



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br>C12N 15/86, 15/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1 | (11) International Publication Number: WO 98/38326<br>(43) International Publication Date: 3 September 1998 (03.09.98)                                                                                                                                                                                                                               |
| <p>(21) International Application Number: PCT/US98/03918</p> <p>(22) International Filing Date: 28 February 1998 (28.02.98)</p> <p>(30) Priority Data:<br/>60/070,910 28 February 1997 (28.02.97) US</p> <p>(71) Applicant (for all designated States except US): NATURE TECHNOLOGY CORPORATION [US/US]; 109 South 54th Street, Omaha, NE 68132 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): HODGSON, Clague, P. [US/US]; 109 South 54th Street, Omaha, NE 68132 (US). ZINK, Mary, Ann [US/US]; 109 South 54th Street, Omaha, NE 68132 (US). XU, Guoping [CN/US]; 109 South 54th Street, Omaha, NE 68132 (US).</p> <p>(74) Agent: MCCORMACK, Myra, H.; Muetting, Raasch &amp; Gebhardt, P.A., P.O. Box 581415, Minneapolis, MN 55458-1415 (US).</p> |    | <p>(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p><b>Published</b><br/> <i>With international search report.<br/>     Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p> |

(54) Title: SELF-ASSEMBLING GENES, VECTORS AND USES THEREOF



## (57) Abstract

The invention relates to a method for directing the self-assembly of a gene or gene assembly having three and preferably six or more fragments in a directionally and spatially ordered fashion to produce a gene, gene vector or large nucleic acid molecule. The method can be used to create libraries, such as combinatorial libraries. In another embodiment of the invention a vector is described for the incorporation and screening of endogenous mouse promoter elements for the identification of cell-specific promoters.

*FOR THE PURPOSES OF INFORMATION ONLY*

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                          |    |                                              |    |                          |
|----|--------------------------|----|------------------------------------------|----|----------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                    | LS | Lesotho                                      | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                                  | LT | Lithuania                                    | SK | Slovakia                 |
| AT | Austria                  | FR | France                                   | LU | Luxembourg                                   | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                    | LV | Latvia                                       | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                           | MC | Monaco                                       | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                                  | MD | Republic of Moldova                          | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                    | MG | Madagascar                                   | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                   | MK | The former Yugoslav<br>Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                   | ML | Mali                                         | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                                  | MN | Mongolia                                     | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                                  | MR | Mauritania                                   | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                   | MW | Malawi                                       | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                                  | MX | Mexico                                       | US | United States of America |
| CA | Canada                   | IT | Italy                                    | NE | Niger                                        | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                    | NL | Netherlands                                  | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                    | NO | Norway                                       | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                               | NZ | New Zealand                                  | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's<br>Republic of Korea | PL | Poland                                       |    |                          |
| CM | Cameroun                 | KR | Republic of Korea                        | PT | Portugal                                     |    |                          |
| CN | China                    | KZ | Kazakhstan                               | RO | Romania                                      |    |                          |
| CU | Cuba                     | LC | Saint Lucia                              | RU | Russian Federation                           |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                            | SD | Sudan                                        |    |                          |
| DE | Germany                  | LK | Sri Lanka                                | SE | Sweden                                       |    |                          |
| DK | Denmark                  | LR | Liberia                                  | SG | Singapore                                    |    |                          |
| EE | Estonia                  |    |                                          |    |                                              |    |                          |

**SELF-ASSEMBLING GENES, VECTORS AND USES THEREOF****Field of the Invention**

5 This invention relates to the construction and usage of synthetic genes for genetic engineering and gene therapy.

**Background of the invention**

This application claims the benefit of a provisional application U.S. Serial No. 10 60/070,910, filed on February 28, 1997, entitled "Self-Assembling Genes."

Recombination at the genetic level is important for generating diversity and adaptive change within genomes of virtually all organisms. Recombinant DNA technology is based upon simple 'cut-and-paste' methods for manipulating nucleic acid molecules *in vitro*. The pieces of genetic material, or DNA are first digested with a restriction endonuclease 15 enzyme which recognizes specific sequences within the DNA. After preparation of two or more pieces of DNA, the ends of the DNA are further manipulated, if necessary, to make them compatible for ligation or joining together. DNA ligase, together with adenosine triphosphate (ATP) is added to the genes, ligating them back together. The genetic assembly containing an origin of DNA replication and a selectable gene is then inserted into a living 20 cell, is grown up, and is positively selected to yield a pure culture capable of providing high yields of individual recombinant DNA molecules, or their products such as RNA or protein.

Significant improvements have been made to this technology over the last two and a half decades. Numerous enzymes, end-linkers and adapter molecules have been made commercially available, which facilitate in the construction of recombinant DNA molecules. 25 By using two restriction enzymes with different single-stranded termini or blunt ends, it is possible to directionally assemble genes (forced cloning). This reduces the amount of screening required to determine orientation. Procedures have been automated for synthesis of single-stranded gene fragments up to 200 or more nucleotides in length by means of phosphoramidite chemistry, and the instrumentation is readily available through Applied Biosystems, Inc., Foster City, CA. Such single-stranded fragments can be joined by annealing overlapping complimentary phosphorylated strands, and by enzymatically filling in the ends with DNA polymerase and DNA precursors. In this way, multiple, overlapping, 30 single-stranded fragments can be assembled into a larger, double-stranded superstructure.

Whole genes have been synthesized by similar methods. However, it becomes increasingly difficult to use synthetic DNA strands when making genes larger than approximately one kilobase. Using gene amplification methods (e.g. polymerase chain reaction (PCR), Mullis *et al.*, U.S. Patent 4,683,195), together with synthetic oligonucleotides, it is possible to make biologically active, synthetic retro-vectors that are capable of RNA transcription, reverse-transcription, viral packaging, and integration into genomic DNA (see for example, Hodgson, WO94/20608). Hodgson, *supra*, also disclosed methods for cloning of transcriptional promoters into such a vector using traditional recombinant DNA technology.

Modified restriction enzyme sites, linkers, and adapters can change the primary or secondary structure of complex nucleic acid sequences thereby altering or obliterating a desired biological activity. For example, small mutations can drastically modify transcriptional promoters or change the reading frame of coding DNA. A logical goal of vectorology is to make exact constructs, without need of fortuitous restriction sites, adapters, or linkers.

Restriction endonucleases can be grouped based on similar characteristics. In general there are three major types or classes: I, II (including IIS) and III. Class I enzymes cuts at a somewhat random site from the enzyme recognition sites (see Old and Primrose, 1994. *Principles of Gene Manipulation*. Blackwell Sciences, Inc., Cambridge, MA, p.24). Most enzymes used in molecular biology are type II enzymes. These enzymes recognize a particular target sequence (i.e., restriction endonuclease recognition site) and break the polynucleotide chains within or near to the recognition site. The type II recognition sequences are continuous or interrupted. Class IIS enzymes (i.e., type IIS enzymes) have asymmetric recognition sequences. Cleavage occurs at a distance from the recognition site.

These enzymes have been reviewed by Szybalski *et al.* *Gene* 100:13-26, 1991. Class III restriction enzymes are rare and are not commonly used in molecular biology.

U.S. Patent No. 4,293,652 employed a linker with a class IIS enzyme recognition sequence to permit synthesized DNA to be inserted into a vector without disturbing a recognition sequence. Brousseau *et al.* (*Gene* 17:279-289, 1982) and Urdea *et al.* (*Proc. Natl. Acad. Sci. USA* 80:7461-7465, 1983) disclose the use of class IIS enzymes for the production of vectors to produce recombinant insulin and epidermal growth factor respectively. Mandecki *et al.* described a method for making synthetic genes by cloning small oligonucleotides using a vector (*Gene* 68:101-107, 1988). Expansion of a population of

oligonucleotides required synthesis, cloning excision and fragment purification. The oligonucleotides were used to create a complete plasmid.

- Lebedenko *et al.* (*Nucl. Acids Res.* 19(24):6757-6771) illustrated the class IIS enzymes and PCR for precisely joining 3 nucleic acid molecules for convention sub-cloning using BamHI. Tomic *et al.* (*Nucleic Acids Res.*, 18:1656, 1990), reported a method for site-directed mutagenesis using the polymerase chain reaction and class IIS enzymes to join two nucleic acid molecules. Two overlapping PCR primers were used where the primers included class IIS recognition sites. The primers included a region of complementarity to the template DNA and include one to a few site-directed mutations. Stemmer *et al.* (U.S. Patent No. 10 5,514,568) employed overlapping primers with class IIS enzymes to amplify a plasmid and to introduce specific mutations into DNA leaving all other positions unaltered.

There remains a need for the ordering and assembly of complex genes to overcome the problems associated with sequential sub-cloning such as multiple purification steps, the potential for sample loss, and the like. Moreover there is a need for eliminating the use of prokaryotic hosts and for minimizing or avoiding the risks associated with bacterial contamination resulting from the use of bacteria as intermediaries in the cloning process. Further, there remains a need for efficient methods to assemble large nucleic acid molecules or many-fragmented nucleic acid assemblies with precision.

#### 20 Brief Description of the Figures

**Fig. 1A.** provides one schematic of six double stranded DNA fragments, each terminus comprising a unique overhanging two-nucleotide sequence complementary to only one other terminus

25 **Fig. 1B.** illustrates a three-piece ligation where 100% of the clones tested contained the predicted fragment order and desired fragment orientation.

**Fig. 2.** illustrates the use of a class IIS restriction endonuclease (as one example, *Bpm*1), restriction endonuclease recognition site and the selection of cohesive overhanging ends.

30 **Fig. 3A.** illustrates an exemplary retrotransposon-derived vector including a murine VL30 LTR (NLV-3) and packaging signal, an internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV), a gene encoding a green fluorescent protein (GFP), additional internal VL30 sequences (solid bar), SV40 early region promoter and Tn5

aminoglycosidase phosphotransferase (neo) gene, PBR322 plasmid origin of replication and a plus-strand primer binding site (VL30). An exemplary vector sequence is provided as VLPGN (SEQ ID NO:1). Fig 3B is an illustration of an LTR with the insertion of a U3 (transcriptional promoter)region rescued by reverse transcriptase-polymerase chain reaction (RT-PCR). The promoter is amplified from the RNA of a cell expressing the VL30 U3 region. Complementary overhanging ends are created using class IIS restriction endonuclease digestion sites within the LTR and within the promoter. Fig. 3C provides the linear structure of a VL30 RNA transcript from a mouse cell with a U3 region near the 3'-terminus of the RNA molecule. PCR primers include a class IIS enzyme recognition site to amplify the U3 region from the RNA resulting in a double stranded DNA molecule. Cleavage with a class IIS enzyme (here *BpmI*), results in a double-stranded DNA molecule with end complementary to a site in the vector of Fig. 3A.

Fig. 4A. is a schematic illustrating steps for assembling a combinatorial library of *cis*- or *trans*-acting nucleic acid sequences for assembly and screening, useful for the rescue of biologically active species. Fig. 4b is a diagram of a U3 (transcriptional enhancer and promoter region of an LTR illustrating several sub-divisions of the transcriptional control region, including a distal enhancer region, an enhancer repeat region, a medial promoter and a proximal promoter. These regions have been described for other vectors in Hodgson et al. (1996. "Construction, Transmission and Expression of Synthetic VL30 Vectors" in Hodgson ed. *Retro-vectors for Human Gene Therapy*. RG Landes Company, Austin TX). Segments of these regions are amplified using primers for highly conserved sequences. Highly conserved sequences are determined based on a comparison of known VL30 sequences such as provided in Fig. 4.2 of Hodgson, 1996, *infra*). The parts are joined by annealing and ligation to provide an ordered assembly. Each construct is an allele or a representative of allelic variation in the combinatorial library.

Fig. 5 discloses two transcriptional promoters that have been rescued from mouse VL30 RNA sequences isolated from a mouse T-helper cell library. These promoters were assembled into a vector and introduced into retroviral helper cells and packaged into recombinant retrovirus for introduction into human T-cells. After transduction to human T cells, a  $\beta$ -galactosidase reporter gene was expressed from the T cell-derived promoters.

Fig. 6 discloses 10 biologically active mouse VL30 promoters obtained from mouse liver RNA. These promoters were introduced into the vector of SEQ ID NO:1. The vectors

were introduced into retroviral helper cells and then packaged into retrovirus where they were introduced into human liver cells. The cells expressed the green fluorescent protein.

**Fig. 7** illustrates a similarity plot of nucleotide sequences found in VL30 U3 regions.

- Fig. 8** illustrates a retro-vector comprising six double-stranded DNA fragments that  
5 were self-assembled into a circular structure using unique overlapping termini created using class IIS restriction endonucleases. Three templates and twelve primers were used in conjunction with three class IIS enzymes to make the six fragments that were ligated in a single step. The vector was efficiently self-assembled and was effectively transmitted by both DNA transfection as well as by retroviral transduction of the self-assembled DNA,  
10 without molecular cloning through a prokaryotic host (see Example 2).

#### BRIEF SUMMARY OF THE INVENTION

The invention described herein provides seamless, directional, ordered construction of complex DNA molecules, vectors and libraries. More particularly, it enables  
15 gene constructs to be assembled with greater efficiency and precision, and it enables multiple gene fragments to be assembled in the correct order and orientation without disturbing the internal structure of the gene. The method utilizes *in vitro* assembly of nucleic acid fragments and relies upon the unusual ability of certain enzymes to digest nucleic acid molecules at pre-determined sites without disrupting the structure of the gene. It is especially  
20 useful for the construction of genetic vectors for gene therapy or genetic engineering of cells and organisms. A particular application of the invention is in combinatorial, or evolutionary genetics, where it enables a large number of non-random, self-assembled constructs to be screened simultaneously for function.

In a preferred embodiment of this invention, the invention relates to a method  
25 method for assembling a gene or gene vector comprising the steps of: a) designing at least 6 primers to produce to amplify at least three fragments in at least three separate polymerase chain reactions wherein each primer comprises at least one predetermined restriction endonuclease recognition site that recognizes a restriction endonuclease that cleaves at a distance from the recognition site, a sequence complementary to a template nucleic acid for  
30 amplification, and bases positioned at the restriction endonuclease cleavage site that are selected to be complementary to only one other overhanging created from enzymatic cleavage of the fragments; b) combining the primers with template nucleic acid and performing the

polymerase chain reaction to produce multiple copies of an amplified template fragment incorporating the restriction endonuclease recognition site; c) digesting the amplified template fragments with one or more restriction endonucleases that recognize the restriction endonuclease recognition site of the primers to create overhanging termini wherein each 5 overhanging termini is complementary to only one other overhanging termini on another fragment; and d) combining the amplified and digested template fragments in a ligation reaction to produce a directionally ordered gene, nucleic acid fragment or gene vector.

In a preferred aspect of this embodiment, the restriction endonuclease is at least one class IIS restriction endonuclease and preferably, the class IIS restriction 10 endonuclease is selected from the group consisting of: *AlwI*, *Alw26I*, *BbsI*, *BbvI*, *BbvII*, *BpmI*, *BsmAI*, *BsmI*, *BsmBI*, *BspMI*, *BsrI*, *BsrDI*, *Eco57I*, *EarI*, *FokI*, *GsuI*, *HgaI*, *HphI*, *MboII*, *MnII*, *PleI*, *SapI*, *SfaNI*, *TaqII*, *Tth111III*. Still more preferably, class II restriction 15 endonuclease recognition sites (to be distinguished from class IIS restriction endonuclease recognition sites), linkers, or adapters are not used to create the gene or gene vector. In one embodiment, the product of the ligation reaction is introduced into prokaryotic or eukaryotic cells. Preferably, at least one template nucleic acid sequence is chosen from the group 20 consisting of : transcriptional regulatory sequences; genetic vectors; introns and/or exons; viral encapsidation sequences; integration signals intended for introducing nucleic acid molecules into other nucleic acid molecules; retrotransposon(s); VL30 elements; or multiple allelic forms of a sequence.

In another preferred aspect of this embodiment, the method is used to generate combinatorial libraries of a target sequence. Preferably, the target sequence is part or all of a gene. In one embodiment, the gene encodes a protein. In one embodiment, the primers amplify allelic variants of part or all of a gene.

25 In still another preferred aspect of this embodiment, the product of the ligation reaction is passed between eukaryotic cells using a virus particle, by cell fusion, or by transfection. Preferably the product of the ligation reaction is not introduced into prokaryotic cells. Moreover, the method further comprises combining at least one screening or selection step to select the products of the ligation reaction. In one embodiment, the product, of the 30 ligation reaction is mutated during passage in cells in order to generate genetic diversity and preferably the product of the ligation reaction is mutated by homologous recombination during passage in cells.

- In another aspect of this embodiment, the method is used to isolate and identify regulatory sequences from a cell. In another aspect of this embodiment, cells containing the product of the ligation reaction are selected for enhanced biological activity. Preferably, the cells containing the product of the ligation reaction are selected for tissue-specific, hormone-specific or developmental-specific gene expression. Also preferably, the ligation reaction is a circularized gene vector.

In another embodiment of this invention, the invention relates to a nucleic acid primer having a 5' and a 3' end to amplify a nucleic acid fragment for the ligation of at least two fragments comprising: a restriction endonuclease recognition site that recognizes a 10 restriction endonuclease, wherein the restriction endonuclease cleaves at a distance from the recognition site and creates overhanging termini; a sequence complementary to a template sequence to be amplified to produce the nucleic acid fragment; at least two nucleic acid bases positioned at the restriction endonuclease cleavage site and that form an overhanging terminus after cleavage by the restriction endonuclease, wherein the at least two nucleic acid 15 bases are selected to be complementary to only one other overhanging terminus on another fragment of the ligation; and an affinity handle on the 5' end of the primer. Preferably the primer further comprises an anchor to provide stability to the restriction enzyme at the restriction enzyme recognition site.

In yet another embodiment of this invention, the invention relates to a method 20 for isolating and identifying promoters comprising the steps of: a) obtaining a vector comprising at least a portion of a promoter region from a retrovirus transposon LTR and having two non-complementary overhanging termini; b) designing at least two PCR primers to amplify at least one region of a retrovirus transposon LTR from template nucleic acid to produce at least one nucleic acid fragment wherein each primer comprises at least one 25 predetermined restriction endonuclease recognition site that recognizes a restriction endonuclease that cleaves at a distance from the recognition site, a sequence complementary to a template sequence from a retrovirus transposon, and bases positioned at the restriction endonuclease cleavage site that are selected to be complementary to only one other overhanging terminus of the vector wherein the restriction endonuclease cleavage site is created from enzymatic cleavage of the fragments; b) combining the primers with template 30 nucleic acid and performing a polymerase chain reaction to produce multiple copies of an amplified template fragment incorporating the restriction endonuclease recognition site; c)

digesting the amplified template fragments with one or more restriction endonuclease that recognize the restriction endonuclease recognition site of the primer to create overhanging termini; and combining the amplified and digested template fragment in a ligation reaction with the vector to produce a gene vector with an intact LTR sequence. In one embodiment of 5 this aspect of the invention, the template nucleic acid is DNA or RNA. In another embodiment of this aspect of the invention, the method further comprises the step of sequencing the insert to identify the promoter sequence. In one embodiment promoter sequences of SEQ ID NOS:1-13 identified using the methods of claim.

10 **Detailed Description of the Invention**

In one embodiment of this invention, the invention relates to the seamless, oriented self-assembly of at least three DNA fragments having overlapping unique cohesive ends generated by the enzymatic cleavage of at least one restriction endonuclease that is capable of cleaving at a site distant to the restriction enzyme recognition site. Preferably the 15 restriction endonucleases employed in this invention are class IIS restriction endonucleases. These enzymes recognize a predetermined group of nucleotides and cleave at a distance characteristic of the particular endonuclease from the recognition site. The term "unique cohesive ends" is used herein to refer to the notion that the cleavage site for the 20 endonucleases of this invention can be manipulated to produce overhanging ends with unique termini selected by the investigator. The term "complementary" as used herein in reference to the overhanging ends of the fragments of this invention refers to standard complementarity recognized in the field of molecular biology. For example, the nucleotides sequence 5'-TAG- 3' is said to be complementary to the nucleotide sequence 5'-CTA-3'. The term "PCR" is used generally to refer to the polymerase chain reaction and its variations, including RT-PCR 25 as well as other gene amplification techniques employing primers.

In a first step for practicing one embodiment of this invention, a series of at least three overlapping fragments are created through the selection and creation of primers incorporating at least one class IIS restriction enzyme recognition sequence. The oligonucleotide primers of this invention are designed to amplify one or more nucleic acid, 30 fragments and comprise a sequence complementary to a target sequence for gene amplification, a recognition sequence for a restriction endonuclease that cleaves DNA at a distance from the recognition sequence (such as a class IIS restriction enzyme) and bases

positioned at the restriction endonuclease cleavage site that are preferably unique and complementary to only one other overhanging termini in the annealing/ligation reaction that generates the complex nucleic acid molecules. Optionally, the primers of this invention can include an "affinity handle for cleanup" at the 5' end. These sequences can be of any length, 5 preferably at least about 6 bp and the sequences extend the primer in the 5' direction from the restriction enzyme recognition site. This extra length gives many enzymes greater stability and improved activity. In addition, the sequence can be used for recognition and removal of the ends of the primers (either undigested fragments or digested ends of primers) using complementary nucleotide sequences bound to a solid support (such as cellulose, 10 nitrocellulose or silica). Incubation with, or passage over a column or support containing the complementary sequences can be used to remove the tags by allowing them to anneal or hybridize. The nucleic acid can then be eluted from the column. Adapters can also be used in this invention. For purposes of this invention, adapters refer to double stranded fragments containing an enzyme recognition site, according to this invention. The adapters are ligated 15 to double stranded DNA molecules, creating a fragment analogous to a PCR fragment with similar sites derived from a primer. The primers or adapters can be prepared using a number of methods for synthesizing oligonucleotides known in the art. For example instruments for producing oligonucleotides are available from Applied Biosystems, Inc., Foster City, CA.

In one example, for the design of an oligonucleotide primer for use in this 20 invention, the particular complementary bases that will form the site for hybridization of the primer to template (i.e., target DNA or RNA) are selected. A restriction endonuclease recognition site is selected followed by a number of nucleotides to be positioned between the recognition site and the cleavage site. The nucleotides of the cleavage site are selected to include overhanging regions formed from the restriction endonuclease cleavage that are 25 complementary to the overhanging regions of an adjacent fragment in the annealing/ligation reaction.

The length of the primer used in this invention can vary, but preferably the 30 primer length is up to about 80 bases and preferably up to about 50 bases. In addition the primers are preferably at least about 15 bases in length and preferably at least about 25 bases in length. The 5' region of the primer contains preferably at least about 6, preferably at least about 10 and still more preferably at least about 16-18 bases that are not complementary to the template DNA or RNA. Further, the primer incorporates a restriction endonuclease

recognition site preferably 5' to the region of complementarity and a restriction endonuclease digestion site preferably 5' to the region of complementarity or within the region of complementarity. There are a variety of restriction endonucleases that cleave at a distance from the restriction endonuclease recognition site of a DNA strand and a variety of enzymes 5 that are commercially available from New England Biolabs are provided in Table 1.

**Table 1. Restriction endonucleases useful in the construction of self-assembling genes**

| Enzyme:        | Site size (bp): | Distance to overlap: | Size of overlap: | Overlap type: |
|----------------|-----------------|----------------------|------------------|---------------|
| <i>Alw26 I</i> | 5               | 1-5bp                | 4bp              | 5'-Overhang   |
| <i>BbsI</i>    | 6               | 2-6bp                | 4bp              | 5'-overhang   |
| <i>BpmI</i>    | 6               | 16-14bp              | 2bp              | 3'-overhang   |
| <i>BsmBI</i>   | 6               | 1-5bp                | 4bp              | 5'-overhang   |
| <i>BspMI</i>   | 6               | 4-8bp                | 4bp              | 5'-overhang   |
| <i>BsrDI</i>   | 6               | 0-2bp                | 2bp              | 3'-overhang   |
| <i>Eco57I</i>  | 6               | 16-14bp              | 2bp              | 3'-overhang   |
| <i>FokI</i>    | 5               | 9-13bp               | 4bp              | 5'-overhang   |
| <i>Hgal</i>    | 5               | 5-10bp               | 5bp              | 5'-overhang   |
| <i>HphI</i>    | 5               | 8-7bp                | 1bp              | 3'-overhang   |
| <i>MnlI</i>    | 5               | 7-6bp                | 1bp              | 3'-overhang   |
| <i>PleI</i>    | 5               | 4-5bp                | 1bp              | 5'-overhang   |
| <i>SapI</i>    | 7               | 1-4bp                | 3bp              | 5'-overhang   |
| <i>SfaNI</i>   | 5               | 5-9bp                | 4bp              | 5'-overhang   |

10 In addition to the enzymes provided in Table 1, other restriction endonucleases that cleave at a distance from their restriction endonuclease recognition site include, but are not limited to, *AlwI*, *BbsI*, *BbvI*, *BbvII*, *BsmAI*, *BsmI*, *BsrI*, *EarI*, *Gsul*, *MboII*, *TaqII*, *Tth111I* and their respective isoschizomers. These and other enzymes are known in the art and many are available from other manufacturers. The primers can be prepared to produce 15 either 5'-overlapping ends or 3'-overlapping ends, as long as they are both are either 5'-overlapping ends or 3'-overlapping ends and are complementary to one other set of overlapping ends.

In the case of *BpmI* (see Example 1), the enzyme digests asymmetrically, 14-16 bp from the 3'-nucleotide of the recognition site. The resulting cleavage has a 3'-overhanging end of 2 bp. A second primer is then designed with a complementary 20

overhanging end, and it is used to generate the adjoining fragment terminus. At the opposite ends of the two fragments that are to be joined, similar complementary, overhanging ends are designed.

- The oligonucleotides are then combined with template nucleic acid (either
- 5 DNA or RNA, e.g., such as for reverse transcriptase polymerase chain reaction (RT-PCR)) containing bases complementary to at least a 3' portion of the primers (also referred to herein as "templates"). In one embodiment, the fragments are gene-amplified by PCR, RT-PCR or another gene amplification process using established PCR protocols such as those provided with PCR amplification kits, including those available from Perkin-Elmer Corp. (Emeryville,
- 10 California). Preferably, the PCR products are analyzed by electrophoresis on a gel, such as an agarose gel and still more preferably the fragments of the predicted size are purified free of excess primers and small byproducts (such as by purification through a small column, such as a Qiagen™ column (Qiagen, Valencia, CA)). Following amplification or purification, the fragments are digested with the restriction endonuclease recognizing the restriction
- 15 endonuclease recognition site in the primers. The digested fragments are then purified from the digested ends of the primers, preferably by preparative agarose gel electrophoresis. The fragments are combined, annealed and are ligated using standard hybridization and ligation conditions known for cloning (see Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley & Sons, 1994).

- 20 Fig. 1A illustrates an example of a self-assembling gene construct (SEQ ID NO:1) comprising six fragments, each having unique overhanging dinucleotide ends. In this example, the ends of the fragments prepared by the methods of this invention are constructed using primers that include *BpmI* restriction endonuclease recognition sites. It will be understood by those of ordinary skill in the art that one or more other restriction
- 25 endonucleases (such as those of Table 1) could similarly be used for the self-assembling product of Fig. 1A. In a preferred embodiment, the primers were created as described above and preferably the 3'ends of the primers are non-palindromic (i.e., non self-complementary) to prevent self-annealing of such fragments. Each fragment in this example preferably joins to only one other dinucleotide overhang in the annealing/ligation mixture, assuring ligation only
- 30 to the intended fragment partner. An advantage of this strategy is that the formation of concatamers or multimers is minimal. The restriction endonuclease site is removed by

digestion with the restriction endonuclease, leaving the junction free of the extra DNA sequences associated with the site.

Using a single restriction endonuclease with a dinucleotide overhang (for example, using the enzyme *BpmI*) up to six pieces of genetic material can be joined together 5 in a linear or circular form (such as a vector) without the need to perform sub-cloning procedures or detailed analysis of individual products because six unique combinations of dinucleotide overhangs create a directional clone with extremely high fidelity. With enzymes digesting single-base overlaps, only two fragments can be joined with positional and directional precision. With enzymes digesting three-base overlaps,  $4^3/2$ , or 32 fragments can 10 be so joined in the correct order and orientation. Therefore, this invention also relates to the use of restriction endonuclease recognition sites that facilitate cleavage by restriction endonucleases with three-base overlaps and self-assembly gene constructs including 32 fragments. Alternatively, a combination of restriction endonuclease recognition sites for use with a combination of restriction enzymes that create two-base or three-base overlaps can be 15 used. Each enzyme has its characteristic limits to self-assembly imposed by the size of the overlap. For example, there are sixteen dinucleotides, therefore *BpmI* fragments (which have two dinucleotide ends each) are limited to eight for the purpose of self-assembly; therefore in another embodiment of this invention an assembly comprising eight fragments is contemplated. However, four of the sixteen dinucleotides are palindromes. Use of these 20 palindromic dinucleotides can create some infidelity in the annealing/ligation reaction. The enzyme *HgaI* has a five base overlap, and there are 1,024 pentanucleotide combinations, permitting 512 fragments to be ligated together directionally and in order (no palindromes). The fragments to be joined at a particular place are designed to have their cut sites aligned, so that the overlapping region fits together. In some cases, the target sequences will contain 25 natural restriction endonuclease recognition sites for the enzyme that is being used, such as one or more internal *BpmI* sites. These sites have the potential to self-religate during vector or gene construction or they can be bypassed by using a substitute enzyme in the primers (for example, Eco 571 can substitute for *BpmI*). Alternatively, these sites can be removed by site-directed mutagenesis after consideration to the consequences of the mutagenized sequence to 30 the gene or vector.

