ТМВ ДЗ №1

А-13б-19 Оленичев Владимир

Задание №1

Построить ДКА, распознающий описанный язык.

1.
$$L = \{\omega \in \{a, b, c\}^* | |\omega|_c = 1\}$$

Построим регулязное выражение, которое задаёт этот автомат:

$$a^*b^*ca^*b^*$$

Построим на его основе ДКА:

2.
$$L = \{ \omega \in \{a, b\}^* | |\omega|_a \le 2, |\omega|_b \ge 2 \}$$

Разделим описанный язык на L_1 и L_2 , после чего, с помощью прямого произведения ДКА, построим конечный автомат.

$$L_1 = \{ \omega \in \{a, b\}^* | |\omega|_a \le 2 \}$$

 $L_2 = \{\omega \in \{a, b\}^* | |\omega|_b \ge 2\}$ Построим на их основе ДКА:

Рис. 1: L_1

Рис. 2: L_2

$$A_1 = \langle \sum_1, Q_1, s_1, T_1, \delta_1 \rangle; A_2 = \langle \sum_2, Q_2, s_2, T_2, \delta_2 \rangle$$

 $A = \langle \sum, Q, s, T, \delta \rangle$:

- $\sum = \sum_1 \cup \sum_2$
- $\bullet \ Q = Q_1 \times Q_2$
- $s = \langle s_1, s_2 \rangle$
- $\bullet \ T = T_1 \times T_2$
- $\delta(\langle q_1, q_2 \rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c) \rangle$

$$\sum = \{q_1, q_2, q_3, s_1, s_2, s_3\}$$

$$Q = \{\langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle, \langle q_1, s_3 \rangle, \langle q_2, s_1 \rangle, \langle q_2, s_2 \rangle, \langle q_2, s_3 \rangle, \langle q_3, s_1 \rangle, \langle q_3, s_2 \rangle, \langle q_3, s_3 \rangle\}$$

$$S = \langle q_1, s_1 \rangle$$

$$T = \{\langle q_1, s_3 \rangle, \langle q_2, s_3 \rangle, \langle q_3, s_3 \rangle\}$$

	a	b
$\langle q_1, s_1 \rangle$	$\langle q_2, s_1 \rangle$	$\langle q_1, s_2 \rangle$
$\langle q_1, s_2 \rangle$	$\langle q_2, s_2 \rangle$	$\langle q_1, s_3 \rangle$
$\langle q_1, s_3 \rangle$	$\langle q_2, s_3 \rangle$	$\langle q_1,s_3 \rangle$
$\langle q_2, s_1 \rangle$	$\langle q_3, s_1 \rangle$	$\langle q_2, s_2 \rangle$
$\langle q_2, s_2 \rangle$	$\langle q_3, s_2 \rangle$	$\langle q_2,s_3 angle$
$\langle q_2, s_3 \rangle$	$\langle q_3,s_3 \rangle$	$\langle q_2,s_3 \rangle$
$\langle q_3,s_1 \rangle$		$\langle q_3, s_2 angle$
$\langle q_3, s_2 \rangle$		$\langle q_3,s_3 \rangle$
$\langle q_3, s_3 \rangle$		$\langle q_3,s_3 angle$

3.
$$L = \{ \omega \in \{a, b\}^* | |\omega|_a \neq |\omega|_b \}$$

Если L регулярный язык, то и $\overline{L} = \{\omega \in \{a,b\}^* | |\omega|_a = |\omega|_b\}$. Докажем, что $\overline{L} = \{\omega \in \{a,b\}^* | \omega = a^nb^n\}$ не является регурным, для этого воспользуемся леммой о разрастании. Найдутся такие три слова, что $\omega = xyz, y \neq \lambda, |xy| \leq n \Rightarrow x = a^i, y = a^j, i+j \leq n, z = a^{n-i-j} + a^n = a^{2n}$. Пусть $k = 0 \Rightarrow xy^0z = a^ia^{n-i-j} \neq a^n$, так как $j > 0 \Rightarrow$ язык не является регулярным.

4.
$$L = \{\omega \in \{a, b\}^* | \omega\omega = \omega\omega\omega\}$$

Данный язык представляется исключительно пустым словом:

Задание №2

Построить ДКА, распознающий описанный язык, построенный при помощи прямого произведения ДКА и его свойств.

