产品目录		Δ
,		
—		
,	FR)	
1.1 嵌入式和	程序存储器	17
1.2 IO □		17
1.3 指令时针	钟周期选择	17
1.4 时钟输出	出选择	18
1.5.1 硬	件复位功能	18
	件复位功能	
	et status	
	Access Key register (TAKEY)	
	:件复位寄存器(SWRES)	
	nple of software reset	
- 14 1.15 1.1.1.4	诸器	
	^{设设}	
	存-低 128 字节(00h to 7Fh)	
	诸器-高 128 字节(80h to FFh)	
	扩展的 256 字节(\$00 到 \$FF)	
	U	
4.3 程序状态	太字	28
4.4 堆栈指钩		28
4.5 数据指针	针	28
4.6 数据指领	, 計 1	29
-,,	, 制寄存器	
	制寄存器	
	EL (页面选择)	
	态	
	心 {(MDU)	
_ , ,	DU 寄存器	
	器的设置	
	一阶段: 装载 MDx 寄存器, x = 0~5:	
	二阶段: 执行运算	
	三阶段:从 MDx 寄存器上读取结果	
6.3 标准化.		36

	6.4	位移	36
7		器 0 和定时器 1	
٠.	7.1	定时器/计数器模式控制寄存器(TMOD)	
	7.1	定时/计数控制寄存器(TCON)	
	7.2	定时器输入频率控制寄存器	
	7.3 7.4	模式 0 (13 位定时/计数)	
	7.4 7.5	模式 1 (16 位定时/计数)模式 1 (16 位定时/计数)	
	7.5 7.6	模式 2 (8 位自动重载定时/计数)	
		· ·	
_	7.7	模式 3 (两个独立 8 位定时/计数(仅定时器 0))	
ŏ.		器 2 以及捕捉/比较单元(PWM)	
	8.1	定时器 2 功能	
	8.1.1	7	
	8.1.2	7 1 10 10 4 11 22 10 4 1	
	8.1.3		
	8.1.4	/ · · · · · · · · · · · · · · · · · · ·	
	8.2	比较功能	
	8.2.1		
	8.2.2		
	8.3	捕获功能	
	8.3.1		
	8.3.2	114 4 5 7 4	
9.	串行	接口 0	
	9.1	串行接口由以下 4 种模式可以设置	52
	9.1.1		
	9.1.2	2 模式 1	53
	9.1.3	8 模式 2	53
	9.1.4	4 模式 3	53
	9.2	串行接口的多重机通讯	54
	9.3	输入频率控制寄存器	54
	9.4	波特率发生器	55
	9.4.1	l 串行接口的模式 1 和 3	55
10	0. 看	门狗定时器	56
11	1. 中	断	60
	11.1	优先权配置	63
12	2. 电	源管理单元	65
	12.1	待机模式(空闲模式)	65
	12.2		
13		· · · · · · · · · · · · · · · · · · ·	
	13.1.		
	13.1.		
	13.1.	. —	
	13.1.		
	13.1.		
	13.1.		
	13.1.		
	13.1	死区	
	13.1.		
	13.1.		
14	_	C 功能	
15		O 切能	
13	<u>ر. د</u>	- 「プロビー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	<u></u> , o

16.	LVI –低压侦测中断	83
	10 位模拟数字转换器(ADC)	
	在系统编程(Internal ISP)	
	ISP 服务程序	
	锁定位(N)	
18.3		
18.4	启动 ISP 服务程序	90
	ISP 寄存器- TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC	
	增	
	₹特性	
	/R 电气特性	

产品目录

SM39R16A6U24, OB39R16A6U24, SM39R16A6U28, OB39R16A6U28, SM39R16A6U32, OB39R16A6U32,

描述

原来的8052有12时钟结构,一个机器周期需要12个时钟, 大多数指令是一个或两个机器周期.因此,除了乘和除指令, 8052的每个指令使用12或24个时钟,此外,8052中的每个周 期用了两个记忆提取.在许多情况下,第二个是假的提取, 和额外的时钟被浪费了

该SM39R16A6 是一个快速的单芯片8位微控制器内核.这是一个全功能的8位嵌入式控制器,执行所有ASM51指令,具有与MCS-51相同的指令设置

订货信息

SM39R16A6ihhkL yymmv

i: 工艺标志{ U = 1.8V ~ 5.5V}

hh: 封装脚位

k: 封装形式后缀{as table below }

L: 无铅标志

{无文字即含铅, "P" 即无铅}

yy: 年 mm: 月

v: 版本标志{ A, B,...}

Tel:021-58998693 www.fosvos.com

Postfix	Package
S	SOP (300 mil)
V	LQFP

特征

- 工作电压: 1.8V ~ 5.5V
- 高速 1T 架构,最高可达 25MHz
- 指令设置兼容 MCS-51
- 内置 22.1184MHz RC 振荡器,及可程序化的分频器
- 16KB 字节的片上闪存程序存储器
- 256B 字节的标准的 8052 RAM, 加 1K 字节的片上扩展 SRAM.
- 双 16-bit 数据指针 (DPTR0&DPTR1)
- 一个全双工通信的串行接口(UART0), 包括:
 - 同步模式下,固定波特率,只有一个串行接口0。同步模式下,固定波特率,只有一个串行接口6.
 - 8 位 UART 模式,波特率可变
 - 9位 UART 模式下,固定波特率,只有一个串行接口 0.
 - 9位 UART 模式,波特率可变
 - 附加波特率产生器
- 三个 16-位的定时器/计数器(计时器 0, 1, 2)
- 可编程的看门狗定时器 (WDT)
- 一个 IIC 接口(主/从机模式)
- 一个 SPI 接口(主/从机模式)
- 4路 14位 脉宽调制(PWM)
- 4路16位比较(PWM)/捕获/重载功能
 - 内部比较器输出可以 CCU 输入源.
 - 噪声过滤器可经由 CCU 输入与采样频率来选择
- 8路10bit 模拟数字转换(ADC).
- 片上闪存存储器支持 ISP/IAP/ICP 及 EEPROM 功能
- 片上在线仿真功能(ICE)及片上在线调试功能(OCD)
- 快速乘法除法单元(MDU): 16*16,32/16, 16/16,32 位的 L/R 移位和 32 位正规化。
- (LVI/LVR)低电压中断/低电压复位(LVR deglitch 500ns)
- 增强用户代码保护
- 电源管理单元空闲及掉电模式

各封装引脚配置 24 Pin SOP

28 Pin SOP

32 Pin LQFP

附注: 出厂默认值注意事项

- (1) 管脚 RST/P3.4 于出厂时设置为一般双向 I/O(P3.4)脚,若用户需切换为复位脚可于刻录时将此管脚定义为 RESET 脚
- (2) 为避免偶然的情况下误入 ISP 刻录状态(参考第 18.4 单元),在上电时请确保没有连续的脉冲信号在管脚 RXD0 P1.0 及管脚 P1.2,P1.3 或 必须置高,可于刻录时
- (3) 3. OCI_SDA/P3.2 及 OCI_SCL/P3.3 于复位期间为 ICP 刻录功能管脚,复位完成后切换成双向 I/O.

系统方框图

24 管脚描述

24L SOP	代号	I/O	描述
1	P1.7/ADC7/SPI_CL K/T0	I/O	P1口的位7 &模数转换通道7 & SPI 接口时钟 &计时器0外部输入
2	P3.2/TRIGADC/IIC_ SDA/OCI_SDA	I/O	P3口的位2 & 外部引脚来触发 ADC & IIC 串行数据线& ICE和 ICP 功能的指令及数据输入
3	P3.3/IIC_SCL/OCI_ SCL	I/O	P3口的位3 & IIC 串行时钟线& ICE和 ICP 功能的时钟输入
4	P3.4/RESET	I/O	P3口的位4 &复位
5	P3.5/XTAL2/CLKO UT	I/O	P3口的位5 &晶振输出&时钟输出
6	P3.6/XTAL1	I/O	P3口的位6 &晶振输入
7	VSS	-	供电电源地
8	P2.0 /CC0	I/O	P2口的位0 & 计时器 0 及捕获/比较单元通道 0
9	P2.1 /CC1	I/O	P2口的位1 & 计时器1及捕获/比较单元通道1
10	P2.2/CC2	I/O	P2口的位2 & 计时器 2 及捕获/比较单元通道 2
11	P2.3/CC3	I/O	P2口的位3 & 计时器 3 及捕获/比较单元通道 3
12	P2.6	I/O	P2口的位6
13	P0.7/T1/PWM7	I/O	P0口的位&计时器1外部输入&宽脉调制通道7
14	P0.6/INT1/PWM6	I/O	PO口的位6 &外部中断 1&宽脉调制通道6
15	P0.5/PWM5	I/O	P0口的位5 & 宽脉调制通道5
16	P0.4/PWM4	I/O	P0口的位4&宽脉调制通道4
17	VDD	ı	数位电源电压
18	P1.0/ADC0/RXD0	I/O	P1口的位 0&模数转换通道 0&串行接口通道 0 接收/发送数据 0
19	P1.1/ADC1/TXD0	I/O	P1口的位1 &模数转换通道1&串行接口通道0数据传输或接收模式0时钟
20	P1.2/ADC2	I/O	P1口的位2 &模数转换通道2
21	P1.3/ADC3	I/O	P1口的位3 &模数转换通道3
22	P1.4/ADC4	I/O	P1口的位4 &模数转换通道4
23	P1.5/ADC5	I/O	P1口的位5 & 模数转换通道5
24	P1.6/ADC/INT0	I/O	P1口的位6 & 模数转换通道6 & 外部中断 0

28 管脚描述

28L SOP	代号	I/O	描述
1	P3.0/RXD	I/O	P3口的位0 & 串行接口通道接收/发送数据
2	P3.1/TXD	I/O	P3口的位1 & 串行接口通道数据传输或接收模式时钟
3	P3.2/TRIGADC/IIC_ SDA/OCI_SDA	I/O	P3口的位2 & 外部引脚来触发 ADC & IIC 串行数据线& ICE和 ICP 功能的指令及数据输入
4	P3.3/IIC_SCL/OCI_ SCL	I/O	P3口的位3 & IIC 串行时钟线& ICE和 ICP 功能的时钟输入
5	P3.4/RESET	I/O	P3口的位4 &复位
6	P3.5/XTAL2/CLKO UT	I/O	P3口的位5 &晶振输出&时钟输出
7	P3.6/XTAL1	I/O	P3口的位6 &晶振输入
8	VSS	ı	供电电源地
9	P2.0 /CC0	I/O	P2口的位0 &计时器0及捕获/比较单元通道0
10	P2.1 /CC1	I/O	P2口的位1 &计时器1及捕获/比较单元通道1
11	P2.2/CC2	I/O	P2口的位2 &计时器2及捕获/比较单元通道2
12	P2.3/CC3	I/O	P2口的位3 &计时器3及捕获/比较单元通道3
13	P2.4	I/O	P2口的位4
14	P2.5	I/O	P2口的位5
15	P2.6	I/O	P2口的位6
16	P0.7/T1/PWM7	I/O	P0口的位7&计时器1外部输入&宽脉调制通道7
17	P0.6/INT1/PWM6	I/O	P0口的位6 &外部中断 1&宽脉调制通道6
18	P0.5/PWM5	I/O	P0口的位5 &宽脉调制通道5
19	P0.4/PWM4	I/O	P0口的位4&宽脉调制通道4
20	VDD	ı	数位电源电压
21	P1.0/ADC0/RXD0	I/O	P1 口的位 0&模数转换通道 0&串行接口通道 0 接收/发送数据 0
22	P1.1/ADC1/TXD0	I/O	P1口的位1 &模数转换通道1&串行接口通道0数据传输或接收模式0时钟
23	P1.2/ADC2	I/O	P1口的位2 &模数转换通道2
24	P1.3/ADC3	I/O	P1口的位3 &模数转换通道3
25	P1.4/ADC4	I/O	P1口的位4 &模数转换通道4
26	P1.5/ADC5	I/O	P1口的位5 &模数转换通道5
27	P1.6/ADC/INT0	I/O	P1口的位6 & 模数转换通道6 & 外部中断 0
28	P1.7/ADC7	I/O	P1口的位7 &模数转换通道7

32L 管脚描述

32L	WH 1 H V C	1/0	T#/P
LQFP	代号	1/0	描述
1	P1.3/ADC3/T2EX/C C2	I/O	P1口的位3 &模数转换通道3 &计时器2捕捉触发及捕获触发器&计时器2及捕获/比较单元通道2
2	P1.4/ADC4/SS/CC3	I/O	P1口的位4 &模数转换通道4 & SPI 接口从机跳线 &计时器3及捕获/比较单元通道3
3	P1.5/ADC5/MOSI	I/O	P1口的位5 & 模数转换通道5 & SPI 接口串行数据线主输出或从输入口
4	P1.6/ADC6/MISO/I NT0	I/O	P1口的位6 &模数转换通道6 & SPI 接口串行数据线主输入或从输出口& 外部中断 0
5	P1.7/ADC7/SPI_CL K/T0	I/O	P1口的位7 & 模数转换通道7 & SPI 接口时钟 & 计时器0外部输入
6	P3.0/RXD0	I/O	P3口的位0 & 串行接口通道0接收/发送数据0
7	P3.1/TXD0	I/O	P3口的位1 & 串行接口通道 0 数据传输或接收模式 0 时钟
8	P3.2/TRIGADC/IIC_ SDA/OCI_SDA	I/O	P3口的位2 & 外部引脚来触发 ADC & IIC 串行数据线& ICE和 ICP 功能的指令及数据输入
9	P3.3/IIC_SCL/OCI_ SCL	I/O	P3口的位3 & IIC 串行时钟线& ICE和 ICP 功能的时钟输入
10	P3.4/RESET	1/0	P3口的位4 &复位
11	P3.5/XTAL2/CLKO UT	I/O	P3口的位5 &晶振输出&时钟输出
12	P3.6/XTAL1	I/O	P3口的位6 &晶振输入
13	VSS	ı	供电电源地
14	P2.0 /CC0	1/0	P2口的位0 & 计时器 0 及捕获/比较单元通道 0
15	P2.1 /CC1	I/O	P2口的位1 & 计时器 1 及捕获/比较单元通道 1
16	P2.2/CC2	I/O	P2口的位2 & 计时器 2 及捕获/比较单元通道 2
17	P2.3/CC3	I/O	P2口的位3 & 计时器 3 及捕获/比较单元通道 3
18	P2.4	I/O	P2口的位4
19	P2.5	I/O	P2口的位5
20	P2.6	I/O	P2口的位6
21	P0.7/T1/PWM7	I/O	P0口的位7&计时器1外部输入&宽脉调制通道7
22	P0.6/INT1/PWM6	I/O	P0口的位6 &外部中断 1 & 宽脉调制通道6
23	P0.5/PWM5	I/O	P0口的位5 & 宽脉调制通道5
24	P0.4/PWM4	I/O	P0口的位4 & 宽脉调制通道4
25	P0.3	I/O	P0口的位3
26	P0.2	I/O	P0口的位2
27	P0.1	I/O	P0口的位1
28	P0.0	I/O	P0口的位0
29	VDD	ı	数位电源电压
30	P1.0/ADC0/RXD0	I/O	P1 口的位 0&模数转换通道 0&串行接口通道 0 接收/发送数据 0
31	P1.1/ADC1/TXD0/C C0	I/O	P1口的位1 &模数转换通道1&串行接口通道0数据传输或接收模式0时钟&计时器0及捕获/比较单元通道0
32	P1.2/ADC2/T2/CC1	I/O	P1口的位2 &模数转换通道2 &计时器2外部输入&计时器1及捕获/比较单元通道1

特殊功能寄存器(SFR)

特殊功能寄存器分布图表如下所示:

Method 1

Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex
F8	IICS	IICCTL	IICA1	IICA2	IICRWD	IICEBT			FF
F0	В	SPIC1	SPIC2	SPITXD	SPIRXD	SPIS		TAKEY	F7
E8		MD0	MD 1	MD 2	MD 3	MD 4	MD 5	ARCON	EF
E0	ACC	ISPFAH	ISPFAL	ISPFD	ISPFC		IvC	SWRES	E7
D8		PFCON	P3M0	P3M1					DF
D0	PSW	CCEN2	P0M0	P0M1	P1M0	P1M1	P2M0	P2M1	D7
C8	T2CON	CCCON	CRCL	CRCH	TL2	TH2			CF
C0	IRCON	CCEN	CCL1	CCH1	CCL2	CCH2	CCL3	CCH3	C7
B8	IEN1	IP1	SRELH						BF
В0	P3						WDTC	WDTK	B7
A8	IEN0	IP0	SRELL	ADCC1	ADCC2	ADCDH	ADCDL	ADCCS	AF
A0	P2	RSTS							A7
98	SCON	SBUF	IEN2						9F
90	P1	AUX	AUX2					IRCON2	97
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	IFCON	8F
80	P0	SP	DPL	DPH	DPL1	DPH1	RCON	PCON	87
Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex

Method2 Page Mode: page1

	1 age mode. page 1								
Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex
F8		PWMTB C0	PWMTB C1	PWMOP MOD					FF
F0	В	PERIOD L	PERIOD H			PWMEN			F7
E8				DEADTI ME2	DEADTI ME3		PWMTB POST SCALE		EF
E0	ACC	ISPFAH	ISPFAL	ISPFD	ISPFC		IvC	SWRES	E7
D8		PFCON							DF
D0	PSW					DUTY2L	DUTY2H	DUTY3L	D7
C8	T2CON	DUTY3H			TL2	TH2			CF
C0	IRCON								C7
B8	IEN1	IP1	SRELH		PWMINT F		PAGESEL		BF
В0	P3						WDTC	WDTK	B7
A8	IEN0	IP0	SRELL	ADCC1	ADCC2	ADCDH	ADCDL	ADCCS	AF
A0	P2								A7
98	SCON	SBUF	IEN2						9F
90	P1	AUX	AUX2					IRCON2	97
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	IFCON	8F
80	P0	SP	DPL	DPH	DPL1	DPH1	RCON	PCON	87
Hex\Bin	X000	X001	X010	X011	X100	X101	X110	X111	Bin/Hex

注: SM39R16A6 特殊功能寄存器的重置值在下表描述.

