Managing Warranty Inventory for Multi-Generational High-Tech Devices

Erik Bertelli

Candi Yano (also Haas School of Bus.)

MSOM 2018

July 3, 2018

Motivation

Motivation

When Should We Stop Production?

The Big Questions

Timing

When should we stop production?

The Big Questions

Outline

- Commonly known as:
 - Last Time Buy (LTB)

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order

- Commonly known as:
 - Last Time Buy (LTB)
 - Lifetime Buy
 - End of Life Buy
 - Final Order
- Motivated by spare parts setting
 - Supplier has discontinued an essential component and manufacturer must make LTB

Table 1: Sup	oply Options	Considered in .	Addition to	the Last	Time Buy

Table 1: Supply Options Considered in Addition to the East Time Buy							
		Harvest Parts	Additional	Product			
Paper	Repair	from Returns	Production	Trade-Ins			
Moore (1971)							
Ritchie and Wilcox (1977)							
Fortuin (1980)							
Fortuin (1981)							
Teunter and Haneveld (1998)							
Teunter and Fortuin (1999)		\checkmark					
Teunter and Haneveld (2002)			\checkmark				
Cattani and Souza (2003)							
Kleber and Inderfurth (2007)		\checkmark					
Inderfurth and Mukherjee (2008)		\checkmark	\checkmark				
Bradley et al. (2009)							
van Kooten and Tan (2009)	\checkmark						
Leifker et al. (2012)			\checkmark				
Pourakbar and Dekker (2012)							
Pourakbar et al. (2012)	\checkmark						
Inderfurth et al. (2013)		\checkmark	\checkmark				
van der Heijden and Iskandar (2013)	\checkmark						
Pourakbar et al. (2014)		\checkmark		\checkmark			
Behfard et al. (2015)	\checkmark						
Cole et al. (2015)				\checkmark			
Cole et al. (2016)				✓			

Assumptions

- We consider only devices that are too costly to repair
- Zero lead time
- Until the final period, warranty claims are satisfied as they arrive
- Warranty claims are
 - Independent period to period
 - From a family of infinitely-divisible distributions (e.g. Normal)
 - Non-negative in each period
- Leftover units have no salvage value

Notation

Parameters

- T number of periods
- c_p production cost per unit
- ullet c_s shortage cost per unit
- ullet c_f fixed operational production cost per period
- \bullet c_h holding cost per unit per period

Decision Variables

- t time of final order or final period of production
- \bullet q final order quantity

Notation

Demand Distributions

- D_i random variable representing demand in period i where i = 1...T
- f_i^j pdf of cumulative demand from period i to period j
- F_i^j cdf of cumulative demand from period i to period j

Operational Costs

Operational Costs Production Costs

$$\min_{t,q} c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right]$$

Operational Costs Production Costs

Holding Costs

$$\min_{t,q} \quad c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right] + c_s \mathbb{E}\left[\left(\sum_{i=t+1}^T D_i - q\right)^+\right]$$
Operational Costs Production Costs
Holding Costs
Shortage Costs

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^{T} F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^{T} F_{t+1}^i(q) + c_s (F_{t+1}^T(q) - 1) = 0$$

$$c_h \sum_{i=t+1}^{T} f_{t+1}^i(q) + c_s f_{t+1}^T(q)$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^{T} F_{t+1}^i(q) + c_s (F_{t+1}^T(q) - 1) = 0$$

$$c_h \sum_{i=t+1}^{T} f_{t+1}^i(q) + c_s f_{t+1}^T(q) \ge 0$$

Consider finding the optimal q associated with a fixed t

$$c_p + c_h \sum_{i=t+1}^{T} F_{t+1}^i(q) + c_s(F_{t+1}^T(q) - 1) = 0$$

$$c_h \sum_{i=t+1}^{T} f_{t+1}^i(q) + c_s f_{t+1}^T(q) \ge 0$$

Let $q^*(t)$ represent the implicit solution to the FONC

Modified Objective

$$\min_{t} c_{f}t + c_{p} \sum_{i=1}^{t} \mathbb{E}[D_{i}] - c_{h} \sum_{i=t+1}^{T} \int_{0}^{q^{*}(t)} x f_{t+1}^{i}(x) dx + c_{s} \int_{q^{*}(t)}^{\infty} x f_{t+1}^{T}(x) dx$$

Solution Properties

The Expected Cost is convex in q for a given t

Solution Properties

The Expected Cost is convex in q for a given t

 $q^*(t)$ is non-increasing in t

Average Cost for a Variety of Stopping Periods and Order Quantities

Average Cost for a Variety of Stopping Periods and Order Quantities

The Expected Cost is convex in q for a given t

Average Cost for a Variety of Stopping Periods and Order Quantities

15

 $q^*(t)$ is non-increasing in t

16

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

How big of a danger is this moral hazard? It depends on:

I just sent in my broken golf watch for repair, and the company sent me a brand new golf watch 2.0 instead!

How big of a danger is this moral hazard? It depends on:

- 1. The number of new devices given out
- 2. The time relative to the new product introduction

Quadratic Shortages

$$\min_{t,q} c_f t + c_p \sum_{i=1}^t \mathbb{E}[D_i] + c_p q + c_h \sum_{i=t+1}^T \mathbb{E}\left[\left(q - \sum_{j=t+1}^i D_j\right)^+\right] + c_s \mathbb{E}\left[\left(\left(\sum_{i=t+1}^T D_i - q\right)^+\right)^2\right]$$

Quadratic Shortages

Average Cost for a Variety of Stopping Periods and Order Quantities

Quadratic Shortages

Log of Average Cost for a Variety of Stopping Periods and Order Quantities

Moral Hazard – Potential Costs

Suppose we used the optimal results from the baseline case with no moral hazard, but then simulated the costs associated in a scenario with moral hazard

Scenario	Immoral Population	Expected Production Cost		Expected Holding Cost		Expected Shortage Cost		Expected Total Cost	
Baseline	0	\$	16,906	\$	4,560	\$	500	\$	21,967
Small Moral Hazard – Baseline Solution	5000	\$	16,904	\$	4,518	\$	19,924	\$	41,347
Small Moral Hazard – Optimal Solution	5000	\$	19,167	\$	3,845	\$	385	\$	23,397
Large Moral Hazard – Baseline Solution	20000	\$	16,895	\$	4,487	\$	54,904	\$	76,286
Large Moral Hazard – Optimal Solution	20000	\$	21,162	\$	2,271	\$	60	\$	23,493

23

What improvement in forecast is needed to justify a one period delay?

Final Production Period	Expected Cost		
Period 6 (optimal)	\$21,987	}	D:ff ¢240
Period 7	\$22,203		Difference: \$210

From simulations, we found that reducing the standard deviation from 75 to 65 for periods 7-12 resulted in enough savings to make the delay worthwhile

Short Product Life Cycles

Short Product Life Cycles

Warranty Expiration

24

Short Product Life Cycles

Warranty Expiration

Internet of Things

Thank you

