⑲ 日本国特許庁(JP)

◎ 公開特許公報(A) 平1-255620

⑤Int.Cl. ¹	識別記号	庁内整理番号	43公開	平成1年(1989)10月12日		
C 21 D 6/00 C 22 C 38/00	3 0 3	B -7518-4K D-6813-4K				
38/10 H 01 F 1/04 1/08		H -7354-5E A -7354-5E審査請求	未請求	請求項の数 4	(全8頁)	

風発明の名称 永久磁石材料の製造方法およびボンディッド磁石

②特 頭 昭63-83532

②出 願 昭63(1988) 4月5日

⑫発 明 者 広 瀬 一 則 東京都中央区日本橋1丁目13番1号 テイーディーケイ株 式会社内

⑩発 明 者 米 山 哲 人 東京都中央区日本橋1丁目13番1号 テイーディーケイ株 式会社内

⑦出 顋 人 ティーディーケイ株式 東京都中央区日本橋1丁目13番1号

会社

仰代 理 人 弁理士 石井 陽一

明 細 音

・1.発明の名称

永久 磁石 材料 の 製造方 法 および ポンディッド 磁石

2. 特許請求の範囲

(1) R(ただし、RはYを含む希土類元素の 1種以上)と、FeまたはFeおよびCoと、 Bとを含む合金溶湯をロール対を用いて高速急 冷することにより永久磁石材料を製造する方法 であって、

高速急冷と圧下率 20~80%の圧延とを、前記ロール対により同時に行なう永久磁石材料の製造方法。

(2) ロール対の周速が、0.5~19 m/ secである請求項1に記載の永久磁石材料の 製造方法。

(3)前記合金咨易が、R:12~19at%、B:4~20at%、Co:0~4.5at%を含

み、残邸が実質的に F e である請求項 1 または 2 に記載の永久磁石材料の製造方法。

(4)請求項1ないし3のいずれかに記載の製造方法により製造された永久磁石材料を粉砕して得られる扇平粉を、有機または無機パインダにより結合したポンディッド磁石であって、

前記扁平粉の平均粒径を平均厚さで除した値が、1.3~30であるポンディッド磁石。

3. 発明の詳細な説明

<産業上の利用分野>

本発明は、Yを含む希土類元素と、FeまたはFeおよびCoと、Bとを含むFe-R-B系(RはYを含む希土類元素である。以下同じ)およびFe-Co-R-B系の永久磁石材料を高速急冷により製造する方法、および、これにより製造された永久磁石材料を、有機により、結合したボンディッド磁石に関する。

く従来の技術>

高性能な希土類磁石としては、R-Co系磁石が知られている。

しかし、R-Co系磁石は、原料であるCoの価格が高い。 このため、R-Co系磁石と同等の磁気特性を有し、しかも、高価なコバルト等を必須成分とせず安価な工業材料である鉄を多量に用いるFe-R-B系およびFe-Co-R-B系の永久磁石が提案されている。

Fe-R-B系およびFe-Co-R-B系 永久磁石の製造方法として高速急冷法を用いて 薄帯状の永久磁石を得る旨が、特開昭 5 9 - 6 4 7 3 9 号公報に開示されている。

高速急冷法により製造された永久斑石は、通常、粉砕されてホットブレスされたり、あるいは粉砕後、樹脂等の有機パインダ、低融点金属等の無機パインダによって結合され、ポンディッド斑石として用いられる。

高速急冷により得られた磁石の保磁力、残留磁化およびエネルギー積を高め、より高性能な

この急冷圧延は、同公報第2頁右下櫃第3~5行目に記載されているように、「一対の回転冷却体のけんではしてなけんと呼出して海片化の時間では、続いて神片を得る」ものである。 すなわち、この神片は、まず、いわゆる、アロールにより圧延を行なって得られるものである。

このように、急冷と圧延とを順次行なう方法では、圧延時には薄片の温度が低下してしまうため効果的な塑性変形等が行なえず、異方性化の度合が不十分となるので、磁気特性の向上も十分ではない。

また、特間昭 6 0 - 1 0 0 4 0 2 号公報に記載されている異方性化の方法は、高速急冷により得られた薄片をホットプレスし、その後ダイアップセット処理するというものであり、特額昭 6 1 - 2 3 5 4 8 1 号では、高速急冷法として片ロール法あるいは双ロール法を用いて薄片を得、得られた薄片を圧延用のロールで圧下す

