

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Proyectos de Ingeniería Física		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo	172104	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el alumno desarrolle el diseño de la investigación planteado en Seminario de Tesis I.

TEMAS Y SUBTEMAS

1. Creación y creatividad.

- 1.1. Descubrimiento e invención
- 1.2. Inteligencia e invención.
- 1.3. Imaginación y asociación de ideas.
- 1.4. Intuición e inspiración.
- 1.5. Creatividad y técnicas.

2. Trabajos científicos.

- 2.1. Tipos de trabajos científicos.
- 2.2. Tesis de grado.
- 2.3. Artículo científico.
- 2.4. Póster.
- 2.5. Ética y derechos de autor.

3. Momento técnico de la investigación.

- 3.1. Selección de la muestra.
- 3.2. Recolección de los datos.
- 3.3. Análisis de los datos.

4. Momento teórico de la investigación.

- 4.1. Síntesis de los resultados.
- 4.2. Reporte de resultados.

ACTIVIDADES DE APRENDIZAJE

Revisión bibliográfica del tema en libros y artículos científicos por los alumnos.

Discusión de los diferentes temas en seminarios.

Prácticas de laboratorio.

Son ejemplos, pueden reemplazarse

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender los aspectos de teoría y práctica. La evaluación comprenderá, al menos, tres evaluaciones parciales que tendrán una equivalencia del 50% y una evaluación final que corresponderá al 50% restante.

Para las evaluaciones parciales deberá considerarse:

- Examen oral o escrito: 60 %
- Prácticas y tareas: 30 %
- Participación en clase: 10 %

Para las prácticas debe tomarse en cuenta su realización exitosa y la documentación de la solución. La evaluación final deberá incluir:

- Un examen oral o escrito: 60 %
- Un proyecto final: 40 %

Este es un ejemplo, puede modificarse

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00129

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- Metodología de la Investigación, Hernández R., Fernández-Collado C. y Baptista P., McGraw
- El Proceso de Investigación, Sabino C.A., LUMEN-HVMANITAS, 1996. La Investigación Científica, Bunge M., Siglo XXI, 2000. Cómo se Hace una Tesis, Eco U., Gedisa, 2001.

Consulta:

- 101 Activities for Teaching Creativity and Problem Solving, VanGundy A.B., John Wiley & Sons Inc, 2005.
- How to Write & Publish a Scientific Paper, Day R.A., Oryx, 4th Ed., 1994.
- Tesis Doctorales y Trabajos de Investigación Científica, Sierra R., Paraninfo, 1999.

PERFIL PROFESIONAL DEL DOCENTE

Físico con maestría o doctorado con experiencia en dirección de proyectos y tesis dirigidas

JEFATURA DE CARRERA INGENIERIA EN FISICA APLICADA

DR. SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

DR. AGUSTINISANTIAGO ALVARADO VICE-RECTOR ACADÉMICO TORIA ACADÉMICA