5. SUMMATION OF FINITE SERIES AND MATHEMATICAL INDUCTION

1. Evaluate the integral $\int_0^a x e^x dx$. Prove, by induction or otherwise, that

$$\int_{0}^{a} x^{n} e^{x} dx = (-1)^{n} e^{n} (n!) \left[1 - a + \frac{a^{2}}{2!} + \ldots + \frac{(-1)^{n} a^{n}}{n!} - e^{-a} \right].$$
 (J72/I/6)

- 2 Show, by induction or otherwise, that, for each positive integer n, both $\cos nx$ and $\frac{\sin nx}{\sin x}$ can be expressed as polynomials in $\cos x$ with integer coefficients.

 (J75/II/2)
- 3. Prove by induction that $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$

Express
$$\frac{5n+2}{n(n+1)(n+2)}$$
 in the form $\frac{a}{n(n+1)} + \frac{b}{(n+1)(n+2)}$

where a and b are constants to be determined.

Hence, or otherwise, evaluate
$$S_n$$
, where $S_n = \sum_{k=1}^n \frac{5k+2}{k(k+1)(k+2)}$ (N79/I/1)

4. Prove that, when n is a positive integer, $\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 0 \\ na & 1 \end{pmatrix}$

Prove that the result also holds when n is a negative integer. (N79/II/1)

5. Prove that $(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$, for $n \in \mathbb{Z}$.

Deduce that
$$nx(1+x)^{n-1} = \binom{n}{1}x + 2\binom{n}{2}x^2 + \ldots + n\binom{n}{n}x^n$$
, for $n \in \mathbb{Z}_+$.

Hence, or otherwise, find

(a)
$$\sum_{r=1}^{n} (-1)^r \binom{n}{r}$$
, (b) $\sum_{r=1}^{n} r \binom{n}{r}$, (c) $\sum_{r=1}^{n} r^2 \binom{n}{r}$. (N81/II/1)

6. Prove by induction, or otherwise, that

$$\begin{pmatrix} \cos \theta - \sin \theta & -\sqrt{2} \sin \theta \\ \sqrt{2} \sin \theta & \cos \theta + \sin \theta \end{pmatrix}^{n} = \begin{pmatrix} \cos n\theta - \sin n\theta & -\sqrt{2} \sin n\theta \\ \sqrt{2} \sin n\theta & \cos n\theta + \sin n\theta \end{pmatrix}^{n}$$

where $n \in \mathbb{Z}^+$.

Find the smallest positive integer n such that

$$\begin{pmatrix} \frac{1}{2}(\sqrt{3}-1) & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}(\sqrt{3}+1) \end{pmatrix}^{n} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(N83/II/3)

7. (a) Prove the binomial theorem for a positive integral index. Given that

$$y = x + \frac{1}{2} \binom{n}{1} x^2 + \frac{1}{3} \binom{n}{2} x^3 + \dots + \frac{1}{r} \binom{n}{r-1} x^r + \dots + \frac{1}{n+1} \binom{n}{n} x^{n+1},$$
show that $\frac{dy}{dx} = (1+x)^n$.

Hence obtain another expression for y in terms of n and x, and deduce that

$$1 + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \dots + \frac{1}{r} \binom{n}{r-1} + \dots + \frac{1}{n+1} \binom{n}{n} = \frac{2^{n+1}-1}{n+1}$$

(b) The term containing x^r in the binomial expansion of $(1+x)^n$, where n < 0 and |x| < 1, is denoted by T_r . Obtain, in terms of n, r and x, the value of T_r/T_{r-1} . Hence, or otherwise, show that if -1 < x < 0 and n < 0, the binomial expansion of $(1+x)^n$ contains only positive terms.

