Leandro Vendramin

Associative algebras

Notes

Wednesday 22nd September, 2021

Contents

1 Semisimple algebras	 1
References	 11
Index	 13

Chapter 1 Semisimple algebras

Definition 1.1. An **algebra** (over the field K) is a vector space (over K) with an associative multiplication $A \times A \to A$ such that $a(\lambda b + \mu c) = \lambda(ab) + \mu(ac)$ and $(\lambda a + \mu b)c = \lambda(ac) + \mu(bc)$ for all $a, b, c \in A$, and that contains an element $1_A \in A$ such that $1_A a = a1_A = a$ for all $a \in A$.

Note that an algebra over K is a ring A that is a vector space (over K) such that the map $K \to A$, $\lambda \mapsto \lambda 1_A$, is injective.

Definition 1.2. An algebra *A* is **commutative** if ab = ba for all $a, b \in A$.

The **dimension** of an algebra A is the dimension of A as a vector space. This is why we want to consider algebras, as they are linear version of rings. Quite often our arguments will use the dimension of the underlying vector space.

Example 1.3. The field \mathbb{R} is a real algebra and similarly \mathbb{C} is a complex algebra. Moreover, \mathbb{C} is a real algebra.

Any field K is an algebra over K.

Example 1.4. If K is a field, then K[X] is an algebra over K.

Similarly, the polynomial ring K[X,Y] and the ring K[[X]] of power series are examples of algebra over K.

Example 1.5. If *A* is an algebra, then $M_n(A)$ is an algebra.

Example 1.6. The set of continuous maps $[0,1] \to \mathbb{R}$ is a real algebra with the usual point-wise operations (f+g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

Example 1.7. Let $n \in \mathbb{N}$. Then $K[X]/(X^n)$ is a finite-dimensional algebra. It is the **truncated polynomial algebra**.

Example 1.8. Let *G* be a finite group. The vector space $\mathbb{C}[G]$ with basis $\{g : g \in G\}$ is an algebra with multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\left(\sum_{h\in G}\mu_h h\right)=\sum_{g,h\in G}\lambda_g \mu_h(gh).$$

Note that $\dim \mathbb{C}[G] = |G|$ and $\mathbb{C}[G]$ is commutative if and only G is abelian. This is the **complex group algebra** of G.

Two basic exercises about group algebras.

Exercise 1.9. Let G be a non-trivial finite group. Then $\mathbb{C}[G]$ has zero divisors.

Exercise 1.10. Let A be an algebra and G be a finite group. If $f: G \to \mathcal{U}(R)$ is a group homomorphism, then there exists an algebra homomorphism $\varphi: K[G] \to A$ such that $\varphi|_G = f$.

Definition 1.11. An algebra **homomorphism** is a ring homomorphism $f: A \to B$ that is also a linear map.

The complex conjugation map $\mathbb{C} \to \mathbb{C}$, $z \mapsto \overline{z}$, is a ring homomorphism that is not an algebra homomorphism over \mathbb{C} .

Definition 1.12. An **ideal** of an algebra is an ideal of the underlying ring that is also a subspace.

Similarly one defines left and right ideals of an algebra.

If *A* is an algebra, then every left ideal of the ring *A* is a left ideal of the algebra *A*. Indeed, if *L* is a left ideal of *A* and $\lambda \in K$ and $x \in L$, then

$$\lambda x = \lambda (1_A x) = (\lambda 1_A) x.$$

Since $\lambda 1_A \in A$, it follows that $\lambda L = (\lambda 1_A)L \subseteq L$. Similarly, every right ideal of the ring *A* is a right ideal of the algebra *A*.

If A is an algebra and I is an ideal of A, then the quotient ring A/I has a unique algebra structure such that the canonical map $A \to A/I$, $a \mapsto a + I$, is an algebra homomorphism.

Definition 1.13. Let *A* be an algebra over the field *K*. An element $a \in A$ is **algebraic** over *K* if there exists a non-zero polynomial $f \in K[X]$ such that f(a) = 0.

