EMA_Microarray_Analysis

Tzu L. Phang April 9, 2015

Experimental Design

Read in descriptive data file and run summary statistics to examine the distribution of the data prior to importing CEL files

```
options(width=500)
## Load EMA and oligo libraries
library(EMA)
library(oligo)

## Read in descriptive data file
PBHI.file.info = read.table(file = "./data/PHBI cel annotation BI06660 v2.txt", header = T, sep = "\t")
## print(PBHI.file.info)
knitr::kable(PBHI.file.info)
```

PHBI.cel.file	PHBI.number	Clinical.Category	Age	Race	Sex	Scan.Date	Batch
PHBI_001.cel	PHBI_001	IPAH	62	White	Female	10/1/09	1
$PHBI_002.cel$	PHBI_002	IPAH	49	White	Female	10/1/09	1
$PHBI_003.cel$	PHBI_003	IPAH	64	White	Male	10/1/09	1
$PHBI_019.cel$	PHBI_019	Failed Donor	60	White	Male	10/1/09	1
$PHBI_027.cel$	$PHBI_027$	Failed Donor	49	White	Male	10/1/09	1
$PHBI_042.cel$	$PHBI_042$	IPAH	44	White	Female	10/1/10	2
$PHBI_044.cel$	PHBI_044	IPAH	40	White	Female	10/1/10	2
$PHBI_053.cel$	$PHBI_053$	Failed Donor	25	White	Male	10/1/10	2
$PHBI_059.cel$	PHBI_059	Failed Donor	55	White	Male	10/1/10	2
$PHBI_062.cel$	$PHBI_062$	IPAH	45	White	Male	10/1/10	2
$PHBI_066.cel$	PHBI_066	Failed Donor	19	White	Male	10/1/10	2
$PHBI_067.cel$	PHBI_067	Failed Donor	62	White	Male	10/1/11	3
$PHBI_068.cel$	PHBI_068	Failed Donor	21	White	Female	10/1/11	3
$PHBI_069.cel$	PHBI_069	Failed Donor	28	White	Female	10/1/11	3
$PHBI_073.cel$	PHBI_073	IPAH	71	White	Female	10/1/11	3
$PHBI_075.cel$	PHBI_075	IPAH	56	White	Male	10/1/11	3
PHBI_078.cel	PHBI_078	IPAH	61	White	Male	10/1/11	3

We will use the "Clinical.Category" column to define the 2 comparing groups

```
## Extract groups: IPAH and Failed Donor
PBHI.type.cl = as.character(PBHI.file.info$Clinical.Category)
PBHI.type.cl
   [1] "IPAH"
                                                       "Failed Donor"
##
                        "IPAH"
                                        "IPAH"
  [5] "Failed Donor" "IPAH"
                                                       "Failed Donor"
                                        "IPAH"
## [9] "Failed Donor" "IPAH"
                                        "Failed Donor" "Failed Donor"
## [13] "Failed Donor" "Failed Donor" "IPAH"
                                                        "IPAH"
## [17] "IPAH"
We suspect there might be batch-effect. We will use the "Batch" column to extract potential batch-effect
information
PBHI.batch.cl = PBHI.file.info$Batch
PBHI.batch.cl
   [1] 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
What is the average age for the 2 groups of patients
## Run basic summary statistics
tapply(PBHI.file.info$Age, PBHI.file.info$Clinical.Category, mean)
## Failed Donor
                         IPAH
       39.87500
                     54.66667
What is the gender distribution
tapply(PBHI.file.info$Sex, PBHI.file.info$Clinical.Category, summary)
## $`Failed Donor`
## Female
            Male
##
        2
               6
##
## $IPAH
## Female
            Male
##
        5
```

Visualize Age Distribution by Group

Preprocessing and Quality Assessemnt

Import CEL files

Import CEL files, read in data, and normalize data using the RMA function

```
## Import CEL files
PBHI.CEL = PBHI.file.info$PBHI.CEL
PBHI.CEL = list.celfiles('./data')
PBHI.CEL = paste('./data/', PBHI.CEL, sep = '')
## Read CEL files to directory
PHBI.data = read.celfiles(PBHI.CEL, verbose = F)
## Reading in : ./data/PHBI_001.CEL
## Reading in : ./data/PHBI_002.CEL
## Reading in : ./data/PHBI_003.CEL
## Reading in : ./data/PHBI_019.CEL
## Reading in : ./data/PHBI_027.CEL
## Reading in : ./data/PHBI_042.CEL
## Reading in : ./data/PHBI_044.CEL
## Reading in : ./data/PHBI_053.CEL
## Reading in : ./data/PHBI_059.CEL
## Reading in : ./data/PHBI_062.CEL
## Reading in : ./data/PHBI_066.CEL
## Reading in : ./data/PHBI_067.CEL
## Reading in : ./data/PHBI_068.CEL
```

```
## Reading in : ./data/PHBI_069.CEL
## Reading in : ./data/PHBI_073.CEL
## Reading in : ./data/PHBI_075.CEL
## Reading in : ./data/PHBI_078.CEL

## Normalize the data
PHBI.norm = rma(PHBI.data)

## Background correcting
## Normalizing
## Calculating Expression
```

