FCC PART 15, SUBPART B and C TEST REPORT

for

POPickup

Part Number: 31A000025

Prepared for

PERSAGE, INC. 18627 BROOKHURST STREET, SUITE 185 FOUNTAIN VALLEY, CALIFORNIA 92708

Prepared by: James Ross

JAMES ROSS

Approved by:

KYLE FUJIMOTO

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: MARCH 12, 2008

	REPORT	APPENDICES				TOTAL	
	BODY	A	В	C	D	E	
PAGES	15	2	2	2	17	11	49

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	n / Title	PAGE
GENER	RAL REPORT SUMMARY	4
SUMM	2. ADMINISTRATIVE DATA 2.1 Location of Testing 2.2 Traceability Statement 2.3 Cognizant Personnel 2.4 Date Test Sample was Received 2.5 Disposition of the Test Sample 2.6 Abbreviations and Acronyms 3. APPLICABLE DOCUMENTS	4
1.	PURPOSE	5
2.	ADMINISTRATIVE DATA	6
2.1	Location of Testing	6
		6
		6
	•	6
	•	6
2.6	Abbreviations and Acronyms	6
3.	APPLICABLE DOCUMENTS	7
4.	DESCRIPTION OF TEST CONFIGURATION	8
4.1	Description Of Test Configuration - EMI	8
4.1.1	Cable Construction and Termination	8
5.	LISTS OF EUT. ACCESSORIES AND TEST EQUIPMENT	9
		9
	· · · · · · · · · · · · · · · · · · ·	10
_	• •	11
		11 11
6.2	EUT Mounting, Bonding and Grounding	11
0.2		11
7.	TEST PROCEDURES	12
7.1	RF Emissions	12
7.1.1		12
7.1.2	` 1	13
7.1.3	Radiated Emissions (Spurious and Harmonics) Test (Continued)	14
8.	CONCLUSIONS	15

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Recognitions		
В	Modifications to the EUT		
С	Additional Models Covered Under This Report		
D	Diagrams, Charts, and Photos		
	Test Setup Diagrams		
	Radiated Emissions Photos		
	Antenna and Effective Gain Factors		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of 3 Meter Radiated Site

Report Number: **B80311A2 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

POPickup P/N: 31A000025

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: POPickup

P/N: 31A000025

S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified in order to meet the specifications.

Customer: PerSage, Inc.

18627 Brookhurst Street, Suite 185 Fountain Valley, California 92708

Test Dates: March 7, 10 and 11, 2008

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205, 15.209 and 15.249

Test Procedure: ANSI C63.4

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz – 30 MHz	This test was not performed, as the EUT is an internal battery-powered device that does not connect to the AC public mains.
2	Radiated RF Emissions, 10 kHz – 9050.01 MHz (Transmitter Portion)	Complies with the limits of CFR Title 47, Part 15, Subpart C, section 15.205, 15.209, and 15.249.
3	Radiated RF Emissions, 10 kHz – 9050.01 MHz (Digital and Receiver Portions)	Complies with the Class B limits of CFR Title 47, Part 15, Subpart B.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

P/N: 31A000025

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the POPickup, P/N: 31A000025. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class B** specification limits defined by CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, 15.209, and 15.249 for the transmitter portion.

ADMINISTRATIVE DATA

2.1 Location of Testing

2.

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

PerSage, Inc.

Justin Foster Senior Software Engineer

Jim Carrigan President / CEO

Compatible Electronics, Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received just prior to the initial test date of March 7, 2008.

2.5 Disposition of the Test Sample

The sample has not been returned to PerSage, Inc. as of the date of this report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF Radio Frequency

EMI Electromagnetic Interference

EUT Equipment Under Test

P/N Part Number
S/N Serial Number
AC Alternating Current
DC Direct Current
HP Hewlett Packard

ITE Information Technology Equipment

CML Corrected Meter Limit

LISN Line Impedance Stabilization Network

DoC Declaration of Conformity

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup P/N: 31A000025

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

DESCRIPTION OF TEST CONFIGURATION

4.1 Description Of Test Configuration - EMI

Setup and operation of the equipment under test.

Specifics of the EUT and Peripherals Tested

Transmit and Receive Modes: The POPickup, P/N: 31A000025 (EUT) is a stand-alone device. The EUT was tested in three orthogonal axes. The EUT was set to continuously transmit and receive.

