SAMPLE PROBLEM C

Gravitational Force

PROBLEM

Find the distance between a 0.300 kg billiard ball and a 0.400 kg billiard ball if the magnitude of the gravitational force between them is 8.92×10^{-11} N.

SOLUTION

Given:
$$m_1 = 0.300 \text{ kg}$$
 $m_2 = 0.400 \text{ kg}$ $F_{\sigma} = 8.92 \times 10^{-11} \text{ N}$

Unknown:
$$r = 3$$

Use the equation for Newton's law of universal gravitation, and solve for r.

$$F_g = G \frac{m_1 m_2}{r^2}$$

$$r = \sqrt{G \frac{m_1 m_2}{F_g}}$$

$$r = \sqrt{\left(6.673 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}\right) \times \frac{(0.300 \text{ kg})(0.400 \text{ kg})}{8.92 \times 10^{-11} \text{ N}}}$$

$$r = 3.00 \times 10^{-1} \text{ m}$$

PRACTICE C

Gravitational Force

- 1. What must be the distance between two 0.800 kg balls if the magnitude of the gravitational force between them is equal to that in Sample Problem C?
- **2.** Mars has a mass of about 6.4×10^{23} kg, and its moon Phobos has a mass of about 9.6×10^{15} kg. If the magnitude of the gravitational force between the two bodies is 4.6×10^{15} N, how far apart are Mars and Phobos?
- **3.** Find the magnitude of the gravitational force a 66.5 kg person would experience while standing on the surface of each of the following bodies:

Celestial Boo	dy Mass	Radius
a. Earth	$5.97 \times 10^{24} \mathrm{kg}$	$6.38 \times 10^6 \text{ m}$
b. Mars	$6.42 \times 10^{23} \text{ kg}$	$3.40 \times 10^{6} \text{ m}$
c. Pluto	$1.25 \times 10^{22} \text{ kg}$	$1.20 \times 10^6 \text{ m}$