Considere condução de calor unidimensional, em regime estacionário, através do sólido simétrico mostrado na figura.

Supondo que não existe geração interna de calor, desenvolva uma expressão para a condutividade térmica k(x) para as seguintes condições: A(x) = (1-x), $T(x) = 300 (1 - 2x - x^3)$, e $Q_x = 6000$ W, onde A está em metros quadrados, T em kelvins, e x em metros.

Andreas Schwambach				
1-)				
Condução de valor unidimensional, regime estacionário				
$A(x) = (1-x)$ $Q_{x} = 6000 \text{ W}$ $T(x) = 300(1-2x-x^3)$				
Eentra = Esai				
q entrada = q saida = -le.A(2).dT(2) => Lei de Fourier				
AND THE TOP OF THE PARTY OF THE				
$\frac{6000 = -6(1-x) d \left[300(1-2x-x^3)\right] \Rightarrow 6000 = -6(1-x)[300(-3x^2-2)]}{dx}$				
$\frac{1}{(1-x)(-3x^2-2)}$				

2) Transferência unidimensional de calor por condução, em regime estacionário e sem geração interna de calor, ocorre no sistema mostrado. A condutividade térmica material é de 25 W/m.K, enquanto a espessura da parede L é de 0,5 m.

Determine as grandezas desconhecidas para cada caso mostrado na tabela e esboce a distribuição de temperatura, indicando a direção do fluido térmico.

maria de la constanta de la co				
Caso	T ₁	T ₂	dT/dx (K/m)	q _x (W/m²)
I	400 K	300 K		
2	100 °C		-250	
3	80 °C		+200	
4	30 °C	-5 °C		4000
5				-3000

- Observa-se que a distribuição de temperatura, em estado estacionário, no interior de uma parede unidimensional com condutividade térimica de 50 W/m.K e espessura de 50 mm tem a forma T(°C) = a + b.x², onde a = 200 °C, b = -2000°C/m² e x está em metros.
- a) Quai a taxa de geração de calor q na parede?
- b) Determine os fiuxos de calor nas duas faces da parede.
 Resposta: a) 2.10⁵ W/m²; b) 10000 W/ in²

4) Em um processo de fabricação, uma película transparente está sendo fixada sobre um substrato, conforme é mostrado no desenho. Para curar a fixação a uma temperatura To, uma fonte de energia radiante é usada para fornecer um fluxo de calor qo (W/m²), que é totalmente absorvido na superficie filme/substrato. A parte inferior do substrato é mantida a T1, enquanto a superficie livre da película está exposta ao ar a uma temperatura To, com um coeficiente de transferência de calor por convecção h.

- Desenhe o circuito térmico que representa a transferência de calor em regime estacionário. Certifique-se de que sejam identificados todos os elementos, nós e taxas de transferência de calor.
- Considere as seguintes condições: T_o = 20°C, h = 50 W/m². K e T₁ = 30°C. Calcule o fluxo radiante q necessário para manter a temperatura da superficie filme/ substrato em T_o = 60°C.

Resposta: b) 2833 W/m2

4-) ====================================		
Substate	The Sales and	NO.
a) 49."	R''v = Resistência Térmica po	or convected
Ray Too	Market Market	product to lateral life
Ts Ts	R'f = Rosistência Térmica por	
q = = = To	R's = Posstência Térmica por	condução no substrato
	4 th Tank 7	{R'cv = 1/4 = 000
	q"2 → q"0 = To-Ta + To-Th P"α+R"P R"s	R's = 64/4 = Q010 R's = 64/4 = Q010
q" = 60-20 0,020+90	+60-30 = 2833 W/m²	To particular to all disease

5) Uma placa de aço com 1 m de comprimento (k = 50 W/ m.K) tem os seus lados isolados termicamente, enquanto a superficie superior é mantida a 100°C e a superficie inferior é resfriada por convecção por um fluido que se encontra a 20°C. em condições de regime estacionário, sem geração de calor, um termopar, posicionado no ponto intermediário entre as duas superficies, revela uma temperatura de 85°C.

