Page 1 of 51

Report No.: 170615002RFC-3

TEST REPORT

Product Name: WIFI+BT Module

Trade Mark: GSD

Model No.: WCT6LA2701

Report Number: 170615002RFC-3

Test Standards: FCC 47 CFR Part 15 Subpart C

RSS-247 Issue 2 RSS-Gen Issue 4

FCC ID: 2AC23-WCT6LA2701

IC: 12290A-WCT6LA2701

Test Result: PASS

Date of Issue: July 10, 2017

Prepared for:

Hui Zhou Gaoshengda Technology Co.,LTD NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

			7/0
Tested by:		Reviewed by:	I'm low
	Kevin Liang		Jim Long
	Senior Engineer		Senior Supervisor
Approved by:		Date:	July 10, 2017
	Billy Li		
	Technical Director		

Version

Version No.	Date	Description
V1.0	July 10, 2017	Original

CONTENTS

1.	GENE	RAL INFORMATION	4
	1.1	CLIENT INFORMATION	,
	1.1	EUT INFORMATION	
	1.4	1.2.1 GENERAL DESCRIPTION OF EUT	٠
		1.2.2 DESCRIPTION OF ACCESSORIES	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	-	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
		MEASUREMENT UNCERTAINTY	
		SUMMARY	
		PMENT LIST	
4.	TEST	CONFIGURATION	9
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	•
	4.1	4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.2	EUT TEST STATUS	
	4.4	PRE-SCAN	
		4.4.1 PRE-SCAN UNDER ALL RATES	
		4.4.2 Worst-case data rates	
	4.5	TEST SETUP	
	4.5	4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	.1
	5.1	REFERENCE DOCUMENTS FOR TESTING	11
	5.2	ANTENNA REQUIREMENT	
	5.2	CONDUCTED PEAK OUTPUT POWER.	
	5.4	6 DB BANDWIDTH & OCCUPIED BANDWIDTH	
	5.5	POWER SPECTRAL DENSITY	
	5.6	CONDUCTED OUT OF BAND EMISSION	
	5.6 5.7	RADIATED SPURIOUS EMISSIONS	
	5. <i>1</i> 5.8	BAND EDGE MEASUREMENTS (RADIATED)	
APF	PENDI	X 1 PHOTOGRAPHS OF TEST SETUP	

Page 4 of 51 Report No.: 170615002RFC-3

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant: Hui Zhou Gaoshengda Technology Co.,LTD	
Address of Applicant: NO.75 Zhongkai Development Area, Huizhou, Guangdong, China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co.,LTD
Address of Manufacturer:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China

1.2 EUT INFORMATION

1.2.1 General Description of EUT

5 1 (1)	MIEL DE M. L.				
Product Name:	WIFI+BT Module				
Model No.:	WCT6LA2701				
Add. Model No.:	N/A				
Trade Mark:	GSD				
DUT Stage:	Identical Prototype				
	2.4 GHz ISM Band:	IEEE 802.11b/g/n			
		Bluetooth: V3.0+EDR & V4.1 LE			
EUT Supports Function:	5 GHz U-NII Bands:	5 150 MHz to 5 250 MHz IEEE 802.11a/n/ac			
		5 725 MHz to 5 850 MHz IEEE 802.11a/n/ac			
Software Version:	N/A				
Hardware Version:	94V-0				
Sample Received Date:	June 20, 2017				
Sample Tested Date:	June 20, 2017 to July 10, 2017				

