Semaine du 24 Mars - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 23, propriété 3 : inégalité de Jensen.

Exercice no 2:

(Dénombrement) : Dans un jeu de tarot, il y a 21 atouts. On en tire simultanément cinq au hasard. Combien y'a-t-il (respectivement) de tirages pour lesquels :

- 1. Au moins un atout est un multiple de 5?
- 2. Il y a exactement un multiple de 5 et un multiple de 3?
- 3. On a tiré le 1 ou le 21?

Exercice no 3:

(Dénombrement): Un sous-ensemble de $\{1, 2, ..., n\}$ est dit lacunaire s'il est non vide et ne contient jamais deux entiers consécutifs. On notera L_n le nombre de sous-ensembles lacunaires de $\{1, 2, ..., n\}$.

- 1. A quelle-condition sur n, a-t-on $\{2,5,7\}$ qui est une partie lacunaire.
- 2. Déterminer L_1, L_2, L_3 et L_4 à la main.
- 3. Montrer que $L_{n+2} = L_{n+1} + L_n + 1$.
- 4. En déduire une expression explicite de L_n .
- 5. Montrer que le nombre de sous-ensembles la cunaires de $\{1,2,\ldots,n\}$ contenant exactement p éléments est égal à $\binom{n+1-p}{p}$.

Semaine du 24 Mars - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 23, propriété 4 : croissance de la fonction pente.

Exercice no 2:

(Dénombrement) : Combien existe-t-il de couples d'entiers naturels (a,b) vérifiant (respectivement) les conditions suivantes : (à $n \in \mathbb{N}$ fixé)

- 1. a + b = n
- 2. $a < b \le n$
- 3. a < b, $a \le n$, mais $b \le 2n$
- 4. |a-b| < 1 avec a < n et b < n

Exercice no 3:

(Dénombrement): Une grille de mots croisées est un tableau rectangulaire à n lignes et p colonnes, (et donc constitué de $n \times p$ cases), parmi lesquelles un certain nombre k (inférieur ou égal à np) sont noircies (et les autres blanches).

- 1. Combien y-a-t-il de grilles différentes possibles?
- 2. Combien ont les quatres coins noirs?
- 3. Combien ont exactement deux coins noirs?
- 4. Combien ont au plus une case noire sur chaque ligne?
- 5. On suppose pour cette question n = p = k. Combien y a-t-il alors de grilles ayant exactement une case noire sur chaque ligne et sur chaque colonne?
- 6. Calculer le nombre de façons de placer les neufs chiffres 1 sur une grille de Sudoku vierge.
- 7. Comparer ce nombre avec le nombre de façons de répartir 9 chiffres 1 dans la grille sans respecter les règles du Sudoku.

Semaine du 10 Mars - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

1. Chapitre 23, propriété 7 : caractérisation de la convexité pour une fonction dérivable.

Exercice no 2:

(Dénombrement) : De combien de manières peut-on classer quatres personnes en admettant qu'il puisse y avoir des æquo?

Exercice no 3:

(Dénombrement) : Soit E un ensemble fini à n éléments. Une application $f: E \to E$ est une involution si $f \circ f = \mathrm{id}_E$. Une involution sans point fixe est une involution f pour laquelle aucun élément de E ne vérifie f(x) = x. On note T_n le nombre total d'involutions de E, et S_n le nombre d'involutions sans point fixe de E.

- 1. Donner un exemple d'involution de E lorsque $E = \{1, 2, 3, 4, 5\}$ (pas trop trivial si possible). Est-il possible de créer une involution sans point fixe de E (justifier)?
- 2. Donner les valeurs de T_i et S_i pour tous les entiers $i \leq 3$ en donnant simplement la liste de toutes les involutions possibles.
- 3. Montrer qu'on a toujours $S_n \leq T_n \leq n!$
- 4. Soit $E = \{1, 2, \dots, n, n+1, n+2\}.$
 - (a) On fixe un entier $k \in \{2, 3, ..., n + 1, n + 2\}$. Déterminer en fonction de S_n le nombre d'involutions sans point fixe de E vérifiant f(1) = k. En déduire que $S_{n+2} = (n+1)S_n$.
 - (b) Par un raisonnement similaire, déterminer une relation de récurrence entre T_{n+2} , T_{n+1} et T_n .
- 5. Déduire des résultats de la question précédente une formule explicite pour S_n lorsque n est un entier pair.
- 6. Montrer que $T_n = \sum_{k=0}^n \binom{n}{k} S_{n-k} = \sum_{k=0}^n \binom{n}{k} S_k$, et en déduire une formule explicite pour T_n . (On ne cherchera pas à se débarrasser de la somme.