§4.3 实对称矩阵的特征值和特征向量

数学系 梁卓滨

2016 - 2017 学年 I 暑修班

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta =$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^{T}\beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} =$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^{\mathsf{T}}\beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是

 $\alpha^T \beta$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是
$$\alpha^T \beta = (-1\ 1\ 0\ 2) \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

 $= (-1) \times 2 + 1 \times 0 + 0 \times (-1) + 2 \times 3$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是
$$\alpha^T \beta = (-1\ 1\ 0\ 2) \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$$

定义
$$\mathbb{R}^n$$
 中两个向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$ 的内积定义为:

$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

 $= (-1) \times 2 + 1 \times 0 + 0 \times (-1) + 2 \times 3 = 4$

例
$$\mathbb{R}^4$$
 中两个向量 $\alpha = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix}$ 和 $\beta = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$ 的内积是
$$\alpha^T \beta = (-1\ 1\ 0\ 2) \begin{pmatrix} 2 \\ 0 \\ -1 \\ 3 \end{pmatrix}$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4.
$$\alpha^T \alpha \ge 0$$
, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

1.
$$\alpha^T \beta = \beta^T \alpha$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^T \beta =$$

$$\beta^T \alpha =$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则
$$\alpha^T \beta = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha =$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$, 则
$$\alpha^T \beta = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \ \cdots \ b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ b_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则
$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n.$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ b_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$, 则
$$\alpha^T \beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^T \alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$,则

$$\alpha^{\mathsf{T}}\beta = (a_1 \ a_2 \cdots a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n,$$

$$\beta^{\mathsf{T}}\alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1a_1 + b_2a_2 + \cdots + b_na_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$, 则
$$\alpha^T \beta = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^{\mathsf{T}}\alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1a_1 + b_2a_2 + \cdots + b_na_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

另证
$$\alpha^T \beta = (\alpha^T \beta)^T = \beta^T (\alpha^T)^T =$$

1.
$$\alpha^T \beta = \beta^T \alpha$$

证明 设
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 和 $\beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$, 则
$$\alpha^T \beta = (a_1 \ a_2 \ \cdots \ a_n) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n,$$

$$\beta^{\mathsf{T}}\alpha = (b_1 \ b_2 \cdots b_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = b_1a_1 + b_2a_2 + \cdots + b_na_n.$$

所以
$$\alpha^T \beta = \beta^T \alpha$$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4.
$$\alpha^T \alpha \geq 0$$
, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4.
$$\alpha^T \alpha \ge 0$$
, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

证明

2. 显然

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4.
$$\alpha^T \alpha \ge 0$$
, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma =$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4. $\alpha^T \alpha \ge 0$, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma =$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4. $\alpha^T \alpha \ge 0$, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4. $\alpha^T \alpha \ge 0$, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

4.
$$\alpha^T \alpha = (\alpha_1 \ \alpha_2 \cdots \alpha_n) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \alpha_1^2 + \alpha_2^2 + \cdots + \alpha_n^2$$

2.
$$(k\alpha)^T\beta = k\alpha^T\beta$$
, $(k$ 是实数)

3.
$$(\alpha + \beta)^T \gamma = \alpha^T \gamma + \beta^T \gamma$$

4.
$$\alpha^T \alpha \ge 0$$
, 并且仅当 $\alpha = 0$ 时, $\alpha^T \alpha = 0$

- 2. 显然
- 3. $(\alpha + \beta)^T \gamma = (\alpha^T + \beta^T) \gamma = \alpha^T \gamma + \beta^T \gamma$

4.
$$\alpha^{T}\alpha = (\alpha_{1} \ \alpha_{2} \ \cdots \ \alpha_{n})\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} = \alpha_{1}^{2} + \alpha_{2}^{2} + \cdots + \alpha_{n}^{2} \geq 0$$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| =$$

$$||\beta|| =$$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} =$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} =$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} = \sqrt{1 + 9 + 1 + 25} =$

定义

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

称为向量的长度或范数。

例 求向量
$$\alpha = \begin{pmatrix} -4 \\ -5 \\ 6 \end{pmatrix}$$
, $\beta = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 5 \end{pmatrix}$

$$||\alpha|| = \sqrt{(-4)^2 + (-5)^2 + 6^2} = \sqrt{16 + 25 + 36} = \sqrt{77}$$

 $||\beta|| = \sqrt{(-1)^2 + 3^2 + 1^2 + 5^2} = \sqrt{1 + 9 + 1 + 25} = 6$

• 向量的长度或范数

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$, (k 是实数)

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$, (k 是实数)
- 3. 对任意向量 α , β , 都成立

$$|\alpha^T \beta| \le ||\alpha|| \cdot ||\beta||$$

$$||\alpha|| := \sqrt{\alpha^T \alpha} = \sqrt{\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2}$$

长度性质

- 1. $||\alpha|| \ge 0$,并且仅当 $\alpha = 0$ 时, $||\alpha|| = 0$
- 2. $||k\alpha|| = |k| \cdot ||\alpha||$, (k 是实数)
- 3. 对任意向量 α , β , 都成立

$$|\alpha^T \beta| \le ||\alpha|| \cdot ||\beta||$$

即

$$|a_1b_1 + \dots + a_nb_n| \le \sqrt{a_1^2 + \dots + a_n^2} \cdot \sqrt{b_1^2 + \dots + b_n^2}$$

• 定义 长度为 1 的向量称为单位向量。

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \ \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \ \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$, 则 $||\alpha|| \neq 0$,

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \ \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$, 则 $||\alpha|| \neq 0$, 向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \ \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$, 则 $||\alpha|| \neq 0$, 向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

$$\left\| \frac{1}{||\alpha||} \alpha \right\| = \frac{1}{||\alpha||} ||\alpha|| = 1$$

- 定义 长度为 1 的向量称为单位向量。
- 例 向量

$$\alpha = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \ \beta = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}, \quad \varepsilon_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i\text{-th}$$

