Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval

from CVPR 2018

abstract

本文采用2个对抗网络来影响不同模态之间的相关性,并将标签作为训练样本,放入生成器生成对应的语义来供其他网络学习。本文采用multi-label的形式来表述label与对象之间的关系(即一个对象可能有多个label)。

network and loss

本文为了说明结果,采用了图像模态和文本模态的双模态分类。网络结构如上图,其中包含了两个特征提取网络:图像特征提取网络ImgNet与文本特征提取网络TxtNet。以及用来将label用于语义生成的labNet,还有结合ImgNet与labNet输出的辨别器D1,和结合TxtNet输出与LabNet输出的辨别器D2。

network struct

网络结构采用了目前CMH常见的网络模型。 ImgNet采用CNN-F模型,将最后的全连接层改为hash输出层,结构如下

Layer	Configuration
Conv1	64×11×11 s=4 pad=0 LRN, ×2maxpool
Conv2	256×5×5 s=1 pad=2 LRN, ×2maxpool
Conv3	256×3×3 s=1 pad=1
Conv4	256×3×3 s=1 pad=1
Conv5	256×3×3 s=1 pad=1 ,×2maxpool
Fc6	4096 dropout
Fc7	4096 dropout
Fc8	512 dropout
output	N

这里采用了其他论文中的描述,但与实际有些许不服,即最后fch8应为N,这里的N为hash code长度+分类标签个数,后续相同。 TxtNet使用了融合标签(MS),每一层MS由一个average pooling + 1×1的conv构成,结构如下

Layer	Configuration
MS1	Pooling kernel=1
MS2	Pooling kernel=2
MS3	Pooling kernel=3
MS4	Pooling kernel=5
MS5	Pooling kernel=10
Fc1	4096
Fc2	512
Output	N

特征提取网络(ImgNet and TxtNet)均采用relu作为激活函数 LabNet采用全连接层的方式,即(label -> 4096 -> 512 -> N),采用sigmoid作为激活函数 对抗网络D(D1,D2相同)也是采用全连接层的方式,即(feature -> 4096 -> 4096 -> 1),采用tanh作为激活函数

loss

首先我们定义两个实例的相似度 $S_{i,j}$,由于是多标签情况,所以只要两个实例有一个共同的标签,即表示两个实例是相似的, $S_{i,j}=1$,否之 $S_{i,j}=0$. 其次,labNet的输入标签我们称为inputLabel,输出的分类标签label,其中label的维度在1×N ,与inputLabel的表示含义及其维度不同

我们用 F^l 表示 LabNet的特征, F^v 表示 ImgNet输出的特征, F^t 表示 TxtNet输出的特征 我们用 H^l 表示 LabNet的 hash, H^v 表示 ImgNet输出的 hash, H^t 表示 TxtNet输出的 hash 对于 hash的学习,我们定义 $B^{v,t} \in \{-1,1\}^K$,这里 K为 hash的长度

semantic generation loss

$$\min_{B^{l},\theta^{l},\hat{L}^{l}} \mathcal{L}^{l} = \alpha \mathcal{J}_{1} + \gamma \mathcal{J}_{2} + \eta \mathcal{J}_{3} + \beta \mathcal{J}_{4}$$

$$= -\alpha \sum_{i,j=1}^{n} \left(S_{ij} \Delta_{ij}^{l} - \log \left(1 + e^{\Delta_{ij}^{l}} \right) \right)$$

$$-\gamma \sum_{i,j=1}^{n} \left(S_{ij} \Gamma_{ij}^{l} - \log \left(1 + e^{\Gamma_{ij}^{l}} \right) \right)$$

$$+ \eta \left\| H^{l} - B^{l} \right\|_{F}^{2} + \beta \left\| \hat{L}^{l} - L \right\|_{F}^{2}$$
s.t. $B^{l} \in \{-1, 1\}^{K}$
(3)

其中
$$\Delta_{ij}^l=rac{1}{2}(F_{*i}^l)^T(F_{*j}^l), \Gamma_{ij}^l=rac{1}{2}(H_{*i}^l)^T(H_{*j}^l), \hat{L}^l$$
表示预测的分类 $label$

这里的 F^l 为labelNet的fc2层的输出结果,即 $F^l \in R^{1 imes 512}$

 H^l 为labelNet的输出结果的前K部分,即输出的 $hash\ code$

这里将该部分的loss分为4个部分,分别为J1相似实例间的语义loss,J2相似实例间的hashLoss,J3hash的学习loss,J4LabNet的分类loss。其中J1,J2为cross-modal的NLLloss定义。

feature loss

由于不同的模态采用不同的网络训练,所以我们用labNet生成的特征与两个网络中的特征进行相关联,这里并没有将输出进行融合,而是将接近输出层的全连接层的输出结果进行融合,这样既保证了特征的提取的有效性,又方便BP针对性的更新网络。

$$\min_{B^{v,t},\theta^{v,t}} \mathcal{L}^{v,t} = \alpha \mathcal{J}_1 + \gamma \mathcal{J}_2 + \eta \mathcal{J}_3 + \beta \mathcal{J}_4$$

$$= -\alpha \sum_{i,j=1}^n \left(S_{ij} \Delta_{ij}^{v,t} - \log \left(1 + e^{\Delta_{ij}^{v,t}} \right) \right)$$

$$-\gamma \sum_{i,j=1}^n \left(S_{ij} \Gamma_{ij}^{v,t} - \log \left(1 + e^{\Gamma_{ij}^{v,t}} \right) \right)$$

$$+ \eta \|H^{v,t} - B^{v,t}\|_F^2 + \beta \|\hat{L}^{v,t} - L\|_F^2$$
s.t. $B^{v,t} \in \{-1,1\}^K$
(4)

