Who Needs Users? Just Simulate Them!

Chris Harland:: Data Scientist:: Context Relevant:: @cdubhland

(work done while at Microsoft)

Me (Data Scientist):

Not a production programmer...

Them (Devs):

"Real" programmers

Problem:

Experimentation platforms need both

I claim unit testing is a place we can all "agree"

Who needs experimentation?

Well...we do

It is how we (as in humans) establish causality

In [306]: Image(filename='bloodletting.jpg', width = 300)

Out[306]:

The Burns Archive - Burns Archive via Newsweek, 2.4.2011

In [307]:

Image(filename='stiff_cover.jpg')

Out[307]:

Experimentation helps us find the truth in crazy situations

A/B testing

In [406]: Image(filename='A-B_testing.png')

Out[406]:

Group A Boring Site

Random
Split

Group B Sweet Site

Front Page
HN

A/B testing (a bit more complicated than you think...)

In [407]: Image(filename='real_testing.jpg')

Out[407]:

Homework Machine - A Light in the Attic - Shell Silverstein

I'm confused...

In [315]: Image(filename='ab_flame_1.png', width = 700)

Out[315]:

How Optimizely (Almost) Got Me Fired

I'm confused...

In [316]:

Image(filename='ab_flame_2.png', width = 700)

Out[316]:

A/A Testing: How I increased conversions 300% by doing absolutely nothing

FEBRUARY 12 2015 - 07:45AM

A/B testing simultaneously:

- lifts companies to the pinnacle of optimization
- is a complete waste of time and never works

A peek into my bias:

Experimentation is the story of three logs:

- 1. Treatment Assignment
- 2. Exp Platform
- 3. Product

Together these comprise the **execution** not the **analysis**

Reality: Logs:: Scientific Truth: Scorecard

So where should we start?

Assume you have a platform (of some kind) and a product (of some kind)

Common stumbling blocks:

- Bucketing (random numbers are hard)
- Scorecarding (counting, aggregating, and stats)

It's possible to avoid some "pitfalls"

Critical to know your platform works because users are wacky

What might a unit test look like?

```
In [6]: # code mock up
def test_bucket_split(self):
    # Ensure that user bucketing created two equivalent groups
    for metric in self.important_metrics:
        assert abs(self.group_a[metric] - self.group_b[metric]) < self.tolerance</pre>
```

But where get these magical groups?

Make fake humans

Users are a collection of log lines

Skip the users and just get to the log lines

Anatomy of a log line:

- 1. Human visits
- 2. Human has choice (often influenced by treatment...you hope)
- 3. Human makes choice
- 4. (Optional) Human repeats 2 and 3 additional times

Logs are **generated** by a **process**

Abstract the process

- 1. Present a choice (probability distribution, computer know what these are)
- 2. Draw from that distribution (nice...a computer can do this)
- 3. Given the draw, present a second choice (another probability distribution, possibly different)
- 4. Draw again (hey a computer can do this too)
- 5. Repeat (oh you bet a computer can do this)

Simple process but it captures the essence of the log generation process

The layering of draws and choice of distributions inject flexibility and complexity

Present a choice and then make it...

```
In [410]: # if you like python 2.7 you can high five me @cdubhland
    # if you are stunned by my lack of commitment to python 3
# you can send complaints to @joelgrus
    from __future__ import division
    from scipy import stats
    import numpy as np

def get_bernoulli_trial(p, n = 1):
        """ return a bernoulli trial of success or failure with probability p """
        return stats.bernoulli.rvs(p = p, size = n)
In [416]: p = 0.5
    n_trials = 10000
    print 'Expected p ~ %0.2f and obtained p = %0.2f' % \
        (p,np.mean(get_bernoulli_trial(p,n_trials)))
# We expect result to be near p
```

