```
#STATS LAB-1 EU April 22 (Richard Instructor)
#pip install seaborn
import seaborn as sns
import numpy as np
sns.get_dataset_names()
     ['anagrams',
      'anscombe',
      'attention',
      'brain_networks',
      'car_crashes',
      'diamonds',
      'dots',
      'exercise',
      'flights',
      'fmri',
      'gammas',
      'geyser',
      'iris',
      'mpg',
      'penguins',
      'planets',
      'taxis',
      'tips',
      'titanic']
df = sns.load_dataset("mpg")
df.head()
         mpg cylinders displacement horsepower weight acceleration model_year origi
                                                                                    70
         18.0
                       8
                                  307.0
                                              130.0
                                                       3504
                                                                      12.0
                                                                                            us
         15.0
                       8
                                  350.0
                                              165.0
                                                       3693
                                                                       11.5
                                                                                    70
                                                                                            us
df.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	mc
count	398.000000	398.000000	398.000000	392.000000	398.000000	398.000000	3!
mean	23.514573	5.454774	193.425879	104.469388	2970.424623	15.568090	
std	7.815984	1.701004	104.269838	38.491160	846.841774	2.757689	
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	
25%	17.500000	4.000000	104.250000	75.000000	2223.750000	13.825000	•

sns.barplot(x="origin", y="weight", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c7c84450>

sns.countplot(x="origin", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c7bfc150>

sns.barplot(x="cylinders", y="weight", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c76d3150>

sns.countplot(x="cylinders", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c75f7dd0>

sns.histplot(x="weight", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c75eff50>

sns.histplot(x="weight", bins=20, data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c702c490>

sns.boxplot(x="weight", data=df);

sns.boxplot(x="horsepower", data=df);

sns.boxplot(y="horsepower", data=df);

sns.boxplot(y="horsepower", x="cylinders", data=df);

sns.scatterplot(x="mpg", y="horsepower", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7f69c6c99110>

df.corr()

	mpg	cylinders	displacement	horsepower	weight	acceleration
mpg	1.000000	-0.775396	-0.804203	-0.778427	-0.831741	0.420289

sns.heatmap(df.corr(), annot=True)

from scipy.stats import kurtosis, skew
from scipy import stats

x = np.random.normal(0, 2, 1000000) #mu, sigma, pop

import matplotlib.pyplot as plt
plt.hist(x, bins=100);

kurtosis(x)

-0.0033875077416802846

skew(x)

-0.003286119152432647

```
shape, scale = 2, 2
s=np.random.gamma(shape,scale, 100000)
```

plt.hist(s, bins=100);

x = np.random.normal(100, 15, 1000000) #mu,sigma, pop import matplotlib.pyplot as plt plt.hist(x, bins=100);

• ×