## 数值分析

#### 李治平

北京大学 数学科学学院



└ Lagrange 插值基函数与 Lagrange 插值多项式

### 一次多项式插值基函数与一次插值多项式

• 当 n=1 时,给定插值节点  $x_0, x_1$ ,及插值条件  $y_0, y_1$ ,则相应的一次插值多项式可以表示为

$$L_1(x) = y_0 \cdot \frac{x - x_1}{x_0 - x_1} + y_1 \cdot \frac{x - x_0}{x_1 - x_0}.$$

- 既  $L_1(x)$  是组合系数恰为  $y_0$ ,  $y_1$  的两个特殊一次多项式  $l_0(x) = \frac{x x_1}{x_0 x_1}$ ,  $l_1(x) = \frac{x x_0}{x_1 x_0}$  的线性组合.
- 这两个特殊一次多项式构成了一次多项式空间  $\mathbb{P}_1$  的一组基,且满足:  $l_0(x_0) = 1$ ,  $l_0(x_1) = 0$ ,  $l_1(x_0) = 0$ ,  $l_1(x_1) = 1$ , 既其中每一个多项式在一个相应插值节点上取值为一,而在另外的插值节点上取值为零  $(l_i(x_j) = \delta_{ij})$ .

Lagrange 插值基函数与 Lagrange 插值多项式

## n次 Lagrange 插值基函数与 n次 Lagrange 插值多项式

- 这启发我们寻找构成 n 次多项式空间  $\mathbb{P}_n$  的一组基的 n+1 个特殊 n 次多项式  $\{l_i(x)\}_{i=0}^n$ ,使其满足:  $(l_i(x_i) = \delta_{ij})$ .
- 对给定的 n+1 个插值节点  $\{x_i\}_{i=0}^n$ , 这样的基底函数为

$$l_i(x) = \frac{\displaystyle\prod_{j=0, j 
eq i}^{n} (x - x_j)}{\displaystyle\prod_{j=0, j 
eq i}^{n} (x_i - x_j)},$$
 称为  $n$  次 Lagrange 插值基函数.

• n 次 Lagrange 插值多项式可写为  $L_n(x) = \sum_{i=0}^n y_i \cdot l_i(x)$ .



Lagrange 插值多项式的余项 (截断误差)

### Lagrange 插值多项式的余项表达式

要估计 n 次 Lagrange 插值多项式的误差, 也就是要估计函数

$$R_n(x) \triangleq f(x) - L_n(x)$$

的取值范围。  $R_n(x)$  称为余项,它实际上是用  $L_n(x)$  逼近 f(x) 的截断误差,有以下的表达式:

定理: 设函数  $f(x) \in \mathbb{C}^{(n+1)}[a, b]$ , 且插值节点  $\{x_i\}_{i=0}^n$  互不相同,则对  $\forall x \in [a, b]$ , 都存在  $\xi \in (a, b)$ , 使得

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).$$

Lagrange 插值多项式的余项 (截断误差)

### Lagrange 插值多项式的余项表达式的证明

不妨设 
$$x \neq x_i$$
,  $0 \leq i \leq n$ ,  $\diamondsuit$   $K_n(x) = \frac{R_n(x)}{(x - x_0) \cdots (x - x_n)}$ 。

- **1**  $i \exists \omega_{n+1}(t) = (t-x_0)(t-x_1)\cdots(t-x_n).$
- ②  $\Leftrightarrow E(t) = R_n(t) K_n(x) \cdot \omega_{n+1}(t)$ .  $\emptyset$   $E(t) \in C^{(n+1)}[a,b]$ .
- ③ 由  $t = x, x_0, \dots, x_n$  时 E(t) = 0,及 Rolle 定理知,存在  $\xi \in (a, b)$  使得  $E^{(n+1)}(\xi) = 0$ ,即  $K(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$ .
- 4 于是有  $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n).$

注: E(t) 是  $R_n(t)$  的 n+1 次 Lagrange 插值多项式的余项.