寄存器	地址	重置值	描述					
	SYSTEM							
SP	81h	07h	Stack Pointer					
ACC	E0h	00h	Accumulator					
PSW	D0h	00h	Program Status Word					
В	F0h	00h	B Register					
DPL	82h	00h	Data Pointer 0 low byte					
DPH	83h	00h	Data Pointer 0 high byte					
DPL1	84h	00h	Data Pointer 1 low byte					
DPH1	85h	00h	Data Pointer 1 high byte					
AUX	91h	00h	Auxiliary register					
PCON	87h	00h	Power Control					
CKCON	8Eh	10h	Clock control register					
		INTERRUPT & PR	RIORITY					
IRCON	C0h	00h	Interrupt Request Control Register					
IRCON2	97h	00h	Interrupt Request Control Register 2					
IEN0	A8h	00h	Interrupt Enable Register 0					
IEN1	B8h	00h	Interrupt Enable Register 1					
IEN2	9Ah	00h	Interrupt Enable Register 2					
IP0	A9h	00h	Interrupt Priority Register 0					
IP1	B9h	00h	Interrupt Priority Register 1					
		UART						
PCON	87h	00h	Power Control					
AUX	91h	00h	Auxiliary register					
SCON	98h	00h	Serial Port, Control Register					
SBUF	99h	00h	Serial Port, Data Buffer					
SRELL	AAh	00h	Serial Port, Reload Register, low byte					
SRELH	BAh	00h	Serial Port, Reload Register, high byte					
PFCON	D9h	00h	Peripheral Frequency control register					
		ADC						
ADCC1	ABh	00h	ADC Control 1 Register					
ADCC2	ACh	08h	ADC Control 2 Register					
ADCDH	ADh	00h	ADC data high byte					
ADCDL	AEh	00h	ADC data low byte					
ADCCS	AFh	00h	ADC clock select					
		WDT						
RSTS	A1h	00h	Reset status register					
WDTC	B6h	04h	Watchdog timer control register					
WDTK	B7h	00h	Watchdog timer refresh key.					

	地址	 重置值	描述					
TAKEY	F7h	00h	Time Access Key register					
	TIMER0/TIMER1							
TCON	88h	00h	Timer/Counter Control					
TMOD	89h	00h	Timer Mode Control					
TL0	8Ah	00h	Timer 0, low byte					
TL1	8Bh	00h	Timer 1, low byte					
TH0	8Ch	00h	Timer 0, high byte					
TH1	8Dh	00h	Timer 1, high byte					
PFCON	D9h	00h	Peripheral Frequency control register					
		CCU(TIMER:	2)					
AUX2	92h	00h	Auxiliary 2 register					
CCEN	C1h	00h	Compare/Capture Enable Register					
CCL1	C2h	00h	Compare/Capture Register 1, low byte					
CCH1	C3h	00h	Compare/Capture Register 1, high byte					
CCL2	C4h	00h	Compare/Capture Register 2, low byte					
CCH2	C5h	00h	Compare/Capture Register 2, high byte					
CCL3	C6h	00h	Compare/Capture Register 3, low byte					
CCH3	C7h	00h	Compare/Capture Register 3, high byte					
T2CON	C8h	00h	Timer 2 Control					
CCCON	C9h	00h	Compare/Capture Control					
CRCL	CAh	00h	Compare/Reload/Capture Register, low byte					
CRCH	CBh	00h	Compare/Reload/Capture Register, high byte					
TL2	CCh	00h	Timer 2, low byte					
TH2	CDh	00h	Timer 2, high byte					
CCEN2	D1h	00h	Compare/Capture Enable 2 register					
		GPIO						
P0	80h	User define	Port 0					
P1	90h	FFh	Port 1					
P2	A0h	7Fh	Port 2					
P3	B0h	7Fh	Port 3					
P0M0	D2h	00h	Port 0 output mode 0					
P0M1	D3h	00h	Port 0 output mode 1					
P1M0	D4h	00h	Port 1 output mode 0					
P1M1	D5h	00h	Port 1 output mode 1					
P2M0	D6h	00h	Port 2 output mode 0					
P2M1	D7h	00h	Port 2 output mode 1					
P3M0	DAh	00h	Port 3 output mode 0					
P3M1	DBh	00h	Port 3 output mode 1					
		ISP/IAP/EEPR	ОМ					
IFCON	8Fh	00h	Interface control register					
ISPFAH	E1h	FFh	ISP Flash Address-High register					

寄存器	地址	重置值	描述
ISPFAL	E2h	FFh	ISP Flash Address-Low register
ISPFD	E3h	FFh	ISP Flash Data register
ISPFC	E4h	00h	ISP Flash control register
TAKEY	F7h	00h	Time Access Key register
		LVI/LVR/SOFT	RESET
RSTS	A1h	00h	Reset status register
LVC	E6h	20h	Low voltage control register
SWRES	E7h	00h	Software Reset register
TAKEY	F7h	00h	Time Access Key register
SPIC1	F1h	08h	SPI control register 1
SPIC2	F2h	00h	SPI control register 2
SPITXD	F3h	00h	SPI transmit data buffer
SPIRXD	F4h	00h	SPI receive data buffer
SPIS	F5h	40h	SPI status register
		IIC	
IICS	F8h	00h	IIC status register
IICCTL	F9h	04h	IIC control register
IICA1	FAh	A0h	IIC channel 1 Address 1 register
IICA2	FBh	60h	IIC channel 1 Address 2 register
IICRWD	FCh	00h	IIC channel 1 Read / Write Data buffer
IICEBT	FDh	00h	IIC Enable Bus Transaction register
		PWM	
ADCC2	ACh	-	ADC control 2 Reg.
PWMTBC0	F9	00H	PWM Time Base Control 0 Reg.
PWMTBC1	FA	10H	PWM Time Base Control 1 Reg.
PWMOPMOD	FB	00H	PWM Output Pair Mode Reg.
PERIODL	F1	FFH	PWM Period (Low) Reg.
PERIODH	F2	3FH	PWM Period(High) Reg.
PWMEN	F5	00H	PWM Output Enable Reg.
PWMTBPOST SCALE	EE	00H	PWM TIME BASE POST SCALE Reg.
PWMINTF	BCh	00H	PWM INT Flag Reg.
DEADTIME2	EB	00H	Dead Time 2 Reg.
DEADTIME3	EC	00H	Dead Time 3 Reg.
DUTY2L	D5	00H	PWM 2 Duty Low byte Reg.
DUTY2H	D6	00H	PWM 2 Duty High byte Reg.
DUTY3L	D7	00H	PWM 3 Duty Low byte Reg.
DUTY3H	C 9	00H	PWM 3 Duty High byte Reg.

功能描述

1. 总特征

SM39R16A6 是一个8位的微处理器,它的所有功能以及特殊功能寄存器(SFR)的详细定义将在以下章节给出,

1.1 嵌入式程序存储器

可通过编程器或在线编程(ISP)将程序加载到16KB的嵌入式闪存体中,其高品质的闪存体具有100K次的重复可擦写编程并记忆数据,如EEPROM。

1.2 IO □

SM39R16A6 有4个I/O ports: Port 0, Port 1, Port 2 and Port 3. Ports 0, 1 是 8位口 and Port 2,3是7位口. 这些型态: 准双 向口(标准 8051输出口), 推挽, 开漏, 与仅为输入。 在章节5中有详细说明。

当使用片上硬件复位机制时,复位脚可配置为P3.4。

当用户使用内部晶振作为系统时钟时,XTAL2 与 XTAL1可在烧写或用ISP时定义成IO管脚P3.5、P3.6; 当用户使用外部振荡器由XTAL1输入作为系统时钟时,只有XTAL2可定义成IO管脚P3.5。

所有的P0~P3口都可通过转化速率来降低EMI。另一种降低EMI的方式是在禁止ALE输出,可通过特殊功能寄存器(SFR)来进行选择控制,在高静电环境且在人体接触模式中,其I/O口的ESD可达4KV,可以保证 SM39R16A6 在高静电环境下的品质。

1.3 指令时钟周期选择

传统的52 系列单片机时钟周期是12T, 即12 个振荡器时钟为1个机器周期。SM39R16A6 为1T~8T的微控制器, 即机器周期为1个时钟周期~8个时钟周期。换句话说, 执行一条指令可是1个时钟~8个时钟。

符号: CI	KCON						地	址: 8Eh
7	6	5	4	3	2	1	0	Reset
-		ITS[2:0]		-	-	CLKO	UT[1:0]	10H

ITS: 指令时钟周期选择.

ITS [2:0]	指令时钟周期
000	1T 模式
001	2T 模式(默认)
010	3T 模式
011	4T 模式
100	5T 模式
101	6T 模式
110	7T 模式
111	8T 模式

默认为2T模式,在任何时候,如CKCON [6:4] (地址为8Eh) 被改变时,每条指令并不是都能在一个机器周期内被执行的。 所有指令的确切机器周期将在下一章节中给出。

1.4 时钟输出选择

在任何时候CKCON [1:0] (地址为8Eh) 被改变时,SM39R16A6 能在P3.5产生时钟输出,主系统时钟源设置为使用振荡器(时钟由晶振输入脚输入)或片内RC振荡器皆可。

CLKOUT: 时钟输出除频选择.

CKCON [1:0]	Mode.
00	GPIO(默认)
01	主系统时钟频率
10	主系统时钟频率/2
11	主系统时钟频率/4

1.5 复位

1.5.1 硬件复位功能

SM39R16A6 提供了片上硬件复位机制, 片上硬件复位的时间长度可以通过编程器或ISP设置。

片上硬件复位的时间长度
25ms (默认)
200ms
100ms
50ms
16ms
8ms
4ms

1.5.2 软件复位功能

SM39R16A6 提供一种软件复位机制来实现整个芯片的复位.要实现软件复位,于程序中需把3个特殊值 55h,AAh和5Ah按 顺序写到TAKEY寄存器来使能软件复位寄存器(SWRES)之写入. 在软件复位寄存器获得可写权后,可以对SWRES寄存器写入FFh. 硬件将解码出复位讯号它是与其它硬件复位讯号作 "OR"处理. 软件复位寄存器在软件复位过程的最后会进行自复位.

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
Software Reset function											
RSTS	Reset status register	A1h	-	LVRLP INTF	LVRL PF	PDRF	WDTF	SWRF	LVRF	PORF	00H
TAKEY	Time Access Key register	F7h		TAKEY [7:0]					00H		
SWRES	Software Reset register	E7h		SWRES [7:0]				00H			

1.5.3 Reset status

 符号: RSTS
 地址: A1h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 LVRLP INTF
 LVRLPF
 PDRF
 WDTF
 SWRF
 LVRF
 PORF
 00H

LVRLPINTF "内部"低电压复位标志

当 MCU 重置的 LVR_LP_INT 时,LVRLPINTF 旗标将由硬件设置为一。此旗标通过软件清除.

LVRLPF 低电压复位 (低功率) 旗标

当 MCU 由 LVR(Low Power) 复位时,LVRLPF 旗标将由硬件设置为一。此旗标通过软件清除。

PDRF: 复位脚复位旗标.

当 MCU 复位信号由复位脚产生时, PDRF 旗标将由硬件置高.此旗标需由软件清零.

WDTF: 看门狗定时器复位旗标.

当 MCU 复位信号由看门狗产生时, WDTF 旗标将由硬件置高.此旗标需由软件清零.

SWRF: 软件复位旗标.

当 MCU 复位信号由软件复位产生时, SWRF 旗标将由硬件置高.此旗标需由软件清零.

LVRF: 低电压复位旗标.

当 MCU 复位信号由低电压复位产生时, LVRF 旗标将由硬件置高.此旗标需由软件清零.

PORF: 上电复位旗标.

当 MCU 复位信号由上电复位产生时, PORF 旗标将由硬件置高.此旗标需由软件清零.

1.5.4 Time Access Key register (TAKEY)

符号: T <i>A</i>	AKEY						ŧ	也址: F7H
7	6	5	4	3	2	1	0	Reset
			TAKE	Y [7:0]				00H

软件复位寄存器(SWRES) 默认为只读; 软件把 3 个特殊值按顺序写到 TAKEY 寄存器来使能软件复位寄存器 (SWRES)可写. 它们是

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah

1.5.5 软件复位寄存器(SWRES)

符号: SV	VRES						ļ	也址: E7H
7	6	5	4	3	2	1	0	Reset
	SWRES [7:0]						00H	

SWRES[7:0]: 软件复位寄存器. 在软件复位过程的最后会进行自重置.

SWRES [7:0] = FFh, 产生软件复位.

SWRES [7:0] = 00h ~ FEh, 不产生复位动作.

1.5.6 Example of software reset

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah; enable SWRES write attribute MOV SWRES, #0FFh; software reset MCU

1.6 时钟源

默认时钟来自于内部22.1184MhzOSC时钟信号,其时钟应用于初始化阶段,其主要的工作是确定时钟源使用的正常运行。

内部时钟源来源于不同分频的内部OSC如表 1-1所示,时钟源可在ICP中设置.

表 1- 1: Selection of clock source

Clock source				
external crystal (use XTAL1 and XTAL2 pins)				
external crystal (only use XTAL1, the XTAL2 define as I/O)				
22.1184MHz from internal OSC				
22.1184MHz/2 from internal OSC				
22.1184MHz/4 from internal OSC				
22.1184MHz/8 from internal OSC				
22.1184MHz/16 from internal OSC				

对于来源于内部OSC的频率,这将有些许误差,在应用程序中需要精确的频率时,须注意使用. 最大误差如表 1-2

表 1- 2: Temperature with variance

Temperature	Max Variance
25 ℃	±2%

2. 指令设置

所有SM39R16A6 的指令都是兼容的二进制码,且具有标准的8051一样的功能,以下表格列出了以SM39R16A6 微控器为核心的指令集的周期的总结,这里的周期表示为机器周期。

表 2- 1: Arithmetic operations

符号	描述	代码	字节	周期
ADD A,Rn	Add register to accumulator	28-2F	1	1
ADD A, direct	Add direct byte to accumulator	25	2	2
ADD A,@Ri	Add indirect RAM to accumulator	26-27	1	2
ADD A,#data	Add immediate data to accumulator	24	2	2
ADDC A,Rn	Add register to accumulator with carry flag	38-3F	1	1
ADDC A,direct	Add direct byte to A with carry flag	35	2	2
ADDC A,@Ri	Add indirect RAM to A with carry flag	36-37	1	2
ADDC A,#data	Add immediate data to A with carry flag	34	2	2
SUBB A,Rn	Subtract register from A with borrow	98-9F	1	1
SUBB A,direct	Subtract direct byte from A with borrow	95	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	96-97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	94	2	2
INC A	Increment accumulator	04	1	1
INC Rn	Increment register	08-0F	1	2
INC direct	Increment direct byte	05	2	3
INC @Ri	Increment indirect RAM	06-07	1	3
INC DPTR	Increment data pointer	А3	1	1
DEC A	Decrement accumulator	14	1	1
DEC Rn	Decrement register	18-1F	1	2
DEC direct	Decrement direct byte	15	2	3
DEC @Ri	Decrement indirect RAM	16-17	1	3
MUL AB	Multiply A and B	A4	1	5
DIV	Divide A by B	84	1	5
DA A	Decimal adjust accumulator	D4	1	1

表 2- 2: Logic operations

符号	描述	代码	字节	周期
ANL A,Rn	AND register to accumulator	58-5F	1	1
ANL A, direct	AND direct byte to accumulator	55	2	2
ANL A,@Ri	AND indirect RAM to accumulator	56-57	1	2
ANL A,#data	AND immediate data to accumulator	54	2	2
ANL direct,A	AND accumulator to direct byte	52	2	3
ANL direct,#data	AND immediate data to direct byte	53	3	4
ORL A,Rn	OR register to accumulator	48-4F	1	1
ORL A,direct	OR direct byte to accumulator	45	2	2
ORL A,@Ri	OR indirect RAM to accumulator	46-47	1	2
ORL A,#data	OR immediate data to accumulator	44	2	2
ORL direct,A	OR accumulator to direct byte	42	2	3
ORL direct,#data	OR immediate data to direct byte	43	3	4
XRL A,Rn	Exclusive OR register to accumulator	68-6F	1	1
XRL A,direct	Exclusive OR direct byte to accumulator	65	2	2
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	66-67	1	2
XRL A,#data	Exclusive OR immediate data to accumulator	64	2	2
XRL direct,A	Exclusive OR accumulator to direct byte	62	2	3
XRL direct,#data	Exclusive OR immediate data to direct byte	63	3	4
CLR A	Clear accumulator	E4	1	1
CPL A	Complement accumulator	F4	1	1
RL A	Rotate accumulator left	23	1	1
RLC A	Rotate accumulator left through carry	33	1	1
RR A	Rotate accumulator right	03	1	1
RRC A	Rotate accumulator right through carry	13	1	1
SWAP A	Swap nibbles within the accumulator	C4	1	1

表 2- 3: Data transfer

符号	描述	代码	字节	周期
MOV A,Rn	Move register to accumulator	E8-EF	1	1
MOV A, direct	Move direct byte to accumulator	E5	2	2
MOV A,@Ri	Move indirect RAM to accumulator	E6-E7	1	2
MOV A,#data	Move immediate data to accumulator	74	2	2
MOV Rn,A	Move accumulator to register	F8-FF	1	2
MOV Rn,direct	Move direct byte to register	A8-AF	2	4
MOV Rn,#data	Move immediate data to register	78-7F	2	2
MOV direct,A	Move accumulator to direct byte	F5	2	3
MOV direct,Rn	Move register to direct byte	88-8F	2	3
MOV direct1, direct2	Move direct byte to direct byte	85	3	4
MOV direct,@Ri	Move indirect RAM to direct byte	86-87	2	4
MOV direct,#data	Move immediate data to direct byte	75	3	3
MOV @Ri,A	Move accumulator to indirect RAM	F6-F7	1	3
MOV @Ri,direct	Move direct byte to indirect RAM	A6-A7	2	5
MOV @Ri,#data	Move immediate data to indirect RAM	76-77	2	3
MOV DPTR,#data16	Load data pointer with a 16-bit constant	90	3	3
MOVC A,@A+DPTR	Move code byte relative to DPTR to accumulator	93	1	3
MOVC A,@A+PC	Move code byte relative to PC to accumulator	83	1	3
PUSH direct	Push direct byte onto stack	C0	2	4
POP direct	Pop direct byte from stack	D0	2	3
XCH A,Rn	Exchange register with accumulator	C8-CF	1	2
XCH A,direct	Exchange direct byte with accumulator	C5	2	3
XCH A,@Ri	Exchange indirect RAM with accumulator	C6-C7	1	3
XCHD A,@Ri	Exchange low-order nibble indir. RAM with A	D6-D7	1	3

