

TP8

Durée 2h30

Objectif: Vous étudierez au travers de ce TP, les notions de variable "pointeur" et les tableaux dynamiques.

EXERCICE 1:

Ecrire un programme permettant d'évaluer les termes u_n de la suite de Syracuse définie par la relation de récurrence suivante :

$$u_{n+1} = \begin{cases} \frac{u_n}{2} & \text{si } u_n \text{ est pair} \\ 3u_n + 1 & \text{si } u_n \text{ est impair} \end{cases}$$

- Déclarer deux variables n et u_0 de type entier.
- Afficher des messages demandant à l'utilisateur de saisir au clavier la valeur de l'indice n puis de la valeur initiale u_0 .
- Evaluer la valeur de u_n et afficher le résultat.

EXERCICE 2:

Ecrire un programme permettant d'évaluer une valeur approchée π_n de la valeur de π basée sur la formule de Leibniz ($\pi=4\sum_{i=0}^{\infty}\frac{(-1)^i}{2i+1}$) :

$$\pi_n = 4\sum_{i=0}^n \frac{(-1)^i}{2i+1}$$

- Déclarer une variable n et demander à l'utilisateur la valeur de n utilisée pour évaluer la valeur approchée de π .
- Calculer π_n et afficher le résultat.

EXERCICE 3:

Ecrire un programme permettant l'intégrale d'une fonction entre 2 bornes (intégration par la méthode des rectangles) :

- Déclarer 2 variables de type réel nommé borne_inf, borne_sup .
- Afficher un message demandant à l'utilisateur saisir la borne inférieure et gérer la saisie de cette valeur.
- Afficher un message demandant à l'utilisateur saisir la borne supérieure et gérer la saisie de cette valeur.
- Déclarer une variable de type entier nommé nb_valeur, qui contiendra le nombre de valeur de x entre les 2 bornes pour lesquelles la fonction sera calculée.
- Afficher un message demandant à l'utilisateur saisir le nombre de valeur et gérer la saisie de cette valeur.
- En vous servant d'une boucle et des variables précédemment saisies calculer l'intégrale de la fonction 1/x
- Afficher la valeur de l'intégrale.

EXERCICE 4:

Ecrire un programme permettant de calculer une valeur approchée de π par intégration numérique de la fonction $f(x) = 4\sqrt{1-x^2}$ sur l'intervalle [0, 1].

- Déclarer une variable n de type entier fixant le nombre de points utilisés pour évaluer la valeur approchée et demander à l'utilisateur de fournir cette valeur.
- Utiliser la méthode des rectangles pour calculer la valeur approchée R_n .
- Afficher le résultat.
- Utiliser la méthode des trapèzes pour calculer la valeur approchée T_n .
- Comparer avec la valeur exacte de π .

EXERCICE 5:

Détermination du nombre π par la méthode de Monte Carlo.

La méthode consiste à choisir aléatoirement des points de coordonnées (x, y) aléatoires dans un carré de côté unité. La valeur de π peut être estimée grâce au ratio de points situés à une distance d de l'origine inférieur à 1 ($d = \sqrt{x^2 + y^2} \le 1$).

- Générer N points aléatoires à l'aide de 2N valeurs aléatoires uniformément distribuées sur l'intervalle [0, 1].
- Pour chaque point aléatoire généré, vérifier s'il se situe à une distance inférieure à 1. Si c'est le cas incrémenter un compteur C.

Calculer la valeur approchée $\pi_N = \frac{4C}{N}$ et afficher le résultat.

Pour la prochaine fois :

Rédiger un compte rendu et le déposer sur la plateforme Célène.