Sprawozdanie

Jakub Kaźmierczyk

2025-06-01

Spis treści

1	Wprowadzenie						
	1.1	Opis projektu	3				
	1.2	Zmienne	3				
		1.2.1 Zmienna objaśniana	3				
		1.2.2 Zmienne objaśniające	3				
	1.3	Źródła	3				
2	Wcz	zytywanie danych 4					
3	Pod	stawowe statystyki	5				
	3.1	Zmienna objaśniana	5				
	3.2	Zmienne objaśniające	5				
	3.3	Macierze korelacji	7				
		3.3.1 Macierz korlelacji przed usunięciem zmiennych	7				
		3.3.2 Macierz korlelacji po usunięciu zmiennych	8				
4	Iden	ntyfikacja niestacjonarnych zmiennych objaśniających	9				
	4.1	Sprawdzenie niestacjonarności zmiennych	9				
	4.2	Usunięcie niestacjonarności	9				
	4.3	Ponowne sprawdzenie niestacjonarności zmiennych	3				
	4.4	Sprawdzenie korelacji po usunięciu niestacjonarności	4				
	4.5	Usunięcie zmiennych o zerowej wariancji	լ 4				
		4.5.1 Przed usunięciem	լ 4				
		4.5.2 Po usunięciu	15				

5	Meto	oda dob	oru zmiennych	16
	5.1	Metoda	a Hellwiga	16
6	Two	rzenie n	nodelu ekonometrycznego	17
7	Niby	TEST		18
	7.1	Testow	anie normalności rozkładu reszt	18
		7.1.1	Test Shapiro-Wilka	18
		7.1.2	Test Jarque-Bera	18
		7.1.3	Wykresy normalności	19
	7.2	Testow	anie autokorealcji	19
		7.2.1	Test Durbina-Watsona	19
		7.2.2	Test Ljunga-Boxa	20
		7.2.3	Test Breuscha-Godfreya	20
		7.2.4	Wykres autokorelacji	21
	7.3	Badani	e heteroskedastyczności	21
		7.3.1	Test Breuscha-Pagana	21
		7.3.2	Test White	22
		7.3.3	Test Goldfelda-Quandta	22
		7.3.4	Wykresy heteroskedastyczności	22
	7.4	Testow	anie współliniowości	23
		7.4.1	Test VIF	23
	7.5	Testow	anie stabilności parametrów	
		7.5.1	Test Chowa	23
		7.5.2	Test CUSUM	24
	7.6	Testow	anie stabilności postaci analitycznej	24
		7.6.1	Test RESET Ramseya	24
		7.6.2	Test liczby serii (runs test)	25
	7.7	Badani	e efektu katalizy	25
		7.7.1	Test F	25
	7.8	Badani	e koincydencji	26
		7.8.1	Porównanie R ²	
8	Pods	sumowa	nie wyników	27

1 Wprowadzenie

1.1 Opis projektu

Projekt ma na celu budowę kompleksowego modelu ekonometrycznego służącego do analizy i prognozowania rentowności 10-letnich polskich obligacji skarbowych. Model zostanie zbudowany na podstawie szeregów czasowych, co umożliwia głębszą analizę dynamicznych zależności ekonomicznych.

1.2 Zmienne

1.2.1 Zmienna objaśniana

CLOSE - rentowność 10-letnich polskich obligacji skarbowych

1.2.2 Zmienne objaśniające

XAUUSD - cena złota w dolarze amerykańskim

S&P500 - ETF 500 największych notowanych na giełdzie amerykańskich spółek

PMI - wskaźnik aktywności przemysłowej

WIG20 - 20 najwiekszych notowanych na gieldzie polskich spolek

OIL - cena ropy naftowej za barylke

UNEMPLOYMENT - stopa bezrobocia w Polsce

USDPLN - kurs dolara amerykańskiego wyrażony w złotych

INFLATION - inflacja rok do roku

1.3 Źródła

www.stooq.com

2 Wczytywanie danych

```
data_all <- read_excel("data.xlsx")
data_all <- data_all[, -c(1, 3, 4)]
data_all[] <- lapply(data_all, function(col) {
    na.approx(col, na.rm = FALSE)
})

n <- nrow(data_all)
train_size <- floor(0.8 * n)

data <- data_all[1:train_size, , drop = FALSE]

Y <- data["CLOSE"]
X <- data[, !names(data) %in% "CLOSE", drop = FALSE]</pre>
```

3 Podstawowe statystyki

3.1 Zmienna objaśniana

CLOSE ## ## Min. : 1.843 1st Qu.: 3.457 ## Median : 5.495 : 5.610 ## Mean ## 3rd Qu.: 6.269 Max. :13.288 ##

Wartości zmiennej objaśnianej wachają się pomiędzy 13,288 a 1,149. Mediana wynosi 5,461 a średnia 5,347.

