Оглавление

1	$_{ m Hpc}$	остейшие модели роста популяции. Основные понятия динамических систем.	2					
	1.1	1.1 Простейшие модели роста						
		1.1.1 Модель неограниченного роста популяции	2					
		1.1.2 Модель ограниченного роста	2					
	1.2	1.2 Основные понятия						
		1.2.1 Итерации. Понятие о каскаде	3					
		1.2.2 Орбиты (траектории) динамических систем	3					
		1.2.3 Неподвижные точки и периодические орбиты	4					
2	Асимптотическое поведение орбит динамических систем. Существование орбит							
	бол	более высокого периода.						
	2.1	Предсказание судьбы орбиты для данного отображения	5					
		2.1.1 Диаграмма Ламерея	6					
	2.2	Асимптотическое поведение	6					
	2.3	Периодические орбиты любых периодов	7					
3	Обі	Общие понятия теории динамических систем.						
	3.1	Инвариантные множества	8					
4	Про	одолжение предыдущей лекции. Топологическая классификация. Устойчи-						
	BOC	ть.	12					
	4.1	Продолжение предыдущей лекции	12					
	4.2	Топологическая классификация. Устойчивость	13					
5	Гиперболичность. Простейшие гиперболические множества.							
	5.1	Случай каскада	15					
	5.2	Для потока.	16					

Простейшие модели роста популяции. Основные понятия динамических систем.

1.1 Простейшие модели роста

Пусть время дискретно, принимает целые значения и в момент времени n число особей популяции равно x_n , а закон изменения от n выражается уравнением:

$$x_{n+1} = f(x_n) \Leftrightarrow \overline{x} = f(x)$$

1.1.1 Модель неограниченного роста популяции

Пример 1.1 Томас Роберт Мальтус (1766 - 1839)

Пусть количество особей в некоторой популяции в следующем поколении прямо пропорционально количеству в текущем поколении:

$$x_{n+1} = \lambda x_n$$

 λ - постоянный коэффициент, определяющий темп роста.

При заданном начальном числе особей в популяции x_0 , легко найти:

$$x_1 = \lambda x_0, x_2 = \lambda x_1 = \lambda^2 x_0, \dots, x_n = \lambda x_{n-1} = \lambda^n x_0$$

Пусть $x_0 > 0$ тогда возможны три принципиально разных случая поведения системы:

- $\lambda>1$: $\lim_{n\to\infty}x_n=\infty$ взврывообразное увеличение числа особей
- $\lambda = 1$: $x_n = x_0 \text{постоянная популяция}$
- $0 < \lambda < 1$: $\lim_{n \to \infty} x_n = 0$ популяция вымирает

1.1.2 Модель ограниченного роста

Пример 1.2 Пьер Франсуа Ферхюльст (1804-1849)

Пусть число особей обладает максимальным значением M, таким что при его достижении в следующий момент времени наступает вымирание:

$$x_{n+1} = \lambda x_n (1 - \frac{x_n}{M})$$

M - параметр аннигиляции.

- $x_n \ll M$: происходит рост $x_{n+1} = \lambda x_n$
- $x_n \ge M$: если $x_{n+1} < 0$ или $x_{n+1} = 0$, то это трактуем как исчезновение.

Определение 1.1 Дискретное логистическое уравнение

Пусть $\frac{x_n}{M} = x'_n$, тогда уравнение перепишется в виде:

$$x_{n+1} = \lambda x_n (1 - x'_n), \quad x'_n \in [0, 1]$$

Модели Мальтуса и Ферхюльста наивные. В реальности есть множество внешних факторов: хищники, болезни, изменчивая доступность питания. Тем не менее они дают грубые оценки.

$$x_0 = 0.5, \ \lambda \in \{0.5, 1.5, 2, 3.2, 3.5, 3.9\}$$

n	0.5	1.5	2	3.2	3.5	3.9
1	0.125	0.375	0.5	0.8	0.875	0.5750
2	0.0547	0.352	0.5	0.512	0.3828	0.095
3	0.0258	0.342	0.5	0.799	0.8269	0.335
4	†	†	†	0.512	0.5009	0.869
5	†	†	†	0.799	†	†
20	$1.8 \cdot 10^{-7}$	0.333	0.5	0.512	0.5009	†

- $\lambda = 0.5$: вымирание
- $\lambda = 1.5$: орбита стабилизируется в окрестности точки 0.333
- $\lambda = 2$: неподвижная точка отображения
- $\lambda = 3.2$: траектория периода 2, колеблется между 0.799 и 0.512
- $\lambda = 3.5$: траектория периода 4
- $\lambda = 3.9$: нет закономерности, хаотическое поведение

1.2 Основные понятия

1.2.1 Итерации. Понятие о каскаде.

