

Federiconi Filippo

Montilii Valentina

Scuderi Matteo

Spinello Sofia

2

SIX-PHASE INDUCTION MOTOR

DC MOTOR

- **STATOR**: Permanent Magnets
- **ROTOR**: Coil Windings
- COLLECTOR: changes sign of current

AC MOTOR

ROTOR

"Squirrel Cage"

STATOR

n-phase coil arrangements

AC MOTOR

The rotating magnetic field induces a current in the rotor's bars.
This current creates a MF itself.

The induced magnetic field, interacting with the stator's, causes the rotor to spin.

SIX PHASE ASYMMETRICAL INDUCTION MOTOR

AMAZON: LION 6

- 11,800 KG
- UP TO 105 KM/H
- 335 HP

WHAT'S THE CONTROL PROBLEM?

WE WANT TO ASSIGN A CERTAIN ROTOR VELOCITY ω_r

SIX PHASES SIX INPUT VOLTAGES

ONE REFERENCE $\underline{\omega_r}$

SIX INPUTS $[v_a \ v_b \ v_c \ v_d \ v_e \ v_f]$

- DOUBLE LOOP CONTROL SCHEME
- COORDINATE/INPUT TRANSFORMATIONS

MATHEMATICAL MODEL OF INDUCTION MOTOR

The system consists of an asymmetrical six-phase Induction Motor fed by two 2-level Voltage source Inverter.

To derive the state space equation the Vector space decomposition is used that brings to three sets of independent equation.

Each set of equation is related to a subspace:

- $\alpha \beta$ subspace \rightarrow k = 12n + 1 harmonics
- x y subspace $\rightarrow k = 6n + 1$ harmonics
- zero sequence subspace \rightarrow k = n 3 harmonics

Supplied by two 3-phase 2-level VSIs

MATHEMATICAL MODEL OF INDUCTION MOTOR

ALPHA-BETA SUBSPACE $[v_{\alpha} \ v_{\beta}]$

Flux/Torque producing components

CHANGE OF INPUT DIM. 6 → DIM. 4

X-YSUBSPACE $[v_x \ v_y]$

Loss producing components

 $\begin{array}{c} \textbf{0-SEQUENCE} \\ \textbf{SUBSPACE} \\ [v_{z1} \ v_{z2}] = \ [\textbf{0} \ \textbf{0}] \end{array}$

Zero component (in balanced conditions)

)

FRAMEWORKS COMPARISON

REAL INPUTS

ALPHA-BETA
FRAME
(CLARK TRANSFORMATION)

DIRECT
QUADRATURE
FRAME
(PARK TRANSFORMATION)

11

VECTOR SPACE DECOMPOSITION AND DISCRETE MODEL

Stator and rotor currents state vector

$$x(k) = [x_1(k), x_2(k), x_3(k)]^T$$

with

$$x_1(k) = \left[i_{s\alpha}(k), i_{s\beta}(k)\right]^T$$

$$x_2(k) = [i_{sx}(k), i_{sy}(k)]^T$$

$$x_3(k) = [i_{r\alpha}(k), i_{r\beta}(k)]^T$$

STATOR CURRENTS → OUTPUT VECTOR

$$y(k) = [x_1(k), x_2(k)]^T$$

= $[i_{s\alpha}(k), i_{s\beta}(k), i_{sx}(k), i_{sy}(k)]^T$

The discrete model of the system in state-space representation

$$x_1(k+1) = A_1x_1(k) + H_1x_3(k) + B_1u_1(k) + n_1(k)$$

$$x_2(k+1) = A_2x_2(k) + B_2u_2(k) + n_2(k)$$

$$x_3(k+1) = A_3x_1(k) + H_2x_3(k) + B_3u_1(k) + n_3(k)$$

$$y(k) = Cx(k)$$

the coefficients of the matrices are obtained by combining the electrical parameters of the system

STATOR VOLTAGES → INPUT VECTORS

$$u_{1}(k) = [u_{s\alpha}(k), u_{s\beta}(k)]^{T}$$

 $u_{2}(k) = [u_{sx}(k), u_{sy}(k)]^{T}$

VOLTAGE SOURCE INVERTER-INDUCTION MOTOR DRIVE

The stator voltages have a discrete nature due to VSI model and are obtained from

$$[u_{s\alpha}(k), u_{s\beta}(k), u_{sx}(k), u_{sy}(k)]^T = V_{dc}TM$$

$$\mathbf{M} = \frac{1}{3} \begin{bmatrix} 2 & 0 & -1 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 & 0 & -1 \\ -1 & 0 & 2 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & -1 \\ -1 & 0 & -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & -1 & 0 & 2 \end{bmatrix} \mathbf{S}^{T}$$

VSI model

DC -> AC CONVERTER

12

13

PRINCIPLE OF SLIDING MODE

Robust control technique

Drives the system states to a predefined switching surface in finite time

Ensures stability, despite the presence of disturbances

Sliding manifold

$$\sigma = \{x : s(x) = 0\}$$

Control law

$$u = \begin{cases} +u_0 & \text{if } s(x) > 0 \\ -u_0 & \text{if } s(x) < 0 \end{cases}$$

The discrete-time representation x(k+1) = Ax(k) + Bu(k)

