyenlet:

$$(\lambda - 0)^2 (\lambda - j 5) (\lambda + j 5) = \lambda^2 (\lambda^2 + 25) = \lambda^4 + 25 \lambda^2 = 0$$

A differenciálegyenlet: $y^{IV} + 25y'' = 0$

A differenciálegyenlet általános megoldása:

$$y_H = C_1 + C_2 x + C_3 \sin 5x + C_4 \cos 5x, \qquad C_1, C_2, C_3, C_4 \in \mathbb{R}$$

d) $(\lambda - 2)^3 (\lambda - 3) = 0$...

e)
$$(\lambda - 0) (\lambda - (3+j)) (\lambda - (3-j)) = \lambda ((\lambda - 3) - j) ((\lambda - 3) + j) =$$

= $\lambda ((\lambda - 3)^2 + 1) = \lambda^3 - 6\lambda^2 + 10 \lambda = 0$

A differenciálegyenlet: y''' - 6y'' + 10y' = 0

A differenciálegyenlet általános megoldása:

$$y_H = C_1 + C_2 e^{3x} \sin x + C_3 e^{3x} \cos x$$
, $C_1, C_2, C_3 \in \mathbb{R}$

1.6.2. Inhomogén , állandó együtthatós differenciálegyenletek

1.6.4. Feladat. Oldja meg az alábbi inhomogén differenciálegyenletet!

$$y'' - 5y' + 6y = 2\sin 2x$$

Megoldás:

$$\lambda^2 - 5\lambda + 6 = 0 \implies \lambda_1 = 2, \ \lambda_2 = 3$$

A homogén egyenlet általános megoldása:

$$y_H = C_1 e^{2x} + C_2 e^{3x}$$

Az inhomogén egyenlet egy partikuláris megoldását kísérletezéssel keressük:

$$6 \cdot \begin{vmatrix} y_{ip} := A \sin 2x + B \cos 2x \\ -5 \cdot \end{vmatrix} y'_{ip} = 2A \cos 2x - 2B \sin 2x$$
$$1 \cdot \begin{vmatrix} y''_{ip} = -4A \sin 2x - 4B \cos 2x \end{vmatrix}$$

$$A = \frac{1}{26} , \quad B = \frac{5}{26}$$

$$y_{i\acute{a}} = C_1 e^{2x} + C_2 e^{3x} + \frac{1}{26} \sin 2x + \frac{5}{26} \cos 2x , \qquad C_1, C_2 \in \mathbb{R}$$

1.6.5. Feladat. Oldja meg az alábbi inhomogén differenciálegyenletet!

$$y'' - 6y' + 13y = 39$$

Megoldás:

$$\lambda^2 - 6\lambda + 13 = 0 \implies \lambda_{1,2} = 3 \pm j \, 2$$

$$e^{(3+j2)x} = e^{3x} (\cos 2x + j \sin 2x)$$

Tudjuk, hogy ennek valós és képzetes része is megoldja a homogén egyenletet, így a homogén egyenlet általános megoldása:

$$y_H = C_1 e^{3x} \cos 2x + C_2 e^{3x} \sin 2x$$

$$y_{ip} := A$$
, $13 A = 39 \implies A = 3$
$$y_{i\acute{a}} = C_1 e^{3x} \cos 2x + C_2 e^{3x} \sin 2x + 3$$
, $C_1, C_2 \in \mathbb{R}$

1.6.6. Feladat.

$$y'' - 5y' + 6y = 2xe^x$$
, $y(x) = ?$

Megoldás:

$$\lambda^2 - 5\lambda + 6 = 0 \implies \lambda_1 = 2$$
, $\lambda_2 = 3 \implies y_H = C_1 e^{2x} + C_2 e^{3x}$
 $y_{ip} = (Ax + B) e^x$ alakban keressük.

$$A = 1$$
, $B = \frac{3}{2} \implies y_{ip} = \left(x + \frac{3}{2}\right) e^x$

Így a keresett általános megoldás:

$$y_{i\acute{a}} = y_H + y_{ip} = C_1 e^{2x} + C_2 e^{3x} + \left(x + \frac{3}{2}\right) e^x$$

1.6.7. Feladat.

$$y'' - y' - 2y = 3e^{2x}$$
, $y(0) = 3$, $y'(0) = 1$, $y(x) = ?$

Megoldás:

$$\lambda^2 - \lambda - 2 = 0 \implies \lambda_1 = 2, \quad \lambda_2 = -1 \implies y_H = C_1 e^{2x} + C_2 e^{-x}$$

$$-2 \cdot \begin{vmatrix} y_{ip} := A x e^{2x} & \text{(k\"{u}ls\~{o} rezonancia)} \\ -1 \cdot \end{vmatrix} y'_{ip} = A e^{2x} + 2A x e^{2x} \\ 1 \cdot \end{vmatrix} y''_{ip} = 2A e^{2x} + 2A e^{2x} + 4A x e^{2x}$$

$$x e^{2x} \cdot (-2A - 2A + 4A) + e^{2x} \cdot (-A + 4A) = 3 e^{2x}$$
 $\implies 3A = 3$, tehát $A = 1$. Tehát $y_{ip} = x e^{2x}$.

Így a keresett általános megoldás:

$$y_{i\acute{a}} = C_1 e^{2x} + C_2 e^{-x} + x e^{2x}$$
$$y'_{i\acute{a}} = 2 C_1 e^{2x} - C_2 e^{-x} + e^{2x} + 2x e^{2x}$$

A keresett partikuláris megoldás:

$$y(0) = 3$$
: $3 = C_1 + C_2$
 $y'(0) = 1$: $1 = 2C_1 - C_2 + 1$
 $\implies C_1 = 1, C_2 = 2$

Vagyis a keresett partikuláris megoldás: $y = e^{2x} + 2e^{-x} + xe^{2x}$

1.6.8. Feladat.

$$y^{(4)} - 8y''' + 16y'' = 2x - 9,$$
 $y(x) = ?$

Megoldás:

$$\lambda^4 - 8\lambda^3 + 16\lambda^2 = \lambda^2 (\lambda - 4)^2 = 0 \implies \lambda_{1,2} = 0$$
, $\lambda_{3,4} = 4$ (belső rezonancia) $\implies y_H = C_1 + C_2 x + C_3 e^{4x} + C_4 x e^{4x}$

$$y_{ip} = (Ax + B) x^2 = Ax^3 + Bx^2$$
 alakban keressük. (Külső rezonancia)

$$\cdots A = \frac{1}{48}, B = -\frac{1}{4} \implies y_{ip} = \left(\frac{1}{48}x - \frac{1}{4}\right)x^2$$

Így a keresett általános megoldás:

$$y_{i\acute{a}} = y_H + y_{ip} = C_1 + C_2 x + C_3 e^{4x} + C_4 x e^{4x} + \left(\frac{1}{48} x - \frac{1}{4}\right) x^2$$

1.6.9. Feladat.

$$y'' + y = 2 \sin x \cos x$$
, $y(0) = 1$, $y'(0) = 1$, $y(x) = ?$

Megoldás:

$$\lambda^2 + 1 = 0$$
 \Longrightarrow $\lambda_{1,2} = \pm j$ \Longrightarrow $y_H = C_1 \cos x + C_2 \sin x$

Mivel $f(x) = \sin 2x$, ezért a próbafüggvény:

$$y_{ip} = A \sin 2x + B \cos 2x$$

$$\cdots$$
 $A = -\frac{1}{3}$, $B = 0 \implies y_{ip} = -\frac{1}{3}\sin 2x$

Így a keresett általános megoldás:

$$y_{i\acute{a}} = y_H + y_{ip} = C_1 \cos x + C_2 \sin x - \frac{1}{3} \sin 2x$$

Ebből
$$y'_{i\acute{a}} = -C_1 \sin x + C_2 \cos x - \frac{2}{3} \cos 2x$$

A keresett partikuláris megoldás:

$$y(0) = 1 : 1 = C_1 + 0 - 0 \implies C_1 = 1$$

 $y'(0) = 1 : 1 = 0 + C_2 - \frac{2}{3} \implies C_2 = \frac{5}{3}$

Vagyis:
$$y = \cos x + \frac{5}{3}\sin x - \frac{1}{3}\sin 2x$$

1.6.10. Feladat.

$$y''' - 2y'' - y' + 2y = \operatorname{ch} 2x$$
, $y(x) = ?$

Megoldás:

$$\lambda^{3} - 2\lambda^{2} - \lambda + 2 = 0 \implies \lambda^{2} (\lambda - 2) - (\lambda - 2) = 0 \implies (\lambda - 2) (\lambda^{2} - 1) = 0$$

$$\implies \lambda_{1} = 2, \ \lambda_{2} = 1, \ \lambda_{3} = -1 \implies y_{H} = C_{1} e^{2x} + C_{2} e^{x} + C_{3} e^{-x}$$

Mivel $f(x) = \frac{1}{2} e^{2x} + \frac{1}{2} e^{-2x}$, ezért a próbafüggvény:

$$A e^{2x} + B e^{-2x}$$
 helyett $y_{ip} = A x e^{2x} + B e^{-2x}$ (külső rezonancia)
 $\cdots A = \frac{1}{6}, B = -\frac{1}{24} \implies y_{ip} = \frac{1}{6} x e^{2x} - \frac{1}{24} e^{-2x}$

Így a keresett általános megoldás:

$$y_{i\acute{a}} = y_H + y_{ip} = C_1 e^{2x} + C_2 e^x + C_3 e^{-x} + \frac{1}{6} x e^{2x} - \frac{1}{24} e^{-2x}$$

1.6.3. Gyakorló feladatok

1.6.11. Feladat.

a)

$$y'' - 2y' - 3y = 0$$

Adja meg az általános megoldást!

Adja meg az y(0) = 0, y'(0) = 4 feltételeket kielégítő megoldást!

b)
$$y'' - 2y' - 3y = 3x$$
 $y(x) = ?$

c)
$$y'' - 2y' - 3y = -2\sin x - 6\cos x$$
 $y(x) = ?$

Megoldás:

. . .

a)
$$y = C_1 e^{-x} + C_2 e^{3x};$$
 $y = -e^{-x} + e^{3x}$

b)
$$y = C_1 e^{-x} + C_2 e^{3x} - x + \frac{2}{3}$$

c)
$$y = C_1 e^{-x} + C_2 e^{3x} + \sin x + \cos x$$

1.6.12. Feladat.

$$y'' + 2y' - 3y = e^{5x}$$
 $y(x) =$

Megoldás:

. . .

$$y = C_1 e^{-3x} + C_2 e^x + \frac{1}{32} e^{5x}$$

1.6.13. Feladat. Írja fel az alábbi differenciálegyenlet általános megoldását!

$$y'' - 6y' + 9y = 27x^2$$

 $Megold\'{a}s:$

. . .

$$y = C_1 e^{3x} + C_2 x e^{3x} + 3x^2 + 4x + 2$$

1.6.14. Feladat.
$$y'' + y' - 2y = 6e^x + 2x$$
 $y(x) = ?$

 $Megold\'{a}s:$

. .

$$y = C_1 e^x + C_2 e^{-2x} + 2x e^x - x - \frac{1}{2}$$

1.6.15. Feladat.
$$y'' + 8y' = 34 \cdot \sin 2x$$
 $y(x) = ?$

Megoldás:

. .

$$y = C_1 + C_2 e^{-8x} - \frac{1}{2}\sin 2x - 2\cos 2x$$

1.6.16. Feladat. Határozza meg a

$$y'' + 10y' + 29y = -40e^{29x}$$

általános megoldását!

Megoldás:

. .

$$y = C_1 e^{-5x} \cos 2x + C_2 e^{-5x} \sin 2x - \frac{1}{29} e^{29x}$$

1.6.17. Feladat. Adja meg α értékét úgy, hogy az

$$y'' - \alpha y = e^{5x}, \qquad \alpha \in \mathbb{R} \setminus \{0\}$$

differenciálegyenletnél külső rezonancia lépjen fel! Ezen α érték esetén válaszoljon az alábbi kérdésekre:

- a) Milyen szerkezetű az általános megoldás?
- b) Milyen alakban kereshető egyik megoldása?
- c) Határozza meg az általános megoldást! (A fenti α érték esetén.)

$Megold\'{a}s:$

• • •

1.6.18. Feladat. A β paraméter függvényében keresse meg az alábbi differenciálegyenlet megoldását!

$$y'' + 2 \beta y' + y = 0$$

Megoldás:

...

1.6.19. Feladat.

a) Írja fel a

$$y'' + y = \cos x$$

differenciálegyenlet általános megoldását!

b) Az α paraméter mely értéke mellett lesz periodikus (azaz "tiszta" szinuszos vagy koszinuszos tagokat tartalamazó) az

$$y'' + \alpha y = \cos x$$

differenciálegyenlet minden megoldása;

Megoldás:

...

1.6.20. Feladat. Oldja meg az alábbi differenciálegyenletet!

$$y''' + 9y' = 3x^2$$

. . .

1.6.21. Feladat.

$$y''' + 4y' = 24x^2 y(x) = ?$$

Megoldás:

$$y = C_1 + C_2 \cos 2x + C_3 \sin 2x + 2x^3 - 3x$$

1.7. Lineáris rekurzió

1.7.1. Feladat.

$$f(n) = 4 f(n-1) - 3 f(n-2)$$

- a) Adja meg a lineáris rekurziót kielégítő összes számsorozatot!
- b) Adja meg az f(0) = 2, f(1) = 6 kezdeti feltételt kielégítő megoldást!
- c) Írja fel az összes O(1) típusú megoldást!

Megoldás:

a) Tudjuk, hogy van
$$f(n)=q^n \ (q\neq 0)$$
 alakú megoldás:
$$q^n=4\,q^{n-1}-3\,q^{n-2}\,,\ q\neq 0 \implies q^2=4q-3 \\ \implies q^2-4q+3=(q-1)\,(q-3)=0 \implies q_1=1\,,\ q_2=3$$

Az általános megoldás: $f(n) = C_1 + C_2 3^n$, $C_1, C_2 \in \mathbb{R}$

b)
$$f(0) = 2$$
: $C_1 + C_2 = 2$
 $f(1) = 6$: $C_1 + 3C_2 = 6$
 $\implies C_1 = 0, C_2 = 2$

Tehát
$$f(n) = 2 \cdot 3^n$$

c)
$$f(n) = O(1)$$
 jelentése:
 $\exists \ K: \ |f(n)| \leq K \cdot 1, \quad n > N$ (legfeljebb véges sok kivétellel).
Tehát $f(n)$ - nek korlátosnak kell lennie, ehhez $C_2 = 0$ választás kell.

1.7.2. Feladat.

$$f(n+1) = \frac{5}{2} f(n) - f(n-1)$$

- a) Adja meg a lineáris rekurziót kielégítő összes számsorozatot!
- b) Van-e f(n) = O(1) tulajdonságú megoldás?
- c) Adja meg az f(0) = 1, f(1) = 5 kezdeti feltételt kielégítő megoldást?

Megoldás:

- a) $f(n) = q^n$ alakú megoldást keresünk. Helyettesítsünk be az egyenletbe! $q^{n+1} = \frac{5}{2} q^n q^{n-1} \implies q^2 \frac{5}{2} q + 1 = 0 \implies q_1 = 2, \ q_2 = \frac{1}{2}$ Így az összes megoldás: $f(n) = C_1 2^n + C_2 \left(\frac{1}{2}\right)^n, \quad C_1, \ C_2 \in \mathbb{R}$
- b) f(n) = O(1) jelentése: f(n) korlátos. Ez $C_1 = 0$, $C_2 \in \mathbb{R}$ esetén teljesül.

c)
$$n = 0$$
: $C_1 + C_2 = 1$
 $n = 1$: $2C_1 + \frac{1}{2}C_2 = 1$ $\implies C_1 = 3$, $C_2 = -2$
Így a keresett megoldás: $f(n) = 3 \cdot 2^n - 2 \cdot \left(\frac{1}{2}\right)^n$

1.7.1. Gyakorló feladatok

1.7.3. Feladat. Adja meg a lineáris rekurziót kielégítő összes számsorozatot! Írja fel az összes O(1), O(n), illetve $O(3^n)$, típusú megoldást!

a)
$$f(n) = \frac{10}{3} f(n-1) - f(n-2)$$

b)
$$f(n) = 5 f(n-1) - 4 f(n-2)$$

c)
$$f(n) = 5 f(n-1) - 6 f(n-2)$$

1.7.4. Feladat. Írja fel a rekurzió adott kezdő értékhez tartozó megoldását!

a)
$$quadf(n) = \frac{10}{3}f(n-1) - f(n-2)$$
, $f(0) = 3$, $f(1) = \frac{11}{3}$

b)
$$f(n) = -f(n-1) + 12 f(n-2)$$
, $f(0) = 3$, $f(1) = 2$

c)
$$f(n) = -3 f(n-1) + 10 f(n-2)$$
, $f(0) = 3$, $f(1) = 6$

d)
$$f(n) = 5 f(n-1) + 6 f(n-2)$$
, $f(0) = 0$, $f(1) = 1$

1.8. Alkalmazások

1.8.1. Feladat. Harmonikus rezgőmozgás

Az ideális rugó által kifejtett F erő arányos, és ellentétes irányú a rugó x megnyúlásával, F(x) = -Dx. Hogyan mozog (egydimenzióban) az a test, amelyre egyetlen rugó hat?

Newton II. törvénye értelmében $F(x) = m\ddot{x}$. Beírva a rugóerő alakját, a

$$-Dx(t) = m\ddot{x}(t)$$

másodrendű differenciálegyenlethez jutunk, melynek általános megoldása

$$x(t) = A\sin(\omega t) + B\cos(\omega t),$$

ahol
$$\omega = \sqrt{\frac{D}{m}}$$
.

(Az egyenletet visszavezethetjük elsőrendűre, ha megszorozzuk $\dot{x}(t)$ -vel, és felhasználjuk, hogy $2\dot{x}(t)x(t)=\frac{d}{dt}\big(x^2(t)\big)$, valamint $2\ddot{x}(t)\dot{x}(t)=\frac{d}{dt}\big(\dot{x}^2(t)\big)$.)

1.8.2. Feladat. Kondenzátor kisülése

A C kapacitású, Q_0 kezdeti töltéssel feltöltött kondenzátort az R ellenálláson keresztül kisütjük. Határozzuk meg a kondenzátor Q(t) töltésének időfüggését, az áramkörben folyó I(t) áramot, valamint a kondenzátor kapcsain mérhető U(t) feszültséget az idő függvényében!

Megoldás:

A szükséges fizikai ismeretek: A kondenzátor U(t) feszültsége, Q(t) töltése és C kapacitása között minden pillanatban fennáll, hogy $C=\frac{Q}{U}$. Az ellenálláson folyó áram és a sarkai közt mérhető feszültség kapcsolata: $R=\frac{U}{I}$. Végül a kondenzátor töltése és az áram közti kapcsolat: $Q(t)=Q_0+\int_{\tau=t_0}^t I(\tau)d\tau$, azaz $\dot{Q}(t)=I(t)$.

Az áramkörben nincsen telep, tehát az ellenálláson és a kondenzátoron eső feszültségek összege minden pillanatban zérus, $U_C(t) + U_R(t) = 0$. Az $U_C(t)$ feszültség a kondenzátor töltésével kifejezve: $U_C(t) = \frac{Q(t)}{C}$. Az áramkörben folyó áram $I(t) = \dot{Q}(t)$, tehát az ellenálláson eső feszültség $U_R(t) = RI(t) = R\dot{Q}(t)$. De e két feszültség összege zérus, tehát a

$$\frac{Q(t)}{C} + R\dot{Q}(t) = 0, \qquad Q(0) = Q_0$$

differenciálegyenletet kapjuk, aminek a kezdeti feltételt kielégítő megoldása:

$$Q(t) = Q_0 e^{-\frac{C}{R}t}.$$

1.8.3. Feladat. Radioaktív bomlás

Radioaktív bomlás során az időegység alatt elbomlott atomok száma arányos a még el nem bomlott atomok számával. Határozzuk meg, hogyan változik az idő függvényében a még el nem bomlott atomok száma, valamint a minta aktivitása (időegységre jutó bomlások száma)!

Megoldás:

Legyen a még el nem bomlott atomok száma N(t). Rövid dt idő alatt elbomlott atomok száma arányos (N(t)-vel és dt-vel, azaz $N(t) - N(t + dt) = N(t)\lambda dt$, ahonnan $\dot{N}(t) = -\lambda N(t)$ differenciálegyenlethez jutunk. Ennek megoldása: $N(t) = N_0 e^{-\lambda t}$; a minta aktivitásának időfüggése pedig $A(t) = -\dot{N}(t) = N_0 \lambda e^{-\lambda t}$.

1.8.4. Feladat. Oszlopra tekert kötél

A matrózok úgy tartják a nagy hajókat a partnál, hogy a kikötőkötelet előbb néhányszor a kikötőhöz betonozott függőleges oszlopra csavarják, és a felcsavart kötél másik végét húzzák. Vajon miért teszik ezt? Mennyivel tudnak így nagyobb erőt kifejteni, mintha a kötelet közvetlenül húznák?

Megoldás:

Az oszlopra csavart kötél ráfeszül az oszlopra, és az oszlop és a kötél közt ébredő súrlódási erő segít megtartani a hajót.

Jelölje az oszlop sugarát R. Legyen φ az oszlopra csavart kötél pontjait jellemző szög ($\varphi=0$ a hajó felé eső kötélpont, $\varphi=\varphi_0$ pedig a matróz felé eső kötélpont), és legyen $K(\varphi)$ a kötelet a φ szöggel jellemzett pontban feszítő erő. (Tehát K iránya az oszlop érintőjébe esik.) Szemeljünk ki egy φ -nél elhelyezkedő, kis $d\varphi$ kötéldarabot. E kis kötéldarabra a két végénél $K(\varphi)$, ill. $K(\varphi+d\varphi\approx K(\varphi))$ erő hat. A két erő iránya közel ellentétes, a hatásvonalaik szöge $d\varphi$. Egyszerű geometriai megfontolásból adódik, hogy ($d\varphi\ll 1$ esetében) a két erő eredője közel sugár irányú, és nagysága $dN(\varphi)\approx K(\varphi)d\varphi$. Ekkora nyomóerőnél a tapadási súrlódási erő maximuma $dS(\varphi)=\mu_0dN(\varphi)\approx\mu_0K(\varphi)d\varphi$. A kiszemelt $d\varphi$ szögű kötéldarab nyugalomban van, tehát a rá ható érintő irányú erők eredője zérus, azaz $K(\varphi)=K(\varphi+d\varphi)+dS(\varphi)$. Innen a kötélet feszítő erőre, mint a felcsavarodási szög függvényére a következő differenciálegyenletet kapjuk:

$$\frac{d}{d\varphi}K(\varphi) = -\mu_0 K(\varphi); \qquad K(0) = K_0,$$

aminek a megoldása:

$$K(\varphi) = K_0 e^{-\mu_0 \varphi}$$
.

Tehát ha a matróz φ_0 szögben csavarja rá a kötelet az oszlopra, és a kötél és az oszlop között a tapadási súrlódási együttható μ_0 , akkor a matróz $e^{-\mu_0\varphi}$ -szer kisebb erő kifejtésével képes megtartani a hajót.

1.8.5. Feladat. Esés nagy magasságból a világűrben

Tegyük föl, hogy egy gonosz varázsló megállítaná a Holdat, és az kezdősebesség nélkül szabadon esne a Föld felé. Hogyan változna a Föld–Hold távolság az idő függvényében?

Megoldás:

Legyen a Föld tömege M, a Hold tömege m, kezdeti távolságuk h_0 , és tegyük föl –az egyszerűség kedvéért–, hogy a Föld nem mozdul el a Hold felé. (Ez a közelítés akkor jogos, ha $M \gg m$.) A gravitációs állandót jelölje γ .

Amikor a Föld és a Hold távolsága r(t), akkor a Föld által a Holdra kifejtett gravitációs vonzóerő $F(r) = \gamma \frac{mM}{r^2}$, így a Hold mozgásegyenlete:

$$m\ddot{r}(t) = -\gamma \frac{mM}{r^2(t)}.$$

(A negatív előjel utal arra, hogy az erő vonzó.) A kapott egyenlet másodrendű differenciálegyenlet az r(t) függvényre nézve, azonban egy ügyes trükkel elsőrendűvé alakíthatjuk. Szorozzuk meg az egyenlet mindkét oldalát $\dot{r}(t)$ -vel, és vegyük észre, hogy $\ddot{r}(t)\dot{r}(t)=\frac{1}{2}\frac{d}{dt}\big(\dot{r}^2(t)\big)$, valamint $\frac{\dot{r}(t)}{r^2(t)}=-\frac{d}{dt}\big(\frac{1}{r(t)}\big)$. Tehát

$$\frac{1}{2}\frac{d}{dt} \big(\dot{r}^2(t) \big) = \gamma M \frac{d}{dt} \Big(\frac{1}{r(t)} \Big),$$

ahonnan

$$\dot{r}^2(t) = \frac{2\gamma M}{r(t)} + C.$$

A kapott egyenlet a Holdra felírt mechanikai energiamegmaradás törvényének átrendezett alakja. Autonóm, szeparálható differenciálegyenlet...

1.8.6. Feladat. Láncgörbe

Milyen alakú egy két végpontjában felfüggesztett lánc?

