# Fast and Robust Multi-Person 3D Pose Estimation from Multiple Views

董峻廷

# 个人简介:

董峻廷,浙江大学硕士生,指导老师为周晓巍教授,研究方向为计算机视觉,主要专注于3D vision,特别是**3D human pose estimation**,个人主页:http://jtdong.com/

# Pipeline:

- 1. Background
- 2. Related work
- 3. Our approach
- 4. Results

#### 1. Background

# 3D human pose estimation的定义:

Input: images

Output: 3D human pose (N\*3的一组关键点)

3D human pose from single view



#### 3D human pose from multiple views



Harvesting Multiple Views for Marker-less 3D Human Pose Annotations. CVPR 2017

# 1. Background

# **Crowd scene**



#### 1. Background

# Main challenge: Finding correspondence is hard!





#### 2. Related work

# 之前方法:

- 1. 构建一个所有人的common state space
- 2. 使用3D pictorial structure去做inference



#### 2. Related work

# 缺点:

- 1. State space太大,inference速度很慢
- 2. 只利用几何约束去找correspondence, 不够鲁棒



# Pipeline:



# **Construct the Affinity matrix:**

Idea: combining appearance and geometry







Affinity matrix (A)

# Construct the Affinity matrix Idea: combining appearance and geometry





Use re-identification network to measure appearance consistency



# Construct the Affinity matrix Idea: combining appearance and geometry

Use **epipolar constraint** to measure geometric consistency









# Idea: using cycle-consistency constraint



# Matching two views

Affinity matrix (A)



Permutation matrix (P)

# Matching multiple views



This should a low-rank matrix if the cycle consistency is satisfied [Huang et al. 2013]

# 求解优化问题:

$$\min_{m{P}} \ -\langle m{A}, m{P} \rangle + \lambda \|m{P}\|_*,$$
 s.t.  $m{P} \in \mathcal{C},$ 

Rewrite as follows by introducing an auxiliary variable Q

$$\min_{m{P},m{Q}}\ -\langle m{A},m{P}
angle + \lambda \|m{Q}\|_*,$$
 s.t.  $m{P}=m{Q},\ m{P}\in\mathcal{C}.$ 

# 求解优化问题:

The augmented Lagrangian is:

$$\mathcal{L}_{\rho}(\boldsymbol{P},\boldsymbol{Q},\boldsymbol{Y}) = -\langle \boldsymbol{A},\boldsymbol{P} \rangle + \lambda \|\boldsymbol{Q}\|_{*} + \langle \boldsymbol{Y},\boldsymbol{P}-\boldsymbol{Q} \rangle + \frac{\rho}{2} \|\boldsymbol{P}-\boldsymbol{Q}\|_{F}^{2},$$

Optimization:

#### **Algorithm 1:** Consistent Multi-Way Matching

**Input:** Affinity matrix A

Output: Consistent correspondences P

- 1 randomly initialize P and Y = 0;
- 2 while not converged do

$$oxed{3} \quad ig| \quad oldsymbol{Q} \leftarrow \mathcal{D}_{rac{\lambda}{
ho}}(rac{1}{
ho}oldsymbol{Y} + oldsymbol{P}) \; ;$$

4 
$$P \leftarrow \mathcal{P}_{\mathcal{C}}(Q - \frac{1}{\rho}(Y - A));$$

$$m{5} \quad m{Y} \leftarrow m{Y}^k + 
ho(m{P} - m{Q}) \; ;$$

- 6 end
- 7 quantize P with a threshold equal to 0.5.

 ${\mathcal D}$  denotes the operator for singular value thresholding

 $\mathcal{P}_{\mathcal{C}}(\cdot)$  denotes the orthogonal projection to  $\mathcal{C}$ 

# 3D pictorial structure (3DPS)



# 3D pictorial structure (3DPS)

**3D pictorial structure:** We use a joint-based representation of 3D poses, i.e.,  $T = \{t_i | i = 1, ..., N\}$ , where  $t_i \in \mathbb{R}^3$  denotes the location of joint i. Given 2D images from multiple views  $I = \{I_v | v = 1, ..., V\}$ , the posterior distribution of 3D poses can be written as:

$$p(T|I) \propto \prod_{v=1}^{V} \prod_{i=1}^{N} p(I_v|\pi_v(t_i)) \prod_{(i,j)\in\varepsilon} p(t_i, t_j), \quad (12)$$

where  $\pi_v(t_i)$  denotes the 2D projection of  $t_i$  in the v-th view and the likelihood  $p(I_v|\pi_v(t_i))$  is given by the 2D heat map output by the CNN-based 2D pose detector [10], which characterizes the 2D spatial distribution of each joint.

The prior term  $p(t_i, t_j)$  denotes the structural dependency between joint  $t_i$  and  $t_j$ , which implicitly constrains the bone length between them. Here, we use a Guassian distribution to model the prior on bone length:

$$p(t_i, t_j) \propto N(||t_i - t_j|||L_{ij}, \sigma_{ij}), \tag{13}$$

where  $||t_i - t_j||$  denotes the Euclidean distance between joint  $t_i$  and  $t_j$ ,  $L_{ij}$  and  $\sigma_{ij}$  denote the mean and standard deviation respectively, learned from the Human3.6M dataset [19].

### Comparison with state-of-the-art

| Campus                                                                                                                              | Actor 1                      | Actor 2                       | Actor 3                      | Average                      |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|
| Belagiannis et al. [1]                                                                                                              | 82.0                         | 72.4                          | 73.7                         | 75.8                         |
| Belagiannis et al. [3]                                                                                                              | 83.0                         | 73.0                          | 78.0                         | 78.0                         |
| Belagiannis et al. [2]                                                                                                              | 93.5                         | 75.7                          | 84.4                         | 84.5                         |
| Ershadi-Nasab et al. [12]                                                                                                           | 94.2                         | 92.9                          | 84.6                         | 90.6                         |
| Ours w/o 3DPS                                                                                                                       | 90.6                         | 89.2                          | 97.7                         | 92.5                         |
| Ours                                                                                                                                | 97.6                         | 93.3                          | 98.0                         | 96.3                         |
| 01 10                                                                                                                               |                              |                               |                              |                              |
| Shelf                                                                                                                               | Actor 1                      | Actor 2                       | Actor 3                      | Average                      |
| Belagiannis <i>et al.</i> [1]                                                                                                       | Actor 1 66.1                 | Actor 2 65.0                  | 83.2                         | Average 71.4                 |
|                                                                                                                                     |                              | Control Participation Comment |                              |                              |
| Belagiannis et al. [1]                                                                                                              | 66.1                         | 65.0                          | 83.2                         | 71.4                         |
| Belagiannis <i>et al</i> . [1]<br>Belagiannis <i>et al</i> . [3]                                                                    | 66.1<br>75.0                 | 65.0<br>67.0                  | 83.2<br>86.0                 | 71.4<br>76.0                 |
| Belagiannis <i>et al.</i> [1]<br>Belagiannis <i>et al.</i> [3]<br>Belagiannis <i>et al.</i> [2]                                     | 66.1<br>75.0<br>75.3         | 65.0<br>67.0<br>69.7          | 83.2<br>86.0<br>87.6         | 71.4<br>76.0<br>77.5         |
| Belagiannis <i>et al.</i> [1]<br>Belagiannis <i>et al.</i> [3]<br>Belagiannis <i>et al.</i> [2]<br>Ershadi-Nasab <i>et al.</i> [12] | 66.1<br>75.0<br>75.3<br>93.3 | 65.0<br>67.0<br>69.7<br>75.9  | 83.2<br>86.0<br>87.6<br>94.8 | 71.4<br>76.0<br>77.5<br>88.0 |

Table 2: Quantitative comparison on the Campus and Shelf datasets. The numbers are percentage of correctly estimated parts (PCP). The results of other methods are taken from respective papers. 'Ours w/o 3DPS' means using triangulation instead of the 3DPS model to reconstruct 3D poses from matched 2D poses.

# **Ablation analysis**

- 1. Appearance or geometry?
- 2. Direct triangulation or 3DPS?
- 3. Matching or no matching?

| Campus      | Actor 1     | Actor 2 | Actor 3     | Average |
|-------------|-------------|---------|-------------|---------|
| Ours        | 97.6        | 93.3    | 98.0        | 96.3    |
| Appearance  | <b>97.6</b> | 93.3    | 96.5        | 95.8    |
| Geometry    | 97.4        | 90.1    | 89.4        | 92.3    |
| No 3DPS     | 90.6        | 89.2    | 97.7        | 92.5    |
| No matching | 84.8        | 89.0    | 71.5        | 81.8    |
| Shelf       | Actor 1     | Actor 2 | Actor 3     | Average |
| Ours        | 98.8        | 94.1    | 97.8        | 96.9    |
| Appearance  | 98.6        | 60.5    | 94.3        | 84.5    |
| Geometry    | 97.2        | 79.5    | 96.5        | 91.1    |
| No 3DPS     | 97.9        | 89.5    | <b>97.8</b> | 95.1    |
| No matching | 98.1        | 91.1    | 92.8        | 94.0    |

# Qualitative evaluation



# Demo













# Running time

We report running time of our algorithm on the sequences with four people and five views in the Shelf dataset, tested on a desktop with an Intel i7 3.60 GHz CPU and a GeForce 1080Ti GPU. Our unoptimized implementation on average takes 25 ms for running reID and constructing affinity matrices, 20 ms for the multi-way matching algorithm, and 60 ms for 3D pose inference. Moreover, the results in Table 2 show that our approach without the 3DPS model also obtains very competitive performance, which is able to achieve real-time performance at > 20fps.

# **THANK YOU!**

Q & A