

UNIVERSIDADE FEDERAL DE MATO GROSSO ENGENHARIA FLORESTAL

Dendrometria (40219916)

Volume das árvores

Prof. Dr. Gabriel Agostini Orso

gabrielorso16@gmail.com

• Para apurar a produção de áreas florestais, de modo a se avaliar a viabilidade econômica da implantação e condução de projetos.

Tabela 50 - Tabelas de produção para povoamentos desbastados de *Tectona* grandis

			gran	Sítio 17					Des	sbaste		P	rodução)
t -	h ₁₀₀	dg	h	N	G	f1,3	٧	Ndesb	%	Vd	Vac	٧	IPA	IMA
4	8,4	10,4	8,0	1055,5	8,9	0,44	31,42	•	•			31,42	15,71	7,86
6	11,4	13,8	11,0	1055,5	15,8	0,45	77,14	445.7	42.2	45,37		77,14	22,86	12,86
8	13,7	16,7	13,3	609,7	13,4	0,45	79,56	,.	,_	.0,01	45,37	124,93	23,89	15,62
10	15,5	19,3	15,2	500,3	14,6	0,44	98,23	103,3	20.6	23,88		143,60	9,33	14,36
12	17,0	21,5	16,6	397,0	14,4	0,44	105,67	100,0	-		69,25	174,92	15,66	14,58
14	10.2	22 E	17.0	298,7	12,9	0.44	100.60	98,3	24,8	29,65	00 00	100 E0	12.20	14.25
14	10,2	23,5	17,0	290,1	12,9	0,44	100,60				98,90	199,50	12,29	14,25
16	19,1	25,2	18,7	247,4	12,4	0,44	101,00					199,90	0,20	12,49
18	19,8	26,8	19,4	197,1	11,2	0,43	93,40					221,95	11,03	12,33

Fonte: Favalessa, C. M. C. (2018)

 Para auxiliar os profissionais de órgãos públicos na aplicação das leis relacionadas aos recursos florestais e na fiscalização de planos de manejo florestal.

DECRETO Nº 1.313, DE 11 DE MARÇO DE 2022.

Art. 15. Os planos de manejo poderão ser concebidos de acordo com os seguintes aspectos:

- I quanto ao objeto:
- a) madeira e lenha;
- b) castanhas, óleos, palmitos, plantas ornamentais e medicinais.
- II quanto à participação social:
- a) de pequena escala;
- b) comunitário; e
- c) empresarial.
- III quanto ao regime de controle:
- a) convencional: por área;
- b) especial: por volume.

• Para auxiliar os profissionais de órgãos públicos na aplicação das leis relacionadas aos recursos florestais e na fiscalização de planos de manejo florestal.

DECRETO N° 1.313, DE 11 DE MARÇO DE 2022.

Art. 38. O volume de exploração por hectare será estabelecido com base no volume existente na UPA, respeitando os limites impostos pela resolução CONAMA nº 406 de 2009

§ 1º Fica definido o **fator de forma 0,7** para cálculo de volume médio/ha.

§ 2º A partir do 2º POA, só será aceito pela SEMA o cálculo de volume de árvores em pé, mediante equação de volume desenvolvida especificamente para o PMFS.

§ 3º Para cálculo da **volumetria**, será descontada a casca da árvore, no percentual de 10% da volumetria total, salvo se sobrevier metodologia distinta aprovada pela câmara técnica florestal.

Em trabalhos de pesquisa e estruturação da produção relacionados, por exemplo, à produtos florestais madeireiros.

Descrição: Exemplo1 Índice de Sitio: 25.0

Densidade (árvores por hectare): 1667 Porcentagem de sobrevivência (1º ano): 100 %

Idade	Alt. Dominante	Arvores/Ha	Diâmetro Médio	Alt. Média	Área Basal	Volume Total	I.M.A.	tCO2
1	0,7	1667	0,2	0,5	0,0	0,0	0,0	0,0
3	5,6	1667	6,8	4,9	6,0	11,8	3,9	10,4
5	10,4	1663	13,0	9,3	22,2	82,4	16,5	72,7
7	14,3	1647	17,1	12,9	37,8	194,6	27,8	171,8
9	17,7	1617	19,9	15,8	50,2	318,0	35,3	280,8
11	20,5	1573	21,9	18,3	59,5	436,0	39,6	384,9
13	23,0	1520	23,5	20,5	66,1	541,0	41,6	477,6
15	25,2	1463	24,8	22,3	70,6	630,5	42,0	556,6