Note: In Receive mode, the EUT was continuously receiving a signal from the POPickup P/N: 31A000026.

The POPickup, P/N: 31A000026 was connected to its AC adapter and a laptop computer via its power and mini USB ports, respectively. Further, the laptop computer was also connected to a printer via its printer port. The POPickup, P/N: 31A000026 was placed approximately 50 feet away from the test site.

Note: The EUT contains a soldered, PCB mounted antenna.

The final radiated data was taken in both modes above. Please see Appendix E for the data sheets.

4.1.1 Cable Construction and Termination

Cable 1

4.

This is a 2-meter braid and foil shielded cable connecting the POPickup P/N: 31A000026 to the laptop. The cable contains a mini USB connector at the EUT end and a standard USB end. The cable was bundled to a length of 1 meter and its shield was terminated to the chassis via the connectors.

Cable 2

This is a 2-meter braid and foil shielded cable connecting the laptop to the printer. The cable contains a metallic D-25 connector at the laptop end and a metallic Centronics type connector at the printer end. The cable was bundled to a length of 1 meter and its shield was terminated to the chassis via the connectors.

Cable 3

This is a 2-meter unshielded cable connecting the laptop to its AC Adapter. The cable contains a 3-pin power connector at the laptop end and is hard wired at the AC Adapter. The cable also contains a molded ferrite at the laptop end.

Report Number: **B80311A2**FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup P/N: 31A000025

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
POPickup (EUT)	PERSAGE, INC.	P/N: 31A000025	N/A	VOL31A000025
POPickup	PERSAGE, INC.	P/N: 31A000026	N/A	VOL31A000026
LAPTOP COMPUTER	DELL	PPO4L	CN-07X092-12961-2CI	DoC
AC ADAPTER (LAPTOP)	DELL	AA20031	CN-09364U-16291-01TG	N/A
PRINTER	CITIZEN	LSP-10	1184398-72	DLK66TLSP-10

5.2

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CALIBRATION DATE	CALIBRATION DUE DATE	
RF RADIATED EMISSIONS TEST EQUIPMENT (LAB B AND LAB D)						
EMI Receiver	Rohde & Schwarz	ESIB40	100172	November 27, 2006	November 27, 2008	
Preamplifier	Com Power	PA-102	1017	January 11, 2008	January 11, 2009	
Microwave Preamplifier	Com Power	PA-122	181921	March 3, 2008	March 3, 2009	
Biconical Antenna	Com Power	AB-900	15226	February 28, 2008	February 28, 2009	
Log Periodic Antenna	Com Power	AL-100	16060	July 9, 2007	July 9, 2008	
Horn Antenna	Com Power	AH-118	10073	July 17, 2006	July 17, 2008	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	
Computer	Hewlett Packard	4530	US91912319	N/A	N/A	
	RF RADIATE	D EMISSIONS	TEST EQUIPM	IENT (LAB A)		
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A	
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	3638A08768	August 14, 2007	August 14, 2008	
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	3701A22262	August 14, 2007	August 14, 2008	
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	August 14, 2007	August 14, 2008	
Loop Antenna	Com Power	AL-130	17089	September 24, 2007	September 24, 2008	
Biconical Antenna	Com Power	AB-900	15227	February 28, 2008	February 28, 2008	
Log Periodic Antenna	Com Power	AL-100	16241	July 9, 2007	July 9, 2008	
Preamplifier	Com-Power	PA-103	1582	January 11, 2008	January 11, 2009	
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A	
Computer	Hewlett Packard	4530	US91912319	N/A	N/A	

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

P/N: 31A000025

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report POPickup

РОРіскир P/N: 31A000025

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Test Results:

This test was not performed, as the EUT is an internal battery-powered device that does not connect to the AC public mains.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

P/N: 31A000025

7.1.2 Radiated Emissions (Spurious and Harmonics) Test

The EMI Receiver and spectrum analyzer (along with the quasi-peak adapter) were used as a measuring meter. Amplifiers were used to increase the sensitivity of the instrument. The Com-Power Preamplifier, Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Com-Power Microwave Preamplifier, Model: PA-122 was used for frequencies above 1 GHz. For frequencies below 30 MHz, the loop antenna was used, which contains its own built-in amplifier. The EMI Receiver and spectrum analyzer were used in the peak detect mode with the "Max Hold" feature activated. In this mode, the EMI Receiver or spectrum analyzer records the highest measured reading over all the sweeps.

