<0613 발표 대비 공부자료>

1. 내가 만든 모델 구조

<CNN + BiLSTM 구조>

; EEG 신호(8채널, 80타임포인트)를 입력받음

; 1D Convolution -> 특성 추출

; BiLSTM -> 시간적 특성 학습

; 마지막에 FC layer로 이진 분류(발작/비발작)

<train_fold5_epoch50.py>

```
class CNNBiLSTMModel(nn.Module):
   def __init__(self, input_channels, input_time):
       super(CNNBiLSTMModel, self).__init__()
       self.input_channels = input_channels
       self.conv1 = nn.Conv1d(in_channels=input_channels, out_channels=64,
kernel_size=5, padding=2)
       self.bn1 = nn.BatchNorm1d(64)
       self.relu = nn.ReLU()
       self.pool = nn.MaxPool1d(2)
       self.lstm = nn.LSTM(input_size=64, hidden_size=32, num_layers=1,
bidirectional=True, batch_first=True)
       self.fc = nn.Linear(32 * 2, 1)
   def forward(self, x):
       if x.ndim == 4:
           x = x.squeeze(1)
       if x.shape[1] != self.input_channels:
           x = x.permute(0, 2, 1)
       x = self.pool(self.relu(self.bn1(self.conv1(x))))
       x = x.permute(0, 2, 1)
       lstm_out, _ = self.lstm(x)
       x = lstm_out[:, -1, :]
       x = self.fc(x)
       return x
```

2. 데이터 처리 및 평가방법

; 데이터는 전체 환자들을 4개의 Fold로 나눠서 교차 검증

; 각 Fold마다 해당 환자들을 테스트셋으로 삼아 평가

<metrics: 지표>

; Accuracy(정확도): 전체에서 맞춘 비율

; AUC(ROC 곡선 아래 면적): 0~1, 클수록 분류 잘 함

; F1-score: Precision과 Recall의 조화 평균

; Precision, Recall은 코드 상 직접 프린트하지 않았으나, F1-score은 포함되어 있음 <mark>(발표 전 수</mark> <mark>정요함)</mark>

3. 실험결과

; 내 모델은 약 63%의 평균 정확도를 보임

<F1, Precision, Recall, Confusion Matrix 모두를 성능 지표로 써야 함>

EEG 기반 뇌전증 발작 예측 End-to-End 개발 발표자료

1. 연구 목적 및 전체 프로세스 개요

- 뇌전증 환자 실시간 발작 예측이라는 실질적 임상 문제 해결이 목표
- 본 프로젝트는 데이터 수집 → 전처리 → 모델 개발 → 평가/해석 → 개선/피드백의 end-to-end 과정을 모두 직접 수행

2. Step 1: 데이터 수집 및 탐색

- 공개 EEG 데이터셋(CHB-MIT) 확보
- 원본 데이터는 수십 채널, 수십만 타임포인트로 구성 → 초기 데이터 용량, 채널 관리 부담
- 샘플별 라벨(발작/비발작) 정보 포함

3. Step 2: 데이터 전처리 및 라벨링

- 대표 8채널만 선별해 경량화 & 주요 뇌 부위 신호 유지
- **슬라이딩 윈도우** (80타임포인트, 약 0.3~0.8초)로 데이터 쪼갬
- 각 window마다 발작(1)/비발작(0) 라벨 부여
- 어려움:
 - o 채널/윈도우 선정 기준 반복 수정
 - o shape mismatch, 자동 라벨링 오류, 데이터 불균형 문제(비발작>>발작)로 멘붕

4. Step 3: 모델 개발 및 구조 설계

- 1D CNN + BiLSTM 구조로 최종 선정
 - o CNN: 채널별 신호 특징 추출
 - o BiLSTM: 시간 흐름상 연속성 학습
 - o FC Layer: 이진 분류
- 경량화(실제 적용 고려)와 성능 균형을 모두 추구
- 여러 구조 실험: CNN, LSTM, BiLSTM, 1D/2D

어려움:

- o 차원 변환, 입력 shape, 파이토치 오류 다수 경험
- o 학습 중 NaN loss, 모델 저장/불러오기 오류 반복

5. Step 4: 학습 및 교차 검증(Validation)

- 4-Fold Cross Validation
 - o 환자 ID별로 fold 나누어 학습/평가 반복
 - o Fold별로 test set 환자군을 바꾸며 성능 확인
- 자동화 코드, 반복 실험, 파일 관리 등에서 실수
 - o 실험기록/결과 표 한 번에 날린 경험
 - o K-fold 자동화 스크립트 디버깅, 실험 재현성 관리에 많은 시간 소요

6. Step 5: 모델 평가 및 해석

- 성능 지표:
 - o Accuracy, AUC, F1-score, Precision, Recall, Confusion Matrix
- 불균형 데이터로 인해 F1-score, Recall 등 다각도 평가 필수
- 어려움:
 - ㅇ 교수님 피드백 받고서야 평가지표 중요성 깊게 이해
 - o 혼동행렬, F1-score 등 해석/설명 숙달에 시간 소요
- 결과:
 - o 정확도 평균 약 63%,
 - \circ F1-score/Recall 낮은 경우가 많음 \to "정확도만으론 의미 없음" 깨달음

7. Step 6: 개선, 피드백, 실제 적용 고민

- 모델 한계 및 개선 방향:
 - ㅇ 더 많은 채널, 윈도우, 데이터 증강 등 실험 필요
 - o SMOTE, pos_weight 등 다양한 불균형 데이터 처리 시도
- 실제 의료 적용 관점:

o 실시간 구현 가능성, 오진/놓침 최소화에 집중

• 정신적 어려움:

○ 시행착오, 자책, 포기욕구와 씨름하면서도, 솔직하게 시행착오 경험 공유

8. 결론 및 Q&A

• "End-to-End 전체 과정을 직접 경험하며, 데이터부터 임상적 의미까지 고민하는 진짜 연구자의 자세를 배웠다."

Q&A:

- o 왜 End-to-End가 중요한가?
- o 각 단계별 현실적 어려움과 극복 사례
- o 실제 의료 데이터로 확장할 때 고려해야 할 점
- o 발작/비발작 불균형 데이터의 진짜 난이도와 대처법

9. 한 줄 요약

"EEG 발작 예측 AI는 데이터 준비부터 임상 적용까지, 모든 단계를 스스로 경험하며 시행착오를 통해 성장하는 과정이었다."

1. 발작 vs 비발작 비율 몰라도 괜찮은 이유

- EEG 뇌전증 데이터셋에서 비발작(0) 데이터가 진짜 압도적으로 많음. (보통 95% 이상 비발작,5%도 안 되는 발작 샘플이 일반적)
- 실제 임상 환경도 마찬가지: 환자 하루종일 모니터링해도 발작 순간은 잠깐뿐
- 그래서 **데이터 분포 직접 확인, 비율 파악, 그리고 왜 그게 중요한지** 깨닫는 과정이 연구자가 성장하는 진짜 포인트임!

예시로 말할 수 있는 현실적 고백/반성문

"저도 초반에는 전체 데이터 중 발작과 비발작의 비율이 얼마나 차이 나는지 잘 모르고, 모델 정확도만 보고 흡족해한 적이 많았습니다.

실제로 나중에 비율을 살펴보니 비발작 샘플이 압도적으로 많다는 걸 알게 됐고, 그래서 정확도만 보면 '비발작만 잘 맞춰도' 모델 성능이 좋아보일 수 있다는 사실을 뒤늦게 깨달았습니다.

이런 경험이 F1-score, Precision, Recall 등 다양한 지표의 중요성을 체감하는 계기가 됐습니다."

2.(슬라이드용으로 쓸 수 있는 예시 문구)

End-to-End 과정 중 "데이터 탐색" 단계에 추가

- 초기에는 발작/비발작 비율을 제대로 파악하지 못함
- 실험 중 정확도가 높게 나오길래 "잘 되는구나!" 생각했다가,
- 실제로 비율을 집계해보니 발작 데이터가 너무 적어서 모델이 비발작만 예측해도 높은 정확 도를 내는 걸 알게 됨
- 이걸 계기로 데이터 분포 분석의 중요성, 다양한 평가지표 활용의 필요성을 절실히 느낌

3. 데이터 분포 직접 확인법 (진짜 발표에 쓰면 개신뢰감)

import numpy as np

y = np.load("backend_server/npy/y_total.npy")

num seizure = np.sum(y == 1)

num nonseizure = np.sum(y == 0)

print(f"발작 샘플: {num_seizure}개 / 비발작 샘플: {num_nonseizure}개")

print(f"비율: 발작 {num_seizure/(num_seizure+num_nonseizure):.2%}, 비발작 {num_nonseizure/(num_seizure+num_nonseizure):.2%}")

• 실제 발표 때 "저도 이런 식으로 직접 비율을 계산해서 데이터 편향을 확인했습니다"라고 말 하면

진짜 연구자 느낌 확 남

4. 슬라이드용 추가 문구

[데이터 탐색/전처리 단계]

- 발작 vs 비발작 데이터 분포
 - ㅇ 실험 초반에는 데이터 비율을 직접 확인하지 않아, 정확도만 보고 판단함
 - o 중간에 직접 카운팅해보니 비발작이 데이터의 대부분(90~95% 이상)임을 뒤늦게 깨 달음
 - o 이걸 통해 "정확도"만으론 모델의 임상적 성능을 평가할 수 없다는 점을 뻐저리게 느 낌

EEG 발작 예측 프로젝트 - 예상 질문 & 모범 답변 세트

[1] 데이터/전처리 관련

Q1. 왜 8채널, 80타임포인트만 썼나요?

