This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-304274

(43)Date of publication of application: 05.11.1999

(51)Int.CI.

F25B 15/00 F25B 27/02 // F02C 6/18

(21)Application number : 10-126701

(71)Applicant: KAWASAKI THERMAL ENG CO LTD

(22)Date of filing:

20.04.1998

(72)Inventor: TAKAHATA SHUZO

OCHI TADAFUMI

SAITO KENICHI

(54) WASTE HEAT UTILIZED ABSORPTION TYPE WATER COOLING/ HEATING MACHINE REFRIGERATING MACHINE

(57)Abstract:

PROBLEM TO BE SOLVED: To sufficiently recover and utilize a waste gas retaining heat for high-efficient operation by adding a single or a plurality of auxiliary regenerators to a high-temperature regenerator and a low-temperature regenerator of absorption water cooling/heating machine refrigerating machine, and utilizing gas turbine waste heat with the hightemperature regenerator and the auxiliary regenerator in series sequentially.

SOLUTION: An evaporator 10, an absorber 12, a condenser 14, a low-temperature regenerator 16, a high-temperature regenerator 18, low-temperature and high-temperature heat exchangers 20 and 22, a solution refrigerant pipe channel connecting these devices are provided, which are connected and allocated so that an absorption liquid is pumped up from the absorber 12 to the low- temperature regenerator 16, and further to the high-temperature regenerator 18. Here, with at least one auxiliary regenerator 24 added, a waste gas pipe 28 is

inserted in the regenerators 18 and 24 so that the combustion waste gas of a gas turbine is guided into the high-temperature regenerator for heating/ condensing the absorption liquid while the waste gas with dropped temperature is guided into the auxiliary regenerator 24 for condensing/heating liquid.

LEGAL STATUS

[Date of request for examination]

13.12.1999

[Date of sending the examiner's decision of

19.02.2002

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-304274

(43)公開日 平成11年(1999)11月5日

(51) Int.Cl. ⁶	識別記号	FI
F 2 5 B 15/	00 3 0 3	F 2 5 B 15/00 3 0 3 E
		303B
27/	02	27/02 K
# F 0 2 C 6/	18	F 0 2 C 6/18 Z
		審査請求 未請求 請求項の数4 FD (全 5 頁)
(21)出願番号	特願平10-126701	(71)出願人 000199887
		川重冷熱工業株式会社
(22)出願日	平成10年(1998) 4月20日	滋賀県草津市青地町1000番地
		(72)発明者 高畠 修蔵
		滋賀県草津市青地町1000番地 川重冷熱工
		業株式会社本社工場内
		(72)発明者 越智 忠文
		滋賀県草津市青地町1000番地 川重冷熱工
		業株式会社本社工場内
		(72)発明者 斉藤 健一
		滋賀県草津市青地町1000番地 川重冷熱工
		業株式会社本社工場内
		(74)代理人 弁理士 塩出 真一 (外1名)

(54) 【発明の名称】 廃熱利用吸収式冷温水機・冷凍機

(57)【要約】 (修正有)

【課題】 吸収式冷温水機・冷凍機において高温再生器 及び低温再生器に追加して、単数又は複数の補助再生器 を設け、ガスタービン廃熱を高温再生器及び補助再生器 の順に直列に利用し廃ガス保有熱を十分に回収利用し高 効率の運転が可能のようにする。

【解決手段】 蒸発器10、吸収器12、凝縮器14、低温再生器16、高温再生器18、低温及び高温熱交換器20、22及びこれらの機器を接ぐ溶液、冷媒管路で構成され、吸収液が吸収器12から低温再生器16へ汲み上げられ、さらに高温再生器18へ汲み上げられるように接続・配置された吸収式冷温水機・冷凍機において、少くとも1基の補助再生器24を追加・設置し、ガスタービンの燃焼廃ガスを高温再生器に導入し吸収液の加熱・濃縮に使用し、温度低下した廃ガスを補助再生器24に導入し液の濃縮・加熱に使用できるように、再生器18及び24内に廃ガス管28を挿通させる。

【特許請求の範囲】

【請求項1】 蒸発器、吸収器、凝縮器、低温再生器、 高温再生器、低温熱交換器、高温熱交換器及びこれらの 機器を接続する溶液管路、冷媒管路で構成され、吸収液 が吸収器から低温再生器へ汲み上げられ、さらに高温再 生器へ汲み上げられるように接続・配置されたリバース フロータイプの吸収式冷温水機・冷凍機において、

