MASTER: Market-Guided Stock Transformer for Stock Price Forecasting

Tong Li, Zhaoyang Liu, Yanyan Shen, Xue Wang, Haokun Chen, Sen Huang

Shanghai Jiao Tong University Alibaba Group

Stock Price Forecasting

- Stock price forecasting uses the historical data of stocks to predict their future trends.
 - Profitable stock investment.
 - Close price of stock u at day t: c_{u,t}
 - Return ratio, the relative change of close price in d days:

$$\tilde{r}_u = \frac{c_{u,\tau+d} - c_{u,\tau+1}}{c_{u,\tau+1}}$$

- Stock price patterns are intricate.
 - Multiple factors: macroeconomic factors, capital flows, investor sentiments ...
 - The mixing of factors interweaves the stock market as a correlated network.

Modeling Stock Correlation

- 1. Static: Predefined concepts, relationships or rules.
 - Example:
 - Industry graph stocks in the same industry are connected to each other.
 - relationship ≠ real-time correlation
 - not generalizable when events such as company listing, delisting or change in main business happen.
- 2. Dynamic: Attention mechanism.
 - Data-driven, more flexible, and applicable to the time-varying stock sets.

Framework of Existing Works

- Use sequential encoder to summarize the historical sequence of stock features and obtain stock representation.
- 2. Establish overall stock correlation and aggregate information to refine each stock representation.

Limitation: They cannot model the realistic stock correlation.

Framework of Existing Works

- 1. Use sequential encoder to summarize the historical sequence of stock features and obtain stock representation.
- 2. Establish overall stock correlation and aggregate information to refine each stock representation.

Limitation: They cannot model the realistic stock correlation.

Realistic Stock Correlation

- The dominating factors of stock prices constantly change.
- Different stocks may react to the same factor with different delays.

Instead of holding true through the whole look back window, realistic stock correlation:

- 1. Momentary: highly dynamic
- 2. Cross-time: residing in misaligned time steps.

Example:

Upstream companies' stock prices may react faster to a shortage of raw materials than those of downstream companies.

Difficulties: Complex Attention Field

To simulate the correlation, calculate pair-wise attention among all $\tau \times S$ feature vectors.

- 1. Large and complex attention field vs. stock data hunger
 - Limited observation: around 250 trading days per year
 - Clustering approaches are sensitive to initialization, unsuitable in stock domain.
 - Our solution: aggregate information from different time steps and other stocks alternatively.

Difficulties: Market Variation

- 2. The stock correlation is different under varying market status.
 - Example: in a bull market, the correlation are more significant due to investors' optimism.
 - With market variation, the features come into effect and expire.
 - Traditional investors repeatedly conduct statistical examination to select features.
 - Our solution: incorporate the market information to perform automatic feature selection.

Preliminaries

Input:

- Stock feature sequences $\{x_{u,t}\}_{u \in S, t \in [1,\tau]}$, where $x_{\{u,t\}} \in \mathbf{R}^F$
- Market status vector $m_{\tau} \in {\it I\!\!R}^{F'}$
 - Market index price (historical and current)
 - Market index trading volume (historical and current)

Output:

- Normalized Return Ratios $\{r_u\}_{u\in S}$, $r_u=\operatorname{Norm}_S(\tilde{r}_u)$
 - Encode the labels with ranking information.

MASTER: Overview

→ *y*_{1,1}

Feature Layer

4. Temporal Aggregation 1. Market-Guided Gating $z_{1,\tau}$ $z_{1,1}$ $Z_{1,2}$ Gate $m_{ au}$ 3. Inter-Stock Aggregation 5. Prediction $h_{u,1}$ $h_{u,\tau}$ $h_{1,1}$ $x_{1,1}$ 2. Intra-Stock Aggregation $\tilde{x}_{1,1}$

 $y_{1,2}$

 $y_{1, au}$

time

stocks

MASTER: Market-Guided Gating

Input: $m_{ au}$

Output: α , $|\alpha| = F$, one scaling coefficient for each feature.

$$\alpha(m_{\tau}) = F \cdot \operatorname{softmax}_{\beta}(W_{\alpha}m_{\tau} + b_{\alpha})$$

- Softmax compels a competition among features to distinguish effective ones.
- β : temperature parameters.
- F: adjust the coefficient range to be [0, F]
 - the coefficient can either enlarge or shrink the magnitude.

$$\tilde{x}_{u,t} = \alpha(m_{\tau}) \circ x_{u,t}$$

MASTER: Intra-Stock Aggregation

We perform intra-stock aggregation first.

