Operations Research (Master's Degree Course)

6. Integer Linear Programming

Silvano Martello

DEI "Guglielmo Marconi", Università di Bologna, Italy

This work by is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Based on a work at http://www.editrice-esculapio.com

Integer Linear Programming (ILP)

- In many real-world situations the variables cannot assume fractional values: assignment problem (candidates to be assigned to duties), transportation problems (x_j = number of vehicles to be used on route j), ...
- $A(m \times n)$, b(m), c(n) integer (like for LP); ILP in standard form: $\min c'x \qquad \qquad \blacksquare$ Ax = b $x \geq 0$ x integer
- Canonical form, general form, transformations: like for LP (integer slack and surplus variables).
- By removing the integrality constraint we obtain the continuous relaxation of the ILP.
- Let z(ILP) and z(LP) be the solution values of an ILP and of its continuous relaxation:
 - Property $z(LP) \le z(ILP)$

Proof We look for a minimum in a larger feasible set.

- We say that z(LP) is a **lower bound** on z(ILP).
- $-\Rightarrow$ If z(LP) corresponds to an integer point $x\in R^n$ then x is optimal for the ILP.

Geometrical interpretation

The constraints

- The integrality constraint x integer imposes that the feasible region
 only consists of the points with integer coordinates within the polyhedron.
- The optimal solution is the best among such points.
- By removing the integrality constraint (Continuous Relaxation), the LP provides a fractional solution (●) and a lower bound on the optimal ILP solution.
- Could we solve ILP by rounding the fractional solution provided by the LP?

A naïve Algorithm for ILP

procedure LIGABUE: begin

find the optimal solution x to the continuous relaxation LP of the ILP; if LP is impossible then ILP is impossible (comment: certainly true) else

if LP is unbounded then ILP is unbounded (comment: "normally" true) else

if x is integer then $x^* := x$ (comment: certainly true) else round each fractional x_j to its closest integer

end.

Does it work? Nope!

- rounded points can all be unfeasible;
- integer and continuous solution can be very "far" from each other.
- Are there cases where it works, i.e., the LP relaxation always has an integer solution?

Unimodularity

- An integer square matrix B is unimodular (UM) if $det(B) = \pm 1$.
- An integer rectangular $m \times n$ matrix A is **totally unimodular (TUM)** if every non-singular square submatrix of A is UM.
- **Property 1** If A is TUM then the vertices of $\{x : Ax = b, x \geq 0\}$ are integer \forall integer b.

Proof $B = \text{matrix corresponding to a base of } A. \implies \text{basic solution: } x_{\beta} = B^{-1}b = \frac{B^a}{\det(B)}b,$ with $B^a = \text{adjoint of } B \ (b^a_{ij} = (-1)^{i+j} \cdot (j,i) \text{-minor}).$ $A \text{ is TUM} \Rightarrow B \text{ is UM} \Rightarrow x \text{ is integer.} \quad \square$

• **Property 2** If A is TUM then the vertices of $\{x: Ax \leq b, x \geq 0\}$ are integer \forall integer b.

Proof It is enough to show that if A is TUM then (A|I) is TUM.

Let C be a square non-singular submatrix of (A|I):

A	1 0	0	1
	\overline{C}		

Permute the rows of
$$C$$
 so that $\widetilde{C} = \begin{pmatrix} B & 0 \\ \hline D & I \end{pmatrix}$:
$$\det(\widetilde{C}) = \det(B) \Rightarrow \det(C) = \pm \det(\widetilde{C}) = \pm 1. \quad \Box$$

- Hence: if A is TUM then the simplex algorithm solves ILP.
- Sufficient conditions exist to check if a matrix is TUM.

General methods for ILP

Two main methods: cutting planes and branch-and-bound (combined in branch-and-cut).

Cutting plane algorithms

Basic scheme (suppose the continuous relaxation is bounded and non-empty):

- 1. solve the continuous relaxation, and let x^* be the optimal solution;
- 2. if x^* is an integer point, then the problem is solved. Otherwise
- 3. add to the ILP a linear constraint (cut) which:
 - (i) eliminates a part of the feasible region containing x^* , but
 - (ii) does not eliminate any feasible integer solution;
- 4. solve the continuous relaxation of the new ILP (\rightarrow new x^*) and go to 2.

