Automated analysis of single-tone spectroscopic data of cQED systems

G.Fedorov^{1, 2, a)} and A. Ustinov^{1, 3}

1) Russian Quantum Center, Skolkovo village, Russia

²⁾Moscow Institute of Physics and Technology, Dolgoprudny, Russia

³⁾Karlsruhe Institute of Technology, Karlsruhe, Germany

(Dated: 30 December 2018)

FiXme Fatal: Is abstract supposed to be re-written completely? To build a full-scale quantum processor it is necessary to automate as many steps as possible on the physical, hardware level. Circuit quantum electrodynamics (cQED) is a contemporary architecture for dispersive readout and Purcell protection of superconducting qubits of various types, and thus it is necessary to develop software that is able to perform every kind of automatic calibration of such systems from scratch without any human participation. An important step towards this goal is to build a noiseinsensitive and accurate computer vision tool to process three-dimensional spectroscopic data. In this work, we present and describe two scalable algorithms that are able to extract the Hamiltonian parameters of the cQED systems from spectroscopic data.

INTRODUCTION

Computation on a quantum computer involves operating large numbers of physical quantum bits (qubits). One of the most significant challenges is that qubit systems cannot be operated identically: 1,2 typically, control parameters for a device depend on its physical parameters and are determined by a sequence of calibration experiments. Therefore, since the devices cannot be produced identical, the optimal parameters vary among them and should be found in situ. Manual tuning of these parameters is not a scalable solution, and even operating just a few dozens of qubits already requires a computer system to handle the calibration on its own. Moreover, a lot of research is still being done to find the optimal chip designs and fabrication methods. This research includes gathering statistics on many different samples that should be measured and consistently evaluated. An automated measurement system not only will speed up this process, but as well exclude human error.

In this work, we are proposing and implementing several methods of data processing and computer vision that aid automatic calibration of circuit QED³ architectures used to read out the quantum states of superconducting qubits. Computer vision is understood here as an enterprise that employs statistical methods to disentangle data using models constructed with the aid of geometry, physics, and learning theory.⁴ As it will be shown below, the output of circuit calibration on certain steps is almost always an image, and it is hardly possible to automatically extract the required information from it without resorting to methods of computer vision. The proposed methods are accurate, fast and robust to noise, applicable to superconducting qubits with a periodic spectrum described with a closed form model equations, and compatible with the paradigm of one readout resonator per one qubit.^{5,6}

In this paradigm, the flow of an experiment that characterizes a single qubit-resonator cell of a quantum processor chip

is depicted schematically in Fig. 1(a). It is similar to the procedures described in Refs. [2 and 7] for measuring cQED samples with qubits of tunable frequency. For non-tunable qubits, a different algorithm of automatic calibration was described in the patent application Ref. [8].

We now briefly discuss each step shown in Fig. 1(a). Usually, one starts by locating the frequency of the resonance peak corresponding to the readout resonator. Having found the peak, the experimenter knows what scan range to set in the probe frequency f_p during the next step: single-tone spectroscopy (STS). STS tracks the frequency shift of the resonance peak while changing the magnetic field applied to the sample (controlled by some current I). By processing the results of the STS, one can get a coarse estimate on the qubit frequency dependence on I denoted as $f_{ge}^{(0)}(I)$ (plus accurate estimates on the resonator frequency $f_r(I)$ and the resonatorqubit coupling strength g). Based on these results, one may set the scan ranges in excitation frequency and current, f_{exc} and I for the two-tone spectroscopy (TTS). Finally, by processing the TTS result, one can obtain the precise dependence of the qubit ge transition frequency on current $f_{ge}(I)$ with accuracy sufficient for pulsed experiments. In overall, the process is structured so that the results of one measurement step define the parameters of the next, successively acquiring more accurate information about the physical system.

As one can see, the results that are obtained in this scheme may be divided in two groups: some contain curves (data are 1D manifolds), and others contain heatmap images (2D manifolds). The scope of this work is confined to the automatic analysis of the latter; precisely, we are interested in STS data processing. In Fig. 1(b) we illustrate three types of correlated measured data and the theoretical model: depending on the qubit-resonator disposition, we desire that STS data is interpreted either using two discontinuous curves or a single continuous curve defined by the model.

To build the model, we rely on the theoretical description of the cQED systems and physical qubits; therefore, in Appendices A and B we derive all the necessary equations to form the model curves that are expected to appear in singletone spectroscopy. We use a transmon⁹ with an asymmetric

a) Electronic mail: gleb.fedorov@phystech.edu

FIG. 1. (a) Common experiment flow for a tunable-frequency qubit: usually, single- and two-tone spectroscopic measurements are performed before pulsed experiments, and each next experiment is based on the results of the previous ones. In the red dashed frame, the scope of this work is shown. (b) Examples of the desired results after the detection for three types of qualitatively different STS outcomes. The heatmaps should be brought into correspondence with the 2D model curves. In the first column so called avoided crossing pattern is shown. Two model curves has to be fitted simultaneously since the model is discontinuous. Conversely, the second and third images may be described by a single continuous curve; however, the model equations are different for these two cases.

SQUID (superconducting quantum interference device) as a qubit; however, since our methods do not depend on the particular shape of the qubit energy levels, for other types of qubits the logic will stay the same and there is no loss of generality.

