FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT)™

HORMIS NAGAR, MOOKKANNOOR, ANGAMALY-683577

20MCA241 DATA SCIENCE LAB LABORATORY RECORD

Name: MINNU JINSON

Branch: MASTER OF COMPUTER APPLICATIONS

Semester: 3 Batch: B Roll No: 18

MARCH 2022

FEDERAL INSTITUTE OF SCIENCE AND TECHNOLOGY (FISAT) $^{\text{TM}}$

HORMIS NAGAR, MOOKKANNOOR, ANGAMALY-683577

CERTIFICATE

Signature of H O D

This is to certify that this is a Bonafide record of the Practical work done by **MINNU JINSON** in the **20MCA241 DATA SCIENCE LAB** Laboratory towards the partial fulfilment for the award of the Master Of Computer Applications during the academic year 2021-2022.

Name:
nination
]

Signature of Staff in Charge

CONTENT

SI No	Date :	Name of Experiment:	Page No:	Signature of Staff –In – Charge:
1	19/11/2021	Matrix operations (using vectorization) and transformation using python and SVD using Python	1	
2	30/11/2021	Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.	4	
3	26/11/2021	Programs to handle data using pandas	16	
4	07/12/2021	Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.	23	
5	14/12/2021	Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm	37	
6	04/01/2022	Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.	44	
7	14/01/2022	Program to implement text classification using Support vector machine.	49	

8	21/12/2022	Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of the algorithm	61	
9	25/01/2022	Program to implement k-means clustering technique using any standard dataset available in the public domain	76	
10	28/01/2022	Programs on feedforward network to classify any standard dataset available in the public domain	88	
11	01/02/2022	Programs on convolutional neural network to classify images from any standard dataset in the public domain.	90	
12	04/02/2022	Implement problems on natural language processing - Part of Speech tagging, N-gram & smoothening and Chunking using NLTK	93	
13	08/02/2022	Web Scrap	99	
14	11/02/2022	Implement a simple web crawler (ensure ethical conduct).	101	

AIM

1: Matrix operations(using vectorization) and transformation using python and SVD.

CODE:

```
a = np.arange(0,4).reshape((2,2))
b = np.eye(2)
print(np.dot(a,b)) ##Matrix multiplication
```

OUTPUT:

```
[[0. 1.]
[2. 3.]]
```

CODE:

```
x = np.arange(1,10).reshape(3,3)
print(x)
```

OUTPUT:

```
[[1 2 3]
[4 5 6]
[7 8 9]]
```

CODE:

#SVD image compresion

```
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

img_eg = mpimg.imread("rose.jpg")
plt.imshow(img_eg)
print(img_eg.shape) #Operation results: (800, 1280,3)

#Converting image data into two-dimensional matrix and singular value decomposition
img_temp = img_eg.reshape(800, 1280 * 3)
U,Sigma,VT = np.linalg.svd(img_temp)

# Take the first 10 singular values
sval_nums = 10
```

```
img re-
struct1 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img restruct1 = img restruct1.reshape(800, 1280,3)
img restruct1.tolist()
# Take the first 50 singular values
sval nums = 50
img re-
struct2 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img restruct2 = img restruct2.reshape(800, 1280,3)
# Take the first 100 singular values
sval nums = 100
img re-
struct3 = (U[:,0:sval nums]).dot(np.diag(Sigma[0:sval nums])).dot(VT[0:
sval nums,:])
img_restruct3 = img_restruct3.reshape(800, 1280,3)
#Exhibition
fig, ax = plt.subplots(nrows=1, ncols=3)
ax[0].imshow(img restruct1.astype(np.uint8))
ax[0].set(title = "10")
ax[1].imshow(img restruct2.astype(np.uint8))
ax[1].set(title = "50")
ax[2].imshow(img restruct3.astype(np.uint8))
ax[2].set(title = "100")
plt.show()
```


AIM:

2. Programs using matplotlib / plotly / bokeh / seaborn for data visualisation.

Dataset used: iris.csv

CODE:

```
import pandas as pd
iris = pd.read_csv('iris.csv')

## Plotting Using Matplotlib
import matplotlib.pyplot as plt
plt.plot(iris["sepal.length"], "r--")
plt.show
```

OUTPUT:

CODE:

CODE:

Plotting using Seaborn

import seaborn as sns
sns.set_style("whitegrid")
sns.FacetGrid(iris, hue ="variety",height = 6).map(plt.scatter, 'sepal.length',
'petal.length').add_legend()

Distribution Chart #Visualizing the target(class label) column sns.countplot(x='variety', data=iris,) plt.show()

OUTPUT:

CODE:

#plotting all the column's relationships using a pairplot. It can be used for multivariate analysis. sns.pairplot(iris,hue='variety', height=2)

CODE:

#Histogram for Sepal Length

plt.figure(figsize = (10, 7))
x = iris["sepal.length"]
plt.hist(x, bins = 20, color = "green")
plt.title("Sepal Length in cm")
plt.xlabel("Sepal_Length_cm")
plt.ylabel("Count")

CODE:

#Histogram for Petal Width plt.figure(figsize = (12, 7)) x = iris["petal.width"]

plt.hist(x, bins =20, color = "blue")
plt.title("Petal width in cm")
plt.xlabel("Petal_Width_cm")
plt.ylabel("Count")

CODE:

#Histograms allow seeing the distribution of data for various columns. # It can be used for uni as well as bi-variate analysis.

fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")

axes[0,0].hist(iris['sepal.length'], bins=7)

axes[0,1].set_title("Sepal Width")

axes[0,1].hist(iris['sepal.width'], bins=5);

axes[1,0].set_title("Petal Length")

axes[1,0].hist(iris['petal.length'], bins=6);

axes[1,1].set_title("Petal Width")

axes[1,1].hist(iris['petal.width'], bins=6);

CODE:

#Histograms with Distplot Plot

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "sepal.length").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "sepal.width").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "petal.length").add_legend()

plot = sns.FacetGrid(iris, hue="variety")
plot.map(sns.distplot, "petal.width").add_legend()

plt.show()

#In the case of Sepal Length, there is a huge amount of overlapping.
#In the case of Sepal Width also, there is a huge amount of overlapping.
#In the case of Petal Length, there is a very little amount of overlapping.
#In the case of Petal Width also, there is a very little amount of overlapping.


```
# Box Plot for Iris Data
plt.figure(figsize = (10, 7))
iris.boxplot()
```

OUTPUT:

CODE:

Make default density plot sns.kdeplot(iris['sepal.width'])

AIM:

3. Programs to handle data using pandas.

CODE:

```
#Pandas is a Python library.
```

#Pandas is used to analyze data.

import numpy as np

import pandas as pd

```
s = pd.Series([1, 3, 5, 6, 8])
print(s)
```

OUTPUT:

```
0 1
1 3
2 5
3 6
4 8
dtype: int64
```

CODE:

OUTPUT:

	country	capital	area pop	ulation
0	Brazil	Brasilia	8.516	200.40
1	Russia	Moscow	17.100	143.50
2	India	New Dehli	3.286	1252.00
3	China	Beijing	9.597	1357.00
4	South Africa	Pretoria	1.221	52.98

CODE:

```
b.index = ["BR", "RU", "IN", "CH", "SA"]
```

print(b)

OUTPUT:

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Dehli	3.286	1252.00
СН	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

CODE:

import pandas as pd
cars = pd.read_csv('cars1.csv')
print(cars)

0 1 2 3 4 5	Car Toyoty Mitsubishi Skoda Fiat Mini VW	Model Aygo Space Star Citigo 500 Cooper Up!	Volume 1000 1200 1000 900 1500	Weight 790 1160 929 865 1140 929 1	CO2 99 95 95 90 105
Skc			90		
7	Mercedes	A-Class	1500	1365	92
8	Ford	Fiesta	1500	1112	98
9	Audi	A1	1600	1150	99
10	Hyundai I20	1100 980	99		
11	Suzuki	Swift	1300	990	101
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	I30	1600	1326	97
15	Opel	Astra	1600	1330	97
16	BMW	1	1600 1	L365 99	
17	Mazda	3	2200	1280	104
18	Skoda	Rapid	1600	1119	104
19	Ford	Focus	2000	1328	105
20	Ford	Mondeo	1600	1584	94
21	Opel	Insignia	2000	1428	99
22	Mercedes	C-Class	2100	1365	99
23	Skoda	Octavia	1600	1415	99
24	Volvo	S60	2000	1415	99
25	Mercedes	CLA	1500	1465	102
26	Audi	A4	2000	1490	104
27	Audi	A6	2000	1725	114
28	Volvo	V70	1600	1523	109
29	BMW	5	2000	1705	114
30	Mercedes	E-Class	2100	1605	115
31	Volvo	XC70	2000	1746	117
32	Ford	B-Max	1600	1235	104
33	BMW	216	1600	1390	108

```
import pandas as pd
cars = pd.read_csv('cars1.csv')
cars = pd.read_csv('/cars1.csv')
print(cars)

# Print out first 4 observations
print(cars[0:4])

# Print out fifth and sixth observation
print(cars[4:6])

import pandas as pd
cars = pd.read_csv('cars1.csv', index_col = 0) #first column is taen as index column
print(cars.iloc[2])
```

OUTPUT:

```
Model Citigo
Volume 1000
Weight 929
CO2 95
Name: Skoda, dtype: object
```

CODE:

	Name	Gender	Age
0	Ja	y M	18
1	Jennife	r F	17
2	Preity	y F	19
3	Nei	l M	17

```
Name Gender Age
Preity F 19
Neil M 17
Name Gender Age
Jay M 18
Jennifer F 17
```

import pandas as pd import numpy as np

#Create a series with 4 random numbers
s = pd.Series(np.random.randn(4))
print(s)

print ("The actual data series is:")
print(s.values)