1.2.2 Description of Accessories

None.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Range:	2400 MHz to 2483.	5 MHz		
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40			
	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK)			
Type of Modulation:		DM(64-QAM, 16-QAM, QPSK, BPSK)		
Type of Wodulation.	IEEE 802.11n-HT20: OFDM(64-QAM, 16-QAM, QPSK, BPSK)			
	IEEE 802.11n-HT40	0: OFDM(64-QAM, 16-QAM, QPSK, BPSK)		
	IEEE 802.11b: Up t	to 11 Mbps		
Data Rate:	IEEE 802.11g: Up t	to 54 Mbps		
Data Rate:	IEEE 802.11n-HT20	0: Up to MCS15		
	IEEE 802.11n-HT40	0: Up to MCS15		
	IEEE 802.11b: 11			
Number of Channels	IEEE 802.11g: 11			
Number of Channels:	IEEE 802.11n-HT20: 11			
	IEEE 802.11n-HT40: 7			
Channel Separation:	5 MHz			
Antonno Tymor	Chain 0	PIFA Antenna		
Antenna Type:	Chain 1	PIFA Antenna		
Antonno Coin	Chain 0	1.72 dBi		
Antenna Gain:	Chain 1 1.72 dBi			
Directional gain:	4.73 dBi			
Maximum Peak Power:	SISO_ Chain 0	IEEE 802.11b: 19.92 dBm		
waxiiiuiii Feak Fower:	SISO_ CHAIH 0	IEEE 802.11g: 22.97 dBm		

Page 5 of 51 Report No.: 170615002RFC-3

		IEEE 802.11n-HT20: 18.52 dBm
		IEEE 802.11n-HT40: 18.59 dBm
	SISO_ Chain 1	IEEE 802.11b: 20.49 dBm
		IEEE 802.11g: 22.82 dBm
		IEEE 802.11n-HT20: 16.69 dBm
		IEEE 802.11n-HT40: 17.05 dBm
	MIMO Chain 0.1	IEEE 802.11n-HT20: 20.71 dBm
	MIMO_ Chain 0+1	IEEE 802.11n-HT40: 20.90 dBm
Normal Test Voltage:	3.3 Vdc	

1.4 OTHER INFORMATION

	Operation Frequency Each of Channel						
	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412 MHz	4	2427 MHz	7	2442 MHz	10	2457 MHz
2	2417 MHz	5	2432 MHz	8	2447 MHz	11	2462 MHz
3	2422 MHz	6	2437 MHz	9	2452 MHz		
			IEEE 802.	11n-HT40			
		4	2427 MHz	7	2442 MHz		
		5	2432 MHz	8	2447 MHz		
3	2422 MHz	6	2437 MHz	9	2452 MHz		

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable * 2	SMA	0.30 Meter	UnionTrust
2	USB Cable	USB	0.80 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Tests were sub-contracted.

Compliance Certification Services (Shenzhen) Inc.

Address: No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr,

Shenzhen, Guangdong, China.

Telephone: +86 (0) 755 28055000 Fax: +86 (0) 755 29055221

Page 6 of 51 Report No.: 170615002RFC-3

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872. IC Registration Number is 2324I-2.

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	ltem	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.2878 dB
2	Conducted emission 150KHz-30MHz	±3.2878 dB
3	Radiated emission 30MHz-200Hz	±3.8928 dB
4	Radiated emission 200MHz-1GHz	±3.8753 dB
5	Radiated emission 1GHz-8GHz	±5.3112 dB
6	Radiated emission Above 8GHz	±5.3493 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases						
Test Item	Test Requirement	Test Method	Result			
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) RSS-Gen Issue 4, Section 8.3	ANSI C63.10-2013	PASS			
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207 RSS-Gen Issue 4, Section 8.8	ANSI C63.10-2013	N/A NOTE 2			
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(3) RSS-247 Issue 2, Section 5.4(d)	KDB 558074 D01 v04 Section 9.1.3	PASS			
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2) RSS-247 Issue 2, Section 5.2(a)	KDB 558074 D01 v04 Section 8.1	PASS			
Occupied Bandwidth RSS-Gen section 6.6		RSS-Gen section 6.6	PASS			
Power Spectral Density	FCC 47 CFR Part 15 Subpart C Section 15.247 (e) RSS-247 Issue 2, Section 5.2(b)	KDB 558074 D01 v04 Section 10.2	PASS			
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d) RSS-247 Issue 2, Section 5.5	KDB 558074 D01 v04 Section 11	PASS			
Radiated Spurious Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-Gen Issue 4, Section 6.13/8.9/8.10	KDB 558074 D01 v04 Section 12.1	PASS*			
Band Edge Measurements (Radiated)	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 RSS-247 Issue 2, Section 5.5	KDB 558074 D01 v04 Section 12.1	PASS*			

