(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 November 2003 (27.11.2003)

PCT

(10) International Publication Number WO 03/097604 A1

(51) International Patent Classification⁷: C07D 213/82, 401/06, 413/06, A01N 43/40, 43/50, 43/54, 43/653, 43/713, 43/88

(21) International Application Number: PCT/EP03/04714

(22) International Filing Date: 6 May 2003 (06.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02010910.4

16 May 2002 (16.05.2002) E

(71) Applicant (for all designated States except US): BAYER CROPSCIENCE GMBH [DE/DE]; Brüningstrasse 50, 65926 Frankfurt (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ARAKI, Koichi [JP/JP]; 2-4-39, Kamiya Ushiku, Ibaraki 300-1216 (JP). MURATA, Tetsuya [JP/JP]; 1-19-10, Chuo Ushiku, Ibaraki 300-1234 (JP). GUNJIMA, Koshi [JP/JP]; 4-2-3-303, Yachiyomidorigaoka, Yachiyo City, Chiba 276-0049 (JP). NAKAKURA, Norihiko [JP/JP]; 3-2-7-503 Gion, Minamikawachi-machi, Tochigi 329-0434 (JP). SHIMOJO, Eiichi [JP/JP]; 4-16-1 Nishijyonan Oyama Tochigi (JP). ARNOLD, Christian [DE/DE]; Grimmersdorfer Weg 11, 53343 Adendorf (DE).

HEMPEL, Waltraud [DE/DE]; Zum Morgengraben 18, 65835 Liederbach (DE). JANS, Daniela [DE/DE]; Schöne Aussicht 11, 61348 Bad Homburg v. d. H. (DE). MALSAM, Olga [DE/DE]; Berghovener Strasse 67, 53227 Bonn (DE). WAIBEL, Jutta, Maria [DE/DE]; Manderscheider Strasse 51, 60529 Frankfurt (DE).

(81) Designated States (national): AE, AG, AL, AM, AU, AZ, BA, BB, BR, BY, BZ, CA, CN, CO, CR, CU, DM, DZ, EC, GD, GE, HR, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NI, NO, NZ, OM, PH, PL, RU, SC, SG, TJ, TM, TN, TT, UA, US, UZ, VC, VN, YU, ZA.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS PESTICIDES

(57) Abstract: The invention relates to a 3-pyridylcarboxamide derivative of formula (I). Wherein the various symbols are as defined in the description, compositions thereof, their use for the control of pests, and to processes for their preparation.

Description

PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS PESTICIDES

The invention relates to 3-pyridylcarboxamide derivatives and their use for the control of pests, in particular arthropods such as insects and acarids, and helminths (including nematodes); to compositions containing them, and to processes and intermediates for their preparation.

The control of insects, nematodes or helminths with 3-pyridylcarboxamide compounds has been described in many patents such as EP 580374, JP 10101648, JP 10182625, WO 200109104, WO 200114340, JP 6321903, JP 10195072 and JP 11180957.

However, the level of action and/or duration of action of these prior-art compounds is not entirely satisfactory in all fields of application, in particular against certain organisms or when low concentrations are applied.

Since modern pesticides must meet a wide range of demands, for example regarding level, duration and spectrum of action, use spectrum, toxicity, combination with other active substances, combination with formulation auxiliaries or synthesis, and since the occurrence of resistances is possible, the development of such substances can never be regarded as concluded, and there is constantly a high demand for novel compounds which are advantageous over the known compounds, at least as far as some aspects are concerned.

25

30

20

10

It is an object of the present invention to provide compounds which widen the spectrum of the pesticides in various aspects.

The present invention provides a compound which is a 3-pyridylcarboxamide derivative of formula (I):

wherein:

 R^{1} is $-C(=U)NR^{3}R^{4}$ or $-C(=V)OR^{3a}$;

R² is H, (C₁-C₆)alkyl or R³; R³ is R⁵, OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups; or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^{7}$$
 R^{8}
 R^{9}
 R^{10}
 R^{11}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{13}

- 10 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C₁-C₆)alkyl, (C₁-C₆)haloalkyl or R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more
- 15 R⁶ groups; R⁴ is H or R⁵; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

10

15

20

25

or R3 and R4 together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R^{14a} groups (preferred examples of such ring systems include pyrrolidin-1-yl, pyrrolin-1-yl, piperidin-1-yl, morpholin-1-yl (or its Noxide), thiomorpholin-1-yl (or its S-oxide or S, S-dioxide), 4,5-dihydropyrazol-1-yl or pyrazol-1-yl); R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, (C_1-C_6) alkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino, $CO(C_1-C_6)$ alkyl, NHCO($C_1-C_6)$ alkyl, NHSO₂($C_1-C_6)$ alkyl or SO₂($C_1-C_6)$ alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_oaryl, O(R¹⁵R¹⁶), aryl, NHCOaryl, CO(CH₂), aryl, NHSO₂ aryl, SO₂(CH₂), aryl or N=C(aryl)₂, -(CR¹⁵R¹⁶)₀heterocyclyl or O(R¹⁵R¹⁶)₀heterocyclyl, which last ten mentioned arvl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; or is $O(CR^{15}R^{16})_{p}(C_3-C_8)$ cycloalkyl or $N=C[(C_1-C_6)alkyl]_2$; R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, $CO_2(C_1-C_6)$ alkvl. CO₂H, NO₂, OH, amino, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, carbamoyl, (C_1-C_6) -alkylcarbamoyl, di- (C_1-C_6) -alkylcarbamoyl or CH[O(C_1-C_6)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups; R¹⁷ is R⁶, R^{14a} or CH₂OH; U is S, O or NR¹⁸: V is O or S; W is (CHR¹⁹)_a, CO or NR²⁰; X is CR²¹ or N: Y is CR²² or N; Z is O. CO or NR²³: R^7 , R^8 , R^9 , R^{12} , R^{19} , R^{21} and R^{22} are each independently H; or (C₁-C₆)alkyl,

30 (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or

heterocyclyl groups are unsubstituted or substituted by one or more R⁸ groups; or (C₃- C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups;

or R⁷ and R⁸ together with the attached carbon atom may represent C=O:

- R¹⁰, R²⁰ and R²³ are each independently H; or (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₆)cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups; 10
 - R¹¹ is R⁷, halogen, CN, CO₂(C₁-C₆)alkyl, NO₂ or S(O)_nR¹⁴; or is (C₁-C₆)alkylamino or di-(C1-C6)alkylamino, which groups are unsubstituted or substituted by one or more R⁶ groups;

R¹³ is R⁷ or OH:

- R¹⁴, R¹⁵ and R¹⁶ are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl: 15 R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl; R¹⁸ is R⁷ or OH; or is (C₁-C₆)alkylamino or di-(C₁-C₆)alkylamino, which groups are unsubstituted or substituted by one or more R⁶ groups; m is zero or one;
- n, p, r, s, t and u are each independently zero, one or two: 20 q is one, two or three; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S; or a pesticidally acceptable salt thereof;
- with the exclusion of the compound wherein R¹ is -C(=U)NR³R⁴; U is O; R² is H; m is 25 zero; R4 is H and R3 is 2,4-dichlorophenyl.

These compounds possess valuable pesticidal properties.

30 The invention also encompasses any stereoisomer, enantiomer or geometric isomer. and mixtures thereof.

30

By the term "pesticidally acceptable salts" is meant salts the cations or anions of which are known and accepted in the art for the formation of salts for pesticidal use. Suitable salts with bases, e.g. formed by compounds of formula (I) containing a carboxy or OH group, include alkali metal (e.g. sodium and potassium), alkaline earth metal (e.g. calcium and magnesium), ammonium and amine (e.g. diethanolamine, triethanolamine, octylamine, morpholine and dioctylmethylamine) salts. Suitable acid addition salts, e.g. formed by compounds of formula (I) containing an amino group, include salts with inorganic acids, for example hydrochlorides, sulphates, phosphates and nitrates and salts with organic acids for example acetic acid. 10

The term pests means arthropod pests (including insects and acarids), and helminths (including nematodes).

- In the present patent specification, including the accompanying claims, the 15 aforementioned substituents have the following meanings: halogen atom means fluorine, chlorine, bromine or iodine; alkyl groups and portions thereof (unless otherwise defined) may be straight- or branched-chain;
- cycloalkyl groups preferably have from three to six carbon atoms in the ring and are 20 optionally substituted by halogen or alkyl.
 - The haloalkyl and haloalkoxy groups can bear one or more halogen atoms; preferred groups of this type include -CF₃ and -OCF₃.
- The term "halo" before the name of a radical means that this radical is partially or completely halogenated, that is to say, substituted by F, Cl, Br, or I, in any 25 combination, preferably by F or Cl.
 - The expression "(C₁-C₆)-alkyl" is to be understood as meaning an unbranched or branched hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms, such as, for example a methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tertbutyl radical.

20

25

30

" (C_1-C_6) -Haloalkyl" is to be understood as meaning an alkyl group mentioned under the expression " (C_1-C_6) -alkyl" in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, preferably by chlorine or fluorine, such as the trifluoromethyl, the 1-fluoroethyl, the 2,2,2-trifluoroethyl, the chloromethyl, fluoromethyl, the difluoromethyl or the 1,1,2,2-tetrafluoroethyl group.

" (C_1-C_6) -Alkoxy" is to be understood as meaning an alkoxy group whose hydrocarbon radical has the meaning given under the expression " (C_1-C_6) -alkyl".

The terms "alkenyl" and "alkynyl" with a range of carbon atoms stated as prefix denote a straight-chain or branched hydrocarbon radical having a number of carbon atoms which corresponds to this stated range and which contains at least one multiple bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)-Alkenyl" accordingly denotes, for example, the vinyl, allyl, 2-methyl-2-propenyl, 2-butenyl, pentenyl, 2-methylpentenyl or the hexenyl group. "(C₂-C₆)-Alkynyl" denotes, for example, the ethynyl, propargyl, 2-methyl-2-propynyl; 2-butynyl; 2-pentynyl or the 2-hexynyl group.

"(C₃-C₈)-Cycloalkyl" denotes monocyclic alkyl radicals, such as the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl radical, and denotes bicyclic alkyl radicals, such as the norbornyl radical.

The expression " (C_3-C_8) -cycloalkyl- (C_1-C_6) -alkyl" is to be understood as meaning, for example the cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylbutyl, 1-methylcyclopropyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 3-hexylcyclobutyl or the 4-tert-butylcyclohexyl radical.

" (C_1-C_6) -Alkylamino" denotes a nitrogen atom which is substituted by an alkyl radical of the above definition. "Di- (C_1-C_6) -alkylamino" denotes a nitrogen atom which is substituted by two alkyl radical of the above definition.

7

The expression " (C_1-C_6) -alkylcarbamoyl" denotes a carbamoyl group having one hydrocarbon radical which has the meaning given under the expression " (C_1-C_6) -alkylcarbamoyl" denotes a carbamoyl group having two hydrocarbon radicals which can be identical or different.

5

The expression "aryl" is to be understood as meaning a carbocyclic, i.e. constructed of carbon atoms, aromatic radical having preferably 6 to 14, in particular 6 to 12, carbon atoms, such as, for example, phenyl, naphthyl or biphenylyl, preferably phenyl.

10

15

20

25

The expression "heterocyclyl" preferably denotes a cyclic radical which can be completely saturated, partially unsaturated or completely unsaturated and which contains in the ring one or more identical or different atoms selected from the group consisting of nitrogen, sulfur and oxygen, where, however, two oxygen atoms may not be directly adjacent and at least one carbon atom has to be present in the ring, such as, for example, a thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, pyrazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,3,4-triazole, 1,2,4-oxadiazole, 1,2,4-thiadiazole, 1,2,4-triazole, 1,2,3-triazole, 1,2,3,4-tetrazole, benzo[b]thiophene, benzo[b]furan, indole, benzo[c]thiophene, benzo[c]furan, isoindole, benzoxazole, benzothiazole, benzimidazole, benzisoxazole, benzisothiazole, benzopyrazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, pyrazine, pyrimidine, pyridazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,4,5-tetrazine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthyridine, 1.7-naphthyridine, phthalazine, pyridopyrimidine, purine, pteridine, 4H-quinolizine. piperidine, pyrrolidine, oxazoline, tetrahydrofuran, tetrahydropyran, isoxazolidine, thiazolidine, oxirane or oxetane radical.

30

Heterocyclyl preferably denotes a saturated, partially saturated or aromatic ring system having 3 to 7 ring members and 1 to 4 heteroatoms selected from the group consisting of O, S and N, where at least one carbon atom has to be present in the ring.

8

More preferably, heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,3,4)-thiadiazole, (1,2,4)-thiadiazole, pyrrole, furan, thiophene, oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrimidine, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine or thiazolidine radical (particularly a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,3,4)-thiadiazole, 1,2,4-thiadiazole, thiazole, pyrazole, pyrrole, isoxazole, benzothiazole, 1,2,4-triazole, pyrazine, pyridazine, oxirane or oxetane radical).

10

15

20

5

Preferred substituents for the various aliphatic, aromatic and heterocyclic ring systems include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_3-C_6) -cycloalkyl, (C_1-C_4) -alkylthio, (C_1-C_4) -alkylsulfinyl, (C_1-C_4) -alkylsulfonyl, phenyl, benzyl or phenoxy, where in the alkyl radicals and the radicals derived therefrom one or more — and in the case of fluorine up to the maximum number of - hydrogen atoms can be replaced by halogen, preferably chlorine or fluorine.

More preferred substituents include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_3-C_6) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkylthio.

Most preferred substituents include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkylthio or (C_1-C_4) -haloalkylthio.

25

It is to be generally understood, unless otherwise stated, that the term "unsubstituted or substituted by one or more groups" or "unsubstituted or substituted by one or more groups selected from" means that such groups (or preferred groups) may be the same or different.

30

R¹ is preferably –C(=U)NR³R⁴; R² is preferably H or R³ (more preferably R² is H); R^3 is preferably R^5 or OH; or is (C₁-C₆)alkyl substituted by one or more R^6 groups; or preferably R^2 and R^3 together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

$$R^7$$
 N R^4 R^9 R^{10} R^{10}

5

10

25

 R^4 is preferably H or R^5 , or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

or R³ and R⁴ together with the adjacent N atom may form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R¹⁴² groups (particularly preferred examples of such ring systems include pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-vl or its S-oxide or S, S-dioxide);

R⁵ is preferably (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₃-

C₈)cycloalkyl-(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl; or is -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; (more preferably R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-

C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl; or is -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups);

 R^6 is preferably halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, NO_2 or OH: (more preferably R^6 is halogen or CN);

OH; (more preferably R° is halogen of CN)

 R^{17} is preferably R^{6} , R^{14a} or $\mathsf{CH}_2\mathsf{OH}$;

U is preferably S or O;

W is preferably (CHR¹⁹)_q or CO;

Z is preferably O;

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each preferably H; or (C_1-C_6) alkyl unsubstituted or substituted by one or more R^6 groups;

or R7 and R8 together with the attached carbon atom represent C=O;

5 R¹⁴, R¹⁵ and R¹⁶ are each preferably H or (C₁-C₆)alkyl;

 $R^{14a}\,\text{is}$ preferably (C1-C6)alkyl or (C1-C6)haloalkyl;

m is preferably zero;

n, r, s, t and u are preferably zero or one;

q is preferably one; and

heterocyclyl preferably denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, (1,3,4)-thiadiazole, benzothiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrimidine, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane radical.

Oraconomic, analysis of the state of the sta

A preferred class of compounds of formula (I) are those in which: R¹ is -C(=U)NR³R⁴ or -C(=V)OR^{3a};

 R^{3a} is (C_3-C_8) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C_1-C_6) alkyl, (C_1-C_6) haloalkyl or R^6 groups; or is (C_1-C_6) alkyl, (C_3-C_6) alkenyl or (C_3-C_6) alkynyl which last three mentioned groups are substituted by one or more R^{6a} groups; or is (C_1-C_6) alkylamino; or is $NH(CHR^{14})_s$ aryl which aryl group is unsubstituted or substituted by one or more R^6 groups;

25 R^{6a} is (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CO₂(C₁-C₆)alkyl, CO₂H, amino, (C₁-C₆)alkylamino, carbamoyl, (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups;

and the other values are as defined in formula (I).

30

20

A further preferred class of compounds of formula (I) are those in which: R^{1} is $-C(=U)NR^{3}R^{4}$;

R² is H;

 R^3 is R^5 or OH; or is (C₁-C₆)alkyl substituted by one or more R^6 groups; or R^2 and R^3 together with the interconnecting atoms may form a heterocyclic ring selected from (A) and (C):

$$R^7$$
 R^4 R^9 R^{10} R^{10}

5

 R^4 is H or R^5 , or is (C_1-C_6) alkyl unsubstituted or substituted by one or more R^6 groups;

or R³ and R⁴ together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-

1-yl, morpholin-1-yl or thiomorpholin-1-yl (or its S-oxide or S, S-dioxide) ring;

R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl;

or -(CR 15 R 16) $_p$ phenyl, -(CR 15 R 16) $_p$ heterocyclyl, O(CR 15 R 16) $_r$ phenyl or

O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are

unsubstituted or substituted by one or more R¹⁷ groups;

 R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, NO_2 or OH; R^{17} is R^6 . R^{14a} or CH_2OH ;

U is S or O;

W is (CHR¹⁹)_q or CO;

20 Z is O;

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each H; or (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

or R⁷ and R⁸ together with the attached carbon atom represent C=O;

 $R^{14},\,R^{15}$ and R^{16} are each H or (C1-C6)alkyl;

25 R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

m is zero;

n, r, s, t and u are zero, one or two;

12

q is one; and wherein heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, (1,3,4)-thiadiazole, pyrrole, furan, thiophene, oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran,

tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane radical.

A further preferred class of compounds of formula (I) are those in which: R^1 is $-C(=U)NR^3R^4$;

10 R² is H;

30

U is O or S;

 R^3 is (C_1-C_6) haloalkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) alkyl, (C_3-C_6) alkynyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkylamino, OH, Ophenyl, pyrimidyl, benzothiazolyl, thiazolyl, thiadiazolyl,

-(CH₂)₂pyrrolidin-1-yl, NHSO₂phenyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl, NHCOphenyl or N=C(phenyl)₂; or is pyridyl unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, CN and NO₂; or is OCH₂phenyl which phenyl is unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, CN and NO₂; or is (C₁-C₆)alkoxy unsubstituted or substituted by a CO₂(C₁-C₆)alkyl group;

or is -(CHR¹⁵)_pphenyl wherein p is 0, 1 or 2, R¹⁵ is H or (C₁-C₆)alkyl, and phenyl is unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, CN, NO₂, OH, CH₂OH, CO₂(C₁-C₆)alkyl and phenoxy which phenoxy is unsubstituted or substituted by one or more groups selected from halogen and (C₁-C₆)haloalkyl;

or more groups selected from halogen and (C₁-C₆)haloakyl, or is (C₁-C₆)alkyl unsubstituted or substituted by one or more groups selected from (C₁-C₆)alkoxy, CN, OH, CO₂(C₁-C₆)alkyl and CH[O(C₁-C₆)alkyl]₂;

or is NH(CH₂)_sphenyl wherein s is zero or 1;

 R^4 is H, (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, $-(CH_2)_p$ phenyl wherein p is 0 or 1, or N=C[(C_1-C_6) alkyl]₂;

or R³ and R⁴ together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-yl which groups are unsubstituted or substituted

by one or more groups selected from halogen, (C_1 - C_6)alkyl and OH; or form a 4,5-dihydropyrazol-1-yl ring; and m is zero.

A further preferred class of compounds of formula (I) are those in which: R¹ is -C(=U)NR³R⁴:

U is O:

 R^2 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or CH_2 phenyl; or is (C_1-C_6) alkyl substituted by $CO_2(C_1-C_6)$ alkyl or $CH[O(C_1-C_6)$ alkyl]₂;

- 10 R³ is (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, CH₂phenyl or OCH₂phenyl; or is (C₁-C₆)alkoxy unsubstituted or substituted by one or two CO₂(C₁-C₆)alkyl groups; R⁴ is H or (C₁-C₆)alkyl; and m is zero.
- A further preferred class of compounds of formula (I) are those in which:

 R¹ is -C(=U)NR³R⁴;

R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

$$R^7$$
 N
 R^4
 R^8
 R^9
 R^{10}
 R^{10}

20 wherein U is O or S;

and in (A):

W is CH_2 , CO or CHR^{19} wherein R^{19} is H, $(C_1\text{-}C_6)$ alkyl or phenyl;

R⁴ is H, (C₁-C₆)alkyl, phenyl, CH₂phenyl or OCH₂phenyl;

 R^7 is H, (C_1-C_6) alkyl, (C_1-C_6) alkoxy or phenyl; and

25 R⁸ is H or (C₁-C₆)alkyl;

and in (C):

Z is O;

R⁴ is (C₁-C₆)alkyl, (C₃-C₈)cycloalkyl or CH₂phenyl; and

R⁹ and R¹⁰ are each H; and m is zero.

A further preferred class of compounds of formula (I) are those in which:

5 R^1 is $-C(=U)NR^3R^4$;

wherein U is NR¹⁸;

R² is H:

 R^3 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_8) cycloalkyl; or is (C_1-C_6) alkyl substituted by one or two (C_1-C_6) alkoxy or CH[O(C₁-C₆)alkyl]₂ groups;

- 10 R⁴ and R¹⁸ are each the same or different H or (C₁-C₆)alkyl; or R³ and R⁴ together with the adjacent N atom form a morpholin-1-yl or pyrazol-1-yl ring; and m is zero.
- A further preferred class of compounds of formula (I) are those in which: R¹ is -C(=V)OR^{3a};

wherein V is O or S;

 R^2 is H, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, NHCH₂phenyl; or is (C_1-C_6) alkyl substituted by a group selected from (C_1-C_6) alkoxy, CN, OH and S(O)_nR^{14a};

- 20 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups; and
- 25 m is zero.

A more preferred class of compounds of formula (I) are those in which:

 R^1 is $-C(=U)NR^3R^4$;

R² is H:

30 U is O or S:

 R^3 is (C_1-C_6) alkoxy, $C_1-C_6)$ haloalkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy, CH_2 phenyl or OCH_2 phenyl, phenyl or 2-pyridyl which last four mentioned phenyl or

PCT/EP03/04714

15

pyridyl groups are unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, CN and NO2;

 R^4 is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or CH₂phenyl; and m is zero.

5

A further more preferred class of compounds of formula (I) are those in which:

$$R^1$$
 is $-C(=U)NR^3R^4$;

R² is H;

U is O:

10 R³ is (C₁-C₆)alkoxy;

R⁴ is (C₁-C₆)alkyl; and

m is zero.

The compounds of general formula (I) can be prepared by the application or adaptation of known methods (i.e. methods heretofore used or described in the chemical literature.

In the following description of processes when symbols appearing in formulae are not specifically defined, it is understood that they are "as defined above" in accordance with the first definition of each symbol in the specification.

20

15

According to a feature of the invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, and R², U, R³ and R⁴ are as defined above; or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

PCT/EP03/04714

16

$$R^{7}$$
 R^{8}
 R^{8}
 R^{9}
 R^{4}
 R^{11}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}

wherein R⁴, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, W, X, Y and Z are as defined above, may be prepared by the reaction of a compound of formula (II):

5

wherein L is a leaving group, generally halogen and preferably chlorine, with a compound of formula (III):

wherein R^2 , U, R^3 and R^4 are as defined above, or with a compound of formula (IV), 10 (V), (VI); (VII) or (VIII):

wherein R⁴, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, W, X, Y and Z are as defined above. The reaction is generally performed in the presence of an organic base such as a tertiary amine for example triethylamine, or pyridine, or an inorganic base such as an alkali metal carbonate, for example potassium carbonate, or an alkali metal alkoxide such as sodium ethoxide, or sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

5

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O, and R³ and R⁴ are as defined above, may be prepared by the reaction of a compound of formula (IX):

with oxalyl chloride or triphosgene, in an inert solvent such as dichloroethane at a temperature of from 0°C to the reflux temperature of the solvent, followed by removal of the solvent to give the corresponding acylisocyanate intermediate which is generally not isolated, and which is directly reacted with an amine of formula (X):

HNR³R⁴

(X)

wherein R³ and R⁴ are as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O, and R^{3a} is as defined above, may be prepared by the reaction of a compound of formula (IX) as defined above, with oxalyl chloride to give an acylisocyanate intermediate above which is generally not isolated, and which is directly reacted with an alcohol of formula (XI):

HOR^{3a} (XI) wherein R³ is as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O or S, and R³ and R⁴ are as defined above, may be prepared by the reaction of a compound of formula (XII).

wherein U is O or S, with a compound of formula (X) as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I)
wherein R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O or S, and R^{3a} is as defined above, may be prepared by the reaction of a compound of formula (XIII).

(XIII)

wherein V is O or S, with a compound of formula (XI) as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, R⁴ is H, U is O or S, and R³ is as defined above, may be prepared by the reaction of a compound of formula (IX) as defined above, with a strong base such as sodium hydride to form the corresponding salt, which is then reacted with a compound of formula (XIV):

$$R^3N=C=U$$
 (XIV)

wherein R³ is as defined above. The reaction is generally performed in an inert solvent such as N,N-dimethylformamide at a temperature of from 0° to 60°C.

15

20

25

5

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴ or -C(=V)OR³a, m is zero, R² is H, U and V are each S, and R³, R³a and R⁴ are as defined above, may be prepared in a 1-pot process by the reaction of 4-trifluoromethylnicotinic acid with a suitable halogenating agent, preferably oxalyl chloride, in a solvent such as dichloroethane, optionally in the presence of N,N-dimethylformamide, at a temperature of from 0°C to the reflux temperature of the solvent, to give the corresponding acid chloride, followed by removal of the solvent, and reaction with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate for example tetrabutylammonium thiocyanate, generally in the presence of a base, such as an alkali metal carbonate for example potassium carbonate, in an inert solvent such as toluene or acetone, at a temperature of from 0° to 60°C, to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, followed by reaction with an amine of formula (X) above or an alcohol of formula (XI) above, at a temperature of from 0° to 60°C.

20

According to a further feature of the invention compounds of formula (I) wherein R^1 is $-C(=U)NR^3R^4$, m is zero, U, R^3 and R^4 are as defined above, and R^2 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which groups are unsubstituted or substituted by one or more R^6 groups; or is $-(CR^{15}R^{16})_p$ aryl or $-(CR^{15}R^{16})_p$ heterocyclyl, which aryl or heterocyclyl groups are optionally substituted by R^{17} ; wherein R^6 , R^{15} , R^{16} and R^{17} are as defined above, may be prepared by the reaction of the corresponding compound of formula (I) wherein R^2 is H, using an alkylatig agent of formula (XV):

$$R^2-L^1$$
 (XV)

wherein L¹ is a leaving group generally halogen and preferably chlorine. The reaction is generally performed in the presence of an organic base such as a tertiary amine for example triethylamine, or pyridine, or an inorganic base such as an alkali metal carbonate, for example potassium carbonate, or an alkali metal alkoxide such as sodium ethoxide, or sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the invention compounds of formula (I) wherein R¹, and R² are as defined above, and m is 1 may be prepared by oxidising a corresponding compound in which m is 0. The oxidation is generally performed using hydrogen peroxide in a solvent such as acetic acid, or a peracid such as 3-chloroperbenzoic acid in a solvent such as dichloromethane or 1,2-dichloroethane, at a temperature of from 0°C to the reflux temperature of the solvent.

Intermediates of formula (II) wherein L is chlorine, may be prepared according to known procedures, for example by the reaction of the corresponding carboxylic acid of formula (II) wherein L is replaced by OH, with a suitable halogenating agent, preferably oxalyl chloride or thionyl chloride, in a solvent such as dichloroethane, optionally in the presence of N,N-dimethylformamide, at a temperature of from 0°C to the reflux temperature of the solvent.

21

Intermediates of formula (XII) wherein U is S, and (XIII) wherein V is O, may be prepared according to known procedures, for example by the reaction of a compound of formula (II) as defined above, with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate for example tetrabutylammonium thiocyanate, generally in the presence of a base such as an alkali metal carbonate for example potassium carbonate, in an inert solvent solvent such as toluene or acetone, at a temperature of from 0° to 100°C.

Intermediate of formula (XII) wherein U is O, may be prepared according to known procedures, for example by the reaction of a compound of formula (II) as defined above, with an alkali metal cyanate or ammonium cyanate or a tetraalkylammonium cyanate for example tetrabutylammonium cyanate, generally in the presence of a base such as an alkali metal carbonate for example potassium carbonate, in an inert solvent solvent such as toluene, at a temperature of from 0° to 100°C.

15

20

5

10

Collections of compounds of the formula (I) which can be synthesized by the above mentioned process may also be prepared in a parallel manner, and this may be effected manually or in a semiautomated or fully automated manner. In this case, it is possible, for example, to automate the procedure of the reaction, work-up or purification of the products or of the intermediates. In total, this is to be understood as meaning a procedure as is described, for example, by S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Volume 1, Verlag Escom 1997, pages 69 to 77.

A series of commercially available apparatuses as are offered by, for example, Stem Corporation, Woodrolfe Road, Tollesbury, Essex, CM9 8SE, England or H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Germany or Radleys, Shirehill, Saffron Walden, Essex, England, may be used for the parallel procedure of the reaction and work-up. For the parallel purification of compounds of the formula (I), or of intermediates obtained during the preparation, use may be made, inter alia, of chromatography apparatuses, for example those by ISCO, Inc.,

4700 Superior Street, Lincoln, NE 68504, USA.

The apparatuses mentioned lead to a modular procedure in which the individual process steps are automated, but manual operations must be performed between the process steps. This can be prevented by employing semi-integrated or fully integrated automation systems where the automation modules in question are operated by, for example, robots. Such automation systems can be obtained, for example, from Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA.

- In addition to what has been described here, compounds of the formula (I) may be prepared in part or fully by solid-phase-supported methods. For this purpose, individual intermediate steps or all intermediate steps of the synthesis or of a synthesis adapted to suit the procedure in question are bound to a synthetic resin. Solid-phase-supported synthesis methods are described extensively in the specialist literature, for example Barry A. Bunin in "The Combinatorial Index", Academic Press, 1998.
- The use of solid-phase-supported synthesis methods permits a series of protocols which are known from the literature and which, in turn, can be performed manually or in an automated manner. For example, the "tea-bag method" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135), in which products by IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA, are employed, may be semiautomated. The automation of solid-phase-supported parallel syntheses is performed successfully, for example, by apparatuses by Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA or MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Germany.
- The preparation of the processes described herein yields compounds of the formula (I) in the form of substance collections which are termed libraries. The present invention also relates to libraries which comprise at least two compounds of the formula (I).
- Compounds of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XIV) and (XV) are known or may be prepared by known methods.

The following non-limiting Examples illustrate the preparation of the compounds of formula (I).

Chemical Examples

5 NMR spectra were run in deuterochloroform unless stated otherwise.
In the Examples which follow, quantities (also percentages) are weight-based, unless stated otherwise.

Example 1

Oxalyl chloride (0.15ml) was added to a suspension of 4-trifluoromethyl-3-pyridinecarboxamide (0.25g) in 1,2-dichloroethane at 20°C and then heated to reflux for 2 hours. The mixture was cooled, evaporated and the residue containing 4-trifluoromethyl-3-pyridylcarbonyl isocyanate was dissolved in tetrahydrofuran.

Benzylamine (0.15ml) was added and the mixture stirred at 20°C for 2 hours and evaporated. The residue was purified by silica-gel column chromatography, eluting with n-hexane/ethyl acetate (3:2), to give 1-benzyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.30g, Compound A-37).

By proceeding in a similar manner there was prepared 1-benzyl-1-(2-hydroxyethyl)-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (Compound A-862).

Example 2

25

30

Oxalyl chloride (1.50ml) was added to a suspension of 4-trifluoromethyl-3-pyridinecarboxamide (2.0g) in 1,2-dichloroethane at 20°C, and stirred under reflux for 2 hours. The mixture was evaporated and dichloromethane added to the residue containing 4-trifluoromethyl-3-pyridylcarbonyl isocyanate. To this was added at 20°C a suspension of N,O-dimethylhydroxylamine hydrochloride(2.05g) and triethylamine (3.0ml) in dichloromethane, which had been prepared in advance. The mixture was stirred for 30 minutes, then water added and the organic layer dried (magnesium sulfate) and evaporated, to give after trituration with ethanol, 1-methyl-1-methoxy-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (2.2g) (Compound A-313).

By proceeding in a similar manner there was prepared 1-hydroxyl-1-isopropyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (Compound A-540).

Example 3

Sodium hydride (0.090g, 60% dispersion in mineral oil) was added to a solution of 4-trifluoromethyl-3-pyridinecarboxamide (0.40g) in N,N-dimethylformamide at 20°C, and stirred for 1 hour. Benzyl isocyanate (0.31 ml) was added and the mixture stirred at 20°C for 2 hours, then methyl bromoacetate (0.30 ml) added and stirring continued for 5 hours. Ethyl acetate and water were added to the solution and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1), to give 3-benzyl-1-(4-trifluoromethyl-3-pyridylcarbonyl)hydantoin (0.50g, Compound S-132).

15 Example 4

20

Methanesulfonyl chloride (0.17ml) was added to an ice-cooled mixture of 1-benzyl-1-(2-hydroxyethyl)-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.70g), and triethylamine (0.64ml) in dichloromethane, then stirred for 3 hours at 20°C. The mixture was washed (water), dried (magnesium sulfate), evaporated and the residue purified by silica-gel chromatography, eluting with n-hexane/ethyl acetate (3:2), to give 1-benzyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)-2-imidazolidinone (0.63g, Compound S-15).

Example 5

1,2-Dibromoethane (0.06ml) was added to a suspension of 1-hydroxyl-1-isopropyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.20g) and potassium carbonate (0.20g) in N,N-dimethylformamide at 20°C, and stirred for 3 hours. Ethyl acetate and water were added and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1), to give 2-isopropyl-4-(4-trifluoromethyl-3-pyridylcarbonyl)-perhydro-1,2,4-oxadiazin-3-one (0.25g, Compound U-3).

Example 6

5

10

15

20

Oxalyl chloride (3.2 ml, 2M) was added to a suspension of 4-trifluoromethylnicotinic acid (1g) and a catalytic amount of N,N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour. After evaporation, the residue was dissolved in acetone and potassium thiocyanate (1g) added with ice bath cooling to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, then N-methylaniline (0.65g) was added and the mixture stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, dried (magnesium sulfate), evaporated and the residue purified by silicagel chromatography, eluting with n-hexane/ethyl acetate = 2/1, to give 1-methyl-1-phenyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)thiourea (0.96g, Compound B-349).

Examplé 7

Oxalyl chloride (6.4ml, 2M) was added to a suspension of 4-trifluoromethylnicotinic acid (2g) and a catalytic amount of N,N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour to give a solution of 4-trifluoromethylnicotinic acid chloride. N, N-Ethylenethiourea (2.23g) was added to sodium hydride (0.82g, 60% dispersion in mineral oil) in tetrahydrofuran, and the mixture was stirred at 20°C for 1 hour, and then added to the above solution of 4-trifluoromethylnicotinic acid chloride with ice bath cooling, then stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, dried (magnesium sulfate), evaporated and the residue crystallized (ethanol) to give N-(4-trifluoromethyl-3-pyridylcarbonyl)-imidazolin-2-thione (1.35 g, Compound S-356).

Example 8

Oxalyl chloride (9.6 ml, 2M) was added to a suspension 4-trifluoromethylnicotinic acid (3g) and a catalytic amount of N, N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour. The mixture was evaporated, the residue dissolved in toluene and tetrabutylammonium thiocyanate (3g) and potassium carbonate (1.5g) added, then stirred at 20°C for 30 minutes to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate 2,2,2-trifluoroethanol (3.15g) was then added, and the mixture stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, hydrochloric acid 1(M), saturated sodium bicarbonate and brine, dried (magnesium

sulfate), evaporated and recrystallised from ethanol to give 2,2,2-trifluoroethyl N-(4-trifluoromethyl-3-pyridylcarbonyl) thiocarbamate (1.2g, Compound X-45).

Example 9

5 Allyl bromide (0.10ml) was added to a suspension of 1-methyl-1-methoxy-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.25g) and potassium carbonate (0.16g) in N,N-dimethylformamide at 20°C, and stirred for 2 hours. Ethyl acetate and water were added and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1) to give 1-methyl-1-methoxy-3-allyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.26g, Compound E-85).

The following preferred compounds shown in Tables 1 to 9 also form part of the present invention, and were or may be prepared in accordance with, or analogously to, the above-mentioned Examples 1 to 9 or the above-described general methods. In the Tables Ph means phenyl. Where subscripts are omitted after atoms it will be understood that they are intended, for example CH3 means CH3.

Compound numbers are given for reference purposes only.

20 Table I

15

Compounds of formula (I) in which R^1 is $-C(=U)NR^3R^4$; R^2 is H and m is zero. In Table 1 compounds A-1 to A-881 represent individual compounds in which U is O, whilst compounds B-1 to B-881 represent individual compounds in which U is S.

Compound		R ³	R⁴	
A-1	B-1	CH₃CH=CH	Η	
A-2	B-2	CH ₂ =CHCH ₂	H	
A-3	B-3	CH ₃ (CH ₃)C=CH	H	
A-4	B-4	(CH ₃) ₂ C=CH	H	
A-5	B-5	CH ₃ CH=CHCH ₂	Н	
A-6	B-6	CH ₂ =C(CH ₃)CH ₂	Н	
A-7	B-7	CH ₃ CH=C(CI)CH ₂	H	
A-8	B-8	CH ₂ =CHCH ₂ CH ₂	Н	
A-9	B-9	CH ₃ CH ₂ (CH ₃)C=CH	Н	
A-10	B-10	(CH ₃) ₂ CHCH=CH	Н	

Compound		R ³	R⁴
A-11	B-11	CH ₂ CH ₂ CH=CHCH ₂	H
A-12	B-12	CH ₃ CH=C(CH ₃)CH ₂	Н
A-13	B-13	CH(CH ₃)HC=CHCH ₃	H
A-14	B-14	CH ₂ HC=C(CH ₃) ₂	Н
A-15	B-15	CH ₃ CH=CHCH ₂ CH ₂	Н
A-16	B-16	CH ₂ =CH ₂ CH ₂ CH ₂ CH ₂	Н
A-17	B-17	CH ₂ =CH ₂ CH ₂ CH ₂ CHCH ₂	H
A-18	B-18	CHCCH ₂	H
A-19	B-19	CH ₃ CCCH ₂	H
A-20	B-20	CHCCH(CH ₃)	H
A-21	B-21	CH ₃ CCCH(CH ₃)	H
A-22	B-22	CHCC(CH ₃) ₂	H
A-23	B-23	CH ₃ CCC(CH ₃) ₂	H
A-24	B-24	cyclo-C ₃ H ₅	H
A-25	B-25	cyclo-C ₃ H ₄ (₁ -CH ₃)	H
A-26	B-26	cyclo-C ₄ H7	Н
A-27	B-27	cyclo-C ₄ H6(₁ -CH ₃)	H
A-28	B-28	cyclo-C₅H9	Н
A-29	B-29	cyclo-C ₅ H8(₁ -CH ₃)	Н
A-30	B-30	cyclo-C6H ₁₁	Н
A-31	B-31	cyclo-C6H ₁₀ (₁ -CH ₃)	H
A-32	B-32	(cyclo-C ₃ H ₅)CH ₂	Н
A-33	B-33	(cyclo-C ₃ H ₄ (₁ -CH ₃))CH ₂	Н
A-34	B-34	(cyclo-C ₄ H7)CH ₂	H
A-35	B-35	(cyclo-C ₅ H9)CH ₂	H
A-36	B-36	(cyclo-C6H ₁₁)CH ₂	Н
A-37	B-37	PhCH ₂	Н
A-38	B-38	PhCH(CH ₃)	H
A-39	B-39	PhCH ₂ CH ₂	Н
A-40	B-40	PhC(CH ₃) ₂	Н
A-41	B-41	PhCH ₂ CH ₂	Н
A-42	B-42	(2-F-Ph)CH ₂	H
A-43	B-43	(3-F-Ph)CH ₂	H
A-44	B-44	(4-F-Ph)CH ₂	H
A-45	B-45	(2-Cl-Ph)CH ₂	H
A-46	B-46	(3-Cl-Ph)CH ₂	Н
A-47	B-47	(4-Cl-Ph)CH ₂	Н
A-48	B-48	(2-Br-Ph)CH ₂	Н
A-49	B-49	(3-Br-Ph)CH ₂	Н
A-50	B-50	(4-Br-Ph)CH ₂	H
A-51	B-51	(2-I-Ph)CH ₂	Н
A-52	B-52	(3-I-Ph)CH ₂	H
A-53	B-53	(4-I-Ph)CH ₂	Н

Compound		R ³	R⁴
A-54	B-54	(2-CF ₃ -Ph)CH ₂	Н
A-55	B-55	(3-CF ₃ -Ph)CH ₂	Н
A-56	B-56	(4-CF ₃ -Ph)CH ₂	Н
A-57	B-57	(2-CH ₃ -Ph)CH ₂	Н
A-58	B-58	(3-CH ₃ -Ph)CH ₂	Н
A-59	B-59	(4-CH ₃ -Ph)CH ₂	Н
A-60	B-60	(2-CH ₃ O-Ph)CH ₂	Н
A-61	B-61	(3-CH ₃ O-Ph)CH ₂	Н
A-62	B-62	(4-CH ₃ O-Ph)CH ₂	Н
A-63	B-63	НО	Н
A-64	B-64	CH₃O	Н
A-65	B-65	CH ₃ CH ₂ O	H
A-66	B-66	n-C₃H7O	Н
A-67	B-67	iso-C₃H7O	Н
A-68	B-68	n-C₄H9O	Н
A-69	B-69	sec-C ₄ H9O	Н
A-70	B-70	iso-C ₄ H9O	Н
A-71	B-71	tert-C₄H9O	Н
A-72	B-72	n-C ₅ H ₁₁ O	H
A-73	B-73	n-C6H ₁₃ O	Н
A-74	B-74	CH ₂ =CHCH ₂ O	Н
A-75	B-75	CH ₂ =C(CH ₃)CH ₂ O	Н
A-76	B-76	CH₂=CHCH(CH₃)O	Н
A-77	B-77	CH ₂ =C(Cl)CH ₂ O	Н
A-78	B-78	CH ₂ =CHC(CH ₃) ₂ O	Н
A-79	B-79	CH ₃ CH=CHCH ₂ O	Н
A-80	B-80	CH ₂ =CH ₂ CH ₂ CH ₂ O	Н
A-81	B-81	CHCCH ₂ O	Н
A-82	B-82	CH ₃ CCCH ₂ O	Н
A-83	B-83	CHCCH(CH ₃)O	Н
A-84	B-84	CHCC(CH ₃) ₂ O	H
A-85	B-85	CH ₃ CH ₂ O ₂ CCH ₂ O	Н
A-86	B-86	PhCH₂O	Η
A-87	B-87	2-CH ₃ O-PhCH ₂ O	H
A-88	B-88	3-CH ₃ O-PhCH ₂ O	H
A-89	B-89	4-CH ₃ O-PhCH ₂ O	Н
A-90	B-90	PhO	H
A-91	B-91	2-CI-PhO	H
A-92	B-92	3-CI-PhO	H
A-93	B-93	4-CI-PhO	H
A-94	B-94	2-CF ₃ -PhO	H
A-95	B-95	3-CF ₃ -PhO	Н
A-96	B-96	4-CF ₃ -PhO	H

Compound		R ³	R⁴
A-97	B-97	2-CH ₃ O-PhO	Н
A-98	B-98	3-CH ₃ O-PhO	Н
A-99	B-99	4-CH ₃ O-PhO	Н
A-100	B-100	NH ₂	Н
A-101	B-101	CH₃NH	Н
A-102	B-102	C ₂ H ₅ NH	Н
A-103	B-103	n-C ₃ H7NH	Н
A-104	B-104	iso-C₃H7NH	Н
A-105	B-105	n-C ₄ H9NH	Н
A-106	B-106	n-C ₅ H ₁₁ NH	Н
A-107	B-107	n-C6H ₁₃ NH	Н
A-108	B-108	PhCH ₂ NH	Н .
A-109	B-109	PhNH	Н
A-110	B-110	2-F-PhNH	Н
A-111	B-111	3-F-PhNH	Н
A-112	B-112	4-F-PhNH	Н
A-113	B-113	2-CI-PhNH	Н
A-114	B-114	3-CI-PhNH	Н
A-115	B-115-	4-CI-PhNH	Н
A-116	B-116	2-Br-PhNH	H
A-117	B-117	3-Br-PhNH	Н
A-118	B-118	4-Br-PhNH	H
A-119	B-119	2-I-PhNH	Н
A-120	B-120	3-I-PhNH	H
A-121	B-121	4-I-PhNH	Н
A-122	B-122	2-CF₃-PhNH	H
A-123	B-123	3-CF ₃ -PhNH	Н
A-124	B-124	4-CF ₃ -PhNH	Н
A-125	B-125	2-CH ₃ -PhNH	Н
A-126	B-126	3-CH ₃ -PhNH	H
A-127	B-127	4-CH ₃ -PhNH	Н
A-128	B-128	2-CH ₃ O-PhNH	H
A-129	B-129	3-CH ₃ O-PhNH	Н
A-130	B-130	4-CH ₃ O-PhNH	Н
A-131	B-131	2-NO ₂ -PhNH	Н
A-132	B-132	3-NO ₂ -PhNH	H
A-133	B-133	4-NO ₂ -PhNH	Н
A-134	B-134	2-CN-PhNH	Н
A-135	B-135	3-CN-PhNH	Н
A-136	B-136	4-CN-PhNH	Н
A-137	B-137	Ph(Me)N	Н
A-138	B-138	2-F-Ph(Me)N	Н
A-139	B-139	3-F-Ph(Me)N	Н

Compound R³ R⁴ A-140 B-140 4-F-Ph(Me)N H A-141 B-141 2-Cl-Ph(Me)N H A-142 B-142 3-Cl-Ph(Me)N H A-143 B-143 4-Cl-Ph(Me)N H A-144 B-144 3-CF₃-Ph(Me)N H A-145 B-145 4-CF₃-Ph(Me)N H A-146 B-146 2-CH₃O-Ph(Me)N H A-147 B-147 3-CH₃O-Ph(Me)N H A-148 B-148 4-CH₃O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-141 B-141 2-Cl-Ph(Me)N H A-142 B-142 3-Cl-Ph(Me)N H A-143 B-143 4-Cl-Ph(Me)N H A-144 B-144 3-CF ₃ -Ph(Me)N H A-145 B-145 4-CF ₃ -Ph(Me)N H A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-142 B-142 3-Cl-Ph(Me)N H A-143 B-143 4-Cl-Ph(Me)N H A-144 B-144 3-CF ₃ -Ph(Me)N H A-145 B-145 4-CF ₃ -Ph(Me)N H A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-143 B-143 4-Cl-Ph(Me)N H A-144 B-144 3-CF ₃ -Ph(Me)N H A-145 B-145 4-CF ₃ -Ph(Me)N H A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-144 B-144 3-CF ₃ -Ph(Me)N H A-145 B-145 4-CF ₃ -Ph(Me)N H A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-145 B-145 4-CF ₃ -Ph(Me)N H A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-146 B-146 2-CH ₃ O-Ph(Me)N H A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-147 B-147 3-CH ₃ O-Ph(Me)N H A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-148 B-148 4-CH ₃ O-Ph(Me)N H A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-149 B-149 Ph H A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-150 B-150 2-F-Ph H A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-151 B-151 3-F-Ph H A-152 B-152 4-F-Ph H	
A-152 B-152 4-F-Ph H	
A-153 B-153 2-Cl-Ph H	
A-154 B-154 3-CI-Ph H	
A-155 B-155 4-CI-Ph H	
A-156 B-156 2-Br-Ph H	
A-157 B-157 3-Br-Ph H	
A-158 B-158 4-Br-Ph H	
A-159 B-159 2-I-Ph H	
A-160 B-160 3-I-Ph H	
A-161 B-161 4-I-Ph H	
A-162 B-162 2-CF ₃ -Ph H	
A-163 B-163 3-CF ₃ -Ph H	
A-164 B-164 4-CF ₃ -Ph H	
A-165 B-165 2-CH ₃ -Ph H	
A-166 B-166 3-CH ₃ -Ph H	
A-167 B-167 4-CH ₃ -Ph H	
A-168 B-168 2-CH₃O-Ph H	
A-169 B-169 3-CH₃O-Ph H	
A-170 B-170 4-CH₃O-Ph H	· · · · · · · · · · · · · · · · · · ·
A-171 B-171 2-NO ₂ -Ph H	
A-172 B-172 3-NO ₂ -Ph H	
A-173 B-173 4-NO ₂ -Ph H	
A-174 B-174 2-CN-Ph H	
A-175 B-175 3-CN-Ph H	
A-176 B-176 4-CN-Ph H	
A-177 B-177 2-CO₂H-Ph H	
A-178 B-178 3-CO₂H-Ph H	
A-179 B-179 4-CO₂H-Ph H	
A-180 B-180 2-CO₂Me-Ph H	
A-181 B-181 3-CO₂Me-Ph H	
A-182 B-182 4-CO₂Me-Ph H	

Compound		R³	R⁴
	B-183	2-HO-Ph	Н
	B-184	3-HO-Ph	Н
	B-185	4-HO-Ph	H
	B-186	2-NH ₂ -Ph	Н
	B-187	3-NH ₂ -Ph	Н
	B-188	4-NH ₂ -Ph	Н
	B-189	2-HOCH ₂ -Ph	Н
A-190	B-190	3-HOCH ₂ -Ph	Н
A-191	B-191	4-HOCH ₂ -Ph	Н
A-192	B-192	2-CF ₃ O-Ph	Н
A-193	B-193	3-CF ₃ O-Ph	Н
A-194	B-194	4-CF ₃ O-Ph	H
A-195	B-195	2-CF ₃ CH ₂ O-Ph	Н
A-196	B-196	3-CF ₃ CH ₂ O-Ph	Н
A-197	B-197	4-CF ₃ CH ₂ O-Ph	Н
A-198	B-198	2-(4-Cl-PhO)-Ph	Н
A-199	B-199	3-(4-Cl-PhO)-Ph	Н
A-200	B-200	4-(4-CI-PhO)-Ph	Н
A-201	B-201	2-(4-CF ₃ -PhO)-Ph	Н
A-202	B-202	3-(4-CF ₃ -PhO)-Ph	H
A-203	B-203	4-(4-CF ₃ -PhO)-Ph	Н
A-204	B-204	2,3-diCl-Ph	Н
A-205	B-205	2,5-diCl-Ph	Н
A-206	B-206	2,6-diCI-Ph	Н
A-207	B-207	3,4-diCl-Ph	Н
A-208	B-208	3,5-diCl-Ph	Н
A-209	B-209	2-Pyridyl	Н
A-210	B-210	3-Pyridyl	Н
A-211	B-211	4-Pyridyl	Н
A-212	B-212	2-Pyrimidyl	Н
A-213	B-213	1-Pyrrolyl	H
A-214	B-214	1-Pyrazolyl	Н
A-215	B-215	3-Pyrazolyl	Н
A-216	B-216	1,2,4-Triazol-1-yl	H
A-217	B-217	1,2,4-Triazol-3-yl	Н
A-218	B-218	2-Furanyl	Н
A-219	B-219	3-Furanyl	Н
A-220	B-220	2-Thienyl	H
A-221	B-221	3-Thienyl	Н
A-222	B-222	2-Thiazolyl	Н
A-223	B-223	1,3,4-Thiadiazol-2-yl	H
A-224	B-224	3-Isoxazolyl	H
A-225	B-225	CH₃CO	Н
V-7-220		_ <u> </u>	

Compound		R ³	R⁴
A-226	B-226	CH ₃ CH ₂ CO	Н
A-227	B-227	n-C₃H7CO	Н
A-228	B-228	iso-C₃H7CO	H
A-229	B-229	n-C ₄ H9CO	Н
A-230	B-230	iso-C ₄ H9CO	Н
A-231	B-231	sec-C ₄ H9CO	Н
A-232	B-232	tert-C ₄ H9CO	H
A-233	B-233	n-C5H ₁₁ CO	Н
A-234	B-234	n-C6H ₁₂ CO	Н
A-235	B-235	PhCO	H
A-236	B-236	PhCH₂CO	<u>H</u>
A-237	B-237	CH ₃ SO ₂	H
A-238	B-238	C ₂ H5SO ₂	H
A-239	B-239	n-C ₃ H7SO ₂	H
A-240	B-240	iso-C ₃ H7SO ₂	Н
A-241	B-241	PhCH ₂ SO ₂	Н
A-242	B-242	PhSO₂	Η .
A-243	B-243	2-CI-PhSO ₂	Н
A-244	B-244	3-CI-PhSO ₂	H
A-245	B-245	4-Cl-PhSO ₂	H
A-246	B-246	CH₃SO₂NH	H
A-247	B-247	PhSO ₂ NH	H
A-248	B-248	CF₃CH₂	H
A-249	B-249	CICH₂CH₂	H
A-250	B-250	CICH ₂ CH ₂ CH ₂	Н
A-251	B-251	CH₃OCH₂CH₂	H
A-252	B-252	CH ₃ CH ₂ OCH ₂ CH ₂	H
A-253	B-253	CH ₃ OCH ₂ CH ₂ CH ₂	Н
A-254	B-254	C ₂ H5OCH ₂ CH ₂ CH ₂	H
A-255	B-255	n-C ₄ H9OCH ₂ CH ₂ CH ₂	Н
A-256	B-256	(CH ₃ O) ₂ CHCH ₂	Н
A-257	B-257	CH₃CONH	Н
A-258	B-258	PhCONH	Н
A-259	B-259	Ph ₂ C=N	Н
A-260	B-260	HOCH ₂ CH ₂	Н
A-261	B-261	HOCH₂CH₂CH₂	H
A-262	B-262	CH ₃ O ₂ CCH ₂	Н
A-263	B-263	CH ₃ O ₂ CCH(CH ₃)	Н
A-264	B-264	CH ₃ O ₂ CC(CH ₃) ₂	H
A-265	B-265	NCCH ₂	H
A-266	B-266	NCCH(CH₃)	Н
A-267	B-267	NCC(CH ₃) ₂	Н
A-268	B-268	NC(CH ₃)(iso-C ₃ H7)C	H

Compound		R ³	R⁴
A-269	B-269	HOCH ₂ CH ₂ CH ₂ CH ₂	H
A-270	B-270	CHCCH ₂ O	H
A-271	B-271	CH ₃ O ₂ CCH ₂ O	H
A-272	B-272	CH ₃ O ₂ CCH(CH ₃)O	Н
A-273	B-273	CH ₃ O ₂ CC(CH ₃) ₂ O	Н
A-274	B-274	(1-pyrrolidinyl)CH ₂ CH ₂	H
A-275	B-275	CH ₂ =CHCH ₂	CH ₃
A-276	B-276	CH ₃ CH=CHCH ₂	CH₃
A-277	B-277	CH ₂ =C(CH ₃)CH ₂	CH ₃
A-278	B-278	CH ₂ =CH(CH ₃)CH	CH₃
A-279	B-279	CH ₂ =CHCH ₂ CH ₂	CH ₃
A-280	B-280	CH ₃ CH=C(CH ₃)CH ₂	CH ₃
A-281	B-281	CH(CH ₃)HC=CHCH ₃	CH ₃
A-282	B-282	C(CH ₃) ₂ HC=CH ₂	CH ₃
A-283	B-283	CH ₂ HC=C(CH ₃) ₂	CH₃
A-284	B-284	CH ₃ CH=CHCH ₂ CH ₂	CH ₃
A-285	B-285	CH ₂ =CHCH ₂ CH ₂ CH ₂	CH₃
A-286	B-286	CHCCH ₂	CH₃
A-287	B-287	CH ₃ CCCH ₂	CH₃
A-288	B-288	CHCCH(CH ₃)	CH ₃
	B-289	CH ₃ CCCH(CH ₃)	CH ₃
A-289	B-290	cyclo-C ₃ H5	CH ₃
A-290	B-291	cyclo-C5H9	CH ₃
A-291	B-292	cyclo-C6H ₁₁	CH ₃
A-292	B-293	(cyclo-C ₃ H5)CH ₂	CH ₃
A-293	B-293	(cyclo-C5H9)CH ₂	CH ₃
A-294		(cyclo-C6H ₁₁)CH ₂	CH₃
A-295	B-295	PhCH ₂	CH ₃
A-296	B-296	PhCH(CH ₃)	CH ₃
A-297	B-297		CH ₃
A-298	B-298	PhC(CH ₃) ₂	CH₃
A-299	B-299	PhCH ₂ CH ₂	CH ₃
A-300	B-300	(2-F-Ph)CH ₂	CH ₃
A-301	B-301	(3-F-Ph)CH ₂	CH₃
A-302	B-302	(4-F-Ph)CH ₂	CH ₃
A-303	B-303	(2-CI-Ph)CH ₂	CH ₃
A-304	B-304	(3-Cl-Ph)CH ₂	CH ₃
A-305	B-305	(4-Cl-Ph)CH ₂	CH ₃
A-306	B-306	(2-CF ₃ -Ph)CH ₂	CH ₃
A-307	B-307	(3-CF ₃ -Ph)CH ₂	CH ₃
A-308	B-308	(4-CF ₃ -Ph)CH ₂	CH ₃
A-309	B-309	(2-CH ₃ O-Ph)CH ₂	
A-310	B-310	(3-CH ₃ O-Ph)CH ₂	CH₃
A-311	B-311	(4-CH ₃ O-Ph)CH ₂	CH ₃

Compound		\mathbb{R}^3	R⁴
A-312	B-312	НО	CH ₃
A-313	B-313	CH ₃ O	CH₃
A-314	B-314	CH₃CH₂O	CH ₃
A-315	B-315	n-C₃H7O	CH ₃
A-316	B-316	iso-C₃H7O	CH ₃
A-317	B-317	CH ₂ =CHCH ₂ O	CH ₃
A-318	B-318	CH ₂ =C(CH ₃)CH ₂ O	CH ₃
A-319	B-319	CH ₂ =CHCH(CH ₃)O	CH ₃
A-320	B-320	CH ₂ =CHCH(CH ₃)O	CH ₃
A-321	B-321	CH ₂ =CHC(CH ₃) ₂ O	CH ₃
A-322	B-322	CH ₃ CH=CHCH ₂ O	CH₃
A-323	B-323	CHCCH ₂ O	CH ₃
A-324	B-324	CH₃CCCH₂O	CH₃
A-325	B-325	CHCCH(CH ₃)O	CH₃
A-326	B-326	CH ₃ O ₂ CCH(CH ₃)O	CH ₃
A-327	B-327	CH ₃ O ₂ CC(CH ₃) ₂ O	CH ₃
A-328	B-328	CH ₃ O ₂ CCH ₂ O	CH ₃
A-329	B-329	PhCH ₂ O	CH₃
A-330	B-330	PhO	CH₃
A-331	B-331	NH ₂	CH₃
A-332	B-332	CH₃NH	CH ₃
A-333	B-333	C₂H5NH	CH₃
A-334	B-334	n-C₃H7NH	CH₃
A-335	B-335	iso-C₃H7NH	CH₃
A-336	B-336	PhCH ₂ NH	CH₃
A-337	B-337	PhNH	CH ₃
A-338	B-338	2-F-PhNH	CH ₃
A-339	B-339	3-F-PhNH	CH₃
A-340	B-340	4-F-PhNH	CH₃
A-341	B-341	2-CI-PhNH	CH₃
A-342	B-342	3-CI-PhNH	CH ₃
A-343	B-343	4-CI-PhNH	CH₃
A-344	B-344	2-CF ₃ -PhNH	CH₃
A-345	B-345	3-CF ₃ -PhNH	CH₃
A-346	B-346	2-CH ₃ O-PhNH	CH₃
A-347	B-347	3-CH ₃ O-PhNH	CH ₃
A-348	B-348	4-CH ₃ O-PhNH	CH₃
A-349	B-349	Ph	CH₃
A-350	B-350	2-F-Ph	CH ₃
A-351	B-351	3-F-Ph	CH ₃
A-352	B-352	4-F-Ph	CH₃
A-353	B-353	2-CI-Ph	CH₃
A-354	B-354	3-Cl-Ph	CH₃

Compo	und	R ³	R⁴
A-355	B-355	4-Cl-Ph	CH ₃
A-356	B-356	2-Br-Ph	CH ₃
A-357	B-357	3-Br-Ph	CH ₃
A-358	B-358	4-Br-Ph	CH₃
A-359	B-359	2-I-Ph	CH₃
A-360	B-360	3-I-Ph	CH₃
A-361	B-361	4-I-Ph	CH₃
A-362	B-362	2-CF ₃ -Ph	CH₃
A-363	B-363	3-CF ₃ -Ph	CH₃
A-364	B-364	4-CF ₃ -Ph	CH₃
A-365	B-365	2-CH ₃ -Ph	CH₃
A-366	B-366	3-CH ₃ -Ph	CH₃
A-367	B-367	4-CH ₃ -Ph	CH₃
A-368	B-368	2-CH ₃ O-Ph	CH₃
A-369	B-369	3-CH ₃ O-Ph	CH₃
A-370	B-370	4-CH₃O-Ph	CH₃
A-371	B-371	2-NO ₂ -Ph	CH₃
A-372	B-372	3-NO ₂ -Ph	CH₃
A-373	B-373-	4-NO ₂ -Ph	CH₃
A-374	B-374	2-CN-Ph	CH₃
A-375	B-375	3-CN-Ph	CH₃
A-376	B-376	4-CN-Ph	CH₃
A-377	B-377	2-CO₂Me-Ph	CH₃
A-378	B-378	3-CO₂Me-Ph	CH₃
A-379	B-379	4-CO₂Me-Ph	CH₃
A-380	B-380	2-HO-Ph	CH₃
A-381	B-381	3-HO-Ph	CH₃
A-382	B-382	4-HO-Ph	CH₃
A-383	B-383	2-NH ₂ -Ph	CH₃
A-384	B-384	3-NH ₂ -Ph	CH₃
A-385	B-385	4-NH ₂ -Ph	CH₃
A-386	B-386	2-CF ₃ O-Ph	CH₃
A-387	B-387	3-CF ₃ O-Ph	CH₃
A-388	B-388	4-CF ₃ O-Ph	CH₃
A-389	B-389	4-CF ₃ CH ₂ O-Ph	CH₃
A-390	B-390	4-(4-Cl-PhO)-Ph	CH₃
A-391	B-391	4-(4-CF ₃ -PhO)-Ph	CH₃
A-392	B-392	2,3-diCl-Ph	CH₃
A-393	B-393	2,4-diCl-Ph	CH₃
A-394	B-394	2,5-diCl-Ph	CH ₃
A-395	B-395	2,6-diCl-Ph	CH₃
A-396	B-396	3,4-diCl-Ph	CH₃
A-397	B-397	3,5-diCl-Ph	CH₃

Compound		\mathbb{R}^3	R⁴
	B-398	2-Pyridyl	CH₃
A-399	B-399	3-Pyridyl	CH₃
A-400	B-400	4-Pyridyl	CH ₃
A-401	B-401	2-Pyrimidyl	CH ₃
A-402	B-402	1-Pyrrolyl	CH ₃
A-403	B-403	1-Pyrazolyl	CH ₃
A-404	B-404	3-Pyrazolyl	CH ₃
A-405	B-405	1,2,4-Triazol-1-yl	CH ₃
A-406	B-406	1,2,4-Triazol-3-yl	CH ₃
A-407	B-407	2-Furanyi	CH ₃
A-408	B-408	3-Furanyl	CH ₃
A-409	B-409	2-Thienyl	CH ₃
A-410	B-410	3-Thienyl	CH ₃
A-411	B-411	2-Thiazolyl	CH₃
A-412	B-412	1,3,4-Thiadiazol-2-yl	CH ₃
A-413	B-413	3-Isoxazolyl	CH₃
A-414	B-414	CH₃CO	CH₃
A-415	B-415	PhCO	CH₃
A-416	B-416	PhCH ₂ CO	CH₃
A-417	B-417	CH ₃ SO ₂ NH	CH₃
A-418	B-418	PhSO₂NH	CH₃
A-419	B-419	CF ₃ CH ₂	CH₃
A-420	B-420	CICH ₂ CH ₂	CH ₃
A-421	B-421	CICH ₂ CH ₂ CH ₂	CH ₃
A-422	B-422	CH ₃ OCH ₂ CH ₂	CH₃
A-423	B-423	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₃
A-424	B-424	CH ₃ OCH ₂ CH ₂ CH ₂	CH₃
A-425	B-425	C ₂ H5OCH ₂ CH ₂ CH ₂	CH ₃
A-426	B-426	n-C ₄ H9OCH ₂ CH ₂ CH ₂	CH ₃
A-427	B-427	(CH ₃ O) ₂ CHCH ₂	CH ₃
A-428	B-428	CH₃CONH	CH ₃
A-429	B-429	PhCONH	CH ₃
A-430	B-430	Ph ₂ C=N	CH ₃
A-431	B-431	HOCH ₂ CH ₂	CH₃
A-432	B-432	HOCH ₂ CH ₂ CH ₂	CH ₃
A-433	B-433	CH ₃ O ₂ CCH ₂	CH₃
A-434	B-434	CH ₃ O ₂ CCH(CH ₃)	CH₃
A-435	B-435	CH ₃ O ₂ CC(CH ₃) ₂	CH₃
A-436	B-436	NCCH₂	CH₃
A-437	B-437	NC(CH ₃)(iso-C ₃ H7)C	CH₃
A-438	B-438	(1-pyrrolidinyl)CH ₂ CH ₂	C₂H5
A-439	B-439	CH ₂ =CHCH ₂	C ₂ H5
A-440	B-440	CHCCH₂	C₂H5

Com	pound	R ³	R⁴
A-441	B-441	CH₃CCCH₂	C₂H5
A-442	B-442	(cyclo-C ₃ H5)CH ₂	C₂H5_
A-443	B-443	PhCH ₂	C₂H5
A-444	B-444	PhCH ₂ CH ₂	C₂H5
A-445	B-445	(2-Cl-Ph)CH ₂	C₂H5
A-446	B-446	(3-CI-Ph)CH ₂	C₂H5
A-447	B-447	(4-Cl-Ph)CH ₂	C₂H5
A-448	B-448	(2-CF ₃ -Ph)CH ₂	C₂H5
A-449	B-449	(3-CF ₃ -Ph)CH ₂	C₂H5
A-450	B-450	(4-CF ₃ -Ph)CH ₂	C₂H5
A-451	B-451	(2-CH ₃ O-Ph)CH ₂	C₂H5
A-452	B-452	(3-CH ₃ O-Ph)CH ₂	C₂H5
A-453	B-453	(4-CH ₃ O-Ph)CH ₂	C ₂ H5
A-454	B-454	НО	C ₂ H5
A-455	B-455	CH ₃ O	C₂H5
A-456	B-456	CH₃CH₂O	C₂H5
A-457	B-457	n-C₃H7O	C₂H5
A-458	B-458	iso-C₃H7O	C₂H5
A-459	B-459	CH ₂ =CHCH ₂ O	C ₂ H5
A-460	B-460	CHCCH ₂ O	C ₂ H5
A-461	B-461	PhCH ₂ O	C₂H5
A-462	B-462	PhO	C ₂ H5
A-463	B-463	NH ₂	C₂H5
A-464	B-464	CH ₃ NH	C₂H5
A-465	B-465	C ₂ H5NH	C₂H5
A-466	B-466	n-C₃H7NH	C₂H5
A-467	B-467	iso-C₃H7NH	C₂H5
A-468	B-468	PhCH₂NH	C₂H5
A-469	B-469	PhNH	C₂H5
A-470	B-470	2-CI-PhNH	C ₂ H5
A-471	B-471	3-CI-PhNH	C₂H5
A-472	B-472	4-CI-PhNH	C₂H5
A-473	B-473	2-CF ₃ -PhNH	C₂H5
A-474	B-474	3-CF ₃ -PhNH	C ₂ H5
A-475	B-475	2-CH₃O-PhNH	C₂H5
A-476	B-476	3-CH ₃ O-PhNH	C₂H5
A-477	B-477	4-CH ₃ O-PhNH	C₂H5
A-478	B-478	Ph	C₂H5
A-479	B-479	2-Cl-Ph	C₂H5
A-480	B-480	3-CI-Ph	C₂H5
A-481	B-481	4-CI-Ph	C₂H5
A-482	B-482	2-CF ₃ -Ph	C₂H5
A-483	B-483	3-CF ₃ -Ph	C ₂ H5

Compound		\mathbb{R}^3	R⁴
A-484	B-484	4-CF ₃ -Ph	C ₂ H5
A-485	B-485	2-CH₃O-Ph	C ₂ H5
A-486	B-486	3-CH₃O-Ph	C₂H5
A-487	B-487	4-CH₃O-Ph	C₂H5
A-488	B-488	2-HO-Ph	C₂H5
A-489	B-489	3-HO-Ph	C₂H5
A-490	B-490	4-HO-Ph	C₂H5
A-491	B-491	2-NH ₂ -Ph	C₂H5
A-492	B-492	3-NH ₂ -Ph	C₂H5
A-493	B-493	4-NH ₂ -Ph	C₂H5
A-494	B-494	2-HOCH ₂ -Ph	C₂H5
A-495	B-495	4-CF₃O-Ph	C₂H5
A-496	B-496	4-CF ₃ CH ₂ O-Ph	C₂H5
A-497	B-497	4-(4-Cl-PhO)-Ph	C₂H5
A-498	B-498	4-(4-CF ₃ -PhO)-Ph	C₂H5
A-499	B-499	2,3-diCl-Ph	C₂H5
A-500	B-500	1-Pyrrolyl	C₂H5
A-501	B-501	1-Pyrazolyl	C₂H5
A-502	B-502	1,2,4-Triazol-1-yl	C₂H5
A-503	B-503	2-Thiazolyl	C₂H5
A-504	B-504	1,3,4-Thiadiazol-2-yl	C₂H5
A-505	B-505	CH₃CO	C₂H5
A-506	B-506	PhCO	C₂H5
A-507	B-507	PhSO ₂ NH	C₂H5
A-508	B-508	CF ₃ CH ₂	C₂H5
A-509	B-509	CICH₂CH₂	C₂H5
A-510	B-510	CICH ₂ CH ₂ CH ₂	C₂H5
A-511	B-511	CH₃OCH₂CH₂	C₂H5
A-512	B-512	CH ₃ CH ₂ OCH ₂ CH ₂	C₂H5
A-513	B-513	CH₃OCH₂CH₂CH₂	C₂H5
A-514	B-514	C ₂ H5OCH ₂ CH ₂ CH ₂	C₂H5
A-515	B-515	n-C ₄ H9OCH ₂ CH ₂ CH ₂	C₂H5
A-516	B-516	(CH ₃ O) ₂ CHCH ₂	C ₂ H5
A-517	B-517	CH₃CONH	C₂H5
A-518	B-518	PhCONH	C ₂ H5
A-519	B-519	HOCH₂CH₂	C₂H5
A-520	B-520	HOCH ₂ CH ₂ CH ₂	C₂H5
A-521	B-521	CH ₃ O ₂ CCH ₂	C ₂ H5
A-522	B-522	CH ₃ O ₂ CCH(CH ₃)	C ₂ H5
A-523	B-523	NCCH₂	n-C ₃ H7
A-524	B-524	HOCH₂CH₂	n-C ₃ H7
A-525	B-525	CH ₂ =CHCH ₂	iso-C ₃ H7
A-526	B-526	CHCCH₂	iso-C₃H7

Compound		R ³	R ⁴
A-527	B-527	CH ₃ CCCH ₂	iso-C₃H7
A-528	B-528	(cyclo-C ₃ H5)CH ₂	iso-C₃H7
A-529	B-529	PhCH ₂	iso-C₃H7
A-530	B-530	PhCH ₂ CH ₂	iso-C₃H7
A-531	B-531	(2-CI-Ph)CH ₂	iso-C₃H7
A-532	B-532	(3-CI-Ph)CH ₂	iso-C₃H7
A-533	B-533	(4-Cl-Ph)CH ₂	iso-C₃H7
A-534	B-534	(2-CF ₃ -Ph)CH ₂	iso-C₃H7
A-535	B-535	(3-CF ₃ -Ph)CH ₂	iso-C₃H7
A-536	B-536	(4-CF ₃ -Ph)CH ₂	iso-C₃H7
A-537	B-537	(2-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-538	B-538	(3-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-539	B-539	(4-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-540	B-540	НО	iso-C₃H7
A-541	B-541	CH₃O	iso-C₃H7
A-542	B-542	CH₃CH₂O	iso-C₃H7
A-543	B-543	n-C₃H7O	iso-C₃H7
A-544	B-544	iso-C₃H7O	iso-C₃H7
A-545	B-545	CH₂=CHCH₂O	iso-C₃H7
A-546	B-546	CHCCH ₂ O	iso-C₃H7
A-547	B-547	PhCH ₂ O	iso-C₃H7
A-548	B-548	PhO	iso-C₃H7
A-549	B-549	NH ₂	iso-C₃H7
A-550	B-550	CH ₃ NH	iso-C₃H7
A-551	B-551	C₂H5NH	iso-C₃H7
A-552	B-552	n-C₃H7NH	iso-C₃H7
A-553	B-553	iso-C₃H7NH	iso-C₃H7
A-554	B-554	PhCH₂NH	iso-C₃H7
A-555	B-555	PhNH	iso-C₃H7
A-556	B-556	2-CI-PhNH	iso-C₃H7
A-557	B-557	3-CI-PhNH	100 03111
A-558	B-558	4-CI-PhNH	iso-C₃H7
A-559	B-559	2-CF ₃ -PhNH	iso-C₃H7
A-560	B-560	3-CF ₃ -PhNH	iso-C₃H7
A-561	B-561	2-CH₃O-PhNH	iso-C₃H7
A-562	B-562	3-CH₃O-PhNH	iso-C₃H7
A-563	B-563	4-CH ₃ O-PhNH	iso-C₃H7
A-564	B-564	Ph	iso-C₃H7
A-565	B-565	2-Cl-Ph	iso-C₃H7
A-566	B-566	3-CI-Ph	iso-C₃H7
A-567	B-567	4-CI-Ph	iso-C₃H7
A-568	B-568	2-CF ₃ -Ph	iso-C₃H7
A-569	B-569	3-CF ₃ -Ph	iso-C₃H7

Compound		R ³	R⁴
A-570	B-570	4-CF ₃ -Ph	iso-C₃H7
A-571	B-571	2-CH ₃ O-Ph	iso-C ₃ H7
A-572	B-572	3-CH ₃ O-Ph	iso-C₃H7
A-573	B-573	4-CH ₃ O-Ph	iso-C₃H7
A-574	B-574	2-HO-Ph	iso-C₃H7
A-575	B-575	3-HO-Ph	iso-C ₃ H7
A-576	B-576	4-HO-Ph	iso-C₃H7
A-577	B-577	2-NH ₂ -Ph	iso-C₃H7
A-578	B-578	3-NH ₂ -Ph	iso-C ₃ H7
A-579	B-579	4-NH ₂ -Ph	iso-C ₃ H7.
A-580	B-580	2-HOCH ₂ -Ph	iso-C₃H7
A-581	B-581	4-CF₃O-Ph	iso-C₃H7
A-582	B-582	4-CF ₃ CH ₂ O-Ph	iso-C₃H7
A-583	B-583	4-(4-Cl-PhO)-Ph	iso-C₃H7
A-584	B-584	4-(4-CF ₃ -PhO)-Ph	iso-C₃H7
A-585	. B-585	2,3-diCl-Ph	iso-C₃H7
A-586	B-586	1-Pyrrolyl	iso-C ₃ H7
A-587	B-587	1-Pyrazolyl	iso-C₃H7
A-588	B-588	1,2,4-Triazol-1-yl	iso-C₃H7
A-589	B-589	2-Thiazolyl	iso-C₃H7
A-590	B-590	1,3,4-Thiadiazol-2-yl	iso-C₃H7
A-591	B-591	CH₃CO	iso-C₃H7
A-592	B-592	PhCO	iso-C₃H7
A-593	B-593	PhSO₂NH	iso-C₃H7
A-594	B-594	CF ₃ CH ₂	iso-C₃H7
A-595	B-595	CICH ₂ CH ₂	iso-C₃H7
A-596	B-596	CICH ₂ CH ₂ CH ₂	iso-C ₃ H7
A-597	B-597	CH ₃ OCH ₂ CH ₂	iso-C₃H7
A-598	B-598	CH ₃ CH ₂ OCH ₂ CH ₂	iso-C₃H7
A-599	B-599	CH ₃ OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-600	B-600	C ₂ H5OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-601	B-601	n-C4H9OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-602	B-602	(CH ₃ O) ₂ CHCH ₂	iso-C₃H7
A-603	B-603	CH₃CONH	iso-C₃H7
A-604	B-604	PhCONH	iso-C₃H7
A-605	B-605	HOCH₂CH₂	iso-C₃H7
A-606	B-606	HOCH ₂ CH ₂ CH ₂	iso-C₃H7
A-607	B-607	CH ₃ O ₂ CCH ₂	iso-C₃H7
A-608	B-608	CH ₃ O ₂ CCH(CH ₃)	iso-C₃H7
A-609	B-609	NCCH₂	iso-C₃H7
A-610	B-610	NC(CH ₃)(iso-C ₃ H7)	tert-C ₄ H9
A-611	B-611	CH ₂ =CHCH ₂	tert-C₄H9
A-612	B-612	CHCCH₂	tert-C₄H9

Compound		IR ³	R⁴
A-613	B-613	CH ₃ CCCH ₂	tert-C ₄ H9
A-614	B-614	(cyclo-C ₃ H5)CH ₂	tert-C₄H9
A-615	B-615	PhCH ₂	tert-C₄H9
A-616	B-616	PhCH ₂ CH ₂	tert-C₄H9
A-617	B-617	(2-Cl-Ph)CH ₂	tert-C ₄ H9
A-618	B-618	(3-CI-Ph)CH ₂	tert-C ₄ H9
A-619	B-619	(4-Cl-Ph)CH ₂	tert-C ₄ H9
A-620	B-620	(2-CF ₃ -Ph)CH ₂	tert-C₄H9
A-621	B-621	(3-CF ₃ -Ph)CH ₂	tert-C₄H9
A-622	B-622	(4-CF ₃ -Ph)CH ₂	tert-C₄H9
A-623	B-623	(2-CH ₃ O-Ph)CH ₂	tert-C₄H9
A-624	B-624	(3-CH ₃ O-Ph)CH ₂	tert-C₄H9
A-625	B-625	(4-CH ₃ O-Ph)CH ₂	tert-C₄H9
A-626	B-626	HO	tert-C₄H9
A-627	B-627	CH₃O	tert-C₄H9
A-628	B-628	CH₃CH₂O	tert-C₄H9
A-629	B-629	n-C₃H7O	tert-C₄H9
A-630	B-630	iso-C₃H7O	tert-C₄H9
A-631	B-631	CH₂=CHCH₂O	tert-C₄H9
A-632	B-632	CHCCH₂O	tert-C ₄ H9
A-633	B-633	PhCH ₂ O	tert-C₄H9
A-634	B-634	PhO	tert-C₄H9
A-635	B-635	NH ₂	tert-C ₄ H9
A-636	B-636	CH₃NH	tert-C ₄ H9
A-637	B-637	C₂H5NH	tert-C ₄ H9
A-638	B-638	n-C ₃ H7NH	tert-C₄H9
A-639	B-639	iso-C₃H7NH	tert-C ₄ H9
A-640	B-640	PhCH₂NH	tert-C₄H9
A-641	B-641	PhNH	tert-C₄H9
A-642	B-642	2-CI-PhNH	tert-C₄H9
A-643	B-643	3-CI-PhNH	tert-C₄H9
A-644	B-644	4-CI-PhNH	tert-C₄H9
A-645	B-645	2-CF ₃ -PhNH	tert-C₄H9
A-646	B-646	3-CF ₃ -PhNH	tert-C₄H9
A-647	B-647	2-CH₃O-PhNH	tert-C₄H9
A-648	B-648	3-CH ₃ O-PhNH	tert-C₄H9
A-649	B-649	4-CH₃O-PhNH	tert-C₄H9
A-650	B-650	Ph	tert-C₄H9
A-651	B-651	2-CI-Ph	tert-C₄H9
A-652	B-652	3-Cl-Ph	tert-C₄H9
A-653	B-653	4-Cl-Ph	tert-C ₄ H9
A-654	B-654	2-CF ₃ -Ph	tert-C₄H9
A-655	B-655	3-CF ₃ -Ph	tert-C ₄ H9

