Stochastic process

VI Other Topics in Diffusion Theory

Seongho Joo

INRIA

In the following, we let X_t be an Ito diffusion in \mathbb{R}^n with generator A. If we choose $f\in C_0^2(\mathbb{R}^n)$ and $\tau=t$ in Dynkin's formula, $u(t,x)=\mathbb{E}^x\left[f(X_t)\right]$ is differentiable w.r.t t and

$$\frac{\partial u}{\partial t} = \mathbb{E}^x \left[A f(X_t) \right] \tag{1.1}$$

It turns out that the RHS of eq. (1.1) can be expressed in terms of u also:

In the following, we let X_t be an Ito diffusion in \mathbb{R}^n with generator A. If we choose $f\in C_0^2(\mathbb{R}^n)$ and $\tau=t$ in Dynkin's formula, $u(t,x)=\mathbb{E}^x\left[f(X_t)\right]$ is differentiable w.r.t t and

$$\frac{\partial u}{\partial t} = \mathbb{E}^x \left[A f(X_t) \right] \tag{1.1}$$

It turns out that the RHS of eq. (1.1) can be expressed in terms of u also:

Theorem 1 (Kolmogorov's backward equation)

Let $f \in C_0^2(\mathbb{R}^n)$.

a) Define $u(t,x)=\mathbb{E}^x\left[f(X_t)\right]$. Then, $u(t,\cdot)\in\mathcal{D}_A$ for each t and

$$\frac{\partial u}{\partial t} = Au_t, \quad t > 0, x \in \mathbb{R}^n$$
 (1.2)

$$u(0,x) = f(x); \quad x \in \mathbb{R}^n$$
(1.3)

where u_t denotes $x \mapsto u(t,x)$

b) Moreover, if $w(t,x) \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ is a bounded function satisfying eq. (1.2), eq. (1.3) then w(t,x) = u(t,x) given by $u(t,x) = \mathbb{E}^x \left[f(X_t) \right]$.

Let
$$g(x) = u(t,x)$$
. Then since $t \mapsto u(t,x)$ is differentiable we have
$$\frac{\mathbb{E}^x \left[g(X_r) \right] - g(x)}{r} = \frac{1}{r} \cdot \mathbb{E}^x \left[\mathbb{E}^{X_r} \left[f(X_t) \right] - \mathbb{E}^x \left[f(X_t) \right] \right]$$

$$= \frac{1}{r} \cdot \mathbb{E}^x \left[\mathbb{E}^x \left[f(X_{t+r}) | \mathcal{F}_r \right] - \mathbb{E}^x \left[f(X_t) | \mathcal{F}_r \right] \right]$$

$$= \frac{1}{r} \cdot \mathbb{E}^x \left[f(X_{t+r}) - f(X_t) \right]$$

$$= \frac{u(t+r,x) - u(t,x)}{r} \to \frac{\partial u}{\partial t} \quad \text{as } r \downarrow 0$$

Hence

$$Au = \lim r \downarrow 0 \frac{\mathbb{E}^x \left[g(X_r) \right] - g(x)}{r}$$
 exists and $\frac{\partial u}{\partial t} = Au$, as asserted . (1.4)

To prove the uniqueness, let $w(t,x) \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ satisfies eqs. (1.2) and (1.3).

$$\tilde{A}w = -\frac{\partial w}{\partial t} + Aw = 0 \quad \text{for } t > 0, x \in \mathbb{R}^n$$
 (1.5)

and $w(0.x) = f(x) \ x \in \mathbb{R}^n$ hold.

Fix $(s,x) \in \mathbb{R} \times \mathbb{R}^n$. Define the process $Y_t \in \mathbb{R}^{n+1}$ by $Y_t = (s-t,X_t^{0,x}), t > 0$. Then Y_t has generator \tilde{A} and so by eq. (1.5) and Dynkin's formula we have, for all $t \geq 0$,

$$\mathbb{E}^{s,x}\left[w(Y_{t\wedge\tau_R}) = w(s,x) + \mathbb{E}^{s,x}\left[\int_0^{t\wedge\tau_R} \tilde{A}w(Y_r) \,\mathrm{d}r\right] = w(s,x),\tag{1.6}$$

where $\tau_R = \inf\{t > 0 : |X_t| > R\}$. Letting $R \to \infty$ we get

$$w(s,x) = \mathbb{E}^{s,x} \left[w(Y_t) \right]; \quad \forall t \ge 0.$$
 (1.7)

In particular, by choosing t = s we get

$$w(s,x) = \mathbb{E}^{s,x} [w(Y_s)] = \mathbb{E} w(0, X_s^{0,x} = \mathbb{E} f(X_s^{0,x})) = \mathbb{E}^x [f(X_s)].$$
 (1.8)

Remark. If we introduce the operator $Q_t: f \mapsto \mathbb{E}^{\cdot} [f(X_t)]$ then we have $u(t,x) = (Q_t f)(x)$ and we may rewrite as follows:

$$\frac{\mathrm{d}}{\mathrm{d}t}(Q_t f) = Q_t(Af) \tag{1.9}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(Q_t f) = Q_t(Af) \tag{1.9}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(Q_t f) = A(Q_t f); \quad f \in C_0^2(\mathbb{R}^n) \tag{1.10}$$

It is an important fact that the operator A always has an inverse, at least if a positive multiple of the identity is subtracted from A. This inverse can be expressed explicitly in terms of the diffusion X.