Note:

- 1) N/A: In this whole report not application.
- 2) This EUT is powered by DC.
- 3) "*": In this whole report "*" means tests were sub-contracted Item.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List										
Used	Equipment	Manufacturer Model No.		Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)					
>	PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	Feb. 17, 2017	Feb. 16, 2018					
>	High Noise Amplifier	Agilent	8449B	3008A01838	Feb. 11, 2017	Feb. 10, 2018					
~	Amplifier	HP	8447D	2944A08999	Feb. 12, 2017	Feb. 11, 2018					
~	Antenna	SCHAFFNER	CBL6143	5082	Feb. 12, 2017	Feb. 11, 2018					
>	Horn Antenna	SCHWARZBEC K	BBHA9120	D286	Feb. 12, 2017	Feb. 11, 2018					
>	Board-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170-497	Feb. 11, 2017	Feb. 10, 2018					
>	Turn Table	N/A	N/A	N/A	N.C.R	N.C.R					
>	Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R					
~	Controller CT		N/A	N/A	N.C.R	N.C.R					
~	Antenna Tower SUNOL		TLT2	N/A	N.C.R	N.C.R					
\	Temp. / Humidity Meter	Anymetre	JR913	N/A	Feb. 15, 2017	Feb. 14, 2018					

	Conducted RF test Equipment List									
Used	Equipment	Manufacturer	rer Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec. 22, 2016	Dec. 22, 2017				
	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 22, 2016	Dec. 22, 2017				
>	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Dec. 22, 2016	Dec. 22, 2017				
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Dec. 22, 2016	Dec. 22, 2017				

Page 9 of 51 Report No.: 170615002RFC-3

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests						
Test Condition	Ambient						
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
NT/NV	+15 to +35	3.3	20 to 75				
Remark: 1) NV: Normal Voltage; NT: Normal Temperature							

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (Kpa)	Tested by				
AC Power Line Conducted Emission	N/A	N/A	N/A	N/A				
Conducted Peak Output Power	25.3	57	100.2	Tiny You				
6dB Bandwidth & Occupied Bandwidth	24.8	52	100.1	Tiny You				
Power Spectral Density	24.8	52	100.1	Tiny You				
Conducted Out of Band Emission	24.8	52	100.1	Tiny You				
Radiated Spurious Emissions	25.2	53	99.94	Tiny You				
Band Edge Measurements (Radiated)	25.2	54	99.94	Tiny You				

4.2TEST CHANNELS

Mode	Ty/Dy Eroguanov	Test RF Channel Lists				
Wiode	Tx/Rx Frequency	Lowest(L)	Middle(M)	Highest(H)		
IEEE 000 11h	2412 MHz to 2462 MHz	Channel 1	Channel 7	Channel 11		
IEEE 802.11b	24 12 IVITIZ 10 2402 IVITIZ	2412 MHz	2437 MHz	2462 MHz		
IEEE 900 11 a	2412 MHz to 2462 MHz	Channel 1	Channel 7	Channel 11		
IEEE 802.11g	24 12 IVITIZ (O 2402 IVITIZ	2412 MHz	2437 MHz	2462 MHz		
IEEE 000 445 LIT00	0440 MH= to 0460 MH=	Channel 1	Channel 7	Channel 11		
IEEE 802.11n-HT20	2412 MHz to 2462 MHz	2412 MHz	2437 MHz	2462 MHz		
IEEE 902 115 UT40	2422 MHz to 2452 MHz	Channel 3	Channel 7	Channel 9		
IEEE 802.11n-HT40	2422 IVITZ 10 2432 IVITZ	2422 MHz	2437 MHz	2452 MHz		

4.3 EUT TEST STATUS

Mode	Tx/Rx Function	Description
IEEE 802.11b		
IEEE 802.11g	1Tx/1Rx	1. Keep the EUT in continuously transmitting or receiving with
IEEE 802.11n-HT20		modulation test single.
IEEE 802.11n-HT40		
IEEE 802.11n-HT20	2Tx/2Rx	2. Keep the EUT in continuously transmitting or receiving with
IEEE 802.11n-HT40	21X/2RX	modulation test single.

