Structures and Energies of Coadsorbed CO and H_2 on $Fe_5C_2(001)$, $Fe_5C_2(110)$, and $Fe_5C_2(100)$

Dong-Bo Cao, Fu-Qiang Zhang, Yong-Wang Li, Jianguo Wang, and Haijun Jiao*,

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China, and Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V., Buchbinderstrasse 5-6, 18055 Rostock, Germany

Received: February 23, 2005; In Final Form: April 8, 2005

Density functional theory calculations have been carried out on the CO/H₂ coadsorption on the (001), (110), and (100) surfaces of Fe₅C₂ for the understanding of the Fischer—Tropsch synthesis (FTS) mechanism. The stable surface species changes with the variation of the H₂ and CO coverage. Along with dissociated hydrogen and adsorbed CO in 2-, 3-, and 4-fold configurations, methylidyne (C_sH) (C_s, surface carbon), ketenylidene (C_sCO), ketenyl (C_sHCO), ketene (C_sH₂CO), and carbon suboxide (C_sC₂O₂) are computed as thermodynamically stable surface species on Fe₅C₂(001) and Fe₅C₂(110) containing both surface iron and carbon atoms. These surface carbon species can be considered as the preliminary stages for FTS. On Fe₅C₂(100) with only iron atoms on the surface layer, the stable surface species is dissociated hydrogen and CO with top and 2-fold configurations. The bonding nature of these adsorbed carbon species has been analyzed.

1. Introduction

Iron-based catalysts are widely used in the industrial Fischer—Tropsch synthesis (FTS) processes for converting CO and H₂ into high-quality liquid fuels.¹ In the course of FTS reactions, iron-based catalysts are naturally exposed to the syngas (CO and H₂ mixture) environment that maintains the stability of the active iron carbide phases. Among many coexisting types of carbides as catalysts, Hägg iron carbide (Fe₅C₂) is the most representative one.² Different C_xH_y species on the Fe(110) surfaces have been proposed by Erley et al.³ on the basis of high-resolution electron energy loss spectroscopy (HREELS). However, it should be noted that it is experimentally difficult to determine even the initial states (surface species) over an iron-based catalyst under FTS conditions, which are essential to understand the mechanism and FTS kinetics in detail.

Coadsorption of CO and H₂ on transition metal surfaces is of technological importance to catalysts^{4–11} and fuel cells. ^{12–14} Coadsorption of CO and H₂ on transition metal surfaces has widely been studied, for example, on the surfaces of Ni(110),4 Ni(100),⁵ Fe(111),⁶ Fe(100),⁷ Rh(100),⁸ Gd(0001),⁹ Pd(111),¹⁰ Pt(111),¹¹ Pt(335),¹² Pt(112),¹³ and bimetallic PtRu.¹⁴ Experimental investigations of the coadsorption of CO and H2 on Cu₃Pt(111)¹⁵ and Ni(110)⁴ revealed a local repulsive interaction between hydrogen and CO. A theoretical study on the coadsorption of CO and H₂ on Ni(100) showed that the CO and H interaction depopulates the $2\pi^*$ state of CO and strengthens the C-O bond.^{5a} On the coadsorbed Ni(100) and Ni(111) surfaces, neither C-H nor O-H bonds were detected by thermal desorption experiments.¹⁶ Hydrogen adsorption was inhibited by preadsorbed CO, as found in the temperature-program desorption and low-energy electron-diffraction experiments.^{6,7,10,17}

The major difference between Fe_5C_2 and the above-mentioned metal surfaces is that Fe_5C_2 has surface carbon atoms. On the $Fe_5C_2(001)$ and (110) surfaces, H_2 adsorption forms H, C_sH (C_s ,

surface carbon), and C_sH₂ species, and C_sH is the most stable species at various coverages. 18 A similar phenomenon has been observed in the adsorption-desorption experiments with CO/ D₂ and ¹³CO/H₂ as reactants. ¹⁹ Loggenberg et al. reported the existence of C₂H_rO in the reaction of coadsorbed CO and diazomethane (CH₂N₂) on an iron surface by X-ray photoelectron spectroscopy.²⁰ In our previous work, we investigated CO and H_2 respective adsorption on Fe₅C₂(001), (110), and (100).^{18,21} In this work, we present extensive calculations of the coadsorption of CO and H₂ on the three surfaces of Fe₅C₂ at different coverages and H₂/CO ratios, especially the thermodynamic property of the coexisting species on the surfaces. Thermodynamic studies can provide the adsorption energies of various surface species at different coverages and H₂/CO ratios and the structure and stability of various species, which are important for understanding the initial activation step of FTS. It is found that ketenylidene (C_sCO), ketenyl (C_sHCO), ketene (C_sH₂CO), and carbon suboxide (C_sC₂O₂) formed by CO and H₂ coadsorption are very interesting due to the presence of the adjacent C=C and C=O bonds. We have also analyzed the bonding nature of these surface species with metal atoms using local density of states (LDOS). Due to the complexity of the orbitals and also the fact that frontier orbitals are important and responsible for the interaction, only the highest occupied and the lowest unoccupied orbitals are used for discussion and the other lowlying occupied orbitals are only shown for comparison.

2. Methods and Models

Coadsorption of H_2 and CO on the surfaces of Fe_5C_2 was studied by density functional theory, as implemented in the Cambridge Sequential Total Energy Package (CASTEP). 22 The exchange correlation energy was described using the Perdew—Burke—Ernzerhof (PBE) 23 form of generalized gradient approximations (GGA). Ionic cores were described by an ultrasoft pseudopotential, 24 and the Kohn—Sham one-electron states were expanded in a plane wave basis set up to 340 eV. A Fermi smearing of 0.1 eV was utilized. Brillouin zone integration was approximated by a sum over special k-points chosen using the Monhorst—Pack scheme. 25 The pseudopotential with a partial

^{*} Corresponding author. E-mail: hjiao@ifok.uni-rostock.de.

[†] Chinese Academy of Sciences.

[‡] Leibniz-Institut für Organische Katalyse an der Universität Rostock e.V.

Figure 1. Schematic top (T), front (F), and side (S) views of the (001) (a), (110) (b), and (100) (c) surfaces in a p(1×1) unit cell of Fe₅C₂ (purple, Fe atom; gray, C atom).

core was used in spin-polarized calculations to include nonlinear core corrections.²⁶ Spin polarization having a major effect on the adsorption energies for a magnetic system²⁷ was included for the super paramagnetic Fe₅C₂²⁸ to correctly account for its magnetic properties. Spin polarization was also used to calculate the energy and structural parameters of the isolated CHCO species. Without counting the adsorbate, the vacuum between the slabs was set to span in the range of 10 Å to ensure no significant interaction between the slabs. The convergence criteria for structure optimization and energy calculation were set to the following: (a) SCF tolerance of 2.0×10^{-6} eV/atom, (b) energy tolerance of 2.0×10^{-5} eV/atom, (c) maximum force tolerance of 0.05 eV/Å, and (d) maximum displacement tolerance of 2.0×10^{-3} Å. For checking the influence of force, we also performed calculations at a level of maximum force tolerance of 0.03 eV/Å. The resultant change of adsorption energies is very small, for example, 0.002 eV for 1, 4, and 7 on $Fe_5C_2(001)$; 0.001 and 0.002 eV for **18** and **24** on $Fe_5C_2(110)$, respectively; and 0.003 and 0.004 eV for 35 and 39 on Fe₅C₂(100), respectively (see the Results section). We used the Molarch⁺ program²⁹ to generate the molecular graphics.

Hägg iron carbide (Fe₅C₂) has a monoclinic unit cell (a =11.5620 Å, b = 4.5727 Å, c = 5.0595 Å, and $\beta = 97.74^{\circ}$). In our previous work, ^{18,21} the optimized unit cell parameters agreed with the experimental values (a = 11.5007 Å, b = 4.4789 Å, c = 4.9536 Å, and $\beta = 97.63^{\circ}$). For the three surfaces of Fe₅C₂, (001), (110), and (100) created from the Fe₅C₂ crystal structure, the geometric and energetic differences between the bare and optimized structures are small and reveal the quality of the employed theoretical methods.