都是单位向量

• 设 $\alpha \neq 0$, 则 $||\alpha|| \neq 0$, 向量 $\frac{1}{||\alpha||} \alpha$ 是单位向量:

$$\left\|\frac{1}{||\alpha||}\alpha\right\| = \frac{1}{||\alpha||}||\alpha|| = 1$$

称 $\frac{1}{||\alpha||}$ α 为 α 的单位化

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
,

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
, 所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1.
$$||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$
,所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

2.
$$||\beta|| = \sqrt{2^2 + 2^2 + 4^2 + 5^2} = \sqrt{49} = 7$$
,

$$\alpha = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 5 \end{pmatrix}$$

解

1. $||\alpha|| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$, 所以的 α 单位化为:

$$\frac{1}{||\alpha||}\alpha = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{14}\\2/\sqrt{14}\\3/\sqrt{14} \end{pmatrix}$$

2. $||\beta|| = \sqrt{2^2 + 2^2 + 4^2 + 5^2} = \sqrt{49} = 7$, 所以的 β 单位化为:

$$\frac{1}{||\beta||}\beta = \frac{1}{7} \begin{pmatrix} 2\\2\\4\\5 \end{pmatrix} = \begin{pmatrix} 2/7\\2/7\\4/7\\5/7 \end{pmatrix}$$

定义 若 $\alpha^T \beta = 0$, 则称 α , β 正交 (或垂直)

定义 若 $\alpha^T \beta = 0$, 则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

 $0^T \alpha$

定义 若 $\alpha^T \beta = 0$, 则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

定义 若 $\alpha^T \beta = 0$, 则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^{T}\beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^T \beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 中的向量两两正

交:

定义 若 $\alpha^T \beta = 0$,则称 α , β 正交(或垂直)

例 零向量与任意向量正交:

$$0^T \alpha = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + \dots + 0 \cdot \alpha_n = 0$$

例
$$\alpha = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$$
 与 $\beta = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 正交:

$$\alpha^T \beta = 2 \times 1 + 4 \times 2 + 5 \times (-2) = 0$$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 中的向量两两正

交:

$$\varepsilon_1^T \varepsilon_2 = 0$$
, $\varepsilon_1^T \varepsilon_3 = 0$, $\varepsilon_2^T \varepsilon_3 = 0$

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_j = 0$, $i \neq j$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_i = 0$, $i \neq j$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

例 向量组
$$\alpha = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

定义 若 \mathbb{R}^n 中向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 满足

- 1. 每个向量非零: $\alpha_i \neq 0$, i = 1, 2, ..., s
- 2. 两两正交: $\alpha_i^T \alpha_i = 0$, $i \neq j$

例 向量组
$$\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 是正交向量组

例 向量组
$$\alpha = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 2 \\ 4 \\ 5 \end{pmatrix}$, $\gamma = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 是正交向量组

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s)$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j}$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \alpha_i^T \alpha_i$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0$$

则

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

所以 $k_i = 0$ 。

$$k_1 = k_2 = \cdots = k_s = 0$$

证明 设

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$

则

$$0 = \alpha_i^T (k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_i \alpha_i + \dots + k_s \alpha_s) \xrightarrow{\alpha_i^T \alpha_j = 0 \text{ for } i \neq j} k_i \underbrace{\alpha_i^T \alpha_i}_{\neq 0}$$

所以 $k_i = 0$ 。由 i 的任意性

$$k_1 = k_2 = \cdots = k_s = 0$$

正交化

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

正交化

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正文}\ell}$ $\beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交) 实现正交化步骤(施密特正交化方法):

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

:

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交) 实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交) 实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\text{EX}} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{1}{||\beta_1||^2} \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{正交化}} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 =$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\mathbb{E}\Sigma \setminus \mathbb{A}} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\mathbb{E}\Sigma \setminus \mathbb{A}} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\beta_2}{|\beta_1|^2} \beta_1 - \frac{\beta_2}{|\beta_2|^2}$$

$$\beta_{s} =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{1}{||\beta_1||^2} \beta_1 - \frac{1}{||\beta_2||^2} \beta_2$$

:

 $\beta_1 = \alpha_1$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\text{E} \odot \ell} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_s =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\text{E} \odot \ell} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\vdots$$

$$\beta_{s} =$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$
.

$$\beta_s = \alpha_s - \dots - \beta_1 - \dots - \beta_2 - \dots - \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$
.

$$\beta_s = \alpha_s - \frac{\beta_s - \beta_s - \beta_$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\beta_s = \alpha_s - \frac{1}{||\beta_1||^2} \beta_1 - \frac{1}{||\beta_2||^2} \beta_2 - \dots - \frac{1}{||\beta_s||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\beta_s = \alpha_s - \frac{1}{||\beta_1||^2} \beta_1 - \frac{1}{||\beta_2||^2} \beta_2 - \dots - \frac{1}{||\beta_{s-1}||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_{1} = \alpha_{1}$$

$$\beta_{2} = \alpha_{2} - \frac{\alpha_{2}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1}$$

$$\beta_{3} = \alpha_{3} - \frac{\alpha_{3}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{3}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2}$$

$$\beta_s = \alpha_s - \frac{\alpha_s^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_s^T \beta_1}{||\beta_2||^2} \beta_2 - \dots - \frac{\alpha_s^T \beta_1}{||\beta_{s-1}||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
(线性无关) $\xrightarrow{\text{E文}(1)} \beta_1, \beta_2, \ldots, \beta_s$ (等价,两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^T \beta_2}{||\beta_2||^2} \beta_2$$

$$\beta_s = \alpha_s - \frac{\alpha_s^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_s^T \beta_2}{||\beta_2||^2} \beta_2 - \dots - \frac{1}{||\beta_{s-1}||^2} \beta_{s-1}$$

$$\alpha_1, \alpha_2, \ldots, \alpha_s$$
 (线性无关) $\xrightarrow{\mathbb{E} \mathfrak{D}(k)} \beta_1, \beta_2, \ldots, \beta_s$ (等价, 两两正交)

实现正交化步骤(施密特正交化方法):

