External display Dual role / Display charging power Alternate mode on dock connector Charging / Data System power, up to 100W

Overview

Architecture

Product Portfolio

Solution

USB Type-C Overview

USB Power Delivery specification introduces USB Type-C receptacle, plug and cable; they provide a smaller, thinner and more robust alternative to existing USB interconnect. Main features are:

- Enable new and exciting host and device form-factors where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation

Type-C Features

- Enable **new** and exciting host and device **form-factors** where size, industrial design and style are important parameters
- Work **seamlessly with existing USB** host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation
- Simple Power Delivery implementation (BMC)

Mode of Operation	Nominal Voltage	Maximum Current	Notes
USB 2.0	5 V	500 mA	Default current, based on definitions in the base
USB 3.1	5 V	900 mA	specifications
USB BC 1.2	5 V	Up to 1.5 A	Legacy charging
USB Type-C @ 1.5 A	5 V	1.5 A	Supports high power devices
USB Type-C @ 3.0 A	5 V	3 A	Supports higher power devices
USB PD	Configurable up to 20 V	Configurable up to 5 A	Directional control and power level management

The Re-Evolution of USB

USB has evolved from a data interface capable of supplying limited power to a primary provider of *power* with a data interface

Power Delivery

More **Power** with USB Power Delivery (100W)

Type-C

More **Flexibility** with a new reversible USB-C connector

Alternate Mode More **Protocols** (Display Port, HDMI, VGA, Ethernet...)

More Speed with USB 3.1 (10 Gbit/s)

USB PD → Power Profiles

as of today per USB PD release 2.0

Source capabilities organized as profiles

· Additional capabilities possible as optional extensions to standard pr

USB PD → New Profiles proposal

Power Adapter Examples

	Permitted		Not permitted
	Standard	Include optionality ⁽¹⁾	
"15 W"	5 V @ 3 A (15 W)	5 V @ 3 A (15 W) 8 V @ 1.8 A (15 W)	5 V @ 2 A (10 W) 8 V @ 1.8 A (15 W)
"27 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 12 V @ 2.25 A (27 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 12 V @ 3 A (36 W)
"45 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W) 16 V @ 2.8 A (45 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) X 16 V @ 2.8 A (45 W)
"60 W"	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 3 A (45 W) 20 V @ 3 A (60 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 4 A (60 W) 20 V @ 3 A (60 W)	5 V @ 3 A (15 W) 9 V @ 3 A (27 W) 15 V @ 5 A (75 W) 20 V @ 3 A (60 W)

(1) Making use of optionality is not encouraged as it diminishes interoperability – should only be utilized in specific use cases where a local optimization is of value and the standard voltages are still supported by Source & Sink

USB 2.0 Contributors, USB 3.0 Contributors and USB-IF Confidential

USB 2.0 Interface High Speed Data Path (TX for USB 3.1, or reconfigured in Alternate Mode)

A1	A2	A3	A4	A 5	A6	A7	A8	Α9	A10	A12	A12
GND	TX1+	TX1-	V_{RIIS}	CC1	D+	D-	SBU1	V_{RIIS}	RX2-	RX2+	GND
GND	RX1+	RX1-	\/	SBU2	D	Δ.	CCO	17	TV2	TV2.	GND
טווט	LV1+	KVI-	V _{BUS}	SDUZ	D-	D+	662	V _{RUS}	TX2-	I ΛZ+	טווט

Secondary Bus Cable Bus Power Cable Ground

Configuration Channel

Two pins on the USB Type-C receptacle, CC1 and CC2, are used in the discovery, configuration and management of connections across USB type-C cable

Type-C Pin Outs Functions

Plug

High Speed Data Path (RX for USB 3.1, or reconfigured in Alternate Mode)

USB 2.0 Interface

High Speed Data Path (TX for USB 3.1, or reconfigured in Alternate Mode)

Secondary Bus Cable Bus Power Cable Ground

Configuration Channel

On a standard USB Type-C cable, only a single CC wire within each plug is connected through the cable to establish signal orientation

The other CC pin is repurposed as V_{CONN} for powering electronics

Also, only one set of USB 2.0 D+/D- wires are implemented

Architecture

Architecture and key words

CNTI

USB Type-C CC Connections

DFP -**UFP - Sink Source** Vaus Source -→ VBUS Sink 4 possible CC Connection configurations Detection Connection and muyes Detection control → PD (CC1) (CC1) (CC2) (CC2) VCONN USB Type-C CC2 Current Detection

- Detect attach/detach of USB ports, e.g. a DFP to a UFP
- Resolve cable orientation and twist connections to establish USB data bus routing
- Establish DFP and UFP roles between two attached ports
- Discover and configure VBUS
- USB Power Delivery Communication

USB PD Stack & Policy

Policies

System Policy Manager (system wide) is optional. It monitors and controls System Policy between various Providers and Consumers connected via USB.

