Geometric Superconvergence in FEM Approximation of Eigenvalues of the Laplace-Beltrami Operator

Justin Owen

Texas A&M University

joint work with

Andrea Bonito (TAMU)

&

Alan Demlow (TAMU)

February 2018

Laplace-Beltrami Eigenvalue Problem

• *Eigenvalue Problem:* Given a *D*-dimensional smooth closed surface γ in \mathbb{R}^{D+1} , find (u, λ) such that:

$$-\Delta_{\gamma} u = \lambda u,$$

where Δ_{γ} is the Laplace-Beltrami operator for γ .

• Focus of talk: Approximation of the eigenvalues

Weak Formulation on Surfaces

• Bilinear form on $H^1(\gamma)$ and the $L^2(\gamma)$ inner product on γ :

$$a(u,v) := \int_{\gamma} \nabla_{\gamma} u \cdot \nabla_{\gamma} v \ d\sigma, \qquad m(u,v) := \int_{\gamma} u v \ d\sigma$$

• Weak eigenvalue problem: Find $(u, \lambda) \in H^1(\gamma) \times \mathbb{R}^+$ s.t. $\int_{\gamma} u \ d\sigma = 0$ and

$$a(u,v) = \lambda m(u,v) \quad \forall v \in H^1(\gamma).$$

Surface Properties

- If γ is a C^2 closed surface, then γ is the zero level-set of a signed distance function d.
- For x lying in a sufficiently small tubular neighborhood $\mathcal N$ we have:
 - **Distance function:** $d(x) = dist(x, \gamma)$.
 - Normal vector: $\vec{\nu} = \nabla d$ satisfies $|\vec{\nu}| = 1$; $\vec{\nu}$ is a unit normal on γ .
 - Closest point (orthogonal) projection onto γ :

$$\psi(x) = x - d(x)\vec{\nu}(x).$$

Approximate Surface Construction

- Base discrete surface: $\overline{\Gamma}$ is a polyhedron with shape-regular triangular faces of diameter h having vertices on γ .
- Polynomial surface approximation: $\Gamma = \psi_k(\overline{\Gamma})$ with ψ_k a degree-k Lagrange interpolation of ψ on each face of $\overline{\Gamma}$.

The Surface Finite Element Method (SFEM)

- Base discrete surface: $\overline{\Gamma}$ is a polyhedron with shape-regular triangular faces of diameter h having vertices on γ .
- Polynomial surface approximation: $\Gamma = \psi_k(\overline{\Gamma})$ with ψ_k a degree-k Lagrange interpolation of ψ on each face of $\overline{\Gamma}$.
- Finite element space: V_h is the piecewise degree-r polynomials defined on $\overline{\Gamma}$ and lifted to Γ .
- Bilinear form and the $L^2(\Gamma)$ inner product on Γ :

$$A(U,V) := \int_{\Gamma} \nabla_{\Gamma} U \nabla_{\Gamma} V d\Sigma, \qquad M(U,V) := \int_{\Gamma} U V d\Sigma.$$

• Finite element eigenvalue problem: Find $(U, \Lambda) \in \mathbb{V}_h \times \mathbb{R}^+$ s.t. $\int_{\Gamma} U d\Sigma = 0$ and

$$A(U, V) = \Lambda M(U, V) \quad \forall V \in \mathbb{V}_h.$$

Typical SFEM A Priori Errors

• Geometric consistency errors:

$$|a(u,v) - A(u,v)| \lesssim h^{k+1}$$

$$|m(u,v) - M(u,v)| \lesssim h^{k+1}$$

• **Source problem bound:** The SFEM solution, u_h , to $-\Delta_{\gamma}u = f$ satisfies:

$$||u - u_h||_{H^1(\gamma)} \lesssim h^r + h^{k+1},$$

 $||u - u_h||_{L_2(\gamma)} \lesssim h^{r+1} + h^{k+1}.$

• **Eigenfunction bound:** Define P_{λ} to be the projection onto the set of eigenfunctions associated with λ using the L_2 inner product $m(\cdot,\cdot)$. For an SFEM eigenfunction associated with an approximate eigenvalue of λ we have:

$$||U - \mathbf{P}_{\lambda} U||_{H^{1}(\gamma)} \lesssim h^{r} + h^{k+1},$$

$$||U - \mathbf{P}_{\lambda} U||_{L_{2}(\gamma)} \lesssim h^{r+1} + h^{k+1}.$$

Error Analysis

Theorem (Eigenvalue Bound)

