实验七 8路跑马灯的设计

一、实验目的

- 1、学会数控分频器的设计与使用;
- 2、熟练使用原理图、文本输入等设计方法设计数字系统;
- 3、进一步巩固开发系统和开发软件的使用。

二、实验原理:

- 1、设计一个8路跑马灯系统,8个LED灯轮流被点亮,同时通过数控分频器控制LED轮流被点亮的频率。
- 2、设置3-8译码器的使能按键,当G1、G1a、G2b分别为'1','0','0'时实现跑马灯的效果。3-8译码器可以调用宏模块74LS138或者Verilog文本输入。

三、实验内容:

系统采用如下四个模块实现:

- 1. 用Verilog语言设计一个分频器 输入时钟clk,输出时钟250HZ;
- 2. 用Verilog语言设计一个数控分频器,

输入:时钟clk为250HZ, data_in为预置值,根据预置值来改变计数的多少,从而实现不同的分频比

输出:分频时钟divclk

3. 以divclk为主时钟设计3位二进制计数器。

输入:分频时钟divclk

输出: 3位计数器q[3:0]

4. 3-8译码器

输入: 3位计数器q[3:0]

输出: 3-8译码器的输出8个led灯led1~led8

调用以上几个模块,完成顶层设计如图1所示。

四、引脚分配情况及实验操作步骤

本次实验需要用到的硬件资源(系统时钟,二极管灯,拨码开关)

设计端口	芯片引脚	开发板模块	备注
clk	T1	sys_clk	系统时钟 50MHz
data_in[0]	V13	SW4	拨码开关:
data_in[1]	AA15	SW3	上: "1"
data_in[2]	M20	SW2	下: "0"
data_in[3]	N18	SW1	
led1	U12	led1	led 灯:
led2	V12	led2	1: 灭
led3	V15	led3	0: 亮
led4	W13	led4	
led5	W15	led5	
led6	Y17	led6	
led7	R16	led7	
led8	T17	led8	

五、实验结果

观察8路LED灯led1~led8轮流被点亮,改变分频预置值sw1~sw4,通过数控分频器控制LED轮流被点亮的频率。