Compound A-656 B-656		R ³	R⁴
		4-CF ₃ -Ph	tert-C ₄ H9
4-657	B-657	2-CH ₃ O-Ph	tert-C ₄ H9
4-658	B-658	3-CH ₃ O-Ph	tert-C ₄ H9
4-659	B-659	4-CH ₃ O-Ph	tert-C ₄ H9
4-660	B-660	2-HO-Ph	tert-C ₄ H9
A-661	B-661	3-HO-Ph	tert-C₄H9
A-662	B-662	4-HO-Ph	tert-C ₄ H9
A-663	B-663	2-NH ₂ -Ph	tert-C₄H9
A-664	B-664	3-NH ₂ -Ph	tert-C ₄ H9
A-665	B-665	4-NH ₂ -Ph	tert-C ₄ H9
A-666	B-666	2-HOCH ₂ -Ph	tert-C ₄ H9
	B-667	4-CF ₃ O-Ph	tert-C ₄ H9
A-667	B-668	4-CF ₃ CH ₂ O-Ph	tert-C ₄ H9
A-668	B-669	4-(4-CI-PhO)-Ph	tert-C ₄ H9
A-669	B-670	4-(4-CF ₃ -PhO)-Ph	tert-C ₄ H9
A-670	B-671	2,3-diCl-Ph	tert-C₄H9
A-671	B-672	1-Pyrrolyl	tert-C ₄ H9
A-672	B-673	1-Pyrazolyl	tert-C ₄ H9
A-673		1,2,4-Triazol-1-yl	tert-C ₄ H9
A-674	B-674 B-675	2-Thiazolyl	tert-C ₄ H9
A-675		1,3,4-Thiadiazol-2-yl	tert-C₄H9
A-676	B-676		tert-C ₄ H9
A-677	B-677	CH₃CO PhCO	tert-C ₄ H9
A-678	B-678		tert-C ₄ H9
A-679	B-679	PhSO ₂ NH	tert-C ₄ H9
A-680	B-680	CF ₃ CH ₂	tert-C ₄ H9
A-681	B-681	CICH ₂ CH ₂	tert-C ₄ H9
A-682	B-682	CICH ₂ CH ₂ CH ₂	tert-C ₄ H9
A-683	B-683	CH ₃ OCH ₂ CH ₂	tert-C ₄ H9
A-684	B-684	CH ₃ CH ₂ OCH ₂ CH ₂	tert-C ₄ H9
A-685	B-685	CH ₃ OCH ₂ CH ₂ CH ₂	tert-C ₄ H9
A-686	B-686	C ₂ H5OCH ₂ CH ₂ CH ₂	
A-687	B-687	n-C ₄ H9OCH ₂ CH ₂ CH ₂	tert-C ₄ H9
A-688	B-688	(CH ₃ O) ₂ CHCH ₂	tert-C ₄ H9
A-689	B-689	CH ₃ CONH	tert-C ₄ H9
A-690	B-690	PhCONH	tert-C ₄ H9
A-691	B-691	HOCH ₂ CH ₂	tert-C ₄ H9
A-692	B-692	HOCH ₂ CH ₂ CH ₂	tert-C ₄ H9
A-693	B-693	CH ₃ O ₂ CCH ₂	tert-C ₄ H9
A-694	B-694	CH ₃ O ₂ CCH(CH ₃)	tert-C ₄ H9
A-695	B-695	NCCH ₂	tert-C ₄ H9
A-696	B-696	NC(CH ₃)(iso-C ₃ H7)C	CH ₂ =CHCH ₂
A-697	B-697	CH ₂ =CHCH ₂	CH₂=CHCH₂
A-698	B-698	CHCCH ₂	CH₂=CHCH₂

Comi	oound	\mathbb{R}^3	R⁴
A-699	B-699	CH ₃ CCCH ₂	CH ₂ =CHCH ₂
A-700	B-700	(cyclo-C ₃ H5)CH ₂	CH ₂ =CHCH ₂
A-701	B-701	PhCH ₂	CH₂=CHCH₂
A-702	B-702	PhCH ₂ CH ₂	CH ₂ =CHCH ₂
A-702 A-703	B-703	(2-CI-Ph)CH ₂	CH ₂ =CHCH ₂
A-704	B-704	(3-CI-Ph)CH ₂	CH ₂ =CHCH ₂
A-705	B-705	(4-CI-Ph)CH ₂	CH ₂ =CHCH ₂
A-706	B-706	(2-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-707	B-707	(3-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-708	B-708	(4-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-709	B-709	(2-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-710	B-710	(3-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-711	B-711	(4-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-712	B-712	HO	CH ₂ =CHCH ₂
A-713	B-713	CH₃O	CH ₂ =CHCH ₂
A-714	B-714	CH₃CH₂O	CH ₂ =CHCH ₂
A-715	B-715	n-C ₃ H7O	CH ₂ =CHCH ₂
A-716	B-716	iso-C₃H7O	CH ₂ =CHCH ₂
A-717	B-717·	CH ₂ =CHCH ₂ O	CH ₂ =CHCH ₂
A-718	B-718	CHCCH ₂ O	CH ₂ =CHCH ₂
A-719	B-719	PhCH ₂ O	CH ₂ =CHCH ₂
A-719 A-720	B-720	PhO	CH ₂ =CHCH ₂
A-721	B-721	NH ₂	CH ₂ =CHCH ₂
A-722	B-722	CH₃NH	CH ₂ =CHCH ₂
A-723	B-723	C ₂ H5NH	CH ₂ =CHCH ₂
A-724	B-724	n-C ₃ H7NH	CH ₂ =CHCH ₂
A-724 A-725	B-725	iso-C ₃ H7NH	CH ₂ =CHCH ₂
A-726	B-726	PhCH ₂ NH	CH ₂ =CHCH ₂
A-727	B-727	PhNH	CH ₂ =CHCH ₂
A-728	B-728	2-CI-PhNH	CH ₂ =CHCH ₂
A-729	B-729	3-CI-PhNH	CH ₂ =CHCH ₂
A-729 A-730	B-730	4-CI-PhNH	CH ₂ =CHCH ₂
	B-731	2-CF ₃ -PhNH	CH ₂ =CHCH ₂
A-731	B-732	3-CF ₃ -PhNH	CH ₂ =CHCH ₂
A-732 A-733	B-733	2-CH₃O-PhNH	CH ₂ =CHCH ₂
A-734	B-734	3-CH ₃ O-PhNH	CH ₂ =CHCH ₂
A-735	B-735	4-CH ₃ O-PhNH	CH ₂ =CHCH ₂
A-736	B-736	Ph	· CH ₂ =CHCH ₂
A-736 A-737	B-737	2-CI-Ph	CH ₂ =CHCH ₂
A-737 A-738	B-738	3-Cl-Ph	CH ₂ =CHCH ₂
	B-739	4-CI-Ph	CH ₂ =CHCH ₂
A-739 A-740	B-740	2-CF ₃ -Ph	CH ₂ =CHCH ₂
A-740 A-741	B-741	3-CF ₃ -Ph	CH ₂ =CHCH ₂

Compound		R ³	R⁴
A-742	B-742	4-CF ₃ -Ph	CH ₂ =CHCH ₂
A-743	B-743	2-CH₃O-Ph	CH ₂ =CHCH ₂
A-744	B-744	3-CH₃O-Ph	CH ₂ =CHCH ₂
A-745	B-745	4-CH ₃ O-Ph	CH ₂ =CHCH ₂
A-746	B-746	2-HO-Ph	CH ₂ =CHCH ₂
A-747	B-747	3-HO-Ph	CH ₂ =CHCH ₂
A-748	B-748	4-HO-Ph	CH ₂ =CHCH ₂
A-749	B-749	2-NH ₂ -Ph	CH ₂ =CHCH ₂
A-750	B-750	3-NH ₂ -Ph	CH ₂ =CHCH ₂
A-751	B-751	4-NH ₂ -Ph	CH ₂ =CHCH ₂
A-752	B-752	2-HOCH ₂ -Ph	CH ₂ =CHCH ₂
A-753	B-753 ·	4-CF ₃ O-Ph	CH ₂ =CHCH ₂
A-754	B-754	4-CF ₃ CH ₂ O-Ph	CH ₂ =CHCH ₂
A-755	B-755	4-(4-Cl-PhO)-Ph	CH₂=CHCH₂
A-756	B-756	4-(4-CF ₃ -PhO)-Ph	CH ₂ =CHCH ₂
A-757	B-757	2,3-diCl-Ph	CH₂=CHCH₂
A-758	B-758	1-Pyrrolyl	CH ₂ =CHCH ₂
A-759	B-759	1-Pyrazolyl	CH ₂ =CHCH ₂
A-760	B-760	1,2,4-Triazol-1-yl	CH ₂ =CHCH ₂
A-761	B-761	2-Thiazolyl	CH ₂ =CHCH ₂
A-762	B-762	1,3,4-Thiadiazol-2-yl	CH ₂ =CHCH ₂
A-763	B-763	CH₃CO	CH ₂ =CHCH ₂
A-764	B-764	PhCO	CH ₂ =CHCH ₂
A-765	B-765	PhSO ₂ NH	CH ₂ =CHCH ₂
A-766	B-766	CF ₃ CH ₂	CH ₂ =CHCH ₂
A-767	B-767	CICH ₂ CH ₂	CH ₂ =CHCH ₂
A-768	B-768	CICH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-769	B-769	CH ₃ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-770	B-770	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-771	B-771	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-772	B-772	C ₂ H5OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-773	B-773	n-C4H9OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-774	B-774	(CH ₃ O) ₂ CHCH ₂	CH ₂ =CHCH ₂
A-775	B-775	CH₃CONH	CH ₂ =CHCH ₂
A-776	B-776	PhCONH	CH ₂ =CHCH ₂
A-777	B-777	HOCH ₂ CH ₂	CH ₂ =CHCH ₂
A-778	B-778	HOCH₂CH₂CH₂	CH ₂ =CHCH ₂
A-779	B-779	CH ₃ O ₂ CCH ₂	CH ₂ =CHCH ₂
A-780	B-780	CH ₃ O ₂ CCH(CH ₃)	CH ₂ =CHCH ₂
A-781	B-781	NCCH₂	CH ₂ =CHCH ₂
A-782	B-782	NC(CH ₃)(iso-C ₃ H7)C	PhCH₂
A-783	B-783	CH ₂ =CHCH ₂	PhCH ₂
A-784	B-784	CHCCH₂	PhCH ₂

Compound		R ³	R ⁴
A-785	B-785	CH₃CCCH₂	PhCH ₂
A-786	B-786	(cyclo-C ₃ H5)CH ₂	PhCH ₂
A-787	B-787	PhCH ₂	PhCH ₂
A-788	B-788	PhCH ₂ CH ₂	PhCH ₂
A-789	B-789	(2-CI-Ph)CH ₂	PhCH ₂
A-790	B-790	(3-CI-Ph)CH ₂	PhCH ₂
A-791	B-791	(4-CI-Ph)CH ₂	PhCH ₂
A-792	B-792	(2-CF ₃ -Ph)CH ₂	PhCH ₂
A-793	B-793	(3-CF ₃ -Ph)CH ₂	PhCH ₂
A-794	B-794	(4-CF ₃ -Ph)CH ₂	PhCH ₂
A-795	B-795	(2-CH ₃ O-Ph)CH ₂	PhCH ₂
A-796	B-796	(3-CH ₃ O-Ph)CH ₂	PhCH ₂
A-797	B-797	(4-CH ₃ O-Ph)CH ₂	PhCH ₂
A-798	B-798	НО	PhCH ₂
A-799	B-799	CH ₃ O	PhCH ₂
A-800	B-800	CH₃CH₂O	PhCH ₂
A-801	B-801	n-C ₃ H7O	PhCH ₂
A-802	B-802	iso-C ₃ H7O	PhCH ₂
A-803	B-803	CH ₂ =CHCH ₂ O	PhCH ₂
A-804	B-804	CHCCH ₂ O	PhCH ₂
A-805	B-805	PhCH ₂ O	PhCH ₂
A-806	B-806	PhO	PhCH ₂
A-807	B-807	NH ₂	PhCH ₂
A-808	B-808	CH ₃ NH	PhCH ₂
A-809	B-809	C₂H5NH	PhCH ₂
A-810	B-810	n-C ₃ H7NH	PhCH ₂
A-811	B-811	iso-C ₃ H7NH	PhCH ₂
A-812	B-812	PhCH ₂ NH	PhCH ₂
A-813	B-813	PhNH	PhCH ₂
A-814	B-814	2-CI-PhNH	PhCH ₂
A-815	B-815	3-CI-PhNH	PhCH ₂
A-816	B-816	4-CI-PhNH	PhCH ₂
A-817	B-817	2-CF ₃ -PhNH	PhCH ₂
A-818	B-818	3-CF ₃ -PhNH	PhCH ₂
A-819	B-819	2-CH ₃ O-PhNH	PhCH ₂
A-820	B-820	3-CH ₃ O-PhNH	PhCH ₂
A-821	B-821	4-CH ₃ O-PhNH	PhCH ₂
A-822	B-822	Ph	PhCH ₂
	B-823	2-CI-Ph	PhCH₂
A-824	B-824	3-CI-Ph	PhCH ₂
	B-825	4-CI-Ph	PhCH₂
	B-826	2-CF ₃ -Ph	PhCH₂
4-827	B-827	3-CF ₃ -Ph	PhCH ₂

Com	pound	R ³	R ⁴
A-828	B-828	4-CF ₃ -Ph	PhCH ₂
A-829	B-829	2-CH ₃ O-Ph	PhCH ₂
A-830	B-830	3-CH ₃ O-Ph	PhCH₂
A-831	B-831	4-CH₃O-Ph	PhCH ₂
A-832	B-832	2-HO-Ph	PhCH ₂
A-833	B-833	3-HO-Ph	PhCH ₂
A-834	B-834	4-HO-Ph	PhCH ₂
A-835	B-835	2-NH ₂ -Ph	PhCH ₂
A-836	B-836	3-NH ₂ -Ph	PhCH ₂
A-837	B-837	4-NH ₂ -Ph	PhCH ₂
A-838	B-838	2-HOCH ₂ -Ph	PhCH ₂
A-839	B-839	4-CF ₃ O-Ph	PhCH ₂
A-840	B-840	4-CF ₃ CH ₂ O-Ph	PhCH ₂
A-841	B-841	4-(4-CI-PhO)-Ph	PhCH ₂
A-842	B-842	4-(4-CF ₃ -PhO)-Ph	PhCH ₂
A-843	B-843	2,3-diCl-Ph	PhCH₂
A-844	B-844	1-Pyrrolyl	PhCH ₂
A-845	B-845	1-Pyrazolyl	PhCH ₂
A-846	B-846	1,2,4-Triazol-1-yl	PhCH ₂
A-847	B-847	2-Thiazolyl	PhCH ₂
A-848	B-848	1,3,4-Thiadiazol-2-yl	PhCH ₂
A-849	B-849	CH₃CO	PhCH ₂
A-850	B-850	PhCO	PhCH ₂
A-851	B-851	PhSO ₂ NH	PhCH ₂
A-852	B-852	CF₃CH₂	PhCH ₂
A-853	B-853	CICH ₂ CH ₂	PhCH ₂
A-854	B-854	CICH ₂ CH ₂ CH ₂	PhCH ₂
A-855	B-855	CH ₃ OCH ₂ CH ₂	PhCH ₂
A-856	B-856	CH₃CH₂OCH₂CH₂	PhCH ₂
A-857	B-857	CH ₃ OCH ₂ CH ₂ CH ₂	PhCH ₂
A-858	B-858	C ₂ H5OCH ₂ CH ₂ CH ₂	PhCH ₂
A-859	B-859	n-C ₄ H9OCH ₂ CH ₂ CH ₂	PhCH ₂
A-860	B-860	(CH ₃ O) ₂ CHCH ₂	PhCH ₂
A-861	B-861	CH(CH ₃)CH ₂ C	
A-862	B-862	HOCH ₂ CH ₂	PhCH ₂
A-863	B-863	CH ₂ CHBr0	
A-864	B-864	CH ₂ CH(OH	
A-865	B-865	CH ₂ CH=0	
A-866	B-866	benzothiazol-2-yl	<u>H</u>
A-867	B-867	Ph .	Ph
A-868	B-868	CH₃CONH	Ph
A-869	B-869	HOCH ₂ CH ₂	Ph
A-870	B-870	CH ₃ SO ₂ OCH ₂ CH ₂ CH ₂ CH	₂ H

Compound		R ³	R⁴
A-871	B-871		H ₂ CH ₂ CH ₂ CH ₂
A-872	B-872		CH ₂ CH ₂ CH ₂ CH ₂
A-873	B-873	CH	l₂CH₂OCH₂CH₂
A-874	B-874	CH	H ₂ CH ₂ SCH ₂ CH ₂
A-875	B-875		2CH2NHCH2CH2
A-876	B-876	CH ₂ CH ₂ N(CH ₃)CH ₂ CH ₂	
A-877	B-877	1	N=CHCH ₂ CH ₂
A-878	B-878	Ph	NH ₂
A-879	B-879	PhCH ₂	(CH ₃) ₂ C=N
A-880	B-880	Ph .	(CH ₃) ₂ C=N
A-881	B-881	PhCH ₂	Н

Table 2

5

10

Compounds of formula (I) in which R¹ is –C(=U)NR³R⁴; U is O, m is zero and R² is as defined hereafter. In Table 2 compounds C-1 to C-151 represent individual compounds in which R² is methyl; compounds D-1 to D-151 represent individual compounds in which R² is ethyl; compounds E-1 to E-151 represent individual compounds in which R² is allyl; compounds F-1 to F-151 represent individual compounds in which R² is propargyl; compounds G-1 to G-151 represent individual compounds in which R² is benzyl; compounds H-1 to H-151 represent individual compounds in which R² is -CH2CO2CH3; compounds I-1 to I-151 represent individual compounds in which R² is -CH(CH3)CO2CH3; compounds J-1 to J-151 represent individual compounds in which R² is -CH2CH(OCH3)2.

														_ ₁						_	_	_		Т	_
R ⁴	I	I	드	Į.	<u> </u>	디	<u> </u>	<u> </u>	=		E .	T	픠	エ	포	포	프	프	되	프	포	프	프	포	エ
R³	CH2=CHCH2	CH3CH=CHCH2	CH2=CHCH2CH2	снссн2	СНЗСССН2	CHCCH(CH3)	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	PhCH2	PhCH(CH3)	NH2	CH3NH	C2H5NH	n-C3H7NH	Iso-C3H7NH	n-C4H9NH	tert-C4H9NH	n-C5H11NH	n-C6H13NH	PhCH2NH	PhNH	ОН	СН30	C2H50
		J-2	J-3	J-4	J-5	9-0	J-7	8-7	60	J-10	J-11	J-12	J-13	J-14	J-15	J-16	71-0	J-18	J-19	J-20	J-21	J-22	J-23	J-24	J-25
	7	1-2	<u> -3</u>	4	<u>-</u> -5	9-1	1-7	<u>م</u>	6-	1-10	1-11	1-12	1-13	1-14	-15	-16	1-17	-18	1-19	1-20	1-21	1-22	1-23	1-24	1-25
	F-	H-2	H-33	H-4	H-5	9-H	H-7	H-8	H-9	H-10	H-11	H-12	H-13	H-14	H-15	H-16	H-17	H-18	H-19	H-20	H-21	H-22	H-23	H-24	H-25
1	Г		6-3	64	6-5	9-9	G-7	G-8	6-9	G-10	G-11	G-12	G-13	G-14	9-15	9-16	G-17	G-18	G-19	G-20	G-21	G-22	G-23	G-24	6-25
pulloumo	F-1			Γ	F-5	F-6	F-7	F-8	F-9	F-10	F-11	F-12		1	1		F-17	F-18	F-19	F-20	F-21	F-22	F-23	F-24	F-25
	F-1			Γ		E-6	E-7	E-8	E-9	E-10	E-11	E-12	F-13	F-14	1 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E-17	1 1 1 1 1 1 1 1	E-19	F-20	F-21	F-22	F-23	E-24	F-25
	1-0							8-0	6-0	D-10	D-11	T	T			Т	7 7	- 6 - 6	0-10	D-20	22.0	100	22.2	D-24	0-25
	7					T		ပို	6-0	ن- 10	15			2 2	7 4	2 4	2 5	2 0	61-5	200	2 2	2 2	2 2	2 2	2.25

		т				_	_			-т	\neg	П		1		_1		\neg	П		\neg	٦	_	\neg	_	\neg
R ⁴	エ	ᄑ	エ	工	포	프	エ	ᄑ	ェ	エ	エ	포	エ	포	되	エ	エ	エ	푀	푀	포	ᄑ	프	ᄑ	エ	I
R³	n-C3H7O	iso-C3H7O	n-C4H9O	tert-C4H9O	CH2=CHCH2O	CHCCH20	CH302CCH20	СН302ССН(СН3)0	CH302CC(CH3)20	PhCH20	Ph	2-F-Ph	3-F-Ph	4-F-Ph	2-CI-Ph	3-CI-Ph	4-CI-Ph	2-CF3-Ph	3-CF3-Ph	4-CF3-Ph	2-CH3-Ph	3-CH3-Ph	4-CH3-Ph	2-CH3O-Ph	3-CH3O-Ph	4-CH3O-Ph
	J-26	J-27	J-28	J-29	J-30	J-31	J-32	J-33	J-34	J-35	J-36	1-37	J-38	7-39	J-40	J-41	J-42	J-43	J-44	J-45	J-46	J-47	J-48	J-49	1-50	J-51
	1-26	1-27	1-28	1-29	-30	1-31	1-32	1-33.	1-34	1-35	98-1	1-37	1-38	6 <u>6</u> -3	140	141	142	1-43	1-44	1-45	146	1-47	1-48	149	1-50	1-51
	H-26	H-27	H-28	H-29	H-30	H-31	H-32	H-33	H-34	H-35	H-36	H-37	H-38	H-39	H-40	H-41	H-42	H-43	H-44	H-45	H-46	H-47	H48	H-49	H-50	H-51
punc	G-26	G-27	G-28	G-29	G-30	G-31	G-32	G-33	G-34	G-35	92-9	G-37	6-38	G-39	G-40	G-41	G-42	G-43	G-44	G-45	G-46	G-47	G-48	G-49	G-50	G-51
Compound	F-26	F-27	F-28	F-29	F-30	F-31	F-32	F-33	F-34	F-35	F-36	F-37	F-38	F-39	F-40	F-41	F-42	F-43	F-44	F-45	F-46	F47	F-48	F-49	F-50	F-51
	E-26	E-27	E-28	E-29	E-30	E-31	E-32	E-33	E-34	E-35	E-36	E-37	E-38	E-39	E-40	E-41	E-42	E-43	E-44	E-45	E-46	E-47	E-48	E-49	E-50	E-51
	D-26	D-27	D-28	D-29	D-30	D-31	D-32	D-33	D-34	D-35	D-36	D-37	D-38	D-39	D-40	D-41	D-42	D43	D-44	0-45	D-46	D-47	D-48	D-49	D-50	D-51
	C-26	C-27	C-28	C-29	02-30	C-31	C-32	C-33	C-34	C-35	C-36	C-37	C-38	C-39	C-40	0 44	C-42	C-43	C-44	C45	C-46	C47	C 48	C-49	C-20	C-51

																1	- 1			_					_	_
R ⁴	工	エ	ェ	I	I	ェ	I	エ	エ	工	ェ	エ	エ	I	エ	エ	Ŧ	ェ	工	エ	エ	S 문 의	S 문 의	SH3	윉	CH3
R³	4-CF3O-Ph	4-CF3CH2O-Ph	4-PhO-Ph	4-(4-CI-PhO)-Ph	4-(4-CF3-PhO)-Ph	CF3CH2	CICH2CH2	CICH2CH2CH2	СНЗОСН2СН2	СНЗСН2ОСН2СН2	СНЗОСН2СН2СН2	C2H5OCH2CH2CH2	n-C4H9OCH2CH2CH2	снзосн(снз)сн2сн2	(снзо)2снсн2	НОСН2СН2	НОСН2СН2СН2	CH3SCH2CH2	CH3CH2SCH2CH2	CH3SCH2CH2CH2	С2Н58СН2СН2СН2	CH2=CHCH2	СНССН2	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11
i i	J-52	J-53	J-54	3-55	J-56	1-57	J-58	J-59	J-60	J-61	7-62	7-63	J-64	3-65	99 - C	79 - C	J-68	69-f	J-70	J-71	J-72	J-73	J-74	J-75	92-6	J-77
	1-52	1-53	1-54	1-55	-26	1-57	-28	1-59	09-1	1-61	1-62	<u>-63</u>	1-64	-65	99-1	1-67	89-1	69-1	1-70	1-71	1-72	1-73	1-74	1-75	9 <i>L</i> -1	1-77
	H-52	H-53	H-54	H-55	H-56	H-57	H-58	H-59	09-H	H-61	H-62	H-63	H-64	H-65	99-H	<u> 19-Н</u>	H-68	69-H	H-70	H-71	H-72	H-73	H-74	H-75	92-H	H-77
punc	G-52	G-53	G-54	6-55	G-56	G-57	G-58	G-59	09-5	G-61	G-62	G-63	G-64	G-65	99-5	C-67	89-5	69-9	G-70	G-71	G-72	G-73	G-74	G-75	92-9	G-77
Compound	F-52	F-53	F-54	F-55	F-56	F-57	F-58	F-59	F-60	F-61	F-62	F-63	F-64	F-65	F-66	F-67	F-68	F-69	F-70	F-71	F-72	F-73	F-74	F-75	F-76	F-77
	E-52	E-53	E-54	E-55	E-56	E-57	E-58	E-59	E-60	E-61	E-62	E-63	E-64	E-65	E-66	E-67	E-68	E-69	E-70	E-71	E-72	E-73	E-74	E-75	E-76	E-77
	D-52	D-53	D-54	D-55	D-56	D-57	D-58	D-59	D-60	D-61	D-62	D-63	D-64	D-65	D-66	D-67	D-68	69-Q	D-70	D-71	D-72	D-73	D-74	D-75	D-76	D-77
	C-52	C-53	C-54	C-55	C-56	C-57	C-58	C-59	09-O	C-61	C-62	C-63	C-64	C-65	99-C	C-67	89	69- 'U	C-70	C-71	C-72	C-73	C-74	C-75	C-76	C-77

R ⁴	CH3	CH3	CH3	C 분3	<u>당</u>	CH3	CH3	CH3	윉	8	5분	CH3	CH3	CH3	당	CH3	CH3	CH3	<u> </u>	<u>당</u>	CH3	CH3	C 문 당	CH3	CH3	
D3	PhCH2	NHZ	CH3NH	C2H5NH	PhcH2NH	PhNH	HO	СНЗО	C2H5O	CH2=CHCH2O	СНССН2О	СНЗО2ССН2О	СНЗО2ССН(СНЗ)О	PhCH20	Ph	4-CF3O-Ph	4-(4-CF3O)-Ph	CF3CH2	СНЗОСН2СН2	СНЗСН2ОСН2СН2	СНЗОСН2СН2СН2	C2H5OCH2CH2CH2	n-С4Н9ОСН2СН2СН2	1-101 J-101 (CH3O)2CHCH2	D-102 E-102 F-102 G-102 H-102 I-102 J-102 HOCH2CH2	
	J-78	J-79	J-80	J-81	J-82	J-83	J-84	J-85	98-6	78-6	J-88	J-89	0 - -	J-91	J-92	J-93	J-94	36-6	96-6	76-6	J-98	J-99	J-100	J-101	J-102	
	1-78		8	-81	-82	-83	1-84	1-85	98-	1-87	88 <u>-</u>	<u>6</u>	<u>6</u> -	<u>-</u> 91	1-92	1-93	1-94	1-95	96-1	1-97	86-1	66-1	1-100	1-101	1-102	
	H-78		H-80	H-81	H-82	H-83	H-84	H-85	H-86	H-87	H-88	H-89	H-90	H-91	H-92	H-93	H-94	H-95	96-H	H-97	H-98	66-H	H-100	D-101 E-101 F-101 G-101 H-101	H-102	
701		1		G-81	G-82	G-83	G-84	G-85	G-86	G-87	G-88	68-9	6-90	G-91	G-92	6-93		6-95	96-9	G-97	G-98	G-99	F-100 G-100	G-101	G-102	
	E-78 G-78	1	1	F-81	F-82	F-83	F-84	F-85	F-86	F-87	F-88	F-89	F-90		F-92	F-93	1	F-95	F-96	F-97	F-98	F-99	F-100	F-101	F-102	
	E-78		1	E-81	E-82	E-83	1		E-86	E-87	E-88	E-89	E-90		E-92	E-93	E-94	E-95	E-96	E-97	E-98	E-99	E-100	E-101	E-102	
	78		Т	D-81	D-82	D-83			D-86	D-87	D-88	D-89	D-90	T	D-92	D-93	T	Г	96-Q	D-97	D-98	D-99	D-100	D-101	D-102	
	787		1		Г	П	Т	1	П	T		Τ	Т	T	Π		1		T	C-97		T	C-100	C-101	C-102	

Γ_				\neg	$\neg \neg$	7	의	व्य	2	회	의	의	의	익	끾	印	익	힊	위	의	위	익	익	위	2	띺
4	CH3	S 문 당	윉	윉	윉	윉	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2
R	0	ပ		9	의				Ӵ	<u></u>	쒸	۳	u.	버		۲	_	-								
R³	снзосн2сн2сн2	C-105 ID-105 E-105 F-105 G-105 H-105 II-105 J-105 C2H5OCH2CH2CH2	J-106 n-C4H9OCH2CH2CH2	D-107 E-107 F-107 G-107 H-107 I-107 J-107 (CH3O)2CHCH2	D-108 E-108 F-108 G-108 H-108 I-108 J-108 HOCH2CH2	1-109 J-109 HOCH2CH2CH2	CH2=CHCH2	СНССН2	cyclo-C3H5	cyclo-C5H9	D-114 E-114 F-114 G-114 H-114 I-114 J-114 cyclo-C6H11	NH2	1-116 J-116 CH3NH	D-117 E-117 F-117 G-117 H-117 I-117 J-117 C2H5NH	PhNH	ОН	CH30	C2H50	CH2=CHCH2O	СНССН2О		СН302ССН(СН3)О	PhCH20			4-(4-CF3O)-Ph
	J-104	3-105	J-106	J-107	J-108	J-109	J-110	J-111	J-112	J-113	J-114	J-115	J-116	J-117	1-118 J-118	1-119 J-119	J-120	J-121	J-122	J-123	J-124	J-125	J-126	J-127	J-128	J-129
	1-104 3-104	1-105	1-106	I-107	1-108	1-109	1-110	1-111	1-112	1-113	1-114	1-115		1-117	1-118		1-120	1-121	1-122	1-123	1-124	1-125	1-126	1-127	1-128	1-129
	H-104	H-105	H-106	H-107	H-108	H-109	H-110	H-111	H-112	H-113	H-114	H-115	H-116	H-117	H-118	H-119	H-120	H-121	H-122	H-123	H-124	H-125	H-126	H-127	H-128	H-129
pul	3-104	3-105	3-106	3-107	3-108	3-109	G-110	G-111	G-112	G-113	G-114	G-115	G-116	G-117	G-118	G-119	G-120	G-121	G-122	G-123	G-124	G-125	G-126	G-127	G-128	G-129
Compound	104	105 (-106	107	108	F-109	F-110	F-111	F-112	F-113	F-114	F-115	F-116	F-117	F-118	F-119	F-120	F-121	F-122	F-123	F-124	F-125	F-126	F-127	F-128	F-129
	-104	-105	E-106	E-107	E-108	E-109 F-109 G-109 H-109	E-110	E-111	E-112	E-113	E-114	E-115 F-115 G-115 H-115 I-115 J-115	E-116	E-117	E-118 F-118 G-118 H-118	E-119	E-120	E-121	E-122	E-123	E-124	D-125 E-125 F-125 G-125 H-125 I-125 J-125	E-126	D-127 E-127 F-127 G-127 H-127 I-127 J-127	D-128 E-128 F-128 G-128 H-128 I-128 J-128	F-129
	D-104 E-104 F-104 G-104	2-105	D-106 E-106 F-106 G-106 H-106 I-106	2-107	2-108	D-109	D-110 E-110 F-110 G-110 H-110 I-110 J-110	D-111 E-111 F-111 G-111 H-111 I-111 J-111	D-112 E-112 F-112 G-112 H-112 I-112 J-112	D-113 E-113 F-113 G-113 H-113 II-113 J-113	D-114	D-115	0-116	D-117	D-118	D-119 E-119 F-119 G-119 H-119	D-120 E-120 F-120 G-120 H-120 I-120 J-120	D-121 E-121 F-121 G-121 H-121 -121 J-121	D-122 E-122 F-122 G-122 H-122 I-122 J-122	D-123 E-123 F-123 G-123 H-123 I-123 J-123	D-124	D-125	C-126 D-126 E-126 F-126 G-126 H-126 I-126 J-126	D-127	D-128	D-129 E-129 F-129 G-129 H-129 J-129
	C-104	7-105	2-106		T	1	_	T-			$\overline{}$	_		C-117		_		_	1			\mathbf{T}	C-126	C-127	C-128	

																							_				٦.
R4	CHU-	2 2 2	PhCHZ	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	DHCH2	1010	7 0 1	Phoriz	PhCH2	PhCH2	PhCH2		PUCHZ	PhCH2		72	2	4 9	7	4 2	CH2		
D3			CH3OCH2CH2	U-131 E-131 F-131 G-131 L 132 L 132 CH3CH2OCH2CH2	TH3OCH2CH2	C-133 D-133 E-133 F-133 G-133 H-135 H-135 G-134 COHECCHOCHOCHO	D-134 E-134 F-134 G-134 H-134 I-134 J-134 CZ11300112011201120112	D-135 E-135 F-135 G-135 H-135 I-135 J-135 II-C4HSOCITZOITZ	C-136 D-136 E-136 F-136 G-136 H-136 I-136 J-136 (CH3O)2CH213	C-137 D-137 E-137 F-137 G-137 H-137 I-137 J-137 HOCHZOHZ	C 438 D-138 F-138 F-138 G-138 H-138 J-138 HOCH2CH2CH2	2.130 12.130 15.130 15.130 12.139 11.139 11.139 1CH3OCH2CH2CH2	C-139 ID-139 E-139 I -139 C 140 IL 140 IL 140 IC2H5OCH2CH2CH2	P-CAH9OCH2CH2CH2	C-141 D-141 E-141 F-141 G-141 H-141 F-141 J-141 J-141 J-141 C-141 J-141	N-142 F-142 F-142 G-142 H-142 J-142 CH3O 2CHOLIZ	2112 212 212 212 2143 1-143 1-143 1-143 10CH2CH2	HOCH2CH2CH2	C-144 D-144 E-144 F-144 G-144	CHUCHUCHUCHU		CHZCHZOCHZOLZ	CH2CH2SCH2CH2	CH2CH2NHCH2CH2	CH2CH2N(CH3)CH2CH2	CHURIOHOLIN	!: .> !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
		10-130 F-130 F-130 G-130 H-130 1-130 J-130 C		0 1-130	1 133	707 - 100	101-04	5 1-135	6 J-136	7 J-137	8 J-138	9 1-139	0 1-140	474	1 1 1	2 3-142	13 13-143	11 1.144	477	C-145 D-145 E-145 F-145 G-145 H-143 I-143 J-143	C-146 D-146 E-146 F-146 G-146 H-146 I-146 J-140	N-147 F-147 F-147 G-147 H-147 1-147 J-147	1-148 J-148	140 E-140 I-140 G 440 H-140 I-149 I-149	50 1.150	C-150 D-150 E-150 F-150 G-150 1-	C-151 D-151 E-151 F-151 G-151 H-151 I-151 J-151
		1-130	1-13	75	2 2	<u> </u>	2 : = :	-13	-13	-13	<u>-13</u>	-13	14		-	-14	1-12					7 - 1	3 1-1	7	7	,	
		4-130	1-131	130	701-1	3	H-134	H-135	H-136	H-137	H-138	H-139	140		4-14	H-142	H-143			1-14	H-14	H-14/	H-143	14	14	2 !	H-15
	pur	-130	134	100	751-0	5-133	3-134	3-135	3-136	3-137	3-138	2.139	2 5	2	5-141	G-142	2-143		141	G-145	G-146	G-147	G-148	0//	1 1 1	201-0	G-151
	Compound	-130 G	121		-132	-133	-134	-135	-136 (-137 (-138	130		140	141	142	1172	2	F-144	F-145	F-146	F-147	4/10	277	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2	F-151
	_	-130 F	127	- 0	132	-133 F	-134 F	-135 F	-136 F	-137	-138	420	801	140	E-141	E-142	1 2	54:	E-144	E-145	E-146	F-147	1 7 70	01.	148	-120 -120	E-151
		-130 F		131	132 E	-133 E)-134 E	3-135 E	3-136 E	3-137 E	138 F	200	801-C	7-140	0-141	142	1 5	0-143	D-144	D-145	D-146	D-147	5 4 40 C 4 40 C 4 48 C 448 H-148	0-140	U-149	D-150	D-151
		C 130 ID			C-132 D	C-133 E	C-134 L	C-135 L	C-136 L	C-137	C 138		35	C-140	C-141	C-142	7 7	5-143	C-144	C-145	C-146	C-117			C-149	C-150	C-151

Table 3

Compounds of formula (I) in which R¹ is –C(=U)NR³R⁴; U is S and m is zero. In Table 3 compounds K-1 to K-151 represent individual compounds in which R² is methyl; compounds L-1 to L-151 represent individual compounds in which R² is ethyl; compounds M-1 to M-151 represent individual compounds in which R² is allyl; compounds N-1 to N-151 represent individual compounds in which R² is propargyl; compounds O-1 to O-151 represent individual compounds in which R² is benzyl; compounds P-1 to P-151 represent individual compounds in which R² is -CH₂CO₂CH₃; compounds Q-1 to Q-151 represent individual compounds in which R² is -CH(CH₃)CO₂CH₃; compounds R-1 to R-151 represent individual compounds in which R² is -CH₂CH(OCH₃)₂.

R ⁴	Н	H	H	I	Η	I	Н	Н	Н	エ	Η	Н	エ	Н	H	工	エ	Н	H	H	エ	工	Н	工	ェ
			12																						
R³	CH2=CHCH2	снзсн=снсн2	сн2=снсн2сн2	CHCCH2	CH3CCCH2	снссн(снз)	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	PhCH2	РҺСН(СНЗ)	NH2	CH3NH	C2H5NH	n-C3H7NH	iso-C3H7NH	n-C4H9NH	tert-C4H9NH	n-C5H11NH	n-C6H13NH	PhCH2NH	PhNH	언	СНЗО	C2H50
<u> </u>	R-1	R-2 (R-3	R-4 (R-5 (R-6	R-7	R-8	R-9	R-10 F	R-11 F	R-12	R-13 (R-14 0	R-15 r	R-16 is	R-17 r	R-18 t	R-19 r	R-20 r	R-21	R-22 F	R-23	R-24 (R-25 (
	<u>0</u> -1	0-2	Q-3	Q-4	<u>م</u> ۔1	0-2	တ် က	Q 4	ج 1	Q- 2	Q-3	Q 4	<u>م</u>	Q- 2	<u>Q</u> -3	Q 4	<u>6</u> -1	Q-2	Q- 3	Q 4	<u>Q</u>	<u>0-2</u>	Q-3	0 4	9
	P-1	P-2	P-3	P-4	P-5	P-6	P-7	P-8	P-9	P-10	P-11	P-12	P-13	P-14	P-15	P-16	P-17	P-18	P-19	P-20	P-21	P-22	P-23	P-24	P-25
Compound	0-1	0-5	0-3	04	0-5	9-0	0-7	8 - 0	6-0	0-10	0-11	0-12	0-13	0-14	0-15	0-16	0-17	0-18	0-19	0-50	0-21	0-22	0-23	0-24	0-25
Com	N-1	N-2	Ε-Ζ	N-4-	S-N	9-N	V-7	8-N	6-Z	N-10	N-11	N-12	N-13	N-14	N-15	N-16	N-17	N-18	N-19	N-20	N-21	N-22	N-23	N-24	N-25
	M-1	M-2	M-3	Ā-4 4-	M-5	9-W	M-7	M-8	6-W	M-10	M-11	M-12	M-13	M-14	M-15	M-16	M-17	M-18	M-19	M-20	M-21	M-22	M-23	M-24	M-25
	1-1	L-2	L-3	7	L-5	9-7	L-7	L-8	F-9	L-10	L-11	L-12	L-13	L-14	L-15	L-16	L-17	L-18	L-19	L-20	L-21	L-22	L-23	L-24	L-25
	주-1	K-2	주 6-3	주 4	天 라	みる	K-7	Х- 8	주-9	K-10	주-11	K-12	K-13	주 - 14	X-15	자-16	K-17	天-18	K-19	K-20	K-21	K-22	K-23	K-24,	K-25

 ,							- 1		_	_	Т	\neg		_				-	\neg	_	Т	Т		7	1	_
R⁴	I	I	I	工	エ	포	도	I :	I	I.	T.	되	Ŧ	工	ᄑ	エ	王	エ	エ	되	되	포	E	되	I	工
													İ													
R³	n-C3H7O	iso-C3H7O	n-C4H9O	tert-C4H9O	CH2=CHCH2O	СНССН2О	СНЗО2ССН2О	CH302CCH(CH3)0	CH3O2CC(CH3)20	PhCH20	Ph	2-F-Ph	3-F-Ph	4-F-Ph	2-CI-Ph	3-CI-Ph	4-CI-Ph	2-CF3-Ph	3-CF3-Ph	4-CF3-Ph	2-CH3-Ph	3-CH3-Ph	4-CH3-Ph	2-CH30-Ph	3-CH3O-Ph	4-CH30-Ph
	R-26	R-27	R-28	R-29	R-30	R-31	R-32	R-33	R-34	R-35	R-36	R-37	R-38	R-39	R-40	R-41	R-42	R-43	R-44	R-45	R-46	R-47	R-48	R-49	R-50	R-51
	0-2	0-3	04	9	0-5	Q 8-3	9	<u>6</u>	0-2	Q-3	Q 4	<u>6</u>	0 -5	р-3	Q 4	6	0-5	Q-3	Q 4-4	<u>0</u>	Q-2	<u>ဂ</u>	Q 4	Q-1	Q-2	C-0
	P-26	P-27	P-28	P-29	P-30	P-31	P-32	P-33	P-34	P-35	P-36	P-37	P-38	P-39	P-40	P41	P-42	P-43	P-44	P-45	P-46	P47	P-48	P-49	P-50	D-51
builo	0-26	0-27	0-28	0-29	0-30	0-31	0-32	0-33	0-34	0-35	0-36	0-37	0-38	0-39	0-40	4	0.42	0-43	0-44	0-45	0-46	047	0-48	0-49	0-20	2
Compolind	N-26	1		N-29	N-30	N-31	N-32	N-33	N-34	N-35	N-36	N-37	N-38	N-39	N-40	N A 1	N-42	N-43	N-44	N-45	N-46	N47	N-48	N-49	N-50	N.51
	M-26	1				M-31	M-32	M-33	M-34	M-35	M-36	M-37	M-38	M-39	M-40	MA1	M-42	M-43	M-44	M-45	M-46	M-47	M-48	M-49	M-50	M.54
	96-1	1						Ī		Т		1-37	1-38	1-39	40	2 -	42 43	1-43	44	1-45	146	147	48	49	1-50	2 2
	96 7	1	12-X	2,72	17.30	2 2	K-32	K-33	X-34	K-35	K-36	K-37	K-38	5 X	K-40		5 2	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	K-45	K46	× 47	Х 42	Х 40	7 50 50 50	3 2

									_	_																_
R ⁴	Н	Н	ㅂ	H	Н	Н	Н	エ	王	H	H	H	エ	エ	I	H	工	エ	H	Н	Н	CH3	CH3	CH3	CH3	СНЗ
R³	4-CF3O-Ph	4-CF3CH2O-Ph	4-PhO-Ph	4-(4-CI-PhO)-Ph	4-(4-CF3-PhO)-Ph	CF3CH2	CICH2CH2	CICH2CH2CH2	СНЗОСН2СН2	СНЗСН2ОСН2СН2	СНЗОСН2СН2СН2	C2H5OCH2CH2CH2	n-C4H9OCH2CH2CH2	снзосн(снз)сн2сн2	(снзо)2снсн2	НОСН2СН2	НОСН2СН2СН2	CH3SCH2CH2	CH3CH2SCH2CH2	СНЗЅСН2СН2	C2H5SCH2CH2CH2	CH2=CHCH2	СНССН2	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11
	R-52	R-53	R-54	R-55	R-56	R-57	R-58	R-59	R-60	R-61	R-62	R-63	R-64	R-65	R-66	R-67	R-68	R-69	R-70	R-71	R-72	R-73	R-74	R-75	R-76	R-77
	Q-4	<u>Q</u>	Q- 2	р-3	Q 4-4	P-7	Q-2	Q-3	Q 4	٩ 1	Q-2	Q-3	04	<u>6</u>	0-2	Q-3	04	9	Q-2	Q- 3	Q 4	<u>6</u> -1	Q- 2	<u>Q</u> -3	Q-4	Q-1
	P-52	P-53	P-54	P-55	P-56	P-57	P-58	P-59	P-60	P-61	P-62	P-63	P-64	P-65	P-66	P-67	P-68	P-69	P-70	P-71	P-72	P-73	P-74	P-75	P-76	P-77
Compound	0-52	0-53	0-54	0-55	0-56	0-57	0-58	0-29	09-0	0-61	0-62	0-63	0-64	0-65	99-0	29-0	89-0	69-0	0-70	0-71	0-72	0-73	0-74	0-75	92-0	0-77
Com	N-52	N-53	N-54	N-55	95-N	N-57	N-58	65-N	09-N	N-61	N-62	N-63	N-64	N-65	99-N	29-N	89-N	69-N	N-70	N-71	N-72	N-73	N-74	N-75	92-N	N-77
	M-52	M-53	M-54	M-55	M-56	M-57	M-58	M-59	M-60	M-61	M-62	M-63	M-64	M-65	M-66	M-67	M-68	69-W	M-70	M-71	M-72	M-73	M-74	M-75	M-76	M-77
	L-52	L-53	L-54	L-55	L-56	L-57	L-58	L-59	L-60	L-61	L-62	L-63	L-64	L-65	P66	79-7	F-68	F-69	L-70	L-71	L-72	L-73	L-74	L-75	J-76	L-77
	K-52	K-53	K-54	K-55	K-56	K-57	K-58	K-59	K-60	K-61	K-62	K-63	K-64	K-65	K-66	K-67	K-68	K-69	K-70	K-71	K-72	K-73	K-74	K-75	K-76	K-77

		_	г -			_	r		_		_			_										_		 1
R ⁴	CH3	СНЗ	CH3	CH3	당	CH3	당	C 문 3	CH3	СНЗ	CH3	양	왕	CH3	CH3	C 문 3	CH3	CH3	CH3	CH3	CH3	СНЗ	CH3	CH3	CH3	CH3
R³	PhCH2	NH2	CH3NH	CZH5NH	PhcH2NH	Phnh	오	СНЗО	C2H5O	CH2=CHCH20	СНССН2О	CH3O2CCH2O	снзосссн(снз)о	PhcH20	돈	4-CF3O-Ph	4-(4-CF3O)-Ph	CF3CH2	CH3OCH2CH2	СНЗСН2ОСН2СН2	СН3ОСН2СН2СН2	C2H5OCH2CH2CH2	n-C4H9OCH2CH2CH2	(снзо)2снсн2	HOCH2CH2	НОСН2СН2СН2
	R-78	R-79	R-80	R-81	R-82	R-83	R-84	R-85	R-86	R-87	R-88	R-89	R-90	R-91	R-92	R-93	R-94	R-95	R-96	R-97	R-98	R-99	R-100	R-101	R-102	R-103
	Q-2	<u>ဂ</u> -၁	Q 4-4	م 1-	0-2	Q-3	Q 4-4	م 1-	Q-2	დ-3	94	<u>6</u>	0-2	Q -3	Q-4	<u>0</u>	Q-2	Q- 3	Q-4	Q-1	0-2	Q-3	Q-4	<u>6</u>	۵-2	Ö-3
	P-78	P-79	P-80	P-81	P-82	P-83	P-84	P-85	P-86	P-87	P-88	P-89	P-90	P-91	P-92	P-93	P-94	P-95	P-96	P-97	P-98	P-99	P-100	P-101	P-102	P-103
Compound	0-78	0-79	0-80	0-81	0-82	0-83	0-84	0-85	98-0	0-87	0-88	68-0	06-0	0-91	0-92	0-93	0-94	0-95	96-0	0-97	0-98	66-O	0-100	0-101	O-102 P-102	0-103
Comp	N-78	62-N	N-80	N-81	N-82	N-83	N-84	N-85	98-N	28-N	N-88	68-N	06-N	N-91	N-92	86-N	N-94	96-N	96-N	26-N	86-N	66-N	N-100	N-101	N-102	N-103
	M-78	M-79	M-80	M-81	M-82	M-83	M-84	M-85	98-W	28-W	M-88	68-W	M-90	M-91	M-92	E6-M	M-94	M-95	96-W	M-97	M-98	66-W	M-100	M-101	M-102	M-103 N-103 O-103 P-103
	L-78	L-79	L-80	L-81	L-82	L-83	L-84	L-85	L-86	L-87	F-88	L-89	L-90	L-91	L-92	F-93	L-94	1-95	96-T	76-7	86-7	66-7	L-100	L-101	L-102	
	K-78	K-79	K-80	K-81	K-82	K-83	K-84	K-85	K-86	K-87	K-88	K-89	K-90	K-91	K-92	K-93	K-94	K-95	K-96	K-97	K-98	K-99	K-100	K-101	K-102	K-103 L-103

R4	CH3	SH3	CH3	CH3	: 문	E H. C.	DPCH2	10 HO	21012	21012	PUCHZ	PhCHZ	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	10000	21011	PhCHZ	PhCH2	PhCH2	PhCH2	PhCH2	OHUH3	2 2 2	FUCER	PhCHZ	PhCH2
1																													
R3	CH3OCH2CH2CH2	C2H5OCH2CH2CH2	L CAHOOCHOCHOCH2	いた。このでは、これのことには、これのことには、これのことには、これには、これには、これには、これには、これには、これには、これには、これ	(OF13O)/2011/21/12	HOCHOCHOCHO	אוסבוסוטים פווס	CHZ=CHCHZ	CHCCHZ	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11			COHSNH	DPNH				C2H50	CH2=CHCH2O	CHCCH2O	CH302CCH20	_				4-CF30-Ph	R-129 4-(4-CF3O)-Ph
	D-104					2 2	201-7 108	R-110	R-111	R-112	R-113	R-114	R-115	R-116	D-117	2770		X-118	R-120	R-121	R-122	R-123	R-124	107	K-123	R-126	R-127	R-128	R-129
	Γ			\top				П									, ,	5-3	Q 4	Q-1	0-2	6-3	40		5	Q-2	Q-3	0.4	<u>6</u>
	2						L	- 1	Q -3	2 Q-4	3 Q-1	4 0-2		_	1	$\neg \Gamma$	\neg			ı	1				- 1		Г		62
	707	104	3 3		2	2	1.7	P-110	2-11	2-11	2-11	11/	17	7			-	<u></u>	P-12	P-12	P-12	P-12	1		P-125	P-126	P-12	P-1	P-1
		104	501-	-1001-	701-0	7-108 F	7-109 F	7-110 F	7-11	J-112	0-113	114	115	448	2 7 7		2-118	0-119	0-120	0-121	0-122	0-123	127	+71-0	0-125	0-126	0-127	0-128	0-129
	Compound	N-104 O-104	COL	1-106 C	N-107 O-107 P-107	N-108 O-108 P-108	N-109 O-109 P-109	N-110 O-110	N-111 O-111 P-111	N-112 O-112 P-112	N-113 (N-114 P-114	N 445 0-415 P-415	246	N-110 0-110 011-N		2-118	N-119 O-119 P-119	N-120 O-120 P-120	N-121 0-121 P-121	N-122	N-123 O-123 P-123	1021 O 121 D 124	17-IZ4	N-125	N-126 0-126	N-127	N-128	N-129
		M-104	M-105 N-105 O-103 F-105	M-106 N-106 O-106 P-106		M-108	M-109	M-110	M-111	M-112	M-113 N-113 O-113 P-113	N 447		M-113 N-113 O-113 N-116	01 I-M	M-11/	M-118 N-118 O-118 F-116	M-119	M-120		•	M 423	C71-IV	M-124	M-125 N-125 O-125	M-126	M-127 N-127 O-127 P-127	M-128 N-128 O-128 P-128	M-129 N-129 O-129 P-129
				L-106	-107		L-109 N	L-110 I	1-111	1						L-117	L-118							ı	L-125	K-126 L-126		128	1-129
		K-104 L-104	K-105	K-106 L	K-107 L-107 M-107	K-108 L-108	K-109	K-110	K-111	K-112			4 7	CL1-7		주-17	K-118	K-119 L-119	K-120			77 - 177	K-123 L-123	K-124 L-124	K-125	K-126	K-197	128	K-129

																_	_			_	_	$\overline{}$	1	~
R4	PFCH3	2 2	PNCHZ	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2		7	2	2	2	15	4	
						R-134 C2H5OCH2CH2CH2	R-135 n-C4H9OCH2CH2CH2	R-136 (СН3О)2СНСН2	НОСН2СН2	R-138 HOCH2CH2CH2	R-139 СН3ОСН2СН2СН2	R-140 C2H5OCH2CH2CH2	R-141 n-C4H9OCH2CH2CH2	(CH3O)2CHCH2	HOCH2CH2	HOCH2CH2CH2	CH2CH2CH2CH2	CH2CH2CH2CH2CH2	CH2CH2OCH2CH2	CH2CH2SCH2CH2	CHOCHONHUHOCHO	CHUCHUNICHUCI IO	SI IO(CHO)NIZHO	N=CHCHZCHZ
<u>FO</u>		K-130 C	R-131 C	R-132 C	R-133	R-134 (R-135 r	R-136 (R-137	R-138	R-139 (R-140	R-141	R-142	_	_		R-146	B-147	0 1/8	2,70	21.7	K-150	R-151
		0-2	<u>Q</u> -3	0-4	<u>0</u>	0-2	0-3	4	0	0-2	0-3	9	Ċ	200	1 6	3 5	3 6	2 0	3 0	3 0	3 3	3	0-5	<u>Q</u> -3
		P-130	P-131	P-132	P-133	P-134	P-135	P-136	P-137	P-138	P-139	P-140	P-141	P-142	0.143	2 2 2	7-14	146	277	1 0 0	21-1-	7-148	P-150	P-151
-	onna	0-130	0-131	0-132	0-133	0-134	0-135	0-136	0-137	0-138	130	0-140	0-141	0,143	127		1 2 5	5 5		<u>}</u>	5 - 149	0-149	0-150	0-151
	Compound	N-130	N-131 O-131 P-131	N-132	N-133	N-134	N-135	N-136	N-137	N-138	130	N-140	7 7	- CV	241-11	2 :	7-144	N-140	2	741-Z	N-140	N-149	N-150	N-151
		M-130 N-130 O-130 P-130 Q-2	M-131	M-132	M-133	M-134 N-134 O-134 P-134 O-2	M 135 N-135 O-135 P-135 O-3	M 136	M 437	M 138 N-138 O-138 P-138 O-2	M 439 N 439 O-439 P-439 O-3	M 440	M 444 N-141 O-141 P-141 O-1	14-14-	N-142 N-142 O 142 D 143 O-3	C41-IM	L-144 M-144 N-144 O-144 F-144	M-145 N-145 O-143 F-145 Q-1	WI- 140	M-14/	M-148	L-149 M-149 N-149 O-149 P-149 Q-1	M-150 N-150 O-150 P-150	M-151
			1	V 422 132 M-132 N-132 D-132 Q-4	7 499 1 433 M-433 N-133 O-133 P-133 Q-1	127	404	1426 M 136 N-136 O-136 P-136 O-4	130 L-130 M-130 N-137 O-137 P-137 O-1	120		140	7 - 1	14-14-	147	L-143	L-144	K-145 L-145 M-145 N-143 C-143 C-143	K-146 L-140	K-147 [-147 M-147 N-147 O-147 F-147 C-3	K-148 L-148 M-148 N-148 O-140 F-140 G-	L-149	L-150	
		K-130 L-130	7.434	7 435	7 133	N-133 L-133	N-134 L-134	N-135	N-130	101-1	K-130 L-130	N-138	7-7-7	K-141	K-142	K-143	₹-14	K-145	K-146	K-147	K-148	K-149	K-150	K-151

Table 4
Compounds of formula (IA):

(IA)

Compound	U	R ⁷	R ⁸	W	R⁴
S-1	0	Н	Н	CH2	Н
S-2	0	Н	Н	CH2	n-C3H7
S-3	0	Н	Н	CH2	iso-C3H7
S-4	0	Н	Н	CH2	n-C4H9
S-5	0	Н	Н	CH2	iso-C4H9
S-6	0	Н	Н	CH2	sec-C4H9
S-7	0	Н	Н	CH2	tert-C4H9
S-8	0	Н	Н	CH2	n-C5H11
S-9	0	H	H	CH2	n-C6H13
S-10	0	Н	Н	CH2	cyclo-C3H5
S-11	0	Н	Н	CH2	cyclo-C5H9
S-12	0	Н	Н	CH2	cyclo-C6H11
S-13	0	H	Н	CH2	CH2=CHCH2
S-14	0	Н	Н	CH2	CHCCH2
S-15	0	H	Н	\ CH2	PhCH2
S-16	0	Н	H	CH2	Ph(CH3)CH
S-17	О	Н	H	CH2	Ph(CH3)2C
S-18	0	Н	Н	CH2	Ph
S-19	0	Н	Н	CH2	2-CI-Ph
S-20	0	Н	Н	CH2	3-Cl-Ph
S-21	0	Н	Н	CH2	4-Cl-Ph
S-22	0	H	H	CH2	4-CF3O-Ph
S-23	0	H .	H	CH2	4-(4-CF3-PhO)-Ph
S-24	0	CH3	H	CH2	C2H5
S-25	0	CH3	Н	CH2	n-C3H7
S-26	0	CH3	Н	CH2	iso-C3H7
S-27	0	CH3	H	CH2	n-C4H9
S-28	0	СНЗ	Н	CH2	iso-C4H9
S-29	0	СНЗ	Н	CH2	sec-C4H9
S-30	0	CH3	Н	CH2	tert-C4H9
S-31	0	CH3	Н	CH2	n-C5H11
S-32	0	СНЗ	Н	CH2	n-C6H13

62

Compound	U	R ⁷	R ⁸	W	R⁴
S-33	0	СНЗ	Н	CH2	cyclo-C3H5
S-34	0	СНЗ	Н	CH2	cyclo-C5H9
S-35	0	СНЗ	Н	CH2	cyclo-C6H11
S-36	0	СНЗ	Н	CH2	CH2=CHCH2
S-37	O	CH3	Н	CH2	CHCCH2
S-38	0	CH3	Н	CH2	PhCH2
S-39	0	CH3	Н	CH2	Ph(CH3)CH
S-40	0	CH3	Н	CH2	Ph(CH3)2C
S-41	0	CH3	Н	CH2	Ph
S-42	0	CH3	Н	CH2	2-Cl-Ph
S-43	0	CH3	Н	CH2	3-CI-Ph
S-44	0	СНЗ	Н	CH2	4-Cl-Ph
S-45	0	CH3	Н	CH2	4-CF3O-Ph
S-46	0	CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-47	0	CH3	CH3	CH2	CH3
S-48	0	CH3	CH3	CH2	C2H5
S-49	0	СНЗ	CH3	CH2	n-C3H7
S-50	О	СНЗ	CH3	CH2	iso-C3H7
S-51	0	СНЗ	СНЗ	CH2	n-C4H9
S-52	Ō	СНЗ	CH3	CH2	iso-C4H9
S-53	0	СНЗ	CH3	CH2	sec-C4H9
S-54	0	СНЗ	СНЗ	CH2	tert-C4H9
S-55	ō	СНЗ	СНЗ	CH2	n-C5H11
S-56	0	СНЗ	CH3	CH2	n-C6H13
S-57	Ō	СНЗ	CH3	CH2	cyclo-C3H5
S-58	o	CH3	CH3	CH2	cyclo-C5H9
S-59	Ō	CH3	CH3	CH2	cyclo-C6H11
S-60	0	СНЗ	CH3	CH2	CH2=CHCH2
S-61	o	CH3	CH3	CH2	CHCCH2
S-62	ō	CH3	CH3	CH2	PhCH2
S-63	Ō	СНЗ	СНЗ	CH2	Ph(CH3)CH
S-64	ō	СНЗ	СНЗ	CH2	Ph(CH3)2C
S-65	0	CH3	СНЗ	CH2	Ph
S-66	0	CH3	CH3	CH2	2-Cl-Ph
S-67	0	CH3	CH3	CH2	3-Cl-Ph
S-68	0	CH3	CH3	CH2	4-Cl-Ph
S-69	0	CH3	CH3	CH2	4-CF3O-Ph
S-70	0	CH3	CH3	CH2	4-(4-CF3-PhO)-Ph
S-70	0	OCH3	H	CH2	C2H5
S-72	0	ОСН3	- [ii	CH2	n-C3H7
S-72	0	OCH3	H	CH2	iso-C3H7
S-74	0	OCH3	H	CH2	n-C4H9

Compound	TU	IR ⁷	R ⁸	W	R ⁴
S-75	ō	ОСН3	Н	CH2	iso-C4H9
S-76	0	ОСН3	Н	CH2	sec-C4H9
S-77	ō	ОСН3	H	CH2	tert-C4H9
S-78	0	OCH3	Н	CH2	n-C5H11
S-79	0	ОСН3	H	CH2	n-C6H13
S-80	0	ОСН3	Н	CH2	cyclo-C3H5
S-81	o	OCH3	Н	CH2	cyclo-C5H9
S-82	ō	ОСН3	Н	CH2	cyclo-C6H11
S-83	0	ОСН3	H	CH2	CH2=CHCH2
S-84	0	ОСН3	Н	CH2	CHCCH2
S-85	0	ОСН3	Н	CH2	PhCH2
S-86	0	ОСН3	Н	CH2	Ph(CH3)CH
S-87	O	ОСН3	Н	CH2	Ph(CH3)2C
S-88	0	ОСН3	Н	CH2	Ph
S-89	0	ОСН3	Н	CH2	2-CI-Ph
S-90	0	ОСН3	H ·	CH2	3-Cl-Ph
S-91	0	ОСН3	Н	CH2	4-CI-Ph
S-92	0	ОСН3	Н	CH2	4-CF30-Ph
S-93	0	OCH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-94	0	OCH2CH3	Н	CH2	CH3
S-95	0	OCH2CH3	Н	CH2	C2H5
S-96	О	OCH2CH3	Н	CH2	n-C3H7
S-97	0	OCH2CH3	Н	CH2	iso-C3H7
S-98	0	OCH2CH3	Н	CH2	n-C4H9
S-99	0	OCH2CH3	Н	CH2	iso-C4H9
S-100	0	OCH2CH3	Н	CH2	sec-C4H9
S-101	0	OCH2CH3	Н	CH2	tert-C4H9
S-102	0	OCH2CH3	Н	CH2	n-C5H11
S-103	0	OCH2CH3	Н	CH2	n-C6H13
S-104	0	OCH2CH3	Н	CH2	cyclo-C3H5
S-105	0	OCH2CH3	Н	CH2	cyclo-C5H9
S-106	0	OCH2CH3	Н	CH2	cyclo-C6H11
S-107	0	OCH2CH3	Н	CH2	CH2=CHCH2
S-108	0	OCH2CH3	Н	CH2	CHCCH2
S-109	0	OCH2CH3	Н	CH2	PhCH2
S-110	0	OCH2CH3	Н	CH2	Ph(CH3)CH
S-111	0	OCH2CH3	Н	CH2	Ph(CH3)2C
S-112	0	OCH2CH3	Н	CH2	Ph
S-113	0	OCH2CH3	Н	CH2	2-CI-Ph
S-114	0	OCH2CH3	Н	CH2	3-CI-Ph
S-115	0	OCH2CH3	Н	CH2	4-CI-Ph
S-116	0	OCH2CH3	Н	CH2	4-CF3O-Ph

Compound	U	R ⁷	R ⁸	W	R⁴
S-117	0	OCH2CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-118	0	Н	Н	C=O	H
S-119	0	Н	Н	C=O	n-C3H7
S-120	0	Н	Н	C=O	iso-C3H7
S-121	0	Н	H	C=O	n-C4H9
S-122	0	Н	Н	C=O	iso-C4H9
S-123	0	Н	Н	C=O	sec-C4H9
S-124	0	Н	Н	C=O	tert-C4H9
S-125	0	Н	Н	C=O	n-C5H11
S-126	0	Н	H	C=O	n-C6H13
S-127	0	Н	H	C=O	cyclo-C3H5
S-128	0	Н	Н	C=O	cyclo-C5H9
S-129	0	H	Н	C=O	cyclo-C6H11
S-130	0	Н	Н	C=O	CH2=CHCH2
S-131	0	Н	H	C=O	CHCCH2
S-132	0	Н	Н	C=O	PhCH2
S-133	0	Н	Н	C=O	Ph(CH3)CH
S-134	0	Н	H	C=O	Ph(CH3)2C
S-135	0	Н	Н	C=O	Ph
S-136	0	H	Н	C=O	2-CI-Ph
S-137	0	Н	Н	C=O	3-CI-Ph
S-138	0	Н	Н	C=O	4-Cl-Ph
S-139	0	Н	Н	C=O	4-CF3O-Ph
S-140	0	Н	Н	C=O	4-(4-CF3-PhO)-Ph
S-141	0	СНЗ	Н	C=O	C2H5
S-142	0	CH3	Н	C=O	n-C3H7
S-143	0	СНЗ	Н	C=O	iso-C3H7
S-144	0	CH3	Н	C=O	n-C4H9
S-145	0	СНЗ	Н	C=O	iso-C4H9
S-146	0	CH3	Н	C=O	sec-C4H9
S-147	0	CH3	H	C=O	tert-C4H9
S-148	0	CH3	Н	C=O	n-C5H11
S-149	0	CH3	Н	C=O	n-C6H13
S-150	0_	CH3	Н	C=O	cyclo-C3H5
S-151	0	CH3	Н	C=O	cyclo-C5H9
S-152	0	CH3	Н	C=O	cyclo-C6H11
S-153	0	CH3	Н	C=O	CH2=CHCH2
S-154	0	CH3	Н	C=O	CHCCH2
S-155	0	CH3	Н	C=O	PhCH2
S-156	0	СНЗ	Н	C=O	Ph(CH3)CH
S-157	0	CH3	Н	C=O	Ph(CH3)2C
S-158	0	CH3	Н	C=O	Ph

Compound	U	R'	R ⁸	W	R⁴
S-159	0	CH3	Н	C=O	2-CI-Ph
S-160	0	СНЗ	Н	C=O	3-Cl-Ph
S-161	0	СНЗ	Н	C=O	4-Cl-Ph
S-162	0	CH3	Н	C=O	4-CF3O-Ph
S-163	ō	СНЗ	Н	C=O	4-(4-CF3-PhO)-Ph
S-164	0	CH3	CH3	C=O	CH3
S-165	0	СНЗ	CH3	C=O	C2H5
S-166	0	СНЗ	CH3	C=O	n-C3H7
S-167	O	СНЗ	СНЗ	C=O	iso-C3H7
S-168	0	CH3	CH3	C=O	n-C4H9
S-169	ō	СНЗ	CH3	C=O	iso-C4H9
S-170	0	СНЗ	CH3	C=O	sec-C4H9
S-170	Ō	СНЗ	CH3	C=O	tert-C4H9
S-172	Ō	CH3	CH3	C=O	n-C5H11
S-173	Ō	CH3	CH3	C=O	n-C6H13
S-174	O	СНЗ	СНЗ	C=O	cyclo-C3H5
S-175	0	СНЗ	СНЗ	C=O	cyclo-C5H9
S-176	ō	СНЗ	CH3	C=O	cyclo-C6H11
S-177	ō	СНЗ	СНЗ	C=O	CH2=CHCH2
S-178	0	CH3	CH3	C=O	CHCCH2
S-179	O	СНЗ	CH3	C=O	PhCH2
S-180	o	СНЗ	CH3	C=O	Ph(CH3)CH
S-181	o	СНЗ	CH3	C=O	Ph(CH3)2C
S-182	ō	СНЗ	CH3	C=O	Ph
S-183	ō	CH3	СНЗ	C=O	2-CI-Ph
S-184	0	СНЗ	СНЗ	C=O	3-CI-Ph
S-185	lo	СНЗ	СНЗ	C=0	4-CI-Ph
S-186	0	СНЗ	СНЗ	C=O	4-CF3O-Ph
S-187	0	CH3	СНЗ	C=O	4-(4-CF3-PhO)-Ph
S-188	0	OCH3	Н	C=O	C2H5
S-189	lo lo	ОСН3	H	C=O	n-C3H7
S-190	6	OCH3	Н	C=O	iso-C3H7
S-190 S-191	0	OCH3	Н	C=O	n-C4H9
S-192	-o	OCH3	H	C=O	iso-C4H9
S-192 S-193	lo	OCH3	Н	C=O	sec-C4H9
S-194	0	OCH3	Н	C=O	tert-C4H9
S-194 S-195	0	OCH3	Н	C=0	n-C5H11
S-196	0	OCH3	Н	C=O	n-C6H13
S-190 S-197	0	OCH3	H	C=O	cyclo-C3H5
S-197	0	OCH3	H	C=O	cyclo-C5H9
S-190 S-199	0	оснз	H	C=O	cyclo-C6H11
S-199 S-200	0	OCH3	— 	C=0	CH2=CHCH2

Compound	U	R ⁷	R ⁸	W	R⁴
S-201	0	ОСН3	Н	C=O	CHCCH2
S-202	0	осн3	Н	C=O	PhCH2
S-203	0	ОСН3	Н	C=O	Ph(CH3)CH
S-204	0	ОСН3	Н	C=O	Ph(CH3)2C
S-205	0	ОСН3	Н	C=O	Ph
S-206	0	осн3	Н	C=O	2-CI-Ph
S-207	0	ОСН3	Н	C=O	3-CI-Ph
S-208	0	OCH3	Н	C=O	4-Cl-Ph
S-209	0	ОСН3	Н	C=O	4-CF3O-Ph
S-210	0	OCH3	Н	C=O	4-(4-CF3-PhO)-Ph
S-211	0	OCH2CH3	Н	C=O	CH3
S-212	0	OCH2CH3	Н	C=O	C2H5
S-213	0	OCH2CH3	Н	C=O	n-C3H7
S-214	0	OCH2CH3	Н	C=O	iso-C3H7
S-215	0	OCH2CH3	Н	C=O	n-C4H9
S-216	0	OCH2CH3	Н	C=O	iso-C4H9
S-217	0	OCH2CH3	H	C=O	sec-C4H9
S-218	0	OCH2CH3	Н	C=O	tert-C4H9
S-219	0	OCH2CH3	H	C=O	n-C5H11
S-220	0	OCH2CH3	Н	C=O	n-C6H13
S-221	0	OCH2CH3	Н	C=O	cyclo-C3H5
S-222	0	OCH2CH3	Н	C=O	cyclo-C5H9
S-223	0	OCH2CH3	Н	C=O	cyclo-C6H11
S-224	0	OCH2CH3	Н	C=O	CH2=CHCH2
S-225	0	OCH2CH3	Н	C=O	CHCCH2
S-226	0	OCH2CH3	Н	C=O	PhCH2
S-227	0	OCH2CH3	Н	C=O	Ph(CH3)CH
S-228	0	OCH2CH3	Н	C=O	Ph(CH3)2C
S-229	0	OCH2CH3	Н	C=O	Ph
S-230	О	OCH2CH3	H	C=O	2-Cl-Ph
S-231	0	OCH2CH3	Н	C=O	3-Cl-Ph
S-232	0	OCH2CH3	Н	C=O	4-CI-Ph
S-233	0	OCH2CH3	Н	C=O	4-CF3O-Ph
S-234	0	OCH2CH3	Н	C=O	4-(4-CF3-PhO)-Ph
S-235	0	Н	H	CH2CH2	C2H5
S-236	0	Н	Н	CH2CH2	n-C3H7
S-237	0	Н	H	CH2CH2	iso-C3H7
S-238	0	Н	Н	CH2CH2	n-C4H9
S-239	0	Н	Н	CH2CH2	iso-C4H9
S-240	0	Н	Н	CH2CH2	sec-C4H9
S-241	0	Н	Н	CH2CH2	tert-C4H9
S-242	0	Н	Н	CH2CH2	n-C5H11

Compound	U	R'	R ⁸	W	R⁴
S-243	0	Н	Н	CH2CH2	n-C6H13
S-244	0	Н	Н	CH2CH2	cyclo-C3H5
S-245	O	Н	Н	CH2CH2	cyclo-C5H9
S-246	0	Н	Н	CH2CH2	cyclo-C6H11
S-247	0	Н	Н	CH2CH2	CH2=CHCH2
S-248	0	Н	Н	CH2CH2	CHCCH2
S-249	O	Н	Н	CH2CH2	PhCH2
S-250	0	Н	Н	CH2CH2	Ph(CH3)CH
S-251	0	Н	Н	CH2CH2	Ph(CH3)2C
S-252	0	Н	Н	CH2CH2	Ph
S-253	0	Н	Н	CH2CH2	2-Cl-Ph
S-254	0	Н	Н	CH2CH2	3-Cl-Ph
S-255	0	Н	Н	CH2CH2	4-CI-Ph
S-256	0	H	Н	CH2CH2	4-CF3O-Ph
S-257	0	Н	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-258	0	CH3	Н	CH2CH2	СНЗ
S-259	O	СНЗ	Н	CH2CH2	C2H5
S-260	0	CH3	H	CH2CH2	n-C3H7
S-261	0	CH3	Н	CH2CH2	iso-C3H7
S-262	0	СНЗ	Н	CH2CH2	n-C4H9
S-263	0	CH3	Н	CH2CH2	iso-C4H9
S-264	0	CH3	Н	CH2CH2	sec-C4H9
S-265	0	CH3	H	CH2CH2	tert-C4H9
S-266	0	CH3	Н	CH2CH2	n-C5H11
S-267	0	СНЗ	Н	CH2CH2	n-C6H13
S-268	0	CH3	Н	CH2CH2	cyclo-C3H5
S-269	0	CH3	Н	CH2CH2	cyclo-C5H9
S-270	0	CH3	Н	CH2CH2	cyclo-C6H11
S-271	0	CH3	H	CH2CH2	CH2=CHCH2
S-272	0	CH3	Н	CH2CH2	CHCCH2
S-273	0	CH3	Н	CH2CH2	PhCH2
S-274	0	CH3	Н	CH2CH2	Ph(CH3)CH
S-275	0	CH3	Н	CH2CH2	Ph(CH3)2C
S-276	0	СНЗ	Н	CH2CH2	Ph
S-277	0	СНЗ	Н	CH2CH2	2-Cl-Ph
S-278	0	СНЗ	Н	CH2CH2	3-Cl-Ph
S-279	0	СНЗ	Н	CH2CH2	4-Cl-Ph
S-280	0	СНЗ	Н	CH2CH2	4-CF3O-Ph
S-281	0	СНЗ	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-282	0	СНЗ	CH3	CH2CH2	Н
S-283	0	CH3	CH3	CH2CH2	CH3
S-284	0	CH3	CH3	CH2CH2	C2H5

Compound	U	R ⁷	R ⁸	W	R⁴
S-285	0	CH3	CH3	CH2CH2	n-C3H7
S-286	0	CH3	CH3	CH2CH2	iso-C3H7
S-287	0	CH3	CH3	CH2CH2	n-C4H9
S-288	0	СНЗ	CH3	CH2CH2	iso-C4H9
S-289	0	СНЗ	CH3	CH2CH2	sec-C4H9
S-290	0	CH3	СНЗ	CH2CH2	tert-C4H9
S-291	0	CH3	СНЗ	CH2CH2	n-C5H11
S-292	0	CH3	CH3	CH2CH2	n-C6H13
S-293	0	CH3	CH3	CH2CH2	cyclo-C3H5
S-294	0	CH3	CH3	CH2CH2	cyclo-C5H9
S-295	0	CH3	СНЗ	CH2CH2	cyclo-C6H11
S-296	0	CH3	CH3	CH2CH2	CH2=CHCH2
S-297	0	CH3	CH3	CH2CH2	CHCCH2
S-298	0	CH3	CH3	CH2CH2	PhCH2
S-299	0	CH3	CH3	CH2CH2	Ph(CH3)CH
S-300	0	CH3	CH3	CH2CH2	Ph(CH3)2C
S-301	0	СНЗ	CH3	CH2CH2	Ph
S-302	0	СНЗ	CH3	CH2CH2	2-Cl-Ph
S-303	0	СНЗ	СНЗ	CH2CH2	3-Cl-Ph
S-304	0	CH3	CH3	CH2CH2	4-Cl-Ph
S-305	0	СНЗ	CH3	CH2CH2	4-CF3O-Ph
S-306	0	СНЗ	CH3	CH2CH2	4-(4-CF3-PhO)-Ph
S-307	0	ОСН3	Н	CH2CH2	CH3
S-308	0	ОСН3	Н	CH2CH2	C2H5
S-309	0	ОСН3	Н	CH2CH2	n-C3H7
S-310	0	ОСН3	Н	CH2CH2	iso-C3H7
S-311	0	ОСН3	Н	CH2CH2	n-C4H9
S-312	0	осн3	Н	CH2CH2	iso-C4H9
S-313	0	осн3	Н	CH2CH2	sec-C4H9
S-314	0	осн3	Н	CH2CH2	tert-C4H9
S-315	0	ОСН3	Н	CH2CH2	n-C5H11
S-316	0	OCH3	Н	CH2CH2	n-C6H13
S-317	0	ОСН3	Н	CH2CH2	cyclo-C3H5
S-318	О	осн3	Н	CH2CH2	cyclo-C5H9
S-319	0	осн3	Н	CH2CH2	cyclo-C6H11
S-320	0	осн3	Н	CH2CH2	CH2=CHCH2
S-321	Ō	осн3	H	CH2CH2	CHCCH2
S-322	0	осн3	Н	CH2CH2	PhCH2
S-323	ō	осн3	Н	CH2CH2	Ph(CH3)CH
S-324	o	ОСН3	Н	CH2CH2	Ph(CH3)2C
S-325	0	ОСН3	H	CH2CH2	Ph
S-326	Ö	ОСН3	H	CH2CH2	2-Cl-Ph

