AUA CS 108, Statistics, Fall 2019 Lecture 14

Michael Poghosyan YSU, AUA michael@ysu.am, mpoghosyan@aua.am

25 Sep 2019

Contents

- ► Important Discrete Distributions
- ► Important Continuous Distributions
- ► Convergence Types of R.V. Sequences

Last Lecture ReCap

▶ Why we use the Sample Covariance?

Last Lecture ReCap

- ▶ Why we use the Sample Covariance?
- ▶ Why we use the Sample Correlation Coefficient?

Important Discrete

Distributions

▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- PMF:

Values of X	0	1
$\mathbb{P}(X=x)$	1-p	р

- Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- ► PMF:

$$\begin{array}{c|cccc} \text{Values of } X & 0 & 1 \\ \hline \mathbb{P}(X=x) & 1-p & p \end{array}$$

$$f(x) = f(x; p) = f(x|p) = p^{x} \cdot (1-p)^{1-x}, \qquad x \in \{0, 1\}.$$

- Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- PMF:

$$\begin{array}{c|cccc} \text{Values of } X & 0 & 1 \\ \hline \mathbb{P}(X=x) & 1-p & p \end{array}$$

Note: This can be written in the form:

$$f(x) = f(x; p) = f(x|p) = p^{x} \cdot (1-p)^{1-x}, \qquad x \in \{0, 1\}.$$

▶ Mean and Variance: $\mathbb{E}(X) = p$, Var(X) = p(1 - p).

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- ► PMF:

$$\begin{array}{c|cccc} \text{Values of } X & 0 & 1 \\ \hline \hline \mathbb{P}(X=x) & 1-p & p \\ \hline \end{array}$$

$$f(x) = f(x; p) = f(x|p) = p^{x} \cdot (1-p)^{1-x}, \qquad x \in \{0, 1\}.$$

- ▶ Mean and Variance: $\mathbb{E}(X) = p$, Var(X) = p(1 p).
- Models: Models binary output, "success-failure" type Experiments, a lot of examples.

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- PMF:

$$\begin{array}{c|cccc} \text{Values of } X & 0 & 1 \\ \hline \mathbb{P}(X=x) & 1-p & p \\ \hline \end{array}$$

$$f(x) = f(x; p) = f(x|p) = p^{x} \cdot (1-p)^{1-x}, \qquad x \in \{0, 1\}.$$

- Mean and Variance: $\mathbb{E}(X) = p$, Var(X) = p(1-p).
- ► Models: Models binary output, "success-failure" type Experiments, a lot of examples.
- ▶ R name: binom with the parameters size=1 and prob

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Bernoulli(p)$;
- ► Support: {0,1}
- PMF:

$$\begin{array}{c|cccc} \text{Values of } X & 0 & 1 \\ \hline \mathbb{P}(X=x) & 1-p & p \\ \hline \end{array}$$

$$f(x) = f(x; p) = f(x|p) = p^{x} \cdot (1-p)^{1-x}, \qquad x \in \{0, 1\}.$$

- Mean and Variance: $\mathbb{E}(X) = p$, Var(X) = p(1-p).
- ► Models: Models binary output, "success-failure" type Experiments, a lot of examples.
- ▶ R name: binom with the parameters size=1 and prob

▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: {0, 1, 2, ..., *n*}

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: $\{0, 1, 2, ..., n\}$
- ► PMF:

Values of X	0	1	 k	 n
$\mathbb{P}(X=x)$	$\binom{n}{0}p^0(1-p)^{n-0}$	$\binom{n}{1}p^1(1-p)^{n-1}$	 $\binom{n}{k} p^k (1-p)^{n-k}$	 $\binom{n}{n}p^n(1-$

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- Notation: $X \sim Binom(n, p)$;
- \triangleright Support: $\{0, 1, 2, ..., n\}$
- PMF:

Values of
$$X$$
 $\begin{vmatrix} 0 & 1 & \cdots & k & \cdots & n \\ \mathbb{P}(X=x) & \binom{n}{0}p^0(1-p)^{n-0} & \binom{n}{1}p^1(1-p)^{n-1} & \cdots & \binom{n}{k}p^k(1-p)^{n-k} & \cdots & \binom{n}{n}p^n(1-p) \end{vmatrix}$
Moan and Variance: $\mathbb{F}(X) = n$, $n = \sqrt{2r(X)} = n$, $n = \sqrt{2r(X)} = n$

▶ Mean and Variance: $\mathbb{E}(X) = n \cdot p$, $Var(X) = n \cdot p(1 - p)$.

