Différentiabilité et fonctions C^1

Exercice 1. Exemple simple de composition de deux fonctions différentiables Fixons $a \in \mathbb{R}^n$ et $f, g : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ deux fonctions telles f est différentiable en a et vérifie f(a) = 0. On supposera seulement que la fonction g est continue en a. On définit la fonction $F : \mathbb{R}^n \longrightarrow \mathbb{R}$ par

$$F: x \in \mathbb{R}^n \mapsto (f(x)|g(x))$$
.

Montrer que F est différentiable en a et que pour tout $h \in \mathbb{R}^n$,

$$d_a F(h) = (d_a f(h)|g(a)).$$

Exercice 2. Soit $f(x,y) = x^2 y \sin\left(\frac{y}{x}\right)$.

- 1. Déterminer le domaine de définition de f. Montrer que l'on peut définir un prolongement par continuité de f sur \mathbb{R}^2 . Soit \tilde{f} ce prolongement.
- 2. Étudier l'existence de dérivées partielles de \tilde{f} sur \mathbb{R}^2 , leur continuité et la différentiabilité de \tilde{f} sur \mathbb{R}^2 .

Exercice 3. Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}^2$ définie par

$$f(x,y) = (x^4 + y^4) \sin\left(\frac{1}{\sqrt{x^4 + y^4}}\right), (x,y) \neq (0,0).$$

- 1. Montrer que f est prolongeable par continuité à \mathbb{R}^2 . On appelle \tilde{f} ce prolongement.
- 2. Étudier l'existence de dérivés partielles, leur continuité et la différentiabilité de \tilde{f} .

Exercice 4. Soit la fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} \frac{xy}{|x|+|y|}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

- 1. Montrer que f est continue en (0,0).
- 2. Soit $(x,y) \in \mathbb{R}^2$ tel que x=0 ou y=0. Calculer, si elles existent, les dérivées partielles

$$\frac{\partial f}{\partial x}(x,y)$$
 et $\frac{\partial f}{\partial y}(x,y)$.

3. Vérifier que f n'est pas différentiable en (0,0). Que peut-on conclure sur la continuité de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en (0,0)?