Automaty a gramatiky

Otázka 1: Zásobníkové automaty se dvěma zásobníky přijímají právě jazyky, které jsou přijímány [] dvoucestnými automaty [] nedeterministickými zás. autmaty [] lineárné omezenými automaty [] Turingovými stroji
Odpověď: D (pomocí dvou zásobníků si nasimulujeme pásku)
Otázka 2: Nedeterministický konečný automat má n stavu. Pocet stavu po prevodu na deterministicky nebude vetsi nez: [] n stavu [] (2 ⁿ) stavu [] (n ⁿ) stavu [] nelze rici
Odpověď: BC (Ve slidech je maximalne (2 na n), ale (n na n) taky odpovidadi zadani, protoze (n na n) je vetsi nez (2 na n).)
Otázka 3: Nechť G=(N,T,S,P) je generativní gramatika, pro jejíž pravidla (u → v) platí u <= v . Pokud neuvažujeme prázdné slovo, potom taková gramatika může generovat libovolný: [] lineární jazyk [] bezkontextový jazyk [] kontextový jazyk [] rekurzivně spočetný jazyk
Odpověď: ABC (D- nevyhovuje počtem u)
Otázka 4: Ke kazde bezkontextove gramatice, která negeneruje prazdne slovo, existuje ekvivalentni: [] jednoznacne urcena redukovana bezkontextova gramatika [] jednoznacna bezkontextova gramatika [] linearní gramatika [] monotoni gramatika
Odpověď:
Otázka 5: Necht L1 a L2 jsou jazyky nad stejnou abecedou takove, ze L1⊂L2(L1≠L2) Potom platí: [] je-li L1 prijiman koncenym automatem, potom je L2 přijiman konecnym automatem [] je-li L2 prijiman koncenym automatem, potom je L1 přijiman konecnym automatem [] je-li L1 konecny, potom je L2 přijiman konecnym automatem [] je-li L2 konecny, potom je L1 přijiman konecnym automatem

Odpověď:

D (B to není protože (01)* je regularni a jeho podmnozina 0^n1^n neni)

Otázka 6: Jazyk, ktery prijima Deterministicky zasobnikovy automat koncovym stavem je vzdy: [] regularni jazyk [] bezprefixovy [] bezkontextovy [] kontextovy
Odpověď: CD
Otázka 7: L1 a L2 su 2 jazyky z tej istej triedy chomskeho hierarchie. Potom [] L1 prienik L2 vzdy lezi v tej istej triede. [] prienik L1 L2 moze lezat v inej triede [] prienik L1 L2 lezi v tej triede chomskeho hierarchie kde aj ich zjednotenie [] ??
Odpověď: B
Otázka 8: Nechť A1=(Q1,X, δ 1,q1,F1) a A2=(Q2,X, δ 2,q2,F2) jsou deterministické konečné automaty. Potom automat A=(Q,X δ ,q,F) , kde Q=Q1xQ2, q=(q1,q2), δ ((p1,p2),x)=(δ 1(p1,x), δ 2(p2,x)), F=Q1xQ2 přijímá jazyk: [] L(A ₁) \cup L(A ₂) [] L(A ₁) \cap L(A ₂) [] X* [] {}
Odpověď: C (F=Q1xQ2 znamena ze ma vsechny stavy koncove)
Otázka 9: Nechť RV(X) je množina všech regulárních výrazů nad abecedou X. Potom jazyk RV(X) je: [] regulární [] bezkontextový a není regulární [] kontextový a není bezkontextový [] rekurzivní spočetný a není kontextový
Odpověď: B (Fígl je ale v tom uvědomit, že jde o jazyk, jehož slovy jsou regulární výrazy, nikoli jazyk, který se dá popsat regulárním výrazem. Regulární jazyk tedy není správná odpověď.)
Otázka 10: Lineárně omezený automat je nedeterministicky Turinguv stroj [] S paskou omezenou na jedne strane (jednostranna paska) [] S paskou pevne omezenou na obou stranách (paska omezene delky) [] S paskou omezenou delkou vstupniho slova [] S paskou omezenou delkou vystupniho slova
Odpověď:
C (A je nejaka podivnost, ale kazdopadne to nema s LOA nic spolecneho B je konecny automat C podle prednasky platí D neplatí:

K tomu vstupnímu/výstupnímu slovu(to už není 100%): když mám automat, který má **rozhodnout**, zda slovo do jazyka patří, tak je to slovo **vstupní**, když mám gramatiku, která je **generuje**, pak je to slovo **výstupní**. A tady mám automat, takže žádné výstupní.)

