Booklet of Code and Output for STAD29/STA 1007 Final Exam

List of Figures in this document by page:

List of Figures

1	Gorilla and Stroop word test data
2	Logistic regression for gorilla data
3	Boxplot of Stroop colour-and-word scores by whether or not go-
	rilla seen
4	1978 cars data (some)
5	Cars fitted models
6	Predictions of repair record for cars data
7	Breast cancer data
8	Cox modelling of recurrence time
9	"Survfit"
10	Code for making a ggplot of survival curves
11	Plot of survival curves
12	French learning data
13	Analysis of variance of test score by book
14	Scatter plot of test score against GPA labelled by textbook 12
15	Analysis of covariance of test score by book and gpa 13
16	Self-esteem therapy data
17	Repeated measures analysis for therapy data
18	Reorganizing the therapy data
19	Spaghetti plot for therapy data
20	Summary of magazine data
21	Discriminant analysis for magazine data
22	Plot of first two discriminant scores for magazine data 18
23	Predictions for magazine data
24	Sample of posterior probabilities
25	Cars data for multidimensional scaling
26	Multidimensional scaling analysis of cars
27	Multidimensional scaling map of cars
28	Baseball data
29	Principal components analysis of baseball data
30	Scree plot of baseball data
31	Factor analysis for baseball data
32	Biplot of baseball factor analysis
33	Birth data
34	Birth data log-linear analysis
35	Birth data sub-tables

```
gorilla
##
      seen
              W
                   C CW
## 1
          0 126
                 86 64
  2
          0 118
                 76 54
## 3
             61
                 66
                    44
          0
##
   4
          0
             69
                 48
                     32
##
  5
             57
                 59 42
          0
   6
          0
            78
                 64 53
##
  7
          0 114
                 61
                     41
## 8
         0
             81
                 85
                     47
             73
                 57 33
## 9
          0
## 10
             93
                 50 45
          0
## 11
          0 116
                 92 49
## 12
         0 156
                 70 45
  13
             90
                 66 48
##
          0
          0 120
## 14
                 73 49
##
  15
             99
                 68 44
          0
##
  16
         0 113 110 47
##
   17
          0 103
                 78 52
##
  18
          0 123
                 61 28
   19
             86
                 65 42
##
  20
##
             99
                 77 51
          0
   21
##
          0 102
                 77
                     54
##
   22
          0 120
                 74
                     53
##
   23
         0 128 100
                     56
   24
          0 100
                 89 56
##
##
   25
             95
                 61 37
  26
##
             80
                 55 36
          0
##
  27
         0
             98
                 92 51
##
  28
          0 111
                 90 52
##
   29
          0 101
                 85 45
## 30
          0 102
                 78 51
## 31
          1 100
                 66 48
  32
##
          1 112
                 78 55
##
   33
             82
                 84 37
##
   34
             72
                 63
                     46
                 65 47
##
  35
          1
             72
   36
             89
                 71 49
##
          1
##
   37
          1 108
                 46
                     29
##
   38
          1
            88
                 70
                     49
##
   39
                 83 67
          1 116
## 40
          1 100
                 69
                     39
## 41
             99
                 70
                     43
          1
## 42
          1
             93
                 63 36
  43
                 93 62
##
          1 100
## 44
          1 110
                 76 56
## 45
          1 100
                 83
                     36
                                   2
## 46
          1 106
                 71 49
## 47
          1 115 112 66
          1 120
## 48
                 87 54
## 49
         1 97
                 82 41
```

Figure 1: Gorilla and Stroop word test data

```
gorilla.0=glm(seen~1,data=gorilla,family="binomial")
gorilla.1=glm(seen~W+C+CW,data=gorilla,family="binomial")
summary(gorilla.1)
##
## Call:
## glm(formula = seen ~ W + C + CW, family = "binomial", data = gorilla)
## Deviance Residuals:
   Min 10 Median
                                       Max
                                30
## -1.0928 -1.0129 -0.9302
                           1.3330
                                     1.6281
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.755980 1.968679 -0.384
                                           0.701
                        0.018147 -0.524
## W
             -0.009506
                                           0.600
## C
              0.007602
                         0.027876
                                 0.273
                                         0.785
## CW
              0.014361
                         0.044204
                                  0.325
                                           0.745
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 65.438 on 48 degrees of freedom
## Residual deviance: 64.946 on 45 degrees of freedom
## AIC: 72.946
## Number of Fisher Scoring iterations: 4
anova(gorilla.0,gorilla.1)
## Analysis of Deviance Table
##
## Model 1: seen ~ 1
## Model 2: seen ~ W + C + CW
##
   Resid. Df Resid. Dev Df Deviance
## 1
      48 65.438
```

