Ciencias y Tecnología: Física Melchor Pinto, J.C.

Soluciones propuestas

2° de Secundaria Unidad 3 2024-2025

Última revisión del documento: 24 de marzo de 2025

Practica la Unidad 3

Nombre del alumno:				Fecha:					
Aprendizajes:	Puntuación:								
Describe la generación, diversidad y comportamiento de las on-	Pregunta	1	2	3	4	5	6	7	Total
das electromagnéticas como resultado de la interacción entre	Puntos	8	8	24	22	8	10	20	100
electricidad y magnetismo.	Obtenidos								

- Describe cómo se lleva a cabo la exploración de los cuerpos celestes por medio de la detección de las ondas electromagnéticas que emiten.
- Describe algunos avances en las características y composición del Universo (estrellas, galaxias y otros sistemas).
- 🔽 Describe las características y dinámica del Sistema Solar.
- 🔽 Identifica algunos aspectos sobre la evolución del Universo.

Frecuencia y longitud de onda

La frecuencia f de una onda electromagnética es:

$$f = \frac{\nu}{\lambda}$$
 y $\lambda = \frac{\nu}{f}$ (1)

donde ν es la velocidad de propagación de la onda ($\nu=3\times10^8~{\rm m/s})$ y λ la longitud de onda.

Energía de un fotón

La energía E asociada a dicha onda es:

$$E = h \times f \tag{2}$$

donde h se conoce como constante de Planck (h = 6.626×10^{-34} Js).

Ejercicio 1	de 8 puntos
Relaciona cada grupo de galaxias con su descripción.	
☐ Grupo formado por la Vía Láctea y unas 30 galaxias más	☐ Supercúmulo
b Son cúmulos de galaxias□	☐ Grupo local
C Grupo formado por la Vía Láctea y otras 14 galaxias gigantes que integra una estructura en forma de anillo	☐ Cúmulos de galaxias
$\ensuremath{ \mbox{\sf d} }$ Grupo de galaxias cuyos tamaños típicos son de 2 a 3 Mpc	☐ Concilio de Gigantes

Ejercicio 2 de 8 puntos

Relaciona cada enunciado con el concepto que le corresponda.

A Rayos X

(B) Luz visible

(C) Radiación infraroja

(D) Microondas

D Poseen altas frecuencias y hacen vibrar las moléculas de agua, por lo que incrementan su temperatura.

b <u>C</u> Es también conocida como radiación térmica, y es aplicada en la comunicación entre dispositivos electrónicos a corta distancia, como el control remoto de un televisor.

C B Puede ser aprovechada por los seres vivos; por ejemplo, para generar energía química mediante la fotosíntesis.

d A Poseen gran energía, por lo que pueden atravesar la materia blanda, pero no la dura.

Ejemplo 1

Completa el Cuadro 1 escribiendo los datos que faltan en notación científica.

Tipo	o de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
	${ m Microondas}$	2×10^{-2}	1.5 $\times 10^{10}$	9.939×10^{-24}
	Rayos X	3×10^{-10}	1×10^{18}	6.626×10^{-16}
	Radiación infraroja	6×10^{-6}	13.3 $\times 10^{13}$	8.83 $\times 10^{-20}$

Tabla 1: Comparación entre algunos tipos de ondas electromagnéticas.

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{10} = 9.939 \times 10^{-24}$$

Ravos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{18}} = 3 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{18} = 6.626 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{6 \times 10^{-6}} = 13.3 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 13.3 \times 10^{13} = 8.83 \times 10^{-20}$$

Ejercicio 3 de 24 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Rayos gamma	1.2×10^{-11}	2.5×10^{19}	1.6565×10^{-14}
Luz visible	3×10^{-7}	1×10^{15}	6.262×10^{-19}
Ondas de radio	1.5×10^{5}	2×10^3	1.3252×10^{-31}

Rayos gamma:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{1.2 \times 10^{-11}} = 2.5 \times 10^{19} \text{ 1/s}$$

$$E = h \times f = 6.626 \times 10^{-34} \times 2.5 \times 10^{19} = 1.6565 \times 10^{-14} \text{ J}$$

Luz visible:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{15}} = 3 \times 10^{-7} \text{ m}$$

$$E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{15} = 6.262 \times 10^{-19} \text{ J}$$

Ondas de radio:

$$\lambda=\frac{\nu}{f}=\frac{3\times10^8}{2\times10^3}=1.5\times10^5~\mathrm{m}$$

$$E = h \times f = 6.626 \times 10^{-34} \times 2 \times 10^3 = 1.3252 \times 10^{-31} \text{ J}$$

Ejemplo 2

Ciencias y Tecnología: Física

Considera que la velocidad de la luz es de $3\times10^8~\mathrm{m/s}$ y que un año tiene 365.25 días.

a ¿Cuántos segundos hay en un año?

 $1~a\tilde{n}o = 365.25~d\text{\'as} \times 24~horas \times 60~minutos \times 60~segundos = 31,557,600~segundos = 3.15576 \times 10^7~segundos$

Si sabemos que $v=\frac{d}{t}$ ¿Cuántos metros recorre la luz en un año?, ¿a cuántos kilómetros equivale?

$$d = vt = \left(3 \times 10^8 \text{ m/s}\right) \left(3.15576 \times 10^7 \text{ s}\right) = 9.47 \times 10^{15} \text{ m} = 9.47 \times 10^{12} \text{ km}$$

Después del Sol, la estrella más cercana a la Tierra es Próxima Centauri, que está a 3.99×10^{13} km. ¿Cuánto tiempo tarda la luz de Próxima Centauri en llegar a la Tierra?

$$t=\frac{d}{v}=\frac{9.47\times 10^{15}~\text{m}}{3\times 10^8~\text{m/s}}=133~\text{millones}$$
 de segundos = 4.21 años

Ejercicio 4

de 22 puntos

El parsec (pc) puede definirse a partir del año luz como: 1 pc = 3.26 años luz. Si la distancia d que recorre la luz es igual a la velocidad v de la luz por el tiempo t que tarda en recorrerla, entonces:

$$d = vt$$

A cuántos metros equivale un parsec?

