

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$

Source constraints			
SO(3) irreps	#		
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1		
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3		
$\tau_1^{\#1\alpha} == 0$	3		
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3		
$\frac{\tau_{2+}^{\#1}\alpha\beta}{\tau_{2+}^{\#1}\alpha\beta} - 2\bar{l}k\sigma_{2+}^{\#1}\alpha\beta} == 0$	5		
Total #:	16		

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-i\sqrt{2}\ kt_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	<i>t</i> 3	$i\sqrt{2}\ kt_3$	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{#1}$ †	$f_{0}^{#2} \uparrow$	$\omega_{0^{\text{-}}}^{\#1} \dotplus$

$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_2^{\#1}$ $\beta_2^{\#1}$ $\beta_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alphaeta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
,	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2^{ ext{-}}}^{\#1} +^{lphaeta\chi}$

$f_{1^{-}}^{\#2}$	0	0	0	$\frac{1}{3}$ <i>i k</i> (<i>t</i> ₁ - 2 <i>t</i> ₃)	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\bigg 0$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} (6 k^2 (r_1 + r_5) + t_1 + 4 t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta} f$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$. <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha \beta$	$f_1^{\#1} + \alpha^{eta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

	$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

Massive particle

Pole residue: $-\frac{1}{r_1} > 0$ Polarisations: 5

Square mass: $-\frac{t_1}{2r_1} > 0$ Spin: 2

Parity: Odd

Unitarity conditions $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 > 0 \&\& t_3 < -t_1 || t_3 > 0$

(No massless particles)