Ahmed Shalabi

Introductio

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

1D Problem

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

Differential Capacitance of Ionic Liquid Interface with Graphene: The Effects of Correlation and Finite Size of Ions

Ahmed Shalabi

University of Waterloo Department of Physics and Astronomy

August 19, 2019

Introduction

Background an Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Franhen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

Outline

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Ahmed Shalabi

Introduction

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

Franhen

Quantum capacitance Charge Neutrality

Computations Approach Algorithm

Results

Conclusions and

Background and Motivation

Graphene:

- High mobility of charge carriers in π electron bonds
- Zero-Energy band gap
- Dirac cone approximation
- Operate as field effective transistors

π Electron Energy Over Brillouin Zone

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Franhen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and

Outline

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Ahmed Shalabi

Introduction

Background an Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

Franhen

Quantum capacitance Charge

Computationa Approach Algorithm

Results

Conclusions and

Ionic Liquids

- Melting points below 100 C
- Comprised strictly of positive and negative ions
- High conductivity and lower volatility than typical electrolytes
- Inter ionic correlations and overscreening

Introductio

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation

Differential Capacitance 1D Problem

Fraphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Free energy functional

Gibbs Free Energy:

$$F = U - TS$$

Functional for ionic liquids:

$$F = \int igg[-rac{arepsilon}{8\pi} (|
abla \phi|^2 + l_c^2 (
abla^2 \phi)^2) +
ho \phi - TS igg] d^3 r \, .$$

where the charge density ρ is defined as:

$$\rho = e(z_+c_+ - z_-c_-)$$

with the entropic term:

$$egin{aligned} -\,TS &= rac{K_BT}{v}[vc_-\ln\left(vc_
ight) + vc_+\ln\left(vc_+
ight) \ &+ \left(1-vc_--vc_+
ight)\ln\left(1-vc_--vc_+
ight)] \end{aligned}$$

Introduction

Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation

Differential Capacitance 1D Problem

Fraphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Poisson Fermi equation

Minimization w.r.t the concentration yields:

$$c_{\pm} = rac{c_{\infty}e^{eta\phi}}{1-\gamma+\gamma\cosh\left(zeeta\phi
ight)}$$

where c_∞ is the concentration in the neutral bulk, $\beta=rac{1}{K_BT}$ and $\gamma=2vc_\infty$ defines the ionic packing fraction

Minimization w.r.t the potential yields:

$$(1-\delta_c^2
abla^2)
abla^2\phi=-4\pi
ho$$

with $\delta_c=\frac{l_c}{\lambda_D}$ is a dimensionless correlation length with λ_D defining the Debye length in the ionic liquid

Introduction

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi

Differential Capacitance 1D Problem

Franhen

Quantum capacitance Charge

Computationa Approach Algorithm

Results

Conclusions and

Differential Capacitance in the Diffuse Layer

Charge density per unit area:

$$\sigma_d(\phi_0) = \int_0^\infty
ho(\phi(x);\phi_0) dx$$

Apply external voltage to the bulk resulting in a potential drop across the diffuse layer:

$$V_d = -\phi_0$$

Differential capacitance per unit area:

$$C_d = rac{d\sigma_d}{dV_d}$$

ntroduction

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Canaban

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

1D Problem

• Exploit the planar geometry to solve a 1D the modified Poisson Boltzmann equation:

$$\phi^{''}-\delta_c^2\phi^{''''}=-4\pi
ho(\phi)$$

which the BCs:

$$\phi(0) = \phi_0, \phi(0)^{'''} = 0, \phi^{'}(\infty) = 0, \phi^{'''}(\infty) = 0$$

- Inclusion of Graphene requires non trivial changes to the Boundary conditions.
- Utilize the charge neutrality condition.