For studying the coadsorption of CO and H₂, it is necessary to consider the adsorption step on the surface. Since CO adsorption on Fe₅C₂ is stronger than H₂, as found in our previous work, 18,21 it is reasonable to consider that CO will adsorb prior to H₂ under a syngas (CO + H₂) environment. Therefore, coadsorption of H2 was built up on the model of preadsorbed CO systems.²¹ Since the ratio of H₂ to CO lies in the range from 0.5 to 1.7 in a working iron catalyst, 2f,30 the ratio of H₂/ CO as 1/2, 1/1, and 2/1 on (001), (110), and (100) is used in this paper. For a ratio of 1/2 H₂/CO, the respective coverage of H_2 and CO is 1/6 and 1/3 monolayer (ML) on $Fe_5C_2(001)$, 1/6 and 1/3 ML on (110), and 1/4 and 1/2 ML on (100). For a ratio of 1/1 H₂/CO, the coverage of both H₂ and CO is 1/6 ML on $Fe_5C_2(001)$, 1/6 ML on (110), and 1/4 ML on (100). For a ratio of 2/1 H₂/CO, the respective coverage of H₂ and CO is 1/3 and 1/6 ML on (001), 1/3 and 1/6 ML on (110), and 1/2 and 1/4 ML on (100). The initial H_2 was placed at the top, 2-fold site, and 3-fold site of surface iron atoms and at the top of surface carbons. The distances of H₂ and the iron atoms were set to 1.75 Å for H-Fe (from low-energy electronic diffraction³¹) and those for the surface carbon (C_s-H) to 1.25 Å, while the H-H distance was set to 0.75 Å. All initial orientations, such as top, 2-fold, 3-fold, and 4-fold sites of CO and H₂ on the three surfaces, were considered. Optimization from all initial positions of CO and H₂ coadsorption converges to the same energy minimum structure, and therefore, this minimum structure can also be considered as the most stable structure.

For the side view of Fe₅C₂(001), we used a model system with five iron layers and three carbon layers (5Fe/3C), in which the bottom two iron layers and two carbon layers (2Fe/2C) were fixed in their bulk positions, while the three iron layers and one carbon layer on the top (3Fe/1C) were allowed to relax (Figure 1a). The top layer of $Fe_5C_2(001)$ has both Fe and C, and their ratio is 1/1, while the second and third layers contain only Fe atoms. A $3 \times 5 \times 2$ k-grid sampling within the Brillouin zones was used in the $p(1 \times 1)$ unit cell. For checking the influence of the surface relaxation, we also performed calculations on a model system with seven-layered iron and threelayered carbon atoms (7Fe/3C) under the relaxation of the top four layers of iron and two layers of carbon atoms (4Fe/2C), and the adsorption energy of species 1, 4, and 7 changes 0.07, -0.06 and 0.18 eV, respectively (see the Results section).

For the side view of $Fe_5C_2(110)$, a slab consisting of six iron layers and four carbon layers (6Fe/4C) with a p(1 \times 1) surface unit cell was modeled (Figure 1b). The top layer is composed of Fe atoms, while the ratio of Fe and C is 2/1 on the second and third layers, and the carbon atoms of the second layer are exposed, setting up the open-surface structure. In the calculations, the bottom three iron layers and two carbon layers (3Fe/ 2C) were fixed in their bulk positions, while the top three iron layers and two carbon layers (3Fe/2C) were allowed to relax. A k-point sampling was performed using $4 \times 3 \times 1$ Monkhorst—Pack meshes for the unit cell. It is found that a slab of five layers of iron and three layers of carbon atoms (5Fe/3C) under the relaxation of the top three layers of iron and two layers of carbon atoms (3Fe/2C) results in energy changes in species 18 and 24 of 0.10 and -0.03 eV, respectively. A test calculation on a slab of six layers of iron and four layers of carbon atoms (6Fe/4C) under the relaxation of the top four layers of iron and three layers of carbon atoms (4Fe/3C) results in energy changes in species 18 and 24 of 0.02 and -0.16 eV, respectively (see the Results section).

For the side view of Fe₅C₂(100), a slab of five iron layers and two carbon layers (5Fe/2C) with a p(1 \times 1) surface unit cell was modeled (Figure 1c). The top and third layers consist of Fe atoms, while the ratio of Fe and C is 1/1 on the second layer, and the carbon atoms are covered or hidden under the top Fe layer. In the calculations, the bottom two iron layers and one carbon layer (2Fe/1C) were fixed in their bulk positions, while the top three iron layers and one carbon layer (3Fe/1C) were allowed to relax. A k-point sampling of the $4 \times 4 \times 1$ Monkhorst-Pack meshes for the unit cell was used. With a slab of four-layered iron and one-layered carbon atoms (4Fe/ 1C) under the relaxation of the top two-layered iron and onelayered carbon atoms (2Fe/1C), the changes of adsorption energies in species 35 and 39 are -0.02 and 0.05 eV (see the Results section). Thus, there is no significant effect of the slab thickness and surface relaxation on the adsorption energy in all surfaces. In our previous work for the adsorption of CO and H_2 on $Fe_5C_2(001)$, (110), and (100), ^{18,21} some tests on k-point, and cutoff for the adsorption energy have shown no significant change in adsorption energies for using larger surface models.

The linear ketenyl (CHCO) has a doublet ground $^2\Pi$ electronic state. 32 The computed C—C and C—O bond lengths of ketenyl are 1.256 and 1.192 Å, respectively. The C=C and C=O bonds lengths of ketene (CH₂CO) are 1.293 and 1.176 Å, respectively, close to the reported bond lengths (1.32 and 1.16 Å). 33 The C=C and C=O bond lengths of carbon suboxide (C₃O₂) are 1.265 and 1.172 Å, in agreement with the experimental values (1.289 and 1.163 Å). 34

The adsorption energy for mCO and nH_2 is defined as the following: $E_{ads} = E(mCO/nH_2/slab) - [E(slab) + E(mCO) +$ $E(nH_2)$], where m and n are the numbers of adsorbed CO and H_2 , respectively, $E(mCO/nH_2/slab)$ is the total energy for the slabs with CO and hydrogen adsorbed on the surface, E(slab) is the total energy of the bare slab of the surface, and $E(H_2)$ and E(CO)are the total energies of free H₂ and CO. The adsorption energy of surface species, ketenyl (CHCO), ketene (CH2CO), and carbon suboxide (C_3O_2), was defined as the following: $E_{ads} =$ E(absorbate/slab') - [E(slab') + E(absorbate)], where E(absorbate)bate/slab') is the total energy for the slabs excluding the surface carbon atom with CHCO/CH₂CO/C₃O₂ adsorbed on the surface, E(slab') is the total energy of the slab excluding the surface carbon atom, and E(absorbate) are the total energies of free CHCO or CH₂CO or C₃O₂. Therefore, the more negative the $E_{\rm ads}$ value, the higher the adsorption energy.

