Department of Electrical and Computer Engineering The Johns Hopkins University 525.628 Compressive Sensing and Sparse Recovery – Spring 2022

Homework Assignment - Module 2

Reading Assignment: Lecture Notes and Davenport et al.

Computer Assignment: Sparse Recovery via ℓ_0 -minimization

- 1. Recovery Challenge: We have a signal \mathbf{x} of 100 samples (N=100) where no more than 3 of these samples are nonzero $(S \leq 3)$. The location and magnitude of these nonzero samples are unknown. We have applied two different sensing matrices \mathbf{A} on \mathbf{x} and obtained two set of measurements $\mathbf{y} = \mathbf{A}\mathbf{x}$. The two sensing matrices \mathbf{A} 's as well as the two corresponding measurement vectors \mathbf{y} 's can be downloaded from Blackboard. Can you recover \mathbf{x} by solving the classic ℓ_0 -minimization problem? *Hint:* Matlab built-in function nchoosek(1:N,S) yields all subsets of S columns.
- 2. Do you have any observation on the sensing matrices and the two recovered signals x?