<to>> Baroque

Workshop Programme

Publishing from Collections

by Simon Worthington

Draft 0.1

Published by: Open Science Lab

Last updated: 2023-02-18

Created: 2023-02-15

Language: English (United States)

Created by: Simon Worthington

Contents

Publishina	from (Collections	Introducing	Computational	Publishing
r ubliši ili iu	110111	CONCCUONS.	IIIII Oddciiid	Computational	r ublisiliid

for Culture	6
Learning points	7
Sample publications	8
Prototype exhibition catalogue: <toc>Baroque</toc>	8
Prototype publication catalogue: ScholarlyLed Catalogue	9
Preparation needed by participants	9
Schedule	10
Activities	11
About: Example 'publishing model' and prototype publications	11
Activity A: Create a Wikidata query	12
Activity B. Painting catalogue	13
Activity C. Editing a Jupyter Notebooks and accessing video	14
(Optional) Activity D. Collaborative editing of Colophon with	
HedgeDoc	15
Software	16

Publishing from Collections: Introducing Computational Publishing for Culture

Hands-on Workshop with Simon Worthington (NFDI4Culture @Open Science Lab, TIB, Hannover)

Monday, 20 February 2023

Workshop URL: https://experimentalbooks.pubpub.org/programme-overview

Open Notes: https://demo.HedgeDoc.org/s/4gr9JvUS7

Document DOI: 10.5281/zenodo.7652524 | Author: Simon Worthington https://orcid.org/0000-0002-8579-9717 | CC BY-SA 4.0 International.

To edit this document - request access by emailing simon.worthington@tib.eu.

All software used is open-source OSI licence compliant. All content and other resources are open access with open licenced.

Computational publishing was developed in the life sciences and STEM subjects to allow publishers and authors to embed executable code, visualisations and advanced media objects alongside conventional text in

a document. This hands-on workshop demonstrates one way how humanities scholars might use computational publishing.

During the workshop, we will auto-compile catalogue publications for exhibitions or publication listings from multiple open data sources; and show how such compilations can be published multi-format: web, PDF, ebook, etc. A series of exercises, using Jupyter Notebooks for code and the Quarto platform to wrap up the notebooks for multi-format outputting, will give participants a practical introduction to some of the tools, possibilities and concepts of computational publishing.

Learning points

In the workshop two demonstration catalogue publications will be shown <toc>Baroque</toc> and Publication Catalogue. A bundle of short exercises and demonstrations have been put together to cover:

- 1. Rendering a multi-format publication,
- 2. Asycrononous collective working and making a publication from multiple remote Linked Open Data (LOD) sources,
- 3. Creating a Wikidata query,
- 4. Displaying a painting catalogue sample collection from Wikidata LOD query for a multi-format publication,
- 5. Editing a Jupyter Notebook in MyBinder,
- 6. Embedding media objects: Video TIB AV Portal, and; 3D Kompakkt, and
- 7. Real-time collaborative editing with Hedge Doc and Fidus Writer.

Sample publications

Prototype exhibition catalogue: <toc>Baroque</toc>

Image: Baroque pearl with enamelled gold mounts set with rubies. Creative Commons CC0 1.0 Universal Public Domain Dedication. This file was donated to Wikimedia Commons as part of a project by the Metropolitan Museum of Art.

A prototype framework publication for an exhibition catalogue.

The catalogue uses a Wikidata based collection of Bavarian collections of Baroque paintings. See: 17C Bavarian painting

Publication URL:

https://simonxix.github.io/Experimental_Books_workshop/

Prototype publication catalogue: ScholarlyLed Catalogue

Sample output of publishers titles from the Thoth single source book metadata service API.

Publication URL: https://simonxix.github.io/scholarled_catalogue/

Screenshot: ScholarLed catalogue

Preparation needed by participants

No account logins are needed.

The workshop will involve carrying out three activities aimed at giving some familiarity with using computational publishing to retrieve and assemble linked open data and its associated media into a publication.

The activities are organised into short fifteen minute time blocks, with a ten-minute review and/or publication render.

- Activity A. Wikidata query
- Activity B. Painting catalogue
- Activity C. Editing a Jupyter Notebooks and accessing video and 3D models (Semantic Kompakkt)
- Optional Activity D. Collaborative editing of Colophon with HedgeDoc

You might want to familiarize yourself with some of the platforms being used in the workshop, but this is not necessary to carry out the activities.

Wikidata query – https://query.wikidata.org/

- Wikimedia Commons Query Service (beta) https://commons-query.wikimedia.org/
- Painting collection on Wikidata and the specific collection we'll be using – Sum of all paintings | All painting collections | 17C Bavarian painting.
- Jupyter Notebooks https://jupyter.org/
- Quarto https://quarto.org/
- Semantic Kompakkt https://semantic-kompakkt.de/
- TIB AV Portal https://av.tib.eu/
- ADA Semantic Publishing Pipeline https://github.com/NFDI4Culture/ada
- HedgeDoc https://HedgeDoc.org/
- Thoth https://thoth.pub/

Schedule

15:00-17:00, Monday, 20 February 2023.

