LDFs and Decision Surfaces

Lecture 13. Discriminative methods: Linear Discriminant Functions

Dr. Shanshan 7HAO

School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University

Academic Year 2023-2024

Dr. Shanshan ZHAO

AIAC XJTLU

1 / 54

- 1 Introdution
- 2 LDFs and Decision Surfaces
- 3 Gradient Descent
- 4 Perception Criterion Function
- 6 MSE

Dr. Shanshan ZHAO

DTS201TC

Notations

- w_0 : a scalar
- w : a vector
- c : denotes the class/label

DTS201TC

Dr. Shanshan ZHAO

0000

- Introdution

- 4 Perception Criterion Function

Dr. Shanshan ZHAO

Optimal classifier

with pdf and parameters of the pdf are all known.

Bayesian Decision Theory

LDFs and Decision Surfaces

Generative methods

with pdf or parameters of the pdf are unknown.

- Parametric Methods known pdf form, but unknown parameters of the pdf
- non-Parametric Methods estimate the pdf directly from the data, without assumptions about the pdf form.
- major concern of generative methods: to design classifiers based on probability density or probability functions

AIAC XJTLU 5 / 54

Dr. Shanshan 7HAO

Perception Criterion Function

Introduction

- From this week, we will focus on the design of linear classifiers, regardless of the underlying distributions describing the training data.
- assumption: all feature vectors from the available classes can be classified correctly using a linear classifier.
- we shall be concerned with discriminant functions that are either linear in the components of x, or linear in some given set of functions of x.
- they can be optimal if the underlying distributions are cooperative, such as Gaussians having equal covariance.
- Even when they are not optimal, we might be willing to sacrifice some performance in order to gain the advantage of their simplicity.

Dr. Shanshan ZHAO AIAC XJTLU DTS201TC 6 / 54

0000

Discriminative methods

- Linear Discriminant Functions
 - Hyperplane Geometry
- Logistic Regression Classifier
- Support Vector Machines

Dr. Shanshan ZHAO AIAC XJTLU DTS201TC 7 / 54

Outline

- Introdution
- 2 LDFs and Decision Surfaces

LDFs and Decision Surfaces

•00000000000000000

- 4 Perception Criterion Function

Dr. Shanshan ZHAO

Role of Linear Discriminant Functions

- A Discriminative Approach, as apposed to Generative approach of Parameter Estimation
- Leads to perceptrons and Artificial Neural Networks
- Leads to Support Vector Machines

DTS201TC

Dr. Shanshan ZHAO

Preliminaries

- No probability distribution (no shape or parameters are known).
- Data with labels.
- The shape of discriminant functions is known.

- Need to estimate parameters of the discriminant functions.
- The problem of finding a linear discriminant function will be formulated as a problem of minimizing a criterion function.
- For classification purposes, the obvious criterion function is sample risk or training error.

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 10 / 54

LDF: Basic idea

- Have samples from 2 classes $x_1, x_2, ..., x_n$.
- Assume 2 classes can be separated by a linear boundary $l(\theta)$ with some unknown parameters θ .
- Fit the "best" boundary to data by optimizing over parameters θ .
 - Minimize classification error on training data is an option

Dr. Shanshan ZHAO AIAC XJTLU DTS201TC 11 / 54 A discriminant function is linear if it can be written as

$$g(x) = w^t x + w_0 \tag{1}$$

• w is called the weight vector, and w_0 called bias or threshold

LDF: 2 Classes

A simple linear classifier having d input units, each corresponding to the values of the components of an input vector. Each input feature value x_i is multiplied by its corresponding weight w_i ; the output unit sums all these products and emits a +1 if $w^t x + w_0 > 0$ or a -1 otherwise.

13 / 54

Dr. Shanshan ZHAO AIAC XJTLU DTS201TC

g(x) > 0 $X^{(1)}$ g(x) < 0g(x) = 0

$$g(x) = w^t x + w_0 = 0 (2)$$

- w determines orientation of the decision hyperplane
- w₀ determines location of the decision surface
- in the function g(x), w_1 is positive.

