Name:	
Vorname:	
Studiengang:	Biol 🖵
	Pharm 🖵
	BWS □

Basisprüfung Sommer 2011 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5.5 Pkt)

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgend Wenn ja, um welche Art von Isom	den Strukturen Isomerie vor? nerie handelt es sich?		
CI	F	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
N NH NH ₂	N N NH2	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
HO OH HO	OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
NH ₂	NH ₂	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
ОН	OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral? Welches ist die Beziehung zwischen a und d?		
a b c d chiral X achiral X		
Enantiomere Moleküle a und d sind Diastereoisomere identisch		
c) 5 Pkt. Die Fischerprojektion eines Sorbits ist unten angegeben. 1 CH ₂ OH HO HO HOH HOH HOH HOH HOH H		
Sorbit Perspektivformel Enantiomeres		
c1) 1/2 Pkt. Handelt es sich um D- oder L-Sorbit?		
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).		
c3) 1/2 Pkt Zeichnen Sie die Fischerprojektion des zum dargestellten Sorbit enantiomeren Moleküls (Projektion ergänzen).		
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C3 und C4 im abgebildeten Sorbit mit CIP Deskriptoren. C3: RX S C4: RX S 		
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 10 (2 Mesoformen und 4 Enantiomerenpaare)		
Übertrag Aufgabe 3		

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar)
 Welche der beiden Säuren ist stärker? (ankreuzen).
 Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen.

Wichtgste Effekte:

- 1. Elektronegativität des direkt an das Proton gebunden Atoms.
- 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms.
- 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs
- 4. σ -Akzeptor = -I Effekt.
- 5. π -Akzeptor Effekt (-M).
- 6. π -Donor Effekt (+M).
- 7. Solvatation (Wechselwirkung mit dem Lösungsmittel).
- 8. Wasserstoffbrücken.

Übertrag Aufgabe 4

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Es entsteht ein aromatisches System mit 2π -Elektronen

Begründung

Das Molekül enthält drei isolierte funktionelle Gruppen: ein Amid, ein tertiäres Amin und ein Amidin. Das Amidinium Ion hat mit 12.5 den höchsten pKa, deshalb wird dort protoniert.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert? Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Die beiden Stellungen α zu den Ketogruppen unterscheiden sich durch die π -Akzotor und π -Donor Substituenten in para Stellung: die Nitrogruppe als π -Akzeptor erhöht die Azidität in para, während die Methoxygruppe als π -Donor die Azidität in para erniedrigt.

Der Substituent in meta hat jeweils weder π -Akzeptor noch π -Donor Wirkung

Begründung:

Nur das Proton in α -Stellung zur Carbonylgruppe, welches nicht am Brückenkopf steht, lässt sich zum planaren Enolat deprotonieren (Bredtsche Regel).

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante des Gleichgewichts 3) ? (keine Punkte ohne Lösungsweg!)

Schätzen Sie die Grösse der Gleichgewichtskonstante \mathbf{K}_3 ab.

Antwort: $K_3 = 10$. Lösungsweg: $K_1 = 10$ da -5.7 kJ/mol bei RT einem Faktor 10 entsprechen. [3) entspricht 2) – 1) also ist $K_3 = K_2/K_1 = 100/10 = 10$.

2 Pkt. Propanon (Aceton) in wässeriger Lösung liegt nur zu 0.000001% in der Enolform vor.
 (Keine Punkte ohne Lösungsweg!)

$$\rho K_{T} \qquad \rho K_{T} = -\log K_{T} = 8$$

Der pK_a von Aceton ist pK_a=19. Was ist der pK_a der Enolform (Azidität des OH Protons)?

pK_a (Enol) = 11

- 1) Propanon + H_2O = Enolat + H_3O^+ K = 10
- 2) Propanon = Enol $K = 10^{-8}$
- c) 2 Pkt. Zeichnen Sie die Konformere von (3R,4R)-3,4-Dimethylhexan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(3)-C(4) Bindung (θ = Diederwinkel C(2)-C(3)-C(4)-C(5), d.h. θ =0°, wenn die Bindungen C(2)-C(3) und C(4)-C(5) verdeckt stehen).

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie alle benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an!

d)
$$\frac{10\% \text{ H}_2\text{SO}_4}{2 \text{ h } 100^\circ}$$
 (E1-Elim. zu *Saytzew*-Produkt)

e)
$$\begin{array}{c|c} & \Delta T \\ & &$$

Punkte Aufgabe 7

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den folgenden Umsetzungen und um welchen Reaktionstyp, bzw. um welche Namensreaktion handelt es sich dabei? (Wo erforderlich, Stereochemie angeben!). 2 Stereoisomere C₁₄H₂₀O₃ a) OAc Br NaOAc AcOH / H₂O OCH₃ (±) (±) OCH₃ Typ: S_N1 b) ⊕ K *tert-*BuO Br DMSO, 8 h 50° (±) (±) E2 (anti-Elimin.) Typ: c) 1) SOCI₂ 2) 2 Equiv. COOH Typ: Amidbildung via RCOCI CH2Cl2 als Lsgsm. CH₂OH d) **COOEt** LiAlH₄ THF 16 h 70° Typ: Metallhydrid-Reduktion e) 1) 68% HNO₃ NH_2 conc. H₂SO₄ 2) Fe, 5% HCI Typ: elektroph. ar. Subst./ Red.

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Wheland-Zwischenprodukt

Namens-Reaktion: Friedel-Crafts-Alkylierung

b) Wie lautet die moderne Fassung der Regel von Bredt? Geben Sie ein Anwendungsbeispiel!

Regel: Ein Brückenkopf-Alken ist bei 0°C isolierbar und haltbar, falls sich der *trans*-Anteil der Doppelbindung in einem mindestens 8-gliedrigen Ring befindet.

Anwendungsbeispiel:

