

Estatística Aplicada

Medidas de Dispersão ou Variabilidade

Variância e Desvio Padrão

<u>Desvio Padrão</u>

O desvio padrão é uma medida que expressa o grau de dispersão de um conjunto de dados. Ou seja, o desvio padrão indica o quanto um conjunto de dados é uniforme. Quanto mais próximo de 0 for o desvio padrão, mais homogêneo são os dados.

O desvio padrão (DP) é calculado usando-se a seguinte fórmula:

$$DP = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}}$$

Sendo,

∑: símbolo de somatório. Indica que temos que somar todos os termos, desde a primeira posição (i=1) até a posição n

x_i: valor na posição **i** no conjunto de dados

M_A: média aritmética dos dados

n: quantidade de dados

Exemplo

Em uma equipe de remo os atletas possuem as seguintes alturas: 1,55 m ; 1,70 m e 1,80 m. Qual é o valor da média e do desvio padrão da altura desta equipe?

Cálculo da média, sendo n = 3

$$M_A = \frac{1,55 + 1,70 + 1,80}{3} = 1,68$$

Cálculo do desvio padrão

DP =
$$\sqrt{\frac{(1,55-1,68)^2+(1,70-1,68)^2+(1,80-1,68)^2}{3}}$$

DP =
$$\sqrt{\frac{(0,13)^2 + (0,02)^2 + (0,12)^2}{3}} = \sqrt{\frac{0,0317}{3}}$$

$$DP = \sqrt{0.01005} = 0.1027$$

Variância

Variância e Desvio Padrão

Variância é uma medida de dispersão e é usada também para expressar o quanto um conjunto de dados se desvia da média.

O desvio padrão (DP) é definido como a raiz quadrada da variância (V).

A vantagem de usar o desvio padrão ao invés da variância é que o desvio padrão é expresso na mesma unidade dos dados, o que facilita a comparação.

Fórmula da variância

$$V = \frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}$$

Exemplo 1

O Procedimento de perda rápida de "peso" é comum entre os atletas dos esportes de combate. Para participar de um torneio, quatro atletas da categoria até 66 kg, Peso-Pena, foram submetidos a dietas balanceadas e atividades físicas. Realizaram três "pesagens" antes do início do torneio. Pelo regulamento do torneio, a primeira luta deverá ocorrer entre o atleta mais regular e o menos regular quanto aos "pesos". As informações com base nas pesagens dos atletas estão no quadro.

Atleta	nesagem (kg)	pesagem (kg)	3° pesagem (kg)	Média	Mediana	Desvio
1	78	72	66	72	72	4,90
II	83	65	65	71	65	8,49
Ш	75	70	65	70	70	4,08
IV	80	77	62	73	77	7,87

Após as três "pesagens", os organizadores do torneio informaram aos atletas quais deles se enfrentariam na primeira luta.

A primeira luta foi entre os atletas

- a) l e III.
- b) I e IV.
- c) II e III.
- d) II e IV.
- e) III e IV

Para encontrar os atletas mais regulares usaremos o desvio padrão, pois essa medida indica o quanto que o valor desviou da média.

O atleta III é o com menor desvio padrão (4,08), logo é o mais regular. O menos regular é o atleta II com maior desvio padrão (8,49).

Alternativa correta c: II e III

- a) 20,25
- b) 4,50
- c) 0,71
- d) 0,50
- e) 0,25.

Resposta - Exemplo 2

Como a variância deve estar em (sacas/hectare)² , precisamos transformas as unidades de medidas.

Cada talhão tem $30\,000\,\text{m}^2$ e cada hectare tem $10\,000\,\text{m}^2$, assim devemos dividir o desvio padrão por 3. Encontramos o valor de $30\,\text{kg/hectare}$. Como a variância é dada em sacas de $60\,\text{kg}$ por hectare então temos que o desvio padrão será de 0,5 sacas/hectare. A variância será igual a $(0,5)^2$.

