Wykresy funkcji występujących po obu stronach nierówności (14) otrzymujemy przez translacje i odbicia symetryczne standardowej krzywej $\Gamma: y=2^x$. Wykres krzywej $y=|2^x-3|$ dostajemy przez translacje Γ o wektor [0,-3], a następnie odbicie symetryczne części leżącej pod osią odciętych względem tej osi. Krzywa ta ma asymptotę poziomą lewostronną y=3. Natomiast krzywą $y=2^{1-x}$ dostajemy przez odbicie symetryczne Γ względem osi rzędnych, a następnie translację o wektor (1,0). Wykresy są przedstawione na rysunku 31.

Odp. Zbiorem rozwiązań nierówności jest suma przedziałów $(-\infty,0] \cup \left[1,\,\log_2\frac{3+\sqrt{17}}{2}\right].$

Rozwiązanie zadania 31.7

Przy rozwiązywaniu zadania skorzystamy następującej własności wektorów na płaszczyźnie:

Twierdzenie. Jeśli wektory \vec{u} i \vec{v} są prostopadłe i mają tę samą długość oraz $\vec{u}=(a,b)$, to $\vec{v}=(b,-a)$ lub $\vec{v}=(-b,a)$.

Przez B oznaczmy wierzchołek kwadratu leżący na prostej l, a przez D jego wierzchołek leżący na prostej k. Korzystając z równań prostych, możemy napisać $B(2y-1,y), \quad D(4-3z,\underline{z}),$ gdzie y,z są nieznanymi rzędnymi tych wierzchołków, zatem $\overrightarrow{AB}=[2y-7,y-1]$ oraz