system using 'surprise' package Recommendation engine

Moon Chu 07/17/2021

Index

- 1. Inspecting data
- 2. Data Pre Process
 - 3. Data Loading
- 4. Theoretical Part
- 5. Model Evaluation
- 6. Training Algorithm and Predictions
- 7. Historical vs Prediction Comparison

DATASET:

userID/productID/rating/timestamp Simple dataset with 4 columns:

<u>Data Prep</u>

	nserid	productid	rating	productld rating timestamp
-	AKM1MP6P0OYPR 0132793040	0132793040	5.0	5.0 1365811200
-	A2CX7LUOHB2NDG 0321732944	0321732944	5.0	5.0 1341100800
-	2 A2NWSAGRHCP8N5 0439886341	0439886341	1.0	1.0 1367193600
-	3 A2WNBOD3WNDNKT 043988634	0439886341	3.0	3.0 1374451200
**	A1GI0U4ZRJA8WN 0439886341	0439886341	1.0	1.0 1334707200

Original Dataset: 4.2 mm

1. Inspecting the

data

Sampled Dataset: 15 K

sampled = df.sample(frac=0.002, replace=True, random_state=1)
sampled.columns = ['userld', 'productld', 'rating','timestamp'] 15570 11721 5 2793 #sampled one sampled.nunique() userld productld rating

timestamp dtype: int64

DATASET:

 Rating Distribution: Sampled vs Entire dataset is comping pretty close

1. Inspecting the

Data Prep

% of users with number of review Ratio Distribution: over 98% of users are 1 review users – Sampled vs Entire dataset's trend is

Data Prep

2. Data Pre Process (optional)

DATASET:

- If the dataset is too sparse (e.g. users with low exposure, such as only 1 review writing) we can set arbitary threshold to filter this user out.
- e.g) below filters out users that reviewed less than 100 electronics

```
countdf=df['userId'].value_counts()

countdf.head(10)

A5JLAUZARJOBO 520
ADLVFFE4VBT8 501
A30XHLG6D1BFWB 498
AFIAB281S79 431
A6B0RUE1FD08B 406
A1000GXEVECQQ8 380
A36XZNSZ7TXXJN 314
A2AV4VUXZNN 314
A2AV4VUXZNN 314
A2AV4VUXZNN 314
ARRY1VNVWK3C 296
Name: userId, dtype: int64
```

len(df[df['userld'].isin(countdf[countdf >= 100].index)])

44209

<u>Data Prep</u>

3. Data Loading

Surprise package needs to be fed with 3 inputs. 1) User 2) Product 3) Review/Rating. For the review we have to specify the min and max value of the raw data in the reader class in surprise.

```
# Load the data data data data= Dataset.load_from_df(sampled[['userld','productld','rating']], reader)
                                                                                                                                                                  so rating_scale = (1,5)
sampled['rating'].min(), sampled['rating'].max()
                                                                                                                                                                  # our rating scale start from 1 and end at 5. reader = Reader(rating_scale=(1, 5))
                                                                 (1.0, 5.0)
```

Collaborative filtering

Approach: use the "wisdom of crowd" to recommend items

Basic Assumption: customers who had similar tastes in the past, will have the similar tastes in the future.

Input: user- item matrix

 Output: Numerical prediction indicating what degree the user will like an item.

Item5	ċ	8	2	4	-
Item4	4	3	3	2	2
Item3	4	2	4	Н	2
Item2	3	1	3	3	2
Item1	5	8	4	3	-
	Alice	User1	User2	User3	User4

memory based : rating matrix directly used for Collaborative filtering: making prediction) 1. userbased (also

Measuring Simliarity in user based CF:

A popular similarity measure in user-based CF: Pearson correlation

a, b : users

 $r_{a,p}$: rating of user a for item p

P : set of items, rated both by a and b

Possible similarity values between —1 and 1

$$sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$$

		sim = 0,85	sim = 0,00	sim = 0,70	$\sin = -0.79$
		1	D	D	D
Item5	<i>د</i> .	3	2	4	1
Item4	4	3	c	2	2
Item3	4	2	4	1	2
Item2	3	-	3	c	2
ltem1	2	8	4	c	-
	Alice	User1	User2	User3	User4