Control input u(k)ensures s(k+1) = 0

PRINCIPLE OF SLIDING MODE

Controller Behavior

states reach the sliding surface mantains sliding motions

Disturbances and **Chattering** balanced by increasing control gain, leads to chattering

Chattering Mitigation introduce a boundary layer

CHATTERING **PHENOMENON**

High-frequency switching can cause chattering due to signal discontinuities, time delays, disturbances

Solutions:

- O Use continuous functions (e.g., saturation) instead of discontinuous signals
 - Design a **robust observer** to estimate system states
- **Integrate the control input** for smoother dynamics
- o Implement SMC in **discrete-time** to reduce switching effects

REAL TIME DISCRETE IMPLEMENTATION

Two options:

- analogue implementation of discontinous control law
- direct discrete implementation
 - with digital controller
- → real time implementation
- → chattering reduction: quasi-sliding mode acts like boundary layer

- → confining trajectories
- → suppressing high-frequency oscillations

TIME DELAY CONTROL

Estimates and compansate for system uncertainties and unmodeled dynamics using time-delayed signals

Assumptions:

system controllable and observable

the uncontrollable dynamics continuously differentiable

TDE error bounded

$$E = (H_i x_3(k) + n_i(k)) - (H_i \widehat{x_3}(k) + \widehat{n_i}(k)) < \delta$$

Time Delay Estimation: combines SMC and TDC to reduce chattering and approximates disturbances, incorporating them into the control law for stability

17

SMC and disturbances observes handle uncertainties,
with the assumption of their boundness and immutability in
consecutive sampling moments

SMC OF INDUCTION MOTORS

IM are a mainstay in industrial application, due to their reliability and efficiency, despite their nonlinear dynamics and sensitivity to parameter variations

SMC

provides robustness and disturbance rejection with low implementation complexity

- > simplifies the decoupling and linearization of motor dynamics
- enables independent control of torque and flux
- defines a sliding surface by the error between desired and actual stator currents

Integration of TDE into SMC

estimate and compensate for unknown rotor currents and disturbances

CONTROLLER DESIGN

Goal: Controlling speed and stator currents of the six-phase induction motor with robustness and precision.

Outer loop: regulates motor speed (ω_r) using a PI controller.

Inner loop: controls stator currents $(i_S^{\alpha}, i_S^{\beta}, i_S^{x}, i_S^{y})$ using DSMC with TDE

OUTER CONTROL LOOP

Function: It ensures that the motor's speed ω_r matches the reference speed ω_r^*

Steps:

- 1. Calculate the speed error $(\omega_r \omega_r^*)$
- 2. Generate the torque-producing current i_{qs}^{st} using a PI controller
- 3. Estimate angular rotor position δ_r from slip frequency ω_{sl}
- 4. Perform the Inverse Park Transformation to obtain (i^*_{lpha} , i^*_{eta}) \leftarrow current references for the inner loop

Goal: It forces the stator currents (i_S^lpha, i_S^eta) to track the references (i_lpha^*, i_eta^*)

The selected sliding surface is $e_{\phi}(k) = x_1(k) -$

$$x_1^d(k) = i_{s\phi}(k) - i_{s\phi}^*(k) = \sigma(k)$$
 with $\phi \in \{\alpha, \beta\}$

For ideal sliding motion the following conditions must be satisfied:

$$\sigma(k) = 0\sigma(k+1) = 0$$

Hence the discrete sliding mode control (DSMC) law for the stator currents in the $\alpha-\beta$ subspace is:

$$u_1(k) = B_1^{-1} \left[x_1^d(k+1) - A_1 x_1(k) - \underbrace{H_1 x_3(k) - n_1(k)}_{Estimated from TDE} + \lambda \sigma(k) - T_s \rho sign(\sigma(k)) \right]$$

With
$$\sigma(k+1) = \lambda \sigma(k) - T_S \rho sign(\sigma(k))$$

21

INNER CONTROL LOOP

(x-y) subspace

Goal: it minimizes the currents in the (x - y) subspace to reduce losses.

The sliding surface is selected as

$$e_{s_{xy}}(k) = x_2(k) - x_2^d(k) = \sigma^*(k) \text{ with } x_2^d(k) = [i_{sx}^*(k), i_{sy}^*(k)]^\mathsf{T}$$

The final control law is

$$u_2(k) = B_2^{-1} \left[x_2^d(k+1) - A_2 x_2(k) - \hat{n}_2(k) + \Gamma \sigma^*(k) - T_s \varrho sign(\sigma^*(k)) \right]$$

Where $\widehat{n_2(k)}$ is estimated using TDE

22

SIMULATION

VELOCITY TRACKING

CURRENT TRACKING

ALPHA SUBSPACE

BETA SUBSPACE

VOLTAGE INPUTS

 $[v_a \ v_b \ v_c \ v_d \ v_e \ v_f]$

CONCLUSIONS

There are many advantages in using this kind of control.

In fact, it is based on TDE method, that estimates uncertainties and disturbances, and on DSM that provides robustness against TDE error, finite-time convergence and chattering reduction.

The average switching frequency of the proposed method is lower than the conventional SMC and other controllers.

THANK YOU