3. Results

3.1. Coadsorption of CO and H_2 on $Fe_5C_2(001)$. 3.1.1. Structure and Energy. For the bare $Fe_5C_2(001)$ surface with a 1/1 H_2 /CO ratio, the coverage of both CO and H_2 is 1/6 monolayer (ML). As shown in Figure 2, there are eight adsorption forms (1–8), and the calculated adsorption energies are listed in Table 1. In 1, H_2 dissociates and forms surface C_sH and H, and there are CO, surface C_sH , and H species. The

TABLE 1: Computed Bond Lengths (d, Å) and Adsorption Energies (E_{ads}, eV) for CO and H_2 Coadsorption on $\text{Fe}_5\text{C}_2(001)$ with a Coverage of 1/6 ML for Both H_2 and CO $(1/1 \text{ H}_2/\text{CO})$

						d_{H}	-Fe	
composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	$d_{\mathrm{C-Cs}}$	$d_{\mathrm{O-Fe}}$	a	b	d_{H-Cs}
1 CO, H, C _s H	-3.09	1.187	1.780			1.729		1.094
			2.114			1.732		
						1.793		
2 CO, C_sH_2	-2.84	1.201	1.803			1.688		1.095
			2.063					1.243
			2.335					
3 CO, 2H	-2.31	1.182	1.814			1.604	1.668	
			2.082			1.764	1.794	
$4 \text{ C}_{s}\text{CO}, 2\text{H}$	-2.91	1.259	1.978	1.370	2.045	1.721	1.601	
			2.127			1.726		
			2.330			1.753		
$5 C_sCO, 2H$	-2.66	1.247		1.369	2.231			
			2.226			1.770		
			2.232			1.856	1.776	
6 C _s HCO, H	-2.76	1.298		1.412	2.048			1.101
	$(-3.87)^a$		2.148			1.762		
			2.323			1.925		
$7 C_sH_2CO$	-2.50	1.359	1.909	1.471				1.100
	$(-2.41)^b$		1.986		2.062			1.140
8 C _s H ₂ CO	-2.28	1.295		1.473	1.953	1.896		1.097
	$(-2.19)^b$		2.282					1.145
			2.411					

^a Using CHCO as adsorbate. ^b Using CH₂CO as adsorbate.

adsorption energy of 1 is -3.09 eV, and it is the highest among all eight forms. In 2, there is surface C_sH_2 formed and CO. One H of C_sH_2 in 2 interacts agostically with the neighbor iron atom by 1.243 Å for C_s —H and 1.688 Å for Fe—H, and the adsorption energy is -2.84 eV. 3 consists of CO and H species, and the adsorption energy is -2.31 eV. In 1-3, the adsorbed CO interacts only with surface iron, and the adsorbed H interacts with both surface iron and carbon. However, there is no direct interaction between the adsorbed CO and H at 1/6 ML.

In 4 and 5, the adsorbed CO interacts with both surface iron and carbon, resulting in the formation of the adsorbed surface ketenylidene species (C_sCO), while H_2 is dissociated, and the formed atomic hydrogen interacts with surface iron at 3-fold sites. The adsorption energies of 4 and 5 are -2.91 and -2.66 eV, respectively.

In **6**, both adsorbed CO and H interact with surface iron and carbon, resulting in the formation of an adsorbed ketenyl unit (C_sHCO) on the surface. The C–C and C–O bond lengths are 1.412 and 1.298 Å, and those of free ketenyl at the same level are 1.256 and 1.192 Å, respectively. The Fe–O bond length in **6** is 2.048 Å. Taking CO and H₂ as adsorbates, the adsorption energy is -2.76 eV, while the adsorption energy is -3.87 eV for taking surface C_sHCO as adsorbate.

Similar to **6** in the interaction between surface atoms (Fe and/ or C) and the adsorbed CO and H, surface ketene (C_sH_2CO) is formed in **7** and **8**. The C—C and C—O bond lengths are 1.471 and 1.359 in **7** and 1.473 and 1.295 Å in **8**, which are longer than those in free ketene (1.293 and 1.176 Å). As shown in Figure 2, the two carbon atoms in C_sH_2CO interact with iron atoms, and the Fe—O bond lengths are 2.033 and 2.062 Å in **7** and 1.953 Å in **8**. One of the C—H bonds of the C_sH_2 unit in **8** interacts agostically with the neighbor iron atom by 1.145 Å for C—H and 1.896 Å for Fe—H. These interactions result in a η^3 (C=C=O) coordination form on the surface, and this structure pattern is in agreement with that derived from the HREELS analysis for ketene adsorption on the Ru(001) surface.³⁵ The adsorption energies of **7** and **8** are -2.50 and

Figure 2. Coadsorption of H₂ at 1/6 ML and CO at 1/6 ML on Fe₅C₂(001) (Fe, purple; C, gray; O, red; H, white).

TABLE 2: Computed Bond Lengths (d, \mathring{A}) and Adsorption Energies (E_{ads}, eV) for CO and H_2 Coadsorption on Fe₅C₂(001) with Coverages of 1/6 and 1/3 ML for H_2 and CO, Respectively (1/2 H_2 /CO)

			$d_{\rm C}$	-о	$d_{\rm C}$	$d_{\mathrm{C-Fe}}$		-Cs	$d_{\rm O}$	-Fe	$d_{ m H}$	-Fe		
	composition	$E_{ m ads}$	a	b	a	b	a	b	a	b	a	b	$d_{\mathrm{H-Cs}}$	$d_{\mathrm{H-H}}$
9	CO, C _s CO, 2H	-4.05	1.177	1.244	1.914 1.940	2.011 2.109 2.236		1.365		2.075	1.632 1.710	1.653 1.740 1.773		
10	$C_sC_2O_2$, 2H	-3.87	1.223	1.260	1.868 2.097	1.948 2.083 2.220	1.450	1.403	2.316	2.037	1.617 1.784 1.813	1.628 1.744 1.743		
11	CO, C _s H ₂ CO	-3.90 $(-1.43)^a$	1.219	1.291	1.854 1.988 2.105	1.966 2.123 2.135		1.425		1.924	1.805		1.090 1.151	
12	CO, C _s H ₂ CO	-3.72 $(-1.68)^a$	1.196	1.268	1.865 2.018 2.115	1.919 2.042		1.440		1.940	1.750		1.096 1.149	
13	CO, C _s CO, H ₂	-3.47	1.236	1.252	2.156 2.159 2.159	1.883 1.981 2.036 2.055	1.352		2.284	2.212	1.633	1.641		0.864

^a Using CH₂CO as adsorbate.

Figure 3. Coadsorption of H₂ at 1/6 ML and CO at 1/3 ML on Fe₅C₂(001) (Fe, purple; C, gray; O, red; H, white).

TABLE 3: Computed Bond Lengths (d, Å) and Adsorption Energies (E_{ads}, eV) for CO and H_2 Coadsorption on Fe₅C₂(001) with Coverages of 1/3 and 1/6 ML for H_2 and CO, Respectively (2/1 H_2 /CO)

								$d_{\mathrm{H-Fe}}$		
	composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	$d_{\mathrm{C-Cs}}$	$d_{\mathrm{O-Fe}}$	a	b	c	$d_{\mathrm{H-Cs}}$
14	C _s H ₂ CO, 2H	-3.09 $(-1.72)^a$	1.286	1.918 2.238 2.373	1.465	1.967	1.694 1.733 1.734	1.639 1.703 1.757	1.792	1.097 1.158
15	C_sH_2CO , 2H	-3.02 $(-1.65)^a$	1.308	1.975 2.051	1.482	2.034	1.623 1.730 1.821	1.681 1.690 1.803		1.094 1.131
16	CO, 3H, C _s H	-2.95	1.184	1.757 2.114			1.661 1.663	1.607 1.679	1.677 1.703 1.937	1.088
17	$CO, 2H, C_sH_2$	-2.67	1.196	1.844 1.938			1.606 1.716	1.648 1.759	1.645	1.088 1.248

^a Using CH₂CO as adsorbate.

-2.28 eV when using CO and H₂ as adsorbates or -2.41 and -2.19 eV when using C_sH₂CO as the adsorbate, respectively.

