Introdução ao Algoritmo EM

Erick Amorim

Departamento de Estatística Universidade Federal de Minas Gerais

30 de Setembro de 2016

SUMÁRIO

Introdução

Um Exemplo para Motivar

Alguns Detalhes do Algoritmo EM

Aplicação em Exemplos

Expectation-Maximization

- ▶ O algoritmo EM (Expectation-Maximization) é uma técnica de otimização originalmente introduzida por Dempster, Laird e Rubin (1977).
- ▶ É um algoritmo usado para obter o estimador que maximiza a verossimilhança (EMV).
- Segundo Casella e Berge (2010), o EM é um algoritmo que seguramente converge para o EMV e tem como base substituir uma difícil maximização da verossimilhança por uma sequência de maximizações mais fáceis, cujo limite é o EMV.
- ▶ A demostração original da Convergência do EM realizada or Dempster, Lair e Rubin (1977) tinha uma falha, mas provas válidas da convergência foram apresentadas por Boyles (1983) e Wu (1983).

\mathbf{EM}

- ▶ O algoritmo EM tem grande utilidade em problemas de dados incompletos, onde a estimação de máxima verossimilhança é difícil devido a ausência de parte dos dados.
- O algoritmo é muito útil em problemas de: Clustering, reconhecimento de padrões, modelos de Markov oculto, entre outros.

O algoritmo consiste de duas etapas:

- Etapa E Calcula-se o valor esperado do logaritmo da verossimilhança;
- Etapa M Encontra-se o máximo deste valor esperado, iterando a esperança até a convergência ou critério de parada.

Este problema foi proposto por Rao (1973, p. 368-369). McLachlan and Krishnan (1997) também discutem este problema e apresentaremos o modelo deles.

Os dados abaixo se referem a n=197 animais que se distribuem em 4 caterogias (C_1,C_2,C_3,C_4) de modo que o vetor de frequência observado é $\mathbf{x}=(x_1,x_2,x_3,x_4)'=(125,18,20,34)'$.

Neste caso temos uma distribuição Multinomial com 4 caterogrias e função de probabilidade dada por:

$$P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4) = g(\mathbf{x} \mid \theta)$$

$$com g(\mathbf{x} \mid \theta) = \frac{n!}{x_1! x_2! x_3! x_4!} \left(\frac{1}{2} + \frac{\theta}{4}\right)^{x_1} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_2} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_3} \left(\frac{\theta}{4}\right)^{x_4}$$

onde $n = x_1 + x_2 + x_3 + x_4$ e $0 \le \theta \le 1$.

Solução Analítica da Aplicação 1

A função de verossimilhança $L(\theta; \mathbf{x}) = g(\mathbf{x} \mid \theta)$

$$\begin{split} \mathbf{g}(\mathbf{x}|\;\theta) &= \frac{n!}{x_1! x_2! x_3! x_4!} \left(\frac{1}{2} + \frac{\theta}{4}\right)^{x_1} \left(\frac{1}{4} (1 - \theta)\right)^{x_2 + x_3} \left(\frac{\theta}{4}\right)^{x_4} \\ \mathbf{g}(\mathbf{x}|\;\theta) &\propto (2 + \theta)^{x_1} \left(1 - \theta\right)^{x_2 + x_3} \theta^{x_4} \end{split}$$

e o logaritmo da verossimilhança será:

$$l(\theta) \propto x_1 \ln(2+\theta) + (x_2 + x_3) \ln(1-\theta) + x_4 \ln \theta$$

e além do mais:

$$\frac{d}{d\theta}l(\theta) = \frac{x_1}{2+\theta} - \frac{x_2 + x_3}{1-\theta} + \frac{x_4}{\theta}$$

fazendo $\frac{d}{d\theta}l(\theta)=0$ chegaremos na equação

Solução Analítica da Aplicação 1

$$n\theta^2 + (2x_2 + 2x_3 - x_1 + x_4)\theta - 2x_4 = 0$$
cuja solução será:

$$\hat{\theta}_{MV} = \frac{-(2x_2 + 2x_3 - x_1 + x_4) + \sqrt{(2x_2 + 2x_3 - x_1 + x_4)^2 + 8nx_4}}{2n}$$
então para $\mathbf{x} = (125, 18, 20, 34)'$ teremos
$$\hat{\theta}_{MV} = \frac{15 + \sqrt{53809}}{394} = 0,626821498$$

Script da Aplicação 1

Alguns detalhes do Método

Suponha que $\mathbf{X} = (X_1, ..., X_n)$ sejam v.a. i.i.d. com distribuição conjunta $g(\mathbf{x} \mid \theta)$. Neste caso $g(\mathbf{x} \mid \theta) = L(\theta; \mathbf{x})$. E o que se deseja é $\hat{\theta} = \arg \max L(\theta; \mathbf{x})$.

Vamos considerar que os dados completos \mathbf{w} são provenientes de uma amostra aleatória $\mathbf{W}=(\mathbf{X},\mathbf{Z})$. Neste caso a verossimilhança completa é:

$$f(\mathbf{w} \mid \theta) = f(\mathbf{x}, \mathbf{z} \mid \theta) = k(\mathbf{z} \mid \mathbf{x}, \theta)g(\mathbf{x} \mid \theta)$$

O objetivo é maximizar $L(\theta \mid \mathbf{x})$ usando a verossimilhança completa $L^c(\theta \mid \mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z} \mid \theta)$ neste processo.

