

SEQUENCE LISTING

<110> Cahoon, Edgar B.
Cahoon, Rebecca E.

<120> Enzymes Involved In Petroselinic Acid Biosynthesis

<130> BB1413 US NA

<140>

<141>

<150> 60/169,968
<151> 9 DECEMBER 1999

<160> 12

<170> Microsoft Office 97

<210> 1
<211> 1344
<212> DNA
<213> Hedera helix

<220>

<221> unsure
<222> (997)

<400> 1

caaccccaga aaataaaaaat aaaaactcaa gaagaagaag aagaaatggc tttgaagctc 60
aatttccaat gcaagaagaa ccaccctgct gcgtttgcta agtaccatt accagtgacc 120
agagtttagct ctccaagggt tttcatggct tccactgtca actctaactc catggttctt 180
gataatctca aaagtccgccc aaatcttcaa gtcactcaact ctagccacc caaaaagcta 240
gaaatattca agtcccttga tgattgggtt aggaacaatg tggattca cctcaaatct 300
gtcgagaaat ctggcaacc acaagactac ttgccggatc cggtgtcaga cggattcgag 360
gagcaagtgc gggagtttag gaaaaaggcc aaggagattc ccgacgacta ttttggtt 420
ttagttggag atatgatcac agaagaagca cttccaaatcat atatgtctat gctcaatagg 480
tgtgatggta ttaaggatga gactggggct gagcccaatg cttggcaat gtggactagg 540
gcatggactg ccgaagagaa tagacatggt gacccatctca ataagtacat ttatttgc 600
ggaagggttg atatgaggaa aattgagaag actattcaat atctcatcg 660
gatataatcgat cagaaaacacg cccctaccta gccttcatct acacatcctt 720
gcaacccatca tatccatgc caacacagcc aagctggccc aacactacgg cgacaagaac 780
ctcgctcaca tctgcggctc catcgctcc gacgagaagc gccacgccac agcctacacc 840
aagatcgatgg aaaagctcgc tgagatcgac cccgacacaa cagtaattgc ttttgc 900
atgatgcgc aaaaaataac aatgcacgcg cacttgatgt acgacggaag tgacgaactt 960
ctttttaaac atttcacggc gggtgctcag agagtgnnggg tttattctgc gttggattat 1020
tgcgacatct tagagttct ggtggataaa tggatgtgg aaaggcttac ggggctgtcg 1080
gacgaggggc gaaaagcgca ggaatatgtg tgtgaattgg gtcccaagat taggcgagtg 1140
gaagagaaaag tgcaaggaa ggagaagaag aagaaagctg agcaccctgt ttcttcagc 1200
tggattttca atcgggagtt gaagatatga acaggaagg aaggaaatgg aggagcaaata 1260
gagtgttagta gatttctata tgcatttttatattatga atgattatta tataataata 1320
agtgttttag ttttaagtaa aaaa 1344

<210> 2
<211> 394
<212> PRT
<213> Hedera helix

<220>

<221> UNSURE
<222> (318)

<400> 2
Met ala Leu Lys Leu Asn Phe Gln Cys Lys Lys Asn His Pro Ala Ala
1 5 10 15

