Correction 13.13

Hasard 2 Math

Si vous voyez une coquille, n'hésitez pas à la signaler par mail.

1 Indication

Faire des dessins pour repérer le problème qui apparait lors qu'on suppose que f ne s'annule pas et remarquer que l'étude d'un point $x_0 = \sup\{x \in [0,1] \mid f(x) > 0\}$ est intéréssante.

2 Correction

Supposons que f ne s'annule pas sur [0,1]. On pose $x_0 = \sup\{x \in [0,1] \mid f(x) > 0\}$ (non vide car 0 est dedans). Remarque : x_0 n'est pas 0 ni 1. Le but est de montrer un problème de continuité de g en x_0 . Soit $\alpha > \gamma > 0$ (on pose γ pour éviter les problèmes de def topologique des limites avec des ouverts), posons $x_1 = x_0 + \gamma$ (si $x_1 > 1$, alors on prend $x_1 = 1$). On a, par croissance de f + g,

$$f(x_0) + g(x_0) \le f(x_1) + g(x_1)$$

Or $f(x_1) < 0$ car $x_1 > x_0$, donc on a

$$f(x_0) < g(x_1) - g(x_0)$$

Donc pour tout $\alpha > 0$, on peut trouver un $x \in B(x_0, \alpha) \cap [0, 1]$ tel que $|g(x) - g(x_0)| > f(x_0) > 0$ Donc $\lim_{x \to x_0} g(x) \neq g(x_0)$ ce qui est absurde car g est continue sur [0, 1].

Ainsi f s'annule sur [0,1]. Ce qui conclut.