Isomorfismi di ordine dei numeri razionali

Relatore: Marta Morigi Candidato: Paolo De Cecco

Alma Mater Studiorum - Università di Bologna

15 luglio 2020

Introduzione

Insieme totalmente ordinato

Un *insieme totalmente ordinato* è una coppia (A, <) dove A è un insieme non vuoto e < è una relazione binaria, detta *relazione d'ordine di* A, che soddisfa le proprietà:

- 1 per ogni $x \in A$, si ha $x \not< x$ (Irriflessività);
- **2** per ogni $x, y \in A$, si ha che x < y implica $y \not< x$ (Antisimmetria);
- **3** per ogni $x, y, z \in A$, se x < y e y < z, allora x < z (Transitività);
- 4 per ogni $x, y \in A$, vale solo una delle proposizioni: (Linearità)

$$x < y, \ x = y, \ y < x$$

Insieme denso

Un insieme totalmente ordinato A è denso se per ogni $x,y \in A$ con x < y esiste $z \in A$ tale che x < z < y.

Insieme senza estremi

Un insieme totalmente ordinato A è *senza estremi* se per ogni $x \in A$ esistono $y, z \in A$ tali che y < x < z.

L'insieme Q dotato dell'ordine naturale è un insieme totalmente ordinato, denso e senza estremi.

Insieme denso

Un insieme totalmente ordinato A è denso se per ogni $x,y \in A$ con x < y esiste $z \in A$ tale che x < z < y.

Insieme senza estremi

Un insieme totalmente ordinato A è *senza estremi* se per ogni $x \in A$ esistono $y, z \in A$ tali che y < x < z.

L'insieme Q dotato dell'ordine naturale è un insieme totalmente ordinato, denso e senza estremi.

Insieme denso

Un insieme totalmente ordinato A è denso se per ogni $x,y \in A$ con x < y esiste $z \in A$ tale che x < z < y.

Insieme senza estremi

Un insieme totalmente ordinato A è *senza estremi* se per ogni $x \in A$ esistono $y, z \in A$ tali che y < x < z.

L'insieme $\mathbb Q$ dotato dell'ordine naturale è un insieme totalmente ordinato, denso e senza estremi.

Automorfismi d'ordine

Isomorfismo d'ordine

Siano A, B due insiemi totalmente ordinati. Un isomorfismo d'ordine è una mappa $\varphi: A \to B$ biettiva e tale che per ogni $x, y \in A$

$$x < y$$
 se e solo se $\varphi(x) < \varphi(y)$

Famglia degli automorfismi d'ordine

$$\operatorname{Aut}(\mathbb{Q},<)=\{\varphi\mid \varphi:\mathbb{Q}\to\mathbb{Q},\ \varphi \text{ isomorfismo d'ordine}\}$$

Tale famiglia, dotata dell'operazione di composizione, forma un gruppo.

Automorfismi d'ordine

Isomorfismo d'ordine

Siano A, B due insiemi totalmente ordinati. Un isomorfismo d'ordine è una mappa $\varphi: A \to B$ biettiva e tale che per ogni $x, y \in A$

$$x < y$$
 se e solo se $\varphi(x) < \varphi(y)$

Famglia degli automorfismi d'ordine

$$\operatorname{Aut}(\mathbb{Q},<)=\{\varphi\mid \varphi:\mathbb{Q}\to\mathbb{Q},\ \varphi \text{ isomorfismo d'ordine}\}$$

Tale famiglia, dotata dell'operazione di composizione, forma un gruppo.

Automorfismi d'ordine

Isomorfismo d'ordine

Siano A, B due insiemi totalmente ordinati. Un isomorfismo d'ordine è una mappa $\varphi: A \to B$ biettiva e tale che per ogni $x, y \in A$

$$x < y$$
 se e solo se $\varphi(x) < \varphi(y)$

Famglia degli automorfismi d'ordine

$$\operatorname{Aut}(\mathbb{Q},<)=\{\varphi\mid \varphi:\mathbb{Q}\to\mathbb{Q},\ \varphi \text{ isomorfismo d'ordine}\}$$

Tale famiglia, dotata dell'operazione di composizione, forma un gruppo.

