Harvard · CS50-Al | Introduction to Artificial Intelligence with Python (2020)

CS50-AI (2020)· 课程资料包 @ShowMeAI

视频 中英双语字幕

课件 一键打包下载

笙记 官方笔记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1AQ4y1y7wy

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/harvard-cs50-ai

深度优先 广度优先

贝叶斯

聚类 马尔可夫

A* 算法 自然语言处理

SVM RNN

强化学习 tensorflow 反向传播

监督学习

语法解析

神经网络 无监督

CNN

搜索

Awesome Al Courses Notes Cheatsheets 是 **ShowMeAI** 资料库的分支系列,覆 盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提供一整套高品质中文 学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉		
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In		

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复[添砖加瓦]

Artificial Intelligence with Python

Optimization

optimization

choosing the best option from a set of options

local search

search algorithms that maintain a single node and searches by moving to a neighboring node

				В

Cost: 17

state-space landscape

current state

neighbors

Hill Climbing

Hill Climbing

```
function HILL-CLIMB(problem):
  current = initial state of problem
  repeat:
    neighbor = highest valued neighbor of current
    if neighbor not better than current:
       return current
    current = neighbor
```

Cost: 17

Cost: 17

Cost: 17

Cost: 15

Cost: 13

Cost: 11

Cost: 9

global maximum

ocal maxima

global minimum

ocal minima

flat local maximum

shoulder

Hill Climbing Variants

Variant	Definition
steepest-ascent	choose the highest-valued neighbor
stochastic	choose randomly from higher-valued neighbors
first-choice	choose the first higher-valued neighbor
random-restart	conduct hill climbing multiple times
local beam search	chooses the ${\it k}$ highest-valued neighbors

Simulated Annealing

Simulated Annealing

- Early on, higher "temperature": more likely to accept neighbors that are worse than current state
- Later on, lower "temperature": less likely to accept neighbors that are worse than current state

Simulated Annealing

```
function SIMULATED-ANNEALING(problem, max):
  current = initial state of problem
  for t = 1 to max:
     T = \text{TEMPERATURE}(t)
     neighbor = random neighbor of current
     \Delta E = how much better neighbor is than current
     if \Delta E > 0:
       current = neighbor
     with probability e^{\Delta E/T} set current = neighbor
  return current
```

Traveling Salesman Problem

Linear Programming

Linear Programming

- Minimize a cost function $c_1x_1 + c_2x_2 + ... + c_nx_n$
- With constraints of form $a_1x_1 + a_2x_2 + ... + a_nx_n \le b$ or of form $a_1x_1 + a_2x_2 + ... + a_nx_n = b$
- With bounds for each variable $l_i \le x_i \le u_i$

- Two machines X_1 and X_2 . X_1 costs \$50/hour to run, X_2 costs \$80/hour to run. Goal is to minimize cost.
- X_1 requires 5 units of labor per hour. X_2 requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X_1 produces 10 units of output per hour. X_2 produces 12 units of output per hour. Company needs 90 units of output.

Cost Function: $50x_1 + 80x_2$

- X_1 requires 5 units of labor per hour. X_2 requires 2 units of labor per hour. Total of 20 units of labor to spend.
- X₁ produces 10 units of output per hour. X₂ produces 12 units of output per hour. Company needs 90 units of output.

Cost Function: $50x_1 + 80x_2$

Constraint: $5x_1 + 2x_2 \le 20$

X₁ produces 10 units of output per hour. X₂ produces
 12 units of output per hour. Company needs 90 units of output.

Cost Function:

$$50x_1 + 80x_2$$

Constraint:

$$5x_1 + 2x_2 \le 20$$

Constraint:

$$10x_1 + 12x_2 \ge 90$$

Linear Programming Example

Cost Function:

$$50x_1 + 80x_2$$

Constraint:

$$5x_1 + 2x_2 \le 20$$

Constraint:

$$(-10x_1) + (-12x_2) \le -90$$

Linear Programming Algorithms

- Simplex
- Interior-Point

Constraint Satisfaction

Student:

Student:

Taking classes:

Student:

Taking classes:

Exam slots:

Monday

Tuesday

Wednesday

Constraint Satisfaction Problem

- Set of variables $\{X_1, X_2, ..., X_n\}$
- Set of domains for each variable $\{D_1,\,D_2,\,...,\,D_n\}$
- Set of constraints C

			7	4	8		6	5
		6				9		3
						8		
	4			8			1	
8	1		2		6		9	7
	9			3			5	
		2						
7		8				6		
9	5		6	1	3			

Variables

$$\{(0, 2), (1, 1), (1, 2), (2, 0), ...\}$$

Domains

for each variable

Constraints

$$\{(0, 2) \neq (1, 1) \neq (1, 2) \neq (2, 0), ...\}$$

Variables

 $\{A, B, C, D, E, F, G\}$

Domains

{Monday, Tuesday, Wednesday}
for each variable

Constraints

 $\{A \neq B, A \neq C, B \neq C, B \neq D, B \neq E, C \neq E, C \neq F, D \neq E, E \neq F, E \neq G, F \neq G\}$

hard constraints

constraints that must be satisfied in a correct solution

soft constraints

constraints that express some notion of which solutions are preferred over others

unary constraint

constraint involving only one variable

unary constraint

 $\{A \neq Monday\}$

binary constraint

constraint involving two variables

binary constraint

```
\{A \neq B\}
```

node consistency

when all the values in a variable's domain satisfy the variable's unary constraints