Expected $p \sim 0.50$ and obtained p = 0.50

But all decisions aren't this simple =/

Luckily math can bail us out

```
In [417]: # We can make the probability of success a random variable
          def get beta result(a,b, n = 1):
               """ takes a draw from beta(a,b) used to simulate random rates """
              return stats.beta.rvs(a,b, size = n)
          # We can model a collection of user behaviors
          def get expon result(mu, lambda, n = 1):
               """ takes a draw from a exponential(mu, lambda) """
              return stats.expon.rvs(mu, lambda, size = n)
          # We can model the collective results of many choices
          def get exp result(n,p, size = 1):
               """ return the outcome of n bernoulli trials with probability p """
              return stats.binom.rvs(n = n, p = p, size = size)
          # Maybe the users visit at different frequencies
          def gen user visit freq(n users = 100, lambda = 2):
               """ return the total number of visits in a set time delta for the number of given
          users """
              return stats.poisson.rvs(mu = lambda, size = n users)
```

Simple user click stream log

- Imagine a user comes to your site (this can be a probability)
- User executes a bernoulli trial with probability p
 - (where p is the "click through rate")
- If the user had a successful trial call another bernoulli trial with probability q
 - where q is the conditional "conversion rate" P(conv|user, click)
- Logthisas Timestamp, user_id, impression, click, conversion
 - Timestamp can be draw from distribution of average gap times or assigned sequential

```
In [357]: def gen impression(p imp = 1.0, p click = 0.5, p convert = 0.5):
               """ This function generates an impression, click, conversion based
               on probabilities defined by the input parameters """
               impression = get bernoulli trial(p imp)[0]
               # Note: to speed this up would could draw all trials at once
               # and post process the results to make the outcomes conditional
               if impression == 1:
                   did click = get bernoulli trial(p click)[0]
                   # For now we assume only those that click can convert
                   if did click == 1:
                       did convert = get bernoulli trial(p convert)[0]
                   else:
                       # Optionally this could be a bernoulli with a different p
                       # (i.e. the base rate)
                       did convert = 0
                   imp arr = [impression, did click, did convert]
                   return imp arr
               else:
                   return None
           [gen_impression() for _ in range(10)]
In [358]:
Out[358]: [[1, 1, 0],
            [1, 1, 1],
            [1, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [1, 1, 0],
            [1, 1, 0],
            [1, 1, 1],
            [1, 0, 0],
            [1, 1, 0]]
```

Let's get a tiny bit fancy and make this into a real log

Out[360]:

```
In [359]:
          import datetime
          def gen log line(uid, t current = datetime.datetime.now(), p imp = 1.0, p click = 0.5,
          p convert = 0.5):
               """ Get a log line for the given user and return with timestamp
               and impression info """
               imp = gen impression(p imp, p click, p convert)
               if imp is None:
                   return None
               else:
                   # add a random t delta
                   delta sec = stats.norm.rvs(loc = 300, scale = 100)
                   t = t current + datetime.timedelta(0,delta sec)
                   timestamp = t .strftime('%Y-%m-%d %I:%M:%S%p')
                   log line = [timestamp, uid] + imp
                   return log line, t
In [360]: | gen log line('Trey Causey')[0]
           ['2015-07-23 09:55:31PM', 'Trey Causey', 1, 0, 0]
```

Heck like a really real log

```
In [422]: import hashlib
import pandas as pd

def create_hash_id(user, salt):
    """ returns a shal hash of user string combined with salt string """
    return hashlib.shal(salt + '_' + repr(user)).hexdigest()

col_names = ['timestamp','user_id','impression','click','conversion']
    user_hash = create_hash_id('Trey Causey', 'Spurs always let you down')
    single_log = [gen_log_line(user_hash)[0] for x in range(10)]
    pd.DataFrame(single_log, columns = col_names).sort('timestamp') \
    .reset_index(drop = True).head()
```