Definition 1 (Resolvent R_{α})

For $\alpha>0$ and $g\in C_b(\mathbb{R}^n)$ we define the resolvent operator R_α by

$$R_{\alpha}g(x) = \mathbb{E}^x \left[\int_0^\infty e^{-\alpha t} g(X_t) \, \mathrm{d}t \right]. \tag{1.11}$$

Next theorem states that R_{α} and $\alpha - A$ are inverse operators:

Theorem 2

- a) If $f \in C_0^2(\mathbb{R}^n)$ then $R_\alpha(\alpha A)f = f$ for all $\alpha > 0$.
- **b)** If $g \in C_b(\mathbb{R}^n)$ then $R_{\alpha}g = \mathcal{D}_A$ and $(\alpha A)R_{\alpha}g = g$ for all $\alpha > 0$.

a) If $f \in C_0^2(\mathbb{R}^n)$ then by Dynkin's formula

$$R_{\alpha}(\alpha - A)f(x) = (\alpha R_{\alpha}f - R_{\alpha}Af)(x)$$

$$= \alpha \int_{0}^{\infty} e^{-\alpha t} \mathbb{E}^{x} [f(X_{t})] dt - \int_{0}^{\infty} e^{-\alpha t} \mathbb{E}^{x} [Af(X_{t})] dt$$

$$= -e^{\alpha t} \mathbb{E}^{x} [f(X_{t})] \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\alpha t} \frac{d}{dt} \mathbb{E}^{x} [f(X_{t})] dt - \int_{0}^{\infty} e^{-\alpha t} \mathbb{E}^{x} [Af(X_{t})]$$

$$= \mathbb{E}^{x} [f(X_{0})]$$

b) If $g \in C_b(\mathbb{R}^n)$ then by the strong Markov property

$$\begin{split} & \mathbb{E}^x \left[R_{\alpha} g(X_t) \right] = \mathbb{E}^x \left[\mathbb{E}^{X_t} \left[\int_0^{\infty} e^{-\alpha s} g(X_s) \, \mathrm{d}s \right] \right] \\ & = \mathbb{E}^x \left[\mathbb{E}^x \left[\theta_t \left(\int_0^{\infty} e^{-\alpha s} g(X_s) \, \mathrm{d}S \right) \mathcal{F}_t \right] \right] = \mathbb{E}^x \left[\mathbb{E}^x \left[\int_0^{\infty} g(X_{t+s}) \, \mathrm{d}s \mathcal{F}_t \right] \right] \\ & = \mathbb{E}^x \left[\int_0^{\infty} e^{-\alpha s} g(X_{t+s}) \, \mathrm{d}s \right] = \int_0^{\infty} e^{-\alpha s} \mathbb{E}^x \left[g(X_{t+s}) \right] \, \mathrm{d}s \end{split}$$

Integration by parts gives

$$\mathbb{E}^{x}\left[R_{\alpha}g(X_{t})\right] = \alpha \int_{0}^{\infty} e^{-\alpha s} \int_{t}^{t+s} \mathbb{E}^{x}\left[g(X_{v})\right] \,\mathrm{d}v \,\mathrm{d}s. \tag{1.12}$$

This identity implies that $R_{\alpha}g\in\mathcal{D}_A$ and

$$A(R_{\alpha}g) = \alpha R_{\alpha}g - g. \tag{1.13}$$

Cont.

 $R_{\alpha}g(x)$ 를 integral by parts 해주면

$$R_{\alpha}g(x) = \int_{0}^{\infty} e^{-\alpha s} \mathbb{E}^{x} \left[g(X_{s}) \right] ds$$

$$= e^{-\alpha s} \int_{t}^{s} \mathbb{E}^{x} \left[g(X_{u}) \right] du \Big|_{s=0}^{s=\infty} + \alpha \int_{0}^{\infty} e^{-\alpha s} \int_{t}^{s} g(X_{u}) du ds$$

$$= \int_{0}^{t} \mathbb{E}^{x} \left[g(X_{u}) \right] du + \alpha \int_{0}^{\infty} e^{-\alpha s} \int_{t}^{s} \mathbb{E}^{x} \left[g(X_{u}) \right] du ds$$

Therefore,

$$A(R_{\alpha}g)(x)$$

$$= \lim_{t \to \infty} \frac{\alpha}{t} \int_{0}^{\infty} e^{-\alpha s} \left(\int_{t}^{t+s} \mathbb{E}^{x} \left[g(X_{v}) \right] - \int_{t}^{s} \mathbb{E}^{x} \left[g(X_{v}) \right] \right) dv ds - \frac{1}{t} \int_{0}^{t} \mathbb{E}^{x} \left[g(X_{u}) \right] du$$

$$= \lim_{t \to \infty} \alpha \int_{0}^{\infty} e^{-\alpha s} \underbrace{\frac{1}{t} \int_{s}^{t+s} \mathbb{E}^{x} \left[g(X_{v}) \right] dv}_{\to \mathbb{E}^{x} \left[g(X_{v}) \right] dv} ds - \underbrace{\frac{1}{t} \int_{0}^{t} \mathbb{E}^{x} \left[g(X_{u}) \right] du}_{\to g(x)}$$

$$= \alpha R_{\alpha} g(x) - g(x)$$

Lemmas for the Resolvent

Lemma 1

 $R_{\alpha}g$ is a bounded continuous function.