Определение 1.2 Дискретная динамическая система

Отображение $\overline{x}=f(x)$ задает дискретную динамическую систему $\{f^n\}$, где $n\in\mathbb{Z}$ если $\overline{x}=f(x)$ — взаимно однозначное.

$$\overline{x} = f^0(x)$$
 понимаем $\mathrm{Id}: \overline{x} = x$

если f взаимно однозначное, то под f^{-1} понимаем отображение, такое что $f(f^{-1}(x)) = x$

$$k>0: f^k(x)=f(f(\dots f(x))), \quad f^{-k}(x)=f^{-1}(f^{-1}(\dots f^{-1}(x)))$$

1.2.2 Орбиты (траектории) динамических систем

Всюду далее \mathbb{Z} , \mathbb{Z}_0^+ , \mathbb{Z}_0^- .

Определение 1.3 Орбита (траектория)

Орбитой (траекторией) точки x динамической системы $\{f\}$ называется множество точек:

$$O(x) = \bigcup_{k \in \mathbb{Z}} f^k(x), \;\;$$
где f — взаимно однозначное

$$O(x) = \bigcup_{k \in \mathbb{Z}_0^+} f^k(x), \;\;$$
 если f — не взаимно однозначное

Определение 1.4 Полутраектории

Для взаимно однозначных f определим положительные и отрицательные полутраектории:

$$O^{+}(x) = \bigcup_{k \in \mathbb{Z}_{0}^{+}} f^{k}(x), \quad O^{-}(x) = \bigcup_{k \in \mathbb{Z}_{0}^{-}} f^{k}(x).$$

1.2.3 Неподвижные точки и периодические орбиты

Определение 1.5 Неподвижная точка

Точка x_0 называется неподвижной точкой системы $\{f\}$, если имеет место: $f(x_0) = x_0$.

Определение 1.6 Периодическая орбита

Точка x_0 называется периодической орбитой периода m>1, если $f^m(x_0)=x_0$ и выполнено:

$$f^k(x_0) \neq x_0, \ \forall k = 1, \dots, m-1.$$

Определение 1.7 Преднеподвижная (предпериодическая) точка

Точка, которая попадает в неподвижную (периодическую) точку после некоторого числа итераций называется временнонеподвижной (временнопериодической) или преднеподвижной (предпериодической).

Асимптотическое поведение орбит динамических систем. Существование орбит более высокого периода.

2.1 Предсказание судьбы орбиты для данного отображения

Иногда исследование эволюции всех орбит — легкая задача. Простейшим примером является модель неограниченного роста популяции, которая суть геометрическая прогрессия.

Пример 2.1

Рассмотрим отображение $\overline{x}=x^2$, легко предсказать судьбу траектории всех точек на оси x. Найдем неподвижные точки отображения:

$$x = x^2 \implies x = 0, x = 1$$

- орбита x = 0: $0, 0, 0, \dots$
- \bullet орбита x = 1: 1, 1, 1, . . .
- орбита x = -1: $-1, 1, 1, \ldots$ преднеподвижная точка

Рассмотрим судьбу орбит отображения $\overline{x} = x^2$ для $|x| < 1, x \neq 0$:

$$x, x^2, x^4, x^8, \ldots, x^{2^n}, \ldots$$

$$x_0 = \frac{1}{2}, x_1 = \frac{1}{4}, x_2 = \frac{1}{16}, \dots, x_n = \frac{1}{2^{2^n}}$$

Рассмотрим судьбу орбит отображения $\overline{x}=x^2$ для |x|>1:

$$x, x^2, x^4, x^8, \dots, x^{2^n}, \dots x_n \to \infty$$

Пример 2.2

Рассмотрим динамическую систему $\bar{x} = x^2 - 1$:

- ullet $x=x^2-1 \implies x_{1,2}=rac{1\pm\sqrt{5}}{2}$ две неподвижные точки
- ullet имеется периодическая орбита x=0 периода 2.
- предпериодическая точка $\sqrt{2}$, ее орбита: $\sqrt{2}$, 1, 0, -1, 0, ...