The frequencies above 1 GHz were averaged manually by narrowing the video filter down to 10 Hz and putting the sweep time on AUTO on the EMI Receiver or spectrum analyzer to keep the amplitude reading calibrated.

The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.0501 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results. The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

P/N: 31A000025

7.1.3 Radiated Emissions (Spurious and Harmonics) Test (Continued)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3-meter test distance to obtain the final test data. The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with the **Class B** limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, sections 15.205, 15.209, and 15.249.

FCC Part 15 Subpart B and FCC Section 15.249 Test Report

POPickup

8. CONCLUSIONS

The POPickup, P/N: 31A000025 (EUT), as tested, meets all of the **Class B** specification limits defined in CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.209, and 15.249 for the transmitter portion.

Report Number: **B80311A2 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

POPickup P/N: 31A000025

APPENDIX A

LABORATORY RECOGNITIONS

LABORATORY RECOGNITIONS

Compatible Electronics has the following agency accreditations:

National Voluntary Laboratory Accreditation Program - Lab Code: 200528-0

Voluntary Control Council for Interference - Registration Numbers: R-983, C-1026, R-984 and C-1027

Bureau of Standards and Metrology Inspection - Reference Number: SL2-IN-E-1031

Conformity Assessment Body for the EMC Directive Under the US/EU MRA Appointed by NIST

Compatible Electronics is recognized or on file with the following agencies:

Federal Communications Commission

Industry Canada

Radio-Frequency Technologies (Competent Body)

Report Number: **B80311A2 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

POPickup P/N: 31A000025

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.249 or FCC Class B specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT.

APPENDIX C

ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

POPickup

P/N: 31A000025

S/N: N/A

There were no additional models covered under this report.

APPENDIX D

DIAGRAMS, CHARTS, AND PHOTOS

OPEN LAND > 15 METERS

FIGURE 1: PLOT MAP AND LAYOUT OF 3 METER RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND SCREEN

D = TEST DISTANCE (meters) = WOOD COVER

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15227

CALIBRATION DATE: FEBRUARY 28, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	12.3	100	10.6
35	9.4	120	13.6
40	9.0	140	11.8
45	9.9	160	12.3
50	11.3	180	15.7
60	9.4	200	16.8
70	7.4	250	14.5
80	6.2	275	18.7
90	6.8	300	21.4

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16241

CALIBRATION DATE: JULY 9, 2007

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	15.2	700	19.9
400	15.4	800	22.3
500	17.0	900	22.3
600	19.1	1000	24.2

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: JANUARY 11, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	32.9	300	32.4
40	32.7	350	32.4
50	32.8	400	32.2
60	32.9	450	31.7
70	32.9	500	32.1
80	32.9	550	31.8
90	32.7	600	32.0
100	32.8	650	32.0
125	32.9	700	32.1
150	32.6	750	32.0
175	32.7	800	31.6
200	32.7	850	31.6
225	32.5	900	31.5
250	32.7	950	31.7
275	32.5	1000	31.3

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15226

CALIBRATION DATE: FEBRUARY 28, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
(IVIIIZ)	(ub)	(IVIIIZ)	(ub)
30	12.1	100	10.7
35	12.2	120	13.6
40	11.7	140	12.1
45	9.9	160	12.2
50	11.3	180	15.2
60	9.4	200	16.5
70	7.6	250	16.5
80	6.0	275	18.1
90	6.8	300	21.5

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16060

CALIBRATION DATE: JULY 9, 2007

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	13.5	700	20.5
400	15.8	800	21.6
500	17.0	900	21.3
600	19.2	1000	22.2

COM-POWER PA-102

PREAMPLIFIER

S/N: 1017

CALIBRATION DATE: JANUARY 11, 2008

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
,	` /	(/	` ,
30	38.2	300	38.3
40	38.0	350	38.0
50	38.3	400	38.1
60	38.6	450	37.5
70	38.4	500	37.9
80	38.4	550	37.9
90	38.3	600	37.8
100	38.1	650	37.5
125	38.5	700	38.0
150	38.2	750	37.7
175	38.1	800	37.1
200	38.4	850	37.1
225	38.2	900	37.1
250	38.2	950	37.0
275	38.0	1000	36.5