Proof. Directly followed by below lemma, since $R_{\alpha}g(x) = \int_{0}^{\infty} e^{-\alpha t} \mathbb{E}^{x} \left[g(X_{t})\right] dt$.

Lemma 2

Let g be a lower bounded, measurable function on \mathbb{R}^n and define, for fixed $t \geq 0$

$$u(x) = \mathbb{E}^x \left[g(X_t) \right]. \tag{1.14}$$

- ${f 2}$ If g is bounded and continuous, then u is continuous.

Proof. Recall from the Chapter 5,

$$\mathbb{E}|X_t^x - X_t^y|^2 \le |y - x|^2 C(t), \tag{1.15}$$

where C(t) does not depend on x and y. Let $\{y_n\}$ be a sequence of points converging to x. Then $X_t^{y_n} \to X_t^x$ in $L^2(\mathbb{P})$ as $n \to \infty$. So we can take a subsequence $\{z_n\}$ that converges a.s. to $X_t^*(w)$.

Cont.

- a) If g is lower bounded and lower semicontinuous, then by the Fatou lemma $u(x) \mathbb{F}[g](X^x) \le \mathbb{F}[\lim\inf_{x \in X} g(X^x)] \le \lim\inf_{x \in X} g(X^x) = \lim\inf_{x \in X} u(x)$ (1.16)
- $u(x) = \mathbb{E}\,g(X_t^x) \leq \mathbb{E}\liminf_{n \to \infty} g(X_t^{z_n}) \leq \liminf_{n \to \infty} \mathbb{E}\,g(X_t^{z_N}) = \liminf_{n \to \infty} u(z_n). \tag{1.16}$ which proves that u is lower semi-continuous.
- b) If g is bounded and continuous, the result in a) can be applied both to g and -g. Hence both u and -u are lower semicontinuous and we conclude that u is continuous.

The Feynman-Kac Formula. Killing

The Feynman-Kac Formula. Killing

We can obtain the following useful generalization of Kolmogorov's backward equation:

Theorem 3 (The Feynman-Kac formula)

Let $f \in C^2_0(\mathbb{R}^n)$ and $q \in C(\mathbb{R}^n)$. Assume that q is lower bounded

Put

$$v(t,x) = \mathbb{E}^x \left[\exp\left(-\int_0^t q(X_s) \, \mathrm{d}s\right) f(X_t) \right]$$
 (2.1)

Then

$$\frac{\partial v}{\partial t} = Av - qv; \quad t > 0, x \in \mathbb{R}^n$$
 (2.2)

$$v(0,x) = f(x); \quad x \in \mathbb{R}^n$$
(2.3)

Moreover, if $w(t,x) \in C^{1,2}(R \times \mathbb{R}^n)$ is bounded on $K \times \mathbb{R}^n$ for each compact $K \subset \mathbb{R}$ and w solves eq. (2.2), then w(t,x) = v(t,x) given by eq. (2.1).

Part a. Let $Y_t = f(X_t), Z_t = \exp(-\int_0^t q(X_s) \, ds)$. Then dY_t is given by

$$df(X_t) = Lf + \sum_{i,k} v_{ik} \frac{\partial f}{\partial x_i} dB_k$$
 (2.4)

and $dY_t Z_t = Y_t dZ_t + Z_t dY_t$, since $dZ_t \cdot dY_t = 0$.

Note that since Y_tZ_t is an Ito process it follows from Lemma 7.3.2 that $v(t,x)=\mathbb{E}^x\left[Y_tZ_t\right]$ is differentiable w.r.t t, therefore we get

$$\begin{split} &\frac{1}{r}(\mathbb{E}^x\left[v(t,X_r)\right]-v(t,x)) = \frac{1}{r}\mathbb{E}^x\left[\mathbb{E}^{X_r}\left[Z_tf(X_t)\right]-\mathbb{E}^x\left[Z_tf(X_t)\right]\right] \\ &= \frac{1}{r}\mathbb{E}^x\left[\mathbb{E}^x\left[f(X_{t+r})\exp\left(-\int_0^t q(X_{s+r})\,\mathrm{d}s\right)|\mathcal{F}_r\right]-\mathbb{E}^x\left[Z_tf(X_t)|\mathcal{F}_r\right]\right] \\ &= \frac{1}{r}\mathbb{E}^x\left[Z_{t+r}\cdot\exp\left(\int_0^r q(X_s)\,\mathrm{d}s\right)f(X_{t+r})-Z_tf(X_t)\right] \\ &= \frac{1}{r}\mathbb{E}^x\left[f(X_{t+r})Z_{t+r}-f(X_t)Z_t\right]+\frac{1}{r}\mathbb{E}^x\left[f(X_{t+r})Z_{t+r}\cdot\left(\exp\left(\int_0^r q(X_s)\,\mathrm{d}s\right)-1\right)\right] \\ &\to \frac{\partial}{\partial t}v(t,x)+q(x)v(t,x) \quad \text{as } r\to 0, \end{split}$$

since

$$\frac{1}{r}f(X_{t+r})Z_{t+r}\left(\exp\left(\int_0^r q(X_s)\,\mathrm{d}s\right) - 1\right) \to f(X_t)Z_tq(X_0) \tag{2.5}$$

pointwise boundedly. This completes the part (a).

