Linking Entities and Types to Unstructured Text

(Summer School on Natural Language Processing and Machine Learning)

Soumen Chakrabarti IIT Bombay

http://www.cse.iitb.ac.in/~soumen/

June 8, 2017

Entity and type linking: Motivation

- ► Commercial Web search at the outer limits of imprecise search
- ▶ SQL, XML, SPARQL, . . . allow precise search
- But demand knowledge of schema, joins, aggregates
- ▶ Past and ongoing research: Translating imprecise to precise query
- ▶ Limited mileage beyond 1–2 relations
- ► Can we use a "softer" intermediate query format?
 - Most basic "universal" relations: instance-of, subtype-of
 - Other relations expressed using short text spans
 - Variables, subqueries/clauses, (equi)joins
 - Aggregates (often to establish belief)

Example query

- ▶ Let m be a motherboard
- m has two GPU slots
- ▶ *m* supports remote management
- \blacktriangleright Let c be a dealer
- ightharpoonup c sells m
- c has phone number p
- p is listed in Kolkata

Tabulate $\langle m, c, p \rangle$

Pieces to the puzzle

- Recognize that token TZ68K+ corresponds to entity (definition page) https://en.wikipedia.org/wiki/Biostar_TZ68K%2B
- Harder to disambiguate Valley Computer Store
- ► Most motherboards are out of vocabulary in major knowledge graphs (KGs): DB85FL, S1200V3RPS
- Can still identify them as motherboards from context
- Query planning and evidence aggregation are out of the scope of this tutorial
- Here we focus on entity and type linking

Prerequisites

- Basic ML: Logistic regression, hinge loss, linear SVM, RankSVM
- ▶ Basic text processing: tokenization, stemming, vector space
- ► Labeling text as a token or span sequence: HMM, CRF, basic inference in graphical models
- ► Application to coarse named entity recognition (NER): person, location, organization, date, other, ...
- Word embeddings: word2vec, GloVe
- Basic convnet, RNN, LSTM definitions

Distributional vectors and word clusters

- Finite labeled data, feature sparsity, and out-of-vocabulary (OOV) words/features have always troubled POS and NER tagging and estimating n-gram statistics
- ► E.g. we saw <u>car</u> in the training sequences but never <u>sedan</u>, or <u>Shanghai</u> in test data but only other cities in training data
- But an unlabeled corpus has enough clues that these are related words
- ► A well-established partial fix is word cluster features
- First proposed by IBM researchers in 1992 http://aclweb.org/anthology/J/J92/J92-4003.pdf
- Given a word like <u>sedan</u>, collect all context windows (say) at most 11 words wide centered on it
- From these contexts collect a bag of other words, count them
- Possibly transform from raw counts to TFIDF

Distributional vectors and word clusters (2)

- Represent as a sparse vector in a space as large as the corpus vocabulary; perhaps scale to unit length
- ► This is the distributional vector for sedan
- ► Turns out the d.v.'s of similar/related words are similar
- Can cluster these d.v.'s using standard clustering tools; see https://en.wikipedia.org/wiki/Brown_clustering
- ► In standard CRF implementations, one of the features for each token is its cluster ID
- ▶ The best number of clusters may be application-dependent

Word embeddings

- ▶ In a token window, the focus token f is at the center and others are context tokens c
- ▶ Each word in the vocabulary is associated with two embeddings, $u_w \in \mathbb{R}^D$ as focus and $v_w \in \mathbb{R}^D$ as context
- ▶ Typically *D* ranges from 100 to 1000
- ightharpoonup Two dominant paradigms to train $oldsymbol{U}, oldsymbol{V}$

GloVe:
$$\log X_{fc} \approx u_f \cdot v_c + b_f + b_c$$
,

where $b_w \in \mathbb{R}$ is a per-word offset and X_{fc} is the cooccurrence count of words f and c, and

Word2vec:
$$\Pr(f, c \text{ cooccur}) = \sigma(u_f \cdot v_c),$$

where $\sigma(\bullet) = 1/(1 + e^{-\bullet})$ is the sigmoid function

Word embeddings (2)

- Variations of low-rank factorization of a transformed cooccurrence matrix
- lackbox Usually only U used for downstream tasks, one vector per word, usually scaled to unit L2 norm
- ► Although not explicitly trained to those ends, the focus embeddings are useful for many tasks
 - $\sim u_{\rm auto} \approx u_{\rm sedan}$
 - $u_{\rm king} u_{\rm man} + u_{\rm woman} \approx u_{\rm queen}$, etc.
- Similarity as dot-product or cosine, vs. dissimilarity as Lp distance
- Sometimes, but not always, interchangeable

Entity embeddings [1, 2]

- Word2vec or GloVe on text corpus will give one embedding per word (bank) or pre-identified compound (Michael_Jordan)
- ► Even though there are many senses of "bank" and many people called "Michael Jordan"
- Many recent papers on fitting or interpolating embedding per sense rather than token/compound
- ▶ Here we begin with the assumption (chicken and egg?) that each mention span has been replaced with a special "word", an entity ID such as /m/054c1
- ► Regard entity IDs as regular words and run word2vec or GloVe
- In Wikipedia, there are at least two forms of association between words and entities
 - The text on the definition page of an entity
 - ▶ The text in the context of known ("gold") mentions of an entity

Entity embeddings [1, 2] (2)

- These are expected to follow somewhat different language models
- Combining info from them may lead to better entity representations
- ▶ If entities are points, then types are . . . ?
- Extensive literature on how relation triples are represented in vector/matrix/tensor space — dozens of models over the last three years

From coarse NER to fine types

FIGER type catalog (112 fine types)

person actor architect artist athlete author coach director		doctor engineer monarch musician politician religious_leader soldier terrorist		organization airline company educational_institution fraternity_sorority sports_league sports_team			terrorist_organization government_agency government political_party educational_department military news_agency		
location city country county province railway road	island y mountain glacier ce astral_body		product engine airplane car ship spacecraft train			camera mobile_phone computer software game instrument	film play event attack election	written_work newspaper music military_conflict natural_disaster sports_event	
bridge					weapon		protest	terrorist_attack	
building airport dam hospital hotel library power_star restaurant sports_faci theater		time color award educationa title law ethnicity language religion god	I_deg	gree	med dise sym drug body	otom ; /_part g_thing nal	broadcas tv_chans currency stock_ex algoriths	cchange m ming_language system	

Fine type tagging: Motivation

- Suppose John Smith is a cricket player not yet in Wikipedia
- But mentioned in local news about county cricket
- Query is "Who took four wickets in one over last year against Birmingham?"
- ▶ Potential evidence passage¹ is "Birmingham crashed out of the match after losing four wickets to Smith in a single over last month."
- ► Goal is to collect John Smith as a (strong) candidate, for which we must know that Smith refers to a cricketer²
- Experience suggests (thousands of) finer types better for QA than (hundreds of) fine types, but hard to infer from context

¹Would be very nice to also collect evidence of four wickets from "Alan and Boyd were bowled out by the first two balls from Smith; Ray and Tony were caught out before the over was done."

²Must also know that who is asking for a cricketer, not, e.g., a politician, a process called answer/target type inference.

Type tagging: basic idea

- ► Efficiently produce training data: text with entity mention spans marked out, with type(s) of entities provided as labels
 - Nobody scored as many goals in one match as Messi in 2004.
 - ► Type of Messi is /person/athlete
- ► Source: Wikipedia links to other Wikipedia pages corresponding to entities
- Collect features from mention context
 - scored, goals, match
- ► Find types to which these entities belong these are labels
- (Caveat: Not all these types may be active in a mention context)
- ► Train a multi-class, multi-label classifier
- ▶ At test time, use a B-I-O CRF to locate mention segments
- ▶ For each mention, collect features from context
- ▶ Predict one or more types using multi-class, multi-label classifier

FIGER system and features

Figure 1: System architecture of FIGER.

