BUNDESREPUBLIK
 DEUTSCHLAND

(5) Int. Cl.⁶: **B 65 D 23/02**

A 61 J 1/05 C 03 C 17/245

DEUTSCHES PATENTAMT

21) Aktenzeichen:

196 22 550.7

② Anmeldetag:

5. 6.96

43 Offenlegungstag:

11. 12. 97

(71) Anmelder:

DE

Schott Glaswerke, 55122 Mainz, DE

2 Erfinder:

Spallek, Michael, Dr., 55218 Ingelheim, DE; Walther, Martin, Dr., 55270 Engelstadt, DE; Lohmeyer, Manfred, 55299 Nackenheim, DE; Heming, Martin, Dr., 55442 Stromberg, DE

56 Entgegenhaltungen:

DE 1 95 02 103 A1 DE 43 27 513 A1 DE 38 01 111 A1

Prüfungsantrag gem. § 44 PatG ist gestellt

(5) Glasbehälter insbesondere zur Aufbewahrung pharmazeutischer oder diagnostischer Lösungen

Glasbehälter insbesondere zur Aufbewahrung pharmazeutischer oder diagnostischer Lösungen, bei dem seine mit den Lösungen in Kontakt stehende Oberfläche mit einer mittels eines Plasma-CVD-Verfahrens aufgebrachten Schicht aus Oxiden und/oder Nitriden der Elemente Si, Ti, Ta, Al oder Mischungen davon überzogen ist.

DE 196 22 550

Beschreibung

Glasbehälter zur Außewahrung pharmazeutischer oder diagnostischer Lösungen sind dazu bestimmt, in direkten Kontakt mit diesen Lösungen zu kommen. Verschiedene Arten von Glasbehältern kommen zur Anwendung, beispielsweise Ampullen, Fläschchen, Spritzenkörper für Fertigspritzen, Zylinderampullen und Behältnisse zur Aufnahme von Blut und Blutproben.

Es ist bekannt, daß sich bei allen Glasbehältnissen und selbst bei Glasbehältnissen aus Borosilikatglas, die gemäß den Pharmakopöen (z. B. Deutsches Arzneibuch DAB 10) in die höchste Beständigkeitsklasse eingestuft werden, Wechselwirkungen der Lösungen mit der Glasoberfläche nachweisen lassen. Die Wechselwirkungen bei

Glasbehältnissen aus Kalk-Natron-Glas sind allerdings noch bedeutend größer.

Die Wechselwirkung beruht in erster Linie auf der Auslaugung von alkalischen Stoffen aus der Glasoberfläche durch die wäßrige Lösung. Diese Auslaugung kann während der Lagerung der Lösung zu einer unerwünschten Erhöhung des pH-Wertes, z. B. bei Wasser für Injektionszwecke, um mehrere pH-Einheiten führen (z. B. Borchert et al., J. of Parenteral Science & Technology, Vol. 43, No. 2, March/April 1989).

Auch kann bei manchen Medikamenten ein Teil der Wirksubstanz durch aus dem Glas gelöste Ionen inakti-

viert werden, was besonders bei niedrig dosierten Medikamenten stört.

Die Aufgabe der Erfindung besteht daher darin, einen Glasbehälter zur Aufbewahrung pharmazeutischer oder diagnostischer Lösungen zu finden, der sich gegenüber diesen Lösungen in hohem Maße inert verhält, d. h. bei dem die Menge an durch die Lösungen aus dem Glas ausgelaugten Ionen minimiert ist.

Diese Aufgabe wird durch den im Patentanspruch 1 beschriebenen Glasbehälter gelöst.

Der Glasbehälter ist auf seiner Innenseite, d. h. auf seiner mit den Lösungen in Kontakt stehenden Oberfläche mit einer Schicht aus Oxiden und/oder Nitriden der Elemente Si, Ti, Ta, Al oder Mischungen davon überzogen, wobei diese Schicht mittels eines Plasma-CVD-Verfahrens (PCVD-Verfahren) erzeugt worden ist. Insbesondere ist die Schicht durch das Plasma-Impuls-CVD-Verfahren (PICVD-Verfahren) hergestellt worden.

Bei diesen Verfahren findet eine Schicht-Abscheidung aus der Gasphase (Chemical Vapour Deposition = CVD) statt, wobei die zur Spaltung der Precursor-Gase erforderliche Energie durch ein elektrisches Hochfre-

quenzplasma in das System eingebracht wird. Diese Verfahren sind an sich wohlbekannt.

Überraschend hat sich gezeigt, daß ein Glasbehälter mit nach dem PCVD- bzw. PICVD-Verfahren hergestellten Schichten eine ganz überragende Widerstandsfähigkeit gegenüber der Auslaugung besitzt und sich damit

gegenüber denen in ihm gelagerten Lösungen in höchstem Maße inert verhält.