Part b. Assume that $w(t,x)\in C^{1,2}(\mathbb{R}\times\mathbb{R}^n)$ satisfies eq. (2.2) and that w(t,x) is bounded on $K\times\mathbb{R}^n$ for each compact $k\subset\mathbb{R}$. Then

$$\hat{A}w(t,x) := -\frac{\partial w}{\partial t} + Aw - qw = 0 \quad \text{for } t > 0, x \in \mathbb{R}^n$$
 (2.6)

and

$$w(0,x) = f(x); \quad x \in \mathbb{R}^n. \tag{2.7}$$

Fix $(s,x,z)\in\mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^n$ and define $Z_t=z+\int_0^tq(X_s)\,\mathrm{d}s$ and $H_t=(s-t,X_t^{0,x},Z_t)$. Then H_t is an Ito diffusion with generator

$$A_H \phi(s, x, z) = -\frac{\partial \phi}{\partial s} + A\phi q(x) + \frac{\partial}{\partial z}; \quad \phi \in C_0^2(\mathbb{R} \times \mathbb{R}^n \mathbb{R}^n).$$
 (2.8)

Hence by eq. (2.6) and Dynkin's formula we have, for all $t \geq 0, R > 0$ and with $\phi(s,x,z) = \exp(-z)w(s,x)$:

$$\mathbb{E}^{s,x,z}\left[\phi(H_{t\wedge\tau_R})\right] = \phi(s,x,z) + \mathbb{E}^{s,x,z}\left[\int_0^{t\wedge\tau_R} A_H\phi(H_r)\,\mathrm{d}r\right],\tag{2.9}$$

where $\tau_R = \inf\{t > 0 \,|\, |H_t| \ge R\}.$

With the choice of ϕ and by eq. (2.6)

$$A_H \phi(s, x, z) = \exp(-z) \left[-\frac{\partial w}{\partial s} + Aw - q(x)w \right] = 0.$$
 (2.10)

Hence

$$\begin{split} w(s,x) &= \phi(s,x,0) = \mathbb{E}^{s,x,0} \left[\phi(H_{t \wedge \tau_R}) \right] \\ &= \mathbb{E}^x \left[\exp \left(- \int_0^{t \wedge \tau_R} q(X_r) \, \mathrm{d}r \right) w(s - t \wedge \tau_R, X_{t \wedge \tau_R} | \right] \\ &\to \mathbb{E}^x \left[\exp \left(- \int_0^t q(X_r) \, \mathrm{d}r \right) w(s - t, X_t) \right] \quad \text{as } R \to \infty \end{split}$$

since w(r,x) is bounded for $(r,x) \in K \times \mathbb{R}^n$. In particular, choosing t=s we get

$$w(s,x) = \mathbb{E}^x \left[\exp\left(-\int_0^s q(X_r) \,\mathrm{d}r\right) w(0,X_s^{0,x}) \right] = v(s,x) \text{ as claimed }. \tag{2.11}$$

The Martingale Problem

The Martingale Problem

If $dX_t = b(X_t) dt + \sigma(X_t) dB_t$ is an Ito diffusion in \mathbb{R}^n with generator A and if $f \in C_0^2(\mathbb{R}^n)$ then

$$f(X_t) = f(x) + \int_0^t Af(X_s) \, ds + \int_0^t \nabla f^{\top}(X_s) \sigma(X_s) \, dB_s$$
 (3.1)

Define

$$M_t := f(X_t) - \int_0^t Af(X_r) \, dr = f(x) + \int_0^t \nabla f^\top (X_r) \sigma(X_r) \, dB_r$$
 (3.2)

It follows that

$$\mathbb{E}^x \left[M_s | \mathcal{F}_t \right] = M_t \tag{3.3}$$

$$\mathbb{E}^{x} \left[M_{s} | \mathcal{M}_{t} \right] = \mathbb{E}^{x} \left[\mathbb{E}^{x} \left[M_{s} | \mathcal{F}_{t} \right] | \mathcal{M}_{t} \right] = \mathbb{E}^{x} \left[M_{t} | \mathcal{M}_{t} \right] = M_{t}$$
(3.4)

since M_t is \mathcal{M}_t -measurable. We have shown the following:

Theorem 4

If X_t is an Ito diffusion in \mathbb{R}^n with generator A, then for all $f \in C_0^2(\mathbb{R}^n)$ the process

$$M_t = f(X_t) - \int_0^t Af(X_r) \, dr$$
 (3.5)

is a martingale w.r.t $\{\mathcal{M}_t\}$.

Natural question: If X_t is an Ito diffusion will $\phi(X_t)$ be an Ito diffusion given a C^2 function ϕ ?

Natural question: If X_t is an Ito diffusion will $\phi(X_t)$ be an Ito diffusion given a C^2 function ϕ ?

The answer is no in general, but it may be yes in some cases.

Example. Let $n \geq 2$. Note that the process $R_t(w) = |B(t, w)|$ satisfies the equation

$$dR_t = \sum_{i=1}^n \frac{B_i dB_i}{R_t} + \frac{n-1}{R_t} dt$$
 (4.1)

If we show that 1-dim Brownian motion \tilde{B}_t has same law as the process

$$Y_t := \int_0^t \sum_{i=1}^t \frac{B_i}{|B|} \, \mathrm{d}B_i, \tag{4.2}$$

then by weak uniqueness, R_t is an Ito diffusion with generator

$$Af(x) = \frac{1}{2}f''(x) + \frac{n-1}{2x}f'(x). \tag{4.3}$$

To verify the claim, we may use the following result:

Theorem 5

An Ito process

$$dY_t = v dB_t; \quad Y_0 = 0 \text{ with } v(t, w) \in \nu_{\mathcal{H}}^{n \times m}$$
 (4.4)

coincides (in law) with n-dimensional Brownian motion if and only if

$$vv^{\top}(t, w) = I_n \, dt \times dP \text{ for a.e } (t, w)$$
 (4.5)

Note that in the example above we have

$$Y_t = \int_0^t v \, \mathrm{d}B \tag{4.6}$$

with

$$v = \left[\frac{B_1}{|B|}, \dots \frac{B_n}{|B|}\right], \quad B = \begin{pmatrix} B_1 \\ \vdots \\ B_n \end{pmatrix}$$
(4.7)

and since $vv^{\top} = 1$, we get that Y_t is a 1-dim Brownian motion.