Collaborative filtering:
1. **userbased** (also memory based: rating matrix directly used for making prediction)

- Making Predictions
- A common prediction function:

$$pred(a, p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a, b) * (r_{b, p} - \overline{r_b})}{\sum_{b \in N} sim(a, b)}$$

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with a as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Collaborative filtering:
2. **item** based (also model based: based on item's offline processing)

- Item item collaboration filtering
- This means that instead of using user simliarity, we use "item" simliarity measure to calculate prediction
- Look for items that are simliar to item 5
- Take Alice's ratings for these items to predict the rating for item 5

	Item1	Item2	Item3	Item4	Item5
Alice	(5	c	4	(4)	č
User1	3	#	2	3	3
User2	4	c	4	3	S
User3	3	3	1	5	4
User4	1	S	5	2	1

Matrix Factorization

Rating = Matrix product of Item x User factors

allowing us to "fill in the gaps" in the rating matrix, predicting the ratings that each user would assign to each item in the Algorithm like SVD builds a recommendation system by dataset

	ı	-	3	post		pas	1	
		_	-	-	+	_	4	
8		u	13	D24	-	D34		
10000	users	70	F13	D22		D33		PT
		77.	717	222		D32		
		2	1	p21		D31		
		3	SJC	cto	eì		-	
				×				
200		413	dan	423	0.00	133	QA9	2
actors		412	and a	774	000	136	GA2	0
To.		411	0.0	421	000	137	GAS	
		5	sw	əti		_		-
				22				
				**				_
	V		2				m	
S					m			
users		,	-		4			~
				1			-	

Matrix Factorization

are usually more effective because they allow us to discover the latent features between interactions between users and items. based) is simple and intuitive, matrix factorization techniques While collaborative filtering (user-user based, or item-item

SVD (Single Vector Decomposition) uses the gradient descent to minimize squared error (predicted vs actual) to eventually get the best model.

The prediction \hat{r}_{iii} is set as:

$$\hat{r}_{ui} = \mu + b_u + b_i + q_i^T p_u$$

If user u is unknown, then the bias b_u and the factors p_u are assumed to be zero. The same applies for item i with b_i and q_i .

To estimate all the unknown, we minimize the following regularized squared error:

$$\sum_{ij \in R_{cutin}} (r_{ii} - \hat{r}_{iij})^2 + \lambda \left(b_i^2 + b_u^2 + ||q_i||^2 + ||p_u||^2\right)$$

The minimization is performed by a very straightforward stochastic gradient descent:

$$b_u \leftarrow b_u + \gamma(e_{ui} - \lambda b_u)$$

$$b_i \leftarrow b_i + \gamma(e_{ui} - \lambda b_i)$$

$$p_u \leftarrow p_u + \gamma(e_{ui} \cdot q_i - \lambda p_u)$$

$$q_i \leftarrow q_i + \gamma(e_{ui} \cdot p_u - \lambda q_i)$$

Modeling

Training Algorithm and Prediction

Load Surprise Package and try with SVD which is one type of max factorization for intial review

```
# Train the algorithm on the trainset, and predict ratings for the testest
                                                                                                                                                                                                                                                        :rainset, testset = train_test_split(data, test_size=.25)
                                                                                                              rom surprise.model_selection import train_test_split
                                                                                                                                                                                                                   # tost set is made of 25% of the ratings.
                                                                                                                                                                                    # sample random trainset and testset
                                                                                                                                                                                                                                                                                                                             # We'll use the famous SVD algorithm
algo = SVD()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             predictions = algo.test(testset)
                                                                          rom surprise import accuracy
                                      rom surprise import Dataset
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     accuracy.rmse(predictions)
'rom surprise import SVD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     # Then compute RMSE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       algo.fit(trainset)
```

