FCC CERTIFICATION On Behalf of Shenzhen Superstar Electronic Co., Ltd.

FM Stereo Transmitter Model No.: JH-104

FCC ID: UW9JH104M

Prepared for : Shenzhen Superstar Electronic Co., Ltd.

Address : Room C-D, 30/F, East Block, Guangye Building, Fuhua

Road, Futian District, Shenzhen, Guangdong, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20070121 Date of Test : January 09, 2007 Date of Report : January 15, 2007

TABLE OF CONTENTS

Descri	iption	Page
Test R	Report Certification	
1. G	ENERAL INFORMATION	4
1.1.	Description of Device (EUT)	
1.2.	Description of Test Facility	
1.3.	Measurement Uncertainty	
2. M	EASURING DEVICE AND TEST EQUIPMENT	5
	ADIATED EMISSION FOR FCC PART 15 SECTION 15.239(C)	
3.1.	Block Diagram of Test Setup	
3.2.	The Emission Limit for section 15.239(c)	
3.3.	Configuration of EUT on Measurement	
3.4.	Operating Condition of EUT	7
3.5.	Test Procedure	
3.6.	The Field Strength of Radiation Emission Measurement Results	9
4. FU	UNDAMENTAL RADIATED EMISSION FOR FCC PART 15 SECTION 15.	239(B) 12
4.1.	Block Diagram of Test Setup	12
4.2.	The Emission Limit For Section 15.239(b)	12
4.3.	EUT Configuration on Measurement	
4.4.	Operating Condition of EUT	
4.5.	Test Procedure	
4.6.	The Emission Measurement Result	
5. O	CCUPIED BANDWIDTH FOR FCC PART 15 SECTION 15.239(A)	
5.1.	The Requirement For Section 15.239(a)	
5.2.	EUT Configuration on Measurement	
5.3.	Operating Condition of EUT	
5.4.	Test Procedure	
5.5.	Test Result	
	UNING RANGE	
6.1.	The Requirement For Section 15.239	
6.2.	EUT Configuration on Measurement	
6.3.	Operating Condition of EUT	
6.4.	Test Procedure	
6.5.	Test ResultPPENDIX I (TEST CURVES) (9pages)	18
Al	rrendia i (iesi cukves) (spages)	

Test Report Certification

Applicant : Shenzhen Superstar Electronic Co., Ltd.Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

EUT Description : FM Stereo Transmitter

(A) MODEL NO.: JH-104(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 3.0V (AAA Battery ×2)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.239: 2006

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section15.239 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	January 09, 2007
Prepared by:	sky Long
	(Engineer)
Reviewer:	Searle
	(Quality Manager)
Approved & Authorized Signer:	Martinh
	(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : FM Stereo Transmitter

Model Number : JH-104

Power Supply : DC 3.0V (AAA Battery $\times 2$)

Operate Frequency: 107.1-107.9MHz, Frequency Step: 0.2MHz

Channel : 5

iPod : Manufacturer: Apple

M/N: A1136

S/N: JQ543GF9SZA

Applicant : Shenzhen Superstar Electronic Co., Ltd.

Address : Room C-D, 30/F, East Block, Guangye Building, Fuhua

Road, Futian District, Shenzhen, Guangdong, China

Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

Address : Room C-D, 30/F, East Block, Guangye Building, Fuhua

Road, Futian District, Shenzhen, Guangdong, China

Date of sample received: January 04, 2007 Date of Test: January 09, 2007

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen, May 10, 2004

Accredited by FCC, May 10, 2004

The Certificate Registration Number is 253065

Accredited by Industry Canada, May 18, 2004 The Certificate Registration Number is IC 5077

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted emission expanded uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 4.12dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	03.31.2007
EMI Test Receiver	Rohde&Schwarz	ESI26	838786/013	01.02.2007
Bilog Antenna	Schwarzbeck	VULB9163	9163-194	03.31.2007
Bilog Antenna	Chase	CBL6112B	2591	03.31.2007
Horn Antenna	Rohde&Schwarz	HF906	100013	01.02.2007
Spectrum Analyzer	Anritsu	MS2651B	6200238856	03.31.2007
Pre-Amplifier	Agilent	8447D	2944A10619	03.31.2007
Audio Generator	GW	GAG-810	0913317	01.02.2007
L.I.S.N.	Rohde&Schwarz	ESH3-Z5	100305	03.31.2007
L.I.S.N.	Rohde&Schwarz	ESH3-Z5	100310	03.31.2007

3. RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(C)

3.1.Block Diagram of Test Setup

3.1.1.Block diagram of connection between the EUT and simulators

(EUT: FM Stereo Transmitter)

3.1.2. Anechoic Chamber Test Setup Diagram

3.2. The Emission Limit for section 15.239(c)

3.2.1 The field strength of any emissions radiated on any frequency outside of the specified 200kHz band shall not exceed the general radiated emission limits in section 15.209

Radiation Emission Measurement Limits According to Section 15.209

1			
		Limit,	
Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is
30 - 88	100	40	performed with
88 - 216	150	43.5	Average detector. Except those frequency bands

216 - 960	200	46	mention above, the final measurement for
Above 960	500	54	frequencies below 1000MHz is performed with Quasi Peak detector.

3.3.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

3.3.1.FM Stereo Transmitter (EUT)

Model Number : JH-104 Serial Number : N/A

Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

3.4. Operating Condition of EUT

3.4.1. Setup the EUT and simulator as shown as Section 3.1.

3.4.2. Turn on the power of all equipment.

Let the EUT work in TX modes [Plug EUT audio input to iPod headphone dock and iPod playing typical audio signal(music song) with maximum audio level] measure it. The transmit frequency are 107.1-107.9MHz.We are select 107.1.1M, 107.5M, 107.9MHz TX frequency to transmitted.

Note: The EUT is connected to iPod by the base interface of iPod. The input signal of EUT is controlled by iPod. so the volume control of iPod was set to maximum during the test. It means that the test was performed with the maximum audio input.

3.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver (R&S ESCS30) is set at 120KHz in 30-1000MHz; Set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 1100MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

3.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

The frequency range 30MHz to 1100MHz is investigated.

Date of Test: January 09, 2007 Temperature: 24°C

EUT: FM Stereo Transmitter Humidity: 53%

Model No.: JH-104 Power Supply: DC 3.0V (AAA Battery ×2)

Test Mode: TX 107.1MHz Test Engineer: Andy

Polarization	Frequency (MHz)	Reading(dBμV/m) QP	Factor Corr.(dB)	Result(dBµV/m) QP	Limits(dBµV/m) QP	Margin(dBμV/m) QP
Horizontal	214.240	27.0	9.7	36.7	43.5	6.8
Horizontal	321.328	25.6	13.1	38.7	46.0	7.3
Horizontal	428.380	22.6	15.6	38.2	46.0	7.8
Horizontal	535.472	20.9	17.6	38.5	46.0	7.5
Horizontal	642.610	18.9	19.2	38.1	46.0	7.9
Horizontal	749.600	17.2	20.6	37.8	46.0	8.2
Horizontal	856.710	15.0	21.7	36.7	46.0	9.3
Horizontal	963.940	13.4	22.8	36.2	54.0	17.8
Horizontal	1071.100	12.9	23.2	36.1	54.0	17.9
Vertical	214.204	29.6	8.9	38.5	43.5	5.0
Vertical	321.280	23.2	13.0	36.2	46.0	9.8
Vertical	428.428	22.8	16.1	38.9	46.0	7.1
Vertical	535.504	20.1	18.4	38.5	46.0	7.5
Vertical	642.616	16.8	20.3	37.1	46.0	8.9
Vertical	749.704	13.8	22.0	35.8	46.0	10.2
Vertical	856.796	11.7	23.4	35.1	46.0	10.9
Vertical	963.936	10.3	24.7	35.0	54.0	19.0
Vertical	1071.020	9.5	25.1	34.6	54.0	19.4

The spectral diagrams in appendix I display the measurement of un-weighted peak values.

The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:January 09, 2007Temperature:24°CEUT:FM Stereo TransmitterHumidity:53%Model No.:JH-104Power Supply:DC 3.0V (AAA Battery × 2)Test Mode:TX 107.5MHzTest Engineer:Andy

Polarization	Frequency (MHz)	Reading(dBμV/m) QP	Factor Corr.(dB)		Limits(dBµV/m) QP	Margin(dBμV/m) QP
Horizontal	215.000	27.1	9.7	36.8	43.5	6.7
Horizontal	322.520	23.9	13.1	37.0	46.0	9.0
Horizontal	430.020	22.0	15.7	37.7	46.0	8.3
Horizontal	537.500	19.3	17.6	36.9	46.0	9.1
Horizontal	645.052	18.1	19.2	37.3	46.0	8.3
Horizontal	752.504	16.1	20.6	36.7	46.0	9.3
Horizontal	860.008	14.7	21.7	36.4	46.0	9.6
Horizontal	967.606	11.3	22.8	34.1	54.0	19.9
Horizontal	1075.030	10.7	23.2	33.9	54.0	20.1
Vertical	215.008	29.1	8.9	38.0	43.5	5.5
Vertical	322.512	23.0	13.0	36.0	46.0	10.0
Vertical	430.009	21.1	16.2	37.3	46.0	8.7
Vertical	537.514	18.6	18.5	37.1	46.0	8.9
Vertical	645.008	17.0	20.4	37.4	46.0	8.6
Vertical	752.504	13.7	22.1	35.8	46.0	10.2
Vertical	860.032	13.0	23.5	36.5	46.0	9.5
Vertical	967.548	11.6	24.7	36.3	54.0	17.7
Vertical	1075.010	10.4	25.1	35.5	54.0	18.5

The spectral diagrams in appendix I display the measurement of un-weighted peak values.

The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Date of Test:January 09, 2007Temperature:24°CEUT:FM Stereo TransmitterHumidity:53%Model No.:JH-104Power Supply:DC 3.0V (AAA Battery × 2)Test Mode:TX 107.9MHzTest Engineer:Andy

Polarization	Frequency (MHz)	Reading(dBµV/m) QP	Factor Corr.(dB)	Result(dBμV/m) QP	Limits(dBµV/m) QP	Margin(dBμV/m) QP
Horizontal	215.788	26.6	9.7	36.3	43.5	7.2
Horizontal	323.712	24.6	13.2	37.8	46.0	8.2
Horizontal	431.586	21.6	15.7	37.3	46.0	8.7
Horizontal	539.498	18.5	17.7	36.2	46.0	9.8
Horizontal	647.436	16.5	19.3	35.8	46.0	10.2
Horizontal	755.330	15.0	20.6	35.6	46.0	10.4
Horizontal	863.264	13.6	21.8	35.4	46.0	10.6
Horizontal	971.112	12.3	22.8	35.1	54.0	18.9
Horizontal	1078.990	10.2	23.2	33.4	54.0	20.6
Vertical	215.808	29.9	8.9	38.8	43.5	4.7
Vertical	323.688	24.9	13.1	38.0	46.0	8.0
Vertical	431.608	21.3	16.2	37.5	46.0	8.5
Vertical	539.524	18.8	18.5	37.3	46.0	8.7
Vertical	647.428	17.1	20.4	37.5	46.0	8.5
Vertical	755.276	13.7	22.1	35.8	46.0	10.2
Vertical	863.184	12.5	23.5	36.0	46.0	10.0
Vertical	971.160	10.9	24.8	35.7	54.0	18.3
Vertical	1078.980	9.8	25.1	34.9	54.0	19.1

The spectral diagrams in appendix I display the measurement of un-weighted peak values.

The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

Reviewer:	Sound	

4. FUNDAMENTAL RADIATED EMISSION FOR FCC PART 15 SECTION 15.239(B)

4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: FM Stereo Transmitter)

4.1.2. Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: FM Stereo Transmitter)

4.2. The Emission Limit For Section 15.239(b)

4.2.1 The field strength of any emission within the permitted 200kHz band shall not exceed 250microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

4.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1.FM Stereo Transmitter (EUT)

Model Number : JH-104 Serial Number : N/A

Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

4.4. Operating Condition of EUT

4.4.1. Setup the EUT and simulator as shown as Section 4.1.

4.4.2. Turn on the power of all equipment.

Let the EUT work in TX modes [Plug EUT audio input to iPod headphone dock and iPod playing typical audio signal(music song) with maximum audio level] measure it. The transmit frequency are 107.1-107.9MHz.We are select 107.1.1M, 107.5M, 107.9MHz TX frequency to transmitted.

Note: The EUT is connected to iPod by the base interface of iPod. The input signal of EUT is controlled by iPod. so the volume control of iPod was set to maximum during the test. It means that the test was performed with the maximum audio input.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

4.6. The Emission Measurement Result

PASS.

Date of Test:January 09, 2007Temperature:24°CEUT:FM Stereo TransmitterHumidity:53%Model No.:JH-104Power Supply:DC 3.0V (AAA Battery ×2)Test Mode:TXTest Engineer:Andy

Fundamental Radiated Emissions

Test conditions		Fundamental Frequency	
		107.1MHz	
	Unit	$(dB\mu V/m)/(\mu V/m)$	$(dB\mu V/m)/(\mu V/m)$
$T_{nom}(24^{\circ}C)$		AV	PEAK
	Horizontal	45.2/182	48.6/269
Vertical		46.0/199	49.6/302
limit		48/250	68/2500

Note: Measurement was performed with modulated signal with average detector and peak detector.

Test conditions		Fundamental 1	Frequency
		107.5M	ſНz
	Unit	$(dB\mu V/m)/(\mu V/m)$	$(dB\mu V/m)/(\mu V/m)$
$T_{nom}(24^{\circ}C)$		AV	PEAK
Horizontal		44.2/162	47.7/243
Vertical 46.		46.1/202	49.6/302
limit		48/250	68/2500

Note: Measurement was performed with modulated signal with average detector and peak detector.

