

Machine-Level Programming V: Advanced Topics

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
- Unions

x86-64 Linux Memory Layout

 $(2^{47} - 4096 =) 00007FFFFFFFF000$

Stack

- Runtime stack (8MB limit)
- e.g., local variables

Heap

- Dynamically allocated as needed
- When call malloc(), calloc(), new()

Data

- Statically allocated data
- e.g., global vars, **static** vars, string constants

Hex Address

Text / Shared Libraries

- Executable machine instructions
- Read-only

40 0000 1000 0000

Memory Allocation Example

0000 7FFF FFFF F000

```
char big array[1L<<24]; /* 16 MB */
char huge array[1L<<31]; /* 2 GB */
int global = 0;
int useless() { return 0; }
int main ()
    void *phuge1, *psmall2, *phuge3, *psmall4;
    int local = 0;
   phuge1 = malloc(1L << 28); /* 256 MB */</pre>
   psmall2 = malloc(1L << 8); /* 256 B */
   phuge3 = malloc(1L << 32); /* 4 GB */</pre>
   psmall4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
```


Where does everything go?

x86-64 Example Addresses

address range ~247

local
phuge1
phuge3
psmall4
psmall2
big_array
huge_array
main()
useless()

0000 7FFF FFFF F000

Runaway Stack Example

```
int recurse(int x) {
   int a[1<<15];  // 4*2^15 = 128 KiB
   printf("x = %d. a at %p\n", x, a);
   a[0] = (1<<14)-1;
   a[a[0]] = x-1;
   if (a[a[0]] == 0)
      return -1;
   return recurse(a[a[0]]) - 1;
}</pre>
```


- Functions store local data in stack frame
- Recursive functions cause deep nesting of frames
- What happens when we run out of space?

```
./runaway 67
x = 67. a at 0x7ffd18aba930
x = 66. a at 0x7ffd18a9a920
x = 65. a at 0x7ffd18a7a910
x = 64. a at 0x7ffd18a5a900
. . .
x = 4. a at 0x7ffd182da540
x = 3. a at 0x7ffd182ba530
x = 2. a at 0x7ffd1829a520
Segmentation fault (core dumped)
```

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability 漏洞
 - Protection
- Unions

Recall: Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;

double fun(int i) {
  volatile struct_t s;
  s.d = 3.14;
  s.a[i] = 1073741824; /* Possibly out of bounds */
  return s.d;
}
```

```
fun (0) -> 3.1400000000
fun (1) -> 3.1400000000
fun (2) -> 3.1399998665
fun (3) -> 2.0000006104
fun (4) -> Segmentation fault
fun (8) -> 3.1400000000
```

Result is system specific

Memory Referencing Bug Example