表 2- 4: Program branches

符号	描述	代码	字节	周期
ACALL addr11	Absolute subroutine call	xxx11	2	6
LCALL addr16	Long subroutine call	12	3	6
RET	from subroutine	22	1	4
RETI	from interrupt	32	1	4
AJMP addr11	Absolute jump	xxx01	2	3
LJMP addr16	Long iump	02	3	4
SJMP rel	Short jump (relative addr.)	80	2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	73	1	2
JZ rel	Jump if accumulator is zero	60	2	3
JNZ rel	Jump if accumulator is not zero	70	2	3
JC rel	Jump if carry flag is set	40	2	3
JNC	Jump if carry flag is not set	50	2	3
JB bit,rel	Jump if direct bit is set	20	3	4
JNB bit,rel	Jump if direct bit is not set	30	3	4
JBC bit,direct rel	Jump if direct bit is set and clear bit	10	3	4
CJNE A, direct rel	Compare direct byte to A and jump if not equal	B5	3	4
CJNE A,#data rel	Compare immediate to A and jump if not equal	B4	3	4
CJNE Rn,#data rel	Compare immed. to reg. and jump if not equal	B8-BF	3	4
CJNE @Ri,#data rel	Compare immed. to ind. and jump if not equal	B6-B7	3	4
DJNZ Rn,rel	Decrement register and jump if not zero	D8-DF	2	3
DJNZ direct,rel	Decrement direct byte and jump if not zero	D5	3	4
NOP	No operation	00	1	1

表 2- 5: Boolean manipulation

符号	描述	代码	字节	周期
CLR C	Clear carry flag	C3	1	1
CLR bit	Clear direct bit	C2	2	3
SETB C	Set carry flag	D3	1	1
SETB bit	Set direct bit	D2	2	3
CPL C	Complement carry flag	B3	1	1
CPL bit	Complement direct bit	B2	2	3
ANL C,bit	AND direct bit to carry flag	82	2	2
ANL C,/bit	AND complement of direct bit to carry	B0	2	2
ORL C,bit	OR direct bit to carry flag	72	2	2
ORL C,/bit	OR complement of direct bit to carry	A0	2	2
MOV C,bit	Move direct bit to carry flag	A2	2	2
MOV bit,C	Move carry flag to direct bit	92	2	3

3. 存储器结构

SM39R16A6 存储器结构和通用的8052结构相同,它们是作为程序存储器的16KB的嵌入式闪存.

3.1 程序存储器

SM39R16A6 有16KB的嵌入式闪存,如以下图 3-1,可做为通用的程序存储或EEPROM.其它还包括最大为1K的特定ISP服务程序存储空间. 这16K的地址从\$0000 to \$3FFF. ISP服务程序的地址从\$3C00 to \$3FFF. ISP服务程序空间可以被分割N块128字节(N=0 to 8). 当N=0时,意味着没有ISP复位程序空间可用. 全部的16KB字节空间都被用来做程序存储. 当N=1时,意味着地址\$3F80 to \$3FFF保留为ISP服务程序空间. 当N=2意味着内存地址\$3F00 to \$3FFF保留为ISP服务程序空间等等... 数值N可以通过编程器或ICP方式编程或设置.它可像EEPROM那样用来记录任何数据(如果要更改程序数据,请先执行页抹除)。EEPROM的应用功能在第18章节的内部ISP部分有描述。

图 3- 1: SM39R16A6 programmable Flash

3.2 数据存储器

SM39R16A6具有1K + 256B 片上 SRAM, 如以下 图 3-2, 其中256B 和通用的 8052内部存储器结构一样,同时扩大 1 K 片上 SRAM 可以访问外部内存寻址. (由指令 MOVX).

图 3- 2: RAM architecture

3.3 数据内存-低 128 字节(00h to 7Fh)

数据存储器从 00h 到 FFh 的地址和在 8052 中的定义是一样的。

00h 到 7Fh 的地址可通过直接或者间接寻址方式访问。

00h 到 1Fh 是寄存器的空间,

20h 到 2Fh 是位寻址空间,

30h 到 7Fh 是通用的数据存储区。

3.4 数据存储器-高 128 字节(80h to FFh)

80h 到 FFh 的地址仅仅能从间接寻址的方式访问,它是一个数据区。

3.5 存储器-扩展的 256 字节(\$00 到 \$FF)

从外部地址为 0000h 到 03FFh 是片上扩大的 SRAM 区域,一共256字节。这一区域可以是由访问外部直接寻址模式 (MOVX 指令)。指令MOVX @Ri, i=0 的地址空间1可以经由 RCON [7:0] 的特殊功能寄存器\$86 RCON (内部 RAM 控制寄存器)来决定。RCON [7:0] 的默认设置是 00h (0页)。一页数据 RAM 是 256 个字节。当 EMEN = 0,使能扩展 RAM内部的 1K。

4. CPU结构

SM39R16A6 结构由以下四部分组成:

- (1) 控制单元
- (2) 算法-逻辑单元
- (3) 存储器控制单元
- (4) RAM 和 SFR 控制单元

SM39R16A6 结构允许接受来自程序存储器的指令并与RAM或SFR做数据处理,以下各段详细叙述了主要功能寄存器。

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
				805	1 Core						
ACC	Accumulator	E0h	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00H
В	B register	F0h	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00H
PSW	Program status word	D0h	CY	AC	F0	RS	1:0]	OV	PSW.1	Р	00H
SP	Stack Pointer	81h		SP[7:0]					07H		
DPL	Data pointer low 0	82h		DPL[7:0]						00H	
DPH	Data pointer high 0	83h				DPH	[7:0]				00H
DPL1	Data pointer low 0	84h				DPL ²	1[7:0]				00H
DPH1	Data pointer high 0	85h				DPH	1[7:0]				00H
AUX	Auxiliary register	91h	BRGS	P21CC	-	P1UR	-	-	-	DPS	00H
CKCON	Clock control register	8Eh	- ITS[2:0] CLKOUT[1:0]				10H				
IFCON	Interface control register	8Fh	-	CDPR	-	-	-	-	-	ISPE	00H

4.1 累加器

ACC是一个累加器,大部分单操作指令的一个操作数取自累加器.

符号: AC	CC						地	ὑ址: E0 h	
7	6	5	4	3	2	1	0	Reset	
ACC.7	ACC.6	ACC05	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00h	l

ACC[7:0]: The A (or ACC) register is the standard 8052 accumulator.

4.2 B 寄存器

B寄存器被用于乘法或除法指令,也可作为一般寄存器以存储临时数据。

符号: B								地址: F0h
7	6	5	4	3	2	1	0	Reset
B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00h

B[7:0]: The B register is the standard 8052 register that serves as a second accumulator.

4.3 程序状态字

符号: PS	SW							地址: D0h
7	6	5	4	3	2	1	0	Reset
CY	AC	F0	RS [1:0]		OV	F1	Р	00h

CY: 进位标志位

AC: 为 BCD 辅助进位标志位

F0: 用户设置标志位 0

RS[1:0]	Bank Selected	地址
00	Bank 0	00h – 07h
01	Bank 1	08h – 0Fh
10	Bank 2	10h – 17h
11	Bank 3	18h – 1Fh

OV: 溢出标志位

F1: 用户设置标志位 1

P: 奇偶校验位, 受硬件影响, 显示累加器中的奇偶的 1 位, 即奇偶校验

4.4 堆栈指针

堆栈指针是一个1字节的寄存器,在复位后初始化值为07h。此寄存器在执行PUSH和CALL指令之前增值,使得堆栈指针在08h开始执行

SP[7:0]: 堆栈指针储存了暂时寄存器的地址,该地址是堆栈指针的起始位置.换言之,它总是指向堆栈指针的顶端。

4.5 数据指针

数据指针为2字节.低位为DPL.高位为DPH.它可以作为一个2字节的寄存器(MOV DPTR,#data16)来使用,或者作为两个寄存器(例如,MOV DPL,#data8),它通常被用作是运行外部程序或者是数据空间(如,MOVC A,@ A+DPTR 或者各自的MOV A,@ DPTR).

DPL[7:0]: Data pointer Low 0

符号: DI	PH						比	ὑ址: 83h
7	6	5	4	3	2	1	0	Reset
			DPH	l [7:0]				00h

DPH [7:0]: Data pointer High 0

4.6 数据指针 1

双数据指针加速了块状数据的运行速度.标准的DPTR 是一个16位的寄存器,是用来寻址外部空间或者外部存储器.在 SM39R16A6 中,标准的数据指针称为DPTR,第二个数据指针称为DPTR1.选择位用来选择使用的数据指针.数据指针的选择位位于AUX寄存器的LSB(DPS).

用户通过触发AUX寄存器中的LSB位进行切换. 所有有关的DPTR指令都将为当前选用的DPTR所操作。

符号: DI	PL1						州	址: 84h
7	6	5	4	3	2	1	0	Reset
			DPL	1 [7:0]				00h

DPL1[7:0]: Data pointer Low 1

符号: DF	PH1						地	以址: 85h
7	6	5	4	3	2	1	0	Reset
	•		DPH	1 [7:0]		•		00h

DPH1[7:0]: Data pointer High 1

符号: Al	JX						地	址: 91h
7	6	5	4	3	2	1	0	Reset
BRGS	P21CC	-	P1UR	-	-	-	DPS	00H

DPS: 数据指针选择位.

DPS = 1 选择数据指针 1.

4.7 时钟控制寄存器

符号: C	KCON						地	址: 8Eh
7	6	5	4	3	2	1	0	Reset
-		ITS[2:0]		-	-	CLKO	UT[1:0]	10H

ITS[2:0]: 指令时钟周期选择.

ITS [2:0]	指令时钟周期
000	1T 模式
001	2T 模式(默认)
010	3T 模式
011	4T 模式
100	5T 模式
101	6T 模式
110	7T 模式
111	8T 模式

CLKOUT: 时钟输出除频选择.

CKCON [1:0]	Mode.
00	GPIO(默认)
01	主系统时钟频率
10	主系统时钟频率/2
11	主系统时钟频率/4

主系统时钟源设置为使用振荡器(时钟由晶振输入脚输入)或片内RC振荡器皆可

4.8 接口控制寄存器

符号: IFCON 地址: 8F									
7	6	5	4	3	2	1	0	Reset	
-	CDPR	-	-	-	-	-	ISPE	00H	

CDPR: 程序码已加密指示位(仅读)

ISPE: ISP 功能使能位

ISPE = 1, 允许使用 ISP 功能 ISPE = 0, 禁止使用 ISP 功能

4.9 PAGESEL (页面选择)

SM39R16A6 提供了两种不同的方法来设置特殊功能例如(SFR) 如下:

• SFR 方法 1 (间接模式): 此方法只是 SFR 页面。如果您想要使用

PWM 寄存器的方法 2 中,可以使用间接寻址的设置。

例如:方法 1 中写入数据 0x80h PWMEN 例如。

PAGESEL = 0x0h; // Method 1.

PWMADDR = 0xF5h; // PWMEN 间接地址: 0xF5h (间接模式) PWMDATA = 0x80h; // PWMEN 间接地址: 0xF5h (间接模式).

SFR 方法 2 (页面模式): 此方法提供了两个 SFR 页以设置寄存器。例如: PWMEN 间接地

址: 0xF5h (间接模式).

PAGESEL = 0x3h; // 在方法 2 中写入数据 0x80h PWMEN 例如, 第 1 页

PWMEN = 0x80h; // 0X80h 数据写入 PWMEN。

• SFR 页模式表:

Page_mode	Page_num	SFR Select
0	0	SFR Method 1
0	1	SFR Method 1
1	0	-
1	1	SFR Method 2, Page 1

符号:	PAGESEL	_					地	址: BEh
7	6	5	4	3	2	1	0	Reset
					Pa	ge num	Pagemode	00H

Page_num: 在 SFR 方法 2 使用此标志只

1 = 页面 1 模式.

Page_mode: 此标志用于选择 SFR 寄存器表.

0 : SFR Method 1 (间接模式). 1 : SFR Method 2 (页面模式).

5. GPIO管脚型态

SM39R16A6 有4个I/O口: Port 0, Port 1,Port2 and Port 3. Ports 0, 1,2是8位口and Port 2,3是7位口. 它们是: 准双向口 (标准的8051端口输出),推挽电路,开漏,与只输入. 两种寄存器的配置为每个端口的每个位选择输出方式.SM39R16A6 的 所有端口可以通过软件配置四种型号的一种.如下表显示:

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
			I/O	port fur	nction reg	ister					
P0M0	Port 0 output mode 0	D2h				P0M	0 [7:0]				~OP18
P0M1	Port 0 output mode 1	D3h		P0M1[7:0]						00H	
P1M0	Port 1 output mode 0	D4h		P1M0[7:0]						00H	
P1M1	Port 1 output mode 1	D5h		P1M1[7:0]						00H	
P2M0	Port 2 output mode 0	D6h					P2M0[6:0	0]			00H
P2M1	Port 2 output mode 1	D7h		P2M1[6:0]						00H	
P3M0	Port 3 output mode 0	DAh	P3M0[1:0]						00H		
P3M1	Port 3 output mode 1	DBh				•	P3M1[1:0	0]	•		00H

^{*}OP18通过编程设置.

PxM1.y	PxM0.y	Port output mode
0	0	准双向口 (标准的8051端口输出)
0	1	推挽电路
1	0	只输入 (high-impedance)
1	1	开漏

当使用片上硬件复位机制时,复位脚可配置为P3.4。

当用户使用内部晶振作为系统时钟时,XTAL2 与 XTAL1可在烧写或用ISP时定义成IO管脚P3.5、P3.6;当用户使用外部振荡器由XTAL1输入作为系统时钟时,只有XTAL2可定义成IO管脚P3.5.

一般的应用,每个管脚都可独立的置高或置低.如下表显示:

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值	
Ports												
Port 3	Port 3	B0h	-	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	7Fh	
Port 2	Port 2	A0h	-	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	7Fh	
Port 1	Port 1	90h	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	FFh	
Port 0	Port 0	80h	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	~OP19	

^{*} OP19通过编程设置...

符号: P0									地址: 80h
	7	6	5	4	3	2	1	0	Reset
	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	~OP19

P0.7~ 0: Port0 [7] ~ Port0[0]

符号: P1							地	址: 90h
7	6	5	4	3	2	1	0	Reset
P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	FFh

P1	1.7~ 0:	Port1 [7	'] ~ Port1	[0]					
	符号: P2	2						地:	址: A0h
	7	6	5	4	3	2	1	0	Reset
	-	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	7Fh

P2.6~ 0: Port2 [6] ~ Port2 [0]

符号: F	23						地	址: B0h
7	6	5	4	3	2	1	0	Reset
-	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	7Fh

P3.6~ 0: Por3 [6] ~ Port3 [0]

硬件乘除法器(MDU)

SM39R16A6的算术单元提供了32位除法器,16位乘法器,转化和规范等特点。所有设置均为无符号整数设置。

Bit 6 Bit 5 Bit 4 Bit 1 RESET Mnemonic Description Direct Bit 7 Bit 3 Bit 2 Bit 0 Multiplication Division Unit **PCON** Power control 87H SMOD **MDUF STOP IDLE** 40H Arithmetic Control **ARCON EFh** MDEF **MDOV SLR** SC[4:0] 00H register Multiplication/Divi 00H E9h M_D0 MD0[7:0] sion Register 0 Multiplication/Divi 00H MD1 EAh MD1[7:0] sion Register 1 Multiplication/Divi 00H MD2 **EBh** MD2[7:0] sion Register 2 Multiplication/Divi 00H MD3 **ECh** MD3[7:0] sion Register 3 Multiplication/Divi MD4 **EDh** MD4[7:0] 00H sion Register 4 Multiplication/Divi MD5 **EEh** MD5[7:0] 00H

表 6-1: 乘除寄存器

运行 MDU 寄存器 6.1

sion Register 5

该MDU由7个寄存器处理,是具有记忆体映像为特殊功能寄存器,运算单元允许同时操作以及CPU的独立活动。操作数及 结果寄存器为MD0到MD5,控制寄存器为ARCON.任何MDU的运算将改写其操作数。

符号: ARCON							地	址: EFh		
	7	6	5	4	3	2	1	0	Reset	
	MDEF	MDOV	SLR			SC[4:0]			00H	ı

MDEF: 乘除错误标志位

MDEF 是一个错误标志位,且只可读。错误标志表示一个不当的操作(当其中的 运算操作被重新启动或者被一个新的运算中断),错误标志机制将自动在第一次 写入 MD0 时失效和来自 MD3 (乘法或转换/规范) 或来自第三阶段 MD5 (除法) 最终使读取指令失效。

在以下情况,错误标志位将被置位:

1. 第二阶段的进程, 并写入 MDx 寄存器时(重启或者中断计算)

错误标志只有在以下情况下重置:

第二阶段结束(算法成功)并写入 MDx 寄存器

MDOV: 乘除法溢出标志。该溢出标志只可读

只有在以下情况时,该溢出标志被置位:

除以"0",

再乘以一个比 0000FFFFH 大的值

当最重要的 MD3 位被设置位 (MD3.7=1)

当通过 MD0 寄存器写入, (开始第一阶段)时,

溢出标志被重置

SLR: 转换方向位

SLR=0-转换左操作

SLR=1-转换右操作.

SC[4:0]: 转换计数器

当预设与 00000b,标准化被选择,在标准化之后,SC[4;0] 包含正常转换的数字,当 $SC[4:0] \neq 0$ 时,转换操作就开始,正常转换的数字由计数器写入 SC[4;0] 决定。SC[4]位-MSB,SC[0]位-LSB。

6.2 乘除法器的设置

乘除法器的设置分为三个阶段:

6.2.1 第一阶段: 装载 MDx 寄存器, x = 0~5:

要执行的MDU运算的种类是按照mdx寄存器内写入的命令来选择.