Cutting plane algorithms (cont'd): Gomory cuts (1958)

- $\forall y \in R^1$, the integer part of y is $\lfloor y \rfloor = \max$ integer $q: q \leq y$.
- Y= final LP tableau; $\mathcal{B}=$ optimal base $(\leftrightarrow B;\;x_{\beta(0)}=(-z));$
- ullet $\forall \; i(i=0,\ldots,m)$ we have: $x_{eta(i)} + \sum_{A_i
 ot\in \mathcal{B}} y_{ij} x_j = y_{i0}$ (lpha)
- $\bullet \ \ x \ge 0 \Rightarrow \sum_{A_j \not\in \mathcal{B}} \lfloor y_{ij} \rfloor x_j \le \sum_{A_j \not\in \mathcal{B}} y_{ij} x_j \qquad \Rightarrow \qquad x_{\beta(i)} + \sum_{A_j \not\in \mathcal{B}} \lfloor y_{ij} \rfloor x_j \qquad \le y_{i0} \qquad \text{integer } \forall \text{ integer } x \Longrightarrow$

$$\Longrightarrow x_{\beta(i)} + \sum_{A_j \notin \mathcal{B}} \lfloor y_{ij} \rfloor x_j \le \lfloor y_{i0} \rfloor \tag{\beta}$$

- $(\alpha) (\beta) : \sum_{A_j \notin \mathcal{B}} (y_{ij} \lfloor y_{ij} \rfloor) x_j \ge (y_{i0} \lfloor y_{i0} \rfloor).$
- The fractional part of y_{ij} is $f_{ij} = y_{ij} \lfloor y_{ij} \rfloor$; $0 \le f_{ij} < 1$.
- $\sum_{A_j \notin \mathcal{B}} f_{ij} x_j \geq f_{i0}$ (Gomory cut corresponding to row i).
- ullet Multiply by -1 and add a slack variable: $lacksquare \sum_{A_j
 ot\in \mathcal{B}} f_{ij} x_j + s = -f_{i0}.$

Cutting plane algorithms: Gomory cuts (cont'd)

• **Theorem** By adding to a final LP tableau the cut

$$-\sum_{A_j
ot\in \mathcal{B}} f_{ij}x_j + s = -f_{i0},$$

- 1. no feasible integer point is eliminated;
- 2. the resulting tableau contains a base which is:
 - (i) primal infeasible, if y_{i0} is not integer;
 - (ii) dual feasible.

Proof

- 1. the cut was obtained by just imposing the integrality constraints to the LP.
- 2.(i) s is a new basic variable which, when added to \mathcal{B} , gives a base whose solution includes $s = -f_{i0} \le 0$, i.e., it is primal infeasible, if y_{i0} is not integer;
- 2.(ii) in row 0, the column corresponding to s has $0 \Rightarrow$ the solution remains dual feasible. \square
- It is thus convenient to continue with the dual simplex algorithm.
- Note that 2. \Rightarrow if y_{i0} is not integer, the current solution is outside the resulting feasible region.
- The selected row i is called the generating row.
- Up to 1958 it was widely considered impossible to solve ILP through the Simplex algorithm.
- In the 70s and the 80s the Gomory cuts have been considered impractical, and "abandoned".
- Starting from the late 90s their usefulness has been rediscovered: modern Branch-and-cut solvers include Gomory cuts.

Cutting plane algorithms: Gomory cuts (cont'd)

```
procedure GOMORY:
begin
  remove the integrality constraints from the ILP thus obtaining an LP;
  call TWO_PHASE for LP, and let Y be the final tableau;
 if infeasible = false and unbounded = false then
   begin
     feasible := true; k := 0 (comment: cut counter);
     while \exists fractional y_{i0} and feasible = true do
        begin
          select an i:y_{i0} is fractional, and set k:=k+1;
          add the equation -\sum f_{ij}x_j+s_k=-f_{i0} to the tableau;
          call DUAL_SIMPLEX:
          if infeasible = true then feasible := false (comment: unbounded dual, impossible ILP)
        end
   end
end.
```

Convergence: If there is no degeneration, each iteration considers a base that is different from the previous ones. It can be proved that, even in case of degeneration, the method converges if:

- (i) the generating row is selected as the first fractional row;
- (ii) the dual simplex pivot is selected according to a method analogous to Bland's rule.

$$-x_2$$

0 integer

		x_1	x_2	x_3	x_4
-z	0	0	-1	0	0
x_3	6	3	2	1	0
x_4	0	-3	2	0	1

generating row: $\mathbf{0}$ (fractional) $\mathbf{1}$ (integer) $\mathbf{2}$ (fractional)

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

$$x_2 \le 1$$

$$x_1 - x_2 \ge -\frac{1}{2}$$

$$x_2 \leq 1$$

Selecting row 0:

$$-\frac{1}{4}x_3 - \frac{1}{4}x_4 + s_1 = -\frac{1}{2}$$

		x_1	x_2	x_3	x_4	s_1
-z	1	0	0	0	0	1
x_1	$\frac{2}{3}$	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$
x_2	1	0	1	0	0	1
x_3	2	0	0	1	1	-4

generating row: 1 (0, 2, 3 integer)

cut:

$$\begin{array}{c}
\frac{2}{3}x_4 + \frac{2}{3}s_1 \ge \frac{2}{3} \\
\downarrow \downarrow \\
x_1 \ge x_2
\end{array}$$

by substitution:

$$x_1 \geq x_2$$

cut equation: $-\frac{2}{3}x_4 - \frac{2}{3}s_1 + s_2 = -\frac{2}{3}$

		x_1	x_2	x_3	x_4	s_1	s_2
-z	1	0	0	0	0	1	0
x_1	$\frac{2}{3}$	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	0
x_2	1	0	1	0	0	1	0
x_3	2	0	0	1	1	-4	0
s_2	$-\frac{2}{3}$	0	0	0	$\left(-\frac{2}{3}\right)$	$-\frac{2}{3}$	1

		x_1	x_2	x_3	x_4	s_1	s_2
-z	1	0	0	0	0	1	0
x_1	1	1	0	0	0	1	$-\frac{1}{2}$
x_2	1	0	1	0	0	1	0
x_3	1	0	0	1	0	-5	$\frac{3}{2}$
x_4	1	0	0	0	1	1	$-\frac{3}{2}$

Optimal integer solution: $x_1 = x_2 = 1$; z = -1.

Example: min

$$x_1 + x_2$$

$$6x_1 + x_2 + x_3 = 4$$

$$-x_4 = 1$$

$$x_3, x_4 \geq 0$$
 integer

Phase 1:

Phase 2:

	0	1	1	0	0						
		x_1	x_2					x_1	x_2		x_4
-z	$-\frac{7}{3}$	0	0	-1	$-\frac{5}{3}$	-z	$-\frac{1}{3}$	0	1	0	$\frac{1}{3}$
x_2	2	0	1	1	2	x_3	2	0	1	1	2
x_1	$\frac{1}{3}$	1	0	0	$-\frac{1}{3}$	$egin{array}{c} x_3 \ x_1 \end{array}$	$\frac{1}{3}$	1	0	0	$-\frac{1}{3}$

Generating row **0**: cut $\frac{1}{3}x_4 \ge \frac{2}{3}$ ($\Rightarrow -\frac{1}{3}x_4 + s_1 = -\frac{2}{3}$)

		x_1	x_2	x_3	x_4	s_1
-z	$-\frac{1}{3}$	0	1	0	$\frac{1}{3}$	0
x_3	2	0	1	1	2	0
x_1	$\frac{1}{3}$	1	0	0	$-\frac{1}{3}$	0
s_1	$-\frac{2}{3}$	0	0	0	$\left(-\frac{1}{3}\right)$	1

		x_1	x_2	x_3	x_4	s_1
-z	-1	0	1	0	0	1
x_3	-2	0	1	1	0	6
x_1	1	1	0	0	0	-1
x_4	2	0	0	0	1	-3

unlimited dual \Rightarrow impossible primal.

• Observation:

When the continuous relaxation of the ILP is unbounded, "normally" the ILP is unbounded as well, but in very particular cases it can be impossible.

