UDP Transmission and Broadcast and Multicast

Antoni Iwan

April 16, 2025

Abstract

This document presents the basics of the UDP protocol and the mechanisms of Broadcast and Multicast transmission in an accessible way. It includes diagrams and C code examples to help understand and implement them independently.

Contents

1	Introduction	1
2	The UDP Protocol 2.1 UDP Header	2 2
3	Broadcast Transmission 3.1 Broadcast Addresses	
4	Multicast Transmission4.1 Multicast Addresses4.2 Joining a Multicast Group4.3 Example Pseudocode (Multicast)	3
5	Broadcast vs Multicast Comparison	3
6	Conclusion	3

1 Introduction

UDP (User Datagram Protocol) operates at the transport layer of the OSI (or TCP/IP) model as a connectionless protocol. This means that unlike TCP's three-way handshake, no connection setup is required before sending the first packet. As a result:

- Minimal latency There are no delays in establishing or tearing down a session.
- Low protocol overhead the UDP header is only 8 bytes, compared to at least 20 bytes for TCP.
- No state management the network does not keep track of session state (no windows, connection states, or retransmission queues).

2 The UDP Protocol

2.1 UDP Header

The UDP header has a fixed length of 8 bytes and consists of four fields:

- Source Port (2 bytes)
- Destination Port (2 bytes)
- Length (2 bytes) length of the entire UDP packet
- Checksum (2 bytes) optional but recommended

Figure 1: UDP header layout

3 Broadcast Transmission

Broadcast allows sending a packet to all devices on the same local network.

3.1 Broadcast Addresses

For IPv4 networks, the broadcast address ends with 255 (e.g., 192.168.1.255). Sending a packet to this address will be received by all hosts in the subnet.

3.2 Example Pseudocode (Broadcast)

BEGIN

```
CREATE udp_socket
ENABLE broadcast_option ON udp_socket

SET destination_address.family TO IPv4
SET destination_address.port TO 5000
SET destination_address.ip TO "192.168.1.255"

SEND "Hello, broadcast!" TO destination_address VIA udp_socket

CLOSE udp_socket
END
```

Listing 1: Sending UDP broadcast in pseudocode

4 Multicast Transmission

Multicast allows sending a packet to a group of interested hosts that have joined a specific multicast group.

4.1 Multicast Addresses

IPv4 addresses in the range 224.0.0.0 to 239.255.255.255 are reserved for multicast.

4.2 Joining a Multicast Group

A host who wants to receive packets from a multicast group must send an IGMP request to the switch/router.

4.3 Example Pseudocode (Multicast)

```
BEGIN
    CREATE udp_socket
    SET local_address.family TO IPv4
    SET local address.port TO 6000
    SET local_address.ip TO ANY
    BIND udp_socket TO local_address
    JOIN multicast_group "239.0.0.1" ON interface ANY
    WHILE true DO
        RECEIVE message INTO buffer VIA udp_socket
        IF message received THEN
            PRINT "Received: " + buffer
        ELSE
            BREAK
    END WHILE
    CLOSE udp_socket
END
```

Listing 2: Receiving UDP multicast in pseudocode

5 Broadcast vs Multicast Comparison

- **Broadcast**: sends a packet to all hosts in the subnet simple but generates a lot of unnecessary traffic.
- Multicast: targets only the interested hosts more efficient in larger networks.

6 Conclusion

UDP is a fast, connectionless solution, and broadcast and multicast are two approaches to sending data to multiple recipients. When deploying, pay attention to network limitations and router/switch configurations.