Como calculamos $L^c(\theta \mid \mathbf{x}, \mathbf{z})$ se não conhecemos \mathbf{z} ?

Alguns Detalhes do Método

Como não conhecemos ${\bf z}$ em $L^c(\theta\mid {\bf x},{\bf z})$ vamos considerar que $L^c(\theta\mid {\bf x},{\bf z})$ é uma v.a.

Calcularemos uma média de funções de verossimilhanças sobre variáveis não observadas (latentes).

Há uma relação entre as verossimilhanças dada por:

$$L^{c}(\theta \mid \mathbf{x}, \mathbf{z}) = k(\mathbf{z} \mid \mathbf{x}, \theta) L(\theta \mid \mathbf{x})$$

$$\ln L^{c}(\theta \mid \mathbf{x}, \mathbf{z}) = \ln k(\mathbf{z} \mid \mathbf{x}, \theta) + \ln L(\theta \mid \mathbf{x})$$

Usando a igualdade $k(\mathbf{z} \mid \mathbf{x}, \theta) = \frac{f(\mathbf{x}, \mathbf{z} \mid \theta)}{g(\mathbf{x} \mid \theta)}$ e para um valor $\theta_0 \in \Theta$ fixado teremos:

Com Alguns Cálculos

$$\ln L(\theta \mid \mathbf{x}) = \int \ln \left[L(\theta \mid \mathbf{x}) \right] k(z \mid \mathbf{x}, \theta_0) d\mathbf{z}$$

$$\ln L(\theta \mid \mathbf{x}) = \int \ln \left[g(\mathbf{x} \mid \theta) \right] k(z \mid \mathbf{x}, \theta_0) d\mathbf{z}$$

$$\ln L(\theta \mid \mathbf{x}) = \int \ln \left[\frac{f(\mathbf{x}, \mathbf{z} \mid \theta)}{k(\mathbf{z} \mid \mathbf{x}, \theta)} \right] k(z \mid \mathbf{x}, \theta_0) d\mathbf{z}$$

$$\ln L(\theta \mid \mathbf{x}) = \int \left[\ln f(\mathbf{x}, \mathbf{z} \mid \theta) - \ln k(\mathbf{z} \mid \mathbf{x}, \theta) \right] k(z \mid \mathbf{x}, \theta_0) d\mathbf{z}$$

$$\ln L(\theta \mid \mathbf{x}) = \int \ln f(\mathbf{x}, \mathbf{z} \mid \theta) k(z \mid \mathbf{x}, \theta_0) d\mathbf{z} - \int \ln k(\mathbf{z} \mid \mathbf{x}, \theta) k(z \mid \mathbf{x}, \theta_0) d\mathbf{z}$$

$$\lim L(\theta \mid \mathbf{x}) = \underbrace{E_{\theta_0} \left[\ln L^c(\theta \mid \mathbf{x}, \mathbf{z}) \mid \theta_0, \mathbf{x} \right] - \underbrace{E_{\theta_0} \left[\ln k(\mathbf{z} \mid \mathbf{x}, \theta) \mid \theta_0, \mathbf{x} \right]}_{\text{Dados Observados}}$$
Dados Ausentes

Alguns Detalhes do Método

Definimos a função Q do termo da equação anterior que será Maximizada no passo M como $Q(\theta \mid \theta_0, \mathbf{x}) = E_{\theta_0} \left[\ln L^c(\theta \mid \mathbf{x}, \mathbf{z}) \mid \theta_0, \mathbf{x} \right]$

No processamento do algoritmo, maximizar $Q(\theta \mid \theta_0, \mathbf{x})$ é equivalente a maximizar $\ln L(\theta \mid \mathbf{x})$

Denote por $\theta^{(0)}$ uma estimativa inicial de θ . Então $\theta^{(1)}$ é o argumento que maximiza $Q(\theta \mid \theta_0, \mathbf{x})$. Esse é o primeiro passo para estimar θ . Se nós procedermos desta forma teremos o algoritimo definido como:

Algoritmo EM

Seja $\theta^{(m)}$ a estimativa na m-ésima iteração. Para calcular a estimativa na iteração (m+1) proceda da seguinte maneira:

- 1. Etapa E: Calcule $Q(\theta \mid \hat{\theta}_m, \mathbf{x}) = E_{\hat{\theta}^{(m)}} \left[\ln L^c(\theta \mid \mathbf{x}, \mathbf{z}) \mid \hat{\theta}_m, \mathbf{x} \right]$
- 2. Etapa M: Calcule $\hat{\theta}^{(m+1)} = \arg \max Q(\theta \mid \hat{\theta}_m, \mathbf{x})$

Sob fortes condições pode ser mostrado que $\hat{\theta}^{(m)}$ converge em probabilidade para o EMV quando $m\to\infty$. Isso não será mostrado aqui.

Mas pode-se mostrar que $\hat{\theta}^{(m+1)}$ sempre aumenta a verossimilhança em relação a $\hat{\theta}^{(m)}$.