- Smaller attention field.
- The feature of a single stock is distributed simpler.
- (1) For each stock u, we gather its feature sequence, and encode each feature with

$$Y_u = ||_{t \in [1,\tau]} \text{LayerNorm}(f(\tilde{x}_{u,t}) + p_t).$$
 p : positional codes.

- (2) Transform Y_u into Q_u^1 , K_u^1 , V_u^1 .
- (3) Compute multi-head attention and send to feed forward layers.

$$H_u^1 = ||_{t \in [1,\tau]} h_{u,t} = FFN^1(MHA^1(Q_u^1, K_u^1, V_u^1) + Y_u)$$

MASTER: Inter-Stock Aggregation

(1) For each time step t, we gather the embedding of all stocks

$$H_t^2 = ||_{u \in S} h_{u,t}$$

- (2) Transform H_t^2 into Q_t^2 , K_t^2 , V_t^2 .
- (3) Compute multi-head attention and send to feed forward layers.

$$Z_{t} = ||_{u \in S} z_{u,t} = FFN^{2}(MHA^{2}(Q_{t}^{2}, K_{t}^{2}, V_{t}^{2}) + H_{t}^{2})$$

Correlation from (v, j) to (u, i):

- 1. The local details of $y_{v,j}$ is conveyed to $h_{v,i}$ by the intra-stock aggregation of stock v.
- 2. Transmit $h_{v,i}$ to $z_{u,i}$ by inter-stock aggregation at time step i.

cross-time correlation

> MASTER: Temporal Aggregation & Prediction

- For each stock u, MASTER produces a series of temporal embedding $z_{u,t}$, $t \in [1, \tau]$.
- We use the latest temporal embedding to query from others, and summarize them into the comprehensive stock embedding:

$$e_{u} = \sum_{t \in [1,\tau]} \lambda_{u,t} z_{u,t}, \qquad \lambda_{u,t} = \frac{\exp(z_{u,t}^{T} W_{\lambda} z_{u,\tau})}{\sum_{i \in [1,\tau]} \exp(z_{u,i}^{T} W_{\lambda} z_{u,\tau})}$$

• Regression: $\hat{r}_{u} = g(e_{u})$

• Optimization: $L = \sum_{u \in S} MSE(r_u, \hat{r}_u)$

Experiments: Settings

- Chinese market, Stock sets: CSI300, CSI800
- Dataset Split:
 - Training 2008 Q1~2020 Q1, Validation 2020 Q2, Test 2020 Q3, 2022 Q4
- Prediction Setting

- Baselines: XGBoost, LSTM, GRU, TCN, Transformer, GAT, DTML
- Evaluation metrics:

Ranking-based - IC, ICIR, RankIC, RankICIR, Portfolio-based - AR, IR.

Experiments: Overall Performance

Table 1: Overall performance comparison. The best results are in bold and the second-best results are underlined. And * denotes statistically significant improvement (measured by t-test with p-value < 0.01) over all baselines.