In addition to class IIS enzymes, class II restriction endonucleases can be used. These enzymes have intrinsic methylation activity that affects the outcome in either a

negative or a positive way, depending on the purpose for which it is used. In a preferred embodiment, the methylation activity of class II enzymes is ablated by mutation or by genetic engineering to convert the enzyme to an effective class IIS enzyme to expand the repertoire of useful enzymes for this invention.

5       In another aspect of this invention, the primer design and target fragment sequence selection can be automated (see Example 5) using a computer to assist in the selection of unique overhanging ends that have complementarity only to the overhanging end of an adjacent fragment.

Therefore, this invention permits high-fidelity annealing and ligation of six or  
10 more fragments with unique overhanging termini complementary to a single other overhanging termini. Any multitude of combinations can be created by combining the type of overhanging termini that can be created. Moreover, if one is willing to sacrifice the fidelity of the reaction, a variety of combinations can be used to anneal a variety of fragment numbers. In these cases, some selection may be necessary, such as size selection of the  
15 resulting fragment based on electrophoretic migration or restriction endonuclease profiling, both methods well known to those of ordinary skill in the art

It is also necessary to have a high per-step efficiency (e.g., each step in the process is performed with an efficiency of at least 80%) to effectively ligate large numbers of fragments without error. Where large numbers of fragments are used, the purity of the  
20 fragments becomes important. This means that for large numbers of fragments, the digested DNA fragments for annealing and ligation should be substantially pure. If undigested fragments, digested ends of primers, degraded or partially degraded molecules are present, they can decrease the purity and affect the fidelity of the product. Therefore, it is particularly desirable to ensure complete digestion of both ends of each fragment and to remove all of the  
25 digested ends from the fragments prior to including the fragments in an annealing and ligation reaction. The use of Qiagen columns for oligonucleotide removal prior to digestion is generally sufficient to permit efficient digestion of the fragments. Agarose gel isolation is desirable after digestion particularly where the product contains some fragments that do not appear to be full length. The use of an analytical gel before and after digestion helps in  
30 determining whether both oligonucleotide tags have been removed. The isolation of fragments from agarose gels preferably avoids the use of ultraviolet light and exposure of the

DNA to ethidium bromide is also preferably avoided. These methods can be avoided by running replicate lanes and staining only a portion of the gel.

The fragments and vector are then digested to yield fully complementary ends, and the fragments are preferably again purified, as described above (such as through a Qiagen column or by gel isolation). The purified fragments are ligated together in a test tube, under standard conditions, such as using bacteriophage T4 DNA ligase and ATP. Preferred ligation include at least 20 $\mu$ g/ml total DNA concentration in the ligation mix to favor intermolecular interactions, and an equimolar ratio of fragments to be ligated. Where a prokaryotic intermediary is used, the ligated assemblage is transformed into a bacterium, such 5 as an *E. coli* host, and the colonies are: selected with a drug (such as an ampicillin, tetracycline, or kanamycin marker). The colonies can then be selected either by individually selecting colonies or growing a mass culture, such as where a vector library has been created. Restriction enzyme analysis can be used to determine the identity of individual constructs or to assess the validation of the combination of plasmids. The plasmids can then be grown up 10 and used as needed.

In one embodiment of this invention, at least a portion of a vector is used as one of the fragments for the ligation of at least three fragments according to this invention. In one example, where a vector is used as one of the starting fragments, two restriction endonuclease recognition sites recognizing an enzyme that cleaves at a distance from the 15 recognition site, such as at least one *Bpml* site, can also be introduced into the vector. This permits the vector to be digested with the restriction endonuclease to produce a product having ends complementary to two ends of the insert DNA fragments. The vector can be made by amplifying a plasmid or portion thereof using the primers of this invention. Thus, the vector can also be constructed to include a variety of restriction endonuclease recognition 20 sites using a variety of restriction endonucleases, including a variety of class II restriction endonucleases. In some cases, the target fragments for amplification will contain natural restriction endonuclease recognition sites for the enzyme that is being used for the self-assembly, such as for example, a fragment that includes one or more internal *Bpml* sites. Care should be taken either to utilize the complementarity of the naturally occurring site to 25 reform the fragment as it originally existed or to eliminate the restriction endonuclease recognition site using, for example, site-directed mutagenesis. Preferably, the restriction endonuclease recognition site is substituted for a different enzyme (in the case of *Bpml*, 30

substituting *Eco*57I or *Bsr*DI) that has an equivalent structure at its ends. Two or more fragments of insert or two or more fragments of vector with at least one insert are amplified using primers according to this invention.

- The exemplary enzyme, *Bpm*I digests DNA 14-16 base pairs (bp) from the 3'- nucleotide of the recognition sequence (RS). Thus, by placing the RS exactly 14-16 bp from the desired dinucleotide cut site, the practitioner tags the dinucleotide for ligation with another dinucleotide that is exactly complementary to it. Such a complementary dinucleotide can be inserted by using the same enzyme and RS to make another fragment which fits the first exactly, as illustrated in Fig. 1. Because there are sixteen possible dinucleotide combinations (including twelve combinations that do not have palindromic ends), it is possible to create up to six fragments with unique dinucleotides, and it is also possible to join them all together in a predetermined order and orientation (Fig 1A). In addition, the palindromic sequences (such as AT, CG, TA, and GC) could also be used, although inefficiency and incorrect ligation will result from the self-complimentarity of these sequences. It is furthermore possible and desirable to have three or more fragments joined in this way, such that the construct is circular as in Fig. 1, comprising a vector that may be grown in a bacterial and/or eukaryotic host cell. If the genetic construct is to be used as a vector, the vector should be designed to include a proper origin of replication to enable it to replicate in a particular cell. For example, a prokaryotic origin of replication such as a coliform plasmid origin of replication enables circular DNAs to be propagated in *E. coli* host cells. It is desirable to have at least one selectable marker, such as a neomycin marker that enables recovery of the clone through a selection process. It is also desirable, but not essential, to have two or more selectable genetic elements, to permit dual selection. For example, if one of the fragments contains a prokaryotic plasmid origin of replication, and another fragment contains a selectable marker, then the two fragments are both selectable, since the construct will grow in prokaryotic cells in the presence of a selection drug (such as ampicillin) only when both fragments are present. Drug selection can be combined with the methods of directed self-assembly to assure a high percentage of correct products. Because of the unique complementarity of the fragments, each contributes a selectable element that leads to recovery of a high percentage of correct products.

For prokaryotic vector construction, at least one fragment should contain a prokaryotic origin of replication and one fragment should contain a drug resistance marker

gene. However, an advantage of the methods of this invention is that the construct can be introduced directly into eukaryotic cells. Here no plasmid origin of replication is necessary and no prokaryotic selectable marker or other prokaryotic nucleic acid sequence is necessary. In cases where the vector is subject to regulatory approval or where optimal gene function is necessary, it may be undesirable to include prokaryotic sequences, such as extraneous plasmids or expressed prokaryotic fragments particularly if the sequences contain immunostimulatory sites that can lead to activation of the intracellular immune system and inactivation of a gene product (see Krieg et al., *J. Lab. Clin. Med.*, 128:128-133, 1996) or to avoid risks of endotoxin contamination. Moreover, the use of self-assembled product, according to the methods of this invention saves labor and time involved in the screening process.

Thus, in a preferred embodiment of the invention, the nucleic acid fragments are self-assembled *in vitro*, and are transferred directly into eukaryotic cells, by transfection, injection, or other methods known in the art. In one embodiment the cells receiving the assembled product of this invention are helper cells for recombinant virus assembly (including, but not limited to retroviral helper cells for retroviral or retrotransposon vectors, adenovirus helper cells for adenovirus vectors or herpes simplex virus helper cells for herpes simplex vectors). Alternatively, the assembled product can be introduced into cells along with a helper virus or the assembled product can be introduced into target cells for direct expression. The assembled product can be a vector, a minichromosome vector, a portion of a chromosome, or the like. In the preferred case of a retroviral vector, the genes are first transfected into a first helper cell line (such as ecotropic helper cells, GP+E86 (Markowitz et al. *J. Virol.* 862:1120-1124, 1988). The retrovirus-containing supernatant from these cells is then filtered (0.45mm Nalgene filters) preferably 48-72 hours after transfection and the filtrate is transferred to a second complementation retroviral helper cell line (such as PA317 retroviral helper cells, Miller et al., *Mol. Cell. Biol.* 6:2895-2902, 1986). After an additional 48 h, the second helper cell line is selected with the marker drug (such as the drug G418 for the selectable neomycin (neo) marker gene), until only drug-resistant cells remain. These cells contain stably integrated vectors that can be used to repeatedly transduce human cells. Advantageously, in the case of adenovirus vectors or other large eukaryotic -derived vectors including eukaryotic virus-derived vectors, it may be impossible to propagate them in prokaryotic hosts. The gene self-assembly method of the instant invention provides an

alternative to *in vitro* recombination method of gene construction by permitting large constructs to be constructed.

One advantage of introducing the assembled product of this invention into a helper cell line to produce recombinant virus for the introduction of a gene or nucleic acid complex into a cell is that the assembled product will be auto-selected by the cells during the packaging process. Therefore, even where the overhanging termini have palindromic sequences, where there is more than one (but preferably less than four) unique complementary matches for a particular overhanging termini, or where concatamers have formed, only the correct or functional assembled products are expressed, transmitted, and assembled into virus. When the virus is then introduced into cells, the use of a reporter gene or another selectable marker provides yet a second layer of security for the selection of cells containing a properly assembled construct. For example, where a retrovirus helper cell line is used to produce a recombinant retrovirus containing the product of this invention (for retrovirus, RNA transcribed from the DNA product of the invention becomes packaged into the virus particle), a retrovirus-derived vector is transcribed as RNA and transmitted by packaging the RNA in a retrovirus particle. In order to be properly transmitted as a virus, the construct must be: 1) transcribed as RNA in a vector producer cell; 2) packaged into viral particles; 3) reverse transcribed into double-stranded DNA (in the recipient cell); and 4) integrated into the host chromosome. Each of these steps requires specific *cis*-acting sequences that must be correctly positioned within the vector. Thus, passage via retrovirus (or by other virus) is a means of auto-selection for the essential sequences.

In one application of the methods of this invention, the methods are used to rescue expressed sequences from RNA, or genomic sequences from cell DNA without disrupting the promoter sequences. Cellular transcriptional promoters are typically difficult to identify and isolate because they are generally not included in the RNA molecule and often extend over a considerable distance in a chromosome. One application of this invention relates to a promoter rescue technique that permits the entire promoter, or a fragment of a promoter to be isolated and cloned directly into an expression vector without disruption of the flanking sequences. Promoter rescue techniques are known and include WO 94/20608 to Hodgson.

In a preferred embodiment of the invention, transcriptional promoters are cloned in a transcriptionally active manner for the selection and identification of new and/or

of tissue or cell-specific promoters enabling them to be used, selected, or screened for activity directly. For example, Fig. 3 illustrates one example of the formation of a vector for the incorporation of promoter sequences and the ultimate identification of those sequences using an exemplary plasmid VLBPGN (SEQ ID NO:1) as provided in Example 3, with *Bpm1* sites

- 5 located within the locus of a retrotransposon (VL30) long terminal repeat (LTR). These methods preserve the structure and functionality of transcription factor response elements. The characteristic secondary structure of the LTR RNA remains very similar to the original LTR from which the promoter was rescued, thus preserving the important features of the original RNA/DNA molecule. Those of ordinary skill in the art will recognize that any of a  
10 variety of primers can be used with a variety of vectors and that the constructs of Figs 2 and 3 are exemplary and not limiting.

Fig. 2 illustrates the primers used to amplify the promoter insert (identified at a and c in Fig. 2), and the insert region of the LTR (boxed), both of which can be digested at the same nucleotide position with *Bpm1*, to ensure a proper and seamless fit. In this example,  
15 after digestion of the vector, the two *Bpm1* sites leave non-complementary ends (a 3'-CC overhang on one end, and a 3'-GC overhang on the other). Thus, the ends will not efficiently anneal or ligate to one another. However, the complementary termini of the insert serves as linkage, enabling the plasmid to be completed by ligation.

- In the example illustrated in Fig. 2, the terminus on the 3'-side (GC) is  
20 palindromic. Palindromic termini are self-complementary and can therefore ligate to themselves or to an identical terminus facing the opposite way (forming concatamers in the opposite direction). Despite the presence of palindromic termini and despite the potential for reduced fidelity in the self-assembling process, a large percentage of clones obtained by inserting promoter sequences into VLBPGN were assembled correctly (20/23). These levels  
25 are reduced somewhat when three or more fragments are combined for self-assembly, according to this invention and preferably, the use of palindromic termini are avoided when even numbers of nucleotides are exposed as overhanging termini because with even numbers of nucleotides there is an axis of symmetry. As noted above, where five base overhangs are used there are 1024 possible combinations of five nucleotides [(4)<sup>5</sup>], yet none of them is  
30 palindromic.

The vector of Fig. 3 is an example of a particular type of vector that is known as a retrotransposon vector. Retrotransposon vectors are described and reviewed in Hodgson

et al., 1996 *Retro-Vectors for Human Gene Therapy*. RG Landes Company, Austin TX, chapter 5 and see US Patent 5,354,674 to Hodgson. This type of vector is derived from a mouse cellular retro-transposon element that has no essential viral or cellular genes, and that has little sequence similarity to a retrovirus. However, this RNA (known as VL30 [virus-like, 5 30S]) has all the necessary *cis*-acting structural elements (such as LTRs and primer binding sites) required for efficient transmission by a type C murine or primate retrovirus. Thus, it is a parasite transmitted by retroviruses that is also expressed as a cellular RNA in most mouse cells and tissues. This RNA becomes packaged into retroviral particles when the mouse cells become infected by retrovirus. The retrovirus then transmits the VL30 (or a VL30 vector) to 10 the next infected cell (which can be a human cell). The RNA is then reverse transcribed and integrated into the DNA of the host cell.

Some advantages of VL30 vectors (over retrovirus-derived vectors) are: 1) lack of viral genes and other sequence homology that could lead to replication competent retrovirus (RCR); 2) ability to be expressed long-term *in vivo*; 3) a variety of LTR 15 transcriptional promoters that can be expressed in various tissues and under the influence of various hormones and other stimuli; and 4) the ability to express genes in a number of cell types that are targets of gene therapy. An additional advantage is that VL30 parts can be switched with those of classical retrovirus-derived vectors. For example, the LTR or packaging signal of VL30 can be used in place of the equivalent retroviral signal. The ability 20 to make mixed, or chimeric retro-vectors is a special application of gene self assembly technology.

Using a specific primer set, such as that shown in Fig. 2, or others, as taught in this invention, it is possible to amplify the U3 sequences expressed in the RNA of many different types of mouse cells. This is done using standard RNA isolation methods (Ausubel 25 et al., *supra*), coupled with extensive digestion with ribonuclease-free deoxyribonuclease, to eliminate residual DNA. Thus, to obtain a promoter that is expressed in the liver, one isolates RNA from liver and uses an RT-PCR procedure, such as those known in the art, with the primers to amplify the desired promoters. Fig. 6 illustrates liver RNA-derived promoters obtained using the methods of this invention. However, the promoters can also be derived by 30 conventional PCR from cDNA libraries (Fig. 5 illustrates T cell-derived promoters that were obtained in this manner). It is also possible to use the well-known hormonal and pharmacological inducibility of VL30 LTRs to find LTRs that are responsive to peptides.

hormones, and cytokines (for a table and description of VL30 pharmacologic responses (see Hodgson et al., 1996 *Retro-Vectors for Human Gene Therapy*. RG Landes Company, Austin TX, chapter 4, and Fig. 4.2). Examples of substances inducing various VL30 promoters to high levels include: epidermal growth factor, basic fibroblast growth factor, insulin, erythropoietin, glucocorticoid hormones, activators of cyclic 3'-5'AMP, and others. To rescue promoters with pharmacological responsiveness, cells or animals stimulated with the desired pharmacological agent are subjected to the RT-PCR procedure and the resulting U3 regions are cloned into a vector, (such as the exemplary VLBPGN) and are tested for inducibility. Standard RNA blotting procedures can be used before isolating VL30 promoters, to determine whether a particular drug or hormone causes induction of VL30 RNA expression in a particular mouse cell or tissue. After the promoter has been rescued, the vector is transmitted via retrovirus to the target cell (possibly a human equivalent of the mouse cell from which the promoter was rescued). After selection with the drug G418 (400-700 µg/ml, for 7-10 days) to select against cells not containing the vector, the target cell population is challenged with the pharmacological agent of choice. Reporter gene expression (in the example, GFP) or RNA expression, as determined by RNA blotting, can be used as an assay of gene inducibility by the agent (for exemplary gene expression methods, see Chakraborty et al., *Biochem. Biophys Res. Commun.* 209:677-683, 1995).

Using any specific primer set designed for use with VL30 retro-elements and using total cellular RNA from a particular mouse cell type as a template for RT-PCR, (using commercially available kits and methods therein) candidate promoter elements can be amplified. This method is useful for the identification of mouse-derived promoters and in particular the method is useful for the identification of cell-type specific or tissue-specific promoters from a mouse and for the selection of these promoters and the identification of tissue-specific or cell-specific promoters that function in human cells. Thus, these types of vectors and the methods for using these vectors permits the identification of promoters to permit controlled transcription of a foreign gene. The promoters, originally obtained from the mouse, can be used to effect tissue-specific or cell-specific expression in a human or animal liver cell such as a hepatocyte, or in a human blood cell such as a T-helper cell or in an erythrocyte (red blood cell). Methods are disclosed in Example 2 for the screening and selection of the promoters from a library of amplified promoter sequences. Other methods are well known to those of ordinary skill in the art. The specificity of the selected promoter

can be assessed, for example, by introducing a selectable marker under the control of the test promoter in question and introducing this construct into various cells to assess the ability of the promoter to selectively regulate expression.

The amplified fragments represent U3 promoter regions from any RNA species expressed in the originating cells and their abundance will be in approximate proportion to the number of expressed copies of RNA in the original mixture. Example 3 illustrates one example using a mouse T-helper cell cDNA library to produce amplified fragments representing U3 regions expressed in T cells. The vectors were efficiently expressed as RNA and protein in PA317 helper cells, and were transmitted by retrovirus into human T-helper cells, where they were integrated and expressed as protein in the form of a  $\beta$ -galactosidase reporter gene, as visualized by X-gal staining. The products of this experiment are provided in Fig. 5 and as SEQ ID NOS: 2 and 3 from T-helper RNA. The products of another experiment are shown in Fig. 6 as SEQ ID NOS: 4-13 from mouse liver RNA (by RT-PCR).

Examination of the different U3 sequences isolated from T cells and from liver revealed several things. First, the T cell U3 sequences were related to each other, as were the liver sequences. However, the two types of U3 sequences were quite different between the two sources (T-cell, Figure 5 and liver, Figure 6). Specifically, the liver sequences (Figure 6) appeared to be a closely related group, differing mostly by single point mutations, some of which may affect transcription factor binding sites. Some of the polymorphic sites included: a phorbol ester response element (VLTRE); a Rel/NF $\kappa$ b binding region, and a possible glucocorticoid response element (GRE). Some of these polymorphisms are illustrated in Fig. 6. The T cell-derived sequences (Fig. 5, SEQ ID NO:2 and 3), on the other hand, differed significantly in length, with SEQ ID NO:3 missing more than 120 bases (compared with SEQ ID NO:2) including putative binding sites for retinoids (RAR/RXR) and several elements contained within the enhancer repeat region (including a cAMP response element (VLCRE, or CREB/jun binding site), and putative serum response element (SRE, CARG, and NF1/IL6). SEQ ID NO:3 represented one out of five clones sequenced, while SEQ ID NO:2 represented four out of five. Possible sites of interactions between transcription factors and DNA can be observed by comparing the experimentally derived U3 sequences with those in Hodgson et al., (Retro-Vectors for Human Gene Therapy, 1996 Fig. 4.2 *supra*). In addition

to the deleted sequences of SEQ ID NO:2, there are a number of single base differences within the conserved regions of the two T cell-derived sequences.

Advantageously, a number of new VL30 promoter sequences (SEQ ID NOS: 2-13, *supra*) were identified using these methods despite the fact that VL30 RNA comprises only about 0.3% of cell mRNA represented in a cDNA library. Moreover, in each case, the cloned insert was isolated without the need to use linkers, adapters, or multiple cloning sequences such as those that are typically used for other library construction methods. The promoter sequences can be used in the vectors disclosed here to express inserted foreign genes or the promoter sequences can be substituted into other retroviral vectors, such as MoMLV-derived vectors or other VL30-derived vectors. Further, vectors containing the promoter sequences can be propagated in retroviral helper cells, such as PA317 (U.S. Patent 4,861,719 to Miller) or introduced into cells by chemical or physical transfection.

In another application of the methods of this invention, libraries of amplified sequences can be incorporated into vectors using two or more fragments and using the restriction endonucleases cleaving at a distance from their recognition sites. Preferably the vectors are created using six or more fragments and preferably greater than 10 or more fragments. For example, as applied to VL30 promoter sequences, because there are over a hundred VL30 retro-elements in the mouse genome, it is possible to amplify all of the promoter sequences *en masse*, and propagate them *en masse*, enabling screening by serial passage through helper cells (such as the PA317 helper cell line) or by means of a replication competent retrovirus, as illustrated in Examples 3 and 4. Conversely, the promoter region may be broken down into several sub-domains and permutations of each could be combined and screened to enhance the chances of generating a superior construct (Fig. 4B).

As an example of breaking a promoter region down into several sub-domains, Fig. 7 illustrates a similarity plot of nucleotide sequences found in VL30 U3 regions. Plot similarity was performed using the Plot Similarity program (Wisconsin Sequence Analysis Package, release 8.1, Genetics Computer Group, Madison, WI). This program plots the running average of the similarity among the sequences in a multiple sequence alignment. The sequences compared were those found in Fig. 4.2 of Hodgson, 1996, chapter 4 (*infra*). That is, the plot discloses the degree of conservation of VL30 promoter sequences among known VL30 promoters. From the figure, it can be seen that conserved sequences (close to 100% conserved) can be used as primer binding sites to amplify the adjacent sequences by PCR.

An allelic mixture of three fragment sets is then created to make a combinatorial library of promoters that can be positively selected, such as by using retroviral amplification of the active sequences. This, used in combination with the Fig. 4.2 (Hodgson, 1996, chapter 4 *supra*) can be used to determine regions of high similarity. Regions of high similarity within 5 the U3 region can be replaced with one another. Therefore, a library of permutations of these sections can be made by combining allelic pools obtained by amplifying the sequences from individual subsections, followed by ligating the subsections in the correct order using the methods of the instant invention for gene self-assembly. For example, sub-section 1 can include the distal enhancer (from the LTR 5'-end to the site of insert primer 2, see for 10 example the region defined by the insert primers 1 and 2 (SEQ ID NOS 55 and 56 of Example 4). In this way, using a plot similarity (such as Fig. 7), within each sub-section, the primers position fragments within a region of nearly 100% identity. Degenerate primers can also be used in these experiments to account for multiple nucleic acid base combinations along a particular sequence. In each case, the primers preferably are designed to have a 15 melting temperature that is compatible with the RT-PCR conditions being used, and the conditions should be those recommended by the manufacturer (preferably Perkin Elmer Corp., Emeryville, CA). In Example 4, a set of primers is given that can be used to amplify different U3 subsections, together with directions for assembling a combinatorial library.

It will be appreciated by persons of ordinary skill in the art that the methods 20 of the instant invention can thus be used to make allelic libraries of a variety of genes. For example, different allelic portions of a gene can be combined in a predetermined order and orientation to produce combinatorial libraries, without the need for fortuitous restriction sites separating the parts in the original construct, and without perturbing the important sequences joining the parts using the methods of this invention.

25 In this invention primers are constructed as described above. However, for the generation of allelic libraries or more complex library constructs it may be helpful to include 5' tags into the 5' end of the primer. The purposes of the tag sequence are: 1) to provide extra nucleotides on both sides of the restriction endonuclease recognition sites (for more efficient digestion); and 2) to enable recovery of sequence tags or undigested fragments by means of 30 an affinity reagent (such as silica, magnetic beads, or nitro-cellulose containing the complementary sequences) for purification. The use of an affinity reagent permits the digested ends to be purified away from the digested fragments. Furthermore, if any

undigested ends remain after thorough digestion, the affinity reagent will remove them, further aiding in the purification. In one embodiment, affinity purification of the digested fragments is used in place of gel isolation, eliminating possible damage caused by ultraviolet light as well as possible damage caused by dye (e.g., ethidium bromide) binding to the DNA.

5 It will also be appreciated that a number of other variations to the primer sequences can be employed. For example, as discussed above, the enzyme recognition site for an enzyme that digests outside of its recognition sequence is included in the primer, so that the DNA digest creates an overlapping end that is complementary to one other terminus to which it will be joined. The enzyme recognition site can be moved to any location within  
10 the primer so as to digest the DNA at the exact location desired. The primer can also be programmed with a novel enzyme recognition sequence to add any desired sequences between the two sequences to be joined or to incorporate a linker or adapter if desired. If the sequences to be amplified contain the enzyme recognition site of the primers, it may be necessary to switch to a different enzyme usage. The use of several different enzymes is  
15 possible and has been discussed above. As with other PCR procedures, after the initial primer selections have been made the primers are assessed for their ability to fold back on themselves or to create internal secondary structure. The primers are preferably modified to avoid palindromic sequences or the potential for self folding within a primer. Nucleic acid analytical software (such as the Wisconsin GCG package, Oxford Biomolecular, Oxford, UK)  
20 is available to perform this analysis and aid in the selection of alternative primers.

In addition, as with all PCR processes, it is necessary to determine the melting temperatures ( $T_m$ ), and to adjust the annealing temperature of the PCR reactions to compensate for such temperatures. Finally, it is important to perform a sequence redundancy search, to determine whether the target sequence (the sequence complementary to the primer)  
25 is found more than once in the region to be amplified. If the sequence is repeated, it will be necessary to use a different primer in order to establish the single, correct priming site. Preferably, no more than 6-8 bases of incorrect target complementarity at the 3'-end of the complementary region is used and to allow a difference of at least 10° C between the  $T_m$ s of the correct and the incorrect target. The annealing temperature should always be at least 5°C.  
30 lower than the  $T_m$  of the correct target and 5°C above the  $T_m$  of the incorrect target. Again, the necessary software and instructions are readily available from the cited sources (Wisconsin Gene Computer Group and Oxford Biomolecular, *supra*)

Next, a vector is constructed to include the appropriate elements for expression in the desired cell type. For example, the plasmid of Fig. 3A can be used for the creation of a promoter library or a vector can be created using a commercially available vector and primers to create a three or more fragment annealing and ligation reaction as provided above.

- 5 Preferably, the inclusion of a dominant negative selectable marker on the vector (e.g., the neomycin phosphotransferase gene, conferring G418 drug resistance) can be used to reduce the likelihood that cells without the vector are being maintained in culture.

Multiple allelic copies of DNA (cell derived or cDNA) can be amplified in separate reactions as a set of potential inserts with each set having its own unique overlap

- 10 sequence following digestion with a restriction endonuclease, according to this invention. The fragments can then be ligated into an existing vector or in a single reaction of three or more fragments to form a combinatorial collection of potential alleles. For example, if six adjacent regions are amplified from five separate alleles, the number of combinations would be 5<sup>6</sup>, or 15,625 potential combinations. The combinations can then be grown *en masse*, and  
15 selected *in vitro* or *in vivo*. A variety of screening strategies can be used in this invention and those of ordinary skill in the art will appreciate that the type of screen will match the type of library being generated. Therefore, for the promoter library, introducing members of the library into particular cell types to assess for expression in one or more cell types versus the absence of expression in another cell type is evidence of tissue-specific or cell-specific  
20 expression. For screening purposes, the libraries of this invention function like other libraries created through other methods. A variety of screening methods for a variety of libraries have been described in the art. For example, selective screens are reviewed by Hodgson et al.  
(1996, RG Landes Company, *supra*). Reporter protein production is well known in the art as is dominant selectable marker (e.g. drug) selection and selection by fluorescence activated  
25 cell sorting, antibody affinity selection, phage display selection (such as commercially available from Amersham, Milwaukee, WI), and the like can be used without detracting from this invention.

In this way, it is possible to isolate multiple forms of genes, gene fragments or regulatory regions such as transcriptional promoters or packaging signals (for example, in a

- 30 retro-vector system). The individual constructs may then be tested *in vitro* or *in vivo* to further characterize a particular phenotype.