Feature	Decription	Example
Tokens	The tokens of the segment.	"Eton"
Word Shape	The word shape of the tokens in the segment.	"Aa" for "Eton" and "A0" for "CS446".
Part-of-Speech tags	The part-of-speech tags of the segment.	"NNP"
Length	The length of the segment.	1
Contextual unigrams	The tokens in a contextual window of the segment.	"victory", "for", "."
Contextual bigrams	The contextual bigrams including the segment.	"victory for", "for Eton" and "Eton ."
Brown clusters	The cluster id of each token in the segment (using the	"4_1110", "8_11100111", etc.
	first 4, 8 and 12-bit prefixes).	
Head of the segment	The head of the segment following the rules by	"HEAD_Eton"
	Collins (1999).	
Dependency	The Stanford syntactic dependency (De Marneffe, Mac-	"prep_for:seal:dep"
	Cartney, and Manning 2006) involving the head of the	
	segment.	
ReVerb patterns	The frequent lexical patterns as meaningful predicates	"seal_victory_for:dep"

Google fine types and baseline system

- Minor tweaks to FIGER types
- Improvements in collecting labeled data

Google fine types and baseline system (2)

- Enhanced classification
- Training data expected to have extraneous labels
 - Entity Obama is-a politician, (ex-) POTUS, lawyer, book author, parent, . . .
 - In a given context, one or few types may be 'active'
 - ▶ But training instance produced with all type labels
- ➤ To mitigate problems from extraneous labels, use weighted approximate rank pairwise (WARP) loss
- ► Features³ (e.g. for "... who Barack H. Obama first picked ...")

Feature	Description	Example
Head	The syntactic head of the mention phrase	"Obama"
Non-head	Each non-head word in the mention phrase	"Barack", "H."
Cluster	Word cluster id for the head word	"59"
Characters	Each character trigram in the mention head	":ob", "oba", "bam", "ama", "ma:"
Shape	The word shape of the words in the mention phrase	"Aa A. Aa"
Role	Dependency label on the mention head	"subj"
Context	Words before and after the mention phrase	"B:who", "A:first"
Parent	The head's lexical parent in the dependency tree	"picked"
Topic	The most likely topic label for the document	"politics"

³ "Washington sat on his favorite Barcelona and opened a Newcastle."

Embedding type labels with WARP loss

- Mention contexts represented as x
- A common situation is $x \in \mathbb{R}^D$, for which we choose embedding $f(x) = \mathbf{A}x \in \mathbb{R}^H$, where $\mathbf{A} \in \mathbb{R}^{H \times D}$
- Want to exploit related types by embedding each type to a vector; similar types expected to embed to similar vectors
- ▶ Let δ_t is the 1-hot vector for t
- Let the tth column of matrix ${\pmb B} \in \mathbb{R}^{H \times T}$ represent the H-dimensional embedding of type t
- l.e., we can use notation $g(t) = \pmb{B}\pmb{\delta}_t$ as the embedding $g(t) \in \mathbb{R}^H$
- ► The score of a single type label t for context x is $s_t(x) = f(x) \cdot g(\boldsymbol{\delta}_t)$
- Multiple type labels may be valid in both train and test instances

Embedding type labels with WARP loss (2)

- ▶ ith labeled instance is (x_i, y_i) where y_i represents a label set, possibly as a few-hot vector in $\{0, 1\}^T$
- Exact inference must explore all 2^T label subsets: $\hat{\pmb{y}} = \operatorname{argmax}_{\pmb{y}} f(x) \cdot g(\pmb{y})$
- ► To avoid high inference cost, cast as label ranking
- Overall score vector $\boldsymbol{s}(x) = (\dots, s_t(x), \dots) \in \mathbb{R}^T$
- ▶ Goal is to rank all correct labels before any incorrect one
- Loss on instance x_i, y_i is some function of the rank(s) of the correct label(s) in list of types sorted by decreasing score
- Let $rank(t, \boldsymbol{s}(x))$ be the rank of label t in sorted list

$$rank(t, \boldsymbol{s}(x)) = \sum_{y' \neq y} \mathbb{I}(s_{y'}(x) \ge s_y(x))$$

▶ For a single correct t, we can minimize the above rank

Embedding type labels with WARP loss (3)

- ► For multiple correct ts, there are various options to combine their ranks, e.g., sum
- For instance x_i, y_i , consider good type $t \in y_i$, bad type $t' \notin y_i$
- ► RANKSVM loss for such a pair would be $\max\{0, 1 + s_{t'}(x) s_t(x)\}$
- ightharpoonup To incorporate the rank signal of t, define overall WARP loss

$$\sum_{t \in \boldsymbol{y}_i} \sum_{\bar{t} \notin \boldsymbol{y}_i} \mathcal{R}(\text{rank}(t, \boldsymbol{s}(x)) \max\{0, 1 + s_{t'}(x) - s_t(x)\})$$

- ▶ Here $\mathcal R$ transforms rank into weight; for precision at k, we can use $\mathcal R = \sum_{1 \le i \le k} 1/i$
- Not convex

Kernel WSABIE

- ► Earlier, $s_t(x) = (Ax) \cdot (B\boldsymbol{\delta}_t) = x^\top (A^\top B) \boldsymbol{\delta}_t$
- ▶ Where $Ax \in \mathbb{R}^H$ and $B\delta_t \in \mathbb{R}^H$
- ▶ A and B appear in only the form $A^{\top}B \in \mathbb{R}^{D \times T}$, but it is constrained to have rank at most H as a form of regularization
- Despite this, observed noisy "fill" in this matrix while training
- Let $P \circ Q$ be the elementwise product of two matrices, i.e., $(P \circ Q)[d,t] = P[d,t] \, Q[d,t]$
- ▶ Google system uses $K \in \{0,1\}^{D \times T}$ as a feature selection or additional noise reduction mechanism

$$s_t(x) = x^{\top} (K \circ (A^{\top} B)) \delta_t$$

- ▶ If A[:,d] is among the 200 nearest neighbors of B[:,t], set K[d,t]=1, and 0 otherwise
- ► *K* updated after every iteration (mini-batch?)

Google fine-type system #2 performance

Method	P	R	F1
Ling and Weld (2012)	_	_	69.30
WSABIE	81.85	63.75	71.68
K-WSABIE	82.23	64.55	72.35

Table 4: Precision (P), Recall (R), and F1-score on the FIGER dataset for three competing models. We took the F1 score from Ling and Weld's best result (no precision and recall numbers were reported). The improvements for WSABIE and K-WSABIE over the baseline are statistically significant (p < 0.01).

Bi-LSTM fine-type tagger

She got a Ph.D from New York in Feb. 1995.

