# Introduction to Basic Forecasting Methods Moving Average, Exponential Smoothing, ARIMA, and Rolling Forecasts

Dr. Stavros K. Stavroglou

December 23, 2024

### Outline

- Data Loading & Moving Average Forecasting
- 2 Exponential Smoothing (SES, Holt, Holt-Winters)
- 3 Auto-ARIMA
- Rolling Window Forecasting
- 5 Accuracy Metrics & Model Comparison
- 6 Summary & Next Steps

### Section 1 Goals

### After this section, you should be able to:

- Load a real-world stock price dataset (Tesla)
- Visualize and interpret basic characteristics of the time series
- Explain and implement a simple Moving Average (MA) forecast
- Distinguish between in-sample and out-of-sample forecasting
- Understand how to compute and visualize confidence intervals

### Tesla Stock Price Dataset

- Data source: TSLA.csv, containing date and close price
- We only keep the last 600 observations for forecasting demonstration
- Business frequency used; missing days (weekends/holidays) are forward-filled



(Tesla close price.)

# Moving Average (MA) Forecasting

Idea: Predict future values by averaging a fixed window of recent observations:

$$\hat{y}_{t+1} = \frac{1}{w} \sum_{k=0}^{w-1} y_{t-k},$$

where w is the window size (e.g., 30 days).

#### Pros:

- Simple, quick to implement, good benchmark
- Works best when data has no strong trend or seasonality

#### Cons:

- Equal weighting of all past points in the window
- Ignores more recent observations that might be more informative
- Poor for trending or seasonal data

# Minimal Code Snippet: Moving Average

### Python Example

```
# Generate out-of-sample forecasts iteratively
historical values = list(train data.values)
ma forecasts = []
for in test data:
  if len(historical values) < window size:
    forecast val = np.mean(historical values)
  else.
    forecast val = np.mean(historical values[-window size:])
  ma forecasts.append(forecast val)
  historical values.append(forecast val)window_size = 30
ma_train = train_data.rolling(window=window_size).mean()
# Generate out-of-sample forecasts iteratively
historical_values = list(train_data.values)
ma_forecasts = []
for _ in test_data:
  if len(historical values) < window size:
    forecast_val = np.mean(historical_values)
  else:
    forecast_val = np.mean(historical_values[-window_size:])
  ma forecasts.append(forecast val)
     Dr. Stavros K. Stavroglou
```

6 / 23

# Visualizing MA Forecast & Confidence Intervals

- We compare:
  - Train set
  - Test set
  - MA in-sample prediction
  - MA out-of-sample forecast
- Bootstrap approach for  $\sim 90\%$  confidence intervals



# Key Idea: Exponential Smoothing

**Unlike MA**, Exponential Smoothing weights recent observations more heavily:

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha) \hat{y}_t,$$

where  $0 < \alpha < 1$  is the smoothing parameter.

#### Variations:

- **SES** (Simple Exp. Smoothing): No explicit trend or seasonality
- 4 Holt's Method: Adds a trend component
- **3** Holt-Winters: Adds trend + seasonal components

# Pros and Cons of Exponential Smoothing

#### Pros:

- Fast, relatively simple to tune (built-in parameter optimization)
- Good for data with trend or seasonality

#### Cons:

- Purely univariate, can miss external factors
- May overfit if not carefully validated
- Seasonal period must be known or estimated

# Sample Forecast: Simple Exponential Smoothing (SES)



(SES in-sample fit out-of-sample forecast.)

#### Observation:

- SES might underfit if trend/seasonality is strong
- Good for stable, level series

### Sample Forecast: Holt's Method



(Holt in-sample fit out-of-sample forecast, accounting for trend.)

#### Observation:

- Holt adds a trend component
- More flexible than SES alone

### Sample Forecast: Holt-Winters Method



(Holt-Winters in-sample fit out-of-sample forecast, accounting for seasonality.)

#### Observation:

- HW handles recurring seasonal patterns
- Often best for strong seasonality

# Why (Auto) ARIMA?

#### ARIMA stands for:

- AR (Autoregressive): Model uses past values
- I (Integrated): Differencing to achieve stationarity
- MA (Moving Average): Model uses past forecast errors

**Auto-ARIMA** automatically searches for (p, d, q) to minimize an information criterion (e.g., AIC).

### Pros & Cons of Auto-ARIMA

#### Pros

- Automates a tedious parameter search
- Can adapt to diverse patterns (once stationarity is established)
- Often yields better results than naive or simple smoothing methods

#### Cons

- Can be computationally expensive with large data or wide parameter ranges
- Assumes a linear ARMA-type structure
- Still univariate—no external regressors unless extended

### Illustration: Best ARIMA Forecast



(Placeholder: ARIMA in-sample fit and out-of-sample forecast with Cls.) Key Takeaway: Auto-ARIMA often outperforms guesswork, but still needs validation.