表 6- 2: MDU registers write sequence

Operation	32bit/16bit	16bit/16bit	16bit x 16bit	shift/normalizing	
First write	MD0 Dividend Low	MD0 Dividend Low	MD0 Multiplicand Low	MD0 LSB	
MD1 Dividend		MD1 Dividend High	MD4 Multiplicator Low	MD1	
	MD2 Dividend		MD1 Multiplicand High	MD2	
	MD3 Dividend High			MD3 MSB	
	MD4 Divisor Low	MD4 Divisor Low			
Last write	MD5 Divisor High	MD5 Divisor High	MD5 Multiplicator High	ARCON start conversion	

任何情况下,MD0的写入都将首先被转换,而下一次的写入必须执行表 6-2显示的序列,以确保MDU的运作,最后一次的写入将开始选择的运作。

6.2.2 第二阶段: 执行运算.

在执行运算中,MDU运行在拥有CPU并行线上。当MDU执行完毕时,MDUF寄存器将被硬件置位, 其标志位也将在下一次运算中被清除。

MDUF: MDU 完成标志位

当 MDU 完成运算时,MDUF 将被硬件置位且标志位也将在下一次运算中被清除。

下表给出了每一次数学计算中的执行时间.

表 6- 3: MDU execution times

Operation	Number of Tclk		
Division 32bit/16bit	17 clock cycles		
Division 16bit/16bit	9 clock cycles		
Multiplication	11 clock cycles		
Shift	Min. 3 clock cycles, Max. 18 clock cycles		
Normalize	Min. 4 clock cycles, Max. 19 clock cycles		

6.2.3 第三阶段: 从 MDx 寄存器上读取结果.

从第一个MDX 寄存器上读取序列并不重要,但我们必须意识到最后一次的读取(从MD5的除法运算,或 MD3 中的乘法,位移和标准化)将意味着一次完整的运算结束(第三阶段结束).

表 6- 4:MDU registers read sequence

Operation	32Bit/16Bit	16Bit/16Bit	16Bit x 16Bit	shift/normalizing	
First read	MD0 Quotient Low	MD0 Quotient Low	MD0 Product Low	MD0 LSB	
	MD1 Quotient	MD1 Quotient High	MD1 Product	MD1	
	MD2 Quotient		MD2 Product	MD2	
	MD3 Quotient High				
	MD4 Remainder L	MD4 Remainder Low			
Last read	MD5 Remainder H	MD5 Remainder High	MD3 Product High	MD3 MSB	

6.3 标准化

整数阅读的零在寄存器变量MD0的MD3被左移位操作删除.当MD3寄存器的最高位 (Most Significant Bit) 包含一个'1' 整个操作完成. 经过标准化, ARCON.4 (MSB) 至ARCON.0 (LSB) 包含左移位操作数, 标准化完成.

6.4 位移

SLR位 (ARCON.5) 包含了位移的方向, 并且ARCON.4 至ARCON.0 移位操作数 (必须不能为0). 当位移时,零分别送入 MD0或MD3寄存器的左或右边.

7. 定时器0和定时器1

SM39R16A6 有二个16bit的定时/计数寄存器: 定时器0, 定时器1. 所有这些都可以被设置为定时或计数操作.

在计时的模式中,定时器0和定时器1寄存器的递增频率,可由寄存器PFCON中选择为与振荡器频率相同或为振荡器频率的1/12或为振荡器频率的1/96.

在计数的模式中,当检测到相应的输入脚T0/T1有下降沿产生时,寄存器便得到递增,由于它需要2个机器周期来识别由1到0的跳变,其最大输入的计数频率为振荡器频率的1/2,从而使得这里没有限制的占空比,以确定适当的识别为0或1的状态,因此,一个输入信号至少要稳定在1个机器周期.

定时器0和定时器1都有四种操作模式选择,在选择操作模式中,两个特殊功能寄存器(TMOD and TCON)被应用其中.

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
				Time	r 0 and 1						
TL0	Timer 0 , low byte	8Ah				TL0	[7:0]				00H
TH0	Timer 0 , high byte	8Ch				TH0	[7:0]				00H
TL1	Timer 1, low byte	8Bh		TL1[7:0]							00H
TH1	Timer 1 , high byte	8Dh		TH1[7:0]							00H
TMOD	Timer Mode Control	89h	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00H
TCON	Timer/Counter Control	88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
PFCON	Peripheral Frequency control register	D9h	-	ı	SRELPS[1:0]		T1PS	S[1:0]	TOPS	S[1:0]	00H

7.1 定时器/计数器模式控制寄存器(TMOD)

地址: 89h 符号: TMOD 6 5 3 0 Reset M0 C/T M0 GATE C/T M1 **GATE** M1 00h Timer 1 Timer 0

GATE: 该位被置位时为门控时,仅当'INTO 或者 INT1'脚为高时,且'TRx'控制位被置位(参考 TCON 寄存器)时使能,计数器在每个 TO 或 T1 输入脚处于下减沿触发时得到加强。

C/T: 门控定时器或计数器选择器。该位被置位时用作计数器功能,该位被清零时用作定

时器功能.

M[1:0]: 定时/计数器 0 或定时/计数器 1 的选择模式

M1	MO	Mode	Function
0	0	Mode0	13bit计数器/定时器, 包含TL0/TL1寄存器的低5
			位及TH0/TL1寄存器的全部8位,其TL0/TL1寄
			存
			器的高3位可设置为0.

0	1	Mode1	16 位计数器/定时器.
1	0	Mode2	8 位自动重载的计数器/定时器,自动重载的值保留在TH0 和TH1.同时TL0 或者TL1 在每个机器周期内都会递增. 当溢出时,将THx 存放的值装入TLx.
1	1	Mode3	如定时器1的M1和M2位被设置为1,定时器2停止计数。如定时器0的M1和M0位被设置为1,定时器0作为两个独立的8位定时器/计数器.

7.2 定时/计数控制寄存器(TCON)

符号: T0	符号: TCON								
7	6	5	4	3	2	1	0	Reset	
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h	

TF1: 定时器 1 溢出标志。定时器/计数器溢出时由硬件置位。中断执行时硬件清零,或由软件清零

TR1: 定时器 1 运行控制位。 如置位/清零, 关闭定时器/计数器 1.

TF0: 定时器 0 溢出标志。定时器/计数器溢出时由硬件置位。中断执行时硬件自动 清零,或由软件清零

TRO: 定时器 0 运行控制位。如置位/清零,关闭定时器/计数器 0

IE1: 中断 1 边沿标志。当检测到外部中断 1 边沿/低电平时由硬件置位该标志。中断处理时由硬件清零,或通过软件清零

IT1: 中断 1 类型控制位,通过软件置位/清零该位来选择外部中断 1 以下降沿/低电平方式触发

IEO: 中断 0 边沿标志。当检测到外部中断 0 边沿/低电平时由硬件置位该标志。中断处理时由硬件清零,或通过软件清零

ITO: 中断 0 类型控制位。通过软件置位/清零该位来选择外部中断 0 以下降沿/低电平方式触发

7.3 定时器输入频率控制寄存器

符号: PF	CON						地	址: D9h
7	6	5	4	3	2	1	0	Reset
-	-	SRELPS[1:0]		T1PS		TOPS	00H	

T1PS[1:0]: 定时器 1 分频器选择位

T1PS[1:0]	分频器
00	Fosc/12
01	Fosc
10	Fosc/96
11	reserved

T0PS[1:0]: 定时器 0 分频器选择位

T0PS[1:0]	Prescaler

00	Fosc/12
01	Fosc
10	Fosc/96
11	reserved

7.4 模式 0 (13 位定时/计数)

图 7-1:模式 0-13 位定时器/计数器操作

7.5 模式 1 (16 位定时/计数)

图 7-2: 模式 1-16 位定时器/计数器操作

7.6 模式 2 (8 位自动重载定时/计数)

图 7-3:模式 2-8位自动重载定时/计数

7.7 模式 3 (两个独立 8 位定时/计数(仅定时器 0))

图 7-4:模式 3-两个独立 8位定时/计数(仅定时器 0)

8. 定时器2 以及捕捉/比较单元(PWM)

定时器2不仅仅是一个16位的定时器,也是一个带有4个通道比较,捕获及重载功能,除了脉冲宽度调制(PWM)外,它是非常相似在其它一些微控制器的可编程计数器阵列(PCA)。

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
			Time	r 2 and Ca	apture Co	mpare Un	iit				
AUX	Auxiliary register	91h	BRGS	P21CC	-	P1UR	-	-	-	DPS	00H
AUX2	Auxiliary 2 register	92h	CCU3 Source	CCU2 Source	CCU1 Source	-	CCUII	NF[1:0]	CCUINFO	CLK[1:0]	00H
T2CON	Timer 2 control	C8h	•	T2PS[2:0]		T2R	[1:0]	-	T2I[1	[0:	00H
CCCON	Compare/Capture Control	C9h	CCI3	CCI2	CCI1	CCI0	CCF3	CCF2	CCF1	CCF0	00H
CCEN	Compare/Capture Enable register	C1h	- COCAM1[2:0] - COCAM0[2:0]				00H				
CCEN2	Compare/Capture Enable 2 register	D1h	-	- COCAM3[2:0] - COCAM2[2:0]					00H		
TL2	Timer 2, low byte	CCh		TL2[7:0]							00H
TH2	Timer 2, high byte	CDh		TH2[7:0]						00H	
CRCL	Compare/Reload/ Capture register, low byte	CAh		CRCL[7:0]							00H
CRCH	Compare/Reload/ Capture register, high byte	CBh		CRCH[7:0]							00H
CCL1	Compare/Capture register 1, low byte	C2h				CCL1	1[7:0]				00H
CCH1	Compare/Capture register 1, high byte	C3h				CCH.	1[7:0]				00H
CCL2	Compare/Capture register 2, low byte	C4h				CCL2	2[7:0]				00H
CCH2	Compare/Capture register 2, high byte	C5h				CCH2	2[7:0]				00H
CCL3	Compare/Capture register 3, low byte	C6h		CCL3[7:0]						00H	
CCH3	Compare/Capture register 3, high byte	C7h				CCH	3[7:0]				00H

P21CC: P21CC = 0 -在 P1 功能上的捕获/比较. P21CC = 1 -在 P2 功能上的捕获/比较.

符号: AUX2 地址: 92h 7 6 5 3 0 Reset CCU3 CCU₂ CCU1 CCUINF[1:0] CCUINFCLK[1:0] 00H Source Source Source

下面图 8- 1是设置 CCU 动作

CCU3 捕获输入来源 3

CCU3 = 0 - 外部引脚当 CCU3 捕获输入的源

CCU3 = 1 -模拟比较器 2 输出当 CCU3 捕获输入来源

CCU2 捕获输入来源 2

CCU2 = 0 - 外部引脚当 CCU2 捕获输入的源

CCU2 = 1 -模拟比较器 1 输出当 CCU2 捕获输入来源

CCU1 捕获输入来源 1

CCU1= 0 -外部引脚当 CCU1 捕获输入的源

CCU1=1-模拟比较器 0 输出当 CCU1 捕获输入来源

CCUINF[1:0] CCU 捕获输入噪声滤波器(CCU1,CCU2,CCU3)

CCUINF[1:0] = 00 - 1 连续相同值识别为有效的数据.

CCUINF[1:0] = 01 - 2 连续相同值识别为有效的数据.

CCUINF[1:0] = 10 - 4 连续相同值识别为有效的数据。

CCUINF[1:0] = 11 - 8 连续相同值识别为有效的数据.

CCUINFCLK[1:0] CCU 捕获输入噪声滤波器(CCU1,CCU2,CCU3) 选择频率.

CCUINFCLK[1:0] = 00 -定时器的频率/1

CCUINFCLK[1:0] = 01 - 定时器的频率/4

CCUINFCLK[1:0] = 10 - 定时器的频率/8

CCUINFCLK[1:0] = 11 - 定时器的频率/16

图 8- 1: CCU action diagram

符号: T	2CON						地	址: C8h	
7	6	5	4	3	2	1	0	Reset	
	T2PS[2:0]		T2R	R[1:0]	-	T2I[1:0]	00H	1

T2PS[2:0]: 分频器选择位:

T2PS = 000 - 定时器 2 的时钟为振荡频率.

T2PS = 001 - 定时器 2 的时钟为振荡频率的 1/2.

T2PS = 010 -定时器 2 的时钟为振荡频率的 1/4.

T2PS = 011 - 定时器 2 的时钟为振荡频率的 1/6.

T2PS = 100 - 定时器 2 的时钟为振荡频率的 1/8.

T2PS = 101 - 定时器 2 的时钟为振荡频率的 1/12.

T2PS = 110 - 定时器 2 的时钟为振荡频率的 1/24.

T2R[1:0]: 定时器 2 重载模式选择位

T2R[1:0] = 0X - 重载无效

T2R[1:0] = 10 -模式 0:自动重载

T2R[1:0] = 11 -模式 1:依 T2EX 脚下降缘重载

T2I[1:0]: 定时器 2 输入选择位

T2I[1:0] = 00 - 定时器 2 计数停止

T2I[1:0] = 01 - 输入频率依 T2PS[2:0]分频器选择

T2I[1:0] = 10 -定时器 2 在 T2 脚的外部信号递增

T2I[1:0] = 11 - 门控定时器 2 可为内部时钟输入

 符号: CCCON
 地址: C9h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 CCI3
 CCI2
 CCI1
 CCI0
 CCF3
 CCF2
 CCF1
 CCF0
 00H

CCI3: 捕捉/比较信道 3 中断功能控制位.

"1"中断功能使能.

CCI2: 捕捉/比较信道 2 中断功能控制位.

"1"中断功能使能.

CCI1: 捕捉/比较信道 1 中断功能控制位.

"1"中断功能使能.

CCI0: 捕捉/比较信道 0 中断功能控制位.

"1"中断功能使能.

CCF3: 捕捉/比较通道3中断旗标位.可由软件清零. CCF2: 捕捉/比较通道2中断旗标位.可由软件清零. CCF1: 捕捉/比较通道1中断旗标位.可由软件清零. CCF0: 捕捉/比较通道0中断旗标位.可由软件清零.

捕捉/比较中断与定时器2中断共享同一个中断向量.

符号: C0	CEN						地	址: C1h	
7	6	5	4	3	2	1	0	Reset	
-	C	OCAM1[2	:0]	-	C	OCAM0[2	:0]	00H	

COCAM1[2:0] 000: 禁止比较/捕获功能

001: 比较功能启动但无输出

010: 比较功能模式 0 011: 比较功能模式 1

100: 捕获在 CC1 脚的上升沿

101: 捕获在 CC1 脚的下降沿

110: 捕获在 CC1 脚的上升沿及下降沿

111: 在寄存器 CC1 中捕获写入操作

COCAM0[2:0] 000: 禁止比较/捕获功能

001: 比较功能启动但无输出

010: 比较功能模式 0 011: 比较功能模式 1

100: 捕获在 CC0 脚的上升沿

101: 捕获在 CC0 脚的下降沿

110: 捕获在 CC0 脚的上升沿及下降沿

111: 在寄存器 CC0 中捕获写入操作

符号: CCEN2								
7	6	5	4	3	2	1	0	Reset
-	COCAM3[2:0]			-	C	00H		

COCAM3[2:0] 000: 禁止比较/捕获功能

001: 比较功能启动但无输出

010: 比较功能模式 0 011: 比较功能模式 1

100: 捕获在 CC3 脚的上升沿 101: 捕获在 CC3 脚的下降沿

110: 捕获在 CC3 脚的上升沿及下降沿

111: 在寄存器 CC3 中捕获写入操作

COCAM2[2:0] 000: 禁止比较/捕获功能

001: 比较功能启动但无输出

010: 比较功能模式 0 011: 比较功能模式 1

100: 捕获在 CC2 脚的上升沿

101: 捕获在 CC2 脚的下降沿

110: 捕获在 CC2 脚的上升沿及下降沿111: 在寄存器 CC2 中捕获写入操作

8.1 定时器 2 功能

定时器2既可做为定时器,又可做为计数器,或解释为门控定时器(如下解释).

8.1.1 定时器模式

如以下 图 8-2,在此模式中,定时器2递增频率依分频器选择决定,而分频器则由特殊寄存器T2CON中的 T2PS[2:0]位选择.

图 8- 2: Timer mode and Reload mode function

8.1.2 外部信号计数模式

如以下 图 8-3,在此模式中,当然外部信号T2由1到0的跳变时,定时器得到递增,T2输入在每个周期中得以采样,定时器2在跳变检测的一个周期中得到递增.

图 8- 3: Event counter mode function

8.1.3 外部信号定时器模式

如以下 图 8-4,在此模式中,定时器2递增的内部时钟是由外部信号T2来控制的.

图 8- 4: Gated timer mode function

8.1.4 定时器 2 的重载

重载(来自CRC寄存器的16位重载)可在以下两种模式中执行:

模式0: 重载信号由定时器2溢出产生,即自动重载。模式1: 重载信号由相应的输入脚T2EX负跳变产生.

8.2 比较功能

在四个独立的比较器中,任何比较/捕捉寄存器中的值都和定时器寄存器的内容比较,其比较模式0或1由位C0CAMx来选择.在这两种比较模式中,其比较结果在同样的机器周期的P1口的得出使得其内部比较信号被激活.

8.2.1 比较模式 0 (PWM)

在模式**0**中,当定时器**2**的值等同与比较寄存器上的值时,其输出信号由低到高的跳变,并在定时器溢出时返回低电位。 在此模式中,对端口写入无效,因为无法对来自内部总线及暂存器进行操作。

如以下图 8-5数字阐述了比较模式0的功能

图 8- 5: Compare mode 0 function

8.2.2 比较模式 1

在比较模式1中,其输出信号的跳变是由软件来决定的。定时器2的溢出不会导致输出的改变。在此模式中,两种信号的 跳变都是可以控制的,如图 8-6及图 8-7显示了在比较模式1中的寄存器/端口结构菜单。

在比较模式1中,其值将首先被写入到"阴影寄存器"中,当比较信号被激活时,其值被传递到输出寄存器

图 8-6:模式 1 寄存器/端口功能

图 8-7: 比较模式 1 功能

8.3 捕获功能

在一个外部事件(模式0)或一个软件写操作(模式1)上,实际的定时器/计数器的值可以被保存在寄存器CCx或CRC中.

