CEG3155: DGD 4

Question 1 (Chu 5.5)

Derive the conceptual diagram for the following code segment:

```
\existsif (a > b and op="00") then
 4
          y <= a - b;
 5
          z \le a - 1;
 6
          status <= '0';
 7
    ⊟else
 8
          y \le b - a;
 9
          z \le b - 1;
          status <= '1';
10
11
     end if;
12
```

Question 2 (Chu 5.8)

Consider the following code segment:

```
\existsif (a > b) then
4
          y <= a - b;
5
    else
          if(a > c)
7
              y <= a - c;
8
          else
9
              y \le a + 1;
10
          end if;
11
      end if;
12
```

- a) Draw the conceptual diagram.
- b) Rewrite the code using two concurrent conditional signal assignment statements.
- c) Rewrite the code using one concurrent conditional signal assignment statement.
- d) Rewrite the code using one case statement.

Question 3 (Chu 5.12)

Consider the shift-left circuit discussed in Problem 4.6. The inputs include a, which is an 8-bit signal to be shifted, and ctrl, which is a 3-bit signal specifying the amount to be shifted. Both are with the std_logic_vector data type. The output y is an 8-bit signal with the std_logic_vector data type. Use a case statement to derive the circuit and draw the conceptual diagram.

Question 4

Using a conditional signal assignment, write VHDL code for an 8-to-3 priority encoder.

Question 5

Explain the difference between these two VHDL statements and show their conceptual implementations (i.e. draw the circuits):

```
\exists if (a='1') then
                               3
                                    ab <= a & b;
4
         dout <= c;
                               4
                                  case ab is
5
    elsif (b='1')
                               5
                                        when "10"|"11" => dout <= c;
6
         dout <= d;
                               6
                                        when "01" => dout <= d;
7
                               7
   else
                                        when others => dout <= e;
8
                               8
         dout <= e;
                                   end case;
                               9
9
     end if;
```

Question 6

Rewrite the combinational VHDL code given below so that it uses one adder. Show the conceptual diagram (i.e. draw the circuit) of both designs.

Question 7

The following figure shows a parallel-in parallel out right shift register, Part a is the block diagram and part b is the implementation using flip flops and multiplexers

Inputs		Next State			Action	
Sh (Shift)	Ld (Load)	Q ₃ +	Q_2 ⁺	Q_1 ⁺	Q_0 ⁺	
0	0	Q_3	Q_2	Q ₁	Q_0	no change
0	1	D ₃	D_2	D_1	D_0	load
1	X	SI	\mathbf{Q}_3	Q_2	\mathbf{Q}_{1}	right shift

Show how to make the shift register reverse the order of its bits: i.e. $Q_3^+ = Q_0$, $Q_2^+ = Q_1$, $Q_1^+ = Q_2$, $Q_0^+ = Q_3$

- 1. Use external connections between the Q output and D inputs, what should the values of sh and L be for a reversal?
- 2. Change the internal circuitry to allow bit reversal, so that the D inputs may be used for other purposes. Replace Sh and L with A and B and the register operate according to the following table:

Inputs	Next states	Action	
A B	$Q_3^+ Q_2^+ Q_1^+ Q_0^+$		
0 0	Q ₃ Q ₂ Q ₁ Q ₀	No	
0 1	$D_3 D_2 D_1 D_0$	Load	
1 0	SI Q ₃ Q ₂ Q ₁	Right shift	
11	Q ₀ Q ₁ Q ₂ Q ₃	Reverse bits	