Phe Ala Lys Ser Pro Leu Pro Val Thr Arg Val Ser Ser Pro Arg Val
20 25 30

Phe Met Ala Ser Thr Val Asn Ser Asn Ser Met Val Leu Asp Asn Leu
35 40 45

Lys Ser Pro Pro Asn Leu Gln Val Thr His Ser Met Pro Pro Gln Lys
50 55 60

Leu Glu Ile Phe Lys Ser Leu Asp Asp Trp Ala Arg Asn Asn Val Leu
65 70 75 80

Ile His Leu Lys Ser Val Glu Lys Ser Trp Gln Pro Gln Asp Tyr Leu
85 90 95

Pro Asp Pro Val Ser Asp Gly Phe Glu Glu Gln Val Arg Glu Leu Arg
100 105 110

Glu Arg Ala Lys Glu Ile Pro Asp Asp Tyr Phe Val Val Leu Val Gly
115 120 125

Asp Met Ile Thr Glu Glu Ala Leu Pro Thr Tyr Met Ser Met Leu Asn
130 135 140

Arg Cys Asp Gly Ile Lys Asp Glu Thr Gly Ala Glu Pro Ser Ala Trp
145 150 155 160

Ala Met Trp Thr Arg Ala Trp Thr Ala Glu Glu Asn Arg His Gly Asp
165 170 175

Leu Leu Asn Lys Tyr Leu Tyr Leu Ser Gly Arg Val Asp Met Arg Lys
180 185 190

Ile Glu Lys Thr Ile Gln Tyr Leu Ile Gly Ser Gly Met Asp Ile Lys
195 200 205

Ser Glu Asn Ser Pro Tyr Leu Gly Phe Ile Tyr Thr Ser Phe Gln Glu
210 215 220

Arg Ala Thr Phe Ile Ser His Ala Asn Thr Ala Lys Leu Ala Gln His
225 230 235 240

Tyr Gly Asp Lys Asn Leu Ala His Ile Cys Gly Ser Ile Ala Ser Asp
245 250 255

Glu Lys Arg His Ala Thr Ala Tyr Thr Lys Ile Val Glu Lys Leu Ala
260 265 270

Glu Ile Asp Pro Asp Thr Thr Val Ile Ala Phe Ala Asp Met Met Arg
275 280 285

Lys Lys Ile Thr Met Pro Ala His Leu Met Tyr Asp Gly Ser Asp Glu
290 295 300

Leu Leu Phe Lys His Phe Thr Ala Val Ala Gln Arg Val Xaa Val Tyr
305 310 315 320

Ser Ala Leu Asp Tyr Cys Asp Ile Leu Glu Phe Leu Val Asp Lys Trp
325 330 335

Asn Val Glu Arg Leu Thr Gly Leu Ser Asp Glu Gly Arg Lys Ala Gln
340 345 350

Glu Tyr Val Cys Glu Leu Gly Pro Lys Ile Arg Arg Val Glu Glu Lys
355 360 365

Val Gln Gly Lys Glu Lys Lys Lys Ala Glu His Pro Val Ser Phe
370 375 380

Ser Trp Ile Phe Asn Arg Glu Leu Lys Ile
385 390

<210> 3

<211> 445

<212> DNA

<213> Hedera helix

<400> 3

tttcgtgctc tccgcctctt gttttttctt cttccaaat atttctgag taattttctc 60
agatctattc ctctttcttc tctccctaattt tgatccatc aatggcttctt gttactgcct 120
catcgatttc cttcacctctt atcgcaagct ccctcaagca aaaccaggga cttgccaaga 180
gttcaatttc actctctgttc aatggaaat cttccgttc acttaggttg ctgtcggcac 240
cacttcgctt cagagtgtca tgcgcagcga aaccagcgcac agtggacaag gtgtgtgaga 300
ttgtgcgaaaa acaactggcg ctgcccgtga ttctgcaagt cactggagag tcaaaaattcg 360
cagcgcttgg ggctgattctt ctcgacacgg ttgagattgt gatggacta aaggaggaat 420
tcggaatcaa gcgtggaaaa aagaa 445