OUTPUT:

```
0 -1.138968

1 -1.097746

2 0.109717

3 1.159537

dtype: float64

The actual data series is:

[-1.13896826 -1.09774589 0.10971687 1.15953676]

CodeText
```

CODE:

print (s.head(2))

OUTPUT:

```
0 -1.138968
1 -1.097746
dtype: float64
```

CODE:

print(s.tail(3))

1 -1.097746 2 0.109717 3 1.159537 dtype: float64

CODE:

```
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
# Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("The transpose of the data series is:")
print(df.T)
```

OUTPUT:

```
Name Age Rating

0 Tom 25 4.23

1 James 26 3.24

2 Ricky 25 3.98

3 Vin 23 2.56

4 Steve 30 3.20

5 Smith 29 4.60

6 Jack 23 3.80

The transpose of the data series is:

0 1 2 3 4 5 6

Name Tom James Ricky Vin Steve Smith Jack

Age 25 26 25 23 30 29 23

Rating 4.23 3.24 3.98 2.56 3.2 4.6 3.8
```

CODE:

```
import pandas as pd
import numpy as np

#Create a Dictionary of series
d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Smith','Jack']),
    'Age':pd.Series([25,26,25,23,30,29,23]),
    'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8])}
#Create a DataFrame
df = pd.DataFrame(d)
print(df)
print ("Row axis labels and column axis labels are:")
```

print (df.axes)

OUTPUT:

```
Name Age Rating
  Tom 25 4.23
1
 James 26
              3.24
 Ricky 25
Vin 23
               3.98
              2.56
3
  Steve 30
               3.20
              4.60
5
  Smith 29
6
  Jack 23
              3.80
Row axis labels and column axis labels are:
[RangeIndex(start=0, stop=7, step=1), Index(['Name', 'Age',
'Rating'], dtype='object')]
```

CODE:

OUTPUT:

```
Name Age Rating
  Tom 25 4.23
0
  James 26
              3.24
  Ricky 25
2
              3.98
  Vin 23
3
              2.56
 Steve 30
            3.20
4
5 Smith 29
             4.60
  Jack 30
              3.80
Our object is:
The shape of the object is:
(7, 3)
```

CODE:

print (df.size)

21

CODE:

print (df.values)

OUTPUT:

```
[['Tom' 25 4.23]

['James' 26 3.24]

['Ricky' 25 3.98]

['Vin' 23 2.56]

['Steve' 30 3.2]

['Smith' 29 4.6]

['Jack' 30 3.8]]
```

CODE:

df.isnull().sum() #sum returns the number of missing values

OUTPUT:

```
Name 0
Age 0
Rating 0
dtype: int64
```

CODE:

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D']) print(df)

```
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
```

AIM

4: Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

Dataset used: iris.csv

CODE:

from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import pandas as pd

df = pd.read_csv("iris.csv")
print(df)

OUTPUT:

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[150 rows x 5 columns]

CODE:

df['variety'].value_counts()

OUTPUT:

Setosa 50 Versicolor 50 Virginica 50

Name: variety, dtype: int64

CODE:

X = df.drop('variety', axis=1)
y = df['variety']
splitting to trainset and Test set in the ratio 70:30

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

print(X_train) print(" ") print(X_test)

OUTPUT:

80

32

0.0	nal longth so	nal width no	tal.length pe	+ - 1
46	5.1	3.8	1.6	0.2
95	5.7	3.0	4.2	1.2
67	5.8	2.7	4.1	1.0
45	4.8	3.0	1.4	0.3
143	6.8	3.2	5.9	2.3
 116	6.5	3.0	5.5	1.8
41	4.5	2.3	1.3	0.3
62	6.0	2.2	4.0	1.0
91	6.1	3.0	4.6	1.4
123	6.3	2.7	4.9	1.8
[105	rows x 4 colu	mns]		
	sepal.length	sepal.width	petal.length	petal.width
25	5.0	3.0	1.6	0.2
141	6.9	3.1	5.1	2.3
125	7.2	3.2	6.0	1.8
102	7.1	3.0	5.9	2.1
128	6.4	2.8	5.6	2.1
122	7.7	2.8	6.7	2.0
76	6.8	2.8	4.8	1.4
103	6.3	2.9	5.6	1.8
14	5.8	4.0	1.2	0.2
37	4.9	3.6	1.4	0.1
100	6.3	3.3	6.0	2.5
63	6.1	2.9	4.7	1.4
64	5.6	2.9	3.6	1.3
61	5.9	3.0	4.2	1.5
17	5.1	3.5	1.4	0.3
74	6.4	2.9	4.3	1.3
111	6.4	2.7	5.3	1.9
120	6.9	3.2	5.7	2.3
79	5.7	2.6	3.5	1.0
85				
	6.0	3.4	4.5	1.6
49	5.0	3.3	1.4	0.2
21	5.1	3.7	1.5	0.4
110	6.5	3.2	5.1	2.0
149	5.9	3.0	5.1	1.8
72	6.3	2.5	4.9	1.5
11	4.8	3.4	1.6	0.2
36	5.5	3.5	1.3	0.2
6	4.6	3.4	1.4	0.3
68	6.2	2.2	4.5	1.5
144	6.7	3.3	5.7	2.5
43	5.0	3.5	1.6	0.6
80	5.5	2.4	3.8	1.1

5.5

5.2

2.4

4.1

3.8

1.5

1.1

0.1

7 55	5.0 5.7	3.4 2.8	1.5 4.5	0.2
129	7.2	3.0	5.8	1.6
117	7.7	3.8	6.7	2.2
12	4.8	3.0	1.4	0.1

```
print("Number transactions X_train dataset: ", X_train.shape) print("Number transactions y_train dataset: ", y_train.shape) print("Number transactions X_test dataset: ", X_test.shape) print("Number transactions y_test dataset: ", y_test.shape)
```

OUTPUT:

```
Number transactions X_train dataset: (105, 4)
Number transactions y_train dataset: (105,)
Number transactions X_test dataset: (45, 4)
Number transactions y_test dataset: (45,)
```

CODE:

```
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(y_pred)
print(' ')
print(y_test)
```

```
['Setosa' 'Virginica''Virginica''Virginica''Virginica'
 'Versicolor''Virginica''Setosa''Setosa''Virginica' 'Versicolor'
'Versicolor''Versicolor''Setosa''Versicolor''Virginica''Virginica
'Versicolor''Versicolor''Setosa''Setosa' 'Virginica''Virginica'
'Virginica''Setosa''Setosa''Versicolor''Virginica''Setosa''Setosa''Virginica''Setosa''Setosa''Setosa''
'Versicolor''Virginica''Versicolor''Virginica''Setosa''Virginica'
 'Virginica' 'Setosa']
63
       Versicolor
64
       Versicolor
61
       Versicolor
17
           Setosa
74
       Versicolor
111
       Virginica
120
       Virginica
79
       Versicolor
85
       Versicolor
49
           Setosa
21
           Setosa
110
        Virginica
149
        Virginica
```

72 11 36 6	Versico Seto Seto	osa osa	
68	Versico	lor	
144	Virgin:	ica	
43	Set	osa	
47	Set	osa	
77	Versico	lor	
80	Versico:	lor	
32	Set	osa	
7	Set	osa	
148	Virgin	ica	
88	Versico	lor	
137	Virgin	ica	
55	Versico	lor	
112	Virgin	ica	
29	Set	osa	
129	Virgin	ica	
117	Virgin	ica	
12	Set	osa	
Name:	variety,	dtype:	object

from sklearn.metrics import confusion_matrix print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))

OUTPUT:

```
[[15 0 0]
[ 0 11 2]
[ 0 0 17]]
```

	precision	recall	f1-score	support
Setosa	1.00	1.00	1.00	15
Versicolor	1.00	0.85	0.92	13
Virginica	0.89	1.00	0.94	17
accuracy			0.96	45
macro avg	0.96	0.95	0.95	45
weighted av	g 0.96	0.96	0.95	45

CODE:

```
weather=['Sunny','Sunny','Overcast','Rainy','Rainy','Rainy',
'Over cast','Sunny','Sunny','Sunny','Overcast','Overcast','Rainy']
```

Second Feature

```
temp=['Hot','Hot','Hot','Mild','Cool','Cool','Cool','Mild',
'Cool'
,'Mild','Mild','Mild','Hot','Mild'] #

Label or target varible

play=['No','No','Yes','Yes','Yes','No','Yes','No','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes','Yes',
```

```
[2 2 0 1 1 1 0 2 2 1 2 0 0 1]
```

CODE:

```
temp_encoded=le.fit_transform(temp) print(temp_encoded)
print(" ") label=le.fit_trans-
form(play) print(label)
```

```
[1 1 1 2 0 0 0 2 0 2 2 2 1 2]
[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
```

features=list(zip(weather_encoded,temp_encoded))
print(features)

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 2), (0, 1), (1, 2)]

[1 1 1 2 0 0 0 2 0 2 2 2 1 2]

[0 0 1 1 1 0 1 0 1 1 1 1 1 0]
```

```
features=list(zip(weather_encoded,temp_encoded))
print(features)
```

OUTPUT:

```
[(2, 1), (2, 1), (0, 1), (1, 2), (1, 0), (1, 0), (0, 0), (2, 2), (2, 0), (1, 2), (2, 2), (0, 1), (1, 2)]
```

CODE:

```
from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors=3)

# Train the model using the training sets

model.fit(features,label)

predicted= model.predict([[0,1]]) # 0:Overcast, 1:Hot

print(predicted)
```

OUTPUT:

[1]

Dataset used: Fruit_classification.csv

import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt

fruits=pd.read_table('/content/fruit_data_with_colors.txt')

fruits.head()

OUTPUT:

	fruit_label	fruit_name	fruit_subtype	e mass	width	height	color_score	
0	1	ар	ple	granny	_smitl	192	8.4	7.3
0.	55							
1	1	apple		granny_smith		180	8.0	6.8
0.	59							
2	1	арр	ole	granny	_smitl	h 176	7.4	7.2
0.	60							
3	2	ma	ndarin	mandar	in	86	6.2	4.7
0.	80							
4	2	ma	ndarin	mandar	rin	84	6.0	4.6
0.79								

CODE:

fruits.shape

OUTPUT:

(59, 7)

CODE:

 $predct = dict(zip(fruits.fruit_label.unique(), fruits.fruit_name.unique())) \\ predct$