1.
$$L = \{\omega \in \{a, b\}^* | |\omega|_a \ge 2, |\omega|_b \ge 2\}$$

Разделим описанный язык на L_1 и L_2 , после чего, с помощью прямого произведения ДКА, построим конечный автомат.

$$L_1 = \{\omega \in \{a,b\}^* | |\omega|_a \ge 2\}$$

 $L_2 = \{\omega \in \{a,b\}^* | |\omega|_b \ge 2\}$
Построим на их основе ДКА:

Рис. 3: L_1

Рис. 4: L_2

$$A_1 = \langle \sum_1, Q_1, s_1, T_1, \delta_1 \rangle; A_2 = \langle \sum_2, Q_2, s_2, T_2, \delta_2 \rangle$$

 $A = \langle \sum, Q, s, T, \delta \rangle$:

- $\sum = \sum_1 \cup \sum_2$
- $\bullet \ Q = Q_1 \times Q_2$
- $s = \langle s_1, s_2 \rangle$
- \bullet $T = T_1 \times T_2$

•
$$\delta(\langle q_1, q_2 \rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c) \rangle$$

$$\sum = \{q_1, q_2, q_3, s_1, s_2, s_3\}$$

$$Q = \{\langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle, \langle q_1, s_3 \rangle, \langle q_2, s_1 \rangle, \langle q_2, s_2 \rangle, \langle q_2, s_3 \rangle, \langle q_3, s_1 \rangle, \langle q_3, s_2 \rangle, \langle q_3, s_3 \rangle\}$$

$$S = \langle q_1, s_1 \rangle$$

$$T = \langle q_3, s_3 \rangle$$

	a	b
$\langle q_1, s_1 \rangle$	$\langle q_2, s_1 \rangle$	$\langle q_1, s_2 \rangle$
$ \langle q_1,s_2 \rangle $	$\langle q_2, s_2 \rangle$	$\langle q_1, s_3 \rangle$
$\langle q_1, s_3 \rangle$	$\langle q_2, s_3 \rangle$	$\langle q_1,s_3 \rangle$
$\langle q_2, s_1 \rangle$	$\langle q_3, s_1 \rangle$	$\langle q_2,s_2 angle$
$\langle q_2, s_2 \rangle$	$\langle q_3, s_2 \rangle$	$\langle q_2,s_3 angle$
$\langle q_2, s_3 \rangle$	$\langle q_3,s_3 \rangle$	$\langle q_2,s_3 \rangle$
$\langle q_3, s_1 \rangle$	$\langle q_3, s_1 \rangle$	$\langle q_3, s_2 angle$
$\langle q_3, s_2 \rangle$	$\langle q_3, s_2 \rangle$	$\langle q_3,s_3 \rangle$
$\langle q_3, s_3 \rangle$	$\langle q_3, s_3 \rangle$	$\langle q_3,s_3 \rangle$

2. $L=\{\omega\in\{a,b\}^*|\ |\omega|\geq 3,\ |\omega|$ нечётное $\}$

Разделим описанный язык на L_1 и L_2 , после чего, с помощью прямого произведения ДКА, построим конечный автомат.

$$L_1 = \{ \omega \in \{a, b\}^* | |\omega| \ge 3 \}$$

$$L_2 = \{\omega \in \{a, b\}^* | |\omega| \text{ нечётное}\}$$

Построим на их основе ДКА:

$$A_1 = \langle \sum_1, Q_1, s_1, T_1, \delta_1 \rangle; A_2 = \langle \sum_2, Q_2, s_2, T_2, \delta_2 \rangle$$

 $A = \langle \sum, Q, s, T, \delta \rangle$:

•
$$\sum = \sum_1 \cup \sum_2$$

$$\bullet \ Q = Q_1 \times Q_2$$

•
$$s = \langle s_1, s_2 \rangle$$

$$\bullet \ T = T_1 \times T_2$$

•
$$\delta(\langle q_1, q_2 \rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c) \rangle$$

$$\sum = \{q_0, q_1, q_2, q_3, s_0, s_1\}$$

$$Q = \{\langle q_0, s_0 \rangle, \langle q_0, s_1 \rangle, \langle q_1, s_0 \rangle, \langle q_1, s_1 \rangle, \langle q_2, s_0 \rangle, \langle q_2, s_1 \rangle, \langle q_3, s_0 \rangle, \langle q_3, s_1 \rangle\}$$