We also investigated the adsorption patterns at a 1/2 H₂/CO ratio on Fe₅C₂(001) (9–13). The coverages of H₂ and CO are 1/6 and 1/3 ML, respectively, and the computed bond parameters are given in Table 2 and Figure 3. In 9, the adsorbed CO interacts with both surface iron and carbon, resulting in the formation of adsorbed ketenylidene (C₅CO) species. In contrast, the adsorbed H interacts only with surface iron. Similar to 9, the adsorbed CO in 10 interacts with both surface iron and carbon, while the adsorbed H interacts only with iron. However, the most interesting point in 10 is the formation of the carbon suboxide (C₅C₂O₂) pattern, and this shows the chain propagation,

which is essential for FTS. The adsorption energy in $\bf 9$ is -4.05 eV, and that in $\bf 10$ is -3.87 eV.

In 11 and 12, the adsorbed CO and H interact with surface iron and carbon with the formation of surface adsorbed ketene (C_sH_2CO). In addition, one of the C_s-H bonds in the C_sH_2 unit interacts agostically with the neighbor iron atom by 1.151 and 1.149 Å for C_s-H bonds and by 1.805 and 1.750 Å for Fe-H bonds, respectively. Along with the similar adsorbed surface species, both 11 and 12 have also close adsorption energies of -3.90 and -3.72 eV, respectively.

In **13**, however, there is H₂ (0.864 Å), C_sCO, and CO. This indicates that H₂ dissociation is suppressed by the preabsorbed CO, in agreement with the experimental observation for the

TABLE 4: Computed Bond Lengths (d, \mathring{A}) and Adsorption Energies (E_{ads}, eV) for CO and H_2 Coadsorption on $Fe_5C_2(110)$ with a Coverage of 1/6 ML for Both H_2 and CO (1/1 H_2/CO)

							d_{H}	-Fe		
	composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	$d_{\mathrm{C-Cs}}$	$d_{\mathrm{O-Fe}}$	a	b	$d_{\mathrm{H-Cs}}$	$d_{\mathrm{H-H}}$
18	CO, 2H	-3.07	1.173	1.784			1.640	1.613		
				2.312			1.730	1.738		
19	CO, 2H	-2.96	1.186	1.808			1.617	1.677		
				2.010			1.741	1.731		
20	CO, H, C _s H	-2.45	1.205	1.857			1.712		1.104	
				2.055			1.743			
				2.081						
21	CO, H, C _s H	-2.30	1.256	1.852		2.078	1.721		1.106	
				1.992			1.766			
				2.189						
				2.192						
22	C _s CO, 2H	-2.86	1.270	1.994	1.417	2.070	1.760	1.687		
				2.066			1.725	1.764		
				2.242			1.838	1.842		
23	C _s CO, 2H	-2.57	1.195	2.033	1.368		1.732	1.689		
							1.744	1.689		
							1.773			
24	C_sH_2CO	-2.14	1.338	2.042	1.459	1.882			1.094	
		$(-2.43)^a$		2.173					1.107	
				2.279						
25	CO, H_2	-2.62	1.253	1.861		2.105	1.627	1.647		0.880
				1.947						
				2.244						
				2.207						

^a Using CH₂CO as adsorbate.

TABLE 5: Computed Bond Lengths (d, \mathring{A}) and Adsorption Energies (E_{ads}, eV) for CO and H₂ Coadsorption on Fe₅C₂(110) with Coverages of 1/6 and 1/3 ML for H₂ and CO, Respectively (1/2 H₂/CO)

			d_{C}	:-O	$d_{\rm C}$	-Fe	$d_{\mathrm{C-C}}$	Cs	$d_{\mathrm{O-I}}$	₹e	$d_{ m H}$	-Fe		
	composition	$E_{ m ads}$	a	b	a	b	a	b	a	b	a	b	$d_{\mathrm{H-Cs}}$	$d_{\mathrm{H-H}}$
26	2CO, H, C _s H	-5.03	1.169	1.182	1.747	1.798 2.124					1.565 1.829 1.977		1.105	
27	2CO, 2H	-4.70	1.162	1.189	1.760	1.882 1.980 2.337					1.638 1.735 1.917	1.660 1.799 1.846		
28	CO, C _s CO, 2H	-4.33	1.273	1.185	1.928 2.227 2.233	1.854 1.993 2.269	1.424		2.045		1.589 1.739	1.718 1.739 1.805		
29	CO, C _s CO, H ₂	-4.17	1.278	1.183	1.887 2.196 2.335	1.777 2.170	1.436		2.035		1.605	1.607		0.914
30	CO, C _s H ₂ CO	-3.95 $(-1.83)^a$	1.319	1.181	2.051 2.112 2.394	1.783 2.178	1.451		1.893				1.094 1.104	

^a Using CH₂CO as adsorbate.

TABLE 6: Computed Bond Lengths (d, \mathring{A}) and Adsorption Energies (E_{ads}, eV) for CO and H₂ Coadsorption on Fe₅C₂(110) with Coverages of 1/3 and 1/6 ML for H₂ and CO, Respectively (2/1 H₂/CO)

								$d_{ m H}$				
	composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	$d_{\mathrm{C-Cs}}$	$d_{\mathrm{O-Fe}}$	a	b	С	d	$d_{\mathrm{H-Cs}}$	$d_{\mathrm{H-H}}$
31	CO, 3H, C _s H	-3.30	1.174	1.775			1.652	1.668	1.634		1.109	
				2.337			1.720	1.716	1.697			
32	C _s CO, 4H	-3.05	1.194	1.915	1.425		1.621	1.633	1.652	1.640		
							1.714	1.772	1.742	1.721		
										1.804		
33	CO, H, C_sH, H_2	-3.30	1.190	1.825			1.673	1.580	1.607		1.111	0.941
	· · · · -			1.978			1.766					
							1.868					
34	C _s H ₂ CO, 2H	-3.24	1.314	1.991	1.427	1.910	1.726	1.691			1.090	
	-3 2-3,	$(-2.09)^a$		2.058			1.732	1.762			1.100	
		(=,					1.798	1.827				

^a Using CH₂CO as adsorbate.

coadsorption of CO and H_2 on Fe(111),⁶ Fe(100),⁷ Pb(111), and Pb(100).¹⁰ The adsorption energy of **13** is -3.47 eV, which is the weakest in the above five adsorption modes.

In addition, we are also interested in the adsorption patterns under the hydrogen-rich condition with a $2/1~H_2/CO$ ratio (14–17). The coverages of H_2 and CO are 1/3 and 1/6 ML,

Figure 4. Coadsorption of H₂ at 1/3 ML and CO at 1/6 ML on Fe₅C₂(001) (Fe, purple; C, gray; O, red; H, white).

Figure 5. DOS of ketenyl CHCO (a) and adsorbed C_sHCO in 6 (b).

respectively, and the bond parameters are given in Table 3 and Figure 4. In **14** and **15**, there is surface ketene (C_sH_2CO) formation and H species. The adsorption energies of **14** and **15** are very close (-3.09 and -3.02 eV). In **16** and **17**, however, the adsorbed CO interacts only with the surface iron, while the adsorbed H interacts with both surface iron and carbon. There is CO, H species, and C_sH in **16**, while there is CO, H, and C_sH_2 in **17**. The adsorption energies of **16** and **17** are -2.95 and -2.67 eV, respectively, and lower than those of **14** and **15**.

In addition, H_2 adsorption on oxygen atoms of adsorbed CO was also considered. H_2 was initially put on the top O atoms horizontally with a distance of 1.27 Å, but H_2 escapes from O atoms and becomes vertical to the surface and the distance of O and H is 2.708 Å. This indicates that it is not possible for direct O—H bond formation, in agreement with the observation in experiments.¹⁶

3.1.2. Electronic Factor. Since the electronic states of adsorbed hydrogen, CO, C_sH , C_sH_2 , and C_sH_3 have been examined in our previous work, ^{18,21} we here intended to know the electronic features of the adsorbed ketenyl (C_sHCO) in **6**, ketene (C_sH_2CO) in **7** and **8**, and carbon suboxide ($C_sC_2O_2$) in

Figure 6. DOS of ketene CH₂CO (a) and adsorbed C_sH₂CO in **7** (b) and **8** (c).