Device Policy Manager (one per Provider or Consumer) provides mechanisms to monitor and control the USB-PD within a particular Provider or Consumer. It enables local policies to be enforced across the system by communication with the System Policy Manager.

Policy Engine (one per Source or Sink Port) interacts directly with the Device Policy Manager in order to determine the present local policy to be enforced.

Protocol Layer

The Protocol Layer forms the messages used to communicate information between a pair of ports. It receives inputs from the Policy Engine indicating which messages to send and indicates the responses back to the Policy Engine

Physical Layer

It is responsible for sending and receiving messages across either the V_{BUS} or CC wire. It consists of a transceiver that superimposes a signal (BFSK on V_{BUS} or BMC on CC) on the wire.

It is responsible for managing data on the wire and for collision avoidance and detects errors in the messages using a CRC

Product Portfolio

A complete offer to "lean in" USB PD Ecosystem

Hig

High Voltage

Flyback Controller: STCH02

Power MOSFET

Profile 1-2-3 Power Source Building Blocks

Rectifier

Low Voltage

CC/CV SEA01

Feedback Network Selection

USB PD Interface IC

- It covers profile 1-2-3 from 5W to 45W
- High Efficiency
- Low EMI design: intelligent Jitter for EMI suppression

STCH02

Primary Side Controller: Adapters up to 45W

8 VDD

GD

6 ∏ GND

5 SENSE

SO8

NC ☐ 2

FB **□** 3

ZCD ☐ 4

Features

- Proprietary Constant current output regulation (CC) with no opto-coupler
- 700V embedded HV start-up circuit
- Quasi-resonant (QR) Zero Voltage Switching (ZVS) operation
- Valley skipping at medium-light load and advanced burst mode operation at no-load for under 10mW consumption
- Accurate adjustable output OVP

Benefits

- Low part count. BOM reduction thanks to an extensive features integration
- Exceeding 5 stars: No-Load power < 10mW
 - HV start-up zero power consumption
 - Advanced burst-mode operation
- Flexibility: suitable for adapters from 5W to 40W
- High Efficiency
- Low EMI design: intelligent jitter for EMI suppression

Profile 4, 5

Power Source Building Blocks

PFC PR O—

Datasheet: available on www.st.com

SO16

L6563H

Transition Mode PFC controller

Features

- 700V High Voltage Start-up circuit
- Fast bidirectional input voltage feedforward
- Adjustable OVP
- AC Brownout Detection
- Tracking boost function
- Inductor saturation protection
- Proprietary THD optimizer circuit
- Interface for cascaded converters
- -600mA/+800mA gate driver
- Low steady state ripple and current distortion with limited undershoot or overshoot of the preregulator's output thanks to new input voltage feed-forward implementation
- Reduced THD of the current
- High reliability thanks to a full set of protections
- HV start-up significantly reduces consumption compared to standard discrete circuit solutions
- Facilitated cooperation with cascaded DC-DC converter thanks to several power management & housekeeping functions

High power adapters 90W to 250W

Series-resonant half-bridge topology

Features

- · Self adjusting adaptive dead time
- Anti-capacitive mode protection
- Two-level OCP
 - Frequency shift
 - Immediate shutdown
- Safe-start procedure
- Burst-mode operation at light load
- Brown-out protection
- Interface with PFC controller

Datasheet: available on www.st.com

Benefits

- High efficiency:
 - Reduced internal consumption (Ig=1mA)
 - Adaptive dead time allows design optimization to achieve ZVS with lower magnetizing current
- Improved reliability and lifetime thanks to anticapacitive protection and smooth start-up circuit
- Reduced audible noise when entering burstmode operation thanks to smooth restart feature

USB-PD Power MOSFET product families

800V-1500V

K5

600V-650V

M2

Price/Performance

M6

Premium efficiency

40-120V

Flyback

Flyback/PFC/LLC

Synch Rec

Flyback Architecture **Outstanding Form Factor**

STL8N80K5

800V, 950mOhm, 13nC

PowerFLAT5x6

VHV PowerMOSFETs

Features

- Unmatched R_{DS(on)} at very high BVDSS 800-950V-1050V
- Ultra-Low Q_G and high switching speed
- Extremely low thermal resistance
- High quality & reliability