$$S = \langle q_0, s_0 \rangle$$

$$T = \langle q_3, s_1 \rangle$$

	a	b
$\langle q_0, s_0 \rangle$	$\langle q_1, s_1 \rangle$	$\langle q_1, s_1 \rangle$
$\langle q_0, s_1 \rangle$	$\langle q_1, s_0 \rangle$	$\langle q_1,s_0 \rangle$
$\langle q_1, s_0 \rangle$	$\langle q_2, s_1 \rangle$	$\langle q_2, s_1 \rangle$
$\langle q_1, s_1 \rangle$	$\langle q_2, s_0 \rangle$	$\langle q_2, s_0 \rangle$
$\langle q_2, s_0 \rangle$	$\langle q_3, s_1 \rangle$	$\langle q_3, s_1 \rangle$
$\langle q_2, s_1 \rangle$	$\langle q_3, s_0 \rangle$	$\langle q_3,s_0 \rangle$
$\langle q_3,s_0 \rangle$	$\langle q_3, s_1 \rangle$	$\langle q_3, s_1 \rangle$
$\langle q_3, s_1 \rangle$	$\langle q_3,s_0 \rangle$	$\langle q_3,s_0 \rangle$

3. $L=\{\omega\in\{a,b\}^*|\ |\omega|_a$ чётно $\wedge\ |\omega|_b$ кратно трём $\}$

Разделим описанный язык на L_1 и L_2 , после чего, с помощью прямого произведения ДКА, построим конечный автомат.

$$L_1 = \{\omega \in \{a,b\}^* | |\omega|_a$$
чётно $\}$
 $L_2 = \{\omega \in \{a,b\}^* | |\omega|_b$ кратно трём $\}$

Построим на их основе ДКА:

$$A_1 = \langle \sum_1, Q_1, s_1, T_1, \delta_1 \rangle; A_2 = \langle \sum_2, Q_2, s_2, T_2, \delta_2 \rangle$$

 $A = \langle \sum, Q, s, T, \delta \rangle$:

•
$$\sum = \sum_1 \cup \sum_2$$

$$\bullet \ Q = Q_1 \times Q_2$$

•
$$s = \langle s_1, s_2 \rangle$$

$$\bullet \ T = T_1 \times T_2$$

•
$$\delta(\langle q_1, q_2 \rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c) \rangle$$

$$\sum = \{q_0, q_1, s_0, s_1, s_2\}$$

$$Q = \{\langle q_0, s_0 \rangle, \langle q_0, s_1 \rangle, \langle q_0, s_2 \rangle, \langle q_1, s_0 \rangle, \langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle\}$$

$$S = \langle q_0, s_0 \rangle$$

$$T = \langle q_0, s_0 \rangle$$

	a	b
$\langle q_0, s_0 \rangle$	$\langle q_1, s_0 \rangle$	$\langle q_0, s_1 \rangle$
$\langle q_0, s_1 \rangle$	$\langle q_1, s_1 \rangle$	$\langle q_0,s_2 \rangle$
$\langle q_0, s_2 \rangle$	$\langle q_1, s_2 \rangle$	$\langle q_0, s_0 \rangle$
$\langle q_1, s_0 \rangle$	$\langle q_0, s_0 \rangle$	$\langle q_1, s_1 \rangle$
$\langle q_1, s_1 \rangle$	$\langle q_0, s_1 \rangle$	$\langle q_1, s_2 \rangle$
$\langle q_1, s_2 \rangle$	$\langle q_0,s_2 \rangle$	$\langle q_1,s_0 \rangle$

$$\begin{array}{l} 4. \ L_4 = \overline{L_3} \\ \overline{L} = \langle \sum, Q, s, Q \setminus T, \delta \rangle \\ \sum = \{q_0, q_1, s_0, s_1, s_2\} \\ Q = \{\langle q_0, s_0 \rangle, \langle q_0, s_1 \rangle, \langle q_0, s_2 \rangle, \langle q_1, s_0 \rangle, \langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle\} \\ s = \langle q_0, s_0 \rangle \\ T = \{\langle q_0, s_1 \rangle, \langle q_0, s_2 \rangle, \langle q_1, s_0 \rangle, \langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle\} \\ \text{Итоговый ДКА:} \end{array}$$