If every element of A is algebraic, then A is said to be algebraic

In the algebra \mathbb{R} over \mathbb{Q} , the element $\sqrt{2}$ is algebraic, as $\sqrt{2}$ is a root of the polynomial $X^2 - 2 \in \mathbb{Q}[X]$. A famous theorem of Lindemann proves that π is not algebraic over \mathbb{Q} . Every element of the real algebra \mathbb{R} is algebraic.

Proposition 1.14. Every finite-dimensional algebra is algebraic.

lem:algebraic

Proof. Let *A* be an algebra with dim A = n and let $a \in A$. Since $\{1, a, a^2, \dots, a^n\}$ has n+1 elements, it is a linearly dependent set. Thus there exists a non-zero polynomial $f \in K[X]$ such that f(a) = 0.

Definition 1.15. A **module** *M* over an algebra *A* is a module over the ring *A* that is also a vector space.

Let A be a finite-dimensional algebra. If M is a module over the ring A, then M is a vector space with

$$\lambda m = (\lambda 1_A) \cdot m$$
,

where $\lambda \in K$ and $m \in M$. Moreover, M is finitely generated if and only if M is finite-dimensional.

In this chapter we will work with finitely generated modules.

Example 1.16. An algebra A is a module over A with left multiplication, that is $a \cdot b = ab$, $a, b \in A$. This module is the (left) **regular representation** of A and it will be denoted by ${}_{A}A$.

Definition 1.17. Let *A* be an algebra and *M* be a module over *A*. Then *M* is **simple** if $M \neq \{0\}$ and $\{0\}$ and $\{0\}$ and $\{0\}$ are the only submodules of $\{0\}$.

Definition 1.18. Let A be a finite-dimensional algebra and M be a finite-dimensional module over A. Then M is **semisimple** if M is a direct sum of finitely many simple submodules.

Clearly, a finite direct sum of semisimples is semisimple.

Lemma 1.19 (Schur). *Let* A *be an algebra. If* S *and* T *are simple modules and* $f: S \to T$ *is a non-zero module homomorphism, then* f *is an isomorphism.*

Proof. Since $f \neq 0$, ker f is a proper submodule of S. Since S is simple, it follows that ker $f = \{0\}$. Similarly, f(S) is a non-zero submodule of T and hence f(S) = T, as T is simple.

Proposition 1.20. If A is a finite-dimensional algebra and S is a simple module, then S is finite-dimensional.

Proof. Let $s \in S \setminus \{0\}$. Since S is simple, $\varphi : A \to S$, $a \mapsto a \cdot s$, is a surjective homomorphism. In particular, $A / \ker \varphi \simeq S$ and hence $\dim S = \dim(A / \ker \varphi) \leq \dim A$. \square

pro:semisimple

Proposition 1.21. Let M be a finite-dimensional module. The following statements are equivalent.

- 1) M is semisimple.
- 2) $M = \sum_{i=1}^{k} S_i$, where each S_i is a simple submodule of M.
- 3) If S is a submodule of M, then there is a submodule T of M such that $M = S \oplus T$.

Proof. We first prove that 2) \Longrightarrow 3). Let $N \neq \{0\}$ be a submodule of M. Since $N \neq \{0\}$ and dim $M < \infty$, there exists a non-zero submodule T of M of maximal dimension such that $N \cap T = \{0\}$. If $S_i \subseteq N \oplus T$ for all $i \in \{1, ..., k\}$, then, as M is the sum of the S_i , it follows that $M = N \oplus T$. If, however, there exists $i \in \{1, ..., k\}$ such that $S_i \nsubseteq N \oplus T$, then $S_i \cap (N \oplus T) \subseteq S_i$. Since S_i is simple, it follows that $S_i \cap (N \oplus T) = \{0\}$. Thus $N \cap (S_i \oplus T) = \{0\}$, a contradiction to the maximality of dim T.

