Analysis File

Tools used:

- 1) NLTK
- 2) Pandas
- 3) Matplotlib
- 4) Pickle

Pre-Processing Steps:

- 1) Have used porter stemmer to perform stemming of the documents and the query.
- 2) Removed all the punctuations across all the docs and replaced it with $\dot{}$ in order to handle cases for numbers like 5,000 .
- 3) Performed num2words() to convert the digits to numbers.
- 4) All the stop words were removed.

Part 1 Features Selection

A) Features Selection using TF-IDF

Methodology

• Divide Corpus into Test and Training set into the following splits:

Train	Test
80	20
70	30
50	50

- Obtain all unique terms from the training docs and preserve their respective classes.
- For each (Term, class) pair calculate logarithmic tf-idf scores.
- Divide all these pairs according to their respective class labels.
- Sort all these terms in the decreasing order of their tf-idf score in each class

• Select 50% terms from each class and obtain set union of all these terms of each class.

B) Features Selection using Mutual Information

Methodology

- Divide the corpus into Test and Train docs as performed earlier in TF-IDF feature selection. Obtain all unique terms from the training docs and preserve their respective classes.
- For each (term, class) pair calculate Mutual Information using the below formula:

$$\mathrm{I}(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p_{(X,Y)}(x,y) \log \left(rac{p_{(X,Y)}(x,y)}{p_X(x) \, p_Y(y)}
ight), \quad ext{(Eq.1)}$$

- Divide all these (term ,class)pairs according to the class labels and sort in decreasing order of MI value.
- Select 1/5 terms from each class and obtain set union of all these terms of each class.

Part 2 Text Classification

A) Naïve Byes

Training Phase

 Calculate Probability(term|Class) for all the terms selected after feature selection step.

Testing Phase

- Calculate Probability(term | Class) for all the terms of current testing document.
- Consider log likelihood and perform smoothing by adding 1 to numerator and |Vocab| to the denominator.
- Select the class for maximum sum of log likelihood values. (Please note that prior of each class is same therefore considering prior will have no effect on our result)

B) K Nearest Neighbors

Pre Processing Phase

- Obtain feature vectors for each test and train document. Arrange all testing document vectors into 2D array. Similarly obtain 2D array for training documents.
- Training Phase
- No specific training required.

Testing Phase

- Perform matrix multiplication of Testing and Training matrices. The resulting matrix will be of order (number of test docs X number of training docs). Each row represent a test document with column values as the similarity measure of(test,train) pair.
- Divide each row by magnitude of the respective test doc and each value of the column in a row by corresponding training doc's magnitude.
- Sort each row of resulting matrix in decreasing order.
- For each row (a test doc) taking voting of top K training vectors selected after sorting step for deciding predicted class label for that test doc.

Results Summary

TF-IDF and Naïve Byes Classifier

Mutual Information (MI) and Naïve Byes

TF-IDF Feature Selection and KNN

Split	Accu	racy	Confu	usion N	/latrix					
(Train:Test)										
80:20	K=1	93.4%	K=1							
	K=3	93.8%	0 -	2e+02	4	6	6	5	- 175	
	K=5	94.4%	-1 -	1	1.8e+02	1	0	0	- 150 - 125	
			- 2	5	3	1.9e+02	4	3	- 100	
			m -	5	2	5	1.9e+0	2 7	- 75 - 50	
			4 -	0	4	2	3	1.8e+02		
				Ó	í	2	3	4	- 0	
			K=3							
			0	- 2e+02	2 5		4	7	5	- 175
			1	1	1.8e+	-02	1	1	0	- 150 - 125
			2	- 6	4	1.9	e+02	5	2	- 100
			m	- 4	2		0	2e+02	5	- 75 - 50
			4	- 0	3		4	3	1.7e+02	- 25
				0	í		2	3	4	-0

Mutual Information and KNN Classifier

Split (Train:Test)	Accuracy	Confusion Matrix
80:20		K=1
	K=1 87.75%	

Analysis Performed

Accuracy vs Variation in k of KNN classifier using TF-IDF Feature selection

80:20 Split

50:50 Split

70:30 Split

Accuracy vs Variation in k of KNN classifier using MI Feature selection

80:20 Split

50:50 Split

70:30 Split

Performance of (classifier + feature selection method) vs Accuracy

TF_IDF + KNN

TF_IDF + Naïve

MI +KNN

MI + Naïve

Evaluating Performance of classifiers

Inferences Drawn:

- TF_IDF + Naïve byes outperforms every other combination of features selector and classifier combination at 80:20 and 70:30 splits. However TF_IDF + KNN proved to give highest accuracy at 50:50 split.
- Since the Data is shuffled before splitting into test and train therefore minor variation from the above inference might vary. But TF_IDF + Naive and TF_IDF + KNN are the best combination among four.
- Increase in the number of features selected using MI/TF_IDF increase the processing time.
- Selecting more number of features from each class increase the chances of noisy features getting selected for that class.
- Mutual information features selection technique is introducing more noisy features as compared to TF_IDF feature selection. Therefore MI + Naïve or MI+KNN is giving lesser accuracy than TF_IDF + Naïve and TF_IDF + KNN.
- When the splitting is more towards the training docs, the accuracy of any of the four combinations is more.

- MI with 1/5 of total number of terms as the selected features gives optimal results whereas TF_IDF with ½ of total number of terms as the selected features gives optimal results.
- Increase in the number of neighbors in KNN may Increase/decrease the accuracy.

Other Inferences:

- Increase/decrease in accuracy is not very certain with variation of Test Train Splits. This may be due to some noisy features.
- Run time increases with increase in the number of training docs.