```
{1: 'apple', 2: 'mandarin', 3: 'orange', 4: 'lemon'}
```

fruits['fruit_name'].value_counts()

OUTPUT:

apple 19
orange 19
lemon 16
mandarin 5
Name: fruit_name, dtype: int64

CODE:

apple_data=fruits[fruits['fruit_name']=='apple']
orange_data=fruits[fruits['fruit_name']=='orange']
lemon_data=fruits[fruits['fruit_name']=='lemon']
mandarin_data=fruits[fruits['fruit_name']=='mandarin']
apple_data.head()

	fruit_label	fruit_name	<pre>fruit_subtype</pre>	mass	width	height	color_score
0	1	apple	granny_smith	192	8.4	7.3	0.55
1	1	apple	granny_smith	180	8.0	6.8	0.59
2	1	apple	granny_smith	176	7.4	7.2	0.60
8	1	apple	braeburn	178	7.1	7.8	0.92
9	1	apple	braeburn	172	7.4	7.0	0.89

plt.scatter(fruits['width'],fruits['height'])

plt.scatter(fruits['mass'],fruits['color_score'])

OUTPUT:

CODE:

from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier

X=fruits[['mass','width','height']]

Y=fruits['fruit_label']

X_train,X_test,y_train,y_test=train_test_split(X,Y,random_state=0) X_train.describe()

OUTPUT:

	mass	width	height
count	44.000000	44.000000	44.000000
mean	159.090909	7.038636	7.643182
std	53.316876	0.835886	1.370350
min	76.000000	5.800000	4.000000
25%	127.500000	6.175000	7.200000
50%	157.000000	7.200000	7.600000
75%	172.500000	7.500000	8.250000
max	356.000000	9.200000	10.500000

CODE:

X_test.describe()

	mass	width	height
count	15.000000	15.00000	15.000000
mean	174.933333	7.30000	7.840000
std	60.075508	0.75119	1.369463
min	84.000000	6.00000	4.600000
25%	146.000000	7.10000	7.250000
50%	166.000000	7.20000	7.600000
75%	185.000000	7.45000	8.150000
max	362.000000	9.60000	10.300000

knn=KNeighborsClassifier() knn.fit(X_train,y_train)

OUTPUT:

KNeighborsClassifier()

CODE:

knn.score(X_test,y_test)

OUTPUT:

0.5333333333333333

CODE:

prediction1=knn.predict([['100','6.3','8']])
predct[prediction1[0]]

lemon

CODE:

prediction2=knn.predict([['300','7','10']])
predct[prediction2[0]]

OUTPUT:

orange

AIM

5: Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

CODE:

Dataset used: Social_Network_Ads.csv

```
import pandas as pd
dataset = pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe())
print(dataset.head())
X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si ze = 0.20, random_state = 0)
```

		User ID		Age	Estimated	Salary	Purch	nased
count	4.000	000e+02	400.	000000	400.	000000	400.00	00000
mean	1.569	154e+07	37.	655000	69742.	500000	0.35	7500
std	7.165	832e+04	10.	482877	34096.	960282	0.47	79864
min	1.556	669e+07	18.	000000	15000.	000000	0.00	00000
25%	1.562	676e+07	29.	750000	43000.	000000	0.00	00000
50%	1.569	434e+07	37.	000000	70000.	000000	0.00	00000
75%	1.575	036e+07	46.	000000	88000.	000000	1.00	00000
max	1.581	524e+07	60.	000000	150000.	000000	1.00	00000
Us	ser ID	Gender	Age	Estima	tedSalary	Purcha	sed	
0 156	24510	Male	19		19000		0	
1 158	310944	Male	35		20000		0	
2 156	68575	Female	26		43000		0	
3 156	03246	Female	27		57000		0	
4 158	304002	Male	19		76000		0	

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB() classi-
fier.fit(X_train, y_train)
```

OUTPUT:

```
GaussianNB()
```

CODE:

```
y_pred = classifier.predict(X_test)
y pred
```

OUTPUT:

```
y_pred = classifier.predict(X_test)
y_test
```

```
array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1])
```

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
print(cm)
print(ac)
```

```
[[562]
[ 4 18]]
0.925
```

Data set:Naïve_base.csv

CODE

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv("iris.csv")
X = df.iloc[:,:4].values
y = df['variety'].values
df.head(5)

OUTPUT

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1,4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa

CODE

from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)

CODE

$$\begin{split} & from \ sklearn.preprocessing \ import \ StandardScaler \\ & sc = StandardScaler() \\ & X_train = sc.fit_transform(X_train) \\ & X_test = sc.transform(X_test) \end{split}$$

CODE

from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(X_train, y_train)

OUTPUT

GaussianNB()

CODE

y_pred = classifier.predict(X_test)
y_pred

OUTPUT

array(['Versicolor', 'Versicolor', 'Setosa', 'Setosa', 'Setosa', 'Virginica', 'Versicolor', 'Setosa', 'Setosa', 'Setosa', 'Virginica', 'Virginica', 'Versicolor', 'Versicolor', 'Versicolor', 'Setosa', 'Versicolor', 'Setosa', 'Versicolor', 'Setosa', 'Versicolor', 'Setosa', 'Setosa', 'Versicolor', 'Virginica', 'Setosa', 'Versicolor', 'Virginica', 'Versicolor'], dtype='<U10')

CODE

from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(confusion_matrix(y_test, y_pred)) print(classification_report(y_test, y_pred))

OUTPUT

[[13 0 0] [0 11 0] [0 0 6]]				
	precision	recall	f1-score	support
Setosa	1.00	1.00	1.00	13
Versicolor	1.00	1.00	1.00	11
Virginica	1.00	1.00	1.00	6
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

CODE

$$\label{eq:df_result} \begin{split} df_result &= pd.DataFrame(\{'Real\ Values': y_test,\ 'Predicted\ Values': y_pred\}) \\ df_result \end{split}$$

	Real Values	Predicted Values
0	Versicolor	Versicolor
1	Versicolor	Versicolor
2	Versicolor	Versicolor
3	Setosa	Setosa
4	Setosa	Setosa
5	Setosa	Setosa
6	Virginica	Virginica
7	Versicolor	Versicolor

AIM:

6: Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

CODE:

```
import matplotlib.pyplot as plt
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
plt.scatter(x, y)
plt.show()
```

OUTPUT:


```
import matplotlib.pyplot as plt
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
+slope, intercept, r, p, std_err = stats.linregress(x, y)
# r corre lation coefficient
# p probability of hypothesis

def myfunc(x):
```

```
return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
```

-0.758591524376155


```
import pandas
import warnings
warnings.filterwarnings("ignore")

df = pandas.read_csv("cars1.csv")

X = df[['Weight', 'Volume']] y = df['CO2']
```

from sklearn import linear_model

```
regr = linear_model.LinearRegression()
regr.fit(X, y)
```

OUTPUT:

```
LinearRegression()
```

CODE:

```
predictedCO2 = regr.predict([[2300, 1000]])
print(predictedCO2)
```

OUTPUT:

[104.86715554]

Data set:Iris.csv

CODE

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv("iris.csv")
X = dataset.iloc[:, [0,1,2,3]].values
y = dataset.iloc[:, 4].values
from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train test split(X, y, test size = 0.25, random state = 0)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0, solver='lbfgs', multi_class='auto')
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
```

OUTPUT

CODE

```
import seaborn as sns
import pandas as pd
ax = plt.axes()
df_cm = cm
sns.heatmap(df_cm, annot=True, annot_kws={"size": 30}, fmt='d',cmap="Blues", ax = ax )
ax.set_title('Confusion Matrix')
plt.show()
```


AIM

7. Program to implement text classification using Support vector machine.

CODE:

Dataset used: iris.csv

```
import numpy as np
import matplotlib.pyplot as plt from
sklearn import svm, datasets
# import some data to play with
iris = datasets.load iris()
X = iris.data[:, :2]
# we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target
# we create an instance of SVM and fit out data. We do not
scale our
# data since we want to plot the support vectors C =
1.0 # SVM regularization parameter
svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X, y)
# create a mesh to plot in
\#x \min, x \max = X[:, 0].\min() - 1, X[:, 0].\max() + 1
\#h = (x \max / x \min)/100
#xx, yy = np.meshgrid(np.arange(x min, x max, h),
#np.arange(y_min, y_max, h
plt.subplot(1, 1, 1)
Z = svc.predict(np.c ravel[xx.(), yy.ravel()]) Z =
Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
```

```
plt.title('SVC with linear kernel')
plt.show()
```


CODE:

Dataset used: True.csv, Fake.csv

```
#Importing Libraries im-
port pandas as pd import
numpy as np
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import accuracy_score, confusion_matrix,class
ification_report

from sklearn.svm import LinearSVC

import csv
true = pd.read_csv("True.csv")
fake = pd.read_csv("Fake.csv")
```

```
fake['target'] = 'fake'
true['target'] = 'true'
#News dataset
news = pd.concat([fake, true]).reset_index(drop = True)
news.head()
news.dropna()
```

	title	text	subject	date	target
0	you were wrong! 70-year-old men don t change \dots	News	"December 31	2017"	fake
165	look at me! I m violating the U.S. flag code	News	"October 29	2017"	fake
277	particularly those where people are dying. Ob	News	"September 29	2017"	fake
294	utterly and completely misunderstanding it. T	News	"September 25	2017"	fake
379	I salute you.Featured image via David Becker/	News	"September 10	2017"	fake