Figure 2: Logistic regression for gorilla data

Figure 3: Boxplot of Stroop colour-and-word scores by whether or not gorilla seen $\,$

```
autos=read.table("autos.txt",header=T)
head(autos,n=20)
                   make price mpg rep78 headroom trunk weight length turn
##
            AMC Concord 4099 22
## 1
                                       3
                                              2.5
                                                     11
                                                          2930
                                                                   186
                                                                         40
## 2
             AMC Pacer 4749
                                       3
                               17
                                              3.0
                                                     11
                                                           3350
                                                                   173
                                                                         40
## 3
             AMC Spirit
                         3799
                               22
                                      NA
                                              3.0
                                                     12
                                                           2640
                                                                   168
                                                                         35
          Buick Century
## 4
                         4816
                               20
                                                          3250
                                                                         40
                                      3
                                              4.5
                                                     16
                                                                   196
## 5
          Buick Electra 7827
                                              4.0
                                                     20
                                                           4080
                                                                   222
                               15
## 6
          Buick LeSabre 5788
                               18
                                      3
                                              4.0
                                                     21
                                                           3670
                                                                   218
                                                                         43
## 7
             Buick Opel
                         4453
                               26
                                      NA
                                              3.0
                                                     10
                                                           2230
                                                                   170
                                                                         34
## 8
            Buick Regal 5189
                               20
                                       3
                                              2.0
                                                     16
                                                           3280
                                                                   200
                                                                         42
## 9
          Buick Riviera 10372
                                                                   207
                                                                         43
                               16
                                       3
                                              3.5
                                                     17
                                                           3880
## 10
          Buick Skylark 4082
                                              3.5
                                                     13
                                                           3400
                                                                   200
                                                                         42
## 11
          Cad. Deville 11385
                                       3
                                                     20
                                                           4330
                                                                   221
                                                                         44
                               14
                                              4.0
## 12
          Cad. Eldorado 14500
                                       2
                                              3.5
                                                     16
                                                           3900
                                                                   204
                                                                         43
                                14
## 13
           Cad. Seville 15906
                               21
                                       3
                                              3.0
                                                     13
                                                           4290
                                                                   204
                                                                         45
         Chev. Chevette 3299
## 14
                               29
                                       3
                                              2.5
                                                      9
                                                           2110
                                                                   163
                                                                         34
## 15
           Chev. Impala 5705
                               16
                                              4.0
                                                     20
                                                           3690
                                                                   212
                                                                         43
## 16
           Chev. Malibu 4504
                               22
                                       3
                                                     17
                                                           3180
                                                                         31
                                              3.5
                                                                   193
## 17 Chev. Monte Carlo
                         5104
                                              2.0
                                                           3220
                                                                   200
                                                                         41
            Chev. Monza
## 18
                         3667
                               24
                                              2.0
                                                      7
                                                           2750
                                                                   179
                                                                         40
## 19
             Chev. Nova 3955 19
                                              3.5
                                                     13
                                                           3430
                                                                   197
                                                                         43
## 20
             Dodge Colt 3984
                                              2.0
                                                          2120
                                                                   163
                                                                         35
##
      displacement gear_ratio
## 1
              121
                         3.58
## 2
                         2.53
               258
## 3
               121
                         3.08
## 4
               196
                         2.93
## 5
               350
                         2.41
## 6
               231
                         2.73
## 7
               304
                         2.87
## 8
               196
                         2.93
## 9
               231
                         2.93
## 10
                         3.08
               231
## 11
               425
                         2.28
                         2.19
## 12
               350
## 13
               350
                         2.24
## 14
               231
                         2.93
## 15
               250
                         2.56
## 16
               200
                         2.73
## 17
               200
                         2.73
## 18
               151
                         2.73
## 19
               250
                         2.56
## 20
                98
                         3.54
```