- Bi-LSTM on left and right context
- Average of word vectors of mention
- ► +Attention

Bi-LSTM fine-type tagger details

- Let mention words be $M=\{m\}$ with corresponding pretrained (focus) word vectors u(m) from word2vec or GloVe
- lacktriangle Mention vector is designed as $v_m = (1/|M|) \sum_{m \in M} u(m)$
- lacktriangle Suppose we take C words of context from left and right
- \blacktriangleright Rightmost state from left context LSTM is $\overrightarrow{h}_C^\ell$
- lackbox Leftmost state from right context LSTM is \overleftarrow{h}_1^r
- $lackbox{ Context vector is designed as } v_c = egin{bmatrix} \overrightarrow{h}_C^\ell \\ \overleftarrow{h}_1^r \end{bmatrix}$
- ► Each type *t* is predicted with

$$\Pr(t|\text{mention, context}) = \sigma\left(W_t \begin{bmatrix} v_m \\ v_c \end{bmatrix}\right)$$

Computing v_c with attention

Sentence	Prediction		
	/film 0.986 /art 0.982		
The film is a remake of Secrets (1924) , a silent film starring [Norma Talmadge]	/person 0.999 /actor 0.987		
	/person 1.00 /director 0.963 /author 0.958 /artist 0.950 /actor 0.871		
	/person 1.00 /politician 0.983		
She is best known for roles in various TV Dramas and tokusatsu shows such as [Ultraseven X] and Kamen Rider Kiva	/broadcats_program 0.892		

$$e_i^{\ell} = \tanh\left(W_e \begin{bmatrix} \overrightarrow{h}_i^{\ell} \\ \overleftarrow{h}_i^{\ell} \end{bmatrix}\right)$$
 $e_i^r = \cdots$

$$\tilde{a}_i^{\ell} = \exp\left(W_a e_i^{\ell}\right)$$

$$\tilde{a}_i^r = \cdots$$

$$a_i^{\ell} = \frac{\tilde{a}_i^{\ell}}{\sum_{i=1}^{C} (\tilde{a}_i^{\ell} + \tilde{a}_i^r)}$$

$$v_c = \sum_{i=1}^C a_i^\ell \begin{bmatrix} \overrightarrow{h}_i^\ell \\ \overleftarrow{h}_i^\ell \end{bmatrix} + a_i^r \begin{bmatrix} \overrightarrow{h}_i^r \\ \overleftarrow{h}_i^r \end{bmatrix} \quad \text{Redefined context representation}$$

L-R & R-L states from left context

L-R & R-L states from right context

Attend to important context words

Normalize attention over left context

LSTM and attention results

Models	P	R	F1
Ling and Weld (2012)	-	-	69.30
Yogatama et al. (2015)	82.23	64.55	72.35
Averaging Encoder	68.63	69.07	68.65
LSTM Encoder	72.32	70.36	71.34
Attentive Encoder	73.63	76.29	74.94

Table 1: Loose Micro Precision (P), Recall (R), and F1-score on the test set

M 1 1	G	Loose	Loose
Models	Strict	Macro	Micro
Ling and Weld (2012)	52.30	69.90	69.30
Yogatama et al. (2015)	-	-	72.25
Averaging Encoder	51.89	72.24	68.65
LSTM Encoder	55.60	73.95	71.34
Attentive Encoder	58.97	77.96	74.94

Table 2: Strict, Loose Macro and Loose Micro F1-scores

Reducing (type) label noise [7]

- ► Fine type training data in the form of spans directly gold-labeled with types is rare
- Wikipedia has millions of pages of text with gold mentions of entities
- Wikipedia, DBpedia, Freebase, WikiData, ... have type hierarchies from which we can get all types that contain an entity
- However, most of these types are not relevant at any given mention of the entity
- Training all these types using this textual context would pollute the type models
- Notation: entity e, with mention contexts $C_e = \{c_{ei}\}$ (if e is understood, will drop it)
- ightharpoonup e is a member of types in T_e , specified by KG
- ▶ I.e., each e associated with y_e , a few-hot vector of types

Reducing (type) label noise [7] (2)

- Less realistic to assume per-context gold labels (except to eval fine-type system)
- ► Each mention context is an instance
- ▶ I.e., each entity is associated with multiple instances
- ▶ In general each entity has multiple valid labels (types)
- ► Therefore, a multi-instance multi-label (MIML) setting
- ► Each context associate with _____ (one/more) types?

MIML approach to fine typing

- ▶ Each context c_i will be represented by a fixed-size vector $c_i \in \mathbb{R}^H$ (defined later)
- ▶ A first-cut per-mention predictor is a logistic regression: $\Pr(t|c_i) = \sigma(\boldsymbol{w}_t \cdot \boldsymbol{c}_i + b_t)$
- Note multiple t can have score close to 1
- Next, we aggregate in various ways over contexts
- ▶ MIML-MAX: Each type $t \in T_e$ is supported by one best context: $\Pr(t|e) = \max_{c \in C_e} \Pr(t|c)$
- Ignores all smaller endorsements
- lacksquare MIML-AVG: $\Pr(t|e) = \frac{1}{|C_e|} \sum_{c \in C_e} \Pr(t|c)$
- ▶ Binary cross entropy $BCE(y, y') = -y \log y' (1 y) \log(1 y')$
- ▶ All w_t s can be trained using cross-entropy loss $L(\{w_t\}) = \sum_e \sum_t \mathsf{BCE} \big(y_{et}, \Pr(t|e; w_t) \big)$

MIML approach to fine typing (2)

- ► MIML-ATT: Aggregate with attention over contexts
- lacktriangle Apart from $oldsymbol{w}_t$, associate each t with another vector $oldsymbol{v}_t$
- lacktriangle Mention contexts of entity e compete for attention:

$$\alpha_{i,t} = \frac{\exp(\boldsymbol{c}_i \cdot \boldsymbol{v}_t)}{\sum_{i'} \exp(\boldsymbol{c}_{i'} \cdot \boldsymbol{v}_t)}$$

- Now we build an attention-weighted context representation: $\mathbf{a}_t = \sum_i \alpha_{i,t} \mathbf{c}_i$
- ▶ Use \boldsymbol{a}_t in place of \boldsymbol{c}_i before: $\Pr(t|e) = \sigma(\boldsymbol{w}_t \cdot \boldsymbol{a}_t + b_t)$
- Loss as before
- Additional "deepness": $\alpha_{i,t} = \frac{\exp(\boldsymbol{c}_i^{\top} \boldsymbol{M} \boldsymbol{v}_t)}{\sum_{i'} \exp(\boldsymbol{c}_{i'}^{\top} \boldsymbol{M} \boldsymbol{v}_t)}$, where \boldsymbol{M} measures the similarity between context and \boldsymbol{v}_t

Context representation c_i using convnet

- At the input, read word embeddings
- ▶ Apply narrow convnets separately to left and right context of mention to get $\phi_{\ell}(c), \phi_r(c)$
- ▶ Concatenate into $\phi(c)$ and compute $c = \tanh(S\phi(c))$ where S is more model weights
- So overall we have these model weights:
 - ▶ Global M, S
 - Global weights in convnet ϕ
 - $\boldsymbol{w}_t, \boldsymbol{v}_t, b_t$ for each type
 - Word embeddings (if fine tuned after pretraining)
- ▶ Between w_t, v_t , is there a usable/interpretable representation of type t?
- ▶ (How) do they relate to entity embeddings as in ent2vec?

