Assignment_2

Jieran Sun, Hui Jeong (HJ) Jung, Gumdmundur Björgvin Magnusson

2023-03-05

Problem 4

$$P(C_i|D_j) = \frac{P(D_j|C_i)P(C_i)}{P(D_j)} \tag{1}$$

Knowing that the two coins C_A and C_B each have a probability of 0.7 and 0.4 for obtaining heads, we can calculate each probability $P(C_i|D_i)$ with the above formula.

$$P(C_A|D_1) = \frac{(0.3^6 * 0.7^4) * 0.6}{(0.3^6 * 0.7^4) * 0.6 + (0.6^6 * 0.4^4) * 0.4}$$
(2)

$$= 0.1802056 \approx 0.18 \tag{3}$$

To explain, $P(D_1|C_A) = 0.3^6 * 0.7^4$ as there were 4 heads and 6 tails in D_1 . We are given that $P(C_A) = 0.6$. $P(D_1)$ can be obtained by calculating $P(D_1|C_A)P(C_A) + P(D_1|C_B)P(C_B)$.

$$P(C_A|D_2) = \frac{(0.3^2 * 0.7^8) * 0.6}{(0.3^2 * 0.7^8) * 0.6 + (0.6^2 * 0.4^8) * 0.4}$$
(4)

$$= 0.9705765143 \approx 0.97058 \tag{5}$$

$$P(C_B|D_1) = \frac{(0.6^6 * 0.4^4) * 0.4}{(0.3^6 * 0.7^4) * 0.6 + (0.6^6 * 0.4^4) * 0.4}$$
(6)

$$= 0.8197943509 \approx 0.8198 \tag{7}$$

$$P(C_B|D_2) = \frac{(0.6^2 * 0.4^8) * 0.4}{(0.3^2 * 0.7^8) * 0.6 + (0.6^2 * 0.4^8) * 0.4}$$
(8)

$$= 0.02942348571 \approx 0.0294 \tag{9}$$

The updated mixture weights are

$$P(C_A) = (P(C_A|D_1) + P(C_A|D_2))/(P(C_A|D_1) + P(C_A|D_2) + P(C_B|D_1) + P(C_B|D_2))$$
(10)

$$= 0.57539105715 \approx 0.57539 \tag{11}$$

$$P(C_B) = (P(C_B|D_1) + P(C_B|D_2))/(P(C_A|D_1) + P(C_A|D_2) + P(C_B|D_1) + P(C_B|D_2))$$
(12)

$$= 0.4246089183 \approx 0.42461 \tag{13}$$

Problem 5

```
set.seed(2023)
```

(a) Load data

We first read the data stored in the file "coinflip.csv".

```
# read the data into D
D <- data.table::fread("coinflip.csv")
# check the dimension of D
all(dim(D) == c(200, 100))</pre>
```

[1] TRUE

(b) Initialize parameters

Next, we will need to initialize the mixture weights and the probabilities of obtaining heads. You can choose your own values as long as they make sense.

```
# Number of coins
k <- 2
# Mixture weights (a vector of length k)
lambda <- runif(k)
lambda <- lambda/sum(lambda)
# Probabilities of obtaining heads (a vector of length k)
theta <- runif(k)
lambda <- runif(k)
lambda <- lambda/sum(lambda)
# Probabilities of obtaining heads (a vector of length k)
theta <- runif(k)</pre>
```

(c) The EM algorithm

Now we try to implement the EM algorithm. Please write your code in the indicated blocks.

```
##' This function implements the EM algorithm for the coin toss problem
##' @param D Data matrix of dimensions 100-by-N, where N is the number of observations
##' @param k Number of coins
##' @param lambda Vector of mixture weights
##' @param theta Vector of probabilities of obtaining heads
##' @param tolerance A threshold used to check convergence
coin_EM <- function(D, k, lambda, theta, tolerance = 1e-2) {

# expected complete-data (hidden) log-likelihood
ll_hid <- -Inf
# observed log-likelihood
ll_obs <- -Inf
# difference between two iterations
diff <- Inf
# number of observations
N <- nrow(D)</pre>
```

```
# responsibilities
gamma <- matrix(0, nrow = k, ncol = N)</pre>
# run the E-step and M-step until convergence
while (diff > tolerance) {
  # store old likelihood
  ll_obs_old <- ll_obs</pre>
  ######### E-step ###########
  # Compute the responsibilities
  PofXgivenThetaTimesLambda <- gamma
  for (i in 1:N) {
    for (k_i in 1:k) {
        PofXgivenThetaTimesLambda[k_i,i] <-</pre>
          prod(D[i,]*theta[k_i] + (D[i,]-1)*(theta[k_i]-1))*lambda[k_i]
    }
  }
  gamma <- apply(PofXgivenThetaTimesLambda, 2, function(x) x/sum(x))</pre>
  # Update expected complete-data (hidden) log-likelihood
  11_hid <- sum(gamma * log(PofXgivenThetaTimesLambda))</pre>
  # Update observed log-likelihood
  11_obs <- sum(log(apply(PofXgivenThetaTimesLambda, 2, sum)))</pre>
  # Recompute difference between two iterations
  diff <- abs(ll_obs - ll_obs_old) # abs shouldnt be needed
  ### YOUR CODE ENDS ###
  ########## M-step ############
  # Recompute priors (mixture weights)
  lambda <- rowMeans(gamma)</pre>
  # Recompute probability of heads for each coin
  for (k_i in 1:k) {
        theta[k_i] \leftarrow sum(gamma[k_i,] * rowSums(D == 1))/(100*sum(gamma[k_i,]))
  }
      # Recompute probability of heads for each coin
  theta \leftarrow c(sum(gamma[1,] * rowSums(D == 1))/(100*sum(gamma[1,])),
             sum(gamma[2,] * rowSums(D == 1))/(100*sum(gamma[2,])))
  ### YOUR CODE ENDS ###
}
return(list(ll_hid = ll_hid, ll_obs = ll_obs, lambda = lambda, theta = theta, gamma = gamma ))
```

Run the EM algorithm:

```
res <- coin_EM(D, k, lambda, theta)
```

(d) Results

```
Probability of heads:
cat(sprintf(
  "The probability of heads are:
  coin 1: %.3f
 coin 2: %.3f",
 res$theta[1], res$theta[2]))
## The probability of heads are:
     coin 1: 0.450
     coin 2: 0.570
Mixture weights:
cat(sprintf(
 "The mixture weights are:
  coin 1 : %.3f
  coin 2 : %.3f ",
  res$lambda[1], res$lambda[2]
))
## The mixture weights are:
     coin 1 : 0.833
##
     coin 2 : 0.167
Heatmap of responsibilities:
library(viridis)
## Loading required package: viridisLite
pheatmap::pheatmap(res$gamma, color = viridis_pal(option = "D")(100))
```


How many observations belong to each coin?

```
res$gamma <- data.table::as.data.table(res$gamma)
cat("The number of observation for each coin is predicted below: \n")</pre>
```

The number of observation for each coin is predicted below:

knitr::kable(table(as.numeric(res\$gamma[, lapply(.SD, which.max)])))

Var1	Free
1	171
2	29