ME5413 Final Project Instructions

Friday, 21 Feb 2025

Overview

In this simulated environment:

- 1 Jackal Robot
- X randomly generated boxes
- 1 randomly generated bridge
- 1 timed blockade (10s) on the bridge
- 4 destinations

Your Task:

- Design a robot software stack that can:
 - Map the environment
 - Navigate autonomously
 - Perform the tasks on the right

1. Move & Avoid Obstacles

"Jackal"

5. Find the Box with the least number of occurrences

- 2. Count the number of Random Boxes
 - 3. Cross a Randomly Generated Bridge
 - 4. Publish & Unlock the 10s timed Blockade

Tasks 1: Mapping

- · Map the environment using any algorithm you like
- Evaluate the performance of your SLAM algorithm by comparing your estimated odometry with the ground truth odometry
- In your report:
 - Describe your mapping pipeline in detail
 - Qualitatively and quantitatively analyse your SLAM performance (Figures and Tables)
 - Discuss the challenges you faced and your proposed solutions (with examples and comparisons)

Tasks 2: Navigation

- Navigate your robot and perform the given sequence of tasks
- The score is calculated based on the number of tasks your robot can perform.
- In your report:
 - Describe your navigation pipeline in detail
 - Describe how your robot is designed to perform each task in detail
 - Qualitatively and quantitatively analyse the performance of your navigation stack in multiple metrics
 - Discuss the challenges you faced and your proposed solutions (with examples and comparisons)

Grouping

- Final Project groups:
 - Max 6 people per groups
 - Total 18 groups
 - Unassigned groups will be assigned by the TAs by Friday, 28th Feb 6pm
- Deadline: Sunday, 6 April 2024 23:59

Groups (20)		
► Final Project Groups 1	5 / 6 students	:
▶ Final Project Groups 2	3 / 6 students	•
▶ Final Project Groups 3	Full 6 / 6 students	•
▶ Final Project Groups 4	Full 6 / 6 students	:
▶ Final Project Groups 5	5 / 6 students	:
▶ Final Project Groups 6	Full 6 / 6 students	:

Presentation

• Presentations: (Friday 11 April)

• Slides: 10 mins

• Live Demo: 5 mins

• Q&A: 3 mins

• Diagrams would be useful

• The algorithms you used for each task

Problems & Solutions

- Describe the challenges you encountered and how you overcome them
- · Potential future work: how your system can be improved further
- Videos of your robot
 - · Show your Demo!

Date	11-Apr-25	Week 12
Slot No.	Start Time	Group No.
1	14:00:00	
2	14:18:00	
3	14:36:00	
4	14:54:00	
5	15:12:00	
6	15:30:00	
7	15:48:00	
8	16:06:00	
9	16:24:00	
10	16:42:00	
Break	17:00:00	
11	18:00:00	
12	18:18:00	
13	18:36:00	
14	18:54:00	
15	19:12:00	
16	19:30:00	
17	19:48:00	
18	20:06:00	
End	21:00:00	

Submission

In your submission ([GroupNumber].zip)

- 1. Report (.pdf, 10 pages max, appendices no limit)
- 2. Map file (any format)
- 3. A video showing your robot running along the designated route (.mp4, less than 50 Mb)
- 4. Presentation Slides (.pptx, less than 200 Mb)
- 5. Link to your GitHub repo (must be public)

Rubric			\ Q	
Criteria	Ratings		Pts	
Result	10 Pts	0 Pts	10 pts	
Accuracy compared to the Ground Truth	Full marks	No marks		
Technical The correctness of your method	30 Pts Full marks	0 Pts No marks	30 pts	
Effort	20 Pts	0 Pts	20 pts	
The amount of work done	Full marks	No marks		
Code Style	20 Pts	0 Pts	20 pts	
Readability; structure; naming convention; efficiency	Full marks	No marks		
Writing	20 Pts	0 Pts	20 pts	
Clarity; comprehensiveness; conciseness	Full marks	No marks		
		Tot	al points: 10	

Submission

Peer Review

- Everyone will rank your 5 teammates, for example:
 - 1. Christina
 - 2. Ziggy
 - 3. Dongen
 - 4. Jiawei
 - 5. Yuhang
- And give comments on their contributions
- Everyone's final marks will be adjusted +-%

Your review will be confidential, we won't leak it!

www.LeFunny.net

FAQs

Q: Can I change the robot description file given in the project?

- Yes, you can modify the sensor configuration, by adding more sensors or new types of sensors, as well as their locations.
- However, you are not allowed to modify the mobile base.

Q: Can I use a different robot to do the mapping?

 No, it must be using the same robot mobile base. However, you can use a separate sensor configuration for mapping.

Q: Can I adjust the goal poses given in the config file?

• No in principle, but you can slightly adjust it within the vicinity (let's say within 0.1m)

Q: Is there any bonus tasks for the final project?

- If you can package your solution pipeline into a ROS pkg and publish it on GitHub, you will get bonus marks!
- Or demonstrate more advanced capabilities in this environment!