Visual Inspection: Before and After Data Normalization

Create boxplots of log-intensity distribution to visualize data pre and post normalization

```
## Load color libraries
library(RColorBrewer)

## Set color palette
color.palette = brewer.pal(8, "Set1")

## Pre-normalized intensity values boxplot
boxplot(PHBI.data, col = color.palette, main = "Pre-normalized Intensity Values")
```

Pre-normalized Intensity Values


```
## Normalized intensity values boxplot
boxplot(PHBI.norm, col = color.palette, main = "Normalized Intensity Values")
```

Normalized Intensity Values

Create density plots of log-intensity distribution to visualize data pre and post normalizatio

Pre-normalized density plot of log-intensity distribution
hist(PHBI.data, col = color.palette, main = "Pre-Normalized Density Plot of log-Intensity Distribution"

Pre-Normalized Density Plot of log-Intensity Distribution


```
## Normalized density plot of log-intensity distribution
hist(PHBI.norm, col = color.palette, main = "Normalized Density Plot of log-Intensity Distribution")
```

Normalized Density Plot of log-Intensity Distribution

Filtering Process

Extract normalized expression values and perform filtering to discard probesets below a specified threshold

```
## Extract expression values after normalization, verify dimensions
PHBI.exprs = exprs(PHBI.norm)
dim(PHBI.exprs)
## [1] 33297 17
```

```
## Filter and discard probesets with a maximum log2 expression value below 4,
## p=0.01
PUBHI.f = expFilter(PHBI.exprs, threshold = 4)
```


Keep probes with at least 1 sample(s) with an expression level higher than 4

View data ditribution after filtering; remove threshold line
PUBHI.A = expFilter(PUBHI.f, threshold = F)

Data distribution

Keep probes with at least 1 sample(s) with an expression level higher than FALSE

Hierarchical Clustering

```
PUBHI.sample = clustering(data = PUBHI.f, metric = "pearson", method = "ward")
## Visualize data pre and post filtering
clustering.plot(tree = PUBHI.sample, lab = PBHI.type.cl, title = "Filtered Data")
```


clustering.plot(tree = PUBHI.sample, lab = PBHI.batch.cl, title = "Filtered PBHI Data by Batch")

Principal Component Analysis

Run Principle Component Analysis (PCA) on the normalized and filtered data

Inertia percentage of components

View pre-batch correction individual maps (axes 1 and 2) to look at the ## variation between groups and batches plotSample(acp, axes = c(1, 2), lab = PBHI.type.cl)

Sample representation Axes 1 and 2


```
plotSample(acp, axes = c(1, 2), lab = as.character(PBHI.batch.cl))
```

Sample representation Axes 1 and 2


```
## Create pdf report of PCA with selected plots
acp = runPCA(t(PUBHI.f), scale = FALSE, pdfname = "PCA.pdf", lab.sample = PBHI.type.cl)
```

Batch Correction

Perform batch correction on the normalized data and re-run PCA to show post-batch correction improvements

Standardizing Data across genes
Fitting L/S model and finding priors
Finding parametric adjustments

Adjusting the Data

Run PCA and Hierarchical Clustering again after batch adjustment

```
## Run PCA after batch correction
acp = runPCA(t(combat_edata), scale = FALSE, lab.sample = PBHI.type.cl, plotSample = FALSE, plotInertia
plotInertia(acp)
```

Inertia percentage of components


```
## View post-batch correction individual maps (axes 1 and 2) to look at the ## variation between groups and batches plotSample(acp, axes = c(1, 2), lab = PBHI.type.cl)
```

Sample representation Axes 1 and 2

plotSample(acp, axes = c(1, 2), lab = PBHI.batch.cl)

Sample representation Axes 1 and 2


```
## Sample Hierarchical Clustering (post-batch adjustment)
PUBHI.sample2 = clustering(data = combat_edata, metric = "pearson", method = "ward")
clustering.plot(tree = PUBHI.sample2, lab = PBHI.type.cl, title = "PHBI Data - Filtered")
```


clustering.plot(tree = PUBHI.sample2, lab = PBHI.batch.cl, title = "PHBI Data By Batch - Filtered")

Statistical Analysis

Run Student's t-test and Significance of Analysis of Microarrays (SAM) test on normalized data. Merge the test results into one data set to produce a heatmap

