IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) A multi-stack optical data storage medium for recording using a focused radiation beam having a wavelength λ and entering through an entrance face of the medium during recording, comprising:
- a first substrate with present on a side thereof:
- a first recording stack named L_0 , comprising a recordable type L_0 recording layer, and formed in a first L_0 guide groove, the L_0 recording layer having a thickness d_{L0G} in the groove and a thickness d_{L0L} adjacent the groove, and a first reflective layer present between the L_0 recording layer and the first substrate,
- second substrate with present on a side thereof:
- a second recording stack named L_1 comprising a recordable type L_1 recording layer, the L_1 recording layer having a thickness d_{L1G} in the groove and a thickness d_{L1L} adjacent the groove, said second recording stack being present at a position closer to the entrance face than the L_0 recording stack and formed in a second L_1 guide groove,
- a transparent spacer layer sandwiched between the recording stacks, said transparent spacer layer having a thickness substantially larger than the depth of focus of the focused

radiation beam,

characterized in that the depth of the first L_0 guide groove is smaller than 0.15% and that d_{LOL} is substantially equal to or larger than $d_{\text{LIG}}.$

- 2. (original) A multi-stack optical data storage medium according to claim 1, wherein d_{L0G} is substantially equal to or larger than $2d_{L1L}$.
- 3. (original) A multi-stack optical data storage medium according to claim 1, wherein the recordable type L_0 and L_1 recording layers comprise an organic dye.
- 4. (original) A multi-stack optical data storage medium according to claim 3, wherein d_{L1G} is larger than d_{L1L} .
- 5. (original) A multi-stack optical data storage medium according to claim 4, wherein a dielectric layer is present at a side of the L_0 recording layer opposite from the side where the first reflective layer is present.
- 6. (original) A multi-stack optical data storage medium according to claim 5, wherein the dielectric layer has a thickness in the

range of 5 nm - 120 nm.

- 7. (original) A multi-stack optical data storage medium according to claim 4, wherein a second reflective layer comprising a metal is present at a side of the L_0 recording layer opposite from the side where the first reflective layer is present.
- 8. (original) A multi-stack optical data storage medium according to claim 7, wherein the second reflective layer has a thickness in the range of 5 nm -15 nm.
- 9. (currently amended) A multi-stack optical data storage medium according to claim 7—or 8, wherein the second reflective layer mainly comprises a metal selected from the group of Ag, Au and Cu.
- 10. (currently amended) Use of an optical data storage medium as claimed in any one of the preceding claims claim 1 for multi stack recording with a reflectivity level of the first recording stack L_0 as such of more than 50% and modulation of recorded marks in the L_0 recording layer of more than 60%.