For the singe-tone spectroscopy, they model curves are (see Fig. 1(b)):

$$f_{\pm}(I) \equiv f_r(I) = \frac{f_c + f_{ge}(I)}{2} \pm \sqrt{g^2 + (f_{ge}(I) - f_c)^2/4},$$
 (1)

where f_c stands for current-independent bare cavity frequency. Here we note again that for the avoided crossings pattern both curves are necessary; alternatively, for the cases when the qubit is entirely below (above) the bare cavity frequency only $f_+(I)$ ($f_-(I)$) is used. The equations showing the dependence of the qubit transitions $f_{ge}(I)$ on current are expressed as

$$f_{ge}(I) = f_{ge}^{max} \left[\cos^2 \left(\frac{\pi (I - I_{ss})}{\Pi} \right) + d^2 \sin^2 \left(\frac{\pi (I - I_{ss})}{\Pi} \right) \right]^{\frac{1}{4}},$$
(2)

where Φ_0 is the flux quantum, d is the SQUID asymmetry and f_{ge}^{max} is the qubit frequency at $I = I_{ss}$, where I_{ss} (sweet spot current) is the current exactly compensating the non-zero residual local on-chip magnetic field that is always present in experiment. Finally, Π is the period of the spectrum in current.

In overall, we have 6 fitting parameters for the single-tone spectroscopy (f_c , g, Π , I_{ss} , f_{ge}^{max} , d). Since they are in fact the parameters in the Hamiltonian for the compound cavity-qubit system as described in Appendix A, hereafter we call them the Hamiltonian parameters.

The structure of the rest of the paper is as follows. First, we describe our methods to extract the Hamiltonian parameters from the STS data. Next, the accuracy, performance and reliability of the algorithm is addressed; finally, we discuss the limitations of the algorithm, further applications and future work.

II. METHODS

In this section, we describe the approaches towards extraction of Hamiltonian parameters from the two types of spectroscopic measurement results. Additionally, we describe important peculiarities of the data itself and some essential experimental details.

An experimental sample in cOED architecture can only be examined basing on how it interacts with microwave radiation. Therefore, usually it is characterized using a scattering matrix S_{ij} which shows how signals interact with its ports. For example, the absolute value of the complex scattering parameter S_{21} shows the amplitude of signal transmission between ports 1 and 2 of the sample. In Fig. 2(a), we show as a full experimental result obtained by STS for a notch-type (sidecoupled) coplanar waveguide resonator coupled to a tunable transmon qubit. $|S_{21}|$ is shown in colour, and the axes show corresponding the probe frequency f_p and current values for which S_{21} was recorded. We note that depending on the sample configuration one may measure, in general, any scattering parameter S_{ij} . An important fact is that for other kinds of the readout resonators the phase $\angle S_{ij}(f_p)$ should be used instead of the amplitude $|S_{21}|$. While the amplitude has a local minimum at resonance, the phase would have a maximum of its derivative.

To extract the Hamiltonian parameters, we propose to fit the model (1) to the data in Fig. 2(a) in the sense of maximum likelihood. However, as one can see, the data are more complex than the model as they contain an extra dimension: the model is a one-dimensional manifold while the data have two dimensions, and it is then not clear how to compare them. We solve this problem by removing the extra dimension (precisely, the S_{21} axis) to extract only the resonance frequency so that the model and the result may be compared. However, even after that the MLE is not a trivial task because it implicates global optimization in a non-linear least-squares problem. Difficulty comes, firstly, due to the periodic dependence of the frequencies on current I and the unknown posi-

FIG. 2. (a) An experimental spectrum of a resonator strongly coupled to a transmon qubit depending on the coil current I. (b) Slices of the transmission from (a) showing two slices with fits (1,3) and a plateau with no dip (2) present. (c) Extracted data (blue dots) and mean frequency value over all points $\langle f_r \rangle_I$ (black dashed line). Grey arrows show where $f_r - \langle f_r \rangle_I$ changes sign.

tion of the qubit sweet spot I_{ss} and, secondly, due to the strong non-linearity of (B2),(B3) on other parameters. Fortunately, it is possible to get a good initial guess for Π and I_{ss} parameters and then brute force search the solution in other variables since we have well defined bounds for each of them. Finally, we can polish the result in all six parameters using a local optimizer.

An outline of the method which uses Fig. 2(a) as an example is presented below. As it has already been mentioned, the chosen type of the resonator-qubit arrangement which yields the avoided crossings pattern is not unique: there are two other cases when the qubit spectrum lies entirely below or above the resonator frequency; however, they are treated exactly the same way and are simpler in terms of the loss function behaviour.

A. Extracting $f_r(I)$ from data

Firstly, we are going to reduce the dimensionality of the data, i.e. extract the resonance frequency for each I.

We do this by employing the *circleftt*¹⁰ library which is capable of fitting various types of microwave resonators. For each I we fit the complex transmission $S_{21}(f_p)$ as in Fig. 2(b) (solid black lines) and extract the resonance frequency from

the model. A possible caveat is that for some I values the resonance dip may disappear (see Fig. 2(b)) so the fit will fail. Therefore, such slices are excluded in advance via a threshold condition.

The resulting plot of the extracted resonator frequency versus current I is shown in Fig. 2(c) (blue dots). There are some current values located between the branches where the data points are missing, as expected, due to the absence of the resonance. Additionally, we plot here the mean value of the detected frequencies shown as a dashed black line. This parameter is important since it, will firstly, serve as an initial guess for the cavity frequency of the model (1): $f_c \approx \langle f_r \rangle_I$ and, secondly, will be used in the period and phase extraction algorithm which tracks the changes of the sign of the value $\Delta f_r = f_r - \langle f_r \rangle_I$ (marked as grey dashed lines in Fig. 2(c)). Locating these sign changes allows to find the qubit sweet spot without fittig the full model.