Qual o valor do coeficiente de transferência de calor por convecção na superficie inferior da placa? Resposta : 30 W/m².K

Uma parede composta separa gases de combustão a 2600 °C de um líquido refrigerante a 100°C, com coeficientes de transferência de calor por convecção no lado do gás e no líquido iguais a 50 e 1000 W/m².K, respectivamente. A parede é composta por uma camada de 10 mm de óxido de berílio no lado do gás e uma placa de 20 mm de aço inoxidável (AISI 304) no lado do líquido. A resistência de contato entre o óxido e o aço é de 0,05 m².K/W. Qual é a perda de calor por unidade de área de superficie da parede composta. Esboce a distribuição de temperatura entre o gás e o líquido. Resposta: 34600 W/m² 6) Tgás = 26000 Tig = 1000 hgás = 50 wh/2 hlq = 1000 w/m²k lq = 1000 w/m²k lq = 1000 m/m²k lq = 1000 w/m²k lq = 10000 w/m²k lq = 1000 w/m²k lq = 1000 w/m²k lq = 1000 w/m²k lq = 1000 w/m²k lq

Seja a parede de um tubo com raios internos e externos iguais a ri e re, cujas temperaturas são mantidas a Ti e Te, respectivamente. A condutividade térmica do material do tubo é função da temperatura, podendo ser representada por uma expressão na forma k= k_o.(1+aT), onde k_o e a são constantes. Obtenha uma expressão para a taxa de transferência de calor por unidade de comprimento do tubo. Qual é a resistência térmica da parede do tubo?

Um aquecedor elétrico delgado é enrolado ao redor da superficie externa de um tubo cilíndrico longo cuja superficie interna é mantida a uma temperatura de 5°C. A parede do tubo possui raiso interno e externo iguais a 25 e 75 mm, respectivamente, e condutividade térmica de 10W/m.K. A resistência térmica de contato entre o aquecedor e a superficie externa do tubo (por unidade de comprimento do tubo) é de R'te = 0,01 m.K/W. A superficie externa do aquecedor está exposta a um fluido com T_{eo} = -10°C e um coeficiente de convecção de h = 100 W/ m².K. Determine a potência do aquecedor, por unidade de comprimento do tubo, requerida para mantê-lo a To = 25°C. Resposta: 2377W/m

8/16=5°C 6= 0,075m1= 0,025mlaz=10 Wmk B12=0,01 mKW Too = -10°Ch = 100 W/m2kTo = 25°C =0/q= 2377 W/m

Um revestimento de Bakelite é usado sobre um bastão condutor de 10 mm de diâmetro, cuja superficie é mantida a 200°C pela passagem de uma corrente elétrica. O bastão encontra-se imerso em fluido a 25°C, onde o coeficiente de transferência de calor por convecção é de 140 W/m2.K. Qual é o raio crítico associado ao revestimento nestas condições? Qual é a taxa de transferência de calor, por unidade de comprimento, estando o bastão sem revestimento e com um revestimento de Bakelite cuja esperssura corresponde ao raio crítico? Qual a quantidade de Bakelite que deve ser colocada sobre o bastão para reduzir em 25% a transferência de calor correspondente ao bastão sem qualquer revestimento.

Resposta: a) 0,01 m; b) 770 W/m; c) 55 mm

 Uma esfera oca de alumínio, com um aquecedor elétrico no seu centro, é usada em testes para determinar a condutividade térmica de materiais isolantes. Os raios interno e externo da esfera possuem 0,15 e 0,18 m, respectivamente, e o teste é realizado em condições de regime estacionário com a superficie interna do alumínio mantida a 250°C. Para um teste em particular, uma casca esférica de isolamento térmico é fundida sobre a superficie externa da esfera até uma espessura de 0,12 m. O sistema encontra-se em uma sala na qual a temperatura do ar é de 20°C e o coeficiente de isolamento é de 30 W/m².K. Se 80W são dissipados pelo aquecedor em condições de regime estacionário, qual é a condutividade térmica do isolamento testado? Resposta: 0,062 W/m.K

