Trigonometría

Identidades trigonométricas II

Intensivo UNI 2024 - III

- **1.** De la siguiente condición, calcule $\tan 2x$. $\sqrt{4(1+\sin 2x)} = \sec x$
 - A) 1
- B) 2
- C) 2

D)-1

- Indique el equivalente de la siguiente expresión.

$$\frac{1}{2}\sqrt{2+\sqrt{2+\sqrt{3}}}$$

- A) $2\cos\frac{\pi}{12}$ B) $\cos\frac{\pi}{24}$ C) $2\cos\frac{\pi}{24}$

D) $\cos \frac{\pi}{12}$

- E) $\cos \frac{\pi}{40}$
- Calcule el valor de la siguiente expresión. $sen^{3}(19^{\circ}) + cos^{3}(11^{\circ})$ $sen(19^{\circ}) + cos(11^{\circ})$
 - A) $\frac{1}{4}$

D) 1

- Calcule el valor de la siguiente expresión. $(1-\tan^2(20^\circ))(1-\tan^2(40^\circ))((1-\tan^2(80^\circ))$
 - A) -12
- B) -10
- C) 8E) -4
- D) 6
- 5. Si $x \in \left\langle \frac{3\pi}{4}; \pi \right\rangle$, reduzca T.
 - $T = \frac{\sqrt{1 + \sin 2x}}{2} \frac{\sqrt{1 \sin 2x}}{5}$
 - A) $-\frac{7}{15} \sin x \frac{2}{15} \cos x$
 - B) $\frac{8}{15} \sin x \frac{2}{15} \cos x$

- C) $-\frac{8}{15} \sin x \frac{2}{15} \cos x$
- D) $\frac{7}{15} \sin x \frac{2}{15} \cos x$
- E) $-\frac{8}{15}$ sen $x + 2\cos x$
- **6.** La expresión $sen^2 3\theta 2cos^2 3\theta + 2cos^3 6\theta$ es idéntica a $A-B\cos 18\theta$. ¿Cuál es el valor de A+B?
 - A) 1
- B) 0
- C) -1

D) 1/2

- E) -1/2
- 7. Elimine x de las siguientes condiciones. sen3xcotx-2cosx=a(I) $\cos 3x \tan x + 2 \sin x = b$ (II)
 - A) ab = a b
 - B) $a^2 + b^2 = 1$
 - C) $a^2 b^2 = 1$
 - D) $a^2 + b^2 = ab$
- E) $a^2 b^2 = ab$
- Si $\cot x + \csc y = 7$ y $\csc x \cot y = 3$

calcule
$$5 \tan^2 \left(\frac{x}{2}\right) + 19 \tan \left(\frac{x}{2}\right)$$
.

- A) 3 D) 2
- B) 5
- C) 1 E) 4
- 9. Si $\frac{\tan^3 \alpha + \cot^3 \alpha}{5 + 3\cos^4 \alpha} = 2,$

calcule
$$\frac{\tan^2 \alpha + \cot^2 \alpha}{3 + \cos 4\alpha}$$
.

- A) ³√4
- B) ³√3
- C) ³√2

D) $\sqrt{3}$

E) $\sqrt{2}$

- 10. Si $\sec x + \sec y + \sec z = \tan x + \tan y + \tan z$ calcule S
 - $S = \left(1 + \tan \frac{x}{2}\right)^{-1} + \left(1 + \tan \frac{y}{2}\right)^{-1} + \left(1 + \tan \frac{z}{2}\right)^{-1}$
 - A) 3
- B) $\frac{1}{3}$
- C) $\frac{3}{3}$
- D) $-\frac{3}{2}$

- E) = 3
- 11. Dada la expresión

 $8\operatorname{sen}^4(t) = A + B\cos(2t) + C\cos(4t)$ determine los valores de A, B y C para que la expresión dada sea una identidad. Calcule el valor de A+B+C.

- A) 0
- B) 2
- C) 4

D) 6

- E) 8
- 12. A partir de las siguientes condiciones, calcule $\alpha + 2\beta$.
 - $3\operatorname{sen}^2\alpha + 2\operatorname{sen}^2\beta = 1$
- (I)
- $3 \operatorname{sen} 2\alpha 2 \operatorname{sen} 2\beta = 0$
- (II)

- A) $\frac{\pi}{4}$
- B) π
- C) $\frac{\pi}{2}$

D) $\frac{3\pi}{4}$

- 13. Halle la expresión equivalente de *E*.

$$E = \frac{\cos\frac{\theta}{8} + \sin\frac{\theta}{8}}{\cos\frac{\theta}{8} - \sin\frac{\theta}{8}}$$

- A) $\sec \frac{\theta}{\theta} \tan \frac{\theta}{\theta}$
- B) $\sec \frac{\theta}{4} + \tan \frac{\theta}{4}$
- C) $\csc \frac{\theta}{4} + \cot \frac{\theta}{4}$
- D) $\sec \frac{\theta}{8} + \tan \frac{\theta}{8}$
- E) $\sec \frac{\theta}{4} \tan \frac{\theta}{4}$

