Université **BORDEAUX

ANNÉE UNIVERSITAIRE 2020-2021 Examen - Session 1 de Printemps

Parcours: Master CSI UE: 4TCY802U

Épreuve: Cryptologie

Date: 12 mai 2021 Heure: 14h30 Durée: 3h Documents: aucun document autorisé

Épreuve de M. Cerri

Collège Sciences et Technologies

L'usage de la calculatrice est autorisé. La qualité de l'argumentation et de la rédaction sera un facteur d'appréciation.

Exercice 1 - [LFSR]

Soit $s = (s_i)_{i \ge 0} \in \mathbb{F}_2^{\mathbb{N}}$ la suite périodique de période 14 et dont les 14 premiers termes sont 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0.

- 1) Déterminer la complexité linéaire de s et la plus courte relation de récurrence linéaire satisfaite par s.
- 2) Soit $t = (t_i)_{i \ge 0} = (s_{2i})_{i \ge 0}$. Quelle est la période de t? La suite t est-elle une MLS? Justifier.

Exercice 2 - [UN SYSTÈME PEU SÛR]

Alice et Bob décident d'utiliser un système asymétrique plus économique que RSA en termes de coût du déchiffrement. Alice choisit un module RSA N=pq et un entier g premier avec N. Elle prend au hasard des entiers $r_1, r_2 > 0$, calcule $g_1 = g^{r_1(p-1)} \mod N$ et $g_2 = g^{r_2(q-1)} \mod N$. Sa clé publique est (N, g_1, g_2) , sa clé secrète est (p, q). Bob, qui désire lui envoyer $m \in \mathbb{Z}/N\mathbb{Z}$, prend au hasard deux entiers $s_1, s_2 > 0$, calcule $c_1 = mg_1^{s_1} \mod N$ et $c_2 = mg_2^{s_2} \mod N$ et envoie $c = (c_1, c_2)$ à Alice.

- 1) Comment Alice peut-elle déchiffrer c efficacement ?
- 2) Expliquer en quoi ce système n'est pas sûr.

Exercice 3 - [RSA]

Bob utilise RSA et sa clé publique est (N,3). Alice veut lui envoyer deux messages $m_1, m_2 \in \{0,1,\ldots,N-1\}$ vérifiant $0 < m_1 < m_2$. Les chiffrés sont c_1 et c_2 . Ève les intercepte et un espion lui communique $\delta = m_2 - m_1$.

- 1) Exprimer $3\delta^3 + 3\delta^2 m_1 + 3\delta m_1^2$ et $3m_1^3 + 3\delta^2 m_1 + 3\delta m_1^2$ en fonction de c_1 , c_2 et δ .
- 2) En déduire comment Ève peut retrouver m_1 et m_2 si $3\delta^3 + 3\delta^2 m_1 + 3\delta m_1^2 \neq 0 \mod N$. On donnera le détail de ses calculs.

Exercice 4 - [RSA]

Soient N = pq un module RSA et $0 < e < \varphi(N)$ un exposant de chiffrement RSA, vérifiant donc $\operatorname{pgcd}(e, \varphi(N)) = 1$. On a coutume de prendre comme exposant de déchiffrement l'entier $0 < d < \varphi(N)$ vérifiant $ed = 1 \mod \varphi(N)$.

- 1) Montrer qu'en fait un entier $0 < d < \varphi(N)$ est un exposant de déchiffrement valable si et seulement si $ed = 1 \mod \lambda(N)$, où $\lambda(N) = \frac{\varphi(N)}{\operatorname{pgcd}(p-1, q-1)}$.
- 2) Combien y a-t-il de tels d dans l'intervalle $]0, \varphi(N)[$ et comment choisir p et q pour minimiser ce nombre ?

Exercice 5 - [RABIN]

Soient p et q deux premiers distincts congrus à 3 modulo 4 et N = pq.

- 1) Soit c un carré de $(\mathbb{Z}/N\mathbb{Z})^{\times}$. Combien c admet-il de racines quatrièmes? Justifier.
- 2) On prend p=31, q=43 et N=1333. Vérifier que 470 est un carré de $(\mathbb{Z}/N\mathbb{Z})^{\times}$ et déterminer ses racines quatrièmes.

Exercice 6 – [LOGARITHME DISCRET] Soit un premier p vérifiant $p = 5 \mod 8$.