[1] "typeFDR= FDR-BH"

```
## head(PUBHI.ttest)
knitr::kable(head(PUBHI.ttest))
```

probeID	Stat	RawpValue	AdjpValue
7892501	-0.8986333	0.3830467	0.7424598
7892502	3.8840718	0.0014682	0.0844791
7892503	0.0945693	0.9259087	0.9800601
7892504	-0.5491785	0.5909654	0.8574125
7892505	0.1255285	0.9017721	0.9729966
7892506	-0.7403385	0.4705250	0.7958579

```
## Run the SAM test with batch corrected data
PUBHI.SAM = runSAM(PUBHI.f, labels = PUBHI.type.num)
```

```
##
## We're doing 24310 complete permutations
   and randomly select 500 of them.
##
##
      Delta pO False Called
                                     FDR
## 1
       0.10 1 820.5
                        1473 0.55702648
## 2
       0.15
            1 458.5
                         988 0.46406883
## 3
       0.20
             1 253.0
                         677 0.37370753
## 4
       0.25
             1 154.0
                         513 0.30019493
## 5
       0.30
             1
                92.5
                         381 0.24278215
                         301 0.20265781
## 6
       0.35
                61.0
             1
##
       0.40
                38.0
                         229 0.16593886
## 8
       0.45
                22.0
                         163 0.13496933
             1
## 9
       0.50
                 16.0
                         140 0.11428571
## 10
                  9.0
       0.55
                         104 0.08653846
             1
##
  11
       0.60
             1
                  5.0
                          80 0.06250000
       0.65
## 12
                  4.0
                          67 0.05970149
##
                          52 0.05769231
  13
       0.70
                  3.0
  14
       0.75
                          43 0.02325581
##
                  1.0
##
   15
       0.80
             1
                  1.0
                          42 0.02380952
## 16
       0.85
                  1.0
                          38 0.02631579
## The threshold seems to be at
##
        Delta Called
                           FDR
## 5 0.653530
                   67 0.059701
## 6 0.653531
                   63 0.047619
## [1] "Delta : 0.653531"
```

SAM Plot for Delta = 0.653531

[1] "Find 63 significant genes ..."

knitr::kable(head(PUBHI.SAM))

	probeID	Stat	RawpValue	FoldChange	Significant
7892501	7892501	-0.2580086	0.7042239	0.9007307	FALSE
7892502	7892502	1.4187845	0.0481135	1.2360180	FALSE
7892503	7892503	0.0547860	0.9355328	1.0114994	FALSE
7892504	7892504	-0.1685861	0.8038497	0.9657320	FALSE
7892505	7892505	-0.1104603	0.8705780	0.9752623	FALSE
7892506	7892506	-0.6230634	0.3644616	0.8565688	FALSE
Reorganize	the resul	\mathbf{t}			

probeID	Stat	RawpValue	AdjpValue	FoldChange
7892501	-0.8986333	0.3830467	0.7424598	0.9007307
7892502	3.8840718	0.0014682	0.0844791	1.2360180
7892503	0.0945693	0.9259087	0.9800601	1.0114994
7892504	-0.5491785	0.5909654	0.8574125	0.9657320
7892505	0.1255285	0.9017721	0.9729966	0.9752623
7892506	-0.7403385	0.4705250	0.7958579	0.8565688

```
## Re-sort merged data by the 'AdjpValue' variable
PUBHI.test.merge = PUBHI.test.merge[order(PUBHI.test.merge$AdjpValue), ]
knitr::kable(head(PUBHI.test.merge))
```

	probeID	Stat	RawpValue	AdjpValue	FoldChange
5913	7922174	8.691899	3.0e-07	0.0060968	1.5718386
5973	7922793	8.181010	7.0e-07	0.0060968	1.2188873

	probeID	Stat	RawpValue	AdjpValue	FoldChange
26312	8163908	-8.285346	6.0e-07	0.0060968	0.5022629
10129	7973110	7.784296	1.2 e-06	0.0084292	4.4227513
8924	7958174	7.402996	2.2e-06	0.0088352	1.7526347
15130	8031207	7.464315	2.0e-06	0.0088352	2.4424002

Volcano Plot

```
## Produce a volcano Plot to verify SAM findings
volcano = ggplot(data = PUBHI.test.merge, aes(x = log2(PUBHI.test.merge$FoldChange),
    y = -log10(PUBHI.test.merge$AdjpValue)), colour = none) + geom_point(alpha = 0.4,
    size = 1.75) + labs(title = "PAH Volcano Plot") + xlim(c(-2, 2)) + ylim(c(0,
    2)) + xlab("Log2 Fold Change") + ylab("-Log10 P-Values")
volcano
```


