Teorijski uvod u računarstvo

Aleksa Tešić, seminar računarstva

aleksatesicteske@gmail.com

IS Petnica 14.4.2018.

Sadržaj predavanja

- Brojčani sistemi
- Bulova algebra
- Tjuring
- Logička kola
- · ALU / CU

- Fon Nojman / Harvard
- Asembler
- Viši jezici
- BIOS
- OS

Brojčani sistemi

Gotfrid Vilhelm Lajbnic (1646 – 1716)

- "Izmislio" binarni sistem
- Pionir u razvoju mehaničkih kalkulatora
- "Izmislio" integralni račun

Kako oni rade?

Pozicioni sistemi

- Vrednost cifre je određena njenom pozicijom u broju
- Uvek imamo osnovu sistema (10, 2, 8, 16...)
- Svaki broj se može predstaviti kao zbir osnove koja je podignuta na različite stepene
- $156 = 1 * 10^2 + 5 * 10^1 + 6 * 10^0$
- Osnova sistema će se uvek pisati kao 10

Bitni pozicioni sistemi

• Binarni

Troični / Trinarni

Heksadekadni

Oktalni

Zašto su nam bitni?

 Binarni – Bulova algebra, jednostavan za implentaciju

Troični / Trinarni – najtačniji teorijski

 Heksadekadni / Oktalni – lake transformacije iz binarnog

Nepozicioni sistemi

 Vrednost cifre je uvek ista i ne zavisi od pozicije

Rimski brojevi

Nepraktični za korišćenje

Bulova algebra

Džordž Bul (1815 – 1864)

Bulova algebra

 Pionir informatike i matematičke logike

Bulova algebra

Deo univerzalne algebre

 Vrednosti koje postoje su tačno i netačno

Osnovne operacije su i, ili, negacija

Zašto nam je bitna?

Bulova algebra

Tačno / Netačno = 1 / 0 (Binarni sistem)

Sve možemo predstaviti kao logički izraz

Omogućeno pravljenje logičkih kola

Laka minimizacija logičkih kola

Šta je algoritam?

Formalizacija algoritama

Tjuringova mašina

λ račun

• URM

•

Tjuring

Alan Tjuring (1912 – 1954)

Tjuringova mašina

 Teorijski temelji računarstva

Turing's Proof

Tjuringova mašina

Turing Complete

Turing's Proof

- Pokazano da <u>ne postoji</u> opšti algoritam za dokazivanje nekih problema
- Ne možete očekivati samo 1 / 0 kao odgovor u svakom slučaju
- Postoje problemi koji su neodlučivi
- Primer: Halting problem

Tjuringova mašina

Konačno mnogo stanja

Levo, Desno, Pročitaj, Upiši

Beskonačno memorije (traka)

Podaci i instrukcije su zajedno

Turing complete

 Svaki programski jezik koji može da simulira TM

Jedino ograničenje je memorija

 Brainfuck, Minecraft, Power Point(možda linkovi)

Logička kola

Logička kola

AND / OR/ NOT – osnovna kola

NAND / NOR / XOR...

 Pomoću njih se prave <u>sva</u> složenija kola

Logisim

Minimizacija kola

Minimizacija kola

Uklanjamo nepotrebne elemente

Manje elemenata = Manje prostora

Manje elemenata = Manja cena

• Primer: AB + AB' = A(B + B') = A

Kombinatorne mreže

Kombinatorne mreže

Vrše selekciju signala na neki način

 Omogućuju dalje usložnjavanje logičkih kola

• Primer: Multiplekser, binarni sabirač

Binarni sabirač

A	В	С	P
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Sekvencijalne mreže

- Mogu da čuvaju vrednost
- Koriste se pri izradi memorija

 Moraju biti sinhronizovane – koriste clock

• Primer: D flip-flop, J-K flop-flop, Brojači

Brojači

Služe kao normalni brojači (FOR petlja)

 Mogu se koristiti za prelazak iz stanja u stanje

Fon Nojmanov model

Džon fon Nojman (1903 - 1957)

 Fon Nojmanov ili Prinstonski model

Fon Nojmanov model

Dizajn za računar opšte namene

 Zajednička memorija za instrukcije i podatke

Paralela sa ljudskim nervnim sistemom

Šta je računar opšte namene?