Otázka 11: Mezi algoritmicky rozhodnutelné problémy patří: [] Zda je jazyk daný bezkontextovou gramatikou prázdný [] Zda je daná bezkontextová gramatika víceznačná [] Zda je dané slovo generované danou bezkontextovou gramatikou [] Zda jsou dvě bezkontextové gramatiky ekvivalentní
Odpověď: AC
Otázka 12: Mezi algoritmicky nerozhodnutelné problémy patří: [] Postův korespondeční problém [] problém zda jazaky generované dvěma bezkontext gramatikami jsou totožné [] problém zda bezkontext. gramatika generuje nekonečný jazyk [] problém zdanevim 🙁
Odpověď: AB
Otázka 13: Nechť automat A přijíma jazyk L(A) a q_0 je počáteční stav, potom $\exists \ w \in L(A)$ tak že $\delta^*(q_0,w)=q$ což znamená: $[\]$ q konecny stav $[\]$ q dosazitelny $[\]$ q_0 a q ekvivalentni $[\]$ L není prázdný
Odpověď: ABD (A je jasny B z nej vyplyva, D taky z A)
Otázka 14: Nechť L je libovolný jazyk. Potom L^+ je vždy rovný jazyku: [] $\{u^i u \in L \& i>=0\}$ [] $\{u^i u \in L \& i>=1\}$ [] $L^*-\{\lambda\}$ [] $\bigcup_{i>=1} L^i$
Odpověď: D (C neplati protoze: pro jazyk L bez λ : L+ neobsahuje λ , L* (ji obsahuje), L*-{ λ } ji neobsahuje cili rovnost plati pro jazyk L s λ : L+ obsahuje λ , L* obsahuje λ , L*-{ λ } neobsahuje lambdu, tudiz rovnost neplati B řetězily by se jenom stejna slova, nevznikaly by kombinace)
Otázka 15: Nechť $L_1=\{a\}$ a $L_2=\{b\}$. Potom $(L_1\cup L_2)^*$ obsahuje (mimo jiné) slova [] aaa [] bbb [] aba [] bab

ABCD (podle slajdů $L_1 \cup L_2 = \{ w \mid w \in L1 \vee w \in L2 \}$ a pak uz je jenom řetězíme za sebe)

```
Otázka 16:
```

```
Nechť L_1=\{a\} a L_2=\{b\}. Potom (L_1\cup L_2)^* obsahuje (mimo jiné) slova: [ ] aa [ ] aba [ ] abb
```

Odpověď:

[] ab

ABCD (podle slajdů $L_1 \cup L_2 = \{ w \mid w \in L1 \lor w \in L2 \}$ a pak uz je jenom řetězíme za sebe)

Otázka 17:

```
Nechť L_1 a L_2 jsou dva bezkontextové jazyky. Potom (L_1 \cap L_2)^* je vždy [\ ] = L_1^* \cap L_2^* [\ ] \subseteq L_1^* \cap L_2^* [\ ] \supseteq L_1^* \cap L_2^* [\ ] \supseteq L_1^* \cap L_2^*
```

Odpověď:

```
C (podle slajdů L_1 \cap L_2 = \{ w \mid w \in L1 \land w \in L2 \}, odpoved A obecně neplatí například pro L1 = \{a\}, L2 = \{aa\} leva strana: (L1 \square L2)^* = \{lambda\} prava strana: L1^* \square L2^* = \{(aa)^*\} (plati mnozinova inkluze \subseteq) odpoved B obecně neplatí například pro L1 = \{a\} a L2 = \{a\} leva strana: (L1 \square L2)^* = \{a^*\} prava strana: L1^* \square L2^* = \{a^*\})
```

Otázka 18:

```
Nechť L_1 a L_2 jsou dva bezkontextové jazyky. Potom (L_1 \cup L_2)^* je vždy [\ ] = L_1^* \cup L_2^* [\ ] \subseteq L_1^* \cup L_2^* [\ ] \supseteq L_1^* \cup L_2^* [\ ] \supseteq L_1^* \cup L_2^*
```

Odpověď:

```
D (odpoved A obecně neplatí například pro: L1 = {a}, L2 = {b} leva strana: (L1□L2)* = {(a+b)*} prava strana: L1*□L2* = {a*} □ {b*} (plati mnozinova inkluze □) odpoved B je nespravna vzhladem na jazyky L1={a} a L2={a})
```

Otázka 19:

```
Nechť L je rekurzivně spočetný jazyk bez prázdného slova. Potom L^0 je podmnožinou jazyka [ ] prázná množina [ ] \{\lambda\} [ ] L^+ [ ] L^*
```

Odpověď:

```
BD (Podle slajdu je L^0 = \{ \lambda \} a to je podmnozinou \{\lambda\} a L* (protoze L* obsahuje L^0, tedy lambdu..) ty zbyle dve odpovedi ne)
```

