

Cadence Virtuoso LAB (5) Report

By: Magdy Ahmed Abbas Abdelhamid

Analog Electronics Workshop

SIMPLE VS LOW COMPLIANCE CASCODE CURRENT MIRROR

SIZING CHART

P1:

→ Square Law.

We used
$$g_m = \frac{2I_D}{V_{ov}}$$
 , $V_{ov} = \frac{2I_D}{g_m}$ $V^* = V_{ov}$

 \rightarrow For Real MOSFET.

$$\begin{split} &V_{ov} \neq \frac{2I_D}{g_m} \rightarrow Define \ V^* = \frac{2I_D}{g_m} \Leftrightarrow g_m = \frac{2I_D}{V^*} \\ &In \ Simulation \ (V^* = 200 \ mV). \end{split}$$

P2:

We want to design Current Mirrors with the parameters below.

Specs (Specifications) $M_1 = PMOS$, $M_2 = NMOS$

V _{Star} (V*)	200 mV.
Supply (V _{DD})	1.8 V.
Reference Current (I _{REF})	20 μΑ.
Length (L)	1 μm.
Width (W)	10 μm.

We want to compare $V^* = \frac{2I_D}{g_m}$ and $V_{ov} = V_{GS} - V_{TH}$ by plotting them overlaid. Use the calculator to create expressions for \boldsymbol{V}^* and \boldsymbol{V}_{ov} . Vov For PMOS: v("M1:vgs"?result "dc")-v("M1:vth"?result "dc") V* For PMOS: 2*getData("M1:id" ?result "dc")/getData("M1:gm" ?result "dc") Vov For NMOS: v("M2:vgs" ?result "dc")-v("M2:vth" ?result "dc") V* For NMOS: 2*getData("M2:id" ?result "dc")/getData("M2:gm" ?result "dc") **P5** Outputs Setup Run Preview Results Diagnostics Type EvalType Plot Save IEEE... Vov P (v("M1:vgs" ?result "dc") - v("M1:vth" ?result "dc")) expr V point IEEE... Vstar_P ((2 * getData("M1:id" ?result "dc")) / getData("M1:gm" ?result "dc")) point IEEE... id P getData("M1:id" ?result "dc") expr point IEEE... gm_P getData("M1:gm" ?result "dc") expr point IEEE... gds_P getData("M1:gds" ?result "dc") expr point IEEE... (v("M2:vgs" ?result "dc") - v("M2:vth" ?result "dc")) Vov_N expr point ((2 * getData("M2:id" ?result "dc")) / getData("M2:gm" ?result "dc")) IEEE... Vstar_N point IEEE... id_N getData("M2:id" ?result "dc") expr point V IEEE... gm_N getData("M2:gm" ?result "dc") point V expr getData("M2:gds" ?result "dc") IEEE... gds_N point Plot V* and Vov Overlaid vs VGS Y-axis of Both Curves Has Same Range For $M_1 = PMOS$ 400.0 350.0 300.0 250.0 200.0 150.0 100.0 **P6** 50.0 -50.0 -100.0 150.0 -200.0 -250.0 -300.0Plot V* and Vov Overlaid vs VGS

Y-axis of Both Curves Has Same Range For $M_2 = NMOS$

We will notice that at the beginning of the strong inversion region, V^* and V_{ov} are relatively close to each other (i.e., square – law is relatively valid). For deep strong inversion (large V_{ov} : velocity saturation and mobility degradation) or weak inversion (near – threshold and subthreshold operation) the behavior is quite far from the square – law.

On the V* and V_{ov} Chart Locate the Point at Which V* = 200 mV. Find the Corresponding V_{ov_Q} and V_{GS_Q} For M_1 = PMOS.

