LECTURE NOTES FOR LMS-CMI RESEARCH SCHOOL ON "BOUNDED GAPS BETWEEN PRIMES" SEPTEMBER 22–26, 2014

JUSTIN SCARFY

scarfy@ugrad.math.ubc.ca
Department of Mathematics
The University of British Columbia
Room 121, 1984 Mathematics Road
Vancouver, British Columbia, Canada V6T 1Z2

AND

STANLEY YAO XIAO

stanley.xiao@uwaterloo.ca

Department of Pure Mathematics

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

ABSTRACT.

CONTENTS

1. Introduction to prime number theory. ζ - and L -functions, the prime number theorem (1/4) by Andrew Granville	3
2. Introduction to prime number theory. ζ - and L -functions, the prime number theorem (2/4) by Andrew Granville	4
3. The Bombieri-Vinogradov theorem about distribution of primes in progressi Introduction to sieve theory (1/4) by Kannan Soundararajan	ions.
4. The Bombieri-Vinogradov theorem about distribution of primes in progressi Introduction to sieve theory (2/4) by Kannan Soundararajan	ions.
5. Introduction to prime number theory. ζ - and L -functions, the prime number theorem (3/4) by Andrew Granville	7

6.	Introduction to prime number theory. ζ - and L -functions, the prime number theorem (4/4) by Andrew Granville	8
7.	The Bombieri-Vinogradov theorem about distribution of primes in progressions. Introduction to sieve theory (3/4) by Kannan Soundararajan	9
8.	The Bombieri-Vinogradov theorem about distribution of primes in progressions. Introduction to sieve theory (4/4) by Kannan Soundararajan	10
9.	Public Lecture by Terry Tao	11
10.	Inputs from algebraic geometry (1/4) by Emmanuel Kowalski	12
11.	Tutorial for Granville's Lecture Series by Adam Harper	13
12.	Tutorial for Soundararajan's Lecture Series by James Maynard	14
13.	Inputs from algebraic geometry (2/4) by Emmanuel Kowalski	15
14.	Inputs from algebraic geometry (3/4) by Emmanuel Kowalski	16
15.	The methods of Goldston, Pintz and Yıldırım and Maynard-Tao (1/3) by James Maynard	17
16.	Polymath discussion led by Ben Green	18
17.	Public Lecture by Yitang Zhang	19
18.	Inputs from algebraic geometry (4/4) by Emmanuel Kowalski	20
19.	The methods of Goldston, Pintz and Yıldırım and Maynard-Tao (2/3) by James Maynard	21
20.	Poster by Sávio Ribas	22
21.	The methods of Goldston, Pintz and Yıldırım and Maynard-Tao (3/3) by James Maynard	23
22.	Tutorial for Maynard's Lecture Series by James Maynard	24

1. Introduction to prime number theory. ζ - and L-functions, the prime number theorem (1/4) By Andrew Granville

2. Introduction to prime number theory. ζ - and L-functions, the prime number theorem (2/4) By Andrew Granville

3. The Bombieri-Vinogradov theorem about distribution of primes in progressions.

Introduction to sieve theory (1/4) by Kannan Soundararajan

4. The Bombieri-Vinogradov theorem about distribution of primes in progressions.

Introduction to sieve theory (2/4) by Kannan Soundararajan

5. Introduction to prime number theory. ζ - and L-functions, the prime number theorem (3/4) By Andrew Granville

6. Introduction to prime number theory. ζ - and L-functions, the prime number theorem (4/4) By Andrew Granville

7. THE BOMBIERI-VINOGRADOV THEOREM ABOUT DISTRIBUTION OF PRIMES IN PROGRESSIONS.

Introduction to sieve theory (3/4) by Kannan Soundararajan

8. The Bombieri-Vinogradov theorem about distribution of primes in progressions.

Introduction to sieve theory (4/4) by Kannan Soundararajan

9. Public Lecture by Terry Tao

10. Inputs from algebraic geometry (1/4) by Emmanuel Kowalski

11. Tutorial for Granville's Lecture Series by Adam Harper

12. Tutorial for Soundararajan's Lecture Series by James Maynard

13. Inputs from algebraic geometry (2/4) by Emmanuel Kowalski

14. Inputs from algebraic geometry (3/4) by Emmanuel Kowalski

15. The methods of Goldston, Pintz and Yildirim and Maynard-Tao (1/3) by James Maynard

16. POLYMATH DISCUSSION LED BY BEN GREEN

17. Public Lecture by Yitang Zhang

18. Inputs from algebraic geometry (4/4) by Emmanuel Kowalski

19. The methods of Goldston, Pintz and Yildirim and Maynard-Tao (2/3) by James Maynard

20. Poster by Sávio Ribas

21. The methods of Goldston, Pintz and Yildirim and Maynard-Tao (3/3) by James Maynard

22. Tutorial for Maynard's Lecture Series by James Maynard