Articulation Points in Multiplex Networks

Student: Artem Vergazov

Research Advisor: Vladimir Palyulin

Introduction. Networks

Simple network

Multiplex network

Introduction. Networks

Social Network

The topology of the Internet

Multiplex network examples

Transport

- Underground layer
- Bus layer

Social

- Twitter layer
- LinkedIn layer

Introduction. Percolation

Monoplex case: probability of the giant component to exist vs. p, if 1-p fraction of nodes are removed

Introduction. Percolation

Buldyrev, Sergey V., et al. Nature 464.7291 (2010): 1025-1028

Introduction. Percolation

Monoplex case

Multiplex case

Introduction. Articulation points

An articulation point (AP) is a node whose removal disconnects the graph

Articulation points (AP)

Aim

Study of articulation points in multiplex networks

Study the difference in behavior (network dismantling, network attacks, node failure) between simple and multiplex cases

Objectives

- Reproduce the results for simple networks
- Study APs in Erdős–Rényi multiplex networks
- 3. Study APs in configuration networks
- 4. Check the statistics of real-world multiplex networks

Erdős–Rényi network, configuration network are common types of a random graph

Algorithms and methodology

- 1. Generation of a set of networks from a certain distribution
- 2. Application of cascade of failures
- 3. Obtaining AP metrics (fraction)

Simulations in Python using NetworkX library for graph manipulation

Results. Monoplex network

Fraction of articulation points in Erdős–Rényi (ER) monoplex network. $\it c$ is the mean degree of the network nodes.

Review: Tian, L. et al. Articulation points in complex networks. Nat. Commun. 8, 14223 doi: 10.1038/ncomms14223 (2017).

Results. Multiplex network

Fraction of articulation points in Erdős–Rényi (ER) two-layer network. $\it c$ is the mean degree of the network nodes.

Results

Results

Size of the Giant Connected Component (GCC) that is left after a cascade of node failures in a two-layer ER network. p is the fraction of nodes that are left after the first failure

Review: Buldyrev, S., Parshani, R., Paul, G. et al. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010). https://doi.org/10.1038/nature08932

Discussion and conclusions

- 1. For monoplex networks, results agree with previous studies and theoretical predictions
- 2. For multiplex networks, we see the change in the fraction of APs because of the cascading behavior

skoltech

Current status and outlook

Literature review has been the main focus so far. A number of published results reproduced. Initial results on multiplex networks.

Next steps:

- Feb 2023: study APs in configuration networks
- Mar 2023: real-world network analysis
- Apr 2023: paper
- May-June 2023: thesis

Acknowledgements

Prof. Vladimir Palyulin

Saeed Osat

Thank you for attention