- 1. Any language in SPACE(f(n)) as defined using the two-tape read-only model can be simulated with a single tape model using at most O(n) space. Similarly, any language in SPACE(f(n)) as defined using a single tape model can be simulated with a two-tape read-only model with an improvement of a most O(n) space. Thus, the complexity classes are equivalent where $f(n) \geq n$.
- 2. The winning strategy for X is to move to the top-right position. O can then move to block only either the top-centre or centre-right position. If O moves to the top-centre, X moves to the centre-right. If O move to the centre-right, X moves to the top-centre.
- 3. Player I has a winning strategy as follows:
 - Player I begins at node 1.
 - Player 2 chooses node 2.
 - Player I chooses node 4. Node 3 has only one outgoing edge which connects to node 6. As node 6 has no outgoing edges, this path would guarantee a win for Player II.
 - Player II chooses node 5.
 - Player I chooses node 6. As no unchosen nodes remain, Player I wins.
- 4. Let L_i be a language decided by PSPACE turing machine M_i . We define languages $L_{\cup} = L_i \cup L_j$, $\bar{L}_i = \{w \mid w \notin L_i\}$, $L_i^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ and each } x_i \in L_i\}$.

We define M_{\cup} , \bar{M}_i and M_i^* as follows:

 M_{\cup} = "On input w

- 1. Run $M_i\langle w\rangle$. If M_i accepts, accept.
- 2. Run $M_i\langle w\rangle$. If M_i accepts, accept.
- 3. If neither $M_i\langle w\rangle$, $M_j\langle w\rangle$ accepted, reject."

 \bar{M}_i = "On input w

1. Run $M_i\langle w \rangle$. If M_i accepts, reject, else accept."

 $M_i^* =$ "On input w

- 1. If $w = \epsilon$, accept.
- 2. For each m, where $1 \le m \le n$, n = |w|.
 - 3. Split w into m pieces, such that $w = w_1 w_2 \dots w_k$.
 - 4. For all $i, 1 \leq i \leq m$, run $M_i \langle w_i \rangle$. If M_i rejects, go to step 2.

- 5. M_i has accepted for all i, accept.
- 6. M_i has rejected for all m, reject."
- 5. Construct a TM M to decide A_{DFA} When M receives input $\langle A, w \rangle$, a DFA and a string, M simulates A on w by keeping track of A's current state and its current head locations, and updating them appropriately. The space required to carry out this simulation is $O(\log n)$ because M can record each of these values by storing a pointer into its input.