B. Extracting period, phase and sweet spot locations

As we have stated above, one of the serious obstacles for the fitting is the periodicity of the data on one of the fitting parameters. Along with the equally unknown phase of the signal, this leads to the presence of many local minima in the loss function which impede the progress of iterative optimization algorithms. In other words, the unknown parameters Π and I_{ss} are preventing us from finding the global minimum. Fortunately, it is possible to determine the period and the sweet spot location (or, the phase of the data) without fitting the full model (1) which alleviates the stated problem. In the absence of noise, this would be a trivial task. However, in the conditions of experiment, the noise to some extent is always present, so below we suggest a solution that is insensitive to local sporadic perturbations of the data.

A powerful tool for finding the period in a given dataset y (especially when it contains just a few periods) is the autocorrelation function $\mathcal{R}_{yy}(l) = \sum_{n} y_n y_{n-l}$. The location of the largest of its local maxima (except for the l = 0) equals exactly the sought period¹¹. However, this is only true when the mean value of the function is zero; otherwise, $\mathcal{R}_{yy}(l)$ would be linear with a steep slope that may smear out all the extrema. Therefore, instead of directly calculating the autocorrelation of $f_r(I)$ we consider the standardized function $\Delta f_r(I)$ introduced above which has zero mean and the same period. For this function, which looks exactly like one in Fig. 2(c) but centred vertically around zero, the autocorrelation function $\mathcal{R}_{\Delta f_r \Delta f_r}(\Delta I)$ depending on the current offset ΔI is shown in Fig. 3(a). As one can see, ΔI spans 200 μA just as the data itself. This means that to calculate $\mathcal{R}_{\Delta f_r \Delta f_r}(\Delta I)$ the data is being zero-padded at all ΔI except for $\Delta I = 0$, and this is why we get diminishing correlation peaks at Π , 2Π , etc. The orange dot in the plot shows the highest local extremum of $\mathcal{R}_{\Delta f_r \Delta f_r}(\Delta I)$ at 88 μ A. It is a very prominent peak and can be easily distinguished among all others. There is as well a small peak at 176 μ A which corresponds to $\Delta I = 2\Pi$. Note that the the autocorrelation function is not ideally smooth and has some abrupt bends on the sides of the peaks. This happens

FIG. 3. Period and phase extraction procedure. (a) Autocorrelation function depending on the current offset ΔI shows a prominent local maximum at 88 μ A (orange dot). (b) Construction for phase estimation; $\Delta f_r = f_r - \langle f_r \rangle_I$ (blue) is fitted with a square wave (orange, start marked with a triangle). Vertical bars mark candidate sweet spots. (c) Loss function (normalized) for the square wave fitting procedure from (b); red cross indicates the parameters of the meander shown there.

because there were some missing points in the data (corresponding to the plateaus of Fig. 2(b)) that were replaced by zeros to ensure the correct mapping between the current indices and current values. This zero padding may be noticed as well in Fig. 3(b).

Now, having found the period it is possible to precisely determine the phase of the signal. This is done via finding the global maximum of the zero-lag correlation function $\mathcal{R}_{\Delta f_r S}(0)$ between $\Delta f_r(I)$ and a square wave $S(I,\Pi,\phi,D)$ having the same period but unknown phase ϕ and duty cycle D. The high and low levels of the square wave must be opposite in value, i.e. 1 and -1, and the absolute value does not matter. An illustration of a square wave function satisfying the optimal condition is presented in Fig. 3(b) in orange. The phase ϕ (in μ A) denotes the x-coordinate of the first point after the rising edge, and is marked with a triangle. Generally, the idea behind this is to robustly detect sign changes that were shown back in Fig. 2(c). Since $\mathcal{R}_{\Delta f_r S}(0) = \sum_I \Delta f_r(I) \cdot S(I)$, it gains value if Δf_r and S are of the same sign for a certain I. Therefore, the combination of ϕ , D that ensures maximal number of points where $f_r(I) \cdot S(I) > 0$ (the one that we are looking for) delivers the global maximum to $\mathcal{R}_{\Delta f_r S}(0)$. We can not rely on a more simple algorithm that walks through the points and marks where the function changes its sign because such algorithm may fail in the presence of noise. Additionally, it will still work correctly even if the mean value $\langle f_r \rangle_I$ does not lie exactly between the branches and intersects one of them.

The optimal ϕ and D are found using a brute force algorithm. It calculates the loss function $\mathcal{L} = -\mathcal{R}_{\Delta f_r S}(0)$ on a 50×50 grid of (ϕ, D) and takes the minimal value of all. This

method is stable and universal due to the evident boundaries on $\phi \in [-\Pi/2, \Pi/2)$ and $D \in [0,1]$. The loss function topography for the avoided crossing patterns is nicely structured and for our example is shown in Fig. 3(c). One peculiarity is that instead of a single minimum it has an area of the same minimal value. Again, this effect comes from the missing zero-padded f_r points at some I values. However, any value from this valley suits well enough for our purposes, and the algorithm finds no difficulty in locating it.

