

课程的意义不在于课程结束后,你认为我说的都是对的,我们的最大动力是:通过这门课程的学习,你能证明,我是对的或者我是错的。

深圳市我是你的眼有限公司

专业的FPGA、无线通信方案商

微信公众号: MYMINIEYE

答疑邮箱: suport@myminieye.com

网址: www.myminieye.com 淘宝店铺: 小眼睛半导体

关注&交流

• 微信公众号:

• 讨论群:

微信讨论群二维码

QQ讨论群二维码

课程目标:

- MiPi基础知识
- MiPi架构简介
- Gowin FPGA上MiPi的管脚分配
- MiPi PCB布局注意事项

MiPi起源

MIPI(Mobile Industry Processor Interface)是2003年由ARM, Nokia, ST, TI等公司成立的一个联盟,目的是把手机内部的各种接口(摄像头、显示屏接口、射频/基带接口等)标准化,从而减少手机设计的复杂程度和增加设计灵活性。

MIPI是一个比较新的标准,其规范也在不断修改和改进,目前比较成熟的接口应用有DSI(显示接口)和CSI(摄像头接口)。CSI/DSI分别是指其承载的是针对Camera或Display应用,都有复杂的协议结构。

MiPi联盟显示规范标准

- DCS (Display Command Set)
 用于显示模块命令模式下的标准化命令集;
- DBI, DPI (Display Bus Interface, Display Pixel Interface)

DBI:与具有显示控制器和帧缓冲器的显示模块的并行接口。

DPI:与显示模块的并行接口,不带显示控制器或帧缓冲器。

• DSI, CSI (Display Serial Interface, Camera Serial Interface)

DSI: 主机处理器与显示模块之间的高速串行接口;

CSI: 主机处理器与摄像头模块之间的高速串行接口;

D-PHY

为DSI和CSI提供物理层通路定义;

High Speed Unidirectional Lane N

Figure 3 CSI-2 Layer Definitions

D-PHY 接口信号

Data-in, data-out, clk, control

• 控制信号包括:请求,初始化,测试设置,

握手

Figure 4 Universal Lane Module Architecture

D-PHY 配置

D-PHY需要一条时钟通道和一条或多条数据通道。所有数据通道需要支持高速数据传输和正向的Escape模式。

数据通道的两种类型:

1、双向;2、单向

注:双向数据通道应包含以下功能:(1)HS模式下数据的反向传输;(2) LP模式下反向的Escape模式;

配置可选项:

- 1、一条或多条数据通道;
- 2、每个通道上双向或单向的数据通道;
- 3、每个通道支持的反向通信种类;
- 4、每个通道的每个方向上Escape模式的功能;
- 5、数据编码方式;raw或者8b9b编码;

Figure 13 Line Levels

数据通道:

HS-TX (burst): 进入: LP-11, LP-01, LP-00, SoT (00011101); 退出: EoT, LP11

Escape: 进入: LP-11, LP-10, LP-00, LP-01, LP-00; 退出: LP10, LP11

注: 进入escape模式后需发送指令指示相应的操作;

Turnaround (control): 进入: LP-11, LP-10, LP-00, LP-10, LP-00; 退出: LP00, LP10, LP11

Table 2 Lane State Descriptions

State Code	Line Voltage Levels		High-Speed	Low-Power	
	Dp-Line	Dn-Line	Burst Mode	Control Mode	Escape Mode
HS-0	HS Low	HS High	Differential-0	N/A, Note 1	N/A, Note 1
HS-1	HS High	HS Low	Differential-1	N/A, Note 1	N/A, Note 1
	LP Low	LP Low	N/A	Bridge	Space
LP-00					
LP-01	LP Low	LP High	N/A	HS-Rqst	Mark-0
LP-10	LP High	LP Low	N/A	LP-Rqst	Mark-1
LP-11	LP High	LP High	N/A	Stop	N/A, Note 2

Note:

- 1. During High-Speed transmission the Low-Power Receivers observe LP-00 on the Lines.
- 2. If LP-11 occurs during Escape mode the Lane returns to Stop state (Control Mode LP-11).

HS-TX

每条数据通道可以独立开始和结束数据传输,大多数的应用中各条数据通道一般同步开始,但是由于每条通道上传输的字节数不同,各条通道的结束时间也不一致。

HS-TX (burst): 进入: LP-11, LP-01, LP-00, SoT (00011101); 退出: EoT, LP11

Start transmission: 保持HS-0 Ths-zero, 插入同步序列00011101 (10111000 = 0xB8)

End transmission: 翻转HS 差分状态,维持Ths-trail

Figure 14 High-Speed Data Transmission in Bursts

MiPi多通道分配及合并

字节数与通道数不匹配

Number of Bytes, N, transmitted is an integer multiple of the number of lanes:

注!

仅在 GW1N-9K 和 GW1NR-9K 中支持。

图 4-4 MIPI IO 模式下 MIPI IP 端口示意图

PCB布局布线注意事项

- 1、链路上的电阻网络靠近FPGA放置;
- 2、MiPi接收需要在HS的差分对上并联一个100欧姆的匹配电阻,就近放置在FPGA管脚旁;
- 3、MiPi接收时为了维持信号质量可在输入端口上并联电感;

深圳市我是你的眼有限公司

专业的FPGA、无线通信方案商