SORTIMENTO PARA ÁRVORES REMOVIDAS NO CORTE FINAL (15 ANOS)

Classes DAP	Arv/ha	Altura Media	Volume Total	Serraria I	Serraria II	Celulose	Energia
12,0-14,0	1	17,0	0,1	0,0	0,0	0,0	0,0
14,0-16,0	8	18,4	1,1	0,0	0,0	1,0	0,1
16,0-18,0	41	19,4	7,3	0,0	0,0	6,7	0,6
18,0-20,0	109	20,3	25,1	0,0	0,0	23,5	1,6
20,0-22,0	200	21,0	58,1	0,0	16,6	39,0	2,6
22,0-24,0	279	21,7	100,0	0,0	48,5	48,5	3,0
24,0-26,0	307	22,4	133,4	0,0	85,3	45,6	2,5
26,0-28,0	265	23,0	137,8	36,4	68,4	29,8	3,3
28,0-30,0	170	23,7	104,6	26,9	51,1	24,8	1,7
30,0-32,0	71	24,4	51,0	22,6	20,1	7,7	0,5
32,0-34,0	14	25,2	11,6	6,8	2,7	1,9	0,2
34,0-36,0	1	26,2	0,5	0,4	0,1	0,1	0,0
Totais		22,3	630,5	93,1	292,8	228,6	16,0

2 Tipos de volume da árvore

- 0 Madeira do toco;
- 1 Fuste comercial;
- 2 Galhos comerciais;
- 3 Fuste não comercial;
- 4 Galhos não comerciais (pequenos);
- 0 + 1 + 2 + 3 + 4 = Volume total.

3 Formas geométricas

3 Formas geométricas

Formas geométricas associadas ao tronco de uma árvore (Husch et al., 1982).

y= K√x3 y= K \(\sqrt{x}^2 \) y=KVx y=KVXO PARABOLOIDE CILINDRO NEILOIDE CONE R=3 NEILOIDE

R= 2 CONE

R= I PARÁBOLA QUADRÁTICA

3 Formas geométricas

$$v = \pi \int_{a}^{b} Y^2 dX$$

$$v = \left(\frac{1}{R+1}\right) * g * h$$
 • R = 2 Cone
• R = 3 Neilóide

• R = 0 Cilindro

• R = 1 Parabolóide

Fonte: Husch et. al (1982)

R=0 CILINDRO

4 Cubagem rigorosa de árvores

Sólido de Revolução	Equação de Volume
Cilindro	v = gh
Parabolóide	v = 1/2(gh)
Cone	v = 1/3(gh)
Neilóide	V = 1/4(gh)
Tronco de parabolóide	$v = h^*(g_i + g_{i+1})/2$ (Smalian)
Parabolóide	$v = h(g_m)$ (Huber)
Cilindro, parabolóide, cone ou neilóide	$v = h^*(g_i + 4g_m + g_{i+1})/6$ (Newton)

4 Cubagem rigorosa de árvores

- 4.1 Método de Smalian
- 4.2 Método de Huber
- 4.3 Método de Newton
- 4.4 Método de Hohenadl

IDÉIA GERAL DA CUBAGEM RIGOROSA

Árvore inteira

Árvore subdividida em toretes

4.1 Método de Smalian

Exemplo:

	Campo		Escritório		
h(m)	dc/c (cm)	ds/c (cm)	$gc/c(m^2)$	$gs/c(m^2)$	
0,1	27,1	24,9	0,05768	0,04870	
1,3	25,8	23,6	0,05228	0,04374	
3,3	22,9	22,3	0,04119	0,03906	
5,3	21,3	20,9	0,03563	0,03431	
7,3	19,1	18,7	0,02865	0,02746	
9,3	17,2	17,0	0,02324	0,02270	
11,3	14,3	14,1	0,01606	0,01561	
13,3	10,8	10,6	0,00916	0,00882	
15,3	6,7	6,5	0,00353	0,00332	
17,3	3,2	3,0	0,00080	0,00071	

