CS463/516 Medical Imaging

Lecture 4

Warning – theoretical lecture, mostly physics. We will get to more traditional image processing topics soon ☺

Magnetic Resonance Imaging (MRI)

- Protons and neutrons in nucleus of atom possess angular momentum called spin
- Can observe spin in atoms with odd number of nuclei (such as hydrogen)
 - In atoms with even number of nuclei, the spins cancel each other out
- MRI machine produces static magnetic field B_0 , field strength measured in *Tesla*
- B_0 causes spins to align parallel or antiparallel to magnetic field direction
- Spin frequency ω depends on:
 - 1) strength of B_0
 - Measured in Tesla, typically 3 Tesla for clinical scanner
 - 2) atom-specific *gyromagnetic constant* γ
 - Measured in *MegaHz/Tesla*
 - $\omega = \gamma B_0$. Also known as the *Larmor frequency*
 - Example: hydrogen gyromagnetic ratio = $42.58 \frac{MHz}{Tesla}$
 - \Rightarrow 3 Tesla * 42.58 $\frac{MHz}{Tesla}$ = 127.74 MHz
 - We call this the resonant frequency of hydrogen at 3 Tesla

Free induction decay (FID)

- Z-axis(B_0)
- How to measure a signal from all these spinning protons?
 - A spinning proton is a moving charge, which creates a magnetic field (electromagnetic induction)
 - However, spins are aligned with B_0 which is orders of magnitude stronger (signal from spins is obscured)
 - We therefore use a radiofrequency (RF) pulse perpendicular to B_0 to tilt spins away from B_0 (a)
 - RF pulse is an electromagnetic wave we construct to match hydrogen resonant frequency ω
 - Switch on RF pulse which deposits energy, tilting all spins by angle $0^{\circ} < \alpha < 180^{\circ}$
 - Switch off the RF pulse, spins will slowly return to original direction while still precessing (b)
 - c) Can now observe spins because they are out of alignment with B_0 . Observed signal is called *free induction decay*

Longitudinal and transverse magnetization (T1 and T2)

- After RF pulse tilts spins, they precess in transverse (xy) plane, gradually re-aligning with B_0 (a)
 - This process is called *relaxation*
- Therefore, we speak of two magnetization components (b)
 - 1) **longitudinal** magnetization or M_z
 - 2) **transverse** magnetization or M_{xy}
- Biological tissue can be characterized by two different relaxation mechanisms:
 - T1 relaxation the process by which net magnetization returns parallel to B_0
 - **T2 relaxation** the process by which transverse component of magnetization decays

MRI image contrast

- What does it mean to say: 'an image is T1-weighted'?
 - It means, roughly speaking, we are measuring in each voxel how long it takes for longitudinal magnetization (M_{Z}) to recover
 - Tissue types where M_z recovers quickly will appear bright on a T1-weighted image example: the white matter which is mostly fat (a)
- What does it mean to say: 'an image is T2-weighted'?
 - It means, roughly speaking, we are measuring in each voxel how long it takes for transverse magnetization $M_{\chi\gamma}$ to decay
 - Tissue types where M_{xy} decays slowly (long T2) will appear bright on T2-weighted image example: cerebrospinal fluid which is mostly water (b)

Closer look at T2 relaxation

- a) the fluids appear bright on a T2-weighted image because transverse magnetization (M_{xy}) decays more slowly in fluids than in solid tissue
 - M_{xy} decay also called 'spin-spin relaxation'
- Can take 3-4 seconds for $M_{\chi \gamma}$ to decay in water
- Why does $M_{\chi \gamma}$ decay more slowly in fluid?
- Reasons for $M_{\chi y}$ decay are complex, but basically, in water, $M_{\chi y}$ decay occurs more slowly because spin-spin interactions aren't as strong as in other tissues
- b) M_{xy} decays exponentially with time due to dephasing (more on this later)