少なくとも1基の補助再生器を追加・設置し、ガスタービンの燃焼廃熱を高温再生器に導入して吸収液の加熱・ 濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に 10 導入して吸収液の加熱・濃縮に使用できるように、高温 再生器内及び補助再生器内にガスタービン燃焼廃熱供給 管を挿通させたことを特徴とする廃熱利用吸収式冷温水 機・冷凍機。

【請求項2】 蒸発器、吸収器、凝縮器、低温再生器、高温再生器、低温熱交換器、高温熱交換器及びこれらの機器を接続する溶液管路、冷媒管路で構成され、吸収液が吸収器から高温再生器及び低温再生器へ同時に汲み上げられるように接続・配置されたパラレルフロータイプの吸収式冷温水機・冷凍機において、少なくとも1基の補助再生器を追加・設置し、ガスタービンの燃焼廃熱を高温再生器で導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用し、高温再生器へ投入して吸収液の加熱・濃縮に使用し、高温再生器内及び補助再生器にガスタービン燃焼廃熱供給管を挿通させたことを特徴とする廃熱利用吸収式冷温水機・冷凍機。

【請求項3】 追加される補助再生器を本来の低温再生器の前及び後の少なくともいずれかに設置した請求項1 又は2記載の廃熱利用吸収式冷温水機・冷凍機。

【請求項4】 蒸発器から得られる冷水をガスタービンの吸気冷却に利用することができるように、蒸発器の冷水出口とガスタービンとを冷水管路を介して接続した請求項1、2又は3記載の廃熱利用吸収式冷温水機・冷凍機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、吸収式冷温水機又は吸収式冷凍機において、単数又は複数の補助再生器を追加・設置して、ガスタービンの燃焼廃熱 (例えば廃ガス)を高温再生器へ導入して吸収液を加熱・濃縮した後、補助再生器へ導入して吸収液を加熱・濃縮するようにして、高効率の運転を行うことができるようにした廃熱利用吸収式冷温水機・冷凍機に関するものである。

[0002]

【従来の技術】従来から、吸収剤として、例えば臭化リチウムを用い、冷媒として、例えば水を用いる吸収式冷凍機・冷温水機が知られている。また、高温再生器と低温再生器を備え、発電装置から排出された排ガスの熱を高温再生器の熱源として用いるコージェネ型吸収冷凍機において、ガスエンジン等からなる発電装置から排出さ 50

れた冷却水(温水)を低温再生器に導いて循環させ冷却水の熱を低温再生器の熱源として用いることにより、発電装置の冷却水の保有熱量の有効利用を図り、冷凍能力の向上を図るようにしたコージェネ型吸収冷凍機が提案されている(例えば、特開平8-296922号公報参照)。

2

[0003]

【発明が解決しようとする課題】上記の特開平8-296922号公報記載のコージェネ型吸収冷凍機においては、高温再生器にガスエンジン等からなる発電装置からの排ガスを導入し、低温再生器に発電装置からの冷却水を導入して熱源とするものであり、発電装置からの排ガスは高温再生器のみに利用されているので、発電装置からの排ガスの保有熱(顕熱)を十分に回収・利用できないという問題点がある。一方、ガスタービンからなる発電装置に近接して吸収式冷温水機や吸収式冷凍機が設置されることが多く、ガスタービンの燃焼廃熱(例えば廃ガス)を有効利用することが望まれている。

【0004】本発明は上記の点に鑑みなされたもので、本発明の目的は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器等で構成される吸収式冷温水機・冷凍機において、構成機器として単数又は複数の補助再生器を追加して、ガスタービンの燃焼廃熱(例えば廃ガスと追加して、ガスタービンの燃焼廃ガスを低温再生器へ投入して吸収液の加熱・濃縮に使用し、おらにその後、温度が低下した燃焼廃ガスを低温再生器の前又は後又は前後に設けた補助再生器に供給して吸収液の加熱・濃縮に利用するように構成し、ガスタービン廃熱を複数箇所で直列に利用することにより、ガスタービン廃熱の保有熱を十分に回収・利用するとともに、高速を提供することにある。また、本発明の目的は、蒸発器から出る冷水をガスタービンの吸気冷却に利用する等により、さらに熱効率の向上、用途の拡大に大きく貢献できる吸収式冷温水機・冷凍機を提供することにある。

[0005]