```
typedef struct {
  int a[2];
  double d;
} struct_t;
```

```
fun(0)
            3.1400000000
       ->
fun (1)
       ->
            3.1400000000
fun (2)
      -> 3.1399998665
      -> 2.000006104
fun(3)
fun(4)
      ->
            Segmentation fault
fun(8)
             3.1400000000
       ->
```


Location accessed by fun(i)

Such problems are a BIG deal

- Generally called a "buffer overflow"
 - when exceeding the memory size allocated for an array
- Why a big deal?
 - It's the #1 technical cause of security vulnerabilities
 - #1 overall cause is social engineering / user ignorance

Most common form

- Unchecked lengths on string inputs
- Particularly for bounded character arrays on the stack
 - sometimes referred to as stack smashing

Exploits Based on Buffer Overflows

- Buffer overflow bugs can allow remote machines to execute arbitrary code on victim machines
- Distressingly common in real programs
 - Programmers keep making the same mistakes ⊗
 - Recent measures make these attacks much more difficult
- Examples across the decades
 - Original "Internet worm" (1988)
 - "IM wars" (1999)
 - Twilight hack on Wii (2000s)
 - ... and many, many more
- You will learn some of the tricks in attacklab
 - Hopefully to convince you to never leave such holes in your programs!!

Example: the original Internet worm (1988)

Exploited a few vulnerabilities to spread

- Early versions of the finger server (fingerd) used gets () to read the argument sent by the client:
 - finger droh@cs.cmu.edu
- Worm attacked fingerd server by sending phony argument:
 - finger "exploit-code padding new-returnaddress"
 - exploit code: executed a root shell on the victim machine with a direct TCP connection to the attacker.

Once on a machine, scanned for other machines to attack

- lacktriangle invaded $^{\sim}6000$ computers in hours (10% of the Internet \odot)
 - see June 1989 article in Comm. of the ACM
- the young author of the worm was prosecuted...
- and CERT was formed... still homed at CMU

Example 2: IM War

July, 1999

- Microsoft launches MSN Messenger (instant messaging system).
- Messenger clients can access popular AOL Instant Messaging Service (AIM) servers

IM War (cont.)

August 1999

- Mysteriously, Messenger clients can no longer access AIM servers
- Microsoft and AOL begin the IM war:
 - AOL changes server to disallow Messenger clients
 - Microsoft makes changes to clients to defeat AOL changes
 - At least 13 such skirmishes
- What was really happening?
 - AOL had discovered a buffer overflow bug in their own AIM clients
 - They exploited it to detect and block Microsoft: the exploit code returned a 4-byte signature (the bytes at some location in the AIM client) to server
 - When Microsoft changed code to match signature, AOL changed signature location

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT) From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!

To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you might find interesting because you are an Internet security expert with experience in this area. I have also tried to contact AOL but received no response.

I am a developer who has been working on a revolutionary new instant messaging client that should be released later this year.

. . .

It appears that the AIM client has a buffer overrun bug. By itself this might not be the end of the world, as MS surely has had its share. But AOL is now *exploiting their own buffer overrun bug* to help in its efforts to block MS Instant Messenger.

. . . .

Since you have significant credibility with the press I hope that you can use this information to help inform people that behind AOL's friendly exterior they are nefariously compromising peoples' security.

Sincerely,
Phil Bucking
Founder, Bucking Consulting
philbucking@yahoo.com

It was later determined that this email originated from within Microsoft!

Aside: Trojans, Worms, Viruses, ...

- Three different kinds of malware (malicious software)
 - Categorized by how they spread
 - Lines have gotten fuzzier over time
- A trojan tricks people into running it
 - Named after the legend of the Trojan Horse
- A worm spreads automatically, without human action
 - Requires a way to copy and execute itself over the network
- A virus takes control of programs that are already installed
 - Like a biological virus

String Library Code

Implementation of Unix function gets ()

```
/* Get string from stdin */
char *gets(char *dest)
{
   int c = getchar();
   char *p = dest;
   while (c != EOF && c != '\n') {
        *p++ = c;
        c = getchar();
   }
   *p = '\0';
   return dest;
}
```

- No way to specify limit on number of characters to read
- Similar problems with other library functions
 - strcpy, strcat: Copy strings of arbitrary length
 - scanf, fscanf, sscanf, when given %s conversion specification

Vulnerable Buffer Code

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

←btw, how big is big enough?

```
void call_echo() {
   echo();
}
```

```
unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012
```

```
unix>./bufdemo-nsp
Type a string: 012345678901234567890123
012345678901234567890123
Segmentation Fault
```

Buffer Overflow Disassembly

echo:

```
00000000004006cf <echo>:
 4006cf: 48 83 ec 18
                                       $0x18,%rsp
                                sub
 4006d3: 48 89 e7
                                       %rsp,%rdi
                                mov
 4006d6: e8 a5 ff ff ff
                                       400680 <gets>
                                callq
 4006db: 48 89 e7
                                       %rsp,%rdi
                                mov
 4006de: e8 3d fe ff ff
                                       400520 <puts@plt>
                                callq
                                       $0x18,%rsp
 4006e3: 48 83 c4 18
                                add
 4006e7: c3
                                retq
```

call_echo:

4006e8:	48 8	3 ec	08		sub	\$0x8,%rsp
4006ec:	b8 0	0 00	00	00	mov	\$0x0,%eax
4006f1:	e8 d	9 ff	ff :	ff	callq	4006cf <echo></echo>
4006f6:	48 8	3 c4	80		add	\$0x8,%rsp
4006fa:	с3				retq	

Buffer Overflow Stack

Before call to gets

