Sujet 1:

Question de cours :

- 1. Qu'est-ce qu'une relation de dépendance linéaire?
- 2. Soit F = $(u_1, u_2, ..., u_n)$ une famille de vecteurs. Que signifie que la famille F est libre ?

Application:

1. Soit
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{u_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Soit $F = (\overrightarrow{u_1}, \overrightarrow{u_2})$. La famille F est-elle libre ?

1. Soit
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{u_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Soit $F = (\overrightarrow{u_1}, \overrightarrow{u_2})$. La famille F est-elle libre?

2. Soit $\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Soit $G = (\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$. La famille G est-elle libre?

- 3. Montrer que la famille F est génératrice de R².
- 4. Que peut-on en déduire pour F?
- 5. Trouver les coordonnées de tout vecteur de R² dans F.
- 6. Soit \mathcal{B} la base canonique de \mathbb{R}^2 . Ecrire la matrice de passage de \mathcal{B} à F.

Exercice:

On se place dans
$$\mathcal{M}_3(R)$$
 et on pose $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Soit $F = \{ M \in \mathcal{M}_3(R) \text{ telles que } 2M - {}^tM = AM \}.$

- **1.** Montrer que F est un sous espace vectoriel de $\mathcal{M}_3(R)$.
- 2. Caractériser par leurs coefficients les matrices M de F. En déduire une famille génératrice de F.
- 3. Cette famille est-elle une base de F?

Sujet 2:

Question de cours :

Soit E un espace vectoriel et soit F = $(\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_p})$ une famille de vecteurs de E. Que signifie que la famille F est une famille génératrice de E ?

Application:

1. Soit
$$\overrightarrow{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\overrightarrow{v_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ trois vecteurs de R³. Soit F = $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$. La

famille F est-elle génératrice de R³ ?

2. Soit
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ et $\overrightarrow{u_3} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ trois vecteurs de R³. Soit G = $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$. La

famille G est-elle génératrice de R³ ?

- 3. La famille F est-elle libre?
- 4. La famille G est-elle libre ?
- 5. Que peut-on en déduire pour G?
- 6. Trouver les coordonnées de tout vecteur de R³ dans G.
- **7.** Soit \mathcal{B} la base canonique de \mathbb{R}^3 . Ecrire la matrice de passage de \mathcal{B} à G.

Exercice:

On se place dans
$$\mathcal{M}_2(R)$$
 et on pose A = $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, B = $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, C = $\begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$ et D = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

- **1.** Montrer que la famille F = (A, B, C, D) est une base de $\mathcal{M}_2(R)$.
- **2.** On considère la matrice M = $\begin{pmatrix} 6 & 4 \\ 0 & 4 \end{pmatrix}$.

Déterminer les coordonnées de M dans la base F

3. Donner la base canonique de $\mathcal{M}_2(R)$.

Sujet 3:

Question de cours :

- I. Soit E un espace vectoriel et soit $(\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_p})$ une base de E.
- a) Que signifie que $(\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_p})$ est une base de E ?
- b) Soit $\overrightarrow{v} \in E$. Définir les coordonnées de \overrightarrow{v} dans la base $(\overrightarrow{u_1}, \overrightarrow{u_2}, ..., \overrightarrow{u_p})$.
- II. Ecrire la base canonique de $R_n[X]$.

Application:

Soit
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $\overrightarrow{u_2} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ et $\overrightarrow{u_3} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ trois vecteurs de R³. Soit G = $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$.

- 1. Montrer que G est une base de E.
- 2. Soit $\overrightarrow{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Quels sont les coordonnées de \overrightarrow{v} dans la base G ?
- **3.** Quels sont les coordonnées de \overrightarrow{v} dans la base canonique de R³ ?

Exercice 1:

Soit B1 la base canonique de $R_3[X]$ et B2 = (1, X-1, (X-1)², (X-1)³) une autre base de $R_3[X]$. Déterminer la matrice de passage $Pas_{B1,B2}$.

Exercice 2:

On considère l'ensemble F définie par : $F = \{ P \in R_3[X] \text{ tels que } P(1) = P'(1) = 0 \}.$

- 1. Montrer que F est un sous espace vectoriel de R₃[X]
- 2. Déterminer une base de F.

Sujet 4:

Question de cours :

Soit B et B' deux bases d'un espace vectoriel E. Qu'appelle-t-on les relations de changements de base de B à B'?

Application:

Soit B1 la base canonique de $R_3[X]$ et B2 = (1, X-1, (X-1)², (X-1)³) une autre base de $R_3[X]$. Déterminer la matrice de passage $Pas_{B1,B2}$.

Exercice 1:

1. Soit
$$\overrightarrow{u_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{u_2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Soit $F = (\overrightarrow{u_1}, \overrightarrow{u_2})$. La famille F est-elle libre ?

- 2. Montrer que la famille F est génératrice de R².
- 3. Que peut-on en déduire pour F?
- 4. Trouver les coordonnées de tout vecteur de R² dans F.
- 5. Soit \mathcal{B} la base canonique de \mathbb{R}^2 . Ecrire la matrice de passage de \mathcal{B} à F.

Exercice 2:

On considère l'ensemble F définie par : $F = \{ P \in R_3[X] \text{ tels que } P(1) = P'(1) = 0 \}.$

- 1. Montrer que F est un sous espace vectoriel de R₃[X]
- 2. Déterminer une base de F.