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^T \beta_2}{||\beta_2||^2} \beta_2$$

$$\beta_{s} = \alpha_{s} - \frac{\alpha_{s}^{T} \beta_{1}}{||\beta_{1}||^{2}} \beta_{1} - \frac{\alpha_{s}^{T} \beta_{2}}{||\beta_{2}||^{2}} \beta_{2} - \dots - \frac{\alpha_{s}^{T} \beta_{s-1}}{||\beta_{s-1}||^{2}} \beta_{s-1}$$

例 将线性无关组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^T \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^T \beta_1}{||\beta_1||^2} \beta_1 - \dots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{\alpha_2^{\prime} \beta_1}{||\beta_1||^2} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{\alpha_3^{\prime} \beta_1}{||\beta_1||^2} \beta_1 - \frac{\alpha_3^{\prime} \beta_2}{||\beta_2||^2} \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{-1} = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix} - - \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{-1} = \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{\beta_1} = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1}{\beta_1} - \frac{\beta_2}{\beta_2}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{-1} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} \frac{3}{3} \\ -\frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{2} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - - - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - - - - \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{-1} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{-2} \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}$$

 $\beta_3 = \alpha_3 - - - \beta_1 - - - \beta_2$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{-1} - \frac{\beta_1}{-1} - \frac{\beta_2}{-1} - \frac{\beta_2}{-1}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1}{-1} - \frac{\beta_2}{-1}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - - - \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{-1} - \frac{4}{4} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\2\\-2\\-2 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{16} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

 $\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 3 \\ -1 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{-1} = \begin{pmatrix} \frac{3}{3} \\ -\frac{1}{-1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{-2} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1}{-1} - \frac{\beta_2}{-1}$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{-32}{16} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\3\\-1\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -2\\0\\6\\8 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{3}{1} = \begin{pmatrix} \frac{3}{3} \\ -\frac{1}{1} \\ -\frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{2}{2} \\ -\frac{2}{-2} \\ -\frac{2}{2} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -2 \\ 0 \\ 6 \\ 8 \end{pmatrix} - \frac{12}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{-32}{16} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

例 将线性无关组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\2\\1\\1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 3\\2\\1\\1 \end{pmatrix} - -\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 3\\2\\1\\1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\2\\1\\1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \\ 1 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{1}} - \frac{\beta_{2}}{\beta_{2}}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \frac{6}{3$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 - 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix} - - \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} - - \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}$$

 $\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ \frac{1}{-1} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{1} - \frac{\beta_{2}}{1}$$

$$= \begin{pmatrix} \frac{2}{1} \\ \frac{1}{2} \end{pmatrix} - \frac{1}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} - - \begin{pmatrix} \frac{1}{0} \\ \frac{1}{2} \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{1} - \frac{\beta_{2}}{1}$$

$$\begin{pmatrix} \frac{2}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$= \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} - - \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{1} - \frac{\beta_{2}}{1}$$

$$\beta_{1} = \begin{pmatrix} \frac{2}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

● 整角大

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 1 \\ -1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{1} - \frac{\beta_{2}}{1}$$

$$= \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3\\2\\1\\1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{1} = \begin{pmatrix} \frac{3}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1} - \beta_{2}}{1} = \begin{pmatrix} \frac{2}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{6}{3} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} \frac{0}{1} \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} 2\\1\\1\\3 \end{pmatrix} - \frac{6}{3} \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} - \frac{0}{3} \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\1\\1 \end{pmatrix}$$

例 将线性无关组 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 =$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 =$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_s$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

$$\beta_3 = \alpha_3 - \cdots - \beta_1 - \cdots - \beta_2$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{0}{2} = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix} - \frac{1}{4}\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1 - \beta_2}{2}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \frac{\beta_1}{1} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \frac{\beta_1}{1} - \frac{\beta_2}{1}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{2}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{2}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$= \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - - \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{1}} - \frac{\beta_{2}}{\beta_{2}}$$

$$(-1) \qquad (1) \qquad (-1)$$

$$= \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{2}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{2}} - \frac{\beta_{2}}{\beta_{2}}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - - \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{1}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ \frac{1}{1} \end{pmatrix}$$

$$= \begin{pmatrix} -1\\0\\1\\1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ 正交化

$$\beta_{1} = \alpha_{1} = \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix}$$

$$\beta_{2} = \alpha_{2} - \frac{\beta_{1}}{\beta_{1}} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{1} \end{pmatrix} - \frac{4}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix}$$

$$\beta_{3} = \alpha_{3} - \frac{\beta_{1}}{\beta_{1}} - \frac{\beta_{2}}{\beta_{2}}$$

$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{1} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1\\0\\1\\1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1}\\1\\1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$$

例 将线性无关组
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_1 = \alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \end{pmatrix} - \frac{4}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_3 = \alpha_3 - \dots - \beta_1 - \dots - \beta_2$$

$$= \begin{pmatrix} -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/4 \\ -1/4 \\ \frac{1}{3}/4 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 0 \\ \frac{1}{1} \end{pmatrix} - \frac{1}{4} \begin{pmatrix} \frac{1}{1} \\ \frac{1}{1} \end{pmatrix} - \frac{2}{2} \begin{pmatrix} -1 \\ 0 \\ \frac{1}{0} \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^TQ = I_n \Rightarrow$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^TQ = I_n \Rightarrow |I_n| = |Q^TQ|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^T Q = I_n \implies 1 = |I_n| = |Q^T Q|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^T Q = I_n \Rightarrow 1 = |I_n| = |Q^T Q| = |Q^T| \cdot |Q|$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:
$$Q^{T}Q = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;

- 1. $Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

证明

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

2. 显然

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

证明

1.
$$Q^TQ = I_n \Rightarrow 1 = |I_n| = |Q^TQ| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

2. 显然

3.
$$(PO)^{T}(PO) =$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

证明

1.
$$Q^T Q = I_n \Rightarrow 1 = |I_n| = |Q^T Q| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$$

