Introduction to Hotwire Anemometry

Prof. Amit Agrawal
Department of Mechanical Engg.
IIT Bombay

Introduction

 Basic principle – amount of cooling experienced by a heated wire can be related to the local flow velocity

- A small diameter metal wire sensor (made of tungsten, platinum or platinum alloy) is heated over flow temperature using an electric current
- Typically, diameter of wire = 0.5-5 $\mu m,$ length = 0.15-1.5 mm, resistance ~ 4 ohms
- Similar to hot-wire, we can also have hot-film consists of a thin metal film deposited over a quartz core
- Hot-wire mostly used with gases and hot-film with flow of liquids

Principle of Hot-wire Anemometry

Resistance of a wire depends linearly on its temperature.

$$R_s = R_f[1 + \alpha(T_s - T_f)] \qquad \dots \tag{1}$$

where R_s is electrical resistance at temperature T_s , R_f is resistance at T_f , and α is temperature-resistance coefficient (= 0.004 K⁻¹ for tungsten and platinum)

From energy balance we have,

$$dQ/dt = P - F$$
 ... (2)

where Q is internal energy of sensor, P is electrical input power to sensor, and F is total rate of heat transferred from the sensor

Now,
$$F = q_c + q_p + q_r + q_s$$

where q_c is heat transfer rate due to convection from sensor to flow

 q_p is heat transfer due to conduction to supporting prongs

 q_r is heat transfer due to radiation from sensor to surrounding

 q_s is heat transfer to quartz substrate (relevant only in hot-film) $_3$

 $\label{eq:convection} \textbf{q}_{\text{convection}} = \textbf{h} \text{ (heat transfer coefficient) * A (surface area) * del_T (temperature difference between surface and fluid)}$

Heat transfer coefficient = f(geometry of surface, flow velocity, fluid properties)

For a fixed geometry: Heat transfer coefficient = h(flow velocity, fluid properties) $hd/k = g((rho^*u^*d/mu), (mu^*Cp/k))$ Nu (Nusselt number) = g(Re, Pr)

Principle of Hot-wire Anemometry (contd.)

Analyzing the factors contributing to heat loss, we get -

- Heat loss to the prong supports can be neglected if the aspect ratio (I/d) of the wire is large (> 200)
- · Radiation heat transfer can usually be neglected with respect to convective heat transfer
- Note, heat transfer by convection be either be forced or free their relative magnitudes will depend on the local flow velocity
- We want forced convection to dominate for this $\mathbf{Re_d} > \mathbf{Gr^{1/3}}$ where Re_d is Reynolds no. based on wire diameter and Gr is Grashof number
- For a circular cylinder in cross-flow, the average Nusselt number (Nu_d) is

given by (Incropera and DeWitt, p 411) provided
$$Re_d Pr > 0.2$$

$$Nu_d = 0.3 + \frac{0.62 \operatorname{Re}_d^{1/2} \operatorname{Pr}^{1/3}}{[1 + (0.4/\operatorname{Pr})^{2/3}]^{1/4}} \left[1 + \left(\frac{\operatorname{Re}_d}{282000} \right)^{5/8} \right]^{4/5} \quad \text{where} \quad Nu_d = \frac{hd}{k} \operatorname{Re}_d = \frac{\rho U d}{\mu}$$

 \bullet For air (with Pr close to unity) and Re_{d} small (< 120), we get $h = C_0 + C_1 * \operatorname{sqrt}(U)$... (3) where h is heat transfer coefficient, C_0 , C_1 are constants, U is local flow velocity, and Pr is Prandtl number

Principle of Hot-wire Anemometry (contd.)

· Electrical power input to sensor $P = E^2/R_s = I^2R_s$ where E is voltage across wire

• Note that R_s can be related to T_s (using Eq (1))

• Therefore, Eq (2) can be written as

$$mC_p dT_s/dt = P(I, T_s) - F(U, T_s)$$

Zero order instrument: No derivative with respect to time is involved

First-order instrument: First order derivative

Second-order instrument: Second order derivative

where m is mass of wire, C_p is specific heat of wire material, T_s is wire (surface) temperature, U is component of velocity vector normal to the wire, and I is current supplied to the wire

- Want either I or T_s to be a constant, then U can be related to the other variable - called constant current and constant temperature modes of operation
- Constant temperature mode is preferred so that the thermal inertia (mC_p dT_s/dt term) does not come into picture

Principle of Hot-wire Anemometry (contd.)

- For constant temperature mode, Eq. (4) reduces to $E^2/R_s = hS(T_s T_o) \qquad ... \qquad (5)$ where S is surface area of wire and T_o is flow temperature
- Substituting Eq. (3) in Eq. (5), we get $E^2/R_s = (C_0 + C_1 * sqrt(U)) \ S \ (T_s T_o)$

which is usually rewritten as $E^2 = A + B \ U^{1/n} \qquad \qquad \dots \tag{6}$

A, B and 1/n are calibration constants.

1/n is expected to be close to 0.5 – comes in the range of 0.4-0.5 Eq (6) is referred to as the Kings law

7

Typical calibration curve

Voltage (V) versus velocity (m/s)