ОБРАБОТКА ИЗОБРАЖЕНИЙ

МНОГОФУНКЦИОНАЛЬНАЯ ЦИФРОВАЯ МОДЕЛЬ СИСТЕМЫ ИСКАЖЕНИЯ И ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ

А.В. Карнаухов, Н.С. Мерзляков, О.П. Милюкова Институт проблем передачи информации Российской академии наук 101447, ГСП-4, Россия, Москва, Большой Каретный пер. 19. (avk@iitp.ru, nick@iitp.ru, milukova@iitp.ru)

Статья рассматривает общие методы и алгоритмы решения задач восстановления изображений. Представлена разработанная многофункциональная модель системы искажения и восстановления изображений, которая используется как основной инструмент для реализации описанных алгоритмов и сравнения результатов их применения для двумерного случая.

Введение

Восстановление изображений часто определяется как процесс оценки исходного изображения по искаженному. Всякий раз, когда точное восстановление невозможно, задача восстановления становится задачей аппроксимации. Задача восстановления обычно формулируется следующим образом: необходимо найти исходное неискаженное изображение z(x, y) из уравнения

$$Az + n = u(x, y) + n(x, y) = \widetilde{u}(x, y),$$

$$(x, y) \in W$$
 (1)

где A - линейный оператор, n(x,y) - шум, $\widetilde{u}(x,y)$ - наблюдаемое искаженное изображение, $u\in U$, и $z\in Z$.

Методы восстановления изображений

Существующие подходы решения задач восстановления изображений условно можно разбить на 3 группы:

- подходы, основанные на использовании априорной и апостериорной информации;
- подходы, основанные на использовании методов обработки сигналов;
- подходы, основанные на методах теории некорректно поставленных задач.

Априорная и апостериорная информация включает в себя ряд параметров, которые учитываются при восстановлении изображений. Апостериорные данные могут быть использованы при определении искажений, которому подверглось изображение при регистрации. Апостериорное знание использует наблюдаемое изображение $\widetilde{u}(x,y)$ для определении некоторого параметра, описывающих искажение. Например, возможно определение функции рассеяния точки (ФРТ) по резким краевым участкам протяженных объектов изображений или по точечным объектам, о которых точно известно, что

они существуют. Другие примеры апостериорных методов включают получение оценок дисперсии шума и спектра мощности из относительно гладких областей искаженного изображения. Иногда, помехи, возникшие при регистрации, становятся очевидными при преобразовании Фурье и эти данные можно использовать в процессе восстановления. Приведенные выше примеры апостериорных методов, конечно не исчерпывают все возможные методы, но они дают представление об основных направлениях в данного подхода.

Большинство методов, разработанных на ранних этапах исследования проблемы обработки изображений, относятся ко второй группе — методам обработки сигналов [1]. Подход, применяемый в задачах обработки сигналов, использует модель с однородным оператором A и функцией рассеяния точки в (1), описываемую выражением:

$$\widetilde{u}(x,y) =$$

$$= \iint h(x-\xi, y-\eta)z(\xi,\eta)d\xi d\eta + n(x,y)'$$
(2)

где $\widetilde{u}(x,y)$ - зарегистрированное наблюдаемое изображение, $h(x-\xi,y-\eta)$ - функция рассеяния точки, n(x,y) - шум и $z(\xi,\eta)$ - искомое, исходное изображение. Вид уравнения (2) подразумевает, что его эквивалентное Фурье-представление может быть записано в следующем виде:

$$\widetilde{U}(f_x, f_y) = Z(f_x, f_y)H(f_x, f_y) + N(f_x, f_y)$$
 (3)

Известно, что общее линейное решение уравнения (2) может быть записано как

$$\mathbf{f}(\xi,\eta) = \iint K(\xi - s, \eta - t)\widetilde{u}(s,t)dsdt \tag{4}$$

где ядро инверсии имеет следующую форму:

$$K(s,t) = \frac{1}{4\pi^2} \iint R(f_x, f_y) e^{i(sf_x + tf_y)} df_x df_y = \frac{1}{4\pi^2} \iint \frac{H^*(f_x, f_y) e^{i(sf_x + tf_y)}}{|H(f_x, f_y)|^2 + \Psi(f_x, f_y)} df_x df_y,$$
 (5)

где $\Psi(f_x, f_y)$ - заданная функция.

