

DevOps for Machine Learning

Safir Mohammad Mustak Shaikh

Agenda

Introduction

MLOps

Implementation

Benchmarks

Conclusion & Future Scope

References

Motivation

- Knowledge Gap between Data Scientists and Operations Team
- Evolving Environment
- Model Drifting
 - Data Drifting
 - Concept Drifting
- Case Study [1]
 - A chatbot released by Microsoft for Twitter
 - Within a few hours, the bot learned not only the language from people but also their values
 - It started tweeting highly offensive things

Introduction

- Goal
- Why DevOps?
- What is MLOps?
- DevOps vs. MLOps
- Elements on an ML system
- Data Science steps in an ML system

MLOps Levels

- Level 0: Manual Process
- Level 1: Automating ML Pipeline
- Level 2: Automating CI/CD Pipeline

MLOps Level 0: Manual Process

Figure: Level 0 Architecture [2]

MLOps Level 1: Automating ML Pipeline

Figure: Level 1 Architecture [2]

MLOps Level 1 Properties

- Characteristics
- Added Components
 - Data & Model Validation
 - Feature Store
 - Metadata Management
 - Pipeline Triggers
 - On Demand
 - Schedule Based
 - Availability of New Data
 - Model Performance Degradation
 - Changes in Data Distribution
- Challenges

MLOps Level 2: Automating CI/CD Pipeline

Figure: Level 2 Architecture [2]

Transparency

- Concept
- Methods
 - Local Methods
 - LIME [3]
 - Anchor [4]
 - SHAP [5]
 - ICE [6]
 - Global Methods
 - PDP [6]
 - Global Surrogate [7]

Local Transparency Methods

				f(x)		base value						
).0577	0.0423	0.1423	0.2423	0.34 3	0.4423	0.5423	0.6423	0.7423	0.8423	0.9423	1.042	1.142
_					-				-			
		·>>> >	\rangle \rangle			(

3 X1_ActualAcceleration = -25 S1_ActualPosition = 1,100 S1_CommandPosition = 1,100 M1_sequence_number = 46 S1_CurrentFeedback = 15.7 Y1_ActualAcceleration = -1

higher Z lower

Global Surrogate

Implementation

CNC Mill Tool Wear App:

- The latest technology AutoML [8], for model development
- LIME [3], SHAP [5], Anchor [4], and Global Surrogate [7] as transparency methods
- ML-Flow [9] for tracking model experiments
- Prometheus [10] and Grafana [11] for monitoring
- Other endpoints for data distribution, model statistics, application metrics, and retraining

Benchmarks - MLOps

- MLOps Level 2
 - Automated Pipeline
 - Model Registry
 - Data and Model Analysis
 - Feature Store
 - Model Serving
 - Performance Monitoring
 - ML Metadata Store
 - Triggering

Benchmarks - Model Metrics

	Accuracy	Precision	Recall	F-1 Score	Correlation Coefficient
Decision Tree	99.00 %	0.9900	0.9915	0.9908	0.9799
Random Forest	99.34 %	0.9942	0.9937	0.9939	0.9868
Auto- Sklearn	99.46 %	0.9958	0.9942	0.9950	0.9891

Table: Performance Metrics

Conclusion

- MLOps
 - Standardized & Automated Model Deployment
 - Effective Model Performance
 - Lessened Failures
- Transparency
 - Better Understanding
 - Key to Analyze & Improve the System
- Cloud-Support Technologies
 - Faster Deployment
 - High Quality Operations

Future Scope

- Python Docker Image
- Under Development Tools

References I

O. SCHWARTZ, "In 2016, Microsoft's Racist Chatbot Revealed the Dangers of Online Conversation," Nov 2019. [Online]. Available: https://spectrum.ieee.org/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation

"MLOps: Continuous delivery and automation pipelines in machine learning," 07 2020. [Online]. Available: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

M. T. Ribeiro, S. Singh, and C. Guestrin, ""Why Should I Trust You?": Explaining the Predictions of Any Classifier," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016, pp. 1135–1144.

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin, "Anchors: High-Precision Model-Agnostic Explanations," in AAAI Conference on Artificial Intelligence (AAAI), 2018.

References II

S. M. Lundberg and S.-I. Lee, "A Unified Approach to Interpreting Model Predictions," in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," **Journal of Machine Learning Research**, vol. 12, pp. 2825–2830, 2011. [Online]. Available: https://scikit-learn.org/stable/modules/partial_dependence.html

Christoph Molnar, "Global Surrogate," in Interpretable Machine Learning - A Guide for Making Black Box Models Explainable. BOOKDOWN, 10 2021, pp. 221–226. [Online]. Available: https://christophm.github.io/interpretable-ml-book/global.html

References III

- Frank Hutter, Marius Lindauer, "AutoML | Freiburg-Hannover," 2018, Last Accessed: 2020-10-22. [Online]. Available: https://www.automl.org/automl/
- Databricks, "MLflow An open source platform for the machine learning lifecycle," 2018. [Online]. Available: https://mlflow.org/
- Bjorn Rabenstein and Julius Volz, "Prometheus: A Next-Generation Monitoring System (Talk)." Dublin: USENIX Association, May 2015. [Online]. Available: https://prometheus.io/docs/introduction/overview/
- Grafana Labs, "Grafana Documentation," 2018. [Online]. Available: https://grafana.com/docs/