

Background

TFTRT

TRT API

TRT UFF Parser

Conclusion

BACKGROUND

EAST for Ali

A fully-convolutional network (FCN) adapted for **text detection** that outputs dense per-pixel predictions of words or text lines.

Use the **ResNet-50** as the backbone instead.

unit

Each block contains several units.

TFTRT

TFTRT (TensorFlow integration with TensorRT) parses the frozen TF graph and **converts each supported subgraph to a TRT optimized node** (TRTEngineOp), allowing TF to execute the remaining graph.

Create a frozen graph from a trained TF model, and give it to the Python API of TF-TRT.

SETUP

Install:

TFTRT is part of the TensorFlow binary, which means when you install tensorflow-gpu, you will be able to use TF-TRT too. (pip install tensorflow-gpu)

prerequisite:

import modules

```
import tensorflow as tf
import tensorflow.contrib.tensorrt as trt
```

the names of input and output nodes

```
inputs = "input_images"
outputs = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]
```

the TF model trained in FP32 (checkpoint or pb files)

```
model_infer.ckpt-49491.data-00000-of-00001
model_infer.ckpt-49491.index
model_infer.ckpt-49491.meta
```

Step 1 Obtain the TF frozen graph

With Ckpt

With Pb

```
with tf.Session( ) as sess:
    # deserialize the frozen graph
    with tf.gfile.Gfile("./model.pb", "rb") as f:
        frozen_graph = tf.GraphDef()
        frozen_graph.ParseFromString(f.read())
```

Step 2 Create the TRT graph from the TF frozen graph

```
trt_graph = trt.create_inference_graph (
        input_graph_def = frozen_graph, outputs = output_node_name,
        max batch size = 1, max workspace size bytes = 1<<30,
        precision mode = ="FP32",
        minimum segment size = 5, ... )
 input_graph_def: the frozen TF GraphDef object
 outputs: the names list of output nodes
 max_batch_size: maximum batch size
 max workspace size bytes: maximum GPU memory size available for TRT layers
 precision_mode: FP32 / FP16 / INT8
 minimum_segment_size: determine the minimum number of nodes in a TF sub-graph for the TRT
engine to be created
```

Step 3 Import the TRT graph and run

TFTRT FP32

```
with tf.Session( ) as sess:
    # create a `Saver` object, import the "MetaGraphDef" protocol buffer, and restore the variables
    saver = tf.train.import_meta_graph("model.ckpt.meta")
    saver.restore(sess, "model.ckpt")
    # freeze the graph (convert all Variable ops to Const ops holding the same values)
    outputs = ["feature fusion/Conv 7/Sigmoid", "feature fusion/concat 3"] #node names
    frozen graph = tf.graph util.convert variables to constants(sess, sess.graph def,
                   output node names=outputs)
    # create a TRT inference graph from the TF frozen graph
    trt_graph = trt.create_inference_graph(input_graph_def=frozen_graph, outputs=outputs,
                max_batch_size=1, max_workspace_size_bytes=1<<30,</pre>
                precision mode="FP32",
                minimum segment size=5)
    # import the TRT graph into the current default graph
    g = tf.get_default_graph()
    input_images = g.get_tensor_by_name("input_images:0")
    outputs = [n+':0' for n in outputs] # tensor names
    f_score, f_geometry = tf.import_graph_def(trt_graph, input_map={"input_images":input_images},
                return elements=outputs, name="")
    # run the optimized graph in session
    img = cv2.imread("./img.jpg")
    score, geometry = sess.run([f_score, f_geometry], feed_dict={input_images: [img]})
https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
```

TFTRT FP16

```
with tf.Session( ) as sess:
    # create a `Saver` object, import the "MetaGraphDef" protocol buffer, and restore the variables
    saver = tf.train.import_meta_graph("model.ckpt.meta")
    saver.restore(sess, "model.ckpt")
    # freeze the graph (convert all Variable ops to Const ops holding the same values)
    outputs = ["feature fusion/Conv 7/Sigmoid", "feature fusion/concat 3"] #node names
    frozen graph = tf.graph util.convert variables to constants(sess, sess.graph def,
                   output node names=outputs)
    # create a TRT inference graph from the TF frozen graph
    trt_graph = trt.create_inference_graph(input_graph_def=frozen_graph, outputs=outputs,
                max_batch_size=1, max_workspace_size_bytes=1<<30,</pre>
                precision mode="FP16",
                minimum segment size=5)
    # import the TRT graph into the current default graph
    g = tf.get_default_graph()
    input_images = g.get_tensor_by_name("input_images:0")
    outputs = [n+':0' for n in outputs] # tensor names
    f_score, f_geometry = tf.import_graph_def(trt_graph, input_map={"input_images":input_images},
                return elements=outputs, name="")
    # run the optimized graph in session
    img = cv2.imread("./img.jpg")
    score, geometry = sess.run([f_score, f_geometry], feed_dict={input_images: [img]})
https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
```

