距離空間における連続写像の同値条件

野本 慶一郎

2024/10/30

定理

距離空間の間の写像 $f:(X,d_X) \to (Y,d_Y)$ 及び $x_0 \in X$ に対して以下は同値.

(i) f は点 $x_0 \in X$ で連続, すなわち

$$\forall \varepsilon > 0 \exists \delta_{\varepsilon} > 0 \text{ s.t. } d_X(x, x_0) < \delta_{\varepsilon} \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon.$$

- (ii) 任意の $\varepsilon > 0$ に対して、ある $\delta_{\varepsilon} > 0$ が存在して、 $U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$.
- (iii) (X,d_X) の任意の点列 $\{x_n\}_{n\geq 1}$ に対して, $x_n\to x_0 \Longrightarrow f(x_n)\to f(x_0)$.

講義では (i) \iff (ii) 及び (i) \Rightarrow (iii) を示した. 本稿では (iii) \Rightarrow (ii) を示すことで, 上記定理の証明を終えることにする.

定理

 $(X,d_X),(Y,d_Y)$ を距離空間, $f:(X,d_X)\to (Y,d_Y)$ を写像とする. (X,d_X) の任意の点列 $\{x_n\}_{n\geq 1}$ に対して $[x_n\to x\Longrightarrow f(x_n)\to f(x)]$ が成り立つならば

$$\forall \varepsilon > 0 \, \exists \delta_{\varepsilon} > 0 \, \text{s.t.} \, U(x_0, \delta_{\varepsilon}) \subset f^{-1}(U(f(x_0), \varepsilon))$$

となる.

Proof. 対偶を示す. すなわち

$$\exists \varepsilon > 0 \text{ s.t. } \forall \delta_{\varepsilon} > 0, \quad U(x_0, \delta_{\varepsilon}) \not\subset f^{-1}(U(f(x_0), \varepsilon))$$
 (1)

が成り立つとき, $[x_n \to x_0$ かつ $f(x_n) \to f(x_0)]$ となる点列 $\{x_n\}_{n\geq 1}$ が存在することを示せばよい. 各 $n\in\mathbb{N}$ に対して, 式 (1) において $\delta_\varepsilon=1/n$ とすることで

$$x_n \in U\left(x_0, \frac{1}{n}\right), \quad x_n \notin f^{-1}(U(f(x_0), \varepsilon))$$

となる $x_n \in X$ が取れる. つまり

$$d_X(x_n, x_0) < \frac{1}{n}, \quad d_Y(f(x_n), f(x_0)) \ge \varepsilon \tag{2}$$

となる $x_n \in X$ が存在する. $n \in \mathbb{N}$ を全て動かすことにより点列 $\{x_n\}_{n\geq 1}$ が得られるが, この点列が $[x_n \to x_0$ かつ $f(x_n) \to f(x_0)]$ を満たすことを示す.

 $x_n \to x_0$ であることと $\lim_{n \to \infty} d(x_n, x_0) = 0$ であることは同値であった (講義第 4 回 p.17). 今, 式 (2) より

$$0 \le d_X(x_n, x_0) < \frac{1}{n} \to 0 \ (n \to \infty)$$

であるから、はさみうちの原理より $\lim_{n\to\infty} d_X(x_n,x_0)=0$ 、すなわち $x_n\to x_0$ である.同様にして、式 (2) より全ての $n\in\mathbb{N}$ に対して $\lim_{n\to\infty} d_Y(f(x_n),f(x_0))\neq 0$ 、すなわち $f(x_n)\nrightarrow f(x_0)$ である.以上より上で構成した点列 $\{x_n\}_{n\geq 1}$ は $[x_n\to x_0$ かつ $f(x_n) \nrightarrow f(x_0)]$ を満たす.