7. Mikrovlnné planární filtry

Postup návrhu mikrovlnného filtru

- Pro požadované parametry se klasickými postupy navrhne filtr z L C součástek se soustředěnými parametry.
- Realizace pomocí prvků kompatibilních s planární strukturou.

Konstrukční prvky planárních filtrů

- úsek vedení λ_g/4
- úsek vedení délky $\lambda_g/4$ nebo $\lambda_g/2$ ve funkci rezonančního obvodu
- krátký úsek vysokoimpedančního vedení induktor
- krátký úsek nízkoimpedančního vedení kapacitor
- planární prvky se soustředěnými parametry
- vázané vedení

7.1. Používané principy

- invertor impedance → admitance

- invertor admitance → impedance

Obr. 7.1.2.

- náhrada pahýlu

Obr. 7.1.3.

- náhrada pahýlu

- Kurodovy identity prvního druhu, viz [109], [110] nebo [110] str. 765

Platí:
$$Z'_{v} = \frac{Z_{v}.Z_{v1}}{Z_{v}+Z_{v1}}, \qquad Z'_{v1} = \frac{Z_{v}^{2}}{Z_{v1}+Z_{v}}$$
 (7.1.1)

Platí: $Z'_{v} = Z_{v}+Z_{v1}, \qquad Z'_{v1} = \frac{Z_{v}(Z_{v1}+Z_{v})}{Z_{v1}}$ (7.1.2)

Obr. 7.1.5.

Obr. 7.1.6 a) Dolní propust.

Obr. 7.1.6 b) Pásmová propust.

Obr. 7.1.6 c) Pásmová propust.

1 •
$$Z_{ve}, Z_{vo}$$
 2 $Z_{ve} + Z_{vo}$ 2 $Z_{ve} + Z_{vo}$ (7.1.6)

Obr. 7.1.6 d) Totální propust.

Obr. 7.1.6 e) Totální propust

Obr. 7.1.6 f) Totální zádrž.

Obr. 7.1.6 g) Totální zádrž.

Obr. 7.1.6 h) Totální zádrž.

7.2. Dolnofrekvenční propust.

Obr. 7.2.1. Dolnofrekvenční propust, [111].

Obr. 7.2.2. Dolnofrekvenční propust, [7].

Obr. 7.2.3. Dolnofrekvenční propust, [111].

Obr. 7.2.4. Dolnofrekvenční propust, [107], $f_m = 4 \, \mathrm{GHz}$, $L = 1, 9 \, \mathrm{nH}$, $C = 1 \, \mathrm{pF}$, rozměr $6 \mathrm{x} 12 \, \mathrm{mm}$.

7.3. Hornofrekvenční propust

Obr. 7.3.1. Hornofrekvenční propust, [111].

7.4. Pásmová propust

Obr. 7.4.1. Pásmová propust, [111].

Obr. 7.4.2. Pásmová propust, [111].

Obr. 7.4.3. Pásmová propust, [111].

Obr. 7.4.4. Pásmová propust, [111].

7.5. Pásmová zádrž

Obr. 7.5.1. Pásmová zádrž, [111], širokopásmová.

Obr. 7.5.2. Pásmová zádrž, [111], úzkopásmová.

Obr. 7.5.3. Pásmová zádrž z vázaných vedení, [110], s rezonátory $\lambda g/4$.

Obr. 7.5.4. Pásmová zádrž z vázaných vedení s rezonátory $\lambda g/2$.

Obr. 7.5.5. Pásmová zádrž se soustředěnými parametry, [111].

Obr. 7.5.6. Pásmová zádrž se soustředěnými parametry, [107], L=1,6 nH, C=0,2 pF, frekvenční pásmo 8,2 - 9,2 GHz.

7.6. Směrové filtry

Obr. 7.6.1.

Obr. 7.6.2. Směrový filtr s postupnou vlnou.