0.1 Matrices of Linear Transformations

Definition Let $T:V\to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Take ordered bases $B_1=\{v_1,v_2,\ldots,v_n\}$ for V and $B_2=\{w_1,w_2...,w_m\}$ for W. Then each vector $T(v_i)$ in W is expressed uniquely as a linear combination of the vectors $w_1,w_2...,w_m$ in the basis B_2 for W, say

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

or, in short form

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i, 1 \le j \le n$$

for some scalars a_{ij} , (i = 1, ..., m; j = 1, ..., n).

Remark: Notice the indexing order of a_{ij} in this expression.

Theorem Let $T:V\to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. For fixed ordered bases B_1 for V and B_2 for W, the coordinate vector $[T(v)]_{B_2}$ of T(v) with respect to B_2 is given as a matrix product of the associated matrix $[T]_{B_1}^{B_2}$ of T and $[v]_{B_1}$ ie.,

$$[T(v)]_{B_2} = [T]_{B_1}^{B_2} [v]_{B_1}$$

The associated matrix $[T]_{B_1}^{B_2}$ is given as

$$[T]_{B_1}^{B_2} = [[T(v_1)]_{B_2} [T(v_2)]_{B_2} \dots [T(v_n)]_{B_2}]$$

The coordinate vector $[T(v)]_{B_2}$ of T(v) with respect to the basis B_2 can be written as a column vector

$$[T(v_j)]_{B_2} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

Now for any vector $v \in V$, we have scalars $x_1, x_2..., x_n$ such that

$$v = \sum_{j=1}^{n} \alpha_{j} v_{j}$$

$$\Rightarrow T(v) = T(\sum_{j=1}^{n} \alpha_{j} v_{j})$$

$$= \sum_{j=1}^{n} \alpha_{j} T(v_{j})$$

$$= \sum_{j=1}^{n} \alpha_{j} \sum_{i=1}^{m} a_{ij} w_{i}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{j} a_{ij}\right) w_{i}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \alpha_{j}\right) w_{i}$$

Therefore, the coordinate vector of T(v) with respect to the basis B_2 is

$$[T(v)]_{B_2} = \begin{bmatrix} \sum_{j=1}^n a_{1j} \alpha_j \\ \sum_{j=1}^n a_{2j} \alpha_j \\ \vdots \\ \sum_{j=1}^n a_{mj} \alpha_j \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = [T]_{B_1}^{B_2} [v]_{B_1}$$

where $[v]_{B_1} = [x_1, x_2, \dots, x_n]^T$ is the coordinate vector of v with respect to the basis B_1 in V. (In this sense, we say that matrix multiplication by A represents the transformation T.)

Remark: Note that $A = [a_{ij}]_{m \times n} = [T]_{B_1}^{B_2}$ is the matrix whose column vectors are just the coordinate vectors $[T(v)]_{B_2}$ of T(v) with respect to the basis B_2 .

Remark: Moreover, for the fixed bases B_1 for V and B_2 for W, the matrix A associated with the linear transformation T with respect to these bases is unique, because the coordinate expression of a vector with respect to a basis is unique. Thus, the assignment of the matrix A to a linear transformation T is well-defined.

Definition The matrix A is called the associated matrix for T (or matrix representation of T) with respect to the bases B_1 and B_2 , and denoted by $A = [T]_{R_1}^{B_2}$.

Example Let $T : \mathbb{R}^2 \to \mathbb{R}$ be the linear transformation defined by T(x,y) = (x+2y,0,2x+3y) with respect to the standard bases B_1 and B_2 for \mathbb{R}^2 and \mathbb{R}^3 , respectively. Then

$$T(e_1) = T(1,0) = (1,0,2) = 1e_1 + 0e_2 + 2e_3,$$

 $T(e_2) = T(0,1) = (2,0,3) = 2e_1 + 0e_2 + 3e_3.$

Hence,
$$[T]_{B_1}^{B_2} = \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ 2 & 3 \end{bmatrix}$$
.

If
$$B_{2'} = \{e_3, e_2, e_1\}$$
, then $[T]_{B_1}^{B_2'} = \begin{bmatrix} 2 & 3 \\ 0 & 0 \\ 1 & 2 \end{bmatrix}$.

Example Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by T(x,y) = (2x+3y,4x-5y). Then

- 1. Find the matrix representation of T relative to the basis $B = \{u_1, u_2\} = \{(1, 2), (2, 5)\}.$
- 2. Find the matrix representation of T relative to the (usual) basis $E = \{e_1, e_2\} = \{(1, 0), (0, 1)\}.$

Solution

• First we find $T(u_1)$, and then write it as a Linear combination of the basis vectors u_1 and u_2 . (For notational 1. convenience, we use column vectors.)