Out[422]:

	timestamp	user_id	impression	click	conv
0	2015-07-23 09:54:01PM	a925ced33b93ee92d0f2f0763169363bf0429ce8	1	0	0
1	2015-07-23 09:54:09PM	a925ced33b93ee92d0f2f0763169363bf0429ce8	1	1	1
2	2015-07-23 09:55:26PM	a925ced33b93ee92d0f2f0763169363bf0429ce8	1	0	0
3	2015-07-23 09:56:32PM	a925ced33b93ee92d0f2f0763169363bf0429ce8	1	1	1
4	2015-07-23 09:57:24PM	a925ced33b93ee92d0f2f0763169363bf0429ce8	1	0	0

But wait...there's more!

In general the formula is:

- Encapsulate a behavior in a probability distribution
 - Poisson for distinct events
 - Exponential for time between those events
 - Binomial for total wins
 - Beta to make random probabilities
 - Normal because it's popular
- Chain those distributions together to form an impression
- Vary the parameters within each chain to generate diversity

The simplicity is deceptive

(this is bayesian stat testing backwards)

So what's the test?

Find the "unknown" parameters

Simulated logs are noisy instantiations of your supplied parameters

In other words, you put a number into the function and it spit out a ton of hand wavey examples

Your task (well, the dev's task) is to recover that parameter (within reason)

Revisiting the A/A unit test

```
In [425]: # code mock up
          def test bucket split(df a, df b, metric):
              # Ensure that user bucketing created two equivalent groups
              assert get pval(df a, df b, metric) > 0.05
          ## Want to "recover" p > 0.05
In [426]: p click control = 0.1
          p convert control = 0.1
          n users = 1000
          n rows = 10000
          # Going to hand wave this function
          df a = simulate_log_vectorized(n_users = n_users,
                                          n rows=n rows,
                                          p click=p click control,
                                          p convert=p convert control,
                                          strict = False)
          df b = simulate log vectorized(n users = n users,
                                          n rows=n rows,
                                          p click=p click control,
                                          p convert=p convert control,
                                          strict = False)
```

In [427]: df_a.head(3)

Out[427]:

	timestamp	user_id	impression	click	convei
0	2015-07- 23 22:54:32	36d1aa3c1f2e3d70773a515fb8e25a893b1c9cc4	1	1	1
1	2015-07- 23 23:02:34	bbb4ffd47f8a208b45b25fdcbe19621c54d3e708	1	0	0
2	2015-07- 23 23:06:50	03620c311efe60f0c5f2ecf3a6527c74f15ac3e1	1	0	0

In [428]: df_b.head(3)

Out[428]:

	timestamp	user_id	impression	click	conve
0	2015-07- 23 22:51:28	49f321d4e896801e89017eae82bfb38e7f2f4453	1	0	0
1	2015-07- 23 22:58:24	2ca19d39f8a02e3fad0be9fc235e4c26e3134f58	1	0	0
2	2015-07- 23 22:59:15	52ea203591b61224d62293ec387985efa722f54f	1	0	0

Sweet no AssertionError

In [430]: test_bucket_split(df_a, df_b, 'click')

Why am I so wary of random number generators?

In [488]: Image(filename = 'reagan.jpg', width = 500)

Out[488]:

But now let's make it "real"

```
In [434]: # We often test many metrics
def add_metrics(n_metrics, df_a, df_b):
    for i in range(n_metrics):
        p = np.random.rand()
        # same p for both groups...should be equal
            df_a.loc[:,'metric_%d'%i] = get_bernoulli_trial(p = p, n = len(df_a))
            df_b.loc[:,'metric_%d'%i] = get_bernoulli_trial(p = p, n = len(df_b))
        return df_a, df_b

# We can make a factory of fails
def aa_fail_o_tron(df_a, df_b, n_metrics):
        # add some metrics to the pile
        df_a_mod, df_b_mod = add_metrics(n_metrics, df_a, df_b)

# Check that all metrics come back not significant
    for i in range(n_metrics):
        test_bucket_split(df_a_mod, df_b_mod, 'metric_%d' % i)
```

```
Traceback (most recent call last)
AssertionError
<ipython-input-441-285f47eed67d> in <module>()
---> 1 aa fail o tron(df a, df b, 10) # won't always fail
<ipython-input-434-2600a27db96f> in aa_fail_o_tron(df_a, df_b, n_metrics)
           # Check that all metrics come back not significant
     15
           for i in range(n metrics):
     16
               test bucket split(df a mod, df b mod, 'metric %d' % i)
---> 17
<ipython-input-425-20bf50b24619> in test bucket split(df a, df b, metric)
      2 def test bucket split(df a, df b, metric):
           # Ensure that user bucketing created two equivalent groups
           assert get pval(df a, df b, metric) > 0.05
---> 4
      6 ## Want to "recover" p > 0.05
```

In [441]: aa fail o tron(df a, df b, 10) # won't always fail

AssertionError:

Be a good coder...pass those tests

Quickly on aggregation

How should we properly aggregate raw logs before hitting them with stats stick?

Example:

How do you calculate the average page click rate per user?

I see alot of this:

df.click.mean()

Don't do that

Again...real log stuff looks more like

User level click average: 0.108

Oh but it gets important

Let's say your awesome experiment lifts heavy users CTR ~10%

```
In [482]:
          df heavy users moved = simulate log vectorized(n users = 10,
                                                    n rows= 50000,
                                                    p click=0.88,
                                                    p convert=0.1,
                                                    strict=False)
          df users moved = pd.concat([df heavy users moved, df light users])
In [483]: print 'Impression level click average: %0.3f' % df users moved.click.mean()
          print 'User level click average: %0.3f' % df users moved.groupby('user id').click.mea
          n().mean()
          Impression level click average: 0.752
          User level click average: 0.109
In [484]:
          click report(df users, df users moved)
          Impression level control average: 0.684
          Impression level treatment average: 0.752
          Lift: 0.10
          User level control click average: 0.108
          User level treatment click average: 0.109
          Lift: 0.01
```

Works the other way too

Let's say 10% of your light users exhibited a 10% lift

```
In [485]: df heavy users = simulate log vectorized(n users = 10,
                                                    n rows= 50000,
                                                    p click=0.8,
                                                    p convert=0.1,
                                                    strict=False)
          df stubborn light users = simulate log vectorized(n users = 900,
                                                             n rows= 9000,
                                                             p click=0.1,
                                                             p convert=0.1,
                                                             strict=False)
          df cooperative light users = simulate log vectorized(n users = 100,
                                                                n rows= 1000,
                                                                p click=0.11,
                                                                p convert=0.1,
                                                                 strict=False)
          df users le sigh = pd.concat([df_heavy_users,
                                         df stubborn light users,
                                         df cooperative light users])
```

```
In [486]: click_report(df_users, df_users_le_sigh)

Impression level control average: 0.684
Impression level treatment average: 0.684
Lift: 0.00

User level control click average: 0.108
User level treatment click average: 0.110
Lift: 0.02

Impression level rollups aren't sensitive enough =/
Unit test for sensitivity (too much or too little)
```

Avoid making ship mistakes

```
In [1]: def correct_rollup(df, injected_lift, ratio):
    # ratio - fraction of users effected by injected_lift

# calculate the user level lift
    user_lift = user_level_lift(df)
    impression_level_lift = impression_level_lift(df)

# Example case: ratio < 1.0 and injected_lift >= 0.10
    assert user_lift < impression_level_lift</pre>
```

Some stuff to think about

- Unit testing is common ground
- Log simulation is surprisingly accurate and useful
- A/B testing pitfalls lurk in every part of your stack (fear monger)
- Users are wacky...prepare yourself for them

Who Needs Users? Just Simulate Them!

Chris Harland:: Data Scientist:: Context Relevant:: @cdubhland