Analyses Cerastium

Contents

Field data: Distributions	2
Field data: Differences among streams 2015 2017	2 2 4
Hypothesis 1: Local soil warming leads to an earlier phenology	5
2015	5 7
Hypothesis 2: Phenotypic selection for early flowering is stronger in colder sites with shorter growing seasons	8
Hypothesis 3: As a consequence of selection, differences in phenology in a common environment are related to soil temperature at the plant origin in a counter-gradient fashion,	
with plants originating from colder sites flowering earlier	9
Effect of mother plant (and stream) on the flowering phenology in the common garden	10
soil temperature at the site of origin?	11

Field data: Distributions

Field data: Differences among streams

2015

Differences among streams in phenological stage: Anova and Tukey HSD

kable(prettify(with(data_f_2015,Anova(lm(stage~stream_new)))))

	Sum Sq	Df	F value	Pr(>F)	
stream_new	53.6888	3	15.4542	< 0.001	***

kable(prettify(as.data.frame(with(data_f_2015,TukeyHSD(aov(lm(stage~stream_new))))\$stream_new)))

	diff	lwr	upr	p adj
2-1	1.9600000	1.1635790	2.756421	0.0000000
3-1	1.1591667	0.3544924	1.963841	0.0016202
4-1	1.5890909	0.7659668	2.412215	0.0000130
3-2	-0.8008333	-1.6055076	0.003841	0.0515857
4-2	-0.3709091	-1.1940332	0.452215	0.6415302
4-3	0.4299242	-0.4011880	1.261036	0.5315756

Differences among streams in proability of flowering: Anova and Tukey HSD

kable(prettify(with(data_f_2015,Anova(glm(flowered~stream_new,family="binomial")))))

	LR Chisq	Df	Pr(>Chisq)	
stream_new	27.0431	3	< 0.001	***

kable(prettify(as.data.frame(with(data_f_2015,TukeyHSD(aov(as.numeric(flowered)~stream_new)))\$stream_ne

	diff	lwr	upr	p adj
2-1	0.6800000	0.3584089	1.0015911	0.0000017
3-1 4-1	$0.3416667 \\ 0.4818182$	$\begin{array}{c} 0.0167429 \\ 0.1494445 \end{array}$	$0.6665905 \\ 0.8141919$	0.0353782 0.0014942
3-2 4-2	-0.3383333 -0.1981818	-0.6632571 -0.5305555	-0.0134095 0.1341919	0.0379492 0.4063784
4-2 4-3	0.1401515	-0.350555 -0.1954478	0.1341919 0.4757508	0.4003784 0.6948481

Differences among streams in temperature: Anova and Tukey HSD

kable(prettify(with(data_f_2015,Anova(lm(temp~stream_new)))))

	Sum Sq	Df	F value	Pr(>F)	
stream_new	4110.748	3	213.7775	< 0.001	***

 $\verb|kable(prettify(as.data.frame(with(data_f_2015, Tukey HSD(aov(lm(temp~stream_new))))| \$stream_new))|)| $$$

p adj	upr	lwr	diff	
0.00e+00	9.645715	5.898285	7.772000	2-1
9.42e-05	5.187299	1.401034	3.294167	3-1
0.00e+00	19.685630	15.812552	17.749091	4-1
1.00e-07	-2.584701	-6.370966	-4.477833	3-2

	diff	lwr	upr	p adj
4-2	9.977091	8.040552	11.913630	0.00e+00
4-3	14.454924	12.499592	16.410256	0.00e+00

2017

Differences among plots in FFD: Anova and Tukey HSD

kable(prettify(with(data_f_2017,Anova(lm(yday(FFD)~plot_new)))))

	Sum Sq	Df	F value	Pr(>F)	
plot_new	3480.747	13	3.270766	< 0.001	***

 $\#kable(prettify(as.data.frame(with(data_f_2017, Tukey HSD(aov(yday(FFD) \sim plot)))\$plot)))$

Differences among plots in temperature: Anova and Tukey HSD

kable(prettify(with(data_f_2017,Anova(lm(temp1~plot_new)))))

	Sum Sq	Df	F value	Pr(>F)	
plot_new	20143.13	13	114.1356	< 0.001	***

 $\#kable(prettify(as.data.frame(with(data_f_2017,TukeyHSD(aov(lm(temp1\sim plot))))\$plot))))$

Hypothesis 1: Local soil warming leads to an earlier phenology

2015 Logistic regression (relationship among probability of flowering and soil temperature) with pooled data

<pre>kable(prettify(summary(glm(flowered~temp,data=data_f_2015,family="binomial"))))</pre>
--

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$	
(Intercept)	-1.6666857	0.188872	0.0504618	0.6399272	0.6433108	-2.590794	0.01	**
temp	0.1114387	1.117885	1.0462921	1.2057695	0.0358129	3.111692	0.002	**

There is a strong overall relationship among probability of flowering and soil temperature.