39998	rescuers pulled Maria s body from the rubble	worldnews	"September 21	2017 "	true
40742	adding she had a Spanish passport but chose t	worldnews	"September 14	2017 "	true
40788	adding the Rohingya belong in camps for displ	worldnews	"September 14	2017 "	true
40824	said Reick."	worldnews	"September 14	2017 "	true
41394	in general. "	worldnews	"September 7	2017 "	true

236 rows × 5 columns

```
#Train-test split
x_train,x_test,y_train,y_test = train_test_split(news['text'], new
s.target, test_size=0.2, random_state=1)

#Term frequency(TF)=count(word)/total(words)6+0ZXCVBNM,./
#TF-IDF: we can even reduce the weightage of more common words
like (t he, is, an etc.) which occurs in all document.
#This is called as TF-IDF i.e Term Frequency times inverse document
frequency.
#count vectorizer : involves counting the number of occurrences ea ch
word appears in a document
```

```
pipe2 = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTran
sformer()), ('model', LinearSVC())])

model_svc = pipe2.fit(x_train.astype('U'), y_train.astype('U'))
svc_pred = model_svc.predict(x_test.astype('U'))

print("Accuracy of SVM Classifier: {}%".format(round(accuracy_scor
e(y_test, svc_pred)*100,2)))
print("\nConfusion Matrix of SVM Classifier:\n")
print(confusion_matrix(y_test, svc_pred)) print("\nClas-
sification_Report of SVM Classifier:\n") print(classifi-
cation_report(y_test, svc_pred))
```

Accuracy of SVM Classifier: 51.43%

Confusion Matrix of SVM Classifier:

[[4302 3] [4085 26]]

Classification Report of SVM Classifier:

	precision	recall	f1-score	support
fake	0.51	1.00	0.68	4305
true	0.90	0.01	0.01	4111
accuracy			0.51	8416
macro avg	0.70	0.50	0.35	8416
weighted avg	0.70	0.51	0.35	8416

Dataset: apples_and_oranges.csv

CODE:

```
import pandas as pd
data = pd.read_csv("apples_and_oranges.csv")
from sklearn.model_selection import train_test_split
training_set, test_set = train_test_split(data, test_size = 0.2, random_state = 1)
X_train = training_set.iloc[:,0:2].values
Y_train = training_set.iloc[:,2].values
X_test = test_set.iloc[:,0:2].values
Y_test = test_set.iloc[:,2].values
```

CODE:

```
#Use of SVC with kernal='rbf'
from sklearn.svm import SVC
classifier = SVC(kernel='rbf', random_state = 1)
classifier.fit(X_train,Y_train)
```

OUTPUT:

```
SVC(random state=1)
```

CODE:

```
Y_pred = classifier.predict(X_test)
test_set["Predictions"] = Y_pred
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(Y_test,Y_pred)
print(cm)
accuracy = float(cm.diagonal().sum())/len(Y_test)
print("\nAccuracy Of SVM For The Given Dataset : ", accuracy)
```

OUTPUT:

```
[[3 0]
[5 0]]
```

Accuracy Of SVM For The Given Dataset: 0.375

CODE

```
#Use of SVC with kernal='linear'
classifier1 = SVC(kernel='linear', random_state = 1)
classifier1.fit(X_train,Y_train)
Y_pred1 = classifier1.predict(X_test)
cm1 = confusion_matrix(Y_test,Y_pred1)
print(cm1)
accuracy1 = float(cm1.diagonal().sum())/len(Y_test)
print("\nAccuracy Of SVM For The Given Dataset: ", accuracy1)
```

OUTPUT:

```
[[3 0]
[1 4]]
```

Accuracy Of SVM For The Given Dataset: 0.875

CODE

```
#Use of Linear SVC
from sklearn.svm import LinearSVC
classifier2 = LinearSVC(random_state = 1)
classifier2.fit(X_train,Y_train)
Y_pred2 = classifier2.predict(X_test)
cm2 = confusion_matrix(Y_test,Y_pred2)
print(cm2)
accuracy2 = float(cm2.diagonal().sum())/len(Y_test)
print("\nAccuracy Of SVM For The Given Dataset : ", accuracy2)
```

OUTPUT:

```
[[3 0]
[4 1]]
```

Accuracy Of SVM For The Given Dataset : 0.5

```
from sklearn.preprocessing import LabelEncoder le = LabelEncoder()
Y_train = le.fit_transform(Y_train)
from sklearn.svm import SVC
clasifier = SVC(kernel='rbf', random_state = 1)
classifier.fit(X_train,Y_train)
```

OUTPUT:

```
SVC(random state=1)
```

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
plt.figure(figsize = (7,7))
X_set, y_set = X_train, Y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1,
step=0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
X2.ravel()]). T). reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('black', 'white')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == i, 0], X_set[y_set == i, 1], c = ListedColormap(('red', 'orange'))(i),
label = j
plt.title('Apples Vs Oranges')
plt.xlabel('Weight In Grams')
plt.ylabel('Size in cm')
plt.legend()
plt.show()
```


Dataset: Iris.csv

CODE:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
# Importing the dataset
df = pd.read_csv("iris.csv")
X = df.drop('variety', axis=1)
y = df.variety
print ("Number of data points ::", X.shape[0])
print("Number of features ::", X.shape[1])
```

OUTPUT:

```
Number of data points :: 150
Number of features :: 4

#Using Standard Scaler to transform the data.
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42)

#Create the Non Linear SVM model
from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

#Fit the model for the data
classifier.fit(X_train, y_train)

#Make the prediction
y_pred = classifier.predict(X_test)
```

```
print('Accuracy of SVC on training set: {:.2f}'.format(classifier.score(X_train, y_train) * 100))
print('Accuracy of SVC on test set: {:.2f}'.format(classifier.score(X_test, y_test) * 100))
```

Accuracy of SVC on training set: 98.33
Accuracy of SVC on test set: 96.67

CODE:

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)

OUTPUT:

[[10 0 0] [0 8 1] [0 0 11]]

CODE:

from sklearn.metrics import accuracy_score

print("Accuracy:",accuracy_score(y_test, y_pred))

OUTPUT:

Accuracy: 0.9666666666666667

CODE:

#classification Report on SVC
from sklearn.metrics import classification_report
print("Classification report - \n", classification_report(y_test,y_pred))

OUTPUT:

Classification report -

	precision	recall	f1-score	support
Setosa Versicolor Virginica	1.00 1.00 0.92	1.00 0.89 1.00	1.00 0.94 0.96	10 9 11
accuracy macro avg weighted avg	0.97	0.96	0.97 0.97 0.97	30 30 30

```
# Create the SVM model using LinearSVC
from sklearn.svm import LinearSVC
clf = LinearSVC(random_state = 0)
#Fit the model for the data
clf.fit(X_train, y_train)

#Make the prediction
y_pred1 = clf.predict(X_test)
```

```
print('Accuracy of Linear SVC on training set: {:.2f}'.format(clf.score(X_train, y_train) * 100))
print('Accuracy of Linear SVC on test set: {:.2f}'.format(clf.score(X_test, y_test) * 100))
```

OUTPUT:

```
Accuracy of Linear SVC on training set: 95.00
Accuracy of Linear SVC on test set: 100.00
```

CODE:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred1)
print(cm)
from sklearn.metrics import accuracy_score
print("Accuracy:",accuracy_score(y_test, y_pred1))
```

```
[[10 0 0]
  [ 0 9 0]
  [ 0 0 11]]
Accuracy: 1.0
```

#classification Report on Linear SVC
from sklearn.metrics import classification_report
print("Classification report - \n", classification_report(y_test,y_pred1))

OUTPUT:

Classification report -

	precision	recall	f1-score	support
Setosa Versicolor Virginica	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11
accuracy macro avg weighted avg	1.00	1.00	1.00 1.00 1.00	30 30 30

AIM

8. Program to implement decision trees using any standard dataset available in the public domain and find the accuracy of thealgorithm.

CODE:

Dataset used: iris

```
import numpy as np im-
port pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
data=load_iris()
X=data.data y=data.target
print(X.shape,y.shape)
```

OUTPUT:

```
(150, 4) (150,)
```

CODE:

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
#for checking testi ng results
from sklearn.metrics import classification_report, confusion_matrix
#for visualizing tree
from sklearn.tree import plot_tree
X_train, X_test, y_train, y_test = train_test_split(X , y, test_si ze
= 25, random_state = 10)
clf=DecisionTreeClassifier()
clf.fit(X_train,y_train)
```

OUTPUT:

```
DecisionTreeClassifier()
```

```
y_pred =clf.predict(X_test)
print("Classification report - \n", classification_report(y_test,y _pred))
```

Classification	report -			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	0.90	0.95	10
2	0.86	1.00	0.92	6
accuracy			0.96	25
macro avg	0.95	0.97	0.96	25
weighted avg	0.97	0.96	0.96	25

CODE:

```
cm = confusion_matrix(y_test, y_pred)
print(cm)
from sklearn import tree
fig,axes = plt.subplots(nrows=1,ncols=1,figsize =(3,3),dpi=200)
tree.plot_tree(clf,feature_names=data.feature_names,class_names=data.target_names,filled=True)
plt.show() fig.savefig("/con-tent/iris_tree.png")
```

OUTPUT:

[[9 0 0] [0 9 1] [0 0 6]]

Dataset:titanic.csv

CODE:

import pandas as pd
df = pd.read_csv('titanic.csv', index_col='PassengerId')
print(df.head())

OUTPUT:

	Survived	Pclass \
PassengerId		
1	0	3
2	1	1
3	1	3
4	1	1
5	0	3

Name Sex Age \

PassengerId

1	Braund, Mr. Owen Harris male 22.0
2	Cumings, Mrs. John Bradley (Florence Briggs Th female 38.0
3	Heikkinen, Miss. Laina female 26.0
4	Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
5	Allen, Mr. William Henry male 35.0