A B

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Mon, Tue, Wed}

{Tue, Wed} {Mon, Tue, Wed}

{Tue, Wed} {Mon, Tue, Wed}

Tue, Wed}

[B]

[B]

Tue, Wed}

[B]

[B]

A B {Wed}

Tue, Wed}

[B]

arc consistency

when all the values in a variable's domain satisfy the variable's binary constraints

arc consistency

To make X arc-consistent with respect to Y, remove elements from X's domain until every choice for X has a possible choice for Y

A B {Wed}

 $\{A \neq Mon, B \neq Tue, B \neq Mon, A \neq B\}$

A B {Wed}

 $\{A \neq Mon, B \neq Tue, B \neq Mon, A \neq B\}$

Tue}

B

{Wed}

$$\{A \neq Mon, B \neq Tue, B \neq Mon, A \neq B\}$$

Tue}

B

{Wed}

$$\{A \neq Mon, B \neq Tue, B \neq Mon, A \neq B\}$$

Arc Consistency

```
function REVISE(csp, X, Y):
  revised = false
  for x in X.domain:
    if no y in Y.domain satisfies constraint for (X, Y):
       delete x from X.domain
       revised = true
  return revised
```

Arc Consistency

```
function AC-3(csp):
  queue = all arcs in csp
  while queue non-empty:
     (X, Y) = DEQUEUE(queue)
    if REVISE(csp, X, Y):
       if size of X.domain == 0:
         return false
       for each Z in X.neighbors - \{Y\}:
          ENQUEUE(queue, (Z, X))
  return true
```


Search Problems

- initial state
- actions
- transition model
- goal test
- path cost function

CSPs as Search Problems

- initial state: empty assignment (no variables)
- actions: add a $\{variable = value\}$ to assignment
- transition model: shows how adding an assignment changes the assignment
- goal test: check if all variables assigned and constraints all satisfied
- path cost function: all paths have same cost

Backtracking Search

Backtracking Search

```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add {var = value} to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq failure:\) return result
    remove \{var = value\} from assignment
  return failure
```


Inference

maintaining arc-consistency

algorithm for enforcing arc-consistency every time we make a new assignment

maintaining arc-consistency

When we make a new assignment to X, calls AC-3, starting with a queue of all arcs (Y, X) where Y is a neighbor of X

```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add \{var = value\} to assignment
       inferences = Inference(assignment, csp)
       if inferences \( \neq \frac{failure}{} : add inferences to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq failure:\) return result
    remove {var = value} and inferences from assignment
  return failure
```

```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add \{var = value\} to assignment
       inferences = Inference(assignment, csp)
       if inferences \( \neq \failure: \) add inferences to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq failure:\) return result
    remove {var = value} and inferences from assignment
  return failure
```

```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add \{var = value\} to assignment
       inferences = Inference(assignment, csp)
       if inferences \( \neq \failure: \) add inferences to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq failure:\) return result
    remove {var = value} and inferences from assignment
  return failure
```

SELECT-UNASSIGNED-VAR

- minimum remaining values (MRV) heuristic: select the variable that has the smallest domain
- degree heuristic: select the variable that has the highest degree


```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add \{var = value\} to assignment
       inferences = Inference(assignment, csp)
       if inferences \( \neq \failure: \) add inferences to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq \failure:\ \ \text{return result} \)
    remove {var = value} and inferences from assignment
  return failure
```

```
function BACKTRACK(assignment, csp):
  if assignment complete: return assignment
  var = Select-Unassigned-Var(assignment, csp)
  for value in Domain-Values(var, assignment, csp):
    if value consistent with assignment:
       add \{var = value\} to assignment
       inferences = Inference(assignment, csp)
       if inferences \( \neq \failure: \) add inferences to assignment
       result = BACKTRACK(assignment, csp)
       if result \( \neq \failure:\ \ \text{return result} \)
    remove {var = value} and inferences from assignment
  return failure
```

DOMAIN-VALUES

- least-constraining values heuristic: return variables in order by number of choices that are ruled out for neighboring variables
 - try least-constraining values first

Problem Formulation

$$50x_1 + 80x_2$$

$$5x_1 + 2x_2 \le 20$$

$$(-10x_1) + (-12x_2) \le -90$$

Local Search Linear
Programing

Constraint
Satisfaction

Optimization

Artificial Intelligence with Python

Harvard · CS50-Al | Introduction to Artificial Intelligence with Python (2020)

CS50-AI (2020)· 课程资料包 @ShowMeAI

视频 中英双语字幕

课件 一键打包下载

笙记 官方笔记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1AQ4y1y7wy

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/harvard-cs50-ai

深度优先 广度优先

贝叶斯

聚类 马尔可夫

A* 算法 自然语言处理

SVM RNN

强化学习 tensorflow 反向传播

监督学习

语法解析

神经网络 无监督

CNN

搜索

Awesome Al Courses Notes Cheatsheets 是 **ShowMeAI** 资料库的分支系列,覆 盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提供一整套高品质中文 学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,**一键下载**课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复[添砖加瓦]