Dr. Shanshan ZHAO

14 / 54

Decision boundary $g(x) = w^t x + w_0 = 0$ is

- a point in 1D
- a line in 2D
- a plane in 3D

Figure 1: The linear decision boundary H, where $g(x) = w^t x + w_0 = 0$, separates the feature space into two half-spaces \mathcal{R}_1 (where g(x) > 0) and \mathcal{R}_2 (where g(x) < 0).

Dr. Shanshan ZHAO DTS201TC

16 / 54

- We have M classes
- Define M linear discriminant functions

$$g_i(x) = w_i^T x + w_{i0} \quad i = 1, ..., M$$
 (3)

• Given x, assign class c_i if

$$g_i(x) \ge g_j(x) \quad \forall j \ne i$$
 (4)

- Such classifier is called a linear machine
- A linear machine divides the feature space into M decision regions, with $g_i(x)$ being the largest discriminant if x is in the regions R_i .

000000000000000000 LDF: Augmented feature vector

- Linear discriminant function: $g(x) = w^T x + w_0$
- It can be rewritten as:

$$g(x) = \begin{bmatrix} w_0 & w^T \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = a^T y = g(y)$$
 (5)

- y is called the augmented feature vector
- Add a dummy dimension to get a completely equivalent new Homogeneous problem

old problem:
$$g(x) = w^T x + w_0$$

new problem: $g(y) = a^T y$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

Given samples $x_1, x_2, ..., x_n$, convert them to augmented samples $y_1, y_2, ..., y_n$ by adding a new dimension of value 1.

Dr. Shanshan ZHAO DTS201TC AIAC XJTLU 19 / 54

- This mapping from d-dimensional x-space to (d+1)-dimensional y-space is mathematically trivial but nonetheless quite convenient.
- The addition of a constant component to x preserves all distance relationships among samples.
- The resulting y vectors all lie in a d-dimensional subspace, which is the x-space itself. The hyperplane decision surface \hat{H} defined by at y=0 passes through the origin in y-space, even though the corresponding hyperplane H can be in any position in x-space.
- By using this mapping we reduce the problem of finding a weight vector w and a threshold weight w_0 to the problem of finding a single weight vector a.

4 D > 4 D > 4 E > 4 E > E 90 C

AIAC XJTLU

- For the rest of lecture, we assume we have 2 classes
- Samples $y_1, ..., y_n$ belongs to either class 1 or class 2.
- Our goal is to use these samples to determine weights a in the discriminant function $g(y) = a^T y$
- We need to decide which criterion for determining a.
 For now, suppose we want to minimize the training error, which means the number of misclassified samples y₁,...,y_n
- Recall that
 - $g(y_i) > 0 \Rightarrow y_i$ classified c_1
 - $g(y_i) < 0 \Rightarrow y_i$ classified c_2
- The training error is 0 if
 - $g(y_i) > 0 \quad \forall y_i \in c_1$
 - $g(y_i) < 0 \quad \forall y_i \in c_2$

(ロ) (部) (注) (注) 注 り(())

AIAC XJTLU

• Equivalently, training error is 0 if

$$\begin{cases} a^T y_i > 0 & \forall y_i \in c_1 \\ a^T (-y_i) > 0 & \forall y_i \in c_2 \end{cases}$$

- This suggest problem "normalization"
 - Replace all examples from class c_2 by their negative $v_i \Rightarrow -v_i \quad \forall v_i \in c_2$
 - seek weight vector \mathbf{a} $\mathbf{a}^T y_i > 0 \quad \forall y_i$
 - If such a exists, it is called a separating or solution vector
 - original samples $x_1, ..., x_n$ can indeed be separated by a line

1 D > 1 A > 1 E > 1 E > 2 B > 2 B

Dr. Shanshan ZHAO DTS201TC

Introdution

LDF: Problem "Normalization"

