Phyton For Data Science

Cheat-Sheet Phyton Basic

BecomingHuman.Al

Variables and Data Types

Variable Assignment

>>> x=5 >>> x

Calculations With Variables

>>> x+2	Sum of two variable
7	
>>> x-2 3	Subtraction of two variable
>>> x*2 10	Multiplication of two variable
>>> x**2	Exponentiation of a variabl
25 >>> x%2	Remainder of a variabl
1	
>>> x/float(2) 2.5	Division of a variable

Calculations With Variables

Variables to strings	'5', '3.45', 'True'	str()
Variables to integers	5, 3, 1	int()
Variables to floats	5.0, 1.0	float()
Variables to booleans	True, True, True	bool()

Asking For Help

>>> help(str)

Lists

Subset

>>> my_list[1]

Also see NumPy Arrays

>>> h = 'nice' >>> my list = ['my', 'list', a, b] >>> my list2 = [[4,5,6,7], [3,4,5,6]]

Selecting List Elements

Select item at index 1

>>> my_list[-3] Select 3rd last item Slice >>> my_list[1:3] Select items at index 1 and 2 Select items after index 0 >>> my_list[1:] >>> my_list[:3] Salact items before index 3 >>> my_list[:] Copy my_list Subset Lists of Lists my list[list][itemOfList] >>> my list2[1][0]

List Operations

>>> my list2[1][:2]

>>> my_list + my_list ['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice'] >>> mv list * 2 ['my', 'list', 'is', 'nice', 'my', 'list', 'is', 'nice'] >>> my_list2 > 4

List Methods

>>> my_list.index(a)	Get the index of an item
>>> my_list.count(a)	Count an item
>>> my_list.append('!')	Append an item at a time
>>> my_list.remove('!')	Remove an item
>>> del(my_list[0:1])	Remove an item
>>> my_list.reverse()	Reverse the list
>>> my_list.extend('!')	Append an item
>>> my_list.pop(-1)	Remove an item
>>> my_list.insert(0,'!')	Insert an item
>>> my_list.sort()	Sort the list

Numpy Arrays

Also see Lists

>>> my_list = [1, 2, 3, 4] >>> my_array = np.array(my_list) >>> mv 2darrav = np.array([[1,2,3],[4.5.6]])

Selecting Numpy Array Elements

Index starts at 0 Select item at index 1

Subset >>> my_array[1]

Slice >>> my_array[0:2]

Subset 2D Numpy arrays

>>> my_2darray[:,0]

my 2darray[rows, columns]

Select items at index 0 and 1

Numpy Array Operations

>>> my_array > 3 array([False, F >>> my_array * 2 array([2, 4, 6, 8]) >>> my_array + np.array([5, 6, 7, 8])
array([6, 8, 10, 12])

Numpy Array Operations

>>> my_array.shape Get the dimensions of the array >>> np.append(other_array) Append items to an array >>> np.insert(my_array, 1, 5) Insert items in an array >>> np.delete(my_array,[1]) Delete items in an array >>> np.mean(my_array) Mean of the array >>> np.median(my_array) Median of the array >>> my_array.corrcoef() Correlation coefficient >>> np.std(my_array) Standard deviation

Strings

Also see NumPy Arrays

>>> my_string = 'thisStringIsAwesome' >>> my_string

String Operations

>>> my_string * 2 >>> my_string + 'Innit' >>> 'm' in my_string

String Operations

Index starts at

>>> my_string[3] >>> my_string[4:9]

String Methods

>>> my_string.upper() String to uppercase >>> my_string.lower() String to lowercase **Count String elements** >>> my_string.count('w') >>> my_string.replace('e', 'i') Replace String elements >>> my_string.strip() Strip whitespaces

Libraries

Import libraries

>>> import numpy >>> import numpy as np Selective import >>> from math import pi

Install Python

Leading open data science platform powered by Pytho

Free IDE that is included with Anaconda

Create and share documents with live code, visualizations, text.