Proyecto

2023-04-14

Estos datos se obtuvieron a partir del estudio de Ueno et al. 2015, en el cual los autores infirieron el rendimiento de Lolium multiflorum a partir de la cantidad de biomasa (g por planta), bajo los efectos de la exposición a Ozono troposférico (presencia/ausencia), la interacción del hongo endófito Epiclöe ocultans (presencia/ausencia) y la exposición a hervívoros (presencia/ausencia de áfidos).

A partir de estos datos, queremos modelar la cantidad de biomasa en respuesta a los distintos tratamientos. El diseño

pendiente

Variables

Variable	Nombre	Unidades	Tipo
Respuesta	Biomasa	(g/planta)	Continua
Efecto	Ozono	(presencia/ausencia)	Binaria
Efecto	Endófitos	(presencia/ausencia)	Binaria
Efecto	Áfidos	(presencia/ausencia)	Binaria

Datos

##

'data.frame':

\$ Year \$ Aphid

\$ Ozone

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6
                     v purrr
                              0.3.4
## v tibble 3.1.8
                              1.0.10
                     v dplyr
## v tidyr
           1.2.0
                     v stringr 1.4.1
           2.1.2
                     v forcats 0.5.2
## v readr
## Warning: package 'tidyr' was built under R version 4.0.5
## Warning: package 'readr' was built under R version 4.0.5
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                  masks stats::lag()
db <- read.delim("L_multiflorum.csv", sep = ",")</pre>
str(db)
```

96 obs. of 7 variables:

: int 1 1 1 1 1 1 1 1 1 ...

: int 1 1 1 1 1 1 1 0 0 ... \$ Biomass : num 3.48 8.85 4.51 11.43 5.69 ...

\$ ID : int 1 2 3 4 5 6 7 8 9 10 ...

\$ Endophyte: int 1 1 1 1 1 1 1 1 1 ...