Alguns Detahes do Método

Teorema: A sequência de estimadores $\hat{\theta}^{(m)}$ satisfaz

$$L(\hat{\theta}^{(m+1)} \mid \mathbf{x}) \ge L(\hat{\theta}^{(m)} \mid \mathbf{x}).$$

Prova: Isso é devido a $\hat{\theta}^{(m+1)}$ maximizar $Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x})$, pois temos:

$$Q(\hat{\theta}^{(m+1)} \mid \hat{\theta}^{(m)}, \mathbf{x}) \ge Q(\hat{\theta}^{(m)} \mid \hat{\theta}^{(m)}, \mathbf{x})$$

que pode ser escrito como,

$$E_{\hat{\boldsymbol{\theta}}^{(m)}} \left[\ln L^c(\hat{\boldsymbol{\theta}}^{(m+1)} \mid \mathbf{x}, \mathbf{z}) \right] \ge E_{\hat{\boldsymbol{\theta}}^{(m)}} \left[\ln L^c(\hat{\boldsymbol{\theta}}^{(m)} \mid \mathbf{x}, \mathbf{z}) \right],$$

onde a esperança é em relação a $k(\mathbf{z} \mid \hat{\theta}^{(m)}, \mathbf{x})$.

A prova é completada mostrando que

$$E_{\hat{\theta}^{(m)}}\left[\ln k(\mathbf{z}\mid\hat{\theta}^{(m+1)},\mathbf{x})\right] \leq E_{\hat{\theta}^{(m)}}\left[\ln k(\mathbf{z}\mid\hat{\theta}^{(m)},\mathbf{x})\right]$$

Alguns Detalhes do Método

Aplicando a desigualdade de Jensen tem-se:

$$E_{\hat{\theta}^{(m)}}\left[\ln\frac{k(\mathbf{z}\mid\hat{\theta}^{(m+1)},\mathbf{x})}{k(\mathbf{z}\mid\hat{\theta}^{(m)},\mathbf{x})}\right] \quad \leq \ln E_{\hat{\theta}^{(m)}}\left[\frac{k(\mathbf{z}\mid\hat{\theta}^{(m+1)},\mathbf{x})}{k(\mathbf{z}\mid\hat{\theta}^{(m)},\mathbf{x})}\right]$$

$$=\ln \int \frac{k(\mathbf{z} \mid \hat{\theta}^{(m+1)}, \mathbf{x})}{k(\mathbf{z} \mid \hat{\theta}^{(m)}, \mathbf{x})} k(\mathbf{z} \mid \hat{\theta}^{(m)}, \mathbf{x}) d\mathbf{z} = \ln(1) = 0.$$

Recordando o exemplo que apresentamos referente aos dados de n=197 animais que se distribuem em 4 categorias, de modo que o vetor de frequência é $\mathbf{x}=(x_1,x_2,x_3,x_4)'=(125,18,20,34)'$.

 A função de distribuição conjunta para os dados observados é

$$g(\mathbf{x} \mid \theta) = \frac{n!}{x_1! x_2! x_3! x_4!} \left(\frac{1}{2} + \frac{\theta}{4}\right)^{x_1} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_2} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_3} \left(\frac{\theta}{4}\right)^{x_4}$$

► Cujo núcleo é $g(\mathbf{x} \mid \theta) \propto (2 + \theta)^{x_1} (1 - \theta)^{x_2 + x_3} \theta^{x_4}$.

Agora suponha que os dados da maior categoria seja proveniente das categorias z_1 e z_2 , com probabilidades $\frac{1}{2}$ e $\frac{\theta}{4}$, respectivamente.

Desta maneira se introduzem variaveis latentes $(x_1 = z_1 + z_2)$ resultando em 5 categorias: $w = (z_1, z_2, x_2, x_3, x_4)'$ que representam os dados completos e $\mathbf{z} = (z_1, z_2)$ os dados perdidos.

* A distribuição conjunta de \mathbf{w} é $f(\mathbf{w}) = f(\mathbf{x}, \mathbf{z} \mid \theta)$, onde

$$f(\mathbf{x}, \mathbf{z} \mid \theta) = \frac{n!}{z_1! z_2! x_2! x_3! x_4!} \left(\frac{1}{2}\right)^{z_1} \left(\frac{\theta}{4}\right)^{z_2} \left(\frac{1}{4} - \frac{\theta}{4}\right)^{x_2 + x_3} \left(\frac{\theta}{4}\right)^{x_4}$$

* E o núcleo da distribuição é

$$f(\mathbf{x}, \mathbf{z} \mid \theta) \propto \theta^{z_2 + x_4} (1 - \theta)^{x_2 + x_3}$$

Usando as distribuições dos dados completos e dos dados observados podemos calcular a distribuição de $[\mathbf{z} \mid \mathbf{x}, \theta]$ que é

$$k(\mathbf{z} \mid \mathbf{x}, \theta) = \frac{f(\mathbf{x}, \mathbf{z} \mid \theta)}{g(\mathbf{x} \mid \theta)} = \begin{pmatrix} x_1 \\ z_2 \end{pmatrix} \left(\frac{\theta}{2 + \theta} \right)^{z_2} \left(1 - \frac{\theta}{2 + \theta} \right)^{x_1 - z_2}$$

Veja que
$$Z_2 \sim \text{Binomial}\left(x_1, \frac{\theta}{2+\theta}\right)$$
e sua média é $E\left[Z_2\right] = x_1\left(\frac{\theta}{2+\theta}\right)$.