Otázka 20: Jazyk {a}\{aba,baa}(levý kvocient) je rovný jazyku [] prázná množina [] {ba} [] {aba} [] {aaba}
Odpověď: B (Podle slajdu je $(L_2 \setminus L_1 = \{ v \mid uv \in L_1 \& u \in L_2 \})$
Otázka 21: Jazyk {ba}\{aba,baaa,ba}(levý kvocient) obsahuje slova [] \(\) [] a [] aa [] aaa
Odpověď: AC (Podle slajdu je $L_2 \setminus L_1 = \{ v \mid uv \in L_1 \& u \in L_2 \} $)
Otázka 22: Jazyk {aba,baa,ba}/{ba}(pravy kvocient) obsahuje slova [] λ [] a [] aa [] aaa
Odpověď: AB (Podle definice pravyho kvocientu L_1 / L_2 = { $u \mid uv \in L_1 \& v \in L_2$ }))
Otázka 23: Nechť máme deterministický konečný automat A s počátečním stavem q_0 , s koncovými stavy F, přechodovou funkci δ a u je libovolné slovo z jazyka L(A). Potom platí: $ \begin{array}{c} [\] \delta^*(q_0,u) = F \\ [\] \delta^*(q_0,u) \subseteq F \\ [\] \delta^*(q_0,u) \supseteq F \\ [\] \delta^*(q_0,u) \supseteq F \end{array} $
Odpověď: B (ze slidů: Jazykem rozpoznávaným konečným automatem A = (Q,X, δ , q ₀ ,F) nazveme jazyk: L(A) = {w w \in X* & δ *(q ₀ ,w) \in F}.)
Otázka 24: Nechť máme nedeterministický konečný automat A s jediným počátečním stavem q_0 , s koncovými stavy F, přechodovou funkci δ a u je libovolné slovo z jazyka L(A). Potom platí: $ [\] \delta^*(q_0,u) = F \\ [\] \delta^*(q_0,u) \subseteq F \\ [\] \delta^*(q_0,u) \supseteq F \\ [\] \delta^*(q_0,u) \supseteq F $

nic (Tím že je nedeterministický se s jednim slovem muzeme dostat do dvou stavu, z kterych napr. jen jeden ze z F.)

Otázka 25: Nechť L je jazyk nad abecedou X. Potom L je rozpoznatelný konečným automatem právě tehdy, když: [] existuje pravá kongruence ~ konečného indexu na X* tak, že L je sjednocením jistých tříd rozkladu X*/~ [] existuje přirozené číslo n takové, že libovolné slovo $z \in L$, $ z >= n$ lze psát ve tvaru uvw,kde: $ uv = < n$, $1 = < v $ a pro všechna $i >= 0$ uv $^i w \in L$ [] existuje regulání výraz α tž. $[\alpha] = L$ [] existuje konečný automat A tž. $L(A) = L$
Odpověď: ACD (tzn. ekvivalence, A je Nerodova veta (je ekvivalence) B je Pumping lemma (jen implikace) -> neplati C i D plati na obe strany)
Otázka 26: Nechť L je jazyk nad abecedou X rozpoznatelný konečným automatem. Potom: [] existuje pravá kongruence ~ konečného indexu na X* tak, že L je sjednocením jistých tříd rozkladu X*/~ [] existuje přirozené číslo n takové, že libovolné slovo $z \in L, z >= n$ lze psát ve tvaru uvw,kde: $ vw = < n, 1 = < v $ a pro všechna $i >= 0$ uv $^i w \in L$ [] existuje regulání výraz α tž. $[\alpha] = L$ [] existuje konečný automat A tž. $L(A) = L$
Odpověď: ABCD (tzn. jen implikace. ACD plati (kdyz platilo u ekvivalence, tak bude platit i u implikace). B je to tucny jinak nez je v Pumping lemmatu, ale asi to nevadi)
Otázka 27: Nechť \sim^i je ekvivalence stavů konečného automatu po i krocích. Potom platí: $[\] p^{\sim^i} q \Rightarrow p^{\sim^{i+1}} q \\ [\] p^{\sim^{i+1}} q \Rightarrow p^{\sim^i} q \\ [\] p^{\sim^i} q \Rightarrow \forall x \in X \ \delta(p,x) \sim^i \delta(q,x) \\ [\] p^{\sim^{i+1}} q \Rightarrow \forall x \in X \ \delta(p,x) \sim^i \delta(q,x)$
Odpověď: BD (D plyne z B?)
Otázka 28: Dvousměrný konečný automat prijímá stejná slova jako nějaký [] deterministický konečný automat [] nedeterministický konečný automat
Odpověď: AB (podle slajdů: Jazyky přijímané dvousměrnými konečnými automaty jsou právě jazyky přijímané konečnými automaty.)
Otázka 29: Nechť A=(Q,X, δ,S,F) je nederministický konečný automat. Automat (Q,X, δ,S,Q-F) přijíma jazyk [] L(A) ^R [] X*-L(A) [] L(A) [] X*

_					v		,
0	М	n	^	١,	Δ	ď	•
v	u	w	v	v	c	u	

nic (B(doplněk) neplatí protoze je nedeterministický a jednim slovem se muzete dostat napriklad do dvou stavu q_1 a q_2 . Kdyz se stane, ze $q_1 \in F$ (konec) a zaroven plati, ze $q_2 \notin F$ (nekonec), tak to slovo bude i v druhem automatu, aby to totiž platilo, musel by být automat deterministický)

Otáz	L۵	20	١.
1 IT 27	v a	~1	

Nechť A=(Q,X, δ ,S,F) je **deterministický** konečný automat. Automat (Q,X, δ ,S,Q-F) přijíma jazyk [] L(A)^R [] X*-L(A) [] L(A)

Odpověď:

B (doplnek, DKA se prohozenim koncovych a nekoncovych stavu udela doplnek, neplati pro nedeterministicky KA)

Otázka 31:

Nechť máme daný následující automat A. Do jakých stavů se tento automat může dostat v **přijímacím výpočtu nějakého slova L(A)** po přečtení dvou písmen?

