Generating bilingual pragmatic color references

Will Monroe¹ Jennifer Hu² Andrew Jong³ Christopher Potts¹

¹Stanford University, ²Harvard University, ³San José State University

Main contribution

- A bilingually trained model —
- -• for a **grounded language generation** task
- can learn abstract pragmatic behaviors
 that hold across both languages
- while remaining sensitive to language-specific differences.

Task and dataset

A reference game: speaker has to describe a color to a listener, listener has to identify it among distractors.

We expand the dataset of Monroe et al. (2017) by collecting reference game utterances in Chinese. Example games:

# pairs	948	117
# games	46,994	4,996
# utterances	53,365	6,534

Utterance statistics

English and Chinese display similar patterns of sensitivity to the difficulty of the context.

Get the dataset

cocolab.stanford.edu/datasets/colors.html

Code is also publicly available:

github.com/futurulus/colors-in-context

Architecture

LSTM sequence-to-sequence model, concatenating previous output embedding with context representation and (if bilingual) 1-D embedding of "language bit" at each time step in decoding:

Metric

Pragmatic informativeness: how well would an ideal Bayesian listener do at interpreting human utterances, using the model to simulate a human speaker?

$$t \stackrel{?}{=} \arg\max_{i} S(u|c_{i}, \ell, C)$$

Results

Asymmetric benefits: English data helps dramatically on Chinese, Chinese data doesn't help on English.

test	train	dev acc	test acc
en	en	80.51	83.06
	en+zh	79.73	81.43
zh	zh	67.16	67.75
	en+zh	71.81	72.89

Effect of training data size

The English data is 10x larger than the Chinese data. Size difference is probably important: adding other-language data causes decline before improvement.

Human vs. models

Bilingual model is closer than monolingual to humans in corpus statistics of sampled utterances.

Bilingual lexicon induction

Using vector analogy and cosine nearest neighbor to identify most likely translations:

zh	\rightarrow	en	en $ ightarrow$	zh	
绿色	'green'	green	green	绿	'green'
紫色	, 'purple'	purple	blue	蓝	'blue'
蓝色	, 'blue'	purple	purple	蓝	'blue'
灰色	'grey'	grey	bright	鲜艳	'bright'
亮	'bright'	bright	pink	粉色	'pink'
灰	'grey'	-er	grey	灰	'grey'
蓝	'blue'	teal	dark	暗	'dark'
绿	'green'	green	gray	灰	'grey'
紫	'purple'	purple	yellow	黄色	'yellow'
草	'grass'	green	light	最	'most'

Color term semantics

We gave the World Color Survey task (Berlin & Kay, 1969) to the models, plotting the most likely utterance for each color averaged over random contexts.

We thank the Stanford Data Science Initiative & NSF for support. Poster template by Nathaniel Johnston.