Para o **passo E** precisamos calcular a esperança de $\ln L^c(\theta \mid \mathbf{x}, \mathbf{z})$ em relação a $k(\mathbf{z} \mid \theta^{(0)}, \mathbf{x})$.

$$\ln L^{c}(\theta \mid \mathbf{x}, \mathbf{z}) = \ln f(\mathbf{x}, \mathbf{z} \mid \theta) \propto (Z_{2} + x_{4}) \ln \theta + (x_{2} + x_{3}) \ln(1 - \theta)$$

$$E_{\hat{\theta}^{(m)}} \left[\ln L^c(\theta \mid \mathbf{x}, \mathbf{z}) \right] \propto E_{\hat{\theta}^{(m)}} \left[(Z_2 + x_4) \ln \theta + (x_2 + x_3) \ln(1 - \theta) \right]$$

$$\mathrm{E}_{\hat{\theta}^{(m)}}\left[\ln L^{c}(\theta\mid\mathbf{x},\mathbf{z})\right]\propto E_{\hat{\theta}^{(m)}}\left[Z_{2}\right]\ln\theta+x_{4}\ln\theta+(x_{2}+x_{3})\ln(1-\theta)$$

$$Q\left(\theta \mid \hat{\theta}^{(m)}\right) \propto \frac{x_1 \theta^{(m)}}{2 + \theta^{(m)}} \ln \theta + x_4 \ln \theta + (x_2 + x_3) \ln(1 - \theta)$$

Para o **passo M** precisamos encontrar o maximo de $Q\left(\theta \mid \hat{\theta}^{(m)}\right)$;

$$\frac{d}{d\theta}Q\left(\theta\mid\hat{\theta}^{(m)}\right) = 0$$

chega-se a
$$\hat{\theta} = \frac{x_4 + x_1 \frac{\hat{\theta}^{(m)}}{2 + \hat{\theta}^{(m)}}}{x_2 + x_3 + x_4 + x_1 \frac{\hat{\theta}^{(m)}}{2 + \hat{\theta}^{(m)}}}$$

Subistituindo os dados $x_1 = 125$, $x_2 = 18$, $x_3 = 20$ e $x_4 = 34$ tem-se

$$\hat{\theta} = \frac{34 + 125 \frac{\hat{\theta}^{(m)}}{2 + \hat{\theta}^{(m)}}}{72 + 125 \frac{\hat{\theta}^{(m)}}{2 + \hat{\theta}^{(m)}}}$$

Em cada iteração tem-se

$$\hat{\theta}^{(m+1)} = \frac{68 + 159\hat{\theta}^{(m)}}{144 + 197\hat{\theta}^{(m)}}$$

Veja o Script no R.

Vamos considerar um problema envolvendo misturas de normais. Suponha que $Y_1 \sim N(\mu_1, \sigma_1^2)$ e $Y_2 \sim N(\mu_2, \sigma_2^2)$. Considere também uma v.a. W sendo uma Bernoulli independente de Y_1 e Y_2 com probabilidade de sucesso $\epsilon = P(W=1)$.

Suponha que a variavél aleatória que observamos seja

$$X = (1 - W)Y_1 + WY_2.$$

Nesse caso o vetor de parâmetros é $\theta' = (\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \epsilon)$ e a função densidade de X é:

$$f(x) = (1 - \epsilon)f_1(x) + \epsilon f_2(x)$$

Em problemas de misturas os dados não observáveis são v.a. que identificam as componentes da mistura. Então para i=1,...,n definimos variáveis

$$W_i = \begin{cases} 0, \text{ se } X_i \text{ tem densidade } f_1(x) \\ 1, \text{ se } X_i \text{ tem densidade } f_2(x). \end{cases}$$

Desta forma os $W_{i's}$ são i.i.d. com probabilidade de sucesso ϵ .

A verossimilhança completa será:

$$L^{c}(\theta \mid \mathbf{x}, \mathbf{w}) = \prod_{W_{i}=0} f_{1}(x_{i}) \prod_{W_{i}=1} f_{2}(x_{i})$$

O logaritmo da verossimilhança completa é:

$$\ln L^{c}(\theta \mid \mathbf{x}, \mathbf{w}) = \sum_{W_{i}=0} \ln f_{1}(x_{i}) + \sum_{W_{i}=1} \ln f_{2}(x_{i})$$

$$\ln L^{c}(\theta \mid \mathbf{x}, \mathbf{w}) = \sum_{i=1}^{n} \left[(1 - W_{i}) \ln f_{1}(x_{i}) + W_{i} \ln f_{2}(x_{i}) \right].$$

Então calculando o valor esperado tem-se:

$$E_{\hat{\theta}^{(m)}} \left[\ln L^{c}(\theta \mid \mathbf{x}, \mathbf{w}) \right] = \sum_{i=1}^{n} \left[\left(1 - E_{\hat{\theta}^{(m)}}[W_{i}] \right) \ln f_{1}(x_{i}) + E_{\hat{\theta}^{(m)}}[W_{i}] \ln f_{2}(x_{i}) \right]$$

Para o **passo E** precisamos da esperança condicional de W_i dado \mathbf{x} e $\theta^{(m)}$ que é $E\left[W_i \mid \theta^{(m)}, \mathbf{x}\right] = P\left[W_i = 1 \mid \theta^{(m)}, \mathbf{x}\right]$

Uma estimativa desse valor esperado é dado por:

$$\gamma_i = \hat{P}\left[W_i = 1 \mid \theta^{(m)}, \mathbf{x}\right] = \frac{\hat{\epsilon} f_{2,(m)}(x_i)}{(1 - \hat{\epsilon}) f_{1,(m)}(x_i) + \hat{\epsilon} f_{2,(m)}(x_i)},$$

detalhes sobre a expressão acima podem ser vistas em McLachlan and Krishnan (1997).

