BINARY SEARCH TREE

• An example

Node structure

Key Left Child I	Right Child
------------------	-------------

IMPLEMENTING A BINARY SEARCH TREE USING AN ARRAY:

	Key	Left	Righ	t
0	KF	2	1	
1	SD	4	3	(
2	FB	5	6	1
2 3	WS	14	10	1
4	PA	11	9	1
5	CL	8	12	1
6	HN	7	13	1
7	FT	Λ	Λ	

	Key	Left	Right
8	AX	Λ	Λ
9	RF	Λ	Λ
10	YJ	Λ	Λ
11	NR	Λ	Λ
12	DE	Λ	Λ
13	JD	Λ	Λ
14	TK	Λ	Λ
- "			

PROBLEM: UNBALANCED

• After inserting NP, MB, TM, LA, UF, ND, TS, and NK:

WORST CASE SCENARIO

• a binary search built by inserting A, B, C, D, E, F, G, in that order:

A search based on this tree is essentially a sequential search!

Node structure

$$\begin{bmatrix} P_1 & K_1 & P_2 & K_2 & \dots & \dots & P_q & K_q \end{bmatrix}$$

- P_i are pointers to the descendants and K_i are keys.
- ♦ $\lceil m/2 \rceil \le q \le m$.

Properties:

- > Every page has a maximum of m descendants
- ➤ Every page, except for the root and the leaves, has at least [m/2] descendants
- > The root has at least two descendants (unless it is a leaf)
- All the leaves appear on the same level
- ➤ The leaf level forms a complete, ordered index of the associated record file

• Example: A B-tree of order 4 (m=4) built by inserting C, S, D, T, A, M, P, I, B, W, N, G, U, R, K, E, H, O, L, J, Y, Q, Z, F, X, V in that order.

B+-TREES PERFORMANCE

• The worst-case search depth:

```
level minimum # of descendants

1 2
2 2*\lceil m/2 \rceil
3 2*\lceil m/2 \rceil^2
4 2*\lceil m/2 \rceil^3
...
d 2*\lceil m/2 \rceil^{d-1}
```

- For a B-tree of N keys, $N \ge 2 * \lceil m/2 \rceil^{d-1}$ or $d \le 1 + \log_{\lceil m/2 \rceil}(N/2)$.
- With N = 1,000,000 and $m = 512, d \le 3.37$.
- Notice that this formula is similar to that of Paged Binary Search trees.

SUMMARY OF OPERATIONS ON B+-TREES

• Search for key *K*

```
Start from the root repeat the following
Let N be the current node;
if N is a leaf then
if K is in N, return the data pointer;
else report K not found and return;
else if (K \le KI)
look for K in descendant P_I;
else if (K \ge K_i \&\& K \le K_{i+1})
look for K in descendant K
```

SUMMARY OF OPERATIONS ON B+-TREES

• Insert key *K*

```
Search for key K;

if found report key K exists and return;

else let L be the leaf node at the end of the search;

if L is not full, insert K to L;

else split the node to two and inert them to the parent node, if the parent node also overflows, split this node

too; propagate the split up until overflows do not occur or a new root is created;

if the insertion causes the largest key in a leaf to change, modify the upper level(s) to reflect the change.
```

SUMMARY OF OPERATIONS ON B+-TREES

Delete key K

Search for key *K*;

If no-found return;

else let L be the leaf node at the end of the search;

- I) if L has at least $\lceil m/2 \rceil + 1$ keys and K is not the largest, simply delete K;
- 2) if L has at least $\lceil m/2 \rceil + 1$ keys and K is the largest, delete K and modify the upper level indexes to reflect the new largest key in L;
- if L has exactly $\lceil m/2 \rceil$ keys, and one of the siblings of L has less than $\lceil m/2 \rceil + 1$ keys, merge L with this sibling and delete one key from the parent node;
- 4) if L has exactly $\lceil m/2 \rceil$ keys, and its siblings all have at least $\lceil m/2 \rceil + 1$ keys, redistribute some keys from one of its sibling to L, and modify the upper level nodes if necessary.

DELETIONS ON B+-TREES

DELETIONS ON B+-TREES

DELETIONS ON B+-TREES

