Claims

1. A process for the preparation of 2-oxo-1-pyrrolidine derivatives of general formula (I), and salts thereof,

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^1
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^3

5

wherein:

R¹ is R^a or R^b:

 R^3 and R^4 are the same or different and each is, independently, hydrogen, hydroxy, thiol, halogen, cyano, carboxy, sulfonic acid, R^a , R^b , alkylsulfonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxy, aryloxy, sulfonamide, acyl, ester, amido, acyloxy, esteroxy or amidooxy;

X is -CONR⁵R⁶, -COOR⁷ or -CN;

 R^5 , R^6 , R^7 are the same or different, and each is, independently, hydrogen, R^a or R^b ;

15

10

Ra is C1-20 alkyl or C1-20 alkyl substituted by one or more hydroxy, thiol, halogen, cyano, carboxy, sulfonic acid, Rb, alkylsulfonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxy, aryloxy, sulfonamide, acyl, ester, amido, acyloxy, esteroxy and/or amidooxy;

20

R^b is aryl, heteroaryl, heterocycloalkyl or the same substituted by one or more R^a, hydroxy, thiol, halogen, cyano, carboxy, sulfonic acid, aryl, alkylsulfonyl, arylsulfonyl, alkylsulfinyl, arylsulfinyl, alkylthio, arylthio, alkoxy, aryloxy, sulfonamide, heterocycloalkyl, heteroaryl, acyl, ester, amido, acyloxy, esteroxy and/or amidooxy;

25

comprising the reaction of a furan derivative of formula (II) or (III)

$$R^4$$
 R^3
 R^3
 R^4
 R^3
 R^3
 R^3
 R^4
 R^3
 R^3
 R^3
 R^4
 R^3
 R^3

wherein R^2 and R^2 are the same or different and each is C1-10 alkyl or the same substituted by aryl,

with a compound of formula (IV)

$$\mathbb{R}^{1}$$
 \mathbb{X}
 \mathbb{X}
 \mathbb{X}
 \mathbb{X}

and with H2 in the presence of catalyst.

- 2. The process according to claim 1, wherein a furan derivative of formula (II) is used.
- 5 3. The process according to claim 1 or 2, wherein R³ is hydrogen.
 - 4. The process according to any of claims 2 to 3, wherein R^4 is R^a or hydrogen.
 - 5. The process according to claim 4, wherein R⁴ is C1-6 alkyl or C1-6 alkyl substituted by one or more halogens.
 - 6. The process according to claim 5, wherein \mathbb{R}^4 is n-propyl.
- 7. The process according to any of the preceding claims, wherein X is $-CONR^5R^6$.
 - 8. The process according to claim 7, wherein X is $-CONH_2$.
 - 9. The process according to any of claims 1 to 8, wherein \mathbb{R}^1 is C1-6 alkyl.
 - 10. The process according to claim 9, wherein \mathbb{R}^1 is ethyl.
- 11. The process according to any of claims 2 to 10, wherein the compound of formula (II) is obtained by reaction of an aldehyde of formula (V) with a ketoacid of formula (VI),

$$\mathbb{R}^4$$
 (V) \mathbb{R}^3 OH (VI)

wherein R³ and R⁴ are as defined in claim 1, in the presence of a base.

- 20 12. The process according to any of the preceding claims, wherein the compound of formula (IV) is obtained by neutralisation of the corresponding hydrochloride salt.
 - 13. The process according to any of the preceding claims, wherein the catalyst is a Pd, Pt or Ni based catalyst.
 - 14. The process according to claim 13, wherein the catalyst is a Pd based catalyst.
- 25 15. The process according to any of the preceding claims, wherein compounds of formula (I) are in the (S)-form or in the (R)-form.
 - 16. The process according to claim 15, wherein compounds of formula (I) are in the (S)-form.
- 17. The process according to any of the preceding claims, wherein when R³ and/or R⁴ are different from hydrogen the obtained diastereoisomers are further separated.

WO 2005/028435 PCT/EP2004/010212

14

18. The process according to any of the preceding claims, which is applied to the preparation of (2S)-2-((4R)-2-oxo-4-n-propyl-1-pyrrolidinyl)butanamide.