# Medication resources for EHR research

## Adverse Drug Effects

 Adverse Drug Effects (ADEs), also called Adverse Drug Reactions (ADRs), are defined by the World Health Organization as:

"a response to a drug that is noxious and unintended and occurs at doses normally used in man for the prophylaxis, diagnosis or therapy of disease, or for modification of physiological function."

## Drug Knowledgebases

- Database of accurate drug-IND and drug-ADE relationships would benefit:
  - Pharmacovigilance
  - Clinical Data Mining
  - Clinical Phenotyping
  - Decision Support Systems
  - Other applications

## **Exisiting Work**

- Commercial repositories:
  - FDB, Micromedex, PDR, Epocrates, etc.
- Public data:
  - DailyMed, FAERS, RxNorm, NDF-RT, FDA, etc.
- Academic studies: (of many)
  - 2010, Wang, et al., combined data from AERS,
     SemMed, and NDF-RT to infer reasons for Rx
  - 2010, Kuhn, et al., SIDER database, extracted from FDA Structured Product Labels (SPLs)

## **Existing Work**

- Academic studies: (continued)
  - 2011, Li, et al., combined data from FAERS, Micromedex, and NDF-RT to infer reasons for drug prescriptions
  - 2012, Kuhn, et al., updated SIDER2
  - 2012, Harpaz, et al., reviewed drug knowledge sources for pharmacovigilance.
  - 2013, Wei, et al., developed MEDI, combining indications from RxNorm, SIDER, MedlinePlus, and Wikipedia.
  - 2012,2013, Smith, et al., developed an early version of the Drug Evidence Base (DEB1) from MRCOC, NDF-RT, and FDA Structured Product Labels (SPLs).

# The Drug Evidence Base (DEB2)

Slides from Josh Smith, PhD



# The Original DEB1 Drug Evidence Base

- 2013, Smith, et al. "Lessons Learned from Developing a Drug Evidence Base to Support Pharmacovigilance."
- DEB1 was only 61% accurate.
- Comparison of DEB1 to other knowledgebases revealed:
  - Nomenclature mismatches impede comparison between drug information KBs
  - Different concepts used across sources and KBs

## Drug Evidence Base (DEB2)

- Objective Create an accurate, machineprocessable drug knowledge base mined from reliable public sources.
- Concepts
  - Drugs Single-ingredient medications
  - Clinical Manifestations (CMs) Diseases, Syndromes, Symptoms, Findings, etc.
- Relationships (Drug-CM pairs)
  - ADEs Drug causes exacerbates CM
  - Indications (INDs) Drug treats or prevents CM
- Required relationships to be found in at least 2 sources

## Constructing DEB2: CMs

- Using UMLS2013ab, CMs restricted to
  - Concepts in SNOMED CT
  - Specified UMLS semantic types

Anatomical Abnormality, Injury or Poisoning, Congenital Abnormality, Finding, Sign or Symptom, Acquired Abnormality, Clinical Attribute, Disease or Syndrome, Mental or Behavioral Dysfunction, Neoplastic Process, Pathologic Function

## Constructing DEB2: Medications

- Eliminated vague drug concepts by limiting DEB2 to only "clinical drug" concepts in the RxNorm prescribable subset
  - Extracted 76,212 "clinical drugs"
  - Normalized to 3059 single ingredients
  - Removed "drugs" with unwanted semantic types and unwanted terms
- Result: 1844 single-ingredient drugs (RxCUIs)

## Constructing DEB2

National Drug File – Reference Terminology (NDF-RT)



#### **DEB2: Extraction from NDF-RT**

- NDF-RT is a formal drug representation
  - Includes ingredients, dose forms, physiologic effects, mechanisms of action, and 25 distinct relationships
- DEB2 extracts all drug-CM pairs with one of the following NDF-RT relationships:
  - "induces" (ADE)
  - "may prevent" (IND)
  - "may treat" (IND)



### **DEB2: Extraction from NDF-RT**



| Drug Concept | Relationship | CM Concept                   |
|--------------|--------------|------------------------------|
| Lisinopril   | INDICATION   | Congestive Heart Failure     |
| Lisinopril   | INDICATION   | Hypertension                 |
| Lisinopril   | INDICATION   | Left Ventricular Hypertrophy |
| Lisinopril   | ADE          | Cough                        |