Two hours, 120 minutes.

- 1. Introduction by all workshop members: 10 minutes
- 2. Overview and orientation: 5 minutes
- 3. Activity A: Wikidata query building
 - 1. Task: 15 minutes
 - 1. Whole group review: 10 minutes
- 2. Activity B. Painting catalogue
 - 1. Task: 15 minutes
 - 1. Render and whole group review: 10 minutes
- 2. Bio-break (stretch and refresh time): 10 minutes
- 3. Activity C. Editing a Jupyter Notebooks and accessing video and 3D models (Semantic Kompakkt)
 - 1. Task: 15 minutes
 - 1. Render and whole group review: 10 minutes
- 2. Conclusion and demos 20 minutes
- 8. Optional Activity D. Collaborative editing of Colophon with HedgeDoc

- 1. Task
- 1. Render and whole group review

END

Activities

About: Example 'publishing model' and prototype publications

Publishing model (use case)

Preparation of a multi-format exhibition catalogue from a digital collection. The workflow enables the following:

- Contributors can work on separate documents asynchronously: cover, colophon, essay, catalogue, back matter, and metadata.
- Contributors can use different platforms independently to work on documents: Jupyter Notebooks, Fidus Writer, HedgeDoc, Google Docs, etc.
- Content and media used in publication is taken directly from sources so no copying and pasting, or errors in collation
- Visualisations and data analysis can be used in publications
- Multi-format outputs: web, PDF, e-book, markdown, JATS, BITS, etc
- Automatic templated typesetting

Prototype publications

- 1. Exhibition catalogue: <toc>Baroque</toc>, and
- 2. Publication catalogue: ScholarlyLed Catalogue.

Prototype exhibition catalogue: <toc>Baroque</toc>

A prototype framework publication for an exhibition catalogue.

The catalogue uses a Wikidata based collection of Bavarian collections of Baroque paintings. See: 17C Bavarian painting

Publication URL:

https://simonxix.github.io/Experimental_Books_workshop/

Prototype publication catalogue: ScholarlyLed Catalogue

Sample output of publishers titles from the Thoth single source book metadata service API.

The publication uses data from https://thoth.pub/

Activity A: Create a Wikidata query

Objective: User builds a Wikidata query. See example query: paintings, Bavarian Collections, 1590 - 1750 - query link

External LOD and media used: Wikidata LOD, and Wiki Commons, Web Gallery of Art (images) - https://www.wga.hu/

Notes: Wikidata Query (help)

- Allows for non-expert query building with plain language
- View query as plain language and as code
- Experience of building a query
- Contact with some basic building blocks of Wikidata
- View and export SPARQL query

Steps

- 1. Go to https://query.wikidata.org/
- 2. Build a query around the <u>17C Bavarian painting</u> collection to replicate the catalogue selection to be used in Activity B. Example:
 - 1. Code:
 - $\label{lem:lem:https://github.com/SimonXIX/Experimental_Books_workshop/blob/main/paintings.ipynb$
 - Rendering: https://simonxix.github.io/Experimental_Books_workshop/paintings.h tml
 - 3. Example: Paintings; in collection; Bavarian Collections; 1600 1700 query link
- 3. **Step-by-step instructions** to replicate parts of this <u>query link</u> base on this collection 17C Bavarian painting:
 - 1. Go to https://query.wikidata.org/
 - 2. Enable split view with *i info* button top left.
 - 3. Filter: instance of P31, painting Q3305213 wdt:P31 wd:Q3305213.
 - 4. Filter: **collection** P195, **Bavarian State Painting Collection** Q812285 wdt:P195 wd:Q812285.
 - 5. Play button bottom left renders guery below
 - 6. Show: **creator** <u>P170</u>; **image** <u>P18</u>; **copyright status** <u>P6216</u>; **inception** P571.

- 7. Play button bottom left renders query below
- 8. Image grid view :-)
- 9. Limit
- 10. Dates from to 1590-1750 (code only) BIND(YEAR(?inception) AS ? inceptionyear) FILTER((1590 <= ?inceptionyear) && (?inceptionyear < 1750))</p>
- 11. Link query: https://w.wiki/6MGX results: https://w.wiki/6MGY
- 4. Participants can change the selection criteria around the available criteria: artists, dates, etc., as in collection 17C Bavarian painting
- 5. Completion: Paste your query link into the HedgeDoc link provided. https://demo.HedgeDoc.org/s/4gr9JvUS7 - END of activity.

Activity B. Painting catalogue

NB: This is a guided demonstration activity due to the large number of steps involved. Participants will be able to make suggestions and requests for edits.

Objective: Make a section of nine paintings for the exhibition catalogue to be selected from Wikidata and rendered multi-format in Quarto.

External LOD and media used: Wikidata LOD, and Wiki commons, Web Gallery of Art - https://www.wga.hu/

Notes: Jupyter Notebooks retrieval of content from Wikidata and rendering in Quarto.

