

ByteOrderPartitioner

This partitioner orders rows lexically by key bytes
The ordered partitioner allows ordered scans by primary key
If your application has user names as the partition key, you can scan rows for users whose names fall between Jake and Joe

Disadvantage of this partitioner
Difficult load balancing
Sequential writes can cause hot spots
Uneven load balancing for multiple tables

11/3/2016	CS535 Big Data, Fall 2016	W11.B.4
Geohashes		
(2-dimensio	nal geospatial data to DHT	Γ)
Used in Galil Proximity sea	, ,	
 Subdivides the strings 	ne globe into a hierarchy represented	by
• (40.573879,	-105.084282)→9XJQBDJK4XUT	
 Longer string 	s represent more precise coordinates	3
Strings with s	similar prefixes are <i>geographically clo</i>	se
l		

of N
es .
of N es

11/3/2016	CS535 Big Data, Fall 2016	W11.B.17
SimpleStrate	egy	
 Used only for a single d 	ata center	
Places the first replica of	on a node determined by the parti	tioner
Places additional replica without considering topo Does not consider rack or	0,	the ring

- · This strategy specifies how many replicas you want in each data center
- Places replicas in the same data center by walking the ring clockwise until it reaches the first node in another rack
- · Attempts to place replicas on distinct racks
- Nodes in the same rack (or similar physical grouping) often fail at the same time due to power, cooling, or network issues.

11/3/2016		CS535 Big Data, Fall	2016	W11.B.22
What are	e Vnode	es?		
With consist range in the		,	ns exactly on	e contiguous
node • Within a clu	ster these can	n be randomly s	range per node selected and be ng to each node	e, to many per

11/3/2016	CS535 Big Data, Fall 2016	W11.B.28
	Apache Cassandra Gossip (Internode communications)	
	Cossip (internode communications)	

W11.B.29
es and about
ster
h the most

11/3/2016	CS535 Big Data, Fall 2016	W11.B.32
Why gossip	for Cassandra?	
Reliably dissemina	ate node metadata to peers	
Cluster membership		
Heartbeat		
Node status		
Each node maintain	s a view of all peers	

What gossip is not for in Cassandra?

Streaming
Repair
Reads/write
Compaction
Hint
CQL query parsing/execution

11/3/2016	CS535 Big Data, Fall 2016	W11.B.34
Data structu	ire	
• HeartBeatStat	e	
• ApplicationSt	ate	
• EndpointState • Wrapper of a heart	tbeat state and a set of application stat	e

11/3/2016	CS535 Big Data, Fall 2016	W11.B.46
AppState	Reconciliation	
Generation		
Heartbeat		
AppState bas	sed on comparing version	

11/3/2016	CS535 Big Dat	a, Fall 2016 V	V11.B.47	
Reconciliation example				
А	gen:1234 Hb: 994 Status: normal {4}	gen:1234 Hb: 990 Status: normal {4}		
В	Gen:2345 Hb: 10 Status: bootstrap {1}	Gen:2345 Hb:17 Status: normal {2}		
С	Gen:5555 Hb: 1111 Status: normal {5}			
D	Gen:2222 Hb: 4444 status: normal {3}	Gen:3333 Hb: 11 Status: normal {3}		

11/3/2016	CS535 Big Data, Fall 2016	W11.B.49
Practical in	mplications	
· Who is in the c	luster?	
· How are peers	judged UP or DOWN?	
· When does a n	node stop sending a peer traffic?	
• When is one pe	eer preferred over another?	
· When does a n	node leave the cluster?	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.50
Cluster mem	bership	
Gossip with a seed	d upon startup	
· Learn about all pe	ers	
Gossip		
• Lather, rinse, repe	at	

Failure Detection	
Tallule Detection	
Glorified heartbeat listener	
Records timestamp when heartbeat up peer	date is received for each
Keeps backlog of timestamp intervals be	petween updates
Periodically checks all peers to make s them recently	ure that we've heard from

11/3/2016	CS535 Big Data, Fall 2016	W11.B.58
Remove node		
• STATUS = REMOVING		
Rebalance cluster Notify coordinator		
Delete hint		
• STATUS = REMOVED,	expiryTime	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.61
Failure det	ection: Ф Accrual Failu	re Detector
i allule det	CCIOII. 4 Accidant allui	C Detector