The implication 1) \implies 2) is trivial.

Veamos ahora que $(2) \Longrightarrow (1)$. Sea J un subconjunto de $\{1,\ldots,k\}$ maximal tal que la suma de los S_j con $j \in J$ es directa. Sea $N = \bigoplus_{j \in J} S_j$. Veamos que M = N. Para cada $i \in \{1,\ldots,k\}$, se tiene que $S_i \cap N = \{0\}$ o bien que $S_i \cap N = S_i$, pues S_i es simple. Si $S_i \cap N = S_i$ para todo $i \in \{1,\ldots,k\}$, entonces $S_i \subseteq N$ para todo $i \in \{1,\ldots,k\}$. Si, en cambio, existe $i \in \{1,\ldots,k\}$ tal que $S_i \cap N = \{0\}$, entonces N y S_i estarán en suma directa, una contradicción a la maximalidad del conjunto J.

Demostremos por último que $(3) \Longrightarrow (1)$. Procederemos por inducción en dimM. Si dimM=1 el resultado es trivial. Si dim $M\geq 1$, sea S un submódulo no nulo de M de dimensión minimal. En particular, S es simple. Por hipótesis sabemos que existe un submódulo T de M tal que $M=S\oplus T$. Veamos que T verifica la hipótesis. Si X es un submódulo de T, entonces, como en particular T es un submódulo de M, existe un submódulo Y de M tal que $M=X\oplus Y$. Luego

$$T = T \cap M = T \cap (X \oplus Y) = X \oplus (T \cap Y),$$

pues $X \subseteq T$. Como dim $T < \dim M$ y además $T \cap Y$ es un submódulo de T, la hipótesis inductiva implica que T es suma directa de módulos simples. Luego M también es suma directa de submódulos simples.

Proposition 1.22. Si M es un A-módulo semisimple y N es un submódulo, entonces N y M/N son semisimples.

Proof. Supongamos que $M = S_1 + \cdots + S_k$, donde los S_i son submódulos simples. Si $\pi \colon M \to M/N$ es el morfismo canónico, el lema de Schur nos dice que cada restricción $\pi|_{S_i}$ es cero o un isomorfismo. Luego

$$M/N = \pi(M) = \sum_{i=1}^{k} (\pi|_{S_i})(S_i)$$

es también una suma finita de módulos simples. Como además existe un submódulo T tal que $M = N \oplus T$, se tiene que $N \simeq M/T$ es también semisimple. \square

Definition 1.23. Un álgebra *A* se dirá **semisimple** si todo *A*-módulo finitamente generado es semisimple.

Proposition 1.24. Sea A un álgebra de dimensión finita. Entonces A es semisimple si y sólo si la representación regular de A es semisimple.

Proof. Demostremos la implicación no trivial. Sea M un A-módulo finitamente generado, digamos $M = (m_1, \ldots, m_k)$. La función

$$\bigoplus_{i=1}^k A \to M, \quad (a_1, \dots, a_k) \mapsto \sum_{i=1}^k a_i \cdot m_i,$$

es un epimorfismo de A-módulos. Como A es semisimple, $\bigoplus_{i=1}^{k} A$ es semisimple. Luego M es semisimple por ser isomorfo al cociente de un semisimple.

Theorem 1.25. Sea A un álgebra semisimple de dimensión finita. Si ${}_{A}A = \bigoplus_{i=1}^{k} S_{i}$, donde los S_{i} son submódulos simples y S es un A-módulo simple, entonces $S \simeq S_{i}$ para algún $i \in \{1, ..., k\}$.

Proof. Sea $s \in S \setminus \{0\}$. La función $\varphi : A \to S$, $a \mapsto a \cdot s$, es un morfismo de A-módulos sobreyectivo. Como $\varphi \neq 0$, existe $i \in \{1, \dots, k\}$ tal que alguna restricción $\varphi|_{S_i} : S_i \to S$ es no nula. Por el lema de Schur, $\varphi|_{S_i}$ es un isomorfismo.