[]A

[]B []C

[]D

Odpověď:

ACD (Pro nějaké přijímané slovo provedu výpočet a ve druhém kroku (po druhém přečteném písmenu) se kouknu v jakých jsem stavech. Odpovědět mám jaké všechny možné stavy to můžou být. B je mrtvy stav - jakmile se do nej dostanu, uz nemuze byt to slovo elementem L(A), cili do stavu B se nemuzu dostat **prijimacim vypoctem**.)

Otázka 32:

Nechť máme daný následující automat P. Po přečtení slova baab se tento automat může dostat do stavu

[]A

[]B

[]C

[]D

Odpověď:

BD (chytak je v tom, ze **precteni slova neznamena jeho prijeti**, takze automat jen tuhle sekvenci baab zpracuje nehlede na stav kam se dostane. staci se kouknout kam se da dostat na B ktere je posledni a zda se do nich da dostat pres sekvenci baab)

Otázka 33:

Nechť existuje isomofismus mezi dvěma deterministickými konečnými automaty. Potom:

[] oba automaty mají stejný počet stavů

[] oba automaty mají stejný počet koncových stavů

[] oba automaty mají stejný počet počátečních stavů

[] stavové diagramy obou automatů mají stejný počet hran

Odpověď:

ABCD (izomorfismus = přejmenování stavů)

Otázka 34:

Nechť existuje **homomorfismus** mezi dvěma **deterministickými** konečnými automaty. Potom:

[] oba automaty mají stejný počet stavů

[] oba automaty mají stejný počet koncových stavů

[] oba automaty mají stejný počet počátečních stavů

[] stavové diagramy obou automatů mají stejný počet hran

Odpověď:

C (př. homomorfismu:

C plati protože deterministicke mají 1 pocatecni stav)

Otázka 35:

Nechť existuje homomorfismus mezi dvěma nedeterministickými konečnými automaty. Potom	1:
[] oba automaty mají stejný počet stavů	

- [] oba automaty mají stejný počet koncových stavů
- [] oba automaty mají stejný počet počátečních stavů
- [] stavové diagramy obou automatů mají stejný počet hran

Odpověď:

nic (si zoberies 2 nedet rovnake, a do jedneho zrusis jeden vstupny stav a vlozis tam lambda prechod z ineho vstupneho stavu do toho kde si ten vstup zrusil, a mas ekvivalentne automaty a maju rozny pocet vstupov)

Otázka 36:

Nechť A1=(Q1,X, δ1,q1,F1) a A2=(Q2,X, δ2,q2,F2) jsou deterministické konečné automaty. Potom automat A=(Q,X, δ ,q,F) , kde Q=Q1xQ2, q=(q1,q2), δ ((p1,p2),x)=(δ 1(p1,x), δ 2(p2,x)), F=F1xF2 přijímá jazyk:

- [] $L(A_1) \cup L(A_2)$
- [] $L(A_1) \cap L(A_2)$
- $[] L(A_1) L(A_2)$
- [] $L(A_1)$. $L(A_2)$

Odpověď:

Otázka 37:

Nechť A1=(Q1,X, δ 1,q1,F1) a A2=(Q2,X, δ 2,q2,F2) jsou konečné automaty. Potom automat A=(Q1xQ2,X, δ ,(q1,q2), Q1xF2) , kde $\delta((p1,p2),x)=(\delta 1(p1,x),\delta 2(p2,x))$ přijímá jazyk:

- [] L(A₁)
- [] L(A₂)
- $[] L(A_1) L(A_2)$
- $[] L(A_2) L(A_1)$

Odpověď:

B (je to jen jazyk L2, je to videt z koncovych stavu Q1xF2 je to sice kartezsky soucin tech stavu, ale vzdy je tam pouze stavy z F2 takze to prijima vsechny slova z A2 a nic vic. Muze to prijimat i nektera slova z A1, ale to jen kdyz jsou i v A2.)

