

Project name: WBG Devices-Based Matrix Converter

Team members: Jack Alagood, Kyle Bedrich, lan Farrar

Problem Statement

- The rise of energy-intensive computing (AI model training, cloud computing, data centers, etc.) creates a need to optimize power delivery to these loads
- Though many solutions have been presented, there remains room for improvement in efficiency and cost

Proposed Solution

- GaN technology promises greater power density than SiC
- Matrix converters offer bidirectional power flow, adjustable input power factor, and greater power density due to less storage elements

System Diagram

Primary Side

Jack Alagood

Accomplishments since the last presentation

- Familiar with matrix converter elements (~10h)
- Familiar with Altium's schematic and PCB design interfaces (20h)
- Proposed schematics for voltage sensor, gate driver, and singlephase ACDC converter (20h)

Ongoing progress/problems and plans until the next presentation

- Replace inadequate components (must be rated appropriately)
- Design PoC PCB
- Link and test schematics with control devices

Secondary Side

Ian Farrar

Accomplishments since the last presentation	Ongoing progress/problems and plans until the next presentation
 Finished bulk of transformer research to narrow down type (material, shape) of transformer and compile list of significant equations (10 hours) Familiarized self with parametrization of 2D model in Ansys Maxell (10 hours) 	 Convert previously built transformer model to be parametric Setup infrastructure to convert excel files to simulation files to be processed by HPRC

Controls

Kyle Bedrich

Accomplishments since the last presentation

- Working matrix converter switching signal with correct switching logic (30h)
- PSIM code generation working (10h)

Ongoing progress/problems and plans until the next presentation

- PSIM ABC-DQO transformation for sensing 3-phase voltage phi
- Control system HIL testing with TI F2837x and validation

Execution Plan

Validation Plan

Task	Deadline	Status	
URS Program Application	9/3/2024	Complete	
Analyze Prior Studies	9/5/2024	Complete	
Acquire Software Licenses	9/5/2024	Complete	
Concept of Operations Report	9/15/2024	Complete	
Research	9/19/2024	Complete	
Functional System Requirements	9/26/2024	Complete	
Interface Control Document	9/26/2024	Complete	
Validation Plan	9/26/2024	Complete	
Design and Simulation	10/10/2024	Complete	
Status Update Presentation	10/23/2024	Complete	
Midterm Presentation	10/10/2024	Complete	
PCB Design	10/31/2024	In Progress	
PCB Assembly	11/7/2024		
Testing	11/26/2024		
Final Presentation	11/20/2024		
Final Demo	11/26/2024		
		Legend	
		Complete	
		In Progress	
		Overdue	
		Not Started	