$\Sigma(2030) \ 7/2^{+}$

 $I(J^P) = 1(\frac{7}{2}^+)$ Status: ***

Discovered by COOL 66 and by WOHL 66. For most results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters **111B** 1 (1982).

This entry only includes results from partial-wave analyses. Parameters of peaks seen in cross sections and invariant-mass distributions around 2030 MeV may be found in our 1984 edition, Reviews of Modern Physics **56** S1 (1984).

REAL PAF	RT	DOCUMENT ID)	TECN	COMMENT
2025 ⁺¹⁰ - 5		¹ KAMANO			Multichannel
• • • We do	o not use the follow	ing data for averag	es, fits,	limits, e	tc. • • •
1993		ZHANG	13A	DPWA	Multichannel
$^{ m 1}$ From th	e preferred solution	A in KAMANO 15			
-2×IMA(VALUE (MeV)	GINARY PART	DOCUMENT ID)	TECN	COMMENT
130+6		¹ KAMANO			Multichannel
	o not use the follow	ing data for averag	es. fits.	limits. e	tc. • • •
		ZHANG			Multichannel
176		ZHANG	13/		Multichamile
	e preferred solution			DIVVA	Waltichamler
	·	A in KAMANO 15			Watterlamer
¹ From the	Σ	A in KAMANO 15	ESIDU	JES	Wattenamei
¹ From th	Σ e normalized residuo	A in KAMANO 15 (2030) POLE R e is the residue divident	ESIDU	JES	Wuttenamei
1 From th	Σ e normalized residue d residue in NK	A in KAMANO 15 (2030) POLE R is the residue divide Σ	ESIDU ded by	JES $\Gamma_{pole}/2.$	
1 From the	Σ e normalized residuo	A in KAMANO 15 (2030) POLE R is the residue divide $\rightarrow \Sigma(2030) \rightarrow DOCUMENT$	ESIDU ded by NK	JES $\Gamma_{pole}/2.$	COMMENT
1 From the	ε normalized residue d residue in NK PHASE (°)	A in KAMANO 15 (2030) POLE R is the residue divide $\rightarrow \Sigma(2030) \rightarrow DOCUMENT$	ESIDU ded by NK	JES $\Gamma_{pole}/2$. \underline{TECN} limits, e	COMMENT
The Normalized MODULUS • • • We do 0.220	e normalized residue d residue in NK PHASE (°) o not use the follow	A in KAMANO 15 (2030) POLE R e is the residue divide Σ(2030) → DOCUMENT Ting data for averag 1 KAMANO	ESIDU ded by NK ID res, fits,	JES $\Gamma_{pole}/2$. \underline{TECN} limits, e	<u>COMMENT</u> tc. ● ●
The Normalized MODULUS • • • We do 0.220 1 From the	e normalized residue d residue in NK PHASE (°) o not use the follow -38 e preferred solution	A in KAMANO 15 (2030) POLE R e is the residue divide Σ(2030) → DOCUMENT ing data for averag 1 KAMANO A in KAMANO 15	ESIDU ded by NK ID es, fits, 15	JES $\Gamma_{pole}/2$. \underline{TECN} limits, e	<u>COMMENT</u> tc. ● ●
The Normalized MODULUS • • • We do 0.220 1 From the Normalized	e normalized residue d residue in NK PHASE (°) o not use the follow -38 e preferred solution d residue in NK	A in KAMANO 15 (2030) POLE R is the residue divided by the second sec	ESIDU ded by NK ID res, fits, 15	JES $\Gamma_{pole}/2$. \underline{TECN} limits, e	COMMENT tc. • • • Multichannel
The Normalized MODULUS • • • We do 0.220 1 From the Normalized MODULUS	e normalized residue d residue in NK PHASE (°) o not use the follow -38 e preferred solution	A in KAMANO 15 (2030) POLE R is the residue divided by the second of	ESIDU ded by NK //D es, fits, 15 . Σπ	JES Γ _{pole} /2. <u>TECN</u> limits, e DPWA	COMMENT tc. • • • Multichannel COMMENT
The Normalized MODULUS • • • We do 0.220 1 From the Normalized MODULUS	e normalized residue d residue in NK PHASE (°) o not use the follow - 38 e preferred solution d residue in NK PHASE (°)	A in KAMANO 15 (2030) POLE R is the residue divided by the second of	ESIDU ded by NK //D es, fits, 15 . Σπ	JES $\Gamma_{pole}/2.$ \underline{TECN} limits, e $DPWA$ \underline{TECN} limits, e	COMMENT tc. • • • Multichannel COMMENT