Δ

실제 의료기기 적용과 연산 효율을 모두 고려해 대표적인 8개 EEG 채널만 사용했습니다. 80타임포인트는 너무 짧거나 길면 신호 변화 포착과 계산 효율에서 균형이 깨져, 실험적으로 가장 효과적이었던 구간을 채택했습니다.

Q2. 발작/비발작 데이터의 비율은 어느 정도인가요?

Δ

비발작 데이터가 전체의 90~95% 이상이고, 발작 데이터는 극히 일부(5% 미만)입니다. 실제 임상 환경도 비슷해서, 불균형 문제가 심각합니다. 이 때문에 정확도만으로 성능을 평가하지 않고, F1-score와 Recall, Precision 등을 함께 봤습니다.

Q3. EEG 채널 선정 기준이 뭐였나요?

Α.

임상적으로 발작 신호가 뚜렷하게 나타나는 채널(temporal, frontal 등)을 중심으로, 실제 의료현장에서 쓸 수 있는 경량화 기준까지 반영해 8개 채널로 추렸습니다.

Q4. 슬라이딩 윈도우 길이(80포인트)는 어떻게 결정한 건가요?

Α.

문헌과 실제 실험에서 0.5~1초 구간이 발작 예측에 효과적임을 참고했습니다. 실제 실험에서 성능이 가장 잘 나온 구간이기도 합니다.

[2] 모델링/딥러닝 구조 관련

Q5. 왜 CNN-BiLSTM 구조를 썼나요?

Д

CNN은 EEG 신호의 공간적(채널간) 특징을 추출하는 데 강점이 있고, BiLSTM은 시간 축의 연속성, 즉 패턴 변화를 양방향으로 학습할 수 있어서 두 구조를 결합해 성능 향상을 기대할 수 있었습니다.

Q6. 다른 구조(예: 단순 LSTM, CNN만)와 비교해봤나요?

Α.

네, 단일 CNN이나 LSTM, 2D CNN 등 여러 구조도 실험해 봤습니다. 하지만 CNN-BiLSTM 구조가 시간-공간 정보를 동시에 반영해 가장 안정적인 결과를 보였습니다.

Q7. 모델이 오버피팅/언더피팅되는 현상은 없었나요?

Д

불균형 데이터와 학습 epoch 조정, Dropout, 데이터 증강 등 여러 방법을 적용해 과적합을 줄이려고 노력했습니다.

하지만 환자 수가 제한적이어서 오버피팅 위험이 항상 있음을 인지하고 있습니다.

[3] 평가지표/결과 해석 관련

Q8. 왜 정확도만 말하지 않고, F1-score, Recall, Precision, 혼동행렬까지 봤나요?

Α.

데이터가 심각하게 불균형하기 때문에, 정확도만 높게 나와도 실제 발작 예측을 잘 못할 수 있습니다.

따라서 실제 임상에서 중요한 Recall(놓친 발작 최소화), Precision(오진 최소화),

그리고 두 지표의 균형인 F1-score까지 같이 평가했습니다.

혼동행렬은 모델이 어디서 약한지(TP, FP, FN, TN)를 시각적으로 바로 확인할 수 있어서 반드시 사용했습니다.

Q9. F1-score, Recall, Precision 각각 어떤 의미인가요?

Α.

• Precision: 모델이 '발작'이라고 예측한 것 중 진짜 발작인 비율(오진 줄이기)

- Recall: 실제 발작 중에서 모델이 맞힌 비율(놓친 발작 줄이기)
- F1-score: Precision과 Recall의 조화평균(둘 다 중요한 상황에서 주로 사용)

Q10. 혼동행렬(Confusion Matrix) 직접 해석해보세요.

Δ

혼동행렬은 예측/실제값의 조합에 따라 네 구간(TP, FP, TN, FN)으로 나뉘고, 특히 FN(놓친 발작)이 많으면 실제 환자 안전에 큰 위험이 생깁니다. 그래서 혼동행렬에서 FN을 줄이는 것이 실전에서 매우 중요하다고 생각합니다.

Q11. 실험 결과가 논문 수준보다 낮은데, 이유는 뭔가요?

Д

실험 환경, 데이터 분포, 모델 구조, 환자 수 등 여러 요인에서 차이가 있을 수 있습니다. 특히 환자별 분할(k-fold, leave-one-out) 방식, 데이터 전처리 방법의 차이, 그리고 불균형 데이터에 대한 보정법 등에서 결과 차이가 발생할 수 있다고 생각합니다.

[4] 데이터 불균형/실제 적용성 관련

Q12. 데이터 불균형 극복을 위해 어떤 방법을 썼나요?

Α.

SMOTE, oversampling, 손실함수에서 pos_weight 조정, batch sampling 등 다양한 방법을 시도했지만, 실제 임상 데이터를 더 많이 확보하는 것이 최선임을 체감했습니다.

Q13. 실제 의료현장에 바로 적용해도 되나요?

Α.

아직은 연구 단계라 실제 임상 적용을 위해선 더 많은 데이터, 철저한 검증, 해석 가능성, 그리고 의사와의 협업이 필요합니다. 실시간 처리 속도, 오진/놓침에 대한 안전성 검증도 추가로 요구됩니다.

[5] 본인 고민/어려움/시행착오 관련

Q14. 연구하면서 가장 어려웠던 점은 무엇인가요?

Α.

- 데이터 불균형 문제로 실제 발작 예측 성능이 잘 안 나와서 다양한 방법을 실험하다가 좌절도 했습니다.
- CNN, LSTM 구조 설계와 파이토치 코드 디버깅, shape 오류 등에서 많이 시행착오를 겪었습니다.
- 평가지표 해석과 임상적 의미까지 설명하는 연습이 가장 힘들었습니다.

Q15. 프로젝트를 통해 가장 크게 배운 점은 무엇인가요?

Α.

- AI 연구는 데이터의 진짜 구조/분포를 파악하는 것부터, 결과 해석과 임상 적용까지 모두 고민해야 한다는 걸 배웠습니다.
- 시행착오와 실패를 겪으면서 진짜로 성장할 수 있다는 점을 체감했습니다.

Q16. 앞으로 추가로 해보고 싶은 연구/실험은?

А

- 더 다양한 채널, 윈도우, 다양한 딥러닝 구조 실험
- 진짜 실시간 데이터 스트리밍/예측 시연
- explainable AI, 임상 적용성 평가 등도 도전해보고 싶습니다.

[6] 기타(교수님이 자주 꼬집는 포인트)

Q17. 모델을 더 개선하려면 뭘 바꿔야 하나요?

Α.

더 많은 임상 데이터 확보, 채널/윈도우 조합 실험, 노이즈/이상치 처리, 하이퍼파라미터 튜닝, ensemble, GNN 등 다양한 딥러닝 구조 탐색도 가능하다고 생각합니다.

Q18. 만약 다른 학생에게 본 프로젝트를 맡긴다면 꼭 강조하고 싶은 건?

А

정확도만 믿지 말고, 데이터 분포 분석, 평가지표 다양화, 실제 임상 적용까지 고민하는 시각을 반드시 키우라고 말해주고 싶습니다. 필요한 추가 질문이나,

네 프로젝트/실험 상황에 맞는 **더 현실적이고 디테일한 꼬리 질문** 있으면 바로 요청해! 발표 전 이 답변들 쭉 읽고 가면 진짜 어떤 교수님도 무서울 거 없다:)

★[1] 모델/알고리즘 관련

Q1. 이번 프로젝트에서 사용한 딥러닝 모델 구조를 간단히 설명해보세요.

A1.

저희가 사용한 모델은 CNN-BiLSTM 구조입니다.

