Spatial Data Analysis in Ecology and Agriculture Using R SECOND EDITION

Richard E. Plant

Spatial Data Analysis in Ecology and Agriculture Using R

Spatial Data Analysis in Ecology and Agriculture Using R Second Edition

Richard E. Plant

Departments of Plant Sciences and Biological and Agricultural Engineering University of California, Davis

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-978-0-8153-9275-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Plant, Richard E., author.

Title: Spatial data analysis in ecology and agriculture using R / by Richard

E. Plant.

Description: Second edition. | Boca Raton, Florida : CRC Press, [2019] |

Includes bibliographical references and index.

Identifiers: LCCN 2018040387 | ISBN 9780815392750 (hardback : alk. paper) |

ISBN 9781351189910 (e-book)

Subjects: LCSH: Agriculture--Statistical methods. | Spatial analysis

(Statistics) | R (Computer program language)

Classification: LCC \$566.55 .P53 2019 | DDC 338.1072/7--dc23

LC record available at https://lccn.loc.gov/2018040387

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Prefa	ce to	the Se	rst Editioncond Edition	xv
1 V	Vork	ing wi	th Spatial Data	1
	.1		uction	
_	.2		sis of Spatial Data	
1	•-	1.2.1	Types of Spatial Data	
		1.2.2	The Components of Spatial Data	
		1.2.3	Spatial Data Models	
		1.2.4	Topics Covered in the Text	
1	.3		ata Sets Analyzed in This Book	
		1.3.1	Data Set 1: Yellow-Billed Cuckoo Habitat	
		1.3.2	Data Set 2: Environmental Characteristics of Oak Woodlands	
		1.3.3	Data Set 3: Uruguayan Rice Farmers	
		1.3.4	Data Set 4: Factors Underlying Yield in Two Fields	
		1.3.5	Comparing the Data Sets	
1	.4	Furthe	r Reading	16
2. T	he F	R Progr	amming Environment	19
2	.1	Introd	uction	
		2.1.1	Introduction to R	
		2.1.2	Setting Yourself Up to Use This Book	
	.2		CS	
2	.3	Progra	mming Concepts	
		2.3.1	Looping and Branching	
		2.3.2	Functional Programming	
2	.4		ing Data in R	
		2.4.1	Data Structures in R	
		2.4.2	Basic Data Input and Output	
	_	2.4.3	Spatial Data Structures	
	.5		g Functions in R	
2	.6	1	ics in R	
		2.6.1	Traditional Graphics in R: Attribute Data	
		2.6.2	Traditional Graphics in R: Spatial Data	
		2.6.3	Trellis Graphics in R, Attribute Data	
		2.6.4	Trellis Graphics in R, Spatial Data	
_	-	2.6.5	Using Color in R	
	.7		nuing on from Here with R	
	.8		r Reading	
E	xerc	ıses		62

viii Contents

3.	Statis	stical P	roperties of Spatially Autocorrelated Data	67
	3.1	Introd	uction	67
	3.2	Compo	onents of a Spatial Random Process	68
		3.2.1	Spatial Trends in Data	68
		3.2.2	Stationarity	74
	3.3	Monte	Carlo Simulation	77
	3.4	A Revi	iew of Hypothesis and Significance Testing	<u>79</u>
	3.5		ing Spatial Autocorrelation	
		3.5.1	Monte Carlo Simulation of Time Series	
		3.5.2	Modeling Spatial Contiguity	88
		3.5.3	Modeling Spatial Association in R	
	3.6	Applic	ration to Field Data	
		3.6.1	Setting Up the Data	
		3.6.2	Checking Sequence Validity	
		3.6.3	Determining Spatial Autocorrelation	
	3.7	Furthe	er Reading	
	Exerc			
4.	Meas		Spatial Autocorrelation	
	4.1		uction	
	4.2	Prelim	inary Considerations	
		4.2.1	Measurement Scale	
		4.2.2	Resampling and Randomization Assumptions	108
		4.2.3	Testing the Null Hypothesis	109
	4.3	Join-C	Count Statistics	110
	4.4		's I and Geary's c	
	4.5	Measu	res of Autocorrelation Structure	117
		4.5.1	The Moran Correlogram	117
		4.5.2	The Moran Scatterplot	119
		4.5.3	Local Measures of Autocorrelation	121
		4.5.4	Geographically Weighted Regression	124
	4.6	Measu	ring Autocorrelation of Spatially Continuous Data	127
		4.6.1	The Variogram	127
		4.6.2	The Covariogram and the Correlogram	132
	4.7	Furthe	r Reading	133
	Exerc	ises		133
5.	•	_	nd Data Collection	
	5.1		uction	
	5.2		inary Considerations	
		5.2.1	The Artificial Population	
		5.2.2	Accuracy, Bias, Precision, and Variance	
		5.2.3	Comparison Procedures	
	5.3		oping the Sampling Patterns	
		5.3.1	Random Sampling	
		5.3.2	Geographically Stratified Sampling	
		5.3.3	Sampling on a Regular Grid	
		5.3.4	Stratification Based on a Covariate	
		5.3.5	Cluster Sampling	153