COM-POWER PA-122

PREAMPLIFIER

S/N: 181921

CALIBRATION DATE: MARCH 3, 2008

-			
FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.32	10.0	35.47
1.5	35.40	10.5	35.05
2.0	34.77	11.0	34.16
2.5	35.07	11.5	33.75
3.0	34.86	12.0	34.65
3.5	34.48	12.5	34.41
4.0	34.30	13.0	35.36
4.5	33.96	13.5	35.30
5.0	34.06	14.0	35.87
5.5	34.54	14.5	36.44
6.0	35.90	15.0	36.24
6.5	36.85	15.5	35.92
7.0	36.55	16.0	35.53
7.5	35.31	16.5	35.29
8.0	33.57	17.0	34.96
8.5	33.36	17.5	34.02
9.0	35.01	18.0	33.39
9.5	35.97	18.5	32.70

COM-POWER AH-118

DOUBLE RIDGE HORN ANTENNA

S/N: 10073

CALIBRATION DATE: JULY 17, 2006

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	25.331	10.0	42.391
1.5	27.507	10.5	39.194
2.0	31.581	11.0	38.504
2.5	30.906	11.5	40.724
3.0	30.276	12.0	41.079
3.5	30.396	12.5	41.014
4.0	30.881	13.0	41.201
4.5	32.77	13.5	42.335
5.0	34.067	14.0	43.248
5.5	33.914	14.5	45.639
6.0	34.028	15.0	43.197
6.5	35.779	15.5	41.751
7.0	38.347	16.0	42.462
7.5	39.096	16.5	41.908
8.0	39.377	17.0	40.277
8.5	38.646	17.5	48.117
9.0	37.438	18.0	54.113
9.5	38.403		

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: SEPTEMBER 24, 2007

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-41.27	10.23
0.01	-41.96	9.54
0.02	-41.73	9.77
0.03	-40.46	11.04
0.04	-40.56	10.94
0.05	-42.00	9.50
0.06	-41.30	10.20
0.1	-41.43	10.07
0.2	-43.90	7.60
0.3	-41.43	10.07
0.4	-41.40	10.10
0.5	-41.40	10.10
0.6	-40.93	10.57
1	-40.83	10.67
2	-40.3	11.20
5	-40.2	11.30
8	-40.6	10.90
9	-40.1	11.40
10	-40.4	11.10
15	-41.67	9.83
20	-41.10	10.40
25	-42.8	8.70
30	-42.8	8.70

FRONT VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB B

REAR VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB B

FRONT VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB D

REAR VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB D

FRONT VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB A

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

PERSAGE, INC.
POPickup
PART NUMBER: 31A000025
FCC SUBPART B AND C – RADIATED EMISSIONS – LAB A

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

Report Number: **B80311A2 FCC Part 15 Subpart B** and **FCC Section 15.249** Test Report

POPickup P/N: 31A000025

APPENDIX E

DATA SHEETS

RADIATED EMISSIONS

DATA SHEETS

FCC 15.249

PerSage, Inc. Date: 03/07/08 POPickup Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

X-Axis

Transmit Mode

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)		Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
905.01	83.86	V	94	-10.14	Peak	1	315	
1810	40.91	V	74	-33.09	Peak	1	315	
1810	36.58	V	54	-17.42	Avg	1	315	
2715	54.4	V	74	-19.6	Peak	1	315	
2715	50.12	V	54	-3.88	Avg	1	315	
3620.04	48.55	V	74	-25.45	Peak	1	315	
3620.04	35.29	V	54	-18.71	Avg	1	315	
					, and the second			
4525.05	45.93	V	74	-28.07	Peak	1	315	
4525.05	28.91	V	54	-25.09	Avg	1	315	
5430.06	54.28	V	74	-19.72	Peak	1	315	
5430.06	48.61	V	54	-5.39	Avg	1	315	
0005.07	40.04		7.4	07.00	Б.		045	
6335.07	46.61	V	74	-27.39	Peak	1	315	
6335.07	33.02	V	54	-20.98	Peak	1	315	
7240.08	46.35	V	74	-27.65	Peak	1	315	
7240.08	34.25	V	54	-19.75	Peak	1	315	
12 10.00	323	•	<u> </u>	10.10	, oan		0.0	
8145.09	47.75	V	74	-26.25	Peak	1	315	
8145.09	35.78	V	54	-18.22	Peak	1	315	
9050.1	46.27	V	74	-27.73	Peak	1	315	
9050.1	34.05	V	54	-19.95	Peak	1	315	

FCC 15.249

PerSage, Inc.