8채널 EEG 데이터를 80타임포인트씩 입력으로 받아서, 1D CNN 레이어를 통해 채널별 시계열 패턴을 추출하고, 그 다음에 양방향 LSTM(BiLSTM)으로 시계열 내에서 발작 패턴을 더 정교하게 인식하게 했습니다.

CNN은 뇌파 신호의 로컬 패턴(특정 주파수, 스파이크 등)을 잡고, BiLSTM은 과거-미래 정보 모두를 활용해 발작 직전의 특이 패턴을 포착합니다.

최종적으로 FC(Linear) 레이어를 거쳐 시그모이드로 발작 확률을 출력합니다.

Q2. CNN과 LSTM을 조합해서 쓴 이유가 뭔가요?

A2.

EEG 신호는 시간적으로 변화가 크고, 잡음도 많아요.

CNN은 각 채널의 특징적 파형(스파이크 등)을 뽑아주고, LSTM은 그 시퀀스 내에서 "언제" 이런 패턴이 반복/등장하는지를 잘 추적합니다.

둘을 합치면, "특정 파형이 언제 반복적으로 나타나는가"를 잘 캐치할 수 있어서 발작 직전 패턴 탐지에 효과적입니다.

★[2] 데이터/전처리 관련

Q3. 데이터셋의 구조(샘플 수, 채널 수, 타임포인트 등)와 비율에 대해 설명해 주세요.

АЗ.

저희 데이터는 총 N개 샘플(구체적 수치는 발표 시점 기준으로 명확히), 각 샘플당 8채널, 80타임포 인트(약 12초 분량의 뇌파)를 사용했습니다.

<u>라벨은 O(비발작), 1(발작 직전)로 이진 분류를 했습니다.</u>

실제 데이터 비율은 비발작:발작이 약 10:120:1 정도로, 비발작 샘플이 훨씬 많았습니다 (imbalance).

이 때문에 오버샘플링(SMOTE 등)도 시도했지만, 최종 구조에선 기본 balanced subsample만 사용했습니다.

Q4. 왜 8채널 80타임포인트로 입력 shape을 정했나요?

A4.

- 1. CHB-MIT 등 오픈 EEG 데이터셋에서 실제 병원 임상 환경에서 많이 쓰는 채널 수이기도 하고
- 2. 8채널이 실제로도 휴대용 EEG 디바이스로 구현하기 현실적인 범위라 선정했습니다.

타임포인트 80은 약 1~2초 분량의 데이터를 커버해서 "발작 전조 패턴"이 충분히 포함되도록 했습니다

★[3] 학습 및 평가/평가지표

Q5. 평가에 사용한 지표(accuracy, F1-score, AUC 등) 각각의 의미와 왜 중요한지 설명해 보세요.

A5.

- 정확도(Accuracy): 전체 중 정답 맞춘 비율, 직관적이지만 불균형 데이터(비발작이 많음)에 서는 과대평가될 수 있음
- F1-score: 정밀도(Precision)와 재현율(Recall)의 조화평균, 특히 불균형 데이터에서 "진짜 발작"을 얼마나 잘 잡았는지 평가
- AUC(ROC): 임계값에 따라 True/False Positive Rate의 trade-off를 그래프로, "모델의 전반적 구별능력"을 봄
- 혼동행렬(Confusion Matrix): TP, FP, TN, FN 각각을 직접 확인해서 실제 모델이 발작/비 발작을 헷갈린 케이스를 한눈에 볼 수 있음
 ⇒ 뇌전증처럼 "실제 발작을 놓치면 치명적"인 경우, F1-score, Recall, AUC가 특히 중요하다고 생각했습니다.

Q6. 각 fold별로 평가했는데, 왜 K-fold cross-validation을 썼나요?

A6.

EEG 데이터는 환자별 패턴 편차가 커서, "한 환자에만 특화된 모델"이 되는 걸 막으려고 k-fold로 나눠 평가했습니다.

fold별로 test set에 포함된 환자는 학습에 포함되지 않게 분리해서 "새로운 환자에도 일반화"가 되는지 보려고 했습니다.

실제 임상 환경에서는 "처음 보는 환자"에도 써야 하니까요.

★ [4] 결과/해석

Q7. 모델의 최종 성능(정확도/F1/AUC)과 해석을 얘기해보세요.

A7.

최종적으로, fold별로 평균 정확도 약 63%, F1-score 약 0.47, AUC 약 0.65가 나왔습니다(구체 수 치는 발표 직전 기준!).

높진 않지만, EEG 발작 예측의 난이도, 데이터 불균형, 그리고 환자별 차이 등을 감안하면, baseline 수준은 달성했다고 생각합니다.

또, fold별로 환자군을 분리했기 때문에 실제 "새로운 환자"에 대한 일반화 성능을 객관적으로 봤다는

Q8. 혼동행렬(Confusion Matrix)도 제시할 수 있나요?

A8.

네, 각 fold별로 TP(정발작), FP(오발작), TN, FN 수치를 정리했고, 주로 "FN(발작을 놓침)"을 최소화 하려고 했습니다.

F1-score가 낮은 편이었던 건 실제 발작 샘플이 적어서(불균형), FN이 늘어나는 경향이 있었기 때문입니다.

★[5] 어려움/한계점/고민

Q9. 프로젝트 진행하면서 가장 힘들었던 점과 한계는?

A9.

- 데이터 불균형: 발작 데이터가 매우 적어서 오버샘플링/언더샘플링 등 다양한 방법을 시도했지만, "과적합"이 자주 발생했습니다.
- **환자간 편차**: 한 환자에서만 성능이 좋은데, 전체 fold나 새로운 환자에선 급격히 성능이 떨어져서 "모델 일반화"가 가장 큰 고민이었습니다.
- 실시간성: 실제 구현 단계에선 실시간 예측, 노이즈, 하드웨어와 연동 등에서도 시행착오가 많 았습니다.

특히 모델 구조와 데이터 shape, preprocessing에서 오류가 반복돼서, 발표 전날까지 shape 맞추기 등 기본적인 문제로 진땀 뺐던 것도 있습니다.

Q10. 이걸 실제로 적용하려면 어떤 점을 보완해야 한다고 생각하나요?

A10.

- 더 많은, 다양한 환자 EEG 데이터 확보
- Noise robust 모델 개발(실제 환경은 노이즈 심함)
- 실시간 하드웨어 연동/최적화
- 개인별 맞춤형(pre-personalized) fine-tuning/transfer learning 적용
- 발작 예측 "조기 경고 시스템"에서 실제 환자·의료진에게 어떻게 알림을 보낼지, 임상 workflow 설계 등

★[6] 실용성/확장성/사회적 의미

Q11. 이 프로젝트가 사회적으로 어떤 의미가 있다고 생각하나요?

A11.

뇌전증 환자에게 "실시간 예측 및 조기 경고"는 직접적인 생명·삶의 질 향상으로 이어집니다.

휴대용 EEG+AI 솔루션이 보급되면, 1) 의료 접근성 향상, 2) 응급상황 감소, 3) 장기적으로 의료비 절 감에도 도움이 됩니다.

향후엔 wearable 디바이스, 스마트폰 연동, 알람/응급 대응 등 다양한 실용화 방안이 있습니다.

★[7] 향후 개선/연구 방향

Q12. 앞으로 어떻게 개선하거나 발전시킬 계획인가요?

A12.

- 더 다양한 환자와 데이터 수집
- LSTM, Transformer 등 다른 시계열 모델 실험
- CNN 채널 확장, attention 등 구조적 변화
- Noise robust 모델, 실시간 deployment
- 실제 하드웨어와 end-to-end 실험. 사용자 피드백 반영 등으로 발전시킬 계획입니다.

★[8] 본인 기여/팀워크

Q13. 본인이 맡았던 부분, 팀에서의 역할은?

A13.

데이터 전처리, CNN-LSTM 구조 코드 구현, 하이퍼파라미터 튜닝, 실험 자동화, 시각화, 발표 자료 제작까지 전체 end-to-end 과정에 주도적으로 참여했습니다.

특히 "데이터 shape 에러", "fold별 분리", "실시간 시각화" 등 반복 시행착오를 직접 해결했고, 개선된 코드 구조와 발표 문서 정리까지 담당했습니다.

Q14. 이번 경험에서 느낀 점, 남긴 교훈은?

A14.

생각보다 "기본기가 제일 중요하다"는 걸 다시 느꼈습니다.

데이터 구조와 shape, 전처리 오류 하나가 전체 모델 성능에 큰 영향을 주고, 실제로 새로운 환자나 환경에서 모델이 쉽게 무너진다는 것도 체감했습니다.