@
$$V_Q^* = -200 \ mV \rightarrow V_{ov_Q} = -196.179 \ mV.$$

$$\rightarrow V^* = -199.\,9996 \; mV \rightarrow V_{GS_Q} = 607.\,2124 \; mV. \; @ \; V_{TH} \approx 0.\,4 \; V.$$

On the V* and V_{ov} Chart Locate the Point at Which V* = 200 mV. Find the Corresponding V_{ov_Q} and V_{GS_Q} For $M_2=NMOS$.

$$@\ V_Q^* = 200\ mV \to V_{ov_0} = 207.302\ mV.$$

$$\rightarrow V^* = 200.\,0004 \; mV \rightarrow V_{GS_0} = 611.\,713 \; mV. \; @ \; V_{TH} \approx 0.\,4 \; V.$$

 $@V_{GS_Q} = 607.\,2124 \; mV \rightarrow g_{m_X} = 119.\,083 \; \mu S.$

P8

Plot g_m vs V_{GS} . Find its Values at V_{GS_Q} For $M_2 = NMOS$

8

Now back to the assumption that we made that $W=10~\mu m$. This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square – law is valid or no). Thus, we can use ratio and proportion (cross – multiplication) to determine the correct width at which the current will be $I_{D_Q}=20~\mu A$ as given in the specs. Calculate W as shown below. For $(M_1=PMOS)$

P9

W	I_{D}
$W_{assumed} = 10 \mu m$	I _{DX} @ V _Q * (From The Chart)
$W_{required} = ?$	$I_{D_Q} = 20 \mu A \text{ (From The Specs)}$

W	$I_{\mathbf{D}}$
$W_{assumed} = 10 \mu m$	$I_{D_X} @ V_Q^* $ (From The Chart) = 11. 914 µA
$W_{required} = ?$	$I_{D_Q} = 20 \mu A \text{ (From The Specs)}$

$$W_{required}P = 16.787 \mu m. For (M_1 = PMOS).$$

Now we are almost done with the design of the amplifier.

Note that g_m is also proportional to W as long as V_{ov} is constant.

On the other hand, $r_0 = \frac{1}{g_{ds}}$ is inversely proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{m_Q} and g_{ds_Q} using ratio and proportion (cross multiplication).

$\mathbf{g}_{\mathbf{m}}$	W
$g_{m_X} = 119.083 \ \mu S.$	$W_{assumed} = 10 \mu m$
$\mathbf{g_{mQ}}_{required} = ?$	$W_{required} = 16.787 \ \mu m$

$$g_{mQ}_{required}P = 199.905 \mu S.$$

g _{ds}	W
$g_{ds_X} = 914.349 \text{ nS}.$	$W_{assumed} = 10 \mu m$
$\mathbf{g}_{\mathbf{ds_{required}}} = ?$	$W_{required} = 16.787 \ \mu m$

$$g_{dsQ_{required}}P = 1534.918 \text{ nS} \rightarrow r_o = 0.652 \text{ M}\Omega$$

Now back to the assumption that we made that $W=10~\mu m$. This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square – law is valid or no). Thus, we can use ratio and proportion (cross – multiplication) to determine the correct width at which the current will be $I_{D_Q}=20~\mu A$ as given in the specs. Calculate W as shown below. For $(M_2=NMOS)$

P9

W	I_{D}
$W_{assumed} = 10 \mu m$	I _{DX} @ V _Q * (From The Chart)
$W_{required} = ?$	$I_{D_0} = 20 \mu A \text{ (From The Specs)}$

W	I_{D}
$W_{assumed} = 10 \mu m$	$I_{D_X} @ V_Q^* ext{ (From The Chart)} = 46.5303 \mu A$
$W_{required} = ?$	$I_{D_Q} = 20 \mu A \text{ (From The Specs)}$

 $W_{required}N = 4.298 \ \mu m. \ For \ (M_2 = NMOS)$

Now we are almost done with the design of the amplifier.

Note that g_m is also proportional to W as long as V_{ov} is constant.

On the other hand, $r_0 = \frac{1}{g_{ds}}$ is inversely proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{m_Q} and g_{ds_Q} using ratio and proportion (cross multiplication).