Como aplicación inmediata tenemos que un álgebra semisimple A de dimensión finita admite, salvo isomorfismo, únicamente finitos módulos simples. Cuando digamos que S_1, \ldots, S_k son los simples de A estaremos refiriéndonos a que los S_i son representantes de las clases de isomorfismo de todos los A-módulos simples, es decir que todo simple es isomorfo a alguno de los S_i y además $S_i \not\simeq S_j$ si $i \neq j$.

Si A y B son álgebras, M es un A-módulo y N es un B-módulo, entonces $A \times B$ actúa en $M \oplus N$ por

$$(a,b)\cdot(m,n)=(a\cdot m,b\cdot n).$$

Todo módulo M finitamente generado sobre un anillo de división es libre, es decir posee que una base. Tal como pasa en espacios vectoriales, vale además que todo conjunto linealmente independiente de M puede extenderse a una base.

Recordemos que si V es un A-módulo, $\operatorname{End}_A(V)$ se define como el conjunto de morfismos de módulos $V \to V$. En realidad, $\operatorname{End}_A(V)$ es un álgebra con las operaciones: (f+g)(v) = f(v) + g(v), (af)(v) = af(v) y (fg)(v) = f(g(v)) para todo $f,g \in \operatorname{End}_A(V)$, $a \in A$ y $v \in V$.

Lemma 1.26. Sea D un álgebra de división y sea V un D-módulo finitamente generado. Entonces V es un $\operatorname{End}_D(V)$ -módulo simple y además existe $n \in \mathbb{N}$ tal que $\operatorname{End}_D(V) \simeq nV$ es semisimple.

Proof. Sea $\{v_1, \dots, v_n\}$ una base de V. La función

$$\operatorname{End}_D(V) \to \underbrace{V \oplus \cdots \oplus V}_{n\text{-veces}}, \quad f \mapsto (f(v_1), \dots, f(v_n)),$$

es un isomorfismo de $End_D(V)$ -módulos. Luego

$$\operatorname{End}_D(V) \simeq \bigoplus_{i=1}^n V = nV.$$

Falta ver que V es simple. Para eso alcanza con demostrar que V = (v) para todo $v \in V \setminus \{0\}$. Sea $v \in V \setminus \{0\}$. Si $w \in V \setminus \{0\}$, existen w_2, \ldots, w_n tal que

 $\{w, w_2, \dots, w_n\}$ es una base de V. Existe $f \in \operatorname{End}_D(V)$ tal que $f \cdot v = f(v) = w$. En consecuencia, $w \in (v)$ y entonces V = (v).

En lenguaje matricial, el lema anterior nos dice que si D es un álgebra de división, entonces D^n es un $M_n(D)$ -módulo simple y que $M_n(D) \simeq nD^n$ como $M_n(D)$ -módulos.

Theorem 1.27. Sea A un álgebra de dimensión finita y sean S_1, \ldots, S_k los representantes de las clases de isomorfismo de los A-módulos simples. Si

$$M \simeq n_1 S_1 \oplus \cdots \oplus n_k S_k$$
,

entonces los n_i quedan únivocamente determinados.

Proof. Como los S_j son módulos simples no isomorfos, el lema de Schur nos dice que si $i \neq j$ entones $\text{Hom}_A(S_i, S_j) = \{0\}$. Para cada $j \in \{1, \dots, k\}$ tenemos entonces que

$$\operatorname{Hom}_A(M,S_j) \simeq \operatorname{Hom}_A\left(\bigoplus_{i=1}^k n_i S_i, S_j\right) \simeq n_j \operatorname{Hom}_A(S_j, S_j).$$

