EECS 545: Machine Learning Lecture 6. Classification 3

Honglak Lee 1/29/2025

Outline

(grey: already covered)

- Probabilistic discriminative models
 - ✓ Logistic Regression
 - ✓ Softmax Regression
- Probabilistic generative models
 - ✓ Gaussian discriminant analysis
 - ✓ Naive Bayes
- Discriminant functions (non-probabilistic)
 - Fisher's linear discriminant
 - Perceptron learning algorithm

Discriminant Functions

Linear Discriminant functions: Discriminating two classes

· Specify a weight vector \mathbf{w} and a bias \mathbf{w}_{0}

$$h(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

• Assign \mathbf{x} to C_1 if $h(\mathbf{x}) \ge 0$ and to C_0 otherwise.

• Q: How to pick w?

Linear Discriminant functions: Discriminating K>2 classes

• Instead each class C_{ν} gets its own function

$$h_k(\mathbf{x}) = \mathbf{w}_k^{\top} \mathbf{x} + w_{k,0}$$

– Assign \mathbf{x} to C_{ν} if

$$h_k(\mathbf{x}) > h_j(\mathbf{x})$$
 for all $j \neq k$

• The decision regions are convex polyhedra.

Decision Regions

Decision regions are convex, with piecewise linear boundaries.

How do we set the weights w?

- How about w that minimizes squared error?
 - Label y versus linear prediction $h(\mathbf{w})$.
 - Least squares is too sensitive to outliers. (why?)

Learning Linear Discriminant Functions

- Fisher's linear discriminant
- Perceptron learning algorithm

Read Bishop book

Fisher's Linear Discriminant

- Let's consider binary classification case.
- Use w to project x to one dimension.

if
$$\mathbf{w}^{\top}\mathbf{x} \geq -w_0$$
 then C_1 else C_0

- Select w that best <u>separates</u> the classes.
- By "separating", the algorithm simultaneously
 - maximizes between-class (inter-class) variances
 - minimizes within-class (intra-class) variances

Read Bishop book

Fisher's Linear Discriminant

- Maximizing separation alone is not enough.
 - Minimizing class variance is a big help.

Read Bishop book

Objective function

We want to maximize the "distance between classes"

$$\underline{m_2} - m_1 \equiv \mathbf{w}^{ op}(\underline{\mathbf{m}_2} - \mathbf{m}_1)$$
 where $\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in C_k} \mathbf{x}_n$

where
$$\mathbf{m}_k = \frac{1}{N_k} \sum_{n \in C_k} \mathbf{x}_n$$

While minimizing the "distance within each class"

$$s_1^2 + s_2^2 \equiv \sum_{n \in C_1} (\mathbf{w}^{\top} \mathbf{x}_n - m_1)^2 + \sum_{n \in C_2} (\mathbf{w}^{\top} \mathbf{x}_n - m_2)^2$$

• Objective function: $J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$

Read Bishop book

48

Derivation of objective

- Numerator: $m_2 m_1 \equiv \mathbf{w}^{\top} (\mathbf{m}_2 \mathbf{m}_1)$ $\|m_2 m_1\|^2 = \mathbf{w}^{\top} (\mathbf{m}_2 \mathbf{m}_1) (\mathbf{m}_2 \mathbf{m}_1)^{\top} \mathbf{w}$
- Denominator:

$$\begin{aligned} \circ & \ s_k^2 = \sum_{n \in C_k} (\mathbf{w}^\top \mathbf{x}_n - m_k)^2 \\ & = \sum_{n \in C_k} \mathbf{w}^\top (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^\top \mathbf{w} \\ \circ & \ s_1^2 + s_2^2 = \mathbf{w}^\top \left[\sum_{k=1,2} \sum_{n \in C_k} (\mathbf{x}_n - \mathbf{m}_k) (\mathbf{x}_n - \mathbf{m}_k)^\top \right] \mathbf{w} \end{aligned}$$

After definition of terms, we get

$$J(\mathbf{w}) = \frac{\mathbf{w}^{\top} S_B \mathbf{w}}{\mathbf{w}^{\top} S_W \mathbf{w}}$$

 \circ Solution: $\mathbf{w} \propto S_W^{-1}(\mathbf{m}_2 - \mathbf{m}_1)$

Read Bishop book

Fisher's Linear Discriminant Analysis: Pros and Cons

Pros:

- Simple and effective approach for classification.
- Can effectively handle correlations between features
- Minimal assumptions about the underlying data distribution.
- Easy to interpret and explain

- Only suitable for two-class classification problems
- Can be sensitive to outliers and may produce suboptimal results when the data has noisy features/labels

The Perceptron

A "generalized linear function"

$$h(\mathbf{x}) = f(\mathbf{w}^{\top} \phi(\mathbf{x}))$$

where

$$f(a) = \begin{cases} +1, & a \ge 0 \\ -1, & a < 0 \end{cases}$$

- Uses target code: y=+1 for C_1 , y=-1 for C_2 .
- This means that we always want:

$$\mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)} > 0$$

The Perceptron Criterion

• Only count errors from misclassified points:

$$E_P(\mathbf{w}) = -\sum_{\mathbf{x}^{(n)} \in \mathcal{M}} \mathbf{w}^{\top} \phi(\mathbf{x}^{(n)}) y^{(n)}$$

- where \mathcal{M} is the set of **misclassified** points.
- Stochastic gradient descent:
 - Update the weight vector according to the each misclassified sample (i.e., take gradient per sample):

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_P(\mathbf{w}) = \mathbf{w}^{(\tau)} + \eta \phi(\mathbf{x}^{(n)}) y^{(n)}$$

Note: update only for misclassified examples 50

Perceptron Learning (1)

red: positve (y= +1)

• If $\mathbf{x}^{(n)}$ is misclassified, add $\phi(\mathbf{x}^{(n)})$ into \mathbf{w} .

Perceptron Learning (2)

red: positve (y= +1) blue: negative (y= -1)

• If $\mathbf{x}^{(n)}$ is misclassified, add $\phi(\mathbf{x}^{(n)})$ into $\mathbf{w}.$

Perceptron Learning

- Perceptron Convergence Theorem (Block, 1962, and Novikoff, 1962):
 - If there exists an exact solution (i.e., if the training data is linearly separable)
 - then the learning algorithm will find it in a finite number of steps.
- Limitations of perceptron learning:
 - The convergence can be very slow.
 - If dataset is not linearly separable, it won't converge.
 - Does not generalize well to K>2 classes.

E 2