I Automate à pile

Soit Σ et Γ deux alphabets. Un **automate à pile** sur Σ est un quintuplet $A = (Q, q_0, \gamma_0, \delta)$, où Q est un ensemble fini d'états, $q_0 \in Q$ est l'état initial, $\gamma_0 \in \Gamma$ est le symbole de pile initial et δ est une fonction de transition de $Q \times \Sigma \times \Gamma$ vers l'ensemble des parties de $Q \times \Gamma^*$.

Une **configuration** de A est un couple (q, z) où $z \in \Gamma^+$ est la **pile** et $q \in Q$. La configuration initiale est (q_0, γ_0) et une configuration (q, ε) où $q \in Q$ est dite **acceptante**.

Une **transition** $\delta(q, a, \gamma) = (q', g)$ signifie que si A est dans une configuration $(q, z\gamma)$ où $\gamma \in \Gamma$ est le sommet de pile, et qu'il lit la lettre $a \in \Sigma \cup \{\varepsilon\}$, alors il peut aboutir à la configuration (q', zg) (on lit a et on remplace le sommet de la pile par g).

Cette transition sera dessinée comme suit :

L'automate à pile A accepte un mot de Σ^* s'il peut lire ses lettres dans l'ordre à partir de la configuration initiale pour parvenir à une configuration acceptante.

- 1. Étant donné un automate A sur Σ sans pile, expliquer comment construire un automate à pile A' sur Σ qui reconnaît le même langage que A.
- 2. On prend dans cette question $\Sigma = \{a, b\}$. Proposer un automate à pile qui reconnait le langage $\{a^n b^n \mid n \in \mathbb{N}\}$. Qu'en déduire?
- 3. On prend toujours $\Sigma = \{a, b\}$. Proposer un automate à pile qui reconnait le langage $\{w \in \Sigma^* \mid |w|_a = |w|_b\}$, où $|w|_a$ et $|w|_b$ désignent respectivement le nombre de a et de b de w.

Soit $G = (V, \Sigma, R, S)$ une grammaire hors contexte, qu'on suppose sous forme normale de Chomsky (règles de la forme $A \to BC$ où $B, C \in V \setminus \{S\}, A \to a$ où $A \in V$ et $a \in \Sigma, S \to \varepsilon$).

4. Montrer qu'il existe un automate à pile reconnaissant L(G).

Soit A un automate à pile.

- 5. Justifier qu'on peut supposer que les transitions de A ajoutent au plus 2 symboles sur la pile.
- 6. On définit $L_{q,q',z}$ comme l'ensemble des mots u tels qu'il existe un chemin d'étiquette u de la configuration (q,z) à (q',ε) dans A. Donner une relation de récurrence sur $L_{q,q',z}$.
- 7. En déduire une grammaire engendrant L(A).

II Langage d'une grammaire

Déterminer, en le prouvant, les langages générés par les grammaires :

1.

$$S \rightarrow X \mid Y$$

$$X \rightarrow aX \mid aZ$$

$$Y \rightarrow Yb \mid Zb$$

$$Z \rightarrow \varepsilon \mid aZb$$

2.

$$S \rightarrow 0A1 \mid \varepsilon$$
$$A \rightarrow 1S0 \mid \varepsilon$$

3.

$$\begin{split} S \rightarrow X \mid Y \\ X \rightarrow Z0X \mid Z0Z \\ Y \rightarrow Z1Y \mid Z1Z \\ Z \rightarrow \varepsilon \mid 1Z0Z \mid 0Z1Z \end{split}$$

III Preuve de langage algébrique

Montrer que les langages suivants sont algébriques :

- 1. L'ensemble des miroirs des mots de L, où L est un langage algébrique.
- 2. L'ensemble des mots sur $\{a,b\}$ de taille est congrue à 3 modulo 5.
- 3. $\{u \in \{0,1\}^* \mid n(00,u) = n(11,u)\}$ où n(x,u) est le nombre d'occurences du facteur x dans u.
- 4. $\{u \in \{0,1\}^* \mid n(10,u) = n(01,u)\}.$
- $5. \ \{a^nb^{2n} \mid n \in \mathbb{N}\}.$

IV Langage non algébrique

On admet le lemme de pompage algébrique :

Lemme de pompage algébrique

Soit L un langage algébrique. Il existe un entier n tel que, pour tout mot $t \in L$ tel que $|t| \ge n$, on puisse écrire t = uvwxy avec :

- $|vwx| \leq n$
- $|vx| \ge 1$
- $uv^iwx^iy \in L$ pour tout $i \in \mathbb{N}$.

Montrer que les langages suivants ne sont pas algébriques en utilisant le lemme de pompage algébrique.

- $1. \{a^n b^{2n} a^n \mid n \in \mathbb{N}\}$
- 2. $\{uu \mid u \in \Sigma^*\}$ si $|\Sigma| > 1$
- 3. $\{u \# v \mid u, v \in \{a, b\}^*, |u| = |v|, u \neq v\}$
- 4. $\{a^p \mid p \in \mathbb{P}\}$