Filières : AP2

Matière : Analyse numérique Année Universitaire : 19/20.

Feuille de TD $n^{\circ}2$

Exercice 1. On note $\mathcal{I}(f) = \int_a^b f(t)dt$ et $\mathcal{I}_Q(f) = \sum_{i=0}^n \omega_i f(t_i)$.

- 1. On choisit $\omega_i=\int_a^b L_i(t)dt$, avec L_i est le i-ème polynôme de Lagrange associé aux points t_0,t_1,\ldots,t_n . Montrer que $\mathcal{I}(p)=\mathcal{I}_Q(p)$, $\forall p\in\mathbb{P}_n$.
- 2. Réciproquement, on suppose que $\mathcal{I}(p) = \mathcal{I}_Q(p)$, $\forall p \in \mathbb{P}_n$, montrer que $\omega_i = \int_a^b L_i(t) dt$.
- 3. Si on note $\{p_0,p_1,\ldots,p_n\}$ la base canonique de \mathbb{P}_n , montrer que

$$\mathcal{I}(p) = \mathcal{I}_{O}(p), \ \forall p \in \mathbb{P}_{n} \Leftrightarrow \mathcal{I}(p_{i}) = \mathcal{I}_{O}(p_{i}), \ i = 0, 1, \dots, n.$$

Exercice 2. Soit $0 < \alpha \le 1$ un nombre réel donné, soit $t_1 = -\alpha$, $t_2 = 0$ et $t_3 = \alpha$ et soit $\omega_1, \omega_2, \omega_3$, trois nombres réels. Nous considérons la formule de quadrature définie par

$$\mathcal{I}_Q(g) = \sum_{j=1}^{3} \omega_j g(t_j),$$

où g est une fonction continue sur $\left[-1,1\right].$

- 1. Trouver ω_1 , ω_2 , et ω_3 en function de α de sorte que \mathcal{I}_Q soit exacte sur les polynômes de degré 2.
- 2. Montrer qu'avec de tels poids, \mathcal{I}_Q est exacte sur les polynômes de degré 3.
- 3. Existe-t-il α tel que la formule \mathcal{I}_Q soit exacte sur les polynômes de degré 5? Si oui, caculer ce α

Exercice 3. On souhaite obtenir une approximation de $\ln(2)$ à l'aide de la formule suivante

$$\ln(2) = \int_1^2 \frac{dt}{t}.$$

- 1. a. Ecrire l'approximation obtenue par la formule de trapèze simple.
 - b. Pourquoi la valeur numérique obtenue à la question précédente est-elle supérieure à $\ln(2)$?
 - c. Comparer le résultat obtenu à la première question avec celui obtenu par la formule de simpson.
- 2. Montrer que la méthode de trapèze composée conduit à une approximation :

$$\ln 2 \simeq \mathcal{A}(n) = \frac{\alpha}{n} + \sum_{1 < k < n-1} \frac{\beta}{n+k},$$

où α et β sont deux constantes à déterminées.

3. Montrer que l'erreur associée à la formule de trapèze composite est donnée par

$$\left| \int_{1}^{2} f(t)dt - \mathcal{A}(n) \right| \leq \frac{M}{12n^{2}} \quad \text{ avec } M = \max_{x \in [1,2]} |f^{(2)}(x)|.$$

4. Quelle valeur de n faudrait-il choisir pour obtenir une approximation de $\ln(2)$ avec 5 décimales précises ?.

Exercice 4. On considère la formule de quadrature sur l'intervalle [-1,1] suivante

$$\mathcal{I}_Q(f) = a_0 f(x_0) + a_0 f(-x_0) + a_1 f(1) + a_1 f(-1).$$

- 1. Déterminer a_0, a_1 et x_0 pour que la formule soit exacte sur les polynômes de degré 5.
- 2. Appliquer ce résultat à la fonction $f(x)=\frac{1}{1+x^2}$. Quelle approximation de π obtient-on?