```
## $ Tiller : int 14 20 13 20 16 20 16 12 13 19 ...
db[,3:5] <- lapply(db[,3:5], factor)
str(db)
## 'data.frame': 96 obs. of 7 variables:
## $ ID
          : int 1 2 3 4 5 6 7 8 9 10 ...
            ## $ Year
## $ Aphid : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ Endophyte: Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 2 2 2 ...
## $ Ozone : Factor w/ 2 levels "0", "1": 2 2 2 2 2 2 2 1 1 ...
## $ Biomass : num 3.48 8.85 4.51 11.43 5.69 ...
## $ Tiller : int 14 20 13 20 16 20 16 12 13 19 ...
summary(db)
                     Year
                             Aphid Endophyte Ozone Biomass
        ID
## Min. : 1.00 Min. :2010 0:48 0:48 0:48 Min. : 1.230
## 1st Qu.:24.75 1st Qu.:2010 1:48 1:48
                                            1:48
                                                  1st Qu.: 3.100
                                                   Median : 4.500
## Median :48.50 Median :2011
## Mean :48.50 Mean :2011
                                                   Mean : 5.323
## 3rd Qu.:72.25 3rd Qu.:2011
                                                   3rd Qu.: 6.897
## Max. :96.00 Max. :2011
                                                   Max. :15.970
##
      Tiller
## Min. : 8.00
## 1st Qu.:13.00
## Median :15.00
## Mean :15.17
## 3rd Qu.:18.25
## Max. :20.00
d <- density(db$Biomass)</pre>
plot(d) # plots the results
```

density.default(x = db\$Biomass)

g <- ggplot(db) + geom_density(aes(Biomass))+ theme_classic()
g</pre>

db\$cathegory <- paste(db\$Ozone,db\$Endophyte, db\$Aphid)
db</pre>

##		ID	Year	Aphid	Endophyte	Ozone	${\tt Biomass}$	Tiller	cathegory
##	1	1	2011	1	1	1	3.48	14	1 1 1
##	2	2	2011	1	1	1	8.85	20	1 1 1
##	3	3	2011	1	1	1	4.51	13	1 1 1
##	4	4	2011	1	1	1	11.43	20	1 1 1
##	5	5	2011	1	1	1	5.69	16	1 1 1
##	6		2011	1	1	1	3.39	20	1 1 1
##	7	7		1	1	1	1.46	16	1 1 1
##	•		2011	1	1	1	8.02	12	1 1 1
				_	_	-			
##	9	9		1	1	0	3.67	13	
##	10	10	2011	1	1	0	10.08	19	0 1 1
##	11	11	2011	1	1	0	5.30	20	0 1 1
##	12	12	2011	1	1	0	6.47	19	0 1 1
##	13	13	2011	1	1	0	5.70	17	0 1 1
##	14	14	2011	1	1	0	3.91	18	0 1 1
##	15	15	2011	1	1	0	1.71	13	0 1 1
##	16	16	2011	1	1	0	11.48	20	0 1 1
##	17	17	2011	1	0	1	1.70	13	1 0 1
##	18	18	2011	1	0	1	4.89	18	1 0 1
##	19	19	2011	1	0	1	8.33	14	1 0 1
##	20	20	2011	1	0	1	6.31	8	1 0 1
##			2011	1	0	1	2.64	12	1 0 1
##			2011	1	0	1	4.49	17	1 0 1
				1	·	_			
##	23	23	2011	1	0	1	4.28	9	1 0 1

##	24 2	24	2011	1	0	1	1.64	20	1	0	1
##	25 2	25	2011	1	0	0	2.16	13	0	0	1
##	26 2	26	2011	1	0	0	3.30	15	0	0	1
##	27 2	27	2011	1	0	0	7.80	11	0	0	1
##	28 2	28	2011	1	0	0	4.08	9	0	0	1
##			2011	1	0	0	14.30	20	0	0	1
##			2011	1	0	0	6.32	19	0	0	1
##			2011	1	0	0	3.07		0	0	1
							3.30	16			
##			2011	1	0	0		12	0	0	1
##			2010	1	1	1	2.21	13	1	1	1
##			2010	1	1	1	2.14	13	1	1	1
##			2010	1	1	1	4.20	19	1	1	1
##			2010	1	1	1	4.36	16	1	1	1
##			2010	1	0	1	1.67	11	1	0	1
##	38 3	38	2010	1	0	1	2.78	10	1	0	1
##	39 3	39	2010	1	0	1	1.39	18	1	0	1
##	40 4	10	2010	1	0	1	1.23	14	1	0	1
##	41 4	11	2010	1	1	0	3.64	15	0	1	1
##	42 4	12	2010	1	1	0	2.46	8	0	1	1
			2010	1	1	0	2.59	15	0	1	1
			2010	1	1	0	5.33	14	0	1	1
			2010	1	0	0	1.24	9	0	0	1
			2010	1	0	0	1.42	13	0	0	1
			2010	1	0	0	3.44	16	0	0	1
			2010	1	0	0	1.76	17	0	0	1
			2010	0	1	0	4.04	13	0	1	0
##			2010	0	1	0	3.30	20	0	1	0
##			2010	0	1	0	6.37	16	0	1	0
##			2010	0	1	0	5.74	20	0	1	0
##	53 5	53	2010	0	1	1	4.54	16	1	1	0
##	54 5	54	2010	0	1	1	7.76	12	1	1	0
##	55 5	55	2010	0	1	1	3.64	13	1	1	0
##	56 5	56	2010	0	1	1	3.61	19	1	1	0
##	57 5	57	2010	0	0	0	3.11	20	0	0	0
##	58 5	58	2010	0	0	0	2.51	18	0	0	0
##	59 5	59	2010	0	0	0	1.77	13	0	0	0
##			2010	0	0	0	6.34	20	0	0	0
##		31	2010	0	0	1	2.63	13	1		0
			2010	0	0	1	2.52	18	1		0
			2010	0	0	1	2.44	14	1		0
			2010	0	0	1	4.36	8	1		0
					1		15.97	12		1	
##			2011	0		0			0		0
##			2011	0	1	0	12.39	17	0	1	0
##			2011	0	1	0	7.61	13	0	1	0
##			2011	0	1	0	6.07	15	0	1	0
##			2011	0	1	0	9.93	11	0	1	0
##			2011	0	1	0	1.99	9	0	1	0
##			2011	0	1	0	8.50	20	0	1	0
##	72 7	72	2011	0	1	0	4.97	19	0	1	0
##	73 7	73	2011	0	1	1	12.20	16	1	1	0
##	74 7	74	2011	0	1	1	6.24	12	1	1	0
##	75 7	75	2011	0	1	1	6.48	13	1	1	0
##	76 7	76	2011	0	1	1	11.03	13	1	1	0
##			2011	0	1	1	4.63	19	1	1	0
	•					-		-	_	•	