In one example the method is used to create a library of complementarity determining regions (e.g., allelic variations that give rise to antibody diversity) of antibodies or from receptors, including T-cell receptors, epitopes, antigens, ligands and the like. For example, where a library of T-cell receptors is created, the introduction of a vector designed  
5 to create a functioning T-cell receptor can be introduced into T cells or T-cell progenitors and the cells can be tested for their ability to bind to a particular test ligand. The ligand-recognizing cells can then be isolated from the ligand and grown in the presence of cytokines to produce specialized T cell clones. Where a library of antibodies or antibody fragments is created, the antigen reactive portions, for example, can be recombined in a vector containing  
10 the remaining portions of an antibody molecule to generate antibodies or antibody fragments in a cell. In other examples, the methods of this invention can be used to create allelic domains of receptor families (such as the steroid receptor super-family); libraries with related regions from peptide hormones; cytochromes P450; or other protein families that have shared domains or sub-sections with similar structures. The methods of the instant invention allow  
15 the joining of allelic sub-sections in an ordered fashion. In each case, it will be necessary to design primers, and to keep track of the uniqueness of joining overlaps and the presence of internal restriction sites as described above. While these will be different in each case, here are listed some general guidelines that are incorporated into the method of the instant invention.

20 As discussed above, although described as it relates to promoter libraries, libraries of other nucleic acid sequences can be created using the methods of this invention. These libraries include, introns and/or exons and/or functional domains libraries, libraries of potential alleles for a particular gene sequence, and the like. These sequences can be amplified from cell DNA or RNA using the primers of this invention and incorporated into a  
25 variety of vectors. For example, one vector of this invention, VLBPGN, has a portion of LTR removed and can be used to create a variety of libraries following digestion with *Bpm*1.

Selected or screened products of the combinatorial library can be used for gene expression, such as the promoters of Figs. 5 and 6. In addition, the exploitation of these sequences for the expression of a variety of genes, the LTR fragment containing the promoter  
30 can be joined to one or more functional retroviral packaging signals, internal ribosome entry sites, additional promoters, coding regions, processing sites, and the like.

Advantageously, there are almost no spatial constraints upon the joining of molecules by the method of the instant invention and other methods have not taken advantage of the combination of PCR to isolate genes or gene fragments; enzymes cleaving at a site distant from their restriction endonuclease recognition site to combine three or more

- 5 fragments with precision; and, the use of unique overlapping non-palindromic termini to ensure fidelity of multi-fragment ligations. This combination permits the artisan to prepare complex gene constructions in one ligation step and does not require sequential sub-cloning into a vector or propagation in a prokaryotic host. Added to this the combination by these methods of fragment pools facilitates recombinatorial genetics.

10 The ability to recombine (in the correct order and direction) and screen a large number of allelic variants (whether as a simple library or as a combinatorial library), resulting in increased abundance (by amplification in the RNA, and subsequently in the DNA) is a special characteristic of this invention. Particular advantages of this system are obtained when the methods of this invention are combined with retrovirus vector technology or other  
15 virus vector technology. For example, the combination provides a form of *in vitro* evolution whereby the passage of the library through virus and through cells selects functioning sequences and increases the abundance of the surviving RNA and DNA molecules.

For example, consider the consequences of screening several different promoters expressing RNA in a donor cell (*i.e.*, a cell producing virus particles), but at  
20 differing levels of RNA abundance. In the following example, the least abundant RNA species is expressed at 0.1 copy of RNA per cell, while six others are expressed at 1 copy, 10 copies, 100 copies 1,000 copies, or 10,000 copies, or 100,000 copies/cell, respectively. After a single passage, the DNA copy number in the recipient cells now reflects the approximate RNA copy number in the donor cells. These numbers are further amplified in the relative  
25 abundance of RNA species produced in the recipient cells. Disallowing for factors such as position effects, transcription factor depletion, etc., (which may be considerable), the same relative ratios of expression would be expected. Taking into consideration position effects, the disparity between abundance caused by changing insertion loci should average out. The most abundant RNA species after two passages is then many orders of magnitude more  
30 abundant than the least abundant.

| Species: | RNA abundance: | DNA copy no. | RNA P=0          | DNA copy no.     | RNA P=2          |
|----------|----------------|--------------|------------------|------------------|------------------|
|          |                | P=1          | P=1              | P=2              | P=2              |
|          | 0.1 copy/cell  | 0.1          | 0.01             | 0.01             | 0.001            |
| A        | 1              | 1            | 1                | 1                | 1                |
| B        | 10             | 10           | 100              | 100              | 1,000            |
| C        | 100            | 100          | 10,000           | 10,000           | 10 <sup>6</sup>  |
| D        | 1,000          | 1,000        | 10 <sup>6</sup>  | 10 <sup>6</sup>  | 10 <sup>9</sup>  |
| E        | 10,000         | 10,000       | 10 <sup>8</sup>  | 10 <sup>8</sup>  | 10 <sup>12</sup> |
| F        | 100,000        | 100,000      | 10 <sup>10</sup> | 10 <sup>10</sup> | 10 <sup>15</sup> |
| G        |                |              |                  |                  |                  |

**Table 2.** Enhancement of DNA and RNA copy number as a result of different RNA expression levels, after retroviral passage. P=(no. of passages). Numbers are interpreted as relative ratios within a column.

5

The present invention is able to efficiently create a library of RNA or DNA sequences whether or not they are in low abundance. The kinetics of screening for RNA abundance of a promoter can be appreciated best in the following discussion. For the purposes of this discussion, position effects have been ignored. An equation describing the 10 kinetics of screening for RNA abundance is:

$$(1) R_{\text{rel}\chi} = A_\chi \sum A_{\text{abs}}$$

The above equation (1) can be stated in plain English: The relative abundance 15 of an RNA species  $\chi$  ( $[R_{\text{rel}\chi}]$ ) within a population of RNA molecules expressed in a single cell or within a population of cells is equal to the RNA copy number of RNA species  $\chi$  ( $A_\chi$ ) divided by the sum of the RNA copies of all RNA species present, including  $\chi$ .

The relative abundance number of any given species changes as the number of 20 passages change, according to the following approximation:

$$(2) R_{\chi pY} = D_{\chi p0} R^{p+1}$$

In the simplest of terms, equation two (2) can be expressed as: The abundance 25 of RNA species  $\chi$  after Y passages ( $R_{\chi pY}$ ) is equal to the initial abundance of the DNA for species  $\chi$  at passage=0 ( $D_{\chi p0}$ ), multiplied by the RNA abundance/DNA copy, raised to the power of the number of passages plus one. Thus, a typical RNA species that starts out as a

single copy of DNA, after zero passages (*i.e.*, in the donor cell) expresses 10 copies of RNA/cell. After one passage it is amplified at the DNA level to a relative ten copies (the same as the RNA abundance at P=0), and at the RNA level to 100 copies (10 copies per DNA copy). The reason for the amplification is that viral packaging and passage is based upon the  
5 number of RNA copies present in the donor cell. These calculations can be used to arrive at approximate abundance determinations for any given passage. The actual results of any given experiment, of course, will be biological rather than physical or mathematical. This means that other variables such as RNA efficiency of transmission and longevity, availability of transcription factors, experimental variation, *etc.* also come into play. The underlying  
10 purpose of the approximating equations, however, is to illustrate that RNA is amplified in DNA in proportion to the abundance of the template (RNA) within the cell.

The abundance of mRNA in cells can vary continuously from less than a copy per cell to nearly 100,000 copies/cell in actively transcribing, highly-specialized cells such as reticulocytes, the chicken oviduct, the silk moth silk gland, etc. Therefore, the spectrum of  
15 RNA abundance from 0- $10^5$ /cell is within the biological window of interest. For most practical purposes, such as biotechnological expression of genes in specific cells, only the higher end of this abundance range is desired. Therefore, using a viral selection system, as disclosed in this invention, it may be possible to disregard those species with less than a threshold level, such as <0.1 copies per cell. The selection through virus will lead to the  
20 recovery of the more abundant species. Furthermore, because the vector is likely to be the only considered sequence, it may be considered as a proportion of the whole of RNAs expressed in the target cell. The situation is more complex when a large number of permutations and combinations is generated, for example by self-assembling thousands or millions of fragments in a predetermined order using the self-assembly technique of the  
25 instant invention. Consider the assembly of allelic variants of four promoter subregions: distal enhancer, proximal enhancer, distal promoter and proximal promoter. If 100 varieties of each of the four groups were amplified and combined using the instant process along with a single vector,  $10^8$  resultant combinations could occur. However, a sufficient number of molecules to start out a combinatorial screening program might be a million. The problem  
30 can be simplified by considering these in groups as follows:

**Table 3. Grouped abundance of RNA molecules derived from combinations.**

| No. of species<br>in group: | RNA<br>abundance: | Total No. RNA<br>molec. at P=0: | RNA at<br>P=1                 | RNA at<br>P=2                 | RNA at<br>P=3              |
|-----------------------------|-------------------|---------------------------------|-------------------------------|-------------------------------|----------------------------|
| 9 X 10 <sup>5</sup>         | 1                 | 9 X 10 <sup>5</sup>             | 9 X 10 <sup>5</sup>           | 9 X 10 <sup>5</sup>           | 9 X 10 <sup>5</sup>        |
| 2 X 10 <sup>5</sup>         | 10                | 2 X 10 <sup>6</sup>             | 2 X 10 <sup>7</sup>           | 2 X 10 <sup>8</sup>           | 2 X 10 <sup>9</sup>        |
| 2 X 10 <sup>4</sup>         | 1.00              | 2 X 10 <sup>6</sup>             | 2 X 10 <sup>6</sup>           | 2 X 10 <sup>10</sup>          | 2 X 10 <sup>12</sup>       |
| 1 X 10 <sup>3</sup>         | 1000              | 1 X 10 <sup>6</sup>             | 1 X 10 <sup>9</sup>           | 2 X 10 <sup>12</sup>          | 2 X 10 <sup>15</sup>       |
| 1 X 10 <sup>1</sup>         | 10,000            | 1 X 10 <sup>5</sup>             | 1 X 10 <sup>9</sup>           | 1 X 10 <sup>13</sup>          | 1 X 10 <sup>17</sup>       |
| 1                           | 100,000           | 1 X 10 <sup>5</sup>             | 1 X 10 <sup>10</sup>          | 1 X 10 <sup>15</sup>          | 1 X 10 <sup>20</sup>       |
| <b>Sum Total:</b>           |                   | <b>6.6 X 10<sup>6</sup></b>     | <b>1.11 X 10<sup>10</sup></b> | <b>1.01 X 10<sup>15</sup></b> | <b>1 X 10<sup>20</sup></b> |

Thus, it follows that in the example population (Table 3) of over a million constructs (equally represented in the DNA), a single construct expressing 10<sup>5</sup> copies of RNA per DNA copy will increase to approximately 99% of the total expressed RNA sequences in

- 5 two passages. Using similar procedures in combination with drug and/or hormonal stimulation, and after consideration of the possible transcription factor binding sites within the sequence family (Figs. 5 & 6), it is within the intended scope of the invention to select for hormonal or pharmacological controls of transcription such as have been described herein. The factors contributing to the outcome are not only the input constructs, but recombinants
- 10 and mutants as well. These secondary contributors to molecular diversity will be enhanced if multiple rounds of infections are allowed to occur, as oftentimes the difference between a particular transcription factor being able to bind (or not) may depend upon a single base change. Because viral infection is progressive and competitive, molecular evolution can be used to generate gene constructs *de novo* in the tissue culture dish in short time periods.
- 15 Advantageously, the use primers to generate amplified fragments with uniquely complementary cohesive ends (i.e., that the ends will preferably only hybridize with the intended 5' and 3' fragments) to ligate three or more fragments as taught in this invention improves the potential for obtaining a diverse library.

Although the examples particularly point out a transcriptional promoter as the product of the process, the skilled artisan can appreciate that a particular selection technique can be applied to other *cis*- and *trans*-acting genetic sequences as well. Although a virus is used to propagate the selective advantage of a preferred embodiment, it can also be appreciated that any selective screen, such as drug selection, cell survival, phenotypic selection, cell sorting, antibody selection, and the like (see Ausuble et al., *supra*) could be

substituted without changing the intended scope of the invention. Likewise, transfection or cell fusion could be used in place of viral infection. Furthermore, substitution of different viruses, retrotransposons, or functional groups are likewise within the intended scope of the invention. The described embodiments are to be considered only as illustrative and not 5 restrictive, and the scope of the invention is indicated by the claims rather than by the narrative description. All references and publications, cited herein, are incorporated by reference into this disclosure.

Like the embodiments detailed above, the method of library production is also conducive to assembly and transfer of genetic material directly into eukaryotic cells, saving 10 the step of propagation in bacteria that is standard in bacteria. An advantage of direct transfer of the libraries of this invention to eukaryotic cells, including the exemplary retroviral vector producer cells, is that certain essential *cis*-acting structural features will be under positive selection (i.e., if they are not present, the molecule will be lost due to its non-functionality). As discussed above, it is often advantageous to eliminate bacterial and plasmid DNA 15 sequences, endotoxin, and other bacterial contaminants by introducing the constructs directly into eukaryotic cells.

In addition to providing a method for constructing complex DNA molecules efficiently (as in the examples of three piece and six piece constructs), the methods of this invention permit the assembly of constructs that are larger than those conventionally 20 propagated in *E. coli*. Examples of these types of vectors include adenovirus vectors, herpes simplex vectors and artificial minichromosomes. In order to insert genes into such vectors that are too large for conventional molecular cloning procedures, in the past it was often necessary to resort to *in vivo* recombination, wherein the genes of interest are cloned into a suitable vector and the flanking homologous regions are used to target the foreign genes to a 25 homologous site within the larger viral or minichromosome vector. However, the methods of this invention permit PCR fragments of any size (up to the limits of PCR capability, 20-30 kb per fragment) to be joined together. Thus, it is feasible to precisely construct adenovirus vectors by amplifying larger sequences, and combining them by ligation. For example, several sections of adenovirus (5-10 kb each) can be ligated using the methods of this 30 invention, up to for example, about 37 kb, and then transformed directly into human cells. Only the correctly recombined vectors are capable of replicating. Hence, the DNA is autoselecting. A similar procedure is used for generating herpes virus vectors, which are

approximately 150 kb. The precision of the methods of this invention permit non-essential viral genes to be more easily eliminated from the construct. After transfection into appropriate cells, the DNA replicates and virus particles are formed.

- Some special considerations apply to larger vectors, however. First, it is  
5 desirable to use enzymes that do not cut within the large DNA fragments. To prevent excessive fragmentation of the DNA by internal sites, it is desirable to use enzymes that cut rarely or infrequently, such as CpG-containing enzymes recognizing six bases, or enzymes such as *Sap1*, recognizing seven bases and digesting a three bp overhang (thus permitting up to 32 fragments to be joined in order). It is also desirable to avoid shearing the DNA once  
10 large segments have been joined by ligation. One method of avoiding shear is to add the transfection agent, such as Superfect™ reagent (dendrimers, Qiagen) or Lipofectamine™ (liposomes, Life Technologies, Gaithersburg, MD) directly to the ligation reaction, and then add the cells to be transfected to the mixture. This, or a similar method avoids the need to physically move the ligated DNA, and thus prevents shearing. Another method is to add a  
15 DNA condensing reagent (dendrimers, polycations [such as polyethyleneamine] histones or liposomes) directly to the DNA ligation reaction, and then move the DNA by pipette after it has condensed (thus reducing shearing of the DNA). Once inside the cell, viral DNA can replicate (as in the examples of partially replication-competent adenovirus and herpes simplex virus vectors).
- 20 Artificial minichromosomes have been under development for years. True artificial chromosomes require a centromere, at least one origin of DNA replication, and in the case of linear molecules, telomeric repeats at the chromosomal termini. In addition, to be very effective it is desirable to have a selectable marker gene, one or more therapeutic genes, and/or reporter genes.
- 25 In reality, the use of minichromosomes has been delayed by the inability to effectively manipulate the larger DNA molecules *in vitro*. Yeast and bacterial artificial chromosomes have been used with little success in mammals, and the addition of telomeres to the ends of linear chromosomes is also a special problem, as there is no prokaryotic host that can tolerate large linear DNA. The methods of this invention offers the opportunity to  
30 assemble human or mammalian minichromosomes *in vitro*, by using large segments (10-30 kb) of synthetic, gene-amplified DNA as ligation starting materials. For example, up to 32 *Sap1* fragments (up to 30 kb each, containing the essential *cis*- and *trans*-acting sequences),

or 512 shorter *Hga*1 fragments can be combined using these methods. As with the other examples, several enzymes suitable for this invention (e.g., such as class IIS enzymes) can be combined (possibly with different termini lengths) to simplify the task. The methods of this invention also facilitate construction of telomeric repeats, because the constructs of this invention do not need to be circular. Thus, the methods of this invention can be used to make telomeres of any length, by adding additional segments onto the ends of molecules. One way to do this is using self assembling genes that employ a repeating overhang sequence (self-complementary molecule, such as AG-3' at one end, and CT-3' at the other end), permitting the telomeres to be lengthened to the extent desired by adding the required molar excess of the telomeric repeat-containing fragment. This technique gives the investigator some control over the relative length of the telomeres, although the self-complementarity indicates that many repeats will be lost due to self-ligation. This can be alleviated by using higher starting concentrations of DNA to favor inter-molecular ligations over intra-molecular ligations (e.g., >20 µg/ml starting concentration of DNA).

A two fold molar excess of telomeric fragments gives approximately twice the average length of telomere as a strictly 1:1 molar ratio of all fragments. By using a higher molar ratio of shorter telomeric repeats it is possible to give greater uniformity to the overall length of the molecules, which will vary from one terminus to the other. Thus, in addition to providing a way to build large molecules with precision, the methods of this invention provides for a way to control the telomere length (or potential life-span) of the artificial chromosome. To prevent damage during handling, the minichromosome DNA can be condensed with polycations, adenovirus particles, dendrimers, histones, or liposomes prior to transfection, similar to larger viral vectors.

The methods of this invention can be used to create recombinant virus. One example of this is an adenovirus vector self-assembling gene system. This system can include three parts: 1) vector; 2) helper virus; and 3) helper cells. The vector part is a self-assembling fragment set of at least three fragments comprising the essential cis-acting sequences (left and right inverted terminal repeats, which are the 103 bp at both ends of the genome that are required for replication [ITRs] and packaging sequences [Y, base pairs 194-358]) and central 'baggage' area, comprising one or more self-assembling fragments including therapeutic genes, marker genes, and reporter genes. The baggage area is thus flanked by the cis-acting sequences in the vector. Because the synthetic oligonucleotide sequences

comprising the 5' and 3' termini of the helper virus are not phosphorylated, they will not ligate together creating multimers. Thus, the Ad5 vector region will assemble only into monomers. The helper virus part comprises all Ad5 trans-acting genes except for the E1A and E1B genes. The helper virus part has no cis-acting sequences, and it is amplified in several sections. In this preferred embodiment, the virus is amplified using primers that exclude the ITRs, packaging region and E1A&B genes. The helper virus is digested by *Sap1* digestion, creating seven uniquely terminated fragments comprising the trans-acting viral genome, with dephosphorylated, blunt 5' and 3' ends on the terminating fragments. The primers are designed so as to amplify the internal virus sequences without changing them, except for the 5' and 3' ends of the virus. The PCR-amplified fragments are digested with *Sap1* and are religated in their natural order after gel isolation and Qiagen column purification. The 5' end of the helper virus genome starts at 3.2 kb (in the E1A gene) so as not to overlap the vector sequences, which could otherwise cause replication competent adenovirus (RCA). Because the 5' and 3' ends of the helper virus do not contain *Sap1* sites, they remain intact after digestion with *Sap1*. Because the synthetic oligonucleotide sequences comprising the 5' and 3' termini of the helper virus are not phosphorylated, they will not ligate. Thus, the Ad5 helper virus genome assembles only into preferred monomers during ligation.

In a preferred embodiment, non-essential genes are deleted from the Ad5 genome by means of the method of self-assembling genes. In another preferred embodiment, the helper virus genome is approximately 30 kb after deletion of E1A, E1B and E3 gene sequences from the helper virus, and it is amplified as a single long fragment using the eLONGase Amplification System (Life Technologies or a similar strategy for creating long PCR fragments with high fidelity). It is not of great importance that occasional PCR errors may occur, because multiple copies of the Ad5 helper virus are transfected into target cells, thus providing trans-complementation. The helper cells are preferably 293 cells, a human kidney cell line expressing E1A and E1B genes (ATCC). The vector part and the helper virus part are combined in equimolar ratios after ligation has been performed separately on each fragment set. The Superfect protocol (Qiagen) is used to transfet the vector part and the helper part into the helper cells. The helper cells lyse, releasing high-titer adenovirus particles that are capable of infecting a variety of human cells. The resulting defective virus is incapable of forming RCA, and it transmits up to 34 kb of foreign genes in the baggage area. Unlike conventional Ad5 vectors that require separate constructs for *E. coli* propagation of

insert genes, and recombination in vivo, the present vectors are relatively easy to make and provide a precise, safe alternative to first generation and second generation adenovirus vectors.

- Exemplary methods for producing self-assembling vectors and genes are provided below. Further, the Examples provide methods for producing libraries of nucleic acid sequences using the methods of this invention. A number of nucleic acid sequences identified using the methods of this invention are described. The examples provided below are exemplary and not limiting. All references and publications provided herein are incorporated by reference into this disclosure.

10

**Example 1**  
**Three-Piece Gene Self-Assembly with 100% efficiency**

- Using 6 primers (SEQ ID NOS:24 and 63-67), three PCR fragments were amplified from templates VLMG (SEQ ID NO:22) and VLBNGN (SEQ ID NO: 1). PCR reactions were carried out using the hot start technique, according to the manufacturer's instructions (Perkin Elmer) using *Pfu* DNA polymerase (Stratagene). To amplify specific portions of the above templates, each primer contained a class IIS enzyme site capable of digesting a unique overhanging end that was complementary to only one other terminus in the subsequent ligation. The class IIS enzymes used were *Bpm*1 and *Eco* 57I (the latter was used to copy a fragment that contained an internal *Bpm*1 site). The reactions were carried out as follows: 1) the lower reaction was assembled according to the protocol for PCR Gems (Perkin Elmer); 2) the lower reaction was heated to 80°C, 5 min, then cooled to 4°C for 5 min; 3) the upper reaction was prepared according to PCR Gems protocol and was added to the lower reaction (separated by cooled wax). The primer concentration was 0.3 μM (final). The dNTP concentration was 200μM (final). 5 Units of *Pfu* polymerase was used. All fragments were amplified using the following conditions: 96°C, 45 sec; (then followed by 30 cycles of the following) 96°C 45 sec, 52°C 45 sec, 72°C, 6 min; then followed by a single incubation at 72°C for 10 min; then hold at 4°C. All fragments were successfully amplified. The PCR fragments were purified using the Qiaquick-PCR purification protocol (Qiagen). The fragments were digested with an excess of the appropriate restriction enzyme (*Bpm*1 or *Eco*57I). The digested fragments were run on a 1% agarose gel and were excised using minimal irradiation from a hand-held 365 nm ultraviolet light. The fragments were purified

using the Qiagen Qiaquick Gel Purification Protocol. The fragments were ligated at an equimolar ratio at a concentration of >20 $\mu$ g/ml with T4 DNA ligase (Boehringer Mannheim) overnight at 4°C. Competent *E. coli* SCS110 cells (Stratagene) were transformed with the ligated DNA. Eight colonies were characterized by restriction enzyme analysis, and all eight 5 contained the correct order and orientation of the three fragments. The experiment was repeated independently by another investigator, and the same result was obtained (8/8=100%). Thus, the procedure resulted in a high percentage of correctly assembled vectors.

This three-piece vector was VL $\Delta$ BP. The deletion extended from the distal 10 enhancer region to the TATA box near the start of transcription. The deletion region was a pair of *Bpm*1 sites that permitted U3 sequences to be cloned into the insert.

One validated *E. coli* clone of VL $\Delta$ BP was transfected into retroviral helper cells. After 48 h, the vector was transduced into amphotropic helper cells. After selection for two weeks with the drug G418, drug resistant colonies were grown up in a mass culture and 15 the vector was transduced from the amphotropic helper cells into a human HT1080 cell line (ATCC, Rockville, MD). Surprisingly, even with a large deletion in the LTR promoter, the basal TATA box-containing VL $\Delta$ BP was transmitted as a retrovector and was permanently inserted into the human cell line, thus establishing the validity of the self-assembly technique for the construction of functional eukaryotic vectors.

20

#### **Example 2** **Production of a Six Piece Self-Assembling Expression Vector**

Due to the high efficiency of the gene self assembly process for the three piece 25 assembly, a complex vector containing six fragments was constructed. The results here were extended to determine whether such a self-assembled vector would also have biological activity in human cells without being cloned and grown in a prokaryotic cell.

Six fragments were individually constructed by PCR using three different templates and twelve primers (as illustrated in Fig.8). The primers used three different class 30 IIS enzymes. The enzymes were chosen so as to give 2 base pair, 3'-overhanging ends. Three enzymes were used in order to avoid the use of enzymes that had additional sites internal to the fragments being amplified. Thus, *Bpm*1 was used unless there was an internal *Bpm*1 site. If such a site existed, *Eco*57I was used. If there was also an internal *Eco*57I site, then *Bsr*D1

was used. However, it is alternatively possible to use an enzyme such as *Eam*11041, where the *Eam*11041 sites in the primers are unmethylated (therefore susceptible to digestion by the enzyme), and wherein the  $^{m^5}$ dCTP analog of dCTP is used in the PCR reaction, methylating all internal sites (and protecting them from digestion by *Eam*11041), as suggested by Padgett 5 and Sorge, 1996, *supra*, and incorporated herein by reference.

Using 12 primers, 6 fragments were amplified from 3 templates: pBK-CMV (SEQ ID NO:26) , pVLMB (SEQ ID NO:23) and pVLOVhGH-900 (SEQ ID NO:21). Fragment 1 was amplified from pBK-CMV using primers 1 and 2 (SEQ ID NOS:31 and 32). Fragment 2 was amplified from pVLMB using primers 3 and 4 (SEQ ID NOS:33 and 34). 10 Fragment 3 was amplified from pVLOVhGH-900 using primers 5 and 6 (SEQ ID NOS:35 and 36). Fragment 4 was amplified from pVLMB using primers 7 and 8 (SEQ ID NOS:37 and 38). Fragment 5 was amplified from pVLMB using primers 9 and 10 (SEQ ID NOS:39 and 40). Fragment 6 was amplified from pVLMB using primers 11 and 12 (SEQ ID NOS:41 and 42). PCR reactions were carried out using the hot start technique, according to the 15 manufacturer's instructions (Perkin Elmer Ampliwick PCR GEMS 100). The lower reaction was heated to 80 ° C for 5 min, then cooled to 20 ° C for 5 min. The upper reaction was prepared according to PCR gems protocol and was added to the lower reaction (separated by cooled wax). The primer concentration was 0.3 micromolar (final). The dNTP concentration was 200  $\mu$ M (final). 5 U of *Pfu* polymerase (Stratagene) was used per reaction. 100 ng of 20 template was used for each reaction 14 rounds of PCR amplification were used to reduce mutagenesis of the templates. The PCR cycling protocol was 96 °C 45 sec; then two cycles of (96°C 45 sec, 52°C 45 sec, 72°C 6 min); then 12 cycles of (96°C 45 sec, 58°C 45 sec, 72°C 6 min) followed by a 72° C soak for 10 min, then to 4°C hold.

The six PCR fragments were designed to self-assemble into a retro-vector after 25 digestion with the correct class IIS restriction enzyme (Fig. 8). After transfection into retroviral helper cells, the vector DNA is transcribed as RNA by means of the cytomegalovirus immediate early promoter (fragment 1). This promoter replaces the retroviral or VL30 LTR in this vector. The RNA transcript region begins with the R and U5 regions of the Moloney murine leukemia virus (MoMLV) LTR, the viral packaging signals 30 ( $\Psi$ ) region of MoMLV, the packaging enhancer ( $\Psi^+$ ) region of mouse VL30 and the IRES region of EMCV fragment 2. Fragment 3 consists of the human growth hormone (hGH) cDNA sequence. Fragment 4 consists of the SV40 virus early region promoter driving

expression of the neomycin phosphotransferase (neo) gene. Fragment five consists of the (+)-strand primer binding site of the MoMLV LTR, the U3 region of the MoMLV LTR, the repeat (or R) region, and a portion of the U5 region. Fragment 6 consists of the PBR322 plasmid origin of replication.

