Modèles linéaires généralisés sur données de comptages Master 2 MIND

Ryma Lakehal

Faculté des sciences Université de Montpellier

8 novembre 2020

Plan

Introduction

Le modèle linéaire généralisé

Données Parastism

Présentation des données Parastism

Visualisation des Parastism

Modèle linéaire classique

Normalité des résidus Homoscédasticité

Régression de Poisson

Ajustement du modèle de régression linéaire de Poisson aux donnéesParastism

Régression binomiale négative

Ajustement du modèle de régression binomiale négative aux donnéesParastism Calculs des effets marginaux

conclusion

Introduction

- Régression de Poisson
- Régression binomiale négative

Pourquoi ces modèles?

• Les modèles linéaires classiques ne sont pas adaptés pour analyser des variables à expliquer (ou réponses) de type "comptage".

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
$$\varepsilon \sim N(0, \sigma)$$

- Les données de type comptage ne sont pas distribuées selon une loi Normale.
- La variance des résidus n'est pas constante mais proportionnelle aux comptages moyens prédits par le modèle.

Le modèle linéaire généralisé

$$y_i \sim N(\mu_i, \sigma)$$
$$E(Y|X) = \mu$$
$$\mu_i = \beta_0 + \beta_1 x_i$$

Ces modèles sont constitués de trois éléments :

- un prédicteur linéaire, $\eta = X\beta$
- une distribution de probabilité de la famille exponentielle $y_i \sim \operatorname{Prob}(\mu_i)$
- une fonction de lien $\eta_i = g(\mu_i)$

Présentation des données Parastism

- 196 fruits contient au moins un parasitoïde vivant ou éradiqué
- 63 fruits non infectés "contrôlés"
- 67 fruits avec le parasite A. melinus sans sucre
- 66 fruits infectés du même parasite plus le sucre
- au total : 949 parasitoïdesvivants et 365 parasites éliminés contenant un œuf ou larves d'Aphytis.

	Treatment	Fruit	Alive	Parasitized
0	Releases_sugar	1	4	8
1	Releases_sugar	2	0	3
2	Releases_sugar	3	4	3
3	Releases_sugar	4	2	2
4	Releases_sugar	5	1	1

	Fruit	Alive	Parasitized
count	196.000000	196.000000	196.000000
mean	33.188776	4.841837	1.862245
std	18.944185	6.140282	2.955465
min	1.000000	0.000000	0.000000
25%	17.000000	2.000000	0.000000
50%	33.000000	3.000000	1.000000
75%	49.250000	5.000000	2.000000
max	67.000000	37.000000	23.000000

Visualisation des données Parastism

FIGURE - Histogramme des traitements en fonction de la variable Parasitized

Modèlisation linéaire

Le modèle :

Parasitized_i =
$$\beta_0 + \beta_1 Control_i + \beta_2 Realises_i + \beta_3 Realises_sugar_i + \varepsilon_i$$

 $\varepsilon \sim N(0, \sigma)$ (3)

FIGURE - Distribution et normal Q-Q plot des résidus du modèle linéaire ajusté

Homoscédasticité - scale-location plot

FIGURE - scale-location plot pour vérifier l'homoscédasticité

Régression de Poisson

Le modèle est :

$$Parasitized_i \sim Poisson(\mu_i)$$
 $\mathbb{E}(Parasitized|Treatment) = \mu$
$$\mu_i = \exp(\eta_i)$$

$$\eta_i = \beta_0 + \beta_1 Control_i + \beta_2 Realises_i + \beta_3 Realises_sugar_i$$

L'ajustement est réalisé à l'aide de la fonction Poisson.fit du module statsmodels

