Due: Friday, November 20, 2015

Print your **name** and **NetID** legibly. Follow the guidelines and format given in the syllabus. Staple multiple pages. Show all units. Homework must be turned in at the **beginning** of class and any late homework assignments will not be accepted. Please contact the course director, Professor Dallesasse, should any issues with late homework arise.

1. MOS CAPACITORS

- (A). Consider an ideal (ignore work function difference) Si MOS capacitor with acceptor doping of $N_a = 2 \times 10^{16}$ cm⁻³ and an oxide thickness of 200 nm. Find the threshold voltage of this device. Note that $q\chi_{Si} = 4.05$ eV.
- (B). Given that the device has a copper gate metal ($\Phi_m = 4.6 \text{ V}$), find the threshold of this device.
- (C). Find the maximum depletion width of this device as well as the minimum capacitance.
- (D). Sketch the low frequency C vs. V_G curve for this device being sure to note the flatband voltage, the threshold voltage, and the minimum capacitance.
- (E). Repeat parts (b)-(d) for an MOS with donor doping of 1×10^{16} cm⁻³ and the same gate metal.

2. MOSFET OUTPUT CHARACTERISTICS

An *n*-channel MOSFET is designed with a silicon dioxide thickness of 12 nm. Assuming the channel mobility is $\mu_n = 1000 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$, the channel length is 15 μ m, the channel width is 150 μ m, and the acceptor concentration is $N_a = 4 \times 10^{16} \text{ cm}^{-3}$, find the threshold voltage of the device. It is feasible to assume the gate work function is negligible. Create a plot of the drain current versus drain voltage for various gate voltages (at least 4) above threshold. [NOTE: Please use plotting software and do not simply sketch the plots.]

3. MOSFET CHARACTERISTICS CONT'D

Consider an n-MOSFET with a metal gate and an Al₂O₃ gate insulator (assume $k = \varepsilon_{in}/\varepsilon_0 \approx 10$) of thickness d = 5 nm. The threshold voltage of this device is found to be $V_T = 0.3$ V and the flat band voltage is 0 V. A schematic of this device is shown in Fig. 3.1.

- (A). First, assuming that the source and drain terminals are both grounded and a voltage is applied only to the gate, draw the low frequency $C V_{GS}$ curve of the device. Be sure to label key values and regions of operation and also calculate and label the maximum capacitance C_{max} .
- (B). Now sketch the high frequency curve for this device. Is it similar or different from the low frequency curve in part (a)? Why or why not?

Figure 3.1: MOSFET Schematic

(C). A voltage is now applied to the source and drain. The measured I-V characteristics are shown in Fig. 3.2 for two gate voltages. Assuming the device parameters given in this problem, find the second applied voltage V_{GS2} .

Figure 3.2: MOSFET I_D vs. V_{DS} Characteristic

- (D). Sketch the I_D vs. V_{GS} curve of the same device when $V_{DS} = 0.4$ V. Be sure to indicate numerically the voltage transition points between the off-state, saturation, and the linear regime.
- (E). Consider the bias point where $V_{GS} = V_{DS} = 1.3$ V. Find the transductance g_m if Z/L = 15 and the mobility is $\mu = 500$ cm²V⁻¹s⁻¹.

4. Integrated Circuits

(A). Figure 9-24 in the text depicts a logic inverter using an *n*-MOSFET. Paying particular attention to the differences in operation, draw a diagram for a similar inverter using a *p*-MOSFET. Given that these designs only require one MOSFET to function, why are CMOS designs favored for integrated circuits?

Homework Assignment #10

Fall 2015

ECE 340

(B). Refer to the CMOS inverter depicted in Figure 9-25. Assumer that the two MOSFETs have the same insulator capacitances. Derive the expression for the input voltage at the transition region (V_m) , where both transistors are saturated. From your result, find the condition for this voltage to occur at $V_{in} = V_{DD}/2$. Comment on the design issues that this may cause.