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: $\{0, 1, 2, ..., n\}$
- ► PMF:

Values of
$$X$$
 $\begin{vmatrix} 0 & 1 & \dots & k & \dots & n \\ \mathbb{P}(X=x) & \begin{pmatrix} \binom{n}{0}p^0(1-p)^{n-0} & \binom{n}{1}p^1(1-p)^{n-1} & \dots & \binom{n}{k}p^k(1-p)^{n-k} & \dots & \binom{n}{n}p^n(1-p)^{n-k} \end{vmatrix}$

- ▶ Mean and Variance: $\mathbb{E}(X) = n \cdot p$, $Var(X) = n \cdot p(1 p)$.
- Models: Models the independent repetition of the Bernoulli(p) Experiment.

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: $\{0, 1, 2, ..., n\}$
- ► PMF:

- ▶ Mean and Variance: $\mathbb{E}(X) = n \cdot p$, $Var(X) = n \cdot p(1 p)$.
- Models: Models the independent repetition of the Bernoulli(p) Experiment.
- R name: binom with the parameters size and prob

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: $\{0, 1, 2, ..., n\}$
- ► PMF:

Values of
$$X$$
 $\begin{vmatrix} 0 & 1 & \dots & k & \dots & n \\ \mathbb{P}(X=x) & \begin{pmatrix} \binom{n}{0}p^0(1-p)^{n-0} & \binom{n}{1}p^1(1-p)^{n-1} & \dots & \binom{n}{k}p^k(1-p)^{n-k} & \dots & \binom{n}{n}p^n(1-p)^{n-k} \end{vmatrix}$

- ▶ Mean and Variance: $\mathbb{E}(X) = n \cdot p$, $Var(X) = n \cdot p(1 p)$.
- ▶ Models: Models the independent repetition of the Bernoulli(p) Experiment.
- R name: binom with the parameters size and prob
- Additional: If $X_1, X_2, ..., X_n \sim Bernoulli(p)$ are independent, then $X_1 + X_2 + ... + X_n \sim Binom(n, p)$.

- ▶ Parameters: $n \in \mathbb{N}$, $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Binom(n, p)$;
- ► Support: $\{0, 1, 2, ..., n\}$
- ► PMF:

Values of
$$X$$
 0 1 \dots k \dots n $\mathbb{P}(X=x)$ $\binom{n}{0}p^0(1-p)^{n-0}$ $\binom{n}{1}p^1(1-p)^{n-1}$ \dots $\binom{n}{k}p^k(1-p)^{n-k}$ \dots $\binom{n}{n}p^n(1-p)^n$

- ▶ Mean and Variance: $\mathbb{E}(X) = n \cdot p$, $Var(X) = n \cdot p(1 p)$.
- ► Models: Models the independent repetition of the *Bernoulli(p)* Experiment.
- ▶ R name: binom with the parameters size and prob
- Additional: If $X_1, X_2, ..., X_n \sim Bernoulli(p)$ are independent, then $X_1 + X_2 + ... + X_n \sim Binom(n, p)$.
- Example:

▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- ▶ Support: $\{1, 2, 3, ...\}$ (or, sometimes, $\{0, 1, 2, 3, ...\}$)

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- \blacktriangleright Support: $\{1,2,3,...\}$ (or, sometimes, $\{0,1,2,3,...\}$)
- ► PMF:

Values of X	1	2	3	
$\mathbb{P}(X=x)$	p	p(1 - p)	$p(1-p)^2$	

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- ▶ Support: $\{1, 2, 3, ...\}$ (or, sometimes, $\{0, 1, 2, 3, ...\}$)
- PMF:

Mean and Variance:
$$\mathbb{E}(X) = \frac{1}{p}$$
, $Var(X) = \frac{1-p}{p^2}$.