Figure 7. DOS of carbon suboxide C_3O_2 (a) and adsorbed $C_sC_2O_2$ in **10** (b).

10 for comparison. The density of states of free and adsorbed C_sHCO are showed in Figure 5. In C_sHCO (Figure 5a), the

Figure 8. Coadsorption of H₂ at 1/6 ML and CO at 1/6 ML on Fe₅C₂(110) (Fe, purple; C, gray; O, red; H, white).

frontier orbitals are the nonbonding (n) orbital at the range from -2.1 to 1.4 eV and the π^* orbital at about 5.7 eV.

After the adsorption, large shifts for both the n and π^* orbitals are found, and other bands have little changes in 6 (Figure 5b). The n band shifts downward to about -7.0 eV, while the π^* band shifts to the range from -5.0 to -4.1 eV. This explains the elongation of the C=C and C-O bond lengths from 1.256 to 1.412 Å and from 1.192 to 1.298 Å, respectively.

In 7 and 8, surface C_sH₂CO is formed, and the density of states for free and adsorbed C_sH₂CO are showed in Figure 6. In C_sH_2CO (Figure 6a), the frontier orbitals are π_{CC} lying from -1.7 to 0.3 eV and the π^* orbital at about 2.6 eV. After the adsorption (Figure 6b and c), as expected, large shifts for π_{CC} and the π^* orbital band are found. For example, π_{CC} shifts downward to about -7.6 and -7.3 eV in **7** and **8**, while π^*

shifts downward strongly to the range from -4.0 to -3.5 and -4.0 to -3.6 eV in **7** and **8**, respectively.

The surface carbon suboxide (C_sC₂O₂) is formed in 10. The density of states of free and adsorbed C₃O₂ are showed in Figure 7. In free C_3O_2 , the frontier orbitals are π_{CC}/π_{CC} and π_{CC}/π_{CC}^* , and they lie at about 0.0 and 4.4 eV, respectively. After adsorption (Figure 7b), they shift downward strongly, for example, $\pi_{\rm CC}/\pi_{\rm CC}$ to -7.6 eV and $\pi_{\rm CC}/\pi_{\rm CC}{}^*$ to -5.4 eV, respectively.

3.2. Coadsorption of CO and H_2 on Fe₅C₂(110). 3.2.1. Structure and Energy. For the bare Fe₅C₂(110) surface with a $1/1\ H_2/CO$ ratio, the coverages of H_2 and CO are both $1/6\ ML$. Eight optimized forms (18-25) are shown in Figure 8, and the computed adsorption energies and structural parameters are listed in Table 4. Both 18 and 19 consist of CO and H species,

Figure 9. Coadsorption of H₂ at 1/6 ML and CO at 1/3 ML on Fe₅C₂(110) (Fe, purple; C, gray; O, red; H, white).

with adsorption energies of -3.07 and -2.96 eV, respectively. Species **20** and **21** are composed of CO, H, and C_sH. The adsorption energies of **20** and **21** are -2.45 and -2.30 eV, respectively. In both **22** and **23**, ketenylidene (C_sCO) is formed. The adsorption energies of **22** and **23** are -2.86 and -2.57 eV, respectively.

In **24**, both adsorbed CO and H interact with surface iron and carbon with the formation of ketene (C_sH_2CO). The adsorption energy of **24** is -2.14 eV. If using C_sH_2CO as adsorbate, the adsorption energy is -2.43 eV, which is similar to that on Fe₅C₂(001). **25** consists of CO and one activated H₂ (H–H, 0.880 Å), and the adsorption energy is -2.62 eV.

For a 1/2 H₂/CO ratio, the coverages 1/6 ML for H₂ and 1/3 ML for CO are considered. There are five modes (26-30), and the computed parameters are shown in Figure 9 and Table 5. **26** consists of CO, H, and C_sH, while **27** consists of CO and H species. The adsorption energies of **26** and **27** are -5.03 and -4.70, respectively.

In both **28** and **29**, there is ketenylidene (C_sCO) formation on the surface. The adsorbed H_2 is dissociated in **28**, but H_2 is only activated with a bond length of 0.914 Å in **29**. The adsorption energies of **28** and **29** are -4.33 and -4.17 eV, respectively. In **30**, surface ketene (C_sH_2CO) is formed, and the adsorption energy of -3.95 eV is the lowest among **26**–

30. Using C_sH_2CO as adsorbate, the adsorption energy is -1.83 eV, which is much lower than that at a 1/1 H₂/CO ratio (-2.43 eV), indicating the repulsion between CO and C_sH_2CO .

For a 2/1 H_2/CO ratio, coverages of 1/3 ML for H_2 and 1/6 ML for CO are considered. There are four adsorption patterns (31–34) given in Table 6 and Figure 10. In 31, there is CO, H, and C_sH . The adsorption energy of 31 (-3.30 eV) is the highest. In 32, there are ketenylidene (C_sCO) and H species. The adsorption energy of 32 (-3.05 eV) is the lowest. In 33, there is CO, H species, C_sH , and H_2 (0.941 Å). The adsorption energy of 33 is the same as 31. In 34, there are adsorbed C_sH_2CO and H species with an adsorption energy of -3.24 eV. Taking C_sH_2CO as adsorbate, the adsorption energy is -2.09 eV.

3.2.2. Electronic Factor. The ketene (C_sH_2CO) is formed in 24 on (110). The density of states of free C_sH_2CO and adsorbed one are showed in Figure 10. After adsorption (Figure 11b), as expected, large shifts for the π_{CC} and π^* orbital bands are found (other bands have a little shift). The π_{CC} band shifts downward to about -7.9 eV in 24, while the π^* band shifts downward strongly to the range from -4.0 to -3.5 eV. These changes are comparable to those in 7 and 8 (Figure 6).

3.3. Coadsorption of CO and H₂ **on Fe**₅C₂(100). Since the bare Fe₅C₂(100) monolayer is only composed of iron atoms, the adsorption patterns are less complicated as compared to those

Figure 10. Coadsorption of H2 at 1/3 ML and CO at 1/6 ML on Fe₃C₂(110) (Fe, purple; C, gray; O, red; H, white).

Figure 11. DOS of ketene C_sH_2CO (a) and adsorbed C_sH_2CO in **24** (b).

on (001) and (110). For a 1/1 H₂/CO ratio with a 1/4 ML coverage for both H₂ and CO, there are 10 forms (35–44), and the calculated parameters are given in Table 7 and Figure 12.

Species 35–38 are composed of 2-fold CO and H species, and the adsorption energies are -3.30, -3.30, -3.39, and -3.30 eV, respectively. Species 39-42 are composed of top-CO and H, and the adsorption energies are -3.36, -3.34, -3.41, and -3.41 eV, respectively, which are comparable to those of 35-38. In 43 and 44, there are top-CO and activated H_2 , and the adsorption energies (-2.73 and -2.72 eV) are lower than those of 35-42. This indicates that dissociated H is more favored (100) than activated molecular H_2 .

For a 1/2 H₂/CO ratio with coverages of 1/4 ML for H₂ and 1/2 ML for CO, there are three modes (45–47), and the computed parameters are shown in Table 8 and Figure 13. 45 consists of 2-fold CO, while 46 and 47 consist of top-CO. The adsorption energies of 46 (-3.36 eV) and 47 (-3.31 eV) are lower than that of 45 (-4.93 eV).