Logistic regression for each stream

kable(prettify(summary(glm(flowered~temp,data=subset(data_f_2015,stream_new=="1"),family="binomial"))))

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$
(Intercept)	-1.5583006	0.2104935	0.0000026	575.210838	4.4573377	-0.3496034	0.727
$_{\mathrm{temp}}$	0.0152656	1.0153827	0.4982892	2.673228	0.3928292	0.0388606	0.969

kable(prettify(summary(glm(flowered~temp,data=subset(data_f_2015,stream_new=="2"),family="binomial"))))

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$
(Intercept)	3.2628934	26.1250173	0.0375709	1.409812e + 05	3.5647263	0.9153279	0.36

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$
temp	-0.0657001	0.9364116	0.6258017	1.337007e+00	0.1787638	-0.3675247	0.713

kable(prettify(summary(glm(flowered~temp,data=subset(data_f_2015,stream_new=="3"),family="binomial"))))

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$	
(Intercept)	-7.0604560	0.0008584	0.0000001	1.763186	4.1609369	-1.696843	0.09	_
temp	0.4975863	1.6447466	0.9758600	3.072677	0.2849575	1.746177	0.081	

kable(prettify(summary(glm(flowered~temp,data=subset(data_f_2015,stream_new=="4"),family="binomial"))))

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(> z)$
(Intercept)	-4.0550074	0.0173354	0.0000009	187.805270	4.7582873	-0.852199	0.394
$_{\mathrm{temp}}$	0.1674113	1.1822404	0.8594305	1.678054	0.1658428	1.009457	0.313

Within each stream, there are no significant relationships.

Logistic regression including temperature and stream

```
# Different slopes and intercepts for each stream
model1<-glm(flowered~temp*stream_new,family="binomial",data_f_2015)
kable(prettify(summary(model1)))</pre>
```

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(>\! z)$
(Intercept)	-1.5583006	0.2104935	0.0000026	5.752108e + 02	4.4573377	-0.3496034	0.727
temp	0.0152656	1.0153827	0.4982892	2.673228e+00	0.3928292	0.0388606	0.969
stream_new: 2	4.8211939	124.1131851	0.0041193	7.178108e + 07	5.7074629	0.8447175	0.398
stream_new: 3	-5.5021554	0.0040780	0.0000000	2.579510e+03	6.0976434	-0.9023413	0.367
stream_new: 4	-2.4967069	0.0823558	0.0000003	1.113649e + 05	6.5199047	-0.3829361	0.702
$temp:stream_new2$	-0.0809657	0.9222253	0.3321141	2.033585e+00	0.4315916	-0.1875980	0.851
$temp:stream_new3$	0.4823207	1.6198292	0.5466614	4.107605e+00	0.4852995	0.9938620	0.32
$temp:stream_new4$	0.1521457	1.1643298	0.4237360	2.553313e+00	0.4264020	0.3568128	0.721

```
# Common slope, different intercepts for each stream
model2<-glm(flowered~temp+stream_new,family="binomial",data_f_2015)
kable(prettify(summary(model2)))</pre>
```

	Estimate	Odds Ratio	CI (lower)	CI (upper)	Std. Error	z value	$\Pr(>\! z)$	
(Intercept)	-2.8302954	0.0589954	0.0038896	0.7220361	1.3169346	-2.1491540	0.032	*
temp	0.1275365	1.1360263	0.9252548	1.4162684	0.1069991	1.1919398	0.233	
$stream_new: 2$	2.4703883	11.8270379	1.6592861	111.0947792	1.0579993	2.3349621	0.02	*
$stream_new: 3$	1.1427432	3.1353575	0.7695188	13.9338737	0.7307727	1.5637464	0.118	
stream_new: 4	-0.0841986	0.9192486	0.0174175	43.9307406	1.9701665	-0.0427368	0.966	

anova(model1, model2, test="Chisq") # Likelihood ratio test comparing both models

```
## Analysis of Deviance Table
##
## Model 1: flowered ~ temp * stream_new
## Model 2: flowered ~ temp + stream_new
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 88 99.323
## 2 91 102.522 -3 -3.1996 0.3619
```

There is no support for significant differences between slopes (despite the graph!), so we keep model2 with a common slope and different intercepts for each stream. We cannot really separate the effects of streams from the effects of temperature, as streams have very different ranges of temperatures, i.e. effects of streams are likely to be mostly effects of temperatures. This means that differences in temperature at larger scales (among streams) are more important than differences at small scales (within streams).

