LICENCIATURA EM CIÊNCIAS DA COMPUTAÇÃO

COMPUTABILIDADE E COMPLEXIDADE

1. MÁQUINAS DE TURING

José Carlos Costa

Dep. Matemática Universidade do Minho Braga, Portugal

 1° semestre 2025/2026

Definição

Uma máquina de Turing é um septeto $\mathcal{T} = (Q, A, T, \delta, i, f, \Delta)$:

- **1** Q é um conjunto finito não vazio, dito o *conjunto de estados* de \mathcal{T} ;
- **2** A é um alfabeto, chamado o *alfabeto* (de entrada) de \mathcal{T} ;
- **③** $T \supseteq A$ é um alfabeto, dito o *alfabeto da fita* de \mathcal{T} , tal que $Q \cap T = \emptyset$. O conjunto $T \setminus A$ é chamado o *alfabeto auxiliar* de \mathcal{T} ;
- $\delta: Q \times T \to Q \times T \times \{E, C, D\}$ é uma função parcial, dita a *função transição* de \mathcal{T} , indefinida em (f, t) para cada $t \in T$.

 Os *movimentos* são:
 - *E*-esquerda; *D*-direita; *C*-"centro" (ausência de movimento);
- $\mathbf{0}$ $i \in Q$, dito o *estado inicial* de \mathcal{T} ;
- $\mathbf{0}$ $\mathbf{f} \in \mathbf{Q}$, chamado o *estado final* de \mathcal{T} ;
- $\bullet \Delta \in T \setminus A$ é um símbolo auxiliar, designado o *símbolo branco*.

O septeto

$$\mathcal{T} = (\{1, 2, 3\}, \{a, b\}, \{a, b, \Delta\}, \delta, 1, 3, \Delta)$$

onde δ é a função parcial de $\{1,2,3\} \times \{a,b\}$ em $\{1, 2, 3\} \times \{a, b\} \times \{E, C, D\}$ tal que

$$\delta(1,\Delta) = (2,\Delta,D)$$
 $\delta(2,a) = (2,a,D)$
 $\delta(2,b) = (2,b,D)$ $\delta(2,\Delta) = (3,\Delta,C)$

é uma máquina de Turing com:

- três estados (1, 2 e 3);
 - alfabeto de entrada {a, b};
 - Δ como único símbolo auxiliar;
 - 1 e 3 como estados inicial e final.

EXEMPLO 1 (CONTINUAÇÃO)

A função transição δ que, recorde-se, é definida por

$$\delta(1,\Delta) = (2,\Delta,D)$$
 $\delta(2,a) = (2,a,D)$
 $\delta(2,b) = (2,b,D)$ $\delta(2,\Delta) = (3,\Delta,C)$

pode ser representada pela tabela

δ	а	b	Δ
1			$(2, \Delta, D)$
2	(2, a, D)	(2, b, D)	$(3, \Delta, C)$

Na tabela omite-se a linha referente ao estado final pois, por definição, numa máquina de Turing não existem transições a sair do estado final.

Uma máquina de Turing

$$\mathscr{T} = (Q, A, T, \delta, i, f, \Delta)$$

é dotada de uma:

- fita
 - dividida em células;
 - infinita à direita;
 - com uma célula inicial à esquerda;
 - cada célula tem uma letra de T:
 - em cada instante o número de células não brancas (ou seja células onde não está escrito o símbolo branco Δ) é finito;
- cabeça ou cursor (de leitura e escrita)
 - posicionada em cada momento numa determinada célula da fita;
 - permite ler a letra da célula e substituir essa letra por outra (eventualmente a mesma).

Por exemplo, a figura

representa a fita e a cabeça de uma máquina de Turing em que:

- nas 1^a e 5^a células da fita está escrita a letra a;
- nas 3^a e 4^a células da fita está escrito b;
- todas as outras células da fita estão em branco;
- a seta indica que a cabeça está posicionada na 3ª célula;
- a letra q por baixo da seta indica o estado atual da máquina de Turing.

A cabeça pode efetuar movimentos determinados pela função transição. Assim, a igualdade

$$\delta(q,t)=(q',t',m)$$

significa que, se

- a máquina está no estado q;
- a cabeça está posicionada numa célula da fita onde está escrita a letra t;

então

- a máquina transita para o estado q';
- substitui a letra t pela letra t' na fita;
- a cabeça efetua o movimento *m* (ou seja, move-se para a esquerda, para a direita ou não se move, conforme *m* seja *E*, *D* ou *C*).

Exemplo 2

Seja

$$\mathcal{T} = (\{1, 2, 3\}, \{a, b\}, \{a, b, \Delta\}, \delta, 1, 3, \Delta)$$

a máquina de Turing cuja função transição δ é dada pela tabela

δ	а	b	Δ
1			$(2, \Delta, D)$
2	(2,a,D)	(2,a,D)	$(3, \Delta, C)$

Num dado momento, uma situação possível de fita e de cursor é

que indica que a máquina está posicionada no estado 2 e o cursor está posicionado na $4^{\underline{a}}$ célula onde está escrita a letra a.