POPickup

Date: 03/07/08

Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

X-Axis Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
905.01	92.96	Н	94	-1.04	Peak	1	315	
1810	50.11	Н	74	-23.89	Peak	1.19	150	
1810	46.14	Н	54	-7.86	Avg	1.19	150	
2715	59.53	Н	74	-14.47	Peak	1.19	135	
2715	45.26	Н	54	-8.74	Avg	1.19	135	
3620.04	46.52	Н	74	-27.48	Peak	2.07	135	
3620.04	33.28	Н	54	-20.72	Avg	2.07	135	
4505.05	44.00		7.4	00.74	Б.	4.07	405	
4525.05	44.29	Н	74	-29.71	Peak	1.37	125	
4525.05	36.13	Н	54	-17.87	Avg	1.37	125	
5430.06	49.93	Н	74	-24.07	Peak	1.87	125	
5430.06	37.37	Н	54	-16.63	Avg	1.87	125	
3430.00	31.31	1.1	J 1	-10.03	Avy	1.07	123	
6335.07	46.75	Н	74	-27.25	Peak	1.68	125	
6335.07	33.03	Н	54	-20.97	Peak	1.68	125	
7240.08	48.53	Н	74	-25.47	Peak	1.69	150	
7240.08	36.41	Н	54	-17.59	Peak	1.69	150	
8145.09	49.76	Н	74	-24.24	Peak	1.56	135	
8145.09	38.08	Н	54	-15.92	Peak	1.56	135	
9050.1	49.19	Н	74	-24.81	Peak	1.58	225	
9050.1	35.88	Н	54	-18.12	Peak	1.58	225	

FCC 15.249

PerSage, Inc. Date: 03/07/08 POPickup Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

Y-Axis

Transmit Mode

						Peak /	Ant.	Table	
905.01 89.76 V 94 -4.24 Peak 1 315 1810 48.41 V 74 -25.59 Peak 1.42 135 1810 45.87 V 54 -8.13 Avg 1.42 135 2715 57.11 V 74 -16.89 Peak 1.22 125 2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.36 150 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	Freq.	Level				QP/	Height	Angle	
1810 48.41 V 74 -25.59 Peak 1.42 135 1810 45.87 V 54 -8.13 Avg 1.42 135 2715 57.11 V 74 -16.89 Peak 1.22 125 2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 5430.06 53.21 V 74 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 <th>(MHz)</th> <th>(dBuV)</th> <th>Pol (v/h)</th> <th>Limit</th> <th>Margin</th> <th>Avg</th> <th>(m)</th> <th>(deg)</th> <th>Comments</th>	(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
1810 45.87 V 54 -8.13 Avg 1.42 135 2715 57.11 V 74 -16.89 Peak 1.22 125 2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.36 150 7240.08 49.41 V 74	905.01	89.76	V	94	-4.24	Peak	1	315	
1810 45.87 V 54 -8.13 Avg 1.42 135 2715 57.11 V 74 -16.89 Peak 1.22 125 2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.36 150 7240.08 49.41 V 74									
2715 57.11 V 74 -16.89 Peak 1.22 125 2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.36 150 7240.08 49.41 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V <						Peak			
2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	1810	45.87	V	54	-8.13	Avg	1.42	135	
2715 52.71 V 54 -1.29 Avg 1.22 125 3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
3620.04 42.96 V 74 -31.04 Peak 1.23 150 3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150									
3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	2715	52.71	V	54	-1.29	Avg	1.22	125	
3620.04 30.68 V 54 -23.32 Avg 1.23 150 4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
4525.05 45.04 V 74 -28.96 Peak 1.22 125 4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	620.04	42.96			-31.04	Peak	1.23	150	
4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	620.04	30.68	V	54	-23.32	Avg	1.23	150	
4525.05 33.22 V 54 -20.78 Avg 1.22 125 5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
5430.06 53.21 V 74 -20.79 Peak 1.41 125 5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	525.05	45.04		74	-28.96	Peak	1.22	125	
5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	525.05	33.22	V	54	-20.78	Avg	1.22	125	
5430.06 44.23 V 54 -9.77 Avg 1.41 125 6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
6335.07 45.11 V 74 -28.89 Peak 1.25 135 6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	430.06	53.21		74	-20.79	Peak	1.41	125	
6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	430.06	44.23	V	54	-9.77	Avg	1.41	125	
6335.07 32.95 V 54 -21.05 Peak 1.25 135 7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
7240.08 49.11 V 74 -24.89 Peak 1.36 150 7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	335.07	45.11	V	74	-28.89	Peak	1.25	135	
7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150	335.07	32.95	V	54	-21.05	Peak	1.25	135	
7240.08 36.43 V 54 -17.57 Peak 1.36 150 8145.09 49.47 V 74 -24.53 Peak 1.36 150									
8145.09 49.47 V 74 -24.53 Peak 1.36 150	240.08	49.11		74	-24.89	Peak	1.36	150	
	240.08	36.43	V	54	-17.57	Peak	1.36	150	
8145.09 38.07 V 54 -15.93 Peak 1.36 150	145.09	49.47		74	-24.53	Peak		150	
	145.09	38.07	V	54	-15.93	Peak	1.36	150	
9050.1 48.09 V 74 -25.91 Peak 1.36 180	9050.1			74	-25.91	Peak	1.36	180	
9050.1 35.91 V 54 -18.09 Peak 1.36 180	9050.1	35.91	V	54	-18.09	Peak	1.36	180	