Introduzione

G-spazio

Dati un gruppo G e un insieme Ω , si dice che G agisce su Ω , o che Ω è un G-spazio se è dato un morfismo di gruppi

$$\varphi: \mathcal{G} \to \mathrm{Sym}(\Omega)$$

Poniamo
$$\alpha^g = \varphi(g)(\alpha)$$
.

Proprietà di $Aut(\mathbb{Q},<)$

G-spazio transitivo

Sia Ω un G-spazio. Si definisce Ω un G-spazio transitivo se per ogni $\alpha, \beta \in \Omega$ esiste $g \in G$ tale che $\alpha^g = \beta$.

E possibile generalizzare tale proprietà nel seguente modo

G-spazio k-transitivo

Sia $k\in\mathbb{N}$. Un G-spazio è k-transitivo se, dati due insiemi qualsiasi di k elementi distinti di Ω $\{\alpha_1,\alpha_2,\ldots,\alpha_k\}$, $\{\beta_1,\beta_2,\ldots,\beta_k\}$, esiste $g\in G$ tale che $\alpha_i^g=\beta_i$ per $i=1,\ldots,k$.

Proprietà di $Aut(\mathbb{Q},<)$

G-spazio transitivo

Sia Ω un G-spazio. Si definisce Ω un G-spazio transitivo se per ogni $\alpha, \beta \in \Omega$ esiste $g \in G$ tale che $\alpha^g = \beta$.

E possibile generalizzare tale proprietà nel seguente modo

*G-*spazio *k-*transitivo

Sia $k \in \mathbb{N}$. Un G-spazio è k-transitivo se, dati due insiemi qualsiasi di k elementi distinti di Ω $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$, $\{\beta_1, \beta_2, \ldots, \beta_k\}$, esiste $g \in G$ tale che $\alpha_i^g = \beta_i$ per $i = 1, \ldots, k$.

Proprietà di $Aut(\mathbb{Q}, <)$

G-spazio transitivo

Sia Ω un G-spazio. Si definisce Ω un G-spazio transitivo se per ogni $\alpha, \beta \in \Omega$ esiste $g \in G$ tale che $\alpha^g = \beta$.

È possibile generalizzare tale proprietà nel seguente modo:

*G-*spazio *k-*transitivo

Sia $k \in \mathbb{N}$. Un G-spazio è k-transitivo se, dati due insiemi qualsiasi di k elementi distinti di Ω $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$, $\{\beta_1, \beta_2, \ldots, \beta_k\}$, esiste $g \in G$ tale che $\alpha_i^g = \beta_i$ per $i = 1, \ldots, k$.

Proprietà di $Aut(\mathbb{Q},<)$

G-spazio transitivo

Sia Ω un G-spazio. Si definisce Ω un G-spazio transitivo se per ogni $\alpha, \beta \in \Omega$ esiste $g \in G$ tale che $\alpha^g = \beta$.

È possibile generalizzare tale proprietà nel seguente modo:

G-spazio k-transitivo

Sia $k \in \mathbb{N}$. Un G-spazio è k-transitivo se, dati due insiemi qualsiasi di k elementi distinti di Ω $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$, $\{\beta_1, \beta_2, \ldots, \beta_k\}$, esiste $g \in G$ tale che $\alpha_i^g = \beta_i$ per $i = 1, \ldots, k$.

Proprietà di $\operatorname{Aut}(\mathbb{Q},<)$

G-spazio k-omogeneo

Sia $k \in \mathbb{N}$. Un *G*-spazio Ω è *k*-omogeneo se per qualsiasi sottoinsieme $\Gamma, \Delta \subseteq \Omega$ con $|\Gamma| = |\Delta| = k$ si ha $\Gamma^g = \Delta$ per qualche $g \in G$.

