Continuous vs Discrete Time Waveforms

Recap

Representing Bit Sequences as Waveforms

 A bit sequence can be encoded by changing the value of the physical variable over time.

- Each bit is encoded by holding the state constant over a length of time, known as the bit time.
- The shorter the bit time, the faster we can transmit information (bits)

Continuous and Discrete Time Signals

Air Temperature in Clear Water Bay

Temperature Records from HK Observatory

A Continuous Time (CT) signal has a known value for all points in a time interval.

A Discrete Time (DT) signal has a known value only at a discrete (discontinuous) set of time points.

Sampling: Continuous to Discrete

Obtain discrete time waveform by <u>sampling</u> a continuous time waveform x_c(t) at regular intervals in time.

 $T_s = sample period$

- Index each sample by an integer sample number, n.
- The nth sample corresponds to the waveform at time

$$t = nT_s$$

Example: $x(n) = x_c(nT_s)$

Discrete to Continuous Time

Given sample x(n), we can obtain a continuous time waveform $x_h(t)$ by holding the waveform at x(n) between times $nT_{s'}$ and $(n+1)T_{s'}$

Sampling Period vs. Frequency

- T_s = sample period (time interval between samples)

 Typical unit: seconds (s, sec)
- F_s = sampling frequency or rate (number of samples in a fixed period of time) Typical unit: Hertz (Hz, samples per second)

Relationship:
$$F_s = \frac{1}{T_s}$$

Example:
$$T_s = 0.2 \text{ sec}$$

$$F_s = \frac{1 \text{ sample}}{0.2 \text{ sec}}$$

$$= 5 \frac{\text{samples}}{\text{sec}} = 5 \text{Hz}$$

Number of Samples

Sampling a signal of length T_w with a sample period T_s results in N samples where

$$N = \frac{T_{w}}{T_{s}} = T_{w} \cdot F_{s}$$

$$T_{w}$$

Tradeoff:

A higher sample frequency is

- Good: Less information lost since less time between samples
- Bad: More storage needed since more samples for a given length of time