Introduction Voltage Amplifiers Current Amplifiers Conclusion

EN1012 Electronic Devices and Circuits Topic 5 - Amplifier Circuits and Applications

Upeka Premaratne

Department of Electronic and Telecommunication Engineering

October 16, 2017

4 □ ▶	4 🗇 ▶	∢ ≣ ▶	∢ ≣ ▶	- 1	990

	Upeka Premaratne	EN1012 Electronic Devices and Circuits	
Introduction	Voltage Amplifiers	Current Amplifiers	Conclusion

Introduction

Introduction Voltage Amplifiers Current Amplifiers Conclusion

Outline

- Introduction
- 2 Voltage Amplifiers
- 3 Current Amplifiers
- 4 Conclusion

- Increasing the amplitude of a signal
 - ▶ Increasing the voltage, current or power of a signal

Introduction

Voltage Amplifiers

Current Amplifiers

Conclusion Introduction

Voltage Amplifiers

Current Amplifiers

Conclusion

Attenuation

- Decreasing the amplitude of a signal
 - ► Filtering of signals (e.g. removing 50 Hz AC line noise)

Introduction

Upeka Premaratne
Voltage Amplifiers

EN1012 Electronic Devices and Circuits

Current Amplifiers

Conclusion

Amplifier Parameters

- Input impedance
 - ► Made as large as possible to prevent current loading and maximize voltage transfer
- Output impedance
 - ▶ Often made as small as possible to maximize power output
- Gain of the amplifier
 - ► Limited by the saturation of the device
 - ▶ Optimal at the bandwidth of the amplifier
 - ► Typical ranges: 20-20000 Hz for an audio amplifier, 0.1-100 Hz for a seismic signal amplifier

Nature of the Amplifier

- Voltage (Pre) amplifiers
 - ► Provide voltage gain
 - Suitable for amplifying weak signals
- Current (Power) amplifiers
 - ► Provide current gain to a large amplitude voltage signals, resulting in power gain
 - Suitable for driving loads such as speakers and radio transmitters

	Upeka Premaratne	EN1012 Electronic Devices and Circuits	
Introduction	Voltage Amplifiers	Current Amplifiers	Conclusion

Voltage Amplifiers

Current Amplifiers

- The main device for voltage amplification
- A monolithic amplifier implemented on a single chip
 - ▶ The basic building blocks are transistor amplifiers
- Unlike discrete BJT or FET amplifiers it is convenient to use
 - ▶ The gain of an op-amp amplifier can be conveniently set
- It has a number of other applications
 - Comparators
 - Hysteresis comparators
 - High impedance buffers etc.
- Generally needs a *dual supply* for amplification

Upeka Premaratne

■ Suitable for low frequency use

4 D > 4 D > 4	i	(⊒	- 1	900

Introduction Voltage Amplifiers **EN1012 Electronic Devices and Circuits Current Amplifiers**

Conclusion

Op-Amp Model (Contd..)

- Very high input impedance
 - ► Negligible current flows into the device
- Very low output impedance
- The output is given by
 - $V_{OUT} = A_V(V_+ V_-)$
 - ▶ It saturates when $V_{OUT} \approx 0.9 V_S$

Op-Amp Model

Introduction

Voltage Amplifiers

- Two inputs V_+ (non-inverting input) and V_- (inverting input)
- Has a very high voltage gain A_V (typically 10^5 to 10^6)
- The difference $\Delta V = V_+ V_- \approx 0$ (considered to be very small)

Upeka Premaratne **EN1012 Electronic Devices and Circuits** Introduction Voltage Amplifiers **Current Amplifiers** Conclusion

Inverting Amplifier

$$V_{+} - V_{-} \approx 0 \Rightarrow V_{-} \approx 0$$
 A virtual ground

Therefore,

$$G pprox rac{V_{OUT}}{V_{IN}} = rac{-I_F R_F}{I_F R_A} = -rac{R_F}{R_A}$$

EN1012 Electronic Devices and Circuits

4□ > 4□ > 4 = > 4 = > = 9 q @

Introduction Voltage Amplifiers

Current Amplifiers

Conclusion

Introduction

Voltage Amplifiers

Current Amplifiers

Conclusion

Inverting Amplifier Output

Upeka Premaratne EN1012 Electronic Devices and Circuits Introduction Voltage Amplifiers Current Amplifiers Conclusion Non-Inverting Amplifier Output