Benefits

- Lower on-state conduction losses
- Best switching losses
- High efficiency with lower design complexity
- Ultra small Form factor

Product range example

Part Number	B _{VDss}	R _{DS(on)}	I _D
STB13N80K5	800V	0.45Ω	12A
STD8N80K5	800V	0.95Ω	6A
STD9N80K5	800V	0.90Ω	7A

PFC PRE-REGULATOR (OPTIONAL) ULC RESONANT HALF BRIDGE WITH SYNCH RECTIFIED VNA:

Product range example

STF13N60M6

PFC CTRL

PFC	V _{DSS}	R _{DS(on)}	I _D
STF24N60M2	600V	0.190Ω	18A
STF25N60M2-EP	600V	0.188Ω	18A
STF20N60M2-EP	600V	0.278Ω	13A
LLC	V _{DSS}	R _{DS(on)}	I _D
STF9N60M2	600V	0.750Ω	5.5A
STF15N60M2-EP	600V	0.378Ω	11A
STFI11N60M2-EP (e.s.available)	600V	0.595Ω	8.0A
LLC	V _{DSS}	R _{DS(on)}	I _D
STF9N60M6	600V	0.750Ω	ES April '16
STF10N60M6	600V	0.600Ω	ES April '16

600V

 0.380Ω

LLC CTRL

SR CTRL

ES April '16

PFC

Performance

LLC

Performance

LLC

Premium

Power MOSFET

PFC & LLC Architecture

Features

- Up to 30% lower Q_G vs main competition (equivalent die size)
- 400 700V BV_{DSS} rated
- Back-to-Back G-S Zener protected

Benefits

- Reduced switching losses
- Enhanced immunity vs ESD & Vgs spikes
- Technologies dedicated to specific topology

Product range example

STL24N60M2

600V, 210mΩ, 28nC PowerFLAT8x8

Power MOSFETs

Synchronous Rectification

Features

- Very low R_{DS(on)};
- Proper C_{OSS};
- Low V_{SD} and Q_{RR} with soft recovery body-drain diode
- LL Vth

Part Number	Voltage	Ron	Current
STL260N4LF7	40V	<1.1mΩ	5.5A
STL200N45LF7	40V	<1.8mΩ	11A

Benefits

- Efficiency improvement due low conduction losses and to static and dynamic diode ones, minimized switching noise and Vds spike at turn OFF
- Easy driving features

Protections

ESD/CMF/ECMF

High flexibility for the Designers needs to find best compatibilities

- Robustness: Surge capability up to 25kV and low clamping
- Flexibility & Integration: Single or multi lines products
- Transparency: High bandwidth for high speed signals

- High quality of protection
- Unique filtering shape capabilities
- Serial Interface: USB2.0/3.0, MIPI, DP, HDMI
- Filters radiated noise and limits antenna de-sense.

- High quality of protection
- High integration: 1mm2 / 2 differential lines
- Serial Interface: USB2.0/3.0, MIPI,DP, HDMI
- Filters radiated noise and limits antenna de-sense

Controller & Interface

Value proposition: offer flexible and scalable solutions for designers

USB PD Controller MCU Based

STM32

PHY -Type-C Interface

STUSB16

USB PD Hard Coded Controller

STUSB4x

Adaptability versus USB PD

specification new release

• FW USB PD Stack

• PHY-Type-C interface

Market proven solution

companion chip

- Dual role capability
- Configurable start-up profiles
- Interface with external MCU through I²C
- Accessory support

- HW USB PD Stack
- Flexible HW-SW partitioning
- Autorun or Micro based
- Easy Dead Battery Support
- P2P with PHY-Type-C interface

MCU Overview:

STM32F0 HW resources

- Transmission uses: TIM14, SPI1, DMA, GPIO
- Reception uses : TIM3, DMA, 1 comparator
- TIM2 is used to time-schedule tasks.
- Embedded ADC to detect device on the CC bus and perform power measurements
- CRC to evaluate message's CRC
- Standard GP I/Os to control Vconn, Load switch, Vbus discharge switch, Vout selection (primary feedback...