Таким образом, при отсутствии шума, очевидный восстанавливающий фильтр — это инверсный фильтр:

$$R(f_x, f_y) = H^{-1}(f_x, f_y).$$
(6)

Тогда, $z(\xi,\eta)$ может быть найдена путём обратного преобразования Фурье выражения:

$$Z(f_x, f_y) = R(f_x, f_y)\widetilde{U}(f_x, f_y). \tag{7}$$

Однако, обратный фильтр может не существовать, если он имеет экстремумы или $H(f_y,f_y)$ некорректно задан. При наличии шума оптимальный фильтр восстановления (в MSE критериях) это фильтр наименьших квадратов или Винеровский фильтр

$$R(f_x, f_y) = \frac{H^*(f_x, f_y)}{\left| H(f_x, f_y) \right|^2 + \frac{S_{nn}(f_x, f_y)}{S_{zz}(f_x, f_y)}},$$
 (8)

где $S_{nn}(f_x,f_y)$ и $S_{zz}(f_x,f_y)$ - спектры мощностей шума и исходного изображения, которые мы полагаем известными. Также полагаем, что шум, который был добавлен - это белый шум, то есть, его спектральная плотность постоянна, а изображение и шум некоррелированы. Этот метод хорошо работает для изображений с высоким соотношением сигнал/шум, которое определяется как отношение между дисперсией изображения и дисперсией шума, и плохо подходит для изображений с низким соотношением сигнал/шум.

Универсальные методы решения этой проблемы используются в регуляризационном [2-4] и статистическом подходах. В обоих случаях, решение проблемы восстановления состоит в нахождении или условного, или безусловного экстремума, и в частности к поиску минимума следующего функционала:

$$\widehat{z}_{\alpha} = \inf_{z \in Z} M(z) = \inf_{z \in Z} \{ \rho_U(Az, \widetilde{u}) + \alpha \Phi(z) \}, \tag{9}$$

где $\Phi(z)$ является или стабилизатором $\Omega(z)$ (в детерминированном подходе), или Гиббсовым потенциалом $\Gamma(z)$ с $\alpha=1$ (в статистическом подходе).

К сожалению, при прямом использовании данного метода трудно решить проблему минимизации в общем двумерном случае. Возможность упрощения задачи минимизации обычно базируется на использовании особых свойств интегрального оператора A. Во многих случаях, система отображения описывается однородным оператором, и смазанное изображение определяется уравнением (2). Если искаженное изображение u(x,y) задано на всем участке $(x,y) \in (-\infty,\infty)$, уравнение (1) является уравнением типа свертки и может быть решено с использованием метода преобразования Фурье. Фактически, искаженное изображение u(x,y) определено на ограниченной области W. Это не позволяет применять преобразование Фурье непосредственно к

уравнению (1). Чтобы преодолеть это ограничение, требуется дополнительная процедура, для расширения определения искаженного изображения на весь диапазон $(x, y) \in (-\infty, \infty)$ [3].

Цифровая модель формирования системы искажения и восстановления изображений.

Эффективное нахождение общего решения задачи восстановления изображений, определенной уравнением (3), представляет собой весьма сложную задачу в том числе и из-за больших размеров изображений и как следствие, большого количества вычислений. Этот недостаток значительно ограничивает широкое использование этого подхода.

Обзор публикаций последних лет показывает, что метод Фурье до сих пор является наиболее широко используемым в задачах восстановления изображений. Хорошо известно, что метод Фурье имеет, по крайней мере, два недостатка: (а) метод применим только для решения уравнений типа свертки и (b) он может использоваться только в линейных алгоритмах восстановления. Для этого случая можно записать:

$$\widehat{z}_{\alpha} = \inf_{z \in Z} M(z) = \inf_{z \in Z} \left\{ ||Az - u||_{B_n}^2 + \alpha ||Z||_{B_z}^2 \right\}.$$
 (10)

Использование быстрого преобразования Фурье для решения этой проблемы делает Фурьеподход самым быстрым и дешевым инструментом для решения задачи восстановления. С этой точки зрения, линейные алгоритмы очень важны, поскольку они имеют общую схему основных операций, аналогичную для всех их. Это подобие даёт нам возможность создать многофункциональную цифровую модель процессов искажения/восстановления изображений и использовать ее как основной программный инструмент для разработки, выполнения и сравнения результатов применения этих алгоритмов.