Megoldás:

Írjuk le a lánc alakját az y(x) függvénnyel, mely a lánc x vízszintes koordinátájú pontjának magasságát adja meg. A láncban ébredő erő vízszintes, ill. függőleges komponensét jelölje $K_x(x)$, ill. $K_y(x)$. Vizsgáljuk a láncnak az x helyen levő kis dl hosszúságú, $dm = \rho dl$ tömegű darabját! (ρ a lánc hosszegységre vonatkoztatott "sűrűsége".) Ez a kis láncdarab nyugalomban van, tehát a rá ható erők eredője (vízszintes és függőleges irányban egyaránt) zérus. Vízszintes irányban a láncra nem hat külső erő, tehát $K_x(x) = K_x(x+dx)$, így a láncot feszítő erő vízszintes komponense állandó, $K_x(x) \equiv K_x$. Függőleges irányban a láncdarabra hat a (dm)g nehézségi erő, tehát $K_y(x+dx)-K_y(x)=g\rho dl$. Ezen kívül tudjuk még, hogy a lánc meredeksége az x pontban y'(x), tehát $dl=\sqrt{1+y'^2(x)}dx$, valamint a láncban ébredő erő érintő irányú, azaz $K_y(x)=y'(x)K_x$. Ezeket felhasználva a

$$K_x y''(x) = \rho g \sqrt{1 + y'^2(x)}.$$

differenciálegyenletet kapjuk a lánc alakjára, ami az y'(x) függvényre nézve elsőrendű, autonóm, szeparálható egyenlet. A megoldása:

$$y'(x) = \operatorname{sh}\left(\frac{\rho gx}{K_x} + C\right), \qquad y(x) = \frac{K_x}{\rho q} \operatorname{ch}\left(\frac{\rho gx}{K_x} + C\right).$$

Ezért hívják sokszor a koszinusz-hiperbolikusz függvényt "láncgörbének".

1.8.7. Feladat. Mozgás közegellenállással – nagy sebességnél

Légnemű vagy folyékony közegben nagy sebességgel mozgó testre a sebesség négyzetével arányos közegellenállási erő hat. Meg tudjuk mondani például, hogy leszállás után hogyan mozog a kifutópályán az a repülőgép, amelyet csak a fékező ernyője fékez. A gép mozgásegyenlete:

$$m\ddot{x}(t) = -\kappa \dot{x}^2(t),$$

ami $\dot{x}(t)$ -re elsőrendű, autonóm, szeparábilis differenciálegyenlet. Például a Föld légkörében szabadon eső test mozgásegyenlete

$$m\ddot{h}(t) = \kappa \dot{h}^2(t) - mg.$$

1.8.8. Feladat. Mozgás közegellenállással – kis sebességnél

Talán egyszerűbben megoldható a feladat akkor, ha a közegellenállási erő a sebességgel arányos. Egy sűrű, viszkózus folyadékban lassan sűllyedő kis golyó mozgásegyenlete például

$$m\ddot{y}(t) = mg - F_{\text{felh}} - \alpha \dot{y}(t),$$

ami $\dot{x}(t)$ -re elsőrendű, lineáris, inhomogén, állandó együtthatós egyenlet. (Az egyenletben $F_{\rm felh}$ a felhajtóerőt jelöli, ami csak a test térfogatától és a folyadék fajsúlyától függő állandó.)

2. fejezet

Függvénysorok

2.1. Hányados- és gyökkritérium (numerikus sorok)

2.1.1. Feladat. Vizsgálja meg az alábbi sorokat konvergencia szempontjából!

$$a) \sum_{n=1}^{\infty} \frac{9^{n-2}}{n!}$$

b)
$$\sum_{n=1}^{\infty} \frac{5^{3n}}{n^4}$$

c)
$$\sum_{n=1}^{\infty} \frac{(n+1)!}{n^n}$$

Megoldás:
$$a_n := \frac{9^{n-2}}{n!}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{9^{(n+1)-2} n!}{(n+1)! 9^{n-2}} = \lim_{n \to \infty} \frac{9}{n+1} = 0 < 1$$

$$\implies \sum_{n=0}^{\infty} a_n \text{ konvergens}$$

b)
$$a_n := \frac{5^{3n}}{n^4}$$

Lehet hányados kritérium, de jobb a gyökkritérium:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{5^3}{\sqrt[n]{n^4}} = 5^3 \lim_{n \to \infty} \frac{1}{\left(\sqrt[n]{n}\right)^4} = 5^3 > 1$$

$$\implies \sum_{n=0}^{\infty} a_n \text{ divergens}$$

c)
$$a_n := \frac{(n+1)!}{n^n}$$

A hányados kritériumot alkalmazzuk:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+2)! \ n^n}{(n+1)^{n+1} \ (n+1)!} = \lim_{n \to \infty} \frac{(n+2) \ n^n}{(n+1)^{n+1}} =$$

$$= \lim_{n \to \infty} \frac{n+2}{n+1} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \frac{1+\frac{2}{n}}{1+\frac{1}{n}} \frac{1}{\left(1+\frac{1}{n}\right)^n} = \frac{1}{e} < 1$$

$$\implies \sum_{n=0}^{\infty} a_n \text{ konvergens}$$

2.1.2. Feladat. Konvergens-e az alábbi sor?

$$\sum_{n=1}^{\infty} \frac{(n+5) \ 3^{n-1}}{5^{n+1}}$$

Megoldás:
$$a_n := \frac{(n+5) \ 3^{n-1}}{5^{n+1}}$$

Hányadoskritériummal célszerű dolgozni, mert a gyökkritériumnál az $\sqrt[n]{n+5}$ konver-

genciáját a rendőrelvvel kellene megmutatni.
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{(n+6)}{5^{n+2}}\frac{3^n}{(n+5)}\frac{5^{n+1}}{3^{n-1}}=\lim_{n\to\infty}\frac{3}{5}\frac{n+6}{n+5}=$$

$$=\lim_{n\to\infty}\frac{3}{5}\frac{1+\frac{6}{n}}{1+\frac{5}{n}}=\frac{3}{5}<1\implies\sum_{n=0}^{\infty}a_n\text{ konvergens}$$

2.1.3. Feladat. Konvergens-e az alábbi sor?

$$\sum_{n=1}^{\infty} \frac{n^4 (3n+3)^{n^2}}{(3n+1)^{n^2}}$$

Gyökkritériummal:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n^4} \left(\frac{3n+3}{3n+1}\right)^n = \lim_{n \to \infty} \left(\sqrt[n]{n}\right)^4 \frac{\left(1 + \frac{3/3}{n}\right)^n}{\left(1 + \frac{1/3}{n}\right)^n} =$$

$$= 1^4 \frac{e}{e^{1/3}} = e^{2/3} > 1 \implies \sum_{n=0}^{\infty} a_n \text{ divergens}$$

2.1.4. Feladat. Konvergens-e az alábbi sor?

$$\sum_{n=1}^{\infty} \left(\frac{3+n^2}{2+n^2} \right)^{n^3} \frac{n^5}{2^{2n+1}}$$

 $Megold\'{a}s:$

Gyökkritériummal:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \dots = \lim_{n \to \infty} \frac{\left(1 + \frac{3}{n^2}\right)^{n^2}}{\left(1 + \frac{2}{n^2}\right)^{n^2}} \frac{\left(\sqrt[n]{n}\right)^5}{4 \cdot \sqrt[n]{2}} = \frac{e^3}{e^2} \frac{1^5}{4 \cdot 1} = \frac{e}{4} < 1$$

$$\implies \sum_{n=0}^{\infty} a_n \text{ konvergens}$$

2.1.5. Feladat. Vizsgálja meg konvergencia szempontjából az alábbi sorokat!

a)
$$\sum_{n=0}^{\infty} \left(\frac{n^2 - 2}{n^2 + 5} \right)^{n^2}$$

b)
$$\sum_{n=0}^{\infty} \left(\frac{n^2 - 2}{n^2 + 5} \right)^n$$

c)
$$\sum_{n=0}^{\infty} \left(\frac{n^2 - 2}{n^2 + 5} \right)^{n^3}$$

Megoldás:
$$a_n := \left(\frac{n^2 - 2}{n^2 + 5}\right)^{n^2}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\left(1 + \frac{-2}{n^2}\right)^{n^2}}{\left(1 + \frac{5}{n^2}\right)^{n^2}} = \frac{e^{-2}}{e^5} = e^{-7}$$

a) A sor divergens, mivel az általános tag nem tart nullához, tehát a konvergencia szükséges feltétele nem teljesül.

b)
$$\sum_{n=0}^{\infty} b_n , \text{ ahol } b_n = \sqrt[n]{a_n}.$$

$$\lim_{n \to \infty} a_n = e^{-7} \implies e^{-7} - \frac{e^{-7}}{2} < a_n < e^{-7} + \frac{e^{-7}}{2}, \text{ ha } n > N_0$$

$$\implies \sqrt[n]{\frac{1}{2}e^{-7}} < \sqrt[n]{a_n} < \sqrt[n]{\frac{3}{2}e^{-7}} \implies b_n = \sqrt[n]{a_n} \to 1.$$

Mivel $\lim_{n\to\infty}b_n=1$, így ez a sor is divergens, mert nem teljesül a konvergencia szükséges feltétele.

c)
$$\sum_{n=0}^{\infty} c_n$$
, ahol $c_n = a_n^n$

A gyökkritérium alkalmazásával:

$$\lim_{n \to \infty} \sqrt[n]{c_n} = \lim_{n \to \infty} a_n = e^{-7} < 1 \implies \sum_{n=0}^{\infty} c_n \text{ konvergens}$$

2.1.6. Feladat.
$$\sum_{n=0}^{\infty} \frac{2^n + 3^{n+2} + (\frac{1}{2})^n}{(2n)! + 3n^2}$$

Hányados kritériummal belátható, hogy $\sum_{n=0}^{\infty} d_n$ konvergens (házi feladat). Ezért a

majoráns kritérium miatt $\sum_{n=1}^{\infty} c_n$ is konvergens.

2.1.7. Feladat. Bizonyítsa be, hogy az alábbi sor konvergens! Adjon becslést az elkövetett hibára, ha a sor összegét a 100. részletösszeggel közelítjük!

a)
$$\sum_{n=0}^{\infty} \frac{(n+2) \, 3^{n-1}}{(n+5) \, n!}$$

b)
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{6n-1} \right)^{3n}$$

Megoldás:
a)
$$a_n := \frac{(n+2) \ 3^{n-1}}{(n+5) \ n!}$$

 $a_n < \frac{3^{n-1}}{n!} := b_n \sum_{n=1}^{\infty} b_n$ konvergens, mert a hányadoskritérium alkalmazásával:

$$\lim_{n \to \infty} \frac{b_{n+1}}{b_n} = \lim_{n \to \infty} \frac{3^n \, n!}{(n+1)! \, 3^{n-1}} = \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1$$

$$\implies \sum_{n=0}^{\infty} b_n \text{ konvergens} \underbrace{\Longrightarrow}_{\text{maj. kr.}} \sum_{n=0}^{\infty} a_n \text{ konvergens}$$

Az elkövetett hiba:

$$0 < H = \sum_{n=101}^{\infty} \frac{(n+2) \ 3^{n-1}}{(n+5) \ n!} < \sum_{n=101}^{\infty} \frac{3^{n-1}}{n!} = \frac{3^{100}}{101!} + \frac{3^{101}}{102!} + \frac{3^{102}}{103!} + \dots =$$

$$= \frac{3^{100}}{101!} \left(1 + \frac{3}{102} + \frac{3^2}{102 \cdot 103} + \dots \right) < \frac{3^{100}}{101!} \left(1 + \frac{3}{102} + \frac{3^2}{102^2} + \dots \right) =$$

$$= \frac{3^{100}}{101!} \frac{1}{1 - \frac{3}{102}} \left(\text{geometriai sor, } q = \frac{3}{102} \right)$$

b)
$$a_n := \left(\frac{n+2}{6n-1}\right)^{3n}$$

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{n+2}{6n-1}\right)^3 = \lim_{n \to \infty} \left(\frac{1+\frac{2}{n}}{6-\frac{1}{n}}\right)^3 = \frac{1}{6^3} < 1$$

$$\implies \sum_{n=0}^{\infty} a_n \text{ konvergens}$$

Az elkövetett hiba:

$$0 < H = \sum_{n=101}^{\infty} \left(\frac{n+2}{6n-1}\right)^{3n} < \sum_{n=101}^{\infty} \left(\frac{n+2n}{6n-n}\right)^{3n} = \sum_{n=101}^{\infty} \left(\left(\frac{3}{5}\right)^{3}\right)^{n} = \left(\frac{3}{5}\right)^{303} \frac{1}{1-\left(\frac{3}{5}\right)^{3}} \qquad \left(\text{geometriai sor, } q = \left(\frac{3}{5}\right)^{3}\right)$$

2.1.1. Gyakorló feladatok

2.1.8. Feladat. 1. Vizsgálja az alábbi sorokat konvergencia szempontjából!

a)
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{2n+1}\right)^{n^2+3n}$$

b)
$$\sum_{n=1}^{\infty} \frac{n! \ 6^{n-1}}{(2n)!}$$

c)
$$\sum_{n=1}^{\infty} \frac{3^n}{\binom{2n}{n}}$$

d)
$$\sum_{n=1}^{\infty} \frac{4^n (n+3)}{(n)!}$$

e)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^{n+2}}$$

f)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{3^n (2n)!}$$

2. Bizonyítsa be, hogy az alábbi sor konvergens! Adjon becslést az elkövetett hibára, ha a sor összegét a 200. részletösszeggel közelítjük!

$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{(n)!}$$

3. Bizonyítsa be, hogy az alábbi sor konvergens! Adjon becslést az elkövetett hibára, ha a sor összegét a 100. részletösszeggel közelítjük!

$$\sum_{n=1}^{\infty} \frac{n}{(n+3) \ 6^{n+1}}$$

2.2. Weierstrass-kritérium függvénysorok egyenletes konvergenciájára

2.2.1. Feladat. Egyenletesen konvergens-e a $(-\infty, \infty)$ intervallumon az alábbi függvénysor?

a)
$$\sum_{n=1}^{\infty} \frac{\cos(n^4 x^2 + 1)}{n^3 + 2}$$

b)
$$\sum_{n=1}^{\infty} \frac{\arctan(n^5 x^3)}{n \sqrt{n} + 5}$$

Megoldás:

a)

$$|f_n(x)| = \frac{|\cos(n^4 x^2 + 1)|}{n^3 + 2} < \frac{1}{n^3}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^3} \text{ konv. Weierstrass kr.} \qquad \sum_{n=1}^{\infty} f_n(x) \text{ egyenletesen konv. } (-\infty, \infty) \text{-en.}$$

b)

$$|f_n(x)| = \frac{|\operatorname{arctg}(n^5 x^3)|}{n\sqrt{n} + 5} < \frac{\frac{\pi}{2}}{n\sqrt{n}}$$

$$\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n\sqrt{n}} = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \text{ konvergens}$$

Weierstrass kr.
$$\sum_{n=1}^{\infty} f_n(x)$$
 egyenletesen konvergens $(-\infty, \infty)$ -en.

2.3. Hatványsorok

2.3.1. Hatványsorok konvergencia sugara, konvergenciatartománya

2.3.1. Feladat. Állapítsa meg az alábbi sor konvergenciatartományát!

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \ 2^n} \ (x-1)^n$$

Megoldás: Jelenleg:
$$a_n = \frac{(-1)^n}{n \ 2^n}$$
, $x_0 = 1$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{|(-1)^n|}{n \ 2^n}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n} \ 2} = \frac{1}{2} = \frac{1}{R} \implies R = 2$$

$$x=3: \quad \sum^{\infty} \frac{(-1)^n}{n \cdot 2^n} \cdot 2^n = \sum^{\infty} \frac{(-1)^n}{n} \quad \text{konvergens}$$
 (de nem abszolút konvergens)

$$x = -1:$$
 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n \cdot 2^n} \cdot (-2)^n = \sum_{n=0}^{\infty} \frac{1}{n} (-1)^{2n} = \sum_{n=0}^{\infty} \frac{1}{n}$ divergens

KT (konvergenciatartomány): (-1, 3]

2.3.2. Feladat.

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{(2n)!} (x+7)^n, \qquad R = ?$$

Megoldás: Jelenleg: $a_n = (-1)^n \frac{2n+1}{(2n)!}$, $x_0 = -7$ (ez most nem fontos) $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(2n+3)(2n)!}{(2n+2)!(2n+1)} = \lim_{n \to \infty} \frac{2n+3}{2n+1} \frac{1}{(2n+2)(2n+1)} = 0$ $\implies R = \infty$

2.3.3. Feladat.

$$\sum_{n=1}^{\infty} \frac{(n+2)^{n^2}}{(n+6)^{n^2+1}} x^n, \qquad R = ?$$

Megoldás: Jelenleg: $a_n = \frac{(n+2)^{n^2}}{(n+6)^{n^2+1}}, \qquad x_0 = 0$ $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left(\frac{n+2}{n+6}\right)^n \frac{1}{\sqrt[n]{n+6}} = \cdots = \frac{1}{e^4}$ $\implies R = e^4$

Mert $1 < \sqrt[n]{n+6} < \sqrt[n]{7} \sqrt[n]{n}$ és így a rendőrelv miatt $\sqrt[n]{n+6} \to 1$, illetve $\left(\frac{n+2}{n+6}\right)^n = \frac{\left(1+\frac{2}{n}\right)^n}{\left(1+\frac{6}{n}\right)^n} \to \frac{\mathrm{e}^2}{\mathrm{e}^6}.$

2.3.4. Feladat.

$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n!} x^n \qquad R = ?$$

$$Megoldcute{a}s$$
:

Megoldás:
Jelenleg:
$$a_n = \frac{(n+1)^n}{n!}$$
, $x_0 = 0$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+2)^{n+1} n!}{(n+1)! (n+1)^n} = \lim_{n \to \infty} \left(\frac{n+2}{n+1} \right)^{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1} = e \implies R = \frac{1}{e}$$

2.3.5. Feladat. Állapítsa meg az alábbi sor konvergenciatartományát! Hol abszolút konvergens a sor?

$$\sum_{n=1}^{\infty} \frac{(-2)^n (n+3)}{n^2 + 3} x^n$$

Megoldás:

$$R = \frac{1}{2}$$
, mert ...

$$x = -\frac{1}{2}$$
: $\sum_{n=1}^{\infty} \frac{n+3}{n^2+3}$ divergens, mert ...

$$x = \frac{1}{2}$$
: $\sum_{n=1}^{\infty} (-1)^n \frac{n+3}{n^2+3}$ konvergens, de nem abszolút konv., mert ...

Konvergenciatartomány = abszolút konvergenciatartomány =
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$

2.3.6. Feladat. Állapítsa meg az alábbi sor konvergenciatartományát!

$$\sum_{n=1}^{\infty} \frac{(2x+4)^n}{n^2 \ 3^n}$$

Megoldás:
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2 3^n} (x+2)^n , \qquad x_0 = -2.$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n^2 \ 3^n}} = \lim_{n \to \infty} \frac{2}{3 \ \left(\sqrt[n]{n}\right)^2} = \frac{2}{3} = \frac{1}{R} \implies R = \frac{3}{2}$$

$$x = -\frac{7}{2}$$
: $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$: konvergens

$$x = -\frac{1}{2}$$
: $\sum_{n=1}^{\infty} \frac{1}{n^2}$: konvergens

Konvergenciatartomány: $\left[-\frac{7}{2}, -\frac{1}{2}\right]$

2.3.7. Feladat.

$$\sum_{n=1}^{\infty} \frac{n}{2^n} x^{3n} = \frac{1}{2} x^3 + \frac{2}{2^2} x^6 + \cdots \qquad R = ?$$

$$Megold\acute{a}s$$
:
$$a_n = \left\{ \begin{array}{ll} 0\;, & \text{ha }n \text{ nem oszthat\'o 3-mal} \\ \frac{n/3}{2^{n/3}}\;, & \text{ha }n \text{ oszthat\'o 3-mal} \end{array} \right.$$

Ezért $\sqrt[n]{|a_n|} = \begin{cases} 0, & \text{ha } n \text{ nem oszthat\'o 3-mal} \\ \sqrt[n]{\frac{n/3}{2^{n/3}}} = \frac{\sqrt[n]{n}}{\sqrt[n]{3}} \sqrt[n]{2}, & \text{ha } n \text{ oszthat\'o 3-mal} \end{cases}$

 \implies Torlódási pontok: $t_1 = 0$, $t_2 = \frac{1}{\sqrt[3]{2}}$

$$\implies \overline{\lim} \sqrt[n]{|a_n|} = \frac{1}{\sqrt[3]{2}} = \frac{1}{R} \longrightarrow R = \sqrt[3]{2}$$

Egy ügyesebb megoldás: $u=x^3$ helyettesítéssel egy egyszerűbb feladatra vezetjük vissza.

$$\sum_{n=1}^{\infty} b_n u^n := \sum_{n=1}^{\infty} \frac{n}{2^n} u^n$$

$$\lim_{n \to \infty} \sqrt[n]{|b_n|} = \lim_{n \to \infty} \sqrt[n]{\frac{n}{2^n}} = \frac{1}{2} = \frac{1}{R_b} \longrightarrow R_b = 2$$

Tehát $|u| < 2 \implies |x|^3 < 2 \implies |x| < \sqrt[3]{2} \implies R = \sqrt[3]{2}$

2.3.8. Feladat. Állapítsa meg az alábbi sor konvergenciatartományát!

$$\sum_{n=1}^{\infty} \frac{n+1}{9^n} (x-2)^{2n}$$

Megoldás:
$$u:=(x-2)^2$$
 helyettesítéssel a sor alakja:
$$\sum_{n=1}^{\infty} \frac{n+1}{9^n} \ u^n$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+2) \ 9^n}{9^{n+1} \ (n+1)} = \dots = \frac{1}{9} \implies R_1 = 9$$
 A végpontokat itt is lehet vizsgálni, de az eredeti sorban is vizsgálhatjuk majd. Most az

utóbbi módon járunk el.

Tehát

$$|u| < 9 \implies |(x-2)^2| < 9 \implies \underbrace{|x-2| < 3}_{-1 < x < 5} \implies R = 3$$

A végpontokban:

 $\sum_{n=0}^{\infty} (n+1)$ divergens, hiszen nem teljesül a konvergencia szükséges feltétele.

Konvergenciatartomány:

2.3.2. Hatványsorok összegfüggvénye

2.3.9. Feladat. Írja fel az alábbi sor összegfüggvényét!

$$\sum_{n=1}^{\infty} \frac{x^n}{n+1}$$

Megoldás:
$$f(x):=\sum_{n=1}^{\infty}\ \frac{x^n}{n+1}\ , \qquad \qquad f(0)=0\ . \ \mathrm{Ha}\ \ x\neq 0\ :$$

$$f_1(x) := x \cdot f(x) = x \cdot \sum_{n=1}^{\infty} \frac{x^n}{n+1}, = \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$$

$$f_1'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$$
, $x \in (-R, R)$ esetén szabad tagonként deriválni:

$$f_1'(x) = \sum_{n=1}^{\infty} \frac{\mathrm{d}}{\mathrm{d}x} \frac{x^{n+1}}{n+1} = \sum_{n=1}^{\infty} x^n = \frac{x}{1-x} \quad \text{(geometriai sor, } q = x).$$

R=1, és az eredeti sornak is ugyanennyi, mert tagonkénti deriválásnál a konvergencia sugár nem változik.

$$f_1(x) = \int_0^x f_1'(t) dt = f_1(x) - f_1(0) = \int_0^x \frac{t}{1-t} dt = -\int_0^x \frac{(1-t)-1}{1-t} dt = -(t+\ln(1-t))|_0^x = -x - \ln(1-x)$$

$$f(x) = \begin{cases} \frac{-x - \ln(1-x)}{x} = -1 - \frac{\ln(1-x)}{x}, & \text{ha } |x| < 1, \ x \neq 0 \\ 0, & \text{ha } x = 0 \end{cases}$$

(Hf.: Tudjuk, hogy f folytonos |x| < 1-ben.

Ellenőrizzük le, hogy igaz-e: $\lim_{x\to 0} f(x) = f(0)(=0)$!)

2.3.10. Feladat. Írja fel az alábbi sor összegfüggvényét!

$$\sum_{n=1}^{\infty} \frac{n+2}{n+1} x^n$$

Megoldás:

R = 1, mert \cdots

(Vagy itt mutatjuk meg, vagy az előző gondolatmenettel később indokoljuk.)

$$g(x) := \sum_{n=1}^{\infty} \frac{n+2}{n+1} x^n = \sum_{n=1}^{\infty} \frac{(n+1)+1}{n+1} x^n =$$

$$= \sum_{n=1}^{\infty} x^n + \sum_{n=1}^{\infty} \frac{x^n}{n+1} = \frac{x}{1-x} + f(x) = \cdots$$

(f(x)) felírása az előző példában volt látható!)

2.3.11. Feladat. Írja fel az alábbi sor összegfüggvényét!

$$\sum_{n=1}^{\infty} (n+3) x^n$$

Megoldás:

R = 1, mert \cdots

$$f(x) := \sum_{n=1}^{\infty} (n+3) x^n, \quad f(0) = 0$$

Ha $x \neq 0$:

$$f_1(x) := x^2 \cdot f(x) = \sum_{n=1}^{\infty} (n+3) x^{n+2} = \frac{\mathrm{d}}{\mathrm{d}x} \int_0^x f_1(t) \, \mathrm{d}t =$$

$$= \cdots = \left(\frac{x^4}{1-x}\right)' \cdots$$

2.3.12. Feladat. Határozza meg az alábbi sor összegfüggvényét és konvergencia suga-

$$\sum_{k=0}^{\infty} \frac{k+1}{4^{k+1}} x^k$$

$$\sum_{k=0}^{\infty} \frac{k+1}{4^{k+1}} = ?$$

$$f(x) := \sum_{k=0}^{\infty} \frac{k+1}{4^{k+1}} x^{k}$$

$$\int_{0}^{x} f(t) dt = \int_{0}^{x} \sum_{k=0}^{\infty} \frac{k+1}{4^{k+1}} t^{k} dt = \sum_{k=0}^{\infty} \int_{0}^{x} \frac{k+1}{4^{k+1}} t^{k} dt = \sum_{k=0}^{\infty} \frac{k+1}{4^{k+1}} \left. \frac{t^{k+1}}{k+1} \right|_{0}^{x} = \sum_{k=0}^{\infty} \left(\frac{x}{4} \right)^{k+1} = \frac{\frac{x}{4}}{1 - \frac{x}{4}} = \frac{x}{4 - x},$$

$$KT.: |q| = \left| \frac{x}{4} \right| < 1 \implies |x| < 4$$

Tehát R=4.