	SibSp	Parch	Ticket	Fare	Cabin	Embark	ed
Passen	gerId						
1	1	0	A/5 21171	7.2500	NaN	S	
2	1	0	PC 17599	71.283	3 C85	C	
3	0	0 ST	TON/O2. 3101	282 7.9	9250	NaN	S
4	1	0	113803 53	3.1000	C123	S	
5	0	0	373450 8	3.0500	NaN	S	

CODE:

df.shape

OUTPUT:

(891, 11)

#We will be using Pclass, Sex, Age, SibSp (Siblings aboard), Parch (Parents/children aboard), and Fare to predict whether a passenger survived.

```
df = df[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Survived']]
```

#We need to convert 'Sex' into an integer value of 0 or 1.

```
df['Sex'] = df['Sex'].map(\{'male': 0, 'female': 1\})
```

OUTPUT:

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy" https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy" Entry point for launching an IPython kernel.

```
#We also drop any rows with missing values.

df = df.dropna()

#Creating input and output array

X = df.drop('Survived', axis=1)
y = df['Survived']

#Generating training and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

from sklearn import tree

model = tree.DecisionTreeClassifier()
model.fit(X_train, y_train)
y_predict = model.predict(X_test)

from sklearn.metrics import accuracy_score

print("Accuracy:",accuracy_score(y_test, y_predict))
```

Accuracy: 0.8212290502793296

CODE:

from sklearn.metrics import confusion matrix

```
pd.DataFrame(
   confusion_matrix(y_test, y_predict),
   columns=['Predicted Not Survival', 'Predicted Survival'],
   index=['True Not Survival', 'True Survival']
)
```

OUTPUT:

	Predicted Not Survival	Predicted Survival
True Not Survival	96	16
True Survival	16	51

CODE:

from sklearn import tree
tree.plot_tree(model,filled=True)

OUTPUT:

```
[Text(0.4976636979427998, 0.9761904761904762, 'X[1] \le 0.5 \rangle = 0.486 \rangle = 535 \rangle = [312, 223]'
```

 $Text(0.17671224284997492, 0.9285714285714286, 'X[0] \le 1.5 \text{ ngini} = 0.331 \text{ nsamples} = 335 \text{ nvalue} = [265, 70]'),$

 $Text(0.0863020572002007, 0.8809523809523809, 'X[2] \le 36.5 \cdot sini = 0.481 \cdot samples = 77 \cdot sample = [46, 31]'$

 $Text(0.016056196688409432, 0.833333333333333334, 'X[5] \le 37.812 \setminus 0.475 \setminus 0.$

 $Text(0.008028098344204716, 0.7857142857142857, 'gini = 0.0 \setminus samples = 7 \setminus value = [0, 7]'),$

 $Text(0.02408429503261415, 0.7857142857142857, 'X[2] \le 17.5 \text{ ngini} = 0.5 \text{ nsamples} = 24 \text{ nvalue} = [12, 12]'),$

 $Text(0.016056196688409432, 0.7380952380952381, 'gini = 0.0 \setminus samples = 4 \setminus value = [0, 4]'),$

 $Text(0.032112393376818864, 0.7380952380952381, 'X[2] \le 22.5 \setminus gini = 0.48 \setminus gini = 20 \setminus gini = 12, 8]'$

 $Text(0.02408429503261415, 0.6904761904761905, 'gini = 0.0 \land samples = 4 \land value = [4, 0]'),$

 $Text(0.04014049172102358, 0.6904761904761905, 'X[5] \le 51.798 \setminus 1.5 \le 1$

```
Text(0.032112393376818864, 0.6428571428571429, 'gini = 0.0 \ nsamples = 3 \ nvalue = [3, 0]'),
```

 $Text(0.0481685900652283, 0.6428571428571429, 'X[5] \le 64.979 \rangle = 0.473 \rangle = 13 \rangle = [5, 8]'$

 $Text(0.04014049172102358, 0.5952380952380952, 'gini = 0.0 \land samples = 4 \land value = [0, 4]'),$

 $Text(0.05619668840943302, 0.5952380952380952, 'X[5] \le 379.925 \setminus 2 = [1, 1]'),$

 $Text(0.4862017059708981, 0.5, 'gini = 0.0 \land samples = 1 \land value = [0, 1]'),$

 $Text(0.5022579026593076, 0.5, 'gini = 0.0 \land samples = 1 \land value = [1, 0]'),$

 $Text(0.4942298043151029, 0.5952380952380952, 'gini = 0.0 \land samples = 2 \land value = [0, 2]'),$

 $Text(0.5765178123432012, 0.6428571428571429, 'X[3] \le 0.5 \setminus gini = 0.233 \setminus gini = 0.100 = 0.1$

 $Text(0.5464124435524336, 0.5952380952380952, 'X[5] \le 41.248 \setminus initial = 0.264 \setminus in$

 $Text(0.5263421976919217, 0.5476190476190477, 'X[5] \le 20.656 \setminus initial = 0.245 \setminus in$

 $Text(0.518314099347717, 0.5, 'X[5] \le 17.444 \setminus ngini = 0.259 \setminus nsamples = 85 \setminus nvalue = [72, 13]'),$

 $Text(0.5102860010035123, 0.4523809523809524, 'X[2] <= 26.5 \\ ngini = 0.245 \\ nsamples = 84 \\ nvalue = [72, 12]'),$

 $Text(0.462117410938284, 0.40476190476190477, 'X[5] \le 8.175 / gini = 0.184 / gini = 39 / gini = 1.184 / gini =$

 $Text(0.43803311590566985, 0.35714285714285715, 'X[2] \le 20.0 / ngini = 0.444 / nsamples = 9 / nvalue = [6, 3]'),$

 $Text(0.43000501756146514, 0.30952380952380953, 'X[2] \le 17.0 / ngini = 0.48 / nsamples = 5 / nvalue = [2, 3]'),$

 $Text(0.42197691921726044, 0.2619047619047619, 'gini = 0.5 \setminus samples = 2 \setminus value = [1, 1]'),$

 $Text(0.43803311590566985, 0.2619047619047619, 'X[2] \le 18.5 \text{ ngini} = 0.444 \text{ nsamples} = 3 \text{ nvalue} = [1, 2]'),$

 $Text(0.43000501756146514, 0.21428571428571427, 'gini = 0.0 \setminus samples = 1 \setminus value = [0, 1]'),$

 $Text(0.44606121424987455, 0.21428571428571427, 'gini = 0.5 \setminus samples = 2 \setminus value = [1, 1]'),$

 $Text(0.44606121424987455, 0.30952380952380953, 'gini = 0.0 \setminus samples = 4 \setminus value = [4, 0]'),$

 $Text(0.4862017059708981, 0.35714285714285715, 'X[0] <= 2.5 \\ ngini = 0.064 \\ nsamples = 30 \\ nvalue = [29, 1]'),$

 $Text(0.4781736076266934, 0.30952380952380953, 'X[5] <= 11.0 \\ ngini = 0.133 \\ nsamples = 14 \\ nvalue = [13, 1]'),$

 $Text(0.4701455092824887, 0.2619047619047619, 'X[2] \le 21.0 \text{ ngini} = 0.32 \text{ nsamples} = 5 \text{ nvalue} = [4, 1]'),$

 $Text(0.462117410938284, 0.21428571428571427, 'X[2] <= 17.5 \\ \mbox{n value} = (2, 1]'),$

 $Text(0.4701455092824887, 0.166666666666666666666, 'gini = 0.5 \setminus nsamples = 2 \setminus nvalue = [1, 1]'),$

 $Text(0.4781736076266934, 0.21428571428571427, 'gini = 0.0 \land nsamples = 2 \land nvalue = [2, 0]'),$

 $Text(0.4862017059708981, 0.2619047619047619, 'gini = 0.0 \land samples = 9 \land value = [9, 0]'),$

from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix import matplotlib.pyplot as plt

CODE:

import warnings
warnings.filterwarnings("ignore")

import pandas as pd
df = pd.read_csv("hepatitis.csv")
print(df)

pstatus age sex steroid antivirals fatigue malaise anorexia \									
0 1	2 2	30 2 50 1		1	2 2	2	2 2		2
2 3 4	2	78 1 34 1 34 1		2 2 2	2 2 2	1 2 2	2 2 2		2 2 2
137 138 139 140 141	1 2 2 2	46 1 44 1 61 1 53 2 43 1		2 2 1 1	2 2 2 2 2 2	1 1 1 1	1 2 1 2 2		1 2 2 2 2
0 1 2 3 4 137 138 139 140 141	liver_big 1 1 2 2 2 2 1 2 2		m sp 2 2 2 2 2 1 1 1 2 2 2	leen_p	alable 2 2 2 2 2 2 2 2 2 1 1 1	spiders	2 2 2 2 2 1 2 2 2 2	varices 2 2 2 2 2 1 2 2 1 2	
0 1 2 3 4 137 138 139	bilirubin 1.0 0.9 0.7 1.0 0.9 7.6 0.9 0.8	alk_phosp	hate 85 135 96 105 95 105 126 75	sgot 18 42 32 200 28 242 142 20	albumin 4.0 3.5 4.0 4.0 4.0 3.3 4.3 4.3	61 61 61 75 50 61		2 2 2	
140	1.5		81	19	4.1			2	

```
141 1.2 100 19 3.1 42 2
[142 rows x 20 columns]
```

df.shape

OUTPUT:

(142, 20)

CODE:

```
df.shape
df['pstatus'].value_counts()
```

OUTPU:

```
2 116
1 26
Name: pstatus, dtype: int64
```

CODE:

```
df.pstatus[df.pstatus == 2] = 0
df['pstatus'].value_counts()
```

OUTPUT:

```
0 116
1 26
Name: pstatus, dtype: int64
```

CODE:

```
X = df.drop('pstatus', axis=1)
y = df['pstatus']
```

CODE:

splitting to trainset and Test set in the ratio 70:30

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)
```

CODE:

KNN Classifier