8.3.1 捕捉模式 0

如以下 图 8-8,在模式0中,定时器2的值的捕捉在以下情况进行:

- (1) 上升沿输入 CC0-CC3。
- (2) 下降沿输入 CC0-CC3。
- (3) 上升沿及下降沿输入 CC0-CC3。

定时器2的内容将被对应的捕捉寄存器锁存。

图 8-8: 捕捉模式 0 功能

8.3.2 捕捉模式 1

如以下 图 8-9,在模式1中,定时器2的值的捕捉将导致写入到捕捉寄存器中的低字节无任何价值,其捕捉寄存器的写入值与改功能无关,定时器2的内容将被对应的捕捉寄存器琐存。

图 8-9: 捕捉模式 1 功能

9. 串行接口0

两个串行缓冲器组成两个单独寄存器,即一个传输缓冲区和一个接收缓冲区。

写入数据到特殊功能寄存器(SFR)S0BUF并设置这些数据在串行输出缓冲,并开始传输,来自S0BUF的读取及从串行接收缓冲区读取数据,串行口可同时传输和接收数据,它也可在接收时缓存1字节,如CPU在第一个字节传输完成之前读取第二个字节,以防接收数据丢失。

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
			9	Serial inte	rface 0 ar	nd 1					
PCON	Power control	87H	SMOD	-	-	-	-	-	STOP	IDLE	00H
AUX	Auxiliary register	91h	BRGS	P21CC	-	P1UR	-	-	-	DPS	00H
SCON	Serial Port control register	98H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SRELL	Serial Port reload register low byte	AAH	SREL.7	SREL.6	SREL.5	SREL.4	SREL.3	SREL.2	SREL.1	SREL.0	00H
SRELH	Serial Port reload register high byte	BAH	-	-	-	-	-	-	SREL.9	SREL.8	00H
SBUF	Serial Port data buffer	99H		SBUF[7:0]							00H
PFCON	Peripheral Frequency control register	D9h	SRELPS[1:0] T1PS[1:0] T0PS[1:0]					00H			

 符号: AUX
 地址: 91h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 BRGS
 P21CC
 P1UR
 DPS
 00H

BRGS: BRGS = 0 - 波特率产生器使用定时器 1 TH1 寄存器.

BRGS = 1 -波特率产生器使用 SOREL 寄存器.

P1UR: P1UR = 0 - 串行接口 0 的功能 P3. P1UR = 1 - 串行接口 0 的功能 P1.

符号: SCON 地									
7	6	5	4	3	2	1	0	Reset	
SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00H	

SM0, SM1: 串行口模式选择.

SM0	SM1	Mode
0	0	0
0	1	1
1	0	2
1	1	3

在 UART 的 4 种模式中,模式 0~3 稍后解释

SM2: 多处理机通信使能位

REN: 如置位,串行接收使能,软件清除禁止接收

TB8: 在模式 2 和 3 中,发送的第 9 位数据位,置位或清零取决与它执行的功能,如 奇偶校验功能, 多处理机通信等。

RB8: 在模式 2 和 3 中, RB8 为接收的第 9 位数据位。在模式 1 中, 如 SM2=0,

RB8 为停止位。在模式 0 中,此位不被使用。须由软件清除。

TI: 发送中断标志位.在完成串行传输后由硬件置位,须由软件清除。

RI:接收中断标志。在完成串行传输后由硬件置位,须由软件清除.

9.1 串行接口由以下 4 种模式可以设置

SM0	SM1	Mode	描述	Board Rate
0	0	0	Shift register	Fosc/12
0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	Fosc/32 or Fosc/64
1	1	3	9-bit UART	Variable

这里的Fosc是晶体或振荡器的频率。

9.1.1 模式 0

引脚RXD充当输入和输出。TXD输出时钟。每次发送或接收以LSB最低位作首位,每次8位。波特率固定为的晶体的频率 1/12,接收通过以下的在SCON中的设置标志在模式0中初始化: RI = 0及REN = 1。在其它模式中,当REN=1时,开始从起始位接收串行数据.

图 9- 1: 发送模式 0

图 9-2:接收模式 0

9.1.2 模式 1

引脚RXD充当输入,TXD充当串行输出,无任何外部时钟被使用,每次数据为10位:一个起始位(=0),8个数据位(LSB位在前),及一个停止位(=1)。在接收据数据时,起始位将被同步传输,8个数据位可通过SBUF来读取,一个停止位存于特殊功能寄存器SCON的设置标志RB8内,在模式1中,无论是内部的波特率发生器或定时器1可以用来指定波特率。

图 9-3: 发送模式 1

图 9-4:接收模式1

9.1.3 模式 2

该模式和模式1类似,但有两点不同。波特率被固定在振荡器的频率的1/32(SMOD=1)或1/64(SMOD=0),且有11位数据被传输或接收:1个起始位(=0),8个数据位(LSB在前),一个可编程的第9位及一个停止位(=1),9位可以用来控制串行接口的奇偶性。在传输中,SCON中的TB8输出第9位,在接收中,SCON中的RB8将被影响。

9.1.4 模式 3

模式2和3的唯一不同之处在于: 在模式3中, 无论是内部的波特率发生器或定时器1可以用来指定波特率。

图 9-5: 传输模式 2 和模式 3

图 9-6:接收模式 2 和 3 中

9.2 串行接口的多重机通讯

在串行接口的模式2 和3,接收9 位的功能,可用于多处理器的通讯。在这种情况下,从机在SCON 中的位SM2被置位为1。当主机输出从机的地址时,Bit9 将被置1,从而在所有的从机中导致串行口接收中断。从机将接收到的字节和它们的网络地址比较,如匹配,其从机将清除SM2,并接收其余的信息,其它的从机将远离SM2无效,并忽略此信息。在解决从机后,其主机在Bit9 清0 时将输出剩余部分的信息,因此,没有串口接收中断会产生在未选中的处理机中。

9.3 输入频率控制寄存器

符号: PFCON 地址:										
7	6	5	4	3	2	1	0	Reset		
-	-	SRELPS[1:0]		T1PS	[1:0]	T0PS	00H			

SRELPS[1:0]: SREL 分频器选择位

SRELPS[1:0]	Prescaler
00	Fosc/64
01	Fosc /32
10	Fosc /16
11	Fosc /8

T1PS[1:0]: Timer1 分频器选择位

T1PS[1:0]	Prescaler
00	Fosc/12
01	Fosc
10	Fosc/96
11	reserved

9.4 波特率发生器

9.4.1 串行接口的模式 1 和 3

9.4.1.1 当 BRS = 0 (在 AUX 寄存器):

(1) \pm T1PS[1:0] = 00

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times 12 \times (256 - \text{TH1})}$$

(2) 当 T1PS[1:0] = 01

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times (256 - \text{TH1})}$$

(3) 当 T1PS[1:0] = 10

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times 96 \times (256 - \text{TH1})}$$

9.4.1.2 当 BRS = 1 (在 AUX 寄存器)

(1) 当 SRELPS[1:0] = 00

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{64 \times (2^{10} - \text{SREL})}$$

(2) 当 SRELPS[1:0] = 01

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{32 \times (2^{10} - \text{SREL})}$$

(3) 当 SRELPS[1:0] = 10

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{16 \times \left(2^{10} - \text{SREL}\right)}$$

(4) 当 SRELPS[1:0] = 11

Baud Rate =
$$\frac{2^{\text{SMOD}} \times F_{\text{osc}}}{8 \times (2^{10} - \text{SREL})}$$

10. 看门狗定时器

看门狗定时器是一个8位的计数器并会在计数器溢出时产生复位讯号.WDT在噪音.电源干扰,或断电等导致软件死循环或跑飞程序等情况下非常有用.WDT功能可以帮助拥护的软件从不正常的软件状态中恢复正常.WDT不同于通用的8052的计时器0,1,2.为了防止WDT复位,可以通过软件定时清除WDT计数器.当不可预料的复位发生时,用户应该检查WDTC寄存器的WDTF位.在一外部复位后,该看门狗定时器将无效且所有寄存器都清零。

看门狗定时器是一个自由运行的片上RC振荡器 (约23 KHz). WDT将保持运行就算是系统时钟被关闭(例如,在睡眠状态). 在正常的运行或睡眠状态,一个WDT超时(如使能)将导致MCU复位.WDT在正常状态下可随时被使能或失效.请注意WDTC 寄存器的WDTE位.默认的WDT超时时间为接近178.0ms (WDTM [3:0] = 0100b).

WDT有可选择的分频.要选择分频,需要正确设置看门控制寄存器(WDTC)的位3~位0(WDTM [3:0])

$$WDTCLK = \frac{23 \text{KHz}}{2^{\text{WDTM}}}$$
Watchdog reset time =
$$\frac{256}{\text{WDTCLK}}$$

表 10-1: WDT 超时时间

WDTM [3:0]	Divider (23 KHz RC oscillator in)	Time period @ 23KHz
0000	1	11.1ms
0001	2	22.2ms
0010	4	44.5ms
0011	8	89.0ms
0100	16	178.0ms (default)
0101	32	356.1ms
0110	64	712.3ms
0111	128	1.4246s
1000	256	2.8493s
1001	512	5.6987s
1010	1024	11.397s
1011	2048	22.795s
1100	4096	45.590s
1101	8192	91.180s
1110	16384	182.36s
1111	32768	364.72s

注: RC 振荡器(23 KHz), 大约有 ± 20 %误差

当MCU复位,MCU将会读WDTEN控制位状态.当WDTEN位被设置为1,参考以下无论WDTE位状态如何,看门狗功能将会失效.当WDTEN位被清0,在WDTE位被通过变成设为1的情况下,看门狗功能将被使能.用户可通过烧路器或ISP设置WDTEN.

对WDTE位写入1同时WDTEN控制位清0,能使WDT功能使能.在WDTE设为1后.8位的计数器用通过WDTM[3:0]设置好的分频进行计数.它在溢出时将会产生复位讯号.WDTE位在MCU重启时将被自动清0,同时硬件复位或WDT复位.

看门狗一旦开始工作将无法停止.当WDTK寄存器用户可通过对看门狗定时器重置密钥(WDTK)写入55h实现WDT计时器清0.这将会清除8位计数器内容并让计数器重启.看门狗定时器必须定时刷新以防来自可变的重置复位请求信号.

当看门狗定时器溢出时, WDTF标志位将被置1并自动重置复位MCU. 该标志位可被软件或外部复位清除.

当MCU复位,MCU将会读WDTEN控制位状态.当WDTEN位被设置为1,参考以下图 10-1无论WDTE位状态如何,看门狗功能将会失效.当WDTEN位被清0,在WDTE位被通过变成设为1的情况下,看门狗功能将被使能.用户可通过烧路器或ISP设置WDTEN.

对WDTE位写入1同时WDTEN控制位清0,能使WDT功能使能.在WDTE设为1后.8位的计数器用通过WDTM[3:0]设置好的分频进行计数.它在溢出时将会产生复位讯号.WDTE位在MCU重启时将被自动清0,同时硬件复位或WDT复位.

看门狗一旦开始工作将无法停止.当WDTK寄存器用户可通过对看门狗定时器重置密钥(WDTK)写入55h实现WDT计时器清0.这将会清除8位计数器内容并让计数器重启.看门狗定时器必须定时刷新以防来自可变的重置复位请求信号.

当看门狗定时器溢出时, WDTF标志位将被置1并自动重置复位MCU.该标志位可被软件或外部复位清除.

图 10- 1: Watchdog 定时器框图

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
				Wat	chdog Tim	er					
TAKEY	Time Access Key register	F7h		TAKEY [7:0]							
WDTC	Watchdog timer control register	B6h	-	- CWDTR WDTE - WDTM [3:0]							04H
WDTK	Watchdog timer refresh key	B7h		WDTK[7:0]							00H
RSTS	Reset status register	A1h	-	-	-	PDRF	WDTF	SWRF	LVRF	PORF	00H

符号: TA	KEY							地址: F7h		
7	6	5	4	3	2	1	0	Reset		
	TAKEY [7:0]									

看门狗控制寄存器(WDTC)默认为仅读;软件需依序于寄存器 TAKEY 写入 55h, AAh 及 5Ah 才能对看门狗控制寄存器(WDTC)执行写入,启动看门狗功能及设定重置时间

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah

符号: W	DTC						坩	处址: B6h
7	6	5	4	3	2	1	0	Reset
-	CWDTR	WDTE	-	WDTM [3:0]				04H

CWDTR: 看门狗溢位状态选择(支持休眠唤醒)

0: 看门狗发生溢位时产生重置信号

1: 看门狗发生溢位时产生中断信号

WDTE: 看门狗定时器使能位.

此位需于WDTEN=0(此值于出厂时已设为0)时设置才有作用,既于刻录(使用ICP,ISP或

一般刻录器)时于看门狗选项选择使用.

0: 禁能.

1: 使能.

WDTM [3:0]: 看门狗重置信号产生时间选择位.请参考图 10-1 所列看门狗重置信号产生时间.

符号: R	STS						地	业: A1h
7	6	5	4	3	2	1	0	Reset
-	-	-	PDRF	WDTF	SWRF	LVRF	PORF	00h

WDTF: 看门狗重置旗标.

此旗标于芯片之复位信号是由看门狗重置产生时由硬件自动设置.此旗标可由软件清零

符号: W	DTK						地	址: B7h	
7	6	5	4	3	2	1	0	Reset	
	WDTK[7:0]								

WDTK: 看门狗定时器计数器清零寄存器.

于此寄存器写入 0x55, 看门狗定时器计数器将清零重新计数.

例如 1:

看门狗定时器使能并选择重置信号产生时间为 2.8493s

第一步,先确认刻录时看门狗功能已选择使用

第二步,如下

MOV TAKEY, #55h

MOV TAKEY, #0AAh

MOV TAKEY, #5Ah ; enable WDTC write attribute.

MOV WDTC, #28h ; Set WDTM [3:0] = 1000b. Set WDTE =1 to enable WDT

; function.

.

MOV WDTK, #55h ; Clear WDT timer to 0.

例如 2:

看门狗定时器使能并选择周期中断信号产生时间为 178.0ms

第一步,先确认刻录时看门狗功能已选择使用

第二步,如下

MOV TAKEY, #55h MOV TAKEY, #0AAh

MOV TAKEY, #5Ah ; enable WDTC write attribute.

MOV WDTC, #64h ; Set WDTM [3:0] = 0100b. Set WDTE =1 to enable WDT function

; and Set CWDTR =1 to enable period interrupt function

11. 中断

SM39R16A6 提供13个中断源并带有4级优先权. 每一中断源都在特殊寄存器(SFR)中有自身的请求标志,每个中断请求信号通过相应的标志及特殊寄存器(SFR)中的IEN0及IEN1中的使能位来独自允许或禁止。

当中断发生时,CPU将会跳转预先设定的地址,如表 11-1 表所示,一旦中断开始执行,就只能被更高优先级的中断终止,其中断服务会被来自指令RETI的返回所终结。当一RETI被执行时且中断发生时,处理器将将返回此指令,并执行下一条指令。

当中断条件发生时,该处理器通过设置一个标志位来表示,无论中断使能或禁止,每个中断标志都将在每个机器周期中采样一次,随后采样由硬件来检测,当中断被使能时,且采样指出相应中断时,中断请求标志被设置。在随后的指令周期中,中断将被硬件所确定。从而迫使一个LCALL指向相应的地址向量。

当中断发生时,中断响应将需要不同的时间,这取决于相关的处理器。如一处理器执行的中断服务程序同等或更优先,新的中断将不会启用,在其它情况下,响应时间将取决于当前的指令。以最快的速度回应一个中断是需要7个机器周期,这包括一个检测中断的机器周期和6周期执行LCALL周期。

Interrupt Vector Interrupt Number **Interrupt Request Flags** *(use Keil C Tool) **Address** 1 IE0 - 外部中断0 0003h 0 2 TF0 - 定时器0 中断 000Bh 1 3 IE1 - 外部中断 1 0013h 2 4 TF1 - 定时器1 中断 001Bh 3 5 RI/TI - 串行口中断 0023h 4 6 002Bh 5 TF2/EXF2 - 定时器2 中断 7 PWMIF - PWM 中断 0043h 8 8 9 SPIIF - SPI 中断 004Bh 9 ADCIF - A/D 转换 中断 0053h 10 10 LVIIF - 低压侦测 中断 0063h 12 11 IICIF - IIC 中断 006Bh 13 12 008Bh WDTIF-看门狗中断 17 13 Comparator 中断 0093h 18

表 11- 1: 中断向量

^{*}参考Keil C用户指南中的有关中断功能使用说明

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
	Interrupt										
IEN0	Interrupt Enable 0 register	A8H	EA	-	ET2	ES	ET1	EX1	ET0	EX0	00H
IEN1	Interrupt Enable 1 register	В8Н	EXEN 2	1	IEIIC	IELVI	-	IEADC	IESPI	-	00H
IEN2	Interrupt Enable 2 register	9AH	ı	ı	ı	ı	ı	ECmpl	EWDT	ı	00H
IRCON	Interrupt request register	C0H	EXF2	TF2	IICIF	LVIIF		ADCIF	SPIIF		00H
IRCON2	Interrupt request register 2	97H	-	-	-	-	-	CmpIF	WDT IF	-	00H
IP0	Interrupt priority level 0	A9H		1	IP0.5	IP0.4	IP0.3	IP0.2	IP0.1	IP0.0	00H
IP1	Interrupt priority level 1	В9Н	-	ı	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	00H

 符号: IEN0
 地址: A8h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 EA
 ET2
 ES
 ET1
 EX1
 ET0
 EX0
 00h

EA: EA=0 -禁能所有中断

EA=1 -使能所有中断

ET2: ET2=0-禁能定时器 2 中断

ET2=1-使能定时器 2 中断

ES: ES=0 -禁能串行口中断

ES=1 - 使能串行口中断

ET1: ET1=0-禁能定时器 1 中断

ET1=1-使能定时器 1 中断

EX1: EX1=0 -禁能外部中断 1

EX1=1 - 使能外部中断 1

ET0: ET0=0 -禁能定时器 0 中断

ET0=1-使能定时器 0 中断

EX0: EX0=0 -禁能外部中断 0

EX0=1 - 使能外部中断 0

符号: IEN	l 1						地址	业: B8h
7	6	5	4	3	2	1	0	Reset
EXEN2	-	IEIIC	IELVI	-	IEADC	IESPI	-	00H

EXEN2: 定时器 2 重载中断使能位

EXEN2 = 0 -禁能定时器 2 外部重载中断

EXEN2 = 1 - 使能定时器 2 外部重载中断

IEIIC: IIC 中断使能位

IEIICS = 0 -禁能 IIC 中断

IEIICS = 1 - 使能 IIC 中断

IELVI: 低压侦测中断使能位

IELVI = 0 -禁能低压侦测中断

IELVI = 1 - 使能低压侦测中断

IEADC: A/D 转换中断使能位

IEADC = 0 -禁能 ADC 中断

IEADC = 1 - 使能 ADC 中断

IESPI: SPI 中断使能位

IESPI = 0 -禁能 SPI 中断

IESPI = 1 - 使能 SPI 中断

符号: IE	地	址: 9Ah						
7	6	5	4	3	2	1	0	Reset
-	-	-	-	-	ECmpl	EWDT	-	H00

ECmpl: ECmpl =0 -禁能比较器中断.

