

Predicting Rideshare Prices

Krishna Kalakkad, Laura McGann, Ethan Waite, Ethan Zimbelman

The mission

Given information about a rideshare trip, can we predict the price using KNN?

Input data

Data collected from the **Uber & Lyft Cab Prices** dataset on Kaggle

Cab rides <u>Weather</u>

- Service (Uber or Lyft) and cab type
- Price and surge multiplier
- **Source**, destination, and distance **Location**

- Temperature, pressure, humidity, clouds,
 - rain, and wind

Joined records and building datasets

Joined **rides** with **weather** on (day, hour, halfHour, location)

RDD Schema:

(day, hour, halfHour, location), LabeledRecord(id, Record(distance, cab type, destination, source, surgeMult, temp, clouds, pressure, rain, humidity, wind), price)

Joined records and building datasets

Joined **rides** with **weather** on (day, hour, halfHour, location)

RDD Schema:

```
(day, hour, halfHour, location)
Record(distance, cab type, destination, source,
surgeMult, temp, clouds, pressure, rain, humidity,
wind), price)
```

Joined records and building datasets

- .take() only 1% of total data
- Split 80/20% train/test
- test.cartesian(train)
 - o Results in 6.1M rows of data
 - ~404MB
- Cartesian Product of 100% of the data would be >40GB

Standardizing Data

$$Z = \frac{x - \mu}{\sigma}$$

- val mean = scores.sum / count
- val devs = scores.map(score => (score mean) * (score mean))
- val stddev = Math.sqrt(devs.sum / count)
- return scores.map(x => (x mean)/stddev)

KNN Overview

- ML classification model
 - Numerical or categorical

• "Training" = get training dataset

- For each test record:
 - Find k-nearest neighbors (distance)
 - Aggregate k-nearest's labels (avg)

Jose, Italo. "KNN Classification Example: Colored Scatter Plot with a Test Point and Different k-Sized Neighborhoods." *Towards Data Science*, 18 Nov. 2018,

https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d. Accessed 2022.

Distance matrix

- Euclidean distance for numeric attributes sqrt(sum((r1Numerical_i r2Numerical_i)²))
- Anti-dice distance for categorical attributes

 (total # mismatches)

 (total # categorical attributes in one record)
- Combine distances via weighted sum

K-Nearest Neighbors

- topByKey(k)(dists descending)
- Take maxDist

- Join all train records <= maxDist away
- Resulting records: ((test_ID, test_price), train_price)

Predicting Price

- Aggregate prices for all K-nearest neighbors for each test record
- combineByKey()
 - Avg of all K-nearest prices = predicted price

Major obstacle: Lots of data

Performing cartesian products and joins on large datasets is expensive!!!!

- A cartesian product with ~500k testing records and ~120k training records creates **60,000,000,000 records!**That's a lot!
 - Decided to work with a subset of data (1-2% of all records)

Amount of used records (%)	Time to compute distance matrix (ms)	
(4956 train, 1239 test); 1% of all records	74,157ms	
(9912 train, 2478 test); 2% of all records	296,577ms	
(14868 train, 3717 test); 3% of all records	ERROR (shuffle failure)	
(19824 train, 4957 test); 4% of all records	ERROR (shuffle failure)	

Time to compute the distance matrix by record sizes.

The 4x computation time increase for a 2x record count increase is a result of performing a cartesian product

Optimizations: Scala

- Built in functions
- Partitioning data
- Removing persist()

С

D

Ε

F

В

Α

Future optimizations

Reducing object size (attributes and attribute sizes)

Optimizations: KNN

Hyper-parameterizations

- Train/test set size
- K-value

	50% train/ 50% test	60% train/ 40% test	70% train/ 30% test	80% train/ 20% test	90% train/ 10% test
K = 5	\$6.59	\$6.24	\$5.87	\$5.82	\$5.37
K = 10	\$6.90	\$6.65	\$6.56	\$6.69	\$6.53
K = 50	\$7.17	\$6.93	\$6.96	\$7.01	\$6.97
K = 100	\$7.30	\$7.06	\$7.07	\$7.15	\$7.06

The average errors of different parameters of the KNN algorithm on the same dataset.

Future improvements

- Modifying the attributes considered by the distance function
- Modifying the data?

Key learnings

- Cartesians are costly. Joins are too.
- Be persistent! don't <mark>persist()</mark> single use RDDs
- Partition data used in joins!
- It's not about the destination, it's about the journey \Rightarrow

Public transit pricing can be predicted much more accurately!

Questions?