```
from sklearn.neighbors import KNeighborsClassifier classifier1 = KNeighborsClassifier(n_neighbors=5) classifier1.fit(X_train, y_train) y_pred1 = classifier1.predict(X_test) print(confusion_matrix(y_test, y_pred1)) print(classification_report(y_test, y_pred1))
```

[[32 1] [10 0]]				
	precision	recall	f1-score	support
0	0.76	0.97	0.85	33
1	0.00	0.00	0.00	10
accuracy			0.74	43
macro avg	0.38	0.48	0.43	43
weighted avg	0.58	0.74	0.65	43

CODE:

#AUC for KNN Classifier

from sklearn.metrics import auc, roc_auc_score, roc_curve, recall_score

```
fpr, tpr, thresholds = roc\_curve(y\_test, y\_pred1)
```

```
roc_auc1 = auc(fpr,tpr)
```

plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')

```
# Plot ROC
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',label='AUC = %0.3f'% roc_auc1)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.0])
plt.ylim([-0.1,1.01])
```


CODE:

Naive Bayes Classifier

from sklearn.naive_bayes import GaussianNB classifier2 = GaussianNB() classifier2.fit(X_train, y_train) y_pred2 = classifier2.predict(X_test) print(confusion_matrix(y_test, y_pred2)) print(classification_report(y_test, y_pred2))

[[27 6] [1 9]]	•				
		precision	recall	f1-score	support
	0	0.96	0.82	0.89	33
	1	0.60	0.90	0.72	10
accur	acy			0.84	43
macro	avg	0.78	0.86	0.80	43
weighted	avg	0.88	0.84	0.85	43

```
#AUC for Naive Bayes Classifier

from sklearn.metrics import auc, roc_auc_score, roc_curve, recall_score

fpr, tpr, thresholds = roc_curve(y_test, y_pred2)

roc_auc2 = auc(fpr,tpr)

# Plot ROC

plt.title('Receiver Operating Characteristic')

plt.plot(fpr, tpr, 'b',label='AUC = %0.3f'% roc_auc2)

plt.legend(loc='lower right')

plt.plot([0,1],[0,1],'r--')

plt.xlim([-0.1,1.0])

plt.ylim([-0.1,1.01])

plt.ylabel('True Positive Rate')

plt.xlabel('False Positive Rate')

plt.show()
```


Decision tree Classifier

```
from sklearn.tree import DecisionTreeClassifier classifier3=DecisionTreeClassifier() classifier3.fit(X_train,y_train) y_pred3 = classifier3.predict(X_test) print(confusion_matrix(y_test, y_pred3)) print(classification_report(y_test, y_pred3))
```

OUTPUT:

[[24 9] [4 6]]				
	precision	recall	f1-score	support
0	0.86	0.73	0.79	33
1	0.40	0.60	0.48	10
accuracy			0.70	43
macro avg	0.63	0.66	0.63	43
weighted avg	0.75	0.70	0.72	43

```
#AUC for Decision tree Classifier
```

```
from sklearn.metrics import auc, roc_auc_score, roc_curve, recall_score
```

```
fpr, tpr, thresholds = roc_curve(y_test, y_pred3)
```

```
roc_auc3 = auc(fpr,tpr)
```

```
# Plot ROC
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b',label='AUC = %0.3f'% roc_auc3)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.0])
plt.ylim([-0.1,1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


CODE:

Logistic Regression

from sklearn.linear_model import LogisticRegression classifier4 = LogisticRegression(random_state = 0, solver='lbfgs', multi_class='auto') classifier4.fit(X_train, y_train) y_pred4 = classifier4.predict(X_test) print(confusion_matrix(y_test, y_pred4)) print(classification_report(y_test, y_pred4))

[[30 3] [7 3]]				
	precision	recall	f1-score	support
0	0.81	0.91	0.86	33
1	0.50	0.30	0.37	10
accuracy			0.77	43
macro avg	0.66	0.60	0.62	43
weighted avg	0.74	0.77	0.75	43

```
#AUC for Logistic Regression

from sklearn.metrics import auc, roc_auc_score, roc_curve, recall_score

fpr, tpr, thresholds = roc_curve(y_test, y_pred4)

roc_auc4 = auc(fpr,tpr)

# Plot ROC

plt.title('Receiver Operating Characteristic')

plt.plot(fpr, tpr, 'b',label='AUC = %0.3f'% roc_auc4)

plt.legend(loc='lower right')

plt.plot([0,1],[0,1],'r--')

plt.xlim([-0.1,1.0])

plt.ylim([-0.1,1.01])

plt.ylabel('True Positive Rate')

plt.xlabel('False Positive Rate')

plt.show()
```


AIM

9. Program to implement k-means clustering technique using any standard dataset available in the public domain.

CODE:

Dataset used: GENERAL.csv

```
# importing the libraries im-
port numpy as np
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt dataset=
pd.read_csv('./CC GENERAL.csv')

# checking the presence of null values
print(dataset.isnull().sum())
#CREDIT_LIMIT 1
#MINIMUM_PAYMENTS 313
```

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	1
PAYMENTS	0
MINIMUM_PAYMENTS	313
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

```
dataset['CREDIT_LIMIT'].fillna(dataset.CREDIT_LIMIT.mean(), inplace =
True) dataset['MINIMUM_PAYMENTS'].fillna(dataset.MINIMUM_PAY-
MENTS.mean(), inplace = True) # unfilled vaues replaced using mean
print(dataset.isnull().sum())
```

print(dataset.describe())

OUTPUT:

CUST_ID	0
BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

	BALANCE	BALANCE_FREQUENCY	 PRC_FULL_PAYMENT	TENURE
count	8950.000000	8950.000000	 8950.000000	8950.000000
mean	1564.474828	0.877271	 0.153715	11.517318
std	2081.531879	0.236904	 0.292499	1.338331
min	0.000000	0.000000	 0.000000	6.000000
25%	128.281915	0.888889	 0.000000	12.000000
50%	873.385231	1.000000	 0.000000	12.000000
75%	2054.140036	1.000000	 0.142857	12.000000
max	19043.138560	1.000000	 1.000000	12.000000

CODE:

dataset.drop(['CUST_ID'], axis= 1, inplace = True) #no relevance f or custid

```
# No Categorical Values found X =
dataset.iloc[:,:].values
```

```
# Using standard scaler
from sklearn.preprocessing import StandardScaler
standardscaler= StandardScaler()
X = standardscaler.fit_transform(X)
#scaling the values
print(X)
```

```
"""K MEANS CLUSTERING """
#Inertia, or the within-
cluster sum of squares criterion, can be recognized as a measure o f
how internally coherent clusters are
from sklearn.cluster import KMeans
wss= []
for i in range(1, 11):
kmeans= KMeans(n_clusters = i, init = 'kmeans++',
random_state = 0)
kmeans.fit(X) wss.append(kmeans.in-
ertia_)
plt.plot(range(1,11), wss)
# selecting 4
```


CODE:

```
wss_mean=np.array(wss).mean()
print(wss)
print(wss_mean)
print([abs(wss_mean-x) for x in wss])
k=np.argmin([abs(wss mean-x) for x in wss])+1
```

OUTPUT:

```
[152149.99999999983, 127784.92103208725, 111986.41162208859, 99073.93826774803, 91502.98328256077, 84851.13240432573, 79532.40237691796, 75568.97609993909, 69954.91393943134, 67546.56302862825] 95995.22420537268 [56154.775794627145, 31789.69682671457, 15991.187416715911, 3078.714062375351, 4492.240922811907, 11144.091801046947, 16462.82182845472, 20426.248105433595, 26040.31026594134, 28448.661176744426]
```

```
kmeans = KMeans(n_clusters = k, init= 'k-
means++', random_state = 0) kmeans.fit(X)

Y_pred_K= kmeans.predict(X)
print(Y_pred_K)
```

```
#showing the clusters of first 100 persons
plt.figure(figsize=(16,4))
plt.plot(range(1,100+1),Y pred K[:100],'ro')
```


Dataset:Iris.csv

CODE:

import numpy as np
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
% matplotlib inline
import matplotlib.pyplot as plt
iris = load_iris()
X = iris.data
print(X)

OUTPUT:

[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.2] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.6 1.4 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1.] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1.] [5.9 3. 4.2 1.5] [6. 2.2 4. 1.] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5] [5.8 2.7 4.1 1.] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.1 2.8 4.7 1.2] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] $[6.7\ 3.\ 5.\ 1.7]\ [6.\ 2.9\ 4.5\ 1.5]\ [5.7\ 2.6\ 3.5\ 1.\]\ [5.5\ 2.4\ 3.8\ 1.1]\ [5.5\ 2.4\ 3.7$ 1. [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [5.4 3. 4.5 1.5] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2] [6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1.] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [5.1 2.5 3. 1.1] [5.7 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9] [7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2]

```
kmeans = KMeans(n\_clusters = 3, init = 'k-means++', random\_state = 0) \\ kmeans.fit(X) \\ Y\_pred\_K = kmeans.predict(X) \\ print(Y\_pred\_K)
```

OUTPUT:

```
inertia = [] \\ ax = [] \\ for i in range(2,10): \\ ax.append(i) \\ kmeans = KMeans(n\_clusters = i, init = 'k-means++', random\_state = 0) \\ kmeans.fit(X) \\ inertia.append(kmeans.inertia\_) \\ plt.plot(ax,inertia)
```

[<matplotlib.lines.Line2D at 0x7f8639026550>]


```
kmeans = KMeans(n\_clusters = 3, init = 'k-means++', random\_state = 0) \\ kmeans.fit(X) \\ plt.figure(figsize=(4,4)) \\ Y\_pred\_K = kmeans.predict(X) \\ colors = ['red', 'blue', 'green', 'yellow', 'cyan'] \\ for x,y in zip(X,Y\_pred\_K): \\ plt.scatter(x[0],x[1],color = colors[y]) \\ \end{cases}
```


import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans

x1=10*np.random.rand(100,2)