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_0^x f(t) \, \mathrm{d}t = \left(\frac{x}{4-x}\right)' = \frac{4-x-x(-1)}{(4-x)^2} = \frac{4}{(4-x)^2}$$
$$\sum_{k=0}^\infty \frac{k+1}{4^{k+1}} = f(1) = \frac{4}{9}$$

2.3.3. Gyakorló feladatok

2.3.13. Feladat. Adja meg az alábbi sor konvergenciatartományát!

$$\sum_{n=1}^{\infty} \frac{(-4)^{n-1}}{n^3} (x+1)^n$$

2.3.14. Feladat. Adja meg az alábbi hatványsor bázispontját és konvergencia sugarát! Mi a sor konvergenciatartománya?

$$\sum_{n=1}^{\infty} \frac{n\sqrt{n}}{2^{2n}} (4-2x)^n$$

2.3.15. Feladat. Adja meg az alábbi sorok konvergenciatartományát!

a)
$$\sum_{1}^{\infty} \frac{(-1)^n}{n^2 \ 3^{2n}} x^n$$

$$b) \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 \ 3^{2n}} \ (x+2)^{2n}$$

2.3.16. Feladat.

a) Határozza meg a következő sor konvergenciatartományát és abszolút konvergenciatartományát!

Adjon meg egy intervallumot, melyen a konvergencia egyenletes!

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{\sqrt[3]{n}} x^n$$

b) Adja meg a következő sor konvergencia sugarát!

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{\sqrt[3]{n}} \ x^{2n}$$

2.3.17. Feladat. Állapítsa meg az alábbi sor konvergenciatartományát!

$$\sum_{n=1}^{\infty} \frac{(-1)^n (2x)^n}{\sqrt{n} 5^n}$$

2.3.18. Feladat.

$$\sum_{n=3}^{\infty} \frac{x^n}{n-2}$$

Írja fel a sor összegfüggvényét és határozza meg a sor konvergencia sugarát!

2.3.19. Feladat.

$$f(x) := \sum_{n=1}^{\infty} (n+3) x^n$$

Írja fel az összegfüggvényt véges sok elemi függvény segítségével! Adja meg a sor konvergencia sugarát!

2.4. Taylor-polinom

2.4.1. Feladat.

- a) Definiálja az n-edrendű Taylor polinomot!
- b) Írja fel a definíció segítségével az

$$f(x) = x^3 - 3 + \cos 3x$$

függvény $x_0=0\,$ pontbeli negyedrendű Taylor polinomját és a Lagrange-féle hibatagot!

c) Legfeljebb mekkora hibát követünk el, ha f(0,1) értékét $T_4(0,1)$ értékével közelítjük?

a) az f függvény x_0 bázispontú n-edrendű Taylor polinomja:

$$T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Ha f legalább (n+1)-szer differenciálható $[x_0,x)$ -ben (ill. $(x,x_0]$ -ban), akkor $\exists \xi \in (x_0,x)$ (ill. $\xi \in (x,x_0)$), hogy

$$R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

b)
$$f(x) = x^3 - 3 + \cos 3x$$
 $f(0) = -2$
 $f'(x) = 3x^2 - 3\sin 3x$ $f'(0) = 0$
 $f''(x) = 6x - 9\cos 3x$ $f''(0) = -9$
 $f'''(x) = 6 + 27\sin 3x$ $f'''(0) = 6$
 $f^{IV}(x) = 81\cos 3x$ $f^{IV}(0) = 81$
 $f^{V}(x) = -243\sin 3x$

$$T_4(x) = -2 + \frac{-9}{2!} x^2 + \frac{6}{3!} x^3 + \frac{81}{4!} x^4$$

$$H = \frac{f^V(\xi)}{5!} x^5 = \frac{-243 \sin 3\xi}{5!} 0, 1^5, \qquad \xi \in (0, 0.1)$$

 $|\sin x| \le |x|$ miatt $|\sin 3\xi| \le 3 \cdot 0, 1$, ezért

$$|H| = \frac{243 |\sin 3\xi|}{5!} \ 0,1^5 < \frac{243 \cdot 3 \cdot 0,1}{5!} \ 0,1^5$$

2.4.2. Feladat.

$$y' = xy^3 - y^2 + 2$$

- a) Van-e lokális maximuma vagy minimuma az $x_0 = 1$, $y_0 = -1$ ponton áthaladó megoldásgörbének ebben a pontban? (Ne próbálja megoldani a differenciálegyenletet, de feltételezheti, hogy van ilyen megoldás!)
- b) Írja fel az $x_0 = 1$, $y_0 = -1$ ponton áthaladó megoldás $x_0 = 1$ bázispontú harmadrendű Taylor polinomját! (Ne próbálja megoldani a differenciálegyenletet!)

a) y(1)=-1, y'(1)=-1-1+2=0 \Longrightarrow lehet itt lokális szélsőérték. $y''=y^3+x\cdot 3y^2y'-2yy'$, y''(1)=-1

Tehát y'(1) = 0 és y''(1) = -1 < 0 : a megoldásnak lokális maximuma van ebben a pontban.

b)
$$y''' = 3y^2y' + 3y^2y' + x6yy'^2 + x3y^2y'' - 2y'^2 - 2y'y''$$

 $y'''(1) = -3 - 2 = -5$

$$T_3(x) = y(1) + \frac{y'(1)}{1!} (x-1) + \frac{y''(1)}{2!} (x-1)^2 + \frac{y'''(1)}{3!} (x-1)^3 =$$

$$= -1 - \frac{1}{2!} (x-1)^2 - \frac{5}{3!} (x-1)^3$$

2.4.3. Feladat.

a) A Taylor polinom definíciójával írja fel az

$$f(x) = 3x + \operatorname{ch} 2x$$

függvény $x_0=0$ pontbeli ötödrendű Taylor polinomját és a Lagrange-féle hibatagot!

b) A (0, 1/2] intervallumon az f függvényt a fenti ötödrendű Taylor polinomjával közelítjük. Adjon becslést az elkövetett hibára!

Megoldás:

...

2.4.4. Feladat.

$$y' = 2y^2 + 3x^2 - 6x$$

a) Rajzolja fel a P(-1,1) ponthoz tartozó vonalelemet!

- b) Van-e lokális maximuma vagy minimuma az origón áthaladó megoldásgörbének az origóban?
 (Ne próbálja megoldani a differenciálegyenletet, de feltételezheti, hogy van ilyen megoldás!)
- c) Írja fel az origón áthaladó megoldás $x_0=0$ bázispontú harmadrendű Taylor polinomját!

• • •

2.5. Taylor-sor

2.5.1. Feladat. Adja meg az $f(x)=\frac{1}{x-3}$ függvény $x_0=0$, illetve $x_0=5$ bázispontú Taylor sorfejtéseit és azok konvergenciatartományát!

Megoldás:

 $x_0 = 0$ esete:

$$f(x) = -\frac{1}{3} \frac{1}{1 - \frac{x}{3}} = -\frac{1}{3} \left(1 + \frac{x}{3} + \left(\frac{x}{3} \right)^2 + \left(\frac{x}{3} \right)^3 + \left(\frac{x}{3} \right)^4 + \dots \right) =$$

$$= -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x}{3} \right)^n = \sum_{n=0}^{\infty} \frac{-1}{3^{n+1}} x^n$$

$$\left(\text{Geometriai sor:} \quad a = -\frac{1}{3}, \quad q = \frac{x}{3} \right)$$

Konvergenciatartomány:

$$|q| = \left|\frac{x}{3}\right| = \frac{|x|}{3} < 1 \implies |x| < 3, \quad R_1 = 3$$

 $x_0 = 5$ esete:

$$f(x) = \frac{1}{(x-5)+2} = \frac{1}{2} \frac{1}{1 - \frac{-(x-5)}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{-(x-5)}{2}\right)^n =$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-5)^n$$

Konvergenciatartomány:

$$|q| = \left| \frac{-(x-5)}{2} \right| = \frac{|x-5|}{2} < 1 \implies |x-5| < 2, \quad R_2 = 2$$

2.5.2. Feladat. Adja meg az alábbi függvények $x_0 = 0$ bázispontú Taylor sorfejtését és annak konvergenciatartományát!

$$f(x) = \frac{1}{x^2 + 3}$$
, $g(x) = \frac{x^5}{x^2 + 3}$

Megoldás:

$$f(x) = \frac{1}{3} \frac{1}{1 - \frac{-x^2}{3}} = \frac{1}{3} \left(1 - \frac{x^2}{3} + \left(\frac{x^2}{3} \right)^2 - \left(\frac{x^2}{3} \right)^3 + \left(\frac{x^2}{3} \right)^4 - \dots \right) =$$

$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{x^2}{3} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^{2n}$$
(Geometriai sor: $a = \frac{1}{3}$, $q = -\frac{x^2}{3}$)

Konvergenciatartomány

Konvergenciatartomany:
$$|q| = \left| -\frac{x^2}{3} \right| = \frac{|x|^2}{3} < 1 \implies |x| < \sqrt{3} \;, \quad R_f = \sqrt{3}$$

$$g(x) = \frac{x^5}{x^2 + 3} = x^5 \cdot f(x) = x^5 \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} \; x^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} \; x^{2n+5}$$
 Konvergenciatartomány:
$$|x| < \sqrt{3} \;, \quad R_g = \sqrt{3} \quad \text{(ugyanaz)}$$

2.5.3. Feladat. Adja meg az alábbi függvények $x_0 = 0$ bázispontú Taylor sorfejtését és annak konvergenciatartományát!

$$f(x) = \frac{1}{x+7}$$
, $g(x) = \frac{x+2}{x+7}$, $h(x) = \frac{3x^4}{x+7}$

Megoldás:

$$f(x) = \frac{1}{7} \frac{1}{1 - \frac{-x}{7}} = \frac{1}{7} \left(1 - \frac{x}{7} + \left(\frac{x}{7} \right)^2 - \left(\frac{x}{7} \right)^3 + \left(\frac{x}{7} \right)^4 - \dots \right) =$$

$$= \frac{1}{7} \sum_{n=0}^{\infty} \left(-\frac{x}{7} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{7^{n+1}} x^n$$
(Geometrial sor: $a = \frac{1}{7}$, $q = -\frac{x}{7}$)

Konvergenciatartomány:

$$|q| = \left| -\frac{x}{7} \right| = \frac{|x|}{7} < 1 \implies |x| < 7, \quad R_f = 7$$

$$g(x) = \frac{x+7-5}{x+7} = 1 - \frac{5}{x+7} = 1 - 5 \cdot f(x) = 1 - 5 \sum_{n=0}^{\infty} \frac{(-1)^n}{7^{n+1}} x^n$$

Konvergenciatartomány: |x| < 7, $R_g = 7$ (ugyanaz)

$$h(x) = \frac{3x^4}{x+7} = 3x^4 \cdot f(x) = 3x^4 \sum_{n=0}^{\infty} \frac{(-1)^n}{7^{n+1}} x^n = \sum_{n=0}^{\infty} \frac{3(-1)^n}{7^{n+1}} x^{n+4}$$

Konvergenciatartomány: |x| < 7, $R_h = 7$ (ugyanaz)

2.5.4. Feladat. Írja fel az f függvény x_0 bázispontú Taylor sorát és adja meg a sor konvergenciatartományát!

$$f(x) = \frac{1}{x+2}$$
 a) $x_0 = 2$ b) $x_0 = -5$

$$x_0 = 2$$
:

$$f(x) = \frac{1}{x+2} = \frac{1}{(x-2)+4} = \frac{1}{4} \frac{1}{1 - \frac{-(x-2)}{4}} \left(= \frac{a}{1-q} \right) =$$

$$= \frac{1}{4} \left(1 - \left(\frac{x-2}{4} \right) + \left(\frac{x-2}{4} \right)^2 - \left(\frac{x-2}{4} \right)^3 + \dots \right) =$$

$$= \frac{1}{4} \sum_{n=0}^{\infty} \left(-\frac{x-2}{4} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-2)^n$$

Konvergenciatartomány:

$$|q| = \left| -\frac{x-2}{4} \right| = \frac{|x-2|}{4} < 1 \implies |x-2| < 4, \quad (-2 < x < 6, R_1 = 4)$$

$$x_0 = -5 :$$

$$f(x) = \frac{1}{x+2} = \frac{1}{(x+5)-3} = -\frac{1}{3} \frac{1}{1-\frac{x+5}{3}} =$$

$$= -\frac{1}{3} \left(1 + \left(\frac{x+5}{3} \right) + \left(\frac{x+5}{3} \right)^2 + \left(\frac{x+5}{3} \right)^3 + \cdots \right) =$$

$$= -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{x+5}{3} \right)^n = \sum_{n=0}^{\infty} \frac{-1}{3^{n+1}} (x+5)^n$$

Konvergenciatartomány:

$$|q| = \left| \frac{x+5}{3} \right| = \frac{|x+5|}{3} < 1 \implies |x+5| < 3, \quad (-8 < x < -2, R_2 = 3)$$

2.5.5. Feladat.

a) Írja fel az

$$f_1(x) = \frac{1}{x+3}$$

függvény $x_0 = 0$ bázispontú Taylor sorfejtését! $R_1 = ?$

b) f_1 sorfejtésére támaszkodva írja fel az alábbi függvények $x_0 = 0$ bázispontú sorfejtését!

$$f_2(x) = \ln(x+3)$$
, $R_2 = ?$

$$f_3(x) = \frac{1}{(x+3)^3}$$
, $R_3 = ?$

Megoldás:
a)
$$f_1(x) = \frac{1}{x+3} = \frac{1}{3} \frac{1}{1 - \frac{-x}{3}} = \frac{1}{3} \left(1 - \frac{x}{3} + \left(\frac{x}{3}\right)^2 - \left(\frac{x}{3}\right)^3 + \left(\frac{x}{3}\right)^4 - \cdots\right) =$$

$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{x}{3}\right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^n$$

Konvergenciatartomány:

$$|q| = \left| -\frac{x}{3} \right| = \frac{|x|}{3} < 1 \implies |x| < 3, \quad R_1 = 3$$

b)
$$f_2'(x) = f_1(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^n$$

$$\int_{0}^{x} f_2'(t) dt = f_2(x) - \underbrace{f_2(0)}_{-\ln 3} = \int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} t^n dt$$

 $[0\,,\,x]\subset (-3\,,\,3)\;,\quad$ szabad tagonként integrálni:

$$f_2(x) = \ln 3 + \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} \int_0^x t^n dt = \ln 3 + \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} \left. \frac{t^{n+1}}{n+1} \right|_0^x =$$

$$= \ln 3 + \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} \frac{x^{n+1}}{n+1}$$

$$\implies f_2(x) = \ln 3 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3^n} \frac{x^n}{n}, \qquad R_2 = R_1$$

(Tagonkénti integrálásnál nem változik a konvergencia sugár.)

$$f_1''(x) = \left(\frac{1}{x+3}\right)'' = \left(\frac{-1}{(x+3)^2}\right)' = \frac{2}{(x+3)^3} \implies f_3(x) = \frac{1}{2}f_1''(x)$$

$$f_3(x) = \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^n \right)^n = \frac{1}{2} \sum_{n=2}^{\infty} \frac{(-1)^n n (n-1)}{3^{n+1}} x^{n-2}$$

(Tagonkénti deriválásnál nem változik a konvergencia sugár.)

2.5.6. Feladat. Tudjuk, hogy

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots , \qquad R = 1$$

a) Írja fel az

$$f(x) = \ln\left(1 + \frac{x^2}{3}\right)$$

függvény $x_0 = 0$ bázispontú Taylor sorát és adja meg annak konvergencia sugarát!

b) Az f függvény sorfejtését felhasználva adja meg az

$$\int_0^1 \ln\left(1 + \frac{x^2}{3}\right) \, \mathrm{d}x$$

integrál értékét az f függvény negyedfokú Taylor polinomjának felhasználásával és becsülje meg a hibát!

Megoldás: a)
$$\ln(1+u) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} u^n$$
, $R = 1$

 $u = \frac{x^2}{2}$ helyettesítéssel:

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \left(\frac{x^2}{3}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 3^n} x^{2n}$$

Konvergenciasugár: $\left|\frac{x^2}{3}\right| < 1 \implies |x| < \sqrt{3} \implies R_f = \sqrt{3}$

b) $\left[0\,,\,1\right]\subset\left(-\sqrt{3}\,,\,\sqrt{3}\right),$ szabad tagonként integrálni:

$$\int_{0}^{1} \ln\left(1 + \frac{x^{2}}{3}\right) dx = \int_{0}^{1} \left(\underbrace{\frac{x^{2}}{3} - \frac{x^{4}}{2 \cdot 3^{2}}}_{T_{4}(x)} + \frac{x^{6}}{3 \cdot 3^{3}} - + \cdots\right) dx =$$

$$= \frac{x^3}{3 \cdot 3} - \frac{x^5}{2 \cdot 3^2 \cdot 5} + \frac{x^7}{3 \cdot 3^3 \cdot 7} - + \cdots \Big|_{0}^{1} =$$

$$= \frac{1}{3 \cdot 3} - \frac{1}{2 \cdot 3^2 \cdot 5} + \frac{1}{3 \cdot 3^3 \cdot 7} - + \cdots \approx$$

$$\approx \frac{1}{3 \cdot 3} - \frac{1}{2 \cdot 3^2 \cdot 5} = 0, 1, \qquad |H| < \frac{1}{3 \cdot 3^3 \cdot 7} \text{ (Leibniz sor)}$$

2.5.7. Feladat. Tudjuk, hogy

$$\operatorname{arctg} u = u - \frac{u^3}{3} + \frac{u^5}{5} - \frac{u^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{2n+1}, \quad |u| \le 1$$

a) Írja fel az

$$f(x) = x^3 \operatorname{arctg} \frac{x^2}{2}$$

függvény $x_0 = 0$ pontra támaszkodó Taylor sorát! R = ?

- b) $f^{(20)}(0) = ?$, $f^{(21)}(0) = ?$ (A sorfejtésből adjon választ!)
- c) Adjon becslést az $\int_0^1 f(x) dx$ integrál értékére az integranduszt kilencedfokú Taylor polinomjával közelítve!

Megoldás: a)
$$\arctan \frac{x^2}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{x^2}{2}\right)^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) \ 2^{2n+1}} \ x^{4n+2}$$

Konvergenciatartomány:

$$\left| \frac{x^2}{2} \right| \le 1 \implies |x| \le \sqrt{2}$$

$$f(x) = x^3 \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) \ 2^{2n+1}} \ x^{4n+2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1) \ 2^{2n+1}} \ x^{4n+5} = \underbrace{\frac{x^5}{2} - \frac{x^9}{3 \cdot 2^3}}_{T_0(x)} + \frac{x^{13}}{5 \cdot 2^5} - \frac{x^{17}}{7 \cdot 2^7} + \cdots, \qquad R = \sqrt{2}$$

b)
$$a_n = \frac{f^{(n)}(0)}{n!}$$
 miatt $f^{(n)}(0) = n! \cdot a_n$
 $f^{(20)}(0) = 20! \cdot a_{20} = 0$, mert $a_{20} = 0$ (x^{20} -os tag nincs a sorban)
 $f^{(21)}(0) = 21! \cdot a_{21} = 21! \cdot \frac{(-1)^4}{9 \cdot 2^9}$
($a_{21} : x^{21}$ együtthatója, ezért $4n + 5 = 21 \implies n = 4$)

c) Mivel $\left[0\,,\,1\right]\subset\left(-\sqrt{2}\,,\,\sqrt{2}\right),$ ezért szabad tagonként integrálni:

$$\int_{0}^{1} f(x) \, dx = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1) 2^{2n+1}} x^{4n+2} \, dx =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1) 2^{2n+1}} \int_{0}^{1} x^{4n+2} \, dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1) 2^{2n+1}} \frac{x^{4n+6}}{4n+6} \Big|_{0}^{1} =$$

$$= \frac{x^{6}}{2 \cdot 6} - \frac{x^{10}}{3 \cdot 2^{3} \cdot 10} + \frac{x^{13}}{5 \cdot 2^{5} \cdot 13} - \dots \Big|_{0}^{1} =$$

$$= \frac{1}{2 \cdot 6} - \frac{1}{3 \cdot 2^{3} \cdot 10} + \frac{1}{5 \cdot 2^{5} \cdot 13} - \dots \approx \frac{1}{12} - \frac{1}{240}, \quad |H| < \frac{1}{5 \cdot 2^{5} \cdot 13}$$

(Leibniz sort kaptunk.)

2.5.8. Feladat. Írjuk fel ${\rm e}^x$, $\sin x$, $\cos x$, ${\rm ch}\,x$, ${\rm sh}\,x$ Taylor-sorát és konvergenciatartományát!

Megoldás:

•••

2.5.9. Feladat. Írja fel az alábbi függvények x_0 pontbeli Taylor sorát és annak konvergenciatartományát!

a)
$$f_1(x) = \sin 3x^2$$
, $x_0 = 0$

b)
$$f_2(x) = e^{4x}$$
, $x_0 = 0$, ill. $x_0 = 3$

c)
$$f_3(x) = \sin 2x^4$$
, $x_0 = 0$

d)
$$f_4(x) = e^{-2x} \cosh 5x$$
, $x_0 = 0$

Megoldás:
a)
$$f_1(x) = u - \frac{u^3}{3!} + \frac{u^5}{5!} - \cdots \Big|_{u=3x^2} = 3x^2 - \frac{3^3}{3!}x^6 + \frac{3^5}{5!}x^{10} - \cdots, \qquad x \in \mathbb{R}$$

b)
$$e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \frac{u^4}{4!} + \cdots, \quad u \in \mathbb{R}$$

 $x_0 = 0 : u = 4x$ helyettesítéssel:

$$f_2(x) = e^{4x} = 1 + 4x + \frac{4^2}{2!}x^2 + \frac{4^3}{3!}x^3 + \frac{4^4}{4!}x^4 + \cdots, \qquad x \in \mathbb{R}$$

$$x_0 = 3$$
:

$$f_2(x) = e^{4(x-3)+12} = e^{12} e^{4(x-3)} =$$

$$= e^{12} \left(1 + 4(x-3) + \frac{4^2}{2!} (x-3)^2 + \frac{4^3}{3!} (x-3)^3 + \frac{4^4}{4!} (x-3)^4 + \cdots \right)$$

$$x \in \mathbb{R}$$

c)
$$f_3(x) = \operatorname{sh} 2 x^4 = u + \frac{u^3}{3!} + \frac{u^5}{5!} + \frac{u^7}{7!} + \cdots \Big|_{u=2x^4} = 2 x^4 + \frac{2^3}{3!} x^{12} + \frac{2^5}{5!} x^{20} + \cdots, \qquad x \in \mathbb{R}$$

d)
$$f_4(x) = e^{-2x} \cosh 5x = e^{-2x} \frac{e^{5x} + e^{-5x}}{2} = \frac{1}{2} (e^{3x} + e^{-7x}) = \cdots$$

2.5.1. Gyakorló feladatok

2.5.10. Feladat. Írja fel az alábbi függvény megadott ponthoz tartozó Taylor sorát és adja meg annak konvergenciatartományát!

a)
$$f(x) = \frac{1}{x-8}$$
, $x_0 = 4$

b)
$$g(x) = \frac{1}{2x^2 + 6}$$
, $x_0 = 0$

2.5.11. Feladat.

$$f(x) = x \, \operatorname{sh}(2 \, x^2)$$

a) Írja fel az f függvény $x_0 = 0$ pontra támaszkodó Taylor sorát és adja meg annak konvergencia tartományát!

b) $f^{(100)}(0) = ?$, $f^{(99)}(0) = ?$ (A sorfejtésből adjon választ!)

c) Írja fel f deriváltfüggvényének $x_0 = 0$ pontra támaszkodó Taylor sorát! Indokoljon!

2.5.12. Feladat. Írja fel az

$$f(x) = e^{2x+3}$$

 x_0 bázispontú Taylor sorait és azok konvergenciasugarait!

$$a) \quad x_0 = 0$$

a)
$$x_0 = 0$$
 b) $x_0 = 3$

2.5.13. Feladat.

a) Adja meg az alábbi függvények megadott pontra támaszkodó Taylor sorát és annak konvergenciatartományát!

a1)
$$f(x) = e^{-3x}$$
, $x_0 = 2$ a2) $g(x) = x^2 e^{-x^2}$, $x_0 = 0$

b) Számítsa ki az

$$\int_{0}^{0,1} g(x) \, \mathrm{d}x$$

integrál értékét közelítően az integrálandó függvényt hatodfokú Taylor polinomjával közelítve! Adjon becslést az elkövetett hibára!