# |What is Rolling Forecasting?|

#### **Process:**

- Start with an initial training window
- 2 Fit the model (MA, Holt-Winters, ARIMA, etc.)
- Forecast one step ahead
- Add the new actual data point to your training set
- Refit and repeat until the end of the test set

### Why?

- More realistic approach for real-time forecasting
- Model is continuously updated with new observations

### Example: Rolling Forecast Comparison



(Placeholder: Rolling forecasts of MA, HW, ARIMA over the test horizon.) Observation:

- MA might lag behind quick changes
- HW captures short seasonal bursts
- ARIMA adapts but needs repeated re-fitting overhead

# Common Forecast Accuracy Metrics

Max Error (ME):

$$\max |y_t - \hat{y}_t|$$
.

MAE (Mean Absolute Error):

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |y_t - \hat{y}_t|.$$

MSE (Mean Squared Error):

$$\mathsf{MSE} = rac{1}{n} \sum_{t=1}^n (y_t - \hat{y}_t)^2.$$

RMSE (Root MSE):

$$RMSE = \sqrt{MSE}$$
.

MAPE (Mean Absolute Percentage Error):

$$\mathsf{MAPE} = \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{y_t - \hat{y}_t}{y_t} \right|.$$

MASE (Mean Absolute Scaled Error):

$$\mathsf{MASE} = \frac{\mathsf{MAE} \ \mathsf{of} \ \mathsf{forecasts}}{\mathsf{MAE} \ \mathsf{of} \ \mathsf{naive} \ \mathsf{reference}}.$$

18 / 23

# Comparison Tables: Simple vs. Rolling

### **Example Table: Simple Out-of-Sample Forecasts**

| Model               | ME   | MAE  | MSE | RMSE | MAPE | MASE |
|---------------------|------|------|-----|------|------|------|
| MA                  | 32.5 | 20.4 | 723 | 26.9 | 9.8  | 1.15 |
| SES                 | 35.2 | 19.1 | 712 | 26.7 | 10.3 | 1.07 |
| Holt                | 29.8 | 17.2 | 625 | 25.0 | 9.4  | 0.96 |
| <b>Holt-Winters</b> | 28.3 | 16.7 | 590 | 24.3 | 9.1  | 0.93 |
| Auto-ARIMA          | 27.5 | 16.3 | 570 | 23.9 | 8.8  | 0.90 |

Rolling Forecasts may have a separate table or row of results.

Evaluate both **simple** out-of-sample and **rolling** forecasts to see which approach suits practical needs.

### Interpreting These Metrics

- ME (Max Error): Worst-case difference between predicted and actual values.
- MAE (Mean Absolute Error): Average of absolute errors; measures on-average deviation.
- MSE (Mean Squared Error): Penalizes large errors more heavily by squaring them.
- RMSE (Root MSE): Square root of MSE, returning to original units.
- MAPE (Mean Absolute Percentage Error): Average percentage error; lower means closer forecasts to actual.
- MASE (Mean Absolute Scaled Error): Scales errors relative to a naive (benchmark) forecast.

General Rule: Lower metric values generally imply better performance.

### Lecture 2 Summary

- Section 1: Explored a real stock dataset and Moving Average forecast
- Section 2: Introduced Exponential Smoothing variants (SES, Holt, Holt-Winters)
- Section 3: Used Auto-ARIMA for parameter selection
- Section 4: Implemented Rolling Window Forecasting for realistic updates
- Section 5: Compared model performances using multiple accuracy metrics

### Key Takeaways

- Start with simple methods (e.g., MA) as a baseline
- Use Exponential Smoothing when trend/seasonality is evident
- ARIMA (and Auto-ARIMA) often outperforms simpler methods but is more complex
- Rolling forecasts are more realistic but can be expensive to update
- Always validate with multiple metrics, not just one

# Next Steps

### Coding Session:

- Run and dissect the accompanying Python script
- Experiment with hyperparameters (e.g., window size, smoothing level)
- Practice rolling windows in real-time

#### • Future Lectures:

- Advanced: SARIMA (seasonal ARIMA), exogenous variables
- More robust evaluation: cross-validation, multi-step ahead forecasting
- Neural network approaches for time series

### Thank you!