Closer look at T1 relaxation

- a) solid tissue (fat in this example) appear bright in a T1-weighted image because longitudinal magnetization (M_Z) recovers more quickly in solid tissues
 - T1 relaxation also called 'spin-lattice relaxation'
- Why does M_Z recover more quickly in solids than in fluids?
- M_Z recovery is fastest when molecular tumbling rate is equal to Larmor frequency
- Water has wide range of tumbling rates, so $M_{\mathbb{Z}}$ recovery is slower in water
- b) T1 relaxation is the process by which net magnetization returns to its initial maximum value M_0

Magnetic resonance imaging

- We saw basic MRI experiment is as follows:
 - 1) place sample in strong magnetic field B_0 , causing hydrogen atoms (spins) to align with B_0
 - 2) apply RF pulse to deposit energy into sample, tilting spins away from B_0 direction
 - If you want to understand why this works, take PHY361 Quantum Mechanics
 - 3) spins precess back into alignment with B_0 , creating measurable signal (electromagnetic induction)
 - 4) decide some optimal time to measure signal from this changing magnetic field
 - Time at which we measures is called 'echo time' or TE, we set TE to achieve maximum contrast
- Problem? This doesn't give us an image.
 - RF pulse tilts spins in entire sample (all spins have same resonant frequency due to B_0)
 - This basic experiment captures signal from entire sample. We want to know signal from each voxel!
 - We need a way to *spatially encode* which spins our RF pulse will tilt away from B_0
 - Solution? Magnetic field gradients (next slide)

Slice selection with magnetic field gradients

- Recall the Larmor frequency: $\omega = \gamma B_0 = 127.74$ MHz for hydrogen at 3 Tesla
 - Basically, all hydrogen atoms are spinning at 127.74 MHz, if placed in a 3 T magnetic field
- To select a slice for imaging, apply magnetic field gradient (a)
 - Changes slightly the Larmor frequency of spins (gradient adds to B_0)
 - Example (a) spins slightly slower near feet, spins slightly faster near head
 - Protons now spin with frequency that depends on their location in Z
- Craft RF pulse to match Larmor frequency of slice we want to image
 - Typically, sinc pulse (b) is used because it's FFT is a rectangle (allows to select rectangular slice)
 - Applying sinc pulse while gradient is on allows to selectively measure signal from spins in a single slice of the body we are attempting to image

Frequency encoding

- Gradient applied and sinc pulse delivered. Now measuring spins from single slice.
- How to localize spins within a slice? Use frequency encoding
- Frequency encoding:
 - Turn off original (Z) gradient used for slice selection
 - Apply gradient in x-direction, recorded signal now contains a range of frequencies (a)
 - Frequencies w_0 to w_{max} correspond to x-values x_0 to x_{max} .
 - Do FFT of measured signal, magnitude of frequency $w_0+(w_{max}-w_0)\cdot(x_k-x_0)/(x_{max}-x_0)$ now corresponds to response of all protons on line $x=x_k$
 - This produces projection of spin density along y onto the x axis
 - Complete set of projections can be obtained by adding projections at measurements with gradient fields along different directions.
 - Using this data, can reconstruct image using filtered backprojection
 - This was the original method. Now we use k-space imaging (next slide)

K-space imaging (frequency space imaging)

- K-space imaging: generate image in frequency space, then apply ifft to get image
- 1) apply gradient G_Z in z-direction to isolate a slice
- 2) apply another linear gradient in y-direction, increasing spin frequency along y, spins dephase (this is called the *phase encoding* gradient)
- 3) apply frequency encoding gradient and acquire data, signal is transformed into frequency space
- Result is integrated spin densities along x weighted with cosine wave of frequency 1 for each line of constant y.
- In other words, we have produced real-valued part of next line in k-space of the Fourier transform in the k_{χ} direction. Imaginary part is computed by weighting signal with corresponding sine wave.
- Repeat the measurement with phase encoding for remaining lines in k-space. Once k-space is filled, image is generated by transforming it back into spatial domain (ifft)

K-space (frequency space)

Each cell in the grid represents a 2d wave with specific spatial frequency and orientation

- Excellent talk by David Higgins. Watch this talk, come back and re-read slides. Repeat until you understand.
- https://youtu.be/29iffcZPQeM