CS3245

Information Retrieval

Lecture 1: Language Models

Live Q&A https://pollev.com/jin

Modeling Language

- Book A by Shakespeare
- Book B by J.K. Rowling

- Which book is more likely to contain the following phrases?
 - 1. A nice normal day
 - 2. Wherefore art thou

Modeling Language

- Traditionally, we model language with the notion of a formal syntax and semantics.
 - Vocabulary and grammar
 - Specify what is included in or excluded from a language
 - Help us to interpret the meaning (semantics) of the sentence

What's a language model?

- It can be helpful to have a computational (e.g., probabilistic) model of a language that is simple without the use of a grammar.
- A language model is
 - created based on a collection of text, and
 - used to assign a score (e.g., probability) to a sequence of words.

What's a language model?

Example

- chatlog_LangModel: created based on the chat logs in a messaging tool (e.g., Telegram)
- Word sequence: "Forsooth, there is no one I trust more"
- chatlog_LangModel: low probability
- Shakespeare_LangModel: created based on the plays written by Shakespeare
- Word sequence: "Forsooth, there is no one I trust more"
- Shakespeare_LangModel: high probability

Applications of LMs

Deciding between alternatives
I either heard "Recognize speech" or "Wreck a nice beach", which is more likely?

- Speech Recognition
- Spelling Correction
- Plagiarism Detection
- Prediction of what products you'll browse next
- Typeahead prediction on mobile devices
- Result Ranking

The Unigram Model

- View language as an unordered collection of tokens
 - Each of the n tokens contributes one count (or 1/n) to the model
 - Also known as a "bag of words"
- Outputs a count (or probability) of an input based on its individual tokens
 - Count(input) = \sum_{n} Count(n)
 - P(input) = π P(n)

Aerosmith vs. Lady Gaga: A Simple Count Model

 Let's take a sentence from each of these artists and build two language models:

... I don't want to close my eyes // ...

I	1	close	1
don't	1	my	1
want	1	eyes	1
to	1		

... I want your love and I want your revenge // ...

I	2	love	1
want	2	and	1
your	2	revenge	1

Q1: "I want"

1	1	close	1
don't	1	my	1
want	1	eyes	1
to	1		

I	2	love	1
want	2	and	1
your	2	revenge	1

Q1: "I want"

Count (Aerosmith): 1 + 1 = 2

Count (LadyGaga): 2 + 2 = 4

Winner: Lady Gaga

Q2: "I don't want"

I	1	close	1
don't	1	my	1
want	1	eyes	1
to	1		

I	2	love	1
want	2	and	1
your	2	revenge	1

Q1: "I want"

Count (Aerosmith): 1 + 1 = 2

Count (LadyGaga): 2 + 2 = 4

Winner: Lady Gaga

Q2: "I don't want"

Count (Aerosmith): 1 + 1 + 1 = 3

Count (LadyGaga): 2 + 0 + 2 = 4

Winner: Lady Gaga

Q3: "close my eyes"

I	1	close	1
don't	1	my	1
want	1	eyes	1
to	1		

I	2	love	1
want	2	and	1
your	2	revenge	1

Q1: "I want"

Count (Aerosmith): 1 + 1 = 2

Count (LadyGaga): 2 + 2 = 4

Winner: Lady Gaga

Q2: "I don't want"

Count (Aerosmith): 1 + 1 + 1 = 3

Count (LadyGaga): 2 + 0 + 2 = 4

Winner: Lady Gaga

Q3: "close my eyes"

Count (Aerosmith): 1 + 1 + 1 = 3

Count (LadyGaga): 0 + 0 + 0 = 0

Winner: Aerosmith

I	1	close	1
don't	1	my	1
want	1	eyes	1
to	1		

I	2	love	1
want	2	and	1
your	2	revenge	1

Blanks on slides, you may want to fill in

Extending the example

- Imagine you take your music collection and for each song you get the lyrics from the web
- Then you can build unigram language models for all songs with the same artist or genre

Quick poll: What are your answers to:

Which artist is most likely to have written some input lyric?

What words are most popular in a specific genre?

What are the significant phrases used in this genre?

Of Words Matter Order The

- Unigrams LM don't model word order (hence "bag of words")
 - "close my eyes" is as likely as "eyes close my"
- We must introduce additional context to model order

Blanks on slides, you may want to fill in

Ngram LM

- An ngram LM remembers sequences of n tokens
 - Unigram is just a special case of n=1
 - Bigrams are ngram LMs where n=2, trigrams where n=3

e.g. "I don't want to close my eyes"

START I	START START I
I don't	START I don't
don't want	I don't want
Want to	don't want to
to close	want to close
close my	to close my
my eyes	close my eyes
eyes END	my eyes END
	eyes END END

Use special START and END symbols for encoding beyond the text boundary Blanks on slides, answers on next slide

Ngram LM

- A ngram model can predict a current word from the n-1 previous context words.
 - P(??| "Please turn off your hand")
 prediction context of n=5

Probability of predicting "??" after seeing "Please turn off your hand".

What's your guess about the next word?

How would the unigram, bigram and trigram models predict "??"

- Unigram (n=1):
- Bigram (n=2):
- Trigram (n=3):

Ngram LM

- A ngram model can predict a current word from the n-1 previous context words.
 - P(??| "Please turn off your hand")

prediction

context of n=5

Probability of predicting "??" after seeing "Please turn off your hand".