Sia $G = \operatorname{Aut}(\mathbb{Q}, <)$ e $\Omega = \mathbb{Q}$. Si consideri l'azione di $\operatorname{Aut}(\mathbb{Q}, <)$ su \mathbb{Q} .

Teorema

 $\mathbb Q$ è un G-spazio k-omogeneo per ogni $k\in\mathbb N.$

La dimostrazione del teorema è costruttiva e consiste nella costruzione esplicita di un automorfismo φ tale che $\varphi(\Gamma) = \Delta$.

G-spazio k-omogeneo

Sia $k \in \mathbb{N}$. Un *G*-spazio Ω è *k*-omogeneo se per qualsiasi sottoinsieme $\Gamma, \Delta \subseteq \Omega$ con $|\Gamma| = |\Delta| = k$ si ha $\Gamma^g = \Delta$ per qualche $g \in G$.

Sia $G = \operatorname{Aut}(\mathbb{Q}, <)$ e $\Omega = \mathbb{Q}$. Si consideri l'azione di $\operatorname{Aut}(\mathbb{Q}, <)$ su \mathbb{Q} .

Teorema

 \mathbb{Q} è un G-spazio k-omogeneo per ogni $k \in \mathbb{N}$.

La dimostrazione del teorema è costruttiva e consiste nella costruzione esplicita di un automorfismo φ tale che $\varphi(\Gamma)=\Delta.$

Proprietà di $\operatorname{Aut}(\mathbb{Q},<)$

G-spazio k-omogeneo

Sia $k \in \mathbb{N}$. Un *G*-spazio Ω è *k*-omogeneo se per qualsiasi sottoinsieme $\Gamma, \Delta \subseteq \Omega$ con $|\Gamma| = |\Delta| = k$ si ha $\Gamma^g = \Delta$ per qualche $g \in G$.

Sia $G = \operatorname{Aut}(\mathbb{Q}, <)$ e $\Omega = \mathbb{Q}$. Si consideri l'azione di $\operatorname{Aut}(\mathbb{Q}, <)$ su \mathbb{Q} .

Teorema

 $\mathbb Q$ è un G-spazio k-omogeneo per ogni $k\in\mathbb N.$

La dimostrazione del teorema è costruttiva e consiste nella costruzione esplicita di un automorfismo φ tale che $\varphi(\Gamma) = \Delta$.

Proprietà di $\operatorname{Aut}(\mathbb{Q},<)$

Nelle notazioni precedenti, si ha inoltre:

Teorema

 \mathbb{Q} è un G-spazio transitivo.

Tuttavia

Teorema

 $\mathbb Q$ non è un $\mathit{G} ext{-spazio}$ 2-transitivo.

Nelle notazioni precedenti, si ha inoltre:

Teorema

 \mathbb{Q} è un G-spazio transitivo.

Tuttavia

Teorema

 $\mathbb Q$ non è un $\mathit{G} ext{-spazio}$ 2-transitivo.

Nelle notazioni precedenti, si ha inoltre:

Teorema

 \mathbb{Q} è un G-spazio transitivo.

Tuttavia:

Teorema

 \mathbb{Q} non è un G-spazio 2-transitivo.

Nelle notazioni precedenti, si ha inoltre:

Teorema

 \mathbb{Q} è un G-spazio transitivo.

Tuttavia:

Teorema

 \mathbb{Q} non è un G-spazio 2-transitivo.

Sia Ω un G-spazio transitivo.

Blocco di un *G*-spazio

Sia $\Delta \subseteq \Omega$ con $\Delta \neq \emptyset$. Allora Δ è un *blocco* se per ogni $g \in G$, $\Delta \cap \Delta^g \neq \emptyset$ implica $\Delta = \Delta^g$.

In un G-spazio transitivo Ω , i singoletti e Ω stesso sono sempre dei blocchi. Tali blocchi sono detti banali.

G-spazio primitivo

 Ω è un *G*-spazio *primitivo* se ogni blocco di Ω è banale.

Sia Ω un G-spazio transitivo.

