- Home
- Permutations and Combinations
 - Definitions
 - Examples
- Generalized <u>Permutations and</u> Combinations
 - Permutations w/ Repetition
 - Examples
 - Combinations <u>w/</u> <u>Repetition</u>
 - Examples
 - Summary
- Indistiguishable Objects
 - Introduction
 - Examples
- Generating
 Permutations and Combinations
- Applets

Permutations and Combinations

Patrick McAtee, Tom Rice, and Jesse Whidden

Generating Permutations and Combinations

Information on creating permutations and combinations, focusing on generating the next permutation/combinations in lexicographic order.

Introduction

The other parts of this tutorial have provided information about permutations and combinations in general. However, there are times when a certain permutation or combination is needed to solve a specific problem. To find that specific permutation/combination, there has to be a method to generate other arrangements of numbers.

Generating Permutations

Generating the permutations of the n smallest positive integers and then replacing those integers with any set of n elements will create the set of permutations for that set. Often, the permutation of a set will be given in lexicographic ordering.

Definition

The **lexicographic ordering** for a set of permutations $\{1,2,3,...,n-1,n\}$ has the permutation $a_1a_2...a_n$ precede the permutation $b_1b_2...b_n$ when, for some k, $1 \le k \le n$, $a_1 = b_1$, $a_2 = b_2$, ..., $a_{k-1} = b_{k-1}$, and $a_k \le b_k$.

A procedure for generating the next permutation in lexicographic order can be developed for a given $a_1a_2...a_n$. If $a_{n-1} < a_n$, swap the two to get the next largest permutation (..56 to ...65). If $a_{n-1} > a_n$, then a larger permutation cannot be made from the two integers. In that case, look at the final three integers. If $a_{n-2} < a_{n-1}$, then put the smaller of the two integers a_{n-1} and a_n in the a_{n-2} position. Fill the remaining positions in lexicograpic order to complete the permutation (...165 to ...516). This procedure can be generalized to produce the next largest permutation for any $a_1a_2...a_n$. This algorithm is used to generate permutations in the applet below.

Algorithm

Generating the Next Largest Permutation in Lexicographic Order

(Assuming $\{a_1a_2...a_n\}$ is not $\{n,n-1,...,2,1\}$)

```
NextPermutation(a<sub>1</sub>a<sub>2</sub>...a<sub>n</sub>)
{
    j = n - 1;
    while (a[j] > a [j+1])
    {
        j--;
    }
    k = n;
    while (a[j] > a[k])
    {
        k--;
    }
    Swap(a[j],a[k]);
    r = n;
    s = j + 1;
    while (r > s)
    {
        Swap(a[r],a[s]);
        r--;
    }
}
```

s++;

Generating Combinations

For any r-combination, a procedure for creating the next largest combination can be developed. A combination $a_1a_2...a_r$ in lexicographic order is given for a set $\{1,2,3,...,n\}$. In the set $\{1,2,3,4,5,6\}$, a 4-combination could be $\{1,2,5,6\}$. To obtain the next largest combination, find the last a_i in the combination so that $a_i != n - r + i$. (The last element in the combination with $a_i != n - r + i$ is 2.) Replace a_i with $a_i + 1$, and a_j with $a_j + j - i + 1$, for j = i + 1, i + 2, ..., r. (This creates the next largest combination, $\{1,3,4,5\}$. This algorithm is also used in the applet below.

```
Algorithm

Generating the Next Largest r-Combination in Lexicographic Order

(Assuming {a<sub>1</sub>, a<sub>2</sub>,..., a<sub>r</sub>} is not {n-r+1,...,n}, and a<sub>i</sub> < a<sub>j</sub> when i < j )

NextCombination(a<sub>1</sub>a<sub>2</sub>...a<sub>r</sub>)

{
    i = r;
    while (a[i] > n - r + i)
    {
        i = i - 1;
    }
    a[i] = a[i] + 1;
    for (j = i + 1; j <= r; j++)
    {
        a[j] = a[i] + j - i;
    }
}
```

Generating Permuataions/Combinations Applet Instructions:

Permutations: Enter a permutation that uses all integers from 1 to some n (using each integer only once). Separate each integer with a semicolon (;).

Combinations: Enter a combination in ascending order; separate each integer with a semicolon (;). Then enter an integer for the set size that is equal to or greater than the last integer in the combination.

Source code: NextPermComb.java

Use this applet to do the following problems:

Examples

- 1. In the set {1, 2, 3, 4, 5}, which permutation is first in lexicographic ordering 23514 or 23415?
- 2. What is the next permutation in lexicographic order after 362541?
- **3.**What is the next largest 4-combination in the set {1, 2, 3, 4, 5, 6} after {2, 4, 5, 6}?

Answers

- 1. The first two positions in those permutations are the same (2 and 3, respectively), but in the third position, one permutation has a 5 and the other has a 4. Since 4 < 5, 23415 comes first.
- **2.**The last two integers in the set where $a_j < a_{j+1}$ are 2 and 5 (positions a_3 and a_4 in the permutation). Swap 2 with the number to its right that is the next greatest in size (4). Then place the remaining three integers in lexicographic order to obtain the permutation 364125.
- **3.**The last element in the combination with $a_i != 6 4 + i$ is $a_1 = 2$. Replace a_i with $a_i + 1$, (2 with 3) and 3 with 4, 4 with 5, and 5 with 6. This creates the next largest combination, $\{3, 4, 5, 6\}$