	5.4	Methods for Variogram Estimation	154
	5.5	Estimating the Sample Size	
	5.6	Sampling for Thematic Mapping	
	5.7	Design-Based and Model-Based Sampling	
	5.8	Further Reading	
	Exerc	cises	
6.	Prep	aring Spatial Data for Analysis	167
-	6.1	Introduction	
	6.2	Quality of Attribute Data	
	0.2	6.2.1 Dealing with Outliers and Contaminants	
		6.2.2 Quality of Ecological Survey Data	
		6.2.3 Quality of Automatically Recorded Data	
	6.3	Spatial Interpolation Procedures	
	0.5	6.3.1 Inverse Weighted Distance Interpolation	
		6.3.2 Kriging Interpolation	
		6.3.3 Cokriging Interpolation	
	6.1		
	6.4	Spatial Rectification and Alignment of Data	
		6.4.2 Change of Coverage	
	<i>(</i> -	6.4.3 Change of Support	
	6.5	Further Reading	
	Exerc	rises	197
_	D.,12	min and Franchism of Contint Date	100
7.		minary Exploration of Spatial Data	
	7.1	Introduction	
	7.2	Data Set 1	
	7.3	Data Set 2	
	7.4	Data Set 3	
	7.5	Data Set 4	
	7.6	Further Reading	
	Exerc	ises	251
8.		Exploration Using Non-Spatial Methods: The Linear Model	
	8.1	Introduction	
	8.2	Multiple Linear Regression	
		8.2.1 The Many Perils of Model Selection	255
		8.2.2 Multicollinearity, Added Variable Plots, and Partial	
		Residual Plots	
		8.2.3 A Cautious Approach Model Selection as an Exploratory Tool	269
	8.3	Building a Multiple Regression Model for Field 4.1	270
	8.4	Generalized Linear Models	
		8.4.1 Introduction to Generalized Linear Models	281
		8.4.2 Multiple Logistic Regression Model for Data Set 2	288
		8.4.3 Logistic Regression Model of Count Data for Data Set 1	
		8.4.4 Analysis of the Counts of Data Set 1: Zero-Inflated Poisson Data	
	8.5	Further Reading	
	Exerc	Č	201

