Arquitecturas de Deep Learning

Roberto Muñoz, PhD

Astrónomo y Data Scientist MetricArts

Temario

- Feed-forward network
- Arquitecturas más populares
 - Convolutional Neural Networks
 - Recurrent Neural Networks
 - Recursive Neural Networks

Feed-forward network

REDES NEURONALES PREALIMENTADAS

Feed-forward network

- Las Redes neuronales prealimentadas fueron las primeras que se desarrollaron y son el modelo más sencillo.
- En estas redes la información se mueve en una sola dirección: hacia adelante.
- Los principales exponentes de este tipo de arquitectura son el perceptrón y el perceptrón multicapa.

Perceptrón

- Perceptrón lo introduce Frank Rosenblatt (1958)
- Principales componentes
 - Valores de entrada o capa de input
 - Pesos (weights) y sesgo (bias)
 - Suma total
 - Función de activación

Paso 1

- Cada uno de los valores de entrada x es multiplicado por un valor de peso w.
- El resultado se llama k = x × w.

Paso 2

 Sumar todos los valores de k. Esa suma se llama suma pesada.

Paso 3

- Usar el valor de la suma pesada como valor de entrada para la función de activación.
- Funciones de activación: lineal, limitante, escalón, sigmoidal, tangente hiperbólica, Gaussiana, ReLU.

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

CNN

REDES CONVOLUCIONALES

- Las redes neuronales convolucionales son similares a las redes neuronales ordinarias.
- Se componen de neuronas que tienen pesos y sesgos que pueden aprender.
- Cada neurona recibe algunas entradas, realiza un producto escalar y luego aplica una función de activación.

Convolución

0	1	2
2	2	0
0	1	2

Kernel 3x3

30	3,	2_{2}	1	0
0_2	02	1_{0}	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolución

- CNN calcula mapas de features a partir de una imagen de entrada. Cada elemento proviene de un región local de píxels.
- La región local de píxels se denomina local receptive field o campos receptivos.

- ¿Porqué funcionan tan bien en imágenes?
 - Conectividad local: Cada elemento del mapa de features está conectado con una pequeña región de píxels/patrones. Función de respuesta alta de los filtros aprendidos. Se parte con representaciones de pequeñas regiones y luego se escala a regiones de mayor tamaño.
 - Pesos compartidos: Cada filtro se replica a lo largo del campo de visión completo. Invariancia respecto a translación.

- Las redes neuronales convolucionales van a estar construidas por 3 tipos de capas,
 - Capa convolucional
 - Capa de reducción o pooling. Reducir cantidad de parámetros, características más comunes.
 - Capa clasificadora totalmente conectada. Suelen ser las últimas capas de la red.
- Algunas arquitecturas CNN
 - LeNet, AlexNet, VGGNet, GoogleNet, ResNet, etc.

LeNet-5

- Propuesta por Yan LeCun et al. (1998)
- Usada por bancos para reconocer números escritos a mano en cheques digitalizados.

AlexNet

- Propuesta por Krizhevsky et al. (2012) como solución al challenge de ImageNet 2012.
- Clasificación de pequeñas imágenes.
- Top-5 score: Etiqueta anotada es una de las 5 predicciones con mayor probabilidad.
- Redujo error top-5 de 26,2% a 15,3%.

AlexNet

- Contiene 5 capas convolucionales y 3 capas densas (fullyconnected).
- Se aplica ReLU después de cada capa convolucional y capa densa.
- Se aplica dropout antes de la primera y segunda capa densa.

Padding

Agregar pixels extras en los bordes de la imagen

0	0	0	0	0	0
0	35	19	25	6	0
0	13	22	16	53	0
0	4	3	7	10	0
0	9	8	1	3	0
0	0	0	0	0	0

Striding

Saltarse algunas posiciones en la imagen.
Stride=2 es dar pasos de 2 pixels

7 x 7 Input Volume

Pooling

 Reducir dimensionalidad de los features calculando el valor máximo o promedio agrupando pixels

AlexNet – Parámetros

Size / Operation	Filter	Depth Stride	Padding	Number of Parameters	Forward Computation
3* 227 * 227					
Conv1 + Relu	11 * 11	96	4	(11*11*3 + 1) * 96=34944	(11*11*3 + 1) * 96 * 55 * 55=105705600
96 * 55 * 55					
Max Pooling	3 * 3		2		
96 * 27 * 27					
Norm					
Conv2 + Relu	5 * 5	256	1	2(5 * 5 * 96 + 1) * 256=614656	(5 * 5 * 96 + 1) * 256 * 27 * 27=448084224
256 * 27 * 27					
Max Pooling	3 * 3		2		
256 * 13 * 13					
Norm					
Conv3 + Relu	3 * 3	384	1	1(3 * 3 * 256 + 1) * 384=885120	(3 * 3 * 256 + 1) * 384 * 13 * 13=149585280
384 * 13 * 13					
Conv4 + Relu	3 * 3	384	1	1(3 * 3 * 384 + 1) * 384=1327488	(3 * 3 * 384 + 1) * 384 * 13 * 13=224345472
384 * 13 * 13					
Conv5 + Relu	3 * 3	256	1	1(3 * 3 * 384 + 1) * 256=884992	(3 * 3 * 384 + 1) * 256 * 13 * 13=149563648
256 * 13 * 13					
Max Pooling	3 * 3		2		
256 * 6 * 6					
Dropout (rate 0.5)					
FC6 + Relu				256 * 6 * 6 * 4096=37748736	256 * 6 * 6 * 4096=37748736
409	6				
Dropout (rate 0.5)					
FC7 + Relu				4096 * 4096=16777216	4096 * 4096=16777216
409	6				
FC8 + Relu				4096 * 1000=4096000	4096 * 1000=4096000
1000 classes					
Overall				62369152=62.3 million	1135906176=1.1 billion
Conv VS FC				Conv:3.7million (6%) , FC: 58.6 million (94%)	Conv: 1.08 billion (95%) , FC: 58.6 million (5%)
				(, ,	, ,,

AlexNet

- La red tiene 62,3 millones de parámetros
- Necesita de 1.100 millones de unidades cómputo en un solo forward pass.
- Las capas convolucionales representan el 6% de todos los parámetros. Consumen cerca del 95% del cómputo.
- Capas convolucionales tienen pocos parámetros y requieren un elevado número de cálculos.
- Capas densas o fully-connected tienen muchos parámetros y requiere pocos cálculos.

CNN architectures

An Analysis of Deep Neural Network Models for Practical Applications, 2017.