11/3/2016 CS535 Big Data, Fall 2016	W11.B.62
Failure detection (1/3)	
• Ф Accrual Failure Detector	
 Accrual Failure Detection does not emit a Boolean value s a node is up or down Emits a value which represents a suspicion level for each of the mo nodes This value is defined as Φ 	Ū
Dynamically adjusts to reflect network and load conditions monitored nodes	at the

11/3/2016	CS535 Big Data, Fall 2016	W11.B.64
Failure de	etection (3/3)	
	naintains a sliding window of inter-an ages from other nodes in the cluster	
Exponential E The nature of	Distribution gossip channel and its impact on latency	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.65
Bootstrapping	and persistence	
	The period of th	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.66
Bootstrap	ping	
disk locally an	joins the ID ring, the mapping is p id in Zookeeper n information is gossiped around the clu	
	pping, a node joins with a configu of a few contact points cluster	ration file that
 Seeds can be Zookeeper) 	provided by a configuration servi	ice (e.g.

11/3/2016	CS535 Big Data, Fall 2016	W11.B.67
Write into a comn Durability and reco	overability	ion
	each node nemory data structure data structure crosses a certain thresi	nold, it dumps itself
to disk • Write into disk • Generates an inde	ex for efficient lookup based on row ke	ey
Similar to Bigtable	e (compaction)	

110.2010 Social Signature 1010	***********
Local persistence: Read Operation	
First queries the in-memory data structure	
- Disk lookup - Look-up a key	
To narrow down the lookup process a bloom filter is stored in each data file and memory	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.70
Replication		
Provides high availabilit For a replication factor (The coordinator replicates Client can specify the repl Rack-aware/Rack-unawar	(replication degree) of N these keys at N-1 nodes ication scheme	
There is no master or process.	rimary replica	
 Two replication strategie 	es are available	
• SimpleStrategy		
Use for a single data center	=	
NetworkTopologyStra Multi-data center setup	tegy	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.71
SimpleS	Strategy	
• Used only for	r a single data center	
• Places the fir	est replica on a node determined by the	partitioner
without consi	onal replicas on the next nodes clockwi idering topology isider rack or data center location	ise in the ring
l		

- · This strategy specifies how many replicas you want in each data center
- Places replicas in the same data center by walking the ring clockwise until it reaches the first node in another rack
- · Attempts to place replicas on distinct racks
- · Nodes in the same rack (or similar physical grouping) often fail at the same time due to power, cooling, or network issues.

What are Vnodes? With consistent hashing, a node owns exactly one contiguous range in the ring-space Vnodes change from one token or range per node, to many per node · Within a cluster these can be randomly selected and be non-contiguous, giving us many smaller ranges that belong to each node

Process of restoring a disk • Validating all the data and generating a Merkle tree • This might take an hour • Streaming when the actual data that is needed is sent • This phase takes a few minutes • Advantage of using Vnodes • Since the ranges are smaller, data will be sent to the damaged node in a more incremental fashion • Instead of waiting until the end of a large validation phase • The validation phase will be parallelized across more machines, causing it to complete faster

Apache Cassandra
Gossip (Internode communications)

CS535 Big Data, Fall 2016	W11.B.83
n Cassandra	
cation protocol te information about nod lout	les themselves and about
to three other nodes	in the cluster
a version associated e, older information is ove ar node	
	n Cassandra cation protocol te information about nocout to three other nodes a version associated e, older information is ov

11/3/2016	CS535 Big Data, Fall 2016	W11.B.86
Why goss	sip for Cassandra?	
Reliably disse	minate node metadata to peers	
Cluster members	ership	
Heatbeat		
Node status		
· Each node ma	aintains a view of ALL peers	

What gossip is not for in Cassandra?

Streaming
Repair
Reads/write
Compaction
Hint
CQL query parsing/execution

11/3/2016	CS535 Big Data, Fall 2016	W11.B.88
Data structu	ire	
• HeartBeatStat	e	
• ApplicationSt	ate	
• EndpointState • Wrapper of a heart	: beat state and a set of application state	;

11/3/2016	CS535 Big Data, Fall 2016	W11.B.109
Failure D	etector	
 Glorified hear 	tbeat listener	
Records time peer	stamp when heartbeat update is re	eceived for each
Keeps backlo	og of timestamp intervals between	updates
Periodically c them recently	thecks all peers to make sure that v	we've heard from

11/3/2016	CS535 Big Data, Fall 2016	W11.B.110
UP/DOWN affe	cts	
Stop sending writes (hir	nts)	
Sending reads		
Gossip It is down This node is treated as an	n unavailable node	
Repair/stream sessions Terminate sockets	are terminated	

