Problem: Trigonometrical Identities in Triangles – Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 6 tháng 7 năm 2024

Mục lục

1	Giá Trị Lượng Giác Của 1 Góc & Hệ Thức Lượng Trong Tam Giác	1
2	Giải Tam Giác	1
3	Miscellaneous	1
Tà	i liêu	1

1 Giá Trị Lượng Giác Của 1 Góc & Hệ Thức Lượng Trong Tam Giác

 $\boxed{1} \ \forall \alpha \in [0^\circ; 180^\circ], \ \sin \alpha \in [-1; 1], \ \cos \alpha \in [-1; 1]. \ \boxed{2} \ \cos \alpha > 0 \Leftrightarrow \alpha \in (0^\circ; 90^\circ) \Leftrightarrow \alpha \ \text{nhọn.} \ \cos \alpha < 0 \Leftrightarrow \alpha \in (90^\circ; 180^\circ) \Leftrightarrow \alpha \ \text{tù}.$

- **1.** Cho $\alpha \in [0^{\circ}; 360^{\circ})$. Tìm các khoảng giá trị của α để các hàm $\sin \alpha, \cos \alpha, \tan \alpha, \cot \alpha$ lần lượt bằng 0, âm, dương.
- **2** ([Hải+22], BD1, p. 22). Cho $\triangle ABC$, đường phân giác AD. Chứng minh $AD^2 < bc$.
- 3 ([Hải+22], VD1, p. 22). Cho $\triangle ABC$ vuông tại A, 2 phân giác trong BE, CF cắt đường cao AH lần lượt tại P, Q. M là trung điểm BC. Chứng minh PE+QF<AM.
- 4 ([Håi+22], VD2, p. 22). Cho $\triangle ABC$ vuông tại A, đường cao AH, $D \in AB$ thỏa BH = BD = CD. Chứng minh $\frac{AD}{BD} = \sqrt[3]{2} 1$.
- $\mathbf{5} \ ([\underline{\mathsf{H\'ai}} + 22], \ \mathsf{VD3}, \ \mathsf{p.} \ 23). \ \mathit{Cho} \ \Delta \mathit{ABC}. \ \mathit{Ch\'ang} \ \mathit{minh} \ \widehat{\mathit{A}} = 90^\circ \Leftrightarrow (\sqrt{a+b} + \sqrt{a-b})(\sqrt{a+c} + \sqrt{a-c}) = \sqrt{2}(a+b+c).$
- 6 ([Håi+22], BĐ1, p. 23). $\triangle ABC$ có $\widehat{A}=2\widehat{B}$. Chứng minh $a^2=b^2+bc$.
- 7 ([Hải+22], VD4, p. 23). Cho $\triangle ABC$ vuông tại A. Lấy $D \in AC$ thỏa $\widehat{C} = 2\widehat{CBD}$. Chứng minh $AB + AD = BC \Leftrightarrow \widehat{C} = 30^\circ$ hoặc $\widehat{C} = 45^\circ$.
- $\textbf{8} \ ([\text{H\'ai}+22], \, \text{VD5}, \, \text{p. 23}). \ \textit{Cho} \ \Delta \textit{ABC}, \ \textit{trung tuy\'en} \ \textit{AM}. \ \textit{Gi\'a} \ \textit{s\'u} \ \widehat{\textit{B}} + \widehat{\textit{AMC}} = 90^{\circ}. \ \textit{Ch\'ung minh} \ \Delta \textit{ABC} \ \textit{vu\^ong hoặc cân}.$
- $9 \ ([\text{H\'ai}+22], \text{ VD6, p. 24}). \ \textit{Cho} \ \Delta \textit{ABC}, \ \textit{tâm đường tròn nội tiếp I. IA,IB,IC cắt (ABC) lần lượt tại D,E,F. Chứng minh } \\ \frac{1}{S_{DBC}} + \frac{1}{S_{EAC}} + \frac{1}{S_{FAB}} \geq \frac{9}{S_{ABC}}.$

2 Giải Tam Giác

- 10. Nếu cho trước độ dài 2 cạnh & số đo 1 góc không nằm giữa 2 cạnh đó của 1 tam giác thì có giải tam giác đó được không?
- 11. Nếu cho trước độ dài 1 cạnh & số đo 2 góc không cùng kề với cạnh đó của 1 tam giác thì có giải tam giác đó được không?
- 12 (Program: Solve triangle). (a) Nêu các bộ 3 yếu tố cần cho trước về cạnh \mathcal{E} góc của 1 tam giác để tam giác đó có thể giải được. (b) Viết chương trình Pascal, Python, C/C++ để minh họa.

3 Miscellaneous

Tài liệu

[Hải+22] Phạm Việt Hải, Trần Quang Hùng, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 10 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2022, p. 176.

^{*}e-mail: nguyenquanbahong@gmail.com, website: https://nqbh.github.io, Bến Tre, Việt Nam.