Decision Tree - Entropy/Information Gain

Necessary Formulas:

- 1. Entropy, $E = -\sum p_i \log_2 p_i$; i = 1 to k, where k = number of classes.
- 2. Average Entropy, $E_{New} = (\sum -V_{ij} log_2 V_{ij} + \sum S_j log_2 S_j)/N$;
 - i = 1 to k, where k = number of classes and
 - j = 1 to n, where n = number of unique values for an attribute and
- 3. Information Gain, Ig = Estart Enew

<u>Iteration 1 (For Selecting the Root Node)</u>

We have 3 classes. So, The Value of Initial Entropy, Estart will be:

$$E_{Start} = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - p_3 \log_2 p_3$$

There are 4 instances with classification 1, 5 instances with classification 2 and 15 instances with classification 3. So, $p_1 = (4/24)$, $p_2 = (5/24)$ and $p_3 = (15/24)$.

$$E_{Start} = -(4/24) \log_2(4/24) - (5/24) \log_2(5/24) - (15/24) \log_2(15/24)$$

= 0.4308 + 0.4715 + 0.4238
= 1.3261 bits

Now, we need to calculate E_{New} for each of the attributes.

Frequency Table for Age

	Age = 1	Age = 2	Age = 3
Class 1	2	1	1
Class 2	2	2	1
Class 3	4	5	6
Sum	8	8	8

E _{New} (Age)	=	(- 2 log ₂ 2 - 1 log ₂ 1 - 1 log ₂ 1
		– 2 log ₂ 2 – 2 log ₂ 2 – 1 log ₂ 1
		- 4 log ₂ 4 - 5 log ₂ 5 - 6 log ₂ 6
		+ 8 log ₂ 8 + 8 log ₂ 8 + 8 log ₂ 8) / 24
	=	1.2867

Frequency Table for SpecRx

	SpecRx = 1	SpecRx = 2
Class 1	3	1
Class 2	2	3
Class 3	7	8
Sum	12	12

$$\begin{array}{rcl} \mathsf{E}_{\mathsf{New}}\left(\mathsf{SpecRx}\right) &=& (-3\log_2 3 - 1\log_2 1 - 2\log_2 2 \\ &-3\log_2 3 - 7\log_2 7 - 8\log_2 8 \\ &+12\log_2 12 + 12\log_2 12)/24 \\ &=& 1.2866 \end{array}$$

Frequency Table for Astig

	Astig = 1	Astig = 2
Class 1	0	4
Class 2	5	0
Class 3	7	8
Sum	12	12

E _{New} (Astig)	=	(-0-4 log ₂ 4 - 5 log ₂ 5 - 0 -7 log ₂ 7 - 8 log ₂ 8 + 12 log ₂ 12 + 12 log ₂ 12)/24
	=	0.9491

Frequency Table for Tears

	Tears = 1	Tears = 2
Class 1	0	4
Class 2	0	5
Class 3	12	3
Sum	12	12

$$\begin{array}{rcl} E_{\text{New}} \, (\text{Tears}) & = & (-0 - 4 \, \log_2 4 - 0 - 5 \, \log_2 5 \\ & & -12 \, \log_2 12 - 3 \, \log_2 3 + 12 \, \log_2 12 \\ & & +12 \, \log_2 12) / 24 \\ & = & 0.7773 \end{array}$$

$$Ig (Age) = E_{Start} - E_{New} (Age) = 1.3261 - 1.2867 = 0.0394$$

$$Ig (SpecRx) = E_{Start} - E_{New} (SpecRx) = 1.3261 - 1.2866 = 0.0395$$

$$Ig (Astig) = E_{Start} - E_{New} (Astig) = 1.3261 - 0.9491 = 0.377$$

$$Ig (Tears) = E_{Start} - E_{New} (Tears) = 1.3261 - 0.7773 = 0.5488$$

<u>Iteration 2 (For Branch Tears = 2)</u>

There are 4 instances with classification 1, 5 instances with classification 2 and 3 instances with classification 3. So, $p_1 = (4/12)$, $p_2 = (5/12)$ and $p_3 = (3/12)$.

$$E_{Start} = -(4/12) \log_2 (4/12) - (5/12) \log_2 (5/12) - (3/12) \log_2 (3/12)$$

= 0.5283 + 0.5263 + 0.5
= 1.5546 bits

Now, we need to calculate E_{New} for each of the attributes.