Example:

Branch-and-bound (Land and Doig, 1960)

- 1. P^0 = problem to be solved;
- 2. solve the continuous relaxation $(x^* = \text{optimal solution});$
- 3. if x^* is an integer point, then the problem is solved. Otherwise
- 4. select a fractional component, \boldsymbol{x}_{j}^{*} , of \boldsymbol{x}^{*} and impose

two mutually exclusive and exhaustive constraints (Branching):

$$x_j \leq \lfloor x_j^* \rfloor$$
 or $x_j \geq \lfloor x_j^* \rfloor + 1$ ($\lfloor a \rfloor =$ largest integer $\leq a$);

$$\mathbf{P^2} = \mathbf{P^0} \ \& \ (x_j \ge \lfloor x_j^* \rfloor + 1);$$

- 6. solution of P^0 best solution between that of P^1 and that of P^2 ;
- 7. solve P^1 and P^2 in the same way (recursively). Example: take P^2 :

• Let L_i = solution value of the continuous relaxation of \mathbf{P}^i (Lower bound); Representation through branch-decision tree:

Terminology:

- node branch
- 0 root
- 4, 5, 6 leaves
- 2 parent of 3 and 4
- 3, 4 children of 2
- 2 ancestor of 3, 4, 5 e 6
- 3, 4, 5, 6 descendants of 0 and 2

- We should now find in the same way the optimal solution of P^1 , BUT (Bounding):
- the solution of \mathbf{P}^i cannot have a smaller value than L_i (computed on a larger feasible region);
- as c is integer, $\lceil L_i \rceil$ is a Lower bound for problem \mathbf{P}^i ($\lceil a \rceil = \text{smallest integer} \geq a$);
- if we have already found an integer solution of value $z \leq \lceil L_i \rceil$, we don't need to solve P^i .
- ullet Solution of ${f P^0}=$ best integer solution found when no new branching is possible.

How to add the constraints to the tableau

s

 $x_i = a$ fractional (in base):

1.
$$x_i \leq \lfloor a \rfloor \rightarrow x_i + s = \lfloor a \rfloor$$

	$-z_0$	\overline{c}_j	0		0	0
			1			0
			_		\cap	
		r 3			O	
x_i	a	$[y_{ij}]$		1		0
					1	Λ
)			U
s	$\lfloor a \rfloor$	0	0	1	0	1

subtract the row of $x_i \Rightarrow$

 $s \mid r \mid 0 \dots 0 \mid 1$

$$r = \lfloor a \rfloor - a < 0$$

The relative costs remain non-negative, the current solution becomes unfeasible \Rightarrow dual simplex.

How to add the constraints to the tableau (cont'd)

 $x_i = a$ fractional (in base):

2.
$$x_i \ge \lfloor a \rfloor + 1 \rightarrow -x_i + s = -\lfloor a \rfloor - 1 = t$$

sum the row of $x_i \Rightarrow$

$$s \quad \boxed{ \quad r \quad \qquad 0 \quad \dots \quad 0 \quad 1 }$$

$$\boxed{1} \quad r = \underbrace{a - \lfloor a \rfloor}_{<1} - 1 < 0$$

The relative costs remain non-negative, the current solution becomes unfeasible \Rightarrow dual simplex.

Example:
$$\max \ z = x_1 + 4 \ x_2$$
 $x_1 + 3 \ x_2 \le 9$ $2 \ x_1 - x_2 \ge 0$ $x_1, x_2 \ge 0, \text{ integer.}$

The simplex algorithm gives, in two pivoting operations (Dantzig rule),

		x_1	x_2	x_3	x_4
z	$\frac{81}{7}$	0	0	$\frac{9}{7}$	$\frac{1}{7}$
x_1	$\frac{9}{7}$	1	0	$\frac{1}{7}$	$-\frac{3}{7}$
x_2	$\frac{18}{7}$	0	1	$\frac{2}{7}$	$\frac{1}{7}$

Lower bound value $L = \lceil -\frac{81}{7} \rceil = -11$.

We select x_1 for branching:

1.
$$x_1 \leq 1 \rightarrow x_1 + x_5 = 1$$
.

