

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 12 EXAMINATION Model Answer

Subject Code: **12025** Page No.: 1/18

Q1.	Attempt any Ten	20 Marks
Ans a	Symbol Unit of Inductance Henry(H)	1
Ans b	Doping The process of adding impurities to the Intrinsic semiconductor is called Doping. Need To increase conductivity of intrinsic semiconductor.	1 1
Ans c	Applications of LED 1. In the optocouplers 2. In the infrared remote controls 3. As indicators in various electronic circuits	1
	Applications of Point Contact diode 1. AM detector in radio receiver 2. Video detector in T.V 3. Microwave frequency Mixer 4. Pulse Circuits	1
Ans d	Filter: Filter are the electronic circuit used with rectifiers to get pure DC voltage. The rectifiers give pulsating dc voltage. Filters are connected at the output of rectifier to get pure ripple free dc voltage.	1
	Types of filter: 1. Shunt Capacitor filter 2. Series Inductor filter 3. LC / choke input filter 4. CLC or π filter	1

the load current is changed friction. It is calculated as	ge $(I_L = 0)$ tage $(I_L = I_L Max)$	1
value. It is calculated as $ \begin{array}{c} \text{Value.} \\ \text{It is calculated as} \\ \text{Where } V_{NL} = \text{No load volta} \\ V_{FL} = \text{Full load vol} \\ V_{FL} = \text{Full load vol} \\ \text{Diagram of load regulation} \\ \\ \text{Line Regulation : It is defined as specified range of line volume} \\ \text{Line Regulation } = V_{HL} - \\ V_{HL} = \text{Load voltage with hig} \\ V_{LL} = \text{Load voltage with low} \\ \text{Ans f} \qquad \begin{array}{c} \alpha \text{ - It is defined as the ratio of } \\ \alpha \text{ dc} = \frac{\text{Ic}}{\text{Ig}} \text{or } \alpha \text{ ac} = \frac{\Delta \text{Ic}}{\Delta \text{Ig}} \\ \beta \text{ - It is defined as the ratio of } \\ \beta \text{ dc} = \frac{\text{Ic}}{\text{Ig}} \text{or } \beta \text{ ac} = \frac{\Delta \text{Ic}}{\Delta \text{Ig}} \\ \text{Ans g} \qquad \begin{array}{c} \text{Types of Coupling} \\ \text{2. Transformer Coupling} \\ \text{3. Direct Coupling} \\ \text{3. Direct Coupling} \\ \end{array} $	$ \begin{array}{c c} - V_{FL} & X & 100 \\ \hline V_{FL} & & \\ \hline \text{Uin Constant} \\ \text{ge} & (I_L = 0) \\ \text{tage} & (I_L = I_L \text{ Max}) \\ \end{array} $	
It is calculated as % Load Regulation = $\frac{V_{NL}}{V_{RL}}$ Where V_{NL} = No load voltation V_{FL} = Full load voltage V_{LL} Line Regulation : It is defined as specified range of line V_{RL} Line Regulation = V_{HL} V_{HL} = Load voltage with high V_{LL} = Load voltage with low Ans f α - It is defined as the ratio of α dc = $\frac{I_{CL}}{I_{EL}}$ or α ac = $\frac{\Delta I_{CL}}{\Delta I_{EL}}$ β - It is defined as the ratio of β dc = $\frac{I_{CL}}{I_{EL}}$ or β ac = $\frac{\Delta I_{CL}}{\Delta I_{EL}}$ Ans g Types of Coupling 1. RC Coupling 2. Transformer Coupling 3. Direct Coupling	ge $(I_L = 0)$ tage $(I_L = I_L Max)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ge $(I_L = 0)$ tage $(I_L = I_L Max)$	
Where $V_{NL} = No$ load volta $V_{FL} = Full$ load volta $V_{FL} = Full$ load voltage V_{L} lideal power practical $V_{NL} = V_{NL} = V_{NL}$ lideal power $V_{NL} = V_{NL} = V_{NL$	ge $(I_L = 0)$ tage $(I_L = I_L Max)$	
Where $V_{NL} = No$ load volta $V_{FL} = Full$ load volta $V_{FL} = Full$ load voltage V_{L} lideal power practical $V_{NL} = V_{NL} = V_{NL}$ lideal power $V_{NL} = V_{NL} = V_{NL$	ge $(I_L = 0)$ tage $(I_L = I_L Max)$	
Diagram of load regulation Load voltage V_L Vine Regulation: It is define to a specified range of line V_L Line Regulation: $V_{HL} = V_{HL} = V_{HL$		
Line Regulation : It is defined as the ratio of α and α and α and α and α are α and α and α are α and α are α and α are α and α are α are α and α are α are α and α are α a	supply	
Line Regulation: It is defined as the ratio of α as α	supply	
Line Regulation: It is defined as the ratio of α as α	supply	
Line Regulation : It is defined as pecified range of line with the Line Regulation = V_{HL} — V_{HL} = Load voltage with high V_{LL} = Load voltage with low ΔI_{LL} = ΔI	Supply	
Line Regulation: It is defined a specified range of line where α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α is defined as the ratio		
Line Regulation: It is defined to a specified range of line where α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α is d		
Line Regulation : It is define for a specified range of line value of line value and the specified range of line value of the value of	FL	
Line Regulation: It is define for a specified range of line where α is specified range of line where α is specified range of line where α is the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α and α is defined as the ratio of α is		
for a specified range of line value V_{HL} in Equilation V_{HL} is V_{HL} in Equilation V_{HL} is defined as the ratio of V_{LL}	Load current	
for a specified range of line value V_{HL} in Equilation V_{HL} is V_{HL} in Equilation V_{HL} is defined as the ratio of V_{LL}	and another above as in manufacted load walks as	
$V_{HL} = \text{Load voltage with hig}$ $V_{LL} = \text{Load voltage with low}$ $\alpha - \text{It is defined as the ratio of } \alpha \text{ dc} = \frac{\text{Ic}}{\text{I}_{E}} \text{ or } \alpha \text{ ac} = \frac{\Delta \underline{\text{Ic}}}{\Delta \text{I}_{E}}$ $\beta - \text{It is defined as the ratio of } \beta \text{ dc} = \frac{\text{Ic}}{\text{I}_{B}} \text{ or } \beta \text{ ac} = \frac{\Delta \underline{\text{Ic}}}{\Delta \text{I}_{B}}$ $Ans g \qquad \textbf{Types of Coupling}$ $1. \text{RC Coupling}$ $2. \text{Transformer Coupling}$ $3. \text{Direct Coupling}$	oltage with load R_L constant (I_L constant)	1
Ans f α - It is defined as the ratio α $\alpha_{dc} = \frac{Ic}{I_E} \text{or} \alpha_{ac} = \frac{\Delta I_C}{\Delta I_E}$ $\beta - \text{It is defined as the ratio } \alpha$ $\beta_{dc} = \frac{Ic}{I_B} \text{or} \beta_{ac} = \frac{\Delta I_C}{\Delta I_B}$ Ans g $\alpha_{dc} = \frac{Ic}{I_B} \text{or} \beta_{ac} = \frac{\Delta I_C}{\Delta I_B}$ 1. RC Coupling 2. Transformer Coupling 3. Direct Coupling	V_{LL}	
Ans f $\alpha - \text{It is defined as the ratio } \alpha$ $\alpha \text{ dc} = \frac{\text{Ic}}{\text{I}_{E}} \text{ or } \alpha \text{ ac} = \frac{\Delta \underline{\text{I}}_{C}}{\Delta \underline{\text{I}}_{E}}$ $\beta - \text{It is defined as the ratio } \alpha$ $\beta \text{ dc} = \frac{\text{Ic}}{\text{I}_{B}} \text{ or } \beta \text{ ac} = \frac{\Delta \underline{\text{I}}_{C}}{\Delta \underline{\text{I}}_{B}}$ Ans g $Types \text{ of Coupling}$ 1. RC Coupling 2. Transformer Coupling 3. Direct Coupling	h line voltage	
$\alpha_{dc} = \underline{Ic} \text{or } \alpha_{ac} = \underline{\Delta} \underline{I_C}$ $\beta - \text{It is defined as the ratio of } \beta_{dc} = \underline{Ic} \text{or } \beta_{ac} = \underline{\Delta} \underline{I_C}$ $\underline{I_B} \Delta \underline{I_B}$ Ans g $1. \text{RC Coupling}$ $2. \text{Transformer Coupling}$ $3. \text{Direct Coupling}$	v line voltage	
$\beta - \text{It is defined as the ratio of } \beta - \text{It is defined as the ratio of } \beta \text{ dc} = \frac{\text{Ic}}{\text{I}_B} \text{or } \beta \text{ ac} = \frac{\Delta \text{Ic}}{\Delta \text{I}_B}$ $Ans g \qquad \textbf{Types of Coupling}$ $1. \text{RC Coupling}$ $2. \text{Transformer Coupling}$ $3. \text{Direct Coupling}$	f collector current I_c to the emitter current I_E	1
$\beta_{dc} = \underline{Ic} \text{or } \beta_{ac} = \underline{\Delta} \underline{I_C}$ $\underline{I_B} \underline{\Delta} I_B$ Ans g $1. \text{RC Coupling}$ $2. \text{Transformer Coupling}$ $3. \text{Direct Coupling}$		
$\begin{array}{c c} I_B & \Delta I_B \\ \hline \text{Ans g} & \textbf{Types of Coupling} \\ \hline 1. & RC \text{Coupling} \\ 2. & \text{Transformer Coupling} \\ 3. & \text{Direct Coupling} \\ \end{array}$	f collector current I_C to the Base Current I_B	1
Ans g 1. RC Coupling 2. Transformer Coupling 3. Direct Coupling		
Transformer Coupling Direct Coupling		2
Transformer Coupling Direct Coupling		
3. Direct Coupling	7	
Ans h Applications of JFET (any	,	
Ans n Applications of JFE1 (any		1
	one)	1
 Used as amplifier Used as switch 		
4. Used in digital circuit	able resistor(VVR)	
esea in digital effective	able resistor(VVR)	1
Applications of MOSFET (
1. Used as Amplifier	S	
2. It can be used as swite	S	

		3/18		
Ans i	Advantages of IC (any two)	1		
	1. Small size and weight			
	2. Low cost			
	3. High Reliability			
	4. Low power consumption			
	5. High operating speed			
		1		
	Disadvantages of IC (any two)			
	1. Power dissipation is limited			
	2. Not possible to fabricate capacitor of values higher than 30 pF			
	3. Not possible to fabricate resistor of values higher than $100 \text{K}\Omega$			
	4. Not possible to directly fabricate Inductor			
	5. Initial cost to be incurred is high			
Ans j	Covalent Bonding structure of Silicon atom	2		
	Covalent bonds			
	Si) Silicon nucleus			
	Valence electrons			
	S			
Ans k	Forbidden Energy Gap (E_G): It is the energy gap that separates the	1		
Alls K	conduction and valence band in the energy band diagram. No electrons	1		
	can exist in the forbidden energy gap.			
	For $E_G Wood > 5eV$			
	E_{G} Copper = 0eV	1		
	Ripple Factor: it is defined as the ratio of RMS value of the AC	1		
Ans 1	component of output to the DC or average value of the output.			
7 1115 1	$r = [V_{L rms}^2 - V_{Ldc}^2]^{1/2} / V_{Ldc}$			
	T [V L IIIIS V Lucj / V Luc			
	PIV: Peak Inverse Voltage			
	It is the maximum reverse voltage that a diode can withstand in the			
	reverse direction without breaking down.	1		
Ans m	Different types of Capacitor			
	Fixed Capacitor	1		
	1. Paper			
	2. Mica			
	3. Ceramic			
	4. Glass			
	5. Plastic Film			
	6. Electrolytic			
	Variable Capacitor	1		
	1. Tuning (Ganged) Capacitor			
	2. Trimming Capacitor			
Ans n	Intrinsic Semiconductor -	1		
	Intrinsic means 'pure', so intrinsic semiconductors are the			
	semiconductors in the purest form.			
	Extrinsic Semiconductor -	1		
	Extrinsic means 'Impure'.			
	These are obtained by adding impurities to the Intrinsic			
	semiconductor.			
_				

Q2	Attempt	t ANY FOUR		4/18 16	
Ans a	Symbol				
		leikorgeoleid 📡	YOU'T S	1	
	TANA TANA				
	• CVVV				
	Applications (any two)				
		a light meters			
		ty Alarms		1	
		e detectors			
		sensitive relays			
	_	of Thermistor			
		•— (M	\wedge	1	
	Annlica	tions (any two)			
		n Bio-medical Instrumentatio	n	1	
		natic temperature controller			
		erature sensor			
	_	ng and compensating circuits	of transistor		
Ans b		<u> </u>	rinsic semiconductor(any 4 points)		
Alls U	Differen	ice between mirmsic & Exti	inisic semiconductor (any 4 points)	4	
	Sr.No.	Intrinsic Semiconductor	Extrinsic semiconductor	4	
	1.	Pure form	Impure form		
	2.	Number of holes is equal	In N type number of electrons is		
	۷٠	to the no. of electrons	more and in P type number of		
		to the no. of electrons	holes is more		
	3.	Electrons and holes are			
]] 3.		Electrons and holes are generated		
	4.	thermally generated Total current flow is due	due to doping Total current flow is due to		
	4.	to holes and electrons	I I		
		to notes and electrons	majority carriers holes in P-Type and electrons in N -type		
	5.	Conductivity is noon	7.1		
	6.	Conductivity is poor	Conductivity is high		
	0.	Fermi level is at the center	Fermi level is either near the		
		of forbidden energy gap	conduction band or valence band		
Ans : c	V-I Cho	racteristics of Diode			
Alis . C	V-1 Clia	I _F (mA)		2	
		1	1	2	
		/			
	10000000	eakdown	Forward		
	V	oltage	characteristics		
	V _R ←	V _{BR} I _o	→ V _F		
	*H -	Vy	▼F		
	1	Reverse 1	Cut in voltage(Knee voltage)		
	/	saturation current			
	/				
	Reverse				
	characteristics				
		I _S (μA)			
	Knee Vo	oltage: The voltage at which	the forward current of diode starts	1	
		ng rapidly is known as Knee v		1	
			everse bias voltage is increased, to a		
		_	rent through PN junction increases	1	
	_		tion occurs is known as reverse	1	
	asiapuy	, at 1, 111011 11115 ac	2221 222612 12 1110 1111 40 10 10 10 10 10		

Ans f	Zener Diode as Voltage Regulator	,,,,,
	- A Voltage Regulator circuit provides constant O/P voltage inspite of changes in its i/p voltage or load current. - The Series Resistance Rs is connected to limit the total current drawn from the unregulated power supply. - Zener diode is a shunt type voltage regulator because the zener diode is connected in parallel with the load resistance and is connected in reverse biased condition. - If Vin is higher than Vz and if the Iz is between Izmin & Izmax then the voltage across zener will remain constant equal to Vz irrespective of any changes in Vin & IL. As output voltage is constant and equal to Vz, a regulated o/p voltage is obtained. - When Vin varies - Assume R _L constant, Vin is varying So, I _L is also constant as I _L = V _Z /R _L But Vin changes & supply current also changes I = Vin - Vz R _S - Also I = Iz + I _L If Vin is increased, then current I will increase. But as Vz is constant & R _L is also constant, the I _L will remain constant. - The increase in current I will increase Iz but Iz is less than Iz (max). - Thus the output voltage will remain constant. - When I _L varies - Assume Vin constant, R _L is variable. If R _L increases, I _L will decrease. But I is constant. I = Vin - Vz Also I = Iz + I _L R _S Therefore with decrease in I _C , Iz will increase. This can be continued without damaging the Zener diode as long as I _Z is less than I _Z max., the O/P voltage will remain constant.	2
Q3	Attempt ANY FOUR	16
Ans a	Acceptor Doped Material is termed as Trivalent Impurity.	1
	Donor Doped Material is termed as Pentavalent Impurity.	1
	Trivalent Impurity : Boron, Aluminium , Gallium (any one)	1
	Pentavalent Impurity: Phosphorous, Arsenic, Antimony (any one)	1

Ans b	Difference between P-N Junction diode and Practical P-N Junction diode (any four)				4
	Sr. No	Parameter	Ideal Diode	Practical Diode	
	1	Forward Resistance	Ω	$\text{Few}\Omega$	
	2	Reverse Resistance	Infinity	Few hundred KΩ	
	3	Cut In Voltage	0V	0.6V for Silicon diode 0.3V for Germanium diode	
	4	Reverse saturation Current	0	Few nA For silicon diode Few mA for Germanium diode	
	5	Equivalent circuit in Forward bias		A0	
	6	Equivalent circuit in Reverse bias		high resistance	
Ans c	1 ph 230V	, AC N T ₁ (Input trans		Load voltage	2
	_	and Output Waveforms		general de la contraga en proposante.	2
	Secon volta V _A	B O T T T T T T T T T T T T T T T T T T	2π	Average load voltage	2

				11/18 2
	Now applying the Thevenin's theorem, we get the voltage,			
	$V_{TH} =$	$(\underline{R2})$. V_{CC}		
		$R_1 + R_2$		
		he equivalent resistance.		
	$R_{TH} =$	$R_1 ll R_2 = \underline{R_1 \cdot R_2}$		
		$R_1 + R_2$		
		ring KVL to the base emitter loop of	this circuit,	
		$I_B R_{TH} + V_{BE} + I_E R_E$		
		$V_{TH}-I_BR_{TH}-I_ER_E$		
		ying KVL to the output section, we	get	
		$I_{\rm C}R_{\rm C} + V_{\rm CE} + I_{\rm E}R_{\rm E}$		
		$= V_{CC} - I_C (R_C + R_E)$		4
Ans: d		are BJT and FET (any four points)		4
	Sr.	ВЈТ	FET	
	No.			
	1.	BJT is a Bipolar device	FET is a unipolar device	
	2.	Input impedance is low (In k Ω)	Input impedance is high (In $M\Omega$)	
	3.	AC voltage gain of BJT	AC voltage gain of FET	
		amplifier is high (100-300)	amplifier is low (less than 50)	
	5	Transfer characteristics is linear.	Transfer character of FET is	
			non linear.	
	6	Thermal runaway can damage	Thermal runaway does not	
		the BJT.	take place.	
	7.	Noise generated by BJT is high	Noise generated by FET is low	
	8.	BJT is current controlled device.	FET is a voltage controlled	
		But is carrent controlled devices.	device.	
	9	BJT is more sensitive	FET is less sensitive.	
	10	Size of BJT is bigger than FET	Size of FET is smaller than	
		Size of Bit is orgger than i Et	BJT.	
Ans : e	Dynamic drain Resistance (r _d):			
	-	efined as the ratio of change in drain	to source voltage to the	1
			<u> </u>	
	corresponding change in the drain current, at a constant value of gate to source voltage.			
		$\Delta m V_{DS}/\Delta_{ID}]_{constant\ VGS}$		
		sconductance (g_m) or Mutual Conductance	ductance	
				1
	The transconductance g_m is defined as the ratio of change in drain current to the corresponding change in gate to source voltage at a constant value			
	of drain to source voltage.			
		$[\Delta_{ID}/\Delta V_{GS}]_{constant\ VDS}$		
		ification factor (μ):	tion of alcomon in the duain to	1
	_	ification factor μ is defined as the ra	_	
	source voltage, to change in the gate to source voltage, at a constant value			
	of I _{D.}	Γ Α Υ.7 / /	11 I	
		$\mu = [\Delta V_{DS}/\Delta$	A V GS] D constant	
	Relati	on between the parameters:		1
	μ =	$[\Delta V_{DS}/\Delta_{ID}] * [\Delta_{ID}/\Delta V_{GS}]$		
	-	$= r_d \times g_m$		
	1 -	mplification factor is equal to the pr	oduct of drain resistance and	
		onductance.	oddet of drain resistance and	
	amse	onadomno.		