4.4 PRE-SCAN

4.4.1 Pre-scan under all rates

Mode and	Maximum Conducted Average Power (dBm)_Chain 0									
Frequency	1		2		5.5		11			
IEEE 802.11b 2437 MHz	16.	.77	16.69		16.62		16.50			
IEEE 802.11g	6	9	12	18	24	36	48	54		
2437 MHz	16.55	16.54	16.40	16.38	16.31	16.09	15.01	15.04		
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
IEEE 802.11n-HT20	11.51	11.39	11.7	12.09	10.09	10.03	10.13	10.03		
2437 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15		
	11.57	11.50	11.46	11.45	10.86	10.81	10.77	10.77		
	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
IEEE 802.11n-HT40	11.22	11.07	10.83	10.52	9.26	9.16	9.22	9.10		
2437 MHz	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15		
	11.27	11.30	11.26	11.25	9.56	9.51	9.46	9.43		

4.4.2 Worst-case data rates

Mode	Worst-case data rates		
IEEE 802.11b	1 Mbps		
IEEE 802.11g	6 Mbps		
IEEE 802.11n-HT20	MCS0		
IEEE 802.11n-HT40	MCS0		

4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup

Page 11 of 51

Figure 3. Above 1GHz

4.5.2 For Conducted Emissions test setup

For Conducted RF test setup 4.5.3

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.3Vdc. Only the worst case data were recorded in this test report.

Page 12 of 51 Report No.: 170615002RFC-3

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning
	1TX	Chain 0	Z axis
Above 1GHz	1TX	Chain 1	Z axis
	2TX	Chain 0+1	Z axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11b	1	12.43	12.53	0.99	99.20	0.00	0.01	-0.07
IEEE 802.11g	6	2.06	2.16	0.95	95.37	0.21	0.49	-0.41
IEEE 802.11n-HT20	MCS0	1.92	2.024	0.95	94.86	0.23	0.52	-0.46
IEEE 802.11n-HT20	MCS0	0.95	1.05	0.90	90.48	0.43	1.05	-0.87

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = 20 log₁₀ Duty Cycle.

The test plot as follows

Page 15 of 51 Report No.: 170615002RFC-3

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title		
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations		
2	FCC 47 CFR Part 15	Radio Frequency Devices		
3	RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices		
4	RSS-Gen Issue 4	General Requirements for Compliance of Radio Apparatus		
5	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices		
6	KDB 558074 D01 DTS Meas Guidance v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247		
7	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band		

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

RSS-Gen Issue 4, Section 8.3 requirement:

According to RSS-Gen Issue 4, section 8.3, a transmitter can only be sold or operated with antennas with which it was certified. A transmitter may be certified with multiple antenna types. An antenna type comprises antennas having similar in-band and out-of-band radiation patterns.

EUT Antenna:

Both antenna in the interior of the equipment and no consideration of replacement. The transmit signals are correlated with each other and the antenna gain of both chains is completely consistent, the best case directional gain of the antenna is **4.73** dBi (See section 5.3).

Page 16 of 51 Report No.: 170615002RFC-3

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(3)

RSS-247 Issue 2, Section 5.4(d) **Test Method:**KDB 558074 D01 v04, Section 9.1.3

Limit: For DTSs employing digital modulation techniques operating in the band 2400-2483.5

MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall

not exceed 4 W

Test Procedure: 1. Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the power meter.

2. Measure out each test modes' peak or average output power, record the power

level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass
The worst case test data:

For maximum peak conducted output power

•	Channel/	Maximum peak conducted power (dBm)						
Mode	Frequency (MHz)	SISO_ Chain 0	SISO_ Chain 1	Total Power MIMO_ Chain 0+1	Limit (dBm)	Pass / Fail		
	1(2412)	19.12	19.97		30	Pass		
IEEE 802.11b	6(2437)	19.21	20.06		30	Pass		
	11(2462)	19.92	20.49		30	Pass		
	1(2412)	22.65	22.57		30	Pass		
IEEE 802.11g	6(2437)	22.72	22.72		30	Pass		
	11(2462)	22.97	22.82		30	Pass		
	1(2412)	18.37	16.42	20.51	30	Pass		
IEEE 802.11n-HT20	6(2437)	18.36	16.62	20.59	30	Pass		
	11(2462)	18.52	16.69	20.71	30	Pass		
	3(2422)	18.59	16.84	20.81	30	Pass		
IEEE 802.11n-HT40	6(2437)	18.59	17.05	20.90	30	Pass		
	9(2452)	18.57	16.79	20.78	30	Pass		

