Capítulo 2

Un vistazo histórico a la computación evolutiva

2.1 El origen de las ideas

Contrario a lo que muchos creen, las ideas evolucionistas que bien hiciera en popularizar Charles Darwin en 1858 no se originaron con él, sino que estuvieron presentes en las mentes de una serie de científicos y pensadores en general que no se sentían satisfechos con la (entonces popular) idea de que había un Dios originador de todas las especies del planeta (las cuales habían sido creadas de forma separada) y de que las especies estaban jerarquizadas por Dios de tal manera que el hombre ocupaba el rango superior, al lado del Creador.

Georges Louis Leclerc (Conde de Buffon) fue tal vez el primero en especular (100 años antes que Darwin) en su *Historie Naturelle* (una impresionante enciclopedia de 44 tomos que describía todo lo que se sabía en aquel entonces sobre la naturaleza), que las especies se originaron entre sí. Leclerc no sólo notó las similitudes entre el hombre y los simios, sino que incluso habla sobre un posible ancestro común entre estas dos especies. Leclerc creía en los cambios orgánicos, pero no describió un mecanismo coherente que fuera responsable de efectuarlos, sino que especuló que era el ambiente el que influía directamente sobre los organismos.

Figura 2.1: Georges Louis Leclerc (Conde de Buffon).

Figura 2.2: Jean Baptiste Pierre Antoine de Monet (Caballero de Lamarck).

2.2 Lamarckismo

A partir de 1801, el zoólogo francés Jean Baptiste Pierre Antoine de Monet (Caballero de Lamarck) comienza a publicar detalles de su propia teoría evolutiva. Conocedor del trabajo de Leclerc (quien era además su mentor), Lamarck enfatizó la importancia de la naturaleza en los cambios de las especies.

A diferencia de Leclerc, Lamarck sí explicó un mecanismo responsable de los cambios en las especies, al cual ahora se le conoce como "Lamarckismo". A pesar de que el término Lamarckismo se usa hoy en día en sentido peyorativo para referirse a la teoría de que las características adquiridas por un individuo son hereditarias¹, la verdad es que sus ideas fueron más complejas. Lamarck creía que los organismos no son alterados de forma pasiva por su ambiente, tal y como afirmaba Étienne Geoffroy Saint-Hilaire en su *Philosophie Anatomique*, sino que más bien un cambio en el ambiente produce cambios en las necesidades de los organismos, lo que hace que, en consecuencia, éstos cambien su comportamiento. Estos cambios de comportamiento conducen al mayor uso (o al desuso) de ciertos órganos o estructuras corporales de un individuo, los cuales harán que dichos órganos o estructuras crezcan (ante un mayor uso) o se reduzcan (ante el menor uso) con el paso de las generaciones. Además, Lamarck creía que estos cambios eran hereditarios, lo que implicaba que los organismos se van adaptando gradualmente a su ambiente.

Es interesante hacer notar que aunque el mecanismo evolutivo propuesto por Lamarck difiere notablemente del propuesto varios años después por Darwin, los resultados a los que ambas teorías conducen son los mismos: las especies sufren cambios adaptativos debido a la influencia del ambiente a lo largo de periodos de tiempo considerables. De hecho, llama la atención que en su libro *Philosophie Zoologique* [150], Lamarck utiliza muchas de las mismas evidencias que después adoptara Darwin para enunciar su famosa teoría.

Sin embargo, las ideas de Lamarck no fueron muy populares en su época, y sólo sirvieron para desacreditarlo con sus contemporáneos, incluyendo a su mentor Leclerc. Curiosamente, varias de las ideas de Lamarck fueron re-descubiertas (de forma independiente) por Erasmus Darwin (el abuelo de Charles Darwin) en su libro *Zoonomia*, que data de 1794. Tal vez a ello se deba que Charles Darwin haya sido uno de los pocos naturalistas en defender las ideas de Lamarck, a pesar de que éstas se oponían a su propia teoría evolutiva.

¹El ejemplo clásico usado por Lamarck era el del crecimiento del cuello y las patas frontales de las jirafas, ante la necesidad de alcanzar las hojas más altas de los árboles.

Figura 2.3: August Weismann.

Hasta el re-descubrimiento de las leyes de Gregor Mendel (enunciadas originalmente en 1865) a principios del siglo XX, nadie entendía de forma precisa los mecanismos de la herencia, y la teoría de Lamarck (con diversas variantes) gozó de gran popularidad entre varios científicos destacados del siglo XIX como el alemán Ernst Haeckel y el norteamericano Edward Drinker Cope, considerándose como una alterantiva viable al mecanismo de selección natural que Charles Darwin propusiera en su libro *El Origen de las Especies* [59].

2.3 La teoría del germoplasma

El científico alemán August Weismann formuló en el siglo XIX una teoría denominada del *germoplasma*, según la cual el cuerpo se divide en células germinales (o germoplasma) que pueden transmitir información hereditaria y en células somáticas (o somatoplasma), que no pueden hacerlo [224]. Sus ideas entraban en contraposición con el Lamarckismo, por lo que decidió efectuar una serie de experimentos en los cuales cortó la cola a un grupo de ratas durante 22 generaciones (1,592 ratones en total), haciendo ver que esto no afectaba la longitud de la cola de las nuevas generaciones de ratas. Con ello, Weismann demostró que la teoría Lamarckista de la herencia de características a través de generaciones estaba equivocada, y condujo (incidentalmente) al re-descrubrimiento del trabajo de Mendel sobre las leyes de la herencia.

