Devoir à la maison n° 7

À rendre le 17 novembre

I. Conjugaison par une application

Soit E un ensemble et $f: E \to E$ bijective.

La conjugaison par f est l'application Φ_f : $\begin{cases} E^E \to E^E \\ \varphi \mapsto f \circ \varphi \circ f^{-1} \end{cases}$.

- 1) Simplifier $\Phi_f \circ \Phi_g$ pour $g \in E^E$ bijective. Que vaut aussi Φ_{Id_E} ?
- 2) En déduire que Φ_f est une bijection de E^E dans E^E . Que vaut $(\Phi_f)^{-1}$?
- 3) Soient \mathcal{I} , \mathcal{S} , les sous-ensembles de E^E constitués respectivement des injections et des surjections :

$$\mathcal{I} = \{ g : E \to E \mid g \text{ est injective } \} \text{ et } \mathcal{S} = \{ g : E \to E \mid g \text{ est surjective } \}$$

Montrer que \mathcal{I} et \mathcal{S} sont stables par Φ_f , c'est-à-dire que $\Phi_f(\mathcal{I}) \subset \mathcal{I}$ et que $\Phi_f(\mathcal{S}) \subset \mathcal{S}$.

- 4) Montrer que $\Phi_f(\mathcal{I}) = \mathcal{I}$ et que $\Phi_f(\mathcal{S}) = \mathcal{S}$.
- 5) Lorsque φ est bijective, qu'est-ce que $\left(\Phi_f(\varphi)\right)^{-1}$?

II. Images directe et réciproque

Soit E et F deux ensembles, $f: E \to F$, A une partie de E et B une partie de F. Montrer que :

$$f(A\cap f^{\leftarrow}(B))=f(A)\cap B.$$

— FIN —