Como M y los S_j son espacios vectoriales de dimensión finita, $\operatorname{Hom}_A(M,S_j)$ y $\operatorname{Hom}_A(S_j,S_j)$ son también espacios vectoriales de dimensión finita. Además $\operatorname{dim}\operatorname{Hom}_A(S_j,S_j)\geq 1$ pues id $\in\operatorname{Hom}_A(S_j,S_j)$. Luego los n_j quedan unívocamente determinados, pues

$$n_j = \frac{\dim \operatorname{Hom}_A(M, S_j)}{\dim \operatorname{Hom}_A(S_j, S_j)}.$$

Si A es un álgebra, definimos el **álgebra opuesta** A^{op} como el espacio vectorial A con el producto $(a,b) \mapsto ba = a \cdot_{op} b$.

lem:A^op

Lemma 1.28. Si A es un álgebra, $A^{op} \simeq \operatorname{End}_A(A)$ como álgebras.

Proof. Primero observemos que $\operatorname{End}_A(A) = \{ \rho_a : a \in A \}$, donde $\rho_a : A \to A$ está dado por $x \mapsto xa$. En efecto, si $f \in \operatorname{End}_A(A)$ entonces $f(1) = a \in A$. Además f(b) = f(b1) = bf(1) = ba y luego $f = \rho_a$. Tenemos entonces una biyección $\operatorname{End}_A(A) \to A^{\operatorname{op}}$ que es morfismo de álgebras pues

$$\rho_a \rho_b(x) = \rho_a(\rho_b(x)) = \rho_a(xb) = x(ba) = \rho_{ba}(x).$$

lem:Mn_op

Lemma 1.29. Si A es un álgebra y $n \in \mathbb{N}$, entonces $M_n(A)^{\operatorname{op}} \simeq M_n(A^{\operatorname{op}})$ como álgebras.

Proof. Sea $\psi: M_n(A)^{\text{op}} \to M_n(A^{\text{op}})$ dada por $X \mapsto X^T$, donde X^T es la traspuesta de X. Como ψ es una transformación lineal biyectiva, basta ver que ψ es morfismo. Si $i, j \in \{1, \ldots, n\}$, $a = (a_{ij})$ y $b = (b_{ij})$ entonces

$$(\psi(a)\psi(b))_{ij} = \sum_{k=1}^{n} \psi(a)_{ik} \psi(b)_{kj} = \sum_{k=1}^{n} a_{ki} \cdot_{op} b_{jk}$$
$$= \sum_{k=1}^{n} b_{jk} a_{ki} = (ba)_{ji} = ((ba)^{T})_{ij} = \psi(a \cdot_{op} b)_{ij}.$$

lem:simple

Lemma 1.30. Si S es un módulo simple y $n \in \mathbb{N}$, entonces

$$\operatorname{End}_A(nS) \simeq M_n(\operatorname{End}_A(S))$$

como álgebras.

Proof. Sea (φ_{ij}) una matriz con entradas en $\operatorname{End}_A(S)$. Vamos a definir una función $nS \to nS$ de la siguiente forma:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} \varphi_{11} & \cdots & \varphi_{1n} \\ \vdots & \vdots \\ \varphi_{n1} & \cdots & \varphi_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \varphi_{11}(x_1) + \cdots + \varphi_{1n}(x_n) \\ \vdots \\ \varphi_{n1}(x_1) + \cdots + \varphi_{nn}(x_n) \end{pmatrix}.$$

Dejamos como ejercicio demostrar que esta aplicación define un morfismo inyectivo de álgebras

$$M_n(\operatorname{End}_A(S)) \to \operatorname{End}_A(nS)$$
.

Este morfismo es sobreyectivo pues si $\psi \in \text{End}(nS)$ y para cada $i, j \in \{1, ..., n\}$ es posible definir a los ψ_{ij} mediante las ecuaciones

$$\psi \begin{pmatrix} x \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \psi_{11}(x) \\ \psi_{21}(x) \\ \vdots \\ \psi_{n1}(x) \end{pmatrix}, \dots, \psi \begin{pmatrix} 0 \\ 0 \\ \vdots \\ x \end{pmatrix} = \begin{pmatrix} \psi_{1n}(x) \\ \psi_{2n}(x) \\ \vdots \\ \psi_{nn}(x) \end{pmatrix}. \quad \Box$$

Theorem 1.31 (Artin–Wedderburn). Sea A un álgebra semisimple y de dimensión finita, digamos con k clases de isomorfismos de A-módulos simples. Entonces

$$A \simeq M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k)$$

para ciertos $n_1, \ldots, n_k \in \mathbb{N}$ y ciertas álgebras de división D_1, \ldots, D_k .