현실의 데이터와 실험은 "논문"과 달라서, 반복적으로 오류 잡고 실험하는 게 가장 큰 배움이었습니다.

★[9] 기초 지식/이론적 배경

Q15. LSTM, CNN, F1-score, AUC, Confusion Matrix 각각을 1~2문장으로 설명해보세요. A15.

- CNN: 합성곱(Convolution) 연산으로 데이터 내 "로컬 패턴"을 추출하는 신경망 구조
- LSTM: RNN의 일종, "장기 기억"이 가능한 구조로 시계열 데이터의 시간적 패턴을 잘 파악
- F1-score: Precision(정밀도)과 Recall(재현율)의 조화평균, 불균형 데이터에서 전체 성능을 객관적으로 볼 때 유리
- AUC: ROC 커브 아래 면적, 임계값 변화에 따라 모델의 "진짜/가짜 분류 능력"을 평가
- Confusion Matrix: 실제-예측 결과를 네 칸(TP, FP, TN, FN)으로 나눠서, 각 오류/정답 패턴을 한눈에 볼 수 있게 해주는 표

★[10] 기타(갑자기 던질만한 질문!)

- "실시간 EEG 예측 구현 중 어려웠던 점?"
- "이 실험을 하면서, 본인이 가장 뿌듯했던 순간?"
- "뇌전증 외에 이 모델을 응용할 수 있는 분야?"
- "환자별로 맞춤화한다면 구체적으로 어떤 방법이 있을까?"
- "실시간 모델의 latency를 줄이려면?"
- "딥러닝 말고 rule-based로 하면 왜 한계가 있나?"
- "CNN filter가 EEG에서 실제로 잡아내는 신호 예시?"

(이런 건 네가 ppt 발표 마지막에 "예상 질문!" 슬라이드로 따로 만들어도 좋아!)

▶ 정리/요약

- 발표 자료 만들 때는 꼭 "나만의 시행착오/교훈/경험"을 녹여서 말하는 게 점수 잘 나옴!
- 교수님들은 "기본기+네가 직접 겪은 시행착오"에 관심이 많음!
- 발표 끝에 "예상 질문/답변 슬라이드" 하나 따로 두면 완벽!

●더 필요한 질문/자료/예시/ppt 양식, 발표 대본 등 요청하면 바로 추가해줄게!

필요한 항목/포맷 따로 말해주면 원하는 스타일로 맞춰줌. 진짜 궁금하거나 자신 없는 부분 있으면 바로 더 파볼 수도 있어!

ㅋㅋㅋ 미안하다 바부모드 ON!

아래는 **질문 + 실제 답변 예시**까지, 하나하나 **너라면 이렇게 대답하면 된다**는 식으로 최대한 구체적으로 써줄게.

진짜 면접 보는 느낌으로, 실전 대본처럼 쓸게!

(실제 수치는 네 발표 직전 결과로 맞춰서, 필요하면 바꿔도 됨!)

[모델/알고리즘]

Q1. 모델 파라미터(가중치 수)는 몇 개인가요?

Αl

정확한 파라미터 수는 모델 summary로 확인해야 하지만, CNN 레이어(Convld, $8\rightarrow64$)와 LSTM($64\rightarrow32$, 양방향), FC($64\rightarrow1$)까지 합쳐서 대략 몇 만 개 단위로 추정됩니다. 발표 전에 model.summary()로 실제 숫자를 확인해두겠습니다.

Q2. LSTM0I RNN보다 더 적합한 이유는 뭔가요?

A2.

LSTM은 RNN의 장기 의존성 문제(gradient vanishing/exploding)를 해결합니다. 뇌파 신호는 몇 초간의 패턴이 누적되어 나타나는 경우가 많아서, 단순 RNN보다 LSTM이 훨씬 더 멀리 떨어진 타임포인트 간 정보를 잘 기억해서 예측 정확도가 더 높습니다.

Q3. 양방향 LSTM이 단방향보다 나은 이유는?

АЗ.

양방향 LSTM은 과거(이전 데이터)와 미래(다음 데이터) 정보를 모두 반영해서 현재 시점의 패턴을 더 정확하게 해석할 수 있습니다.

실제 발작 직전 뇌파에서, 앞뒤 패턴이 동시에 영향을 줄 수 있기 때문에 양방향이 더 효과적이라고 판단했습니다.

Q4. Convld에서 커널 크기(5)를 고정한 이유?

A4.

커널 크기 5는 실험적으로 여러 값을 시도해서, 작은 커널(3)보다 잡음에 강하고, 너무 큰 커널(7~9)은 오히려 과적합이 심해져서, 5가 가장 밸런스가 좋았습니다.

Q5. 모델의 오버피팅 방지는 어떻게 했나요?

A5.

BatchNorm, MaxPooling, 간단한 Early Stopping, fold별 분할 등을 적용했고, 과적합 경향이 심할 땐 학습 epoch을 조절했습니다.

Dropout 등은 추가 적용해볼 수 있었지만, 아직 완벽하게 잡진 못했습니다.

Q6. 하이퍼파라미터(learning rate, batch size 등)는 어떻게 정했나요?

A6.

가장 기본적으로는 논문/튜토리얼 참고값에서 시작했고, 실험적으로 여러 조합(learning rate le-3, le-4, batch 32, 64 등)을 돌려보면서 validation loss가 가장 안정적으로 감소하는 조합으로 선정했습니다.

Q7. GPU/CPU 학습 시간은 각각 얼마나 걸렸나요?

A7.

CPU로 돌릴 땐 fold당 12시간 이상 걸렸고, CPU 환경에서는 2030분 안팎이었습니다. 데이터와 모델 구조 크기, 배치 사이즈에 따라 달라집니다.

Q8. CNN이 아닌 2D-CNN, Transformer, GNN 등의 구조는 실험 안 해봤나요? A8.

시간과 리소스 제약 때문에 직접 실험은 못 했지만, 2D-CNN은 EEG 채널 간 공간 구조(예: scalp map)를 더 잘 반영할 수 있고, Transformer는 장기 시계열에서 주목(attention)할 타이밍을 잡는데 강점이 있습니다.

향후 추가 실험 계획 중입니다.

Q9. 앙상블을 적용하면 어떨 것 같나요?

Д9

단일 모델보다 다양한 fold, 구조의 모델을 앙상블하면 소폭 성능 개선(특히 AUC, F1 등)이 기대됩니다.

하지만 inference latency나 실제 디바이스 적용 시 무거워질 수 있어서, 실용성과 trade-off 고려가 필요합니다.

Q10. Dropout, BatchNorm 등 regularization 기법은 적용했나요?

 $\Delta 10$

BatchNorm은 기본적으로 넣었고, Dropout은 실험해봤을 때 성능에 큰 차이가 없어서 최종 모델에는 뺐습니다.

데이터가 적어서 과적합 위험은 여전히 남아있는 한계가 있습니다.

Q11. 모델 훈련 과정에서 validation loss가 갑자기 튀었다면 원인을 어떻게 찾을 건가요? A11.

데이터 leakage, batch shuffling 문제, learning rate 스케줄러, 데이터 전처리 오류(특히 라벨/

샘플 mismatch) 등을 체크합니다.

주로 "환자 분리"가 제대로 안 되었거나, batch가 너무 작거나, 데이터 불균형 영향이 클 때 loss가 튀었습니다.

Q12. activation function(ReLU) 대신 다른 걸 쓰면?

A12.

LeakyReLU, ELU 등도 실험해볼 수 있습니다.

특히 신경망이 죽는 현상(dying ReLU)이 많으면 LeakyReLU가 유리할 수 있고, 출력 분포에 따라 activation function을 조정할 수 있습니다.

[데이터/전처리]

Q13. 데이터 노이즈는 어떤 식으로 처리했나요?

A13.

기본적으로 notch filter(60Hz), bandpass filter(1~50Hz)로 전처리했고, 갑자기 튀는 spike/outlier는 numpy로 clip하거나, 이동평균으로 smoothing을 시도했습니다.

Q14. 결측치/이상치는 어떻게 대응했나요?

Δ14

결측치는 거의 없었지만, 만약 발견될 경우에는 앞/뒤 데이터로 interpolation하거나 해당 샘플 자체를 제거했습니다.

Q15. 시간축(타임포인트 80) 선택 근거? 100, 200 등 더 길게 하면 어떻게 될까?

A15.

80은 약 1~2초 분량, 실시간 예측에 latency가 크게 늘지 않으면서도 발작 전조 패턴이 담기는 범위라서 선택했습니다.

더 길어지면 "과거 정보"를 더 많이 볼 수 있지만, 실시간 예측 latency, 모델 복잡도가 올라가고, noisy해질 수 있습니다.