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- ▶ Support: $\{1, 2, 3, ...\}$ (or, sometimes, $\{0, 1, 2, 3, ...\}$)
- PMF:

Values of
$$X$$
 | 1 | 2 | 3 | ...
$$\mathbb{P}(X = x) \quad | \quad p \quad p(1-p) \quad p(1-p)^2 \quad ...$$

- Mean and Variance: $\mathbb{E}(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$.
- Models: Models the independent repetition of the Bernoulli(p) Experiment until the First Success.

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- ▶ Support: $\{1, 2, 3, ...\}$ (or, sometimes, $\{0, 1, 2, 3, ...\}$)
- PMF:

Values of
$$X$$
 | 1 | 2 | 3 | ...
 $\mathbb{P}(X=x)$ | p | $p(1-p)$ | $p(1-p)^2$ | ...

- Mean and Variance: $\mathbb{E}(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$.
- ▶ Models: Models the independent repetition of the Bernoulli(p) Experiment until the First Success.
- R name: geom with the parameter prob

- ▶ Parameter: $p \in [0,1]$ (usually, $p \in (0,1)$)
- ▶ Notation: $X \sim Geom(p)$;
- ▶ Support: $\{1, 2, 3, ...\}$ (or, sometimes, $\{0, 1, 2, 3, ...\}$)
- ► PMF:

- Mean and Variance: $\mathbb{E}(X) = \frac{1}{p}$, $Var(X) = \frac{1-p}{p^2}$.
- ► Models: Models the independent repetition of the *Bernoulli(p)* Experiment until the *First Success*.
- ▶ R name: geom with the parameter prob
- Example:

```
rgeom(10,prob = 0.3)
```

[1] 1 2 6 0 2 4 4 3 1 4

▶ Parameter: $\lambda > 0$

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ▶ Support: $\{0, 1, 2, 3, ...\}$

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ▶ Support: $\{0, 1, 2, 3, ...\}$
- ► PMF:

Values of X	0	1	2	
$\boxed{\mathbb{P}(X=x)}$	$e^{-\lambda} \frac{\lambda^0}{0!}$	$e^{-\lambda} \frac{\lambda^1}{1!}$	$e^{-\lambda} \frac{\lambda^2}{2!}$	

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ► Support: {0,1,2,3,...}
- ► PMF:

Values of
$$X \parallel 0 \parallel 1 \parallel 2 \parallel \dots$$

$$\mathbb{P}(X = x) \parallel e^{-\lambda} \frac{\lambda^0}{0!} \parallel e^{-\lambda} \frac{\lambda^1}{1!} \parallel e^{-\lambda} \frac{\lambda^2}{2!} \parallel \dots$$

▶ Mean and Variance: $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ► Support: {0, 1, 2, 3, ...}
- ► PMF:

Values of
$$X = 0$$
 1 2 ...
$$\mathbb{P}(X = x) = e^{-\lambda} \frac{\lambda^0}{0!} = e^{-\lambda} \frac{\lambda^1}{1!} = e^{-\lambda} \frac{\lambda^2}{2!} \dots$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.
- Models: Models the number of success in a fixed interval. Say, number of calls, number of customers, number of clicks, number of page visits, . . .

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ► Support: {0, 1, 2, 3, ...}
- ► PMF:

Values of
$$X = 0$$
 1 2 ...
$$\mathbb{P}(X = x) = e^{-\lambda} \frac{\lambda^0}{0!} = e^{-\lambda} \frac{\lambda^1}{1!} = e^{-\lambda} \frac{\lambda^2}{2!} \dots$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.
- Models: Models the number of success in a fixed interval. Say, number of calls, number of customers, number of clicks, number of page visits, ... λ is the average number of calls, customers, clicks, page visits,...

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ► Support: {0, 1, 2, 3, ...}
- ► PMF:

Values of
$$X \parallel 0 \parallel 1 \parallel 2 \parallel \dots$$

$$\mathbb{P}(X = x) \parallel e^{-\lambda} \frac{\lambda^0}{0!} \parallel e^{-\lambda} \frac{\lambda^1}{1!} \parallel e^{-\lambda} \frac{\lambda^2}{2!} \parallel \dots$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.
- Models: Models the number of success in a fixed interval. Say, number of calls, number of customers, number of clicks, number of page visits, . . . λ is the average number of calls, customers, clicks, page visits, . . .
- R name: pois with the parameter lambda

- ▶ Parameter: $\lambda > 0$
- ▶ Notation: $X \sim Pois(\lambda)$;
- ► Support: {0,1,2,3,...}
- ► PMF:

Values of
$$X = 0$$
 1 2 ...
$$\mathbb{P}(X = x) = e^{-\lambda} \frac{\lambda^0}{0!} = e^{-\lambda} \frac{\lambda^1}{1!} = e^{-\lambda} \frac{\lambda^2}{2!} \dots$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \lambda$, $Var(X) = \lambda$.
- Models: Models the number of success in a fixed interval. Say, number of calls, number of customers, number of clicks, number of page visits, . . . λ is the average number of calls, customers, clicks, page visits, . . .
- ▶ R name: pois with the parameter lambda
- Example:

Important Continuous

Distributions

Parameters: a, b (a < b)

- Parameters: a, b (a < b)
- ▶ Notation: $X \sim Unif[a, b]$;

- ▶ Parameters: a, b (a < b)
- ▶ Notation: $X \sim Unif[a, b]$;
- ► Support: [*a*, *b*]

- Parameters: $a, b \ (a < b)$
- ▶ Notation: $X \sim Unif[a, b]$;
- **▶** Support: [*a*, *b*]
- ► PDF:

$$f(x) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & otherwise \end{cases}$$

- Parameters: $a, b \ (a < b)$
- ▶ Notation: $X \sim Unif[a, b]$;
- ► Support: [a, b]
- ► PDF:

$$f(x) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & otherwise \end{cases}$$

▶ Mean and Variance:
$$\mathbb{E}(X) = \frac{a+b}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

- Parameters: $a, b \ (a < b)$
- ▶ Notation: $X \sim Unif[a, b]$;
- Support: [a, b]
- ► PDF:

$$f(x) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & otherwise \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- ► Models: Usually we think about the Uniform Distribution when talking about *picking a random number from an interval*

- Parameters: $a, b \ (a < b)$
- ▶ Notation: $X \sim Unif[a, b]$;
- ▶ Support: [*a*, *b*]
- ► PDF:

$$f(x) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & otherwise \end{cases}$$

- Mean and Variance: $\mathbb{E}(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- ► Models: Usually we think about the Uniform Distribution when talking about *picking a random number from an interval*
- ▶ R name: unif with the parameters min = 0 and max = 1

- Parameters: $a, b \ (a < b)$
- ▶ Notation: $X \sim Unif[a, b]$;
- **▶** Support: [*a*, *b*]
- PDF:

$$f(x) = f(x|a,b) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & otherwise \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{a+b}{2}$, $Var(X) = \frac{(b-a)^2}{12}$.
- ► Models: Usually we think about the Uniform Distribution when talking about *picking a random number from an interval*
- ▶ R name: unif with the parameters min = 0 and max = 1
- **Example:**

```
runif(10, min = 2, max = 5)
```

Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)

- ▶ Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);

- ▶ Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$

- Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- PDF:

$$f(x|\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & otherwise \end{cases}$$

- Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- ► PDF:

$$f(x|\lambda) = \left\{ egin{array}{ll} \lambda \cdot e^{-\lambda x}, & x \geq 0 \\ 0, & \textit{otherwise} \end{array}
ight.$$

▶ Mean and Variance: $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.

- ▶ Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- PDF:

$$f(x|\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & otherwise \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
- Models: time elapsed until the occurrence of certain event, or the time between events (waiting times), when that time is random.

- ▶ Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- ► PDF:

$$f(x|\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
- Models: time elapsed until the occurrence of certain event, or the time between events (waiting times), when that time is random. λ is the average "arrival rate", the reciprocal of the average time between the events,

$$\lambda = \frac{1}{\text{average time between events}}.$$

- ▶ Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- PDF:

$$f(x|\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
- Models: time elapsed until the occurrence of certain event, or the time between events (waiting times), when that time is random. λ is the average "arrival rate", the reciprocal of the average time between the events,

$$\lambda = \frac{1}{\text{average time between events}}$$
.

R name: exp with the parameter rate = 1

- Parameter: $\lambda > 0$ (rate) (or, sometimes, $\beta = \frac{1}{\lambda}$, scale)
- ▶ Notation: $X \sim Exp(\lambda)$ (or $Exp(\beta)$);
- ▶ Support: $[0, +\infty)$
- ► PDF:

$$f(x|\lambda) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x \ge 0 \\ 0, & otherwise \end{cases}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
- Models: time elapsed until the occurrence of certain event, or the time between events (waiting times), when that time is random. λ is the average "arrival rate", the reciprocal of the average time between the events,

$$\lambda = \frac{1}{\text{average time between events}}$$
.