Otázka 38: Nechť A=(Q,X,Y, δ ,q0,Z,F) je automat kde Q,X a Y jsou konečné neprázné množiny, q $0 \in Q$, $Z \in Y$,F $\subseteq Q$ a $\delta(Qx(X \cup \{\lambda\})xY) > P_{FIN}(QxYNC)$. Potom tento automat přijímá právě jazyky rozpoznávané [] deterministický zásobníkový automaty [] (nedeterministický) zásobníkový automaty [] deterministický konečný automaty [] nedeterministický konečný automaty
Odpověď: CD (není zasobnikovy! není tam * (tam kde jsem napsal <u>NIC</u> − to tam normalne v pisemce není ⊕) je jako klasicky konecny)
Otázka 39: Řekneme, že dva stavy p a q konečného automatu A=(Q,X, δ ,S,F) jsou ekvivalentní právě tehdy kdyz: [] $\forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in L(A) \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in L(A) \delta^*(p,w) = \delta^*(q,w)$
Odpověď: nic (A – neplatí, protože automat je nedeterministický! C neplatí, představ si, že by pro slova, co NEPATŘÍ do L, platila negace uvedené závislosti. No pak by muselo to slovo patřit do jazyka, protože 0 <=> 1 NEBO 1 <=> 0, což je blbost.)
Otázka 40: Řekneme, že dva stavy p a q konečného automatu A=(Q,X, δ ,q0,F) jsou ekvivalentní právě tehdy kdyz: [] $\forall w \in X^* \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in X^* \delta^*(p,w) = \delta^*(q,w)$ [] $\forall w \in L(A) \delta^*(p,w) \in F \Leftrightarrow \delta^*(q,w) \in F$ [] $\forall w \in L(A) \delta^*(p,w) = \delta^*(q,w)$
Odpověď: A (neni to ta varianta s $\forall w \in L(A)$, protoze slovo nemusi byt z jazyka a presto ho automat precte a dostane se do stavu treba neprijimaciho, ale ten ma take ekvivalentni stav, idkyz neni prijimaci. Proto to plati pro vsechna mozna slova z X^* , definice ze slajdu)
Otázka 41: Nechť A=(Q,X, δ ,q0,F) je deterministický konečný automat přijímající neprázdný jazyk a stav p \in Q je ekvivalentní s q0. Potom platí: [] \forall w \in X* δ *(p,w) \in F [] \forall w \in L(A) δ *(p,w) \in F [] \exists w \in X* δ *(p,w) \in F [] \exists w \in L(A) δ *(p,w) \in F
Odpověď: BCD
Otázka 42: Nechť A je deterministický konečný automat mající mezi všemi deterministickými konečnými automaty přijímajícími jazyk L(A) nejmenší počet stavů. Potom: [] A je redukovaný [] A nemusí být redukovaný [] A může obsahovat ekvivalentní stavy

[] A nemůže obsahovat ekvivalentní stavy

AD (A- Ve tríde navzájem ekvivalentních konecných automatu existuje "minimální" automat. D- plyne z A – def. redukovaneho aut.)
Otázka 43: Pro dva ekvivalentní konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky [] mají stejný počet koncových stavů
Odpověď: C (za slajdu: ríkáme, že konecné automaty A a B jsou ekvivalentní, jestliže rozpoznávají stejný jazyk, tj. L(A)=L(B) B neplati protože to asi mysli jako homomorfismus na obe strany)
Otázka 44: Pro dva ekvivalentní redukované konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky [] mají stejný počet koncových stavů
Odpověď: ABCD (a) u redukovaných je to samé b) když jsou izomorfni tak tohle také c) z definice ekvivalence d) plyne z a)
Otázka 45: Pro dva ekvivalentní deterministické konečné automaty platí že: [] jsou izomorfní [] existuje mezi nimi homomorfismus [] rozpoznávají stejné jazyky [] mají stejný počet koncových stavů
Odpověď: C (z definice ekvivalence)
Otázka 46: Nechť A=(Q,X, δ ,q $_0$,F) je automat, kde Q a X jsou konečné neprázdné množiny, q $_0$ \in Q, F \subseteq Q a $\delta\subseteq$ (QxXxQ). Potom se jedná o [] deterministický konečný automat [] nedeterministický konečný automat [] (nedeterministický) zásobníkový automat [] deterministický zásobníkový automat
Odpověď: B (zasobnikovy neni nema zasobnikovou abecedu a je nedeterministicky podle te prechodove funkce Deterministický automat to být nemůže, zkusme zvolit za delta prázdnou množinu, pak je to nedeterministický

automat.)

