CS684 Documentation

CS684 – 2010 Project

Project: Automated Learning Robot

The objective of this document is to help someone else run the code that is delivered as part of this project.

Project Title: Automated Learning Robot

Students:

Name	Roll No.	Email
Pradyumna Kumar	06D05015	pradyumna@cse.iitb.ac.in
Jayanth Tadinada	06D05016	jayanth@cse.iitb.ac.in
Sharjeel Imam	06D05010	sharjeel@cse.iitb.ac.in

Project Objective

The goal of this project is to make a Firebird V robot imitate the task performed by another robot. The first robot (teacher) performs a task which will be captured by an overhead camera. The camera is connected to a computer which performs image processing using Matlab and generates an encoded task. This task is then transferred to the second robot (learner) wirelessly through Zigbee serial communication. The learner receives the task, decodes it and performs it. Thus the task has been learnt.

Hardware Platform

- 1. Firebird V ATMEGA2560 (2)
- 2. Zigbee modules (3: one each on the bots and computer)
- 3. I-Ball Face-2-Face 8.0 webcam (effective 1.3 MP)

Software

- 1. AVR Studio 4
- 2. Matlab 7
- 3. Hyper Terminal
- 4. USB FSART driver (Zigbee driver)

Code Description

Code Files

Filename	Purpose	Executes on
teacher_bot.c	To run the teacher robot	Robot
learner_bot.c	To run the learner robot	Robot
movement.h	Firebird V movement, speed and interrupt control functions	Robot
lcd.h	LCD display functions	Robot
bot_detect.m	Main function to start image processing and task detection	PC
get_center.m	Function to get the center of the coloured disk	PC
calculate_path.m	Function to calculate encoded path	PC
check_linear.m	Function to check if linear motion is starting from a specified point	PC
check_turn.m	Function to check if rotation is starting from a specified point	PC
transfer_string.m	Function to transfer a string through Zigbee	PC

Deliverables

Filename	Contains
robot.zip	Documented source code of programs to be burnt on Robot
matlab.zip	Documented Matlab files to be run on PC
docs.zip	HTML docs for the code files, generated using Doxygen
files.zip	Contains project related files (SRS, Final Report, Presentation)

Execution Instructions

Preparing the Teacher Robot

- 1. Create a project in AVR Studio 4.1 containing the files teacher_bot.c and movement.h
- 2. Configure project properties as follows:
 - a. Device: Atmega2560
 - b. Frequency: 11059200 Hz
 - c. Optimization: -00
- 3. Compile the source code
- 4. Connect the Firebird V robot
- 5. Burn the hex file generated after compilation

Preparing the Learner Robot

- 1. Create a project in AVR Studio 4.1 containing the files learner_bot.c, movement.h and lcd.h
- 2. Configure project properties as follows:
 - a. Device: Atmega2560
 - b. Frequency: 11059200 Hz
 - c. Optimization: -00
- 3. Compile the source code
- 4. Connect the Firebird V robot
- 5. Burn the hex file generated after compilation

Controlling the Teacher Robot

- 1. Connect Zigbee module to the computer
- Open Hyper Terminal and connect to the COM port of Zigbee

- 3. Set the Baud Rate as 9600
- 4. Use the following keystrokes to control the robot:
 - '1' First pre-programmed task
 - '2' Second pre-programmed task
 - '3' Third pre-programmed task
 - 'w' Forward
 - 's' Reverse
 - 'a' Left turn
 - 'd' Right turn
 - 'x' Stop

(Refer to documentation for more details about pre-programmed tasks)

Image Processing using Matlab

- 1. Connect the webcam and Zigbee module
- 2. Extract all the Matlab files to some directory
- 3. Open Matlab and change to the above directory
- 4. Change the COM port details in transfer_string.m
- 5. Change the arguments of videoinput() in bot detect.m
- 6. Run the function bot_detect() to start image processing

Coding Guidelines

- 1. We have ensured that our code is readable, reusable and well commented
- 2. We used Doxygen to generate HTML documentation for our code
- 3. We have followed the file structure and other project submission guidelines of ERTS lab