Before Normalization

Seek a hyperplane that separates patterns from different categories

After Normalization

Seek a hyperplane that puts normalized patterns on the same side (should be positive)

Dr. Shanshan ZHAO

AIAC XJTLU

LDF: Solution Region

LDFs and Decision Surfaces

00000000000000000

• Find weight vector a, for all samples $y_1, ..., y_n$: $a^{T}y_{i} = \sum_{k=0}^{d} a_{k}y_{i}^{(k)} > 0$

In general, there are many such solutions a

- Introdution
- Gradient Descent
- 4 Perception Criterion Function

Dr. Shanshan ZHAO

We need a criterion function J(a)

J(a) is minimized if a is a solution vector. Regarding the exact form of J(a), we will talk about it later.

This reduces our problem to one of minimizing a scalar function :

a problem that can often be solved by a gradient descent procedure.

DTS201TC

Dr. Shanshan 7HAO

Optimization: Gradient Descent

Basic idea of Gradient Descent

Gradient Descent

For minimizing any function J(x) set k = 1 and $x^{(1)}$ to some initial guess for the weight vector

while
$$\eta^{(k)}|\nabla J(x^{(k)})| > \epsilon$$
 do choose learning rate $\eta^{(k)}$ $x^{(k+1)} = x^{(k)} - \eta^{(k)}\nabla J(x^{(k)})$ $k = k+1$

end

Introdution

Optimization: Gradient Descent

Gradient $\nabla J(x)$ points in direction of steepest increase of J(x), and $-\nabla J(x)$ in direction of steepest decrease

Dr. Shanshan ZHAO DTS201TC

AIAC XJTLU 28 / 54

- 1 Introdution
- 2 LDFs and Decision Surfaces
- Gradient Descent
- 4 Perception Criterion Function
- MSE

Dr. Shanshan ZHAO

DTS201TC

LDF: Criterion Function

• Find weight vector \mathbf{a} , for all samples $y_1, ..., y_n$

$$a^{T}y_{i} = \sum_{j=0}^{d} a_{j}y_{ij} > 0$$
 (6)

000000000000000

- Need criterion function J(a) which is minimized when a is a solution vector
- Let Y_M be the set of samples misclassified by a

$$Y_M(a) = \{ \text{sample } y_i \quad s.t. \quad a^T y < 0 \}$$
 (7)

First natural choice: number of misclassified samples

$$J(a) = |Y_M(a)| \tag{8}$$

Dr. Shanshan ZHAO

30 / 54

LDF: Perceptron Criterion Function

• Better choice: **Perception** criterion function

$$J_p(a) = \sum_{y \in Y_M} (-a^T y)$$

- If y is misclassified, $a^T y \leq 0$, so that $J_p(a) \geq 0$
- J_p(a) is ||a|| times the sum of distances of misclassified samples to decision boundary (figure a).
- $J_p(a)$ is piecewise linear and thus suitable for gradient descent (figure b).

Dr. Shanshan ZHAO
DTS201TC

LDF: Perceptron Batch Rule

Perception criterion function

$$J_p(a) = \sum_{y \in Y_M} (-a^T y)$$

- Gradient of $J_p(a)$ is $\nabla J_p(a) = \sum_{v \in Y_M} (-y)$
 - Y_M are samples misclassified by $a^{(k)}$
 - It is not possible to solve $\nabla J_p(a) = 0$ analytically because of Y_{M}
- Update rule for gradient descent : $x^{(k+1)} = x^k \eta^{(k)} \nabla J(x)$
- Thus gradient decent batch update rule for $J_p(a)$ is

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{v \in Y_M} y \tag{9}$$

 It is called batch rule here because it is based on all misclassified samples

AIAC XJTLU

• In comparison, gradient decent single sample rule for $J_p(a)$ is :

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M \tag{10}$$

- note that y_M is one sample misclassified by $a^{(k)}$
- must have a consistent way of visiting samples
- Geometric Interpretation
 - y_M misclassified by $a^{(k)}$

$$(a^{(k)})^T y_M \leq 0$$

- y_M is on the wrong side of decision hyperplane
- adding ηy_M to a moves new decision hyperplane in the right direction with