Substituindo γ_i na Esperança, temos a expressão do **passo E**:

$$Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x}) = \sum_{i=1}^{n} [(1 - \gamma_i) \ln f_1(x_i) + \gamma_i \ln f_2(x_i)]$$

Para o **passo M** basta derivar em relação a cada parâmetro por exemplo:

$$\frac{\partial}{\partial \mu_1} Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x}) = \sum_{i=1}^n (1 - \gamma_i) \left(-\frac{1}{2\sigma_1^2} \right) (-2)(x_i - \mu_1)$$

Fazendo o cálculo para cada μ e σ^2 obtemos as seguintes estimativas:

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{n} (1 - \gamma_{i}) x_{i}}{\sum_{i=1}^{n} (1 - \gamma_{i})}$$

$$\hat{\sigma^{2}}_{1} = \frac{\sum_{i=1}^{n} (1 - \gamma_{i}) (x_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{n} (1 - \gamma_{i})}$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{n} \gamma_{i} x_{i}}{\sum_{i=1}^{n} \gamma_{i}}$$

$$\hat{\sigma^{2}}_{2} = \frac{\sum_{i=1}^{n} \gamma_{i} (x_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{n} \gamma_{i}}$$

Já que a estimativa de $P\left[W_i = 1 \mid \theta^{(m)}, \mathbf{x}\right]$ é γ_i , então para estimar $\epsilon = P(W_i = 1)$ usamos a média $\hat{\epsilon} = \frac{\sum_{i=1}^{n} \gamma_i}{n}$

Os seguintes dados foram gerados da v.a. $X=(1-W)Y_1+WY_2$ com $Y_1 \sim N(100,4^2), Y_2 \sim N(120,6^2)$ e $W \sim \text{Bernoull}(0.7)$. Veja o Script no R.

```
RStudio
File Edit Code View Plots Session Build Debug Tools Help
☐ ▼ Addins ▼

☐ Scripts.R ×

                                                                         -\Box
       Run 🕪 🕞 Source 🕶 🗏
     #Aplicação 2 Mistura de normais
   23
      rm(list = ls())
   24
     n=100
   25 m1=100
   26 m2=120
   27 s1=4
   28 s2=6
   29 pr=0.7
   30 w=rbinom(n,1,pr)
   31 x=rnorm(n,m1,s1)*(w==0)+rnorm(n,m2,s2)*(w==1)
   32 hist(x)
     #funcao para calcular densidade
   34 - fc=function(x,m1,m2,s1,s2,prob){
   35
     fx=(1-prob)*dnorm(x.m1.s1)+prob*dnorm(x.m2.s2)
   36
       return(fx)
   37
   38
     grad=seg(60,200,by=0.1)
   39 fx=fc(grad, m1, m2, s1, s2, pr)
   40 #plot(grad,fx,type="l")
      hist(x,ylim = range(fx),prob=T)
   41
   42 lines(grad,fx)
  22:32 (Top Level) $
                                                                       R Script $
```



```
RStudio
File Edit Code View
                   Plots Session Build Debug
                                            Tools
Q v Go to file/function
                                            88 - Addins -
  Scripts.R ×
       Run 🐤 Source 🕶 🗏
      #param[1] Media 1
   44
   45 #param[2] Media 2
   46 #param[3] variancia 1
   47 #param[4] variancia 2
   48
      #param[5] epsilon (peso da componente 2)
   49
   50 #y=c(195,166,188,195,179,198,161,179,200,191)
       param=c(180,100,15,20,0,5) #chute inicial
   51
   52
       e=0.0001
   53 erro=0.5: it=0
   54 - while(erro>e){
   55
         param0=param
                                                                     \frac{\hat{\epsilon}f_{2,(m)}(x_i)}{(1-\hat{\epsilon})f_{1,(m)}(x_i) + \hat{\epsilon}f_{2,(m)}(x_i)}
   56
         #Passo F
         part1 = (1-param[5])*dnorm(x.param[1].param[3])
   57
   58
         part2 = param[5]*dnorm(x,param[2],param[4])
   59
        gam = part2/(part1+part2)
   60
   61
         aux = c(sum((1-qam)*x)/sum(1-qam),sum(qam*x)/sum(qam))
         param[1] = min(aux)
   62
   63
         param[2] = max(aux)
   64
         param[3] = sgrt(sum(((1-gam)*(x-param[1])^2))/sum(1-gam))
   65
         param[4] = sqrt(sum((qam*(x-param[2])^2))/sum(qam))
         param[5] = mean(gam)
   66
         \#erro = sum((param0-param)^2)/(sum(param))^2
   67
         erro = max(abs(param0-param)/(abs(param0)+0.001))
   68
   69
         it=it+1
   70
       round(param,3); it
  44:18
        (Top Level) $
                                                                                 R Script 3
```

```
RStudio
  File Edit
                         Code
                                          View
                                                          Plots Session Build Debug
                                                                                                                                   Tools
                                                                                                                                                    Help
  🕶 🔻 🚽 🗐 📄 🗎 🖟 Go to file/function
                                                                                                                                 ₩ ▼ Addins ▼

    Scripts.R 

    Scripts 

    Scri
                                                                                                                                                                                                                                                     \neg \Box
                          Run 🕪 Rource 🕶 🖹
                      #param[1] Media 1
          45 #param[2] Media 2
          46 #param[3] variancia 1
          47 #param[4] variancia 2
                     #param[5] epsilon (peso da componente 2)
          49
           50
                      #y=c(195,166,188,195,179,198,161,179,200,191)
                      param=c(180.100.15.20.0.5) #chute inicial
          51
          52
                      e=0.0001
                      erro=0.5: it=0
          54 - while(erro>e){
          55
                            param0=param
          56
                            #Passo E
          57
                            part1 = (1-param[5])*drorm(x,param[1],param[3])
          58
                            part2 = param[5]*dnor*(x,param[2],param[4])
          59
                            gam = part2/(part1+part2)
          60
                            #passo M
          61
                            aux = c(sum((1-qam)*x)/sum(1-qam),sum(qam*x)/sum(qam))
          62
                            param[1] = min(aux)
          63
                            param[2] = max(aux)
                            param[3] = sqrt(sum(((1-qam)*(x-param[1])^2))/sum(1-qam))
          64
          65
                            param[4] = sqrt(sum((qam*(x-param[2])^2))/sum(qam))
                            param[5] = mean(gam)
          66
                            \#erro = sum((param0-param)^2)/(sum(param))^2
          67
          68
                            erro = max(abs(param0-param)/(abs(param0)+0.001))
          69
                            it=it+1
          70
          71
                      round(param.3): it
        42:15
                       (Top Level) $
                                                                                                                                                                                                                                               R Script 4
```



```
RStudio
File Edit Code View
                  Plots Session Build Debug Tools
                                               Help.
♥ | → Go to file/function
                                       R ▼ Addins ▼

☐ Scripts.R ×

        Run Source - =
       #param[1] Media 1
      #param[2] Media 2
   45
   46 #param[3] variancia 1
       #param[4] variancia 2
   47
   48
       #param[5] epsilon (peso da componente 2)
   49
   50
       \#y=c(195,166,188,195,179,198,161,179,200,191)
       param=c(180,100,15,20,0.5) #chute inicial
   51
   52
       e=0.0001
   53
       erro=0.5: it=0
   54 - while(erro>e){
   55
       param0=param
   56
         #Passo E
   57
         part1 = (1-param[5])*dnorm(x.param[1].param[3])
   58
         part2 = param[5]*dnorm(x.param[2].param[4])
   59
         gam = part2/(part1+part2)
   60
         #passo M
         aux = c(sum((1-qam)*x)/sum(1-qam).sum(qam*x)/sum(qam))
   61
         param[1] = min(aux) 1
   62
   63
         param[2] = max(aux)
         param[3] = sqrt(sum(((1-qam)*(x-param[1])^2))/sum(1-qam))
   64
         param[4] = sqrt(sum((qam*(x-param[2])^2))/sum(qam))
   65
   66
         param[5] = mean(gam)
   67
         \#erro = sum((param0-param)^2)/(sum(param))^2
   68
         erro = max(abs(param0-param)/(abs(param0)+0.001))
   69
         it=it+1
   70
   71
       round(param, 3); it
   72
       (Top Level) $
  42:15
                                                                              R Script $
```



```
Console ~/ \Leftrightarrow
+ }
> round(param,3); it
[1] 100.999 120.742 4.422 5.225 0.714
[1] 58
> |
```