ECmpl =1 -使能比较器中断(包括比较器 0 及比较器 1).

EWDT: WDT 看门狗中断使能位

EWDT = 0 -禁能 WDT 中断

EWDT = 1 - 使能 WDT 中断

符号: IR	符号: IRCON								
7	6	5	4	3	2	1	0	Reset	
EXF2	TF2	IICIF	LVIIF	-	ADCIF	SPIIF	-	00H	

EXF2: 定时器 2 重载中断旗标位.必须由软件清零

TF2: 定时器 2 中断旗标位.必须由软件清零

IICIF: IIC 中断旗标位

LVIIF: 低压侦测中断旗标位 ADCIF: A/D 转换中断旗标位

SPIIF: SPI 中断旗标位

符号: IRCON2								ὑ址: 97h
7	6	5	4	3	2	1	0	Reset
-	-	-	-	-	CmpIF	WDTIF	-	00H

CmpIF: 比较器中断旗标位,

当比较器中断使能时,此旗标位将于程序至中断向量执行时自动清零.

当比较器中断禁能时,此旗标位可由软件清零

WDTIF: 看门狗中断旗标位

11.1 优先权配置

所有中断来源相组合于以下组中, 如表 11-2:

表 11- 2: Priority level groups

	Groups									
外部中断 0	-	PWM 中断								
定时器 0 中断	看门狗中断	SPI 中断								
外部中断 1	比较器中断	ADC 中断								
定时器 1 中断	-	-								
串行口中断	-	低压侦测中断								
定时器 2 中断	-	IIC 中断								

通过对SFR中的IPO或IP1置位或清零,每一组中断都可被独自编程为四个优先级中的一个,如要求相同的优先级被同时接收,一内部轮询序列将依次确定哪个请求被优先服务.

符号: IP	1						地:	址: B9h
7	6	5	4	3	2	1	0	Reset
-	-	IP1.5	IP1.4	IP1.3	IP1.2	IP1.1	IP1.0	00h

表 11- 3: Priority levels

IP1.x	IP0.x	优先权层级			
0	0	Level0 (最低)			
0	1	Level1			
1	0	Level2			
1	1	Level3 (最高)			

表 11-4: Groups of priority

	• 1		
Bit		Group	
IP1.0, IP0.0	外部中断 0	-	PWM 中断
IP1.1, IP0.1	定时器 0 中断	看门狗中断	SPI 中断
IP1.2, IP0.2	外部中断 1	比较器中断	ADC 中断
IP1.3, IP0.3	定时器1中断	-	-
IP1.4, IP0.4	串行口 0 中断	-	低压侦测中断
IP1.5, IP0.5	定时器 2 中断	-	IIC 中断

表 11-5: 轮询顺序

中断源	顺序
外部中断 0	
PWM 中断	
定时器 0 中断	
看门狗中断	
SPI 中断	
外部中断 1	轮
比较器中断	
ADC 中断	序
定时器1中断	
串行口 0 中断	
低压侦测中断	
定时器2中断	↓ ↓
IIC 中断	•

12. 电源管理单元

电源管理单元提供两种电源管理模式,即IDLE(待机/空闲)和STOP(停止),并为用户提供省电功能。

符号: PCON									
7	6	5	4	3	2	1	0	Reset	
SMOD	-	-	-	-	-	STOP	IDLE	00h	

STOP: STOP 模式控制位。设置此位将运行 STOP 模式, STOP 位总是读为 0. IDLE: IDIE 模式控制位。设置此位将运行 IDLE 模式, IDLE 位总是读为 0

12.1 待机模式(空闲模式)

使用IDLE(待机模式(空闲模式))模式可通过对PCON寄存器的IDLE位置位。空闲模式停止MCU的时钟源,但外部的时钟源依旧保持,由于此时CPU不工作,电源功耗将被降低。当任何一中断信号或者一复位信号时,CPU将退出待机模式(空闲模式)。

12.2 停止模式

使用STOP(停止模式)模式可通过对PCON寄存器的STOP位置位。在此模式中,所有的中断源将全部被关闭,CPU将从一个无时钟的中断(外部中断0/1,低压侦测、看门狗中断)或者一个重置(看门狗及低压重置)条件下退出该模式,内部产生的中断(定时器,串行端口...),由于它们需要时钟源而会没有任何动作。

13. 脉宽调制器(PWM)

SM39R16A6提供-四个通道的PWM输出. 中断值为43h.

中断向量是 43 h.

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
., .				F	PWM						
ADCC2	ADC control 2 Reg.	ACh	Start	Start Adjust PWMT EXTTri address ADCM ODE ADCCH[2:0]					08h		
PWMTBC0	PWM Time Base Control 0 Reg.	F9		PWMTBPRE[1: PWMTBMOD[1: 0] 0]					00H		
PWMTBC1	PWM Time Base Control 1 Reg.	FA	PWMT BEN	-	-	PWM Protec tDIS		-	-	PWMP IE	10H
PWMOPMO D	PWM Output Pair Mode Reg.	FB		-		-	PWM OP3M OD	PWM OP2M OD	PWM OP1M OD	PWM OP0M OD	00H
PERIODL	PWM Period (Low) Reg.	F1			Р	WM 周期	低电平8/	<u>, </u>			FFH
PERIODH	PWM Period(High) Reg.	F2		-		Р	WM 周期	高电平6	立		3FH
PWMEN	PWM Output Enable Reg.	F5	PWM7 EN	PWM6 EN	PWM5 EN	PWM4 EN	PWM3 EN	PWM2 EN	PWM1 EN	PWM0 EN	00H
PWMTBPO ST SCALE	PWM TIME BASE POST SCALE Reg.	EE		PWMTBPOST[7:4]					H00		
PWMINTF	PWM INT Flag Reg.	BCh	PWMT BDIR	-	-	-		-	SEVT IF	PWMP IF	00H
DEADTIME 2	Dead Time 2 Reg.	EB	DT2PF	RE[1:0]			DT2	[5:0]			00H
DEADTIME 3	Dead Time 3 Reg.	EC	DT3PF	RE[1:0]			DT3	[5:0]			00H
DUTY2L	PWM 2 Duty Low byte Reg.	D5	PWM2 占空比低电平 8 位						00H		
DUTY2H	PWM 2 Duty High byte Reg.	D6	- PWM2 占空比高电平 6 位					00H			
DUTY3L	PWM 3 Duty Low byte Reg.	D7			PW	/M3 占空l	北低电平 8	3位			00H
DUTY3H	PWM 3 Duty High byte Reg.	C9	-			PW	/M3 占空比	上高电平 6	 6 位		00H

13.1.1 ADC 控制寄存器 2

Start 当这位被设置时,ADC 将开始转换。 (软件触发转换)

ADJUST 调整 ADC 转换数据的格式。

ADJUST = 0: (默认值)

ADC 数字输出高字节 ADCD [9:2] = ADCDH [7:0].

ADC 数字输出低字节 ADCD [1:0] = ADCDL [1:0].

ADJUST = 1:

ADC 数字输出高字节 ADCD [9:8] = ADCDH [1:0].

ADC 数字输出低字节 ADCD [7:0] = ADCDL [7:0].

PWMTriggerEN 设定 PWM 触发 ADC.

(硬件内部触发转换)

0 =禁止

1 = 使能

EXTTriggerEN 外部引脚触发 ADC, 开始转换。

(硬件外部触发转换)

0 =禁止

1 = 使能

ADCMODE 0 =连续模式

1=单次模式

ADCCH[2:0] ADC 通道选择.

ADCCH [2:0]	Channel
100	4
101	5
110	6
111	7

13.1.2 PWM 时基控制 0

符号: PWMTBC0 地址: F9h

7	6	5	4	3	2	1	0	Reset
	-			PWMTB	PRE[1:0]	PWMTB	MOD[1:0]	00H

PWMTBPRE PWM 时基分频

[1:0]

PWMTBPRE [1:0]	Mode
00	Fosc
01	Fosc/4
10	Fosc/16
11	Fosc/64

PWMTBMOD PWM 时基模式

PWMTBMOD [1:0] = 00 -自由运行模式

PWMTBMOD [1:0] = 01 -单次转换模式

PWMTBMOD [1:0] = 10 -连续向上/向下计数模式. (TBCOUNTER = PERIOD 产生一

个中断)

PWMTBMOD [1:0] = 11 -连续向上/向下计数模.

(TBCOUNTER = PERIOD and TBCOUNTER = 0 各产生一个中断)

Freq = 24MHz, Period = 14 位								
Prescale	PWM Frequency Edge-align	PWM Frequency center-align						
1:1	1500 Hz	750 Hz						
1:4	375 Hz	188 Hz						
1:16	94 Hz	47 Hz						
1:64	23 Hz	12 Hz						

13.1.3 PWM 时基控制 1

 符号: PWMTBC1
 地址: FAh

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 PWMTBEN
 PWMPIE
 10H

PWMTBEN PWM 时基使能

0 = PWM 时基禁用

1 = PWM 时基使能

WMProtectDIS: PWM 保护设置

0 =使能

1 = 禁用

PWM4/PWM5, PWM6/PWM7, 保护使能/禁用.

PWMPIE: PWM 周期中断允许

PWMPIE = 0 - PWM 周期中断禁用 PWMPIE = 1 - PWM 周期中断使能

13.1.4 PWM 输出双模式

符号: PWMOPMOD						地	址: FB	h
7	6	5	4	3	2	1	0	Reset
				PWMOP3MOD	PWMOP2MOD	-	-	00H

PWMOP3MOD PWM 输出对 3 个模式

0 = (PWM6, PWM7) 是互补模式

1 = (PWM6, PWM7) 独立模式

PWMOP2MOD PWM 输出对 2 模式

0 = (PWM4, PWM5) 是互补模式

1 = (PWM4, PWM5) 独立模式

13.1.5 PWM 使能設定

PWM7EN PWM 7 使能选择

PWM7EN = 0 - PWM7 输出禁止

PWM7EN = 1 - PWM7 输出使能

PWM6EN PWM 6 使能选择

PWM6EN = 0 - PWM6 输出禁止

PWM6EN = 1 - PWM6 输出使能

PWM5EN PWM 5 使能选择

PWM5EN = 0 - PWM5 输出禁止

PWM5EN = 1 - PWM5 输出使能

PWM4EN PWM 4 使能选择

PWM4EN = 0 - PWM4 输出禁止

PWM4EN = 1 - PWM4 输出使能

13.1.6 PWM 时基后分频器(Post Scale)設定

 符号: PWMTBPOSTSCALE
 地址: EEh

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 PWMTBPOST [7:0]
 00H

PWMTBPOST[7:0] PWM 时基后分频器(Post Scale). (设定多少次数的 PWM 周期发生触发一次中断)

0000 0000 = 1:1 后分频器

0000_0001 = 1:2 后分频器

:

0000 1111 = 1:16 后分频器

0001_0000 = 1: 17 后分频器

:

:

1111_1111 = 1: 256 后分频器

13.1.7 PWM 中断旗标

符号: PWMINT	F						;	地址: BCh
7	6	5	4	3	2	1	0	Reset
PWMTBDIR	-	-	-		-	-	PWMPIF	00H

PWMTBDIR:	PWM时基计数方向状态(只读)
	0 = 向上计数
	1 = 向下计数
PWMPIF:	PWM周期中断旗标

13.1 死区

當半桥(half-bridge)电路正在应用时,在同一时间的上限和下限的手臂開始進行状态轉換周期,由于在TON 及TOFF字符時,功率晶体不能瞬时完成转状态,从而导致短路,所以必须抽出一定的时间,使功率晶体转换状态。

每对互补 PWM 输出有 6 位向下计数器,由于产生死区,每个死区单位都有一个上升边缘和下降边缘检测器,根据计数器並且数字的值为零时,剛好會被转换。如图 13-1中所示。

图 13- 1: PWM 输出比较

13.1.1 死区 2 用于 PWM 配对 2

符号: D	EADTIME	Ξ2					地	址: EBh
7	6	5	4	3	2	1	0	Reset
DT2PF	RE[1:0]			DT2[5:0]				00H

	死区 2的分频
DTODDELL OF	00 = Fosc/2
DT2PRE[1:0]	01 = Fosc/4
	10 = Fosc/8
	11 = Fosc/16
	死区 2
	$00_0000 = 1$ 死区 2 单元.
DT2[5:0]	00_001 = 2 死区 2 单元
	11_1111 = 64 死区 2 单元.

13.1.2 死区 3 用于 PWM 配对 3

 符号: DEADTIME3
 地址: ECh

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 DT3PRE[1:0]
 DT3[5:0]
 00H

DT3PRE[1:0]	死区 3 Prescale
	00 = Fosc/2
	01 = Fosc/4
	10 = Fosc/8
	11 = Fosc/16
DT3[5:0]	死区 3
	$00_{-}0000 = 1$ 死区 3 单元.
	00_0001 = 2 死区 3 单元
	11_1111 = 64 死区 3 单元.

14. IIC 功能

这些IIC模块使用SCL(时钟)和SDA(数据)线来联系其它的IIC界面, 其速度可以由软件设置特殊寄存器(SFR)中的IICBR[2:0] ,从而使其高达到400KBpS(最大值). IIC模块可以是主机也可以是从机,提供两个中断(RXIF,TXIF),并有两个地址以作数据传输,它将产生开始,在主机模式中,反复启动和停止信号,在从机模式中,它将检测开始,反复启动和停止信号,最大沟通的长度及连接设备的数目被一个最大400pF 的电容所限制

中断向量为 6Bh.

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值	
				110	C function	1						
IICCTL	IIC control register	F9h	IICEN	MSS	MAS	AB_E N	BF_EN		IICBR[2:0]			
IICS	IIC status register	F8h	-	MPIF	LAIF	RXIF	TXIF	RXAK	TXAK	RW or BB	00H	
IICA1	IIC Address 1 register	FAh		IICA1[7:1] MATC H1or RW1								
IICA2	IIC Address 2 register	FBh		IICA2[7:1] MATC H2 or RW2								
IICRWD	IIC Read/Write register	FCh		IICRWD[7:0]								
IICEBT	IIC Enaable Bus Transaction	FDh	FU_	_EN	-	-	-	-	-	-	00H	

 符号: IICCTL
 地址: F9h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 IICEN
 MSS
 MAS
 AB_EN
 BF_EN
 IICBR[2:0]
 04h

IICEN: IIC 模式使能

IICEN = 1, 使能

IICEN = 0, 禁止

MSS: 主\从机模式选择

MSS = 1, 选择主机模式

MSS = 0, 选择从机模式

软件必须在设置其它寄存器之前置位

MAS: 主模式的地址选择(仅在主机模式中)

MAS = 0, 使用 IICA1

MAS = 1, 使用 IICA2

AB EN: 仲裁失去了使能位. (仅主机模式)

当 AB_EN 位使能, 硬件将检查仲裁丢失位.一旦发生丢失仲裁, 硬件将返回到空闲状态. 如果此位被清除, 硬件也不会理会仲裁丢失情况.当多主机与从机连接时需设置此位.于单主机与从机时清除此位.

BF EN: 总线忙碌使能位. (仅主机模式)

当 BF_EN 位使能,硬件将不会产生开始信号至总在线直到 BF 已置低.此位若被清零将永远产生开

始信号至总线当 MStart 置高.当多主机与从机连接时需设置此位.于单主机与从机时清除此位.

IICBR[2:0]: 波特率选择(仅在主机模式)这里的 Fosc 为外部晶体或振荡器的频率,系统默认为 Fosc/512 以便用户选择

IICBR[2:0]	Baud rate
000	Fosc/32
001	Fosc/64
010	Fosc/128
011	Fosc/256
100	Fosc/512
101	Fosc/1024
110	Fosc/2048
111	Fosc/4096

符号: IIC	cs						;	地址: F8H
7	6	5	4	3	2	1	0	Reset
-	MPIF	LAIF	RXIF	TXIF	RXAK	TXAK	RW or BB	00H

MPIF: 停止条件中断旗标

当停止条件发生此位将置高.此位需由软件清零

LAIF: 仲裁失去中断旗标. (只主机模式)

当仲裁失去条件发生此位将置高.此位需由软件清零

RxIF: 数据接收中断标志位,在 IICRWD (IIC 读写数据缓存)载入一个新的接收数据时被置位:软件清零该位后,IIC 中断标志位 (IICIF) 将自动清零。

TxIF: 数据传输中断标志位,当所有位于转换寄存器中的位数据被传输时,该位被置位,来自 IICRWD(IIC 读/写数据缓存)的 8 位数据被下载至转换寄存器中;软件清零该位后,IIC 中 断标志位(IICIF)将自动清零。

RxAK: 接收确认位. 置零,这意味着一个确认信号已经收到在完成 8 位数据传输总线上后.

TxAK: 传输确认位. 当收到完整的 8 位数据, 此位将设置(NoAck) 或清除(Ack) 并传输到主机显示接收状态. 事实上, 它是被作为一个字节的传输在第 9 位.