```
Stack Frame
for call echo
Return Address
    (8 bytes)
20 bytes unused
[3][2][1][0]  buf \leftarrow %rsp
```

```
/* Echo Line */
void echo()
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
```

```
echo:
  subq $0x18, %rsp
 movq %rsp, %rdi
 call gets
```

Buffer Overflow Stack Example

Before call to gets


```
void echo()
                    echo:
                      subq $24, %rsp
    char buf[4];
                      movq
                            %rsp, %rdi
    gets(buf);
                      call gets
```

call_echo:

```
4006f1:
       callq 4006cf <echo>
4006f6:
        add
               $0x8,%rsp
```

Buffer Overflow Stack Example #1

After call to gets

Stack Frame for call_echo							
00	00	00	00				
00	40	06	f6				
00	32	31	30				
39	38	37	36				
35	34	33	32				
31	30	39	38				
37	37 36		34				
33	32	31	30				

```
void echo()
{
    subq $24, %rsp
    char buf[4];
    gets(buf);
    call gets
    ...
}
```

call_echo:

```
...
4006f1: callq 4006cf <echo>
4006f6: add $0x8,%rsp
...
```

buf ← %rsp

```
unix>./bufdemo-nsp
Type a string:01234567890123456789012
01234567890123456789012
```

"01234567890123456789012\0"

Overflowed buffer, but did not corrupt state

Buffer Overflow Stack Example #2

After call to gets

Stack Frame for call_echo						
00	00	00	00			
00	40	06	00			
33	32	31	30			
39	38	37	36			
35	34	33	32			
31	30	39	38			
37	37 36		34			
33	32	31	30			

```
void echo()
{
    char buf[4];
    gets(buf);
}
echo:
subq $24, %rsp
movq %rsp, %rdi
call gets
. . . .
```

call_echo:

```
....
4006f1: callq 4006cf <echo>
4006f6: add $0x8,%rsp
...
```

buf ← %rsp

```
unix>./bufdemo-nsp
Type a string:012345678901234567890123
012345678901234567890123
Segmentation fault
```

Program "returned" to 0x0400600, and then crashed.

1. Stack Smashing Attacks

- Overwrite normal return address A with address of some other code S
- When Q executes ret, will jump to other code

Crafting Smashing String

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 fb 06 40 00 00 00 00

Smashing String Effect

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 fb 06 40 00 00 00 00

Performing Stack Smash

```
linux> cat smash-hex.txt
30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00
linux> cat smash-hex.txt | ./hexify | ./bufdemo-nsp
Type a string:012345678901234567890123?@
I've been smashed!
```

- Put hex sequence in file smash-hex.txt
- Use hexify program to convert hex digits to characters
 - Some of them are non-printing
- Provide as input to vulnerable program

```
void smash() {
  printf("I've been smashed!\n");
  exit(0);
}
```

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 c8 06 40 00 00 00 00 00

2. Code Injection Attacks

- Input string contains byte representation of executable code
- Overwrite return address A with address of buffer B
- When Q executes ret, will jump to exploit code

What To Do About Buffer Overflow Attacks

- Avoid overflow vulnerabilities
- Employ system-level protections
- Have compiler use "stack canaries"

Lets talk about each...

1. Avoid Overflow Vulnerabilities in Code (!)

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    fgets(buf, 4, stdin);
    puts(buf);
}
```

- For example, use library routines that limit string lengths
 - fgets instead of gets
 - strncpy instead of strcpy
 - Don't use scanf with %s conversion specification
 - Use fgets to read the string
 - Or use %ns where n is a suitable integer

2. System-Level Protections can help

Randomized stack offsets

- At start of program, allocate random amount of space on stack
- Shifts stack addresses for entire program
- Makes it difficult for hacker to predict beginning of inserted code
- E.g.: 5 executions of memory allocation code

local

0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c 0x7ffe4d3be87c

Stack repositioned each time program executes

2. System-Level Protections can help 修改

Randomized stack offsets

- At start of program, allocate random amount of space on stack
- Shifts stack addresses for entire program
- Makes it difficult for hacker to predict beginning of inserted code
- E.g.: 5 executions of memory allocation code

```
#include <stdio.h>
int main() {
  long local;
  printf("local at %p\n", &local);
  return 0;
}
```