RMSE: 1,3825

Modeling

Model Comparison

Feed all available methods and its output

	test_mse	test_mae	fit_time	test_time
Algorithm				
SVDpp	1.377803	1.095880	1.059564	0.034984
KNNBaseline	1.378202	1.095874	2.432896	0.031995
BaselineOnly	1.378851	1.097196	0.050977	0.030989
SVD	1.379675	1.097729	0.734374	0.034712
CoClustering	1.387084	1.102525 1.994677	1.994677	0.066081
KNNWithMeans	1.387436	1.103432 2.505972	2.505972	0.041654
KNNBasic	1.387747	1.103736	2.336442	0.095003
SlopeOne	1.387864	1.103250	1.541768	0.040649
KNNWithZScore	1.387890	1.103885	2.965362	0.051003
NMF	1.388518	1.105515	2.076149	0.039602
NormalPredictor	1.766150	1.353648	0.016650	0.041642

Models available in Surprise Package

Algorithm class name	Description
random_pred.NormalPredictor	Algorithm predicting a random rating based on the distribution of the training set, which is assumed to be normal.
baseline_only.BaselineOnly	Algorithm predicting the baseline estimate for given user and item.
knns.KNNBasic	A basic collaborative filtering algorithm.
knns.KNNWithMeans	A basic collaborative filtering algorithm, taking into account the mean ratings of each user.
knns.KNNBaseline	A basic collaborative filtering algorithm taking into account a baseline rating.
matrix_factorization.SVD	The famous SVD algorithm, as popularized by Simon Funk during the Netflix Prize.
matrix_factorization.SVDpp	The SVD++ algorithm, an extension of SVD taking into account implicit ratings.
matrix_factorization.NMF	A collaborative filtering algorithm based on Non-negative Matrix Factorization.
slope_one.SlopeOne	A simple yet accurate collaborative filtering algorithm.
co_clustering.CoClustering	A collaborative filtering algorithm based on co-clustering.

Comparison

Model Tuning

Among 11 models, SVDpp performed best.

We will try to make SVDpp better by finding optimal k to minimize rmse.

■ It looks like k= 8, 12 seems to be minimizing rmse.

Comparison

Model Tuning

• Upon feeding 6,8,9,12 (by looking at k that had dips), k=6 generalizable, i.e. avoid over and underfitting, the grid gave the best optimal result that makes the model algorithm finds n_{a} factors = 6 optimal.

```
param_grid = {'n_factors': [6,8,9,12]}
gs = GridSearchCV(SVD, param_grid, measures=['rmse'], cv=5)
gs.fit(data)
                                                                                                                                                                                                                                                                              # combination of parameters that gave the best RMSE score
                                                                                                                                                                                                                                                                                                         print(gs.best_params['rmse'])
                                                                                                                                                                                                                 print(gs.best_score['rmse']
                                                                                                                                                                                # best RMSE score
```

1.3779308666276702 {'n_factors': 6}

Comparison

Historical vs Prediction comparison

- Comparing Historical data and Prediction
- Step1: Map the predictions to each user.
- Step2 :
- i.) recommendations for any given userId and
- ii.) the user's historical ratings
- #Step3 :Return the above objects with specific reference in a readable format (i.e. tidy DataFrame)

```
# Then predict ratings for all pairs (u, i) that are NOT in the training set.
testset = trainset.build_anti_testset()
                                                                                                                                                                                                                                                                                                                                                                                                                                     for uid, user_ratings in top_n.items():
    print(uid, [iid for (iid, _) in user_ratings])
                                                                                                                                                                                                                                                                                                                                                                                            # Print the recommended items for each user
                                                                                                                                                                                                                                                                                                         top_n = get_top_n(predictions, n=10)
algo_SVDpp = SVDpp(n_factors = 6)
algo_SVD.fit(trainset)
                                                                                                                                                                                                                   predictions = algo.test(testset)
```