2.5.14. Feladat.

$$f(x) = 5 x^3 e^{-3x^2}, \qquad x_0 = 0$$

Írja fel a függvény Taylor sorát! Konvergenciatartomány? $f^{(100)}(0)=?$, $f^{(101)}(0)=?$ (A sorfejtésből adjon választ!)

Megoldás:
$$f(x) = 5 x^3 \sum_{n=0}^{\infty} \left. \frac{u^n}{n!} \right|_{u=-3x^2} = 5 \sum_{n=0}^{\infty} \frac{(-3)^n}{n!} x^{2n+3}, \qquad x \in \mathbb{R}$$
$$a_n = \frac{f^{(n)}(0)}{n!} \implies f^{(n)}(0) = n! a_n$$

Így
$$f^{(100)}(0) = 100! \ a_{100}$$
, ahol $a_{100} : x^{100}$ együtthatója: $2n + 3 = 100 \implies \nexists n \in \mathbb{N}$, melyre ez teljesülne $\implies a_{100} = 0$ $\implies f^{(100)}(0) = 0$ $f^{(101)}(0) = 101! \ a_{101}$, ahol $a_{101} : x^{101}$ együtthatója:

$$f^{(101)}(0) = 101! \ a_{101}$$
, ahol $a_{101} : x^{101}$ együtthatója:
 $2n + 3 = 101 \implies n = 49 \implies f^{(101)}(0) = 101! \ 5 \frac{(-3)^{49}}{49!}$

 ${\bf 2.5.15.}$ Feladat. Határozza meg a következő számsorok pontos összegét!

a)
$$\sum_{k=0}^{\infty} \frac{4^k}{k!} \ (= e^4)$$

b)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k \cdot k!} = (-1)^k$$

c)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} = \sin 1$$

d)
$$\sum_{k=1}^{\infty} \frac{1}{(2k)!} (= \operatorname{ch} 1 - 1)$$

•••

2.5.16. Feladat.

$$\lim_{x \to 0} \frac{x - \sin x}{x^2 \sin x} = ?$$

 $Megold\'{a}s:$

L'Hospital szabállyal hosszadalmas, ezért Taylor sorfejtéssel dolgozunk:

•••

2.5.17. Feladat.

$$\lim_{x \to 0} \frac{e^{-x^4} + x^4 - 1}{x^5 \cdot \sin 2x^3} = ?$$

 ${\bf A}$ számláló és a nevező megfelelő Taylor sorfejtésével oldja meg a feladatot!

 $Megold\'{a}s:$

• • • •

2.5.18. Feladat. Szemléltessük, hogy $e^{j\varphi} = \cos \varphi + j \sin \varphi$

Megoldás:

$$e^{j\varphi} = \sum_{n=0}^{\infty} \frac{(j\varphi)^n}{n!} = 1 + j\varphi + \frac{j^2 \varphi^2}{2!} + \frac{j^3 \varphi^3}{3!} + \frac{j^4 \varphi^4}{4!} + \frac{j^5 \varphi^5}{5!} + \dots =$$

$$= \dots = \left(1 - \frac{\varphi^2}{2!} + \frac{\varphi^4}{4!} - + \dots\right) + j\left(\varphi - \frac{\varphi^3}{3!} + \frac{\varphi^5}{5!} - + \dots\right) =$$

$$= \cos \varphi + j \sin \varphi$$

2.6. Binomiális sorfejtés

2.6.1. Feladat.

Írja fel az

$$f(x) = \frac{1}{\sqrt{4-x}},$$
 $g(x) = \frac{1}{\sqrt{4-x^2}}$

függvények $x_0 = 0$ bázispontú Taylor sorát és a sor konvergencia sugarát! $a_4 = ?$ (Elemi műveletekkel adja meg!)

Megoldás:

Megoldas:
Tudjuk, hogy
$$(1+u)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} u^k$$
, $R = 1$. Ezt használjuk fel:
 $f(x) = \frac{1}{\sqrt{4}} \frac{1}{\sqrt{1-\frac{x}{4}}} = \frac{1}{2} \left(1+\left(-\frac{x}{4}\right)\right)^{-1/2} = \frac{1}{2} \sum_{k=0}^{\infty} {\binom{-1/2}{k}} \left(-\frac{x}{4}\right)^k =$

$$= \frac{1}{2} \sum_{k=0}^{\infty} {\binom{-1/2}{k}} \frac{(-1)^k}{4^k} x^k$$

$$\left|-\frac{x}{4}\right| < 1 \implies |x| < 4 \implies R_f = 4$$

$$a_4 = \frac{1}{2} {\binom{-1/2}{4}} \frac{(-1)^4}{4^4} = \frac{1}{2} \frac{\left(-\frac{1}{2}\right) \left(-\frac{3}{2}\right) \left(-\frac{5}{2}\right) \left(-\frac{7}{2}\right)}{1+2+3+4} \frac{1}{4^4}$$

$$g(x) = \frac{1}{\sqrt{4}} \frac{1}{\sqrt{1 - \frac{x^2}{4}}} = \frac{1}{2} \left(1 + \left(-\frac{x^2}{4} \right) \right)^{-1/2} = \frac{1}{2} \sum_{k=0}^{\infty} \left(-\frac{1}{2} \right) \left(-\frac{x^2}{4} \right)^k =$$

$$= \frac{1}{2} \sum_{k=0}^{\infty} \left(-\frac{1}{2} \right) \frac{(-1)^k}{4^k} x^{2k}$$

$$\left| -\frac{x^2}{4} \right| < 1 \implies |x| < 2 \implies R_g = 2$$

$$a_4 = \frac{1}{2} \left(-\frac{1}{2} \right) \frac{(-1)^2}{4^2} = \frac{1}{2} \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{1 \cdot 2} \frac{1}{4^2}$$

2.6.2. Feladat.

$$f(x) = \frac{1}{\sqrt[5]{32 - 2x^2}}, \qquad x_0 = 0$$

- a) Írja fel az f függvény x_0 bázispontú Taylor sorát és a sor konvergencia sugarát!
- b) $a_8 = ?$ (Elemi műveletekkel adja meg!)

c)
$$f^{(26)}(0) = ?$$
, $f^{(25)}(0) = ?$

$$Megold\acute{a}s$$
: a) Tudjuk, hogy $(1+u)^\alpha=\sum\limits_{k=0}^\infty\,\binom{\alpha}{k}\,u^k$, $R=1$. Ezt használjuk fel:

$$f(x) = \frac{1}{\sqrt[5]{32}} \frac{1}{\left(1 + \left(-\frac{x^2}{16}\right)\right)^{1/5}} = \frac{1}{2} \left(1 + \left(-\frac{x^2}{16}\right)\right)^{-1/5} =$$
$$= \frac{1}{2} \sum_{k=0}^{\infty} {\binom{-\frac{1}{5}}{k}} \left(-\frac{x^2}{16}\right)^k = \sum_{k=0}^{\infty} \frac{1}{2} {\binom{-\frac{1}{5}}{k}} \frac{(-1)^k}{16^k} x^{2k}$$

Konvergenciasugár:

$$\left| -\frac{x^2}{16} \right| < 1 \quad \Longrightarrow \quad |x| < 4 \,, \qquad R = 4$$

b)
$$a_8 = \frac{1}{2} \cdot \frac{\left(-\frac{1}{5}\right) \left(-\frac{6}{5}\right) \left(-\frac{11}{5}\right) \left(-\frac{16}{5}\right)}{1 \cdot 2 \cdot 3 \cdot 4} \frac{1}{16^4}$$

 $(x^8 \text{ együtthatója}, k = 4)$

c)
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 és $a_n = \frac{f^{(n)}(0)}{n!}$ miatt $f^{(n)}(0) = n! \cdot a_n$
 $f^{(26)}(0) = 26! \cdot a_{26} = 26! \cdot \frac{1}{2} \left(\frac{-\frac{1}{5}}{13}\right) \frac{(-1)^{13}}{16^{13}}$
 $(a_{26} : x^{26} \text{ együtthatója, ezért } 2k = 26 \implies k = 13)$

$$f^{(25)}(0) = 25! \cdot a_{25} = 0$$
, mert $a_{25} = 0$
(x^{25} -es tag nincs a sorban, tehát 0 együtthatója van.)

2.6.3. Feladat.

Írja fel a

$$g(x) = \frac{2x^3}{\sqrt[5]{32 - 2x^2}}, \qquad x_0 = 0$$

bázispontú Taylor sorát és a sor konvergencia sugarát! $g^{(102)}(0) = ?$, $g^{(103)}(0) = ?$

Megoldás:

Mivel $g(x) = 2x^3 \cdot f(x)$, felhasználhatjuk az előző példa eredményét:

$$g(x) = 2x^3 \frac{1}{2} \sum_{k=0}^{\infty} {-\frac{1}{5} \choose k} \frac{(-1)^k}{16^k} x^{2k} = \sum_{k=0}^{\infty} {-\frac{1}{5} \choose k} \frac{(-1)^k}{16^k} x^{2k+3},$$

$$R = 4 \text{ (ugyanaz)}$$

$$g(x) = \sum_{n=0}^{\infty} a_n x^n$$
 és $a_n = \frac{g^{(n)}(0)}{n!}$ miatt $g^{(n)}(0) = n! \cdot a_n$.

$$g^{(102)}(0) = 102! \cdot a_{102} = 0$$
, mert $a_{102} = 0$ (x^{102} -es tag nincs a sorban)

$$g^{(103)}(0) = 103! \cdot a_{103} = 103! \cdot {\binom{-\frac{1}{5}}{50}} \frac{(-1)^{50}}{16^{50}}$$

$$(a_{103}: x^{103}$$
 együtthatója, ezért $2k+3=103 \implies k=50)$

2.6.4. Feladat.

$$\int_{0}^{1/2} \frac{1}{\sqrt{1+x^4}} \, \mathrm{d}x \approx ?$$

Az integranduszt nyolcadfokú Taylor polinomjával közelítse és becsülje meg a hibát!

Megoldás:

$$(1+x^4)^{-1/2} = \sum_{k=0}^{\infty} {\binom{-1/2}{k}} x^{4k} = \underbrace{1 - \frac{1}{2} x^4 + \frac{3}{8} x^8}_{T_8(x)} - \frac{5}{16} x^{12} + \cdots$$
$$|x^4| = |x|^4 < 1 \implies |x| < 1 \implies R = 1$$

 $(0,1/2)\subset (-1,1)$ \Longrightarrow szabad tagonként integrálni:

$$\int_{0}^{1/2} (1+x^{4})^{-1/2} dx = x - \frac{1}{2 \cdot 5} x^{5} + \frac{3}{8 \cdot 9} x^{9} - \frac{5}{16 \cdot 13} x^{13} + - \cdots \Big|_{0}^{1/2} \approx \frac{1}{2} - \frac{1}{2 \cdot 5 \cdot 2^{5}} + \frac{3}{8 \cdot 9 \cdot 2^{9}}, \qquad |H| < \frac{5}{16 \cdot 13 \cdot 2^{13}} \text{ (Leibniz sor)}$$

2.6.1. Gyakorló feladatok

2.6.5. Feladat.

$$f(x) = \sqrt[4]{1 + 2x^3}$$

- a) Írja fel az függvény $x_0 = 0$ pontra támaszkodó Taylor sorát és adja meg annak konvergencia sugarát!
- b) A sorfejtésből adjon választ: $f^{(9)}(0) = ?$, $f^{(10)}(0) = ?$ (Az értékeket elemi műveletekkel adja meg!)

2.6.6. Feladat. Határozza meg az

$$f(x) = \sqrt[5]{32 + x}$$

függvény $x_0=0$ bázispontú Taylor-sorát! Mennyi a sor konvergenciasugara? A harmadrendű Taylor-polinommal közelítve adja meg $\sqrt[5]{33}$ közelítő értékét elemi műveletekkel kifejezve!

2.6.7. Feladat. Írja fel az

$$f(x) = \frac{1}{\sqrt[3]{1+x}}$$
 és a $g(x) = \frac{1}{\sqrt[3]{1-5x^2}}$

 $f(x)=\frac{1}{\sqrt[3]{1+x}}$ és a $g(x)=\frac{1}{\sqrt[3]{1-5x^2}}$ függvények $x_0=0$ körüli Taylor sorait és határozza meg azok konvergencia sugarait! $q^{(6)}(0) = ?$ (Elemi műveletekkel adja meg!)

2.6.8. Feladat. Határozza meg az

$$f(x) = \frac{1}{\sqrt[4]{16 - 3x^3}}$$

függvény $x_0 = 0$ bázispontú Taylor-sorát! Mennyi a sor konvergencia sugara? A Taylor-sor segítségével adja meg (elemi műveletekkel kifejezve) az $f^{(12)}(0)$ és $f^{(13)}(0)$ deriváltak értékét!

2.6.9. Feladat.

$$f(x) = \frac{1}{\sqrt{9+x^4}}$$

- a) Írja fel az $x_0 = 0$ ponthoz tartozó Taylor-sorát és adja meg annak konvergenciasugarát!
 - Írja fel a_{12} (x^{12} együtthatója) értékét elemi műveletekkel!

b)
$$\int_{0}^{1} f(x) \, \mathrm{d}x$$

Határozza meg az integrál értékét közelítően az integrálandó függvényt negyedfokú Taylor-polinomjával közelítve! Adjon becslést az elkövetett hibára!

2.7. Fourier-sor

Emlékeztető:

Az előadásból tudjuk, hogy ha f 2π szerint periodikus és $f \in R_{[0,2\pi]}$ (f integrálható $[0,2\pi]$ -n), akkor f Fourier sora

$$\Phi(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx),$$

ahol

$$a_k = \frac{1}{\pi} \int_a^{a+2\pi} f(x) \cos kx \, dx, \ k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_a^{a+2\pi} f(x) \sin kx \, dx, \qquad k = 1, 2, \dots$$

 a_k, b_k neve: Fourier együtthatók. Itt $a \in \mathbb{R}$ tetszőleges.

A konvergenciára vonatkozó általunk használt elégséges tétel:

2.7.1. Tétel (Dirichlet tétel).

Ha az f függvény 2π szerint periodikus, $f \in R_{[0,2\pi]}$, a periodus felbontható véges sok (α,β) intervallumra, hogy itt f monoton és a végpontokban \exists a véges határérték, akkor f Fourier sora minden x-re konvergens, és

$$\Phi(x) = \frac{f(x-0) + f(x+0)}{2}$$

2.7.2. Feladat. Határozza meg az alábbi függvény
 Fourier sorát (összegfüggvénye legyen ϕ)!

$$f(x) = \begin{cases} 5, & \text{ha } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \\ 0, & \text{ha } x \in \left[-\pi, -\frac{\pi}{2} \right) \cup \left(\frac{\pi}{2}, \pi \right) \end{cases}$$

$$f(x) = f(x + 2\pi), \quad \forall x \in \mathbb{R}$$

Írja fel a sor első négy nem nulla tagját!
$$\phi\left(-\frac{\pi}{2}\right) = ?$$
, $\phi\left(\frac{\pi}{2}\right) = ?$

Az f függvény grafikonja a $\frac{2.1}{a}$ ábrán látható.

Most $a = -\pi$ választás célszerű.

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$
; $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$

 $b_k = 0$, mert a függvény páros.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{f(x)}_{\text{páros}} dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \left(\int_{0}^{\pi/2} 5 dx + \int_{\pi/2}^{\pi} 0 dx \right) = \dots = 5$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{f(x) \cos kx}_{\text{páros}} dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos kx dx =$$

$$= \frac{2}{\pi} \left(\int_{0}^{\pi/2} 5 \cos kx dx + \int_{\pi/2}^{\pi} 0 dx \right) = \frac{2}{\pi} 5 \frac{\sin kx}{k} \Big|_{0}^{\pi/2} =$$

$$= \frac{10}{\pi} \frac{1}{k} \left(\sin k \frac{\pi}{2} - 0 \right)$$

Tehát:

$$a_k = \frac{10}{\pi} \frac{1}{k}$$
.
$$\begin{cases} 0, & \text{ha } k = 2l \\ 1, & \text{ha } k = 4l + 1 \\ -1, & \text{ha } k = 4l + 3 \end{cases}$$

Igy a Fourier sor:

$$\phi(x) = \frac{5}{2} + \frac{10}{\pi} \left(\frac{1}{1} \cos x - \frac{1}{3} \cos 3x + \frac{1}{5} \cos 5x - \frac{1}{7} \cos 7x + \cdots \right)$$

$$\phi(x) = \frac{f(x-0) + f(x+0)}{2} \quad \text{miatt} \quad \phi\left(-\frac{\pi}{2}\right) = \phi\left(\frac{\pi}{2}\right) = \frac{0+5}{2}$$
 A Fourier-sor Φ összege a 2.1/b) ábrán látható.

2.1. ábra. (2.7.2 feladathoz.) Az f függvény és a Fourier-sorának Φ összegfüggvénye.

2.7.3. Feladat.

$$f(x) = x$$
, ha $0 < x \le 2\pi$ és $f(x + 2k\pi) = f(x)$ $(k \in \mathbb{Z})$

- a) Határozza meg f Fourier sorát! Jelölje a Fourier sor összegfüggvényét $\phi(x)$! $f(x) = \phi(x)$ milyen x-ekre igaz? Egyenletesen konvergens-e a Fourier sor?
- b) A Fourier sor segítségével határozza meg a $\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$ numerikus sor összegét!

Megoldás:

a) Az f függvény grafikonja a 2.2/a) ábrán látható. Most a=0 választás célszerű.

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos kx \, dx \; ; \qquad b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin kx \, dx$$

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} x \, dx = \dots = 2 \pi$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} \underbrace{x}_u \underbrace{\cos kx}_{v'} dx = \dots = 0$$
 (parciális integrálás)

2.2. ábra. (2.7.3 feladathoz.) Az f függvény és a Fourier-sorának Φ összegfüggvénye.

$$b_k = \frac{1}{\pi} \int_0^{2\pi} \underbrace{x}_{u} \underbrace{\sin kx}_{v'} dx = \dots = -\frac{2}{k}$$

$$\phi(x) = \pi - 2 \sum_{k=1}^{\infty} \frac{\sin kx}{k}$$
 (parciális integrálás)

Dirichlet tétele alapján: $f(x)=\phi(x)$, ha $x\neq 2k\pi$ és $\phi(2k\pi)=\pi$. A Fourier-sor Φ összege a 2.2/b) ábrán látható.

A konvergencia nem egyenletes, mert bár az f_n függvények folytonosak, de az összegfüggvény (ϕ) nem folytonos.

b)
$$\frac{\pi}{2}$$
-ben f folytonos, ezért $\phi\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$ alapján:

$$\frac{\pi}{2} = \pi - 2 \sum_{k=1}^{\infty} \frac{\sin k \frac{\pi}{2}}{k}$$

$$\frac{\pi}{2} = \pi - 2 \left(1 + 0 - \frac{1}{3} + 0 + \frac{1}{5} + 0 - \frac{1}{7} + \cdots \right)$$

$$\frac{\pi}{2} = \pi - 2 \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} \implies \sum_{k=1}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$$

2.7.4. Megjegyzés.

A Fourier sort ügyesebben is felírhattuk volna az alábbi ötlettel: $g_1(x) := f(x) - \pi$. Ez már majdnem páratlan függvény. Ha a szakadási pontokban megváltoztatjuk a függvényértéket 0- ra, akkor az így kapott, mondjuk g függvény már páratlan, így a sorfejtése sokkal rövidebb. Mivel g és g_1 függvény Fourier sora megegyezik, így ebből már f Fourier sora π hozzáadásával megkapható.

2.7.1. Gyakorló feladatok

2.7.5. Feladat. Határozza meg az alábbi függvény
 Fourier sorát (összegfüggvénye legyen ϕ)!

$$f(x) = \begin{cases} 3, & \text{ha } x \in [-\pi, -\pi/2] \cup [\pi/2, \pi] \\ 0, & \text{ha } x \in (-\pi/2, \pi/2) \end{cases} \qquad f(x) = f(x + 2\pi), \quad \forall \, x \in \mathbb{R}$$

$$\phi(x) = ?$$

2.7.6. Feladat. Határozza meg az alábbi függvény Fourier együtthatóit! Írja fel a Fourier sor első négy nem nulla tagját!

$$f(x) = \begin{cases} 0, & \text{ha } x \in \left[-\pi, -\frac{\pi}{2} \right) \cup \left(\frac{\pi}{2}, \pi \right) \\ 6, & \text{ha } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases} \qquad f(x) = f(x + 2\pi), \quad \forall x \in \mathbb{R}$$

Legyen a sor összegfüggvénye ϕ ! $\phi\left(\frac{\pi}{2}\right) = ?$, $\phi\left(0\right) = ?$

2.7.7. Feladat. Határozza meg az alábbi függvény Fourier együtthatóit!

$$f(x) = \begin{cases} 3, & \text{ha } x \in [-\pi, 0) \\ -3, & \text{ha } x \in [0, \pi) \end{cases} \qquad f(x) = f(x + 2\pi), \quad \forall x \in \mathbb{R}$$

Írja fel a Fourier sor első négy nem nulla tagját! A sor összegfüggvénye legyen ϕ ! $\phi(0) = ?$, $\phi\left(\frac{\pi}{2}\right) = ?$ Egyenletesen konvergens-e a Fourier sor?

2.7.8. Feladat.

$$f(x) = \begin{cases} 4, & \text{ha} \quad x \in (-\pi, 0) \\ -4, & \text{ha} \quad x \in (0, \pi) \\ 0, & \text{ha} \quad x = 0, \text{ vagy } x = \pi \end{cases}, \qquad f(x + 2\pi) = f(x)$$

Írja fel az 2π szerint periodikus f függvény Fourier sorát! Hol állítja elő a Fourier sor a függvényt?

3. fejezet

Többváltozós függvények

Ábrázolással csak előadáson foglalkozunk. Az alábbi típusú felületeket kell felismerni:

$$\begin{array}{ll} ax + by + cz = d \\ z = x^2 + y^2 \,; & z = -x^2 - y^2 \,; & z = 6 + x^2 + y^2 \,; & z = 6 - x^2 - y^2 \\ z = \sqrt{x^2 + y^2} \,; & z^2 = x^2 + y^2 \\ x^2 + y^2 + z^2 = R^2 \,; & z = \sqrt{R^2 - x^2 - y^2} \,; & \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \\ z = xy \,; & z = y^2 - x^2 \end{array}$$

3.1. Határérték, folytonosság

3.1.1. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{xy+3}{x^2y+4} = ?$$

Megoldás:

$$\lim_{(x,y)\to(0,0)} \frac{xy+3}{x^2y+4} = \frac{0+3}{0+4} = \frac{3}{4}$$

(Csak behelyettesítenünk kellett.)

3.1.2. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 y)}{x^2 \cos y^2} = ?$$

 $Megold\'{a}s:$

$$\lim_{(x,y)\to(0,0)} \ \frac{\sin{(x^2\,y)}}{x^2\,\cos{y^2}} = \lim_{(x,y)\to(0,0)} \ \frac{\sin{(x^2\,y)}}{x^2y} \ \frac{y}{\cos{y^2}} = 1 \cdot \frac{0}{1} = 0$$
 Felhasználtuk, hogy
$$\lim_{u\to 0} \ \frac{\sin{u}}{u} = 1 \, .$$

3.1.3. Feladat.

$$\lim_{(x,y)\to(0,0)} \arctan(xy) \cdot \sin\frac{1}{x^2 + y^2} = ?$$

Megoldás:

$$\lim_{(x,y)\to(0,0)}\ \operatorname{arctg}(xy)\,\cdot\,\sin\frac{1}{x^2+y^2}\,=\,0\;,\quad \operatorname{mert}\ (0\cdot\operatorname{korlátos})\ \operatorname{alakú}.$$

3.1.4. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{2x^2 + 2y^2} = ?$$

Megoldás:

Az y = mx egyenesek mentén:

$$\lim_{x\to 0} f(x,mx) = \lim_{x\to 0} \frac{m x^2}{2x^2 + 2m^2 x^2} = \lim_{x\to 0} \frac{x^2}{x^2} \frac{m}{2 + 2m^2} = \frac{m}{2 + 2m^2}$$
 függ m -től $\implies \nexists$ a határérték.

3.1.5. Feladat. Hol folytonos az alábbi függvény?

$$f(x,y) = \begin{cases} \frac{3x^2y^2}{4x^4 + 7y^4}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

Megoldás:

Ha $(x,y) \neq (0,0)$, akkor a függvény folytonos, mert folytonos függvények összetétele. Vizsgálandó a $\lim_{(x,y)\to(0,0)} f(x,y)$ határérték!

Az y = mx egyenesek mentén:

$$\lim_{x\to 0}\ f(x,mx)\ =\ \lim_{x\to 0}\ \frac{3m^2x^4}{4x^4+7m^4x^4} = \frac{3m^2}{4+7m^4}\quad {\rm függ}\ m\,{\text{-t\"ol}}$$

⇒ ∄ a határérték. Így a függvény az origóban nem folytonos.

3.1.6. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{3xy^3}{2x^2+2y^2} = ?$$

Megoldás:

 $x_n = \varrho_n \cos \varphi_n$, $y_n = \varrho_n \sin \varphi_n$, φ_n tetsz., $\varrho_n \to 0$ egy tetszőleges (0,0)-hoz tartó pontsorozat. E mentén vizsgáljuk $f(x_n, y_n)$ konvergenciáját:

$$\lim_{\begin{subarray}{c} \varrho_n \to 0 \end{subarray}} \frac{3\varrho_n^4 \, \cos\varphi_n \sin^3\varphi_n}{2\varrho_n^2} = \lim_{\begin{subarray}{c} \varrho_n \to 0 \end{subarray}} \varrho_n^2 \, \frac{3}{2} \, \cos\varphi_n \, \sin^3\varphi_n = 0$$

$$\varphi_n \, \text{tetsz.} \quad \varphi_n \text{tetsz.} \quad 0$$

Tehát a keresett határérték 0.