Упражнение 2.1

Найти еще несколько предпериодических орбит.

2.1.1 Диаграмма Ламерея

Удобным способом исследования орбит динамических систем является $\partial uarpamma$ Ламерея (итерационная диаграмма)

Алгоритм:

- \bullet строится график отображения (дискретной динамической системы) и биссектриса в 1 и 3 четвертях
- перемещаемся по некоторой "лестнице" (подробно в следующей лекции)

Рассмотрим отображение $\bar{x} = x^2 - 1$ и орбиту точки $x_0 = 0.5$:

$$x_0 = 0.5000$$

$$x_1 = 0.5^2 - 1 = -0.7500$$

$$x_2 = -0.4375$$

$$x_3 = -0.8086$$

$$\vdots$$

$$x_{20} = 0.0000$$

$$x_{21} = -1.0000$$

$$x_{22} = 0.0000$$

2.2 Асимптотическое поведение

 ${\bf B}$ ажно, что орбита x=0.5 (любая непериодическая орбита) стремится асимптотически к периодическим орбитам, но за конечное число итераций в нее не приходит. А на численном счете сказываются ошибки округления.

Очень важный результат для конкретной динамической системы это строгое доказательство этого утверждения.

2.3 Периодические орбиты любых периодов

Отметим, что дискретная динамическая система может обладать периодическими орбитами любого периода. Например, отображение $\overline{x}=-\frac{3}{2}x^2+\frac{5}{2}x+1$ обладает периодическими орбитами всех периодов.

Один из **центральных вопросов** теории динамических систем — какова мощность множества периодических точек?

Утверждение 2.1 А.Н. Шарковский, 1964

Если непрерывное отображение интервала имеет периодические орбиты периода 3, то оно имеет периодические орбиты всех периодов больше 3

Общие понятия теории динамических систем.

3.1 Инвариантные множества

Определение 3.1

Henpepывной динамической системой или потоком на метрическом пространстве <math>(X,d), которое называется фазовым пространством или объемлющим пространством, называется отображение:

$$f: X \times \mathbb{R} \longrightarrow X$$

с групповыми свойствами:

- $f(x,0) = x, \forall x \in X$
- $f(f(x,t),s) = f(x,t+s), \forall x \in X, \forall s,t \in \mathbb{R}$

Определение 3.2

 \mathcal{A} искретной динамической системой или каскадом будем называть f удовлетворяющую условиям в определении выше, и если \mathbb{R} заменить на \mathbb{Z} .

Везде ниже следующие обозначения:

для потока
$$f^t(x) = f(x,t), t \in \mathbb{R}$$

для каскада
$$f^t(x) = f(x,t), t \in \mathbb{Z}$$

Из определения 3.1 следует, что $f^t: X \longrightarrow X$ для фиксированных $t \in \mathbb{R}$ или $t \in \mathbb{Z}$ является гомеоморфизмом.

Каскад
$$f^k$$
 (или же f^{-k}), $k \in \mathbb{N}$ есть суперпозиция $f^k = \underbrace{f \dots f}_k$ (или же $f^{-k} = \underbrace{f^{-1} \dots f^{-1}}_k$).

Поток f^1 — сдвиг на единицу времени для каскада $f^1 = f$.

Таким образом, непрерывная (дискретная) динамическая система — это действие гомеоморфизмами группы \mathbb{R} (или же \mathbb{Z}) на наше топологическое пространство.

Определение 3.3

Траекторией или opбumoй точки $x \in X$ называется множество

$$O_x = \{ f^t(x) | t \in \mathbb{R} (t \in \mathbb{Z}) \}$$

траектория потока ориентируема согласно возрастанию t.

Определение 3.4

Множество $A \subset X$ называется *инвариантным множеством динамической системы*, если траектория любой точки $x \in A$ полностью принадлежит A.

Определение 3.5

Инвариантное множество A называется monoлогически транзитивным (динамическая система называется <math>monoлогически mpaнзитивной на A), если A содержит всюду плотную орбиту.

Определение 3.6

Инвариантное множество $A\subset X$ называется *локально максимальным*, если существует его открытая окрестность U такая, что:

$$\bigcap_{t \in \mathbb{R} \text{ in } \mathbb{Z}} f^t(U) = A$$

Заметим, что любая траектория является инвариантным множеством.

