Лабораторная работа 1. Модели структуры систем с использованием теории графов

Задача 1

- 1. Выполнить матричное и множественное описание графа тополгии системы;
- 2. Выполнить топологическую декомпозицию системы (рис.17);
- 3. Разработать алгоитм решения задачи топологической декомпозиции на одном из языков программирования. Привести результаты работы программы.

Выполнение:

1. Матричное представление

Таблица 1- Матрица смежности

i\j	1	2	3	4	5	6	7	8	9	10
1	0	0	0	1	1	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0	0
3	1	0	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	1	0	0	0
5	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0	1	0
8	0	0	0	0	0	1	0	0	0	0
9	0	0	0	0	0	0	0	1	0	1
10	0	0	0	0	0	0	0	0	0	0

Таблица 2- Матрица инциденций

i∖j	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	-1	-1	1	0	0	0	0	0	0	0	0	0
2	0	1	0	0	1	0	0	0	0	0	0	0	0
3	0	0	1	0	-1	-1	0	0	0	0	0	0	0
4	0	0	0	-1	0	1	1	0	0	0	0	0	0
5	-1	0	0	0	0	0	0	1	0	0	0	0	0
6	0	0	0	0	0	0	0	-1	1	-1	0	0	0
7	0	0	0	0	0	0	-1	0	-1	0	1	0	0
8	0	0	0	0	0	0	0	0	0	1	0	-1	0
9	0	0	0	0	0	0	0	0	0	0	-1	1	1
10	0	0	0	0	0	0	0	0	0	0	0	0	-1

2. Множественное представление

$$G(1)=(4,5);$$
 $G^{-1}(1)=(2,3);$ $G^{-1}(2)=(0);$ $G(3)=(1);$ $G^{-1}(3)=(2,4);$ $G^{-1}(3)=(2,4);$ $G^{-1}(4)=(1);$ $G^{-1}(5)=(1);$ $G^{-1}(6)=(5);$ $G^{-1}(6)=(5);$ $G^{-1}(6)=(5);$ $G^{-1}(6)=(6);$ $G^{-1}(6)=(6)$ $G^{-1}(6)=(6)$

3. Топологическая декомпозиция системы

Достижимое множество:

$$R(i)=(i)\vee G(i)\vee...\vee G^{\lambda}(i)\vee...$$
, где $\lambda-$ длинна пути графа; (1)

Контрдостижимое множество:

$$R(i) = (i) \lor G(i)^{-1} \lor \dots \lor G^{\lambda}(i) \lor \dots;$$
(2)

Сильно связный подграф:

$$V_n = R(i) \cap Q(i); \tag{3}$$

$$R(1)=(1)\vee R(1)^{1}\vee R(1)^{2}\vee R(1)^{3}\vee R(1)^{4}=$$

$$=(1)\vee (4,5)^{1}\vee (3,7,6)^{2}\vee (7,9)^{3}\vee (8,10)^{4}=$$

$$=(1,4,5,3,7,6,9);$$

$$Q(1)=(1)\vee Q(1)^{-1}\vee Q(1)^{-2}=$$

$$=(1)\vee (2,3)^{-1}\vee (2,4)^{-2}=$$

$$=(1,2,3,4);$$

$$V_{1}=R(1)\cap Q(1)=(1,3,4);$$

$$R(5)=(5)\vee R(5)^{1}\vee R(5)^{2}\vee R(5)^{3}\vee R(5)^{4}=$$

$$=(5)\vee (6)^{1}\vee (7)^{2}\vee (9)^{3}\vee (8,,10)^{4}=$$

$$=(5,6,7,8,9,10);$$

$$Q(5)=(5);$$

$$V_{2}=R(5)\cap Q(5)=(5);$$

$$R(6)=(6)\vee R(6)^{1}\vee R(6)^{2}\vee R(6)^{3}=$$

$$=(6)\vee (7)^{1}\vee (9)^{2}\vee (8,10)^{3}=$$

$$=(6,7,8,9,10);$$

$$Q(6)=(6)\vee Q(6)^{-1}\vee Q(6)^{-2}\vee Q(6)^{-3}=$$

$$=(6)\vee (8)^{-1}\vee (9)^{-2}\vee Q(7)^{-3}=$$

$$=(6,7,8,9);$$

$$V_{3}=R(6)\cap Q(6)=(6,7,8,9);$$

$$R(10)=(10);$$

$$Q(10)=(10);$$

$$V_{4}=R(10)\cap Q(10)=(10);$$

И того имеем:

1.
$$G_1(V_1) = G_1(1,2,3,4);$$

2.
$$G_2(V_2)=G_2(5)$$
;

3.
$$G_3(V_3) = G_3(6,7,8,9);$$

4.
$$G_4(V_4) = G_4(10)$$
.

Вид подграфов:

Вид сильно связных подграфов:

Результат декомпозиции исходного графа:

4. Алгоритм решения задачи топологической декомпозиции (python)

Алгоритм и рузультат решения задачи приведён на ЯП Python по следующей <u>ссылке</u> (https://github.com/Kirpo97/MMTS_labs/blob/main/lab_1/topological_decomposing_graph.ipynb)

Задача 2

- 1. Выполнить топологическую декомпозицию одной системы из предложенных ниже вариантов, используя разработанную программу
- 2. Привести результаты работы программы

Выполнение:

выбран вариант 15, результаты