- Review a query being used in Jupyter Notebooks
- Inclusion of media in a publication
- Editing a Jupyter Notebook
- Multi-format outputs
- Basics of Quarto rendering and publishing

Links:

- 1. Code:
 - https://github.com/SimonXIX/Experimental_Books_workshop/blob/main/paintings.ipynb
- 2. Rendering: https://simonxix.github.io/Experimental_Books_workshop/paintings.html

Steps

1. View code and rendering and explain steps

- 2. Demonstrate a change in the Notebook code configuration and output, simplest is the increase in the LIMIT of items.
- 3. Show and talk through full items as they exist on Wikidata.
- 4. Depending on current Notebook configuration invite suggestions for changes to the configurations of items being retrieved by the Notebook processing. If this is possible re-render the publication.
- 5. Show the TOC feature of Quarto of how documents are combined!!! On GitHub the TOC can been seen. At some point W3C table of contents concepts (doc_toc) and Manifest standards could be used which would extend the interoperability.

End of activity: Bio break!

Activity C. Editing a Jupyter Notebooks and accessing video

Objective: Running and editing Juypter Notebooks in MyBinder and retrieving video and 3D models as embeds.

External LOD and media used: TIB AV Portal, and Semantic Kompakkt

Notes: Jupyter Notebooks editing in MyBinder

- Run a Jupyter Notebook in MyBinder
- Edit a Jupyter Notebook
- Render a Jupyter Notebooks

Links:

- Sample Jupyter Notebook: Video and 3D Notebook embeds
- TIB AV Portal: https://av.tib.eu/
- Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore
- View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe: <iframe name="Doric Column" src="https://kompakkt.wbworkshop.tibwiki.io/viewer/? entity=63e8c22910e4f555d1f656ca&mode=open" allowfullscreen loading="lazy" ></iframe>

Steps

 Open Notebook in the browser using MyBinder - Video and 3D Notebook embeds - click the 'launch binder' button to run the Notebook in MyBinder.

- 2. Add new videos and 3D models to the Notebook from TIB AV Portal and Semantic Kompakkt.
 - 1. Open a second browser tab and load TIB AV Portal
 - 2. Choose a video and copy across the video ID from the URL https://av.tib.eu/media/60729
 - 3. Paste the video ID into the video iframe field and run the cell to render
 - 4. Open Semantic Kompakkt demo site: https://kompakkt.wbworkshop.tibwiki.io/explore
 - 5. View a model, copy the iframe embed from the folder icon, top right. In the Notebook paste in the complete iframe cover replacing the existing iframe: <iframe name="Doric Column" src="https://kompakkt.wbworkshop.tibwiki.io/viewer/? entity=63e8c22910e4f555d1f656ca&mode=open" allowfullscreen loading="lazy" > </iframe>
- 3. Run the Notebook
- 4. 3D view size, we can make the initial view bigger, add: <iframe width="1200" height="630"
- 5. Download Notebook
- 6. Render some videos and 3D models in the Quarto book. Pass along video id codes and 3d models using a hedge doc and chat to the Quarto render. The rendering and final display will take less than 10 minutes (hopefully): a. The code needs to be added to the main repo; b. Rendered locally; c. Uploaded to GitHub; d. Time for GitHub Pages to finish loading.
 - Code: https://github.com/SimonXIX/Experimental_Books_workshop/blob/main/paintings.ipynb
 - 2. Rendering:
 https://simonxix.github.io/Experimental_Books_workshop/paintings.h
 tml

(Optional) Activity D. Collaborative editing of Colophon with HedgeDoc

Objective: Editing 'Colophon' HedgeDoc to be included in publication. Quarto TOC function allows documented to be edited in different remote applications – which is one approach to asynchronous editing.

External editing platform: HedgeDoc

Notes: Remote async editing

- Editing with HedgeDoc
- Multi-user real-time editing
- Editing a Markdown document
- Saving as a Gist Git document (temporary file)
- Saving to Quarto

Links:

• Colophon HedgeDoc: https://demo.hedgedoc.org/s/Xzv9WrAjq

Steps

- 1. Colophon HedgeDoc: https://demo.hedgedoc.org/s/Xzv9WrAjg
- 2. Save as Gist
- 3. Make commit to Git Repo
- 4. Render Quarto

Software

Over 2023/24 the computational components will be added to the **ADA Semantic Publishing Pipeline** as well as introducing **Vivliostyle Create Book** markdown renderer and swapping to **Jupyter Book** computational book platform away from Quarto – https://github.com/NFDI4Culture/ada

- Wikidata https://www.wikidata.org/
- Jupyter Notebooks https://jupyter.org/
- Jupyter Book https://jupyterbook.org/
- Quarto https://quarto.org/
- Semantic Kompakkt https://semantic-kompakkt.de/
- TIB AV Portal https://av.tib.eu/
- HedgeDoc https://HedgeDoc.org/
- Thoth https://thoth.pub/
- Vivliostyle https://vivliostyle.org/
 - Create Book Markdown renderer
- Wikibase https://wikiba.se/

To edit this document - request access by emailing simon.worthington@tib.eu.