11/3	2016	CS535 Big Data, Fall 2016	W11.B.112
D	ynamic "Snitch]"	
٠ [Determine when to avoi	d a slow node	
	Scoring peers based on Scores recalculated every The updates are capped a Scores reset every 10 min Uses statistically significar	100ms (default) t a maximum of 10,000 per scoring inter utes (default)	val
	http://www.datastav	r.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-f	uture

11/3/2016	CS535 Big Data, Fall 2016	W11.B.113
How do	nodes leave?	
1 1000 00	Tiodes icave:	

Running Netflix on Cassandra in the Cloud

11/3/2016	CS535 Big Data, Fall 2016	W11.B.152
Queries	s generates social influe	nce
	the most influential people in thematics, art, surreal art, politics?	
	gion of the social graph will propagate ment the furthest?	this
• Which 3 e	experts should review this submitted an	rticle?
	ople should I talk to at the upcoming cos should I talk to them about?	onference and

11/3/2016	CS535 Big Data, Fall 2016	W11.B.154
Graph con	nputing engines:	
Memory-ba	ased graph framework	
· Graph size is	constrained by local machine's RAM	l
· Rich graph al	gorithm and visualization packages	
 Applications 		
 iGraph 		
 http://igraph. 	sourceforge.net	
 NetworkX 		
 http://hetwor 	kx.lanl.gov	
 JUNG 		
 http://jung.sc 	ourceforge.net	

11/3/2016	Coopo big Data, Fall 2016	W11.B.133
Graph computing	engines:	•
Disk-based graph	S	
J -		
 Graph size is constraine 	ed by the local disk	
 Optimized for local grap 	h algorithms	
· Oriented towards prope	rty graphs	
 Graph database 		
• Neo4J		
 http://neo4j,org 		
 InfiniteGraph 		
 http://objectivity.com 		
 OrientDB 		
 http://orientdb.org 		
• DEX		
 http://www.sparsity-techno 	logies.com/dex	

Demands on Titan Processes graphs that have a 100+ billion edge scale with thousands of concurrent transactions Local graph traversals and batch graph processing Extremely scalable in the presence of: Graph volume Number of concurrent access to the graph

11/3/2016	CS535 Big Data, Fall 2016	W11.B.1
Locking s	vstem	
	y 0.0	
	istency over non-consistent storage	e backends
 Acquire loc 	k at the end of the transaction	
 Locking mech 	anism depends on storage layer consister	ncy guarantees
Verify origin	nal read	
3. Fail transac	tion if any precondition is violated	
	• •	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.170
Graph Pa	artitioning (1/2)	
Grapire	artitioning (1/2)	
Maximize loca Co-locate vert	,	
 Titan maintair 	ns multiple ID rings	
 OrderedPar 	titioner (from Cassandra) in st	orage backend
 Dynamically of corresponding 	determines good partition and alloog g IDs	cates
 Graph Partition 	oning is NP complete problem	
 Ongoing effor 	t	

VERTEX-CENTRIC INDICES

Top 5 Twitters based on Followers

5) 34,952,307

• Taylor Swift

4) 37,849,134

• Barack Obama

3) 40,242,656

• Lady Gaga

2) 44,951,137

• Katy Perry

1) 45,728,072

• Justin Bieber

http://twitaholic.com/top100/followers

11/3/2016	CS535 Big Data, Fall 2016	W11.B.184
Pushdown	predicates	
Vertex-centric in	ndices enables pushdown pred	licates efficiently
A vertex has fol Labels Properties Directions	llowing information about the in	ncident edges
Vertex-centric q vertex.	query provides query from the p	perspective of a
	et the query criteria are selected th representation	d from the

INTERACTING WITH GRAPH ANALYTICS Faunus

Hadoop-based Graph computing framework
Graph analytics
Breath-first traversals
Global graph computations
Batch big graph data

PREGEL:
A SYSTEM FOR LARGE-SCALE
GRAPH PROCESSING

This material is built based on,

Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, Names C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski, "Pregel: a system for large-scale graph processing", Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135-146