5

Fragment 1: CMV early region promoter

Template: pBK-CMV plasmid DNA (Stratagene, LaJolla, CA) *Bpm*1 (SEQ ID NO:26)

PCR primer 1 (SEQ ID NO:31)

10 GACTAACCTTGATTCCACTGGAGCCGTATTACCGCCATGCATTAGTTATTAATAG  
PCR primer 2 (SEQ ID NO:32)

GACTAACCTTGATTCCACTGGAGTAATTGCGGCTAGCGGATCTGACG

Fragment 2: R-U5-Psi-Psi(+) -IRES *Bpm*1

15 Template: pVLMB plasmid DNA (SEQ ID NO:23)

PCR primer 3: SEQ ID NO:33

GACTAACCTTGATTCCACTGGAGACACTTGACCTCTACCGCGCCAGTCCTCCGAT  
TGACTGAGTCG

PCR primer 4: SEQ ID NO:34

20 GACTAACCTTGATTCCACTGGAGGGATCCGCGCCCATGATTATTATCG

Fragment 3: human growth hormone (hGH) *Bsr* DI

Template: pVLCNOVhGH plasmid DNA (SEQ ID NO:21)

PCR primer 5: SEQ ID NO:35

GACTAACCTTGATTCCAGCAATGTCGGTAGCTTGTCTTACTGTTGTC

25 PCR primer 6: SEQ ID NO:36

GACTAACCTTGATTCCAGCAATGTTAGGACAAGGCTGGTGGGACTGG

Fragment 4: SV40 early promoter-neomycin phosphotransferase

Template: VLMB plasmid (SEQ ID NO:23)

30 PCR primer 7: SEQ ID NO:37

GACTAACCTTGATTCCACTGGAGGGTCGACCCTGTGGAATGTGTGTCAG

PCR primer 8: SEQ ID NO:38

GACTAACCTTGATTCCACT**G**GAGAATCTCGTATGGCAGGTTGGCGT

Fragment 5: MLV(+)PBS-U3-R-U5

5 Template: VLMB plasmid (SEQ ID NO:23)

PCR primer 9: SEQ ID NO:39

GACTAACCTTGATTCCACT**G**AAGAGATTATTTAGTCTCCAGAAAAAGGGGGG

PCR primer 10: SEQ ID NO:40

GACTAACCTTGATTCCACT**G**AAGCCCCAAATGAAAGACCCCGCTGACG

10

Fragment 6: PBR322 origin of replication

Template: VLMB plasmid (SEQ ID NO:23)

PCR primer 11: SEQ ID NO:41

GACTAACCTTGATTCCACT**G**GAGCCGGACGGAATTCTGTAACTGCTGC

15

PCR primer 12: SEQ ID NO:42

GACTAACCTTGATTCCACT**G**GAGTTCTCGAGGCCGCATCTGGCG

*Procedure:* The twelve primers were prepared by the following procedure: 1) oligonucleotides were synthesized with trityls off. After deprotection and lyophilization, the samples were resuspended in 5 microliters deionized formamide and loaded onto a polyacrylamide gel (12% polyacrylamide, 250V). The samples were excised under short wave UV irradiation and eluted overnight in 600 microliters of sample elution buffer (0.5 M ammonium acetate, 10 mM Mg acetate, 1 mM EDTA, 0.1% SDS). The contents were loaded onto a BioRad Chromatography column (Cat. # 732-6008) and centrifuged into an Eppendorf tube at low speed (2000 RPM, 5 min). After washing the column with 500 microliters TE buffer (10 mM Tris, 1 mM EDTA), pH 8.0 and re-centrifugation (2000 RPM, 5 min), the pooled eluate was ethanol precipitated, washed with 100% ethanol, resuspended in TE buffer and quantitated by spectrophotometry of a small sample, which was then discarded.

Fragments were cleaned using the Qiaquick PCR cleanup procedure. The fragments were digested with their respective class IIS restriction enzyme. The digested fragments were run on 1% agarose gels, and the fragments were excised and cleaned using the Qiaquick gel cleanup procedure. Fragments were combined in an equimolar mixture and

ligated overnight at 4° C with T4 ligase and ATP. An analytical gel was run with the ligated DNA, as well as with controls including unligated fragments and ligated fragments with a single fragment missing. As opposed to the controls, the complete ligation included bands equivalent to the full-length supercoiled monomer (referred to as GENSA 981, SEQ ID NO:29), as well as bands possibly representing multimers (up to six bands were observed).

In order to assess the efficiency of the method, eleven nanograms of DNA were transfected into SCS1 supercompetent cells. Thirteen kanamycin resistant colonies were harvested, and plasmid DNA preps indicated 10 out of thirteen that appeared to be the correct length. All ten gave the expected bands when digested with *Pst*1, *Sna*B1, and *Bam* HI. 1.35 µg of the ligated DNA was purified by phenol-chloroform-isoamyl alcohol extraction, followed by two extractions with chloroform-isoamyl alcohol, and was precipitated in ethanol. The DNA was washed in 70% ethanol and re-suspended in 50 µl of sterile phosphate buffered saline (for transfection). The DNA was transfected (using the Qiagen Superfect protocol) into HTAm1 (amphotropic human helper cells). 24 h after transfection, the target cells were washed and fresh culture media was added. 48 h after transfection, the supernatant from the vector producer cells was filtered (0.45 µm, Nalgene) and transferred to PG13 helper cells (ATCC) and HT1080 human fibrosarcoma cells. This procedure was repeated after 72 h. 48 h after transduction, recipient cells were started on G418 drug selection (500 µg/ml). The appearance of G418 drug-resistant colonies on transduced PG13 and HT 1080 cells after 6 days of selection indicated successful transmission via retrovirus particles. The transfet HTAm cells were also selected with G418. After six days of drug treatment, 45 colonies of resistant cells were counted. Thus, the six fragment gene assembly was effectively transmitted and expressed as either a DNA (transfection) vector or a retro-vector.

25

### Example 3 Design and Construction of Single LTR Vectors

*Background:* In order to manipulate the interior of the VL30 LTR sequences using a promoter rescue technique, single LTR vectors were constructed. The mouse VL30 element NVL-3 was used as the starting material as it is constitutively and abundantly expressed in most mouse tissues. Single LTR vectors are circular and behave as if they contained two LTRs. Thus, in these vectors RNA transcription begins at the start of the R region (see Fig.

- 3B), and continues through the polyadenylation site after completing the second round of transcription of the R sequences (Fig. 3A). In previous studies, these vectors were expressed transiently in vector producer cells and the DNA did not integrate into cell DNA as a standard two LTR vector. Therefore, the vectors were usually passed to a second complementation  
5 helper cell line via retroviral transduction of the vector RNA transcribed in the first helper cell. This process resulted in the vector regenerating a correct (two LTR) structure upon integration into the recipient cell DNA.

*Experimental method:* The plasmid pNVL-3 (SEQ ID NO:25, kindly provided by Dr. J. Norton Manchester, UK), containing a complete copy of the NVL-3 (mouse VL30) genome (Adams *et al.*, 1989), was digested with *Xba*I (which cuts in the LTRs), releasing the 4.27 kb VL30 genome with one copy of the LTR. This fragment was circularized using T4 DNA ligase and ATP. The circular DNA was linearized by digestion with *Sna*BI, 187 bp from the 3'-LTR. A 2.3 kb fragment containing the SV40 virus early region promoter and the  
15 aminoglycoside phosphotransferase (*neo*) gene, together with the PBR322 plasmid origin of replication, was excised from the BAG retrovirus vector (Price *et al.*, *Proc. Natl. Acad. Sci.* 84:156-160, 1987, kindly provided by C. Cepko, Cambridge, MA). BAG is also obtainable in a retrovirus helper cell line from American Type Culture Collection (ATCC), Rockville, MD by digestion with *Xba*I and *Bam*HI. This fragment was blunted with T4 DNA  
20 polymerase and dephosphorylated with calf intestinal alkaline phosphatase (CIP). The fragment was then ligated to the linearized *Sna*BI fragment of NVL-3. The resulting plasmid (containing a circularly permuted NVL-3 genome with the SV-*neo-ori* region) was designated VLSNO2 (SEQ ID NO:30).

In order to facilitate the switching of LTR sequences by means of the class IIS  
25 enzyme *Bpm*1, VLSNO2 was digested with *Bpm*1 (six sites). The region containing four *Bpm*1 sites was removed and replaced with a 19 bp linker (SEQ ID NOS: 1 and 52, see below), 921 bp beyond the LTR. The linker contained *Sna* BI, *Cla*1 and *Bam* HI cloning sites.

Linker (top strand): 5'-TACGTATCGATGGATCCGA-3' (SEQ ID NO:51)  
30 Linker (bottom strand): 5'-GGATCCATCGATACGTAAG-3' (SEQ ID NO:52)

The remaining two of the *Bpm1* sites had complementary ends, which permitted their ligation and resulted in eradication of all *Bpm1* sites within the resulting vector VLSNO3 (SEQ ID NO:20).

In order to facilitate reporter/therapeutic gene function, a 3.7 kb fragment 5 containing the internal ribosome entry site (IRES) from encephalomyocarditis virus, together with the β-galactosidase reporter gene, was excised from the plasmid pVLSAIBAG (kindly provided by Mr. James Grunkemeyer, Omaha, NE) by means of a partial digestion of the plasmid with *Bam* HI. This region was inserted into the *Bam* HI site of VLSNO3, resulting in the vector VLSNOSIB (SEQ ID NO:14).

10 A second reporter construct, pVLSNOG (5774 bp, SEQ ID NO:19) contained the green fluorescent protein (GFP, Clontech, Palo Alto, CA) gene was constructed by inserting a *Bgl*2-*Bcl*1 fragment (800 bp) from plasmid pGFP-N1. This sequence, containing the GFP gene, was treated with mung bean exonuclease and inserted into the unique *Sna* B1 site of pVLSNO3.

15 In order to enhance GFP fluorescence from the reporter plasmid pVLSNOG, the serine-65 codon in the GFP gene was mutated into threonine by a site-directed mutagenesis procedure with the Transformer™ Site-Directed Mutagenesis kit from Clontech. A *Bpm1* site in the GFP gene (threonine-9) was mutated at the same time without changing the amino acid (ACT to ACA). The resulting plasmid was pVLSNOGM (SEQ ID NO:18).

20 An *Nco*1-*Xho*1 fragment (585 bp) from plasmid pG1IL2EN (kindly provided by Dr. Steven Rosenberg, Bethesda, MD), containing the internal ribosome entry site (IRES) from encephalomyocarditis virus (EMCV) was inserted into the *Apal* site upstream of the GFP gene in pVLSNOGM, resulting in pVLSNOGMI (SEQ ID NO:17). Both insert and plasmid fragments were blunted with mung bean exonuclease. One variant version of 25 pVLSNOGMI with an IRES tandem dimer was also constructed and designated pVLSNOGMI2 (SEQ ID NO:16).

Oligonucleotides (SEQ ID NO:53 and 54) containing a splice acceptor (SA) of AKV virus (in bold) was inserted into pVLSNOGMI at the unique *Sac* 2 site just before the IRES, resulting in pVLSNOGMIS (SEQ ID NO:15). .. .. ..

30 Oligo: (SEQ ID NO:53)

5' -GGCGCTAACTAATAGCCATTCTCAAAGGTACGTAGC- 3'

3' - CGCCGGCGATTGATTATCGGGTAAGAGGTTCCATGCAT - 5'

(SEQ ID NO:54, bottom Oligo)

**Recovery of LTR promoter sequences from mouse CD4+ T-helper cells**

In order to facilitate the recovery of VL30 promoter sequences expressed in mouse T-helper cells, a mouse CD4+ T-helper cell cDNA library (Stratagene, San Diego, CA, Catalog # 937311) was screened by plaque hybridization. Approximately  $2 \times 10^4$  bacteriophage  $\lambda$ -ZAP clones were plated on a lawn of *E. coli* cells according to the manufacturer's instructions. Two nylon filters were sequentially layered onto the lawn of *E. coli* cells and bacteriophage. The filters were hybridized to a  $^{32}\text{P}$ -labelled (Prime-It RmT Random Primer Labeling Kit, Stratagene), 4.2 kb internal *Xba*I fragment of NVL-3 (containing the NVL-3 genome). 55 plaques (or approximately 0.3% of the total phage) reacted positively on both filters. 18 VL30 cDNA sequences were cloned from the plate, which was used to identify U3 promoters that are actively expressed in the RNA of mouse T-cells. Five of the 18 clones contained intact U3 sequences, representing four of one molecular species, named TH1 (SEQ ID NO: 2) and one of another species, named TH2 (SEQ ID NO: 3) also provided in Fig. 5. TH1 contained approximately 120 bp more DNA than did TH2. Because TH1 was more abundant (4 out of 5 clones), the additional sequences in the enhancer region were implicated to be a possible reason for the stronger expression in mouse T cells. Examination of the known and putative transcription factor binding sites in the VL30 LTR (Hodgson, 1996, chapter 4, Fig. 4.2 *supra*) revealed several interesting features of TH1 and TH2. First, the extra sequences of TH1 that were missing in TH2 included an extra copy of the enhancer repeat region as well as a potential retinoid (RAR/RXR) binding site. Several transcription factor binding sites in the enhancer repeat region that differed between the two elements included: a cyclic 3'-5'AMP response element (VLCRE, a potential CREB/jun binding site), a serum response element (SRE), and a potential NF1/IL6 binding site (although there were additional sites for these factors in other enhancer repeats). These factors could possibly explain why VLTH1 appeared to be expressed at higher levels, both in the source cells and into transduced cells. Together, the VL30 sequences represented 0.3% of the mRNA expressed in the T cells, and TH1 appeared to be most abundant VL30.

**Sequencing Primers:**

(SK, SEQ ID NO:49) 5'-CGCTCTAGAACTAGTGGATC (20 mers, Tm 60°C).

(T7, SEQ ID NO:50) 5'-GTAATACGACTCACTATAGGG (21 mers, Tm 60°C).

**5 Seamless Rescue of T cell promoters using class II S restriction enzymes**

Two sets of primers containing offset *Bpm*1 restriction sites were designed and synthesized. One set was for amplification of the plasmid sequences, and another was for the amplification of the inserts.

**10 Insert Primers: (*Bpm*1 site bold)**

ITA (43 mer, Tm: 67.2 °C, SEQ ID NO:45)

CGATCCACT**GGAG**CTCGGAGCCCACCCCCCTCCATCTAGAGGT**15 ITB (43 mers, Tm: 66.3 °C, SEQ ID NO:46)**CGTCCTC**CTGGAG**GAGCACAGGGTAGAGGAGTCTGACGGTCAG**Vector primers: (*Bpm*1 site bold)**

VLA (43 mers, Tm: 68.2 °C, SEQ ID NO:47)

CGAAC**CCCTGGAG**ACCTCTAGATGGGAGGGGTGGGCTCCGAG**20 VLB (43 mers, Tm: 66.3 °C, SEQ ID NO:48)**GCAGGAC**CTGGAG**CTGACCGTCGAGACTCCTCTACCCTGTGCT

To amplify vector sequences more efficiently, vector templates were shortened by deleting marker genes from vectors. pVLSNOSIB (SEQ ID NO:14) was cut with *Kpn* 1 and a 4201 bp fragment containing β-gal gene was removed. The remaining vector has 3923

**25 bp.**

The U3-promoter inserts (357 bp for TH1 and 240 bp for TH2) were PCR-amplified from TH1 and TH2 promoters with primers ITA and ITB. The vector cassettes (~4.2 kb for pVLSNOSIB and ~3.7 kb for pVLSNOGMIS) were PCR-amplified from the shortened vector templates using primers VLA and VLB, (*supra*). The PCR-amplification 30 was done with high-fidelity *Pfu* DNA polymerase from Stratagene (La Jolla, CA). The amplified products were gel-purified (1% agarose gel). The inserts were then cut with *Bpm* 1 to produce complementary ends. The vector cassette products were phosphorylated with

PNK, then circularized with T4 ligase, and transformed into SCS 110 cells. Recovered plasmids were then digested with *Bpm* 1 and treated with CIP to produce complementary ends. *Bpm* 1 treated inserts and vector cassettes were ligated, and T-cell tissue-specific VL 30 vectors VLTH1 and VLTH2 were produced. The marker  $\beta$ -gal gene and GFP gene were put back into those vectors at the original unique sites *Kpn* 1 and *Sal* 1 respectively.

#### Transmission and expression of single LTR vectors and T cell U3 sequences

Vector DNA constructs were transfected into GP+E86 retroviral helper cells (Markowitz et al, 1988, *supra*) using the Lipofectamine protocol (Life Technologies, 10 Gaithersburg, MD). The culture media from these cells (supernatant), containing defective transducing particles (72 h post-transfection), was transmitted to PA317 (Miller, US Patent, cited *supra*) amphotropic helper cells, using Lipofectamine to enhance transduction efficiency (Hodgson et al., 1996. Synthetic Retrotransposon Vectors and Gene Targeting pp. 3-14, in : Felgner et al., eds. *Artificial Self-Assembling Systems for Gene Delivery*. American Chemical 15 Soc. Books, Washington, D.C.). A similar procedure was used to transmit VLTH1 and VLTH2 to the PG13 helper cell line (Miller et al., 1991. *J. Virol.* 65:2220-2224). 24 h post-transfection, the recipient cells were selected with the drug G418 (500 $\mu$ g/ml, 2 weeks) to enrich for stably transduced cell populations.

All of the single LTR vectors, including VLTH1 and VLTH2 were transmitted 20 by this method, indicating that single LTR vectors can be used for promoter switching and yet revert to dual LTR vectors after a single passage. Vectors VLSNO2, VLSNO3, and VLSNOSIB were then titered on NIH 3T3 cells (using the PA317 vector producer cell lines). VLTH1 and VLTH2 vectors were titered on human HT1080 cells (PG13 cell lines). Surprisingly, all of the single LTR vectors were transmitted effectively. However the titers of 25 stably transduced TH1 and TH2 cell lines were  $5.5 \times 10^2$ - $1.1 \times 10^3$  TU/ml, compared to  $0.4$ - $3.0 \times 10^4$  TU/ml for the VLSNO2, VLSNO3 and VLSNOSIB cell lines. Thus, switching from the NVL-3 transcriptional promoter (originally isolated from NIH 3T3 fibroblast cells) to VL30 promoters derived from T helper cells, appeared to have a negative effect on RNA expression in fibroblast cells, as determined by the transmissibility of the RNA.

In order to study the usefulness of rescued promoters as DNA transfection 30 vectors (as opposed to retro-vectors), VLSNOSIB, VLTH1 and VLTH2 were also transfected into a number of cell lines (using Lipofectamine), including NIH 3T3, PA317, GP+E86,

PG13, HT1080, SW480 and HeLa (available from ATCC). RNA expression in these cell lines is shown in Table 4, wherein gene expression from the LTR promoter (as determined by  $\beta$ -gal staining) is normalized to VLSNOSIB (100).

| Cell line: | NIH<br>3T3 | PA317 | GP+E86 | PG13 | HT1080 | SW480 | HeLa |
|------------|------------|-------|--------|------|--------|-------|------|
| Vector:    |            |       |        |      |        |       |      |
| VLSNOSIB   | 100        | 100   | 100    | 100  | 100    | 100   | 100  |
| VLTH1      | 39.3       | 18.7  | 0.1    | 21   | 25.5   | 156   | 156  |
| VLTH2      | 28.6       | 7.1   | 5.5    | 11.5 | 46.8   | 82    | 156  |

5 Table 4. Transient expression of a  $\beta$ -gal marker gene by three VL30 promoters: NVL-3 (VLSNOSIB), VLTH1 and VLTH2. Cells were transfected using the Lipofectamine procedure. Total blue cells were counted from each well in 6-well plates, and the number of blue cells from VLSNOSIB was normalized to 100%.

10

The expression of both the VLTH1 and VLTH2 promoters was significantly reduced compared to VLSNOSIB in cell lines of fibroblastic origin, whereas in SW480 colorectal cancer cells and HeLa cells, it was comparable to or better than VLSNOSIB (the NVL-3 promoter). However, VLSNOSIB was expressed poorly in the non-fibroblastic cell lines, so a direct comparison was difficult to interpret. Unfortunately, the human T cell lines (Jurkat and MOLT4 [obtained from ATCC]) were not transfected by Lipofectamine, and they were poorly transduced by VLTH1 and VLTH2 retro-vectors. In the Jurkat and MOLT4 cells transduced with VLTH1 and VLTH2, only a small percentage (1-10%) of cells that were 15 stably transduced by the vectors stained positively for  $\beta$ -gal expression. However, the marker gene (neo) continued to be expressed from an internal promoter, as evidenced by drug selection.

20 Taken together, the results demonstrated: 1) the ability of the promoter rescue technique to seamlessly capture functional transcriptional promoters from specialized cells; 2) the ability of single LTR vectors to introduce the rescued promoters into standard transducing vectors; 3) the ability of the rescued promoters to be expressed at differing levels in several different cell types, including T cells; and 4) screening and selection established the efficacy, or lack thereof, of individual promoter sequences.

25

Although the general method of promoter rescue was demonstrated by the foregoing experiments, the titers obtained from the sLTR VL30 vectors may not be useful where selection systems are not available.

- Additional experimentation led to the development of a chimeric packaging signal, combining the essential packaging signal from Moloney murine leukemia virus ( $\Psi$ ), and the enhanced packaging signal ( $\Psi+$ ) from a mouse VL30 element. A vector embodiment of this packaging system is VLMB (SEQ ID NO:23). One advantage of the chimeric 5 packaging system was the elimination of retroviral *gag* gene sequences that were present in previous high-titer MLV-based vectors (viral *gag* sequences contribute to the generation of replication competent retrovirus outbreaks). The titers of VLMB-based vectors ranged from approximately  $1 \times 10^5$  to  $4 \times 10^6$  TU/ml.

10 **Construction of a cloning vector for promoter rescue**

Using pVLSNOGMIS as a template, and primers (SEQ ID NOS:28 and 68), a 6.4 kb plasmid fragment was PCR amplified (Using Hot Start AmpliTaq PCR Gems 100, Perkin Elmer). 30 cycles of PCR were performed by following the manufacturer's instructions, with the following input conditions: lower reaction, 80° C, 5 min., then add 15 upper reaction and template, 96° C, 1 min. Each reaction vial contained 50 ng template, 0.5  $\mu$ M each primer, 200  $\mu$ M dNTPs and 5U (2 $\mu$ l) *Pfu* polymerase (Stratagene, LaJolla, CA). 30 repeating cycles of: 96° C, 45° sec; 50° C, 45 sec; 75 C, 1 min. A final incubation of 75° C, 10 min, then hold at 4° C. After amplification, the reactions were purified using Qiaquick PCR Purification Kits (Qiagen). The PCR products were digested with *Pac*1, heat inactivated 20 (65° C, 20 min) and ligated together using T4 DNA ligase (overnight at 4° C in a 5  $\mu$ l vol). The ligated DNA was transfected into SCS110 *E. coli* cells (Stratagene) with kanamycin (50  $\mu$ g/ml) antibiotic added to the agar plates. The cells were *dcm*<sup>r</sup>, *dam*<sup>r</sup> (to prevent methylation of *Bpm*1 sites). The resulting plasmid, pVLBPGN (SEQ ID NO:1, Figs 2 &3) has a deletion 25 in the U3 region of the LTR. A linker containing a central *Pac*1 site flanked by two outwardly-digesting *Bpm*1 sites occupies the site of the deleted U3 sequences. The *Bpm*1 sites enable the plasmid to be digested with *Bpm*1, resulting in two 2 bp 3'-overhanging ends that are complementary to the U3-derived RT-PCR inserts described below. The digested plasmid was purified free from the intervening linker sequences from an agarose gel after digestion with *Bpm*1; using the Qiaquick gel purification kit (Qiagen).

**Procedure for amplification of liver U3 promoter region**

- Purified mouse liver total tissue RNA was purchased from Ambion, Inc., (Austin, TX). Total liver RNA was treated with RQ1 Rnase-free (Promega, Madison, WI). Using Perkin Elmer Gene Amp thermostable rTth reverse transcriptase RNA PCR kit (P/N 5 N808-0069), the following conditions for RT-PCR were used: RT-PCR A 70° (hot start); RT-PCR B, 95°C, 60 sec, then 35 cycles (95°C 10 sec, 58°C, 15 sec) then a final 58°C incubation for 7 min, then 4°C and hold. Additional conditions were: primer concentration 0.15 micromolar, template 100 ng/reaction, dNTPs 200 micromolar (final) and MgCl<sub>2</sub> 3.5 mM(final). The primers for insert amplification were SEQ ID NOS:28 and 68)
- 10 The amplified U3 sequences were purified using Qiaquick. The pVLBPGN plasmid was digested with *Bpm*1, isolated from a 1% agarose gel and purified using the Qiaquick method. The purified U3 sequences were ligated at 1:2, 1:4 and 1:6 molar ratios of VLBPGN plasmid:insert using T4 DNA ligase and a 5 microliter reaction volume overnight at 4°C (100 ng plasmid: 16 ng insert = 1:1 molar ratio). 1 microliter of each ligation reaction 15 was transformed into *E. coli* SCS 110 competent cells (Stratagene). 26 colonies were recovered in total. Out of 23 clones grown overnight in the presence of kanamycin, 20 had sequences that appeared to be mouse VL30 sequences, representing 10 different VL30 species (Fig. 6, SEQ ID NOS: 4-13). One of these (Hep 10, SEQ ID NO: 13) was transiently transfected into Hep G2 liver hepatocellular carcinoma cells. 48 h after transfection, intense 20 GFP fluorescence was observed, indicating strong expression of the Hep 10 U3 promoter region.

**Example 4****Creating a combinatorial library of mouse VL30 U3 sub-regions.**

- 25 Using Fig. 7 and Hodgson, 1996, supra, Fig. 4.2 as a guide, the following three sub-regions of the VL30 U3 region were empirically established: Distal (1); medial (2); and proximal (3). Peaks of similarity were used to guide the following choice of primers: (+) primer binding site-5'-LTR boundary; ~80 bp (defines sub-region 1); ~80-210 bp (sub-region 30 2); ~210-430 (sub-region 3). The following primers were selected to amplify the vector VLBPGN or a similar VL30, NVL-3 LTR-containing vector:

P1 (going left from the 5'-end of the LTR to amplify the plasmid)

(SEQ ID NO:55)

GACTAACCTTGATTCCACTGGAGTTT(CT)(CT)ATTCTTCATTCCCCACTTC  
TTCTT

P2 (going right from the 3'-end of the promoter region to amplify the plasmid)

5 (SEQ ID NO:56)

GACTAACCTTGATTCCACTGGAGAATCTGGACCAATTCTATATAAGCCTG  
TGAAAAATT

The six primers selected to amplify the inserts are as follows:

- 10 Fragment 1, primer 1 (going right from the LTR terminus into U3) (SEQ ID NO:57)  
GACTAACCTTGATTCCACTGGAGAAGAAGAAGTGGGAATGAAGAA
- Fragment 1, primer 2 (going left from the end of fragment 1) (SEQ ID NO:58)  
GACTAACCTTGATTCCACTGGAGATCTCTAGATGGGAGGGG(GT)(CT)GGG  
CTC
- 15 Fragment 2, primer 1 (going right from the left end of fragment 2) (SEQ ID NO:59)  
GACTAACCTTGATTCCACTGGAGCTCGGAGGCCACCCCTCCCATCT
- Fragment 2, primer 2 (going left from the right end of fragment 2) (SEQ ID NO:60)  
GACTAACCTTGATTCCACTGGAGGGAGGCCCTATCTCAAAATGTT
- Fragment 3, primer 1 (going right from the left end of fragment 3) (SEQ ID NO:61)  
20 GACTAACCTTGATTCCACTGGAGTCAAGAACATTTGAGATAAGGGCC  
T
- Fragment 3, primer 2 (going left from the right end of fragment 3) (SEQ ID NO:62)  
GACTAACCTTGATTCCACTGGAGTCACAGGCTTATATAG(TG)AAA
- 25 100 ng of genomic DNA from *Mus musculus* is used as a template (the mouse genome bears 100-200 copies of VL30 elements). Standard PCR procedures for *Pfu* polymerase are used. Fragments are amplified 35 rounds of PCR to obtain single-copy genomic DNA amplification. Samples of Qiagen column purified DNA are examined on analytical agarose gels to determine the approximate size. The remainder of each reaction is digested with the  
30 appropriate enzyme and run on an acrylamide or agarose gel. The digested fragments are purified by standard gel purification procedures and are ligated to the plasmid fragment at an equimolar ratio of the four PCR fragments (three inserts and one plasmid). The ligation mix

is transformed into *E. coli* SCS1 and is grown on kanamycin. The number of colonies is used to establish the size of the combinatorial library, and the pooled colonies are grown in *E. coli* and the DNA is harvested *en masse*. A dozen or more colonies are characterized by DNA sequencing to determine the approximate fidelity of the reaction. A library of 1,000 or more, 5 but preferably 100,000 or more members is used for combinatorial screening procedures.

**Screening the combinatorial libraries for expression in specific cell types using a replication defective helper virus**

The U3 library DNA is transfected into the desired target cells in which 10 expression is desired. Along with the library, approximately 25% of the total DNA should include retroviral helper sequences. The latter sequences can be a helper plasmid (such as pPAM3, Miller *et al.*, US Patent 4,861,719). The virus is amphotropic, permitting it to infect most human cells. The RNA from individual clones that are transcribed in the target cells will be packaged into retroviral virions made by the helper virus, and the virions can be harvested 15 as the cell free filtrate (0.45 mm) from the vector producer cells. This virus (containing the expressed sequences) can be transmitted to fresh target cells that do not contain helper virus. 48 hours after passage, the DNA form of the transcriptionally active clones will be integrated in the recipient cells, and these transcriptionally active loci will produce more RNA, and protein. After G418 drug selection to increase the proportion of cells expressing the vector 20 sequences, helper virus DNA is again transfected into the recipient cells, transforming them into vector producer cells. The virus from these cells should contain increased amounts of the RNA from clones that are transcriptionally active in those cells. Passage of the virus is continued for two or three rounds to permit recombination and mutation to take place, enhancing the effect of *in vitro* evolution of promoters. The actual degree of enhancement 25 attainable at each step is illustrated in Table 2 (*supra*). After several passages, the actual level of RNA expressed by several clones is determined by RNA blotting, or by the amount of a reporter gene expressed as protein (determined visually or by the appropriate assay). Because human cells do not naturally contain VL30 DNA or RNA, the sequences that remain in the human cells are those with the most transcriptionally active promoters. These 30 sequences can be amplified and re-cloned using the methods of the instant invention, or they can be rescued by virus packaging, reverse transcribed by the endogenous reverse

transcriptase reaction, and grown as plasmids (due to their plasmid origin of replication and the selectable kanamycin marker gene).

