The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. However, readability is more than just programming style. Use of a static code analysis tool can help detect some possible problems. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Scripting and breakpointing is also part of this process. Following a consistent programming style often helps readability. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. However, Charles Babbage had already written his first program for the Analytical Engine in 1837. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Code-breaking algorithms have also existed for centuries. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. It affects the aspects of quality above, including portability, usability and most importantly maintainability. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Code-breaking algorithms have also existed for centuries. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs.