The Boolean Calculus:

Boolean Functions, Boolean Algebras, Boolean Expressions

Becker/Molitor, Chapter 2

Jan Reineke Universität des Saarlandes

Boolean functions as a mathemetical model for circuits

Due to binary representation of numbers and characters, assume $B=\{0,1\}$.

Circuit implements/computes a function $f: B^n \to B^m$

Central questions

- 1. Can every Boolean function be implemented by some circuit?
- 2. Given a Boolean function, can we systematically construct a circuit that implements this function?
- 3. Given a Boolean function, can we systematically construct an **efficient** circuit that implements this function?

Overview

Boolean calculus

Boolean functions

• A mapping $f: \mathbf{B}^n \to \mathbf{B}^m$ is called (total) Boolean function in n variables.

- $B_{n,m} := B^n \rightarrow B^m$
- A mapping $f: D \to B^m$ with $D \subseteq B^n$ is called (partial) Boolean function in n variables.

$$B_{n,m}(D) := D \rightarrow B^m \text{ for } D \subseteq B^n$$

Truth tables

Boolean functions can be represented via **truth tables**:

			I	
\mathbf{x}_1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{s}_1	s_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
	2 ⁿ input		result	vector

combinations

Question: How many Boolean functions

 $B_{n,m}$ are there?

$$|\mathbf{B}_{n,m}| = 2^{m*2^n}$$

On-Set and Off-Set

Let m = 1, then

- ON(f) := { $\alpha \in B^n \mid f(\alpha) = 1$ } is the On-Set of f,
- OFF(f):={ $\alpha \in B^n \mid f(\alpha) = 0$ } is the Off-Set of f.

For $f: D \to B^m$ with $D \subseteq B^n$ we call

- the set def(f) := D domain (of definition) of f,
- the set $DC(f) := B^n \setminus D$ don't care set of f.

Logic gates implement simple Boolean functions

Electronic switches that implement Boolean functions

are constructed from simple electronic components (transistors)

(later: more about their construction)

[Source: https://en.wikipedia.org/wiki/Logic_gat

(later: more about their construction) [So			[Source: https://en.wikiped	lia.org/wi	ki/I	_ogic_gate]
		Conjunction and	Disjunction			
				IN	PUT	OUTPUT
				Α	В	Q
AND	$A \longrightarrow C$	A — &	$A\cdot B$ or $A\wedge B$	0	0	0
B———	В	В	$A \cdot D \cup A / \setminus D$	0	1	0

AND	$\stackrel{A}{\longrightarrow} \stackrel{Q}{\longrightarrow} Q$	A — & — Q	$A\cdot B$ or $A\wedge B$	0 0	0
AND		в-	Tr B of Tr \ B	0 1	0
				1 (0
				1 1	1
				INPU	т оитрит
A—————————————————————————————————————				AE	3 Q
OB	$A \longrightarrow C$	A— <u>≥1</u>	$A \perp B \text{ or } A \vee B$	0 0	0
OR	$A \longrightarrow Q$	A ≥1 Q	A+B or $Aee B$	0 0	
OR	1)— ()	1 — - III ()	A+B or $Aee B$		1

*** * ***

Alternative denial and Joint denial							
	AQ	A & Q	$\overline{A\cdot B}$ or $A\uparrow B$	INPUT		OUTPUT	
				Α	В	Q	
				0	0	1	
NAND				0	1	1	
				1	0	1	
				1	1	0	
NOR	$A \longrightarrow Q$	A <u>≥1</u>	$\overline{A+B}$ or $A\downarrow B$	INF	TU	OUTPUT	
				А	В	Q	
				0	0	1	
				0	1	0	
				1	0	0	
				1	1	0	

[Source: https://en.wikipedia.org/wiki/Logic_gate]

The output of a two input exclusive-OR is true only when the two input values are *different*, and false if they are equal, regardless of the value. If there are more than two inputs, the output of the distinctive-shape symbol is undefined. The output of the rectangular-shaped symbol is true if the number of true inputs is exactly one or exactly the number following the "=" in the qualifying symbol.

 $\overline{A\oplus B}$ or $A\odot B$

INPUT		OUTPUT
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

[Source: https://en.wikipedia.org/wiki/Logic_gate]

Two-element Boolean algebra

- Dates back to Boole's logical calculus (1847)
- Two elements: $\mathbf{B} = \{0, 1\}$
- Two binary operators:
 - Conjunction, logical and:\(\langle \text{(also ·, AND)} \)
 - Disjunction, logical or(also +, OR)
- One unary operator:
 - − Negation, ¬ (also ~, NOT, `)

George Boole (1815-1864)

Two-element Boolean algebra

We consider $\mathbf{B} = \{0,1\}$ with the two binary operators

- ^ (Conjunction),
- V (Disjunction), and
- the unary operator \neg (Negation).

Which laws hold for **B** under these operators?