O comprimento da ponta da árvore (cp) foi de 1,2 metros.

$$v_{1} = \frac{\left(g_{0,1} + g_{1,3}\right)}{2} L_{1}$$

$$v_{1} = \frac{\left(0,05768 + 0,05228\right)}{2} 1,2 = 0,06598 \, m^{3}$$

$$v_2 = \frac{\left(g_{1,3} + g_{3,3}\right)}{2}L_2$$

$$v_2 = \frac{(0,05228 + 0,04119)}{2} 2 = 0,09347 \ m^3$$

v_3	v_4	v_5	v_6	v_7	v_8	v_9
0,07682 m ³	0,06428 m ³	0,05189 m ³	0,03930 m ³	$0,02522 \text{ m}^3$	0,01269 m ³	$0,00433 \text{ m}^3$

$$vtoc = g_{0,1}at$$
 \rightarrow $vtoc = 0.05768.0,1 = 0.00577 m3$

$$vp = \frac{g_{17,3}}{3}cp$$
 $vp = \frac{0,00080}{3}1,2 = 0,00032 m^3$

$$v_{total} = v_{toco} + \sum_{i=1}^{n} v_i + v_{ponta}$$

 $Vt = 0.00577 + (0.06598 + ... + 0.00433) + 0.00032 = 0.44006 \text{ m}^3$.

Repetindo os mesmos cálculos para o volume sem casca, tem-se: $vtsc = 0,40763 \text{ m}^3$.

4.2 Método de Huber

Exemplo:

	Campo	Escritório		
h(m)	dc/c (cm)	ds/c (cm)	$gc/c(m^2)$	$gs/c(m^2)$
0,7	26,4	24,0	0,05474	0,04524
2,3	24,2	23,4	0,04600	0,04301
4,3	22,0	21,4	0,03801	0,03597
6,3	20,1	19,7	0,03173	0,03048
8,3	18,8	18,4	0,02776	0,02659
10,3	15,9	15,7	0,01986	0,01936
12,3	12,7	12,5	0,01267	0,01227
14,3	8,6	8,4	0,00581	0,00554
16,3	5,4	5,2	0,00229	0,00212

O comprimento da ponta da árvore (cp) foi de 1,2 metros.

$$v_1 = g_{0,7}L_1$$
 $v_1 = 0.05474.1, 2 = 0.06569 m^3$

$$v_2 = g_{2,3}L_2$$
 $v_2 = 0.04600.2 = 0.09199 m^3$

v_3	v_4	v_5	v_6	v_7	v_8	v_9
0,07603 m ³	$0,06346 \text{ m}^3$	$0,05552 \text{ m}^3$	0,03971 m ³	$0,02534 \text{ m}^3$	0,01162 m ³	$0,00458 \text{ m}^3$

$$vtoc = 0,00577 m^3$$
 e $vp = 0,00032 m^3$

$$v_{total} = v_{toco} + \sum_{i=1}^{n} v_i + v_{ponta}$$

 $vt = 0.00577 + (0.06569 + ... + 0.00458) + 0.00032 = 0.44002 \text{ m}^3$

Repetindo os mesmos cálculos para o volume sem casca, tem-se: $vtsc = 0,41012 \, m^3$.

4.3 Método de Newton

Para o cálculo do volume pelo método de cubagem de Newton, temos que:

$$vt = vtoc + \sum_{i=1}^{n} v_i + v_{ponta}$$

em que

vtoc e vp é tal como calculado para Smalian e Huber, e

$$v_i = \frac{1}{6}(g_i + 4gm_i + g_{i+1})L_j$$

em que v_i é igual ao volume do i-ésimo torete, sendo g_i e g_{i+1} as áreas seccionais nas extremidades (Smalian) e gm_i a área seccional na metade do *i*-ésimo torete (Huber)

Exemplo:

	Campo		Escritório		
<i>h</i> (m)	<i>dc/c</i> (cm)	ds/c (cm)	gc/c (m ²)	$gs/c(m^2)$	
0,1	27,1	24,9	0,05768	0,04870	
0,7	26,4	24,0	0,05474	0,04524	
1,3	25,8	23,6	0,05228	0,04374	
2,3	24,2	23,4	0,04600	0,04301	
3,3	22,9	22,3	0,04119	0,03906	
4,3	22,0	21,4	0,03801	0,03597	
5,3	21,3	20,9	0,03563	0,03431	
6,3	20,1	19,7	0,03173	0,03048	
7,3	19,1	18,7	0,02865	0,02746	
8,3	18,8	18,4	0,02776	0,02659	
9,3	17,2	17,0	0,02324	0,02270	
10,3	15,9	15,7	0,01986	0,01936	
11,3	14,3	14,1	0,01606	0,01561	
12,3	12,7	12,5	0,01267	0,01227	
13,3	10,8	10,6	0,00916	0,00882	
14,3	8,6	8,4	0,00581	0,00554	
15,3	6,7	6,5	0,00353	0,00332	
16,3	5,4	5,2	0,00229	0,00212	
17,3	3,2	3,0	0,00080	0,00071	

O comprimento da ponta da árvore (cp) foi de 1,2 metros.

$$v_1 = \frac{\left(g_{0,1} + 4g_{0,7} + g_{1,3}\right)}{6}L_1$$

$$v_1 = \frac{(0,05768 + 4.0,05474 + 0,05228)}{6}1,2 = 0,06578 m^3$$

$$v_2 = \frac{\left(g_{1,3} + 4g_{2,3} + g_{3,3}\right)}{6}L_2$$

$$v_2 = \frac{(0,05228 + 4.0,04600 + 0,04119)}{6}2 = 0,09248 \, m^3$$

v_3	v_4	v_5	v_6	v_7	v_8	v_9
0,07629 m ³	$0,06374 \text{ m}^3$	$0,05431 \text{ m}^3$	0,03957 m ³	$0,02530 \text{ m}^3$	0,01197 m ³	$0,00450 \text{ m}^3$

$$vtoc = 0,00577 m^3$$
 e $vp = 0,00032 m^3$

$$v_{total} = v_{toco} + \sum_{i=1}^{n} v_i + v_{ponta}$$

 $vt = 0.00577 + (0.06569 + ... + 0.00458) + 0.00032 = 0.44003 \text{ m}^3$

Repetindo os mesmos cálculos para o volume sem casca, tem-se: $vtsc = 0,40929 \text{ m}^3$.

Método de cubagem	Vol. com casca (m ³)	Vol. sem casca (m ³)
Smalian	0,44006	0,40763
Huber	0,44002	0,41012
Newton	0,44003	0,40929

4.4 O método de Hohenadl

$$vt = 0.2h \frac{\pi}{40000} d_{0,1}^2 + 0.2h \frac{\pi}{40000} d_{0,3}^2 + 0.2h \frac{\pi}{400000} d_{0,5}^2 + 0.2h \frac{\pi}{40000} d_{0,7}^2 + 0.2h \frac{\pi}{40000} d_{0,9}^2$$

$$vt = 0.2H(g_{0,1} + g_{0,3} + g_{0,5} + g_{0,7} + g_{0,9})$$

Exemplo:

	Campo	Escritório		
h(m)	dc/c (cm)	ds/c (cm)	$gc/c(m^2)$	$gs/c(m^2)$
1,0	18,30	17,50	0,02630	0,02405
3,0	15,80	15,00	0,01961	0,01767
5,0	12,30	11,90	0,01188	0,01112
7,0	10,80	10,40	0,00916	0,00849
9,0	5,40	5,00	0,00229	0,00196

$$vt = 0.2H(g_{0,1} + g_{0,3} + g_{0,5} + g_{0,7} + g_{0,9})$$

vt = 0.2.10(0.02630 + 0.01961 + 0.01188 + 0.00916 + 0.00229)

 $vtcc = 0,13848 \text{ m}^3$

vt = 0,2.10(0,02405+0,01767+0,01112+0,00849+0,00196)

 $vtsc = 0,12658 m^3$

5 Determinação da espessura de casca e do

fator casca (k)

$$E_i = d_{cc} - d_{sc}$$

$$K = \frac{\sum_{i=1}^{n} (d_{cc} * d_{sc})}{\sum_{i=1}^{n} d_{cc}^{2}} = \frac{\sum_{i=1}^{n} d_{sc}}{\sum_{i=1}^{n} d_{cc}}$$

$$v_{sc} = v_{cc} * K^2$$

Medição com régua

Medição com o medidor de espessura de casca

Considerando uma árvore com altura de 13,5 m, cubada pelo método de Smalian, determinar:

- a) volume total com casca e sem casca
- b) volume comercial (d >= 5 cm com casca)
- c) fator casca

$h_i(m)$ 0,1	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	8,3	9,3	10,3	11,3
d _i (cm) 40,5	39	37,5	33,1	30	26,2	23,3	21,5	17	14,5	10,3	7,2	4,2
E (cm) 1,1	0,8	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,3

h _i (m)	0,1	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	8,3	9,3	10,3	11,3
d _i (cm)	40,5	39	37,5	33,1	30	26,2	23,3	21,5	17	14,5	10,3	7,2	4,2
E (cm)	1,1	0,8	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,3
$g_i (m^2)$	0,1288	0,1195	0,1104	0,0860	0,0707	0,0539	0,0426	0,0363	0,0227	0,0165	0,0083	0,0041	0,0014
a) volume total com casca													
$v_1 = \left[\frac{(0,1228 + 0,1195)}{2} * (0,3 - 0,1) \right] = 0,0248 \text{ m}^3$ $v_{toco} = 0,1288 * 0,1 = 0,01288 \text{ m}^3$													
$v_2 = \left[\frac{(0,1195 + 0,1104)}{2} * (1,3 - 0,3)\right] = 0,1150 \text{ m}^3$ $v_{ponta} = \frac{0,0014}{3} * (13,5 - 11,3) = 0,00102 \text{ m}^3$													
$v_{3} = \left[\frac{(0, 0)}{v_{4}}\right]$ $v_{4} = 0.07$ $v_{5} = 0.06$ $v_{6} = 0.04$	784 m ³ 523 m ³	$v_7 = 0$ $v_8 = 0$,0395 m ,0295 m	v_{10} v_{11}	= 0.012	24 m^3	-	+0,0982 + 0,0395	+ 0.07 $5 + 0.02$	3 + 0,02 84 + 0,0 295+0,01 7 +0,0010)623 + (196+0,0),0483 124	

 $v_{12} = \left[\frac{(0,0041 + 0,0014)}{2} * (11,3 - 10,3)\right] = 0,0027$

h _i (m)	0,1	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	8,3	9,3	10,3	11,3
d _i (cm)	40,5	39	37,5	33,1	30	26,2	23,3	21,5	17	14,5	10,3	7,2	4,2
_ E (cm)	1,1	0,8	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,3
$g_i (m^2)$	0,1288	0,1195	0,1104	0,0860	0,0707	0,0539	0,0426	0,0363	0,0227	0,0165	0,0083	0,0041	0,0014
d _{isc} (cm) 39,4	38,2	36,9	32,6	29,5	25,7	22,8	21,1	16,6	14,1	9,9	6,9	3,9
g_{isc} (m ²) 0,1219	0,1146	0,1069	0,0835	0,0683	0,0519	0,0408	0,0350	0,0216	0,0156	0,0077	0,0037	0,0012
a) volu	$\mathbf{me\ tota}_{toco} = g_{0,}$	l sem o					(4,3 — 3,						
$v_1 = \left[\frac{(g)}{g}\right]$	$\frac{g_{0,1}+g_{0,3}}{2}$) -* (0,3 ·	- 0,1)	$v_6 = $	$\frac{(g_{4,3} + g_{4,3} + g_{4,3})}{2}$	$g_{5,3})$ * ((5,3 – 4,5	$3) \bigg] v_{11}$	$= \left[\frac{(g_9)}{g_9}\right]$	$\frac{1}{2} + g_{10}$	* (10	,3 — 9,3	3)]
	$\frac{1}{2}(1,3) + g_{1,3}$												0,3)
$v_3 = \left[\frac{(g)}{g}\right]$	$\frac{1}{2} + g_{2,3}$) - * (2,3 ·	– 1,3)	$v_8 = $	$\frac{(g_{6,3} + g_{6,3} + g_{6,3})}{2}$	$g_{7,3})$ * ([7,3 – 6,5	(3)	ponta =	$\frac{g_{11,3}}{3} * ($	$(13,5 \sum_{n=1}^{n}$	11,3)	
	$\frac{1}{2,3} + g_{3,3}$								total =	v_{toco} +	$\sum_{i=1} v_i +$	v_{ponta}	

 h_i(m)
 0,1
 0,3
 1,3
 2,3
 3,3
 4,3
 5,3
 6,3
 7,3
 8,3
 9,3
 10, 3
 11, 3

 d_i (cm)
 40,5
 39,0
 37,5
 33,1
 30,0
 26,2
 23,3
 21,5
 17,0
 14,5
 10,3
 7,2
 4,2

 E
 1,1
 0,8
 0,6
 0,5
 0,5
 0,5
 0,5
 0,4
 0,4
 0,4
 0,4
 0,4
 0,3
 0,3

b) volume comercial (d ≥ 5 cm com casca)

$$\frac{(11,3-10,3)}{(11,3-h_{d5cm})} = \frac{(4,2-7,2)}{(4,2-5,0)}$$

$$\frac{(1,0)}{(11,3-h_{d5cm})} = \frac{(-3)}{(-0,8)}$$

$$-33.9 + 3.h_{d5cm} = -0.8$$

$$h_{d5cm} = 11,03m$$

h_i(m) 0,1 0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10, 11,

d_i (cm) 40,5 39,0 37,5 33,1 30,0 26,2 23,3 21,5 17,0 14,5 10,3 7,2 5,0

b) volume comercial (d ≥ 5 cm com casca)

$$v_{1} = \left[\frac{\left(g_{0,1} + g_{0,3}\right)}{2} * (0,3 - 0,1) \right] \quad v_{6} = \left[\frac{\left(g_{4,3} + g_{5,3}\right)}{2} * (5,3 - 4,3) \right] \quad v_{11} = \left[\frac{\left(g_{9,3} + g_{10,3}\right)}{2} * (10,3 - 9,3) \right]$$

$$v_2 = \left[\frac{\left(g_{0,3} + g_{1,3}\right)}{2} * (1,3 - 0,3) \right] \quad v_7 = \left[\frac{\left(g_{5,3} + g_{6,3}\right)}{2} * (6,3 - 5,3) \right] \quad v_{12} = \left[\frac{\left(g_{10,3} + g_{11,0}\right)}{2} * (11,0 - 10,3) \right]$$

$$v_3 = \left[\frac{\left(g_{1,3} + g_{2,3} \right)}{2} * (2,3 - 1,3) \right] \quad v_8 = \left[\frac{\left(g_{6,3} + g_{7,3} \right)}{2} * (7,3 - 6,3) \right] \quad v_{total} = \sum_{i=1}^n v_i$$

$$v_4 = \left[\frac{\left(g_{2,3} + g_{3,3}\right)}{2} * (4,3 - 3,3) \right] \quad v_9 = \left[\frac{\left(g_{7,3} + g_{8,3}\right)}{2} * (8,3 - 7,3) \right]$$

$$v_5 = \left[\frac{\left(g_{3,3} + g_{4,3} \right)}{2} * (4,3 - 3,3) \right] v_{10} = \left[\frac{\left(g_{8,3} + g_{9,3} \right)}{2} * (9,3 - 8,3) \right]$$

h _i (m)	0,1	0,3	1,3	2,3	3,3	4,3	5,3	6,3	7,3	8,3	9,3	10,3	11,3
d _i (cm)	40,5	39	37,5	33,1	30	26,2	23,3	21,5	17	14,5	10,3	7,2	4,2
E (cm)	1,1	0,8	0,6	0,5	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,3	0,3
d _{isc} (cm)	39,4	38,2	36,9	32,6	29,5	25,7	22,8	21,1	16,6	14,1	9,9	6,9	3,9

c) fator casca e volume sem casca pelo fator

$$E_i = d_{cc} - d_{sc}$$

$$K = \frac{\sum_{i=1}^{n} (d_{cc} * d_{sc})}{\sum_{i=1}^{n} d_{cc}^{2}} = \frac{\sum_{i=1}^{n} d_{sc}}{\sum_{i=1}^{n} d_{cc}} = \frac{39.4 + 38.2 + \dots + 3.9}{40.5 + 39.0 + \dots + 4.2} = 0.9780$$

$$v_{sc} = 0.5509 * 0.9780^2 = 0.5269m^3$$

6 Fator de forma e quociente de forma

O fator e o quociente de forma são tentativas de se expressar a forma da árvore numericamente. O fator e o quociente de forma também podem ser empregados para o cálculo do volumes de árvores individuais.

6.1 Fator de forma

a) Fator de forma artificial $(f_{1,3})$

Este fator é a razão entre dois volumes: o volume cubado da árvore, considerado aproximadamente como o volume real da árvore, e o volume de um cilindro. Ele pode assumir valores entre 0 e 1.

$$f_{1,3} = \frac{vreal}{vcil}$$

Em que

 $f_{1,3}$ = fator de forma artificial, com ou sem casca;

vreal = volume cubado, com ou sem casca, em m³;

vcil = volume de um cilindro definido pelo *DAP* e pela altura total ou comercial.

Exemplo: Uma determinada árvore apresenta uma altura total H = 20 metros e um DAP = 15 cm. Sabe-se de antemão que seu fator de $f\bar{\phi}_{I,S}$ artificial é igual a 0,6. Qual o volume estimado desta árvore em metros cúbicos?

$$vcil = \frac{\pi 15^2}{40000} 20 = 0,35343 \text{ m}^3$$

vest = 0,35343.0,6

 $vest = 0,21206 m^3$

b) Fator de forma de Hohenald $(f_{0,1})$

A diferença básica entre o fator de forma de Hohenald $(f_{0,1})$ e o fator de forma artificial está na obtenção do volume do cilindro. Enquanto que no fator de forma artificial o volume do cilindro é calculado tomando como base a área seccional relativa ao DAP, no fator de forma de Hohenald a área seccional para cálculo do volume do cilindro é obtida a partir do diâmetro tomado a 10% da altura total da árvore.

$$f_{0,1} = \frac{vreal}{vcil}$$

6.1 Quocioente de forma

A literatura apresenta alternativas para calcular o quociente de forma. A título de exemplo, é apresentado a seguir a expressão de cálculo do quociente de Girard (1933):

$$Q = \frac{d_{5,27}}{d}$$

Em que:

Q = quociente de forma de Girard; $d_{5,27}$ = diâmetro da árvore à 5,27 metros de altura, com ou sem casca; d = diâmetro a 1,30 metros de altura, com ou sem casca.

Semelhantemente ao fator de forma, o volume da árvore pode ser obtido multiplicando-se o volume de um cilindro pelo quociente de forma médio, apropriado para a espécie e para o volume que se deseja estimar.

Referências Bibliográficas e Complementares

SOARES, C.P.B.; PAULA NETO, F.; SOUZA, A. L. Dendrometria e Inventário Florestal. Viçosa, UFV, 276 p. 2006.

MACHADO, S. A.; FIGUEIREDO FILHO, A. **Dendrometria.** 2 ed. Irati, UNICENTRO, 316 p. 2006

CAMPOS, J. C. C.; LEITE, H. G. Mensuração Florestal: Perguntas e Respostas. Viçosa, UFV, 470 p. 2006.

O conteúdo ministrado em grande parte pertence ao Material Didático de Ensino da disciplina **Dendrometria** da UFES, cedido pelo professor **Gilson Fernandes da Silva**, Engenheiro Florestal, Docente de nível superior, responsável pela disciplina na UFES.

Referências bibliográficas

IMANA-ENCIÑAS, J. Slides de aula da disciplina de dendrometria, 1ª ed. UNB, 2011.

HUSCH, B.; MILLER, C. I.; BEERS, T. W. Forest Mensuration,

FINGER C. A. G. Fundamentos da biometria florestal. Santa Maria: UFSM/CEPEF/FATEC; 1992. 269 p.

FINGER C. A. G. Apostila de biometria blorestal. Santa Maria: UFSM/CEPEF/FATEC; 2006. 284 p.

FINGER C. A. G. **Notas de aula.** Laminas de aula do Prof. Dr. César Augusto Guimarães Finger da Universidade Federal de Santa Maria, 2017.

MACHADO S. A.; FIGUEIREDO-FILHO, A. Dendrometria. 2. ed. Guarapuava: Unicentro, 2006. 316p.

SOARES, C. P. B.; PAULA NETO, F.; SOUZA, A. L. **Dendrometria e Inventário Florestal**. Viçosa, UFV, 2006, 276 p.