永久 磁石を得るために、 高速 急冷により 得られた 磁石を 異方性化する試みが 種々なされて いる (特開昭 6 0 - 1 0 0 4 0 2 号公報、同 6 1 - 1 0 2 0 8 号公報、同 6 2 - 2 2 2 6 0 5 号公報、同 6 2 - 2 2 2 6 0 5 号公報、同 6 2 - 2 3 5 4 8 1 号)。

く発明が解決しようとする課題>

しかし、これら各公報に記載されている具方性化方法によっても異方性化は不十分である。

すなわち、例えば、特開昭 6 1 - 1 0 2 0 8 号公報、同 8 2 - 2 2 2 6 0 5 号公報には X 線回折チャートが記載されており、これらのチャートから異方性化されていることはわかるが、高速急冷磁石に対する異方性化の要求は高く、これら各公報に記載されている程度の異方性では不十分である。

また、特開昭 6 3 - 2 1 8 0 4 号公報には、 双ロール法により急冷圧延するものであるが、

ることにより塑性加工を施し異方性化するものであって、これらはいずれも異方性化のための付加的な工程を有するものであるので、コストアップを招く。

本発明は、異方性が高く、保磁力、残留磁化およびエネルギー積の高い永久磁石材料が低コストで得られる製造方法、および、この製造方法により得られた永久磁石材料を用いた異方性が高く磁気特性が高いポンディッド磁石を提供することを目的とする。

<課題を解決するための手段>

このような目的は、下記の本発明によって達成される。

すなわち、本発明は、R(ただし、RはYを含む希土類元素の1種以上)と、FeまたはFeおよびCoと、Bとを含む合金裕温をロール対を用いて高速急冷することにより永久磁石材料を製造する方法であって、高速急冷と圧下率20~80%の圧延とを、前記ロール対によ

り同時に行なう永久磁石材料の製造方法である。

この場合、ロール対の周速が、0.5~19 m/secであることが好ましい。

また、この場合、前記合金溶湯が、 R : 1 2 ~ 1 9 at%、 B : 4 ~ 2 0 at%、 C o : 0 ~ 4 . 5 at%を含み、残部が実質的に F e であることが好ましい。

また、本発明は、上記製造方法により製造された永久磁石材料を粉砕して得られる扇平粉を、有機または無機パインダにより結合したポンディッド磁石であって、前記扇平粉の平均粒径を平均厚さで除した値が、1.3~30であるポンディッド磁石である。

以下、本発明の具体的構成について詳細に説明する。

本発明法では、合金溶湯を高速急冷する方法として、液体急冷法を用いる。

液体急冷法は、高周波誘導加熱等により溶過とされた原料金属、合金等を、水冷等により冷

るものである。 磁気異方性の度合は、輝片の厚さ方向と面内方向との磁気特性の差により、 知ることができる。

圧下率が上記範囲未満となると、高い異方性が得られず、磁気特性が不十分である。 また、圧下率は80%を超えても磁気特性は顕著には向上せず、生産性が低下する。

なお、圧下率が 4 0 % 以上であると、より好ましい結果を得る。

本発明法における圧下率 r とは、片ロール法により得られた存帯の厚さを h 。、本発明法により得られた存件の厚さを h としたとき、

 $r = (h_o - h) / h_o$

で表わされる。

なお、この場合、溶過射出量、冷却ロールの 周速度等の条件は、本発明法と片ロール法とで 同一とする。

上記範囲の圧下率を得るためには、溶湯射出速度によっても異なるが、双ロールの圧下力、 ロール外径およびロール周速度を、下記の範囲 却された金属製の回転体(ロール)の表面にノ ズルから射出して高速で急冷凝固させ、薄帯状 の金属、合金等を得る方法である。

液体急冷法には、ディスク法、片ロール法、 双ロール法等があるが、本発明の場合には、 ロール対を用いる双ロール法、すなわち、回転 する2個の冷却ロールの対向する周面間の間陰 に溶過を射出し、溶過を両側から急冷する方法 を用いる。 また、ピストンアンピル法も、この概念に属するものである。

