Open-Source IC Design Workshop

1.3 Open-source analog design tools

Jorge Marin N., PhD

Research Associate, AC3E-UTFSM

UCU, Montevideo, Uruguay – June 30, 2025

Agenda

- Introduction
- Open-source analog design tools
- Simulation examples

IC design: from manual to automated

< 1990s → fully manual chip design!

> 1990s → EDA tools

FOSS 130nm Production PDK github.com/google/skywater-pdk

IHP-GmbH/IHP-Open-PDK-docs

Documentation for IHP 130nm BiCMOS Open Source PDK

> > 2020 → Opensource EDA tools and PDKs

Analog vs digital design flows

IC design flow: digital versus analog

DIGITAL FLOW

Current distribution version 8.2

Silicon-proven analog IC design

[RAZAVI, IEEE SSCMAG 2024]

Silicon-proven analog IC design

This workshop's plan

Open-Source Analog Design

Tradeoffs in analog design

Analog block example: Miller OTA

[B. Razavi]

Performance is limited by the tradeoff in target specifications

Schematic design and simulation

- Relevant tools
 - Xschem

 schematic entry and netlist generation
 - Ngspice → simulation based on netlist generated by Xschem
- Visualization
 - Ngspice window → quick checks
 - GAW → integrated in Xschem
 - External viewer through raw data (e.g. Python script)

Simulation types

- DC → analysis of the circuit operating point
- Transient → time-domain behaviour
- AC → frequency sweep
- Noise \rightarrow simulation of device intrinsic noise
- And others...

Ngspice manual will become your best friend! https://ngspice.sourceforge.io/docs/ngspice-manual.pdf

Xschem GUI basics part 1

www.xschem.sourceforge.io

Simulation scope

Mismatch

 Nominal Ideal simulation without considering many fabrication effects

lib cornerCAP.lib cap typ

- P(VT) corners
 Considers global process variation (P) and environment
 (Voltage, temperature, T)
 lib cornerMOSIv.lib mos_tt
 lib cornerRES.lib res_typ
- Considers local statistical variation among devices

 -> See examples in /ont/pdks/ihp-
 - → See examples in /opt/pdks/ihpsg13g2/libs.tech/xschem/sg13g2_tests/mc_*.sch
- Parasitic extraction/ post layout simulations
 Components associated to extrinsic structures (metallization)

Simulation examples

Clone Workshop repo

- Set PDK to IHP 130nm → INSIDE Docker:
 - → Is /opt/pdks/ → see installed PDKs
 - → set_pdk ihp-sg13g2

```
designer ~
$ set_pdk ihp-sg13g2
PDK set to ihp-sg13g2
```

- OUTSIDE Docker:
 - → cd [YOUR_INSTALL_FOLDER]\uniccass-icdesign-tools\shared_xserver\
 - → git clone https://github.com/JorgeMarinN/OS_AnalogIC_UCU_July2025

Example #1: Basic inverter

- Github link:
- → https://github.com/JorgeMarinN/OS_AnalogIC_UCU_July2025/blob/main/Day1/tb_inv_1_manual.sch

Example #2: RC constant calculation

Source: https://www.electronics-tutorials.ws/rc/rc_1.html

Example #2: RC constant calculation

- Github link:
- → https://github.com/JorgeMarinN/OS AnalogIC UCU July2025/blob/main/Day1/rc-ext circuit.sch
- → https://github.com/JorgeMarinN/OS AnalogIC UCU July2025/blob/main/Day1/cgate-ext circuit.sch

Example #3: ring oscillator

• Github link:

→https://github.com/JorgeMarinN/OS_AnalogIC_UCU_July2025/blob/main/Day1/tb_3stage_RO.sch

```
s1
                       vvcc vcc 0 dc 1.8
                       vvss vss 0 0
                       .option temp = 200
   TT MODELS
                       .ic v(V 1) = 0
                       .ic v(V 2) = 1.8
                       .control
                          tran 10p 10n
                          *wrdata [your path]/TT 3stage RO v1p1.txt v(V 1)
                          plot v(V 1) v(V 2) v(V 3)
                        .endc
V_1
```

Education using AMS design OS tools

- Traditional IC design flows are not designed for educational purposes
 - The wide variety of tools and workflows can be overwhelming for beginners
 - High costs and restricted PDK availability limit accessibility
 - Limited documentation and minimal community-driven collaboration hinder learning
- Tapeout courses require significant budgets, making them inaccessible to many universities and regions
- IC design environments have traditionally been restrictive
 - Strict NDAs restrict access to essential resources
 - Information sharing is trust-based and highly limited
 - However, this landscape is rapidly evolving, opening new opportunities for education!

Removing barriers: knowledge base

- JKU's "Analog Circuit Design course" → https://github.com/iic-jku/analog-circuit-design
 - Fully-open content for intermediate-level MOSFET circuit design course
 - Based on Xschem and Ngspice examples + IHP technology
 - Uses JKU's IIC-OSIC-TOOLS Docker
- University of Hawai'i's "Analysis and Design of Integrated Circuits" tapeout course → https://github.com/bmurmann/EE628
 - Open content for lectures and assignments
 - Design of a Sigma-delta converter using OS design flow + IHP technology

Removing barriers: knowledge base

- MANY other sources:
 - Carsten Wulff's course:
 https://youtube.com/playlist?list=PLybHXZ9FyEhbm9-A3QR1NRlt6VxeTXYr5&si=31ccv4rhnWpso_Ci
 - Angel Abusleme's course [in Spanish]:
 https://youtube.com/playlist?list=PLDYu8HgBbvRFf2PahRmg4ABDxRN60 ujKQ&si=jnnEGgbled8ik8av
 - Tiny tapeout: https://tinytapeout.com/specs/analog/
 - [NEW] IHP Analog Academy: https://github.com/IHP-GmbH/IHP-AnalogAcademy

Thank you! Questions?