Question number	Scheme	Marks			
7 (a)	(i) $\frac{U_7}{U_3} = \frac{ar^6}{ar^2} = r^4 \Rightarrow \frac{16}{4} = r^4 \Rightarrow 4 = r^4 \Rightarrow 2 = r^2 \Rightarrow r = \sqrt{2} *$	M1 A1cso			
	(ii) $ar^2 = 4 \Rightarrow a = \frac{4}{\left(\sqrt{2}\right)^2} = 2$	A1 [3]			
Alternative					
(a)	(i) $ar^2 = 4$, $ar^6 = 16 \Rightarrow a\left(\frac{4}{a}\right)^3 = 16 \Rightarrow a^2 = 4 \Rightarrow a = 2$	M1			
	$r^2 = \frac{4}{2} \Rightarrow r = \sqrt{2} *$	Alcso			
	(ii) $a=2$	A1			
(b)	(ii) $a = 2$ $500 < 2 \times \sqrt{2}^{(n-1)} \Rightarrow 250 < \sqrt{2}^{(n-1)} \text{ or } 500 < 2^{\frac{1}{2}(n+1)}$	M1			
	$ \lg 250 < (n-1)\lg \sqrt{2} \qquad \text{or } \lg 500 < \frac{1}{2}(n+1)\lg 2 n-1 > \frac{\lg 250}{\lg \sqrt{2}} \Rightarrow n-1 > 15.93 \text{ or } \frac{1}{2}(n+1) > \frac{\lg 500}{\lg 2} \Rightarrow \frac{1}{2}(n+1) > 8.96 n > 16.93 \Rightarrow n = 17 $	M1 M1A1 [4]			
(c)	$S_{20} = \frac{2\left(\left(\sqrt{2}\right)^{20} - 1\right)}{\sqrt{2} - 1} = \frac{2046}{\sqrt{2} - 1}$ $\frac{2046}{\left(\sqrt{2} - 1\right)} \times \frac{\left(\sqrt{2} + 1\right)}{\left(\sqrt{2} + 1\right)} = 2046\sqrt{2} + 2046 = 2046\left(1 + \sqrt{2}\right)$	M1A1			
	Total	[4] 11 marks			
Total II marks					

(a)(i)	M1	$ar^2 = 4$ and $ar^6 = 16$
	A1	Correct working to eliminate a and show that $r = \sqrt{2}$ (Answer given)
	cso	Must see $r^4 = 4$.
(ii)	A1	a = 2 (NB: This is not a B mark; must have scored the first M mark.)
Alternative		
(a)(i)	M1	$ar^2 = 4$ and $ar^6 = 16$
	A1	Correct working to find a and use it to show that $r = \sqrt{2}$ (Answer given)
	cso	Must see a correct substitution to eliminate r which is processed correctly to
		give $a = 2$, and $r^2 = \frac{4}{2}$ or $r^6 = \frac{16}{2}$.
(ii)	A1	a = 2 (Must have scored the first M mark.)

(b)	M1	$500 < 2 \times (\sqrt{2})^{(n-1)}$ Accept an equation or >. Accept $500 < 2 \times \sqrt{2}^{n-1}$
		ft their value for a
	M1	$n-1 > \frac{\lg 250}{\lg \sqrt{2}} \text{ or } \frac{1}{2}(n-1) > \frac{\lg 250}{\lg 2} \text{ or } \frac{1}{2}(n+1) > \frac{\lg 500}{\lg 2} \text{ or } \lg_{\sqrt{2}} 250 < n-1$
		Accept equation or >, and logs with any base. ft $500 < 2 \times (\sqrt{2})^n$
	M1	Evaluate and divide logs and attempt to find a value (at least 1DP) or
		numerical expression for n . Ignore incorrect inequality sign.
		eg $n > 16.9$ or $n = 16.9$ or $n > 1 + 15.93$ or $n = 1 + 2 \times 7.96$ ft $500 < 2 \times (\sqrt{2})^n$
	A1	n = 17 Do not award after incorrect inequalities e.g. $n < 16.9$
Alternative		
(b)	M1	$500 < 2 \times (\sqrt{2})^{(n-1)}$ Accept an equation or >. Accept $500 < 2 \times \sqrt{2}^{n-1}$
		ft their value for a
	M1	Attempt to use trial and improvement, showing two trials that can be used to
		confirm the required value of n , eg
		$\left(\sqrt{2}\right)^{15} = 181.0 \text{ and } \left(\sqrt{2}\right)^{16} = 256 \text{ or } 2\left(\sqrt{2}\right)^{15} = 362.0 \text{ and } 2\left(\sqrt{2}\right)^{16} = 512$
		or $2^8 = 256$ and $2^9 = 512$ ft $500 < 2 \times (\sqrt{2})^n$ if clearly stated
	M1	Use the higher power from these trials in an appropriate equation
		eg $n-1=16$ or $\frac{1}{2}(n+1)=9$
		and attempt to find a value for <i>n</i> . If $500 < 2 \times (\sqrt{2})^n$ if clearly stated
	A1	n = 17
(c)	M1	Attempt to use $S_n = \frac{a(1-r^n)}{(1-r)}$ with their $a, r = \sqrt{2}$ and $n = 20$
		Allow notation or sign errors if formula is stated, otherwise the substitution
		must be correct.
	A1	$S_{20} = \frac{2046}{\sqrt{2} - 1}$ or $S_{20} = -\frac{2046}{1 - \sqrt{2}}$ Correct expression with numerator evaluated.
	M1	Attempt to rationalise the denominator. Must use $\sqrt{2} + 1$ and attempt to
		simplify the denominator.
	A1	$2046(1+\sqrt{2})$ or $2046(\sqrt{2}+1)$ Accept $p=2046$.
		Award full marks for a correct answer if first M1 has been awarded.