Otázka 47: Jazyky generované lineárními gramatikami jsou [] jazyky regulární [] nadmnožinou jazyků regulárních [] podmnožinou jazyků regulárních [] nemají k regulárním jazykům jasně definovaný množinový vztah
Odpověď: B (protoze podle vety Jazyky generovane levou linearni gramatikou jsou prave regularni jazyky. To plati i pro Jazyky generovane levou linearni gramatikou. Obecna lin. gramatika ale nemusi generovat regularni jazyk. Napr.: {0^n1^n n>=1} neni regularni jazyk, ale je linearni (S -> 0S1 01))
Otázka 48: Regulární jazyky jsou generovány právě [] levě linárními gramatikami [] pravě lineárními gramatikami [] gramatikami, které mají na pravé straně maximálně jeden neterminál [] gramatikami, které mají na pravé straně maximálně jeden terminál
Odpověď: AB (AB – ze slidu, NE obema soucasne, nemuzou se kombinovat C –platilo-by ale chybi tam este "Neterminální symbol je buď jen na začátku, nebo jen na konci pravé strany všeci pravidel gramatiky.", D- to není asi nic)
Otázka 49: Nechť G je redukovaná bezkontextová gramatika. Potom platí: [] každá bezkontextová gramatika generující jazyk L(G) obsahuje stejně nebo více neterminálních symbolů [] každá redukovaná bezkonetextová gramatika generující jazyk L(G) obsahuje stejně nebo více neterminálních symbolů [] každá bezkontextová gramatika generující jazyk L(G) je ekvivalentní s G
Odpověď: C (Priklad: G1: S -> 0S1 lambda G2: S -> 0A lambda A -> S1
G1 i G2 generuji stejny jazyk. A,B: G2 je redukovana, ale stejne G1 obsahuje min neterminalu -> neplati C kdyz generuji stejny jazyk, jsou ekvivalentni)
Otázka 50: Nechť G_1 =(N_1 , T , S_1 , P_1) a G_2 =(N_2 , T , S_2 , P_2) jsou dvě kontextové gramatiky s disjunktními množinami neterminálů (N_1 , N_2) a S je nový neterminál. Potom pro jazyk gramatiky G =(N_1 \cup N_2 \cup { S }, T , S , P_1 \cup P_2 \cup { S -> S_1 S_2 }) platí: [] $L(G) = L(G_1)$. $L(G_2)$ [] $L(G) \subseteq L(G_1)$. $L(G_2)$ [] $L(G) \supseteq L(G_1)$. $L(G_2)$

C (Treba si vsimnut, ze i ked su mnoziny neterminalov disjunktne, mnozina terminalov T je rovnaka, takze rozhranie S1S2 mozu pretransformovat pravidla z P1 i z P2. Napr pravidlo z P1 moze spracovat i zaciatok S2.)

Otázka 51: Nechť G_1 =(N_1 , T , S_1 , P_1) a G_2 =(N_2 , T , S_2 , P_2) jsou dvě bezkontextové gramatiky s disjunktními množinami neterminálů a S je nový neterminál. Potom pro jazyk gramatiky G =($N_1 \cup N_2 \cup \{S\}$, T , S , $P_1 \cup P_2 \cup \{S->S_1S_2\}$) platí: [] $L(G) = L(G_1)$. $L(G_2)$ [] $L(G) \subseteq L(G_1)$. $L(G_2)$ [] $L(G) \subseteq L(G_1)$. $L(G_2)$ [] $L(G) \subseteq L(G_1)$. $L(G_2)$
Odpověď: ACD (ide o BKJ a tam plati uzavrenost na zretazenie a robi sa priamo tak ako to tam ma na slidov tam to je tiez jako 34., ale mluvi se o kontextovy gramatice, tzn. ze se prepisuji jen neterminaly, NE neterminaly s terminaly (v tom byl ve 34. otazce problem, protoze tim mohly vzniknout i jiny slova nez pri zretezeni))
Otázka 52: Gramatika (N,T,S,P) obsahující pouze pravidla tvaru X->u, kde X∈N a u∈T* je: [] regulární [] bezkontextová [] kontextová [] monotóní
Odpověď: AB (A - vyhovuje definici, B- vyhovuje definici, C - nevyhovuje definici-napravo muze byt lambda, D- nevyhovuje definici-napravo muze byt lambda)
Otázka 53: Nechť G=(N,T,S,P) je generativní bezkontextová gramatika. Potom listy derivačního stromu mohou být ohodnoceny: [] slovy z T* [] slovy z N* [] symboly z T [] symboly z N
Odpověď: C (Spravne vsak melo byt pouze Vt, Bartak to mysli, ze vsechny prvky muzou byt v listu. Chtel jen V_t aby se ukazalo, ze clovek vi, ze tam muze v kazdem listu byt bud jeden terminal nebo lambda a to ostatni bych tam nedavala, protoze lambda je dost tak zakerna, nekdy se pise uplne zvlast mimo V_n i V_t)
Otázka 54: Nechť G=(N,T,S,P) je generativní bezkontextová gramatika. Potom vnitřní vrcholy derivačního stromu jsou ohodnoceny: [] slovy z T* [] slovy z N* [] symboly z T [] symboly z N
Odpověď: D (jde u vrcholy uvnitr stromu, ne listy)
Otázka 55: Derivační strom libovolné bezkontextové gramatiky G, který dává slovo w, popisuje [] všechny možné derivace slova w v G [] všechny možné levé derivace slova w v G [] všechny možné pravé derivace slova w v G

nic (BKG muzou byt nejednoznacne a muzou mit ruzne stromy => ruzne (leve/prave) derivace)

Příklad:

 $S \rightarrow S+S \mid a$ slovo a+a+a

Otázka 56:

Libovolný bezprefixový bezkontextový jazyk může být přijímán

- [] zásobníkovým automatem koncovým stavem
- [] zásobníkovým automatem prázdným zásobníkem
- [] deterministickým zásobníkovým automatem koncovým stavem
- [] deterministickým zásobníkovým automatem prázdným zásobníkem

Odpověď:

ABCD (BezPref jazyk se rozpoznava mam dojem prazdnym zasobnikem deterministickeho automatu, je to podmnozina jazyku ktere se rozpoznavaji det. s konecnym stavem. A protoze determinismus je slabsi nez nedeterminismus tak by pak meli platit i ty dva nedeterministicke varianty?)