x Contents

9.	Data E	exploration Using Non-Spatial Methods: Nonparametric Methods	307
	9.1	Introduction	307
	9.2	The Generalized Additive Model	307
	9.3	Classification and Regression Trees (a.k.a. Recursive Partitioning)	317
		9.3.1 Introduction to the Method	317
		9.3.2 The Mathematics of Recursive Partitioning	320
		9.3.3 Exploratory Analysis of Data Set 2 with Regression Trees	321
		9.3.4 Exploratory Analysis of Data Set 3 with Recursive Partitioning	328
		9.3.5 Exploratory Analysis of Field 4.1 with Recursive Partitioning	334
	9.4	Random Forest	339
		9.4.1 Introduction to Random Forest	339
		9.4.2 Application to Data Set 2	342
	9.5	Further Reading	345
	Exercis	ses	345
10.	Variar	ice Estimation, the Effective Sample Size, and the Bootstrap	
	10.1	Introduction	
	10.2	Bootstrap Estimation of the Standard Error	351
	10.3	Bootstrapping Time Series Data	355
		10.3.1 The Problem with Correlated Data	
		10.3.2 The Block Bootstrap	357
		10.3.3 The Parametric Bootstrap	
	10.4	Bootstrapping Spatial Data	362
		10.4.1 The Spatial Block Bootstrap	362
		10.4.2 The Parametric Spatial Bootstrap	366
		10.4.3 Power of the Tests	368
	10.5	Application to the EM38 Data	368
	10.6	Further Reading	371
	Exercis	ses	372
11.		res of Bivariate Association between Two Spatial Variables	
	11.1	Introduction	
	11.2	Estimating and Testing the Correlation Coefficient	
		11.2.1 The Correlation Coefficient	
		11.2.2 The Clifford et al. (1989) Correction	
		11.2.3 The Bootstrap Variance Estimate	
		11.2.4 Application to the Example Problem	
	11.3	Contingency Tables	
		11.3.1 Large Sample Size Contingency Tables	
		11.3.2 Small Sample Size Contingency Tables	
	11.4	The Mantel and Partial Mantel Statistics	
		11.4.1 The Mantel Statistic	
		11.4.2 The Partial Mantel Test	
	11.5	The Modifiable Areal Unit Problem and the Ecological Fallacy	
		11.5.1 The Modifiable Areal Unit Problem	404
		11.5.2 The Ecological Fallacy	408
	11.6	Further Reading	410
	Exercis	ses	410

12.	The I	Mixed Model	413
	12.1	Introduction	413
	12.2	Basic Properties of the Mixed Model	417
	12.3	Application to Data Set 3	
	12.4	Incorporating Spatial Autocorrelation	
	12.5	Generalized Least Squares	
	12.6	Spatial Logistic Regression	
		12.6.1 Upscaling Data Set 2 in the Coast Range	
		12.6.2 The Incorporation of Spatial Autocorrelation	
	12.7	Further Reading	
	Exerc	ises	444
13.	Regro	ession Models for Spatially Autocorrelated Data	445
	13.1	Introduction	
	13.2	Detecting Spatial Autocorrelation in a Regression Model	450
	13.3	Models for Spatial Processes	
		13.3.1 The Spatial Lag Model	
		13.3.2 The Spatial Error Model	
	13.4	Determining the Appropriate Regression Model	
		13.4.1 Formulation of the Problem	
		13.4.2 The Lagrange Multiplier Test	
	13.5	Fitting the Spatial Lag and Spatial Error Models	
	13.6	The Conditional Autoregressive Model	
	13.7	Application of Simultaneous Autoregressive and Conditional	
		Autoregressive Models to Field Data	462
		13.7.1 Fitting the Data	
		13.7.2 Comparison of the Mixed Model and Spatial Autoregression	
	13.8	Further Reading	
	Exerc	ises	
14.	-	sian Analysis of Spatially Autocorrelated Data	
	14.1	Introduction	
	14.2	Markov Chain Monte Carlo Methods	
	14.3	Introduction to WinBUGS	
		14.3.1 WinBUGS Basics	
		14.3.2 WinBUGS Diagnostics	
		14.3.3 Introduction to R2WinBUGS	
		14.3.4 Generalized Linear Models in WinBUGS	
	14.4	Hierarchical Models	
	14.5	Incorporation of Spatial Effects	
		14.5.1 Spatial Effects in the Linear Model	
		14.5.2 Application to Data Set 3	
		14.5.3 The spBayes Package	
	14.6	Comparison of the Methods	
	14.7	Further Reading	510
	Exercises		