Remark:

1. Total (Chain 0+1) = $10*\log[(10^{\text{Chain 0/10}})+(10^{\text{Chain 1/10}})]$

2. Directional gain and the maximum peak conducted power limit see table below:

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limit (dBm)
2400 MHz to 2483.5 MHz	1.72	1.72	4.73	30.00

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

For maximum e.i.r.p.

	Channel/	Maximum peak conducted power (dBm)						
Mode	Frequency (MHz)	SISO_ Chain 0	SISO_ Chain 1	Total Power MIMO_ Chain 0+1	Limit (dBm)	Pass / Fail		
	1(2412)	20.84	21.69		36	Pass		
IEEE 802.11b	6(2437)	20.93	21.78		36	Pass		
	11(2462)	21.64	22.21		36	Pass		
	1(2412)	24.37	24.29		36	Pass		
IEEE 802.11g	6(2437)	24.44	24.44		36	Pass		
	11(2462)	24.69	24.54		36	Pass		
	1(2412)	20.09	18.14	25.24	36	Pass		
IEEE 802.11n-HT20	6(2437)	20.08	18.34	25.32	36	Pass		
	11(2462)	20.24	18.41	25.44	36	Pass		
	3(2422)	20.31	18.56	25.54	36	Pass		
IEEE 802.11n-HT40	6(2437)	20.31	18.77	25.63	36	Pass		
	9(2452)	20.29	18.51	25.51	36	Pass		

Remark:

For maximum average conducted output nower

or maximum average conducted output power								
	Channel/	Maximum average conducted power (dBm)						
Mode		SISO		Duty Cycle	SIS	SO	MIMO	
Wiode	Frequency (MHz)	Measure	d Power	Factor (dB)	Power with	Duty Factor	Total Power	
	(IVITIZ)	Chain 0	Chain 1	racioi (ub)	Chain 0	Chain 1	Chain 0+1	
	1(2412)	16.77	16.55		16.77	16.55		
IEEE 802.11b	6(2437)	16.70	16.62	0.00	16.70	16.62		
	11(2462)	17.19	17.12	17.12	17.19	17.12		
	1(2412) 16.57 15.73		16.78	15.94				
IEEE 802.11g	6(2437)	16.55	15.92	0.21	16.76	16.13		
	11(2462)	16.72	16.02		16.93	16.23		
	1(2412)	11.54	9.36		11.77	9.59	13.83	
IEEE 802.11n-HT20	6(2437)	11.51	9.48	0.23	11.74	9.71	13.85	
	11(2462)	11.64	9.70		11.87	9.93	14.02	
	3(2422)	11.22	9.28		11.65	9.71	13.80	
IEEE 802.11n-HT40	6(2437)	11.22	9.32	0.43	11.65	9.75	13.81	
	9(2452)	11.32	9.37		11.75	9.80	13.89	

Remark:

- 1. Power with Duty Factor = Measured Power + Duty Cycle Factor 2. Total (Chain 0+1) = $10*\log[(10^{Chain 0/10})+(10^{Chain 1/10})]$

^{1.} e.i.r.p = maximum peak conducted output power + antenna gain or directional gain

Page 18 of 51 Report No.: 170615002RFC-3

5.46 DB BANDWIDTH & OCCUPIED BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)

KDB 558074 D01 v04, Section 8.1 RSS-247 Issue 2, Section 5.2(a)

Test Method: RSS-247 Issue 2, Section 5.2(a RSS-Gen Issue 4, Section 6.6

Limit: For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) ≥ 3 x RBW.

c) Detector = Peak.

d) Trace mode = max hold. e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental

emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass
The worst case test data:

