Линейные непрерывные операторы в евклидовом пространстве.

 $\varepsilon_1, \varepsilon_2$ — два евклидовых пространства. $A: \varepsilon_1 \to \varepsilon_2$ — линейный оператор. Иначе говоря $\forall \alpha_{1,2} \ \forall f_{1,2} \in \varepsilon_1 \ A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha A(f_2)$.

Определение: A непрерывна в $f_0 \in \varepsilon_1 \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta_0(\varepsilon) \; \forall f \in \varepsilon_1 : \|f - f_0\| \leq \delta_0(\varepsilon) \Rightarrow \|Af - Af_0\| \leq \varepsilon.$

Из непрерывность в f_0 следует непрерывность $A \ \forall g \in \varepsilon_1$. Так как $\forall f \in \varepsilon_1 \ \|f - g\| \le \delta_0(\varepsilon)$, то $\|Af - Ag\| = \|A(f - g) + A(f_0) - A(f_0)\| = \|A(f_0 + (f - g) - A(f_0)\| \le \delta_0(\varepsilon) \Rightarrow$ непрерывна в g. В частности при $g = 0 \ \|Af\| \le \varepsilon \ \forall \|f\| \le \delta_0(\varepsilon)$. Поэтому δ_0 — универсальное число.

Пусть $\varepsilon_1=1$, $\delta_0(1)$. $\forall f\neq 0$ $\left\|\frac{f}{\|f\|}\delta_0(1)\right\|=\delta_0(1)$. Подставим это выражение под знак оператора. $\|A(\frac{f}{\|f\|}\delta_0(1))\|\leq 1\Leftrightarrow \frac{\delta_0(1)}{\|f\|}\|Af\|\leq 1\Rightarrow$ оцениваем норму образа через норму прообраза: $\forall f\in \varepsilon_1\ \|A(f)\|\leq \frac{\|f\|}{\delta_0(1)}\Rightarrow \forall f,g\in \varepsilon_1\ \|A(f-g)\|\leq \frac{1}{\delta_0(1)}\|f-g\|$. Это липшецевость оператора A на ε_1 с $L=\frac{1}{\delta_0(1)}$. Рассмотрим наименьшую константу Липшеца и назовём её нормой.

Определение: $A: \varepsilon_1 \to \varepsilon_2, A \neq 0$ — линейный и непрерывный оператор, то $\|A\| = \inf\{L > 0 \mid \|Af\| \leq L\|f\| \quad \forall f \in \varepsilon_1\}$. Очевидно, что это так же равно $\sup_{f \in \varepsilon_1, f \neq 0} \frac{\|Af\|}{\|f\|} = L_0, L_0 \leq L$.

Пример линейного разрывного оператора:

 $\varepsilon_1 = \{ f \in C^1[0,1] \}$ со скалярным произведением $(f,g) = \int_0^1 f(t) \overline{g(t)} dt$, $\varepsilon_2 = \mathbb{C}$. Пусть $A : \varepsilon_1 \to \varepsilon_2$, $A(f) = f'(0) \ \forall f \in \varepsilon_1$. Конечность нормы — критерий непрерывности. У этого оператора норма бесконечность: возмём, например, $f_n(x) = \sin nx \in \varepsilon_1$

$$A(f_n)=n$$
 $\|A(f_n)\|=|n|$ $\|f_n\|=\sqrt{\int\limits_0^1\sin^2nxdx}\leq 1\Rightarrow \|A\|=\infty$ иначе говоря $\|A\|\geq rac{|n|}{\|f_n\|}\geq n o\infty$

Или по-другому

$$g_n = \frac{1}{\sqrt{n}} f_n \underset{\text{по норме в } \varepsilon}{\longrightarrow} 0$$
$$\|g_n\|_{\varepsilon_1} \le \frac{1}{\sqrt{n}}$$
$$A(g_n) = \sqrt{n}$$
$$\|Ag_n\| = \sqrt{n} \to \infty$$

Дадим теперь два других определения операторной нормы. $\|A\| = \sup_{\underline{f} \neq 0} \frac{\|Af\|}{\|f\|} = \sup_{\underline{\|f\|=0}} \|Af\| = \sup_{\underline{f} \neq 0} \|Af\|$