5.
$$L_5 = L_2 \setminus L_3$$

 $L_5 = L_2 \cap \overline{L_3}$

Переименуем вершины в ДКА из прошлых пунктов: $A_1 = \langle \sum_1, Q_1, s_1, T_1, \delta_1 \rangle$; $A_2 = \langle \sum_2, Q_2, s_2, Q_2 \setminus T_2, \delta_2 \rangle$ $A = \langle \sum, Q, s, T, \delta \rangle$:

•
$$\sum = \sum_1 \cup \sum_2$$

$$\bullet \ Q = Q_1 \times Q_2$$

•
$$s = \langle s_1, s_2 \rangle$$

•
$$T = T_1 \times (Q_2 \setminus T_2)$$

•
$$\delta(\langle q_1, q_2 \rangle, c) = \langle \delta_1(q_1, c), \delta_2(q_2, c) \rangle$$

$$\sum = \{q_0, q_1, q_2, q_3, q_4, s_0, s_1, s_2, s_3, s_4, s_5\}$$

$$Q = \{\langle q_0, s_0 \rangle, \langle q_0, s_1 \rangle, \langle q_0, s_2 \rangle, \langle q_0, s_3 \rangle, \langle q_0, s_4 \rangle, \langle q_0, s_5 \rangle, \langle q_1, s_0 \rangle, \langle q_1, s_1 \rangle, \langle q_1, s_2 \rangle, \langle q_1, s_3 \rangle, \langle q_1, s_4 \rangle, \langle q_1, s_5 \rangle, \langle q_2, s_0 \rangle, \langle q_2, s_1 \rangle, \langle q_2, s_2 \rangle, \langle q_2, s_3 \rangle, \langle q_2, s_4 \rangle, \langle q_2, s_5 \rangle, \langle q_3, s_0 \rangle, \langle q_3, s_1 \rangle, \langle q_3, s_2 \rangle, \langle q_3, s_3 \rangle, \langle q_3, s_4 \rangle, \langle q_3, s_5 \rangle$$

$$\langle q_4, s_0 \rangle, \langle q_4, s_1 \rangle, \langle q_4, s_2 \rangle, \langle q_4, s_3 \rangle, \langle q_4, s_4 \rangle, \langle q_4, s_5 \rangle\}$$

$$S = \langle q_0, s_0 \rangle$$

$$T = \{\langle q_3, s_1 \rangle, \langle q_3, s_2 \rangle, \langle q_3, s_3 \rangle, \langle q_3, s_4 \rangle, \langle q_3, s_5 \rangle\}$$

