Теория чисел

Задача 1. Научитесь делать алгоритм Евклида для длинных чисел за $O(n^2)$, где n- длина числа.

Задача 2. Оцените время нахождения НОД набора из n чисел, не больших чем C.

Задача 3. Пусть a, b, c — целые числа. Рассмотрим уравнение ax + by = c относительно целых x, y.

- а) Покажите, что, если c не делится на gcd(a,b), решений нет.
- **б)** Покажите, что при c = gcd(a, b), решение есть.
- в) Покажите, что, решение есть тогда и только тогда, когда c делится на qcd(a,b).
- г) Покажите, что, если существует хотя бы одно решение, существует бесконечно много решений. Опишите их все.

Определение. Числа a, b называются взаимно обратными по модулю m, если $a \cdot b \equiv 1 \pmod{m}$.

Задача 4. Дано число a. Надо найти за $O(\log m)$ обратное ему по **не обязательно простому** модулю m или определить, что такого не существует.

Задача 5. Докажите, что $\frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n} = O(\log n)$.

Задача 6. Пусть $\tau(n)$ — количество натуральных делителей n. Докажите, что $\sum\limits_{i=1}^n \tau(i) = O(n\log n)$.

Определение. Функция f называется мультипликативной, если $f(n \cdot m) = f(n) \cdot f(m)$ для любых взаимно простых чисел n, m.

Задача 7. Пусть f, g —мультипликативные функции. Докажите, что функция $h(n) = f(n) \cdot g(n)$ мультипликативна.

Задача 8. Пусть f —мультипликативная функция. Докажите, что для любого k функция $g(n) = \sum\limits_{d \mid n} d^k \cdot f(d)$ мульти-

пликативна. $(d|n-d \partial e num n)$

Задача 9. Докажите, что следующие функции мультипликативны:

- а) $\tau(n)$ количество натуральных делителей n.
- **б**) $\sigma(n)$ сумма натуральных делителей n.

Задача 10. За O(n) для всех чисел от 1 до n найдите:

- а) В какой степени минимальный простой делитель входит в его разложение.
- б) Количество его простых делителей.
- в) Количество его делителей.
- г) Сумму его делителей.
- д) Функцию Эйлера от него.

Задача 11. Научитесь вычислять $a \cdot b$ для натуральных a, b, используя только сложение, деление на 2 (в том числе с остатком), а также проверку на равенство 1 за $O(\log a)$ операций сложения.

Задача 12. (Дискретное логарифмирование) $a^x \equiv b \pmod m$, а и m взаимнопросты. Найти решение или определить, что его не существует, за время $O(\sqrt{m}\log m)$.

 $\mathbf{\Pi o d c \kappa a s \kappa a}$. Представьте x в виде ky-r для $k=\lfloor \sqrt{m} \rfloor$.

Задача 13. Найти сумму qcd по всем подотрезкам массива натуральных чисел, не больших C, за $O(n \log C)$.

Задача 14. Найти сумму gcd по всем непустым подмножествам массива из n натуральных чисел, не больших C, за $O(n+C\log C)$. Ответ найдите по модулю 10^9+7 .

Задача 15. Дан массив из n натуральных чисел, не больших C. Выпишем gcd по всем непустым подмножествам этого массива. Найдите медиану выписанных чисел за $O(n \cdot C \log C)$.

Задача 16. Назовём натуральное число кубастым, если его можно представить в виде $a^3 \cdot b$ для каких-то натуральных $a > 1, b \ge 1$. Найти количество кубастых чисел, не больших n. n до 10^{18} .