

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Satz

Es gilt

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Erinnerung

- \blacksquare $n! = \prod_{i=1}^{n} i$
- $\pi = 3,14159(2)...$ "Kreiszahl"
- e = 2,7182(8)... "Eulerzahl"

Lemma

[Wallissches Produkt]

Es gilt

$$\frac{\pi}{2} = \lim_{n \to \infty} \prod_{i=1}^{n} \frac{4i^2}{4i^2 - 1}$$

Korollar

Es gilt

$$\frac{(n!)^2 2^{2n}}{(2n)! \sqrt{n}} \sim \sqrt{\pi}$$

Binomialkoeffizienten

■ der Binomialkoeffizient "n über k" ist definiert als

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} \qquad (n \ge k)$$

■ für k > n definieren wir $\binom{n}{k} = 0$

Pascalsches Dreieck

Für 0 < k < n gilt

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Teilmengen

Der Binomialkoeffizient $\binom{n}{k}$ gibt die Zahl der k-elementigen Teilmengen von [n] an.

Binomischer Lehrsatz

Für alle $a, b \in \mathbb{R}$ und alle $n \in \mathbb{N}$ gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Korollar

Die Menge [n] hat genau 2^n Teilmengen.

Zusammenfassung

- \blacksquare die Stirlingformel gibt eine Approximation für n!
- **z**usammen mit der informationstheoretischen unteren Schranke erhalten wir eine untere Schranke von $\Omega(n \log n)$ für vergleichsbasierte Sortieralgorithmen