

TCPWM (PWM mode) example project

2.0

Features

- Project uses TCPWM component with PWM mode configuration
- Indicate line output signal behavior on LED
- LED brightness decremented using terminal count interrupt

General Description

This example project demonstrates the TCPWM component usage in the PWM mode.

Development kit configuration

- 1. Use the CY8CKIT-042 Kit with the default configuration and the CY8CKIT-040 Kit with changed project configuration settings.
- 2. Build the project and program the hex file on to the target device.
- 3. Power cycle the device and observe the results on the green color LED.

In order to configure the project for CY8CKIT-040 the following steps should be performed:

- 1. Change the project's device from PSoC 4200 to PSoC 4000.
 - Use Device Selector from the project's context menu.
- 2. Change assignment of the pin component to physical pin.

In the Workspace Explorer window, double-click the project's design-wide resource file and assign the pin for LED_GREEN to P1[1] (see Table 1).

Table 1. Pin assignment of PWMExample project

Pin Name	Development Kit	
	CY8CKIT-042	CY8CKIT-040
LED_GREEN	P0[2]	P1[1]

Project configuration

The example project consists of the following components: TCPWM, Clock, digital output pin, and Interrupt. The TCPWM is used as the Left align PWM mode. The output pins are used to reflect the line signal output behavior. The top design schematic is shown in Figure 1.

Parameters used:

- PWM mode
- Period = 63000u
- Compare = 0u
- PWM align = Left
- Prescaler = 1x
- Interrupt mode = Terminal count

The TCPWM (PWM mode) datasheet example project

Figure 1. Top design schematic.

The PWM component GUI configuration (Figure 2, Figure 3):

Figure 2. TCPWM Component Configuration Tab

Figure 3. TCPWM Component PWM Tab

Project description

In the project, the TCPWM counts from 0u to 63000u value. The compare value increases by 100u during the terminal count interrupt. When the counter starts, the compare value is 0u; the line output is always 0, so the LED brightness is in high power. After the compare value increases, the duty cycle high state of the line output signal is longer; thus the LED brightness decreases. When the line output is high, the LED brightness is in low power.

Expected results

The green color LED changes its brightness from high to low power lighting (in a cycle).

© Cypress Semiconductor Corporation, 2009-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

