

015936-2.ST25.txt SEQUENCE LISTING

	·	
<110>	SAHIN, ERINC TARALP, ALPAY SAYERS, SEHRA	
<120>	CIRCULAR RECOMBINANT PLASMID DNA CONSTRUCTS AND THEIR PROTEIN PRODUCTS, METHODS OF PREPARATION AND IMMOBILISATION OF PROTEIN ON SUPPORT	ıs
<130>	U015936-2	
<140> <141>	10/550226 2005-09-20	
<150> <151>	PCT/TR2003/000019 2003-03-20	
<160>	12	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 733 DNA Aequorea victoria	
<220> <221> <222> <223>	gene (17)(733) GFP gene	
<400> ggtacco	1 ggta gaaaaaatga gtaaaggaga agaacttttc actggagttg tcccaattct	60
tgttgaa	atta gatggtgatg ttaatgggca caaattttct gtcagtggag agggtgaagg	120
tgatgca	aaca tacggaaaac ttacccttaa atttatttgc actactggaa aactacctgt	180
tccatg	gcca acacttgtca ctactttctc ttatggtgtt caatgctttt cccgttatcc	240
ggatcat	tatg aaacggcatg actttttcaa gagtgccatg cccgaaggtt atgtacagga	300
acgcact	tata tctttcaaag atgacgggaa ctacaagacg cgtgctgaag tcaagtttga	360
aggtga	tacc cttgttaatc gtatcgagtt aaaaggtatt gattttaaag aagatggaaa	420
cattct	cgga cacaaactcg agtacaacta taactcacac aatgtataca tcacggcaga	480
caaacaa	aaag aatggaatca aagctaactt caaaattcgc cacaacattg aagatggatc	540
cgttcaa	acta gcagaccatt atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt	600
accaga	caac cattacctgt cgacacaatc tgccctttcg aaagatccca acgaaaagcg	660
tgacca	catg gtccttcttg agtttgtaac tgctgctggg attacacatg gcatggatga	720
gctctad	caaa taa	733

<210> 2 <211> 6029

242			015936-2.s	T25.txt		
<212> <213>	DNA Artificial sequ	uence				
<220> <223>	Empty PETM-11	olasmid				
<220> <221> <222> <223>	misc_feature (1)(6029) Empty PETM-11	olasmid				
<400> atccgg	2 atat agttcctcct	ttcagcaaaa	aacccctcaa	gacccgttta	gaggccccaa	60
ggggtt	atgc tagttattgc	tcagcggtgg	cagcagccaa	ctcagcttcc	tttcgggctt	120
tgttag	cagc cggatctcag	tggtggtggt	ggtggtgctc	gagtgcggcc	gcaagcttgt	180
cgacgg	agct cgaattcgga	tccggtacca	ctagttagag	accaagacac	gccttgtgac	240
tgtcct	gcag ctttattctc	ttgatgctgg	tgctggaata	gccctcatca	ctgccgaggc	300
tctgca	tgct gccccgctcg	tcagagtcgc	tcacactgct	gctgctccag	tccagatcac	360
ctgtga	gata gtccgtgctc	tccacgtcaa	cgtcgatttc	ttccctgtcg	gagtcggagc	420
gctccg	agga gacggtggag	ccgatgctgt	ccatccggat	cctctcaatg	cccagcttct	480
ccagct	gcct cttcaggtgt	cgctgctctc	gctgaagctg	gtcgatttgg	tgaacggctt	540
ttctgt	caca atcttcaagt	ttctttatgt	gcaatttggc	ttttgttaat	aaactcaacg	600
tagtgt	gtcg acttgattcg	ggtcccagtg	gcaccagccc	cttcaacttc	tccaggcaca	660
agcgaa	gatg agcccgtcta	ttcttctcca	tttcattgtg	agttgatctg	ctactgctgt	720
tattct	tttt ggatttgttc	ctccgtttta	aggcatctct	gtccttgttt	ttgtatggta	780
acatgg	aggc ataaccatgt	tcagcttctc	tctcccgccg	ctccagatag	tcggccgcct	840
ccagca	gcat ctggatgttc	atccgaaccg	ccgccgccat	ggcgccctga	aaataaagat	900
tctcag	tagt ggggatgtcg	taatcgctca	tggggtgatg	gtgatggtga	tgtttcatgg	960
tatato	tcct tcttaaagtt	aaatcaaaat	tatttctaga	ggggaattgt	tatccgctca	1020
caattc	ccct atagtgagtc	gtattaattt	cgcgggatcg	agatctcgat	cctctacgcc	1080
ggacgc	atcg tggccggcat	caccggcgcc	acaggtgcgg	ttgctggcgc	ctatatcgcc	1140
gacatc	accg atggggaaga	tcgggctcgc	cacttcgggc	tcatgagcgc	ttgtttcggc	1200
gtgggt	atgg tggcaggccc	cgtggccggg	ggactgttgg	gcgccatctc	cttgcatgca	1260
ccattc	cttg cggcggcggt	gctcaacggc	ctcaacctac	tactgggctg	cttcctaatg	1320
caggag	tcgc ataagggaga	gcgtcgagat	cccggacacc	atcgaatggc	gcaaaacctt	1380
tcgcgg	tatg gcatgatagc	gcccggaaga	gagtcaattc	agggtggtga	atgtgaaacc	1440
agtaac	gtta tacgatgtcg	cagagtatgc	cggtgtctct	tatcagaccg	tttcccgcgt	1500