Figure 4: 1978 cars data (some)

```
library (MASS)
repf=ordered(autos$rep78)
autos.1=polr(repf~price+mpg+headroom+trunk+weight+length+turn+
   displacement+gear_ratio,data=autos)
autos.2=polr(repf ~ price + mpg + length + turn + displacement,
   data = autos)
anova(autos.2,autos.1)
## Likelihood ratio tests of ordinal regression models
##
## Response: repf
##
                                                                                  Model
## 1
                                             price + mpg + length + turn + displacement
## 2 price + mpg + headroom + trunk + weight + length + turn + displacement + gear_ratio
   Resid. df Resid. Dev
                          Test
                                 Df LR stat. Pr(Chi)
## 1
           60 158.0758
## 2
        56 156.5030 1 vs 2 4 1.572858 0.813662
```

Figure 5: Cars fitted models

```
prices=c(4000,6000)
mpgs=20
lengths=200
turns=c(35,45)
displacements=200
\verb"new-expand.grid" (\texttt{price-prices,mpg-mpgs,length=lengths,turn-turns, or a start of the start
        displacement=displacements)
pp=predict(autos.2,new,type="p")
cbind(new,pp)
                     price mpg length turn displacement
                                                                                                                                                                                                                      1
##
## 1 4000 20 200 35 200 0.003569743 0.01942962 0.2391378
## 2 6000 20
                                                                             200 35
                                                                                                                                                      200 0.002311087 0.01268201 0.1718085
                                                                                                                                                   200 0.055555939 0.22322005 0.5748827
200 0.036641509 0.16331294 0.5904809
## 3 4000 20
                                                                             200 45
## 4 6000 20
                                                                              200 45
                                                    4
                                                                                                         5
## 1 0.4359874 0.30187542
## 2 0.4124494 0.40074898
## 3 0.1206823 0.02565910
## 4 0.1704300 0.03913469
```

Figure 6: Predictions of repair record for cars data

```
gbcs=read.table("gbcs.txt",header=T)
str(gbcs)
## 'data.frame': 686 obs. of 16 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ diagdateb : Factor w/ 525 levels "1984-04-25", "1984-05-
29",..: 21 93 38 9 10 14 109 29 43 106 ...
## $ recdate : Factor w/ 494 levels "1984-11-24", "1985-01-
18",..: 151 211 149 1 240 268 27 365 454 471 ...
## $ deathdate : Factor w/ 471 levels "1984-11-24","1985-03-
08",..: 284 275 117 1 174 200 16 390 423 440 ...
## $ age
           : int 38 52 47 40 64 49 53 61 43 74 ...
## $ menopause : int 1 1 1 1 2 2 2 2 1 2 ...
## $ hormone : int 1 1 1 1 2 2 1 2 1 2 ...
             : int 18 20 30 24 19 56 52 22 30 20 ...
## $ size
## $ grade
              : int 3 1 2 1 2 1 2 2 2 2 ...
## $ nodes : int 5 1 1 3 1 3 9 2 1 1 ...
## $ prog_recp : int 141 78 422 25 19 356 6 6 22 462 ...
## $ estrg_recp: int 105 14 89 11 9 64 29 173 0 240 ...
## $ rectime : int 1337 1420 1279 148 1863 1933 358 2372 2563 2372 ...
## $ censrec : int 1 1 1 0 0 0 1 1 0 0 ...
## $ survtime : int 2282 2006 1456 148 1863 1933 416 2556 2563 2372 ...
## $ censdead : int 0 0 1 0 0 0 1 0 0 0 ...
```

Figure 7: Breast cancer data

```
attach(gbcs)
library(survival)
y=Surv(rectime,censrec==1)
y.1=coxph(y~hormone+size+nodes)
summary(y.1)
## Call:
## coxph(formula = y ~ hormone + size + nodes)
##
## n= 686, number of events= 299
##
##
              coef exp(coef) se(coef)
                                         z Pr(>|z|)
## hormone -0.364145  0.694790  0.125258 -2.907  0.00365 **
## size
        0.007426 1.007454 0.003854 1.927 0.05399 .
## nodes 0.052367 1.053763 0.007319 7.155 8.39e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
          exp(coef) exp(-coef) lower .95 upper .95
## hormone 0.6948
                    1.4393
                                0.5435
                                        0.8881
            1.0075
                       0.9926
                                0.9999
                                         1.0151
## size
                       0.9490
## nodes
            1.0538
                              1.0388
                                        1.0690
##
## Concordance= 0.657 (se = 0.016)
## Likelihood ratio test= 62.02 on 3 df,
                                         p=2e-13
## Wald test = 87.73 on 3 df, p=<2e-16
## Score (logrank) test = 90.83 on 3 df,
                                        p=<2e-16
```

