Séance 1 : Rappel sur les structures algébriques fondamentales

Hervé Talé Kalachi

1 Théorie des groupes

1.1 Définitions de groupe et de sous-groupe

Définition 1.1 (Groupe). Un **groupe** (G,*) est un ensemble muni d'une opération binaire * telle que :

- Associativité: $\forall a, b, c \in G, (a * b) * c = a * (b * c).$
- Élément neutre : $\exists e \in G, \ \forall a \in G, \ a * e = e * a = a$.
- Inverse : $\forall a \in G, \exists b \in G, a * b = b * a = e.$

Définition 1.2 (Sous-groupe). Soit (G, *) un groupe. Une partie H de G est dite **sous-groupe** de (G, *) si la structure de G induit sur H une structure de groupe, On note alors $H \leq G$.

Théorème 1.1 (Critère de sous-groupe). Une partie $H \subseteq G$ est un sous-groupe de G si et seulement si :

- 1. $H \neq \emptyset$,
- 2. $\forall a, b \in H, \ a * b^{-1} \in H.$

Démonstration. Exercice

1.2 Groupes cycliques et générateurs

Définition 1.3 (Groupe cyclique). Un groupe (G, *) est dit **cyclique** s'il existe un élément $g \in G$ tel que

$$G = \{g^n : n \in \mathbb{Z}\}.$$

L'élément g est appelé **générateur** de G.

Exemple 1.1. Le groupe $(\mathbb{Z}/7\mathbb{Z}, +)$ est cyclique car tout élément peut s'écrire comme une somme répétée de 1. Ici, 1 est un générateur.

Remarque 1.1. Dans un groupe cyclique fini d'ordre n, tout générateur g vérifie $g^n = e$, et l'ordre de tout élément divise n (résultat découlant du théorème de Lagrange).

1.3 Théorème de Lagrange et preuve (esquisse)

Théorème 1.2 (Lagrange). Soit G un groupe fini et H un sous-groupe de G. Alors, l'ordre (le nombre d'éléments) de H divise l'ordre de G.

Esquisse de preuve. Considérons l'ensemble des classes à gauche de H dans G :

$$\{gH:g\in G\}.$$

Ces classes forment une partition de G. De plus, pour tout $g \in G$, la classe gH a exactement le même nombre d'éléments que H. Ainsi, si k est le nombre de classes, on a :

$$|G| = k \cdot |H|.$$

Par conséquent, |H| divise |G|.

2 Anneaux et corps

2.1 Définitions et propriétés

Définition 2.1 (Anneau). Un **anneau** $(A, +, \times)$ est un ensemble muni de deux opérations telles que :

- -(A, +) est un groupe abélien.
- La multiplication est associative et distributive par rapport à l'addition.
- Un élément neutre multiplicatif 1 peut exister (ceci n'est pas exigé pour tous les anneaux).

Définition 2.2 (Corps). Un **corps** est un anneau commutatif muni d'un neutre multiplicatif dans lequel tout élément non nul possède un inverse pour la multiplication.

2.2 Exemples dans le cas fini

Théorème 2.1. $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est un nombre premier.

Preuve. (Si) Supposons p premier. Soit \overline{a} un élément non nul dans $\mathbb{Z}/p\mathbb{Z}$. Comme p est premier, les entiers a et p sont premiers entre eux, ce qui garantit l'existence d'entiers x et y tels que :

$$ax + py = 1$$
.

En passant au modulo p, on obtient :

$$ax \equiv 1 \mod p$$
,

donc \overline{x} est l'inverse de \overline{a} dans $\mathbb{Z}/p\mathbb{Z}$.

(Seulement si) Supposons que $\mathbb{Z}/n\mathbb{Z}$ soit un corps. Si n n'était pas premier, il existerait des entiers a et b, avec 1 < a, b < n, tels que n divise ab. Dans $\mathbb{Z}/n\mathbb{Z}$, cela signifierait que $\overline{a} \neq \overline{0}$ et $\overline{b} \neq \overline{0}$, mais $\overline{a} \times \overline{b} = \overline{0}$, ce qui contredit le fait que tout élément non nul doit être inversible dans un corps.

Corollaire 2.1 (Petit théorème de Fermat). Soit p un nombre premier et $a \in \mathbb{Z}$ tel que $p \nmid a$. Alors :

$$a^{p-1} \equiv 1 \mod p.$$

2.3 Exemples sur les corps finis

Exemple 2.1. La construction de \mathbb{F}_2 (corps à deux éléments) est donnée par les tables :

3 Applications calculatoires

3.1 Inversion modulaire

Algorithme d'Euclide étendu:


```
Input: a, n \in \mathbb{N}

Output: a^{-1} \mod n si existe

old\_r, r \leftarrow a, n;

old\_s, s \leftarrow 1, 0;

while r \neq 0 do

| quotient \leftarrow \lfloor old\_r/r \rfloor;

| (old\_r, r) \leftarrow (r, old\_r - quotient \times r);

| (old\_s, s) \leftarrow (s, old\_s - quotient \times s);

end

if old\_r > 1 then

| return "Pas inversible";

end

return old\_s \mod n;

Algorithm 1: Algorithme d'inversion modulaire
```

3.2 Implémentation en Python

```
1
   def inverse_mod(a, n):
2
       old_r, r = a, n
3
       old_s, s = 1, 0
       while r != 0:
4
5
           quotient = old_r // r
6
           old_r, r = r, old_r - quotient * r
7
           old_s, s = s, old_s - quotient * s
8
       if old_r > 1:
9
           return None # a n'est pas inversible modulo n
10
       return old_s % n
11
12
   # Test : dans Z/13Z, 4*10 = 40 = 1 \mod 13
13
   print(inverse_mod(4, 13))
```

4 Exercices

4.1 Exercices sur les groupes

Exercice 4.1 (Groupe multiplicatif). Montrer que $(\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, 5, 7, 8\}$ forme un groupe pour la multiplication modulo 9.

Exercice 4.2 (Groupe cyclique). Montrer que $((\mathbb{Z}/p\mathbb{Z})^*, \times)$ est cyclique pour tout nombre premier p. Identifier un générateur.

4.2 Exercices sur les anneaux et corps

Exercice 4.3 (Inverse modulaire et petit théorème de Fermat). Soit p un nombre premier et $a \in \{1, 2, \dots, p-1\}$. Vérifiez numériquement que l'inverse de a dans $\mathbb{Z}/p\mathbb{Z}$ est donné par a^{p-2} , c'est-à-dire que :

$$a \times a^{p-2} \equiv 1 \mod p$$
.

Exercice 4.4 (Équations de congruence). Résoudre l'équation suivante dans $\mathbb{Z}/11\mathbb{Z}$:

$$3x + 4 \equiv 2 \mod 11$$
.

Indice: Calculez d'abord l'inverse modulaire de 3 modulo 11.

4.3 Exercices complémentaires

Exercice 4.5 (Table d'opérations). Construisez la table de multiplication du groupe $(\mathbb{Z}/7\mathbb{Z})^{\times}$. Vérifiez que chaque ligne et chaque colonne contient exactement une fois chacun des éléments du groupe.

Exercice 4.6 (Implémentation et test). Écrire une fonction Python qui, pour un entier n, construit la table d'addition de $\mathbb{Z}/n\mathbb{Z}$. Testez-la pour n = 5.