ggtgaaccag	gccagccacg	tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	1560
ggagctgaat	tacattccca	accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	1620
gattggcgtt	gccacctcca	gtctggccct	gcacgcgccg	tcgcaaattg	tcgcggcgat	1680
taaatctcgc	gccgatcaac	tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	1740
cgtcgaagcc	tgtaaagcgg	cggtgcacaa	tcttctcgcg	caacgcgtca	gtgggctgat	1800
cattaactat	ccgctggatg	accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	1860
tccggcgtta	tttcttgatg	tctctgacca	gacacccatc	aacagtatta	ttttctccca	1920
tgaagacggt	acgcgactgg	gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	1980
gctgttagcg	ggcccattaa	gttctgtctc	ggcgcgtctg	cgtctggctg	gctggcataa	2040
atatctcact	cgcaatcaaa	ttcagccgat	agcggaacgg	gaaggcgact	ggagtgccat	2100
gtccggtttt	caacaaacca	tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	2160
ggttgccaac	gatcagatgg	cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	2220
cgttggtgcg	gatatctcgg	tagtgggata	cgacgatacc	gaagacagct	catgttatat	2280
cccgccgtta	accaccatca	aacaggattt	tcgcctgctg	gggcaaacca	gcgtggaccg	2340
cttgctgcaa	ctctctcagg	gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	2400
ggtgaaaaga	aaaaccaccc	tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	2460
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	2520
acgcaattaa	tgtaagttag	ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	2580
gagccttcaa	cccagtcagc	tccttccggt	gggcgcgggg	catgactatc	gtcgccgcac	2640
ttatgactgt	cttctttatc	atgcaactcg	taggacaggt	gccggcagcg	ctctgggtca	2700
ttttcggcga	ggaccgcttt	cgctggagcg	cgacgatgat	cggcctgtcg	cttgcggtat	2760
tcggaatctt	gcacgccctc	gctcaagcct	tcgtcactgg	tcccgccacc	aaacgtttcg	2820
gcgagaagca	ggccattatc	gccggcatgg	cggccccacg	ggtgcgcatg	atcgtgctcc	2880
tgtcgttgag	gacccggcta	ggctggcggg	gttgccttac	tggttagcag	aatgaatcac	2940
cgatacgcga	gcgaacgtga	agcgactgct	gctgcaaaac	gtctgcgacc	tgagcaacaa	3000
catgaatggt	cttcggtttc	cgtgtttcgt	aaagtctgga	aacgcggaag	tcagcgccct	3060
gcaccattat	gttccggatc	tgcatcgcag	gatgctgctg	gctaccctgt	ggaacaccta	3120
catctgtatt	aacgaagcgc	tggcattgac	cctgagtgat	ttttctctgg	tcccgccgca	3180
tccataccgc	cagttgttta	ccctcacaac	gttccagtaa	ccgggcatgt	tcatcatcag	3240
taacccgtat	cgtgagcatc	ctctctcgtt	tcatcggtat	cattaccccc	atgaacagaa	3300
atcccctta	cacggaggca	tcagtgacca	aacaggaaaa	aaccgccctt	aacatggccc	3360
gctttatcag	aagccagaca	ttaacgcttc	tggagaaact Page	caacgagctg 3	gacgcggatg	3420