Compound	U	R'	R ^B	W	R⁴
S-327	0	OCH3	Н	CH2CH2	3-CI-Ph
S-328	0	OCH3	Н	CH2CH2	4-CI-Ph
S-329	0	OCH3	Н	CH2CH2	4-CF3O-Ph
S-330	0	OCH3	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-331	0	OCH2CH3	Н	CH2CH2	H
S-332	0	OCH2CH3	Н	CH2CH2	CH3
S-333	0	OCH2CH3	Н	CH2CH2	C2H5
S-334	0	OCH2CH3	Н	CH2CH2	n-C3H7
S-335	0	OCH2CH3	Н	CH2CH2	iso-C3H7
S-336	0	OCH2CH3	Н	CH2CH2	n-C4H9
S-337	0	OCH2CH3	Н	CH2CH2	iso-C4H9
S-338	0	OCH2CH3	Н	CH2CH2	sec-C4H9
S-339	0	OCH2CH3	Н	CH2CH2	tert-C4H9
S-340	0	OCH2CH3	Н	CH2CH2	n-C5H11
S-341	0	OCH2CH3	Н	CH2CH2	n-C6H13
S-342	0	OCH2CH3	Н	CH2CH2	cyclo-C3H5
S-343	0	OCH2CH3	Н	CH2CH2	cyclo-C5H9
S-344	0	OCH2CH3	Н	CH2CH2	cyclo-C6H11
S-345	0	OCH2CH3	Н	CH2CH2	CH2=CHCH2
S-346	0	OCH2CH3	Н	CH2CH2	CHCCH2
S-347	0	OCH2CH3	Н	CH2CH2	PhCH2
S-348	0	OCH2CH3	Н	CH2CH2	Ph(CH3)CH
S-349	0	OCH2CH3	Н	CH2CH2	Ph(CH3)2C
S-350	0	OCH2CH3	Н	CH2CH2	Ph
S-351	0	OCH2CH3	H	CH2CH2	2-Cl-Ph
S-352	0	OCH2CH3	H	CH2CH2	3-Cl-Ph
S-353	0	OCH2CH3	Н	CH2CH2	4-Cl-Ph
S-354	0	OCH2CH3	Н	CH2CH2	4-CF3O-Ph
S-355	0	OCH2CH3	H	CH2CH2	4-(4-CF3-PhO)-Ph
S-356	s	Н	Н	CH2	Н
S-357	s	Н	Н	CH2	n-C3H7
S-358	s	Н	Н	CH2	iso-C3H7
S-359	S	Н	Н	CH2	n-C4H9
S-360	S	Н	Н	CH2	iso-C4H9
S-361	s	Н	Н	CH2	sec-C4H9
S-362	s	Н	Н	CH2	tert-C4H9
S-363	S	Н	Н	CH2	n-C5H11
S-364	s	Н	Н	CH2	n-C6H13
S-365	s	Н	Н	CH2	cyclo-C3H5
S-366	s	Н	Н	CH2	cyclo-C5H9
S-367	s	Н	Н	CH2	cyclo-C6H11
S-368	s	Н	Н	CH2	CH2=CHCH2

WO 03/097604

PCT/EP03/04714

Compound	U	IR ⁷	IR ⁸	lw	R⁴
S-369	s	H	H	CH2	CHCCH2
S-370	S	- ''	—— 	CH2	PhCH2
S-370 S-371	s	H H	H	CH2	Ph(CH3)CH
S-372	S	H	H	CH2	Ph(CH3)2C
S-372	S	H	H	CH2	Ph
S-374	S	H	H	CH2	2-Cl-Ph
S-374 S-375	S	Н	H	CH2	3-CI-Ph
S-376	S	H	H	CH2	4-Cl-Ph
	S	H	H	CH2	4-CF3O-Ph
S-377	S	H	H	CH2	4-(4-CF3-Ph0)-Ph
S-378	S	CH3	H		
S-379	S		H	CH2	C2H5
S-380		CH3		CH2	n-C3H7
S-381	S	CH3	H	CH2	iso-C3H7
S-382	S S	CH3	Н	CH2	n-C4H9
S-383		CH3	Н	CH2	iso-C4H9
S-384	S	CH3	H	CH2	sec-C4H9
S-385	S	CH3	Н	CH2	tert-C4H9
S-386	S	СНЗ	H	CH2	n-C5H11
S-387	S	СНЗ	Н	CH2	n-C6H13
S-388	S	CH3	Н	CH2	cyclo-C3H5
S-389	S	CH3	Н	CH2	cyclo-C5H9
S-390	S	CH3	H	CH2	cyclo-C6H11
S-391	S	CH3	H	CH2	CH2=CHCH2
S-392	S	CH3	H	CH2	CHCCH2
S-393	S	CH3	Н	CH2	PhCH2
S-394	S	CH3	Н	CH2	Ph(CH3)CH
S-395	S	CH3	H	CH2	Ph(CH3)2C
S-396	S	CH3	Н	CH2	Ph
S-397	S	CH3	H	CH2	2-Cl-Ph
S-398	S	СНЗ	Н	CH2	3-Cl-Ph
S-399	S	CH3	Н	CH2	4-CI-Ph
S-400	S	CH3	Н	CH2	4-CF3O-Ph
S-401	s	CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-402	S	CH3	CH3	CH2	CH3
S-403	S	CH3	CH3	CH2	C2H5
S-404	s	СНЗ	CH3	CH2	n-C3H7
S-405	s	СНЗ	CH3	CH2	iso-C3H7
S-406	S	СНЗ	СНЗ	CH2	n-C4H9
S-407	s	СНЗ	СНЗ	CH2	iso-C4H9
S-408	S	СНЗ	СНЗ	CH2	sec-C4H9
S-409	S	СНЗ	CH3	CH2	tert-C4H9
S-410	s	СНЗ	CH3	CH2	n-C5H11

Compound	U	R ⁷	R ⁸	W	R⁴
S-411	s	СНЗ	СНЗ	CH2	n-C6H13
S-412	S	CH3	СНЗ	CH2	cyclo-C3H5
S-413	S	СНЗ	СНЗ	CH2	cyclo-C5H9
S-414	s	СНЗ	СНЗ	CH2	cyclo-C6H11
S-415	S	СНЗ	СНЗ	CH2	CH2=CHCH2
S-416	s	СНЗ	CH3	CH2	CHCCH2
S-417	s	СНЗ	CH3	CH2	PhCH2
S-418	S	CH3	CH3	CH2	Ph(CH3)CH
S-419	s	CH3	СНЗ	CH2	Ph(CH3)2C
S-420	s	CH3	CH3	CH2	Ph
S-421	S	CH3	СНЗ	CH2	2-CI-Ph
S-422	S	СНЗ	CH3	CH2	3-CI-Ph
S-423	S	CH3	СНЗ	CH2	4-CI-Ph
S-424	s	СНЗ	CH3	CH2	4-CF30-Ph
S-425	S	СНЗ	CH3	CH2	4-(4-CF3-PhO)-Ph
S-426	S	ОСН3	Н	CH2	C2H5
S-427	S	OCH3	Н	CH2	n-C3H7
S-428	s	ОСН3	Н	CH2	iso-C3H7
S-429	S	ОСН3	Н	CH2	n-C4H9
S-430	S	ОСН3	Н	CH2	iso-C4H9
S-431	S	ОСН3	Н	CH2	sec-C4H9
S-432	S	ОСН3	Н	CH2	tert-C4H9
S-433	S	ОСН3	Н	CH2	n-C5H11
S-434	S	ОСН3	Н	CH2	n-C6H13
S-435	S	OCH3	H	CH2	cyclo-C3H5
S-436	S	OCH3	Н	CH2	cyclo-C5H9
S-437	S	ОСН3	Н	CH2	cyclo-C6H11
S-438	S	ОСН3	Н	CH2	CH2=CHCH2
S-439	S	ОСН3	Н	CH2	CHCCH2
S-440	S	OCH3	Н	CH2	PhCH2
S-441	S	OCH3	Н	CH2	Ph(CH3)CH
S-442	S	осн3	Н	CH2	Ph(CH3)2C
S-443	S	OCH3	H	CH2	Ph
S-444	S	ОСН3	Н	CH2	2-Cl-Ph
S-445	S	OCH3	H	CH2	3-CI-Ph
S-446	S	ОСН3	H	CH2	4-CI-Ph
S-447	S	ОСН3	Н	CH2	4-CF3O-Ph
S-448	S	OCH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-449	S	Н	H	CH2CH2	C2H5
S-450	S	H	H	CH2CH2	n-C3H7
S-451	S	Н	Н	CH2CH2	iso-C3H7
S-452	S	H	Н	CH2CH2	n-C4H9

WO 03/097604

Compound	U	R ⁷	R ⁸	W	R ⁴
S-453	S	Н	Н	CH2CH2	iso-C4H9
S-454	s	Н	Н	CH2CH2	sec-C4H9
S-455	S	Н	Н	CH2CH2	tert-C4H9
S-456	S	H	Н	CH2CH2	n-C5H11
S-457	S	Н	Н	CH2CH2	n-C6H13
S-458	s	H	Н	CH2CH2	cyclo-C3H5
S-459	S	Н	Н	CH2CH2	cyclo-C5H9
S-460	S	H	Н	CH2CH2	cyclo-C6H11
S-461	S	H	Н	CH2CH2	CH2=CHCH2
S-462	s	Н	H	CH2CH2	CHCCH2
S-463	s	H	Н	CH2CH2	PhCH2
S-464	S	H	H	CH2CH2	Ph(CH3)CH
S-465	s	Н	Н	CH2CH2	Ph(CH3)2C
S-466	s	H	H	CH2CH2	Ph
S-467	s	Н	Н	CH2CH2	2-Cl-Ph
S-468	S	H	Н	CH2CH2	3-Cl-Ph
S-469	S	H	H	CH2CH2	4-Cl-Ph
S-470	S	Н	H	CH2CH2	4-CF3O-Ph
S-471	S	Н	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-472	S	CH3	H	CH2CH2	CH3
S-473	S	CH3	Н	CH2CH2	C2H5
S-474	S	CH3	H	CH2CH2	n-C3H7
S-475	s	CH3	Н	CH2CH2	iso-C3H7
S-476	s	CH3	H	CH2CH2	n-C4H9
S-477	s	СНЗ	Н	CH2CH2	iso-C4H9
S-478	S	СНЗ	H	CH2CH2	sec-C4H9
S-479	s	СНЗ	H	CH2CH2	tert-C4H9
S-480	S	СНЗ	Н	CH2CH2	n-C5H11
S-481	S	СНЗ	H	CH2CH2	n-C6H13
S-482	s	СНЗ	Н	CH2CH2	cyclo-C3H5
S-483	s	CH3	Н	CH2CH2	cyclo-C5H9
S-484	s	CH3	Н	CH2CH2	cyclo-C6H11
S-485	s	СНЗ	Н	CH2CH2	CH2=CHCH2
S-486	s	CH3	H	CH2CH2	CHCCH2
S-487	s	СНЗ	Н	CH2CH2	PhCH2
S-488	S	СНЗ	Н	CH2CH2	Ph(CH3)CH
S-489	S	CH3	Н	CH2CH2	Ph(CH3)2C
S-490	s	СНЗ	Н	CH2CH2	Ph
S-491	s	CH3	H	CH2CH2	2-Cl-Ph
S-492	s	CH3	H	CH2CH2	3-Cl-Ph
S-493	S	CH3	Н	CH2CH2	4-CI-Ph
S-494	S	CH3	H	CH2CH2	4-CF3O-Ph

Compound	lu	R ⁷	R ⁸	W	R⁴
S-495	s	СНЗ	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-496	s	CH3	CH3	CH2CH2	H
S-497	S	СНЗ	CH3	CH2CH2	CH3
S-498	s	CH3	CH3	CH2CH2	C2H5
S-499	s	CH3	CH3	CH2CH2	n-C3H7
S-500	S	CH3	CH3	CH2CH2	iso-C3H7
S-501	S	СНЗ	СНЗ	CH2CH2	n-C4H9
S-502	S	СНЗ	СНЗ	CH2CH2	iso-C4H9
S-503	s	СНЗ	CH3	CH2CH2	sec-C4H9
S-504	S	СНЗ	СНЗ	CH2CH2	n-C4H9
S-505	S	СНЗ	CH3	CH2CH2	iso-C4H9
S-506	S	СНЗ	CH3	CH2CH2	sec-C4H9
S-507	S	CH3	CH3	CH2CH2	tert-C4H9
S-508	s	CH3	CH3	CH2CH2	n-C5H11
S-509	s	CH3	CH3	CH2CH2	n-C6H13
S-510	s	CH3	CH3	CH2CH2	cyclo-C3H5
S-511	S	CH3	CH3	CH2CH2	cyclo-C5H9
S-512	S	CH3	CH3	CH2CH2	cyclo-C6H11
S-513	s	CH3	CH3	CH2CH2	CH2=CHCH2
S-514	S	CH3	CH3	CH2CH2	CHCCH2
S-515	S	CH3	CH3	CH2CH2	PhCH2
S-516	s	СНЗ	CH3	CH2CH2	Ph(CH3)CH
S-517	s	СНЗ	CH3	CH2CH2	Ph(CH3)2C
S-518	S	CH3	CH3	CH2CH2	Ph
S-519	S	CH3	CH3	CH2CH2	2-Cl-Ph
S-520	S	CH3	CH3	CH2CH2	3-Cl-Ph
S-521	S	CH3	CH3	CH2CH2	4-CI-Ph
S-522	S	CH3	CH3	CH2CH2	4-CF3O-Ph
S-523	S	CH3	CH3	CH2CH2	4-(4-CF3-PhO)-Ph
S-524	S	ОСН3	Н	CH2CH2	CH3
S-525	S	осн3	Н	CH2CH2	C2H5
S-526	S	ОСН3	Н	CH2CH2	n-C3H7
S-527	S	OCH3	H	CH2CH2	iso-C3H7
S-528	S	ОСН3	Н	CH2CH2	n-C4H9
S-529	S	ОСН3	Н	CH2CH2	iso-C4H9
S-530	S	ОСН3	Н	CH2CH2	sec-C4H9
S-531	S	ОСН3	Н	CH2CH2	tert-C4H9
S-532	S	ОСН3	Н	CH2CH2	n-C5H11
S-533	S	осн3	Н	CH2CH2	n-C6H13
S-534	S	ОСН3	Н	CH2CH2	cyclo-C3H5
S-535	S	оснз	Н	CH2CH2	cyclo-C5H9
S-536	S	ОСН3	H	CH2CH2	cyclo-C6H11

Compound	U	IR ⁷	R ⁸	W	R⁴
S-537	s	осн3	Н	CH2CH2	CH2=CHCH2
S-538	s	осн3	Н	CH2CH2	CHCCH2
S-539	S	ОСН3	Н	CH2CH2	PhCH2
S-540	S	осн3	Н	CH2CH2	Ph(CH3)CH
S-541	S	OCH3	Н	CH2CH2	Ph(CH3)2C
S-542	s	ОСН3	H	CH2CH2	Ph
S-543	s	ОСН3	Н	CH2CH2	2-Cl-Ph
S-544	s	ОСН3	H	CH2CH2	3-CI-Ph
S-545	S	OCH3	Н	CH2CH2	4-Cl-Ph
S-546	S	ОСН3	H	CH2CH2	4-CF3O-Ph
S-547	S	ОСН3	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-548	0	Н	Н	CH2	CH3O
S-549	0	Н	Н	CH2	PhCH2O
S-550	0	Н	Н	CH(CH3)	H
S-551	0	Н	Н	CH(C2H5)	H
S-552	0	Н	Н	CH(C2H5)	PhCH2
S-553	0	Н	H	CHPh	H
S-554	0	H	Н	CHPh	CH3
S-555	0	Н	Н	CHPh	PhCH2
S-556	0	СНЗ	Н	CH2	H
S-557	0	Ph	Н	CH2	H
S-558	0	Ph	Н	CH2	CH3
S-559	0	Ph	Н	CH2	PhCH2

Table 5
Compounds of formula (IB):

(1B)

Compound	U	X	Υ	R⁴	
T-1	0	CH	CH	Н	
T-2	0	СН	СН	n-C3H7	
T-3	0	СН	СН	iso-C3H7	
T-4	0	СН	СН	n-C4H9	
T-5	0	СН	СН	iso-C4H9	
T-6	0	СН	СН	sec-C4H9	
T-7	Ō	СН	СН	tert-C4H9	

Compound	U	X	Υ	R⁴
T-8	0	CH	CH	n-C5H11
T - 9	0	СН	СН	n-C6H13
T-10	0	CH	CH	cyclo-C3H5
T-11	0	СН	CH	cyclo-C5H9
T-12	0	CH	СН	cyclo-C6H11
T-13	0	СН	CH	CH2=CHCH2
T-14	0	СН	СН	CH2CCH
T-15	0	СН	CH	PhCH2
T-16	0	CH	СН	Ph(CH3)CH
T-17	0	СН	CH	Ph
T-18	0	CH	СН	2-CI-Ph
T-19	0	СН	СН	3-CI-Ph
T-20	0	СН	СН	4-Cl-Ph
T-21	0	СН	СН	4-CF3O-Ph
T-22	0	СН	CH	4-(4-CF3-PhO)-Ph
T-23	0	СН	N	H
T-24	0	СН	N	. CH3
T-25	0	СН	N	n-C4H9
T-26	0	СН	N	iso-C4H9
T-27	0	СН	N	sec-C4H9
T-28	o	СН	N	tert-C4H9
T-29	O	СН	N	n-C5H11
T-30	O	СН	N	n-C6H13
T-31	o	СН	N	cyclo-C3H5
T-32	0	CH	N	cyclo-C5H9
T-33	0	СН	N	cyclo-C6H11
T-34	ō	СН	N	CH2=CHCH2
T-35	0	СН	N	CH2CCH
T-36	0	СН	N	PhCH2
T-37	ō	СН	N	Ph(CH3)CH
T-38	o	СН	N	Ph
T-39	ō	СН	N	2-Cl-Ph
T-40	0	СН	N	3-Cl-Ph
T-41	Ō	СН	N	4-CI-Ph
T-42	0	СН	N	4-CF3O-Ph
T-43	o	СН	N	4-(4-CF3-PhO)-Ph
T-44	0	N	N	H
T-45	0	N	N	CH3
T-46	0	N	N	C2H5
T-47	0	N	N	n-C5H11
T-48	0	N N	N	n-C6H13
T-49	0	N N	N N	cyclo-C3H5

Compound	ΙÚ	X	Υ	R⁴
T-50	0	N	N	cyclo-C5H9
T-51	0	N	N	cyclo-C6H11
T-52	0	N	N	CH2=CHCH2
T-53	0	N	N	CH2CCH
T-54	0	N	N	PhCH2
T-55	0	N	N	Ph(CH3)CH
T-56	0	N	N	Ph
T-57	Ō	N	N	2-CI-Ph
T-58	0	N	N	3-Cl-Ph
T-59	0	N	N	4-CI-Ph
T-60	0	N	N	4-CF3O-Ph
T-61	0	N	N	4-(4-CF3-PhO)-Ph
T-62	S	СН	СН	Н
T-63	S	СН	CH.	n-C3H7
T-64	S	СН	СН	iso-C3H7
T-65	s	СН	СН	n-C4H9
T-66	S	СН	СН	iso-C4H9
T-67	S	СН	СН	sec-C4H9
T-68	s	СН	СН	tert-C4H9
T-69	s	СН	СН	n-C5H11
T-70	s	CH	СН	n-C6H13
T-71	S	CH	СН	cyclo-C3H5
T-72	S	CH	СН	cyclo-C5H9
T-73	S	CH	СН	cyclo-C6H11
T-74	s	CH	СН	CH2=CHCH2
T-75	S	CH	СН	CH2CCH
T-76	S	CH	СН	PhCH2
T-77	S	CH	CH	Ph(CH3)CH
T-78	S	CH	СН	Ph
T-79	S	CH	СН	2-CI-Ph
	<u>s</u>	CH	СН	3-Cl-Ph
T-80	S	CH	СН	4-CI-Ph
T-81	S	CH	CH	4-CF3O-Ph
T-82	- S	CH	CH	4-(4-CF3-PhO)-Ph
T-83	S	CH	N	Н
T-84	- S	CH	N	СНЗ
T-85	S S	CH	N	n-C4H9
T-86	S	CH	N	iso-C4H9
T-87		CH	N	sec-C4H9
T-88	S	CH	- <u>N</u> -	tert-C4H9
T-89	S	CH	N	n-C5H11
T-90	S	CH	N	n-C6H13
T-91	S	ICH_		

WO 03/097604 PCT/EP03/04714

Table 6
Compounds of formula (IC):

Compound	U	lR⁴	R ⁹	R ¹⁰
U-1	0	H	Н	Н
U-2	0	n-C3H7	H	Н
U-3	0	iso-C3H7	Н	Н
U-4	0	n-C4H9	Н	Н
U-5	0	iso-C4H9	Н	Н
U-6	0	sec-C4H9	H	Н
U-7	0	tert-C4H9	Н	Н
U-8	0	n-C5H11	Н	Н
U-9	0	n-C6H13	Н	H
U-10	0	cyclo-C3H5	Н	Н
U-11	0	cyclo-C5H9	Н	Н
U-12	0	cyclo-C6H11	Н	Н
U-13	0	CH2CH=CH2	Н	Н
U-14	0	CH2C(CH3)=CH2	Н	Н
U-15	0	CH(CH3)CH=CH2	Н	Н
U-16	0	CH2CH=CHCH3	Н	Н
U-17	0	CH2CCH	Н	Н
U-18	0	CH2CCCH3	Н	H
U-19	0	CH(CH3)CCH	H	H
U-20	0	PhCH2	Н	H
U-21	0	Ph(CH3)CH	H	H
U-22	0	Ph(CH3)2C	H	H
U-23	0	Ph	H	Н
U-24	0	2-Cl-Ph	Η	H
U-25	0	3-CI-Ph	Н	H
U-26	0	4-CI-Ph	H	H
U-27	S	Н	Н	H
U-28	S	n-C3H7	Н	H .
U-29	S	iso-C3H7	Н	H
U-30	S	n-C4H9	Н	H
U-31	S	iso-C4H9	Н	H

Compound	U	R⁴	R ⁹	R ¹⁰
U-32	S	sec-C4H9	H	Η
U-33	S	tert-C4H9	Н	Н
U-34	S	n-C5H11	Н	Н
U-35	S	n-C6H13	Η	Н
U-36	S	cyclo-C3H5	Н	Н
U-37	S	cyclo-C5H9	H	Н
U-38	S	cyclo-C6H11	Η	Н
U-39	S	CH2CH=CH2	Η	Н
U-40	S	CH2C(CH3)=CH2	Н	H
U-41	S	CH(CH3)CH=CH2	H	H
U-42	S	CH2CH=CHCH3	H	Н
U-43	S	CH2CCH	Н	Н
U-44	S	CH2CCCH3	<u> </u> H	H
U-45	S	CH(CH3)CCH	H	Н
U-46	S	PhCH2	H	Н
U-47	S	Ph(CH3)CH	Н	H
U-48	S	Ph(CH3)2C	Η	H
U-49	S	Ph	Н	Н
U-50	S	2-Cl-Ph	Н	Н
U-51	S	3-CI-Ph	Н	H
U-52	S	4-CI-Ph	H	Н

Table 7

Compounds of formula (ID):

Compound	U	R⁴	R ¹¹
V-1	0	Н	Н
V-2	0	CH3	Н
V-3	0	C2H5	H
V-4	0	n-C3H7	Н
V-4 V-5	0	iso-C3H7	Н
V-6	0	n-C4H9	H

U	R⁴	R ¹¹
	iso-C4H9	H
	sec-C4H9	Н
	tert-C4H9	H
	n-C5H11	Η
	n-C6H13	Н
	cyclo-C3H5	Н
		Н
		Н
	CH2CH=CH2	Н
		H
	CH(CH3)CH=CH2	Н
	CH2CH=CHCH3	Н
	CH2CCH	Н
	CH2CCCH3	Н
	CH(CH3)CCH	Н
	PhCH2	H
		Н
		Н
		Н
		Н
		Н
		Н
		Н
<u> </u>		Н
		Н
		Н
		Н
		Н
		Н
		Н
		Н
		Н
		Н
		Н
S		Н
- S -		Н
		H
		Н
		Н
		Н
		Н
		H
	U O O O O O O O O O O O O O	O iso-C4H9 O sec-C4H9 O tert-C4H9 O n-C5H11 O n-C6H13 O cyclo-C3H5 O cyclo-C5H9 O cyclo-C6H11 O CH2CH=CH2 O CH2C(CH3)=CH2 O CH(CH3)CH=CH2 O CH2CCH O CH2CCH3 O CH2CCH3 O CH2CCH3 O CH(CH3)CH O CH2CCH3 O CH(CH3)CH O Ph(CH3)CH O Ph(CH3)CH O Ph(CH3)CH O Ph(CH3)CH S CH3 S C2H5 S n-C3H7 S iso-C3H7 S iso-C3H7 S iso-C4H9 S sec-C4H9 S rec6H13 S cyclo-C5H9 S cyclo-C5H9 S cyclo-C6H11 S CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CH=CH2 CH2CCH3 CH2CH=CH2 CH2CCH3 CH2CCH

Compound	U	R⁴	R ¹¹
V-49	S	СН(СН3)ССН	Н
V-50	S	PhCH2	H
V-51	s	Ph(CH3)CH	H
V-52	S	Ph(CH3)2C	Н
V-53	S	Ph	Н
V-54	S	2-Cl-Ph	Н
V-55	s	3-CI-Ph	Н
V-56	s	4-CI-Ph	Н

Table 8 Compounds of formula (I) wherein R^1 is $-C(=U)NR^3R^4$, U is NR^{18} and m is zero.

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-1	CH3	Н	Н	H
W-2	C2H5	Н	Н	Н
W-3	n-C3H7	Н	Н	H
W-4	iso-C3H7	Н	Н	H
W-5	n-C4H9	Н	H	H
W-6	iso-C4H9	Н	Н	Н
W-7	tert-C4H9	Н	H	Н
W-8	n-C5H11	H	H	H
W-9	(CH3)3CCH2	Н	Н	H
W-10	n-C6H13	H	Н	H
W-11	CH2=CHCH2	H	Н	H
W-12	CHCCH2	H	H	H
W-13	cyclo-C3H5	Н	Н	H
W-14	cyclo-C5H9	Н	Н	H
W-15	cyclo-C6H11	H	Н	H
W-16	PhCH2	H	H	H
W-17	PhCH(CH3)	H	Н	H
W-18	CH3NH	Н	H	Н
W-19	C2H5NH	H	Н	H
W-20	n-C3H7NH	H	H	H
W-21	iso-C3H7NH	H	H	Н
W-22	n-C4H9NH	H	H	H
W-23	tert-C4H9NH	Н	Н	H
W-24	n-C5H11NH	H	H	H
W-25	n-C6H13NH	Н	Н	H
W-26	PhCH2NH	H	Н	Н
W-27	PhNH	Н	H	Н
W-28	Ph	Н	H	H
W-29	2-F-Ph	Н	Н	H
W-30	3-F-Ph	Н	Н	<u>H</u>

Compound	\mathbb{R}^3	R⁴	\mathbb{R}^2	R ¹⁸
W-31	4-F-Ph	Н	H	Η
W-32		H	Н	H
W-33	3-Cl-Ph	Н	Н	Н
W-34	4-Cl-Ph	Н	H	H
W-35	2-CF3-Ph	Н	Н	H
W-36	3-CF3-Ph	Н	Η	H
W-37	4-CF3-Ph	Н	Н	H
W-38	2-CH3-Ph	Н	Н	Η
W-39	3-CH3-Ph	Н	Н	H
W-40	4-CH3-Ph	Н	Н	H
W-41	2-CH3O-Ph	Н	Н	H
W-42	3-CH3O-Ph	Н	H	H
W-43	4-CH3O-Ph	Н	Н	H
W-44	CF3CH2	Н	Н	Η
W-45	CICH2CH2	Н	Н	H
W-46	CICH2CH2CH2	Н	Н	H
W-47	CH3OCH2CH2	Н	Н	H
W-48	CH3CH2OCH2CH2	Н	Н	Н
W-49	CH3OCH2CH2CH2	Н	Н	Н
W-50	C2H5OCH2CH2CH2	Н	Н	Н
W-51	n-C4H9OCH2CH2CH2	Н	Н	H
W-52	CH3OCH(CH3)CH2CH2	Н	Н	H
W-53	(CH3O)2CHCH2	Н	Н	H
W-54	HOCH2CH2	Н	Н	Η
W-55	HOCH2CH2CH2	Н	Н	H
W-56	CH3SCH2CH2	Н	H	H
W-57	CH3CH2SCH2CH2	Н	Н	H
W-58	CH3SCH2CH2CH2	Н	Н	H
W-59	C2H5SCH2CH2CH2	Н	Н	H
W-60	CH2CH2CH2CH	2	Н	<u> </u>
W-61	CH2CH2CH2CH2C	H2	Н	H
W-62	CH2CH2OCH2CH	12	Н	H
W-63	CH2CH2SCH2CH	12	Η	H
W-64	CH2CH2NHCH2C		H	H
W-65	CH2CH2N(CH3)CH2	CH2	Н	H
W-66	N=CHCH2CH2		H	H
W-67	N=CHCH=CH		Н	H
W-68	CH3	СНЗ	Н	Н
W-69	C2H5	СНЗ	Н	H
W-70	n-C3H7	CH3	Н	H
W-71	iso-C3H7	CH3	Н	H
W-72	n-C4H9	СНЗ	Н	Н
W-73	iso-C4H9	СНЗ	H	Н

WO 03/097604

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
	tert-C4H9	CH3	Н	H
W-75	n-C5H11	CH3	H	Н
W-76	n-C6H13	CH3	H	Н
W-77	CH2=CHCH2	CH3	Н	Н
W-78	CHCCH2	СНЗ	Н	Η
W-79	cyclo-C3H5	СНЗ	Н	Н
W-80	cyclo-C5H9	СНЗ	Н	Н
W-81	cyclo-C6H11	СНЗ	Н	H
W-82	PhCH2	СНЗ	H.	Н
W-83	CH3NH	СНЗ	Н	Н
W-84	C2H5NH	СН3	Н	H
W-85	n-C3H7NH	СНЗ	Н	Н
W-86	iso-C3H7NH	СН3	Н	Н
W-87	n-C4H9NH	СНЗ	Н	Н
W-88	tert-C4H9NH	CH3	Н	Н
W-89	n-C5H11NH	СНЗ	Н	Н
W-90	n-C6H13NH	CH3	Н	H
W-91	PhCH2NH	СНЗ	Н	Н
W-92	PhNH	CH3	Н	Н
W-93	Ph	СНЗ	Η.	Н
W-94	2-F-Ph	СНЗ	Н	Н
W-95	3-F-Ph	СНЗ	Н	Н
W-96	4-F-Ph	СНЗ	Н	Н
W-97	2-CI-Ph	CH3	Н	Н
W-98	3-CI-Ph	СНЗ	Н	Н
W-99	4-CI-Ph	СНЗ	Н	Н
W-100	2-CF3-Ph	СНЗ	Н	Н
W-101	3-CF3-Ph	CH3	Н	Н
W-102	4-CF3-Ph	СНЗ	Н	Н
W-103	2-CH3-Ph	СНЗ	Н	Н
W-104	3-CH3-Ph	СН3	Н	Н
W-105	4-CH3-Ph	СНЗ	Н	Н
W-106	2-CH3O-Ph	CH3	Н	Н
W-107	3-CH3O-Ph	CH3	Н	Н
W-108	4-CH3O-Ph	CH3	Н	Н
W-109	CF3CH2	СНЗ	Н	H
W-110	CICH2CH2	СНЗ	Н	H
W-111	CICH2CH2CH2	СНЗ	Н	H
W-112	CH3OCH2CH2	СНЗ	Н	Н
W-113	CH3CH2OCH2CH2	CH3	Н	H
W-114	CH3OCH2CH2CH2	CH3	Н	H
W-115	C2H5OCH2CH2CH2	CH3	Н	H
W-116	n-C4H9OCH2CH2CH2	CH3	Н	H

Compound	\mathbb{R}^3	R ⁴	R ²	R ¹⁸
W-117	CH3OCH(CH3)CH2CH2	CH3	Н	Н
W-118	(CH3O)2CHCH2	CH3	Н	Н
W-119	HOCH2CH2	CH3	Н	Н
W-120	HOCH2CH2CH2	CH3	Н	Н
W-121	СНЗ	C2H5	Н	Η
W-122	C2H5	C2H5	Н	H
W-123	n-C3H7	C2H5	Н	Н
W-124	iso-C3H7	C2H5	Н	H
W-125	CH2=CHCH2	C2H5	Н	Η
W-126	CHCCH2	C2H5	Н	H
W-127	cyclo-C3H5	C2H5	Н	Н
W-128	PhCH2	C2H5	Н	H
W-129	CH3NH	C2H5	Н	Н
W-130	C2H5NH	C2H5	H	Η
W-131	PhCH2NH	C2H5	Н	H
W-132	PhNH	C2H5	Н	Н
W-133	Ph	C2H5	Н	Н
W-134	2-CI-Ph	C2H5	Н	Н
W-135	3-Cl-Ph -	C2H5	Н	H
W-136	4-CI-Ph	C2H5	Н	Н
W-137	2-CF3-Ph	C2H5	Н	Η
W-138	3-CF3-Ph	C2H5	Н	H
W-139	4-CF3-Ph	C2H5	Н	H
W-140	2-CH3O-Ph	C2H5	Н	Н
W-141	3-CH3O-Ph	C2H5	Н	Н
W-142	4-CH3O-Ph	C2H5	Н	H
W-143	CF3CH2	C2H5	Н	H
W-144	CICH2CH2	C2H5	Н	Н
W-145	CICH2CH2CH2	C2H5	Н	H
W-146	CH3OCH2CH2	C2H5	Н	Н
W-147	CH3CH2OCH2CH2	C2H5	Н	Н
W-148	CH3OCH2CH2CH2	C2H5	Н	H
W-149	C2H5OCH2CH2CH2	C2H5	Н	H
W-150	n-C4H9OCH2CH2CH2	C2H5	Н	H
W-151	CH3OCH(CH3)CH2CH2	C2H5	Н	H
W-152	(CH3O)2CHCH2	C2H5	Н	H
W-153	HOCH2CH2	C2H5	Н	H
W-154	HOCH2CH2CH2	C2H5	Н	H
W-155	CH3	Н	H	CH3
W-156	C2H5	H	Н	CH3
W-157	n-C3H7	Н	Н	CH3
W-158	iso-C3H7	Н	Н	CH3
W-159	tert-C4H9	Н	Н	CH3

WO 03/097604 PCT/EP03/04714

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-160		H	Н	CH3
W-161	CHCCH2	Н	Н	CH3
W-162	cyclo-C3H5	Н	Н	CH3
W-163	PhCH2	Н	Н	CH3
W-164	CH3NH	Н	Н	CH3
W-165	C2H5NH	H	Н	CH3
W-166	n-C3H7NH	Н	Н	CH3
W-167	iso-C3H7NH	Н	Н	CH3
W-168	PhCH2NH	Н	Н	СНЗ
W-169	PhNH	Н	Н	СН3
W-170	Ph	Н	Н	СНЗ
W-171	2-Cl-Ph	Н	Н	СНЗ
W-172	3-Cl-Ph	Н	Н	CH3
W-173	4-Cl-Ph	Н	Н	СНЗ
W-174	CH3OCH2CH2	Н	H	СНЗ
W-175	CH3CH2OCH2CH2	Н	Н	CH3
W-176	CH3OCH2CH2CH2	Н	H	СНЗ
W-177	C2H5OCH2CH2CH2	Н	Н	CH3
W-178	n-C4H9OCH2CH2CH2	Н	Н	CH3
W-179	CH3OCH(CH3)CH2CH2	Н	H	CH3
W-180	(CH3O)2CHCH2	Н	Н	СНЗ
W-181	HOCH2CH2	Н	Н	CH3
W-182	HOCH2CH2CH2	Н	Н	CH3
W-183	CH2CH2CH2CH2	2	Н	CH3
W-184	CH2CH2CH2CH2C	H2	Н	CH3
W-185	CH2CH2OCH2CH	2	Н	CH3
W-186	CH2CH2SCH2CH	2	Н	CH3
W-187	CH2CH2NHCH2CI	12	H	CH3
W-188	CH2CH2N(CH3)CH2	CH2	Н	CH3
W-189	N=CHCH2CH2		Н	CH3
W-190	CH3	Н	Н	tert-C4H9
W-191	C2H5	Н	Н	tert-C4H9
W-192	n-C3H7	Н	H	tert-C4H9
W-193	iso-C3H7	H	Η	tert-C4H9
W-194	tert-C4H9	Н	Н	tert-C4H9
W-195	CH2=CHCH2	Н	Н	tert-C4H9
W-196	CHCCH2	Н	Н	tert-C4H9
W-197	cyclo-C3H5	Н	Н	tert-C4H9
W-198	PhCH2	H	H	tert-C4H9
W-199	CH3NH	Н	Н	tert-C4H9
W-200	PhCH2NH	Н	H	tert-C4H9
W-201	PhNH	Н	Н	tert-C4H9
W-202	Ph	Н	Н	tert-C4H9

Compound	R ³	R ⁴	R ²	R ¹⁸
W-203	2-CI-Ph	Н	Н	tert-C4H9
W-204	1	H	Н	tert-C4H9
W-205		H	Н	tert-C4H9
W-206		<u>—</u>	Н	tert-C4H9
W-207	CH3CH2OCH2CH2	H	Н	tert-C4H9
W-208	CH3OCH2CH2CH2	Н	Н	tert-C4H9
W-209	C2H5OCH2CH2CH2	Н	Н	tert-C4H9
W-210	(CH3O)2CHCH2	Н	Н	tert-C4H9
W-211	HOCH2CH2	Н	Н	tert-C4H9
W-212	HOCH2CH2CH2	Н	Н	tert-C4H9
W-213	CH2CH2CH2CH2)	H	tert-C4H9
W-214	CH2CH2CH2CH2C		H	tert-C4H9
W-215	CH2CH2OCH2CH	2	Н	tert-C4H9
W-216	CH2CH2SCH2CH		Н	tert-C4H9
W-217	CH2CH2NHCH2CH		Н	tert-C4H9
W-218	CH2CH2N(CH3)CH2		Н	tert-C4H9
W-219	N=CHCH2CH2		Н	tert-C4H9
W-220	CH3	H	Н	ОН
W-221	C2H5	Н	Н	ОН
W-222	n-C3H7	Н	Н	ОН
W-223	iso-C3H7	Н	Н	ОН
W-224	tert-C4H9	Н	H	ОН
W-225	CH2=CHCH2	Н	Н	ОН
W-226	CHCCH2	Н	Н	ОН
W-227	cyclo-C3H5	Н	Н	ОН
W-228	PhCH2	Н	Н	OH ·
W-229	CH3NH	H	Н	ОН
W-230	C2H5NH	Н	Н	ОН
W-231	PhCH2NH	Н	H	OH
W-232	PhNH	Н	Н	OH
W-233	Ph	H	Н	ОН
W-234	2-CI-Ph	Н	H	ОН
W-235	3-CI-Ph	Н	Η	OH
W-236	4-CI-Ph	Н	Н	ОН
W-237	CH3OCH2CH2	Н	Н	ОН
W-238	CH3CH2OCH2CH2	Н	Н	OH
W-239	CH3OCH2CH2CH2	Н	Н	ОН
W-240	C2H5OCH2CH2CH2	Н	H	ОН
W-241	n-C4H9OCH2CH2CH2	Н	Н	ОН
W-242	CH3OCH(CH3)CH2CH2	Н	H	ОН
W-243	(CH3O)2CHCH2	Н	Н	ОН
W-244	HOCH2CH2	Н	H	ОН
W-245	HOCH2CH2CH2	Н	H	ОН

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-246	CH2CH2CH2CH2		H	ОН
W-247	CH2CH2CH2CH2CH		H	ОН
W-248	CH2CH2OCH2CH		Н	ОН
W-249	CH2CH2SCH2CH2		H	ОН
W-250	CH2CH2NHCH2CH		Н	OH .
W-251	CH2CH2N(CH3)CH20		Н	ОН
W-252	N=CHCH2CH2		Н	ОН
W-252 W-253	N=CHCH=CH		Н	ОН
W-254		H	Н	CH3O
W-255	C2H5	Н	Н	CH3O
W-256	n-C3H7	Н	Н	CH3O
W-257	iso-C3H7	Н	Н	CH3O
W-258	tert-C4H9	Н	Н	CH3O
W-259	CH2=CHCH2	H	Н	CH3O
W-260	CHCCH2	Н	Н	CH3O
W-261	cyclo-C3H5	Н	Н	CH3O
W-262	PhCH2	Н	Н	CH3O
W-263	CH3NH	Н	Н	CH3O
W-264	C2H5NH	Н	Н	CH3O
W-265	PhCH2NH	Н	Н	CH3O
W-266	PhNH	Н	Н	CH3O
W-267	Ph	Н	Н	CH3O
W-268	2-Cl-Ph	Н	Н	CH3O
W-269	3-Cl-Ph	Н	Н	CH3O
W-270	4-Cl-Ph	Н	Н	CH3O
W-271	CH3OCH2CH2	Н	Н	CH3O
W-272	CH3CH2OCH2CH2	Н	Н	CH3O
W-273	CH3OCH2CH2CH2	Н	Н	CH3O
W-274	C2H5OCH2CH2CH2	H .	Н	CH3O
W-275	n-C4H9OCH2CH2CH2	Н	Н	CH3O
W-276	CH3OCH(CH3)CH2CH2	Н	Н	CH3O
W-277	(CH3O)2CHCH2	H	Н	CH3O
W-278	HOCH2CH2	Н	Н	CH3O
W-279	HOCH2CH2CH2	Н	Н	CH30
W-280	CH3SCH2CH2	Н	Н	CH30
W-281	CH3CH2SCH2CH2	Н	Н	CH3O
W-282	CH3SCH2CH2CH2	Н	Н	CH30
W-283	C2H5SCH2CH2CH2	Н	Н	CH3O

WO 03/097604

Table 9 $\label{eq:compounds} \mbox{Compounds of formula (I) wherein R^1 is $-C(=V)OR^{3a}$ and m is zero. }$

Compound	V	R ^{3a}	\mathbb{R}^2
X-1	0	cyclo-C3H5	Н
X-2	0	cyclo-C5H9	Н
X-3	0	cyclo-C6H11	Н
X-4	0	CH3NH	Н
X-5	0	C2H5NH	Н
X-6	0	n-C3H7NH	Н
X-7	0	iso-C3H7NH	Н
X-8	0	n-C4H9NH	Н
X-9	0	tert-C4H9NH	Н
X-10	0	n-C5H11NH	Н
X-11	0	n-C6H13NH	Н
X-12	0	PhCH2NH	Н
X-13	0	PhNH	Н
X-14	0	CF3CH2	Н
X-15	0	CICH2CH2	Н
X-16	0	CICH2CH2CH2	H
X-17	0	CH3OCH2CH2	H
X-18	0	CH3CH2OCH2CH2	Н
X-19	0	CH3OCH2CH2CH2	Н
X-20	0	C2H5OCH2CH2CH2	Н
X-21	0	n-C4H9OCH2CH2CH2	Н
X-22	0	CH3OCH(CH3)CH2CH2	Н
X-23	0	(CH3O)2CHCH2	Н
X-24	0	HOCH2CH2	Н
X-25	0	HOCH2CH2CH2	Н
X-26	0	CH3SCH2CH2	Н
X-27	0	CH3CH2SCH2CH2	Н
X-28	0	CH3SCH2CH2CH2	Н
X-29	0	C2H5SCH2CH2CH2	Н
X-30	0	CH3(cyclo-C3H5)CH	Н
X-31	0	NCCH2CH2	Н
X-32	S	cyclo-C3H5	Н
X-33	S	cyclo-C5H9	Н
X-34	S	cyclo-C6H11	Н
X-35	S	CH3NH	Н
X-36	S	C2H5NH	Н
X-37	S	n-C3H7NH	Н
X-38	S	iso-C3H7NH	Н
X-39	S	n-C4H9NH	H
X-40	S	tert-C4H9NH	H

Compound	IV	R ^{3a}	R ²
X-41	s	n-C5H11NH	H
X-42	S	n-C6H13NH	Н
X-43	S	PhCH2NH	Н
X-44	S	PhNH	Н
X-45	S	CF3CH2	H
X-46	S	CICH2CH2	H
X-47	S	CICH2CH2CH2	Н
X-48	S	CH3OCH2CH2	Н
X-49	S	CH3CH2OCH2CH2	H
X-50	S	CH3OCH2CH2CH2	Н
X-51	s	C2H5OCH2CH2CH2	Н
X-52	s	n-C4H9OCH2CH2CH2	Н
X-53	s	CH3OCH(CH3)CH2CH2	H
X-54	S	(CH3O)2CHCH2	Н
X-55	s	HOCH2CH2	H
X-56	s	HOCH2CH2CH2	Н
X-57	s	CH3SCH2CH2	Н
X-58	S	CH3CH2SCH2CH2	Н
X-59	s	CH3SCH2CH2CH2	H
X-60	S	C2H5SCH2CH2CH2	Н
X-61	s	CH3(cyclo-C3H5)CH	Н
X-62	S	NCCH2CH2	Н
X-63	0	cyclo-C3H5	СНЗ
X-64	0	cyclo-C5H9	СНЗ
X-65	0	cyclo-C6H11	СНЗ
X-66	О	CH3NH	СНЗ
X-67	0	C2H5NH	CH3
X-68	O	n-C3H7NH	СНЗ
X-69	0	iso-C3H7NH	СНЗ
X-70	0	n-C4H9NH	СНЗ
X-71	0	tert-C4H9NH	СНЗ
X-72	0	n-C5H11NH	СНЗ
X-73	0	n-C6H13NH	СНЗ
X-74	0	PhCH2NH	СНЗ
X-75	0	PhNH	СНЗ
X-76	0	CF3CH2	CH3
X-77	0	CICH2CH2	CH3
X-78	0	CICH2CH2CH2	СНЗ
X-79	0	CH3OCH2CH2	СНЗ
X-80	0	CH3CH2OCH2CH2	CH3
X-81	0	CH3OCH2CH2CH2	СНЗ
X-82	0	C2H5OCH2CH2CH2	CH3

Compound	V	R ^{3a}	R ²
X-83	0	n-C4H9OCH2CH2CH2	CH3
X-84	0	CH3OCH(CH3)CH2CH2	CH3
X-85	0	(CH3O)2CHCH2	CH3
X-86	0	HOCH2CH2	CH3
X-87	0	HOCH2CH2CH2	CH3
X-88	0	CH3SCH2CH2	CH3
X-89	0	CH3CH2SCH2CH2	CH3
X-90	0	CH3SCH2CH2CH2	CH3
X-91	0	C2H5SCH2CH2CH2	CH3
X-92	0	CH3(cyclo-C3H5)CH	CH3
X-93	О	NCCH2CH2	CH3
X-94	S	cyclo-C3H5	CH3
X-95	S	cyclo-C5H9	CH3
X-96	S	cyclo-C6H11	CH3
X-97	S	CH3NH	CH3
X-98	S	C2H5NH	CH3
X-99	s	n-C3H7NH	СНЗ
X-100	s	iso-C3H7NH	CH3
X-101	S	n-C4H9NH	CH3
X-102	S	tert-C4H9NH	CH3
X-103	S	n-C5H11NH	CH3
X-104	S	n-C6H13NH	CH3
X-105	S	PhCH2NH	CH3
X-106	s	PhNH	CH3
X-107	S	CF3CH2	CH3
X-108	S	CICH2CH2	CH3
X-109	s	CICH2CH2CH2	CH3
X-110	s	CH3OCH2CH2	CH3
X-111	s	CH3CH2OCH2CH2	CH3
X-112	s	CH3OCH2CH2CH2	CH3
X-113	S	C2H5OCH2CH2CH2	CH3
X-114	S	n-C4H9OCH2CH2CH2	CH3
X-115	S	CH3OCH(CH3)CH2CH2	CH3
X-116	S	(CH3O)2CHCH2	CH3
X-117	S	HOCH2CH2	CH3
X-118	S	HOCH2CH2CH2	CH3
X-119	S	CH3SCH2CH2	СНЗ
X-120	s	CH3CH2SCH2CH2	СНЗ
X-121	S	CH3SCH2CH2CH2	СНЗ
X-122	s	C2H5SCH2CH2CH2	СНЗ
X-123	s	CH3(cyclo-C3H5)CH	СНЗ
X-124	S	NCCH2CH2	СНЗ

Compound	V	R ^{3a}	R ²
X-125	0	cyclo-C3H5	C2H5
X-126	Ō	CH3NH	C2H5
X-127	0	C2H5NH	C2H5
X-128	Ō	n-C3H7NH	C2H5
X-129	0	iso-C3H7NH	C2H5
X-130	0	n-C4H9NH	C2H5
X-131	0	tert-C4H9NH	C2H5
X-132	0	PhCH2NH	C2H5
X-133	0	PhNH	C2H5
X-134	0	CF3CH2	C2H5
X-135	0	CICH2CH2	C2H5
X-136	0	CICH2CH2CH2	C2H5
X-137	0	CH3OCH2CH2	C2H5
X-138	0	CH3CH2OCH2CH2	C2H5
X-139	0	CH3OCH2CH2CH2	C2H5
X-140	0	C2H5OCH2CH2CH2	C2H5
X-141	О	n-C4H9OCH2CH2CH2	C2H5
X-142	0	CH3OCH(CH3)CH2CH2	C2H5
X-143	0	(CH3O)2CHCH2	C2H5
X-144	0	HOCH2CH2	C2H5
X-145	0	HOCH2CH2CH2	C2H5
X-146	0	CH3(cyclo-C3H5)CH	C2H5
X-147	0	NCCH2CH2	C2H5
X-148	S	cyclo-C3H5	C2H5
X-149	S	CH3NH	C2H5
X-150	s	C2H5NH	C2H5
X-151	S	n-C3H7NH	C2H5
X-152	S	iso-C3H7NH	C2H5
X-153	S	n-C4H9NH	C2H5
X-154	S	tert-C4H9NH	C2H5
X-155	S	PhCH2NH	C2H5
X-156	S	PhNH	C2H5
X-157	S	CF3CH2	C2H5
X-158	S	CICH2CH2	C2H5
X-159	S	CICH2CH2CH2	C2H5
X-160	S	CH3OCH2CH2	C2H5
X-161	S	CH3CH2OCH2CH2	C2H5
X-162	S	CH3OCH2CH2CH2	C2H5
X-163	S	C2H5OCH2CH2CH2	C2H5
X-164	S	n-C4H9OCH2CH2CH2	C2H5
X-165	S	CH3OCH(CH3)CH2CH2	C2H5
X-166	S	(CH3O)2CHCH2	C2H5

Compound	V	R ^{3a}	R ²
X-167	s	HOCH2CH2	C2H5
X-168	S	HOCH2CH2CH2	C2H5
X-169	s	CH3(cyclo-C3H5)CH	C2H5
X-170	S	NCCH2CH2	C2H5

Table 10

1H-NMR spectral details for representative Examples from the above Tables.

Nmr spectra were measured in deuterochloroform unless otherwise stated.

Cpd	1H-NMR
A-2	3.7-3.9(2H, m), 5.1-5.2(2H, m), 5.7-5.9(1H, m), 7.63(1H, d), 8.46(1H,
	brs), 8.83(1H, d), 8.91(1H, d), 10.70(1H, brs)
A-18	2.26(1H, t), 4.02(2H, dd), 7.66(1H, d), 8.34(1H, brs), 8.91(1H, s),
	8.94(1H, d), 10.03(1H, brs)
A-24	0.5-0.6(1H, m), 0.7-0.8(1H, m), 2.6-2.7(1H, m), 7.65(1H, d), 8.33(1H,
	brs), 8.89(1H, s), 8.93(1H, d), 9.68(1H, brs)
A-26	9.83(1H,s), 8.93(1H,d), 8.89(1H,s), 8.40(1H,d), 7.65(1H,d), 4.12(1H,dt),
	2.27(2H,m), 1.98(2H,m), 1.73(2H,m)
A-28	1.4-2.0(4H, m), 3.8-4.1(1H, m), 7.64(1H, d), 8.28(1H, brd), 8.90(1H, s),
	8.91(1H, d)
A-30	1.2-1.4(5H, m), 1.5-1.9(5H, m), 3.4-3.6(1H, m), 7.63(1H, d), 8.22(1H,
	brd), 8.89(1H, s), 8.91(1H, d)
A-32	9.68(1H,s), 8.93(1H,d), 8.90(1H,s), 8.38(1H,t), 7.65(1H,d), 3.10(2H,t),
	1.00(1H,m), 0.53(2H,m), 0.22(1H,m)
A-37	4.39(2H, d), 7.1-7.4(5H, m), 7.62(1H, d), 8.69(1H, m), 8.7-9.0(3H, m)
A-38	1.48(3H, d), 4.7-4.9(1H, m), 7.1-7.4(5H, m), 7.58(1H, d), 8.78(1H, brd),
	8.86(1H, s), 8.90(1H, d)
A-39	2.80(2H, t), 3.42(2H, t), 7.1-7.4(5H, m), 7.62(1H, d), 8.3-8.5(1H, m),
	8.89(1H, s), 8.90(1H, d)
A-62	3.80(3H, s), 4.31(1H, s), 6.86(2H, d), 7.16(2H, d), 7.62(1H, d), 8.62(1H,

<u> </u>	T
Cpd	1H-NMR
	brs), 8.8-9.0(2H, m), 10.26(1H, s)
A-64	3.83(3H, s), 7.66(1H, d), 8.89(1H, s), 8.94(1H, d), 9.21(1H, brs),
	10.60(1H, brs)
A-65	10.54(1H,s), 9.51(1H,s), 8.94(1H,d), 8.89(1H,s), 7.65(1H,d)4.01(2H,q),
	1.28(3H,t)
A-67	10.39(1H), 8.90-9.05(2H), 7.81(1H), 4.18(1H), 1.24(6H)
A-71	1.35(9H, s), 7.62(1H, d), 8.66(1H, s), 8.78(1H, d)
A-74	10.58(1H,s), 10.04(1H,s), 8.92(1H,d), 8.89(1H,s), 7.65(1H,d),
	5.94(1H,m), 5.38(1H,d), 5.35(1H,d), 4.39(2H,d)
A-75	10.51(1H,brs), 8.94(1H,d), 8.89(1H,s), 7.65(1H,d), 5.05(2H, S),
	4.34(2H,s), 1.81(3H,s)
A-79	10.45(1H,brs), 8.96(1H,d), 8.88(1H,s), 8.52(1H,brs), 7.66(1H,d),
	5.85(1H,m), 5.67(1H,m), 4.38(2H,d), 1.77(3H,d)
A-81	10.74(1H,brs), 9.37(1H,brs), 8.93(1H,d), 8.89(1H,s), 7.66(1H,d),
	4.56(2H,s), 2.60(1H)
A-85	1.33(3H, t), 4.29(2H, q), 4.48(2H, s), 7.64(1H, d), 8.85(1H, s), 8.90(1H,
	d), 9.60(1H, brs), 11.11(1H, brs)
A-86	4.92(2H, s), 7.3-7.5(5H, m), 7.63(1H, d), 8.8-9.0(2H, m), 9.91(1H, brs),
	10.56(1H, brs)
A-88	8.29(1H,d), 8.88(1H,s), 8.86(1H,s), 7.65(1H,d), 7.28(1H,t), 6.93-6.99(3H)
	4.93(2H,s), 3.83(3H,s)
A-89	8.88(1H,s), 8.76(1H,d), 8.63(1H,s), 7.55(1H,d), 7.36(2H,d), 6.88(2H,d),
	4.99(2H,s), 3.79(3H,s)
A-90	8.97(1H,d), 8.93(1H,s), 8.52(1H,brs), 7.67(1H,d), 7.35(2H,t), 7.11(2H,d),
	7.10(1H,t)
A-149	10.32(1H,s), 9.53(1H,s), 8.98-9.01(2H), 7.68(1H,d), 7.44(2H,d),
	7.33(2H,t), 7.15(1H,t)

Cpd	1H-NMR
A-153	7.0-7.1(1H, m), 7.2-7.3(1H, m), 7.3-7.5(1H, m), 7.68(1H, d), 7.9-8.1(1H,
	m), 8.9-9.1(2H, m), 9.82(1H, brs), 10.88(1H, brs)
A-154	7.0-7.3(3H, m), 7.51(1H, s), 7.71(1H, d), 8.99(1H, s), 9.03(1H, d),
	10.21(1H, brs), 10.46(1H, brs)
A-155	7.2-7.3(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.94(1H, s), 8.97(1H, d),
	10.26(1H, brs), 10.42(1H, brs)
A-158	7.3-7.4(2H, m), 7.4-7.5(2H, m), 7.70(1H, d), 8.99(1H, s), 9.02(1H, d),
	9.30(1H, brs), 10.33(1H, brs)
A-162	7.2-7.3(1H, m), 7.5-7.6(1H, m), 7.6-7.7(2H, m), 7.93(1H, d), 8.96(1H, d),
	8.98(1H, s), 9.68(1H, brs), 10.72(1H, brs)
A-170	3.82(3H, s), 6.8-6.9(2H, m), 7.3-7.5(2H, m), 7.68(1H, d), 8.9-9.0(2H, m),
	9.33(1H, brs), 10.17(1H, brs)
A-180	3.99(3H, s), 7.1-7.2(1H, m), 7.4-7.6(1H, m), 7.66(1H, d), 8.0-8.1(1H, m),
	8.2-8.3(1H, m), 8.97(1H, d), 9.00(1H, s), 9.39(1H, brs), 12.32(1H, brs)
A-190	10.42(1H,s), 9.11(1H,s), 9.01(1H,d), 7.86(1H,d), 7.60(1H,s), 7.53(1H,d),
	7.31(1H,t), 7.11(1H,d), 4.62(2H)
A-194	7.1-7.3(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.9-9.0(2H, m), 9.65(1H,
	brs), 10.42(1H, brs)
A-200	6.9-7.1(4H, m), 7.3-7.4(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.9-9.0(2H,
	m), 9.34(1H, brs), 10.30(1H, brs)
A-203	10.38(1H,s), 9.58(1H,s), 8.98-9.01(2H), 7.71(1H,d), 7.59(2H,d),
	7.49(2H,d), 7.00-7.08(4H)
A-204	7.2-7.4(2H, m), 7.70(1H, d), 8.1-8.2(1H, m), 8.79(1H, brs), 8.9-9.1(2H,
	m), 10.92(1H, brs)
4-205	7.0-7.1(1H, m), 7.3-7.4(1H, m), 7.71(1H, d), 7.9-8.0(1H, m), 8.99(1H, s),
	9.03(1H, d), 10.08(1H, bes), 11.05(1H, brs)
4-206	7.2-7.3(2H, m), 7.3-7.4(2H, m), 7.65(1H, d), 8.92(1H, d), 8.95(1H, s),
	9.36(1H, brs), 9.92(1H, brs)

Cpd	1H-NMR
A-207	7.1-7.2(1H, m), 7.3-7.4(1H, m), 7.6-7.7(1H, m), 7.72(1H, d), 8.99(1H, s), 9.03(1H, d), 10.21(1H, brs), 10.50(1H, brs)
A-208	7.1-7.2(1H, m), 7.4-7.5(2H, m), 7.72(1H, d), 8.97(1H, s), 9.03(1H, d), 9.13(1H, brs), 10.45(1H, brs)
A-209	9.07(1H,s), 8.97(1H,d), 8.27(1H,d), 8.00(1H,brs), 7.81(1H,d), 7.74(1H,t), 7.09(1H,t)
A-210	10.44(1H,s), 9.33(1H,brs), 9.02(1H,d), 8.99(1H,s), 8.71(1H,S), 8.40(1H,d), 7.98(1H,d), 7.71(1H,d), 7.32(1H,dd)
A-211	10.57(1H,s), 9.12(1H,s), 9.02(1H,d), 8.48(2H,d), 7.87(1H,d), 7.63(2H,d)
A-212	12.48(1H,brs), 9.63(1H,brs), 8.88(1H,d), 8.81(1H,s), 8.65(2H,d), 7.61(1H,d), 7.07(1H,t)
A-222	7.01(1H, d), 7.48(1H, d), 7.71(1H, d), 8.98(1H, s), 9.01(1H, d), 9.92(1H, brs)
A-223	7.72(1H, d), 8.33(1H, s), 8.87(1H, s), 8.98(1H, s), 9.01(1H, d), 10.18(1H, brs)
A-248	3.8-4.0(2H, m), 7.67(1H, d), 8.6-8.8(1H, m), 8.91(1H, s), 8.96(1H, s), 9.80(1H, brs)
A-250	1.9-2.1(2H, m), 3.3-3.5(2H, m), 3.5-3.7(2H, m), 7.65(1H, d), 8.43(1H, brs), 8.90(1H, s), 8.93(1H, d), 10.35(1H, brs)
A-251	3.39(3H, s), 3.4-3.6(4H, m), 7.65(1H, d), 8.43(1H, brs), 8.90(1H, s), 8.94(1H, d), 9.02(1H, brs)
A-255	0.92(3H, t), 1.3-1.5(2H, m), 1.5-1.7(2H, m), 1.7-1.9(2H, m), 3.2-3.6(6H, m), 7.63(1H, d), 8.45(1H, brs), 8.89(1H, s), 8.91(1H, d), 10.00(1H, brs)
A-256	3.3-3.6(m, 8H), 4.44(1H, t), 7.65(1H, d), 8.40(1H, brs), 8.90(1H, s), 8.93(1H, s), 9.40(1H, brs)
A-260	3.4-3.5(2H, m), 3.7-3.9(2H, m), 7.67(1H, d), 8.58(1H, brs), 8.91(1H, s), 8.95(1H, d), 9.22(1H, brs)
A-261	10.89(1H,s), 8.89-8.93(2H), 8.55(1h,d), 7.66(1H,d), 3.32-3.64(4H), 1.71-

Cpd	1H-NMR
	1.76(2H)
A-262	3.78(3H, s), 3.98(2H, d), 7.64(1H, d), 8.7-8.9(1H, m), 8.89(1H, s),
	8.92(1H, d), 10.31(1H, brs)
A-265	4.43 (2H, d), 7.84 (1H, d), 8.81(1H, brs), 9.00(1H, d), 9.08(1H, s)
A-267	8.97(1H,d), 8.93(1H,s), 8.60(1H,s), 7.67(1H,d), 1.74(6H,s)
A-268	1.0-1.2(6H, m), 1.61(3H, s), 2.1-2.3(1H, m), 7.66(1H, d), 8.73(1H, brs), 8.94(1H, s), 8.96(1H, d), 10.05(1H, brs)
A-274	1.5-1.7(4H, m), 2.3-2.6(6H, m), 3.2-3.4(2H, m), 7.62(1H, d), 8.5-8.7(1H, m), 8.8-9.0(2H, m), 10.40(1H, brs)
A-292	1.0-1.9(10H, m), 2.88(3H, s), 3.7-4.0(1H, m), 7.55(1H, d), 8.74(1H, s), 8.82(1H, d)
A-296	2.98(3H, s), 4.52(2H, s), 7.2-7.4(5H, m), 7.57(1H, d), 8.52(1H, brs), 8.74(1H, s), 8.34(1H, d)
A-312	3.11(3H, s), 7.73(1H, d), 8.74(1H, s), 8.87(1H, s), 9.39(1H, s), 9.79(1H, brs)
A-313	3.13(3H, s), 3.79(3H, s), 7.57(1H, d), 8.72(1H, s), 8.85(1H, d), 8.90(1H, brs)
A-316	1.32(6H, d), 3.12(3H, s), 4.1-4.3(1H, m), 7.56(1H, d), 8.70(1H, s), 8.78(1H, brs), 8.84(1H, d)
A-317	3.17(3H, s), 4.40(2H, d), 5.3-5.6(2H, m), 5.9-6.1(1H, m), 7.57(1H, d), 8.68(1H,s), 8.84(1H, d)
A-326	1.50(1H, s), 3.09(3H, s), 3.83(3H, s), 5.54(1H, q), 7.58(1H, d), 8.78(1H, s), 8.85(1H, d)
A-329	3.13(3H, s), 4.88(2H, s), 7.3-7.5(5H, m), 7.53(1H, d), 8.43(1H, s), 8.59(1H, brs), 8.82(1H, d)
A-331	3.17(3H, s), 7.81(1H, d), 8.96(1H, d), 9.13(1H, s), 10.22(1H, brs)
A-349	8.84(1H,d), 8.69(1H,s), 7.69(1H,brs), 7.50-7.59(4H), 7.29(2H,d),
	<u> </u>

Cpd	1H-NMR
	3.21(3H,s)
A-353	8.84(1H,d), 8.70(1H,s), 7.55-7.62(2H), 7.24-7.46(3H), 3.16(3H,s)
A-354	8.84(1H,d), 8.70(1H,s), 7.57(1H,d), 7.45-7.48(2H), 7.32(1H), 7.20(1H),
	3.21(3H,s)
A-355	8.84(1H,d), 8.69(1H,s), 7.57(1H,s), 7.50(2H,d), 7.24(2H,d), 3.20(3H,s)
A-365	8.84(1H,d), 8.67(1H,s), 7.55-7.58(2H), 7.27-7.39(2H), 7.22(1H,d),
	3.13(3H,s), 2.30(3H,s)
A-366	8.82(1H,d), 8.67(1H,s), 7.77(1H,s), 7.56(1H,d), 7.38(1H,t),
	7.23(1H,d)7.06-7.10(2H), 3.18(3H,s), 2.41(3H,s)
A-367	8.84(1H,d), 8.68(1H,s), 7.61(1H,s), 7.56(1H,d), 7.30(2H,d), 7.16(2H,d),
	3.18(3H,s), 2.42(3H,s)
A-369	8.80(1H,d)8.66(1H,s), 7.91(1H,s), 7.55(1H,d), 7.39(1H,t), 6.93(1H,dd),
	6.86(1H,d), 6.79(1H,d), 3.83(3H,s), 3.19(3H,s)
A-373	8.89(1H,d), 8.85(1H,s), 8.29(2H,d), 7.80(1H,d), 7.73(2H,d), 3.41(3H,s)
A-381	8.86(1H,d), 8.73(1H,s), 7.73(1H,d) 7.29(1H,t), 6.83-6.92(3H), 3.19(3H,s)
A-398	13.93(1H,s), 8.84(1H,d), 8.75(1H,s), 8.37(1H,d), 7.83(1H,t), 7.58(1H,d),
	7.09-7.16(2H), 3.36(3H,s)
A-431	3.51(2H, t), 3.64(2H, t), 7.59(1H, d), 8.78(1H, s), 8.82(1H, d), 10.38(1H, brs)
A-519	1.11(3H, t), 3.2-3.4(2H, m), 3.4-3.6(2H, m), 3.7-3.9(2H, m), 7.56(1H, d),
	8.73(1H, s), 8.80(1H, d)
A-524	0.85(3H, t), 1.4-1.7(2H, m), 3.1-3.3(2H, m), 3.4-3.6(2H, m), 3.7-3.9(2H,
	m), 4.82(1H, brs), 7.56(1H, d), 8.72(1H, s), 8.78(1H, d), 10.54(1H, brs)
A-529	8.82(1H,d), 8.62(1H,s), 8.73(1H,brs), 7.54(1H,d), 7.25-7.60(5H), 4.40-
	4.58(3H), 1.16(6H)
A-540	1.16(6H, d), 4.2-4.5(1H, m), 7.63(1H, d), 8.68(1H, s), 8.82(1H, d),
	9.02(1H, brs)

Cpd	1H-NMR
A-544	8.84(1H,d), 8.69(1H,s), 7.56(1H,d), 4.10-4.25(2H), 1.34(3H,d), 1.21(3H,d)
A-564	8.82(1H,d),8.67(1H,s), 7.50-7.57(3H), 7.15-7.26(3H), 4.65(1H,m),
	1.03(6H,d)
A-605	1.10(6H, d), 3.3-3.5(2H, m), 3.8-4.0(2H, m), 4.3-4.5(1H, m), 7.54(1H, d),
	8.79(1H, s), 8.80(1H, d)
A-626	8.88(1H,d), 8.73(1H,s), 7.60(1H,d), 6.41(1H,brs), 1.17(9H,s)
A-691	8.82(1H,d), 8.65(1H,s), 7.53(1H,d), 3.95(2H,t), 3.58(2H,t), 1.36(9H,s)
A-697	8.82(1H,d), 8.75(1H,brs), 8.71(1H,s), 7.56(1H,s), 5.75(2H,m), 5.19-
	5.30(4H), 3.29(4H,d)
A-713	8.97(1H,s), 8.84(1H,d), 8.73(1H,s), 7.57(1H,d), 5.79(1H,m), 5.26(1H,d),
	5.24(1H,d), 4.11(2H,d), 3.78(3H,s)
A-736	8.83(1H,d), 8.69(1H,s), 7.45-7.58(5H), 7.24-7.28(2H), 5.78(1H,m),
	5.12(1H,d), 5.08(1H,d), 4.17(2H,d),
A-737	8.84(1H,d), 8.71(1H,s), 7.55-7.62(2H), 7.27-7.45(3H), 5.80(1H,m),
	5.09(1H,d), 5.06(1H,d), 4.49(1H,dd), 3.81(1H,dd)
A-738	8.84(1H,d), 8.70(1H,s), 7.57(1H,d), 7.43-7.45(2H), 7.24-7.28(1H9,
	7.16(1H,dd), 5.77(1H,m), 5.14(1H,d), 5.10(1H,d), 4.16(2H,d
A-744	8.81(1H,d), 8.69(1H,s), 7.68(1H,d), 7.34(1H,t), 6.88-6.95(3H),
	5.77(1H,m), 5.05(1H,d), 5.02(1H,d), 4.19(2H,d), 3.80(3H,s)
A-745	8.83(1H,d), 8.68(1H,s), 7.56(1H,d), 7.15(2H,d), 6.98(2H,d), 5.76(1H,m),
	5.10(1H,d), 5.06(1H,d), 4.12(2H,d), 3.86(3H,s)
A-747	8.85(1H,d), 8.70-8.721(2H), 7.72(1H,d), 7.28(1H,t), 6.82-6.89(3H),
	5.82(1H,m), 5.03-5.14(2H), 4.20(2H,d)
A-748	8.80(!h,d), 8.68(1H,s), 7.84(1H,s), 7.59(1H,d), 7.07(2H,d), 6.89(2H,d),
	5.77(1H,m), 5.00-5.30(2H), 4.11(2H,d)
A-798	4.61(2H, s), 7.2-7.4(5H, m), 7.54(1H, d), 8.54(1H, s), 8.62(1H, d),
	9.18(1H, brs), 10.38(1H, brs)

Cpd	1H-NMR
A-799	8.95(1H,s), 8.86(1H,d), 8.73(1H,s), 7.57(1H,d), 7.24-7.36(5H),
	4.65(2H,s), 3.68(3H,s)
A-805	8.80(1H,d), 8.45(1H,s), 7.53(1H,d), 7.23-7.41(10H), 4.75(2H,s),
	4.64(2H,s)
A-822	8.86(1H,d), 8.71(1H,s), 7.58(2H), 7.42(3H), 7.24(3H), 7.04-7.11(4H),
	4.76(2H,s)
A-861	9.30(1H,s), 8.81(1H,d), 8.73(1H,s), 7.55(1H,d), 4.38(1H,m), 3.83(1H,d),
	3.03(1H,t), 1.50-1.75(6H), 1.22(3H,d)
A-862	3.3-3.5(2H, m), 3.6-3.8(2H, m), 4.47(2H, s), 7.1-7.4(5H, m), 7.57(1H, d),
	8.73(1H, s), 8.79(1H, d)
A-864	8.79(1H,d), 8.72(1H,s), 7.56(1H,d), 4.45(1H,brs), 3.20-3.80(4H), 1.90-
	2.10(2H)
A-865	8.84(1H,d), 8.74(1H,s), 8.42(1H,brs), 7.57(1H,d), 5.87(2H,brd),
	4.33(2H,s), 4.18(2H,s)
A-866	11.32(1H,brs), 9.18(1H,s), 9.05(1H,d), 7.97(1H,d), 7.96(1H,d),
	7.94(1H,d), 7.47(1H,t), 7.33(1H,t)
A-867	8.86(1H,d), 8.78(1H,s), 7.71(1H,d), 7.25-7.45(10H)
A-869	3.6-3.9(4H, m), 7.2-7.6(6H, m), 8.67(1H, d), 8.79(1H, m)
A-871	1.7-2.2(4H, m), 3.2-3.7(4H, m), 7.56(1H, d), 8.73(1H, s), 8.81(1H, d),
	9.11(1H, brs)
A-872	1.5-1.8(6H, m), 3.3-3.6(4H, m), 7.56(1H, d), 8.75(1H, s), 8.83(1H, d),
	8.93(brs)
A-873	3.4-3.6(4H, m), 3.6-3.9(4H, m), 7.58(1H, d), 8.03(1H, brs), 8.76(1H, s),
	8.86(1H, d)
A-874	2.6-2.8(4H, m), 4.7-4.9(4H, m), 7.59(1H, d), 8.77(1H, s), 8.86(1H, d)
B-37	4.85(2H, d), 7.2-7.5(5H, m), 7.62(1H, d), 8.85(1H, s), 8.92(1H, d),
	9.74(1H, brs), 10.61(1H, brs)

Cpd	1H-NMR
B-40	10.83(1H,s), 8.95(1H,d), 8.91(1H,s), 8.78(1H,s), 7.65(1H,d), 7.25-
	7.67(5H), 1.91(6H)
B-47	10.58(1H), 9.14(1H,s), 8.97(1H,d), 8.90(1H,s), 7.67(1H,d), 7.24-7.38(4H),
	4.86(2H,d)
B-64	3.84(3H, s), 7.79(1H, s), 8.84(1H, s), 8.93(1H, d), 10.78(1H, brs)
B-65	12.41(1H,s), 10.66(1H,s), 8.93(1H,s), 8.87(1H,d), 7.70(1H,d), 4.07(2H,q),
	1.16(3H,t)
B-71	12.14(1H,s), 9.22(1H,s), 8.98(1H,d), 8.92(1H,s), 7.68(1H,d), 1.43(9H,s)
B-74	12.53(1H,s), 10.79(1H,s), 9.00(1H,s), 8.95(1H,d), 7.79(1H,d),
	6.02(1H,m), 5.38(1H,d), 5.28(1H,d), 4.60(2H,d)
B-86	12.22(1H,s), 9.22(1H,brs), 8.95(1H,d), 8.86(1H,s), 7.66(1H,d), 7.37-
	7.44(5H), 5.14(2H,s)
B-100	2.84(1H, brs), 3.36(1H, brs), 7.87(1H, d), 8.28(1H, brs), 9.03(1H, d),
i	9.17(1H, s)
B-108	5.40(2H, s), 7.2-7.5(5H, m), 7.71(1H, d), 8.9-9.1(2H, m), 12.80(1H, brs)
B-109	6.8-7.1(4H, m), 7.3-7.4(1H, m), 7.65(1H, d), 8.90(1H, s), 8.96(1H, d),
	8.49(1H, brs), 11.82(1H, d)
B-149	12.34(1H,s), 10.95(1H,brs), 9.14(1H,s), 9.02(1H,d), 7.86(1H,d),
	7.81(2H,d), 7.44(2H,t), 7.29(1H,m)
B-150	12.35(1H,s), 11.15(1H,brs), 9.16(1H,s), 9.03(1H,d), 8.34(1H,t),
	7.87(1H,d), 7.25-7.35(3H)
B-151	12.45(1H,s), 9.14(1H,s), 9.02(1H,d), 7.49(1H), 7.47(1H,d), 7.46-7.50(2H),
	7.07(1H,m)
B-152	12.25(1H,s), 11.03(1H,brs), 9.12(1H,s), 9.02(1H,d), 7.86(1H,d),
	7.78(2H,t), 7.21(2H,t)
B-155	9.09(1H,s), 8.98(1H,d), 7.83(1H,d), 7.78(2H,d), 7.44(2H,d)
B-158	9.13(1H,s), 9.02(1H,d), 7.87(1H,d), 7.79(2H,d), 7.62(2H,d)
1	

Cpd	1H-NMR
B-163	7.5-7.6(2H, m), 7.67(1H, d), 7.8-7.9(1H, m), 8.01(1H, d), 8.91(1H, s),
	8.95(1H, s), 9.82(1H, brs), 12.25(1H, brs)
B-166	9.00(1H,s), 8.90(1H,d), 7.74(1H,d), 7.52(1H,d), 7.45(1H,s), 7.19(1H,t),
	6.99(1H,d), 2.25(3H,s)
B-167	12.29(1H,s), 10.94(1H,brs), 9.13(1H,s), 9.01(1H,d), 7.86(1H,d),
	7.66(2H,d), 7.25(2H,d), 2.34(3H,s)
B-168	3.97(3H, s), 6.9-7.3(3H, m), 7.88(1H, d), 8.8-8.9(1H, m), 9.03(1H, d),
	9.15(1H, s), 10.95(1H, brs), 12.73(1H, brs)
B-169	3.83(3H, s), 6.8-6.9(1H, m), 7.2-7.4(2H, m), 7.6-7.7(1H, m), 7.86(1H, d),
	9.01(1H, d), 9.13(1H, s), 10.97(1H, brs), 12.38(1H, brs)
B-170	3.79(3H, s), 6.95(2H, d), 7.63(2H, d), 7.83(1H, d), 8.98(1H, d), 9.08(1H,
	s), 10.93(1H, brs), 12.17(1H, brs)
B-176	9.14(1H,s), 9.03(1H,d), 8.12(2H,d), 7.88(1H,d), 7.85(2H,d)
B-184	12.35(1H,s), 10.96(1H,brs), 9.13(1H,s), 9.02(1H,d), 8.58(1H,s),
	7.86(1H,d), 7.53(1H,s), 7.25(1H,t), 7.15(1H,t), 6.76(1H,d)
B-185	12.14(1H,s), 10.92(1H,brs), 9.12(1H,s), 9.20(1H,d), 8.54(1H,brs),
	7.85(1H,d), 7.56(2H,d), 6.89(2H,d)
B-189	4.71(2H, s), 7.2-7.4(2H, m), 7.5-7.6(1H, m), 7.8-7.9(2H, m), 9.01(1H, d),
	9.11(1H, s), 11.01(1H, brs), 12.13(1H, brs)
B-190	12.38(1H,s), 10.98(1H), 9.15(1H,s), 9.03(1H,d), 7.87(1H,d), 7.74(1H,d),
	7.73(1H,s), 7.41(1H,t), 7.30(1H,d), 4.69(3H,s)
B-194	12.37(1H,brs), 9.13(1H,s), 9.03(1H,d), 7.92(2H,d), 7.87(1H,d), 7.42(2H,d)
B-209	9.99(1H,s), 9.18(1H,s), 9.04(1H,d), 8.48-8.55(3H), 7.88(1H,d)
B-247	7.5-8.0(6H, m), 8.99(1H, d), 9.01(1H, s), 10.64(1H, brs)
B-251	3.42(3H, s), 3.65(2H, t), 3.8-4.0(2H, m), 7.66(1H, d), 8.89(1H, s),
	8.96(1H, d), 9.22(1H, brs), 10.48(1H, brs)
B-255	0.91(3H, t), 1.3-1.5(2H, m), 1.5-1.7(2H, m), 1.9-2.1(2H, m), 3.46(3H, t),
•	