Dataset	Model	IC	ICIR	RankIC	RankICIR	AR	IR
CSI300	XGBoost	0.051 ± 0.001	0.37 ± 0.01	0.050 ± 0.001	0.36 ± 0.01	0.23 ± 0.03	1.9 ± 0.3
	LSTM	0.049 ± 0.001	0.41 ± 0.01	0.051 ± 0.002	0.41 ± 0.03	0.20 ± 0.04	2.0 ± 0.4
	GRU	0.052 ± 0.004	$\overline{0.35 \pm 0.04}$	0.052 ± 0.005	0.34 ± 0.04	0.19 ± 0.04	1.5 ± 0.3
	TCN	0.050 ± 0.002	0.33 ± 0.04	0.049 ± 0.002	0.31 ± 0.04	0.18 ± 0.05	1.4 ± 0.5
	Transformer	0.047 ± 0.007	0.39 ± 0.04	0.051 ± 0.002	0.42 ± 0.04	0.22 ± 0.06	2.0 ± 0.4
	GAT	0.054 ± 0.002	0.36 ± 0.02	0.041 ± 0.002	0.25 ± 0.02	0.19 ± 0.03	1.3 ± 0.3
	DTML	0.049 ± 0.006	0.33 ± 0.04	0.052 ± 0.005	0.33 ± 0.04	0.21 ± 0.03	1.7 ± 0.3
	MASTER	$0.064^* \pm 0.006$	$\boldsymbol{0.42 \pm 0.04}$	$0.076^* \pm 0.005$	$\boldsymbol{0.49 \pm 0.04}$	0.27 ± 0.05	$\boldsymbol{2.4 \pm 0.4}$
CSI800	XGBoost	0.040 ± 0.000	0.37 ± 0.01	0.047 ± 0.000	0.42 ± 0.01	0.08 ± 0.02	0.6 ± 0.2
	LSTM	0.028 ± 0.002	0.32 ± 0.02	0.039 ± 0.002	0.41 ± 0.03	0.09 ± 0.02	0.9 ± 0.2
	GRU	0.039 ± 0.002	0.36 ± 0.05	0.044 ± 0.003	0.39 ± 0.07	0.07 ± 0.04	0.6 ± 0.3
	TCN	0.038 ± 0.002	0.33 ± 0.04	0.045 ± 0.002	0.38 ± 0.05	0.05 ± 0.04	0.4 ± 0.3
	Transformer	0.040 ± 0.003	0.43 ± 0.03	0.048 ± 0.003	0.51 ± 0.05	0.13 ± 0.04	1.1 ± 0.3
	GAT	0.043 ± 0.002	0.39 ± 0.02	0.042 ± 0.002	0.35 ± 0.02	0.10 ± 0.04	0.7 ± 0.3
	DTML	0.039 ± 0.004	0.29 ± 0.03	0.053 ± 0.008	0.37 ± 0.06	0.16 ± 0.03	1.3 ± 0.2
	MASTER	$0.052^* \pm 0.006$	0.40 ± 0.06	0.066 ± 0.007	0.48 ± 0.06	$0.28^* \pm 0.02$	$2.3^* \pm 0.3$

Experiments: Stock Transformer Architecture

Table 2: Experiments on CSI300 to validate the effectiveness of proposed stock transformer architecture. The best results are in bold and the second-best results are underlined.

Model	IC	ICIR	RankIC	RankICIR	AR	IR
(MA)STER	0.064 ± 0.003	$\boldsymbol{0.43 \pm 0.02}$	0.074 ± 0.004	$\boldsymbol{0.48 \pm 0.04}$	0.25 ± 0.03	2.1 ± 0.3
(MA)STER-Bi	0.058 ± 0.005	0.38 ± 0.04	0.066 ± 0.008	0.41 ± 0.05	0.19 ± 0.03	1.6 ± 0.2
Naive	0.041 ± 0.008	$\overline{0.30 \pm 0.05}$	0.046 ± 0.007	0.32 ± 0.04	$\overline{0.18\pm0.05}$	1.6 ± 0.6
Clustering	0.044 ± 0.003	0.36 ± 0.02	0.049 ± 0.005	0.39 ± 0.04	0.18 ± 0.04	1.7 ± 0.3

(MA)STER: An ablation of MASTER without the Market-Guided Gating.

(MA)STER-Bi: Substitute the transformer layer with Bi-LSTM.

Naïve: Directly compute pair-wise attention among $\tau \times S$ feature vectors.

Clustering: Apply Local Sensitive Hashing to break down the attention field.

Experiments: Market-Guided Gating

Figure 4: MASTER performance with varying β . The horizontal dash lines are performance without market-guided gating.

Gate temperature:

a smaller β forces a stronger feature selection while a larger β turns off the gating effect.

Experiments: Visualization of Attention Maps

Figure 5: The correlation towards three target stocks on Aug 19th, 2022. The y-axis is time steps in the lookback window and the x-axis is source stocks. *Avg.* denotes the evenly distributed value.

Experiments: Visualization of Attention Maps

Figure 5: The correlation towards three target stocks on Aug 19th, 2022. The y-axis is time steps in the lookback window and the x-axis is source stocks. *Avg.* denotes the evenly distributed value.

Experiments: Visualization of Attention Maps

Figure 6: Cross-time correlation of stock pairs on Aug 19th and 25th, 2022. The x-axis is the source time steps and the y-axis is the target time steps.

- ➤ We introduce a novel method MASTER for stock price forecasting, which models the realistic stock correlation and guide feature selection with market information.
- Future work can explore to mine stock correlations of higher quality and study other uses of market information.
- > \tak Data & Code: github.com/SJTU-Quant/MASTER
- ➤ Imail: 2017lt@sjtu.edu.cn

Thank you!