Para Weismann, la selección natural era el único mecanismo que podía cam-

Figura 2.4: Alfred Russell Wallace.

biar al germoplasma (hoy conocido como *genotipo*²), y creía que tanto el germoplasma como el ambiente podían influenciar al somatoplasma (hoy conocido como *fenotipo*³).

Con el advenimiento de la genética en los 1930s, las ideas de Lamarck fueron nuevamente desacreditadas y se consideran hoy en día como obsoletas, aunque algunos investigadores las han incorporado con éxito en diversas aplicaciones de la computación evolutiva, como veremos en capítulos posteriores.

2.4 Russell y Darwin

El naturalista inglés Alfred Russell Wallace era un auto-didacta que se interesó en el origen de las especies a mediados de los 1850s, publicando varios artículos al respecto que pasaron totalmente desapercibidos. En 1858, de manera súbita intuyó la teoría de la selección natural sin saber que Darwin se le había adelantado, e iróricamente le escribió a éste para pedirle que le ayudara a publicar sus ideas. El resultado de esta curiosa cooperación fue la presentación de un trabajo conjunto a la *Linnean Society* de Londres, el 1 de julio de 1858, el cual fue publicado posteriormente (ese mismo año) en el *Journal of the Linnean Society*.

Tanto Charles Darwin como Alfred Russell Wallace estuvieron fuertemente influenciados por el trabajo del economista Thomas Robert Malthus⁴ y del geólogo

²En genética moderna, el término *genotipo* se usa para denotar la composición genética de un organismo.

³En genética moderna, se denomina *fenotipo* a los rasgos específicos de un individuo.

⁴Malthus afirmaba que mientras las especies se reproducen de forma geométrica, los recursos

Figura 2.5: Charles Robert Darwin.

Charles Lyell⁵.

Tras percatarse del trabajo de Wallace, Darwin decidió interrumpir la elaboración de un libro sobre la selección natural que inició en 1856, y mejor se enfocó a escribir otro sobre la evolución. Su libro, titulado *El origen de las especies*, se publicó en 1859 [59] con gran éxito (el tiraje inicial de 1,250 ejemplares se agotó en sólo 24 horas).

Darwin se percató de que una especie que no sufriera cambios se volvería incompatible con su ambiente, ya que éste tiende a cambiar con el tiempo. Asimismo, las similitudes entre hijos y padres observada en la naturaleza, le sugirieron a Darwin que ciertas características de las especies eran hereditarias, y que de generación a generación ocurrían cambios cuya principal motivación era hacer a los nuevos individuos más aptos para sobrevivir.

2.5 La teoría de la combinación

Una teoría popular sobre la herencia en la época de Darwin era la teoría de la "combinación", según la cual las características hereditarias de los padres se mezclaban o combinaban de alguna forma en sus hijos. La mayor debilidad de esta teoría es que no explicaba la ocurrencia de cambios repentinos en una especie, los cuales no habían sido heredados de ningún ancestro.

naturales sólo crecen de forma aritmética, por lo que ocurren periódicamente crisis para estabilizar las poblaciones de las especies con respecto a los recursos que requieren.

⁵Lyell se convenció que la forma de las montañas y demás formaciones geológicas se debía a causas naturales y no divinas.

Figura 2.6: Johann Gregor Mendel.

La explicación que esta teoría daba a este fenómeno era que ciertas características, al combinarse, se diluían con el paso de las generaciones, lo cual contradecía la teoría de la selección natural de Darwin, pues según la teoría de la combinación, los cambios adaptativos no podrían ser preservados. El ingeniero británico Fleming Jenkins se contaba entre los más fervientes defensores de la teoría de la combinación, y para defenderse de él, Darwin hubo de elaborar su propia teoría de la herencia, denominada de la "pangénesis".

2.6 Las leyes de la herencia de Mendel

El monje austriaco Johann Gregor Mendel realizó una serie de experimentos con guisantes durante buena parte de su vida, estudiando las características básicas de esta planta. Mediante un cuidadoso análisis de las diferentes características manifestadas por las plantas de guisantes, Mendel descubrió tres leyes básicas que gobernaban el paso de una característica de un miembro de una especie a otro. La primera ley (llamada de Segregación) establecía que los miembros de cada par de alelos de un gene se separan cuando se producen los gametos durante la meiosis. La segunda ley (llamada de la Independencia) establecía que los pares de alelos se independizan (o separan entre sí durante la formación de gametos⁶. La tercera ley (llamada de la Uniformidad) establecía que cada característica heredada se determina mediante dos factores provenientes de ambos padres, lo cual decide si un

⁶Hoy sabemos que esta ley sólo es válida para los genes localizados en cromosomas diferentes.

cierto gene⁷ es dominante o recesivo. De tal manera, la teoría de la combinación de la que hablamos anteriormente, quedaba desechada de acuerdo a los resultados producidos en los experimentos de Mendel.