CODE:

x1.shape

OUTPUT:

(100, 2)

CODE:

kmean=KMeans(n_clusters=3) kmean.fit(x1)

OUTPUT:

KMeans(n_clusters=3)

CODE:

kmean.cluster_centers_

```
array([[1.95688735, 4.05905136], [7.60153979, 2.67451186], [7.01154396, 7.67791651]])
```

kmean.labels_

OUTPUT:

CODE:

```
wcss = []
for i in range(1,20):
    kmeans = KMeans(n_clusters=i,init= 'k-means++',max_iter=300,n_init=10,random_state=0)
    kmeans.fit(x1)
    wcss.append(kmeans.inertia_)
    print('Cluster', i, 'Inertia', kmeans.inertia_)
    plt.plot(range(1,20),wcss)
    plt.title('The Elbow Curve')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS') ##WCSS stands for total within-cluster sum of square
    plt.show()
```

```
Cluster 1 Inertia 1709.8592837186357
Cluster 2 Inertia 941.6272426718026
Cluster 3 Inertia 612.4712566124308
Cluster 4 Inertia 368.3666143214158
Cluster 5 Inertia 289.2602914923789
Cluster 6 Inertia 229.03053194379697
Cluster 7 Inertia 187.38301059593198
Cluster 8 Inertia 161.92639910808086
Cluster 9 Inertia 142.6648686647746
Cluster 10 Inertia 121.3532493740191
Cluster 11 Inertia 110.4239060692322
Cluster 12 Inertia 98.99605007934787
Cluster 13 Inertia 91.07314617434768
Cluster 14 Inertia 83.05767097627933
Cluster 15 Inertia 74.07981138805766
Cluster 16 Inertia 69.55361615261592
Cluster 17 Inertia 60.80930432109166
Cluster 18 Inertia 57.03871895907935
```


AIM

10:Programs on feedforward network to classify any standard dataset available in the public domain.

Dataset used: HR_comma_sep.csv

CODE:

import numpy as np import pandas as pd

Load data
data=pd.read_csv('HR_comma_sep.csv')
data.head()

OUTPUT:

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	Work_accident	left	promotion_last_5years	sales	salary
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.80	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

CODE:

from sklearn import preprocessing #

Creating labelEncoder

le = preprocessing.LabelEncoder()

Converting string labels into numbers.

data['salary']=le.fit_transform(data['salary'])

data['sales']=le.fit_transform(data['sales'])

```
X=data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hour s', 'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']]

y=data['left']

# Import train_test_split function

from sklearn.model_selection import train_test_split #

Split dataset into training set and test set

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 70% training and 30% test

from sklearn.neural_network import MLPClassifier

# Create model object

clf = MLPClassifier(hidden_layer_sizes=(6,5),

random_state=5,verbose=False,learning_rate_init=.

01)

# Fit data onto the model

clf.fit(X_train,y_train)
```

MLPClassifier(hidden_layer_sizes=(6, 5), learning_rate_init=0.01, random_state=5)

CODE:

ypred=clf.predict(X_test) #
Import accuracy score
from sklearn.metrics import accuracy_score #
Calcuate accuracy accuracy_score(y_test,ypred)

OUTPUT:

0.938666666666666

AIM:

11:Programs on convolutional neural network to classify images from any standard dataset in the public domain.

CODE:

import numpy as np import pandas as pd

Load data data=pd.read_csv('HR_comma_sep.csv')

data.head()

OUTPUT:

	satis- fac- tion_l evel	last_e valu- ation	num- ber_ pro- ject	aver- age_montly _hours	time_spen d_com- pany	Work _acci- dent	le ft	promo- tion_last_ 5years	sal es	sal- ary
(0 .38	0.53	2	157	3	0	1	0	sal es	lo w
	1 0.80	0.86	5	262	6	0	1	0	sal es	me diu m
ž	2 0.11	0.88	7	272	4	0	1	0	sal es	me diu m
;	3 <i>0</i> .72	0.87	5	223	5	0	1	0	sal es	lo w
	4 <i>0.</i> 37	0.52	2	159	3	0	1	0	sal es	lo w

CODE:

from sklearn import preprocessing

```
# Creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
data['salary']=le.fit_transform(data['salary'])
data['sales']=le.fit_transform(data['sales'])
X=data[['satisfaction_level', 'last_evaluation', 'number_project', 'average_montly_hours',
'time_spend_company', 'Work_accident', 'promotion_last_5years', 'sales', 'salary']]
y=data['left']
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) #
70% training and 30% test
from sklearn.neural_network import MLPClassifier
# Create model object
clf = MLPClassifier(hidden_layer_sizes=(6,5),
            random_state=5,
            verbose=False.
            learning_rate_init=0.01)
# Fit data onto the model
clf.fit(X_train,y_train)
ypred=clf.predict(X_test)
OUTPUT:
MLPClassifier(hidden layer sizes=(6, 5), learning rate init=0.01,
                 random state=5)
CODE:
# Import accuracy score
from sklearn.metrics import accuracy_score
# Calcuate accuracy
```

print ("Accuracy:",accuracy_score(y_test,ypred))

from sklearn.metrics import classification_report, confusion_matrix print(confusion_matrix(y_test, ypred)) print(classification_report(y_test, ypred))

	.80] 976]]				
		precision	recall	f1-score	support
	0	0.97	0.95	0.96	3428
	1	0.84	0.91	0.88	1072
accur	racy			0.94	4500
macro	avg	0.91	0.93	0.92	4500
weighted	avg	0.94	0.94	0.94	4500

Aim:

12: Implement problems on natural language processing - Part of Speech tagging, N-gram & smoothening and Chunking using NLTK

CODE:

```
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
nltk.download('stopwords')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
stop_words = set(stopwords.words('english'))
```

TOKENIZATION

```
#Dummy text
txt = "Hello. MCA S3 is fantastic. We learn many new concepts and implement them in our
practical exams. "\
"1st of all the data science is a new paper."
# sent tokenize is one of instances of
# PunktSentenceTokenizer from the nltk.tokenize.punkt module
tokenized = sent_tokenize(txt)
for i in tokenized:
  # Word tokenizers is used to find the words
  # and punctuation in a string
  wordsList = nltk.word_tokenize(i)
  # removing stop words from wordList
  wordsList = [w for w in wordsList if not w in stop_words]
  # Using a Tagger. Which is part-of-speech
  # tagger or POS-tagger.
  tagged = nltk.pos_tag(wordsList)
  print(tagged)
```

```
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package averaged_perceptron_tagger to [nltk_data] /root/nltk_data...
[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.
[('Hello', 'NNP'), ('.', '.')]
[('MCA', 'NNP'), ('S3', 'NNP'), ('fantastic', 'JJ'), ('.', '.')]
[('We', 'PRP'), ('learn', 'VBP'), ('many', 'JJ'), ('new', 'JJ'), ('concepts', 'NNS'), ('implement', 'JJ'), ('practical', 'JJ'), ('exams', 'NN'), ('.', '.')]
[('1st', 'CD'), ('data', 'NNS'), ('science', 'NN'), ('new', 'JJ'), ('paper', 'NN'), ('.', '.')]
```

SENTIMENTAL ANALYSIS

import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.style.use(style='seaborn')

#get the data from https://www.kaggle.com/ankurzing/sentiment-analysis-for-financial-news/version/5 colnames=['Sentiment', 'news'] df=pd.read_csv('all-data.csv',encoding = "ISO-8859-1", names=colnames, header = None) df.head()

OUTPUT:

	Sentiment	news
0	neutral	According to Gran , the company has no plans t
1	neutral	Technopolis plans to develop in stages an area
2	negative	The international electronic industry company
3	positive	With the new production plant the company woul
4	positive	According to the company 's updated strategy f

CODE:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4846 entries, 0 to 4845
Data columns (total 2 columns):
```

```
# Column Non-Null Count Dtype
---- 0 Sentiment 4846 non-null object
1 news 4846 non-null object
dtypes: object(2)
memory usage: 75.8+ KB
```

df['Sentiment'].value_counts()

OUTPUT:

```
neutral 2879
positive 1363
negative 604
```

Name: Sentiment, dtype: int64

CODE:

y=df['Sentiment'].values

OUTPUT:

(4846,)

CODE:

y.shape x=df['news'].values x.shape

OUTPUT:

(4846,)

CODE:

```
from sklearn.model_selection import train_test_split (x_train,x_test,y_train,y_test)=train_test_split(x,y,test_size=0.4) x_train.shape y_train.shape x_test.shape y_test.shape OUTPUT:
```

(1939,)

```
df1=pd.DataFrame(x_train)
df1=df1.rename(columns={0:'news'})
df2=pd.DataFrame(y_train)
df2=df2.rename(columns={0:'sentiment'})
df_train=pd.concat([df1,df2],axis=1)
df_train.head()
```

news	sentiment	
0	Elcoteq 's global service offering covers the	neutral
1	During the past 10 years the factory has produ	neutral
2	This includes a EUR 39.5 mn change in the fair	neutral
3	Loss for the period totalled EUR 15.6 mn compa	negative
4	Residents access to the block is planned to be	neutral

CODE:

```
df3=pd.DataFrame(x_test)
df3=df3.rename(columns={0:'news'})
df4=pd.DataFrame(y_test)
df4=df2.rename(columns={0:'sentiment'})
df_test=pd.concat([df3,df4],axis=1)
df_test.head()
```

OUTPUT:

	News senting	ment
0	Aldata to Share Space Optimization Vision at A	. neutral
1	Biohit already services many current Genesis c	neutral
2	According to Soosalu , particular attention wa	neutral
3	The layoff talks were first announced in August .	negative
4	The company has an annual turnover of EUR32 .	.8 m. neutral

CODE:

#removing punctuations
#library that contains punctuation
import string
string.punctuation

OUTPUT:

!"#\$%&'()*+,-./:;<=>?@[\]^_`{|}~