Otázka 57:

Libovolný jazyk generovaný bezkontextovou gramatikou lze přijmout

- [] konečným automatem
- [] zásobníkovým automatem
- [] lineárně omezeným automatem
- [] Turingovým strojem

Odpověď:

BCD (BKJ je prijimana ZA a TJ je nadmnozinou ZA)

Otázka 58:

Nechť A a B jsou dva libovolné zásobníkové automaty přijímající slova prázdným zasobníkem. Potom jazyk N(A)∩

N(B) je přijímán

- [] zásobníkovým automatem
- [] konečným automatem
- [] Turingovým strojem
- [] je mimo Chomského hierarchii

Odpověď:

C (no lebo bezkontextove nie su uzavrene na prienik, takze to moze byt BKJ ale aj, a ta je prijimana LOA co je TJ)

Otázka 59:

Determinismus a nedeterminismus vedou na stejné třídy přijímaných jazyků u

- [] konečných automatů
- [] zásobníkových automatů
- [] Turingových strojů

Odpověď:

AC (u KA se použije podmnožinová konstrukce a u TS se to simuluje pomocí prohledávání do šířky)

Otázka 60:

Nedeterminismus zvysi silu u

- [] konečných automatů
- [] zásobníkových automatů
- [] Turingových strojů

Odpověď: B (ZA, kde se rozhoduje, zda nečte slovo nebo může přejít jedním stavem do více)
Otázka 61: Lineárně omezené automaty přijímají jazyky přijímané právě [] Turingovými stroji [] Mooreovými stromi [] dvoucestnými konečnými automaty [] nedeterministickými konečnými automaty
Odpověď: nic (A – ne, lebo tam je slovicko prave a TJ prijimaju viac ako LOA, BCD – jsou jen KA a prijimaji vic jazyku)
Otázka 62: Pokud má zásobníkový automat prázdný zásobník, potom: [] čte pouze vstup [] mění pouze stavy řídící jednotky [] končí výpočet [] přidá do zásobníku počáteční zásobníkový symbol
Odpověď: C (ze slajdu: Kdy koncí výpocet zásobníkového automatu: – zásobník je prázdný – není definována žádná instrukce)
Otázka 63: Chomského normální forma gramatiky (N,T,S,P) vyžaduje pravidla tvaru:
Odpověď:
Definice: Ríkáme, že gramatika je v Chomského normální formě, jestliže všechna pravidla mají tvar: $X \to YZ$ nebo $X - a$, kde $a \in V_T$, $X,Y,Z \in V_N$.
A- chujovina, Greibachové normální forma? B- primo definice Chomského normální formy C- tohle ne D- w mohlo byt i lambda , takze to neplati
Otázka 64: Průnik libovolného bezkontextového jazyka a libovolného regulárního jazyka bude vždy: [] prázdný [] regulární jazyk [] bezkontextový jazyk [] rekurzivne spocetny jazyk [] bezprefixový jazyk

Odpověď: CD (napr. $0^i 1^i$ je BKJ, $0^i 1^j$ je RJ, jejich prunik je opet $0^i 1^i$, tedy BKJ, rekurzivně spočetný je nadmnožina)

Nechť G=(N,T,S,P) je monotóní generativní gramatika a (u \rightarrow v) \in P je její pravidlo. Potom platí: [] u <= v [] v <= u [] u= $\alpha\beta\gamma$, $\alpha,\gamma\in(N\cup T)^*$, $\beta\in N$ [] $v=\alpha\beta\gamma$, $\alpha,\gamma\in(N\cup T)^*$, $\beta\in N$
Odpověď: AC (A- přimo z definice monotoní gramatiky, B- obracene tedy blbost, C- rika, ze na leve strane kazdeho pravidla je aspon 1 neterminal ta moznost plati, vzdycky musi byt nalevo neterminal dle definice gramatiky D- posledni moznost taky blbost (to by ta gramatika negenerovala zadny terminalni slovo :))
Otázka 66: Jaké jazyky přímá PRÁVĚ Turingův stroj? [] typu 0 [] rekurzivně spočetné [] rekurzivní [] všechny
Odpověď: AB ("prijima prave jazyky typu 0=(rek.spocetne)" znamena, ze neprijima jazyky obecnejsi nez typ 0 (a obecnejsi existuji).)
Otázka 67: Nedeterministické Turingovy stroje přijímají právě: [] rekurzivně spočetné jazyky [] rekurzivní jazyky [] jazyky typu 0 [] bezkontextové [] všechny jazyky
Odpověď: AC (Ze slidu: NTS prijímají práve rekurzivne spocetné jazyky=(typu 0).)
Otázka 68: Nedeterministické Turingovy stroje přijímají všechny: [] rekurzivně spočetné jazyky [] rekurzivní jazyky [] jazyky typu 0 [] všechny jazyky
Odpověď: ABC (Ze slidu: NTS prijímají práve rekurzivne spocetné jazyky=(typu 0).)
Otázka 69: Doplněk libovolného rekurzivně spočetného jazyka je [] rekurzivně spočetný jazyk [] rekurzivní jazyk [] prázný jazyk [] regulární jazyk