The worst case test da	la.				
Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
IEEE 000 441	1(2412)	8.089	12.953	> 500 kHz	Pass
IEEE 802.11b SISO Chain 1	6(2437)	8.089	12.977	> 500 kHz	Pass
Oloo_Ollaili 1	11(2462)	8.090	12.992	> 500 kHz	Pass
1555 000 44	1(2412)	16.11	16.339	> 500 kHz	Pass
IEEE 802.11g SISO_Chain 0	6(2437)	16.08	16.346	> 500 kHz	Pass
Oloo_onain o	11(2462)	16.11	16.340	> 500 kHz	Pass
JEEE 200 44 JUE 20	1(2412)	16.84	17.537	> 500 kHz	Pass
IEEE 802.11n-HT20 MIMO Chain 0	6(2437)	16.87	17.540	> 500 kHz	Pass
WIIWIO_OHAIII O	11(2462)	16.85	17.543	> 500 kHz	Pass
IEEE 802.11n-HT40 MIMO Chain 0	3(2422)	35.40	35.994	> 500 kHz	Pass
	6(2437)	35.20	35.990	> 500 kHz	Pass
WIIWIO_OHAIITO	9(2452)	35.40	36.000	> 500 kHz	Pass

The test plot as follows:

The worst case test data:

Page 21 of 51 Report No.: 170615002RFC-3

5.5 POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (e)

RSS-247 Issue 2, Section 5.2(b) **Test Method:**KDB 558074 D01 v04, Section 10.2

Limit: For digitally modulated systems, the power spectral density conducted from the

intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band

during any time interval of continuous transmission.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the

RBW

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

The worst case test data:

	Channel/		Power	spectral density	(dBm)	
Mode	Frequency (MHz)	SISO_ Chain 0	SISO_ Chain 1	Total Power MIMO_ Chain 0+1	Limit @3kHz (dBm)	Pass / Fail
	1(2412)		-6.212		8	Pass
IEEE 802.11b	6(2437)		-7.608		8	Pass
	11(2462)		-6.752		8	Pass
	1(2412)	-11.027			8	Pass
IEEE 802.11g	6(2437)	-11.365			8	Pass
	11(2462)	-10.072			8	Pass
	1(2412)	-13.463	-14.405	-10.90	8	Pass
IEEE 802.11n-HT20	6(2437)	-12.24	-13.936	-10.00	8	Pass
	11(2462)	-12.089	-14.567	-10.14	8	Pass
IEEE 802.11n-HT40	3(2422)	-14.388	-16.616	-12.35	8	Pass
	6(2437)	-14.27	-16.284	-12.15	8	Pass
	9(2452)	-14.255	-16.049	-12.05	8	Pass

- 1. Power with Duty Factor = Measured Power + Duty Cycle Factor 2. Total (Chain 0+1) = $10*log[(10^{Chain 0/10})+(10^{Chain 1/10})]$
- 3. Directional gain and the maximum conducted power spectral density limit see table below:

Frequency Band	Chain 0 Antenna Gain (dBi)	Chain 1 Antenna Gain (dBi)	Correlated chains directional gain (dBi)	Peak Power Limit (dBm)
2400 MHz to 2483.5 MHz	1.72	1.72	4.73	8.00

Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows:

If any transmit signals are correlated with each other,

Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

The test plot as follows:

Page 26 of 51 Report No.: 170615002RFC-3

5.6 CONDUCTED OUT OF BAND EMISSION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d)

RSS-247 Issue 2, Section 5.5 **Test Method:**KDB 558074 D01 v04, Section 11

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread spectrum

intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the

band that contains the highest level of the desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1: Measurement Procedure REF

- Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.
- Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Step 2:Measurement Procedure OOBE

- a) Set RBW = 1 MHz.
- b) Set VBW ≥ 3 MHz.
- c) Detector = peak.
- d) Sweep = auto couple.
- e) Trace Mode = max hold.
- f) Allow trace to fully stabilize.
- g) Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

The test plot as follows:

The worst case test data:

Page 31 of 51 Report No.: 170615002RFC-3

5.7 RADIATED SPURIOUS EMISSIONS

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

RSS-Gen Issue 4, Section 6.13/8.9/8.10 **Test Method:**KDB 558074 D01 v04, Section 12.1