Boolean Calculus 1

Boolean algebras

- Boolean algebra =
 Algebraic structure with particular properties
- Let M be a set equipped with binary operators · and + and a unary operator ~ are defined.
- The tuple $(M, \cdot, +, \sim)$ is called Boolean algebra, if M is a non-empty set and for all $x, y, z \in M$ the following axioms hold:

```
Commutativityx+y=y+xx\cdot y=y\cdot xAssociativityx+(y+z)=(x+y)+zx\cdot (y\cdot z)=(x\cdot y)\cdot zAbsorptionx+(x\cdot y)=xx\cdot (x+y)=xDistributivityx+(y\cdot z)=(x+y)\cdot (x+z)x\cdot (y+z)=(x\cdot y)+(x\cdot z)Complementsx+(y\cdot (\sim y))=xx\cdot (y+z)=x
```

Theorem: (B, \land, \lor, \neg) is a Boolean algebra.

Further laws in Boolean algebras

• There are further laws that follow from these axioms.

Before considering such laws and their proofs:
 Examples of other Boolean Algebras

Boolean algebra of Boolean functions in *n* variables

$$\begin{array}{ll} B_n := B_{n,1} & \text{Set of Boolean functions in } n \text{ variables, } m = 1 \\ f \cdot g \in B_n & \text{defined as} & (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha) & \forall \alpha \in B^n \\ f + g \in B_n & \text{defined as} & (f + g)(\alpha) = f(\alpha) + g(\alpha) & \forall \alpha \in B^n \\ \sim f \in B_n & \text{defined as} & (\sim f)(\alpha) = \sim (f(\alpha)) & \forall \alpha \in B^n \end{array}$$

Operators in the Boolean algebra of Boolean functions

Operators in the Two-element Boolean algebra

Theorem: $(B_n, \cdot, +, \sim)$ is a Boolean Algebra.

Proof: Showing that all axioms hold.

Boolean algebra of subsets of S

- S : arbitrary non-empty set
- 2^S : the power set of S
- $M_1 \cup M_2$: the union of the sets M_1 and M_2 from 2^S
- $M_1 \cap M_2$: the intersection of the sets M_1 and M_2 from 2^S
- \sim M : the complement S\M of M relative to S

Theorem: $(2^S, \cap, \cup, \sim)$ is a Boolean algebra.

Proof: Showing that all axioms hold.

Further laws in Boolean algebras, derivable from the axioms

Existence of neutral (identity) elements:

$$\exists 0 : \forall x : x + 0 = x, x \cdot 0 = 0$$

 $\exists 1 : \forall x : x \cdot 1 = x, x + 1 = 1$

Double negation:

$$\forall x : \sim (\sim x) = x$$

Uniqueness of complements:

$$\forall x,y: (x \cdot y = 0 \text{ und } x + y = 1) \Rightarrow y = \sim x$$

Idempotence:

$$\forall x : x + x = x$$
 $\forall x : x \cdot x = x$

de Morgan's laws:

$$\forall x,y : \sim (x + y) = (\sim x) \cdot (\sim y)$$
 $\forall x,y : \sim (x \cdot y) = (\sim x) + (\sim y)$

Consensus law:

$$\forall x,y,z : (x \cdot y) + ((\sim x) \cdot z) = (x \cdot y) + ((\sim x) \cdot z) + (y \cdot z)$$

$$\forall x,y,z : (x + y) \cdot ((\sim x) + z) = (x + y) \cdot ((\sim x) + z) \cdot (y + z)$$

Proof (Idempotence):

Absorption
$$X = X + (X \cdot (y + \sim y)) = X + X$$

Proof (Neutr. elements):

Let
$$0 = x \cdot \sim x$$

Then we have: Complements

$$x + 0 = x + (x \cdot \sim x) = x$$

Duality principle of Boolean algebra

Duality principle

Let p be an arbitrary law of Boolean algebra, then the dual of p is also a law of Boolean algebra.

The dual of p, is obtained from p by exchanging + and ·, as well as 0 and 1.

Example

$$(x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) = (x \cdot y) + ((\sim x) \cdot z)$$

 $(x + y) \cdot ((\sim x) + z) \cdot (y + z) = (x + y) \cdot ((\sim x) + z)$

Boolean expressions

- A way to describe Boolean functions
- So far: Truth tables. However: for n variables 2ⁿ entries!
- Goals:
 - Compact representation
 - Synthesis of circuits
- Assume *n* variables $x_1, x_2, ..., x_n$. Let $X_n = \{x_1, x_2, ..., x_n\}$.
- Boolean expressions are defined on the alphabet $A = X_n \cup \{0, 1, +, \cdot, \sim, (,)\}.$

h

Boolean expressions

Definition:

The set $BE(X_n)$ of fully parenthesized Boolean expressions over X_n is the smallest subset of A^* , inductively defined as follows:

- The elements 0 and 1 are Boolean expressions
- The variables $x_1, ..., x_n$ are Boolean expressions
- Let g and h be Boolean expressions. Then so is their Disjunction (g + h), their Conjunction (g · h), and their Negation (~g).

