Boosting as Frank-Wolfe

Ryotaro Mitsuboshi^{1,2} Kohei Hatano^{1,2} Eiji Takimoto¹

 $^{1}\mathrm{Kyushu}$ University

²Riken AIP

OPT 2022

Soft margin optimization

- Input: $S = ((x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)) \in (\mathcal{X} \times \{\pm 1\})^m$.
- Output: A combined hypothesis $H_T = \sum_{h \in \mathcal{H}} \bar{w}_h h$, where \bar{w} is an optimal solution of:

$$\max_{\substack{\rho, \boldsymbol{w}, \boldsymbol{\xi}}} \quad \rho - \frac{1}{\nu} \sum_{i=1}^{m} \xi_{i}$$
s.t. $y_{i} \sum_{h \in \mathcal{H}} w_{h} h(\boldsymbol{x}_{i}) \geq \rho - \xi_{i}, \quad i \in [m],$

$$\sum_{h \in \mathcal{H}} w_{h} = 1, \, \boldsymbol{w} \geq \boldsymbol{0}, \boldsymbol{\xi} \geq \boldsymbol{0}.$$

- A linear program.
- ullet Hard for off-the-shelf solvers when ${\cal H}$ is a huge set.
- Boosting is a standard approach for such a situation.

Boosting

Solves the dual problem of soft margin optimization:

$$\min_{\boldsymbol{d} \in \Delta_{m,\nu}} \max_{h \in \mathcal{H}} (\boldsymbol{d}^{\top} A)_h, \quad \Delta_{m,\nu} = \{\boldsymbol{d} \in [0,1/\nu]^m \mid \|\boldsymbol{d}\|_1 = 1\}.$$

• Boosting is a protocol between Booster and Weak Learner (WL).

In each step $t = 1, 2, \ldots, T$,

- **1** Booster sends d_{t-1} to WL.
- **2** Booster obtains a hypothesis $h_t \in \mathcal{H}$ from WL.
- **3** Booster updates the distribution $d_t \in \Delta_{m,\nu}$ over training instances.

Output
$$H_T = \sum_{t=1}^T w_t h_t$$
.

Related works

	LPBoost	ERLPBoost	C-ERLPBoost
Rounds	$\Omega(m)$	$O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$	$O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$
Sub-problem	LP	СР	LP

- LPBoost is practical but takes $\Omega(m)$ rounds for the worst case.
- ERLPBoost has a favorable bound but involves a convex program per round.
 ⇒ Slower than LPBoost.
- C-ERLPBoost has the same bound and solves LP, but it takes many rounds, so it is slower than ERLPBoost.

Our objective

Find a practical boosting algorithm that has a theoretical guarantee.

Contributions

Two contributions.

- A unified view of the boosting algorithms.
 - LPBoost, ERLPBoost, and C-ERLPBoost are instances of the Frank-Wolfe algorithm.
- Propose a "boosting scheme".
 - ERLPBoost and C-ERLPBoost are the instances of this scheme.
 - Terminates in $O(\frac{1}{\epsilon^2} \ln \frac{m}{\nu})$ rounds.
 - One can incorporate any heuristic algorithm into this scheme.

Experiments