Packenound on

Background an Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

1D Problem

Quantum capacitance Charge

Computationa Approach Algorithm

Results

Conclusions and

Outline

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Ions Ahmed Shalabi

Introduction

Background an Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Graphen

Quantum capacitance Charge

Computational Approach Algorithm

Results

Conclusions and

Graphene electrode

Density of States:

$$D(arepsilon) = \iint rac{g}{(2\pi)^2} \delta(arepsilon - arepsilon(ec{k})) d^2ec{k}$$

which can be linearized by the Dirac Cone approximation to give:

$$D(arepsilon)pprox rac{2|arepsilon|}{\pi(\hbar v_F)^2}$$

Charge Density on Graphene:

$$\sigma_g(arepsilon_F) = -e\int D(arepsilon) iggl[rac{1}{1+e^{eta(arepsilon-arepsilon_F)}} - rac{1}{1+e^{etaarepsilon}} iggr] darepsilon$$

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

Graphen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and Future Work Then we define the differential capacitance per unit area i.e the quantum capacitance as:

$${C}_g = -erac{d\sigma_g}{darepsilon_F}$$

which gives the following expression for C_g :

$$C_g = 2\Gamma_g \ln[2\coshrac{eta e V_g}{2}]$$

where
$$\Gamma_g=rac{2lpha^2}{\pi e^2eta}$$
, with $lpha=rac{e^2}{\hbar v_F}$, $v_Fpprox 10^6 m/s$ and $V_g=\mu_c/e$

Introduction

Background an Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Graphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

The Neutrality Condition

Applied potential:

$$V_a = V_d + V_g$$

Charge neutrality condition:

$$\sigma_d(V_d) + \sigma_g(V_g) = 0$$

Therefore, we can impose the charge neutrality condition to find the relationship between V_d and V_g to find the total capacitance $C_{dg} = \frac{d\sigma_d}{dV_a}$ as:

$$C_{dg} = [C_d(V_d)^{-1} + C_g(V_g)^{-1}]^{-1}$$

Differential

Capacitance of
Ionic Liquid
Interface with
Graphene: The
Effects of
Correlation and
Finite Size of
Ions

Ahmed Shalabi

ntroduction

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

'nonhon

Quantum capacitano

Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and Future Work

Inclusion of a Stern Layer

$$V_s=rac{\sigma_d}{C_s}$$
 $C_s=\epsilon_s/(4\pi h)$ $C_{dsg}=[C_d(V_d)^{-1}+C_s^{-1}+C_g(V_g)^{-1}]^{-1}$

D 1- 1

Background an Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

1D Problem

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

Outline

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Pask man and an

Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Graphen

Quantum capacitanc Charge Neutrality

Computationa Approach

Algorithm

Result

Conclusions and Future Work

Computational approach: Algorithm

- Solve the modified Poisson Fermi equation for an array of initial potential values ϕ_0
- For each ϕ_0 value we find $ho(\phi(x);\phi_0)$
- Numerically integrate to obtain $\sigma_d(\phi_0) = \int
 ho dx$
- Define $V_d \equiv -\phi_0$ and interpolate the set of V_d and σ_d values to obtain a numerical approximation of $\sigma_d(V_d)$
- Impose the charge neutrality condition $\sigma_d(V_d) + \sigma_g(V_g) = 0$ and solve for $V_d(V_a)$ and $V_g(V_a)$, using $V_a = V_d + V_s + V_g$
- Calculate C_d , C_s , C_g and C_{dsg} using the expressions derived for the capacitances.

Introduction

Background an Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Franhen

Quantum capacitance Charge Neutrality

Computational Approach

Algorithm

Result

Conclusions and

Outline

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Ahmed Shalabi

Introduction

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Diffuse Layer Capacitance C_d

- Bell and camel shaped capacitances
- Ion correlations reduce the capacitance
- Independence of \overline{C}_d from δ_c for large γ at large $|\overline{V}_d|$

Ahmed Shalabi

ntroduction

Background an Motivation

Ionic Liquid

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and

Double Layer capacitance C_{ds}

Inclusion of Stern Layer lowers and broadens the capacitance peaks

Ahmed Shalabi

Introduction

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Fraction of the total applied potential in diffuse layer, $V_a = V_d + V_a$

- Most of \overline{V}_a goes to \overline{V}_g i.e charging the graphene electrode
- $|\overline{V}_d|$ decreases with increasing γ and lowering δ_c
- ion correlations makes the differences for \overline{V}_d for different γ more pronounced.