#### **DEB2: Extraction from NDF-RT**

| NDF-RT               | #<br>Rows |
|----------------------|-----------|
| induces              | 722       |
| may_treat            | 48922     |
| may_preven<br>t      | 6114      |
| Tabal                | 0         |
| <b>Distinct Conc</b> | epts      |
|                      |           |

9596

1030

Drugs

CMs



| <b>Modified Drugs</b> |      |  |
|-----------------------|------|--|
| Normalized Drugs      | 4133 |  |
| In RXN subset         | 1153 |  |







# **Constructing DEB2**

MEDLINE



## Previous Work

- Drug knowledge using Medline:
  - Zeng & Cimino, 1998 extracted drug-disease relationships from MRCOC
  - Shetty & Dalal, 2011 disproportionality analysis of articles with predefined MeSH terms to discover unrecognized ADEs.
  - Xu & Wang, 2013 extracted drug-disease treatment relations using pattern-learning on MEDLINE abstracts.
  - Avillach, et al., 2013 extracted ADRs from MEDLINE using MeSH; minimum 3 articles.

### **DEB2: Extraction from MEDLINE**



## **DEB2: Extraction from MEDLINE**



 After manual review, we used an adjusted the article threshold and used each article's abstract to refine our inclusion criteria

# Constructing DEB2

SIDER2 Side Effects Resource



#### **DEB: Extraction from SIDER2**

 SIDER2 is a database of indications and ADEs extracted from FDA Structured Product Labels (2012, Kuhn, et al.)



#### **DEB: Extraction from SIDER2**

| Mapping SIDER2 Raw Data |       |  |  |
|-------------------------|-------|--|--|
| Label IDs               | 32140 |  |  |
| Clinical Drugs          | 20507 |  |  |
| Drugs from RXN Subset   | 931   |  |  |



| SIDER <sub>2</sub> Concepts |      |  |  |  |
|-----------------------------|------|--|--|--|
| CMs in SNOMED               | 3815 |  |  |  |
| CMs not in SNOMED           | 1351 |  |  |  |



| Total Pairs |       |  |  |
|-------------|-------|--|--|
| IND         | 9646  |  |  |
| ADEs        | 83956 |  |  |
| Total       | 93602 |  |  |



| CM Concepts by Section |       |  |  |
|------------------------|-------|--|--|
| Indications & Usage    | 9646  |  |  |
| Adverse Reactions      | 87126 |  |  |

# Constructing DEB2

MedlinePlus



- MedlinePlus is a consumer health website from NLM and NIH.
- Among other items, the site contains drug monographs answering such questions as:
  - Why is this medication prescribed?
  - What are other uses of the medicine?
  - What side effects might this medication cause?







**RxNorm Subset** 

Drugs

1844

MedlinePlus

Found 955



| <b>CM Concepts by Section</b> |       |  |  |  |
|-------------------------------|-------|--|--|--|
| Indications 5325              |       |  |  |  |
| Side Effects                  | 18699 |  |  |  |
| <ul> <li>Serious</li> </ul>   | 9640  |  |  |  |
| <ul> <li>Common</li> </ul>    | 8734  |  |  |  |
| Overdose                      | 3190  |  |  |  |
| Boxed                         |       |  |  |  |
| Warning 5004                  |       |  |  |  |



| Total Pairs |       |  |
|-------------|-------|--|
| IND         | 5325  |  |
| ADEs        | 23444 |  |
| Total       | 28769 |  |

## **Constructing DEB2**

DrugBank



## DEB2: From DrugBank

- DrugBank.ca is a manually curated database combining pharmacological and pharmaceutical and chemical data with drug target information.
- It includes Indication data manually curated from FDA, PubMed, KEGG, TTD, etc.
- It includes ADE and toxicity data manually curated from FDA, ToxNet, ASHP, etc.