```
#defining the function to remove punctuation
def remove_punctuation(text):
    if(type(text)==float):
        return text
    ans=""
    for i in text:
        if i not in string.punctuation:
            ans+=i
        return ans

#storing the puntuation free text in a new column called clean_msg
df_train['news']= df_train['news'].apply(lambda x:remove_punctuation(x))
df_test['news']= df_test['news'].apply(lambda x:remove_punctuation(x))
df_train.head()
#punctuations are removed from news column in train dataset
```

OUTPUT:

News sentiment

O Elcoteq s global service offering covers the e... neutral

During the past 10 years the factory has produ... neutral

This includes a EUR 395 mn change in the fair ... neutral

Loss for the period totalled EUR 156 mn compar... negative

Residents access to the block is planned to be... neutral

CODE:

import nltk from nltk.corpus import stopwords nltk.download('stopwords')

OUTPUT:

[nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! True

CODE:

N-gram model

#method to generate n-grams:

```
#params:
#text-the text for which we have to generate n-grams
#ngram-number of grams to be generated from the text(1,2,3,4 etc., default value=1)
def generate_N_grams(text,ngram=1):
  words=[word for word in text.split(" ") if word not in set(stopwords.words('english'))]
  print("Sentence after removing stopwords:",words)
  temp=zip(*[words[i:] for i in range(0,ngram)])
  ans=[' '.join(ngram) for ngram in temp]
  return ans
```

generate_N_grams("The sun rises in the east",2)

OUTPUT:

```
Sentence after removing stopwords: ['The', 'sun', 'rises', 'east'] ['The sun', 'sun rises', 'rises east']
```

CODE:

generate_N_grams("The sun rises in the east",3)

OUTPUT:

```
Sentence after removing stopwords: ['The', 'sun', 'rises', 'east'] ['The sun rises', 'sun rises east']
```

CODE:

generate_N_grams("The sun rises in the east",4)

OUTPUT:

Sentence after removing stopwords: ['The', 'sun', 'rises', 'east'] ['The sun rises east']

AIM:

13: Implement a program to scrap the web page of any popular website – suggested python package is scrappy (ensure ethical conduct).

CODE:

```
class BlogSpider(scrapy.Spider):
    name = 'blogspider'
    start_urls = ['https://www.zyte.com/blog/']

def parse(self, response):
    for title in response.css('.oxy-post-title'):
        yield {'title': title.css('::text').get()}

for next_page in response.css('a.next'):
        yield response.follow(next_page, self.parse)
```

```
{"title": "Zyte named as one of Deloitte Technology Fast 50"},
{"title": "Zyte named as one of Deloitte Technology Fast 50"},
{"title": "How to extract data from an HTML table"},
{"title": "What is a proxy server and how do they work?"},
{"title": "Extract Summit 2021: Highlights and key takeaways"},
{"title": "How does a headless browser help with web scraping and data
extraction?"},
{"title": "Proxies versus VPNs: What\u2019s the difference, and which one
is right for my
use case?"},
{"title": "Manage bans and get your data with Zyte Data API Smart
Browser"},
{"title": "How to reduce noise in the data through data parsing"},
{"title": "What is web data harvesting?"},
{"title": "In pursuit of perfection: measuring web product data
quality"},
{"title": "Zyte named as one of Deloitte Technology Fast 50"},
{"title": "Web Data Extraction Summit 2021"},
```

{"title": "Residential Proxies: How are they different to data center proxies & how to manage them"}, {"title": "Zyte Developers Community newsletter issue #10"}, {"title": "What is data mining? How is it different from web scraping?"}, {"title": "Zyte Developers Community newsletter issue #9"}, {"title": "How Scrapy makes web crawling easy"},

AIM:

14:Implement a simple web crawler (ensure ethical conduct).

INSTALLATION CODE:

pip install requests bs4

OUTPUT:

```
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (2.23.0)
Requirement already satisfied: bs4 in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests) (2021.10.8)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests) (1.24.3)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests) (2.10)
Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.7/dist-packages (from bs4) (4.6.3)
```

```
import logging
from urllib.parse import urljoin
import requests
from bs4 import BeautifulSoup
logging.basicConfig(
  format='%(asctime)s %(levelname)s:%(message)s',
  level=logging.INFO)
class Crawler:
  def__init_(self, urls=[]):
     self.visited_urls = []
     self.urls_to_visit = urls
  def download_url(self, url):
     return requests.get(url).text
  def get linked urls(self, url, html):
     soup = BeautifulSoup(html, 'html.parser')
     for link in soup.find_all('a'):
       path = link.get('href')
       if path and path.startswith('/'):
```

```
path = urljoin(url, path)
       yield path
  def add url to visit(self, url):
     if url not in self.visited_urls and url not in self.urls_to_visit:
        self.urls_to_visit.append(url)
  def crawl(self, url):
     html = self.download_url(url)
     for url in self.get_linked_urls(url, html):
        self.add url to visit(url)
  def run(self):
     while self.urls_to_visit:
        url = self.urls to visit.pop(0)
       logging.info(f'Crawling: {url}')
       try:
          self.crawl(url)
       except Exception:
          logging.exception(f'Failed to crawl: {url}')
       finally:
          self.visited_urls.append(url)
if name == ' main ':
  Crawler(urls=['https://www.imdb.com/']).run()
```

```
2022-03-22 10:42:36,095 INFO:Crawling: https://www.imdb.com/
2022-03-22 10:42:36,931 INFO:Crawling:
https://www.imdb.com/?ref =nv home
2022-03-22 10:42:37,778 INFO:Crawling:
https://www.imdb.com/calendar/?ref =nv mv cal
2022-03-22 10:42:38,164 INFO:Crawling:
https://www.imdb.com/list/ls016522954/?ref =nv tvv dvd
2022-03-22 10:42:41,281 INFO:Crawling:
https://www.imdb.com/chart/top/?ref =nv mv 250
2022-03-22 10:42:42,869 INFO:Crawling:
https://www.imdb.com/chart/moviemeter/?ref =nv mv mpm
2022-03-22 10:42:44,039 INFO:Crawling:
https://www.imdb.com/feature/genre/?ref =nv ch gr
2022-03-22 10:42:44,413 INFO:Crawling:
https://www.imdb.com/chart/boxoffice/?ref =nv ch cht
2022-03-22 10:42:44,718 INFO:Crawling:
https://www.imdb.com/showtimes/?ref =nv mv sh
2022-03-22 10:42:45,305 INFO:Crawling: https://www.imdb.com/movies-in-
theaters/?ref =nv mv inth
2022-03-22 10:42:45,727 INFO:Crawling: https://www.imdb.com/coming-
soon/?ref =nv mv cs
2022-03-22 10:42:46,672 INFO:Crawling:
https://www.imdb.com/news/movie/?ref =nv nw mv
2022-03-22 10:42:47,212 INFO:Crawling:
https://www.imdb.com/india/toprated/?ref =nv mv in
```

```
2022-03-22 10:42:47,904 INFO:Crawling: https://www.imdb.com/whats-on-
tv/?ref =nv tv ontv
2022-03-22 10:42:48,300 INFO:Crawling:
https://www.imdb.com/chart/toptv/?ref =nv tvv 250
2022-03-22 10:42:49,114 INFO:Crawling:
https://www.imdb.com/chart/tvmeter/?ref =nv tvv mptv
2022-03-22 10:42:49,763 INFO:Crawling:
https://www.imdb.com/feature/genre/
2022-03-22 10:42:50,141 INFO:Crawling:
https://www.imdb.com/news/tv/?ref =nv nw tv
2022-03-22 10:42:50,478 INFO:Crawling:
https://www.imdb.com/india/tv?ref =nv tv in
2022-03-22 10:42:50,898 INFO:Crawling: https://www.imdb.com/what-to-
watch/?ref =nv watch
2022-03-22 10:42:51,572 INFO:Crawling:
https://www.imdb.com/trailers/?ref =nv mv tr
2022-03-22 10:42:52,003 INFO:Crawling:
https://www.imdb.com/originals/?ref =nv sf ori
2022-03-22 10:42:52,225 INFO:Crawling:
https://www.imdb.com/imdbpicks/?ref =nv pi
2022-03-22 10:42:52,567 INFO:Crawling:
https://www.imdb.com/podcasts/?ref =nv pod
2022-03-22 10:42:52,861 INFO:Crawling:
https://www.imdb.com/oscars/?ref =nv ev acd
2022-03-22 10:42:53,254 INFO:Crawling:
https://m.imdb.com/feature/bestpicture/?ref =nv ch osc
2022-03-22 10:42:53,893 INFO:Crawling:
https://www.imdb.com/search/title/?count=100&groups=oscar best picture
winners&sort=year%2Cdesc&ref =nv ch osc
2022-03-22 10:42:54,908 INFO:Crawling:
https://www.imdb.com/emmys/?ref =nv ev rte
2022-03-22 10:42:55,171 INFO:Crawling:
https://www.imdb.com/imdbpicks/womenshistorymonth/?ref =nv ev whm
2022-03-22 10:42:55,686 INFO:Crawling:
https://www.imdb.com/starmeterawards/?ref =nv ev sma
2022-03-22 10:42:56,004 INFO: Crawling: https://www.imdb.com/comic-
con/?ref =nv ev comic
2022-03-22 10:42:56,444 INFO:Crawling:
https://www.imdb.com/nycc/?ref =nv ev nycc
2022-03-22 10:42:56,790 INFO:Crawling:
https://www.imdb.com/sundance/?ref =nv ev sun
```

DEPARTMENT OF COMPUTER APP	LICATION
II	