FOL and KR Representing Knowledge in FOL

Objectives

Objective
Apply first-order logic
to representing
knowledge

Establishing the Vocabulary

Start from a textual description or diagram:

- A juvenile disease affects only children or teenagers
- Children and teenagers are not adults
- Juvenile arthritis is a kind of arthritis and a juvenile disease
- Arthritis affects some adults

Identify the important types of objects (unary FOL predicates):

 juvenile disease, child, teenager, adult, . . .

Identify the important types of relationships (n-ary FOL predicates)

- affects, . . .

Identify the important functions (none in this particular case)

Example FOL Sentences

A juvenile disease affects only children or teenagers

- ∀x∀y(JuvDisease(x) ∧ Affects(x,y) → Child(y) ∨ Teenager(y))

Children and teenagers are not adults

 $- \forall x (Child(x) \lor Teenager(x) \rightarrow \neg Adult(x))$

Juvenile arthritis is a kind of arthritis and a juvenile disease

- ∀x(JuvArthritis(x) → Arthritis(x) ∧ JuvDisease(x))

Arthritis affects some adults

 $-\exists x\exists y (Arthritis(x) \land Affects(x,y) \land Adult(y))$

Does Juvenile Disease Affect Adults?

In propositional logic:

```
JuvDisease \rightarrow AffectsChild \lor AffectsTeenager \\ Child \lor Teenager \rightarrow \neg Adult
```

```
Does not entail \underbrace{IuvDisease}_{\pm} \rightarrow \neg A\underbrace{ffectsAdu}_{\pm}lt
```

In first-order logic:

```
\forall x \forall y (JuvDisease(x) \land Affects(x,y) \rightarrow Child(y) \lor Teenager(y)) \forall x (Child(x) \lor Teenager(x) \rightarrow \neg Adult(x)) entails
```

 $\forall x \forall y (JuvDisease(x) \land Affects(x,y) \rightarrow \neg Adult(y))$

Basic Facts

Now that we have the basic vocabulary, we can acquire the data

Child(JohnSmith)	John Smith is a child
JuvenileArthritis(JRA)	JRA is a juvenile arthritis
¬Affects(JRA, MaryJones)	Mary Jones not affected by JRA

Usually data consists of (possibly negated) atoms

But data can also reflect more complex information:

Child(JohnSmith) v Child(MaryJones)	Either John or Mary is a child

Terminological Axioms

Sentences describing the general meaning of predicate and function symbols (independently of the concrete data)

Sub-type statements

- ∀x(JuvArthritis(x) → Arthritis(x))

Full definitions

 $- \forall x(JuvArthritis(x) \leftrightarrow Arthritis(x) \land JuvDisease(x))$

Disjointment statements:

- ∀x ($Child(x) \rightarrow \neg Adult(x)$)

Terminological Axioms, cont'd

Covering statements:

 $- \forall x (Person(x) \rightarrow Adult(x) \lor Child(x) \lor Teenager(x))$

Type restrictions:

 $- \forall x \forall y (Affects(x, y) \rightarrow Arthritis(x) \land Person(y))$

Other general statements:

- ∀x ∀y (JuvDisease(x) ∧ Affects(x,y) → Child(y) ∨ Teenager(y))

Data vs. Terminological Knowledge

The Data describes specific objects

- Sentences without variables or quantifiers (usually atoms)
- Terminological axioms describe general properties of the application domain, independently of the data
 - Universally quantified sentences with no constants

This separation is not theoretically "clean" in FOL:

- $\forall y (Affects(JRA, y) \rightarrow Child(y) \lor Teenager(y))$
- $\forall x (Cont(x) \rightarrow (x = Eur) \lor (x = Asia) \lor (x = Amer)$ $\lor (x = Afr) \lor (x = Aus) \lor (x = Antart))$
- Set of Terminological Axioms often called an Ontology
- Ontology + Data often called a Knowledge Base

The Role of Reasoning

Why are reasoning problems (satisfiability, entailment) useful?

- Detect errors
 - ⇒ Knowledge base becomes unsatisfiable
 - ⇒ We get an unintuitive (and "wrong") entailment
 - ⇒ We don't get an intuitive (and "right") entailment
- Discover new knowledge
 - ⇒ Things we weren't aware we knew
- Richer query answers ⇒ Retrieve more (relevant) data

The Role of Reasoning

Without reasoning, knowledge engineering becomes unfeasible

- Knowledge bases grow very large (1,000s of sentences)
- Errors are difficult to detect manually
- Query answers do not take knowledge into account

Expressivity vs. Complexity

THEOREM: FOL satisfiability is an undecidable problem: there is no procedure that given any set of first order sentences S:

- Always terminates
- Returns true if and only if S is satisfiable

So should we just give up (reasoning is intractable)?

- MAYBE!

Highly optimized FOL theorem provers are effective in practice

But still can't cope with realistic KR problems

Limitations of FOL

FOL is powerful, but still can't capture

- Transitive closure (Ancestor is the transitive closure of Parent)
- Defaults and exceptions (Birds fly by default; Penguins are an exception)
- Probabilistic knowledge (Children suffer from JRA with probability x)
- Vague knowledge (lan is Tall) ...

We will return to some of these issues later in the course

Wrap-Up