2017 Linear regression (relationship among FFD and soil temperature) with pooled data

kable(prettify(summary(lm(yday(FFD)~temp1,data=data_f_2017))))

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	181.5046128	179.3049241	183.7043016	1.1177527	162.383512	< 0.001	***
temp1	-0.1888762	-0.3217936	-0.0559589	0.0675408	-2.796476	0.006	**

There is a strong overall relationship among FFD and soil temperature.

Linear regression including temperature and plot

```
# Different slopes and intercepts for each plot
model3<-lm(yday(FFD)~temp1*plot_new,data_f_2017)
kable(prettify(Anova(model3)))</pre>
```

	Sum Sq	Df	F value	Pr(>F)	
temp1	1.615881	1	0.0204492	0.886	
plot_new	2794.665247	13	2.7205288	0.001	**
temp1:plot_new	1917.521142	13	1.8666535	0.034	*

```
# Common slope, different intercepts for each plot
model4<-lm(yday(FFD)~temp1+plot_new,data_f_2017)
kable(prettify(Anova(model4)))</pre>
```

	Sum Sq	Df	F value	$\Pr(>F)$	
temp1	1.615881	1	0.0196716	0.889	
$plot_new$	2794.665247	13	2.6170719	0.002	**

anova(model3,model4) # Likelihood ratio test comparing both models

```
## Analysis of Variance Table
##
## Model 1: yday(FFD) ~ temp1 * plot_new
## Model 2: yday(FFD) ~ temp1 + plot_new
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 272 21493
## 2 285 23411 -13 -1917.5 1.8667 0.03392 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

There is support for significant differences between slopes, so we keep model3 with different slopes and intercepts for each plot We cannot really separate the effects of plots from the effects of temperature, as plots have very different ranges of temperatures, i.e. effects of plots are likely to be mostly effects of temperatures. This means that differences in temperature at larger scales (among plots) are more important than differences at small scales (within plots).

Hypothesis 2: Phenotypic selection for early flowering is stronger in colder sites with shorter growing seasons

Select data for selection analyses

Selection models

```
model5<-lm(n_seeds_rel~FFD_std*temp1+nfl_std,data=data_f_2017_sel)
kable(prettify(summary(model5))) # Selection for FFD does not depend on temperature
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.4753616	0.9510494	1.9996737	0.2657891	5.5508739	< 0.001	***
FFD_std	-0.4234386	-0.9662385	0.1193612	0.2751610	-1.5388759	0.126	
temp1	-0.0412410	-0.0797509	-0.0027310	0.0195218	-2.1125589	0.036	*
nfl_std	-0.1597812	-0.4264223	0.1068599	0.1351681	-1.1820923	0.239	
$FFD_std:temp1$	-0.0137893	-0.0494265	0.0218479	0.0180655	-0.7632942	0.446	

```
model6<-lm(n_seeds_rel~FFD_std+temp1+nfl_std,data=data_f_2017_sel)
kable(prettify(summary(model6))) # Interaction removed --> selection for early flowering
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.4617458	0.9392117	1.9842800	0.2648968	5.518171	< 0.001	***
FFD_std	-0.6030369	-0.8841268	-0.3219471	0.1424975	-4.231912	< 0.001	***
temp1	-0.0371166	-0.0740799	-0.0001533	0.0187384	-1.980778	0.049	*
nfl_std	-0.1708403	-0.4356432	0.0939626	0.1342409	-1.272640	0.205	

```
model7<-lm(n_seeds_rel~FFD_std*plot_new,data=data_f_2017_sel)
kable(prettify(Anova(model7))) # No differences in selection gradients for FFD among plots</pre>
```

	Sum Sq	Df	F value	Pr(>F)	
FFD_std	37.36704	1	13.2874876	< 0.001	***
plot_new	84.85371	9	3.3526061	0.001	***
FFD_std:plot_new	24.01207	9	0.9487271	0.484	

There is no interactive effect of phenology and soil temperature on fitness, i.e. selection on phenology does not depend on temperature. Fitness increases with early flowering, independent of temperature, i.e. there is overall selection for early flowering. This could be the result of environmental covariation, i.e. that both early flowering and fitness are correlated with favorable environmental conditions.

Hypothesis 3: As a consequence of selection, differences in phenology in a common environment are related to soil temperature at the plant origin in a counter-gradient fashion, with plants originating from colder sites flowering earlier

Histogram of Julian date of first flowering in the common garden (2017)

Effect of mother plant (and stream) on the flowering phenology in the common garden

Mother plant is treated as a random effect (we are not interested in the effect of "a particular mother"), and stream is treated as a fixed effect (there are few streams, and we might be interested in the effect of a particular stream due to the very large differences in temperature among them).

