# Problem Set 4

by, John Pedersen

November 12, 2017

The economy has the following production function  $F(K,N) = K^{\alpha}L^{1-\alpha}$ . Profit each period :  $\pi(K,N;w_t,r_t) = F(K_t,N_t) - w_tN_t - r_tK_t + (1-\delta)K_t$ Discounted lifetime profits are:  $\max_{\{K_{t+1}^d,N_t^d\}} \sum_{t=0}^{\infty} \left(\frac{1}{\prod_{i=0}^t r_i}\right) \pi(K,N;w_t,r_t)$ 

The consumer's Budget constraint will be:  $c_t + a_{t+1} = z_t w_t \bar{l} + r_t a_t$  where  $z_t$  is labor productivity and it's log follows an AR(1) process.

#### 1. F.O.C.'s for the firm to get factor prices.

For Capital:

$$\frac{\delta \pi(K, N; w_t, r_t)}{\delta K_t^d} = \sum_{t=0}^{\infty} \left(\frac{1}{\Pi_{i=0}^t r_i}\right) \left(\alpha \left(\frac{N}{K_t^d}\right)^{1-\alpha} + (1-\delta) - r_t\right)$$

$$0 = \left(\alpha \left(\frac{N}{K_t^d}\right)^{1-\alpha} + (1-\delta) - r_t\right) \sum_{t=0}^{\infty} \left(\frac{1}{\Pi_{i=0}^t r_i}\right)$$

$$= \frac{1}{1 - \frac{1}{r_t}} \left(\alpha \left(\frac{N}{K_t^d}\right)^{1-\alpha} + (1-\delta) - r_t\right)$$

$$= \frac{r_t}{1 - r_t} \left(\alpha \left(\frac{N}{K_t^d}\right)^{1-\alpha} + (1-\delta) - r_t\right)$$

$$r_t = \alpha \left(\frac{N_t^d}{K_t^d}\right)^{1-\alpha} + (1-\delta)$$

For Labor:

$$\begin{split} \frac{\delta \pi(K, N; w_t, r_t)}{\delta N_t^d} &= \sum_{t=0}^{\infty} \left(\frac{1}{\Pi_{i=0}^t r_i}\right) \left((1-\alpha) \left(\frac{K}{N_t^d}\right)^{\alpha} + (1-\delta) - r_t\right) \\ &= (1-\alpha) \left(\frac{K_t^d}{N_t^d}\right)^{\alpha} \end{split}$$

### 2. State Recursive Problem for Household

Household Problem:

$$V(z,a) = \max_{a' \in \Gamma(z,a)} U(zw\bar{l} + ra + a') + \beta E_{z'|z}[V(z,a)]$$

- a. The control variable is tomorrow's asset holding. The state variables are the current asset holding and labor productivity
  - b. Utility is CRRA

# 3. Dscritize State Space

#### 4. Time to run.

Value Function take 354.48 sec to sun. The Policy Function takes 377.56 seconds to run on my computer on the virtual desktop.

## 5. Rental Rate of capital

The model puts out a steady state r of 1.0072. The Euler equaltion would predict an rental rate of  $r_t=\frac{1}{\beta}=1.0101$ , slightly higher than this rate.

### Graphs:



Figure 1:



Figure 2:



Figure 3:



Figure 4: