

Motivation

- ► We've now seen a couple of alternatives to the linear model for regression.
- ▶ BUT, the linear model still reigns supreme in most realms of science and industry due to its simplicity (which helps for inference).
- Let's see how we can improve upon the linear model.

Variable Selection

- ► You have seen (570) forward, backward, and mixed stepwise selection for getting rid of useless predictors.
- ➤ Those methods were largely based on the *p*-values resulting from the *t*-tests on the coefficients...certainly not ideal, especially for large predictor sets.
- ▶ The model measures discussed in 570 (adjusted R², AIC, BIC, etc) can help choose between models, but not suggest which models to compare.
- ► Let's start looking at some more modern methods to intertwine these goals...

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 3 / 41

Ridge Regression

► Recall: Least squares estimation minimizes the RSS

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

► Ridge regression includes a penalty in the estimation process, instead minimizing

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

where λ is a tuning parameter.

▶ This penalty shrinks the β_j estimates towards 0.

- ▶ If $\lambda = 0$ then the estimation process is simply least squares once again.
- As $\lambda \to \infty$ then the penalty grows and the coefficients approach (but never equal) 0.
- ightharpoonup Clearly, some care is required in determining λ . Before diving into that further, let's introduce another (more popular) method of penalizing least squares...

Lasso

- ► The 'least absolute shrinkage and selection operator' or lasso is arguably the most popular modern method applied to linear models. It is quite similar to ridge regression...
- ▶ The lasso minimizes

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

where λ is a tuning parameter.

► It turns out that this penalty has an important advantage: it will force some coefficients to 0, whereas RR will only force them 'close' to 0.

λ again

- lacktriangle Both the lasso and ridge regression require specification of λ
- ▶ In fact, for each value of λ we will see different coefficients. So how do we find the best one?
- ► The answer, as usual, is cross-validation.

- This approach (especially lasso) is popular with large data sets to simultaneously model in a linear fashion and perform variable selection.
- ► BUT, even if variable selection is not your goal, shrinkage methods are still useful!
- Let's see why...

We generate n = 30 data under the following model

$$Y = 20 + 3X_1 - 2X_2 + \epsilon$$

Both X_1 and X_2 are sampled independently as normal. ϵ is sampled as N(0, 4).


```
> summary(lm(y~x1+x2))
Call:
lm(formula = y x1 + x2)
Residuals:
   Min 10 Median 30
                               Max
-4.7524 -0.9086 -0.1260 1.7005 3.0130
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.4425 0.3636 53.47 <2e-16 ***
x1
         3.0808 0.1335 23.07 <2e-16 ***
     -2.1267 0.1097 -19.39 <2e-16 ***
x2
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

```
Residual standard error: 1.941 on 27 degrees of freedom Multiple R-squared: 0.9734, Adjusted R-squared: 0.9714 F-statistic: 494.4 on 2 and 27 DF, p-value: < 2.2e-16
```


► So, the standard approach gives us the estimated model

$$\hat{Y} = 19.44 + 3.08X_1 - 2.12X_2$$

- As compared to the true model, we are underestimating the intercept, and overestimating (in absolute value sense) the coefficients
- ➤ So, let's look at ridge regression. Firstly, we need to determine the tuning parameter. Some built-in functions give us the following plots


```
> coef(rrsimmin)
3 x 1 sparse Matrix of class "dgCMatrix"
                    s0
(Intercept) 19.460996
x1
             3.045163
x2
            -2.102821
> coef(rrsim1se)
3 x 1 sparse Matrix of class "dgCMatrix"
                    s0
(Intercept) 19.581891
x1
            2.811993
x2
            -1.946284
```


▶

$$\lambda = 0.000$$
 $\hat{Y} = 19.44 + 3.08X_1 - 2.12X_2$
 $\lambda = 0.141$ $\hat{Y} = 19.46 + 3.04X_1 - 2.10X_2$
 $\lambda = 1.152$ $\hat{Y} = 19.58 + 2.81X_1 - 1.94X_2$

► As compared to the true model,

$$Y = 20 + 3X_1 - 2X_2 + \epsilon$$

the closest coefficient estimations are (arguably) at $\lambda=0.141$.

► This is 'proof' that even in simple, low dimensional cases, shrinkage estimators can be useful!

Example: Beer Data


```
> summary(lm(price~., data=beer[,-1]))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.7174521 0.6807382 5.461 8.56e-07 ***
qlty -0.0111435 0.0064446 -1.729 0.0887.
cal
         -0.0055034 0.0089957 -0.612 0.5429
alc 0.0764520 0.1752318 0.436 0.6641
bitter 0.0677117 0.0153219 4.419 3.98e-05 ***
malty 0.0002832 0.0099639 0.028 0.9774
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.8661 on 63 degrees of freedom Multiple R-squared: 0.6678, Adjusted R-squared: 0.6415 F-statistic: 25.33 on 5 and 63 DF, p-value: 6.588e-14

RR and LASSO Lecture 6

Example: Beer Data - RR

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 19 / 41

Example: Beer Data - RR

Example: Beer Data - lasso

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 21 / 41

Example: Beer Data - lasso

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 22 / 41

Example: Beer Data Summary


```
LM
                                        R.R.
                                                   LASSO
(Intercept)
              3.7174521392 3.6868302681 3<u>.327790179</u>
qlty
             -0.0111434572 -0.0122442317 -0<u>.008507677</u>
cal
             -0.0055034319 -0.0009067841
alc
              0.0764519623
                             0.0426635115
              0.0677117274 0.0474364378
bitter
                                            0.061693640
malty
              0.0002831604
                             0.0098597370
```

▶ While the true model is unknown, we do know a reduced model is more useful for this data (from previous analyses).

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 23 / 41

Benefits

- Examples shown thus far are relatively uncommon examples for RR/LASSO because they do not showcase the core benefits of regularization
- lacktriangle Recall (perhaps) that least squares cannot be fit when p>n
- No longer the case with regularization in effect! So LASSO is a common technique for high-dimensional data sets.
- ► Relatedly, the removal of variables takes care of multicollinearity problems.


```
> bmat <- matrix(rnorm(50000), nrow=100)
> dim(bmat)
[1] 100 500
> y <- rnorm(100)
> bsimcv <- cv.glmnet(bmat, y, alpha=1)
> plot(bsimcv)
```


More Thoughts

- ► Some questions have arisen over the years…let's take a deeper dive on:
- ► Why does RR lead to no variables removed, while LASSO does remove variables?
- ► What is the effect of scaling on the variables?

Variable Removal

Firstly, note that the RR optimization, minimizing

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

could be equivalently written as the standard RSS optimization, minimizing RSS

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

subject to $\sum_{j=1}^{p} \beta_{j}^{2} \leq t$ where t is some positive tuning parameter.

- lacktriangle For LASSO, the constraint would be adjusted to $\sum_{j=1}^p |eta_j| \leq t$
- ► This formulation will aid visualizations, but may also aid your understanding of regularization in general.

Variable Removal

- Now, why does this change in constraint for LASSO lead to variable removal?
- ► Hopefully the interactive visualizations in the app will shed some light on this!!

Variable Removal

From ESL...

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

- ▶ While it is true that you don't need to worry about scaling when using glmnet in R (it auto-standardizes and retransforms back), it's worth exploring why that automation is important.
- It is relatively easy to see why scaling DOES have an effect on LASSO and RR, and why implementations will generally auto-scale.
- ► The penalty terms, say $\sum_{j=1}^{p} \beta_j^2 \le t$, describe a 'fair' relationship between coefficients, assuming the coefficients are on similar scales...
- ► Let's walk through this a bit


```
> set.seed(35521)
> x1 <- rnorm(30)
> x2 <- rnorm(30)
> y <- x1 + x2 + rnorm(length(x1), sd=0.025)</pre>
```

Jeffrey L. Andrews Lecture 6 DATA 571 RR and LASSO 34 / 41

Note that the RSS term is scale invariant on the predictors. > summary(lm(y~x1+x2))

```
Call:
lm(formula = y ~ x1 + x2)
Residuals:
```

```
Min 1Q Median 3Q Max -0.059405 -0.011357 -0.001575 0.021256 0.037663
```

Coefficients:

Residual standard error: 0.02426 on 27 degrees of freedom Multiple R-squared: 0.9996, Adjusted R-squared: 0.9996 F-statistic: 3.372e+04 on 2 and 27 DF, p-value: < 2.2e-16


```
> x22 <- x2/10
> summary(lm(y~x1+x22))
```

Call:

lm(formula = y ~ x1 + x22)

Residuals:

Min 1Q Median 3Q Max -0.059405 -0.011357 -0.001575 0.021256 0.037663

Coefficients:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.02426 on 27 degrees of freedom Multiple R-squared: 0.9996, Adjusted R-squared: 0.9996 F-statistic: 3.372e+04 on 2 and 27 DF, p-value: < 2.2e-16


```
> x12 <- x1/10
> summary(lm(y~x12+x2))
```

Call:

```
lm(formula = y ~ x12 + x2)
```

Residuals:

```
Min 1Q Median 3Q Max -0.059405 -0.011357 -0.001575 0.021256 0.037663
```

Coefficients:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.02426 on 27 degrees of freedom Multiple R-squared: 0.9996, Adjusted R-squared: 0.9996 F-statistic: 3.372e+04 on 2 and 27 DF, p-value: < 2.2e-16

- > run1 <- cv.glmnet(cbind(x1,x2), y, standardize=FALSE)</pre>
- > plot(run1\$glmnet.fit, "lambda")

- > run2 <- cv.glmnet(cbind(x1,x22), y, standardize=FALSE)</pre>
- > plot(run2\$glmnet.fit, "lambda")

- > run3 <- cv.glmnet(cbind(x12,x2), y, standardize=FALSE)</pre>
- > plot(run3\$glmnet.fit, "lambda")