200

Dr. Shanshan ZHAO DTS201TC

Introdution

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$$

Figure 3: η is too large, previously correctly classified sample y_k is now misclassified

Figure 4: η is too small, y_M is still misclassified

		grade			
name	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	yes(1)	yes(1)	yes(1)	yes(1)	F
Mary	no(-1)	no(-1)	no(-1)	yes(1)	F
Peter	yes(1)	no(-1)	no(-1)	yes(1)	Α

- class 1: students who get grade A
- class 2: students who get grade F

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 35 / 54

LDF: Perceptron Example

		grade				
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	1	yes(1)	yes(1)	yes(1)	yes(1)	F
Mary	1	no(-1)	no(-1)	no(-1)	yes(1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	А

• Convert samples $x_1, ..., x_n$ to augmented samples $y_1, ..., y_n$ by adding a new dimension of value 1.

Dr. Shanshan ZHAO DTS201TC

	features				grade	
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	-1	yes(-1)	yes(-1)	yes(-1)	yes(-1)	F
Mary	-1	no(1)	no(1)	no(1)	yes(-1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	Α

- Replace all samples from class c_2 by their negative $y_i \Rightarrow -y_i$ $y_i \in c_2$
- Seek weight vector \mathbf{a} s.t. $\mathbf{a}^T y_i > 0 \quad \forall y_i$

(ロ) (回) (回) (三) (三) (回)

Dr. Shanshan ZHAO
DTS201TC

AIAC XJTLU

	features				grade	
name	extra	good atten- dance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes(1)	yes(1)	no(-1)	no(-1)	Α
Steve	-1	yes(-1)	yes(-1)	yes(-1)	yes(-1)	F
Mary	-1	no(1)	no(1)	no(1)	yes(-1)	F
Peter	1	yes(1)	no(-1)	no(-1)	yes(1)	Α

- Sample is misclassified if $a^T y_i = \sum_{j=0}^4 a_j y_{ij} < 0$ (*i* is the numbering of the sample, *j* is the numbering of the dimension)
- Gradient descent single sample rule : $a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{y \in Y_M} y$
- Here we set a fixed learning rate to $\eta^{(k)} = 1$

$$a^{(k+1)} = a^{(k)} + y_M$$

Perception Criterion Function

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 38 / 54

- set initial weights $a^{(1)} = [0.25, 0.25, 0.25, 0.25, 0.25]$
- visit all samples sequentially, modifying the weights for after finding a misclassified example

name	a'y	misclassified?
Jane	0.25*1 + 0.25*1 + 0.25*1 + 0.25*(-1) + 0.25*(-1) > 0	no
Steve	0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0	yes

new weights

$$a^{(2)} = a^{(1)} + y_M = \begin{bmatrix} 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix} +$$

$$+ \begin{bmatrix} -1 & -1 & -1 & -1 \\ = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix} - 0.75$$

4 D > 4 D > 4 E > 4 E > E 990

$$a^{(2)} = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

name	a^Ty	misclassified?
Mary	-0.75*(-1)-0.75*1-0.75*1-0.75*1-0.75*(-1) < 0	yes

new weights

$$a^{(3)} = a^{(2)} + y_M = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix} + \begin{bmatrix} -1 & 1 & 1 & 1 & -1 \end{bmatrix}$$

= $\begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix}$

$$a^{(3)} = \begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix}$$

name	a^Ty	misclassified?
Peter	-1.75*1+0.25*1+0.25*(-1)+0.25*(-1)-0.75*1 < 0	yes

new weights

$$a^{(4)} = a^{(3)} + y_M = \begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix} +$$