aacaggcaga	catctgtgaa	tcgcttcacg	accacgctga	tgagctttac	cgcagctgcc	3480
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	3540
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	3600
ttggcgggtg	tcggggcgca	gccatgaccc	agtcacgtag	cgatagcgga	gtgtatactg	3660
gcttaactat	gcggcatcag	agcagattgt	actgagagtg	caccatatat	gcggtgtgaa	3720
ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gctcttccgc	ttcctcgctc	3780
actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	3840
gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	3900
cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	3960
cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	4020
ctataaagat	accaggcgtt	tcccctgga	agctccctcg	tgcgctctcc	tgttccgacc	4080
ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	4140
agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	4200
cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	4260
aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	4320
gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	4380
agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	4440
ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	4500
cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	4560
tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgaa	caataaaact	4620
gtctgcttac	ataaacagta	atacaagggg	tgttatgagc	catattcaac	gggaaacgtc	4680
ttgctctagg	ccgcgattaa	attccaacat	ggatgctgat	ttatatgggt	ataaatgggc	4740
tcgcgataat	gtcgggcaat	caggtgcgac	aatctatcga	ttgtatggga	agcccgatgc	4800
gccagagttg	tttctgaaac	atggcaaagg	tagcgttgcc	aatgatgtta	cagatgagat	4860
ggtcagacta	aactggctga	cggaatttat	gcctcttccg	accatcaagc	attttatccg	4920
tactcctgat	gatgcatggt	tactcaccac	tgcgatcccc	gggaaaacag	cattccaggt	4980
attagaagaa	tatcctgatt	caggtgaaaa	tattgttgat	gcgctggcag	tgttcctgcg	5040
ccggttgcat	tcgattcctg	tttgtaattg	tccttttaac	agcgatcgcg	tatttcgtct	5100
cgctcaggcg	caatcacgaa	tgaataacgg	tttggttgat	gcgagtgatt	ttgatgacga	5160
gcgtaatggc	tggcctgttg	aacaagtctg	gaaagaaatg	cataaacttt	tgccattctc	5220
accggattca	gtcgtcactc	atggtgattt	ctcacttgat	aaccttattt	ttgacgaggg	5280

015936-2.ST25.txt 5340 gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct 5400 tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca 5460 aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga 5520 gtttttctaa gaattaattc atgagcggat acatatttga atgtatttag aaaaataaac 5580 aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgaaattgta aacgttaata ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 5640 5700 aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 5760 cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 5820 ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 5880 cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 5940 ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 6000 gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 6029 cgccgctaca gggcgcgtcc cattcgcca <210> 5369 Artificial sequence <220> <223> Intermediate pETM-adp plasmid, on way to pETM-GFP-Imm construct <400> catcaccatc accatcaccc catgagcgat tacgacatcc ccactactga gaatctttat 60 120 tttcagggcg ccatgggagg cacggtaccg gatccgaatt cgagctccgt cgacaagctt gcggccgcac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagcccga 180 240 aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatccgg attggcgaat 300 360 gggacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 420 ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 480 ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat 540 ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 600 ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata 660 gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt 720 tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat 780 ttaacgcgaa ttttaacaaa atattaacgt ttacaatttc aggtggcact tttcggggaa 840 atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca

Page 5

tgaattaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	actgcaattt	attcatatca	900
ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	atgaaggaga	aaactcaccg	960
aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	cgattccgac	tcgtccaaca	1020
tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	tatcaagtga	gaaatcacca	1080
tgagtgacga	ctgaatccgg	tgagaatggc	aaaagtttat	gcatttcttt	ccagacttgt	1140
tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	catcaaccaa	accgttattc	1200
attcgtgatt	gcgcctgagc	gagacgaaat	acgcgatcgc	tgttaaaagg	acaattacaa	1260
acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	catcaacaat	attttcacct	1320
gaatcaggat	attcttctaa	tacctggaat	gctgttttcc	cggggatcgc	agtggtgagt	1380
aaccatgcat	catcaggagt	acggataaaa	tgcttgatgg	tcggaagagg	cataaattcc	1440
gtcagccagt	ttagtctgac	catctcatct	gtaacatcat	tggcaacgct	acctttgcca	1500
tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	atcgatagat	tgtcgcacct	1560
gattgcccga	cattatcgcg	agcccattta	tacccatata	aatcagcatc	catgttggaa	1620
tttaatcgcg	gcctagagca	agacgtttcc	cgttgaatat	ggctcataac	accccttgta	1680
ttactgttta	tgtaagcaga	cagttttatt	gttcatgacc	aaaatccctt	aacgtgagtt	1740
ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	1800
ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggtttg	1860
tttgccggat	caagagctac	caactctttt	tccgaaggta	actggcttca	gcagagcgca	1920
gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	caccacttca	agaactctgt	1980
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	2040
taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	2100
gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	2160
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	2220
caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	2280
aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	2340
tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	2400
acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	2460
ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	2520
gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcctgatgc	ggtattttct	2580
ccttacgcat	ctgtgcggta	tttcacaccg	catatatggt	gcactctcag	tacaatctgc	2640
tctgatgccg	catagttaag	ccagtataca	ctccgctatc	gctacgtgac	tgggtcatgg	2700

