

Text Mining

Marcelo Mendoza

http://www.inf.utfsm.cl/~mmendoza mmendoza@inf.utfsm.cl

A 131, Campus San Joaquín - UTFSM

POS tagging

- Etiquetar cada término de acuerdo a la función que este cumple en el texto.
- Puede ayudarnos en tareas como detección de estilo, parsing, detección de colocaciones.
- Tarea importante en NLP.

POS tagging

- Etiquetar cada término de acuerdo a la función que este cumple en el texto.
- Puede ayudarnos en tareas como detección de estilo, parsing, detección de colocaciones.
- Tarea importante en NLP.

POS tagging

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Open Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
D .	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
en	VERB	words for actions and processes	draw, provide, go
ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
og.		spacial, temporal, or other relation	
ord	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
[]	NUM	Numeral	one, two, first, second
8	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
l2	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
er	PUNCT	Punctuation	;,()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

POS tagging en NLTK

```
>>> text = word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'),
('completely', 'RB'), ('different', 'JJ')]
```

```
>>> text = word_tokenize("They refuse to permit us to obtain the refuse permit")
>>> nltk.pos_tag(text)
[('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'),
('to', 'TO'), ('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN')]
```


POS tagging en Spacy (Español)

```
!python -m spacy download es_core_news_sm
!python -m spacy download es_core_news_md
```


POS tagging en Spacy (Español)

```
!python -m spacy download es_core_news_sm
!python -m spacy download es_core_news_md
```

```
Un | Un | DET

desastroso | desastroso | NOUN

espirítu | espirítu | PROPN

posee | poseer | VERB

tu | tu | DET

tierra | tierra | NOUN

: | : | PUNCT
```


POS tagging ¿Cómo funciona?

- Se dispone de un corpus etiquetado.
- La secuencia de tags es interpretada como una cadena de Markov: $P(x_{t+1} \mid x_t, ..., x_1) = P(x_{t+1} \mid x_t), x_1, ..., x_{t+1}$ representan tags
- Usamos un modelo generativo para términos, con tags como estados ocultos: $P(t \mid x_1, ..., x_{t+1}) = P(t \mid x_{t+1})$

POS tagging ¿Cómo funciona?

► En general muestran buena precisión (sobre 90 %).

HMM POS tagging:

¿Cómo defino la cadena de transiciones?

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state i to state j, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties , each expressing the probability of an observation o_t being generated
	from a state q_i
$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMM POS tagging:

¿Cómo defino la cadena de transiciones?

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	of moving from state i to state j, s.t. $\sum_{j=1}^{N} a_{ij} = 1 \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	$v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties , each expressing the probability of an observation o_t being generated
	from a state q_i
$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the probability that
	the Markov chain will start in state i. Some states j may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Objetivo del modelo:

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

HMM POS tagging:
$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

Aplicamos la regla de Bayes:
$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1 ... w_n | t_1 ... t_n) P(t_1 ... t_n)}{P(w_1 ... w_n)}$$

y simplificamos el denominador:
$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n|t_1...t_n) P(t_1...t_n)$$

Se asume que la probabilidad de la palabra depende sólo de su tag:

$$P(w_1 \dots w_n | t_1 \dots t_n) \approx \prod_{i=1}^n P(w_i | t_i)$$

y se asume que el tag sólo depende del tag previo:

$$P(t_1 \ldots t_n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

Finalmente:
$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n|w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{\overbrace{P(w_i|t_i)}^{\text{emission transition}}}_{P(t_i|t_{i-1})}$$

POS tagging ¿Cómo funciona?

- Considera los tags de las dos palabras precedentes.
- En general muestra mejor precisión que HMM.

POS tagging ¿Cómo funciona?

- Considera los tags de las dos palabras precedentes.
- En general muestra mejor precisión que HMM.

Hinrich Schütze, Yoram Singer: Part-of-Speech Tagging using a Variable Memory Markov Model. ACL1994: 181-187

POS tagging ¿Cuáles datos usan?

Treebanks: Penn treebank (más famoso), UAM Spanish Treebank, ...