1.
$$x_1 < 1 \rightarrow x_1 + x_5 = 1$$
:

	_	x_1	x_2	x_3	x_4	x_5
z	$\frac{81}{7}$	0	0	$\frac{9}{7}$	$\frac{1}{7}$	0
x_1	$\frac{9}{7}$	1	0	$\frac{1}{7}$	$-\frac{3}{7}$	0
x_2	$\frac{18}{7}$	0	1	$\frac{2}{7}$	$\frac{1}{7}$	0
x_5	$-\frac{2}{7}$	0	0	$\left(-\frac{1}{7}\right)$	$\frac{3}{7}$	1
		x_1	x_2	x_3	x_4	x_5
•						
z	9	0	0	0	4	9
$egin{array}{c} z \ x_1 \end{array}$	9	0	0	0	0	9

Integer solution of value -9 > L (not provably optimal)

2. $x_1 \ge 2 \to -x_1 + x_6 = -2$:

		x_1	x_2	x_3	x_4	x_6
z	$\frac{81}{7}$	0	0	$\frac{9}{7}$	$\frac{1}{7}$	0
x_1	$\frac{9}{7}$	1	0	$\frac{1}{7}$	$-\frac{3}{7}$	0
x_2	$\frac{18}{7}$	0	1	$\frac{2}{7}$	$\frac{1}{7}$	0
x_6	$-\frac{5}{7}$	0	0	$\frac{1}{7}$	$\frac{}{\left(-\frac{3}{7}\right)}$	1

		x_1	x_2	x_3	x_4	x_6
z	$\frac{34}{3}$	0	0	$\frac{4}{3}$	0	$\frac{1}{3}$
x_1	2	1	0	0	0	-1
x_2	$\frac{7}{3}$	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$
x_4	$\frac{5}{3}$	0	0	$-\frac{1}{3}$	1	$-\frac{7}{3}$

The LP solution (fractional) provides a lower bound $\lceil -\frac{34}{3} \rceil = -11$ for the current node.

The lower bound is better than the incumbent solution \Rightarrow new branching. We select x_2 for branching:

3.
$$x_2 \le 2 \to x_2 + x_6 = 2$$
.

3. $x_2 \leq 2 \rightarrow x_2 + x_6 = 2$:

		x_1	x_2	x_3	x_4	x_6	x_7
z	$\frac{34}{3}$	0	0	$\frac{4}{3}$	0	$\frac{1}{3}$	0
x_1	2	1	0	0	0	-1	0
x_2	$\frac{7}{3}$	0	1	$\frac{1}{3}$	0	$\frac{1}{3}$	0
x_4	$\frac{5}{3}$	0	0	$-\frac{1}{3}$	1	$-\frac{7}{3}$	0
x_7	$-\frac{1}{3}$	0	0	$-\frac{1}{3}$	0	$\boxed{-\frac{1}{3}}$	1

		x_1	x_2	x_3	x_4	x_6	x_7	
z	11	0	0	1	0	0	1	0L = -11
x_1	3	1	0	1	0	0	-3	$x_1 \le 1 \qquad x_1 \ge 2$
x_2	2	0	1	0	0	0	1	
x_4	4	0	0	2	1	0	-7	$-z = -9$ $x_2 \leq 2$
x_6	1	0	0	1	0	1	-3	-z = -11

Optimal LP solution (integer) of value $-11 \blacksquare$ lower bound of the parent node

⇒ no need to explore the second child.

Final optimal solution: $x_1 = 3$, $x_2 = 2$.

Exploration strategies in branch-and-bound

- Two main issues for designing a branch-and-bound algorithm:
 - explorations strategy (which node has to be explored next);
 - how to compute bounds (will be seen later).
- the branch-decision tree can be **binary** (two children per node) or **multiple** (q > 2 children per node, using q exhaustive conditions).
- the branching conditions are preferably mutually exclusive, but not necessarily.

Notation:

- -z = value of the incumbent solution;
- $-L(P^k)$ = lower bound value for node P^k .

