→ 1.Importing the Reqiured Package

```
import pandas as pd
import seaborn as sns
import numpy as np
from matplotlib import pyplot as pyplot
%matplotlib inline
```

→ 2.Loading the Dataset

```
import pandas as pd

df = pd.read_csv("/content/Churn_Modelling.csv")
df
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfPro
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	
2	3	15619304	Onio	502	France	Female	42	8	159660.80	

→ 3. Visualization

3.1 Univariate Analysis

9999 0000 10000±20 Obijaka 111 Tranoo Maio 00 0 0.00

import seaborn as sns
import pandas as pd

sns.displot(df.Gender)

→ 3.2 Bi-Variate Analysis

<matplotlib.axes._subplots.AxesSubplot at 0x7fbce5595210>

→ 3.3 Multi-Variate Analysis

sns.lmplot("Age","NumOfProducts",df,hue="NumOfProducts",fit_reg=False);

 \Box

→ 4.Perform description statics on the dataset

Ana

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000

→ 5. Handle the Missing values

```
data=pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"])
     0
             False
             False
     1
             False
             False
             False
             . . .
     9995
             False
             False
     9996
             False
     9997
             False
     9998
     9999
             False
     Name: Gender, Length: 10000, dtype: bool
```

→ 6.Find the outliners and replace the outliners

```
import numpy as np

df["Tenure"] = np.where(df["Tenure"] >10,np.median,df['Tenure'])

df["Tenure"]

0    2
1    1
2    8
3    1
4    2
...
9995    5
```

9996 10 9997 7 9998 3 9999 4

Name: Tenure, Length: 10000, dtype: object

▼ 7.Check for Categorical columns and perform encoding

pd.get_dummies(df,columns =["Gender","Age"],prefix=["Age","Gender"]).head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15634602	Hargrave	619	France	2	0.00	1	1
1	2	15647311	Hill	608	Spain	1	83807.86	1	0
2	3	15619304	Onio	502	France	8	159660.80	3	1
3	4	15701354	Boni	699	France	1	0.00	2	0
4	5	15737888	Mitchell	850	Spain	2	125510.82	1	1

5 rows × 84 columns

- ▼ 8.Split the data into dependent and independent variables
 - 8.1. Split the data into Independent variables

#independant

```
x = df.iloc[:,:-1].values
print(x)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
      [2 15647311 'Hill' ... 0 1 112542.58]
      [3 15619304 'Onio' ... 1 0 113931.57]
      ...
      [9998 15584532 'Liu' ... 0 1 42085.58]
      [9999 15682355 'Sabbatini' ... 1 0 92888.52]
      [10000 15628319 'Walker' ... 1 0 38190.78]]
```

▼ 8.2.Split the data into Dependent variables

```
#dependant
y = df.iloc[:,:-1].values
print(y)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
      [2 15647311 'Hill' ... 0 1 112542.58]
      [3 15619304 'Onio' ... 1 0 113931.57]
      ...
      [9998 15584532 'Liu' ... 0 1 42085.58]
      [9999 15682355 'Sabbatini' ... 1 0 92888.52]
      [10000 15628319 'Walker' ... 1 0 38190.78]]
```

9.Scale the independent variables

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
Scaler = MinMaxScaler()
df[["RowNumber"]] = Scaler.fit_transform(df[["RowNumber"]])
print(x)
```

```
[[1 15634602 'Hargrave' ... 1 1 101348.88]
[2 15647311 'Hill' ... 0 1 112542.58]
[3 15619304 'Onio' ... 1 0 113931.57]
...
[9998 15584532 'Liu' ... 0 1 42085.58]
[9999 15682355 'Sabbatini' ... 1 0 92888.52]
[10000 15628319 'Walker' ... 1 0 38190.78]]
```

10.Split the data into training and testing

```
from sklearn.model selection import train test split
train size=0.8
x = df.drop(columns = ['Tenure']).copy()
v = df['Tenure']
x train,x rem,y train,y rem = train test split(x,y,train size=0.8)
test size=0.5
x_valid,x_test,y_valid,y_test = train_test_split(x,y,test_size=0.5)
print(x train.shape),print(y train.shape)
print(x valid.shape),print(y valid.shape)
print(x test.shape),print(y test.shape)
     (8000, 13)
     (8000,)
     (5000, 13)
     (5000,)
     (5000, 13)
     (5000,)
     (None, None)
```

Colab paid products - Cancel contracts here

✓ 0s completed at 1:34 AM

×