Exercice 5. Soit f une fonction de classe $\mathcal{C}^1([-1,1])$ et p le polynôme d'interpolation d'Hermite de f vérifiant :

$$p(-1) = f(-1), p'(-1) = f'(-1), p(1) = f(1) \text{ et } p'(1) = f'(1).$$

- 1. Écrire le polynôme p.
- 2. En déduire la formule de quadrature des trapèzes-Hermite suivante :

$$\int_{-1}^{1} f(t)dt \simeq f(-1) + f(1) + \frac{1}{3} \Big(f'(-1) - f'(1) \Big).$$

3. Connaissant la formule sur [-1,1], en déduire la formule de quadrature des trapèzes-Hermite sur l'intervalle [a,b].

Exercice 6. Soient les formules de quadrature

$$\int_0^1 f(t)dt \simeq a_1 f(0) + a_2 f(1) + b_1 f'(0) + b_2 f'(1),\tag{1}$$

$$\int_{a}^{b} f(t)dt \simeq \alpha [f(a) + f(b)] + \beta [f'(a) - f'(b)].$$
 (2)

- 1. Déterminer les coefficients a_1 , a_2 , b_1 et b_2 pour que la formule de quadrature (1) soit exacte pour les polynômes de degré le plus élevé possible. Quelle est alors son degré de précision?
- 2. Par un changement de variable, écrire (1) pour un intervalle [a,b] quelconque.
- 3. Sachant que la formule (1) a été obtenue en intégrant sur [0,1] la relation :

$$f(t) = p(t) + \frac{f^{(4)}(\alpha_t)}{24}t^2(t-1)^2,$$

où $\alpha_t \in]0,1[$, donner alors l'expression de l'erreur dans la formule (1).

- 4. Retrouver le résultat de la question 2 en déterminant les coefficients α et β pour que la formule de quadrature (2) soit exacte pour les polynômes de degré le plus élevé possible.
- 5. En déduire la formule composite associée à (2).

Solution 1. $\mathcal{I}(f) = \int_a^b f(t)dt$ et $\mathcal{I}_Q(f) = \sum_{i=0}^n \omega_i f(t_i)$. 1. Soit $p \in \mathbb{P}_n$, on a $p(t) = \sum_{i=0}^n p(t_i) L_i(t)$, alors

$$\mathcal{I}(p) = \int_a^b p(t)dt = \sum_{i=0}^n p(t_i) \int_a^b L_i(t)dt$$
$$= \sum_{i=0}^n \omega_i p(t_i) = \mathcal{I}_Q(p).$$

- 2. $\mathcal{I}(p) = \mathcal{I}_Q(p)$, $\forall p \in \mathbb{P}_n \Rightarrow \mathcal{I}(L_j) = \mathcal{I}_Q(L_j)$, $\forall j = 0, 1, \dots, n$. Or, $\mathcal{I}(L_j) = \int_a^b L_j(t) dt$ et $\mathcal{I}_Q(L_j) = \sum_{i=0}^n \omega_i L_j(t_i) = \omega_j$, d'où le résultat.
- 3. $\mathcal{I}(p) = \mathcal{I}_Q(p), \quad \forall p \in \mathbb{P}_n \Rightarrow \mathcal{I}(p_i) = \mathcal{I}_Q(p_i), \quad i = 0, 1, \dots, n.$ Réciproquement, on suppose que $\mathcal{I}(p_i)=\mathcal{I}_Q(p_i),\ i=0,1,\ldots,n.$ Soit $p\in\mathbb{P}_n$ alors $p(t)=\sum_{i=0}^n\alpha_ip_i(t).$ Ainsi,

$$\mathcal{I}(p) = \int_{a}^{b} p(t)dt = \sum_{i=0}^{n} \alpha_{i} \int_{a}^{b} p_{i}(t)dt$$
$$= \sum_{i=0}^{n} \alpha_{i} \mathcal{I}(p_{i}) = \sum_{i=0}^{n} \alpha_{i} \mathcal{I}_{Q}(p_{i})$$
$$= \mathcal{I}_{Q}(\sum_{i=0}^{n} \alpha_{i} p_{i}) = \mathcal{I}_{Q}(p).$$

Solution 2.

