SBOPT naming convention

Teemu Seeve

The notation for the interface variables (e.g., class method outputs) is

$$dt_dim_1 \dots dim_n_name$$
,

where dt is the data type, $dim_1 \dots dim_n$ is the dimensionality of the variable, and name provides a name, e.g, corresponding to mathematical notation. Examples:

Variable		Data type	Dimensionality	Meaning	
${\rm A2_MD_R}$		2-dimensional array	$m \times d$	returns r of assets	
A3_MDD_SI	GMA	3-dimensional array	$m \times d \times d$	covariances Σ in m macro-scenarios	
There are some exceptions in notation, e.g., for brevity. List of mathematical notation is below.					

K	=	$\{1,2,\ldots,m\}$	Set of macro-scenarios
I	=	$\{1,2,\ldots,mn\}$	Set of micro-scenarios, n micro-scenarios from each macro-scenarios
I_k ,		$I_k \cap I_{k'} = \emptyset \forall k \neq k',$	Sets of micro-scenarios i in each macro-scenario k .
		$\{1,2,\ldots,d\}$	Set of assets
w	=	$\left(w_1, w_2, \dots, w_d\right)^{\mathrm{T}}$ $\left\{w \in \mathbb{R}^d \middle \sum_{j \in J} w_j = 1\right\}$	Vector of asset weights
W	=	$\left\{ w \in \mathbb{R}^d \middle \sum_{j \in J} w_j = 1 \right\}$	Feasible asset weights $(w_j \ge 0 \forall j \text{ if no shorting})$
	\in		Return of asset j in micro-scenario i
r_i	=	$\left(r_{i1},r_{i2},\ldots,r_{id}\right)$	Vector of asset returns in micro-scenario i
		$\sum_{j\in J} w_j r_{ij}$	Return of the portfolio in micro-scenario i
p	=	$(p_1, p_2, \dots, p_m)^{\mathrm{T}}$ $\{p \in \mathbb{R}_+^m Ap \le B\}$	Vector of macro-scenario probabilities
P	=	$\left\{ p \in \mathbb{R}^m_+ \middle Ap \le B \right\}$	Set of incomplete macro-scenario probabilities
		$\{1,2,\ldots,s\}$	Indices of the extreme points of P
q_l	=	$\left(q_{1l},q_{2l},\ldots,q_{ml}\right)^{\mathrm{T}}$	An extreme point of P
q_l	\in	$ext(P) = Q_P$	Set of extreme points of P
r	\in	\mathbb{R}^d	Random variable of the returns of the assets
R(w,r)	=	\mathbb{R}	Random variable of the return of the portfolio

Email address: teemu.seeve@aalto.fi (Teemu Seeve)