Kinematische Schließung in segmentierter Raumzeit: escape vs. fall

Autoren: Carmen Wrede, Lino Casu

 $\textbf{Fokusfassung:} \ \ \text{Vertieft §4 "Kinematic closure: escape vs. fall".} \ \ \varphi \text{-/}\beta \text{-Kalibrierungen werden erklärt, Tests}$

nur als Quellenhinweis (GitHub).

Abstract

Wir zeigen, wie die duale Beziehung zwischen Fluchtgeschwindigkeit v_esc und einem Fall-Parameter v_{fall} in der segmentierten Raumzeit (SSZ) formal hergestellt wird. Ausgangspunkt ist die GR-Rotverschiebung eines stationären Beobachters im Schwarzschild-Außenraum, $\gamma_{GR}(r)=(1-r_s/r)^{-1/2}$. Daraus wird ein GR-konjugierter Fallwert $v_{fall}^{GR}(r)$ über Gleichsetzung der lokalen Lorentzfaktoren definiert. Dieser liefert exakt $v_{fall}^{GR}(r)=c\sqrt{r_s/r}$ und damit das Produkt $v_{esc}(r)\,v_{fall}^{GR}(r)=c^2\,(r_s/r)$. Um die im SSZ-Ansatz gewünschte produkt-invariante Schließung $v_{esc}(r)\,v_{fall}(r)=c^2\,$ zu erhalten, führen wir eine segmentierte Normierung des Fallwertes ein: $v_{fall}(r):=(r/r_s)\,v_{fall}^{GR}(r)$. Diese Normierung ist kein physikalischer 3-Geschwindigkeitswert, sondern ein skalengebundener Parameter des SSZ-Formalismus, der die operative Brücke zwischen klassischer Energiebilanz und diskreter ϕ -Skalierung bildet. Wir erläutern den Platz der ϕ -Kalibrierung (Gitter in $\ln R$) und die ϕ -Massenfeineinstellung am $\phi/2$ -Kopplungspunkt, ohne empirische Tests zu duplizieren. Verweise auf Reproduktionscode und Logs erfolgen ausschließlich über GitHub.

1. Notation und Rahmen

- $r_s = 2GM/c^2$ Schwarzschild-Radius, $U = GM/(rc^2)$.
- $ullet v_{esc}(r) = \sqrt{2GM/r} = c\sqrt{r_s/r}$.
- ullet GR-Redshift/Lorentz: $\gamma_{GR}(r)=(1-r_s/r)^{-1/2}$.
- **φ-Gitter:** $R=f_{emit}/f_{obs}=arphi^N$ mit $N\in\mathbb{Z}$, $\ln R=N\ln arphi$.
- Euler-Hülle: $R pprox \exp(\Delta U)$ und Quantisierung, wenn $\Delta U pprox N\, \ln arphi$.
- **Kopplungspunkt:** $r_{arphi}pprox arphi\left(arphi/2
 ight)r_{s}$ mit milder Massen-Feineinstellung über eta (nicht PPN-eta).

2. Konstruktion des Fall-Terms

2.1 GR-konjugierter Fallwert

Setze den lokalen Lorentzfaktor einer hypothetischen Fallbewegung gleich dem GR-Rotverschiebungsfaktor am selben r:

$$\gamma_{GR}(r) = (1 - r_s/r)^{-1/2} = \left(1 - (v_{fall}^{GR}/c)^2\right)^{-1/2}.$$

Daraus folgt

$$(v_{fall}^{GR}/c)^2 = r_s/r \quad \Rightarrow \quad v_{fall}^{GR}(r) = c\,\sqrt{r_s/r}.$$

Damit gilt exakt

$$v_{esc}(r) v_{fall}^{GR}(r) = (c\sqrt{r_s/r})^2 = c^2 (r_s/r).$$
 (2.1)

Gleichung (2.1) ist eine **produkt-gewichtete Schließung** mit dem dimensionslosen Faktor r_s/r .

2.2 Segmentierte Normierung zum produkt-invarianten Dual

Der SSZ-Formalismus benutzt eine skalierte Fall-Variable

$$v_{fall}(r) := rac{r}{r_s} v_{fall}^{GR}(r) = rac{r}{r_s} c \sqrt{rac{r_s}{r}} = c \sqrt{rac{r}{r_s}}.$$
 (2.2)

Dann folgt sofort

$$v_{esc}(r) v_{fall}(r) = \left(c\sqrt{r_s/r}\right) \left(c\sqrt{r/r_s}\right) = c^2. \tag{2.3}$$

Die Gleichung (2.3) ist die im Screenshot geforderte **kinematische Schließung**. **Wichtig:** $v_{fall}(r)$ nach (2.2) ist **kein** physikalischer 3-Geschwindigkeitswert, sondern ein **Dual-Parameter**, der die **reziproke Skalenkopplung** der segmentierten Beschreibung ausdrückt.

2.3 Gültigkeitsbereich und Interpretation

- (2.1) gilt allgemein im Schwarzschild-Außenraum.
- (2.3) ist eine **definitorische Dualität** des SSZ-Parameters (2.2). Sie macht die **operative Brücke** sichtbar: Wenn v_{esc} in schwachen Feldern klein wird, wächst der skalen-duale Fallparameter so, dass das Produkt konstant bleibt.
- Physikalische Messungen koppeln über Ratios und φ-Gitter; die Dualität steuert die Skalenseite, nicht die lokale 3-Kinematik von Testteilchen.

3. Verbindung zur φ-Skalierung und zur Euler-Hülle

Die messbare Größe ist das Frequenz-/Uhren-Ratio R . SSZ postuliert **diskrete Skalenübergänge** mit $R=\varphi^N$. Die **Euler-Hülle** $R\approx e^{\Delta U}$ reproduziert GR; sie fällt **auf das \phi-Gitter**, wenn $\Delta U\approx N\ln\varphi$. Die kinematische Schließung (2.3) liefert dazu die **mechanische Seite**: Sie bindet die potentielle Energie $\propto 1/r$ an einen reziproken Skalenparameter und verhindert divergierende Beschleunigerbilder im Inneren.

4. φ-Kalibrierung (Erklärung ohne Tests)

- Gittervariable: $n^*(R) = \ln R / \ln arphi$.
- Segmentanzahl: $N = \text{round}(n^*)$.
- **Residual:** $\varepsilon = n^* N$ misst die Abweichung vom idealen Gitter.
- Geometrische Rückführung: Eine einzige Euler-Exponentialbewegung $z(\theta)=z_0\exp((k+i)\theta)$ mit $k=2\ln\varphi/\pi$ liefert pro Vierteldrehung $\Delta\theta=\pi/2$ den Faktor φ im Betrag. Damit sind Rotation (Phase) und Skalierung (Betrag) gekoppelt.

5. β-Feineinstellung am arphi/2 -Kopplungspunkt (Erklärung)

- **Kopplungspunkt:** $r_{\varphi} \approx \varphi\left(\varphi/2\right) r_s$ minimiert Blend-Artefakte einer C²-Stückmetrik und erhält die GR-Außenserie und PPN-Werte.
- β-Term: $r_{arphi}(M;eta) = r_{arphi}\left[1 + eta\,\Delta(M)
 ight]$, $|eta| \ll 1$.
- **Bedeutung:** β **ist nicht** die PPN- β . Er verschiebt nur **sanft** die innere Skalenlage in Abhängigkeit eines langsamen Massen-Proxys $\Delta(M)$.
- **Konsequenz:** Außen bleibt **PPN-kompatibel**; innen reguliert die Segmentierung die Krümmung ohne Singularitäten.

6. Physikalisches Bild in Kürze

- 1) Außen: GR-Hülle, kontinuierlich, PPN-Werte identisch zu GR in gemessener Ordnung.
- 2) **Grenzen:** Diskrete ϕ -Schritte in Ratios R .
- 3) **Innen:** Stückweise konstante Skalen, C²-Blend um r_{φ} ; kinematische Schließung (2.3) verknüpft Skalen-Dualität mit Energiebilanz.
- 4) **Messstrategie:** Nur noch Ratios und Gitterstruktur; numerische Tests werden **nicht** hier, sondern im Code belegt.

7. Quellenhinweis: Reproduktion und Tests (nur Verweis)

Alle Skripte, Logs und reproduzierbaren Läufe liegen in den GitHub-Repos der Autor:innen, u. a.:

- **Segmented-Spacetime-Mass-Projection-Unified-Results** Kernskripte (ϕ -Gitter, Euler-Rückführung, r_{ω} , β).
- Zusatz-Repos für Datenvorbereitung und Archiv-Quellen.

Die Paper-Fassung verweist auf die Repos; keine Testtabellen im Haupttext.

8. Schluss

Die **produkt-invariante** Schließung $v_{esc}\,v_{fall}=c^2$ entsteht aus der **skalengebundenen** Definition des Fall-Parameters (2.2). Zusammen mit der ϕ -Kalibrierung und der sanften β -Feineinstellung liefert SSZ ein reduziertes, aber belastbares Gerüst: außen GR-gleich, innen regulär, und operativ durch Ratios testbar. Die empirischen Nachweise stehen ausschließlich im Code und den GitHub-Protokollen.