Aunque Mendel descubrió las leyes de la herencia, realmente no llegó a entender el mecanismo detrás de ella, y los genes, así como el mecanismo de transmisión de los mismos de generación en generación no fue descubierto sino hasta varios años después. Asimismo, su trabajo permaneció largamente ignorado por la comunidad científica, debido a que los dio a conocer originalmente en dos conferencias dictadas ante la Sociedad de Ciencias de Brünn, el 8 de febrero y el 8 de marzo de 1865. El manuscrito original fue publicado en las memorias de dicha Sociedad en 1866, en alemán [157], y no se tradujeron al inglés sino hasta 1901 [158].

2.7 La teoría de la pangénesis

Esta teoría esbozada por Darwin (explicada en el libro *On the Variation of Animals and Plants under Domestication* [58]) esgrime que cada órgano del cuerpo produce pequeñas partículas hereditarias llamadas "gémulas" o "pangenes". Según Darwin, estas gémulas eran transportadas a través de la sangre y se recolectaban en los gametos⁸ durante su formación. Esto significaba que, según esta teoría, las características de los padres se transmitían directamente a la sangre de sus hijos.

Esta teoría estaba claramente influenciada por el Lamarckismo, y curiosamente fue desacreditada por un primo de Darwin llamado Francis Galton, quien efectuó transfusiones sanguíneas de un conejo negro a uno blanco, mostrando que los descendientes de este último permanecían blancos, sin importar a cuántas generaciones se les inyectara sangre del conejo negro.

Cabe destacar que Darwin desconocía el trabajo contemporáneo de Gregor Mendel, que le habría dado el elemento faltante en su teoría de la evolución: una explicación clara del mecanismo de la herencia.

Figura 2.7: Francis Galton.

Figura 2.8: Hugo De Vries.

2.8 La teoría de la mutación

El botánico danés Hugo De Vries creyó haber descubierto una nueva especie de planta al encontrar (alrededor del año 1900) una flor roja entre una gran cantidad de flores amarillas. Según De Vries, esto se debía a una mutación abrupta e infrecuente de las flores amarillas. Accidentalmente, DeVries re-descubrió nuevamente las leyes de la herencia que enunciara varios años atrás Gregor Mendel, y puso de moda la teoría de las "mutaciones espontáneas" [223], expandiendo con ella la teoría Darwiniana de la evolución.

Según De Vries, los cambios en las especies no eran graduales y adaptativos como afirmaba Darwin, sino más bien abruptos y aleatorios (es decir, al azar). Varios años más tarde se descubrió que las flores rojas que motivaron esta teoría no eran más que una variedad más de las mismas flores amarillas de que estaban rodeadas, y no una nueva especie como De Vries creía. De hecho, se ha logrado demostrar que las mutaciones son siempre dañinas y que no producen nuevas especies, aunque algunos aspectos de la teoría de De Vries han servido para complementar la teoría evolutiva de Darwin.

2.9 La teoría cromosómica de la herencia

En 1903, Walter Sutton (entonces un estudiante de posgrado en la Universidad de Columbia), leyó el trabajo de Mendel y el de DeVries, y determinó correctamente (y sin la ayuda de experimentos genéticos) que los cromosomas en el núcleo de las células eran el lugar donde se almacenaban las características hereditarias. También afirmó que el comportamiento de los cromosomas durante la división de las células sexuales era la base para las leyes de la herencia de Mendel. Un poco después indicó que los cromosomas contenían genes, y que los genes de un mismo cromosoma estaban ligados y, por tanto, se heredaban juntos. A esto se le llamó la "teoría cromosómica de la herencia".

Thomas Hunt Morgan confirmaría experimentalmente las hipótesis de Sutton algunos años más tarde, con lo que Sutton pasó a ser uno de los pioneros más importantes de la genética moderna.

⁷El término "gene" fue acuñado en una época posterior, pero los factores hereditarios o unidades de la herencia a los que se refirió Mendel son precisamente los genes.

⁸Se denominan gametos a las células que llevan información genética de sus padres con el propósito de llevar a cabo una reproducción sexual. En los animales, a los gametos masculinos se les llama espermas y a los femeninos se les llama óvulos.

Figura 2.9: Thomas Hunt Morgan.

2.10 Neo-Darwinismo

La teoría evolutiva propuesta originalmente por Charles Darwin en combinación con el seleccionismo de August Weismann y la genética de Gregor Mendel, se conoce hoy en día como el paradigma Neo-Darwiniano.

El Neo-Darwinismo establece que la historia de la vasta mayoría de la vida en nuestro planeta puede ser explicada a través de un puñado de procesos estadísticos que actúan sobre y dentro de las poblaciones y especies [124]: la reproducción, la mutación, la competencia y la selección.

La reproducción es una propiedad obvia de todas las formas de vida de nuestro planeta, pues de no contar con un mecanismo de este tipo, la vida misma no tendría forma de producirse.

