MAT1002 Midterm Examination

Saturday, March 26, 2022

Time: 1:00 - 3:00 PM

Notes and Instructions

- 1. This exam is open-book. Please refer to the detailed regulation posted on Blackboard.
- 2. The total score of this examination is 100.
- 3. There are ten questions (with parts) in total.
- 4. The symbol [N] at the beginning of a question indicates that the question is worth N points.
- 5. State your answers in exact form, e.g., write $\sqrt{2}$ instead of 1.414.
- 6. Show your intermediate steps except Questions 1 and 2 answers without intermediate steps will receive no marks.

MAT1002 Midterm Examination Questions

- 1. [10] True (T) or False (F)? No explanation is required.
 - (i) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both divergent series, then $\sum_{n=1}^{\infty} (a_n + b_n)$ also diverges.
 - (ii) For any four vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{p} in the 3D space, the following three vectors are coplanar (lying on the same plane): $\mathbf{a} \times \mathbf{p}$, $\mathbf{b} \times \mathbf{p}$, and $\mathbf{c} \times \mathbf{p}$.
- (iii) Fix x > 0, and define the sequence $\{a_n\}$ by $a_1 = \sqrt[3]{x}$ and $a_k = \sqrt[3]{xa_{k-1}}$ all integers k > 1. Then $\{a_n\}$ must converge.
- (iv) Suppose that C is a smooth curve in the xy-plane given by a parametrization $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $a \le t \le b$. Then $\mathbf{r}'(t)$ must be continuous and never the zero vector on the interval [a, b].
- (v) Let f(x) be infinitely differentiable on the real line, and let $\sum_{n=0}^{\infty} c_n x^n$ be the Maclaurin series of f. Then $\sum_{n=0}^{\infty} c_n x^n = f(x)$ must hold for at least one real number x.
- 2. [12] Short questions. No explanation or intermediate steps are required.
 - (i) Let L be a real number. Which of the following statements is equivalent to saying $\lim_{n\to\infty} a_n = L$? Choose all that apply.
 - A) For any $\epsilon > 0$, there exists a positive integer N such that for all integers n > N, we have $|a_n L| \le \epsilon$.
 - B) For any ϵ with $0 < \epsilon < 1$, there is a positive integer N such that for all integers n > N, we have $|a_n L| < \epsilon$.
 - C) For any positive integer m, there exists a positive integer N such that for all integers n > N, we have $|a_n L| < \frac{1}{m}$.
 - D) For any $\epsilon > 0$, there are infinitely many positive integers n such that $|a_n L| < \epsilon$.
 - (ii) Given three vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} that are perpendicular to each other, assume that their lengths are 1, 2, and 2, respectively. What is the angle between $\mathbf{a} + \mathbf{b} + \mathbf{c}$ and \mathbf{c} ?
- (iii) Consider the curve C given by the parametric equations

$$x = 3t^2, y = 2t^3, t \ge 0.$$

Express the curve as a polar curve $r = f(\theta)$.

- (iv) Consider the curve C in (iii) above. Suppose the portion of the curve C for $t \in [0,1]$ is revolved about the vertical axis x=3. Find the area of the surface generated by this revolution.
- 3. [4+2+4] Consider a particle travelling along the curve C with position vector $\mathbf{r}(t)$ given by

$$\mathbf{r}(t) = (\tan^{-1} t)\mathbf{i} + (2e^{2t})\mathbf{j} + (8te^{t})\mathbf{k},$$

where t denotes time and \tan^{-1} denotes the arctan (inverse tangent) function.

- (i) Find the time t_0 when its instantaneous direction of motion is orthogonal to the plane M given by x + 4y + 8z = 16.
- (ii) Find the point P(a, b, c) on the curve C where the particle is at time t_0 .
- (iii) Suppose that at time t_0 above, the particle leaves the curve C and continues travelling in a straight line in the direction of the velocity vector $\mathbf{v}(t_0)$. Show that the particle will hit the plane M at some time $t \geq t_0$, and find the time.
- 4. [6+4] Consider a travelling particle in the space, with position vector $\mathbf{r}(t)$, velocity $\mathbf{v}(t)$, and acceleration $\mathbf{a}(t)$ at time t. Suppose that its initial position is (0, -2, 0), and that

$$\mathbf{a}(t) = (2\sin t)\mathbf{i} + (2\cos t)\mathbf{j}, \quad \mathbf{v}(0) = -2\mathbf{i} + v_0\mathbf{k},$$

where v_0 is a positive constant.

- (i) Find the time T_0 that it takes for the particle to travel a distance of L_0 along its trajectory.
- (ii) What is the position of the particle at time T_0 ?
- **5.** [6+2] Let a and b satisfy 0 < a < 1 and 0 < b < 1.
 - (i) Give a geometric justification of the following inequality:

$$\sqrt{a^2 + b^2} + \sqrt{(1 - a)^2 + b^2} + \sqrt{a^2 + (1 - b)^2} + \sqrt{(1 - a)^2 + (1 - b)^2} \ge \sqrt{8}.$$

(ii) Find the values of a and b for which the above holds with equality. (You do not need to explain it.)

6. [3+3+4] Suppose the straight line l is the intersection of the following two planes where k is a constant:

$$\begin{cases} x - 1 = y \\ x + z = k \end{cases}.$$

Assume that the line passes through the point P(1,0,1), and let M denote the plane given by x - y + 2z = 0.

- (i) Write down the parametric equations for the line l.
- (ii) Find the intersection of this line l with the plane M.
- (iii) Find the line obtained by projecting l onto the plane M.

7. [5+5+5] For each of the following series, determine whether it converges or diverges.

(i) $\sum_{n=1}^{\infty} \frac{a}{b+c^n}$, where a, b, and c are all positive constants.

(ii)
$$\sum_{n=1}^{\infty} (-1)^n \frac{48e^n + n^{\pi}}{n! + (\ln n)^2}$$

(iii)
$$\sum_{n=3}^{\infty} \frac{1}{n \ln n (\ln(\ln n))^{1+\alpha}}$$
, where $\alpha > 0$.

8. [4+2+6] Consider the power series
$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)3^{n+1}}.$$

- (i) Determine all values of x for which the series converges.
- (ii) For each value in part (i), state whether the convergence is absolute or conditional.
- (iii) Find the value of the series (the value of the infinite sum) whenever it converges.
- 9. [6] Find the following limit:

$$\lim_{x \to 0} \frac{e^{x^2} + (x/2) - \sqrt{1+x}}{2x \cos x - \tan^{-1} x - \ln(1+x)}.$$

Here \tan^{-1} denotes the arctan function.

- 10. [4+3] Consider the function $f(x) = \sqrt[5]{1+x}$.
 - (i) Write down the first four terms of the Maclaurin series of f(x).
 - (ii) Consider approximating the value of $\sqrt[5]{1.8}$ using the Maclaurin series of f(x). How many terms would you need to take at least to ensure that the error is less than 0.01? Justify.