xii Contents

15.	Analy	rsis of Spatiotemporal Data	513
	15.1	Introduction	513
	15.2	Spatiotemporal Data Interpolation	513
		15.2.1 Representing Spatiotemporal Data	513
		15.2.2 The Spatiotemporal Variogram	
		15.2.3 Interpolating Spatiotemporal Data	
	15.3	Spatiotemporal Process Models	
		15.3.1 Models for Dispersing Populations	
		15.3.2 A Process Model for the Yield Data	
	15.4	Finite State and Time Models	529
		15.4.1 Determining Finite State and Time Models Using Clustering	529
		15.4.2 Factors Underlying Finite State and Time Models	
	15.5	Bayesian Spatiotemporal Analysis	
		15.5.1 Introduction to Bayesian Updating	
		15.5.2 Application of Bayesian Updating to Data Set 3	
	15.6	Further Reading	
	Exerci	ses	
16.	Analy	rsis of Data from Controlled Experiments	553
	16.1	Introduction	
	16.2	Classical Analysis of Variance	554
	16.3	The Comparison of Methods	559
		16.3.1 The Comparison Statistics	559
		16.3.2 The Papadakis Nearest-Neighbor Method	561
		16.3.3 The Trend Method	562
		16.3.4 The "Correlated Errors" Method	563
		16.3.5 Published Comparisons of the Methods	565
	16.4	Pseudoreplicated Data and the Effective Sample Size	566
		16.4.1 Pseudoreplicated Comparisons	566
		16.4.2 Calculation of the Effective Sample Size	567
		16.4.3 Application to Field Data	
	16.5	Further Reading	571
	Exerci	ses	572
17.	Assen	nbling Conclusions	573
	17.1	Introduction	573
	17.2	Data Set 1	573
	17.3	Data Set 2	578
	17.4	Data Set 3	583
	17.5	Data Set 4	586
	17.6	Conclusions	590
Αpi	pendix	A: Review of Mathematical Concepts	593
		B: The Data Sets	
Appendix C: An R Thesaurus6			
		·s	
Ind	ex		657

Preface to the First Edition

This book is intended for classroom use or self-study by graduate students and researchers in ecology, geography, and agricultural science who wish to learn about the analysis of spatial data. The book originated in a course entitled "Spatial Data Analysis in Applied Ecology" that I taught for several years at UC Davis. Although most of the students were enrolled in Ecology, Horticulture and Agronomy, or Geography, there was a smattering of students from other programs such as Entomology, Soil Science, and Agricultural and Resource Economics. The book assumes that the reader has a background in statistics at the level of an upper division undergraduate applied linear models course. This is also, in my experience, the level at which ecologists and agronomists teach graduate applied statistics courses to their own students. To be specific, the book assumes a statistical background at the level of Kutner et al. (2005). I do not assume that the reader has had exposure to the general linear model or modern mixed-model analysis.

The book is intended for those who want to make use of these methods in their research, not for statistical or geographical specialists. It is always wise to seek out a specialist's help when such help is available, and I strongly encourage this practice. Nevertheless, the more one knows about a specialist's area of knowledge, the better able one is to make use of that knowledge. Because this is a user's book, I have elected on some occasions to take small liberties with technical points and details of the terminology. To dot every *i* and cross every *t* would drag the presentation down without adding anything useful.

The book does not assume any prior knowledge of the R programming environment. All of the R code for all of the analyses carried out in this book is available on the book's companion website, https://psfaculty.plantsciences.ucdavis.edu/plant/sda.htm. One of the best features of R is also its most challenging: the vast number of functions and contributed packages that provide a multitude of ways to solve any given problem. This provides a special challenge for a textbook, namely, how to find the best compromise between exposition via manual coding and the use of contributed package functions, and which functions to choose. I have tried to use manual coding when it is easy or there is a point to be made, and save contributed functions for more complex operations. As a result, I sometimes have provided "homemade" code for operations that can also be carried out by a function from a contributed package.

The book focuses on data from four case studies, two from uncultivated ecosystems and two from cultivated ecosystems. The data sets are also available on the book's companion website. Each of the four data sets is drawn from my own research. My reason for this approach is a conviction that if one wants to really get the most out of a data set, one has to live with it for a while and get to know it from many different perspectives, and I want to give the reader a sense of that process as I have experienced it. I make no claim of uniqueness for this idea; Griffith and Layne (1999), for example, have done it before me. I used data from projects in which I participated not because I think they are in any way special, but because they were available and I already knew them well when I started to write the book.

