Задачи по теория — функционални редици и редове ${ m KH,\ 1\ \kappa.,\ I\ n.}$

Някои задачи от посочените тук или подобни на тях се падат на изпита по теория. Задачите обозначени със * са по-сложни или имат по-дълги решения. Такива **не** се падат на изпита.

1. Докажете, че редица $\{f_n(x)\}_{n=1}^\infty$ от функции, дефинирани в $D\subseteq \mathbb{R}$, е равномерно сходяща към функцията f(x) в D тогава и само тогава, когато

$$\sup_{x \in D} |f_n(x) - f(x)| \underset{n \to \infty}{\longrightarrow} 0.$$

2. Определете дали редиците със следните общи членове са равномерно сходящи върху посочените множества:

(a)
$$f_n(x) = \frac{nx^2}{1 + nx}$$
 върху $[0, 1]$,

(б)
$$f_n(x) = \operatorname{acrtg} \frac{2x}{x^2 + n^3}$$
 върху \mathbb{R} ,

(в) *
$$f_n(x) = n(\sqrt[n]{x} - 1)$$
 върху $[1, 2]$

- 3. Нека $f:[a,b]\to\mathbb{R}$ и $f_n(x)=\frac{[nf(x)]}{n},\ x\in[a,b],\ n\in\mathbb{N}_+$, където [a] означава най-голямото цяло число, което не надминава a (т.нар. "долна цяла част" на a). Докажете, че $f_n(x) \overset{\rightarrow}{\Longrightarrow} f(x)$ в [a,b].
- 4. Докажете, че ако $f_n(x) \underset{n \to \infty}{\rightrightarrows} f(x)$ и $g_n(x) \underset{n \to \infty}{\rightrightarrows} g(x)$ в $D \subseteq \mathbb{R}$, то $f_n(x) + g_n(x) \underset{n \to \infty}{\rightrightarrows} f(x) + g(x)$ в D.
- 5. Нека функционалният ред $\sum_{n=0}^{\infty} u_n(x)$ е равномерно сходящ в $D \subseteq \mathbb{R}$ и $v:D \to \mathbb{R}$ е ограничена. Докажете, че редът $\sum_{n=0}^{\infty} v(x)u_n(x)$ е също равномерно сходящ в D.
- 6. Нека функционалният ред $\sum_{n=0}^{\infty}u_n(x)$ е равномерно и абсолютно сходящ в $D\subseteq\mathbb{R}$ и $v_n:D\to\mathbb{R},\ n\in\mathbb{N}_0$, са такива, че съществува C>0 с $|v_n(x)|\leq C,\ x\in D$ и $n\in\mathbb{N}_0$. Докажете, че редът $\sum_{n=0}^{\infty}v_n(x)u_n(x)$ е също равномерно и абсолютно сходящ в D. Вярно ли е, че ако $\sum_{n=0}^{\infty}u_n(x)$ е равномерно, но не непременно абсолютно сходящ в $D\subseteq\mathbb{R}$, а

 $\{v_n(x)\}_{n=0}^{\infty}$ е както по-горе, редът $\sum_{n=0}^{\infty} v_n(x) u_n(x)$ е равномерно сходящ в D?

- 7. Нека функциите $f_n:[a,b]\to\mathbb{R},\ n\in\mathbb{N}_+,\$ са диференцируеми и $f'_n(x)$ са непрекъснати в [a,b]. Нека числовата редица $\{f_n(a)\}_{n=1}^\infty$ е сходяща, а функционалната редица $\{f'_n(x)\}_{n=1}^\infty$ е равномерно сходяща в [a,b]. Докажете, че $\{f_n(x)\}_{n=1}^\infty$ е равномерно сходяща в [a,b] и ако положим $f(x):=\lim_{n\to\infty}f_n(x),\ x\in[a,b],\$ то f(x) е диференцируема в [a,b] и f'(x) е непрекъсната в [a,b], при това $f'_n(x)$ $\Longrightarrow_{n\to\infty}f'(x)$ в [a,b].
- 8. * Нека функциите $f_n:[a,b]\to\mathbb{R},\ n\in\mathbb{N}_+,$ притежават непрекъснати производни до ред $r\in\mathbb{N}_+$ включително в [a,b]. Нека редицата $\{f_n(x)\}_{n=1}^\infty$ е сходяща в r различни точки от интервала [a,b], а редицата $\{f_n^{(r)}(x)\}_{n=1}^\infty$ е равномерно сходяща в [a,b]. Докажете, че $\{f_n(x)\}_{n=1}^\infty$ е равномерно сходяща в [a,b] и ако положим $f(x):=\lim_{n\to\infty}f_n(x),$ $x\in[a,b],$ то f(x) притежава непрекъснати производни до ред r включително в [a,b], при това $f_n^{(i)}(x)$ $\Longrightarrow_{n\to\infty}f^{(i)}(x)$ в [a,b] за $i=1,\ldots,r$.
- 9. Докажете, че ако радиусите на сходимост на степенните редове $\sum_{n=0}^{\infty} a_n x^n$ и $\sum_{n=0}^{\infty} b_n x^n$ са съответно R_1 и R_2 , като $R_1 \neq R_2$, то радиусът на сходимост на $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ е $\min\{R_1, R_2\}$. Остава ли твърдението е сила, ако $R_1 = R_2$.
- 10. * Докажете, че степенният ред

$$\sum_{n=0}^{\infty} a_n (x-a)^n$$

и полученият от него степенен ред чрез почленно диференциране

$$\sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$$

имат един и същи радиус на сходимост.