ctgcgccccg	acacccgcca	acacccgctg	015936-2.s acgcgccctg		ctgctcccgg	2760
catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	catgtgtcag	aggttttcac	2820
cgtcatcacc	gaaacgcgcg	aggcagctgc	ggtaaagctc	atcagcgtgg	tcgtgaagcg	2880
attcacagat	gtctgcctgt	tcatccgcgt	ccagctcgtt	gagtttctcc	agaagcgtta	2940
atgtctggct	tctgataaag	cgggccatgt	taagggcggt	tttttcctgt	ttggtcactg	3000
atgcctccgt	gtaaggggga	tttctgttca	tgggggtaat	gataccgatg	aaacgagaga	3060
ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	gttactggaa	cgttgtgagg	3120
gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	aatcactcag	ggtcaatgcc	3180
agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	ccagcagcat	cctgcgatgc	3240
agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	ttccagactt	tacgaaacac	3300
ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	cgttttgcag	cagcagtcgc	3360
ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	agtaaggcaa	ccccgccagc	3420
ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	ccgtggggcc	gccatgccgg	3480
cgataatggc	ctgcttctcg	ccgaaacgtt	tggtggcggg	accagtgacg	aaggcttgag	3540
cgagggcgtg	caagattccg	aataccgcaa	gcgacaggcc	gatcatcgtc	gcgctccagc	3600
gaaagcggtc	ctcgccgaaa	atgacccaga	gcgctgccgg	cacctgtcct	acgagttgca	3660
tgataaagaa	gacagtcata	agtgcggcga	cgatagtcat	gccccgcgcc	caccggaagg	3720
agctgactgg	gttgaaggct	ctcaagggca	tcggtcgaga	tcccggtgcc	taatgagtga	3780
gctaacttac	attaattgcg	ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	3840
gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	cggtttgcgt	attgggcgcc	3900
agggtggttt	ttcttttcac	cagtgagacg	ggcaacagct	gattgccctt	caccgcctgg	3960
ccctgagaga	gttgcagcaa	gcggtccacg	ctggtttgcc	ccagcaggcg	aaaatcctgt	4020
ttgatggtgg	ttaacggcgg	gatataacat	gagctgtctt	cggtatcgtc	gtatcccact	4080
accgagatat	ccgcaccaac	gcgcagcccg	gactcggtaa	tggcgcgcat	tgcgcccagc	4140
gccatctgat	cgttggcaac	cagcatcgca	gtgggaacga	tgccctcatt	cagcatttgc	4200
atggtttgtt	gaaaaccgga	catggcactc	cagtcgcctt	cccgttccgc	tatcggctga	4260
atttgattgc	gagtgagata	tttatgccag	ccagccagac	gcagacgcgc	cgagacagaa	4320
cttaatgggc	ccgctaacag	cgcgatttgc	tggtgaccca	atgcgaccag	atgctccacg	4380
cccagtcgcg	taccgtcttc	atgggagaaa	ataatactgt	tgatgggtgt	ctggtcagag	4440
acatcaagaa	ataacgccgg	aacattagtg	caggcagctt	ccacagcaat	ggcatcctgg	4500
tcatccagcg	gatagttaat	gatcagccca	ctgacgcgtt	gcgcgagaag	attgtgcacc	4560
gccgctttac	aggcttcgac	gccgcttcgt	tctaccatcg Page	acaccaccac 7	gctggcaccc	4620

agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga	4680
ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg	4740
ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa	4800
acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct	4860
gcgacatcgt ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg	4920
cgctatcatg ccataccgcg aaaggttttg cgccattcga tggtgtccgg gatctcgacg	4980
ctctccctta tgcgactcct gcattaggaa gcagcccagt agtaggttga ggccgttgag	5040
caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg cccaacagtc ccccggccac	5100
ggggcctgcc accataccca cgccgaaaca agcgctcatg agcccgaagt ggcgagcccg	5160
atcttcccca tcggtgatgt cggcgatata ggcgccagca accgcacctg tggcgccggt	5220
gatgccggcc acgatgcgtc cggcgtagag gatcgagatc tcgatcccgc gaaattaata	5280
cgactcacta taggggaatt gtgagcggat aacaattccc ctctagaaat aattttgatt	5340
taactttaag aaggagatat accatgaaa	5369
<210> 4 <211> 3337 <212> DNA <213> Artificial sequence <220> <223> pGFPuv plasmid coding for GFP from Aequorea victoria <220>	
<221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria	
<400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc	60
acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc	120
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa	180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg	240
catgcctgca ggtcgactct agaggatccc cgggtaccgg tagaa aaa atg agt aaa Lys Met Ser Lys 1	297
gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp 5 10 15 20	345
ggt gat gtt aat ggg cac aaa ttt tct gtc agt gga gag ggt gaa ggt Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly 25 30 35	393