Vamos considerar nesta aplicação um modelo dicotômico sobe o enfoque de variaveis latentes.

Nesse exemplo existe uma variavel latente contínua (Z) que não observamos diretamente e portanto não podemos mensurar.

O que observamos de fato é um indicador da variável não observada ou latente.

Sob este enfoque considere o modelo probit:

$$Y_i = \mathbf{1}_{[Z_i > 0]},$$

 $Z_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i,$
 $\epsilon_i \sim N(0, 1)$

Induzindo a variável latente consiguimos modelar a probabilidade.

$$P(Y_i = 1) = P(Z_i > 0) = P(Z_i - X_i'\beta) - X_i'\beta) = \Phi(X_i'\beta),$$

podemos escrever a distribuição de Y_i sob forma de funções indicadoras:

$$f(y_i \mid z_i) = \mathbf{1}_{[Y_i=1]} \mathbf{1}_{[Z_i>0]} + \mathbf{1}_{[Y_i=0]} \mathbf{1}_{[Z_i\leq 0]}.$$

Veja que a densidade de $[Z_i \mid Y_i, \beta]$ é:

$$f(z_i \mid y_i, \beta) \propto f(y_i \mid z_i) f(z_i \mid \beta),$$

$$f(z_i \mid y_i, \beta) \propto \{\mathbf{1}_{[Y_i=1]} \mathbf{1}_{[Z_i>0]} + \mathbf{1}_{[Y_i=0]} \mathbf{1}_{[Z_i\leq 0]}\} N(X_i'\beta, 1)$$

$$f(z_i \mid y_i, \beta) = \begin{cases} N(X_i'\beta, 1) \mathbf{1}_{[Z_i > 0]}, \text{ se } Y_i = 1\\ N(X_i'\beta, 1) \mathbf{1}_{[Z_i < 0]}, \text{ se } Y_i = 0. \end{cases}$$

