

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Design Flow

Basic Boolean Operations with NAND

Exercise

Implement NOT, AND and OR with NOR gates

Implementing Boolean Function with Universal Gates

To implement using NOR gates, it is easiest to start with minimized Boolean expression in POS form

There is one-to-one mapping between OR-AND network and NOR network.

Similarly, there is a one-to-one mapping between AND-OR network and NAND network.

Example

Implement XOR function with NAND gates:

$$f = \overline{A}.B + A.\overline{B}$$
 Already in SoP form

Example

$$f = \overline{A}.B + B.\overline{B} + A.\overline{B} + A.\overline{A}$$
$$= B(\overline{A} + \overline{B}) + A(\overline{A} + \overline{B})$$

Going as per algorithm:
8 two I/P and 1 four I/P NAND
versus
4 two I/P NAND
for ckt. to the right

Popular and Useful Gates

Two gates are popular for useful in Boolean Logic implementation in hardware

Gate

$$A \longrightarrow X_6$$

Operation

XOR

Algebraic

Represetnation

$$X_6 = \overline{A \cdot B} + A \cdot \overline{B} = A \oplus B$$

Truth Table

A	В	<i>X</i> ₁
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

$$X_7 = A \cdot B + \overline{A} \cdot \overline{B} = A \odot B = A \equiv B$$

A	В	<i>X</i> ₁
0	0	1
0	1	0
1	0	0
1	1	1

These gates are useful for many operations including <u>addition</u> and <u>comparing</u>. They are **not** Universal Gates for implementing Boolean functions.

More than two inputs XOR and XNOR gates is a possibility and are often used.

Some Other Methods of Implanting Boolean Functions

Circuits implementing certain functions may also be used as universal gates.

Example: MUX (or multiplexer)

For the two input MUX, $X = A \cdot S + B \cdot S$

By choosing inputs *A*, *B* and select S as Boolean variables or Boolean constants of 0 or 1, one can implement all Basis functions AND, OR and NOT.

Look up tables (LUT) or memories

Values of y^s corresponding x_i^s are stored in memory. Recall y value based on x_i inputs and read signal R

There may be many more approaches to implement Boolean Functions.

Positive and Negative Switch

Define high voltage ≡ logic 1

Define low voltage ≡ logic 0

Positive Switch

A is logic 1 - Switch is closed

A is logic 0 - Switch is open

Negative Switch

A is logic 1 - Switch is open

A is logic 0 - Switch is closed

The MOSFET behaves this way and has been popular to build logic circuits

N-MOSFET V_G Out

 V_G is high (logic 1) low resistance between In and Out V_G is low (logic 0) high resistance between In and Out

 V_G is high (logic 1) high resistance between In and Out V_G is low (logic 0) low resistance between In and Out

Combining Switches

N-MOSFET (positive) switches

Out transparent to In for

$$A \cdot B = 1$$

Out transparent to In for

A + B = 1

P-MOSFET (<u>negative</u>) switches

Out transparent to In for $\overline{A} \cdot \overline{B} = 1$

Out transparent to In for $\overline{A} + \overline{B} = 1$

Inverters or NOT Gate

 V_{in} and V_{out} are analogue values of input and output voltage

A and B are Boolean values of input and output.

Popular Two Input Universal Gates

 V_{DD} **NOR** Α

Two input NAND Gate

$$F = A \cdot B = A + B$$

Two input NOR Gate

$$F = \overline{A + B} = \overline{A \cdot B}$$

Combinational Logic

$$v_{outi} = f_i(v_{in1}, v_{in2}, ..., v_{inN})$$
 for $i = 1$ to M

Here the f_i 's are Boolean functions

The functions are typically built with logic gates