+ $\begin{bmatrix} 1 & 1 & -1 & -1 & 1 \end{bmatrix}$
= $\begin{bmatrix} -0.75 & 1.25 & -0.75 & -0.75 \end{bmatrix} - 0.75$

$$a^{(4)} = \begin{bmatrix} -0.75 & 1.25 & -0.75 & -0.75 & -0.75 \end{bmatrix}$$

name	a'y	wrong?
Jane	-0.75*1+1.25*1-0.75*1-0.75*(-1)-0.75*(-1) > 0	no
Steve	-0.75*(-1)+1.25*(-1)-0.75*(-1)-0.75*(-1)-0.75*(-1) >0	no
Mary	-0.75*(-1)+1.25*1-0.75*1-0.75*1-0.75*(-1) > 0	no
Peter	-0.75*1+1.25*1-0.75*(-1)-0.75*(-1)-0.75*1 >0	no
Peter	-0.75*1+1.25*1-0.75*(-1)-0.75*(-1)-0.75*1 >0	no

• The discriminant function is

$$g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} - 0.75 * y^{(2)} - 0.75 * y^{(3)} - 0.75 * y^{(4)}$$

• Converting back to the original features x:

$$g(x) = -0.75 + 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)}$$

4 D > 4 D > 4 E > 4 E > E 900

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 42 / 54

Introdution

• Converting back to the original features x:

$$1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} > 0.75 \Rightarrow gradeA$$

 $1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} < 0.75 \Rightarrow gradeF$

- This is just one possible solution vector
- If we started with weight $a^{(1)} = [0, 0.5, 0.5, 0, 0]$, the solution would be different: [-1, 1.5, -0.5, -1, -1]

44 / 54

Introdution

- If classes are linearly separable, the perceptron rule is guaranteed to converge to a valid solution
- However, if the two classes are not linearly separable, the perceptron rule will not converge.
 - Since there is no weight vector **a** can correctly classify every sample in a non-separable dataset, the corrections in the perceptron rule will never cease.

- (a) Linearly Separable Data (IRIS Dataset)
- (b) Linearly Non-Separable Data (IRIS Dataset)

Dr. Shanshan ZHAO AIAC XJTLU

Outline

- Introdution

- 4 Perception Criterion Function
- **6** MSE

Minimum Squared Error Procedures

The classical MSE criterion provides an alternative to the perceptron rule

Perceptron

- 1. Focused on the misclassified samples
- 2. seek a vector a making all inner product a^T y_i positive
- 3. Try to find the solution to a set of linear inequalities

MSE

- 1. Involves all the samples
- 2. Seek a vector \mathbf{a} making $\mathbf{a}^T y_i = b_i$, where b_i is some arbitrarily specified positive constants
- 3. Find the solution to a set of linear equations

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 46 / 54

Minimum Squared Error Procedures

- The treatment of simultaneous linear equations is simplified by introducing matrix notation.
- Let Y be the n-by- \hat{d} matrix $(\hat{d} = d+1)$ whose ith row is the vector y_i^T
- let b be the column vector $b = (b_1, ..., b_n)^T$
- Then our problem is to find a weight vector a satisfying

$$\begin{bmatrix} Y_{10} & Y_{11} & \cdots & Y_{1d} \\ Y_{20} & Y_{21} & \cdots & Y_{2d} \\ \vdots & \vdots & & \vdots \\ Y_{n0} & Y_{n1} & \cdots & Y_{nd} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_d \end{bmatrix}$$

or

Introdution

$$Ya = b$$

Dr. Shanshan ZHAO DTS201TC AIAC XJTLU

- If Y were nonsingular, we could write $a = Y^{-1}b$ and obtain a formal solution at once.
- However, Y is rectangular, usually with more rows than columns. When there are more equations than unknowns, a is overdetermined, and ordinarily no exact solution exists.
- However, we can seek a weight vector a that minimizes some function of the error between Ya and b.
- If we define the error vector e by

$$e = Ya - b$$

 Then one approach is to try to minimize the squared length of the error vector. This is equivalent to minimizing the sum-of-squared-error criterion function

