Einführung in die Computerlinguistik und Sprachtechnologie

WiSe 2018/2019 (B-GSW-12)

Udo Hahn

http://www.julielab.de

Grundlagen des Information Retrieval

Sammeln von Dokumentkollektionen vs. Erschließung von Dokumentinhalten

Grundlagen des Information Retrieval

Information Retrieval: Dokumenten-Retrieval

Grundlagen des **Information Retrieval**

Information Retrieval:

Flavors of Information (Document) Retrieval (1/2)

Flavors of Information (Document) Retrieval (2/2)

 Categorization/Clustering: Group documents into predefined classes/ adaptive clusters Topic Detection and Tracking: Cluster news in stream

INDEXING

- ◆ Indexing by Derivation
 - Index terms are derived from the document (and possibly morphologically normalized)
- ◆ Indexing by Assignment
 - Index terms are assigned to a document using an authoritative terminology (usually, a thesaurus)

INDEX TERMS

- ◆ Nouns (singletons, compounds)
 - Cell, dataset,
- ♦ Noun phrases
 - Hot spot, regulation of cells
- ◆ Avoid too complex terms (pre-coordination)
 - The regulation of cells under laser beam exposure in vitro

MANUAL INDEXING

- ◆ Determine main topic(s)
- ◆ What's a relevant issue?
- ◆ Based on human (speed) reading and understanding of the document

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Bag-of-words (BOW)

BAG OF WORDS

◆ Eliminate sequential structure of texts

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Bag-of-words (BOW)
 - Eliminate stop words (high occurrence frequency!)

Lexikalische Frequenzanalyse: Stoppwörter höchstfrequent

http://www1.ids-mannheim.de/fileadmin/lexik/lehre/engelberg/

Webseite_Korpusanalyse/Korpusanalyse_4_Methoden_AntConc.pdf

Zipf's Law

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Eliminate stop words (high occurrence frequency!)
- ◆ Assumption: frequency is positively correlated with relevance (denotation of main topics)
- ◆ Term frequency inverse document frequency metric (TF-IDF)

 w_{ij} = weight of term t_j in document d_i tf_{ij} = frequency of term t_j in document d_i N = number of documents in collection n = number of documents where term t_j occurs at least once

$$w_{ij} = tf_{ij} * \log_2 \frac{N}{n}$$

VECTORIZATION OF TEXTS

◆ Transform text into n-dim vector (n=size of *collection* vocabulary)

AUTOMATIC INDEXING (Vector Space Model)

- ◆ Bag of words: remove all stop words from a doc and normalize all terms morphologically
- ◆ Create a document term matrix from the remaining terms for each document (*n* being the max number of terms in the document collection)
 - $-\operatorname{doc}_{i} = (\operatorname{term}_{i1}, \operatorname{term}_{i2}, \operatorname{term}_{i3}, ..., \operatorname{term}_{in})$
 - Each component term_{ik} is either ,0' (absent) or ,1' (realized)
- Compute the association between a document term and a query term vector (query = (query₁, query₂, query₃, ..., query_n), n as above), e.g., using the cosine measure

$$SIM(doc_i, query) = \frac{\sum_{k=1}^{t} (term_{ik} \bullet query_k)}{\sqrt{\sum_{k=1}^{t} (term_{ik})^2 \bullet \sum_{k=1}^{t} (query_k)^2}}$$

GRAPHICAL INTERPRETATION

CLASSIFICATION

- ◆ Manual classification
 - Manual assignment of docs to pre-defined categories (classes)
- ◆ Automatic classification
 - Automatic assignment of docs to pre-defined categories (classes)
 - Grouping of docs around automatically determined (unnamed) clusters

Clustering

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.

Data Set with Clear Clustering Structure

Cluster-Modelle

- k-Means Clustering
 - flaches Clustering
 - k ist vorher bekannt
 - Dokumente werden als Vektoren repräsentiert
 - Ziel: Abstand zum Cluster-Zentrum minimieren
- Centroid
 - künstliches Zentrum eines Clusters Mittelwert der Vektoren der Dokumente im Cluster

- Initialisierung: wähle zufällig k Dokumente als Centroiden
- Iteration: ordne Dokumente nächstem Centroid zu, Centroid im Cluster neu berechnen

Quelle: Manning, Raghavan, Schütze, Introduction to Information Retrieval, 2008.