

Nombres et intervalles

I. Ensembles de nombres

1. Ensemble des entiers naturels \mathbb{N}

Définition.

L'ensemble des entiers naturels se note $\mathbb{N} = \{0; 1; 2; 3; 4; \ldots\}$. C'est l'ensemble des nombres positifs qui permettent de *compter* une collection d'objets. On note \mathbb{N}^* ou $\mathbb{N} - \{0\}$ l'ensemble des entiers naturels *non nuls*.

Exemples et contre-exemples.

2. Ensemble des entiers relatifs \mathbb{Z}

Définition.

L'ensemble des nombres entiers relatifs est $\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\}.$

Il est composé des *nombres entiers naturels* et de

En particulier, l'ensemble \mathbb{N} est **contenu** (ou inclus) dans \mathbb{Z} , ce que l'on note « $\mathbb{N} \subset \mathbb{Z}$ ».

Exemples et contre-exemples.

3. Ensemble des nombres décimaux $\mathbb D$

Définition.

Les *nombres décimaux* sont les nombres qui s'écrivent comme quotient d'un entier par 1, 10, 100, 1000 et plus généralement par 10^k où k est un entier naturel.

Ce sont les nombres dont l'écriture décimale n'a qu'un nombre fini de chiffres après la virgule.

Exemples et contre-exemples.

4. Les nombres rationnels et leur ensemble \mathbb{Q}

Définition.

Les *nombres rationnels* sont les nombres qui s'écrivent comme le quotient de deux entiers. On note :

$$\mathbb{Q} = \left\{ \frac{a}{b} \text{ où } a \in \mathbb{Z}, \ b \in \mathbb{Z}^* \right\}$$

Remarques:

- 1. La fraction $\frac{a}{b}$ avec $b \neq 0$ est dite *irréductible* lorsque le numérateur et le dénominateur n'ont pas de diviseurs communs (autres que 1 ou -1).
- 2. La partie décimale d'un nombre rationnel est infinie et périodique (se répète) à partir d'un certain rang.
- 3. La division par 0 est impossible : l'écriture $\frac{a}{0}$ n'a donc aucun sens.

Exemples et contre-exemples.

5. L'ensemble des réels \mathbb{R}

Définition.

Dès l'antiquité, on avait découvert l'insuffisance des nombres rationnels. Par exemple, il n'existe pas de rationnel x tel que $x^2 = 2$ on dit que $\sqrt{2}$ est un irrationnel. Ainsi, l'ensemble de tous les nombres rationnels et irrationnels est l'ensemble des **nombres réels** noté \mathbb{R} .

Remarque : chaque nombre réel correspond à un unique point de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé abscisse de ce point.

6. Inclusions d'ensembles

On retiendra le résultat qui suit :

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

Cela suggère donc qu'un entier naturel est un entier relatif qui est lui-même un nombre décimal qui est donc aussi un rationnel et finalement aussi un nombre réel.

II. Intervalles de \mathbb{R} .

1. Intervalle et inégalité associée

 $\mbox{\bf 0}$ L'ensemble des réels x tels que $a\leqslant x\leqslant b$ est l'intervalle $[a\,;\,b]$:

 $\mbox{\bf 2}$ L'ensemble des réels x tels que $a \leqslant x < b$ est l'intervalle $[a\,;\,b[\; : \;$

 $\mbox{\bf 3}$ L'ensemble des réels x tels que a < x < b est l'intervalle $]a\,;\,b[$:

 $\mbox{\bf 4}$ L'ensemble des réels x tels que $a < x \leqslant b$ est l'intervalle $\left]a\,;\,b\right]$:

6 L'ensemble des réels x tels que $x \leq a$ est l'intervalle $]-\infty$; a]:

 $\mbox{\bf 6}$ L'ensemble des réels x tels que x < a est l'intervalle] $- \infty \, ; \, a[$:

 $\mbox{\bf 0}$ L'ensemble des réels x tels que x>a est l'intervalle $]a\,;\,+\infty[$:

 $\mbox{\bf 0}$ L'ensemble des réels x tels que $x\geqslant a$ est l'intervalle $[a\,;\,+\infty[$:

2. Intersection, réunion d'intervalles et inclusion

a. Intersection

Définition.

Soit I et J deux intervalles de \mathbb{R} . Les réels qui sont à la fois dans l'intervalle I et dans l'intervalle J sont dans l'intervalles I et J:

Si $x \in I$ et $x \in J$, alors $x \in I \cap J$ (\cap se lit **inter**)

Exercice 1.1. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cap J$.

b. Réunion

Définition.

Les réels qui sont dans l'intervalle I ou dans l'intervalle J sont dans la réunion des intervalles I et J:

Si $x \in I$ ou $x \in J$, alors $x \in I \cup J$ (\cup se lit **union**)

Exercice 2.1. Soit I = [2; 5] et J = [4; 9]. Déterminer $I \cup J$.

c. Inclusion

Définition.

Un ensemble A est inclus dans un ensemble B lorsque tous les éléments de A appartiennent à B. On note :

 $A{\subset}B$

Exemple. Tous les pays de la zone euro sont dans l'Union européenne. L'ensemble des pays de la zone euro est **inclus** dans l'ensemble des pays de l'Union européenne.

III. Puissances

1. Définition d'une puissance

Définition.

Soit n un entier naturel et a un nombre réel.

• Si
$$n > 0$$
: $a^n = \underbrace{a \times a \times a \times ... \times a}_{nfacteurs}$.

• Pour
$$a \neq 0$$
, $a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times a \times \dots \times a}}_{nfacteurs}$.

• Par convention, pour $a \neq 0$, on pose $a^0 = 1$.

Exemples.

1.
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$
.

2. La décomposition en produit de facteurs premiers de 80 peut s'écrire $80 = 2^4 \times 5$.

2. Calcul avec les puissances

Propriété.

Si a et b sont des nombres réels non nuls; m et n sont des entiers relatifs quelconques (positifs ou négatifs), alors :

1.
$$a^m \times a^n = \dots$$

$$2. \ \frac{a^m}{a^n} - n = \ldots$$

3.
$$(a^m)^n = \dots$$

$$\mathbf{4.} \ \left(a \times b\right)^n = \ \dots \dots$$

$$5 \cdot \left(\frac{a}{b}\right)^n = \dots$$

Exercice 3.1.

1.
$$(-3)^4 \times (-3)^6 = \dots$$

3.
$$10^3 \times 2^3 = \dots$$

2.
$$(5^4)^3 = \dots$$

4.
$$\frac{2^7}{2^{-4}} = \dots$$