Alternativa correta e: 0,25

Marco e Paulo foram classificados em um concurso. Para classificação no concurso o candidato deveria obter média aritmética na pontuação igual ou superior a 14. Em caso de empate na média, o desempate seria em favor da pontuação mais regular. No quadro a seguir são apresentados os pontos obtidos nas provas de Matemática, Português e Conhecimentos Gerais, a média, a mediana e o desvio padrão dos dois candidatos. Dados dos candidatos no concurso

	Matemática	Português	Conhecimentos Gerais	Média	Mediana	Desvio Padrão
Marco	14	15	16	15	15	0,32
Paulo	8	19	18	15	18	4,97

O candidato com pontuação mais regular, portanto mais bem classificado no concurso, é

- a) Marco, pois a média e a mediana são iguais.
- b) Marco, pois obteve menor desvio padrão.
- c) Paulo, pois obteve a maior pontuação da tabela, 19 em Português.
- d) Paulo, pois obteve maior mediana.
- e) Paulo, pois obteve maior desvio padrão.

Como a média de Marco e Paulo foram iguais, o desempate será feito pelo menor valor do desvio padrão, pois é o que indica pontuação mais regular.

Alternativa correta b: Marco, pois obteve menor desvio padrão.

VARIÂNCIA

A variância é uma medida de dispersão que considera o quadrado dos desvios em torno da média aritmética. Assim teremos:

$$\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$$

Isto é,

A variância é a média aritmética dos quadrados dos desvios em torno da média aritmética.

Obs:

$$\sigma^2 = \frac{\sum_{i=1}^n X_i^2}{n} - \overline{X}^2$$

Fórmula prática

DESVIO PADRÃO

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} \text{ ou } \sigma = \sqrt{\frac{\sum_{i=1}^{n} x^2}{n} - \overline{x}^2}$$

PARA DADOS AGRUPADOS EM UMA DIS-TRIBUIÇÃO DE FREQÜÊNCIA

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot f_i}{\frac{1-1}{N}}}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 f_i}{\sum_{i=1}^{n} - x^2}}$$

I. Desvio Padrão para dados não agrupados em distribuições de frequências

$$\mathcal{F} = \sqrt{\frac{\sum_{i=1}^{n} (x_i)^2}{N}} - (\bar{x})^2$$

$$\sim mode PRATICE''$$

EXEMPLO

Resolução

$$\bar{X} = \frac{\sum_{i=1}^{n} (x_i)}{n} = \frac{20 + 32 + 19 + 30 + 33 + 35}{6} = \frac{129}{6} \Rightarrow \bar{X} = 31,5 \text{ (anos.)}$$

$$C = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^3}{N}} = \sqrt{\frac{(20 - 21,5)^3 + (2x - 21,5)^3 + (2y - 21,5)^3 + (2x - 21,5)^3$$

$$= \underbrace{\left[\frac{(-1,5)^{3}+(0,5)^{3}+(-2,5)^{3}+(-1,5)^{3}+(1,5)^{3}+(3,5)^{3}}{6}\right]}_{6} = \underbrace{\left[\frac{25,5}{6}\right]}_{6} = \underbrace{\sqrt{4,25} \cong 2,06}_{9} = \underbrace{\sqrt{25,5}}_{6}$$

22 19 20 23 25 (ands)

12) Média aritmética

$$\bar{x} = \frac{\tilde{\Sigma}}{\tilde{\Sigma}} = \frac{20 + 22 + 19 + 20 + 23 + 25}{6} \Rightarrow \bar{x} = 21,5 \text{ and }$$

22) Desvio Padrão

$$C = \int \frac{\sum_{i=1}^{n} (x_i)^{\lambda}}{n} - (\overline{x})^{\lambda}$$

$$\nabla = \sqrt{\frac{\sum_{i=1}^{n} (x_i)^3}{n}} - (\overline{x})^3 = \sqrt{\frac{2^3 + 2^3 + 19^3 + 2^3 + 25^3}{6}} - (21,5)^3 = \frac{2^3 + 2^3 + 19^3 + 2^3 + 25^3}{6}$$

$$= \int \frac{\lambda 799}{6} - 46a_1 x5 = \sqrt{466_15 - 46a_1 x5} = \sqrt{4_1 x5} \approx 2.1 \Rightarrow \sqrt{5} = 2.1 \Rightarrow \sqrt{5} \approx 2.1$$

V = 4,25

Observação: VARIÂNCIA (V)

$$\mathcal{O} = \sqrt{\mathbf{V}} \implies \mathbf{V} = \mathbf{G}^{\mathbf{Z}}$$

$$\mathbf{V} = \underbrace{\mathbf{E}^{\mathbf{Z}}_{\mathbf{X}}(\mathbf{x}_{1} - \mathbf{X})^{\mathbf{Z}}}_{\mathbf{X}} \implies \mathbf{V} = \underbrace{\mathbf{E}^{\mathbf{Z}}_{\mathbf{X}}(\mathbf{x}_{1})^{\mathbf{Z}}}_{\mathbf{X}} - (\mathbf{X})^{\mathbf{Z}}$$