Blocco di un G-spazio

Sia $\Delta \subseteq \Omega$ con $\Delta \neq \emptyset$. Allora Δ è un *blocco* se per ogni $g \in G$, $\Delta \cap \Delta^g \neq \emptyset$ implica $\Delta = \Delta^g$.

In un G-spazio transitivo Ω , i singoletti e Ω stesso sono sempre dei blocchi. Tali blocchi sono detti banali.

*G-*spazio primitivo

 Ω è un \emph{G} -spazio $\emph{primitivo}$ se ogni blocco di Ω è banale.

Sia Ω un G-spazio transitivo.

Blocco di un G-spazio

Sia $\Delta \subseteq \Omega$ con $\Delta \neq \emptyset$. Allora Δ è un *blocco* se per ogni $g \in G$, $\Delta \cap \Delta^g \neq \emptyset$ implica $\Delta = \Delta^g$.

In un G-spazio transitivo Ω , i singoletti e Ω stesso sono sempre dei blocchi. Tali blocchi sono detti *banali*.

G-spazio primitivo

 Ω è un *G*-spazio *primitivo* se ogni blocco di Ω è banale.

Sia Ω un G-spazio transitivo.

Blocco di un G-spazio

Sia $\Delta \subseteq \Omega$ con $\Delta \neq \emptyset$. Allora Δ è un *blocco* se per ogni $g \in G$, $\Delta \cap \Delta^g \neq \emptyset$ implica $\Delta = \Delta^g$.

In un G-spazio transitivo Ω , i singoletti e Ω stesso sono sempre dei blocchi. Tali blocchi sono detti *banali*.

G-spazio primitivo

 Ω è un *G*-spazio *primitivo* se ogni blocco di Ω è banale.

Teorema

Un G-spazio 2-omogeneo è primitivo.

Per quanto già mostrato:

Corollaric

 \mathbb{Q} è un G-spazio primitivo.

Teorema

Un G-spazio 2-omogeneo è primitivo.

Per quanto già mostrato:

Corollario

 \mathbb{Q} è un \emph{G} -spazio primitivo.

Teorema di Cantor

Per ogni insieme A numerabile, totalmente ordinato, denso e senza estremi esiste un isomorfismo d'ordine $\varphi:\mathbb{Q}\to A$.

Per la dimostrazione sono state fornite due diverse argomentazioni.

Going forth

Back and forth

Teorema di Cantor

Per ogni insieme A numerabile, totalmente ordinato, denso e senza estremi esiste un isomorfismo d'ordine $\varphi:\mathbb{Q}\to A$.

Per la dimostrazione sono state fornite due diverse argomentazioni:

Going forth

Back and forth

Teorema di Cantor

Per ogni insieme A numerabile, totalmente ordinato, denso e senza estremi esiste un isomorfismo d'ordine $\varphi:\mathbb{Q}\to A$.

Per la dimostrazione sono state fornite due diverse argomentazioni:

Going forth

Back and forth

- In going forth ad ogni passo viene fissata l'immagine di ciascun elemento di $\mathbb Q$ tramite φ .
- In back and forth ad ogni passo dispari viene fissata l'immagine tramite φ di un elemento di \mathbb{Q} e ad ogni passo pari viene fissata la controimmagine di un elemento di A.

La seguente proposizione può essere dimostrata solo con una tecnica di tipo back and forth:

Proposizione

- In going forth ad ogni passo viene fissata l'immagine di ciascun elemento di $\mathbb Q$ tramite φ .
- In back and forth ad ogni passo dispari viene fissata l'immagine tramite φ di un elemento di \mathbb{Q} e ad ogni passo pari viene fissata la controimmagine di un elemento di A.

La seguente proposizione può essere dimostrata solo con una tecnica di tipo *back and* forth:

Proposizion

- In *going forth* ad ogni passo viene fissata l'immagine di ciascun elemento di $\mathbb Q$ tramite φ .
- In back and forth ad ogni passo dispari viene fissata l'immagine tramite φ di un elemento di $\mathbb Q$ e ad ogni passo pari viene fissata la controimmagine di un elemento di A.