015936-2.ST25.txt	441
gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act act gga Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly 40 45 50	441
aaa cta cct gtt cca tgg cca aca ctt gtc act act ttc tct tat ggt Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser Tyr Gly 55 60 65	489
gtt caa tgc ttt tcc cgt tat ccg gat cat atg aaa cgg cat gac ttt Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg His Asp Phe 70 75 80	537
ttc aag agt gcc atg ccc gaa ggt tat gta cag gaa cgc act ata tct Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Ser 85 90 95 100	585
ttc aaa gat gac ggg aac tac aag acg cgt gct gaa gtc aag ttt gaa Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu 105 110 115	633
ggt gat acc ctt gtt aat cgt atc gag tta aaa ggt att gat ttt aaa Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys 120 125 130	681
gaa gat gga aac att ctc gga cac aaa ctc gag tac aac tat aac tca Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser 135 140 145	729
cac aat gta tac atc acg gca gac aaa caa aag aat gga atc aaa gct His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala 150 155 160	777
aac ttc aaa att cgc cac aac att gaa gat gga tcc gtt caa cta gca Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala 165 170 175 180	825
gac cat tat caa caa aat act cca att ggc gat ggc cct gtc ctt tta Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu 185 190 195	873
cca gac aac cat tac ctg tcg aca caa tct gcc ctt tcg aaa gat ccc Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro 200 205 210	921
aac gaa aag cgt gac cac atg gtc ctt ctt gag ttt gta act gct gct Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala 215 220 225	969
ggg att aca cat ggc atg gat gag ctc tac aaa taa tga att cca Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Ile Pro 230 235 240	1014
actgagcgcc ggtcgctacc attaccaact tgtctggtgt caaaaataat aggcctacta	1074
gtcggccgta cgggcccttt cgtctcgcgc gtttcggtga tgacggtgaa aacctctgac	1134
acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg agcagacaag	1194
cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac tatgcggcat	1254
cagagcagat tgtactgaga gtgcaccata tgcggtgtga aataccgcac agatgcgtaa	1314
ggagaaaata ccgcatcagg cggccttaag ggcctcgtga tacgcctatt tttataggtt Page 9	1374

aatgtcatga	taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	1434
ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	1494
taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	1554
cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	1614
acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	1674
ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	1734
atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtattga	cgccgggcaa	1794
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	1854
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	1914
atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	1974
accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	2034
ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	2094
acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	2154
gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	2214
tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	2274
ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	2334
actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	2394
taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	2454
tttaaaagga	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	2514
gagttttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	2574
ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accagcggtg	2634
gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	2694
gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	2754
tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	2814
ggcgataagt	cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	2874
cggtcgggct	gaacgggggg	ttcgtgcaca	cagcccagct	tggagcgaac	gacctacacc	2934
gaactgagat	acctacagcg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	2994
gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagcttcca	3054
gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	3114
cgatttttgt	gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	3174
tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	3234

015936-2.ST25.txt cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aag

32943337

<210> 5 <211> 239 <212> PRT <213> Artificial sequence												
<220> <223> Synthetic Construct												
<400> 5												
Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 10 15												
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30												
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45												
Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 60												
Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 80												
Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95												
Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110												
Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125												
Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140												
Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn 145 150 155 160												
Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175												

