Problemas Inversos em Python

Sergio Pedro Rodrigues Oliveira 30 December 2024

SUMÁRIO

1	PRI	NCIPAIS TOPICOS	1							
2	DAI	ADOS								
	2.1	O que são dados?	1							
	2.2	Informação	1							
	2.3	Tabela banco de dados termos	1							
	2.4	Teoria	2							
	2.5	Tipos de variáveis	2							
3	Esta	atística Básica (Teoria medidas de posição e dispersão)	3							
	3.1	Preparação dos dados para aplicação de estatística básica	3							
		3.1.1 Teoria	3							
		3.1.2 Preparação dos dados (sumariazar dados coletados)	6							
		3.1.2.1 Variável Quantitativa Discreta	7							
		3.1.2.2 Variável Quantitativa Contínua	8							
		3.1.2.3 Variáveis Qualitativas	13							
	3.2	Medidas de posição	13							
	3.3	Medidas de dispersão	13							
	3.4	Análise Estatística	14							
4	EXC	CEL	15							
	4.1	Ferramentas do Excel	15							
	4.2	Filtro Excel	15							
	4.3	Tabela dinâmica	15							
	4.4	Gráficos	15							
	4.5	Bloco if-else - SE()	16							
	4.6	Cruzar dados	16							

LISTA DE FIGURAS

1	Estatística descritiva
2	Tipos de variáveis.
3	Distribuição tabular quantitativo discreta
4	Distribuição de frequências em classes
5	Intervalo de classes, para distribuição de frequência quantitativa contínua
6	Premissas da distribuição de frequências quantitativa contínua
7	Tabela de distribuição de frequência quantitativa contínua

LISTA DE TABELAS

1 PRINCIPAIS TÓPICOS

2 DADOS

2.1 O que são dados?

Dados são valores brutos atribuidos a algo.

2.2 Informação

- Informação é a ordenação e organização dos dados de forma a transmitir significado e compreensão dentro de um contexto.
- Informação é o significado que a gente obtém a partir dos dados.
- Informação = fazer perguntas para os dados (responder pergunta).
- Nem sempre podemos confiar nos dados, é preciso entender o contexto dos dados.
 - De onde eles vem?
 - Quem são as pessoas que responderam?
 - O que são esses dados?

2.3 Tabela banco de dados termos

Table 1: Bnaco de dados nomeclaturas

Nomeclatura	Nomeclatura técnica
Coluna(s)	Campo(s)
Linha(s)	Registro(s)

2.4 Teoria

- Análise descritiva dos dados através da tabulação das variáveis e cálculo de medidas descrititvas (média, desvio-padrão, etc).
- Análise descritiva dos dados (Informações preliminares):
 - Contagem dos resultados observados em cada variável do conjunto de dados.
 - Natureza descritiva dos dados, tipo de variáveis (categórica ou numérica).
 - Três objetivos principais:
 - * Verificar erros e anomalias.
 - * Compreender a distribuição de cada uma das variáveis isoladamente.
 - * Compreender a natureza e a força das relações entre as variáveis.
- Após essas etapas, estabelecer um modelo estatístico formal e relatar suas conclusões.

2.5 Tipos de variáveis

- Variável numérica:
 - Continua

Se seus valores pertencer ao conjunto dos números reais.

Ex.: Temperatura corporal, saldo em caixa, peso da carga de um caminhão, etc.

- Discreta

Se seus valores pertencer ao conjunto dos números inteiros.

Ex.: Número de pessoas com febre, número de empresas, número de caminhões, etc.

- Variável categórica:
 - Ordinal

Se seus valores podem ser ordenados do menor para o maior.

Ex.: Temperatura (baixa, média ou alta), saldo em caixa (negativo, nulo ou positivo), etc.

- Nominal

Quando não for possível estabeler ordenamento.

Ex.: Sexo do individuo, atividade fim da empresa, marca/modelo do caminhão, etc.

