

复习

二维随机变量 ___(X,Y)

离散型 联合分布律 边缘分布律

连续型 联合密度函数 边缘密度函数

联合分布函数 F(x,y) 边缘分布函数 $F_X(x)$ $F_Y(x)$

3.3 随机变量的独立性

两事件A,B独立的定义是:

$$若P(AB)=P(A)P(B)$$

则称事件A,B独立.

对一切集合 B_1, B_2

$$P(X \in B_1, Y \in B_2) = P(X \in B_1)P(Y \in B_2)$$

随机变量的独立性

若二维随机变量(X,Y)对任意实数x,y,均有

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

成立,则称随机变量是相互独立的.

即设X,Y是两个r.v,若对任意的x,y,有

$$F(x,y) = F_X(x)F_Y(y)$$

则称X,Y相互独立.

性质 若X,Y相互独立

对一切集合 B_1, B_2 $P(X \in B_1, Y \in B_2) = P(X \in B_1)P(Y \in B_2)$

例如 若X,Y相互独立,

$$P(x_1 < X \le x_2, y_1 < Y \le y_2)$$

$$= P(x_1 < X \le x_2)P(y_1 < Y \le y_2)$$

P(X > x, Y > y) = P(X > x)P(Y > y)

例1 一电子元件由两个部件构成,以X,Y 分别表示两个部件的寿命(单位: 千小时). 已知 , Y)的联合分布函数为

工, Y)的联合分布函数为
$$F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}), & x > 0, y > 0, \\ 0, & \text{其它.} \end{cases}$$

T求X与Y的边缘分布函数,并判断X与Y是否相互 独立?

$$F(x,y) = \begin{cases} (1-e^{-x})(1-e^{-y}), x > 0, y > 0, \\ 0, & \text{其它.} \end{cases}$$

$$F_X(x) = F(x,+\infty) = \begin{cases} 1-e^{-x}, x > 0, \\ 0, & \text{其它.} \end{cases}$$
同理
$$F_Y(y) = F(+\infty,y) = \begin{cases} 1-e^{-y}, y > 0, \\ 0, & \text{其它.} \end{cases}$$

$$F(x,y) = F_X(x)F_Y(y), \forall x,y \in R.$$
所以 X 与 Y 相互独立.

本 X 与 Y 相互独立. 此时,若 都超过100小时的概率,则 P(X > 0.1, Y > 0.1) = P(X > 0.1)P(Y > 0.1) $= [1 - P(X \le 0.1)][1 - P(Y = [1 - F_X(0.1)][1 - F_Y(0.1)]$ $= e^{-0.1} \cdot e^{-0.1}$ $= e^{-0.2}$. X 与 Y 相互独立. 此时, 若再求两个部件的寿命 $= [1 - P(X \le 0.1)][1 - P(Y \le 0.1)]$ $= [1 - F_{x}(0.1)][1 - F_{y}(0.1)]$

定理1 若(X, Y) 是离散型随机变量,则X与Y相 互独立的充分必要条件是

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j),$$

若(X,Y)是离散型随机变量,则X与Y不相互独立的充分必要条件是

存在 x_i, y_j ,使得

$$P(X = x_i, Y = y_i) \neq P(X = x_i)P(Y = y_i),$$

例2 (2002-2003试题)

X	$-\pi/2$	0	$\pi/2$
P	0.2	0.5	0.3

White about the Property of the	上 例2 (2002-2003试题) L 设X的分布律为					
Ŧ	X	$-\pi/2$	0	$\pi/2$		
#	P	0.2	0.5	0.3		
工	Y = cos X, Z = sin X (1)Y与Z是否相互独立 (2)Y+Z的分布律 Fig. (1)					
平	X	$-\pi/2$	0	$\pi/2$		
#	Y=cosX	0	1	0		
#	Z=sinX	-1	0	1		
#				上页 下页		

X	$-\pi/2$	0	$\pi/2$
Y=cosX	0	1	0
Z=sinX	-1	0	1

$$P(Y = 0, Z = -1) = P(X = -\pi/2) = 0.2$$

$$P(Y = 1, Z = 0) = P(X = 0) = 0.5$$

$$P(Y = 0, Z = 1) = P(X = \pi/2) = 0.3$$

-		0521	O				O	
干	Z=si	nX	-1		0		1	
干								
I	P(Y =	= 0, Z =	=-1)	=P(X)	X = -	$-\pi/2$)	= 0.2	2
士	P(Y =	= 1, Z =	= 0)	=P(X)	X = 0	(0) = 0.5		
干	P(Y =	=0,Z=	= 1)	=P(X)	X = x	$\pi/2) =$	0.3	
工			Y	0		1		
工		Z						
士		-1		0.	2			
士		0				0.5		
干		1		0.3				
I								7