RW or BB: 主机模式:

BB:总线忙碌表示位

当侦测到 scl=0 或 sda=0 或总线产生开始信号,此位将置高.当侦测到停止信号,此位将清零. 此位可由软件清零以使系统回到就绪状态.

从机模式:

RW:从机模式的读取(接收)或写(传输) 在 IIC 总线. 当此位被清除, 表示从机模式在 IIC 总线接收数据.(只从机模式),如图 14-1

图 14- 1: Acknowledgement bit in the 9th bit of a byte transmission

符号:Ⅱ	CA1		地址	:: FAH				
7	6	5	4	3	2	1	0	Res et
		Match1 or RW1	A0H					
				R or R/W				

从机模式:

IICA1[7:1]: IIC 地址寄存器

这是为从机模式的第一个7-位的地址,它在一个地址(来自主机模式)接收后被检测

Match1: 当 IICA1 和来自主机模式方的接收地址匹配时,该位将被硬件置位,当 IIC 总线读或写第一笔资料时,该位将被自动清除。

主机模式:

IICA1[7:1]: IIC 地址寄存器

显示要与它通讯的从机的7位地址

RW1: 如模块被设置为 Mstart 或 Rstart bit,该位将被作为从机方的 RW 发送,它在 IIC 地址之后的抵 8th 位显示,如图 14-2.。它用来告诉从属模式中将来的通信的方向。如设置为 1,模块在主模式中为接收方,如是 0,模块在主模式中为传输方。

图 14- 2: RW bit in the 8th bit after IIC address

从机模式:

IICA2[7:1]: IIC 地址寄存器

这是为从机模式的第二个7-位的地址,它在一个地址(来自主机模式)接收后被检测

Match2: 当 IICA2 和来自主机模式方的接收地址匹配时,该位将被硬件置位,当 IIC 总线读或写第一笔资料时,该位将被自动清除。

主机模式:

IICA2[7:1]: IIC 地址寄存器

显示要与它通讯的从机的7位地址

RW2: 如模块被设置为 Mstart 或者 Rstart bit,该位将被作为从机方的 RW 发送,它用来告诉从机模式中将来的通信的方向。如设置为 1,模块在主模式中为接收方,如是 0,模块在主模式中为传输方。

符号: IIC	CRWD						J	也址: FCh	
7	6	5	4	3	2	1	0	Reset	
IICRWD[7:0]									

IICRWD[7:0]: IIC 读写缓存

在接收(读)模式中,接收的字节存储于此 在传输模式中,该字节通过该 SDA 被转换

符号: IIC	EBT						地址	:: FDH
7	6	5	4	3	2	1	0	Res et
FU	EN	-	-	-	-	-	-	00H

主机模式:

00: 保留

01: IIC 模块将致能以便由 SDA 及 SCL 读写数据.

10: IIC 模块将于 SDA 及 SCL 发出开始信号,再送出储存于 IICA1 或 IICA2(由 MAS 位选择)的地址

11: IIC 模块将于 SDA 及 SCL 发出停止信号.

FU_EN[7:6] 此两位将自动清零,软件需重复写入.

从机模式:

01: FU_EN[7:6] 此两位于从机模式仅能写入 01.其它值是无效的.

注意:

FU_EN[7:6] 当总线空闲时,于读写数据前此两位需先写入 01;否则,SCL 将被锁住

(置低).

FU_EN[7:6] 当读写数据后并收到主机之停止信号时此两位需接着再写入 01. 在传送数据时(从机模式),于此两位写入 01 前待传送数据需先写入 IICRWD. FU_EN[7:6] 此两位将自动清零,软件需重复写入.

15. SPI功能

串行外围接口(SPI)是一个同步串行接口,允许主机和从机沟通.

中断向量为4Bh.

SPI 使用4个信号

SPI_MOSI: 在主机模式中数据输出,在从机模式中数据输入。 SPI_MISO: 在主模式中数据输入,在从机模式中数据输出,

SPI_SCK: 主机模式时钟输出,以上数据与同步

SPI_SS: 从机模式中输入.

从机设备检测该信号来判断是否被主模式选择。

在主机模式中,它可选择所需的从机设备的任何IO的值为零。如图 15-1 所示的一个例子将显示主机与从机的4路信号之间的关系

图 15- 1: SPI 主主机模式和从机模式之间的信号

这仅是单通道SPI的界面, SPI SFRs 如下所示:

SPI	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
				SPI 1	unction						
SPIC1	SPI control register 1	F1h	SPIE N	N S P P E SPIBR[2:0]					08H		
SPIC2	SPI control register 2	F2h	SPIF D	_ IBC12:01			SPIRS T	RBC[2:0]			00H
SPIS	SPI status register	F5h	SPIR F	SPIML S	SPIOV	SPITX IF	SPITD R	SPIRX IF	SPIRD R	SPIRS	40H
SPITXD	SPI transmit data buffer	F3h		SPITXD[7:0]							00H
SPIRXD	SPI receive data buffer	F4h		SPIRXD[7:0]							00H

 符号: SPIC1
 地址: F1h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 SPIEN SPIMSS SPISSP SPICKP SPICKE SPIBR[2:0]
 08h

SPIEN: SPI 模式使能位. "1" SPI 功能使能. "0" SPI 功能禁止.

SPIMSS: 主/从机模式选择位

_Specifications subject to change without notice contact your sales representatives for the most recent information.

Ver 0.4 SM39R16A6 06/11/2013

"1" 主机模式.

"0" 从机模式.

SPISSP: 从机选择的极性(仅从机模式有效)

"1" -高电平动作. "0" -低电平动作.

SPICKP: 时钟空闲极性(仅主机模式有效)

"1" - 空闲时 SCK 为高电平. Ex:

"0"-空闲时 SCK 为低电平. Ex:

SPICKE: 时钟采样相位选择位.

"1" - 数据锁存在上升沿

"0" - 数据锁存在下降沿.

*为确保数据锁存的稳定性,产生的输出数据,无论对方可锁存稳定的数据是在上升沿或下降沿,都将作为考虑在以下示例中.

SPIBR[2:0]: SPI 速率选择位(仅主机模式有效),这里的 Fosc 为外部时钟或振荡器的频率

SPIBR[2:0]	Baud rate
0:0:0	Fosc/4
0:0:1	Fosc/8
0:1:0	Fosc/16
0:1:1	Fosc/32
1:0:0	Fosc/64
1:0:1	Fosc/128
1:1:0	Fosc/256
1:1:1	Fosc/512

 符号: SPIC2
 地址: F2h

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 SPIFD
 TBC[2:0]
 SPIRST
 RBC[2:0]
 00h

SPIFD: 全双工通信模式使能位.

"1": 使能全双工模式. "0": 禁止全双工模式.

当此位被置位时,TBC[2;0]和 RBC[2;0]将被重置并归零。也就是说,只有 8 位数据通讯在全双工模式中被允许,当主机模式通过 MOSI 线传输数据到从机模式中,意味着带有数据输入和输出的全双工模式在同样的 SCK 时钟中是同步的,如下图 15-2所示.

图 15- 2: SPI 主机和从机传输方法

TBC[2:0]: SPI 发送数据位,这里 1-8 位数据除了在全双工模式中是被允许的

TBC[2:0]	Bit counter
0:0:0	8 bits output
0:0:1	1 bit output
0:1:0	2 bits output
0:1:1	3 bits output
1:0:0	4 bits output
1:0:1	5 bits output
1:1:0	6 bits output
1:1:1	7 bits output

SPIRST: SPI 重新致能模式选择位. (仅从机模式有效)

= 0 禁能. SPI 于 SS 脚重新致能时,传送或接收数据.

于传送或接收数据缓冲寄存器内,前次传送或接收之数据完全保留.(表示它是有效的)

= 1 使能. SPI 于 SS 脚重新致能时,传送或接收新数据,

于传送或接收数据缓冲寄存器内,前次传送或接收之数据全部舍弃. (表示它是无效的)

RBC[2:0]: SPI 接收数据位,这里 1-8 位数据除了在全双工模式中是被允许的

RBC[2:0]	Bit counter
0:0:0	8 bits input
0:0:1	1 bit input
0:1:0	2 bits input
0:1:1	3 bits input
1:0:0	4 bits input
1:0:1	5 bits input
1:1:0	6 bits input
1:1:1	7 bits input

 符号: SPIS
 地址:F5H

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 SPIRF
 SPIMLS
 SPIOV
 SPITXIF
 SPIRXIF
 SPIRDR
 SPIRS
 40H

SPIRF: SS 脚被释放旗标指示位.

当 SS 脚被释放且 SPIRST 为"1"时,此位被置高.

SPIMLS: MSB 或者 LSB 输入/输出优先

"1": MSB 输入/输出优先 "0": LSB 输入/输出优先

SPIOV: 溢出标志位

当 SPIRDR 被置位(SPIRXR 中的一个字节,但未被移除)且下一数据也进入时(这里不具备锁存功能),该标志将被设置并导致在 SPIRXD 接收的数据被溢出毁坏,当 SPIRDR 被清除时,它也被硬件清除。

SPITXIF: 传输中断标志

当 SPITXD 寄存器的数据被下载到转换寄存器时,该位被置位

SPITDR: 传输数据就绪位

当 MCU 结束对 SPITXD 寄存器读写数据时,MCU 须将改位置位,以通知 SPI 模块发送数据。在 SPI 模块完成从 SPITXD 或 SPITXD 发送数据到下载到转换寄存器后,该位将自动被清除。

SPIRXIF: 接受中断标志位

在 SPIRXD 被重载一个新的接收数据后,该位被置位

SPIRDR: 接收数据就绪位

当一字节被接收时,SPIRDR 被设为一个标志去通知 MCU。在获取来自 SPIRXD 寄存器的数据 后,MCU 须清除该位。如 SPI 模块向传输方写入新的数据至 SPIRXD 中且在该位清零之前,该数据将随后被覆盖。

SPIRS: 接收起始位

该位被置位以此通知 SPI 模块来接收位于 SPIRXD 寄存器中的数据

符号: S	PITXD							地址: F3h
7	6	5	4	3	2	1	0	Reset
	00h							

SPITXD[7:0]: 传输数据缓冲

符号: SF	PIRXD							地址: F4h	
7	6	5	4	3	2	1	0	Reset	
SPIRXD[7:0]									

SPIRXD[7:0]: 接收数据缓冲.

附:SS或CS沒有活躍在從模式下,MISO引腳必須浮。

16. LVI -低压侦测中断

中断向量为63h.

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
LVI function											
RSTS	Reset status register	A1h	-	LVRLP INTF	LVRLP F	PDR F	WDTF	SWRF	LVRF	PORF	00H
LVC	Low voltage control	E6h	LVI_ EN	LVRLP E	LVRE	LVIF	LVRLP INTE	-	LVIS	5[1:0]	20H

符号: **RSTS** 地址: **A1h** 7 6 5 4 3 2 1 0 Reset - LVRLP INTF | LVRLPF | PDRF | WDTF | SWRF | LVRF | PORF | 00H

LVRLPINTF"内部"低电压复位旗标

当 MCU 藉由 LVR_LP_INT 复位时,LVRLPINTF 旗标将由硬件设置旗标为一。该旗标由软件清为零。

LVRLPF"外部"低电压复位旗标

当 MCU 藉由 LVR(外部低功耗)复位时,LVRLPF旗标将由硬件设置旗标为一。该旗标由软件清为零。

PDRF: 外部复位脚复位旗标

此旗标于芯片之复位信号是由外部复位脚产生时由硬件自动设置.此旗标可由软件清零

LVRF: 低电压复位旗标.

此旗标于芯片之复位信号是由低电压复位产生时由硬件自动设置.此旗标可由软件清零

PORF: 上电复位旗标.

此旗标于芯片之复位信号是由上电复位产生时由硬件自动设置.此旗标可由软件清零

符号: LV	C						地	业: E6h	
7	6	5	4	3	2	1	0	Reset	
LVI_EN	LVRLPE	LVRE	LVIF	LVRLP INTE	-	LVIS[1:0]		20H	

LVI EN: 低电压中断功能使能位

- 0: 禁能低电压检测中断功能.
- 1: 使能低电压检测中断功能.

LVRLPE 外部低电压复位功能(低功率)使能位.

- 0: 禁止外部低电压复位(低功率)功能.
- 1: 使能外部低电压复位(低功率)功能.

LVRE: 外部低电压重置功能使能位.

- 0: 禁能外部低电压重置功能.
- 1: 使能外部低电压重置功能.

Note: LVR = 1.50 V

LVIF: 低电压中断旗标位

LVRLP LVR_LP_INT("内部"低电压复位)功能使能位.

INTE 0: 禁止内部低电压复位功能

1: 使能内部低电压复位功能

LVIS: 低电压中断电压位阶选择:

00: 1.65V

01: 2.60V

10: 3.20V

11: 4.00V

17. 10位模拟数字转换器(ADC)

SM39R16A6提供8通道的10位ADC, 数字输出采样的模拟信号放入ADCD[9:0]中,ADC的框圖顯示在图 17-1 而ADC的中断向量则为53h.

图 17-1: ADC 模拟到数字转换器的操作设置

ADC SFRs 如下所示:

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置 值
ADC											
ADCC1	ADC Control register 1	ABh	ADC7E N	ADC6 EN	ADC5 EN	ADC4 EN	ADC3 EN	ADC2 EN	ADC1 EN	ADC0E N	00H
ADCC2	ADC Control register 2	ACh	Start	ADJU ST	PWMT rigger EN	EXTTri ggerE N	ADCM ODE	ADCCH[2:0]			08H
ADCDH	ADC data high byte	ADh				ADCD	H [7:0]				00H
ADCDL	ADC data low byte	AEh		ADCDL [7:0]						00H	
ADCCS	ADC clock select	AFh	-	-	-		Α	DCCS[4:	0]		00H

 符号: ADCC1
 地址: ABh

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 ADC7EN | ADC6EN | ADC5EN | ADC4EN | ADC3EN | ADC2EN | ADC1EN | ADC0EN | O0H

ADC7EN: 使能 ADC 通道 7.

ADC7EN = 1 - 使能 ADC 通道 7

ADC6EN: 使能 ADC 通道 6.

_Specifications subject to change without notice contact your sales representatives for the most recent information.

Ver 0.4 SM39R16A6 06/11/2013

ADC6EN = 1 - 使能 ADC 通道 6

ADC5EN: 使能 ADC 通道 5.

ADC5EN = 1 - 使能 ADC 通道 5

ADC4EN: 使能 ADC 通道 4.

ADC4EN = 1 - 使能 ADC 通道 4

ADC3EN: 使能 ADC 通道 3.

ADC3EN = 1 - 使能 ADC 通道 3

ADC2EN: 使能 ADC 通道 2.

ADC2EN = 1 - 使能 ADC 通道 2

ADC1EN: 使能 ADC 通道 1.

ADC1EN = 1 - 使能 ADC 通道 1

ADC0EN: 使能 ADC 通道 0.

ADC0EN = 1 - 使能 ADC 通道 0

 符号: ADCC2
 地址: ACh

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 Start ADJUST PWMTriggerEN EXTTriggerEN ADCMODE ADCCH[2:0] 08H

Start: 当该位被置位时, ADC 将启动连续转换.

ADJUST: ADC 数字输出格式调整.

ADJUST = 0: (默认)

ADC 数字输出高字节 ADCD [9:2] = ADCDH [7:0].

ADC 数字输出低字节 ADCD [1:0] = ADCDL [1:0].

ADJUST = 1:

ADC 数字输出高字节 ADCD [9:8] = ADCDH [1:0].

ADC 数字输出低字节 ADCD [7:0] = ADCDL [7:0].

PWMTriggerEN PWM 触发 ADC 开始转换

(HW 内部触发转换)

0 =禁用

1 = 使能

EXTTriggerEN 外部引脚触发 ADC 开始转换

(HW 外部触发转换)

0 =禁用

1 = 使能

ADCMODE 0 =连续模式

1=单次转换模式

ADCCH[2:0]: ADC 通道选择.

ADCCH [2:0]	通道
000	0
001	1

010	2
011	3
100	4
101	5
110	6
111	7

ADJUST = 0:

符号: AD	CDH						H	地: ADh
7	6	5	4	3	2	1	0	Reset
ADCD[9]	ADCD[8]	ADCD[7]	ADCD[6] ADCD[5	[5] ADCD	[4] ADCD[3]	ADCD[2]	00H
符号: AD	CDL						t	址: AEh
7	6	5	4	3	2	1	0	Reset
-	-	-	-	-	-	ADCD[1]	ADCD[0]	00H

ADJUST = 1:

符号:	ADC	DH						坩	丛址: ADh
7		6	5	4	3	2	1	0	Reset
-		-	-	-	-	-	ADCD[9]	ADCD[8]	00H
符号	: ADG	CDL						地	址: AEh
-	7	6	5	4	3	2	1	0	Reset
ADC	ובוחי	ADCD[6]	ADCD[5]	ADCD[4]	ADCD[3]	ADCD[2]	ADCD[1]	ADCD[0]	00H

ADCD[9:0]: ADC 数字寄存器.

符号: AD	CCS						[也址: AFh
7	6	5	4	3	2	1	0	Reset
-	-	-	ADCCS[4]	ADCCS[3]	ADCCS[2]	ADCCS[1]	ADCCS[0]	00H

ADCCS[4:0]: ADC 时钟选择.

*ADC 时钟最大为 12.5MHz.

*ADC 转换率最大为 961 KHz.