其中
$$\Delta_{ij}^l = rac{1}{2} (F_{*i}^l)^T (F_{*j}^{v(t)}), \Gamma_{ij}^l = rac{1}{2} (H_{*i}^l)^T (H_{*j}^{v(t)}), \hat{L}^{v(t)}$$
表示特征网络预测的分类 $label$

这里的公式表示和上述相同,这里通过乘积将labNet的输出与特征提取网络的特征进行相关,利用labNet的自监督 学习的结果作为可信的标签

adversarial loss

由于不同模态之间的间隔,我们通过labNet进行缩短间隔,那么用于缩短间隔的部分就是分辨网络D 我们定义两个实例的hash的Hamming距离为dis(bi,bj)=1/2(K-<bi,bj>),其中<bi,bj>为两个hash向量的内积运算,如果两个hash之间相似,那么内积的结果应该接近K(hash的长度,b中只包含-1和1两个值)

$$\min_{\substack{\theta^{\star,l} \\ adv}} \mathcal{L}_{adv}^{\star,l} = \sum_{i=1}^{2 \times n} \left\| D^{\star,l}(x_i^{\star l}) - y_i^{\star,l} \right\|_2^2, \ \star = v, t$$
 (5)

其中 $x_i^{\star,l}$ 为图像 (文本)语义与 labNet语义的共同语义特征

$$y_i^{\star,l} = egin{cases} 0 & if\ labels\ for\ image(text) \ 1 & if\ labels\ for\ inputLabel \end{cases}$$

这里对于每个D, 使得D的输出接近于 真实的label的来源

optimization

本文中包含了3个hash code, 但是为了训练, 我们将三个hash code结合起来, 称为B, 定义如下

$$B = sign(H^v + H^t + H^l)$$

于是类似于GAN的loss,我们定义我们的总体损失函数为 生成器的loss-辨别器的loss即

$$\mathcal{L}_{gen} = \mathcal{L}^v + \mathcal{L}^t + \mathcal{L}^l$$

$$\mathcal{L}_{adv} = \mathcal{L}_{adv}^v + \mathcal{L}_{adv}^t$$
(6)

If we put them together, we can obtain:

$$(B, \theta^{v,t,l}) = \underset{B,\theta^{v,t,l}}{\operatorname{argmin}} \mathcal{L}_{gen}(B, \theta^{v,t,l}) - \mathcal{L}_{adv}(\hat{\theta}_{adv})$$

$$\theta_{adv} = \underset{\theta_{adv}}{\operatorname{argmax}} \mathcal{L}_{gen}(\hat{B}, \hat{\theta}^{v,t,l}) - \mathcal{L}_{adv}(\theta_{adv})$$

$$s.t. \quad B \in \{-1, 1\}^{K}$$

$$(7)$$

其中 \hat{B} 表示B的单位向量

由于参数B的非连续性,我们采用分部的方式进行参数优化

Algorithm 1 Pseudopod showing the optimization of our SSAH

```
Require: Image set V; Text set T; Label set L;
Ensure: Optimal code matrix B
Initialization
Initialize parameters: \theta^{v,t,l}, \theta^{v,t}_{adv}, \alpha, \gamma, \eta, \beta
learnrate: \mu, mini-batch size: N^{v,t,l} = 128, maximum iteration number: T_{max}.
repeat
for t iteration do
Update \theta^l by BP algorithm:
\theta^l \leftarrow \theta^l - \mu \cdot \nabla_{\theta^l} \frac{1}{n} \left( \mathcal{L}_{gen} - \mathcal{L}_{adv} \right)
Update the parameter \theta^{v,t} by BP algorithm:
\theta^* \leftarrow \theta^* - \mu \cdot \nabla_{\theta^*} \frac{1}{n} \left( \mathcal{L}_{gen} - \mathcal{L}_{adv} \right), \star = v, t
Update \theta^*_{adv} by BP algorithm:
\theta^*_{adv} \leftarrow \theta^*_{adv} - \mu \cdot \nabla_{\theta^*} \frac{1}{n} \left( \mathcal{L}_{(gen)} - \mathcal{L}_{adv} \right), \star = v, t
end for
Update the parameter B by
B = sign(H + F + G)
until convergence
```

- 2. 此时我们固定labNet的参数,通过labNet的输出来同样采用BP优化lmgNet和TxtNet
- 3. 最后我们固定labNet、imgNet、TxtNet的参数,利用他们的输出来更新俩个分辨器的参数
- 4. 重复1-3步,直到训练完整个数据集
- 5. 最后,当我们将所有的数据集训练后,我们根据训练后ImgNet、labNet、TxtNet的最终输出(hash code)来更新我们的B(binary code),然后进入下一次epoch重复上述1-4步

对于优化器的选择,本文选择了SGD(随机梯度下降)

training

hyperparameter

在训练中,作者对于生成器loss中的4个超参数进行测试,得出了最好的结果为

$$\alpha = \gamma = 1$$
 $\eta = \beta = 10^{-4}$ $lr = 10^{-4}to10^{-8}$

performance

Table 2: MAP. The best accuracy is shown in boldface. The baselines are based on CNN-F features.