FCC 15.249

PerSage, Inc.

POPickup

Date: 03/07/08

Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

Y-Axis Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
905.01	87.26	Н	94	-6.74	Peak	1	315	
1810	45.88	Н	74	-28.12	Peak	1.21	135	
1810	41.68	Н	54	-12.32	Avg	1.21	135	
2715	39.63	Н	74	-34.37	Peak	1.38	225	
2715	26.51	Н	54	-27.49	Avg	1.38	225	
0000 6 4	00.46		7.4	04.04	<u> </u>	4.00	405	
3620.04	39.19	Н	74	-34.81	Peak	1.38	125	
3620.04	26.29	Н	54	-27.71	Avg	1.38	125	
4525.05	42.13	Н	74	-31.87	Peak	1.39	135	
4525.05	29.72	H	74 54	-31.87		1.39	135	
4525.05	29.72	П	54	-24.20	Avg	1.39	133	
5430.06	43.79	Н	74	-30.21	Peak	1.63	125	
5430.06	31.48	Н	54	-22.52	Avg	1.63	125	
0.00.00	00		<u> </u>		, g			
6335.07	47.41	Н	74	-26.59	Peak	1.62	135	
6335.07	33.01	Н	54	-20.99	Peak	1.62	135	
7240.08	50.09	Н	74	-23.91	Peak	1.63	150	
7240.08	34.18	Н	54	-19.82	Peak	1.63	150	
8145.09	50.35	Н	74	-23.65	Peak	1.62	135	
8145.09	38.54	Н	54	-15.46	Peak	1.62	135	
9050.1	49.64	Н	74	-24.36	Peak	1.65	225	
9050.1	35.92	Н	54	-18.08	Peak	1.65	225	

Report Number: B80311A2

FCC 15.249

PerSage, Inc. Date: 03/07/08 **POPickup** Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

Z-Axis

Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
905.01	89.26	V	94	-4.74	Peak	1	315	
1810	46.74	V	74	-27.26	Peak	1.49	125	
1810	45.68	V	54	-8.32	Avg	1.49	125	
2715	54.96	V	74	-19.04	Peak	1.87	135	
2715	50.26	V	54	-3.74	Avg	1.87	135	
3620.04	51.43	V	74	-22.57	Peak	1.87	125	
3620.04	40.07	V	54	-13.93	Avg	1.87	125	
4525.05	49.34	V	74	-24.66	Peak	1.33	125	
4525.05	42.14	V	54	-11.86	Avg	1.33	125	
5430.06	54.97	V	74	-19.03	Peak	1.33	125	
5430.06	50.47	V	54	-3.53	Avg	1.33	125	
6335.07	43.76	V	74	-30.24	Peak	1.33	125	
6335.07	31.36	V	54	-22.64	Peak	1.33	125	
7240.08	45.86	V	74	-28.14	Peak	1.35	125	
7240.08	34.17	V	54	-19.83	Peak	1.35	125	
8145.09	47.83	V	74	-26.17	Peak	1.33	125	
8145.09	35.68	V	54	-18.32	Peak	1.33	125	
9050.1	46.32	V	74	-27.68	Peak	1.38	150	
9050.1	33.94	V	54	-20.06	Peak	1.38	150	