2. 显然

3.
$$(PO)^{T}(PO) = O^{T}P^{T}PO =$$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^{T}Q = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^T Q = I_n \Rightarrow 1 = |I_n| = |Q^T Q| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PO)^{T}(PO) = O^{T}P^{T}PO = O^{T}I_{P}O =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^T Q = I_n \Rightarrow 1 = |I_n| = |Q^T Q| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PO)^{T}(PO) = O^{T}P^{T}PO = O^{T}I_{P}O = O^{T}O =$

定义 设 n 阶矩阵 Q 满足 $Q^TQ = I_n$,则称 Q 是正交矩阵。

例
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 是正交矩阵:

$$Q^TQ = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

性质

- 1. 若 Q 为正交矩阵,则 |Q| = 1 或 |Q| = -1;
- 2. 若 Q 为正交矩阵,则 Q 可逆,且 $Q^{-1} = Q^{T}$;
- 3. 若 P, Q 为正交矩阵,则 PQ 也是正交矩阵。

- 1. $Q^T Q = I_n \Rightarrow 1 = |I_n| = |Q^T Q| = |Q^T| \cdot |Q| = |Q|^2 \Rightarrow |Q| = \pm 1$
- 2. 显然
- 3. $(PO)^{T}(PO) = O^{T}P^{T}PO = O^{T}I_{P}O = O^{T}O = I_{P}$

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
, 则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n})$$

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \\ \vdots \\ \alpha^{T} \end{pmatrix}$$

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
, 则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix}$$

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} \\ \vdots & \vdots & \vdots \\ \alpha_{n}^{T} & \vdots \end{pmatrix}$$

证明 设
$$Q = (\alpha_1 \alpha_2 \dots \alpha_n)$$
,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & & & & \\ & & & & & \\ & & & & & \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \\ \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & & & \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$, 则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$O^T O = I$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是:Q 的列(行)向量组 是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$,则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$Q^{T}Q = I \quad \Leftrightarrow \quad \begin{cases} \alpha_{i}^{T}\alpha_{i} = 1, \\ \alpha_{i}^{T}\alpha_{j} = 0, \end{cases}$$

定理 n 阶矩阵 Q 是正交矩阵的充分必要条件是: Q 的列(行)向量组是单位正交向量组。

证明 设 $Q = (\alpha_1 \alpha_2 \dots \alpha_n)$, 则

$$Q^{T}Q = \begin{pmatrix} \alpha_{1}^{T} \\ \alpha_{2}^{T} \\ \vdots \\ \alpha_{n}^{T} \end{pmatrix} (\alpha_{1} \alpha_{2} \dots \alpha_{n}) = \begin{pmatrix} \alpha_{1}^{T} \alpha_{1} & \alpha_{1}^{T} \alpha_{2} & \cdots & \alpha_{1}^{T} \alpha_{n} \\ \alpha_{2}^{T} \alpha_{1} & \alpha_{2}^{T} \alpha_{2} & \cdots & \alpha_{2}^{T} \alpha_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n}^{T} \alpha_{1} & \alpha_{n}^{T} \alpha_{2} & \cdots & \alpha_{n}^{T} \alpha_{n} \end{pmatrix}$$

所以

$$Q^{T}Q = I \iff \begin{cases} \alpha_{i}^{T}\alpha_{i} = 1, & (i = 1, 2, ..., n) \\ \alpha_{i}^{T}\alpha_{j} = 0, & (i \neq j; i, j = 1, 2, ..., n) \end{cases}$$

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证: 列向量组是单位正交向量组

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证:列向量组是单位正交向量组

答案 A_1 是正交矩阵

$$A_1 = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \end{pmatrix}, \quad A_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{pmatrix},$$

提示 验证:列向量组是单位正交向量组

答案 A_1 是正交矩阵, A_2 不是正交矩阵

实对称矩阵的特征值和特征向量

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

实对称矩阵的特征值和特征向量

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| =$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} =$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是
$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

所以特征值是 $\lambda_1 = -\sqrt{-1}$, $\lambda_2 = \sqrt{-1}$ 。

- 对任意 n 阶方阵:
 - 1. 一定有 n 个特征值(计算重数,复数域内),可能有非实数特征值
 - 2. 不一定能对角化

例
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 的特征值方程是

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 + 1$$

所以特征值是 $\lambda_1 = -\sqrt{-1}$, $\lambda_2 = \sqrt{-1}$.

- 对实对称矩阵,总成立:
 - 1. 定理 实对称矩阵的特征值都是实数。
 - 2. 定理 实对称矩阵一定可以对角化。

设 A 为实对称矩阵,则一定存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

设 A 为实对称矩阵,则一定存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

设 A 为实对称矩阵,则一定存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求P是正交矩阵:

定理 设 A 为实对称矩阵,则一定存在正交矩阵 Q ,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

设 A 为实对称矩阵,则一定存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求 P 是正交矩阵:

定理 设 A 为实对称矩阵,则一定存在正交矩阵 Q ,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

注 由于正交矩阵满足 $Q^{-1} = Q^T$,

设 A 为实对称矩阵,则一定存在可逆矩阵 P ,使得

$$P^{-1}AP = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}$$

事实上,还可以进一步要求P是正交矩阵:

定理 设 A 为实对称矩阵,则一定存在正交矩阵 Q ,使得

$$Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{pmatrix}$$

注 由于正交矩阵满足 $Q^{-1} = Q^T$,上述等价于 $Q^T A Q = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_1 = \lambda_1\alpha_1$$

$$A\alpha_2 = \lambda_2\alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_1 = \lambda_1 \alpha_1 \implies \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

 $A\alpha_2 = \lambda_2 \alpha_2$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

 $A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \alpha_1^T \alpha_2$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_1 = \lambda_1 \alpha_1 \quad \Rightarrow \quad \alpha_2^T A \alpha_1 = \lambda_1 \alpha_2^T \alpha_1$$

$$A\alpha_2 = \lambda_2 \alpha_2 \quad \Rightarrow \quad \alpha_1^T A \alpha_2 = \lambda_2 \alpha_1^T \alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \alpha_{2}^{T}A\alpha_{1} = \lambda_{1}\alpha_{2}^{T}\alpha_{1}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \alpha_{1}^{T}A\alpha_{2} = \lambda_{2}\alpha_{1}^{T}\alpha_{2}$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \boxed{\alpha_{2}^{T}A\alpha_{1}} = \lambda_{1} \boxed{\alpha_{2}^{T}\alpha_{1}}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \boxed{\alpha_{1}^{T}A\alpha_{2}} = \lambda_{2} \boxed{\alpha_{1}^{T}\alpha_{2}}$$