Cpd	1H-NMR
	3.56(3H, t), 3.81(2H, q), 7.66(1H, d), 8.89(1H, s), 8.97(1H, d), 9.02(1H,
	brs), 10.53(1H, brs)
B-257	1.99(3H, s), 7.88(1H, d), 8.97(1H, d), 8.99(1H, s), 10.92(1H, brs),
	12.92(1H, brs)
B-258	7.5-7.7(3H, m), 7.86(1H, s), 7.9-8.1(2H, m), 9.02(1H, d), 9.14(1H, brs)
B-259	7.3-7.5(5H, m), 7.5-7.7(5H, m), 7.77(1H, d), 8.8-9.0(2H, m), 13.05(1H,
	brs)
B-261	1.8-2.0(2H, m), 3.76(2H, t), 3.8-3.9(2H, m), 7.66(1H, m), 8.99(1H, s),
	8.95(1H, d), 9.44(1H, brs), 10.53(1H, brs)
B-267	9.08(1H,s), 9.01(1H,d), 7.84(1H,d), 1.95(6H,s)
B-269	10.38(1H,brs), 9.35(1H,s), 8.96(1H,d), 8.90(1H,s), 7.67(1H,d), 3.73(4H),
	1.60-1.80(4H)
B-296	3.23(3H, s), 5.22(2H, s), 7.22-7.5(5H, m), 7.63(1H, d), 8.7-9.0(2H, m)
B-313	9.40(1H,s), 8.95(1H,d), 8.75(1H,s), 7.57(1H,d), 3.86(3H,s), 3.58(3H,s)
B-331	3.37(3H, s), 4.70(1H, s), 7.53(1H, d), 8.62(1H, s), 8.80(1H, d)
B-349	3.69(1H, s), 7.3-7.6(6H, m), 8.33(1H, brs), 8.51(1H, s), 8.79(1h, d)
B-353	8.81(1H,d), 8.52(1H,s), 8.52(1H,s), 7.53-7.60(2H), 7.25-7.46(3H),
	3.62(3H,s)
B-354	10.13(1H), 8.88(1H,d), 8.48(1H,s), 7.72(1H,d), 7.37-7.55(4H), 3.75(3H,s)
B-355	8.84(1H,d), 8.57(1H,s), 8.15(1H,s), 7.56(1H,d), 7.43(2H,d), 7.27(2H,d),
	3.68(3H,s)
B-366	8.81(1H,d), 8.58(1H,s), 8.14(1H,s), 7.54(1H,d), 7.37(1H,d), 7.25(1H),
	7.10(2H), 3.65(3H,s), 2.42(3H,s)
B-369	8.47(1H,d), 8.03(1H,s), 7.33(1H,d), 7.02(1H,t), 6.54-6.64(3H), 3.45(3H,s),
	3.32(3H,s)
B-373	8.87(1H,d), 8.62(1H,s), 8.35(1H,s9, 8.31(2H,d), 7.57(1H,d), 7.53(2H,d), 3.78(3H,s)
	0.70(011,0)

Cpd	1H-NMR
B-398	8.89(1H,d), 8.72(1H,s), 8.51(1H,d), 7.98(1H,dd), 7.73(1H,d), 7.58(1H,d),
	7.31(1H,dd), 3.79(3H,s)
B-417	9.15(1H,s), 8.88(1H,d), 7.69(1H,d), 4.16(3H,s), 3.56(3H,s)
B-431	3.38(3H, s), 3.7-4.2(4H, m), 7.5-7.7(1H, m), 8.7-9.0(2H, m), 10.35(1H,
	brs)
B-519	1.2-1.4(3H, m), 3.7-4.1(6H, m), 7.56(1H, d), 8.6-9.0(2H, m), 10.85(1H,
	brs)
B-564	9.08(1H,brs), 8.36(1H,d), 7.51(1H,brs), 7.23(1H,d), 7.04-7.30(3H), 6.86-
	6.91(2H), 5.17(1H), 0.74(6H,d)
B-713	9.45(1H,s), 8.85(1H,d), 8.76(1H,s), 7.56(1H,d), 5.90(1H,m), 5.27-
	5.36(2H), 4.70(2H,d), 3.86(3H,s)
B-736	8.85(1H,s) 8.27(1H,s), 7.69(1H,d), 7.30-7.50(5H), 6.10(1H,m),
	5.28(1H,d), 5.17(1H,d), 4.89(2H,d)
B-737	8.83(1H,d), 8.12(1H,s), 7.69(1H,d), 7.54-7.65(2H), 7.38-7.45(2H),
	6.05(1H,m), 5.24(1H,d), 5.21(1H,d), 5.00(1H,dd), 4.73(1H,dd)
B-738	10.15(1H), 8.86(1H,d), 8.40(1H,s), 7.71(1H,d), 7.35-7.54(4H),
	6.00(1H,m), 5.27(1H,d), 5.22(1H,d), 4.93(1H,d)
B-744	8.80(1H,d), 8.59(1H,s), 8.11(1H,s), 7.53(1H,d), 7.41(1H,t), 6.96(1H,dd),
	6.84(1H,dd), 6.77(1H), 5.94(1H,m), 5.20(1H,d), 5.17(1H,d), 4.73(2H,d),
	3.84(3H,s)
B-745	8.80(1H,d), 8.67(1H,s), 8.13(1H,s), 7.53(1H,d), 7.17(2H,d), 6.98(2H,d),
	5.93(1H,m), 5.17(1H,d), 5.14(1H,d), 4.72(2H,d), 3.85(3H,s)
B-747	8.79(1H,d), 8.51(1H,s), 8.34(1H,s), 7.56(1H,d), 7.33(1H,t), 7.26(1H,s),
	6.87(1H,dd), 6.79(1H,dd), 6.74(1H,s), 5.91(1H,m), 5.21(1H,d),
	5.17(1H,d), 4.73(2H,d)
B-748	9.69(1H,s), 8.80(1H,d), 7.96(1H,s), 7.66(1H,d), 7.19(2H,d), 6.86(2H,d),
	5.93(1H,m), 5.12-5.25(2H), 4.89(2H,d)
B-799	10.45(1H,brs), 8.90(1H,d), 8.86(1H,s), 7.76(1H,d), 7.30-7.46(5H),

Cpd	1H-NMR
	5.41(2H,s), 3.88(3H,s)
B-805	8.80(1H,d), 8.69(1H,s), 8.45(1H,s), 7.53(1H,d), 7.23-7.41(10H),
	4.75(2H,s), 4.64(2H,s)
B-822	9.90(1H), 8.84(1H,d), 8.25(1H,s), 7.70(1H,d), 7.24-7.45(10H), 5.62(2H,s)
B-861	9.96(1H,brs), 8.95(1H,s), 8.93(1H,d), 7.79(1H,d), 5.40(1H,brs),
	4.23(1H,brs), 3.34(1H) 1.60-1.94(6H), 1.33(3H,d)
B-863	8.86-8.95(2H), 7.65(1H,d), 5.62(1H), 3.85-4.35(4H), 2.35-2.65(2H)
B-864	8.93-8.98(2H), 7.79(1H,d), 4.75(1H), 3.70-4.00(4H), 1.95-2.25(2H)
B-865	8.93(2H), 8.42(1H,brs), 7.64(1H,d), 5.9(2H,m), 4.64(2H,s), 4.57(2H,s)
B-867	8.81(1H,d), 8.54(1H,s), 8.49(1H,s), 7.54(1H,d), 7.28-7.45(10H)
B-868	10.10(1H,s), 8.90(1H,d), 8.82(1H,s), 7.76(1H,d), 7.30-7.53(5H),
	2.04(3H,s)
B-870	10.38(1H,), 9.37(1H,s), 8.96(1H,d), 8.89(1H,s), 7.67(1H,d), 4.30(2H),
	3.74(2H), 3.04(3H,s), 1.85-1.90(4H)
B-871	1.9-2.2(4H, m), 3.7-4.0(4H, m), 7.62(1H, d), 8.8-9.0(2H, m)
B-872	1.6-1.9(6H, m), 3.6-3.8(2H, m), 4.0-4.3(2H, m), 7.63(2h, d), 8.87(1H, brs),
	8.9-9.0(2H, m)
B-873	3.5-4.5(6H, m), 7.64(1H, d), 8.56(1H, brs), 8.92(1H, s), 8.94(1H, d)
B-874	8.94(1H,d), 8.93(1H,s), 7.65(1H,d), 4.40(2H,brs), 4.02(2H,brs), 2.86(4H)
B-877	3.07(2H, dt), 3.96(2H, t), 7.06(1H, s), 7.74(1H, d), 8.73(1H, s), 8.87(1H,
	d)
B-880	1.87(6H, d), 7.2-7.8(6H, m), 8.77(1H, s), 8.83(1H, d)
C-10	3.08(3H, s), 4.57(2H, s), 7.2-7.5(5H, m), 7.64(1H, d), 8.72(1H, s),
	8.89(1H, d), 9.34(1H, brs)
C-78	3.10(3H, s), 3.26(3H, d), 4.5-4.8(2H, m), 7.1-7.5(5H, m), 7.64(1H, d),
	8.72(1H, s), 8.90(1H, d), 9.34(1H, brs)

Cpd	1H-NMR
C-85	3.02(3H, s), 3.34(3H, s), 3.64(3H, s), 7.58(1H, d), 8.65(1H, d), 8.81(1H,
	d)
C-91	2.88(3H,s), 2.98(3H,s), 4.72(2H,s), 7.30-7.43(5H), 7.59(1H,d),
	8.52(1H,s), 8.80(1H,d)
D-85	1.33(1H,t), 2.98(3H,s), 3.61(3H,s), 3.87(1H,q), 7.60(1H,d), 8.67(1H,s),
	8.82(1H,d)
D-86	1.2-1.4(6H, m), 3.7-4.0(4H, m), 7.59(1H, d), 8.67(1H, d), 8.81(1H, d)
E-85	2.97(3H,s), 3.59(3H,s), 4.42(2H,d), 5.28(1H,d), 5.32(1H,d), 5.98(1H,m),
	7.61(1H,d), 8.68(1H,s), 8.83(1H,d)
E-87	3.00(3H, s), 4.25(2H, d), 4.37(2H, d), 5.2-5.5(4H, m), 5.7-6.1(2H, m),
	7.61(1H, d), 8.68(1H, s), 8.82(1H, d)
F-85	2.35(1H,t), 3.09(3H,s), 3.68(3H,s), 4.64(2H,d), 7.62(1H,d), 8.68(1H,s),
	8.85(1H,d)
F-88	2.37(1H, dd), 2.62(1H, dd), 3.12(3H, s), 4.50(2H, d), 4.61(2H, d),
	7.63(1H, d), 8.73(1H, s), 8.86(1H, d)
G-35	4.66(2H,s), 4.75(2H,s), 7.24-7.42(10H), 7.43(1H,d), 8.46(1H,s),
	8.83(1H,d)
G-85	2.81(3H,s), 3.08(3H,s), 5.06(2H,s), 7.26-7.32(3H), 7.45(2H,d),
	7.59(1H,d), 8.70(1H,s), 8.82(1H,d)
G-91	2.71(3H, s), 4.29(2H, s), 4.71(2H, s), 7.0-7.1(2H, m), 7.2-7.6(8H, m),
	7.58(1H, d), 8.56(1H, s), 8.80(1H, d)
G-126	4.31(2H,s), 4.38(2H,s), 4.71(2H,s), 6.89(2H, d), 7.07(2H), 7.17-
	7.39(11H), 7.50(1H,d), 8.39(1H,s), 8.58(1H,d)
H-85	2.96(3H,s), 3.64(3H,s), 3.81(3H,s), 4.59(2H,s), 7.62(1H,d), 8.80(1H,s),
	8.85(1H,d)
H-89	3.08(3H, S), 3.74(3H, s), 3.77(3H, s), 4.48(2H, s), 4.60(2H, s), 7.64(1H,
	s), 8.84(1H, s), 8.87(1H, d)

Cpd	1H-NMR
H-91	2.90(3H,s), 3.69(3H,s), 4.76(2H,s), 7.24-7.45(5H), 7.64(1H,d),
	8.80(1H,s), 8.85(1H,d)
I-85	1.60(3H,d), 3.63(3H,s), 3.80(3H,s), 5.30(1H,q), 7.58(1H,d), 8.78(1H,s),
	8.84(1H,d)
S-2	0.87(3H, t), 1.4-1.7(2H, m), 3.17(2H, t), 3.54(2H, t), 4.06(2H, t), 7.54(1H,
	d), 8.65(1H, s), 8.81(1H, d)
S-3	1.15(6H, d), 3.49(2H, t), 3.9-4.2(3H, m), 7.54(1H, d), 8.66(1H, s),
	8.81(1H, d)
S-7	1.34(9H,s), 3.58(2H, t), 3.96(2H, t), 7.53(1h, d), 8.65(1h, s), 8.81(1h, d)
S-15	3.40(2H, t), 4.01(2H, t), 4.53(2H, s), 7.1-7.4(5H, m), 7.57(1h, d), 8.69(1H,
	s), 8.83(1H, d)
S-18	4.00(2H, t), 4.18(2H, t), 7.1-7.5(5H, m), 7.57(1H, d), 8.70(1H, s), 8.83(1H,
	d)
S-109	1.25(3H, q), 3.1-3.3(1H, d), 3.4-3.6(1H,m), 3.7-4.0(2H, m), 4.28(1H, d),
	4.47(1H, d), 5.76(1H, d), 7.1-7.5(5H, m), 7.57(1H, d), 8.70(1H, s),
	8.83(1H, d)
S-120	1.37(6H, d), 4.2-4.4(1H, m), 4.42(2H, s), 7.62(1H, d), 8.73(1H, s),
	8.91(1H, d)
S-124	1.55(9H, s), 4.34(2H, s), 7.60(1H, d), 8.71(1H, s), 8.90(1H, d)
S-132	4.47(2H, s), 4.62(2H, s), 7.2-7.4(4H, m), 7.61(1H, d), 8.70(1H, s),
	8.91(1H, d)
S-143	1.36(6H, d), 1.70(3H, d), 4.3-4.4(1H, m), 4.67(1H, q), 7.60(1H, d),
	8.71(1H, s), 8.90(1H, d)
S-155	1.71(3H, d), 4.76(2H, s), 4.76(1H, q), 7.1-7.4(5H, m), 7.61(1H, d),
	8.69(1H, s), 8.91(1H, d)
S-167	1.35(6H, d), 1.78(6H, s), 4.2-4.4(1H, m), 7.58(1H, d), 8.67(1H, s),
	8.88(1h, d)
S-356	3.77(2H, t), 4.40(2H, t), 6.81(1H, brs), 7.54(1H, d), 8.65(1H, s), 8.82(1H,

Cpd	1H-NMR
	d)
S-357	0.94(3H,t), 1.34(1h,m), 1.60(1H,m), 3.63(2H,t), 3.76(2H,t), 4.23(2H,t),
	7.51(1H,d), 8.62(1H,s), 8.79(1H,d)
S-548	3.69(2H,t), 3.77(3h,s), 4.00(2H,t), 7.57(1H,d), 8.67(1H,s), 8.86(1H,d)
S-549	3.43(2H,t), 3.88(2H,t), 4.90(2H,s), 7.30-7.40(5H), 7.57(1H,d), 8.67(1H,s),
	8.85(1H,d)
S-550	1.40(3H,d), 4.09(1H,m), 4.34(1H,m), 4.64(1H,m), 7.55(1H,d), 8.78(1H,d),
	9.14(1H,s), 9.47(1H,brs)
S-551	1.03(3H,t), 1.76(2H,m), 4.19(2H,m), 4.63(1H,m), 7.56(1H,d), 8.80(1H,d),
	9.17(1H,s), 9.49(1H,brs)
S-552	0.88(3H,t), 1.80(2H,m), 3.82(1H,m), 4.17(1H,d), 4.30(1H,dd), 4.63(1H,t),
	5.12(1H,d), 7.23-7.38(5H), 7.53(1H,d), 8.75(1H,d), 9.10(1H,s)
S-553	4.38(1H,dd), 4.90(1H,t), 5.27((1H), 7.25-7.53(5H), 7.57(1H,d),
	8.81(1H,d), 9.22(1H,s), 9.70(1H,brs)
S-554	2.67(3H,s), 3.90(1H,dd), 4.45(1H,dd), 4.65(1h,dd), 7.30(2H), 7.40-
	7.450(3H), 7.60(1H,d), 8.73(1H,s), 8.87(1H,d)
S-555	3.73(1H,d), 4.47(1H,t), 4.66(1H,t), 4.89(1H,t), 5.17(1H,d), 7.10-7.46(10H),
	7.57(1H,d), 8.79(1H,d), 9.18(1H,s)
S-556	1.56(3H,d), 3.51(1H,dd), 4.02(1h,t), 4.95(1H,m), 7.54(1H,d), 8.78(1H,d),
	9.15(1H,s), 9.32(1H,s)
S-557	3.90(1H,t), 4.32(1H,t), 5.80(1H,t), 7.38-7.46(5H), 7.57(1H,d), 8.81(1H,d),
	9.21(1H,s), 9.42(1H,brs)
S-558	3.08(3H,s), 3.60(1H,dd), 4.06(1H,t), 5.78(1H,dd), 7.28-7.40(5H),
	7.52(1H,d), 8.74(1H,d), 9.09(1H,s)
S-559	3.44(1H,dd), 3.89(1H,t), 4.60(1H,d), 4.73(1H,d), 5.76(1H,dd), 7.26-
	7.40(10H), 7.53(1H,d9, 8.76(1H,d), 9.13(1H,s)
U-3	8.80(1H,d), 8.66(1h,s), 7.54(1H,d), 4.29(2H,t), 4.05(2H,t), 1.18(6H,d)

15

Cpd	1H-NMR
U-7	8.78(1H,d), 8.66(1H,s), 7.52(1H,d), 4.28(2H,t), 4.00(2H,t), 1.34(9H,s)
U-20	8.81(1H,d), 8.67(1H,s), 7.55(1H,d), 7.25-7.50(5H), 4.66(2H,s), 4.00-4.17(4H)
W-194	1.45(18H, s), 7.54(1H, d), 7,75(1H, d), 9.08(1H, s), 10.17(1H, brs)
X-35	3.24(3H, d), 7.67(1H, d), 8.89(1H, s), 8.97(1H, d), 9.24(1H, brs), 10.32(1H, brs)
X-43	4.90(2H, d), 7.2-7.5(5H, m), 7.68(1H, d), 8.92(1H, s), 8.98(1H, d), 9.51(1H, brs), 10.62(1H, brs)
X-45	9.00(1H,s), 8.97(1H,d), 7.82(1H,d), 5.04(2H,q)
X-55	3.77(2H, t), 4.55(2H, t), 7.64(1H, d), 8.84(1H, s), 8.92(1H, d), 9.27(1H, brs)

According to a further feature of the present invention there is provided a method for the control of pests at a locus which comprises the application of an effective amount of a compound of formula (I) or a salt thereof. For this purpose, the said compound is normally used in the form of a pesticidal composition (i.e. in association with compatible diluents or carriers and/or surface active agents suitable for use in pesticidal compositions), for example as hereinafter described.

The term "compound of the invention" as used hereinafter embraces a 310 pyridylcarboxamide of formula (I) as defined above and a pesticidally acceptable salt thereof.

One aspect of the present invention as defined above is a method for the control of pests at a locus. The locus includes, for example, the pest itself, the place (plant, field, forest, orchard, waterway, soil, plant product, or the like) where the pest resides or feeds, or a place susceptible to future infestation by the pest. The compound of the invention may therefore be applied directly to the pest, to the place where the pest resides or feeds, or to the place susceptible to future infestation by the pest.

5

10

15

20

As is evident from the foregoing pesticidal uses, the present invention provides pesticidally active compounds and methods of use of said compounds for the control of a number of pest species which includes: arthropods, especially insects or mites, or plant nematodes. The compound of the invention may thus be advantageously employed in practical uses, for example, in agricultural or horticultural crops, in forestry, in veterinary medicine or livestock husbandry, or in public health. The compounds of the invention may be used for example in the following applications and on the following pests:

For the control of soil insects, such as corn rootworm, termites (especially for protection of structures), root maggots, wireworms, root weevils, stalkborers, cutworms, root aphids, or grubs. They may also be used to provide activity against plant pathogenic nematodes, such as root-knot, cyst, dagger, lesion, or stem or bulb nematodes, or against mites. For the control of soil pests, for example corn rootworm, the compounds are advantageously applied to or incorporated at an effective rate into the soil in which crops are planted or to be planted or to the seeds or growing plant roots.

In the area of public health, the compounds are especially useful in the control of many insects, especially filth flies or other Dipteran pests, such as houseflies, stableflies, soldierflies, homflies, deerflies, horseflies, midges, punkies, blackflies, or mosquitoes.

In the protection of stored products, for example cereals, including grain or flour, groundnuts, animal feedstuffs, timber or household goods, e.g. carpets and textiles, compounds of the invention are useful against attack by arthropods, more especially beetles, including weevils, moths or mites, for example Ephestia spp. (flour moths),

25 Anthrenus spp. (carpet beetles), Tribolium spp. (flour beetles), Sitophilus spp. (grain weevils) or Acarus spp. (mites).

In the control of cockroaches, ants or termites or similar arthropod pests in infested domestic or industrial premises or in the control of mosquito larvae in waterways, wells, reservoirs or other running or standing water.

For the treatment of foundations, structures or soil in the prevention of the attack on building by termites, for example, Reticulitermes spp., Heterotermes spp., Coptotermes spp..

In agriculture against adults, larvae and eggs of Lepidoptera (butterflies and moths), e.g. Heliothis spp. such as Heliothis virescens (tobacco budworm), Heliothis armigera and Heliothis zea. Against adults and larvae of Coleoptera (beetles) e.g. Anthonomus spp. e.g. grandis (cotton boll weevil), Leptinotarsa decemlineata (Colorado potato beetle), Diabrotica spp. (corn rootworms). Against Heteroptera (Hemiptera and Homoptera) e.g. Psylla spp., Bemisia spp., Trialeurodes spp., Aphis spp., Myzus spp., Megoura viciae, Phylloxera spp., Nephotettix spp. (rice leaf hoppers), Nilaparvata spp..

5

25

30

Against Diptera e.g. Musca spp.. Against Thysanoptera such as Thrips tabaci.

- Against Orthoptera such as Locusta and Schistocerca spp., (locusts and crickets)
 e.g. Gryllus spp., and Acheta spp. for example, Blatta orientalis, Periplaneta
 americana, Blatella germanica, Locusta migratoria migratorioides, and Schistocerca
 gregaria. Against Collembola e.g. Periplaneta spp. and Blatella spp. (roaches).
 Against arthropods of agricultural significance such as Acari (mites) e.g, Acarus siro,
- 15 Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis,
 Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp.,
 Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp.,
 Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.,
 Eotetranychus spp., Oligonychus spp., Eutetranychus spp.
- From the order of the Isopoda, for example, Oniscus aselus, Armadium vulgare, Porcellio scaber.
 - Against nematodes which attack plants or trees of importance to agriculture, forestry or horticulture either directly or by spreading bacterial, viral, mycoplasma or fungal diseases of the plants. The plant-parasitic nematodes which can be controlled in accordance with the invention include, for example, the root-parasitic soil-dwelling nematodes such as, for example, those of the genera Meloidogyne (root knot nematodes, such as Meloidogyne incognita, Meloidogyne hapla and Meloidogyne javanica), Heterodera and Globodera (cyst-forming nematodes, such as Globodera rostochiensis, Globodera pallida, Heterodera trifolii) and of the genera Radopholus, such as Radopholus similis, Pratylenchus such as Pratylenchus neglectus, Pratylenchus penetrans and Pratylenchus curvitatus;

PCT/EP03/04714 WO 03/097604

111

Tylenchulus such as Tylenchulus semipenetrans, Tylenchorhynchus, such as Tylenchorhynchus dubius and Tylenchorhynchus claytoni, Rotylenchus such as Rotylenchus robustus, Heliocotylenchus such as Haliocotylenchus multicinctus, Belonoaimus such as Belonoaimus longicaudatus, Longidorus such as Longidorus elongatus, Trichodorus such as Trichodorus primitivus and Xiphinema such as Xiphinema index.

5

25

Other nematode genera which can be controlled using the compounds according to the invention are Ditylenchus (stem parasites, such as Ditylenchus dipsaci and Ditylenchus destructor), Aphelenchoides (foliar nematodes, such as Aphelenchoides 10 ritzemabosi) and Anguina (seed nematodes, such as Anguina tritici). In the field of veterinary medicine or livestock husbandry or in the maintenance of public health against arthropods which are parasitic internally or externally upon vertebrates, particularly warm-blooded vertebrates, for example domestic animals, e.g. cattle, sheep, goats, equines, swine, poultry, dogs or cats, for example Acarina, 15 including ticks (e.g. Ixodes spp., Boophilus spp. e.g. Boophilus microplus, Rhipicephalus spp. e.g. Rhipicephalus appendiculatus Ornithodorus spp. (e.g. Ornithodorus moubata) and mites (e.g. Damalinia spp.); fleas; Diptera (e.g. Aedes spp., Anopheles spp., Musca spp., Hypoderma spp.); Hemiptera.; Dictyoptera (e.g. Periplaneta spp., Blatella spp.); Hymenoptera; for example against infections of the 20 gastro-intestinal tract caused by parasitic nematode worms, for example members of the family Trichostrongylidae. From the class of the helminths, for example, Haemonchus, Trichostrongulus, Ostertagia, Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris and Heterakis and also Fasciola.

From the class of the Gastropoda, for example, Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.

From the class of the Bivalva, for example, Dreissena spp. 30

PCT/EP03/04714 WO 03/097604

In practical use for the control of arthropods, especially insects or acarids, or nematode pests of plants, a method, for example, comprises applying to the plants or to the medium in which they grow an effective amount of a compound of the invention. For such a method, the compound of the invention is generally applied to the locus in which the arthropod or nematode infestation is to be controlled at an effective rate in the range of about 2g to about 1kg of the active compound per hectare of locus treated. Under ideal conditions, depending on the pest to be controlled, a lower rate may offer adequate protection. On the other hand, adverse weather conditions, resistance of the pest or other factors may require that the active ingredient be used at higher rates. The optimum rate depends usually upon a number of factors, for example, the type of pest being controlled, the type or the growth stage of the infested plant, the row spacing or also the method of application. Preferably an effective rate range of the active compound is from about 10g/ha to about 400g/ha, more preferably from about 50g/ha to about 200 g/ha.

10

15

20

30

When a pest is soil-borne, the active compound generally in a formulated composition, is distributed evenly over the area to be treated (ie, for example broadcast or band treatment) in any convenient manner and is applied at rates from about 10g/ha to about 400g ai/ha, preferably from about 50g/ha to about 200 g ai/ha. When applied as a root dip to seedlings or drip irrigation to plants the liquid solution or suspension contains from about 0.075 to about 1000 mg ai/l, preferably from about 25 to about 200 mg ai/l. Application may be made, if desired, to the field or crop-growing area generally or in close proximity to the seed or plant to be protected from attack. The compound of the invention can be washed into the soil by spraying with water over the area or can be left to the natural action of rainfall. During or after application, the formulated compound can, if desired, be distributed mechanically in 25 the soil, for example by ploughing, disking, or use of drag chains. Application can be prior to planting, at planting, after planting but before sprouting has taken place, or after sprouting.

The compound of the invention and methods of control of pests therewith are of particular value in the protection of field, forage, plantation, glasshouse, orchard or vineyard crops, of ornamentals, or of plantation or forest trees, for example: cereals (such as wheat or rice), cotton, vegetables (such as peppers), field crops (such as

20

25

30

sugar beets, soybeans or oil seed rape), grassland or forage crops (such as maize or sorghum), orchards or groves (such as of stone or pit fruit or citrus), ornamental plants, flowers or vegetables or shrubs under glass or in gardens or parks, or forest trees (both deciduous and evergreen) in forests, plantations or nurseries.

They are also valuable in the protection of timber (standing, felled, converted, stored or structural) from attack, for example, by sawflies or beetles or termites. They have applications in the protection of stored products such as grains, fruits, nuts, spices or tobacco, whether whole, milled or compounded into products, from moth, beetle, mite or grain weevil attack. Also protected are stored animal products such as skins, hair, wool or feathers in natural or converted form (e.g. as carpets or 10 textiles) from moth or beetle attack as well as stored meat, fish or grains from beetle, mite or fly attack.

Additionally, the compound of the invention and methods of use thereof are of particular value in the control of arthropods or helminths which are injurious to, or 15 spread or act as vectors of diseases domestic animals, for example those hereinbefore mentioned, and more especially in the control of ticks, mites, lice, fleas, midges, or biting, nuisance or myiasis flies. The compounds of the invention are particularly useful in controlling arthropods or helminths which are present inside domestic host animals or which feed in or on the skin or suck the blood of the animal, for which purpose they may be administered orally, parenterally, percutaneously or topically.

The compositions hereinafter described for application to growing crops or crop growing loci or as a seed dressing may, in general, alternatively be employed in the protection of stored products, household goods, property or areas of the general environment. Suitable means of applying the compounds of the invention include: to growing crops as foliar sprays (for example as an in-furrow spray), dusts, granules, fogs or foams or also as suspensions of finely divided or encapsulated compositions as soil or root treatments by liquid drenches, dusts, granules, smokes or foams; to seeds of crops via application as seed dressings by liquid slurries or dusts;

to animals infested by or exposed to infestation by arthropods or helminths, by parenteral, oral or topical application of compositions in which the active ingredient

114

exhibits an immediate and/or prolonged action over a period of time against the arthropods or helminths, for example by incorporation in feed or suitable orally-ingestible pharmaceutical formulations, edible baits, salt licks, dietary supplements, pour-on formulations, sprays, baths, dips, showers, jets, dusts, greases, shampoos, creams, wax smears or livestock self-treatment systems; to the environment in general or to specific locations where pests may lurk, including stored products, timber, household goods, or domestic or industrial premises, as sprays, fogs, dusts, smokes, wax-smears, lacquers, granules or baits, or in tricklefeeds to waterways, wells, reservoirs or other running or standing water.

10

15

20

25

30

The compounds of the formula (I) can also be employed for controlling harmful organisms in crops of known genetically engineered plants or genetically engineered plants yet to be developed. As a rule, the transgenic plants are distinguished by especially advantageous properties, for example by resistances to particular crop protection agents, resistances to plant diseases or pathogens of plant diseases, such as particular insects or microorganisms such as fungi, bacteria or viruses. Other particular properties concern, for example, the harvested material with regard to quantity, quality, storage properties, composition and specific constituents. Thus, transgenic plants are known where the starch content is increased, or the starch quality is altered, or where the harvested material has a different fatty acid composition.

The use in economically important transgenic crops of useful plants and ornamentals is preferred, for example of cereals such as wheat, barley, rye, oats, millet, rice, cassava and maize or else crops of sugar beet, cotton, soya, oilseed rape, potatoes, tomatoes, peas and other types of vegetables.

When used in transgenic crops, in particular those which have resistances to insects, effects are frequently observed, in addition to the effects against harmful organisms to be observed in other crops, which are specific for application in the transgenic crop in question, for example an altered or specifically widened spectrum of pests

which can be controlled, or altered application rates which may be employed for application.

The invention therefore also relates to the use of compounds of the formula (i) for controlling harmful organisms in transgenic crop plants.

According to a further feature of the present invention there is provided a pesticidal composition comprising one or more compounds of the invention as defined above, in association with, and preferably homogeneously dispersed in one or more compatible pesticidally acceptable diluents or carriers and/or surface active agents [i.e. diluents or carriers and/or surface active agents of the type generally accepted in the art as being suitable for use in pesticidal compositions and which are compatible with compounds of the invention].

10

15

20

In practice, the compounds of the invention most frequently form parts of compositions. These compositions can be employed to control arthropods, especially insects and acarids, or helminths such as plant nematodes. The compositions may be of any type known in the art suitable for application to the desired pest in any premises or indoor or outdoor area. These compositions contain at least one compound of the invention as the active ingredient in combination or association with one or more other compatible components which are for example, solid or liquid carriers or diluents, adjuvants, surface-active-agents, or the like appropriate for the intended use and which are agronomically or medicinally acceptable. These compositions, which may be prepared by any manner known in the art, likewise form a part of this invention.

The compounds of the invention, in their commercially available formulations and in the use forms prepared from these formulations may be present in mixtures with other active substances such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulatory substances or herbicides.

30 The pesticides include, for example, phosphoric esters, carbamates, carboxylic esters, formamidines, tin compounds and materials produced by microorganisms.

Preferred components in mixtures are:

- from the group of the phosphorus compounds 1. acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, bromophos, bromophosethyl, cadusafos (F-67825), chlorethoxyphos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, demeton, demeton-S-methyl, demeton-S-methyl sulfone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitriothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, methacrifos, methamidophos, methidathion, 10 salithion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosfolan, phosphocarb (BAS-301), phosmet, phosphamidon, phoxim, pirimiphos, pirimiphosethyl, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprofos, temephos, terbufos, tebupirimfos, 15 tetrachlorvinphos, thiometon, triazophos, trichlorphon, vamidothion;
- from the group of the carbamates
 alanycarb (OK-135), aldicarb, 2-sec-butylphenyl methylcarbamate (BPMC), carbaryl,
 carbofuran, carbosulfan, cloethocarb, benfuracarb, ethiofencarb, furathiocarb, HCN-801, isoprocarb, methomyl, 5-methyl-m-cumenylbutyryl (methyl)carbamate, oxamyl,
 pirimicarb, propoxur, thiodicarb, thiofanox, 1-methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717), triazamate;
- from the group of the carboxylic esters
 acrinathrin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)- (1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, beta-cyfluthrin, alpha-cypermethrin, beta-cypermethrin, bioallethrin, bioallethrin ((S)-cyclopentylisomer), bioresmethrin, bifenthrin, (RS)-1-cyano-1-(6-phenoxy-2-pyridyl)methyl (1RS)-trans-3-(4-tert-butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), cycloprothrin, cyfluthrin, cyhalothrin, cythithrin, cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate,

flumethrin, fluvalinate (D isomer), imiprothrin (S-41311), lambda-cyhalothrin, permethrin, phenothrin (® isomer), prallethrin, pyrethrins (natural products), resmethrin, tefluthrin, tetramethrin, theta-cypermethrin, tralomethrin, transfluthrin, zeta-cypermethrin (F-56701);

5

- 4. from the group of the amidines amitraz, chlordimeform;
- 5. from the group of the tin compounds10 cyhexatin, fenbutatin oxide;
- 6. others abamectin, ABG-9008, acetamiprid, acequinocyl, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, azadirachtin, Bacillus thuringiensis, Beauveria bassianea, bensultap, bifenazate, binapacryl, BJL-932, bromopropylate, BTG-504, BTG-505, 15 buprofezin, camphechlor, cartap, chlorobenzilate, chlorfenapyr, chlorfluazuron, 2-(4-chlorophenyl)-4,5-diphenylthiophene (UBI-T 930), chlorfentezine, chlorproxyfen, chromafenozide, clothianidine, 2-naphthylmethyl cyclopropanecarboxylate (Ro12-0470), cyromazin, diacloden (thiamethoxam), diafenthiuron, DBI-3204, ethyl 2chloro-N-(3,5-dichloro-4-(1,1,2,3,3,3-hexafluoro-1-propyloxy)phenyl)carbamoyl)-2-20 carboximidate, DDT, dicofol, diflubenzuron, N-(2,3-dihydro-3-methyl-1,3-thiazol-2ylidene)-2,4-xylidine, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, diofenolan, emamectin benzoate, endosulfan, ethiprole (sulfethiprole), ethofenprox, etoxazole, fenazaquin, fenoxycarb, fipronil, fluazuron, flumite (flufenzine, SZI-121), 2-fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenyl ether (MTI 800), 25 granulosis and nuclear polyhedrosis viruses, fenpyroximate, fenthiocarb, fluacrypyrim, flubenzimine, flubrocythrinate, flucycloxuron, flufenoxuron, flufenzine, flufenprox, fluproxyfen, gamma-HCH, halfenozide, halofenprox, hexaflumuron (DE_473), hexythiazox, HOI-9004, hydramethylnon (AC 217300), IKI-220, indoxacarb, ivermectin, L-14165, imidacloprid, indoxacarb (DPX-MP062), kanemite 30 (AKD-2023), lufenuron, M-020, M-020, methoxyfenozide, milbemectin, NC-196,

neemgard, nidinoterfuran, nitenpyram, 2-nitromethyl-4,5-dihydro-6H-thiazine (DS

52618), 2-nitromethyl-3,4-dihydrothiazole (SD 35651), 2-nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), novaluron, pirydaryl, propargite, protrifenbute, pymethrozine, pyridaben, pyrimidifen, pyriproxyfen, NC-196, NC-1111, NNI-9768, novaluron (MCW-275), OK-9701, OK-9601, OK-9602, OK-9802, R-195, RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601, silafluofen, silomadine (CG-177), spinosad, spirodiclofen, SU-9118, tebufenozide, tebufenpyrad, teflubenzuron, tetradifon, tetrasul, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn A, triflumuron, verbutin, vertalec (mykotal), YI-5301.

The abovementioned components for combinations are known active substances, many of which are described in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 12th Edition, British Crop Protection Council, Farnham 2000.

15

20

25

30

The effective use doses of the compounds employed in the invention can vary within wide limits, particularly depending on the nature of the pest to be eliminated or degree of infestation, for example, of crops with these pests. In general, the compositions according to the invention usually contain about 0.05 to about 95% (by weight) of one or more active ingredients according to the invention, about 1 to about 95% of one or more solid or liquid carriers and, optionally, about 0.1 to about 50% of one or more other compatible components, such as surface-active agents or the like. In the present account, the term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate its application, for example, to the plant, to seeds or to the soil. This carrier is therefore generally inert and it must be acceptable (for example, agronomically acceptable, particularly to the treated plant).

The carrier may be a solid, for example, clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earth, or ground synthetic minerals, such as silica, alumina, or silicates especially aluminium or magnesium silicates. As solid carriers for granules the following are suitable: crushed or fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite; synthetic granules of inorganic or

119

organic meals; granules of organic material such as sawdust, coconut shells, corn cobs, corn husks or tobacco stalks; kieselguhr, tricalcium phosphate, powdered cork, or absorbent carbon black; water soluble polymers, resins, waxes; or solid fertilizers. Such solid compositions may, if desired, contain one or more compatible wetting, dispersing, emulsifying or colouring agents which, when solid, may also serve as a diluent.

5

10

15

20

25

30

The carrier may also be liquid, for example: water; alcohols, particularly butanol or glycol, as well as their ethers or esters, particularly methylglycol acetate; ketones, particularly acetone, cyclohexanone, methylethyl ketone, methylisobutylketone, or isophorone; petroleum fractions such as paraffinic or aromatic hydrocarbons, particularly xylenes or alkyl naphthalenes; mineral or vegetable oils; aliphatic chlorinated hydrocarbons, particularly trichloroethane or methylene chloride; aromatic chlorinated hydrocarbons, particularly chlorobenzenes; water-soluble or strongly polar solvents such as dimethylformamide, dimethyl sulphoxide, or N-methylpyrrolidone; liquefied gases; or the like or a mixture thereof.

The surface-active agent may be an emulsifying agent, dispersing agent or wetting

agent of the ionic or non-ionic type or a mixture of such surface-active agents.

Amongst these are e.g., salts of polyacrylic acids, salts of lignosulphonic acids, salts of phenolsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or fatty acids or fatty esters or fatty amines, substituted phenols (particularly alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (particularly alkyltaurates), phosphoric esters of alcohols or of polycondensates of ethylene oxide with phenols, esters of fatty acids with polyols, or sulphate, sulphonate or phosphate functional derivatives of the above compounds.

The presence of at least one surface-active agent is generally essential when the active ingredient and/or the inert carrier are only slightly water soluble or are not water soluble and the carrier agent of the composition for application is water. Compositions of the invention may further contain other additives such as adhesives or colorants. Adhesives such as carboxymethylcellulose or natural or synthetic polymers in the form of powders, granules or lattices, such as arabic gum, polyvinyl alcohol or polyvinyl acetate, natural phospholipids, such as cephalins or lecithins, or synthetic phospholipids can be used in the formulations. It is possible to use

colorants such as inorganic pigments, for example: iron oxides, titanium oxides or Prussian Blue; organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs; or trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum or zinc.

For their agricultural application, the compounds of the invention are therefore 5 generally in the form of compositions, which are in various solid or liquid forms. Solid forms of compositions which can be used are dusting powders (with a content of the compound of the invention, ranging up to 80%), wettable powders or granules (including water dispersible granules), particularly those obtained by extrusion, compacting, impregnation of a granular carrier, or granulation starting from a powder 10 (the content of the compound of the invention, in these wettable powders or granules being between about 0.5 and about 80%). Solid homogenous or heterogenous compositions containing one or more compounds of the invention, for example granules, pellets, briquettes or capsules, may be used to treat standing or running water over a period of time. A similar effect may be achieved using trickle or 15 intermittent feeds of water dispersible concentrates as described herein. Liquid compositions, for example, include aqueous or non-aqueous solutions or suspensions (such as emulsifiable concentrates, emulsions, flowables, dispersions, or solutions) or aerosols. Liquid compositions also include, in particular, emulsifiable concentrates, dispersions, emulsions, flowables, aerosols, wettable powders (or 20 powder for spraying), dry flowables or pastes as forms of compositions which are liquid or intended to form liquid compositions when applied, for example as aqueous sprays (including low and ultra-low volume) or as fogs or aerosols. Liquid compositions, for example, in the form of emulsifiable or soluble concentrates 25

Liquid compositions, for example, in the form of emulsifiable or soluble concentrates most frequently comprise about 5 to about 80% by weight of the active ingredient, while the emulsions or solutions which are ready for application contain, in their case, about 0.01 to about 20% of the active ingredient. Besides the solvent, the emulsifiable or soluble concentrates may contain, when required, about 2 to about 50% of suitable additives, such as stabilizers, surface-active agents, penetrating agents, corrosion inhibitors, colorants or adhesives. Emulsions of any required concentration, which are particularly suitable for application, for example, to plants, may be obtained from these concentrates by dilution with water. These

30

compositions are included within the scope of the compositions which may be employed in the present invention. The emulsions may be in the form of water-in-oil or oil-in-water type and they may have a thick consistency.

The liquid compositions of this invention may, in addition to normal agricultural use applications be used for example to treat substrates or sites infested or liable to infestation by arthropods (or other pests controlled by compounds of this invention) including premises, outdoor or indoor storage or processing areas, containers or equipment or standing or running water.

5

10

15

20

25

30

All these aqueous dispersions or emulsions or spraying mixtures can be applied, for example, to crops by any suitable means, chiefly by spraying, at rates which are generally of the order of about 100 to about 1,200 liters of spraying mixture per hectare, but may be higher or lower (eg. low or ultra-low volume) depending upon the need or application technique. The compound or compositions according to the invention are conveniently applied to vegetation and in particular to roots or leaves having pests to be eliminated. Another method of application of the compounds or compositions according to the invention is by chemigation, that is to say, the addition of a formulation containing the active ingredient to irrigation water. This irrigation may be sprinkler irrigation for foliar pesticides or it can be ground irrigation or underground irrigation for soil or for systemic pesticides.

The concentrated suspensions, which can be applied by spraying, are prepared so as to produce a stable fluid product which does not settle (fine grinding) and usually contain from about 10 to about 75% by weight of active ingredient, from about 0.5 to about 30% of surface-active agents, from about 0.1 to about 10% of thixotropic agents, from about 0 to about 30% of suitable additives, such as anti-foaming agents, corrosion inhibitors, stabilizers, penetrating agents, adhesives and, as the carrier, water or an organic liquid in which the active ingredient is poorly soluble or insoluble Some organic solids or inorganic salts may be dissolved in the carrier to help prevent settling or as antifreezes for water.

The wettable powers (or powder for spraying) are usually prepared so that they contain from about 10 to about 80% by weight of active ingredient, from about 20 to about 90% of a solid carrier, from about 0 to about 5% of a wetting agent, from about 3 to about 10% of a dispersing agent and, when necessary, from about 0 to about

PCT/EP03/04714 WO 03/097604

122

5

10

15

20

25

80% of one or more stabilizers and/or other additives, such as penetrating agents, adhesives, anti-caking agents, colorants, or the like. To obtain these wettable powders, the active ingredient is thoroughly mixed in a suitable blender with additional substances which may be impregnated on the porous filler and is ground using a mill or other suitable grinder. This produces wettable powders, the wettability and the suspendability of which are advantageous. They may be suspended in water to give any desired concentration and this suspension can be employed very advantageously in particular for application to plant foliage. The "water dispersible granules (WG)" (granules which are readily dispersible in water) have compositions which are substantially close to that of the wettable powders. They may be prepared by granulation of formulations described for the wettable powders, either by a wet route (contacting finely divided active ingredient with the inert filler and a little water, e.g. 1 to 20% by weight, or with an aqueous solution of a dispersing agent or binder, followed by drying and screening), or by a dry route (compacting followed by grinding and screening). The rates and concentrations of the formulated compositions may vary according to the method of application or the nature of the compositions or use thereof. Generally speaking, the compositions for application to control arthropod or helminth pests usually contain from about 0.00001% to about 95%, more particularly from about 0.0005% to about 50% by weight of one or more compounds of the invention, or of total active ingredients (that is to say the compounds of the invention, together with other substances toxic to arthropods or helminths, synergists, trace elements or stabilizers). The actual compositions employed and their rate of application will be selected to achieve the desired effect(s) by the farmer, livestock producer, medical or veterinary practitioner, pest control operator or other person skilled in the art. Solid or liquid compositions for application topically to animals, timber, stored products or household goods usually contain from about 0.00005% to about 90%, more particularly from about 0.001% to about 10%, by weight of one or more compounds of the invention. For administration to animals orally or parenterally, including percutaneously solid or liquid compositions, these normally contain from 30 about 0.1% to about 90% by weight of one or more compounds of the invention. Medicated feedstuffs normally contain from about 0.001% to about 3% by weight of

123

one or more compounds of the invention. Concentrates or supplements for mixing with feedstuffs normally contain from about 5% to about 90%, preferably from about 5% to about 50%, by weight of one or more compounds of the invention. Mineral salt licks normally contain from about 0.1% to about 10% by weight of one or more compounds of formula (I) or pesticidally acceptable salts thereof.

Dusts or liquid compositions for application to livestock, goods, premises or outdoor areas may contain from about 0.0001% to about 15%, more especially from about 0.005% to about 2.0%, by weight, of one or more compounds of the invention.

Suitable concentrations in treated waters are between about 0.0001 ppm and about 20 ppm, more particularly about 0.001 ppm to about 5.0 ppm. of one or more compounds of the invention, and may be used therapeutically in fish farming with appropriate exposure times. Edible baits may contain from about 0.01% to about 5%, preferably from about 0.01% to about 1.0%, by weight, of one or more

5

10

compounds of the invention.

When administered to vertebrates parenterally, orally or by percutaneous or other means, the dosage of compounds of the invention, will depend upon the species, age, or health of the vertebrate and upon the nature and degree of its actual or potential infestation by arthropod or helminth pests. A single dose of about 0.1 to about 100 mg, preferably about 2.0 to about 20.0 mg, per kg body weight of the animal or doses of about 0.01 to about 20.0 mg, preferably about 0.1 to about 5.0 mg, per kg body weight of the animal per day, for sustained medication, are generally suitable by oral or parenteral administration. By use of sustained release formulations or devices, the daily doses required over a period of months may be combined and administered to animals on a single occasion.

The following composition EXAMPLES 2A - 2M illustrate compositions for use against arthropods, especially insects or acarids, or helminths such as plant nematodes, which comprise, as active ingredient, compounds of the invention, such as those described in preparative examples. The compositions described in EXAMPLES 2A - 2M can each be diluted to give a sprayable compositon at concentrations suitable for use in the field. Generic chemical descriptions of the ingredients (for which all of the following percentages are in weight percent), used in the composition EXAMPLES 2A - 2M exemplified below, are as follows:

124

Trade Name Chemical Description

Ethylan BCP Nonylphenol ethylene oxide condensate

Soprophor BSU Tristyrylphenol ethylene oxide condensate

Arylan CA A 70% w/v solution of calcium dodecylbenzenesulfonate

5 Solvesso 150 Light C₁₀ aromatic solvent

Arylan S Sodium dodecylbenzenesulfonate

Darvan NO₂ Sodium lignosulphonate

Celite PF Synthetic magnesium silicate carrier

Sopropon T36 Sodium salts of polycarboxylic acids

10 Rhodigel 23 Polysaccharide xanthan gum

Bentone 38 Organic derivative of magnesium montmorillonite

Aerosil Microfine silicon dioxide

EXAMPLE 2A

15 A water soluble concentrate is prepared with the composition as follows:

Active ingredient 7%

Ethylan BCP 10%

N-methylpyrrolidone 83%

To a solution of Ethylan BCP dissolved in a portion of N-methylpyrrolidone is added the active ingredient with heating and stirring until dissolved. The resulting solution is made up to volume with the remainder of the solvent.

20 EXAMPLE 2B

25

An emulsifiable concentrate (EC) is prepared with the composition as follows:

Active ingredient 25%(max)

Soprophor BSU 10%

Arylan CA 5%

N-methylpyrrolidone 50%

Solvesso 150 10%

The first three components are dissolved in N-methylpyrrolidone and to this is then added the Solvesso 150 to give the final volume.

125

EXAMPLE 2C

A wettable powder (WP) is prepared with the composition as follows:

Active ingredient 40%
Arylan S 2%
Darvan NO₂ 5%

Celite PF 53%

The ingredients are mixed and ground in a hammer-mill to a powder with a particle size of less than 50 microns.

5

EXAMPLE 2D

An aqueous-flowable formulation is prepared with the composition as follows:

Active ingredient 40.00%
Ethylan BCP 1.00%
Sopropon T360. 0.20%
Ethylene glycol 5.00%
Rhodigel 230. 0.15%
Water 53.65%

The ingredients are intimately mixed and are ground in a bead mill until a mean particle size of less than 3 microns is obtained.

10

EXAMPLE 2E

An emulsifiable suspension concentrate is prepared with the composition as follows:

Active ingredient 30.0%

Ethylan BCP 10.0%

Bentone 38 0.5%

Solvesso 150 59.5%

The ingredients are intimately mixed and ground in a beadmill until a mean particle size of less than 3 microns is obtained.

15

EXAMPLE 2F

A water dispersible granule is prepared with the composition as follows:

126

Active ingredient 30%

Darvan No 2 15%

Arylan S 8%

Celite PF 47%

The ingredients are mixed, micronized in a fluid-energy mill and then granulated in a rotating pelletizer by spraying with water (up to 10%). The resulting granules are dried in a fluid-bed drier to remove excess water.

5 EXAMPLE 2G

A dusting powder is prepared with the composition as follows:

Active ingredient

1 to 10%

Talc powder-superfine

99 to 90%

The ingredients are intimately mixed and further ground as necessary to achieve a fine powder. This powder may be applied to a locus of arthropod infestation, for example refuse dumps, stored products or household goods or animals infested by, or at risk of infestation by, arthropods to control the arthropods by oral ingestion. Suitable means for distributing the dusting powder to the locus of arthropod infestation include mechanical blowers, handshakers or livestock self treatment devices.

15 EXAMPLE 2H

10

An edible bait is prepared with the composition as follows:

Active ingredient

0.1 to 1.0%

Wheat flour

80%

Molasses

19.9 to 19%

The ingredients are intimately mixed and formed as required into a bait form. This edible bait may be distributed at a locus, for example domestic or industrial premises, e.g. kitchens, hospitals or stores, or outdoor areas, infested by arthropods, for example ants, locusts, cockroaches or flies, to control the arthropods by oral ingestion.

127

EXAMPLE 21

A solution formulation is prepared with a composition as follows:

Active ingredient

15%

Dimethyl sulfoxide

85%

The active ingredient is dissolved in dimethyl sulfoxide with mixing and or heating as required. This solution may be applied percutaneously as a pour-on application to domestic animals infested by arthropods or, after sterilization by filtration through a polytetrafluoroethylene membrane (0.22 micrometer pore size), by parenteral injection, at a rate of application of from 1.2 to 12 ml of solution per 100 kg of animal body weight.

10 EXAMPLE 2J

5

15

A wettable powder is prepared with the composition as follows:

Active ingredient

50%

Ethylan BCP

5%

Aerosil

5%

Celite PF

40%

The Ethylan BCP is absorbed onto the Aerosil which is then mixed with the other ingredients and ground in a hammer-mill to give a wettable powder, which may be diluted with water to a concentration of from 0.001% to 2% by weight of the active compound and applied to a locus of infestation by arthropods, for example, dipterous larvae or plant nematodes, by spraying, or to domestic animals infested by, or at risk of infection by arthropods, by spraying or dipping, or by oral administration in drinking water, to control the arthropods.

20 EXAMPLE 2K

A slow release bolus composition is formed from granules containing the following components in varying percentages(similar to those described for the previous compositions) depending upon need:

128

Active ingredient

Density agent

Slow-release agent

Binder

The intimately mixed ingredients are formed into granules which are compressed into a bolus with a specific gravity of 2 or more. This can be administered orally to ruminant domestic animals for retention within the reticulo-rumen to give a continual slow release of active compound over an extended period of time to control infestation of the ruminant domestic animals by arthropods.

EXAMPLE 2L

5

A slow release composition in the form of granules, pellets, brickettes or the like can be prepared with compositions as follows:

Active ingredient 0.5 to 25%

Polyvinyl chloride 75 to 99.5%

Dioctyl phthalate (plasticizer)

The components are blended and then formed into suitable shapes by melt-extrusion or molding. These composition are useful, for example, for addition to standing water or for fabrication into collars or eartags for attachment to domestic animals to control pests by slow release.

15 EXAMPLE 2M

A water dispersible granule is prepared with the composition as follows:

Active ingredient	85%(max)
Polyvinylpyrrolidone	5%
Attapulgite clay	6%
Sodium lauryl sulfate	2%
Glycerine	2%

The ingredients are mixed as a 45% slurry with water and wet milled to a particle size of 4 microns, then spray-dried to remove water.

129

METHODS OF PESTICIDAL USE

The following representative test procedures, using compounds of the invention, were conducted to determine the parasiticidal and pesticidal activity of compounds of the invention.

Germinated field bean seeds (Vicia faba) with seed roots were transferred into brown

glass bottles filled with tap water and then populated with about 100 black bean

5

10

15

20

25

METHOD A:

aphids (Aphis fabae). Plants and aphids were then dipped into an aqueous solution of the formulated preparation to be examined for 5 seconds. After they had drained, plants and animals were stored in a climatized chamber (16 hours of light/day, 25°C, 40-60% relative atmospheric humidity). After 3 and 6 days of storage, the effect of the preparation on the aphids was determined. At a concentration of 100 ppm (based on the content of active compound), the following Compounds caused a mortality of at least 50% among the aphids: A-18. A-64. A-65, A-71, A-74, A-79, A-81, A-86, A-88, A-206, A-209, A-223, A-255, A-261, A-262, A-265, A-267, A-268, A-292, A-296, A-312, A-312, A-316, A-317, A-326, A-329, A-349, A-353, A-354, A-355, A-365, A-366, A-367, A-369, A-373, A-381, A-398, A-431, A-524, A-529, A-540, A-544, A-564, A-605, A-626, A-691, A-697, A-713, A-736, A-737, A-738, A-744, A-745, A-747, A-748, A-798, A-799, A-805, A-822, A-861, A-862, A-865, A-867, A-874, B-37, B-40, B-47, B-65, B-74, B-149, B-150, B-151, B-152, B-155, B-158, B-163, B-166, B-167, B-168, B-169, B-170, B-176, B-184, B-185, B-189, B-247, B-251, B-255, B-258, B-259, B-261, B-267, B-269, B-296, B-313, B-349, B-353, B-354, B-355, B-366, B-369, B-373, B-398, B-431, B-564, B-713, B-736, B-737, B-738, B-744, B-745, B-747, B748, B-799, B-805, B-822, B-861, B-863, B-864, B-865, B-867, B-869, B-870, B-871, B-873, B-874, B-877, C-85, E-85, F-85, F-88, H-85, S-548, S-550, S-551, S-552, S-553, S-555, S-556, S-558, S-559, U-

30 METHOD B:

3, U-7, U-20, X-45 and X-55.

Germinated field bean seeds (Vicia faba) with seed roots were transferred into brown glass bottles filled with tap water. Four milliliters of an aqueous solution of the

130

formulated preparation to be examined were pipetted into the brown glass bottle. The field bean was then heavily populated with about 100 black bean aphids (Aphis fabae). Plants and aphids were then stored in a climatized chamber (16 hours of light/day, 25°C, 40-60% relative atmospheric humidity). After 3 and 6 days of storage, the root-systemic effect of the preparation on the aphids was determined. At a concentration of 10 ppm (based on the content of active compound), the following Compounds caused a mortality of at least 80% among the aphids, by root-systemic action:

A-39, A-64, A-65, A-67, A-71, A-74, A-79, A-81, A-86, A-88, A-89, A-90, A-209, A-212, A-223, A-262, A-265, A-267, A-268, A-292, A-296, A-313, A-317, A-326, A-329, A-349, A-354, A-355, A-365, A-366, A-367, A-369, A-373, A-381, A-398, A-431, A-519, A-524, A-529, A-540, A-544, A-564, A-605, A-626, A-691, A-697, A-713, A-736, A-737, A-738, A-744, A-745, A-747, A-748, A-798, A-799, A-805, A-822, A-861, A-862, A-865, A-867, A-871, A-873, A-874, B-37, B-40, B-47, B-65, B-71, B-74, B-86, B-149, B-150, B-151, B-152, B-155, B-158, B-166, B-167, B-169, B-170, B-176, B-184, B-189, B-247, B-251, B-255, B-257, B-258, B-259, B-261, B-267, B-269, B-296, B-313, B-349, B-353, B-354, B-355, B-366, B-369, B-373, B-398, B-564, B-713, B-736, B-737, B-738, B-744, B-745, B-748, B-799, B-805, B-861, B-863, B-864, B-865,

B-867, B-869, B-870, B-871, B-872, B-873, B-874, B-877, C-85, D-86, E-85, F-85, F-20 88, G-85, H-85, S-3, S-120, S-356, S-548, S-550, S-551, S-553, S-556, S-557, S-558, S-559, U-3, U-7, U-20, X-45 and X-55.

5

131

CLAIMS

1. A compound of the formula (I):

5

wherein:

 R^{1} is $-C(=U)NR^{3}R^{4}$ or $-C(=V)OR^{3a}$;

R² is H, (C₁-C₆)alkyl or R³;

10 R³ is R⁵, OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups; or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^7$$
 R^4
 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C₁-C₆)alkyl, (C₁-C₆)haloalkyl or R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino;

or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups;

 R^4 is H or R^5 ; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

- or R³ and R⁴ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R¹⁴² groups;
 - R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, (C_1-C_6) alkoxy,
- 10 (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, CO(C₁-C₆)alkyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl or SO₂(C₁-C₆)alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_paryl,
- O(R¹⁵R¹⁶),aryl, NHCOaryl, CO(CH₂),aryl, NHSO₂aryl, SO₂(CH₂)_uaryl or N=C(aryl)₂,

 -(CR¹⁵R¹⁶)_pheterocyclyl or O(R¹⁵R¹⁶)_rheterocyclyl, which last ten mentioned aryl or
 heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; or is
 O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl or N=C[(C₁-C₆)alkyl]₂;
 R⁶ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CN, CO₂(C₁-C₆)alkyl,
- 20 CO₂H, NO₂, OH, amino, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, carbamoyl, (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups; R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S, O or NR¹⁸;

25 V is O or S;

W is $(CHR^{19})_q$, CO or NR^{20} ;

X is CR²¹ or N;

Y is CR²² or N;

Z is O, CO or NR²³;

R⁷, R⁸, R⁹, R¹², R¹⁹, R²¹ and R²² are each independently H; or (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or

133

substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups; or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups;

- or R⁷ and R⁸ together with the attached carbon atom may represent C=O; R^{10} , R^{20} and R^{23} are each independently H; or (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) C₆)alkynyl or (C₃-C₈)cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is
- -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or 10 substituted by one or more R⁶ groups;
 - R^{11} is R^7 , halogen, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 or $S(O)_nR^{14}$; or is (C_1-C_6) alkylamino or di-(C1-C6)alkylamino, which groups are unsubstituted or substituted by one or more R⁶ groups;
- R¹³ is R⁷ or OH:
 - R^{14} , R^{15} and R^{16} are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl; R^{14a} is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;
 - R^{18} is R^7 or OH; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R⁶ groups;
- 20 m is zero or one;
 - n, p, r, s, t and u are each independently zero, one or two; q is one, two or three; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S;
- or a pesticidally acceptable salt thereof; 25 with the exclusion of the compound wherein R¹ is -C(=U)NR³R⁴; U is O; R² is H; m is zero; R⁴ is H and R³ is 2,4-dichlorophenyl.
 - A compound according to claim 1 wherein: 2.
- R^1 is $-C(=U)NR^3R^4$ or $-C(=V)OR^{3a}$;

 R^2 is H, (C_1-C_6) alkyl or R^3 ;

 R^3 is R^5 , OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R^6 groups;

or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^{7}$$
 R^{8}
 R^{8}
 R^{9}
 R^{10}
 R^{10}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}

R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups; R⁴ is H or R⁵; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

- or R³ and R⁴ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R^{14a} groups;
- R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, CO(C₁-C₆)alkyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl or SO₂(C₁-C₆)alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_paryl, O(R¹⁵R¹⁶)_raryl, NHCOaryl, CO(CH₂)_taryl, NHSO₂aryl, SO₂(CH₂)_uaryl or N=C(aryl)₂, -(CR¹⁵R¹⁶)_pheterocyclyl or O(R¹⁵R¹⁶)_rheterocyclyl, which last ten mentioned aryl or

heterocyclyl groups are unsubstituted or substituted by one or more R^{17} groups; or is $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl or $N=C[(C_1-C_6)alkyl]_2$;

 R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, $CO_2(C_1-C_6)$ alkyl, CO_2H , NO_2 , OH, amino, (C_1-C_6) alkylamino, di- (C_1-C_6) alkylamino, carbamoyl, (C_1-C_6) alkylamino, carbamoyl, (C_1-C_6) alkylamino, (C_1-C_6) alkylamino, carbamoyl, (C_1-C_6) alkylamino, (C_1-C_6)

5 C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups;

R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S, O or NR¹⁸;

V is O or S;

10 W is (CHR¹⁹)₀, CO or NR²⁰;

X is CR²¹ or N:

Y is CR²² or N;

Z is O. CO or NR²³:

 R^7 , R^8 , R^9 , R^{12} , R^{19} , R^{21} and R^{22} are each independently H; or (C₁-C₆)alkyl, (C₂-

C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups; or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by

20 one or more R⁶ groups;

or R⁷ and R⁸ together with the attached carbon atom may represent C=O; R¹⁰, R²⁰ and R²³ are each independently H; or (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₈)cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which

cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups;

 R^{11} is R^7 , halogen, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 or $S(O)_nR^{14}$; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more

30 R⁶ groups;

25

R¹³ is R⁷ or OH;

 R^{14} , R^{15} and R^{16} are each independently H, (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

R^{14a} is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

 R^{18} is R^7 or OH; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R^6 groups;

m is zero or one;

n, p, r, s, t and u are each independently zero, one or two; q is one, two or three; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S;

or a pesticidally acceptable salt thereof;

- with the exclusion of the compound wherein R¹ is –C(=U)NR³R⁴; U is O; R² is H; m is zero; R⁴ is H and R³ is 2,4-dichlorophenyl.
 - 3. A compound or a salt thereof as claimed in claim 1 or 2, wherein R¹ is -C(=U)NR³R⁴.

15 .

- 4. A compound or a salt thereof as claimed in claim 1, 2 or 3, wherein \mathbb{R}^2 is H or \mathbb{R}^3 .
- A compound or a salt thereof as claimed in any one of claims 1 to 4, wherein
 R³ is R⁵ or OH; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups;
 or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

$$R^7$$
 W R^8 (A)

25 6. A compound or a salt thereof as claimed in any one of claims 1 to 5, wherein R^4 is H or R^5 , or is (C_1-C_6) alkyl unsubstituted or substituted by one or more R^6 groups;

or R^3 and R^4 together with the adjacent N atom may form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R^6 or R^{14a} groups.

5

7. A compound or a salt thereof as claimed in any one of claims 1 to 6, wherein R^1 is $-C(=U)NR^3R^4$;

 $\ \ R^2$ is H;

 R^3 is R^5 or OH; or is (C₁-C₆)alkyl substituted by one or more R^6 groups;

or R² and R³ together with the interconnecting atoms may form a heterocyclic ring selected from (A) and (C):

$$R^{7}$$
 W R^{4} R^{9} C R^{10} C

 R^4 is H or R^5 , or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6

15 groups:

or R^3 and R^4 together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl or thiomorpholin-1-yl (or its S-oxide or S, S-dioxide) ring; R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_6) alkynyl, (C_3-C_6) alkynyloxy or $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl; (C_3-C_6) alkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy or $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl;

or -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups;

R⁶ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CN, NO₂ or OH;

 R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, NO_2 or OH R^{17} is R^6 . R^{14a} or CH_2OH ;

U is S or O;
 W is (CHR¹⁹)_q or CO;
 Z is O;

138

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each H; or (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

or R^7 and R^8 together with the attached carbon atom represent C=O; R^{14} , R^{15} and R^{16} are each H or (C₁-C₆)alkyl;

5 R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

m is zero;

n, r, s, t and u are zero, one or two;

q is one; and wherein heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, pyrrole, furan, thiophene,

oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane radical.

8. A compound or a salt thereof as claimed in claim 1, wherein R¹ is -C(=U)NR³R⁴;

R² is H;

U is O or S;

 R^3 is (C_1-C_6) alkoxy, $C_1-C_6)$ haloalkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy,

20 CH₂phenyl or OCH₂phenyl, phenyl or 2-pyridyl which last four mentioned phenyl or pyridyl groups are unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, CN and NO2;

 R^4 is H, (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or CH_2 phenyl; and m is zero.

25

30

- 9. A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 8, which process comprises:
- a) where R¹ is -C(=U)NR³R⁴, m is zero, and R², U, R³ and R⁴ are as defined in formula (I); or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

139

$$R^7$$
 R^8
 R^9
 R^4
 R^4
 R^4
 R^{11}
 R^{12}
 R^{13}
 R^4
 R^4
 R^4
 R^4
 R^{11}
 R^{12}
 R^{13}
 R^{13}

wherein R^4 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , W, X, Y and Z are as defined in formula (I), the reaction of a compound of formula (II):

5

wherein L is a leaving group, with a compound of formula (III):

wherein R², U, R³ and R⁴ are as defined in formula (I), or with a compound of formula (IV), (V), (VI); (VII) or (VIII):

140

wherein R^4 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , W, X, Y and Z are as defined in formula (I); or

b) where R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O, and R³ and R⁴ are as defined in formula (I), the reaction of a compound of formula (IX):

with oxalyl chloride or triphosgene, to give the corresponding acylisocyanate intermediate followed by reaction with an amine of formula (X):

10

15

5

$$HNR^3R^4$$
 (X)

wherein R3 and R4 are as defined in formula (I); or

c) where R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O, and R^{3a} is as defined in formula (I), the reaction of a compound of formula (IX) above, with oxalyl chloride to give an acylisocyanate intermediate, followed by reaction with an alcohol of formula (XI):

wherein R3 is as defined in formula (I); or

d) where R^1 is $-C(=U)NR^3R^4$, m is zero, R^2 is H, U is O or S, and R^3 and R^4 are as defined in formula (I), the reaction of a compound of formula (XII).

(XII)

wherein U is O or S, with a compound of formula (X) as defined in formula (I); or

e) where R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O or S, and R^{3a} is as defined in formula (I), the reaction of a compound of formula (XIII).

(XIII)

wherein V is O or S, with a compound of formula (XI) as defined above; or

f) where R¹ is -C(=U)NR³R⁴, m is zero, R² is H, R⁴ is H, U is O or S, and R³ is as defined in formula (I), the reaction of a compound of formula (IX) as defined in formula (I), with a strong base, followed by reaction with a compound of formula (XIV):

$$R^3N=C=U$$
 (XIV)

wherein R3 is as defined in formula (I); or

10

25

- g) where R¹ is -C(=U)NR³R⁴ or -C(=V)OR³a, m is zero, R² is H, U and V are each S, and R³, R³a and R⁴ are as defined in formula (I), the 1-pot reaction of 4-trifluoromethylnicotinic acid with a halogenating agent to give the corresponding acid chloride, followed by reaction with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate to give the 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, followed by reaction with an amine of formula (X) above or an alcohol of formula (XI) above; or
 - h) where R¹ and R² are as defined above, and m is 1 the oxidation of a corresponding compound in which m is 0; and if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.

142

10. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 8, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

5

11. The use of compounds of the formula (I) or their salts as claimed in any of claims 1 to 8 as pesticides.

IN RNATIONAL SEARCH REPORT

Interional Application No PCT/EP 03/04714

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D213/82 C07D401/06 A01N43/40 A01N43/50 C07D413/06 A01N43/88 A01N43/653 A01N43/713 A01N43/54 According to international Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) CO7D A01N IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-10 EP 0 580 374 A (ISHIHARA SANGYO KAISHA X LTD.) 26 January 1994 (1994-01-26) cited in the application Table 1, compounds 9, 17, 34, 49, 106,110, claims 1-10 DATABASE WPI X Week 0214 Derwent Publications Ltd., London, GB; AN 106161 XP002215212 & WO 01 90075 A (ISHIHARA SANGYO KAISHA LTD.), 29 November 2001 (2001-11-29) abstract DE 100 14 006 A (AVENTIS CROPSCIENCE) 1-10 A 27 September 2001 (2001-09-27) claims; examples -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-O' document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means *P* document published prior to the international filing date but later than the priority date claimed *&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19/09/2003 11 September 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Helps, I Fax: (+31-70) 340-3016

IN RNATIONAL SEARCH REPORT

Intel Conal Application No
PCT/EP 03/04714

		PCT/EP 03/04714
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Week 0125 Derwent Publications Ltd., London, GB; AN 244289 XP002215213 & WO 01 14340 A (ISHIHARA SANGYO KAISHA LTD.), 1 March 2001 (2001-03-01) abstract	1-10
A	abstract DE 199 58 166 A (BAYER AG) 14 December 2000 (2000-12-14) claims; examples	1-10

IN RNATIONAL SEARCH REPORT

Information on patent family members

Intermonal Application No PCT/EP 03/04714

	Publication		Patent family	Publication
	date		member(s)	date
Α	26-01-1994	ΑT	132489 T	15-01-1996
		ΑU		03-02-1994
		BR		16-02-1994
		CA	2100011 A1	24-01-1994
			1081670 A ,B	09-02-1994
			9301502 A3	16-02-1994
			69301205 D1	15-02-1996
				05-09-1996
				20-05-1996
				31-07-1997
				26-01-1994
				16-05-1996
				31-05-1996
				17-07-1998
				28-06-1995
	•			12-03-1999
				27-12-1999
				22-11-1994
				28-02-1994
				05-04-1994
				10-07-1997
				08-06-1994
				01-11-1994
		ZA	9305042 A	05-04-1994
A	29-11-2001	AU	5882201 A	03-12-2001
,,				29-11-2001
		JP	2002201133 A	16-07-2002
	27_00_2001	ne ne	10014006 A1	27-09-2001
А	Z1-03-Z001			03-10-2001
				03-06-2003
				20-09-2002
				21-05-2003
				27-09-2001
				15-01-2003
				28-06-2003
				14-03-2002
		US	2002032328 A1	14-03-2002
Α	01-03-2001	AU	6597300 A	19-03-2001
		WO	0114340 A1	01-03-2001
		JP	2001122782 A	08-05-2001
л	14-12-2000	DF	19958166 A1	14-12-2000
н	14. 17. 5000	ΑÜ	5073100 A	02-01-2001
	A	A 29-11-2001 A 27-09-2001	A 26-01-1994 AT AU BR CA CN CZ DE DE DK EG EP ES GR HK HU IL JP JP MX PL RU SK US ZA A 29-11-2001 AU WO JP A 27-09-2001 DE AU BR CA CN WO EP HU US A 01-03-2001 AU WO JP	A 26-01-1994 AT 132489 T AU 4210693 A BR 9302960 A CA 2100011 A1 CN 1081670 A B GZ 9301502 A3 DE 69301205 D1 DE 69301205 T2 DK 580374 T3 EG 20154 A EP 0580374 A1 ES 2085118 T3 GR 3018953 T3 HK 1001896 A1 HU 68334 A2 IL 106340 A JP 2994182 B2 JP 6321903 A MX 9304425 A1 PL 299769 A1 RU 2083562 C1 SK 75093 A3 US 5360806 A ZA 9305042 A A 29-11-2001 AU 5882201 A O190075 A1 JP 2002201133 A A 27-09-2001 DE 10014006 A1 AU 6210501 A BR 0109473 A CA 2403807 A1 CN 1419542 T WO 0170692 A2 EP 1274683 A2 HU 0300406 A2 US 2002032328 A1 A 01-03-2001 AU 6597300 A WO 0114340 A1 JP 2001122782 A

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 November 2003 (27.11.2003)

PCT

(10) International Publication Number WO 2003/097604 A1

- (51) International Patent Classification⁷: C07D 213/82, 401/06, 413/06, A01N 43/40, 43/50, 43/54, 43/653, 43/713, 43/88
- (21) International Application Number:

PCT/EP2003/004714

(22) International Filing Date:

6 May 2003 (06.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02010910.4

16 May 2002 (16.05.2002) EP

(71) Applicant (for all designated States except US): BAYER CROPSCIENCE GMBH [DE/DE]; Brüningstrasse 50, 65926 Frankfurt (DE).

(72) Inventors; and

(75) Inventors, and
(75) Inventors/Applicants (for US only): ARAKI, Koichi [JP/JP]; 2-4-39, Kamiya Ushiku, Ibaraki 300-1216 (JP). MURATA, Tetsuya [JP/JP]; 1-19-10, Chuo Ushiku, Ibaraki 300-1234 (JP). GUNJIMA, Koshi [JP/JP]; 4-2-3-303, Yachiyomidorigaoka, Yachiyo City, Chiba 276-0049 (JP). NAKAKURA, Norihiko [JP/JP]; 3-2-7-503 Gion, Minamikawachi-machi, Tochigi 329-0434 (JP). SHIMOJO, Eiichi [JP/JP]; 4-16-1 Nishijyonan Oyama Tochigi (JP). ARNOLD, Christian [DE/DE]; Grimmersdorfer Weg 11, 53343 Adendorf (DE). HEMPEL, Waltraud [DE/DE]; Zum Morgengraben

18, 65835 Liederbach (DE). JANS, Daniela [DE/DE]; Schöne Aussicht 11, 61348 Bad Homburg v. d. H. (DE). MALSAM, Olga [DE/DE]; Berghovener Strasse 67, 53227 Bonn (DE). WAIBEL, Jutta, Maria [DE/DE]; Manderscheider Strasse 51, 60529 Frankfurt (DE).

- (81) Designated States (national): AE, AG, AL, AM, AU, AZ, BA, BB, BR, BY, BZ, CA, CN, CO, CR, CU, DM, DZ, EC, GD, GE, HR, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NI, NO, NZ, OM, PH, PL, RU, SC, SG, TJ, TM, TN, TT, UA, US, UZ, VC, VN, YU, ZA.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(48) Date of publication of this corrected version:

6 May 2004

(15) Information about Correction:

see PCT Gazette No. 19/2004 of 6 May 2004, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS PESTICIDES

(57) Abstract: The invention relates to a 3-pyridylcarboxamide derivative of formula (I). Wherein the various symbols are as defined in the description, compositions thereof, their use for the control of pests, and to processes for their preparation.

WO 2003/097604 PCT/EP2003/004714

PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS PESTICIDES

The invention relates to 3-pyridylcarboxamide derivatives and their use for the control of pests, in particular arthropods such as insects and acarids, and helminths (including nematodes); to compositions containing them, and to processes and intermediates for their preparation.

The control of insects, nematodes or helminths with 3-pyridylcarboxamide compounds has been described in many patents such as EP 580374, JP 10101648, JP 10182625, WO 200109104, WO 200114340, JP 6321903, JP 10195072 and JP 11180957.

However, the level of action and/or duration of action of these prior-art compounds is not entirely satisfactory in all fields of application, in particular against certain organisms or when low concentrations are applied.

Since modern pesticides must meet a wide range of demands, for example regarding level, duration and spectrum of action, use spectrum, toxicity, combination with other active substances, combination with formulation auxiliaries or synthesis, and since the occurrence of resistances is possible, the development of such substances can never be regarded as concluded, and there is constantly a high demand for novel compounds which are advantageous over the known compounds, at least as far as some aspects are concerned.

It is an object of the present invention to provide compounds which widen the spectrum of the pesticides in various aspects.

The present invention provides a compound which is a 3-pyridylcarboxamide derivative of formula (I):

F₃ O R¹

2

(1)

wherein:

 R^{1} is $-C(=U)NR^{3}R^{4}$ or $-C(=V)OR^{3a}$;

5 R^2 is H, (C₁-C₆)alkyl or R^3 ;

 R^3 is R^5 , OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R^6 groups; or R^2 and R^3 together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^{7}$$
 R^{4}
 R^{8}
 R^{8}
 R^{9}
 R^{4}
 R^{10}
 R^{4}
 R^{10}
 R^{12}
 R^{13}
 R^{13}
 R^{12}
 R^{13}
 R^{13}

- 10 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C₁-C₆)alkyl, (C₁-C₆)haloalkyl or R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more
- 15 R^6 groups; R^4 is H or R^5 ; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

or R³ and R⁴ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R^{14a} groups (preferred examples of such ring systems include pyrrolidin-1-yl, pyrrolin-1-yl, piperidin-1-yl, morpholin-1-yl (or its Noxide), thiomorpholin-1-yl (or its S-oxide or S, S-dioxide), 4,5-dihydropyrazol-1-yl or pyrazol-1-yl);

R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino,

- CO(C₁-C₆)alkyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl or SO₂(C₁-C₆)alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_paryl, O(R¹⁵R¹⁶)_raryl, NHCOaryl, CO(CH₂)_taryl, NHSO₂aryl, SO₂(CH₂)_uaryl or N=C(aryl)₂,
- -(CR¹⁵R¹⁶)_pheterocyclyl or O(R¹⁵R¹⁶)_rheterocyclyl, which last ten mentioned aryl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; or is O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl or N=C[(C₁-C₆)alkyl]₂;
 R⁶ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CN, CO₂(C₁-C₆)alkyl,

R° is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{-n}$, CN, $CO_2(C_1-C_6)$ alkyl, CO_2H , NO_2 , OH, amino, (C_1-C_6) alkylamino, OH,
20 (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups; R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S, O or NR¹⁸;

V is O or S:

5

25 W is (CHR¹⁹)_q, CO or NR²⁰;

X is CR21 or N;

Y is CR²² or N:

Z is O. CO or NR²³;

 R^7 , R^8 , R^9 , R^{12} , R^{19} , R^{21} and R^{22} are each independently H; or (C₁-C₆)alkyl.

30 (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or

heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups; or (C₃- C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups;

or R7 and R8 together with the attached carbon atom may represent C=O;

- 5 R¹⁰, R²⁰ and R²³ are each independently H; or (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₈)cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups;
 - R^{11} is R^7 , halogen, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 or $S(O)_nR^{14}$; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R^6 groups;

R¹³ is R⁷ or OH;

- 15 R¹⁴, R¹⁵ and R¹⁶ are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl; R^{14a} is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl; R¹⁸ is R⁷ or OH; or is (C₁-C₆)alkylamino or di-(C₁-C₆)alkylamino, which groups are unsubstituted or substituted by one or more R⁶ groups; m is zero or one;
- 20 n, p, r, s, t and u are each independently zero, one or two;
 q is one, two or three; and each heterocyclyl in the above mentioned radicals is
 independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero
 atoms selected from N, O and S;
 or a pesticidally acceptable salt thereof;
- with the exclusion of the compound wherein R¹ is -C(=U)NR³R⁴; U is O; R² is H; m is zero; R⁴ is H and R³ is 2,4-dichlorophenyl.

These compounds possess valuable pesticidal properties.

The invention also encompasses any stereoisomer, enantiomer or geometric isomer, and mixtures thereof.

