

Projeto de Máquinas

Elementos de potência

Prof. Eduardo Furlan 2023

Engrenagem

Engrenagens

Engrenagens⁵

Engrenagens

Engrenagens

Dimensionamento de engrenagens

Trem de engrenagens simples, de engrenagens cilíndricas e dentes retos

Classificação de trens de engrenagens

- Simples
- Composto
- Epicicloide (planetária)

Trem de engrenagens

- É uma sequência de diversas engrenagens acopladas
- Possui condições específicas de projeto, relacionadas a
 - Variáveis de entrada
 - Velocidade de saída
 - Torque
 - Sentido de rotação

Razão de velocidades

$$m_V = \left(-\frac{N_2}{N_3}\right)\left(-\frac{N_3}{N_4}\right)\left(-\frac{N_4}{N_5}\right)\left(-\frac{N_5}{N_6}\right) = +\frac{N_2}{N_6}$$

N = número de dentes

- Intermediárias: "vazias ou sem carga"
 - Afetam o sinal
 - Ímpar: saída igual à entrada
 - Par: saída oposta à entrada

Fonte: NORTON, RL. Projeto de Máquinas: Uma Abordagem Integrada.

Trem de engrenagens simples

Vista superior

Vista lateral

(a) Trem de engrenagens simples.

Engrenagem composta

• 2 engrenagens concêntricas montadas em um eixo comum, girando com a mesma velocidade angular

Trem de engrenagens composto

Exemplos

Trem de engrenagens composto

(b) Trem de engrenagens composto, sem reversão de sentido.

Composto reverso (alinhamento dos 17 eixos)

Trem de engrenagens composto reverso

Eixos de entrada e saída são colineares.

Comum em aplicações com restrições de espaço. Ex.: transmissões automotivas.

 (c) Trem de engrenagens composto, com reversão de sentido.

Planetária

Epicicloide

- Várias engrenagens distribuídas uniformemente em volta de órbita concêntrica
- Também chamado de trem de engrenagens planetárias
- Sistema mais compacto e com capacidade elevada de redução

Planetária externa

Fonte: youtube.com

Planetária externa

(d) Trem de engrenagens epicicloidais, externo.

Planetária interna

Planetária interna

- Braço que gira em torno de um ponto fixo
 - A engrenagem *planeta* gira:
 - Em torno do próprio eixo, e
 - Ao redor do centro do braço condutor
 - 2 graus de liberdade
 - Altera a razão de redução

Planetária com engrenagem anular

Essa é uma das configurações.

Obs: o foco deste exemplo é a saída na coroa dentada.

Planetária com engrenagem anular

(f) Trem de engrenagens epicicloidais com engrenagem anular.

Razão de engrenagens planetárias

- velocidade angular
- do braço relativo à carcaça

$$\omega_{
m engrenagem} = \omega_{
m braço} + \omega_{
m eng/braço}$$

- velocidade angular [rpm]
- da engrenagem relativa à carcaça
- velocidade angular
- da engrenagem relativa ao braço

Variador de velocidade

• Exemplos

CASSETT

REAR

DERAILLEUR -

Variadores de velocidade

- Diversas rotações de saída para a mesma rotação de entrada
- Variadores de velocidade
 - Escalonados
 - Contínuos
- Podem empregar
 - Engrenagens
 - Polias/correias
 - Correntes

Variador de velocidade escalonado

- Número finito de relações possíveis
- Cada elemento tem um par designado
 - Como ocorre na marcha de uma bicicleta
- Podem ser
 - Engrenagens fixas nos eixos
 - Deslocáveis
 - Soltas ou acopláveis

Podem estar dispostas nas configurações

- Engrenagens substituíveis e engrenagens de troca
- Variadores do tipo bloco deslizante (básicos)
- Variadores de múltiplos blocos deslizantes
- Variadores com "zigue-zague" e recondução
- Variadores de inversão

- Engrenagens substituíveis e engrenagens de troca
 - Arranjo mais simples em que, para que se obtenha a relação de transmissão desejada, são substituídas duas ou mais engrenagens

Tipo bloco deslizante

Tipo bloco deslizante

- Dois ou mais pares de engrenagens unidas por eixos apoiados em mancais fixos. Exemplo:
 - 2 escalões, em que a velocidade angular é transformada uma vez por um primeiro par de engrenagens e, posteriormente, atinge a velocidade final pelo par de engrenagens seguinte
- A atuação dos pares de engrenagens é feita pela ação de acoplamentos ou por deslocamento axial
- Para que se obtenham três diferentes velocidades de saída, utiliza-se o variador de 3 escalões

(velocidades de saída)

Múltiplos blocos deslizantes

velocidades de saída

- União em série de variadores de dois escalões 🗲
 - Obtém-se um variador de três eixos com quatro escalões
- Esse variador também pode ser ampliado
 - · Acrescentando mais um variador básico de dois escalões,

consegue-se obter oito velocidades diferentes de saída

- Variador escalonado de 3 eixos e 6 escalões (velocidades de saída)
- Esta figura é a mesma do próximo slide (Zigue-zague)

Zigue-zague e recondução

- Variadores com "zigue-zague" e recondução
 - Engrenagens montadas em buchas
 - São ligadas ao eixo por meio de acoplamentos ("liga/desliga")
 - A força percorre o variador em "ziguezague"

Esta figura é a mesma do slide anterior

Variador de inversão

- Têm o objetivo de
 - Mudar o sentido da rotação
 - Ramificar a saída
 - Unir diversas saídas
 - Alterar o plano de entrada ou saída

Parafuso de potência

- Elemento de máquina utilizado para converter movimento rotacional em linear, podendo levantar ou movimentar grandes cargas
- Característica fundamental
 - Rosca deve suportar o esforço
- Têm por objetivo manter partes unidas, resistindo às cargas de cisalhamento

- Exemplos de parafusos de potência incluem macacos para elevação de cargas, grampos em C, morsas e fusos
- As roscas desse tipo de parafuso são projetadas para maximizar a capacidade de carga axial, reduzindo o atrito por arrasto

Formas de roscas mais utilizadas

Figura 4.11 | Formatos de rosca de parafusos de potência que são montados nos equipamentos

(c) Rosca Acme.

(d) Rosca dente de serra (apenas cargas unidirecionais).

Padronização de dimensões

Tabela 4.3 | Dados para filetes de rosca de parafusos de potência utilizados para sua utilização e montagem

Diâmetro maior (externo), em polegadas	Filetes por polegada			
	Quadrada e Quadra- da modificada	Acme	Dente de Serra	
1/4	10	16	i 	
5/16		14		
3/8		12	==	
3/8	8	10		
7/16	:==	12	==	
7/16		10	124	
1/2	6 1/2	10	16	

Padronização de dimensões

(continuação)

5/8	5 1/2	8	16
3/4	5	6	16
7/8	4 1/2	6	12
1	4	5	12
1 1/2	3	4	10
2	2 1/4	4	8
2 1/2	2	3	8
3	13/4	2	6
4	1 1/2	2	6
5		2	5

Nomeclatura

Nomeclatura

- Passo
 - Distância axial de um ponto de referência do helicoide até o ponto correspondente do filete de rosca adjacente
- Ângulo de avanço (α)
 - Complemento do ângulo de hélice; é o ângulo entre o plano tangente ao passo de hélice de uma rosca quadrada e o plano normal ao eixo

(a) Rosca de uma entrada.

ângulo do

filete

Avanço a

entrada.

entrada

Nomeclatura

- Diâmetro maior (externo): corresponde a $d_e = 2r_e$
- Avanço (a)
 - Deslocamento axial para se completar uma volta da porca no parafuso

Figura 4.12 | Configurações de roscas

- Se a configuração de rosca for simples, o avanço será igual ao passo
- Se forem utilizadas configurações de roscas de duas ou três entradas, o avanço será o dobro ou o triplo do passo

Rosca Externa

Rosca Interna

P = passo (em mm)

d = diâmetro externo

 d_1 = diâmetro interno

 d_2 = diâmetro do flanco

 α = ângulo do filete

f = fundo do filete

i = ângulo da hélice

c = crista

D = diâmetro do fundo da porca

D₁ = diâmetro do furo da porca

 h_1 = altura do filete da porca

h = altura do filete do parafuso

Projeto do parafuso de potência

- Verificar se ele está sendo
 - Tracionado
 - Comprimido
 - Considerar a flambagem para determinação do diâmetro do parafuso
- A fim de se prevenir as falhas devido ao desgaste ou fadiga, é importante determinar
 - A flexão na rosca
 - As tensões de cisalhamento e
 - Esmagamento nos filetes na região de contato

- 1. Selecione o material para o parafuso e porca, além da forma da rosca
- 2. Caso exista compressão no parafuso, determine o diâmetro preliminar considerando a flambagem
 - Caso isso não ocorra, estime o diâmetro preliminar com base na tensão normal
- 3. Determine o passo de rosca, avanço e demais dimensões com base
 - Na forma de rosca
 - E nos dados padronizados (Tabela 4.3)

- 4. Torque necessário para a montagem do parafuso de potência
 - Para levantamento de carga

• Para abaixamento de carga

torque requerido para abaixamento de carga

$$T_{C} = C r_{p} \left| \frac{-a\cos\theta + 2\pi r_{p}\mu_{r}}{2\pi r_{p}\cos\theta + a\mu_{r}} \right| + Cr_{c}\mu_{c}$$

(similar à equação anterior)

- 5. Identificar pontos e seções críticas e determine as tensões no parafuso e na rosca, para avaliar se o projeto está aceitável
- 6. Utilizar um fator de segurança para cada modo provável de falha e calcule as tensões de projeto para cada material escolhido
- 7. Comparando as tensões nominais determinadas no passo 5 e as de projeto, determinadas no passo 6, verifique se é necessário fazer alterações na geometria para que o projeto atenda aos requisitos de segurança e funcionalidade

Referências

BUDYNAS, R. G. Elementos De Maquinas De Shigley. 8ª edição. [S. l.]: AMGH, 2011.

COLLISN, J. A.; BUSBY, H. R.; STAAB, G. H. Projeto Mecânico de Elementos de Máquinas: uma Perspectiva de Prevenção da Falha. 2ª edição. [S. l.]: LTC, 2019.

LOBO, Y. R. de O.; JÚNIOR, I. E. de O.; ESTAMBASSE, E. C.; SHIGUEMOTO, A. C. G. Projeto de máquinas. Londrina: Editora e Distribuidora Educacional S.A., 2019.

NORTON, R. L.; BOOKMAN, E.; STAVROPOULOS, K. D.; AGUIAR, J. B. de; AGUIAR, J. M. de; MACHNIEVSCZ, R.; CASTRO, J. F. de. Projeto de Máquinas: Uma Abordagem Integrada. 4ª edição. [S. l.]: Bookman, 2013.

https://github.com/efurlanm/teaching/

Prof. Eduardo Furlan 2023