```
# This takes into account that mother is nested within stream
model8<-lmer(first_fl_j~stream_new+(1|mother_pl_id_new), REML=F,data=data_cg)
kable(prettify(summary(model5))) # Stream is significant</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	1.4753616	0.9510494	1.9996737	0.2657891	5.5508739	< 0.001	***
FFD_std	-0.4234386	-0.9662385	0.1193612	0.2751610	-1.5388759	0.126	
temp1	-0.0412410	-0.0797509	-0.0027310	0.0195218	-2.1125589	0.036	*
nfl_std	-0.1597812	-0.4264223	0.1068599	0.1351681	-1.1820923	0.239	
FFD_std:temp1	-0.0137893	-0.0494265	0.0218479	0.0180655	-0.7632942	0.446	

```
# Likelihood ratio test for testing the significance of random effects
# Compares a model with a given random effect to the same model without the random effect
rand(model8) # Mother is significant
```

```
## Analysis of Random effects Table:
## Chi.sq Chi.DF p.value
## mother_pl_id_new 14.9 1 1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

There is an effect of both mother plant and stream of origin on flowering phenology (first flowering day) in the common garden: there are differences among streams, and differences among mothers within streams.

Are differences among mother plants on the flowering phenology in the common garden related to soil temperature at the site of origin?

We expect plants to respond to warming in spring in a counter-gradient fashion, i.e. plants growing on warmer soils will flower early in the field but later in the common garden (requiring more warm days to start development) than plants from cold soils. Plants growing on colder soils will flower later in the field, but earlier in the common garden, because they can start developing at lower temperatures (they are adapted to colder conditions and they have evolved to compensate for the later and shorter growing season). They have the genetic capacity to develop at lower temperatures, probably because they have been selected for rapid development in environments with short growing seasons.

LM with pooled data

kable(prettify(summary(lm(first_fl_j~temp_ori,data=data_cg))))

	Estimate	CI (lower)	CI (upper)	Std. Error	t value	$\Pr(> t)$	
(Intercept)	142.752022	141.2723707	144.2316742	0.7532399	189.517345	< 0.001	***
$temp_ori$	0.386592	0.3067632	0.4664207	0.0406381	9.513048	< 0.001	***

There is a strong overall relationship among FFD in the common garden and soil temperature at the origin, that goes in the expected direction (i.e. opposite to the relationship observed in field conditions).

LMM for each stream

kable(prettify(summary(lmer(first_fl_j~temp_ori+(1|mother_pl_id_new),data=subset(data_cg,stream_new=="1

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$	
(Intercept)	154.3898705	141.701049	167.1512023	6.5197466	38.00169	23.6803484	< 0.001	***

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$
temp_ori	-0.5606001	-1.679326	0.5536093	0.5722251	37.53504	-0.9796847	0.334

kable(prettify(summary(lmer(first_fl_j~temp_ori+(1|mother_pl_id_new),data=subset(data_cg,stream_new=="2")

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$	
(Intercept)	146.5881059	141.4157126	151.7604992	2.6398204	145.0001	55.529575	< 0.001	***
$temp_ori$	0.2637725	-0.0012667	0.5288118	0.1352674	145.0001	1.950009	0.053	

kable(prettify(summary(lmer(first_fl_j~temp_ori+(1|mother_pl_id_new),data=subset(data_cg,stream_new=="3")

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$	
(Intercept) temp_ori	150.3612790 -0.2635643	138.751595 -1.070736				25.1423197 -0.6434789		***

kable(prettify(summary(lmer(first_fl_j~temp_ori+(1|mother_pl_id_new),data=subset(data_cg,stream_new=="4")

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$	
(Intercept)	150.6038819	126.8138383	175.621368	12.3552238	12.27455	12.1894904	< 0.001	***
$temp_ori$	0.1623841	-0.6869118	0.973925	0.4219175	12.08425	0.3848718	0.707	

Within each stream, there are no significant relationships.

LMM including temperature, stream and mother

```
# This takes into account that mother is nested within stream
model9<-lmer(first_fl_j~temp_ori+(1|stream_new)+(1|mother_pl_id_new),data = data_cg)
kable(prettify(summary(model9))) # Temperature is significant</pre>
```

	Estimate	CI (lower)	CI (upper)	Std. Error	df	t value	$\Pr(> t)$	
(Intercept)	144.461930	140.5537963	148.6148916	2.0209199	5.814641	71.48325	< 0.001	***
$temp_ori$	0.306965	0.1107079	0.5046474	0.0975703	9.032306	3.14609	0.012	*

rand(model9) #Stream and mother are significant

Differences among mother plants in phenology are related to soil temperature at origin. Plants respond to warming a counter-gradient fashion: plants from warmer soils flower later in the common garden than plants from cold soils.