By the term "pesticidally acceptable salts" is meant salts the cations or anions of which are known and accepted in the art for the formation of salts for pesticidal use. Suitable salts with bases, e.g. formed by compounds of formula (I) containing a carboxy or OH group, include alkali metal (e.g. sodium and potassium), alkaline earth metal (e.g. calcium and magnesium), ammonium and amine (e.g. diethanolamine, triethanolamine, octylamine, morpholine and dioctylmethylamine) salts. Suitable acid addition salts, e.g. formed by compounds of formula (I) containing an amino group, include salts with inorganic acids, for example hydrochlorides, sulphates, phosphates and nitrates and salts with organic acids for example acetic acid. 10

5

30

The term pests means arthropod pests (including insects and acarids), and helminths (including nematodes).

- In the present patent specification, including the accompanying claims, the 15 aforementioned substituents have the following meanings: halogen atom means fluorine, chlorine, bromine or iodine; alkyl groups and portions thereof (unless otherwise defined) may be straight- or branched-chain;
- cycloalkyl groups preferably have from three to six carbon atoms in the ring and are 20 optionally substituted by halogen or alkyl.
 - The haloalkyl and haloalkoxy groups can bear one or more halogen atoms; preferred groups of this type include -CF3 and -OCF3.
- The term "halo" before the name of a radical means that this radical is partially or completely halogenated, that is to say, substituted by F, Cl, Br, or I, in any 25 combination, preferably by F or Cl.
 - The expression "(C₁-C₆)-alkyl" is to be understood as meaning an unbranched or branched hydrocarbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms, such as, for example a methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, 2-methylpropyl or tertbutyl radical.

25

30

"(C₁-C₆)-Haloalkyl" is to be understood as meaning an alkyl group mentioned under the expression "(C₁-C₆)-alkyl" in which one or more hydrogen atoms are replaced by the same number of identical or different halogen atoms, preferably by chlorine or fluorine, such as the trifluoromethyl, the 1-fluoroethyl, the 2,2,2-trifluoroethyl, the chloromethyl, fluoromethyl, the difluoromethyl or the 1,1,2,2-tetrafluoroethyl group.

" (C_1-C_8) -Alkoxy" is to be understood as meaning an alkoxy group whose hydrocarbon radical has the meaning given under the expression " (C_1-C_8) -alkyl".

The terms "alkenyl" and "alkynyl" with a range of carbon atoms stated as prefix denote a straight-chain or branched hydrocarbon radical having a number of carbon atoms which corresponds to this stated range and which contains at least one multiple bond which can be located in any position of the respective unsaturated radical. "(C₂-C₆)-Alkenyl" accordingly denotes, for example, the vinyl, allyl, 2-methyl-2-propenyl, 2-butenyl, pentenyl, 2-methylpentenyl or the hexenyl group. "(C₂-C₆)-Alkynyl" denotes, for example, the ethynyl, propargyl, 2-methyl-2-propynyl; 2-butynyl; 2-pentynyl or the 2-hexynyl group.

"(C₃-C₈)-Cycloalkyl" denotes monocyclic alkyl radicals, such as the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl radical, and denotes bicyclic alkyl radicals, such as the norbornyl radical.

The expression "(C₃-C₈)-cycloalkyl-(C₁-C₆)-alkyl" is to be understood as meaning, for example the cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclohexylethyl, cyclohexylbutyl, 1-methylcyclopropyl, 1-methylcyclopentyl, 1-methylcyclohexyl, 3-hexylcyclobutyl or the 4-tert-butylcyclohexyl radical.

"(C_1 - C_6)-Alkylamino" denotes a nitrogen atom which is substituted by an alkyl radical of the above definition. "Di-(C_1 - C_6)-alkylamino" denotes a nitrogen atom which is substituted by two alkyl radical of the above definition.

The expression " (C_1-C_6) -alkylcarbamoyl" denotes a carbamoyl group having one hydrocarbon radical which has the meaning given under the expression " (C_1-C_6) -alkyl"; and "di- (C_1-C_6) -alkylcarbamoyl" denotes a carbamoyl group having two hydrocarbon radicals which can be identical or different.

5

The expression "aryl" is to be understood as meaning a carbocyclic, i.e. constructed of carbon atoms, aromatic radical having preferably 6 to 14, in particular 6 to 12, carbon atoms, such as, for example, phenyl, naphthyl or biphenylyl, preferably phenyl.

10

15

20

25

The expression "heterocyclyl" preferably denotes a cyclic radical which can be completely saturated, partially unsaturated or completely unsaturated and which contains in the ring one or more identical or different atoms selected from the group consisting of nitrogen, sulfur and oxygen, where, however, two oxygen atoms may not be directly adjacent and at least one carbon atom has to be present in the ring, such as, for example, a thiophene, furan, pyrrole, thiazole, oxazole, imidazole, isothiazole, isoxazole, pyrazole, 1,3,4-oxadiazole, 1,3,4-thiadiazole, 1,3,4-triazole, 1,2,4-oxadiazole, 1,2,4-thiadiazole, 1,2,4-triazole, 1,2,3-triazole, 1,2,3,4-tetrazole, benzo[b]thiophene, benzo[b]furan, indole, benzo[c]thiophene, benzo[c]furan, isoindole, benzoxazole, benzothiazole, benzimidazole, benzisoxazole, benzisothiazole, benzopyrazole, benzothiadiazole, benzotriazole, dibenzofuran, dibenzothiophene, carbazole, pyridine, pyrazine, pyrimidine, pyridazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,4,5-tetrazine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthyridine, 1.7-naphthyridine, phthalazine, pyridopyrimidine, purine, pteridine, 4H-quinolizine, piperidine, pyrrolidine, oxazoline, tetrahydrofuran, tetrahydropyran, isoxazolidine, thiazolidine, oxirane or oxetane radical.

30 sys

Heterocyclyl preferably denotes a saturated, partially saturated or aromatic ring system having 3 to 7 ring members and 1 to 4 heteroatoms selected from the group consisting of O, S and N, where at least one carbon atom has to be present in the ring.

More preferably, heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,3,4)-thiadiazole, (1,2,4)-thiadiazole, pyrrole, furan, thiophene, oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrimidine, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine or thiazolidine radical (particularly a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,3,4)-thiadiazole, 1,2,4-thiadiazole, thiazole, pyrazole, pyrrole, isoxazole, benzothiazole, 1,2,4-triazole, pyrazine, pyridazine, oxirane or oxetane radical).

10

15

20

5

Preferred substituents for the various aliphatic, aromatic and heterocyclic ring systems include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_3-C_6) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -alkylthio, (C_1-C_4) -alkylsulfinyl, (C_1-C_4) -alkylsulfonyl, phenyl, benzyl or phenoxy, where in the alkyl radicals and the radicals derived therefrom one or more – and in the case of fluorine up to the maximum number of - hydrogen atoms can be replaced by halogen, preferably chlorine or fluorine.

More preferred substituents include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_3-C_6) -cycloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -haloalkylthio.

Most preferred substituents include halogen, nitro, cyano, (C_1-C_4) -alkyl, (C_1-C_4) -haloalkyl, (C_1-C_4) -alkoxy, (C_1-C_4) -haloalkoxy, (C_1-C_4) -alkylthio or (C_1-C_4) -haloalkylthio.

25

It is to be generally understood, unless otherwise stated, that the term "unsubstituted or substituted by one or more groups" or "unsubstituted or substituted by one or more groups selected from" means that such groups (or preferred groups) may be the same or different.

30

R¹ is preferably –C(=U)NR³R⁴; R² is preferably H or R³ (more preferably R² is H);

R³ is preferably R⁵ or OH; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups; or preferably R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

$$R^7$$
 N R^4 R^9 C R^{10}

5

10

R⁴ is preferably H or R⁵, or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

or R³ and R⁴ together with the adjacent N atom may form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁵ or R¹⁴² groups (particularly preferred examples of such ring systems include pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-yl or its S-oxide or S, S-dioxide);

 R^5 is preferably (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₃-C₆)

C₈)cycloalkyl-(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl; or is -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; (more preferably R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₁-C₆)alkoxy, (C₃-

C₆)alkenyloxy, (C₃-C₆)alkynyloxy or O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl; or is -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶)_rheterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups);

 R^6 is preferably halogen, (C1-C6)alkoxy, (C1-C6)haloalkoxy, S(O)_n R^{14a} , CN, NO2 or

25 OH; (more preferably R⁶ is halogen or CN);

R¹⁷ is preferably R⁶, R^{14a} or CH₂OH;

U is preferably S or O;

W is preferably (CHR¹⁹)_a or CO;

Z is preferably O;

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each preferably H; or (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

or R7 and R8 together with the attached carbon atom represent C=O;

5 R^{14} , R^{15} and R^{16} are each preferably H or (C_1-C_6) alkyl;

 R^{14a} is preferably (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

m is preferably zero;

n, r, s, t and u are preferably zero or one;

q is preferably one; and

- heterocyclyl preferably denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, (1,3,4)-thiadiazole, benzothiazole, pyrrole, furan, thiophene, oxazole, thiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrimidine, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine,
- 15 oxazolidine, thiazolidine, oxirane or oxetane radical.

A preferred class of compounds of formula (I) are those in which:

 R^1 is $-C(=U)NR^3R^4$ or $-C(=V)OR^{3a}$;

- R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C₁-C₆)alkyl, (C₁-C₆)haloalkyl or R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R^{6a} groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups;
- 25 R^{6a} is (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CO₂(C₁-C₆)alkyl, CO₂H, amino, (C₁-C₆)alkylamino, carbamoyl, (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups;

and the other values are as defined in formula (I).

30

A further preferred class of compounds of formula (I) are those in which: R¹ is -C(=U)NR³R⁴;

R² is H;

 R^3 is R^5 or OH; or is (C₁-C₆)alkyl substituted by one or more R^6 groups; or R^2 and R^3 together with the interconnecting atoms may form a heterocyclic ring selected from (A) and (C):

$$R^{7}$$
 N R^{4} R^{8} R^{8} R^{9} R^{10}

5

10

15

R⁴ is H or R⁵, or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

or R^3 and R^4 together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl or thiomorpholin-1-yl (or its S-oxide or S, S-dioxide) ring; R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl, (C_3-C_6) alkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy or $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl; or $-(CR^{15}R^{16})_p$ phenyl, $-(CR^{15}R^{16})_p$ heterocyclyl, $O(CR^{15}R^{16})_r$ phenyl or $O(CR^{15}R^{16})_r$ heterocyclyl, which last four mentioned phenyl or heterocyclyl groups are

unsubstituted or substituted by one or more R¹⁷ groups; R⁶ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CN, NO₂ or OH; R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S or O:

W is (CHR¹⁹)_a or CO;

20 Z is O;

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each H; or (C_1 - C_6)alkyl unsubstituted or substituted by one or more R^6 groups;

or R^7 and R^8 together with the attached carbon atom represent C=O; R^{14} , R^{15} and R^{16} are each H or (C₁-C₆)alkyl;

25 R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

m is zero;

n, r, s, t and u are zero, one or two;

q is one; and wherein heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, (1,3,4)-thiadiazole, pyrrole, furan, thiophene, oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran,

tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane radical.

A further preferred class of compounds of formula (I) are those in which: R¹ is -C(=U)NR³R⁴;

10 R² is H;

25

30

U is O or S:

 R^3 is (C_1-C_6) haloalkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) alkyl, (C_3-C_6) alkyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkylamino, OH, Ophenyl, pyrimidyl, benzothiazolyl, thiazolyl, thiadiazolyl,

- -(CH₂)₂pyrrolidin-1-yl, NHSO₂phenyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl, NHCOphenyl or N=C(phenyl)₂; or is pyridyl unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, CN and NO₂; or is OCH₂phenyl which phenyl is unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, CN and NO₂; or is (C₁-C₆)alkoxy unsubstituted or substituted by a CO₂(C₁-C₆)alkyl group;
 - or is -(CHR¹⁵)_pphenyl wherein p is 0, 1 or 2, R¹⁵ is H or (C₁-C₆)alkyl, and phenyl is unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)haloalkyl, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, CN, NO₂, OH, CH₂OH, CO₂(C₁-C₆)alkyl and phenoxy which phenoxy is unsubstituted or substituted by one or more groups selected from halogen and (C₁-C₆)haloalkyl;
 - or is (C_1-C_6) alkyl unsubstituted or substituted by one or more groups selected from (C_1-C_6) alkoxy, CN, OH, $CO_2(C_1-C_6)$ alkyl and $CH[O(C_1-C_6)$ alkyl]₂;

or is NH(CH₂)_sphenyl wherein s is zero or 1;

 R^4 is H, (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, $-(CH_2)_p$ phenyl wherein p is 0 or 1, or N=C[(C_1-C_6) alkyl]₂;

or R³ and R⁴ together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl, thiomorpholin-1-yl which groups are unsubstituted or substituted

by one or more groups selected from halogen, (C_1 - C_6)alkyl and OH; or form a 4,5-dihydropyrazol-1-yl ring; and m is zero.

5 A further preferred class of compounds of formula (I) are those in which: R¹ is -C(=U)NR³R⁴;

U is O:

 R^2 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or CH_2 phenyl; or is (C_1-C_6) alkyl substituted by $CO_2(C_1-C_6)$ alkyl or $CH[O(C_1-C_6)$ alkyl]₂;

- R³ is (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, CH₂phenyl or OCH₂phenyl; or is (C₁-C₆)alkoxy unsubstituted or substituted by one or two CO₂(C₁-C₆)alkyl groups; R⁴ is H or (C₁-C₆)alkyl; and m is zero.
- A further preferred class of compounds of formula (I) are those in which:

 R¹ is -C(=U)NR³R⁴;

 R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

$$R^{7}$$
 W R^{4} R^{9} C R^{10} R^{10}

20 wherein U is O or S;

and in (A):

W is CH_2 , CO or CHR^{19} wherein R^{19} is H, $(C_1\text{-}C_6)$ alkyl or phenyl;

R⁴ is H, (C₁-C₆)alkyl, phenyl, CH₂phenyl or OCH₂phenyl;

 $\mbox{\ensuremath{R^{7}}}$ is H, (C1-C6)alkyl, (C1-C6)alkoxy or phenyl; and

25 \mathbb{R}^8 is H or (C_1-C_6) alkyl;

and in (C):

Z is O;

 $\ensuremath{\mathsf{R}}^4$ is (C1-C6)alkyl, (C3-C8)cycloalkyl or CH2phenyl; and

R⁹ and R¹⁰ are each H; and m is zero.

A further preferred class of compounds of formula (I) are those in which:

 R^{1} is $-C(=U)NR^{3}R^{4}$;

wherein U is NR¹⁸:

R² is H;

 R^3 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_8) cycloalkyl; or is (C_1-C_6) alkyl substituted by one or two (C_1-C_6) alkoxy or $CH[O(C_1-C_6)$ alkyl]₂ groups;

- 10 R⁴ and R¹⁸ are each the same or different H or (C₁-C₆)alkyl; or R³ and R⁴ together with the adjacent N atom form a morpholin-1-yl or pyrazol-1-yl ring; and m is zero.
- 15 A further preferred class of compounds of formula (I) are those in which:

 R^1 is $-C(=V)OR^{3a}$;

wherein V is O or S;

 R^2 is H, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, NHCH₂phenyl; or is (C_1-C_6) alkyl substituted by a group selected from (C_1-C_6) alkoxy, CN, OH and S(O)_nR^{14a};

- R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups; and
- 25 m is zero.

A more preferred class of compounds of formula (I) are those in which:

 R^1 is $-C(=U)NR^3R^4$;

R² is H;

30 U is O or S;

 R^3 is (C_1-C_6) alkoxy, $C_1-C_6)$ haloalkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy, CH_2 phenyl or OCH_2 phenyl, phenyl or 2-pyridyl which last four mentioned phenyl or

pyridyl groups are unsubstituted or substituted by one or more groups selected from halogen, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, CN and NO2;

 R^4 is H, (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or CH₂phenyl; and m is zero.

5

A further more preferred class of compounds of formula (I) are those in which:

 R^1 is $-C(=U)NR^3R^4$;

R² is H;

U is O;

10 \mathbb{R}^3 is (C_1-C_6) alkoxy;

R4 is (C1-C6)alkyl; and

m is zero.

The compounds of general formula (I) can be prepared by the application or adaptation of known methods (i.e. methods heretofore used or described in the chemical literature.

In the following description of processes when symbols appearing in formulae are not specifically defined, it is understood that they are "as defined above" in accordance with the first definition of each symbol in the specification.

20

15

According to a feature of the invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, and R², U, R³ and R⁴ are as defined above; or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^{7}$$
 R^{8}
 R^{9}
 R^{11}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{12}

wherein R⁴, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, W, X, Y and Z are as defined above, may be prepared by the reaction of a compound of formula (II):

5

wherein L is a leaving group, generally halogen and preferably chlorine, with a compound of formula (III):

wherein R^2 , U, R^3 and R^4 are as defined above, or with a compound of formula (IV), 10 (V), (VI); (VII) or (VIII):

17

wherein R⁴, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, W, X, Y and Z are as defined above. The reaction is generally performed in the presence of an organic base such as a tertiary amine for example triethylamine, or pyridine, or an inorganic base such as an alkali metal carbonate, for example potassium carbonate, or an alkali metal alkoxide such as sodium ethoxide, or sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O, and R³ and R⁴ are as defined above, may be prepared by the reaction of a compound of formula (IX):

with oxalyl chloride or triphosgene, in an inert solvent such as dichloroethane at a temperature of from 0°C to the reflux temperature of the solvent, followed by removal of the solvent to give the corresponding acylisocyanate intermediate which is generally not isolated, and which is directly reacted with an amine of formula (X):

HNR³R⁴

wherein R³ and R⁴ are as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O, and R^{3a} is as defined above, may be prepared by the reaction of a compound of formula (IX) as defined above, with oxalyl chloride to give an acylisocyanate intermediate above which is generally not isolated, and which is directly reacted with an alcohol of formula (XI):

wherein R³ is as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

(XI)

HOR^{3a}

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O or S, and R³ and R⁴ are as defined above, may be prepared by the reaction of a compound of formula (XII).

wherein U is O or S, with a compound of formula (X) as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I)
wherein R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O or S, and R^{3a} is as defined above, may be prepared by the reaction of a compound of formula (XIII).

WO 2003/097604 PCT/EP2003/004714

wherein V is O or S, with a compound of formula (XI) as defined above. The reaction is generally performed in an inert solvent such as dichloroethane or tetrahydrofuran at a temperature of from 0° to 60°C.

5

10

15

20

25

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴, m is zero, R² is H, R⁴ is H, U is O or S, and R³ is as defined above, may be prepared by the reaction of a compound of formula (IX) as defined above, with a strong base such as sodium hydride to form the corresponding salt, which is then reacted with a compound of formula (XIV):

$$R^3N=C=U$$
 (XIV)

wherein R³ is as defined above. The reaction is generally performed in an inert solvent such as N,N-dimethylformamide at a temperature of from 0° to 60°C.

According to a further feature of the present invention compounds of formula (I) wherein R¹ is -C(=U)NR³R⁴ or -C(=V)OR³a, m is zero, R² is H, U and V are each S, and R³, R³a and R⁴ are as defined above, may be prepared in a 1-pot process by the reaction of 4-trifluoromethylnicotinic acid with a suitable halogenating agent, preferably oxalyl chloride, in a solvent such as dichloroethane, optionally in the presence of N,N-dimethylformamide, at a temperature of from 0°C to the reflux temperature of the solvent, to give the corresponding acid chloride, followed by removal of the solvent, and reaction with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate for example tetrabutylammonium thiocyanate, generally in the presence of a base, such as an alkali metal carbonate for example potassium carbonate, in an inert solvent such as toluene or acetone, at a temperature of from 0° to 60°C, to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, followed by reaction with an amine of formula (X) above or an alcohol of formula (XI) above, at a temperature of from 0° to 60°C.

20

20

According to a further feature of the invention compounds of formula (I) wherein R^1 is $-C(=U)NR^3R^4$, m is zero, U, R^3 and R^4 are as defined above, and R^2 is (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl or (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which groups are unsubstituted or substituted by one or more R^6 groups; or is $-(CR^{15}R^{16})_p$ aryl or $-(CR^{15}R^{16})_p$ heterocyclyl, which aryl or heterocyclyl groups are optionally substituted by R^{17} ; wherein R^6 , R^{15} , R^{16} and R^{17} are as defined above, may be prepared by the reaction of the corresponding compound of formula (I) wherein R^2 is H, using an alkylatig agent of formula (XV):

$$R^2-L^1$$
 (XV)

wherein L¹ is a leaving group generally halogen and preferably chlorine. The reaction is generally performed in the presence of an organic base such as a tertiary amine for example triethylamine, or pyridine, or an inorganic base such as an alkali metal carbonate, for example potassium carbonate, or an alkali metal alkoxide such as sodium ethoxide, or sodium hydride, in a solvent such as dioxan, tetrahydrofuran or N,N-dimethylformamide, at a temperature of from 0° to 100°C (preferably 0° to 50°C).

According to a further feature of the invention compounds of formula (I) wherein R¹, and R² are as defined above, and m is 1 may be prepared by oxidising a corresponding compound in which m is 0. The oxidation is generally performed using hydrogen peroxide in a solvent such as acetic acid, or a peracid such as 3-chloroperbenzoic acid in a solvent such as dichloromethane or 1,2-dichloroethane, at a temperature of from 0°C to the reflux temperature of the solvent.

Intermediates of formula (II) wherein L is chlorine, may be prepared according to known procedures, for example by the reaction of the corresponding carboxylic acid of formula (II) wherein L is replaced by OH, with a suitable halogenating agent, preferably oxalyl chloride or thionyl chloride, in a solvent such as dichloroethane, optionally in the presence of N,N-dimethylformamide, at a temperature of from 0°C to the reflux temperature of the solvent.

Intermediates of formula (XII) wherein U is S, and (XIII) wherein V is O, may be prepared according to known procedures, for example by the reaction of a compound of formula (II) as defined above, with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate for example tetrabutylammonium thiocyanate, generally in the presence of a base such as an alkali metal carbonate for example potassium carbonate, in an inert solvent such as toluene or acetone, at a temperature of from 0° to 100°C.

Intermediate of formula (XII) wherein U is O, may be prepared according to known procedures, for example by the reaction of a compound of formula (II) as defined above, with an alkali metal cyanate or ammonium cyanate or a tetraalkylammonium cyanate for example tetrabutylammonium cyanate, generally in the presence of a base such as an alkali metal carbonate for example potassium carbonate, in an inert solvent solvent such as toluene, at a temperature of from 0° to 100°C.

15

20

10

5

Collections of compounds of the formula (I) which can be synthesized by the above mentioned process may also be prepared in a parallel manner, and this may be effected manually or in a semiautomated or fully automated manner. In this case, it is possible, for example, to automate the procedure of the reaction, work-up or purification of the products or of the intermediates. In total, this is to be understood as meaning a procedure as is described, for example, by S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Volume 1, Verlag Escom 1997, pages 69 to 77.

A series of commercially available apparatuses as are offered by, for example, Stem Corporation, Woodrolfe Road, Tollesbury, Essex, CM9 8SE, England or H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Germany or Radleys, Shirehill, Saffron Walden, Essex, England, may be used for the parallel procedure of the reaction and work-up. For the parallel purification of compounds of the formula (I), or of intermediates obtained during the preparation, use may be made, inter alia, of chromatography apparatuses, for example those by ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

10

The apparatuses mentioned lead to a modular procedure in which the individual process steps are automated, but manual operations must be performed between the process steps. This can be prevented by employing semi-integrated or fully integrated automation systems where the automation modules in question are operated by, for example, robots. Such automation systems can be obtained, for example, from Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA.

In addition to what has been described here, compounds of the formula (I) may be prepared in part or fully by solid-phase-supported methods. For this purpose, individual intermediate steps or all intermediate steps of the synthesis or of a synthesis adapted to suit the procedure in question are bound to a synthetic resin. Solid-phase-supported synthesis methods are described extensively in the specialist literature, for example Barry A. Bunin in "The Combinatorial Index", Academic Press, 1998.

- The use of solid-phase-supported synthesis methods permits a series of protocols which are known from the literature and which, in turn, can be performed manually or in an automated manner. For example, the "tea-bag method" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135), in which products by IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA, are employed, may be semiautomated. The automation of solid-phase-supported parallel syntheses is performed successfully, for example, by apparatuses by Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA or MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Germany.
- The preparation of the processes described herein yields compounds of the formula (I) in the form of substance collections which are termed libraries. The present invention also relates to libraries which comprise at least two compounds of the formula (I).
- 30 Compounds of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XIV) and (XV) are known or may be prepared by known methods.

The following non-limiting Examples illustrate the preparation of the compounds of formula (I).

Chemical Examples

5 NMR spectra were run in deuterochloroform unless stated otherwise.
In the Examples which follow, quantities (also percentages) are weight-based, unless stated otherwise.

Example 1

Oxalyl chloride (0.15ml) was added to a suspension of 4-trifluoromethyl-3pyridinecarboxamide (0.25g) in 1,2-dichloroethane at 20°C and then heated to reflux
for 2 hours. The mixture was cooled, evaporated and the residue containing 4trifluoromethyl-3-pyridylcarbonyl isocyanate was dissolved in tetrahydrofuran.
Benzylamine (0.15ml) was added and the mixture stirred at 20°C for 2 hours and
evaporated. The residue was purified by silica-gel column chromatography, eluting
with n-hexane/ethyl acetate (3:2), to give 1-benzyl-3-(4-trifluoromethyl-3pyridylcarbonyl)urea (0.30g, Compound A-37).

By proceeding in a similar manner there was prepared 1-benzyl-1-(2-hydroxyethyl)-20 3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (Compound A-862).

Example 2

25

30

Oxalyl chloride (1.50ml) was added to a suspension of 4-trifluoromethyl-3-pyridinecarboxamide (2.0g) in 1,2-dichloroethane at 20°C, and stirred under reflux for 2 hours. The mixture was evaporated and dichloromethane added to the residue containing 4-trifluoromethyl-3-pyridylcarbonyl isocyanate. To this was added at 20°C a suspension of N,O-dimethylhydroxylamine hydrochloride(2.05g) and triethylamine (3.0ml) in dichloromethane, which had been prepared in advance. The mixture was stirred for 30 minutes, then water added and the organic layer dried (magnesium sulfate) and evaporated, to give after trituration with ethanol, 1-methyl-1-methoxy-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (2.2g) (Compound A-313).

By proceeding in a similar manner there was prepared 1-hydroxyl-1-isopropyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (Compound A-540).

Example 3

Sodium hydride (0.090g, 60% dispersion in mineral oil) was added to a solution of 4-trifluoromethyl-3-pyridinecarboxamide (0.40g) in N,N-dimethylformamide at 20°C, and stirred for 1 hour. Benzyl isocyanate (0.31 ml) was added and the mixture stirred at 20°C for 2 hours, then methyl bromoacetate (0.30 ml) added and stirring continued for 5 hours. Ethyl acetate and water were added to the solution and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1), to give 3-benzyl-1-(4-trifluoromethyl-3-pyridylcarbonyl)hydantoin (0.50g, Compound S-132).

15 Example 4

20

Methanesulfonyl chloride (0.17ml) was added to an ice-cooled mixture of 1-benzyl-1-(2-hydroxyethyl)-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.70g), and triethylamine (0.64ml) in dichloromethane, then stirred for 3 hours at 20°C. The mixture was washed (water), dried (magnesium sulfate), evaporated and the residue purified by silica-gel chromatography, eluting with n-hexane/ethyl acetate (3:2), to give 1-benzyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)-2-imidazolidinone (0.63g, Compound S-15).

Example 5

1,2-Dibromoethane (0.06ml) was added to a suspension of 1-hydroxyl-1-isopropyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.20g) and potassium carbonate (0.20g) in N,N-dimethylformamide at 20°C, and stirred for 3 hours. Ethyl acetate and water were added and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1), to give 2-isopropyl-4-(4-trifluoromethyl-3-pyridylcarbonyl)-perhydro-1,2,4-oxadiazin-3-one (0.25g, Compound U-3).

Example 6

5

10

15

20

25

30

Oxalyl chloride (3.2 ml, 2M) was added to a suspension of 4-trifluoromethylnicotinic acid (1g) and a catalytic amount of N,N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour. After evaporation, the residue was dissolved in acetone and potassium thiocyanate (1g) added with ice bath cooling to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, then N-methylaniline (0.65g) was added and the mixture stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, dried (magnesium sulfate), evaporated and the residue purified by silicagel chromatography, eluting with n-hexane/ethyl acetate = 2/1, to give 1-methyl-1-phenyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)thiourea (0.96g, Compound B-349).

Example 7

Oxalyl chloride (6.4ml, 2M) was added to a suspension of 4-trifluoromethylnicotinic acid (2g) and a catalytic amount of N,N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour to give a solution of 4-trifluoromethylnicotinic acid chloride. N, N-Ethylenethiourea (2.23g) was added to sodium hydride (0.82g, 60% dispersion in mineral oil) in tetrahydrofuran, and the mixture was stirred at 20°C for 1 hour, and then added to the above solution of 4-trifluoromethylnicotinic acid chloride with ice bath cooling, then stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, dried (magnesium sulfate), evaporated and the residue crystallized (ethanol) to give N-(4-trifluoromethyl-3-pyridylcarbonyl)-imidazolin-2-thione (1.35 g, Compound S-356).

Example 8

Oxalyl chloride (9.6 ml, 2M) was added to a suspension 4-trifluoromethylnicotinic acid (3g) and a catalytic amount of N, N-dimethylformamide in dichloromethane, and stirred at 20°C for 1 hour. The mixture was evaporated, the residue dissolved in toluene and tetrabutylammonium thiocyanate (3g) and potassium carbonate (1.5g) added, then stirred at 20°C for 30 minutes to give 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate 2,2,2-trifluoroethanol (3.15g) was then added, and the mixture stirred at 20°C for 1 hour. Ethyl acetate was added and the mixture washed with water, hydrochloric acid 1(M), saturated sodium bicarbonate and brine, dried (magnesium

sulfate), evaporated and recrystallised from ethanol to give 2,2,2-trifluoroethyl N-(4-trifluoromethyl-3-pyridylcarbonyl) thiocarbamate (1.2g, Compound X-45).

Example 9

Allyl bromide (0.10ml) was added to a suspension of 1-methyl-1-methoxy-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.25g) and potassium carbonate (0.16g) in N,N-dimethylformamide at 20°C, and stirred for 2 hours. Ethyl acetate and water were added and the organic phase dried (magnesium sulfate), evaporated and the residue purified by column chromatography on silica gel, eluting with n-hexane/ethyl acetate (2:1) to give 1-methyl-1-methoxy-3-allyl-3-(4-trifluoromethyl-3-pyridylcarbonyl)urea (0.26g, Compound E-85).

The following preferred compounds shown in Tables 1 to 9 also form part of the present invention, and were or may be prepared in accordance with, or analogously to, the above-mentioned Examples 1 to 9 or the above-described general methods. In the Tables Ph means phenyl. Where subscripts are omitted after atoms it will be understood that they are intended, for example CH3 means CH₃.

Compound numbers are given for reference purposes only.

20 Table I

15

Compounds of formula (I) in which R¹ is --C(=U)NR³R⁴; R² is H and m is zero. In Table 1 compounds A-1 to A-881 represent individual compounds in which U is O, whilst compounds B-1 to B-881 represent individual compounds in which U is S.

Compound		R ³	R ⁴	
A-1	B-1	CH₃CH=CH	Н	
A-2	B-2	CH ₂ =CHCH ₂	Н	
A-3	B-3	CH ₃ (CH ₃)C=CH	Н	
A-4	B-4	(CH ₃) ₂ C=CH	Н	
A-5	B-5	CH ₃ CH=CHCH ₂	Н	
A-6	B-6	CH ₂ =C(CH ₃)CH ₂	Н	
A-7	B-7	CH₃CH=C(CI)CH₂	Н	
A-8	B-8	CH ₂ =CHCH ₂ CH ₂	Н	
A-9	B-9	CH ₃ CH ₂ (CH ₃)C=CH	Н	
A-10	B-10	(CH ₃) ₂ CHCH=CH	Н	

Compound		R ³	R ⁴
A-11	B-11	CH ₂ CH ₂ CH=CHCH ₂	H
A-12	B-12	CH ₃ CH=C(CH ₃)CH ₂	Η
A-13	B-13	CH(CH ₃)HC=CHCH ₃	Н
A-14	B-14	CH ₂ HC=C(CH ₃) ₂	Н
A-15	B-15	CH ₃ CH=CHCH ₂ CH ₂	H
A-16	B-16	CH ₂ =CH ₂ CH ₂ CH ₂ CH ₂	Н
A-17	B-17	CH ₂ =CH ₂ CH ₂ CH ₂ CHCH ₂	Η
A-18	B-18	CHCCH₂	Н
A-19	B-19	CH₃CCCH₂	Н
A-20	B-20	CHCCH(CH ₃)	H
A-21	B-21	CH₃CCCH(CH₃)	Н
A-22	B-22	CHCC(CH ₃) ₂	H
A-23	B-23	CH ₃ CCC(CH ₃) ₂	H
A-24	B-24	cyclo-C ₃ H ₅	H
A-25	B-25	cyclo-C ₃ H ₄ (₁ -CH ₃)	H
A-26	B-26	cyclo-C ₄ H7	Η
A-27	B-27	cyclo-C ₄ H6(₁ -CH ₃)	Η
A-28	B-28	cyclo-C₅H9	H
A-29	B-29	cyclo-C ₅ H8(₁ -CH ₃)	H
A-30	B-30	cyclo-C6H ₁₁	H
A-31	B-31	cyclo-C6H ₁₀ (₁ -CH ₃)	H
A-32	B-32	(cyclo-C ₃ H ₅)CH ₂	Н
A-33	B-33	(cyclo-C ₃ H ₄ (₁ -CH ₃))CH ₂	H
A-34	B-34	(cyclo-C ₄ H7)CH ₂	Н
A-35	B-35	(cyclo-C ₅ H9)CH ₂	H
A-36	B-36	(cyclo-C6H ₁₁)CH ₂	Н
A-37	B-37	PhCH ₂	Н
A-38	B-38	PhCH(CH ₃)	H
A-39	B-39	PhCH ₂ CH ₂	H
A-40	B-40	PhC(CH ₃) ₂	Н
A-41	B-41	PhCH ₂ CH ₂	Н
A-42	B-42	(2-F-Ph)CH ₂	Н
A-43	B-43	(3-F-Ph)CH ₂	Н
A-44	B-44	(4-F-Ph)CH ₂	Н
A-45	B-45	(2-CI-Ph)CH ₂	Н
A-46	B-46	(3-CI-Ph)CH ₂	Н
A-47	B-47	(4-Cl-Ph)CH ₂	Н
A-48	B-48	(2-Br-Ph)CH ₂	Н
A-49	B-49	(3-Br-Ph)CH ₂	H
A-50	B-50	(4-Br-Ph)CH ₂	H
A-51	B-51	(2-I-Ph)CH ₂	Н
A-52	B-52	(3-I-Ph)CH ₂	Н
A-53	B-53	(4-I-Ph)CH ₂	H

Compo	und	R ³	R ⁴
A-54	B-54	(2-CF ₃ -Ph)CH ₂	H
A-55	B-55	(3-CF ₃ -Ph)CH ₂	Н
A-56	B-56	(4-CF ₃ -Ph)CH ₂	Н
A-57	B-57	(2-CH ₃ -Ph)CH ₂	H
A-58	B-58	(3-CH ₃ -Ph)CH ₂	H
A-59	B-59	(4-CH ₃ -Ph)CH ₂	Н
A-60	B-60	(2-CH₃O-Ph)CH₂	Н
A-61	B-61	(3-CH ₃ O-Ph)CH ₂	H
A-62	B-62	(4-CH ₃ O-Ph)CH ₂	H
A-63	B-63	НО	Н
A-64	B-64	CH₃O	H
A-65	B-65	CH₃CH₂O	Н
A-66	B-66	n-C₃H7O	H
A-67	B-67	iso-C₃H7O	Н
A-68	B-68	n-C₄H9O	H
A-69	B-69	sec-C ₄ H9O	Н
A-70	B-70	iso-C ₄ H9O	Н
A-71	B-71	tert-C ₄ H9O	Н
A-72	B-72	n-C ₅ H ₁₁ O	Н
A-73	B-73	n-C6H ₁₃ O	H
A-74	B-74	CH ₂ =CHCH ₂ O	H
A-75	B-75	CH ₂ =C(CH ₃)CH ₂ O	H
A-76	B-76	CH ₂ =CHCH(CH ₃)O	Н
A-77	B-77	CH ₂ =C(CI)CH ₂ O	Н
A-78	B-78	CH ₂ =CHC(CH ₃) ₂ O	H
A-79	B-79	CH ₃ CH=CHCH ₂ O	Н
A-80	B-80	CH ₂ =CH ₂ CH ₂ CH ₂ O	H
A-81	B-81	CHCCH ₂ O	H
A-82	B-82	CH₃CCCH₂O	Н
A-83	B-83	CHCCH(CH₃)O	Н
A-84	B-84	CHCC(CH ₃) ₂ O	Н
A-85	B-85	CH ₃ CH ₂ O ₂ CCH ₂ O	H
A-86	B-86	PhCH ₂ O	H
A-87	B-87	2-CH ₃ O-PhCH ₂ O	Н
A-88	B-88	3-CH ₃ O-PhCH ₂ O	H
A-89	B-89	4-CH ₃ O-PhCH ₂ O	Н
A-90	B-90	PhO	H
A-91	B-91	2-CI-PhO	Н
A-92	B-92	3-CI-PhO	H
A-93	B-93	4-CI-PhO	H
A-94	B-94	2-CF ₃ -PhO	H
A-95	B-95	3-CF ₃ -PhO	H
A-96	B-96	4-CF ₃ -PhO	Н

Compound		\mathbb{R}^3	R ⁴
A-97	B-97	2-CH ₃ O-PhO	Н
A-98	B-98	3-CH₃O-PhO	Н
A-99	B-99	4-CH ₃ O-PhO	Н
A-100	B-100	NH ₂	Н
A-101	B-101	CH ₃ NH	Н
A-102	B-102	C ₂ H ₅ NH	Н
A-103	B-103	n-C ₃ H7NH	Н
A-104	B-104	iso-C₃H7NH	Н
A-105	B-105	n-C ₄ H9NH	Н
A-106	B-106	n-C ₅ H ₁₁ NH	Н
A-107	B-107	n-C6H ₁₃ NH	Н
A-108	B-108	PhCH ₂ NH	Н
A-109	B-109	PhNH	Н
A-110	B-110	2-F-PhNH	Н
A-111	B-111	3-F-PhNH	Н
A-112	B-112	4-F-PhNH	Н
A-113	B-113	2-CI-PhNH	Н
A-114	B-114	3-CI-PhNH	Н
A-115	B-115-	4-CI-PhNH	Н
A-116	B-116	2-Br-PhNH	Н
A-117	B-117	3-Br-PhNH	H
A-118	B-118	4-Br-PhNH	H
A-119	B-119	2-I-PhNH	Н
A-120	B-120	3-I-PhNH	H
A-121	B-121	4-I-PhNH	H
A-122	B-122	2-CF ₃ -PhNH	Н
A-123	B-123	3-CF ₃ -PhNH	Н
A-124	B-124	4-CF ₃ -PhNH	Н
A-125	B-125	2-CH ₃ -PhNH	H
A-126	B-126	3-CH ₃ -PhNH	Н
A-127	B-127	4-CH ₃ -PhNH	H
A-128	B-128	2-CH₃O-PhNH	Н
A-129	B-129	3-CH ₃ O-PhNH	H
A-130	B-130	4-CH₃O-PhNH	H
A-131	B-131	2-NO ₂ -PhNH	Н
A-132	B-132	3-NO ₂ -PhNH	Н
A-133	B-133	4-NO ₂ -PhNH	H
A-134	B-134	2-CN-PhNH	Н
A-135	B-135	3-CN-PhNH	Н
A-136	B-136	4-CN-PhNH	Н
A-137	B-137	Ph(Me)N	Н
A-138	B-138	2-F-Ph(Me)N	Н
A-139	B-139	3-F-Ph(Me)N	H H

Compound		R ³	R ⁴
A-140	B-140	4-F-Ph(Me)N	Н
A-141	B-141	2-CI-Ph(Me)N	Н
A-142	B-142	3-CI-Ph(Me)N	Н
A-143	B-143	4-CI-Ph(Me)N	Н
A-144	B-144	3-CF ₃ -Ph(Me)N	Н
A-145	B-145	4-CF ₃ -Ph(Me)N	Н
A-146	B-146	2-CH₃O-Ph(Me)N	Н
A-147	B-147	3-CH ₃ O-Ph(Me)N	Н
A-148	B-148	4-CH ₃ O-Ph(Me)N	Н
A-149	B-149	Ph	Н
A-150	B-150	2-F-Ph	Н
A-151	B-151	3-F-Ph	Н
A-152	B-152	4-F-Ph	Н
A-153	B-153	2-Cl-Ph	Н
A-154	B-154	3-CI-Ph	Н
A-155	B-155	4-CI-Ph	Н
A-156	B-156	2-Br-Ph	Н
A-157	B-157	3-Br-Ph	Н
A-158	B-158	4-Br-Ph	Н
A-159	B-159	2-I-Ph	H
A-160	B-160	3-I-Ph	H
A-161	B-161	4-I-Ph	Н
A-162	B-162	2-CF ₃ -Ph	Н
A-163	B-163	3-CF₃-Ph	Н
A-164	B-164	4-CF ₃ -Ph	H
A-165	B-165	2-CH ₃ -Ph	H
A-166	B-166	3-CH₃-Ph	Н
A-167	B-167	4-CH₃-Ph	Н
A-168	B-168	2-CH₃O-Ph	Н
A-169	B-169	3-CH₃O-Ph	H
A-170	B-170	4-CH₃O-Ph	Н
A-171	B-171	2-NO ₂ -Ph	Н
A-172	B-172	3-NO ₂ -Ph	H
A-173	B-173	4-NO ₂ -Ph	H
A-174	B-174	2-CN-Ph	H
A-175	B-175	3-CN-Ph	H
A-176	B-176	4-CN-Ph	H
A-177	B-177	2-CO₂H-Ph	Н
A-178	B-178	3-CO₂H-Ph	H
A-179	B-179	4-CO₂H-Ph	H
A-180	B-180	2-CO ₂ Me-Ph	H
A-181	B-181	3-CO₂Me-Ph	Н
A-182	B-182	4-CO ₂ Me-Ph	H

Compound		\mathbb{R}^3	R ⁴
A-183	B-183	2-HO-Ph	H
A-184	B-184	3-HO-Ph	H
A-185	B-185	4-HO-Ph	Н
A-186	B-186	2-NH ₂ -Ph	Н
A-187	B-187	3-NH ₂ -Ph	Н
A-188	B-188	4-NH ₂ -Ph	Н
A-189	B-189	2-HOCH ₂ -Ph	H
A-190	B-190	3-HOCH ₂ -Ph	Н
A-191	B-191	4-HOCH ₂ -Ph	Н
A-192	B-192	2-CF ₃ O-Ph	Н
A-193	B-193	3-CF ₃ O-Ph	Н
A-194	B-194	4-CF ₃ O-Ph	Н
A-195	B-195	2-CF ₃ CH ₂ O-Ph	Н
A-196	B-196	3-CF ₃ CH ₂ O-Ph	Н
A-197	B-197	4-CF ₃ CH ₂ O-Ph	Н
A-198	B-198	2-(4-Cl-PhO)-Ph	Н
A-199	B-199	3-(4-Cl-PhO)-Ph	Н
A-200	B-200	4-(4-Cl-PhO)-Ph	Н
A-201	B-201	2-(4-CF ₃ -PhO)-Ph	Н
A-202	B-202	3-(4-CF ₃ -PhO)-Ph	H
A-203	B-203	4-(4-CF ₃ -PhO)-Ph	H
A-204	B-204	2,3-diCl-Ph	H
A-205	B-205	2,5-diCl-Ph	H
A-206	B-206	2,6-diCl-Ph	H
A-207	B-207	3,4-diCl-Ph	H
A-208	B-208	3,5-diCl-Ph	H
A-209	B-209	2-Pyridyl	H
A-210	B-210	3-Pyridyl	H
A-211	B-211	4-Pyridyl	H
A-212	B-212	2-Pyrimidyl	H
A-213	B-213	1-Pyrrolyl	H
A-214	B-214	1-Pyrazolyl	H
A-215	B-215	3-Pyrazolyl	H
A-216	B-216	1,2,4-Triazol-1-yl	Н
A-217	B-217	1,2,4-Triazol-3-yl	H
A-218	B-218	2-Furanyl	Н
A-219	B-219	3-Furanyl	Н
A-220	B-220	2-Thienyl	Н
A-221	B-221	3-Thienyl	Н
A-222	B-222	2-Thiazolyl	H
A-223	B-223	1,3,4-Thiadiazol-2-yl	Н
A-224	B-224	3-Isoxazolyl	Н
A-225	B-225	CH₃CO	H

Compound		\mathbb{R}^3	R⁴
A-226	B-226	CH ₃ CH ₂ CO	H
A-227	B-227	n-C ₃ H7CO	Н
A-228	B-228	iso-C ₃ H7CO	Н
A-229	B-229	n-C ₄ H9CO	Н
A-230	B-230	iso-C ₄ H9CO	Η
A-231	B-231	sec-C ₄ H9CO	H
A-232	B-232	tert-C ₄ H9CO	Η
A-233	B-233	n-C5H ₁₁ CO	H
A-234	B-234	n-C6H ₁₂ CO	H
A-235	B-235	PhCO	H
A-236	B-236	PhCH₂CO	H
A-237	B-237	CH ₃ SO ₂	H
A-238	B-238	C ₂ H5SO ₂	H
A-239	B-239	n-C ₃ H7SO ₂	H
A-240	B-240	iso-C ₃ H7SO ₂	H
A-241	B-241	PhCH ₂ SO ₂	H
A-242	B-242	PhSO ₂	H
A-243	B-243	2-Cl-PhSO ₂	H
A-244	B-244	3-Cl-PhSO ₂	H
A-245	B-245	4-Cl-PhSO ₂	H
A-246	B-246	CH ₃ SO ₂ NH	H
A-247	B-247	PhSO ₂ NH	Н
A-248	B-248	CF ₃ CH ₂	H
A-249	B-249	CICH ₂ CH ₂	H
A-250	B-250	CICH ₂ CH ₂ CH ₂	H
A-251	B-251.	CH₃OCH₂CH₂	H
A-252	B-252	CH ₃ CH ₂ OCH ₂ CH ₂	Н
A-253	B-253	CH ₃ OCH ₂ CH ₂ CH ₂	Н
A-254	B-254	C ₂ H5OCH ₂ CH ₂ CH ₂	H
A-255	B-255	n-C ₄ H9OCH ₂ CH ₂ CH ₂	H
A-256	B-256	(CH ₃ O) ₂ CHCH ₂	Н
A-257	B-257	CH₃CONH	Н
A-258	B-258	PhCONH	H
A-259	B-259	Ph₂C=N	H
A-260	B-260	HOCH₂CH₂	H
A-261	B-261	HOCH₂CH₂CH₂	H
A-262	B-262	CH ₃ O ₂ CCH ₂	Н
A-263	B-263	CH ₃ O ₂ CCH(CH ₃)	H
A-264	B-264	CH ₃ O ₂ CC(CH ₃) ₂	<u>H</u>
A-265	B-265	NCCH ₂	Н
A-266	B-266	NCCH(CH₃)	H
A-267	B-267	NCC(CH ₃) ₂	H
A-268	B-268	NC(CH ₃)(iso-C ₃ H7)C	Н .

Compound		R ³	R⁴
A-269	B-269	HOCH ₂ CH ₂ CH ₂ CH ₂	H
A-270	B-270	CHCCH ₂ O	H
A-271	B-271	CH ₃ O ₂ CCH ₂ O	Н
A-272	B-272	CH ₃ O ₂ CCH(CH ₃)O	H
A-273	B-273	CH ₃ O ₂ CC(CH ₃) ₂ O	H
A-274	B-274	(1-pyrrolidinyl)CH ₂ CH ₂	H
A-275	B-275	CH ₂ =CHCH ₂	CH ₃
A-276	B-276	CH₃CH=CHCH₂	CH ₃
A-277	B-277	CH ₂ =C(CH ₃)CH ₂	CH₃
A-278	B-278	CH₂=CH(CH₃)CH	CH₃
A-279	B-279	CH ₂ =CHCH ₂ CH ₂	CH ₃
A-280	B-280	CH ₃ CH=C(CH ₃)CH ₂	CH₃
A-281	B-281	CH(CH ₃)HC=CHCH ₃	CH ₃
A-282	B-282	C(CH ₃) ₂ HC=CH ₂	CH₃
A-283	B-283	CH ₂ HC=C(CH ₃) ₂	CH ₃
A-284	B-284	CH ₃ CH=CHCH ₂ CH ₂	CH ₃
A-285	B-285	CH ₂ =CHCH ₂ CH ₂ CH ₂	CH₃
A-286	B-286	CHCCH₂	CH₃
A-287	B-287	CH ₃ CCCH ₂	CH₃
A-288	B-288	CHCCH(CH ₃)	CH₃
A-289	B-289	CH ₃ CCCH(CH ₃)	CH₃
A-290	B-290	cyclo-C ₃ H5	CH₃
A-291	B-291	cyclo-C5H9	CH₃
A-292	B-292	cyclo-C6H ₁₁	CH₃
A-293	B-293	(cyclo-C ₃ H5)CH ₂	CH ₃
A-294	B-294	(cyclo-C5H9)CH ₂	CH₃
A-295	B-295	(cyclo-C6H ₁₁)CH ₂	CH ₃
A-296	B-296	PhCH ₂	CH₃
A-297	B-297	PhCH(CH ₃)	CH ₃
A-298	B-298	PhC(CH ₃) ₂	CH ₃
A-299	B-299	PhCH ₂ CH ₂	CH₃
A-300	B-300	(2-F-Ph)CH ₂	CH ₃
A-301	B-301	(3-F-Ph)CH ₂	CH ₃
A-302	B-302	(4-F-Ph)CH ₂	CH ₃
A-303	B-303	(2-Cl-Ph)CH ₂	CH ₃
A-304	B-304	(3-Cl-Ph)CH ₂	CH₃
A-305	B-305	(4-Cl-Ph)CH ₂	CH₃
A-306	B-306	(2-CF ₃ -Ph)CH ₂	CH₃
A-307	B-307	(3-CF ₃ -Ph)CH ₂	CH ₃
A-308	B-308	(4-CF ₃ -Ph)CH ₂	CH₃
A-309	B-309	(2-CH ₃ O-Ph)CH ₂	CH₃
A-310	B-310	(3-CH ₃ O-Ph)CH ₂	CH ₃
A-311	B-311	(4-CH ₃ O-Ph)CH ₂	CH₃

Compou	ınd	\mathbb{R}^3	R ⁴
		НО	CH ₃
A-313	B-313	CH₃O	CH ₃
A-314	B-314	CH₃CH₂O	CH₃
A-315	B-315	n-C ₃ H7O	CH ₃
A-316	B-316	iso-C₃H7O	CH ₃
A-317	B-317	CH ₂ =CHCH ₂ O	CH ₃
A-318	B-318	CH ₂ =C(CH ₃)CH ₂ O	CH ₃
A-319	B-319	CH ₂ =CHCH(CH ₃)O	CH ₃
A-320	B-320	CH ₂ =CHCH(CH ₃)O	CH ₃
A-321	B-321	CH ₂ =CHC(CH ₃) ₂ O	CH ₃
A-322	B-322	CH ₃ CH=CHCH ₂ O	CH ₃
A-323	B-323	CHCCH₂O	CH ₃
A-324	B-324	CH₃CCCH₂O	CH ₃
A-325	B-325	CHCCH(CH₃)O	CH₃
A-326	B-326	CH ₃ O ₂ CCH(CH ₃)O	CH ₃
A-327	B-327	CH ₃ O ₂ CC(CH ₃) ₂ O	CH ₃
A-328	B-328	CH ₃ O ₂ CCH ₂ O	CH₃
A-329	B-329	PhCH ₂ O	CH ₃
A-330	B-330	PhO	CH ₃
A-331	B-331	NH ₂	CH ₃
A-332	B-332	CH ₃ NH	CH ₃
A-333	B-333	C ₂ H5NH	CH ₃
A-334	B-334	n-C₃H7NH	CH ₃
A-335	B-335	iso-C₃H7NH	CH ₃
A-336	B-336	PhCH ₂ NH	CH ₃
A-337	B-337	PhNH	CH ₃
A-338	B-338	2-F-PhNH	CH ₃
A-339	B-339	3-F-PhNH	CH ₃
A-340	B-340	4-F-PhNH	CH ₃
A-341	B-341	2-CI-PhNH	CH ₃
A-342	B-342	3-CI-PhNH	CH ₃
A-343	B-343	4-CI-PhNH	CH ₃
A-344	B-344	2-CF ₃ -PhNH	CH₃
A-345	B-345	3-CF ₃ -PhNH	CH₃
A-346	B-346	2-CH ₃ O-PhNH	CH ₃
A-347	B-347	3-CH₃O-PhNH	CH ₃
A-348	B-348	4-CH₃O-PhNH	CH ₃
A-349	B-349	Ph	CH₃
A-350	B-350	2-F-Ph	CH₃
A-351	B-351	3-F-Ph	CH ₃
A-352	B-352	4-F-Ph	CH ₃
A-353	B-353	2-CI-Ph	CH ₃
A-354	B-354	3-CI-Ph	CH ₃

Con	npound	R ³	R⁴
A-355	B-355	4-Cl-Ph	CH ₃
A-356	B-356	2-Br-Ph	CH ₃
A-357	B-357	3-Br-Ph	CH₃
A-358	B-358	4-Br-Ph	CH₃
A-359	B-359	2-I-Ph	CH ₃
A-360	B-360	3-I-Ph	CH₃
A-361	B-361	4-I-Ph	CH₃
A-362	B-362	2-CF ₃ -Ph	CH₃
A-363	B-363	3-CF ₃ -Ph	CH₃
A-364	B-364	4-CF ₃ -Ph	CH₃
A-365	B-365	2-CH ₃ -Ph	CH ₃
A-366	B-366	3-CH₃-Ph	CH₃
A-367	B-367	4-CH ₃ -Ph	CH ₃
A-368	B-368	2-CH₃O-Ph	CH ₃
A-369	B-369	3-CH₃O-Ph	CH ₃
A-370	B-370	4-CH₃O-Ph	CH₃
A-371	B-371	2-NO ₂ -Ph	CH₃
A-372	B-372	3-NO ₂ -Ph	CH ₃
A-373	B-373-	4-NO ₂ -Ph	CH₃
A-374	B-374	2-CN-Ph	CH ₃
A-375	B-375	3-CN-Ph	CH ₃
A-376	B-376	4-CN-Ph	CH ₃
A-377	B-377	2-CO₂Me-Ph	CH ₃
A-378	B-378	3-CO ₂ Me-Ph	CH ₃
A-379	B-379	4-CO₂Me-Ph	CH₃
A-380	B-380	2-HO-Ph	CH ₃
A-381	B-381	3-HO-Ph	CH ₃
A-382	B-382	4-HO-Ph	CH₃
A-383	B-383	2-NH ₂ -Ph	CH₃
A-384	B-384	3-NH ₂ -Ph	CH ₃
A-385	B-385	4-NH ₂ -Ph	CH ₃
A-386	B-386	2-CF₃O-Ph	CH₃
A-387	B-387	3-CF ₃ O-Ph	CH₃
A-388	B-388	4-CF ₃ O-Ph	CH ₃
A-389	B-389	4-CF ₃ CH ₂ O-Ph	CH₃
A-390	B-390	4-(4-Cl-PhO)-Ph	CH ₃
A-391	B-391	4-(4-CF ₃ -PhO)-Ph	CH₃
A-392	B-392	2,3-diCl-Ph	CH ₃
A-393	B-393	2,4-diCl-Ph	CH ₃
A-394	B-394	2,5-diCl-Ph	CH ₃
A-395	B-395	2,6-diCl-Ph	CH ₃
A-396	B-396	3,4-diCl-Ph	CH ₃
A-397	B-397	3,5-diCl-Ph	CH ₃

Compo	und	R ³	R⁴
A-398	B-398	2-Pyridyl	CH ₃
A-399	B-399	3-Pyridyl	CH ₃
A-400	B-400	4-Pyridyl	CH ₃
A-401	B-401	2-Pyrimidyl	CH ₃
A-402	B-402	1-Pyrrolyl	CH₃
A-403	B-403	1-Pyrazolyl	CH₃
A-404	B-404	3-Pyrazolyl	CH ₃
A-405	B-405	1,2,4-Triazol-1-yl	CH ₃
A-406	B-406	1,2,4-Triazol-3-yl	CH ₃
A-407	B-407	2-Furanyl	CH ₃
A-408	B-408	3-Furanyl	CH ₃
A-409	B-409	2-Thienyl	CH ₃
A-410	B-410	3-Thienyl	CH ₃
A-411	B-411	2-Thiazolyl	CH₃
A-412	B-412	1,3,4-Thiadiazol-2-yl	CH₃
A-413	B-413	3-Isoxazolyl	CH₃
A-414	B-414	CH₃CO	CH ₃
A-415	B-415	PhCO	CH₃
A-416	B-416	PhCH ₂ CO	CH ₃
A-417	B-417	CH₃SO₂NH	CH ₃
A-418	B-418	PhSO ₂ NH	CH ₃
A-419	B-419	CF ₃ CH ₂	CH₃
A-420	B-420	CICH ₂ CH ₂	CH₃
A-421	B-421	CICH ₂ CH ₂ CH ₂	CH₃
A-422	B-422	CH₃OCH₂CH₂	CH ₃
A-423	B-423	CH₃CH₂OCH₂CH₂	CH₃
A-424	B-424	CH ₃ OCH ₂ CH ₂ CH ₂	CH₃
A-425	B-425	C ₂ H5OCH ₂ CH ₂ CH ₂	CH ₃
A-426	B-426	n-C ₄ H9OCH ₂ CH ₂ CH ₂	CH ₃
A-427	B-427	(CH ₃ O) ₂ CHCH ₂	CH ₃
A-428	B-428	CH₃CONH	CH ₃
A-429	B-429	PhCONH	CH ₃
A-430	B-430	Ph ₂ C=N	CH ₃
A-431	B-431	HOCH ₂ CH ₂	CH ₃
A-432	B-432	HOCH ₂ CH ₂ CH ₂	CH ₃
A-433	B-433	CH ₃ O ₂ CCH ₂	CH ₃
A-434	B-434	CH ₃ O ₂ CCH(CH ₃)	CH ₃
A-435	B-435	CH ₃ O ₂ CC(CH ₃) ₂	CH₃
A-436	B-436	NCCH₂	CH₃
A-437	B-437	NC(CH ₃)(iso-C ₃ H7)C	CH ₃
A-438	B-438	(1-pyrrolidinyl)CH ₂ CH ₂	C₂H5
A-439	B-439	CH₂=CHCH₂	C₂H5
A-440	B-440	CHCCH₂	C₂H5

Compo	und	R ³	R⁴
A-441	B-441	CH₃CCCH₂	C ₂ H5
A-442	B-442	(cyclo-C ₃ H5)CH ₂	C ₂ H5
A-443	B-443	PhCH ₂	C ₂ H5
A-444	B-444	PhCH ₂ CH ₂	C ₂ H5
A-445	B-445	(2-CI-Ph)CH ₂	C ₂ H5
A-446	B-446	(3-CI-Ph)CH ₂	C ₂ H5
A-447	B-447	(4-CI-Ph)CH ₂	C ₂ H5
A-448	B-448	(2-CF ₃ -Ph)CH ₂	C ₂ H5
A-449	B-449	(3-CF ₃ -Ph)CH ₂	C ₂ H5
A-450	B-450	(4-CF ₃ -Ph)CH ₂	C ₂ H5
A-451	B-451	(2-CH ₃ O-Ph)CH ₂	C ₂ H5
A-452	B-452	(3-CH ₃ O-Ph)CH ₂	C₂H5
A-453	B-453	(4-CH ₃ O-Ph)CH ₂	C ₂ H5
A-454	B-454	НО	C ₂ H5
A-455	B-455	CH ₃ O	C ₂ H5
A-456	B-456	CH₃CH₂O	C₂H5
A-457	B-457	n-C₃H7O	C ₂ H5
A-458	B-458	iso-C₃H7O	C₂H5
A-459	B-459	CH ₂ =CHCH ₂ O	C₂H5
A-460	B-460	CHCCH₂O	C ₂ H5
A-461	B-461	PhCH ₂ O	C₂H5
A-462	B-462	PhO	C₂H5
A-463	B-463	NH ₂	C₂H5
A-464	B-464	CH ₃ NH	C₂H5
A-465	B-465	C₂H5NH	C₂H5
A-466	B-466	n-C₃H7NH	C₂H5
A-467	B-467	iso-C₃H7NH	C₂H5
A-468	B-468	PhCH₂NH	C₂H5
A-469	B-469	PhNH	C ₂ H5
A-470	B-470	2-CI-PhNH	C₂H5
A-471	B-471	3-CI-PhNH	C₂H5
A-472	B-472	4-CI-PhNH	C₂H5
A-473	B-473	2-CF ₃ -PhNH	C₂H5
A-474	B-474	3-CF ₃ -PhNH	C₂H5
A-475	B-475	2-CH ₃ O-PhNH	C₂H5
A-476	B-476	3-CH ₃ O-PhNH	C₂H5
A-477	B-477	4-CH ₃ O-PhNH	C₂H5
A-478	B-478	Ph	C₂H5
A-479	B-479	2-CI-Ph	C₂H5
A-480	B-480	3-Cl-Ph	C₂H5
A-481	B-481	4-Cl-Ph	C₂H5
A-482	B-482	2-CF ₃ -Ph	C₂H5
A-483	B-483	3-CF ₃ -Ph	C₂H5

Com	pound	R ³	R⁴
A-484	B-484	4-CF ₃ -Ph	C₂H5
A-485	B-485	2-CH ₃ O-Ph	C₂H5
A-486	B-486	3-CH₃O-Ph	C₂H5
A-487	B-487	4-CH₃O-Ph	C₂H5
A-488	B-488	2-HO-Ph	C₂H5
A-489	B-489	3-HO-Ph	C₂H5
A-490	B-490	4-HO-Ph	C ₂ H5
A-491	B-491	2-NH ₂ -Ph	C₂H5
A-492	B-492	3-NH ₂ -Ph	C ₂ H5
A-493	B-493	4-NH ₂ -Ph	C₂H5
A-494	B-494	2-HOCH ₂ -Ph	C ₂ H5
A-495	B-495	4-CF ₃ O-Ph	C₂H5
A-496	B-496	4-CF ₃ CH ₂ O-Ph	C₂H5
A-497	B-497	4-(4-Cl-PhO)-Ph	C ₂ H5
A-498	B-498	4-(4-CF ₃ -PhO)-Ph	C₂H5
A-499	B-499	2,3-diCl-Ph	C ₂ H5
A-500	B-500	1-Pyrrolyl	C ₂ H5
A-501	B-501	1-Pyrazolyl	C₂H5
A-502	B-502	1,2,4-Triazol-1-yl	C ₂ H5
A-503	B-503	2-Thiazolyl	C ₂ H5
A-504	B-504	1,3,4-Thiadiazol-2-yl	C ₂ H5
A-505	B-505	CH ₃ CO	C ₂ H5
A-506	B-506	PhCO	C ₂ H5
A-507	B-507	PhSO ₂ NH	C₂H5
A-508	B-508	CF ₃ CH ₂	C₂H5
A-509	B-509	CICH ₂ CH ₂	C₂H5
A-510	B-510	CICH ₂ CH ₂ CH ₂	C ₂ H5
A-511	B-511	CH ₃ OCH ₂ CH ₂	C₂H5
A-512	B-512	CH ₃ CH ₂ OCH ₂ CH ₂	C₂H5
A-513	B-513	CH ₃ OCH ₂ CH ₂ CH ₂	C ₂ H5
A-514	B-514	C ₂ H5OCH ₂ CH ₂ CH ₂	C ₂ H5
A-515	B-515	n-C ₄ H9OCH ₂ CH ₂ CH ₂	C ₂ H5
A-516	B-516	(CH ₃ O) ₂ CHCH ₂	C ₂ H5
A-517	B-517	CH₃CONH	C ₂ H5
A-518	B-518	PhCONH	C ₂ H5
A-519	B-519	HOCH ₂ CH ₂	C₂H5
A-520	B-520	HOCH ₂ CH ₂ CH ₂	C ₂ H5
A-521	B-521	CH ₃ O ₂ CCH ₂	C ₂ H5
A-522	B-522	CH ₃ O ₂ CCH(CH ₃)	C ₂ H5
A-523	B-523	NCCH ₂	n-C₃H7
A-523 A-524	B-524	HOCH ₂ CH ₂	n-C₃H7
A-525	B-525	CH ₂ =CHCH ₂	iso-C ₃ H7
A-526	B-526	CHCCH ₂	iso-C₃H7

Comp	oound	R ³	R⁴
A-527	B-527	CH ₃ CCCH ₂	iso-C ₃ H7
A-528	B-528	(cyclo-C ₃ H5)CH ₂	iso-C₃H7
A-529	B-529	PhCH ₂	iso-C ₃ H7
A-530	B-530	PhCH ₂ CH ₂	iso-C₃H7
A-531	B-531	(2-Cl-Ph)CH ₂	iso-C₃H7
A-532	B-532	(3-Cl-Ph)CH ₂	iso-C₃H7
A-533	B-533	(4-Cl-Ph)CH ₂	iso-C₃H7
A-534	B-534	(2-CF ₃ -Ph)CH ₂	iso-C₃H7
A-535	B-535	(3-CF ₃ -Ph)CH ₂	iso-C₃H7
A-536	B-536	(4-CF ₃ -Ph)CH ₂	iso-C₃H7
A-537	B-537	(2-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-538	B-538	(3-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-539	B-539	(4-CH ₃ O-Ph)CH ₂	iso-C₃H7
A-540	B-540	HO	iso-C₃H7
A-541	B-541	CH ₃ O	iso-C₃H7
A-542	B-542	CH₃CH₂O	iso-C₃H7
A-543	B-543	n-C₃H7O	iso-C₃H7
A-544	B-544	iso-C₃H7O	iso-C₃H7
A-545	B-545	CH ₂ =CHCH ₂ O	iso-C₃H7
A-546	B-546	CHCCH ₂ O	iso-C₃H7
A-547	B-547	PhCH ₂ O	iso-C₃H7
A-548	B-548	PhO	iso-C₃H7
A-549	B-549	NH ₂	iso-C₃H7
A-550	B-550	CH ₃ NH	iso-C₃H7
A-551	B-551	C₂H5NH	iso-C₃H7
A-552	B-552	n-C₃H7NH	iso-C₃H7
A-553	B-553	iso-C₃H7NH	iso-C₃H7
A-554	B-554	PhCH₂NH	iso-C₃H7
A-555	B-555	PhNH	iso-C₃H7
A-556	B-556	2-Cl-PhNH	iso-C₃H7
A-557	B-557	3-CI-PhNH	iso-C₃H7
A-558	B-558	4-CI-PhNH	iso-C₃H7
A-559	B-559	2-CF ₃ -PhNH	iso-C₃H7
A-560	B-560	3-CF ₃ -PhNH	iso-C₃H7
A-561	B-561	2-CH₃O-PhNH	iso-C₃H7
A-562	B-562	3-CH ₃ O-PhNH	iso-C₃H7
A-563	B-563	4-CH ₃ O-PhNH	iso-C ₃ H7
A-564	B-564	Ph	iso-C ₃ H7
A-565	B-565	2-CI-Ph	iso-C ₃ H7
A-566	B-566	3-CI-Ph	iso-C ₃ H7
A-567	B-567	4-Cl-Ph	iso-C₃H7
A-568	B-568	2-CF ₃ -Ph	iso-C₃H7
A-569	B-569	3-CF ₃ -Ph	iso-C₃H7

Compound		\mathbb{R}^3	R⁴
A-570	B-570	4-CF ₃ -Ph	iso-C₃H7
A-571	B-571	2-CH₃O-Ph	iso-C₃H7
A-572	B-572	3-CH₃O-Ph	iso-C₃H7
A-573	B-573	4-CH₃O-Ph	iso-C₃H7
A-574	B-574	2-HO-Ph	iso-C₃H7
A-575	B-575	3-HO-Ph	iso-C₃H7
A-576	B-576	4-HO-Ph	iso-C ₃ H7
A-577	B-577	2-NH ₂ -Ph	iso-C ₃ H7
A-578	B-578	3-NH ₂ -Ph	iso-C ₃ H7
A-579	B-579	4-NH ₂ -Ph	iso-C ₃ H7
A-580	B-580	2-HOCH ₂ -Ph	iso-C₃H7
A-581	B-581	4-CF ₃ O-Ph	iso-C₃H7
A-582	B-582	4-CF ₃ CH ₂ O-Ph	iso-C₃H7
A-583	B-583	4-(4-Cl-PhO)-Ph	iso-C₃H7
A-584	B-584	4-(4-CF ₃ -PhO)-Ph	iso-C₃H7
A-585 .	B-585	2,3-diCl-Ph	iso-C₃H7
A-586	B-586	1-Pyrrolyl	iso-C₃H7
A-587	B-587	1-Pyrazolyl	iso-C₃H7
A-588	B-588	1,2,4-Triazol-1-yl	iso-C₃H7
A-589	B-589	2-Thiazolyl	iso-C₃H7
A-590	B-590	1,3,4-Thiadiazol-2-yl	iso-C₃H7
A-591	B-591	CH₃CO	iso-C₃H7
A-592	B-592	PhCO	iso-C₃H7
A-593	B-593	PhSO ₂ NH	iso-C₃H7
A-594	B-594	CF ₃ CH ₂	iso-C₃H7
A-595	B-595	CICH ₂ CH ₂	iso-C₃H7
A-596	B-596	CICH ₂ CH ₂ CH ₂	iso-C₃H7
A-597	B-597	CH ₃ OCH ₂ CH ₂	iso-C₃H7
A-598	B-598	CH ₃ CH ₂ OCH ₂ CH ₂	iso-C₃H7
A-599	B-599	CH ₃ OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-600	B-600	C ₂ H5OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-601	B-601	n-C4H9OCH ₂ CH ₂ CH ₂	iso-C₃H7
A-602	B-602	(CH ₃ O) ₂ CHCH ₂	iso-C₃H7
A-603	B-603	CH₃CONH	iso-C₃H7
A-604	B-604	PhCONH	iso-C₃H7
A-605	B-605	HOCH ₂ CH ₂	iso-C₃H7
A-606	B-606	HOCH₂CH₂CH₂	iso-C₃H7
A-607	B-607	CH ₃ O ₂ CCH ₂	iso-C₃H7
A-608	B-608	CH ₃ O ₂ CCH(CH ₃)	iso-C₃H7
A-609	B-609	NCCH₂	iso-C₃H7
A-610	B-610	NC(CH ₃)(iso-C ₃ H7)	tert-C₄H9
A-611	B-611	CH ₂ =CHCH ₂	tert-C ₄ H9
A-612	B-612	CHCCH₂	tert-C₄H9

Compound		\mathbb{R}^3	R⁴
A-613	B-613	CH ₃ CCCH ₂	tert-C₄H9
A-614	B-614	(cyclo-C ₃ H5)CH ₂	tert-C₄H9
A-615	B-615	PhCH ₂	tert-C ₄ H9
A-616	B-616	PhCH ₂ CH ₂	tert-C ₄ H9
A-617	B-617	(2-Cl-Ph)CH ₂	tert-C₄H9
A-618	B-618	(3-Cl-Ph)CH ₂	tert-C ₄ H9
A-619	B-619	(4-Cl-Ph)CH ₂	tert-C ₄ H9
A-620	B-620	(2-CF ₃ -Ph)CH ₂	tert-C ₄ H9
A-621	B-621	(3-CF ₃ -Ph)CH ₂	tert-C ₄ H9
A-622	B-622	(4-CF ₃ -Ph)CH ₂	tert-C₄H9
A-623	B-623	(2-CH ₃ O-Ph)CH ₂	tert-C ₄ H9
A-624	B-624	(3-CH ₃ O-Ph)CH ₂	tert-C₄H9
A-625	B-625	(4-CH ₃ O-Ph)CH ₂	tert-C ₄ H9
A-626	B-626	НО	tert-C ₄ H9
A-627	B-627	CH ₃ O	tert-C₄H9
A-628	B-628	CH₃CH₂O	tert-C ₄ H9
A-629	B-629	n-C₃H7O	tert-C ₄ H9
A-630	B-630	iso-C ₃ H7O	tert-C ₄ H9
A-631	B-631	CH ₂ =CHCH ₂ O	tert-C ₄ H9
A-632	B-632	CHCCH ₂ O	tert-C₄H9
A-633	B-633	PhCH ₂ O	tert-C ₄ H9
A-634	B-634	PhO	tert-C ₄ H9
A-635	B-635	NH ₂	tert-C ₄ H9
A-636	B-636	CH ₃ NH	tert-C₄H9
A-637	B-637	C ₂ H5NH	tert-C ₄ H9
A-638	B-638	n-C ₃ H7NH	tert-C₄H9
A-639	B-639	iso-C ₃ H7NH	tert-C₄H9
A-640	B-640	PhCH₂NH	tert-C ₄ H9
A-641	B-641	PhNH	tert-C₄H9
A-642	B-642	2-CI-PhNH	tert-C ₄ H9
A-643	B-643	3-CI-PhNH	tert-C₄H9
A-644	B-644	4-CI-PhNH	tert-C ₄ H9
A-645	B-645	2-CF ₃ -PhNH	tert-C ₄ H9
A-646	B-646	3-CF ₃ -PhNH	tert-C ₄ H9
A-647	B-647	2-CH ₃ O-PhNH	tert-C ₄ H9
A-648	B-648	3-CH ₃ O-PhNH	tert-C₄H9
A-649	B-649	4-CH ₃ O-PhNH	tert-C₄H9
A-650	B-650	Ph	tert-C ₄ H9
A-651	B-651	2-Cl-Ph	tert-C ₄ H9
A-652	B-652	3-CI-Ph	tert-C ₄ H9
A-653	B-653	4-Cl-Ph	tert-C ₄ H9
A-654	B-654	2-CF ₃ -Ph	tert-C ₄ H9
A-655	B-655	3-CF ₃ -Ph	tert-C ₄ H9

Compound		R ³	R⁴
A-656	B-656	4-CF ₃ -Ph	tert-C ₄ H9
A-657	B-657	2-CH ₃ O-Ph	tert-C ₄ H9
A-658	B-658	3-CH₃O-Ph	tert-C ₄ H9
A-659	B-659	4-CH₃O-Ph	tert-C ₄ H9
A-660	B-660	2-HO-Ph	tert-C₄H9
A-661	B-661	3-HO-Ph	tert-C₄H9
A-662	B-662	4-HO-Ph	tert-C₄H9
A-663	B-663	2-NH ₂ -Ph	tert-C ₄ H9
A-664	B-664	3-NH ₂ -Ph	tert-C₄H9
A-665	B-665	4-NH ₂ -Ph	tert-C ₄ H9
A-666	B-666	2-HOCH ₂ -Ph	tert-C ₄ H9
A-667	B-667	4-CF ₃ O-Ph	tert-C₄H9
A-668	B-668	4-CF ₃ CH ₂ O-Ph	tert-C ₄ H9
A-669	B-669	4-(4-Cl-PhO)-Ph	tert-C ₄ H9
A-670	B-670	4-(4-CF ₃ -PhO)-Ph	tert-C₄H9
A-671	B-671	2,3-diCl-Ph	tert-C₄H9
A-672	B-672	1-Pyrrolyl	tert-C₄H9
A-673	B-673	1-Pyrazolyl	tert-C₄H9
A-674	B-674	1,2,4-Triazol-1-yl	tert-C₄H9
A-675	B-675	2-Thiazolyl	tert-C ₄ H9
A-676	B-676	1,3,4-Thiadiazol-2-yl	tert-C₄H9
A-677	B-677	CH₃CO	tert-C₄H9
A-678	B-678	PhCO	tert-C₄H9
A-679	B-679	PhSO ₂ NH	tert-C₄H9
A-680	B-680	CF ₃ CH ₂	tert-C₄H9
A-681	B-681	CICH ₂ CH ₂	tert-C₄H9
A-682	B-682	CICH ₂ CH ₂ CH ₂	tert-C₄H9
A-683	B-683	CH ₃ OCH ₂ CH ₂	tert-C₄H9
A-684	B-684	CH ₃ CH ₂ OCH ₂ CH ₂	tert-C₄H9
A-685	B-685	CH ₃ OCH ₂ CH ₂ CH ₂	tert-C₄H9
A-686	B-686	C ₂ H5OCH ₂ CH ₂ CH ₂	tert-C₄H9
A-687	B-687	n-C ₄ H9OCH ₂ CH ₂ CH ₂	tert-C ₄ H9
A-688	B-688	(CH ₃ O) ₂ CHCH ₂	tert-C₄H9
A-689	B-689	CH ₃ CONH	tert-C₄H9
A-690	B-690	PhCONH	tert-C₄H9
A-691	B-691	HOCH ₂ CH ₂	tert-C₄H9
A-692	B-692	HOCH ₂ CH ₂ CH ₂	tert-C₄H9
A-693	B-693	CH ₃ O ₂ CCH ₂	tert-C₄H9
A-694	B-694	CH ₃ O ₂ CCH(CH ₃)	tert-C ₄ H9
A-695	B-695	NCCH ₂	tert-C ₄ H9
A-696	B-696	NC(CH ₃)(iso-C ₃ H7)C	CH ₂ =CHCH ₂
A-697	B-697	CH ₂ =CHCH ₂	CH ₂ =CHCH ₂
A-698	B-698	CHCCH₂	CH ₂ =CHCH ₂

Compo	ound	\mathbb{R}^3	R ⁴
A-699	B-699	CH ₃ CCCH ₂	CH ₂ =CHCH ₂
A-700	B-700	(cyclo-C ₃ H5)CH ₂	CH ₂ =CHCH ₂
A-701	B-701	PhCH ₂	CH ₂ =CHCH ₂
A-702	B-702	PhCH ₂ CH ₂	CH ₂ =CHCH ₂
A-703	B-703	(2-Cl-Ph)CH ₂	CH ₂ =CHCH ₂
A-704	B-704	(3-Cl-Ph)CH ₂	CH ₂ =CHCH ₂
A-705	B-705	(4-Cl-Ph)CH ₂	CH ₂ =CHCH ₂
A-706	B-706	(2-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-707	B-707	(3-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-708	B-708	(4-CF ₃ -Ph)CH ₂	CH ₂ =CHCH ₂
A-709	B-709	(2-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-710	B-710	(3-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-711	B-711	(4-CH ₃ O-Ph)CH ₂	CH ₂ =CHCH ₂
A-712	B-712	HO	CH ₂ =CHCH ₂
A-713	B-713	CH ₃ O	CH ₂ =CHCH ₂
A-714	B-714	CH₃CH₂O	CH ₂ =CHCH ₂
A-715	B-715	n-C ₃ H7O	CH ₂ =CHCH ₂
A-716	B-716	iso-C₃H7O	CH ₂ =CHCH ₂
A-717	B-717·	CH ₂ =CHCH ₂ O	CH ₂ =CHCH ₂
A-718	B-718	CHCCH ₂ O	CH ₂ =CHCH ₂
A-719	B-719	PhCH ₂ O	CH ₂ =CHCH ₂
A-720	B-720	PhO	CH ₂ =CHCH ₂
A-721	B-721	NH ₂	CH ₂ =CHCH ₂
A-722	B-722	CH₃NH	CH ₂ =CHCH ₂
A-723	B-723	C ₂ H5NH	CH ₂ =CHCH ₂
A-724	B-724	n-C ₃ H7NH	CH ₂ =CHCH ₂
A-725	B-725	iso-C₃H7NH	CH ₂ =CHCH ₂
A-726	B-726	PhCH ₂ NH	CH ₂ =CHCH ₂
A-727	B-727	PhNH	CH ₂ =CHCH ₂
A-728	B-728	2-CI-PhNH	CH ₂ =CHCH ₂
A-729	B-729	3-CI-PhNH	CH ₂ =CHCH ₂
A-730	B-730	4-CI-PhNH	CH ₂ =CHCH ₂
A-731	B-731	2-CF ₃ -PhNH	CH ₂ =CHCH ₂
A-732	B-732	3-CF ₃ -PhNH	CH ₂ =CHCH ₂
A-733	B-733	2-CH ₃ O-PhNH	CH ₂ =CHCH ₂
A-734	B-734	3-CH ₃ O-PhNH	CH ₂ =CHCH ₂
A-735	B-735	4-CH ₃ O-PhNH	CH ₂ =CHCH ₂
A-736	B-736	Ph .	CH ₂ =CHCH ₂
A-737	B-737	2-Cl-Ph	CH ₂ =CHCH ₂
A-738	B-738	3-Cl-Ph	CH ₂ =CHCH ₂
A-739	B-739	4-Cl-Ph	CH ₂ =CHCH ₂
A-740	B-740	2-CF ₃ -Ph	CH ₂ =CHCH ₂
A-741	B-741	3-CF ₃ -Ph	CH ₂ =CHCH ₂