注意
$$\alpha_2^T A \alpha_1 = (\alpha_2^T A \alpha_1)^T =$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \alpha_{2}^{T}A\alpha_{1} = \lambda_{1}\alpha_{2}^{T}\alpha_{1}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \alpha_{1}^{T}A\alpha_{2} = \lambda_{2}\alpha_{1}^{T}\alpha_{2}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T =$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \boxed{\alpha_{2}^{T}A\alpha_{1}} = \lambda_{1} \boxed{\alpha_{2}^{T}\alpha_{1}}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \boxed{\alpha_{1}^{T}A\alpha_{2}} = \lambda_{2} \boxed{\alpha_{1}^{T}\alpha_{2}}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T = \alpha_1^T A \alpha_2$$

$$\alpha_2^T \alpha_1 = 0$$

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \boxed{\alpha_{2}^{T}A\alpha_{1}} = \lambda_{1} \boxed{\alpha_{2}^{T}\alpha_{1}}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \boxed{\alpha_{1}^{T}A\alpha_{2}} = \lambda_{2} \boxed{\alpha_{1}^{T}\alpha_{2}}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T = \alpha_1^T A \alpha_2$$
,两式相减得
$$0 = (\lambda_1 - \lambda_2) \alpha_2^T \alpha_1$$

$$\alpha_2^T \alpha_1 = 0$$

证明 设 A 为实对称矩阵, $\lambda_1 \neq \lambda_2$ 为两特征值, α_1 , α_2 为相应特征向量,则

$$A\alpha_{1} = \lambda_{1}\alpha_{1} \quad \Rightarrow \quad \boxed{\alpha_{2}^{T}A\alpha_{1}} = \lambda_{1} \boxed{\alpha_{2}^{T}\alpha_{1}}$$

$$A\alpha_{2} = \lambda_{2}\alpha_{2} \quad \Rightarrow \quad \boxed{\alpha_{1}^{T}A\alpha_{2}} = \lambda_{2} \boxed{\alpha_{1}^{T}\alpha_{2}}$$

注意
$$\alpha_2^T A \alpha_1 = \left(\alpha_2^T A \alpha_1\right)^T = \alpha_1^T A^T \left(\alpha_2^T\right)^T = \alpha_1^T A \alpha_2$$
,两式相减得
$$0 = (\lambda_1 - \lambda_2) \alpha_2^T \alpha_1$$

由于 $\lambda_1 \neq \lambda_2$,所以

$$\alpha_2^T \alpha_1 = 0$$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:
 $0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

$$\bullet \ \lambda_1 = -1,$$

•
$$\lambda_2 = 2$$
,

•
$$\lambda_3 = 5$$
,

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,

•
$$\lambda_3 = 5$$
,

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 2$$
, 特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

•
$$\lambda_3 = 5$$
,

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
, 特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$ 所以取 $Q = \underbrace{\begin{pmatrix} 2/3 & 2/3 & 1/3 \\ 2/3 - 1/3 - 2/3 \\ 1/3 - 2/3 & 2/3 \end{pmatrix}}_{Q_{:}$ 正交阵

例
$$A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}$$
, 特征方程:

$$0 = |\lambda I - A| = (\lambda + 1)(\lambda - 2)(\lambda - 5)$$

•
$$\lambda_1 = -1$$
,特征向量 $\alpha_1 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$ 单位化 $\gamma_1 = \begin{pmatrix} 2/3 \\ 2/3 \\ 1/3 \end{pmatrix}$

•
$$\lambda_2 = 2$$
,特征向量 $\alpha_2 = \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$ 单位化 $\gamma_2 = \begin{pmatrix} 2/3 \\ -1/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_3 = 5$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$ (2/3 2/3 1/3)

所以取
$$Q = \underbrace{\begin{pmatrix} 2/3 & 2/3 & 1/3 \\ 2/3 - 1/3 - 2/3 \\ 1/3 - 2/3 & 2/3 \end{pmatrix}}_{O: \ \mathbb{E}$$
交阵

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$

例 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

•
$$\lambda_1 = 1$$
(二重)

•
$$\lambda_3 = 10$$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

• $\lambda_1 = 1$ (二重),特征向量 $\begin{pmatrix} \alpha_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \end{pmatrix}$

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

• $\lambda_1 = 1$ (二重),特征向量 $\begin{pmatrix} \alpha_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \end{pmatrix}$

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}
\end{cases}$$

λ₃ = 10, 特征向量

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix}
\end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{IEXM}}
\begin{cases}
\beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}
\end{cases}$$

$$\begin{cases}
\beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{cases}
\end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{EXK}} \begin{cases} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} & \text{with} \\ \alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} & \beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases} \begin{cases} \gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \\ \gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix} \end{cases}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$

例
$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

λ₁ = 1 (二重), 特征向量

$$\begin{cases}
\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{IEXM}}
\begin{cases}
\beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\text{$\frac{1}{4}$}}
\begin{cases}
\gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}
\end{cases}$$

$$\alpha_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta_2 = \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix}$$

$$\gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5 \\ 4/5 \\ 1 \end{pmatrix}$$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

•
$$\lambda_1 = 1$$
 (二重) ,特征向量
$$\begin{pmatrix} \alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} \qquad \begin{pmatrix} \beta_1 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$$

•
$$\lambda_3 = 10$$
, 特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ · γ_1 · γ_2 · γ_3
所以取 $Q = \begin{pmatrix} -2/\sqrt{5} & 2/3 & \sqrt{5} & 1/3 \\ 1/\sqrt{5} & 4/3 & \sqrt{5} & 2/3 \\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$,

