Nanocarriers for targeted drug delivery

Benefits and challenges of nanotechnology for medicine

Russell Maguire

ENGI4131 Advanced Semiconductor Devices

Durham University

November 29, 2018

Introduction Passive targeting Stimuli-responsive targeting Active targeting Examples Reference

Nanocarrier delivery systems

Introduction

Figure 1: Structure of common types of nanocarriers

Definition: nanocarrier

Biocompatible nanoparticle encapsulating a drug

Characteristics

- Nanometer scale
- Low toxicity
- Biodegradable
- Hydrophilic
- Nonimmunogenic
- Soluble

Introduction Passive targeting Stimuli-responsive targeting Active targeting Examples References

Targeted drug delivery

Introduction

Figure 2: Goal is to increase drug concentration ratio for diseased tissue

Targets diseased tissue

- Maximise therapeutic effects
- Minimise effective drug dose
- Common targets are solid tumours, inflamed and infected tissue

Avoids healthy tissue

Minimise toxic side-effects

ntroduction Passive targeting Stimuli-responsive targeting Active targeting Examples References

Enhanced permeability and retention effect

Passive targeting

Basis for first generation nanomedicines [1]

Illustration of the EPR effect

Figure 3: Lymphatic system drainage and blood vessel permeability in solid tumours

- [1] A. Wicki et al., Journal of controlled release 200, 138–157 (2015).
- [2] H. Maeda et al., Journal of controlled release 65, 271-284 (2000).
- [3] T. P. Padera et al., Nature 427, 695 (2004).

Definition: EPR effect

 Tendency for nanoparticles to accumulate in solid tumours [2]

Accumulation procedure

- Molecules leak from blood into tissue due to enhanced vascular permeability
- ② Blocked lymphatic system due to dense rapidly growing tumour cells [3]
- 3 Large particles become trapped

ntroduction Passive targeting Stimuli-responsive targeting Active targeting Examples References

Internal stimuli-responsive nanocarriers

Stimuli-responsive targeting

Figure 4: Polymeric micelles with pH-responsive polymers for electrostatic release [4]

Bioindicators used to trigger release

• pH

Redox potential

Enzymes

Temperature

Target sites for pH-responsive nanocarriers

- Tumours have been observed with lower pH than healthy tissue [5, 6]
- Individual organelles within the cell maintain their own unique pH [1]

^[1] A. Wicki et al., Journal of controlled release 200, 138–157 (2015).

^[4] T. Sun et al., Angewandte Chemie International Edition 53, 12320-12364 (2014).

^[5] I. F. Tannock, D. Rotin, Cancer research 49, 4373–4384 (1989).

^[6] L. E. Gerweck, K. Seetharaman, Cancer research 56, 1194–1198 (1996).

Introduction Passive targeting Stimuli-responsive targeting Active targeting Examples References

External stimuli-responsive nanocarriers

Stimuli-responsive targeting

Example

Figure 5: Liposomes with thermosensitive polymers for diffusive release [7]

Mechanisms used to externally trigger release

- Electromagnetic fields
- Heat

Ultrasound

Light

Surface ligands

Active targeting

Definition: active targeting

Examples

Thank you, any questions?

References

- 1. A. Wicki et al., Journal of controlled release 200, 138-157 (2015).
- 2. H. Maeda et al., Journal of controlled release 65, 271-284 (2000).
- T. P. Padera et al., Nature 427, 695 (2004).
- T. Sun et al., Angewandte Chemie International Edition 53, 12320–12364 (2014).

- I. F. Tannock, D. Rotin, Cancer research 49, 4373-4384 (1989).
- L. E. Gerweck, K. Seetharaman, Cancer research 56, 1194–1198 (1996).
- T. Ta, T. M. Porter, *Journal of controlled release* 169, 112–125 (2013).

