

Artificial Intelligence and Data Science Department

Course Code:	Course Title	Credit
ADDOL7023	Game Theory for Data Science Lab	1

Lab Objectives:

- 1. To understand fundamental game theory concepts.
- 2. To apply game theory to real-world data science scenarios.
- 3. To analyze Nash equilibria in different types of games.
- 4. To investigate mixed strategies and their implications.
- 5. To learn game theory algorithms and computational tools.
- 6. To explore applications of game theory in data science.

Lab Outcomes: Learner will be able to

- 1. Gain a solid understanding of fundamental game theory concepts.
- 2. Develop the ability to apply game theory principles to real-world data science problems.
- 3. Analyze and identify Nash equilibria in various game scenarios.
- 4. Comprehend the implications and applications of mixed strategies in game theory.
- 5. Acquire practical skills in utilizing game theory algorithms and computational tools.
- 6. Explore and appreciate the wide range of applications of game theory in data science.

<u>Index</u>

Week	Lab Work	LOs	DOP	Grade /Marks	Sign
1	Prisoner's Dilemma	1, 3			
2	Exploring Games for Game Theory	1, 2, 3, 6			
3	Understanding and Implementation of Auctions	2, 3, 6			
4	Elimination of Dominated Strategy	1, 3			
5	Using Best Response Function to Find Nash Equilibria	1, 3			
6	Minimax Theorem and Minimax Strategies	1, 4, 5			
7	Perfect Information Games and Backward Induction	1, 5			
8	Repeated Games	1, 3			
9	Bayesian Nash Equilibrium	3, 4, 6			
10	Imperfect Information Games – Mixed Strategy Nash Equilibrium	3, 4, 5			
11	Implementation of Strategic Games (e.g., Tic Tac Toe, 8 Puzzle)	5, 6			

Signature:

Lab and Subject Teacher: Mr. Amit Singh