1. D'après l'exercice 1, \mathcal{I}_Q est exacte sur \mathbb{P}_2 ssi $\omega_j = \int_{-1}^1 L_j(t)dt$, j=1,2,3. On a

$$L_1(t) = \frac{t(t-\alpha)}{-\alpha(-\alpha-\alpha)} = \frac{t(t-\alpha)}{2\alpha^2},$$

$$L_2(t) = \frac{(t+\alpha)(t-\alpha)}{\alpha(0-\alpha)} = -\frac{(t+\alpha)(t-\alpha)}{\alpha^2},$$

$$L_3(t) = \frac{(t+\alpha)t}{(\alpha+\alpha)\alpha} = \frac{t(t+\alpha)}{2\alpha^2}.$$

D'où

$$\omega_1 = \int_{-1}^1 L_1(t)dt = \frac{1}{2\alpha^2} \left[\frac{t^3}{3} - \alpha \frac{t^2}{2} \right]_{-1}^1 = \frac{1}{3\alpha^2},$$

$$\omega_2 = \int_{-1}^1 L_2(t)dt = -\frac{1}{\alpha^2} \left[\frac{t^3}{3} - \alpha^2 t \right]_{-1}^1 = \frac{-2}{3\alpha^2} + 2.$$

Pour raison de symétrie $\omega_3 = \omega_1$.

2. On a

$$\mathcal{I}_Q(p_3) = \omega_1(-\alpha)^3 + \omega_1 0 + \omega_3 \alpha^3 = 0 = \int_{-1}^1 p_3(t)dt.$$

D'où l'exactitude sur \mathbb{P}_3 .

3. La formule $\mathcal{I}_Q(\cdot)$ est exacte sur \mathbb{P}_4 ssi $\mathcal{I}_Q(p_4)=\int_{-1}^1 p_4(t)dt$, c-à-d

$$\omega_1(-\alpha)^4 + \omega_1 0 + \omega_3 \alpha^4 = \frac{2}{5} \iff \alpha = \sqrt{\frac{3}{5}}.$$

Finalement, on vérifie facilement que :

$$\mathcal{I}_Q(p_5) = \int_{-1}^{1} p_5(t)dt = 0.$$

D'où l'exactitude sur \mathbb{P}_5 .

Solution 3. On pose $f(t) = \frac{1}{t}$, a = 1 et b = 2, on a

$$\ln(2) = \int_1^2 \frac{dt}{t} = \int_a^b f(t)dt.$$

1. a. Avec la formule de trapèze simple, on a

$$\int_{1}^{2} \frac{dt}{t} \simeq \frac{(b-a)}{2} \left(f(a) + f(b) \right) = \frac{1}{2} \left(\frac{1}{2} + 1 \right) = \frac{3}{4} = 0.75.$$

Soit une erreur de 0.0569.

- b. La valeur numérique obtenue à la question précédente est supérieure à $\ln(2)$, car la fonction $f(x)=\frac{1}{x}$ est convexe. On peut se convaincre à l'aide d'un dessin que le trapèze est au-dessus de la courbe y=f(x). D'où, l'aire du trapèze sera supérieure à l'aire de la courbe.
- c. Avec la formule de simpson, on a

$$\int_{1}^{2} \frac{dt}{t} \simeq \frac{(b-a)}{2} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right) = \frac{25}{36} = 0.6944.$$

Soit une erreur de 0.0013.

D'où, la formule de simpson est plus précise que celle du trpèze.

2. Soit $x_k = 1 + \frac{k}{n}$, $k = 0, 1, \dots, n$, la méthode de trapèze composée est :

$$\ln 2 \simeq \mathcal{A}(n) = \sum_{k=0}^{n-1} \frac{(x_{k+1} - x_k)}{2} \left(f(x_k) + f(x_{k+1}) \right)$$
$$= \frac{f(1) + f(2)}{2n} + \frac{1}{n} \sum_{k=1}^{n-1} \frac{1}{1 + \frac{k}{n}}$$
$$= \frac{3}{4n} + \sum_{k=1}^{n-1} \frac{1}{n+k} \implies \alpha = \frac{3}{4}, \ \beta = 1.$$