- 1) Montrer que $2^{\frac{p-1}{2}} = -1 \mod p$.
- 2) En étudiant le cas p = 109, montrer que 2 n'est pas nécessairement une racine primitive modulo p.
- 3) Soit c un carré non nul modulo p.
 - (a) Montrer que $c^{\frac{p-1}{4}} = \pm 1 \mod p$.
 - (b) Si $c^{\frac{p-1}{4}} = 1 \mod p$, montrer que $c^{\frac{p+3}{8}}$ est une racine carrée de c modulo p.
 - (c) Si $c^{\frac{p-1}{4}} = -1 \mod p$, calculer $(4c)^{\frac{p+3}{4}} \mod p$ et en déduire une formule pour une racine carrée de c modulo p.
- 4) Dans la suite p = 101. Montrer que 2 est une racine primitive modulo p.
- 5) Soit $x \in \{0, 1, \ldots, p-2\}$ tel que $2^x \mod p = 55$. On note $x_{k-1} \cdots x_1 x_0$ l'écriture binaire de x, i.e. $x = \sum_{i=0}^{k-1} x_i 2^i$, où $k \ge 2$ est le nombre de bits de l'écriture binaire de p-2 (les x_i peuvent être nuls à partir d'un certain rang). Déterminer x_0 .
- 6) En utilisant la question 3 déterminer x_1 . On pourra admettre que $78^{25} = 1 \mod p$ et que $78^{13} = 52 \mod p$.
- 7) Sachant que $2^{17} = 75 \mod p$, $2^{62} = 45 \mod p$ et $55 \times 2^{56} = 15 \mod p$, retrouver x et vérifier que les bits x_0 et x_1 précédemment calculés sont exacts.

Exercice 7 - [SIGNATURE DE SCHNORR]

Soient p et q deux premiers impairs tels qu'il existe un entier naturel r vérifiant p = qr + 1. Soit h un entier vérifiant 1 < h < p et $h^r \neq 1 \mod p$. Posons $g = h^r \mod p$ et considérons $G = \langle g \rangle$ le sous-groupe de \mathbb{F}_p^{\times} engendré par g.

- 1) Montrer que G est l'unique sous-groupe de \mathbb{F}_p^{\times} de cardinal q.
- 2) Montrer que tout $g' \neq 1$ de G est aussi un générateur de G.
- 3) Soit $x \in \mathbb{F}_p^{\times}$. Montrer que $x \in G$ si et seulement si $x^q = 1 \mod p$.
- 4) On garde les notations précédentes et on suppose que le problème du logarithme discret est difficile dans G. Le protocole de signature de Schnorr est le suivant. Les messages à signer sont les éléments de $\{0,1\}^*$. Soit $h:\{0,1\}^* \to \mathbb{F}_q$ une fonction de hachage. Alice choisit $x \in \mathbb{F}_q^{\times}$ qui sera sa clé secrète. Elle calcule $y = g^x \in G$ qu'elle publie. Pour signer M elle prend un aléa $k \in \mathbb{F}_q^{\times}$ qu'elle garde secret, détermine ℓ l'écriture binaire de $g^k \in G$, calcule $e = h(\ell||M)$ et $s = k xe \mod q$. Sa signature est le couple (s, e). La fonction h et les quantités p, q, g, y sont connues de tous. Comment Bob vérifie-t-il la signature d'Alice ?
- 5) Est-il dangereux de se servir du même aléa k pour signer deux messages différents?
- 6) Quelle(s) propriété(s) doit posséder h pour se prémunir contre des falsifications existentielles ?

Exercice 8 - [SIGNATURE ELGAMAL]

Le but de cet exercice est d'étudier un cas particulier d'une attaque proposée par Bleichen-bacher contre la signature ElGamal lorsque les paramètres du système sont mal choisis. On suppose que p est un premier vérifiant $p=1 \mod 4$ et que 2 est une racine primitive modulo p. La clé publique d'Alice qui utilise le système ElGamal est $(p,2,2^s \mod p)$ et sa clé secrète est l'entier s. Dans la question 4 on utilise le protocole de signature ElGamal sans fonction de hachage.

- 1) Montrer que $2^{\frac{p-3}{2}} = \frac{p-1}{2} \mod p$.
- 2) Montrer que $\frac{p-3}{2}$ et p-1 sont premiers entre eux.
- 3) Rappeler comment Ève peut déterminer la parité de s. Justifier.
- 4) Montrer comment Ève, qui ne connaît pas s, peut se faire passer pour Alice en signant n'importe quel message M par (u, v) en prenant $u = \frac{p-1}{2}$ et un v approprié que l'on définira. On distinguera les cas s paire et s impaire.
- 5) Le recours habituel à une fonction de hachage publique h, qui consiste à construire la signature à partir de h(M) plutôt qu'à partir de M, permet-il d'éviter cet écueil ?