Visualize the Optimized Graph in TensorBoard

Engine resnet_v1_50/my_trt_op_0 creation for segment 0, composed of 446 nodes succeeded

Total node count before and after TF-TRT conversion: 900 -> 165

TFTRT converts the native TF subgraph (TRTEngineOp_0_native_segment) to a single TRT node (TRTEngineOp_0).

TFTRT INT8

The INT8 precision mode requires an additional calibration step before quantization.

INT8_value = FP32_value * scale

Calibration: run inference in FP32 precision on a calibration dataset, which collects required statistics and runs the calibration algorithm, to generate INT8 quantization (scaling factors) of the weights and activations in the trained TF graph.

TFTRT INT8

```
Step 1 Obtain the TF frozen graph (trained in FP32)
Step 2 Create the calibration graph -> Execute it with calibration data -> Convert it to the INT8
optimized graph
# create a TRT inference graph, the output is a frozen graph ready for calibration
calib_graph = trt.create_inference_graph(input_graph_def=frozen_graph, outputs=outputs,
              max batch size=1, max workspace size bytes=1<<30,
              precision mode="INT8", minimum segment size=5)
# Run calibration (inference) in FP32 on calibration data (no conversion)
f score, f_geo = tf.import_graph_def(calib_graph, input_map={"input_images":inputs},
              return elements=outputs, name="")
Loop img: score, geometry = sess.run([f_score, f_geo], feed_dict={inputs: [img]})
# apply TRT optimizations to the calibration graph, replace each TF subgraph with a TRT node
optimized for INT8
trt_graph = trt.calib_graph_to_infer_graph(calib_graph)
Step 3 Import the TRT graph and run
```

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

TFTRT FP32/FP16/INT8 Performance (V100, batch size = 1)

ICDAR2015 TestSet (672x1280)	FPS	recall	precision	F1score
TF Slim	42	0.7732	0.8466	0.8083
TFTRT FP32	63	0.7732	0.8466	0.8083
TFTRT FP16	98	0.7723	0.8442	0.8066
TFTRT INT8	83	0.7602	0.8572	0.8058

INT8 with IDP.4A instruction is slower than FP16 with Tensor Core on V100.

h884cudnn: HMMA for Volta, fp16 input, output, and accumulator.

fp32_icudnn_int8x4: Int8 kernels using the IDP.4A instruction. Inputs are aligned to fetch 4x int8 in one instruction.

TAKEAWAYS

The names of input and output nodes

```
inputs = "input_images"
outputs = ["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]
```

The TF model trained in FP32 (checkpoint or pb files)

```
model_infer.ckpt-49491.data-00000-of-00001
model_infer.ckpt-49491.index
model_infer.ckpt-49491.meta
```

Calibration dataset for INT8 quantization

```
img_113.jpg img_159.jpg img_203.jpg img_249.jpg
img_114.jpg img_15.jpg img_204.jpg img_24.jpg
img_115.jpg img_160.jpg img_205.jpg img_250.jpg
```

Tips 1: GPU memory allocation

Specify the fraction of GPU memory allowed for TF, making the remaining available for TRT engines.

Use the **per_process_gpu_memory_fraction** and **max_workspace_size_bytes** parameters together for best overall application performance.

```
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6)
tf_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)
with tf.Session(config=tf_config) as sess:
```

Certain algorithms in TRT need a larger workspace, therefore, decreasing the TF-TRT workspace size might result in not running the fastest TRT algorithms possible.

Tips 2: Minimum segment size

To achieve the best performance, different possible values of minimum_segment_size can be tested.