Figure 8: Cox modelling of recurrence time

```
hormones=c(1,2)
sizes=c(20,35)
nodeses=c(1,7)
new=expand.grid(hormone=hormones,size=sizes,nodes=nodeses)
pp=survfit(y.1,new)
```

Figure 9: "Survfit"

```
combo=apply(new,1,paste,collapse="-")
combo

## [1] "1-20-1" "2-20-1" "1-35-1" "2-35-1" "1-20-7" "2-20-7" "1-
35-7" "2-35-7"

v=data.frame(time=pp$time,surv=pp$surv)
names(v)=c("time",combo)
library(tidyr)

## Warning: package 'tidyr' was built under R version 3.5.3
p=gather(v,combo,surv,-time)
```

Figure 10: Code for making a ggplot of survival curves

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.3
ggplot(p,aes(x=time,y=surv,colour=combo))+geom_point()+geom_line()
```


Figure 11: Plot of survival curves

```
french=read.table("learning-french.txt",header=T)
french
##
     student book test gpa
## 1
      1 a
                 34 3.24
## 2
         2 a 56 3.44
         3 a
## 3
                 64 3.54
         4 a
                69 3.59
## 4
## 5
        5 a
                77 3.65
## 6
        6 b 46 3.28
        7 b 61 3.43
## 7
            b 66 3.48
## 8
        8
## 9
        9 b 75 3.58
## 10
        10 b 77 3.63
           c 59 3.35
## 11
        11
## 12
        12
             c 61 3.39
## 13
        13 c 72 3.47
## 14
        14
            c 76 3.52
## 15
        15
           c 84 3.62
```

Figure 12: French learning data

Figure 13: Analysis of variance of test score by book

```
library(ggplot2)
ggplot(french,aes(x=gpa,y=test,colour=book))+
  geom_point()
```


Figure 14: Scatter plot of test score against GPA labelled by textbook

```
french.2=lm(test~gpa*book,data=french)
anova(french.2)
## Analysis of Variance Table
##
## Response: test
##
           Df Sum Sq Mean Sq F value
                                        Pr(>F)
## gpa
           1 1994.55 1994.55 1081.2054 1.095e-10 ***
           2 390.95 195.47 105.9621 5.559e-07 ***
## book
## gpa:book 2 5.64
                        2.82
                              1.5275 0.2684
## Residuals 9 16.60
                       1.84
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
french.3=update(french.2,.~.-gpa:book)
anova(french.3)
## Analysis of Variance Table
##
## Response: test
##
           Df Sum Sq Mean Sq F value
            1 1994.55 1994.55 986.583 4.044e-12 ***
## gpa
           2 390.95 195.47 96.689 1.048e-07 ***
## book
## Residuals 11 22.24
                        2.02
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(french.3)
##
## Call:
## lm(formula = test ~ gpa + book, data = french)
## Residuals:
## Min
            1Q Median
## -2.5792 -0.8223 0.2805 0.9299 1.6432
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
3.0050 32.344 2.94e-12 ***
## gpa
               97.1949
## bookb
               6.1663
                         0.9000 6.852 2.76e-05 ***
               12.5383
                        0.9017 13.905 2.52e-08 ***
## bookc
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.422 on 11 degrees of freedom
## Multiple R-squared: 0.9908, Adjusted R-squared: 0.9882
## F-statistic: 393.3 on 3 and 11 DF, p-value: 1.816e-11
```

Figure 15: Analysis of covariance of test score by book and gpa

```
selfesteem=read.table("therapy.txt",header=T)
selfesteem
##
     subject therapy w1 w2 w3 w4
## 1
    1 baseline 3 5 9 6
         2 baseline 7 11 12 11
## 2
         3 baseline 9 13 14 12
## 3
## 4
         4 baseline 4 8 11 7
## 5
        5 baseline 1 3 5 4
## 6
        6 new 5 6 11 7
         7
## 7
               new 10 12 18 15
## 8
        8
              new 10 15 15 14
## 9
          9
               new 6 9 13 9
        10 new 3 5 9 7
## 10
```

Figure 16: Self-esteem therapy data

