

## United International University (UIU)

# Department of Computer Science and Engineering CSE 225: DIGITAL LOGIC DESIGN, Midterm Spring 2019

Total Marks: **30** Duration: 1 hour 45 Min

### Answer Any 2 Questions from Q1 to Q3

| 1. | (a) (i) Convert (310.2)4 to octal                                                                        | [4] |
|----|----------------------------------------------------------------------------------------------------------|-----|
|    | (ii) Find the binary representations for the BCD number: 0100   1000   0110   0111                       |     |
|    | (b) Add $(4575)_{10}$ and $(5415)_{10}$ with the help of their BCD representation.                       | [2] |
| 2. | 2. Express the function in (i) Sum-of-Minterms and (ii) Product-of-Maxterms forms                        | [4] |
|    | F(X, Y, Z) = (XY + Z)(Y + XZ)                                                                            |     |
|    | b Find the complement of the expression, $(W' + X)Y' + Z$                                                | [2] |
| 3. | (a) Given that $AB = 0$ and $A + B = 1$ , use algebraic manipulation to prove that                       | [4] |
|    | (A + C).(A' + B).(B + C) = BC                                                                            |     |
|    | (b) Reduce the Boolean expression to one literal $(A\overline{B}(C + BD) + \overline{A}\overline{B})C$ . | [2] |

### Answer Following 2 Questions (Q4 and Q5)

| */ | 4. | Optimize the following Boolean functions F together with the don't-care conditions in (i) sum-of-products and (ii) product-of-sums form: $F(A, B, C, D) = \prod_M (4, 6, 7, 8, 12, 15), d(A, B, C, D) = \Sigma_m (2, 3, 5, 10, 11, 14)$                          | [6] |  |
|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|    | 5. | Optimize the following function using K-map. In your solution, you have to show (i) all prime implicants, (ii) essential prime implicants and (iii) minimized Sum-of-Product form. $F(A,B,C,D) = \Sigma_m  (0,2,4,5,8,14,15),  d(A,B,C,D) = \Sigma_m  (7,10,13)$ | [6] |  |

#### You MUST Answer Q7

| 6. | You have to design a combinatorial circuit that will take a 4 bit binary number as input and                                                                                                                                                                 | [6] |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | produce a single bit as output. You circuit will be able to detect if the number of 0's in the                                                                                                                                                               |     |
|    | given input is greater than the number of 1's. Your circuit will produce 1 as output for the                                                                                                                                                                 |     |
|    | former case (number of 0's greater than number of 1's) and else it will produce 0. For example                                                                                                                                                               |     |
|    | if the input is 0001, it will produce 1 as output and if the input is 0011 or 0111 it will produce 0                                                                                                                                                         |     |
|    | as output. You have to find the expression of the output and draw the logic diagram using                                                                                                                                                                    |     |
|    | basic gates.                                                                                                                                                                                                                                                 |     |
|    | OR                                                                                                                                                                                                                                                           |     |
|    | You have to design a combinatorial circuit that will take two 2 bit numbers as input and produce their 3 bit sum as output. For example, if two inputs are 01 and 11 it will produce 100 as output. <b>You have to find expression for all output bits</b> . |     |