What's your guess about the next word?

How would the unigram, bigram and trigram models predict "??"

- Unigram (n=1): P(??)
- Bigram (n=2): P(??|"hand")
- Trigram (n=3): P(??|"your hand")

Markov Assumption

The Markov assumption is the presumption that the future behavior of a dynamical system only depends on its recent history. In particular, in a kth-order Markov model, the next state only depends on the k most recent states

 Therefore, an N-gram model is a (N-1)-order Markov model. Blanks on slides, you may want to fill in

7

From 1 to n

 Longer ngram models are more accurate but exponentially more costly to construct (why?).

E.g., Shakespeare ngram models

- To him swallowed confess hear both.
- b) What means, sir. I confess she? Then all sorts, he is trim, captain.
- c) Sweet Prince, Falstaff shall die. Harry of Monmouth's grave.
- d) Will you not tell me who I am? It cannot be but so.

Complexity

- Let |V| stand for the size of the vocabulary used in a language. For English, let's use |V| = 30,000
- For a unigram LM we need to store counts/probabilities for |V| words
- For a bigram LM, we need to store counts/probabilities for (up to) |V|*|V| ordered length 2 phrases
- Check your understanding: What about a trigram model?

Gets expensive very quickly!

Probability-based LM

Q1: "I want"

Prob(Aerosmith): .14 * .14 = 1.9E-2

Prob(LadyGaga): .22 * .22 = 4.8E-2

Winner: Lady Gaga

Q2 : "I don't want"

I	1 (0.14)	close	1 (0.14)
don't	1 (0.14)	my	1 (0.14)
want	1 (0.14)	eyes	1 (0.14)
to	1 (0.14)		

I	2 (0.22)	love	1 (0.11)
want	2 (0.22)	and	1 (0.11)
your	2 (0.22)	revenge	1 (0.11)

Probability-based LM

Q1: "I want"

Prob(Aerosmith): .14 * .14 = 1.9E-2

Prob(LadyGaga): .22 * .22 = 4.8E-2

Winner: Lady Gaga

Q2: "I don't want"

1	1 (0.14)	close	1 (0.14)
don't	1 (0.14)	my	1 (0.14)
want	1 (0.14)	eyes	1 (0.14)
to	1 (0.14)		

1	2 (0.22)	love	1 (0.11)
want	2 (0.22)	and	1 (0.11)
your	2 (0.22)	revenge	1 (0.11)

Prob(Aerosmith): .14 * .14 * .14 = 2.7E-3

Prob(LadyGaga): .22 * 0 * .22 = 0

Winner: Aerosmith

Problem: The probability that Lady Gaga would use "don't" in a song isn't really 0, but that's what our limited data says.

Add 1 Smoothing

Not used in practice, but most basic to understand

Add 1 Smoothing

 Idea: add 1 count to all entries in the LM, including those that are not seen

1	1 (0.14)	eyes	1 (0.14)
don't	1 (0.14)	your	0 (0)
want	1 (0.14)	love	0 (0)
to	1 (0.14)	and	0 (0)
close	1 (0.14)	revenge	0 (0)
my	1 (0.14)		

1	2 (0.22)	eyes	0 (0)
don't	0 (0)	your	2 (0.22)
want	2 (0.22)	love	1 (0.11)
to	0 (0)	and	1 (0.11)
close	0 (0)	revenge	1 (0.11)
my	0 (0)		

Add 1 count to all entries and recompute the probabilities

I	2 (0.11)	eyes	2 (0.11)
don't	2 (0.11)	your	1 (0.06)
want	2 (0.11)	love	1 (0.06)
to	2 (0.11)	and	1 (0.06)
close	2 (0.11)	revenge	1 (0.06)
my	2 (0.11)		

I	3 (0.15)	eyes	1 (0.05)
don't	1 (0.05)	your	3 (0.15)
want	3 (0.15)	love	2 (0.10)
to	1 (0.05)	and	2 (0.10)
close	1 (0.05)	revenge	2 (0.10)
my	1 (0.05)		

Add 1 smoothing

Q2: "I don't want"

Prob (Aerosmith): .11 * .11 * .11 = 1.3E-3

Prob (LadyGaga): .15 * .05 * .15 = 1.1E-3

Winner: Aerosmith

1	2 (0.11)	eyes	2 (0.11)
don't	2 (0.11)	your	1 (0.06)
want	2 (0.11)	love	1 (0.06)
to	2 (0.11)	and	1 (0.06)
close	2 (0.11)	revenge	1 (0.06)
my	2 (0.11)		

1	3 (0.15)	eyes	1 (0.05)
don't	1 (0.05)	your	3 (0.15)
want	3 (0.15)	love	2 (0.10)
to	1 (0.05)	and	2 (0.10)
close	1 (0.05)	revenge	2 (0.10)
my	1 (0.05)		

LMs over time...

What 7-gram is this?

Information Retrieval

Summary

- Ngram LMs are simple but powerful models of language
- Probabilistic computation, with attention to missing or unseen data
- Diminishing returns for larger ngram contexts
- Applicable to many classification tasks

References

- Jurafsky and Martin. Chap 6, Speech and Language Processing
- You'll likely learn this again in
 CS 4248 Natural Language Processing