Theorem 5 is a special case of the following result, which gives a necessary and sufficient condition for an Ito process to coincide in law with a given diffusion.

Theorem 6

Let X_t be an Ito diffusion given by

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t, \ b \in \mathbb{R}^n, \ \sigma \in \mathbb{R}^{n \times m}, \ X_0 = x,$$
(4.8)

and let Y_t be an Ito process given by

$$Y_t = u(t, w) dt + v(t, w) dB_t, \ u \in \mathbb{R}^n, \ v \in \mathbb{R}^{n \times m}, \ Y_0 = x.$$

$$(4.9)$$

Then, X_t and Y_t equal in law if and only if

$$\mathbb{E}^x \left[u(t, \cdot) | \mathcal{N}_t \right] = b(Y_t^x) \text{ and } vv^\top(t, w) = \sigma\sigma^\top(Y_t^x)$$
 (4.10)

for a.s. $dt \times dP$ (t,w), where \mathcal{N}_t is the σ -algebra generated by $Y_s, s \leq t$.

Remark.

- \blacksquare $u(t,\cdot)$ need not be \mathcal{N}_t -measurable, and v(t,w) need not be \mathcal{N}_t -adpated either.
- 2 $\phi(X_t)$ and Z_t equal in law if and only if

$$A[f \circ \phi] = \hat{A}[f] \circ \phi \tag{4.11}$$

for all $f \in C_0^2$ where A and \hat{A} are the generators of X_t and Z_t respectively.

Corollary 1 (How to recognize a Brownian motion)

Let

$$dY_t = u(t, w) dt + v(t, w) dB_t$$
(4.12)

be an Ito process in \mathbb{R}^n . Then Y_t is a Brownian motion if and only if

$$\mathbb{E}^{x}\left[u(t,\cdot)|\mathcal{N}_{t}\right] = 0 \text{ and } vv^{\top} = I_{n}$$
(4.13)

for a.s. (t,w).

Let $c(t,w) \geq 0$ be an \mathcal{F}_t -adpated process. Define

$$\beta_t = \beta(t, w) = \int_0^t c(s, w) \, \mathrm{d}s. \tag{5.1}$$

We will say that β_t is a (random) time change with time change rate c(t, w).

Define $\alpha_t = \alpha(t, w)$ by

$$\alpha_t = \inf\left\{s \mid \beta_s > t\right\}. \tag{5.2}$$

Then α_t is a right-inverse of β_t , for each w:

$$\beta(\alpha(t, w), t) = t \quad \text{for all } t \ge 0. \tag{5.3}$$

Moreover, $t \mapsto \alpha_t(w)$ is right-continuous.

Let $c(t,w) \geq 0$ be an \mathcal{F}_t -adpated process. Define

$$\beta_t = \beta(t, w) = \int_0^t c(s, w) \, \mathrm{d}s.$$
 (5.1)

We will say that β_t is a (random) time change with time change rate c(t, w).

Define $\alpha_t = \alpha(t, w)$ by

$$\alpha_t = \inf\left\{s \mid \beta_s > t\right\}. \tag{5.2}$$

Then α_t is a right-inverse of β_t , for each w:

$$\beta(\alpha(t, w), t) = t \quad \text{for all } t \ge 0. \tag{5.3}$$

Moreover, $t \mapsto \alpha_t(w)$ is right-continuous.

Proposition 1 (Random Time Change)

Given above definition

If c(s,w)>0 for a.s. (s,w) then $t\mapsto \beta_t(w)$ is strictly increasing, $t\mapsto \alpha_t(w)$ is continuous and α_t is also a left-inverse of β_t :

$$\alpha(\beta(t, w), w) = t$$
 for all $t \ge 0$. (5.4)

$$\{w \mid \alpha(t, w) < s\} = \{w \mid t < \beta(s, w)\} \in \mathcal{F}_s.$$
 (5.5)

Question: Suppose X_t is an Ito process and Y_t is an Ito process. When does exist a time change β_t such that Y_{α_t} and X_t equal in law?

Question: Suppose X_t is an Ito process and Y_t is an Ito process. When does exist a time change β_t such that Y_{α_t} and X_t equal in law?

Theorem 7

Let X_t,Y_t be as in theorem 6 and let β_t be a time change with right inverse α_t as the above. Assume that

$$u(t, w) = c(t, w)b(Y_t) \text{ and } vv^{\top}(t, w) = c(t, w) \cdot \sigma\sigma^{\top}(Y_t)$$
 (5.6)

for a.s. (t, w). Then Y_{α_t} and X_t equal in law.

Question: Suppose X_t is an Ito process and Y_t is an Ito process. When does exist a time change β_t such that Y_{α_t} and X_t equal in law?