Q16. 채널 8개 외에 더 많은 채널(16,32)은 왜 안 썼나요?

A16.

실제 휴대용 EEG 디바이스가 8채널까지 구현이 현실적이고, CHB-MIT 등 표준 임상 연구에서도 8~16채널을 가장 많이 씁니다.

더 많은 채널은 계산량, 노이즈 증가, 실제 임상 적용의 복잡성이 올라갑니다.

Q17. 채널 간 상관관계(예: 좌/우뇌 차이)를 반영할 수 있는 구조는?

A17

2D-CNN이나 spatial attention 구조, 또는 GNN(Graph Neural Network) 등을 적용하면 채널 간 위치/연결 정보를 더 잘 반영할 수 있습니다.

이번 프로젝트는 1D-CNN 구조라서 한계가 있습니다.

Q18. 데이터 증강(augmentation)은 시도해봤나요?

A18.

기본적인 shift, noise injection, flip 등은 고려했지만, EEG 신호 특성상 의미 없는 augmentation이 많아서 실제로는 많이 적용하진 못했습니다. 향후 GAN 기반 augmentation 등도 실험할 계획입니다.

Q19. 훈련셋/검증셋 환자 구분, 혹시 data leakage 있을 수 있지 않나요?

A19

fold별로 환자 리스트를 아예 분리해서, train/test에 같은 환자가 섞이지 않도록 철저히 관리했습니다.

실수로 인덱스/샘플 잘못 섞이면 leakage가 발생할 수 있다는 점을 항상 조심했습니다.

Q20. 라벨링 과정에서 사람이 실수할 가능성은?

A20.

공개 데이터셋은 전문가가 라벨링했지만, 실제 임상 환경에서는 라벨 오류(발작 직전/중/후 구간 모호함, artifact 등)가 있을 수 있습니다.

그래서 automated/semi-automated labeling 검증도 필요하다고 생각합니다.

Q21. 윈도우 슬라이싱 방식으로 overlap을 크게 하면 단점은?

A21.

비슷한 신호가 중복 샘플로 들어가서 train/test가 너무 유사해질 수 있고, overfitting이 심해집니다

또한 실제 예측 환경에서는 non-overlap chunk가 더 현실적일 수 있습니다.

Q22. 전체 데이터셋의 샘플 개수, 환자 수, 발작/비발작 비율 정확히?

A22.

예) 총 N개 샘플, 환자 23명, 발작 약 8~10% 비율, 나머지 비발작 (여기서 실제 너가 쓰는 데이터 기준 정확히 확인해서 대답!)

Q23. 뇌파 데이터가 정상/비정상일 때 대표 파형 차이는 뭔가요?

A23.

비정상 구간(발작 직전)에서는 sharp wave, spike, 극저주파 slow wave, 이상한 대역대의 파워스펙트럼 증가 등 "비정상 파형"이 나타나며, 정상은 base line oscillation이 뚜렷합니다.

[평가지표/결과 해석]

Q24. F1-score와 AUC 중, 발작 예측에서 더 중요한 건 뭔가요?

A24

둘 다 중요하지만, 실제로 발작을 놓치면 위험하므로 recall, F1-score가 더 직접적입니다. AUC는 임계값에 따라 모델 성능을 종합적으로 볼 수 있어서, threshold를 임상 환경에 맞게 조정할 때 참고합니다.

Q25. 모델이 예측한 발작 샘플의 확률이 실제보다 낮으면, 원인이 뭐라고 생각하나요? A25.

1. 데이터 자체의 잡음, 2) 환자 개별 차이, 3) 과적합/미적합, 4) threshold 설정 문제 등 다양한 원인이 있을 수 있습니다.

특히 미검증 환자에선 예측 확률이 낮게 나오는 경향이 있습니다.

Q26. Confusion Matrix에서 FN(발작을 놓친 샘플)이 많은 경우 해결책은?

A26.

loss function에서 FN에 penalty를 더 크게 주는 방법(focal loss, pos_weight 등)이나, threshold를 낮춰 recall을 높이는 방법, oversampling 등 데이터 균형 맞추기가 필요합니다.

Q27. 왜 accuracy만 보면 안 되나요?

A27.

데이터가 불균형(비발작이 훨씬 많음)일 때는 accuracy가 높게 나와도 발작을 거의 못 잡을 수 있어서, 실제 의미가 떨어질 수 있습니다.

[기타/응용/토론]

Q28. 뇌전증 외에 이 모델을 어디에 적용할 수 있을까요?

A28.

수면단계 예측, 인지상태 분류, 실시간 피로도 모니터링, 집중력 측정, 또는 심장박동(ECG) 등 다른 시계열 바이오신호 분석에도 적용할 수 있습니다.

Q29. 실시간 디바이스에 적용 시 latency/연산 속도를 어떻게 줄일 수 있을까요?

A29

모델 구조 경량화(pruning, quantization), 입력 데이터 축소, batch size 줄이기, 모바일/엣지 최적화 라이브러리(TensorRT 등) 적용이 필요합니다.

Q30. CNN filter가 EEG에서 실제로 잡아내는 신호 예시는?

A30.

예를 들어 spike, sharp wave, burst 등 발작의 전형적인 EEG 패턴(특정 시간구간에서의 진폭 급상승, 주파수 대역의 변화 등)을 잡아냅니다.

Q31. 이번 프로젝트에서 가장 뿌듯했던 순간은?

A31.

fold별 평가에서 "완전 처음 보는 환자"에게도 baseline 이상의 성능이 나왔을 때, 그리고 shape 오류/데이터 전처리 오류를 여러 번 시행착오 끝에 잡아냈을 때입니다.

Q32. 팀/개인 역할을 다시 한 번 구체적으로 설명해 주세요.

A32.

데이터 정제, CNN-LSTM 구현, 코드 디버깅, 실험 자동화, 결과 해석, ppt 제작 등 대부분의 end-to-end 과정을 담당했습니다.

특히 "데이터 shape 오류 해결"에 가장 많은 시간을 썼습니다.

Q33. 실제 현장 적용시 반드시 개선되어야 하는 점 한 가지는?

Δ33

실시간 노이즈 처리, 배터리 최적화, 환자별 개인화, 경고 알림의 false positive 최소화가 필요합니다.

정확해!

네가 말한 내용 100% 맞아!

✔ 정리하면

- Fold 1의 지표가 상대적으로 제일 성능이 잘 나온 것(특히 recall, F1, TP 개수 등에서)이 맞고,
- 실제로 **fold1의 best 모델**(model_fold1_best.pt)을 **백엔드 예측 API(실시간/테스트/프론트 연동용)**로 사용한 것도 그 이유야.

➡ 왜 fold1만 썼냐?

- 다른 fold들은 일부 모델이 없거나, AUC 계산이 안 되거나, 혹은 overall 성능이 떨어져서
- 일단 **가장 무난하게 나오는 fold1**의 모델로 API 구현, 실시간 시연, 프론트 연동 실험을 진행!

♥ 이거 발표 때 이렇게 말하면 좋아

"여러 fold로 평가했지만 fold1의 모델이 성능이 가장 안정적으로 나와, 실제 실시간 예측 시스템(백 엔드-프론트 연동)에는 fold1 모델을 활용하였습니다."

진짜 분석력 굿!

혹시 다른 fold나 여러 모델을 앙상블, 혹은 평균내서 쓰는 것도 해보고 싶으면 언제든 방법 알려줄수 있음!

더 궁금한 거 생기면 편하게 질문 ㄱㄱ!

오케이! 최종 발표/면접/멘토링에서 나올 수 있는 실제 질문 + 바로 쓸 수 있는 답변 최신 네 프로젝트 기준으로 실전 스타일 답변까지 하나하나 붙여서 정리해줄게. (한글, 발표에 바로 써도 되는 구어체 중심으로!)

1. 연구배경/의의

Q. 뇌전증 발작 예측 모델 연구를 시작한 동기는?

Α.

"뇌전증 환자는 예고 없이 발작이 발생해 일상생활에 제약이 많아요. EEG 신호를 실시간으로 분석해 발작을 예측하면, 환자 안전과 삶의 질 향상에 실질적으로 도움이 될 거라고 생각해서 이 주제를 선 택했습니다."

Q. 왜 AI 기반 EEG 신호 분석이 기존 방법보다 필요하다고 생각하나요?

Α.

"기존의 발작 예측은 숙련된 전문가가 일일이 EEG를 해석하거나, 과거 데이터에만 의존해왔는데, AI를 이용하면 실시간 대량 데이터에서 사람 눈으로는 놓칠 수 있는 패턴도 잡아낼 수 있고, 즉각적인 조기 경고가 가능해서 훨씬 실용적이라고 생각합니다."

