Exercício de laboratorio 2

César A. Galvão - 19/0011572

2022-07-08

Contents

1	Que	estao 1	3
	1.1	Determine a forma do modelo e as hipóteses consideradas	3
	1.2	Qual a forma da estatística de teste e sua distribuição amostral?	3
	1.3	Construa a tabela de análise de variância e conclua o teste considerando alfa = 0,05	4
	1.4	Quais são as suposições adotadas para a ANOVA? Essas suposições foram satisfeitas para esse experimento?	4
	1.5	Faça comparações entre os pares de médias pelo teste de Tukey e apresente os resultados.	5
	1.6	Construa um intervalo de confiança para média do circuito com menores tempos considerando gama = 0,98	5
2	Exe	rcício de simulação	6
	2.1	Erro Tipo I em comparações múltiplas	6
	22	Comparações como proteção contra Erro Tipo I	6

1 Questao 1

tipo	tempo
1	19
T	22
1	20
1	18
I	25
Ш	20
Ш	21
Ш	33
Ш	27
Ш	40
Ш	16
Ш	15
Ш	18
Ш	26
III	17

1.1 Determine a forma do modelo e as hipóteses consideradas

A comparação das médias dos grupos, neste caso os tipos de circuito, será realizada mediante análise de variância. O modelo escolhido para tal é o modelo de efeitos, expresso na equação a seguir

$$y_{ij} = \mu + \tau_i + e_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., n$$
 (1)

em que μ é a média geral, τ_i é a média ou efeito dos grupos e e_{ij} é o desvio do elemento. Os grupos são indexados por i e os indivíduos de cada grupo indexados por j.

As hipóteses do teste são as seguintes:

$$\begin{cases} H_0: \tau_1 = \dots = \tau_a = 0, & \text{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$
 (2)

que equivale dizer

$$\begin{cases}
H_0: \mu_1 = \dots = \mu_a \\
H_1: \exists \mu_i \neq \mu_j, i \neq j.
\end{cases}$$
(3)

1.2 Qual a forma da estatística de teste e sua distribuição amostral?

A estatística de teste é calculada mediante a média ponderada entre a soma dos quadrados dos tratamentos e a soma dos quadrados dos resíduos (quadrados médios dos tratamentos e dos resíduos respectivamente). Sob H_0 a estatística de teste tem distribuição F(a-1,an-a). Os graus de liberdade correspondem aos denominadores dos quadrados médios. Especificamente,

$$\frac{\frac{\text{SQTRAT}}{a-1}}{\frac{\text{SQRES}}{an-a}} = \frac{\text{QMTRAT}}{\text{QMRES}} \sim F(a-1, an-a) \tag{4}$$

1.3 Construa a tabela de análise de variância e conclua o teste considerando alfa = 0,05

O objeto tabela <- aov(tempo ~ tipo, dados) é gerado para criação da tabela a seguir.

term	df	sumsq	meansq	statistic	p.value
tipo	2	260.9333	130.46667	4.006141	0.0464845
Residuals	12	390.8000	32.56667	NA	NA

Com base apenas na ANOVA, cujo p-valor é <0,05, há evidências para rejeitar H_0 , ou seja, existe pelo menos uma média de grupo diferente das demais.

1.4 Quais são as suposições adotadas para a ANOVA? Essas suposições foram satisfeitas para esse experimento?

Para o teste de análise de variâncias, considerando o modelo de efeitos, supõe-se sobre os resíduos, elemento aleatório do lado direito da expressão do modelo:

- · independência;
- · normalidade;
- homogeneidade de variâncias (homocedasticidade).

Por hipótese, supõe-se que as amostras são independentes. Não há, a priori, como testar independência pois entende-se que isso é derivado do desenho do experimento.

A normalidade da distribuição dos resíduos pode ser testada mediante o teste de Shapiro-Wilk, realizada utilizando shapiro.test(tabela\$residuals), em que tabela é o modelo de análise de variâncias gerado anteriormente.

statistic	p.value	method
0.9423982	0.4134853	Shapiro-Wilk normality test

O teste assume como hipótese nula a normalidade dos dados amostrais. Com base no p-valor obtido, não há evidências para a rejeição de H_0 . Isto é, supõe-se normalidade dos dados.

Quando à homocedasticidade, utiliza-se o teste de Levene. A hipótese nula supõe homogeneidade de variâncias entre as amostras.

teste	F statistic	p.value	df	df.residual
Teste Levene de Homogeneidade	2.24147	0.1488948	2	12

De fato, obtém-se p-valor superior a 0.05, sugerindo a não rejeição de H_0 .