#### Lagrange 插值多项式序列

- 对给定的定义在 [a,b] 上的函数 f(x);
- 及插值节点序列  $\left\{x_{j}^{(n)}\right\}_{j=0}^{n}, n=0,1,2,\cdots;$
- 可定义 Lagrange 插值多项式序列

$$P_n(x) = L_n(f; x_0^{(n)}, \dots, x_n^{(n)}; x), \quad \forall x \in [a, b];$$

• 其中  $L_n(f; x_0^{(n)}, \dots, x_n^{(n)}; x)$  是以  $\left\{x_j^{(n)}\right\}_{j=0}^n$  为插值节点,  $P_n(x_j) = f(x_j), j = 0, \dots, n$  为插值条件的 n 次Lagrange 插值多项式。

Lagrange 插值多项式的收敛性

#### Lagrange 插值多项式的收敛性

定理: 对复函数 f(z), 如果存在  $r_0 > \frac{3}{2}(b-a)$ , 使得 f(z) 在  $B_{r_0}(\frac{a+b}{2})$  内解析, 则  $P_n(x)$  在 [a,b] 内一致收敛于 f(x).

证明: 因为 f(z) 在  $B_{r_0}(\frac{a+b}{2})$  内解析, 由 Cauchy 定理有

$$f^{(n+1)}(x) = \frac{(n+1)!}{2\pi \mathrm{i}} \oint_{\partial B_{r_0}} \frac{f(z)}{(z-x)^{(n+2)}} \, \mathrm{d}z, \quad \forall x \in [a,b].$$

由于 
$$|z-x| \ge r_0 - |x-\frac{a+b}{2}| \ge r_0 - \frac{b-a}{2}$$
, 所以有

$$|f^{(n+1)}(x)| \leq (n+1)! \frac{r_0 \max_{\partial B_{r_0}} |f(z)|}{(r_0 - \frac{b-a}{2})^{n+2}}, \quad \forall x \in [a, b].$$



Lagrange 插值多项式的收敛性

#### Lagrange 插值多项式的收敛性定理证明(续)

$$\mathbb{X} |\omega_{n+1}(x)| = |(x - x_0^{(n)}) \cdots (x - x_n^{(n)})| \le |b - a|^{n+1}.$$

所以有

$$|f(x)-P_n(x)| = \left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\omega_{n+1}(x)\right| \le \frac{r_0(b-a)^{n+1}\max_{\partial B_{r_0}}|f(z)|}{(r_0-\frac{b-a}{2})^{n+2}}.$$

而当 
$$r_0 > \frac{3}{2}(b-a)$$
 时, $b-a < r_0 - \frac{b-a}{2}$ 。因此有
$$|f(x) - P_n(x)| \Rightarrow 0, \quad \forall x \in [a,b].$$

注: 记 
$$\gamma = (b-a)/(r_0 - \frac{b-a}{2})$$
, 由  $0 < \gamma < 1$  知收敛是一阶的.



## 等距节点高次 Lagrange 插值多项式的不稳定性

尽管 Weierstrass 定理说可用充分高次的多项式来任意逼近给定的连续函数,但这样的多项式不可能用等距节点高次 Lagrange 插值多项式来实现。

原因是等距节点高次 Lagrange 插值多项式的不稳定性。

• 考察等距插值节点列 
$$\{x_i\}_{i=-n}^n$$
,  $x_i = i \cdot h = i/n$ ,  $-n \le i \le n$ .

• 取 
$$x^* = x_n - h/2$$
, 则由
$$U \triangleq |\prod_{j \neq 0} (x^* - x_j)| = h^{2n} |\prod_{j \neq 0} (n - j - 1/2)| =$$

$$\frac{h^{2n}}{2^{2n}} \prod_{j=1}^{n} (2n + 2j - 1) \cdot \prod_{j=1}^{n} (2n - 2j - 1) =$$

$$\frac{h^{2n}}{2^{2n}} \prod_{j=1}^{n} (4n - 2j + 1) \cdot \prod_{j=1}^{n} (2n - 2j - 1) = \frac{h^{2n}(4n - 1)!!(2n - 3)!!}{2^{2n}(2n - 1)!!},$$

$$L \triangleq |\prod_{j \neq 0} (x_0 - x_j)| = h^{2n}(n!)^{2n},$$
以及 Sterling 公式  $n! \sim \sqrt{2\pi} n^{n + \frac{1}{2}} e^{-n}$ , 得

