Universidade de Évora

Departamento de Matemática

1.ª Frequência - 22 de outubro de 2016

Observações: Resolva cada um dos grupos em folhas de teste separadas. Apresente todos os cálculos que efectuar e justifique todas as suas respostas. Numere todas folhas de teste que entregar: por exemplo, se entregar 3 folhas de teste, devem numerá-las como 1/3, 2/3 e 3/3.

Grupo I

1. Considere o seguinte conjunto:

$$A=\left\{x\in\mathbb{R}:\left|x+2\right|<3\wedge x+1\geq0\right\}\cup\left\{1+\frac{1}{n^{2}}:n\in\mathbb{N}\right\};$$

- a) Determine o interior, a fronteira, o fecho e o derivado (conjunto dos pontos de acumulação) A.
- b) Diga, justificando, se A é um conjunto aberto, fechado e/ou limitado.
- c) Indique, caso existam, o supremo, o ínfimo, o máximo e o mínimo de A

Grupo II

2. Considere a seguinte sucessão definida por recorrência

$$\begin{cases} x_1 = 1, \\ x_{n+1} = \frac{1}{2}x_n + \frac{1}{n+1}. \end{cases}$$

Mostre que a sucessão $(x_n)_n$ é converge e determine o seu limite.

Sugestão: Mostre primeiro que $(x_n)_n$ é descrescente e depois aplique o teorema das sucessões monótonas

3. Calcule os limites seguintes:

a)
$$\lim_{n \to +\infty} \frac{2^{n+2} - 1}{2^n + 1}$$
;

b)
$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^3 + 2n - 1}}{n + 2}$$
:

a)
$$\lim_{n \to +\infty} \frac{2^{n+2} - 1}{2^n + 1}$$
; b) $\lim_{n \to +\infty} \frac{\sqrt[3]{n^3 + 2n - 1}}{n + 2}$; c) $\lim_{n \to +\infty} \frac{\sqrt[3]{n^2} \operatorname{sen}(n!)}{n + 1}$.

Grupo III

4. Considere a seguinte série numérica

$$\sum_{n=1}^{+\infty} \frac{\left(\sqrt{3}\right)^n + \left(\sqrt{2}\right)^n}{\left(\sqrt{3} \times \sqrt{2}\right)^n}.$$

Determine a sua soma, caso exista.

5. Estude quanto à convergência as seguintes séries:

a)
$$\sum_{n=1}^{+\infty} \frac{2}{n^2 - 1}$$
;

b)
$$\sum_{n=1}^{+\infty} sen\left(\frac{1}{n^2}\right)$$

a)
$$\sum_{n=1}^{+\infty} \frac{2}{n^2 - 1};$$
 b)
$$\sum_{n=1}^{+\infty} sen\left(\frac{1}{n^2}\right);$$
 c)
$$\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n^2}.$$

Grupo IV

- 6. Diga, justificando, se as seguintes afirmações são verdadeiras ou falsas:
 - a) Se $a \in int(A)$, então $a \in fr(\mathbb{R}\backslash A)$;
 - b) Se a sucessão $(x_n)_n$ é limitada, então $(x_n)_n$ é converge;
 - c) Dada a sucessão $x_n = 1 + \frac{(-1)^n}{n} + \frac{(-1)^n n}{2n+1}$, tem-se que $\underline{\lim} x_n = \frac{1}{2}$ e $\overline{\lim} x_n = \frac{3}{2}$;
 - d) Se $x_n \ge 1$ para um número infinito de valores de n, então a série $\sum_{n\ge 1} x_n$ é divergente.

Bom Trabalho!!

1.
$$A = \{x \in \mathbb{R}: |x+2| < 3 \land x+1 \ge 0\} \cup \{1 + \frac{1}{n^2}\} = [-1,1[\cup \{2,\frac{5}{4},\frac{10}{9},\frac{17}{16},\dots]\}]$$

a.
$$int(A) =]-1,1[; \partial(A) = \{-1,1,2,\frac{5}{4},\frac{10}{9},\frac{17}{16},...\}; \overline{A} = [-1,1] \cup \{2,\frac{5}{4},\frac{10}{9},\frac{17}{16},...\}; A' = [-1,1]$$

- **b.** Como $A \neq int(A)$, A não é aberto; Como $A \neq \overline{A}$, A não é fechado; Como A está contido numa bola centrada na origem de raio 3, A é limitado.
- c. O supremo é 2 (o menor dos majorantes); o ínfimo é -1 (o maior dos minorantes); o máximo é 2 (pois o supremo está em A); o mínimo é -1 (pois o ínfimo pertence a A).

2. Sucessão definida por recorrência

$$u_n = \begin{cases} u_1 = 1\\ u_{n+1} = \frac{u_n}{2} + \frac{1}{n+1}, n \ge 2 \end{cases}$$

Primeiro note-se que todos os termos são números não negativos $u_n \geq 0$, $\forall n \in \mathbb{N}$.

Como $u_1 = 1$, $u_2 = \frac{1}{2} + \frac{1}{2} = 1$, $u_3 = \frac{1}{2} + \frac{1}{3} < 1$ a sucessão poderá ser decrescente.

$$u_n \ge u_{n+1}$$
?

$$u_n \ge u_{n+1} \Leftrightarrow u_n \ge \frac{u_n}{2} + \frac{1}{n+1} \Leftrightarrow \frac{u_n}{2} \ge \frac{1}{n+1} \Leftrightarrow u_n \ge \frac{2}{n+1} \ge 0$$

 $\therefore u_n \geq 0$ a desigualdade em cima é verdadeira e assim a sucessão e monótona decrescente.

