NYU Computer Science Bridge to Tandon Course

Winter 2021

Homework 6

Name: Lin, Kuan-You

Question 5

Use the definition of Θ in order to show the following:

(a)
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

solution:

By the definition of Θ : Let f and g be two functions \mathbb{Z}^+ to \mathbb{Z}^+ . $f = \Theta(g)$ if f = O(g) and $f = \Omega(g)$. We will show that $5n^3 + 2n^2 + 3n = O(n^3)$ and $5n^3 + 2n^2 + 3n = \Omega(n^3)$.

Select $n_0 = 1$ and c = 10 such that for $n \ge n_0$, $5n^3 + 2n^2 + 3n \le cn^3$. When $n \ge n_0 = 1$, $2n^3 \ge 2n^2$ and $3n^3 \ge 3n$. Thus for $n \ge 1$, $10n^3 = 5n^3 + 2n^3 + 3n^3 \ge 5n^3 + 2n^2 + 3n$ and $f = O(n^3)$.

Select $n_0 = 1$ and c = 5 such that for $n \ge n_0$, $f(n) = 5n^3 + 2n^2 + 3n \ge cn^3$. When $n \ge n_0 = 1$, $2n^2 \ge 1$ and $3n \ge 1$. Thus for $n \ge 1$, $5n^3 + 2n^2 + 3n \ge 5n^3$ and $f = \Omega(n^3)$.

(b)
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

solution:

By the definition of Θ : Let f and g be two functions \mathbb{Z}^+ to \mathbb{Z}^+ . $f = \Theta(g)$ if f = O(g) and $f = \Omega(g)$. We will show that $\sqrt{7n^2 + 2n - 8} = O(n)$ and $\sqrt{7n^2 + 2n - 8} = \Omega(n)$.

Select $n_0 = 1$ and $c = \sqrt{16}$ such that for $n \ge n_0$, $\sqrt{7n^2 + 2n - 8} \le cn = \sqrt{(cn)^2}$. When $n \ge n_0 = 1$, $2n^2 \ge 2n$ and $8n^2 > -8$. Thus for $n \ge 1$, $16n^2 = 7n^2 + 2n^2 + 8n^2 > 7n^2 + 2n - 8 > 0$, $\sqrt{16}n = \sqrt{16}n^2 > \sqrt{7n^2 + 2n - 8}$, and f = O(n).

When $n \ge 0$, $2n \ge 0$, $\sqrt{7n^2 + 2n - 8} \ge \sqrt{7n^2 - 8}$. Select $c = \sqrt{\frac{7}{2}}$, $\sqrt{\frac{7}{2}n^2 + (\frac{7}{2}n - 8)} \ge \sqrt{\frac{7}{2}n^2}$ as long as $(\frac{7}{2}n^2 - 8) \ge 0$. We have $(\frac{7}{2}n^2 - 8) \ge (\frac{7}{2}n^2 - 8n)$ because $n \ge 0$. Then we have $(\frac{7}{2}n^2 - 8n) = n(\frac{7}{2}n - 8)$. Since $n \ge 0$, we only need to make sure $(\frac{7}{2}n - 8)$ is geater than 0, then we can guarantee that $(\frac{7}{2}n^2 - 8) \ge 0$ and $\sqrt{7n^2 + 2n - 8} \ge \sqrt{\frac{7}{2}n^2}$. Thus we select $n_0 = \frac{16}{7}$ such that for $n \ge n_0$, $f(n) = \sqrt{7n^2 + 2n - 8} \ge cn$ and $f = \Omega(n)$.