Exploration strategies in branch-and-bound (cont'd)

Depth-first:

- compute $L(P^0)$; generate the first child (P^1) of P^0 , and compute $L(P^1)$;
- generate the first child of P^1 , and so on. Rule:
- Forward step: generate one child of the last generated node, P^k , until
 - P^k is immediately solvable (e.g., integer LP solution), hence possibly update z, or
 - $-L(P^k) \ge z$, or
 - P^k does not have feasible non-explored nodes. In such cases:
- Backtracking: Backtrack to the parent of P^k , say P^p , and,
 - if $L(P^p) < z$, generate the next child of $L(P^p)$, then its first child, and so on;
 - otherwise (or if all children of P^p have already been explored) backtrack to the parent of P^p ;
- terminate when trying to backtrack from P^0 .
- Pros:
 - small number of active nodes;
 - each node is parent or child of the previous node;
 - easy to implement;
 - feasible incumbent solutions are quickly produced.

Exploration strategies in branch-and-bound (cont'd)

Lowest-first (Highest-first for maximization problems):

- compute $L(P^0)$, and initialize $\Pi := \{P^0\}$ (active nodes);
- at each iteration:
 - remove the node with smallest lower bound from Π ;
 - generate all its children, and compute their lower bounds;
 - if there are immediately solvable nodes, possibly update z;
 - add to Π the non immediately solvable nodes P^k for which $L(P^k) < z$;
- terminate when $\Pi = \emptyset$ or all nodes $P^k \in \Pi$ have $L(P^k) \geq z$.

Pros:

- the most promising node is explored first;
- small number of nodes globally explored to obtain the solution;
- no node is explored in vain (but in case of ties): If we explore P^r , with $L(P^r)>L(P^\ell)$, P^ℓ will have to be explored in any case. If

Cons:

- higher computing time for exploring a node;
- high number of active nodes;
- no relationship between the current node and the previous node;
- not easy to implement.

Exploration strategies in branch-and-bound (cont'd)

Depth-first (revisited):

- Same structure as depth-first, but
 - in the forward step all children of the current node are generated, their lower bounds are computed, and exploration continues with the child having minimum lower bound;
 - when backtracking the exploration continues with the non-explored child having minimum lower bound.
 - given two children, P^ℓ and P^r with $L(P^\ell) < L(P^r)$, P^ℓ will have to be explored in any case.

Breadth-first:

- all children of P^0 are generated;
- ullet all children of all children of P^0 that are not non immediately solvable are generated, and so on.
- Rarely used;
- adopted when all (or a large subset of) feasible solutions have to be generated.

Mixed Integer Linear Programming

- In a general case:
 - a subset of the variables can only take integer values;
 - the other variables can take fractional values.
- Example: transportation problems in which the variables represent:
 - numbers of vehicles to be used on the various routes;
 - quantities of goods (in tons) to be loaded on the vehicles .
- Mixed Integer Linear Programming (MILP):

• In the branch-decision tree we branch on a fractional x_j $(j=1,\ldots,\overline{n})$.

0-1 (or Binary) Linear Programming

• Special case of ILP: $\min c'x$

$$egin{array}{lll} Ax & = & b \ x_j & \in & \{0,1\} & orall \ j \ . \end{array}$$

- ullet The simplest case occurs when A has just one row: $a'x=\overline{b}$:
- usually expressed in maximization canonical form (0-1 Knapsack Problem (KP01)):

$$\max \sum_{j=1}^n p_j x_j$$

$$\sum_{j=1}^n w_j x_j \leq c$$

$$x_j \in \{0,1\} \quad (j=1,\ldots,n) \, .$$

- n items, each having a value p_j (profit) and a weight w_j ;
- a container (knapsack) having capacity c;
- select a subset of items having maximum profit and a total weight not exceeding c;
- applications in cargo loading, capital budgeting, ...
- widely studied because of its simple structure.
- We will assume that p_j , w_j and c are positive integers, $w_j \leq c \ \forall j$, $\sum_{i=1}^n w_j > c$.

Branch-and-bound algorithm for the 0-1 Knapsack Problem

It is convenient to preliminary sort the items by non-increasing profit per unit weight:

$$\frac{p_j}{w_j} \ge \frac{p_{j+1}}{w_{j+1}} \ \forall \ j$$

Binary decision tree:

level 1

- Exploration strategy: at the first level $x_1 = 1$, $x_1 = 0$; at each iteration, if \exists active node generated by $(x_j = 1)$, then branch from it otherwise branch from the last node generated by $(x_j = 0)$.
- \Rightarrow the set of active nodes contains: at most one node generated by $(x_j=1)$; one or more nodes generated by $(x_j=0)$.