Упражнение 3.1

Фазовое пространство представляется в виде объединения попарно непересекающихся траекторий динамической системы.

Выделяется 2 типа траекторий (с которыми мы на самом деле уже встречались) специального вида:

Определение 3.7

Точка $x \in X$ называется неподвижной точкой, если $O_x = \{x\}$. Обозначим Fix_{f^t} (или Fix_f) множество неподвижных точек системы f^t (или f).

Определение 3.8

Точка $x \in X$ называется $nepuoduческой точкой потока <math>f^t$ (каскада f), если существует число per(x) > 0 ($per(x) \in \mathbb{N}$) такое, что $f^{per(x)}(x) = x$, но $f^t(x) \neq x$ для всех действительных (натуральных) чисел 0 < t < per(x).

Число per(x) называется nepuodom nepuoduveckoй movku x.

В случае потока траектория периодической точки называется nepuodueиской mpaeкторией или $замкнутой орбитой и гомеоморфна единичной окружности <math>\mathbb{S}^1$. В случае каскада траектория периодической точки называется nepuoduической орбитой и состоит из в точности per(x) точек. Неподвижная точка каскада — частный случай периодической точки с периодом 1, для потока это неверно!

Обозначим: $Per_{f^t}\left(Per_f\right)$ множество периодических точек системы $f^t\left(f\right)$

Под фазовым портретом динамической системы понимают неформальное изображение фазового пространства X с некоторыми инвариантными подмножествами (неподвижные точки, периодические орбиты, инвариантные пожмножества), дающие представление о глобальном поведении траектории динамической системы и разбиении фазового пространства на траектории.

Многие свойства динамических систем определяются асимптотическим поведением траектории t o $\pm \infty$, $t \in \mathbb{R}$ или \mathbb{Z} :

Определение 3.9

Для потока f^t (каскада f) точка $y \in X$ называется $\omega-npedeльной точкой для точки <math>x,$ если существует последовательность $t_n \to \infty, t_n \in \mathbb{R}$ (или $t_n \in \mathbb{Z}$) такая, что

$$\lim_{t_n \to +\infty} d(f^{t_n}(x), y) = 0$$

Множество $\omega(x)$ всех предельных точек для x называется ее $\omega-npedenomial$ множеством.

Заменив в пределе выше $+\infty$ на $-\infty$ мы аналогично определим α – предельное множество $\alpha(x)$ точки x.

Утверждение 3.1

Если X компактно, то множество $\omega(x)$ непусто. В частности, если система имеет неподвижную или периодическую точку x, то $\omega(x) = \alpha(x) = O_x$.

Множества

$$L_{\omega}(f^{t}) = cl(\bigcup_{x \in X} \omega(x))$$
$$L_{\alpha}(f^{t}) = cl(\bigcup_{x \in X} \alpha(x))$$

$$L_{\alpha}(f^{t}) = cl(\bigcup_{x \in X} \alpha(x))$$

называются $\omega-npedeльными$ и $\alpha-npedeльными$ множествами соответственно.

Множество $L_{f^t} = L_{\omega}(f^t) \cup L_{\alpha}(f^t)$ называется предельным множеством f^t .

В общем случае $\bigcup_{x \in X} \omega(x)$ не является замкнутым. на рисунке изображен фазовый портрет потока на сфере \mathbb{S}^2 с неподвижными точками A,B,C,D, дополнение до которых состоит из замкнутых траектории, окружающих точки A,B,D и двух траекторий, для которых точка C является ω,α предельной точкой (объединение этих траекторий с точкой C образует «восьмерку»). Дополнение до объединения ω – предельных множеств есть множество точек «восьмерки» без точки C, оно не является открытым подмножеством \mathbb{S}^2 .

- - - - тут когда-то будет рисунок - - - -

Определение 3.10

Для потока f^t (каскада f) точка $x \in X$ называется ω – peryppenmuoй, если $x \in \omega(x)$ и называется рекуррентной, если $x \in \omega(x) \cup \alpha(x)$. Аналогичным образом определяется и α рекуррентная точка.

Рекуррентность — возвращаемость орбиты точки в свою сколь угодно малую окрестность. Более слабый вариант возвращаемости — неблуждаемость.