Let λ be an eigenvalue of the surface eigenvalue problem and let (U, Λ) be a surface FEM eigenpair associated with λ . Then

$$\begin{split} |\lambda - \Lambda| &\leq \underbrace{\|U - \boldsymbol{P}_{\lambda} U\|_{H^{1}(\gamma)}^{2}}_{O(h^{2r}) + O(h^{2k+2})} + \lambda \underbrace{\|U - \boldsymbol{P}_{\lambda} U\|_{L_{2}(\gamma)}^{2}}_{O(h^{2r+2}) + O(h^{2k+2})} \\ &+ \Lambda \underbrace{|m(U, U) - M(U, U)|}_{Geometric} + \underbrace{|a(U, U) - A(U, U)|}_{Geometric}. \end{split}$$

Eigenvalue Error Bound:

$$|\lambda - \Lambda| \leq h^{2r} + h^{k+1}$$

Some Test Shapes

Figure: Sphere and Dziuk surface used in deal.ii computations of eigenvalues.

Numerical Experiments Using Quadrilateral Elements

Looking for : $O(h^{k+1})$.

Numerical Experiments Using Quadrilateral Elements

Strange Behavior: The geometric consistency converges as $O(h^{2k})$ rather than the expected $O(h^{k+1})$.

An Explanation of Superconvergence

Lemma

Up to terms of order h^{2k} ,

$$|m(V,V) - M(V,V)| \le \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\psi(q))}{1 + d(q)\kappa_i(\psi(q))} d\Sigma \right|,$$

where $\{\kappa_i\}_{i=1}^n$ are the principal curvatures of the surface.

Geometric Error Acts Like Quadrature Error

- Exploit distance function: The zeros of d(q), $\{q_j\}_{j=1}^N$, on each face of Γ are the interpolation points used to create Γ .
- Create quadrature rule: Use the zeros of d(q) to create a quadrature rule:

$$QUAD := \sum_{T \subset \Gamma} \sum_{j=1}^{N} W_{j} V(q_{j})^{2} d(q_{j})^{2} \underbrace{\int_{i=1}^{n} \frac{\kappa_{i}(\psi(q_{j}))}{1 + d(q_{j})\kappa_{i}(\psi(q_{j}))}}_{} = 0$$

Theorem (Quadrature Error)

Up to terms of order h^{2k} ,

$$|m(V,V) - M(V,V)| \le \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\psi(q))}{1 + d(q)\kappa_i(\psi(q))} d\Sigma \right|$$
$$= \left| \int_{\Gamma} V(q)^2 d(q) \sum_{i=1}^n \frac{\kappa_i(\psi(q))}{1 + d(q)\kappa_i(\psi(q))} d\Sigma - QUAD \right|$$

Conclusion

Corollary (Convergence in deal.ii Computations)

If degree -k interpolation points based on Gauss-Lobatto quadrature are used in the construction of Γ , U is the SFEM eigenfunction of Λ , and $\mathbf{P}_{\lambda}U$ has enough regularity, then

$$|m(U,U) - M(U,U)| \lesssim h^{2k},$$

$$|a(U,U) - A(U,U)| \lesssim h^{2k},$$

and

$$|\lambda - \Lambda| \lesssim h^{2r} + h^{2k}.$$

- Quadrilateral meshes: Tensor product of k+1 points used in the 1D Gauss-Lobatto quadrature rule yields a quadrature rule exact for degree 2k-1.
- *Triangular meshes*: Our framework also applies to triangular meshes.