Compound		R ³	R⁴
A-742	B-742	4-CF ₃ -Ph	CH ₂ =CHCH ₂
A-743	B-743	2-CH₃O-Ph	CH ₂ =CHCH ₂
A-744	B-744	3-CH₃O-Ph	CH ₂ =CHCH ₂
A-745	B-745	4-CH ₃ O-Ph	CH ₂ =CHCH ₂
A-746	B-746	2-HO-Ph	CH ₂ =CHCH ₂
A-747	B-747	3-HO-Ph	CH ₂ =CHCH ₂
A-748	B-748	4-HO-Ph	CH ₂ =CHCH ₂
A-749	B-749	2-NH ₂ -Ph	CH ₂ =CHCH ₂
A-750	B-750	3-NH ₂ -Ph	CH ₂ =CHCH ₂
A-751	B-751	4-NH ₂ -Ph	CH ₂ =CHCH ₂
A-752	B-752	2-HOCH ₂ -Ph	CH ₂ =CHCH ₂
A-753	B-753	4-CF ₃ O-Ph	CH ₂ =CHCH ₂
A-754	B-754	4-CF ₃ CH ₂ O-Ph	CH ₂ =CHCH ₂
A-755	B-755	4-(4-Cl-PhO)-Ph	CH ₂ =CHCH ₂
A-756	B-756	4-(4-CF ₃ -PhO)-Ph	CH ₂ =CHCH ₂
A-757	B-757	2,3-diCl-Ph	CH ₂ =CHCH ₂
A-758	B-758	1-Pyrrolyl	CH ₂ =CHCH ₂
A-759	B-759	1-Pyrazolyl	CH ₂ =CHCH ₂
A-760	B-760	1,2,4-Triazol-1-yl	CH ₂ =CHCH ₂
A-761	B-761	2-Thiazolyl	CH ₂ =CHCH ₂
A-762	B-762	1,3,4-Thiadiazol-2-yl	CH ₂ =CHCH ₂
A-763	B-763	CH₃CO	CH ₂ =CHCH ₂
A-764	B-764	PhCO	CH ₂ =CHCH ₂
A-765	B-765	PhSO ₂ NH	CH ₂ =CHCH ₂
A-766	B-766	CF ₃ CH ₂	CH ₂ =CHCH ₂
A-767	B-767	CICH ₂ CH ₂	CH ₂ =CHCH ₂
A-768	B-768	CICH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-769	B-769	CH ₃ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-770	B-770	CH ₃ CH ₂ OCH ₂ CH ₂	CH ₂ =CHCH ₂
A-771	B-771	CH ₃ OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-772	B-772	C ₂ H5OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-773	B-773	n-C4H9OCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-774	B-774	(CH ₃ O) ₂ CHCH ₂	CH ₂ =CHCH ₂
A-775	B-775	CH₃CONH	CH ₂ =CHCH ₂
A-776	B-776	PhCONH	CH ₂ =CHCH ₂
A-777	B-777	HOCH₂CH₂	CH ₂ =CHCH ₂
A-778	B-778	HOCH ₂ CH ₂ CH ₂	CH ₂ =CHCH ₂
A-779	B-779	CH ₃ O ₂ CCH ₂	CH ₂ =CHCH ₂
A-780	B-780	CH ₃ O ₂ CCH(CH ₃)	CH ₂ =CHCH ₂
A-781	B-781	NCCH ₂	CH ₂ =CHCH ₂
A-782	B-782	NC(CH ₃)(iso-C ₃ H7)C	PhCH₂
A-783	B-783	CH ₂ =CHCH ₂	PhCH₂
A-784	B-784	CHCCH₂	PhCH ₂

Compound		R ³	R⁴
A-785	B-785	CH₃CCCH₂	PhCH ₂
A-786	B-786	(cyclo-C ₃ H5)CH ₂	PhCH ₂
A-787	B-787	PhCH ₂	PhCH ₂
A-788	B-788	PhCH ₂ CH ₂	PhCH ₂
A-789	B-789	(2-CI-Ph)CH ₂	PhCH ₂
A-790	B-790	(3-CI-Ph)CH ₂	PhCH ₂
A-791	B-791	(4-CI-Ph)CH ₂	PhCH ₂
A-792	B-792	(2-CF ₃ -Ph)CH ₂	PhCH ₂
A-793	B-793	(3-CF ₃ -Ph)CH ₂	PhCH ₂
A-794	B-794	(4-CF ₃ -Ph)CH ₂	PhCH ₂
A-795	B-795	(2-CH ₃ O-Ph)CH ₂	PhCH ₂
A-796	B-796	(3-CH ₃ O-Ph)CH ₂	PhCH ₂
A-797	B-797	(4-CH ₃ O-Ph)CH ₂	PhCH ₂
A-798	B-798	НО	PhCH ₂
A-799	B-799	CH ₃ O	PhCH ₂
A-800	B-800	CH ₃ CH ₂ O	PhCH ₂
A-801	B-801	n-C ₃ H7O	PhCH ₂
A-802	B-802	iso-C₃H7O	PhCH ₂
A-803	B-803	CH ₂ =CHCH ₂ O	PhCH₂
A-804	B-804	CHCCH ₂ O	PhCH ₂
A-805	B-805	PhCH ₂ O	PhCH ₂
A-806	B-806	PhO	PhCH ₂
A-807	B-807	NH ₂	PhCH ₂
A-808	B-808	CH₃NH	PhCH ₂
A-809	B-809	C ₂ H5NH	PhCH ₂
A-810	B-810	n-C ₃ H7NH	PhCH ₂
A-811	B-811	iso-C₃H7NH	PhCH ₂
A-812	B-812	PhCH₂NH .	PhCH ₂
A-813	B-813	PhNH	PhCH ₂
A-814	B-814	2-CI-PhNH	PhCH ₂
A-815	B-815	3-CI-PhNH	PhCH ₂
A-816	B-816	4-CI-PhNH	PhCH ₂
A-817	B-817	2-CF ₃ -PhNH	PhCH ₂
A-818	B-818	3-CF ₃ -PhNH	PhCH ₂
A-819	B-819	2-CH ₃ O-PhNH	PhCH ₂
A-820	B-820	3-CH ₃ O-PhNH	PhCH ₂
A-821	B-821	4-CH ₃ O-PhNH	PhCH ₂
A-822	B-822	Ph	PhCH ₂
A-823	B-823	2-Cl-Ph	PhCH ₂
A-824	B-824	3-Cl-Ph	PhCH ₂
A-825	B-825	4-CI-Ph	PhCH ₂
A-826	B-826	2-CF ₃ -Ph	PhCH ₂
A-827	B-827	3-CF ₃ -Ph	PhCH ₂

Compo	und	R ³	R⁴
A-828	B-828	4-CF ₃ -Ph	PhCH ₂
A-829	B-829	2-CH₃O-Ph	PhCH ₂
A-830	B-830	3-CH ₃ O-Ph	PhCH ₂
A-831	B-831	4-CH ₃ O-Ph	PhCH₂
A-832	B-832	2-HO-Ph	PhCH ₂
A-833	B-833	3-HO-Ph	PhCH ₂
A-834	B-834	4-HO-Ph	PhCH ₂
A-835	B-835	2-NH ₂ -Ph	PhCH ₂
A-836	B-836	3-NH ₂ -Ph	PhCH₂
A-837	B-837	4-NH ₂ -Ph	PhCH ₂
A-838	B-838	2-HOCH ₂ -Ph	PhCH₂
A-839	B-839	4-CF ₃ O-Ph	PhCH₂
A-840	B-840	4-CF ₃ CH ₂ O-Ph	PhCH ₂
A-841	B-841	4-(4-Cl-PhO)-Ph	PhCH₂
A-842	B-842	4-(4-CF ₃ -PhO)-Ph	PhCH ₂
A-843	B-843	2,3-diCl-Ph	PhCH ₂
A-844	B-844	1-Pyrrolyl	PhCH ₂
A-845	B-845	1-Pyrazolyl	PhCH ₂
A-846	B-846	1,2,4-Triazol-1-yl	PhCH₂
A-847	B-847	2-Thiazolyl	PhCH ₂
A-848	B-848	1,3,4-Thiadiazol-2-yl	PhCH ₂
A-849	B-849	CH₃CO	PhCH ₂
A-850	B-850	PhCO	PhCH ₂
A-851	B-851	PhSO ₂ NH	PhCH ₂
A-852	B-852	CF ₃ CH ₂	PhCH ₂
A-853	B-853	CICH ₂ CH ₂	PhCH ₂
A-854	B-854	CICH ₂ CH ₂ CH ₂	PhCH ₂
A-855	B-855	CH ₃ OCH ₂ CH ₂	PhCH ₂
A-856	B-856	CH ₃ CH ₂ OCH ₂ CH ₂	PhCH ₂
A-857	B-857	CH ₃ OCH ₂ CH ₂ CH ₂	PhCH ₂
A-858	B-858	C ₂ H5OCH ₂ CH ₂ CH ₂	PhCH ₂
A-859	B-859	n-C ₄ H9OCH ₂ CH ₂ CH ₂	PhCH ₂
A-860	B-860	(CH ₃ O) ₂ CHCH ₂	PhCH ₂
A-861	B-861	CH(CH ₃)CH ₂ CH ₂	CH ₂ CH ₂
A-862	B-862	HOCH ₂ CH ₂	PhCH ₂
A-863	B-863	CH ₂ CHBrCH ₂	
A-864	B-864	CH₂CH(OH)CF	
A-865	B-865	CH₂CH=CHC	
A-866	B-866	benzothiazol-2-yl	H
A-867	B-867	Ph	Ph
A-868	B-868	CH₃CONH	Ph
A-869	B-869	HOCH ₂ CH ₂	Ph
A-870	B-870	CH ₃ SO ₂ OCH ₂ CH ₂ CH ₂ CH ₂	Н

Cor	npound	R ³	lR⁴
A-871	B-871		CH ₂ CH ₂ CH ₂ CH ₂
A-872	B-872		H ₂ CH ₂ CH ₂ CH ₂ CH ₂
A-873	B-873		CH ₂ CH ₂ OCH ₂ CH ₂
A-874	B-874		CH ₂ CH ₂ SCH ₂ CH ₂
A-875	B-875		H ₂ CH ₂ NHCH ₂ CH ₂
A-876	B-876	CH ₂	CH ₂ N(CH ₃)CH ₂ CH ₂
A-877	B-877		N=CHCH ₂ CH ₂
A-878	B-878	Ph	NH ₂
A-879	B-879	PhCH ₂	(CH ₃) ₂ C=N
A-880	B-880	Ph	(CH ₃) ₂ C=N
A-881	B-881	PhCH ₂	H

Table 2

5

10

Compounds of formula (I) in which R¹ is –C(=U)NR³R⁴; U is O, m is zero and R² is as defined hereafter. In Table 2 compounds C-1 to C-151 represent individual compounds in which R² is methyl; compounds D-1 to D-151 represent individual compounds in which R² is ethyl; compounds E-1 to E-151 represent individual compounds in which R² is allyl; compounds F-1 to F-151 represent individual compounds in which R² is propargyl; compounds G-1 to G-151 represent individual compounds in which R² is benzyl; compounds H-1 to H-151 represent individual compounds in which R² is -CH₂CO₂CH₃; compounds I-1 to I-151 represent individual compounds in which R² is -CH(CH₃)CO₂CH₃; compounds J-1 to J-151 represent individual compounds in which R² is -CH(CH₃)CO₂CH₃; compounds J-1 to J-151

_	_		1		1	Τ-	_	_		_		_	1	Τ.	_	_			_				-		
R ⁴	エ	፲	上	I	I	1	F	T	T	I	<u> </u>	 -	<u> </u>	I	I	:	I	T	I	I	_ : :	= =		I	I
R³	CH2=CHCH2	CH3CH=CHCH2	CH2=CHCH2CH2	CHCCH2	СНЗСССН2	CHCCH(CH3)	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	PhCH2	PhcH(CH3)	NH2	CH3NH	CZH5NH	n-C3H7NH	iso-C3H7NH	n-C4H9NH	tert-C4H9NH	n-C5H11NH	n-C6H13NH	PhCH2NH	PhNH	운	CH30	C2H50
	1-1	J-2	J-3	4-0	7-5	9-6	7-0	8-7	6-7	7-10	J-11	J-12	J-13	J-14	J-15	J-16	J-17	J-18	J-19	J-20	J-21		J-23	J-24	J-25
	<u>-</u>	2-	<u>က</u>	4	-5	9	1-1	<u>چ</u>	<u> ဇ</u>	1-10	=======================================	1-12	1-13	1-14	1-15	1-16	1-17	<u>-1</u>	1-19	1-20	1-21	1-22	1-23	1-24	1-25
	H-1	H-2	H-3	H-4	H-5	9-H	H-7	H-8	6-H	H-10	T-71	H-12	H-13	H-14	H-15	H-16	H-17	H-18	H-19	H-20	H-21	H-22	H-23	H-24	H-25
puno	G-1	G-2	G-3	G-4	6-5	9-9	G-7	G-8	6 - 9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17	G-18	G-19	G-20	6-21	G-22	G-23	G-24	G-25
Compound	F-1	F-2	F-3	F-4	F-5	F-6	F-7	F-8	F-9	F-10	F-11	F-12	F-13	F-14	F-15	F-16	F-17	F-18	F-19	F-20	F-21	F-22	F-23	F-24	F-25
	E-1	E-2	<u>Б</u> -3	E-4	E-5	9-3	E-7	E-8	E-9	E-10	E-11	E-12	E-13	E-14	E-15	E-16	E-17	E-18	E-19	E-20	E-21	E-22	E-23		E-25
	D-1	D-2	D-3	4	D-5	D-6	D-7	D-8	D-9	D-10	D-11	D-12			D-15	D-16			\neg	D-20		D-22			D-25
	<u>7</u>	C-5	္ပ	Ω 4	C-5	မှ	C-7	<u>အ</u> ပ	6 0	د ۔	۲ - 1	C-12	C-13	1		C-16	C-12	C-18	C-19	C-20	C-21	C-22	\Box		C-25

Г	Т	Т		Т	_	Τ-	\top	_	$\overline{}$	τ	7-	_		_	_		_		·	-	_,		_				
154	<u> </u>	= _	<u> </u>	= =	= =	= I	: =	= I	<u> </u>	: I	 - -	= _	= =	= =	:]		c :	r :	E :		r	I	H				
B 3	n-C3H7O	iso-C3H7O	п-С4Н9О	tert-C4H9O	CH2=CHCH2O	CHCCH20	CH3O2CCH2O	CH3O2CCH(CH3)O	CH3O2CC/CH3)20	PhCH20	Ph	2-F-Ph	3-F-Ph	4-F-Ph	2-CI-Ph	3-CI-DH	4 Cl Bh	2 CE3 DE	2-CF3-FE	4-CF3-PI	11-0-0-0-1	Z-CH3-Ph	3-CH3-Ph	4-СН3-Рh	2-CH3O-Ph		4-CH3O-Ph
	J-26	J-27	J-28	J-29	7-30	J-31	J-32	J-33	J-34	J-35	J-36	J-37	J-38	J-39	140	1-41	772	77	Т	Т	T	П	J-47	J-48	J-49	J-50	J-51
	1-26	1-27	1-28	1-29	<u>8</u>	<u>1-34</u>	1-32	-33	1-34	-35	1-36	1-37	86-	1-39	140	41	1.42	773	? ?	Т	Т	9	1-47	1-48	1-49	-20	1-51
	H-26	H-27	H-28	H-29	H-30	H-31	H-32	H-33	H-34	H-35	H-36	H-37	H-38	H-39	H-40	H-41	H-42	H-43	H-44	H-45	7 7	21.	H-47	H-48	H-49	H-50	H-51
Compound	G-26	G-27	G-28	G-29	6-30	G-31	G-32	G-33	G-34	G-35	98-9	6-37	G-38	6-39	G-40	G-41	G-42	G-43	G-44	T	\top	1,10	745	G-48	G-49	G-50	G-51
Com	F-26	F-27	F-28	F-29	F-30	F-31	F-32	F-33	F-34	F-35	F-36	F-37	F-38	F-39	F-40	F-41	Ī	F-43	\top		Т	Т	T	П			F-51
	E-26	E-27	E-28	E-29	E-30	E-31	E-32	E-33	E-34	E-35	E-36	E-37	E-38	E-39	E-40	E41	E-42	E-43	П	E-45		T	7	-1			E-51
	D-26	D-27	D-28	D-29	D-30	D-31	D-32	D-33	D-34	Т		D-37		D-39	D-40	D-41	D-42	D-43	D-44	D-45	D-46	T	Т	7			D-51
	C-26	C-27	C-28	C-29	C-30	C-31	C-32	C-33	C-34 4	C-35	9E-3	C-37	ر ک	C-39	C-40	C-41	C-42	C-43	C-44	C-45	C-46	T	T	1	\exists		5-5-

Г	\neg	7			_		_	_				_		_	_															
7	<u> </u>	<u> </u>	<u> </u>	Ξ	エ	Į	: =	= =	= =		= =		<u> </u>	<u> </u>	r	エ	ı	 - -	= =	c	<u> </u>	드	I	Н	CH3	CHS	5 5 5	2 2 2	CH3	?
D3	A CE30 Dk	4-CF3C-FII	4-C-SC-FD	4-rnO-rn	4-(4-CI-PhO)-Ph	4-(4-CF3-PhO)-Ph	CF3CH2	CICH2CH2	CICHOCHOCHO	CH3OCH3OCH3	CH3CH2OCH2CH2	CH3OCH3OCH3	C2H5CU3CU3CU3		II-C4USOCHZCHZ	CH3OCH(CH3)CH2CH2	(СН3О)2СНСН2	НОСН2СН2	HOCHOCHOCHO	CH3CCH3CCh3	CH2CH2CH1Z	SI ISONESCHZ	CH3SCH2CH2CH2	C2H5SCH2CH2CH2	CH2=CHCH2	CHCCH2	cvclo-C3H5		1	
	1-52	52	2 -	40-0	7-55	J-56	J-57	J-58	7-59	7-60	J-61	J-62	1.63	1-64	5 -	J-65	99-C	29-f	J-68	1-69	170	27	- /-		J-73	J-74	J-75	J-76	J-77	
	.53	7 2	3 2	<u> </u>	<u>ئ</u>	1-56	1-57	1-58	1-59	09-1	1-61	1-62	1-63	1-64	5 2	န	99-1	1-67	89-	69-1	1-70	77	T	\neg		1-74	92-1	92-1	1-77	
	H-52	H-53	2 2	ָלְילָ בּיל	S	H-56	19-H	H-58	H-59	H-60	H-61	H-62	H-63	H-64	20 1	20-	99-H	H-67	H-68	H-69	H-70	H-74	7 7 7	7/-1	5/-	H-74	H-75	92-H	H-77	
Compound	G-52	G-53	2.54	ל ל	5	<u>G-5</u> 6	G-57	G-58	6-29	09-50	G-61	G-62	G-63	G-64	38.0	500	99-5	C-67	89-5	69-9	02-5	G-71	T	\neg	7		G-75	G-76	C-77	
Com	F-52	F-53	F-54	- L	3	F-56	F-57	F-58	F-59	F-60	F-61	F-62	F-63	F-64	F_65	3 6	Т	П	F-68	F-69	F-70	F-71	Т	Т	Т	T			F-77 (
	E-52	E-53	E-54	T.55	3 2	E-26	E-57	E-58	E-59	E-60	E-61	E-62	E-63	E-64	F.65	3 6	00-1	Т	E-68	E-69	E-70	E-71	\top	T	Т	T	П	П	E-77	
	D-52	D-53	D-54	7-55	3 2	8 1	D-57	D-58	D-59	D-60	D-61	D-62	D-63	D-64	D-65	200	00-00	Т	\neg	D-69	D-70	D-71	0-72	T	Т	\top	П	\neg	D-77	
	C-52	C-53	C-54	0.55	3 0	8 1	3	3	-29 -29	မ ပ	ပ်မှ	C-62	ပ္ပ	C-64	C-65	280	200	Т			C-70	C-71	C-72	Τ		Т	T			

1 [punodu		R³	R ⁴
E-78 F-78 G-	G-78 H-78 I-78 J-	J-78	PhCH2	CH3
E-79 F-79 G-79	62-1 62-H	9 - 79	NH2	CH3
E-80 F-80 G-80	H-80 I-80	J-80	CH3NH	CH3
E-81 F-81 G-81	H-81 1-81	J-81	C2H5NH	CH3
E-82 F-82 G-82	H-82 1-82	J-82	PhcH2NH	CH3
E-83 F-83 G-	G-83 H-83 I-83 J-	J-83	PhNH	CH3
E-84 F-84 G-84	H-84 1-84	J-84	HO	CH3
E-85 F-85 G-85	H-85 I-85	J-85	СНЗО	CH3
E-86 F-86 G-86	H-86 1-86	98-6	C2H5O	CH3
	H-87 -87	28-f	CH2=CHCH2O	<u> </u>
E-88 F-88 G-88	H-88 I-88	J-88	CHCCH2O	CH3
E-89 F-89 G-89	68-I 68-H	J-89	CH3O2CCH2O	CH3
E-90 F-90 G-90	06-I 06-H	7-90	снзосссн(снз)о	CH3
E-91 F-91 G-91	H-91 -91	J-91	PhCH20	CH3
	H-92 1-92	J-92	Ph	CH3
F-93	H-93 I-93	1-93	4-CF3O-Ph	CH3
E-94 F-94 G-94	H-94 I-94	J-94	4-(4-CF3O)-Ph	CH3
E-95 F-95 G-95	H-95 I-95	J-95	CF3CH2	CF3
E-96 F-96 G-96	96-I 96-H	96-f	СН3ОСН2СН2	C 문 3
E-97 F-97 G-97	H-97 -97	76-6	CH3CH2OCH2CH2	CH3
E-98 F-98 G-98	H-98 I-98	1-98	CH3OCH2CH2CH2	CH3
\neg	66-I 66-H	J-99	C2H5OCH2CH2CH2	CH3
F-100	G-100 H-100 -100 J-100		п-С4Н9ОСН2СН2СН2	CH3
E-101 F-101 G-101	H-101 -101	J-101	(снзо)2снсн2	CH3
D-102 E-102 F-102 G-102	1-102	J-102	НОСН2СН2	CH3
D-103 E-103 F-103 G-103 H-103	1 607 1 007 11		CHUCHUCHUUH	CH3
	03 H-103 I-103 J-103		1001120112)

	_					_	-						١.,	1			r 	<u> </u>								
R ⁴	CH3	CH3	СНЗ	CH3	CH3	CH3	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2
R³	CH3OCH2CH2CH2	C2H5OCH2CH2CH2	D-106 E-106 F-106 G-106 H-106 I-106 J-106 In-C4H9OCH2CH2CH2	D-107 E-107 F-107 G-107 H-107 I-107 J-107 (CH3O)2CHCH2	D-108 E-108 F-108 G-108 H-108 I-108 J-108 HOCH2CH2	D-109 E-109 F-109 G-109 H-109 I-109 J-109 HOCH2CH2CH2	CH2=CHCH2	СНССН2	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	NH2	CH3NH	C2H5NH	PhNH	HO	CH3O	C2H5O	CH2=CHCH2O	CHCCH20	H-124 -124 J-124 CH3O2CCH2O	I-125 J-125 CH3O2CCH(CH3)O	PhcH20	Ph	4-CF3O-Ph	I-129 J-129 4-(4-CF3O)-Ph
	1-104 J-104	D-105 E-105 F-105 G-105 H-105 1-105 J-105	1-106 J-106	1-107 J-107	I-108 J-108	I-109 J-109	1-110 J-110	1-111 J-111	I-112 J-112	D-113 E-113 F-113 G-113 H-113 1-113 J-113	E-114 F-114 G-114 H-114 L-114 J-114	1-115 J-115	D-116 E-116 F-116 G-116 H-116 1-116 J-116	I-117 J-117	I-118 J-118	D-119 E-119 F-119 G-119 H-119 1-119 J-119	D-120 E-120 F-120 G-120 H-120 I-120 J-120	1-121 J-121	I-122 J-122	D-123 E-123 F-123 G-123 H-123 -123 J-123 CHCCH20	I-124 J-124	I-125 J-125	1-126 J-126	I-127 J-127 Ph	I-128 J-128 4-CF3O-Ph	I-129 J-129
	H-104	H-105	H-106	H-107	H-108	H-109	H-110	H-111	H-112	H-113	H-114	H-115	H-116	H-117	H-118	H-119	H-120	H-121	H-122	H-123	H-124	H-125	H-126	H-127		H-129
puno	D-104 E-104 F-104 G-104 H-104 -104	G-105	G-106	G-107	G-108	G-109	F-110 G-110 H-110	D-111 E-111 F-111 G-111 H-111	D-112 E-112 F-112 G-112 H-112 1-112	G-113	G-114	D-115 E-115 F-115 G-115 H-115 -115	G-116	D-117 E-117 F-117 G-117 H-117 1-117	D-118 E-118 F-118 G-118 H-118	G-119	G-120	C-121 D-121 E-121 F-121 G-121	D-122 E-122 F-122 G-122 H-122	G-123	E-124 F-124 G-124	D-125 E-125 F-125 G-125	D-126 E-126 F-126 G-126	D-127 E-127 F-127 G-127 H-127	D-128 E-128 F-128 G-128 H-128	C-129 D-129 E-129 F-129 G-129 H-129
Compound	F-104	F-105	F-106	F-107	F-108	F-109	F-110	F-111	F-112	F-113	F-114	F-115	F-116	F-117	F-118	F-119	F-120	F-121	F-122	F-123	F-124	F-125	F-126	F-127	F-128	F-129
	E-104	E-105	E-106	E-107	E-108	E-109	E-110	E-111	E-112	E-113	E-114	E-115	E-116	E-117	E-118	E-119	E-120	E-121	E-122	E-123	E-124	E-125	E-126	E-127	E-128	E-129
	D-104	D-105	D-106	D-107	D-108	D-109	D-110	D-111	D-112	D-113	D-114	D-115	D-116	D-117	D-118	D-119	D-120	D-121	D-122	D-123	D-124	D-125	D-126	D-127	D-128	D-129
	C-104	C-105	C-106	C-107	C-108	C-109	C-110	C-111	C-112	C-113	C-114	C-115	C-116	C-117	C-118	C-119	C-120	C-121	C-122	C-123	C-124	C-125	C-126	C-127	C-128	C-129

R ⁴	PhCH2	PhCH2				I2CH2 PhCH2	PhCH2	PhCH2	PhCH2	H2 PhCH2	CH2 PhCH2	19CH2 PhCH2					1 2	이얼	XIQIS	[[[] [] []	공동된 당된된 항의	일당[옷]었으
R³	C-130 D-130 E-130 F-130 G-130 H-130 I-130 J-130 CF3CH2	C-131 D-131 E-131 F-131 G-131 H-131 I-131 J-131 CH3OCH2CH2	C-132 D-132 E-132 F-132 G-132 H-132 -132 J-132 CH3CH2OCH2CH2	C-133 D-133 E-133 F-133 G-133 H-133 I-133 J-133 CH3OCH2CH2CH2	C-134 D-134 E-134 F-134 G-134 H-134 II-134 J-134 C2H5OCH2CH2CH2	C-135 D-135 E-135 F-135 G-135 H-135 I-135 J-135 n-C4H9OCH2CH2CH2	C-136 D-136 E-136 F-136 G-136 H-136 I-136 J-136 (CH3O)2CHCH2	C-137 D-137 E-137 F-137 G-137 H-137 I-137 J-137 HOCH2CH2	C-138 D-138 E-138 F-138 G-138 H-138 -138 J-138 HOCH2CH2CH2	C-139 D-139 E-139 F-139 G-139 H-139 I-139 J-139 CH3OCH2CH2CH2	C-140 D-140 E-140 F-140 G-140 H-140 II-140 J-140 C2H5OCH2CH2CH2	100110001110	C-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 n-C4H9OCH2CH2CH2CH2	C-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 n-C4H9OCH2CF C-142 D-142 E-142 F-142 G-142 H-142 I-142 J-142 (CH3O)2CHCH2	C-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 n-C4H9OCH2CF C-142 D-142 E-142 F-142 G-142 H-142 I-142 J-142 (CH3O)2CHCH2 C-143 D-143 E-143 F-143 G-143 H-143 I-143 J-143 HOCH2CH2	C-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 n-C4H9UCHZCF C-142 D-142 E-142 F-142 G-142 H-142 I-142 J-142 (CH3O)2CHCH2 C-143 D-143 E-143 F-143 G-143 H-143 I-143 J-143 HOCH2CH2 C-144 D-144 E-144 F-144 G-144 H-144 I-144 J-144 HOCH2CH2CH2	n-C4H9UCH2CF (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2	n-C4H9UCH2U- (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2 CH2CH2 CH2CH2CH2	n-C4H9UCH2CF (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2 CH2CH2 CH2CH2 CH2CH2CH2 CH2CH2CH2	n-C4H9UCH2CH (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2 CH2CH2C CH2CH2C CH2CH2C	n-C4H9UCH2CF (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2 CH2CH2 CH2CH2C CH2CH2C CH2CH2C	n-C4H9UCH2CH (CH3O)2CHCH2 HOCH2CH2 HOCH2CH2CH2 CH2CH2 CH2CH2C CH2CH2C CH2CH2C CH2CH2C
	J-130	J-131	J-132	J-133	J-134	J-135	J-136	J-137	J-138	J-139	J-140		J-141	J-141 J-142	7-147 7-142 7-143	J-141 J-143 J-144	J-141 J-143 J-144 J-145	J-141 J-142 J-144 J-145 J-146	J-141 J-142 J-144 J-145 J-146 J-147	J-141 J-142 J-144 J-145 J-146 J-147 J-148	J-141 J-142 J-144 J-145 J-147 J-148	J-141 J-142 J-144 J-146 J-146 J-148 J-149 J-150
	1-130	1-131	1-132	1-133	1-134	1-135	1-136	1-137	1-138	1-139	1-140		1-141	1-141	1-141 1-142 1-143	1-141 1-142 1-144	1-141 1-143 1-144 1-145	-142 -143 -145 -146	-141 -142 -143 -145 -146 -147	-141 -142 -144 -145 -146 -146 -147	1-141 1-142 1-144 1-145 1-146 1-147 1-149	-141 -142 -144 -145 -146 -147 -148 -149 -149
	H-130	H-131	H-132	H-133	H-134	H-135	H-136	H-137	H-138	H-139	H-140		H-141	H-141 H-142	H-142 H-143	H-141 H-143 H-144	H-141 H-143 H-144 H-145	H-141 H-142 H-144 H-145 H-146	H-141 H-143 H-145 H-146 H-147	H-141 H-145 H-146 H-146 H-148	H-141 H-145 H-145 H-147 H-149 H-149	H-141 H-144 H-145 H-147 H-147 H-148 H-148 H-150
punc	G-130	G-131	G-132	G-133	G-134	G-135	G-136	G-137	G-138	G-139	G-140		G-141	G-141 G-142	G-141 G-142 G-143	G-141 G-142 G-143 G-144	G-141 G-142 G-143 G-144 G-145	G-141 G-142 G-143 G-144 G-145 G-146	G-141 G-143 G-144 G-145 G-146 G-146	D-141 E-141 F-141 G-141 H-141 I-141 J-141 D-142 E-142 F-142 G-142 H-142 I-142 J-142 D-143 E-143 F-144 G-144 H-144 I-144 J-144 D-144 E-144 F-144 G-144 H-144 I-144 J-144 D-145 E-145 F-145 G-145 H-146 I-145 J-145 D-146 E-146 F-146 G-146 H-146 I-146 J-146 D-147 E-147 F-147 G-147 H-147 I-147 J-147 D-148 E-148 F-148 G-148 H-148 I-148 J-148	G-141 G-142 G-144 G-145 G-145 G-147 G-148	G-141 G-142 G-144 G-145 G-146 G-147 G-148 G-148 G-149
Compound	F-130	F-131	F-132	F-133	F-134	F-135	F-136	F-137	F-138	F-139	F-140		F-141	F-141 F-142	F-141 F-142 F-143	F-141 F-142 F-143 F-144	F-141 F-142 F-143 F-144 F-145	F-141 F-142 F-143 F-144 F-145	F-141 F-142 F-144 F-145 F-146 F-146	F-141 F-142 F-144 F-146 F-146 F-147 F-148	F-141 F-142 F-144 F-145 F-145 F-147 F-148	F-141 F-142 F-144 F-145 F-146 F-148 F-149 F-149
	E-130	E-131	E-132	E-133	E-134	E-135	E-136	E-137	E-138	E-139	E-140		E-141	E-141 E-142	E-141 E-142 E-143	E-141 E-142 E-143 E-144	E-141 E-142 E-143 E-144 E-145	E-141 E-142 E-143 E-144 E-145	E-141 E-143 E-144 E-145 E-146 E-146	E-141 E-143 E-144 E-145 E-146 E-146 E-147	E-141 E-142 E-143 E-145 E-145 E-146 E-147 E-148	E-141 E-142 E-144 E-145 E-145 E-146 E-147 E-149 E-149
	D-130	D-131	D-132	D-133	D-134	D-135	D-136	D-137	D-138	D-139	D-140		D-141	D-141 D-142	D-141 D-142 D-143	D-141 D-142 D-143 D-144	C-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 C-142 D-142 E-142 F-142 G-142 H-142 I-142 J-142 C-143 D-143 E-143 F-143 G-143 H-143 I-143 J-143 C-144 D-144 E-144 F-144 G-144 H-144 I-144 J-144 C-145 D-145 E-145 F-145 G-145 H-145 I-145 J-145	D-141 E-141 F-141 G-141 H-141 I-141 J-141 C-142 D-142 E-142 G-142 H-142 I-142 J-142 C-143 D-143 E-143 F-143 H-143 I-143 J-143 C-144 D-144 E-144 G-144 H-144 I-144 J-144 C-145 D-145 E-145 F-146 G-145 H-146 I-145 J-145 C-146 D-146 E-146 F-146 G-146 H-146 I-146 J-146	D-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 J-141 D-142 D-142 D-142 E-142 F-142 G-142 H-142 I-142 J-142 D-143 D-143 E-143 E-143 G-143 H-143 I-143 J-143 D-144 D-144 E-144 E-144 G-144 H-144 I-144 J-144 D-145 D-145 E-145 F-145 G-145 H-145 I-145 J-145 D-146 D-146 E-146 F-147 G-146 H-147 I-147 J-147 D-147 D-147 E-147 F-147 G-147 H-147 I-147 J-147	D-141 D-142 D-144 D-145 D-146 D-147 D-148	D-141 D-141 E-141 F-141 G-141 H-141 I-141 J-141 J-141 D-142 D-142 D-142 E-142 G-142 H-142 I-142 J-142 D-143 D-143 E-143 E-143 G-143 H-144 I-144 J-144 D-144 D-144 E-144 E-144 G-144 H-144 I-144 J-144 D-145 D-145 E-145 E-145 G-145 H-145 I-145 J-145 D-147 D-147 E-147 F-147 G-146 H-147 I-147 J-147 D-148 D-148 E-148 F-148 G-148 H-149 I-149 J-149 C-149 D-149 E-149 F-149 G-149 H-149 I-149 J-149	C-141 D-141 E-141 G-141 H-141 I-141 J-142 C-142 D-142 E-142 G-142 H-142 I-142 J-142 C-143 D-143 E-143 G-143 H-144 I-143 J-143 C-144 D-144 E-144 G-144 H-144 I-144 J-144 C-145 D-145 E-145 E-145 G-145 H-145 I-145 J-145 C-146 D-146 E-146 E-146 G-146 H-146 I-146 J-146 C-147 D-147 E-147 G-147 H-147 I-147 J-147 C-148 D-148 E-148 F-148 G-149 H-148 I-149 J-148 C-149 D-149 E-149 F-149 G-149 H-149 I-149 J-149 C-150 D-150 E-150 F-150 G-150 H-150 J-150 J-150
	C-130	C-131	C-132	C-133	C-134	C-135	C-136	C-137	C-138	C-139	C-140		C-141	C-141 C-142	C-141 C-142 C-143	C-141 C-142 C-143 C-144	C-141 C-142 C-143 C-144 C-145	C-141 C-142 C-144 C-145 C-146	C-141 C-142 C-144 C-145 C-146 C-146	C-141 C-142 C-144 C-145 C-146 C-147 C-148	C-141 C-143 C-145 C-146 C-146 C-147 C-148 C-148	C-141 C-142 C-144 C-145 C-147 C-148 C-148 C-148

Table 3

5

10

Compounds of formula (I) in which R¹ is –C(=U)NR³R⁴; U is S and m is zero. In Table 3 compounds K-1 to K-151 represent individual compounds in which R² is methyl; compounds L-1 to L-151 represent individual compounds in which R² is ethyl; compounds M-1 to M-151 represent individual compounds in which R² is allyl; compounds N-1 to N-151 represent individual compounds in which R² is propargyl; compounds O-1 to O-151 represent individual compounds in which R² is benzyl; compounds P-1 to P-151 represent individual compounds in which R² is -CH₂CO₂CH₃; compounds Q-1 to Q-151 represent individual compounds in which R² is -CH(CH₃)CO₂CH₃; compounds R-1 to R-151 represent individual compounds in which R² is -CH₂CH(OCH₃)₂.

	-		_			7								_											
R ⁴	H	Ŧ.	エ	Ŧ	工	エ	I	エ	エ	H	Н	Н	エ	H	エ	エ	エ	エ	H	エ	エ	エ	Н	工	エ
R³	CH2=CHCH2	CH3CH=CHCH2	CH2=CHCH2CH2	CHCCH2	СНЗСССН2	снссн(снз)	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	PhCH2	РҺСН(СН3)	NH2	CH3NH	C2H5NH	n-C3H7NH	iso-C3H7NH	n-C4H9NH	tert-C4H9NH	n-C5H11NH	n-C6H13NH	PhCH2NH	PhNH	НО	СНЗО	C2H50
	R-1	R-2	R-3	자 4	R-5	R-6	R-7	R-8	R-9	R-10	R-11	R-12	R-13	R-14	R-15	R-16	R-17	R-18	R-19	R-20	R-21	R-22	R-23	R-24	R-25
	<u>o</u> 1-	0-2	Q-3	0 4	<u>ģ</u>	Q-2	<u>ဂ</u>	0 4	<u>6</u>	0-2	Q-3	Q 4	<u>6</u>	0-2	<u>Q</u> -3	Q 4-4	<u>6</u>	0-2	0-3	94	<u>0</u>	0-2	Q -3	0 4	Q-1
	P-1	P-2	P-3	P4	P-5	9-G	P-7	P-8	P-9	P-10	P-11	P-12	P-13	P-14	P-15	P-16	P-17	P-18	P-19	P-20	P-21	P-22	P-23	P-24	P-25
Compound	0-1	0-5	ب 0	0 4	0-5	9-0 0	0-7	8-O	6-0	0-10	0-11	0-12	0-13	0-14	0-15	0-16	0-17	0-18	0-19	0-20	0-21	0-22	0-23	0-24	0-25
Com	N-1	N-2	N-3	A-7	N-5	9- <u>V</u>	Z-7	8-N	6 <u>-</u> Z	N-10	N-11	N-12	N-13	N-14	N-15	N-16	N-17	N-18	N-19	N-20	N-21	N-22	N-23	N-24	N-25
	M-1	M-2	M-3	M-4	M-5	9-W	M-7	M-8	6-W	M-10	M-11	M-12	M-13	M-14	M-15	M-16	M-17	M-18	M-19	M-20	M-21	M-22	M-23	M-24	M-25
	1-1	L-2	<u>-3</u>	4	L-5	L-6	L-7	R-J	6-7	L-10	L-11	L-12	L-13	L-14	L-15	L-16	L-17	L-18	L-19	L-20	L-21	L-22	L-23	L-24	L-25
	조	X-2	χ 6.3	주 4	天 む	주 6-	天 - 7	天 8-8	주-9	K-10	K-11	동-12	X-13	X-14	X-15	K-16	K-17	주-18	K-19	K-20	K-21	K-22	K-23	K-24,	K-25

	Υ				_			_	_	_		_		_						,			, .			
R ⁴	エ	エ	工	エ	工	I	王	王	ェ	I	エ	エ	エ	エ	·	エ	エ	上	포	ェ	エ	포	エ	エ	ェ	エ
R³	n-C3H7O	iso-C3H7O	n-C4H9O	tert-C4H9O	CH2=CHCH2O	СНССН2О	СНЗО2ССН2О	CH3O2CCH(CH3)O	CH3O2CC(CH3)20	PhCH20	Ph	2-F-Ph	3-F-Ph	4-F-Ph	2-CI-Ph	3-CI-Ph	4-CI-Ph	2-CF3-Ph	3-CF3-Ph	4-CF3-Ph	2-CH3-Ph	3-CH3-Ph	4-CH3-Ph	2-CH3O-Ph	3-CH3O-Ph	4-CH3O-Ph
	R-26	R-27	R-28	R-29	R-30	R-31	R-32	R-33	R-34	R-35	R-36	R-37	R-38	R-39	R-40	R-41	R-42	R-43	R-44	R45	R-46	R-47	R-48	R-49	R-50	R-51
	Q-2	Q- 3	Q 4	<u>6</u>	0-2	Q-3	0-4	<u>0</u> -1	0-2	Q -3	0 4	<u>6</u>	0-2	Q-3	0-4 4-	۾ 1	Q-2	Q -3	Q 4	<u>Q</u>	0-2	Q- 3	0-4	<u>0</u>	Q-2	Q -3
	P-26	P-27	P-28	P-29	P-30	P-31	P-32	P-33	P-34	P-35	P-36	P-37	P-38	P-39	P-40	P-41	P-42	P-43	P-44	P-45	P-46	P-47	P-48	P-49	P-50	P-51
Compound	0-26	0-27	0-28	0-29	0-30	0-31	0-32	0-33	0-34	0-35	0-36	0-37	0-38	0-39	0-40	0-41	0-42	0-43	0-44	0-45	0-46	0-47	0-48	0-49	09-0	0-51
Com	N-26	N-27	N-28	N-29	N-30	N-31	N-32	N-33	N-34	N-35	N-36	N-37	N-38	N-39	N-40	N-41	N-42	N-43	N-44	N-45	N-46	N-47	N-48	N-49	N-50	N-51
	M-26	M-27	M-28	M-29	M-30	M-31	M-32	M-33	M-34	M-35	M-36	M-37	M-38	M-39	M-40	M-41	M-42	M-43	M-44	M-45	M-46	M-47	M-48	M-49	M-50	M-51
	L-26	L-27	L-28	L-29	L-30	L-31	L-32	L-33	L-34	L-35	L-36	L-37	L-38	L-39	L-40	L-41	L-42	L-43	L-44	L-45	L-46	L-47	L-48	L-49		L-51
	K-26	K-27	K-28	K-29	K-30	K-31	K-32	K-33	天-34	K-35	K-36	K-37	K-38	K-39	주 40	주 4 1	K-42	7-43	주 4	X-45	X-46	K-47	大 4 8	K-49	주-50	K-51

		г				-	1	-		Г	т—				_	_			т—	т	_		,		1	
₽	I	I	エ	I	ェ	I	工	エ	I	エ	ェ	ェ	エ	エ	I	エ	エ	エ	上	エ	工	CH3	CH3	<u>당</u> 3	<u>당</u>	СНЗ
R³	4-CF3O-Ph	4-CF3CH2O-Ph	4-PhO-Ph	4-(4-CI-PhO)-Ph	4-(4-CF3-PhO)-Ph	CF3CH2	CICH2CH2	CICH2CH2CH2	СНЗОСН2СН2	СН3СН2ОСН2СН2	СНЗОСН2СН2СН2	C2H5OCH2CH2CH2	n-C4H9OCH2CH2CH2	снзосн(снз)сн2сн2	(снзо)2снсн2	НОСН2СН2	НОСН2СН2СН2	CH3SCH2CH2	CH3CH2SCH2CH2	CH3SCH2CH2CH2	C2H5SCH2CH2CH2	CH2=CHCH2	CHCCH2	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11
	R-52	R-53	R-54	R-55	R-56	R-57	R-58	R-59	R-60	R-61	R-62	R-63	R-64	R-65	R-66	R-67	R-68	R-69	R-70	R-71	R-72	R-73	R-74	R-75	R-76	R-77
	Q 4	<u>6</u>	0-2	Q-3	Q 4-4	<u>6</u>	Q-2	<u>Q</u> -3	Q 4-4	<u>6</u>	0-2	Q-3	Q 4	ج 1-	Q-2	Q-3	Q 4	<u>Q</u>	Q-2	Q-3	0 4	٩ 1	Q- 2	Q-3	Q-4	Q-1
	P-52	P-53	P-54	P-55	P-56	P-57	P-58	P-59	P-60	P-61	P-62	P-63	P-64	P-65	P-66	P-67	P-68	P-69	P-70	P-71	P-72	P-73	P-74	P-75	P-76	P-77
Compound	0-52	0-53	0-54	0-55	0-56	0-57	0-58	0-29	09-0	0-61	0-62	0-63	0-64	0-65	99-0	29-0	89-0	69-0	0-20	0-71	0-72	0-73	0-74	0-75	92-0	0-77
Com	N-52	N-53	N-54	N-55	N-56	N-57	N-58	69-N	09-N	N-61	N-62	N-63	N-64	N-65	99-N	N-67	89-N	69-N	N-70	N-71	N-72	N-73	N-74	N-75	92-N	N-77
	M-52	M-53	M-54	M-55	M-56	M-57	M-58	M-59	M-60	M-61	M-62	M-63	M-64	M-65	M-66	M-67	M-68	M-69	M-70	M-71	M-72	M-73	M-74	M-75	M-76	M-77
	L-52	L-53	L-54	L-55	L-56	T-27	L-58	[7-29	L-60	L-61	L-62	L-63	L-64	L-65	L-66	L-67	L-68	L-69	L-70	L-71	L-72	L-73	L-74	L-75	L-76	177
	K-52	K-53	K-54	K-55	K-56	K-57	K-58	K-59	K-60	K-61	K-62	K-63	K-64	K-65	K-66	K-67	K-68	X-69	7-70 2-70	K-71	K-72	K-73	K-74	K-75	K-76	K-77

_		_	<u> </u>	Г	т –		Г	Г	Г	$\overline{}$	1	Г	т-	Т	$\overline{}$	1	γ	_	Γ-	_	_	_	_	т	_	
R ⁴	CH3	CH3	CH3	CH3	CH3	CH3	CH3	CH3	CH3	당	CH3	CH3	CH3	CH3	CH3	SH3	C 문 3	CH3	C 권 3	뜻	CH3	당	CH3	CH3	CH3	CF3
R³	PhCH2	NH2	CH3NH	C2H5NH	PhCH2NH	PhNH	어	CH3O	C2H5O	CH2=CHCH2O	СНССН2О	СНЗО2ССН2О	снзосссн(снз)о	PhCH20	Ph	4-CF3O-Ph	4-(4-CF3O)-Ph	CF3CH2	СНЗОСН2СН2	СНЗСН2ОСН2СН2	CH3OCH2CH2CH2	C2H5OCH2CH2CH2	n-C4H9OCH2CH2CH2	(снзо)2снсн2	носн2сн2	НОСН2СН2СН2
	R-78	R-79	R-80	R-81	R-82	R-83	R-84	R-85	R-86	R-87	R-88	R-89	R-90	R-91	R-92	R-93	R-94	R-95	R-96	R-97	R-98	R-99	R-100	R-101	R-102	R-103
	Q-2	ტ-3	Q 4	<u>0</u> -1	0-2	<u>Q</u> -3	Q 4-4	<u>6</u>	<u>Q-2</u>	<u>Q</u> -3	0 4	<u>0</u>	0-2	Q-3	Ω 4-4	<u>6</u>	Q-2	დ-3	Q-4	Q-1	Q-2	Q-3	Q-4	Q-1	Q-2	<u>Q</u> -3
	P-78	P-79	P-80	P-81	P-82	P-83	P-84	P-85	P-86	P-87	P-88	P-89	P-90	P-91	P-92	P-93	P-94	P-95	P-96	P-97	P-98	66-d	P-100	P-101	P-102	P-103
Compound	0-78	62-0	08-0	0-81	0-82	0-83	0-84	0-85	98-0	28-0	88-0	68-0	06-0	0-91	76-0	£6-O	0-94	0-95	96-0	0-97	0-98	66-0	0-100	0-101	0-102	0-103
Com	N-78	N-79	N-80	N-81	N-82	N-83	N-84	98-N	98-N	N-87	N-88	68-N	06-N	N-91	N-92	N-93	N-94	N-95	96-N	N-97	86-N	N-99	N-100	N-101	N-102 O-102 P-102	N-103
	M-78	M-79	M-80	M-81	M-82	M-83	M-84	M-85	M-86	M-87	M-88	M-89	M-90	M-91	M-92	M-93	M-94	M-95	96-W	M-97	M-98	M-99	M-100	M-101	M-102	M-103 N-103 O-103 P-103
	L-78	L-79	L-80	L-81	L-82	L-83	L-84	L-85	F-86	L-87	L-88	L-89	L-90	L-91	L-92	L-93	L-94	L-95	96-7	L-97	F-98	7-99	L-100	\neg		
	K-78	K-79	K-80	K-81	K-82	K-83	K-84	K-85	K-86	K-87	X-88	K-89	K-90	K-91	K-92	K-93	K-94	K-95	K-96	K-97	주-98	K-99	7-100 100	X-101	K-102	K-103 L-103

R ⁴	CH3	CH3	СНЗ	CH3	CH3	CH3	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2	PhCH2
R³	СН3ОСН2СН2СН2	R-105 C2H5OCH2CH2CH2	R-106 n-C4H9OCH2CH2CH2	(снзо)2снсн2	носн2сн2	НОСН2СН2СН2	СН2=СНСН2	СНССН2	cyclo-C3H5	cyclo-C5H9	cyclo-C6H11	NH2	CH3NH	C2H5NH	PhNH	ОН	СНЗО	C2H5O	CH2=CHCH2O	СНССН2О	СНЗО2ССН2О	снзогссн(снз)о	PhCH20	hh	R-128 4-CF3O-Ph	4-(4-CF3O)-Ph
	R-104	R-105	R-106	R-107	R-108	R-109	R-110	R-111	R-112	R-113	R-114	R-115	R-116	R-117	R-118	R-119	R-120	R-121	R-122	R-123	R-124	R-125	R-126	R-127	R-128	R-129
	Q 4-	<u>ڄ</u>	Ø-2	Q-3	Q 4	<u>م</u>	0-5	Q-3	0.4	<u>Q</u> -1	0-2	Q-3	Q 4	<u>6</u>	Q- 2	<u>Q</u> -3	Q 4	<u>0</u> -1	Q-2	Q- 3	0 4	<u>Q</u>	Q- 2	<u>Q</u> -3	Q-4	<u>ڄ</u>
	P-104	P-105	P-106	P-107	P-108	P-109	P-110	P-111	P-112	P-113	P-114	P-115	P-116	P-117	P-118	P-119	P-120	P-121	P-122	P-123	P-124	P-125	P-126	P-127	P-128	P-129
puno	0-104	0-105	0-106	0-107	0-108	0-109	0-110	0-111	0-112	0-113	0-114	0-115	0-116	0-117	0-118	0-119	0-120		0-122	0-123	0-124	0-125	0-126	0-127	0-128	0-129
Compound	N-104 O-104	N-105 O-105 P-105	N-106	N-107 O-107 P-107	N-108 O-108 P-108	N-109	N-110 O-110 P-110	N-111 0-111	N-112	N-113 O-113	N-114 O-114 P-114	N-115 O-115 P-115	N-116	N-117	N-118 O-118	N-119 O-119	N-120	N-121 0-121	N-122	N-123	N-124 O-124	N-125 O-125	N-126 O-126	N-127 O-127	N-128 O-128 P-128	N-129 O-129
	M-104	M-105	M-106 N-106 O-106 P-106	M-107	M-108	M-109 N-109 O-109 P-109	M-110	M-111	M-112 N-112 O-112 P-112	M-113	M-114	M-115	M-116 N-116 O-116 P-116	K-117 L-117 M-117 N-117 O-117 P-117	M-118	M-119	M-120 N-120 O-120 P-120	M-121	M-122 N-122 O-122	M-123 N-123 O-123 P-123	M-124	M-125	M-126	M-127	M-128	M-129
	L-104	L-105		L-107	L-108	-109	L-110	L-111					L-116	L-117	L-118	L-119	L-120	L-121	L-122		L-124		L-126	L-127	L-128	
	K-104	K-105	K-106 L-106	K-107	天-108	K-109	K-110	X-111	K-112 L-112	K-113 L-113	K-114 L-114	K-115 L-115	K-116 L-116	K-117	K-118	K-119	K-120	K-121	K-122	K-123 L-123	K-124	K-125 L-125	K-126	K-127	K-128	K-129 L-129

Ŀ			=======================================					<u>_</u>	<u>-</u>
Ŀ	-130	K-130 L-130 M-130 N-130 O-130 P-130	N-130	0-130	P-130	0-2	R-130	CF3CH2	PhCH2
نا	K-131 L-131	M-131	N-131 O-131 P-131	0-131	P-131	Q-3	R-131	СНЗОСН2СН2	PhCH2
نــــــــــــــــــــــــــــــــــــــ	-132	K-132 L-132 M-132 N-132 O-132 P-132 Q-4	N-132	0-132	P-132	40	R-132	R-132 CH3CH2OCH2CH2	PhCH2
户	-133	K-133 L-133 M-133 N-133 O-133 P-133	N-133	0-133		<u>6</u> -1	R-133	R-133 CH3OCH2CH2CH2	PhCH2
닏	134	K-134 L-134 M-134 N-134 O-134 P-134	N-134	0-134	P-134	0-2	R-134	R-134 C2H5OCH2CH2CH2	PhCH2
브	-135	K-135 L-135 M-135 N-135 O-135 P-135	N-135	0-135	P-135	Q-3	R-135	R-135 n-C4H9OCH2CH2CH2	PhCH2
브	-136	K-136 L-136 M-136 N-136 O-136 P-136	N-136	0-136	P-136	۵ 4	R-136	(СН3О)2СНСН2	PhCH2
닏	-137	K-137 L-137 M-137 N-137 O-137 P-137 Q-1	N-137	0-137	P-137	<u>0</u> -1	R-137	R-137 HOCH2CH2	PhCH2
ᆜ	-138	K-138 L-138 M-138 N-138 O-138 P-138	N-138	0-138	P-138	0-2	R-138	R-138 HOCH2CH2CH2	PhCH2
닏	-139	K-139 L-139 M-139 N-139 O-139 P-139 Q-3	N-139	0-139	P-139	Q-3	R-139	R-139 CH3OCH2CH2CH2	PhCH2
K-140 L	L-140	M-140 N-140 O-140 P-140	N-140	0-140	P-140	0 4	R-140	R-140 C2H5OCH2CH2CH2	PhCH2
닏	K-141 L-141	M-141 N-141 O-141 P-141	N-141	0-141	P-141	<u>6</u>	R-141	R-141 n-C4H9OCH2CH2CH2	PhCH2
닏	-142	K-142 L-142 M-142 N-142 O-142 P-142 Q-2	N-142	0-142	P-142	0-2	R-142	R-142 (CH3O)2CHCH2	PhCH2
-	K-143 L-143	M-143 N-143 O-143 P-143 Q-3	N-143	0-143	P-143	Q-3	R-143	R-143 HOCH2CH2	PhCH2
닏	144	K-144 L-144 M-144 N-144 O-144 P-144 Q-4	N-144	0-144	P-144	Q 4-4	R-144	R-144 HOCH2CH2CH2	PhCH2
نــا	-145	K-145 L-145 M-145 N-145 O-145 P-145	N-145	0-145	P-145	<u>6</u>	R-145	CH2CH2CH2CH2	5
느	-146	K-146 L-146 M-146 N-146 O-146 P-146	N-146	0-146	P-146	0-2	R-146	CH2CH2CH2CH2CH2	;H2
ᆜ	-147	K-147 L-147 M-147 N-147 O-147 P-147 Q-3	N-147	0-147	P-147	Q-3	R-147	СН2СН2ОСН2СН2	12
닏	-148	K-148 L-148 M-148 N-148 O-148 P-148 Q-4	N-148	0-148	P-148	0 4	R-148	CH2CH2SCH2CH2	12
نا	-149	K-149 L-149 M-149 N-149 O-149 P-149 Q-1	N-149	0-149	P-149	<u>6</u>	R-149	CH2CH2NHCH2CH2	H2
브	K-150 L-150	M-150 N-150 O-150 P-150 Q-2	N-150	0-150	P-150	Q-2	R-150	CH2CH2N(CH3)CH2CH2	CH2
닏	-151	K-151 L-151 M-151 N-151 O-151 P-151 Q-3	N-151	0-151	P-151	Q-3	R-151	N=CHCH2CH2	

Table 4
Compounds of formula (IA):

				(1/1)	
Compound	U	R ⁷	R ⁸	W	R⁴
S-1	0	Н	Н	CH2	Н
S-2	0	Н	Н	CH2	n-C3H7
S-3	0	Н	Н	CH2	iso-C3H7
S-4	0	Н	Н	CH2	n-C4H9
S-5	0	Н	Н	CH2	iso-C4H9
S-6	0	Н	H	CH2	sec-C4H9
S-7	0	Н	Н	CH2	tert-C4H9
S-8	0	Н	Н	CH2	n-C5H11
S-9	0	Н	Н	CH2	n-C6H13
S-10	0	Н	Н	CH2	cyclo-C3H5
S-11	0	Н	Н	CH2	cyclo-C5H9
S-12	0	Н	Н	CH2	cyclo-C6H11
S-13	0	Н	H	CH2	CH2=CHCH2
S-14	0	Н	Н	CH2	CHCCH2
S-15	0	H	Н	CH2	PhCH2
S-16	0	H	Н	CH2	Ph(CH3)CH
S-17	0_	Н	Н	CH2	Ph(CH3)2C
S-18 .	0	Н	Н	CH2	Ph
S-19	0	Н	Н	CH2	2-CI-Ph
S-20	0	Н	Н	CH2	3-Cl-Ph
S-21	0	H	H	CH2	4-Cl-Ph
S-22	0	H	Н	CH2	4-CF3O-Ph
S-23	0	H ·	H	CH2	4-(4-CF3-PhO)-Ph
S-24	0	CH3	Н	CH2	C2H5
S-25	0	CH3	Н	CH2	n-C3H7
S-26	0	CH3	Н	CH2	iso-C3H7
S-27	0	СНЗ	Н	CH2	n-C4H9
S-28	0	СНЗ	Н	CH2	iso-C4H9
S-29	0	СНЗ	Н	CH2	sec-C4H9
S-30	0	CH3	Н	CH2	tert-C4H9
S-31	0	CH3	H	CH2	n-C5H11
S-32	0	СНЗ	Н	CH2	n-C6H13

WO 2003/097604

Compound	U	R ⁷	R ⁸	W	R⁴
S-33	0	CH3	H	CH2	cyclo-C3H5
S-34	0	CH3	Н	CH2	cyclo-C5H9
S-35	0	CH3	Н	CH2	cyclo-C6H11
S-36	0	CH3	Н	CH2	CH2=CHCH2
S-37	0	CH3	Н	CH2	CHCCH2
S-38	0	CH3	Н	CH2	PhCH2
S-39	0	CH3	Н	CH2	Ph(CH3)CH
S-40	0	СНЗ	Н	CH2	Ph(CH3)2C
S-41	0	CH3	Н	CH2	Ph
S-42	0	СНЗ	Н	CH2	2-Cl-Ph
S-43	0	СНЗ	Н	CH2	3-Cl-Ph
S-44	0	СНЗ	Н	CH2	4-CI-Ph
S-45	0	CH3	Н	CH2	4-CF3O-Ph
S-46	0	CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-47	0	СНЗ	CH3	CH2	CH3
S-48	0	СНЗ	CH3	CH2	C2H5
S-49	0	СНЗ	СНЗ	CH2	n-C3H7
S-50	0	CH3	СНЗ	CH2	iso-C3H7
S-51	0	СНЗ	CH3	CH2	n-C4H9
S-52	0	СНЗ	CH3	CH2	iso-C4H9
S-53	0	CH3	CH3	CH2	sec-C4H9
S-54	0	CH3	CH3	CH2	tert-C4H9
S-55	0	СНЗ	CH3	CH2	n-C5H11
S-56	0	СНЗ	CH3	CH2	n-C6H13
S-57	0	CH3	СНЗ	CH2	cyclo-C3H5
S-58	0	СНЗ	CH3	CH2	cyclo-C5H9
S-59	0	СНЗ	CH3	CH2	cyclo-C6H11
S-60	0	СНЗ	CH3	CH2	CH2=CHCH2
S-61	0	СНЗ	СНЗ	CH2	CHCCH2
S-62	0	CH3	CH3	CH2	PhCH2
S-63	0	CH3	СНЗ	CH2	Ph(CH3)CH
S-64	0	СНЗ	CH3	CH2	Ph(CH3)2C
S-65	0	СНЗ	CH3 .	CH2	Ph
S-66	0	CH3	СНЗ	CH2	2-CI-Ph
S-67	0	CH3	СНЗ	CH2	3-CI-Ph
S-68	0	СНЗ	СНЗ	CH2	4-CI-Ph
S-69	0	СНЗ	СНЗ	CH2	4-CF3O-Ph
S-70	0	СНЗ	СНЗ	CH2	4-(4-CF3-PhO)-Ph
S-71	0	ОСН3	Н	CH2	C2H5
S-72	0	ОСН3	Н	CH2	n-C3H7
S-73	0	ОСН3	Н	CH2	iso-C3H7
S-74	0	ОСН3	Н	CH2	n-C4H9

WO 2003/097604

Compound	U	R ⁷	R ⁸	W	R⁴
S-75	0	OCH3	Н	CH2	iso-C4H9
S-76	0	ОСН3	Н	CH2	sec-C4H9
S-77	0	ОСН3	Н	CH2	tert-C4H9
S-78	0	ОСН3	H	CH2	n-C5H11
S-79	0	OCH3	Н	CH2	n-C6H13
S-80	0	OCH3	H	CH2	cyclo-C3H5
S-81	0	OCH3	Н	CH2	cyclo-C5H9
S-82	0	OCH3	Н	CH2	cyclo-C6H11
S-83	0	ОСН3	Н	CH2	CH2=CHCH2
S-84	0	ОСН3	Н	CH2	CHCCH2
S-85	0	осн3	Н	CH2	PhCH2
S-86	0	OCH3	Н	CH2	Ph(CH3)CH
S-87	0	ОСН3	Н	CH2	Ph(CH3)2C
S-88	0	ОСН3	Н	CH2	Ph
S-89	0	ОСН3	Н	CH2	2-Cl-Ph
S-90	0	OCH3	H ·	CH2	3-CI-Ph
S-91	0	ОСН3	Н	CH2	4-Cl-Ph
S-92	0	ОСН3	Н	CH2	4-CF3O-Ph
S-93	0	ОСН3	Н	CH2	4-(4-CF3-PhO)-Ph
S-94	0	OCH2CH3	Н	CH2	CH3
S-95	0	OCH2CH3	Н	CH2	C2H5
S-96	0	OCH2CH3	Н	CH2	n-C3H7
S-97	0	OCH2CH3	Н	CH2	iso-C3H7
S-98	0	OCH2CH3	Н	CH2	n-C4H9
S-99	0	OCH2CH3	H	CH2	iso-C4H9
S-100	0	OCH2CH3	Н	CH2	sec-C4H9
S-101	0	OCH2CH3	Н	CH2	tert-C4H9
S-102	0	OCH2CH3	Н	CH2	n-C5H11
S-103	0	OCH2CH3	Н	CH2	n-C6H13
S-104	0	OCH2CH3	Н	CH2	cyclo-C3H5
S-105	0	OCH2CH3	Н	CH2	cyclo-C5H9
S-106	0	OCH2CH3	Н	CH2	cyclo-C6H11
S-107	0	OCH2CH3	Н	CH2	CH2=CHCH2
S-108	0	OCH2CH3	H	CH2	CHCCH2
S-109	0	OCH2CH3	H	CH2	PhCH2
S-110	0	OCH2CH3	Н	CH2	Ph(CH3)CH
S-111	0	OCH2CH3	Н	CH2	Ph(CH3)2C
S-112	0	OCH2CH3	Н	CH2	Ph
S-113	0	OCH2CH3	Н	CH2	2-CI-Ph
S-114	0	OCH2CH3	H	CH2	3-Cl-Ph
S-115	0	OCH2CH3	Н	CH2	4-CI-Ph
S-116	0	OCH2CH3	Н	CH2	4-CF3O-Ph

WO 2003/097604

Compound	U	R ⁷	R ⁸	W	R⁴
S-117	0	OCH2CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-118	0	Н	Н	C=O	H
S-119	0	Н	H	C=O	n-C3H7
S-120	0	Н	Н	C=O	iso-C3H7
S-121	0	Н	Н	C=O	n-C4H9
S-122	0	Н	Н	C=O	iso-C4H9
S-123	0	Н	Н	C=O	sec-C4H9
S-124	0	Н	Н	C=O	tert-C4H9
S-125	0	Н	Н	C=O	n-C5H11
S-126	0	Н	Н	C=O	n-C6H13
S-127	0	Н	Н	C=O	cyclo-C3H5
S-128	0	Н	Н	C=O	cyclo-C5H9
S-129	O	Н	H	C=O	cyclo-C6H11
S-130	o	H	Н	C=O	CH2=CHCH2
S-131	0	Н	Н	C=O	CHCCH2
S-132	0	Н	Н	C=O	PhCH2
S-133	О	Н	Н	C=O	Ph(CH3)CH
S-134	0	Н	Н	C=O	Ph(CH3)2C
S-135	0	Н	Н	C=O	Ph
S-136	Ō	Н	Н	C=O	2-CI-Ph
S-137	ō	Н	Н	C=O	3-CI-Ph
S-138	Ō	Н	H	C=O	4-CI-Ph
S-139	0	Н	Н	C=O	4-CF3O-Ph
S-140	o	Н	H	C=O	4-(4-CF3-PhO)-Ph
S-141	Ō	СНЗ	Н	C=O	C2H5
S-142	o	СНЗ	Н	C=O	n-C3H7
S-143	ō	CH3	Н	C=O	iso-C3H7
S-144	0	CH3	H	C=O	n-C4H9
S-145	ō	СНЗ	Н	C=O	iso-C4H9
S-146	ō	СНЗ	Н	C=O	sec-C4H9
S-147	0	СНЗ	Н	C=O	tert-C4H9
S-148	0	СНЗ	Н	C=O	n-C5H11
S-149	0	CH3	Н	C=O	n-C6H13
S-150	o	СНЗ	H	C=O	cyclo-C3H5
S-151	0	CH3	H	C=O	cyclo-C5H9
S-152	0	СНЗ	H	C=O	cyclo-C6H11
S-153	ō	СНЗ	H	C=O	CH2=CHCH2
S-154	ō	СНЗ	H	C=O	CHCCH2
S-155	6	CH3	Н	C=O	PhCH2
S-156	0	CH3	H	C=O	Ph(CH3)CH
S-157	0	CH3	H	C=O	Ph(CH3)2C
S-158	6	CH3	<u> </u>	C=O	Ph

Compound	U	R ⁷	R⁵	W	R⁴
S-159	0	CH3	Н	C=O	2-CI-Ph
S-160	0	CH3	H	C=O	3-CI-Ph
S-161	0	CH3	Н	C=O	4-CI-Ph
S-162	0	CH3	Н	C=O	4-CF3O-Ph
S-163	0	CH3	Н	C=O	4-(4-CF3-PhO)-Ph
S-164	0	CH3	CH3	C=O	CH3
S-165	0	СНЗ	CH3	C=O	C2H5
S-166	0	СНЗ	CH3	C=O	n-C3H7
S-167	0	СНЗ	CH3	C=O	iso-C3H7
S-168	0	СНЗ	CH3	C=O	n-C4H9
S-169	0	СНЗ	CH3	C=O	iso-C4H9
S-170	o	CH3	СНЗ	C=O	sec-C4H9
S-171	Ō	СНЗ	СНЗ	C=O .	tert-C4H9
S-172	Ō	СНЗ	СНЗ	C=O	n-C5H11
S-173	0	CH3	CH3	C=O	n-C6H13
S-174	0	CH3	CH3	C=O	cyclo-C3H5
S-175	0	CH3	CH3	C=O	cyclo-C5H9
S-176	0	СНЗ	CH3	C=O	cyclo-C6H11
S-177	O	СНЗ	CH3	C=O	CH2=CHCH2
S-178	0	СНЗ	СНЗ	C=O	CHCCH2
S-179	0	CH3	CH3	C=O	PhCH2
S-180	0	СНЗ	CH3	C=O	Ph(CH3)CH
S-181	0	СНЗ	CH3	C=O	Ph(CH3)2C
S-182	0	CH3	CH3	C=O	Ph
S-183	0	CH3	CH3	C=O	2-Cl-Ph
S-184	ō	СНЗ	CH3	C=O	3-CI-Ph
S-185	0	CH3	CH3	C=O	4-CI-Ph
S-186	Ō	СНЗ	CH3	C=O	4-CF3O-Ph
S-187	0	СНЗ	СНЗ	C=O	4-(4-CF3-PhO)-Ph
S-188	0	ОСН3	Н	C=O	C2H5
S-189	Ō	ОСН3	Н	C=O	n-C3H7
S-190	0	ОСН3	Н	C=O	iso-C3H7
S-191	o	осн3	Н	C=O	n-C4H9
S-192	Ō	ОСН3	Н	C=O	iso-C4H9
S-193	Ö	осн3	Н	C=O	sec-C4H9
S-194	0	осн3	Н	C=O	tert-C4H9
S-195	-o	ОСН3	H	C=O	n-C5H11
S-196	0	ОСН3	H	C=O	n-C6H13
S-190	 0	ОСН3	Н	C=O	cyclo-C3H5
S-197	0	ОСН3	Н	C=O	cyclo-C5H9
S-199	0	ОСН3	H	C=O	cyclo-C6H11
S-200	0	ОСН3	H	C=O	CH2=CHCH2

WO 2003/097604 PCT/EP2003/004714

Compound	U	R ⁷	R ⁸	W	R ⁴
S-201	0	ОСН3	Н	C=O	CHCCH2
S-202	0	ОСН3	H	C=O	PhCH2
S-203	0	OCH3	Н	C=O	Ph(CH3)CH
S-204	0	OCH3	Н	C=O	Ph(CH3)2C
S-205	0	OCH3	Н	C=O	Ph
S-206	0	ОСН3	Н	C=O	2-CI-Ph
S-207	0	осн3	Н	C=O	3-Cl-Ph
S-208	0	OCH3	H	C=O	4-CI-Ph
S-209	0	OCH3	Н	C=O	4-CF3O-Ph
S-210	0	ОСН3	Н	C=O	4-(4-CF3-PhO)-Ph
S-211	0	OCH2CH3	Н	C=O	CH3
S-212	0	OCH2CH3	Н	C=O	C2H5
S-213	0	OCH2CH3	Н	C=O	n-C3H7
S-214	0	OCH2CH3	Н	C=O	iso-C3H7
S-215	0	OCH2CH3	Н	C=O	n-C4H9
S-216	0	OCH2CH3	H	C=O	iso-C4H9
S-217	0	OCH2CH3	Н	C=O	sec-C4H9
S-218	0	OCH2CH3	Н	C=O	tert-C4H9
S-219	0	OCH2CH3	H	C=O	n-C5H11
S-220	0	OCH2CH3	Н	C=O	n-C6H13
S-221	0	OCH2CH3	Н	C=O	cyclo-C3H5
S-222	0	OCH2CH3	Н	C=O	cyclo-C5H9
S-223	О	OCH2CH3	Н	C=O	cyclo-C6H11
S-224	0	OCH2CH3	Н	C=O	CH2=CHCH2
S-225	0	OCH2CH3	Н	C=O	CHCCH2
S-226	0	OCH2CH3	Н	C=O	PhCH2
S-227	0	OCH2CH3	Н	C=O	Ph(CH3)CH
S-228	O	OCH2CH3	Н	C=O	Ph(CH3)2C
S-229	0	OCH2CH3	Н	C=O	Ph
S-230	0	OCH2CH3	Н	C=O	2-Cl-Ph
S-231	0	OCH2CH3	Н	C=O	3-CI-Ph
S-232	0	OCH2CH3	Н	C=O	4-Cl-Ph
S-233	0	OCH2CH3	Н	C=O	4-CF3O-Ph
S-234	0	OCH2CH3	Н	C=O	4-(4-CF3-PhO)-Ph
S-235	lo	Н	Н	CH2CH2	C2H5
S-236	ō	Н	Н	CH2CH2	n-C3H7
S-237	ō	Н	H	CH2CH2	iso-C3H7
S-238	ō	Н	H	CH2CH2	n-C4H9
S-239	0	Н	H	CH2CH2	iso-C4H9
S-240	0	H	H	CH2CH2	sec-C4H9
S-240	0	H	Н	CH2CH2	tert-C4H9
S-241	0	Н	H	CH2CH2	n-C5H11

WO 2003/097604 PCT/EP2003/004714

Compound	U	R ⁷	R ⁸	W	R⁴
S-243	0	Н	Н	CH2CH2	n-C6H13
S-244	0	Н	Н	CH2CH2	cyclo-C3H5
S-245	0	Н	Н	CH2CH2	cyclo-C5H9
S-246	0	Н	Н	CH2CH2	cyclo-C6H11
S-247	0	H	Н	CH2CH2	CH2=CHCH2
S-248	0	Н	Н	CH2CH2	CHCCH2
S-249	0	Н	Н	CH2CH2	PhCH2
S-250	0	Н	Н	CH2CH2	Ph(CH3)CH
S-251	0	Н	Н	CH2CH2	Ph(CH3)2C
S-252	0	Н	Н	CH2CH2	Ph
S-253	0	Н	Н	CH2CH2	2-CI-Ph
S-254	0	Н	Н	CH2CH2	3-Cl-Ph
S-255	0	Н	Н	CH2CH2	4-Cl-Ph
S-256	0	Н	Н	CH2CH2	4-CF30-Ph
S-257	0	Н	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-258	0	CH3	Н	CH2CH2	CH3
S-259	0	CH3	Н	CH2CH2	C2H5
S-260	0	СНЗ	Н	CH2CH2	n-C3H7
S-261	0	СНЗ	Н	CH2CH2	iso-C3H7
S-262	0	СНЗ	H	CH2CH2	n-C4H9
S-263	0	CH3	H	CH2CH2	iso-C4H9
S-264	0	СНЗ	Н	CH2CH2	sec-C4H9
S-265	0	СНЗ	Н	CH2CH2	tert-C4H9
S-266	0	СНЗ	Н	CH2CH2	n-C5H11
S-267	0	CH3	Н	CH2CH2	n-C6H13
S-268	0	СНЗ	H.	CH2CH2	cyclo-C3H5
S-269	0	СНЗ	Н	CH2CH2	cyclo-C5H9
S-270	0	СНЗ	Н	CH2CH2	cyclo-C6H11
S-271	0	СНЗ	Н	CH2CH2	CH2=CHCH2
S-272	0	CH3	H	CH2CH2	CHCCH2
S-273	0	CH3	Н	CH2CH2	PhCH2
S-274	0	СНЗ	H	CH2CH2	Ph(CH3)CH
S-275	0	CH3	Н	CH2CH2	Ph(CH3)2C
S-276	0	CH3	H	CH2CH2	Ph
S-277	0	СНЗ	Н	CH2CH2	2-CI-Ph
S-278	0	СНЗ	Н	CH2CH2	3-Cl-Ph
S-279	0	СНЗ	Н	CH2CH2	4-CI-Ph
S-280	0	СНЗ	Н	CH2CH2	4-CF3O-Ph
S-281	0	СНЗ	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-282	0	СНЗ	СНЗ	CH2CH2	H
S-283	0	СНЗ	СНЗ	CH2CH2	CH3
S-284	0	CH3	СНЗ	CH2CH2	C2H5

Compound	U	R ⁷	R ⁸	Tw	IR ⁴
S-285	O	СНЗ	СНЗ	CH2CH2	n-C3H7
S-286	o	СНЗ	СНЗ	CH2CH2	iso-C3H7
S-287	o	СНЗ	СНЗ	CH2CH2	n-C4H9
S-288	ō	CH3	СНЗ	CH2CH2	iso-C4H9
S-289	Ō	СНЗ	СНЗ	CH2CH2	sec-C4H9
S-290	0	СНЗ	СНЗ	CH2CH2	tert-C4H9
S-291	0	СНЗ	СНЗ	CH2CH2	n-C5H11
S-292	0	СНЗ	СНЗ	CH2CH2	n-C6H13
S-293	0	СНЗ	CH3	CH2CH2	cyclo-C3H5
S-294	О	СНЗ	CH3	CH2CH2	cyclo-C5H9
S-295	0	СНЗ	СНЗ	CH2CH2	cyclo-C6H11
S-296	О	СНЗ	СНЗ	CH2CH2	CH2=CHCH2
S-297	0	СНЗ	СНЗ	CH2CH2	CHCCH2
S-298	0	СНЗ	CH3	CH2CH2	PhCH2
S-299	0	СНЗ	CH3	CH2CH2	Ph(CH3)CH
S-300	0	CH3	CH3	CH2CH2	Ph(CH3)2C
S-301	0	СНЗ	CH3	CH2CH2	Ph
S-302	0	СНЗ	CH3	CH2CH2	2-CI-Ph
S-303	0	CH3	CH3	CH2CH2	3-CI-Ph
S-304	0	СНЗ	CH3	CH2CH2	4-CI-Ph
S-305	0	СНЗ	CH3	CH2CH2	4-CF3O-Ph
S-306	0	СНЗ	CH3	CH2CH2	4-(4-CF3-PhO)-Ph
S-307	0	ОСН3	Н	CH2CH2	CH3
S-308	0	ОСН3	Н	CH2CH2	C2H5
S-309	0	OCH3	Н	CH2CH2	n-C3H7
S-310	0	ОСН3	H	CH2CH2	iso-C3H7
S-311	0	ОСН3	Н	CH2CH2	n-C4H9
S-312	0	ОСН3	H	CH2CH2	iso-C4H9
S-313	0	ОСН3	Н	CH2CH2	sec-C4H9
S-314	0	ОСН3	H	CH2CH2	tert-C4H9
S-315	0	ОСН3	H	CH2CH2	n-C5H11
S-316	0	ОСН3	Н	CH2CH2	n-C6H13
S-317	0	ОСН3	Н	CH2CH2	cyclo-C3H5
S-318	0	ОСН3	Н	CH2CH2	cyclo-C5H9
S-319	0	ОСН3	Н	CH2CH2	cyclo-C6H11
S-320	0	ОСН3	Н	CH2CH2	CH2=CHCH2
S-321	0	ОСН3	Н	CH2CH2	CHCCH2
S-322	0	ОСН3	Н	CH2CH2	PhCH2
S-323	0	ОСН3	Н	CH2CH2	Ph(CH3)CH
S-324	0	ОСН3	Н	CH2CH2	Ph(CH3)2C
S-325	0	осн3	Н	CH2CH2	Ph
S-326	0	ОСН3	Н	CH2CH2	2-Cl-Ph

