Name: Gabe Eapen EID: eapengp

Class: EE382V (Software Testing Class) HW#2 – Due Oct 11, 2014 @ 11:59pm

- 1. Section 2.3 Question 1 (Pages 60-61)
- 2. Section 2.7 Question 1 (Page 99)
- 3. Section 3.3 Question 2 (Page 130)
- 4. Section 3.3 Question 3 answer this question with respect to CACC instead of GACC (Page 130–131)

Section 2.3 Question 1 (Pages 60-61) [Answer]

a)


```
c) use(w) = n2, n3, n7
```

d) a du-path(w) is 1-2-4-5-7

e)

All Du-paths (w)
1-2-4-5-7
1-2-4-6-7
1-3-4-5-7
1-3-4-6-7

All Du-paths (x)						
5-7						
6-7						

Section 2.7 Question 1 (Page 99) [Answer]

a)

Two paths from n1 to n4 : (bd + ce)Two paths from n4 to n7: (fh + gi)

Final path expression: $a\,(bd+ce)(fh+gi)j$

b)

Path from n2 to n3 has a loop: $(cd)^*$ Path from n2 to n4: (cf + e)

Final path expression: $ab\ (cd)\ ^*\ (cf+e)g$

c)

Sub Path n0 to n1: $a g^* f$ Sub path n0 to n2 to [n3 or n4 or n5] to n0: b (ch + di + ej)

Final path expression: $[[a\ g^*\ f] + [b(ch+di+ej)]] * k$

Section 3.3 Question 2 (Page 130) [Answer] Substitute (x < y) for z

twoPred	Rules for determining twoPred
Α	(x <y) &&="" (x+y="=" 10)<="" td=""></y)>
В	(x>=y) (x+y != 10)

		True			False		
	Predicate	х	У	EO	х	У	EO
P1	$(x < y) \land (x + y == 10)$	0	10	Α	0	0	В
P2	$(x \ge y) \lor (x + y \ne 10)$	0	0	В	1	2	Α

	$(x \ge y)$	$(x+y\neq 10)$	Х	У
1	Т		4	3
2	Т	F	5	5
3	F	Θ	3	4
4	F		4	6

RACC can be satisfied by row pairs (1,3) and (2,4)

b) $P2_{\text{-true}} \bigoplus P2_{\text{-false}}$

RICC can be satisfied by row pairs (1,4) and (2,3)

Section 3.3 Question 3 – answer this question with respect to CACC instead of GACC (Page 130–131) a)

Predicate is $A \lor B \lor C$

	Α	В	С	$A \lor B \lor C$	EDGE
1	Т	Т	Т	Т	X
2	Т	Т	F	Т	
3	Т	F	Т	Т	
4	Т	F	F	Т	
5	F	Т	Т	Т	X
6	F	Т	F	Т	
7	F	F	Т	Т	X
8	F	F	F	F	X

When P_A , CACC can be satisfied by choosing any rows 1,2,3,4 AND 8. (1,8), (2,8), (3,8), (4,8) When P_B , CACC can be satisfied by choosing any rows 1,2,5,6 AND 8. (1,8), (2,8), (5,8), (6,8) When P_C , CACC can be satisfied by choosing any rows 1,3,5,7 AND 8. (1,8), (3,8), (5,8), (7,8)

b) CFG for Program fragment Q

The CACC test set for fragment Q does provide edge coverage for fragment P. This makes sense since CACC subsumes Clause (edge) coverage.

c) Choosing tests from rows 1, 5, 7, 8 (from part a) will satisfy edge coverage with fewest tests.