Project	Flash Memory	RAM Memory
Provider only	25.5 kB	4.4 kB
Provider only (RTOS)	29.0 kB	7.3 kB
Provider/Consumer DRP (RTOS)	30.2 kB	7.3 kB

VBUS SENSE A B SIDE CC1 VCONN RX CLK CC2 TX CLK CC2DB TX DATA RESET TX EN 2 x 1.6 mm² - 400um 2.5 x 2 mm² - 500um **CSP** QFN-24 (4x4 mm) Pin to pin compatible with STUSBxx family VSYS VDD VBUS EN SRC VREG 2V7 VBUS EN SNK VREG 1V2 A_B_SIDE = TX [CLK, DATA, EN] = VBUS SENSE RX [CLK, DATA, ACT] = VCONN STUSB16 ADDR0 -CC1DB SCL CC1 SDA -CC2 ALERT# CC2DB RESET-GND

USB-PD Interface:

STUSB16xx

Features

- Dual Role Type-C Interface with BMC
- Dual role capability
- Configurable start-up profiles
- 600mA VCONN
- 120uA Idle current measured.
- Interface with external MCU through I²C+Interrupt
- Integrated Voltage monitoring
- Integrated V_{BUS} discharge path
- Accessory support
- Dual Power supply:
 - $V_{SYS} = 3.3V$,
 - V_{DD} [4.6V; 22V] (from V_{BUS})

Benefits

- Low Pin count
- Integrated BMC transceiver
- Simple, Robust
- Configurable, Flexible
- Optimized for Portable applications
- P2P with STUSB4x

USB-PD Type-C Solution

- AC/DC Multi-output 36W Converter
 - Based on STCH02 QR controller
 - Multiple Output voltages (5V, 9V, 12V)
- STM32 Embedded Software Solution
 - to interface with USB-C connector
 - to handle the USB Power Delivery protocol
 - cost effective and popular 32bit Microcontroller
- HW platform based on X-Nucleo Shield

Block Diagram

Block Diagram: Features

On board functionalities activable if not available on external power supply board.

AC/DC 36W 5/9/12V

Efficiency and no Load Consumption

	Efficiency @ 115Vac					
Load	lout [A]	5V	9V	12V		
100%	3.000	83.18%	85.17%	85.41%		
75%	2.250	80.61%	85.34%	85.53%		
50%	1.510	80.20%	84.71%	84.61%		
25%	0.750	80.92%	85.17%	81.67%		
Average		81.23%	84.45%	84.30%		

	Efficiency @ 230Vac					
Load	lout [A]	5V	9V	12V		
100%	3.000	82.42%	85.56%	86.35%		
75%	2.250	81.44%	84.65%	85.47%		
50%	1.510	80.65%	83.44%	84.08%		
25%	0.750	77.89%	80.36%	80.05%		
Average		80.60%	83.50%	84%		

Input voltage	Efficiency @ 10% Pout			
	5V	9V	12V	
115V _{AC}	76.29%	76.68%	73.28%	
230V _{AC}	73.09%	73.06%	70.54%	

Input voltage	No load consumption 5V
115Vac	11mW
230Vac	12mW

36W 5/9/12V board

AC/DC 36W 5/9/12V

Schematic

MCU + Discrete AFE Overview

- STM32 Embedded Software Solution to interface with USB-C connector and to handle the USB Power Delivery protocol.
 - Hardware: Entry level Cortex-M0
 based STM32F0 microcontroller series
 with simple discrete Analog Front End
 PHY
 - Embedded Software : USB-C & PD
 Middleware

Best device for 2 ports management: STM32F051 in 48 pin package
Best device for 1 port management: STM32F051/31 in 20/32 pin package

X-NUCLEO-USBPDM1

 USB-C Power Delivery expansion board with two USB Type-C connectors for two port management.

- Main fetures:
 - Two Dual Role Ports
 - Dedicated Power Connector to interface with external Power Supply board providing different profiles (up to 20V and 5A) and V_{CONN}
 - On-board Power management able to provide internal needed voltages from V_{BUS}
 - Six debug LEDs
 - USB 2.0 interface capability available on one port
 - Compatible with STM32 Nucleo boards
 - Equipped with ST morpho connectors

X-NUCLEO-USBPDM1 **Board Details** Morpho connectors **Power Role Configuration Port 1 Power Role Configuration Port 0** CC AFE and V_{CONN} Switch Port 1 CC AFE and V_{CONN} Switch Port 0 User LEDs V_{BUS} Port 1 Switch and discharge -**V_{BUS} Port 0 Switch and discharge** Power Connector for external Power Source **V_{BUS} Current/Voltage sensing Port 1 V_{BUS} Current/Voltage sensing Port 0 Local Power Management** Type-C Receptacle Port 0 (USB2.0 Capability) Type-C Receptacle Port 1 Connector for V_{BUS} Load Port 1 Connector for V_{BUS} Load Port 0