Escrevemos a verossimilhança completa da seguinte forma:

$$L^{c}(\beta \mid \mathbf{y}, \mathbf{z}) = \prod_{i=1}^{n} f(y_i \mid z_i) f(z_i \mid \beta)$$

$$\ln L^c(\beta \mid \mathbf{y}, \mathbf{z}) = \sum_{i=1}^n \left[\ln f(y_i \mid z_i) + \ln f(z_i \mid \beta) \right]$$

$$\ln L^c(\beta \mid \mathbf{y}, \mathbf{z}) \propto \sum_{i=1}^n \ln f(z_i \mid \beta)$$

$$\ln L^{c}(\beta \mid \mathbf{y}, \mathbf{z}) \propto -\frac{1}{2} \sum_{i=1}^{n} (Z_{i} - X_{i}'\beta) = -\frac{1}{2} (\mathbf{Z} - \mathbf{X}\beta)' (\mathbf{Z} - \mathbf{X}\beta)$$

$$\ln L^{c}(\beta \mid \mathbf{y}, \mathbf{z}) \propto -\frac{1}{2} \left(\mathbf{Z}' \mathbf{Z} - 2\beta' \mathbf{X}' \mathbf{Z} + \beta' \mathbf{X}' \mathbf{X} \beta \right)$$

$$\underbrace{E_{\hat{\theta}^{(m)}}\left[\ln L^{c}(\beta\mid\mathbf{y},\mathbf{z})\right]}_{Q\left(\beta\mid\beta^{(m)},\mathbf{X}\right)} \propto -\frac{1}{2}\left(E_{\hat{\theta}^{(m)}}\left[\mathbf{Z}'\mathbf{Z}\right] - 2\beta'\mathbf{X}'E_{\hat{\theta}^{(m)}}\left[\mathbf{Z}\right] + \beta'\mathbf{X}'\mathbf{X}\beta\right)$$

$$\frac{\partial}{\partial \beta} Q\left(\beta \mid \beta^{(m)}, \mathbf{X}\right) = -\frac{1}{2} \left(0 - 2\mathbf{X}' E_{\hat{\theta}^{(m)}} \left[\mathbf{Z}\right] + 2\mathbf{X}' \mathbf{X} \beta\right)$$

$$2\mathbf{X}'\mathbf{X}\beta = 2\mathbf{X}'E_{\hat{\theta}^{(m)}}[\mathbf{Z}]$$

$$\beta_{\text{est}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'E_{\hat{\theta}^{(m)}}[\mathbf{Z}]$$

$$E\left[Z_i \mid \theta^{(m)}, \mathbf{y}\right] = \begin{cases} X_i'\beta - \frac{\phi(-X_i\beta)}{\Phi(-X_i\beta)}, \text{ se } Z_i \leq 0\\ X_i'\beta + \frac{\phi(-X_i\beta)}{1 - \Phi(-X_i\beta)}, \text{ se } Z_i > 0. \end{cases}$$


```
RStudio
File Edit Code View
                    Plots Session Build
                                        Debug
                                              Tools
                                                     Help
🔾 🔻 🔻 🔚 📄 🗁 Go to file/function
                                              ₩ - Addins -

☐ Scripts.R ×
                                                                                        Run 🕪 Rource 🕶
        #Exemplo probit
       rm(list=ls())
       resultado = matrix(0,nrow=1000,ncol=3)
    77 - for(jj in 1:1000){
    78
           n=500
    79
           beta0=0.2
    80
           beta1=1.2
           beta2=-0.6
    81
    82
           x1=rbinom(n,1,0.5)
    83
           x2=rnorm(n)
           pred=beta0+beta1*x1+beta2*x2
    84
                                           E\left[Z_i \mid \theta^{(m)}, \mathbf{y}\right] = X_i'\beta - \frac{\phi(-X_i\beta)}{\Phi(-X_i\beta)}
    85
           prob=pnorm(pred)
    86
           y=rbinom(n,1,prob)
    87
    88
           x=cbind(1,x1,x2)
    89
           beta=array(0,c(3,1))
    90
           e = 0.0001 ; it=0 ; erro = 0.5
    91 +
           while(erro > e){
             beta ini = beta
    92
    93
             xh = x\%*\%heta
            EZ_aux1= xb - ( dnorm(-xb)/pnorm(-xb) )
    94
                                                             # se 7i <= 0
             EZ_aux2 = xb + (dnorm(-xb)/(1-pnorm(-xb))) # se Zi > 0
    95
    96
             EZ = EZ \ aux1*(v==0) + EZ \ aux2*(v==1)
                                                            # vetor de esperancas
    97
             beta = solve( t(x)%*%x ) %*% t(x)%*%EZ
                                                            # estimativas na iteracao m
    98
             erro = max(abs(beta.ini - beta)/(abs(beta.ini)+0.001))
    99
             it = it+1
   100
   101
         #it;round(t(beta),3); cbind(beta0,beta1,beta2)
   102
         resultado[jj,]=t(beta)
   103
                                                                                     R Script $
   73:1
         (Top Level) $
```


MCEM

Veja que no **passo E**, na iteração m+1 temos que calcular

$$Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x}) = E_{\hat{\theta}^{(m)}} \left[\ln L^c(\theta \mid \mathbf{x}, \mathbf{z}) \right]$$

E algumas vezes é difícil obter analiticamente o valor $E\left[Z_i \mid \theta^{(m)}, \mathbf{y}\right]$, mas sabemos gerar, via Monte Carlo, os valores da distribuição condicional de $\left[Z_i \mid \theta^{(m)}, \mathbf{y}\right]$.

