

Proyecto Sistemas de Control "Conteo de Objetos Utilizando una Cámara de Profundidad"

Claudio Canales & Iván Fernández.

Profesor: Renato Salinas. *Sistemas de Control, 2019.*

Kinect.

- Sensores de profundidad infrarrojo
- Captura 30 cuadros por segundo
- Resolución de 640x480 píxeles.
- Cámara RGB.
- Motores

Cámaras Kinect.

RGB

Depth

Segmentación de Imagen.

- Segmentación Binaria
- Enfoque distinto, a través de Distancia.
- Rango de Operación ajustable.
- Dimensiones de los objetos Cuantificable Directamente.

Algoritmos

- En este trabajo se presentan 3 posibles soluciones para poder realizar la segmentación de imágenes.
- 1.-Algoritmo de Etiquetación Merge Labeling.
- 2.-Utilizando Herramientas de Matlab.
- 3.- Algoritmo basado en Flood Fill.

Resumen Algoritmo de Merge Labeling.

Imagen Binarizada

Matriz de salida

Matriz de entrada

| Merge Labeling

•	•	•	•	٠	٠	0	•	•	•	•	٠	٠	٠	0	•	•
		1	1	٠	٠	2	2		٠			•	٠			٠
	1	1	1	1			ų.		٠	•					•	
•	•	•		1			٠	•	٠					•	٠	•
•	•			1,		•	٠	•		-		•	٠			٠
•				٠	٠			•	٠	•	1, 1			•	٠	•
•	•			٠	٠	•	٠			:	٠	•	•			٠
•	•	•		٠	٠		7			٠	٠					٠
•			٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠
				٠			٠		٠		٠	٠	٠	0	٠	٠

•	٠	٠	•	٠	•		٠	•	•	٠	•		٠		٠	•
٠		1	1	٠	٠	2	2	٠	٠		٦.		٠	-		٠
	1	1	1	1			,		٠	•					٠	٠
•	•	٠		11			٠	•	٠					٠	٠	٠
•	•			5.		٠	٠	•				•	•			٠
0	17.1			٠	٠			•	٠	•	1, 1			•	٠	٠
۰	•			٠	٠	•	•	•		:	٠	•	٠			٠
٠	•	٠	•	٠	٠					٠	٠					٠
•	•	٠	٠	٠	٠	•	•	•	٠	•	٠	•	•	•	٠	•

٠	•	٠		٠	•	•	٠		٠		٠			•	٠	
		1	1	1	·	2	2		٠				٠	-		٠
	1	1	1	1			i,		٠	٠						٠
		٠		1			٠		٠						٠	
				1.			٠			-						٠
	2			٠					٠			i.			٠	
				٠	٠				1	i.	٠					٠
		٠	٠	٠	٠						٠					٠
•	•	٠	•	•	•	•	٠	•		•	٠	•	•		٠	٠

	٠	٠	٠	٠	٠	•	٠	٠	•	٠	•	•	٠	•	٠	٠
		1	1	٠	٠	2	2	٠	٠	3	3		٠	4 3	4	٠
	1	1	1	1	1	1	1	1	٠	٠	3	3	3	3	٠	٠
		٠	1	1	1	1	•	٠	٠	3	3	3	3		٠	•
		1	1	1	1		٠	٠	3	3	3			3	3	٠
	1	1	1					٠	٠	٠	3	3	3		٠	
		1	1	٠	٠		٠	٠	5 3	3				3	3	٠
		٠	٠	٠	٠	6	6	5	3	٠	٠	7 3	3	3	3	٠
•	•	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•		•	٠	

Resumen Implementación de funciones Matlab.

Resumen Algoritmo Basado en Flood Fill.

Resultados Algoritmo Basado en Flood Fil

Conclusiones.

- Algoritmos computacionalmente costosos.
- Buena estabilidad del algoritmo basado en Flood Fill.
- Conteo es exacto, aun así existen limitaciones físicas.
- Optimizar código y implementación de Deep Learning.
- Posibilidad de Combinar la segmentacion RGB con Depth.