$BE(X_n)$: Operator precedence

- Negation ~ precedes conjunction ·
- Conjunction precedes disjunction +
- → Parentheses can be omitted without introducing ambiguities

```
Instead of • we often write \wedge, instead of + also \vee, instead of \sim x_i also x_i or \overline{x}_i.
```

Interpretation of Boolean expressions

- Every Boolean expression can be associated with a Boolean expression via an interpretation function $\psi: BE(X_n) \to B_n$.
- ψ is defined inductively as follows:

```
 \psi(0) = 0 = \lambda x_1, ..., x_n. 0 
 \psi(1) = 1 = \lambda x_1, ..., x_n. 1 
 \psi(x_i)(\alpha_1, ..., \alpha_n) = \alpha_i \ \forall \alpha \in B^n  ("projection")
 \psi((g+h)) = \psi(g) + \psi(h)  ("disjunction")
 \psi((g \cdot h)) = \psi(g) \cdot \psi(h)  ("conjunction")
 \psi((\sim g)) = \sim (\psi(g))  ("negation")
```

Elements of the alphabet

Operators of the Boolean alg. of Boolean functions

Interpretation of Boolean expressions

• For a valuation $\alpha \in B^n$, $\psi(e)(\alpha)$ is obtained by replacing $\mathbf{x_i}$ by α_i for all i in e and evaluation in the Boolean algebra B.

• Two BEs e_1 and e_2 are called **equivalent** $(e_1 \equiv e_2)$ if and only if $\psi(e_1) = \psi(e_2)$.

For instance, we have
$$x_1 \equiv x_1 + x_1$$

Proof: $\psi(x_1) = \psi(x_1) + \psi(x_1) = \psi(x_1 + x_1)$

Idempotence Definition ψ

oolean Calculus

Boolean functions versus Boolean expressions

- Let $\psi(e)$ =f for a Boolean expression e and a Boolean function f. Then we say
 - that *e* is a Boolean expression for *f*, and
 - that e describes the Boolean function f.

Every Boolean expression describes some Boolean function.

But can every Boolean function be described by some Boolean expression?

Systematic construction of Boolean expressions

Brainstorming:

How to "build" a Boolean expression for an arbitrary Boolean function defined by a truth table?

Special Boolean expressions: Literals and Monomials

- The Boolean expressions x_i and x_i are called literals, where
 - \mathbf{x}_i is a positive literal and
 - x_i is a negative literal.
- A monomial (also product) is
 - a conjunction of literals with additional properties:
 - every literal appears at most once,
 - it does not contain both the positive and the negative literal of any variable.
 - or it is the Boolean expression 1.
- A monomial is called minterm, if each variable occurs either as positive or as negative literal.

Question: What kind of functions are described by minterms (and more generally monomials)?

Contruction of Boolean expressions from Truth tables

1. Consider all rows for which the function is 1.

- 1. Construct the minterm for the valuation of x_1 , x_2 und x_3 in the row as follows:
 - if x_i is $1 \Rightarrow x_i$
 - if x_i is $0 \Rightarrow x_i$
- 2. Combine all minterms by a disjunction

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Special Boolean expressions: Polynomials

• For a valuation $\alpha \in \mathbb{B}^n$ we call

$$m(\alpha) = \bigwedge_{i=1}^{n} x_i^{\alpha_i}$$
 (Notation: $x_i^1 := x_i, x_i^0 := x_i'$)

the minterm associated with α .

• A disjunction of pairwise different monomials is called polynomial.

If all monomials in a polynomial are minterms, then the polynomial is complete.

Normal forms

- A disjunctive normal form (DNF) of a Boolean function *f* is a polynomial that describes *f*.
- A canonical disjunctive normal form (CNDF) of a Boolean function *f* is a complete polynomial that describes *f*.

Question: What do we mean by "canonical"?

Boolean functions/ Boolean expressions

Lemma:

For every Boolean function *f* there is a Boolean expression that describes *f*.

We have that
$$f = \psi \left(\sum_{\alpha \in ON(f)} m(\alpha) \right)$$

Remark:

There is *no unique* Boolean expression for a given Boolean function. For every Boolean expression h we have $\psi(h) = \psi(h+h) = \psi(h+h+h) \dots$

Canonical Disjunctive Normal Form

$$f = \sum_{\alpha \in ON(f)} m(\alpha)$$

is called canonical disjunctive normal form (CDNF) of f.

- The CDNF of f is unique up to the order of the literals in the minterms and the order of the minterms in the polynomial.
- There are other "two-level" canonical normal forms, e.g., the canonical conjunctive normal form.

Open questions

If there are many polynomials (Boolean expressions) for a given function *f*, how do we find a "cheap" one?

How can Boolean expressions (polynomials) be implemented in practice?

For the special case of polynomials: programmable logic arrays (PLAs)