Noise mitigation results

	P@1	F_1	F_1	F_1	MAP
	all	all	head	tail	
1 MLP	74.3	69.1	74.8	52.5	42.1
2 MLP+MIML-MAX	74.7	59.2	50.7	46.8	41.3
3 MLP+MIML-AVG	77.2	70.6	74.9	56.2	45.0
4 MLP+MIML-MAX-AVG	75.2	71.2	76.4	56.0	47.1
5 MLP+MIML-ATT	81.0	72.0	76.9	59.1	48.8
6 CNN	78.4	72.2	77.3	56.3	47.6
7 CNN+MIML-MAX	78.6	62.2	53.5	49.7	46.6
8 CNN+MIML-AVG	80.8	73.5	77.7	59.2	50.4
9 CNN+MIML-MAX-AVG	79.9	74.3	79.2	59.8	53.3
10 CNN+MIML-ATT	83.4	75.1	79.4	62.2	55.2
11 EntEmb	80.8	73.3	79.9	57.4	56.6
12 FIGMENT	81.6	74.3	80.3	60.1	57.0
13 CNN+MIML-ATT+EntEmb	85.4	78.2	83.3	66.2	64.8

- ► ClueWeb with FACC1 entity annotations
- Freebase entities mapped to 102 FIGER types
- ▶ 4.3 million contexts
- ▶ Head means > 100, tail < 5 mentions

Entity disambiguation

Entity disambiguation

Goal: To refine a mention tag from fine types to the ID of specific entity in a catalog or knowledge graph like Wikipedia or Freebase

- ▶ ... book by Mike Jordan on graphical models ...
- ▶ ... chance to see Michael Jordan play without Dean Smith ...
- http://en.wikipedia.org/wiki/Michael_Jordan or http://en.wikipedia.org/wiki/Michael_I._Jordan or ...?
- Which entity catalog to use? (Wikipedia, TAP, OpenCYC, WordNet, ...)
- ▶ What about the many Mike Jordans not in the catalog?
- ▶ Different from anaphora: Every dog has *its* day

Some distinctions from WSD

- Word sense disambiguation (WSD) is largely about common words, not references to specific entities
 - 42 senses of "run" in WordNet
 - Part of speech helps a fair bit
- Entity catalog typically richer info source than dictionary
 - Broader category system
 - ▶ Part of speech is largely "proper noun" and not as helpful
- Entity disambiguation goals:
 - Identify that a sequence of tokens is a potential mention
 - Capture suitable context around to form spot s
 - Assign s to a suitable entity γ in catalog
 - \blacktriangleright Or claim that there is no suitable γ

Why annotate?

- Make raw text look like Wikipedia with definitional and informational links (most systems)
 - Annotate first occurrence only
 - Annotate only on-topic entities
 - Use discretion to avoid "hyperlink fatigue"
- ▶ Index the annotations to enable advanced search (our focus)
 - Exhaustive annotation
 - Make no whole-document topic judgment

Notation

- lacktriangle book by Mike Jordan on graphical models and chance to see Michael Jordan play without Dean Smith are spots s
- Mike Jordan and Michael Jordan are mentions, other tokens form context
- $ightharpoonup \gamma$ is an entity ID or label from the catalog
- ▶ Set S_0 of n spots on page, $s \in S_0$
- ightharpoonup Γ_s is the set of labels admissible for spot s
- ▶ "No annotation" option NA
- $y_s \in \Gamma_s \cup \text{NA}$ is the entity label assigned to spot s
- $ightharpoonup \vec{y}$ is a vector of n label variables
- $\Gamma_0 = \bigcup_{s \in S_0} \Gamma_s$

Catalog representation

- Pattern after WordNet, Wikipedia, TAP, . . .
- lacktriangle Each entity γ as an associated description
- ightharpoonup Descriptions link to other related entities γ'
- Entities belong to one or more categories
- Categories (physicist) are subcategories of others (scientist)
- Links may be "incidental"
- Categories and super-categories may be noisy: Machine learning researcher more meaningful than Living people or Year of birth missing
- Cycles in is-a "hierarchy"?

Human supervision

http://en.wikipedia.org/wiki/Training (meteorology) In meteorology, training is when a successive series of showers or thunderstorms moves repeatedly over the same area, usually causing some form of flooding, especially flash floods. Often, this happens when a line of rain or storms forms along a stationary front. and moves down the length of the front, while the front is stalled. It is named so hecome this is similar to the way train cars sions[NO ATTACHMENT] . the |nutrients[Nutrient] | and |supplements[Supplement] | that you from your training ve a huge[NO ATTACHMENT] impact on how you'll be rewarded for the work you did while consume after you you were there. Pos exercise] Nutrition[Nutrition] During Intense[NO ATTACHMENT] exercise, our bodies[Body] use Training hydrate], qlycogen[Glycogen], amino acids[Amino acid] and fluids[NO ATTACHMENT] at a rapid[NO ATTACHM Training [Invention] what is often referred to as a catabolic[Catabolism] state. Our qoal[Goal] nutrition[Nutrition] is to return the body to an [anabolic[Anabolism]] state as soon as with your post- wa(meteorology) session[NO ATTACHMENT] is over. This will help you recover from the training[Sports we can once your Training training] session[N(disambiguation) u can be ready for the next one, which will both cut down your risk of injury[Injury] and allow you to improv Training (civil) and conditioning [Physical exercise] at a faster rate. Let's take a look at some general quidelines[No ATTAC Sports training pere as effectively as possible[Possibility] . Carbohydrates[Carbohydrate]

- System identifies spots and mentions
- ▶ Shows pull-down list of (subset of) Γ_s for each s
- User selects $\gamma^* \in \Gamma_s \cup NA$

SemTag

- Used Stanford TAP ontology (72,000 entities)
- ▶ Set of classes C, subclass relation $S \subseteq C \times C$, set of instances (entities) I, many-to-many type relation $T \subseteq I \times C$
- lacktriangleright i has class c_1 and c_1 subclass of c_2 implies i has class c_2
- ▶ Entity taxonomy is a DAG, $\pi(v)$ is the path up from v to root node r
- ▶ Taxonomy node v has label set L(v), e.g., nodes corresponding to cats, football, computers and cars all contain the label 'jaguar'

SemTag output example

The <resource ref="http://tap.stanford.edu/BasketballTeam_Bulls">Chicago Bulls</resource> announced yesterday that <resource ref="http://tap.stanford.edu/AthleteJordan,_Michael">Michael Jordan</resource> will ...

- Functionally identical to inserting Wikipedia links in free-form text
- Wikipedia is more organic than TAP; has poorer quality category hierarchy

SemTag disambiguation

- $ightharpoonup \sin(u,s) \in [0,1]$ is a local similarity between catalog node u and (context of) spot s
- $sim(\cdot, \cdot) = \frac{1}{2}$ is "most uncertain"
- lacktriangle Node v is eligible for spot s if

$$\mathsf{root}\ r \neq \arg\max_{u \in \pi(v)} \sin(u, s)$$

i.e., some node on $\pi(v)$ other than root most similar to s

- Supplement eligibility with human-judged scores of reliability at each node u
 - $ightharpoonup m_u^a = \text{probability that spots for subtree rooted at } u \text{ are "on topic"}$
 - $\blacktriangleright \ m_u^s = \mbox{probability that automatic eligibility judgment is correct}$

SemTag TBD algorithm

- ▶ To decide whether to link spot s to node v . . .
- Find nearest ancestor u of v that has human-judged reliability scores
- ▶ If $|\frac{1}{2} m_u^a| > |\frac{1}{2} m_u^s|$, return $\mathrm{sign}(m_u^a \frac{1}{2})$
- ▶ Else if $m_u^s > \frac{1}{2}$ (eligibility judgment is often correct), return eligible(c,u)
- ▶ Else (eligibility judgment is often wrong) return 1 eligible(c, u)

(Can regard as a simple hand-tuned form of stacked learning)

Wikify!

- ► Two-phase process
- ▶ First identify token spans "worthy of annotation"
- ► Then choose entity labels

Sample annotations

In 1834, Summer was admitted to the [[bar (law)|bar]] at the age of twenty-three, and entered private practice in Boston.

It is danced in 3/4 time (like most waltzes), with the couple turning approx. 180 degrees every [[bar (music)|bar]].

Vehicles of this type may contain expensive audio players, televisions, video players, and [[bar (counter)|bar]]s, often with refrigerators.

