

ANALYSING AND COMPERSION OF DISK SHEDULING

PROJECT-I REPORT

Submitted by

REG NO NAME

61072011143 SIVAKUMAR A

61072111911 SANJAY M

Under the guidance of

Dr. S. Selvi M.E.,Ph.D.,

Assistant Professor (Sr. Gr),

Department of Computer Science and Engineering

GOVERNMENT COLLEGE OF ENGINEERING

(AUTONOMOUS)

BARGUR, KRISHNAGIRI - 635 104.

(Affiliated to Anna University, Accredited by NAAC with 'B' Grade)

ANNA UNIVERSITY: CHENNAI 600 025 DECEMBER 2022

GOVERNMENT COLLEGE OF ENGINEERING (AUTONOMOUS)

BARGUR, KRISNAGIRI-635 104.

Department of Computer Science and Engineering

BONAFIDE CERTIFICATE

Certified that this project titled

"ANALYSING AND COMPERSION OF DISK SHEDULING" is the bonafide work of SIVAKUMAR (61072011143), SANJAY M (61072111911) who carried out the mini project work under my supervision.

Dr. S. Selvi, M.E., Ph.D.,

DR.J.NAFEESA BEGUM, M.E., Ph.D.,

SUPERVISOR

HEAD OF THE DEPARTMENT

Assistant Professor (Sr. Gr),

Professor,

Department of CSE,

Govt. College of Engineering,

Bargur-635 104.

Submitted for the Project Viva Voce Examination held on_______

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

First and Foremost, praises and thanks to the God, the Almighty for showers of blessings throughout our beautiful life journey. We are extremely grateful to our parents for their love, prayers, caring and sacrifices for educating and preparing us for our future.

We express our sincere gratitude thanks to our respected Principal-in-Charge **Dr. R.VIJAYAN**, **M.E.**, **Ph.D.**, and our respected Head of the Department of Computer Science and Engineering **Dr. J.NAFEESA BEGUM**, **M.E.**, **Ph.D.**, for giving us the opportunity to display our professional skills through this project.

We are again greatly thankful to our project guide **Mrs.SELVI M.E.,Ph.D.,** Department of Computer Science and Engineering for his valuable guidance and motivation which helped us to complete this project on time.

We thank all our teaching and non-teaching staff members of the Computer Science and Engineering for their passionate support for helping us to identify our mistakes and also for the appreciation they gave us in achieving our goal.

Also, we would like to record our deepest gratitude to **our parents for their constant encouragement and support** which motivated us to complete our project on time.

SIVAKUMAR A (61072011143) SANJAY M (61072111911)

ABSTRACT

The file system can be viewed logically in three different divisions i.e. user, programmer interface to the file system and secondary storage structure. The lowest level of the file system is secondary storage structure and disk is the main secondary storage device that is generally divided into tracks, cylinders and sectors and stores the data permanently. The I/O operation depends on the computer system, the operating system, and the nature of the I/O channel and disk controller hardware. The user programs make use of the data on the disk by means of I/O requests. Data is stored on both surfaces of a series of magnetic disks called platters that are connected by a single spindle. The surface of a platter is logically divided into tracks that are further subdivided into sectors and the set of tracks that are at one arm position form a cylinder. One read-write head per disk surface is used to access the data and all read-write heads are attached to a single moving arm. The segment of the disk surface where the data is read or written must revolve under the read-write head for accessing the data.

The key responsibility of the operating system is to efficiently use the hardware of the computer system. For the efficiency of the disk drives, the terms access time and disk bandwidth are associated. The access time is the total time elapsed between the access command and the read/write head positioned to the particular sector or in other words it is the combination of seek time, latency time and transfer time. Seek time is the time to move the head to the right data track. Latency time is the time taken for desired sector to rotate under head for access. Transfer time is the actual time required to transfer data between disk and main memory. Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request of the service and the finishing point of the last transfer . For most disks, the seek time leads the latency time and transfer time, so reducing the mean seek time can improve system performance to a large extent .

In multiprogramming systems, processes running concurrently may generate requests for reading and writing disk records. The operating system handles these I/O requests from the queue and processes them one by one. The algorithm used to choose which I/O request is going to be fulfilled earliest is called disk scheduling algorithm. The different disk scheduling algorithms are First Come First Serve, Shortest Seek Time First, Scan, Look, Circular Scan and Circular Look. The main objectives for any disk scheduling algorithm are minimizing the response time and maximizing the throughput. In this research paper, an experiment has been carried out by considering the same request queue for implementing the different disk scheduling algorithms.