3 Estatística Básica (Teoria medidas de posição e dispersão)

3.1 Preparação dos dados para aplicação de estatística básica

3.1.1 Teoria

• Definição de Estatística:

A Estatística de uma maneira geral compreende aos métodos científicos para **COLETA**, **ORGANIZAÇÃO**, **RESUMO**, **APRESENTAÇÃO** e **ANÁLISE** de Dados de Observação (Estudos ou Experimentos), obtidos em qualquer área de conhecimento. A finalidade é a de obter conclusões válidas para tomada de decisões.

- Estatística Descritiva

Parte responsável basicamente pela **COLETA** e **SÍNTESE** (Descrição) dos Dados em questão.

Disponibiliza de técnicas para o alcance desses objetivos. Tais Dados podem ser provenientes de uma AMOSTRA ou POPULAÇÃO.

- Estatística Inferencial

É utilizada para tomada de decisões a respeito de uma população, em geral fazendo uso de dados de amostrais.

Essas decisões são tomadas sob condições de INCERTEZA, por isso faz-se necessário o uso da TEORIA DA PROBABILIDADE.

• O fluxograma da estatística descritiva pode ser espresso da seguinte forma:

Figure 1: Estatística descritiva.

• A representação tabular (Tabelas de Distribuição de Frequências) deve conter:

- Cabeçalho

Deve conter o suficiente para que as seguintes perguntas sejam respondidas "o que?" (Relativo ao fato), "onde?" (Relativo ao lugar) e "quando?" (Correspondente à época).

- Corpo

É o lugar da Tabela onde os dados serão registrados. Apresenta colunas e sub colunas.

Rodapé

Local destinado à outras informações pertinentes, por exemplo a Fonte dos Dados.

• População e Amostras

- População

É o conjunto de todos os itens, objetos ou pessoas sob consideração, os quais possuem pelo menos uma característica (Variável) em comum. Os elementos pertencentes à uma População são denominados "Unidades Amostrais".

- Amostras

É qualquer subconjunto (não vazio) da População. É extraída conforme regras préestabelecidas, com a finalidade de obter "estimativa" de alguma Característica da População.

• Tipos de variáveis

Figure 2: Tipos de variáveis.

- Qualitativo nominal:

Não possuem uma ordem natural de ocorrência.

- Qualitativo ordinal:

Possuem uma ordem natural de ocorrência.

 $-\ Quantitativo\ descreta:$

Só podem assumir valores inteiros, pertencentes a um conjunto finito ou enumerável.

- Quantitativo continua:

Podem assumir qualquer valor em um determinado intervalo da reta dos números reais.

3.1.2 Preparação dos dados (sumariazar dados coletados)

• Frequência (conceito):

É a quantidade de vezes que um valor é observado dentro de um conjunto de dado.

- Distribuição em frequências:
 - A distribuição tabular é denominada: "Tabela de Distribuição de Frequências".
 - Podemos separar em 3 modelos de distribuição tabular:
 - * Variável Quantitativa Discreta.
 - * Variável Quantitativa Contínua.
 - * Variáveis Qualitativas.

3.1.2.1 Variável Quantitativa Discreta

- Passos da preparação dos dados:
 - 1º Passo **DADOS BRUTOS**:

Obter os dados da maneira que foram coletados.

- 2º Passo - **ROL**:

Organizar os DADOS BRUTOS em uma determinada ordem (crescente ou decrescente).

- 3º Passo - CONSTRUÇÃO TABELA:

Na primeira coluna são colocados os valores da variável, e nas demais as respectivas frequências.

- Frequência absoluta simples (Nº de vezes que cada valor da variável se repete).
- Principais campos da distribuição tabular de variaveis quantitativas discreta:
 - -n é o número total de elementos da amostra.
 - $-x_i$ é o número de valores distintos que a variavel assume.
 - $-\ F_i$ é a Frequência Absoluta Simples.
 - $-f_i$ é a Frequência Relativa Simples.
 - $-\ f_i\%$ é a Frequência Relativa Simples Percentual. $f_i\%=f_i\cdot 100\%.$
 - $-\ F_a$ é a Frequência Absoluta Acumulada.