Theorem 7

Let X_t,Y_t be as in theorem 6 and let β_t be a time change with right inverse α_t as the above. Assume that

$$u(t, w) = c(t, w)b(Y_t) \text{ and } vv^{\top}(t, w) = c(t, w) \cdot \sigma\sigma^{\top}(Y_t)$$
 (5.6)

for a.s. (t, w). Then Y_{α_t} and X_t equal in law.

This result allows us to recognize time changes of Brownian motion:

Theorem 8

Let $dY_t=v(t,w)\,dB_t$, $v\in\mathbb{R}^{n\times m}, B_t\in\mathbb{R}^m$ be an Ito integral in \mathbb{R}^n , $Y_0=0$ and assume that

$$vv^{\top}(t,w) = c(t,w)I_n \tag{5.7}$$

for some process $c(t,w)\geq 0$. Let α_T,β_t as the above, Then Y_{α_t} is an n-dimensional Brownian motion.

Corollary 2

Let $dY_t = \sum_{i=1}^n v_i(t,w) dB_i(t,w), Y_0 = 0$, where $B = (B_1,\ldots,B_n)$ is a Brownian motion in \mathbb{R}^n . Then Y_{α_t} is a 1-dimensional Brownian motion, where

$$\beta_s = \int_0^s \left(\sum_{i=1}^n v_i^2(r, w) \right) dr.$$
 (5.8)

Corollary 3

Let Y_t, β_s be as in the above, Assume that

$$\sum_{i=1}^{n} v_i^2(r, w) > 0 \text{ for a.s. } (r, w).$$
 (5.9)

Then there exists a Brownian motion \hat{B}_t such that

$$Y_t = \hat{B}_{\beta_t}. (5.10)$$

Corollary 4

Let $c(t, w) \ge 0$ be give and define

$$dY_t = \int_0^t \sqrt{c(s, w)} \, dB_s \tag{5.11}$$

where B_s is an n-dimensional Brownian motion. Then Y_{α_t} is also an n-dimensional Brownian motion.

a time change of an Ito integral is again an Ito integral, but driven by a different Brownian motion \tilde{B}_t . First we construct \tilde{B}_t .

Corollary 4

Let $c(t, w) \ge 0$ be give and define

$$dY_t = \int_0^t \sqrt{c(s, w)} \, dB_s \tag{5.11}$$

where B_s is an n-dimensional Brownian motion. Then Y_{α_t} is also an n-dimensional Brownian motion.

a time change of an Ito integral is again an Ito integral, but driven by a different Brownian motion \tilde{B}_t . First we construct \tilde{B}_t .

Lemma 3

Suppose $s\mapsto \alpha(s,w)$ is continous, $\alpha(0,w)=0$ for a.s. w. Fix t>0 such that $\beta_t<\infty$ a.s. and assume that $\mathbb{E}\,\alpha_t<\infty$. For $k=1,2,\ldots$ put

$$t_j = \begin{cases} j \cdot 2^{-k} & \text{if } j \cdot 2^{-k} \le \alpha_t \\ t & \text{if } j \cdot 2^{-k} > \alpha_t \end{cases}$$
 (5.12)

and choose r_j such that $\alpha_{r_j}=t_j.$ Suppose $f(s,w)\geq 0$ is \mathcal{F}_s -adpated, bounded and s-continuous for a.s. w. Then

$$\lim_{k \to \infty} \sum_{j} f(\alpha_j, w) \Delta B_{\alpha_j} = \int_0^{\alpha_t} f(s, w) \, \mathrm{d}B_s \text{ in } L^2(\mathbb{P}) \text{ a.s.}$$
 (5.13)

where $\alpha_j = \alpha_{r_j}, \Delta B_{\alpha_j} = B_{\alpha_{j+1}} - B_{\alpha_j}$.

Theorem 9 (Time change formula for Ito Integrals)

Suppose c(s,w) and $\alpha(s,w)$ are s-continuous, $\alpha(0,w)=0$ for a.s. w and that $\mathbb{E}\,\alpha_t<\infty$. Let B_s be an m-dimensional Brownian motion and let $v(s,w)\in \nu_{\mathcal{H}}^{n\times m}$ be bounded and s-continuous. Define

$$\tilde{B}_s := \lim_{k \to \infty} \sum_j \sqrt{c(\alpha_j, w)} \Delta B_{\alpha_j} = \int_0^{\alpha_t} \sqrt{c(s, w)} \, \mathrm{d}B_s \tag{5.14}$$

Then \tilde{B}_t is an m-dimensional \mathcal{F}_{α_t} -Brownian motion (i.e. \tilde{B}_t is a martingale w.r.t \mathcal{F}_{α_t}) and

$$\int_0^{\alpha_t} v(s, w) \, \mathrm{d}B_s = \int_0^t v(\alpha_r, w) \sqrt{\alpha_r'(w)} \, \mathrm{d}\tilde{B}_r \ \mathbb{P} - \text{a.s.}$$
 (5.15)

where $\alpha'_r(w)$ is the derivative of $\alpha(r,w)$ w.r.t. r, so that

$$\alpha'_r(w) = \frac{1}{c(\alpha_r, w)}$$
 for a.s. $r \ge 0$, a.s. $w \in \Omega$. (5.16)