4							
工	Y	0	1				
#	Z			P(Z=j)			
土	-1	0.2		0.2			
士	0		0.5	0.5			
王	1	0.3		0.3			
干	P(Y=i)	0.5	0.5				
王	Ŧ						
士	<u>于</u> 由于						
I P							
出	片 所以Y与Z不独立						

$$P(Y = 0, Z = -1) \neq P(Y = 0)P(Z = -1)$$

X	$-\pi/2$	0	$\pi/2$
Y=cosX	0	1	0
Z=sinX	-1	0	1
Y+Z	-1	1	1

$$P(Y+Z=-1) = P(X=-\pi/2) = 0.2$$

$$P(Y+Z=1) = P(X=0) + P(X=\pi/2) = 0.8$$

Y+Z	-1	1
P	0.2	0.8

上页

下页

定理2 若(X,Y)是连续性随机变量,则X与Y 独立充分必要条件是

 $f(x, y) = f_X(x) \cdot f_Y(y), a.e.$

若(X,Y)是连续性随机变量,则X与Y 不独立充分必要条件是

存在面积大于0的区域D, 使得 $f(x,y) \neq f_X(x) \cdot f_Y(y), \forall (x,y) \in D$

证明独立性的步骤

1求联合分布律(联合密度)

2求边缘分布律(边缘密度)

3验证联合分布律(联合密度)等于边缘分布律(边缘密度)的乘积

证明不独立的步骤

- 1求联合分布律(联合密度)
- 2求边缘分布律(边缘密度)
- 3 离散型 找到 x_i, y_i , 使得

$$P(X = x_i, Y = y_j) \neq P(X = x_i)P(Y = y_j),$$

连续型

找到面积大于0的区域D, 使得 $f(x,y) \neq f_x(x) \cdot f_y(y)$, $\forall (x,y) \in D$

例3 若二维随机变量(X,Y)服从正态分布

 $N(\mu_1,\sigma_1^2;\mu_2,\sigma_2^2;\rho)$ 试证X=Y相互独立的充

必要条件是 $\rho=0$

证 → 对任何 x,y 有

$$\frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

$$= \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}}$$

 $\mathbb{R} x = \mu_1, y = \mu_2$

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} = \frac{1}{\sqrt{2\pi}\sigma_1} \frac{1}{\sqrt{2\pi}\sigma_2}$$

$$\rho = 0$$

将
$$\rho = 0$$
 代入 $f(x, y)$ 即得
$$f(x, y) = f_x(x) f_y(y)$$

对于正态分布 独立与不相关等价

例4已知
$$(X, Y)$$
 的联合概率密度为
$$f(x, y) = \begin{cases} 8xy, & 0 < x < y, 0 < y < 1 \\ 0, & \text{其他} \end{cases}$$
 讨论 X, Y 是否独立?

例5 设X, Y相互独立且同分布, 有

$$f_X(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

$\mathbf{P}(X+Y\leq 1)$

解: (X,Y)的联合密度函数为

$$f(x, y) = f_X(x) f_Y(y)$$

 $P(X+Y\leq 1)$

$$\begin{cases}
3(x,y) = J_X(x)J_Y(y) \\
= \begin{cases}
4xy & 0 < x < 1,0 < y < 1 \\
0 & \text{#δ}
\end{cases}$$

$$= \int_0^1 [\int_0^{1-x} 4xy \ dy] dx$$

n维随机变量

设n维随机变量为 $(X_1,...X_n)$ 的分布函数定义为

$$F(x_1,...,x_n) = P(X_1 \le x_1,...X_n \le x_n)$$

若任意实数 $x_1,...,x_n$ 有若任意实数 $x_1,...,x_n$ 有

$$P(X_{1} \le x_{1}, X_{2} \le x_{2}, \dots, X_{n} \le x_{n})$$

$$= P(X_{1} \le x_{1})P(X_{2} \le x_{2}) \dots P(X_{n} \le x_{n}),$$

则称随机变量 $(X_1,...,X_n)$ 是相互独立的。

定理 $若X_1, ..., X_n$ 相互独立,而

 $Y_1=g_1(X_1, ..., X_m), Y_2=g_2(X_{m+1}, ..., X_n)$

则 Y_1 与 Y_2 独立.这里 g_1 , g_2 为连续函数.

例如,若X,Y为相互独立的随机变量则aX+b,cY+d也相互独立; X^2,Y^2 也相互独立;