Considera que un año tiene 365 días y que la velocidad de la luz es 3×10^8 m/s.

Usando la fórmula d = vt, donde d es la distancia, v es la velocidad y t es el tiempo, la distancia d que hay en un año luz es:

$$\begin{split} d &= vt \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \\ &= \left(3 \times 10^8 \frac{\mathrm{m}}{\mathrm{s}}\right) \left(1 \text{ año}\right) \cdot \left(\frac{365 \text{ d/a}}{1 \text{ año}}\right) \cdot \left(\frac{24 \text{ hera}}{1 \text{ d/a}}\right) \cdot \left(\frac{60 \text{ pim}}{1 \text{ hera}}\right) \cdot \left(\frac{60 \text{ s}}{1 \text{ pim}}\right) \\ &= 9.46 \times 10^{15} \text{ m} \end{split}$$

Si 1 año luz equivale a 9.46×10^{15} m, entonces 1pc = 3.26 años luz $\cdot 9.46 \times 10^{15}$ m $= 3.08 \times 10^{16}$ m

b La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. Si la fórmula de cinemática para el tiempo es:

$$t = \frac{d}{v}$$

¿En cuánto tiempo "chocará" con ella?

Considea como el kiloparsec, 1 kpc = 10^3 pc, y el megaparsec, 1 Mpc = 10^6 pc.

Sabemos que 1 pc = 3.08×10^{13} km, entonces

650 kpc =
$$650 \times 10^3$$
 pc
= $650 \times 10^3 \times 3.08 \times 10^{13}$ km
= 2.002×10^{19} km

Usando la fórmula $t = \frac{d}{v}$, el tiempo t en segundos es:

$$t = \frac{2.002 \times 10^{19} \text{ km}}{350 \text{ km/s}}$$

= $5.72 \times 10^{16} \text{ s}$
= $1.812.5 \text{ millones de años}$

Ejercicio 5 de 8 puntos

Elige la respuesta correcta:

- Antigüedad estimada del Universo.
 - (A) 13,800 millones de años
 - (B) 18,300 millones de años
 - (C) 13,300 millones de años
 - D 11,800 millones de años
- b Indica que el Universo se expande.
 - (A) El corrimiento al azul de la luz que emiten las galaxias.
 - B El corrimiento al rojo de la luz que emiten las galaxias.
 - C Todas las galaxias se alejan de la Vía Lác-
 - D La Teoría de la Relatividad General

- C La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
 - (A) Ley de Hook
 - (B) Ley de Bubble
 - (C) Ley de Hubble
 - D Ley de Moore
- d Longitud del diámetro del Universo.
 - A Un millón de años luz.
 - (B) Cien mil millones de años luz.
 - (C) Mil millones de años luz.
 - ① Un billón de años luz.

Ejercicio 6 _____ de 10 puntos

Señala si son verdaderas o falsas las siguientes afirmaciones.

- La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - (A) Verdadero
- B) Falso
- b El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
- (B) Falso
- C Toda carga en movimiento genera un campo magnético.
 - (A) Verdadero
- B Falso
- d La fuerza magnética es una interacción de acción a distancia, también llamada fuerza de campo.
 - (A) Verdadero
- (B) Falso
- e Cuando acercamos dos imanes por sus polos iguales, los campos magnéticos interactúan y se suman, de tal forma que los imanes experimentan una fuerza de atracción mutua.
 - (A) Verdadero
- (B) Falso

- f Sólo las cargas masivas producen campos magnéticos.
 - (A) Verdadero
- (B) Falso
- 9 En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - (A) Verdadero
- (B) Falso
- h La Tierra posee un campo magnético debido a las corrientes internas en su núcleo de hierro fundido.
 - (A) Verdadero
- (B) Falso
- i La dirección del campo magnético de un conductor largo y recto por el que circula una corriente es circular y rodea al alambre.
 - (A) Verdadero
- B Falso
- j La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
- B Falso

Ejercicio 7 de 20 puntos

Selecciona la respuesta correcta:

O Porcentaje de energía oscura que hay en el Univer-

(A) 4.9 % (B) 26.8 % (C) 33.3 % (D) **68.3** %

b Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz.

(A) Bastones (B) Esferas (C) Conos (D) Rizos

c Porcentaje de materia ordinaria que hay en el Universo.

(A) 4.9 % **(B)** 26.8 % (C) 33.3 % (D) 68.3 %

d Es un sistema de estrellas, gas y polvo interestelar que orbita en torno a un centro de gravedad.

(A) Cúmulo (B) Galaxia (C) Nebulosa (D) Pulsar

e Variación aparente de la posición de un objeto al cambiar la posición del observador.

(A) Eclipse (B) Declinación (C) Transformación (D) Paralaje f Es la magnitud que mide un año luz.

(A) Tiempo (B) Masa (C) Longitud (D) Energía

9 Número aproximado de galaxias en el Universo.

(A) miles (B) billones (D) trillones (C) millones

h Proporción detectable de una galaxia por medio de las ondas electromagnéticas.

(A) 10 % (B) 20 % (C) 30 % (D) 40 %

i Porcentaje de materia oscura que hay en el Univer-

(A) 4.9 % (B) 26.8 % (C) 33.3 % (D) 68.3 %

Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella al transcurrir cierto período de tiempo.

(A) Radiografía (B) Radiometría

(C) Fotografía (D) Espectroscopía