For a 2/1 H₂/CO ratio with coverages of 1/2 ML for H₂ and 1/4 ML for CO, there are six forms (48–53), and the optimized parameters are given in Table 9 and Figure 14. In 48 and 49, CO is absorbed at 2-fold sites, and H₂ is all dissociated. The

TABLE 7: Computed Bond Lengths (d, Å) and Adsorption Energies (E_{ads}, eV) for CO and H_2 Coadsorption on Fe₅C₂(100) with a Coverage of 1/4 ML for Both H_2 and CO (1/1 H_2 /CO)

(-, -							
					$d_{ m H}$	-Fe	
	composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	a	b	$d_{\mathrm{H-H}}$
35	CO, 2H	-3.30	1.186	1.802	1.599	1.711	
				2.178	1.861	1.726	
						1.806	
36	CO, 2H	-3.30	1.185	1.806	1.591	1.716	
				2.139	1.882	1.717	
						1.820	
37	CO, 2H	-3.39	1.183	1.811	1.600	1.628	
				2.095	1.777	1.781	
						1.887	
38	CO, 2H	-3.30	1.181	1.862	1.654	1.667	
				2.050	1.727	1.785	
						1.786	
39	CO, 2H	-3.36	1.168	1.760	1.685	1.647	
					1.755	1.778	
					1.777	1.863	
40	CO, 2H	-3.34	1.170	1.771	1.682	1.655	
					1.764	1.801	
					1.774	1.841	
41	CO, 2H	-3.41	1.168	1.752	1.606	1.676	
					1.811	1.765	
					1.814	1.781	
42	CO, 2H	-3.41	1.169	1.755	1.673	1.608	
					1.764	1.807	
					1.791	1.833	
43	CO, H_2	-2.73	1.167	1.790	1.663	1.668	0.863
44	CO, H_2	-2.72	1.167	1.796	1.661	1.674	0.863

adsorption energies of **48** and **49** are close (-3.68 and -3.65 eV, respectively). In **50–53**, CO is absorbed at top sites. H₂ is all dissociated in **50** and **51**, while H₂ is not all dissociated in **52** and **53**. The adsorption energies of **50–53** are -3.64, -3.62, -3.55, and -3.53 eV, respectively.

4. Discussion

On the $Fe_5C_2(001)$ surface at 1/6 ML under coadsorption with a 1/1 H₂/CO ratio, the most stable surface species are 2-fold

Figure 12. Coadsorption of H₂ at 1/4 ML and CO at 1/4 ML on Fe₅C₂(100) (Fe, purple; C, gray; O, red; H, white).

TABLE 8: Computed Bond Lengths (d, Å) and Adsorption Energies $(E_{ads}, \text{ eV})$ for CO and H_2 Coadsorption on Fe₅C₂(100) with Coverages of 1/4 and 1/2 ML for H_2 and CO, Respectively (1/2 H_2 /CO)

		$d_{\mathbb{C}}$	-o	$d_{\rm C}$	-Fe	$d_{ m H-Fe}$		
	composition	$E_{ m ads}$	a	b	a	b	a	b
45	2CO, 2H	-4.93	1.173	1.180		1.902 1.960		1.663 1.738 1.789
46	2CO, 2H	-3.36	1.160	1.161	1.803	1.772	1.735	1.595 1.772 1.850
47	2CO, 2H	-3.31	1.161	1.162	1.786	1.766	1.578 1.750	1.677 1.686 1.860

CO, 4-fold C_sH , and 3-fold H species, while the surface C_sH_2 is less stable and may dissociate into C_sH and H. This is the

same as found for hydrogen adsorption, in which 3-fold H and surface C_sH are the most stable species, and C_sH_2 is less stable. In contrast with H_2/CO coadsorption, the surface species in CO adsorption (3-fold CO and the formed surface C_sCO from CO interacting with surface iron and carbon in different forms) are close in energy. Moreover, H_2/CO coadsorption shows the possibility for the formation of surface species including C_sCO , C_sHCO , and C_sH_2CO , and this is essentially related to the chain elongation in FTS.

 C_sH is very stable and is a potential species for the formation of C_sH_2 and C_sH_3 , which are also important for FTS. Ketenylidene (C_sCO), ketenyl (C_sHCO), and ketene (C_sH_2CO) are formed by CO addition to surface carbon atoms. An amount of surface carbon atoms exists on active Fe₂C catalysts³⁶ and can take part in the chain coupling reaction.³⁷ Moreover, ketenylidene and ketene have been observed in metal ketenylidene and carbonyl cluster³⁸ [Fe₃(CO)₉(CCO)]²⁻ and on Fe surfaces

Figure 13. Coadsorption of H2 at 1/4 ML and CO at 1/2 ML on Fe₃C₂(100) (Fe, purple; C, gray; O, red; H, white).

TABLE 9: Computed Bond Lengths (d, A) and Adsorption Energies (E_{ads} , eV) for CO and H_2 Coadsorption on $Fe_5C_2(100)$ with Coverages of 1/2 and 1/4 ML for H_2 and CO, Respectively (2/1 H₂/CO)

						d_{H}	-Fe		
	composition	$E_{ m ads}$	$d_{\mathrm{C-O}}$	$d_{\mathrm{C-Fe}}$	a	b	c	d	$d_{\mathrm{H-H}}$
48	CO, 4H	-3.68	1.175	1.786	1.661	1.606	1.619	1.551	
				2.196	1.680	1.776	1.772 1.832	2.024	
49	CO, 4H	-3.65	1.176	1.776	1.587			1.665	
	,			2.219	1.842	1.738	1.813	1.731	
						1.785		1.793	
50	CO, 4H	-3.64	1.165	1.751	1.627	1.577	1.660	1.657	
					1.761	1.711	1.667	1.726	
					1.787			1.761	
51	CO, 4H	-3.62	1.163	1.758	1.660	1.589	1.648	1.647	
					1.740	1.697	1.710	1.698	
					1.754		1.837		
52	$CO, 2H, H_2$	-3.55	1.170	1.756	1.674	1.613	1.635	1.637	0.851
					1.766	1.769			
					1.771	1.843			
53	CO, 2H, H ₂	-3.53	1.171	1.759	1.618	1.685	1.642	1.645	0.847
					1.747	1.751			
					1.844	1.776			

in experiments.²⁰ Therefore, it is possible for ketenylidene, ketenyl, and ketene formation on Fe₅C₂(001) and (110). In addition, Liu et al.'s theoretical study indicated that the reaction of C + CH is the favored pathway in the C/C coupling reactions on the Ru-step surfaces.³⁹ Ketene with C=C and C-O bonds is the key structure for forming hydrocarbons and ethanol.⁴⁰ Therefore, the reactions of ketene hydrogenation and its C-O bond cleavage are also an initial and important step of FTS. The study of the thermodynamic and kinetic properties of ketene on a catalyst surface with adsorbed CO/H2 are also very interesting and exciting and will be investigated further.

With the increased CO coverage under coadsorption on Fe₅C₂(001) and a 1/2 H₂/CO ratio, the surfaces C_sCO, C_sH₂CO, and carbon suboxide (CsC2O2) possibly coexist. This is in agreement with that of CO adsorption,21 where the adsorbed CO interacts not only with surface iron but also with carbon, resulting in the formation of C₂ and C₃ units on the surface.

The surface carbon suboxide (C_sC₂O₂) on Fe₅C₂(001) is very interesting but has not been observed experimentally over iron catalysts. Although carbon suboxide is stable thermodynamically, its kinetic property for the reaction of C_sC₂O₂ hydrogenation as well as C=C and C=O bond cleavage is also very important. For example, the long C-O bond of the carbon suboxide is likely easy to be broken, resulting in the formation of the hydrocarbons and oxygenate at C₃ in FTS. In addition, CO can add to the middle carbon atom and leads to the formation of the branch chain products. Therefore, further studies of the thermodynamic and kinetic properties of the species formed by CO insertion are required to understand the genesis of the FTS reaction mechanism.

