Hечеткая аппроксимация нелинейных зависимостей с использованием пакета Fuzzy Logic Toolbox в интерактивном режиме

Цель: изучение особенностей нечеткого моделирования в вычислительной среде MatLab. Приобретение навыков разработки систем нечеткого вывода в интерактивном режиме с использованием пакета расширения Fuzzy Logic Toolbox.

Нелинейная зависимость для нечеткой аппроксимации варианта 17 представлена ниже:

$$y = e^{-|x_1|} \cdot (x_1^5 + x_2^4) \cdot \sin^2(x_1 \cdot x_2),$$

 $x_1 \in [-1.5, 1.5]; \quad x_2 \in [-2.2, 2.2].$

График данной зависимости представлен на рисунке 1. **Важно** обратить внимание, что он не совпадает с графиком данном в задании, т.к. при построении последнего была допущена опечатка - упущено возведение синуса в квадрат.

Рисунок 1 - Исходная зависимость

На рисунках 2 и 3 представлены графики треугольных функций принадлежности (trimf) термов входным переменным x1 и x2. На рисунке 4 представлены графики гауссовской функции принадлежности (gaussmf) выходной переменной y.

Рисунок 2 - Графики функций принадлежности x1 (trimf)

Рисунок 3 - Графики функций принадлежности x2 (trimf)

Рисунок 4 - Графики функций принадлежности *у* (gaussmf)

На рисунках 5 и 6 представлены графики гауссовских функций принадлежности (gaussmf) термов входным переменным x1 и x2.

Рисунок 5 - Графики функций принадлежности x1 (gaussmf)

Рисунок 6 - Графики функций принадлежности x2 (gaussmf)

База правил нечетких продукций для системы нечеткого вывода типа Мамдани представлена на рисунке 7. В белой области таблицы расположены значения y. Пересечения значений x1 и x2 отождествляются с логической операцией AND.

	x2	оч_низ	низ	сред	выс	оч_выс
x1		-2,20	-1,10	0,00	1,10	2,20
оч_низ	-1,5	нул	низ	нул	низ	нул
низ	-0,75	оч выс	нул	нул	нул	оч выс
сред	0,00	нул	нул	нул	нул	нул
выс	0,75	оч выс	нул	нул	нул	оч выс
оч_выс	1,50	нул	выш_нул	нул	выш_нул	нул

Рисунок 7 - База правил для системы типа Мамдани

База правил нечетких продукций для системы нечеткого вывода типа Сугено представлена на рисунке 8.

Рисунок 8 - База правил нечеткого вывода для метода Сугено

Поверхности «входы-выход» для систем нечёткого вывода типов Мамдани и Сугено представлены на рисунках 9, 10 и 11.

Рисунок 9 - Поверхность методом Мамдани (trimf)

Рисунок 10 - Поверхность методом Мамдани (gaussmf)

Рисунок 11 - Поверхность методом Сугено

Полученные значения среднеквадратических ошибок аппроксимации для исследованных вариантов систем нечеткого вывода представлены в таблице 1.

Таблица 1 - Среднеквадратичные ошибки аппроксимации

Метод	Тип функции принадлежности термов входным переменным	RMSE
Мамдани	trimf	1.23
Мамдани	gaussmf	1.22
Сугено	gaussmf	1.00

Вывод: в результате проделанной работы можно сделать вывод, что при использовании гауссовских функций принадлежности для входных переменных, среднеквадратичная ошибка аппроксимированного графика к исходному меньше, чем при использовании треугольных функций принадлежности. Также исходя из данных таблицы 1 отчетливо видно, что метод Сугено для решения данной задачи оказался точнее, чем метод Мамдани.

Исходный код лабораторной работы на GitHub представлен по <u>ссылке</u>.