ADCCS[4:0]	ADC 时钟分频(Hz)	ADC 转换所需时钟数
00000	Fosc /2	46
00001	Fosc/4	92
00010	Fosc /6	138
00011	Fosc /8	184
00100	Fosc /10	230
00101	Fosc /12	276
00110	Fosc /14	322
00111	Fosc /16	368
01000	Fosc /18	414
01001	Fosc /20	460
01010	Fosc /22	506
01011	Fosc /24	552

01100	Fosc /26	598
01101	Fosc /28	644
01110	Fosc /30	690
01111	Fosc /32	736
10000	Fosc /34	782
10001	Fosc /36	828
10010	Fosc /38	874
10011	Fosc /40	920
10100	Fosc /42	966
10101	Fosc /44	1012
10110	Fosc /46	1058
10111	Fosc /48	1104
11000	Fosc /50	1150
11001	Fosc /52	1196
11010	Fosc /54	1242
11011	Fosc /56	1288
11100	Fosc /58	1334
11101	Fosc /60	1380
11110	Fosc /62	1426
11111	Fosc /64	1472

$$ADC_Clock = \frac{Fosc}{2 \times (ADCCS + 1)}$$

$$ADC_Conversion_Rate = \frac{ADC_Clock}{13}$$

18. 在系统编程(Internal ISP)

SM39R16A6 可通过内部硬件电路产生闪存控制讯号.用户利用闪存控制寄存器,闪存地址寄存器和闪存数据寄存器在不需要将SM39R16A6 移出系统的情况下实现ISP功能. SM39R16A6 提供了可以实现闪存编程/芯片擦除/页擦除/保护功能的闪存控制讯号.用户需要去设计和使用任何SM39R16A6 可以输入数据的接口,然后利用ISP服务程序去实现闪存的编程/芯片擦除/页擦除/保护功能.

18.1 ISP 服务程序

ISP服务程序是由用户自行开发并放置于ISP服务程序区的韧件. 用户可依需求决定ISP服务程序的大小. 另外用户需将ISP服务程序刻录至SM39R16A6 芯片中才可使用ISP功能.

由于ISP服务程序是由用户自行开发,它需包括闪存数据寄存器的刻录及SM39R16A6 芯片与上位机的通讯协议. 举例来说,用户使用SM39R16A6 芯片上之UART接口与上位机作数据之传送及接收,则SM39R16A6 芯片上之ISP服务程序内需有波特率设定,为避免数据传输错误需有数据总合检查或同位检查或其它错误检查机制.

于正常动作模式或空闲模式可启动 ISP服务程序,于停止模式则不行.

18.2 锁定位(N)

锁定位N有两个功能:一是配置服务程序的大小,另一个则是通过闪存擦除功能锁定ISP服务程序的空间.

ISP服务程序地址位从\$3C00to \$3FFF. 可被分为N*128字节(N=0-8). 当N为0时没有ISP功能.所有的16KB字节闪存都被用来做程序存储.当N为1时,ISP服务程序占用128字节,剩余的15.875K 字节闪存可被用做程序存储.ISP服务程序的最大空间为1K字节(当N为8时). 在这样的配置下,可用的程序存储空间为15K 字节.

在N定下来后,SM39R16A6 会从上往下(从最顶端到地址\$3FFF)保存ISP服务程序空间.ISP服务程序的开始地址位于\$3x00 (x为任意数字,以N为准,如表 18-1所示).请参考章节3.1有关ISP服务程序与程序内存之关系图.

锁定位N功能不同于闪存保护功能,闪存擦除功能可以擦除除ISP服务程序空间外的所有闪存记忆体.如闪存没有被保护,ISP服务程序的内容一直可被读.如闪存被保护,所有的闪存程序空间包括ISP服务程序空间不能被读.

ISP service program address Ν No ISP service program 0 128 bytes (\$3F80h ~ \$3FFFh) 1 2 256 bytes (\$3F00h ~ \$3FFFh) 384 bytes (\$3E80h ~ \$3FFFh) 3 4 512 bytes (\$3E00h ~ \$3FFFh) 5 640 K bytes (\$3D80h ~ \$3FFFh) 768 K bytes (\$3D00h ~ \$3FFFh) 6 896 K bytes (\$3C80h ~ \$3FFFh) 1.0 K bytes (\$3C00h ~ \$3FFFh) 8

表 18- 1 ISP code area.

ISP 服务程序配置于 N*256 字节 (N= 0~8)

18.3 对 ISP 服务程序编程

在锁定位N被设置并ISP服务程序被编程后,ISP服务程序记忆体被自动的保护(锁定).锁定位N有它自己的编程/擦除时序.这不同于闪存记忆体的编程/擦除时序.因此,被锁定的ISP服务程序不可被闪存擦除功能所擦除.如客户需要擦除锁定的ISP服务程序,他只可以通过烧写器实现.当SM39R16A6 在系统时,客户不可改变ISP服务程序.

18.4 启动 ISP 服务程序

要启动 ISP 服务程序就是要在 ISP 服务程序的开始地址装载程序计数(PC)并执行它.有四种实现的方法:

- (1) 空复位.用首地址为空(\$000=#0FFH)的硬件复位会在 ISP 服务程序的开始地址装载 PC。硬件复位包括 MAX810 (复位电源) 和外部 pad 复位。硬件复位后,硬件复位后会发出约 256us 的频闪(strobe)。
- (2) 执行跳转指令可以装载到 PC 的 ISP 服务程序的起始地址。
- (3) 进入到 ISP 服务程序的硬件设置。用户可以通过设置 P1.2、 P1.3"为低"或 P1.4"为低"来强制 SM39R16A6 进入到 ISP 服务程序。硬件复位包括 MAX810 (复位电源) 和外部 pad 复位。硬件复位后,硬件会发出通知。在应用系统设计时,在复位期间,用户应该很小心的去设置 P1.2、 P1.3 或 P1.4, 以防止 SM39R16A6 进入到 ISP 服务程序。
- (4) 进入到的 ISP 服务程序的硬件设置,在硬件复位期间,P3.0(RXD) 将会被检测到两个时钟信号。硬件复位包括 MAX810 (复位电源) 和外部 pad 复位。硬件复位后,硬件会发出 2 个时钟信号检测。

在频闪(storbe)窗口中,硬件将检测到P1.2、 P1.3 (或 P1.4)/P1.0的状态,如果他们能满足上述条件之一,芯片会自动 切换到 ISP 模式。ISP 服务程序执行完后,用户需要复位 SM39R16A6,通过硬件复位或WDT 或跳到地址 0000 元去重新启动的固件程序。

为了用户的不同应用情况,这里有6种不同的进入机制.这个进入方法可以在烧路器或ISP中选取.

- (1) 首地址为空例如\$0000 = 0xFF. 且由内部重置信号触发.
- (2) 首地址为空例如\$0000 = 0xFF. 且由外部重置信号触发.
- (3) P1.2,P1.3(或 P1.4)=0. 且由内部重置信号触发.
- (4) P1.2,P1.3(或 P1.4)=0. 且由外部重置信号触发.
- (5) P3.0 输入 2 个时钟. 且由内部重置信号触发.
- (6) P3.0 输入 2 个时钟. 且由外部重置信号触发.

18.5 ISP 寄存器- TAKEY, IFCON, ISPFAH, ISPFAL, ISPFD and ISPFC

符号	描述	地址	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	重置值
				ISF	function						
TAKEY	Time Access Key register	F7h		TAKEY [7:0]						00H	
IFCON	Interface Control register	8Fh	ı	CDPR	ı	F5K	-	-	EMEN	ISPE	00H
ISPFAH	ISP Flash Address – High register	E1h		ISPFAH [7:0]						FFH	
ISPFAL	ISP Flash Address – Low register	E2h		ISPFAL [7:0]						FFH	
ISPFD	ISP Flash Data register	E3h		ISPFD [7:0]						FFH	
ISPFC	ISP Flash Control register	E4h	EMF1	EMF2	EMF3	EMF4	-	ISPF.2	ISPF.1	ISPF.0	00H

符号: TAKE	Υ							地址: F7H		
7	6	5	4	3	2	1	0	Reset		
TAKEY [7:0]										

ISP使能位(ISPE)默认为只读,软件必须连续的对TAKEY寄存器写三个特定值55h,AAH,和5Ah,使ISPE位可写.这是:

MOV TAKEY, #55h MOV TAKEY, #0AAh MOV TAKEY, #5Ah

符号: IFC	ON							地址: 8FH
7	6	5	4	3	2	1	0	Reset
-	CDPR	-	F5K	-	-	EMEN	ISPE	00H

位 0(ISPE) of IFCON 是 ISP 使能位,用户可通过设置 ISPE 位为 1 使能 SM39R16A6 的全部 ISP 功能,通过设置 ISPE 为 0 来禁止全部 ISP 功能.ISPE 的作用像一个加密匙.用户可禁止所有的 ISP 功能以保护软件程序不被意外的擦除.ISP 寄存器 ISPFAH,ISPFAL,ISPFD,与 ISPFC 默认为只读.软件必须将 ISPE 位设为 1 以使上述 4 个寄存器为可写.

ISPFAH [5:0]: 使用 ISP 功能之地址高字节

ISPFAL [7:0]: 使用 ISP 功能之地址低字节

ISPFAH 与 ISPFAL 提供了 14 位闪存记忆体地址用做 ISP 功能.这个闪存记忆体地址不应该包括 ISP 服务程序空间地址.若 ISPFAH & ISPFAL 寄存器控制的闪存记忆体地址覆盖了 ISP 服务程序空间的地址.这个闪存程序/页擦除等 ISP 功能的执行将会无效.

符号: ISPFD 地址: E3H 0 Reset 7 6 5 ISPFD6 ISPFD5 ISPFD4 ISPFD3 ISPFD2 ISPFD1 ISPFD7 ISPFD0 FFH

ISPFD [7:0]: 使用 ISP 功能之数值.

ISPFD 寄存器提供 ISP 功能中所需之 8 位数据寄存器.

 符号: ISPFC
 地址: E4H

 7
 6
 5
 4
 3
 2
 1
 0
 Reset

 EMF1
 EMF2
 EMF3
 EMF4
 ISPF[2]
 ISPF[1]
 ISPF[0]
 00H

EMF1: 进入机制 (1) 标志位, 由复位信号清除. (仅读)

EMF2: 进入机制 (2) 标志位, 由复位信号清除. (仅读)

EMF3: 进入机制 (3) 标志位, 由复位信号清除. (仅读)

EMF4: 进入机制 (4) 标志位, 由复位信号清除. (仅读)

ISPF [2:0]: ISP 功能选择位.

ISPF[2:0]	ISP function
000	Byte program
001	Chip protect
010	Page erase
011	Chip erase
100	Write option
101	Read option
110	Erase option
111	reserved

闪存一页有 128 字节

可设定功能选择位如晶振输入输出脚可配置为一般 I/O (于 1.2 节描述)、内部复位时间选择(于 1.4.1 节描述)、时钟源来源选择 (于 1.5 节描述)、复位脚可配置为一般 I/O(于第 5章描述)、看门狗功能启动位(于第 10章描述)、或 ISP 进入机制选择(于第 18 章描述)。只能读取功能选择位于芯片被加密后.

选择的 ISP 功能在软件对 ISPFC 寄存器写入数据时将会执行一次.

要实现字节编程/页擦除 ISP 功能,用户需要在开始时指定闪存地址.在实现页擦除功能时,SM39R16A6 将除 ISPFAH 与 ISPFAL 寄存器中显示地址所在的整页.

范例. 闪存地址: \$XYMN

将对地址\$XY00 to \$XYFF 执行页抹除

要实现芯片擦除 ISP 功能,SM39R16A6 将擦除除 ISP 服务程序外的所有闪存程序记忆体. 要实现芯片保护 ISP 功能,SM39R16A6 内容将被读为#00H.

范例:将对地址\$1005H执行字节写,写入#22H

MOV TAKEY, #55h

MOV TAKEY, #0AAh

MOV TAKEY, #5Ah ;ISPE 可写入属性

ORL IFCON, #01H ;使能 SM39R16A6 ISP 功能

MOV ISPFAH, #10H ;设定闪存高字节地址,10H

MOV ISPFAL, #05H ;设定闪存低字节地址, 05H

MOV ISPFD, #22H ; 设定将写入闪存之资料,资料= 22H

MOV ISPFC, #00H ; 开始将写入闪存之资料#22H 写入地址\$1005H

MOV TAKEY, #0AAh

MOV TAKEY, #5Ah ; ISPE 可写入属性

ANL IFCON, #0FEH ;禁止 SM39R16A6 ISP 功能

FOSVOS TEL: 021-58998693

工作环境

Symbol	描述	Min.	Тур.	Max.	Unit.	Remarks
TA	Operating temperature	-40	25	85	$^{\circ}$	Ambient temperature under bias
VDD	Supply voltage	1.8		5.5	V	
Vref	Internal reference voltage	1.1	1.2	1.3	V	

DC 电气特性

 $TA = -40^{\circ}C$ to $85^{\circ}C$, Vcc = 5.0V

Symbol	Parameter	Valid	Min	Typical	Max	Units	Conditions
VIL1	Input Low-voltage	Port 0,1,2,3	-0.5	-	0.8	V	Vcc=5V
VIL2	Input Low-voltage	RES, XTAL1	0	-	0.8	V	-
VIH1	Input High-voltage	Port 0,1,2,3	2.0	-	VCC + 0.5	V	-
VIH2	Input High-voltage	RES, XTAL1	70%Vcc	-	VCC + 0.5	V	-
VOL	Output Low-voltage	Port 0 (3.)	1	-	0.45	V	IOL=40mA Vcc=5V
VOL	Output Low-voitage	Port 1,2,3 (4.)	1	-	0.45	V	IOL=20mA Vcc=5V
VOH1	Output High-voltage	Port 0	4.6	-	-	V	IOH= -12mA
νопі	VOH1 using Strong Pull -up(1)	Port 1,2,3	4.6	-	-	V	IOH= -7mA
VOH2	Output High-voltage using Weak Pull-up(2)	Port 0,1,2,3	2.6	-	-	V	IOH= -350uA
IIL	Logic 0 Input Current	Port 0,1,2,3	-	-	-75	uA	Vin= 0.45V
ITL	Logical Transition Current	Port 0,1,2,3	ı	-	-650	uA	Vin= 2.0V
ILI	Input Leakage Current	Port 0,1,2,3	-	-	±10	uA	0.45V <vin<vcc< td=""></vin<vcc<>
RRST	Reset Pull-down Resistor	RES	50	-	300	kΩ	-
CIO	Pin Capacitance	-	-	-	10	pF	Freq= 1MHz, Ta= 25℃
			ı	3.19	4.78	mA	Active mode ,IRC=22.1184MHz
			-	5.5	8.25	mA	Active mode, 12MHz VCC=5V 25 °C
ICC	Power Supply Current	VDD	-	4.5	7.25	mA	Idle mode, 12MHz VCC =5V 25 °C
			-	3	7	uA	Power down mode VCC =5V 25 °C

Notes:

- (1) Port in Push-Pull Output Mode
- (2) Port in Quasi-Bidirectional Mode
- (3) Maximum IOL per port0 pin: 40mA
- (4) Maximum IOL per port1,2,3 pin: 20mA

 $TA = -40^{\circ}C$ to $85^{\circ}C$, VCC = 3.0V

Symbol	Parameter	Valid	Min	Typical	Max	Units	Conditions
VIL1	Input Low-voltage	Port 0,1,2,3	-0.5	-	0.8	V	Vcc=3.0V
VIL2	Input Low-voltage	RES, XTAL1	0	-	0.8	V	-
VIH1	Input High-voltage	Port 0,1,2,3	2.0	-	VCC + 0.5	V	-
VIH2	Input High-voltage	RES, XTAL1	70%Vcc	-	VCC + 0.5	٧	-
\/OI	Output I ammeltana	Port 0 (3.)	-	-	0.45	V	IOL=20mA Vcc=3V
VOL	Output Low-voltage	Port 1,2,3 (4.)	-	-	0.45	V	IOL=12mA Vcc=3V
VOL14	VOH1 Output High-voltage using Strong Pull -up(1)	Port 0	2.6	-		V	IOH=- 9mA
VOH		Port 1,2,3	2.6	-		V	IOH= -5mA
VOH2	Output High-voltage using Weak Pull-up(2)	Port 0,1,2,3	2.4	-		V	IOH= -70uA
IIL	Logic 0 Input Current	Port 0,1,2,3	-	-	-75	uA	Vin= 0.45V
ITL	Logical Transitio n Current	Port 0,1,2,3	-	-	-650	uA	Vin=1.5V
ILI	Input Leakage Current	Port 0,1,2,3	-	-	±10	uA	0.45V <vin<vcc< td=""></vin<vcc<>
RRST	Reset Pull-down Resistor	RES	50	-	300	kΩ	-
CIO	Pin Capacitance		-	-	10	рF	Freq= 1MHz, Ta= 25°C
			-	3.15	4.73	mA	Active mode ,IRC=22.1184MHz
	Power Supply Current		-	2.77	4.16	mA	Active mode ,12MHz VCC =3.0 V 25 °C
ICC		VDD	-	1.77	3.16	mA	Idle mode, 12MHz VCC =3.0V 25 °C
			-	1	5	uA	Power down mode VCC=3.0V 25 ℃

Notes:

(1) Port in Push-Pull Output Mode

(2) Port in Quasi-Bidirectional Mode

(3) Maximum IOL per port0 pin : 20mA

(4) Maximum IOL per port1,2,3 pin: 12mA

Absolute Maximum Ratings

			<u> </u>
SYMBOL	PARAMETER	MAX	UNIT
最大输出电流(source)	An I/O pin	N/A	mA
(Push-pull)	Total I/O pins	150	mA
最大承受电流(sunk)	An I/O pin	N/A	mA
, ,	Total I/O pins	150	mA
Тј	Max. Junction Temperature	150	$^{\circ}\!$

LVI& LVR 电气特性

	LVR					
	Min Typical Max					
1.8V ~ 5.5V	VIL=1.42V	VIL=1.50V	VIL=1.57V			
1.0V ~ 3.3V	(VIH=1.62V)	(VIH=1.70V)	(VIH=1.77V)			

		LVI	
	Min	Typical	Max
LVIS[1:0] = 00	VIL=1.57V	VIL=1.65V	VIL=1.73V
LV13[1.0] = 00	(VIH=1.77V)	(VIH=1.85V)	(VIH=1.93V)
LVIS[1:0] = 01	VIL=2.47V	VIL=2.60V	VIL=2.73V
LV13[1.0] = 01	(VIH=2.67V)	(VIH=2.80V)	(VIH=2.93V)
LVIS[1:0] = 10	VIL=3.04V	VIL=3.20V	VIL=3.36V
LVI3[1.0] = 10	(VIH=3.24V)	(VIH=3.40V)	(VIH=3.56V)
LVIS[1:0] = 11	VIL=3.80V	VIL=4.00V	VIL=4.20V
LV13[1.0] = 11	(VIH=4.00V)	(VIH=4.20V)	(VIH=4.40V)

FOSVOS TEL: 021-58998693