【課題を解決するための手段】上記の目的を達成するために、本発明の吸収式冷温水機・冷凍機は、蒸発器、吸収器、凝縮器、低温再生器、高温再生器、低温熱交換器、高温熱交換器及びこれらの機器を接続する溶液管路、冷媒管路で構成され、吸収液が吸収器から低温再生器へ汲み上げられ、さらに高温再生器へ汲み上げられるように接続・配置されたリバースフロータイプの吸収活が吸収等が、過度に接続・配置されたリバースフロータイプの吸収を記れて、少なくとも1基の補助再生器を追加・設置し、ガスタービンの燃焼廃熱を高温再生器に導入して吸収液の加熱・濃縮に使用し、温度が低下した燃焼廃熱を補助再生器に導入して吸収液の加熱・濃縮に使用できるように、高温再生器内及び補助再生器内にガスタービン燃焼廃熱供給管を挿通させて構成されている(図1参照)。

【0006】また、本発明の廃熱利用吸収式冷温水機・

冷凍機は、蒸発器、吸収器、凝縮器、低温再生器、高温 再生器、低温熱交換器、高温熱交換器及びこれらの機器 を接続する溶液管路、冷媒管路で構成され、吸収液が吸 収器から高温再生器及び低温再生器へ同時に汲み上げら れるように接続・配置されたパラレルフロータイプの吸 収式冷温水機・冷凍機において、少なくとも1基の補助 再生器を追加・設置し、ガスタービンの燃焼廃熱を高温 再生器に導入して吸収液の加熱・濃縮に使用し、温度が 低下した燃焼廃熱を補助再生器に導入して吸収液の加熱 ・濃縮に使用できるように、高温再生器内及び補助再生 器内にガスタービン燃焼廃熱供給管を挿通させたことを 特徴としている(図2参照)。

【0007】これらの廃熱利用吸収式冷温水機・冷凍機において、追加される補助再生器は、本来の低温再生器の前及び後の少なくともいずれかに設置される。また、蒸発器から得られる冷水をガスタービンの吸気冷却に利用することができるように、蒸発器の冷水出口とガスタービンとを冷水管路を介して接続することが好ましい。【0008】

【発明の実施の形態】以下、本発明の実施の形態を吸収 20 式冷温水機の場合について説明するが、本発明は吸収式 冷温水機の場合に限定されるものではなく、吸収式冷凍 機の場合にも適用できるものである。図1は、本発明の 実施の第1形態によるリバースフロータイプの廃熱利用 吸収式冷温水機を示している。本実施形態は、蒸発器1 0、吸収器12、凝縮器14、低温再生器16、高温再 生器18、低温熱交換器20、高温熱交換器22及びこ れらの機器を接続する溶液管路、冷媒管路を備え、吸収 液が吸収器12から低温再生器16へ汲み上げられ、さ らに高温再生器 18 へ汲み上げられるように接続・配置 30 されたリバースフロータイプの吸収式冷温水機におい て、1基以上(図1では一例として1基の場合を示して いる)の補助再生器24を低温再生器16の上流に追加 して設置し、高温再生器18内及び補助再生器24内に ガスタービン26からの燃焼廃熱(例えば廃ガス)を導 入するためのガスタービン廃ガス供給管28を、高温再 生器18から補助再生器24の順に直列に挿通させて、 ガスタービン26の燃焼廃ガスを高温再生器18に導入 して吸収液の加熱・濃縮に使用した後、温度が低下した 燃焼廃ガスを補助再生器24に導入して吸収液の加熱・ 濃縮に使用できるように構成されている。

【0009】高温再生器18内のタービン廃ガス伝熱管28a及び補助再生器24内のタービン廃ガス伝熱管28bは、蛇管状に形成したり、複数本の小径管としたり、さらにはフィンチューブ等にして伝熱面積を大きくするように構成することが望ましい。また、蒸発器10から得られる冷水をガスタービン26の吸気冷却に利用できるように、蒸発器10の冷水出口30とガスタービン26とが冷水管路32を介して接続されている。上記の実施形態では、補助再生器24を低温再生器16の上50

流に設ける場合について説明しているが、低温再生器16の下流に設けたり、又は低温再生器16の上流及び下流に設けるように構成しても良い。これらは必要に応じ、又は廃熱源温度等により適宜設計される。

【0010】上記のように構成された廃熱利用吸収式冷 温水機において、吸収器12内の吸収液 (稀液、例えば 臭化リチウム水溶液) は溶液ポンプ (低温ポンプ) 34 により低温熱交換器20を経て補助再生器24に送ら れ、この吸収液(稀液)は高温再生器18で使用された 後のガスタービン廃ガスによって加熱されて濃縮され る。この濃縮された吸収液は低温再生器16に送られ、 高温再生器18から流入してきた高温の冷媒蒸気(例え ば水蒸気)によって加熱されて中間濃度まで濃縮され る。この中間濃度の液は二分され、二分された液の一方 は溶液ポンプ (高温ポンプ) 36により高温熱交換器2 2を経て高温再生器18に送られ、ここでガスタービン 廃ガスによって加熱されて冷媒蒸気と濃液とに分離され る。この濃液(吸収液)は高温熱交換器22を経て二分 された中間濃度の液の他方と混合し、混合濃液となって 低温熱交換器20に送られた後、吸収器12に導入され 冷却水により冷却されるとともに、蒸発器10からの冷 媒水と混合して稀液となる。