Compound	TU	R ⁷	R ⁸	ĪW	IR ⁴
S-327	0	ОСН3	Н	CH2CH2	3-Cl-Ph
S-328	ō	ОСН3	Н	CH2CH2	4-CI-Ph
S-329	ō	ОСН3	H	CH2CH2	4-CF3O-Ph
S-330	o	оснз	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-331	o	ОСН2СН3	H	CH2CH2	H
S-332	ō	OCH2CH3	H	CH2CH2	CH3
S-333	o	OCH2CH3	H	CH2CH2	C2H5
S-334	ō	OCH2CH3	Н	CH2CH2	n-C3H7
S-335	o	осн2сн3	H	CH2CH2	iso-C3H7
S-336	o	OCH2CH3	H	CH2CH2	n-C4H9
S-337	0	OCH2CH3	Н	CH2CH2	iso-C4H9
S-338	0	OCH2CH3	Н	CH2CH2	sec-C4H9
S-339	0	ОСН2СН3	Н	CH2CH2	tert-C4H9
S-340	0	OCH2CH3	Н	CH2CH2	n-C5H11
S-341	0	OCH2CH3	Н	CH2CH2	n-C6H13
S-342	0	OCH2CH3	Н	CH2CH2	cyclo-C3H5
S-343	0	OCH2CH3	Н	CH2CH2	cyclo-C5H9
S-344	0	OCH2CH3	Н	CH2CH2	cyclo-C6H11
S-345	0	OCH2CH3	Н	CH2CH2	CH2=CHCH2
S-346	0	OCH2CH3	Н	CH2CH2	CHCCH2
S-347	0	OCH2CH3	Н	CH2CH2	PhCH2
S-348	0	OCH2CH3	Н	CH2CH2	Ph(CH3)CH
S-349	0	OCH2CH3	Н	CH2CH2	Ph(CH3)2C
S-350	0	OCH2CH3	Н	CH2CH2	Ph
S-351	0	OCH2CH3	Н	CH2CH2	2-Cl-Ph
S-352	0	OCH2CH3	Н	CH2CH2	3-Cl-Ph
S-353	0	OCH2CH3	Н	CH2CH2	4-Cl-Ph
S-354	0	OCH2CH3	Н	CH2CH2	4-CF3O-Ph
S-355	0	OCH2CH3	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-356	S	H	Н	CH2	Н
S-357	S	Н	Н	CH2	n-C3H7
S-358	S	Н	Н	CH2	iso-C3H7
S-359	S	Н	Η	CH2	n-C4H9
S-360	S	Н	Н	CH2	iso-C4H9
S-361	S	Н	H	CH2	sec-C4H9
S-362	S	H	H	CH2	tert-C4H9
S-363	S	Н	Н	CH2	n-C5H11
S-364	S	H	Н	CH2	n-C6H13
S-365	S	Н	Н	CH2	cyclo-C3H5
S-366	S	H	Н	CH2	cyclo-C5H9
S-367	S	Н	Н	CH2	cyclo-C6H11
S-368	S	Н	H	CH2	CH2=CHCH2

Compound	lu	R ⁷	R ⁸	lw	R⁴
S-369	s	Н	H	CH2	
S-370	S	Н	H	CH2	CHCCH2
S-370	S	H	H	CH2	PhCH2
S-372	S	Н	H	CH2	Ph(CH3)CH
S-372	S	Н	H	CH2	Ph(CH3)2C
S-374	S	Н	Н	CH2	Ph CLD
S-375	S	Н	H	CH2	2-CI-Ph
S-376	S	H	H	CH2	3-CI-Ph
S-377	s	Н	H	CH2	4-CI-Ph
S-378	S	H	H	CH2	4-CF3O-Ph
S-379	S	CH3	H	CH2	4-(4-CF3-PhO)-Ph
S-379	S	CH3	H		C2H5
S-381	S	CH3	Н	CH2	n-C3H7
S-382	S	CH3	Н	CH2	iso-C3H7
	S			CH2	n-C4H9
S-383 S-384		CH3	Н	CH2	iso-C4H9
	S	CH3	Н	CH2	sec-C4H9
S-385	S	CH3	Н	CH2	tert-C4H9
S-386	S	CH3	Н	CH2	n-C5H11
S-387	S	CH3	Н	CH2	n-C6H13
S-388	S	CH3	Н	CH2	cyclo-C3H5
S-389	S	СНЗ	H	CH2	cyclo-C5H9
S-390	S	СНЗ	Н	CH2	cyclo-C6H11
S-391	S	СНЗ	Н	CH2	CH2=CHCH2
S-392	S	СНЗ	Н	CH2	CHCCH2
S-393	S	CH3	Н	CH2	PhCH2
S-394	S	СНЗ	H	CH2	Ph(CH3)CH
S-395	S	CH3	Н	CH2	Ph(CH3)2C
S-396	S	СНЗ	Н	CH2	Ph
S-397	S	СН3	Н	CH2	2-CI-Ph
S-398	S	СНЗ	H	CH2	3-CI-Ph
S-399	S	CH3	Н	CH2	4-Cl-Ph
S-400	S	СНЗ	Н	CH2	4-CF3O-Ph
S-401	S	CH3	Н	CH2	4-(4-CF3-PhO)-Ph
S-402	S	CH3	CH3	CH2	CH3
S-403	S	CH3	CH3	CH2	C2H5
S-404	S	CH3	CH3	CH2	n-C3H7
S-405	S	CH3	CH3	CH2	iso-C3H7
S-406	S	СНЗ	СНЗ	CH2	n-C4H9
S-407	S	CH3	СНЗ	CH2	iso-C4H9
S-408	S	СНЗ	СНЗ	CH2	sec-C4H9
S-409 .	S	СНЗ	CH3	CH2	tert-C4H9
S-410	S	СНЗ	СНЗ	CH2	n-C5H11

Compound	U	R ⁷	R ⁸	W	R⁴
S-411	S	CH3	СНЗ	CH2	n-C6H13
S-412	s	CH3	СНЗ	CH2	cyclo-C3H5
S-413	s	СНЗ	СНЗ	CH2	cyclo-C5H9
S-414	s	СНЗ	СНЗ	CH2	cyclo-C6H11
S-415	S	CH3	СНЗ	CH2	CH2=CHCH2
S-416	S	CH3	СНЗ	CH2	CHCCH2
S-417	s	СНЗ	СНЗ	CH2	PhCH2
S-418	S	CH3	СНЗ	CH2	Ph(CH3)CH
S-419	S	CH3	CH3	CH2	Ph(CH3)2C
S-420	S	СНЗ	CH3	CH2	Ph
S-421	S	CH3	CH3	CH2	2-CI-Ph
S-422	S	CH3	CH3	CH2	3-Cl-Ph
S-423	S	CH3	CH3	CH2	4-Cl-Ph
S-424	S	CH3	СНЗ	CH2	4-CF3O-Ph
S-425	S	CH3	СНЗ	CH2	4-(4-CF3-PhO)-Ph
S-426	S	OCH3	Н	CH2	C2H5
S-427	S	ОСН3	Н	CH2	n-C3H7
S-428	s	ОСН3	Н	CH2	iso-C3H7
S-429	S	ОСН3	Н	CH2	n-C4H9
S-430	S	OCH3	Н	CH2	iso-C4H9
S-431	S	осн3	H	CH2	sec-C4H9
S-432	S	ОСН3	Н	CH2	tert-C4H9
S-433	S	осн3	Н	CH2	n-C5H11
S-434	S	ОСН3	Н	CH2	n-C6H13
S-435	S	ОСН3	Н	CH2	cyclo-C3H5
S-436	S	ОСН3	Н	CH2	cyclo-C5H9
S-437	S	ОСН3	H	CH2	cyclo-C6H11
S-438	S	ОСН3	H	CH2	CH2=CHCH2
S-439	S	OCH3	Н	CH2	CHCCH2
S-440	S	ОСН3	Н	CH2	PhCH2
S-441	S	ОСН3	Н	CH2	Ph(CH3)CH
S-442	S	ОСН3	Н	CH2	Ph(CH3)2C
S-443	S	осн3	Н	CH2	Ph
S-444	S	ОСН3	H	CH2	2-Cl-Ph
S-445	S	ОСН3	Н	CH2	3-Cl-Ph
S-446	S	ОСН3	Н	CH2	4-Cl-Ph
S-447	S	ОСН3	Н	CH2	4-CF3O-Ph
S-448	S	ОСН3	H	CH2	4-(4-CF3-PhO)-Ph
S-449	S	Н	Н	CH2CH2	C2H5
S-450	S	Н	Н	CH2CH2	n-C3H7
S-451	S	Н	Н	CH2CH2	iso-C3H7
S-452	S	Н	Н	CH2CH2	n-C4H9

Compound		R ⁷	R ⁸	W	R ⁴
S-453	S	Н	Н	CH2CH2	iso-C4H9
S-454	S	H	Н	CH2CH2	sec-C4H9
S-455	S	Н	Н	CH2CH2	tert-C4H9
S-456	S	Н	Н	CH2CH2	n-C5H11
S-457	S	Н	Н	CH2CH2	n-C6H13
S-458	S	Н	H	CH2CH2	cyclo-C3H5
S-459	S	H	H	CH2CH2	cyclo-C5H9
S-460	S	H	H	CH2CH2	cyclo-C6H11
S-461	S	H	Н	CH2CH2	CH2=CHCH2
S-462	S	H	Н	CH2CH2	CHCCH2
S-463	S	Н	Н	CH2CH2	PhCH2
S-464	S	Н	Н	CH2CH2	Ph(CH3)CH
S-465	S	Н	Н	CH2CH2	Ph(CH3)2C
S-466	S	Н	Н	CH2CH2	Ph
S-467	S	Н	Н	CH2CH2	2-Cl-Ph
S-468	S	Н	Н	CH2CH2	3-Cl-Ph
S-469	S	H	H	CH2CH2	4-CI-Ph
S-470	S	Н	Н	CH2CH2	4-CF3O-Ph
S-471	S	Н	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-472	S	CH3	Н	CH2CH2	CH3
S-473	S	CH3	Н	CH2CH2	C2H5
S-474	S	CH3	Н	CH2CH2	n-C3H7
S-475	S	СНЗ	Н	CH2CH2	iso-C3H7
S-476	S	CH3	Н	CH2CH2	n-C4H9
S-477	S	СНЗ	Н	CH2CH2	iso-C4H9
S-478	S	СНЗ	Н	CH2CH2	sec-C4H9
S-479	S	СНЗ	Н	CH2CH2	tert-C4H9
S-480	S	СНЗ	Н	CH2CH2	n-C5H11
S-481	S	СНЗ	Н	CH2CH2	n-C6H13
S-482	S	CH3	Н	CH2CH2	cyclo-C3H5
S-483	S	CH3	Н	CH2CH2	cyclo-C5H9
S-484	S	СНЗ	Н	CH2CH2	cyclo-C6H11
S-485	S	СНЗ	Н	CH2CH2	CH2=CHCH2
S-486	S	CH3	Н	CH2CH2	CHCCH2
S-487	S	CH3	Н	CH2CH2	PhCH2
S-488	S	СНЗ	Н	CH2CH2	Ph(CH3)CH
-489	S	CH3	Н	CH2CH2	Ph(CH3)2C
-490	S	СНЗ	H	CH2CH2	Ph ·
-491	S	СНЗ	H	CH2CH2	2-Cl-Ph
-492	S	CH3	H	CH2CH2	3-CI-Ph
	S	CH3	Н	CH2CH2	4-Cl-Ph
-494	S	CH3	Н	CH2CH2	4-CF3O-Ph

Compound	U	R ⁷	R ⁸	W	R ⁴
S-495	S	СНЗ	H	CH2CH2	4-(4-CF3-PhO)-Ph
S-496	S	СНЗ	CH3	CH2CH2	H
S-497	S	СНЗ	CH3	CH2CH2	CH3
S-498	S	CH3	CH3_	CH2CH2	C2H5
S-499	S	CH3	CH3	CH2CH2	n-C3H7
S-500	S	CH3	CH3	CH2CH2	iso-C3H7
S-501	S	CH3	СНЗ	CH2CH2	n-C4H9
S-502	S	CH3	CH3	CH2CH2	iso-C4H9
S-503	S	CH3	CH3	CH2CH2	sec-C4H9
S-504	S	СНЗ	CH3	CH2CH2	n-C4H9
S-505	S	CH3	CH3	CH2CH2	iso-C4H9
S-506	S	CH3	CH3	CH2CH2	sec-C4H9
S-507	S	CH3	CH3	CH2CH2	tert-C4H9
S-508	S	СНЗ	СНЗ	CH2CH2	n-C5H11
S-509	s	СНЗ	CH3	CH2CH2	n-C6H13
S-510	S	CH3	CH3	CH2CH2	cyclo-C3H5
S-511	s	СНЗ	CH3	CH2CH2	cyclo-C5H9
S-512	s	CH3	CH3	CH2CH2	cyclo-C6H11
S-513	S	CH3	CH3	CH2CH2	CH2=CHCH2
S-514	S	CH3	CH3	CH2CH2	CHCCH2
S-515	S	CH3	CH3	CH2CH2	PhCH2
S-516	s	СНЗ	СНЗ	CH2CH2	Ph(CH3)CH
S-517	s	CH3	СНЗ	CH2CH2	Ph(CH3)2C
S-518	s	СНЗ	CH3	CH2CH2	Ph
S-519	s	CH3	CH3	CH2CH2	2-Cl-Ph
S-520	s	CH3	CH3	CH2CH2	3-Cl-Ph
S-521	s	CH3	CH3	CH2CH2	4-CI-Ph
S-522	s	СНЗ	CH3	CH2CH2	4-CF3O-Ph
S-523	s	CH3	СНЗ	CH2CH2	4-(4-CF3-PhO)-Ph
S-524	s	осн3	Н	CH2CH2	CH3
S-525	S	ОСН3	Н	CH2CH2	C2H5
S-526	s	OCH3	Н	CH2CH2	n-C3H7
S-527	S	OCH3	Н	CH2CH2	iso-C3H7
S-528	s	ОСН3	H	CH2CH2	n-C4H9
S-529	S	OCH3	Н	CH2CH2	iso-C4H9
S-529	S	OCH3	Н	CH2CH2	sec-C4H9
S-531	S	OCH3	Н	CH2CH2	tert-C4H9
S-532	S	OCH3	H	CH2CH2	n-C5H11
S-532 S-533	S	OCH3	——————————————————————————————————————	CH2CH2	n-C6H13
S-534	S	OCH3	H	CH2CH2	cyclo-C3H5
S-535	S	OCH3	H	CH2CH2	cyclo-C5H9
S-536	S	OCH3	H	CH2CH2	cyclo-C6H11

Compound	U	R ⁷	R ⁸	W	R⁴
S-537	s	ОСН3	Н	CH2CH2	CH2=CHCH2
S-538	S	ОСН3	Н	CH2CH2	CHCCH2
S-539	S	OCH3	Н	CH2CH2	PhCH2
S-540	S	OCH3	Н	CH2CH2	Ph(CH3)CH
S-541	S	OCH3	Н	CH2CH2	Ph(CH3)2C
S-542	S	ОСН3	Η	CH2CH2	Ph
S-543	S	ОСН3	Н	CH2CH2	2-CI-Ph
S-544	S	OCH3	Н	CH2CH2	3-Cl-Ph
S-545	S	ОСН3	Н	CH2CH2	4-CI-Ph
S-546	S	ОСН3	Н	CH2CH2	4-CF3O-Ph
S-547	S	ОСН3	Н	CH2CH2	4-(4-CF3-PhO)-Ph
S-548	0	H	Н	CH2	CH3O
S-549	0	Н	Н	CH2	PhCH2O
S-550	0	Н	H	CH(CH3)	Н
S-551	0	Н	Н	CH(C2H5)	H
S-552	0	Н	Н	CH(C2H5)	PhCH2
S-553	0	Н	Н	CHPh	Н
S-554	0	Н	Н	CHPh	CH3
S-555	0	Н	Н	CHPh	PhCH2
S-556	0	CH3	Н	CH2	Н
S-557	0	Ph	Н	CH2	H
S-558	0	Ph	Н	CH2	CH3
S-559	0	Ph	Н	CH2	PhCH2

Table 5
Compounds of formula (IB):

(1B)

Compound	U	X	Υ	R⁴	
T-1	0	СН	СН	Н	
T-2	0	СН	СН	n-C3H7	
T-3	0	СН	СН	iso-C3H7	
T-4	0	СН	СН	n-C4H9	
T-5	0	СН	СН	iso-C4H9	
T-6	0	СН	СН	sec-C4H9	
T-7	0	СН	СН	tert-C4H9	

Compound	U	X	ΙΥ	IR⁴
T-8	0	CH	СН	n-C5H11
T-9	0	CH	CH	n-C6H13
T-10	0	СН	CH	cyclo-C3H5
T-11	0	СН	CH	cyclo-C5H9
T-12	0	СН	CH	
T-13	0	СН		cyclo-C6H11
T-14	0		CH	CH2=CHCH2
	0	CH	CH	CH2CCH
T-15		CH	CH	PhCH2
T-16	0	CH	СН	Ph(CH3)CH
T-17	0	CH .	СН	Ph
T-18	0	СН	СН	2-Cl-Ph
T-19	0	СН	СН	3-CI-Ph
T-20	0	СН	CH	4-CI-Ph
T-21	0	СН	СН	4-CF3O-Ph
T-22	0	CH	СН	4-(4-CF3-PhO)-Ph
T-23	0	СН	N	Н
T-24	0	СН	Ν.	CH3
T-25	0	СН	N	n-C4H9
T-26	0	CH	N	iso-C4H9
T-27	0	CH	N	sec-C4H9
T-28	0	СН	N	tert-C4H9
T-29	0	СН	N	n-C5H11
T-30	0	СН	N	n-C6H13
T-31	0 .	СН	N	cyclo-C3H5
T-32	0	СН	N	cyclo-C5H9
T-33	0	СН	N	cyclo-C6H11
T-34	0	СН	N	CH2=CHCH2
T-35	Ö	СН	N	CH2CCH
T-36	0	CH	N	PhCH2
T-37	0	СН	N	Ph(CH3)CH
T-38	0	СН	N	Ph
T-39	0		N	2-CI-Ph
T-40	0	СН	N	3-CI-Ph
T-41	0	СН	N	4-CI-Ph
T-42	0	СН	N	4-CF3O-Ph
T-43	0	CH	N	4-(4-CF3-PhO)-Ph
T-44	o o		N	H
T-45	0		N	CH3
T-46	0		N	C2H5
T-47	0		N	n-C5H11
T-48	0		N	n-C6H13
T-49	0		N	
1-49	<u> </u>	IA	1.4	cyclo-C3H5

Compound	U	X	Υ	R ⁴
T-50	0	N	N	cyclo-C5H9
T-51	0	N	N	cyclo-C6H11
T-52	0	N	N	CH2=CHCH2
T-53	0	N	N	CH2CCH
T-54	0	N	N	PhCH2
T-55	0	N	N	Ph(CH3)CH
T-56	0	N	N	Ph
T-57	0	N	N	2-Cl-Ph
T-58	0	N	N	3-Cl-Ph
T-59	0	N	N	4-Cl-Ph
T-60	0	N	N	4-CF3O-Ph
T-61	0	N	N	4-(4-CF3-PhO)-Ph
T-62	S	CH	CH	H
T-63	S	СН	CH	n-C3H7
T-64	S	СН	CH	iso-C3H7
T-65	S	СН	СН	n-C4H9
T-66	S	CH	CH	iso-C4H9
T-67	S	CH	CH	sec-C4H9
T-68	S	CH_	CH	tert-C4H9
T-69	S	CH	CH	n-C5H11
T-70	S	CH	CH	n-C6H13
T-71	S	CH	CH	cyclo-C3H5
T-72	S	CH	CH	cyclo-C5H9
T-73	S	CH	CH	cyclo-C6H11
T-74	S	CH	CH	CH2=CHCH2
T-75	S	CH	CH	CH2CCH
T-76	S	CH	CH	PhCH2
T-77	S	СН	СН	Ph(CH3)CH
T-78	S	CH	CH	Ph
T-79	S	CH	CH	2-CI-Ph
T-80	S	CH	СН	3-CI-Ph
T-81	S	СН	СН	4-Cl-Ph
T-82	S	СН	CH	4-CF3O-Ph
T-83	S	CH	CH	4-(4-CF3-PhO)-Ph
T-84	S	СН	N	H
T-85	S	СН	N	CH3
T-86	S	СН	N	n-C4H9
T-87	S	СН	N	iso-C4H9
T-88	S	CH	N	sec-C4H9
T-89	S	CH	N	tert-C4H9
T-90	S	СН	N	n-C5H11
T-91	S	СН	N	n-C6H13

Compound	U	X	Υ	R^4
T-92	S	CH	N	cyclo-C3H5
T-93	S	СН	N	cyclo-C5H9
T-94	S	СН	N	cyclo-C6H11
T-95	S	CH	N	CH2=CHCH2
T-96	S	СН	N	CH2CCH
T-97	S	CH	N	PhCH2
T-98	S	СН	N	Ph(CH3)CH
T-99	S	СН	N	Ph
T-100	S	СН	N	2-CI-Ph
T-101	S	СН	N	3-Cl-Ph
T-102	S	СН	N	4-CI-Ph
T-103	S	СН	N	4-CF3O-Ph
T-104	S	СН	N	4-(4-CF3-PhO)-Ph
T-105	S	N	N	H
T-106	S	N	N	CH3
T-107	S	N	N	C2H5
T-108	S	N	N	n-C5H11
T-109	S	N	N	n-C6H13
T-110	S	N	N	cyclo-C3H5
T-111	S	N	N	cyclo-C5H9
T-112	S	N	N	cyclo-C6H11
T-113	S	N	N	CH2=CHCH2
T-114	S	N	N	CH2CCH
T-115	S	N	N	PhCH2
T-116	S	N	N	Ph(CH3)CH
T-117	S	N	N	Ph
T-118	S	N	N	2-CI-Ph
T-119	S	N	N	3-CI-Ph
T-120	S	N	N	4-CI-Ph
T-121	S	N	N	4-CF3O-Ph
T-122	S	N	N	4-(4-CF3-PhO)-Ph
T-123	S	N	N	Ph

Table 6 Compounds of formula (IC):

(1C)

		(10)		
Compound	U	R ⁴	R ⁹	R ¹⁰
U-1	0	Н	H	H
U-2	0	n-C3H7	Н	Н
U-3	0	iso-C3H7	Н	Н
U-4	0	n-C4H9	Н	Н
U-5	0	iso-C4H9	Н	H
U-6	0	sec-C4H9	Н	H
U-7	0	tert-C4H9	Н	Н
U-8	0	n-C5H11	Н	H
U-9	0	n-C6H13	H	H
U-10	0	cyclo-C3H5	H	H
U-11	0	cyclo-C5H9	Н	Н
U-12	0	cyclo-C6H11	H	H
U-13	0	CH2CH=CH2	Н	Н
U-14	0	CH2C(CH3)=CH2	H	Н
U-15	0	CH(CH3)CH=CH2	Н	Н
U-16	0	CH2CH=CHCH3	H	H
U-17	0	CH2CCH	H	Н
U-18	0	CH2CCCH3	H	Н
U-19	0	CH(CH3)CCH	H	Н
U-20	0	PhCH2	H	H
U-21	0	Ph(CH3)CH	H	Н
U-22	0	Ph(CH3)2C	H	Н
U-23	0	Ph	Н	H
U-24	0	2-CI-Ph	H	Н
U-25	0	3-Cl-Ph	H	Н
U-26	0	4-Cl-Ph	H	H
U-27	S	Н	Н	Н
U-28	S	n-C3H7	Н	Н
U-29	S	iso-C3H7	Н	H
U-30	S	n-C4H9	Н	Н
U-31	S	iso-C4H9	H	H

Compound	U	R⁴	R ⁹	R ¹⁰
U-32	S	sec-C4H9	Н	H
U-33	S	tert-C4H9	Η	H
U-34	s	n-C5H11	H	H
U-35	S	n-C6H13	H	H
U-36	S	cyclo-C3H5	Н	Н
U-37	S	cyclo-C5H9	H	<u>H</u>
U-38	S	cyclo-C6H11	<u> </u> H	H
U-39	S	CH2CH=CH2	H	H
U-40	s	CH2C(CH3)=CH2	Н	H
U-41	S	CH(CH3)CH=CH2	H	H
U-42	S	CH2CH=CHCH3	H	<u>H</u>
U-43	S	CH2CCH	Н	H
U-44	S	CH2CCCH3	H	H
U-45	S	СН(СН3)ССН	H	H
U-46	S	PhCH2	H	H
U-47	S	Ph(CH3)CH	H	H
U-48	s	Ph(CH3)2C	H	H
U-49	s	Ph	Н	<u> </u>
U-50	S	2-CI-Ph	H	H
U-51	S	3-CI-Ph	Н	H
U-52	s	4-CI-Ph	Н	Н

Table 7
Compounds of formula (ID):

Compound	U	R⁴	R ¹¹
V-1	0	H	Н
V-2	0	CH3	Н
V-3	0	C2H5	H
	0	n-C3H7	Η
V-4 V-5	0	iso-C3H7	Н
V-6	0	n-C4H9	H

Compound	Ū	R⁴	R ¹¹
V-7	0	iso-C4H9	Н
V-8	0	sec-C4H9	Н
V-9	0	tert-C4H9	Н
V-10	0	n-C5H11	Н
V-11	0	n-C6H13	Н
V-12	0	cyclo-C3H5	H
V-13	0	cyclo-C5H9	Н
V-14	0	cyclo-C6H11	Н
V-15	0	CH2CH=CH2	H
V-16	0	CH2C(CH3)=CH2	H
V-17	0	CH(CH3)CH=CH2	Н
V-18	0	CH2CH=CHCH3	Н
V-19	0	CH2CCH	H
V-20	0	CH2CCCH3	H
V-21	0	СН(СН3)ССН	Н
V-22	0	PhCH2	Н
V-23	0	Ph(CH3)CH	Н
V-24	0	Ph(CH3)2C	H
V-25	0	Ph	Н
V-26	0	2-Cl-Ph	Н
V-27	0	3-Cl-Ph	Н
V-28	0	4-Cl-Ph	Н
V-29	S	Н	Η
V-30	S	CH3	Н
V-31	S	C2H5	H
V-32	S	n-C3H7	H
V-33	S	iso-C3H7	Η
V-34	S	n-C4H9	Н
V-35	S	iso-C4H9	H
V-36	S	sec-C4H9	H
V-37	S	tert-C4H9	H
V-38	S	n-C5H11	H
V-39	S	n-C6H13	Н
V-40	S	cyclo-C3H5	H
V-41	S	cyclo-C5H9	H
V-42	S	cyclo-C6H11	<u> </u> H
V-43	S	CH2CH=CH2	Н
V-44	S	CH2C(CH3)=CH2	Н
V-45	S	CH(CH3)CH=CH2	H
V-46	S	CH2CH=CHCH3	H
V-47	S	CH2CCH	H
V-48	S	CH2CCCH3	H

Compound	U	R ⁴	R ¹¹
V-49	S	СН(СН3)ССН	Н
V-50	S	PhCH2	Н
V-51	s	Ph(CH3)CH	Н
V-52	s	Ph(CH3)2C	Н
V-53	S	Ph	Н
V-54	s	2-CI-Ph	Н
V-55	s	3-CI-Ph	Н
V-56	S	4-CI-Ph	Н

Table 8 Compounds of formula (I) wherein R^1 is $-C(=U)NR^3R^4$, U is NR^{18} and m is zero.

Compound	R ³	R⁴	R ²	R ¹⁸
W-1	СНЗ	Н	Н	Н
W-2	C2H5	Н	H	H
W-3	n-C3H7	Н	Н	Н
W-4	iso-C3H7	H	Н	Н
W-5	n-C4H9	H	Н	Н
W-6	iso-C4H9	H	Н	Н
W-7	tert-C4H9	Н	Н	Н
W-8	n-C5H11	H	Н	Н
W-9	(CH3)3CCH2	H	H	Н
W-10	n-C6H13	H	Н	Н
W-11	CH2=CHCH2	H	H	Н
W-12	CHCCH2	H	Н	Н
W-13	cyclo-C3H5	Н	H	Н
W-14	cyclo-C5H9	H	H	Н
W-15	cyclo-C6H11	H	Н	Н
W-16	PhCH2	Н	H	Н
W-17	PhCH(CH3)	H	Н	H
W-18	CH3NH	Н	Н	Н
W-19	C2H5NH	H	Н	Н
W-20	n-C3H7NH	Н	Н	HH
W-21	iso-C3H7NH	H	Н	Н
W-22	n-C4H9NH	H	H	Н
W-23	tert-C4H9NH	Н	Н	H
W-24	n-C5H11NH	H	Н	H
W-25	n-C6H13NH	H	H	Н
W-26	PhCH2NH	H	Н	Н
W-27	PhNH	H	H	Н
W-28	Ph	Н	Н	H
W-29	2-F-Ph	Н	Н	Н
W-30	3-F-Ph	Н	Н	H

Compoun	d R ³	R ⁴	R ²	R ¹⁸	
W-31	4-F-Ph	Н	H	H	_
W-32	1	Н	Н	Н	_
W-33	3-CI-Ph	H	Н	H	
W-34	4-Cl-Ph	Н	Н	Н	
W-35	2-CF3-Ph	Н	Н	H	_
W-36	3-CF3-Ph	Н	Н	H	
W-37	4-CF3-Ph	Н	Н	H	
W-38	2-CH3-Ph	Н	H	H	
W-39	3-CH3-Ph	Н	Н	H	
W-40	4-CH3-Ph	Н	Н	H	
W-41	2-CH3O-Ph	Н	H	Н	
W-42	3-CH3O-Ph	Н	H	H	
W-43	4-CH3O-Ph	Н	Н	H	
W-44	CF3CH2	Н	H	Н	
W-45	CICH2CH2	Н	H	Н	
W-46	CICH2CH2CH2	Н	Η	H	
W-47	CH3OCH2CH2	Н	Н	H	
W-48	CH3CH2OCH2CH2	Н	H	H	
W-49	CH3OCH2CH2CH2	Н	H	H	
W-50	C2H5OCH2CH2CH2	Н	H	H	
W-51	n-C4H9OCH2CH2CH2	Н	Н	H	
W-52	CH3OCH(CH3)CH2CH2	H	H	H	
W-53	(CH3O)2CHCH2	Н	H	Н	
W-54	HOCH2CH2	Н	Н	Н	
W-55	HOCH2CH2CH2	H	Н	H	
W-56	CH3SCH2CH2	H	Н	Η	
W-57	CH3CH2SCH2CH2	Н	Н	Н	
W-58	CH3SCH2CH2CH2	Н	H	Н	
W-59	C2H5SCH2CH2CH2	Н	H	H	
W-60	CH2CH2CH2CH	12	Н	Н	
W-61	CH2CH2CH2CH2C	CH2	H	<u>H</u>	
W-62	CH2CH2OCH2C	H2	Н	Н	
W-63	CH2CH2SCH2C	H2	H	H	
W-64	CH2CH2NHCH2C	CH2	H	H	
W-65	CH2CH2N(CH3)CH	2CH2	Н	Н	
W-66	N=CHCH2CH2	2	Н	Н	
W-67	N=CHCH=CH		Н	Н	
W-68	CH3	CH3	Н	H	
W-69	C2H5	CH3	Н	Н	
W-70	n-C3H7	CH3	Н	H	
W-71	iso-C3H7	CH3	Н	H	
W-72	n-C4H9	СНЗ	H	H	
W-73	iso-C4H9	CH3	H	H	

Compound	R ³	R⁴	R^2	R ¹⁸
W-74	tert-C4H9	CH3	Н	Η
W-75	n-C5H11	CH3	Н	Η
W-76	n-C6H13	CH3	Н	H
W-77	CH2=CHCH2	СНЗ	Н	Η
W-78	CHCCH2	СН3	Н	Н
W-79	cyclo-C3H5	CH3	Н	Η
W-80	cyclo-C5H9	CH3	Н	Η
W-81	cyclo-C6H11	CH3	Н	H
W-82	PhCH2	CH3	Н	Η
W-83	CH3NH	CH3	Н	H
W-84	C2H5NH	CH3	H	H
W-85	n-C3H7NH	CH3	Н	Ή
W-86	iso-C3H7NH	CH3	H	H
W-87	n-C4H9NH	CH3	Н	Н
W-88	tert-C4H9NH	CH3	Н	Н
W-89	n-C5H11NH	CH3	H	H
W-90	n-C6H13NH	CH3	Н	Н
W-91	PhCH2NH	CH3	Н	Η '
W-92	PhNH	CH3	H	Н
W-93	Ph	CH3	H	H
W-94	2-F-Ph	CH3	Н	Н
W-95	3-F-Ph	СНЗ	Н	Н
W-96	4-F-Ph	СНЗ	Н	H
W-97	2-CI-Ph	CH3	Н	Н
W-98	3-CI-Ph	CH3	Н	H
W-99	4-CI-Ph	СНЗ	Н	H
W-100	2-CF3-Ph	CH3	Н	Н
W-101	3-CF3-Ph	CH3	Н	H
W-102	4-CF3-Ph	CH3	Н	H
W-103	2-CH3-Ph	CH3	Н .	Η
W-104	3-CH3-Ph	CH3	H	H
W-105	4-CH3-Ph	СНЗ	H	H
W-106	2-CH3O-Ph	CH3	H	H
W-107	3-CH3O-Ph	CH3	H	H
W-108	4-CH3O-Ph	CH3	Н	H
W-109	CF3CH2	СНЗ	Н	H
W-110	CICH2CH2	CH3	Н	H
W-111	CICH2CH2CH2	CH3	Н	H
W-112	CH3OCH2CH2	CH3	Н	Н
W-113	CH3CH2OCH2CH2	CH3	Н	H
W-114	CH3OCH2CH2CH2	CH3	Н	Н
W-115	C2H5OCH2CH2CH2	СНЗ	Н	H
W-116	n-C4H9OCH2CH2CH2	CH3	Н	H

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-117	CH3OCH(CH3)CH2CH2	СНЗ	H	Н
W-118	(CH3O)2CHCH2	СНЗ	Н	Н
W-119	HOCH2CH2	СНЗ	Н	Н
W-120	HOCH2CH2CH2	CH3	Н	Н
W-121	СНЗ	C2H5	Н	Н
W-122	C2H5	C2H5	Н	Н
W-123	n-C3H7	C2H5	Н	Н
W-124	iso-C3H7	C2H5	Н	Н
W-125	CH2=CHCH2	C2H5	Н	Н
W-126	CHCCH2	C2H5	Н	Н
W-127	cyclo-C3H5	C2H5	H	Н
W-128	PhCH2	C2H5	Н	Н
W-129	CH3NH	C2H5	H	Н
W-130	C2H5NH	C2H5	H	Н
W-131	PhCH2NH	C2H5	Н	Н
W-132	PhNH	C2H5	Н	Н
W-133	Ph	C2H5	Н	Н
W-134	2-CI-Ph	C2H5	H	Н
W-135	3-CI-Ph -	C2H5	Н	Н
W-136	4-CI-Ph	C2H5	Н	Н
W-137	2-CF3-Ph	C2H5	Н	Н
W-138	3-CF3-Ph	C2H5	H	Н
W-139	4-CF3-Ph	C2H5	H	Н
W-140	2-CH3O-Ph	C2H5	Н	Н
W-141	3-CH3O-Ph	C2H5	Н	H
W-142	4-CH3O-Ph	C2H5	Н	H
W-143	CF3CH2	C2H5	Н	Н
W-144	CICH2CH2	C2H5	Н	Н
W-145	CICH2CH2CH2	C2H5	Н	Н
W-146	CH3OCH2CH2	C2H5	Н	H
W-147	CH3CH2OCH2CH2	C2H5	Н	Н
W-148	CH3OCH2CH2CH2	C2H5	H	Н
W-149	C2H5OCH2CH2CH2	C2H5	Н	Н
W-150	n-C4H9OCH2CH2CH2	C2H5	Н	H
W-151	CH3OCH(CH3)CH2CH2	C2H5	Н	Н
W-152	(CH3O)2CHCH2	C2H5	H_	Н
W-153	HOCH2CH2	C2H5	H	Н
W-154	HOCH2CH2CH2	C2H5	Н	Н
W-155	CH3	H	H	CH3
W-156	C2H5	Н	Н	CH3
W-157	n-C3H7	Н	Н	CH3
W-158	iso-C3H7	Н	Н	CH3
W-159	tert-C4H9	Н	Н	CH3

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-160		H	Н	CH3
W-161		Н	Н	CH3
W-162		H	Н	CH3
W-163		H	Н	CH3
W-164	CH3NH	Н	Н	CH3
W-165		Н	H	CH3
W-166	n-C3H7NH	Н	Н	CH3
W-167	iso-C3H7NH	H	Н	СНЗ
W-168	PhCH2NH	Н	Н	CH3
W-169	PhNH	Н	Н	CH3
W-170	Ph	Η	Н	CH3
W-171	2-CI-Ph	I	Н	CH3
W-172	3-CI-Ph	Ξ_	Н	CH3
W-173	4-CI-Ph	H	Н	CH3
W-174	CH3OCH2CH2	Н	H	CH3
W-175	CH3CH2OCH2CH2	H	Н	CH3
W-176	CH3OCH2CH2CH2	H	H	СНЗ
W-177	C2H5OCH2CH2CH2	Н	H	CH3
W-178	n-C4H9OCH2CH2CH2	Н	Н	CH3
W-179	CH3OCH(CH3)CH2CH2	Н	H	CH3
W-180	(CH3O)2CHCH2	H	Н	CH3
W-181	HOCH2CH2	Н	H	CH3
W-182	HOCH2CH2CH2	H	H	CH3
W-183	CH2CH2CH2CH2	2	Н	CH3
W-184	CH2CH2CH2CH2C		Н	CH3
W-185	CH2CH2OCH2CH		Н	CH3
W-186	CH2CH2SCH2CH		Н	CH3
W-187	CH2CH2NHCH2CI	12	Н	CH3
W-188	CH2CH2N(CH3)CH2	CH2	Н	CH3
W-189	N=CHCH2CH2		H	CH3
W-190	CH3	Н	Н	tert-C4H9
W-191	C2H5	Н	Н	tert-C4H9
W-192	n-C3H7	H	H	tert-C4H9
W-193	iso-C3H7	H	Н	tert-C4H9
W-194	tert-C4H9	Н	Н	tert-C4H9
W-195	CH2=CHCH2	Н	Н	tert-C4H9
W-196	CHCCH2	Н	H	tert-C4H9
W-197	cyclo-C3H5	Η	Н	tert-C4H9
W-198	PhCH2	H	Н	tert-C4H9
W-199	CH3NH	Н	H	tert-C4H9
W-200	PhCH2NH	Н	Н	tert-C4H9
W-201	PhNH	Н	Н	tert-C4H9
W-202	Ph	H	Н	tert-C4H9

Compound	\mathbb{R}^3	R⁴	R ²	R ¹⁸
W-203	2-Cl-Ph	Н	Н	tert-C4H9
W-204		Н	Н	tert-C4H9
W-205		H	H	tert-C4H9
W-206		Н	Н	tert-C4H9
W-207	CH3CH2OCH2CH2	H	Н	tert-C4H9
W-208	CH3OCH2CH2CH2	H	Н	tert-C4H9
W-209	C2H5OCH2CH2CH2	H	Н	tert-C4H9
W-210	(CH3O)2CHCH2	Н	Н	tert-C4H9
W-211	HOCH2CH2	Н	Н	tert-C4H9
W-212	HOCH2CH2CH2	Н	Н	tert-C4H9
W-213	CH2CH2CH2CH2)	Н	tert-C4H9
W-214	CH2CH2CH2CH2C		Н	tert-C4H9
W-215	CH2CH2OCH2CH		Н	tert-C4H9
W-216	CH2CH2SCH2CH		H	tert-C4H9
W-217	CH2CH2NHCH2CI		Н	tert-C4H9
W-218	CH2CH2N(CH3)CH2		Н	tert-C4H9
W-219	N=CHCH2CH2		Н	tert-C4H9
W-210 W-220	CH3	Н	Н	ОН
W-221	C2H5 ·	Н	Н	ОН
W-222	n-C3H7	H	Н	ОН
W-223	iso-C3H7	Н	Н	ОН
W-224	tert-C4H9	Н	Н	ОН
W-225	CH2=CHCH2	H	Н	ОН
W-226	CHCCH2	Н	Н	ОН
W-227	cyclo-C3H5	Н	Н	ОН
W-228	PhCH2	Н	Н	ОН
W-229	CH3NH	Н	Н	ОН
W-230	C2H5NH	H	Н	ОН
W-231	PhCH2NH	Н	Н	ОН
W-232	PhNH	Н	Н	OH
W-233	Ph	Н	Н	ОН
W-234	2-Cl-Ph	Н	Н	OH
W-235	3-Cl-Ph	H	Н	OH
W-236	4-Cl-Ph	Н	Н	ОН
W-237	CH3OCH2CH2	Н	Н	ОН
W-238	CH3CH2OCH2CH2	Н	H	ОН
W-239	CH3OCH2CH2CH2	H	Н	ОН
W-240	C2H5OCH2CH2CH2	H	Н	ОН
W-241	n-C4H9OCH2CH2CH2	Н	Н	ОН
W-241 W-242	CH3OCH(CH3)CH2CH2	Н	Н	ОН
W-243	(CH3O)2CHCH2	H	Н	ОН
W-244	HOCH2CH2	H	H	ОН
W-245	HOCH2CH2CH2	Н	H	ОН

Compound	\mathbb{R}^3	R ⁴	R ²	R ¹⁸
W-246	CH2CH2CH2CH2		Н	ОН
W-247	CH2CH2CH2CH2CI		Н	ОН
W-248	CH2CH2OCH2CH		H	ОН
W-249	CH2CH2SCH2CH		Н	ОН
W-250	CH2CH2NHCH2CH		Н	ОН
W-251	CH2CH2N(CH3)CH2		Н	ОН
W-252	N=CHCH2CH2		Н	ОН
W-253	N=CHCH=CH		Н	ОН
W-254		Н	H	CH3O
W-255	C2H5	Н	Н	CH3O
W-256	n-C3H7	Н	Н	CH3O
W-257	iso-C3H7	Н	Н	CH3O
W-258	tert-C4H9	Н	Н	CH30
W-259	CH2=CHCH2	H	H	CH3O
W-260	CHCCH2	Н	H	CH3O
W-261	cyclo-C3H5	Н	Н	CH3O
W-262	PhCH2	Н	H	CH3O
W-263	CH3NH	Н	Н	CH3O
W-264	C2H5NH	Н	Н	CH3O
W-265	PhCH2NH	Н	Н	CH3O
W-266	PhNH	Н	Н	CH3O
W-267	Ph	Н	Н	CH3O
W-268	2-Cl-Ph	H	Н	CH3O
W-269	3-CI-Ph	Н	Н	CH30
W-270	4-Cl-Ph	Н	Н	CH3O
W-271	CH3OCH2CH2	H	Н	CH3O
W-272	CH3CH2OCH2CH2	H,	Н	CH3O
W-273	CH3OCH2CH2CH2	Н	H	CH3O
W-274	C2H5OCH2CH2CH2	Н	H	CH3O
W-275	n-C4H9OCH2CH2CH2	Н	H	CH3O
W-276	CH3OCH(CH3)CH2CH2	Н	H_	CH3O
W-277	(CH3O)2CHCH2	Н	H	CH3O
W-278	HOCH2CH2	Н	Н	CH3O
W-279	HOCH2CH2CH2	Н	Н	CH3O
W-280	CH3SCH2CH2	Н	Н	CH3O
W-281	CH3CH2SCH2CH2	Н	Н	CH3O
W-282	CH3SCH2CH2CH2	Н	Н	CH3O
W-283	C2H5SCH2CH2CH2	Н	Н	CH3O

Table 9 Compounds of formula (I) wherein R^1 is $-C(=V)OR^{3a}$ and m is zero.

Compound	V	R ^{3a}	\mathbb{R}^2
X-1	0	cyclo-C3H5	Н
X-2	0	cyclo-C5H9	Н
X-3	0	cyclo-C6H11	Н
X-4	0	СНЗИН	Н
X-5	0	C2H5NH	Н
X-6	. 0	n-C3H7NH	Н
X-7	0	iso-C3H7NH	H
X-8	0	n-C4H9NH	Н
X-9	0	tert-C4H9NH	H
X-10	0	n-C5H11NH	H
X-11	0	n-C6H13NH .	H
X-12	0	PhCH2NH	Н
X-13	0	PhNH	Н
X-14	0	CF3CH2	Н
X-15	0	CICH2CH2	Н
X-16	0	CICH2CH2CH2	Н
X-17	0	CH3OCH2CH2	Н
X-18	0	CH3CH2OCH2CH2	Н
X-19	0	CH3OCH2CH2CH2	Н
X-20	0	C2H5OCH2CH2CH2	Н
X-21	0	n-C4H9OCH2CH2CH2	Н
X-22	0	CH3OCH(CH3)CH2CH2	H
X-23	0	(CH3O)2CHCH2	Н
X-24	0	HOCH2CH2	H
X-25	0	HOCH2CH2CH2	H
X-26	0	CH3SCH2CH2	H
X-20 X-27	0	CH3CH2SCH2CH2	H
X-28	0	CH3SCH2CH2CH2	H
X-29	0	C2H5SCH2CH2CH2	H
X-30	0	CH3(cyclo-C3H5)CH	H
X-30 X-31	0	NCCH2CH2	H
X-32	s	cyclo-C3H5	H
	<u> </u>	cyclo-C5H9	H
X-33	S	cyclo-C6H11	-
X-34	S	CH3NH	—
X-35		C2H5NH	H
X-36	S	n-C3H7NH	H
X-37	S		H
X-38	S	iso-C3H7NH	Н
X-39	S	n-C4H9NH	H
X-40	S	tert-C4H9NH	П

Compound	V	R ^{3a}	R ²
X-41	S	n-C5H11NH	Н
X-42	S	n-C6H13NH	Н
X-43	s	PhCH2NH	Н
X-44	s	PhNH	Н
X-45	s	CF3CH2	Н
X-46	s	CICH2CH2	H
X-47	s	CICH2CH2CH2	Н
X-48	S	CH3OCH2CH2	Н
X-49	S	CH3CH2OCH2CH2	Н
X-50	S	CH3OCH2CH2CH2	Н
X-51	S	C2H5OCH2CH2CH2	Н
X-52	s	n-C4H9OCH2CH2CH2	Н
X-53	s	CH3OCH(CH3)CH2CH2	Н
X-54	s	(CH3O)2CHCH2	Н
X-55	S	HOCH2CH2	Н
X-56	s	HOCH2CH2CH2	Н
X-57	s	CH3SCH2CH2	Н
X-58	s	CH3CH2SCH2CH2	Н
X-59	S	CH3SCH2CH2CH2	Н
X-60	S	C2H5SCH2CH2CH2	Н
X-61	s	CH3(cyclo-C3H5)CH	H
X-62	S	NCCH2CH2	Н
X-63	0	cyclo-C3H5	СНЗ
X-64	0	cyclo-C5H9	СНЗ
X-65	0	cyclo-C6H11	СНЗ
X-66	0	CH3NH	СНЗ
X-67	0	C2H5NH	СНЗ
X-68	0	n-C3H7NH	СНЗ
X-69	0	iso-C3H7NH	СНЗ
X-70	0	n-C4H9NH	СНЗ
X-70 X-71	0	tert-C4H9NH	CH3
X-71 X-72	0	n-C5H11NH	CH3
X-72 X-73	0	n-C6H13NH	СНЗ
	0	PhCH2NH	СНЗ
X-74	0	PhNH	CH3
X-75	0	CF3CH2	CH3
X-76	0	CICH2CH2	CH3
X-77		CICH2CH2CH2	CH3
X-78	0	CH3OCH2CH2	CH3
X-79	0		CH3
X-80	0	CH3CH2OCH2CH2	CH3
X-81	0	CH3OCH2CH2CH2	CH3
X-82	0	C2H5OCH2CH2CH2	0110

Compound	V	R ^{3a}	R ²
X-83	0	n-C4H9OCH2CH2CH2	CH3
X-84	0	CH3OCH(CH3)CH2CH2	CH3
X-85	0	(CH3O)2CHCH2	CH3
X-86	0	HOCH2CH2	CH3
X-87	0	HOCH2CH2CH2	CH3
X-88	0	CH3SCH2CH2	СНЗ
X-89	0	CH3CH2SCH2CH2	СНЗ
X-90	0	CH3SCH2CH2CH2	СНЗ
X-91	0	C2H5SCH2CH2CH2	СНЗ
X-92	0	CH3(cyclo-C3H5)CH	CH3
X-93	0	NCCH2CH2	CH3
X-94	S	cyclo-C3H5	CH3
X-95	S	cyclo-C5H9	CH3
X-96	S	cyclo-C6H11	CH3
X-97	s	CH3NH	CH3
X-98	s	C2H5NH	CH3
X-99	S	n-C3H7NH	СНЗ
X-100	S	iso-C3H7NH	СНЗ
X-101	S	n-C4H9NH	СНЗ
X-102	S	tert-C4H9NH	СНЗ
X-103	S	n-C5H11NH	СНЗ
X-104	S	n-C6H13NH	СНЗ
X-105	S	PhCH2NH	СНЗ
X-106	S	PhNH	СНЗ
X-107	s	CF3CH2	СНЗ
X-108	s	CICH2CH2	СНЗ
X-109	s	CICH2CH2CH2	СНЗ
X-110	S	CH3OCH2CH2	СНЗ
X-111	S	CH3CH2OCH2CH2	СНЗ
X-112	s	CH3OCH2CH2CH2	СНЗ
X-113	s	C2H5OCH2CH2CH2	СНЗ
X-114	S	n-C4H9OCH2CH2CH2	СНЗ
X-115	s	CH3OCH(CH3)CH2CH2	СНЗ
X-116	s	(CH3O)2CHCH2	СНЗ
X-117	s	HOCH2CH2	СНЗ
X-118	S	HOCH2CH2CH2	СНЗ
X-119	S	CH3SCH2CH2	СНЗ
X-120	S	CH3CH2SCH2CH2	СНЗ
X-120 X-121	S	CH3SCH2CH2CH2	СНЗ
X-122	S	C2H5SCH2CH2CH2	СНЗ
X-123	S	CH3(cyclo-C3H5)CH	СНЗ
X-124	S	NCCH2CH2	СНЗ

Compound	ĪV .	R ^{3a}	\mathbb{R}^2
X-125	0	cyclo-C3H5	C2H5
X-126	0	CH3NH	C2H5
X-127	0	C2H5NH	C2H5
X-128	0	n-C3H7NH	C2H5
X-129	0	iso-C3H7NH	C2H5
X-130	0	n-C4H9NH	C2H5
X-131	0	tert-C4H9NH	C2H5
X-132	0	PhCH2NH	C2H5
X-133	0	PhNH	C2H5
X-134	0	CF3CH2	C2H5
X-135	0	CICH2CH2	C2H5
X-136	0	CICH2CH2CH2	C2H5
X-137	0	CH3OCH2CH2	C2H5
X-138	0	CH3CH2OCH2CH2	C2H5
X-139	0	CH3OCH2CH2CH2	C2H5
X-140	0	C2H5OCH2CH2CH2	C2H5
X-141	0	n-C4H9OCH2CH2CH2	C2H5
X-142	0	CH3OCH(CH3)CH2CH2	C2H5
X-143	0	(CH3O)2CHCH2	C2H5
X-144	0	HOCH2CH2	C2H5
X-145	0	HOCH2CH2CH2	C2H5
X-146	0	CH3(cyclo-C3H5)CH	C2H5
X-147	0	NCCH2CH2	C2H5
X-148	S	cyclo-C3H5	C2H5
X-149	S	CH3NH	C2H5
X-150	S	C2H5NH	C2H5
X-151	s	n-C3H7NH	C2H5
X-152	S	iso-C3H7NH	C2H5
X-153	S	n-C4H9NH	C2H5
X-154	S	tert-C4H9NH	C2H5
X-155	s	PhCH2NH	C2H5
X-156	S	PhNH	C2H5
X-157	S	CF3CH2	C2H5
X-158	s	CICH2CH2	C2H5
X-159	S	CICH2CH2CH2	C2H5
X-160	S	CH3OCH2CH2	C2H5
X-161	S	CH3CH2OCH2CH2	C2H5
X-162	S	CH3OCH2CH2CH2	C2H5
X-163	S	C2H5OCH2CH2CH2	C2H5
X-164	S	n-C4H9OCH2CH2CH2	C2H5
X-165	S	CH3OCH(CH3)CH2CH2	C2H5
X-166	S	(CH3O)2CHCH2	C2H5

Compound	V	R ^{3a}	R ²
X-167	S	HOCH2CH2	C2H5
X-168	s	HOCH2CH2CH2	C2H5
X-169	s	CH3(cyclo-C3H5)CH	C2H5
X-170	S	NCCH2CH2	C2H5

Table 10
1H-NMR spectral details for representative Examples from the above Tables.
Nmr spectra were measured in deuterochloroform unless otherwise stated.

Cpd	1H-NMR
A-2	3.7-3.9(2H, m), 5.1-5.2(2H, m), 5.7-5.9(1H, m), 7.63(1H, d), 8.46(1H,
	brs), 8.83(1H, d), 8.91(1H, d), 10.70(1H, brs)
A-18	2.26(1H, t), 4.02(2H, dd), 7.66(1H, d), 8.34(1H, brs), 8.91(1H, s),
	8.94(1H, d), 10.03(1H, brs)
A-24	0.5-0.6(1H, m), 0.7-0.8(1H, m), 2.6-2.7(1H, m), 7.65(1H, d), 8.33(1H,
	brs), 8.89(1H, s), 8.93(1H, d), 9.68(1H, brs)
A-26	9.83(1H,s), 8.93(1H,d), 8.89(1H,s), 8.40(1H,d), 7.65(1H,d), 4.12(1H,dt),
	2.27(2H,m), 1.98(2H,m), 1.73(2H,m)
A-28	1.4-2.0(4H, m), 3.8-4.1(1H, m), 7.64(1H, d), 8.28(1H, brd), 8.90(1H, s),
	8.91(1H, d)
A-30	1.2-1.4(5H, m), 1.5-1.9(5H, m), 3.4-3.6(1H, m), 7.63(1H, d), 8.22(1H,
	brd), 8.89(1H, s), 8.91(1H, d)
A-32	9.68(1H,s), 8.93(1H,d), 8.90(1H,s), 8.38(1H,t), 7.65(1H,d), 3.10(2H,t),
	1.00(1H,m), 0.53(2H,m), 0.22(1H,m)
A-37	4.39(2H, d), 7.1-7.4(5H, m), 7.62(1H, d), 8.69(1H, m), 8.7-9.0(3H, m)
A-38	1.48(3H, d), 4.7-4.9(1H, m), 7.1-7.4(5H, m), 7.58(1H, d), 8.78(1H, brd),
	8.86(1H, s), 8.90(1H, d)
A-39	2.80(2H, t), 3.42(2H, t), 7.1-7.4(5H, m), 7.62(1H, d), 8.3-8.5(1H, m),
	8.89(1H, s), 8.90(1H, d)
A-62	3.80(3H, s), 4.31(1H, s), 6.86(2H, d), 7.16(2H, d), 7.62(1H, d), 8.62(1H,

Cpd	1H-NMR
	brs), 8.8-9.0(2H, m), 10.26(1H, s)
A-64	3.83(3H, s), 7.66(1H, d), 8.89(1H, s), 8.94(1H, d), 9.21(1H, brs),
	10.60(1H, brs)
A-65	10.54(1H,s), 9.51(1H,s), 8.94(1H,d), 8.89(1H,s), 7.65(1H,d)4.01(2H,q),
	1.28(3H,t)
A-67	10.39(1H), 8.90-9.05(2H), 7.81(1H), 4.18(1H), 1.24(6H)
A-71	1.35(9H, s), 7.62(1H, d), 8.66(1H, s), 8.78(1H, d)
A-74	10.58(1H,s), 10.04(1H,s), 8.92(1H,d), 8.89(1H,s), 7.65(1H,d),
	5.94(1H,m), 5.38(1H,d), 5.35(1H,d), 4.39(2H,d)
A-75	10.51(1H,brs), 8.94(1H,d), 8.89(1H,s), 7.65(1H,d), 5.05(2H, S),
	4.34(2H,s), 1.81(3H,s)
A-79	10.45(1H,brs), 8.96(1H,d), 8.88(1H,s), 8.52(1H,brs), 7.66(1H,d),
	5.85(1H,m), 5.67(1H,m), 4.38(2H,d), 1.77(3H,d)
A-81	10.74(1H,brs), 9.37(1H,brs), 8.93(1H,d), 8.89(1H,s), 7.66(1H,d),
	4.56(2H,s), 2.60(1H)
A-85	1.33(3H, t), 4.29(2H, q), 4.48(2H, s), 7.64(1H, d), 8.85(1H, s), 8.90(1H,
	d), 9.60(1H, brs), 11.11(1H, brs)
A-86	4.92(2H, s), 7.3-7.5(5H, m), 7.63(1H, d), 8.8-9.0(2H, m), 9.91(1H, brs),
	10.56(1H, brs)
A-88	8.29(1H,d), 8.88(1H,s), 8.86(1H,s), 7.65(1H,d), 7.28(1H,t), 6.93-6.99(3H)
	4.93(2H,s), 3.83(3H,s)
A-89	8.88(1H,s), 8.76(1H,d), 8.63(1H,s), 7.55(1H,d), 7.36(2H,d), 6.88(2H,d),
	4.99(2H,s), 3.79(3H,s)
A-90	8.97(1H,d), 8.93(1H,s), 8.52(1H,brs), 7.67(1H,d), 7.35(2H,t), 7.11(2H,d),
	7.10(1H,t)
A-149	10.32(1H,s), 9.53(1H,s), 8.98-9.01(2H), 7.68(1H,d), 7.44(2H,d),
	7.33(2H,t), 7.15(1H,t)

1H-NMR
7.0-7.1(1H, m), 7.2-7.3(1H, m), 7.3-7.5(1H, m), 7.68(1H, d), 7.9-8.1(1H,
m), 8.9-9.1(2H, m), 9.82(1H, brs), 10.88(1H, brs)
7.0-7.3(3H, m), 7.51(1H, s), 7.71(1H, d), 8.99(1H, s), 9.03(1H, d),
10.21(1H, brs), 10.46(1H, brs)
7.2-7.3(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.94(1H, s), 8.97(1H, d),
10.26(1H, brs), 10.42(1H, brs)
7.3-7.4(2H, m), 7.4-7.5(2H, m), 7.70(1H, d), 8.99(1H, s), 9.02(1H, d),
9.30(1H, brs), 10.33(1H, brs)
7.2-7.3(1H, m), 7.5-7.6(1H, m), 7.6-7.7(2H, m), 7.93(1H, d), 8.96(1H, d),
8.98(1H, s), 9.68(1H, brs), 10.72(1H, brs)
3.82(3H, s), 6.8-6.9(2H, m), 7.3-7.5(2H, m), 7.68(1H, d), 8.9-9.0(2H, m),
9.33(1H, brs), 10.17(1H, brs)
3.99(3H, s), 7.1-7.2(1H, m), 7.4-7.6(1H, m), 7.66(1H, d), 8.0-8.1(1H, m),
8.2-8.3(1H, m), 8.97(1H, d), 9.00(1H, s), 9.39(1H, brs), 12.32(1H, brs)
10.42(1H,s), 9.11(1H,s), 9.01(1H,d), 7.86(1H,d), 7.60(1H,s), 7.53(1H,d),
7.31(1H,t), 7.11(1H,d), 4.62(2H)
7.1-7.3(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.9-9.0(2H, m), 9.65(1H,
brs), 10.42(1H, brs)
6.9-7.1(4H, m), 7.3-7.4(2H, m), 7.4-7.5(2H, m), 7.69(1H, d), 8.9-9.0(2H,
m), 9.34(1H, brs), 10.30(1H, brs)
10.38(1H,s), 9.58(1H,s), 8.98-9.01(2H), 7.71(1H,d), 7.59(2H,d),
7.49(2H,d), 7.00-7.08(4H)
7.2-7.4(2H, m), 7.70(1H, d), 8.1-8.2(1H, m), 8.79(1H, brs), 8.9-9.1(2H,
m), 10.92(1H, brs)
7.0-7.1(1H, m), 7.3-7.4(1H, m), 7.71(1H, d), 7.9-8.0(1H, m), 8.99(1H, s),
9.03(1H, d), 10.08(1H, bes), 11.05(1H, brs)
7.2-7.3(2H, m), 7.3-7.4(2H, m), 7.65(1H, d), 8.92(1H, d), 8.95(1H, s),
9.36(1H, brs), 9.92(1H, brs)

	•
Cpd	1H-NMR
A-207	7.1-7.2(1H, m), 7.3-7.4(1H, m), 7.6-7.7(1H, m), 7.72(1H, d), 8.99(1H, s),
	9.03(1H, d), 10.21(1H, brs), 10.50(1H, brs)
A-208	7.1-7.2(1H, m), 7.4-7.5(2H, m), 7.72(1H, d), 8.97(1H, s), 9.03(1H, d),
	9.13(1H, brs), 10.45(1H, brs)
A-209	9.07(1H,s), 8.97(1H,d), 8.27(1H,d), 8.00(1H,brs), 7.81(1H,d), 7.74(1H,t),
	7.09(1H,t)
A-210	10.44(1H,s), 9.33(1H,brs), 9.02(1H,d), 8.99(1H,s), 8.71(1H,S),
	8.40(1H,d), 7.98(1H,d), 7.71(1H,d), 7.32(1H,dd)
A-211	10.57(1H,s), 9.12(1H,s), 9.02(1H,d), 8.48(2H,d), 7.87(1H,d), 7.63(2H,d)
A-212	12.48(1H,brs), 9.63(1H,brs), 8.88(1H,d), 8.81(1H,s), 8.65(2H,d),
	7.61(1H,d), 7.07(1H,t)
A-222	7.01(1H, d), 7.48(1H, d), 7.71(1H, d), 8.98(1H, s), 9.01(1H, d), 9.92(1H,
	brs)
A-223	7.72(1H, d), 8.33(1H, s), 8.87(1H, s), 8.98(1H, s), 9.01(1H, d), 10.18(1H,
	brs)
A-248	3.8-4.0(2H, m), 7.67(1H, d), 8.6-8.8(1H, m), 8.91(1H, s), 8.96(1H, s),
	9.80(1H, brs)
A-250	1.9-2.1(2H, m), 3.3-3.5(2H, m), 3.5-3.7(2H, m), 7.65(1H, d), 8.43(1H,
	brs), 8.90(1H, s), 8.93(1H, d), 10.35(1H, brs)
A-251	3.39(3H, s), 3.4-3.6(4H, m), 7.65(1H, d), 8.43(1H, brs), 8.90(1H, s),
	8.94(1H, d), 9.02(1H, brs)
A-255	0.92(3H, t), 1.3-1.5(2H, m), 1.5-1.7(2H, m), 1.7-1.9(2H, m), 3.2-3.6(6H,
	m), 7.63(1H, d), 8.45(1H, brs), 8.89(1H, s), 8.91(1H, d), 10.00(1H, brs)
A-256	3.3-3.6(m, 8H), 4.44(1H, t), 7.65(1H, d), 8.40(1H, brs), 8.90(1H, s),
	8.93(1H, s), 9.40(1H, brs)
A-260	3.4-3.5(2H, m), 3.7-3.9(2H, m), 7.67(1H, d), 8.58(1H, brs), 8.91(1H, s),
	8.95(1H, d), 9.22(1H, brs)
A-261	10.89(1H,s), 8.89-8.93(2H), 8.55(1h,d), 7.66(1H,d), 3.32-3.64(4H), 1.71-

Cpd	1H-NMR
:	1.76(2H)
A-262	3.78(3H, s), 3.98(2H, d), 7.64(1H, d), 8.7-8.9(1H, m), 8.89(1H, s),
	8.92(1H, d), 10.31(1H, brs)
A-265	4.43 (2H, d), 7.84 (1H, d), 8.81(1H, brs), 9.00(1H, d), 9.08(1H, s)
A-267	8.97(1H,d), 8.93(1H,s), 8.60(1H,s), 7.67(1H,d), 1.74(6H,s)
A-268	1.0-1.2(6H, m), 1.61(3H, s), 2.1-2.3(1H, m), 7.66(1H, d), 8.73(1H, brs), 8.94(1H, s), 8.96(1H, d), 10.05(1H, brs)
A-274	1.5-1.7(4H, m), 2.3-2.6(6H, m), 3.2-3.4(2H, m), 7.62(1H, d), 8.5-8.7(1H, m), 8.8-9.0(2H, m), 10.40(1H, brs)
A-292	1.0-1.9(10H, m), 2.88(3H, s), 3.7-4.0(1H, m), 7.55(1H, d), 8.74(1H, s), 8.82(1H, d)
A-296	2.98(3H, s), 4.52(2H, s), 7.2-7.4(5H, m), 7.57(1H, d), 8.52(1H, brs), 8.74(1H, s), 8.34(1H, d)
A-312	3.11(3H, s), 7.73(1H, d), 8.74(1H, s), 8.87(1H, s), 9.39(1H, s), 9.79(1H, brs)
A-313	3.13(3H, s), 3.79(3H, s), 7.57(1H, d), 8.72(1H, s), 8.85(1H, d), 8.90(1H, brs)
A-316	1.32(6H, d), 3.12(3H, s), 4.1-4.3(1H, m), 7.56(1H, d), 8.70(1H, s), 8.78(1H, brs), 8.84(1H, d)
A-317	3.17(3H, s), 4.40(2H, d), 5.3-5.6(2H, m), 5.9-6.1(1H, m), 7.57(1H, d), 8.68(1H,s), 8.84(1H, d)
A-326	1.50(1H, s), 3.09(3H, s), 3.83(3H, s), 5.54(1H, q), 7.58(1H, d), 8.78(1H, s), 8.85(1H, d)
A-329	3.13(3H, s), 4.88(2H, s), 7.3-7.5(5H, m), 7.53(1H, d), 8.43(1H, s), 8.59(1H, brs), 8.82(1H, d)
A-331	3.17(3H, s), 7.81(1H, d), 8.96(1H, d), 9.13(1H, s), 10.22(1H, brs)
A-349	8.84(1H,d), 8.69(1H,s), 7.69(1H,brs), 7.50-7.59(4H), 7.29(2H,d),

Cpd	1H-NMR
	3.21(3H,s)
A-353	8.84(1H,d), 8.70(1H,s), 7.55-7.62(2H), 7.24-7.46(3H), 3.16(3H,s)
A-354	8.84(1H,d), 8.70(1H,s), 7.57(1H,d), 7.45-7.48(2H), 7.32(1H), 7.20(1H), 3.21(3H,s)
A-355	8.84(1H,d), 8.69(1H,s), 7.57(1H,s), 7.50(2H,d), 7.24(2H,d), 3.20(3H,s)
A-365	8.84(1H,d), 8.67(1H,s), 7.55-7.58(2H), 7.27-7.39(2H), 7.22(1H,d), 3.13(3H,s), 2.30(3H,s)
A-366	8.82(1H,d), 8.67(1H,s), 7.77(1H,s), 7.56(1H,d), 7.38(1H,t), 7.23(1H,d)7.06-7.10(2H), 3.18(3H,s), 2.41(3H,s)
A-367	8.84(1H,d), 8.68(1H,s), 7.61(1H,s), 7.56(1H,d), 7.30(2H,d), 7.16(2H,d), 3.18(3H,s), 2.42(3H,s)
A-369	8.80(1H,d)8.66(1H,s), 7.91(1H,s), 7.55(1H,d), 7.39(1H,t), 6.93(1H,dd), 6.86(1H,d), 6.79(1H,d), 3.83(3H,s), 3.19(3H,s)
A-373	8.89(1H,d), 8.85(1H,s), 8.29(2H,d), 7.80(1H,d), 7.73(2H,d), 3.41(3H,s)
A-381	8.86(1H,d), 8.73(1H,s), 7.73(1H,d) 7.29(1H,t), 6.83-6.92(3H), 3.19(3H,s)
A-398	13.93(1H,s), 8.84(1H,d), 8.75(1H,s), 8.37(1H,d), 7.83(1H,t), 7.58(1H,d), 7.09-7.16(2H), 3.36(3H,s)
A-431	3.51(2H, t), 3.64(2H, t), 7.59(1H, d), 8.78(1H, s), 8.82(1H, d), 10.38(1H, brs)
A-519	1.11(3H, t), 3.2-3.4(2H, m), 3.4-3.6(2H, m), 3.7-3.9(2H, m), 7.56(1H, d), 8.73(1H, s), 8.80(1H, d)
A-524	0.85(3H, t), 1.4-1.7(2H, m), 3.1-3.3(2H, m), 3.4-3.6(2H, m), 3.7-3.9(2H, m), 4.82(1H, brs), 7.56(1H, d), 8.72(1H, s), 8.78(1H, d), 10.54(1H, brs)
A-529	8.82(1H,d), 8.62(1H,s), 8.73(1H,brs), 7.54(1H,d), 7.25-7.60(5H), 4.40-4.58(3H), 1.16(6H)
A-540	1.16(6H, d), 4.2-4.5(1H, m), 7.63(1H, d), 8.68(1H, s), 8.82(1H, d), 9.02(1H, brs)

Cpd	1H-NMR
A-544	8.84(1H,d), 8.69(1H,s), 7.56(1H,d), 4.10-4.25(2H), 1.34(3H,d), 1.21(3H,d)
A-564	8.82(1H,d),8.67(1H,s), 7.50-7.57(3H), 7.15-7.26(3H), 4.65(1H,m),
	1.03(6H,d)
A-605	1.10(6H, d), 3.3-3.5(2H, m), 3.8-4.0(2H, m), 4.3-4.5(1H, m), 7.54(1H, d),
	8.79(1H, s), 8.80(1H, d)
A-626	8.88(1H,d), 8.73(1H,s), 7.60(1H,d), 6.41(1H,brs), 1.17(9H,s)
A-691	8.82(1H,d), 8.65(1H,s), 7.53(1H,d), 3.95(2H,t), 3.58(2H,t), 1.36(9H,s)
A-697	8.82(1H,d), 8.75(1H,brs), 8.71(1H,s), 7.56(1H,s), 5.75(2H,m), 5.19-
	5.30(4H), 3.29(4H,d)
A-713	8.97(1H,s), 8.84(1H,d), 8.73(1H,s), 7.57(1H,d), 5.79(1H,m), 5.26(1H,d),
	5.24(1H,d), 4.11(2H,d), 3.78(3H,s)
A-736	8.83(1H,d), 8.69(1H,s), 7.45-7.58(5H), 7.24-7.28(2H), 5.78(1H,m),
	5.12(1H,d), 5.08(1H,d), 4.17(2H,d),
A-737	8.84(1H,d), 8.71(1H,s), 7.55-7.62(2H), 7.27-7.45(3H), 5.80(1H,m),
	5.09(1H,d), 5.06(1H,d), 4.49(1H,dd), 3.81(1H,dd)
A-738	8.84(1H,d), 8.70(1H,s), 7.57(1H,d), 7.43-7.45(2H), 7.24-7.28(1H9,
	7.16(1H,dd), 5.77(1H,m), 5.14(1H,d), 5.10(1H,d), 4.16(2H,d
A-744	8.81(1H,d), 8.69(1H,s), 7.68(1H,d), 7.34(1H,t), 6.88-6.95(3H),
	5.77(1H,m), 5.05(1H,d), 5.02(1H,d), 4.19(2H,d), 3.80(3H,s)
A-745	8.83(1H,d), 8.68(1H,s), 7.56(1H,d), 7.15(2H,d), 6.98(2H,d), 5.76(1H,m),
	5.10(1H,d), 5.06(1H,d), 4.12(2H,d), 3.86(3H,s)
A-747	8.85(1H,d), 8.70-8.721(2H), 7.72(1H,d), 7.28(1H,t), 6.82-6.89(3H),
	5.82(1H,m), 5.03-5.14(2H), 4.20(2H,d)
A-748	8.80(lh,d), 8.68(1H,s), 7.84(1H,s), 7.59(1H,d), 7.07(2H,d), 6.89(2H,d),
	5.77(1H,m), 5.00-5.30(2H), 4.11(2H,d)
A-798	4.61(2H, s), 7.2-7.4(5H, m), 7.54(1H, d), 8.54(1H, s), 8.62(1H, d),
	9.18(1H, brs), 10.38(1H, brs)

Cpd	1H-NMR
A-799	8.95(1H,s), 8.86(1H,d), 8.73(1H,s), 7.57(1H,d), 7.24-7.36(5H),
	4.65(2H,s), 3.68(3H,s)
A-805	8.80(1H,d), 8.45(1H,s), 7.53(1H,d), 7.23-7.41(10H), 4.75(2H,s),
	4.64(2H,s)
A-822	8.86(1H,d), 8.71(1H,s), 7.58(2H), 7.42(3H), 7.24(3H), 7.04-7.11(4H),
	4.76(2H,s)
A-861	9.30(1H,s), 8.81(1H,d), 8.73(1H,s), 7.55(1H,d), 4.38(1H,m), 3.83(1H,d),
	3.03(1H,t), 1.50-1.75(6H), 1.22(3H,d)
A-862	3.3-3.5(2H, m), 3.6-3.8(2H, m), 4.47(2H, s), 7.1-7.4(5H, m), 7.57(1H, d),
	8.73(1H, s), 8.79(1H, d)
A-864	8.79(1H,d), 8.72(1H,s), 7.56(1H,d), 4.45(1H,brs), 3.20-3.80(4H), 1.90-
	2.10(2H)
A-865	8.84(1H,d), 8.74(1H,s), 8.42(1H,brs), 7.57(1H,d), 5.87(2H,brd),
i I	4.33(2H,s), 4.18(2H,s)
A-866	11.32(1H,brs), 9.18(1H,s), 9.05(1H,d), 7.97(1H,d), 7.96(1H,d),
	7.94(1H,d), 7.47(1H,t), 7.33(1H,t)
A-867	8.86(1H,d), 8.78(1H,s), 7.71(1H,d), 7.25-7.45(10H)
A-869	3.6-3.9(4H, m), 7.2-7.6(6H, m), 8.67(1H, d), 8.79(1H, m)
A-871	1.7-2.2(4H, m), 3.2-3.7(4H, m), 7.56(1H, d), 8.73(1H, s), 8.81(1H, d),
	9.11(1H, brs)
A-872	1.5-1.8(6H, m), 3.3-3.6(4H, m), 7.56(1H, d), 8.75(1H, s), 8.83(1H, d),
	8.93(brs)
A-873	3.4-3.6(4H, m), 3.6-3.9(4H, m), 7.58(1H, d), 8.03(1H, brs), 8.76(1H, s),
	8.86(1H, d)
A-874	2.6-2.8(4H, m), 4.7-4.9(4H, m), 7.59(1H, d), 8.77(1H, s), 8.86(1H, d)
B-37	4.85(2H, d), 7.2-7.5(5H, m), 7.62(1H, d), 8.85(1H, s), 8.92(1H, d),
	9.74(1H, brs), 10.61(1H, brs)

Cpd	1H-NMR
B-40	10.83(1H,s), 8.95(1H,d), 8.91(1H,s), 8.78(1H,s), 7.65(1H,d), 7.25-
	7.67(5H), 1.91(6H)
B-47	10.58(1H), 9.14(1H,s), 8.97(1H,d), 8.90(1H,s), 7.67(1H,d), 7.24-7.38(4H),
	4.86(2H,d)
B-64	3.84(3H, s), 7.79(1H, s), 8.84(1H, s), 8.93(1H, d), 10.78(1H, brs)
B-65	12.41(1H,s), 10.66(1H,s), 8.93(1H,s), 8.87(1H,d), 7.70(1H,d), 4.07(2H,q),
	1.16(3H,t)
B-71	12.14(1H,s), 9.22(1H,s), 8.98(1H,d), 8.92(1H,s), 7.68(1H,d), 1.43(9H,s)
B-74	12.53(1H,s), 10.79(1H,s), 9.00(1H,s), 8.95(1H,d), 7.79(1H,d),
	6.02(1H,m), 5.38(1H,d), 5.28(1H,d), 4.60(2H,d)
B-86	12.22(1H,s), 9.22(1H,brs), 8.95(1H,d), 8.86(1H,s), 7.66(1H,d), 7.37-
	7.44(5H), 5.14(2H,s)
B-100	2.84(1H, brs), 3.36(1H, brs), 7.87(1H, d), 8.28(1H, brs), 9.03(1H, d),
	9.17(1H, s)
B-108	5.40(2H, s), 7.2-7.5(5H, m), 7.71(1H, d), 8.9-9.1(2H, m), 12.80(1H, brs)
B-109	6.8-7.1(4H, m), 7.3-7.4(1H, m), 7.65(1H, d), 8.90(1H, s), 8.96(1H, d),
	8.49(1H, brs), 11.82(1H, d)
B-149	12.34(1H,s), 10.95(1H,brs), 9.14(1H,s), 9.02(1H,d), 7.86(1H,d),
	7.81(2H,d), 7.44(2H,t), 7.29(1H,m)
B-150	12.35(1H,s), 11.15(1H,brs), 9.16(1H,s), 9.03(1H,d), 8.34(1H,t),
	7.87(1H,d), 7.25-7.35(3H)
B-151	12.45(1H,s), 9.14(1H,s), 9.02(1H,d), 7.49(1H), 7.47(1H,d), 7.46-7.50(2H),
	7.07(1H,m)
B-152	12.25(1H,s), 11.03(1H,brs), 9.12(1H,s), 9.02(1H,d), 7.86(1H,d),
	7.78(2H,t), 7.21(2H,t)
B-155	9.09(1H,s), 8.98(1H,d), 7.83(1H,d), 7.78(2H,d), 7.44(2H,d)
B-158	9.13(1H,s), 9.02(1H,d), 7.87(1H,d), 7.79(2H,d), 7.62(2H,d)

