

Introduction

- Pushdown Automata (PDA) merupakan sebuah teknik pengujian kalimat/string menggunakan pendekatan *stack*
- PDA terdiri atas pasangan 7 buah *tuple* $M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, A)$, dimana:

Q: himpunan hingga stata,

 Σ : alfabet input,

 Γ : alfabet *stack*,

 $\mathbf{q}_0 \! \in \mathbf{Q}$: stata awal,

 $Z_0 \in \Gamma$: simbol awal *stack*, dan $A \subseteq Q$: himpunan stata penerima.

Pushdown Automata |

3

Defterministic PDA

• Contoh kasus: Deterministic PDA Jika diketahui sebuah PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, \delta, A)$ merupakan sebuah PDA deterministik untuk pengujian palindrome memiliki tuple sebagai berikut.

 $Q = \{q_0, q_1, q_2\}, A = \{q_2\}, \Sigma = \{a, b, c\}, \Gamma = \{a, b, Z_0\}, dan$ fungsi transisi δ terdefinisi melalui tabel berikut:

Defterministic PDA

No.	Stata	Input	TopStack	Hasil
1	q_0	a	Z_0	(q_0, aZ_0)
2	q_0	b	Z_0	(q_0, bZ_0)
3	q_0	a	a	(q_0, aa)
4	q_{0}	b	a	(q_0, ba)
5	q_{0}	a	b	(q_0, ab)
6	q_{0}	b	b	(q_0, bb)
1				

No.	Stata	Input	TopStack	Hasil
7	q_0	c	Z_0	(q_1, Z_0)
8	q_0	c	a	(q_1, a)
9	q_0	c	b	(q_1, b)
10	\mathbf{q}_1	a	a	(q_{1},ϵ)
11	${\bf q_1}$	b	b	(q_1, ϵ)
12	${\bf q_1}$	3	Z_0	(q_2, ϵ)

Pada tabel transisi tersebut terlihat bahwa pada stata q_0 PDA akan melakukan PUSH jika mendapat input a atau b dan melakukan transisi stata ke stata q_1 jika mendapat input c. Pada stata q_1 PDA akan melakukan POP.

Pushdown Automata |

.

Defterministic PDA

• Pengujian string *palindrome* abcba.

abcba :
$$(q0, abcba, Z_0)$$

$$\Rightarrow$$
 (q₀, bcba, aZ₀) (1)

$$\Rightarrow$$
 (q₀, cba, baZ₀) (4)

$$\Rightarrow$$
 (q₁, ba, baZ₀) (9)

$$\Rightarrow (q_1, a, aZ_0) \tag{11}$$

$$\Rightarrow$$
 (q₁, ϵ , Z₀) (10)

$$\Rightarrow (q_2, \varepsilon, Z_0)$$
 (12)

Pushdown Automata |

6

Defterministic PDA

Latihan 1.

Problem 1: Berdasarkan contoh kasus sebelumnya, lakukanlah pengujian string berikut menggunkaan metode *pushdown automata*:

- 1. abcccba,
- 2. abca.

Pushdown Automata

7

Non-Defterministic PDA

Contoh kasus: Non-Deterministic PDA
Jika diketahui sebuah PDA M = (Q, Σ, Γ, q₀, Z₀, δ, A)
merupakan sebuah PDA deterministik untuk pengujian palindrome memiliki tuple sebagai berikut.
Q = {q₀, q₁, q₂}, A = {q₂}, Σ = {a, b}, Γ = {a, b, Z₀}, dan

fungsi transisi δ terdefinisi melalui tabel berikut:

Non-Defterministic PDA

No.	St.	In.	TS	Hasil
1	q_0	a	Z_0	$(q_0, aZ_0), (q_1, Z_0)$
2	q_0	b	Z_0	$(q_0, bZ_0), (q_1, Z_0)$
3	q_0	a	a	$(q_0, aa), (q_1, a)$
4	q_0	b	a	$(q_0, ba), (q_1, a)$
5	q_0	a	b	$(q_0, ab), (q_1, b)$
6	\mathbf{q}_{0}	b	b	$(q_0, bb), (q_1, b)$

No	. St.	In.	TS	Hasil
7	q_0	3	Z_0	(q_1, Z_0)
8	q_0	3	a	(q_1, a)
9	q_0	3	b	(q_1, b)
10	q_1	a	a	(q_1, ϵ)
11	q_1	b	b	(q_1, ϵ)
12	q_1	3	Z_0	(q_2, ϵ)

Pada tabel transisi tersebut terlihat bahwa pada stata q₀ PDA akan melakukan PUSH jika mendapat input a atau b dan melakukan transisi stata ke stata q₁ jika mendapat input ε. Pada stata q₁ PDA akan melakukan POP.

Pushdown Automata |

Non-Defterministic PDA

Pengujian string *palindrome* baab.

$$(q_0, baab, Z_0) \Rightarrow (q_0, aab, bZ_0) \qquad (2 \text{ kiri})$$

$$\Rightarrow (q_0, ab, abZ_0) \qquad (5 \text{ kiri})$$

$$\Rightarrow (q_1, ab, abZ_0) \qquad (3 \text{ kanan})$$

$$\Rightarrow (q_1, b, bZ_0) \qquad (11)$$

$$\Rightarrow (q_1, \varepsilon, Z_0) \qquad (10)$$

$$\Rightarrow (q_2, \varepsilon, Z_0) \qquad (12) \checkmark$$

Non-Defterministic PDA

Latihan 2.

Problem 1: Berdasarkan contoh kasus sebelumnya, lakukanlah pengujian string berikut menggunkaan metode pushdown automata:

- 1. abba,
- 2. abcbcba.