TASK	Method	Flickr-25K		NUS-WIDE			MS COCO			
		16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits
$I{\rightarrowtail} T$	CVH [14]	0.557	0.554	0.554	0.400	0.392	0.386	0.412	0.401	0.400
	STMH [38]	0.602	0.608	0.605	0.522	0.529	0.537	0.422	0.459	0.475
	CMSSH [2]	0.585	0.584	0.572	0.511	0.506	0.493	0.512	0.495	0.482
	SCM [44]	0.671	0.682	0.685	0.533	0.548	0.557	0.483	0.528	0.550
	SePH [16]	0.657	0.660	0.661	0.478	0.487	0.489	0.463	0.487	0.501
	DCMH [12]	0.735	0.737	0.750	0.478	0.486	0.488	0.511	0.513	0.527
	OURS	0.782	0.790	0.800	0.642	0.636	0.639	0.550	0.558	0.557
$T{\rightarrowtail}\ I$	CVH [14]	0.557	0.554	0.554	0.372	0.366	0.363	0.367	0.359	0.357
	STMH [38]	0.600	0.606	0.608	0.496	0.529	0.532	0.431	0.461	0.476
	CMSSH [2]	0.567	0.569	0.561	0.449	0.389	0.380	0.429	0.408	0.398
	SCM [44]	0.697	0.707	0.713	0.463	0.462	0.471	0.465	0.521	0.548
	SePH [16]	0.648	0.652	0.654	0.449	0.454	0.458	0.449	0.474	0.499
	DCMH [12]	0.763	0.764	0.775	0.638	0.651	0.657	0.501	0.503	0.505
	OURS	0.791	0.795	0.803	0.669	0.662	0.666	0.537	0.538	0.529

Table 3: MAP. The best accuracy is shown in boldface. The baselines are based on vgg19 features.

TASK	Method	Flickr-25K			NUS-WIDE			MS COCO		
		16 bits	32 bits	64 bits	16 bits	32 bits	64 bits	16 bits	32 bits	64 bits
I→ T	CVH [14]	0.557	0.554	0.554	0.405	0.397	0.391	0.441	0.428	0.402
	STMH [38]	0.591	0.606	0.613	0.471	0.516	0.549	0.445	0.482	0.502
	CMSSH [2]	0.593	0.592	0.585	0.508	0.506	0.495	0.504	0.495	0.492
	SCM [44]	0.685	0.693	0.697	0.497	0.502	0.499	0.498	0.556	0.565
	SePH [16]	0.709	0.711	0.716	0.479	0.501	0.492	0.489	0.502	0.499
	DCMH [12]	0.677	0.703	0.725	0.590	0.603	0.609	0.497	0.506	0.511
	OURS	0.797	0.809	0.810	0.636	0.636	0.637	0.550	0.577	0.576
	CVH [14]	0.557	0.554	0.554	0.385	0.379	0.373	0.413	0.402	0.388
	STMH [38]	0.600	0.613	0.616	0.472	0.526	0.550	0.446	0.478	0.506
	CMSSH [2]	0.585	0.570	0.569	0.377	0.389	0.388	0.417	0.420	0.416
$T \rightarrowtail I$	SCM [44]	0.707	0.714	0.719	0.567	0.583	0.597	0.492	0.556	0.568
	SePH [16]	0.722	0.723	0.727	0.487	0.493	0.488	0.485	0.495	0.485
	DCMH [12]	0.705	0.717	0.724	0.620	0.634	0.643	0.507	0.520	0.527
	OURS	0.782	0.797	0.799	0.653	0.676	0.683	0.552	0.578	0.578

可以看出本文的SSAH结构比其他方法有明显改善,并且通过对于ImgNet的不同结构发现Vgg19的特征提取效果比CNN-F效果更好。

conclusion

本文将label作为输入之一,并且利用label的自监督学习生成的语义特征与其他模态的语义提取进行融合,利用对抗学习使得各模态与label的距离减小,利用label作为标准,拉近不同模态之间的距离。

缺点在于这里采用的mulit-label,该情况下的相似矩阵的设计过于简单,并且不能明显表明在有共同标签的对象间,标签数多的对象之间的相似性对比。

improvement

结合最近的DCMH方向的论文,本文可以对生成的hash code再次进行聚类,增加不同分类下hash code间的 hamming距离 同时相似函数定义可以结合相关论文进行改进。