An Application-Aware Overlay Networks Architecture & API

Tarun Banka, Panho Lee, H. M. N. Dilum Bandara, and Anura P. Jayasumana
Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, CO 80523.

Dilum Bandara dilumb@engr.colostate.edu

Outline

- CASA
- Application aware networks
- Overlay networks
- AWON architecture & API
- What's ahead

Collaborative Adaptive Sensing of the Atmosphere (CASA)

Concept

- A set of networked small radars instead of a large radar
- Sense lower 3 km of atmosphere
- Collaborating radars:
 - Improved sensing, detection, & prediction

Goal

 Improve warning time & forecast accuracy for hazardous weather

120

RANGE (km)

160

200

40

240

CASA Oklahoma Test-bed

- Multiple high bandwidth streams
- Real-time communication
- Heterogeneous infrastructure & end users
- Simultaneous observations by multiple radars
- Multi-sensor data fusion
- Hostile weather conditions

Radar 3

casa

Radar 4

Challenges

Distributed Collaborative Adaptive Sensing (DCAS)

Sensing, processing, & storage elements are interconnected via the

Internet

High bandwidth data streams

- Real-time communication
- End users rely on different subsets of data
- Adapting to varying network conditions
- QoS perceived by end users depends on
 - Timeliness & usefulness of received data
 - Jitter, excessive delay, & random packet loss
- End-host based correction/adaption is not effective

Application Aware Networks (AANs)

- Networks that implicitly or explicitly learn about the application characteristics & adapt their forwarding strategy to meet the application requirements in the best possible way
- Possibilities
 - Application aware packet forwarding
 - In-network application aware processing & storage
 - Enhance the adaptability of applications
 - Enhanced QoS provided to end users
- Current networks are not application aware
 - Lack of hardware & architectural support
- Overlay networks are a viable solution

Overlay Networks

- A computer network built on top of another network
 - e.g., dial-up Internet, P2P
- Application layer solution
- Virtual links between overlay nodes
- Overlay routing
 - Control path/link selection
 - QoS enhancement
- Application-aware processing a intermediate nodes

FRACTAL 2009

7

Application-Aware Overlay Networks (AWON) Architecture

- An architectural framework to deploy AAN services
 - ASP Application-specific Service Plug-in
 - ASPs inject application specific functionalit into overlay nodes
 - API for easy deployment of ASPs
 - www.cnrl.colostate.edu/Projects/AWON/awor api.0.1.tar.gz
- ASPs regulate flow of data through overlay nodes
 - Taking application specific constrains into account
 - Extract, select, fuse, & repack data
- Overlay routing protocol provide desired QoS support FRACTAL 2009

AWON (cont.)

- Different AAN services
- Application specific content delivery under varying network conditions
- Better quality in content delivered to end users

Measurements on PlanetLab

FRACTAL 2009

What's Ahead

- Basic functions of overlay networks will eventually be migrated into network elements
- Potential for in-network processing & storage
 - However, resources per application will still be limited
- Renewed interest in AANs
 - Vendors are interested in architectural support
- AWON architecture would be a suitable reference framework in realizing the AAN paradigm
 - Overlay networks, AANs → P2P based in-network fusion
- How to distribute ASPs?
 - Online installation, micro-programs in packets, etc.
 - Need programming & protocol description languages