II. Desvio Padrão para distribuições de frequências sem classes

$$\underline{X} = \frac{\sum_{i=1}^{t+1} (x_i \cdot t_i)}{\sum_{i=1}^{t+1} (x_i \cdot t_i)}$$

X : médio aritmética

Xi: valores du base de dudos

fi : frequências absolutas

$$G = \sqrt{\frac{\sum_{i=1}^{n} [(x_i - \bar{x})^2 \cdot f_i]}{\sum_{i=1}^{n} f_i}}$$

$$G = \sqrt{\frac{\sum_{i=1}^{n} (x_i^2, f_i)}{\sum_{i=1}^{n} f_i}} - (\bar{x})^n$$

$$\sim mode Pratice''$$

EXEMPLO

Calcular o valor do desvo padrão

ا ال
A (
V (.0
NOTICE VICE
1
OR
manusa
P .T

Número de Equipamentos Eletrônicos por aluno	Número de alunos	→ t
x, = 3	{ , = 4	
x ₂ 4	fa= 8	
X 3 5	€. 12	
×4 = 6	<u>f_</u> = 10	
×3 = 7	f ≤ 8	
x6: 8	£ 3	
TOTAL	45	
	5 £ £ - 45	

EL

Resowyão

Talwaba

1º) Média aritmética

$$\bar{X} = \frac{\sum_{i=1}^{n} (x_i, f_i)}{\sum_{i=1}^{n} f_i} \Rightarrow \bar{X} = \frac{\sum_{i=1}^{6} (x_i, f_i)}{\sum_{i=1}^{6} f_i} = \frac{x_1, f_1 + x_2, f_2 + x_3, f_3 + x_4, f_4 + x_5, f_5 + x_6, f_6}{f_1 + f_2 + f_3 + f_4 + f_5 + f_6}$$

$$Q = \sqrt{\frac{\sum_{i=1}^{i+1} (x_{i}^{i} \cdot t_{i})}{\sum_{j=1}^{i} (x_{j}^{i} \cdot t_{i})}} - (\underline{x})_{y}$$

$$Q = \sqrt{\frac{\sum_{i=1}^{i}(x_{i,j}^{i},t_{i})}{\sum_{i=1}^{i}(x_{i,j}^{i},t_{i})}} - (\underline{x})_{x} \Rightarrow Q = \sqrt{\frac{\sum_{i=1}^{i}(x_{i,j}^{i},t_{i})}{\sum_{i=1}^{i}(x_{i,j}^{i},t_{i})}} - (\underline{x})_{x} =$$

$$= \frac{x_{1}^{2} \cdot f_{1} + x_{2}^{2} \cdot f_{3} + x_{3}^{2} \cdot f_{3} + x_{4}^{3} \cdot f_{4} + x_{5}^{3} \cdot f_{5} + x_{6}^{3} \cdot f_{6}}{f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{6}} - (\overline{X})^{2} =$$

$$= \frac{\left(\frac{3.4+4^{3.8}+5^{3.12}+6.10+7^{3.8}+8^{3.3}}{4+8+12+10+8+3}\right) - \left(\frac{244}{45}\right)^{2}}{2} \cong 1,37 \Rightarrow G \cong 1,37$$

Número de Equipamentos Eletrônicos por aluno	Número de alunos	X _i Variável de Pesquisa	f _i frequência absoluta	X _i .f _i (média aritmética)	(X _i) ² .f _i (desvio padrão)
3	4	3	4	12	36
4	8	4	8	32	128
5	12	5	12	60	300
6	10	6	10	60	360
7	8	7	8	56	392
8	3	8	3	24	192
TOTAL	45		45	244	1408

 $\bar{x} = \frac{\sum_{i=1}^{n} (x_i, f_i)}{\sum_{i=1}^{n} f_i}$

5,42

EQUIPAMENTOS ELETRÔNICOS POR ALUNO

1,37

EQUIPAMENTOS ELETRÔNICOS

III. Desvio Padrão para distribuições de frequências com classes de dados estatísticos

$$\underline{\underline{x}} = \frac{\sum_{i=1}^{t+1} (x_i \cdot \hat{t}_i)}{\sum_{i=1}^{t+1} (x_i \cdot \hat{t}_i)}$$

$$\widehat{U} = \sqrt{\frac{\sum_{i=1}^{n} \left[(x_i - \bar{x})^{n} \cdot f_i \right]}{\sum_{i=1}^{n} f_i}}$$

$$G = \sqrt{\frac{\sum_{i=1}^{n} (x_i^n, f_i)}{\sum_{i=1}^{n} f_i}} - (\bar{x})^n$$