<210> 4

<211> 114

<212> PRT

<213> Hedera helix

<400> 4

Met Ala Ser Val Thr Ala Ser Ser Ile Ser Phe Thr Ser Ile Ala Ser
1 5 10 15

Ser Leu Lys Gln Asn Gln Gly Leu Ala Lys Ser Ser Ile Ser Leu Ser
20 25 30

Val Asn Gly Lys Ser Phe Arg Ser Leu Arg Leu Leu Ser Ala Pro Leu
35 40 45

Arg Phe Arg Val Ser Cys Ala Ala Lys Pro Ala Thr Val Asp Lys Val
50 55 60

Cys Glu Ile Val Arg Lys Gln Leu Ala Leu Pro Leu Ile Leu Gln Val
65 70 75 80

Thr Gly Glu Ser Lys Phe Ala Ala Leu Gly Ala Asp Ser Leu Asp Thr
85 90 95

Val Glu Ile Val Met Gly Leu Lys Glu Glu Phe Gly Ile Lys Arg Gly
100 105 110

Lys Lys
 114

<210> 5
 <211> 920
 <212> DNA
 <213> Hedera helix

<400> 5
 cttcgtgctc tccgcctctt gttttttctt cttccaaat atttctgag taattttctc 60
 agatctattc ctcttcttc tctccctaattt tgatccatc aatggcttctt gttactgcct 120
 catcgatttc ctccacctctt atcgcaagct ccctcaagca aaaccaggga cttgccaaga 180
 gttcaatttc actctctgtc aatggaaat cttccgttc acttaggttgcgtcggcac 240
 cacttcgctt cagagtgtca tgccgacgcga aaccagcgcac agtggacaag gtgtgtgaga 300
 ttgtgcggaa acaactggcg ctgcccgtt attctgcagt cactggagag tcaaaaattcg 360
 cagcgcttgg ggctgattctt ctcgacacgg ttgagattgt gatggacta gaggagaaat 420
 tcggaatcag cggtggaaagaa gaaagtgcac agaccattgc cactgttcaa gatgcagcgg 480
 acctgattga gaagcttggttt gagaaaaagg agtggacaag ccggggtagaaattctgcaa 540
 aatacggtta ttaaggacag ttacttttattt aggatggttc atcaagatct tcattaccct 600
 acatttattt gtatgctcctt catgaagccg caaaagttagt agtggtgatg aaatttaccc 660
 cgagtcttcg ccttaatttat caaagtggaa gagccagaaa aagaggctat gctatctc 720
 atctcggttat gttttatattt cttgtcgac ttctgggtttt agtttttttttttatactaa 780
 acatgatattt agtcttggttt aaaagttctt caaaaaaaaata tatcttggttg ttgagactga 840
 tggagttattt gctcttgata ttttgaatgtt attttgagttt attcaaaaaaaa aaaaaaaaaaa 900
 aaaaaaaaaaaa aaaaaaaaaaa 920

<210> 6
 <211> 137
 <212> PRT
 <213> Hedera helix

<400> 6
 Met Ala Ser Val Thr Ala Ser Ser Ile Ser Phe Thr Ser Ile Ala Ser
 1 5 10 15

Ser Leu Lys Gln Asn Gln Gly Leu Ala Lys Ser Ser Ile Ser Leu Ser
 20 25 30

Val Asn Gly Lys Ser Phe Arg Ser Leu Arg Leu Leu Ser Ala Pro Leu
 35 40 45

Arg Phe Arg Val Ser Cys Ala Ala Lys Pro Ala Thr Val Asp Lys Val
 50 55 60

Cys Glu Ile Val Arg Lys Gln Leu Ala Leu Pro Ala Asp Ser Ala Val
 65 70 75 80

Thr Gly Glu Ser Lys Phe Ala Ala Leu Gly Ala Asp Ser Leu Asp Thr
 85 90 95

Val Glu Ile Val Met Gly Leu Glu Glu Glu Phe Gly Ile Ser Val Glu
 100 105 110

Glu Glu Ser Ala Gln Thr Ile Ala Thr Val Gln Asp Ala Ala Asp Leu
 115 120 125

Ile Glu Lys Leu Val Glu Lys Lys Glu
 130 135

<210> 7
 <211> 385
 <212> PRT
 <213> *Coriandrum sativum*

<400> 7
 Met Ala Met Lys Leu Asn Ala Leu Met Thr Leu Gln Cys Pro Lys Arg
 1 5 10 15