Having found values for Π , ϕ and D we now can calculate the currents of the transmon sweet spots in the case of the avoided crossings pattern and the smooth patterns:

$$I_{ss} = \begin{cases} \phi + \Pi(1+D)/2, \text{ for the avoided crossings} \\ \phi + \Pi D/2, \text{ otherwise} \end{cases}$$
 (3)

To distinguish between these two cases when the noise is not too large, one may calculate the maximal absolute differential of the frequency data $\max_{i>0}|f_{r,i}-f_{r,i-1}|$ and compare it to the peak-to-peak amplitude $\max_{i,j}|f_{r,i}-f_{r,j}|$. For the avoided crossings these values are close and for the smooth dependencies they are not. However, in the presence of noise this indicator may fail, and one will have to check both current values to be I_{ss} by fitting the full model two times, and then choose among the two possibilities based on the loss value.

C. Full model fitting

Having performed the aforementioned preliminary steps, it is now possible to fit the full model to the extracted points. To do this, we employ brute force optimization combined with the Nelder-Mead simplex downhill algorithm¹² to polish the brute force result. For both methods, we use a common loss function that is based on the maximum likelihood method¹³ (ML, see also Appendix C). For the known probe frequency span of the data Δf_p (Fig. 2(a), whole y-axis) and the set of N extracted points $\{p_i\} = \{(I_i, f_{r,i})\}$, we calculate the loss function as

$$\mathcal{L} = \sum_{i=1}^{N} [f_{r,i} - \mathcal{M}(I_i, \Pi, I_{ss}, f_c, g, f_{ge}^{max}, d)]^2, \quad (4)$$

$$\mathcal{M} = \begin{cases} f_+, & |f_+ - f_c| < \Delta f_p / 2\\ f_-, & \text{otherwise}, \end{cases}$$
 (5)

where, as in the previous section,

$$f_{\pm}(I_i) = f_{\pm}(I_i, \Pi, I_{ss}, f_c, g, f_{ge}^{max}, d)$$

The condition of Eq. (5) means that we choose only the model frequencies that lie within a window Δf_p around the model f_c parameter. This ensures, firstly, that in the optimum we will not take any excess points outside the frequency scan, and, secondly, that we have a single model value for each current.

To substantiate the choice of the optimization algorithms, we present in Fig. 4 three visualizations of the the defined loss function. The plots show how the function behaves if a certain pair of 6 model parameters is varied while others are

FIG. 4. Slices of the loss function (4) for the full model and experimental data from the example made around the optimal point. Root-mean-square per-point loss $\sqrt{\mathcal{L}}$ is in MHz. (a) f_{ge}^{max} and d are varied, other parameters optimal. A large valley is located near 9 GHz, and some smaller locally minimal ones are present all around. (b) g and f_r are varied, others optimal. The loss function for these two parameters is well-conditioned near the optimum. (c) Π and I_{ss} varied, others optimal. This subplot illustrates a complex structure of local minima around the true one which we find analytically.

optimal. From the plots it is obvious that the loss function is ill-defined and has a lot of local minima. Moreover, it may not be smooth everywhere because of the condition (5). The f_{ge}^{max} and d parameters present the most significant difficulty in terms of false minima as can be seen from Fig. 4(a). In contrast, f_c presents the least difficulty, as can be seen from Fig. 4(b). The last plot Fig. 4(c) shows a very complex structure of the loss function and narrow optimal valleys and serves as an illustration of why the period and phase extraction algorithm is important.

The brute force algorithm acts on the grid specified in Table I. The ranges in the grid are based on the usual design parameters of the qubit samples in our database and the number of steps is chosen so that the algorithm reliably finds the optimal valley. After the coarse brute force optimization is done and the optimal valley is located, we apply the Nelder-Mead search on all 6 parameters.

Parameter	Value range	Steps
$\overline{f_c}$	$\langle f_r \rangle_I \pm 1 \text{ MHz}$	3
g	20 - 40 MHz	5
f _{ge} max d	4 - 12 GHz	80
d	0 - 0.9	9

TABLE I. Grid specifications for the brute force algorithm for STS detection.

III. RESULTS

The algorithm was implemented in Python using the *brute* and *minimize* routines of the SciPy¹⁴ library. We present here three examples of the detection for all possible qubit-resonator dispositions. The resulting fits are presented in Fig. 5 along with the original data and the error plots; we will further reference them as (a), (b) and (c).

A. Fit quality analysis

In Table II we analyse the fitting resuls for the three cases. Comparing the brute estimation and the final result after the Nelder-Mead search, one can see that the chosen algorithm order works as expected: the exhaustive search finds good initial conditions for the Nelder-Mead, and there is a significant improvement in the loss value of the polished result compared to the brute estimation which is due to the more accurate determination of the cavity frequency f_c which leads as well to major shifts in optimal g, f_{ge}^{max} and d.

However, even the optimal qubit parameters and coupling strength may be inaccurate. For example, in case (b) for f_{ge}^{max} we see a more than 2 GHz difference between the optimal and the correct value found for the sample with TTS. For (a) and (c), the differences in f_{ge}^{max} are much smaller (about 10-70 MHz) but instead we see significant errors in d. Inaccuracy in the qubit parameters may be qualitatively explained by the low sensitivity of the resonator frequency to the qubit frequency when they are far away and by the strong correlations between the parameters.