		12/10
Ans: f	Gate V _{DS} Q _S = 0 Source Source Source (a) Operation with no bias voltage (b) Operation with a small negative gate source bias gate source bias	2
	Operation of n channel JFET:	
	 i) Operation of n-channel JFET with V_{GS} = 0 ➤ Due to the supply voltage V_{DS}, current starts flowing through the channel. 	
	 The n-type material has a finite resistance. Therefore the drain current flow, causes a voltage drop along the channel. This voltage drop will reverse bias the gate to source p- 	2
	n junction. The depletion region of the reverse biased p-n junction penetrates more into the n-type bar because it is lightly doped as compared to the heavily doped p-type gate. The penetration of the depletion region into n-type bar depends on the reverse bias voltage. Due to the	
	depends on the reverse bias voltage. Due to the depletion regions the width of the channel available for conduction is reduced. ii) Operation of a n-channel JFET for small negative V _{GS} :-	
	 Due to the reverse voltage applied across the gate source junction, the penetration of the depletion region into n-type material increases further. This will reduce the channel width further. Due to reduced channel width less number of electrons can pass through to drain from source. Therefore, drain current I_D reduces with increase in – V_{GS}. 	
	 iii) Operation of n-channel JFET for large value of negative V_{GS}: As the negative voltage V_{GS} is further increased, the depletion region spread more inside the n-type bar. At a certain value of negative V_{GS}, the depletion regions touch each other. The channel width is therefore zero and therefore the 	
	Thus with increase in the negative gate to source voltage, the channel	
Q5.	becomes more and more narrow and drain current I _D reduces. Attempt any FOUR	16
Ans: a	Classification of ICs on the basis of	
	i) Packaging 1) Single-in-line package (SIP) 2) Dual-in-line package (DIP) 3) Flat package 4) Top hat (TO) Package.	2
	ii) Signals processed: 1) Analog IC (Linear IC) 2) Digital IC (Non-linear IC)	2

Ans: d	Compare	Centre tapped r	rectifier and Bridge r	rectifier (any four)	4
	Sr. No	Parameter	Centre tapped rectifier	Bridge rectifier	
	1	Circuit diagram	To D1 VL RL 230V, AC TITLE TO TE TO	Stap dom	
	2	Wave forms	$\begin{array}{c c} \cdot V_{m} & & & \\ \hline O & & & \\ \hline O_{1}^{1} & D_{2}^{1} & D_{1}^{1} \\ \hline on & on & on \\ \end{array}$	$\begin{array}{c c} V_m & \longrightarrow & \omega t \\ \hline O & D_1 & D_2 & D_1 \\ \hline on & on & on \end{array}$	
	3	DC or average load current I _{Ldc}	$2I_{m}/\pi$	2I _m / π	
	4.	Maximum average load voltage	$2V_{\rm m}$ / π	$2V_{\rm m}$ / π	
	5.	RMS load Current I _{Lrms}	$I_m/\sqrt{2}$	$I_m/\sqrt{2}$	
		RMS load voltage V _{Lrms}	$V_{\rm m}/\sqrt{2}$	$V_{\rm m}/\sqrt{2}$	
	5.	DC load power P _{dc}	$4I_{m}^{2} R_{L} / \pi^{2}$	$4I_{m}^{2}R_{L}/\pi^{2}$	
	6.	Maximum rectification efficiency	81.2%	81.2%	
	7.	TUF	69.3%	81.2%	
	8.	Ripple factor	48%	48%	
	9.	Ripple frequency	100Hz	100Hz	
	10.	Number of diodes used	Two	Four	
	11.	Centre tap transformer	Very much required	Not required	
	12.	Transformer core Saturation	Not Possible	Not Possible	
	13.	PIV	$2V_{\rm m}$	$V_{\rm m}$	
	14.	Expression for the peak load current	$I_m = V_m / (R_s + R_f + R_L)$	$I_m = V_m / (R_s + 2R_f + R_L)$	
Ans: e	R-C coup	led amplifier			
Ans : e	v _s €	R, Ray	R_{C} C_{C} R_{1} R_{E} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{6} R_{7} R_{8} R_{8} R_{8} R_{8} R_{8} R_{8}	GE RIL VO	2
			₩ .	(contd. Pg. 1	5)