- In addition to using a replication defective helper virus, such as the clone pPAM3, it is also possible to use a replication competent retrovirus, such as Moloney murine leukemia virus to passage the library. For use in human cells, however, the virus should have a tropism that is compatible with human cells (gibbon ape leukemia virus and amphotropic [4070A] murine retroviruses are acceptable).

- In addition to being useful for generating active transcriptional promoters *de novo*, a small variation on the above procedures may enable the isolation of hormone responsive promoters. In it, the cells are treated with the hormone (which could be a steroid, a peptide hormone known to affect the cells, a drug, a drug agonist or antagonist, etc.) during passage. After isolation of surviving VL30 vector-containing cells, individual clones of drug resistant cells are tested for reporter gene expression with and without drug treatment to determine relative protein expression. Likewise, RNA expression can be determined by blot analysis or a similar method. A useful list of known VL30 responses to pharmacological agents is listed in Fig. 4.2 of Hodgson, 1996, *supra*, and can be used as a guide to help assess the potential agents known to have an effect on VL30 transcription.

- Once the transcriptional promoters with the known specificity have been obtained, they can be used to obtain expression of genes from a variety of types of vectors. For example, in addition to retrovirus particles, the promoters can be incorporated into all other major groups of vectors: adenoviruses, herpes simplex virus vectors, DNA transfection vectors, etc. It will be apparent to persons of ordinary skill in the art that similar combinatorial libraries can also be used to screen for other characteristics than transcription activity in a particular cell. For example, combinatorial libraries of complementarity determining regions (CDRs) of antibodies or T cell receptors can be so screened using antibody screening methods, such as the phage display screening method (Pharmacia, Milwaukee, WI). Thus, the methods of this invention, particularly the combinatorial simplicity of this invention is a significant improvement over many *in vivo* recombination methods including those of (Stemmer, US Patent 5,605,793; 1997) that have described for the production of CDR combinatorial libraries.

**Example 5**  
**Gene Assembly Line**

5        From the above examples of 3 and 6 fragment gene self-assemblies, it is evident that assembly of genes by means of gene amplification, the use of offset restriction enzymes and incorporating unique, non-palindromic ends is a highly efficient process compared to conventional cloning methods. However, in addition to the considerations already discussed, it will be apparent to a person of ordinary skill in the art that the various  
10      procedures, protocols, methods and material of the instant invention become more difficult to use as the number of fragments increases. For example, if the efficiency of combining each fragment in an assemblage is 99%, then the overall efficiency of combining ten fragments will be 90%, the efficiency of combining 100 fragments will be 37%, etc. Therefore, a small drop in efficiency of any step or fragment, or a large increase in the complexity of the project,  
15      will be sufficient to reduce the overall efficiency. Fastidious procedures permit one to achieve success with more complex projects.

Foremost in its potential for inducing failure is human error in primer design where large numbers of fragments are used. Fortunately, the instant invention is suited to automation of most of the steps. This allows human input to be focused on design, analysis,  
20      and quality control. For the purposes of generating large vectors or chromosomes, it is desirable to provide an automated environment. One method to achieve this goal is a gene assembly line.

In a gene assembly line, multiple tasks are controlled by a machine or machines working together to increase speed and efficiency and to reduce human error. For  
25      example, computer aided design (CAD) and computer aided manufacturing (CAM) are incorporated and combined with the methods of this invention. The computers accept inputs in the form of template and primer sequences, together with preferences of regions to be copied and joined. The preferences include at least the sequences of the primer regions and information about the known restriction sites and maps of the sequences to be assembled, but  
30      ideally include the entire sequence. The preferences also include the number of sequences to be joined, the desired Tm for the primers, the list of potential restriction enzymes capable of offset digestion that are potential candidates for use in the assembly process, the desired end structures for each fragment terminus, a tag sequence (if any), whether circular or linear ends

- are desired, and additional design considerations. The computer algorithm then searches the sequences to determine the candidate enzymes and specific primers that match the criteria of the input. Candidates for selection of unique non-palindromic overlaps are selected. The computer then posts selections or preferences for the type and order of end structures, the 5 primer binding sites, their potential for primer-dimer and intra-molecular interaction artifacts, and the potential conflicts with repeat sequences within the templates that could lead to incorrect polymerization. Based upon the selections made by the operator, the computer then determine the  $T_m$  for each primer, and makes adjustments (with suitable inputs from the investigator) to achieve a suitable  $T_m$  for the appropriate DNA synthesis or gene amplification 10 reaction. Ideally, the primers should have similar  $T_m$ 's so that all amplification reactions can be performed at once with one set of amplification instructions. In reality, it may be difficult to do this with complex projects. The output of this portion of the program, which can be in a generic format, such as a Microsoft Excel spreadsheet is then downloaded to a computerized oligonucleotide synthesizer, such as the Applied Biosystems 3928 nucleic acid synthesizer. 15 15 One advantage of using a computerized synthesizer is its robotic capability to de-protect and purify the oligonucleotides automatically. In addition this synthesizer can accept computerized input.

The quantity of individual oligos recovered is then determined spectrophotometrically. It is desirable to purify the oligonucleotides by high performance 20 liquid chromatography or by polyacrylamide gel. In a preferred embodiment, the oligonucleotides and templates are then assembled robotically using an automated nucleic acid handling system such as the Qiagen BioRobot 9600. The BioRobot is capable of accepting input from a computer and can combine the gene amplification reactions based upon the assignments of templates, primer and reagents provided in the input. The assembled 25 reactions are then amplified for example by PCR. In a preferred embodiment, the PCR heat block is incorporated into the robotic workspace and genes are assembled robotically but with minimal human intervention to change buffers, rearrange the platform, change programs, and the like. The resulting amplified products are also purified by the BioRobot or a similar robotic device. In a preferred embodiment, the robotic device uses Qiaquick cleanup 30 procedures, or a similar method and then assembles restriction endonuclease reactions to digest the purified gene amplification products. The gene amplification products are loaded onto a gel and electrophoresed. Human intervention may be necessary to analyze the

products and excise the correct fragments from the gel. At this point, the results are assessed and missing or incorrect sized fragments are resynthesized. The robotic device is preferably used to purify the gel fragments using Quiagen or similar cleanup procedures. After spectrophotometric quantitation of the purified fragments, the robotic device is preferably used to assemble the ligation. Ideally the fragments are combined in an equimolar ratio of 1:1. However it is not necessary to use equimolar ratios in order to achieve gene self-assembly. For automated gene assembly, it may be desirable not to use equimolar ratios of input fragments, particularly if it simplified the task of quantitation. After ligation, the assemblies can be purified and ethanol precipitated or they can be added to the appropriate host cells. Automation aids in maintaining the sterility of the reaction.

Several additional considerations can assist in the construction of long genes using gene assembly. First the number of fragments and the length of constructs are limiting factors. In addition to maintaining high standards of purity of both the oligonucleotide primers and gene amplification products, it is important to keep the error rate low during copying. Thus, one can optimally start with 100 ng of template use only five rounds of gene amplification and finish with nearly 2 micrograms of product. This is more desirable for reducing errors than using a large number of amplification steps. It is also desirable to use a special copying enzyme such as *Pfu* DNA polymerase that has a low intrinsic error rate. Further it is desirable to use *in vivo* selection (in eukaryotic cells or tissues) rather than *E. coli* cloning to reduce the incorporation of errors into the vectors. For example, a viral vector such as an adenoviral vector or the retro-vectors of the preceding examples are auto-selecting. A single correctly-assembled adenovirus vector molecule, for example, leads to a lytic infection (the viral products of which are cloned by limiting dilution on the appropriate eukaryotic cells), even though it may be combined in a ligation mix with a large excess of incorrectly assembled molecules that are non-functional. Thus, it is not necessary to have a high efficiency, although high efficiency has been demonstrated in this system, in order to achieve success in making, for example gene therapy vectors.

For long fragments (3-30 kb), it is desirable to use enzymes and procedures that are designed or facilitate replication of long fragments, one such example is the eLONGase system (Life Technologies). This system can copy up to 30 kb on a fragment with proofreading. Considerations for long PCR are reviewed in Beck, 1998. (The Scientist 6 January, 1998, pp. 16-18).

Internal restriction sites are a potential problem, particularly with large constructs and can be overcome in a number of ways. Use of alternate enzymes, methylation of internal restrictions sites (such as by using methylated DNA precursors during synthesis to leave the sites in primers unaffected, incorporation of the internal sites into the construct (if 5 they are non-palindromic), or mutagenesis of internal sites, are exemplary ways to deal with some of these issues.

For very large constructs, it is desirable to use enzymes such as *SapI* (recognizing 7 nucleotides and leaving a 3 bp overhang). This enzyme digests every 16,384 bp on average. There are 64 nucleotide triplet combinations, meaning that up to 32 fragments 10 can be ligated in a circle using *SapI*. *FokI* and *HgaI* are other examples of class IIS enzymes that are useful for making large constructs. *HgaI* has 5 bp overhangs, permitting more than 500 *HgaI* fragments to be ligated. *FokI* includes a Kozak ATG start codon. In a preferred embodiment, a *FokI* site is inserted at the PuXXATG start site of a cDNA encoding region. The cDNA is inserted in frame, providing a site for inserting and switching coding 15 sequences within a vector.

It will be readily understood by those skilled in the art that the foregoing description has been for purposes of illustration only and that a variety of embodiments can be envisioned without departing from the scope of the invention. Therefore, it is intended 20 that the invention not be limited except by the claims.

## SEQUENCE LISTING

## (1) GENERAL INFORMATION:

5

(i) APPLICANT: NATURE TECHNOLOGY CORPORATION, ET AL.

(ii) TITLE OF INVENTION: SELF-ASSEMBLING GENES, VECTORS AND USES THEREOF

10 (iii) NUMBER OF SEQUENCES: 68

## (iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: MUETTING, RAASCH & GEBHARDT, P.A.  
(B) STREET: 119 NORTH FOURTH STREET, SUITE 203  
15 (C) CITY: MINNEAPOLIS  
(D) STATE: MINNESOTA  
(E) COUNTRY: USA  
(F) ZIP: 55401

## 20 (v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk  
(B) COMPUTER: IBM PC compatible  
(C) OPERATING SYSTEM: PC-DOS/MS-DOS  
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

## 25 (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: Not Assigned  
(B) FILING DATE: 28-FEB-1998  
(C) CLASSIFICATION:

## 30 (vii) PRIORITY APPLICATION DATA:

(A) APPLICATION NUMBER: 60/070,910  
(B) FILING DATE: 28-FEB-1997  
(C) CLASSIFICATION:

## 35 (viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: MCCORMACK, MYRA M.  
(B) REGISTRATION NUMBER: 36,602  
(C) REFERENCE/DOCKET NUMBER: 228.00010201

## 40 (ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 612-305-1225  
(B) TELEFAX: 612-305-1228

45

## (2) INFORMATION FOR SEQ ID NO:1:

50

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6225 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

55

(ii) MOLECULE TYPE: DNA (genomic)

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGAAGAATAA AAAATTACTG GCCTCTTG TGAGAACATGAA CTTCACCTC GGAGCCACC

60

65 CCCTCCCATC TGGAAAACTC CAGTTATAAC TGGAGTTTT CCTTTAAAAG CTGTGAAAA

120

ATTGAGTCG TCCTCGAGAC TCCTCTACCC TGTGCAAAGG TGTATGAGTT TCGACCCAG

180

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | AGCTCTGTGT GCTTTCTGTT GCTGCTTAT TTCGACCCCA GAGCTCTGGT CTGTGTGCTT     | 240  |
| 5  | TCATGTCGCT GCTTTATTAA ATCTTACCTT STACATTTA TGATGGTCT CAGTGCTTC       | 300  |
|    | TTGGGTACCG GCCTGTCCCG GGACTTGAAT GTCTGAATGA GGGTCTCCC TCGAGGGTCT     | 360  |
|    | TTCATTGGT ACATGGCCG GGAATTCCG AATCTTCTAT TTGGTCATT GGCGGGAAAT        | 420  |
| 10 | TCCGAAAATCT TTCATTGGT GCATTGCCG GAAACACGG CGACCACCCA GAGGTCTTAG      | 480  |
|    | ACCCACTAG AGGTAAGATT CTTTGTCTG TTTGGTCTG ATGTCGTGT TCTGATGTCT        | 540  |
| 15 | GTGTCGTGT TCTAAGTCG GTGCGATCCG AGTTCAAGT TTGCGGACGC TCAGTGAGAC       | 600  |
|    | CGCGCTCCG GAGGGAGTGC GGGGGTGGATA AGGATAGACG TGTCGAGGTG TCCACCGTCC    | 660  |
|    | GTTGCCCTG GGAGACGTCC CAGGAGAAC AGGGGAGGAT CAGGGACGCC TGTTGGACCC      | 720  |
| 20 | CTTTGAAGGC CAAGAGACCA TTGGGGTTG CGAGATCTG GGTTCGAGTC CCACCTCGT       | 780  |
|    | CCCAGTTGCG AGATCGTGG TTGAGTCCCG ACCTCGTGT TTGTTGCGAG ATCGTGGTT       | 840  |
| 25 | CGAGTCCCCCCTG CGTACGGGAT CGTGGGGTCC AGTCCACCT CGTGTGTTGT             | 900  |
|    | TGCGAGATCG TGGGTCGAG TCCCACCTCG CGTCTGGTCA CGGGATCGTGG GTTGCAGTC     | 960  |
|    | CCACCTCGT CAGAGGGTCT CAATGGCCG GCCTTAGAGA GGCCATCTGA TTCTCTGGT       | 1020 |
| 30 | TTCTCTTTT GTCTTAGTCT CGTGTCCGCT CTGTTGTA CTACTGTTT TCTAAAAATG        | 1080 |
|    | GGACAATCTG TGCCACTCC CCTTCTCTG ACTCTGGTTC TGTCGCTGG TAATTGTTT        | 1140 |
|    | TGTTTACGGT TGTTTTGTTG AGTCGCTAT GTGTCGTGT ACTATCTGT TTTGTTGT         | 1200 |
| 35 | GGTTTACGGT TTCTGTCGTG GTCTTGTGTC TCTCTTGTG TTCAAGACTTG GACTGATGAC    | 1260 |
|    | TGACGACTGT TTTAAGTTA TGCCCTCTAA AATAAGCTA AAAATCTGT CAGATCCCTA       | 1320 |
| 40 | TGCTGACCAAC TTCCCTTCAG ATCACAGCT GCCCTTACTC GAGCTCAAGC TTGAAATTCT    | 1380 |
|    | GCAGTCGACG GTACCGCCGC CGCTAACTAA TAGCCCCATT TCCAAGGTAC GTAGCGGGGA    | 1440 |
| 45 | TCAATTCCGC CCCCCCCCTA ACGTTACTGG CGGAAGCCGC TTGGAATAAG GCGGGTGTGC    | 1500 |
|    | GTGTTCTAT ATGTTATTTT CCACCATATT CGCTGCTTTT GGCAATGTGA GGGCCCGGAA     | 1560 |
|    | ACCTGGCCCT GTCTCTTGA CGACCATTC TAGGGTCTT TCCCCTCTCG CCAAAGGAAT       | 1620 |
| 50 | GCAAGGTCTG TTGAATGTCG TGAAGGAAGC AGTCTCTG GAAGCTCTT GAAGACAAAC       | 1680 |
|    | AACCTCTGTA GCGACCCCTT GCAGGCAGCG GAACCCCCCA CCTGGCGACA GGTGCTCTG     | 1740 |
| 55 | CGGGAAAAG CCACGTGTAT AAGATACACC TGCAAAGGGC GCACAACCCCC AGTGCACGT     | 1800 |
|    | TGTGAGTTGG ATAGTGTGG AAAGAGTCAA ATGGCTCTC TCAAGCGTAT TCAACAAGGG      | 1860 |
|    | GCTGAAGGAT GCCCAGAAGG TACCCCATG TATGGGATCT GATCTGGGGC CTCGGTGCAC     | 1920 |
| 60 | ATGCTTACA TGTGTTAGT CGAGGTAAA AAAACGCTA GGCCCCCGA ACCACGGGG          | 1980 |
|    | CGTGGTTTC CTTGAAAAA CACGATACGG GATCCACGG TCGCCACCAT GGGTAAAGGA       | 2040 |
| 65 | GAAGAACTTT TCACAGGAGT TGTCCAATT CTTGTTGAAT TAGATGGTGA TGTAAATGGG     | 2100 |
|    | CACAAATTTT CTGTCAGTGG AGAGGGTGAAGG TGTGATGCAA CATACGGAAA ACTTACCCCTT | 2160 |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | AAATTTATTG GCACTACTGG AAAACTACCT GTTCCATGGC CAACACTTGT CACTACTTTC    | 2220 |
|    | ACTTATGGTG TTCAATGCTT TTCAAGATAC CCAGATCATA TGAAACGGCA TGACTTTTC     | 2280 |
| 5  | AAGAGTGCAGA TGCCCGAAGG TTATGTACAG GAAAGAACTA TATTTTCAA AGATGACGGG    | 2340 |
|    | AACTACAAGA CACGTGCTGA AGTCAAGTTT GAAGGTGATA CCCTTGTAA TAGAACATCGAG   | 2400 |
| 10 | TTAAAAGGTA TTGATTTAA AGAAGATGGA AACATTCTG GACACAAATT GGAATACAC       | 2460 |
|    | TATAACTCAC ACAATGTATA CATCATGGCA GACAAACAAA AGAATGGAAC CAAAGTTAAC    | 2520 |
|    | TTCAAAATTAA GACACAAACAT TGAAGATGGA AGCCTTCAAC TAGCAGACCA TTATCAACAA  | 2580 |
| 15 | AATACTCCAA TTGGCGATGG CCCTGTCCTT TTACCAAGACA ACCATTACCT GTCCACACAA   | 2640 |
|    | TCTGCCCTT CGAAAGATCC CAACGAAAAG AGAGACCACA TGGTCCTCT TGAGTTGTA       | 2700 |
| 20 | ACAGCTGCTG GGATTACACA TGGCATGGAT GAACTATACA AGTCGGGATC TAGATAACTG    | 2760 |
|    | TATCGATGGA TCCGAAGGCG GGGACAGCAG TGCAGTGGTG GACAGAAAGC AAGTGTACTA    | 2820 |
|    | GGCCAGCAGC CTCCCTAAAG GGACTTCAGC CCACAAAGCC AAACTTGTTG CTTTAATACA    | 2880 |
| 25 | AGCTCTGTAATGGAAAAA AAAAAAGTC TACACGGACA GCAGGTATGC TCTTGCACACT       | 2940 |
|    | GTACAGAGCA ATATACAGAC AAAGAGAACT GTTGACATCT GCAGAGAAAG ACCTAAAGATG   | 3000 |
| 30 | CTGTGGCTAA AAGAAATCG ATGGCAAATC TAACCGCCCCA GGCATCCTAA AGAGCAATGA    | 3060 |
|    | TCCTGACAGT CTGAAGACTA TCAAGTTATA GACAAATTAA GACTGGTAA AAAACCCCTG     | 3120 |
|    | TATAAAATAG TAAAAACTGA AAAAGAAAAA CTAGTCCCTCT CATGAGAAGA CAGACCTGAC   | 3180 |
| 35 | ATCTACTGAA AAATAGACTT TACTGGAAA AATATGTGTA TGAATACCTT CTAGTTTTG      | 3240 |
|    | TGAACGTTCT CAAGATGGAT AAAAGCTTT CCTTGAAAAA CGAGACTGAT CAGATAGTC      | 3300 |
|    | TCAAGAGAT TGTTAAAGAA AATTTCCAA GGTCGGAGT GCCAAAGCA ATAGTGTCA         | 3360 |
| 40 | ATAATGGTCC TGCCTTTGTT GCCCAGGTAA GTCAGGGTGT GGCCAAGTAT TTAGAGGTCA    | 3420 |
|    | AATGAAAATT CCATTGTTG TACAGACCTC AGAGCTCAGG AAAGATAAAA AAGAATAAAT     | 3480 |
| 45 | AAAACTCTAA ACAGACCTTG ACAAAATTAA TCCTAGAGAC TGGCACAGAC TTACTGGTA     | 3540 |
|    | CTCCTTCCCC TTGCCCTATT TAGAACTGAG AATACTCCCT CTTGATTCCG TTTACTCTT     | 3600 |
| 50 | TTTAAGATCCT TTATGGGGC TCCTATGCCA TCACTGTCTT AAATGATGTG TTTAAACCTA    | 3660 |
|    | TGTTGTATA ATAATGATCT ATATGTTAAAG TTAAAAGGCT TGCAAGGTGT GCAGAAAGAA    | 3720 |
|    | GTCTGGTCAC AACTGGCTAC AGTGAACAAG CTGGGTACCC CAAGGACATC TTACCACTTC    | 3780 |
| 55 | CAGCCAGAGA TCTGATCTAC GATCCCCGGG TCGACCCGGG TCGACCCCTGT GGAATGTG     | 3840 |
|    | TCAGTTAGGG TGTTGGAAAGT CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA   | 3900 |
|    | TCTCAATTAG TCAGCAACCA GGTGTGGAAA GTCCCCAGGC TCCCCAGCAGC GCAGAAAGTAT  | 3960 |
| 60 | GCAAAGCATG CATCTCAATT AGTCAGAACAC CATACTCCCG CCCCTAACTC CGCCCATCCC   | 4020 |
|    | GCCCCCTAACT CCGCCCGAGTT CGGCCCATTC TCCGCCCAT GGCTGACTAA TTTTTTTTAT   | 4080 |
|    | TTATGCAAGAG GCCGAGGGCG CCTCGGCCCTC TGAGCTTTC CAGAAAGTAGT GAGGGAGGCTT | 4140 |
| 65 | TTTTGGAGGC CTAGGCTTTT GCAAAAGCT TCACGCTGCC GCAAGCAGTC AGGGCGCAAG     | 4200 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | GGCTGCTAAA GGAAGCGGAA CACGTAGAAA GCCAGTCCGC AGAAACGGTG CTGACCCCCGG  | 4260 |
| 5  | ATGAATGTCA GCTACTGGGC TATCTGGACA AGGGAAAACG CAAGCGCAA GAGAAAGCAG    | 4320 |
|    | GTAGCTTGC A GTGGCCTTAC ATGGCGATAG CTAGACTGG CGTTTTATG GACAGCAAGC    | 4380 |
|    | GAACCGGAAT TGCCAGCTGG GGCCCCCTCT GTTAAGGTTG GGAAGCCCTG CAAAGTAAAC   | 4440 |
| 10 | TGGATGGCTT TCTTGCCTGCC AAGGATCTGA TGGCGCAGGG GATCAAGATC TGATCAAGAG  | 4500 |
|    | ACAGGATGAG GATCGTTTCG CATGATTGAA CAAGATGGT TGCACGCAGG TTCTCCGGCC    | 4560 |
| 15 | GCTTGGGTG AGAGGCTATT CGGCTATGAC TGGGCACAAAC AGACAATCGG CTGCTCTGAT   | 4620 |
|    | GCCCCCGTGT TCCGGCTGTC AGCGCAGGGG CCCCGGTTTC TTTTGTCAA GACCGACCTG    | 4680 |
|    | TCCGGTGCCTC TGAATGAAC GCAGGACGAG GCAGCGCCGC TATCGTGGCT GGCCACGACG   | 4740 |
| 20 | GCCGCTTCTT GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAAGGG A CTGGCTGCTA | 4800 |
|    | TTGGGCGAAG TGCGGGGCA GGATCTCTG TCATCTCACC TTGCTCTGCG CGAGAAAGTA     | 4860 |
| 25 | TCCCATCATGG CTGATGCAAT GCGGGCGCTG CATAACGCTTG ATCCGGCTAC CTGCCCATTC | 4920 |
|    | GACCAACAAAG CGAAACATCG CATCGAGCGA GCACGTAACCT GGATGGAAGC CGGTCTTGC  | 4980 |
|    | GATCAGGATG ATCTGGACGA AGAGCATCGA GGGCTCGCGC CAGCCGAACCT GTTGCAGCAGG | 5040 |
| 30 | CTCAAGGCGC GCATGCCCGA CGGGCAGGAT CTCGTCGTA CCCATGGCGA TGCCCTGCTTG   | 5100 |
|    | CCGAATATCA TGTTGGAAAA TGCGCGCTT TCTGGATTCA TCGACTGTGG CGGGCTGGGT    | 5160 |
|    | GTGGCGGACCC GCTATCAGGA CATAGCGCTTG GCTACCCCGT ATATTGCTGA AGAGCTTGGC | 5220 |
| 35 | GGCGAATGGG CTGACCGCTT CCTCGTGCCT TAACGGTATCG CGCGCTCCCGA TTGCGACGCG | 5280 |
|    | ATCGCCCTCT ATCGCCCTCT TGACGAGTTC TTCTGAGCGG GACTCTGGGG TTCGAAATGA   | 5340 |
| 40 | CCGACCAAGC GACGCCAAC CTGCCATCAC GAGATTGCA TTCCACCGCC GCCTTCTATG     | 5400 |
|    | AAAGGGTGGG CTTCGGAATC GTTTCGGGG ACAGGAATTG TAATCTGCTG CTTGCAAACA    | 5460 |
| 45 | AAAAAAACAC CGCTTACCGAG GGTGGTTGT TTGCGGCGATC AAGAGCTACCA AACTCTTTT  | 5520 |
|    | CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGCTCTCT AGTGTAGCG     | 5580 |
|    | TAGTTAGGCC ACCACCTCAA GAACCTCTGA GCACCCCGTA CATACTCGC TCTGCTAACTC   | 5640 |
| 50 | CTGTTACCAAG TGGCTGCTGC CAGTGGCGAT AAGTCGTC TTACCGGGTT GGACTCAAGA    | 5700 |
|    | CGATAGTTAC CGGATAAGGC GCAGCGCTCG GGCTGAACGG GGGGTTCTGTC CACACAGCCC  | 5760 |
| 55 | AGCTTGGAGC GAACGACCTA CACCGAAGTC AGATACCTAC AGCGTGAGCA TTGAGAAAGC   | 5820 |
|    | GCCACGCTTC CGGAAGGGAG AAAGGGCGAC AGGTATCCGG TAAGCGGCAG GGTGGAAACA   | 5880 |
|    | GGAGAGCGCA CGAGGGAGCT TCCAGGGGGAA AACCGCTGGT ATCTTTATAG TCCCTGTCGGG | 5940 |
| 60 | TTTCGCCACC TCTGACTGTGA CGCTGCGATT TTCTGTGTC CGTCAGGGGG CGGGAGCTA    | 6000 |
|    | TGGAAAAACG CCAGCAACCC CGAGATGGCC CGCCTCGAGT ACACCTGGT CATGCTGAGA    | 6060 |
|    | CCCTCAAGCC TCACTAAAG GGTCCCTGCC TAGTTCTGTT TACTAATCTG CCTTATTCTG    | 6120 |
| 65 | TTTTGTTCC CATGTTAAAG ATAGAGTAAA TGCAGTATT CTCACATAGA GATATAGACT     | 6180 |

TCTGAAATT C T A A G A T T G A G A T T A T T C A C A G A A G A A G T G G G G A

6225-

## (2) INFORMATION FOR SEQ ID NO:2:

- 5           (i) SEQUENCE CHARACTERISTICS:  
               (A) LENGTH: 487 base pairs  
               (B) TYPE: nucleic acid  
               (C) STRANDEDNESS: single  
               (D) TOPOLOGY: linear
- 10           (ii) MOLECULE TYPE: DNA (genomic)

15           (xii) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|                          |             |            |            |             |     |
|--------------------------|-------------|------------|------------|-------------|-----|
| CCTCCCATCT AGAGGTTGTT    | CTCGGAACAC  | TCTAAACTT  | TTCACCCCCA | AACTCCTCAC  | 60  |
| 20 CCTAAAGTTC GAAAAAACTG | TTCCAAGAAC  | ATTTTGAGA  | TAAAGGCCTC | CTAGAACAC   | 120 |
| CTCAAAATGA CATTGCCAAA    | TGATAAGACA  | TGACTCCTTA | GTTACGTAGG | TTCCTTGATA  | 180 |
| 25 GGACATGACT CCTTAGTTAC | GTAGGTTCT   | TGATAGGACA | TGACTCCTTA | GTTACGTAGA  | 240 |
| TTCCCTTGGT AGAAACTCCCT   | AGTGTATGTA  | ACTTGTACTT | TCCCCTGCCA | GTTCTCCCCC  | 300 |
| 30 TTTGAGTTT ACTATATAAG  | CCTGTAAAAA  | ATTTTGCTG  | ACCGTCGAGA | CTCCCTCTACC | 360 |
| CTGTGCTAAG GTGTATGAGT    | TTCGACCCCCA | GAGCTCTGTG | TGCTTCCATG | TGCTGCTTT   | 420 |
| 35 ATTTGCACCC CAGAGCTCTG | GTCTGTGTGC  | TTTCATGTGC | CTGCTTTATT | AAATCTTGCC  | 480 |
| TTCTACA                  |             |            |            |             | 487 |

## (2) INFORMATION FOR SEQ ID NO:3:

- 40           (i) SEQUENCE CHARACTERISTICS:  
               (A) LENGTH: 366 base pairs  
               (B) TYPE: nucleic acid  
               (C) STRANDEDNESS: single  
               (D) TOPOLOGY: linear
- 45           (ii) MOLECULE TYPE: DNA (genomic)