XAUUSD

USDPLN

3.2 Zmienne objaśniające

INFLATION

##

##	Min. :-0	.01600	Min.	:1.455	Min.	: 255.8	Min.	:2.060
##	1st Qu.: 0	.01000	1st Qu.	:2.337	1st Qu.	: 416.2	1st Q	u.:3.084
##	Median : 0	.02250	Median	:3.385	Median	:1024.5	Media	n :3.509
##	Mean : 0	.02711	Mean	:3.461	Mean	: 921.2	Mean	:3.476
##	3rd Qu.: 0	.04000	3rd Qu.	:4.480	3rd Qu.	:1292.5	3rd Q	u.:3.910
##	Max. : 0	.11600	Max.	:6.667	Max.	:1825.3	Max.	:4.644
##								
##	WIBOR		10YDEBO	ND	WIG	20	S&P	500
##	Min. : 1	.560 M	in. :-	0.7010	Min.	:1023	Min.	: 735.1
##	1st Qu.: 2	.062 1	st Qu.:	0.7907	1st Qu.	:1789	1st Qu.	:1154.7
##	Median: 4	.175 M	edian :	3.1740	Median	:2268	Median	:1366.2
##	Mean : 5	.572 M	ean :	2.6779	Mean	:2182	Mean	:1578.4
##	3rd Qu.: 6	.143 3	rd Qu.:	4.1895	3rd Qu.	:2462	3rd Qu.	:1972.2
##	Max. :20	.520 M	ax. :	5.5390	Max.	:3878	Max.	:3230.8
##								
##	UNEMPLOYM	ENT	PMI		DETAL			OIL

10YUSBOND

Min. :0.0500 Min. :38.30 Min. :-10.7000 Min. : 18.57 ## 1st Qu.:0.1030 1st Qu.:48.38 1st Qu.: -0.5000 1st Qu.: 37.32 Median : 0.5000 Median :0.1245 Median :51.15 Median : 58.28 ## Mean :0.1288 Mean :50.58 : 0.5221 Mean : 60.99 ## Mean 3rd Qu.:0.1590 3rd Qu.:53.20 3rd Qu.: 1.5000 3rd Qu.: 80.75 ## ## Max. :0.2070 Max. :56.90 Max. : 10.8000 Max. :140.00 :8

NA's

3.3 Macierze korelacji

3.3.1 Macierz korlelacji przed usunięciem zmiennych

Z 11 zmiennych objaśniających wybrałem 7, których wartość bezwględna korelacji nie przekracza 0.7.

3.3.2 Macierz korlelacji po usunięciu zmiennych

4 Identyfikacja niestacjonarnych zmiennych objaśniających

4.1 Sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc
CLOSE	Niestacjonarna
XAUUSD	Niestacjonarna
USDPLN	Niestacjonarna
WIG20	Niestacjonarna
S&P500	Niestacjonarna
PMI	Niestacjonarna
OIL	Niestacjonarna
UNEMPLOYMENT	Niestacjonarna

4.2 Usunięcie niestacjonarności

4.3 Ponowne sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc		
D_CLOSE	Stacjonarna		
D_XAUUSD	Stacjonarna		
D_USDPLN	Stacjonarna		
D_WIG20	Stacjonarna		
D2_S.P500	Stacjonarna		
D_PMI	Stacjonarna		
D_OIL	Stacjonarna		
D_UNEMPLOYMENT	Stacjonarna		

4.4 Sprawdzenie korelacji po usunięciu niestacjonarności

4.5 Usunięcie zmiennych o zerowej wariancji

4.5.1 Przed usunięciem

D_CLOSE - Współczynnik zmienności: -1479.303 %, Wariancja: 0.1246856
D_XAUUSD - Współczynnik zmienności: 1006.021 %, Wariancja: 2638.734
D_USDPLN - Współczynnik zmienności: -27121.85 %, Wariancja: 0.01641273

- D_WIG20 Współczynnik zmienności: 6463.945 %, Wariancja: 19022.24
- D2_S.P500 Współczynnik zmienności: 57653.87 %, Wariancja: 8239.136
- D_PMI Współczynnik zmienności: 63313.66 %, Wariancja: 1.656016
- D_OIL Współczynnik zmienności: 3422.796 %, Wariancja: 35.01729
- D_UNEMPLOYMENT Współczynnik zmienności: -1377.121 %, Wariancja: 1.283612e-05

4.5.2 Po usunięciu

- D_CLOSE Współczynnik zmienności: -1479.303 %, Wariancja: 0.1246856
- D_XAUUSD Współczynnik zmienności: 1006.021 %, Wariancja: 2638.734
- D USDPLN Współczynnik zmienności: -27121.85 %, Wariancja: 0.01641273
- D_WIG20 Współczynnik zmienności: 6463.945 %, Wariancja: 19022.24
- D2_S.P500 Współczynnik zmienności: 57653.87 %, Wariancja: 8239.136
- D_PMI Współczynnik zmienności: 63313.66 %, Wariancja: 1.656016
- D_OIL Współczynnik zmienności: 3422.796 %, Wariancja: 35.01729