En cualquier sistema que se reproduce a sí mismo continuamente y que está en constante equilibrio, la mutación está garantizada [80]. El contar con una cantidad finita de espacio para albergar la vida en la Tierra garantiza la existencia de la competencia. La selección se vuelve la consecuencia natural del exceso de organismos que han llenado el espacio de recursos disponibles. La evolución es, por lo tanto, el resultado de estos procesos estocásticos (es decir, probabilísticos) fundamentales que interactúan entre sí en las poblaciones, generación tras generación.

Figura 2.10: Alan Mathison Turing.

2.11 Inspiración biológica

La evolución natural fue vista como un proceso de aprendizaje desde los 1930s. W. D. Cannon, por ejemplo, plantea en su libro *The Wisdom of the Body* [38] que el proceso evolutivo es algo similar al aprendizaje por ensayo y error que suele manifestarse en los humanos.

El célebre matemático inglés Alan Mathison Turing reconoció también una conexión "obvia" entre la evolución y el aprendizaje de máquina en su artículo (considerado hoy clásico en Inteligencia Artificial) titulado "Computing Machinery and Intelligence" [219].

2.12 Alexander Fraser

A fines de los 1950s y principios de los 1960s, el biólogo Alexander S. Fraser [89, 90, 91] publicó una serie de trabajos sobre la evolución de sistemas biológicos en una computadora digital, dando la inspiración para lo que se convertiría más tarde en el algoritmo genético [127].

El trabajo de Fraser incluye, entre otras cosas, el uso de una representación binaria, de un operador de cruza probabilístico, de una población de padres que generaban una nueva población de hijos tras recombinarse y el empleo de un mecanismo de selección. Además, Fraser estudió el efecto de la epístasis⁹, la

⁹En biología se dice que un gen es "espistático" cuando su presencia suprime el efecto de un gen que se encuentra en otra posición.

Figura 2.11: George E. P. Box.

segregación¹⁰, los porcentajes de cruza y varios otros mecanismos biológicos que hoy son de sumo interés para la comunidad de computación evolutiva. Su trabajo de más de 10 años en este tema se resume en un libro titulado *Computer Models in Genetics* [93]. De tal forma, puede decirse que el trabajo de Fraser anticipó la propuesta del algoritmo genético simple de Holland y la de la estrategia evolutiva de dos miembros de Schwefel [81]. Fraser además llegó a utilizar el término "aprendizaje" para referirse al proceso evolutivo efectuado en sus simulaciones, y anticipó el operador de inversión, la definición de una función de aptitud y el análisis estadístico de la convergencia del proceso de selección [92]. Más interesante aún, resulta el hecho de que el trabajo de Fraser no fue el único efectuado en su época, sino que más bien los modelos computacionales de la genética poblacional se volvieron bastante populares durante fines de los 1950s y principios de los 1960s, al grado de que dio pie a reseñas sobre el tema, como las de J. L. Crosby [57] y B. R. Levin [153]

2.13 EVOP

Aproximadamente en la misma época en que iniciara su trabajo Fraser, el experto en estadística inglés George E. P. Box propuso un enfoque evolutivo para la optimización de la producción industrial [26]. Su técnica, denominada EVOP (*Evolutionary Operation*) consistía en efectuar pequeños cambios a un conjunto de parámetros de producción, monitoreando ciertos datos estadísticos de los procesos para guiar la búsqueda. Box [26] llegó a establecer claramente la analogía

¹⁰Cuando se forman los gametos y tenemos más de un par de cromosomas en el genotipo, entonces, para fines de la recombinación sexual, es necesario elegir sólo uno de los cromosomas existentes. A este proceso se le denomina *segregación*.

entre estos cambios y las mutaciones que ocurren en la naturaleza, e hizo ver también que el proceso de ajuste de parámetros que efectuaba con técnicas estadísticas era similar al proceso de selección natural.

EVOP funcionaba mediante un proceso iterativo, pero requería de intervención humana en cada etapa, si bien Box [26] reconoció que la técnica podía automatizarse. Como Fogel indica en su libro sobre historia de la computación evolutiva [81], aunque en forma limitada, EVOP sigue en uso hoy en día en la industria química¹¹.

2.14 La evolución de programas de Friedberg

R. M. Friedberg [94] es considerado como uno de los primeros investigadores en intentar evolucionar programas de computadora. Aunque Friedberg no usa explícitamente la palabra "evolución" en su trabajo, resulta claro que ese es el enfoque que adoptó en su artículo original y en una versión posterior, publicada en 1959 [95]. De hecho, en un artículo posterior, sus co-autores modelan la evolución como un proceso de optimización [70].

El trabajo de Friedberg consistió en generar un conjunto de instrucciones en lenguaje máquina que pudiesen efectuar ciertos cálculos sencillos (por ejemplo, sumar dos números) [81]. Fogel [81] considera que Friedberg fue el primero en enunciar de manera informal los conceptos de *paralelismo implícito*¹² y *esquemas*¹³, que popularizara Holland en los 1970s [127].

