计算机学院学科基础课

计算机组成

时序电路

高小鹏

北京航空航天大学计算机学院 系统结构研究所

Great Idea #1: Levels of Representation/Interpretation

提纲

- 内容主要取材
 - □ CS617的18讲
 - □ 《数字设计和计算机体系结构》的第2章
 - □《数字设计和计算机体系结构》的第3章

组合逻辑电路的不足

- ❖ 组合逻辑电路的特点
 - ◆ 电路输出端的状态完全由输入端的状态决定
 - ◆ 它是一种无记忆电路——输入信号消失,则输出信号 也会立即消失

- ❖ 在数字系统中有时需要将参与(算术或逻辑)运算的数据和运算结果保存起来——在组合逻辑电路的输出端需要具有记忆功能的部件
- ❖ 触发器就是构成记忆功能部件的基本单元,或者说是实现存储(记忆)功能的基本单元电路。

双稳态电路

- 由2个反相器构成双稳态
 - □ 图b是图a的变形

双稳态电路

- 由2个反相器构成双稳态
 - □ 图b是图a的变形
 - □ 分析Q和/Q

Q	/Q	Qn
0	1	0
1	0	1

双稳态电路

- 双稳态电路
 - □ 可以保存1位信息
 - ◆ Q=0,则Q永远为0
 - ◆ Q=1,则Q永远为1
 - □ 如果Q已知,则/Q也已知
 - □ 首次加电,初值未知,Q未知
- 虽然可以保存1位信息,但没有实际价值
 - □ 没有输入、是一个Blackbox

- RS锁存器可以自行保持输出状态
 - □ 各种触发器的基本构成部分
- 分析RS锁存器的工作原理

R	S	Q	/Q	Qn
1	0	0	1	0
0	1	1	0	1
1	1	0	0	0
0	0	?	?	?

- RS锁存器可以自行保持输出状态
 - □ 各种触发器的基本构成部分
- 分析RS锁存器的工作原理

S	R	Q	/Q	Qn
0	1	0	1	0
1	0	1	0	1
‡	‡	Θ	0	0
0	0	0	1	0
0	0	1	0	1

- 换一个符合记法
 - □ Q_{prev}代表Q, Q代表Qⁿ
- 增加功能描述
 - □ 保持、清除、置位
- 注意: 锁存器稳定工作 状态不允许Q和/Q同值

	S	R	Q	\overline{Q}
保持	0	0	Q_{pro}	$_{ m ev} \overline{Q}_{ m prev}$
清除	0	1	0	1
置位	1	0	1	0
非法	4	4	0	0

- 也可以将Qprev放在真值表输入部分
 - □ 锁存器输出也是输入的一部分
- Q和/Q: 更多时候只表达Q
- 很多种表示方法
 - \square Q, Qⁿ
 - \square Q_{prev}, Q
 - \Box Q^n , Q^{n+1}
 - \Box Q, Q_{next}

功能	S	R	Q _{prev}	Q
保持	0	0		Qprev
清除	0	1	0	0
置位	1	0	1	1
非法	1	1		

· 课堂练习:用与非门构造RS锁存器

功能	S	R	Q _{prev}	Q
保持	1	1		Qprev
清除	1	0	0	0
置位	0	1	1	1
非法	0	0		

RS锁存器的局限性

- 在数字系统中,为协调各部分电路运行,要求 电路在时钟信号控制下统一动作
 - □ 即按一定节拍将输入信号反映在触发器的输出端
- RS锁存器本质: 没有时间上的同步关系
 - □ 信号之间难以定序
 - □ R/S任一改变都可能造成Q改变
 - ◆ R/S的有效值、有效先后、时间长短均
- 结果:由于RS锁存器的值与时间无法分离, 致使RS难以使用

RS锁存器的局限性

- 解决思路: RS锁存器增加一个控制端
 - □ 只有在控制端有效时,RS锁存器才能动作
 - □ 即只有控制端有效时, RS锁存器输出由输入决定
- ▶ 这种控制信号通常为周期振荡信号: 方波
 - □ 也称为时钟信号
 - □ CLK、Clock