50           (xiii) SEQUENCE DESCRIPTION: SEQ ID NO:3:

|                          |             |            |             |             |     |
|--------------------------|-------------|------------|-------------|-------------|-----|
| CCTCCCATCT AGAAAACATT    | TTTGAGATAA  | AGGCTTCCTG | GAACAAACCTC | AAAATGAACC  | 60  |
| AGGTACTCCT               | TAGTTACGTA  | GGTCCTTGA  | TAGGACATGA  | CTCCCTTAGT  | 120 |
| 55 CTTTGGCAGA ACTCCCTAGT | GATGTAAACT  | TGACTTTCC  | CTGCCCACTT  | CTCCCCCTTT  | 180 |
| GAGTTTACT ATATAAGCCT     | GTGAAAATT   | TTGGCTGACC | GTCGAGACTC  | CTCTACCCCTG | 240 |
| 60 TGCTAAGGTG TATGAGTTTC | GACCCCCAGAG | CTCTGTGTGC | 'TTCCATGTGC | CTGCTTTATT  | 300 |
| TCGACCCCCAG AGCTCTGGTC   | TGTGTGCTT   | CATGTTGCTG | CCTTATTAAA  | TCTTGCCTTC  | 360 |
| TACATT                   |             |            |             |             | 366 |

## (2) INFORMATION FOR SEQ ID NO:4:

- 65           (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 304 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

5                   (ii) MOLECULE TYPE: DNA (genomic)

10                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

|                                                                                      |     |
|--------------------------------------------------------------------------------------|-----|
| CCTCCCATCT AGAGAGTGTT CCCAGAACAC TCCGTAACTC TTCACCCAG AATGCATGCC                     | 60  |
| TGAACCTCTC ACCCTAGAGT TCGAACCCCTC CCAACTAAAG ACTGTTCCAA GAACATTTT                    | 120 |
| GAGATAAGGG CCTCTTGAA CAACCTCAGA ATGAACCGGG TACATTGCCA AATAATAGGA                     | 180 |
| CATGACCCCT TAGTTACGTA AAATCCCTTG GCAGAACCCCC TTGTCCTTG GCAGAACCCC                    | 240 |
| 20                 TTAGTTATGT AAACCTGTAC TTTCCTTAC CGCGCTCTCCC CCCTTGAGTT TTTCCTATAT | 300 |
| AAGC                                                                                 | 304 |

25                  (2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 304 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

30                   (ii) MOLECULE TYPE: DNA (genomic)

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

|                                                                                      |     |
|--------------------------------------------------------------------------------------|-----|
| 40                 CCTCCCATCT AGAGAGTGTT CCCAGAACAC TCCGTAACTC TTCACCCAG AATGCATTCC  | 60  |
| TGAACCTCTC ACCCTAGAGT TCGAACCCCTC CCAACTAAAG ACTGTTCCAA GAACATTTT                    | 120 |
| 45                 GAGATAAGGG CCTCTTGAA CAACCTCAGA ATGAACCGGG TACATTGCCA AATAATAGGA  | 180 |
| CATGACCCCT TAGTTACGTA AAATCCCTTG GCAGAACCCCC TTGTCCTTG GCAGAACCCC                    | 240 |
| 50                 TTAGTTATGT AAACCTGTAC TTTCCTTAC CGCGCTCTCCC CCCTTGAGTT TTTCCTATAT | 300 |
| AAGC                                                                                 | 304 |

55                  (2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 304 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

60                   (ii) MOLECULE TYPE: DNA (genomic)

65                   (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

|                                                                  |    |
|------------------------------------------------------------------|----|
| CCTCCCATCT AGAGAGTGTT CCCAGAACAC TCCGTAACTC TTCACCCAG AATGCATTCC | 60 |
|------------------------------------------------------------------|----|

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| TGAACTCCTC ATCCTAGAGT TCGAACCTC CCAACTAAAG ACTGTTCCAA GAACATTTT    | 120 |
| GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAACCTGG TACATTGCCA AATAATAGGA  | 180 |
| 5 CATGACCCTT TAGTTACGTA GAATCCCTTG GCAGAACCCC TTGTCCTTG GCAGAACCCC | 240 |
| TTAGTTATGC AAACTTGTAC TTTCCTGCC CCGCTCTCCC CCCTTGAGTT TTTCCTATAT   | 300 |
| 10 AAGC                                                            | 304 |

## (2) INFORMATION FOR SEQ ID NO:7:

- 15 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 304 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: DNA (genomic)

## 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| CCTCCCATCT AGAGAGTTT CCCAGAACAC TCCTGAACTC TTCACCTCAA AATGCATTCC    | 60  |
| 30 TGAACTCCTC ACCCTAGAGT TCGAACCTC CCAACTAAAG ACTGTTCCAA GAACATTTT  | 120 |
| GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAACCGGG TACATTGCCA AATAATAGGA   | 180 |
| CATGACCCTT TAGTTACGTA GAATCCCTTG GCAGAACCCC TTGTCCTTG GCAGAACCCC    | 240 |
| 35 TTAGTTATGC AAACTTGTAC TTTCCTGCC CCGCTCTCCC CCCTTGAGTT TTTCCTATAT | 300 |
| AAGC                                                                | 304 |

## 40 (2) INFORMATION FOR SEQ ID NO:8:

- 45 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 305 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

## 50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| CCTCCCATCT AGAGATTGTT CCCAGAACAC TCCTGAACTC TTCACCCAG AATGCATTCC     | 60  |
| 55 TGAACTCCTC ACCCTAGAGT TCGAACCTC CCAACTAAAG ACTGTTCCAA GAACATTTT   | 120 |
| GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAACCGGG TACATTGCCA AATAATAGGA    | 180 |
| 60 CATGACCCTT TAGTTACGTA GAATCCCTTG GGAGAACCCC CTTGTCCTTG GGAGAACCCC | 240 |
| CTTAGTTATG CAAACATTGTA CTTCCTGCC CCGCTCTCCC CCCCTTGAGG TTTTCCTATA    | 300 |
| TAAGC                                                                | 305 |

## 65 (2) INFORMATION FOR SEQ ID NO:9:

- 5
- (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 305 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: DNA (genomic)
- 10
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
- |    |                                                                    |     |
|----|--------------------------------------------------------------------|-----|
| 15 | CCTCCCATCT AGAGAGTGTT CCCAGAACAC TCCTGAACTC TTCACCCAG AATGCATTCC   | 60  |
|    | TGAACCCCTC ACCCTAGAGT TCGAACCTCT CCAAACCTAAAG ACTGTTCCAA GAACATTTT | 120 |
| 20 | GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAACCAAGG TACATTGCCA AATAATAGGA | 180 |
|    | CATGACCCCT TAGTTACGTA GAATTCCTT GGCAAGAACCC CTTGTCCTT GGCAAGAACCC  | 240 |
|    | CTTAGTTATG CGAACATTGTA CTTTCCCTGC CCCGCTCTCC CCCCTTGAGT TTTTCCTATA | 300 |
| 25 | TAAGC                                                              | 305 |
- (2) INFORMATION FOR SEQ ID NO:10:
- |    |                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | (i) SEQUENCE CHARACTERISTICS: <ul style="list-style-type: none"> <li>(A) LENGTH: 306 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |
| 35 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                          |
- 40
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- |    |                                                                     |     |
|----|---------------------------------------------------------------------|-----|
| 45 | CCCTCCCATC TAGAGAGTGTC TCCCAGAAC CTCCTGAACT CTTCATCCCA GAATGCATTCC  | 60  |
|    | CTGAACCTCT CACCCCTATAG TTGCAACCTCT CCCAACCTAA GACTGTTCCA AGAACATTTT | 120 |
|    | TGAGATAAGG GCCTCTGGAA ACAACCTCGA AATGAACCGG GTACATTGCC AATAATAGG    | 180 |
|    | ACATGACCCC TTAGTTACGT AGAATTCCCT TGGCAAGAAC CTTGTCGCT TGGCAAGAACCC  | 240 |
| 50 | CCTTAGTTAT GTAAACATTGT ACCTTCCCTG CCCCGCTCTC CCCCTTGAG TTTTTACTAT   | 300 |
|    | ATAAGC                                                              | 306 |
- (2) INFORMATION FOR SEQ ID NO:11:
- |    |                                                                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55 | (i) SEQUENCE CHARACTERISTICS: <ul style="list-style-type: none"> <li>(A) LENGTH: 305 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> |
| 60 | (ii) MOLECULE TYPE: DNA (genomic)                                                                                                                                                                          |

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

|                                                                     |     |
|---------------------------------------------------------------------|-----|
| CCTCCCATCT AGAGAGTGT CCCAAACAC TCCTGAACTC TTCAACCCAG AATGCATTCC     | 60  |
| 5 TGAACTCCTC ACCCTAAAGT TCAAACCCTC CCAACTAAAG ACTGTTCCAA GAACATTTT  | 120 |
| GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAAACGGG TACATTGCCA AATAATAGGA   | 180 |
| 10 CATGACCCCT TAGTTACACA GAATTCCCTT GGCAAAACCC CTTGTCCTT GGCAGAACCC | 240 |
| CTTAGTTATG CAAACTTGTA CTTCCTCTGC CCAGCTCTCC CCCCTTGAGT TTTCTATAA    | 300 |
| TAAGC                                                               | 305 |

## 15 (2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 304 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:                             |     |
| 30 CCTCCCATCT AGAGAGTGT CCCAGAACAC TCCTGAACTC TTCAACCCAG AATGCATTCC  | 60  |
| TGAACTCCTC ACCCTAGAGT TTGAAACCCCTC CCAACTAAAG ACTGTTCCAA GAACATTTT   | 120 |
| 35 GAGATAAGGG CCTCCTGGAA CAACCTCAGA ATGAAACGGG TACATTGCCA AATAATAGGA | 180 |
| CATGACCCCT TAGTTACGTA GAATTCCCTT GGCAAAACCC CTTGTCGCTT GGCAGAACCC    | 240 |
| CTTAGTTATG CAAACTTGTA CTTCCTCTGC CCCGCTCTCC CCCCTTGAGT TTTCTATAA     | 300 |
| 40 AACG                                                              | 304 |

## 45 (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 303 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

|                                                                    |     |
|--------------------------------------------------------------------|-----|
| 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:                        |     |
| CCTCCCATCT AGAGAGTGT CCCAGAACAC TCCTAAACTC TTCAACCCAG AATGCATTCC   | 60  |
| TGAACTCCTC ACCCTAGAGT TCGAACCCCTC CCAACTAAAG ACTGTTCCAA GAACATTTT  | 120 |
| 60 GAGATAAGGG CCTCCTGGAA CAACCTCAAATGAAACGGG TACATTGCCA AATGATAGGA | 180 |
| CATGACCCCT TAGTTACGTA GATTCCCTTG GCAGAACCCC TTGTCCTTG GCAGAACCCC   | 240 |
| CTAGTGATGT AAACCTTGAC TTTCCTGCC CAGCTCTCCC CCCCTTGAGT TTCCTATATAA  | 300 |
| 65 AGC                                                             | 303 |

## (2) INFORMATION FOR SEQ ID NO:14:

- 5           (i) SEQUENCE CHARACTERISTICS:  
               (A) LENGTH: 8657 base pairs  
               (B) TYPE: nucleic acid  
               (C) STRANDEDNESS: single  
               (D) TOPOLOGY: linear
- 10          (ii) MOLECULE TYPE: DNA (genomic)

## 15          (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

|                       |             |             |            |             |             |      |
|-----------------------|-------------|-------------|------------|-------------|-------------|------|
| TGAAGAATAAA           | AAAATTACTG  | GCCTCTTGTG  | AGAACATGAA | CTTTCACCTC  | GGAGCCCACC  | 60   |
| CCCTCCCATC            | TGGAAAAACAT | ACTTGAGAAA  | AACATTCTT  | GGAACAACCA  | CAGAATGTTT  | 120  |
| 20         CAACAGGCCA | GATGTATTGC  | CAAACACAGG  | ATATGACTCT | TTGGTTGAGT  | AAATTGTTGG  | 180  |
| TTGTTAAACT            | TCCCCATTAC  | CCTCCCCATT  | CCCCCTCCCA | TTTGTGTTT   | TTTCCCTTTA  | 240  |
| 25         AAAGCTTGTG | AAAAATTGAA  | GTCGCGTCG   | AGACTCTCT  | ACCCCTGTCA  | AAGGTGTATG  | 300  |
| AGTTTCGACC            | CCAGAACCTCT | GTGTGCTTTC  | TGTTGCGTGT | TTATTCGAC   | CCCAAGAGCTC | 360  |
| 30         TGGTCTGTGT | GCTTTCATGT  | CGCTGCTTTA  | TTAAATCTTA | CTTCTCATAC  | TTTATGTATG  | 420  |
| GTCTCAGTGT            | CTTCTTGGGT  | ACGGGGCTGT  | CCCGGGACTT | GAGTGTCTGA  | GTGAGGGTCT  | 480  |
| 35         TCCCCGAGG  | GTCTTCTATT  | TGGTACATGG  | GCCGGGAATT | CGAGAACATT  | TCATTGGTG   | 540  |
| CATTGGCCGG            | GAATTGAAAT  | ATCTTCATT   | TGGTGCATTG | GCCGGGAAAC  | AGCGCGACCA  | 600  |
| 40         CCCAGAGTC  | CTAGACCCAC  | TTAGAGGTAA  | GATTCTTGT  | TCTGTTTGG   | TCTGATGTCT  | 660  |
| GTGTTCTGAT            | GTCTGTGTT   | TGTTTCTAAG  | TCTGGTGCAG | TCGCAGTTTC  | AGTTTGCAG   | 720  |
| 45         ACGCTCAGTG | AGACCCGGCT  | CCGAGAGGG   | GTGCGGGGTG | GATAAGGATA  | GACGTGTCCA  | 780  |
| GGTGTCCACC            | GTCCGTTCGC  | CCTGGGAGAC  | GTCCCAGGAG | GAACAGGGGA  | GGATCAGGGGA | 840  |
| 50         CGCCCTGGGG | ACCCCTTGA   | AGGCCAAGAG  | ACCATTGGG  | GTTGCGAGAT  | CGTGGGTTCG  | 900  |
| AGTCCCACCT            | CGTCCCCAGT  | TGCGGAGATCG | TGGTTGAG   | TCACCTCG    | TGTTTGTG    | 960  |
| CGAGATCGT             | GGTTCGAGTC  | CCACCTCGCG  | TCTGGTCACG | GGATCGTGGG  | TTCGAGTCCC  | 1020 |
| 55         ACCTCGTGT  | TTGTTGCGAG  | ATCGTGGGTT  | CGAGTCCCAC | CTCGCGCTCG  | GTCACGGGAT  | 1080 |
| CGTGGGTTCG            | AGTCCCACCT  | CGTGAGAGG   | GTCTCAATTG | GCCGCCCTTA  | GAGAGGCCAT  | 1140 |
| 60         CTGATTCTTC | TGGTTCTCT   | TTTTGCTTA   | GTCTCGTGT  | CGCTCTTGT   | GTGACTACTG  | 1200 |
| TTTTTCTAAA            | AATGGGACAA  | TCTGTGTC    | CTCCCCCTTC | TCTGACTCTG  | GTTCTGTCG   | 1260 |
| 65         TTGGTAATT  | TGTTTGTGTTA | CGTTTGTGTT  | TGTGAGTCGT | CTATGTTGTC  | TGTTACTATC  | 1320 |
| TTGTTTGTG             | TTGTTGTTA   | CGGTTTCTGT  | GTGCGTCTG  | TGTGTCCTT   | TGTGTTCAAG  | 1380 |
| CTTGGACTGA            | TGACTGACGA  | CTGTTTTAA   | GTTATGCCTT | CTAAAAATAAG | CCTAAAAATC  | 1440 |
| CTGTCAGATC            | CCTATGCTGA  | CCACTTCCTT  | TCAGATCAAC | AGCTGCCCTT  | ACGTATCGAT  | 1500 |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | GGATCCCTCG ACTAACATAAT AGCCCATTCT CCAAGGTCGA GCGGGATCAA TTCCGCCCCC   | 1560 |
|    | CCCCTAACGT TACTGGCCGA AGCCGCTTGG AATAAGGCCG GTGTGCGTT GTCTATATGT     | 1620 |
| 5  | TATTTTCCAC CATATTGCCG TCTTTGGCA ATGTGAGGGC CCGGAAACCT GGCCCTGTCT     | 1680 |
|    | TCTTGACGAG CATTCTCTAGG GGTCTTCCCC CTCTGCCAA AGGAATCCAA GGTCTGTTGA    | 1740 |
| 10 | ATGTCGTGAA GGAAGCAGTT CCTCTGGAAG CTTCTGAAAG ACAAAACACG TCTGTAGCGA    | 1800 |
|    | CCCTTTCGAG GCAGCGGAAC CCCCCACCTG GCGACAGGTG CCTCTGCAGC AAAAGGCCAC    | 1860 |
|    | GTGTATAAGA TACACCTGCA AAGGCGGCAC AACCCCACTG CCACGTTGTG AGTTGGATAG    | 1920 |
| 15 | TTGTGAAAG AGTCAAATGG CTCTCCTCAA CGCTTATTCAA CAAGGGCTG AAGGATGCC      | 1980 |
|    | AGAAGGTACC CCATTGTATG GGATCTGATC TGGGGCCTCG GTGCACATGC TTTACATGTG    | 2040 |
|    | TTTAGTCGAG GTTAAAAAAA CGTCTAGGCC CCCCGAACCA CGGGGACGTG GTTTCCCTT     | 2100 |
| 20 | GAAAAACACG ATAATAATCA TGGGCGCGGA TCCCCCTCGTT TTACAACGTC GTGACTGGGA   | 2160 |
|    | AAACCCCTGGC GTTACCCAAAC TTAATCGCT TGCAGCACAT CCCCCCTTCG CCAGCTGGCG   | 2220 |
| 25 | TAATAGCGAA GAGGCCCGCA CGCATGCCGCC TTCCCAACAG TTGCGCAGGC TGAATGGCGA   | 2280 |
|    | ATGGCGCTTT CCCTGGTTTC CGGCACCCAGA AGCGGTGGCG GAAAGCTGGC TGGAGTGGCA   | 2340 |
| 30 | TCTTCCTGAG GCGCATACTG TCGTCGTCCTC CTCAAACCTGG CAGATGCACG GTTACGATGC  | 2400 |
|    | GCCCCATCTAC ACCAACGTTAA CCTATCCCAT TACGGTCAAT CCGCCGTTTG TTCCCACGGAA | 2460 |
|    | GAATCCGACG GGTTGTTACT CGCTCACATT TAATGTTGAT GAAAGCTGGC TACAGGAAGG    | 2520 |
| 35 | CCAGACCGGA ATTATTTTG ATGGCGTTAA CTGGCGTTT CATCTGTGGT GCAACGGGCC      | 2580 |
|    | CTGGGTGGT TACGGCCAGG ACAGTCGTTT GCCGCTGAA TTTGACCTGA GCGCATTTT       | 2640 |
|    | ACGCGCCCGGA GAAAACCGCC TCGCGGTGAT GGTGCTGGT TGAGGTGACG GCAGTTATCT    | 2700 |
| 40 | GGAAGATCAG GATATGTGGC GGATGAGCGG CATTTCCTGT GACGTCTCGT TGCTGCATAA    | 2760 |
|    | ACCGACTACA CAAATCAGG ATTTCCTATGT TGCCACTCGC TTTAATGATG ATTCAGCCG     | 2820 |
| 45 | CGCTGTACTG GAGGCTGAAG TTCAGATGTG CGGGAGTTG CGTACTAAC TACGGGTAAAC     | 2880 |
|    | AGTTTCTTA TGGCAGGGT AAACCGAGGT CGGCCAGGGC ACCCGCCCTT TCGGCGGTGA      | 2940 |
| 50 | AATTATCGAT GAGGCTGGT GTTATGCCGA TCGCGTCACA CTACGTCTGA ACCTCGAAAA     | 3000 |
|    | CCCGAAACTG TGGAGCCCG AAATCCCGAA TCTCTATCGT GCGGTGGTTG AACTGCACAC     | 3060 |
|    | CGCCGAGGGC ACGCTGATTG AAGCAGAACG CTGCGATGTC GGTTCCCGC AGGTGCGGAT     | 3120 |
| 55 | TGAAAATGGT CTGCTGCTGC TGAACGGCAA GCGGTGGTGT ATTGAGGGCG TTAACCGTCA    | 3180 |
|    | CGAGCATCAT CCTCTGCTATG GTCAGGTATC GGATGAGCGAG ACATGGTGC AGGATATCCCT  | 3240 |
|    | GCTGATGAAG CAGAACAACT TTAACGCCGT GCGCTGTGTC CATTATCCGA ACCATCCGCT    | 3300 |
| 60 | GTGGTACACG CTGTGCGACC GCTACGGCCCT GTATGTTG GATGAAGCCA ATATGAAAC      | 3360 |
|    | CCACGGCATG GTGCAATGA ATCGCTGAC CGATGATCCG CGCTGGCTAC CGGCGATGAG      | 3420 |
|    | CGAACCGCTA ACGCGAATGG TGCAGCCGA TCGTAATCAC CGGAGTGTGA TCATCTGGTC     | 3480 |
| 65 | GCTGGGAAT GAATCAGGCC ACGGCGCTAA TCACGAGCGC CTGTATCGCT GGATCAAATC     | 3540 |

|    |            |             |             |            |             |             |      |
|----|------------|-------------|-------------|------------|-------------|-------------|------|
|    | TGTCGATCCT | CCCCGCCGG   | TGCA GTATGA | AGCGGGCGGA | GCCGACACCA  | CGGCCACCGA  | 3600 |
| 5  | TATTATTCG  | CCGATGTACG  | CGCGCGTGG   | TGAAGACCG  | CCCTTCCCG   | CTGTGCGAA   | 3660 |
|    | ATGGTCATC  | AAAAAAATGGC | TTTCGCTACC  | TGGAGAGACG | CGCCCGCTGA  | TCCTTGCGA   | 3720 |
|    | ATACGCCAC  | GCGATGGGTA  | ACAGTCTTGG  | CGGTTCGCT  | AAATACTGGC  | AGGCCTTCG   | 3780 |
| 10 | TCAGTATCCC | CGTTTACAGG  | CGGGCTTCG   | CTGGGACTGG | GTGGATCAGT  | CGCTGATTAA  | 3840 |
|    | ATATGATGAA | AACGGCAACC  | CGTGGTCGGC  | TTACGGCGT  | GATTTGGCG   | ATACGCCAA   | 3900 |
| 15 | CGATCGCCAG | TTCTGTATGA  | ACGGTCTGGT  | CTTGCACG   | CGCACGCCG   | ATCCAGCGCT  | 3960 |
|    | GACGGAGCA  | AAACACCGAC  | AGCAGTTTT   | CCAGTCCCGT | TTATCCGGC   | AAACCATCGA  | 4020 |
|    | AGTGACCAGC | GAATAACCTGT | TCCGTATAG   | CGATAACAGG | CTCCTGCACT  | GGATGGTGGC  | 4080 |
| 20 | GCTGGATGGT | AAGCCGCTGG  | CAAGCGGTGA  | AGTGCTCTG  | GATGTGGCTC  | CACAAGGTA   | 4140 |
|    | ACAGTTGATT | GAACTGCTG   | AACTACCGA   | GCCGGAGAGC | GCCGGGCAAC  | TCTGGCTCAC  | 4200 |
| 25 | AGTACCGCTA | GTGCAACCGA  | ACCGCACCGC  | ATGGTCAGAA | GCCGGGCACA  | TCAGCGCTG   | 4260 |
|    | GCAGCAGTGG | CGTCTGGCGG  | AAAACCTCAG  | TGTGACGCTC | CCCGCCGCGT  | CCCACGCCAT  | 4320 |
|    | CCCGCATCTG | ACCACCA CGG | AAATGGATTT  | TTGCATCGAG | CTGGGTAATA  | AGCGTGGCA   | 4380 |
| 30 | ATTTAACCGC | CAGTCAGGCT  | TTCTTCA     | GATGTGGATT | GGCGATAAAA  | AAACACTGCT  | 4440 |
|    | GACGCCGCTG | CGCGATCAGT  | TCACCGTGC   | ACCGCTGGT  | AAACGACATTG | CGCTAAGTGA  | 4500 |
| 35 | AGCGACCCG  | ATTGACCTTA  | ACGGCTGGT   | CGAACCGTGG | AGGGCGCCG   | GCCATTACCA  | 4560 |
|    | GGCCGAAGCA | CGCTTGTG    | AGTGCACGGC  | AGATACTT   | GCTGATGCGG  | TGCTGATTAC  | 4620 |
|    | GACCGCTAC  | CGCTGGCAGC  | ATCAGGGAA   | AACTTATTT  | ATCAGCCGA   | AAACCTACCG  | 4680 |
| 40 | GATTGATGGT | AGTGGTCAA   | TGGCGATTAC  | CGTTGATGTT | GAAGTGGCA   | CGCATAACACC | 4740 |
|    | GCATCCGGC  | CGGATTGGCC  | TGAACTGCC   | GCTGGCGAC  | GTAGCAGAGC  | GGGTAAACTG  | 4800 |
| 45 | GCTCGGATTA | GGGCCGCAAG  | AAAACATCC   | CGACCGCCCT | ACTGCCGCT   | TTTTGACCG   | 4860 |
|    | CTGGGATCTG | CCATTGTCAG  | ACATGTATAC  | CCCGTACGTC | TTCCCGACG   | AAACGGCT    | 4920 |
|    | GGCGTGGGG  | ACGCCGAAAT  | TGAATTATGG  | CCACACCGA  | TGGCGGGGG   | ACTTCCAGTT  | 4980 |
| 50 | CAACATCAGC | CGCTACAGTC  | AAACAGCAACT | GATGGA AAC | AGCCATCGCC  | ATCTGCTGCA  | 5040 |
|    | CGCGGAAGAA | GGCACATGGC  | TGAATATCGA  | CGGTTCCAT  | ATGGGGATTG  | GTGGCGACGA  | 5100 |
| 55 | CTCTGGAGC  | CGCTCAGTAT  | CGCGGAAATT  | CCAGCTGAGC | GCCGGTCCGCT | ACCATTACCA  | 5160 |
|    | GTGCGTCTGG | TGTCAAAAAT  | AAATAAAC    | GGCGAGGGGG | GATCCGAAGG  | CGGGGACAC   | 5220 |
|    | AGTGCAGTGG | TGGACAGAAA  | GCAAGTGTAC  | TAGGCCAGCA | GCCTCCCTAA  | AGGGACTTCA  | 5280 |
| 60 | GCCCACAAAG | CCAAACTTGT  | GGCTTAAATA  | CAAGCTCTGT | AAATGGTAA   | AAAAAAAAG   | 5340 |
|    | TCTACACCGA | CAGCAGGTAT  | GCTCTGCCA   | CTGTACAGAG | CAATATACAG  | ACAAAAGAGAA | 5400 |
|    | CTGTTGACAT | CTGCAGAGAA  | AGACCTAAGA  | TGCTGCGCT  | AAAAGAAATC  | AGATGGCAA   | 5460 |
| 65 | TCTAACCGCC | CAGGCATCCT  | AAAGAGCAAT  | GATCCTGACA | GTCTGAAGAC  | TATCAAGTTA  | 5520 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | TAGACAAATT AAGACTGGTA AAAAAAACCC TGTATAAAAT AGTAAAACCT GAAAAAAAGAA  | 5580 |
|    | AACTAGTCCT CTCATGAGAA GACAGACCTG ACATCTACTG AAAATAGAC TTTACTGGAA    | 5640 |
| 5  | AAAATATGTG TATGAATACC TTCTAGTTT TGTGAACGTT CTCAAGATGG ATAAAAGCTT    | 5700 |
|    | TTCCCTGTAA AACGAGACTG ATCAGATAGT CATCAAGAAG ATTGTTAAG AAAATTTCCC    | 5760 |
|    | AAGGTTCCGGA GTGCCAAAGG CAATAGTGTG AGATAATGGT CCTGCCTTTG TTGCCAGGT   | 5820 |
| 10 | AAGTCAGGGT GTGGCCAAGT ATTTAGAGGT CAAATGAAAAA TTCCATTGTG TGTACAGACC  | 5880 |
|    | TCAGAGCTCA GGAAAGATAA AAAAGAATAA ATAAAACCT AAACAGACCT TGACAAAATT    | 5940 |
| 15 | AATCCTAGAG ACTGGCACAG ACTTACTTGG TACTCCTTCC CCTTGCCCTA TTTAGAACCTG  | 6000 |
|    | AGAAATACCC CTCTTGATTG GTGTTTACTC TTTTTAAGAT CCTTTATGGG GCTCCTATGC   | 6060 |
| 20 | CATCACTGTC TAAATGATG TGTTAAACC TATGTTGTTA TAATAATGAT CTATATGTTA     | 6120 |
|    | AGTTAAAAGG CTTGCAGGTG GTGCAGAAAG AAGTCTGGTC ACAACTGGCT ACAGTGAACA   | 6180 |
|    | AGCTGGGTAC CCCAAGGACA TCTTACCAAGT TCCAGCCAGA GATCTGATCT ACGATCCCCG  | 6240 |
| 25 | GGTCGACCCG GGTCGACCCCT GTGGAATGTG TGTCAGTTAG GGTGTGAAA GTCCCCAGGC   | 6300 |
|    | TCCCCCAGCAG GCAGAAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA | 6360 |
| 30 | AAGTCCCCAG GCTCCCCAGC AGGCAGAAAGT ATGCAAAAGCA TGCACTCAA TTAGTCAGCA  | 6420 |
|    | ACCATAGTCC CGCCCCATAAC TCCGCCCATC CCGCCCCCTAA CTCCGCCAG TTCCGCCCAT  | 6480 |
|    | TCTCCGCCCC ATGGCTGACT AATTTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC   | 6540 |
| 35 | TCTGAGCTAT TCCAGAAGTA GTGAGGGAGC TTTTTGGAG GCCTAGGTTT TTGCAAAGAAG   | 6600 |
|    | CTTCACCGTG CGCGAACAC TCAGGGCGCA AGGGCTGCTA AAGGAAGCGG AACACGTAGA    | 6660 |
| 40 | AAGCCAGTCC GCAGAAACGG TGCTGACCCCC GGATGAATGT CAGCTACTGG GCTATCTGG   | 6720 |
|    | CAAGGGAAAA CGCAAGCGCA AAGAGRAAAC AGGTAGCTTG CAGTGGCTT ACATGGCGAT    | 6780 |
|    | AGCTAGACTG GGCGGTTTTA TGGACAGCAA GCGAACCGGA ATTGCCAGCT GGGCGCCCT    | 6840 |
| 45 | CTGGTAAGGT TGGGAAGCCC TGCAAAGTAA ACTGGATGGC TTTCTGCGG CCAAGGATCT    | 6900 |
|    | GATGGCCAG GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTT CGCATGATTG     | 6960 |
| 50 | AACAAGATGG ATTGCACCGA GGTTCTCCGG CGCCTGGGT GGAGAGGCTA TTGGCTATG     | 7020 |
|    | ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT GTTCCGGCTG TCAGCGCAGG   | 7080 |
|    | GGCGCCCGGT TCTTTTGTCA AAGACCGACC TGTCGGTGC CCTGAATGAA CTGAGGACG     | 7140 |
| 55 | AGGCAGGGCG GCTATCGTGG CTGGCACCGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG   | 7200 |
|    | TTGTCACTGA AGCGGGAAGG GACTGGCTGC TATTGGCGA AGTGCCTGGGG CAGGATCTCC   | 7260 |
|    | TGTCATCTCA CCTTGCTCTT GCCGAGAAAG TATCCATCAT GGCTGATGCA ATGCGGGCGC   | 7320 |
| 60 | TGCACTACGCT TGATCCGGT ACCTGCCCAT TCGACCCACCA AGCGAAACAT CGCATCGAGC  | 7380 |
|    | GAGCACCGTAC TCGGATGGAA GCCGGTCTTG TCGATCAGGA TGATCTGGAC GAAGAGCATC  | 7440 |
|    | AGGGGCTCGC GCCAGCCGAA CTGTTGCCA GGCTCAAGGC GCGCATGCC GACGGCGAGG     | 7500 |
| 65 | ATCTCGTCTG GACCCATGGC GATGCCCTGCT TGCCGAATAT CATGGTGAA AATGGCCGCT   | 7560 |