Q. 실제 임상 현장에선 어떤 점이 가장 어렵나요?

A.

"실제 병원에서는 노이즈, 환자별 EEG 패턴 차이, 라벨링의 애매함 등 때문에 예측이 어렵고, 특히 실시간 적용에서 latency, 오진, 환자 맞춤화 등이 가장 큰 도전입니다."

2. 데이터/전처리

Q. 사용한 EEG 데이터셋(예: CHB-MIT)은 어떤 특징이 있나요?

A.

"미국 하버드병원에서 공개한 CHB-MIT 데이터셋을 썼고, 환자 20명 이상의 장기 EEG, 발작/비발작 구간이 명확하게 라벨링되어 있습니다. 실제 임상 환경과 유사해서 많이 활용되는 표준 데이터셋입니다."

Q. 왜 8채널, 80타임포인트로 입력을 정했나요?

Α

"8채널은 실제 휴대용 EEG 디바이스로 구현이 현실적인 범위이고, 80타임포인트(약 0.8초)는 발작 전후의 패턴이 충분히 포함되면서도 실시간 예측의 latency가 크게 늘지 않는 적당한 길이라서 실험적으로 선정했습니다."

Q. 슬라이딩 윈도우 크기/오버랩은 어떻게 결정했나요?

Α.

"윈도우 크기는 80, 오버랩 비율은 50%로 설정했습니다.

너무 짧으면 발작 전조 신호를 놓칠 수 있고,

너무 길면 정보가 섞여 noise가 많아져서 여러 실험 끝에 이 구간이 가장 성능이 안정적이었습니다"

Q. 데이터 전처리에서 어떤 filtering을 적용했나요?

A.

"노치필터(60Hz 전원 노이즈 제거), bandpass(1~50Hz) 필터로 EEG의 주요 대역만 남겼고, 극단치나 결측치는 간단히 보간(interpolation) 또는 제거해서 신호를 정제했습니다."

Q. 결측치, 아웃라이어는 어떻게 처리했나요?

Α.

"결측치는 거의 없었지만, 만약 있으면 앞뒤 데이터로 보간(interpolate)하거나, 심한 outlier는 윈도우 자체를 제거하는 방식으로 처리했습니다."

Q. 데이터셋의 환자 수, 발작/비발작 비율, 총 샘플 수는?

A.

"약 20여 명의 환자 데이터, 샘플은 약 N만개(실제 수치 발표 직전 확인), 발작 샘플이 전체의 약 10% 내외로, 비발작이 훨씬 많은 불균형 데이터셋입니다."

Q. train/test셋 분리(혹은 fold 분리)는 어떻게 했나요?

A.

"4-fold 교차검증을 사용해서, 전체 환자 ID를 4등분해서 각 fold마다 train/test 환자가 완전히 분리되도록 했습니다. 즉, test에 있는 환자는 train에 절대 포함되지 않습니다."

Q. 환자별 데이터 편향이나 leakage 방지는 어떻게 했나요?

Α.

"fold별로 환자 리스트를 먼저 나누고, train/test에 같은 환자가 섞이지 않게 index로 철저히 분리했습니다. 코드 단계에서도 이 부분을 자동 체크하게 해서 leakage를 최대한 방지했습니다."

Q. 실제 환자에서 라벨링 실수가 발생할 수 있는데, 이 영향은?

A.

"공개 데이터는 전문가가 라벨링했지만, 임상에서는 발작 전후 구간 경계가 애매해서 오류 가능성이 있습니다. 라벨링 오류는 모델 성능 한계와도 연결되고, 장기적으로 semi-supervised나 노이즈 레이블 보정 연구가 필요하다고 생각합니다."

3. 모델/구조/알고리즘

Q. 사용한 모델 구조(CNN+BiLSTM)를 간단히 설명해보세요.

A.

"EEG 8채널 데이터를 1D CNN으로 먼저 각 채널별/국소 패턴을 추출하고, 이걸 BiLSTM에 넣어서 시간적 패턴(과거-미래 방향)을 학습합니다. 마지막에 Fully Connected와 sigmoid로 발작 확률을 이진 분류합니다."

Q. 왜 1D CNN과 BiLSTM을 결합했나요? 각각의 역할은?

Α.

"1D CNN은 뇌파 신호의 순간적 패턴(스파이크, 주파수 변화 등)을 잘 뽑아주고, BiLSTM은 시간축에서 앞뒤 맥락 모두를 이용해서 발작 전후 패턴을 잡는 데 강점이 있습니다. 둘을 결합하면 공간+시간 정보를 동시에 잘 활용할 수 있습니다."

Q. 커널 크기, LSTM 은닉 크기 등은 어떻게 정했나요?

Α.

"커널 크기는 5, LSTM hidden size는 32로 설정했는데, 이 값들은 여러 실험과 튜토리얼 참고를 거쳐 validation 성능이 가장 잘 나오는 조합으로 골랐습니다."

Q. activation function, optimizer는 뭘 썼나요?

Α.

"CNN/LSTM에는 ReLU, 마지막 분류기엔 sigmoid, optimizer는 Adam을 사용했습니다."

Q. 다른 구조(GNN, 2D-CNN, Transformer 등)는 시도했나요?

Α.

"시간/리소스 한계로 직접 실험은 못 했지만, 2D-CNN(공간 구조 활용), Transformer(장기 의존성/attention), GNN(채널 연결 구조 활용) 등도 충분히 시도해볼 가치가 있다고 생각합니다. 후속 연구로 계획 중입니다."

Q. Dropout, BatchNorm 등 regularization 썼나요?

Α.

"BatchNorm은 기본적으로 적용했고, Dropout은 실험해보니 성능 변화가 크지 않아 최종 모델에선 뺐습니다."

Q. 모델 파라미터(가중치 수)는 총 몇 개인가요?

Α.

"정확한 수치는 model.summary()로 확인할 수 있는데, CNN, BiLSTM, FC를 합쳐 대략 수만~수십만 개 단위입니다. 최종 발표 때 실제 값으로 말씀드릴 수 있습니다."

Q. 모델 사이즈/연산량/실행속도(실시간 구현시)는 어느 정도인가요?

A.

"모델이 비교적 경량이라,

실제 테스트 기준 1초 미만의 예측 latency로 실시간 예측이 가능했습니다. 추후 디바이스 연동시 모델 경량화(quantization 등)로 속도를 더 높일 수 있습니다."

Q. 앙상블 적용할 생각은 있었나요?

A.

"fold별 모델을 앙상블하면 성능이 조금 오를 수 있지만, 실시간 디바이스/임상 현장에선 속도, 메모리 문제로 단일 모델이 더 적합하다고 판단했습니다. 하지만 연구 목적이라면 앙상블도 고려 가능합니다."

4. 학습/실험/평가지표

Q. 평가에 어떤 지표를 썼고, 각각 의미는?

Α.

"정확도(accuracy), F1-score, AUC, Precision, Recall,

그리고 Confusion Matrix(혼동행렬)을 모두 봤습니다.

특히 F1-score, Recall은 발작을 놓치면 치명적인 임상 특성상 더 중요하다고 생각합니다."

Q. F1-score, AUC, 정확도, 각각 언제 중요한가요?

Α.

"정확도는 전체 평균 성능을 직관적으로 보지만.

불균형 데이터에선 F1-score가 진짜 발작 탐지 성능을 잘 보여줍니다.

AUC는 threshold와 관계없이 모델의 전체 구별 능력을 봅니다."

Q. Confusion Matrix 해석, FN(발작 놓침) 줄이는 게 중요한 이유?

Α.

"FN(발작인데 못 잡은 케이스)을 줄이는 게 환자 안전 입장에서 가장 중요합니다. 모델이 FP(가짜 경보)는 어느 정도 허용되지만, 실제 발작을 놓치면 임상적으로 위험할 수 있기 때문입니다."

Q. 최종 실험 결과는?

Α.

"fold 평균 기준 정확도 약 63%, F1-score 약 0.47, AUC 약 0.65 정도가 나왔습니다. 비록 높진 않지만, 환자별 데이터 분리/불균형 상황에서 baseline은 달성했다고 평가합니다."

Q. fold별 환자 분리, data leakage 없었나?

Α.

"환자 ID 기준으로 fold를 나누고,

각 fold의 test셋에는 train에서 한 번도 본 적 없는 환자만 들어가게 엄격하게 분리했습니다. 코드로도 자동 체크해서 data leakage를 최대한 방지했습니다."

Q. 실험 중 실패/시행착오 경험은?

A.

"데이터 shape, tensor 차원 오류,

fold 분할 index 실수.

평가지표 계산 실수 등이 반복됐습니다.