```
attach(selfesteem)
response=cbind(w1,w2,w3,w4)
selfesteem.1=lm(response~therapy)
library(car)
## Warning: package 'car' was built under R version 3.5.1
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.5.1
weeks=colnames(response)
weeks.df=data.frame(weeks)
selfesteem.2=Manova(selfesteem.1,idata=weeks.df,idesign=~weeks)
selfesteem.2
##
## Type II Repeated Measures MANOVA Tests: Pillai test statistic
##
                Df test stat approx F num Df den Df
                                                      Pr(>F)
               1 0.88773 63.259
                                         1 8 4.554e-
## (Intercept)
05 ***
                                0.977
                                                       0.3518
## therapy
                 1
                     0.10886
                                          1
                                                  8
## weeks
                     0.98033
                               99.659
                                                  6 1.653e-
05 ***
## therapy:weeks 1
                     0.25600
                                0.688
                                                       0.5915
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 17: Repeated measures analysis for therapy data

```
library(tidyr)
selfesteem.long=gather(selfesteem, weeks, self.esteem, w1:w4)
```

Figure 18: Reorganizing the therapy data

```
ggplot(selfesteem.long,
  aes(x=weeks,y=self.esteem,
  group=subject,colour=therapy)) + geom_line()
```

therapy baseline new weeks

Figure 19: Spaghetti plot for therapy data

```
mags=read.table("MAGAZINES.txt",header=T)
str(mags)
## 'data.frame': 141 obs. of 16 variables:
##
   $ id
        : int 101 102 103 104 105 106 107 108 109 110 ...
  $ magazine : int 4 3 2 4 4 2 1 3 4 2 ...
##
  $ i1
        : int 0000001000...
##
   $ i2
             : int 0010010001...
##
   $ i3
             : int
                   0 1 0 0 0 0 0 1 0 0 ...
   $ i4
             : int 1001100010 ...
##
  $ famsize : int 2 2 1 1 2 1 2 1 1 4 ...
##
## $ income : int 11 11 8 11 10 6 11 1 6 4 ...
##
   $ race
             : int 1 1 1 1 1 1 1 0 1 0 ...
## $ tv
            : int 3 2 1 1 2 1 3 3 2 2 ...
## $ newspaper: int 1 1 0 1 1 1 1 0 0 0 ...
            : int
   $ nomale
                   0 0 1 1 0 1 0 1 1 0 ...
##
##
   $ nofemale : int
                   0 0 0 0 0 0 0 0 0 0 ...
## $ child18 : int 1 1 1 1 1 1 1 1 0 ...
## $ headage : int 6 5 6 5 6 6 5 5 5 3 ...
## $ headeduc : int 7 7 4 6 6 5 7 3 6 5 ...
```

Figure 20: Summary of magazine data

```
library (MASS)
mags.1=lda(magazine~famsize+income+race+tv+newspaper+nomale+
            nofemale+child18+headage+headeduc,data=mags)
mags.1
## Call:
## lda(magazine ~ famsize + income + race + tv + newspaper + nomale +
      nofemale + child18 + headage + headeduc, data = mags)
##
## Prior probabilities of groups:
##
              2 3
         1
## 0.1843972 0.3475177 0.2765957 0.1914894
##
## Group means:
##
     famsize
                                  tv newspaper
               income
                      race
                                                     nomale
## 1 2.730769 7.384615 0.8846154 2.000000 0.4615385 0.1538462 0.00000000
## 2 2.163265 4.897959 0.7142857 1.734694 0.3877551 0.5510204 0.06122449
## 3 2.102564 5.333333 0.6923077 1.794872 0.2564103 0.3846154 0.10256410
## 4 2.074074 8.370370 0.8518519 1.703704 0.5185185 0.3703704 0.18518519
      child18 headage headeduc
## 1 0.7307692 4.692308 5.500000
## 2 0.7755102 5.061224 4.775510
## 3 0.7435897 4.589744 5.000000
## 4 0.8148148 4.444444 6.185185
##
## Coefficients of linear discriminants:
                   LD1
                          LD2
##
## famsize -0.02506254 0.31004546 0.99557640
## income -0.26488338 0.04896005 0.03142841
           0.02724269 -0.82876993 0.60290221
## race
## tv
            0.34729706 0.01278338 -0.22388539
## newspaper 0.12958772 0.55766570 0.97724506
## nomale -0.06306391 2.70594323 1.26670569
## nofemale -0.58564087 3.10963239 0.14905016
## child18 -0.75018974 -0.14545284 1.07604018
## headage 0.23540594 0.03287999 0.52175803
## headeduc -0.27938790 0.10107380 0.01459669
##
## Proportion of trace:
    LD1
            LD2
                 LD3
## 0.5715 0.2739 0.1546
```

