Deterministic Finite Automata

FINITE AUTOMATA

A finite automaton is a simple model of a computer

- it is a language recognition device
- theory of finite automaton can be applied in the construction of the lexical analyzer component of a compiler

Deterministic Finite Automaton (DFA)

- · Simple language recognition device
- Operation of a DFA is completely determined by the input
- Strings are fed into the device by means of an input tape, which is divided into squares with one symbol inscribed in each square
- Finite control can sense what symbol is written at any position on the input tape by means of a movable reading head.

Definition:

A <u>deterministic finite automaton (DFA)</u> is a quintuple $M = (K, \Sigma, \delta, s, F)$ where

K is a finite set of states,

 Σ is an alphabet,

 $s \in K$ is the initial (start) state,

 $F \subseteq K$ is the set of the final states; and

 δ , the transition function, is a function from

 $K \times \Sigma$ to K

The rules in which the automaton M picks the next state are encoded into the transition function

Example:

DFA
$$M = (K, \Sigma, \delta, s, F)$$

 $K = (q_0, q_1)$
 $\Sigma = \{a,b\}$
 $S = q_0$
 $F = \{q_0\}$
 δ is defined as
 $q = \sigma = \delta(q,\sigma)$
 $q_0 = \sigma = q_0$
 $q_0 = \sigma = q_1$
 $q_1 = \sigma = q_1$
 $q_1 = \sigma = q_0$

A configuration of a DFA is determined by the current state and the unread part of the input string. A configuration is any element of K \times Σ^*

- $(q_1, w_1) | -- M(q_2, w_2)$ iff $w_1 = \sigma w_2$ for some symbol σ $\in \Sigma$ and $\delta(q_1, \sigma) = q_2$
- $\left| --*M \left(q_1, w_1 \right) \right| --*M \left(q_2, w_2 \right)$ after 0 or more steps A string $w \in \Sigma^*$ is said to be accepted iff there is a
- state $q \in F$ such that
- (s, w) | --*M(q, e)
- · Finally, the language accepted by M, denoted by L(M) is the set of all strings accepted by M.

Example:

DFA
$$M = (K, \Sigma, \delta, S, F)$$
 $K = (q_0, q_1)$
 $\Sigma = \{a,b\}$
 $S = q_0$
 $S = q_$

A DFA can be represented by state transition diagram.

A state diagram is a directed graph. States are represented by nodes, and there is an arrow labeled with σ from node q to node q1 whenever $\delta(q,\sigma)=q$ 1. Final states are indicated by double circles and the initial state is shown by >.

State transition diagram of a DFA

- There is exactly one transition corresponding to each element of Σ , one each state in K.
- Every arc is labeled using one and only one element in Σ .