Aashutosh Aman Mishra

<u>aashutosh@auburn.edu</u> |+1 334 610-6443 | Auburn, AL 36830 Vehicle Systems, Dynamics, and Design Lab (Website: <u>vsddl.com</u>)

Portfolio: everestau.github.io

LinkedIn: <u>linkedin.com/in/mishra-aashutosh</u>

SUMMARY

A highly motivated aerospace engineer with demonstrated expertise in aircraft design, flight dynamics and simulation, flight control law development, and aircraft & rotorcraft stability and control.

AREAS OF SPECIALIZATION

Aircraft design; Flight dynamic model; Fixed-wing and rotorcraft aerodynamic model development; Flight test data processing and calibration; Aircraft stability and control; 6-DOF non-linear piloted/auto flight simulation model development.

EDUCATION

PhD Candidate, Aerospace Engineering, Auburn University

July 2025

An Integrated Methodology for Vehicle Design Subject to Flying Qualities Constraints.

GPA: 4.00

M.Sc. Aerospace Engineering, Auburn University

May 2023

GPA: 4.00

B.E., Mechanical Engineering, Tribhuvan University, Nepal

November 2017

GPA: 3.30

PROFESSIONAL EXPERIENCE

Ph.D. Candidate and Researcher Auburn University, Auburn, AL

2019 - 2025

- Developed generalized tools for aircraft sizing, flight dynamic modeling and simulation, and real-time six-DOF flight simulation for novel advanced air mobility configurations aircraft.
- Performed aircraft and rotorcraft stability & control analysis and optimization, flight simulation development, and validation/calibration against flight test data.
- Developed aircraft performance and flight simulation software package in MATLAB/Simulink for customers (e.g. NASA) as a part of a funded project.
- Analysis and design of control law (CLAW) inner and outer loop functions for both fixed-wing and rotorcraft flight vehicles.
- Integrated aircraft longitudinal and lateral-directional flight dynamic characteristics, based on a fully nonlinear 6 degree of freedom flight simulation model, to meet the handling qualities guidelines defined by FAA Part 23 certification requirements.

- Tested and validated flight and propulsion control software with 6 degree of freedom simulation on desktop using in-house flight dynamic model generated using MATLAB/Simulink.
- Led the development, integration, and validation of aero-propulsive characteristics for novel eVTOL designs into the research flight simulators driven by a MATLAB/Simulink-based non-linear time domain simulation framework.
- Gained hands-on experience with flight simulator construction, flight control system design, flight control interface, control loading box modeling, visualization setup, and model calibration, to facilitate flight simulator operation.

TEACHING EXPERIENCE

Graduate Teaching Assistant (GTA)

2019 - 2020

 Tutored aircraft design tools like OpenVSP, XFOIL, QMIL/QPROP, and CFD (FlightStream®) to the aircraft design class.

SKILLS

- Software: MATLAB/Simulink, Python, C/C++, FORTRAN, OpenVSP, FlightStream®, XFOIL, AVL, XROTOR, SolidWorks, CATIA, high-performance computing (HPC), Git.
- **Technical**: Flight simulator visual setup using warp and blend, control loading systems, mechanical workshop experience, 3D-printing, data postprocessing, and documentation.

AWARDS AND ACHIEVEMENTS

- AIAA Orville and Wilbur Wright Graduate Award (2024)
- AIAA Luis de Florez Graduate Award in Flight Simulation (2022)
- AIAA Electrified Aircraft Technology Best Paper Award (2022)
- AIAA Aircraft Design Best Paper Award (2021)

SELECT PUBLICATIONS (GOOGLE SCHOLAR)

- Chakraborty, I., and **Mishra, A. A.**, "Generalized Energy-Based Flight Vehicle Sizing and Performance Analysis Methodology," *Journal of Aircraft*, Vol. 58, No. 4, 2021, pp. 762–780.
- Chakraborty, I., and **Mishra, A. A.**, "Sizing and Analysis of a Lift-Plus-Cruise Aircraft with Electrified Propulsion," *Journal of Aircraft*, Vol. 60, No. 3, 2023, pp. 747–765.
- Mishra, A. A., and Chakraborty, I., "Flight Dynamics and Control Integration in Conceptual De-sign of an Advanced Air Mobility VTOL Aircraft," AIAA AVIATION FORUM AND ASCEND 2024, 2024, Paper 4050.