[CS2102]

Skeletonization by Thinning

Approaches:

- Zhang-Suen
- Guo-Hall

Diego Enciso

Juan Galvez

Luis Jáuregui

Macarena Oyague

Miguel Yurivilca

04. Guo Hall Approach

Explanation of the concept

Pseudocode and theoretical Analysis

02. Applications

05. Analysis

Medical and Biology fields

Of both approaches

03. Zhang Suen Approach

Of both approaches

Experiments and Results

Pseudocode and theoretical Analysis

01

Skeletonization by Thinning

Explanation of the concept

Skeletonization is a procedure to transform the width of an image into just one single pixel.

An image is composed by pixels

An image contains a pattern, and that is the reason why an algorithm use that pattern to make an image transformation and change the value of the numbers.

Skeletonization

Receive: a binary pattern/image

Return: a skeleton

Skeletonization by thinning

Skeletonization Algorithm guarantee:

Preservation the topological and geometric properties of the object in the image

Skeletonization by thinning

The border points of a binary object that satisfy certain topological and geometric constraints are deleted in iteration steps.

The entire process is then repeated until only the skeleton is left .

Applications

Medical and Biology fields

Medicine

Analysis of blood vessels

Skeletonization process

Biology

Voxel cut-space segmentation VCS

Skeletonization process

Generation of mesh approximations

Skeletonization process

Zhang-Suen Approach

Pseudocode and theoretical analysis

Algorithm

```
Verify conditions (A)
While points are deleted do
  For all pixels p(i,j) = P1 do
    if 2 \le B(P1) \le 6 and A(P1) = 1
         P2 \times P4 \times P6 = 0
         P4 \times P6 \times P8 = 0
    then
       delete pixel p(i,j)
  For all pixels p(i,j) = P1 do
    if 2 \le B(Pi) \le 6 and A(p1) = 1
         P2 \times P4 \times P8 = 0
         P2 \times P6 \times P8 = 0
    then
       delete pixel p(i,j)
```

(a)
$$2 \le B(P_1) \le 6$$

(b)
$$A(P_1) = 1$$

(c)
$$P_2 * P_4 * P_6 = 0$$

(d)
$$P_4 * P_6 * P_8 = 0$$

where $A(P_1)$ is the number of 01 patterns in the sequence P_2 P_3 \cdots , P_8 , P_9 , P_2 that are the neighbours of P_1 and $B(P_1)$ is the number of nonzero neighbours of P_1 .

Guo-Hall Approach

Pseudocode and theoretical analysis

Algorithm

```
While points are deleted do
          For all pixels p(i,j) do
 2.
              if (a) C(p1) = 1
                                                                      P9
                                                                          P2
                                                                                P3
                  (b) 2 \le N(p1) \le 3
                  (c) Apply one of the following:
                                                                      P8
                                                                          P1
                                                                                P4
           (p2 \mid p3 \mid !p5) \& p4 = 0 in odd iterations
           (p6 \mid p7 \mid !p9) \& p8 = 0 in even iterations
                                                                      P7
                                                                                P5
                                                                          P<sub>6</sub>
              then
                  Delete pixel p(i,j)
 4.
              end if
 5.
          end for
     end while
Where:
C(p1) = !p2 & (p3 | p4) + !p4 & (p5 | p6) + !p6 & (p7 | p8) + !p8 & (p9 | p2)
N1(p1) = (p9 | p2) + (p3 | p4) + (p5 | p6) + (p7 | p8)
N2(p1) = (p2 | p3) + (p4 | p5) + (p6 | p7) + (p8 | p9)
N(p1) = MIN[N1, N2]
```

Analysis

Of both approaches

Analysis

Theoretical:

We considered the worst case to be when all pixels are distributed in such way that only one pixel is deleted in each iteration, which results in approximately (rows-1*cols-1) iterations. In each one, we traverse all pixels, thus, we get a bound of $O(n^4)$. The best case is when 0 or 1 pixel is deleted, resulting in 1 iteration and a bound of $\Omega(n^2)$.

Empirical:

Guo Hall approach was presented as an improvement of the former Zhang Suen, hence, it runs faster as we will see in results chart below, even though, it does way more iterations than the other. Both are based in a set of 2 sub-iterations, but consider different criteria to determine if a pixel is deleted or not.

CPU 1	Cow	Duck
Zhang-Suen	5.05005 sec	24.4098 sec
Gou-Hall	2.40053 sec	16.4013 sec
CPU 2	Cow	Duck
Zhang-Suen	12.3745 sec	54.2858 sec
Gou-Hall	2.5839 sec	15.8636 sec

Experiments and results

Pseudocode and theoretical approaches

Guo Hall

Zhang Suen

Zhang Suen

Guo Hall

Zhang Suen

