"ANALISIS SPEKTRAL"

DISUSUN OLEH:

A Rofiqi Maulana

125090500111025

DOSEN : Ir. Heni Kusdarwati

PROGRAM STUDI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS BRAWIJAYA 2014

Analisis Spektral

Analisis spektral merupakan suatu metode yang digunakan untuk analisis time series pada domain frekuensi. Metode ini merupakan analisis statistik inferensial (yang dapat disimpulkan) yang berdasarkan konsep frekuensi, secara visual digambar dengan spektrum. Konsep dasar analisis spektral yakni menghitung periodogram dan menggambarkan garis spektrum kuasanya.

Periodogram merupakan fungsi spektrum kuasa atas frekuensinya. Untuk menelaah periodesitas data dilakukan terhadap frekuensi yang berpasangan dengan titik-titik puncak garis spektrumnya. Persamaan periodogram dituliskan sebagai berikut:

$$I(\omega_P) = NR_p^2/(4\pi)$$

Berikut merupakan data mengenai tekana permukaan laut (diukur dari atmosfer baku ICAO) pada tahun 1990 – 1998. Data ini merupakan indicator kunci mengaenal pola iklim.

Tahun	Tekanan	Tahun	Tekanan	Tahun	Tekanan	Tahun	Tekanan
1982	11.1	1984	12.1	1986	11.5	1988	13.5
	8.4		10.5		10.7		11.2
	7.5		9.7		8.4		8.9
	6.3		8.5		7.6		7.8
	7		7.1		4.7		7.8
	7.5		5.3		6.9		6.7
	10.1		8.1		8.4		6.8
	11.9		10.1		9.3		10.1
	13		11.1		11.6		10.8
	0.9		13.2		11		13.9
	14.5		13.2		12.8		12.8
1983	14.7	1985	12.2	1987	12	1989	12.5
	14		11.8		12.2		10.6
	12.5		11.3		10.9		9.1
	11.1		9.3		9.3		7.4
	9.3		5.1		9.7		6.5
	9.8		7.5		7.1		5.4
	10.3		5.4		7.4		6.8
	10.1		6.1		10.7		7.3
	10.1		7.5		11.5		7.6
	11.7		9.4		12.6		10.1
	13.3		12.6		13.1		12.8
	14.4		13.6		14.7		12.1
	14.1		12.4		14.3		13.3

Tahun	Tekanan								
	11.7		13.3		13.4		12		14.7
	9.9		11.1		12		10.2		13.4
	8.7		10.1		9		8.8		11.4
	8.9		8.5		7		7.5		8.6
	6.9		10.1		6.7		5.7		7.8
1990	10	1992	7.7	1994	6.5	1996	6.2	1998	10.2
1330	8.3	1332	10.5	1331	9.4	1330	7.4	1330	10
	9.7		11		10.8		9		11.1
	10.3		11.1		12		12.2		11.5
	12.4		12.5		12.9		12.4		12.1
	12.8		14.9		14.1		12.5		12.6
	13.5		12.8		14.9		12.4		12.7
	13.3		11.2		13.5		10.3		
	10.9		11.2		11.9		9.7		
	9.1		9.5		9.8		8.4		
	7.7		7.3		9.3		5.6		
	6.3		6.8		7		7.3		
1991	6.5	1993	6.4	1995	7.8	1997	4.8		
1331	9.5	1333	10.1	1333	7.2	1337	8.6		
	9.9		11.4		9.6		11.9		
	12.6		12.4		11.6		11.9		
	13.3		13.9		13		14.7		
	13.4		13.5		12.7		14.3		
	14		15.1		13.2		15.1		

Berikut merupakan plot deret waktu tekanan permukaan laut dari tahun 1982 – 1998 yang diukur bulanan. Dapat dilihat bahwa plot deret waktu tersebut stasioner terhadap rata – rata dan terlihat membentuk tingkah laku musiman.

Gambar 1

Box dan Jenkins (1976), Chatfield (1984), Jenkins dan Watts (1968), dengan Stringer (1972) mengemukakan, jika diinginkan garis spektrum yang tegas (rigorously), maka data deret waktu yang akan dianalisis harus dibebaskan dari komponen musiman dan trend. Sebab jika komponen trend tidak dihilangkan, maka titik puncak spectrum kuasa akan terakumulasi pada frekuensi 0, sedangkan jika komponen musiman yang tidak dihilangkan, maka akumulasinya pada frekuensi yang berkaitan dengan periode musiman. Dengan adanya titik akumulasi ini akan menghilangkan (mengurangi) informasi mengenai periodesitas yang lainnya

Berikut merupakan proses stasioner terhadap ragam menggunakan transformasi Box Cox. Data tekanan permukaan laut tersebut stasioner terhadap ragam pada transformasi pertama.