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X					
1	0					
1	1					

	功能	S	R	Q _{prev}	Q
	保持	0	0		Qprev
	清除	0	1	0	0
	置位	1	0	1	1
ŀ	非法	1	1		

D Latch Internal Circuit

CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

Qprev 用D和CLK区分开了值与时间 0 非法

功能

S

R

Q_{prev}

Q

D Latch

- Two inputs: CLK, D
 - CLK: controls when the output changes
 - -D (the data input): controls what the output changes to
- Function
 - When CLK = 1,D passes through to Q (transparent)
 - When CLK = 0,Q holds its previous value (opaque)
- Avoids invalid case when

$$Q \neq \text{NOT } \overline{Q}$$

D Latch的局限

- 电平缓冲器
 - □ 在一个时钟周期内,可以多次翻转
 - □ 不符合定义时钟的设计初衷

JENTIAL

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - − *D* passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q

- D passes through to Q

CLK	D	D	S	R	Q	Q
0	X	X	0	0	Q_{pre}	\overline{Q}_{prev}
1	0	1	0	1	0	1
1	1	0	1	0	1	0

D Latch vs. D Flip-Flop

CLK

D

Q (latch)

Q (flop)

DESIGN

D Latch vs. D Flip-Flop

CENTIAL A

D Flip-Flop

- Inputs: CLK, D
- Function
 - Samples D on rising edge of CLK
 - When *CLK* rises from 0 to 1, *D* passes through to *Q*
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of CLK
- Called edge-triggered
- Activated on the clock edge

D Flip-Flop Symbols

Flip-Flop Timing Behavior (1/2)

- Edge-triggered D-type flip-flop
 - This one is "positive edge-triggered"
- "On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled value is retained."
- Example waveforms:

Flip-Flop Timing Terminology (1/2)

- Camera Analogy: Taking a photo
 - Setup time: don't move since about to take picture (open camera shutter)
 - Hold time: need to hold still after shutter opens until camera shutter closes
 - Time to data: time from open shutter until image appears on the output (viewfinder)

Flip-Flop Timing Terminology (2/2)

- Now applied to hardware:
 - Setup Time: how long the input must be stable before the CLK trigger for proper input read
 - Hold Time: how long the input must be stable after the CLK trigger for proper input read
 - "CLK-to-Q" Delay: how long it takes the output to change, measured from the CLK trigger

Flip-Flop Timing Behavior (2/2)

- Edge-triggered d-type flip-flop
 - This one is "positive edge-triggered"

 "On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled value is retained."

Enabled Flip-Flops

- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function
 - -EN = 1: D passes through to Q on the clock edge
 - -EN = 0: the flip-flop retains its previous state

Internal Circuit

Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- log₂N-bit select input control input
- Example:

2:1 Mux

	S	D_1	D_0	Υ	S	Y
_	0	0	0	0	0	D_0
	0	0	1	1	1	D_1
	0	1	0	0		'
	0	1	1	1		
	1	0	0	0		
	1	0	1	0		
	1	1	0	1		
	1	1	1	1		

Multiplexer Implementations

Logic gates

Sum-of-products form

s	D_1	D_0	Υ
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Tristates

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input

Resettable Flip-Flops

- Inputs: CLK, D, Reset
- Function:
 - **Reset** = 1: Q is forced to 0
 - **Reset** = **0**: flip-flop behaves as ordinary D flip-flop

Symbols

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop?

Resettable Flip-Flops

- Two types:
 - Synchronous: resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop

Internal

- 用组合逻辑设计一个可以完成循环左移功能的8位移 位器
 - □ D[7:0], Q[7:0]: 分别是移位器的8位输入和8个输出
 - □ S[2:0]: 循环移位控制
 - ◆ S[2:0]=000b, 无循环左移
 - ◆ S[2:0]=001b, 循环左移1位
 - ◆ 依次类推
 - WORD:
 - ◆ 给出Q7~Q0的逻辑表达式
 - Logicsim:
 - ◆ 测试验证

- 学习在Logicsim中输入真值表,自动综合出组合逻辑。电路功能如下:
 - □ 输入S[2:0]与Q[2:0]对应关系如下
 - 000: 010
 - 001: 101
 - 010: 110
 - 011: 111
 - 100: 000
 - 101: 001
 - 110: 010
 - 111: 011
 - □ 阅读User's Guide中的Combinational analysis, 然后在 logicsim中输入真值表,自动产生电路

《数字设计》	Logicsim	WORD
2.24	✓	✓
3.1~3.3		✓
3.5	✓	✓

• 《数字设计与计算机体系结构》

《数字设计》	Logicsim	WORD
3.6	✓	1、给出真值表
3.9	✓	2、简要说明工作
3.10	✓	原理