<u>xi</u>	<u>Fi</u>	fi	fi%	Fa↓	<u>Fa</u> ↑	fa↓	<u>fa</u> ↑
0	6	0,2	20	6	30	0,2	1
1	11	0,37	37	17	24	0,57	0,8
2	8	0,27	27	25	13	0,84	0,43
3	2	0,07	7	27	5	0,91	0,16
4	2	0,06	6	29	3	0,97	0,09
6	1	0,03	3	30	1	1	0,03
Total	30	1	100	-	-	-	1

Figure 3: Distribuição tabular quantitativo discreta.

Obs.: As setas simbolizam ordem crescente ou decrescente.

3.1.2.2 Variável Quantitativa Contínua

- Teoria:
 - A construção da representação tabular é realizada de maneira análoga ao caso das variáveis discretas.
 - As frequências são agrupadas em classes, denominadas de "Classes de Frequência".
 - Denominada "Distribuição de Frequências em Classes" ou "Distribuição em Frequências Agrupadas".

<u>Dist.</u> Frequências "X ~ № de Acidentes por dia, na BR 101, <u>Setembro</u> de 2015

Fonte: Governo Federal

Figure 4: Distribuição de frequências em classes.

- Convencionar o tipo de intervalo para as classes de frequência:
 - Intervalo "exclusive exclusive": x_i —— x_j
 - Intervalo "inclusive exclusive": $x_i \longrightarrow x_j$

 - Intervalo "exclusive inclusive": x_i x_j

OBS.: x_i - Limite Inferior (LI) de Classe;

x_i - Limite Superior (LS) de Classe;

Figure 5: Intervalo de classes, para distribuição de frequência quantitativa contínua.

Premissas

- i) As classes têm que ser exaustivas, isto é, todos os elementos devem pertencer a alguma classe;
 - ii) As classes têm que ser mutualmente exclusivas, isto é, cada elemento tem que pertencer a uma única classe

Figure 6: Premissas da distribuição de frequências quantitativa contínua.

Passos para contruir a Tabela Distribuição de Frequências Contínua:

- 1. Como estabelecer o **número de classes** (k):
- Normalmente varia de 5 a 20 classes.
- Critério fórmula de Sturges:

$$k \cong 1 + 3, 3 \cdot \log(n)$$

• Critério da Raiz quadrada:

$$k \cong \sqrt{n}$$

Onde n é o número de elementos amostrais.

- 1. Como calcular a **Amplitude Total** (AT_x) :
- Diferença entre o maior e o menor valor observado.
- Intervalo de variação dos valores observados.
- Aproximar valor calculado para múltiplo do n° classes (k).
- Garantir inclusão dos valores mínimo e máximo.
- Cálculo:

$$AT_r = Mx(X_i) - Mn(X_i)$$

Onde,

 AT_x é a Amplitude Total.

 $Mx(X_i)$ é o valor máximo das amostras.

 $Min(X_i)$ é o valor mínimo das amostras.

• Exemplo:

Se
$$k = 5$$
,

$$AT_x = 28$$

Logo, arredondando $AT_x = 30$, para aproximar o valor AT_x de um múltiplo de k.

- 1. Como cálcular a **Amplitude das classes da frequência** (h):
- As classes terão amplitudes iguais.
- Cálculo:

$$h = h_i = \frac{AT_x}{k}$$

Onde, k é o **número de classes** e AT_x é a **Amplitude Total**.

1. Como determinar o ponto médio das classes, representatividade da classe (p_i) :

$$p_i = \frac{(LS_i - LI_i)}{2}$$

Onde,

 LS_i é o limite superior da classe.

 LI_i é o limite inferior da classe.

- 2. Passos da preparação dos dados:
- 1º Passo DADOS BRUTOS:

Obter os dados da maneira que foram coletados.

• 2º Passo - **ROL**:

Organizar os DADOS BRUTOS em uma determinada ordem (crescente ou decrescente).

• 3º Passo - CONSTRUÇÃO TABELA:

Na primeira coluna são colocados as classes, e nas demais as respectivas frequências.