```
## 78 78 2011
                                       5.43
                                                       1 1 0
                  0
                                  1
                                                16
## 79 79 2011
                                                       1 1 0
                  0
                            1
                                  1
                                       7.19
                                                19
## 80 80 2011
                  0
                                       9.03
                                                20
                                                       1 1 0
                           1
                                  1
## 81 81 2011
                  0
                           0
                                  0
                                       8.68
                                                19
                                                       0 0 0
## 82 82 2011
                           0
                                                       0 0 0
                  0
                                  0
                                       4.40
                                                17
## 83 83 2011
                  0
                           0
                                  0
                                       8.41
                                                18
                                                       0 0 0
                                                       0 0 0
## 84 84 2011
                  0
                           0
                                  0
                                       6.80
                                                14
## 85 85 2011
                           0
                                       3.18
                                                15
                                                       0 0 0
                  0
                                  0
## 86 86 2011
                  0
                           0
                                  0
                                       8.53
                                                8
                                                       0 0 0
## 87 87 2011
                  0
                           0
                                  0
                                       5.86
                                                15
                                                       0 0 0
## 88 88 2011
                  0
                           0
                                  0
                                       3.28
                                                14
                                                       0 0 0
## 89 89 2011
                  0
                           0
                                       6.43
                                                9
                                                       1 0 0
                                  1
## 90 90 2011
                  0
                            0
                                  1
                                       7.57
                                                13
                                                       1 0 0
## 91 91 2011
                  0
                           0
                                  1
                                    11.92
                                                16
                                                       1 0 0
## 92 92 2011
                  0
                           0
                                  1
                                       5.36
                                                17
                                                       1 0 0
## 93 93 2011
                                                       1 0 0
                  0
                           0
                                  1
                                       4.36
                                                14
## 94 94 2011
                  0
                            0
                                  1
                                       5.14
                                                20
                                                       1 0 0
## 95 95 2011
                  0
                            0
                                  1
                                                       1 0 0
                                       3.77
                                                13
## 96 96 2011
                                       7.37
                                                       1 0 0
                  0
                            0
                                  1
                                                20
db <- db %>%
  mutate(A = if_else(Ozone == 1, "Oz", "NoOz"),
         B= if_else(Endophyte == 1, "E", "NoE"),
         C= if_else(Aphid == 1, "A", "NoA"))
db$cathegory <- paste(db$B, db$C)</pre>
p<-ggplot(db, aes(x=A, y=Biomass, color=cathegory)) +</pre>
  geom_boxplot()+
  facet_grid(.~Ozone, scales = "free_x")
р
```


Hipótesis

El desempeño de las plantas puede ser inferido a partir de su biomasa. Esta característica puede verse afectada por factores abióticos, como la exposición a distintos estrese ambientales; y bióticos como la interacción con organismos mutualistas o antagonistas. Se ha reportado que la caracteristica mutualista de los hongos endófitos se ve afectada por el contexto ambiental pudiendo llegar a tener un comportamiento antagonista en codiciones ambientales adversas. Teniendo esto en cuenta, se plantean las siguientes hipótesis:

- El desempeño de la planta se ve disminuído por la presencia de condiciones ambientales adversas.
- El desempeño de la planta se ve disminuído por la ausencia sus asociados mutualistas.
- El desempeño de la planta se ve disminuído por la presencia de hervíboros.

.