CIE6020/MAT3350 Selected Topics in Information Theory

Lecture 16: Linear Codes

4 April 2019

The Chinese University of Hong Kong, Shenzhen

Linear Codes

Linear Codes

- ullet Suppose that ${\mathcal A}$ is the input alphabet of a channel.
- A block error correcting code C is a subset of A^n , where n is called the block length.
- ullet Most practical channel codes are linear codes, where ${\cal A}$ is a finite field.
- A code C ⊂ Aⁿ is *linear* if it is closed under linear combinations, in other words,

$$\alpha \mathbf{x} + \alpha' \mathbf{x}' \in \mathcal{C}, \quad \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}, \ \forall \alpha, \alpha' \in \mathcal{A}.$$

- A linear code C is a subspace of A^n .
- A linear code with length n and dimension k is said to be an (n,k) code.

2

Generator Matrix

- For an (n, k) code C, a $k \times n$ matrix G, whose rows form a basis of C, is called a generator matrix for C.
- $C = \langle G \rangle = \{ uG : u \in \mathcal{A}^k \}.$
- A generator matrix G of $\mathcal C$ is said to be *systematic* if $G=[I\ P]$, where I is a $k\times k$ identity matrix.

Dual Code and Parity-Check Matrix

• The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is defined by

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathcal{A}^n : \mathbf{v} \cdot \mathbf{x}^{\top} = 0, \forall \mathbf{x} \in \mathcal{C} \} = \{ \mathbf{v} : G\mathbf{v}^{\top} = \mathbf{0} \}.$$

- The dimension of \mathcal{C}^{\perp} is n-k.
- A generator matrix H of the dual code \mathcal{C}^{\perp} is also called a parity-check matrix of the original code \mathcal{C} .
- We can write

$$\mathcal{C} = \{ \mathbf{x} : H\mathbf{x}^{\top} = \mathbf{0} \}.$$

Why Linear Codes?

- The description of linear codes is simple.
- Encoding complexity $O(n^2)$, and even simpler if there exists a sparse generator matrix.
- Linear codes achieve the capacity.

Examples of Linear Codes

- Hamming codes (1950)
- Reed-Solomon codes (early 1950s)
- BCH codes (1959)
- Convolutional codes (1955)
- Turbo codes (1993)
- LDPC (1962, 1997)
- Fountain codes (1998)
- Polar codes (2006)

Hamming Distance

- Let \mathbb{A} be an alphabet of q elements.
- The Hamming distance of two vector $\mathbf{x}, \mathbf{y} \in \mathbb{A}^n$, denoted by $d(\mathbf{x}, \mathbf{y})$, is the number of coordinates i with different values.
- The Hamming distance is a metric since
 - 1. $d(\mathbf{x}, \mathbf{y}) \ge 0$, with equality iff $\mathbf{x} = \mathbf{y}$.
 - 2. $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
 - 3. $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$.

Minimum Distance Decoding

- Consider a memoryless BSC with cross-over probability $\epsilon \leq 1/2$.
- The maximum likelihood (ML) decoding rule for received vector y reads

$$\begin{split} \hat{\mathbf{x}} &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} W_n(\mathbf{y}|\mathbf{x}) \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} \prod_{i=1}^{n} W(y_i|x_i) \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmax}} \epsilon^{d(\mathbf{x}, \mathbf{y})} (1 - \epsilon)^{n - d(\mathbf{x}, \mathbf{y})} \\ &= \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmin}} d(\mathbf{x}, \mathbf{y}). \end{split}$$

Syndrome Decoding

ullet Let $\mathbf{s} = H\mathbf{y}^{\top}$, which is called the syndrome. We further have

$$\hat{\mathbf{x}} = \underset{\mathbf{x}: H\mathbf{x}^{\top} = 0}{\operatorname{argmin}} w(\mathbf{x} - \mathbf{y})$$
$$= \mathbf{y} - \underset{\mathbf{e}: H\mathbf{e}^{\top} = \mathbf{s}}{\operatorname{argmin}} w(\mathbf{e})$$

ML decision problem

Is there $\mathbf{e} \in \{0,1\}^n$ such that $w(\mathbf{e}) \leq c$ and $H\mathbf{e}^\top = \mathbf{s}$?

Theorem

The ML decision problem for BSC is NP-complete.