Определение 3.11

Для потока f^t (каскада f) точка $x \in X$ называется блуждающей, если существует окрестность U_x такая, что

$$f^t(U_x) \cap U_x = \emptyset, \ \forall t > 1 (t \in \mathbb{N})$$

в противном случае точка х называется неблуждающей.

Из определений следует, что любая точка из U_x является блуждающей. Следовательно, множество блуждающих точек открыто, а множестов неблуждающих замкнуто. Множество блуждающих точек инвариантно, так как для $\forall t \in \mathbb{R}$ (или $t \in \mathbb{Z}$) любая точка $f^t(x)$ из орбиты блуждающей точки x имеет окрестность $U_{f^{\tau}(x)} = f^{\tau}(U_x)$ удовлетворяет условиям определения блуждающей точки.

Множество всех неблуждающих точек потока f^t называется nefnyxdawuum множеством и обозначается Ω_{ft} .

Заметим, что для потока на рисунке 1, неблуждающее множество совпадает с предельным $(L_{f^t} = \Omega_{f^t} = \mathbb{S}^2)$.

Пример 3.1

Существуют потоки, для которых $L_{f^t} \neq \Omega_{f^t}$. На рисунке: фазовый поток на листке Мебиуса, для которого неблуждающее множество совпадает с вертикальным отрезком AB, а предельное множество состоит из неподвижных точек A,B.

---- тут будет рисунок ----

Продолжение предыдущей лекции. Топологическая классификация. Устойчивость.

4.1 Продолжение предыдущей лекции.

Более слабый вариант, чем неблуждаемость — тип возвращаемости связанный с ε -траекториями или nceedoop fumamu.

Определение 4.1

 ε — cemью длины n, соединяющей точку x с точкой y для kackada f называется последовательность $x=x_0,\ldots,x_n=y$ точек в M таких, что $d(f(x_{i-1}),x_i)<\varepsilon$ для $i\in\{1,\ldots,n\}$.

 ε — cemью длины T, соединяющей точку x с точкой y для $nomoкa\ f^t$ называется последовательность $x=x_0,\ldots,x_n=y$, для которой существует последовательность времен t_1,\ldots,t_n с $t_i\geq 1$ так, что $d(f^{t_i}(x_{i-1},x_i)<\varepsilon)$ для $1\leq i\leq n$ и $t_1+\cdots+t_n=T$.

Определение 4.2

Точка $x \in X$ называется *цепно-рекуррентной* для потока f^t (или каскада f), если $\forall \varepsilon > 0 \ \exists T$ (или n), зависящее от ε и ε – цепь длины T (или n), соединяющая точку x с ней самой.

Множество всех цепно-рекуррентных точек f^t (или f) называется цепно-рекуррентным множеством f^t (или f) и обозначается как R_{f^t} (R_f соответственно).

Введем на R_{f^t} (или R_f) отношение эквивалентности по следующему правилу:

 $x \sim y \Leftrightarrow$ для любого $\varepsilon > 0$ существует ε — сетью соединяющая точку x с точкой y и ε -цепь соединяющая точку y с точкой x. Две такие точки называются y и y с точкой y и y с точкой y и y с точкой y с точкой y с точкой y с точки называются y с точкой y с точкой y с точкой y с точки называются y с точкой y с точкой

Поскольку для любой ε — окрестности U_x неблуждающей точки x каскада f существует $n \in \mathbb{N}$ такое, что $f^n(U_x) \cap (U_x) \neq \emptyset$, то последовательность $x, f(x), \ldots, f^n(x)$ является ε — цепью длины n, соединяющей точку x с ней самой.

Таким образом, любая неблуждающая точка является цепно-рекуррентной. Но стоит отметить, что блуждающая точка тоже может быть цепно-рекуррентной (см рисунок 3).
- - - - рисунок 3 - - - -

Последовательное включение инвариантных множеств:

$$L_{f^t} \subseteq \Omega_{f^t} \subseteq R_{f^t} \ (L_f \subseteq \Omega_f \subseteq R_f)$$

Отличительной особенностью структурно устойчивых систем является равенство:

$$L_{f^t} = \Omega_{f^t} = R_{f^t} \quad (L_f = \Omega_f = R_f)$$

4.2 Топологическая классификация. Устойчивость.

Качественная теория динамических систем исходит из следующего отношения эквивалентности, которое сохраняет разбиение фазового пространства на траектории.

