DEVICE FOR RECOVERING TIME INTERVALS OF DIGITAL SIGNALS RECEIVED FROM CHANNEL WITH LIMITED BANDWIDTH

Publication number: SU1320883 (A1)

Publication date: 1987-06-30

Inventor(s): KOZUBOV VYACHESLAV N [SU]

Applicant(s): KOZUBOV VYACHESLAV N [SU]

Classification:

- international: H03K5/01; H03K5/06; H03K5/01; H03K5/04; (IPC1-7): H03K5/01; H03K5/06

- European:

Application number: SU19853853145 19850206

Priority number(s): SU19853853145 19850206

Abstract not available for SU 1320883 (A1)

(5D 4 H. 03 K 5/06, 5/01

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСНОМУ СВИДЕТЕЛЬСТВУ

- (21) 3853145/24-21
- (22) 06.02.85
- (46) 30.06.87. Бюл. № 24
- (72) В.Н.Козубов
- (53) 621,399 (088.8)
- (56) Гитлиц М.В. и др. Видеомагнитофоны и их применение. - М.: Связь, 1980, с. 145.

Заявка Японии № 57-40700, кл. Н 04 N 5/14, Н 03 К 3/02, 1982.

- (54) УСТРОЙСТВО ДЛЯ ВОССТАНОВЛЕНИЯ ВРЕМЕННЫХ ИНТЕРВАЛОВ ЦИФРОВЫХ СИГКА-ЛОВ, ПРИНИМАЕМЫХ ИЗ КАНАЛА С ОГРАНИ-ЧЕННОЙ ПОЛОСОЙ ПРОПУСКАНИЯ
- (57) Изобретение относится к импульской технике, в частности к устройствам для выделения цифровых сигналов из каналов цифровой передачи с ограниченной полосой пропускавия, и

может быть использовано для воспроизведения цифровых сигналов с магнитного носителя с частотной модуляцией - модуляцией в цифровых системах видеозаписи, звукозаписи, накопителях информации в ЭВМ. Цель изобретения - повышение точности восстановления временных интервалов цифровых сигналов, принимаемых из канала с ограниченной полосой пропускания. Устройство содержит шину 1 входного сигнала, согласующий блок 2. блоки 3 и 4 задержки, блок 5 относительного усреднения, блоки 6 и 7 сравнения, блок 8 формирования импульсов, триглерный блок 9. Точность выделения временных интервалов, сбеспечиваемая данным устройством, определяется характеристиками блока сравнения 6. 4 ил.

Duz. 2

ной технике и может быть использовано для выделения цифровых сигналов из каналов цифровой передачи с ограниченной полосой пропускания, в частности для воспроизведения цифровых сигналов с магнитного носителя с ЧМмодуляцией в цифровых системах видеозаписи, звукозаписи, накопителях информации в ЭВМ.

Цель изобретения - повышение точности восстановления временных интервалов цифровых сигналов, принимаемых из канала с ограниченной полосой пропускания.

На фиг. 1 представлены временные диаграммы сигналов; на фиг. 2 — функциональная схема устройства; на фиг. 3 — соответствующая принципиальная схема; на фиг. 4 — аналитические 20 построения вершин импульсов, показывающие свойства и ограничения сигналов устройства восстановления.

Устройство содержит (фиг. 2) шину 1 входного сигнала, согласующий блок 25 2, блоки 3 и 4 задержки, блок 5 относительного усреднения, блоки 6 и 7 сравнения, блок 8 формирования импульсов и триггерный блок 9. Шина 1 входного сигнала соединена с входом согласующего блока 2, выполненного (см. фиг. 3) из последовательно соединенных входного усилителя 10, согласующего резистора 11 с первым выходом блока 2 и выравнивающей цепи 12 на делителе напряжения, выполненном на резисторах 13 и 14 и имеющем второй выход блока 2. Первый выход блока 2 соединен с входом первого блока 3 задержки, включающего линию 15 задержки, и с первым входом блока 5 относительного усреднения, содержащего делитель напряжения на резисторах 16 и 17, второй вход блока 5 соединен с выходом второго блока 4 задержки, включающего последовательно соединенные линию 18 задержки и нагрузочный резистор 19, вход блока 4 задержки соединен с выходом блока 3 задержки и с первыми входами блока 7 сравнения и блока 6 сравнения, который выполнен на компараторах 20 и 21 с разнополярно объединенными входами. Первый и второй выходы блока 6 сравнения соединены с соответствующими информационными входами блока 8 формирователей импульсов. содержащего цепи 22 и 23 формирования импульсов по заднему фронту ин-

