- 1. We know that for any function f that f(n) is O(f(n)). Thus we need not consider the $O(f_i(n))$ for $f_i(n)$.
- $f_1(n)$ is $O(f_2(n))$, $O(f_3(n))$, and $O(f_4(n))$. The witnesses c=1 and $n_0=0$ prove these three relationships.

```
f_2(n) is not O(f_1(n)), O(f_3(n)), or O(f_4(n)).
```

Suppose there are witnesses n_0 and c such that $f_2(n) \leq cf_1(n)$ for all $n \geq n_0$. Pick n_1 to be at least 2c or n_0 . Since $n_1 \geq n_0$ then the inequality holds, because it holds for all $n \geq n_0$. If we divide both sides by n_1^2 , we have $n_1 \leq c$. But n_1 is at least 2c, and n_1 cannot be less than c and greater than 2c. Therefore witnesses that show $f_2(n)$ to be $O(f_1(n))$ do not exist.

Suppose there are witnesses n_0 and c such that $f_2(n) \leq cf_3(n)$ for all $n \geq n_0$. Pick n_1 to be at least 2c+1 or n_0 . We know that $f_2(n_1) \leq cf_3(n_1)$ because $n_1 \geq n_0$. However n_1 is at least an odd number, thus $f_3(n_1) = n_1^2$. If we divide this inequality by n_1^2 we have $n_1 \leq c$. But n_1 cannot be at least 2c+1 and at most c. Therefore witnesses that show $f_2(n)$ to be $O(f_3(n))$ do not exist.

Suppose there are witnesses n_0 and c such that $f_2(n) \le cf_4(n)$ for all $n \ge n_0$. Suppose n is prime. From $n^3 \le cn^2$ we determine $n \le c$, which means that c changes its value for each $n \ge n_0$. But c is a constant, and thus we have a contradiction.

```
f_3(n) is not O(f_1(n)), but f_3(n) is O(f_2(n)) and O(f_4(n)).
```

Suppose there are witnesses n_0 and c such that $f_3(n) \le cf_1(n)$ for all $n \ge n_0$. Suppose n is even. Then the inequality is $n^3 \le cn^2$. This implies that $n \le c$ for all $n \ge n_0$ which contradicts our assumption that c is a constant.

We can show that $f_3(n)$ is $O(f_2(n))$ and $O(f_4(n))$ by choosing witnesses $n_0 = 3$ and c = 1.

```
f_4(n) is not O(f_1(n)) or O(f_3(n)), but is O(f_2(n)).
```

Suppose there are witnesses n_0 and c such that $f_4(n) \le cf_1(n)$ for all $n \ge n_0$. Suppose n is composite. Then $n^3 \le cn^2$ implies $n \le c$ for all $n \ge n_0$. But this contradicts the assumption that c is constant.

We can show that $f_4(n)$ is $O(f_2(n))$ by choosing witnesses $n_0 = 0$ and c = 1.

Suppose there are witnesses n_0 and c such that $f_4(n) \leq c f_3(n)$ for all $n \geq n_0$. Suppose n is odd and composite. Then the inequality for this particular n is $n^3 \leq c n^2$. This implies that $n \leq c$ for all $n \geq n_0$, but c is a constant. Hence we have a contradiction.

- 2. We would rather not start approximating things and just say "good enough."
- a) Let $n_0 = 0$ and c = 1000.
- b) Let $n_0 = 3$ and c = 39 (bad answer).
- c) Let $n_0 = 0$ and $c = 2^{10}$.
- d) Let $n_0 = 32$ and c = 1.
- **3.** We must have the inequality $f(n) + g(n) \le c'g(n)$. Then $f(n) \le (c'-1)g(n)$. Choose $n_0 = 0$ and c = c' 1 = 1. Then the inequality holds and thus f(n) + g(n) is O(g(n)).
- **4.** We state that $f(n) \leq cg(n)$ and $g(n) \leq cf(n)$ for all $n \geq n_0$. We can assume that the highest power of f and g are equal. It is not true that f(n) = g(n) must always hold. Example, $n \leq n+1$ and $n+1 \leq 2n$.