Test conditions		Fundamental Frequency	
		107.9MHz	
	Unit	$(dB\mu V/m)/(\mu V/m)$	$(dB\mu V/m)/(\mu V/m)$
$T_{\text{nom}}(24^{\circ}\text{C})$		AV	PEAK
	Horizontal	45.1/180	48.6/269
Vertical		47.0/224	50.6/339
	limit	48/250	68/2500

Note: Measurement was performed with modulated signal with average detector and peak detector.

Reviewer:	Sount)	
110 / 10 // 01 /	0	

5. OCCUPIED BANDWIDTH FOR FCC PART 15 SECTION

15.239(A)

5.1. The Requirement For Section 15.239(a)

5.1.1. Emission from the device shall be confined within a band 200kHz wide centered on the operating frequency. The 200kHz band shall lie wholly within the frequency range of 88-108MHz.

5.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.2.1.FM Stereo Transmitter (EUT)

Model Number : JH-104 Serial Number : N/A

Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

5.3. Operating Condition of EUT

5.3.1. Setup the EUT and simulator as shown as Section 4.1.

5.3.2. Turn on the power of all equipment.

Let the EUT work in TX modes [Plug EUT audio input to iPod headphone dock and iPod playing typical audio signal(music song) with maximum audio level] measure it. The transmit frequency are 107.1-107.9MHz.We are select 107.1.1M, 107.5M, 107.9MHz TX frequency to transmitted.

Note: The EUT is connected to iPod by the base interface of iPod. The input signal of EUT is controlled by iPod. so the volume control of iPod was set to maximum during the test. It means that the test was performed with the maximum audio input.

5.4.Test Procedure

The zero level was set without modulation. A small sample of the transmitter output was fed into the spectrum analyzer and above photo was taken. The vertical scale is set to 10dB per division; the horizontal scale is set to 30kHz per division.

5.5.Test Result

The EUT does meet the FCC requirement.

Input signal: play typical audio signal(music song)

FM 107.1MHz

26dB bandwidth = 169.2kHz

FM 107.5MHz

26dB bandwidth = 122.4kHz

FM 107.9MHz

26dB bandwidth = 132.6kHz

Reviewer:	Sount)	

6. TUNING RANGE

6.1. The Requirement For Section 15.239

88-108MHz

6.2.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.2.1.FM Stereo Transmitter (EUT)

Model Number : JH-104 Serial Number : N/A

Manufacturer : Shenzhen Superstar Electronic Co., Ltd.

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 4.1.
- 6.3.2. Turn on the power of all equipment.

Let the EUT work in TX modes [Plug EUT audio input to iPod headphone dock and iPod playing typical audio signal(music song) with maximum audio level] measure it. The transmit frequency are 107.1-107.9MHz.We are select 107.1.1M, 107.5M, 107.9MHz TX frequency to transmitted.

Note: The EUT is connected to iPod by the base interface of iPod. The input signal of EUT is controlled by iPod. so the volume control of iPod was set to maximum during the test. It means that the test was performed with the maximum audio input.

6.4. Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set the EUT working on the lowest frequency.
- 3. Set EMI test receiver center frequency = working frequency, RBW, VBW= 10KHz, Span=300KHz.
- 4. Measuring the working frequency. And check the measuring result with the EUT display.
- 3. Set the EUT working on the mid frequency. Repeat step 3 and 4.
- 4. Set the EUT working on the high frequency. Repeat step 3 and 4.
- 5. Tune the knob to select the transmission frequency, from the low to high frequency. And check the working frequency display on the screen. The working frequency should be inside 88-108MHz.

6.5.Test Result

The EUT does meet the FCC requirement.

Low Frequency= 107.1012MHz
Mid Frequency= 107.5018MHz
High Frequency=107.9012MHz
EUT screen display 107.1MHz
EUT screen display 107.5MHz
EUT screen display 107.9MHz

The working frequency rang is from 107.1 to 107.9MHz.

Reviewer: Searl

APPENDIX I (Test Curves)

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA HORIZONTAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V memo : TX 107.1MHz manuf : SUPERSTAR sample no.: 064586

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA VERTICAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V memo : TX 107.1MHz manuf : SUPERSTAR sample no.: 064586

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA HORIZONTAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V memo : TX 107.5MHz manuf : SUPERSTAR sample no.: 064586

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA VERTICAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V
memo : TX 107.5MHz
manuf : SUPERSTAR
sample no.: 064586

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA HORIZONTAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V memo : TX 107.9MHz manuf : SUPERSTAR sample no.: 064586

Condition: FCC SECTION15.209 3m ATC FCC15C ANTENNA VERTICAL

eut : FM Stereo Transmitter m/n:JH-104

power : DC 3.0V memo : TX 107.9MHz manuf : SUPERSTAR sample no.: 064586