Apache's Hama
Open source project inspired by Pregel
http://hama.apache.org

Finding SSSP using Dijkstra's Algorithm	
5 5 7 5 5 5	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.220
Computati	on Model (2/2)	
Computati	on Model (2/2)	
Input to the Pre	gel computation	
A directed graph	•	
Vertex	•	
String vertex I	D	
 Associated us 	er defined value	
 Edge 		
	th their source vertices	
	value and a target vertex ID	
 Computation in 	the vertex	
 Executes the sa 	me user-defined function	
 Modifies the star 	te	
 Sometimes cha 	anges the outgoing edges	
 Receive/send m 	essage	
 Mutate topology 	,	
 There is no com 	putation associated with the edges	

CS535 Big Data Fall 2016 Colorado State University http://www.cs.colostate.edu/~cs535

11/3/2016	CS535 Big Data, Fall 2016	W11.B.235
Combiners		
Sending message	e incurs overhead	
into a single mes: • E.g. calculating su	oine several messages intender sage m: values intended for V will be comb sed to the vertex V	
Combiner class of	overrides a virtual Combine() me	ethod
• For SSSP, more t	than 4x reduction in message tr	raffic

11/3/2016	CS535 Big Data, Fall 2016	W11.B.236
Aggregator	S	
A mechanism fo Each vertex can System combines	r global communication provide a value to an aggrega s these values using a reduction ope is available to all vertices in the	rator

11/3/2016	CS535 Big Data, Fall 2016	W11.B.238
Topology	y Mutations	
Clustering a Might repl Minimum sp	h algorithms need to change the graph algorithm ace each cluster with a single vertex panning tree love all but the tree edges	a's topology
 Pregel allov 	ws the edges to be removed/added	

11/3/2016	CS535 Big Data, Fall 2016	W11.B.239
Resolving con	flicting request	s (1/2)
Multiple vertices may superstep	issue conflicting reque	sts in the same
E.g. two requests to add	d a vertex V, with different in	nitial values
	will be performed	•

11/3/2016	CS535 Big Data, Fall 2016	W11.B.241
Global m	utation	
Global mutati applied	ation mechanism on does not require coordination until the	e point when they are

Pregel vs. MapReduce

Many of graph algorithms can be written as a series of chained MapReduce invocations

Pregel

Once the vertices and edges are loaded into computing nodes, they will stay on that machine
Only messages will be transferred through the network

MapReduce

Passes the entire state of graph for every iteration
External coordinator is required to create a "chain" of MapReduce jobs

System Architecture	
o you thin the orange of the o	

System Architecture

Master/worker model

Worker

Processes user-defined tasks
Communicates with other workers (messaging)

Master

Maintains information about workers
Recovers from faults
Uses monitoring tools

Underlying persistent data storage: GFS or BigTable
Temporary data is stored on local disk

Step-by-step execution (3/4) 3. The master instructs each worker to perform a superstep • Performs user-defined function on the active vertices • Messages are sent asynchronously • Before the end of the superstep • This step is repeated until: (a) all of the vertices are inactive simultaneously && (b) no messages are transferred

Fault tolerance (1/2)	
System maintains checkpoints	
The master periodically requests the w their partitions to persistent storage State is saved as checkpoints, and includes Vertex values, edge values, incoming messag	

CS535 Big Data Fall 2016 Colorado State University http://www.cs.colostate.edu/~cs535

11/3/2016	CS535 Big Data, Fall 2016	W11.B.253
PageRank Algor	rithm	
Link analysis algorithm		
 Probability distribution 		
 Represents the likelihood t at any particular page 	hat a person randomly click	king on links will arrive
 Probability 		
 Between 0 and 1 		
 PageRank of 0.5 		
 There is a 50% chance that the document with the 0.5 f 	it a person clicking on a rando PageRank	m link will be directed to

Iterative approach • A link to a page counts as a vote of support • At t=0, • PR(pi;0)=1/N • At each time step, the computation yields, $PR(p_j;t+1) = \frac{1-d}{N} + d\sum \frac{PF(p_j;t)}{L(p_j)}$


```
In Pregel

class PageRankVertex:public Vertex<double, void,
double>{
  public:
    virtual void Compute(MessageIterator* msgs){
    if (superstep()>=1){
        double sum = 0;
        for(; Imsgs->Done(); msgs->Next())
            sum +=msgs->Value();
            *MutableValue()=0.15/NumVertices(+0.85*sum;
    }
    if (superstep() < 30) {
        const int64 n = GetOutEdgeIterator().size();
        SendMessageToAllNeighbors(GetValue()/n);
    }
}else(
    VoteToHalt();
}
};</pre>
```