3. L'erreur associée à la formule de trapèze composite est donnée par

$$\begin{split} \left| \int_a^b f(t)dt - \mathcal{A}(n) \right| &\leq \sum_{k=0}^{n-1} \left| \int_{x_k}^{x_{k+1}} \frac{f^{(2)}(\xi_t^k)}{2!} (t - x_k)(t - x_{k+1}) dt \right| \\ &\leq \frac{M}{2} \sum_{k=0}^{n-1} \frac{(x_{k+1} - x_k)^3}{6} \\ &\leq \frac{M}{12n^2} \quad \text{avec} \quad M = \max_{x \in [1,2]} |f^{(2)}(x)| \end{split}$$

4. Pour que l'approximation ln(2) soit en 10^{-5} , il suffit que

$$\frac{M}{12n^2} \le 10^{-5}$$

On a

$$f^{(2)}(x) = \frac{2}{x^3} \text{ avec } 1 < x < 2 \ \, \Rightarrow \ \, M \leq 2.$$

D'où $\frac{1}{6n^2} \le 10^{-5} \Rightarrow n \ge 130$.

Solution 4.

$$\mathcal{I}_Q(f) = a_0 f(x_0) + a_0 f(-x_0) + a_1 f(1) + a_1 f(-1).$$

1. Cette formule est exacte sur \mathbb{P}_5 , cela est équivalent à :

$$\begin{cases} a_0 + a_0 + a_1 + a_1 = 2, \\ a_0 x_0 - a_0 x_0 + a_1 - a_1 = 0, \\ a_0 x_0^2 + a_0 x_0^2 + a_1 + a_1 = \frac{2}{3}, \\ a_0 x_0^3 - a_0 x_0^3 + a_1 - a_1 = 0, \\ a_0 x_0^4 + a_0 x_0^4 + a_1 + a_1 = \frac{2}{5}, \\ a_0 x_0^5 - a_0 x_0^5 + a_1 - a_1 = 0. \end{cases} \Leftrightarrow \begin{cases} a_0 + a_1 = 1, \\ a_0 x_0^2 + a_1 = \frac{1}{3}, \\ a_0 x_0^4 + a_1 = \frac{1}{5}. \end{cases}$$

$$\Leftrightarrow \begin{cases} a_1 = 1 - a_0, \\ a_0 - a_0 x_0^2 = \frac{2}{3}, \\ a_0 - a_0 x_0^4 = \frac{4}{5}. \end{cases} \Leftrightarrow \begin{cases} a_1 = 1 - a_0, \\ a_0 (1 - x_0^2) = \frac{2}{3}, \\ 1 + x_0^2 = \frac{6}{5}. \end{cases} \Leftrightarrow \begin{cases} a_0 = \frac{5}{6}, \\ a_1 = \frac{1}{6}, \\ x_0 = \pm \frac{1}{\sqrt{5}}. \end{cases}$$

2. Si on applique cette formule à la fonction $f(x) = \frac{1}{1+x^2}$, on obtient

$$\int_{-1}^{1} \frac{1}{1+t^2} dt = \frac{\pi}{2} \simeq \frac{1}{6} \left(f(-1) + 5f(-\frac{1}{\sqrt{5}}) + 5f(\frac{1}{\sqrt{5}}) + f(1) \right) = \frac{14}{9}.$$

D'où

$$\pi \simeq \frac{28}{9} = 3.1111.$$

Solution 5.

1. Le polynôme interpolation d'Hermite p s'écrit comme suit :

$$p(x) = \alpha + \beta x + \gamma x^2 + \delta x^3,$$

tel que

$$\left\{ \begin{array}{l} p(-1) = f(-1), \\ p(1) = f(1), \\ p'(-1) = f'(-1), \\ p'(1) = f'(1). \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha - \beta + \gamma - \delta = f(-1), \\ \alpha + \beta + \gamma + \delta = f(1), \\ \beta - 2\gamma + 3\delta = f'(-1), \\ \beta + 2\gamma + 3\delta = f'(1). \end{array} \right.$$

On obtient,

$$\begin{cases} \alpha = \frac{1}{4} \left[2f(-1) + 2f(1) + f'(-1) - f'(1) \right], \\ \beta = \frac{1}{4} \left[-3f(-1) + 3f(1) - f'(-1) - f'(1) \right], \\ \gamma = \frac{1}{4} \left[-f'(-1) + f'(1) \right], \\ \delta = \frac{1}{4} \left[f(-1) - f(1) + f'(-1) + f'(1) \right]. \end{cases}$$