TABLE OF CONTENTS

CHAPTER		D. CD. 110	
NO.	TITLE	PAGE NO	
	ABSTRACT		
	LIST OF FIGURES		
	INTRODUCTION		
1.1.	BACKGROUND	2	
1.	1.1.1 Disk Scheduling Criteria		
3.	1.1.2. Seek Time		
1.1.3.	ROTATIONAL LATENCY		
1.1.4.	DISK BANWIDTH		
1.2.	DISK SCHEDULING ALGORITHM		
1.2.1.	FIRST COME FIRST SERVE SCHEDULING		
1.2.2.	SHORTEST SEEK TIME SCHEDULING	3	
1.2.3.	SCAN SCHEDULING		
1.2.4.	C-SCAN SCHEDULING		
1.2.5.	LOOK SCHEDULING		
1.2.6.	C-LOOK SCHEDULING		
1.3.	OBJECTIVES		
	LITERATURE SURVEY	5	
2.1.	LITERATURE SERVEY	6	
2.1.1.	ANALYSIS OF PREVIOUS RESEARCH WORKS	7	
	SYSTEM ANALYSIS	10	
3.1.	EXISTING SYSTEM	11	
3.1.1.	DRAWBACK OF EXISTING SYSTEM		

3.2.	PROPOSED SYSTEM	
3.2.1.	ADVANTAGES	
	SYSTEM REQUIREMENTS	12
4.1.	SOFTWARE REQUIREMENTS	13
4.2.	HARDWARE REQUIREMENTS	
	PRESENT WORK OF THE PROJECT	14
5.1.	PRESENT WORK OF THE PROJECT	15
5.1.1.	FIRST COME FIRST SERVE ALGORITHM	
5.1.2.	Shortest Seek Time First Algorithm	16
5.1.3.	Scan Disk Scheduling Algorithm	17
5.1.4.	Look Disk Scheduling Algorithm	18
5.1.5.	Circular Scan Disk Scheduling Algorithm	19
5.1.6.	Circular Look Disk Scheduling Algorithm	
5.2.	PERFORMANCE OF DISK SCHEDULING IN C LANGUAGE	20
5.2.1.	USING FCFS	21
5.2.2.	USING SSTF	
5.2.3.	USING SCAN	22
5.2.4.	USING C-SCAN	
5.2.5.	USING LOOK	23
5.2.6.	USING C-LOOK	
5.3.	Similarly all the calculations have been performed in the following test cases	24
	ARCHITECTURAL OF THE PROJECTT	25
6.1.	DSA ALGORITHM	26
6.1.1.	PROPOSED DSA ALGORITHM	
6.2.	PSEUDO CODE	
6.2.1.	EXPLAIN FOR THE TERMS	27
6.3.	FLOWCHART EXPLANATION	
	SYSTEM DESIGN MODULE	29
7.1.	SYSTEM CONTEXT DIAGRAM	30

	TESTING	31
8.1.	TESTING & EXPLANATION	32
8.2.	SAMPLE DISK QUEUE	34
8.3.	COMPARSIONS	35
8.3.1.	FCFS SCHEDULING	
8.3.2.	SSTF SCHEDULING	
8.3.3.	SCAN SCHEDULING	
8.3.4.	C-SCAN SCHEDULING	
8.3.5.	LOOK SCHEDULING	
8.3.6.	C-LOOK SCHEDULING	36
	APPENDICES	37
9.1.	SOURCE CODE	38
	SCREENSHOTS	70
10.1.	OUTPUT SCREENSHOTS	71
	CONCLUSION	74
11.1.	CONCLUSION	75
11.1.1.	LIMITATION	
	REFERANCES	76
12.1.	BOOKS REFERED	77
12.2.	WEBSITES REFERRED	

FIGURE NO	FIGURE NAME	PAGE NO.	
Figure 5.1.1	FIRST COME FIRST SERVE	14	
	REPRESENTATION		
Figure 5.1.2	SHORTEST SEEK TIME FIRST	15	
	REPRESENTATION		
Figure 5.1.3	SCAN REPRESENTATION	16	
Figure 5.1.4	LOOK REPRESENTATION	17	
Figure 5.1.5	•		
Figure 5.1.6			
Figure 5.2.1	FCFS [C]	20	
Figure 5.2.2	SSTF[C]		
Figure 5.2.3	SCAN[C]	21	
Figure 5.2.4	C-SCAN[C]		
Figure 5.2.5	LOOK[C]	22	
Figure 5.2.6	C-LOOK[C]		
Figure 6.3	FLOWCHART OF DSA ALGORITHM	27	
Figure 7.1	CONTEXT DIAGRAM FOR DISK	29	
C	SCHEDULING		
Figure8.1.1	AVERAGE HEAD MOVEMENT OF	31	
	FIRST FIVE RUNS AND THEIR		
	AVERAGE		
Figure 8.1.2	COMPARISON BETWEEN SIX DISK	32	
	SCHEDULING ALGORITHMS IN		
	GRAPHICAL REPRESENTATION		
Figure8.2	SAMPLE QUEUE VALUES	33	
Figure8.3.6	FINAL RESULT FOR ALL	35	
	ALGORITHM		
Figure10.1.1	RESULT OF FCFS	70	
Figure 10.1.2	RESULT OF SHORTEST SEEK TIME		
	FIRST		
Figure 10.1.3	RESULT OF SCAN SCHEDULING	71	
Figure 10.1.4	RESULT OF LOOK SCHEDULING		
Figure 10.1.5	RESULT OF C-SCAN SCHEDULING	72	
Figure 10.1.5	RESULT OF C-LOOK SCHEDULING		