そして、本発明法では、双ロールを用いた高速急冷法により合金溶湯を急冷・凝固すると同時に、この双ロールにより圧下率20~80%の圧延を行なう。

このような本発明法により得られる永久磁石材料の形状は、通常、薄片状である。 薄片はその厚さ方向に冷却されると同時に塑性変形を生じ、磁気異方性を生じる。 この磁気異方性は、永久磁石材料に含まれる結晶の磁化容易軸が、薄片の厚さ方向に配向することにより生じ

とすることが好ましい。

ロールの圧下力は、ロール幅 1 m m あたり 0 . 5 ~ 5 0 k g 、より好ましくは 1 ~ 3 0 k g であることが好ましい。

ロール外径に特に制限はないが、通常は30~400mmである。

ロールの周速度は製造条件により異なるが、 好ましくは 0 . 5 ~ 1 9 m / s 、より好ましくは 0 . 7 ~ 1 0 m / s 、さらに好ましくは 0 . 9 ~ 2 . 9 m / s とすることが好ましい。

周速度が上記範囲未満であると、好ましい圧 下率が得られにくい他、 薄片の大部分の結晶粒 が大きくなりすぎる。

周速度が上記範囲を超えると、好ましい圧下 率が得られにくい他、薄片の大部分が非晶質と なり、配向性が低下する。

なお、本発明法で用いるロールの材質は、適常の溶湯急冷用ロールの材質であってよいが、 炭素鋼、ステンレス等を用いることが好ましい。 また、ロールの硬度は、HRCで20以 上が好ましく、より好ましくは50以上である。

本発明法では、製造する薄片の厚さを 3 0 ~ 3 0 0 μ m、より好ましくは 5 0 ~ 2 0 0 μ m とすることが好ましい。

薄片の厚さが300μmを超えると保磁力が低下し、30μm未満であると配向性が低下する。

また、 得られる 薄片 は、 長径 0 . 1 ~ 3 0 m m 程度、 短径 0 . 1 ~ 1 0 m m 程度である。

なお、本発明法により製造される永久田石村 料は、上記したように、通常、薄片状として得 られるが、場合によっては必ずしも薄片状に 得られるものではなく、薄帯、扁平条、扁平 維等の形状にて得られる場合がある。 あは は、不定形の粉末、フレーク、短いみまた の形状となることもある。 しかし、本発の では、圧延後の永久磁石材料がこれら種 でなる。 異方性化が良好になされている ものである。

し、RはYを含む希土類元素の1種以上)と、FeまたはFeおよびCoと、Bとを含むものであればよく、その他、組成に特に制限はないが、より高い磁気特性を得るためには、下記の組成の合金溶渦を用いることが好ましい。

すなわち、本発明法では、合金溶渦の組成が、R: 12~19 at%、B: 4~20 at%、Co: 0~4.5 at%を含み、残部が実質的にFeであることが好ましい。

Rが上記範囲内にあれば、上記の圧延による 異方性化および結晶粒の異方性化の程度が高く なるが、Rが上記範囲未満であると配向性が低 下し、Rが上記範囲を超えると、残留磁化が低 下する。

なお、 R が 1 3 ~ 1 8 at % であると、さらに 好ましい 結果を得る。

Rについてさらに説明すれば、RはYを含む 希土類元素の1種以上であるが、高い磁気特性 を得るためにRとして特にNdおよび/または Prを含むことが好ましい。 Ndおよび/ま 本発明法により薄片を製造した後、熱処理を拡すことにより磁気特性を制御してもよい。

然処理は、不活性雰囲気もしくは真空中において400~850℃の温度範囲にて0.01~100時間程度焼鈍する。

また、急冷・圧延後の組織は、適宜用いられる熱処理、すなわち焼鈍により、その微結品または非晶質と微結晶からなる組織およびサイズをさらにコントロールでき、より高い磁気特性が得られる。

本発明法において、合金溶湯は、R(ただ

たは P r の 含有量は、 R 全体の 6 0 % 以上であることが 好ましい。

なお、Rの一部を、Zr、Nb、Mo、Hf、Ta、W、Ti、V、Mn、AlおよびCrの1種以上で置換してもよい(以下、これらの置換元素をMと略記する)。 置換量は、10%以下、特に2~8%であることが好まはい。 これらを置換することにより保磁力が得られる。でも保磁力が劣化せず高い保磁力が得られる。