Gambar 3 mengisyaratkan bahwa pada korelasi pada lag pertama cukup itnggi sehingga dapat dikatakan bahwa data belum stasioner terhadap rata – rata sehingga perlu dilakukan differensi non musiman 1 kali. Gambar 4 merupakan ACF dari diff1 dan dapat disimpulokan bahwa terdapat efek musiman. Sehingga perlu dilakukan proses differensi musiman = 12. Gambar 5 merupakan ACF dari differensi non musiman = 1 dan differensi musiman = 12. Sehingga dapat disimpulkan bahwa data sudah bebas dari efek trend dan musiman. Pada Gambar 6 dapat dilihat bahwa deret waktu yang dihasilkan sudah acak terbebas dari efek trend dan musiman.

Berikut merupakan Periodogram dari data yang telah bebas dari efek trend dan musiman.

Gambar 7

Dapat dilihat bahwa secdara grafis terdapat dua puncak tertinggi. Untuk lebih jelasnya dapat dilihat dari tabel berikut

Univariate Statistics

Series Name: tekanan

	Frequency	Period	Sine	Cosine	Periodogram	Spectral
			Transform	Transform		Density
						Estimate
1	,00000		,000	-,802	,000	
2	,00524	191,00000	,017	-1,651	259,040	
3	,01047	95,50000	-,371	-1,752	304,561	
4	,01571	63,66667	-,388	-3,053	899,719	
5	,02094	47,75000	-1,951	-2,735	1072,034	
6	,02618	38,20000	1,083	-1,721	392,689	
7	,03141	31,83333	1,202	-2,946	962,013	
8	,03665	27,28571	-1,084	-,856	181,369	
9	,04188	23,87500	2,748	-,517	742,800	
10	,04712	21,22222	,157	-,202	6,225	
11	,05236	19,10000	,878,	-1,389	256,593	
12	,05759	17,36364	2,621	3,454	1785,926	
13	,06283	15,91667	1,465	2,495	795,526	
14	,06806	14,69231	-,670	-1,244	189,668	
15	,07330	13,64286	,738	-,507	76,134	
16	,07853	12,73333	,387	-,120	15,569	
17	,08377	11,93750	,377	-,923	94,496	
18	,08901	11,23529	,527	-1,062	133,613	
19	,09424	10,61111	-,971	-,537	116,859	

	 	İ	l	Ī	
20	,09948	10,05263	,030	-,694	45,871
21	,10471	9,55000	-2,524	-1,901	948,713
22	,10995	9,09524	1,058	1,088	218,729
23	,11518	8,68182	-2,606	-4,921	2945,812
24	,12042	8,30435	-,989	,656	133,839
25	,12565	7,95833	-2,505	3,583	1816,012
26	,13089	7,64000	2,778	1,340	903,466
27	,13613	7,34615	-1,462	2,249	683,659
28	,14136	7,07407	1,393	-1,784	486,699
29	,14660	6,82143	-4,258	4,522	3664,936
30	,15183	6,58621	-,431	3,487	1172,764
31	,15707	6,36667	-2,796	1,923	1093,717
32	,16230	6,16129	-,151	2,929	817,319
33	,16754	5,96875	-,572	3,201	1004,668
34	,17277	5,78788	-,528	3,525	1206,651
35	,17801	5,61765	,010	4,673	2074,244
36	,18325	5,45714	1,465	,858	273,707
37	,18848	5,30556	1,818	-5,303	2985,980
38	,19372	5,16216	6,764	,721	4396,334
39	,19895	5,02632	6,831	,257	4438,813
40	,20419	4,89744	,907	-12,581	15113,931
41	,20942	4,77500	3,312	-5,908	4358,481
42	,21466	4,65854	-,392	-4,089	1603,191
43	,21990	4,54762	-2,732	-5,361	3439,250
44	,22513	4,44186	2,235	3,950	1956,791
45	,23037	4,34091	1,034	-3,721	1417,096
46	,23560	4,24444	-1,767	-6,810	4702,147
47	,24084	4,15217	-,395	-2,178	465,630
48	,24607	4,06383	-1,595	-1,686	511,680
49	,25131	3,97917	-2,110	-1,977	794,429
50	,25654	3,89796	-3,485	-,923	1234,530
51	,26178	3,82000	-3,023	-,905	946,202
52	,26702	3,74510	-3,880	5,851	4681,936
53	,27225	3,67308	-,639	-,507	63,240
54	,27749	3,60377	1,571	1,785	537,205
55	,28272	3,53704	-8,326	3,644	7847,606
56	,28796	3,47273	-3,835	-2,780	2131,573
57	,29319	3,41071	1,222	4,757	2292,007
58	,29843	3,35088	-9,133	4,095	9516,316
59	,30366	3,29310	-2,874	4,985	3145,457
60	,30890	3,23729	4,503	7,410	7143,248
61	,31414	3,18333	-1,067	-1,679	376,199