Определение 4.3

Два потока $f^t: X \to X$ и $g^t: X \to X$ называется топологически эквивалентными, если существует гомеоморфизм $h: X \to X$, переводящий траектории одной системы в траектории другой с сохранением ориентации на траекториях.

Определение 4.4

Два каскада $f: X \to X, g: X \to X$ называется топологически сопряженным, если существует гомеоморфизм $h: X \to X$ такой, что gh = hf то есть диаграмма на рисунке 1.14 коммутативна. При этом гомеоморфизм h называется сопрягающим.
- - - - рисунок 1.14 - - - -

Из определения 4.4 следует, что сопрягающий гомеоморфизм переводит орбиты каскада f в орбиты каскада g.

Непосредственная проверка топологической эквивалентности/сопряженности, как правило, является необозримой задачей.

Некоторый объект, сохраняющийся при топологической эквивалентности/сопряженности называется mononoruчecким uheapuahmom. Нахождение этих инвариантов является частью задачи mononoruчeckoù knaccuфukauuu некоторого множества G динамических систем; под общей формулировкой которой следует понимать:

- ullet нахождение топологических инвариантов в динамической системе из G
- доказательство полноты множества найденных инвариантов, то есть доказательство того, что совпадение множеств топологических инвариантов является необходимым и достаточным условием топологической эквивалентности/сопряженности
- \bullet реализация, то есть построение по заданному множеству топологических инвариантов стандартного представления динамических систем, принадлежащих G

Под пространством динамических система на гладком многообразии X понимают пространство C^{μ} — диффеоморфизмов $Diff^r(X)$ в случае каскада, и пространство отображений $C^r(X \times \mathbb{R} \to X)$ в случае потока, каждое из которых снабжено C^r — топологией. Для $r \geq 1$ каждый элемент этого пространства G называется гладкой динамической системой.

С любым отношением эквивалентности E на пространстве динамических систем связано определение ycmouusocmu.

Определение 4.5

Система $f \in Diff^r(X)$ ($\in C^r(X \times \mathbb{R} \to X)$), $r \geq 0$ называется E-устойчивой, если существует такая окрестность U(f) (или $U(f^t)$) элемента f (f^t) в $Diff^r(X)$ ($C^r(X \times \mathbb{R} \to X)$), что если $\tilde{f} \in U(f)$ ($\tilde{f}^t \in U(f^t)$), то \tilde{f} (\tilde{f}^t) и f (f^t) принадлежат одному и тому же классу эквивалентности E.

Понятие устойчивости для каскадов (потоков) ассоциированное с топологической сопряженностью (эквивалентностью), называется $\mathit{грубостью}$ (по Андронову—Понтрягину) или $\mathit{структурной}$ $\mathit{устой-чивостью}$ (по Пейкшото). В определении Понтрягина, Андронова дополнительно требуется, что при достаточной близости g к f (g^t к f^t) гомеоморфизм, осуществляющий сопряжение (эквивалентность) систем был C^0 -близким к тождественному. По Пейкшото это можно не требовать. Согласно современным представлениям структурно устойчивые и грубые динамические системы совпадают.

Динамические свойства системы в большой степени определяется ее поведением на неблуждающем множестве. Поэтому топологическая эквивалентность (сопряжение) ограничений систем на неблуждающее множество выделена в отдельное понятие Ω – эквивалентное (сопряжение). Производное понятие устойчивости называется Ω – устойчивостью, которое слабее структурной устойчивости

Гиперболичность. Простейшие гиперболические множества.

Везде в этой части рассматриваются гладкие динамические системы на гладком n-многообразии X .

5.1 Случай каскада.

Определение 5.1

Пусть $f_i: X \to X$ — диффеоморфизм. Компактное f — инвариантное множество $\Lambda \subset int(X)$ назвается гиперболическим, если существует Df — инвариантное разложение касательного подрасслоения $T_\Lambda X$ в прямую сумму

$$E_{\Lambda}^s \oplus E_{\Lambda}^u, x \in \Lambda \quad (1.1.1)$$

такое, что

$$||Df^{k}(v)|| \le c\lambda^{k}||v||, v \in E_{\Lambda}^{s}, k > 0$$

$$||Df^{-k}(v)|| \le c\lambda^{k}||v||, v \in E_{\Lambda}^{u}, k < 0$$

для некоторых фиксированных $c>0,\,0<\lambda<1.$

Существование для f гиперболической структуры на Λ не зависит от выбора римановой метрики. Более того, существует метрика (Ляпуновская), для которой c=1.