To quantify the errors in the fit parameters, we have calculated numerically the Hessians III with respect to all fitting parameters in the optimal point for the three cases using the *numdifftools*¹⁵ package (see Appendix C for details). In Table II, columns σ , \mathbb{H}^{-1} we show the square roots of diagonal of the resulting variance-covariance matrix that estimate the standard deviations in the fit parameters. As can be seen, in case (b) estimated variances for g and f_{gg}^{max} are much higher than ones for the cases (a) and (b). Additionally, using the principal-component analysis of the correlation matrices obtained from the covariances, we find that the first largest component eigenvector contains the correlated parameters f_c , g, f_{ge}^{max} , d, and the second one consists of Π and I_{ss} . To reduce the correlations, it is possible to chose another parametrization of the model, i.e. replace d and f_{ge}^{max} by E_{JJ}^{max} and E_{II}^{min} . However, the accuracy of the fit using the presented

Parameter	(a)				(b)			(c)				
	Brute	N-M	$\sigma,~\mathbb{H}^{-1}$	Correct	Brute	N-M	$\sigma,~\mathbb{H}^{-1}$	Correct	Brute	N-M	σ,\mathbb{H}^{-1}	Correct
f_c , GHz	6.5003	6.5007	4×10^{-6}	n/a	6.962	6.9631	1.6×10^{-4}	n/a	6.47	6.465	2×10^{-4}	n/a
g, MHz	24	35.8	0.17	n/a	36	64.9	15	n/a	36	86.1	1	n/a
f_{ge}^{max} , GHz	8	8.97	0.013	9.04	10.3	11.3	1.35	9.08	6.3	5.89	0.01	5.9
d	0.5	0.09	0.013	0.13	0.5	0.49	0.07	0.6	0.1	0.25	0.05	0.3
Loss, kHz	251	20			338	51			2038	149		

TABLE II. Analysis of optimal parameters found for the three cases in Fig. 5 after the brute and Nelder-Mead (N-M) optimizations. σ , \mathbb{H}^{-1} columns stand for the estimates for the standard deviations found from the diagonal of the covariance matrix which was calculated using the Hessian \mathbb{H} of the loss function at the optimum.

FIG. 5. The results of the algorithm execution on three experimental examples from our database. In the upper row, original images are presented. In the middle row, the data (blue dots) and the fitted model (orange connected dots) are shown. In the lower row are errors ε . (a) Avoided crossings pattern; per-point RMS error around 30 kHz. (b) The qubit entirely above the resonator; per-point RMS error around 60 kHz. (c) The qubit below the resonator; per-point RMS error around 150 kHz.

parametrization is enough for practical applications.

B. Testing noise robustness

To stress test the algorithm, we artificially deteriorate the data from Fig. 5 by adding complex Gaussian noise of various variances to the complex data at each f_p , I before fitting. However, since the original data already contains noise, and its variance σ_0 may different for different measurements, we have to define a common scale for all three cases (a), (b) and (c). The signal-to-noise ratio (SNR) turns out to be a sensible common measure of noise, and is defined for our data in the similar manner as the SNR in the resonator fitting tests 10 . Since the data for a resonator lie on a circle in the complex plane, it is convenient to take its radius r as the signal amplitude. Then, if the total noise is of the form $\frac{\xi_1+i\xi_2}{\sqrt{2}}$, where ξ_1 , ξ_2 distributed normally with zero mean and variance σ ,

the SNR is defined as

$$r/\sigma = r/(\sigma_0 + \sigma_1), \tag{6}$$

where σ_1 is the added noise. Obviously, the resulting SNR in this scale can't be larger then the original SNR= r/σ_0 .

Using the common scale for the measurements (a), (b) and (c), we test the algorithm stability by launching it 50 times for 50 added noise realizations for a range of variances σ_1 : the added noise power is steadily increased, and the resulting SNR is being calculated with (6). We record all the fitting results, and calculate their mean value, 25^{th} and 75^{th} percentiles for each σ_1 . Since the original noise is fixed, the variance of the fitting results will go to zero at SNR= r/σ_0 where the added noise is negligible.

In Fig. 6 we plot the results of the test outlined above. As one can see from the graph, the algorithm becomes stable above SNR=3, and the lowest SNRs before divergence occurs are around 2. The original data SNR for (a) is 19, and thus in the tests $\sigma_1 > 5\sigma_0$. Conversely, the original data SNR for (b)

FIG. 6. Behaviour of the algorithm on the real data from Fig. 5 with added gaussian noise of varying power (i.e., with artificially reduced SNR). The clouds show the 25th and 75th percentiles of the optimal parameter samples for 50 realizations of the added noise, solid lines show median values. (a) Original data SNR is 19. The algorithm is accurate above SNR=2.5 (well below the original SNR), but is still robust down to SNR=1.3. (b) Original data SNR is 4.7. The qubit frequency and asymmetry are not determined accurately, but the algorithm is stable above SNR=1.5. (c) Original data SNR is 3.14. The algorithm is robust above SNR=1.75, and is only uncertain in determining the asymmetry *d*.

and (c) are much lower, and thus $\sigma_1 \approx \sigma_0$ in the tests. This means that for (b) and (c) the variance of the fitting results shown with the clouds in Fig. 6 is approximately two times lower than it would be if all the noise was generated.

C. Performance

We have tested the performance of the algorithm on a 5-year old 2-core Intel i5-3337U CPU @ 2.5 GHz. The results are presented in Table III for the case (a). As can be seen, the procedure takes around 7 seconds to complete. On a contemporary Intel Core i7-7700 CPU, it takes about two seconds.

The heaviest parts are the frequency extraction part with the *circle fit* library (2.7 seconds, most time spent in iterative calibration fits) and then brute search and Nelder-Mead optimization where the time costs mostly come from the square root calculation necessary for Eqs. (A3) and (B3). However, this is still fast, firstly, because recording a resonator spectrum such as one in the example takes around 20 seconds, and, secondly, it is much faster than doing it manually.