Friedberg [94] utilizó un algoritmo de asignación de crédito para dividir la influencia de diferentes instrucciones individuales en un programa. Este procedimiento fue comparado con una búsqueda puramente aleatoria, y en algunos casos fue superado por ésta. Tras ciertas modificaciones al procedimiento, Friedberg fue capaz de superar a una búsqueda totalmente aleatoria, pero no pudo resolver satisfactoriamente el problema de "estancamiento" (*stagnation*, en inglés) de la población que se le presentó y por ello fue cruelmente criticado por investigadores de la talla de Marvin Minsky, quien en un artículo de 1961 [165] indicó que el tra-

¹¹Ver por ejemplo la página http://www.multisimplex.com/evop.htm

¹² El paralelismo implícito que demostrara Holland para los algoritmos genéticos se refiere al hecho de que mientras el algoritmo calcula las aptitudes de los individuos de una población, estima de forma implícita las aptitudes promedio de un número mucho más alto de cadenas cromosómicas a través del cálculo de las aptitudes promedio observadas en los "bloques constructores" que se detectan en la población.

¹³Un esquema es un patrón de valores de los genes en un cromosoma.

bajo de Friedberg era "una falla total". Minsky atribuyó el fracaso del método de Friedberg a lo que él denominó el "fenómeno de mesa" [166], según el cual el estancamiento de la población se debía al hecho de que sólo una instrucción del programa era modificada a la vez, y eso no permitía explorar una porción significativa del espacio de búsqueda. Aunque estas observaciones no son del todo precisas [81], el problema del estancamiento siguió siendo el principal inconveniente del procedimiento de Friedberg, aunque Fogel [81] considera que su trabajo precedió el uso de los sistemas clasificadores que popularizara varios años después John Holland [127].

Dunham et al. [70, 72, 71] continuaron el trabajo de Friedberg, y tuvieron éxito con algunos problemas de aprendizaje de mayor grado de dificultad que los intentados por éste.

2.15 Friedman y la robótica evolutiva

George J. Friedman [97] fue tal vez el primero en proponer una aplicación de técnicas evolutivas a la robótica: su tesis de maestría propuso evolucionar una serie de circuitos de control similares a lo que hoy conocemos como redes neuronales, usando lo que él denominaba "retroalimentación selectiva", en un proceso análogo a la selección natural. Muchos consideran a este trabajo, como el origen mismo de la denominada "robótica evolutiva", que es una disciplina en la que se intentan aplicar técnicas evolutivas a diferentes aspectos de la robótica (planeación de movimientos, control, navegación, etc.). Desgraciadamente, las ideas de Friedman nunca se llevaron a la práctica, pero aparentemente fueron re-descubiertas por algunos investigadores varios años después [81].

Los circuitos de control que utilizara Friedman en su trabajo modelaban a las neuronas humanas, y eran capaces de ser excitadas o inhibidas. Además, era posible agrupar estos circuitos simples (o neuronas) para formar circuitos más complejos. Lo interesante es que Friedman propuso un mecanismo para construir, probar y evaluar estos circuitos de forma automática, utilizando mutaciones aleatorias y un proceso de selección. Este es probablemente el primer trabajo en torno a lo que hoy se denomina "hardware evolutivo".

Friedman [96] también especuló que la simulación del proceso de reproducción sexual (o cruza) y el de mutación nos conduciría al diseño de "máquinas pensantes", remarcando específicamente que podrían diseñarse programas para jugar ajedrez con este método.

2.16 Vida artificial

Nils Aall Barricelli [16] desarrolló las que tal vez fueron las primeras simulaciones de un sistema evolutivo en una computadora, entre 1953 y 1956. Para ello utilizó la computadora IAS¹⁴ (desarrollada por el legendario matemático John von Neumann) del Instituto de Estudios Avanzados de Princeton, ubicado en Nueva Jersey, en los Estados Unidos de Norteamérica. Sus experimentos siguieron los lineamientos de una disciplina popularizada a mediados de los 1980s bajo el nombre de "Vida Artificial" [151].

La investigación original de Barricelli se publicó en italiano, pero debido a algunos errores de traducción y a algunas adiciones realizadas posteriormente, se republicó en 1957 [17]. El principal énfasis de su investigación consistía en determinar las condiciones que los genes deben cumplir para poder dar pie al desarrollo de formas de vida más avanzadas. Sus conclusiones fueron que los genes deben satisfacer lo siguiente [17]: (1) una cierta capacidad para reproducirse, (2) una cierta capacidad para cambiar a formas alternas (a través de mutaciones) y, (3) una necesidad de simbiosis¹⁵ (por ejemplo, a través de vida parásita) con otros genes u organismos.

Barricelli desarrolló uno de los primeros juegos co-evolutivos¹⁶ (llamado *Tac Tix*), en el cual se hacen competir entre sí a dos estrategias para jugar. Asimismo, en un trabajo posterior [18, 19], Barricelli explicó la función de la recombinación sexual en forma muy similar a la noción de bloques constructores que enunciara Holland en los 1970s [127].

En otros trabajos realizados con J. Reed y R. Toombs [185], Barricelli demostró que la recombinación aceleraba la evolución de los caracteres fenotípicos que no eran poligénicos (es decir, que no se basaban en la interacción de múltiples genes).