Jenga is a popular beer in the [[bar (establishment)|bar]]s of Thailand

This is a disturbance on the water surface of a river or estuary, often cause by the presence of a [[bar (landform)|bar]] or dune on the riverbed.

Choosing token spans to annotate ("spotting")

- Wikify! follows the Wikipedia philosophy
- Use some score to rank candidate spans
- ▶ TFIDF of a token in a document

•	χ^2 test:	count of token	count of all other	
		in doc	tokens in doc	
		count of token	count of all other	
		in other docs	tokens in other docs	

- "Keyphraseness" In how many Wikipedia documents is the same term made a link anchor?
- ► (They only consider as candidates words which appear at least five times in Wikipedia)

Disambiguation

Wikify! compares two local techniques:

- \blacktriangleright "Knowledge-based approach" similarity between Wikipedia page text of entity γ and context words in spot s
- $\,\blacktriangleright\,$ "Data-driven approach" similarity between context of known links to γ and context words in spot s
- "Context" consists of ± 3 words around mention, their parts of speech, salient words chosen from whole document

Results

- "Data-driven" better than "knowledge-based"
- ► Consensus (agreement) has highest precision

	Words		F	n	
Method	(A)	(C)	(P)	(R)	(F)
	Baselines				
Random baseline	6,517	4,161	63.84	56.90	60.17
Most frequent sense	6,517	5,672	87.03	77.57	82.02
	Word sense disambiguation methods				
Knowledge-based	6,517	$5,\!255$	80.63	71.86	75.99
Feature-based learning	$6,\!517$	6,055	92.91	83.10	87.73
Combined	5,433	5,125	94.33	70.51	80.69

Modeling local compatibility

- ► Feature vector $f_s(\gamma) \in \mathbb{R}^d$ expresses local textual compatibility between (context of) spot s and candidate label γ
- ▶ One element of $f_s(\gamma)$ might be the TFIDF cosine similarity between tokens from the context of spot s (say ± 10 tokens) and whole page of description for entity γ
- ▶ Another element may be derived of "anchor text" match:
 - lacktriangle Find all links to γ from within Wikipedia
 - Collect anchor text from all these links in a bag of words
 - lacktriangleright Find TFIDF cosine similarity between this bag and the spot context s

The sense probability prior

- What entity does "Intel" refer to?
 - Chip design and manufacturing company
 - Fictional cartel in a 1961 BBC TV serial
- $ightharpoonup \Pr_0(\gamma|s)$ is very high for chip maker, low for cartel
- Append element $\log \Pr_0(\gamma|s)$ to $f_s(\gamma)$
- "log" will be explained later

Node score

- ▶ Node scoring model $w \in \mathbb{R}^d$
- ▶ Node score defined as $w^{\top}f_s(\gamma)$
- ▶ w is trained to give suitable relative weights to different compatibility measures and aggregate the evidence
- ▶ During test time, greedy choice local to s would be $\arg\max_{\gamma\in\Gamma_s} w^\top f_s(\gamma)$
- Early algorithms are variations on this theme

Limitations of $sim(\gamma, s)$

- Training data is sparse
- \blacktriangleright Direct overlap of words between description of entity γ and context of spot s may be limited
- \blacktriangleright But overlap between ancestors of γ and context of s may be more reliable

Word-category correlations

Designing tree kernels

- Let $C(\gamma)$ be all ancestor categories of entity γ
- ▶ Let *T*(*s*) be the text in the context of spot *s*
- ightharpoonup For every word w and every all categories c, define a feature

$$\phi_{w,c}(s,\gamma) = \begin{cases} 1 & \text{if } w \in T(s) \text{ and } c \in C(\gamma) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Run through all possible w, c, e.g., ("conducted", musician), ("concert", wrestler)
- ▶ Pad $(\phi_{w,c})$ with local compatibility features
- \blacktriangleright Finally, get feature vector $\Phi(s,\gamma)$

Learning

- ▶ Model as classification: correct/incorrect (s, γ) pair should be labeled +1/-1 respectively
- ▶ Similar to sequence labeling: $\arg\max_{\gamma} w^{\top}\Phi(s,\gamma)$; same max-margin training
- ► What about spots that do not have any suitable entity in the catalog?
- ▶ Out-of-catalog entity $\hat{\gamma}$, with $C(\hat{\gamma}) = \emptyset$ and $T(\hat{\gamma}) = \emptyset$
- ▶ One last feature element $\phi_{\hat{\ }}(s,\gamma) = \llbracket \gamma = \hat{\gamma} \rrbracket$
- \blacktriangleright Equivalent to automatically learning a (lower) threshold on $w^\top \Phi(s,\gamma)$

Tree kernel results

Data set	TreeKernel	TextOnly
People by occupation, top 110	0.772	0.615
Ditto, all 540	0.684	0.558
Ditto, categories with ≥ 20 entities	0.680	0.554

► Summary: tree kernel better than comparing only text

Relatedness info from entity catalog

- ▶ How related are two entities γ, γ' in Wikipedia?
- ▶ Embed γ in some space using $g: \Gamma \to \mathbb{R}^c$
- ▶ Define relatedness $r(\gamma, \gamma') = g(\gamma) \cdot g(\gamma')$ or related
- ▶ Cucerzan's proposal: c= number of categories; $g(\gamma)[\tau]=1$ if γ belongs to category τ , 0 otherwise

$$r(\gamma, \gamma') = \frac{g(\gamma)^{\top} g(\gamma')}{\sqrt{g(\gamma)^{\top} g(\gamma)} \sqrt{g(\gamma')^{\top} g(\gamma')}},$$

(standard cosine)

Relatedness info from entity catalog (2)

▶ Milne and Witten's proposal: c= number of Wikipedia pages; $g(\gamma)[p]=1$ if page p links to page γ , 0 otherwise

$$r(\gamma, \gamma') = \frac{\log \frac{|g(\gamma) \cap g(\gamma')|}{|g(\gamma) \cup g(\gamma')|}}{\log \frac{c}{\min\{|g(\gamma)|, |g(\gamma')|\}}}$$

- Related to Jaccard
- With voice of small inlink sets attenuated

Leave-one-out disambiguation

- Let Γ_0 be all possible entity disambiguations for all spots on a page
- \blacktriangleright Precompute the average vector $g(\Gamma_0) = \sum_{\gamma \in \Gamma_0} g(\gamma)$
- \blacktriangleright Score of candidate label γ for spot s depends on two factors multiplied together
- ► The local compatibility score as before
- $g(\gamma)^{\top} g(\Gamma_0 \setminus \{\gamma\}) = g(\gamma)^{\top} \sum_{\gamma' \in \Gamma_0 \setminus \gamma} g(\gamma')$
- Note that $\Gamma_0 \setminus \gamma$ still contains contributions from entities that cannot be used simultaneously to label the page
- $g(\Gamma_0 \setminus \gamma)$ may not be a representative feature vector

Commonness, usefulness, relatedness

Depth-first search				
From Wikipedia, the free encyclopedia	ر ا	sense	commonness	relatedness
	V	Tree	92.82%	15.97%
Depth-first search (DFS) is an algorithm for traversing or searching a tree		Tree (graph theory)	2.94%	59.91%
tree structure or graph. One starts at the root (selecting some node as the	N	Tree (data structure)	2.57%	63.26%
root in the graph case) and explores as far as possible along each branch	`	Tree (set theory)	0.15%	34.04%
before backtracking.		Phylogenetic tree	0.07%	20.33%
Formally, DFS is an uninformed search that progresses by expanding the		Christmas tree	0.07%	0.0%
first child node of the search tree that appears and thus going deeper and		Binary tree	0.04%	62.43%
deeper until a goal node is found, or until it hits a node that has no		Family tree	0.04%	16.31%
children. Then the search backtracks, returning to the most recent node it hadn't finished exploring. In a non-recursive implementation, all freshly expanded nodes are added to a LIFO stack for exploration.				