 $\begin{cases}
\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{iff}} \begin{cases}
\beta_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{iff}} \begin{cases}
\gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\
\alpha_2 = \begin{pmatrix} 2\\0\\1 \end{pmatrix} \end{cases}
\end{cases}$ $\beta_2 = \begin{pmatrix} 2/5\\4/5\\1 \end{pmatrix}$ $\gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5\\4/5\\1 \end{pmatrix}$ • $\lambda_3 = 10$,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$

例 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$

Q: 正交阵

例 $A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$, 特征方程: $0 = |\lambda I - A| = (\lambda - 1)^2 (\lambda - 10)$ λ₁ = 1 (二重), 特征向量

$$\gamma_1$$
 γ_2 f以取 $Q = \begin{pmatrix} -2/\sqrt{5} & 2/3\sqrt{5} \\ 1/\sqrt{5} & 4/3\sqrt{5} \\ 0 & \sqrt{5}/3 \end{pmatrix}$ -

 $\begin{cases}
\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{IEXM}}
\begin{cases}
\beta_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix} \xrightarrow{\text{with}}
\begin{cases}
\gamma_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix} \\
\beta_2 = \begin{pmatrix} 2/5\\4/5\\1 \end{pmatrix}
\end{cases}$ $\begin{cases}
\gamma_2 = \frac{5}{3\sqrt{5}} \begin{pmatrix} 2/5\\4/5\\1 \end{pmatrix}
\end{cases}$

•
$$\lambda_3 = 10$$
,特征向量 $\alpha_3 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$ 单位化 $\gamma_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ -2/3 \end{pmatrix}$ $\begin{pmatrix} -2/\sqrt{5} & 2/3\sqrt{5} & 1/3 \\ 2/3 & 2/3 \end{pmatrix}$

所以取 $Q = \begin{pmatrix} -2/\sqrt{5} & 2/3\sqrt{5} & 1/3 \\ 1/\sqrt{5} & 4/3\sqrt{5} & 2/3 \\ 0 & \sqrt{5}/3 & -2/3 \end{pmatrix}$,则 $Q^{-1}AQ = \begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,

例 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| =$

例 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2(\lambda - 5)$ Det

•
$$\lambda_1 = -1$$
(二重)

•
$$\lambda_2 = 5$$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ **Det**

λ₁ = −1 (二重), 特征向量:

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
,特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_1 = -1$$
(二重),特征向量:
 $\begin{pmatrix} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$
 $\begin{pmatrix} \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$

•
$$\lambda_1 = -1$$
(二重),特征向量:
 $\begin{pmatrix} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$
 $\begin{pmatrix} \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$

•
$$\lambda_2 = 5$$
,特征向量: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

• $\lambda_1 = -1$ (二重),特征向量: $\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$
Detail

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_1 = -1$$
 (二重) ,特征向量: • Detail
$$\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$
• Detail
$$\beta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

•
$$\lambda_2 = 5$$
,特征向量: • $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_1 = -1$$
 (二重) ,特征向量: • Detail
$$\begin{cases} \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\chi} \ell} \begin{cases} \beta_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \xrightarrow{\frac{\hat{\mu} \oplus \ell}{\ell}} \begin{cases} \gamma_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \end{cases}$$

$$\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{Det}} \begin{cases} \beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} \xrightarrow{\hat{\mu} \oplus \ell} \begin{cases} \gamma_2 = \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{cases} \end{cases}$$

•
$$\lambda_2 = 5$$
,特征向量: $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

•
$$\lambda_2 = 5$$
,特征向量: • Des $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_3 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$

例
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, 特征方程: $0 = |\lambda I - A| = (\lambda + 1)^2 (\lambda - 5)$ Det

• $\lambda_1 = -1$ (二重) ,特征向量: • Detail

$$\begin{pmatrix} \alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} & \begin{pmatrix} \beta_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix} & \begin{pmatrix} \gamma_1 = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \end{pmatrix}$$

$$\lambda_{1} = -1 \quad (三重) \quad , \quad \text{特征向量:} \quad \text{Detail}$$

$$\begin{cases} \alpha_{1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \alpha_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \end{cases} \xrightarrow{\mathbb{E}^{\chi} \ell} \begin{cases} \beta_{1} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \\ \beta_{2} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} \end{cases} \xrightarrow{\underline{\psi} \oplus \ell} \begin{cases} \gamma_{1} = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \\ \gamma_{2} = \begin{pmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{cases}$$

•
$$\lambda_2 = 5$$
, 特征向量: • Det $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{单位化}} \gamma_3 = \begin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$
取 $Q = \begin{pmatrix} -1/\sqrt{2} - 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$

▲ 暨南大

$$\begin{cases}
\alpha_1 - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \xrightarrow{\mathbb{E}^{\frac{1}{2}}(\mathbb{C}^{1})} \\
\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\mathbb{D}^{\text{obs}}} \begin{cases}
\beta_1 - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\beta_2 = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}
\end{cases}$$

$$\left(\alpha_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}\right) \qquad \left(\beta_2 = \begin{pmatrix} -1/2 \\ 1 \end{pmatrix}\right)$$

5,特征向量:
$$\Omega_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

取 $Q = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix}$, 则 $Q^{-1}AQ = \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix}$

定理 设 A 为实对称矩阵,则 B 正交矩阵 A ,使 A 为对角矩阵。

$$Q^{-1}AQ = \Lambda$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \ldots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (, , \dots,) = (, , \dots,)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, \dots, \dots, \dots) = (\dots, \dots, \dots)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots,) = (, , , \dots,)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\qquad , \qquad , \dots, \qquad)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \dots, \dots, \dots)$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \ldots, A\alpha_n) = (\lambda_1 \alpha_1, \ldots, \ldots)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} = \underbrace{(\alpha_1, \alpha_2, \dots, \alpha_n)}_{Q} \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ & \ddots \\ & \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \alpha_n)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$\Leftrightarrow (A\alpha_1,\,A\alpha_2,\,\ldots,\,A\alpha_n)=(\lambda_1\alpha_1,\,\lambda_2\alpha_2,\,\ldots,\,\lambda_n\alpha_n)$$