Basing on the complexity of calculating the value of the loss functions, the frequency extraction scales at least as $\mathcal{O}(NM)$ if N and M are the number of points for I and f_p , respectively, and the following optimization scales linearly with N.

	Extract f_r	Π , I_{SS}	Brute	N-M	Total
Time, s	2.72	0.3	2.79	1.37	7.34
Ratio, %	37	4	38	18	100

TABLE III. Performance of the algorithm on a 2.5 GHz 2-core i5-5337U CPU for the case (a). Most of the time is taken by the the f_r extraction and the brute search steps.

IV. DISCUSSION

In summary, we have developed and implemented an approach for automatic processing of single-tone spectroscopic data that uses maximum likelihood estimation to extract the physical parameters of cQED systems from a measurement result. We have shown that it is possible to estimate all of the system parameters by observing only the behaviour of the resonance peak for any type of the qubit-resonator disposition. Our method is robust to strong noise down to SNR=3 and is fast enough to be used in practice. Despite the fact that the accuracy of the algorithm does not allow to start gate calibrations right after the single-tone spectroscopy step, it is enough to perform two-tone spectroscopy with significantly reduced scan ranges to reduce time costs. Additionally, basing on the fit quality it is possible to distinguish between working and defective samples.

Considering the downsides of the suggested approach, we note that the implementation of the algorithm is not perfectly optimized: the brute force search is not fully parallel and may be replaced with a more sophisticated global optimization algorithm such as simulated annealing or basin hopping. Another problem that may slow down the execution is that for large qubit-cavity detunings and high noise two very different sets of parameters may minimize the loss function equally well. An illustration for this statement can be seen in Fig. 7(a),(b) where the algorithm was launched twice using different grid ranges for f_q^{max} . In one case (orange) the search was done below, and in the other (green) above the mean resonance frequency $\langle f_c \rangle_I$. The resulting fits are almost equally accurate, and without other information about the system it is not be possible to reliably choose between the two. Therefore, some hints should be passed to the algorithm to avoid ambiguity; for instance, a prior probability density may be imposed on the parameter values and the MLE replaced with

FIG. 7. (a) Two alternative fits (orange and green lines) for the same data (blue dots). The corresponding parameters f_c , g, f_{ge}^{max} , d for the two alternative fits are in shown the legend along with the loss values. (b) Residuals for the two fits, in orange (qubit below) and green (qubit above the resonator).

maximum a posteriori method. Otherwise, it would be necessary to check both possibilities with other methods, i.e. via two-tone spectroscopy. Since for the transmon qubits the case in Fig. 7 is the only type of ambiguity that may occur, we introduce an additional flag for the program that specifies where to look for the qubit: above or below the resonator.

Finally, in the future we are planning to use the proposed algorithm along with automatic two-tone spectroscopic measurements to build a fully human-free system that will automatically calibrate the qubit samples from scratch.

V. AKNOWLEDGEMENTS

Appendix A: Transmon Hamiltonian

The simplest version of this qubit consists of a Josephson junction shunted with a large capacitor. Flux tunability of the frequency is attained by replacing a single Josephson junction with a SQUID) as in Fig. 8(a) and applying external magnetic flux Φ_e to its loop. This configuration can be equivalently represented with a shunted junction of tunable energy, Fig. 8(b). The Hamiltonian for such equivalent circuit is as follows:

$$\hat{H}_{tr} = 4E_C \hat{n}^2 - E_J(\Phi_e) \cos \hat{\varphi}, \tag{A1}$$

where $E_{J1,2}$ are the Josephson energies , $E_C = e^2/2C_\Sigma$, $C_\Sigma = C_s + C_1 + C_2$, is the charging energy, \hat{n} and $\hat{\phi}$ are the operators for the Cooper pair number and the phase of the qubit island. For the equivalent Josephson energy E_J one obtains

$$E_J(\Phi_e) = E_{J\Sigma}\cos(\pi\Phi_e/\Phi_0)\sqrt{1 + d^2\tan^2(\pi\Phi_e/\Phi_0)},$$
 (A2)

where $E_{J\Sigma} = E_{J1} + E_{J2}$, $d = \frac{E_{J1} - E_{J2}}{E_{J1} + E_{J2}}$ is the asymmetry of the SQUID. As one can notice, the dependence is periodic in Φ_e .

Level	Energy	Transition	Frequency
$g(E_0)$	0	ge	ω_{ge}
$e(E_1)$	$\sqrt{8E_JE_C}-E_C$	gf/2	$\omega_{ge} - 0.5E_C$
$f(E_2)$	$2\sqrt{8E_JE_C}-3E_C$	ef, gd/3	$\omega_{ge} - E_C$
$d(E_3)$	$3\sqrt{8E_JE_C}-6E_C$	ed/2	$\omega_{ge} - 1.5E_C$
E_4	$4\sqrt{8E_JE_C}-10E_C$	fd , $eE_4/3$	$\omega_{ge}-2E_C$

TABLE IV. Energies and some transition (single and multi-photon) frequencies for the first 5 levels of the transmon calculated with (A3).

