人工知能 プロジェクト課題

MNISTデータセットをもちいた 手書き数字画像生成への取り組み

ン人テム

システム制御系 学士3年

githubにコードを公開したので 気になる方はぜひ触ってください

https://github.com/dev-lethe/MNIST-Reverser

2025/07/22

概要

一般的な手書き数字識別モデル

入力画像をもとにその数字を予想する 高性能なモデルは画像とラベルの関係を理解 概要

作成した手書き数字生成モデル

ラベルをもとにした 識別モデルによる画像生成

手法

1. 識別モデルの学習

高い精度を目指して モデルに手書き数字画像を理解させる

2. ノイズの学習による画像生成

ノイズを識別器に入力して 予想ラベルが目標値に近づくように ノイズ自体を調整していく

MNISTの画像に近づけるため binalization loss total validation loss も損失に加える

実験設定

データセット

MNISTデータセット

0~9の手書き数字画像

size: [28,28], grayscale

train data: 60000, test data: 10000

線形モデル、畳み込みモデルの2種類で比較

THE RESERVE

5041921314

linear	dim: 1024, layer num: 3
conv	channel: 32, layer num: 2, hidden dim: 512

損失

cross entropy loss $L_{ ext{CE}} = -\sum_{i=1}^C y_i \log(\hat{y}_i)$

$$L_{ ext{CE}} = -\sum_{i=1}^C y_i \log(\hat{y}_i)$$

$$egin{aligned} extbf{binalization loss} & L_{ ext{binary}} = \sum_{i,j} I_{i,j} (1 - I_{i,j}) \end{aligned}$$

total validation loss
$$L_{ ext{TV}} = \sum_{i,j} \left((I_{i,j+1} - I_{i,j})^2 + (I_{i+1,j} - I_{i,j})^2
ight)$$

実際に手書き数字画像が 生成されるのを見てみよう

結果,展望

数字とは言い難い画像が生成された

識別モデルの理解度が不足している可能性 生成時のcross entropy loss がうまく機能していない可能性

損失やモデル構成を変更による改善を期待

- ・モデル構成の変更
- ・ハイパーパラメータ
- ノイズラベルを追加

まとめ

- ・識別モデルをもちいた画像生成への取り組み
- ・損失は予測ラベル、二値化、平均化をもとに設定
- ・この手法では数字とは呼べない画像が生成
- ・ノイズラベルを追加することで改善を期待