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly 180 185 190

Pro Val	Leu L 195	eu Pro	Asp As	n His 200	Tyr	5936 Leu				Ser	Ala	Leu	
Ser Lys 210		ro Asn	Glu Ly 21		Asp	His	Met	va1 220	Leu	Leu	Glu	Phe	
Val Thr 225	Ala A	ala Gly	Ile Th	r His	Gly	Met	Asp 235	Glu	Leu	Tyr	Lys		
<211> <212>	6 6069 DNA Artifi	cial s	equence										
<220> <223>	pETM-G	FP-Imm	plasmi	d con	tain [.]	ing H	Hisx(5 tag	η, f ⁻	lexil	ole j	joint	
	as fra	me ada	oter, a	nd A.	vic	toria	a GFI	ger ger	ie				
<222>	CDS (1)(pETM-G	[876] FP-Imm	plasmi	d con	tain [.]	ing H	łisx(6 tag	3, f ⁻	lexil	ole :	joint	
	as fra	ıme adap	oter, a	nd A.	vic	toria	a GFI	ger	ne				
<400> atg aaa Met Lys 1	cat c	ac cat lis His 5	cac ca His Hi	t cac s His	ccc Pro	atg Met 10	agc Ser	gat Asp	tac Tyr	gac Asp	atc Ile 15	ccc Pro	48
act act Thr Thr		at ctt sn Leu !0	tat tt Tyr Ph	t cag e Gln	ggc Gly 25	gcc Ala	atg Met	gga Gly	ggc Gly	acg Thr 30	gta Val	ccg Pro	96
gta gaa Val Glu	aaa a Lys M 35	itg agt Met Ser	aaa gg Lys Gl	a gaa y Glu 40	gaa Glu	ctt Leu	ttc Phe	act Thr	gga Gly 45	gtt Val	gtc Val	cca Pro	144
att ctt Ile Leu 50				y Āsp									192
agt gga Ser Gly 65	gag g Glu G	gt gaa ily Glu	ggt ga Gly As 70	t gca p Ala	aca Thr	tac Tyr	gga Gly 75	aaa Lys	ctt Leu	acc Thr	ctt Leu	aaa Lys 80	240
ttt att Phe Ile													288
act act Thr Thr	Phe S	ct tat Ser Tyr .00	ggt gt Gly Va	t caa 1 Gln	tgc Cys 105	ttt Phe	tcc Ser	cgt Arg	tat Tyr	ccg Pro 110	gat Asp	cat His	336
atg aaa Met Lys					ser								384

015936-2.ST25.txt	
cag gaa cgc act ata tct ttc aaa gat gac ggg aac tac aag acg cgt Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130 135 140	432
gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat cgt atc gag tta Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 145 150 155 160	480
aaa ggt att gat ttt aaa gaa gat gga aac att ctc gga cac aaa ctc Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175	528
gag tac aac tat aac tca cac aat gta tac atc acg gca gac aaa caa Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190	576
aag aat gga atc aaa gct aac ttc aaa att cgc cac aac att gaa gat Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205	624
gga tcc gtt caa cta gca gac cat tat caa caa aat act cca att ggc Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220	672
gat ggc cct gtc ctt tta cca gac aac cat tac ctg tcg aca caa tct Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 235 240	720
gcc ctt tcg aaa gat ccc aac gaa aag cgt gac cac atg gtc ctt ctt Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255	768
gag ttt gta act gct gct ggg att aca cat ggc atg gat gag ctc cgt Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270	816
cga caa gct tgc ggc cgc act cga gca cca cca cca cca cca ctg aga Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg 275 280 285	864
tcc ggc tgc taa caaagcccga aaggaagctg agttggctgc tgccaccgct Ser Gly Cys 290	916
gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttgctg	976
aaaggaggaa ctatatccgg attggcgaat gggacgcgcc ctgtagcggc gcattaagcg	1036
cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg	1096
ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc	1156
taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa	1216
aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc	1276
ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac	1336
tcaaccctat ctcggtctat tcttttgatt tataagggat tttgccgatt tcggcctatt	1396
ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt	1456
ttacaatttc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt Page 13	1516

tctaaataca	ttcaaatatg	tatccgctca	tgaattaatt	cttagaaaaa	ctcatcgagc	1576
atcaaatgaa	actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	1636
cgtttctgta	atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	1696
tatcggtctg	cgattccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	1756
aaaataaggt	tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	1816
aaaagtttat	gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	1876
aaatcactcg	catcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gagacgaaat	1936
acgcgatcgc	tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	1996
actgccagcg	catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	2056
gctgttttcc	cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggataaaa	2116
tgcttgatgg	tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	2176
gtaacatcat	tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	2236
ttcccataca	atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	2296
tacccatata	aatcagcatc	catgttggaa	tttaatcgcg	gcctagagca	agacgtttcc	2356
cgttgaatat	ggctcataac	accccttgta	ttactgttta	tgtaagcaga	cagttttatt	2416
gttcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	2476
aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	2536
aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	2596
tccgaaggta	actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	2656
gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	2716
cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	2776
acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	2836
cagcttggag	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	2896
cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	2956
aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	3016
gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	3076
atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	3136
tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	3196
gtgagctgat	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	3256
agcggaagag	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	3316
catatatggt	gcactctcag	tacaatctgc	tctgatgccg	catagttaag	ccagtataca	3376