Treebank viewer

POS tagging y dependencias

POS tagging y dependencias en Spacy

POS tagging y dependencias en Spacy

TEXT	LEMMA	POS	TAG	DEP	SHAPE	ALPHA	STOP
Apple	apple	PROPN	NNP	nsubj	Xxxxx	True	False
is	be	AUX	VBZ	aux	xx	True	True
looking	look	VERB	VBG	ROOT	xxxx	True	False
at	at	ADP	IN	prep	xx	True	True
buying	buy	VERB	VBG	pcomp	xxxx	True	False
U.K.	u.k.	PROPN	NNP	compound	x.x.	False	False
startup	startup	NOUN	NN	dobj	xxxx	True	False
for	for	ADP	IN	prep	xxx	True	True
\$	\$	SYM	\$	quantmod	\$	False	False
1	1	NUM	CD	compound	d	False	False
billion	billion	NUM	CD	pobj	xxxx	True	False

► Dependencia sintáctica

POS tagging y dependencias en Spacy

```
import spacy
from spacy import displacy

nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence.")
displacy.serve(doc, style="dep")
```


Dependencias ¿Cómo funciona?

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Dependencias ¿Cómo funciona?

Transition-based parser:

Dependencias ¿Cómo funciona?

Transition-based parser: Deducimos training instances desde un treebank. Podemos determinísticamente registrar las operaciones correctas del parser, creando un training dataset.

Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, moming, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	0	LEFTARC	$(moming \leftarrow flight)$
7	[root, book, the, flight]	0	LEFTARC	$(the \leftarrow flight)$
8	[root, book, flight]	0	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	0	RIGHTARC	$(\text{root} \rightarrow \text{book})$
10	[root]		Done	

Dependencias ¿Cómo funciona?

Training instances (intermedia):

		Actua Sobie	ei primer token dei buller
	▼		
Stack	Word buffer	Relations	
[root, canceled, flights]	[to Houston]	$(canceled \rightarrow United)$	
		$(flights \rightarrow morning)$	
		$(flights \rightarrow the)$	

Actúa cobro al primar takan dal huffar

La transición correcta del parser es *shift*. Luego, creamos training instances de este tipo en el dataset:

$$\langle s_1.w = \textit{flights}, op = \textit{shift} \rangle$$

$$\langle s_2.w = \textit{canceled}, op = \textit{shift} \rangle$$

$$\langle s_1.t = \textit{NNS}, op = \textit{shift} \rangle$$

$$\langle s_2.t = \textit{VBD}, op = \textit{shift} \rangle$$

$$\langle b_1.w = to, op = \textit{shift} \rangle$$

$$\langle b_1.t = TO, op = \textit{shift} \rangle$$

$$\langle s_1.wt = \textit{flightsNNS}, op = \textit{shift} \rangle$$

Dependencias ¿Cómo funciona?

Source	Feature templates		
One word	$s_1.w$	$s_1.t$	$s_1.wt$
	$s_2.w$	$s_2.t$	s ₂ .wt
	$b_1.w$	$b_1.w$	$b_0.wt$
Two word	$s_1.w \circ s_2.w$	$s_1.t \circ s_2.t$	$s_1.t \circ b_1.w$
	$s_1.t \circ s_2.wt$	$s_1.w\circ s_2.w\circ s_2.t$	$s_1.w \circ s_1.t \circ s_2.t$
	$s_1.w \circ s_1.t \circ s_2.t$	$s_1.w \circ s_1.t$	

El clasificador predice dep tag a nivel de palabra usando las características indicadas.

Típicamente se usan SVM, LR multinomial o ANN con softmax para esta tarea.

Dependencias ¿Cómo funciona?

Source	Feature templates		
One word	$s_1.w$	$s_1.t$	$s_1.wt$
	$s_2.w$	$s_2.t$	s ₂ .wt
	$b_1.w$	$b_1.w$	$b_0.wt$
Two word	$s_1.w \circ s_2.w$	$s_1.t \circ s_2.t$	$s_1.t \circ b_1.w$
	$s_1.t \circ s_2.wt$	$s_1.w\circ s_2.w\circ s_2.t$	$s_1.w \circ s_1.t \circ s_2.t$
	$s_1.w \circ s_1.t \circ s_2.t$	$s_1.w \circ s_1.t$	

El clasificador predice dep tag a nivel de palabra usando las características indicadas.

Típicamente se usan SVM, LR multinomial o ANN con softmax para esta tarea.

Danqi Chen, Christopher D. Manning: A Fast and Accurate Dependency Parser using Neural Networks. EMNLP2014: 740-750

Named Entity Recognition

- Tarea: Identificar entidades en texto (personas, organizaciones, etc.)
- Separa el text en chunks, y para cada cual asocia una NE. Opera sobre texto tagged.
- NER types: organization, person, location, date, time, money, percent, facility (human made artifacts), gpe (geo-political ents).
- ▶ POS tagging puede ayudar, agregando entity como un estado mas.