), 7.67(1H, d), 7.8-7.9(1H, m), 8.01(1H, d), 8.91(1H, s), .82(1H, brs), 12.25(1H, brs) 90(1H,d), 7.74(1H,d), 7.52(1H,d), 7.45(1H,s), 7.19(1H,t), 25(3H,s) 10.94(1H,brs), 9.13(1H,s), 9.01(1H,d), 7.86(1H,d), 2.34(3H,s)
.82(1H, brs), 12.25(1H, brs) 90(1H,d), 7.74(1H,d), 7.52(1H,d), 7.45(1H,s), 7.19(1H,t), 25(3H,s) 10.94(1H,brs), 9.13(1H,s), 9.01(1H,d), 7.86(1H,d),
25(3H,s) 10.94(1H,brs), 9.13(1H,s), 9.01(1H,d), 7.86(1H,d),
10.94(1H,brs), 9.13(1H,s), 9.01(1H,d), 7.86(1H,d),
25/2H d) 2 34/3H e)
25(2H,d), 2.34(3H,s)
.9-7.3(3H, m), 7.88(1H, d), 8.8-8.9(1H, m), 9.03(1H, d),
0.95(1H, brs), 12.73(1H, brs)
i.8-6.9(1H, m), 7.2-7.4(2H, m), 7.6-7.7(1H, m), 7.86(1H, d),
9.13(1H, s), 10.97(1H, brs), 12.38(1H, brs)
i.95(2H, d), 7.63(2H, d), 7.83(1H, d), 8.98(1H, d), 9.08(1H,
brs), 12.17(1H, brs)
.03(1H,d), 8.12(2H,d), 7.88(1H,d), 7.85(2H,d)
10.96(1H,brs), 9.13(1H,s), 9.02(1H,d), 8.58(1H,s),
.53(1H,s), 7.25(1H,t), 7.15(1H,t), 6.76(1H,d)
10.92(1H,brs), 9.12(1H,s), 9.20(1H,d), 8.54(1H,brs),
.56(2H,d), 6.89(2H,d)
7.2-7.4(2H, m), 7.5-7.6(1H, m), 7.8-7.9(2H, m), 9.01(1H, d),
11.01(1H, brs), 12.13(1H, brs)
10.98(1H), 9.15(1H,s), 9.03(1H,d), 7.87(1H,d), 7.74(1H,d),
.41(1H,t), 7.30(1H,d), 4.69(3H,s)
), 9.13(1H,s), 9.03(1H,d), 7.92(2H,d), 7.87(1H,d), 7.42(2H,d)
.18(1H,s), 9.04(1H,d), 8.48-8.55(3H), 7.88(1H,d)
n), 8.99(1H, d), 9.01(1H, s), 10.64(1H, brs)
3.65(2H, t), 3.8-4.0(2H, m), 7.66(1H, d), 8.89(1H, s),
9.22(1H, brs), 10.48(1H, brs)
.3-1.5(2H, m), 1.5-1.7(2H, m), 1.9-2.1(2H, m), 3.46(3H, t),

Cpd	1H-NMR
	3.56(3H, t), 3.81(2H, q), 7.66(1H, d), 8.89(1H, s), 8.97(1H, d), 9.02(1H,
	brs), 10.53(1H, brs)
B-257	1.99(3H, s), 7.88(1H, d), 8.97(1H, d), 8.99(1H, s), 10.92(1H, brs),
	12.92(1H, brs)
B-258	7.5-7.7(3H, m), 7.86(1H, s), 7.9-8.1(2H, m), 9.02(1H, d), 9.14(1H, brs)
B-259	7.3-7.5(5H, m), 7.5-7.7(5H, m), 7.77(1H, d), 8.8-9.0(2H, m), 13.05(1H,
	brs)
B-261	1.8-2.0(2H, m), 3.76(2H, t), 3.8-3.9(2H, m), 7.66(1H, m), 8.99(1H, s),
	8.95(1H, d), 9.44(1H, brs), 10.53(1H, brs)
B-267	9.08(1H,s), 9.01(1H,d), 7.84(1H,d), 1.95(6H,s)
B-269	10.38(1H,brs), 9.35(1H,s), 8.96(1H,d), 8.90(1H,s), 7.67(1H,d), 3.73(4H),
	1.60-1.80(4H)
B-296	3.23(3H, s), 5.22(2H, s), 7.22-7.5(5H, m), 7.63(1H, d), 8.7-9.0(2H, m)
B-313	9.40(1H,s), 8.95(1H,d), 8.75(1H,s), 7.57(1H,d), 3.86(3H,s), 3.58(3H,s)
B-331	3.37(3H, s), 4.70(1H, s), 7.53(1H, d), 8.62(1H, s), 8.80(1H, d)
B-349	3.69(1H, s), 7.3-7.6(6H, m), 8.33(1H, brs), 8.51(1H, s), 8.79(1h, d)
B-353	8.81(1H,d), 8.52(1H,s), 8.52(1H,s), 7.53-7.60(2H), 7.25-7.46(3H),
	3.62(3H,s)
B-354	10.13(1H), 8.88(1H,d), 8.48(1H,s), 7.72(1H,d), 7.37-7.55(4H), 3.75(3H,s)
B-355	8.84(1H,d), 8.57(1H,s), 8.15(1H,s), 7.56(1H,d), 7.43(2H,d), 7.27(2H,d),
	3.68(3H,s)
B-366	8.81(1H,d), 8.58(1H,s), 8.14(1H,s), 7.54(1H,d), 7.37(1H,d), 7.25(1H),
	7.10(2H), 3.65(3H,s), 2.42(3H,s)
B-369	8.47(1H,d), 8.03(1H,s), 7.33(1H,d), 7.02(1H,t), 6.54-6.64(3H), 3.45(3H,s),
	3.32(3H,s)
B-373	8.87(1H,d), 8.62(1H,s), 8.35(1H,s9, 8.31(2H,d), 7.57(1H,d), 7.53(2H,d),
	3.78(3H,s)

Cpd	1H-NMR
B-398	8.89(1H,d), 8.72(1H,s), 8.51(1H,d), 7.98(1H,dd), 7.73(1H,d), 7.58(1H,d),
	7.31(1H,dd), 3.79(3H,s)
B-417	9.15(1H,s), 8.88(1H,d), 7.69(1H,d), 4.16(3H,s), 3.56(3H,s)
B-431	3.38(3H, s), 3.7-4.2(4H, m), 7.5-7.7(1H, m), 8.7-9.0(2H, m), 10.35(1H,
	brs)
B-519	1.2-1.4(3H, m), 3.7-4.1(6H, m), 7.56(1H, d), 8.6-9.0(2H, m), 10.85(1H,
	brs)
B-564	9.08(1H,brs), 8.36(1H,d), 7.51(1H,brs), 7.23(1H,d), 7.04-7.30(3H), 6.86-
	6.91(2H), 5.17(1H), 0.74(6H,d)
B-713	9.45(1H,s), 8.85(1H,d), 8.76(1H,s), 7.56(1H,d), 5.90(1H,m), 5.27-
	5.36(2H), 4.70(2H,d), 3.86(3H,s)
B-736	8.85(1H,s) 8.27(1H,s), 7.69(1H,d), 7.30-7.50(5H), 6.10(1H,m),
	5.28(1H,d), 5.17(1H,d), 4.89(2H,d)
B-737	8.83(1H,d), 8.12(1H,s), 7.69(1H,d), 7.54-7.65(2H), 7.38-7.45(2H),
	6.05(1H,m), 5.24(1H,d), 5.21(1H,d), 5.00(1H,dd), 4.73(1H,dd)
B-738	10.15(1H), 8.86(1H,d), 8.40(1H,s), 7.71(1H,d), 7.35-7.54(4H),
	6.00(1H,m), 5.27(1H,d), 5.22(1H,d), 4.93(1H,d)
B-744	8.80(1H,d), 8.59(1H,s), 8.11(1H,s), 7.53(1H,d), 7.41(1H,t), 6.96(1H,dd),
	6.84(1H,dd), 6.77(1H), 5.94(1H,m), 5.20(1H,d), 5.17(1H,d), 4.73(2H,d),
	3.84(3H,s)
B-745	8.80(1H,d), 8.67(1H,s), 8.13(1H,s), 7.53(1H,d), 7.17(2H,d), 6.98(2H,d),
	5.93(1H,m), 5.17(1H,d), 5.14(1H,d), 4.72(2H,d), 3.85(3H,s)
B-747	8.79(1H,d), 8.51(1H,s), 8.34(1H,s), 7.56(1H,d), 7.33(1H,t), 7.26(1H,s),
	6.87(1H,dd), 6.79(1H,dd), 6.74(1H,s), 5.91(1H,m), 5.21(1H,d),
	5.17(1H,d), 4.73(2H,d)
B-748	9.69(1H,s), 8.80(1H,d), 7.96(1H,s), 7.66(1H,d), 7.19(2H,d), 6.86(2H,d),
	5.93(1H,m), 5.12-5.25(2H), 4.89(2H,d)
B-799	10.45(1H,brs), 8.90(1H,d), 8.86(1H,s), 7.76(1H,d), 7.30-7.46(5H),

Cpd	1H-NMR
	5.41(2H,s), 3.88(3H,s)
B-805	8.80(1H,d), 8.69(1H,s), 8.45(1H,s), 7.53(1H,d), 7.23-7.41(10H),
	4.75(2H,s), 4.64(2H,s)
B-822	9.90(1H), 8.84(1H,d), 8.25(1H,s), 7.70(1H,d), 7.24-7.45(10H), 5.62(2H,s)
B-861	9.96(1H,brs), 8.95(1H,s), 8.93(1H,d), 7.79(1H,d), 5.40(1H,brs),
	4.23(1H,brs), 3.34(1H) 1.60-1.94(6H), 1.33(3H,d)
B-863	8.86-8.95(2H), 7.65(1H,d), 5.62(1H), 3.85-4.35(4H), 2.35-2.65(2H)
B-864	8.93-8.98(2H), 7.79(1H,d), 4.75(1H), 3.70-4.00(4H), 1.95-2.25(2H)
B-865	8.93(2H), 8.42(1H,brs), 7.64(1H,d), 5.9(2H,m), 4.64(2H,s), 4.57(2H,s)
B-867	8.81(1H,d), 8.54(1H,s), 8.49(1H,s), 7.54(1H,d), 7.28-7.45(10H)
B-868	10.10(1H,s), 8.90(1H,d), 8.82(1H,s), 7.76(1H,d), 7.30-7.53(5H),
	2.04(3H,s)
B-870	10.38(1H,), 9.37(1H,s), 8.96(1H,d), 8.89(1H,s), 7.67(1H,d), 4.30(2H),
	3.74(2H), 3.04(3H,s), 1.85-1.90(4H)
B-871	1.9-2.2(4H, m), 3.7-4.0(4H, m), 7.62(1H, d), 8.8-9.0(2H, m)
B-872	1.6-1.9(6H, m), 3.6-3.8(2H, m), 4.0-4.3(2H, m), 7.63(2h, d), 8.87(1H, brs), 8.9-9.0(2H, m)
B-873	3.5-4.5(6H, m), 7.64(1H, d), 8.56(1H, brs), 8.92(1H, s), 8.94(1H, d)
B-874	8.94(1H,d), 8.93(1H,s), 7.65(1H,d), 4.40(2H,brs), 4.02(2H,brs), 2.86(4H)
B-877	3.07(2H, dt), 3.96(2H, t), 7.06(1H, s), 7.74(1H, d), 8.73(1H, s), 8.87(1H,
	d)
B-880	1.87(6H, d), 7.2-7.8(6H, m), 8.77(1H, s), 8.83(1H, d)
C-10	3.08(3H, s), 4.57(2H, s), 7.2-7.5(5H, m), 7.64(1H, d), 8.72(1H, s),
	8.89(1H, d), 9.34(1H, brs)
C-78	3.10(3H, s), 3.26(3H, d), 4.5-4.8(2H, m), 7.1-7.5(5H, m), 7.64(1H, d),
	8.72(1H, s), 8.90(1H, d), 9.34(1H, brs)

Cpd	1H-NMR
C-85	3.02(3H, s), 3.34(3H, s), 3.64(3H, s), 7.58(1H, d), 8.65(1H, d), 8.81(1H,
	d)
C-91	2.88(3H,s), 2.98(3H,s), 4.72(2H,s), 7.30-7.43(5H), 7.59(1H,d),
	8.52(1H,s), 8.80(1H,d)
D-85	1.33(1H,t), 2.98(3H,s), 3.61(3H,s), 3.87(1H,q), 7.60(1H,d), 8.67(1H,s),
	8.82(1H,d)
D-86	1.2-1.4(6H, m), 3.7-4.0(4H, m), 7.59(1H, d), 8.67(1H, d), 8.81(1H, d)
E-85	2.97(3H,s), 3.59(3H,s), 4.42(2H,d), 5.28(1H,d), 5.32(1H,d), 5.98(1H,m),
	7.61(1H,d), 8.68(1H,s), 8.83(1H,d)
E-87	3.00(3H, s), 4.25(2H, d), 4.37(2H, d), 5.2-5.5(4H, m), 5.7-6.1(2H, m),
	7.61(1H, d), 8.68(1H, s), 8.82(1H, d)
F-85	2.35(1H,t), 3.09(3H,s), 3.68(3H,s), 4.64(2H,d), 7.62(1H,d), 8.68(1H,s),
	8.85(1H,d)
F-88	2.37(1H, dd), 2.62(1H, dd), 3.12(3H, s), 4.50(2H, d), 4.61(2H, d),
	7.63(1H, d), 8.73(1H, s), 8.86(1H, d)
G-35	4.66(2H,s), 4.75(2H,s), 7.24-7.42(10H), 7.43(1H,d), 8.46(1H,s),
	8.83(1H,d)
G-85	2.81(3H,s), 3.08(3H,s), 5.06(2H,s), 7.26-7.32(3H), 7.45(2H,d),
	7.59(1H,d), 8.70(1H,s), 8.82(1H,d)
G-91	2.71(3H, s), 4.29(2H, s), 4.71(2H, s), 7.0-7.1(2H, m), 7.2-7.6(8H, m),
	7.58(1H, d), 8.56(1H, s), 8.80(1H, d)
G-126	4.31(2H,s), 4.38(2H,s), 4.71(2H,s), 6.89(2H, d), 7.07(2H), 7.17-
	7.39(11H), 7.50(1H,d), 8.39(1H,s), 8.58(1H,d)
H-85	2.96(3H,s), 3.64(3H,s), 3.81(3H,s), 4.59(2H,s), 7.62(1H,d), 8.80(1H,s),
	8.85(1H,d)
H-89	3.08(3H, S), 3.74(3H, s), 3.77(3H, s), 4.48(2H, s), 4.60(2H, s), 7.64(1H,
	s), 8.84(1H, s), 8.87(1H, d)

Cpd	1H-NMR
H-91	2.90(3H,s), 3.69(3H,s), 4.76(2H,s), 7.24-7.45(5H), 7.64(1H,d),
	8.80(1H,s), 8.85(1H,d)
I-85	1.60(3H,d), 3.63(3H,s), 3.80(3H,s), 5.30(1H,q), 7.58(1H,d), 8.78(1H,s),
	8.84(1H,d)
S-2	0.87(3H, t), 1.4-1.7(2H, m), 3.17(2H, t), 3.54(2H, t), 4.06(2H, t), 7.54(1H,
	d), 8.65(1H, s), 8.81(1H, d)
S-3	1.15(6H, d), 3.49(2H, t), 3.9-4.2(3H, m), 7.54(1H, d), 8.66(1H, s),
	8.81(1H, d)
S-7	1.34(9H,s), 3.58(2H, t), 3.96(2H, t), 7.53(1h, d), 8.65(1h, s), 8.81(1h, d)
S-15	3.40(2H, t), 4.01(2H, t), 4.53(2H, s), 7.1-7.4(5H, m), 7.57(1h, d), 8.69(1H,
	s), 8.83(1H, d)
S-18	4.00(2H, t), 4.18(2H, t), 7.1-7.5(5H, m), 7.57(1H, d), 8.70(1H, s), 8.83(1H,
	d)
S-109	1.25(3H, q), 3.1-3.3(1H, d), 3.4-3.6(1H,m), 3.7-4.0(2H, m), 4.28(1H, d),
	4.47(1H, d), 5.76(1H, d), 7.1-7.5(5H, m), 7.57(1H, d), 8.70(1H, s),
	8.83(1H, d)
S-120	1.37(6H, d), 4.2-4.4(1H, m), 4.42(2H, s), 7.62(1H, d), 8.73(1H, s),
	8.91(1H, d)
S-124	1.55(9H, s), 4.34(2H, s), 7.60(1H, d), 8.71(1H, s), 8.90(1H, d)
S-132	4.47(2H, s), 4.62(2H, s), 7.2-7.4(4H, m), 7.61(1H, d), 8.70(1H, s),
	8.91(1H, d)
S-143	1.36(6H, d), 1.70(3H, d), 4.3-4.4(1H, m), 4.67(1H, q), 7.60(1H, d),
	8.71(1H, s), 8.90(1H, d)
S-155	1.71(3H, d), 4.76(2H, s), 4.76(1H, q), 7.1-7.4(5H, m), 7.61(1H, d),
	8.69(1H, s), 8.91(1H, d)
S-167	1.35(6H, d), 1.78(6H, s), 4.2-4.4(1H, m), 7.58(1H, d), 8.67(1H, s),
	8.88(1h, d)
S-356	3.77(2H, t), 4.40(2H, t), 6.81(1H, brs), 7.54(1H, d), 8.65(1H, s), 8.82(1H,

Cpd	1H-NMR
	d)
S-357	0.94(3H,t), 1.34(1h,m), 1.60(1H,m), 3.63(2H,t), 3.76(2H,t), 4.23(2H,t),
	7.51(1H,d), 8.62(1H,s), 8.79(1H,d)
S-548	3.69(2H,t), 3.77(3h,s), 4.00(2H,t), 7.57(1H,d), 8.67(1H,s), 8.86(1H,d)
S-549	3.43(2H,t), 3.88(2H,t), 4.90(2H,s), 7.30-7.40(5H), 7.57(1H,d), 8.67(1H,s),
	8.85(1H,d)
S-550	1.40(3H,d), 4.09(1H,m), 4.34(1H,m), 4.64(1H,m), 7.55(1H,d), 8.78(1H,d),
	9.14(1H,s), 9.47(1H,brs)
S-551	1.03(3H,t), 1.76(2H,m), 4.19(2H,m), 4.63(1H,m), 7.56(1H,d), 8.80(1H,d),
	9.17(1H,s), 9.49(1H,brs)
S-552	0.88(3H,t), 1.80(2H,m), 3.82(1H,m), 4.17(1H,d), 4.30(1H,dd), 4.63(1H,t),
	5.12(1H,d), 7.23-7.38(5H), 7.53(1H,d), 8.75(1H,d), 9.10(1H,s)
S-553	4.38(1H,dd), 4.90(1H,t), 5.27((1H), 7.25-7.53(5H), 7.57(1H,d),
	8.81(1H,d), 9.22(1H,s), 9.70(1H,brs)
S-554	2.67(3H,s), 3.90(1H,dd), 4.45(1H,dd), 4.65(1h,dd), 7.30(2H), 7.40-
	7.450(3H), 7.60(1H,d), 8.73(1H,s), 8.87(1H,d)
S-555	3.73(1H,d), 4.47(1H,t), 4.66(1H,t), 4.89(1H,t), 5.17(1H,d), 7.10-7.46(10H),
	7.57(1H,d), 8.79(1H,d), 9.18(1H,s)
S-556	1.56(3H,d), 3.51(1H,dd), 4.02(1h,t), 4.95(1H,m), 7.54(1H,d), 8.78(1H,d),
	9.15(1H,s), 9.32(1H,s)
S-557	3.90(1H,t), 4.32(1H,t), 5.80(1H,t), 7.38-7.46(5H), 7.57(1H,d), 8.81(1H,d),
	9.21(1H,s), 9.42(1H,brs)
S-558	3.08(3H,s), 3.60(1H,dd), 4.06(1H,t), 5.78(1H,dd), 7.28-7.40(5H),
	7.52(1H,d), 8.74(1H,d), 9.09(1H,s)
S-559	3.44(1H,dd), 3.89(1H,t), 4.60(1H,d), 4.73(1H,d), 5.76(1H,dd), 7.26-
	7.40(10H), 7.53(1H,d9, 8.76(1H,d), 9.13(1H,s)
U-3	8.80(1H,d), 8.66(1h,s), 7.54(1H,d), 4.29(2H,t), 4.05(2H,t), 1.18(6H,d)

5

15

Cpd	1H-NMR
U-7	8.78(1H,d), 8.66(1H,s), 7.52(1H,d), 4.28(2H,t), 4.00(2H,t), 1.34(9H,s)
U-20	8.81(1H,d), 8.67(1H,s), 7.55(1H,d), 7.25-7.50(5H), 4.66(2H,s), 4.00-4.17(4H)
W-194	1.45(18H, s), 7.54(1H, d), 7,75(1H, d), 9.08(1H, s), 10.17(1H, brs)
X-35	3.24(3H, d), 7.67(1H, d), 8.89(1H, s), 8.97(1H, d), 9.24(1H, brs), 10.32(1H, brs)
X-43	4.90(2H, d), 7.2-7.5(5H, m), 7.68(1H, d), 8.92(1H, s), 8.98(1H, d), 9.51(1H, brs), 10.62(1H, brs)
X-45	9.00(1H,s), 8.97(1H,d), 7.82(1H,d), 5.04(2H,q)
X-55	3.77(2H, t), 4.55(2H, t), 7.64(1H, d), 8.84(1H, s), 8.92(1H, d), 9.27(1H, brs)

According to a further feature of the present invention there is provided a method for the control of pests at a locus which comprises the application of an effective amount of a compound of formula (I) or a salt thereof. For this purpose, the said compound is normally used in the form of a pesticidal composition (i.e. in association with compatible diluents or carriers and/or surface active agents suitable for use in pesticidal compositions), for example as hereinafter described.

The term "compound of the invention" as used hereinafter embraces a 3pyridylcarboxamide of formula (I) as defined above and a pesticidally acceptable salt thereof.

One aspect of the present invention as defined above is a method for the control of pests at a locus. The locus includes, for example, the pest itself, the place (plant, field, forest, orchard, waterway, soil, plant product, or the like) where the pest resides or feeds, or a place susceptible to future infestation by the pest. The compound of the invention may therefore be applied directly to the pest, to the place where the pest resides or feeds, or to the place susceptible to future infestation by the pest.

109

As is evident from the foregoing pesticidal uses, the present invention provides pesticidally active compounds and methods of use of said compounds for the control of a number of pest species which includes: arthropods, especially insects or mites, or plant nematodes. The compound of the invention may thus be advantageously employed in practical uses, for example, in agricultural or horticultural crops, in forestry, in veterinary medicine or livestock husbandry, or in public health. The compounds of the invention may be used for example in the following applications and on the following pests:

For the control of soil insects, such as corn rootworm, termites (especially for protection of structures), root maggots, wireworms, root weevils, stalkborers, cutworms, root aphids, or grubs. They may also be used to provide activity against plant pathogenic nematodes, such as root-knot, cyst, dagger, lesion, or stem or bulb nematodes, or against mites. For the control of soil pests, for example corn rootworm, the compounds are advantageously applied to or incorporated at an effective rate into the soil in which crops are planted or to be planted or to the seeds or growing plant roots.

10

15

20

In the area of public health, the compounds are especially useful in the control of many insects, especially filth flies or other Dipteran pests, such as houseflies, stableflies, soldierflies, hornflies, deerflies, horseflies, midges, punkies, blackflies, or mosquitoes.

In the protection of stored products, for example cereals, including grain or flour, groundnuts, animal feedstuffs, timber or household goods, e.g. carpets and textiles, compounds of the invention are useful against attack by arthropods, more especially beetles, including weevils, moths or mites, for example Ephestia spp. (flour moths),

- Anthrenus spp. (carpet beetles), Tribolium spp. (flour beetles), Sitophilus spp. (grain weevils) or Acarus spp. (mites).
 - In the control of cockroaches, ants or termites or similar arthropod pests in infested domestic or industrial premises or in the control of mosquito larvae in waterways, wells, reservoirs or other running or standing water.
- For the treatment of foundations, structures or soil in the prevention of the attack on building by termites, for example, Reticulitermes spp., Heterotermes spp., Coptotermes spp..

In agriculture against adults, larvae and eggs of Lepidoptera (butterflies and moths), e.g. Heliothis spp. such as Heliothis virescens (tobacco budworm), Heliothis armigera and Heliothis zea. Against adults and larvae of Coleoptera (beetles) e.g. Anthonomus spp. e.g. grandis (cotton boll weevil), Leptinotarsa decemlineata (Colorado potato beetle), Diabrotica spp. (corn rootworms). Against Heteroptera (Hemiptera and Homoptera) e.g. Psylla spp., Bemisia spp., Trialeurodes spp., Aphis spp., Myzus spp., Megoura viciae, Phylloxera spp., Nephotettix spp. (rice leaf hoppers), Nilaparvata spp..

5

25

30

Against Diptera e.g. Musca spp.. Against Thysanoptera such as Thrips tabaci.

Against Orthoptera such as Locusta and Schistocerca spp., (locusts and crickets)
e.g. Gryllus spp., and Acheta spp. for example, Blatta orientalis, Periplaneta
americana, Blatella germanica, Locusta migratoria migratorioides, and Schistocerca
gregaria. Against Collembola e.g. Periplaneta spp. and Blatella spp. (roaches).
Against arthropods of agricultural significance such as Acari (mites) e.g, Acarus siro,

15 Argas spp., Omithodoros spp., Dermanyssus gallinae, Eriophyes ribis,
Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp.,
Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp.,
Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.,
Eotetranychus spp., Oligonychus spp., Eutetranychus spp.

20 From the order of the Isopoda, for example, Oniscus aselus, Armadium vulgare, Porcellio scaber.

Against nematodes which attack plants or trees of importance to agriculture, forestry or horticulture either directly or by spreading bacterial, viral, mycoplasma or fungal diseases of the plants. The plant-parasitic nematodes which can be controlled in accordance with the invention include, for example, the root-parasitic soil-dwelling nematodes such as, for example, those of the genera Meloidogyne (root knot nematodes, such as Meloidogyne incognita, Meloidogyne hapla and Meloidogyne javanica), Heterodera and Globodera (cyst-forming nematodes, such as Globodera rostochiensis, Globodera pallida, Heterodera trifolii) and of the genera Radopholus, such as Radopholus similis, Pratylenchus such as Pratylenchus neglectus,

Pratylenchus penetrans and Pratylenchus curvitatus:

Tylenchulus such as Tylenchulus semipenetrans, Tylenchorhynchus, such as Tylenchorhynchus dubius and Tylenchorhynchus claytoni, Rotylenchus such as Rotylenchus robustus, Heliocotylenchus such as Haliocotylenchus multicinctus, Belonoaimus such as Belonoaimus longicaudatus, Longidorus such as Longidorus elongatus, Trichodorus such as Trichodorus primitivus and Xiphinema such as Xiphinema index.

Other nematode genera which can be controlled using the compounds according to the invention are Ditylenchus (stem parasites, such as Ditylenchus dipsaci and Ditylenchus destructor), Aphelenchoides (foliar nematodes, such as Aphelenchoides 10 ritzemabosi) and Anguina (seed nematodes, such as Anguina tritici). In the field of veterinary medicine or livestock husbandry or in the maintenance of public health against arthropods which are parasitic internally or externally upon vertebrates, particularly warm-blooded vertebrates, for example domestic animals, e.g. cattle, sheep, goats, equines, swine, poultry, dogs or cats, for example Acarina, 15 including ticks (e.g. Ixodes spp., Boophilus spp. e.g. Boophilus microplus, Rhipicephalus spp. e.g. Rhipicephalus appendiculatus Ornithodorus spp. (e.g. Ornithodorus moubata) and mites (e.g. Damalinia spp.); fleas; Diptera (e.g. Aedes spp., Anopheles spp., Musca spp., Hypoderma spp.); Hemiptera.; Dictyoptera (e.g. Periplaneta spp., Blatella spp.); Hymenoptera; for example against infections of the 20 gastro-intestinal tract caused by parasitic nematode worms, for example members of

the family Trichostrongylidae.

From the class of the helminths, for example, Haemonchus, Trichostrongulus,
Ostertagia, Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus,

25 Ancylostoma, Ascaris and Heterakis and also Fasciola.

5

From the class of the Gastropoda, for example, Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.

30 From the class of the Bivalva, for example, Dreissena spp.

In practical use for the control of arthropods, especially insects or acarids, or nematode pests of plants, a method, for example, comprises applying to the plants or to the medium in which they grow an effective amount of a compound of the invention. For such a method, the compound of the invention is generally applied to the locus in which the arthropod or nematode infestation is to be controlled at an effective rate in the range of about 2g to about 1kg of the active compound per hectare of locus treated. Under ideal conditions, depending on the pest to be controlled, a lower rate may offer adequate protection. On the other hand, adverse weather conditions, resistance of the pest or other factors may require that the active ingredient be used at higher rates. The optimum rate depends usually upon a number of factors, for example, the type of pest being controlled, the type or the growth stage of the infested plant, the row spacing or also the method of application. Preferably an effective rate range of the active compound is from about 10g/ha to about 400g/ha, more preferably from about 50g/ha to about 200 g/ha.

When a pest is soil-borne, the active compound generally in a formulated composition, is distributed evenly over the area to be treated (ie, for example broadcast or band treatment) in any convenient manner and is applied at rates from about 10g/ha to about 400g ai/ha, preferably from about 50g/ha to about 200 g ai/ha. When applied as a root dip to seedlings or drip irrigation to plants the liquid solution or suspension contains from about 0.075 to about 1000 mg ai/l, preferably from about 25 to about 200 mg ai/l. Application may be made, if desired, to the field or crop-growing area generally or in close proximity to the seed or plant to be protected from attack. The compound of the invention can be washed into the soil by spraying with water over the area or can be left to the natural action of rainfall. During or after application, the formulated compound can, if desired, be distributed mechanically in the soil, for example by ploughing, disking, or use of drag chains. Application can be prior to planting, at planting, after planting but before sprouting has taken place, or after sprouting.

The compound of the invention and methods of control of pests therewith are of particular value in the protection of field, forage, plantation, glasshouse, orchard or vineyard crops, of ornamentals, or of plantation or forest trees, for example: cereals (such as wheat or rice), cotton, vegetables (such as peppers), field crops (such as

sugar beets, soybeans or oil seed rape), grassland or forage crops (such as maize or sorghum), orchards or groves (such as of stone or pit fruit or citrus), ornamental plants, flowers or vegetables or shrubs under glass or in gardens or parks, or forest trees (both deciduous and evergreen) in forests, plantations or nurseries.

They are also valuable in the protection of timber (standing, felled, converted, stored 5 or structural) from attack, for example, by sawflies or beetles or termites. They have applications in the protection of stored products such as grains, fruits, nuts, spices or tobacco, whether whole, milled or compounded into products, from moth, beetle, mite or grain weevil attack. Also protected are stored animal products such as skins, hair, wool or feathers in natural or converted form (e.g. as carpets or 10 textiles) from moth or beetle attack as well as stored meat, fish or grains from beetle,

mite or fly attack.

20

25

30

Additionally, the compound of the invention and methods of use thereof are of particular value in the control of arthropods or helminths which are injurious to, or 15 spread or act as vectors of diseases domestic animals, for example those hereinbefore mentioned, and more especially in the control of ticks, mites, lice, fleas, midges, or biting, nuisance or myiasis flies. The compounds of the invention are particularly useful in controlling arthropods or helminths which are present inside domestic host animals or which feed in or on the skin or suck the blood of the animal, for which purpose they may be administered orally, parenterally, percutaneously or topically.

The compositions hereinafter described for application to growing crops or crop growing loci or as a seed dressing may, in general, alternatively be employed in the protection of stored products, household goods, property or areas of the general environment. Suitable means of applying the compounds of the invention include: to growing crops as foliar sprays (for example as an in-furrow spray), dusts, granules, fogs or foams or also as suspensions of finely divided or encapsulated compositions as soil or root treatments by liquid drenches, dusts, granules, smokes or foams; to seeds of crops via application as seed dressings by liquid slurries or dusts:

to animals infested by or exposed to infestation by arthropods or helminths, by parenteral, oral or topical application of compositions in which the active ingredient

114

exhibits an immediate and/or prolonged action over a period of time against the arthropods or helminths, for example by incorporation in feed or suitable orally-ingestible pharmaceutical formulations, edible baits, salt licks, dietary supplements, pour-on formulations, sprays, baths, dips, showers, jets, dusts, greases, shampoos, creams, wax smears or livestock self-treatment systems; to the environment in general or to specific locations where pests may lurk, including stored products, timber, household goods, or domestic or industrial premises, as sprays, fogs, dusts, smokes, wax-smears, lacquers, granules or baits, or in tricklefeeds to waterways, wells, reservoirs or other running or standing water.

10

15

20

25

30

5

The compounds of the formula (I) can also be employed for controlling harmful organisms in crops of known genetically engineered plants or genetically engineered plants yet to be developed. As a rule, the transgenic plants are distinguished by especially advantageous properties, for example by resistances to particular crop protection agents, resistances to plant diseases or pathogens of plant diseases, such as particular insects or microorganisms such as fungi, bacteria or viruses. Other particular properties concern, for example, the harvested material with regard to quantity, quality, storage properties, composition and specific constituents. Thus, transgenic plants are known where the starch content is increased, or the starch quality is altered, or where the harvested material has a different fatty acid composition.

The use in economically important transgenic crops of useful plants and ornamentals is preferred, for example of cereals such as wheat, barley, rye, oats, millet, rice, cassava and maize or else crops of sugar beet, cotton, soya, oilseed rape, potatoes, tomatoes, peas and other types of vegetables.

When used in transgenic crops, in particular those which have resistances to insects, effects are frequently observed, in addition to the effects against harmful organisms to be observed in other crops, which are specific for application in the transgenic crop in question, for example an altered or specifically widened spectrum of pests

which can be controlled, or altered application rates which may be employed for application.

The invention therefore also relates to the use of compounds of the formula (I) for controlling harmful organisms in transgenic crop plants.

According to a further feature of the present invention there is provided a pesticidal composition comprising one or more compounds of the invention as defined above, in association with, and preferably homogeneously dispersed in one or more compatible pesticidally acceptable diluents or carriers and/or surface active agents [i.e. diluents or carriers and/or surface active agents of the type generally accepted in the art as being suitable for use in pesticidal compositions and which are compatible with compounds of the invention].

10

15

20

In practice, the compounds of the invention most frequently form parts of compositions. These compositions can be employed to control arthropods, especially insects and acarids, or helminths such as plant nematodes. The compositions may be of any type known in the art suitable for application to the desired pest in any premises or indoor or outdoor area. These compositions contain at least one compound of the invention as the active ingredient in combination or association with one or more other compatible components which are for example, solid or liquid carriers or diluents, adjuvants, surface-active-agents, or the like appropriate for the intended use and which are agronomically or medicinally acceptable. These compositions, which may be prepared by any manner known in the art, likewise form a part of this invention.

The compounds of the invention, in their commercially available formulations and in the use forms prepared from these formulations may be present in mixtures with other active substances such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth regulatory substances or herbicides.

The pesticides include, for example, phosphoric esters, carbamates, carboxylic esters, formamidines, tin compounds and materials produced by microorganisms.

116

Preferred components in mixtures are:

- 1. from the group of the phosphorus compounds acephate, azamethiphos, azinphos-ethyl, azinphos-methyl, bromophos, bromophos-5 ethyl, cadusafos (F-67825), chlorethoxyphos, chlorfenvinphos, chlormephos. chlorpyrifos, chlorpyrifos-methyl, demeton, demeton-S-methyl, demeton-S-methyl sulfone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, EPN, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitriothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, 10 isothioate, isoxathion, malathion, methacrifos, methamidophos, methidathion. salithion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosfolan. phosphocarb (BAS-301), phosmet, phosphamidon, phoxim, pirimiphos, pirimiphosethyl, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, 15 pyraclofos, pyridapenthion, quinalphos, sulprofos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thiometon, triazophos, trichlorphon, vamidothion;
- from the group of the carbamates
 alanycarb (OK-135), aldicarb, 2-sec-butylphenyl methylcarbamate (BPMC), carbaryl,
 carbofuran, carbosulfan, cloethocarb, benfuracarb, ethiofencarb, furathiocarb, HCN801, isoprocarb, methomyl, 5-methyl-m-cumenylbutyryl (methyl)carbamate, oxamyl,
 pirimicarb, propoxur, thiodicarb, thiofanox, 1-methylthio(ethylideneamino)-N-methylN-(morpholinothio)carbamate (UC 51717), triazamate;
- 3. from the group of the carboxylic esters
 acrinathrin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)- (1R)-cis-2,2-dimethyl 3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, beta-cyfluthrin, alpha cypermethrin, beta-cypermethrin, bioallethrin, bioallethrin ((S)-cyclopentylisomer),
 bioresmethrin, bifenthrin, (RS)-1-cyano-1-(6-phenoxy-2-pyridyl)methyl (1RS)-trans-3 30 (4-tert-butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), cycloprothrin,
 cyfluthrin, cyhalothrin, cythithrin, cypermethrin, cyphenothrin, deltamethrin,
 empenthrin, esfenvalerate, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate,

117

flumethrin, fluvalinate (D isomer), imiprothrin (S-41311), lambda-cyhalothrin, permethrin, phenothrin (® isomer), prallethrin, pyrethrins (natural products), resmethrin, tefluthrin, tetramethrin, theta-cypermethrin, tralomethrin, transfluthrin, zeta-cypermethrin (F-56701);

5

- from the group of the amidines amitraz, chlordimeform;
- 5. from the group of the tin compounds10 cyhexatin, fenbutatin oxide;
- 6. others abamectin, ABG-9008, acetamiprid, acequinocyl, Anagrapha falcitera, AKD-1022, AKD-3059, ANS-118, azadirachtin, Bacillus thuringiensis, Beauveria bassianea, bensultap, bifenazate, binapacryl, BJL-932, bromopropylate, BTG-504, BTG-505, 15 buprofezin, camphechlor, cartap, chlorobenzilate, chlorfenapyr, chlorfluazuron, 2-(4-chlorophenyl)-4,5-diphenylthiophene (UBI-T 930), chlorfentezine, chlorproxyfen, chromafenozide, clothianidine, 2-naphthylmethyl cyclopropanecarboxylate (Ro12-0470), cyromazin, diacloden (thiamethoxam), diafenthiuron, DBI-3204, ethyl 2chloro-N-(3,5-dichloro-4-(1,1,2,3,3,3-hexafluoro-1-propyloxy)phenyl)carbamoyl)-2-20 carboximidate, DDT, dicofol, diflubenzuron, N-(2,3-dihydro-3-methyl-1,3-thiazol-2ylidene)-2,4-xylidine, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, diofenolan, emamectin benzoate, endosulfan, ethiprole (sulfethiprole), ethofenprox, etoxazole, fenazaquin, fenoxycarb, fipronil, fluazuron, flumite (flufenzine, SZI-121). 2-fluoro-5-(4-(4-ethoxyphenyl)-4-methyl-1-pentyl)diphenyl ether (MTI 800), 25 granulosis and nuclear polyhedrosis viruses, fenpyroximate, fenthiocarb. fluacrypyrim, flubenzimine, flubrocythrinate, flucycloxuron, flufenoxuron, flufenzine, flufenprox, fluproxyfen, gamma-HCH, halfenozide, halofenprox, hexaflumuron (DE_473), hexythiazox, HOI-9004, hydramethylnon (AC 217300), IKI-220, indoxacarb, ivermectin, L-14165, imidacloprid, indoxacarb (DPX-MP062), kanemite 30 (AKD-2023), lufenuron, M-020, M-020, methoxyfenozide, milbemectin, NC-196,

neemgard, nidinoterfuran, nitenpyram, 2-nitromethyl-4,5-dihydro-6H-thiazine (DS

52618), 2-nitromethyl-3,4-dihydrothiazole (SD 35651), 2-nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), novaluron, pirydaryl, propargite, protrifenbute, pymethrozine, pyridaben, pyrimidifen, pyriproxyfen, NC-196, NC-1111, NNI-9768, novaluron (MCW-275), OK-9701, OK-9601, OK-9602, OK-9802, R-195, RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601, silafluofen, silomadine (CG-177), spinosad, spirodiclofen, SU-9118, tebufenozide, tebufenpyrad, teflubenzuron, tetradifon, tetrasul, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn A, triflumuron, verbutin, vertalec (mykotal), YI-5301.

5

15

20

25

30

The abovementioned components for combinations are known active substances, many of which are described in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 12th Edition, British Crop Protection Council, Farnham 2000.

The effective use doses of the compounds employed in the invention can vary within wide limits, particularly depending on the nature of the pest to be eliminated or degree of infestation, for example, of crops with these pests. In general, the compositions according to the invention usually contain about 0.05 to about 95% (by weight) of one or more active ingredients according to the invention, about 1 to about 95% of one or more solid or liquid carriers and, optionally, about 0.1 to about 50% of one or more other compatible components, such as surface-active agents or the like. In the present account, the term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate its application, for example, to the plant, to seeds or to the soil. This carrier is therefore generally inert and it must be acceptable (for example, agronomically acceptable, particularly to the treated plant).

The carrier may be a solid, for example, clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite, bentonite or diatomaceous earth, or ground synthetic minerals, such as silica, alumina, or silicates especially aluminium or magnesium silicates. As solid carriers for granules the following are suitable: crushed or fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite; synthetic granules of inorganic or

119

organic meals; granules of organic material such as sawdust, coconut shells, corn cobs, corn husks or tobacco stalks; kieselguhr, tricalcium phosphate, powdered cork, or absorbent carbon black; water soluble polymers, resins, waxes; or solid fertilizers. Such solid compositions may, if desired, contain one or more compatible wetting, dispersing, emulsifying or colouring agents which, when solid, may also serve as a diluent.

5

10

15

20

25

30

The carrier may also be liquid, for example: water; alcohols, particularly butanol or glycol, as well as their ethers or esters, particularly methylglycol acetate; ketones, particularly acetone, cyclohexanone, methylethyl ketone, methylisobutylketone, or isophorone; petroleum fractions such as paraffinic or aromatic hydrocarbons, particularly xylenes or alkyl naphthalenes; mineral or vegetable oils; aliphatic chlorinated hydrocarbons, particularly trichloroethane or methylene chloride; aromatic chlorinated hydrocarbons, particularly chlorobenzenes; water-soluble or strongly polar solvents such as dimethylformamide, dimethyl sulphoxide, or N-methylpyrrolidone; liquefied gases; or the like or a mixture thereof.

The surface-active agent may be an emulsifying agent, dispersing agent or wetting agent of the ionic or non-ionic type or a mixture of such surface-active agents.

Amongst these are e.g., salts of polyacrylic acids, salts of lignosulphonic acids, salts of phenolsulphonic or naphthalenesulphonic acids, polycondensates of ethylene oxide with fatty alcohols or fatty acids or fatty esters or fatty amines, substituted phenols (particularly alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (particularly alkyltaurates), phosphoric esters of alcohols or of polycondensates of ethylene oxide with phenols, esters of fatty acids with polyols, or sulphate, sulphonate or phosphate functional derivatives of the above compounds.

The presence of at least one surface-active agent is generally essential when the active ingredient and/or the inert carrier are only slightly water soluble or are not water soluble and the carrier agent of the composition for application is water. Compositions of the invention may further contain other additives such as adhesives or colorants. Adhesives such as carboxymethylcellulose or natural or synthetic polymers in the form of powders, granules or lattices, such as arabic gum, polyvinyl alcohol or polyvinyl acetate, natural phospholipids, such as cephalins or lecithins, or synthetic phospholipids can be used in the formulations. It is possible to use

PCT/EP2003/004714 WO 2003/097604

120

colorants such as inorganic pigments, for example: iron oxides, titanium oxides or Prussian Blue; organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs; or trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum or zinc.

For their agricultural application, the compounds of the invention are therefore generally in the form of compositions, which are in various solid or liquid forms. Solid forms of compositions which can be used are dusting powders (with a content of the compound of the invention, ranging up to 80%), wettable powders or granules (including water dispersible granules), particularly those obtained by extrusion, compacting, impregnation of a granular carrier, or granulation starting from a powder (the content of the compound of the invention, in these wettable powders or granules being between about 0.5 and about 80%). Solid homogenous or heterogenous compositions containing one or more compounds of the invention, for example granules, pellets, briquettes or capsules, may be used to treat standing or running water over a period of time. A similar effect may be achieved using trickle or 15 intermittent feeds of water dispersible concentrates as described herein. Liquid compositions, for example, include aqueous or non-aqueous solutions or suspensions (such as emulsifiable concentrates, emulsions, flowables, dispersions, or solutions) or aerosols. Liquid compositions also include, in particular, emulsifiable concentrates, dispersions, emulsions, flowables, aerosols, wettable powders (or powder for spraying), dry flowables or pastes as forms of compositions which are liquid or intended to form liquid compositions when applied, for example as aqueous sprays (including low and ultra-low volume) or as fogs or aerosols. Liquid compositions, for example, in the form of emulsifiable or soluble concentrates 25

10

20

30

most frequently comprise about 5 to about 80% by weight of the active ingredient. while the emulsions or solutions which are ready for application contain. in their case, about 0.01 to about 20% of the active ingredient. Besides the solvent, the emulsifiable or soluble concentrates may contain, when required, about 2 to about 50% of suitable additives, such as stabilizers, surface-active agents, penetrating agents, corrosion inhibitors, colorants or adhesives. Emulsions of any required concentration, which are particularly suitable for application, for example, to plants, may be obtained from these concentrates by dilution with water. These

121

compositions are included within the scope of the compositions which may be employed in the present invention. The emulsions may be in the form of water-in-oil or oil-in-water type and they may have a thick consistency.

The liquid compositions of this invention may, in addition to normal agricultural use applications be used for example to treat substrates or sites infested or liable to infestation by arthropods (or other pests controlled by compounds of this invention) including premises, outdoor or indoor storage or processing areas, containers or equipment or standing or running water.

5

10

15

20

25

30

All these aqueous dispersions or emulsions or spraying mixtures can be applied, for example, to crops by any suitable means, chiefly by spraying, at rates which are generally of the order of about 100 to about 1,200 liters of spraying mixture per hectare, but may be higher or lower (eg. low or ultra-low volume) depending upon the need or application technique. The compound or compositions according to the invention are conveniently applied to vegetation and in particular to roots or leaves having pests to be eliminated. Another method of application of the compounds or compositions according to the invention is by chemigation, that is to say, the addition of a formulation containing the active ingredient to irrigation water. This irrigation may be sprinkler irrigation for foliar pesticides or it can be ground irrigation or underground irrigation for soil or for systemic pesticides.

The concentrated suspensions, which can be applied by spraying, are prepared so as to produce a stable fluid product which does not settle (fine grinding) and usually contain from about 10 to about 75% by weight of active ingredient, from about 0.5 to about 30% of surface-active agents, from about 0.1 to about 10% of thixotropic agents, from about 0 to about 30% of suitable additives, such as anti-foaming agents, corrosion inhibitors, stabilizers, penetrating agents, adhesives and, as the carrier, water or an organic liquid in which the active ingredient is poorly soluble or insoluble Some organic solids or inorganic salts may be dissolved in the carrier to help prevent settling or as antifreezes for water.

The wettable powers (or powder for spraying) are usually prepared so that they contain from about 10 to about 80% by weight of active ingredient, from about 20 to about 90% of a solid carrier, from about 0 to about 5% of a wetting agent, from about 3 to about 10% of a dispersing agent and, when necessary, from about 0 to about

122

5

10

15

20

25

30

80% of one or more stabilizers and/or other additives, such as penetrating agents, adhesives, anti-caking agents, colorants, or the like. To obtain these wettable powders, the active ingredient is thoroughly mixed in a suitable blender with additional substances which may be impregnated on the porous filler and is ground using a mill or other suitable grinder. This produces wettable powders, the wettability and the suspendability of which are advantageous. They may be suspended in water to give any desired concentration and this suspension can be employed very advantageously in particular for application to plant foliage. The "water dispersible granules (WG)" (granules which are readily dispersible in water) have compositions which are substantially close to that of the wettable powders. They may be prepared by granulation of formulations described for the wettable powders, either by a wet route (contacting finely divided active ingredient with the inert filler and a little water, e.g. 1 to 20% by weight, or with an aqueous solution of a dispersing agent or binder, followed by drying and screening), or by a dry route (compacting followed by grinding and screening). The rates and concentrations of the formulated compositions may vary according to the method of application or the nature of the compositions or use thereof. Generally speaking, the compositions for application to control arthropod or helminth pests usually contain from about 0.00001% to about 95%, more particularly from about 0.0005% to about 50% by weight of one or more compounds of the invention, or of total active ingredients (that is to say the compounds of the invention, together with other substances toxic to arthropods or helminths, synergists, trace elements or stabilizers). The actual compositions employed and their rate of application will be selected to achieve the desired effect(s) by the farmer, livestock producer, medical or veterinary practitioner, pest control operator or other person skilled in the art. Solid or liquid compositions for application topically to animals, timber, stored products or household goods usually contain from about 0.00005% to about 90%, more particularly from about 0.001% to about 10%, by weight of one or more compounds of the invention. For administration to animals orally or parenterally, including percutaneously solid or liquid compositions, these normally contain from about 0.1% to about 90% by weight of one or more compounds of the invention. Medicated feedstuffs normally contain from about 0.001% to about 3% by weight of

5

10

25

30

one or more compounds of the invention. Concentrates or supplements for mixing with feedstuffs normally contain from about 5% to about 90%, preferably from about 5% to about 50%, by weight of one or more compounds of the invention. Mineral salt licks normally contain from about 0.1% to about 10% by weight of one or more compounds of formula (I) or pesticidally acceptable salts thereof.

Dusts or liquid compositions for application to livestock, goods, premises or outdoor areas may contain from about 0.0001% to about 15%, more especially from about 0.005% to about 2.0%, by weight, of one or more compounds of the invention.

Suitable concentrations in treated waters are between about 0.0001 ppm and about 20 ppm, more particularly about 0.001 ppm to about 5.0 ppm. of one or more compounds of the invention, and may be used therapeutically in fish farming with appropriate exposure times. Edible baits may contain from about 0.01% to about 5%, preferably from about 0.01% to about 1.0%, by weight, of one or more compounds of the invention.

When administered to vertebrates parenterally, orally or by percutaneous or other means, the dosage of compounds of the invention, will depend upon the species, age, or health of the vertebrate and upon the nature and degree of its actual or potential infestation by arthropod or helminth pests. A single dose of about 0.1 to about 100 mg, preferably about 2.0 to about 20.0 mg, per kg body weight of the animal or doses of about 0.01 to about 20.0 mg, preferably about 0.1 to about 5.0 mg, per kg body weight of the animal per day, for sustained medication, are generally suitable by oral or parenteral administration. By use of sustained release formulations or devices, the daily doses required over a period of months may be combined and administered to animals on a single occasion.

The following composition EXAMPLES 2A - 2M illustrate compositions for use against arthropods, especially insects or acarids, or helminths such as plant nematodes, which comprise, as active ingredient, compounds of the invention, such as those described in preparative examples. The compositions described in EXAMPLES 2A - 2M can each be diluted to give a sprayable composition at concentrations suitable for use in the field. Generic chemical descriptions of the ingredients (for which all of the following percentages are in weight percent), used in the composition EXAMPLES 2A - 2M exemplified below, are as follows:

124

Trade Name Chemical Description

Ethylan BCP Nonylphenol ethylene oxide condensate

Soprophor BSU Tristyrylphenol ethylene oxide condensate

Arylan CA A 70% w/v solution of calcium dodecylbenzenesulfonate

5 Solvesso 150 Light C₁₀ aromatic solvent

Arylan S Sodium dodecylbenzenesulfonate

Darvan NO₂ Sodium lignosulphonate

Celite PF Synthetic magnesium silicate carrier

Sopropon T36 Sodium salts of polycarboxylic acids

10 Rhodigel 23 Polysaccharide xanthan gum

Bentone 38 Organic derivative of magnesium montmorillonite

Aerosil Microfine silicon dioxide

EXAMPLE 2A

15 A water soluble concentrate is prepared with the composition as follows:

Active ingredient 7%

Ethylan BCP 10%

N-methylpyrrolidone 83%

To a solution of Ethylan BCP dissolved in a portion of N-methylpyrrolidone is added the active ingredient with heating and stirring until dissolved. The resulting solution is made up to volume with the remainder of the solvent.

20 EXAMPLE 2B

25

An emulsifiable concentrate (EC) is prepared with the composition as follows: ,

Active ingredient 25%(max)

Soprophor BSU 10%
Arylan CA 5%

N-methylpyrrolidone 50%

Solvesso 150 10%

The first three components are dissolved in N-methylpyrrolidone and to this is then added the Solvesso 150 to give the final volume.

125

EXAMPLE 2C

A wettable powder (WP) is prepared with the composition as follows:

Active ingredient 40%
Arylan S 2%
Darvan NO₂ 5%
Celite PF 53%

The ingredients are mixed and ground in a hammer-mill to a powder with a particle size of less than 50 microns.

5

EXAMPLE 2D

An aqueous-flowable formulation is prepared with the composition as follows:

Active ingredient	40.00%
Ethylan BCP	1.00%
Sopropon T360.	0.20%
Ethylene glycol	5.00%
Rhodigel 230.	0.15%
Water	53.65%

The ingredients are intimately mixed and are ground in a bead mill until a mean particle size of less than 3 microns is obtained.

10

EXAMPLE 2E

An emulsifiable suspension concentrate is prepared with the composition as follows:

Active ingredient	30.0%
Ethylan BCP	10.0%
Bentone 38	0.5%
Solvesso 150	59.5%

The ingredients are intimately mixed and ground in a beadmill until a mean particle size of less than 3 microns is obtained.

15

EXAMPLE 2F

A water dispersible granule is prepared with the composition as follows:

126

Active ingredient 30%

Darvan No 2 15%

Arylan S 8%

Celite PF 47%

The ingredients are mixed, micronized in a fluid-energy mill and then granulated in a rotating pelletizer by spraying with water (up to 10%). The resulting granules are dried in a fluid-bed drier to remove excess water.

5 EXAMPLE 2G.

A dusting powder is prepared with the composition as follows:

Active ingredient

1 to 10%

Talc powder-superfine

99 to 90%

The ingredients are intimately mixed and further ground as necessary to achieve a fine powder. This powder may be applied to a locus of arthropod infestation, for example refuse dumps, stored products or household goods or animals infested by, or at risk of infestation by, arthropods to control the arthropods by oral ingestion. Suitable means for distributing the dusting powder to the locus of arthropod infestation include mechanical blowers, handshakers or livestock self treatment devices.

15 EXAMPLE 2H

10

20

An edible bait is prepared with the composition as follows:

Active ingredient

0.1 to 1.0%

Wheat flour

80%

Molasses

19.9 to 19%

The ingredients are intimately mixed and formed as required into a bait form. This edible bait may be distributed at a locus, for example domestic or industrial premises, e.g. kitchens, hospitals or stores, or outdoor areas, infested by arthropods, for example ants, locusts, cockroaches or flies, to control the arthropods by oral ingestion.

127

EXAMPLE 21

A solution formulation is prepared with a composition as follows:

Active ingredient

15%

Dimethyl sulfoxide

85%

The active ingredient is dissolved in dimethyl sulfoxide with mixing and or heating as required. This solution may be applied percutaneously as a pour-on application to domestic animals infested by arthropods or, after sterilization by filtration through a polytetrafluoroethylene membrane (0.22 micrometer pore size), by parenteral injection, at a rate of application of from 1.2 to 12 ml of solution per 100 kg of animal body weight.

10 EXAMPLE 2J

5

15

A wettable powder is prepared with the composition as follows:

Active ingredient 50%
Ethylan BCP 5%
Aerosil 5%
Celite PF 40%

The Ethylan BCP is absorbed onto the Aerosil which is then mixed with the other ingredients and ground in a hammer-mill to give a wettable powder, which may be diluted with water to a concentration of from 0.001% to 2% by weight of the active compound and applied to a locus of infestation by arthropods, for example, dipterous larvae or plant nematodes, by spraying, or to domestic animals infested by, or at risk of infection by arthropods, by spraying or dipping, or by oral administration in drinking water, to control the arthropods.

20 EXAMPLE 2K

A slow release bolus composition is formed from granules containing the following components in varying percentages(similar to those described for the previous compositions) depending upon need:

128

Active ingredient
Density agent
Slow-release agent
Binder

The intimately mixed ingredients are formed into granules which are compressed into a bolus with a specific gravity of 2 or more. This can be administered orally to ruminant domestic animals for retention within the reticulo-rumen to give a continual slow release of active compound over an extended period of time to control infestation of the ruminant domestic animals by arthropods.

EXAMPLE 2L

5

A slow release composition in the form of granules, pellets, brickettes or the like can be prepared with compositions as follows:

Active ingredient 0.5 to 25%
Polyvinyl chloride 75 to 99.5%
Dioctyl phthalate (plasticizer)

The components are blended and then formed into suitable shapes by melt-extrusion or molding. These composition are useful, for example, for addition to standing water or for fabrication into collars or eartags for attachment to domestic animals to control pests by slow release.

15 EXAMPLE 2M

A water dispersible granule is prepared with the composition as follows:

Active ingredient	85%(max)
Polyvinylpyrrolidone	5%
Attapulgite clay	6%
Sodium lauryl sulfate	2%
Glycerine .	2%

The ingredients are mixed as a 45% slurry with water and wet milled to a particle size of 4 microns, then spray-dried to remove water.

PCT/EP2003/004714 WO 2003/097604

129

METHODS OF PESTICIDAL USE

The following representative test procedures, using compounds of the invention, were conducted to determine the parasiticidal and pesticidal activity of compounds of the invention.

5

10

15

20

25

30

METHOD A:

Germinated field bean seeds (Vicia faba) with seed roots were transferred into brown glass bottles filled with tap water and then populated with about 100 black bean aphids (Aphis fabae). Plants and aphids were then dipped into an aqueous solution of the formulated preparation to be examined for 5 seconds. After they had drained, plants and animals were stored in a climatized chamber (16 hours of light/day, 25°C, 40-60% relative atmospheric humidity). After 3 and 6 days of storage, the effect of the preparation on the aphids was determined. At a concentration of 100 ppm (based on the content of active compound), the following Compounds caused a mortality of at least 50% among the aphids:

A-18, A-64, A-65, A-71, A-74, A-79, A-81, A-86, A-88, A-206, A-209, A-223, A-255, A-261, A-262, A-265, A-267, A-268, A-292, A-296, A-312, A-312, A-316, A-317, A-326, A-329, A-349, A-353, A-354, A-355, A-365, A-366, A-367, A-369, A-373, A-381, A-398, A-431, A-524, A-529, A-540, A-544, A-564, A-605, A-626, A-691, A-697, A-713, A-736, A-737, A-738, A-744, A-745, A-747, A-748, A-798, A-799, A-805, A-822, A-861, A-862, A-865, A-867, A-874, B-37, B-40, B-47, B-65, B-74, B-149, B-150, B-151, B-152, B-155, B-158, B-163, B-166, B-167, B-168, B-169, B-170, B-176, B-184, B-185, B-189, B-247, B-251, B-255, B-258, B-259, B-261, B-267, B-269, B-296, B-313, B-349, B-353, B-354, B-355, B-366, B-369, B-373, B-398, B-431, B-564, B-713, B-736, B-737, B-738, B-744, B-745, B-747, B748, B-799, B-805, B-822, B-861, B-863. B-864, B-865, B-867, B-869, B-870, B-871, B-873, B-874, B-877, C-85, E-85, F-85, F-88, H-85, S-548, S-550, S-551, S-552, S-553, S-555, S-556, S-558, S-559, U-

3, U-7, U-20, X-45 and X-55.

METHOD B:

Germinated field bean seeds (Vicia faba) with seed roots were transferred into brown glass bottles filled with tap water. Four milliliters of an aqueous solution of the

130

formulated preparation to be examined were pipetted into the brown glass bottle. The field bean was then heavily populated with about 100 black bean aphids (Aphis fabae). Plants and aphids were then stored in a climatized chamber (16 hours of light/day, 25°C, 40-60% relative atmospheric humidity). After 3 and 6 days of storage, the root-systemic effect of the preparation on the aphids was determined. At a concentration of 10 ppm (based on the content of active compound), the following Compounds caused a mortality of at least 80% among the aphids, by root-systemic action:

A-39, A-64, A-65, A-67, A-71, A-74, A-79, A-81, A-86, A-88, A-89, A-90, A-209, A-212, A-223, A-262, A-265, A-267, A-268, A-292, A-296, A-313, A-317, A-326, A-329, A-349, A-354, A-355, A-365, A-366, A-367, A-369, A-373, A-381, A-398, A-431, A-519, A-524, A-529, A-540, A-544, A-564, A-605, A-626, A-691, A-697, A-713, A-736, A-737, A-738, A-744, A-745, A-747, A-748, A-798, A-799, A-805, A-822, A-861, A-862, A-865, A-867, A-871, A-873, A-874, B-37, B-40, B-47, B-65, B-71, B-74, B-86, B-149, B-150, B-151, B-152, B-155, B-158, B-166, B-167, B-169, B-170, B-176, B-184, B-189, B-247, B-251, B-255, B-257, B-258, B-259, B-261, B-267, B-269, B-296, B-313, B-349, B-353, B-354, B-355, B-366, B-369, B-373, B-398, B-564, B-713, B-736, B-737, B-738, B-744, B-745, B-748, B-799, B-805, B-861, B-863, B-864, B-865, B-867, B-869, B-870, B-871, B-872, B-873, B-874, B-877, C-85, D-86, E-85, F-85, F-85, B-867, B-869, B-870, B-871, B-872, B-873, B-874, B-877, C-85, D-86, E-85, F-85, F-85, B-867, B-869, B-870, S-356, S-556, S-557, S-5

558, S-559, U-3, U-7, U-20, X-45 and X-55.

25

5

CLAIMS

1. A compound of the formula (I):

5

wherein:

 R^1 is $-C(=U)NR^3R^4$ or $-C(=V)OR^{3a}$;

R² is H, (C₁-C₆)alkyl or R³;

10 R³ is R⁵, OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups; or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^{7}$$
 R^{8}
 R^{8}
 R^{8}
 R^{9}
 R^{10}
 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more (C₁-C₆)alkyl, (C₁-C₆)haloalkyl or R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino;

or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups;

R⁴ is H or R⁵; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

- or R³ and R⁴ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R¹⁴² groups;
 - R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_8) cycloalkyl, (C_1-C_6) alkoxy,
- (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, CO(C₁-C₆)alkyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl or SO₂(C₁-C₆)alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_paryl,
- O(R¹⁵R¹⁶)_raryl, NHCOaryl, CO(CH₂)_taryl, NHSO₂aryl, SO₂(CH₂)_uaryl or N=C(aryl)₂,

 -(CR¹⁵R¹⁶)_pheterocyclyl or O(R¹⁵R¹⁶)_rheterocyclyl, which last ten mentioned aryl or
 heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups; or is
 O(CR¹⁵R¹⁶)_p(C₃-C₈)cycloalkyl or N=C[(C₁-C₆)alkyl]₂;
 R⁶ is halogen, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, S(O)_nR^{14a}, CN, CO₂(C₁-C₆)alkyl,
- CO₂H, NO₂, OH, amino, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, carbamoyl, (C₁-C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups; R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S, O or NR¹⁸;

25 V is O or S;

W is $(CHR^{19})_q$, CO or NR^{20} ;

X is CR²¹ or N;

Y is CR²² or N:

Z is O, CO or NR²³;

30 R⁷, R⁸, R⁹, R¹², R¹⁹, R²¹ and R²² are each independently H; or (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or

substituted by one or more R^6 groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R^6 groups; or (C₃- C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R^6 groups;

- or R⁷ and R⁸ together with the attached carbon atom may represent C=O;
 R¹⁰, R²⁰ and R²³ are each independently H; or (C₁-C₆)alkyl, (C₃-C₆)alkenyl, (C₃-C₆)alkynyl or (C₃-C₈)cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is
- -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups;

 R^{11} is R^7 , halogen, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 or $S(O)_nR^{14}$; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R^6 groups;

15 R¹³ is R⁷ or OH;

 R^{14} , R^{15} and R^{16} are each independently H, (C_1-C_6) alkyl or (C_1-C_6) haloalkyl; R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

 R^{18} is R^7 or OH; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R^6 groups;

20 m is zero or one;

n, p, r, s, t and u are each independently zero, one or two; q is one, two or three; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero 'atoms selected from N, O and S;

- or a pesticidally acceptable salt thereof; with the exclusion of the compound wherein R¹ is -C(=U)NR³R⁴; U is O; R² is H; m is zero: R⁴ is H and R³ is 2,4-dichlorophenyl.
 - 2. A compound according to claim 1 wherein:
- 30 R^1 is $-C(=U)NR^3R^4$ or $-C(=V)OR^{3a}$;

 R^2 is H, (C₁-C₆)alkyl or R^3 ;

 R^3 is R^5 , OH or NH₂; or is (C₁-C₆)alkyl substituted by one or more R^6 groups;

or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

$$R^7$$
 R^4
 R^{3a} is (C₃-C₈)cycloalkyl or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, which cycloalkyl groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₁-C₆)alkyl, (C₃-C₆)alkenyl or (C₃-C₆)alkynyl which last three mentioned groups are substituted by one or more R⁶ groups; or is (C₁-C₆)alkylamino; or is NH(CHR¹⁴)_saryl which aryl group is unsubstituted or substituted by one or more R⁶ groups; R⁴ is H or R⁵; or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

- or R³ and R⁴ together with the adjacent N atom form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁵ or R¹⁴a groups;
- R⁵ is (C₃-C₆)alkenyl, (C₃-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₁-C₆)alkoxy, (C₃-C₆)alkenyloxy, (C₃-C₆)alkynyloxy, (C₁-C₆)alkylamino, di-(C₁-C₆)alkylamino, CO(C₁-C₆)alkyl, NHCO(C₁-C₆)alkyl, NHSO₂(C₁-C₆)alkyl or SO₂(C₁-C₆)alkyl which last 12 mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is NH(CHR¹⁴)_saryl, -(CR¹⁵R¹⁶)_paryl, O(R¹⁵R¹⁶)_raryl, NHCOaryl, CO(CH₂)_taryl, NHSO₂aryl, SO₂(CH₂)_uaryl or N=C(aryl)₂, -(CR¹⁵R¹⁶)_pheterocyclyl or O(R¹⁵R¹⁶)_rheterocyclyl, which last ten mentioned aryl or

heterocyclyl groups are unsubstituted or substituted by one or more R^{17} groups; or is $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl or $N=C[(C_1-C_8)alkyl]_2$;

 R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, $CO_2(C_1-C_6)$ alkyl, CO_2H , NO_2 , OH, amino, (C_1-C_6) alkylamino, $di-(C_1-C_6)$ alkylamino, carbamoyl, (C_1-C_6) alkylamino, (C_1-C_6)

5 C₆)-alkylcarbamoyl, di-(C₁-C₆)-alkylcarbamoyl or CH[O(C₁-C₆)alkyl]₂; or is phenoxy unsubstituted or substituted by one or more R^{14a} or halogen groups;

R¹⁷ is R⁶, R^{14a} or CH₂OH;

U is S, O or NR¹⁸;

V is O or S:

10 W is (CHR¹⁹)_a, CO or NR²⁰;

X is CR²¹ or N;

Y is CR²² or N;

Z is O, CO or NR²³;

 R^7 , R^8 , R^9 , R^{12} , R^{19} , R^{21} and R^{22} are each independently H; or (C₁-C₆)alkyl, (C₂-

- 15 C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloálkyl, (C₁-C₆)alkoxy, (C₂-C₆)alkenyloxy or (C₂-C₆)alkynyloxy, which last seven mentioned groups are unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl, which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups; or (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl which cycloalkyl group is unsubstituted or substituted by
- 20 one or more R⁶ groups;
 - or R^7 and R^8 together with the attached carbon atom may represent C=O; R^{10} , R^{20} and R^{23} are each independently H; or (C_1-C_6) alkyl, (C_3-C_6) alkenyl, (C_3-C_6) alkynyl or (C_3-C_8) cycloalkyl, which last four mentioned groups are unsubstituted or substituted by one or more R^6 groups; or is (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl which
- cycloalkyl group is unsubstituted or substituted by one or more R⁶ groups; or is -(CH₂)_paryl or heterocyclyl which aryl or heterocyclyl groups are unsubstituted or substituted by one or more R⁶ groups;
 - R^{11} is R^7 , halogen, CN, $CO_2(C_1-C_6)$ alkyl, NO_2 or $S(O)_nR^{14}$; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more

30 R⁶ groups;

R¹³ is R⁷ or OH;

 R^{14} , R^{15} and R^{16} are each independently H, (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

R^{14a} is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

 R^{18} is R^7 or OH; or is (C_1-C_6) alkylamino or di- (C_1-C_6) alkylamino, which groups are unsubstituted or substituted by one or more R^6 groups;

m is zero or one;

- 5 n, p, r, s, t and u are each independently zero, one or two;
 - q is one, two or three; and each heterocyclyl in the above mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1 to 4 hetero atoms selected from N, O and S;

or a pesticidally acceptable salt thereof;

- with the exclusion of the compound wherein R¹ is –C(=U)NR³R⁴; U is O; R² is H; m is zero; R⁴ is H and R³ is 2,4-dichlorophenyl.
 - 3. A compound or a salt thereof as claimed in claim 1 or 2, wherein R¹ is -C(=U)NR³R⁴.

15

- 4. A compound or a salt thereof as claimed in claim 1, 2 or 3, wherein R² is H or R³.
- 5. A compound or a salt thereof as claimed in any one of claims 1 to 4, wherein
 20 R³ is R⁵ or OH; or is (C₁-C₆)alkyl substituted by one or more R⁶ groups;
 or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A) and (C):

6. A compound or a salt thereof as claimed in any one of claims 1 to 5, wherein R⁴ is H or R⁵, or is (C₁-C₆)alkyl unsubstituted or substituted by one or more R⁶ groups;

or R³ and R⁴ together with the adjacent N atom may form a 3 to 8-membered unsaturated, partially saturated or saturated heterocyclic ring which optionally contains up to three additional N, O or S atoms and which ring is unsubstituted or substituted by one or more R⁶ or R^{14a} groups.

5

7. A compound or a salt thereof as claimed in any one of claims 1 to 6, wherein R^1 is $-C(=U)NR^3R^4$;

R² is H:

 R^3 is R^5 or OH; or is (C₁-C₆)alkyl substituted by one or more R^6 groups;

or R² and R³ together with the interconnecting atoms may form a heterocyclic ring selected from (A) and (C):

$$R^{7}$$
 W R^{4} R^{9} C R^{10}

 $\ensuremath{\mathsf{R}}^4$ is H or $\ensuremath{\mathsf{R}}^5$, or is (C1-C6)alkyl unsubstituted or substituted by one or more $\ensuremath{\mathsf{R}}^6$

15 groups;

or R^3 and R^4 together with the adjacent N atom may form a pyrrolidin-1-yl, piperidin-1-yl, morpholin-1-yl or thiomorpholin-1-yl (or its S-oxide or S, S-dioxide) ring; R^5 is (C_3-C_6) alkenyl, (C_3-C_6) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) alkynyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkynyloxy or $O(CR^{15}R^{16})_p(C_3-C_8)$ cycloalkyl;

or -(CR¹⁵R¹⁶)_pphenyl, -(CR¹⁵R¹⁶)_pheterocyclyl, O(CR¹⁵R¹⁶)_rphenyl or O(CR¹⁵R¹⁶), heterocyclyl, which last four mentioned phenyl or heterocyclyl groups are unsubstituted or substituted by one or more R¹⁷ groups;

 R^6 is halogen, (C_1-C_6) alkoxy, (C_1-C_6) haloalkoxy, $S(O)_nR^{14a}$, CN, NO_2 or OH; R^{17} is R^6 , R^{14a} or CH_2OH ;

25 U is S or O;

W is (CHR¹⁹)_q or CO;

Z is O:

138

 R^7 , R^8 , R^9 , R^{10} and R^{19} are each H; or (C₁-C₆)alkyl unsubstituted or substituted by one or more R^6 groups;

· or R⁷ and R⁸ together with the attached carbon atom represent C=O; R¹⁴, R¹⁵ and R¹⁶ are each H or (C₁-C₆)alkyl;

5 R^{14a} is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

m is zero;

n, r, s, t and u are zero, one or two;

q is one; and wherein heterocyclyl denotes a pyridine, pyrimidine, (1,2,4)-oxadiazole, (1,3,4)-oxadiazole, (1,2,4)-thiadiazole, (1,3,4)-thiadiazole, pyrrole, furan, thiophene,

- oxazole, thiazole, benzothiazole, imidazole, pyrazole, isoxazole, 1,2,4-triazole, tetrazole, pyrazine, pyridazine, oxazoline, thiazoline, tetrahydrofuran, tetrahydropyran, morpholine, piperidine, piperazine, pyrroline, pyrrolidine, oxazolidine, thiazolidine, oxirane or oxetane radical.
- 15 8. A compound or a salt thereof as claimed in claim 1, wherein R¹ is -C(=U)NR³R⁴;

R² is H:

U is O or S;

 R^3 is (C_1-C_6) alkoxy, $C_1-C_6)$ haloalkoxy, (C_3-C_6) alkenyloxy, (C_3-C_6) alkynyloxy,

20 CH₂phenyl or OCH₂phenyl, phenyl or 2-pyridyl which last four mentioned phenyl or pyridyl groups are unsubstituted or substituted by one or more groups selected from halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, CN and NO2;

 R^4 is H, (C₁-C₆)alkyi, (C₃-C₆)alkenyi, (C₃-C₆)alkynyl or CH₂phenyl; and m is zero.

25

30

- 9. A process for the preparation of a compound of formula (I) or a salt thereof as defined in any one of claims 1 to 8, which process comprises:
- a) where R¹ is -C(=U)NR³R⁴, m is zero, and R², U, R³ and R⁴ are as defined in formula (I); or R² and R³ together with the interconnecting atoms form a heterocyclic ring selected from (A), (B), (C), (D) and (E);

139

$$R^7$$
 R^8
 (A)
 R^4
 R^4
 R^{11}
 R^{12}
 R^{13}
 (B)
 (C)
 R^{10}
 (C)
 R^{10}

wherein R^4 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , W, X, Y and Z are as defined in formula (I), the reaction of a compound of formula (II):

5

wherein L is a leaving group, with a compound of formula (III):

wherein R^2 , U, R^3 and R^4 are as defined in formula (I), or with a compound of formula (IV), (V), (VI); (VII) or (VIII):

140

wherein R^4 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , W, X, Y and Z are as defined in formula (I); or

b) where R¹ is -C(=U)NR³R⁴, m is zero, R² is H, U is O, and R³ and R⁴ are as defined in formula (I), the reaction of a compound of formula (IX):

with oxalyl chloride or triphosgene, to give the corresponding acylisocyanate intermediate followed by reaction with an amine of formula (X):

HNR³R⁴

5

10

15

(X)

wherein R³ and R⁴ are as defined in formula (I); or

c) where R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O, and R^{3a} is as defined in formula (I), the reaction of a compound of formula (IX) above, with oxalyl chloride to give an acylisocyanate intermediate, followed by reaction with an alcohol of formula (XI):

wherein R3 is as defined in formula (I); or

d) where R^1 is $-C(=U)NR^3R^4$, m is zero, R^2 is H, U is O or S, and R^3 and R^4 are as defined in formula (I), the reaction of a compound of formula (XII).

wherein U is O or S, with a compound of formula (X) as defined in formula (I); or

e) where R¹ is -C(=V)OR^{3a}, m is zero, R² is H, V is O or S, and R^{3a} is as defined in formula (I), the reaction of a compound of formula (XIII).

(XIII)

wherein V is O or S, with a compound of formula (XI) as defined above; or

f) where R¹ is -C(=U)NR³R⁴, m is zero, R² is H, R⁴ is H, U is O or S, and R³ is as defined in formula (I), the reaction of a compound of formula (IX) as defined in formula (I), with a strong base, followed by reaction with a compound of formula (XIV):

$$R^3N=C=U$$
 (XIV)

wherein R3 is as defined in formula (I); or

5

10

- g) where R¹ is -C(=U)NR³R⁴ or -C(=V)OR³a, m is zero, R² is H, U and V are each S, and R³, R³a and R⁴ are as defined in formula (I), the 1-pot reaction of 4-trifluoromethylnicotinic acid with a halogenating agent to give the corresponding acid chloride, followed by reaction with an alkali metal thiocyanate or ammonium thiocyanate or a tetraalkylammonium thiocyanate to give the 4-trifluoromethyl-3-pyridylcarbonyl isothiocyanate, followed by reaction with an amine of formula (X) above or an alcohol of formula (XI) above; or
- h) where R¹ and R² are as defined above, and m is 1 the oxidation of a corresponding compound in which m is 0; and if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.

142

10. A pesticidal composition comprising a compound of formula (I) or a pesticidally acceptable salt thereof as defined in any one of claims 1 to 8, in association with a pesticidally acceptable diluent or carrier and/or surface active agent.

5

11. The use of compounds of the formula (I) or their salts as claimed in any of claims 1 to 8 as pesticides.

IN TRNATIONAL SEARCH REPORT

interponal Application No PCT/EP 03/04714

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D213/82 C07D401/06 C07D413/06 A01N43/40 · A01N43/50 A01N43/54 A01N43/653 A01N43/713 A01N43/88 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, BEILSTEIN Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ' Citation of document, with Indication, where appropriate, of the relevant passages Relevant to claim No. X EP 0 580 374 A (ISHIHARA SANGYO KAISHA 1 - 10LTD.) 26 January 1994 (1994-01-26) cited in the application Table 1, compounds 9, 17, 34, 49, 106,110, claims X DATABASE WPI 1-10 Week 0214 Derwent Publications Ltd., London, GB; AN 106161 XP002215212 & WO 01 90075 A (ISHIHARA SANGYO KAISHA LTD.), 29 November 2001 (2001-11-29) abstract A DE 100 14 006 A (AVENTIS CROPSCIENCE) 1-10 27 September 2001 (2001-09-27) claims; examples Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled in the art. *P* document published prior to the International filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19/09/2003 11 September 2003 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Helps, I Fax: (+31-70) 340-3016

Interesponal	Application No
PCT/EP	03/04714

Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 03/04714
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Week 0125 Derwent Publications Ltd., London, GB; AN 244289 XP002215213 & WO 01 14340 A (ISHIHARA SANGYO KAISHA LTD.), 1 March 2001 (2001-03-01) abstract	1-10
A	DE 199 58 166 A (BAYER AG) 14 December 2000 (2000-12-14) claims; examples	1-10
	0 (continuation of second sheet) (July 1952)	

INTRNATIONAL SEARCH REPORT

Information on patent family members

interponal Application No
PCT/EP 03/04714

				PCI/EP	03/04714
Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
EP 580374	Α	26-01-1994	AT	132489 T	15 01 1000
	•		AU	4210693 A	15-01-1996
			BR	4210093 A	03-02-1994
				9302960 A	16-02-1994
			CA	2100011 A1	24-01-1994
			CN	1081670 A ,B	09-02-1994
			CZ	9301502 A3	16-02-1994
			DE	69301205 D1	15-02-1996
			DE	69301205 T2	05-09-1996
			DK	580374 T3	20-05-1996
			EG	20154 A	31-07-1997
			EP	0580374 A1	26-01-1994
			ES	2085118 T3	16-05-1996
			GR	3018953 T3	
			HK	1001896 A1	31-05-1996
			HÜ	68334 A2	17-07-1998
			ΪĹ	106340 A	28-06-1995
			JP		12-03-1999
			JP	2994182 B2	27-12-1999
				6321903 A	22-11-1994
	•		MX	9304425 A1	28-02-1994
			PL	299769 A1	05-04-1994
			RU	2083562 C1	10-07-1997
			SK	75093 A3	08-06-1994
			US	5360806 A	01-11-1994
		······································	ZA	9305042 A	05-04-1994
WO 0190075	A	29-11-2001	ΑU	5882201 A	03-12-2001
			WO	0190075 Al	29-11-2001
			JP	2002201133 A	16-07-2002
DE 10014006	Α	27-09-2001	DE	10014006 A1	27-09-2001
			ΑU	6210501 A	03-10-2001
			BR	0109473 A	
			CA	2403807 A1	03-06-2003
			CN	1419542 T	20-09-2002
			WO	0170692 A2	21-05-2003
			EP	1274683 A2	27-09-2001
			ΗÜ	12/4003 HZ	15-01-2003
			US	0300406 A2	28-06-2003
			. 	2002032328 A1	14-03-2002
WO 0114340	A	01-03-2001	AU	6597300 A	19-03-2001
			WO	0114340 A1	01-03-2001
			JP	2001122782 A	08-05-2001
DE 19958166	Α	14-12-2000	DE	19958166 A1	14-12-2000
DE 19958166	A	14-12-2000	DE Au	19958166 A1 5073100 A	14-12-2000 02-01-2001