It is also possible to derive analytical expressions for the energy levels and transition frequencies for this type of qubits. The energy of the m^{th} level is⁹

$$E_m = m\sqrt{8E_J(\Phi_e)E_C} - \frac{E_C}{12}(6m^2 + 6m),$$
 (A3)

and some of the transition frequencies are presented in Table IV. The qubit frequency may be approximated as

$$f_{ge}(\Phi_e) \approx \sqrt{8E_J(\Phi_e)E_C}$$

$$= f_{ge}^{max} \sqrt{\cos(\pi \Phi_e/\Phi_0) \sqrt{1 + d^2 \tan^2(\pi \Phi_e/\Phi_0)}},$$
(A4)

where $f_{ge}^{max} = \sqrt{8E_J(0)E_C}$. This simplifies the expression for the frequency since now it depends on two parameters instead of three.

One final note is that in real-life applications is not possible to know directly the flux Φ_e that is threaded through the SQUID. The experimenter usually knows only the current I (or voltage) which he applies to some coil that is connected inductively to the SQUID. Then $\Phi_e = MI + \Phi_r$, where M stands for the mutual inductance of the coil and the SQUID, and Φ_r is some residual flux inherent to the sample.

Appendix B: Circuit QED

The readout of the superconducting qubits is now predominantly done using an ancilla system which is usually implemented as a superconducting microwave resonator which acts as an electromagnetic cavity in the standard cavity QED. Truncating the qubit to two levels, one may obtain the following Hamiltonian for the compound cavity-qubit system (in

FIG. 8. (a) A tunable transmon circuit with an asymmetric SQUID, $E_{J1} \neq E_{J2}$. (b) Equivalent transmon with tunable energy $E_J(\Phi_e)$ and unified capacitance C_{Σ} . The qubit island containing its single degree of freedom is in blue.

FIG. 9. Frequency spectrum of the transmon-resonator system. Parameters used: $f_{ge}(0) \approx \sqrt{8E_C E_I(0)}/2\pi = 8.5$ GHz, d = 0.3, $f_r = 6.4$ GHz, g = 30 MHz. For each subplot two transition branches $f_{\pm} = (E_{\pm,0} - E_{g,0})/2\pi$ are shown (orange and blue, respectively) both forming the resonator and qubit lines. As one can notice, there are three qualitatively different cases of the resonator-qubit disposition. Lower row shows a zoomed area around f_c that looks differently in each case.

RWA):

$$\hat{H}/h = \frac{f_q}{2}\hat{\sigma}_z + f_c\hat{a}^{\dagger}\hat{a} + g(\hat{\sigma}^-\hat{a}^{\dagger} + \hat{\sigma}^+\hat{a}), \quad (B1)$$

where f_q is the qubit frequency, f_c is the cavity frequency and g is the coupling strength. As long as the RWA is done, this Hamiltonian may be diagonalized analytically¹⁶:

$$E_{g,0}/h = \frac{f_c - f_q}{2},$$
 (B2)

$$E_{\pm,n}/h = (n+1)f_c \pm \frac{1}{2}\sqrt{4g^2(n+1) + (f_q - f_c)^2}.$$
 (B3)

This is very convenient for our purposes. By substituting the dependence of the qubit frequency $f_q \equiv f_{ge}(\Phi_e)$ into these equations, we can get straightforwardly the full system spectrum in dependence on the magnetic flux. In Fig. 9 we have used the equations (A3), (B2) and (B3) to model a tunable transmon interacting with a cavity for various Φ_e and various f_{ge}^{max} , d. In the lower row of the figure, one can see that it is possible to extract the dependence of the *cavity* frequency f_c on Φ_e ; for example, the well-known avoided crossing pattern can be directly observed in Fig. 9(a), and the other two possible behaviours for the qubit entirely above or below the resonator in Fig. 9(b),(c). To shorten the notation, in the following we will define the corresponding branch frequencies of (B3) as $f_{\pm} = (E_{\pm,0} - E_{g,0})/2\pi$.

In Fig. 9(a) it is also possible to see the entire spectrum of a transmon ge transition predicted by equations (A2), (A3). It has a cosine-like periodic shape with a period of one flux quantum Φ_0 . Consequently, it has two extrema, the upper and the lower which are called "sweet spots" due to the first-order insensitivity to Φ_e , and thus to possible flux noise. In the following, by saying sweet spot we will assume the upper one whose frequency is $f_{ge}(\Phi_e=0)\equiv f_{ge}^{max}$.

We will use the model (B2), (B3) to fit the resonator frequency that we can find in an experiment. The only conceptual problem for the fitting that is left now is that the function we want to use as a model is not single-valued. Indeed, in Fig. 9(a, top) for each value of magnetic flux we always find two frequency points corresponding to the qubit and to the resonator, respectively. However, in practice only a narrow scan

around the resonator frequency such as in Fig. 9(a, bottom) is required, and thus no ambiguity occurs.

Appendix C: Maximum likelihood and fit error estimation

For a vector **w** of parameters, it is possible to calculate the likelihood $\mathcal{P}(\mathbf{p}|\mathbf{w})$ to observe the given data points $\mathbf{p} = \{I_i, f_{r,i}\}_{i=0}^N$. If the data points are normally distributed $\mathbb{N}_{\mu_i,\sigma}$ around the model $(\mu_i = \mathcal{M}(I_i,\mathbf{w}))$ and are uncorrelated, it is the product of the deviation probabilities of the individual data points:

$$\mathscr{P}(\mathbf{p}|\mathbf{w}) = \prod_{i=0}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp[-(f_{r,i} - \mu_i)^2 / 2\sigma^2]$$
 (C1)

The maximum likelihood method consists of finding the parameters \mathbf{w} such that $\mathcal{P}(\mathbf{p}|\mathbf{w})$ is the highest. If we take its negative logarithm, we will get the negative log-likelihood function:

$$-\ln \mathscr{P}(\mathbf{p}|\mathbf{w}) = \sum_{i=0}^{N} (f_{r,i} - \mu_i)^2 / 2\sigma^2 + N \ln \sqrt{2\pi}\sigma. \quad (C2)$$

Minimizing this function is equivalent to maximizing the likelihood since the logarithm is a monotonic function. Since the second term does not depend on \mathbf{w} , the task is reduced to minimizing the sum of squares; this argument dictates the chosen form of the loss function (4). We denote the optimal parameter vector as \mathbf{w}^* .