└─ 等距节点高次 Lagrange 插值多项式的不稳定性

## 等距节点高次 Lagrange 插值多项式的不稳定性

- $|I_0(x^*)| = \frac{U}{L} \sim \frac{2^{2n}}{\sqrt{2\pi}n(2n+1)} \to \infty, \stackrel{\text{\tiny $1$}}{\rightrightarrows} n \to \infty.$
- 现考察两组插值条件:  $\{\bar{y}_i\}_{i=-n}^n$ ,  $\{y_i\}_{i=-n}^n$ , 其中  $y_i = \bar{y}_i$ ,  $\forall i \neq 0$ ,  $y_0 = \bar{y}_0 + \varepsilon_0$ , 其中  $\varepsilon_0 \sim n^{-k}$ , k > 0.
- 记相应的 (2n+1) 次 Lagrange 插值多项式分别为  $\bar{P}_{2n+1}(x)$  和  $P_{2n+1}(x)$ . 由此得, 当  $n \to \infty$  时

$$|\bar{P}_{2n+1}(x^*)-P_{2n+1}(x^*)|=|\varepsilon_0 I_0(x^*)| \sim \frac{2^{2n}}{\sqrt{2\pi}n^{k+1}(2n+1)} \to \infty.$$

• 这说明当 n 很大时,即便数据误差很小  $(\varepsilon_0 \sim n^{-k}$ ,任 意 k > 0), Lagrange 插值多项式仍然可能有非常大的误差。 因此,在实际计算时一般不用高次 Lagrange 插值多项式。



└─ 等距节点高次 Lagrange 插值多项式的不稳定性

#### Lagrange 插值多项式的优点

- 基函数计算简单,且相似的节点分布给出相似的基函数.
- 在给定插值节点后, Lagrange 插值多项式是 Lagrange 插值基函数的以插值节点上的函数值为系数的线性组合. 因此, 对不同的插值条件,可很快得到相应的插值多项式.
- 当被插函数未知时,其插值多项式可简单地用 Lagrange 插值多项式表出,从而给方程(包括微分方程、积分方程)的 离散化带来方便。



#### 零次和一次 Newton 插值多项式

- 零次 Newton 插值多项式  $N_0(x)$ : 给定一个插值节点  $x_0$ , 和一个插值条件  $P(x) = f(x_0) = y_0$ , 则有  $N_0(x) = y_0$ .
- 一次 Newton 插值多项式  $N_1(x)$ : 在零次条件的基础上增加一个插值节点  $x_1 \neq x_0$ , 和一个插值条件  $P(x) = f(x_1) = y_1$ . 我们希望  $N_1(x)$  是由  $N_0(x)$  加上一个一次函数构成. 由于  $N_1(x_0) = y_0 = N_0(x)$ , 因此,  $N_1(x) = y_0 + c_1(x x_0)$ . 于是 得:

$$N_1(x) = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) = f[x_0] + f[x_0, x_1](x - x_0).$$

• 这里引入了零阶和一阶差商的记号

$$f[x_0] \triangleq f(x_0), \quad f[x_0, x_1] \triangleq \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$



#### 二次 Newton 插值多项式

- 二次 Newton 插值多项式  $N_2(x)$ : 在一次条件的基础上增加一插值节点  $x_2 \notin \{x_0, x_1\}$  和插值条件  $P(x) = f(x_2) = y_2$ . 我们希望  $N_2(x)$  是由  $N_1(x)$  加上一个二次函数构成. 由于  $N_2(x_0) = N_1(x_0)$ ,  $N_2(x_1) = N_1(x_1)$ , 因此,  $N_2(x) = N_1(x) + c_2(x x_0)(x x_1)$ . 于是得:
  - $c_2 = \frac{f(x_2) f[x_0] f[x_0, x_1](x_2 x_0)}{(x_2 x_0)(x_2 x_1)}.$
- 容易验证

$$c_2 = \frac{f[x_0, x_2] - f[x_0, x_1]}{x_2 - x_1} = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} =: f[x_0, x_1, x_2].$$

$$\therefore N_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1).$$

#### k 阶差商的定义和 n 次 Newton 插值多项式

- 一般地,对给定的节点  $x_i, x_{i+1}, \dots, x_{i+n}$ , 我们可以递归地定义 f(x) 的  $1 \le k \le n$  阶差商和相应的 k 次插值多项式。
  - **①** 零阶差商:  $f[x_i] = f(x_i), j = i, i+1, \dots, i+n$ .
  - **②** 1 ≤ *k* ≤ *n* 阶差商:

$$f[x_i, x_{i+1}, \cdots, x_{i+k}] \triangleq \frac{f[x_{i+1}, x_{i+2}, \cdots, x_{i+k}] - f[x_i, x_{i+1}, \cdots, x_{i+k-1}]}{x_{i+k} - x_i}$$

③ 函数 f(x) 过 n+1 个插值节点  $x_0, x_1, \dots, x_n$  的 n 次插值 多项式可以利用各阶差商表示为

$$N_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + \cdots + f[x_0, x_1, \cdots, x_n](x - x_0)(x - x_1) \cdots (x - x_n),$$