With the increased H coverage under coadsorption and a 2/1 H₂/CO ratio on Fe₅C₂(001), the surface H, C_sH, and C_sH₂CO are the most stable species. Similarly, for pure hydrogen adsorption at the same coverage with coadsorption on Fe₅C₂(001), the most stable surface species are CH, activated H₂, and H species.18

On the Fe₅C₂(110) surface at 1/6 ML with a 1/1 H₂/CO ratio, the most stable surface species are 2-fold CO and two 2-fold H species. Similar to hydrogen adsorption, 18 the most stable species is one 2-fold and one 3-fold H species. In contrast to CO adsorption,²¹ the surface species of H₂/CO coadsorption (2-fold CO and the formed surface C_sCO from CO interacting with surface iron and carbon) can also coexist due to their similar adsorption energies. Similar to (001), CH2CO is also formed by H₂/CO coadsorption.

With increased CO coverage (1/2 H₂/CO) under coadsorption, surface species, CO, CsH, and H, can coexist, as they are energetically stable. The order of adsorption energy of the surface species and their geometries is in agreement with that of CO adsorption at the same coverage. With the increased H coverage (2/1 H₂/CO) under coadsorption along with surface H, C_sH and C_sH₂CO are the most stable surface species. In contrast, the most stable surface species for hydrogen adsorption consist of C_sH, 2-fold and 3-fold H species.

The adsorption energies indicate that the stability of the Fe₅C₂(001) and (110) surfaces with surface ketene species is greater when the surface concentration of H₂ is larger than that of CO (i.e., for the 2/1 H₂/CO ratio). At the other hydrogen coverage (i.e., for the 1/1 and 1/2 H₂/CO ratios), surface ketene species become less stable. This indicates ketene formation is favored under the hydrogen-rich condition. The reason is that ketene (C_sH₂CO) is formed by C_sCO hydrogenation. On (001) and (110), the adsorption energy of the species consisting of C_sCO and 2H is higher than that of ketene for the 1/1 and 1/2 H₂/CO ratios, while the adsorption energy of the species consisting of C_sCO and 4H coexisting is lower than that of C_sH₂CO and 2H coexisting for the 2/1 H₂/CO ratio. For the formal reaction of ketene formation, $C_sCO + H_2 \rightarrow C_sH_2CO$, at high H₂ coverage (high H₂ surface concentration), the reaction is favored and results in a high concentration of C_sH₂CO; in contrast, at low H₂ coverage, the back reaction is favored and results in a high concentration of C_sCO.

Different from Fe₅C₂(001) and (110), the top layer of Fe₅C₂(100) consists originally only of iron atoms and therefore is metallic in character. On Fe₅C₂(100) at 1/4 ML under coadsorption with a 1/1 H₂/CO ratio, the most stable surface species are top- and 2-fold CO as well as 2-fold and 3-fold H species. This is inconsistent with CO adsorption,²¹ where the top- and 3-fold CO are close in energy. With increased CO coverage (1/2 H₂/CO), the possible surface species are 2-fold CO and 2-fold and 3-fold H. The change of CO configurations

Figure 14. Coadsorption of H₂ at 1/2 ML and CO at 1/4 ML on Fe₅C₂(100) (Fe, purple; C, gray; O, red; H, white).

is similar with the CO adsorption on Fe(111).⁴¹ In only CO adsorption at 1/2 ML, CO is favored to adsorb at the 3-fold site. With the increased H coverage (2/1 H_2 /CO), the possible surface species are 2-fold and 3-fold H, in agreement with the case for H_2 adsorption 18 at the same coverage. Due to the composition of CO and H species on (100), therefore, cleavage of C-O bonds on (100) is the first important step of FTS.

For all species on the three surfaces, CO is not dissociated directly. Thus, the reaction of C-O bond cleavage is also an important step followed by C_xH_y formation in the FTS. Since CO is favored to absorb at 2-fold, 3-fold, and 4-fold sites on $Fe_5C_2(001)$, at 2-fold and 4-fold sites on (110), and at 2-fold sites on (100), the C-O distances lie in the wide range from 1.160 to 1.359 Å. It is possible for the CO dissociation mechanism to be direct and indirect for these diverse adsorbed sites on these surfaces. The indirect dissociation is the formate mechanism, in which molecular adsorbed CO yields the two intermediates M-CHO and M-COH (M, metal) upon the addition of a hydrogen atom and then M-CHOH and M-CH₂OH after further hydrogenation. During this process, the hydroxyl O-H rather than C-O vibrations were observed on silica-supported nickel⁴² and silica-supported iron,⁴³ and formyl CHO and formate were detected by vibrational frequency analysis on Ni(111).⁴⁴

Along with the investigation into the individual adsorption of CO and H_2 , our current study about the CO/H_2 coadsorption on these Fe_5C_2 surfaces provides some new insights into the mechanism of FTS. However, it is still far away from the full understanding of the FTS mechanism, and studies about the thermodynamic and kinetic processes on the surfaces will be continued.

5. Conclusion

CO and H_2 coadsorption on the $Fe_5C_2(001)$, $Fe_5C_2(110)$, and $Fe_5C_2(100)$ surfaces at various coverages has been computed at the density functional level of theory. For CO/ H_2 coadsorption on $Fe_5C_2(001)$ at a coverage of H_2 and CO of 1/6 ML, the stable surface species are 2-fold CO, 3-fold CO, 4-fold CO, H, C_sH , C_sH_2 , C_sHCO , and C_sH_2CO . Surface C_sH and C_sH_2 are formed

by H adsorption on surface carbon atoms, while ketenyl (C_sHCO) and ketene (C_sH_2CO) are formed by H adsorption or addition on the preformed ketenylidene (C_sCO) from CO adsorption. With increased CO coverage (1/3 ML), the stable surface species are 2-fold CO, 3-fold CO, 4-fold CO, H, C_sH_2CO , and $C_sC_2O_2$. With increased H₂ coverage (1/3 ML for H₂), the stable surface species are 2-fold CO, H, C_sH , C_sH_2 , and C_sH_2CO .

For CO/H₂ coadsorption on Fe₅C₂(110) with a coverage of 1/6 ML, the surface species are 2-fold CO, 4-fold CO, H, and C_sH₂CO. At the higher CO coverage (1/3 ML), top-CO, 2-fold CO, 3-fold CO, 4-fold CO, H, and C_sH are the stable surface species. At a higher H₂ coverage (1/3 ML), 2-fold CO, H, C_sH, and C_sH₂CO are the stable surface species. These are similar to those on Fe₅C₂(001).

At a coverage of 1/4 ML for both H_2 and CO on $Fe_5C_2(100)$, the stable surface species are top-CO, 2-fold CO ,and H. At coverages for H_2 and CO of 1/4 and 1/2 ML, respectively, 2-fold CO and H are the stable surface species. At coverages for H_2 and CO of 1/2 and 1/4 ML, respectively, top-CO, 2-fold CO, H, and H_2 are the stable surface species. These results indicate the diversity of the atomic structures on the underlying Fe_5C_2 surface sites.

Acknowledgment. This work was supported by the Chinese Academy of Science and the National Nature Foundation of China (20473111 and 20590360).

References and Notes

- (1) Anderson, R. B. *The Fischer—Tropsch Reaction*; Academic Press: London, 1984.
- (2) (a) Datye, A. K.; Jin, Y. M.; Mansker, L.; Motjope, R. T.; Dlamini, T. H.; Coville. N. J. Stud. Surf. Sci. Catal. 2000, 130B, 1139. (b) Jin, Y. M.; Mansker, L.; Datye, A. K. Prepr. Pap.—Am. Chem. Soc., Div. Pet. Chem. 1999, 44, 97. (c) Bartholomew, C. H.; Stoker, M. W.; Mansker, L. Datye, A. K. Stud. Surf. Sci. Catal. 1999, 126, 265. (d) Zhang, Y. Q.; O'Brien, R. J.; Davis, B. H.; Hamdeh, H. H. Prepr. Pap.—Am. Chem. Soc., Div. Pet. Chem. 1999, 44, 100. (e) Jin, Y. M.; Datye, A. K. Stud. Surf. Sci. Catal. 1998, 119, 209. (f) Davis, B. H. Catal. Today 2003, 84, 83. (g) O'Brien, R. J.; Xu, L. G.; Spicer, R. L.; Davis, B. H. Energy Fuels 1996, 10, 921. (h) Rao, K. R. P. M.; Huggins, F. E.; Mahajan, V.; Huffman, G. P.; Burkur, D. B.; Rao, V. U. S. Hyperfine Interact. 1994, 93, 1751.

