BECA/Huson/Algebra 2: Regents Preparation 20 June 2024

Name:

Prep #32 - Business and Financial Mathematics

- 1. Julia deposits \$2000 into a savings account that earns 4% interest per year. The exponential function that models this savings account is $y = 2000(1.04)^t$, where t is the time in years. Which equation correctly represents the amount of money in her savings account in terms of the monthly growth rate?
 - (a) $y = 166.67(1.04)^{0.12t}$

(c) $y = 2000(1.0032737)^{12t}$

(b) $y = 2000(1.01)^t$

- (d) $y = 166.67(1.0032737)^{12t}$
- 2. Jim is looking to buy a vacation home for \$172,600 near his favorite southern beach. The formula to compute a mortgage payment, M, is $M = P \cdot \frac{r(1+r)^N}{(1+r)^N-1}$ where P is the principal amount of the loan, r is the monthly interest rate, and N is the number of monthly payments. Jim's bank offers a monthly interest rate of 0.305% for a 15-year mortgage.

With no down payment, determine Jim's mortgage payment, rounded to the nearest dollar.

Algebraically determine and state the down payment, rounded to the *nearest dollar*, that Jim needs to make in order for his mortgage payment to be \$1100.

- 3. An equation to represent the value of a car after t months of ownership is $v = 32,000(0.81)^{\frac{t}{12}}$. Which statement is not correct?
 - (a) The car lost approximately 19% of its value each month.
 - (b) The car maintained approximately 98% of its value each month.
 - (c) The value of the car when it was purchased was \$32,000.
 - (d) The value of the car 1 year after it was purchased was \$25,920.
- 4. The function below models the average price of gas in a small town since January 1st.

$$G(t) = -0.0049t^4 + 0.0923t^3 - 0.56t^2 + 1.166t + 3.23$$
, where $0 \le t \le 10$.

If G(t) is the average price of gas in dollars and t represents the number of months since January 1st, the absolute maximum G(t) reaches over the given domain is about what value, to the nearest cent?

5. The value of a certain small passenger car based on its use in years is modeled by $V(t) = 28482.698(0.684)^t$, where V(t) is the value in dollars and t is the time in years. Zach had to take out a loan to purchase the small passenger car. The function $Z(t) = 22151.327(0.778)^t$, where Z(t) is measured in dollars, and t is the time in years, models the unpaid amount of Zach's loan over time.

Graph V(t) and Z(t) over the interval $0 \le t \le 5$, on the set of axes below.

State when V(t) = Z(t), to the nearest hundredth, and interpret its meaning in the context of the problem.