We can start by setting it to a large number and decrease this number until the converter crashes.

min_seg_size	TRT nodes		
50	1 (446 tf nodes)		
30	2 (44 / 446 tf nodes)		
5	4 (24 / 24 / 44 / 446 tf nodes)		
3	5 (4 / 24 / 24 / 44 / 446 tf nodes)		

```
trt.create_inference_graph (..., minimum_segment_size = 5, ... )
determine the minimum number of nodes in a TF sub-graph for the TRT engine to be created
```

Tips 3: Batch normalization

The FusedBatchNorm operator is converted to TRT only if is_training=False, which indicates whether the operation is for training or inference.

```
(Pdb) frozen_graph.node[176]
name: "model_0/resnet_v1_50/block1/unit_2/bottleneck_v1/conv1/BatchNorm/cond/FusedBatchNorm"
op: "FusedBatchNorm"
attr {
   key: "is_training"
   value {
      b: true
   }
```

tf.train.import_meta_graph("xxx.ckpt") just imports the saved graph, usually training graph.

Need to change the **is_training=False** in the graph.

Tips 3: Batch normalization

Workarounds:

1. With the codes building the network:

Build the TF inference graph by setting **is_training=false** for all fusedBatchNorm layers, and then restore the weights from the training graph without using tf.train.import_meta_graph.

Tips 3: Batch normalization

Workarounds:

2. Without the codes building the network:

Resave an inference graph as the ckpt files and then use the **tf.train.import_meta_graph** API directly. **Customer provided**:

Then

```
saver = tf.train.import_meta_graph("model_infer.ckpt.meta")
saver.restore(sess, "model_infer.ckpt")
```

Tips 4: TRT node name

```
tf.import_graph_def(trt_graph, ...)
g = tf.get_default_graph()
f_score = g.get_tensor_by_name("Conv_7/Sigmoid_1:0")
...

### f_score = tf.import_graph_def(...)
```

score = sess.run([f_score], feed_dict={inputs: [img]})

if the same name has been previously used in the same scope, it will be made unique by appending _N to it.

TRT API

Install the TensorRT SDK

import tensorrt as trt

TAKEAWAYS

The TF model trained in FP32 (checkpoint or pb files)

```
model_infer.ckpt-49491.data-00000-of-00001
model_infer.ckpt-49491.index
model_infer.ckpt-49491.meta
```

The details of network (names and shapes of all weights, network structure, etc.)

Codes building the network if possible

or

Visualize the network in TensorBoard

```
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
    saver = tf.train.import_meta_graph("model_infer.ckpt-98981.meta")
    saver.restore(sess, "model_infer.ckpt-98981")
    summary_writer = tf.summary.FileWriter('./log/', sess.graph)
```

TRT API

```
Step 1 Load all learned weights from the saved model
reader = tf.train.NewCheckpointReader("./model.ckpt-98981")
Step 2 Create the network from scratch with TRT layer APIs, and build the engine
with trt.Builder(G LOGGER) as builder, builder.create network() as network:
    data = network.add input("data", trt.float32, (3, input h, input w)) # add the input layer
   # add the convolution layer
   w = reader.get tensor("resnet v1 50/conv1/weights")
   conv = network.add_convolution(data, out_channel, (kernel_h,kernel_w), trt.Weights(w), trt.Weights(b))
    conv.stride = (stride, stride); conv.padding = (padding, padding)
    network.mark_output(outputs.get_output(0)) # mark outputs
    engine = builder.build_cuda_engine(network) # build the engine
Step 3 Create the context and execute inference
# The TF's input [NHWC] should be transposed to TRT format [NCHW]
with engine.create execution context() as context:
    [cuda.memcpy_htod(inp.device, inp.host) for inp in inputs]
    context.execute(batchsize, bindings)
    [cuda.memcpy_dtoh(out.host, out.device) for out in outputs]
```

Tips 1: Tensor format

```
TensorFlow [NHWC] → TensorRT [NCHW]
```

The TF's input should be transposed to TRT's explicitly, so is the output.

```
im = cv2.imread("test.jpg")[:, :, ::-1]
img, (ratio h, ratio w) = resize image(im)
img = img.astype(np.\overline{float32})
img = mean image subtraction(img)
img = np.transpose(img, (2, 0, 1))
img = np.array([img])
with engine.create execution context() as context:
    # execute inference
    img = img.ravel()
    np.copyto(inputs[0].host, img)
    [cuda.memcpy htod(inp.device, inp.host) for inp in inputs]
    context.execute(batchsize, bindings)
    [cuda.memcpy dtoh(out.host, out.device) for out in outputs]
```