ctccgctatc	gctacgtgac	tgggtcatgg	015936-2.s ctgcgccccg		acacccgctg	3436
acgcgccctg	acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	3496
ccgggagctg	catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	aggcagctgc	3556
ggtaaagctc	atcagcgtgg	tcgtgaagcg	attcacagat	gtctgcctgt	tcatccgcgt	3616
ccagctcgtt	gagtttctcc	agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	3676
taagggcggt	tttttcctgt	ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	3736
tgggggtaat	gataccgatg	aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	3796
aacatgcccg	gttactggaa	cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	3856
accagagaaa	aatcactcag	ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	3916
cacagggtag	ccagcagcat	cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	3976
acttccgcgt	ttccagactt	tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	4036
aggtcgcaga	cgttttgcag	cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	4096
tctgctaacc	agtaaggcaa	ccccgccagc	ctagccgggt	cctcaacgac	aggagcacga	4156
tcatgcgcac	ccgtggggcc	gccatgccgg	cgataatggc	ctgcttctcg	ccgaaacgtt	4216
tggtggcggg	accagtgacg	aaggcttgag	cgagggcgtg	caagattccg	aataccgcaa	4276
gcgacaggcc	gatcatcgtc	gcgctccagc	gaaagcggtc	ctcgccgaaa	atgacccaga	4336
gcgctgccgg	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	4396
cgatagtcat	gccccgcgcc	caccggaagg	agctgactgg	gttgaaggct	ctcaagggca	4456
tcggtcgaga	tcccggtgcc	taatgagtga	gctaacttac	attaattgcg	ttgcgctcac	4516
tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	4576
cggggagagg	cggtttgcgt	attgggcgcc	agggtggttt	ttcttttcac	cagtgagacg	4636
ggcaacagct	gattgccctt	caccgcctgg	ccctgagaga	gttgcagcaa	gcggtccacg	4696
ctggtttgcc	ccagcaggcg	aaaatcctgt	ttgatggtgg	ttaacggcgg	gatataacat	4756
gagctgtctt	cggtatcgtc	gtatcccact	accgagatat	ccgcaccaac	gcgcagcccg	4816
gactcggtaa	tggcgcgcat	tgcgcccagc	gccatctgat	cgttggcaac	cagcatcgca	4876
gtgggaacga	tgccctcatt	cagcatttgc	atggtttgtt	gaaaaccgga	catggcactc	4936
cagtcgcctt	cccgttccgc	tatcggctga	atttgattgc	gagtgagata	tttatgccag	4996
ccagccagac	gcagacgcgc	cgagacagaa	cttaatgggc	ccgctaacag	cgcgatttgc	5056
tggtgaccca	atgcgaccag	atgctccacg	cccagtcgcg	taccgtcttc	atgggagaaa	5116
ataatactgt	tgatgggtgt	ctggtcagag	acatcaagaa	ataacgccgg	aacattagtg	5176
caggcagctt	ccacagcaat	ggcatcctgg	tcatccagcg	gatagttaat	gatcagccca	5236
ctgacgcgtt	gcgcgagaag	attgtgcacc	gccgctttac Page	aggcttcgac 15	gccgcttcgt	5296

tctaccatcg	acaccaccac	gctggcaccc	agttgatcgg	cgcgagattt	aatcgccgcg	5356
acaatttgcg	acggcgcgtg	cagggccaga	ctggaggtgg	caacgccaat	cagcaacgac	5416
tgtttgcccg	ccagttgttg	tgccacgcgg	ttgggaatgt	aattcagctc	cgccatcgcc	5476
gcttccactt	tttcccgcgt	tttcgcagaa	acgtggctgg	cctggttcac	cacgcgggaa	5536
acggtctgat	aagagacacc	ggcatactct	gcgacatcgt	ataacgttac	tggtttcaca	5596
ttcaccaccc	tgaattgact	ctcttccggg	cgctatcatg	ccataccgcg	aaaggttttg	5656
cgccattcga	tggtgtccgg	gatctcgacg	ctctccctta	tgcgactcct	gcattaggaa	5716
gcagcccagt	agtaggttga	ggccgttgag	caccgccgcc	gcaaggaatg	gtgcatgcaa	5776
ggagatggcg	cccaacagtc	ccccggccac	ggggcctgcc	accataccca	cgccgaaaca	5836
agcgctcatg	agcccgaagt	ggcgagcccg	atcttcccca	tcggtgatgt	cggcgatata	5896
ggcgccagca	accgcacctg	tggcgccggt	gatgccggcc	acgatgcgtc	cggcgtagag	5956
gatcgagatc	tcgatcccgc	gaaattaata	cgactcacta	taggggaatt	gtgagcggat	6016
aacaattccc	ctctagaaat	aattttgatt	taactttaag	aaggagatat	acc	6069