▶ R name: exp with the parameter rate = 1

▶ Parameters: μ (mean) and σ^2 (variance);

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;
- ightharpoonup Support: \mathbb{R}

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;
- ► Support: ℝ
- ► PDF:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;
- ► Support: ℝ
- ► PDF:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

▶ Mean and Variance:
$$\mathbb{E}(X) = \mu$$
, $Var(X) = \sigma^2$.

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;
- ► Support: ℝ
- ► PDF:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \mu$, $Var(X) = \sigma^2$.
- ▶ Models: Different things. Important is because of the CLT

- ▶ Parameters: μ (mean) and σ^2 (variance);
- ▶ Notation: $X \sim \mathcal{N}(\mu, \sigma^2)$;
- ► Support: ℝ
- ► PDF:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \mu$, $Var(X) = \sigma^2$.
- ▶ Models: Different things. Important is because of the CLT
- ▶ R name: norm with the parameters mean = 0, sd = 1

Parameters:
$$\mu$$
 (mean) and σ^2 (variance);

Notation:
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
;

PDF:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- ▶ Mean and Variance: $\mathbb{E}(X) = \mu$, $Var(X) = \sigma^2$.

##

##

- Example:

- Models: Different things. Important is because of the CLT
- R name: norm with the parameters mean = 0, sd = 1

- 4.9664
- rnorm(10, mean = 2, sd = 3)
 - [1] -0.4924022 4.0012314 6.4835360 2.3935659 [7] 2.7634180 4.5808330 2.4298559 -1.0900586

Note:

- **R** is using $\mathcal{N}(mean, sd)$ format
- ▶ In Math we are using the $\mathcal{N}(mean, variance)$ format

Note:

- **R** is using $\mathcal{N}(mean, sd)$ format
- ▶ In Math we are using the $\mathcal{N}(mean, variance)$ format

So if you want to generate a sample of size 100 from $\mathcal{N}(2,9)$, use the command rnorm(100, mean = 2, sd = 3).

Note:

- **R** is using $\mathcal{N}(mean, sd)$ format
- ▶ In Math we are using the $\mathcal{N}(mean, variance)$ format

So if you want to generate a sample of size 100 from $\mathcal{N}(2,9)$, use the command rnorm(100, mean = 2, sd = 3).

Additional Properties:

▶ If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ and

$$\mathbb{P}(a < X < b) = \mathbb{P}\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right) =$$

$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

▶ If $Z \sim \mathcal{N}(0,1)$, then $X = \mu + \sigma \cdot Z \sim \mathcal{N}(\mu, \sigma^2)$

- ▶ If $Z \sim \mathcal{N}(0,1)$, then $X = \mu + \sigma \cdot Z \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ If $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ for k = 1, ..., n are independent, then $X_1 + X_2 + ... + X_n \sim \mathcal{N}(\mu_1 + \mu_2 + ... + \mu_n, \sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2)$.

- ▶ If $Z \sim \mathcal{N}(0,1)$, then $X = \mu + \sigma \cdot Z \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ If $X_k \sim \mathcal{N}(\mu_k, \sigma_k^2)$ for k = 1, ..., n are independent, then $X_1 + X_2 + ... + X_n \sim \mathcal{N}(\mu_1 + \mu_2 + ... + \mu_n, \sigma_1^2 + \sigma_2^2 + ... + \sigma_n^2)$.
- ▶ If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\mathbb{P}(-\sigma < X - \mu < \sigma) \approx 0.6827,$$

$$\mathbb{P}(-2\sigma < X - \mu < 2\sigma) \approx 0.9545$$

and

$$\mathbb{P}(-3\sigma < X - \mu < 3\sigma) \approx 0.9973.$$

Additions

▶ See many other Distributions at Wiki or in different textbooks.

Additions

- ► See many other Distributions at Wiki or in different textbooks.
- Relationships among probability distributions: Wiki

Additions

- See many other Distributions at Wiki or in different textbooks.
- Relationships among probability distributions: Wiki
- ► Another page for the Relationship: L. Leemis Page