Tips 2: Weight format

```
CONV: TensorFlow [RSCK] → TensorRT [KCRS]

RSCK: [filter_height, filter_width, in_channel, out_channel]

KCRS: [out_channel, in_channel, filter_height, filter_width]
```

FC: TensorFlow [CK] → TensorRT [KC]

Tips 3: SAME padding

SAME padding in TF may lead to asymmetric padding.

```
net = slim.max_pool2d(net, [3, 3], stride=2, padding='SAME', scope='pool1')

Input map (one channel): 336x640 \rightarrow \text{Output map (one channel)}: 168x320

h\_output = (h\_input - h\_kernel + h\_pad) // h\_stride + 1 \rightarrow 168 = (336 - 3 + 1) // 2 + 1

Inputs: 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 0 \mid 0

Inputs: 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \mid 10 \mid 11 \mid 12 \mid 13 \mid 0 \mid 0
```

```
top = network.add_pooling(top.get_output(0), trt.PoolingType.MAX, (3,3))
top.stride = (2,2)
top.pre_padding = (0,0)
top.post_padding = (1,1)
```

Tips 4: Batch normalization

$$bn(x) = \frac{x - mean}{\sqrt{var + \varepsilon}} * gamma + beta \longrightarrow output = (input * scale + shift)^{power}$$

$$scale = \frac{gamma}{\sqrt{var + \varepsilon}} \qquad shift = -\frac{mean}{\sqrt{var + \varepsilon}} * gamma + beta \qquad power = 1$$

```
# load gamma, beta, moving_mean and moving variance with CKPT reader
gamma = reader.get tensor("resnet v1 50/conv1/BatchNorm/gamma")
beta = reader.get tensor("resnet v1 50/conv1/BatchNorm/beta")
mean = reader.get tensor("resnet v1 50/conv1/BatchNorm/moving mean")
var = reader.get_tensor("resnet v1 50/conv1/BatchNorm/moving variance")
# calculate the parameters and apply the scale layer
scale = gamma / np.sqrt(var + 1e-5)
shift = -mean / np.sqrt(var + 1e-5) * gamma + beta
power = np.ones(out channel, dtype=np.float32)
bn = network.add_scale(conv.get output(0), trt.ScaleMode.CHANNEL, trt.Weights(shift),
                      trt.Weights(scale), trt.Weights(power))
```

TRT UFF PARSER

Step 1 Convert the pb model to the uff model convert-to-uff model.pb Step 2 Parse the uff model and create the engine with trt.Builder(G LOGGER) as builder, builder.create network() as network, trt.UffParser() as parser: builder.max batch size = 1 builder.max workspace size = 1<<30 parser.register input("input images", (3, 672, 1280)) parser.register_output("feature_fusion/Conv_7/Sigmoid") parser.register_output("feature_fusion/concat_3") parser.parse("./model.uff", network) engine = builder.build cuda engine(network) Step 3 Create context and execute inference # The TF's input [NHWC] should be transposed to TRT format [NCHW], no need for output with engine.create execution context() as context: [cuda.memcpy htod(inp.device, inp.host) for inp in inputs] context.execute(batchsize, bindings) [cuda.memcpy_dtoh(out.host, out.device) for out in outputs]

PERFORMANCE

V100, FP32, ICDAR2015 TestSet 672x1280

Batchsize	TF Slim	TFTRT	TRT API	TRT Parser
1	48.4	62.15	75.02	75.23
4	57.78	73.88	85.13	85.45
16	63.57	77.18	88.47	88.18

- Increasing batchsize (up to 16) improves FPS on single V100.
- TRT API and TRT Parser are more efficient in FPS than TFTRT here.
- The performances of TRT API and TRT Parser are almost the same.

CONCLUSION

- TFTRT is easy and convenient to use for TF model, but with limited acceleration now.
- TRT API and TRT UFF Parser are able to achieve better performance than TFTRT.
- TRT UFF Parser is constrained by supported ops in TRT unless adding plugins.
- TRT API is more flexible to create the network,
 but may lead to more work.

RESOURCES

EAST: An Efficient and Accurate Scene Text Detector

https://arxiv.org/abs/1704.03155

EAST implement in TF

https://github.com/argman/EAST

TFTRT user guide

https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

TRT developer guide

https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

TRT API guide

https://docs.nvidia.com/deeplearning/sdk/tensorrt-api/index.html