- "Tree" has many senses, common and rare
- But a low probability sense may be the correct one, based on relatedness to unambiguous anchor entities mentioned near "tree"
- ▶ Not all anchors equally useful: "until" vs. "LIFO"

Milne and Witten's recipe

- ▶ Identify unambiguous spots $S_!$ from all spots S_0
- ▶ Denote $\Gamma_! = \bigcup_{s \in S_!} \Gamma_s$, note that $\Gamma_! \stackrel{1:1}{\longleftrightarrow} S_!$
- ▶ Ambiguous spot $s \mapsto \Gamma_s$, have to pick $\gamma \in \Gamma_s$
- ▶ Each candidate γ is scored based on three signals Commonness of γ , i.e., sense probability prior $\Pr_0(\gamma|s)$ Average relatedness to anchor entities $\gamma_!$, weighted by the usefulness $u(\gamma_!)$ of $\gamma_!$

$$\frac{\sum_{\gamma_{!} \in \Gamma_{!} \backslash \gamma} u(\gamma_{!}) r(\gamma, \gamma_{!})}{\sum_{\gamma_{!} \in \Gamma_{!} \backslash \gamma} u(\gamma_{!})}$$
 where $u(\gamma) = \sum_{\gamma'' \in \Gamma_{!} \backslash \gamma'} r(\gamma', \gamma'')$

Overall context quality for the spot, $\sum_{\gamma_1} u(\gamma_1)$

Milne and Witten's recipe (2)

- These three signals are presented as features to a classifier (bagged decision tree worked best)
- lacktriangle The label is whether γ is correct for s

M&W results

	recall	precision	f-measure
Random sense	56.4	50.2	53.1
Most common sense	92.2	89.3	90.7
Medelyan et al. (2008)	92.3	93.3	92.9
Most valid sense	95.7	98.4	97.1
All valid senses	96.6	97.0	96.8

- Random sense gives precision over $\frac{1}{2}$, only around two senses per spot
- ► Recall is as per (reticent) Wikipedia annotation policy

correct	76.4
incorrect (wrong destination)	0.9
incorrect (irrelevant and/or unhelpful)	19.8
incorrect (unknown reason)	2.9

The need for collective disambiguation

- Some entity pairs are more compatible than others
- Compatibility may have different notions (next slide)
- Better to choose per-mention entity labels to maximize pairwise compatibility
- ► Intractable in general
- Each practical approach sacrifices some aspect to do better in others

Toward collective formulation

- ▶ Premise: coherent doc refers to entities about related categories
- Optimize wrt y an objective with two parts:
 - lacktriangle Local compatibility between s and y_s
 - lacktriangle Global coherence between y_s and $y_{s'}$ for all spot pairs

Local compatibility

- Between mention context and entity
- Entity representations
 - Text on definition pages in Wikipedia
 - Text from gold mention contexts
 - Types that contain the entity
- Between context and types containing entity [10]
- Between page topic/s and entity type/s [12]

Pairwise compatibility

- Entities belong to related types
 - Soccer coaches, clubs, players
- ▶ Entities connected by short path in knowledge graph
- Frequently co-cited, with similar embeddings

- ▶ A and B may be pages linking to entities, types containing them, etc.
- ▶ Some of these can be coded into $g(\gamma)$
- ▶ Others coded as $\Lambda \cdot \phi(\gamma, \gamma')$

Two-part objective to maximize

Node potential:

$$NP(y) = \prod_{s} NP_s(y_s) = \prod_{s} \exp\left(w^{\top} f_s(y_s)\right)$$

Clique potential:

$$CP(y) = \exp\left(\sum_{s \neq s'} g(y_s)^{\top} g(y_{s'})\right)$$

After taking logs and rescaling terms

$$\left| \frac{1}{|S_0|} \sum_s w^{\top} f_s(y_s) + \frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s'} g(y_s)^{\top} g(y_{s'}) \right|$$

Two-part objective to maximize

Node potential:

$$NP(y) = \prod_{s} NP_s(y_s) = \prod_{s} \exp\left(w^{\top} f_s(y_s)\right)$$

Clique potential:

$$CP(y) = \exp\left(\sum_{s \neq s'} g(y_s)^{\top} g(y_{s'})\right)$$

After taking logs and rescaling terms

$$\left| \frac{1}{|S_0|} \sum_s w^{\top} f_s(y_s) + \frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s'} g(y_s)^{\top} g(y_{s'}) \right|$$

Probabilistic interpretation

$$\begin{split} \Pr(\vec{y}|\vec{s}) &\propto \operatorname{CP}(\vec{y}) \operatorname{NP}_{\vec{s}}(\vec{y}) \\ \Pr(\vec{y}|\vec{s}) &= \frac{1}{Z(\vec{s})} \left(\prod_{s \neq s'} \exp\left(g(y_s)^\top g(y_{s'})\right) \right) \left(\prod_s \exp\left(w^\top f_s(y_s)\right) \right) \\ \text{where} \quad Z(\vec{s}) &= \sum_{\vec{y}} \left(\prod_{s \neq s'} \exp\left(g(y_s)^\top g(y_{s'})\right) \right) \left(\prod_s \exp\left(w^\top f_s(y_s)\right) \right) \end{split}$$

- ▶ (Conditional) probabilistic graphical model with complete graph
- Aka the quadratic assignment problem
- Notoriously difficult NP-hard problem
- ► Local hill-climbing, LP relaxations

Effect of NP learning

- ► Learning *w* is better than commonly-used single features
- ► Enough to beat leave-one-out and anchor-based approaches

Benefits of collective labeling

- Two different data sets (Web, newswire)
- Can significantly push recall while preserving precision

Trouble with all-pairs clique potential

- Entities in doc may not all be in one cluster
- KG may not know of common type-to-type relations, e.g., cricketers and business tycoons, or politicians and real estate barons
- Less salient entities may not find enough support from other spots
- Asserting all-pairs potentials across coherent clusters needlessly adds noise floor to objective
- ▶ Discussed by Kulkarni et al. [13] but not addressed

Single link baseline

► As an extreme simplication of the clique potential, for each mention, find one best supporter

$$g_{\mathsf{SL}}(\boldsymbol{y}) = \prod_{i} s_i(y_i) \Big[\max_{j} s_{ij}(y_i, y_j) \Big]$$

- y is the vector of entity labels assigned to all mentions in a document
- $ightharpoonup s_i(y_i)$ is the local score for entity label y_i for mention/spot i
- ▶ MAP inference is still intractable
 - ▶ If j is the best supporter of i, is i necessarily the best supporter of j?
- Approximate by message passing (loopy belief propagation) on factor graph
- ightharpoonup Factor a_i for each mention i

Single link baseline (2)

