TESTING AND FAULT TOLERANCE

Laboratory Session 6: "Functional Test"

Student Name	Student Surname	Student ID	
Salvatore Gabriele	La Greca	S281589	

Functional Test

[A] Fault Simulation **External Patterns**

In the provided testbenches, functional patterns for the fault simulation are generated by a Linear Feedback Shift Register (LFSR). You need to run a logic simulation of the testbench using QuestaSim to generate the test responses, which can be stored (dumped) into an External Value Change Dump (eVCD) file. This file can then be read by TestMAX before the fault simulation.

Inspect the provided scripts and HDL files (testbench, LFSR) to comprehend the flow of events. If needed, you can modify the LFSR or the testbench (e.g., change the polynomial, the size, the initial value etc.) to optimize the test.

Simulation	Fault	
Testbench	> eVCD>	Reports

[A.1] Tasks:

1. Evaluate the effectiveness of random patterns and fill the following tables

Circuit: b06

Patterns	5	10	20	100	200	500	1,000	10,000	100,000
Stuck-at FC%	64.58	86.57	88.19	89.35	89.35	89.35	89.35	89.35	89.35
Transition FC%	35.57	69.59	71.65	75.00	75.00	75.00	75.00	75.00	75.00

Circuit: b10

Patterns	5	10	20	100	200	500	1,000	10,000	100,000
Stuck-at FC%	6.79	9.30	54.31	77.78	78.43	79.40	79.40	79.40	79.40
Transition FC%	0.00	1.34	28.63	57.54	61.74	63.26	64.03	64.03	64.03

You can change the simulation time (i.e., the generated patterns) and the fault model by editing the respective .tcl files

Once you collect the results, run the following command after the longest fault simulation:

□ TEST-T> report faults -profile

[A.21 Tasks:

1. According to the results how many patterns are needed to reach the maximum fault coverage?

Regarding the b06 circuit, the number of patterns needed to reach the maximum fault coverage for stuck-at faults is 43 while for transition delay faults it is 68.

Instead for b10 circuit, for stuck-at it needs 472 patterns while for transition delay it needs 518 patterns.

[A.3] Tasks:

- 1. Write a testbench for circuit b12 and repeat the flow.
- 2. Are the results comparable with the previous circuits?
- 3. If the fault coverage is too low, how can you improve it?
- 4. Complete the following table (similar to b06 and b10)

- 2) no, they aren't. The maximum coverage is almost 1/3 compared to the b10 circuit.
- 3) it's possible to try different combination of the Ifsr's outputs as b12's inputs or it's possible to change the Ifsr's seed

Circuit: b12

Patterns	5	10	20	100	200	500	1,000	10,000	100,000
Stuck-at FC%	3.12	4.66	4.77	18.19	18.60	19.31	19.31	21.63	21.63
Transition FC%	0.00	2.98	3.33	6.91	7.82	9.92	11.05	11.79	11.79

- The source code of the benchmark circuits is available on **GitHub**
- For a list of LFSR polynomials see Appendix B

Appendix A: Files of LAB6

? All files listed here are included in your remote /home directory under lab6 folder.

Filename	Description
lfsr.vhd	Linear Feedback Shift Register module
b06_scan.v	ITC'99 b06 scan netlist
b06_testbench.vhd	Testbench for LFSR & b06
b10.v	ITC'99 b10 netlist
b10_testbench.vhd	Testbench for LFSR & b10
b12.v	ITC'99 b12 netlist
pdt2002_sim.vhd	Technology library models for QuestaSim
pdt2002_tmax.v	Technology library models for TestMAX
b06_simulation.sh	Build & run the b06 testbench circuit logic simulation
b10_simulation.sh	Build & run the b10 testbench circuit logic simulation
b06_simulation_script.	QuestaSim script with commands for the logic simulation of b06

tcl	
b06_fsim_script.tcl	TestMAX script for the fault simulation of b06
b10_simulation_script.	QuestaSim script with commands for the logic simulation of b10
b10_fsim_script.tcl	TestMAX script for the fault simulation b10

Appendix B: Table of LFSRs

n	XNOR from	n	XNOR from	n	XNOR from	n	XNOR from
3	3,2	45	45,44,42,41	87	87,74	129	129,124
4	4,3	46	46,45,26,25	88	88,87,17,16	130	130,127
5	5,3	47	47,42	89	89,51	131	131,130,84,83
6	6,5	48	48,47,21,20	90	90,89,72,71	132	132,103
7	7,6	49	49,40	91	91,90,8,7	133	133,132,82,81
8	8,6,5,4	50	50,49,24,23	92	92,91,80,79	134	134,77
9	9,5	51	51,50,36,35	93	93,91	135	135,124
10	10,7	52	52,49	94	94,73	136	136,135,11,10
11	11,9	53	53,52,38,37	95	95,84	137	137,116
12	12,6,4,1	54	54,53,18,17	96	96,94,49,47	138	138,137,131,130
13	13,4,3,1	55	55,31	97	97,91	139	139,136,134,131
14	14,5,3,1	56	56,55,35,34	98	98,87	140	140,111
15	15,14	57	57,50	99	99,97,54,52	141	141,140,110,109
16	16,15,13,4	58	58,39	100	100,63	142	142,121
17	17,14	59	59,58,38,37	101	101,100,95,94	143	143,142,123,122
18	18,11	60	60,59	102	102,101,36,35	144	144,143,75,74
19	19,6,2,1	61	61,60,46,45	103	103,94	145	145,93
20	20,17	62	62,61,6,5	104	104,103,94,93	146	146,145,87,86
21	21,19	63	63,62	105	105,89	147	147,146,110,109
22	22,21	64	64,63,61,60	106	106,91	148	148,121
23	23,18	65	65,47	107	107,105,44,42	149	149,148,40,39
24	24,23,22,17	66	66,65,57,56	108	108,77	150	150,97
25	25,22	67	67,66,58,57	109	109,108,103,102	151	151,148
26	26,6,2,1	68	68,59	110	110,109,98,97	152	152,151,87,86
27	27,5,2,1	69	69,67,42,40	111	111,101	153	153,152
28	28,25	70	70,69,55,54	112	112,110,69,67	154	154,152,27,25
29	29,27	71	71,65	113	113,104	155	155,154,124,123
30	30,6,4,1	72	72,66,25,19	114	114,113,33,32	156	156,155,41,40
31	31,28	73	73,48	115	115,114,101,100	157	157,156,131,130
32	32,22,2,1	74	74,73,59,58	116	116,115,46,45	158	158,157,132,131
33	33,20	75	75,74,65,64	117	117,115,99,97	159	159,128
34	34,27,2,1	76	76,75,41,40	118	118,85	160	160,159,142,141
35	35,33	77	77,76,47,46	119	119,111	161	161,143
36	36,25	78	78,77,59,58	120	120,113,9,2	162	162,161,75,74
37	37,5,4,3,2,1	79	79,70	121	121,103	163	163,162,104,103
38	38,6,5,1	80	80,79,43,42	122	122,121,63,62	164	164,163,151,150
39	39,35	81	81,77	123	123,121	165	165,164,135,134
40	40,38,21,19	82	82,79,47,44	124	124,87	166	166,165,128,127
41	41,38	83	83,82,38,37	125	125,124,18,17	167	167,161
42	42,41,20,19	84	84,71	126	126,125,90,89	168	168,166,153,151
43	43,42,38,37	85	85,84,58,57	127	127,126		
44	44,43,18,17	86	86,85,74,73	128	128,126,101,99		