Otra de las contribuciones de Barricelli [18] fue el haber reconocido la naturaleza Markoviana de sus simulaciones, en un preludio al modelo matemático por excelencia utilizado en tiempos modernos para analizar la convergencia de los algoritmos genéticos.

¹⁴Las siglas *IAS* significan *Institute for Advanced Studies*, que es el lugar donde la computadora se desarrolló.

¹⁵La "simbiosis" es la asociación de dos tipos diferentes de organismos en la cual cada uno se beneficia del otro y pueden incluso ser esenciales entre sí para su existencia.

¹⁶Se denomina "co-evolución" al proceso evolutivo en el cual la aptitud de un individuo se determina mediante la evaluación parcial de otros.

Figura 2.12: Lawrence J. Fogel.

2.17 La optimización evolutiva de Bremermann

Hans Joachim Bremermann [27] fue tal vez el primero en ver a la evolución como un proceso de optimización, además de realizar una de las primeras simulaciones de la evolución usando cadenas binarias que se procesaban por medio de reproducción (sexual o asexual), selección y mutación, en lo que sería otro claro predecesor del algoritmo genético [127].

Bremermann [28, 30] utilizó una técnica evolutiva para problemas de optimización con restricciones lineales. La idea principal de su propuesta era usar un individuo factible el cual se modificaba a través de un operador de mutación hacia un conjunto de direcciones posibles de movimiento. Al extender esta técnica a problemas más complejos, utilizó además operadores de recombinación especializados [31].

Bremermann fue uno de los primeros en utilizar el concepto de "población" en la simulación de procesos evolutivos, además de intuir la importancia de la coevolución [27] (es decir, el uso de dos poblaciones que evolucionan en paralelo y
cuyas aptitudes están relacionadas entre sí) y visualizar el potencial de las técnicas
evolutivas para entrenar redes neuronales [29].

2.18 La programación evolutiva

Lawrence J. Fogel et al. [87] concibieron el uso de la evolución simulada en la solución de problemas (sobre todo de predicción). Su técnica, denominada "Programación Evolutiva" [84] consistía básicamente en hacer evolucionar autómatas

de estados finitos, los cuales eran expuestos a una serie de símbolos de entrada (el ambiente), y se esperaba que, eventualmente, serían capaces de predecir las secuencias futuras de símbolos que recibirían. Fogel utilizó una función de "pago" que indicaba qué tan bueno era un cierto autómata para predecir un símbolo, y usó un operador modelado en la mutación para efectuar cambios en las transiciones y en los estados de los autómatas que tenderían a hacerlos más aptos para predecir secuencias de símbolos.

Esta técnica no consideraba el uso de un operador de recombinación sexual porque, como veremos en un capítulo posterior, pretendía modelar el proceso evolutivo al nivel de las especies y no al nivel de los individuos.

La programación evolutiva se aplicó originalmente a problemas de predicción, control automático, identificación de sistemas y teoría de juegos, entre otros [83, 86, 35].

Donald W. Dearholt y algunos otros investigadores, experimentaron con programación evolutiva en la Universidad de Nuevo México en los 1970s, de forma totalmente independiente a Fogel [85, 81, 193, 54].

Probablemente la programación evolutiva fue la primera técnica basada en la evolución en aplicarse a problemas de predicción, además de ser la primera en usar codificaciones de longitud variable (el número de estados de los autómatas podía variar tras efectuarse una mutación), además de constituir uno de los primeros intentos por simular la co-evolución.

2.19 Las estrategias evolutivas

Como estudiantes de posgrado en la Universidad Técnica de Berlín, en Alemania, Peter Bienert, Ingo Rechenberg y Hans-Paul Schwefel estudiaban la mecánica de los fluídos en 1963 con un particular énfasis en la experimentación en un túnel de viento. Los problemas que les interesaban eran de carácter hidrodinámico, y consistían en la optimización de la forma de un tubo curvo, la minimización del arrastre de una placa de unión y la optimización estructural de una boquilla intermitente de dos fases. Debido a la imposibilidad de describir y resolver estos problemas de optimización analíticamente o usando métodos tradicionales como el del gradiente [180], Ingo Rechenberg decidió desarrollar un método de ajustes discretos aleatorios inspirado en el mecanismo de mutación que ocurre en la naturaleza. Los resultados iniciales de esta técnica, a la que denominaron "estrategia evolutiva", fueron presentados al Instituto de Hidrodinámica de su universidad el 12 de junio de 1964 [81].

Figura 2.13: Hans-Paul Schwefel.

En los dos primeros casos (el tubo y la placa), Rechenberg procedió a efectuar cambios aleatorios en ciertas posiciones de las juntas y en el tercer problema procedió a intercambiar, agregar o quitar segmentos de boquilla. Sabiendo que en la naturaleza las mutaciones pequeñas ocurren con mayor frecuencia que las grandes, Rechenberg decidió efectuar estos cambios en base a una distribución binomial con una varianza prefijada. El mecanismo básico de estos primeros experimentos era crear una mutación, ajustar las juntas o los segmentos de boquilla de acuerdo a ella, llevar a cabo el análisis correspondiente y determinar qué tan buena era la solución. Si ésta era mejor que su predecesora, entonces pasaba a ser utilizada como base para el siguiente experimento. De tal forma, no se requería información alguna acerca de la cantidad de mejoras o deterioros que se efectuaban.