3.1.7. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{x y^2}{2x^2 + 3y^2} = ?$$

Az előző megoldás mintájára:

 $x_n=\varrho_n\cos\varphi_n$, $y_n=\varrho_n\sin\varphi_n$, φ_n tetsz., $\varrho_n\to 0$ tetszőleges (0,0)-hoz tartó pontsorozattal vizsgálva:

$$\lim_{\substack{\varrho_n \to 0}} \frac{\varrho_n^3 \cos \varphi_n \sin^2 \varphi_n}{2\varrho_n^2 \cos^2 \varphi_n + 3\varrho_n^2 \sin^2 \varphi_n} = \lim_{\substack{\varrho_n \to 0}} \frac{\varrho_n}{\varrho_n \to 0} \downarrow \underbrace{\frac{\cos \varphi_n \sin^2 \varphi_n}{2 + \sin^2 \varphi_n}}_{\text{korlátos}} = 0$$

$$\varphi_n \text{ tetsz.} \quad 0$$

Tehát a keresett határérték 0.

3.1.8. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{3x^2 + 5y^2}{2x^2 + y^2} = ?$$

Megoldás:

Koordinátánkénti (másszóval iterált) limeszekkel dolgozunk:

$$\lim_{x \to 0} \lim_{y \to 0} \frac{3x^2 + 5y^2}{2x^2 + y^2} = \lim_{x \to 0} \frac{3x^2}{2x^2} = \frac{3}{2}$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{3x^2 + 5y^2}{2x^2 + y^2} = \lim_{y \to 0} \frac{5y^2}{y^2} = 5 \neq \frac{3}{2}$$

Tehát a keresett határérték nem létezik.

3.1.1. Gyakorló feladatok

3.1.9. Feladat.

$$\lim_{(x,y)\to(2,1)} \frac{e^{x^2-3y}}{1+2x^2+3y^2} = ?$$

f folytonos mindenütt, így a határérték mindenütt a helyettesítési érték:

$$\implies \lim_{(x,y)\to(0,0)} \frac{e^{x^2-3y}}{1+2x^2+3y^2} = f(2,1) = \frac{e}{12}$$

3.1.10. Feladat.

$$\lim_{(x,y)\to(0,0)} \frac{4x+3y}{2x+8y} = ?$$

Megoldás:

. . .

 $(Iterált\ limeszekkel\ próbálkozzon!)$

3.1.11. Feladat.

$$\lim_{(x,y)\to(0,0)} (3x^2 + 4y^2) \arctan \frac{x}{y} = ?$$

 $Megold\'{a}s:$

 $0 \cdot \text{korlátos} \longrightarrow 0$

3.1.12. Feladat.

a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin 2y}{x^2 + y^2} = ?$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 \sin 2y}{2x^2 + 5y^2} = ?$$

Megoldás:

...

3.1.13. Feladat.

a)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{\cos(xy^2)\sqrt{x^2+y^2}} = ?$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{x^5 y^3}{6x^8 + y^8} = ?$$

 $Megold\'{a}s:$

•••

3.2. Parciális deriváltak, totális derivált

3.2.1. Feladat.

$$f(x,y) = \frac{x^2 e^{x+y^2}}{2x^2+1} + \ln(x^4+1) + (2y+1)^6$$

$$f'_x(x,y) = ?; \quad f'_y(x,y) = ?$$

Megoldás:
$$f(x,y) = \frac{x^2 e^x}{2x^2 + 1} e^{y^2} + \ln(x^4 + 1) + (2y + 1)^6$$
$$f'_x(x,y) = \frac{(2x e^x + x^2 e^x)(2x^2 + 1) - x^2 e^x 4x}{(2x^2 + 1)^2} e^{y^2} + \frac{4x^3}{x^4 + 1}$$
$$f'_y(x,y) = \frac{x^2 e^x}{2x^2 + 1} 2y e^{y^2} + 6(2y + 1)^5 2$$

3.2.2. Feladat.

$$f(x,y) = x^3 - 3x y^2 + 2x - 5y + \ln 2$$

a)
$$f'_x(x,y) = ?$$
; $f'_y(x,y) = ?$

b) Számítsa ki a másodrendű parciális deriváltfüggvényeket!

c)
$$\Delta f = f''_{xx} + f''_{yy} = ?$$

Megoldás:

a)
$$f'_x(x,y) = 3x^2 - 3y^2 + 2$$
, $f'_y(x,y) = -6xy - 5$

b)
$$f''_{xx} = 6x$$

 $f''_{xy} = f''_{yx} = -6y$
 $f''_{yy} = -6x$

c)
$$\Delta f = 6x - 6x \equiv 0$$

Az ilyen tulajdonságú függvényt harmonikus függvénynek nevezzük.

3.2.3. Feladat.

$$f(x,y) = \sqrt{5(x-1)^4 + 4y^2}$$

Írja fel az elsőrendű parciális deriváltfüggvényeket! (Az (1,0) pontban a definícióval dolgozzon!)

Megoldás:

Ha.
$$(x, y) \neq (1, 0)$$

Ha
$$(x,y) \neq (1,0)$$
:

$$f'_x(x,y) = \frac{1}{2\sqrt{5(x-1)^4 + 4y^2}} 20 (x-1)^3$$

$$f'_x(1,0) = \lim_{h \to 0} \frac{f(1+h,0) - f(1,0)}{h} = \lim_{h \to 0} \frac{\sqrt{5h^4} - 0}{h} = \lim_{h \to 0} \frac{\sqrt{5}h^2}{h} = 0$$

Ha
$$(x,y) \neq (1,0)$$
:

$$f'_y(x,y) = \frac{1}{2\sqrt{5(x-1)^4 + 4y^2}} 8y$$

$$f_y'(1,0) = \lim_{k \to 0} \frac{f(1,0+k) - f(1,0)}{k} = \lim_{k \to 0} \frac{\sqrt{4k^2} - 0}{k} = \lim_{k \to 0} \frac{2|k|}{k} = \nexists$$

Ha $(x,y) \neq (1,0)$, akkor az f függvény totálisan deriválható, mert a parciálisok léteznek és folytonosak.

Ha (x,y)=(1,0), akkor az f függvény nem deriválható, mert $f_y'(1,0)$ nem létezik, tehát nem teljesül a totális deriválhatóság egyik szükséges feltétele.

3.2.4. Feladat.

$$f(x,y) = (2x - y)^4 + 4x^3 - 8y^2$$

- a) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$
- b) Hol deriválható (totálisan) a függvény? (Indokoljon!) $\operatorname{grad} f(1,2) = ?$
- c) Számítsa ki a másodrendű parciális deriváltfüggvényeket!

Megoldás:

a)
$$f'_x(x,y) = 4(2x-y)^3 \cdot 2 + 12x^2$$
, $f'_y(x,y) = 4(2x-y)^3 \cdot (-1) - 16y$

b) Mivel a parciálisok mindenütt folytonosak, a függvény mindenütt totálisan deriválható (létezik mindenütt a gradiens). $\operatorname{grad} f(1,2) = f_x'(1,2)\,\underline{i} + f_y'(1,2)\,\underline{j} = 12\,\underline{i} - 32\,\underline{j}$

c)
$$f''_{xx} = 8 \cdot 3 (2x - y)^2 \cdot 2 + 24 x$$

 $f''_{xy} = f''_{yx} = 8 \cdot 3 (2x - y)^2 \cdot (-1)$
 $f''_{yy} = -4 \cdot 3 (2x - y)^2 \cdot (-1) - 16$

3.2.5. Feladat.

$$f(x,y) = \begin{cases} \frac{(x-2)y^2}{x^2 + y^2} + 6x + 3y, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$
- b) Hol differenciálható f?

Megolaas:
a) Ha
$$(x,y) \neq (0,0)$$
: $f'_x(x,y) = \frac{y^2(x^2+y^2) - (x-2)y^2 2x}{(x^2+y^2)^2} + 6$

Ha (x,y) = (0,0), akkor a definícióval kell dolgozni:

$$f'_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{6h - 0}{h} = 6$$

Ha
$$(x,y) \neq (0,0)$$
: $f'_y(x,y) = \frac{(x-2) 2y (x^2 + y^2) - (x-2) y^2 2y}{(x^2 + y^2)^2} + 3$

Ha (x,y) = (0,0), akkor most is a definícióval kell dolgozni:

$$f'_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{-2k^2}{k^2} + 3k - 0}{k} = \lim_{k \to 0} \left(-\frac{2}{k} + 3 \right) \not\equiv$$

b) Az origóban nem deriválható totálisan a függvény, mert $f'_y(0,0) \not\equiv$. (Egyébként a függvény nem is folytonos itt, tehát ezért sem deriválható.) Másutt deriválható, mert a parciálisok léteznek és folytonosak.

3.2.6. Feladat.

$$f(x,y) = \begin{cases} \frac{\sin(y^2 + 2x^2)}{\sqrt{y^2 + 2x^2}}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) $\lim_{(x,y)\to(0,0)} f(x,y) = ?$ Folytonos-e f az origóban?
- b) $f'_{x}(0,0) = ?$ (A definícióval dolgozzon!)
- c) Totálisan deriválható-e f az origóban?

$$\begin{array}{ll} \textit{Megold\'as:} \\ \text{a)} \lim_{(x,y) \to (0,0)} \; \frac{\sin{(y^2 + 2x^2)}}{\sqrt{y^2 + 2x^2}} \; = \; \lim_{(x,y) \to (0,0)} \; \frac{\sin{(y^2 + 2x^2)}}{y^2 + 2x^2} \; \sqrt{y^2 + 2x^2} \; = \\ \end{array}$$

$$= 1 \cdot 0 = 0 = f(0,0)$$

Tehát f folytonos (0,0)-ban.

b)
$$f'_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{\sin 2h^2}{\sqrt{2h^2}} - 0}{h} = \lim_{h \to 0} \frac{\sin 2h^2}{h} = \lim_{h \to 0} \frac{$$

c) Mivel $f'_x(0,0) \not\equiv$, f nem deriválható az origóban.

3.2.7. Feladat.

$$f(x, y, z) = x^3 + y^4 + x^2 y e^{2z}$$

a) $\operatorname{grad} f(-1, 1, 0) = ?$ Miért létezik?

b)
$$f'''_{xxz} = ?$$
 $f'''_{xzx} = ?$

Megoldás:

a) $f'_x = 3x^2 + 2xye^{2z}$, $f'_y = 4y^3 + x^2e^{2z}$, $f'_z = x^2ye^{2z}$ 2 A parciális deriváltak mindenütt léteznek és folytonosak, ezért gradf mindenütt

 $\operatorname{grad} f(-1, 1, 0) = f'_{x}(-1, 1, 0) \underline{i} + f'_{y}(-1, 1, 0) \underline{j} + f'_{z}(-1, 1, 0) \underline{k} = \underline{i} + 5 \underline{j} + 2 \underline{k}$

b)
$$f''_{xx} = 6x + 2ye^{2z}$$
 $f''_{xz} = 4xye^{2z}$ $f'''_{xzx} = 4ye^{2z}$

A parciálisok léteznek és folytonosak, így a "vegyes" parciálisok egyenlőek.

3.2.1. Gyakorló feladatok

3.2.8. Feladat.

$$f(x, y, z) = e^{x^2 + 2y} + \sin(x z)$$

 $\operatorname{grad} f = ?$ Miért létezik?

• • •

3.2.9. Feladat.

$$f(x,y) = \arctan(x^2 + y^4 + 1)$$

 $\operatorname{grad} f(0,1) = ?$ Miért létezik?

Megoldás:

...

3.2.10. Feladat.

$$f(x,y) = \sqrt{x^6 + y^2}$$

- a) $f_x'(x,y) = ?$; $f_y'(x,y) = ?$ (A (0,0) pontban a definícióval dolgozzon!)
- b) Írja fel gradf értékét, ahol az létezik!

Megoldás:

•••

3.2.11. Feladat.

$$f(x,y) = \begin{cases} \frac{y^2}{x^2 + 2y^2}, & \text{ha } (x,y) \neq (0,0) \\ 1, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$
- b) Hol differenciálható f?

•••

3.2.12. Feladat.

$$f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2} + 5x - 3y, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) Hol folytonos a függvény?
- b) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$ (A (0,0) pontban a definícióval dolgozzon!)
- c) Hol differenciálható f?

Megoldás:

3.2.13. Feladat.

$$f(x,y) = \begin{cases} x^2 \sin \frac{1}{x^2 + y^2}, & \text{ha } (x,y) \neq (0,0) \\ 0, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) Folytonos-e f az origóban?
- b) Írja fel az f_x' és f_y' függvényeket, ahol azok léteznek! (Az origóban a definícóval dolgozzon!)

Megoldás:

...

3.3. Érintősík, differenciál, iránymenti derivált

3.3.1. Feladat.

$$f(x,y) = (2x - y)^2 + 4x^2 - 8y$$

- a) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$
- b) Hol deriválható (totálisan) a függvény? (Indokoljon!)
- c) Írja fel a függvény $P_0(1,2)$ pontjabeli érintősíkjának egyenletét!

Megoldás:

a)
$$f'_x(x,y) = 2(2x-y) \cdot 2 + 8x$$
, $f'_y(x,y) = 2(2x-y) \cdot (-1) - 8$

b) f_x', f_y' mindenütt létezik és folytonos \implies f mindenütt deriválható.

c)
$$f'_x(1,2) = 8$$
, $f'_y(1,2) = -8$, $f(1,2) = -12$

Az érintősík:
$$f'_x(1,2)(x-1) + f'_y(1,2)(y-2) - (z-f(1,2)) = 0$$

 $8(x-1) - 8(y-2) - (z+12) = 0$

3.3.2. Feladat.

$$f(x, y, z) = x^2y + yz - 5z^2,$$
 $P_0(0, 10, 1)$

a) grad f = ? Miért létezik a gradiens?

b)
$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = ?$$
, ha $\underline{e} \parallel -3\underline{j} + 4\underline{k}$

Megoldás:

a)
$$f'_x = 2xy$$
, $f'_y = x^2 + z$, $f'_z = y - 10z$
A parciálisok mindenütt léteznek és folytonosak \implies grad f mindenütt \exists .

b)
$$\operatorname{grad} f \exists K_{P_0} \text{-ban} \implies \frac{\operatorname{d} f}{\operatorname{d} \underline{e}}\Big|_{P_0} = \operatorname{grad} f(P_0) \cdot \underline{e} =$$

$$= (0 \underline{i} + \underline{j} + 0 \underline{k}) \cdot (0 \underline{i} - \frac{3}{5} \underline{j} + \frac{4}{5} \underline{k}) = -\frac{3}{5}$$

3.3.3. Feladat.

$$f(x,y) = \frac{y^3}{e^{2x+1}}; \qquad P_0(-\frac{1}{2},1)$$

- a) $\max \frac{\mathrm{d}f}{\mathrm{d}e}\Big|_{\mathrm{R}} = ?$ (és adja meg a maximumhoz tartozó irányt!)
- b) min $\frac{\mathrm{d}f}{\mathrm{d}e}\Big|_{R} = ?$ (és adja meg a minimumhoz tartozó irányt!)

Megoldás:

$$f(x,y) = y^3 e^{-2x-1}$$

$$f'_x = y^3 e^{-2x-1}(-2), \quad f'_x(-\frac{1}{2}, 1) = -2, \quad f'_y = 3y^2 e^{-2x-1}, \quad f'_y(-\frac{1}{2}, 1) = 3y^2 e^{-2x-1}$$

 f'_x , f'_y mindenütt folytonos $\implies f$ totálisan deriválható mindenütt, $\implies P_0$ -ban \exists minden irányban az iránymenti derivált és:

$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = \operatorname{grad} f(P_0) \ \underline{e} = |\operatorname{grad} f(P_0)| \cdot |\underline{e}| \cdot \cos \varphi, \qquad \text{\'es} \quad |\underline{e}| = 1$$

$$\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\bigg|_{P_0} = |\operatorname{grad} f(P_0)|,$$

$$\min \left. \frac{\mathrm{d}f}{\mathrm{d}\underline{e}} \right|_{P_0} = -|\operatorname{grad} f(P_0)| ,$$

ha $\cos \varphi = -1 \implies \varphi = \pi \implies \underline{e}$ iránya $\operatorname{grad} f(P_0)$ irányával ellentétes.

Most: $\operatorname{grad} f(P_0) = -2\underline{i} + 3j$, tehát

$$\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\bigg|_{(-\frac{1}{2},1)} = \sqrt{(-2)^2+3^2} = \sqrt{13} ,$$
 ha \underline{e} a $(-2,3)$ vektor irányába mutat,

$$\min \left. \frac{\mathrm{d}f}{\mathrm{d}\underline{e}} \right|_{(-\frac{1}{2},1)} = -\sqrt{13} \;, \qquad \mathrm{ha} \;\; \underline{e} \;\; \mathrm{a} \;\; (2,-3) \;\; \mathrm{vektor} \; \mathrm{ir\acute{a}ny\acute{a}ba} \; \mathrm{mutat}.$$

3.3.4. Feladat.

$$f(x,y) = 3y + e^{xy^2} - 2y \operatorname{arctg} \frac{x}{y}, \qquad P_0(0,1)$$

a)
$$f'_{x}(x,y) = ?$$
; $f'_{y}(x,y) = ?$, ha $y \neq 0$

b) Írja fel a függvény P_0 pontjabeli érintősíkjának egyenletét!

c)
$$df(P_0,(h,k)) = ?$$

d)
$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = ?$$
, ha $\underline{e} \parallel 2\underline{i} - 7\underline{j}$

e)
$$\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = ?$$
 (és adja meg a maximumhoz tartozó irányt!)
$$\min \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = ?$$
 (és adja meg a minimumhoz tartozó irányt!)

Megoldás:
a)
$$f'_x = y^2 e^{xy^2} - 2y \frac{1}{1 + \left(\frac{x}{y}\right)^2} \frac{1}{y}$$
,

$$f'_y = 3 + 2xy e^{xy^2} - 2 \arctan \frac{x}{y} - 2y \frac{1}{1 + \left(\frac{x}{y}\right)^2} \frac{-x}{y^2}$$
,

b)
$$f_x'(0,1)=-1$$
, $f_y'(0,1)=3$, $f(0,1)=4$
Az érintősík egyenlete: $(y\neq 0$ -ra \exists a gradiens, így létezik az érintősík is.)

$$f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0$$

Tehát
$$-1(x-0) + 3(y-1) - (z-4) = 0$$

c)
$$df((0,1),(h,k)) = f'_x(0,1)h + f'_y(0,1)k = -h + 3k$$

d) Mivel P_0 egy környezetében a függvény totálisan deriválható, ezért

$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = \operatorname{grad} f(P_0) \cdot \underline{e}$$

$$|2\underline{i} - 7\underline{j}| = \sqrt{2^2 + 7^2} = \sqrt{53} \implies \underline{e} = \frac{2}{\sqrt{53}} \underline{i} - \frac{7}{\sqrt{53}} \underline{j}$$
és $\operatorname{grad} f(0,1) = -\underline{i} + 3\underline{j}$

$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = (-\underline{i} + 3\underline{j}) \left(\frac{2}{\sqrt{53}} \underline{i} - \frac{7}{\sqrt{53}} \underline{j}\right) = -\frac{2}{\sqrt{53}} - \frac{21}{\sqrt{53}} = -\frac{23}{\sqrt{53}}$$

e) Mivel: $\operatorname{grad} f(P_0) = (-1, 3)$, tehát

$$\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = \sqrt{(-1)^2 + 3^2} = \sqrt{10}, \qquad \text{ha } \underline{e} \text{ a } (-1,3) \text{ vektor irányába mutat}$$

$$\min \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = -\sqrt{10}, \qquad \qquad \text{ha } \underline{e} \text{ a } (1,-3) \text{ vektor irányába mutat}$$

3.3.5. Feladat.

$$f(x,y) = \begin{cases} \frac{x^2 - 3y^2}{2x^2 + y^2}, & \text{ha } (x,y) \neq (0,0) \\ -3, & \text{ha } (x,y) = (0,0) \end{cases}$$

- a) $\lim_{(x,y)\to(0,0)} f(x,y) = ?$ Folytonos-e f az origóban?
- b) $f_x'(x,y) = ?$, $f_y'(x,y) = ?$ (Az origóban a definícióval dolgozzon!)

c)
$$\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,-1)} = ?$$
, ha $\underline{e} \parallel -5\underline{i} + \underline{j}$

- d) Adja meg $\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,-1)}$ és $\min \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,-1)}$ értékét!
- e) Írja fel az (1,-1) ponthoz tartozó felületi pontban az érintősík egyenletét!

a)

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 - 3y^2}{2x^2 + y^2} = \lim_{x \to 0} \frac{x^2}{2x^2} = \frac{1}{2}$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 - 3y^2}{2x^2 + y^2} = \lim_{y \to 0} \frac{-3y^2}{y^2} = -3 \neq \frac{1}{2}$$

Tehát a keresett határérték nem létezik.

⇒ A függvény nem folytonos az origóban.

b) Ha
$$(x,y) \neq (0,0)$$
: $f'_x(x,y) = \frac{2x(2x^2 + y^2) - (x^2 - 3y^2) 4x}{(2x^2 + y^2)^2}$

$$f'_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^2}{2h^2} + 3}{h} = \lim_{h \to 0} \frac{7}{2h} = \#$$
Ha $(x,y) \neq (0,0)$: $f'_y(x,y) = \frac{-6y(2x^2 + y^2) - (x^2 - 3y^2) 2y}{(2x^2 + y^2)^2}$

$$f'_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} \frac{\frac{-3k^2}{k^2} + 3}{k} = \lim_{k \to 0} \frac{0}{k} = 0$$

c) A (0,0) kivételével a parciálisok léteznek és folytonosak

$$\implies$$
 grad $f \exists$ a $(0,0)$ kivételével.

$$P_{0} := (1, -1)$$
Mivel grad $f \ni K_{P_{0}}$ -ban $\implies \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_{0}} = \mathrm{grad}f(P_{0}) \cdot \underline{e} =$

$$= \left(\frac{14}{9}\underline{i} + \frac{14}{9}\underline{j}\right) \cdot \left(-\frac{5}{\sqrt{26}}\underline{i} + \frac{1}{\sqrt{26}}\underline{j}\right) = -\frac{14}{9}\frac{5}{\sqrt{26}} + \frac{14}{9}\frac{1}{\sqrt{26}} = \frac{-56}{9 \cdot \sqrt{26}}$$
d) $\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_{0}} = |\mathrm{grad}f(P_{0})| = \sqrt{\left(\frac{14}{9}\right)^{2} + \left(\frac{14}{9}\right)^{2}} = \frac{14}{9}\sqrt{2}$,

ha $\underline{e} = \frac{\mathrm{grad}f(P_{0})}{|\mathrm{grad}f(P_{0})|} = \frac{1}{\sqrt{2}}\underline{i} + \frac{1}{\sqrt{2}}\underline{j}$

$$\min \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{P_0} = -|\mathrm{grad}f(P_0)| = -\frac{14}{9}\sqrt{2},$$

$$\mathrm{ha} \quad \underline{e} = -\frac{\mathrm{grad}f(P_0)}{|\mathrm{grad}f(P_0)|} = -\frac{1}{\sqrt{2}}\underline{i} - \frac{1}{\sqrt{2}}\underline{j}$$

e) $f(1,-1) = \frac{-2}{3}$

Az érintősík egyenlete így:

$$\frac{14}{9}(x-1) + \frac{14}{9}(y+1) - (z + \frac{2}{3}) = 0$$

3.3.1. Gyakorló feladatok

3.3.6. Feladat.

$$f(x,y) = \frac{e^{3y}}{x^4 + 1}$$

- a) $f'_x(x,y) = ?$, $f'_y(x,y) = ?$
- b) $\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,0)} = ?$, ha $\underline{e} \parallel 2\underline{i} 3\underline{j}$
- c) Írja fel az (1,0) ponthoz tartozó felületi pontban az érintősík egyenletét!

Megoldás:

. . .

3.3.7. Feladat.

$$f(x,y) = \sqrt{x^2 + 3y^4}$$

- a) $f'_x(0,0) = ?$; $f'_y(0,0) = ?$ (A definícióval dolgozzon!)
- b) Hol deriválható a függvény? grad $f|_{(1,2)} = ?$
- c) Írja fel az (1,2) ponthoz tartozó felületi pontban az érintősík egyenletét!
- d) $\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,2)} = ?$, ha $\underline{e} \parallel -5\underline{i}$
- e) Adja meg $\max \frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(1,2)}$ értékét!

•••

3.3.8. Feladat.

$$f(x,y) = \frac{5x - 3y}{2x + 4y}$$
, $(x_0, y_0) = (0, 1)$

- a) $\lim_{(x,y)\to(0,0)} f(x,y) = ?$
- b) grad $f(x_0, y_0) = ?$ d $f((x_0, y_0), (h, k)) = ?$
- c) Milyen irányban lesz az (x_0, y_0) pontban az iránymenti derivált maximális? Adja meg ezt a maximális értéket is!

Megoldás:

• • • •

3.4. Összetett függvény deriválása

3.4.1. Feladat.

$$f \in C_{\mathbb{R}}^2; \qquad g(x,y) = f(x^2 - y^3)$$

Határozza meg g másodrendű parciális deriváltjait!

