

500 ML

Problema de Mezclas

ALBERTO MARÍN -

740526

ANA LUISA ESPINOZA -

734753

KEVIN EMILIANO AYALA

- 745973

PROYECTO MÓDULO 3

PLEASE RECYCLE BOTTLE

BOTTLED ON 12/29/17

BEST BEFORE 12/29/19

Reactor continúo de tanque con agitación de solución salina

Figura 1. Reactor continúo de tanque con agitación.

MODELO QUE REPRESENTA NUESTRO PROBLEMA

VOLUMEN

$$V(t) = V_o + t(r_i - r_o)$$

CANTIDAD DE SAL

$$x' = c_i r_i - r_o \frac{x}{V}$$

TIEMPO EN EL QUE EL TANQUE SE QUEDA VACIO

$$V(t) = V_o + t(r_i - r_o)$$

$$t = \frac{V(t) - Vo}{r_i - r_o}$$

CANTIDAD DE SAL DEPENDIENDO DEL TIEMPO

$$x' + x rac{r_o}{V} = c_i r_i$$

AJUSTE DE CURVAS PARA OBTENER LA MEJOR FUNCIÓN QUE DESCRIBA EL COMPORTAMIENTO

$$ax^2 + bx + c = 0$$

LA FUNCIÓN DE TERCER GRADO ES LA QUE MEJOR SE ADAPTA AL COMPORTAMIENTO

PUNTOS CRÍTICOS A TRAVÉS DEL CRITERIO DE LA SEGUNDA DERIVADA

