Oppgaver - SOK3023

Maskinlæring for økonomer Laget av Markus J. Aase

January 20, 2025

Dette dokumentet inneholder oppgaver studentene i SOK-3023 kan jobbe med etter andre uka av kurset. En del av svarene vil dere kunne finne fra de fysiske forelesningene og/eller kompendiet. Mens noen spørsmål krever at dere oppsøker informasjonen selv i dokumentasjon til Tensorflow eller andre sted på internett.

1. Bias-Variance Trade-off

Forklar bias-variance trade-off og beskriv hva som skjer med modellens ytelse dersom bias er for høy eller variansen er for høy.

2. Veiledet vs. ikke-veiledet læring

Hva er forskjellen mellom veiledet og ikke-veiledet læring? Gi eksempler på hver type læring.

3. Kryssvalidering

Hva er kryssvalidering, og hvorfor brukes det? Beskriv en vanlig metode for kryssvalidering.

4. Evaluering av regresjonsmodeller

Sammenlign Mean Squared Error (MSE) og Mean Absolute Error (MAE). Hva er fordelene og ulempene med hver metode? F.eks. hvordan takler de *outliers* (altså hvor det er stor forskjell mellom $\hat{y_i}$ (predikert) og y_i (observert).

Formler:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
, MAE = $\frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$.

5. Evaluering av klassifikasjonsmodeller

Forklar med egne ord hva accuracy, precision og recall er, gjerne bruk eksempelet under. Bruk følgende formler:

$$\begin{aligned} \text{Accuracy} &= \frac{TP + TN}{TP + TN + FP + FN}, \\ \text{Precision} &= \frac{TP}{TP + FP}, \quad \text{Recall/Sensitivitet} &= \frac{TP}{TP + FN}. \end{aligned}$$

(a) Anta at vi har en modell som forsøker å identifisere kredittkortsvindel. Modellen klassifiserer transaksjoner som enten ikke-svindel (0) eller svindel (1). Vi evaluerer modellen ved å bruke en confusion matrix basert på 1000 test-transaksjoner:

	Predikert: Ikke-svindel (0)	Predikert: Svindel (1)
Faktisk: Ikke-svindel (0)	950 (TN)	30 (FP)
Faktisk: Svindel (1)	15 (FN)	5 (TP)

Er dette en god modell? Hvorfor/hvorfor ikke?

- True Negatives (TN) = 950 Modellen korrekt identifiserer mange ikke-svindeltransaksjoner.
- False Positives (FP) = 30 Modellen feilaktig markerer noen ikke-svindeltransaksjoner som svindel.
- False Negatives (FN) = 15 Modellen overser 15 tilfeller av faktisk svindel.
- True Positives (TP) = 5 Modellen korrekt identifiserer kun 5 svindeltilfeller.

6. MNIST-datasettet

Hvordan kan et tall fra MNIST-datasettet gjøres om til inputlaget i et nevralt nettverk? Illustrer.

Figure 1: Eksempel på MNIST-data, som brukes til håndskriftgjenkjenning i maskinlæring.

7. Nevrale nettverk

Forklar arkitekturen i et nevralt nettverk. Beskriv input-laget, skjulte lag og output-laget. Illustrer.

8. Aktiveringsfunksjoner

Hva er en aktiveringsfunksjon? Gi tre eksempler, forklar hvordan de fungerer og hvorfor de er relevant i nevrale nettverk.

9. Hva betyr *læring* i maskinlæring?

Forklar hva *læring* refererer til i maskinlæring, og hvordan en modell forbedrer seg over tid.

10. Batch, epoch og loss-funksjon

Forklar forskjellen mellom batch, epoch og loss-funksjon i maskinlæring. Hvordan påvirker disse modelltreningen?