

Ingenu System Security

Farooq Anjum Cyber Security, Systems Design & Test Nov 2015

TRN Security – the 12,000 ft view

Security Approach

- Security mechanisms designed for long life (20+ years), power constrained, low bandwidth networks
- Implementing secure software
- Security mechanisms not bolted on but part of the design
 - Supports NERC CIP 002-009 and NIST SP 800-53 guidelines for critical cyber assets
 - Meets FIPS 140-2 Level 2
 - Follows guidelines prescribed in NISTIR-7628

ORW Security Approach • Defense in depth strategy

Attacks

Independent Security Evaluation

On-Ramp completed 3rd party security design audit with InGuardian

 SDG&E contracted 3rd party organization for exhaustive security evaluation of On-Ramp system

Technical Overview

1200 ft view!

System Architecture

3" Party

Software

On-Ramp

Software

ULP Security attributes

- Attributes
 - 1. Mutual authentication
 - For a modem to join the network
 - 2. Message integrity and replay protection
 - At the message level
 - 3. Message confidentiality
 - At the message fragment level
 - 4. Limited Anonymity
 - At the modem level
 - 5. Authentic firmware upgrade
 - At the modem/host level
 - 6. Secure Multicast
 - At the modem/host level

Security algorithms

- O Depend on symmetric key mechanisms
 - TDES and AES, NIST approved for until 2030 or beyond
 - Better option given star topology, low bandwidth, low power characteristics of ULP network
 - No OTA key exchange
 - Key material changed as dictated by the network
- O What about security for other networks such as mesh?
 - Is more complicated

© On-Ramp Wireless, Inc. All rights reserved.

Security Requirements

- The security solution shall ensure privacy of user payloads over the entire network.
- The security solution shall ensure that unauthorized data is dropped in the network without being delivered to the application.
- The security solution shall ensure that replayed data is dropped in the network without being delivered to the applications.
- The security solution shall authenticate all nodes before allowing the nodes to join the network.
- The security solution shall ensure that only authenticated nodes can send/receive data successfully from the network.
- The security solution shall ensure the keys are updated based on system policies without any OTA key exchange.
- The security solution shall be designed for networks containing low bandwidth links with power constrained end devices.
- The security solution shall use NIST recommended security mechanisms.

Compliance with security requirements

The security solution shall ...

- 1. ... ensure privacy of user payloads over the entire network.
 - ORW compliance: MAC PDU payloads encrypted using TDES at AP/Node, AP- GW packets transmitted over secure tunnels, AP and GW in trusted zone.
- 2. ... ensure that unauthorized data is dropped in the network without being delivered to the application.
 - ORW compliance: SDU CMAC (AES based) keyed hash mechanism, GW in trusted zone
- 3. ... ensure that replayed data is dropped in the network without being delivered to the applications.
 - ORW compliance: SDU CMAC (AES based) keyed hash and SDU counter, GW in trusted zone
- 4. ... authenticate all nodes before allowing the nodes to join the network.
 - ORW compliance: Node authentication based on AES and shared secrets between Node and the GW

Compliance with security requirements

The security solution shall ...

- 1. ... ensure that only authenticated nodes can send/receive data successfully from the network.
 - ORW compliance: GW sends and processes data only from authenticated nodes.
- 2. ... ensure the keys are updated based on system policies without any OTA key exchange.
 - ORW compliance: GW can instruct the nodes to update the keys based on system policies
- 3. ... be designed for networks containing low bandwidth links with power constrained end devices.
 - ORW compliance: Proposed solution requires minimal bandwidth overhead (2 PDUs per SDU) and leverages hardware implementations of TDES and AES on the node
- 4. ... use NIST recommended security mechanisms.
 - ORW compliance: Solution based on AES-128, TDES, Key derivation functions, Pseudo random functions all based on NIST recommendations.

BACKUP SLIDES

Algorithm Lifetimes – NIST Recommendation

Algorithm security lifetimes	Symmetric key algorithms (Encryption & MAC)	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
Through 2010 (min. of 80 bits of strength)	2TDEA ⁵ 3TDEA AES-128 AES-192 AES-256	Min.: L = 1024; N=160	Min.: k=1024	Min.: f=160
Through 2030 (min. of 112 bits of strength)	3TDEA AES-128 AES-192 AES-256	Min.: $L = 2048$ $N = 224$	Min.: k=2048	Min.: f=224
Beyond 2030 (min. of 128 bits of strength)	AES-128 AES-192 AES-256	Min.: $L = 3072$ $N = 256$	Min.: k=3072	Min.: f=256

NIST – Comparing Various Algorithms

A.1 Comparable Algorithm Key Size Strengths

This table is Table 2 in Part 1 of SP 800-57.

Bits of security	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
80	2TDEA ¹	L = 1024	k = 1024	f = 160-223
		N = 160		
112	3TDEA	L = 2048	k = 2048	f= 224-255
112	312211	N = 224		
128	128 AES-128	L = 3072	k = 3072	f= 256-383
120 120	7123 720	N = 256		
192	AES-192	L = 7680	k = 7680	f=384-511
		N = 384		
256	AES-256	L = 15360	k = 15360	f=512+
230	1115-250	N = 512		

NIST Integrity Protection Recommendation

Table 10: Message Authentication Code Transitions

MAC Algorithm	New Validations	Already Validated Implementations
HMAC	Any approved hash function Key lengths ≥ 80 bits and < 112 bits approved through 2010 only Key lengths ≥ 112 bits approved	Any approved hash function Key lengths \geq 80 bits and $<$ 112 bits approved through 2010 only Key lengths \geq 112 bits approved beyond 2010
CMAC	Two-key Triple DES approved through 2010 only AES and Three-key Triple DES approved	Two-key Triple DES approved through 2010 only AES and Three-key Triple DES approved <i>beyond 2010</i>

NIST Encryption Algorithm Recommendation

DRAFT SP 800-131

January 2010

Table 1: Encryption Transitions

Encryption Algorithm	New Validations	Already Validated Implementations
Two-key Triple DES	Approved through 2010 only	Approved through 2010 only
Three-key Triple DES	Approved	Approved beyond 2010
SKIPJACK	Approved through 2010 only	Approved through 2010 only
AES-128	Approved	Approved beyond 2010
AES-192	Approved	Approved beyond 2010
AES-256	Approved	Approved beyond 2010