Figure 21: Discriminant analysis for magazine data

Figure 22: Plot of first two discriminant scores for magazine data

```
pp=predict(mags.1)
table(magazine=mags$magazine,predicted=pp$class)
           predicted
##
## magazine
             1
                2
##
          1 10
                8
                   5
                      3
##
          2
             8 32
                   7
                      2
          3
##
             4 16 14
##
             4
                6
                   2 15
```

Figure 23: Predictions for magazine data

```
set.seed(457299)
post=round(pp$posterior,3)
row=sample(nrow(post),10)
cbind(mags[row,],guess=pp$class[row],post[row,])
##
      id magazine i1 i2 i3 i4 famsize income race tv newspaper nomale
              2 0 1 0 0
                          2 11 1 2 1
## 134 234
              4 0 0 0 1
                                       1 3
## 18 118
                              4
                                   8
                                       1 2
## 32
              1 1 0 0 0
                                   9
                                                  1
     132
                              4
                                                         0
                                 11
## 77
     177
              3 0 0 1 0
                              1
                                        1 3
## 54
     154
              1 1 0 0 0
                              4
                                   7
                                        1 1
              4 0 0 0 1
                              2 11
                                       1 1
## 103 203
                                                   1
              4 0 0 0 1
## 33 133
                              4 11
                                       1 2
                                                   1
             3 0 0 1 0
                              4 6 0 2
## 30 130
                                                   0
             2 0 1 0 0
## 78 178
                              1 5 1 1
                                                   0
## 110 210
             1 1 0 0 0
                              1 4 0 1
     nofemale child18 headage headeduc guess 1
                                              2
## 134
         0 1 5
                             7
                                   1 0.393 0.100 0.129 0.378
## 18
          0
                1
                       5
                              6
                                   1 0.468 0.256 0.156 0.120
         0 1 5
0 0 4
0 1 6
0 0 3
0 1 5
0 0 4
                              7 2 0.287 0.293 0.182 0.238
## 32
                              6 4 0.075 0.367 0.110 0.447
## 77
                              4
                                   3 0.325 0.205 0.394 0.075
## 54
                              7
## 103
                                    4 0.384 0.074 0.090 0.452
                               7
## 33
                                    4 0.276 0.207 0.137 0.379
## 30
           0
                 1
                        6
                               4
                                    2 0.257 0.500 0.187 0.057
## 78
           0
                        5
                               6
                                    2 0.118 0.354 0.299 0.230
                 1
           0
                               6 2 0.050 0.487 0.291 0.172
## 110
```

Figure 24: Sample of posterior probabilities

cai	<pre>cars=read.csv("CAR_DISSIM.csv",header=T,stringsAsFactors=F)</pre>													
cars														
##		Car	BMW	Ford	Infnti	Jeep	Lexus	Chrys	Merc	Saab	Porsche	Volvo		
##	1	BMW	0	NA	NA	NA	NA	NA	NA	NA	NA	NA		
##	2	Ford	34	0	NA	NA	NA	NA	NA	NA	NA	NA		
##	3	Infiniti	8	24	0	NA	NA	NA	NA	NA	NA	NA		
##	4	Jeep	31	2	25	0	NA	NA	NA	NA	NA	NA		
##	5	Lexus	7	26	1	27	0	NA	NA	NA	NA	NA		
##	6	Chrysler	43	14	35	15	37	0	NA	NA	NA	NA		
##	7	Mercedes	3	28	5	29	4	42	0	NA	NA	NA		
##	8	Saab	10	18	20	17	13	36	19	0	NA	NA		
##	9	Porsche	6	39	41	38	40	45	32	21	0	NA		
##	10	Volvo	33	11	22	12	23	9	30	16	44	0		

Figure 25: Cars data for multidimensional scaling

```
d=as.dist(cars[,-1])
library(MASS)
d.1=isoMDS(d)

## initial value 10.466056
## iter 5 value 6.523088
## iter 10 value 4.865126
## iter 15 value 4.088399
## iter 20 value 4.003118
## final value 3.989006
## converged

d.1$stress

## [1] 3.989006
```

Figure 26: Multidimensional scaling analysis of cars

```
plot(d.1$points,xlim=c(-30,30))
text(d.1$points,cars$Car,pos=4)
```