【0011】一方、高温再生器18からの冷媒蒸気は低 温再生器16に入り、ここで吸収液を加熱することで凝 縮・液化して凝縮器14に入り、また、低温再生器16 において吸収液が中間濃度に濃縮されるときに発生した 冷媒蒸気が凝縮器14に入って冷却水により冷却されて 凝縮した後、冷媒液(例えば水)は蒸発器10に入り、 この凝縮した冷媒水が冷媒ポンプ38により蒸発器10 の伝熱管(水が流通している)に散布されて冷水が得ら れる。40は冷暖切替弁で、冷水運転時は閉状態となっ ている。なお、冷暖切替弁40を開き、さらに吸収器及 び凝縮器の冷却水の供給を止めることにより、冷水の代 わりに温水を得ることができる。冷房(冷水)運転時の 制御は、冷水出口温度又は入口温度を検出して、ガスタ ービン燃焼廃熱(例えば廃ガス)の加熱流量を調節する こと、又は冷房(冷水)負荷に疑似負荷を加えて冷えす ぎを防止することにより行われる。

【0012】図2は、本発明の実施の第2形態によるパラレルフロータイプの廃熱利用吸収式冷温水機を示している。本実施形態は、吸収液が吸収器12から高温再生器18及び低温再生器16へ同時に汲み上げられるように接続・配置されたパラレルフロータイプの吸収式冷温水機において、1基以上(図2では一例として1基の場合を示している)の補助再生器24を低温再生器16の上流に追加して設置したものである。吸収器12内の吸収液(稀液)は溶液ポンプ34により低温熱交換器20に送られて加熱された後、二分され、二分された一方の吸収液は高温熱交換器22で加熱された後、高温再生器18へ送られてガスタービン廃ガスで加熱・機縮され、

二分された他方の吸収液は補助再生器24に送られて、 高温再生器18で使用された後のガスタービン廃ガスで 加熱・濃縮される。この濃縮された吸収液は低温再生器 16に送られ、高温再生器18から流入してきた高温の 冷媒蒸気によって加熱されて中間濃度まで濃縮される。 そして、低温再生器16からの中間濃度の吸収液の全量 は、高温再生器18から高温熱交換器22を経由してき た濃液と混合し、混合濃液となって低温熱交換器20に 送られた後、吸収器12に導入される。他の構成及び作 用は、実施の第1形態の場合と同様である。

[0013]

【発明の効果】本発明は上記のように構成されているの で、つぎのような効果を奏する。

- (1) 高温再生器及び低温再生器に追加して単数又は 複数の補助再生器を設け、ガスタービン廃熱を高温再生 器及び補助再生器の複数の再生器に導入して高温再生 器、補助再生器の順に直列に利用するように構成されて いるので、ガスタービン廃ガスの保有熱が十分に回収・ 利用されて熱効率が向上し、用途の拡大に大きく貢献で きるとともに、吸収式冷温水機・冷凍機の高効率な運転 20 32 冷水管路 が可能となる。
- (2) 廃熱利用吸収式冷温水機の蒸発器から得られる 冷水をガスタービンの吸気冷却に利用するように構成す る場合は、さらに熱効率の向上、用途の拡大を図ること

ができる。

【図面の簡単な説明】

【図1】本発明の実施の第1形態によるリバースフロー タイプの廃熱利用吸収式冷温水機の概略構成図である。 【図2】本発明の実施の第2形態によるパラレルフロー タイプの廃熱利用吸収式冷温水機の概略構成図である。 【符号の説明】

- 10 蒸発器
- 12 吸収器
- 10 14 凝縮器
 - 16 低温再生器
 - 18 高温再生器
 - 20 低温熱交換器
 - 22 高温熱交換器
 - 24 補助再生器
 - 25 ガスタービン
 - 28 ガスタービン廃ガス供給管
 - 28a、28b ガスタービン廃ガス伝熱管
 - 30 冷水出口
- - 34、36 溶液ポンプ
 - 38 冷媒ポンプ
 - 40 冷暖切替弁

【図1】

【図2】