## DEB2: From DrugBank



## DEB2: From DrugBank



**Drugs** 1844

#### DrugBank

Found 972



# CM Concepts Indications

Indications 930
Side Effects 594



| Total | Paıı |
|-------|------|
|       |      |

IND 3369

ADEs 4788

Total 8157

## **DEB2** Results



#### **DEB2: Results**

DEB drug-CM pairs extracted from the 5 sources

#### Full Results

- Unique pairs: 138,418
- Indications: 33,232
- ADEs: 103,259
- Unique drugs: 1556
- Unique CMs: 5721

#### In at least 2 sources

- Unique pairs: 18068
- Indications: 6451
- ADEs: 11617
- Unique drugs: 1163
- Unique CMs: 1606

#### **DEB2: Results**

#### Full results (from all sources)

|      | NDF-RT | MEDLIN | MedlinePlus | DrugBank | SIDER <sub>2</sub> |        |             |
|------|--------|--------|-------------|----------|--------------------|--------|-------------|
|      |        | E      |             |          |                    | Total  |             |
| IND  | 4055   | 22732  | 5325        | 3369     | 9646               | 33232  |             |
| ADE  | 78     | 6331   | 23444       | 4788     | 83956              | 103259 | (1927 ties) |
| Tota | 4133   | 29063  | 28769       | 8157     | 93602              | 138418 | (192/ (163) |
|      | LU     | (uppcu |             | CICUSC   |                    | ,      |             |

MEDLIN | MedlinePlus | DrugBank | SIDER2 NDF-RT Unique Total IND ADE Tota 

#### **DEB2: Results**

DEB drug-CM pairs in a given source present in at another source:

SIDER2 18%

MEDLINE 32%

MedlinePlus 41%

DrugBank 51%

NDF-RT 67%

Percentage of 18,068
 DEB drug-CM pairs
 <u>from multiple sources</u>

5 sources 1.2%

4 sources 4.3%

3 sources 17%

2 sources 78%

## **DEB2: Preliminary Results**

 Percentage of DEB drug-CM pairs in a given source agreeing with the consensus (IND/ADE) of the other sources (when present):

| <u>Full</u> | Result | ts (ties | <u>included)</u> |
|-------------|--------|----------|------------------|
|             |        |          |                  |

| <ul><li>ME</li></ul> | DLI | NE | 84.7%              |
|----------------------|-----|----|--------------------|
|                      |     |    | ~ <del>~ . /</del> |

#### DEB2+ (ties excluded)

| <ul><li>MEDLINE</li></ul> | 97.8% |
|---------------------------|-------|
|---------------------------|-------|

DrugBank 99.6%

#### **Evaluation**

- Six physicians reviewed a random sample from DEB2 to estimate DEB2 validity.
  - 600 total pairs reviewed (half IND, half ADE)
  - Each reviewer reviewed 200 pairs
  - Each pair reviewed by two different reviewers
  - Disagreements decided by adjudication

### **Evaluation Results**

 Based on the review, DEB2 is 86% accurate overall, with indications slightly more accurate and ADEs slightly less accurate.

| Overall     | Percent | 95% Confidence Interval |  |
|-------------|---------|-------------------------|--|
| True        | 86%     | (83%, 89%)              |  |
| Indications | Percent | 95% Confidence Interval |  |
| True        | 88%     | (84%, 92%)              |  |
| ADEs        | Percent | 95% Confidence Interval |  |
| True        | 84%     | (81%, 87%)              |  |

### **Evaluation Results**

(stratified by number of sources)

| <b>INDICATIONS</b> by number of sources |       |      |              |             |  |  |
|-----------------------------------------|-------|------|--------------|-------------|--|--|
| Sources                                 | Count | TRUE | Percent TRUE | 95% CI      |  |  |
| 2                                       | 140   | 110  | 79%          | (72%, 86%)  |  |  |
| 3                                       | 60    | 55   | 92%          | (85%, 99%)  |  |  |
| 4                                       | 50    | 48   | 96%          | (89%, 100%) |  |  |
| 5                                       | 50    | 49   | 98%          | (87%, 100%) |  |  |

| ADEs by number of sources |       |      |              |             |  |  |
|---------------------------|-------|------|--------------|-------------|--|--|
| Sources                   | Count | TRUE | Percent TRUE | 95% CI      |  |  |
| 2                         | 180   | 151  | 84%          | (79%, 89%)  |  |  |
| 3                         | 70    | 58   | 83%          | (74%, 92%)  |  |  |
| 4                         | 50    | 47   | 94%          | (79%, 100%) |  |  |

# Investigating treatment pathways

# History of OHDSI and OMOP

- The Observational Medical Outcomes Partnership (OMOP) started in 2008
- Planned to be a five-year public/private partnership
- Created a framework for collaborative study in the growing set of EHR, federal, and commercial databases
- The primary goal for OMOP was to improve surveillance for adverse events related to drugs
- The primary barriers were related to the disparate data sources