Megoldás:

$$\begin{array}{lll} g(x,y) & = & f(t)|_{t=x^2-y^3} & \text{\"{o}sszetett f\"{u}ggv\'{e}nyr\'{o}l van sz\'{o}.} \\ g'_x & = & f'(t)|_{t=x^2-y^3} \cdot \frac{\partial}{\partial \, x} \, \left(x^2 - y^3 \right) & \text{alapj\'{a}n}: \\ g'_x & = & f'(x^2 - y^3) \cdot 2x \\ g'_y & = & f'(x^2 - y^3) \cdot (-3y^2) \\ g''_{xx} & = & \left(\frac{\partial}{\partial \, x} \, f'(x^2 - y^3) \right) \cdot 2x \, + \, f'(x^2 - y^3) \cdot \left(\frac{\partial}{\partial \, x} \, 2x \right) & \text{alapj\'{a}n}: \\ g''_{xx} & = & \left(f''(x^2 - y^3) \cdot 2x \right) \cdot 2x \, + \, f'(x^2 - y^3) \cdot 2 \\ g''_{xy} & = & f''(x^2 - y^3) \, 2x \, \left(-3y^2 \right) \, = \, g''_{yx} \\ g''_{yy} & = & f''(x^2 - y^3) \, \left(-3y^2 \right) \, \left(-3y^2 \right) \, + \, f'(x^2 - y^3) \, \left(-6y \right) \end{array}$$

3.4.2. Feladat.

Igazoljuk, hogy ha F az (x^2-y^2) -nek tetszőleges, folytonosan differenciálható függvénye, akkor az

$$f(x,y) = y F(x^2 - y^2)$$

kétváltozós függvény eleget tesz az

$$y^2 f'_x(x,y) + x y f'_y(x,y) = x f(x,y)$$

differenciálegyenletnek!

$$f_x'=y\ F'(x^2-y^2)\ 2x$$
 ,
$$f_y'=F(x^2-y^2)\ +\ y\ F'(x^2-y^2)\ (-2y)$$
 A differenciálegyenlet bal oldalába helyettesítve:

$$y^2 y F'(x^2 - y^2) 2x + x y \left(F(x^2 - y^2) + y F'(x^2 - y^2) (-2y) \right) \stackrel{?}{=} x y F(x^2 - y^2)$$

Rendezve:
 $xy F(x^2 - y^2) \equiv xy F(x^2 - y^2)$

Ez pedig igaz.

3.4.3. Feladat. Számítsa ki az

$$A = g''_{xx}(2,1) + g''_{xy}(2,1) - 2g''_{yx}(2,1)$$

kifejezés értékét, ahol $g(x,y) = f(x^2 - y)$ és f-nek a $t_0 = 3$ körüli másodrendű Taylor polinomja

$$T_2(t) = 1 - (t-3) + 5(t-3)^2$$

Megoldás:

Mivel az f függvény $t_0=3\,$ körüli másodrendű Taylor polinomja:

$$T_2(t) = f(3) + \frac{f'(3)}{1!}(t-3) + \frac{f''(3)}{2!}(t-3)^2$$
, ezért $f'(3) = -1$, $f''(3) = 10$.

$$g'_x = f'(x^2 - y) 2x$$
, $g''_{xx} = f''(x^2 - y) 2x 2x + f'(x^2 - y) 2$, $g''_{xy} = f''(x^2 - y) 2x (-1) = g''_{yx}$.

$$g_{xx}''(2,1) = f''(3) \cdot 4^2 + f'(3) \cdot 2 = 158$$

$$g_{xy}''(2,1) = f''(3) (-4) = -40$$

$$A = 158 - (-40) = 198$$

3.4.4. Feladat.

 $g_1(x)$ és $g_2(x)$ kétszer folytonosan differenciálható egyváltozós függvény $(g_1(x), g_2(x) \in C_{\mathbb{R}}^2)$

$$h(x,y) = x \cdot g_1(y-x) + y \cdot g_2(x-y), \qquad (x,y) \in \mathbb{R}^2$$

Hozza egyszerübb alakra a $h''_{xx} + 2h''_{xy} + h''_{yy}$ kifejezést!

$$h'_x = \left(\frac{\partial}{\partial x} x\right) \cdot g_1(y - x) + x \cdot \left(\frac{\partial}{\partial x} g_1(y - x)\right) + y \left(\frac{\partial}{\partial x} g_2(x - y)\right)$$
alapján:

$$\begin{array}{lll} h'_x = & g_1(y-x) - x \, g'_1(y-x) \, + y \, g'_2(x-y) \\ h'_y = & x \, g'_1(y-x) \, + g_2(x-y) \, - y \, g'_2(x-y) \\ 2h''_{xy} = & 2(g'_1(y-x) - x \, g''_1(y-x) \, + g'_2(x-y) - y \, g''_2(x-y)) \\ h''_{xx} = & -g'_1(y-x) - g'_1(y-x) \, + x \, g''_1(y-x) \, + y \, g''_2(x-y) \\ h''_{yy} = & x \, g''_1(y-x) - g'_2(x-y) - g'_2(x-y) + y \, g''_2(x-y) \\ \Longrightarrow & h''_{xx} + 2h''_{xy} + h''_{yy} \equiv 0 & \forall (x,y) \in \mathbb{R}^2 \end{array}$$

Esetleg a g_1, g_2 függvények argumentumát ne írjuk ki mindenütt (sok idő), csak jegyezzük meg, hogy g_1 -et és deriváltjait az (y-x) helyen, g_2 -öt és deriváltjait az (x-y) helyen vesszük. (Így áttekinthetőbb is a deriválás menete.)

3.4.1. Gyakorló feladatok

3.4.5. Feladat.

 $g\in C^2_{\mathbb{R}}$ változója helyébe írjunk $\frac{x}{2y}$ -t $(y\neq 0)$ és jelöljük az így kapott kétváltozós függvényt f(x,y)-nal!

Adja meg $y \neq 0$ esetére az alábbi parciális deriváltakat!

$$f'_x(x,y) = ?,$$
 $f'_y(x,y) = ?$ $f''_{xy}(x,y) = ?,$ $f''_{yx}(x,y) = ?$

Megoldás:

• • •

3.4.6. Feladat.

 $g\in C^2_{\mathbb{R}}$ változója helyébe írjunk $\frac{2x}{y^2+1}$ -et és jelöljük az így kapott kétváltozós függvényt f(x,y)-nal!

$$f'_x(x,y) = ?,$$
 $f'_y(x,y) = ?,$ $f''_{xy}(x,y) = ?$

Megoldás:

...

3.4.7. Feladat.

$$f(x,y) = g(xy^2 + 2y^3), g \in C_{\mathbb{R}}^2$$

$$f'_x(x,y) = ?, f'_y(x,y) = ?, f''_{xy}(x,y) = ?$$

Megoldás:

• • •

3.4.8. Feladat.

$$g(x,y) = f(4x^2y + y^2), f \in C_{\mathbb{R}}^2$$

- a) $g''_{xy}(x,y) = ?$
- b) Az f függvény $x_0=0$ pontra támaszkodó másodrendű Taylor polinomja:

$$T_2(x) = 8 + 3x + \frac{x^2}{8}$$

$$f'(0) = ?$$
, $f''(0) = ?$, $g''_{xy}(\frac{1}{2}, -1) = ?$

Megoldás:

•••

3.5. Szélsőértékszámítás

3.5.1. Feladat.

$$f(x,y) = 2x^3 - 6x + 5 + y^3 - 12y$$

Keresse meg az f függvény lokális szélsőértékeit!

Megoldás:

fmindenütt deriválható, így lokális szélsőérték csak ott lehet,
ahol $(f_x'=6x^2-6=0$ és $f_y'=3y^2-12=0)$ \Longrightarrow
 $(x=\pm 1\,,\ y=\pm 2)$

Tehát a szükséges feltétel 4 pontban teljesül:

$$P_1(1,2)$$
, $P_2(1,-2)$, $P_3(-1,2)$, $P_4(-1,-2)$

$$D(x,y) = \begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{vmatrix} = \begin{vmatrix} 12x & 0 \\ 0 & 6y \end{vmatrix} = 72xy$$

 $\begin{array}{cccc} D(P_1)>0 & \text{\'es} & f_{xx}''(P_1)=12>0 & \Longrightarrow & P_1\text{-ben lok\'alis minimum van.} \\ D(P_4)>0 & \text{\'es} & f_{xx}''(P_4)=-12<0 & \Longrightarrow & P_4\text{-ben lok\'alis maximum van.} \\ D(P_2)<0 & \text{\'es} & D(P_3)<0 & \Longrightarrow & P_2\text{-ben \'es} & P_3\text{-ban nincs lok\'alis sz\'els\~o\'ert\'ek.} \end{array}$

3.5.2. Feladat.

$$f(x,y) = (x - 3y + 3)^{2} + (x - y - 1)^{2}$$

Keresse meg az f függvény lokális szélsőértékeit!

Megoldás:

$$f'_x = 2(x - 3y + 3) + 2(x - y - 1) = 0$$

 $f'_y = 2(x - 3y + 3)(-3) + 2(x - y - 1)(-1) = 0$
Egy lineáris egyenletrendszerhez jutottunk most:

Tehát P(2,3)-ban teljesül a szükséges feltétel.

$$D(x,y) = \begin{vmatrix} 4 & -8 \\ -8 & 20 \end{vmatrix} = 80 - 64 = 16$$
 (most független $x, y - tol$)

$$D(2,3)>0 \implies$$
 van lokális szélsőérték. $f_{xx}''(2,3)=4>0$ \implies lokális minimum van

3.5.3. Feladat.

$$f(x,y) = (x - y + 1)^2 - (x^2 - 2)^2$$

Keresse meg az f függvény lokális szélsőértékeit!

Megoldás:

Hegeraus:
$$f'_x=2(x-y+1)-2(x^2-2)\cdot 2x=2+10\,x-4\,x^3-2\,y=0$$

$$f'_y=2(x-y+1)(-1)=0$$
 A második egyenletből: $y=x+1$. Ezt behelyettesítve az első egyenletbe:

 $4x(x^2 -$ (2) = 0 egyenlet adódik.

Így 3 pontot kapunk, melyekben teljesül a szükséges feltétel, ezekben lehet csak lokális szélsőérték:

$$P_1(0,1)$$
, $P_2(\sqrt{2},1+\sqrt{2})$, $P_3(-\sqrt{2},1-\sqrt{2})$

$$D(x,y) = \begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{vmatrix} = \begin{vmatrix} 10 - 12x^2 & -2 \\ -2 & 2 \end{vmatrix} = 16 - 24x^2$$

D(0,1)=16>0, $f''_{xx}=18>0$ \Longrightarrow lokális minimum van (0,1)-ben f(0,1) = -4 értékkel.

 $D(P_2) < 0$, $D(P_3) < 0 \implies P_2$ -ben és P_3 -ban nincs lokális szélsőérték.

3.5.4. Feladat.

$$f(x,y) = x^3 y^5$$

- a) Keresse meg az f függvény abszolút szélsőértékét az A(0,0), B(1,0) C(0,1)pontokkal kijelölt háromszög alakú zárt halmazon!
- b) Van-e lokális szélsőértéke f-nek, ha $(x,y) \in \mathbb{R}^2$?

a)
$$f'_x = 3x^2y^5 = 0$$

 $f'_y = 5x^3y^4 = 0$ $\begin{cases} x = 0 \text{ vagy } y = 0. \end{cases}$

$$A(0,0) \xrightarrow{B(1,0)^x}$$

Tehát az (x,0) és a (0,y) pontokban lehet lokális szélsőértéke. (Itt teljesül a szükséges feltétel.)

f(x,y) > 0 a tartomány belsejében,

$$f(x,y) = 0$$
 a tengelyeken $(f(x,0) = 0, f(0,y) = 0)$
 $\implies \min f = 0.$

Weierstrass II. tétele alapján f-nek van maximuma is, mert folytonos és a tartomány korlátos és zárt (kompakt halmaz). A maximumot csak a tartomány határán veheti fel. Már csak az y=1-x jöhet szóba.

$$g(x) := f(x, 1 - x) = x^3 (1 - x)^5$$
, $x \in [0, 1]$

g(0) = g(1) = 0, így nem lehet maximum.

Valahol az intervallum belsejében kell megtalálnunk a maximumot.

$$g'(x) = 3x^{2} (1-x)^{5} + x^{3} 5(1-x)^{4} (-1) = x^{2} (1-x)^{4} (3-8x) = 0$$

$$\implies x = \frac{3}{8}, y = \frac{5}{8}$$

Így a keresett maximális függvényérték: $f\left(\frac{3}{8}, \frac{5}{8}\right) = \frac{3^5 5^5}{8^8}$

b) Lokális szélsőérték csak a tengelyeken lehetne. A tételünket most nem tudnánk alkalmazni, mert D(x,0)=0 és D(0,y)=0 lenne esetünkben. Vizsgáljuk a függvényértékek előjelét!

$$\begin{array}{c} --- \stackrel{y}{\downarrow} + + + \\ --- \stackrel{0}{\downarrow} + + + + \\ --- \stackrel{0}{\downarrow} + + + + \\ --- \stackrel{0}{\downarrow} + + + \stackrel{-}{\downarrow} - - \\ + + + \stackrel{-}{\downarrow} - - - \\ + + + \stackrel{-}{\downarrow} - - - \end{array} \right\} \text{ A függvényérték előjele.}$$

A tengelyeken a függvényérték nulla. De a tengelyek bármely pontjának minden környezetében felvesz a függvény pozitív és negatív értéket is, így a függvénynek sehol sincs lokális szélsőértéke.

3.5.1. Gyakorló feladatok

3.5.5. Feladat.

$$f(x,y) = 2x + y + \frac{4}{xy}$$

Határozza meg f lokális szélsőértékeit!

Megoldás:

3.5.6. Feladat.

$$f(x,y) = (3y - x)^2 - 6y^2 + 8x$$

a) $f'_x(x,y) = ?$; $f'_y(x,y) = ?$

b) Hol deriválható (totálisan) a függvény? (Indokoljon!)

c) Írja fel a függvény $P_0(2,1)$ ponthoz tartozó felületi pontban az érintősík egyenletét!

d) $\frac{\mathrm{d}f}{\mathrm{d}\underline{e}}\Big|_{(2,1)} = ?$, ha $\underline{e} \parallel -5\underline{i}$

e) Hol lehet f-nek lokális szélsőértéke? Van-e lokális szélsőértéke? Ha igen, milyen jellegű?

Megoldás:

. . .

3.5.7. Feladat.

$$f(x,y) = \frac{1}{x^3} + y^3 - \frac{3y}{x}$$

Határozza meg f lokális szélsőértékeit!

. . .

3.5.8. Feladat.

$$f(x,y) = y^3 - 12y + 2(x+y)^2 - 8(x+y)$$

. . .

- a) Határozza meg a függvény lokális szélsőérték helyeit és azok jellegét!
- b) df((5,-1),(h,k)) = ?

Megoldás:

3.6. Kettős integrál

3.6.1. Kétszeres integrál téglalap- és normáltartományokon

3.6.1. Feladat.

$$\iint_T x \sin(xy) dT = ?,$$

ha T az $1 \le x \le 3$, $0 \le y \le \frac{\pi}{2}$ téglalaptartomány.

Megoldás:

Az integrálási tartomány a 3.1 ábrán látható. A függvény folytonos, ezért mindegy, hogy milyen sorrendben integrálunk, az eredmény ugyanaz. De, ha először x szerint integrálunk, akkor parciális integrál lenne, ezért próbáljuk meg a másik sorrendet!

3.1.ábra. $({\bf 3.6.1}$ feladathoz.) A T integrálási tartomány téglalap. A nyíl a belső integrálás irányát jelöli.

$$\int_{1}^{3} \int_{0}^{\pi/2} x \sin(xy) \, dy \, dx = \int_{1}^{3} -\cos(xy)|_{y=0}^{\pi/2} \, dx =$$

$$= \int_{1}^{3} \left(-\cos\frac{\pi x}{2} + 1 \right) \, dx = -\frac{\sin\frac{\pi x}{2}}{\frac{\pi}{2}} + x \Big|_{1}^{3} = \dots = 2 + \frac{4}{\pi}$$

3.6.2. Feladat.

$$\iint_{T} x \, dT = ?,$$

ha T az $y=x^2$ és az y=x+2 által határolt korlátos tartomány.

Megoldás:

A vizsgált tartomány a 3.2 ábrán látható. A két görbe metszéspontjai a (-1,1), (2,4) pontok és az x tengelyre vonatkoztatott normáltartományról van szó.

$$\int_{-1}^{2} \int_{y=x^{2}}^{x+2} x \, dy \, dx = \int_{-1}^{2} x \, y|_{y=x^{2}}^{y=x+2} \, dx = \int_{-1}^{2} (x \, (x+2) - x^{3}) \, dx = \dots = \frac{9}{4}$$

3.6.3. Feladat.

$$\iint\limits_{T} \frac{x^2}{y^2} \ \mathrm{d}T = ?,$$

3.2. ábra. (3.6.2 feladathoz.) Az $y=x^2$ parabola és az y=x+2 egyenes közti T tartomány. A nyíl a belső integrál irányát jelzi.

ha az első síknegyedbe eső korlátos T tartomány:

$$y \ge \frac{1}{x}$$
, $y \le x$ és $1 \le x \le 2$

Megoldás:

A vizsgált tartomány a 3.3 ábrán látható. Az x tengely felől nézve normáltartományról van szó.

$$\int_{1}^{2} \int_{y=1/x}^{x} \frac{x^{2}}{y^{2}} dy dx = \int_{1}^{2} -\frac{x^{2}}{y} \Big|_{y=1/x}^{x} dx = \int_{1}^{2} (-x + x^{3}) dx = \dots = \frac{9}{4}$$

3.6.4. Feladat. Alakítsa kétféleképpen kétszeres integrállá az alábbi kettős integrált majd az egyik módon számolja ki:

$$\iint\limits_{T} (18xy^2 - 9y) \ \mathrm{d}T \ ,$$

ahol T az O(0,0), A(2,0), B(2,3) és a C(1,3) pontok által meghatározott trapéz.

3.3. ábra. (3.6.3 feladathoz.) A hiperbola és az egyenes közti korlátos tartomány. A nyíl a belső integrálás irányát jelzi.

Megoldás:

A T integrálási tartományt a 3.4/a) ábra mutatja. A tartomány nem N_x (x tengelyre vonatkoztatott normáltartomány), csak két N_x uniója (3.4/b) ábra). Így

$$I = \int_{x=0}^{1} \int_{y=0}^{3x} f(x,y) \, dy \, dx + \int_{x=1}^{2} \int_{y=0}^{3} f(x,y) \, dy \, dx$$

Viszont a tartomány N_y (y tengelyre vonatkoztatott normáltartomány, 3.4/c) ábra): $I = \int\limits_{y=0}^{3} \int\limits_{x=y/3}^{2} f(x,y) \ \mathrm{d}x \ \mathrm{d}y$

$$I = \int_{y=0}^{3} \int_{x=y/3}^{2} f(x,y) \, dx \, dy$$

Az integrál értékét az utóbbival számoljuk ki:

$$I = \int_{y=0}^{3} (9x^2y^2 - 9xy) \Big|_{x=y/3}^{2} dy = \int_{y=0}^{3} (36y^2 - 18y - (y^4 - 3y^2)) dy =$$

$$= \int_{y=0}^{3} (39y^2 - 18y - y^4) dy = \left(13y^3 - 9y^2 - \frac{y^5}{5}\right) \Big|_{y=0}^{3} = 13 \cdot 27 - 81 - \frac{3^5}{5}$$

3.6.5. Feladat. Cserélje fel az integrálás sorrendjét!

a)
$$I_1 = \int_{x=-1}^{0} \int_{y=0}^{\sqrt{1-x^2}} f(x,y) \, dy \, dx + \int_{x=0}^{1} \int_{y=0}^{1-x} f(x,y) \, dy \, dx$$

b)
$$I_2 = \int_{x=0}^{\sqrt{2}} \int_{y=0}^{x^2} f(x,y) \, dy \, dx + \int_{x=\sqrt{2}}^{2} \int_{y=0}^{2} f(x,y) \, dy \, dx + \int_{x=2}^{4} \int_{y=0}^{4-x} f(x,y) \, dy \, dx$$

3.4. ábra. (3.6.4 feladathoz.) A Tintegrálási tartomány két N_x uniójaként vagy egy N_y tartományként kezelhető.

3.5. ábra. (3.6.5/a) feladathoz.) Az egyes tagokhoz tartozó integrálási tartományok, valamint ezek összevonása az integrálás sorrendjének felcserélésével.

a) Az integrálási tartomány:

$$T_1 = \{0 \le y \le \sqrt{1 - x^2}, -1 \le x \le 0\} \cup \{0 \le y \le 1 - x, 0 \le x \le 1\}.$$

A 3.5 ábrán látható, hogy az integrálás sorrendjének felcserélésével a két tagot össze lehet vonni:

$$I_1 = \int_{y=0}^{1} \int_{x=-\sqrt{1-y^2}}^{x=1-y} f(x,y) dx dy.$$

3.6. ábra. (3.6.5/b) feladathoz.) Az egyes tagokhoz tartozó integrálási tartományok, valamint ezek összevonása az integrálás sorrendjének felcserélésével.

b) Az integrálási tartomány:

$$T_2 = \{0 \le y \le x^2, 0 \le x \le \sqrt{2}\} \cup \{0 \le y \le 2, \sqrt{2} \le x \le 2\} \cup \cup \{0 \le y \le 4 - x, 2 \le x \le 4\}$$

A 3.6 ábrán látható, hogy az integrálás sorrendjének felcserélésével a három tagot össze lehet vonni:

$$I_2 = \int_{y=0}^{2} \int_{x=\sqrt{y}}^{4-y} f(x,y) \, dx \, dy.$$

3.6.6. Feladat.

$$\int_{0}^{1} \int_{y^2}^{1} y \sin x^2 \, \mathrm{d}x \, \mathrm{d}y = ?$$

Megoldás:

Nem tudunk primitív függvényt felírni $\,x\,$ szerint , ezért először $\,y\,$ szerint próbálunk integrálni:

A kiindulás (3.7/a) ábra):
$$y^2 \le x \le 1$$
, $0 \le y \le 1$
Felcserélve a sorrendet (3.7/b) ábra): $0 \le y \le \sqrt{x}$, $0 \le x \le 1$

3.7. ábra. (3.6.6 feladathoz.) A nyíl jelzi az eredeti felírásban, illetve az integrálok sorrendjének felcserélése után a belső integrálás irányát.

$$I = \int_{x=0}^{1} \int_{y=0}^{\sqrt{x}} y \sin x^{2} dy dx = \int_{x=0}^{1} \frac{y^{2}}{2} \Big|_{0}^{\sqrt{x}} \cdot \sin x^{2} dx = \frac{1}{2} \int_{x=0}^{1} x \sin x^{2} dx = \frac{1}{2} \cdot \frac{1}{2} \int_{x=0}^{1} 2x \sin x^{2} dx = \frac{1}{4} (-\cos x^{2}) \Big|_{0}^{1} = \frac{1}{4} (-\cos 1 + 1)$$

3.6.2. Kettős integrálok transzformációja

3.6.7. Feladat.

$$\iint_T y^2 \, dT = ?,$$

ha
$$T: x^2 + y^2 \le 4$$
, $0 \le y \le x$

Megoldás:

Az integrálási tartományt a 3.8 ábra mutatja.

Polártranszformációval dolgozunk:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $|J| = r$

 $x=r\,\cos\varphi\,,\quad y=r\,\sin\varphi\,,\quad |J|=r$ A vizsgált tartományon: $0\leq r\leq 2$ és $0\leq\varphi\leq\pi/4$

$$I = \int_{\varphi=0}^{\pi/4} \int_{r=0}^{2} r^2 \sin^2 \varphi \underbrace{r}_{|J|} dr d\varphi = \int_{r=0}^{2} r^3 dr \cdot \int_{\varphi=0}^{\pi/4} \underbrace{\sin^2 \varphi}_{2} d\varphi = \underbrace{1 - \cos 2\varphi}_{2}$$

3.8. ábra. (3.6.7 feladathoz.) Az integrálási tartomány.

3.9.ábra. (${\color{red}3.6.8}$ feladathoz.) Az integrálási tartomány.

$$= \left. \frac{r^4}{4} \right|_0^2 \cdot \left(\frac{1}{2} \varphi - \frac{\sin 2\varphi}{4} \right) \right|_0^{\pi/4} = 4 \left(\frac{\pi}{8} - \frac{1}{4} \right) = \frac{\pi}{2} - 1$$

3.6.8. Feladat.

$$\iint\limits_T x^2 y \ \mathrm{d}T = ?,$$

ha
$$T: 1 \le x^2 + y^2 \le 4$$
, $y \ge 0$, $x \ge 0$

 $Megold\'{a}s:$

Az integrálási tartományt a 3.9 ábra mutatja.

Polártranszformációval dolgozunk:

3.10. ábra. (3.6.9 feladathoz.) Az integrálási tartomány.

$$I = \int_{\varphi=0}^{\pi/2} \int_{r=1}^{2} r^{2} \cos^{2} \varphi \ r \sin \varphi \ r \ dr d\varphi = \int_{r=1}^{2} r^{4} \ dr \cdot \int_{\varphi=0}^{\pi/2} \cos^{2} \varphi \sin \varphi \ d\varphi =$$

$$= \frac{r^{5}}{5} \Big|_{1}^{2} \cdot \left(-\frac{\cos^{3} \varphi}{3} \right) \Big|_{0}^{\pi/2} = \left(0 + \frac{1}{3} \right) \left(\frac{2^{5}}{5} - \frac{1}{5} \right) = \frac{31}{15}$$

3.6.9. Feladat.

$$\iint_T 7x y^4 dT = ?,$$

ha
$$T: 4 \le x^2 + y^2 \le 9$$
, $x \ge 0$, $y \ge \sqrt{3}x$

Megoldás:

Az integrálási tartományt a 3.10 ábra mutatja.