Figure 27: Multidimensional scaling map of cars

Warning: package 'dplyr' was built under R version 3.5.2

```
baseball
##
               TEAM
                                                        SO
                                                                  Ε
                     RS
                            Η
                               HR
                                    AVG
                                          W
                                              ERA
                                                   RA
## 1
            Toronto 891 1480 232 0.269
                                          93 3.80 670 1117
                                                           397
                                                                 88
## 2
         NY Yankees 764 1397 212 0.251
                                          87 4.05 698 1370
## 3
              Texas 751 1419 172 0.257
                                          88 4.24
                                                  733 1095
                                                           508
                                                                119
## 4
             Boston 748 1496 161 0.265
                                          78 4.31 753 1218 478
                                                                 97
           Colorado 737 1479 186 0.265
                                          68 5.04 844 1112 579
## 5
                                                                 95
## 6
            Houston 729 1363 230 0.250
                                          86 3.57 618 1280
                                                           423
                                                                 85
## 7
        Kansas City 724 1497 139 0.269
                                          95 3.73 641 1160
                                                           489
                                                                 88
## 8
            Arizona 720 1494 154 0.264
                                          79 4.04 713 1215 500
                                                                 86
## 9
          Baltimore 713 1370 217 0.250
                                          81 4.05 693 1233 483
                                                                 77
## 10
         Washington 703 1363 177 0.251
                                          83 3.62 635 1342
                                                           364
                                                                 90
## 11
         Pittsburgh 697 1462 140 0.260
                                          98 3.21 596 1338 453
                                                                122
## 12 San Francisco 696 1486 136 0.267
                                          84 3.72 627 1165 431
                                                                 78
## 13
          Minnesota 696 1349 156 0.247
                                          83 4.07 700 1046 413
                                          68 4.14 729 1179 474
## 14
            Oakland 694 1405 146 0.251
                                                                126
##
  15
            Detroit 689 1515 151 0.270
                                          74 4.64 803 1100 489
                                                                 86
##
  16
       Chicago Cubs 689 1341 171 0.244
                                          97 3.36 608 1431 407
                                                                111
## 17
                                          90 3.43 613 1337 383
            NY Mets 683 1351 177 0.244
                                          81 3.67 640 1407 425
## 18
          Cleveland 669 1395 141 0.256
                                                                 79
## 19
         LA Dodgers 667 1346 187 0.250
                                          92 3.44 595 1396 395
                                                                 75
## 20
          LA Angels 661 1331 176 0.246
                                          85 3.94 675 1221 466
                                                                 93
## 21
            Seattle 656 1379 198 0.249
                                          76 4.16 726 1283 491
## 22
          Milwaukee 655 1378 145 0.251
                                          68 4.28
                                                  737 1260
                                                           517
                                                                116
## 23
          San Diego 650 1324 148 0.243
                                         74 4.09 731 1393 516
                                                                 92
## 24
                                        100 2.94 525 1329
          St. Louis 647 1386 137 0.253
## 25
          Tampa Bay 644 1383 167 0.252
                                          80 3.74 642 1355
                                                           477
## 26
         Cincinnati 640 1382
                              167 0.248
                                          64 4.33 754 1252 544
## 27
       Philadelphia 626 1374 130 0.249
                                          63 4.69 809 1153 488
                                                               117
## 28
        Chicago Sox 622 1381 136 0.250
                                          76 3.98 701 1359 474
## 29
              Miami 613 1420 120 0.260
                                          71 4.02 678 1152 508
## 30
            Atlanta 573 1361 100 0.251
                                         67 4.41 760 1148 550
```

Figure 28: Baseball data

```
baseball.1=princomp(baseball[,-1],cor=T)
summary(baseball.1)
## Importance of components:
##
                             Comp.1
                                       Comp.2
                                                 Comp.3
                                                          Comp.4
## Standard deviation
                         1.9780942 1.6284703 1.1592964 1.001404 0.72347227
## Proportion of Variance 0.3912857 0.2651916 0.1343968 0.100281 0.05234121
## Cumulative Proportion 0.3912857 0.6564772 0.7908740 0.891155 0.94349624
##
                              Comp.6
                                         Comp.7
                                                     Comp.8
## Standard deviation
                         0.58886348 0.33939375 0.269085919 0.158853043
## Proportion of Variance 0.03467602 0.01151881 0.007240723 0.002523429
## Cumulative Proportion 0.97817226 0.98969108 0.996931800 0.999455229
##
                               Comp.10
## Standard deviation
                        0.0738086322
## Proportion of Variance 0.0005447714
## Cumulative Proportion 1.000000000
```