B が上記範囲未満となると保磁力が低下し、 上記範囲を超えると残留磁化が低下する。 B が 5 ~ 1 5 at % であると、さらに好ましい結果 を得る

なお、Bの一部を、C、N、Si、P、Ga、Ge、Sで置換してもよい。 また、置換量は、Bの50%以下であることが好まし

Coは、キュリー点の上昇および耐食性の向上のために添加されるが、 Coの含有量が上記

範囲を超えると、保磁力が低下し、また、上記 圧延による異方性化効果が低下する。

このような組成は、原子吸光法、蛍光X線法、ガス分析法等によって容易に測定できる。

上記組成の永久磁石材料は、実質的に正方晶系の結晶構造の主相のみを有するか、このような主相と、非晶質および/または結晶質の R リッチな副相とを有する。

R-T-B化合物(ただし、TはFeまたはFe まよびCo)として安定な正方晶化合物はR。 Ti4B(R=11.78 a t %、 Tu a B (R=11.78 a t %、 Tu a B 2.36 a t %、B=5.88 a t %) であり、主相は実質的にこの化合物から形成される。 そして、高速急冷と同時に圧延を行なる。 とにより、得られる存体の厚さ方向へのR 2 Ti4Bの磁化容易軸(C 軸)の配向度を測定されるとにより、できる。 このような配向度の測定ることができる。 (1) X 線回折

排片主面に垂直方向において、 R 2 T 14B

このときの B r / 4 π M μ は、 薄片である場合とほぼ同等である。

B r / 4 π M n は、片ロール法により製造された薄帯では 0 . 7 5 程度未満であるのに対し、本発明法により製造された薄片では 0 . 8 以上、特に 0 . 8 5 以上の値が得られる。

本発明法により製造される永久磁石材料の実質的に正方晶系の結晶構造の主相は、Mが含有される場合、過飽和にMが固溶した準安定なR。 TiaB相であり、その平均結晶粒径は0.01~0.3μm、対象しくは0.01~0.3μm未満である。 このような粒径とするのは、0.01μm未満では結晶の不完全性のために保磁力iHcがほとんど発生しなくなり、3μmをこえると、保磁力iHcが低下するからである.

また、本発明においては、このような主相の みならず、さらに非晶質および/または結晶質 のRリッチである副相を有してもよく、副相を の(006)面の反射強度「(0066)を(330)面の反射強度「(330)で除した値」(006)/」(330)を求める。 この値が高いものほど、存片主面の垂直方向への磁化容易動の配向性が高い。 本発明法により製造された永久磁石材料は、「(0066)/」(330)が14以上、特に20以上にも違する。

(2) 残留磁化(Br)の異方性測定

振動試料型磁力計(VSM)等により例えば H=20~30kOe程度の磁界を印加し、このときの磁化強度(4πMm)を測定する。 また、薄片主面に垂直方向の残留磁化(Br) を求める。 そして、Br/4πMmを求める。 この値が高いものほど、薄片主面の垂直 方向への磁化容易軸の配向性が高い。

なお、粉体について B r / 4 π M n を求める ためには、例えば、一方向磁界中でパラフィン 内に粉体を分散して配向、固定し、これについ て上記値を測定すればよい。

有する方が好ましい。

副相は主相の粒界層として存在する。

副相の組成は、Rが約70 at%、鉄が約30 at%等の非晶質または結晶質等が挙げられる。

この場合副相の粒界層の平均巾は 0 . 3 μ m 以下、好ましくは 0.001 ~ 0 . 2 μ m であると よい。

3 μ m をこえると、保磁力 i H c が低下するからである。

本発明のポンディッド磁石は、上記の本発明法により得られた神片状あるいは上記したような神片以外の形状の永久磁石材料を、必要ならばさらに焼鈍処理を施した後に粉砕して扇平粉とし、これを有機または無機パインダにより結合したものである。

届平粉の平均粒径は、10~400μm、より好ましくは20~300μmであることが好ましく、平均厚さは5~150μm、より好ましくは10~100μmであることが好ましい。 上記の平均粒径および平均厚さは、