	Need of Cascading :	2
	 i. The meaning of the word cascading is to connect a number of amplifier stages to each other with the output of the previous stage connected to the input of the next stage. ii. Thus a multistage amplifier is obtained by cascading a number of amplifiers. iii. The most important parameters of an amplifier are its input impedance, voltage gain, Bandwidth, and output resistance. iv. It is generally not possible for a single stage amplifier to fulfil all the requirements. Hence we have to use a multistage amplifier. v. If more than one amplifier stages are cascaded then the input stage takes care of the input impedance while the output stage takes care of the output impedance matching requirements and the middle stages will fulfil the high voltage gain requirements. Thus the cascading of amplifiers is to be done when. i. The amplification provided by a single stage amplifier is not sufficiently large ii. The input and output impedance are not of correct value. 	
Ans: f	Photo diode: Symbol:	
	Characteristics:	1
	Photocurrent ♣ (µA)	
	V _R	1
	Applications: 1) In object counting system. 2) In the cameras for sensing the light intensity. 3) In the fiber optic receiver. 4) In light intensity meters.	2

) 6.	Attemp	t any Four				16/16
Ans: a	P-N Junction with no bias: Atoms with holes Junction Atoms with electrons Cathode Thermally generated electron hole electron hole Thermally generated electron hole pairs.					
	> 1	together with the a p-n junction. Terminals are by N-type semicon N-side is called The N-side conthermally gener number of holes Thus the electrocarriers in the N in the P-region.	rought out for the ductors. The Fas Cathode. Insists of a large ated holes where and a few there ons are majority N-region whereas on forms the basis immobile positic electric field is	ne external connerside is called a reas the P-side comally generated by carriers and hous their roles are asic semiconduct we and negative is created across the	cchnique to form ction with P and s anode and the ectrons and few onsists of a large electrons. les are minority exactly opposite or device called tions on opposite	1
		on Region: The region on both side free charge carriers surgion is depleted of the called as the depletion region.	ch as electrons e free charge ca	or holes. In o	other words this	1
ans:b	Sr. No. 1 2 3 4 5 6 7	Parameters Common terminal between input and output Input Current Output Current Current gain Input Voltage Voltage gain	and CC (any CE	y four) CB Base I_E I_C $\alpha dc = I_C/I_E$ V_{EB} V_{CB} Medium	CC $Collector$ I_{B} I_{E} $\gamma = I_{E}/I_{B}$ V_{BC} V_{EC} $Less than 1$	4

2

Depletion MOSFET

i) Operation with $V_{GS} = 0V$:

- It shows that the gate, source and substrate terminals are connected together to the ground point. Thus $V_{GS} = 0V$. A positive voltage V_{DD} is applied between drain and source.
- Due to the positive voltage applied to the drain terminal, free electrons from the channel are attracted to the drain and the drain current starts flowing.

ii) Operation with negative V_{GS} :

- Due to negative voltage applied between gate and cathode terminals, the gate will tend to repel the free electrons towards the P-type substrate and attract the holes from the substrate.
- These electrons and holes will recombine inside the channel. This will reduce the number of free electrons available for conduction.
- Therefore the drain current will decrease with increase in negative value of V_{GS} . Thus as V_{GS} increase, I_D decreases for a constant value of V_{DS} .
- ➤ Depending on the magnitude of negative bias V_{GS}, a level of recombination between electrons and holes will occur.
- ➤ This will reduce the number of free electrons in the n-channel available for conduction.
- ➤ The higher the negative bias, the more the recombination and the less is the drain current.

iii) Effect of positive gate to source voltage :

- ➤ The drain current will increase as the positive voltage V_{GS} increases.
- ➤ Thus the level of free electrons has been enhanced due to the application of positive gate voltage. Therefore, the region of operation corresponding to the positive gate current is called as enhancement region of operation and the region between cut off and saturation is referred to as depletion region.

2