Asn Met Phe Thr Arg Ile Ala Pro Pro Gln Ala Gly Arg Val Arg Ser
 20 25 30

Lys Val Ser Met Ala Ser Thr Leu His Ala Ser Pro Leu Val Phe Asp
 35 40 45

Lys Leu Lys Ala Gly Arg Pro Glu Val Asp Glu Leu Phe Asn Ser Leu
 50 55 60

Glu Gly Trp Ala Arg Asp Asn Ile Leu Val His Leu Lys Ser Val Glu
 65 70 75 80

Asn Ser Trp Gln Pro Gln Asp Tyr Leu Pro Asp Pro Thr Ser Asp Ala
 85 90 95

Phe Glu Asp Gln Val Lys Glu Met Arg Glu Arg Ala Lys Asp Ile Pro
 100 105 110

Asp Glu Tyr Phe Val Val Leu Val Gly Asp Met Ile Thr Glu Glu Ala
 115 120 125

Leu Pro Thr Tyr Met Ser Met Leu Asn Arg Cys Asp Gly Ile Lys Asp
 130 135 140

Asp Thr Gly Ala Gln Pro Thr Ser Trp Ala Thr Trp Thr Arg Ala Trp
 145 150 155 160

Thr Ala Glu Glu Asn Arg His Gly Asp Leu Leu Asn Lys Tyr Leu Tyr
 165 170 175

Leu Ser Gly Arg Val Asp Met Arg Met Ile Glu Lys Thr Ile Gln Tyr
 180 185 190

Leu Ile Gly Ser Gly Met Asp Thr Lys Thr Glu Asn Cys Pro Tyr Met
 195 200 205

Gly Phe Ile Tyr Thr Ser Phe Gln Glu Arg Ala Thr Phe Ile Ser His
 210 215 220

Ala Asn Thr Ala Lys Leu Ala Gln His Tyr Gly Asp Lys Asn Leu Ala
 225 230 235 240

Gln Val Cys Gly Asn Ile Ala Ser Asp Glu Lys Arg His Ala Thr Ala
 245 250 255

Tyr Thr Lys Ile Val Glu Lys Leu Ala Glu Ile Asp Pro Asp Thr Thr
 260 265 270

Val Ile Ala Phe Ser Asp Met Met Arg Lys Lys Ile Gln Met Pro Ala
 275 280 285

His Ala Met Tyr Asp Gly Ser Asp Asp Met Leu Phe Lys His Phe Thr
 290 295 300
 Ala Val Ala Gln Gln Ile Gly Val Tyr Ser Ala Trp Asp Tyr Cys Asp
 305 310 315 320
 Ile Ile Asp Phe Leu Val Asp Lys Trp Asn Val Ala Lys Met Thr Gly
 325 330 335
 Leu Ser Gly Glu Gly Arg Lys Ala Gln Glu Tyr Val Cys Ser Leu Ala
 340 345 350
 Ala Lys Ile Arg Arg Val Glu Glu Lys Val Gln Gly Lys Glu Lys Lys
 355 360 365
 Ala Val Leu Pro Val Ala Phe Ser Trp Ile Phe Asn Arg Gln Ile Ile
 370 375 380
 Ile
 385
 <210> 8
 <211> 137
 <212> PRT
 <213> Coriandrum sativum
 <400> 8
 Met Ala Ala Phe Thr Ala Ser Ser Val Ser Phe Thr Pro Leu Ser Ile
 1 5 10 15
 Ser Leu Asn Gln Thr Lys Gly Phe Ala Arg Gly Ser Val Ser Ile Pro
 20 25 30
 Ala Lys Ala Lys Ser Phe Gly Ala Leu Thr Leu Arg Asn Ala Pro Leu
 35 40 45
 Arg Phe Arg Val Ser Cys Ala Ala Lys Pro Glu Thr Val Glu Lys Val
 50 55 60
 Cys Glu Ile Val Lys Lys Gln Leu Ala Leu Pro Pro Thr Thr Glu Val
 65 70 75 80
 Ser Gly Asp Ser Lys Phe Ala Ala Leu Gly Ala Asp Ser Leu Asp Thr
 85 90 95
 Val Glu Ile Val Met Gly Leu Glu Glu Glu Phe Gly Ile Ser Val Glu
 100 105 110
 Glu Glu Ser Ala Gln Ala Ile Ala Thr Val Gln Asp Ala Ala Asp Leu
 115 120 125
 Ile Glu Lys Leu Cys Glu Lys Lys Glu
 130 135
 <210> 9
 <211> 1381
 <212> DNA
 <213> Hedera helix

<400> 9
ctttttctct cttttccttg cagaattaat ccgggtggaaa ttacaaaatc aaaccagaaa 60
ataaaaataa aaactcaaga agaagaagaa gaaatggctt tgaagctcaa tttccaatgc 120
aagaagaacc accctgctgc gtttgcataag tcaccattac cagtgaccag agttagctct 180
ccaagggtt tcatggcttc cactgtcaac tctaactcca tggttcttga taatctcaa 240
agtcctccaa atcttcaagt cactcactct atgccacccc aaaagctaga aatattcaag 300
tcccttgatg attgggctag gaacaatgtg ttgattcacc tcaaatactgt cgagaaatct 360
tggcaaccac aagactactt gcccgatccg gtgtcagacg gattcgagga gcaagtgcgg 420
gagttgaggg aaaggccaa ggagattccc gacgactatt ttgtgggtt agttggagat 480
atgatcacag aagaagact tccaaacatat atgtctatgc tcaataggtg tgatgttatt 540
aaggatgaga ctggggctga gcccagtgtc tgggcaatgt ggactagggc atggactgcc 600
gaagagaata gacatggtga ctttctcaat aagtacctt atttgtctgg aagggttcat 660
atgagggaaa ttgagaagac tattcaatat ctcatcggt caggaatggc tatcaagtca 720
aaaaacagcc cctacctagg cttcatctac acatccttcc aagagagagc aaccttcata 780
tcccatgcca acacagccaa gctggccaa cactacggcg acaagaacct cgctcacatc 840
tgcggctcca tgcctccga cgagaagcgc 900
aagctcgctg agatcgaccc cgacacacaaca gtaattgtt ttgcagat 960
aaaataacaa tgccagcgc 1020
ttcacggcgg ttgctcagag agtgggggtt tattctcg 1080
gagtttctgg tggataaaatg gaatgtggaa aggcttacgg 1140
aaagcgcagg aatatgtgtg tgaattgggt cccaagatta 1200
caygggaagg agaagaagaa gaaagctgag caccctgttt 1260
cgggagttga agatatgaac aggaaggaa gggaaatggag 1320
tttcttatatg catgtttata tattatgaat gattattata taataataag tggtagt 1380
t