Figure 29: Principal components analysis of baseball data

plot(baseball.1,type="1")

baseball.1

Figure 30: Scree plot of baseball data

```
baseball.2=factanal(baseball[,-1],4,scores="r")
baseball.2$uniquenesses
##
           RS
                       Н
                                 HR
                                           AVG
                                                                  ERA
## 0.00500000 0.03362356 0.24671588 0.00500000 0.16953992 0.00500000
##
           RA
                      SO
                                 BB
                                             Ε
## 0.00500000 0.47513335 0.41234633 0.48432288
baseball.2$PVAL
## objective
## 0.3670648
baseball.2$loadings
##
## Loadings:
       Factor1 Factor2 Factor3 Factor4
## RS -0.131 0.480
                        0.861
## H
        0.113
              0.975
               -0.125
## HR
                        0.846
                              -0.117
## AVG
                0.984
                               -0.141
## W
       -0.851
               0.134
                       0.297
## ERA 0.989
               0.121
        0.977
## RA
                0.108
                                0.171
## SO -0.538
              -0.449
                      -0.112
                                0.148
## BB
        0.666
              0.134
                      -0.342
## E
                                0.707
##
##
                  Factor1 Factor2 Factor3 Factor4
                            2.434
                                            0.604
## SS loadings
                    3.441
                                    1.680
## Proportion Var
                    0.344
                            0.243
                                    0.168
                                            0.060
## Cumulative Var
                  0.344
                            0.587
                                    0.755
                                            0.816
```

Figure 31: Factor analysis for baseball data

Figure 32: Biplot of baseball factor analysis

```
genders=c("male","female")
ruptures=c("no","yes")
cesareans=c("no","yes")
induceds=c("no","yes")
combos=expand.grid(induced=induceds,cesarean=cesareans,
                rupture=ruptures,gender=genders)
freqs=c(177,45,37,18,104,16,9,7,137,53,24,12,74,15,8,2)
births=cbind(combos,freq=freqs)
births
##
     induced cesarean rupture gender freq
## 1
        no no no male 177
## 2
      yes
                       no male
                                 45
                no
              yes
## 3
                      no male 37
        no
              yes
## 4
       yes
                      no male 18
## 5
                       yes male 104
        no
               no
       yes
                     yes male 16
## 6
               no
## 7
                    yes male 9
        no
               yes
        yes
## 8
               yes yes male 7
## 9
                no
                       no female 137
        no
## 10
                       no female 53
        yes
                no
## 11
               yes
                      no female 24
        no
## 12
                      no female 12
        yes
               yes
## 13
                       yes female
                                  74
        no
                no
## 14
                       yes female
                                  15
        yes
                no
## 15
                       yes female
                                  8
        no
                yes
## 16
                yes
                       yes female
                                   2
        yes
```

Figure 33: Birth data

Much analysis follows (not shown). I ended with:

```
births.10=update(births.9,.~.-gender:induced)
drop1(births.10,test="Chisq")
## Single term deletions
##
## Model:
## freq ~ gender + rupture + cesarean + induced + rupture:cesarean +
##
   rupture:induced + cesarean:induced
##
                Df Deviance AIC
                                     LRT Pr(>Chi)
## <none>
                      8.9101 105.91
           1 19.4284 114.43 10.5182 0.001182 **
## gender
## rupture:cesarean 1 13.9746 108.98 5.0645 0.024421 *
## rupture:induced 1 14.4372 109.44 5.5271 0.018725 *
## cesarean:induced 1 15.9388 110.94 7.0286 0.008022 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 34: Birth data log-linear analysis

```
xt1=xtabs(freq~rupture+cesarean,data=births)
prop.table(xt1,1)
        cesarean
## rupture no yes
## no 0.8190855 0.1809145
##
      yes 0.8893617 0.1106383
xt2=xtabs(freq~rupture+induced,data=births)
prop.table(xt2,1)
##
     induced
## rupture no yes
## no 0.7455268 0.2544732
     yes 0.8297872 0.1702128
xt3=xtabs(freq~cesarean+induced,data=births)
prop.table(xt3,2)
##
        induced
## cesarean no yes
## no 0.8631579 0.7678571
##
   yes 0.1368421 0.2321429
```

Figure 35: Birth data sub-tables