The following are samples of tools and practices I implemented at my previous job as a Director of Software Engineering and Development Operations, including systems and environment specifications.

Unfortunately, due to NDAs, I cannot share up-to-date corporate information, but I hope that provided data will be enough to show the scale of the systems I managed, technology, tools and processes used for these systems' delivery and maintenance. Some information was copied from my presentations I provided to the leadership (status, performance, capacity reports) and conferences where I presented the company's technology innovations or technology stacks to cross-divisional teams and partners.

- Production quality monitoring shown below is used in the development and test environments
- Scalability and Performance Testing is done using special test environments
 - for mission-critical systems or services, data and configuration are cloned from production environment with further obfuscation of customers private data, including a clone of the network security configuration for data storage, firewalls, load-balancers and routers

Achievements in B2C and B2B system integrations:

- Post-acquisition integration of three tax software companies:
 - streamlining technology operations, consolidating API frameworks, and restructuring teams
- Developed strategic partnerships with major financial service providers, supporting B2B and B2C integration solutions:
 - Federal agencies: IRS and States electronic filing systems
 - Bank and trust services: HSBC, Santa Barbara, River City, Republic Bank, PwC

Capacity and specification overview of some core backend systems:

- Codebase & Technology
 - Production system support:
 - 24x7x365 ("follow-the-sun" operations shifts)
 - Data centers:
 - Managed-Services: Two geographically redundant IBM data centers
 - Cloud platforms:
 - 0 Primary Azure; Secondary: AWS
 - Support of ~ 5,000 deployable apps or services (per environment)
 - Storage and data sizes:
 - Storage units provide access for users and system to over 400 TBs of data
 - Oracle and Microsoft SQL databases
 - ~ 47 servers, some databases size is over 80 TB
 - Total number of servers: ~ 900 virtual and physical servers
 - Tools:
 - Monitoring: primarily DataDog, AppDynamics, and SCOM
 - Incident Management and Escalation processes: PagerDuty, ServiceNow
 - Supported Compliance: SOX, SSAE, ISO, GDPR, NIST, PCI
 - Support for Business Continuity is based on high availability, data protection, and disaster recovery:
 - Redundant data centers, near real-time data backup and log shipping (Oracle, MS SQL)
 - Cloud availability zones (Azure)
 - Web and API traffic management
 - Customers:
 - over 60,000 small and medium-sized businesses (~ 700,000 million commercial users)
 - over 10,000 government users (IRS and military personal)
 - Back-end processes and services:
 - .Net (C#), RESTful HTTP services, WCF, Redis, Microservices
 - Oracle 12c, MS SQL, SSIS, SSRS, MySQL
 - Cloud-native, business web apps and e-commerce (customer-facing and internal): 0
 - ASP.NET (C#, HTML, CSS), MVC, JSON, JQuery
 - Ajax (moving to React Native), JavaScript (moving to TypeScript) Web API, Java
 - Windows desktop applications (commercial customers)
 - Delphi, .Net/C#
 - Mobile apps: 0
 - Google Flutter
 - Apple Swift development platforms
 - Automation: Maven, Jenkins
 - Source Control/Backlog Management/Defect Tracking:
 - Primary: Visual Studio Online (using Git repos)
 - Methodologies:
 - Test, Event and Domain-Driven Design 0
 - Scaled Agile Framework (Software Engineering and QA
 - Kanban (used by Automation and IT)

- Core backend system: ~ 7,000 files, 121 GB size
- Cloud-native app: ~ 5,000 files, 460 MB size
- Corporate Git repositories at GitHub
- Automation, Configuration Management, Continuous Integrations:
 - Primary:
 - o Azure DevOps (integration with on-premises configuration and build processes)
 - o TFS based build and configuration systems
 - Automation:
 - o Azure DevOps (Continuous Integrations and Delivery workflows)
 - o Maven, Jenkins
 - Scripting: PowerShell, Bash, Python
 - Infrastructure as a Code:
 - VMWare Automation platform
 - Windows Desired State of Configuration
 - Azure Resources, Terraform
 - Log & Event Management
 - Security monitoring: Azure Security Center and IBM QRadar
- O Data Analytics (cross-divisional business analytics platform):
 - TBs of data aggregated and processed daily
 - sources:
 - o Transactional business systems, logs, and monitoring
 - o Software development tools (backlog, capacity, defects, etc.)
 - o Backoffice integrations: internal CRMs, financial processing system, Salesforce
 - Analytics are visualized using Microsoft PowerBI platform (mix of on-premise based and Azure services)
 - Analytics are used in day-to-day operations and product development decision-making supported by facts
 - Analytics users:
 - Engineering/QA/Automation:
 - Daily systems usage and performance analysis
 - Capacity planning
 - Product and Project management
 - o Product features planning and prioritization
 - o Projects status and daily standups
 - the Leadership
 - o Budgeting, Future strategic and roadmaps planning

System Diagrams, Monitoring and Data Analytics

- all slides are created by me either for internal use in architectural reviews or for internal/leadership presentations
- each deployable component shown on the blue-print was automated:
 - environment provisioning (virtual compute resources, storage, most of networking and firewall/load-balanced rules)
 - o built continuously integration which triggers builds and deployments to development, test and production environments
 - o for components with automated testing enabled in production, tests are launched as a part of continuous delivery

High volume transactional system's architecture blueprint:

Old architecture, prior microservices refactoring, and migration to the cloud

A result of a barnstorm meeting focused on monitoring review of a backend system (red dots represent missing monitoring of a system's critical end-point)

An overview of the products ecosystem:

Overview of the Monitoring and Incident Management

(shown a vision of this global initiative which was significantly improved and implemented)

Monitoring dashboards (shown screenshots from DataDog and Microsoft Azure DevOps systems)

- Collected data is aggregated as part of the cross-divisional Data Analytics initiative which allows similar systems KPIs (performance and product metrics) compare across business units
- Dashboards were also used by the scalability team during stress and load testing
- Obvious use by data center operations, software and IT engineers
- Dashboards provide a "single pane of glass" view across monitored systems combining business applications and services KPIs with environment's performance, usage and capacity metrics (network, storage, etc.)

Data Analytics

- Examples below show analytics for statics research and annual projections