Proof. Al agrupar los finitos submódulos simples de la representación regular de *A* podemos escribir

$$A = \bigoplus_{i=1}^k n_i S_i,$$

donde los S_i son submódulos simples tales que $S_i \not\simeq S_j$ si $i \neq j$. Dejamos como ejercicio verificar que, gracias al lema de Schur, tenemos

$$\operatorname{End}_A(A) \simeq \operatorname{End}_A\left(\bigoplus_{i=1}^k n_i S_i\right) \simeq \prod_{i=1}^k \operatorname{End}_A(n_i S_i) \simeq \prod_{i=1}^k M_{n_i}(\operatorname{End}_A(S_i)),$$

donde cada $D_i = \operatorname{End}_A(S_i)$ es un álgebra de división. Tenemos entonces que

$$\operatorname{End}_A(A) \simeq \prod_{i=1}^k M_{n_i}(D_i).$$

Como End_A(A) $\simeq A^{op}$, entonces

$$A = (A^{\mathrm{op}})^{\mathrm{op}} \simeq \prod_{i=1}^k M_{n_i}(D_i)^{\mathrm{op}} \simeq \prod_{i=1}^k M_{n_i}(D_i^{\mathrm{op}}).$$

Como además cada D_i es un álgebra de división, cada D_i^{op} también lo es.

Utilizaremos el teorema de Wedderburn en el caso de los números complejos.

Corollary 1.32 (Mollien). Si A es un álgebra compleja de dimensión finita semisimple, entonces

$$A \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C})$$

para ciertos $n_1, \ldots, n_k \in \mathbb{N}$.

Proof. Vimos en la demostración del teorema de Wedderburn que

$$A \simeq \prod_{i=1}^k M_{n_i}(\operatorname{End}_A(S_i)),$$

donde $S_1, ..., S_k$ son representantes de las clases de isomorfismos de los A-módulos simples y cada $\operatorname{End}_A(S_i)$ es un álgebra de división. Veamos que

$$\operatorname{End}_A(S_i) = \{\lambda \operatorname{id} : \lambda \in \mathbb{C}\} \simeq \mathbb{C}$$

para todo $i \in \{1, ..., k\}$. En efecto, si $f \in \operatorname{End}_A(S_i)$, entonces f tiene un autovalor $\lambda \in \mathbb{C}$. Como entonces $f - \lambda$ id no es un isomorfismo, el lema de Schur implica que $f - \lambda$ id = 0, es decir $f = \lambda$ id. Luego $\operatorname{End}_A(S_i) \to \mathbb{C}$, $\varphi \mapsto \lambda$, es un isomorfismo de álgebras. En particular,

$$A \simeq \prod_{i=1}^k M_{n_i}(\mathbb{C}).$$

Exercise 1.33. Sean A y B álgebras. Demuestre que los ideales de $A \times B$ son de la forma $I \times J$, donde I es un ideal de A y J es un ideal de B.

Definition 1.34. Un álgebra A se dice **simple** si sus únicos ideales son $\{0\}$ y A.

Proposition 1.35. Sea A un álgebra simple de dimensión finita. Entonces existe un ideal a izquierda no nulo I de dimensión minimal. Este ideal es un A-módulo simple y todo A-módulo simple es isomorfo a I.

Proof. Como A es de dimensión finita y A es un ideal a izquierda de A, existe un ideal a izquierda no nulo I de dimensión minimal. La minimalidad de dimI implica que I es simple como A-módulo.

