ANHANGUERA EDUCACIONAL

Lista de exercícios: MATEMÁTICA APLICADA II - Matrizes Cursos: CIÊNCIA DA COMPUTAÇÃO - Professora: Thabata Martins

- 1) Construa a matriz $A = (a_{ij})_{2x3}$ de modo que $a_{ij} = 3i^2 j$
- 2) Determine a matriz B = $(b_{ij})_{3x3}$ tal que $b_{ij} = \begin{cases} -2 & se \quad i > j \\ 1 & se \quad i = j \end{cases}$
- 3) Encontre a transposta da matriz $A = (a_{ij})_{3x2}$ tal que $a_{ij} = j-2$
- 4) Determine a matriz C= $(c_{ij})_{3x3}$ tal que: $c_{ij} = \begin{cases} i+j & se & i=j \\ -i-j & se & i\neq j \end{cases}$
- 5) Escreva a matriz A = (a_{ii}) nos seguintes casos:
 - A e uma matriz do tipo 3 x 4 com: a)

$$a_{ij} = -1$$
 para $i = 2j$

 $a_{ii} = a$ para $i \neq 2j$

A é uma matriz quadrada de 4ª ordem com:

$$a_{ij} = 0$$
 para $i+j = 4$

 a_{ij} -1 para $i+j \neq 4$

- A é uma matriz quadrada de 3^a ordem com $a_{ij} = 2i + 3j 1$
- 6) Dadas as matrizes $A = \begin{vmatrix} 1 & 2 & -3 \\ 4 & 5 & 0 \end{vmatrix}$ e $B = \begin{vmatrix} 1 & -2 \\ 3 & 0 \\ 4 & 3 \end{vmatrix}$ determine $A + 2B^t$
- Determinar x e y sabendo que:

a)
$$\begin{pmatrix} x^2 & -1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 9 & -1 \\ 2x - y & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} x + y & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & x - y \\ 3 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 0 & x + 3y \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 8 \\ 2 & y^2 + 1 \end{pmatrix}$

- 8) Considere as matrizes: $A = \begin{bmatrix} -1 & 2 & 5 \\ 0 & 1 & -4 \\ 3 & -2 & 7 \end{bmatrix}$ $B = \begin{bmatrix} 0 & -2 & 3 \\ 1 & 4 & -5 \\ -3 & 2 & 0 \end{bmatrix}$, determine:
 - a) $A^t + B^t$ b) $(A+B)^t$ c) Compare os resultados a) e b)
- 9) Determine x e y sabendo que A é uma matriz identidade $\begin{bmatrix} 0 & 1 & 0 \\ 0 & y+x & 1 \end{bmatrix}$
 - 11) Dadas as matrizes: $A = \begin{bmatrix} 1 & 4 & 0 \\ 1 & -3 & 1 \end{bmatrix} e B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 5 & 0 \end{bmatrix}$, calcule:
 - c) Compare os resultados a) e b) e justifique a resposta. b) B . A
 - 12) Se A = $\begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$ e B= $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$, verifique que (A .B)^t = B^t . A^t
 - 13) Se $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, calcule $A^2 2A + 3I^2$

ANHANGUERA EDUCACIONAL

Lista de exercícios: MATEMÁTICA APLICADA II - Matrizes Cursos: CIÊNCIA DA COMPUTAÇÃO - Professora: Thabata Martins

14) Sobre as sentenças:

- I. O produto das matrizes A 3 x 2 . B 2 x 1 é uma matriz 3 x 1.
- II. O produto das matrizes A 5 x 4 . B 5 x 2 é uma matriz 4 x 2.
- III. O produto das matrizes A 2 x 3 . B 3 x 2 é uma matriz quadrada 2 x 2 É verdade que:
- a) somente I é falsa:

b) somente II é falsa;

- c) somente III é falsa;
- d) somente I e III são falsas;
- e) I, II e III são falsas.
- 15) (MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então:
- a) existe A + B se, e somente se, n = 4 e m = 3;
- b) existe AB se, e somente se, n = 4 e m = 3;
- c) existem AB e BA se, e somente se, n = 4 e m = 3;
- d) existem, iguais, A + B e B + A se, e somente se, A = B;
- e) existem, iguais, AB e BA se, e somente se, A = B.

16)

$$\mathbf{09.} \text{ (MACK) Sejam as matrizes} \begin{cases} A = (a_{ij})_{4\times3}, a_{ij} = ji \\ e & \text{. Se C} = A \text{. B, então c22 vale:} \\ B = (b_{ij})_{3\times4}, b_{ij} = ji \end{cases}$$

- a) 3
- b) 14
- c) 39
- d) 84
- e) 258

RESPOSTAS:

1)
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 11 & 10 & 9 \end{pmatrix}$$
 2) $B = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 1 & 3 \\ -2 & -2 & 1 \end{pmatrix}$ 3) $A^{t} = \begin{pmatrix} -1 & -3 & -5 \\ 0 & -2 & -4 \end{pmatrix}$ 4) $C = \begin{pmatrix} 2 & -3 & -4 \\ -3 & 4 & -5 \\ -4 & -5 & 6 \end{pmatrix}$ 5) a) $A = \begin{pmatrix} a & a & a & a \\ -1 & a & a & a \\ a & a & a & a \end{pmatrix}$

b)
$$A = \begin{pmatrix} -1 & -1 & 0 & -1 \\ -1 & 0 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{pmatrix}$$
 c) $A = \begin{pmatrix} 4 & 7 & 10 \\ 6 & 9 & 12 \\ 8 & 11 & 14 \end{pmatrix}$ 6) $\begin{pmatrix} 3 & 8 & 5 \\ 0 & 5 & -6 \end{pmatrix}$ 7) a) $(x,y) = (3,2)$ ou $(-3,-10)$ b) $x = 3$ e $y = 1$

c) (2,2) ou (14,-2) 8)
$$A^{t}+B^{t}=\begin{bmatrix} -1 & 1 & 0 \\ 0 & 5 & 0 \\ 8 & -9 & 7 \end{bmatrix} = (A+B)^{t}$$
 9) $x=3$ e $y=-3$ 10) $X=\begin{pmatrix} -3 & 10 \\ 6 & -7 \end{pmatrix}$ 11) $A.B=\begin{pmatrix} -3 & 3 \\ 9 & -4 \end{pmatrix}$

$$B.A = \begin{pmatrix} 0 & 7 & -1 \\ 0 & -7 & 1 \\ 5 & 20 & 0 \end{pmatrix} A.B \neq B.A \text{ (produto de matrizes não é comutativo)} \quad 12) (A.B)^t = B^t.A^t = \begin{pmatrix} 0 & -3 \\ 1 & 5 \end{pmatrix} \quad 13) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

14) b