Convergencia del método de región de confianza

Para obtener convergencia se requiere demostrar que la condición de aceptar un paso implica un descenso, es decir, tenemos que acotar

$$\rho_k \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \frac{f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{k+1})}{m(\boldsymbol{0}) - m(\boldsymbol{p}_k)} = \frac{\text{reducción real}}{\text{reducción del modelo}} \,.$$

Por lo cual, se requiere una cota inferior para el denominador. En general, se puede ver que cualquier punto p_k que es mejor o igual al punto de Cauchy implica una reducción suficiente para obtener convergencia.

Lema 1. [Lemma 4.3, Nocedal] El punto de Cauchy satisface

$$m(\mathbf{0}) - m(\mathbf{p}_C) \ge \frac{1}{2} \|\mathbf{g}_k\|_2 \cdot \min \left\{ \Delta_k, \frac{\|\mathbf{g}_k\|_2}{\|B\|_2} \right\}.$$

Demostración. Hecho en clase (23 de Septiembre de 2019).

Note que cualquier punto p_k que es mejor o igual que el punto de Cauchy, en el sentido $m(p_k) \le m(p_C)$, satisface la misma condición, puesto que

(1)
$$m(\mathbf{0}) - m(\mathbf{p}_k) \ge m(\mathbf{0}) - m(\mathbf{p}_C) \ge \frac{1}{2} \|\mathbf{g}_k\|_2 \cdot \min \left\{ \Delta_k, \frac{\|\mathbf{g}_k\|_2}{\|B\|_2} \right\}.$$

Definición 1. Dado un punto inicial definimos el conjunto de sub-nivel $f(x_0)$ por

$$S \stackrel{\text{def}}{=} \{ \boldsymbol{x} \in \mathbb{R}^n \colon f(\boldsymbol{x}) \le f(\boldsymbol{x}_0) \} ,$$

y una vecindad de S con distancia $R_0 > 0$ por

$$\mathcal{V}_{R_0}(S) \stackrel{\mathrm{def}}{=\!\!=\!\!=} \{ m{x} \in \mathbb{R}^n \colon \| m{x} - m{y} \| < R_0 \quad \mathrm{para\ algún} \quad m{y} \in S \} \ .$$

Teorema 4.5, Nocedal] Suponga que $\mathbf{x}^0 \in \mathbb{R}^n$ y que

- 1. $\eta = 0$, $||B_k|| \le \beta$ para todo k,
- 2. f es acotada por debajo en el conjunto de sub-nivel S,
- 3. ∇f es Lipschitz continua en $\mathcal{V}_{R_0}(S)$,
- 4. $todo p_k$ satisface la cota (1).

Entonces,

$$\liminf_{k\to\infty}\|\boldsymbol{g}_k\|=0.$$

Demostración. Hicimos un bosquejo de la prueba de este teorema en clase 13 (23 de Septiembre). El bosquejo les debe ayudar a entender la prueba en el libro. \Box

Teorema 3. [Teorema 4.6, Nocedal] Suponga que x_0 , f, B_k y p_k satisfacen las hipótesis del Teorema 2, pero con $0 < \eta < \frac{1}{4}$. Entonces,

$$\lim_{k\to\infty}\|\boldsymbol{g}_k\|=0.$$

Demostración. Sea m>0 un índice tal que $\boldsymbol{g}_m\stackrel{\text{def}}{=\!\!\!=} \nabla f(\boldsymbol{x}_m)\neq \boldsymbol{0}$. Como ∇f es Lipschitz continuo tenemos

$$\|\boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{g}_m\| \le L \|\boldsymbol{x} - \boldsymbol{x}_m\|$$
 para todo $\boldsymbol{x} \in \mathcal{V}_{R_0}(S)$.

