FORMAT FOR COURSE CURRICULUM

Course Title: Principles of Robot Autonomy

Credit Units: 3

L	T	P/S	SW/FW	No. of PSDA	TOTAL CREDIT UNITS
3	0	0	0	0	3

Course Level: UG Course Code:

Course Objectives: The goal of the course is to familiarize the students with the concepts and techniques in robotic engineering and incorporate robotic technology in engineering systems. To make the students acquainted with the theoretical aspects of Robotics and enable them to acquire practical experience in the field of Robotics through design projects and case studies to understand the importance of robots in various fields of engineering to develop simple robot control systems integrating perception, planning, and actions.

Pre-requisites: (i) Linear Algebra

- (ii) Probability Theory
- (iii) Machine Vision and Image Processing
- (iv) AI/ ML/ DL
- (v) Sensor Technology

Course Contents/Syllabus:

•	Weightage (%)
Module I	20%
Descriptors/Topics: Introduction to Robotics and Fundamentals	
 Robot classification with respect to geometrical configuration(anatomy) 	
Co-ordinate systems	
Work envelope	
 Advantages and Disadvantages of Robot 	
 Specifications 	
 Joint Notations 	
Speed of Motions	
• Robot operating system (ROC)	
 Robotics parts and functions 	
Module II	20%

Descriptors/Topics : Robot Drive Systems and End Effectors	
Pneumatic Drives	
Hydraulic Drives	
Mechanical Drives	
Electrical Drives	
D.C. Servo Motors, Stepper Motors	
A.C. Servo Motors-Salient Features	
Applications and Comparison of all these Drives	
• End Effectors	
Types of Grippers	
• Gripper mechanisms	
Selection and Design Considerations	
Module III	20%
Descriptors/Topics : Sensor and Machine vision	
Robotics sensor and introduction to computer vision	
Camera models & camera calibration	
Stereo vision and Requirements of a sensor	
 Non-optical position sensors, 	
Optical. Position sensors,	
• Velocity sensors,	
• Proximity sensors,	
 Contact and non-contact type, 	
 Touch and slip sensors, 	
Force and torque sensors.	
Module IV	20%
Descriptors/Topics : Image Processing, Feature Detection, Feature Description in Robotics Application	
Information extraction and Classic visual Recognition	
Spatial transformations	
Homogeneous coordinates	
Homogeneous transformation and manipulator	
Forward solution, inverse solution, motion generation,	2007
Module V	20%
Descriptors/Topics: Robot Control with Programming and Applications	
Robot controls, Point to point control, Continuous path control	
Intelligent robot, Control system for robot joint Control actions. For the also desired.	
Control actions, Feedback devices Frankland Baselson LVDT	
• Encoder, Resolver, LVDT,	

- Motion Interpolations, Adaptive control
- Computational elements in robotic applications
- Robot programming sample programs, path planning, obstacle avoidance
- AI and robotics
- The future of robotics.

Course Learning Outcomes:

- Model forward and inverse kinematics of robot manipulators to provide each student with an exposure to kinematic problems involving robot manipulators and mobile robots.
- Understand the basic components of robots.
- Familiarize with the most common robot sensors and understand fundamental sensor processing algorithms and their engineering trade-offs to design intelligent robots using sensors.
- Explore the computational challenges inherent in fundamental mobile robotic tasks (e.g. localization, mapping, motion planning).
- Providing solutions to various engineering problems through the interpretation of data using modern computational tools.
- Functioning competently as an individual and as a part of multi-disciplinary teams.
- Differentiate types of robots and robot grippers.
- Analyze forces in links and joints of a robot.
- Programed a robot to perform tasks in industrial applications.
- Apply and evaluate various mining models/algorithms with respect to model's accuracy.
- Use current techniques, skills and tools necessary for computing practice.

Pedagogy for Course Delivery:

The class will be taught using theory and case based method. In addition to assigning the case studies, the course instructor will spend considerable time in understanding the concept of innovation through the eyes of the consumer. The instructor will cover the ways to think innovatively liberally using thinking techniques such as:

- Online case based presentation with problem solving approach.
- Reviewing relevant, previously-learned topics.
- Presenting the new information by linking it to previous case studies.
- Providing learning guidance and assignments.
- Providing time for practice, problem solving sessions and feedback.
- Taking tests and quiz on a regular basis.
- Delivery of course will be covered using E-content based on 4-Quadrant approach.

List of Professional Skill Development Activities (PSDA):

Lab/ Practicals details, if applicable:

List of Experiments:

• NA

Assessment/Examination Scheme:

Theory L/T (%)	Lab/Practical/Studio (%)		
100%	NA		

Theory Assessment (L&T):

	End Term Examination 60%				
Components (Drop down)	Attendance	Class Test	HA	Quiz	EE
Weightage (%)	5	15	10	10	60

Lab/ Practical/ Studio Assessment:

	Continuous Assessment/Internal Assessment (%)					End Term Examination (%)		
Components (Drop down	NA	NA	NA	NA	NA	NA	NA	
Weightage (%)								

Text Reading:

- Mikell P Groover, Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, "Industrial Robotics, Technology programming and Applications", McGraw Hill, ISBN 13 9780070249899
- Klafter R.D., Chmielewski T.A and Negin M., Robotic Engineering An Integrated Approach, Prentice Hall, ISBN-13 978-0134687520
- John Craig, "Introduction to Robotics, Mechanics and Control", Pearson Education, ISBN-13 9780201543629
- James A Rehg, "Introduction to Robotics in CIM Systems", Prentice Hall of India, ISBN-13 978-0130602435

References:

- Richaerd D Klafter, Thomas Achmielewski and Mickael Negin, "Robotic Engineering An Integrated Approach", Prentice Hall India, New Delhi, ISBN-13 978-0134687520
- Shiman Y Nof, "Handbook of Industrial Robotics", John Wiley & Sons, New York, ISBN 0-13-123629-6

Additional Reading:

- https://www2.cs.duke.edu/courses/fall15/compsci590.1/
- http://asl.stanford.edu/aa274/

Any other Study Material:

• Video Material of NPTEL