EXEMPLO 2 (CONTINUAÇÃO)

Dado que $\delta(2, a) = (2, a, D)$, no momento seguinte, a situação de fita e de cursor passará a ser

ou seja, apenas mudou a posição do cursor que se situa agora na 5^a célula. Dado que $\delta(2, b) = (2, a, D)$, a situação posterior seria então

Note-se que neste passo houve uma alteração da letra na 5^a célula da fita mantendo-se ainda a máquina no estado 2.

EXEMPLO 2 (CONTINUAÇÃO)

No próximo passo, usando a igualdade

$$\delta(\mathbf{2}, \Delta) = (\mathbf{3}, \Delta, C)$$

obtém-se

Como a máquina atingiu o estado 3, que é o estado final da máquina, não é possível efetuar mais passos.

A representação de máquinas de Turing é feita de forma análoga aos autómatos finitos e aos autómatos de pilha. A única diferença é na representação das transições:

$$\delta(q,t)=(q',t',m)$$
 é representada por

$$\overbrace{q} \xrightarrow{t/t', m} \overbrace{q'}$$

e significa, conforme referido anteriormente, que, se

- a máquina está no estado q;
- o cursor está a ler o símbolo t na fita;

então

- a máquina transita para o estado q';
- na fita, na posição do cursor, a letra t é substituída por t';
- o cursor efetua o movimento m.

Por exemplo, o diagrama

representa a máquina de Turing do Exemplo 1. Esta máquina não é ainda fundamentalmente diferente de um autómato finito pois:

- não substitui letras na fita por outras diferentes;
- com exceção da transição para o estado final, o único movimento que faz é para a direita.

Veremos mais tarde que, de facto, esta máquina reconhece uma linguagem regular, ou seja, reconhece uma linguagem reconhecida por autómato finito.

Uma máquina de Turing mais "sofisticada" é apresentada a seguir.

Exemplo 3

O diagrama

descreve uma MT cujo alfabeto de entrada contém as letras a e b. Como veremos, esta MT reconhece a linguagem não regular $\{a^nb^n\mid n\in\mathbb{N}_0\}$.

Problema 1.1

Seja $A = \{a, b\}$ e seja $\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$ a máquina de Turing cuja função transição δ é definida pela tabela seguinte:

δ	а	b	Δ
0			$(1, \Delta, D)$
1	(2, a, D)	(2, a, D)	$(3, \Delta, E)$
2	(1,b,D)	(1, b, D)	
3	(3, a, E)	(3, b, E)	$(4, \Delta, C)$

- a) Represente \mathcal{T} graficamente.
- b) Se num determinado instante a fita e o cursor estiverem na situação

qual será a sua situação no momento posterior? E depois? E a seguir?

DEFINIÇÃO

Seja $\mathcal{T}=(Q,A,T,\delta,i,f,\Delta)$ uma máquina de Turing. Uma configuração de \mathcal{T} é um par ordenado $(q,u\underline{t}v)$ onde $q\in Q,u,v\in T^*,t\in T$ e:

- q é o estado atual da máquina;
- ② a palavra utv está escrita na fita o mais à esquerda possível (i.e., a 1^a letra de utv ocupa a 1^a célula) e todas as células após v estão preenchidas com Δ;
- 3 a cabeça está posicionada na célula ocupada pela letra t.
- Uma configuração representa a situação da fita e do cursor da MT num dado momento.
- Por isso, a configuração $(q, u\underline{t}v)$ pode ser também denotada por $(q, u\underline{t}v\Delta^n)$ para cada $n \in \mathbb{N}$.

• Por exemplo, a configuração $(2, a\Delta \underline{b}ba)$ representa a situação

• Esta configuração pode também ser denotada por $(2, a\Delta \underline{b}ba\Delta \Delta)$.

Notação

Para uma palavra $v \in T^*$, utilizaremos a notação $(q, u\underline{v})$, onde $q \in Q$ e $u \in T^*$, para representar a configuração:

- $(q, u\underline{t}v')$ se $t \in T$ e $v' \in T^*$ são tais que v = tv';
- $(q, u\underline{\Delta})$ se $v = \epsilon$.
- Assim, no exemplo acima a configuração (2, aΔbba) pode ainda ser representada por (2, aΔbba), por (2, aΔbbaΔ), etc.