<210> 7 <211> 291

<211> 291 <212> PRT

<213> Artificial sequence

<220>

<223> Synthetic Construct

<400> 7

Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro 20 25 30

Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 35 40 45

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 50 60

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 65 70 75 80

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 85 90 95

Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Page 16

110

Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125

Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130 140

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 145 150 155 160

Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 225 230 235

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285

Ser Gly Cys 290

<210> 8

<211> 17 <212> DNA

<213> Artificial sequence

<220>
<223> Frame adapter used for prevention of frameshift mutation as a result of plasmid modification

<220>

```
<221> misc_feature
<222>
       (1)...(17)
       Frame adapter used for prevention of frameshift mutation as a
<223>
       result of plasmid modification
<400> 8
                                                                        17
catgggaggc acggtac
<210>
       9
<211>
       5
<212>
       PRT
       Artificial sequence
<213>
<220>
<223>
       Peptide design based on size and flexibility to act as a linker
       between the tag and GFP protein segments
<220>
<221>
       MISC_FEATURE
<223>
       Peptide design based on size and flexibility to act as a linker
       between the tag and GFP protein segments
<400> 9
Met Gly Gly Thr Val
<210>
       10
<211>
       6
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Peptide design based on charge and shape to bind the
       expressed protein to a suitably interactive surface
<220>
<221>
       MISC_FEATURE
<223>
       Peptide design based on charge and shape to bind the
       expressed protein to a suitably interactive surface
<400>
      10
His His His His His
<210>
       11
<211>
       238
<212>
       PRT
<213>
      Aequorea victora
<220>
<221>
      MISC_FEATURE
      Green fluorescent peptide coded by pGFPuv plasmid, permitting
<223>
                                        Page 18
```

015936-2.ST25.txt easy visualisation and quantification based on fluorescence

properties

<400> 11

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 60

Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly
145 150 155 160

Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 225 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 230 235 Page 19

<210 <211 <211 <211	l> 2>	12 291 PRT Arti	ficia	al se	equer	ıce									
<220 <223		linke	er ar rt f	nd gi luore	reen escer	fluc nce r	preso	cent ertie	prot	tein allov	code vina	ed by easy	/ pE ⁻ / imm	TM-G! nobi	ly flexible FP-Imm to lisation with cation
<220 <221 <223	1>	MISC Comp linke impa reter	letec	d per	otide reen escer bioa	e bas fluo nce p activ	sed oreso prope	on H ^r cent ertie , vis	isx6 protes, a	tag tein allow isat	, sho code ving ion a	ort ped by easy	ohys / pE ⁻ / imm	ical TM-GI mobi tific	ly flexible FP-Imm to lisation with
<400)>	12													
Met 1	Lys	His	His	нis 5	His	His	His	Pro	Met 10	Ser	Asp	Tyr	Asp	Ile 15	Pro
Thr	Thr	Glu	Asn 20	Leu	Tyr	Phe	Gln	G]y 25	Ala	Met	Gly	Gly	Thr 30	val	Pro
val	Glu	Lys 35	Met	Ser	Lys	Gly	Glu 40	Glu	Leu	Phe	Thr	Gly 45	٧a٦	٧a٦	Pro
Ile	Leu 50	val	Glu	Leu	Asp	Gly 55	Asp	٧al	Asn	Gly	ніs 60	Lys	Phe	Ser	Val
Ser 65	Gly	Glu	Gly	Glu	Gly 70	Asp	Ala	Thr	Tyr	Gly 75	Lys	Leu	Thr	Leu	Lys 80
Phe	Ile	Cys	Thr	Thr 85	Gly	Lys	Leu	Pro	va1 90	Pro	тгр	Pro	Thr	Leu 95	Val
Thr	Thr	Phe	Ser 100	Tyr	Gly	۷al	Gln	Cys 105	Phe	Ser	Arg	Tyr	Pro 110	Asp	His
Met	Lys	Arg 115	His	Asp	Phe	Phe	Lys 120	Ser	Ala	Met	Pro	Glu 125	Gly	Tyr	Val
Gln	Glu 130	Arg	Thr	Ile	Ser	Phe 135	Lys	Asp	Asp	Gly	Asn 140	Tyr	Lys	Thr	Arg
Ala 145	Glu	Val	Lys	Phe	Glu 150	Gly	Asp	Thr	Leu	Val 155	Asn	Arg	Ile	Glu	Leu 160

```
015936-2.ST25.txt
Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu
165 170 175
Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln
180 185 190
Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205
Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220
Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 225 230 235 240
Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255
Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270
Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285
Ser Gly Cys
290
<210>
<211> 29
<212> DNA
      Artificial sequence
<220>
<223>
       Frame adapter
```

<400>

13

gtacgccatg ggaggcacgg taccttgtg

29