 $\sup_{\|f\| \le 1} \|Af\|$. Покажем их равенство. $\boxed{1} \ge \boxed{2}$, так как $\|f\| = 1$ является сужением. С другой

стороны
$$\sup \left\|A_{\frac{f}{\|f\|}}\right\| \leq 2 \Rightarrow 1 = 2$$
. $3 \leq 2$ так как $f \neq 0$, $\|f\| \leq 1$ $\|Af\| = \underbrace{\|f\|}_{\leq 1} \underbrace{\left\|A_{\frac{f}{\|f\|}}\right\|}_{\leq \sup \|A\phi\|}$

Ho $\boxed{2} \leq \boxed{3}$ так как является сужением, поэтому $\boxed{2} = \boxed{3}$.

Пример:

Пусть $\varepsilon_1 = \mathbb{C}^n$, $\varepsilon_2 = \mathbb{C}^m$. $A: \mathbb{C}^n \to \mathbb{C}^m$ задаётся комплексной матрицей $m \times n$. $Af \in \mathbb{C}^m$ $\forall f \in \mathbb{C}^n$ есть умножение матрицы на столбец. $\|Af\|_{\mathbb{C}^m}^2 = \overline{Af}^T Af = \overline{f}^T \underbrace{\overline{A}^T A}_M f$. $M^* = \overline{M}^T = M$ $\Rightarrow M \in \mathbb{C}^{n \times n}$. Следовательно $\exists U: \mathbb{C}^n \to \mathbb{C}^n$ — унитарная матрица, то есть сохраняющая норму. $U^{-1}MU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$, $\lambda_i \in \mathbb{R}$. $\overline{f}^T Mf = \|Af\|^2 \geq 0$. $\|Uf\| = \|f\|$, поэтому можно

перейти к базису из собственных векторов. f=Ug, тогда $\|Af\|^2=\overline{U}g^TMUg=\overline{g}^T\overline{U}^TMUg$, но U — унитарная, следовательно $U^{-1}=U^*=\overline{U}^T\Rightarrow \overline{U}^TMU=U^{-1}MU=\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \Rightarrow$

 $\overline{g}^T \overline{U}^T M U g = \sum_{i=1}^n \lambda_i |g_i|^2$. Обозначим теперь $\lambda_{max} = \max \lambda_i$, тогда $\sum_{i=1}^n \lambda_i |g_i|^2 \le \lambda_{max} \sum_{i=1}^n |g_i|^2 = \lambda_{max} \|f\|^2$. Тогда $\|Af\| \le \sqrt{\lambda_{max}} \|f\|$ Обозначим $\tilde{g}_k = \delta_{kk_*}$, $\lambda_{max} = \lambda_{k_*}$, $\tilde{f} = U \tilde{g}$ и $\|\tilde{f}\| = \|\tilde{g}\| = 1$. $\sqrt{\lambda_{max}} = \|A\tilde{f}\| \le \|A\| \le \sqrt{\lambda_{max}} \Rightarrow \|A\| = \sqrt{\lambda_{max}(\overline{A}^T A)}$.

Пример:

 $\varepsilon_1=\overline{\varepsilon_2}=L_2(G)=H$ — гильбертово пространство, где $G\in\mathbb{R}^m$ — измеримое множество.

$$A: L_2(G) \to L_2(G)$$

$$(Af)(x) = \int_G \underbrace{K(t,x)}_{\text{интегральное ядро}} f(t)dt$$

$$K \in L_2(G \times G) \quad \|K\|_{L_2G \times G}^2 = \iint_{G \times G} |K|^2 dt dx \le +\infty$$

$$\|Af\|^2 = \int_G |(Af)(x)|^2 dx = \int_G dx \qquad \left| \int_G dt K(t,x) f(t) \right|^2 \le \inf_{S \to G} |K|^2 dt dx \le \int_G |K(t,x)|^2 dt \int_G |f(t)|^2 dt dx$$

$$\le \left(\iint_{G \times G} dx dt |K|^2 \right) \|f\|^2$$

Итого оценили операторную норму: $\|Af\|_{L_2G} \leq \|K\|_{L_2(G\times G)} \|f\|_{L_2(G)} \ \forall f \in L_2(G) \Rightarrow \boxed{\|A\| \leq \|K\|_{L_2(G\times G)} \|f\|_{L_2(G\times G)} \|f\|_{L$