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A\underbrace{(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})}_{Q} = \underbrace{(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})}_{Q} \underbrace{\begin{pmatrix} \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \lambda_{n} \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_{1}, A\alpha_{2}, \dots, A\alpha_{n}) = (\lambda_{1}\alpha_{1}, \lambda_{2}\alpha_{2}, \dots, \lambda_{n}\alpha_{n})$$

$$\Leftrightarrow A\alpha_{i} = \lambda_{i}\alpha_{i}$$

注 回忆:

$$Q^{-1}AQ = \Lambda \Leftrightarrow AQ = Q\Lambda$$

$$\Leftrightarrow A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$

由 Q 是正交矩阵,成立

1. α_1 , α_2 , ..., α_n 是单位正交的特征向量; λ_1 , λ_2 , ..., λ_n 是相应特征值。

注 回忆:

$$O^{-1}AO = \Lambda \Leftrightarrow AO = O\Lambda$$

$$\Leftrightarrow A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \underbrace{\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}}_{\Lambda}$$

$$\Leftrightarrow (A\alpha_1, A\alpha_2, \dots, A\alpha_n) = (\lambda_1 \alpha_1, \lambda_2 \alpha_2, \dots, \lambda_n \alpha_n)$$

$$\Leftrightarrow A\alpha_i = \lambda_i \alpha_i$$

由 Q 是正交矩阵,成立

- 1. α_1 , α_2 , ..., α_n 是单位正交的特征向量; λ_1 , λ_2 , ..., λ_n 是相应特征值。
- 2. $Q^{-1} = Q^{T}$, 所以 $Q^{T}AQ = \Lambda$

定理 设 A 为实对称矩阵,则存在正交矩阵 Q,使得 $Q^{-1}AQ$ 为对角矩阵。

解释示意图

不同 特征值	重 数 	正交化	単位化
λ_1	n_1		

$$\lambda_2$$
 n_2

$$\lambda_s$$
 λ_s λ_s

§4.3

$$n_s$$
 n_s

共 n

解释示意图

不同 特征值 	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化
λ_1	n_1			

$$\lambda_2$$
 n_2 \vdots λ_s n_s

§4.3

解释示意图

ᄍᄆ

特征值	里 数	(<i>A_iI — A)X</i> = 0 基础解系	正文化	半位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$		

正☆ル

 $() I A)_{x} = 0$

$$\lambda_2$$
 n_2 : :

$$\lambda_s$$
 :

$$n_s$$
 n_s

§4.3

共 n

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

畄心ル

解释示意图

ᅚᄆ

 λ_s

§4.3

特征值	里 数	(<i>A;1 — A)X</i> = 0 基础解系	正文化	半证化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$		

正☆ル

 $() I A)_{x} = 0$

$$\lambda_2$$
 n_2 $\alpha_1^{(2)}, \dots, \alpha_{n_2}^{(2)}$
 \vdots \vdots

共 n

畄心ル

解释示意图

个同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系	止交化	里位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$		
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$		

+ n $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

§4.3

 $\lambda_s \qquad n_s \qquad \alpha_1^{(s)}, \, \cdots, \, \alpha_{n_s}^{(s)}$

解释示意图

不同 特征值	小同 車 $(\lambda_i I - A)x = 0$ 持征値 数 基础解系	(λ _i I – A)x = 0 基础解系	正交化	単位化
λ,	n ₁	$\alpha^{(1)} \cdots \alpha^{(1)}$		

$$\lambda_2$$
 n_2 $\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
 \vdots \vdots \vdots

$$\lambda_s$$
 n_s $\alpha_1^{(s)}, \dots, \alpha_{n_s}^{(s)}$

共 n 共 n 个 无 关 特 征 向 量

解释示意图

§4.3

不同 特征值 	重 数	$(\lambda_i I - A)x = 0$ 基础解系	正交化	单位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	$\Rightarrow \beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	

$$\lambda_2$$
 n_2 $\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$
 \vdots \vdots \vdots

$$\lambda_s$$
 n_s $\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$

共 n 共 n 个无关特征向量

解释示意图

不同 特征值	重 数	(λ _i I – A)x = 0 基础解系	正交化	单位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	$\Rightarrow \beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)} =$	$\Rightarrow \gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$		
:	÷	÷ :		
$\lambda_{\scriptscriptstyle S}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$		

·/= /+ ---|+/= +- =

共 n 共 n 个无关特征向量

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)},\cdots,\beta_{n_2}^{(2)}$		
:	:	:				
$\lambda_{\scriptscriptstyle S}$	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$				
	共 n	共 n 个无关特征向	量			

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

§4.3

解释示意图

§4.3

不同 特征值	重 数	(λ _i I – A)x = 0 基础解系		正交化		单位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)},\cdots,\beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$
:	:	:				
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	⇒			
	共 n	共 n 个无关特征向	量			

解释示意图

不同 特征值	重 数	$(\lambda_i I - A)x = 0$ 基础解系		正交化		单位化
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	⇒	$\beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)}$	⇒	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	\Rightarrow	$\beta_1^{(2)},\cdots,\beta_{n_2}^{(2)}$	\Rightarrow	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$
:	÷	:		:		
λ_{s}	ns	$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)}$	⇒	$\beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)}$		
	共 n	共 n 个无关特征向]量			

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

§4.3

解释示意图

 λ_2

不同 重 $(\lambda_i I - A)x = 0$ 正交化 单位化 特征值 数 基础解系 $\lambda_1 \qquad n_1 \qquad \alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)} \Rightarrow \beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)} \Rightarrow \gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$

$$\lambda_s \qquad n_s \qquad \alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)} \Rightarrow$$

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

共 n 共 n 个 无 关 特 征 向 量

 $\alpha_1^{(2)}, \dots, \alpha_{n_2}^{(2)} \Rightarrow \beta_1^{(2)}, \dots, \beta_{n_2}^{(2)} \Rightarrow \gamma_1^{(2)}, \dots, \gamma_{n_2}^{(2)}$

$$\alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)} \Rightarrow \beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)} \Rightarrow \gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$$