	a	b
$\langle q_0, s_0 \rangle$	$\langle q_1, s_1 \rangle$	$\langle q_1, s_3 \rangle$
$\langle q_0, s_1 \rangle$	$\langle q_1, s_0 \rangle$	$\langle q_1, s_2 \rangle$
$\langle q_0,s_2 \rangle$	$\langle q_1, s_3 \rangle$	$\langle q_1, s_5 \rangle$
$\langle q_0,s_3 \rangle$	$\langle q_1, s_2 \rangle$	$\langle q_1, s_4 \rangle$
$\langle q_0, s_4 \rangle$	$\langle q_1, s_5 \rangle$	$\langle q_1, s_0 \rangle$
$ \langle q_0, s_5 \rangle $	$\langle q_1, s_4 \rangle$	$\langle q_1, s_1 \rangle$
$ \langle q_1, s_0 \rangle $	$ \langle q_2, s_1 \rangle $	$\langle q_2, s_3 \rangle$
$\langle q_1, s_1 \rangle$	$ \langle q_2, s_0 \rangle $	$\langle q_2, s_2 \rangle$
$\langle q_1, s_2 \rangle$	$\langle q_2, s_3 \rangle$	$\langle q_2, s_5 \rangle$
$\langle q_1, s_3 \rangle$	$ \langle q_2, s_2 \rangle $	$\langle q_2, s_4 \rangle$
$\langle q_1, s_4 \rangle$	$\langle q_2, s_5 \rangle$	$\langle q_2, s_0 \rangle$
$\langle q_1, s_5 \rangle$	$\langle q_2, s_4 \rangle$	$\langle q_2, s_1 \rangle$
$ \langle q_2, s_0 \rangle $	$\langle q_3, s_1 \rangle$	$\langle q_3, s_3 \rangle$
$ \langle q_2, s_1 \rangle $	$ \langle q_3, s_0 \rangle $	$\langle q_3, s_2 \rangle$
$ \langle q_2, s_2 \rangle $	$\langle q_3, s_3 \rangle$	$\langle q_3, s_5 \rangle$
$\langle q_2, s_3 \rangle$	$\langle q_3, s_2 \rangle$	$\langle q_3, s_4 \rangle$
$\langle q_2, s_4 \rangle$	$\langle q_3, s_5 \rangle$	$\langle q_3, s_0 \rangle$
$\langle q_2, s_5 \rangle$	$\langle q_3, s_4 \rangle$	$\langle q_3, s_1 \rangle$
$ \langle q_3, s_0 \rangle $	$\langle q_4, s_1 \rangle$	$\langle q_4, s_3 \rangle$
$ \langle q_3, s_1 \rangle $	$\langle q_4, s_0 \rangle$	$\langle q_4, s_2 \rangle$
$ \langle q_3, s_2 \rangle $	$\langle q_4, s_3 \rangle$	$\langle q_4, s_5 \rangle$
$\langle q_3, s_3 \rangle$	$\langle q_4, s_2 \rangle$	$\langle q_4, s_4 \rangle$
$\langle q_3, s_4 \rangle$	$\langle q_4, s_5 \rangle$	$\langle q_4, s_0 \rangle$
$\langle q_3, s_5 \rangle$	$\langle q_4, s_4 \rangle$	$\langle q_4, s_1 \rangle$
$ \langle q_4, s_0 \rangle $	$\langle q_3, s_1 \rangle$	$\langle q_3, s_3 \rangle$
$ \langle q_4, s_1 \rangle $	$ \langle q_3, s_0 \rangle $	$\langle q_3, s_2 \rangle$
$\langle q_4, s_2 \rangle$	$\langle q_3, s_3 \rangle$	$\langle q_3, s_5 \rangle$
$\langle q_4, s_3 \rangle$	$\langle q_3, s_2 \rangle$	$\langle q_3, s_4 \rangle$
$\langle q_4, s_4 \rangle$	$\langle q_3, s_5 \rangle$	$\langle q_3, s_0 \rangle$
$\langle q_4, s_5 \rangle$	$\langle q_3, s_4 \rangle$	$\langle q_3, s_1 \rangle$

С помощью таблицы переходов построим ДКА:

Имеем несколько недостижимых состояний, избавимся от них.

Задание №3

Построить минимальный ДКА по регулярному выражению.

1.
$$(ab + aba)*a$$
 Построим НКА:

	a	b
q0	q2q5q8	Ø
q2q5q8	Ø	q3q6
q3q6	q2q5q7q8	$ \emptyset $
q2q5q7q8	q2q5q8	q3q6

2. $a(a(ab)^*b)^*(ab)^*$ Построим НКА:

	a	b
q7	q6	Ø
q6	q0q9	Ø
q0q9	q2	q5q10
q2	Ø	q3
q3	q2	q5
q5	q0q9	Ø
q5q10	q0q9	Ø

Полученный ДКА:

Попробуем минимизировать получившийся ДКА:

0 эквивалентность: $I_0=\{q7,q0q9,q2,q3\}, I_1=\{q5,q5q10,q6\}$ 1 эквивалентность: $I_2=\{q7\}, I_3=\{q0q9,q3\}, I_4=\{q2\}, I_1=\{q5,q5q10,q6\}$

Это конечный результат сегментации, так как не представляется возможным разделить по эквивалентностям. Итоговый ДКА:

3. $(a + (a + b)(a + b)b)^*$ Построим НКА:

	a	b
0	01	1
1	2	2
01	012	12
012	012	012
12	2	02
2	Ø	0
02	01	01

Полученный ДКА:

После 3 эквивалентности можем сделать вывод, что ДКА выше – минимальный.

