

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA 1HP1

An Institute of National Importance under Mol-Saloh, Una (HP) – 177 209

Website: www.iiitu.ac.in

21205

School of Electronics CURRICULUM: HITUGECE22

Cycle Test - 11 April 03, 2023

Degree	1 13 791			
Semester	B. Tech.	Branch	ECE	
Control of the Contro	ECC401: Microwave Engineering			
Subject Code & Name				
Time: 60 Minutes	A	crowave Engineer	ing	
	Answer	All Questions	Maximum: 20 Marks	

	o. Question	Marks
1	Consider an air filled rectangular waveguide with a cross section of 5 cm×3 cm. For this waveguide, find the cut off frequency (in MHz) of TE ₂₁ mode.	1
1.	port symmetrical and a perfectly matched, lossless, and non-reciprocal four-	2 (1+1)
1.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2
2.4	The E field in a rectangular waveguide of inner dimensions $a \times b$ is given by, $E = (\omega \mu/h^2) (\pi/a) H_0 \sin(2\pi x/a) \sin(\omega t - \beta z) \hat{y}$, Where H_0 is a constant, a and b are the dimensions along the x – axis and the y – axis respectively. Find the mode of propagation in the waveguide.	1
2.b	Analytically explain the concept of velocity modulation in a two cavity klystron.	2
2.0	For a rectangular waveguide of internal dimensions $a \times b(a > b)$, the cut – off frequency for the TE ₁₁ mode is the arithmetic mean of the cut – off frequencies for TE ₁₀ mode and TE ₂₀ mode. If $a=\sqrt{5}$ cm, what is the value of b (in cm)?	2
3.a	The modes of rectangular waveguide are denoted by TE _{nm} / TM _{nm} when m and n are Eigen numbers along the larger and smaller dimensions of the waveguide respectively. Identify whether the following statements are true or false and explain the reason. (i) The TE ₁₁ and TM ₁₀ are the dominant modes of waveguide. (ii) The TM ₁₀ and TE ₁₀ modes both exist and have same cut off frequency.	1
3.k	What is the function of the helix in a traveling wave tube (TWT)?	2
3.2	Interpret the resonant modes with equivalent circuit in the operation of magnetron.	2
4.a	Draw at least four valid slow wave structures other than Helical structure.	1
4.b	Explain the concept of modes in reflex klystron oscillator. Identify the mode in which the reflex klystron generates maximum power.	
4.c	A three-port circulator has an insertion loss of 1 dB and an isolation of -30 dB. Find the S-parameters S_{21} and S_{31} .	2

**** GOOD LUCK ****

Page 1 of 1

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2022-23

School of Electronics

CURRICULUM: HITUGECE22

Cycle Test - II 03, Apr.'23

	0.	3, Apr. 23	
	B, Tech.	Branch	ECE
Degree	IV		
Subject Code & Name	ECC402 / Con		Maximum: 20 Marks
Time: 60 Minutes	Answer	All Questions	Wiaximum. 20 Yaxaa

Subject	Answer All Questions		
Time: 60 Minutes			Marks
Sl.	Question	to 11 Compton	1
No. 1.a What is the reason for def	ining time domain performance meas What would be the implications if ran	sures specifically for step on particular surplines and surplines are surplines and surplines are su	
i control volume.	What would be the implications it rains kept in ice (0°C) for an indefinite pwater (100°C) and it showed 75°C aft thermometer.		2
1. Hataly hill ill bulling			2
C4l a domni	ng ratio, damped and under district	equency of the oscillations	
1.c Find the value of the damph a closed-loop system is repr	resented by $\frac{d^2c}{dt^2} + 4.8 \frac{dc}{dt} = 144e$		
· · · · · · · ·			$\frac{1}{1}$
where $e = r - 0.5c$ is the a	ctual signal. re row of zeros in the Routh's array alanswer.	lways mean that the systen	n l
2.8 Does the presence of an end has $j\omega$ poles? Justify your a	nswer. racteristics of the step responses of some the following ways:	second-order underdampe	d
i. with constant real p	art; nary part;		
2.c Given the control system in	r Figure 1, find the value of K so that	at there is 10% error in th	ne
steady state. $\xrightarrow{R(s)}$	$ \xrightarrow{\pm} E(s) \overline{K(s+5) \over s(s+6)(s+7)(s+8)} $	Y(s)	
	Figure 1: A feedback control system	d - DIRO definition	of
3ta Why are marginally stable stability?	e systems considered unstable und	er the BIBO definition	voh.
3.b Analytically prove that the other (consider both 1st and	time and frequency domain perform	ances are corelated to ea	ich
Totaler (consider court and	2 Order systems).		Pag