Branch-and-bound algorithm for the 0-1 Knapsack Problem (cont'd)

• **Upper bound:** continuous relaxation:

$$x_j \in \{0,1\} \ (j=1,\ldots,n)$$
 replaced by $0 \le x_j \le 1 \ (j=1,\ldots,n)$.

Solution of the continuous relaxation (Dantzig, 1957):

consecutively insert the best element, taking a fraction of the first item, s, that does not fit:

$$s:=\min\{i\ : \sum_{j=1}^i w_j>c\}$$
 (critical item); $lacktrianglet c=c-\sum_{j=1}^{s-1} w_j$ (residual capacity) :

$$U := \left[\sum_{j=1}^{s-1} p_j + \overline{c} \, \frac{p_s}{w_s} \right].$$

• Example: n = 5

$$p' = (12, 12, 7, 6, 2)$$

$$w' = (4, 5, 3, 3, 2)$$

$$c = 10$$

$$U = \left\lfloor 12 + 12 + 1 \cdot \frac{7}{3} \right\rfloor = 26 \, \blacksquare$$

• Note: Upper bound of a node generated by $(x_j = 1) = \text{upper bound of the parent node;}$ $\forall \text{ node, upper bound of the left son } (x_j = 1) \geq \text{upper bound of the right son } (x_j = 0).$

Example:
$$n =$$

$$p' = (12, 12, 7, 6, 2)$$

$$w' = (4, 5, 3, 3, 2)$$

$$c = 10$$

Upper bound U underlined if it has to be computed

0 U = 26

■ Branch-and-bound algorithm for the 0-1 Knapsack Problem (cont'd)

```
Implementation: k =current level;
                     x' = (1, 1, 0, 1, 0, \underbrace{1}_{k}, -, -, -, -) = current values in the tree;
k:=k+1 (next level); if w_k \leq c - \sum_{j=1}^{k-1} w_j x_j then x_k:=1 else
        x_k := 0:
           U := \text{upper bound for the current node};
           while U \leq z (= incumbent solution value) do
              begin
                  k := \max\{j < k : x_j = 1\}; x_k := 0; backtracking
                  U := \text{upper bound for the current node}
               end
        end
```

■ Branch-and-bound algorithm for the 0-1 Knapsack Problem (cont'd)

Upper bound: A good upper bound should be tight (i.e., have a low value)

Improving the Dantzig bound:

- ullet in the optimal solution the critical item s is either excluded or included:
- ullet if $x_s=0$ the bound is $B^1=\left|\sum_{j=1}^{s-1}p_j+\overline{c}\;rac{p_{s+1}}{w_{s+1}}
 ight|$; lacksquare
- ullet if $x_s=1$ the bound is $B^2=\left[\sum_{j=1}^s p_j-\underbrace{(w_s-\overline{c})}_{} rac{p_{s-1}}{w_{s-1}}
 ight]$;

missing capacity worst ratio ⇒ minimum loss

- new bound: $\overline{U} = \max(B^1, B^2)$.
- Example: n=5, p'=(15, 8, 8, 7, 5), w'=(5, 3, 4, 4, 5), c=10. $U({\sf Dantzig})=27$; $■B^1=26$, $B^2=25$ $■⇒ \overline{U}=26$.
- $B^1 \leq U$ (obvious); easy to algebraically prove that $B^2 \leq U$; $\Longrightarrow \overline{U} \leq U$
- ullet \overline{U} is tighter and requires few additional operations \Rightarrow convenient.
- In general, compromise between tightness and computing time.

Branch-and-cut algorithms

- Branch-and-cut = (branch-and-bound) "+" (cutting-planes).
- Branch-and-bound algorithm which, at each decision node, generates cuts in an attempt to
 find an integer solution, or at least to improve the bound.
- Gomory cuts depend on the conditions imposed by the ancestor nodes;
- in branch-and-cut it is common to generate weaker cuts that are valid for the whole branch-decision tree (global cuts). The cuts are stored in a special data base (cut pool).
- At each branch-decision node:

```
x^* := solution of the continuous relaxation of the current problem;
```

while x^* not integer and iteration limit not reached do

if the pool contains cuts that are violated by x^* then

begin

select one or more cuts not yet used, and add them to the current problem;

 $x^* :=$ solution of the continuous relaxation

end

else generate new cuts, and add them to the pool;

- Main difficulty: method for generating global cuts.
- Gomory local cuts are also frequently added.

