MATH 644

Chapter 5

SECTION 5.5: THE ARGUMENT PRINCIPLE

CONTENTS

	CONTENTS	
		_
The Argument Principle		2
Rouché's Theorem		3

Created by: Pierre-Olivier Parisé Spring 2023 **THEOREM 1.** Suppose f is meromorphic which not constant in a region Ω with zeros set $\{z_j\}$ and poles set $\{p_k\}$. Suppose γ is a cycle with $\gamma \sim 0$ in Ω , and suppose $\{z_j\} \cap \gamma = \emptyset$ and $\{p_k\} \cap \gamma = \emptyset$. Then

$$n(f(\gamma), 0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j} n(\gamma, z_j) - \sum_{k} n(\gamma, p_k).$$

Notes:

- ① The convention is if z is a zero of order k of f, then z appears k times in the list $\{z_j\}$.
- ② For the poles, we also have the same convention: if z is a pole of order k of f, then z appears k times in the list $\{p_k\}$.

Proof.

Since zeros de poles of
$$f$$
 are isolated of $y \sim 0$ de $y \sim \infty$,

 $\sum_{k} n(y_{1}y_{2})$ de $\sum_{k} n(y_{1}p_{k})$ finite sums.

 $\frac{1}{2} n(y_{1}y_{2})$ de $\frac{1}{2} n(y_{1}p_{k})$ finite sums.

 $\frac{1}{2} n(y_{1}y_{2})$ de $\frac{1}{2} n(y_{1}y_{2})$ de $\frac{1}{2} n(y_{1}y_{2})$ de $\frac{1}{2} n(y_{2}y_{3})$ de $\frac{1}{2} n(y_{3}y_{4})$ de $\frac{1}{2} n(y_{3})$ de $\frac{1}{2} n(y_{3}y_{4})$ de $\frac{1}{2} n(y_{3}y_{4})$ de $\frac{1}{2} n(y_{3}y_{4})$ de $\frac{1}{2} n(y_{3}y_{4})$ de $\frac{1}{2} n(y_{3$

Right term. $\Sigma_1 = \Sigma \setminus \{ 2j : n(\gamma_1 2j) = 0 \} \cup \{ pb : n(\gamma_1 pb) = 0 \}$ So, $\gamma \sim 0$ in γ . Let b be a pole or zero of f of order m: $f(z) = (z-b)^{2} g(z)$ for some $l \in \mathbb{Z}$, g analytic in some disk centered at b d $g(z) \neq 0$ in B(b,r). Then, $f'(z) = l(z-b)^{l-1}g(z) + (z-b)^{l}g'(z)$ $\Rightarrow \frac{\int (z)}{\int (z^2)} = \frac{1}{(z-b)} + \frac{g'(z)}{g(z)}, \ z \in \mathbb{R}(b,r)$ Therefore, $\frac{f'(z)}{f(z)} - \frac{1}{z-b}$ is analytic in B(b,r). Repeat Hun for each pole de Zero in 125: $n(y_1 z_3) \neq 0$ y $y_1 y_2 p_2 p_3 p_4 p_6$,

P-O Parisé

f(z) - Z lj - Z lk Z-pk

is analytic in I.

By Cauchy's Theorem,

1 1 1 5 14

$$\frac{1}{2\pi i}\int_{y}\frac{f'(z)}{f(z)}-\frac{\sum f_{j}}{j}\frac{f_{j}}{z\cdot z_{j}}-\frac{\sum f_{k}}{k}\frac{ds}{z-pk}ds=0$$

$$\Rightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} d3 = \sum_{j} \int_{\gamma} n(\gamma_{i}z_{j}) + \sum_{k} l_{k}n(\gamma_{i}p_{k})$$

$$= \sum_{j} l_{j} n(y_{i}z_{j}) - \sum_{k} (l_{k}) n(y_{i}p_{k}).$$

 \Box

Rouché's Theorem

THEOREM 2. Suppose γ is a closed curve in a region Ω with $\gamma \sim 0$ in Ω and $n(\gamma, z) = 0$ or z = 1 for all $z \in \Omega \setminus \gamma$. If $z \in \Omega \setminus \gamma$ are analytic in Ω and satisfy

$$|f(z) + g(z)| < |f(z)| + |g(z)|,$$

for all $z \in \gamma$, then f and g have the same number of zeros enclosed by γ .

Notes:

① Again, the number of zeros of f and g are counted according to their multiplicity.

Proof. By assumption,
$$f \not\equiv 0$$
 & $g \not\equiv 0$.

Therefore, f is a meromorphic function in JZ . We have

(x) $\left| f + 1 \right| \leq \left| f + 1 \right| = \left| f$

Since each $O(\frac{1}{9}ly)$ are connected, o component of $O(\frac{1}{9}ly)$ are connected, o is in the unbounded component. So, $O(\frac{1}{9}ly), O(1) = 0$. Argument $O(\frac{1}{9}ly), O(1) = 0$. Principle $O(\frac{1}{9}ly)$ Argument $O(\frac{1}{9}ly)$ Affects of $O(\frac{1}{9}ly)$ $O(\frac{1}{9}ly)$

P.-O. Parisé MATH 644 Page 5

EXAMPLE 3. Let $f(z) = z^9 - 2z^6 + z^2 - 8z - 2$.

- (a) How many zeros does f have in $\{z : |z| < 1\}$?
- (b) How many zeros does f have in $\{z : |z| < 2\}$?

(a)
$$|z^{9}-2z^{6}+z^{7}-8z-z+8z|$$

= $|z^{9}+2z^{6}+z^{7}-2|$
 $\leq 1+2+1+2=6$ on $|z|=1$.

Since
$$|z|=1$$
,
 $6 < 8 = 8|z| = |8z|$
 $|z^{9}-2z^{6}+z^{7}-8z-z|+|8z|$

By Rouche's thm:

$$f$$
 & $g(z) = 8z$ have
Same # Zeros in D.

 $(b) z^{9} \text{ have biggest modulus an } |z|=z$ $\Rightarrow |f(z)-z^{9}| \leq 2^{7}+2^{2}+2^{4}+2 \quad (|z|=z)$

By Kouche's Thm, $f d z^9 = |z|^9$.

By Kouche's Thm, $f d z^9$ have the Same number of zeros in 1|z| < 23, that is 9.