4.
$$(b+c)((ab)^*c+(ba)^*)^*$$

Построим НКА:

	a	b	c
0	Ø	1	1
1	3	5	1
3	\emptyset	2	\emptyset
5	1	\emptyset	\emptyset
2	3	\emptyset	1

Полученный ДКА:

Данный автомат является минимальным. 5. $(a+b)^+(aa+bb+abab+baba)(a+b)^+$ Построим НКА:

	a	b
0	1	1
1	124	137
124	124c	1357
137	1248	137c
124c	124cd	1357d
1357	12468	137c
1248	124c	13579
137c	1248d	137cd
124cd	124cd	1357d
1357d	12468d	137cd
12468	124c	13579c
13579	12468c	137c
1248d	124cd	13579d
137cd	1248d	137cd
12468d	124cd	13579cd
13579c	12468cd	137cd
12468c	124cd	13579cd
13579d	12468cd	137cd
13579cd	12468cd	137cd
12468cd	124cd	13579cd

Полученный ДКА:

Попробуем минимизировать получившийся ДКА:

124c, 137c, 12468c, 13579c, $I_1 = \{124cd, 1357d, 137cd, 12468d, 124686d, 12468d, 1$

1248d, 13579d, 12468cd, 13579cd

1 эквивалентность: I_1 ; $I_2 = \{0, 1, 137, 124, 1248, 1357, 13579, 12468\},$

 $I_3 = \{124c, 137c, 12468c, 13579c\}$

2 эквивалентность: $I_1; I_3; I_4 = \{0, 1, 1248\}, I_5 = \{137, 1357\}, I_6 = \{137, 1357\}$

 $\{124\}, I_7 = \{13579, 12468\}$

3 эквивалентность: I_1 ; I_3 ; I_6 ; I_7 ; $I_8 = \{0\}$, $I_9 = \{1\}$, $I_{10} = \{1248\}$, $I_{11} = \{127\}$.

 $\{137\}, I_{12} = \{1357\}$

Это конечный результат сегментации, так как не представляется возможным разделить по эквивалентностям. Итоговый ДКА:

Задание №4

Определить является ли язык регулярным или нет.

1.
$$L = \{(aab)^n b (aba)^m | n \ge 0, m \ge 0\}$$

Так как n и m не зависят друг от друга, то мы можем представить язык следующим регулярным выражением: $(aab)^*b(aba)^*$. Построим ДКА:

2. $L = \{uaav | u \in \{a, b\}^*, v \in \{a, b\}^*, |u|_b \ge |v|_a\}$

Пусть \exists слово $\omega = b^n aaa^n \in L$. Найдутся такие три слова, что $\omega = xyz, y \neq \lambda, |xy| \leq n \Rightarrow x = b^i, y = b^j, i+j \leq n, z = b^{n-i-j}aaa^n$. Пусть $k = 0 \Rightarrow xy^0z = b^ib^{n-i-j}aaa^n = b^{n-j}aaa^n \notin L$, так как $j \neq 0$, то есть язык не является регулярным.

3. $L = \{a^m \omega | \omega \in \{a, b\}^*, 1 \le |\omega|_b \le m\}$

Пусть \exists слово $\psi = a^n b^n \in L$. Найдутся такие три слова, что $\psi = xyz, y \neq \lambda, |xy| \leq n \Rightarrow x = a^i, y = a^j, i+j \leq n, z = a^{n-i-j}b^n$. Пусть $k = 0 \Rightarrow xy^0z = a^ia^{n-i-j}b^n = a^{n-j}b^n \notin L$, так как $j \neq 0$, то есть язык не является регулярным.

4.
$$L = \{a^k b^m a^n | k = n \lor m > 0\}$$

Пусть \exists слово $\omega=a^nba^n\in L$. Найдутся такие три слова, что $\omega=xyz,y\neq\lambda,|xy|\leq n\Rightarrow x=a^i,y=a^j,i+j\leq n,z=a^{n-i-j}ba^n$. Пусть $k=0\Rightarrow xy^0z=a^ia^{n-i-j}ba^n=a^{n-j}ba^n\notin L$, так как $j\neq 0$, то есть язык не является регулярным.

5. $L = \{ucv | u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$ Пусть \exists слово $\omega = a^n c a^{n+1} \in L$. Найдутся такие три слова, что $\omega = xyz, y \neq \lambda, |xy| \leq n \Rightarrow x = a^i, y = a, i+1 \leq n, z = a^{n-i-1}ca^{2n}$. Пусть $k = 2 \Rightarrow xy^2z = a^ia^2a^{n-i-1}ca^{n+1} = a^{n+1}ca^{n+1} \notin L$, то есть язык не является регулярным.