2. En intégrant le polynôme ainsi trouvé on en déduit

$$\int_{-1}^{1} f(x)dx \simeq \int_{-1}^{1} p(x)dx = \left[\alpha x + \frac{\beta}{2}x^{2} + \frac{\gamma}{3}x^{3} + \frac{\delta}{4}x^{4}\right]_{-1}^{1}$$

$$= 2\alpha + \frac{2}{3}\gamma$$

$$= \frac{1}{2}\left[2f(-1) + 2f(1) + f'(-1) - f'(1)\right] + \frac{1}{6}\left[-f'(-1) + f'(1)\right]$$

$$= f(-1) + f(1) + \frac{1}{3}\left(f'(-1) - f'(1)\right).$$

Remarque 1. la formule est au moins exacte de degré 3 par construction. Elle n'est pas exacte de degré supérieure à 3 car pour $f(x) = x^4$, on a

$$\int_{-1}^{1} f(x)dx = \left[\frac{1}{5}x^{5}\right]_{-1}^{1} = \frac{6}{15}$$

et

$$f(-1) + f(1) + \frac{1}{3}(f'(-1) - f'(1)) = 1 + 1 + \frac{1}{3}(4+4) = \frac{70}{15}$$

3. Connaissant la formule sur [-1,1], on en déduit la formule sur un intervalle [a,b] quelconque par le changement de variable $y=\frac{b-a}{2}x+\frac{a+b}{2}$ qui donne

$$\int_{a}^{b} f(y)dy = \frac{b-a}{2} \int_{-1}^{1} f\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) dx$$
$$= \frac{b-a}{2} \left[f(a) + f(b) + \frac{b-a}{6} \left(f'(a) - f'(b)\right) \right]$$
$$= \frac{b-a}{2} \left(f(a) + f(b) \right) + \frac{(b-a)^{2}}{12} \left(f'(a) - f'(b) \right).$$

Solution 6. On pose

$$\mathcal{I}_Q(f) = a_1 f(0) + a_2 f(1) + b_1 f'(0) + b_2 f'(1),$$

$$\mathcal{J}_Q(f) = \alpha \left[f(a) + f(b) \right] + \beta \left[f'(a) - f'(b) \right].$$

1. \mathcal{I}_Q est exacte sur \mathbb{P}_3 ssi $\mathcal{I}_Q(p_i)=\int_0^1 p_i(x)dx$, i=0,1,2,3, c-à-d

$$\begin{cases} a_1 + a_2 = 1, \\ a_2 + b_1 + b_2 = \frac{1}{2}, \\ a_2 + 2b_2 = \frac{1}{3}, \\ a_2 + 3b_2 = \frac{1}{4}. \end{cases} \Leftrightarrow \begin{cases} a_1 + a_2 = 1, \\ a_2 + b_1 + b_2 = \frac{1}{2}, \\ a_2 + 2b_2 = \frac{1}{3}, \\ b_2 = -\frac{1}{12}. \end{cases} \Leftrightarrow \begin{cases} a_1 = \frac{1}{2}, \\ a_2 + 2b_2 = \frac{1}{3}, \\ b_2 = -\frac{1}{12}. \end{cases} \Leftrightarrow \begin{cases} a_1 = \frac{1}{2}, \\ a_2 = \frac{1}{2}, \\ b_1 = \frac{1}{12}, \\ b_2 = -\frac{1}{12}. \end{cases}$$

D'où

$$\mathcal{I}_Q(f) = \frac{1}{2} [f(0) + f(1)] + \frac{1}{12} [f'(0) - f'(1)].$$

La formule \mathcal{I}_Q est exacte sur \mathbb{P}_4 ssi $\mathcal{I}_Q(p_4)=\int_0^1 p_4(x)dx.$ Or,

$$\mathcal{I}_Q(f) = \frac{1}{2} [0+1] + \frac{1}{12} [0-4]$$
$$= \frac{1}{6} \neq \int_0^1 p_4(x) dx = \frac{1}{5}.$$

Alors, le degré de précision de \mathcal{I}_Q est 3.