SEM等により測定することができる。

そして、本発明では、平均粒径を平均厚さで除した値が、1.3~30、より好ましくは2~30とされる。

この値が上記範囲未満であると、配向度が低下する。 また、上記範囲を超える扁平粉の製造は困難であり、しかも、上記範囲を超えると、扇平粉の充塡および分散が困難となる。

上記本発明法により得られた薄片状あるいは その他の形状の永久磁石材料を粉砕するために は、スタンブミル、振動ミル、ブラウンミル、 ピンミル等を用いればよい。

有機または無機パインダとしては、公知のポンディッド磁石に用いられる通常のものを用いればよく、特に制限はない。

有機パインダとしては、例えば、熱可塑性樹脂、熱硬化性樹脂等の樹脂、エラストマー等であり、無機パインダとしては、例えば、半田、Sn、Al、Zn等の低融点金属等である。

扁平粉とされた永久磁石材料は、粉状の無機

径20mm、ノズル先端穴径約0.8mmの石 英ノズルに入れ、高周波誘導加熱により溶渇と した。

この溶湯をアルゴンガス圧で高炭素クロム鋼製冷却ロール間に射出し、冷却すると同時に圧延を行なって、長径 0 . 1 ~ 1 0 m m 、短径 0 . 1 ~ 3 m m 、厚さ 6 0 ~ 1 2 0 μ m の存片を得た。

得られた存片サンブルについて X 線回折を行ない、 存片 主面 と 垂直 方向に おいて、(006) 面の 反射 強度 I (006) と(330) 面の反射強度 I (330) との比 I (006) / I (330) を求めた。

また、 7 片サンブルを 1 0 0 k 0 e のパルス 着磁器にて着磁し、 振動試料型磁力計(VSM)で磁気特性(残留磁化(Br)、

バインダあるいは粉状または液状の有機バイン ダと混合された後、金型に充填され、溶融成形 または成形後、溶融固化される。

成形時の加圧圧力は、1~10t/cm²と
することが好ましい。 扁平粉は形状異方性を
有するため、成形時の加圧により配向し、 磁気
異方性を有するポンディッド磁石とするされた
の磁石材料の扁平粉は、 結晶磁気 異方性を 有する ポンディッド 磁石とすること もで
を有するポンディッド 磁石とすることもで

<実施例>

以下、本発明の具体的実施例を示し、本発明をさらに詳細に説明する。

[実施例1]

表 1 に示す組成(数値は原子百分率を表わ す)の合金インゴットをアーク溶解により作製 した。 得られた合金インゴット 2 5 g を、外

保磁力(i H c))を測定した。 なお、磁気特性は、サンブルの面内方向とその直角方向の両者について測定し、形状異方性による効果を補正した。

結果を表1に示す。

[H: 42 40 1]

実施例1 に準じて合金溶湯を作製し、片ロール法により 薄片サンブルを得た (サンブル No. 7)。 なお、実施例1 の各サンブルの圧下率は、このサンブル No. 7 を基準として算出した。

サンブル N o . 7 について、実施例 1 の各サンブルと同様にして特性を測定した。

結果を表1に示す。

[比較例2]

特開昭 6 3 - 2 1 8 0 4 号公報に記録の急冷 圧延法により薄片を作製し、サンブルNo. 8 とした。

存片の作製は、同公報第 2 頁右下標第 3 ~ 5 行目に記載されているように、一対の回転冷却 体の片方に合金溶湯を噴出して海片化し、続いて一対の回転冷却体の間で圧延することにより行なった。 なお、石英ノズル、ロール外径、アルゴンガス噴出圧力は、実施例1と間一とした。