Frequency Table for Age

Γ		Λ 1	Λ Ω	Λ
L		Age = 1	Age = 2	Age = 3
	Class 1	2	1	1
	Class 2	2	2	1
	Class 3	0	1	2
	Sum	4	4	4

E _{New} (Age)	=	$(-2 \log_2 2 - 1 \log_2 1 - 1 \log_2 1 - 2 \log_2 2 - 2 \log_2 2 - 1 \log_2 1 - 0 - 1 \log_2 1 - 2 \log_2 2 + 4 \log_2 4 + 4 \log_2 4 + 4 \log_2 4)/12$
	=	1.3333

Frequency Table for SpecRx

	SpecRx = 1	SpecRx = 2
Class 1	3	1
Class 2	2	3
Class 3	1	2
Sum	6	6

$$\begin{array}{rcl} E_{\text{New}} \left(\text{SpecRx} \right) & = & \left(-3 \log_2 3 - 1 \log_2 1 - 2 \log_2 2 - 3 \log_2 3 - 1 \log_2 1 - 2 \log_2 2 + 6 \log_2 6 + 6 \log_2 6 \right) / 12 \\ & = & 1.4592 \end{array}$$

Frequency Table for Astig

	Astig = 1	Astig = 2
Class 1	0	4
Class 2	5	0
Class 3	1	2
Sum	6	6

E_{New} (Astig) =
$$(0-4 \log_2 4 - 5 \log_2 5 - 0 - 1 \log_2 1 - 2 \log_2 2 + 6 \log_2 6 + 6 \log_2 6)/12$$

= 0.7842

$$Ig (Age) = E_{Start} - E_{New} (Age) = 1.5546 - 1.3333 = 0.2213$$

$$Ig (SpecRx) = E_{Start} - E_{New} (SpecRx) = 1.5546 - 1.4592 = 0.0954$$

$$Ig (Astig) = E_{Start} - E_{New} (Astig) = 1.5546 - 0.7842 = 0.7704$$

Iteration 3 (For Branch Astig = 1)

There are 5 instances with classification 2 and 1 instance with classification 3. So, $p_1 = (5/6)$ and $p_2 = (1/6)$.

$$E_{Start} = -(5/6) \log_2 (5/6) - (1/6) \log_2 (1/6)$$

= 0.2192 + 0.4308
= 0.65 bits

Now, we need to calculate E_{New} for each of the attributes.

Frequency Table for Age

	Age = 1	Age = 2	Age = 3
Class 1	0	0	0
Class 2	2	2	1
Class 3	0	0	1
Sum	2	2	2

E _{New} (Age)	=	$(0-0-0-2 \log_2 2 - 2 \log_2 2 - 1 \log_2 1 - 0 - 0 - 1 \log_2 1 + 2 \log_2 2 + 2 \log_2 2 + 2 \log_2 2)/6$
	=	0.3333

Frequency Table for SpecRx

	SpecRx = 1	SpecRx = 2
Class 1	0	0
Class 2	2	3
Class 3	1	0
Sum	3	3

$$E_{\text{New}} (\text{SpecRx}) = (0 - 0 - 2 \log_2 2 - 3 \log_2 3 - 1 \log_2 1 - 0 + 3 \log_2 3 + 3 \log_2 3)/6$$
$$= 0.4592$$

$$\begin{array}{l} Ig~(Age) = E_{Start} - E_{New}~(Age) = 0.6500 - 0.3333 = 0.3167 \\ Ig~(SpecRx) = E_{Start} - E_{New}~(SpecRx) = 0.6500 - 0.4592 = 0.1908 \end{array}$$

<u>Iteration 4 (For Branch Astig = 2)</u>

There are 4 instances with classification 1 and 2 instance with classification 3. So, $p_1 = (4/6)$ and $p_2 = (2/6)$.

$$E_{Start} = -(4/6) \log_2 (4/6) - (2/6) \log_2 (2/6)$$

= 0.3900 + 0.5283
= 0.9183 bits

Now, we need to calculate E_{New} for each of the attributes.

Frequency Table for Age					
	Age = 1	Age = 2	Age = 3		
Class 1	2	1	1		
Class 2	0	0	0		
Class 3	0	1	1		
Sum	2	2	2		

E _{New} (Age)	=	(-2 log ₂ 2 - 1 log ₂ 1 - 1 log ₂ 1 - 0 - 0 - 0 - 0 - 1 log ₂ 1 - 1 log ₂ 1 + 2 log ₂ 2 + 2 log ₂ 2 + 2 log ₂ 2)/6
	=	0.6667

Frequency Table for SpecRx				
	SpecRx = 1	SpecRx = 2		
Class 1	3	1		
Class 2	0	0		
Class 3	0	2		
Sum	3	3		

E_{New} (SpecRx) =
$$(-3 \log_2 3 - 1 \log_2 1 - 0 - 0 - 0 - 2 \log_2 2 + 3 \log_2 3 + 3 \log_2 3)/6$$

= 0.4592

$$\begin{array}{l} Ig \; (Age) = E_{Start} - E_{New} \; (Age) = 0.9183 - 0.6667 = 0.2516 \\ Ig \; (SpecRx) = E_{Start} - E_{New} \; (SpecRx) = 0.9183 - 0.4592 = 0.4591 \end{array}$$