Ahmed Shalabi

Introduction

Background and Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Total Capacitances, C_{dg} and C_{dsg}

- \overline{C}_g dominating the total capacitance around the PZC
- Broad peaks and camel shaped dependence for $|\overline{V}_a| >> 10$ for both $\gamma = 0.1$ and 0.5
- Stern Layer and ion correlations broaden the overall capacitance

Ions Ahmed Shalabi

Introduction

Background an Motivation

Ionic Liquid

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

Graphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and Future Work

Asymmetric Ionic Liquid: Charge density

- $\gamma_{+} = 0.5$ and $\gamma_{-} = 0.1$
- Ion crowding effects $\overline{
 ho}=rac{1}{\gamma_{\pm}}$ and saturation for large $\overline{\phi}_0$
- interplay of screening and overcrowding effects for large $\overline{\phi}_0$

Ahmed Shalabi

Introduction

Background an Motivation

Ionic Liquid

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computationa Approach Algorithm

Results

Conclusions and

Asymmetric Ionic Liquid: Capacitances

- Asymmetry in \overline{C}_d
- \overline{C}_q dominating around the PZC, V-shaped capacitance
- For $|\overline{V}_a| >$ 10, asymmetric camel shaped \overline{C}_{dq}

Outline

Ahmed Shalabi

Background an

Motivation

Ionic Liquida

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

traphen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

- Background and Motivation
- Ionic Liquids
- Graphene Electrodes
- Computational approach
- Results
- Conclusions and Future Work

Introduction

Background and Motivation

Ionic Liquid

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

raphen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

Concluding Remarks

- Ion packing fractions $\gamma=0.1$ and $\gamma=0.5$ give rise to camel and bell-shaped diffuse capacitances C_d respectively
- Inclusion of Stern layer reduces and broadens the peaks in capacitances
- Quantum capacitance C_g dominates around the PZC giving rise to camel shaped capacitances
- Asymmetric ionic liquids have asymmetric camel shaped capacitances as well due to C_g

Introduction

Background and Motivation

Ionic Liquid

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

raphen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and

Future Work

- Fully asymmetric ionic liquid electrolytes
 - Different valency
 - Different Correlation Lengths
- Explore New Boundary Conditions

Ions Ahmed Shalabi

ntroduction

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance

nnnhana

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

_

Conclusions and Future Work

Thank you for your attention

Introductio

Background and Motivation

Ionic Liquids

Free Energy and The Modifided Poisson Fermi equation Differential Capacitance 1D Problem

Graphen

Quantum capacitance Charge Neutrality

Computational Approach Algorithm

Results

Conclusions and Future Work

Asymmetric Ionic Liquids

Consider the case for an asymmetric ionic liquid with equal valency $z_-=z_+=z$ but unequal ionic volumes v_-,v_+

$$egin{aligned} c_+ &= c_\infty rac{e^{-zeeta\phi}}{g(\phi)} \ c_- &= c_\infty rac{e^{-zeeta\phi}f(\phi)}{g(\phi)} \end{aligned}$$

where $f(\phi)$ and $g(\phi)$ are given by:

$$f(\phi)=\left(1+rac{zv_{-}c_{\infty}}{1-zv_{-}c_{\infty}(e^{zeeta\phi}-1)}
ight)^{rac{v_{+}}{v_{-}}-1}$$

$$g(\phi) = f(\phi) + z v_+ c_\infty [e^{-zeeta\phi} - f(\phi)] + z v_- c_\infty f(\phi) (e^{ezeta\phi} - 1)$$