Your Document Title

Benjamin Basseri

February 8, 2025

Problem 1

Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Proof: direct, using the topology axioms and given information We're given for each $x \in A$ there is an open set U where $x \in U \subset A$. We have arbitrary unions of open sets are open from the topology axioms. So for each x call the containing open set U_x that is itself contained in A, then A is an arbitrary union of open sets, which is open:

$$A = \bigcup_{x \in A} U_x$$

Problem 2

Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in Example 1 of §12. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is the finer.

The first topology is $\mathscr{T}_{\text{trivial}} = \{\varnothing, X\}$, or the 'one big clump' topology. Since all topologies will contain \varnothing and X, this topology will be comparable and coarser than all others. Likewise, the last topology is the discrete topology, comparable and finer than all others.

The other topologies are:

$$\begin{split} \mathscr{T}_{\text{nested-}a} &= \{\varnothing, \{a\}, \{a,b\}, X\} \\ \mathscr{T}_{\text{nested-}b} &= \{\varnothing, \{b\}, \{a,b\}, \{b,c\}, X\} \\ \mathscr{T}_{\text{isolated-}b} &= \{\varnothing, \{b\}, X\} \\ \mathscr{T}_{\text{separated}} &= \{\varnothing, \{a\}, \{b,c\}, X\} \\ \mathscr{T}_{\text{split-}b} &= \{\varnothing, \{b\}, \{c\}, \{a,b\}, \{b,c\}, X\} \\ \mathscr{T}_{\text{cut-}c} &= \{\varnothing, \{a,b\}, X\} \\ \mathscr{T}_{\text{closed-}c} &= \{\varnothing, \{a\}, \{b\}, \{a,b\}, X\} \end{split}$$

For $\mathscr{T}_{\text{nested-}a}$ it is only comparable to $\mathscr{T}_{\text{cut-}c}$ and $\mathscr{T}_{\text{closed-}c}$. For the other topologies above it either has $\{a\}$ or $\{a,b\}$ open and the others do not so it is not contained by them, and the others have $\{b\}$ or $\{b,c\}$ open and $\mathscr{T}_{\text{nested-}a}$, so it cannot contain them. This means

$$\mathscr{T}_{\mathrm{trivial}} \subset \mathscr{T}_{\mathrm{cut-}c} \subset \mathscr{T}_{\mathrm{nested-}a} \subset \mathscr{T}_{\mathrm{closed-}c} \subset \mathscr{T}_{\mathrm{discrete}}$$

For the other topologies

$$\mathcal{I}_{\text{trivial}} \subset \mathcal{I}_{\text{isolated}-b} \subset \mathcal{I}_{\text{nested}-b} \subset \mathcal{I}_{\text{split}-b} \subset \mathcal{I}_{\text{discrete}}$$

$$\mathcal{I}_{\text{trivial}} \subset \mathcal{I}_{\text{separated}} \subset \mathcal{I}_{\text{discrete}}$$

