Data Ingestion Pipeline

Data Ingestion Pipeline:

Introduction

Introduction

Data Types

Additional Resources

Source: https://python.langchain.com/

Data Ingestion Pipeline:

Data Source and -Loading

Data Source

Data Loading

- Hundreds of different data sources are supported by LangChain
- DataLoader returns list of LangChain documents
- Documents have two attributes
 - Metadata
 - page_content

Data Loading

Data Ingestion Pipeline:

Data Chunking

Data Chunking

Data Chunking

What is Data Chunking?

- Dividing larger pieces of information into smaller, manageable units
- These units called "chunks"
- Required to fit model context window
- Chunks should be:
 - Small
 - Semantically meaningful

Data Chunking: Chunking Approaches

Fixed Chunk-Sizes Identical pre-defined

Structure-Based Chunk-Sizes

 e.g. chat messages should be consistent, no mix of users and chunks

- Sentence 1 and 2 are very similar
 → same chunk
- Sentence 3 different → new chunk

Semantic Chunking

- based on semantic similarity
- e.g. when semantic break is observed

Data Chunking: Splitter Types

Data Chunking: Splitter Types

- chunk_size...defines maximum size of chunks [characters]
- chunk_overlap...possible overlap of max 5 characters

The quick brown fox jumps over the lazy dog.\n This is a simple example to show text splitting.\n.

RecursiveCharacterTextSplitter(
 chunk_size=20,
 chunk_overlap=5
 separators=["\n", " ", ""]
)

The quick brown fox brown fox jumps jumps over the lazy the lazy dog. This is a simple simple example to to show text text splitting.

Data Chunking: Tokenization

Data Chunking: Context Window

- Embedding model works with tokens, NOT words
- Model can cover only specific sequence lengths
- Too long text (longer than context window) will be truncated

Embeddings

Data Ingestion Pipeline:

Embeddings: Introduction

Embeddings: What?

- Conversion of text data into numeric vectors
- Each word / sentence is represented as vectors
- Vector has "low" number of dimensions

Word Embeddings: What is it?

- Convert words to numbers
- Representation of words as unique tensors in high-dimensional space
- Relationships to other words are captured
- Ideally similar words are close
- Usually Deep Learning applied to get embeddings
- Embeddings represent meaning

Word Embeddings represent words as low-dimensional vectors in mathematical space and capture their semantic and syntactic meaning.

Embeddings: Why?

- Semantic representation
 - capture meaning of data
 - enable comparison and analysis
- Lower dimensionality
 - computational complexity is reduced
 - high-dimensional data can be represented in lower dimensions
- Reusability
 - usable across different applications

Source: https://nlp.stanford.edu/projects/glove/

From Words to Tensors

Word Embedding Approaches

One-Hot Encoding

Frequency-Based

Neural Network

One-Hot Encoding

Index:

Word:

lt

was

а

bright

cold

day

was a bright cold day

One-Hot Encoding - Problems

Problems

- Curse of dimensionality → memory issues
- Matrix very sparse
- Words are isolated from each other
- All words have the same distance to each other

Word Embedding Approaches

Word Embedding Approaches

Neural Network based Embeddings

- Aim to
 - Capture context / meaning
 - Capture similarity to other words
 - Reduce dimension
 - Avoid memory issues
- Developed based on Neural Networks

Word2Vec: Continuous Bag of Words

Independent Features	Dependent Feature"
["It", "was", "bright", "cold"]	"a"
["was", "a", "cold", "day"]	"bright"
•••	

Word2Vec: Continuous Bag of Words Model

Embedding

cold

Word2Vec: Skip Gram

Word Embedding Approaches

GloVe

- Global Vectors for Word Representations
- Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. <u>GloVe: Global Vectors for</u> Word Representation
- based on co-occurrence matrix of words in a corpus, which counts how often words appear together in the same context.
- constructs a matrix of word co-occurrence counts and then factorizes this matrix to obtain word embeddings
- factorization based on singular value decomposition (SVD)
- resulting embeddings are dense, low-dimensional vectors
- Encode words as vector of other words

Source: https://nlp.stanford.edu/projects/glove/

Word Embedding Approaches

BERT

- Bidirectional Encoder Representations from Transformers
- Developed by Google in 2018
- Pre-trained word embedding
- Based on Transformers
- Applies "masked language modeling" masking some words in sentence and learn to predict them
- Applies "next sentence prediction" model predicts whether two sentences are similar in a text
- Original variants: BERT-base (110m parameters, 440MB) and BERT-large (340m parameters, 1.3GB)
- Other variants: RoBERTa, ALBERT, ELECTRA, ...