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-0.090 MHz	Peak	10 kHz	30 KHz	Peak
0.009 MHz-0.090 MHz	Average	10 kHz	30 KHz	Average
0.090 MHz-0.110 MHz	Quasi-peak	10 kHz	30 KHz	Quasi-peak
0.110 MHz-0.490 MHz	Peak	10 kHz	30 KHz	Peak
0.110 MHz-0.490 MHz	Average	10 kHz	30 KHz	Average
0.490 MHz -30 MHz	Quasi-peak	10 kHz	30 kHz	Quasi-peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
ADOVE I GHZ	Peak	1 MHz	10 Hz	Average

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)			300
0.490 MHz-1.705 MHz	24000/F(kHz)		-	30
1.705 MHz-30 MHz	30		-	30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

- From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold

Page 32 of 51 Report No.: 170615002RFC-3

Mode.

- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Z axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Page 34 of 51 Report No.: 170615002RFC-3

Radiated Emission Test Data (Above 1GHz):

IEEE 802.11b_SISO_Chain 1

Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4824.00	46.36	74.00	-27.64	Peak	Horizontal
2	7236.00	46.21	74.00	-27.79	Peak	Horizontal
3	9648.00	48.73	74.00	-25.27	Peak	Horizontal
4	4824.00	45.71	74.00	-28.29	Peak	Vertical
5	7236.00	44.53	74.00	-29.47	Peak	Vertical
6	9648.00	47.54	74.00	-26.46	Peak	Vertical

Middle Chann	Middle Channel:							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark		
1	4874.00	49.33	74.00	-24.67	Peak	Horizontal		
2	7311.00	45.67	74.00	-28.33	Peak	Horizontal		
3	9748.00	47.56	74.00	-26.44	Peak	Horizontal		
4	4874.00	48.46	74.00	-25.54	Peak	Vertical		
5	7311.00	44.43	74.00	-29.57	Peak	Vertical		
6	9748.00	46.43	74.00	-27.57	Peak	Vertical		

Highest Chan	inel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4924.00	48.22	74.00	-25.78	Peak	Horizontal
2	7386.00	45.87	74.00	-28.13	Peak	Horizontal
3	9848.00	48.57	74.00	-25.43	Peak	Horizontal
4	4924.00	47.57	74.00	-26.43	Peak	Vertical
5	7386.00	44.81	74.00	-29.19	Peak	Vertical
6	9848.00	47.94	74.00	-26.06	Peak	Vertical

Page 35 of 51 Report No.: 170615002RFC-3

IEEE 802.11g_SISO_Chain 0 Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4824.00	43.29	74.00	-30.71	Peak	Horizontal
2	7236.00	46.35	74.00	-27.65	Peak	Horizontal
3	9648.00	49.70	74.00	-24.30	Peak	Horizontal
4	4824.00	42.48	74.00	-31.52	Peak	Vertical
5	7236.00	46.14	74.00	-27.86	Peak	Vertical
6	9648.00	48.73	74.00	-25.27	Peak	Vertical

Middle Channel:							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	4874.00	43.11	74.00	-30.89	Peak	Horizontal	
2	7311.00	47.29	74.00	-26.71	Peak	Horizontal	
3	9748.00	48.22	74.00	-25.78	Peak	Horizontal	
4	4874.00	44.76	74.00	-29.24	Peak	Vertical	
5	7311.00	44.55	74.00	-29.45	Peak	Vertical	
6	9748.00	47.62	74.00	-26.38	Peak	Vertical	

Highest Channel:							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	4924.00	43.11	74.00	-30.89	Peak	Horizontal	
2	7386.00	47.29	74.00	-26.71	Peak	Horizontal	
3	9848.00	48.22	74.00	-25.78	Peak	Horizontal	
4	4924.00	43.08	74.00	-30.92	Peak	Vertical	
5	7386.00	45.93	74.00	-28.07	Peak	Vertical	
6	9848.00	48.63	74.00	-25.37	Peak	Vertical	