- Each factor connects to all (mention) nodes, but best supporter makes message passing practical
- ▶ Message from a_k to mention i is

$$n_{a_k \to i}(y_i) = \max_{\boldsymbol{y}_{\backslash i}} \Bigl[\psi_k(y_i, \boldsymbol{y}_{\backslash i}) \prod_{j \neq i} m_{j \to a_k}(y_j) \Bigr]$$

lacktriangleright Belief in $m{y}$ based on incoming messages from all factors

Relaxing to a star model

- Give up global consistency for tractability
- In turn, make each mention center of a star
- Assign label to each spoke separately to maximize support for hub
- ▶ Support for label y_i from mention j is $q_{ij}(y_i) = \max_{y_j} [s_{ij}(y_i, y_j) + s_j(y_j)]$
- Score function for mention i is $f_i(y_i) = s_i(y_i) + \sum_{\substack{\text{all } j \neq i}} q_{ij}(y_i)$
- lacktriangle Predict y_i by maximizing above score
- Next step: replace all $j \neq i$ with something more robust
- In what follows, let $\mathbf{q}_i(y_i) = \langle q_{i1}(y_i), \dots, q_{in}(y_i) \rangle$ be the sequence of support from other mentions to mention i

Multifocal attention (or, you only need six friends)

- ▶ Instead of seeking support from all other mentions . . .
- For a nonnegative sequence z, let ${\sf amx}_K(z)$ be the sum of the largest K elements of z
- ► Redefine score function for *i*th mention as $f_i(y_i) = s_i(y_i) + \underset{K}{\mathsf{amx}}_K(\boldsymbol{q}_i(y_i))$
- ▶ If the document has n mentions with C candidates per mention, inference now takes $O(nC^2 + n \log n)$ time
- lacktriangleright K mentions get full attention, others get 0

Multifocal last step: from max to soft-max

- Find maximum element in non-negative vector q is equivalent to $\max_{u \in \Delta} u \cdot q$
- $ightharpoonup \Delta$ is the unit simplex
- u will concentrate on one corner of Δ
- ▶ Anneal with entropy: $\max_{u \in \Delta} u \cdot q + H(u)/\beta$
- ▶ Easy to see solution as $u_i \propto \exp(\beta q_i)$
- In other words, adding entropic annealing to max gives us soft-max
- In standard multiclass classification, benefit of soft-max is continuous differentiability
- ► Can backprop to downstream model components

Soft multifocal attention

- lacktriangledown Recall $m{q} = \langle q_{i1}(y_i), \dots, q_{in}(y_i)
 angle$ is the vector of supports for y_i
- Add entropy term to amx to get smx:

$$\operatorname{smx}_K(q) = \max_{u \in \Delta_K} \left[q \cdot u - \frac{1}{\beta} \sum_i u_i \log u_i \right]$$

- ▶ Here Δ_K is the K-simplex: $u \geq \vec{0}$ and $||u||_1 = K$
- ightharpoonup smx $_K$ can be computed easily and is differentiable
- Apply to fine typing and other applications where softmax gives excessively skewed attention

Multifocal results: CoNLL-test-b

System	Alias-entity map	Accuracy%
Lazic+ 2015	Older KG	86.4
Our baseline	Latest KG	87.9
Single link	Latest KG	88.2
Multifocal	Latest KG	89.5
Chisholm+ 2015	YAGO	88.7
Our baseline	YAGO+KG	85.2
Single link	YAGO+KG	86.6
Multifocal	YAGO+KG	91.0
Multifocal	KG+HP	92.7

- Within each alias-entity map, single-link and multifocal are the best
- ▶ Baseline and single link degrade when alias map changes from KG to YAGO+KG (larger ambiguity), but multifocal improves
- ► TAC 2010, 2011, 2012 follow similar trends
- What's missing? Entity embeddings

Using entity embeddings: Three-part optimization

• Overall likelihood fitted through simultaneous maximization $\mathcal{L} = \mathcal{L}_w + \mathcal{L}_e + \mathcal{L}_a$

Word-word: \mathcal{L}_w , standard word2vec on text corpus Entity-entity: \mathcal{L}_e , as expressed through KG Word-entity: \mathcal{L}_a , connecting mention context words and entity embeddings

 $lackbox{e},e'$ are related if there is a link between them in the KG, and $e \neq e'$, in which case we want large

$$\mathcal{L}_e = \sum_{e,e'} \log \Pr(e'|e),$$
 where $\Pr(e'|e) = \frac{\exp(oldsymbol{u}_e \cdot oldsymbol{v}_{e'})}{\sum_e \exp(oldsymbol{u}_e \cdot oldsymbol{v}_e)}$

Using entity embeddings: Three-part optimization (2)

- ► As in skip-gram, predict mention context words given focus entity ID
- Let M_e be mentions of entity e, $m \in M_e$ be one mention, and $w \in m$ a mention word

$$\mathcal{L}_a = \sum_e \sum_{m \in M_e} \sum_{w \in m} \log \Pr(w|e),$$
 where
$$\Pr(w|e) = \frac{\exp(\boldsymbol{v}_w \cdot \boldsymbol{u}_e)}{\sum_{w'} \exp(\boldsymbol{v}_{w'} \cdot \boldsymbol{u}_e)}$$

As is common, softmax is replaced by negative samples

Inference with coherence

- Given a document with many mention spots
- For each mention, compute context vector as average of neighboring word vectors
- (Nothing more fancy like convnet or RNN)
- Set initial entity labels using cosine with context vectors
- ► Now define the coherence of an entity with others as average cosine between entity vectors
- Reassign most coherent label in a second step
- Crude two-step loopy BP?

Joint word-entity embeddings: NED results

	CoNLL	CoNLL	TAC10
	(Micro)	(Macro)	(Micro)
Our Method	93.1	92.6	85.2
Hoffart et al., 2011	82.5	81.7	-
He et al., 2013	85.6	84.0	81.0
Chisholm & Hachey, 2015	88.7	-	80.7
Pershina et al., 2015	91.8	89.9	-

The sad tale of tail entities

https://en.wikipedia.org/wiki/Michael-Hakim_Jordan:

"For most of his life he was known as Michael Jordan, but since he is not related to the more prominent American basketball player of the same name, and got tired of the constant comparisons, he included his second name to his title, thus he became also referred to as Michael-Hakim Jordan."

- How do humans identify tail entities?
- ► Highly selective attention to words [15, 2] and other entities in mention context

Attention on mention context

- lacktriangle Jointly pre-embed all words w and entities e in training corpus (Wikipedia, say) to (focus) embeddings x_w, x_e
- ▶ Given a mention m with candidates $\Gamma(m)$, mention context c mentioning entity $e \in \Gamma(m)$, for each word w in the context, compute the importance of w as

$$u(w) = \max_{e \in \Gamma(m)} x_e^{\top} \mathbf{A} x_w,$$

where A is a global (diagonal) matrix to be trained

- ▶ Intention: u(w) should be large if w is strongly associated with at least one candidate entity, otherwise small
- ▶ Sort by decreasing u(w) and prune context to top-K
- ▶ Now let surviving context words compete for attention:

$$\beta(w) = \exp(u(w)) / \sum_{w'} \exp(u(w'))$$

Attention on mention context (2)

▶ Compute similarity between x_e and x_w and add up, weighted by attention:

$$\Psi(e,c) = \sum_{w} \beta(w) x_e^{\mathsf{T}} \boldsymbol{B} x_w ,$$

where $oldsymbol{B}$ is another global diagonal matrix to be trained

- \blacktriangleright Note, very frugal model so far, only 2D model weights, where embeddings are in \mathbb{R}^D
- Finally, combine with (empirical) mention prior Pr(e|m):

$$\Psi(e, m, c) = N(\Psi(e, c), \log \Pr(e|m)),$$

where N is a 2-layer fully-connected network with 100 hidden units and ReLU nonlinearities

Attention on mention context (3)

► For training, use standard hinge loss

$$\underset{\pmb{A},\pmb{B},N,\dots}{\operatorname{argmin}} \sum_{m} \sum_{e \in \Gamma(m)} \left[\clubsuit - \Psi(e^*,m,c) + \Psi(e,m,c) \right]_+,$$

where 🌲 is a tuned margin

► Local attention model results:

Methods	AIDA-test-b
Mention prior $\Pr(e m)$	71.9
(Lazic et al., 2015)	86.4
(Globerson et al., 2016)	87.9
(Yamada et al., 2016)	87.2
Ganea+ (local, K=100, R=50)	88.8

▶ Network N benefits from nonlinearity

Document-level deep model

- ► For a whole document, let *e*, *m*, *c* be the sequence of *n* entity labels, mentions, and contexts
- ▶ Fully connected pairwise random field

$$g(\boldsymbol{e}, \boldsymbol{m}, \boldsymbol{c}) = \frac{1}{n} \sum_{i} \Psi(e_i, m_i, c_i) + \frac{1}{\binom{n}{2}} \sum_{i < j} \Phi(e_i, e_j),$$

where
$$\Phi(e,e') = x_e^{\mathsf{T}} \boldsymbol{C} x_{e'}$$

- Note, all mention pairs
- C is another diagonal weight matrix to be trained
- ▶ Need differentiable inference to $\max_{e} g(e, m, c)$
- Back to (max-product) message-passing

Document-level deep model (2)

In iteration t, mention m_i votes for entity candidate $e' \in \Gamma(m_j)$ using outgoing (log) message

$$m_{i \to j}^{t+1}(e') = \max_{e \in \Gamma(m_i)} \left[\Psi(e, m_i, c_i) + \Phi(e, e') + \sum_{k \neq j} \overline{m}_{k \to i}^t(e) \right]$$

► The incoming messages would ordinarily be just log-beliefs:

$$\overline{m}_{i \rightarrow j}^t(e) = \log \operatorname{softmax} \left(m_{i \rightarrow j}^t(e) \right)$$

▶ In practice, damping with $\delta \in (0,1]$ helps stability and convergence:

$$\overline{m}_{i \to j}^t(e) = \log \left[\delta \operatorname{softmax} \left(m_{i \to j}^t(e) \right) + (1 - \delta) \exp \left(\overline{m}_{i \to j}^{t-1}(e) \right) \right]$$

 Key observation is that messages are differentiable functions of messages of previous timestep, and model weights

Document-level deep model (3)

▶ Unroll BP to T time steps, resulting in final beliefs

$$\mu_i(e) = \Psi(e, m_i, c_i) + \sum_{k \neq i} \overline{m}_{k \to i}^T(e)$$
$$\overline{\mu}_i(e) = \frac{\exp(\mu_i(e))}{\sum_{e' \in \Gamma(m_i)} \exp(\mu_i(e))}$$

► Given gold entity labels, express hinge loss wrt final beliefs similar to local attention model:

$$\underset{\pmb{A},\pmb{B},\pmb{C},N}{\operatorname{argmin}} \sum_{m} \sum_{e \in \Gamma(m)} \left[\spadesuit - \overline{\mu}_i(e^*) + \overline{\mu}_i(e) \right]_+$$

Everything is still end-to-end (sub)differentiable 3

Ganea et al.: global results

Global method	AIDA-test-b
(Huang et al., 2015)	86.6
(Ganea et al., 2016)	87.6
(Chisholm and Hachey, 2015)	88.7
(Guo and Barbosa, 2016)	89.0
(Globerson et al., 2016)	91.0
(Yamada et al., 2016)	91.5
Ganea + (global)	92.22±0.14

- Impressive gains with very few model weights!
- Even more impressive that tail entities work out so well
- \blacktriangleright OTOH the whole network is quite complex; quite a wonder that backprop through such hostile functions works so well to depth O(T)
- Many potential bad choices for A, B, N; would be good to know how robust the design is

Conclusion

- Covered named entity disambiguation (NED) and fine type (FT) tagging in this tutorial
- ▶ Historically, NED work started in 2007–2008, FT around 2011
- ▶ Still surprisingly active: NED performance on 2011 benchmark still being improved in 2017!
- Explosion of recent work on KG embeddings, notably, holographic and complex embeddings
- Yet, understanding of the geometry of types, entities, and attributes not complete
- Symbolic types and relations may be handicaps
- "Universal schema" seeks to continuously embed types and relations with incomplete supervision from symbolic training
- Prepare to check arXiv every hour while writing code!

References

I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, "Joint learning of the embedding of words and entities for named entity disambiguation," *arXiv* preprint *arXiv*:1601.01343, 2016. https://arxiv.org/pdf/1601.01343.pdf

O.-E. Ganea and T. Hofmann, "Deep joint entity disambiguation with local neural attention," *arXiv preprint* arXiv:1704.04920, 2017.

https://arxiv.org/pdf/1704.04920.pdf

X. Ling and D. S. Weld, "Fine-grained entity recognition." in *AAAI*, 2012.

http://xiaoling.github.io/pubs/ling-aaai12.pdf

References (2)

D. Gillick, N. Lazic, K. Ganchev, J. Kirchner, and D. Huynh, "Context-dependent fine-grained entity type tagging," arXiv preprint arXiv:1412.1820, 2014.

https://arxiv.org/pdf/1412.1820.pdf

D. Yogatama, D. Gillick, and N. Lazic, "Embedding methods for fine grained entity type classification," in *ACL Conference*, 2015, pp. 26–31.

http://anthology.aclweb.org/P/P15/P15-2048.pdf

S. Shimaoka, P. Stenetorp, K. Inui, and S. Riedel, "An attentive neural architecture for fine-grained entity type classification," arXiv preprint arXiv:1604.05525, 2016. https://arxiv.org/pdf/1604.05525.pdf

References (3)

Y. Yaghoobzadeh, H. Adel, and H. Schütze, "Noise mitigation for neural entity typing and relation extraction," *arXiv* preprint *arXiv*:1612.07495, 2016.

https://arxiv.org/pdf/1612.07495.pdf

- S. Dill *et al.*, "SemTag and Seeker: Bootstrapping the semantic Web via automated semantic annotation," in *WWW Conference*, 2003, pp. 178–186.
- R. Mihalcea and A. Csomai, "Wikify!: linking documents to encyclopedic knowledge," in *CIKM*, 2007, pp. 233–242. http://portal.acm.org/citation.cfm?id=1321440.1321475
- R. Bunescu and M. Pasca, "Using encyclopedic knowledge for named entity disambiguation," in *EACL*, 2006, pp. 9–16. http:

//www.cs.utexas.edu/~ml/papers/encyc-eacl-06.pdf

References (4)

S. Cucerzan, "Large-scale named entity disambiguation based on Wikipedia data," in *EMNLP Conference*, 2007, pp. 708-716.

http://www.aclweb.org/anthology/D/D07/D07-1074

J. Hoffart et al., "Robust disambiguation of named entities in text," in *EMNLP Conference*. Edinburgh, Scotland, UK: SIGDAT, Jul. 2011, pp. 782-792.

http://aclweb.org/anthology/D/D11/D11-1072.pdf

S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti, "Collective annotation of Wikipedia entities in Web text," in *SIGKDD Conference*, 2009, pp. 457–466.

http://www.cse.iitb.ac.in/~soumen/doc/CSAW/

References (5)

A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya, M. Ringgaard, and F. Pereira, "Collective entity resolution with multi-focal attention," in *ACL Conference*, 2016, pp. 621–631. https:
//www.aclweb.org/anthology/P/P16/P16-1059.pdf

N. Lazic, A. Subramanya, M. Ringgaard, and F. Pereira, "Plato: A selective context model for entity resolution," vol. 3, pp. 503–515, 2015.