We have
$$T(u_1) = T\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}\right) = \begin{bmatrix} 8 \\ -6 \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{array}{c} x + 2y = 8 \\ 2x + 5y = -6 \end{array}$$

Solving the system we get, x = 52, y = -22. Hence $T(u_1) = 52u_1 - 22u_2$.

• Next we find $T(u_2)$, and then write it as a Linear combination of the basis vectors u_1 and u_2 .

We have
$$T(u_2) = T\left(\begin{bmatrix} 2 \\ 5 \end{bmatrix}\right) = \begin{bmatrix} 19 \\ -17 \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{array}{c} x + 2y = 19 \\ 2x + 5y = -17 \end{array}$$

Solving the system we get, x = 129, y = -55. Hence $T(u_2) = 129u_1 - 55u_2$.

Now we write coordinate of $T(u_1)$ and $T(u_2)$ as column to get the matrix representation of T corresponding to the

basis
$$B = \{u_1, u_2\}$$

 $\Longrightarrow [T]_B = \begin{bmatrix} 52 & 129 \\ -22 & -55 \end{bmatrix}$.

2. Now we find $T(e_1)$, and then write it as a Linear combination of the usual basis vectors e_1 and e_2 and then find $T(e_2)$, and then write it as a Linear combination of the usual basis vectors e_1 and e_2

$$T(e_1) = T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2T(e_1) + 4T(e_2)$$

$$T(e_2) = T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 3 \\ -5 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 0 \end{bmatrix} - 5\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3T(e_1) - 5T(e_2)$$

 $T(e_2) = T\left(\left[\begin{array}{c} 0 \\ 1 \end{array}\right]\right) = \left[\begin{array}{c} 3 \\ -5 \end{array}\right] = 3\left[\begin{array}{c} 1 \\ 0 \end{array}\right] - 5\left[\begin{array}{c} 0 \\ 1 \end{array}\right] = 3T(e_1) - 5T(e_2)$ Now we write coordinate of $T(e_1)$ and $T(e_2)$ as column to get the matrix representation of T with respect to the standard

basis
$$E = \{e_1, e_2\}$$

 $\Longrightarrow [T]_E = \begin{bmatrix} 2 & 3 \\ 4 & -5 \end{bmatrix}$.

Example: Let V be the vector space of functions with basis $B = \{sint, cost, e^{3t}\}$, and let $T: V \to V$ be the differential operator defined by $T(f(t)) = \frac{d(f(t))}{dt}$. Fins the matrix representation of T.

Solution: We compute the matrix representing T in the basis B.

$$D(sin(t)) = cos(t) = 0(sin(t)) + 1(cos(t)) + 0(e^{3t})$$

$$D(cos(t)) = -sin(t) = -1(sin(t)) + 1(cos(t)) + 0(e^{3t})$$

$$D(e^{3t}) = 3e^{3t} = 0(sin(t)) + 0(cos(t)) + 3(e^{3t})$$

$$\implies \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Remark: Note that the coordinates of $T(sin(t)), T(cos(t)), T(e^{3t})$ form the columns, not the rows, of $[T]_B$.

Matrix Mappings and Their Matrix Representation

Example: Consider the following matrix A, which may be viewed as a linear operator on \mathbb{R}^2 , and basis B of \mathbb{R}^2 defined as $A = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix}$, $B = \{u_1, u_2\} = \{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix}\}$ Find the matrix representation of A relative to the basis B.

Solution: First we write $A(u_1)$ as a linear combination of u_1 and u_2 . We have, $A(u_1) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ -6 \end{bmatrix} =$

$$x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + y \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{array}{l} x + 2y = & -1 \\ 2x + 5y = & -6 \end{array}$$
Solving the above system we get, $x = 7, y = -4$. Hence $A(u_1) = 7u_1 - 4u_2 = 7 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 5 \end{bmatrix}$. Hence coordinate vectors of

 Au_1 corresponding to basis B are given by $\begin{vmatrix} 7 \\ -4 \end{vmatrix}$.

Next we write $A(u_2)$ as a linear combination of u_1 and u_2 . We have, $A(u_2) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -4 \\ -7 \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix} + x \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Solving the above system we get, x = -6, y = 1. Hence $A(u_2) = -6u_1 + u_2 = -6\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ Hence coordinate vectors of Au_2 corresponding to basis B are given by $\begin{bmatrix} -6\\1 \end{bmatrix}$.