2. System-Level Protections can help 修改

Randomized stack offsets

- At start of program, allocate random amount of space on stack
- Shifts stack addresses for entire program
- Makes it difficult for hacker to predict beginning of inserted code
- E.g.: 5 executions of memory allocation code

local

0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c 0x7ffe4d3be87c

Stack repositioned each time program executes

2. System-Level Protections can help

Non-executable memory Older x86 CPUs would execute machine code from any readable address x86-64 added a way to mark regions of memory as not executable

Immediate crash on jumping into any such region

 Current Linux and Windows mark the stack this way

data written by gets ()

exploit code

Q stack frame

Stack after call to gets ()

Any attempt to execute this code will fail

3. Stack Canaries can help

Idea

- Place special value ("canary") on stack just beyond buffer
- Check for corruption before exiting function

GCC Implementation

- -fstack-protector
- Now the default (disabled earlier)

```
unix>./bufdemo-sp
Type a string:0123456
0123456
```

```
unix>./bufdemo-sp
Type a string:01234567
*** stack smashing detected ***
```

Protected Buffer Disassembly

echo:

```
40072f:
         sub
                 $0x18,%rsp
400733:
                 %fs:0x28,%rax
         mov
40073c:
                 %rax,0x8(%rsp)
         mov
400741:
                 %eax,%eax
         xor
400743:
                 %rsp,%rdi
         mov
                 4006e0 <gets>
400746:
         callq
40074b:
                 %rsp,%rdi
         mov
40074e:
         callq
                 400570 <puts@plt>
400753:
                 0x8(%rsp),%rax
         mov
400758:
                 %fs:0x28,%rax
         xor
400761:
                 400768 < echo + 0x39 >
         jе
```

Aside: %fs:0x28

- Reusing an old feature
 ("segmented addresses")
 for an extra pointer register
- Think of this as 0x28(%fs)
- %fs set up at program start,
 %fs:0x28 holds a random number

400768: add \$0x18,%rsp

40076c: retq

Setting Up Canary

Before call to gets

```
Stack Frame
for call echo
```

Return Address (8 bytes)

> Canary (8 bytes)

```
[3] [2] [1] [0] buf ← %rsp
```

```
/* Echo Line */
void echo()
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
```

```
echo:
         %fs:40, %rax # Get canary
   movq
   movq %rax, 8(%rsp) # Place on stack
   xorl
          %eax, %eax # Erase canary
```

Checking Canary

After call to gets

Stack Frame for main

Return Address (8 bytes)

Canary (8 bytes)

00 36 35 34

33 32 31 30

```
/* Echo Line */
void echo()
{
    char buf[4]; /* Way too small! */
    gets(buf);
    puts(buf);
}
```

Input: *0123456*

buf ← %rsp

```
echo:
...

movq 8(%rsp), %rax # Retrieve from stack
xorq %fs:40, %rax # Compare to canary
je .L6 # If same, OK
call __stack_chk_fail # FAIL
```

Return-Oriented Programming Attacks

Challenge (for hackers)

- Stack randomization makes it hard to predict buffer location
- Marking stack nonexecutable makes it hard to insert binary code

Alternative Strategy

- Use existing code
 - Part of the program or the C library
- String together fragments to achieve overall desired outcome
- Does not overcome stack canaries

Construct program from gadgets

- Sequence of instructions ending in ret
 - Encoded by single byte 0xc3
- Code positions fixed from run to run
- Code is executable

Gadget Example #1

```
long ab_plus_c
  (long a, long b, long c)
{
   return a*b + c;
}
```

Use tail end of existing functions

Gadget Example #2

```
void setval(unsigned *p) {
    *p = 3347663060u;
}
```


Repurpose byte codes

ROP Execution

- Trigger with ret instruction
 - Will start executing Gadget 1
- Final ret in each gadget will start next one

Crafting an ROP Attack String

Gadget #1

- $0 \times 4004 d4$ rax \leftarrow rdi + rdx
- Gadget #2
 - 0x4004dc rdi ← rax
- Combination

Attack String (Hex)

30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 d4 04 40 00 00 00 00 dc 04 40 00 00 00 00

Multiple gadgets will corrupt stack upwards

What Happens When echo Returns?