- **14.** Si sen $\theta = \frac{a-b}{a+b}$, halle $\tan\left(\frac{\pi}{4} \frac{\theta}{2}\right)$.
- A) $\pm \sqrt{\frac{1}{a}}$ B) $\pm \sqrt{\frac{1}{b}}$ C) $\pm \sqrt{\frac{a}{b}}$
- D) $\pm \sqrt{\frac{b}{a}}$

- **15.** Si el ángulo A mide $\frac{\pi}{12}$ rad, halle el valor de T.

$$T = \frac{\cos A \cos 10A}{\cos 2A + \cos 4A}$$

- A) 1
- B) -1/2
- C) 2/3
- D) 1/2
- E) -3/2
- 16. Calcule el valor de la siguiente expresión. cos12°+cos18°-4cos15°cos21°cos24°
- A) $\frac{\sqrt{3}-1}{2}$ B) $\frac{\sqrt{3}+1}{2}$ C) $-\left(\frac{\sqrt{3}+1}{2}\right)$

- E) 1
- 17. ¿Qué se obtiene al transformar a producto la expresión E?

$$E = 1 + 4\cos(x)\cos(3x)$$

- A) sen(5x)cos(x)
- B) $\cos(x)\sec(5x)$
- C) $\cos(5x)\sec(x)$
- D) sen(x)csc(5x)
- E) sen(5x)csc(x)
- **18.** Si senx+seny=a y cosx+cosy=bcalcule $\cos(x+y)$.
 - A) $\frac{a^2 b^2}{a^2 + b^2}$ B) $-\frac{a^2 b^2}{a^2 + b^2}$ C) $\frac{2ab}{a^2 + b^2}$

D) $-\frac{2ab}{a^2+b^2}$

E) $\frac{2ab}{a^2 - b^2}$

19. Calcule el equivalente de la siguiente expresión.

$$\frac{\text{sen20}^{\circ} + 2\text{sen40}^{\circ}}{2\text{sen20}^{\circ}}$$

- A) $\frac{1}{2}$ cot 20° B) $\frac{\sqrt{3}}{2}$ tan 20° C) $\frac{\sqrt{3}}{2}$ cot 20°
- D) $\frac{1}{2}$ tan 20°

E) $\sqrt{3} \cot 20^{\circ}$

20. Calcule *K*.

$$K = \frac{\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)}{\left(\cos\frac{\pi}{7}\right)\left(\cos\frac{2\pi}{7}\right)\left(\cos\frac{4\pi}{7}\right)}$$

- A) 1 D) 4
- B) 2
- C) 3 E) 5
- **21.** Halle el valor de *E*.

$$E = \sqrt{3}\cot\left(\frac{\pi}{9}\right) - 4\cos\left(\frac{\pi}{9}\right)$$

- A) $-\frac{1}{2}$ B) -1

D) 1

25. Si sec20°=*n*

22. Si x se aproxima a $\frac{\pi}{2}$, entonces, la expresión $T = \frac{\tan x + \tan 2x}{\cos x + \cos 2x}$, se aproxima a:

A)
$$\frac{8\sqrt{3}}{}$$

- A) $\frac{8\sqrt{3}}{3}$ B) $\frac{\sqrt{3}}{3}$ C) $-\frac{8\sqrt{3}}{3}$
- B) n
- C) $\frac{1}{n-1}$

D) $\frac{4\sqrt{3}}{3}$

E) $-\frac{4\sqrt{3}}{3}$

23. Halle el valor de la siguiente expresión.

$$V = \sec\frac{\pi}{9} - \sec\frac{4\pi}{9} + \sec\frac{7\pi}{9}$$

- A) -4 B) $-8\sqrt{2}$ C) $-2\sqrt{3}$ D) -5

- **24.** En un triángulo *ABC*, se tiene que: $\cos A + \cos B + \cos C = m$

$$\cos\left(\frac{A-C}{2}\right)\cos\left(\frac{C-B}{2}\right)\cos\left(\frac{B-A}{2}\right) = n$$

Halle $V = \operatorname{sen} A \operatorname{sen} B + \operatorname{sen} B \operatorname{sen} C + \operatorname{sen} C \operatorname{sen} A$.

- A) $\frac{m+2n-1}{2}$
- B) $\frac{m+2n+1}{2}$
- C) $\frac{m+4n-1}{2}$
- D) $\frac{m+n-1}{2}$
- E) $\frac{m+4n+1}{2}$
- halle $T = \frac{1 + 4\cos 20^{\circ}}{1 4\sin 10^{\circ}}$
- A) $\frac{1}{4}$

D) $\frac{1}{1+n}$

- E) n-1