5 Metoda doboru zmiennych

5.1 Metoda Hellwiga

```
Zmienne składowe w najlepszej kombinacji:
D_USDPLN
D_WIG20
D_PMI
```

6 Tworzenie modelu ekonometrycznego

```
formula_modelu <- reformulate(best_hellwig_vars, response = "D_CLOSE")</pre>
model <- lm(formula_modelu, data = data_stationary)</pre>
print(summary(model))
Call:
lm(formula = formula_modelu, data = data_stationary)
Residuals:
    Min
                  Median
                               3Q
                                       Max
-1.09467 -0.16183 -0.00217 0.18815 1.28861
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0226434 0.0208685 -1.085 0.278978
D_USDPLN
           0.6970193  0.1837255  3.794  0.000187 ***
D_WIG20
           0.0440821 0.0165181 2.669 0.008129 **
D PMI
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3273 on 242 degrees of freedom
Multiple R-squared: 0.1515, Adjusted R-squared: 0.141
F-statistic: 14.41 on 3 and 242 DF, p-value: 1.149e-08
H0 takie ze ... p wynoszace xyz oznacza...
```

7 Niby TEST

7.1 Testowanie normalności rozkładu reszt

```
## TEORIA: Testy normalności sprawdzają czy reszty mają rozkład normalny.
## HO: Reszty mają rozkład normalny
## H1: Reszty nie mają rozkładu normalnego
## Poziom istotności: = 0.05
7.1.1 Test Shapiro-Wilka
##
      Statystyka W = 0.9719
##
      p-value = 1e-04
      Wniosek: Odrzucamy HO - reszty nie są normalne
##
7.1.2 Test Jarque-Bera
##
      Statystyka JB = 34.9526
      p-value = 0
##
##
      Wniosek: Odrzucamy HO - reszty nie są normalne
```

7.1.3 Wykresy normalności

7.2 Testowanie autokorealcji

TEORIA: Autokorelacja oznacza korelację między resztami w różnych okresach.

HO: Brak autokorelacji reszt

H1: Występuje autokorelacja reszt

7.2.1 Test Durbina-Watsona

1. TEST DURBINA-WATSONA:

Statystyka DW = 1.5324

p-value = 0

Wniosek: Odrzucamy HO - występuje autokorelacja

7.2.2 Test Ljunga-Boxa

2. TEST LJUNGA-BOXA:

Statystyka LB = 31.6143

p-value = 5e-04

Wniosek: Odrzucamy HO - występuje autokorelacja

7.2.3 Test Breuscha-Godfreya

3. TEST BREUSCHA-GODFREYA:

Statystyka LM = 10.6555

p-value = 0.0049

Wniosek: Odrzucamy HO - występuje autokorelacja

7.2.4 Wykres autokorelacji

Funkcja autokorelacji reszt

7.3 Badanie heteroskedastyczności

TEORIA: Heteroskedastyczność oznacza niestałą wariancję składnika losowego.

HO: Homoskedastyczność (stała wariancja)

H1: Heteroskedastyczność (niestała wariancja)

7.3.1 Test Breuscha-Pagana

1. TEST BREUSCHA-PAGANA:

Statystyka BP = 0.1821

p-value = 0.9804

Wniosek: Nie ma podstaw do odrzucenia HO - homoskedastyczność

7.3.2 Test White

7.3.3 Test Goldfelda-Quandta

3. TEST GOLDFELDA-QUANDTA:

Statystyka GQ = 1.1587

p-value = 0.2115

Wniosek: Nie ma podstaw do odrzucenia HO - homoskedastyczność

7.3.4 Wykresy heteroskedastyczności

Reszty vs Wartosci dopasowane

|Reszty| vs Wartosci dopasowane

7.4 Testowanie współliniowości

7.4.1 Test VIF

```
## TEORIA: Współliniowość oznacza wysoką korelację między zmiennymi objaśniającymi.
## VIF > 10: poważna współliniowość
## VIF > 5: umiarkowana współliniowość
## VIF < 5: brak problemów ze współliniowością
## WSPÓŁCZYNNIKI VIF:
      D_USDPLN : 1.267 - OK
##
##
      D_WIG20 : 1.305 - OK
      D_PMI : 1.034 - OK
##
##
## WNIOSEK: Brak problemów ze współliniowością
   Testowanie stabilności parametrów
7.5.1 Test Chowa
```

```
## TEORIA: Test Chowa sprawdza czy parametry modelu są stabilne w czasie.
## HO: Parametry są stabilne (brak przełomu strukturalnego)
## H1: Parametry nie są stabilne (występuje przełom strukturalny)
## TEST CHOWA (punkt przełomu w obserwacji 123 ):
      Statystyka F = 2.9766
##
##
      p-value = 0.02
      Wniosek: Odrzucamy HO - brak stabilności parametrów
##
```

7.5.2 Test CUSUM

7.6 Testowanie stabilności postaci analitycznej

7.6.1 Test RESET Ramseya

TEORIA: Test RESET sprawdza czy postać funkcyjna modelu jest poprawna.