63	,32461	3,08065	2,022	,918	468,329
64	,32984	3,03175	3,306	-,431	1055,871
65	,33508	2,98438	4,259	-1,493	1935,206
66	,34031	2,93846	1,887	-3,791	1703,535
67	,34555	2,89394	1,806	1,802	618,319
68	,35079	2,85075	-4,499	-4,616	3947,281
69	,35602	2,80882	,715	-2,781	783,183
70	,36126	2,76812	,504	-5,208	2600,793
71	,36649	2,72857	-5,117	-12,523	17385,460
72	,37173	2,69014	8,924	-7,869	13447,790
73	,37696	2,65278	-5,019	-3,054	3279,087
74	,38220	2,61644	5,681	-3,702	4368,050
75	,38743	2,58108	8,176	,245	6356,424
76	,39267	2,54667	1,643	-3,963	1748,327
77	,39791	2,51316	-7,894	4,298	7675,113
78	,40314	2,48052	-2,107	3,813	1802,560
79	,40838	2,44872	-2,277	3,869	1914,143
80	,41361	2,41772	-2,818	3,275	1773,127
81	,41885	2,38750	-1,256	4,025	1689,004
82	,42408	2,35802	-3,736	1,639	1581,130
83	,42932	2,32927	,170	5,206	2577,183
84	,43455	2,30120	7,339	9,245	13237,080
85	,43979	2,27381	5,251	-,272	2626,929
86	,44503	2,24706	-4,912	4,856	4532,524
87	,45026	2,22093	7,819	-1,275	5962,760
88	,45550	2,19540	3,454	8,315	7701,812
89	,46073	2,17045	6,857	9,150	12421,036
90	,46597	2,14607	,450	-1,823	334,918
91	,47120	2,12222	3,600	-1,715	1510,800
92	,47644	2,09890	-2,444	1,884	904,870
93	,48168	2,07609	6,289	-10,585	14401,346
94	,48691	2,05376	,014	,005	,020
95	,49215	2,03191	1,340	-4,597	2178,269
96	,49738	2,01053	,000	-5,023	2396,750
тот					265100792

Salah satu cara menghitung nilai periodogram adalah metode windowing (spectral window). Dengaqn metode ini fungsi periodogram ditransformasi ke fungsi autokorelasi. Dalam metode windowing yang menjadi masalah adalah menentukan nilai m yang bisa memberikan informasi yang cukup terhdap keberadaan periodesitas yang signifikan, sebab tidak ada literature yang meberikan petunjuk yang tegas. Dalam hal ini Dalam hal ini jika n

 $\rightarrow \infty$ maka m $\rightarrow \infty$ tetapi m/n $\rightarrow 0$, sehingga berdasarkan kriteria ini Jenkins dan Watts (1968) menyarankan untuk mengambil tiga macam nilai m yang bedanya cukup besar, Pengambilan nilai m dalam metode windowing akan menentukan bentuk garis spektrumnya, jika nilai m kecil maka garis spektrumnya akan halus, karena varians penaksir kecil, dan jika m besar garis spektrumnya akan kasar, karena varians penaksir besar.

Berdasarkan gambar 8 dan 9 ddapat dilihat bahwa tidak terdapat perubahan kurva yang signifikan. Sehingga kita akan mengambil beberapa nilai tertinggi puncak pada periodogram yaitu pada misal tertinggi saat k=71.

Uji masksimum periodogram

Uji maksimum periodogram dapat dilakukan dengan menggunakan uji Fisher sengan statistic uji

$$T = \frac{I^{(1)}(\omega_1)}{\sum_{k=1}^{n/2} I(\omega_k)} = \frac{17385,460}{265100792} = 0,0000655$$

Kemudian dibandingkan dengan titik kritis

$$P(T > g) \approx N(1 - g)^{N-1}$$

$$P(T > g) = \alpha$$

$$N = \begin{cases} (n-1)/2 & n \text{ ganjil} \\ n/2 - 1 & n \text{ genap} \end{cases}$$

Sedangkan berikut adalah penghitungan titik kritis untuk statistik uji T dengan taraf signifikansi 5%:

$$P(0,0000655 > g) \approx 96(1 - g)^{95}$$

$$P(T > g_{0,05}) = 0,05$$

$$P(0,0000655 > g_{0,05}) = 0,05$$

$$121(1 - g_{0,05})^{95} = 0,05$$

$$(1 - g_{0,05})^{95} = \frac{0,05}{96}$$

$$g_{0,05} = 1 - \sqrt[95]{\frac{0,05}{96}}$$

$$g_{0,05} = 1 - \sqrt[95]{0,0005208}$$

$$g_{0,05} = 1 - 0,923504$$

$$g_{0,05} = 0,07649$$

Karena nilai $T < g_{0,05}$ (0,0000655 < 0,07649) maka periodograqm tersebut tidak signifikan. Artinya data tekanan permukaan laut tersebut tidak dapat mempertahankan sifat keperiodikan 12 bulanan.