$\operatorname{def} \mathbf{p}_{\mathbf{w}}(\mathbf{w})$: # $K(p_{\mathbf{w}}) = \operatorname{length} \operatorname{of this function}$ p(z; f(w))... # returns a probability $\mathbf{w}_{\text{compressed}} = [...] \# K(W \mid p_{W}) = \sum_{n} -\log p_{W}(w_{n})$ $W \in \mathcal{V}^{N \times M}$ $Z \in \mathbb{R}^{N \times D}$ $w = decode_algo(w_compressed, p_w) \# K = small constant$ # 2. Decode Z from W $\operatorname{def} f(\mathbf{w})$: # K(f) = length of this function ... # returns mean and std of a normal distribution Sentences Decoder Representation def p normal(mu, std): # K = small constant

b.

 $p_{w}(w)$

... # returns a probability
$$\mathbf{z}_{\underline{\mathbf{m}}} \mathbf{z}_{\underline{\mathbf{s}}} \mathbf{d} = \mathbf{f}(\mathbf{w}) \text{ } \# K = \text{small constant}$$

$$\mathbf{z}_{\underline{\mathbf{c}}} \mathbf{c}_{\underline{\mathbf{c}}} \mathbf{d} \mathbf{d} \mathbf{e}_{\underline{\mathbf{c}}} \mathbf{e}$$

return z

def construct z():

1. Describe Z using a compressed code W