Implementation of SPECK 2n/mn

Project of Security of Computer and Embedded systems

Lecturer: Prof. Dr. Elif Bilge Kavun

Exchange student: Farzaneh Arzaghi

Implementation of SPECK 128/128

According to the table below we can determine the cipher block's parameters.

$\begin{array}{c} {\rm block} \\ {\rm size} \ 2n \end{array}$	$\begin{array}{c} \text{key} \\ \text{size} \ mn \end{array}$	word size n	$\begin{array}{c} \text{key} \\ \text{words} \ m \end{array}$	$rac{ ext{rot}}{lpha}$	$rac{{ m rot}}{eta}$	$\frac{\text{rounds}}{T}$
32	64	16	4	7	2	22
48	72	24	3	8	3	22
	96		4			23
64	96	32	3	8	3	26
	128		4			27
96	96	48	2	8	3	28
	144		3			29
128	128	64	2	8	3	32
	192		3			33
	256		4			34

Table 4.1: Speck parameters.

Specify parameters:

Key Schedules:

The SPECK key schedules generale round keys
$$k_i$$
.

K is a key for SPECK 2n block cipher. We can write $K = (L_{m-2}, L_i, k_o)$

m can be $\{2,3,4\}$.

If we have $\{m=2 \longrightarrow K = (L_i, k_o) \}$
 $\{m=3 \longrightarrow K = (L_i, L_i, k_o) \}$
 $\{m=4 \longrightarrow K = (L_i, L_i, k_o) \}$

we use $\{k_o, k_o, \ldots, k_o\}$
 $\{k$

In this question we have m:2 and $K:=(L_0,k_0) \longrightarrow K$ is an input sequences K_i and L_i are defined by:

$$\begin{cases} L_{i+m-1} = (K_i + s^{-\alpha} L_i) \oplus i \\ K_{i+1} = s^{\beta} k_i \oplus L_{i+m-1} \end{cases}$$

· The value K; is the ith round key, for OxiXT-1

· + is addition modulo 2"

· left circular shift, s, by j hits

· right circular shift, si, by j bits

always we have ko in all versions so we need to generate just T-1 kcys

K31 = 53 K30 € L31

In this question:
$$\begin{array}{c}
M=2 \\
K=(L_s,k_s) \\
K=3
\end{array}$$

$$\begin{array}{c}
\text{for Example} \\
i=0
\end{array}$$

$$\begin{array}{c}
L_1 = (K_s + 5^{-8}L_s) \oplus 0 \\
K_1 = 5^3K_s \oplus L_1
\end{array}$$

$$\begin{array}{c}
\text{another Example} \\
i=1
\end{array}$$

$$\begin{array}{c}
L_2 = (K_s + 5^{-8}L_s) \oplus 1
\end{array}$$

$$\begin{array}{c}
K_2 = 5^3K_s \oplus L_2
\end{array}$$

$$\begin{array}{c}
\vdots = 30
\end{array}$$

$$\begin{array}{c}
\vdots = 30
\end{array}$$

$$\begin{array}{c}
L_{31} = (K_{30} + 5^{-8}L_{30}) \oplus (30)_2
\end{array}$$

all the keys generate { k31, k31, ... k2, k, , k.

For computing L_i : L_i is circular shifted right by eight (s^{-8}) then the result is added with k_i (or xored with k_i because we have addition modulo 2^n) finally the result xored with i.

For compuling K,: K. is circular shifted left by three (53) then the result xored with L, that we computed in the previous step.

Figure 4.3: Speck key expansion, where R_i is the Speck round function with i acting as round key.

Round Function:

The SPECK 2n encryption maps make use of the following operations on n-bit words:

- · bitwise XOR (+)
- · addition modulo 2" (+)
- · left and right circular shifts, si and si, respectively, by j bits.

Key-dependent SPECK In round function defined by:

$$R_k(x,y) = ((5\frac{1}{x} + y) \oplus k, 5\frac{\beta}{y} \oplus (5\frac{1}{x} + y) \oplus k)$$

for this question:
$$m:2$$
 $x = g$

$$f(x,y) = (5x + y) \oplus k, 5y \oplus (5x + y) \oplus k$$

- · K is a round key
- · x is the leftmost word of the cipter block
- · Y is the right most word

Figure 4.1: Speck round function; (x_{2i+1}, x_{2i}) denotes the subcipher after i steps of encryption.

Note that speck can be realized as the composition of two Feistel-like maps with respect to two different types of addition, namely,

 $(21,y) \rightarrow (y, (5 \times +y) \oplus k)$ and $(21,y) \rightarrow (y, 5 \times \oplus y)$

Code

Block diagram

Key generator state machine:

SPECK function state machine:

References

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L. (2013). The SIMON and SPECK families of lightweight block ciphers. *cryptology eprint archive*.

Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L. (2015). SIMON and SPECK: Block Ciphers for the Internet of Things. *Cryptology ePrint Archive*.