Esta técnica tan simple dio lugar a resultados inesperadamente buenos para los tres problemas en cuestión, y Peter Bienert [23] construyó un robot que podía efectuar de forma automáticamente el proceso de optimización usando este método. Simultáneamente, Hans-Paul Schwefel se dio a la tarea de implementar esta técnica en una computadora Z23 [202].

Aunque los primeros fundamentos teóricos de las estrategias evolutivas de dos miembros (su versión más simple) se esbozaron en la tesis doctoral de Ingo Rechenberg la cual se publicó como libro en 1973 [184], no fue sino hasta que el libro que Schwefel escribiera a fines de los 1970s [203] se tradujo al inglés [204] que la técnica atrajo la atención de los investigadores fuera del mundo germanoparlante.

Figura 2.14: John H. Holland.

2.20 Los algoritmos genéticos

John H. Holland se interesó en los 1960s en estudiar los procesos lógicos involucrados en la adaptación. Inspirado por los estudios realizados en aquella época con autómatas celulares [36] y redes neuronales [207], Holland se percató de que el uso de reglas simples podría generar comportamientos flexibles, y visualizó la posibilidad de estudiar la evolución de comportamientos en un sistema complejo.

Holland advirtió que un estudio de la adaptación debía reconocer que [126, 125]: (a) la adaptación ocurre en un ambiente, (b) la adaptación es un proceso poblacional, (c) los comportamientos individuales pueden representarse mediante programas, (d) pueden generarse nuevos comportamientos mediante variaciones aleatorias de los programas, y (e) las salidas de dos programas normalmente están relacionadas si sus estructuras están relacionadas.

De tal forma, Holland vio el proceso de adaptación en términos de un formalismo en el que los programas de una población interactúan y mejoran en base a un cierto ambiente que determina lo apropiado de su comportamiento. El combinar variaciones aleatorias con un proceso de selección (en función de qué tan apropiado fuese el comportamiento de un programa dado), debía entonces conducir a un sistema adaptativo general.

Este sistema fue desarrollado hacia mediados de los 1960s, y se dio a conocer en el libro que Holland publicase en 1975, donde lo denominó "plan reproductivo genético" [127], aunque después se popularizó bajo el nombre (más corto y conveniente) de "algoritmo genético".

Aunque concebido originalmente en el contexto del aprendizaje de máquina, el algoritmo genético se ha utilizado mucho en optimización, siendo una técnica sumamente popular en la actualidad.

Figura 2.15: Michael Conrad.

Figura 2.16: Howard H. Pattee.

2.21 Ecosistemas artificiales

Michael Conrad y Howard H. Pattee [51] se cuentan entre los primeros en simular un ecosistema artificial jerárquico en el que un conjunto de organismos unicelulares estaban sujetos a una estricta ley de conservación de la materia que les inducía a competir para sobrevivir. Los organismos simulados fueron capaces de efectuar cooperación mutua y de llevar a cabo estrategias biológicas tales como la recombinación genética y la modificación de la expresión de su genoma¹⁷.

En esta implementación, los organismos realmente consistían de subrutinas genéticas, por lo que el fenotipo de cada individuo se determinaba mediante la forma en que estas rutinas era usadas por los organismos. Algunos de los puntos que enfatizó el trabajo de Conrad y Pattee fueron los siguientes: (a) el compor-

¹⁷Se denomina genoma a la colección completa de genes (y por tanto cromosomas) que posee un organismo.

tamiento que caracteriza a los procesos de sucesión ecológica deben emerger potencialmente, (b) los procesos de la búsqueda evolutiva deben corresponder con su contraparte biológica, y (c) la simulación debe ser lo más simple posible a fin de permitir el estudio de características fundamentales de los ecosistemas así como las condiciones mínimas necesarias para que ocurra la evolución natural. Sus esfuerzos en esta área se extendieron hasta los 1980s [48, 49, 53, 189, 52].

Michael Conrad [47] propuso también en los 1970s un "modelo de circuitos de aprendizaje evolutivo" en el cual especuló sobre la posibilidad de que el cerebro use el mismo tipo de mecanismos que usa la evolución para aprender. Su técnica fue uno de los primeros intentos por utilizar algoritmos evolutivos para entrenar redes neuronales. Conrad también sugirió [50] el uso de la evolución para lidiar con problemas como el reconocimiento de patrones en que los enfoques algorítmicos de alto nivel (como los sistemas expertos) no han proporcionado resultados satisfactorios.

2.22 Programación genética

Aunque los primeros intentos por evolucionar programas se remontan a los 1950s y 1960s [95, 83], no fue sino hasta los 1980s que se obtuvieron resultados satisfactorios.

Hicklin [121] y Fujiki [98] usaron expresiones-S en LISP para representar programas cuyo objetivo era resolver problemas de teoría de juegos. Hicklin [121] discutió la combinación de segmentos de programas mediante el copiado de subárboles de un individuo a otro, aunque sus árboles se limitaban a expresar sentencias condicionales. Adicionalmente, planteó el uso de mutación para introducir nuevos árboles en la población.

