#24
$$y' = ry - ky^2$$
 $r, k > 0$
 $y' - ry = -ky^2$ $\begin{cases} p = -r \\ q = -k \end{cases}$
 $v = y'' \Rightarrow v' = -y'y' \begin{cases} n = 2 \\ n = 2 \end{cases}$
 $yy' = y , v'(-y^2) = y'$
 $y'' = y + y'' = -ky^2$

AUTONOMOUS POPULATION MODELS

(e.g.
$$f(y) = y(1-y)$$
 LOGISTIC
or $f(y) = y \ln(\frac{k}{y})$ Gompert
or $f(y) = y(1-y)(y - \frac{1}{k})$

4 = y2(4-y2) F(y) 4" = f'(4)f(4)

Integrate:

3.1 \$1
$$y''+2y'-3y=0$$

Ansatz: $y(t)=e^{rt}$ $y'=re^{rt}$, $y''=r^2e^{rt}$
 $\Rightarrow r^2e^{rt}+2re^{rt}-3e^{rt}=0$
 $\Rightarrow r^2+2r-3=0$ characteristic equation

 $\Rightarrow (r+3)(r-1)=0 \Rightarrow$ characteristic values/roots

ora $r=-3$, $r=1$

This means that $y_1(t)=e^{-3t}$ & $y_2(t)=e^{t}$

Silve the ODE, and the general solution is

 $y(t)=c_1e^{-3t}+c_2e^{t}$

General solh:
$$y|t| = c_1 e^{-t} + c_2 e^{-3t} \implies y|0| = c_1 + c_2$$

 $y' = -c_1 e^{-t} - 3c_2 e^{-3t} \implies y'(0) = -c_1 - 3c_2$