

2

And now some vaccine math...

The effective reproduction number (R_0) varies depending on the basic reproduction number (R_0), the proportion of the population that is fully vaccinated (x), and the effectiveness of the vaccine (V).

 $R_e = R_0^*(1-x^*V)$

Δ

5

Smallpox Eradication

- Intensive global campaign by WHO results in smallpox eradication in 1977 (last case, Somalia).
- Key factors: human reservoir, effective (live) vaccine, cases easily identified.

Image source: CDC Public Health Image Library. http://phil.cdc.gov

Vaccination: Concept

- Vaccines are biological substances or microorganisms that confer immunity to infectious disease that could otherwise only be obtained through natural infection.
- Move directly to immune state without having to risk morbidity and (sometimes) mortality associated with natural infection.
- Utilitarian framework:
- Vaccines not risk free, societal adoption of vaccination presumes net reduction in mortality & morbidity (and sometimes costs).

10

What Are We Trying To Achieve Through Vaccination?

- Protection of an individual who encounters a source of infection.
- Modification of clinical illness, if vaccination fails
- Elimination of conditions that permit disease transmission in the population ("herd immunity").
- Elimination (from geographic area) or eradication (extinction) of infectious disease.

11

Conditions for Herd Immunity (Vaccine with 100% Efficacy)

For no epidemic, Re < 1

 $Re = (1-P_c) \times R0$

(1-P_c) x R0 < 1

1-Pc < (1/R0)

1 - (1/R0) < Pc

13

Example: Critical Fraction to Vaccinate

- For a disease with R₀= 3
- $1-1/R_0 = 1-0.33 = 0.67$
- R_e <1 when P_c > 0.67 or 67%.

14

Why does the incidence of an immunizing infection cycle over time?

What can we say about the Re when the disease incidence is 1) increasing, 2) decreasing, 3) at the peak?

$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$
$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$
$\frac{dR}{dt} = \mu p + \gamma I - \mu R$
Eradication requires that p = 1-1/R ₀ This is the fraction of newborns to be immunized for (eventual) control.

Measures to reduce S/N

What if we can't/don't vaccinate newborns?
Need continuous vaccination instead. Is there anything this figure doesn't account for?
Simplifying assumptions?

20

$$\frac{dS}{dt} = \mu - \beta SI - \mu S - pS$$

$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

$$\frac{dR}{dt} = pS + \gamma I - \mu R$$
 Eradication requires that $p \ge \mu(Ro-1)$ This is the rate of susceptibles to be immunized for (eventual) control.

Age Structure and Partial Vaccination

- Can build age-structured models by subdividing model "compartments" to reflect different age-groups.
- Using age-structured model can derive the relationship:

$$R_0 \approx L/A$$

• L=life expectancy, and A = average age at infection.

26

With Vaccination

↓R≈L/A↑

- When might age at first infection be relevant?
- How might partial vaccination of the herd be harmful?

$$A \approx \frac{1}{\mu R_0}$$

 $\Rightarrow A \approx \frac{L}{R}$

 $\Rightarrow R_0 \approx \frac{L}{A}$

2023-07-25

2023-07-25

2023-07-25

Imperfect vaccines

· In some cases, vaccine induced immunity wanes over time.

37

38

"Catch Up" Vaccination and **Boosting**

- Catch-up vaccination: Means of overcoming increased age at infection due to decreased FOI when new vaccine introduced.
 - E.g., U.K. introduces rubella vaccine simultaneously for infants and 12 year-olds.
 No late spike in CRS in U.K. following rubella vaccination, unlike U.S.
- Boosting when immunity wanes: diminished secondary failures.
 - E.g., pertussis boosting now advocated for pre-teens in Canada.

Summary

- Partial vaccination of herd predicted to increase average age at infection via decreased FOI, cohort effect, and advanced age at secondary failure.
- May be desirable if disease is more dangerous to young, undesirable if more dangerous to older individuals.
- Overcome through "catch-up" vaccination and boosting.