HO: Model ma poprawną postać funkcyjną

H1: Model ma niepoprawną postać funkcyjną

1. TEST RESET RAMSEYA:

Statystyka F = 1.5663

p-value = 0.2109

Wniosek: Nie ma podstaw do odrzucenia HO - poprawna postać modelu

7.6.2 Test liczby serii (runs test)

##

```
## 2. TEST LICZBY SERII:
## TEORIA: Test sprawdza czy reszty są losowo rozłożone.
## HO: Reszty są losowo rozłożone
## H1: Reszty wykazują systematyczne wzorce
##
      Statystyka = -1.6602
      p-value = 0.0969
##
      Wniosek: Nie ma podstaw do odrzucenia HO - reszty są losowe
##
7.7
    Badanie efektu katalizy
7.7.1 Test F
## TEORIA: Efekt katalizy - jedna zmienna wpływa na siłę oddziaływania innej.
## Sprawdzamy czy interakcje między zmiennymi są istotne.
## TEST F DLA INTERAKCJI:
##
      Statystyka F = 0.9552
##
      p-value = 0.4328
##
      Wniosek: Brak istotnego efektu katalizy
## WSPÓŁCZYNNIKI INTERAKCJI:
##
      D_USDPLN:D_WIG20 : p-value = 0.9471
      D_USDPLN:D_PMI : p-value = 0.8729
##
##
      D_WIG20:D_PMI: p-value = 0.121
      D_USDPLN:D_WIG20:D_PMI : p-value = 0.5999
```

7.8 Badanie koincydencji

7.8.1 Porównanie R²

```
## TEORIA: Koincydencja - zmienna objaśniająca ma wpływ jedynie w określonych okresach.
## Sprawdzamy stabilność parametrów w różnych podokresach.
## ANALIZA STABILNOŚCI PARAMETRÓW W PODOKRESACH:
## Współczynniki determinacji:
     Okres 1 (obs. 1-82): R^2 = 0.2761
##
    Okres 2 (obs. 83 - 164): R^2 = 0.1815
##
     Okres 3 (obs. 165 - 246): R^2 = 0.0457
##
## PORÓWNANIE PARAMETRÓW W PODOKRESACH:
## Parametr (Intercept) :
     Okres 1: -0.0094
##
    Okres 2: -0.0175
##
    Okres 3: -0.0265
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
## Parametr D_USDPLN :
     Okres 1: 1.3833
##
    Okres 2: 0.244
##
    Okres 3: 0.4964
##
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
## Parametr D_WIG20 :
     Okres 1: -9e-04
##
```

```
Okres 2: -5e-04
##
##
     Okres 3: 0
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
##
## Parametr D_PMI :
##
     Okres 1: 0.0912
     Okres 2: 0.025
##
     Okres 3: 0.0063
##
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
```

8 Podsumowanie wyników

WYNIKI TESTÓW DIAGNOSTYCZNYCH:

##	Test	Statystyka	p_value	Wynik	
## 1	Normalność (Jarque-Bera)	34.953	0	NIESPEŁNIONE	
## 2	Autokorelacja (Ljung-Box)	31.614	0	NIESPEŁNIONE	
## 3	Heteroskedastyczność (Breusch-Pagan)	0.182	0.98	SPEŁNIONE	
## 4	Współliniowość (max VIF)	1.305	N/A	SPEŁNIONE	
## 5	Stabilność (Chow)	2.977	0.02	NIESPEŁNIONE	
## 6	Postać modelu (RESET)	1.566	0.211	SPEŁNIONE	
##					
## === OGÓLNA OCENA MODELU ===					
## Spełnione założenia: 3 / 6					
## N	iespełnione założenia: 3 / 6				

MODEL WYMAGA ISTOTNYCH POPRAWEK - niespełnia kluczowych założeń

=== REKOMENDACJE ===

##

##	• Rozważ transformację zmiennych (logarytmowanie) ze względu na brak normalności reszt
##	• Dodaj zmienne opóźnione lub rozważ model ARIMA ze względu na autokorelację
##	• Rozważ model ze zmiennymi strukturalnymi ze względu na niestabilność parametrów
##	
##	=======================================
##	KONIEC WERYFIKACJI MODELU