Основные функциональные блоки разработанной модели выполняют следующие процедуры по обработке данных:

- Формирование исходного изображения.
- Дефокусировка исходного изображения.
- Наложение шума на дефокусированное изображение.
- Расчет восстанавливающего фильтра.
- Восстановление.
- Вычисление ошибок.
- Визуализация изображений и данных.

Разработанная цифровая модель содержит, наряду с наиболее широко используемыми искажающими функциями, различными видами шума и восстанавливающими фильтрами, набор итеративных алгоритмов для восстановления изображений. Она работает под управлением операционных систем Windows 95/98/NT4/2000 или выше. Взаимодействие пользователя с системой реализовано через графический интерфейс пользователя. Практическое использование разработанной модели продемонстрировано на рисунках 1 и 2.

Рис.1. Экран пользователя при использовании Тихоновского фильтра.

Рис.2 Экран пользователя при использовании Винеровского фильтра.

Обработка данных организована по типу конвейерной обработки. Поток данных обрабатывается последовательно "блок за блоком" со встроенными и программноизменяемыми значениями параметров. Каждый функциональный блок может быть переконфигурирован на этапе выполнения.

На рисунках изображены копии экранов пользователя при работе с моделью. Они содержат несколько графических форм:

- Главная управляющая форма модели, расположена на правой стороне экрана. На ней находится семь панелей, расположенных вертикально на форме: "Исходное изображение", "Искажающая функция", "Шум", "Фильтр", "Итерации", "Параметры" и "Выходное изображение".
 - Другие графические формы используются для необязательной визуализации обрабатываемых данных на разных стадиях процесса обработки изображений.

Рассмотрим главную управляющую форму, представленную на рисунках. Первая и последняя панели используются для выбора исходного и выходного изображений. Пять других сделаны в виде панелей с блокнотами-переключателями. Каждая из них имеет набор закладок, при переключении на которые пользователь получает возможность изменения необходимых параметров. Таким образом, последовательность выбранных пользователем закладок определяет конкретную реализацию модели искажения/восстановления изображения. В частности модель, представленная на рис. 1 определена следующими параметрами:

- Искажающая функция определена как прямоугольный смаз; т.е. соответствует прямоугольной ФРТ размером 5х7 пикселов.
- Аддитивный шум с дисперсией равной 0.001.
- Восстанавливающим фильтром выбран Тихоновский фильтр с $\alpha = 1.0e 3$ и $\beta = 1.0e 6$.
- Итеративный процесс не применяется.
- Смазанное, зашумленное изображение и фильтр восстановления будут визуализированы в процессе обработки данных.

Модель, представленная на рис. 2 определена следующими параметрами:

- Искажающая функция определена как Гауссова функция с $\sigma = 6$.
- Аддитивный шум с дисперсией равной 0.001.
- Восстанавливающим фильтром выбран фильтр Винера.
- Итеративный процесс не применяется.
- Смазанное и зашумленное изображения и разность между восстановленным и исходным неискаженным изображениями будут визуализированы в процессе обработки данных.

Заключение

Разработана многофункциональная цифровая модель системы искажения и восстановления изображений. Модель работает под управлением операционных систем Windows 95/98/2000/NT4.0 или выше. Модель может использоваться как эффективный инструмент для экспериментального выполнения и сравнения различных алгоритмов восстановления изображения основанных на Фурье-подходе. Все необходимые эксперименты в представленной работе были выполнены на этой модели.

Благодарности

Работа поддержана Российским фондом фундаментальных исследований в рамках проекта 99-01-39039.

Литература

- 1. Прэтт У. Цифровая обработка изображений: Пер. с англ. М.: Мир, 1982.
- 2. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1974.
- 3. Milukova O.P. Fourier transform in restoration problem. Proc.SPIE, Vol.2363, 1995, pp.98-103.
- 4. Тихонов А.Н., Гончарский А.В., Степанов В.В. и Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.