EXEMPLO

Calcular o valor do desvio padrão:

SALÁRIO ANUAL BRUTO	Número de
(Milhares de R\$)	funcionários
[18, 22[19
[22, 26[25
[26, 30[17
[30, 34[12
[34, 38[8
[38, 42[6
TOTAL	87

RESOLUÇÃO

				Ponto médio da classe			
SALÁRIO ANUAL BRUTO	Número de	I,	L	x _i	fi	x _i .f _i	(x _i) ² .f _i
(Milhares de R\$)	funcionários	limite inferior	limite superior	Variável de Pesquisa	frequência absoluta	(média aritmética)	(desvio padrão)
[18, 22[19	18	22	20,0	19	380	7600
[22, 26[25	22	26	24,0	25	600	14400
[26, 30[17	26	30	28,0	17	476	13328
[30, 34[12	30	34	32,0	12	384	12288
[34, 38[8	34	38	36,0	8	288	10368
[38, 42[6	38	42	40,0	6	240	9600
TOTAL	87		-		87	2368	67584
			Média aritmética	27,2183908	milhares de reais	R\$ 27.218,39	
			Desvio padrão	5,998898917	milhares de reais	R\$ 5.998,90	

Exemplos

RESOLUÇÃO 12 MODO

1º) Calculamos a módia aritmética:

$$\overline{X} = \frac{\sum_{i=1}^{n} (x_i)}{n} = \underbrace{4+5+\ldots+9}_{G} \Rightarrow \overline{X} = 6,5 \text{ points}$$

22) Calculamos o desvio padrão:

$$0 = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_i)^{\frac{1}{n}}}{n}} = \sqrt{\frac{(40 - 65)^{\frac{n}{2}} + (50 - 65)^{$$

RESOLUÇÃO 2ºMODO 4,0 5,0 6,0 7,0 8,0 9,0

12) Calculamos a média aritmética:

$$\overline{X} = \frac{\sum_{i=1}^{\infty} (x_i)}{N} = \frac{4+5+...+9}{6} \Rightarrow \overline{X} = 6.5$$

22) Calculamos o desoro padrão:

$$G = \sqrt{\frac{\sum_{i=1}^{n} (x_i)^{2}}{n}} - (\overline{x})^{2} = \sqrt{\frac{4^{2} + 5^{2} + 6 + 7^{2} + 8 + 9^{2}}{6}} - (6,5)^{2} =$$

EXEMPLO Calcular o desvio padros:

(X) Número de lihos por funcionário	(f;) Número de funcionários	
0	12	
1	19	
2	16	
1	10	
4	5	
5	3	
TOTAL		

1º) Colculamos a máda aritmética:

$$\overline{X} = \underbrace{\frac{\sum_{i=1}^{n} (x_i, f_i)}{\sum_{i=1}^{n} f_i}}_{\text{finition from }} = \underbrace{\frac{0 \times 12 + 1 \times 18 + \dots + 5 \times 3}{64}}_{\text{finition from }} = \underbrace{\frac{115}{64} \cong 1.8}_{\text{function from }}$$

2º) Colulemos o desvo podrão:

$$Q = \sqrt{\frac{\sum_{i=1}^{r=1} t^i}{\sum_{i=1}^{r} (x_s^i, t^i)}} - (\underline{x})_s$$

Número de filhes por funcionário	Número de Nacionários
0	12
1	16
2	16
ā	10
4	5
5	1
TOTAL	64

$$G = \sqrt{\frac{0^{2} \cdot 12 + 1^{2} \cdot 10 + 2^{2} \cdot 16 + 3^{2} \cdot 10 + 4^{2} \cdot 5 + 5^{2} \cdot 3}{64} - \left(\frac{115}{64}\right)^{2}}$$

T = 1,37 "DISTÂNCIA PADRIO" "MEDIA DAS DISTÂNCIAS"

SALÁRIO MENSAL BRUTO R\$	Número de funcionários
[1800, 3000[26
[3000, 4200[32
[4200, 5400]	23
[5400, 6600[18
[6600, 7800]	14
[7800, 9000[11
[9000, 10200[7
[10200, 11400]	4
TOTAL	135