1.5 Faça comparações entre os pares de médias pelo teste de Tukey e apresente os resultados.

Opta-se pelo teste de Tukey para comparações múltiplas de médias. Trata-se de um teste unilateral para comparação de médias entre grupos de tratamento. Sob H_0 , ou seja, a igualdade entre as médias comparadas, a estatística de teste segue uma distribuição Tukey, cujos parâmetros são os graus de liberdade do resíduo e o número de comparações:

$$\frac{|\bar{y}_i. - \bar{y}_j.|}{\sqrt{\frac{\text{QMRES}}{n}}} \stackrel{H_0}{\sim} \text{Tukey} (gl.res., n^o comp.)$$
 (5)

term	contrast	estimate	conf.low	conf.high	adj.p.value
tipo	II-I	7.4	-2.22898	17.0289799	0.1425885
tipo	III-I	-2.4	-12.02898	7.2289799	0.7876393
tipo	-	-9.8	-19.42898	-0.1710201	0.0459970

Pelo teste de Tukey, há indícios para rejeição de H_0 apenas quando comparados os grupos II e III, corroborando o resultado da análise de variâncias.

1.6 Construa um intervalo de confiança para média do circuito com menores tempos considerando gama = 0,98

tipo	media
I	20.8
Ш	28.2
Ш	18.4

O grupo de menor média de tempo é o grupo III, cuja média é de 18,4. Utiliza-se como variância QMRES, pois $E\left(\mathsf{QMRES}\right) = \sigma^2$. Dessa forma, calcula-se o intervalo de confiança considerando $\gamma = 0,98$:

$$IC\left(\bar{y}_{i}:;\gamma\right) = \bar{y}_{i}. \pm t_{(an-a;1-\alpha/2)} \cdot \sqrt{\frac{\mathsf{QMRES}}{n}}$$
 (6)

$$= \bar{y}_3. \pm t_{(15-3;1-0,01)} \cdot \sqrt{\frac{32,56667}{5}} \tag{7}$$

$$= \bar{y}_3. \pm t_{(12;0,99)} \cdot \sqrt{\frac{32,56667}{5}} \tag{8}$$

$$IC(\bar{y}_3:;0,98) = 18,4 \pm 2,68 \cdot \sqrt{\frac{32,56667}{5}}$$
 (9)

$$= 18, 4 \pm 6, 84 \tag{10}$$

$$= [11, 55; 25, 24] \tag{11}$$

2 Exercício de simulação

Faça um experimento de simulação considerando a=4 tratamentos com n=4 repetições e um valor de $\sigma^2=25$. Faça k=1000 iterações em que a hipótese nula da ANOVA seja verdadeira e verifique a proporção de casos com pelo menos um erro do tipo I para os testes de comparações múltiplas de médias usando as técnicas de Tukey e Fisher e verificando se existem diferenças entre as técnicas.

Caso os testes de comparação múltipla sejam feitos apenas após o teste da anova ser significativo os resultados do item anteiror são alterados?

São realizadas 1000 iterações considerando 4 tratamentos e 4 repetições independentes cada – portanto amostras de um tamanho total de 16 unidades – advindas de distribuições normais com variância igual a 25. Dessa forma, são satisfeitos os pressupostos da hipótese nula da ANOVA e dos testes de comparações múltiplas: (1) independência, (2) normalidade e (3) homocedasticidade.

Para as amostras dos tópicos abaixo, primeiramente é gerado um seed para controlar a geração das 1000 seed únicos seguintes (cuja parte inteira apenas é considerada), usadas na geração das amostras. Assim garante-se a replicabilidade do experimento. Como todas as amostras são geradas aleatoreamente sem qualquer dependência, considera-se que são independentes. Por fim, cada amostra $_k;\ k\in\{1,2,...,1000\}$ de tamanho 16 é gerada com um seed $_k$ correspondente.

2.1 Erro Tipo I em comparações múltiplas

Para realizar os testes de comparações múltiplas de médias, foram utilizadas as seguintes funções e seus testes correspondentes:

- Teste de Tukey TukeyHSD();
- Teste de Fisher pairwise.t.test(), sem correção para α ;
- Teste de Fisher pairwise.t.test(..., p.adjust.method = "bonferroni"), utilizando a correção de Bonferroni para α.

Para o primeiro, foi observado 5.3% de ocorrência de erro tipo I. Para o segundo foi observado 19.4% e para o terceiro 3.9%.

2.2 Comparações como proteção contra Erro Tipo I

Observa-se da simulação da análise de variância que em 57 casos houve erro do tipo 1 considerando $\alpha=0,05$, o que representa 5.7% dos casos. Para testar se um teste seguinte de comparações múltiplas auxiliaria em reduzir a incidência de erro tipo I, realizou-se os mesmos testes do tópico anterior apenas sobre as amostras em que houve esse erro de acordo com a ANOVA. O ganho de precisao, ou redução do erro tipo I, é exposto na tabela a seguir:

Testes	ET1.dos.testes	Redução
Tukey	46	1.1
Fisher	57	0.0
Fisher (Bonferroni)	38	1.9

Nota-se portanto que, realizando os pós-testes de Tukey ou Fisher com correção de Bonferroni, que controlam para esse tipo de erro, é possível aumentar a precisão da análise em pelo menos 1%. Isso significa

que, de 57 casos, reduzimos para 46 ou 38 casos em 1000. Contrariamente, o teste de Fisher sem ajuste no p-valor não fornece qualquer melhoria na análise, o que é esperado pois tipicamente há inflacionamento de erro tipo I.