1	In the system shown in Figure 2, let $G(s)$ be $G(s) = \frac{K}{S(s+7)(s+1)}$ Find the range of gain, K, for the system as in Figure 2 that will cause the system to be stable, unstable, and marginally stable. Assume $K > 0$.	
	Find the range of gain, K, for the system as in Figure unstable, and marginally stable. Assume $K > 0$. $R(s) \longrightarrow G(s)$	
	Figure 2: A feedback control system What are the various advantages of frequency response techniques over the root locus?	1 2
4.a		
7.0	Sketch the root locus for the following eye $G(s) = \frac{1}{s^4 + 4}$ For each closed-loop system with the following performance characteristics, find the closed-loop handwidth:	2
4.c	100D Danuwidii.	
111	i. $\zeta = 0.2$; $T_S = 3$ seconds; ii. $T_S = 4$ seconds; $T_P = 2$ seconds.	
	**** COOD LUCK ****	

**** GOOD LUCK *****

Page 2 r

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2022-23 School of Electronics CURRICULUM: IIITUECE20

Cycle Test - II 05, April'23

Dague			
Degree	B. Tech.	Branch	ECE
Semester	IV		
Subject Code & Name	ECC403: Mic	croprocessors and M	icrocontrollers
Time: 60 Minutes	Answe	r All Questions	Maximum: 20 Marks

SI.		Marks
No.	Question	
1.a	Find the time delay associated with the loop section of the following DELAY subroutine: DELAY: MOV R3, #100 HERE: NOP NOP NOP DJNZ R3, HERE RET	(1)
1.b	For a crystal frequency of 12MHz. The cost prices of 10 items are stored in RAM locations starting from 50H onwards. When these items are sold out as indicated by a 'high' on a switch, the cost price is replaced by the selling price by adding a constant profit of 19 to each value. This replaced data is sent out through port 1 with a delay between each data transfer. Write a changed data is sent out through port 1 with a delay between each data transfer.	(2)
1.6	Discuss the register indirect addressing mode with its main limitation. Use this mode to take 10 bytes of data from RAM locations 35H to 44H, add 02 to each of them, and save take 10 bytes of data from RAM locations 60H.	(2)
2.8	take 10 bytes of data from 15th the result in RAM locations 69H down to 60H. Examine the following code, then answer the following questions: i) Will it jump to NEXT? ii) What is in A after the CJNE instruction is executed? MOV A. #55H CJNE A. #99H, NEXT	(1)
2.b	NEXT: In a semester, a student has to take six courses. The marks of the student (out of 25) are stored in RAM locations 47H onwards. Write a program to find the average marks, and	e d (2)
2.c	output it on port 1. Write a program to transfer value 41H serially (one bit at a time) with sending the byt LSB first via pin P2.1. And put two highs at the start and end of the data.	
3.a	Discuss the format of TMOD register.	(1)

	Find the delay generated by Timer 0 in the following code, using both hexadecimal and decimal methods. Do not include the overhead due to instructions. CLR P2.3 MOV TMOD, #01 HERE: MOV TL0, #3EH MOV TH0, #0B8H SETB P2.3 SETB TR0 AGAIN: JNB TF0, AGAIN CLR TR0 CLR TF0 CLR P2.3	(2)
3.0	Generate a square wave with an ON time of 3ms and an OFF time of 10ms on all pins of port 0 by using Timer 0 in Mode 1. Assume an XTAL of 22MHz.	(2)
4.a	Discuss equivalent instructions for the Timer control register (TCON) for starting and stopping the timers/counters.	(1)
4.18	Discuss the different steps to find the values to be loaded into the timer with suitable programming example.	(2)
4.c	Design a counter for counting the pulses of an input signal. The pulses to be counted are fed to pin P3.4 for XTAL = 22MHz.	(2)

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY UNA [HP]

An Institute of National Importance under MoE Saloh, Una (HP) - 177 209

Website: www.iiitu.ac.in

AY 2022-23

School of Electronics

CURRICULUM: IIITUGECE22

Cycle Test - II 05, Apr.'23

Time: 02:00-03:00PM

			A CONTRACTOR OF THE PARTY OF TH	No. of Concession, Name of Street, or other Desires, Name of Street, Name of S
Degree	B. Tech.	Branch	ECE	
Semester	IV			
Subject Code & Name	ECC404: Lin	ear Integrated Circ	uits	
	Answer	All Questions	Maximum: 20 Mar	ks
Time: 60 Minutes	Answer	All Questions	Maximum: 20 Mar	KS

Sl.	Question	Marks
No.	OD AMB	(1)
1.3	Design a voltage limiter circuit using OP-AMP.	(2)
1.b	Draw the block diagram of multiplier using log and antilog amplifiers. Also, find the expression for output voltage.	(2)
1.c	Determine the output voltage for the circuit shown in Figure 1. Given $I_R = 50$ nA, $V_{IN} = 2V$ and $R = 100$ k. Vino R Vout	(2)
	Figure 1	
	C invit diagram	(1)
2a /	Explain the peak detector with the help of circuit diagram. Design a full wave rectifier using OP-AMP for positive cycle and obtain the gain	of (2)
2.b	Design a full wave rectifier using Or-Airl to person	
2.0	amplifier. Find v _o and i _o in the OP-AMP circuit given in Figure 2.	
C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2)
	Figure 2	
D	efine the following terms with respect to filter:	\ (
	Cut - off frequency	
1 11	Stop and Pass band	

**** GOOD LUCK *****