	١ ١
۰	- A I
	~,
1	-,
•	
	/

SALÁRIO MENSAL	Número de	X,	f,
BRUTO R\$	funcionários	ponto médio de classe	frequência absoluta
[1800, 3000]	26	x 2400	f ₁ = 26
[3000, 4200[32	×= 3600	f ₃ = 32
[4200, 5400]	23	x,- 4800	f ₂ - 23
[5400, 6600]	18	x ₁ = 6000	fe= 18
[6600, 7800]	14	x,= 7200	f,= 14
[7800, 9000]	11	×- 8400	f _c = 33
[9000, 10200]	7	×= 9600	f ₃ = 7
[10200, 11400[4	×- 10800	f _e = 4
TOTAL.	135		εf; = 135

$$x_i = \frac{l_i + L_i}{a}$$

$$x_8 = \frac{10200 + 11400}{2} \Rightarrow x_8 = 10800$$

2º) Calculamos à média oritmética:

$$\overline{X} = \underbrace{\sum_{i=1}^{n} (x_i, f_i)}_{\sum_{i=1}^{n} f_i} = \underbrace{\frac{2400 \times 26 + 3600 \times 32 + \dots + 10800 \times 4}{135}}_{135}$$

$$\Rightarrow \overline{X} = \frac{699600}{135} \cong R$5.182,22$$

32) Calulamos o desvio padrão:

$$Q = \sqrt{\frac{\sum_{i=1}^{r} (x_i^r, t_i^r)}{\sum_{j=1}^{r} (x_j^r, t_j^r)}} - (\underline{x})$$

SALARIO MENISAL BRUTO R\$	Número de funcionários	X, perto necio de clause	frequência abecuta
[1800, 3000]	26	×= 2400	f= 26
[3000, 4200]	32	*- 3600	t- 32
[4200, 5400]	23	4800	1,- 23
[5400, 6600]	18	x= 6000	f= 18
[6800, 7800]	14	7200	4- 14
[7800, 9000]	11	× 8400	6- 11
[9000, 10200]	7	x= 9600	f= 7
[10200, 11400[4	x- 10800	t- 4
TOTAL	135		Ef = 13

$$\sigma = \frac{\left(\frac{(2400^{2} \times 26 + 3600^{2} \times 32 + \dots + 10800^{2} \times 4)}{135}\right) - \left(\frac{(699600)^{2}}{135}\right)}{135}$$

r ≥ R\$ 2.326, 21

Desvio padrão salarial

(Distância médie entre todos os salários de bese de dados em relação do Salário médio)

Exercícios

1) Calcule os desvios padrões dos conjuntos de dados:

- a. 1, 3, 5, 9
- b. 20, 14, 15, 19, 21, 22, 20
- c. 17,9; 22,5; 13,3; 16,8; 15,4; 14,2
- d. -10, -6, 2, 3, 7, 9, 10

2) Calcule os desvios padrões dos conjuntos de dados:

a.

۵.	X,	2	3	4	5	6	7	8
	f,	1	3	5	8	5	4	2

b.

CLASSES	1,5 ⊢ 1	,6 ⊢	1,7 ⊢ 1 .	,8 ⊢ 1	,9 ⊢ 2,	.0 ⊢ 2	,1 ⊢ 2,2
f.	4	8	12	15	12	8	4

3) Dada a distribuição relativa a 100 lançamentos de 5 moedas simultaneamente:

Nº DE CARAS	0	1	2	3	4	5
FREQÜÊNCIAS	4	14	34	29	16	3

calcule o desvio padrão.

4) Calcule o desvio padrão da distribuição:

CLASSES	2 ⊢	6 ⊢	10 ⊢	14 ⊢	18 ⊢	22
f	5	12	21	15	7	

5) Calcule os desvios padrões dos conjuntos de dados

a.

NOTAS	f
0 ⊢ 2	5
2 ⊢ 4	8
4 ⊢ 6	14
6⊢8	10
8 ⊢ 10	7
	$\Sigma = 44$

b.

ESTATURAS (cm)	f _i
150 ⊢ 158	5
158 ⊢ 1 6 6	12
166 ⊢ 174	18
174 ⊢ 182	27
182 ⊢ 190	8
	$\Sigma = 70$

5) Calcule os desvios padrões dos conjuntos de dados

C.

