<<概率论与数理统计>>自测题四

一、 填空题(本题共计20分,每小题2分)

- 1. 已知随机事件 A 和 B 满足 $P(AB) = P(\overline{AB})$,且 P(A) = 0.3,则 P(B) =_______。
- 2. 从数字 1, 2, 3, 4, 5 中任意抽取 2 个,组成没有重复数字的二位数,则这个二位数是偶数的概率为____。
- 3. 设随机变量 X 、 Y 和 Z 相互独立,其中 X 服从区间 [0,6] 上的均匀分布, Y 服从二项分布 B(10,0.5) , Z 服从 $\lambda=3$ 的指数分布,令 U=X-2Y+3Z ,则 E(U)=_____。
- 4. 设随机变量 X 服从参数为 λ 的泊松分布,且 P(X=2)=P(X=4),则 $\lambda=$ _____。
- 6. 设随机变量 X 的数学期望 $E(X)=\mu$, 方差 $D(X)=\sigma^2$,则由切比雪夫不等式可得: $P(|X-\mu| \geq 3\sigma) \leq \underline{\hspace{1cm}}_{\circ}$
- 7. 设随机变量 $X \sim N(0,1)$, $Y \sim N(1,1)$, 且 X = Y相互独立,则 P(X+Y < 1) =
- 8. 已知总体 $X \sim N(0,1)$, X_1, X_2, \cdots, X_n 是来自总体 X 的样本,则 $\sum_{i=1}^n X_i^2 \sim$ ________。
- 9. 设随机变量 X 服从自由度为n的t分布,若 $P(|X|>\lambda)=\alpha$,则 $P(X<\lambda)=___$ 。
- 10. 已知总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是来自总体 X 的简单随机样本,若统计量 $C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2\ \, 为\,\sigma^2\ \,$ 的无偏估计,则 C=______。

二、选择题(本题共计10分,每小题2分)

- 1. 设A和B是两个随机事件,若事件B发生时事件A必发生,则一定有(_____)
 - (A) P(AB) = P(A)

(B) $P(A \cup B) = P(A)$

(C) P(B|A)=1

(D) P(B|A) = P(A)

2. 设随机变量 X 与 Y 独立同分布,且 $P(X=-1)=P(Y=-1)=\frac{1}{2}$;

$$P(X = 1) = P(Y = 1) = \frac{1}{2}$$
,则下列各式成立的是:(_____)

(A)
$$P(X = Y) = \frac{1}{2}$$

(B)
$$P(X = Y) = 1$$

(C)
$$P(X+Y=0) = \frac{1}{4}$$
 (D) $P(XY=1) = \frac{1}{4}$

(D)
$$P(XY = 1) = \frac{1}{4}$$

3. 设随机变量 X 与 Y 的方差 D(X) 和 D(Y) 都存在,且 $D(X) \neq 0$, $D(Y) \neq 0$,

$$E(XY) = E(X)E(Y)$$
, $\mathbb{Q}(\underline{\hspace{1cm}})$.

(A) X 与Y 相互独立

$$(C)$$
 $D(XY) = D(X)D(Y)$

(D)
$$D(X-Y) = D(X) - D(Y)$$

4. 设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本,则样本均值 \overline{X} 的分布为:(_____)

(A)
$$N(0,1)$$

(B)
$$N(\mu, \sigma^2)$$

(C)
$$N(\mu, \frac{\sigma^2}{n})$$

(D)
$$N(n\mu, n\sigma^2)$$

5. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 已知, 现从总体中抽取容量为 n 的样本, \overline{X} 和 S^2 分别为样 本均值和样本方差,则 μ 的置信度为 $1-\alpha$ 的置信区间为:(

(A)
$$(\overline{X} - t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}})$$
 (B) $(\overline{X} - U_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}}, \overline{X} + U_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}})$

(B)
$$(\overline{X} - U_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + U_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}})$$

(C)
$$(\bar{X} - t_{\frac{\alpha}{2}}(n-1)\frac{\sigma}{\sqrt{n}}, \bar{X} + t_{\frac{\alpha}{2}}(n-1)\frac{\sigma}{\sqrt{n}})$$
 (D) $(\bar{X} - U_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}, \bar{X} + U_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}})$

(D)
$$(\overline{X} - U_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + U_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$$

三、计算题(本题共计63分,每小题7分)

- 1. 一袋子中装有10个球,其中3个白球、7个红球,现采用不放回方式从中摸球两次, 每次一个, 求第2次才摸到白球的概率。
- 2. 有三箱同型号的灯泡,已知甲箱的次品率为1.0%,乙箱的次品率为1.5%,丙箱的次 品率为2.0%,现从三箱中任取一只灯泡,设取得甲箱的概率为 $\frac{1}{2}$,取得乙、丙两箱 的机会相等, 求取得次品的概率。
- 3. 设连续随机变量 X 的分布函数为 $F(x) = A + B \arctan x$, $-\infty < x < +\infty$, 求

- (1) 常数 A 和 B:
- (2)随机变量X的概率密度;
- (3) P(-1 < X < 1).
- 4. 已知离散随机变量X的概率分布:

X	-1	1	2
$p(x_i)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

- 求 (1) 随机变量 X 的分布函数; (2) $P(X < \frac{1}{2})$; (3) $P(1 < X \le \frac{3}{2})$ 。
- 5. 已知随机变量 X 的概率密度为: $f(x) = \begin{cases} 2x, & 0 < x < 1; \\ 0, & 其它. \end{cases}$, 求随机变量函数

 $Y = X^2 + 1$ 的概率密度和分布函数。

- 6. 设二维随机变量 (X,Y) 的联合概率密度为 $f(x,y) = \begin{cases} e^{-y}, & x > 0, y > x; \\ 0, & 其它. \end{cases}$,求:
 - (1) 随机变量 X 与 Y 的边缘概率密度;
 - (2) 判断随机变量 X 与 Y 的独立性。
- 7. 设随机变量 X 的概率密度函数为: $f(x) = \frac{1}{2}e^{-|x|}$, $-\infty < x < +\infty$,求随机变量 X 的数学期望 E(X) 和方差 D(X) 。
- 8. 设总体 X 的概率密度为:

$$f(x) = \begin{cases} (\theta+1)x^{\theta}, & 0 < x < 1; \\ 0, & \text{ 其它.} \end{cases}$$

其中 $\theta>-1$ 是未知参数,设 x_1,x_2,\cdots,x_n 是总体的一样本观测值,求参数 θ 的最大似然估计值。

9. 某学校有 1000 名住校生,每人以 80%的概率去图书馆自习,问图书馆至少要有多少个座位才能以 99%的概率保证去上自习的同学都有座位。(附: Φ(2.33) = 0.99,

$$\Phi(2.58) = 0.995$$
, $\sqrt{10} = 3.16$)

四、证明题(本题共计7分)

1. 证明: 若事件A、B和C相互独立,则事件A与事件 $B\cup C$ 相互独立。