Notes

November 5, 2014

5.4 compactness and extreme values

 $y = x^2$ has min but no max and no supremum

 $y = e^{-||\vec{x}||^2}$ has max at x = 0, no minimum, infimum at 0

when the domain $D \subseteq \mathbb{R}^n$ is unbounded a function need not attain it's max or min

 $y=\frac{1}{x}, x\in(0,1]$. domain is bounded, but not closed.

we like compact sets for domains, because this is when functions are guaranteed to obtain max and min (if they are continuous).

$$f(x) = \begin{cases} x & x \in [0, 1) \\ 0 & x = 1 \end{cases}$$

thm 5.4.4

let $C \subseteq \mathbb{R}^n$ be compact and let $f: C \to \mathbb{R}$ be continuous. then $\exists \vec{a}, \vec{b} \in C$ such that $\forall \vec{x} \in C \ f(\vec{a}) \leq f(\vec{x} \leq f(\vec{b})$. ie f attains its min at \vec{a} and it's max at \vec{b} .

we need something to prove this

5.4.3

Let C be a compact subset of \mathbb{R}^n and let f be a continuous function from C into \mathbb{R}^m . then the image set f(C) is compact.

a conintous function sends compact sets to compact sets.

pick a sequence $\{z_k\}$ such that $z_k \in f(C)$ for each k, we need to prove that this sequence has a convergent subsequence.

 $z_k \in f(C) \Leftrightarrow z_k = f(c_k)$ for some $c_k \in C$ now $\{c_k\}$ has a convergent subsequence $\{c_{k_n}\}$ because C is compact. let $\lim c_{k_n} = x$, note that $x \in C$. since f is continuous, $\lim f(c_{k_n} = \lim z_{k_n} = f(x))$. so $\{z_{k_n}\}$ converges to $f(x) \in f(C)$ and so f(C) is compact.

now to prove 5.4.4

proof 5.4.4

so $f(C) \subseteq \mathbb{R}$ is closed and bounded by 5.4.3. beccause it it bounded, then it has a supremum and an infimum. let $M = \sup f(C) \in \mathbb{R}$, $m = \inf f(C) \in \mathbb{R}$. given $\varepsilon = \frac{1}{n} \exists a_n \in f(C)$ such that $|a_n - M| < \varepsilon = \frac{1}{n}$. $\{a_n\}$ is a sequence of poins in f(C) that converges to M. but f(C) is closed so $M \in f(C)$ so $\exists b \in C$ such that f(b) = M. same proof for infimum.

5.5.9

let $f: C \to \mathbb{R}^m$ where $C \subseteq \mathbb{R}^n$ is compact, then f is uniformally continuous.

f is uniformly continuous if $\forall \varepsilon > 0 \exists r > 0$ such that $||f(x) - f(y)|| < \varepsilon$ whenever ||x - y|| < r for any $x, y \in \text{domain of } f$.

proof

assume that f is not uniformly continuous then $\exists \varepsilon > 0$ such that $\forall r > 0$, we have some points x,y with ||x-y|| < r but $||f(x)-f(y)|| \ge \varepsilon$. in particular, let $r = \frac{1}{n}$, for each $n \in \mathbb{N}$. for each $r = \frac{1}{n} \exists x_n, y_n \in C$ such that $||x_n-y_n|| < \frac{1}{n}$ but $||f(x_n)-f(y_n)|| > \varepsilon$. $\{x_n\}$ is a sequence in C. there is a convergent subsequence x_{n_k} of $\{x_n\}$. let $a = \lim x_{n_k}$ then $||y_{n_k}-a|| \le ||y_{n_k}-x_{n_k}|| + ||x_{n_k}-a||$. so $\{y_{n_k}\}$ also converges to a. so $f(x_n)$ and $f(y_n)$ converge to f(a) and so $||f(x_n)-f(y_n)||$ converges to ||f(a)-f(a)|| = 0 and so it is not possible for $x_{n_k}-y_{n_k}|| < \frac{1}{n_k}$ and $||f(x_{n_k}-f(y_{n_k})|| \ge \varepsilon$ for a fixed ε .

exercises

5.3.I

let f be a continuous real function defined on an open subset U of \mathbb{R}^n . show that $\{(x,y): x \in U, y > f(x)\}$ is an open subset of \mathbb{R}^{n+1} .

```
two ways, prove that ball B(x,r) exists for each x \in A where B(x,r) \subseteq A we could also prove that A^C is closed
```

let $(\vec{x}, y) \in A$. we know that $\vec{x} \in U$ and U is open. so $\exists r_1 > 0$ such that $B(\vec{x}, r_1) \subseteq U$. and $y \in (f(\vec{x}), \infty +) \in \mathbb{R}$. so $\exists r_2$ such that $(y - r_2, y + r_2) \in (f(\vec{x}), \infty +)$ and so $B(\vec{x}, r_1) \times (y - r_2, y + r_2) \supseteq U \times (y - r_2, y + r_2) \supseteq U = (y - r_2, y + r_2) \supseteq U$

know this for friday

f is continuous $\leftrightarrow \forall U$ open in \mathbb{R}^m $f: S \to \mathbb{R}^m$, $f^{-1}(U)$ is open in S prove that this is equivalent to $\forall K$ closed in \mathbb{R}^n $f^{-1}(K)$ is closed in S

5.4.G

```
fix M \in \mathbb{N}
f(\overline{B(0,M)}) then f is restricted to \overline{B(0,M)}
```