 $\Rightarrow \beta_1, \dots, \beta_{n_s} \Rightarrow \gamma_1, \dots, \beta_{n_s} \Rightarrow \gamma_1, \dots, \beta_{n_s} \Rightarrow \gamma_1, \dots, \gamma_n$

解释示意图

不同

重

特征值	数	基础解系	正人化	+ 2 10
λ_1	n_1	$\alpha_1^{(1)}, \cdots, \alpha_{n_1}^{(1)}$	$\Rightarrow \beta_1^{(1)}, \cdots, \beta_{n_1}^{(1)} \Rightarrow$	$\gamma_1^{(1)}, \cdots, \gamma_{n_1}^{(1)}$
λ_2	n ₂	$\alpha_1^{(2)}, \cdots, \alpha_{n_2}^{(2)}$	$\Rightarrow \ \beta_1^{(2)}, \cdots, \beta_{n_2}^{(2)} \ \Rightarrow$	$\gamma_1^{(2)}, \cdots, \gamma_{n_2}^{(2)}$

正交化

 λ_s 共 n 共 n 个 无 关 特 征 向 量

 $|\lambda I - A| = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_s)^{n_s}$

 $(\lambda : I - \Delta) \times - 0$

 $n_s \qquad \alpha_1^{(s)}, \cdots, \alpha_{n_s}^{(s)} \quad \Rightarrow \quad \beta_1^{(s)}, \cdots, \beta_{n_s}^{(s)} \quad \Rightarrow \quad \gamma_1^{(s)}, \cdots, \gamma_{n_s}^{(s)}$

构成单位正交

特征向量

单位化

The End———

$$0 = |\lambda I - A| =$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$r_3-r_2$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{-2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$
$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$
$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \stackrel{c_2 + c_3}{=} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

 $=(\lambda+1)(\lambda^2-4\lambda-5)$

$$0 = |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ -2 & -2 & \lambda - 1 \end{vmatrix}$$

$$\frac{r_3 - r_2}{2} \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -\lambda - 1 & \lambda + 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -2 & -2 \\ -2 & \lambda - 1 & -2 \\ 0 & -1 & 1 \end{vmatrix} \frac{c_2 + c_3}{2} (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 & -2 \\ -2 & \lambda - 3 & -2 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda + 1) \begin{vmatrix} \lambda - 1 & -4 \\ -2 & \lambda - 3 \end{vmatrix}$$

$$= (\lambda + 1)(\lambda^2 - 4\lambda - 5)$$

 $=(\lambda+1)^2(\lambda-5)$

$$(-I - A : 0) =$$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow$$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0$$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0$$
 \Rightarrow $x_1 = -x_2 - x_3$ 基础解系: $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

→ Back

$$(-I - A \vdots 0) = \begin{pmatrix} -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \\ -2 & -2 & -2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0 \Rightarrow x_1 = -x_2 - x_3$$

基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

→ Back

$$(-I-A:0) = \begin{pmatrix} -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \\ -2 & -2 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以

$$x_1 + x_2 + x_3 = 0$$
 \Rightarrow $x_1 = -x_2 - x_3$ 基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

→ Back

• $\exists \lambda_2 = 5$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(5I - A : 0) =$$

• 当 $\lambda_2 = 5$,求解 $(\lambda_2 I - A)x = 0$:

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix}$$

• 当 $\lambda_2 = 5$,求解 $(\lambda_2 I - A)x = 0$:

$$(5I - A : 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

• 当 $\lambda_2 = 5$,求解 $(\lambda_2 I - A)x = 0$:

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$r_1 \leftrightarrow r_3$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \end{cases}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$

$$(5I - A \vdots 0) = \begin{pmatrix} 4 & -2 & -2 & | & 0 \\ -2 & 4 & -2 & | & 0 \\ -2 & -2 & 4 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & | & 0 \\ 1 & -2 & 1 & | & 0 \\ 1 & 1 & -2 & | & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{array} \right) \xrightarrow{r_2 - r_1} \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{array} \right)$$

$$\longrightarrow \left(\begin{array}{ccc|c} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
$$\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$$

• $\exists \lambda_2 = 5$, $\forall x \in (\lambda_2 I - A)x = 0$:

$$(5I - A : 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 $\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• $\exists \lambda_2 = 5$, $x \neq (\lambda_2 I - A)x = 0$:

$$(5I - A : 0) = \begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & -1 & -1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 1 & -2 & 1 & 0 \\ 2 & -1 & -1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 3 & 0 \\ 0 & -3 & 3 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

所以 $\begin{cases} x_1 & -x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \end{cases}$

基础解系:
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

将线性无关组
$$\alpha_1=\left(\begin{array}{c} -1\\1\\0\end{array}\right)$$
, $\alpha_2=\left(\begin{array}{c} -1\\0\\1\end{array}\right)$ 正交化:

$$\beta_1 =$$

$$\beta_2 =$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1$$

$$\beta_2 =$$

将线性无关组
$$\alpha_1=\left(\begin{array}{c} -1\\1\\0\end{array}\right)$$
, $\alpha_2=\left(\begin{array}{c} -1\\0\\1\end{array}\right)$ 正交化:

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$\beta_2 = \alpha_2 - \cdots - \beta_1$$

将线性无关组
$$\alpha_1=\left(\begin{array}{c} -1\\1\\0\end{array}\right)$$
, $\alpha_2=\left(\begin{array}{c} -1\\0\\1\end{array}\right)$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0 \end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - - \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1=\left(\begin{array}{c} -1\\1\\0\end{array}\right)$$
, $\alpha_2=\left(\begin{array}{c} -1\\0\\1\end{array}\right)$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1=\left(\begin{array}{c} -1\\1\\0\end{array}\right)$$
, $\alpha_2=\left(\begin{array}{c} -1\\0\\1\end{array}\right)$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \dots - \beta_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

将线性无关组
$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ 正交化:

$$\beta_1 = \alpha_1 = \left(\begin{array}{c} -1\\1\\0\end{array}\right)$$

$$\beta_2 = \alpha_2 - \frac{1}{\beta_1} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix}$$