Normalized	residue in $N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow \Lambda\pi$	
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT
• • • We do	not use the following	data for averages, fits,	limits, etc. • • •
0.138	-24	¹ KAMANO 15	DPWA Multichannel
¹ From the	preferred solution A i	n KAMANO 15.	
		$\Sigma(2030) \rightarrow \Xi K$	
		DOCUMENT ID	
		data for averages, fits,	
0.0348	129		DPWA Multichannel
¹ From the	preferred solution A i	n KAMANO 15.	
		$\Sigma(2030) \rightarrow \Sigma(13)$	
		DOCUMENT ID	
		data for averages, fits,	
_	-23		DPWA Multichannel
¹ From the	preferred solution A i	n KAMANO 15.	
		$\Sigma(2030) \rightarrow \Sigma(13)$	•
		DOCUMENT ID	
		data for averages, fits,	
0.0245	132		DPWA Multichannel
¹ From the	preferred solution A i	n KAMANO 15.	
			(892), <i>S</i> =1/2 , <i>F</i> -wave
			TECN COMMENT
		data for averages, fits,	
0.193	38		DPWA Multichannel
¹ From the	preferred solution A i	n KAMANO 15.	
Normalized	residue in $N\overline{K} \rightarrow$	$\Sigma(2030) \rightarrow N\overline{K}^*$	(892), <i>S</i> =3/2 , <i>F</i> -wave
		DOCUMENT ID	
• • • We do	not use the following	data for averages, fits,	limits, etc. • • •
0.320	37	¹ KAMANO 15	DPWA Multichannel
		¹ KAMANO 15	DPWA Multichannel
$^{ m 1}$ From the	37 preferred solution A i	¹ KAMANO 15 n KAMANO 15.	DPWA Multichannel (892), S=3/2, H-wave
$^{ m 1}$ From the	37 preferred solution A i	1 KAMANO 15 n KAMANO 15. Σ(2030) → $N\overline{K}^{*}$	
¹ From the Normalized <i>MODULUS</i>	37 preferred solution A i residue in NK → PHASE (°)	1 KAMANO 15 n KAMANO 15. Σ(2030) → $N\overline{K}^{*}$	*(892), S=3/2 , H-wave
¹ From the Normalized <i>MODULUS</i>	37 preferred solution A i residue in NK → PHASE (°)	1 KAMANO 15 n KAMANO 15. $Σ(2030) → N\overline{K}^{*}$ DOCUMENT ID	*(892), <i>S</i> =3/2 , <i>H</i> -wave **TECN COMMENT limits, etc. • • •

Σ(2030) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2025 to 2040 (≈ 2030) OUR ESTI	2025 to 2040 (≈ 2030) OUR ESTIMATE				
2030± 5	ZHANG	13A	DPWA	Multichannel	
2036± 5	GOPAL	80	DPWA	$\overline{K} N \rightarrow \overline{K} N$	
2038 ± 10	CORDEN	77 B		$K^- N \rightarrow N \overline{K}^*$	
2040± 5	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
2030± 3	¹ CORDEN	76	DPWA	$K^- n \rightarrow \Lambda \pi^-$	
2035 ± 15	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$	
2038 ± 10	HEMINGWAY	75		$K^- p \rightarrow \overline{K} N$	
2042 ± 11	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$	
2020± 6	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$	
2035 ± 10	LITCHFIELD	74 B	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$	
2020 ± 30	LITCHFIELD	74 C	DPWA	$K^- p \rightarrow \Delta(1232) \overline{K}$	
2025 ± 10	LITCHFIELD	74 D	DPWA	$K^- p \rightarrow \Lambda(1820) \pi^0$	
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
2027 to 2057	GOYAL	77	DPWA	$K^- N \rightarrow \Sigma \pi$	
2030	DEBELLEFON	l 76	IPWA	$K^- p \rightarrow \Lambda \pi^0$	
¹ Preferred solution 3; see CORD	EN 76 for other	possib	ilities.		