Some considerations on time bounds

- How many time (steps, iterations ...) requires the branch-and-bound algorithm for KP01?
- If we are lucky, the first (leftmost) n branches will find the optimal solution, and the bounds will kill all other nodes: the algorithm will take a time proportional to n.
- If we are unlucky, the bounds will kill no node: time proportional to 2ⁿ.
- We say that, in the worst case, the algorithm solves the problem in $O(2^n)$ time, or that the algorithm has time complexity $O(2^n)$.
- Other problems: consider a graph having n vertices (Introduction)
- Problem: find the shortest path that connects two vertices of a graph: there is an algorithm (studied in Network Optimization) that solves the problem in $O(n^2)$ time.
- <u>Problem</u>: find the **longest path** that connects two vertices of a graph: a branch-and-bound type algorithm (studied in **Network Optimization**) solves the problem in **O((n-1)!)** time.
- Problem: find the shortest tour to deliver products from a depot to clients and return to the depot: a branch-and-bound type algorithm (studied in Network Optimization) solves the problem in O((n-1)!) time.
- Great difference. For n=100: $100^2 \approx 10^4$, $2^{100} \approx 10^{30}$, $9! \approx 10^{156}$. (The number of atoms in the universe is estimated to be $\approx 10^{80}$.)
- Do we know faster algorithms for the longest path or the shortest tour in a graph? No!.
- These issues will be examined in the next section.

Software and freeware for LP and ILP

Three main difficulties for a practical implementation of the simplex algorithm:

1. Numerical stability:

- floating point operations produce errors that can propagate;
- example: $a := \frac{1}{3} (= 0.333...)$; b := 1 3 * a (= 0.000...01); is b a valid pivot?

2. CPU time:

- for large-size instances the tableau can include billions of entries, and pivoting operations can be prohibitive;
- implementations adopt the Revised Simplex Algorithm, which only uses the inverse, B^{-1} , of the base sub-matrix:
 - column 0 of the tableau (rows 1-m) = $x_{\beta} = B^{-1}b$;
 - relative cost vector = $\overline{c}' = c' c'_{\beta}B^{-1}A$;
 - jth column of the tableau = $B^{-1}A_j$.

3. Sparsity:

- in real-world large instances matrix A is frequently very "sparse" (most values are 0);
- special decomposition techniques used for efficiently handling B^{-1} .

Software and freeware for LP and ILP (cont'd)

Didactic software:

- Web page: http://www.or.deis.unibo.it/staff_pages/martello/cvitae.html
- ullet Courses o Didactic Tools. **Applets** to execute (student implementations):
 - Phase 1 and Phase 2 of the simplex algorithm;
 - Gomory algorithm;
 - Branch-and-bound algorithm for the 0-1 knapsack problem;
 - Dynamic programming algorithm for the 0-1 knapsack problem (to be seen later).

Commercial software:

- CPLEX Optimizer (ILOG → IBM)
- Gurobi Optimizer (Gurobi Optimization)
- LINDO and LINGO (LINDO Systems)
- XPRESS Optimizer (FICO)
- MPL (Maximal Software): high level language, independent on the platform (Windows, Unix, Mac, OSF), capable of interfacing with all solvers.

Demos

 All commercial softwares provide free demos and/or student versions (with a limit to the number of variables/constraints)

Excel (Microsoft) includes an LP/ILP solver (© not recommended)

Open source solvers (they can require a licence for commercial use):

- Ipsolve: simplex, branch-and-bound;ANSI C; http://sourceforge.net/projects/lpsolve
- Clp and Cbc: simplex, branch-and-cut;
 C++; http://www.coin-or.org
- SCIP: simplex, branch-cut-and-price + constraint programming;
 C callable library, very efficient; http://scip.zib.de/
- GLPK: simplex + interior point (to be defined later), branch-and-cut; GNU; ANSI C callable library; https://www.gnu.org/software/glpk/