Hat Problem

- A number N of players are each wearing a hat, which may be of blue or red colours.
- Players can see the colors of all other players' hats, but not that of their own.
- Without any communication, some of the players must guess the color of their hat. Not all players are required to guess.
- All players who guess must decide at the same predetermined time, i.e., they don't know other's guess.
- Players win if at least one player guesses and all of those who guess do so correctly.
- How can the players maximise their chance of winning?

Minimum Distance

Minimum Distance

ullet The minimum distance of a code ${\mathcal C}$ is

$$d_{\min} \triangleq \min_{\mathbf{x} \neq \mathbf{y} \in \mathcal{C}} d(\mathbf{x}, \mathbf{y}).$$

Hamming Weight

- The *Hamming weight* of vector $\mathbf{z} \in \mathcal{A}^n$, denoted by $w(\mathbf{z})$, is the number of non-zero components in \mathbf{z} .
- Suppose A is a finite field.
- For $\mathbf{x}, \mathbf{y} \in A^n$, $d(\mathbf{x}, \mathbf{y}) = w(\mathbf{x} \mathbf{y})$.
- For a linear code $d_{\min} = \min_{\mathbf{x} \neq \mathbf{0} \in \mathcal{C}} w(\mathbf{x})$.

Error Correction

 A code is t-error correcting if there exists a decoding algorithm such that the code can be decoded correctly for any t or less than t errors.

Theorem

A code is t-error correcting iff $d_{min} \ge 2t + 1$.

Error Detection

• A code is t-error detecting if there exists a decoding algorithm such that the code can be decoded correctly when there is no errors and an error message is generated for any c, $0 < c \le t$, errors.

Theorem

A code is t-error detecting iff $d_{min} \ge t + 1$.

Erasure Correction

 A code is t-erasure correcting if the code can be decoded correctly for any t or less than t erasures.

Theorem

A code is t-erasure correcting iff $d_{min} \ge t + 1$.

Hamming Codes

Richard Hamming (1915 - 1998)

All storage devices make errors!

- 1. magnetic tape
- 2. hard disk, floppy disk
- 3. optical disk
- 4. flash memory
- 5. distributed storage
- 6. cloud storage

Error Models

- Bit-flip errors.
- Erasure is also common in storage devices.
- More sophisticated error models can be obtained by investigating the underlying physical phenomenons of a particular storage devices.

Hamming's quesiton

If there exists only one bit flip, how to correct it?

Repetition codes:

- Repeat each bit three times
- Majority vote

(7,4) Hamming Code

• Encode each block of 4 bits to a 7-bit codeword.

• Generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

• Encoding: $\mathbf{c} = [b_1b_2b_3b_4]G$.

$\overline{(7,4)}$ Hamming Code

Parity check matrix

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- $\operatorname{rank}(H) = 3$.
- $\operatorname{rank}(C) = 4$.
- The minimum (Hamming) weight of a codeword is 3.

General Hamming Codes

- Let m be a nonnegative integer, and $n = 2^m 1$.
- Let H be an $m \times n$ binary matrix whose columns are formed by all the nonzero m-tuples.

Theorem

The code C with H as the parity-check matrix has the following properties:

- 1. The dimension of C is $k = 2^m m 1$.
- 2. The minimum weight of a codeword is 3.
- 3. A binary vector of length 2^n is either a codeword, or one flip away from a unique codeword.

Syndrome Decoding for Hamming Codes

- Transmit $x \in C$.
- Receive $\mathbf{y} = \mathbf{x} + \mathbf{e}_i$.
- Calculate $H\mathbf{y}^{\top} = H\mathbf{x}^{\top} + H\mathbf{e}_i^{\top} = h_i$.
- ullet So $H\mathbf{y}^{\top}$ tells the position of the error.

Hamming Bound (Sphere-Packing Bound)

Theorem

For a block code $\mathcal{C} \subset \mathbb{A}^n$ satisfies

$$|\mathcal{C}| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}$$

where $t = \lfloor (d_{\min} - 1)/2 \rfloor$.

Hamming Bound (Sphere-Packing Bound)

Theorem

For a block code $\mathcal{C} \subset \mathbb{A}^n$ satisfies

$$|\mathcal{C}| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} (q-1)^i}$$

where $t = \lfloor (d_{\min} - 1)/2 \rfloor$.

Binary Hamming codes achieve the Hamming bound.