

Institute/ School Name	School of Engine	School of Engineering and Technology				
Department Name	Department of Co	Department of Computer Science & Engineering				
Program Name	Bachelor of Engir	Bachelor of Engineering (Computer Science & Engineering): B.E (CSE)				
Course Code	24CS016	24CS016 Course Name Computer System Architectu				
L-T-P (Per Week)	3-0-0	Course Credits	03			
Academic Year 2024-25 Semester/Batch 4 th /2023-2027						
Course Coordinator	Dr. Navneet Kaus	r ·				

1. Course Outline:

Introduction to Computer Organization and Evolution of Computers, Introduction to digital computers, Basic Computer Organization, Timing and Control, Microprogrammed Control, Design of Control unit, Central Processing Unit, Pipeline Processing, Program Interrupts & Types, Input-Output Organization, Memory Organization, Associate Memory, Virtual Mapping.

2. Programme Outcomes (POs):

At the er	nd of the programme, students will be able to
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
	an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design
	system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods
	including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modelling to complex engineering activities with an understanding
	of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societa
	health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
20.5	engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions is
	societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
PO 8	development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the
DO 0	engineering practice.
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or leader in divers teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering
FOIU	community and with society at large, such as, being able to comprehend and write effective reports an
	design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering an
. 011	management principles and apply these to one's own work, as a member and leader in a team, to management
	projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent
	and life-long learning in the broadest context of technological change.

3. Course Learning Outcomes (CLO):

After completing the course, the students will be able to:

CLO1: Understand the basic structure and operation of a digital computer system.

CLO2: Acquire the skills to analyze the design of the various functional units and components of a computer.

CLO3: Analyze the architecture and functionality of central processing unit.

CLO4: Implement the concept of pipeline and the different ways of computer I/O.

CLO5: Comprehend the structure and functioning of hierarchical memory organization, emphasizing environment and sustainability through energy-efficient designs.

4. CLO-PO Mapping Matrix:

Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CLO1	M				Н	L						
CLO2	Н	L			L							
CLO3	Н	M	M	Н	Н							M
CLO4	L	Н		M								M
CLO5		Н	M	M			Н					M

5. ERISE Grid Mapping:

Feature Enablement	Level (1-5, 5 being highest)	
Entrepreneurship	1	
Research/Innovation	3	
Skills	5	
Employability	3	

6. Recommended Books (Reference Books/Text Books):

B01: Hamacher, C., & Vranesic, Z., Computer organization and embedded system (6th Edition). Tata McGraw Hill.

B02: Bulic, P., Understanding computer organization: A guide to principles across RISC-V, ARM Cortex, and Intel architectures (1st Edition). Springer-Nature New York Inc.

B03: Mano, M. M., Computer system architecture (Revised 3rd Edition). Prentice-Hall of India.

B04: Patterson, D. A., & Hennessy, J. L., Computer organization and design ARM edition: The hardware/software interface (1st Edition). Morgan Kaufmann.

B05: Tanenbaum, A. S., Structured computer organization (6th Edition). Prentice-Hall of India.

7. Other readings and relevant websites:

Link of Journals, Magazines, Websites and Research Papers
Hwang, I., Lee, J., Kang, H., Lee, G., & Kim, H. (2024). Survey of CPU and memory simulators in
computer architecture: A comprehensive analysis including compiler integration and emerging
technology applications. Simulation Modelling Practice and Theory, 103032.
https://www.geeksforgeeks.org/generations-of-computers-computer-fundamentals/
https://www.techtarget.com/whatis/definition/logic-gate-AND-OR-XOR-NOT-NAND-NOR-and-XNOR
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d
https://www.ebrary.net/206239/computer_science/mapping_schemes

R6	https://www.synopsys.com/glossary/what-is-risc-v.html#:~:text=As%20an%20open%2Dstand
	ard%20architecture, new%20degrees%20of%20design%20freedom
Resources	Link of Audio-Video resources
V1	https://archive.nptel.ac.in/courses/106/105/106105163/
V2	https://www.digimat.in/nptel/courses/video/106105163/L01.html
V3	https://nptel.ac.in/courses/108105132
V4	https://onlinecourses.nptel.ac.in/noc25_cs01/preview

8. Course Plan:

Lecture Number	Topics	Weightage in ETE (%)	Instructional Resources	
1	Introduction to Computer Organization and Evolution of Computers from 1st Generation to Present generation		B01, B03, B05, R2, V1, V2	
2	Von-Neumann Architecture		B02, B03, R2, V1, V2	
3	Introduction to digital computers, Introduction to number system		B01, B03, B05, V3, V4	
4	Octal and Hexadecimal Numbers, Decimal Representation	20	B02, B03, V3, V4	
5	Logic gates (AND, OR, NOT, NAND, NOR, EX-OR and Ex-NOR). Introduction to combinational and sequential circuits	22	B02, B03, R3, V3, V4	
6	Flip Flops (SR, D)			
7	Flip Flops (T, JK)		B02, B03, R4, V3, V4	
8	Registers (SISO, PISO, SIPO, PIPO)			
9-10	Basic Computer Organization: Instruction Codes, Computer Registers, Computer Instructions		B04, B05, V1, V2	
11-12	Timing and Control, Instruction Cycle	20		
13-14	Memory Reference Instructions, Input Output and Interrupt		B04, V1, V2	
15	Complete Computer Description			
16-17	Microprogrammed Control: Control Memory, Address Sequencing	8	B01, B04, V1, V2	
18-19	Micro program Example			
20-21	Central Processing Unit: Introduction, General Register Organization, Stack Organization			
22-23	Instruction Format (Three address, Two Address, one address, zero address)		B03, B05, R1, V1, V2	
24	Addressing Modes, Data Transfer and Manipulation	19		
25	Program Control: Status bits, Conditional Branch Instructions			
26	Program Interrupts & Types		B03, B05, V1, V2	
27	RISC/CISC Characteristics			
28	Pipeline Processing and Parallel processing, Flynn's Classification			
29	Pipelining General considerations	8	D02 D05 D2 V1 V2	
30	Arithmetic Pipeline, Floating point addition and subtraction, Instruction Pipeline		B03, B05, R2, V1, V2	
31	Input-Output Organization, Peripheral Devices, I/O Interface	12		