In the case where $x = -\frac{1}{3}$ and n = -20 find the value of r such that T_r is the

greatest term in the expansion, and show also that, for r > 38, $T_r < \frac{1}{2} T_{r+1}$

(N85/II/2)

8. Show that, for all positive integers
$$n$$
 and k , with $k \ge 2$, $n(n+1)(n+2) = (n+k-1) - (n-1)n(n+1) = (n+k-2) = kn(n+1) = (n+k-2)$

Deduce that $\sum_{n=1}^{N} n(n+1) = \frac{1}{3}N(N+1)(N+2)$, and write down similar expressions

for
$$\sum_{n=1}^{N} n(n+1)(n+2)$$
 and $\sum_{n=1}^{N} n(n+1)(n+2)(n+3)$

Find numerical values for the constants a, b, c, d, given that $an(n+1)(n+2)(n+3) + bn(n+1)(n+2) + cn(n+1) + dn = n^4$.

Hence find (but **do not simplify**) an expression in terms of N for $\sum_{n=1}^{N} n^4$ (J86/I/2)

9. Prove by induction that, for all $n \in \mathbb{Z}$,

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{r}x^r + \dots + x^n$$

[The result $\binom{n}{r}$ + $\binom{n}{r-1}$ = $\binom{n+1}{r}$, if used in your proof, must

be justified.]

Deduce that

$$1 - {n \choose 1} + {n \choose 2} - \dots + (-1)^{n \choose r} + \dots + (-1)^{n} = 0.$$

By considering $\int_{0}^{1} (1+x)^{n} dx$, show that

$$1 + \frac{1}{2} {n \choose 1} x + \frac{1}{3} {n \choose 2} \dots + \frac{1}{r+1} {n \choose r} + \dots + \frac{1}{n+1} = \frac{2^{n+1}-1}{n+1}.$$

(N86/I/2)

7. (a) Prove the binomial theorem for a positive integral index. Given that

$$y = x + \frac{1}{2} \binom{n}{1} x^2 + \frac{1}{3} \binom{n}{2} x^3 + \dots + \frac{1}{r} \binom{n}{r-1} x^r + \dots + \frac{1}{n+1} \binom{n}{n} x^{n+1},$$
show that $\frac{dy}{dx} = (1+x)^n$.

Hence obtain another expression for y in terms of n and x, and deduce that

$$1 + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \dots + \frac{1}{r} \binom{n}{r-1} + \dots + \frac{1}{n+1} \binom{n}{n} = \frac{2^{n+1}-1}{n+1}$$

(b) The term containing x^r in the binomial expansion of $(1+x)^n$, where n < 0 and |x| < 1, is denoted by T_r . Obtain, in terms of n, r and x, the value of T_r / T_{r-1} . Hence, or otherwise, show that if -1 < x < 0 and n < 0, the binomial expansion of $(1+x)^n$ contains only positive terms.

In the case where $x = -\frac{1}{3}$ and n = -20 find the value of r such that T_r is the

greatest term in the expansion, and show also that, for r > 38, $T_r < \frac{1}{2} T_{r+1}$

(N85/II/2)

8. Show that, for all positive integers n and k, with $k \ge 2$, n(n+1)(n+2) = (n+k-1) - (n-1)n(n+1) = (n+k-2) = kn(n+1) = (n+k-2)

Deduce that $\sum_{n=1}^{N} n(n+1) = \frac{1}{3}N(N+1)(N+2)$, and write down similar expressions

for
$$\sum_{n=1}^{N} n(n+1)(n+2)$$
 and $\sum_{n=1}^{N} n(n+1)(n+2)(n+3)$.

Find numerical values for the constants a, b, c, d, given that $an(n+1)(n+2)(n+3) + bn(n+1)(n+2) + cn(n+1) + dn = n^4$

Hence find (but **do not simplify**) an expression in terms of N for $\sum_{n=1}^{N} n^4$ (J86/I/2)

9. Prove by induction that, for all $n \in \mathbb{Z}$,

$$(1+x)^{n} = 1 + {n \choose 1}x + {n \choose 2}x^{2} + \dots + {n \choose r}x^{r} + \dots + x^{n}$$

[The result $\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$, if used in your proof, must

be justified]

Deduce that

$$1 - {n \choose 1} + {n \choose 2} - \dots + (-1)^{n \choose r} + \dots + (-1)^{n \choose r} = 0.$$

By considering $\int_0^1 (1+x)^x dx$, show that

$$1 + \frac{1}{2} \binom{n}{1} x + \frac{1}{3} \binom{n}{2} \dots + \frac{1}{r+1} \binom{n}{r} + \dots + \frac{1}{n+1} = \frac{2^{n+1}-1}{n+1}$$

(N86/I/2)

10. (a) Express $\frac{2}{x(x+1)(x+2)}$ in partial fractions.