формационного сигнала, второи выход с согласующего блока 2 с выравнивающей цепи 12 соединен с вторым входом сравнивающего блока 7, в котором соединены с вторым входом общей шиной отрицательная цепь 24 смещения. включающая параллельно соединенные отрицательный источник 25 опорного напряжения и делитель напряжения на резисторах 26 и 27, и положительная цепь 28 смещения, включающая параллельно соединенные положительный источник 29 опорного напряжения и делитель напряжения на резисторах 30 и 31. Выход делителя цепи 24 смещения соединен с первым инвертирующим входом компаратора 32 сравнивающей цепи 33, а выход делителя цепи 28 смещения соединен с первым инвертирующим входом компаратора 34 сравнивающей цепи 33, вторые входы компараторов 32 и 34 соединены с первым входом блока 7 сравнения, выходы цепи 33 сравнения соединены с входами элемента ИЛИ 35, выход которого является выходом блока 7 сравнения и соединен с шиной запрета формирователей 22 и 23 блока 8 формирования импульсов, выходы которого соединены с шинами 36 и 37, предназначенными для дальнейшей обработки в цепях самосинхронизации, и с входами триггерного блока 9, содержащего триггер 38, выход которого соединен с шиной 39. являющейся выходом восстановленной двоичной информации с исходными временными интервалами.

В устройстве восстановления временных интервалов (а также двоичной информации) цифровых сигналов, принимаемых из канала с ограниченной полосой пропускания, входной сигнал (фиг. 1 в) дважды одинаково задерживают (фиг. 11, сплошная линия -45 входной сигнал, точечная - однажды задержанный, пунктирная - дважды задержанный) без искажений и с одинаковой амплитудой, производят относительное усреднение по амплитуде 50 (например, делителем напряжения на резисторах) между входным сигналом и дважды задержанным сигналом (фиг.1 г, штрихпунктирная линия), выделяют разностные сигналы при помощи срав-55 нивающих устройств, а именно разностный сигнал между относительно усредненным и однажды задержанным (фиг. 1 г) и разностный сигнал между входным и однажды задержанным

(фиг. 1∂). Выделенные сигналы от первого сравнивающего устройства (фиг. 1 д, и) подают на входные шины управления формирователями импульсов по заднему фронту, второго сравнивающего устройства $(\phi ur. le, *, *)$ - на информационные входы формирователей, в результате ложные импульсы, возникающие на выходе второго сравнивающего устрой- 10 ства (фиг. 1 * ,;) при наличии на входном сигнале протяженных импульсов, по длительности превышающих время нарастания фронта канала (фиг. 1 а, **б, в,** третий единичный и следующий 15 за ним нулевой с меткой, превышающей амплитуду цифровых сигналов), не проходят на выходе формирователей $(\phi ur. lk.^{4}).$

Сигналы формирователей используют для дальнейшей обработки в цепях са-мосинхронизации и подают на триггерные устройства, с выхода которых снимают исходный двоичный сигнал с восстановленными временными соотно-25 шениями (фиг. 1 м, а).

Восстановление временных интервалов и двоичной информации происходит следующим образом.

С шины 1 на вход согласующего бло-30 ка 2 поступает составной цифровой сигнал, принятый из канала с ограниченной полосой пропускания (фиг. 1 в). Для примера показан сигнал вида 10100111 1010110 , имеющий импульсы 35

протяженностью t, большей времени нарастания фронта канала, т.е. $t_{\mathbf{u}} > t_{\mathbf{c}p}$ (в данном случае время нарастания равно длительности двух бит, т.е. ${
m T_{c}}=2{
m T_{g}}$). С входного усилителя 10 через согласующий резистор II сигнал поступает на блоки 3 и 4 задержки и делится пополам в блоке 5 относительного усреднения на резисторах 16 и 17 относительно задержанного сигнала на выходе блока 4 задержки. На сравнивающем блоке 6 разность сигналов между сигналами на выходе блока 5 относительного усреднения и сигналом на выходе блока 3 задержки воздействует на компараторы 20 и 21 и на их выходах выделяются сигналы по пересечению относительного нуля разностного сигнала, кото-55 рые поступают на информационные входы блока 8 формирования импульсов по заднему фронту. Ложные импульсы (фиг. 1 * , у) подавляются сигналами

блока 7 сравнения, который с заданными порогами (фиг. 1 д) цепей 24 и 28 смещения выделяет разностный сигнал между выравненным на выравнивающей цепи 12 входным сигналом и сигналом на выходе блока 3 задержки и объединяет сигналы цепи 33 сравнения на элементе ИЛИ 35 (фиг. 1 н), так как управляющий сигнал на входе управления блока 8 отсутствует, С выхода блока формирования на шин**ы** 36 и 37 поступают очищенные соответствующие исходным временным интервалам строб-импульсы единицы и нуля, поэтому двоичная информация легко выделяется обычным RS-триггером 38.

Точность выделения временных интервалов определяется характеристиками блока 6 сравнения, что доказывается следующей теоремой.

