

Neural Networks

An introduction

Dr. Mihai Polceanu

What is the lecture about?

Image source: https://livebook.manning.com/book/deep-learning-with-javascript/chapter-1/v-7/13

What's the point?

Image source: https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

What's the point?

Image source: https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

Orange or Apple?

Orange or Apple?

Orange, Apple or Lemon?

Mop or Dog?

Mop or Dog?

Image source: https://www.pinterest.de/pin/338332990726474128/ * Also, it looks like this meme is inaccurate! Go ahead and check!

Image source: https://www.beano.com/posts/sheepdog-or-mop

Mop or Dog?

Feature?

Image source: https://www.pinterest.de/pin/338332990726474128/ * Also, it looks like this meme is inaccurate! Go ahead and check!

Image source: https://www.beano.com/posts/sheepdog-or-mop

Mop or Dog?

Feature?

⁽ Actually taken from a carpet!

Image source: https://www.pinterest.de/pin/338332990726474128/

* Also, it looks like this meme is inaccurate ! Go ahead and check!

A bit of history

Psychological Review Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR INFORMATION STORAGE AND ORGANIZATION IN THE BRAIN ¹

F. ROSENBLATT

Cornell Aeronautical Laboratory

Image source: https://towardsdatascience.com/a8b46db828b7

A bit of history

A bit of history

What is a Neural Network?

(end of analogy)

Biological Neuron versus Artificial Neural Network

Image source: https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b

Artificial neuron = a crude approximation of a biological neuron

Artificial Neural Network = a collection of artificial neurons

What's the point? (recap)

Image source: https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

What is a Neural Network? (features)

What is a Neural Network? (training)

What is a Neural Network? (result)

 $\textbf{Video source:} \ \underline{\text{https://gfycat.com/handsomemerryhyena-artificial-neural-networks-convolutional-networks}}$

Applications?

Video source: https://www.youtube.com/watch?v=Bui3DWs02h4

Training with Gradient Descent

Imagine this function – the altitude given the location on the ground

Training with Gradient Descent

The function value is high if the network is wrong, and low if it is performing well

Automatic differentiation

Video source: https://imgflip.com/memegenerator

Gradient-based Optimisation algorithms

Good news:

- Even though SGD ends up in local minima, they are quite reasonable
- Adam seems to work well for most cases
 - Less trouble with tuning the learning rate
 - See newer variants too: AdamW, Radam, ...
- The process is efficient !!
 - even more so when using GPUs

Video source: https://imgflip.com/memegenerator

Other ways to train neural nets

Derivative free optimisation

- Genetic algorithms
- Contrastive Divergence (Restricted Boltzmann Machines)
- Evolution strategies
- Neuroevolution
- Particle Swarm optimisation
- Simulated annealing
- Grid/Random search
- Subgradient method
- •

Other ways to train neural nets

Derivative free optimisation

Genetic algorithms

Summary

- This brief introduction presented:
 - An overview of neural nets
 - A brief history of neural networks
 - The way they are trained
 - The building blocks of neural nets
 - Intuitions on how neural nets could be scaled up

The lab: Building Neural Nets (Keras)

- Logistic Regression
- Optimizers
- Learning rates
- ...

Next time: Scaling up neural nets

- Problems that come with deeper models
- ... and how to solve them

Image source: https://www.inference.vc/deep-learning-is-easy/

Free CPU/GPU!! © (if you don't have one)

URL: https://colab.research.google.com

Resources

Keras (Python & R)

https://keras.io/
https://keras.rstudio.com/

Anaconda (Python & R)

https://www.anaconda.com/distribution/