nic (Doplněk: $-L = \{ w \mid w \notin L \} = X^* - L$,

jediny co by prichazelo v uvahu – moznost A ale to by puvodni jazyk musel byt take rekurzivni (viz wikipedia) coz obecne nemusi byt)

Otázka 70:

Doplněk libovolného rekurzivního jazyka je [] rekurzivně spočetný jazyk

[] rekurzivní jazyk

[] prázný jazyk

[] regulární jazyk

Odpověď:

AB (

A-Veta (Postova): Jazyk L je rekurzivní, práve když L a

doplnek L jsou rekurzivne spocetné.

B- mame jazyk L a jeho doplnek –L , doplnek -L je L

Postova: L je rekurzivni => L rekurzivne spocetny, -L je rekurzivne spocetny

-L je rekurzivne spocetny, L je rekurzivne spocetny => -L je rekuzivni

CD-tohle neplati

)

Otázka 71:

Problém zastavení (halting problem) říká, že:

[] existuje Turingův stroj, který se zastaví

[] neexistuje Turingův stroj, který se zastaví

[] existuje Turingův stroj, který o jiném TS rozhodne, zda se zastaví

[] neexistuje Turingův stroj, který o jiném TS rozhodne, zda se zastaví

Odpověď:

D (ve slajdech se rika ze to znamena, ze se neda algoritmicky rozhodnout pro dany TS a jeho komfiguraci, zda bude jeho vypocet konecny. Na kterou z tech odpovedi to naroubovat si nejsem uplne jisty, rekl bych ze ta posledni?)

Otázka 72:

Výpočet nedeterministického Turingova stroje lze simulovat Turingovým strojem:

- [] prohledáváním do hloubky
- [] prohledáváním do šířky
- [] prohledáváním s navrácením (backtracking)
- [] nelze simulovat

Odpověď:

B (ze slidu:

TS modeluje všechny výpočty NTS prohledáváním do šířky

- Na pásce můžeme mít všechny konfigurace v hloubce k (páska je nekonečná), nebo
- můžeme generovat "popis" výpočtu (posloupnost pravidel) a vždy k němu dopočítat výslednou konfiguraci

Otázka 73:

Nechť A je třída deterministických bezkontextových jazyků a B je třída bezprefixovýxh bezkontextových jazyků. Potom mezi těmito třídami platí vztah:

- [] A=B
- []A⊂B
- []A⊇B
- [] A≠B

Odpověď:

CD (

Otázka 74:

Ak ma gramatika G najmensi pocet stavov ako ktorakolvek ina gramatika generujuca ten isty jazyk potom je:

- a) redukovana
- b) nemusi byt redukovana
- c)?
- d)?

Otázka 75:

Nechť A je konečný automat s **n** stavy, potom délka slova minimální délky (pokud existuje), které příjmá konečný automat A je

- a) menší než n stavů
- b) alespoň n stavů
- c) maximálně n stavů
- d) více než n stavů

Odpověď:

AC

Otázka 76:

Nechť $G_1=(N_1,T,S_1,P_1)$ a $G_2=(N_2,T,S_2,P_2)$ jsou dvě **regulární** gramatiky s disjunktními množinami neterminálů (N1,N2) a S je nový neterminál. Potom pro jazyk gramatiky $G=(N_1\cup N_2\cup \{S\},T,S,P_1\cup P_2\cup \{S->S_1S_2\})$ platí:

- $[] L(G) = L(G_1) . L(G_2)$
- [] $L(G) \neq L(G_1) \cdot L(G_2)$
- [] $L(G) \subseteq L(G_1) \cdot L(G_2)$
- $[\]\ L(G)\supseteq L(G_1)\ .\ L(G_2)$

Odpověď:

ACD

Otázka 77:

Nechť L1 a L2 jsou dva libovolné jazyky ze stejné třídy Chomského hierarchie. Potom L1 \cup L2 patří:

- a) do stejné třídy jako L1 a L2
- b) do stejné třídy jazyků jako leží průnik L1 a L2
- c) je mimo Chomského hierarchii
- d) leží v jiné třídě

Odpověď:

Α