Writing the coordinate vectors of $A(u_1)$ and $\tilde{A}(u_2)$ as column vectors, we get the matrix representation of $A : \Longrightarrow [A]_B =$

Remark: Suppose we want to find the matrix representation of A relative to the usual basis $E = \{e_1, e_2\} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$

$$A(e_1) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 4 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3e_1 + 4e_2$$

$$A(e_2) = \begin{bmatrix} 3 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -5 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -2e_1 - 5e_2$$
Writing the coordinate vectors of $A(e_1)$ and $A(e_2)$ as column vectors, we get the matrix representation of $A. \implies [A]_E = 0$

Note that $[A]_E$ is the original matrix A. This result is true in general: The matrix representation of any $n \times n$ square matrix A over a field of real numbers relative to the usual basis E of \mathbb{R}^n is the matrix A itself; that is, $[A]_E = A$

Steps for finding matrix representations

The first Step 1 is optional. It may be useful to use it in Step 2(b), which is repeated for each basis vector. The input is a linear operator T on a vector space V and a basis $B = \{u_1, u_2, \dots, u_n\}$ of V. The output is the matrix representation $[T]_B$ of T.

- 1. Find a formula for the coordinates of an arbitrary vector V relative to the basis B.
- 2. Repeat for each basis vector u_i i = 1, 2, ..., n in B:
 - (a) Find $T(u_i)$.
 - (b) Write $T(u_i)$ as a linear combination of the basis vectors u_1, u_2, \ldots, u_n
- 3. Form the matrix $[T]_B$ whose columns are the coordinate vectors in Step 2(b).

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (2x+3y, 4x-5y), relative to the basis $B = \{u_1, u_2\} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix} \right\}$

(Step 1) First find the coordinates of any arbitrary vector
$$(a,b) \in \mathbb{R}^2$$
 relative to the basis B . We have $\begin{bmatrix} a \\ b \end{bmatrix} = x \begin{bmatrix} 1 \\ -2 \end{bmatrix} + y \begin{bmatrix} 2 \\ -5 \end{bmatrix} \Rightarrow \begin{array}{c} x+2y=a \\ -2x-5y=b \end{array} \Rightarrow \begin{array}{c} x+2y=a \\ -y=2a+b \end{array}$ Solving for x and y in terms of a and b yields $\begin{array}{c} x=5a+2b \\ y=-2a-b \end{array}$. Thus

$$\left[\begin{array}{c} a \\ b \end{array}\right] = (5a + 2b) \left[\begin{array}{c} 1 \\ 2 \end{array}\right] + (-2a - b) \left[\begin{array}{c} 2 \\ 5 \end{array}\right]$$

(Step 2) Now we find $T(u_1)$ and write it as a linear combination of u_1 and u_2 using the above formula for $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and then we repeat the process for $T(u_2)$. We have $T(u_1) = T(\left(\begin{bmatrix} & 1 \\ -2 & \end{bmatrix}\right) = \begin{bmatrix} -4 \\ -14 & \end{bmatrix} = 8 \begin{bmatrix} 1 \\ 2 & \end{bmatrix} - 6 \begin{bmatrix} 2 \\ 5 & \end{bmatrix} = 8u_1 - 6u_2$ $T(u_2) = T(\left(\begin{bmatrix} & 2 \\ -5 & \end{bmatrix}\right) = \begin{bmatrix} & -11 \\ & 33 & \end{bmatrix} = 11 \begin{bmatrix} & 1 \\ & 2 & \end{bmatrix} - 11 \begin{bmatrix} & 2 \\ & 5 & \end{bmatrix} = 11u_1 - 11u_2$ (Step 3) Finally, we write the coordinates of $T(u)_1$ and $T(u)_2$ as columns to obtain the required matrix $[T]_B$ as

$$T(u_2) = T(\left(\begin{bmatrix} 2 \\ -5 \end{bmatrix}\right) = \begin{bmatrix} -11 \\ 33 \end{bmatrix} = 11 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - 11 \begin{bmatrix} 2 \\ 5 \end{bmatrix} = 11u_1 - 11u_2$$

$$\Longrightarrow [A]_B = \begin{bmatrix} 8 & 11 \\ -6 & -11 \end{bmatrix}.$$

Example : Consider the linear operator T on \mathbb{R}^2 and the basis T of last example that is, T(x,y) = (2x + 3y, 4x - 5y) and $B = \{u_1, u_2\} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \end{bmatrix} \right\}$, Let $v = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$, and so $T(v) = \begin{bmatrix} 11 \\ -55 \end{bmatrix}$ Using the formula from last example, we get $[v]_B = \left[egin{array}{c} 11 \\ -3 \end{array}
ight] ext{ and } [T(v)]_B = \left[egin{array}{c} 55 \\ -33 \end{array}
ight] ext{ verify } [T]_B[v]_B = [T(v)]_B ext{ for this vector } v ext{ (where } [T] ext{ is obtained from last example)}.$ $[T]_B[v]_B = \begin{bmatrix} 8 & 11 \\ -6 & -11 \end{bmatrix} \begin{bmatrix} 11 \\ -3 \end{bmatrix} = \begin{bmatrix} 55 \\ -33 \end{bmatrix} = [T(v)]_B.$