Sean $\varepsilon \stackrel{\text{def}}{=} \frac{1}{2} \|\boldsymbol{g}_m\| \text{ y } R \stackrel{\text{def}}{=} \min \left\{ \frac{\varepsilon}{L}, R_0 \right\}.$

Entonces, la bola $B_R(\boldsymbol{x}_m) \subset \mathcal{V}_{R_0}(S)$ y ∇f es Lipschitz en $B_R(\boldsymbol{x}_m)$

Además, para todo $x \in B_R(x_m)$ tenemos

$$\|g(x)\| \ge \|g_m\| - \|g_m - g(x)\| \ge 2\varepsilon - L\|x - x_m\| \ge \varepsilon > 0.$$

Por lo cual, con Teorema 2 concluimos que la sucesión $\{x_k\}_{k\geq m}$ tiene que salir de la bola $B_R(\boldsymbol{x}_m)$. Sea $\ell\geq m$ el primer índice tal que $\boldsymbol{x}_{\ell+1}\not\in B_R(\boldsymbol{x}_m)$. Dado que $\|\boldsymbol{g}_k\|\geq \varepsilon$ para todo $k=m,m+1,\ldots,\ell$ sabemos que

$$\begin{split} f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{\ell+1}) &= \sum_{k=m}^{\ell} f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{k+1}) & \text{(suma telescópica)} \\ &\geq \sum_{k=m}^{\ell} \eta \Big(m_k(\boldsymbol{0}) - m_k(\boldsymbol{p}_k) \Big) & \text{(criterio de aceptar paso} \to \text{método)} \\ &\geq \sum_{k=m}^{\ell} \frac{\eta}{2} \|\boldsymbol{g}_k\|_2 \cdot \min \left\{ \Delta_k, \, \frac{\|\boldsymbol{g}_k\|_2}{\|B\|_2} \right\} & \text{(por (1))} \\ &\geq \frac{1}{2} \eta \, \varepsilon \sum_{k=m}^{\ell} \min \left\{ \Delta_k, \, \frac{\varepsilon}{\beta} \right\} & \text{(por } \|B_k\| \leq \beta \text{ y } \|\boldsymbol{g}_k\| \geq \varepsilon) \, . \end{split}$$

Falta analizar la suma. Si $\Delta_k \leq \frac{\varepsilon}{\beta}$ para todo $k = m, m + 1, \dots, \ell$, entonces $\sum_{k=m}^{\ell} \Delta_k \geq R$, pues $\boldsymbol{x}_{\ell+1}$ salio de la bola $B_R(\boldsymbol{x}_m)$. En este caso, tenemos

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{\ell+1}) \ge \frac{1}{2} \eta \, \varepsilon \, R = \frac{1}{2} \eta \, \varepsilon \, \min \left\{ \frac{\varepsilon}{L}, \, R_0 \right\} \, .$$

Por otro lado, si existe $\Delta_k > \frac{\varepsilon}{\beta}$, entonces

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{\ell+1}) \ge \frac{1}{2} \eta \varepsilon \frac{\varepsilon}{\beta}.$$

Unimos esos dos casos para concluir que

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{\ell+1}) \ge \frac{1}{2} \eta \, \varepsilon \, \min \left\{ \frac{\varepsilon}{\beta}, \, \frac{\varepsilon}{L}, \, R_0 \right\} \, .$$

Finalmente, la sucesión $f(\boldsymbol{x}_k)$ es decreciente y acotada por debajo por f_{\star} . En particular, sabemos que $f(\boldsymbol{x}_m) \downarrow f(\boldsymbol{x}_{\star})$ y con $2\varepsilon = \|\boldsymbol{g}_m\|$ concluimos que

$$f(\boldsymbol{x}_m) - f_\star \ge f(\boldsymbol{x}_m) - f(\boldsymbol{x}_{\ell+1}) \ge \frac{1}{4} \eta \|\boldsymbol{g}_m\| \min \left\{ \frac{\|\boldsymbol{g}_m\|}{2\beta}, \frac{\|\boldsymbol{g}_m\|}{2L}, R_0 \right\} \ge 0.$$

Es decir,
$$f(\boldsymbol{x}_m) - f_{\star} \downarrow 0 \implies \|\boldsymbol{g}_m\| \downarrow 0$$
.