DEFINIÇÃO

Sejam $c_1=(q_1,u_1\underline{t_1}v_1)$ e $c_2=(q_2,u_2\underline{t_2}v_2)$ duas configurações de \mathcal{T} . Diz-se que:

- c₂ é uma computação direta a partir de c₁, e escreve-se c₁ → c₂, se π passa da configuração c₁ para a configuração c₂ num único passo.
 [Assim, no Exemplo 2, a configuração (2, Δaaab) é uma computação direta a partir da configuração (2, Δaaab) e poderíamos escrever (2, Δaaab) → (2, Δaaab).]
- c_2 é uma computação a partir de c_1 , e escreve-se $c_1 \stackrel{*}{\underset{\mathcal{F}}{\longrightarrow}} c_2$, se \mathscr{T} passa da configuração c_1 para c_2 em zero ou mais passos; ou seja, se $c_1 = c_2$ ou $c_1 = c'_1 \stackrel{\longrightarrow}{\underset{\mathcal{F}}{\longrightarrow}} c'_2 \stackrel{\longrightarrow}{\underset{\mathcal{F}}{\longrightarrow}} c'_3 \cdots c'_{n-1} \stackrel{\longrightarrow}{\underset{\mathcal{F}}{\longrightarrow}} c'_n = c_2$ para configurações c'_1, c'_2, \ldots, c'_n .

Quando não houver ambiguidade em relação à máquina de Turing \mathcal{T} que se está a considerar, simplificaremos as notações de $\xrightarrow{\mathcal{T}}$ e de $\xrightarrow{\mathcal{T}}$ omitindo a letra \mathcal{T} .

Exemplo 4

Seja ${\mathcal T}$ a seguinte máquina de Turing

$$\begin{array}{c}
a/b, D \\
b/a, D
\end{array}$$

$$\begin{array}{cccc}
\Delta/\Delta, D & & \Delta/\Delta, C \\
\hline
\end{array}$$

A partir da configuração $(1, \triangle aaaba)$ podem ser efetuadas em \mathcal{T} , sucessivamente, as seguintes computações diretas

$$\begin{array}{l} (\mathbf{1},\underline{\Delta}aaaba) \longrightarrow (\mathbf{2},\Delta\underline{a}aaba) \longrightarrow (\mathbf{2},\Delta b\underline{a}aba) \longrightarrow (\mathbf{2},\Delta bb\underline{a}ba) \longrightarrow \\ (\mathbf{2},\Delta bbb\underline{b}a) \longrightarrow (\mathbf{2},\Delta bbba\underline{a}) \longrightarrow (\mathbf{2},\Delta bbba\underline{b}\underline{\Delta}) \longrightarrow (\mathbf{3},\Delta bbbab\underline{\Delta}). \end{array}$$

Portanto $(1, \underline{\Delta}aaaba) \stackrel{*}{\longrightarrow} (3, \underline{\Delta}bbbab\underline{\Delta})$ é uma computação em \mathcal{T} .

Problema 1.2

Seja ${\mathcal T}$ a máquina de Turing (do Exemplo 3) representada pelo grafo

Indique a sequência de configurações que podem ser computadas em \mathcal{T} a partir da configuração: (i) $(1, \underline{\triangle}abb)$; (ii) $(1, \underline{\triangle}aabb)$.

(i)
$$(1, \underline{\triangle}abb) \longrightarrow (2, \underline{\triangle}\underline{a}bb) \longrightarrow (3, \underline{\triangle}\underline{b}b) \longrightarrow (3, \underline{\triangle}\underline{b}\underline{b}) \longrightarrow (3, \underline{\triangle}\underline{\Delta}\underline{b}\underline{b}) \longrightarrow (3, \underline{\triangle}\underline{\Delta}\underline{b}\underline{b}) \longrightarrow (4, \underline{\triangle}\underline{\Delta}\underline{b}\underline{b}) \longrightarrow (5, \underline{\triangle}\underline{\Delta}\underline{b}) \longrightarrow (2, \underline{\triangle}\underline{b}\underline{b}).$$

(ii)
$$(1, \underline{\Delta} aabb) \longrightarrow (2, \underline{\Delta} \underline{a} abb) \longrightarrow (3, \underline{\Delta} \underline{\Delta} \underline{b} b) \stackrel{*}{\longrightarrow} (3, \underline{\Delta} \underline{\Delta} \underline{a} \underline{b} b) \longrightarrow (4, \underline{\Delta} \underline{\Delta} \underline{b} \underline{b})$$

 $\longrightarrow (5, \underline{\Delta} \underline{\Delta} \underline{a} \underline{b}) \stackrel{*}{\longrightarrow} (5, \underline{\Delta} \underline{\Delta} \underline{a} \underline{b}) \longrightarrow (2, \underline{\Delta} \underline{\Delta} \underline{a} \underline{b}) \longrightarrow (3, \underline{\Delta}^3 \underline{b}) \longrightarrow$
 $(3, \underline{\Delta}^3 \underline{b} \underline{\Delta}) \longrightarrow (4, \underline{\Delta}^3 \underline{b}) \longrightarrow (5, \underline{\Delta}^2 \underline{\Delta}) \longrightarrow (2, \underline{\Delta}^3 \underline{\Delta}) \longrightarrow (6, \underline{\Delta}^3 \underline{\Delta}).$