Álgebra computacional. Examen parcial 1 Universidad de El Salvador, 12/04/2019

Ejercicio 1 (2 puntos). Consideremos el ideal

$$I = (xy, x^3 - y^2 + x) \subset k[x, y].$$

- a) Encuentre la base de Gröbner reducida de *I* respecto al orden graduado lexicográfico.
- b) Encuentre una base monomial de k[x, y]/I como un espacio vectorial sobre k.

Ejercicio 2 (4 puntos). Los polinomios de la forma $x^{\alpha} - x^{\beta} \in k[x_1,...,x_n]$ se llaman **binomios**. Se dice que un ideal I es **binomial** si I puede ser generado por algunos binomios. En este ejercicio vamos a probar que I es binomial si y solo si su base de Gröbner reducida consiste en binomios.

- a) Demuestre que para dos binomios $f_1 = x^{\alpha(1)} x^{\beta(1)}$ y $f_2 = x^{\alpha(2)} x^{\beta(2)}$ el polinomio $S(f_1, f_2)$ es también un binomio si $f_1 \neq f_2$.
- b) Sean $f = x^{\alpha} x^{\beta}$, $f_1 = x^{\alpha(1)} x^{\beta(1)}$,..., $f_s = x^{\alpha(s)} x^{\beta(s)}$ binomios. Demuestre que el algoritmo de división con resto de f por $(f_1, ..., f_s)$ produce

$$f = q_1 f_1 + \dots + q_s f_s + r,$$

donde r = 0 o r es también un binomio.

- c) Demuestre que todo ideal binomial tiene una base de Gröbner que consiste en binomios.
- d) Demuestre que la base de Gröbner reducida de un ideal binomial consiste en binomios.

Ejercicio 3 (4 puntos). En este ejercicio vamos a calcular el radical de un ideal monomial.

- a) Demuestre que un ideal monomial $I \subset k[x_1, ..., x_n]$ es primo si y solo si $I = (x_{i_1}, ..., x_{i_s})$ es el ideal generado por algunas variables $\{x_{i_1}, ..., x_{i_s}\} \subseteq \{x_1, ..., x_n\}$.
- b) Demuestre que si A es cualquier anillo conmutativo e $I, J \subseteq A$ son ideales, entonces

$$\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}, \quad \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}.$$

c) Para un monomio $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ demuestre que $\sqrt{(x^{\alpha})} = (\sqrt{x^{\alpha}})$, donde

$$\sqrt{x^\alpha} \coloneqq x_1^{\min(1,\alpha_1)} \cdots x_n^{\min(1,\alpha_n)} = \text{producto de las variables que están en } x^\alpha.$$

d) Demuestre que el ideal $(\sqrt{x^{\alpha(1)}},...,\sqrt{x^{\alpha(s)}})$ es radical.

Sugerencia: note que si $\sqrt{x^{\alpha}} = x_{i_1} \cdots x_{i_k}$, entonces $\sqrt{(x^{\alpha})} = (x_{i_1}) \cap \cdots \cap (x_{i_k})$. Usando esta observación, exprese $(\sqrt{x^{\alpha(1)}}, \dots, \sqrt{x^{\alpha(s)}}) = \bigcap_i \mathfrak{p}_i$, donde \mathfrak{p}_i son algunos ideales monomiales primos.

e) Demuestre que $\sqrt{(x^{\alpha(1)},...,x^{\alpha(s)})} = \sqrt{(\sqrt{x^{\alpha(1)}},...,\sqrt{x^{\alpha(s)}})} = (\sqrt{x^{\alpha(1)}},...,\sqrt{x^{\alpha(s)}}).$

* En este ejercicio puede ser útil la identidad $\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Spec} A \\ I \subseteq \mathfrak{p}}} \mathfrak{p}.$