サンブル N o . 8 について、 実施 例 1 の各サンブルと 同様に して特性を 測定した。 結果を表 1 に示す。

35 1

辞帯サンプル No.	和	成 (at%)	圧下率 (%)	ロール周速度 (m/sec)	I (008) /I (330)	B r / 4 π M 20k	4 π M zok (k G)	i H c (kOe)
1	1 6 N d -	8 B - b a 2 F e	5 0	1. 4	1 8	0.87	11.8	13.0
2	14Nd-	7 B - b a & F e	5 0	1.4	2 0	0.86	12.0	11.8
3	1 4 N d -	7 B - 2 Z r - b a @ 1	Fe 55	1.3	18	0.87	11.7	15.0
4	2 2 N d -	6 B - b a & F e	6 0	1.6	18	0.86	10.4	15.1
5	1 1 N d -	7 B - b a & F e	4 5	1.5	16	0.82	11.5	6.5
6	1 4 N d -	7 B - b a 4 F e	6 5	1.4	2 4	0.88	11.9	11.7
7 (比較)	1 6 N d -	8 B - b a & F e	0	1.4	2	0.70	9.5	7. 0
8 (比較)	1 6 N d -	8 B - b a 4 F e	5	10.0	7	0.78	11.6	12.0
9	1 4 N d -	7 B - b a 2 F e	3 0	1.4	1 5	0.82	11.8	11.5
10(比較)	1 4 N d -	7 B - b a 2 F e	5	1.4	7	0.78	11.5	8. 5
1 1	1 4 N d -	7 B - b a & F e	3 0	0.3	1 4	0.80	11.3	6. 0
1 2	1 4 N d -	7 B - b a & F e	5 0	6.0	1 7	0.82	11.6	12.5
1 3	1 4 N d -	7 B - b a & F e	3 0	30.0	7	0.77	11.4	6. 0

[夹 施 例 2]

実施例1 および比較例1 および2 で符られた 神片サンブルのうち、表 2 に示すサンブルをス タンブミルにより粉砕して、扇平粉を得た。 これらの扇平粉をエポキシ樹脂パインダと混合 し、加熱して複融成形し、ポンディッド磁石サ ンブルを得た。

周平 初 の 平 均 粒 径 を 平 均 厚 さ で 除 し た 値 (A) および 成 形 時 の 加 圧 圧 力 を 表 2 に 示 す。これ ら の サ ン ブ ル に つ い て 、 実 施 例 1 と 同 様 に し て 磁 気 特 性 を 測 定 し た 。

結果を表2に示す。

表 1 および 表 2 に示される 結果から、 本発明 の効果が明らかである。

すなわち、本発明法により製造された永久磁石材料および本発明のポンディッド磁石はBr が高く、永久磁石としての優れた特性を有する ものである。

く発明の効果>

本発明法によれば、 異方性が高く、 保磁力、 残留磁化およびエネルギー稜が高い永久磁石材料が得られる。 しかも、 異方性化するために 独立した工程を必要としないため、このような 永久磁石材料が低コストで実現する。

また、本発明法により得られた異方性が高い永久磁石材料の周平粉を用いた本発明のポンディッド磁石は、扇平粉が所定の性状を有するため、磁気特性が良好である。

<u>.</u>	_	_	_				
ĭ		ļ .	6	7	0	0	8
Ξ.	0	2	=	7	~	۲.	=
	Ĉ.	-	_		_		_
10.5	<u></u>			_	_		
Z.	, K	i .		_	-		9.
		6	6	0	•	~	60
f 204	,						
Ę		4	s	7	0	0	7 5
1							0.7
8		•	0	0	0	0	•
	_						
£	E						
Œ	ς'	l ro	ĸ	Ŋ	Ŋ	S	S
Ħ	=						
	_	-	0	m	0	-	~
<		4	'n.	-	-	4	7
伸き	∌ ≥ .						
	ž	_	_	-	_	-	8
定 ‡	`						
× 5	•				₽	æ	₽
4 ;	<u>.</u>				371	H	(比較)
シェ	Ž	-	7	e	4	2	9
	存する。	B Γ / 4 π M 201	得 者 加圧圧力 Br/4πM _{30A} サンブル A (t/cm²) No. (t/cm²)	神 音 加圧圧力 Br/4πM _{30k} サンブル A (t/cm²) No. (t/cm²) 1 2.7 5 0.84 1 5.0 5 0.85	神 音 加圧圧力 Br/4πMaon サンブル A (t/cm²) No. (t/cm²) 1 2.7 5 0.84 1 5.0 5 0.85 1 1.3 5 0.82	神 音 加圧圧力 Br/4πM ₂₀₁ サンプル A (t/cm²) 1 2.7 5 0.84 1 5.0 5 0.85 1 1.3 5 0.82 1 1.0 5 0.70	神 音 加圧圧力 Br/4 m Maon サンブル A (t/cm²) No. (t/cm²) 1 2.7 5 0.84 1 5.0 5 0.85 1 1.3 5 0.82 1 1.0 5 0.70 7 2.7 5 0.70