Рассматривая одновременно эпюры вершин импульсов входного, однажды и дважды задержанного сигнала одной амплитуды при времени нарас**тания** фронта канала, равном или большем длительности бита $(?_{\phi} > T_{\delta})$, и применяя линейную аппроксимацию нарастания фронта, имеем (фиг. 4 м) три параллельные ломаные прямые: АВС - для входного сигнала, DEF - для однажды задержанного и HI - для дважды задержанного сигнала, у которых параллельные прямые AB, DE, H, имеющие наклон о относительно временной оси абсцисс, взаимно пересекаются с тремя параллельными прямыми ВС, EF, HI с наклоном _в к оси абсцисс. В точках В и Н произведем сечения, параллельные оси ординат, которые согласно теореме о пересекающихся параллельных прямых образуют подобные треугольники BIN и НКМ. Проведем в этих треугольниках линию LNM, равноотстоящую от линий BNK и INH. Линия LNM есть не что иное, как медиана треугольников BIN и NHM, делящая стороны BI и НК пополам, но треугольники BLN и HMN, лежащие на медиане LNM, также подобны и имеют медианами пря**мые LE** и ЕМ, следовательно, при любых наклонах с и з точки L и M всегда будут принадлежать сечениям ВІ и НК соответственно.

Аналогично для ломаных прямых, соответствующих протяженным импульсам ABP, DEP, GHP и OBC, OEF, OHI, которые соответственно образуют треугольники ВНС и ВНК, у которых средние линии LH и ВМ также являются мет

дианами, но в треугольниках впь и ВНМ прямые LE и EM тоже являются медианами, следовательно, и в этих случаях точки L и M принадлежат сечениям ВІ и НК независимо от наклонов 🛦 и в. Таким образом, точки пересечения L и M средней линии LM, соответствующей относительно усредненному сигналу, и прямых LE и ВМ, являющихся частью однажды задержанного сигнала, независимо от крутизны нарастания и спада импульсов неподвижны на временной оси и являются опорными точками для восстановления исходных интервалов цифрового сигнала. При этом I и K должны обязательно присутствовать в зоне действующей амплитуды, в противном случае, при увеличении крутизны фронтов (фиг.4 б), точки пересечения S линий относительного усреднения и однажды задержанного сигнала смещаются в глубину зоны между сечениями ВІ и НК, а линия относительного усреднения приобретает дополнительный излом RT. Когда крутизна фронта импульса становится равной бесконечности (фиг.48), т.е. когда на вход поступают прямоугольные импульсы, точки пересечения S и S' ломаной линии относитель- 30 ного усреднения UARTHB' R'T' IQ между ломаными линиями UABB'CQ входного сигнала и UGHH'IQ дважды задержанного сигнала ложатся непосредственно на ломаную линию UDEE' FQ однажды задержанного сигнала. Таким образом, для сохранения неподвижности точек пересечения L и M независимо от изменения крутизны импульсов необходимо превышение или равенство длительности времени нарастания фронта канала 🐾 относительно суммарной задержки сигналов $2T_3$, т.е. $?_{\phi}$? $2T_3$, и, следовательно, при непосредственном приеме цифровых сигналов, минуя канал, входной сигнал пропускают через эквивалент канала, например через интегрирующую цепь.

Формула изобретения

45

пульсов.

Устройство для восстановления временных интервалов цифровых сигналов, принимаемых из канала с ограниченной полосой пропускания, содержащее согласующий блок, выполненный

в виде последовательно соединенных входного усилителя, согласующего резистора и цепи выравнивания входного напряжения, два блока задержки с нагрузочным резистором, первый блок сравнения, выполненный в виде двух компараторов, к разнополярным входам которых подключены две цепи смещения из делителей напряжения и источников опорного напряжения, о т личающееся тем, что, с целью повышения точности восстановления временных интервалов, в него дополнительно введены второй блок сравнения, выполненный в виде двух компараторов, блок формирования импульсов, выполненный в виде двух формирователей импульсов по заднему фронту, выходной RS-триггер, элемент ИЛИ в первый блок сравнения и блок относительного усреднения, причем первый вход блока относительного усреднения соединен с входом первого блока задержки, а второй вход соединен с выходом второго блока задержки, выход первого блока задержки соединен с первыми входами первого и второго блоков сравнения, а выход блока относительного усреднения - с вторым входом второго блока сравнения, выходы которого соединены с входами блока формирования импульсов, соответственно с информационными входами первого и второго формирователей импульсов по заднему фронту, выходы которых соединены с первой и второй выходными шинами и с входами выходного триггера, выход которого соединен с третьей выходной шиной, выход цепи выравнивания входного напряжения в согласующем блоке соединен с вторым входом первого блока сравнения, в котором второй вход соединен с общей шиной цепей смещения, положительный и отрицательный выходы которых соединены соответственно с инвертирующим и неинвертирующими входами компараторов, вторые входы которых соединены с первым входом первого блока сравнения, а выходы соединены с входами элемента ИЛИ, выход которого является выходом первого блока сравнения и соединен с входом запрета блока формирования им-

Составитель Г.Брынский Техред А. Кравчук Редактор М. Дылын

Корректор А. Обручар

Заказ 2666/55

Тираж 901

Подписное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5