Простейшим примером гиперболического множества является гиперболические неподвижные точки каскада, которые можно классифицировать следующим образом: пусть $f: X \to X$ — диффеоморфизмы и f(p) = p. Точка p является sunepfonuveckoй, когда среди собственных чисел матрицы якоби $\frac{\partial f}{\partial x}|_p$ нет чисел, по модулю равных 1. Если при этом все собственные числа по модулю меньше 1, то p называется npumsrubaroupeù, cmokoboù movkoù или cmokom, если все собственные числа по модулю больше 1, то p называется ommankubaroupeù, ucmovenukoboù ucmovenukoboù или ucmokom.

Притягивающая или отталкивающая точка называется узловой. Гиперболическая неподвижная точка не являющаяся узловой называется узловой точкой или седлом. (см. рис) - - - - - рисунок - - - -

Если точка p — периодическая точка f с периодом per(p), то, применяя предыдущую конструкцию к диффеоморфизму $f^{per(p)}$, получаем классификацию гиперболических периодических точек, аналогично классификации неподвижных гиперболических точек.

Существуют диффеоморфизмы, у которых всё объемлющее многообразие является гиперболическим множеством. Они были введены в динамику Д. В. Аносовым как Y – $\partial u \phi \phi$ еоморфизмы, и затем названные $\partial u \phi \phi$ еоморфизмами Aносова.

5.2 Для потока.

С каждым гладким потоком f^t связано векторное поле $\xi(x) = \frac{\mathrm{d} f^t}{\mathrm{d} t} \mid_{t=0}$, множество состояний равновесия которого совпадает с множеством Fix_{f^t} неподвижных точек потока f^t называется $\mathit{гunep-}$ болическим, если таковым является соответствующее состояние равновесия векторного поля ξ . А именно: неподвижная точка p потока f^t называется $\mathit{гunep}$ болической, если собственные числа матрицы якоби $\frac{\partial \xi}{\partial x} \mid_p$ нет чисел с нулевой веществнной частью. Если при этом все собственные имеют отрицательную часть, то точка p называется $\mathit{npumsrueanomed}$, $\mathit{cmokogod}$ movkod или cmokom , если все собственные числа имеют положительную вещественную часть, то точка p называется $\mathit{omman-}$ кивающей, $\mathit{ucmovhukogod}$ movkod или $\mathit{ucmokom}$.

Притягивающая или отталкивающая точка называется *узловой*. Гиперболическая неподвижная точка не являющаяся узловой называется *узловой точкой* или *седлом*.

Определение 5.2

Компактное инвариантное множество $\Lambda \subset int(X)$ потока f^t , не содержащее неподвижных точек назвается гиперболическим, если существует непрерывное Df^t – инвариантное разложение касательного подрасслоения $T_{\Lambda}X$ в прямую сумму

$$E_{\Lambda}^{s} \oplus E_{\Lambda}^{1} \oplus E_{\Lambda}^{u}, x \in \Lambda, \dim E_{X}^{s} + \dim E_{X}^{1} + \dim E_{X}^{u} = n \quad (1.1.2)$$

такое, что

$$||Df^{t}(v)|| \le c\lambda^{t}||v||, \ v \in E_{\Lambda}^{s}, \ t > 0$$
$$||Df^{-t}(v)|| \le c\lambda^{t}||v||, \ v \in E_{\Lambda}^{u}, \ t < 0$$

для некоторых фиксированных $c>0,\ 0<\lambda<1,\ E_X^1$ — одномерно и коллинеарно направлению потока.

```
--- рисунок ----
```

Гиперболичность замкнутой траектории потока равносильна гиперболичности неподвижной точки отображения последования (отображения Пуанкаре). Для траекторий потока f^t из некоторой окрестности периодической орбиты γ существует начальная секущая V_{γ} и отображения последования — отображения ν , сопоставляющее точке $v \in V_{\gamma}$ из некоторой окрестности точки $p = V_{\gamma} \cap \gamma$ точку $f^{t_0}(v)$, где t_0 — минимальное значение t, для которого $f^t(v) \in V_{\gamma}$. Тогда p — неподвижная точка диффеоморфизма ν . Траектория γ является гиперболической, когда модуль собственных чисел диффеоморфизма ν в неподвижной точке p отличен от 1.