Σ(2030) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
150 to 200 (≈ 180) OUR ESTIMATE						
207 ± 17	ZHANG	13A	DPWA	Multichannel		
172 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
$137\!\pm\!40$	CORDEN	77 B		$K^- N \rightarrow N \overline{K}^*$		
190 ± 10	GOPAL	77	DPWA	$\overline{K}N$ multichannel		
201± 9	¹ CORDEN	76	DPWA	$K^- n \rightarrow \Lambda \pi^-$		
180 ± 20	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$		
172 ± 15	HEMINGWAY	75		$K^- p \rightarrow \overline{K} N$		
178 ± 13	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$		
111± 5	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$		
160 ± 20	LITCHFIELD	74 B	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$		
200 ± 30	LITCHFIELD	74 C	DPWA	$K^- p \rightarrow \Delta(1232) \overline{K}$		
• • • We do not use the following of	data for averages	, fits,	limits, e	etc. • • •		
260	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$		
126 to 195	GOYAL	77	DPWA	$K^- N \rightarrow \Sigma \pi$		
160	DEBELLEFON	76	IPWA	$K^- p \rightarrow \Lambda \pi^0$		
70 to 125	LITCHFIELD	74 D	DPWA	$K^- p \rightarrow \Lambda(1820) \pi^0$		
¹ Preferred solution 3; see CORDEN 76 for other possibilities.						

Σ (2030) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$N\overline{K}$	17–23 %
Γ_2	$\Lambda\pi$	17–23 %
Γ_3	$\Sigma \pi$	5–10 %
Γ_4	ΞK	<2 %
Γ_5	$\Sigma(1385)\pi$	5–15 %
Γ_6	$\Sigma(1385)\pi$, $\emph{F} ext{-}$ wave	
Γ_7	$\Sigma(1385)\pi$, \emph{F} -wave	
Γ ₈	$\Sigma(1385)\pi$, $ extit{ extit{H}}$ -wave	
Γ_9	$\Lambda(1520)\pi$	10–20 %
Γ_{10}	$arLambda(1520)\pi$, $ extit{D} ext{-}$ wave	
Γ_{11}	$arLambda(1520)\pi$, $ extit{ } extit{G} ext{-wave}$	
	$\Delta(1232)\overline{K}$	10–20 %
Γ_{13}	$\Delta(1232)\overline{K}$, $\mathit{F} ext{-}$ wave	
Γ_{14}	$\Delta(1232)\overline{K}$, $ extit{ extit{H}} ext{-wave}$	
Γ_{15}	N K *(892)	<5 %
Γ_{16}	$N\overline{K}^*(892)$, $S\!\!=\!\!1/2$, $F\!\!$ -wave	
Γ_{17}	$N\overline{K}^*(892)$, $S=3/2$, F -wave	
Γ_{18}	$N\overline{K}^*(892)$, $S=3/2$, H -wave	
Γ ₁₉	$\Lambda(1820)\pi$, P -wave	

Σ (2030) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.17 to 0.23 OUR ESTIMATE					
0.13 ± 0.01	ZHANG	13A	DPWA	Multichannel	
0.19 ± 0.03	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.18 ± 0.03	HEMINGWAY	75	DPWA	$K^- p \rightarrow \overline{K} N$	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • •	
0.269	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
0.15	DECLAIS	77	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
0.24 ± 0.02	GOPAL	77	DPWA	See GOPAL 80	
$^{ m 1}$ From the preferred solution A in KAMANO 15.					
$\Gamma(\Lambda\pi)/\Gamma_{ ext{total}}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
0.080	$^{ m 1}$ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A ir	ı KAMANO 15.				