La seguente proposizione può essere dimostrata solo con una tecnica di tipo *back and forth*:

Proposizion

- In *going forth* ad ogni passo viene fissata l'immagine di ciascun elemento di $\mathbb Q$ tramite φ .
- In back and forth ad ogni passo dispari viene fissata l'immagine tramite φ di un elemento di $\mathbb Q$ e ad ogni passo pari viene fissata la controimmagine di un elemento di A.

La seguente proposizione può essere dimostrata solo con una tecnica di tipo *back and forth*:

Proposizione

Il Teorema di Cantor non è generalizzabile ad insiemi non numerabili, infatti:

Proposizione

Non esiste un isomorfismo d'ordine tra \mathbb{R} ed $\mathbb{R} \setminus \{0\}$.

Cardinalità di $Aut(\mathbb{Q}, <)$

\mathbb{Z} -sequenza

Una \mathbb{Z} -sequenza in \mathbb{Q} è una sequenza $\{\xi_n\}_{n\in\mathbb{Z}}$ di razionali tali che $\xi_n<\xi_{n+1}$ per ogni n e tale che $\xi_n\to\pm\infty$ per $n\to\pm\infty$.

Determiniamo la cardinalità dell'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} :

Teorema

L'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} ha cardinalità maggiore o uguale a 2^{\aleph_0} .

Cardinalità di $Aut(\mathbb{Q}, <)$

\mathbb{Z} -sequenza

Una \mathbb{Z} -sequenza in \mathbb{Q} è una sequenza $\{\xi_n\}_{n\in\mathbb{Z}}$ di razionali tali che $\xi_n<\xi_{n+1}$ per ogni n e tale che $\xi_n\to\pm\infty$ per $n\to\pm\infty$.

Determiniamo la cardinalità dell'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} :

Teorema

L'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} ha cardinalità maggiore o uguale a 2^{\aleph_0} .

Cardinalità di $Aut(\mathbb{Q}, <)$

Se A è un sottoinsieme infinito di \mathbb{Z} e $\xi_A = (\xi_n)_{n \in \mathbb{Z}}$ la \mathbb{Z} -sequenza tale che:

$$\xi_n = \begin{cases} n & \text{se } n \in A \\ n - \frac{1}{2} & \text{se } n \notin A \end{cases}$$

Allora la mappa $A \mapsto \xi_A$ è iniettiva.

Cardinalità di $Aut(\mathbb{Q}, <)$

Se A è un sottoinsieme infinito di \mathbb{Z} e $\xi_A = (\xi_n)_{n \in \mathbb{Z}}$ la \mathbb{Z} -sequenza tale che:

$$\xi_n = \begin{cases} n & \text{se } n \in A \\ n - \frac{1}{2} & \text{se } n \notin A \end{cases}$$

Allora la mappa $A \mapsto \xi_A$ è iniettiva.

Cardinalità di $Aut(\mathbb{Q}, <)$

Se A è un sottoinsieme infinito di \mathbb{Z} e $\xi_A = (\xi_n)_{n \in \mathbb{Z}}$ la \mathbb{Z} -sequenza tale che:

$$\xi_n = \begin{cases} n & \text{se } n \in A \\ n - \frac{1}{2} & \text{se } n \notin A \end{cases}$$

Allora la mappa $A \mapsto \xi_A$ è iniettiva.

Proposizione

 $\operatorname{Aut}(\mathbb{Q},<)$ agisce transitivamente sull'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} .

Si fissi una \Z -sequenza $\xi=(\xi_n)_{n\in\Z}$. Si scelga a piacere una seconda \Z -sequenza $(\eta_n)_{n\in\Z}$.

Si considerino in \mathbb{R} gli intervalli $[\xi_n, \xi_{n+1})$ e $[\eta_n, \eta_{n+1})$ al variare di n. L'unica trasformazione lineare crescente da $[\xi_n, \xi_{n+1})$ a $[\eta_n, \eta_{n+1})$ è un isomorfismo d'ordine e in particolare lo è anche la sua restrizione φ_n a \mathbb{Q} .