称为 n 次 Newton 插值多项式, 这种插值方法称为 Newton 插值方法。

#### k 阶差商的性质

定理: f(x) 在节点  $x_0, x_1, \dots, x_m$  上的 k 阶差商有下列性质:

- 2 差商值与节点排列顺序无关。
- **3** 如果  $x_m \notin \{x_0, x_1, \dots, x_k\}$ , 则有

$$f[x_0, x_1, \cdots, x_k, x_m] = \frac{f[x_0, x_1, \cdots, x_{k-1}, x_m] - f[x_0, x_1, \cdots, x_k]}{x_m - x_k}$$

4 设 f(x) 的 m 阶导数存在,则有

$$f[x_0, x_1, \cdots, x_m] = \frac{f^{(m)}(\xi)}{m!}.$$

其中 $\xi \in (\min\{x_0, x_1, \cdots, x_m\}, \max\{x_0, x_1, \cdots, x_m\}).$ 



第二讲: Lagrange 插值与 Newton 插值

L Newton 插值方法

└n 次 Newton 插值多项式

#### k 阶差商的性质

- k 阶差商的性质(1) 可用归纳法证明 (留作习题)。
- ② k 阶差商的性质(2) 是性质(1) 的简单推论。
- ③ k 阶差商的性质(3) 是性质(2) 和定义的简单推论。
- ④ k 阶差商的性质(4) 是以下定理的推论。



└n 次 Newton 插值多项式

#### n次 Newton 插值多项式的余项表达式

**定理:** 设 y = f(x) 是定义在 [a, b] 上的函数, 设  $x_0, x_1, \dots, x_n$  是 [a, b] 上的 n + 1 个互不相同的插值节点, 则对  $\forall x \in [a, b] \setminus \{x_0, x_1, \dots, x_n\}$ , 其 n 次 Newton 插值多项式的余项可表达为

$$R_n(x) \triangleq f(x) - N_n(x) = f[x, x_0, x_1, \cdots, x_n] \prod_{i=0}^n (x - x_i).$$

由插值多项式的存在唯一性,n 次 Newton 插值多项式的余项就是 n 次 Lagrange 插值多项式的余项,因此由定理 2.3.1 和以上定理的结论即得

$$f[x, x_0, x_1, \cdots, x_n] = \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

#### n次 Newton 插值多项式的余项表达式的证明

不妨设  $x \notin \{x_0, \dots, x_n\}$ , 由各阶差商的定义及其性质,我们有:  $f(x) = f(x_0) + f[x, x_0](x - x_0)$ ,

$$f[x, x_0] = f[x_0, x_1] + f[x, x_0, x_1](x - x_1),$$

. . . . . . . . . . . . . . .

$$f[x,x_0,\cdots,x_{n-2}]=f[x_0,x_1,\cdots,x_{n-1}]+f[x,x_0,x_1,\cdots,x_{n-1}](x-x_{n-1}),$$

$$f[x, x_0, \dots, x_{n-1}] = f[x_0, x_1, \dots, x_n] + f[x, x_0, x_1, \dots, x_n](x - x_n).$$

依次将后一式代入前一式,归纳得

$$f(x) = N_n(x) + f[x, x_0, x_1, \dots, x_n] \prod_{i=0}^n (x - x_i).$$

注: 上式右端实际上就是 f(z) 在 n+2 个节点  $x_0, \dots, x_n, x$  上的 Newton 插值多项式在 x 点的取值.

#### Newton 插值余项和 Newton 插值方法的优点

- Newton 插值余项不需要 f 有 n+1 次导数。事实上,由于插值多项式的存在唯一性,以任何方式得到的插值多项式的余项都是相同的。
- 增加一组新的插值节点和插值条件  $x_{n+1}$ ,  $y_{n+1} = f(x_{n+1})$  后,Lagrange 插值多项式必须全部重算,而 Newton 插值 多项式则只需在原来基础上增加一个 n+1 次单项式:

$$N_{n+1}(x) = N_n(x) + f[x_0, x_1, \dots, x_n, x_{n+1}] \prod_{i=0}^{n} (x - x_i).$$

引入记号: 
$$f_i = f(x_i) = f[x_i], i = 0, 1 \cdots, n+1,$$
 
$$f_i^k = \frac{f_i^{k-1} - f_{i-1}^{k-1}}{x_i - x_{i-k}} = f[x_{i-k}, \cdots, x_i], 1 \le k \le i \le n+1.$$
 则各阶差商可列成以下差商表。



