SMART AGRICULTURE SOLUTIONS USING MACHINE LEARNING ON SENSOR NETWORK DATA

CREATED BY: ADARSH JHA (2K17/CO/22)

ADITYA CHOUDHARY (2K17/CO/24)

GROUP NUMBER: 28

SUPERVISOR: DR. RK YADAV

Less Productivity in Agriculture Sectors (50 % workforce contributes 16% to the GDP).

Growing needs due to ever growing population

MOTIVATION

Lab tests are expensive, time consuming and generally not feasible for farmers.

IoT sensors can be used to measure gather data in bulk which can be analyzed using various AI techniques for increased productivity and quality.

LEVELS IN IOT

OBJECTIVES

Reconstruction of missing data

Evaluation of Irrigation Water Quality

- ✓ Prediction of WQI
- ✓ Classification based on WQI

Water Quality Dataset

DATASETS

Weather and Soil Sensor Data

Parameters Used

Water Quality Dataset

Data gathered by various underwater sensors and lab tests by Indian Government under NWQMP from various water bodies.

Temperature

Total Dissolved Oxygen

PH(Potential Hydrogen)

Electrical Conductivity Biological Oxygen Demand

Total Nitrate(NO₃-)

Fecal Coliform

Dissolved Oxygen

Parameters Used

Weather and Soil Sensor Data

Soil and weather parameters measured by USDA, Agricultural Research Service Air Temperature

Relative Humidity

Water Vapour Pressure

Dew Point Temperature

Wind Speed

Wind Direction

Incoming Solar Radiation

Relative Soil Moisture

Soil Temperature

Reconstruction of Missing Data

Prediction of WQI

OVERALL ARCHITECTURE

Classification based on WQI

RECONSTRUCTION OF MISSING DATA

Input from sensor data

Data preprocessing

Apply machine learning regressors

Apply the model on data having missing values

Evaluate
performance and
select the algorithm
with greatest
accuracy

PREDICTION OF WQI

Input from sensor data

Data preprocessing and reconstruction

Find out Q values and calculate WQI

Evaluate
performance and
select the algorithm
with greatest
accuracy

Apply machine learning regressors

CLASSIFICATION BASED ON WQI

Input from sensor data

Data preprocessing and reconstruction

Find out Q values and WQI class

Evaluate
performance and
select the algorithm
with greatest
accuracy

Apply classifiers

EXPERIMENTAL SETUP

Operating System

Unix based Windows NT based

Programming Languages

Python3

Python Libraries

Pandas NumPy Scikit-learn Matplotlib Seaborn

Results for prediction of missing values

Best result is obtained for ExtraTrees regressor

Method	MSE	R^2 Score
Linear Regression	11.31585	0.852188
Random Forest Regression	0.94134	0.9877
ExtraTrees Regressor	0.727	0.9905
Gradient Boosting Regressor	3.12163	0.95922
	2.04.420	
Polynomial Regression	3.26492	0.95735
MLP Regression	11.4655	0.85023

Results for prediction of WQI

Best result is obtained for Gradient Boosting Regressor

Method	MSE	R^2 Score
Linear Regression	42.56974	0.56938
Random Forest Regression	7.00893	0.9291
ExtraTrees Regressor	14.39321	0.8544
Gradient Boosting Regressor	8.05242	0.93297
Polynomial Regression	29.84263	0.69812
MLP Regression	36.46944	0.69642

Results for classification based on WQI

Best result is obtained for Random Forest Classifier

Method	Accuracy	Precision
ANN	0.63291	0.33629
SVM	0.83228	0.63661
GRADIENT BOOST CLASSIFIER	0.92089	0.73205
RANDOM FOREST CLASSIFIER	0.92405	0.73373
DECISION TREE	0.89241	0.69453

FUTURE WORKS

Develop a mobile/web application

Using Soil and Weather Data to predict crop yield

Work on other phases of agriculture such as soil preparation, crop selection, fertilizing and harvesting