Hydrological time series analysis using LSTMs and Transformers?

Jouval Somer and Philip Hoel

HBV hydrological model

19810128

0

-1.9

0.3

ML for time series analysis

Long short-term memory (LSTM)

Transformer

Hybrid model between distributed hydrological regression model and LSTM Neural Network

Åenergi - 7th Conference on Modelling Hydrology, Climate and Land Surface Processes. Lillehammer 19-21 Sep, 2023

The Distributed hydrological Regression Model (DRM)

Bernt Viggo Matheussen, Rajeev Shrestha, Bjarte Beil-Myhre

Results – Efficiency

Model	TT1_NSE_mean	TT2_NSE_mean	TT1_KGE_mean	TT2_KGE_mean	Average
DRM-HYDMOD	0.77	0.74	0.84	0.82	0.79
SHyFT	0.77	0.76	0.83	0.81	0.79
Neural Hydrology (NH)	0.84	0.82	0.86*	0.86*	0.84
DRM & Forcing + NH finetuned	0.88	0.85	0.91	0.91	0.89

Results – Hydrograph

Project overview

- "Recreate" the results from Åenergi
- Focus also on data handling, there is a lot of data available (feature detection and reduction)
- Use write code form scratch or PyTorch for parallelization using Quda