$\Gamma(\Sigma\pi)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₃ /Γ
• • • We do not use the following	•			-	
0.037	¹ KAMANO			Multichannel	
$^{ m 1}$ From the preferred solution A	in KAMANO 15.				
F(=12) /F					F /F
$\Gamma(\Xi K)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ_4/Γ
• • • We do not use the following	DOCUMENT ID				
_	1 KAMANO			Multichannel	
0.006 ¹ From the preferred solution A		13	DEWA	wuuttenannei	
From the preferred solution A	III KAWANO 15.				
$\Gamma(\Sigma(1385)\pi, F$ -wave)/ Γ_{total}					Γ_7/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following	data for average	s, fits,	limits, e	etc. • • •	
0.030	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A	in KAMANO 15.				
F(F(1395) = Hugus) /F					Г. /Г
$\Gamma(\Sigma(1385)\pi, H\text{-wave})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Г ₈ /Г
• • We do not use the following					
0.003	¹ KAMANO	15		Multichannel	
1 From the preferred solution A		10	D. 1171	.v.a.c.c.ia.iiic.	
From the preferred solution 70					
$\Gamma(N\overline{K}^*(892), S=1/2, F-wave)$)/Γ _{total}				Γ ₁₆ /Γ
VALUE	DOCUMENT ID			COMMENT	
• • • We do not use the following		s, fits,	limits, e	etc. • • •	
0.154	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A $^{ m 1}$	in KAMANO 15.				
$\Gamma(N\overline{K}^*(892), S=3/2, F-wave)$) /F				Γ ₁₇ /Γ
VALUE	// ' total <u>DOCUMENT ID</u>		TECN	COMMENT	17/1
• • • We do not use the following					
0.422	¹ KAMANO	15		Multichannel	
1 From the preferred solution A		10	<i>D.</i> 1171	.viaiciename.	
Trom the preferred solution 70	III 10 (WI) (1 40 15.				
$\Gamma(N\overline{K}^*(892), S=3/2, H-wave$	e)/Γ _{total}				Γ_{18}/Γ
<u>VALUE</u>	DOCUMENT ID			COMMENT	
• • • We do not use the following	_	s, fits,	limits, e	etc. • • •	
not seen	¹ KAMANO	15	DPWA	Multichannel	
$^{ m 1}$ From the preferred solution A $^{ m 1}$	in KAMANO 15.				

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(2030) \to \Lambda \pi$				(Γ ₁ Γ ₂) ^½ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.15 \pm 0.01$	ZHANG	13A	DPWA	Multichannel
$+0.18 \pm 0.02$	GOPAL	77	DPWA	$\overline{K}N$ multichannel
$+0.20\ \pm0.01$	$^{ m 1}$ CORDEN	76	DPWA	$K^- n \rightarrow \Lambda \pi^-$
$+0.18 \pm 0.02$	BAILLON			$\overline{K}N \rightarrow \Lambda\pi$
$+0.20\ \pm0.01$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$
$+0.195\pm0.053$	DEVENISH	74 B		Fixed-t dispersion rel.
ullet $ullet$ We do not use the fol	lowing data for averages	, fits,	limits, e	tc. • • •
0.20	DEBELLEFON	76	IPWA	$K^- p \rightarrow \Lambda \pi^0$

¹ Preferred solution 3; see CORDEN 76 for other possibilities.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(2)$	(Γ ₁ Γ ₃) ^½ /Γ			
VALUE	DOCUMENT ID		TECN	COMMENT
-0.08 ± 0.01	ZHANG	13A	DPWA	Multichannel
-0.09 ± 0.01	¹ CORDEN	77C		$K^- n \rightarrow \Sigma \pi$
-0.06 ± 0.01	$^{ m 1}$ CORDEN	77C		$K^- n \rightarrow \Sigma \pi$
-0.15 ± 0.03	GOPAL	77	DPWA	$\overline{K}N$ multichannel
$-0.10\ \pm0.01$	KANE	74	DPWA	$K^- p \rightarrow \Sigma \pi$
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
-0.085 ± 0.02	² GOYAL	77	DPWA	$K^- N \rightarrow \Sigma \pi$

 $^{^{1}\,\}mathrm{The}$ two entries for CORDEN 77C are from two different acceptable solutions.

 $^{^2}$ This coupling is extracted from unnormalized data.

