COMP3161/COMP9164

Syntax Exercises

Liam O'Connor

September 26, 2019

- 1. (a) $[\star]$ Consider the following expressions in Higher Order abstract syntax. Convert them to concrete syntax.
 - i. (Let (Num 3) (x. (Let (Plus x (Num 1)) (x. (Plus x x)))))

Solution: let x https://eduassistpro.github.io/

ii. (Plus (Let (Num 3) (Plus

Let Num

Plus Num

 $\overset{\text{Solution: (let } \hat{x} = 3 \text{ in } x + x) + (let P \overset{\text{2} \text{ in } y + 4)}{\text{Colect Exam Help}}$

iii. (Let (Num 2) (x. (Let (Num 1) (y. (Plus x y))))) ASSIGNMENT Project Exam Help Solution: Let x = 2 + (let y = 1 in x + y)

- (b) $[\star]$ Apply the substit
 - i. (Let (Plus https://eduassistpro.github.io/

Solution: (Let (Plus (Plus z 1) z) (y. (Plu

ii. (Let (Plus x) (Plus W) Chat edu_assist_pro

Solution: (Let (Plus (Plus $z \ 1) \ z) \ (x. \ (Plus \ z \ z)))$

iii. (Let (Plus x z) (z. (Plus x z)))

Solution: Undefined without applying α -renaming first. Can safely substitute after renaming the bound z to a: (Let (Plus (Plus z 1) z) (a. (Plus (Plus z 1) a)))

(c) $[\star]$ Which variables are shadowed in the following expression and where?

(Let (Plus y 1) (x. (Let (Plus x 1) (y. (Let (Plus x y) (x. (Plus x y)))))))

Solution: The innermost let shadows the binding of x from the outermost let. The middle let shadows the free y mentioned in the outermost let.

2. Here is a concrete syntax for specifying binary logic gates with convenient if — then — else syntax. Note that the else clause is optional, which means we must be careful to avoid ambiguity — we introduce mandatory parentheses around nested conditionals:

$$\frac{e \text{ EXPR}}{(e) \text{ IEXPR}} \quad \frac{e \text{ IEXPR}}{e \text{ EXPR}}$$

If an else clause is omitted, the result of the expression if the condition is false is defaulted to \bot . For example, an AND or OR gate could be specified like so:

$$\begin{aligned} & \text{AND}: \text{if } \alpha \text{ then (if } \beta \text{ then } \top) \\ & \text{OR}: \text{if } \alpha \text{ then } \top \text{ else (if } \beta \text{ then } \top) \end{aligned}$$

Or, a NAND gate:

if
$$\alpha$$
 then (if β then \bot else \top) else \top

(a) $[\star\star]$ Devise a suitable abstract syntax A for this language.

$\frac{x}{x}$ https://eduassistpro.github.io/

(b) [*] Write rule for a parsing relation in Project Exam Help Solution: Assignment Project Exam Help Solution: Assignment Project Exam Help TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow FOR TOUTPUT \longleftrightarrow FOR TOUTPUT \longleftrightarrow FOR TOUTPUT \longleftrightarrow FOR TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow FOR TOUTPUT \longleftrightarrow TOUTPUT \longleftrightarrow

(c) [*] Here's the passed Clion tree Er the Mata edu_assist_pro

Fill in the right-hand side of this derivation tree with your parsing relation, labelling each step as you progress down the tree.

3. Here is a *first order abstract syntax* for a simple functional language, LC. In this language, a lambda term defines a *function*. For example, lambda x (var x) is the identity function, which simply returns its input.

der

(a) $[\star]$ Give an example of *name shadowing* using an expression in this language, and provide an α -equivalent expression which does not have shadowing.

Solution: A simple example is Lambda x (Lambda x (Var x)). Here, the name x is shadowed in the inner binding.

An α -equivalent expression without shadowing would use a different variable y, i.e

```
{\tt Lambda} \; {\tt x} \; ({\tt Lambda} \; {\tt y} \; ({\tt Var} \; y))
```

(b) $[\star\star]$ Here is an incorrect substitution algorithm for this language:

```
 \begin{array}{lll} (\operatorname{App}\ e_1\ e_2)[v:=t] & \mapsto & \operatorname{App}\ (e_1[v:=t])\ (e_2[v:=t]) \\ (\operatorname{Var}\ v)[v:=t] & \mapsto & t \\ (\operatorname{Lambda}\ x\ e)[v:=t] & \mapsto & \operatorname{Lambda}\ x\ (e[v:=t]) \end{array}
```

What is wrong with this algori

Solution: The substinttps://eduassistpro.github.io/this:

Assignment Project Exam Help

(c) [**] Aside from the difficulties with substitution, using arbitrary strings for variable names in first-order abstract synt ifferent ways, which

is very inconvenie

t have different

representations: https://eduassistpro.github.io/

```
{\tt Lambda\ a\ (Lambda\ b\ (}
```

One technique to Ahie (anotyde exprese nappis edu_assist_s equality) is called higher order abstract syntax (HOAS). Explain what HO

Solution: Higher order abstract syntax encodes abstraction in the *meta-logic* level, or in the *language implementation*, rather than as a first-order abstract syntax construct.

First order abstract syntax might represent a term like $\lambda x.x$ as something like

Lambda "x" (Var "x"), where literal variable name strings are placed in the abstract syntax directly. Higher order abstract syntax, however, would place a function inside the abstract syntax, i.e Lambda (λx . x), where the variable x is a meta-variable (or a variable in the language used to implement our interpreter, rather than the language being implemented). This function is (extensionally) equal to any other α -equivalent function, and therefore we can consider two α -equivalent terms to be equal with HOAS, assuming extensionality (that is, a function f equals a function g if and only if, for all x, f(x) = g(x).

For example, a first order Haskell implementation of the above syntax might look like this:

```
| Lambda (AST -> AST)

test = Lambda $ \x -> Lambda $ \y -> App x y
```

der

There is no way in Haskell, for example, to determine that we used the names x and y for those function arguments. The only way for a Haskell function f to be distinguished from a function g is for f x to be different from g x for some x (i.e extensionality). As α -equivalent Haskell functions cannot be so distinguished, we must judge a term as equal to any other in its α -equivalence class.

https://eduassistpro.github.io/

Assignment Project Exam Help Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

der