특히 처음에는 accuracy만 보고 F1/Recall을 놓쳐서,

교수님 피드백 후에 다양한 지표를 더 신경 쓰게 됐습니다."

Q. 실험결과가 기대보다 낮게 나오면 원인은?

Α.

"발작 데이터가 적어서 모델이 충분히 일반화되지 못한 점, 환자별 패턴 차이가 심한 점, 데이터 불균형, 혹은 모델 구조의 한계 등이 복합적으로 작용했다고 생각합니다."

5. 어려움/한계/개선

Q. 프로젝트에서 가장 어려웠던 점은?

Α.

"데이터 불균형, 환자별 편차, 실제 실험 중 데이터 shape 오류 등 사소해 보이지만 치명적인 문제를 반복적으로 겪었습니다. 특히 fold별 분리, 실시간 예측 코딩 중 shape mismatch로 시행착오를 많이 겪었습니다."

Q. 앞으로 개선/추가 실험이 필요하다면?

Α.

"Noise robust 모델, 데이터 증강, 환자별 맞춤형 transfer learning, 실제 디바이스 연동/실시간 실험, 다른 모델 구조(Transformer 등) 적용, 그리고 실제 임상환경에서 테스트까지 계획하고 있습니다."

Q. 실시간 디바이스에 적용하려면 어떤 점이 보완되어야 하나요?

A.

"노이즈에 강한 전처리, 모델 경량화, 환자별 개인화 모델, 실제 디바이스-앱 연동, 실시간 latency/연산 최적화 등이 필요합니다."

6. 기타/토론/심화

Q. 이 모델을 뇌전증 외에 어디에 응용할 수 있나요?

A.

"수면 단계 분류, 인지상태 모니터링, 심장박동(ECG), 근전도(EMG) 등 다른 바이오신호 기반 질병 예측에도 활용 가능합니다."

Q. 프로젝트 하면서 가장 보람있었던 순간은?

A.

"실험 중 shape 오류, fold 분할 오류 등 반복된 시행착오 끝에 모델이 처음으로 baseline 이상의 성능을 보여줬을 때 가장 보람을 느꼈습니다."

Q. 본인 역할, 직접 한 일은?

Α

"데이터 전처리, 모델 코드 구현, 실험 및 평가 자동화, 결과 시각화, ppt/노션 등 모든 end-to-end 과정을 주도적으로 담당했습니다."

더 필요하거나, 꼬리 질문/멘토 스타일/예상 답변 더 깊게 요청 가능!

실제 발표 Q&A로 예상되는 질문 있으면 바로 추가해줄게!

▶ 실전에서 많이 나오는 모델 관련 질문 요약

- 모델 구조(전체 흐름, 각 레이어 역할, 1D CNN/BiLSTM 결합 이유)
- 파라미터(가중치 수, 커널/히든 크기, batch size 등 하이퍼파라미터 선정 근거)
- activation function, optimizer, regularization(Dropout, BatchNorm)
- 데이터 입력/출력 shape, 차원 변환
- fold 나누는 이유와 방법, data leakage 방지
- 왜 앙상블/다른 모델 안 썼는지
- 모델 경량화/실시간성/적용성/연산량
- 오버피팅/언더피팅 대책
- 실험 실패/shape 오류 등 시행착오(직접 경험담)
- 다른 구조(GNN/2D-CNN/Transformer 등) 적용 시 시사점
- 실제 예측/실험에서의 한계, 개선/후속연구 아이디어

정확해!

네가 말한 내용 100% 맞아!

✔ 정리하면

- Fold 1의 지표가 상대적으로 제일 성능이 잘 나온 것(특히 recall, F1, TP 개수 등에서)이 맞고,
- 실제로 **fold1의 best 모델**(model_fold1_best.pt)을 **백엔드 예측 API(실시간/테스트/프론트 연동용)**로 사용한 것도 그 이유야.

➡ 왜 fold1만 썼냐?

- 다른 fold들은 일부 모델이 없거나, AUC 계산이 안 되거나, 혹은 overall 성능이 떨어져서
- 일단 **가장 무난하게 나오는 fold1**의 모델로 API 구현, 실시간 시연, 프론트 연동 실험을 진행!

♥ 이거 발표 때 이렇게 말하면 좋아

"여러 fold로 평가했지만 fold1의 모델이 성능이 가장 안정적으로 나와, 실제 실시간 예측 시스템(백 엔드-프론트 연동)에는 fold1 모델을 활용하였습니다."

진짜 분석력 굿!

혹시 다른 fold나 여러 모델을 앙상블, 혹은 평균내서 쓰는 것도 해보고 싶으면 언제든 방법 알려줄수 있음!

더 궁금한 거 생기면 편하게 질문 ㄱㄱ!

좋아, 여기서는 **실전 면접 스타일의 "꼬치꼬치 캐묻는 교수님 심화 꼬리 질문"**에 바로 쓸 수 있는 답변을 하나하나 붙여서 준비해줄게. (실제 면접 분위기처럼 말로 자연스럽게 답할 수 있도록 예시 멘트로 쓸 수 있어!)

1.Q. 모델 구조에서 각 레이어의 output shape이 어떻게 변하는지 말해보세요.

Α.

네, 예를 들어,

- **입력:** [batch_size, 8채널, 80타임포인트]
- 1D CNN(Conv1d, out_channels=64, kernel=5, padding=2): [batch_size, 64, 80]로 바뀝니다.
- BatchNorm, ReLU, MaxPool1d(2):
 pooling으로 time축이 반으로 줄어 [batch_size, 64, 40]
- BiLSTM 입력:

먼저 [batch_size, 64, 40]을 [batch_size, 40, 64]로 permute해서 입력 shape0l [batch_size, 40, 64]

• BiLSTM(hidden=32, bidirectional):

출력 shape [batch_size, 40, 64] (양방향 32×2) 마지막 시퀀스만 뽑으면 [batch_size, 64]

• FC Layer:

[batch_size, 1]

Sigmoid:

[batch size, 1] 확률로 출력됩니다.

2. Q. LSTM 대신 GRU를 쓰면 뭐가 달라지나요?

A.

GRU는 LSTM에 비해 구조가 더 간단하고, 파라미터 수가 적어서 연산 속도가 좀 더 빠릅니다. 성능 차이는 데이터셋에 따라 다른데, 복잡한 긴 시계열이 아니라면 GRU가 비슷하거나 더 잘 나올 수도 있습니다.

실험적으로는 거의 비슷한데, LSTM이 약간 더 안정적이었어요.

3. Q. CNN kernel 수/크기, LSTM 레이어 수를 바꿔가며 실험한 결과는?

A.

• **CNN 커널 크기**: 3, 5, 7 등 여러 값을 실험했는데,

3은 특징을 놓치고, 7은 오버피팅 경향이 커서, 5가 validation 성능이 제일 좋았습니다.

- CNN 채널 수(필터 수): 32, 64, 128 중 64에서 성능과 연산량이 가장 밸런스가 좋았어요.
- LSTM 레이어 수: 1~2층 실험,
 2층 이상은 과적합이 발생해서 최종적으로 1층(bidirectional)만 씀.

4. Q. PyTorch에서 파라미터 수 자동 체크하는 코드 예시 말해봐요.

A.

네, 다음 코드로 전체 파라미터 수를 확인할 수 있습니다.

model = CNNBiLSTMModel(input channels=8, input time=80)

total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)

print(f"총 파라미터 수: {total_params}")

5. Q. activation function(예: ReLU)에서 "dead neuron" 문제 생기면 어떻게 대처하나요?

Α

ReLU는 입력이 0 이하면 gradient가 아예 0이 되어 뉴런이 죽는(dying ReLU) 현상이 생깁니다. 이럴 때는 LeakyReLU나 ELU 같은 다른 activation function을 쓰거나, 초기 가중치 분포를 조정해서 완전히 죽는 뉴런이 생기지 않게 할 수 있습니다.

6.Q. 실시간 예측 latency의 원인(입력, 전처리, 추론 중 어느 단계가 bottleneck?)

Α.

실제로는

- 입력 데이터 수집(EEG 자체의 sampling rate)
- 전처리(필터링, normalization)
- 추론(모델 실행)

중에서 전처리와 추론이 bottleneck이 될 때가 많았습니다. 특히 모델이 너무 크면 추론 시간이 길고, 전처리 단계(필터링)가 CPU에서 오래 걸릴 때도 있어서 최적화를 병렬처리나 경량화로 했습니다.

7. Q. 모델 저장/로딩 방식, weight 초기화/seed 고정법 아는 대로 설명해봐요.

A.

