

3D VOLUMETRIC SUPER-RESOLUTION IN RADIOLOGY USING 3D RRDB-GAN

Juhyung (Tony) Ha¹, Nian Wang^{2,3}, Surendra Maharjan², Xuhong Zhang¹

¹Luddy Computer Science Department, Indiana University, Bloomington, IN USA ²Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN USA

³Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN USA

Introduction

□ Objective

Volumetrically super-resolving medical image resolution

☐ Benefit

Faster Scans, Better Image Quality -> Reducing image acquisition cost, Improving clinical practice

□ Overview

We introduce 3D RRDB-GAN framework to upscale low-resolution medical image to high-resolution in scale factor of 4. Our contributions include:

☐ 3D RRDB-Network

We introduce 3D RRDB network by scaling up 2D RRDB (SOTA super resolution model in 2D)

☐ 2.5D Perception Loss

We introduce 2.5D perception loss to apply loss from multi-view: Axial, Coronal, and Sagittal. This helps model generate more realistic volumetric medical image

☐ 3D U-Net Discriminator

We implemented 3D U-Net Discriminator for voxel-wise classification allowing more fine-level realism of output image

☐ Robust Performance

To show the generalizability, we tested our model on four experiment settings which include: 4 modalities (T1/T2 MRIs, MRH, CT), 2 species (human, mouse), 2 body regions (brain, abdomen)

Method

Residual-Dense-Block (3D RDB)

3D U-Net Discriminator

□ Loss formulation

$$L = L_{gen} + L_{disc}$$

$$L_{gen} = \lambda_1 L_{pixel} + \lambda_2 L_{perc} + \lambda_3 L_{adv}$$

$$\lambda_1 = 1$$

$$\lambda_2 = 1$$

$$\lambda_3 = 0.01$$

$$a: axial-view$$

$$c: coronal-view$$

$$s: sagittal-view$$

Dataset

Dataset	Modality	Subject	Region
Oasis	T1 MRI	Human	Brain
HCP1200	T2 MRI	Human	Brain
MSD-Task 6	CT	Human	Abdomen
Mice Brain	Magnetic resonance histology (MRH)	Mice	Brain

Results

Dataset	Method	SSIM ↑	PSNR ↑	LPIPS ↓	FID ↓
Mice Brain MRH	Trilinear	0.79	29.38	0.32	6.69
	3D SRResNet [4]	0.85	33.30	0.18	4.07
	3D DCSRN [5]	0.82	32.34	0.22	4.29
	3D RCAN [3]	0.84	32.73	0.12	1.91
	Ours	0.82	32.21	0.06	0.35
OASIS	Trilinear	0.79	26.55	0.25	6.89
	3D SRResNet	0.88	31.95	0.12	4.17
	3D DCSRN	0.82	29.96	0.17	5.41
	3D RCAN	0.89	32.27	0.11	3.69
	Ours	0.82	29.50	0.04	0.18
HCP1200	Trilinear	0.77	26.94	0.29	4.67
	3D SRResNet	0.92	33.74	0.10	1.85
	3D DCSRN	0.86	31.06	0.17	3.07
	3D RCAN	0.93	34.09	0.10	1.60
	Ours	0.88	31.61	0.04	0.09
MSD Task 6	Trilinear	0.80	28.82	0.27	3.94
	3D SRResNet	0.93	37.89	0.08	1.70
	3D DCSRN	0.88	33.88	0.14	2.72
	3D RCAN	0.92	37.79	0.07	1.38
	Ours	0.89	36.01	0.03	0.18

LR

HR

Ours

RCAN

SRResNet

DCSRN