By using your result, or otherwise, show that

$$\sum_{n=1}^{N} \frac{1}{n(n+1)(n+2)} = \frac{1}{4} - \frac{1}{2(N+1)(N+2)}.$$

(b) Prove by induction that $3^{4n-2} + 17^n + 22$ is divisible by 16 for every positive (J87/I/2)integer n.

The sequence of real numbers u_1, u_2, u_3, \dots is such that $u_1 = 1$ and $u_{n+1} = \frac{5u_n + 4}{u_n + 2}$ for all $n \ge 1$. Prove by induction that $u_n n < 4$ for all $n \ge 1$.

- 12. (a) Given that $y = \frac{1}{1+x}$, prove by induction that $\frac{d^n y}{dx^n} = \frac{(-1)^n (n!)}{(1+x)^{n+1}}$ for every positive integer n.
 - Verify that $\frac{1}{n^2-n+1} \frac{1}{n^2+n+1} = \frac{2n}{n^4+n^2+1}$.
 - Express $n^2 + n + 1$ in the form $(n+a)^2+b$, and express $n^2 n + 1$ in
 - (iii) Hence, or otherwise, find an expression in terms of N for the sum S., where

$$S_N = \sum_{n=1}^N \frac{n}{n^4 + n^2 + 1}$$

Deduce that $S_N < \frac{1}{2}$.

(188/1/2)

- 13. (a) Let $a_n = e^{1-n} e^{-n} + \frac{1}{n+1} \frac{1}{n}$.
 - (i) Find, in terms of N, an expression for S_N , where $S_N = a_1 + a_2 + a_3 + a_4 + a_4 + a_5 + a_4 + a_5 + a_$... + aN, simplifying your result as far as possible.
 - (ii) Show that $S_N > 0$ for all $N \ge 1$.
 - (b) Given that $y = e^{x} \sin x$, prove by induction that $\frac{d^{n}y}{dx^{n}} = 2^{\frac{1}{2}n}e^{x} \sin(x + \frac{1}{4}n\pi)$ (N88/I/4) for every positive integer n.
- 14. (a) Prove that $\sum_{n=1}^{N} \frac{1}{\sqrt{n} + \sqrt{n-1}} = \sqrt{N}$

Deduce, or prove otherwise, that $\sum\limits_{n=1}^{N}\frac{1}{\sqrt{n}}<2\sqrt{N}$.

The sequence of real numbers u_1 , u_2 , u_3 , ... is such that $u_1 = 5$ and $u_{n+1} = (u_n + \frac{1}{u_n})^2$ for all $n \ge 1$. Prove by induction that, for every positive $u_n > 2^m$, where $m = 2^n$.

15. (a) By considering
$$\frac{1}{1+a^{n-1}} - \frac{1}{1+a^n}$$
 or otherwise, show that
$$\sum_{n=1}^{N} \frac{a^{n-1}}{(1+a^{n-1})(1+a^n)} = \frac{a^N-1}{2(a-1)(a^N+1)}$$
, where a is positive and $a \neq 1$.

Deduce that
$$\sum_{n=1}^{N} \frac{2^n}{(1+2^{n-1})(1+2^n)} < 1$$
.

- (b) Prove by induction, or otherwise, that 10^{30} + 38^{1} + 35 is divisible by 37 for every non-negative integer n. (N89/I/2)
- 16. By considering $\sum_{n=1}^{N} [\cos(n \frac{1}{2})x \cos(n + \frac{1}{2})x]$, or otherwise, show that $\sum_{n=1}^{N} \sin nx = \csc(\frac{1}{2}x)\sin(\frac{1}{2}(N + 1)x)\sin(\frac{1}{2}N x)$, provided that $\sin(\frac{1}{2}x) \neq 0$.

Deduce that
$$\sum_{n=1}^{N-1} \sin \frac{n\pi}{N} < \csc \frac{\pi}{2N}$$
 for all $N \ge 2$. (J90/I/2)