40

Non-pharmaceutical interventions

- Physical distancing
- · Test, trace, isolate
- Quarantine

What are some of the challenges with these types of interventions?

41

Pandemic planning as a case study

- Emergence of a novel pathogen
- Entire population is Susceptible
- No pharmaceutical interventions
- NPI are the only option
- How long?
- To what extent?

Item	Strain	Value (range)	Reference(s)	
Transmissibility				
RO .	1957/1958	1.6 (attack rate = 3)	790 (0.26,34-36)	
	1968/1969	1.8 (attack rate = 4)	190 [8,26,34,35,37,38]	
	1918	2.0 (attack rate = 45	5%) [8,26,34,35,39,40]	
Natural history				
Latent period	Seasonal	2.1 days	[41]	
Duration of infection	Seasonal	4.8 days	[41]	
Pre-existing immunity in individuals > years		0% (0 - 40%)	Assumption	
Clinical characteristics				
	1957	60%	080	
Proportion symptomatic				
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to	1957	70%	[8]	
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to bockal distancing parameters tem	1957 for implementing so Experience	70% cial distancing int	to the model Value (range examined)	Reference
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to local distancing parameters tem Proportion of the population intensing to engage in	1957 or implementing so	70% cial distancing int	o the model	Reference [1,2,51-55]
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to bockal distancing parameters tem	1957 for implementing so Experience	70% cial distancing int	to the model Value (range examined)	
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to local distancing parameters tem Proportion of the population intensing to engage in	lor implementing so Experience 1. Avoiding crowded	70% cial distancing int	to the model Value (range examined)	
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to local distancing parameters tem Proportion of the population intensing to engage in	lor implementing so Experience 1. Avoiding crowded 1. Avoiding public tree	cial distancing int	to the model Value (range examined)	
Proportion of synatomatic cases seeing medical amenton (Fable 2 Parameter values and assumptions is account distancing parameters tere here of the population intending to engage in account distancing	liss? Seperience 1. Avoiding crowded 1 2. Avoiding public tra 3. Avoiding public pla	cial distancing int	to the model Value (range examined)	
Proportion of synatometic cases seeling medical american Table 2 Parameter values and assumptions 1 social distancing parameters tem Proportion of the population intending to engage in cold distancing	for implementing so Experience 1. Avoiding provided of 2. Avoiding public plus 3. Avoiding public plus 4. Changing school /	cial distancing int	to the model Value (range examined) 56% (31-81%)	[1,2,51-55]
Proportion of symptomatic cases seeking medical attention Fable 2 Parameter values and assumptions to local distancing parameters tem Proportion of the population intensing to engage in	lor implementing so Experience 1. Avoiding crowded 2. Avoiding public rais 3. Avoiding public pla 4. Changing school / Percent reductic	cial distancing int		[1,2,51-55]

Contact Tracing and Isolation

- Assume average contact rate, κ
- Transmission probability, v
- Infectious individuals immediately symptomatic
- Infectious isolated at rate d_1
- Fraction *q* of contacts with infectious individuals quarantined
- Kept in quarantine for average τQ

From Rohani and Drake

47

We now have 5 compartments

- Susceptible
- Susceptible in Quarantine
- Infectious
- Infectious in Isolation
- Recovered

Based on the previous slide, draw out the compartment model and write

50

What does this tell us?

• Can show that control requires

$$S<\frac{d_1+\gamma}{\kappa\nu(1-q)}$$

 $\kappa\nu(1-q)>d_1+\gamma$

• If $R_0 = 5$, then $\tau_Q = 21$ days

From Rohani and Drake

But there are some challenges...

- Assumed infected individuals are immediately symptomatic
- Uncertainties and delays with identifying and isolating potential contacts
- How do these factors work to complicate our ability to control SARS-CoV-2?