g _m	W
$g_{m_X} = 465.137 \ \mu S.$	$W_{assumed} = 10 \mu m$
$g_{mQ}_{required} = ?$	$W_{required} = 4.298 \ \mu m$

$$g_{mQ_{required}}N = 199.916 \mu S.$$

g _{ds}	W
$g_{ds_X} = 3.6668 \mu S.$	$W_{assumed} = 10 \mu m$
$\mathbf{g}_{\mathbf{ds_{required}}} = ?$	$W_{required} = 4.298 \ \mu m$

$$g_{dsQ_{required}}N = 1.576 \ \mu S \rightarrow r_o = 0.635 \ M\Omega$$

Part 2

CURRENT MIRROR

P1, P2, P3, P4: Schematic

P5: Symbol For lab_05_ws_cm

Report The Following: -

DC Node Voltages for WS CM

DC OP for Simple CM

DC OP for WS CM

- \blacksquare Check that all transistors have V_{GS} , g_m and g_{ds} as designed in Part 1.
 - ullet Yes, All Transistors Have V_{GS} , g_m and g_{ds} as designed in Part 1.
 - **4** Are all transistors operating in saturation?
 - All transistors operate in region 2 (saturation) as shown in the schematic above.

Perform DC sweep (not parametric sweep) using $V_{OUT}=0$: 10m: V_{DD} . Report IBOUT vs VOUT for the two CMs overlaid in the same plot.

Iab_05_cm_tb ∠ adexl × Outputs Setup Run Preview Results Diagnostics (e x) - 0 Details Name Type EvalType Plot Save IEEE... IOUT_Simple signal /I1/IBOUT point V V IEEE... IOUT_WS signal /I0/IBOUT point

4 Comment on the difference between the two circuits.

- In WS (Wide Swing) Circuit (Green Curve) when Cascoded is added to the circuit it Gives the Accurate Current Mirroring Ratio and its Change with V_{ds} is Neglected. While in Simple Circuit (Red Curve) it doesn't gives the Accurate Current Ratio, change of the output current with the output voltage because V_{ds} is changing.
- for the case of cascoded transistors $V_{ds_1} = V_{ds_2}$, and if they have the same length, there're won't be a change in current mirroring ratio.
- ♣ IBOUT of the simple CM is exactly equal to IBIN*2 at a specific value of VOUT. Why?
 - Yes, Because at the Point $(V_{out} = 1.19 \text{ V}) = V_D \text{ of } M_8$ and to have an exact mirroring ratio, it should be equal to that of M7; this is the case at 1.19 V. From the node voltages shown above, the drain of M7 is 1.19 V.

Percent of error in IBOUT vs VOUT (ideal IBOUT should be IBIN*2) for the two CMs in the current mirror operating region $(V_{OUT}=0 \ to \ V_{DD}-V^*) \ overlaid \ in \ the \ same \ plot.$

- **Lesson** Comment on the difference between the two circuits.
 - In WS (Wide Swing) Circuit (Blue Curve) when Cascoded is added to the circuit it gives better performance and delivers more accurate current mirroring ratio as the percentage of error is 0 for the region of operation (0 to $V_{DD} V^* = 0$: 1. 6 V). This refers to the same reason mentioned before $\left(V_{ds_1} = V_{ds_2}\right)$, While in Simple Circuit (Pink Curve) it doesn't gives the Accurate Current Ratio.

Rout vs VOUT (take the inverse of the derivative of IBOUT plot) for the two CMs in the current mirror operating region.

 $(V_{OUT}=0~to~V_{DD}-V^*)$ overlaid in the same plot. Use log scale on the y-axis. Add a cursor at $V_{OUT}=\frac{VDD}{2}$

4 Comment on the difference between the two circuits.

- From the above graph R_{out} of the WS circuit is higher than that of the simple current mirroring circuit, and the current is more stable at 2* IBOUT IDEAL for the WS circuit.
- **4** Comment on the difference between the two circuits.
 - Rout = $\frac{dv}{di}$, Higher Rout gives little changes, as drain voltage is increasing; as a result, the Rout is decreasing.

Analytically calculate Rout of both circuits at VOUT $=\frac{\text{VDD}}{2}=0.9 \text{ V}$. Compare with simulation results in a table.

4 Analytical: In WS Circuit

$$\begin{split} R_{out} &= r_{o_1} \big(1 + g_m r_{o_2}\big) + r_{0_2} = 9.1 \text{ M}\Omega \\ \text{In Simple Circuit } R_{out} &= r_o = 318.979 \text{ k}\Omega \end{split}$$

4 From Simulation:

Q8

As Shown Above in the Graph in Q7

$$R_{out}(WS)=11.7415~M\Omega$$

$$R_{out}(Simple) = 319.616 \text{ k}\Omega$$