MTH5105 Differential and Integral Analysis 2008-2009

Exercises 5

Exercise 1: Let $f(x) = \exp(\sqrt{x})$, $g(x) = \sin(\pi x)$, and $P = \{0, 1, 4, 9\}$.

- (a) Find the upper and lower sums U(f, P) and L(f, P) of f for the partition P. Use these sums to give bounds for $\int_0^9 f(x) dx$. [5 marks]
- (b) Find the upper and lower sums U(g, P) and L(g, P) of g for the partition P. Use these sums to give bounds for $\int_0^9 g(x) dx$. [5 marks]

Solution: (a) Recall that $I_i = [x_i - x_{i-1}], \ \Delta x_i = x_i - x_{i-1}, \ M_i = \sup_{x \in I_i} f(x), \ \text{and} \ m_i = \inf_{x \in I_i} f(x).$ We have

$$I_1 = [0, 1] , \qquad \Delta_1 = 1 , \qquad M_1 = \exp(1) , \qquad m_1 = \exp(0) ,$$

 $I_2 = [1, 4] , \qquad \Delta_2 = 3 , \qquad M_2 = \exp(2) , \qquad m_2 = \exp(1) ,$
 $I_3 = [4, 9] , \qquad \Delta_3 = 5 , \qquad M_3 = \exp(3) , \qquad m_3 = \exp(2) .$

[2 marks]

Therefore

$$U(f, P) = \sum_{i=1}^{3} M_i \Delta x_i = 1 \exp(1) + 3 \exp(2) + 5 \exp(3) ,$$

$$L(f, P) = \sum_{i=1}^{3} m_i \Delta x_i = 1 \exp(0) + 3 \exp(1) + 5 \exp(2) .$$

[2 marks]

Hence we have

$$1 + 3e + 5e^{2} \le \int_{0}^{9} f(x) dx \le e + 3e^{2} + 5e^{3}.$$

[1 marks]

(In fact, the integral evaluates to $2 + 4e^3 \approx 82.3$, while the lower and upper sums are approximately 46.1 and 125.3.)

(b) We have now

$$M_1=1\;,\quad m_1=0\;,\quad M_2=1\;,\quad m_2=-1\;,\quad M_3=1\;,\quad m_3=-1\;.$$
 [2 marks]

Therefore

$$U(g, P) = 1 \cdot 1 + 3 \cdot 1 + 5 \cdot 1$$
, $L(g, P) = 1 \cdot 0 + 3 \cdot (-1) + 5 \cdot (-1)$. [2 marks]

Hence we have

$$-8 \le \int_0^9 g(x) \, dx \le 9 \; .$$

[1 marks]

Exercise 2: Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}.$$

- (a) Given a partition P of [-1,1], what is L(f,P)?

 What is $\int_{-1}^{1} f(x) dx$?

 [3 marks]
- (b) For fixed $\epsilon > 0$, find a partition P of [-1,1] such that $U(f,P) < \epsilon$.

 What is $\overline{\int_{-1}^{1} f(x) dx}$? [5 marks]
- (c) Is f integrable on [-1, 1]? If so, what is its integral? [2 marks]
- Solution: (a) Given a partition P of [-1,1], the function f has infimum 0 in any sub-interval. Therefore L(f,P)=0 for any partition P. [2 marks] Hence $\int_{-1}^{1} f(x) \, dx = 0$. [1 mark]
 - (b) For $0 < \delta < 1$, choose $P = \{-1, -\delta, \delta, 1\}$. On the intervals $[-1, -\delta]$ and $[\delta, 1]$ the function f has maximum value 0. On the interval $[-\delta, \delta]$ it has maximum value 1. Therefore

$$U(f, P) = ((-\delta) - (-1)) \cdot 0 + (\delta - (-\delta)) \cdot 1 + (1 - \delta) \cdot 0 = 2\delta$$
,

and if we choose $\delta < \epsilon/2$, we have $U(f, P) < \epsilon$. [3 marks] Hence $\int_{-1}^{1} f(x) dx \le 0$. Using (a), we have

$$0 = \int_{-1}^{1} f(x) dx \le \overline{\int_{-1}^{1}} f(x) dx \le 0 ,$$

so that $\int_{-1}^{1} f(x) dx = 0$. [2 marks]

(c) As

$$\int_{-1}^{1} f(x) \, dx = \overline{\int_{-1}^{1}} f(x) \, dx = 0 \; ,$$

f is integrable and $\int_{-1}^{1} f(x) dx = 0$. [2 marks]

Exercise 3: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Consider the equidistant partitions P_n of [0,1] into n subintervals.

(a) Find
$$U(f, P_n)$$
. What can you say about $\overline{\int_0^1} f(x) dx$? [4 marks]

(b) Find
$$L(f, P_n)$$
. What can you say about $\int_0^1 f(x) dx$? [4 marks]

(c) Is
$$f$$
 integrable on $[0,1]$? If so, what is its integral? $[2 \text{ marks}]$

[Hint:
$$\sum_{j=1}^{n} j^2 = \frac{1}{6}n(n+1)(2n+1)$$
.]

Solution: We have

$$P_n = \{0/n, 1/n, \dots, n/n\}$$
,

or $x_i = i/n$ for $i = 0, \ldots, n$. Thus, $I_i = [(i-1)/n, i/n]$ and $\Delta x_i = 1/n$.

(a) We have $M_i = (i/n)^2$ and thus

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \left(\frac{i}{n}\right)^2 \left(\frac{1}{n}\right)$$
$$= \frac{1}{n^3} \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}.$$

[3 marks]

Hence,
$$\overline{\int_0^1} f(x) dx \le 1/3$$
.

[1 mark]

(b) Similarly we have $m_i = ((i-1)/n)^2$ and thus

$$L(f,P) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \left(\frac{i-1}{n}\right)^2 \left(\frac{1}{n}\right)$$
$$= \frac{1}{n^3} \sum_{i=1}^{n} (i-1)^2 = \frac{(n-1)n(2n-1)}{6n^3} = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2}.$$

[3 marks]

Hence,
$$\int_0^1 f(x) \, dx \ge 1/3$$
.

[1 mark]

(c) Combining these we see that $\int_0^1 x^2 dx$ exists and equals 1/3. [2 marks]