Non-Inverting Amplifier

$$V_{OUT} = A_V [V_+ - V_-] = A_V \left[V_+ - \frac{R_A}{(R_A + R_F)} V_{OUT} \right]$$

$$\frac{V_{OUT}}{A_V} = \left[V_{IN} - \frac{R_A}{(R_A + R_F)} V_{OUT} \right] \approx 0 \Rightarrow G = \frac{R_F}{R_A} + 1$$

$$V_{OUT} = A_V [V_+ - V_-] = A_V [V_{IN} - V_{OUT}]$$

 $\frac{V_{OUT}}{A_V} = [V_{IN} - V_{OUT}] \approx 0 \Rightarrow G = 1$

■ Can match a high impedance source to a low impedance load

Introduction

Voltage Amplifiers

Current Amplifiers

rs

Introduction

Conclusion

Voltage Amplifiers

Current Amplifiers

Conclusion

Conclusion

Comparator

- In the comparator the op-amp is used in open-loop
 - ► Maximum gain
 - ▶ Will saturate for a low difference
 - ▶ For example: $A_V = 10^5$ and $V_S = \pm 12$ V and $V_{SAT} = 0.9V_S$ results in maximum signal amplitude (δ) of $108~\mu\text{V}$
- Therefore, by comparing V_+ and V_- it is possible to compare the two and switch a device on and off.

• If
$$V_+ - V_- > \delta$$
 then $V_{OUT} = + V_{SAT}$

• If
$$V_- - V_+ > \delta$$
 then $V_{OUT} = -V_{SAT}$

LDR Comparator Circuit

Upeka Premaratne

EN1012 Electronic Devices and Circuits

Introduction Voltage Amplifiers Current Amplifiers Conclusion Thermistor Comparator Circuit

	Upeka Premaratne	EN1012 Electronic Devices and Circuits	
Introduction	Voltage Amplifiers	Current Amplifiers	

Hysteresis Comparator

$$V_{H} = \frac{R_{2}V_{REF} + R_{1}V_{SAT}}{R_{1} + R_{2}}$$
 $V_{L} = \frac{R_{2}V_{REF} - R_{1}V_{SAT}}{R_{1} + R_{2}}$

Introduction

Introduction

Voltage Amplifiers

Current Amplifiers

Conclusion

Introduction Voltage Amplifiers Current Amplifiers Conclusion

Hysteresis Comparator (Contd..)

Obtained using the *Superposition theorem* because (+)-input is considered as $I_{IN} \neq 0$ due to saturation.

When
$$V_{REF}=0$$
, $V_{+}=V_{1}=\frac{R_{1}}{R_{1}+R_{2}}V_{OUT}=\pm\frac{R_{1}}{R_{1}+R_{2}}V_{S}$

When
$$V_{OUT}=0$$
, $V_{+}=V_{2}=rac{R_{1}}{R_{1}+R_{2}}V_{REF}$

From the Superposition Theorem (since R_1 and R_2 are linear)

$$V_{+}=V_{1}+V_{2}=\underbrace{\pm rac{R_{1}}{R_{1}+R_{2}}V_{S}}_{ ext{positive feedback}}+\underbrace{rac{R_{2}}{R_{1}+R_{2}}V_{REF}}_{ ext{offset}}$$

Therefore V_+ can either be V_H or V_L .

Transistor Power Amplifiers

- Generally op-amps are not capable of driving large loads
 - ▶ Have to use transistor amplifiers instead

Upeka Premaratne

Voltage Amplifiers

- Signal amplitude is large enough to affect the bias point of the transistors used
- Example circuit is the Class AB power amplifier
 - ► Has two complementary BJTs (one for each half cycle)

Current Amplifiers

- $lacktriangleright R_E$ prevents thermal runaway
- Diode AC resistance is considered negligible
- $R_D \approx 1k\Omega$

Introduction Voltage Amplifiers Current Amplifiers Conclusion

Further Current Amplification

	Орека Ртеппагаспе	EN1012 Electronic Devices and Circuits	
Introduction	Voltage Amplifiers	Current Amplifiers	Conclusion
Introduction	voitage Ampilliers	Current Ampliners	Conclusion

Conclusion

Introduction Voltage Amplifiers Current Amplifiers Conclusion

Further Current Amplification (Contd..)

		10/10/12/12/	= -040
	Upeka Premaratne	EN1012 Electronic Devices and Circuits	
Introduction	Voltage Amplifiers	Current Amplifiers	Conclusion
Summary			

- Transistors can be used for switching and amplification
- Swiching circuits are simple to design
- Amplifier circuits are more complex
 - Simple amplifier bias circuits have many drawbacks
 - ▶ Robust amplifier bias circuits are difficult to design
- Op-amps are general purpose amplifiers that are convenient to implement
 - ▶ Even these devices have circuits that are complex to design
- What are the limitations of analog electronics?
 - ► For example, can a *Turing Machine* be built using analog components?

Introduction Voltage Amplifiers Current Amplifiers Conclusion

Next Lecture...

Introduction to Digital Electronics

Upeka Premaratne

EN1012 Electronic Devices and Circuits