## History of OHDSI and OMOP

- The Observational Health Data Sciences and Informatics (OHDSI) program started in 2014
- Continuation of the mission of OMOP
- Updated the OMOP Common Data Model (CDM)
- Continues and expands OMOP's work
  - Updating terminology mappings
  - Supporting groups interested in research in observational health data
  - Creating new techniques and tools to assist in analysis of such data
  - Working together to study areas of interest
- OHDSI provides a suite of open source analytic tools designed to operate on the OMOP CDM

#### Role of the CDM

- In this study, the CDM allowed for easier collaboration among sites
- Code only had to be created once and can be run anywhere
- Sites did need to check performance locally to ensure comparable coding

#### Understanding treatment pathways

- Treatment for a particular condition can vary significantly over time
  - New drugs on the market
  - Discovery of biomarkers
  - Changing costs
- And at different institutions:
  - What is reimbursable?
  - Population differences
  - Institutional policies
  - Personal preferences

#### Who was involved?

- Ajou University School of Medicine
- MarketScan Commercial Claims and Encounters
- UK Clinical Practice Research Datalink
- Columbia University Medical Center
- General Electric Centricity
- Regenstrief Institute, Indiana Network for Patient Care
- Japan Medical Data Center
- MarketScan Medicaid Multi-State
- MarketScan Medicare Supplemental and Coordination of Benefits
- Optum Clinformatics
- Stanford Translational Research Integrated Database Environment

#### Diseases and Medications

- Studied three diseases, defined by SNOMED CT terms:
  - Hypertension
  - Type 2 Diabetes
  - Depression
- Each disease had an associated medication class as defined by the Anatomical Therapeutic Chemical (ATC) Classification System or First Databank (FDB):
  - Antihypertensives, diuretics, peripheral vasodilators, beta blocking agents, calcium channel blockers, agents acting on the renin-angiotensin system (ATC)
  - Drugs used in diabetes (ATC) or diabetic therapy (FDB)
  - Antidepresents (ATR or FDB)
- Some exclusions applied

# Identifying individuals

- Must have at least one disease and at least one matching medication.
- Must have at least 1 year of history before the first medication date
  - To increase the likelihood that this was a first treatment of the disease by any medication
- Must have at least 3 years of continuous treatment after the index date with some medication targeted to the disease
  - To ensure sufficient time to characterize a pathway

# Identifying individuals



# Overall treatment pathways







### Distinct treatment pathways

- Many individuals had a "unique" treatment pathway, ie, no one else had the same sequence of treatments
  - 10% of diabetes patients
  - 24% of hypertension patients
  - 11% of depression patients
- The response to the question, "In an underlying population of 250 million, based on my 3-year treatment pathway, what patients are like me?" would be "No one."

# Differences among sources



# Monotherapy trends

- (A) Shows a trend of increasing use of monotherapy (use of a single medication in the entire 3-year window)
- (B) Displays cases in which the sequence contains only the most common monotherapy
- Illustrates that for hypertension and depression, unlike diabetes, the monotherapy trend is not driven by a single medication
- (C) shows cases in which a sequence begins with the most common starting medication for that disease
- It demonstrates the degree to which a single medication dominates as a starting medication for the disease; more variation for hypertension and depression.





#### ATC to compare switching drug classes

- They used the World Health Organization's Anatomical Therapeutic Chemical (ATC) classification to group medications into classes
- This allowed them to compare the extent to which medications were changed or added
  - Within the same medication class
  - Across medication classes
- They did not note a large change
  - Depression shows a stronger tendency to stay within class than diabetes or hypertension
  - However, depression has fewer classes (6) than diabetes (23 classes) or hypertension (29 classes).

# General stability of results

- One might expect a lot of variability given the very different data sources
- Despite this, the results seemed reasonable across sites (eg, trends in figure 5)
- The world is moving toward more consistent therapy over time across diseases and across locations
- There are some large outliers, which is concerning for single site/country studies

## Converging on a therapy?

- The proportion of patients with a unique treatment pathway is notable (almost 25% for hypertension)
- There may not be a consistently most effective treatment
- Lack of indications for WHY a particular medication is chosen first
- Very much trial an error currently
- Drug therapies for depression are notable
- Treatment resistant hypertension