Fon Nojmanov model

 Potreban nam je nekakav deo koji računa - CA

 Potreban nam je deo koji upravlja i kontroliše sve ostale delove - CC

 Potreban nam je deo koji će pamtiti rezultate, i u kom će stajati podaci – M

Fon Nojmanov model

 CA , CC i M bi bili centralni nervni sistem

 Organi koji vrše I / O operacije i komuniciraju sa njima bi bili periferni nervni sistem

Zašto je dobar?

Fon Nojmanov model

- Omogućava nam da programiramo
- Čita instrukcije kao podatke => možemo konstruisati linkere, asemblere, kompajler...

 Bottleneck: Magistrala(rešeno keš memorijom)

The Von-Neumann Architecture CPU Arithmetic Logic Memory 1/0 Unit

Harvardski model

Harvadski model

 Odvojena memorija za instrukcije i podatke

 Danas preovlađuje modifikovana harvardska arhitektura

Koristi se u mikrokontrolerima

Zašto je dobar?

Harvadski model

 Ispis podatka i pristup instrukciji su mogući u isto vreme

 Operacije iz keš memorije (modifikovan H. model)

Koristi se u mikrokontrolerima

ALU i CU

ALU

- Arithemic Logic Unit
- Obavlja (ko bi rekao) aritmetičko-logičke operacije na zahtev CU-a
- Povezana samo sa CU
- +, -, =, <, > ...
- Može se (a i ne mora) implementirati samo kombinatornim kolima

CU

Control Unit

Upravlja svim procesima u računaru

Povezana sa svime

Sinhronizuje procese

(ne baš) Savremeni računar

(ne baš) Savremeni računar

Imamo CPU

Imamo memoriju

Znamo kako da ih povežemo

Kako programiramo?

Asembler

Šta je asembler, i čemu on služi?

Šta je asembler i čemu on služi?

- Šta je mašinski kod?
- Asembler pokreće asemblerski jezik
- Asemblerski jezik? Niz oznaka koje (skoro) 1 na 1 kodiraju instrukcije procesora
- Zamena za mašinski kod

Gde se danas koristi?

- Kod mikrokontrolera
- Programi koji moraju da budu veoma brzi
- Kompajleri
- Drajveri
- Specijalni procesori (nema kompajlera)

Viši programski jezici

Šta je problem sa asemblerom?

Šta je problem sa asemblerom?

Premalo instrukcija

Gomila stvari mora da se radi "peške"

Nizak nivo apstrakcije

Viši programski jezici

- "Nadograđen" asembler
- Programer ne mora da zna šta se nalazi "ispod haube"
- Potrebno manje koraka da bi se napisao program
- Prevode se u asemblerski kod

Nizak nivo apstrakcije

Programer mora voditi računa o memoriji

Programer mora voditi računa o tipovima

Dosta brzi, ali ,,teži" za upotrebu

C, Pascal, Cobol, Fortran...

Visok nivo apstrakcije

- Programer nema dodira sa registrima, memorijom, adresama...
- Koriste se apstraktni tipovi
- Manje koda, ali sporiji
- Python, MATLAB, C#, ...

A hardver?

BIOS

- Basic Input Output System
- Proverava ispravnost hardvera pri pokretanju
- Učitava OS sa diska

Nalazi se u ROM-u

OS

OS

- Operating System
- Upravlja resursima računara (memorija, procesor, registri...)
- Omogućava nam da koristimo hardver računara
- Windows, UNIX arhitekture

Pitanja?

Sadržaj predavanja

- Brojčani sistemi
- Bulova algebra
- Tjuring
- Logička kola
- · ALU / CU

- Fon Nojman / Harvard
- Asembler
- Viši jezici
- BIOS
- OS

Teorijski uvod u računarstvo

Aleksa Tešić, seminar računarstva

aleksatesicteske@gmail.com

IS Petnica 14.4.2018.