Polártranszformációval dolgozunk:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $|J| = r$
 $tg \alpha = \sqrt{3} \implies \alpha = \varphi_{\min} = \frac{\pi}{3}$

Így a vizsgált tartományon: $2 \le r \le 3$ és $\pi/3 \le \varphi \le \pi/2$

$$I = \int_{\varphi=\pi/3}^{\pi/2} \int_{r=2}^{3} 7r \cos \varphi \ r^4 \sin^4 \varphi \ r \ dr \, d\varphi = \int_{\pi/3}^{\pi/2} r^7 |_2^3 \cos \varphi \sin^4 \varphi \, d\varphi =$$

$$= (3^7 - 2^7) \int_{\pi/3}^{\pi/2} \underbrace{\cos \varphi \sin^4 \varphi}_{f'f^4} \, d\varphi = (3^7 - 2^7) \left. \frac{\sin^5 \varphi}{5} \right|_{\pi/3}^{\pi/2} = \frac{3^7 - 2^7}{5} \left. \left(1 - \left(\frac{\sqrt{3}}{2} \right)^5 \right) \right. \blacksquare$$

3.11. ábra. (3.6.10 feladathoz.) Az a) részben origó középpontú polár koordinátarendszert használunk, míg a b) részben (2,0) középpotút.

3.6.10. Feladat (**).

$$\iint_T f \, dT = ?,$$

ha
$$T: x^2 - 4x + y^2 \le 0$$
, $0 \le y$ és

a)
$$f(x,y) = y (x^2 + y^2)^3$$

b)
$$f(x,y) = (x^2 - 4x + y^2)^5$$

Megoldás:

A T tartomány egy (2,0) középpontú, 2 sugarú félkör, ugyanis

$$x^2 - 4x + y^2 \le 0 \iff (x-2)^2 + y^2 \le 2^2.$$

A függvény is befolyásolhatja, hogy milyen helyettesítést alkalmazunk.

a) Origó középpontú polár koordinátarendszert használunk. (3.11/a) ábra).

$$x = r \, \cos \varphi \; , \; \; y = r \, \sin \varphi \; , \; \; |J| = r \; , \; \; 0 \leq r \leq 4 \, \cos \varphi \; , \; \; 0 \leq \varphi \leq \pi/2$$

$$I = \int_{\varphi=0}^{\pi/2} \int_{r=0}^{4 \cos \varphi} r \sin \varphi (r^2)^3 r dr d\varphi = (\text{innen HF.}) = \frac{4^9}{90}$$

b) Most (2,0) középpontú polár koordinátarendszert használunk. (3.11/b) ábra).

$$x = 2 + r \cos \varphi$$
, $y = r \sin \varphi$, $|J| = r$, $0 \le r \le 2$, $0 \le \varphi \le \pi$

$$x^{2} - 4x + y^{2} = (x - 2)^{2} + y^{2} - 4 = r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi - 4 = r^{2} - 4$$

$$I = \int_{\varphi=0}^{\pi} \int_{r=0}^{2} (r^2 - 4)^5 r \, dr \, d\varphi = \dots = -\frac{4^6 \pi}{12}$$

3.6.3. Gyakorló feladatok

 $\bf 3.6.11.$ Feladat. Cserélje fel az integrálás sorrendjét, majd számolja ki az alábbi integrált!

$$\int_{0}^{16} \int_{\frac{\sqrt{y}}{2}}^{2} \sqrt[5]{1+x^3} \, \mathrm{d}x \, \mathrm{d}y$$

Megoldás:

...

3.6.12. Feladat. Cserélje fel az integrálás sorrendjét:

$$\int_0^1 \int_{e^x}^{e^{2x}} f(x, y) \, \mathrm{d}y \, \mathrm{d}x$$

Megoldás:

•••

3.6.13. Feladat. Számoljuk ki az R sugarú körlap területét!

Megoldás:

..

3.6.14. Feladat.

$$\iint_{T} e^{-x^2 - y^2} dT = ?$$

a) $T: 1 \le x^2 + y^2 \le R^2$

b) ** $T: 1 \le x^2 + y^2$

Megoldás:

• • •

3.6.15. Feladat.

$$\iint_{T} \frac{1}{(1+2x^2+2y^2)^5} \ dT = ?,$$

ha $T: x^2 + y^2 \le 4, x \le 0$

 $Megold\'{a}s:$

Polártranszformációval dolgozunk:

$$I = \int_{r=0}^{2} \int_{\varphi=\pi/2}^{3\pi/2} \frac{1}{(1 + 2r^{2}\cos^{2}\varphi + 2r^{2}\sin^{2}\varphi)^{5}} r \, d\varphi \, dr =$$

$$= \int_{r=0}^{2} \int_{\varphi=\pi/2}^{3\pi/2} r (1 + 2r^{2})^{-5} d\varphi dr =$$

$$= \left(\frac{3\pi}{2} - \frac{\pi}{2}\right) \int_{r=0}^{2} \frac{1}{4} 4r (1 + 2r^{2})^{-5} dr =$$

$$= \frac{\pi}{4} \left. \frac{(1 + 2r^{2})^{-4}}{-4} \right|_{0}^{2} = -\frac{\pi}{16} \left(\frac{1}{9^{4}} - 1 \right)$$

3.6.16. Feladat.

$$\iint_{T} \frac{xy}{\sqrt{x^2 + y^2}} dx dy = ? \quad \text{ahol}$$

$$T: 4 \le x^2 + y^2 \le 25$$
 , $x \le 0, y \ge 0$.

Megoldás:

. .

3.6.17. Feladat ().** Határozza meg annak a síkrésznek a területét, amelyet a következő egyenlőtlenségek írnak le!

$$x^2 + y^2 \ge 4x$$
, $x^2 + y^2 \le 8x$, $y \le \sqrt{3} x$, $y \ge x$

Megoldás:

Az első két egyenlőtlenségben teljes négyzetté alakítunk:

$$x^{2} + y^{2} \ge 4x$$
 \iff $(x-2)^{2} + y^{2} \ge 2^{2};$ $x^{2} + y^{2} \le 8x$ \iff $(x-4)^{2} + y^{2} \le 4^{2}.$

Innen látható, hogy a vizsgált területet két origón átmenő egyenes és két origón átmenő körív határolja (3.12 ábra).

Origó középpontú polártranszformációval dolgozunk:

terület =
$$\iint_{T} 1 \, dT = \int_{\varphi=\pi/4}^{\pi/3} \int_{r=4}^{8 \cos \varphi} r \, dr \, d\varphi =$$

$$= \int_{\varphi=\pi/4}^{\pi/3} \frac{r^{2}}{2} \Big|_{4 \cos \varphi}^{8 \cos \varphi} \, d\varphi = 24 \int_{\varphi=\pi/4}^{\pi/3} \cos^{2} \varphi \, d\varphi = \cdots$$

3.12. ábra. (3.6.17 feladathoz.) A vizsgált tartomány.

3.7. Hármas integrál

3.7.1. Feladat.

$$I = \int_{V} xy^2 z^3 \, dV = ?$$

Az első térnyolcadba eső $\,V\,$ korlátos térrész határai:

$$z = xy$$
 (felület), $z = 0$, $x = 1$, $y = 0$, $y = x$ (síkok)

Megoldás:

$$I = \iint_{\text{háromszög}} \int_{z=0}^{xy} xy^2 z^3 \, dz \, dT = \int_{x=0}^{1} \int_{y=0}^{x} \int_{z=0}^{xy} xy^2 z^3 \, dz \, dy \, dx =$$

$$= \int_{x=0}^{1} \int_{y=0}^{x} xy^2 \left[\frac{z^4}{4} \right]_{z=0}^{z=xy} \, dy \, dx = \frac{1}{4} \int_{x=0}^{1} \int_{y=0}^{x} x^5 y^6 \, dy \, dx =$$

$$= \frac{1}{4} \int_{0}^{1} x^5 \left[\frac{y^7}{7} \right]_{y=0}^{y=x} \, dx = \frac{1}{4 \cdot 7} \int_{0}^{1} x^{12} \, dx = \frac{1}{364}$$

3.7.2. Feladat.

$$I = \int\limits_{V} \sqrt{x^2 + y^2} \, dV = ?$$

A V korlátos térrész határai:

$$z = \sqrt{x^2 + y^2}$$
 (kúp) és a $z = 1$ (sík)

Megoldás:

A térrész merőleges vetülete az (x,y) síkra az $x^2+y^2=1,z=0$ kör, a térrész hengerben van. Hengerkoordinátákkal dolgozunk.

Hengerkoordináták:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$, $r \ge 0$, $\varphi \in [0, 2\pi)$

A Jacobi determináns abszolútértéke: |J| = r

$$I = \iint_{x^2 + y^2 \le 1} \int_{z = \sqrt{x^2 + y^2}}^{z = 1} \sqrt{x^2 + y^2} \, dz \, dT =$$

$$= \int_{0}^{2\pi} \int_{r = 0}^{1} \int_{z = r}^{z = 1} r \cdot |J| \, dz \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r = 0}^{1} \int_{z = r}^{z = 1} r^2 \, dz \, dr \, d\varphi = \int_{0}^{2\pi} \int_{r = 0}^{1} r^2 \left[z\right]_{r}^{1} \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r = 0}^{1} r^2 \left(1 - r\right) \, dr \, d\varphi = \dots = \frac{\pi}{6}$$

3.7.3. Feladat. Számolja ki az $x^2+y^2=1$ egyenletű henger és a z=0 valamint a z=2-x-y egyenletű síkok által határolt térrész térfogatát!

$$V = \iiint_{V} 1 \, dV = \iint_{x^2 + y^2 \le 1} \int_{z=0}^{z=2-x-y} 1 \, dz \, dT =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{1} \int_{z=0}^{z=2-r\cos\varphi - r\sin\varphi} 1 \cdot |J| \, dz \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{1} \int_{z=0}^{z=2-r\cos\varphi - r\sin\varphi} r \, dz \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{1} \left[z\right]_{z=0}^{z=2-r\cos\varphi - r\sin\varphi} r \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{1} \left[2 - r\cos\varphi - r\sin\varphi\right] r \, dr \, d\varphi = \dots = 2\pi$$

3.7.4. Feladat. Számolja ki a

$$z = \sqrt{x^2 + y^2}$$
 és a $z = 6 - x^2 - y^2$

egyenletű felületek által határolt korlátos térrész térfogatát!

Megoldás:

A térrész egy fölfelé nyíló kúp és egy lefelé nyíló paraboloid metszete, amely a 3.13 ábrán látható.

A kúp és a paraboloid által határolt térrész merőleges vetülete az (x,y) síkra az $x^2+y^2=R^2$, z=0 kör, a térrész hengerben van. Hengerkoordinátákkal dolgozunk.

A vetület a metszetgörbe vetülete, ezért az $\sqrt{x^2+y^2}=6-x^2-y^2$, azaz a $\sqrt{R^2}=6-R^2$ egyenletből számoljuk a vetületi kör sugarát: $R=6-R^2$, azaz R=2 (R=-3 nem lehet a sugár).

$$V = \iiint\limits_{V} 1 \, dV = \iint\limits_{x^2 + y^2 \le 4} \int\limits_{z = \sqrt{x^2 + y^2}}^{z = 6 - x^2 - y^2} 1 \, dz \, dT =$$

3.13. ábra. (3.7.4 feladathoz.) A forgáskúp és a paraboloid metszete.

$$= \int_{0}^{2\pi} \int_{r=0}^{2} \int_{z=r}^{z=6-r^2} 1 \cdot |J| \, dz \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{2} \int_{z=r}^{z=6-r^2} r \, dz \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{2} \left[z\right]_{z=r}^{z=6-r^2} r \, dr \, d\varphi =$$

$$= \int_{0}^{2\pi} \int_{r=0}^{2} (6-r^2-r) r \, dr \, d\varphi = \dots = 32\pi/3$$

3.7.5. Feladat.

$$I = \int\limits_{V} xyz \ \mathrm{d}V = ?,$$

ahol a V korlátos térrész az $x^2+y^2+z^2 \le 1$ gömb belsejének az $x\ge 0\,,\; y\ge 0\,,\; z\ge 0$ térnyolcadba eső része.

Gömbi koordinátákkal dolgozunk.

Jelöljük az (x, y, z) pontba mutató helyvektor hosszát r-rel, a z tengely pozitív szárával bezárt szögét ϑ -val! Így $z = r \cos \vartheta$.

Legyen továbbá a helyvektor (x,y) síkra való merőleges vetületének az x tengely pozitív szárával bezárt szöge φ . A helyvektor (x,y) síkra való merőleges vetületének a hossza $r\sin\vartheta$, így $x=r\sin\vartheta\cos\varphi$, $y=r\sin\vartheta\sin\varphi$.

A geometriai meggondolásból kapjuk, hogy $0 \le r \le 1$, $0 \le \varphi < \pi/2$, $0 \le \vartheta \le \pi/2$. A gömbi koordinátákhoz tartozó Jacobi determináns abszolútértéke $|J| = r^2 \sin \vartheta$.

$$I = \iiint_{V} xyz \, dV = \iint_{x^{2}+y^{2} \le 1, x \ge 0, y \ge 0} \int_{z=0}^{\sqrt{1-x^{2}-y^{2}}} xyz \, dz \, dT =$$

$$= \int_{\varphi=0}^{\pi/2} \int_{r=0}^{1} \int_{\vartheta=0}^{\pi/2} (r \sin \vartheta \cos \varphi \, r \sin \vartheta \sin \varphi \, r \cos \vartheta) \cdot |J| \, d\vartheta \, dr \, d\varphi =$$

$$= \int_{\varphi=0}^{\pi/2} \int_{r=0}^{1} \int_{\vartheta=0}^{\pi/2} (r \sin \vartheta \cos \varphi \, r \sin \vartheta \sin \varphi \, r \cos \vartheta) \, r^{2} \sin \vartheta \, d\vartheta \, dr \, d\varphi =$$

$$= \int_{\varphi=0}^{\pi/2} \int_{r=0}^{1} \int_{\vartheta=0}^{\pi/2} r^{5} \sin^{3} \vartheta \cos \vartheta \, \cos \varphi \sin \varphi \, d\vartheta \, dr \, d\varphi =$$

$$= \int_{\varphi=0}^{\pi/2} \cos \varphi \sin \varphi \, d\varphi \cdot \int_{r=0}^{1} r^{5} \, dr \cdot \int_{\vartheta=0}^{\pi/2} \sin^{3} \vartheta \cos \vartheta \, d\vartheta =$$

$$= \left[\frac{\sin^{2} \varphi}{2} \right]^{\pi/2} \left[\frac{r^{6}}{6} \right]^{1} \left[\frac{\sin^{4} \vartheta}{4} \right]^{\pi/2} = \frac{1}{48}$$

3.7.6. Feladat. Számolja ki az

$$x^2 + y^2 + z^2 \le 1$$
 és a $\sqrt{x^2 + y^2} \le z \le \sqrt{3}\sqrt{x^2 + y^2}$

egyenlőtlenségekkel jellemzett térrész térfogatát!

3.14. ábra. (3.7.6 feladathoz.) A vizsgált térrész vázlatos rajza.

Megoldás:

A térrész vázlatos rajza a 3.14 ábrán látható. A térrész az egységgömbben van. Gömbi koordinátákkal dolgozunk, mert a határok megállapítása könnyű.

A
$$z=\sqrt{x^2+y^2}$$
 kúpfelületnél : $\vartheta=\pi/4,$ a $z=\sqrt{3}\sqrt{x^2+y^2}$ kúpfelületnél pedig: $\vartheta=\pi/6$.

$$V = \iiint_{V} 1 \, dV = \int_{\varphi=0}^{2\pi} \int_{r=0}^{1} \int_{\vartheta=\pi/6}^{\pi/4} r^{2} \sin \vartheta \, d\vartheta \, dr \, d\varphi =$$
$$= 2\pi \left[\frac{r^{3}}{3} \right]_{0}^{1} \left[-\cos \vartheta \right]_{\pi/6}^{\pi/4} = \frac{2\pi}{3} \frac{-\sqrt{2} + \sqrt{3}}{2}$$

3.7.1. Gyakorló feladatok

3.7.7. Feladat. Számolja ki az $(x-2)^2 + y^2 = 4$ egyenletű henger, a z=0 sík, valamint a $z=x^2+y^2$ egyenletű paraboloid által határolt korlátos térrész térfogatát!

 $Megold\'{a}s:$

..

3.7.8. Feladat.

$$I = \int\limits_{V} 2z \ dV = ?,$$

ahol a V korlátos térrész az $z \leq 3 - \sqrt{x^2 + y^2}$ és a $z \geq 2$ egyenlőtlenségekkel jellemzett.

Megoldás:

3.7.9. Feladat.

$$I = \int\limits_V xy^2 z^3 \ dV = ?,$$

ahol a V korlátos térrész az $x^2+y^2+z^2\leq 9$ és a $z\geq \sqrt{3x^2+3y^2}$ egyenlőtlenségekkel jellemzett.

(Gömbi transzformáció.)

Megoldás:

•••

3.7.10. Feladat.

$$I = \int\limits_V x^2 z \ \mathrm{d}V = ? \,,$$

ahol a V korlátos térrész az $x^2+y^2+z^2\leq 4$ és a $z\geq \frac{x^2+y^2}{3}$ egyenlőtlenségekkel jellemzett.

(Henger transzformáció.)

Megoldás:

•••

3.7.11. Feladat. Számoljuk ki az R sugarú gömb térfogatát!

Megoldás:

..

3.7.12. Feladat. Írjuk föl és számoljuk ki az R sugarú, m tömegű, homogén gömb tehetetlenségi nyomatékát tetszőleges, középpontján átmenő tengelyre vonatkoztatva!

Megoldás:

•

 ${\bf 3.7.13.}$ Feladat. Írjuk föl és számoljuk ki az R sugarú, m tömegű henger tehetetlenségi nyomatékát az alkotóival párhuzamos szimmetriatengelyére vonatkoztatva!

 $Megold\'{a}s:$

• • •

4. fejezet

Komplex függvénytan

4.1. Differenciálhatóság, regularitás, harmonikus társ

4.1.1. Feladat.

$$v(x,y) = cx^2 + 2xy - 4y^2 + 3$$

a) Adja meg a c paraméter értékét úgy, hogy v(x,y) egy, az egész komplex számsíkon reguláris f(z) komplex-változós függvény képzetes része legyen! $(c \in \mathbb{R})$ b) f'(1-2j)=?

Megoldás:

a) $\Delta v = v''_{xx} + v''_{yy} = 0$ -nak kell teljesülni.

$$v'_{x} = 2cx + 2y,$$
 $v''_{xx} = 2c$ $v''_{y} = 2x - 8y,$ $v''_{yy} = -8$

Tehát $\Delta v = 2c - 8 = 0$, ahonnan c = 4.

$$f'(z_0) = u'_x(x_0, y_0) + jv'_x(x_0, y_0) = v'_y(x_0, y_0) + jv'_x(x_0, y_0)$$
$$f'(1-2j) = v'_y(1, -2) + jv'_x(1, -2) = (2x - 8y + j(8x + 2y))\Big|_{(1, -2)} = 18 + 4j$$

4.1.2. Feladat. Hol differenciálható, és hol reguláris az $f(z) = z^2 \operatorname{Re}(z)$ függvény?

$$f(z) = (x^2 - y^2 + j2xy)x = \underbrace{x^3 - xy^2}_{u(x,y)} + j\underbrace{2x^2y}_{v(x,y)},$$

ahonnan

$$u'_x = 3x^2 - y^2,$$
 $v'_x = 4xy,$ $v'_y = -2xy,$ $v'_y = 2x^2.$

A parciális deriváltak mindenütt folytonosak, tehát az u(x,y), v(x,y) függvények mindenütt totálisan differenciálhatók. A Cauchy-Riemann egyenletek és megoldásuk:

$$3x^2 - y^2 = 2x^2$$
 és $4xy = 2xy$
 $x^2 - y^2 = 0$ $2xy = 0$
 $|x| = |y|$ $x = 0$ vagy $y = 0$.

Ez azt jelenti, hogy a függvény csak az origóban differenciálható, és sehol sem reguláris.■

4.1.3. Feladat.

$$u(x,y) = 2x^3 - 6xy^2 + 5x - 2y$$

Igazolja, hogy az u(x,y) kétváltozós függvény az egész \mathbb{R}^2 síkon harmonikus függvény, és keresse meg a v(x,y) harmonikus társfüggvényét, amellyel együtt az f(z) = u(x,y) +jv(x,y) függvény az egész komplex síkon reguláris komplex függvény. (z=x+jy)

Megoldás:

Az u parciális deriváltjai:

$$u'_{x} = 6x^{2} - 6y^{2} + 5,$$
 $u''_{xx} = 12x,$
 $u''_{y} = -12xy - 2,$ $u''_{yy} = -12x,$

tehát $\Delta u=u''_{xx}+u''_{yy}=0$ az egész síkon. A keresett v(x,y)-nek ismerjük a parciális deriváltjait:

$$v'_x = -u'_y = 12xy + 2,$$
 $v'_y = u'_x = 6x^2 - 6y^2 + 5.$

Az első egyenletet x szerint integrálva, majd az eredményt y szerint deriválva:

$$v(x,y) = \int (12xy + 2)dx = 6x^2y + 2x + C(y),$$

$$v'_y = 6x^2 + C'(y)$$

Ezt összevetve v_y' eredeti alakjával:

$$6x^2 + C'(y) = 6x^2 - 6y^2 + 5$$

Ebből

$$C'(y) = -6y^2 + 5$$
, ahonnan $C(y) = \int (-6y^2 + 5)dy = -2y^3 + 5y + c$.

Tehát

$$v(x,y) = 6x^{2}y + 2x - 2y^{3} + 5y + c, (c \in \mathbb{R})$$

$$f(z) = 2x^{3} - 6xy^{2} + 5x - 2y + j(6x^{2}y + 2x - 2y^{3} + 5y + c) (z = x + jy)$$

Eljárhatunk fordított sorrendben is, először v_y^\prime -t integráljuk yszerint:

$$v(x,y) = \int (6x^2 - 6y^2 + 5)dy = 6x^2y - 2y^3 + 5y + C(x),$$

$$v'_x = 12xy + C'(x)$$

Ekkor C'(x) = 2, tehát C(x) = 2x + c $(c \in \mathbb{R})$.

4.2. Elemi függvények, egyenletek megoldása

4.2.1. Feladat.

$$z = e^{2-3j}$$
, Re $z = ?$, Im $z = ?$, $|z| = ?$, arc $z = ?$, $\bar{z} = ?$

Megoldás:

$$z = e^2 e^{-3j} = e^2(\cos 3 - j\sin 3) = e^2\cos 3 + j(-e^2\sin 3),$$

tehát

Re
$$z = e^2 \cos 3$$
, Im $z = -e^2 \sin 3$, $|z| = e^2$, arc $z = -3$, $\bar{z} = e^{2+3j}$.

