4.1	The Error Term
	- It is an important practical matter to know not just that a sequence fant converges to a limit L, but
	also to have some idea of how rapidly it converges to L
	Error Term;
	- measures how far away an is from its limit
	$e_n = a_n - L$
	Error - Form Principle:
	- Let $a_n = L + e_n$, then $a_n \rightarrow L \iff e_n \rightarrow 0$
4.2	The Error in the Geometric Series. Application.
1,3	A Sequence Converging to 12: Newton's Method
	Newton's Method:
	- a numerical method for locating a zero x of a given function fix) to any accuracy desired
	$f'(a_n) = \frac{f(a_n)}{a_n - a_{n+1}}$, $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$
4.4	The Sequence of Fibonacci Fractions