Word Embedding Approaches

GPT

- Generative Pre-trained Transformers
- Developed by OpenAI
- Not strictly a word embedding, but contextualized word embedding
- Unique embedding for each occurrence of a word based on surrounding words in text
- Applies Transformer architecture
- GPT-3 has 175 billion parameters

Difference Embedding Model vs. Large-Language Model

Parameter	Embedding Model	LLM	
Base architecture	transformers	transformers	
Process	texts, words, → numerical vectors	predict next words	
Target	find semantic similarities of texts	generate outputs depending on context, e.g. next words	
Applications	semantic search, clustering, representations for ML	text generation, QA systems, chatbots, translations, code generation	

Difference Embedding Model vs. Large-Language Model

Parameter	Embedding Model	LLM, LMM
Inputs	Text, words, sentences, images,	Text, words, sentences, images,
Output	vector	human-readable text/code
Focus	representation of data	processing and generation of data
Model Size	smaller, more specific (narrow AI, e.g. sentence transformers)	larger, e.g. GTP, Llama,
based on	pre-trained language models, uses architecture only for vector creation	uses transformers

Difference Embedding Model vs. Large-Language Model

Source: https://www.researchgate.net/figure/An-illustration-of-the-BERT-model-The-model-is-predicting-the-masked-word-brown fig5 347822270

Embeddings: How?

Word Embeddings

Sentence Embeddings

Embeddings: Which types are available?

Туре	Model	Provider	Price	Vector Size		
Online	text-embedding-3- small	OpenAl	0.02\$ / 1M tokens	1536		
Online	text-embedding- 3-large	OpenAl	0.13\$ / 1M tokens	3072		
Online	mistral-embed	MistralAI	0.10\$ /1M tokens	1024		
Offline	all-MiniLM-L6-v2	Open Source		384		
Benchmark: https://huggingface.co/spaces/mteb/leaderboard						

Embeddings: Factors to consider

Off-/Online

Benchmark Performance

Coding: Embedding GloVe closest words

Find closest words

Find word analogies

Coding: Word Cluster

- Given some categories
- Find words for the categories
- Check if they are "close" (similar)

Data Ingestion Pipeline:

Data Storing

Data Storing

Data Storing: What is a vector database?

A vector database stores high-dimensional data (embeddings) for fast querying and similarity analysis.

Features

- Special type of database
- Allows to store, manage, and query data which is represented in geometric formats
- Enables similarity search, clustering, real-time analytics

Data Storing: Why is a vector database needed?

Unstructured Data

Structured Data

Data Storing: Text Querying

Data Storing: Image Querying

Data Storing: Vector DB Providers

Data Ingestion Pipeline:

Data Querying

Data Querying: Text Querying

Practical Implementation

```
collection.query(query_texts=["This is my i
nput text"])
```

Data Querying: Image Querying

Result 1: ../data/dogs/akita_3.jpg with distance: 0.17

Data Querying: Image Querying 2

Query: dog in grassland Result 0:
 ../data/dogs/mastiff_1.jpg
with distance: 0.85

Similarity Search

Data Ingestion Pipeline:

Similarity Search

- Vector DB needs to analyze similarity of query-embedding compared to document embeddings.
- Approaches:
 - Cosine Similarity
 - Maximum Margin Relevance

Similarity Search

$$dist = \sqrt{(x_1 - y_1)^2 + (x_n - y_n)^2}$$

For an embedding vector of 768 embeddings, there are 768 dist ance terms

Example: word embeddings reduced to 2 dimensions

Similarity Search

Similarity Search: Cosine Similarity

- Measures similarity between Embedding-Vectors based on angle θ .
 - Vectors maximally dissimilar
 - \rightarrow vectors perpendicular ($\theta = 90^{\circ}$)
 - Vectors completely similar
 - \rightarrow vectors parallel ($\theta = 0^{\circ}$)

Similarity Search: Cosine Similarity

- Only the angle defines the similarity
- NOT the euclidean distance or magnitude of a vector
- Example
 - A: "The cat sleeps."
 - B: "The feline slumbers peacefully on the soft cushion."
 - C: "Trees grow leaves in spring."
 - D: "Fish swim in the ocean."

Similarity Search: Maximum Margin Relevance

- Aproach: reduce redundance while maintaining relevance and diversity
- Redundancy...similar vectors
- Relevance...how closely do query and documents match
- Avoid clustering effect

Topic: Renewable Energies

What are the main types of rene wable energy sources and how d o they work?

Relevant Document Texts

Data Ingestion Pipeline:

Retrieval-Augmented Generation

Data Ingestion Pipeline

Retrieval-Augmented Generation