- Echo executes ret
 - Starts Gadget #1
- Gadget #1 executes ret
 - Starts Gadget #2
- 3. Gadget #2 executes ret
 - Goes off somewhere ...

Today

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
- Unions

Union Allocation

- Allocate according to largest element
- Can only use one field at a time

```
union U1 {
  char c;
  int i[2];
  double v;
} *up;
```

```
struct S1 {
  char c;
  int i[2];
  double v;
} *sp;
```


Using Union to Access Bit Patterns

```
typedef union {
  float f;
  unsigned u;
} bit_float_t;
```

```
u
f
) 4
```

```
float bit2float(unsigned u)
{
  bit_float_t arg;
  arg.u = u;
  return arg.f;
}
```

```
unsigned float2bit(float f)
{
  bit_float_t arg;
  arg.f = f;
  return arg.u;
}
```

Same as (float) u?

Same as (unsigned) f?

Byte Ordering Revisited

Idea

- Short/long/quad words stored in memory as 2/4/8 consecutive bytes
- Which byte is most (least) significant?
- Can cause problems when exchanging binary data between machines

■ Big Endian

- Most significant byte has lowest address
- Sparc, Internet

Little Endian

- Least significant byte has lowest address
- Intel x86, ARM Android and IOS

Bi Endian

- Can be configured either way
- ARM

Byte Ordering Example

```
union {
   unsigned char c[8];
   unsigned short s[4];
   unsigned int i[2];
   unsigned long l[1];
} dw;
```

How are the bytes inside short/int/long stored?

Memory addresses growing —

32-bit

c[0]	c[1]	c[2]	c[3]	c[4]	c[5]	c[6]	c[7]	
s[0]		s[1]		s[2]		s[3]		
i[0]				i[1]				
1[0]								

64-bit

c[0]	c[1]	c[2]	c[3]	c[4]	c[5]	c[6]	c[7]			
s[0]		s[1]		s[2]		s[3]				
i[0]				i[1]						
1[0]										

Byte Ordering Example (Cont).

```
int j;
for (j = 0; j < 8; j++)
    dw.c[j] = 0xf0 + j;
printf("Characters 0-7 ==
[0x8x, 0x8x, 0x8x, 0x8x, 0x8x, 0x8x, 0x8x, 0x8x]n",
    dw.c[0], dw.c[1], dw.c[2], dw.c[3],
    dw.c[4], dw.c[5], dw.c[6], dw.c[7]);
printf("Shorts 0-3 == [0x8x, 0x8x, 0x8x, 0x8x] \n",
    dw.s[0], dw.s[1], dw.s[2], dw.s[3]);
printf("Ints 0-1 == [0x%x, 0x%x] \n",
   dw.i[0], dw.i[1]);
printf("Long 0 == [0x%lx]\n",
    dw.1[0]);
```

Byte Ordering on IA32

Little Endian

Output:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf3f2f1f0]
```

Byte Ordering on Sun

Big Endian

MSB LSB MSB LS

Output on Sun:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]

Shorts 0-3 == [0xf0f1,0xf2f3,0xf4f5,0xf6f7]

Ints 0-1 == [0xf0f1f2f3,0xf4f5f6f7]

Long 0 == [0xf0f1f2f3]
```

Byte Ordering on x86-64

Little Endian

Output on x86-64:

```
Characters 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]
Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]
Long 0 == [0xf7f6f5f4f3f2f1f0]
```

Summary of Compound Types in C

Arrays

- Contiguous allocation of memory
- Aligned to satisfy every element's alignment requirement
- Pointer to first element
- No bounds checking

Structures

- Allocate bytes in order declared
- Pad in middle and at end to satisfy alignment

Unions

- Overlay declarations
- Way to circumvent type system

Summary

- Memory Layout
- Buffer Overflow
 - Vulnerability
 - Protection
 - Code Injection Attack
 - Return Oriented Programming
- Unions

教材阅读

■ 第3章 3.10、3.9.2