For most of my career, I have had a joint appointment in the Department of Biological and Agricultural Engineering and a department that, until it was gobbled up in a fit of academic consolidation, bore the name Agronomy and Range Science. Faculty in this second department were fortunate in that, as the department name implies, we were able to

work in both cultivated and uncultivated ecosystems, and this enabled me to include two of each in the book. I was originally motivated to write the book based on my experiences working in precision agriculture. We in California entered this arena considerably later than our colleagues in the Midwest, but I was in at the beginning in California. As was typical of academic researchers, I developed methods for site-specific crop management, presented them to farmers at innumerable field days, and watched with bemusement, as they were not adopted very often. After a while I came to the realization that farmers can figure out how best to use this new technology in the ways that suit their needs, and indeed they are beginning to do so. This led to the further realization that we researchers should be using this technology for what we do best: research. This requires learning how to analyze the data that the technology provides, and that is what this book is about.

I have been very fortunate to have had some truly outstanding students work with me, and their work has contributed powerfully to my own knowledge of the subject. I particularly want to acknowledge those students who contributed to the research that resulted in this book, including (in alphabetical order) Steven Greco, Peggy Hauselt, Randy Horney, Claudia Marchesi, Ali Mermer, Jorge Perez-Quezada, Alvaro Roel, and Marc Vayssières. In particular, Steven Greco provided Data Set 1, Marc Vayssières provided Data Set 2, and Alvaro Roel provided Data Set 3. I also want to thank the students in my course who read through several versions of this book and made many valuable suggestions. In particular, thanks go to Kimberley Miller, who read every chapter of the final draft and made many valuable comments. I have benefited from the interaction with a number of colleagues, too many to name, but I particularly want to thank Hugo Firpo, who collected the data on Uruguayan rice farmers for Data Set 3, Tony Turkovich, who let us collect the data for Data Set 4 in his fields, Stuart Pettygrove, who managed the large-scale effort that led to that data set and made the notes and data freely available, and Robert Hijmans, who introduced me to his raster package and provided me with many valuable comments about the book in general. Finally, I want to thank Roger Bivand, who, without my asking him to do so, took the trouble to read one of the chapters and made several valuable suggestions. Naturally, these acknowledgments in no way imply that the persons acknowledged, or anyone else, endorses what I have written. Indeed, some of the methods presented in this book are very ad hoc and may turn out to be inappropriate. For that, as well as for the mistakes in the book and bugs in the code that I am sure are lurking there, I take full responsibility.

> **Davis** California

Preface to the Second Edition

I am grateful for the opportunity to write a second edition of this book. R is very dynamic, and there have been sufficient changes to degrade the book's usefulness for learning R. There have also been major advances on several fronts in spatial data analysis. The most dramatic changes have been in the analysis of spatiotemporal data. These have been sufficient for me to completely revise that chapter. Major advances have also been made in the application of Bayesian methods to spatial data. The use of the generalized additive model has been rapidly gaining ground in ecology. Finally, but not least importantly, the use of packages associated with the tidyverse of Hadley Wickham and his colleagues have made graphical analysis much simpler. I have incorporated all of these, although, for reasons I have elaborated in Chapter 2, I have decided to continue to use the traditional R graphics to construct the figures in this book. Of course this means that some things have had to be deleted to make room. Most prominent has been the removal of the section on principal components analysis. The substitution of a section on the generalized additive model has prompted me to switch the order of this chapter and the one on linear models. I have placed the section on principal components analysis on the books companion website, https://psfaculty.plantsciences.ucdavis.edu/plant/sda2.htm in a section called "Additional Topics." Additional material to accompany the book can be accessed at https://psfaculty.plantsciences.ucdavis.edu/plant/additionaltopics.htm. I hope to add discussions of other relevant topics there as well. I have also had the opportunity to correct numerous errors in the first edition; I hope I have not introduced too many new ones into the second. In addition to the people I acknowledged in the first edition, I want to thank Meili Baragatti, James Graham, and Andrew Latimer for their thoughtful reviews of the first edition. I would also like to thank my editors, John Sulzycki and Alice Oven, for their guidance and assistance. They have been a true pleasure to work with.

> **Davis** California