FCC 15.249

PerSage, Inc.

POPickup

Date: 03/07/08

Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

Z-Axis Transmit Mode

					Peak /	Ant.	Table	
Freq.	Level				QP/	Height	Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
905.01	87.26	Н	94	-6.74	Peak	1	315	
1810	36.71	Н	74	-37.29	Peak	1.49	135	
1810	24.93	Н	54	-29.07	Avg	1.49	135	
2715	38.28	Н	74	-35.72	Peak	1.51	180	
2715	26.04	Н	54	-27.96	Avg	1.51	180	
0000.04	44.00		7.4	00.00	D I	4.00	405	
3620.04	44.38	H	74	-29.62	Peak	1.39	135	
3620.04	26.34	Н	54	-27.66	Avg	1.39	135	
4525.05	44.63	Н	74	-29.37	Peak	1.41	125	
4525.05	30.22	Н	54	-23.78	Avg	1.41	125	
4323.03	30.22	11	34	-23.70	Avg	1.41	123	
5430.06	44.31	Н	74	-29.69	Peak	1.39	150	
5430.06	31.52	Н	54	-22.48	Avg	1.39	150	
6335.07	46.18	Н	74	-27.82	Peak	1.41	125	
6335.07	32.94	Н	54	-21.06	Peak	1.41	125	
7240.08	48.71	Н	74	-25.29	Peak	1.39	225	
7240.08	36.48	Н	54	-17.52	Peak	1.39	225	
8145.09	50.51	Н	74	-23.49	Peak	1.41	125	
8145.09	38.11	Н	54	-15.89	Peak	1.41	125	
0050.4	40.00		7.4	05.00	Daali	4.00	205	
9050.1	48.62	H	74 54	-25.38	Peak	1.39	225	
9050.1	35.93	П	54	-18.07	Peak	1.39	225	

P/N: 31A000025

FCC 15.249 and FCC Class B

PerSage, Inc. Date: 03/07/08 POPickup Labs: B and D

P/N: 31A000025 Tested By: Kyle Fujimoto

Radiated Emissions, 1 GHz to 9.0501 GHz, X-Axis (Worst Case) Transmit and Receive Modes

- Franci	Laval				Peak / QP /	Ant.	Table	
Freq. (MHz)	Level	Pol (v/h)	Limit	Margin	QP/ Avg	Height (m)	Angle (deg)	Comments
5428.45		V (√///)			Peak			
		H	54 54	-7.48		1.5 1.5	225	Receive Mode
5428.08	45.67	П	54	-8.33	Peak	1.5	225	Receive Mode
								No other emissions
								detected from either mode
								for both vertical
								and horizontal polarizations

FCC 15.249 and FCC Class B

PerSage, Inc.

Date: 03/11/08
POPickup

Lab: A

P/N: 31A000025 Tested By: James Ross

Radiated Emissions, 10 kHz to 30 MHz, X-Axis (Worst Case) Transmit and Receive Modes

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)	(dBuV)	Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
								No radiated emissions
								discovered within
								the above noted
								test frequency range

P/N: 31A000025

FCC 15.249 and FCC Class B

PerSage, Inc.

Date: 03/10/08
POPickup

Lab: A

P/N: 31A000025 Tested By: Brandon Taylor

Radiated Emissions, 30 MHz to 1 GHz, X-Axis (Worst Case) Transmit and Receive Modes

Freq.	Level				Peak / QP /	Ant. Height	Table Angle	
(MHz)		Pol (v/h)	Limit	Margin	Avg	(m)	(deg)	Comments
	,	, ,		- J	<u> </u>	, ,	ν υ,	
								No radiated emissions
								discovered within
								the above noted
								test frequency range