<210> 10
<211> 394
<212> PRT
<213> Hedera helix

<400> 10

Met Ala Leu Lys Leu Asn Phe Gln Cys Lys Lys Asn His Pro Ala Ala
 1 5 10 15

Phe Ala Lys Ser Pro Leu Pro Val Thr Arg Val Ser Ser Pro Arg Val
20 25 30

Phe Met Ala Ser Thr Val Asn Ser Asn Ser Met Val Leu Asp Asn Leu
35 40 45

Lys Ser Pro Pro Asn Leu Gln Val Thr His Ser Met Pro Pro Gln Lys
50 55 60

Leu Glu Ile Phe Lys Ser Leu Asp Asp Trp Ala Arg Asn Asn Val Leu
65 70 75 80

Ile His Leu Lys Ser Val Glu Lys Ser Trp Gln Pro Gln Asp Tyr Leu
85 90 95

Pro Asp Pro Val Ser Asp Gly Phe Glu Glu Gln Val Arg Glu Leu Arg
100 105 110

Glu Arg Ala Lys Glu Ile Pro Asp Asp Tyr Phe Val Val Leu Val Gly
115 120 125

Arg Cys Asp Gly Ile Lys Asp Glu Thr Gly Ala Glu Pro Ser Ala Trp
145 150 155 160

Ala Met Trp Thr Arg Ala Trp Thr Ala Glu Glu Asn Arg His Gly Asp
165 170 175

Leu Leu Asn Lys Tyr Leu Tyr Leu Ser Gly Arg Val Asp Met Arg Lys
180 185 190

Ile Glu Lys Thr Ile Gln Tyr Leu Ile Gly Ser Gly Met Asp Ile Lys
195 200 205

Ser Glu Asn Ser Pro Tyr Leu Gly Phe Ile Tyr Thr Ser Phe Gln Glu
210 215 220

Arg Ala Thr Phe Ile Ser His Ala Asn Thr Ala Lys Leu Ala Gln His
225 230 235 240

Tyr Gly Asp Lys Asn Leu Ala His Ile Cys Gly Ser Ile Ala Ser Asp
245 250 255

Glu Lys Arg His Ala Thr Ala Tyr Thr Lys Ile Val Glu Lys Leu Ala
260 265 270

Glu Ile Asp Pro Asp Thr Thr Val Ile Ala Phe Ala Asp Met Met Arg
275 280 285

Lys Lys Ile Thr Met Pro Ala His Leu Met Tyr Asp Gly Ser Asp Glu
290 295 300

Leu Leu Phe Lys His Phe Thr Ala Val Ala Gln Arg Val Gly Val Tyr
305 310 315 320

Ser Ala Leu Asp Tyr Cys Asp Ile Leu Glu Phe Leu Val Asp Lys Trp
325 330 335

Asn Val Glu Arg Leu Thr Gly Leu Ser Asp Glu Gly Arg Lys Ala Gln
340 345 350

Glu Tyr Val Cys Glu Leu Gly Pro Lys Ile Arg Arg Val Glu Glu Lys
355 360 365

Val Gln Gly Lys Glu Lys Lys Lys Ala Glu His Pro Val Ser Phe
370 375 380

Ser Trp Ile Phe Asn Arg Glu Leu Lys Ile
385 390

<210> 11
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 11
attctagaag aagaaatggc tttgaagc

<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 12
atgagctccc ttccctgttca tatcttc

27