We then presume that the posterior probability $\mathscr{P}(\mathbf{w}|\mathbf{p})$ is a multivariate Gaussian distribution with respect to the parameters \mathbf{w} :

$$\mathscr{P}(\mathbf{w}|\mathbf{p}) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{w} - \mathbf{w}^*)^T \Sigma^{-1} (\mathbf{w} - \mathbf{w}^*)\right],$$
(C3)

where Σ is the variance-covariance matrix, by definition. It is easy to check that by double differentiating the logarithm of (C3) with respect to the parameters \mathbf{w} we get the inverse variance-covariance matrix as the Hessian of the negative log-

likelihood:

$$\Sigma^{-1} = \frac{\partial^2}{\partial w_i \partial w_i} [-\ln \mathscr{P}(\mathbf{w}|\mathbf{p})] = \mathbb{H}.$$
 (C4)

Alternatively, we can find the posterior basing on the Bayes' law and the likelihood $\mathcal{P}(\mathbf{w}|\mathbf{p})$ from (C1):

$$\mathscr{P}(\mathbf{p}|\mathbf{w}) = \mathscr{P}(\mathbf{w}|\mathbf{p}) \cdot \mathscr{P}(\mathbf{w}) / \mathscr{P}(\mathbf{p}).$$
 (C5)

Presuming a uniform prior distribution of the parameters $\mathcal{P}(\mathbf{w})$, we see that

$$\frac{\partial^2}{\partial w_i \partial w_j} [-\ln \mathscr{P}(\mathbf{w}|\mathbf{p})] = \mathbb{H} = \frac{\partial^2}{\partial w_i \partial w_j} [-\ln \mathscr{P}(\mathbf{p}|\mathbf{w})]. (C6)$$

For non-linear least squares, this equation is accurate near the optimum \mathbf{w}^* where $-\ln \mathcal{P}(\mathbf{p}|\mathbf{w})$ is quadratic in parameter values (to the second order of the Tailor expansion). From here, we can compute the Hessian numerically and, by inverting it, find the estimate for the variance-covariance matrix of the fit parameters. Square roots of the diagonal elements in this matrix are the estimates for the standard errors.

- ⁵R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider, D. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, "Scalable quantum circuit and control for a superconducting surface code," Physical Review Applied 8, 034021 (2017).
- ⁶J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Y. Chen, *et al.*, "State preservation by repetitive error detection in a superconducting quantum circuit," Nature **519**, 66 (2015).
- ⁷M. Jerger, Experiments on superconducting qubits coupled to resonators, Ph.D. thesis, Karlsruhe Institute of Technology (2013).
- ⁸B. J. Bloom, S. A. Caldwell, M. Reagor, and C. Rigetti, U.S. Patent No. US 20180260732A (13 Sep. 2018).
- ⁹J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, "Charge-insensitive qubit design derived from the cooper pair box," Physical Review A 76, 042319 (2007).
- ¹⁰S. Probst, F. Song, P. Bushev, A. Ustinov, and M. Weides, "Efficient and robust analysis of complex scattering data under noise in microwave resonators," Review of Scientific Instruments 86, 024706 (2015).
- ¹¹S. Parthasarathy, S. Mehta, and S. Srinivasan, "Robust periodicity detection algorithms," in *Proceedings of the 15th ACM international conference on Information and knowledge management* (ACM, 2006) pp. 874–875.
- ¹²J. A. Nelder and R. Mead, "A simplex method for function minimization," The computer journal 7, 308–313 (1965).
- ¹³C. M. Bishop, *Pattern Recognition and Machine Learning* (Springer, 2006).
 ¹⁴E. Jones, T. Oliphant, P. Peterson, *et al.*, "SciPy: Open source scientific tools for Python," (2001–), [Online; accessed <today>].
- ¹⁵P. A. Brodtkorb and J. D'Errico, https://github.com/pbrod/ numdifftools (2015).
- ¹⁶A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation," Physical Review A 69, 062320 (2004).

LIST OF CORRECTIONS

Fatal: Is abstract supposed to be re-written completely?....

¹J. Kelly, P. O'Malley, M. Neeley, H. Neven, and J. M. Martinis, "Physical qubit calibration on a directed acyclic graph," arXiv preprint arXiv:1803.03226 (2018).

²Z. Chen, Metrology of Quantum Control and Measurement in Superconducting Qubits, Ph.D. thesis, University of California Santa Barbara (2018).
³A. Blais, J. Gambetta, A. Wallraff, D. Schuster, S. Girvin, M. Devoret, and R. Schoelkopf, "Quantum-information processing with circuit quantum electrodynamics," Physical Review A 75, 032329 (2007).

⁴D. A. Forsyth and J. Ponce, *Computer Vision: A Modern Approach* (Pearson, 2011).