Régression de Poisson

Generalized Linear Model Regression Results

			[-]	[0.023	
co	oef std err	Z	P> z	[0.025	0.975]
nonrobust 		========	=======	:=======	
-					
	Pearson chi2:		818	3 .	
Sun, 08 Nov 2020	Deviance:		595.6	8	
IRLS	Log-Likelihood:		-460.4	15	
log	Scale:		1.000	00	
Poisson	Df Model:			2	
GLM	Df Residuals:		19	13	
Parasitized	No. Observations:		19	16	
	GLM Poisson log IRLS Sun, 08 Nov 2020 03:02:42 5 nonrobust	GLM Df Residuals: Poisson Df Model: log Scale: IRLS Log-Likelihood: Sun, 08 Nov 2020 Deviance: 03:02:42 Pearson chi2: 5 nonrobust	GLM Df Residuals: Poisson Df Model: log Scale: IRLS Log-Likelihood: Sun, 08 Nov 2020 Deviance: 03:02:42 Pearson chi2: 5 nonrobust	GLM Df Residuals: 19 Poisson Df Model: log Scale: 1.000 IRLS Log-Likelihood: -460.4 Sun, 08 Nov 2020 Deviance: 595.6 03:02:42 Pearson chi2: 818	GLM Df Residuals: 193 Poisson Df Model: 2 log Scale: 1.0000 IRLS Log-Likelihood: -460.45 Sun, 08 Nov 2020 Deviance: 595.68 03:02:42 Pearson chi2: 818. 5 nonrobust

Intercept 0.3112 2.886 0.004 0.523 0.108 0.100 C(Treatment)[T.Releases] 0.0274 0.149 0.184 0.854 -0.265 0.320 C(Treatment)[T.Releases sugar] 0.7195 0.131 5.513 0.000 0.464 0.975

Le ratio residual deviance/ddl est égal à 5304.4/193, soit 27,48. Ce ratio est très largement supérieur à 1 et ce qui permet de mettre en évidence la présence d'une surdispersion

$$\begin{aligned} \textit{Parasitized}_i &\sim \textit{NB}(\mu, \textit{k}) \\ & \text{E}(\textit{Parasitized} | \textit{Treatment}) = \mu \\ & \mu_i = \exp(\eta_i) \\ & \eta_i = \beta_0 + \beta_1 \textit{Control}_i + \beta_2 \textit{Realises}_i + \beta_3 \textit{Realises_sugar}_i \end{aligned}$$

Generalized Linear Model Regression Results

Dep. Variable:	Parasitized	No. Observations:	196
Model:	GLM	Df Residuals:	193
Model Family:	NegativeBinomial	Df Model:	2
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-355.42
Date:	Sat, 07 Nov 2020	Deviance:	228.53
Time:	22:45:25	Pearson chi2:	290.
No. Iterations:	5		
Covariance Type:	nonrobust		

coef	std err	Z	P> z	[0.025	0.975]
0.3112	0.166	1.877	0.061	-0.014	0.636
0.0274	0.230	0.119	0.905	-0.424	0.479
0.7195	0.219	3.282	0.001	0.290	1.149
	0.3112 0.0274	0.3112 0.166 0.0274 0.230	0.3112	0.3112 0.166 1.877 0.061 0.0274 0.230 0.119 0.905	0.3112

Le ratio residual deviance/ddl est égal à 1.18

HMMA307 8 novembre 2020 11 / 13

Calculs des effets marginaux

NegativeDinemial Manginal Effects

Les effets marginaux sont utilisées pour décrire l'impact d'un prédicteur sur la variable à expliquer.

On s'intéresse aux effects marginaux moyen, pour ce faire, on a la fonction .get_margeff() de la bibliothèque Statsmodels.

Megaciveninomiai Marginai	Lifects					
Dep. Variable: P Method: At:	====== arasitized dydx mean					
	dy/dx	std err	Z	P> z	[0.025	0.975]
C(Treatment)[T.Releases] C(Treatment)[T.Releases_sug	0.0481 ar] 1.2632	0.438 0.429	0.110 2.948	0.913 0.003	-0.811 0.423	0.907 2.103

La valeur de **Releases_sugar** est 1.26 ce qui peut être interprété que quand la valeur de **Releases_sugar** augmente d'une unité, la probabilité des parasitoïdes éliminé ou le taux de parasitism augmente de 126%.

Conclusion

En appliquant les différents modèles de modélisation, nous avons constaté que le modèle linéaire généralisé de distribution binomiale négative est celui qui s'adapte le mieux à notre jeu de données **Parastism**. Et de ce dernier modèle, on conclut que les provisions de sucre aident les parasitoïdes à maintenir leurs réserves de sucre ce qui fera augmenter leurs fécondités et ainsi le taux de parasitisme (Parasitism)