Лаборатоная работа #3

- 1. Общая могут быть неравенства, а в канонической только равенства
- 2. Методы естественного базиса случай, когда подходит точка (0, 0, ..., 0) и мы берем ее в качестве исходного допустимого базисного решения. Метод искусственного базиса вводим искусственные переменные (y_1, ..., y_n), решаем вспомогательную задачу оптимизации функции -y_1 ... -y_n при ограничении Ax + y = b. Полученное решение является допустимым решением оригинальной задачи
- 3. Каждое ограничение в нашей системе образует полуплоскость, пересечение полуплоскостей выпуклое множество

4.
$$\begin{cases} x_1+x_2\leqslant 0 \ x_1,x_2\geqslant 0 \end{cases}$$

5.

$$x1 = 3, x2 = 2$$

 $F(x) = -3 * 3 - 2 * 2 = -13$

6.
$$x'=x_1+x_3$$
 $x''=x_2+x_4$ $\begin{cases} x'+x''=1 \\ x'-x''=1 \end{cases} \Longrightarrow \begin{cases} x'=1 \\ x''=1 \end{cases} \Longrightarrow \begin{cases} x_1+x_3=1 \\ x_2+x_4=0 \end{cases}$ Байес имеет вид, $a,0,b,0$, где $a+b=1$ и $a\geqslant 0$, $b\geqslant 0$

- 7. Так как ec x=(1,2,0) считается допустимым базисным решением, то x_1 и x_2 входят в базис, а x_3 нет, тогда $\begin{cases} x_1=1-x_3 \\ x_2=2-x_3 \end{cases}$
- 8. Мы решили, см. код