Modos rotacionales y vibracionales en moléculas

José Soto García

29 de diciembre de 2018

0.1. La molécula como un sólido rígido: hamiltoniano asociado a la rotación de la misma en torno a su centro de masas.

Un sólido rígido se define como una colección de partículas, cuyas distancias relativas se mantienen fijas [2]. El momento de inercia I_i de un sólido rígido con n partículas sobre un eje i se define como:

$$I_i = \sum_{j=1}^{n} = m_j r_j^2 \tag{1}$$

con r_j la distancia desde la partícula de masa m_j al eje i.

0.1.1. El rotor rígido diatómico

El rotor rígido de dos partículas consiste en dos masas m_1 y m_2 unidas a una barra sin masa con una distancia fija d. Dado que la distancia es fija, la energía potencial no varía con la rotación del rotor, luego V=0. [1] El momento de inercia de una molécula diatómica puede escribirse como:

$$I = \mu R^2 \tag{2}$$

Podemos determinar los niveles de energía de este sistema resolviendo la ecuación de Schrödinger. Suponiendo que el radio entre los dos átomos no varía, la ecuación de Schrödinger queda:

$$-\frac{\hbar^{2}}{2I}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right]Y_{l}^{m}\left(\theta,\phi\right) = E_{l}Y_{l}^{m}\left(\theta,\phi\right)$$
(3)

Con

$$E_l = \frac{\hbar^2}{2I}l(l+1)$$

La energía está 2l+1 veces degenerada debido a que para un l fijo, distintos valores de m tienen la misma energía.

0.1.2. El rotor rígido poliatómico

Se define el tensor de inercia \tilde{I} como:

$$\tilde{I} = \begin{pmatrix}
\sum_{\alpha} m_{\alpha} \left(x_{\alpha,2}^2 + x_{\alpha,3}^2 \right) & -\sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,2} & -\sum_{\alpha} m_{\alpha} x_{\alpha,1} x_{\alpha,3} \\
-\sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,1} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^2 + x_{\alpha,3}^2 \right) & -\sum_{\alpha} m_{\alpha} x_{\alpha,2} x_{\alpha,3} \\
-\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,1} & -\sum_{\alpha} m_{\alpha} x_{\alpha,3} x_{\alpha,2} & \sum_{\alpha} m_{\alpha} \left(x_{\alpha,1}^2 + x_{\alpha,2}^2 \right) \end{pmatrix} \tag{4}$$

Clásicamente, la energía cinética rotacional del sistema se obtiene como:

$$T_{rot} = \frac{1}{2} \sum_{i,j} I_{i,j} \omega_i \omega_j \tag{5}$$

Figura 1: EXPLICAR

Una clara simplificación se encuentra si diagonalizamos el tensor de inercia. Los vectores que diagonalizan la matriz de inercia son los denominados ejes principales de inercia. La energía cinética rotacional clásica del sistema queda por tanto [2]:

$$T_{rot} = \frac{1}{2} \left(I_a \omega_a^2 + I_b \omega_b^2 + I_c \omega_c^2 \right) \tag{6}$$

con I_a , I_b , e I_c los autovalores del momento de inercia.

Para formar el hamiltoniano del sistema, necesitamos la energía en función del momento angular P, con $P_i = I_i \omega_i$. La energía cinética queda entonces como:

$$T_{rot} = \frac{P_a^2}{2I_a} + \frac{P_b^2}{2I_b} + \frac{P_c^2}{2I_c} \tag{7}$$

El nuevo sistema de referencia $\{a,b,c\}$ se consigue mediante tres rotaciones $\{\theta,\phi,\chi\}$ a través del centro de masas O. Son los llamados ángulos de Euler (figura 1). De la figura 1 podemos ver que:

$$\hat{P}_{\phi} = \frac{\partial P}{\partial \phi}, \ \hat{P}_{N} = \frac{\partial P}{\partial N}, \ \hat{P}_{\chi} = \frac{\partial P}{\partial \chi}$$
 (8)

Teniendo en cuenta que

$$P_N = P_a sin\chi + P_b cos\chi$$

 $P_Z = -P_a sin\theta cos\chi + P_b sin\theta sin\chi + P_c cos\theta$

Obtenemos que:

$$\hat{P}_{a} = i\hbar \left[cos\chi csc\theta \frac{\partial}{\partial \phi} - cos\chi cot\theta \frac{\partial}{\partial \chi} - sin\chi \frac{\partial}{\partial \theta} \right]$$
 (9)

$$\hat{P}_{b} = i\hbar \left[-sin\chi csc\theta \frac{\partial}{\partial \phi} + sin\chi cot\theta \frac{\partial}{\partial \chi} - cos\chi \frac{\partial}{\partial \theta} \right]$$
 (10)

$$\hat{P}_a = -i\hbar \frac{\partial}{\partial \chi} \tag{11}$$

O también:

$$\hat{P}_X = i\hbar \left[cos\phi cot\theta \frac{\partial}{\partial \phi} - cos\phi csc\theta \frac{\partial}{\partial \chi} + sin\phi \frac{\partial}{\partial \theta} \right]$$
 (12)

$$\hat{P}_{Y} = i\hbar \left[sin\phi cot\theta \frac{\partial}{\partial \phi} - sin\phi csc\theta \frac{\partial}{\partial \gamma} - cos\phi \frac{\partial}{\partial \theta} \right]$$
 (13)

$$\hat{P}_Z = -i\hbar \frac{\partial}{\partial \phi} \tag{14}$$

Sabemos que el hamiltoniano rotacional es

$$H_{rot} = \frac{P_a^2}{2I_a} + \frac{P_b^2}{2I_b} + \frac{P_c^2}{2I_c} \tag{15}$$

y el operador momento angular total es:

$$\hat{P}^2 = \hat{P}_a^2 + \hat{P}_b^2 + \hat{P}_c^2 = \hat{P}_X^2 + \hat{P}_V^2 + \hat{P}_Z^2 \tag{16}$$

Una forma de obtener los autovalores de Energía sería sustituir los valores de P y resolver la ecuación de Schrödinger. Sin embargo, estos autovalores se pueden obtener mediante relaciones de conmutación. Las relaciones de conmutación que necesitaremos son las siguientes:

$$\left[\hat{P}_i, \hat{P}_j\right] = -i\hbar \delta_{i,j} \hat{P}_k \tag{17}$$

$$\left[\hat{P}_{I},\hat{P}_{J}\right] = i\hbar\delta_{I,J}\hat{P}_{K} \tag{18}$$

$$\left[\hat{P}^2, \hat{P}_j\right] = \left[\hat{P}^2, \hat{P}_J\right] = 0 \tag{19}$$

$$\left[\hat{P}_{J}, \hat{P}_{j}\right] = 0, \ \forall_{J,j} \tag{20}$$

con $J = \{X, Y, Z\}$ y $j = \{a, b, c\}$

Con estas relaciones de conmutación es fácil comprobar que:

$$\left[H_{rot}, \hat{P}^2\right] = 0 \tag{21}$$

$$\left[H_{rot}, \hat{P}_J\right] = 0 \tag{22}$$

$$\left[H_{rot}, \hat{P}_c\right] = i\hbar \left(\frac{1}{2I_a} - \frac{1}{2I_b}\right) \left(\hat{P}_a\hat{P}_b + \hat{P}_b\hat{P}_a\right) \tag{23}$$

Puesto que H_{rot} conmuta con \hat{P}^2 y con \hat{P}_Z , se pueden elegir las autofunciones ψ del hamiltoniano rotacional como autofunciones de ambos operadores. Además, como los operadores \hat{P}_X , \hat{P}_Y y \hat{P}_Z cumplen las relaciones generales de conmutación del momento angular, obtenemos las siguientes relaciones:

$$\hat{H}\psi = E\psi \tag{24}$$

$$\hat{H}\psi = J(J+1)\hbar\psi, \qquad J = 0, 1, 2...$$
 (25)

$$\hat{P}_Z \psi = M \hbar \psi, \qquad M = 0, \pm 1, ..., \pm J$$
 (26)

Los autovalores de energía dependerán de las simetrías de rotación que presente la molécula, estas son:

Rotor esférico $I_a = I_b = I_c = I$

Rotor simétrico $I_a = I_b \neq I_c$

Rotor asimétrico $I_a \neq I_b \neq I_c$

0.1.3. El rotor esférico

El rotor esférico se caracteriza porque los tres momentos principales de inercia son iguales:

$$I_a = I_b = I_c = I$$

El hamiltoniano del sistema queda por tanto como:

$$\hat{H} = \frac{\hat{P}^2}{2I} \tag{27}$$

La ecuación de Schödinger es:

$$\frac{1}{2I}\hat{P}^2\psi = E\psi\tag{28}$$

Resolviendo la ecuación obtenemos que:

$$\frac{1}{2I}J(J+1)\hbar^2\psi = E\psi$$

$$E = \frac{J(J+1)\hbar^2}{2I}, \qquad J = 0, 1, 2...$$
 (29)

En este caso, tenemos además que

$$\left[\hat{H}, \hat{P}_c\right] \tag{30}$$

con

$$\hat{P}_c \psi = K \hbar \psi, \qquad K = 0, \pm 1, ..., \pm J$$

Luego la energía está $(2J+1)^2$ veces degenerada.

Bibliografía

- [1] Ira N Levine, Antonio Fuster Ortigosa y Alberto Requena Rodríguez. Espectroscopía molecular. AC, 1980.
- [2] Jerry B Marion. Classical dynamics of particles and systems. Academic Press, 2013.