- (3) Erley, W.; McBreen, P. H.; Ibach, H. J. Catal. 1983, 84, 229.
- (4) Rangelov, G.; Bischler, U.; Memmel, N.; Bertel, E.; Dose, V.; Pabst, M.; Rösch, N. Surf. Sci. 1992, 273, 61.
- (5) (a) Li, J.; Šchiøtt, E.; Hoffmann, R.; Proserpio, D. M. J. Phys. Chem. **1990**, 94, 1554. (b) Hoeft, J. T.; Polcik, M.; Sayago, D. I.; Kittel, M.; Terborg, R.; Toomes, R. L.; Robinson, J.; Woodruff, D. P.; Pascal, M.; Nisbet, G.; Lamont, C. L. A. Surf. Sci. **2003**, 540, 441.
 - (6) Bernasek, S. L.; Zappone, M.; Jiang, P. Surf. Sci. 1992, 272, 53.(7) (a) Merrill, P. B.; Madix, R. J. Surf. Sci. 1992, 271, 81. (b) Burke,
- (/) (a) Merrill, P. B.; Madix, R. J. Surf. Sci. **1992**, 2/1, 81. (b) Burke, M. L.; Madix, R. J. Surf. Sci. **1990**, 237, 20.
 - (8) Richter, L. J.; Germer, T. A.; Ho, W. Surf. Sci. 1988, 195, L182.
- (9) Getzlaff, M.; Bode, M.; Wiesendanger, R. Appl. Surf. Sci. 1999, 142, 428.
- (10) Rupprechter, G.; Morkel, M.; Freund, H.-J.; Hirschl, R. Surf. Sci. 2004, 554, 43.
 - (11) Hahn, E.; Fricke, A.; Röder, H.; Kern, K. Surf. Sci. 1993, 297, 19.
 (12) Wang, H.; Tobin, R. G.; Lambert, D. K.; Fisher, G. B.; DiMaggio,
- (13) Henderson, M. A.; Yates, J. T., Jr. Surf. Sci. 1992, 268, 189.

C. L. Surf. Sci. 1995, 330, 173.

- (14) Diemant, T.; Hager, T.; Hoster, H. E.; Rauscher, H.; Behm, R. J. Surf. Sci. 2003, 541, 137.
- (15) Becker, C.; Schröder, U.; Castro, G. R.; Schneider, U.; Busse, H.; Linke, R.; Wandelt, K. Surf. Sci. 1994, 307, 412.
- (16) (a) Koel, B. E.; Peebles, D. E.; White, J. M. Surf. Sci. 1981, 107, L367. (b) Peebles, H. C.; Peebles, D. E.; White, J. M. Surf. Sci. 1983, 125, L87. (c) Mitchell, G. E.; Gland, J. L.; White, J. M. Surf. Sci. 1983, 131, 167. (d) Peebles, D. E.; Peebles, H. C.; Belton, D. N.; White, J. M. Surf. Sci. 1983, 134, 46. (e) Westerlund, L.; Jönsson, L.; Anderson, S. Surf. Sci. 1988, 199, 109.
- (17) (a) Conrad, H.; Ertl, G.; Latta, E. E. *J. Catal.* **1974**, *35*, 363. (b) Kok, G. A.; Noordermeer, Nieuwenhuys, B. E. *Surf. Sci.* **1983**, *135*, 65.
- (18) Cao, D.-B.; Zhang, F.-Q.; Li, Y.-W.; Wang, J.-G.; Jiao, H. J. Phys. Chem. B **2005**, 109, 833.
- (19) Stockwell, D. M.; Bianchi, D.; Bennett, C. O. J. Catal. 1988, 113, 13.
- (20) Loggenberg, P. M.; Carlton, L.; Copperthwaite, R. G.; Hutchings, G. J. J. Chem. Soc., Chem. Commun. 1987, 541.
- (21) Cao, D.-B.; Zhang, F.-Q.; Li, Y.-W.; Jiao, H. *J. Phys. Chem. B* **2004** *108* 9094
- (22) (a) Payne, M. C.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D. *Rev. Mod. Phys.* **1992**, *64*, 1045. (b) Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmataskaya, E. V.; Nobes, R. H. *Int. J. Quantum Chem.* **2000**, *77*, 895.

- (23) (a) Perdew, J. P.; Zunger, A. *Phys. Rev. B* **1981**, *23*, 5048. (b) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. *Phys. Rev. B* **1992**, *46*, 6671.
 - (24) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.
 - (25) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
- (26) Louie, S. G.; Froyen, S.; Cohen, M. L. Phys. Rev. B 1982, 26, 738
- (27) (a) Nayak, S. K.; Nooijen, M.; Bernasek, S. L. *J. Phys. Chem. B* **2001**, *105*, 164. (b) Cheng, H. S.; Reiser, D. B.; Dean, S. W., Jr.; Baumert, K. *J. Phys. Chem. B* **2001**, *105*, 12547. (c) Ge, Q.; Jenkins, S. J.; King, D. A. *Chem. Phys. Lett.* **2000**, *327*, 125.
- (28) Le Caer, G.; Simon, A.; Lorenzo, A.; Genin, J. M. *Phys. Status Solidi A* **1971**, *6*, K97.
- (29) Immel, S. Molarch⁺, MOLecular ARCHlitecture Modeling Programm V7.05; Technical University of Darmstadt: Darmstadt, Germany, 2002
 - (30) Dry, M. E. Catal. Today 2002, 71, 227.
- (31) Moritz, W.; Imbihl, R.; Behm, R. J.; Ertl, G.; Matsushima, T. J. Chem. Phys. 1985, 83, 1959.
- (32) (a) Mordaunt, D. H.; Osborn, D. L.; Choi, H.; Bise, R. T.; Neumark, D. M. *J. Chem. Phys.* **1996**, *105*, 6078. (b) Brock, L. R.; Mischler, B.; Rohlfing, E. A.; Bise, R. T.; Neumark, D. M. *J. Chem. Phys.* **1997**, *107*, 665.
- (33) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 3rd electronic ed.; CRC Press: Boca Raton, FL, 2000.
- (34) Tanimoto, M.; Kuchitsu, K.; Morino, Y. Bull. Chem. Soc. Jpn. 1970, 43, 2776.
- (35) Henderson, M. A.; Radloff, P. L.; White, J. M.; Mims, C. A. J. Phys. Chem. 1988, 92, 4111.
 - (36) Matsumoto, H.; Bennett, C. O. J. Catal. 1978, 53, 331.
 - (37) Biloen, P.; Helle, J. N.; Sachtler, W. M. H. J. Catal. 1979, 58, 95.
- (38) Kolis, J. W.; Holt, E. M.; Shriver, D. F. J. Am. Chem. Soc. 1983, 105, 7307.
 - (39) Liu, Z.-P.; Hu, P. J. Am. Chem. Soc. 2002, 124, 11568.
 - (40) Takeuchl, A.; Katzer, J. R. J. Phys. Chem. 1982, 86, 2438.
- (41) Chen, Y.-H.; Cao, D.-B.; Yang, J.; Li, Y.-W.; Wang, J. Jiao, H. Chem. Phys. Lett. **2004**, 400, 35.
 - (42) Blyholder, G.; Neff, L. D. J. Catal. 1963, 2, 138.
 - (43) Blyholder, G. Neff, L. D. J. Phys. Chem. 1962, 66, 1664.
 - (44) Bertolini, J. C.; Imelik, B. Surf. Sci. 1979, 80, 586.