

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 7.

Performance metrics

DATA SCIENCE AND AUTOMATION COURSE

MASTER DEGREE SMART TECHNOLOGY ENGINEERING

TEACHER Mirko Mazzo<u>leni</u>

University of Bergamo

1. Metrics

2. Precision and recall

1. Metrics

2. Precision and recall

Metrics

It is extremely important to use **quantitative metrics** for evaluating a machine learning model

- Until now, we relied on the cost function value for regression and classification
- Other metrics can be used to better evaluate and understand the model

For classification

✓ Accuracy/Precision/Recall/F1-score, ROC curves,...

For regression

✓ Normalized RMSE, Normalized Mean Absolute Error (NMAE),...

Classification case: metrics for skewed classes

Disease dichotomic classification example

Train logistic regression model h(x), with y = 1 if disease, y = 0 otherwise.

Find that you got 1% error on test set (99% correct diagnoses)

Only 0.50% of patients **actually have** disease

The y = 1 class has very few examples with respect to the y = 0 class

If I use a predictor that predicts always the 0 class, I get 99.5% of accuracy!!

For skewed classes, the accuracy metric can be deceptive

1. Metrics

2. Precision and recall

Precision and recall

Suppose that y = 1 in presence of a **rare class** that we want to detect

Precision (How much we are precise in the detection)

Of all patients where we predicted y = 1, what fraction actually has the disease?

$$\frac{\text{True Positive}}{\text{\# Predicted Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}$$

Recall (How much we are good at detecting)

Of all patients that actually have the disease, what fraction did we correctly detect as having the disease?

$$\frac{\text{True Positive}}{\text{\# Actual Positive}} = \frac{\text{True Positive}}{\text{True Positive} + \text{False Negative}}$$

Confusion matrix

Actual class

Predicted class

	1 (p)	0 (n)
1(Y)	True positive (TP)	False positive (FP)
0 (N)	False negative (FN)	True negative (TN)

Trading off precision and recall

Logistic regression: $0 \le h(x) \le 1$

- Predict 1 if $h(x) \ge 0.5$ Predict 0 if h(x) < 0.5These thresholds can be different from 0.5!

At different thresholds, correspond different confusion matrices!

Suppose we want to predict y = 1 (disease) only if very confident

Increase threshold → Higher precision, lower recall

Suppose we want to avoid missing too many cases of disease (avoid false negatives).

Decrease threshold → Higher recall, lower precision

F1-score

It is usually better to compare models by means of one number only. The F1-score can be used to combine precision and recall

	Precision(P)	Recall (R)	Average	F ₁ Score	
Algorithm 1	0.5	0.4	0.45	0.444	The best is Algorithm 1
Algorithm 2	0.7	0.1	0.4	0.175	
Algorithm 3	0.02	1.0	0.51	0.0392	
Algorithm 3 predict always 1			Average sa that Algorit	ys not corre thm 3 is the bo	ectly est

Average =
$$\frac{P+R}{2}$$
 F_1 score = $2\frac{PR}{P+R}$

•
$$P = 0$$
 or $R = 0 \Rightarrow F_1$ score $= 0$

•
$$P = 1$$
 and $R = 1 \Rightarrow F_1$ score = 1

Summaries of the confusion matrix

Different metrics can be computed from the confusion matrix, depending on the class of

interest (https://en.wikipedia.org/wiki/Precision_and_recall)

		True con	dition		
	Total population	Condition positive	Condition negative	Prevalence = $\frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$	False discovery rate (FDR) = $\frac{\Sigma}{\Gamma}$ False positive $\frac{\Sigma}{\Gamma}$ Predicted condition positive
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$
		True positive rate (TPR), Recall, Sensitivity, probability of detection = $\frac{\sum \text{True positive}}{\sum \text{Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm = $\frac{\sum False\ positive}{\sum\ Condition\ negative}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate $(TNR) = \frac{\sum True \ negative}{\sum Condition \ negative}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-} \qquad \frac{\frac{1}{Recall} + \frac{1}{Precision}}{2}$

1. Metrics

2. Precision and recall

Ranking instead of classifying

Classifiers such as logistic regression can output a **probability** of belonging to a class (or something similar).

 We can use this to rank the different istances and take actions on the cases at top of the list

We may have a budget, so we have to target most promising individuals

Ranking enables to use different techniques for visualizing model performance

Ranking instead of classifying

Adapated from [1]

confusion

ROC curves

ROC curves are a very general way to **represent and compare** the performance of different models (on a binary classification task)

Observations

- (0,0): predict always negative
- (1,1): predict always positive
- Diagonal line: random classifier
- Below diagonal line: worse than random classifier
- Different classifiers can be compared
- Area Under the Curve (AUC): probability that a randomly chosen positive instance will be ranked ahead of randomly chosen negative instance