Асимптотическое поведение траекторий вблизи гиперболической замкнутой траектории определяется типом неподвижной точки p отображения последования, связанного с этой траекторией.

Потоки, у которых всё объемлющее многообразие является гиперболическим множеством, называется nomokamu Ahocoba или Y-nomokamu.

Далее все утверждения (временно) для каскадов.

Гиперболическая структура множества Λ приводит к существованию у каждой точки $x \in \Lambda$ устойчивого W_x^s и неустойчивого W_x^u многообразий, которые в случае каскада определяется согласно следующей теореме:

Теорема 5.1 Обобщенная теорема об устойчивом многообразии

(Примечание. для случая гиперболических периодических точек эта теорема называется Адамара - Перрон)

Пусть $\Lambda \subset X$ гиперболическое множество для диффеоморфизма f и d — метрика на Λ , индуцированная метрикой на $T_{\Lambda}X$. Тогда для для любого $x \in \Lambda$ существует устойчивое многообразие $W^s_x = J^s_x(E^s_x)$, где $J^s_x \colon E^s_x \to X$ — инъективная иммерсия со следующими свойствами:

- $W_x^s = \{ y \in X : d(f^k(x), f^k(y)) \to 0, k \to +\infty \}$
- ullet если $x,y\in \Lambda,$ то W^s_x и W^s_y либо совпадают, либо не пересекаются.

- $\bullet \ f(W_x^s) = W_{f(x)}^s$
- касательное пространство для W_x^s в точке y при $y \in \Lambda$ есть E_y^s
- ullet если $x,y\in \Lambda$ близки, то W^s_x и $W^s_y-C^1$ близки на компактных множествах.

Гладкость устойчивого (неустойчивого) многообразия W_x^s (или W_x^u) не меньше, чем гладкость f, но из свойств инъективной иммерсии следует, что в общем случае оно является подмногообразием только локально.

Поэтому под размерностью $\dim W^s_x(\dim W^u_x)$ понимается топологическая размерность, которая в данном случае совпадают с $\dim E^s_x(\dim E^u_x)$. В случае топологической сопряженности диффеоморфизмов f и f' посредством сопрягающего гомеоморфизма h устойчивое (неустойчивое) многообразие $W^s_x(W^u_x)$ преобразуется в инвариантное многообразие $W^s_{h(x)}$ (или $W^u_{h(x)}$). Таким образом, свойство принадлежности точки устойчивому (неустойчивому) многообразию является топологическим инвариантом.

Пусть Λ — гиперболическое множество диффеоморфизмов $f: X \to X$. Тогда для любого $x \in \Lambda$ ограничение на $TW_x^s(TW_x^u)$ римановой метрики, заданной на TX, индуцирует метрику d^s (или d^u) на устойчивом (неустойчивом) многообразия $W_x^s(W_x^u)$, которая называется внутренней.

Филосовское замечание:

Значительная часть результатов, относящихся к гиперболическим множествам, опирается на возможности локально «спроектировать» на $W_x^s(W_x^u)$ свойство сжимаемости (растягиваемости) подпространств $E_x^s(E_x^u)$ относительно диффеоморфизма. Это позволяет получить локальную структуру произведения в окрестности любой точки базисного множества благодаря существованию прямой суммы $E_x^s \oplus E_x^u$, непрерывно зависящей от x.

Обозначим $W^s_{x,\varepsilon}-\varepsilon$ — окрестность точки $x\in\Lambda$ на подмногообразии W^s_x во внутренней метрике $d^s.$

Утверждение 5.1

Пусть Λ — гиперболическое множество диффеоморфизма $f: X \to X$, тогда:

• $\forall \delta>0$ $\exists \varepsilon(\delta)>0$ такое, что из условия $x\in\Lambda,$ $x_1,x_2\in W^s_{x,\varepsilon(\delta)}$ следует, что

$$d^{s}(x_{1}, x_{2}) < (1 + \delta)d(x_{1}, x_{2})$$

• $\exists \varepsilon>0,\, \mu<1$ такие, что из условия $x\in\Lambda,\, x_1,x_2\in W^s_{x,\varepsilon}$ следует, что

$$d^{s}(f(x_{1}), f(x_{2})) < \mu d^{s}(x_{1}, x_{2})$$

17