

Laboratory of Electronics Antennas and Telecommunications

Antenna tuning for your LoRaWAN device

Fabien Ferrero

https://github.com/FabienFerrero/Antenna_Radiation_Measurement

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

Antenna performance indicator

Definition :

- P_s: Power from the source
- P_{ref}: Power reflected by the antenna
- P_{rad} power radiated by the antenna

- Reflection coefficient
 - S₁₁ is usually plotted in dB scale
 - S₁₁ criteria from -10 dB to -6dB (90% to 75% transmitted power)

- Include matching and radiation loss
- Can be plotted in linear or dB scale
- 30-70% classically observed
- Gain
 - Include matching, radiation loss and directivity
 - Plotted in dBi
 - $U(\theta, \varphi)$ is the radiation intensity in a given direction

$$|S_{11}|^2 = P_{ref}/P_s$$

$$\eta_t = P_{rad}/P_s$$

$$G(\theta, \varphi) = \frac{U(\theta, \varphi)}{P_S/4\pi}$$

Antenna key parameters

Antenna is a resonnant structure :

- Input impedance is changing with frequency
- Limited frequency bandwidth

Antenna is an open structure

- Compare to electronic components, antenna is strongly influenced by its surrounding environment
- For integrated antenna, the electromagnetic wave is generated by the antenna <u>and</u> by the terminal ground plane
- Small antenna has to be carefully tuned

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

Vector Network Analyzer

- RF Engineer best friend
- Measure Reflection and transmission parameters at RF frequencies
- Must be calibrated (SOLT)
- Price for professional material from 10 to 300 k€

Nano VNA

- From 30 to 100\$
- Limited performance (50dB dynamic)
- Battery powered
- Must be calibrated (SOLT)
- Enough for antenna measurements

- Nano VNA
 - Warning : Several version available !
 - 50KHz ~ 900 MHz or 50KHz ~ 1.5GHz
 - 2.8" screen LCD (VNA-H) or 4.3 " screen LCD (VNA-F)
 - Code is open source and available on : https://github.com/ttrftech/NanoVNA
 - NanoVNA v2.0 up to 3.5GHz is under development!

Calibration

- Before using the VNA, you have to calibrate it
- Use Open, Short and Load (50 ohm)

For SMA Connector

Calibration

- Before using the VNA, you have to calibrate it
- Use Open, Short and Load (50 ohm)

For UFL Connector

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

Monopole Antenna

Smith Chart 1

Inverted L Antenna

Smith Chart 1

Inverted L Antenna

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

UCA Antenna layout

- Miniaturized Printed Antenna(low cost)
- Based on a meandered Inverted
 F Antenna (IFA) Structure
- Mounted on a 80*34mm
 0.8mm-thick FR4 PCB
- Performance equivalent to a classical printed antenna in this area

area 80mm

circuit

port

UCA Antenna tuned for I

- Antenna simulation
 - Matched to 50 ohm
 - Bw = 30MHz (@-6dB)
 - -1.2 dB radiation efficiency (75%)
 - Dipole radiation pattern
 - 2.1 dBi peak directivity
 - 0.9 dBi peak Gain

UCA Antenna tuned for EU band

- Miniature antenna
 - Limited frequency bandwidth
 - If the antenna is matched for European band, the antenna has poor radiation performance in US and ASIA bands

Antenna design

- The antenna shape can be easily tuned to different frequencies
 - The top line can be cut at different position to change the antenna trace length
 - T_ant parameter can be tuned from 0 to 34mm
 - Antenna resonance frequency can be tuned from 845 to 950MHz

UCA Antenna tuning: Reflection coefficient

How to connect my antenna

 Best solution is to include a connector in your design, like UFL

 You can also directly solder the coaxial cable to the antenna patch

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

UCA Antenna tuning

UCA Antenna:: effect of environment

UCA Antenna: effect of environment

UCA Antenna tuning

UCA Antenna tuning

UCA Antenna tuning: Freq. Bandwidth

UCA Antenna tuning to US band

Antenna tuning with casing

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

Made on Epoxy FR4 substrate: Top is 0.4mm, Bottom is 0.8mm

Tri-fillar antenna tuning

Tuning with 0ohm resistors

- Only discrete value
- Can use different packages 0402, 0603, 0805
- Must be glued

Tuning with line length

- Analog tuning!
- Available soon

Outline

- Antenna Tuning
- Low Cost Vector Network Analyzer
- Inverted F Antenna
- UCA Antenna tuning
- Lacuna Space Antenna tuning
- Conclusion

Conclusion and Perspectives

- Testing and Tuning you antenna is always required (never trust datasheet)
- Nano-VNA is an affordable solution with sufficient performance for antenna tuning
- VNA is a usefull tool to tune your antenna, but be carefull to cable effect
- VNA do not provide radiation efficiency, perform a radiation test to confirm your performance

https://github.com/FabienFerrero/Antenna_Radiation_Measurement

Laboratory of Electronics Antennas and Telecommunications

Thanks a lot for TTN to organize this virtual conference

fabien.ferrero@unice.fr leat.unice.fr lacuna.space rfthings.com.vn

Laboratory of Electronics Antennas and Telecommunications

Special thanks to Constance