Section 9.4: Bijective Functions

Juan Patricio Carrizales Torres

Jul 28, 2022

As it was mentioned in the previous section, for finite sets A and B, $|A| \ge |B|$ is a necessary and sufficient condition for an onto function $f: A \to B$ to exist. The same can be said for $|A| \le |B|$ and some one-to-one function $g: A \to B$. Since we are talking about positive integers, it must be true that |A| = |B| is a necessary and sufficient condition for an onto and one-to-one function $\varphi: A \to B$ to exist, knwon as a bijective function.

In fact, for finite sets B and C such that |B| = |C| = n, there are n! distinct bijective functions from B to C. Namely, every bijective function is a permutation of the elements of |C| for n spaces. Furthermore, for any function f from B to C, f is onto if and only if f is one-to-one. All this makes sense for finite sets, we must make sure to pair all elements of C with the constriction of assigning one unique element to every element of B. However, this intuition does not work for analyzing the cases with infinite ones.

Let A, B be sets. So far, we defined the function $f: A \to B$ as a relation from A to B such that

(a)
$$x \in A \implies \exists b \in B, (a, b) \in f$$

(b)
$$(a,b), (a,c) \in f \implies b=c$$

If a relation satisfies (b), then it is called **well-defined**.

Lastly, the identity function i_S on ANY nonempty set S defined by $i_S(n) = n$ for all $n \in S$ is bijective.

Problem 31. Let $f: \mathbb{Z}_5 \to \mathbb{Z}_5$ be a function defined by f([a]) = [2a+3].

(a) Show that f is well-defined.

Proof. Consider two [a] = [b] such that $[a], [b] \in \mathbb{Z}_5$. Then, $a \equiv b \pmod{5}$ which implies that a - b = 5k for some $k \in \mathbb{Z}$. Then, f([a]) = [2a + 3] and f([b]) = [2b + 3]. Note that

$$(2a+3) - (2b+3) = 2(a-b) = 5(2k).$$

Therefore, $(2a+3) \equiv (2b+3) \pmod{5}$ and so f([a]) = f([b])

(b) Determine wheter f is bijective.

Proof. We know that $\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}$. Note that f([0]) = [3], f([1]) = [5] = [0], f([2]) = [7] = [2], f([3]) = [4] and f([4]) = [11] = [1]. Hence, all elements of \mathbb{Z}_5 are paired with a unique element of \mathbb{Z}_5 . The function is bijective.

Problem 33. Let A = [0, 1] denote the closed interval of real numbers between 0 and 1. Give an example of two different bijective functions f_1 and f_2 from A to A, neither of which is the identity function.

(a) $f: A \to A$ defined by f(n)

Problem 34. Give a proof of Theorem 7 using mathematical induction.

Solution If A and B are sets with |A| = |B| = n, then there are n! bijective functions from A to B.

Proof. We proceed by induction. Let A and B be sets with |A| = |B| = 1, then there is only 1 = 1! bijective function from A to B, namely, the pairing of the only element of A with the only element of B. In fact, this is the only function from A to B since $|B^A| = 1$.

Suppose for sets A_1 and B_1 with $|A_1| = |B_1| = k$ that there are k! bijective functions from A to B. We prove for sets A_2 and B_2 with $|A_2| = |B_2| = k + 1$ that there are (k + 1)! bijective functions.

By our inductive hypothesis, we can only create k! distinct bijective functions by fixing an element (a_{k+1}, b_{k+1}) in all of them since the remaining elements correspond to a bijective function from $\{a_1, a_2, \ldots, a_k\}$ to $\{b_1, b_2, \ldots, b_k\}$. Note that we can do this with $(a_{k+1}, b_k), (a_{k+1}, b_{k-1}), \ldots, (a_{k+1}, b_2), (a_{k+1}, b_1)$. Therefore, for each of the possible k+1 images of a_{k+1} , there are only k! distinct bijective functions. By the Principle of Mathematical Induction, there are (k+1)k! = (k+1)! bijective functions from A_2 to B_2 .