SALÁRIOS (R\$)	f,
500 ⊢ 700	18
700 ⊢ 900	31
900 ⊢ 1.100	15
$1.100 \vdash 1.300$	3
1.300 ⊢ 1.500	1
$1.500 \vdash 1.700$	1
1.700 ⊢ 1.900	1
	$\Sigma = 70$

d.

PESOS (kg)	f _i
145 ⊢ 151	10
151 ⊢ 157	9
157 ⊢ 163	8
163 ⊢ 169	6
169 ⊢ 175	3
175 ⊢ 181	3
181 ⊢ 187	1
	$\Sigma = 40$

- 6) Calcule a variância dos dados abaixo:
 - 2, 4, 6, 8, 10
 - **a)** 6
 - **b)** 7
 - **c)** 8
 - **d)** 9
 - **e)** 10

- 7) Calcule a variância dos dados abaixo:
 - 8, 9, 10, 8, 6, 11, 7, 13
 - a) 4
 - **b)** 4,5
 - **c)** 5
 - **d)** 5,5
 - **e**) 6

- 8) Calcule a variância dos dados abaixo:
 - 7, 3, 10, 6, 5, 13, 18, 10
 - **a)** 19
 - **b)** 19,5
 - **c)** 20
 - **d)** 20,5
 - **e)** 30

- 9) Calcule o desvio padrão dos dados abaixo:
 - 2, 4, 6, 8, 10
 - a) $\sqrt{7}$
 - b) √8
 - c) $\sqrt{9}$
 - d) $\sqrt{10}$
 - e) $\sqrt{11}$

- 10) Calcule o desvio padrão dos dados abaixo: 8, 9, 10, 8, 6, 11, 7, 13
 - **a)** 2,5
 - **b)** 2,1
 - **c)** 3
 - **d)** 3,5
 - **e)** 4

- 11) Calcule o desvio padrão dos dados abaixo:
 - 7, 3, 10, 6, 5, 3, 18, 10
 - **a)** 4,0
 - **b)** 4,5
 - **c)** 5,0
 - **d)** 5,5
 - **e)** 6

12) Seja a distribuição abaixo:

X _i	f _i
1	10
3	20
5	40
7	20
9	10
Total	100

Calcule o desvio padrão:

- **a)** 2,83
- **b)** 4
- **c)** 4,19
- **d)** 4,80
- **e)** 5,19

13) Seja a distribuição abaixo:

CLASSE	f _i
02	10
24	20
46	40
68	20
8 10	10

Calcule o desvio padrão:

- **a)** 4,80
- **b)** 4
- c) 2,24
- **d)** 5,19
- **e)** 6,0

14) O quadro ao lado nos mostra a distribuição dos erros cometidos por 20 alunos numa prova de Português.

O valor do desvio médio dessa distribuição é:

N° DE ERROS (X _i)	N° DE ALUNOS (f _i)
1	2
2	6
3	5
4	4
5	3

- **a)** 1,0
- **b)** 1,5
- **c)** 2,0

- **d)** 2,5
- **e)** 3,0

- 15) O desvio padrão do conjunto de dados 6, 10, 4, 8, 7 é igual a:
 - **a) 1**,25
 - **b)** 1,5
 - **c)** 2,0
 - **d)** 3,0
 - **e)** 4,0

16) Os tempos gastos por cinco operários para fazer um trabalho foram: 4 minutos, 6 minutos, 7 minutos, 8 minutos, 10 minutos.

A variância dessa distribuição é:

- **a)** 4,0
- **b)** 3,5
- **c)** 3,0
- **d)** 2,0
- **e)** 1,0

Respostas

- 1) a) 2,96
- b) 2,81

b) 0,159

- c) 3,016
- d) 7,04

- 2) a) 1,51
- 3) 1,13
- 4) 4,45
- 5) a) 2,43
- b) 8,8 cm
- c) R\$ 229
- d) 9,93 kg

- 6) C
- 7) B
- 8) D
- 9) B
- 10) B
- 11) B
- 12) A
- 13) C
- 14) A
- 15) C
- 16) A

Bibliografia

Estatística Fácil

Autor: Antonio Arnot Crespo

Editora Saraiva

MORETTIN, L. G. Estatística básica. São Paulo: Editora Makron Books

Bibliografia complementar

- COSTA NETO, P. L. Estatística. 2ª ed. São Paulo: Editora Edgard Blucher
- CRESPO, A. A. Estatística fácil. 18ª ed. São Paulo: Editora Saraiva