Example : Brownian motion the unit sphere in \mathbb{R}^n ; n>2. Apply the function $\phi:\mathbb{R}^n\setminus\{0\}\to S$ defined by

$$\phi(x) = x \cdot |x|^{-1}; \quad x \in \mathbb{R}^n \setminus \{0\}$$
 (5.17)

to n-dim Brownian motion $B=(B_1,\ldots,B_n).$ The result is a stochastic integral $Y=\phi(B)$ given by

$$dY = \frac{1}{|B|} \cdot \sigma(Y) dB + \frac{1}{|B|^2} b(Y) dt,$$
 (5.18)

where

$$\sigma = [\sigma_{ij}] \in \mathbb{R}^{n \times n}, \text{ with } \sigma_{ij}(Y) = \delta_{ij} - Y_i Y_j ; 1 \le i, j \le n$$
 (5.19)

$$b(y) = -\frac{n-1}{2} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$$
 (5.20)

Now perform the following time change: Define $Z_t(w) = Y_{\alpha(t,w)}(w)$ where

$$\alpha_t = \beta^{-1}, \ \beta(t, w) = \int_0^t \frac{1}{|B|^2} \, \mathrm{d}s.$$
 (5.21)

Then ${\cal Z}$ is again an Ito process such that

$$dZ = \sigma(Z) d\tilde{B} + b(Z) dt.$$
 (5.22)

Hence Z is a diffusion with the characteristic operator

$$\mathcal{A}f(y) = \frac{1}{2} \left(\Delta f(y) - \sum_{ij} y_i y_j \frac{\partial^2 f}{\partial y_i \partial y_j} \right) - \frac{n-1}{2} \cdot \sum_i y_i \frac{\partial f}{\partial y_i}; \ |y| = 1.$$
 (5.23)

Note that Z is invariant under orthogonal transformation in \mathbb{R}^n (since B is). It is reasonable to call Z Brownian motion on the unit sphere S.

First we state (without proof) the useful Levy characterization of Brownian motion.

Proposition 2 (The Levy characterization of Brownian motion)

Let $X(t)=(X_1(t),\ldots,X_n(t))$ be a continuous stochastic process on a probability space (Ω,\mathcal{H},Q) with values in \mathbb{R}^n . TFAE:

- ${
 m I\!I}$ X(t) is a Brownian motion w.r.t. Q, i.e. the law of X(t) w.r.t Q is the same as the law of an n-dimensional Brownian motion.
- ${\bf Q} \ X(t) = (X_1(t), \dots, X_n(t))$ is a martingale w.r.t Q (and w.r.t its own filtration) and
 - $X_i(t)X_j(t)-\delta_{ij}t$ is a martingale w.r.t Q (and w.r.t. its own filtration) for all $i,j\in\{1,2,\ldots,n\}$.

Remark. One may replace the condition as

The cross-varation process $\langle X_i, X_j \rangle_t$ satisfy the identity

$$\left\langle X_{i},X_{j}\right\rangle _{t}\left(w\right)=\delta_{ij}t\quad\text{ a.s. }1\leq i,j\leq n\tag{6.1}$$

where

$$\langle X_i, X_j \rangle_t = \frac{1}{4} (\langle X_i + X_j, X_i + X_j \rangle_t - \langle X_i - X_j, X_i - X_j \rangle_t)$$
 (6.2)

 $\langle Y, Y \rangle_t$ being the quadratic variation process.

Next we need an auxiliary result about conditional expectation:

Lemma 4

Let μ and ν be two probability measures on a measurable space (Ω,\mathcal{G}) such that $\mathrm{d}\nu(w)=f(w)\,\mathrm{d}\mu(w)$ for some $f\in L^1(\mu)$. Let X be a random variable on (Ω,\mathcal{G}) such that

$$\mathbb{E}^{\nu}\left[|X|\right] = \int_{\Omega} |X(w)|f(w) \,\mathrm{d}\mu(w) < \infty \tag{6.3}$$

Let \mathcal{H} be a σ -algebra, $\mathcal{H} \subset \mathcal{G}$. Then,

$$\mathbb{E}^{\nu}\left[X|\mathcal{H}\right] \cdot \mathbb{E}^{\mu}\left[f|\mathcal{H}\right] = \mathbb{E}^{\mu}\left[fX|\mathcal{H}\right] \text{ a.s.} \tag{6.4}$$

Theorem 10 (The Girsanov theorem I)

Let $Y(t) \in \mathbb{R}^n$ be an Ito process of the form

$$dY_t = a(t, w) dt + dB(t); \quad t \le T, Y_0 = 0.$$
 (6.5)

where $T \leq \infty$ is a given constant and B(t) is n-dimensional Brownian motion. Put

$$M_t = \exp\left(-\int_0^t a(s, w) \, dB_s - \frac{1}{2} \int_0^t a^2(s, w) \, ds\right); \quad t \le T.$$
 (6.6)

Assume that a(s,w) satisfes Novikov's condition

$$\mathbb{E}\exp\left(\frac{1}{2}\int_0^T a^2(s,w)\,\mathrm{d}s\right) < \infty \tag{6.7}$$

where $\mathbb{E}=\mathbb{E}_{\mathbb{P}}$ is the expectation w.r.t $\mathbb{P}.$ Define the measure Q on $(\Omega,\mathcal{F}_T^{(n)})$ by

$$dQ(w) = M_T(w) dP(w)$$
(6.8)

Then Y(t) is an n-dimensional Brownian motion w.r.t. the probability law Q, for t < T.

