Painel / Meus cursos / SC26EL / 3-Projeto de Controlador de Avanço-Atraso pelo Método do Lugar das Raízes

/ <u>Questionário sobre Projeto de Controlador de Avanço-Atraso por Lugar das Raízes</u>

Ir	iciado em	domingo, 4 jul 2021, 22:57		
	Estado	Finalizada		
Concluída em		domingo, 4 jul 2021, 23:24		
Tempo		27 minutos 21 segundos		
е	mpregado			
	Notas	1,9/3,0		
	Avaliar	6,5 de um máximo de 10,0(65 %)		
Questão 1				
Correto				
Atingiu 1,0	de 1,0			
	redução do	dor de avanço-atraso é usualmente empregado quando deseja-se melhoria na resposta transitória do sistema e en regime permanente		
⊌ b.	malha fech	ontrolador de avanço-atraso altera o lugar das raízes do sistema compensado. Com isso, é possível se obter os polos de 💉 ha fechada desejados para definir a resposta transitória almejada para o sistema. Esse compensador também eleva as stantes de erro estático do sistema. Com isso o erro em regime permanente é reduzido.		
_ c.		nos os polos de malha fechada dominantes desejados para o sistema compensado, uma vez que são os dominantes, transitória do sistema já está definida e não depende dos demais polos e zeros do sistema em malha fechada.		
d.	indicadore	s polos de malha fechada dominantes obtidos ao final do projeto do controlador de avanço-atraso obtém-se os s de desempenho do sistema compensado (sobressinal e tempo de acomodação) e sempre saberemos como o se comportar.		

Questão **2**Parcialmente correto
Atingiu 0,5 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{4}{s(s+1)(s+2)}$. Deseja-se projetar um controlador de avanço-atraso C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 10% e tempo de acomodação de 5 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,05. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta = 0.591$

🛩 . A frequência natural destes polos deve ser $\omega_n=$

1.354

✓ rad/s.

A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$

-0.800

✓ ±j

~

A contribuição angular que o termo de avanço do compensador deve inserir no lugar das raízes é $\phi=$

68.150

✓ graus.

Considerando que o zero do termo de avanço do compensador esteja em s=-1, seu polo deve estar em s=

-6.181

~ .

O ganho do termo de avanço do compensador projetado é $K_c =$

3.015

~ .

Para atender a especificação de erro em regime permanente, a constante de erro estático de velocidade do sistema compensado deve ser $\hat{\mathcal{K}}_{v}=$

20

 $\checkmark~s^{-1}$. Logo, o parâmetro eta do termo de atraso do controlador ~ vale

20.474

~

Considerando que o zero do termo de atraso do controlador esteja em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 04 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 05 o polo do termo de atraso deve estar em s=-0, 06 o polo do termo de atraso deve estar em s=-0, 07 o polo do termo de atraso deve estar em s=-0, 07 o polo do termo de atraso deve estar em s=-0, 08 o polo do termo de atraso de a

×

 ${\color{red} {\sf Com~o~controlador~de~avanço-atraso~projetado},~o~sistema~em~malha~fechada~tem~polos~dominantes~em~s_{1,2}}=$

× ±*j*

imes . O sobressinal teórico associado a estes polos é $M_p =$

 $m{ imes}$ % enquanto o tempo de acomodação teórico associado é de $t_s=$

× segundos.

Todavia, devido aos efeitos dos demais polos e zeros do sistema em malha fec	:hada, o so	bressinal do sistema compensado é de $M_p=$		
$lpha$ % enquanto o seu tempo de acomodação é de $t_s=$				
× segundos.				
Supondo que seja tolerável uma variação de até 50% sobre o sobressinal e tempo de acomodação especificados no problema, você				
julga necessário um reprojeto do controlador para atender as especificações?	Não	×		

Questão 3 Parcialmente correto Atingiu 0,4 de 1,0

Considere o sistema descrito na figura abaixo onde $G(s) = \frac{1}{s(s+4)}$. Deseja-se projetar um controlador C(s) para que o sistema, em malha fechada, tenha polos dominantes que forneçam sobressinal de 5% e tempo de acomodação de 2 segundos. Adicionalmente, o erro em regime permanente para uma entrada do tipo rampa deve ser de 0,2. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos. Caso seja necessário um termo de atraso no controlador, considere que o zero deste termo está em s=-0.1. Neste caso, também considere a modificação do lugar das raízes devido ao termo de atraso e obtenha os novos polos de malha fechada nesse novo lugar das raízes mantendo o coeficiente de amortecimento dos polos de malha fechada originalmente desejados.

Para atender os requisitos de projeto o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser $\zeta =$ \checkmark . A frequência natural destes polos deve ser $\omega_n =$ 2.899 ✓ rad/s. A partir destes valores, os polos dominantes de malha fechada devem estar em : $s_{1,2} =$ -2.000 **∨** ± j 2.098

Considerando a função de transferência do controlador obtido, tem-se que:

Para a implementação deste controlador pode-se utilizar um circuito de controlador de:

Seguir para...

Aula 4 - Projeto de Compensador PD pelo Método do Lugar das Raízes -