2. On pose x = a + (b - a)t, $t \in [0, 1]$. On a

$$\begin{split} \int_a^b f(x)dx &= (b-a) \int_0^1 f(a+(b-a)t)dt \\ &= (b-a) \int_0^1 g(t)dt, \quad \text{avec } g(t) = f(a+(b-a)t). \\ &\simeq (b-a) \left\{ \frac{1}{2} \left[g(0) + g(1) \right] + \frac{1}{12} \left[g'(0) - g'(1) \right] \right\}, \\ &= \frac{(b-a)}{2} \left[f(a) + f(b) \right] + \frac{(b-a)^2}{12} \left[f'(a) - f'(b) \right]. \end{split}$$

3. On a

$$f(t) = p(t) + \frac{f^{(4)}(\alpha_t)}{24}t^2(t-1)^2, \quad \alpha_t \in]0, 1[.$$

Alors,

$$\begin{split} \int_0^1 f(t)dt - \int_0^1 p(t)dt &= \int_0^1 \frac{f^{(4)}(\alpha_t)}{24} \underbrace{t^2(t-1)^2}_{\geq 0} dt \\ &= \frac{f^{(4)}(\xi)}{24} \int_0^1 t^2(t-1)^2 dt, \ \ \xi \in]0,1[\quad \text{(1\`ere formule de la moyenne)} \\ &= \frac{1}{720} f^{(4)}(\xi). \end{split}$$

4. La formule \mathcal{J}_Q est exacte sur \mathbb{P}_1 ssi

$$\begin{cases} \mathcal{J}_Q(p_0) = \int_a^b p_0(x) dx = b - a, \\ \mathcal{J}_Q(p_1) = \int_a^b p_1(x) dx = \frac{b^2 - a^2}{2}. \end{cases} \Leftrightarrow \alpha = \frac{b - a}{2}, \beta \in \mathbb{R}.$$

Cette formule est exacte sur \mathbb{P}_2 ssi $\mathcal{J}_Q(p_2)=\int_a^b p_2(x)dx=rac{b^3-a^3}{3}$, c-à-d

$$\begin{split} \alpha\left[a^2+b^2\right]+\beta\left[2a-2b\right]&=\frac{b^3-a^3}{3}\quad\Leftrightarrow\\ \frac{b-a}{2}\left[a^2+b^2\right]+2\beta\left[a-b\right]&=\frac{b^3-a^3}{3}\quad\Leftrightarrow\\ \beta&=\frac{(b-a)^2}{12}. \end{split}$$

Finalement, on vérifie facilement que :

$$\mathcal{J}_Q(p_3) = \int_a^b p_3(x) dx$$
 et que $\mathcal{J}_Q(p_4) \neq \int_a^b p_4(x) dx$.

D'où l'exactitude sur \mathbb{P}_3 .

5. D'après la question précédente,

$$\mathcal{J}_Q(f) = \frac{b-a}{2} \left[f(a) + f(b) \right] + \frac{(b-a)^2}{12} \left[f'(a) - f'(b) \right].$$

Soit $x_i=a+ih$, $i=0,1,\ldots,n$ et $h=rac{b-a}{n}.$ On a

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

$$\simeq \sum_{i=0}^{n-1} \left\{ \frac{x_{i+1} - x_{i}}{2} \left[f(x_{i}) + f(x_{i+1}) \right] + \frac{(x_{i+1} - x_{i})^{2}}{12} \left[f'(x_{i}) - f'(x_{i+1}) \right] \right\}$$

$$= \frac{h}{2} \sum_{i=0}^{n-1} \left[f(x_{i}) + f(x_{i+1}) \right] + \frac{h^{2}}{12} \sum_{i=0}^{n-1} \left[f'(x_{i}) - f'(x_{i+1}) \right]$$

$$= \frac{h}{2} \left[f(a) + f(b) \right] + \frac{h^{2}}{12} \left[f'(a) - f'(b) \right] + h \sum_{i=1}^{n-1} f(x_{i}).$$