Remark. Note that since M_t is a martingale we actually have that

$$M_T dP = M_t dP$$
 on $\mathcal{F}_t; t \le T$ (6.9)

Theorem 11 (The Girsanov theorem II)

Let $Y(t) \in \mathbb{R}^n$ be an Ito process of the form

$$dY(t) = \beta(t, w) dt + \theta(t, w) dB(t); \quad t \le T$$
(6.10)

where $B(t) \in \mathbb{R}^m$, $\beta(t,w) \in \mathbb{R}^n$ and $\theta(t,w) \in \mathbb{R}^{n \times m}$. Suppose there exist processes $u(t,w) \in W_{\mathcal{H}}$ and $\alpha(t,w) \in W_{\mathcal{H}}$ such that

$$\theta(t, w)u(t, w) = \beta(t, w) - \alpha(t, w) \tag{6.11}$$

and assume that u(t,w) satisfies Novikov's condition

$$\mathbb{E}\exp\left(\frac{1}{2}\int_0^T u^2(s,w)\,\mathrm{d}s\right) < \infty \tag{6.12}$$

Put

$$M_t = \exp\left(-\int_0^t u(s, w) \, dB_s - \frac{1}{2} \int_0^t u^2(s, w) \, ds\right); \quad t \le T$$
 (6.13)

$$dQ(w) = M_T(w) dP(w) \text{ on } \mathcal{F}_T$$
(6.14)

Then,

$$\hat{B}(t) := \int_0^t u(s, w) \, \mathrm{d}s + B(t); \ t \le T$$
 (6.15)

is a $Q ext{-Brownian}$ motion and in terms of $\hat{B}(t)$ the process Y(t) has the stochastic integral representation

$$dY(t) = \alpha(t, w) dt + \theta(t, w) d\hat{B}(t).$$
(6.16)

Finally, we formulate a diffusion version:

Theorem 12 (The Girsanov theorem III)

Let $X(t)=X^x(t)\in\mathbb{R}^n$ and $Y(t)=Y^x(t)\in\mathbb{R}^n$ be an Ito diffusion and an Ito process, resp, of the forms

$$dX(t) = b(X(t)) dt + \sigma(X(t)) dB(t); \quad t \le T, X(0) = x$$
$$dY(t) = [\gamma(t, w) + b(Y(t))] dt + \sigma(Y(t)) dB(t); \quad t < T, Y(0) = x$$

where the functions $b:\mathbb{R}^n \to \mathbb{R}^n$ and $\sigma:\mathbb{R}^n \to \mathbb{R}^{n \times m}$ satisfy the conditions of Theorem 5.2.1 and $\gamma(t,w) \in W_{\mathcal{H}}, x \in \mathbb{R}^n$. Suppose there exists a process $u(t,w) \in W_{\mathcal{H}}$ such that

$$\sigma(Y(t))u(t,w) = \gamma(t,w) \tag{6.17}$$

and assume that u(t,w) satisfies Novikov's condition

$$\mathbb{E}\exp\left(\frac{1}{2}\int_0^t u^2(s,w)\,\mathrm{d}s\right) < \infty \tag{6.18}$$

Define M_t, Q and $\hat{B}(t)$ as in theorem 11. Then,

$$dY(t) = b(Y(t)) dt + \sigma(Y(t)) d\hat{B}(t).$$
(6.19)

Therefore, the Q-law of $Y^x(t)$ is the same as the P-law of $X^x(t)$; $t \leq T$.

Example 8.6.6. Let $a:\mathbb{R}^n \to \mathbb{R}^n$ be a bounded, measurable function. Then we can construct a weak solution $X_t = X_t^x$ of the stochastic differential equation

$$dX_t = a(X_t) dt + dB_t; \quad X_0 = x \in \mathbb{R}^n.$$
(6.20)

We proceed according to the procedure above, with $\sigma=I, b=0$ and

$$dY_t = dB_T; \quad Y_0 = x. \tag{6.21}$$

Choose $u_0 = \sigma^{-1}(b-a) = -a$ and define

$$M_t = \exp\left(-\int_0^t u_0(Y_s) \, dB_s - \frac{1}{2} \int_0^t u_0^2(Y_s) \, ds\right)$$
 (6.22)

i.e.

$$M_t = \exp\left(\int_0^t a(B_s) \, dB_s - \frac{1}{2} \int_0^t a^2(B_s) \, ds\right)$$
 (6.23)

Fix $T < \infty$ and put $dQ = M_T dP$ on \mathcal{F}_T . Then,

$$\hat{B}_t := -\int_0^t a(B_s) \, \mathrm{d}s + B_t \tag{6.24}$$

is a Q-Brownian motion and

$$dB_t = dY_t = a(Y_t) dT + d\hat{B}_t.$$
(6.25)

If we set $Y_0=x$ the pair (Y_t,\hat{B}_t) is a weak solution of the SDE for $t\leq T$. By weak uniqueness the Q-law of $Y_t=B_t$ coincides with the P-law of X_t^x , so that

$$\mathbb{E} f_1(X_{t_1}^x) \dots f_k(X_{t_k}^x) = \mathbb{E}^Q [f_1(Y_{t_1}) \dots f_k(Y_{t_k})]$$

= $\mathbb{E} M_T f_1(B_{t_1}) \dots f_k(B_{t_k})$

for all
$$f_1, \ldots, f_k \in C_0(\mathbb{R}^n)$$
; $t_1, \ldots, t_k \leq T$.