Por outro lado, por ser decrescente, todos os termos são menores que o $1^{\underline{a}}$, assim temos que $0 \le u_n \le 1$.

O que prova que a sucessão é limitada. Se é monótona e limitada então é convergente.

Desta forma a sucessão é convergente para um L, $u_n \to L \ e \ u_{n+1} \to L$

Passando ao limite a expressão de u_{n+1} , fica ...

$$u_{n+1} = \frac{u_n}{2} + \frac{1}{n+1} \to L = \frac{L}{2} + \frac{1}{+\infty + 1} \Leftrightarrow L - \frac{L}{2} = 0 \Leftrightarrow L = 0.$$

∴ O limite é 0.

3. Calcule os limites

a)
$$\lim_{n \to +\infty} \frac{2^{n+2} - 1}{2^n + 1} = \lim_{n \to +\infty} \frac{\frac{2^{n+2}}{2^n} - \frac{1}{2^n}}{\frac{2^n}{2^n} + \frac{1}{2^n}} = \lim_{n \to +\infty} \frac{2^2 - \frac{1}{2^n}}{1 + \frac{1}{2^n}} = 4.$$

b)
$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^3 + 2n - 1}}{n + 2} = \lim_{n \to +\infty} \frac{\sqrt[3]{n^3}}{n} = 1.$$

c)
$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^2} \sin(n!)}{n+1} = \lim_{n \to +\infty} \frac{\sqrt[3]{n^2}}{n} \sin(n!) = \text{"infinit\'essimo} \times \text{limitada"} = 0.$$

4.

$$\sum_{n=1}^{+\infty} \frac{\left(\sqrt{3}\right)^n + \left(\sqrt{2}\right)^n}{\left(\sqrt{3} \times \sqrt{2}\right)^n} = \sum_{n=1}^{+\infty} \frac{\left(\sqrt{3}\right)^n}{\left(\sqrt{3} \times \sqrt{2}\right)^n} + \sum_{n=1}^{+\infty} \frac{\left(\sqrt{2}\right)^n}{\left(\sqrt{3} \times \sqrt{2}\right)^n} = \sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{2}}\right)^n + \sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{3}}\right)^n$$

Trata-se de duas séries geométricas com razões $\frac{1}{\sqrt{2}}$ e $\frac{1}{\sqrt{3}}$, respetivamente. Como estão ambas entre -1 e 1, as séries são convergentes, pelo que a soma das séries também o é.

A soma da primeira é $S_1 = \frac{\frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{2} - 1}$. A soma da segunda é $S_2 = \frac{\frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{2}}} = \frac{1}{\sqrt{3} - 1}$.

Assim a soma da série 'principal' é $S = \frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}-1}$.

5.

a)
$$\sum_{n=2}^{+\infty} \frac{2}{n^2 - 1}$$

É uma série de termos positivos. Vou comparar com a série $\sum \frac{1}{n^2}$ e assim irá convergir.

$$\lim_{n \to +\infty} \frac{\frac{2}{n^2 - 1}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{2n^2}{n^2 - 1} = 2 > 0 \text{ e finito}$$

Por comparação as séries $\sum \frac{2}{n^2-1}$ e $\sum \frac{1}{n^2}$ têm a mesma natureza. Como $\sum \frac{1}{n^2}$ é uma série de Dirichlet com $\alpha=2>1$ logo convergente, a série a ser estudada também é **convergente**.

b)
$$\sum_{n=1}^{+\infty} \sin\left(\frac{1}{n^2}\right)$$

É uma série de termos positivos. Vou comparar com a série $\sum \frac{1}{n^2}$ e assim irá convergir.

$$\lim_{n \to +\infty} \frac{\sin\left(\frac{1}{n^2}\right)}{\frac{1}{n^2}} = 1 > 0 \text{ e finito}$$

Por comparação as séries $\sum \sin\left(\frac{1}{n^2}\right)$ e $\sum \frac{1}{n^2}$ têm a mesma natureza. Como $\sum \frac{1}{n^2}$ é uma série de Dirichlet com $\alpha = 2 > 1$ logo convergente, a série a ser estudada também é **convergente**.

c)
$$\sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n^2}$$

Como é uma série de termos positivos e o termo geral está elevado a **n**, vou utilizar o critério da raiz ou critério de Cauchy.

$$\lim_{n\to +\infty} \sqrt[n]{\left(1-\frac{1}{n}\right)^{n^2}} = \lim_{n\to +\infty} \left(1+\frac{-1}{n}\right)^n = e^{-1} < 1$$

Assim, pelo critério da raiz, a série é convergente.

6.

- a. $a \in int(A) \to a \in fr(\mathbb{R} \backslash A)$. **Falso** pois se A = [0,1] o ponto 0.5 é interior e não pertence à fronteira de $\mathbb{R} \backslash A$
- b. $(x_n)_n$ é limitada, então também é convergente. **Falso** pois $(x_n)_n = (-1)^n$ é limitada e não é convergente.

c.
$$x_n = 1 + \frac{(-1)^n}{n} + \frac{(-1)^n n}{2n+1}$$
 então $\underline{\lim} x_n = \frac{1}{2}$ e $\overline{\lim} x_n = \frac{3}{2}$.

Verdade

d. Se $x_n \ge 1$ então a série $\sum x_n$ é divergente. **Verdade** porque assim o termo geral não pode tender para 0, critério fundamental para a série convergir.