4.2.2. Feladat.

a)
$$\ln(-\sqrt{3} + j) = ?$$
 b) $\ln(-3j) = ?$ c) $\ln(-3j) = ?$

d)
$$\ln(-e) = ?$$
 e) $(\sqrt{2} - j\sqrt{2})^j = ?$

Emlékeztetőül:

$$\ln z = \ln |z| + j \operatorname{arc} z, \qquad -\pi \le \operatorname{arc} z < \pi,$$

$$\operatorname{Ln} z = \ln |z| + j (\operatorname{arc} z + 2k\pi), \qquad k \in \mathbb{Z}$$

a)
$$\ln(-\sqrt{3}+j) = \ln 2 + j\frac{5\pi}{6}$$
.

b)
$$\ln(-3j) = \ln 3 - j\frac{\pi}{2}$$
.

c)
$$\operatorname{Ln}(-3j) = \ln 3 + j\left(-\frac{\pi}{2} + 2k\pi\right)$$
, ahol $k \in \mathbb{Z}$.

d)
$$\ln(-e) = 1 - j\pi$$
.

$$e) \left(\sqrt{2} - j\sqrt{2} \right)^j = e^{j\ln(\sqrt{2} - j\sqrt{2})} = e^{j(\ln 2 - j\frac{\pi}{4})} = e^{\frac{\pi}{4}} \cdot e^{j\ln 2} = e^{\frac{\pi}{4}} (\cos\ln 2 + j\sin\ln 2).$$

4.2.3. Feladat.

a)
$$\sin(\frac{\pi}{2} + j\pi) = ?$$
 b) $\cos(1+2j) = ?$ c) $\sin(1+6j) = ?$

Megoldás:

Emlékeztetőül:

$$\sin(jx) = j \operatorname{sh} x,$$
 $\operatorname{sh}(jx) = j \operatorname{sin} x$
 $\cos(jx) = \operatorname{ch} x,$ $\operatorname{ch}(jx) = \cos x.$

a)

$$\sin\left(\frac{\pi}{2} + j\pi\right) = \underbrace{\sin\frac{\pi}{2}}_{=1} \underbrace{\cos(j\pi)}_{\operatorname{ch}\pi} + \underbrace{\cos\frac{\pi}{2}}_{=0} \underbrace{\sin(j\pi)}_{j\operatorname{sh}\pi} = \operatorname{ch}\pi.$$

Tehát

b)

$$\operatorname{Re}\left(\sin\left(\frac{\pi}{2}+j\pi\right)\right) = \operatorname{ch}\pi, \qquad \operatorname{Im}\left(\sin\left(\frac{\pi}{2}+j\pi\right)\right) = 0.$$

$$\cos(1+2j) = \cos 1 \underbrace{\cos 2j}_{\operatorname{ch} 2} - \sin 1 \underbrace{\sin 2j}_{j \operatorname{sh} 2} = \cos 1 \operatorname{ch} 2 - j \sin 1 \operatorname{sh} 2.$$

c)

$$sh(1+6j) = sh 1 \underbrace{ch 6j}_{cos 6} + ch 1 \underbrace{sh 6j}_{j sin 6} = sh 1 cos 6 + j ch 1 sin 6.$$

4.2.4. Feladat. Hol differenciálható, és hol reguláris a következő függvény:

$$f(z) = \operatorname{ch}\left(\overline{2z}\right)$$

Megoldás:

$$\operatorname{ch}(\overline{2z}) = \operatorname{ch}(2x - j2y) = \operatorname{ch}(2x)\operatorname{ch}(j2y) - \operatorname{sh}(2x)\operatorname{sh}(j2y) =$$
$$= \operatorname{ch}(2x)\cos(2y) - j\operatorname{sh}(2x)\sin(2y).$$

Tehát a függvény valós és képzetes része:

$$u(x, y) = \operatorname{ch}(2x) \cos(2y),$$

$$v(x, y) = -\operatorname{sh}(2x) \sin(2y).$$

Látható, hogy u és v a teljes \mathbb{R}^2 síkon totálisan differenciálható, mivel a parciális deriváltjaik léteznek és folytonosak mindenütt. A parciális deriváltak:

$$u'_x = 2 \operatorname{sh}(2x) \cos(2y),$$
 $v'_x = -2 \operatorname{ch}(2x) \sin(2y),$ $u'_y = -2 \operatorname{ch}(2x) \sin(2y),$ $v'_y = -2 \operatorname{sh}(2x) \cos(2y).$

A Cauchy–Riemann egyenletek:

$$\begin{aligned} u_x' &= v_y', & 2 \sin(2x) \cos(2y) &= -2 \sin(2x) \cos(2y), \\ u_y' &= -v_x', & -2 \cos(2x) \sin(2y) &= 2 \cos(2x) \sin(2y). \end{aligned}$$

A második egyenletből (ch $(2x) \neq 0$):

$$\operatorname{ch}(2x)\sin(2y) = 0 \quad \Rightarrow \quad \sin(2y) = 0 \quad \Rightarrow \quad y = k\frac{\pi}{2} \qquad (k \in \mathbb{Z}).$$

Mivel $\sin(2y)=0$ miatt $\cos(2y)\neq 0$, így az első egyenletből $\operatorname{sh}(2x)=0$, azaz x=0 adódik.

Tehát az f(z) függvény a $jk^{\frac{\pi}{2}}$ pontokban $(k \in \mathbb{Z})$ differenciálható, és sehol sem reguláris.

4.2.5. Feladat. Oldjuk meg az $e^{j\bar{z}} + 5 = 0$ egyenletet!

Megoldás:

$$e^{j\overline{z}} = -5$$

$$j\overline{z} = \operatorname{Ln}(-5) = \ln 5 + j(-\pi + 2k\pi), \qquad (k \in \mathbb{Z})$$

$$\overline{z} = -\pi + 2k\pi - j\ln 5 \qquad \left(\frac{1}{j} = -j\right)$$

$$z = -\pi + 2k\pi + j\ln 5$$

4.2.6. Feladat. Keresse meg az $f(z) = \operatorname{sh} z$ függvény nullhelyeit!

 $Megold\'{a}s$:

1. Megoldás.

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} = \frac{1}{2} \left(e^z - \frac{1}{e^z} \right) = 0,$$

tehát $e^{2z} = 1$, ahonnan

$$2z = \operatorname{Ln} 1 = \ln 1 + j(0 + 2k\pi) = j2k\pi,$$

$$z = jk\pi, \qquad (k \in \mathbb{Z})$$

2. Megoldás.

 $\operatorname{sh} z = \operatorname{sh}(x+jy) = \operatorname{sh} x \operatorname{ch}(jy) + \operatorname{ch} x \operatorname{sh}(jy) = \operatorname{sh} x \cos y + j \operatorname{ch} x \sin y = 0,$ ami azt jelenti, hogy külön a valós és a képzetes rész is nulla:

$$u(x, y) = \operatorname{sh} x \cos y = 0,$$

$$v(x, y) = \operatorname{ch} x \sin y = 0.$$

A második egyenletben ch $x \neq 0$, így sin y = 0, tehát $y = k\pi$ (ahol $k \in \mathbb{Z}$). Ez pedig azt jelenti, hogy $\cos y \neq 0$, tehát az első egyenletből shx = 0, azaz x = 0 következik. Tehát a megoldás:

$$z = jk\pi, \qquad (k \in \mathbb{Z}).$$

4.2.7. Feladat. Keresse meg az

$$f(z) = \frac{1}{\sin(2z) + 3j}$$

izolált szinguláris pontjait!

Megoldás:

Mivel a nevező mindenütt reguláris, így a szinguláris pontok a nevező zérushelyei:

$$\begin{split} \sin(2z) + 3j &= 0, & \text{felhasználjuk, hogy sin } x = \frac{e^{jx} - e^{-jx}}{2j} \\ \frac{e^{2jz} - e^{-2jz}}{2j} + 3j &= 0, & / \cdot 2j \\ e^{2jz} - e^{-2jz} - 6 &= 0, & a := e^{2jz} \\ a - \frac{1}{a} - 6 &= 0, & / \cdot a \\ a^2 - 6a - 1 &= 0, & a_{1,2} &= 3 \pm \sqrt{10} \\ 2jz &= \operatorname{Ln}(3 \pm \sqrt{10}). \end{split}$$

A két gyököt külön kezeljük:

$$2jz_1 = \text{Ln}(3 + \sqrt{10})$$

$$2jz_2 = \text{Ln}(3 - \sqrt{10})$$

$$2jz_1 = \ln(3 + \sqrt{10}) + j2k\pi$$

$$2jz_2 = \ln|3 - \sqrt{10}| + j(-\pi + 2k\pi)$$

$$(k \in \mathbb{Z})$$

$$z_1 = k\pi - \frac{j}{2}\ln(3 + \sqrt{10})$$

$$z_2 = \left(-\frac{\pi}{2} + k\pi\right) - \frac{j}{2}\ln(\sqrt{10} - 3)$$

4.3. Komplex vonalintegrál

Zárthelyin az egyértelműség kedvéért mindig az integrálok valós és képzetes részét szoktuk kérdezni. Ezért az eredményt mindig algebrai alakban adjuk meg!

4.3.1. Feladat.

$$\int_{L} \overline{z}^2 dz = ? \qquad L:$$

A függvény nem reguláris, ezért a következő tétel felhasználásával oldjuk meg a feladatot: L: z(t) = x(t) + j y(t) vagy $z(t) = r(t) e^{j\varphi(t)}, z \in C^1_{[\alpha,\beta]},$ f folytonos L-en

$$\int_{L} f(z) dz = \int_{\alpha}^{\beta} f(z(t)) \dot{z}(t) dt = \int_{\alpha}^{\beta} f(z(t)) z'(t) dt$$

$$x:=t \implies y=t^2$$
. Tehát
$$z(t)=t+j\,t^2\,, \qquad 0\leq t\leq 2$$

$$\dot{z}(t)=1+j\,2t$$

$$\int_{L} \overline{z}^{2} dz = \int_{L} (x - jy)^{2} dz = \int_{L} (x^{2} - y^{2} - j2xy) dz =$$

$$= \int_{0}^{2} (t^{2} - t^{4} - j2t^{3}) (1 + j2t) dt = \dots = \int_{0}^{2} (t^{2} + 3t^{4} - j2t^{5}) dt =$$

$$= \frac{t^{3}}{3} + \frac{3t^{5}}{5} - j\frac{2t^{6}}{6} \Big|_{0}^{2} = \dots = \frac{328}{15} - j\frac{64}{3}$$

4.3.2. Feladat.

$$I = \int_{L} (Im \, 2\overline{z} + \sinh 5z) \, dz = ?$$

Megoldás:

$$y = 2x + 2 \implies z(t) = t + j(2t + 2), \quad t \in [-1, 0], \qquad \dot{z}(t) = 1 + j 2$$

$$I = \int_{L} \operatorname{Im} 2\overline{z} \, dz + \int_{L} \operatorname{sh} 5z \, dz = I_{1} + I_{2}$$

 I_1 integrandusza sehol sem reguláris, így csak az előző tétellel dolgozhatunk, I_2 integrandusza az egész síkon reguláris, így értéke csak a kezdő és végponttól függ (a Newton-Leibniz tétellel dolgozunk itt).

$$I_{1} = \int_{L} -2y \, dz = -2 \int_{-1}^{0} (2t+2) (1+j2) \, dt = -2 (1+j2) (t^{2}+2t) \Big|_{-1}^{0} =$$

$$= \dots = -2 - 4j$$

$$I_{2} = \int_{L} \sinh 5z \, dz = \frac{1}{5} \cosh 5z \Big|_{-1}^{2j} = \frac{1}{5} (\cosh 10j - \cosh(-5)) = \frac{1}{5} (\cos 10 - \cosh 5)$$

$$\operatorname{Re} I = -2 + \frac{1}{5} (\cos 10 - \cosh 5) , \quad \operatorname{Im} I = -4$$

4.3.3. Feladat.

$$\oint_{|z|=2} \left(\frac{1}{\overline{jz}} + z \cos z \right) dz = ?$$

Megoldás:

$$I = \oint_{|z|=2} \frac{1}{\overline{jz}} dz + \oint_{|z|=2} z \cos z dz = I_1 + I_2$$

 I_1 integrandusza nem reguláris, ezért itt paraméterezéssel dolgozunk:

$$z(t) = 2 e^{jt} (= 2 \cos t + j 2 \sin t); \quad 0 \le t \le 2\pi; \qquad \dot{z}(t) = 2j e^{jt}$$

$$I_1 = \int_0^{2\pi} \frac{1}{-j 2 e^{-jt}} 2j e^{jt} dt = -\int_0^{2\pi} e^{j2t} dt = -\frac{e^{j2t}}{j2} \Big|_0^{2\pi} = -\frac{1}{j2} (e^{j4\pi} - 1) = 0$$

 $I_2=0$: a Cauchy-Goursat tétel miatt (Az integrandusz mindenütt reguláris, a görbe zárt).

Így
$$I = 0$$
.

4.4. Cauchy-féle integrálformulák

A Cauchy-féle integrálformulák:

$$f(z_0) = \frac{1}{2\pi j} \oint_L \frac{f(z)}{z - z_0} dz \qquad \text{és}$$

4.1. ábra. (4.4.1 feladathoz.) A g(z) függvény szinguláris pontjait piros szín jelöli, az integrálási kontúrokat kék, a T tartományokat zöld.

$$f^{(n)}(z_0) = \frac{n!}{2\pi j} \oint_L \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Feltételek: f a T egyszeresen összefüggő tartományon reguláris, $L \subset T$ egyszerű, zárt görbe, és L egyszer kerüli meg pozitív irányban a $z_0 \in T$ pontot.

4.4.1. Feladat.

$$\oint_L \frac{\ln z}{z - j} \, \mathrm{d}z = ?$$

$$L:$$
 a) $|z-5+j|=1$

b)
$$|z - 2j| = 1, 5$$

Megoldás:

- a) g reguláris a |z-5+j|=|z-(5-j)|=1 (a=5-j középpontú, r=1 sugarú) kört magába foglaló T_1 egyszeresen összefüggő tartományon (4.1/a) ábra), ezért a Cauchy-Goursat tétel miatt az integrál 0.
- b) A Cauchy-féle integrálformulát kell alkalmazni, mert a $z_0 = j$ szingularitás a 2j középpontú, 1,5 sugarú kör belsejébe esik.

 $f(z)=\ln z\;$ reguláris a $T_2\;$ egyszeresen összefüggő tartományon (4.1/b) ábra), $\;z_0=j\;.$

$$I_2 = 2\pi j \ln z|_{z=j} = 2\pi j \ln j = 2\pi j \left(\ln 1 + j\frac{\pi}{2}\right) = -\pi^2.$$

4.4.2. Feladat.

$$I(R) = \oint_{|z-j\pi|=R} \frac{\operatorname{ch}^6 z}{\underbrace{z-j\frac{\pi}{3}}_{g(z)}} dz = ? \qquad R > 0$$

Adja meg I(R) értékét R függvényében!

Megoldás:

A görbe: $j\pi$ középpontú R sugarú kör.

g-nek csak a $j\frac{\pi}{3}$ pontban van szingularitása.

$$I(R) \,=\, \left\{ \begin{array}{ccc} 0\,, & \text{ha}\; 0 < R < \frac{2\pi}{3} \\ \\ \text{nem \'ertelmezett} \;\;, & \text{ha}\; R = \frac{2\pi}{3} \\ \\ j\; \frac{\pi}{32} \quad, & \text{ha}\; R > \frac{2\pi}{3} \end{array} \right.$$

Ugyanis, ha $R < \frac{2\pi}{3}$, a g függvény reguláris a T_1 egyszeresen összefüggő tartományon, ezért a Cauchy-féle alaptétel miatt az integrál 0 (4.2/a) ábra).

Ha $R=\frac{2\pi}{3}$, az integrál nem értelmezett, mert g szingularitása a görbére esik. Ha $R>\frac{2\pi}{3}$, akkor a szingularitás a görbe belsejében van és a T_2 egyszeresen összefüggő tartományon alkalmazható a Cauchy-féle integrálformula (4.2/b) ábra):

$$f(z) = \operatorname{ch}^6 z$$
 reguláris T_2 -ön, $z_0 = j \frac{\pi}{3}$, így

$$I(R) = 2\pi j \operatorname{ch}^{6} z \Big|_{z=j\frac{\pi}{3}} = 2\pi j \left(\operatorname{ch} j \frac{\pi}{3} \right)^{6} = 2\pi j \frac{1}{2^{6}} = j \frac{\pi}{32}$$

4.4.3. Feladat.

$$\oint_{|z-2|=2} \frac{\sin jz}{z^2 - 1} \, \mathrm{d}z = ?$$

4.2. ábra. (4.4.2 feladathoz.) Különböző sugarak esetén az integrálási útvonal, a T tartomány és a g függvény szinguláris pontja.

4.3. ábra. (4.4.3 feladathoz.) A szinguláris pontok (piros), az integrálási kontúr (kék) és a T tartomány (zöld) elhelyezkedése.

gizolált szingularitásai (a nevező nullahelyei) : z=1 és z=-1 . Ezek közül csak a $z=1\,$ esik a görbe belsejébe (4.3 ábra).

$$I = \oint_{|z-2|=2} \frac{\frac{\sin jz}{z+1}}{z-1} \, \mathrm{d}z$$

Az egyszeresen összefüggő T tartományon alkalmazható a a Cauchy-féle integrálformula:

$$f(z)=rac{\sin jz}{z+1}$$
 reguláris T -n, $z_0=1$, így
$$I=2\pi j\left.rac{\sin jz}{z+1}\right|_{z=1}=2\pi j\left.rac{\sin j}{2}\right.=\pi j\ j \sinh 1=-\pi \sinh 1$$

4.4. ábra. (4.4.4 feladathoz.) A szinguláris pontok (piros), az integrálási kontúrok (kék) valamint a T tartományok (zöld) elhelyezkedése.

4.4.4. Feladat.

$$\oint_{L} \frac{z^4 e^{\pi z}}{z^2 + 4} dz = ?, \qquad L: |z| = 4$$

Megoldás:

gizolált szingularitásai (a nevező nullahelyei) : $z=2j\,$ és $z=-2j\,$. Mindkettő a görbe belsejébe esik (4.4 ábra).

A Cauchy-féle alaptétel következményei között szereplő egyik tétel értelmében:

$$I = \oint_{L} g(z) dz = \oint_{I_1} g(z) dz + \oint_{I_2} g(z) dz = I_1 + I_2.$$

Mindkét integrál meghatározására a Cauchy-féle integrálformulát alkalmazzuk.

$$I_1 = \oint_{L_1} \frac{\left(\frac{z^4 e^{\pi z}}{z + 2j}\right)}{z - 2j} dz = 2\pi j \left. \frac{z^4 e^{\pi z}}{z + 2j} \right|_{z = 2j} = \dots = 8\pi.$$

Most $f(z) = \frac{z^4 e^{\pi z}}{z + 2j}$, mely reguláris T_1 -en, és $z_0 = 2j$. Hasonlóan:

$$I_2 = \oint_{I_2} \frac{\left(\frac{z^4 e^{\pi z}}{z - 2j}\right)}{z + 2j} dz = 2\pi j \left. \frac{z^4 e^{\pi z}}{z - 2j} \right|_{z = -2j} = \dots = -8\pi.$$

Most $f(z) = \frac{z^4 e^{\pi z}}{z - 2j}$, mely reguláris T_2 -ön, és $z_0 = -2j$.

Tehát $I=I_1+I_2=0$. Vegyük észre, hogy nem csak reguláris függvény zárt görbe mentén vett integrálja lehet 0.

4.4.5. Feladat.

$$\oint_{|\operatorname{Re} z|+|\operatorname{Im} z|=2} \frac{\operatorname{sh} 3z}{\left(z-j\frac{\pi}{3}\right)^3} dz = ?$$

Megoldás:

Az integrálási görbe egy sarkára állított négyzet (4.5 ábra). Az $f(z) = \sinh 3z$ függvény mindenütt reguláris, így az ábrára berajzolt T-n is. Most az általánosított integrálformulát kell alkalmaznunk.

$$z_0 = j\frac{\pi}{3} , \qquad n+1 = 3 , \text{ ezért } n = 2 .$$

$$I = \frac{2\pi j}{2!} \left. (\sinh 3z)'' \right|_{z=j\frac{\pi}{3}} = \pi j \ 3^2 \underbrace{\sinh\left(3j\frac{\pi}{3}\right)}_{=j\sin \pi = 0} = 0$$

4.4.6. Feladat.

$$\oint_{|z|=3} \frac{\sin z}{z(z-j)^2} dz = ?$$

4.5.ábra. $(4.4.5\ {\rm feladathoz.})$ Az integrálási útvonal, a nevező zérushelye és a T tartomány.

4.6. ábra. (4.4.6 feladathoz.) A szinguláris pontok (piros), az integrálási kontúrok (kék) valamint a T tartományok (zöld) elhelyezkedése.

g izolált szingularitásai (a nevező nullahelyei) : z=0 és z=j . Mindkettő a görbe belsejébe esik (4.6 ábra).

$$I = \oint_{L} g(z) dz = \oint_{L_{1}} g(z) dz + \oint_{L_{2}} g(z) dz$$

$$= \oint_{L_{1}} \frac{\left(\frac{\sin z}{(z-j)^{2}}\right)}{z} dz + \oint_{L_{2}} \frac{\left(\frac{\sin z}{z}\right)}{(z-j)^{2}} dz =$$

$$= 2\pi j \frac{\sin z}{(z-j)^{2}} \Big|_{z=0} + \frac{2\pi j}{1!} \left(\frac{\sin z}{z}\right)' \Big|_{z=j} = 0 + 2\pi j \frac{z \cos z - \sin z}{z^{2}} \Big|_{z=j} =$$

$$= \dots = 2\pi \left(\cosh 1 - \sinh 1 \right)$$

(Az f szerepét játszó függvények regulárisak a 4.6 ábrára berajzolt T_1 , illetve T_2 tartományokon.)

4.4.7. Feladat.

$$\oint_{|z-j|=3} \frac{e^{j2z}}{(z-5) z^2 (z-3j)} dz = ?$$

Megoldás:

gizolált szingularitásai (a nevező nullahelyei) : $z=0\;,\;z=3j\;$ és $z=5\;.$ Ebből $z=5\;$ nem esik a görbébe ($a=j\;$ középpotú $r=3\;$ sugarú kör).

$$I = \oint_{L_1} \frac{\frac{e^{j2z}}{(z-5)(z-3j)}}{z^2} dz + \oint_{L_2} \frac{\frac{e^{j2z}}{(z-5)z^2}}{z-3j} dz = \dots$$

4.4.1. Gyakorló feladatok

4.4.8. Feladat. Hol differenciálható és hol reguláris az alábbi függvény?

$$f(z) = (x^3 + 2xy) + j(3x^2y + 6y)$$

Ahol differenciálható, ott írja fel az f'(z) deriváltat!

Megoldás:

. . .

Csak a 3j pontban deriválható és sehol sem reguláris.

$$f'(3j) = u'_x(0,3) + jv'_x(0,3) = 6$$

4.4.9. Feladat. Hol differenciálható és hol reguláris az alábbi függvény?

$$f(z) = |z|^2$$

4.4.10. Feladat.

a) Határozza meg M értékét úgy, hogy a

$$v(x,y) = M(x^2y + xy) - 4y^3 - 3$$

kétváltozós függvény egy reguláris komplex változós függvény képzetes része legyen!

- b) Határozza meg a komplex változós függvény deriváltját a $z_0=1+2j$ helyen!
- **4.4.11. Feladat.** Van-e olyan reguláris w = f(z) függvény, amelynek valós része:

$$e^{x^2 - y^2} \cos 2xy$$

Ha igen, akkor számítsa ki f'(j) értékét, lehetőleg w képzetes részének meghatározása nélkül!

4.4.12. Feladat. Igazolja, hogy az alábbi függvények harmonikusak, azaz szóba jöhetnek reguláris komplex változós függvény valós ill. képzetes részeként! Határozza meg ezen függvények segítségével felírt w=u+jv módon képzett reguláris függvényt!

- a) $u(x,y) = \operatorname{ch} 2x \cdot \sin 2y$
- b) $u(x,y) = 3x^2y y^3$
- c) $u(x,y) = x^3 3xy^2 + 3x^2 3y^2 + 1$
- d) $v(x,y) = x^2 y^2 + 2y$

4.4.13. Feladat. Számolja ki a következő függvényértékeket!

- a) $e^{j\frac{\pi}{2}}$, $e^{j\pi}$, $e^{j2\pi}$, e^{-1-2j}
- b) $\cos(2-j\pi)$, $\sin\pi j$
- c) Ln 4, $\ln(-6)$, $\ln(-6)$, $\ln 3j$, $\ln 3j$
- d) 2^j , 1^{-j} , j^{2j} , $(1+j)^{1-j}$

4.4.14. Feladat. Re $w_i = ?$, Im $w_i = ?$

- a) $w_1 = e^{-1+j\frac{\pi}{3}}$
- $b) w_2 = \sin\left(j\frac{\pi}{2}\right)$
- c) $w_3 = \sinh(2 5j)$
- d) $w_4 = \ln(-\sqrt{2} j\sqrt{2})$
- e) $w_5 = \text{Ln}(-\sqrt{2} j\sqrt{2})$
- $f) w_6 = \ln\left(-\pi j\right)$
- g) $w_7 = \operatorname{Ln}(-\pi j)$
- h) $w_8 = (-j)^{(-2+j3)}$

4.4.15. Feladat. Hol differenciálható és hol reguláris a

$$w = \operatorname{sh}(j3\overline{z})$$

komplex változós függvény?

4.4.16. Feladat. Oldja meg az alábbi egyenleteket z-re!

1.
$$\cos jz = 2j\sin jz$$

$$2. \sin jz = j\overline{\cos jz}$$

3.
$$\sin 3z + 2 = 0$$

4.
$$e^{j2z} + 6 = 0$$

5.
$$\sin z = j \cos z \quad (\operatorname{tg} z = j)$$

4.4.17. Feladat. Keresse meg az

$$f(z) = \frac{1}{z \, \operatorname{ch}(2z)}$$

izolált szinguláris pontjait!

- **4.4.18. Feladat.** Határozza meg a következő komplex változós függvények kijelölt vonalintegráljait! (Zárt görbe esetén pozitív irányítást vegyen fel!)

$$b) \oint_L (z - z_0)^n \, \mathrm{d}z$$

$$n \in \mathbb{Z}, \ n \neq -1$$

b)
$$\oint_L (z-z_0)^n dz$$
 $n \in \mathbb{Z}, n \neq -1$ $L:$

c)
$$\int e^{2\overline{z}} dz$$

c)
$$\int_{L} e^{2\overline{z}} dz$$
 $L:$ $\begin{cases} 3+j+1 \\ 1 \end{cases}$

$$\mathrm{d}) \int \mathrm{e}^{j\overline{z}} \, \mathrm{d}z$$

e)
$$\int_{L} \overline{z}^{2} + jz \, dz qq u a dL :$$

f)
$$\int_{I} 2\overline{z} \, dz$$

 $L: a P_1(0,4)$ és $P_2(5,1)$ pontok közötti egyenes szakasz, P_1 -ből P_2 -be irányítva

g)
$$\int_{L} (\overline{z} + \sin 2z + \cos^2 z) dz$$
 $L:$

h)
$$\int \left(\sin 2\overline{z} - \frac{1}{z^2}\right) dz$$
 L:

$$i) \int_{L_1 \cup L_2} \frac{z+2}{e^z} \, \mathrm{d}z$$

j)
$$\int_{L} \left(\frac{2}{e^{3z}} - \frac{1}{\overline{z}}\right) dz$$
 $L:$

$$L:$$
 \int_{-1}^{j}

$$k) \oint_{|z|=2} \left(\frac{1}{\overline{z}} + z \cos z\right) dz$$

1)
$$\oint_L z \left(e^z + \overline{z} \right) dz$$

$$L: |z| = 1$$

$$L: |z| = 1$$