32-33	Asynchronous Data Transfer, Strobe control, Handshaking, Asynchronous serial transfer, Asynchronous serial interface, Modes of data Transfer		
34	Direct Memory Access (DMA), DMA Controller		
35-36	Input-Output Processor (IOP), CPU-IOP Communication		
37-38	Memory Organization: Memory Hierarchy, Main Memory (RAM & ROM Chips)		
39	Associative Memory: Hardware Organization		DO0 DOS DS V1 V0
40-41	Cache Memory, Associative Mapping		B03, B05, R5, V1, V2
42	Direct Mapping, Set-Associative Mapping	11	*
43	Virtual Memory		
44-45	Emerging Technologies in computer system architecture: RISC-V Open-Source Architectures, Introduction to quantum computing		B02, R6, V3, V4

9. Innovative Pedagogies:

• Collaborative learning (Annexure-I)

10. Action plan for different types of learners

Slow Learners	Average Learners	Advanced Learners
Remedial Classes	Practice Assignment (Annexure-II)	Report on current trends in Computer
		System Architecture (Annexure-III)

11. Evaluation Scheme & Components:

Evaluation Component	Type of Component	No. of Assessments	Weightage of Component	Mode of Assessment Offline/Online
Internal Component 1	Formative Assessment (FA)	01*	10%	Offline
Internal Component 2	Sessional Tests (STs)	03**	30%	Offline
External Component	End Term Examination (ETE)	01	60%	Offline
	Total		100%	

^{*}Formative assessment is mandatory

12. Details of Evaluation Components:

Evaluation Component	Description	cription Syllabus Covered (%) Timeline of Examination		Weightage (%)	
Internal Component 1	FA	Up to 40% (Lecture 1- 19)	Will be intimated one week prior	10	
= -	ST 1	Up to 40% (Lectures 1-18)	7 th Week		
Internal Component 2	ST 2	41% - 80% (Lectures 19-36)	14 th Week	30	
	ST 3	Up to 100% (Lectures 1-45)	17 th Week		
External End Term Component Examination* 100%		As Notified by the Exam Cell	60		
	Total				

^{*} Minimum 75% attendance is required to become eligible for appearing in the End Semester Examination

^{**}Out of 03 STs, best 02 ST marks will be considered to evaluate final marks.

13. Format of Evaluation Components:

Type of Assessment	Total Marks	Quiz (Closed- ended)	Assignment	1 Marks	2 Marks	5 Marks	10 Marks
Formative Assessment	20	10	10	10	-	3.0	: #::
Sessional Tests	40	84	121	5	5	3	1
End Term Examination	60	(4)) ** (5	5	5	2

14. Revision (if any):

Academic Year of Previous Version	2023-2024	Percentage of Revision	7%	
Topics:				
• Emerging Technologies in computer architecture: RISC-V Open-Source Architectures, Introduction to				
Quantum Computing (Added)				
 Design of Co 	 Design of Control Unit (Removed), as the details will be covered under Central Processing Unit. 			

15. This Document is:

Designation	Name	Signature
Prepared by Course Coordinator	Dr. Navneet Kaur	Novuetous.
Verified by Program Incharge/HoD	Dr. Hakam Singh	Foh: Rarile
Approved by Pro VC	Prof. (Dr.) Meenu Khurana	Lum
Date:	January 2, 2025	5.

Annexure-I

Sr. No	Topics
1,,	Collaborative learning: Addressing Modes

Description: Students will explore the fundamental concepts of addressing modes, focusing on their significance and applications in understanding computer organization. Through collaborative group discussions, they will deepen their understanding of how addressing modes operate within computer architecture.

Procedure:

- 1. **Group Formation:** Students will form teams of 3 to 4 members.
- 2. **Provide a common problem:** Each group will add two numbers and store the result in the register and memory locations. Each group will implement the task using different addressing modes, such as:
 - Immediate Addressing
 - Direct Addressing
 - Indirect Addressing
 - Register Addressing
 - Indexed Addressing
- 3. **Implementation:** Write assembly code, explain data processing involved in each addressing mode, and compare performance.
- 4. **Discussion:** Each group will share their findings with other groups and collaborate to determine the optimal addressing mode for specific applications.

Expected Outcomes:

- Students will develop a clear understanding of different addressing modes and their applications.
- This activity will enhance students' collaboration and problem-solving skills.

Annexure-II

Sr. No	Topics
1.0	Octal and Hexadecimal Numbers, Decimal Representation, Logic gates, combinational and
	sequential circuits, Flip Flops, Registers
Description: Students will be given a numerical based assignment focusing on the above-mentioned topics.	

Annexure-III

Sr. No	Topics	
1	Emerging technologies in computer system architecture	
Descriptions Students will write a report on emerging technologies in computer system architecture such as		

Description: Students will write a report on emerging technologies in computer system architecture such as quantum computing, edge computing, RISC-V Open-Source Architectures and neuromorphic computing.