Named Entity Recognition

President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with

Misc
American history and pop culture on Tuesday night.

Named Entity Recognition

bi-grama

President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with

Misc

American history and pop culture on Tuesday night.

Named Entity Recognition

bi-grama

Named Entity Recognition puede ser muy desafiante:

Named Entity Recognition en Spacy

```
nlp_md = es_core_news_md.load()
article_text = '''La ONG Fundación del Río explicó este viernes (
doc = nlp_md(article_text)
SVG(data = displacy.render(doc, style="ent"))
```


Named Entity Recognition en Spacy

```
nlp md = es core news md.load()
article text = '''La ONG Fundación del Río explicó este viernes (
doc = nlp md(article text)
SVG(data = displacy.render(doc, style="ent"))
La ONG Fundación del Río ORG explicó este viernes que la decisión de la Organización de la ONU ORG para la
 Educación ORO , la Ciencia LOC y la Cultura LOC ( Unesco ORO ) de declarar como geoparque el río Coco LOC ,
ubicado en el norte de Nicaragua [100], obliga a las autoridades nicaragüenses a proteger su ecosistema, ya que se
encuentra en el área más deforestada de la cuenca. La Unesco Loc está reconociendo la importancia del
río Coco 🚾 , pero también está haciendo un llamado al Gobierno 🚾 a que actúe en la protección y la
conservación de esos ecosistemas, dijo a Efe PER el presidente de la Fundación del Río ORO , Amaru Ruiz PER .
```


Collocations: n-gramas frecuentes

- El significado conjunto es más que la suma de las partes (compositionality)
 - 1. Armas de destrucción masiva
 - 2. Strong tea
 - 3. Libre de sodio
 - Intel inside
 - 5. Fast food
 - Nuclear war
- Detectar colocaciones mejora la representación del contenido.
- Cada colocación puede ser procesada como un término.
- Se pueden detectar analizando co ocurrencias, etiquetando el par como una colocación si su co ocurrencia es mucho mayor que la esperada (azar, equiprobable).

Collocations: ¿Cómo se detectan en NLTK?

```
>>> import nltk
>>> from nltk.collocations import *
>>> bigram_measures = nltk.collocations.BigramAssocMeasures()
>>> trigram_measures = nltk.collocations.TrigramAssocMeasures()
>>> finder = BigramCollocationFinder.from_words(
... nltk.corpus.genesis.words('english-web.txt'))
>>> finder.nbest(bigram_measures.pmi, 10) # doctest: +NORMALIZE_WHITESPACE
[(u'Allon', u'Bacuth'), (u'Ashteroth', u'Karnaim'), (u'Ben', u'Ammi'),
  (u'En', u'Mishpat'), (u'Jegar', u'Sahadutha'), (u'Salt', u'Sea'),
  (u'Whoever', u'sheds'), (u'appoint', u'overseers'), (u'aromatic', u'resin'),
  (u'cutting', u'instrument')]
```


Collocations: ¿Cómo se detectan en NLTK?

```
>>> import nltk
>>> from nltk.collocations import *
>>> bigram_measures = nltk.collocations.BigramAssocMeasures()
>>> trigram_measures = nltk.collocations.TrigramAssocMeasures()
>>> finder = BigramCollocationFinder.from_words(
... nltk.corpus.genesis.words('english-web.txt'))
>>> finder.nbest(bigram_measures.pmi, 10) # doctest: +NORMALIZE_WHITESPACE
[(u'Allon', u'Bacuth'), (u'Ashteroth', u'Karnaim'), (u'Ben', u'Ammi'),
  (u'En', u'Mishpat'), (u'Jegar', u'Sahadutha'), (u'Salt', u'Sea'),
  (u'Whoever', u'sheds'), (u'appoint', u'overseers'), (u'aromatic', u'resin'),
  (u'cutting', u'instrument')]
```

Podemos usar un umbral de frecuencia absoluta para encontrar *collocations* frecuentes y luego rankear usando PMI:

```
\operatorname{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)}
```

```
>>> finder.apply_freq_filter(3)
>>> finder.nbest(bigram_measures.pmi, 10) # doctest: +NORMALIZE_WHITESPACE
[(u'Beer', u'Lahai'), (u'Lahai', u'Roi'), (u'gray', u'hairs'),
  (u'Most', u'High'), (u'ewe', u'lambs'), (u'many', u'colors'),
  (u'burnt', u'offering'), (u'Paddan', u'Aram'), (u'east', u'wind'),
  (u'living', u'creature')]
```

