Exercise Sheet 11 (theory part)

Exercise 1: Designing a Neural Network (25 P)

We would like to implement a neural network that classifies data points in \mathbb{R}^2 according to decision boundary given in the figure below.

We consider as an elementary computation the threshold neuron whose relation between inputs $(a_i)_i$ and output a_j is given by

$$z_j = \sum_i a_i w_{ij} + b_j \qquad a_j = 1_{z_j > 0}.$$

(a) Design at hand a neural network that takes x_1 and x_2 as input and produces the output "1" if the input belongs to class A, and "0" if the input belongs to class B. Draw the neural network model and $write\ down$ the weights w_{ij} and bias b_j of each neuron.

Exercise 2: Backward Propagation (5 + 20 P)

We consider a neural network that takes two inputs x_1 and x_2 and produces an output y based on the following set of computations:

$$z_5 = a_3 \cdot w_{35} + a_4 \cdot w_{45}$$

$$a_3 = \tanh(z_3)$$
 $a_5 = \tanh(z_5)$
 $z_4 = x_1 \cdot w_{14} + x_2 \cdot w_{24}$ $z_6 = a_3 \cdot w_{36} + a_4 \cdot w_{46}$
 $a_4 = \tanh(z_4)$ $a_6 = \tanh(z_6)$

(a) Draw the neural network graph associated to this set of computations.

(b) Write the set of backward computations that leads to the evaluation of the partial derivative $\partial y/\partial w_{13}$. Your answer should avoid redundant computations. Hint: $\tanh'(t) = 1 - (\tanh(t))^2$.

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \cdot \frac{\partial}$$