• Exemplo:

Nº Classe	Classes (xi)	Fi	fi	fi%	Fa↓	Fa↑	fa↓	fa↑	fa↓%	pi
1	45 52	3	0,08	8	3	40	0,08	1	100	48,5
2	52 59	7	0,18	18	10	37	0,26	0,92	92	55,5
3	59 66	11	0,28	28	21	30	0,53	0,75	75	62,5
4	66 73	10	0,25	25	31	19	0,78	0,47	47	69,5
5	73 80	4	0,10	10	35	9	0,88	0,22	22	76,5
6	80 87	4	0,10	10	39	5	0,98	0,12	12	83,5
7	87 94	1	0,02	2	40	1	1,00	0,02	2	90,5
Total		40	1,00	100	-	-	-	-		-

Fonte: Dados Fictícios

Figure 7: Tabela de distribuição de frequência quantitativa contínua.

 X_i são as classes.

 F_i é a Frequência Absoluta Simples.

 f_i é a Frequência Relativa Simples.

 $f_i\%$ é a Fequência Relativa Simples Percentual.

 ${\cal F}_a$ é a Frequência Absoluta Acumulada.

 f_a é a Fequência Absoluta Acumulada Simples.

 $f_a\%$ é a Fequência Absoluta Acumulada Simples Percentual.

 \boldsymbol{p}_i é a Representatividade da classe (ponto médio das classes).

- 3.1.2.3 Variáveis Qualitativas
- 3.2 Medidas de posição
- 3.3 Medidas de dispersão

3.4 Análise Estatística

- Para fazer uma Análise Estatística eficiente de dados, necessitamos:
 - Limpar os dados:

Remover os *OUTLIER* (valores atipicos, inconsistentes).

- Aplicar Estatística Descritiva aos dados:

As medidas de posição (Média, Mediana e moda) e dispersão (Amplitude Total, Desvio, Desvio Médio, Variância, Desvio-padrão e Coeficiente de Variação) são maneiras de descrever os dados.

- Comparar as medidas dos dados:

Principalmente medidas de dispersão, me especial **Coeficiente de Variação**, são ótimas para comparar dados.

- Previsão de dados:

A principal técnica é de **Regressão**, porém para aplicar, necessita que os dados estejam limpos e com pouca dispersão (quanto menor, melhor).

4 EXCEL

4.1 Ferramentas do Excel

Algumas ferramentas do Excel que podem ajudar na análise da dados:

- Filtro
- Tabela (tabela dinâmica)
- Gráficos

4.2 Filtro Excel

- Inserir filtros na primeira linha (campo):
 - Célula na primeira linha
 - Aba "Dados" > "Classificar e Filtrar" > "Filtro"

4.3 Tabela dinâmica

- Inserir Tabela dinâmica:
 - Selecionar toda tabela;
 - * Selecionar primeira célula ("A1");
 - * Comandos: CTRL + SHIFT + \downarrow + \rightarrow ;
 - Aba "Inserir" > "Tabelas" > "Tabela dinâmica";
 - Opção "Nova planilha".
- Agrupar informações com tabela dinâmica:
 - Linha/Registro: informação que queremos;
 - Valores: Normalmente registros únicos (primary key, exemplo: "ID").

4.4 Gráficos

- Criar um gráfico rapído com base na tabela dinâmica:
 - Clickar na tabela dinâmica criada;
 - Aba "Inserir" > "Gráficos" > "Gráficos recomendados".

4.5 Bloco if-else - SE()

- Podemos usar o bloco if-else no Excel usando a função SE().
- Na função SE(), usamos como argumentos:
 - Expressão a ser avaliada;
 - Ação caso verdadeira;
 - Ação caso falso.
- Para usar uma **função no Excel** na barra de fórmulas inserimos o sinal de = antes da expressão/função para o Excel saber que se trata de uma expressão.

Exemplo:

=SE(\$T2="TRUE"; "Pessoa Gestora"; \$X2)

4.6 Cruzar dados