Output Analysis Result

Produce a heatmap of the top 100 significant genes

```
## Produce Heatmap
mvgenes = as.character(PUBHI.test.merge$probeID[1:100])
c.sample <- clustering(data = PUBHI.f[mvgenes, ], metric = "pearson", method = "ward")</pre>
```


Hierarchical Clustering: ward pearson

Annotate Significant Genes

Annotate the top 250 significant genes, output to a text file. Input cluster analysis output from DAVID and print the first three rows

```
options(width = 500)
## Load annaffy and hugene10sttranscriptcluster.db libraries
library(annaffy)
library(hugene10sttranscriptcluster.db)

## Annotate the top 250 significant genes
anntable = aafTableAnn(as.character(PUBHI.test.merge$probeID[1:250]), "hugene10sttranscriptcluster.db")

## Add the 'AdjpValue' and 'FoldChange' variables to the annotation table
atable = aafTable(`P-Value` = PUBHI.test.merge$AdjpValue[1:250], signed = TRUE)

FCtable = aafTable(`Fold Change` = PUBHI.test.merge$FoldChange[1:250], signed = TRUE)

table = merge(anntable, atable)
table2 = merge(table, FCtable)

## Export results to an HTML and text file
saveHTML(table2, file = "PBHI.psig.genes.htm")
```

```
saveText(table2, file = "PBHI.psig.genes.txt")

## Print top 7 significant genes at p 0.01 level

#annot.output = read.table(file = "annot.sig.txt", header = T, sep = "\t", nrows = 7)

#annot.outputs = annot.output[order(annot.output$P.Value), ]

#knitr::kable(annot.outputs)
```

R session info

sessionInfo()

```
## R version 3.1.2 (2014-10-31)
## Platform: x86_64-apple-darwin13.4.0 (64-bit)
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats4
                parallel stats
                                     graphics grDevices utils
                                                                   datasets
## [8] methods
                 base
##
## other attached packages:
## [1] hugene10sttranscriptcluster.db_8.2.0
## [2] org.Hs.eg.db_3.0.0
## [3] annaffy_1.38.0
## [4] KEGG.db_3.0.0
## [5] GO.db_3.0.0
## [6] AnnotationDbi_1.28.2
## [7] GenomeInfoDb_1.2.5
## [8] sva_3.12.0
## [9] genefilter_1.48.1
## [10] mgcv_1.8-6
## [11] nlme_3.1-120
## [12] RColorBrewer_1.1-2
## [13] pd.hugene.1.0.st.v1 3.10.0
## [14] RSQLite 1.0.0
## [15] DBI_0.3.1
## [16] ggplot2_1.0.1
## [17] oligo_1.30.0
## [18] Biostrings_2.34.1
## [19] XVector_0.6.0
## [20] IRanges_2.0.1
## [21] S4Vectors_0.4.0
## [22] Biobase_2.26.0
## [23] oligoClasses_1.28.0
## [24] BiocGenerics_0.12.1
## [25] EMA_1.4.4
##
## loaded via a namespace (and not attached):
## [1] affxparser_1.38.0
                              affy_1.44.0
                                                    affyio_1.34.0
## [4] annotate_1.44.0
                             BiocInstaller_1.16.2 biomaRt_2.22.0
## [7] bit_1.1-12
                             bitops_1.0-6
                                                    car_2.0-25
## [10] cluster_2.0.1
                             codetools_0.2-11
                                                    colorspace_1.2-6
```

##	[16]	digest_0.6.8 ff_2.2-13	evaluate_0.5.5 flashClust_1.01-2	FactoMineR_1.29 foreach_1.4.2
		formatR_1.1	gcrma_2.38.0	<pre>GenomicRanges_1.18.4</pre>
##	[22]	grid_3.1.2	GSA_1.03	gtable_0.1.2
##	[25]	heatmap.plus_1.3	htmltools_0.2.6	iterators_1.0.7
##	[28]	knitr_1.9	lattice_0.20-31	leaps_2.9
##	[31]	lme4_1.1-7	MASS_7.3-40	Matrix_1.2-0
##	[34]	minqa_1.2.4	multtest_2.22.0	munsell_0.4.2
##	[37]	nloptr_1.0.4	nnet_7.3-9	pbkrtest_0.4-2
##	[40]	plyr_1.8.1	preprocessCore_1.28.0	proto_0.3-10
##	[43]	quantreg_5.11	Rcpp_0.11.5	RCurl_1.95-4.5
##	[46]	reshape2_1.4.1	rmarkdown_0.5.1	scales_0.2.4
##	[49]	scatterplot3d_0.3-35	siggenes_1.40.0	SparseM_1.6
##	[52]	splines_3.1.2	stringr_0.6.2	survival_2.38-1
##	[55]	tools_3.1.2	XML_3.98-1.1	xtable_1.7-4
##	[58]	yaml_2.1.13	zlibbioc_1.12.0	