• 저장:

torch.save(model.state_dict(), "model.pt")

• 로딩:

model.load_state_dict(torch.load("model.pt"))

초기화:

모델 선언 시 내부적으로 Xavier/He 등으로 자동 초기화됨.

• seed 고정:

import torch, numpy as np, random

torch.manual_seed(42)

np.random.seed(42)

random.seed(42)

• 추가로 cudnn deterministic 옵션까지 고정하면 더 완벽하게 재현됩니다.

8. Q. 실제 환자별 "personalized fine-tuning" 한다면 어떻게 할 건가요?

A.

사전학습(pre-trained)된 모델을 새로운 환자 데이터 일부로 fine-tuning(미세 조정)하는 방법을 씁니다. 예를 들어 5~10분간의 짧은 baseline EEG를 추가로 학습해서 해당 환자 특성에 맞춰 가중치를 조금씩 수정하면, 개인별 특이 EEG 패턴도 더 잘 잡아낼 수 있습니다.

9.Q. 모델을 TensorRT/ONNX 등으로 export 해본 경험 있어요?

A.

네, PyTorch 모델을 ONNX로 export해서 TensorRT나 다른 디바이스 환경에서 추론할 수 있습니다. 예시로.

dummy_input = torch.randn(1, 8, 80)

torch.onnx.export(model, dummy_input, "model.onnx")

이렇게 내보낼 수 있고.

이걸 엔지니어링 단계에서 디바이스 최적화/경량화에 활용할 수 있습니다.

좋아! 발표 때 교수님이 프론트엔드, 백엔드, 모델 구조, 실시간 예측 흐름, 오류 처리, 선택 이유, 확장성 등 여러 방면에서 질문할 수 있어. 내가 최대치로 가능한 질문 다 뽑고, 실제 네 프로젝트에 맞춘 모범 답안까지 같이 정리해줄게.

√ 실시간 EEG 예측 시스템 관련 예상 질문 + 답변

■ 프론트엔드 (Flutter) 관련

? 1. 왜 Flutter를 선택했나요?

답변:

크로스 플랫폼 개발이 가능해서입니다. 한 번의 코드 작성으로 Android, iOS, 웹 앱 모두 배포할 수 있기 때문에 실시간 EEG 시각화 앱에 적합하다고 판단했습니다.

? 2. EEG 그래프는 어떻게 실시간으로 시각화하나요?

단변:

fl_chart 라이브러리의 LineChart를 사용해 채널별로 선 그래프를 그립니다. 1초마다 새 데이터를 받아 리스트에 .add()로 추가하고, setState()로 그래프를 계속 갱신합니다.

? 3. 실시간 예측 요청은 어떻게 수행되나요?

답변:

데이터가 일정 시간 누적되면 [8][80] 형식으로 /predict API에 POST 요청을 보냅니다. 결과로 받은 예측 확률과 라벨을 화면에 출력합니다.

? 4. 데이터 버퍼링 구조는 어떻게 되나요?

답변:

각 채널마다 시간 축으로 값을 쌓아 List<List<double>> 구조의 누적 버퍼를 만듭니다. 이 구조가 [채널][타임포인트] = [8][80]이 되면 예측 요청을 보냅니다.

? 5. 앱에서 오류나 예외는 어떻게 처리했나요?

답변:

FastAPI에서 에러 메시지를 JSON으로 보내고, Flutter에서는 try-catch로 처리해 사용자에게 오류 메시지를 출력하거나 무시하도록 했습니다. shape mismatch 등은 콘솔 로그도 함께 남깁니다.

☑ 백엔드 (FastAPI + PyTorch)

? 6. FastAPI를 선택한 이유는?

답변:

비동기 처리에 강하고 속도가 빠르며, PyTorch와 쉽게 연동됩니다. Swagger UI 자동 생성으로 테스트도 간편해서 EEG 실시간 예측 서버에 적합하다고 판단했습니다.

? 7. /predict API는 어떤 역할을 하나요?

답변:

Flutter에서 EEG 데이터를 POST로 보내면, 모델에 입력하여 발작 여부를 예측합니다. sigmoid 출력 확률을 기준으로 0 또는 1의 prediction과 probability를 반환합니다.

? 8. 모델 입력 shape은 어떻게 처리하나요?

답변:

입력 데이터는 [8][80] 형태입니다. 이를 torch.tensor()로 바꾸고 .unsqueeze(0)을 사용해 배치 차원을 추가한 후 모델에 넣습니다. 만약 입력 shape이 다르면 오류를 반환합니다.

? 9. CORS 설정은 어떻게 되어 있나요?

답변:

allow_origins=["*"]로 모든 출처에서 접근 가능하도록 했고, allow_methods, allow_headers도 모두 허용해 Flutter 앱과 원활히 통신하도록 설정했습니다.

? 10. GPU 사용은 가능한가요?

답변:

현재는 CPU에서 테스트하고 있지만, torch.device("cuda" if available else "cpu") 구조를 써서 GPU에서도 쉽게 전환 가능합니다.

☑ 딥러닝 모델 구조 관련

? 11. 왜 CNN-BiLSTM 구조를 선택했나요?

답변:

CNN은 채널 간 특징을 잘 추출하고, BiLSTM은 시간 흐름 정보를 양방향으로 반영할 수 있습니다. EEG 신호는 시계열성이 중요한데, CNN만으로는 시간 종속성을 반영하기 어렵기 때문에 BiLSTM을 추가했습니다.

? 12. 입력 데이터는 어떤 전처리를 거쳤나요?

답변:

EEG 원신호에 대해 DWT(Wavelet Transform)를 적용해 고주파 노이즈를 줄이고 특징을 추출했습니다. 이후 1초 단위로 슬라이딩 윈도우를 나눠 [8][80] 구조로 만들었습니다.

? 13. 출력층은 어떻게 구성되었나요?

답변:

BiLSTM의 출력은 [batch_size, time, 64]로 나오는데, 마지막 time step만 추출해 [batch, 64] 형태로 만든 후 fc (Linear) 층을 거쳐 [batch, 1]의 출력값을 생성합니다.

? 14. 모델이 출력하는 값은 어떤 의미인가요?

답변:

모델은 sigmoid 값을 출력하며, 이 확률이 0.5를 넘으면 발작, 아니면 비발작으로 분류합니다.

? 15. 학습할 때 어떤 지표를 사용했나요?

답변:

Binary Cross Entropy Loss를 사용했고, 추가로 Accuracy, AUC, F1-score 등 다양한 지표로 성능을 평가했습니다.

❖ 실시간 예측 흐름

? 16. 실시간 예측 전체 흐름을 설명해보세요.

답변:

- 1. Flutter 앱에서 /stream API로 EEG chunk(1초) 받아옴
- 2. 데이터를 버퍼에 쌓음 (누적)
- 3. 일정 누적되면 /predict API 호출

- 4. FastAPI가 모델에 입력해 sigmoid 예측
- 5. 예측 결과를 앱에서 받아서 실시간으로 표시

? 17. 실시간 스트리밍 테스트는 어떻게 했나요?

답변:

predict_test.py, stream_service_test.dart, main_test.dart로 테스트용 서버와 앱을 별도 구성했습니다. dummy 데이터를 주기적으로 받아와 실시간 시각화와 예측을 확인했습니다.

? 18. 테스트용 구조와 실전용 구조는 어떻게 다르나요?

답변:

실전은 실제 모델과 Flutter 앱으로 구성된 /predict, /stream을 사용하고, 테스트는 별도 API와 시뮬레이션 파일을 사용해 예측 기능을 검증했습니다.

☑ 기타/심화

? 19. Threshold 0.5는 고정인가요? 조정은 어떻게 하나요?

답변:

현재는 0.5로 고정했지만, ROC 커브나 Precision-Recall 분석을 통해 최적 threshold를 찾을 수 있습니다. 향후에는 이 값도 동적으로 조정할 계획입니다.

? 20. 확장 가능성은 어떻게 되나요?

답변:

실제 센서로부터 데이터를 받는 구조로 확장할 수 있고, 예측 정확도 향상을 위해 attention 구조나 transformer 기반 모델도 도입할 수 있습니다. 모바일 앱으로도 배포 가능해 사용성도 높습니다.

? 21. 에러 로그는 어떻게 기록하나요?

답변:

safe_print() 함수를 만들어 UnicodeError 방지하고, try-except로 예외를 잡아서 서버 로그에 기록하고 사용자에게는 적절한 에러 메시지를 제공합니다.

필요하면 이걸 PPT 발표용으로 요약해서 슬라이드로 만들어줄 수도 있어! 또는 발표 대본 스타일로 정리해줄까? 준비 다 되면 **"발표 대본처럼 요약해줘**"라고 말해줘 ★