Suponha que temos uma amostra $Z_i^{m,1}, Z_i^{m,2}, ..., Z_i^{m,K}$ de $\left[Z_i \mid \theta^{(m)}, \mathbf{y}\right]$. Então aproxime $Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x})$ por:

$$Q(\theta \mid \hat{\theta}^{(m)}, \mathbf{x}) \approx \frac{1}{K} \sum_{i=1}^{K} \{ \ln L^{c}(\theta \mid \mathbf{x}, \mathbf{z}) \}$$

MCEM

```
RStudio
                                                     RStudio
File Edit Code View Plots Session Build Debug Tools Help
                                                     File Edit Code View Plots Session Build Debug Tools Help
♥ ▼ 📻 📄 🚔 Mark Go to file/function 🔡 ▼ Addins ▼
                                                     (2) Scripts.R ×
                                                      © Scripts.R ×
  🗇 🖒 🔝 🕞 🗑 Source on Save 🛮 🔦 🎢 🗸 📳

⇔ ⇒ □ □ □ Source on Save □ □ ▼ □ □

  115 #MCEM da Aplicação 1
                                                       13 #Aplicação 1
   116 n=1000
                                                       14 erro=0.00001; dif=0.1; teta. m=0.5; it=0
   117 erro=0.00001; dif=0.1;
                                                       15 - while (dif>erro) {
  118 teta.m=0.5; it=0
                                                       16 teta.m1=(68+159*teta.m)/(144+197*teta.m)
   119 - while (dif>erro) {
                                                       17 dif=(teta.m1-teta.m);
   120 teta.aux= (teta.m/(2+teta.m))
                                                       18 it=it+1:it:print(dif): print(teta.m1)
   121 z2=rbinom(n.125.teta.aux)
                                                       19
                                                             teta.m=teta.m1
   122 EZ=mean(z2)
                                                        20 }
   123 teta.m1 = (34+EZ)/(72+EZ)
                                                        21 ##----
   124  dif=abs( (teta.m1-teta.m)/teta.m1 );
        teta.m=teta.m1
         print(c(it.teta.m))
                                                           (Top Level) $
   126
   127
         it=it+1
   128
```

MCEM

```
RStudio
  File Edit Code View Plots Session Build Debug Tools Help
  Q v 🚰 v 🗐 🔒 🗁 Go to file/function 🗎 🖁 v Addins v
                                                                                                                                                                                                                                                                                                                        \neg \Box

    Scripts.R 

    Scrip
       Run 🖦 Dource 🕶 🖹
        130 #Exemplo probit
                      rm(list=ls())
        131
        132
                     library(msm)
        133
                            n=500
         134
                             m=c(rep(10,30),rep(50,20),rep(100,20),rep(500,15),rep(1000,15))
         135
                            r=100
         136
                            beta0=0.2
         137
                            beta1=1.2
         138
                            beta2 = -0.6
         139
                            x1=rbinom(n.1.0.5)
         140
                            x2=rnorm(n)
         141
                            pred=beta0+beta1*x1+beta2*x2
         142
                            prob=pnorm(pred)
         143
                            v=rbinom(n.1.prob)
         144
                            x=cbind(1.x1.x2)
         145
                            beta=array(0,c(3.1))
         146
                             e = 0.0001; it=0; erro = 0.5; result=array(0,c(r,3))
         147
                     # while(erro > e){
         148 - for(k in 1:r){
         149
                                  beta.ini = beta
         150
                                  xb = x%*%beta
         151
                                  Z aux1= t(sapply(1:n, function(i){rtnorm(m[k], mean=xb[i], sd=1, lower=-Inf, upper=0)}) ) # se Zi <= 0</pre>
                                  Z aux2= t(sapply(1:n, function(i){rtnorm(mkl, mean=xb[i], sd=1, lower=0, upper= Inf)}) ) # se Zi > 0
         152
         153
                                  EZ aux1=rowMeans(Z aux1)
         154
                                  EZ aux2=rowMeans(Z aux2)
         155
                                  EZ = EZ_aux1*(y==0) + EZ_aux2*(y==1) # vetor de esperancas
beta = solve(t(x))**x ) *** t(x)**EZ # estimativas na iteracao m
         156
                                  #erro = max(abs(beta, ini - beta)/(abs(beta, ini)+0,001))
         157
         158
                                  result[k.]=t(beta): #print(k)
         159
         160
                      # it:round(t(beta).3): cbind(beta0.beta1.beta2)
        129:1
                     (Top Level) $
                                                                                                                                                                                                                                                                                                                  R Script $
```

Obrigado!

Referências I

Boyles, R. A., On the Convergence of the EM algorithm. J. Roy. Statist. Soc. Ser. B 45, 47-50, 1983.

Casella, G., Berger, R. L. Inferência estatística - tradução da 2a edição norte americana. Centage Learning, 2010. Página 147-151, 291-294, 329.

Dempster, A. P., Laird, N.M. e Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, série B, 39, 1-22.

McLachlan, G. J. and Krishnan, T. (1997), The EM Algorithm and Extensions, New York: John Wiley Sons.

Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Ed., New York: John Wiley Sons.

Wu, C. F. J. (1983) On the Convergence of the EM algorithm. Ann. Statist. 11, 95-113.