Real-time Spatial Task Assignment for Weather Crowdsourcing

Hien To, Liyue Fan, Luan Tran, Cyrus Shahabi

{hto, liyuefan, luantran, shahabi}@usc.edu
University of Southern California

1. Weather Crowdsourcing (WC)

With the ubiquity of smart phones, every person with a mobile phone can report weather conditions, e.g., precipitation, air quality. The reported data, often in real-time, offer a valuable addition to the satellite remote sensing and radar detections technologies.

Applications

- ✓ Environmental sensing
- ✓ Disaster response
- ✓ Transportation decision making

Fig.1) WC apps

Task Assignment

- Requester issues tasks to server
- 2. Server assigns tasks to **nearby** workers
- 3. Server sends tasks to assigned workers

2. Challenges

Distinctions from crowdsourcing paradigms:

- Reported observation is near (within) task's location (duration)
- 2. Server maximizes task coverage with worker **budget** constraint
- 3. Dynamic arrivals of tasks/workers

Fig.3) WC example

4. Dynamic Budget

Off-line Scenario

MTC is **NP-hard** by reduction from the *maximum coverage problem* Greedy algorithm gives *0.63-approximation ratio*

On-line Scenario

Adapt allocates budget to time instances based on contextual bandits i.e., balances budget status and coverage gainImprove Adapt by leveraging workers' activity patterns

5. Performance Evaluations

Real Datasets

a) Spatial dist. b) Temporal dist. Fig. 7) Foursquare PA

Synthetic Datasets

Fig. 8) Spatial distributions

Select workers that maximize task coverage (MTC)

Fig. 4) Graphical example of worker-task coverage (2 time instances)

Gain -Absolute 41 61 81 Budget K 3586 **Order of Selected Worker Budget K** Go-Poisson Gowalla Gowalla ----->-- Temporal **─** Spatial ··�···EqualB -FixedOff **→** AdaptT ···• AdaptTW·•· -- AdaptTW --∆--DynamicOff -x-DynamicOff 28 3586 3586 **Budget K Budget K** Time instances Q Go-Poisson Skew-Cosine Go-Const

3. Fixed Budget

Off-line Scenario

MTC is **NP-hard** by reduction from the *maximum coverage with* group budget constraint problem

Greedy algorithm gives 0.5-approximation ratio.

On-line Scenario

Heuristics to MTC time instance: Basic, Spatial, Temporal

6. Discussions

- ✓ Worker overload to avoid repetitive activations of the same worker
- ✓ Profit for each task to represent the importance of tasks
- ✓ Utility of tasks as a function of spatial/temporal distance to worker
- ✓ Activation cost of workers is not uniform

