Logique et raisonnements mathématiques

Eléments de logique

Exercice 1

Décrire les parties de

R qui sont définies par les propositions (vraies) suivantes :

- 1) (x > 0 et x < 1) ou x = 0 2) $x > 3 \text{ et } x < 5 \text{ et } x \neq 4$
- 3) $(x \le 0 \text{ et } x > 1) \text{ ou } x = 4$ 4) $x \ge 0 \Rightarrow x \ge 2$.

Exercice 2

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction définie sur I à valeurs réelles.

Exprimer verbalement la signification des propositions suivantes :

- 1) $\exists \lambda \in \mathbb{R}, \ \forall x \in I, \ f(x) = \lambda$ 2) $\forall x \in I, \ f(x) = 0 \Rightarrow x = 0$ 3) $\forall y \in \mathbb{R}, \ \exists x \in I, \ f(x) = y$
- 4) $\forall (x,y) \in I^2$, $x \leq y \Rightarrow f(x) \leq f(y)$ 5) $\forall (x,y) \in I^2$, $f(x) = f(y) \Rightarrow x = y$

Exercice 3

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction définie sur I à valeurs réelles.

Exprimer à l'aide de quantificateurs les propositions suivantes :

- 1) la fonction f s'annule
- 2) la fonction f est la fonction nulle
- 3) f n'est pas une fonction constante
- 4) f ne prend jamais deux fois la même valeur
- la fonction f présente un minimum
- 6) f prend des valeurs arbitrairement grandes
- 7) f ne peut s'annuler qu'une seule fois

Exercice 4

Soient I un intervalle de \mathbb{R} non vide et $f: I \to \mathbb{R}$ une fonction à valeurs réelles définie sur I. Exprimer les négations des propositions suivantes :

1) $\forall x \in I, f(x) \neq 0$

- 2) $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y$

- $3) \exists M \in \mathbb{R}, \forall x \in I, |f(x)| \leq M$ $4) \forall (x,y) \in I^2, x \leq y \Rightarrow f(x) \leq f(y)$ $5) \forall (x,y) \in I^2, f(x) = f(y) \Rightarrow x = y$ $6) \forall x \in I, f(x) = g$ $6) \forall x \in I, f(x) > 0 \Rightarrow x \leq 0$

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{R}$. Indiquer la différence de sens entre les deux propositions proposées :

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = f(x)$ et $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = f(x)$.
- 2. $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$ et $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y = f(x)$
- 3. $\forall x \in \mathbb{R}, \exists M \in \mathbb{R}, f(x) \leq M$ et $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \leq M$

Raisonnements mathématiques

Exercice 6

Soit n un entier, montrer que si n^2 est pair alors n est pair.

Exercice 7

Soit x un irrationnel positif. Montrer que \sqrt{x} est irrationnel.

Exercice 8

Montrer que $\sqrt{2}$ est un nombre irrationnel.

Exercice 9

On considère une famille finie d'ensembles distincts deux à deux.

Montrer que l'un au moins de ces ensembles ne contient aucun des autres.

Λ -

Exercice 10

Déterminer toutes les fonctions
$$f: \mathbb{R} \to \mathbb{R}$$
 telles que : $\forall x \in \mathbb{R}, f(x - f(y)) = 2 - x - y$.

Exercice 11

Montrer que toute fonction $f: \mathbb{R} \to \mathbb{R}$ s'écrit de façon unique comme la somme d'une fonction paire et d'une fonction impaire. Préciser cette décomposition si $f(x) = \frac{x+1}{x^2+x+1}$

Exercice 12

Montrer que pour tout entier naturel n, $u_n = 4^{4n+2} - 3^{n+3}$ est divisible par 11.

Exercice 13

On définit une suite (u_n) par : $u_0 = 1$, $u_1 = \cos \theta$, et pour $n \ge 2$: $u_n = 2u_1u_{n-1} - u_{n-2}$. Calculer u_n , pour tout entier n.