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(20)$	030) → <i>≡K</i>				$(\Gamma_1\Gamma_4)^{\frac{1}{2}}/\Gamma$
VALUE	DOCUMENT ID		TECN	COMMENT	-
0.023	MULLER	69 B	DPWA	$K^-p \rightarrow$	ΞK
< 0.05	BURGUN	68	DPWA	$K^-p \rightarrow$	ΞK
< 0.05	TRIPP	67	RVUE	$K^-p \rightarrow$	ΞK
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(2030) \to \Sigma(1385)\pi$, <i>F</i> -wave $(\Gamma_1 \Gamma_6)^{1/2} / \Gamma_{\text{total}}$					

VALUE TECN COMMENT 13A DPWA Multichannel $+0.16 \pm 0.01$ ¹ CAMERON $+\,0.153\pm0.026$ 78 DPWA $K^-p \rightarrow \Sigma(1385)\pi$

 $^{^{}m 1}$ The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{ ext{total}}$ in $N\overline{K} o \Sigma(2030) o \Lambda(1520) \pi$, D -wave) ^½ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.114\pm0.010$	¹ CAMERON	77	DPWA	$K^- p \rightarrow \Lambda(1520)$	π^0
0.14 ± 0.03	LITCHFIELD	74 B	DPWA	$K^-p \rightarrow \Lambda(1520)$	π^0
• • • We do not use the follow	wing data for averages	s, fits,	limits, e	tc. • • •	
0.10 ± 0.03	² CORDEN	75 B	DBC	$K^- n \rightarrow N \overline{K} \pi^-$	

 $^{^{1}}$ The published sign has been changed to be in accord with the baryon-first convention.

² An upper limit.

1/2	. , ,			
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma$	• •	-		
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.146\pm0.010$				$K^- p \rightarrow \Lambda(1520) \pi^0$
0.02 ± 0.02	LITCHFIELD	74 B	DPWA	$K^- p \rightarrow \Lambda(1520) \pi^0$
$^{ m 1}$ The published sign has been	changed to be in a	ccord	with the	baryon-first convention.
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma$	′2030) → ∆(123	32) <u>K</u>	. <i>F</i> -wav	e (ΓιΓι ₂) ^{1/2} /Γ
		-		• • • •
VALUE	<u>DOCUMENT ID</u>		TECIV	COMMENT
$+0.12\pm0.02$	ZHANG	13A	DPWA	Multichannel
0.16 ± 0.03	LITCHFIELD	74 C	DPWA	$K^- p \rightarrow \Delta(1232) \overline{K}$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(2030) \rightarrow N\overline{K}^*(892), S=1/2, F\text{-wave}$

 $(\Gamma_1\Gamma_{16})^{\frac{1}{2}}/\Gamma$

VALUE	DOCUMENT ID		TECN	COMMENT
$+0.06\pm0.02$	ZHANG	13A	DPWA	Multichannel
$+0.06\pm0.03$	$^{ m 1}$ CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$
-0.02 ± 0.01	CORDEN	77 B		$K^- d \rightarrow NN\overline{K}^*$

 $^{^{}m 1}$ The published sign has been changed to be in accord with the baryon-first convention.

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(2030) \to N\overline{K}^*(892), S=3/2, F-\text{wave}$

 $(\Gamma_1\Gamma_{17})^{\frac{1}{2}}/\Gamma$

Created: 5/30/2017 17:20

				(' 1' 17 <i>)</i>	/•
VALUE	DOCUMENT ID		TECN	COMMENT	
$+0.05\pm0.01$	ZHANG	13A	DPWA	Multichannel	
$+0.04\pm0.03$	$^{ m 1}$ CAMERON	78 B	DPWA	$K^- p \rightarrow N \overline{K}^*$	
$-0.12 \!\pm\! 0.02$	CORDEN	77 B		$K^- d \rightarrow NN\overline{K}^*$	

¹ The upper limit on the G_3 wave is 0.03.

 $(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(2030) \rightarrow \Lambda(1820) \pi$, P-wave

VALUE	DOCUMENT ID		TECIV	COMMENT
0.14±0.02	CORDEN	75 B	DBC	$K^- n \rightarrow N \overline{K} \pi^-$
0.18 ± 0.04	LITCHFIELD	74 D	DPWA	$K^- p \rightarrow \Lambda(1820) \pi^0$

¹ An upper limit.

Σ (2030) REFERENCES