$$J_s(a) = ||Y_a - b||^2 = \sum_{i=1}^n (a^T y_i - b_i)^2$$

Dr. Shanshan ZHAO
DTS201TC

AIAC XJTLU

The problem of minimizing the sum of squared error is a classical one. It can be solved by a gradient search procedure. A simple closed-form solution can also be found by forming the gradient

$$\nabla J_s = \sum_{i=1}^n 2(a^T y_i - b_i) y_i = 2Y^T (Y_a - b)$$

and setting it equal to zero. This yields the necessary condition

$$Y^T Ya = Y^T b$$

If matrix Y^TY is square and nonsingular, we can solve a uniquely

$$a = (Y^T Y)^{-1} Y^T b$$

Dr. Shanshan ZHAO DTS201TC

Introdution

Minimum Squared Error

Introdution

The MSE solution depends on the margin vector *b*, and we shall see that different choices for *b* give the solution different properties. If *b* is fixed arbitrarily, there is no reason to believe that the MSE solution yields a separating vector in the linearly separable case. However, it is reasonable to hope that by minimizing the squared-error criterion function we might obtain a useful discriminant function in both the separable and the non-separable cases.

DTS201TC

Dr. Shanshan ZHAO

MSE example

Introdution

Compute the perceptron and MSE solution for the dataset

X1 = [(1,6), (7,2), (8,9), (9,9)]

LDFs and Decision Surfaces

X2 = [(2,1), (2,2), (2,4), (7,1)]

Perceptron leaning

- Assume n = 0.1 and an online update rule
- Assume a(0) = [0.1, 0.1, 0.1]
- SOLUTION
 - Normalize the dataset
 - Iterate through all the examples and update a(k)on the ones that are misclassified
 - Y(1) ⇒ [1 1 6]*[0.1 0.1 0.1]^T>0 ⇒ no update
 - $Y(2) \Rightarrow [1.7.2] \cdot [0.1.0.1.0.1] \cdot > 0 \Rightarrow \text{no update}$
 - $Y(5) \Rightarrow [-1.2.1] * [0.1.0.1.0.1]^{T} < 0 \Rightarrow \text{update a(1)} = [0.1.0.1.0.1] + \eta[-1.2.1] = [0.0.1.0]$
 - $Y(6) \Rightarrow [-1 2 2]^*[0 0.1 \ 0]^\top > 0 \Rightarrow \text{no update}$
 - $Y(1) \Rightarrow [1\ 1\ 6]^*[0\ -0.1\ 0]^\top < 0 \Rightarrow update\ a(2) = [0\ -0.1\ 0] + n[1\ 1\ 6] = [0.1\ 0\ 0.6]$
 - $Y(2) \Rightarrow [1.7.2] * [0.1.0.0.6] ^{T} > 0 \Rightarrow \text{no update}$
 - In this example, the perceptron rule converges after 175 iterations to $a = [-3.5 \ 0.3 \ 0.7]$
 - To convince yourself this is a solution, compute Ya (you will find out that all terms are non-negative)

MSE

- The MSE solution is found in one shot as $a = (Y^T Y)^{-1} Y^T b = [-1.1870 \ 0.0746 \ 0.1959]$
 - For the choice of targets $b = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]^T$
 - As you can see in the figure, the MSE solution misclassifies one of the samples

MSE

Perceptron

Dr. Shanshan ZHAO AIAC XJTLU

Percepton criterion

 The perceptron rule always find a solution if the classes are linearly separable, but does not converge if the classes are non-separable.

MSE criterion

- The MSE solution has guaranteed convergence, but it may not find a separating hyperplane if classes are linearly separable.
 - Notice that MSE tries to minimize the sum of the squares of distances of the training data to the separating hyperplane, as opposed to finding this hyperplane.

- (ロ) (部) (E) (E) (9(0)

AIAC XJTLU

52 / 54

- Linear Discriminant functions, decision surfaces (geometry)
- Gradient descent procedures
- Criterion function
 - perception criterion function
 - minimum squared error

Thank You!

