Credit Card Approval Prediction

R. Bimo Mandala Putra

Ways Bank Make Money

- Interest income
- Capital markets income
- Fee-based income

Interest Income

Problem

By assuming 1 person creditor lending Rp 1.000.000 with interest 5%.

Interest: 5% Profit: Rp 50.000

Target & Goals

Data Pre-Processing & Analysis

438.557 Rows 18 Columns

Duplicate data : 12 Rows

Missing Values

134203 Rows on Occupation type

1.048.574 Rows 3 Columns

Duplicate data : 0 Rows

Missing Values : 0 Rows

Data Pre-Processing & Analysis

Determine Target with Vintage analysis

User 30 Days past due looks higher than other user, it happens more often.

We can't just say user who 30 past days are Bad User

User 60 Past due or more will be categorized as Bad User

Feature Engineering

New feature column

Age

Define Age of user,
Transformed from
`days_birth` column divided
by 365 days

\$13.392.000

Months_in_books

Define How many Months user join Credit service, Pivoted from `Credit.csv`

Status (Target)

Define whatever user are Bad User or Good user,

Score =< 60 past due =Bad score Score < 30past due = Good Score

Good Score > Bad Score = Good User Good Score < Bad Score = Bad User

Feature Engineering

Encoding

Convert the negative value to 0 and the positive value to 1

More than 2

Convert the Column with One Hot Encoding Technique

Imbalance

Extremely Imbalance Data between Good & Bad User

Over Sampling with Smooth

Scaling

Non-Categorical / Numeric don't have normal distribution **Standard Scaler**

Model Comparison - Classifier

Choose model with highest **recall** with tolerable **accuracy**, we want false negative **smallest** as possible

Decision Tree & **Cat Boost** have good
performance

Hyperparameter tuning

Decision Tree

Although the recall score increases, the false negative in the model is huge. More than half of the test data was incorrectly predicted, making the model unreliable.

Hyperparameter tuning

Cat Boost Classifier

The new parameter found using grid search hyperparameter tuning has a worse score than the default parameter. Therefore, we keep the last parameter as our model.

How Model Interpret the Data

Job_Working, Property, Months_in_books are features with the most contributions

Model's accomplishments

Model successfully reduce loss from Defaulters

Rp 1.250.000 26%

Assumption: Before using model all defaulter approval credit are approved, returned 75% value, 5% interest and Rp 1.000.000 loan money each person

Before

- Defaulters : 19
- Prevented : 0
- Loss : Rp 4.750.000

After (with Model)

- Defaulters : 19
- Prevented : 7
- Wrong predict : 10
- Loss : Rp 3.500.000

Conclusion

- The Cat Boost model successfully reduce loss from defaulters, with 26,3% percentage there are more room for improvement
- Job with working attributes are the most important feature. By analysis, it is
 found that good user able to pay their dept from working as worker with their
 stable income than other job.
- The Extreme Imbalance of data set make it hard to create model, example if model predict all value as good user model still have 99% accuracy but cannot predict even a single Bad User
- For Profit purpose User predicted as Bad User by the model still have a chance actually a Good User, we must still consider user economics value with their property or other valuable value for loss recovery in credit risk management.
- Failure in Hyper Parameter tuning because there is a chance wrong with chosen parameter, more trial with new parameter value for finding best parameter.

Thanks!

Do you have any questions?