Proposizione

 $\operatorname{Aut}(\mathbb{Q},<)$ agisce transitivamente sull'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} .

Si fissi una \mathbb{Z} -sequenza $\xi = (\xi_n)_{n \in \mathbb{Z}}$. Si scelga a piacere una seconda \mathbb{Z} -sequenza $(\eta_n)_{n \in \mathbb{Z}}$.

Si considerino in $\mathbb R$ gli intervalli $[\xi_n,\xi_{n+1})$ e $[\eta_n,\eta_{n+1})$ al variare di n. L'unica trasformazione lineare crescente da $[\xi_n,\xi_{n+1})$ a $[\eta_n,\eta_{n+1})$ è un isomorfismo d'ordine e in particolare lo è anche la sua restrizione φ_n a $\mathbb Q$.

Proposizione

 $\operatorname{Aut}(\mathbb{Q},<)$ agisce transitivamente sull'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} .

Si fissi una \mathbb{Z} -sequenza $\xi = (\xi_n)_{n \in \mathbb{Z}}$. Si scelga a piacere una seconda \mathbb{Z} -sequenza $(\eta_n)_{n \in \mathbb{Z}}$.

Si considerino in \mathbb{R} gli intervalli $[\xi_n, \xi_{n+1})$ e $[\eta_n, \eta_{n+1})$ al variare di n. L'unica trasformazione lineare crescente da $[\xi_n, \xi_{n+1})$ a $[\eta_n, \eta_{n+1})$ è un isomorfismo d'ordine e in particolare lo è anche la sua restrizione φ_n a \mathbb{Q} .

Proposizione

 $\operatorname{Aut}(\mathbb{Q},<)$ agisce transitivamente sull'insieme delle \mathbb{Z} -sequenze in \mathbb{Q} .

Si fissi una \mathbb{Z} -sequenza $\xi = (\xi_n)_{n \in \mathbb{Z}}$. Si scelga a piacere una seconda \mathbb{Z} -sequenza $(\eta_n)_{n \in \mathbb{Z}}$.

Si considerino in \mathbb{R} gli intervalli $[\xi_n, \xi_{n+1})$ e $[\eta_n, \eta_{n+1})$ al variare di n. L'unica trasformazione lineare crescente da $[\xi_n, \xi_{n+1})$ a $[\eta_n, \eta_{n+1})$ è un isomorfismo d'ordine e in particolare lo è anche la sua restrizione φ_n a \mathbb{Q} .

Definiamo $g:\mathbb{Q}\to\mathbb{Q}$ tale che $g|_{[\xi_n,\xi_{n+1})}=\varphi_n$.

Si ha $g \in Aut(\mathbb{Q}, <)$.

Teorema

 $\operatorname{Aut}(\mathbb{Q},<)$ ha cardinalità 2^{\aleph_0} .

Definiamo $g:\mathbb{Q}\to\mathbb{Q}$ tale che $g|_{[\xi_n,\xi_{n+1})}=\varphi_n$.

Si ha $g \in Aut(\mathbb{Q},<)$.

Teorema

 $\operatorname{Aut}(\mathbb{Q},<)$ ha cardinalità 2^{\aleph_0} .

Definiamo $g:\mathbb{Q}\to\mathbb{Q}$ tale che $g|_{[\xi_n,\xi_{n+1})}=\varphi_n$.

Si ha $g \in Aut(\mathbb{Q}, <)$.

Teorema

 $\operatorname{Aut}(\mathbb{Q},<)$ ha cardinalità 2^{\aleph_0} .

Grazie per l'attenzione!

Indice

- 1 Automorfismi d'ordine
 - Introduzione
 - Proprietà della famiglia degli automorfismi d'ordine
 - Primitività
- Z Teorema di Cantor
 - Teorema di Cantor
 - Cardinalità della famiglia degli automorsfimi d'ordine dei razionali