Variable and model selection

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

· On one hand, we want to maximise fit.

- · On one hand, we want to maximise fit.
- On the other hand, we want to avoid overfitting and overly complex models.

GLMM

Wenger & Olden (2012)

Random forests

Overfitted models will work badly on new data

· Cross-validation (k-fold, leave one out...)

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:
 - AIC

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:
 - · AIC
 - · BIC

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:
 - · AIC
 - BIC
 - · DIC

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:
 - AIC
 - BIC
 - · DIC
 - · WAIC...

- · Cross-validation (k-fold, leave one out...)
- · Information Criteria:
 - · AIC
 - BIC
 - · DIC
 - · WAIC...
- · All these methods have flaws!

$$AIC = -2 * LogLikelihood + 2K$$

· First term: model fit

$$AIC = -2 * LogLikelihood + 2K$$

- · First term: model fit
- K = number of parameters (penalisation for model complexity)

$$AIC = -2 * LogLikelihood + 2K$$

- · First term: model fit
- K = number of parameters (penalisation for model complexity)
- · Lower is better

$$AIC = -2 * LogLikelihood + 2K$$

- · First term: model fit
- K = number of parameters (penalisation for model complexity)
- · Lower is better
- AIC biased towards complex models.

$$AIC = -2 * LogLikelihood + 2K$$

- · First term: model fit
- K = number of parameters (penalisation for model complexity)
- · Lower is better
- · AIC biased towards complex models.
- AICc recommended with 'small' sample sizes (n/p < 40). But see Richards 2005

Problems of IC

 $\boldsymbol{\cdot}$ No information criteria is panacea: all have problems.

Problems of IC

- · No information criteria is panacea: all have problems.
- They estimate *average* out-of-sample prediction error. But errors can differ substantially within dataset.

Problems of IC

- · No information criteria is panacea: all have problems.
- They estimate average out-of-sample prediction error. But errors can differ substantially within dataset.
- Sometimes better models rank poorly (e.g. see Gelman et al. 2013). Combine with thorough model checks.

So which variables should enter my model?

• Choose variables based on **background knowledge**, rather than throwing plenty of them in a fishing expedition.

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables **balanced with sample size** (e.g. at least 10 30 obs per param)

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- · Assess collinearity between predictors (Dormann et al 2013)

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- Assess collinearity between predictors (Dormann et al 2013)
 - If |r| > 0.5 0.7, consider leaving one variable out, but keep it in mind when interpreting model results.

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- Assess collinearity between predictors (Dormann et al 2013)
 - If |r| > 0.5 0.7, consider leaving one variable out, but keep it in mind when interpreting model results.
 - Or combine 2 or more in a synthetic variable (e.g. water deficit ~ Temp + Precip).

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- Assess collinearity between predictors (Dormann et al 2013)
 - If |r| > 0.5 0.7, consider leaving one variable out, but keep it in mind when interpreting model results.
 - Or combine 2 or more in a synthetic variable (e.g. water deficit ~ Temp + Precip).
 - · Many methods available, e.g. sequential, ridge regression...

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- · Assess collinearity between predictors (Dormann et al 2013)
 - If |r| > 0.5 0.7, consider leaving one variable out, but keep it in mind when interpreting model results.
 - Or combine 2 or more in a synthetic variable (e.g. water deficit ~ Temp + Precip).
 - · Many methods available, e.g. sequential, ridge regression...
 - Measurement error can seriously complicate things (Biggs et al 2009; Freckleton 2011)

- Choose variables based on background knowledge, rather than throwing plenty of them in a fishing expedition.
- Propose single global model or small set (< 10 20) of reasonable candidate models.
- Number of variables balanced with sample size (e.g. at least 10 30 obs per param)
- Assess collinearity between predictors (Dormann et al 2013)
 - If |r| > 0.5 0.7, consider leaving one variable out, but keep it in mind when interpreting model results.
 - Or combine 2 or more in a synthetic variable (e.g. water deficit ~ Temp + Precip).
 - · Many methods available, e.g. sequential, ridge regression...
 - Measurement error can seriously complicate things (Biggs et al 2009; Freckleton 2011)
- · For predictors with large effects, consider interactions.

Think about the shape of relationships

Really? Not everything has to be linear! Actually, it often is not.

Think about shape of relationship.

Removing predictors

Stepwise regression has many problems

• Whittingham et al. (2006) Why do we still use stepwise modelling in ecology and behaviour? J. Animal Ecology.

Stepwise regression has many problems

- Whittingham et al. (2006) Why do we still use stepwise modelling in ecology and behaviour? J. Animal Ecology.
- Mundry & Nunn (2009) Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution. Am Nat.

Stepwise regression has many problems

- Whittingham et al. (2006) Why do we still use stepwise modelling in ecology and behaviour? J. Animal Ecology.
- Mundry & Nunn (2009) Stepwise Model Fitting and Statistical Inference: Turning Noise into Signal Pollution. Am Nat.
- This includes **stepAIC** (e.g. Dahlgren 2010; Burnham et al 2011; Hegyi & Garamszegi 2011).

Other common bad practices

• Testing bivariate relationships before building multivariable model

Heinze & Dunkler 2016

Other common bad practices

- Testing bivariate relationships before building multivariable model
- $\boldsymbol{\cdot}$ Removing non-significant predictors

Heinze & Dunkler 2016

Removing predictors?

· Always **keep 'core' predictors** (based on previous knowledge)

Heinze et al 2018

Removing predictors?

- · Always keep 'core' predictors (based on previous knowledge)
- If ratio sample size/number of predictors is low (<10 EPP), avoid variable selection (too unstable)

Heinze et al 2018

Removing predictors?

- Always keep 'core' predictors (based on previous knowledge)
- If ratio sample size/number of predictors is low (<10 EPP), avoid variable selection (too unstable)
- If performing variable selection, always assess stability (bootstrap, etc)

Heinze et al 2018

1. Choose meaningful variables

- 1. Choose meaningful variables
 - · Beware collinearity

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models

- 1. Choose meaningful variables
 - · Beware collinearity
 - Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - Avoid stepwise and all-subsets

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - · Avoid stepwise and all-subsets
 - · Don't assume linear effects: think about appropriate functional relationships

- 1. Choose meaningful variables
 - · Beware collinearity
 - Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - · Avoid stepwise and all-subsets
 - · Don't assume linear effects: think about appropriate functional relationships
 - · Consider interactions for strong main effects

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - · Avoid stepwise and all-subsets
 - Don't assume linear effects: think about appropriate functional relationships
 - · Consider interactions for strong main effects
- 3. If > 1 model have similar support, consider model averaging (or blending).

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - · Avoid stepwise and all-subsets
 - · Don't assume linear effects: think about appropriate functional relationships
 - · Consider interactions for strong main effects
- 3. If > 1 model have similar support, consider model averaging (or blending).
- 4. Always check fitted models thoroughly

- 1. Choose meaningful variables
 - · Beware collinearity
 - · Keep good n/p ratio
- 2. Generate global model or (small) set of candidate models
 - · Avoid stepwise and all-subsets
 - · Don't assume linear effects: think about appropriate functional relationships
 - · Consider interactions for strong main effects
- 3. If > 1 model have similar support, consider model averaging (or blending).
- 4. Always check fitted models thoroughly
- 5. Always report effect sizes