L Newton 插值方法

Newton 插值表 
$$\left(f_i^k = \frac{f_i^{k-1} - f_{i-1}^{k-1}}{x_i - x_{i-k}} = f[x_{i-k}, \cdots, x_i], 1 \le k \le i \le n+1\right)$$

| i   | Xi                    | $f[x_i]$     | $f_i^1$       | $f_i^2$     | $f_i^3$       | <br>$f_i^n$     | $f_i^{n+1}$     |
|-----|-----------------------|--------------|---------------|-------------|---------------|-----------------|-----------------|
| 0   | <i>x</i> <sub>0</sub> | $f[x_0]$     |               |             |               |                 |                 |
| 1   | <i>x</i> <sub>1</sub> | $f[x_1]$     | $f_1^1$       |             |               |                 |                 |
| 2   | <i>x</i> <sub>2</sub> | $f[x_2]$     | $f_2^1$       | $f_2^2$     |               |                 |                 |
| 3   | <i>X</i> 3            | $f[x_3]$     | $f_3^1$       | $f_3^2$     | $f_3^3$       |                 |                 |
| :   | :                     | ÷            | :             | :           | :             |                 |                 |
| n   | x <sub>n</sub>        | $f[x_n]$     | $f_n^1$       | $f_n^2$     | $f_n^3$       | <br>$f_n^n$     |                 |
| n+1 | $x_{n+1}$             | $f[x_{n+1}]$ | $f_{n+1}^{1}$ | $f_{n+1}^2$ | $f_{n+1}^{3}$ | <br>$f_{n+1}^n$ | $f_{n+1}^{n+1}$ |

$$f[x_0, x_1, \dots, x_k] = f_k^k,$$
  

$$N_j(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) +$$
  

$$\dots + f[x_0, x_1, \dots, x_j](x - x_0)(x - x_1) \dots (x - x_{j-1}).$$

#### 等距节点上插值多项式一般不具有收敛性

• 在任意给定的区间 [a,b] 上,令 h=(b-a)/n,令

$$x_i = a + ih, \quad i = 0, 1, 2, \cdots, n,$$

- 对给定的连续函数 f(x), 以  $\{x_i\}_{i=0}^n$  为插值节点的插值多项式  $P_n(x)$  构成了一个等距节点上的插值多项式序列。
- 尽管函数 f(x) 可以被高次多项式任意逼近,但一般地说,即便 f(x) 无穷次可微,也不能保证 $\lim_{n\to\infty} P_n = f$ 。(一般需要在复平面中相当大的区域内解析才可保证收敛性.)
- 甚至等距节点上的插值多项式  $P_n(x)$  可能是发散的。



└─ 等距节点上的插值多项式发散的例子— Runge 现象

## 等距节点上的插值多项式发散的例子— Runge 现象

- 1901年德国数学家 Runge 首先给出了这种发散的例子,并 根据复变函数的理论给出了解释。
- 考虑函数  $R(x) = \frac{1}{1+x^2}, x \in [-5, 5].$
- 考虑等距插值节点:  $x_i = -5 + \frac{10i}{n}$ ,  $i = 0, 1, 2, \dots, n$ .
- 构造 Lagrange 插值多项式 L<sub>n</sub>(x) (或 Newton 插值多项式).
- 结果是 L<sub>n</sub>(x) 是发散的.
- 由  $L_{10}(x)$  和 R(x) 图像的对比(见图 2.1)可见在靠近区域两端点处,误差已经很大,并已呈现出发散迹象。

└─等距节点上高次插值多项式的 Runge 现象 └─分段低次多项式插值 vs 高次不等距插值

#### 问题:如何利用多项式插值逼近给定区间上的函数?

- 等距节点上的插值多项式一般不收敛。可以想象,一般节点 分布,也不可能有什么好的结果。
- 为了得到较好的插值逼近效果,可以从两个方面考虑问题:
  - ① 构造分段低次插值多项式来逼近已知函数 f(x).
  - ② 寻找适当的插值节点分布序列,使相应的插值多项式序列有 较好的收敛性态。
- 第二个实现起来比较困难. 我们将在后面做进一步研究。
- 第一个实现起来却相当简单,但分段插值多项式的整体光滑性一般却有较大的局限性。
- 两者都有相当成熟的理论结果,都有十分广泛的成功应用。

习题二: 2, 4, 6, 上机习题二: 2(1), 2(2)

# Thank You!