Nichael Lynn Cramer [56] y posteriormente John R. Koza [144] propusieron (de forma independiente) el uso de una representación de árbol en la que se implementó un operador de cruza para intercambiar sub-árboles entre los diferentes programas de una población generada al azar (con ciertas restricciones impuestas por la sintaxis del lenguaje de programación utilizado).

La diferencia fundamental del trabajo de Cramer [56] y el de Koza [144] es que el primero usó una función de aptitud interactiva (es decir, el usuario debía asignar a mano el valor de aptitud a cada árbol de la población), mientras el segundo logró automatizarla.

La propuesta de Koza [144] se denomina *programación genética* y fue implementada originalmente usando expresiones-S en LISP, aunque hoy en día existen

Figura 2.17: John R. Koza.

implementaciones en muchos otros lenguajes de programación. Su técnica es casi independiente del dominio y ha sido utilizada en un sinnúmero de aplicaciones de entre las que destacan la compresión de imágenes, el diseño de circuitos, el reconocimiento de patrones y la planeación de movimientos de robots, entre otras [145].

Más recientemente, Koza [146] extendió su técnica mediante la incorporación de "funciones definidas automáticamente", las cuales pueden ser reusadas a manera de subrutinas e incrementan notablemente el poder de la programación genética para generar programas automáticamente.

2.23 Dinámica evolutiva

Thomas S. Ray [183] desarrolló a principios de los 1990s un simulador muy original en el que se evolucionaban programas en lenguaje ensamblador, los cuales competían por ciclos de CPU de una computadora, a la vez que intentaban reproducirse (o sea, copiarse a sí mismos) en la memoria de dicha computadora. En este simulador, denominado *Tierra*, se partía de un programa único con la capacidad de auto-replicarse, al que se denominaba "ancestro". En base a este programa, se generaban "criaturas" nuevas (segmentos de código), las cuales a su vez se podían dividir para dar nacimiento a más criaturas. Al nacer, una criatura era colocada en una cola de espera aguardando a tener el turno correspondiente para que sus instrucciones fueran ejecutadas. Si dichas instrucciones producían un error al ejecutarse, la criatura se movería más arriba en la cola de espera, de acuerdo al nivel de errores acumulados en su periodo de vida. Las criaturas que se encontraran

Figura 2.18: Thomas S. Ray.

en la parte superior de la cola de espera eran destruidas (es decir, morían). Para introducir diversidad en las criaturas, Ray propuso dos formas de mutación: (1) a ciertos intervalos, algunos bits en memoria eran modificados aleatoriamente, y (2) durante el proceso de auto-replicación de una criatura, algunos de sus bits se cambiaban aleatoriamente. Otra fuente adicional de diversidad provenía del hecho de que los programas no eran determinísticos, sino que cada instrucción tenía asociada una probabilidad de ser ejecutada.

Uno de los fenómenos observados por Ray durante las simulaciones de *Tierra* fue el surgimiento de criaturas "parásitas", las cuales no podían reproducirse al carecer de un programa huésped que las contuviera, y que la dinámica evolutiva misma del sistema tendía a eliminar con el paso del tiempo.

Tierra es uno de los pocos intentos por simular un ecosistema con el propósito expreso de observar los comportamientos que emergen de la dinámica evolutiva del mismo.

2.24 Problemas propuestos

 Muy relacionado con el Lamarckismo se encuentra un mecanismo que diera a conocer originalmente James Mark Baldwin en 1902 [15] y al cual denominó "selección orgánica".

Hoy en día, a este mecanismo se le conoce como "efecto Baldwin" y es bastante popular en computación evolutiva. Explique en qué consiste el "efecto Baldwin" desde la perspectiva biológica y de qué forma se relaciona

Figura 2.19: James Mark Baldwin.

con el Lamarckismo.

- 2. El Neo-Darwinismo se compone básicamente de los siguientes fenómenos y propuestas [212]:
 - Herencia
 - Mutación
 - Mezcla aleatoria de cromosomas paternos y maternos
 - Recombinación
 - Selección y evolución natural
 - Aislamiento
 - Desvío genético
 - La barrera de Weismann es inviolable

Investigue los argumentos del Neo-Darwinismo respecto de cada uno de estos puntos y elabore un ensayo donde los discuta y critique.

3. Investigue en qué consiste el *equilibro acentuado* [73, 124] (*punctuated equilibrium* en inglés) y escriba un ensayo en el que indique si considera que se opone a los preceptos del Neo-Darwinismo o no. Fundamente bien sus argumentos.

4. Defina lo que se entiende en biología por **desvío genético** (*genetic drift*, en inglés), indicando cómo puede contrarrestarse. Asegúrese de explicar el significado de cualquier término que utilice en su definición.

Se le recomienda consultar:

Paton, Raymond C. "Principles of Genetics", en Thomas Bäck, David B. Fogel & Zbigniew Michalewicz (editores), *Handbook of Evolutionary Computation*, pp. A2.2:1–A2.2:9, Institute of Physics Publishing and Oxford University Press, 1997.