Sea M un A-módulo simple. En particular, $M \neq \{0\}$. Como

$$Ann(M) = \{ a \in A : a \cdot M = \{0\} \}$$

es un ideal de A y además $1 \in A \setminus Ann(M)$, la simplicidad de A implica que $Ann(M) = \{0\}$ y luego $I \cdot M \neq \{0\}$ (pues $I \cdot m \neq 0$ para todo $m \in M$ implica que $I \subseteq Ann(M)$ e I es no nulo, una contradicción). Sea $m \in M$ tal que $I \cdot m \neq \{0\}$. La función

$$\varphi: I \to M, \quad x \mapsto x \cdot m,$$

es un morfismo de módulos. Como $I \cdot m \neq \{0\}$, el morfismo φ es no nulo. Como I y M son A-módulos simples, el lema de Schur implica que φ es un isomorfismo. \square

Si D es un álgebra de división, el álgebra de matrices $M_n(D)$ es un álgebra simple. La proposición anterior nos dice en particular que $M_n(D)$ tiene una única clase de isomorfismos de $M_n(D)$ -módulos simples. Como sabemos, estos módulos son isomorfos a D^n .

Proposition 1.36. Sea A un álgebra de dimensión finita. Si A es simple, entonces A es semisimple.

Proof. Sea S la suma de los submódulos simples de la representación regular de A. Afirmamos que S es un ideal de A. Sabemos que S es un ideal a izquierda, pues los submódulos de la representación regular de A son exactamente los ideales a izquierda de A. Para ver que $Sa \subseteq S$ para todo $a \in A$, debemos demostrar que $Ta \subseteq S$ para todo submódulo simple T de A. Si $T \subseteq A$ es un submódulo simple y $a \in A$, sea $f: T \to Ta$, $t \mapsto ta$. Como f es un morfismo de A-módulos y T es simple, $\ker f = \{0\}$ o bien $\ker T = T$. Si $\ker T = T$, entonces $f(T) = Ta = \{0\} \subseteq S$. Si $\ker f = \{0\}$, entonces $T \cong f(T) = Ta$ y luego Ta es simple y entonces $Ta \subseteq S$.

Como S es un ideal de A y A es un álgebra simple, entonces $S = \{0\}$ o bien S = A. Como $S \neq \{0\}$, pues existe un ideal a izquierda no nulo I de A tal que $I \neq \{0\}$ de dimensión minimal, se concluye que S = A, es decir la representación regular de A es semisimple (por ser suma de submódulos simples) y luego el álgebra A es semisimple.

Theorem 1.37 (Wedderburn). Sea A un álgebra de dimensión finita. Si A es simple, entonces $A \simeq M_n(D)$ para algún $n \in \mathbb{N}$ y alguna álgebra de división D.

Proof. Como A es simple, entonces A es semisimple. El teorema de Artin-Wedderburn implica que $A \simeq \prod_{i=1}^k M_{n_i}(D_i)$ para ciertos n_1, \ldots, n_k y ciertas álgebras de división D_1, \ldots, D_k . Además A tiene k clases de isomorfismos de módulos simples. Como A es simple, A tiene solamente una clase de isomorfismos de módulos simples. Luego k = 1 y entonce $A \simeq M_n(D)$ para algún $n \in \mathbb{N}$ y alguna álgebra de división D.

Let *A* be an algebra over *K*. If *I* is a left ideal of the ring *A*, then *I* is a subspace (over *K*), as $\lambda a = \lambda(1_A a) = (\lambda 1_A)a$ for all $\lambda \in K$ and $a \in A$.

An important example of a module is given by the left representation. The algebra A is a module over A with the left multiplication.

References

Index

Algebra Teorema
algebraic, 2 de Artin–Wedderburn, 7
commutative, 1 de Wedderburn, 9
dimension, 1
ideal, 2
Algebraic element, 2
Algebra
Homomorphism
of algebras, 2
Algebra
semisimple, 4
simple, 8