Page 36 of 51 Report No.: 170615002RFC-3

IEEE 802.11n-HT20_MIMO_Chain 0+1 Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	4824.00	45.00	74.00	-29.00	Peak	Horizontal	
2	7236.00	45.73	74.00	-28.27	Peak	Horizontal	
3	9648.00	51.36	74.00	-22.64	Peak	Horizontal	
4	4824.00	40.23	74.00	-33.77	Peak	Vertical	
5	7236.00	44.86	74.00	-29.14	Peak	Vertical	
6	9648.00	48.8	74.00	-25.20	Peak	Vertical	

Middle Channel:							
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark	
1	4874.00	45.46	74.00	-28.54	Peak	Horizontal	
2	7311.00	45.33	74.00	-28.67	Peak	Horizontal	
3	9748.00	48.30	74.00	-25.70	Peak	Horizontal	
4	4874.00	43.57	74.00	-30.43	Peak	Vertical	
5	7311.00	44.08	74.00	-29.92	Peak	Vertical	
6	9748.00	47.6	74.00	-26.40	Peak	Vertical	

Highest Channel:							
N	lo.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
	1	4924.00	43.53	74.00	-30.47	Peak	Horizontal
	2	7386.00	47.88	74.00	-26.12	Peak	Horizontal
;	3	9848.00	49.75	74.00	-24.25	Peak	Horizontal
,	4	4924.00	41.84	74.00	-32.16	Peak	Vertical
	5	7386.00	44.52	74.00	-29.48	Peak	Vertical
	6	9848.00	48.24	74.00	-25.76	Peak	Vertical

Page 37 of 51 Report No.: 170615002RFC-3

IEEE 802.11n-HT40_MIMO_Chain 0+1 Lowest Channel:

No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4844.00	43.12	74.00	-30.88	Peak	Horizontal
2	7266.00	45.94	74.00	-28.06	Peak	Horizontal
3	9688.00	50.17	74.00	-23.83	Peak	Horizontal
4	4844.00	40.95	74.00	-33.05	Peak	Vertical
5	7266.00	44.51	74.00	-29.49	Peak	Vertical
6	9688.00	48.35	74.00	-25.65	Peak	Vertical

Middle Channel:						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4874.00	44.82	74.00	-29.18	Peak	Horizontal
2	7311.00	46.29	74.00	-27.71	Peak	Horizontal
3	9748.00	48.06	74.00	-25.94	Peak	Horizontal
4	4874.00	44.06	74.00	-29.94	Peak	Vertical
5	7311.00	45.00	74.00	-29.00	Peak	Vertical
6	9748.00	48.69	74.00	-25.31	Peak	Vertical

Highest Channel:						
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Polaxis	Remark
1	4924.00	41.72	74.00	-32.28	Peak	Horizontal
2	7386.00	45.39	74.00	-28.61	Peak	Horizontal
3	9848.00	49.50	74.00	-24.50	Peak	Horizontal
4	4924.00	41.00	74.00	-33.00	Peak	Vertical
5	7386.00	45.32	74.00	-28.68	Peak	Vertical
6	9848.00	49.25	74.00	-24.75	Peak	Vertical

Page 38 of 51 Report No.: 170615002RFC-3

5.8 BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

RSS-247 Issue 2, Section 5.5 **Test Method:**KDB 558074 D01 v04, Section 12.1

Limits:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Frequency	Limit (dBµV/m @3m)	Remark	
30 MHz-88 MHz	40.0	Quasi-peak Value	
88 MHz-216 MHz	43.5	Quasi-peak Value	
216 MHz-960 MHz	46.0	Quasi-peak Value	
960 MHz-1 GHz	54.0	Quasi-peak Value	
Above 1 GHz	54.0	Average Value	
Above I GHZ	74.0	Peak Value	

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

- 1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details.

Test Result: Pass

The measurement data as follows:

IEEE 802.11b SISO Chain 0

IEEE 802.11b SISO Chain 1

IEEE 802.11g SISO Chain 0

IEEE 802.11g SISO Chain 1

IEEE 802.11n-HT20 MIMO Chain 0+1

IEEE 802.11n-HT40 MIMO Chain 0+1

Page 51 of 51 Report No.: 170615002RFC-3

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

