2016-XE-14-26

EE24BTECH11004 - ANKIT JAINAR

- 1) Which of the following is a quasi-linear partial differential equation?
- (A) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ (B) $\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial y^2} = 0$ (C) $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = 0$ (D) $\left(\frac{\partial u}{\partial x}\right) \left(\frac{\partial u}{\partial y}\right)^2 = 0$ 2) Let P(x) and Q(x) be the polynomials of degree 5, generated by Lagrange and Newton interpolation techniques respectively, both passing through six distinct points on the xy-plane. Which of the following is correct?
 - (A) $P(x) \equiv Q(x)$
 - (B) P(x) Q(x) is a polynomial of degree 2
 - (C) P(x) Q(x) is a polynomial of degree 3
 - (D) P(x) Q(x) is a polynomial of degree 5
- 3) The Laurent series of $f(z) = \frac{1}{(z^3 z^4)}$ with center at z = 0 in the region |z| > 1 is:

 - (A) $\sum_{n=0}^{\infty} z^{n-3}$ (B) $-\sum_{n=0}^{\infty} \frac{1}{z^{n+4}}$ (C) $\sum_{n=0}^{\infty} z^{n}$ (D) $\sum_{n=0}^{\infty} \frac{1}{z^{n}}$
- 4) The value of the surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ over the sphere S given by $x^2 + y^2 + z^2 = 1$, where $\mathbf{F} = 4x\hat{i} - z\hat{k}$, and *n* denotes the outward unit normal, is:
 - $(A) \pi$
 - (B) 2π
 - (C) 3π
 - (D) 4π
- 5) A diagnostic test for a certain disease is 90% accurate. That is, the probability of a person having (respectively, not having) the disease tested positive (respectively, negative) is 0.9. Fifty percent of the population has the disease. What is the probability that a randomly chosen person has the disease given that the person tested negative?
- 6) Let $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Which of the following is correct?
 - (A) Rank of M is 1 and M is not diagonalizable
 - (B) Rank of M is 2 and M is diagonalizable
 - (C) 1 is the only eigenvalue and M is not diagonalizable
 - (D) 1 is the only eigenvalue and M is diagonalizable
- 7) Let $f(x) = 2x^3 3x^2 + 69$, $-5 \le x \le 5$. Find the point at which f attains the global maximum. 8) Calculate $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \int_{C_3} \mathbf{F} \cdot d\mathbf{r}$, where $C_1 : \mathbf{r}(t) = (t, t^2)$ and $C_2 : \mathbf{r}(t) = (t, \sqrt{t})$, t varying from 0 to 1
- 9) In the parallel-plate configuration shown, steady flow of an incompressible Newtonian fluid is established by moving the top plate with a constant speed, $U_0 = 1 \text{ m/s}$. If the force required on the top plate to support this motion is 0.5 N per unit area (in m²) of the plate, then the viscosity of the fluid between the plates is Ns/m^2 .

- 10) For a newly designed vehicle by some students, the volume of fuel consumed per unit distance traveled $(q_f \text{ in m}^3/\text{m})$ depends on the viscosity (μ) and density (ρ) of the fuel, as well as the speed (U) and size (L) of the vehicle, given by $q_f = c \frac{\mu^2 U}{\rho L}$ where c is a constant. The dimensions of the constant c are:
- 11) A semi-circular gate of radius 1 m is placed at the bottom of a water reservoir as shown in the figure below. The hydrostatic force per unit width of the cylindrical gate in the y-direction is The gravitational acceleration is $g = 9.8 \text{ m/s}^2$ and the density of water is 1000 kg/m^3 .

- 12) The velocity vector in m/s for a 2-D flow is given in Cartesian coordinates (x, y) as $\mathbf{V} = \left(\frac{x^2}{2} \frac{y^2}{2}\right)\hat{i} + xy\hat{j}$. At a point in the flow field, the x- and y-components of the acceleration vector are given as 1 m/s^2 and $-0.5 \,\mathrm{m/s^2}$, respectively. The velocity magnitude at that point is
- 13) If $\phi(x, y)$ is the velocity potential and $\psi(x, y)$ is the stream function for a 2-D, steady, incompressible, and irrotational flow, which one of the following is incorrect?

(A)
$$\left(\frac{\partial \psi}{\partial x}\right)_{\phi=\text{const}} = -\frac{1}{\left(\frac{\partial \psi}{\partial y}\right)_{\psi=\text{const}}}$$

(B) $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$
(C) $\left(\frac{\partial \psi}{\partial y}\right)_{\phi=\text{const}} = \frac{1}{\left(\frac{\partial \psi}{\partial x}\right)_{\psi=\text{const}}}$
(D) $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$

(B)
$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$

(C)
$$\left(\frac{\partial \psi}{\partial y}\right)_{\phi=\text{const}} = \frac{1}{\left(\frac{\partial \psi}{\partial x}\right)_{\psi=\text{const}}}$$

(D)
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$