Project 3

Dan Kolbman

December 5, 2014

1 Lane-Emden Equation

Figure 1: Lane-Emden for n = 0.5, 1, 2, 3

2 Dimensionless Quantities

n	\hat{M}	[1]	$-(\frac{d\theta}{d\xi})_{\xi=\Xi}$	$\hat{\Omega}$	\hat{I}
0.5	47.5911	2.7528	0.4999	1.7268	0.1764
1	39.4651	3.1419	0.3182	2.0003	0.2612
2	30.2913	4.3537	0.1271	2.8059	0.5792
3	25.3594	6.8999	0.0423	4.4188	1.5481

Table 1: Dimensionless Quantities for different models

Figure 2: Constant K from the slope

3 Central Pressure of Sun

Using cgs units:

$$G = 6.674e - 8\frac{cm^3}{gs}$$

$$R = 695.8e8cm$$

$$M = 1.989e33g$$

$$\hat{M} = 25.3594$$

$$\alpha = 1.0084e11$$

$$\rho_c = \frac{M}{\alpha^3 \hat{M}}$$

$$= 0.07648$$

$$\kappa = \alpha^2 \frac{4\pi G}{n+1} \frac{1}{\rho_c^{(1-n)/n}}$$

$$= 1.9200e14$$

$$P_c = 1.2473e17$$

 P_c from the n=3 model is more than half the expected value.

4 White Dwarfs

Defining $G(\theta)$ as:

$$G(\theta) \equiv \frac{\theta^{-1/3} (4\theta^{2/3} + 5)}{3(\theta^{2/3} + 1)^{3/2}}$$

We can solve:

$$\theta''G(\theta) + \frac{2}{s}G'(\theta)(\theta')^2 + \theta = 0$$