Besonders geeignet sind oxidische Schichten, insbesondere solche aus SiO₂ und TiO₂, wobei SiO₂ bevorzugt wird. Die Dicke der Schichten soll etwa 10 bis 1000 nm betragen, eine Dicke zwischen 20 und 1000 nm, insbesondere 20 bis 500 nm ist bevorzugt. Es können auch mehrere Schichten unterschiedlicher Zusammensetzung als Schichtenpaket abgeschieden werden, wobei das Schichtenpaket die o.a. Schichtdicke besitzen soll.

Die Zusammensetzung des Glases, aus dem der Behälter besteht, ist nicht kritisch. Im allgemeinen wird man die für pharmazeutische Anwendungen üblichen farblosen und gefärbten Gläser einsetzen. Bevorzugt werden jedoch Gläser, die bereits an sich einer niedrigen hydrolytischen Klasse angehören, verwendet, also insbesondere die sog. Neutralgläser (Borosilikatgläser) (DAB 10).

Die Abbildung zeigt in Fig. 1 beispielhaft ein 10 ml Injektionsfläschehen aus Glas. Das Fläschehen besteht aus Glas 1, dessen Innenseite mit einer SiO₂-Schicht 2 versehen ist. Die Dicke der SiO₂-Schicht ist nicht maßstabsge-

treu dargestellt.

55

60

Die hervorragenden Eigenschaften des erfindungsgemäßen Behälters werden an folgendem Beispiel gezeigt: Ein Glasbehälter aus Borosilikatglas der Zusammensetzung 75% SiO₂, 11% B₂O₃, 5% Al₂O₃, 7% Na₂O, 2% CaO + BaO in der Form eines Injektionsfläschchens für 10 ml Inhalt, der auf seiner Innenseite eine nach dem PICVD-Verfahren aufgebrachte 150 nm dicke SiO₂ -Schicht besitzt, wird mit 2 ml 0,4 mol HCI gefüllt und anschließend 1 Stunde bei 121°C autoklaviert. Anschließend wird die Menge an freigesetzten Natrium-, Calcium-, Aluminium-, Bor- und Silicium-Kationen in µg/l bestimmt. Zum Vergleich wurde der Versuch mit einem identischen Behälter wiederholt, der jedoch nicht mit einer Innenbeschichtung versehen war. Die Ergebnisse sind in der Tabelle zusammengefaßt.

•	Vergleich		
Kationen Freisetżung	Borosilikatglas ohne Schicht (µg/l)	Borosilicatglas mit 150 nm SiO ₂ -Schicht (µg/l)	
Natrium (Na)	3,5	< Nachweisgrenze von 0,01	
Kalzium (Ca)	1,1	< Nachweisgrenze von 0,05	
Bor (B)	3,5	< Nachweisgrenze von 0,10	
Aluminium (Al)	2,3	< Nachweisgrenze von 0,05	
Silizium (Si)	5.0	< Nachweisgrenze von 0,30	

Die angegebenen Werte sind Mittelwerte aus jeweils 32 geprüften Glasbehältern. Bei dem erfindungsgemä-Ben Glasbehälter bleibt die Menge der ausgelaugten Kationen stets unterhalb der Nachweisgrenze. Besonders überraschend ist es, daß trotz einer SiO₂-Konzentration von 100% in der Schicht die ausgelaugte Menge an

2

DE 196 22 550 A1

r Vergleichsprobe, obwohl dort die SiO₂-Koppentration in der mit der 75 Gew.-% beträgt. Si-Ionen deutlich niedriger ist, als b Lösung in Kontakt stehenden Wand

Patentansprüche

1. Glasbehälter insbesondere zur Aufbewahrung pharma:	zeutischer oder diagr	ostischer Lösun	gen, dadurch
gekennzeichnet, daß seine mit den Lösungen in Kont	akt stehende Oberf	läche mit einer	mittels eines
Plasma-CVD-Verfahrens aufgebrachten Schicht aus Oxid	den und/oder Nitride	en der Elemente	Si, Ti, Ta, Al
oder Mischungen davon überzogen ist.	• ,		
	. 1 0 1 0 1 1 1 001	* 4000 11 1	

Plasma-CVD-Verfahrens aufgebrachten Schicht aus Oxiden und/oder Nitriden der Elemente Si, Ti, Ta, A oder Mischungen davon überzogen ist. 2. Glasbehälter nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht 20 bis 1000 nm dick ist. 3. Glasbehälter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schicht aus SiO ₂ besteht. 4. Glasbehälter nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schich mittels des Plasma-Impuls-CVD-Verfahrens aufgebracht ist.	10
Hierzu 1 Seite(n) Zeichnungen	15
	20
onto transport to the control of the	25
	30
ili karakalah di kacamatan belamban di kacamatan di Mikilah Militarian di kembalah di di di di di di di Milita Kacamatan Militarian di kembalan di dikembalan di kembalah di	35
en de la companya de La companya de la co La companya de la companya del companya del companya de la companya del	. 40
et de la grego de la grego de la completa de la colonidad de la colonidad de la colonidad de la colonidad de l La grego de la grego de la colonidad de la grego de la grego de la colonidad de la grego de la grego de la gre La grego de la grego de la La grego de la	45
	50
	55
	60

65

Fig. 1