|    |                                                                   |      |
|----|-------------------------------------------------------------------|------|
|    | TTTCTGGATT CATCGACTGT GGCGGCTGG GTGTGGCGGA CCGCTATCAG GACATAGCGT  | 7620 |
| 5  | TGGCTACCCG TGATATTGCT GAAGAGCTTG CGCGCGAATG GGCTGACCGC TTCTCGTC   | 7680 |
|    | TTTACGGTAT CGCCGCTCCC GATTCCGAGC GCATCGCCCT CTATCGCCCT TTTGACGACT | 7740 |
|    | TCTTCTGAGC GGGACTCTGG GTTCCGAAT GACCGACCAA CGGACGCCA ACCTGCCATC   | 7800 |
| 10 | ACGAGATTC GATTCCACCG CCGCCTCTA TGAAAGTTG GGCTTCGAA TC GTTTCCG     | 7860 |
|    | GGACCGAATT CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTT  | 7920 |
| 15 | GTTTGCCTGA TCAAGAGCTA CCAACTCTT TTCCGAGGT AACTGGCTTC AGCAGAGCGC   | 7980 |
|    | AGATACAAA TACTGTCCTT CTAGTGTAGC CGTAGTGTAG CCACCACTTC AAGAACTCTG  | 8040 |
|    | TAGCACCGCC TACATACCTC GCTCTGCTAA TCCTGTTAAC AGTGGCTGCT GCCAGTGGCG | 8100 |
| 20 | ATAAGTCGTG TCTTACCGGG TTGACTCAA GACGATAGT ACCGGATAAG GCGCAGCGGT   | 8160 |
|    | CGGGCTGAAC GGGGGGTTCG TGCAACACGC CCAGCTTGA CGCAACGACC TACACCGAAC  | 8220 |
|    | TGAGATACTC ACAGCGTGAG CATTGAGAAA CGGCCACGCT TCCCGAAGGG AGAAAGCGG  | 8280 |
| 25 | ACAGGTATCC GGTAAGCGGC AGGGTCGGAA CAGGAGAGG CACGAGGGAG CTTCCAGGGG  | 8340 |
|    | GAAACGCCCTG GTATCTTAT AGTCTGTCG GGTTCCGCA CCTCTGACTT GAGCGTCGAT   | 8400 |
| 30 | TTTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGAGATGC  | 8460 |
|    | GCCCCCTCGA GTACACCTGC GTCATGCTGA GACCCCTCAAG CCTCACTAAA AGGGTCCTG | 8520 |
| 35 | CCTAGTTCTG TTTACTAATC TGCTTATTG TGTTTTGTT CCCATGTTAA AGATAGAGTA   | 8580 |
|    | AATGCGATAT TCTCCACATA GAGATATAGA CTTCTGAAT TCTAAGATTA GAATTATTTA  | 8640 |
|    | CAAGAAGAAG TGGGGAA                                                | 8657 |

40 (2) INFORMATION FOR SEQ ID NO:15:

45 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 6359 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

|    |                                                                    |     |
|----|--------------------------------------------------------------------|-----|
|    | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:                           |     |
| 55 | TGAAGAATAA AAAATTACTG GCCTCTTGTG AGAACATGAA CTTTCACCTC GGAGCCACC   | 60  |
|    | CCCTCCCATC TGGAAAACAT ACTTGAGAAA AACATTCTT GGAACACCCA CAGAATGTT    | 120 |
| 60 | CAACAGGCCA GATGTATTGC CAAACACAGG' ATATGACTCT TTGGTTGAGT AAATTTGTGG | 180 |
|    | TTGTAAACT TCCCCATTC CCTCCCCATT CCCCCCTCCA GTTTGTGTT TTTCCCTTA      | 240 |
|    | AAAGCTGTG AAAAATTGAGTCGAGACTCCCT ACCCTGTGCA AAGGTGTATG             | 300 |
| 65 | AGTTCGACCCAGAGCTCT GTGTGCTTC TGTTGCTGCT TTATTCGAC CCCAGAGCTC       | 360 |

|    |             |            |             |             |            |             |      |
|----|-------------|------------|-------------|-------------|------------|-------------|------|
|    | TGGTCTGTGT  | GCTTTCATGT | CGCTGCTTAA  | TTAACATTA   | CCTTCTACAT | TTTATGTATG  | 420  |
|    | GTCTCAGTGT  | CTTCTGGGT  | ACGCCGGCTGT | CCCGGGACTT  | GAGTGTCTGA | GTGAGGGTCT  | 480  |
| 5  | TCCCCTCAGG  | GTCTTTCATT | TGGTACATGG  | GCCGGGAATT  | CGAGAATCTT | TCATTTGGTG  | 540  |
|    | CATTGGCCGG  | GAATTCGAAA | ATCTTTCATT  | TGGTCATG    | GCCGGGAAC  | AGCCGGACCA  | 600  |
| 10 | CCCAGAGGTC  | CTAGACCCAC | TTAGAGGTAA  | GATTCTTGT   | TCTGTTTGG  | TCTGATGTCT  | 660  |
|    | GTGTTCTGAT  | GTCTGTGTT  | TGTTTCTAAG  | TCTGGTGCAGA | TCGCAGTTTC | AGTTTGCGG   | 720  |
|    | ACGCTCAGT   | AGACCGCGCT | CCGAGAGGGG  | GTGCGGGGTG  | GATAAGGATA | GACGTGTCCA  | 780  |
| 15 | GGTGTCCACC  | GTCCGTTCGC | CCTGGGGAGAC | GTCCCAGGAG  | GAACAGGGGA | GGATCAGGG   | 840  |
|    | CGCCCTGGTGG | ACCCCTTGA  | AGGCCAAGAG  | ACCATTGGG   | GTTGCGAGAT | CGTGGGTTCG  | 900  |
|    | AGTCCCACCT  | CGTGCCTTCA | TGCGAGATCG  | TGGGTTCCAG  | TCCCACCTCG | TGTTTTGTG   | 960  |
| 20 | CGAGATCGT   | GGTTCGAGTC | CCACCTCGCG  | TCTGGTCACG  | GGATCGTGGG | TTCGAGTC    | 1020 |
|    | ACCTCGTGT   | TTGTTGCGAG | ATCGTGGGTT  | CGAGTCCCAC  | CTCGCGTCTG | GTCACGGAT   | 1080 |
| 25 | CGTGGGTCG   | AGTCCCACCT | CGTGCAGAGG  | GTCTCAATTG  | GCCGGCCTTA | GAGAGGCCAT  | 1140 |
|    | CTGATTCTTC  | TGGTTCTCT  | TTTTGCTTA   | GTCTCGTGT   | CGCTCTTGT  | GTA         | 1200 |
|    | TTTTCTAAA   | AATGGGACAA | TCTGTGTCCA  | CTCCCCTTTC  | TCTGACTCTG | GTTCTGTGCG  | 1260 |
| 30 | TTGTTAATT   | TGTTGTTTA  | CGTTGTTTT   | TGTGAGTCGT  | CTATGTTGTC | TGTTACTATC  | 1320 |
|    | TTGTTTTGT   | TTGTTGTTTA | CGGTTCTGT   | GTGTTCTTG   | TGTGTTCTT  | TGTGTTCAGA  | 1380 |
| 35 | CTTGGACTGA  | TGACTGACGA | CTGTTTTAA   | GTTATGCTT   | CTAAATAAG  | CCTAAAATC   | 1440 |
|    | CTGTCAGATC  | CCTATGCTGA | CCACTTCCTT  | TCAGATCAC   | AGCTGCCCT  | ACTCGAGCTC  | 1500 |
|    | AAGCTTCGAA  | TTCTGCAGTC | GACGGTACCG  | CGGCCGCTAA  | CTAATAGCCC | ATTCTCCAAG  | 1560 |
| 40 | GTACGTAGCG  | GGGATCAATT | CCGCCCCCCC  | CCTAACGTTA  | CTGGCCGAAG | CCGCTTGAA   | 1620 |
|    | TAAGGCCGT   | GTGCGTTTGT | CTATATGTTA  | TTTCCACCA   | TATTGCGTC  | TTTTGGCAAT  | 1680 |
| 45 | GTGAGGGCCC  | GGAAACCTGG | CCCTGTCTTC  | TTGACGAGCA  | TTCCTAGGGG | TCTTCCCCT   | 1740 |
|    | CTCGCCAAAG  | GAATGCAAGG | TCTGTTGAAT  | GTGCTGAAGG  | AAGCAGTTCC | TCTGGAAGCT  | 1800 |
|    | TCTTGAAGAC  | AAACAACGTC | TGAGCGACCC  | CTTGCAGGC   | AGCGGAACCC | CCCACCTGGC  | 1860 |
| 50 | GACAGGTGCC  | TCTCGGGCCA | AAAGCCACGT  | GTATAAGATA  | CACCTGCAA  | GGCGGCACAA  | 1920 |
|    | CCCCAGTGCC  | ACGTTGTGAG | TTGGATAGTT  | GTGGAAGAG   | TCAATGGCT  | CTCCCTCAAGC | 1980 |
|    | GTATTCAACA  | AGGGGCTGAA | GGATGCCAG   | AAAGTACCCCC | ATTGTATGGG | ATCTGATCTG  | 2040 |
| 55 | GGGCTCGGT   | GCACATGCTT | TACATGTT    | TAGTCGAGGT  | AAAAAAACG  | TCTAGGCC    | 2100 |
|    | CCGAACCAACG | GGGACGTGGT | TTTCTTGA    | AAAACACGAT  | ACGGGATCCA | CCGGTCGCCA  | 2160 |
| 60 | CCATGGGTAA  | AGGAGAAGAA | CTTTCAACAG  | GAGTTGTCCC  | AATTCTTGT  | GAATTAGATG  | 2220 |
|    | GTGATGTTAA  | TGGGCACAAA | TTTCTGTCA   | GTGGAGAGGG  | TGAAGGTGAT | GCAACATACG  | 2280 |
|    | GAAAACCTAC  | CCTTAAATT  | ATTCGACTA   | CTGGAAACT   | ACCTGTTCCA | TGGCCAAACAC | 2340 |
| 65 | TTGTCACTAC  | TTTCACTTAT | GGTGTCAAT   | GCTTTCAAG   | ATACCCAGAT | CATATGAAAC  | 2400 |

|    |            |            |             |             |             |            |      |
|----|------------|------------|-------------|-------------|-------------|------------|------|
|    | GGCATGACTT | TTTCAGAGT  | GCCATGCCG   | AAGGTTATGT  | ACAGGAAAGA  | ACTATATTT  | 2460 |
| 5  | TCAAAGATGA | CGGAACTAC  | AAGACACGTG  | CTGAAGTCAA  | GGTGAAGGT   | GATAACCTTG | 2520 |
|    | TAAATAGAAC | CGAGTAAAAA | GGTATTGATT  | TTAAAAGAAGA | TGGAAACATT  | CTTGGACACA | 2580 |
|    | AATTGGAATA | CAACTATAAC | TCACACAATG  | TATACATCAT  | GGCAGACAAA  | CAAAAGAATG | 2640 |
| 10 | GAACCAAAGT | TAACCTCAA  | ATTAGACACA  | ACATTGAAGA  | TGGAAGCGTT  | CAACTAGCAG | 2700 |
|    | ACCATTATCA | ACAAAATAC  | CCATTGGCG   | ATGGCCCTGT  | CCTTTTACCA  | GACAACCAT  | 2760 |
| 15 | ACCTGTCAC  | ACAATCTGCC | CTTCGAAAG   | ATCCCACGA   | AAAGAGAGAC  | CACATGGCC  | 2820 |
|    | TTCTTGAGTT | TGTAACAGCT | GCTGGGATTA  | CACATGGCAT  | GGATGAACTA  | TACAAGTCG  | 2880 |
|    | GATCTAGATA | ACTGTATCGA | TGGATCCGAA  | GGCGGGGACAA | GCAGTGCAGT  | GGTGGACAGA | 2940 |
| 20 | AAGCAAGTGA | TCTAGGCCAG | CAGCCTCCCT  | AAAGGGACTT  | CAGCCCACAA  | AGCCAAACTT | 3000 |
|    | GTGGCTTAA  | TACAAGCTCT | GTAAATGGTA  | AAAAAAAAAA  | AGTCTCACCG  | GACAGCAGGT | 3060 |
| 25 | ATGCTCTTGC | CACTGTACAG | AGCAATATAC  | AGACAAAGAG  | AACTGTTGAC  | ATCTGCAGAG | 3120 |
|    | AAAGACCTAA | GATGCTGTGG | CTAAAAGAAA  | TCAGATGGCA  | AACTCTAACCG | CCCAGGCATC | 3180 |
|    | CTAAAGAGCA | ATGATCCTGA | CACTCTGAAG  | ACTATCACT   | TATAGACAAA  | TTAAGACTGG | 3240 |
| 30 | AAAAAAAAAC | CCTGTATAAA | ATAGTAAAAA  | CTGAAAAAAG  | AAAATAGTC   | CTCTCATGAG | 3300 |
|    | AAGACAGACC | TGACATCTAC | TGAAAATAG   | ACCTTACTGG  | AAAATATG    | TGTATGAATA | 3360 |
| 35 | CCTCTAGTT  | TTTGTAACG  | TTCTCAAGAT  | GGATAAAAAG  | TTTCTTGT    | AAAACGAGAC | 3420 |
|    | TGATCAGATA | GTCATCAAGA | AGATTGTTAA  | AGAAAATTT   | CCAAGGTTCG  | GAGTGCCAAA | 3480 |
|    | AGCAATAGTG | TCAGATAATG | GTCCCTGCC   | TGTTGCCAG   | GTAAGTCAGG  | GTGTGCCCAA | 3540 |
| 40 | GTATTAGAG  | GTCAAATGAA | AATTCCATTG  | TGTGTACAGA  | CCTCAGAGCT  | CAGGAAAGAT | 3600 |
|    | AAAAAAGAAT | AAATAAAAAT | CTAACACAGAC | CTTGACAAA   | TTAATCCTAG  | AGACTGGCAC | 3660 |
| 45 | AGACTTACTT | GGTACTCCTT | CCCCTGCC    | TATTTAGAAC  | TGAGAAACT   | CCCTCTTGAT | 3720 |
|    | TCGGTTTAC  | TCTTTTAAG  | ATCCTTTATG  | GGGCTCTAT   | GCCATCACTG  | TCTTAAATGA | 3780 |
|    | TGTGTTAAA  | CCTATGTTGT | TATAATAATG  | ATCTATATGT  | TAAGTAAAAA  | GGCTTGAGG  | 3840 |
| 50 | TGGTGCAGAA | AGAAGTCTGG | TCACACTGG   | CTACAGTGAA  | CAAGCTGGGT  | ACCCCAAGGA | 3900 |
|    | CATCTTACCA | GTTCCAGCCA | GAGATCTGAT  | CTACGATCCC  | GGGGTCGACC  | GGGGTCGACC | 3960 |
|    | CTGTTGAATG | TGTGTCACTT | AGGGTGTGGA  | AAAGTCCCCAG | GCTCCCCAGC  | AGGCAGAACT | 4020 |
| 55 | ATGCAAAGCA | TGCATCTCAA | TTAGTCAGCA  | ACCAGGTGTG  | GGAAAGTCCCC | AGGCTCCCCA | 4080 |
|    | GCAGGCAGAA | GTATGCAAAG | CATGCATCTC  | AATTAGTCAG  | CAACCATAGT  | CCCGCCCCTA | 4140 |
| 60 | ACTCCGCCCA | TCCCCCCCCT | AACTCCGCC   | AGTCCGCC    | ATTCTCCGCC  | CCATGGCTGA | 4200 |
|    | CTAATTTTT  | TTATTATGCA | AGAGGCCGAG  | GCCGCCCTCG  | CCTCTGAGCT  | ATTCCAGAAG | 4260 |
|    | TAGTGAGGAG | GCTTTTTGG  | AGGCCCTAGGC | TTTGCAAAA   | AGCTTCACGC  | TGCCGCAAGC | 4320 |
| 65 | ACTCAGGGCG | CAAGGGCTGC | TAAAGGAAGC  | GGAACACGTA  | GAAAGCCAGT  | CCGCAGAAC  | 4380 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | GGTGCTGACC CCGGATGAAT GTCAGCTACT GGGCTATCTG GACAAGGGAA AACGCAAGCG  | 4440 |
|    | CAAAGAGAAA GCAGGTAGCT TGCACTGGGC TTACATGGCG ATAGCTAGAC TGGGGCGTTT  | 4500 |
| 5  | TATGGACAGC AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGTTAAG GTTGGGAAGC  | 4560 |
|    | CCTGCAAAGT AAACCTGGATG GCTTCTTGC CGCCAAGGAT CTGATGGCG AGGGGATCAA   | 4620 |
|    | GATCTGATCA AGAGACAGGA TGAGGATCGT TTGCGATGAT TGAACAAAGAT GGATTGCACG | 4680 |
| 10 | CAGGTTCTCC GGCGCCTGG GTGGAGAGGC TATTCGGCTA TGACTGGCA CAACAGACAA    | 4740 |
|    | TCGGCTGCTC TGATGCCGC GTGTCGGC TGTCAGCGA GGGGCGCCCG GTTCTTTTG       | 4800 |
| 15 | TCAAGACCGA CCTGTCGGT GCCCTGAATG AACTGCGAGGA CGAGGCAGCG CGGCTATCGT  | 4860 |
|    | GGCTGGCCAC GACGGGGCTT CCTTGGCGAG CTGTCGTCGA CGTTGTCACT GAAGCGGGAA  | 4920 |
|    | GGGACTGGCT GCTATTGGGC GAAGTGGCGG GGCAGGATCT CCTGTCATCT CACCTGGCTC  | 4980 |
| 20 | CTGCGGAGAA AGTATCCATC ATGCGATGATG CAAATGGGGC GCTGCATACG CTTGATCCGG | 5040 |
|    | CTACCTGCC ATTGACCCAC CAAGCGAAC ATCGCATCGA GCGAGCACGT ACTCGGATGG    | 5100 |
| 25 | AAGCCGGTCT TGTCGATCG AGATGATCTGG ACGAAGAGCA TCAGGGGCTC GCGCCAGCCG  | 5160 |
|    | AACTGTCGC CAGGCTCAAG GCGCGCATGC CGCACGGCGA GGATCTCGTC GTGACCCATG   | 5220 |
|    | GCGATGCCCT CTTGCCGAAT ATCATGGTG AAAATGGCGC CTTTCTGGA TTCATCGACT    | 5280 |
| 30 | GTGGCCGGCT GGGTGGCG GACCCTATC AGGACATAGC GTTGGCTACC CGTGATATTG     | 5340 |
|    | CTGAAGAGCT TGGCGGGAA TGGGCTGACC GCTTCTCGT GCTTACGGT ATGCCGCTC      | 5400 |
| 35 | CCGATTGCA CGCGATCGCC TTCTATGCCC TTCTGACGA GTTCTCTGA CGGGGACTCT     | 5460 |
|    | GGGGTTGCAA ATGACCGACC AAGCGACGCC CAACCTGCCA TCACGAGATT TCGATTCCAC  | 5520 |
|    | CGCCGCCCTTC TATGAAAGGT TGGGCTCGG AATCGTTTC CGGGACGGAA TTCGTAATCT   | 5580 |
| 40 | GCTGCTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTGGCCG GATCAAGAGC    | 5640 |
|    | TACCAACTCT TTTCCGAAAG GTAACTGGCT TCAGCAGAGC GCAGATAACCA AATACTGTCC | 5700 |
| 45 | TTCTAGTGTAA GCGTAGTTA GGCCACCACT TCAAGAACTC TGAGCACCG CCTACATACC   | 5760 |
|    | TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCGAGTGG CGATAAGTCG TGTCTTACCG  | 5820 |
| 50 | GGTTGGACTC AAGACGATAG TTACCGGATA AGGGCGACGG GTCGGGCTGA ACGGGGGGTT  | 5880 |
|    | CGTGCACACA GCCCACCTTG GAGCGAACGCA CCTACACCGA ACTGAGATAC CTACAGCGTG | 5940 |
|    | AGCATTGAGA AAGCGCCACG CTTCCCCGAAG GGAGAAAGGC GGACAGGTAT CGCGTAAGCG | 6000 |
| 55 | GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT  | 6060 |
|    | ATAGTCTGT CGGGTTTCGC CACCTCTGAC ITGAGCGTCG ATTTTGTGA TGCTCGTCAG    | 6120 |
|    | GGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCCGAGAT GCGCCGCCCTC GAGTACACCT  | 6180 |
| 60 | GCGTCATGCT GAGACCCCTCA AGCCTCACTA AAAGGGTCCC TGCCTAGTTC TGTTTACTAA | 6240 |
|    | TCTGCCCTTAT TCTGTTTTG TTCCCATGTT AAAGATAGAG TAAATGCACT ATTCTCCACAA | 6300 |
|    | TAGAGATATA GACTCTGAA ATTCTAAGAT TAGAATTATT TACAAGAAGA AGTGGGGAA    | 6359 |

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:

  - (A) LENGTH: 6891 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

|    |                                                                                                                                          |      |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15 | TGAAGAATAA AAAATTACTG GCCTCTTGTG AGAACATGAA CTTTCACCTC GGAGCCCCC<br>CCCTCCCATC TGAAAACATC ACTTGAGAAA AACATTTCT GGAACAAACCA CAGAATGTT     | 60   |
|    | CAACAGGCCA GATGTATTGC CAAACACAGG ATATGACTCT TTGGTGTGAGT AAATTGTGG                                                                        | 120  |
| 20 | TGTTAAACT TCCCCTATTC CCTCCCCATT CCCCTCTCCA GTTGTGTGTT TTTCTTTA<br>AAAGCTGTG AAAAATTGAGTCGAGACTCTC ACCCTGTGCA AAGGTGTATG                  | 180  |
|    | AGTTTCGACC CCAGAGCTCT GTGTGCTTTC TGTTGCTGCT TTATTCGAC CCCAGAGCTC                                                                         | 240  |
| 25 | TGGTCTGTG CTCTTCATG CGCTGCTTTA TAAATCTTA CCTCTACAT TTATGTATG<br>GTCTCAGTGT CTTCTGGT ACGGGGCTG CCGGGGACTT GAGTGTCTGA GTGAGGGTCT           | 300  |
|    | TCCCTCGAGG GTCTTCATT TGTTACATGG GCCGGGAAATT CGAGAACATCT TCATTGGTG                                                                        | 360  |
| 30 | CATTGCCGG GAATTGAAA ATCTTCATT TGGTGCATTG GCCGGGAAAC AGCGCAGACCA<br>CCCAGAGGTC CTAGACCACCA TTAGAGGTA GATTCTTGT TCTGTTTGG TCTGATGTCT       | 420  |
|    | GTGTTCTGAT GTCTGTGTT CGTTCTAAG TCTGGTGCAGA TCGCAGTTTC AGTTTGGCG                                                                          | 480  |
| 35 | ACGCTCAGTG AGACCCGCT CCGAGAGGGAG GTGCGGGGTC GATAAGGATA GACGTGTCCA<br>GGTGTCCACC GTCCGTCGC CCTGGGAGAC GTCCCAAGGAG GAAACAGGGGA GGATCAGGGAA | 540  |
|    | CGCCTGGTGG ACCCCTTGA AGGCCAAGAG ACCATTGGG GTTGCAGAGAT CGTGGGTTCG                                                                         | 600  |
| 40 | AGTCCCACCT CGTGCCTAGTG TGCGAGATCG TGGGTTGAG TCCCACCTCG TGTTTGTG<br>CGAGATCGTG GTTCCGAGTC CCACCTCGC TCTGGTCACGG GGATCGTGGG TTGAGTCCC      | 660  |
|    | ACCTCGTGT TTGTTGCGAG ATCGTGGGTT CGAGTCCAC CTCGCGTCTG GTCACGGGAT                                                                          | 720  |
| 45 | CGTGGGTTCG AGTCCCACCT CGTGCAGAGG GTCTCAATTG GCGGGCTTA GAGAGGCCAT<br>CTGATTCCTTC TGTTTCTCT TTGTTCTTA GTCTCGTGC CGCTCTTGT GTGACTACTG       | 780  |
|    | TTTTCTAAA AATGGACAA TCTGTCCTCA CTCCCCCTTC TCTGACTCTG GTTCTGTCG<br>TTGTTAATTT TGTTGTTTA CGTTTGTGTT TGAGTGTGCT GTATGTTGTC TGTTACTATC       | 840  |
| 50 | TTGTTTTGT TTGTTGTTTA CGGTTTCTGT GTGTGCTCTG TGTTCTCTT TGTTGTCAGA<br>CTTGGACTGAGA TGACTGACGA CTGTTTTAA GTTATGCTT CTAAAAAAG CCTAAAAAATC     | 900  |
|    | CTGTCAGATC CCTATGCTGA CCACCTCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC                                                                         | 960  |
| 55 | TTTTCTAAA AATGGACAA TCTGTCCTCA CTCCCCCTTC TCTGACTCTG GTTCTGTCG<br>TTGTTAATTT TGTTGTTTA CGTTTGTGTT TGAGTGTGCT GTATGTTGTC TGTTACTATC       | 1020 |
|    | TTGTTTTGT TTGTTGTTTA CGGTTTCTGT GTGTGCTCTG TGTTCTCTT TGTTGTCAGA<br>CTTGGACTGAGA TGACTGACGA CTGTTTTAA GTTATGCTT CTAAAAAAG CCTAAAAAATC     | 1080 |
| 60 | CTGTCAGATC CCTATGCTGA CCACCTCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC                                                                         | 1140 |
|    | AAGCTTCGAA TTGTCAGTC GACGGTACCC CGGGGATCAA TTCCGGCCCCC CCTCTAAAGCT                                                                       | 1200 |
| 65 | TTGTTTTGT TTGTTGTTTA CGGTTTCTGT GTGTGCTCTG TGTTCTCTT TGTTGTCAGA<br>CTTGGACTGAGA TGACTGACGA CTGTTTTAA GTTATGCTT CTAAAAAAG CCTAAAAAATC     | 1260 |
|    | CTGTCAGATC CCTATGCTGA CCACCTCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC                                                                         | 1320 |
| 70 | TTGTTTTGT TTGTTGTTTA CGGTTTCTGT GTGTGCTCTG TGTTCTCTT TGTTGTCAGA<br>CTTGGACTGAGA TGACTGACGA CTGTTTTAA GTTATGCTT CTAAAAAAG CCTAAAAAATC     | 1380 |
|    | CTGTCAGATC CCTATGCTGA CCACCTCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC                                                                         | 1440 |
| 75 | AAGCTTCGAA TTGTCAGTC GACGGTACCC CGGGGATCAA TTCCGGCCCCC CCTCTAAAGCT                                                                       | 1500 |
|    | TTGTTTTGT TTGTTGTTTA CGGTTTCTGT GTGTGCTCTG TGTTCTCTT TGTTGTCAGA<br>CTTGGACTGAGA TGACTGACGA CTGTTTTAA GTTATGCTT CTAAAAAAG CCTAAAAAATC     | 1560 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | TACTGGCCGA AGCCGCTTGG AATAAGGCCG GTGTGCGTTI GTCTATATGT TATTTCCAC   | 1620 |
|    | CATATTGCCG TCTTTGGCA ATGTGAGGGC CGGGAAACCT GGCCCTGTCT TCTTGACGAG   | 1680 |
| 5  | CATTCCTAGG GGTCTTCCCC CTCTCGCCAA AGGAATGCAA GGTCTGTTGA ATGTCGTGAA  | 1740 |
|    | GGAAGCAGTT CCTCTGGAG CTTCTTGAAG ACAAACAAAGC TCTGTAGCGA CCCTTGCAG   | 1800 |
|    | GCAGCGGAAC CCCCCCACCTG GCGACAGGTG CCTCTGCGC CAAAAGCCAC GTGTATAAGA  | 1860 |
| 10 | TACACCTGCA AAGGCGGCAC AACCCCACTG CCACGTTGTG AGTTGGATAG TTGTGGAAAG  | 1920 |
|    | AGTCAAATGG CTCTCCTCAA GCGTATTCAA CAAGGGCTG AAGGATGCC AGAAGGTACC    | 1980 |
| 15 | CCATTGTATG GGATCTGATC TGGGGCCTCG GTGCACATGC TTTACATGTG TTTAGTCGAG  | 2040 |
|    | GTAAAAAAC GTCTAGGCC CCCGAACAC CGGGGACGTGG TTTTCTTTG AAAAACACGA     | 2100 |
|    | GCGGGATCAA TTCCGCCCCC CCCCTAAACGT TACTGGCCGA AGCCGCTTGG AATAAGGCCG | 2160 |
| 20 | GTGTGCGTT GTCTATATGT TATTTCCAC CATATTGCCG TCTTTGGCA ATGTGAGGGC     | 2220 |
|    | CCGGAAACCT GCCCTGCTCT TCTTGACGAG CATTCTAGG GGTCTTCCC CTCTGCCAA     | 2280 |
| 25 | AGGAATGCAA GGTCTGTTGA ATGTCGTGAA GGAAGCAGTT CCTCTGGAAAG CTTCTGAAAG | 2340 |
|    | ACAAACAAACG TCTGTAGCGA CCCTTGCAG GCAGCGGAAC CCCCCCACCTG GCGACAGGTG | 2400 |
| 30 | CCTCTGCCGC CAAAAGCCAC GTGTATAAGA TACACCTGCA AAGGCGGCAC AACCCCACTG  | 2460 |
|    | CCACGTGTG ATGGATGATG TTGTGGAAAG AGTCAAATGG CTCTCCTCAA GCGTATTCAA   | 2520 |
|    | CAAGGGCTG AAGGATGCC AGAAGGTACC CCATTGTATG GGATCTGATC TGGGGCCTCG    | 2580 |
| 35 | GTGCACATGC TTACATGTG TTAGTCGAG GTTAAAAAAA CGCTCTAGGCC CCCCCAACCA   | 2640 |
|    | CGGGGACGTG GTTTCCCTT GAAAACACG ATACGGGATC CACCGCTCG CACCATGGGT     | 2700 |
| 40 | AAAGGAGAAG AACTTTCACT AGGAGTTGTC CCAATTCTTG TTGAATTAGA TGGTGTGTT   | 2760 |
|    | AATGGGCACA AATTCTCTGT CAGTGGAGAG GGTGAAGGTC ATGCAACATA CGGAAAACATT | 2820 |
|    | ACCCCTAAAT TTATTGCACT TACTGGAAAA CTACCTGTC CATGGCCAAC ACTTGTCACT   | 2880 |
| 45 | ACTTTCACTT ATGGTGTCA ATGCTTTCA AGATACCCG ATCATATGAA ACGGCATGAC     | 2940 |
|    | TTTTCAAGA GTGCCATGCC CGAAGGTTAT GTACAGGAAA GAACATATATT TTCAAAAGAT  | 3000 |
|    | GACGGAAACT ACAGACACG TGCTGAAGTC AAAGTTGAG GTGATACCT GTTAAATAGA     | 3060 |
| 50 | ATCGAGTTAA AAGGTATTGA TTTAAAGAA GATGGAAACA TTCTGGACA CAAATTGGAA    | 3120 |
|    | TACAACATATA ACTCACACAA TGATACATC ATGGCAGACA AACAAAAGAA TGGAACCAAA  | 3180 |
| 55 | GTAACTTCA AAATTAGACA CAACATTGAA GATGGAAGCG TTCAACTAGC AGACCATTAT   | 3240 |
|    | CAACAAAATA CTCCAATGG CGATGGCCCT GTCCCTTTAC CAGACAACCA TTACCTGTCC   | 3300 |
|    | ACACAACTCG CCCTTCGAA AGATCCCCA GAAAAGAGAG ACCACATGGT CCTTCTTGAG    | 3360 |
| 60 | TTTGTAAACAG CTGCTGGGAT TACACATGGC ATGGATGAAC TATACAAGTC CGGATCTAGA | 3420 |
|    | TAACGTATC GATGGATCCG AAGGGGGGCA CAGCAGTGC GTGGTGGACA GAAAGCAAGT    | 3480 |
|    | GATCTAGGCC AGCAGCCTCC CTAAAGGGAC TTCAGGCCAC AAAGCCAAAC TTGTGGCTTT  | 3540 |
| 65 | AATACAAGCT CTGTAATGG TAAAAAAA AAAGTCTACA CGGACAGCAG GTATGCTTT      | 3600 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | GCCACTGTAC AGAGCAATAT ACAGACAAAG AGAACTGTTG ACATCTGCAG AGAAAAGACCT | 3660 |
| 5  | AAGATGCTGT GGCTAAAAGA AATCAGATGG CAAATCTAAC CGCCCGAGCA TCCTAAAGAG  | 3720 |
|    | CAATGATCCT GACAGTCTGA AGACTATCAA GTTATAGACA AATTAAGACT GTAAAAAAA   | 3780 |
|    | ACCCGTATA AAATAGTAAA AACTGAAAAA AGAAARACTG TCCTCTCATG AGRAGACAGA   | 3840 |
| 10 | CCTGACATCT ACTGAAAAAT AGACTTACT GGAAAAAATA TGTGTATGAA TACCTCTAG    | 3900 |
|    | TTTTGTGAA CGTTCTCAAG ATGGAAAAA GCTTTCTT GTAAAACGAG ACTGATCAGA      | 3960 |
| 15 | TAGTCATCAA GAAGATTGTT AAAGAAAATT TTCCAAGGTG CGGAGTGCCA AAAGCAATAG  | 4020 |
|    | TGTCAGATAA TGTTCTGCC TTTGTGCC AGGTAAGTCA GGGTGTGCC AAGTATTAG       | 4080 |
|    | AGGTCAAATG AAAATTCCAT TGTGTGTACA GACCTCAGAG CTCAGGAAAG ATAAAAAAGA  | 4140 |
| 20 | ATAAATAAA CTCTAACAG ACCTTGACAA AATTAATCCT AGAGACTGGC ACAGACTTAC    | 4200 |
|    | TTGGTACTCC TTCCCCCTGC CCTATTAGA ACTGAGAATA CTCCCTCTTG ATTGGTTTT    | 4260 |
| 25 | ACTCTTTTA AGATCCTTTA TGGGGCTCT ATGCCATCAG TGTCTTAAAT GATGTGTTA     | 4320 |
|    | AACCTATGTT GTTATAATAA TGATCTATAT GTTAAGTAA AAGGCTTGCAG GGTGGTGCAG  | 4380 |
|    | AAAGAAGTCT GGTACACACT GGCTACAGTG AACAAAGCTGG GTACCCCAAG GACATCTTAC | 4440 |
| 30 | CAGTCCAGC CAGAGATCTG ATCTACGATC CCCGGTGCAG CCCGGTGCAG CCCGTGGAA    | 4500 |
|    | TGTGTGTCAG TTAGGGTGTG GAAAGTCCCC AGGCTCCCCA GCAGGCAGAA GTATGCAGAAG | 4560 |
| 35 | CATGCATCTC AATTAGTCAG CAACCAAGTG TGAAAGTCC CCAGGCTCCC CAGCAGGCAG   | 4620 |
|    | AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCATA GTCCCGCCCC TAACTCCGCC  | 4680 |
|    | CATCCCGCCC CTAACATCCGC CCAGTCCGC CCATTCTCCG CCCCCATGGCT GACTAATT   | 4740 |
| 40 | TTTATTATGCAGAGGCCG AGGCCGCCTC GGCCTGTAG CTATTCCAGA AGTAGTGAGG      | 4800 |
|    | AGGCTTTTG GGAGGCCCTAG GCTTTGCAA AAAGCTTCAC GCTGCCCAA GCACTCAGGG    | 4860 |
|    | CGCAAGGGCT GCTAAAGGAA CGGGAACACG TAGAAAGCCA GTCCGCAGAA ACGGTGTGA   | 4920 |
| 45 | CCCCGGATGA ATGTCACTA CTGGGCTATC TGAGCAAGGG AAAACGCAG CGCAAAGAGA    | 4980 |
|    | AAGCAGGTAG CTTGCACTGG GCTTACATGG CGTAGCTAG ACTGGGGCTG TTTATGGACA   | 5040 |
|    | GCAAGCGAAC CGGAATTGCC AGCTGGGCGC CCCTCTGGTA AGGTGGAA GCCCTGCAA     | 5100 |
| 50 | GTAAACTGGA TGGCTTTCTT GCGCCCAAGG ATCTGTGTC GCAGGGGATC AAGATCTGAT   | 5160 |
|    | CAAGAGACAG GATGAGGATC GTTTCGCATG ATTGAACAAG ATGGATTGCA CGCAGGTTCT  | 5220 |
| 55 | CGGGCCGTT GGGTGGAGAG GCTATTCCGC TATGACTGGG CACAAACAGAC AATCGGTGTC  | 5280 |
|    | TCTGATGCCG CCGTGTTCGG GCTGTCAGCG CAGGGGCCCG CGGTTCTTT TGTCAAGACC   | 5340 |
|    | GACCTGTCCG GTGCCCTGAA TGAACGTGAG GACGGGGCAG CGCGGCATAC GTGGCTGGCC  | 5400 |
| 60 | ACGACGGGCG TTCCCTGCAG AGCTGTGCTC GACCTGTCA CTGAAGGGGG AAGGGACTGG   | 5460 |
|    | CTGCTATTGG CGGAAGTGCC GGGCAGGAT CTCCCTGTCA CTCACCTTCG TCCTGCCAG    | 5520 |
| 65 | AAAGTATCCA TCATGGCTGA TGCAATGCCG CGGCTGCATA CGCTTGATCC GGCTACCTGC  | 5580 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | CCATTGACCA ACCAAGCGAA ACATCGCATC GAGCGAGCAC GTACTCGGAT GGAAGCCGGT   | 5640 |
|    | CTTGTGCATC AGGATGATCT GGACGAAAGAG CATCAGGGC TCGCGCCAGC CGAACTGTTC   | 5700 |
| 5  | GCCAGGCTCA AGGCAGCCATC GCCCCGACGCC GAGGATCTCG TCGTGACCCA TGGCGATGCC | 5760 |
|    | TGCTTGGCGA ATATCATGGT GGAAAATGGC CCCTTTCTG GATTGATCGA CTGCTGGCCGG   | 5820 |
| 10 | CTGGGTGCGG CGGACCCCTA TCAGGACATA GCGTTGGCTA CCCGTGATAT TGCTGAAGAG   | 5880 |
|    | CTTGGCCGGC AATGGGCTGA CCGCTTCTC GTGCTTACG GTATGCCGC TCCCGATTG       | 5940 |
|    | CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTCT GAGCGGGACT CTGGGGTTCG    | 6000 |
| 15 | AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGAGA TTTCGATTC ACCGCCGCCT    | 6060 |
|    | TCTATGAAAG GTTGGCTTC GGAATCGTT TCCGGGACGG AATTGTAAT CTGCTGCTTG      | 6120 |
| 20 | CAAACAAAAA AACCAACCGCT ACCAGCGGTG GTTTGTTGC CGGATCAAAGA GCTACCAACT  | 6180 |
|    | CTTTTCCGA AGGTAACTGG CTTCAGCAGA CGCGCAGATAC CAAATACTGT CCTCTAGTG    | 6240 |
|    | TAGCCGTAGT TAGGCCACCA CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG   | 6300 |
| 25 | CTAATCCTGT TACCAGTGGC TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC   | 6360 |
|    | TCAAGACGAT AGTTACCGGA TAAGGCGAG CGGTGGGCT GAACGGGGGG TTCGTGCACA     | 6420 |
| 30 | CAGCCCAGCT TGGAGCGAAC GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCATTTGA  | 6480 |
|    | GAAAGGCCA CGCTTCCCGA AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC    | 6540 |
|    | GGAACAGGGAG AGCGCAGCAG GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT  | 6600 |
| 35 | GTCGGGTTTC GCCACCTCTG ACTTGAGCGT CGATTTTGT GATGCTCGTC AGGGGGGGCG    | 6660 |
|    | AGCCTATGGA AAAACGCCAG CAACGCCAG ATGCGCCGCC TCGAGTACAC CTGCGTCATG    | 6720 |
| 40 | CTGAGACCCCT CAAGCCTCAC TAAAAGGGTC CCTGCCTAGT TCTGTTTACT AATCTGCCTT  | 6780 |
|    | ATTCTGTGTT TGTTCCCATG TAAAGATAG AGTAAATCA GTATTCTCCA CATAAGATA      | 6840 |
|    | TAGACTTCTG AAATTCTAAAG ATTAGAATTA TTTACAAGAA GAAGTGGGA A            | 6891 |

## 45 (2) INFORMATION FOR SEQ ID NO:17:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

|    |                                                                   |     |
|----|-------------------------------------------------------------------|-----|
| 60 | TGAAGAATAA AAAATTACTG GCCTCTTGTG AGAACATGAA CTTTCACCTC GGAGCCCACC | 60  |
|    | CCCTCCCATC TGAAACACAT ACTTGAGAAA AACATTTCT GGAACACCCA CAGAAATGTT  | 120 |
|    | CAACAGGCCA GATGTATTGC CAAACACAGG ATATGACTCT TTGGTTGAGT AAATTTGTGG | 180 |
| 65 | TTGTAAACT TCCCCTATT CCTCCCCATT CCCCTCCCA GTTGTGGTT TTTCCCTTA      | 240 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | AAAGCTTGTG AAAAATTG A GTCGTCGTCG AGACTCCTCT ACCCTGTGCA AAGGTGTATG  | 300  |
|    | AGTTTCGACC CCAGAGCTCT GTGTGCTTTC TTGTGCTGCT TTATTCGAC CCCAGAGCTC   | 360  |
| 5  | TGGTCTGTGT GCTTTCATGT CGCTGCTTAA TTAAATCTTA CCTTCTACAT TTTATGTATG  | 420  |
|    | GTCTCAGTGT CTTCTTGGGT ACGCGGCTGT CCCGGGACTT GAGTGTCTGA GTGAGGGTCT  | 480  |
| 10 | TCCCTCGAGG GTCTTCATT TGTTACATGG GCCGGGAACTT CGAGAACCTT TCATTGGTG   | 540  |
|    | CATTGGCCGG GAATTGAAA ATCTTCATT TGTTGCAATTG GCCGGGAAAC AGCGCGACCA   | 600  |
|    | CCCGAGGCTC CTAGACCCAC TTAGGGTAA GATTCTTGT TCTGTTTGG TCTGATGTCT     | 660  |
| 15 | GTGTTCTGAT GTCTGTGTT TGTTCTAAG TCTGGTGCAGA TCGCAGTTTC AGTTTGCGG    | 720  |
|    | ACGCCCTAGTG AGACCGCGCT CCGAGAGGG A GTGCGGGGTG GATAAGGATA GACGTGTC  | 780  |
|    | GGTGTCCACC GTCCGTTCGC CCTGGGAGAC GTCCCAGGG AAACAGGGGA GGATCAGGG    | 840  |
| 20 | CGCCCTGGTGG ACCCTTGTG AGGCCAAGAG ACCATTGGG GTGCGAGAT CGTGGTTTC     | 900  |
|    | AGTCCCACCT CGTCCCCAGT TGCGAGATCG TGGGTTGAG TCCCACCTCG TGTGTTGTTG   | 960  |
| 25 | CGAGATCGT GGTTGAGTC CCACCTCGCG TCTGGTCAGG GGATCGGGG TTGAGTCCC      | 1020 |
|    | ACCTCGTGT TTGTTGCGAG ATCGTGGTT CGAGTCCCAG CTGGCTCTG GTCACGGAT      | 1080 |
|    | CGTGGTTCG AGTCCCACCT CGTGCAGAGG GTCTCAATTG GCCGGCCTTA GAGAGGCAT    | 1140 |
| 30 | CTGATTCTTC TGTTTCTCT TTGTTGCTTA GTCTCGTGC CGCTCTTGT GTGACTACTG     | 1200 |
|    | TTTTCTAA AATGGGACAA TCTGTCACA CTCCCCCTTC TCTGACTCTG GTTCTGTC       | 1260 |
| 35 | TTGGTAATT TGTTTGTGTTA CGTTTGTGTT TGTGAGTCGT CTATGTTGTC TGTTACTATC  | 1320 |
|    | TTGTTTTGTT TTGTTGTTTA CGGTTTCTGT GTGTCGTTG TGTTGCTCTT TGTTGTCAGA   | 1380 |
|    | CTTGGACTGA TGACTCACGA CTGTTTTAA GTTATGCCCTT CTAAAAAATG CCTAAAAAATC | 1440 |
| 40 | CTGTCAGATC CCTATGCTGA CCACTTCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC   | 1500 |
|    | AAGCTTCGAA TTCTGCAGTC GACGGTACCG CGGGGATCAA TTCCGCCCCC CCCCTAACGT  | 1560 |
| 45 | TACTGGCGA AGCCGCTTGG ATAAGGGCG GTGTCGTTT GTCTATATGT TATTTCCAC      | 1620 |
|    | CATATTGCGG TCTTTGGCA ATG TGAGGGC CCGGAAACCTT GGCCCTGCT TCTTGACGAG  | 1680 |
|    | CATTCCTAGG GGTCTTCCC CTCTGCCAA AGGAATGCAA GGTCTGTGA ATGTCGTGAA     | 1740 |
| 50 | GGAAAGCAGTT CCTCTGGAAG CTTCTGAAAG ACAAAACAAG TCTGTAAGCA CGCTTGTGAG | 1800 |
|    | GCAGCGGAAC CCCCCACCTG GCGACAGGTG CCTCTCGGCC CAAAGCCAC GTGTATAAGA   | 1860 |
| 55 | TACACCTGCA AAGGGCGCAC AACCCACAGTG CCACGGTGTG AGTTGGATAG TTGTTGAAAG | 1920 |
|    | AGTCAAATGG CTCTCTCAA CGGTATTCAA CAAGGGCTG AAGGATGCC AGAAGGTAC      | 1980 |
| 60 | CCATTGTATG GGATCTGATC TGGGGCCTCG GTGCACATGC TTTACATGTG TTAGTGTGAG  | 2040 |
|    | GTAAAAAAA CGTCTAGGCC CCCCCAACCA CGGGGACGTG TTGTTCCCTT GAAAAACACG   | 2100 |
|    | ATACGGGATC CACCGGTCGC CACCATGGGT AAAGGAGAAG AACTTTCAC AGGAGTTGTC   | 2160 |
| 65 | CCAATTCTTG TTGAATTAGA TGGTGTATGTT AATGGCACA AATTTCTGT CAGTGGAGAG   | 2220 |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | GGTGAAGGTG ATGCAACATA CGGAAAACCT ACCCTTAAT TTATTCGAC TACTGGAAA       | 2280 |
|    | CTACCTGTTC CATGCCAAC ACTTGTCACT ACTTTCACTT ATGGTGTCA ATGCTTTCA       | 2340 |
| 5  | AGATACCCAG ATCATATGAA ACGGCATGAC TTTTCAGA GTGCCATGCC CGAAGGTTAT      | 2400 |
|    | GTACAGGAA GAACTATATT TTTCAGGAACT ACAAGACACG TGCTGAAGTC               | 2460 |
| 10 | AAGTTGAG GTGATACCCCT TGTTAATAGA ATCGAGTTAA AAGGTATTGA TTTTAAAGAA     | 2520 |
|    | GATGGAAACA TTCTGGACA CAAATTGGAA TACAACATA ACTCACACAA TGTATACATC      | 2580 |
|    | ATGGCAGACA AACAAAAGAA TGGAACCCAA GTTAACCTCA AAATTAGACA CAACATTGAA    | 2640 |
| 15 | GATGGAAGCG TTCAACTAGC AGACCATTAT CAACAAAATA CTCCAATTGG CGATGGCCCT    | 2700 |
|    | GTCCTTTAC CAGACACCA TTACCTGTCC ACACAATCTG CCCTTCGAA AGATCCCAC        | 2760 |
| 20 | GAAAAGAGAG ACCACATGGT CCTTCTTGAG TTTGTAACAG CTGCTGGGAT TACACATGGC    | 2820 |
|    | ATGGATGAAC TATACAAAGTC CGGATCTAGA TAACTGTATC GATGGATCCG AAGGCGGGGA   | 2880 |
|    | CAGCAGTCCA GTGGTGGACA GAAAGCAAGT GATCTAGGCC AGCAGCCTCC CTAAAGGGAC    | 2940 |
| 25 | TTCAGCCCCAAC AAAGCCAAAC TTGTTGGCTTT AATACAAGCT CTGTAATGG TAAAAAAA    | 3000 |
|    | AAAGTCTACA CGGACAGCAG GTATGCTCTT GCCACTGTAC AGAGCAATAT ACAGACAAAG    | 3060 |
| 30 | AGAAACTGTTG ACATCTCGAC AGAAAAGACCT AAGATGCTGT GGCTAAAAGA AATCAGATGG  | 3120 |
|    | CAAATCTAAC CGCCCAGGCA TCCTAAAGAG CAATGATCCT GACAGTCTGA AGACTATCAA    | 3180 |
|    | GTATAGACA AATTAAGACT GGTAAAAAAA ACCCTGTATA AAATAGTAAA AACTGAAAAA     | 3240 |
| 35 | AGAAAACCTAG TCCTCTCATG AGAAGACAGA CCTGACATCT ACTGAAAAT AGACTTACT     | 3300 |
|    | GGAAAAAAATA TGTGTATGAA TACCTCTAG TTTTTGTGAA CGTGTCTCAAG ATGGATAAAA   | 3360 |
| 40 | GCTTTCTCTT GTAAAACAGAG ACTGATCAGA TAGTCATCAA GAAGATTGTT AAAGAAAATT   | 3420 |
|    | TTCCAAGGTT CGGAGTGCCTA AAAGCAATAG TGTCAGATAA TGTCAGATGAA TGGTCCCTGCC | 3480 |
|    | AGGTAAGTCG GGGTGTGGCC AAGTATTCTAG AGGTCAATG AAAATTCCAT TGTGTGTACA    | 3540 |
| 45 | GACCTCGAG CTCAGGAAAG ATAAAAAAGA ATAAATAAA CTCTAACAG ACCTTGACAA       | 3600 |
|    | AATTAATCCT AGAGACTGGC ACAGACTTAC TTGGTACTCC TTCCCCTTGC CCTATTAGA     | 3660 |
|    | ACTGAGAATA CTCCCTCTTG ATTCGGTTTT ACTCTTTTA AGATCCTTTA TGGGGCTCCT     | 3720 |
| 50 | ATGCCATCAC TGTCTAAAT GATGTGTTTA AACCTATGTT GTTATAATAA TGATCTATAT     | 3780 |
|    | GTAAAGTTAA AAGGCTTGCA GGTGGTGCAG AAAGAAGTCT GGTACAACACT GGCTACAGTG   | 3840 |
| 55 | AACAAAGCTGG GTACCCCAAG GACATCTTAC CAGTCCAGC CAGAGATCTG ATCTACGATC    | 3900 |
|    | CCCGGGTCTGA CCCGGGTCTGA CCCTGTGAA TGTGTGTCAAG TTAGGGTGTG GAAAGTCCCC  | 3960 |
|    | AGGCTCCCCA GCAGGAGAA GTATGCAAG CATGCATCTC AATTAGTCAG CAACAGGGTG      | 4020 |
| 60 | TGGAAAGTC CCAGGCTCCC CAGCAGGAG AAGTATGCAA AGCATGCATC TCAATTAGTC      | 4080 |
|    | AGCAACCATA GTCCCGCCCC TAACTCCGCC CATCCGCC CTAACCTCCG CCAAGTCCCG      | 4140 |
| 65 | CCATTCTCCG CCCCATGGCT GACTAATTTT TTTTATTTAT GCAGAGGCCG AGGCCGCCCTC   | 4200 |
|    | GGCCTCTGAG CTATTCCAGA AGTAGTGTAGG AGGCTTTTT GGAGGCCCTAG GCTTTTGCAA   | 4260 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | AAAGCTTCAC GCTGCCGCAA GCACTCAGGG CGCAAGGGCT GCTAAAGGAA GCGGAACACG   | 4320 |
| 5  | TAGAAAGCCA GTCCGCAGAA ACGGGTCTGA CCCCGATGA ATGTCAGCTA CTGGGCTATC    | 4380 |
|    | TGGACAAGGG AAAACGCAAG CGCAAAGAGA AAGCAGGTAG CTTGCAGTGG GCTTACATGG   | 4440 |
|    | CGATAGCTAG ACTGGGGCTT TTTATGGACA GCAAGGCAGA CGGAATTGCC AGCTGGGGCG   | 4500 |
| 10 | CCCTCTGGTA AGGTTGGAA GCCCTGCAA GTAAACTGGA TGGCTTCTT GCGGCCAAGG      | 4560 |
|    | ATCTGATGGC GCAGGGGATC AAGATCTGAT CAAGAGACAG GATGAGGATC GTTTCGCATG   | 4620 |
| 15 | ATTGAACAAG ATGGATTGCA CGCAGGTTCT CGGGCCGCTT GGGTGGAGAG GCTATTCCGC   | 4680 |
|    | TATGACTGGG CACAACAGAC AACCGCTGC TCTGATGCC CGGTGTTCCG GCTGTCAGCG     | 4740 |
|    | CAGGGGGCGCC CGGTTCTTT TGTCAGAGACC GACCTGTCGG GTGCCCTGAA TGAACTGCAG  | 4800 |
| 20 | GACGGAGGAG CGCGGCTATC GTGGCTGGCC ACGACGGGGC TTCCCTGCGC AGCTGTGCTC   | 4860 |
|    | GACGGTTGCA CTGAAGCGGG AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT   | 4920 |
|    | CTCCTGTCAT CTCACCTTGC TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCCG   | 4980 |
| 25 | CGGCTGCATA CGCTTGTATCC GGCTACCTGC CCATTCGACC ACCAAGCGAA ACATCCGATC  | 5040 |
|    | GAGCGAGCAC CTACTCGGAT GGAAGCCGGT CTGTCGATC AGGATGATCT GGACGAAAGAG   | 5100 |
| 30 | CATCAGGGGC TCGGCCAGC CGAACCTGTC GCCAGGCTCA AGGGCGCAT GCCCCACGGC     | 5160 |
|    | GAGGATCTCG TCGTGAACCA TGCGCATGCC TCCTGCCGA ATATCATGGT GGAAAATGGC    | 5220 |
| 35 | CGCTTTCTG GATTCTATGCA CTGTTGCCGG CTGGGTGTT CGGACCGCTA TCAGGACATA    | 5280 |
|    | GCCTGGCTA CCCGTGATAT TGCTGAAGAG CTTGGCCGG AATGGGCTGA CCGCTTCCTC     | 5340 |
|    | GTGCTTACG GTATGCCGC TCCCGATTGCA CAGCGCATCG CCTTCTATCG CCTTCTTGAC    | 5400 |
| 40 | GAGTTCTTCT GAGCGGGACT CTGGGGTTCG AAATGACCGA CCAAGCGACG CCAAACCTGC   | 5460 |
|    | CATCAGGAGA TTTCGATTC ACCCGCCGCT TCTATGAAAG GTTGGGCTTC GGATTCGTT     | 5520 |
|    | TCCGGGACGG AATTGTAAT CTGCTGCTG CAAACAAAAA ACCACCGCT ACCAGCGGTG      | 5580 |
| 45 | GTTGTTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG CTTCAGCAGA    | 5640 |
|    | GCGCAGATAC CAAATACTGT CCTCTAGTG TAGCCGTAGT TAGGCCACCA CTTCAGAAC     | 5700 |
|    | TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCTGT TACCACTGGC TGCTGCCAGT    | 5760 |
| 50 | GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCCAG    | 5820 |
|    | CGGTGGGGCT GAACGGGGGG TTCGTCACA CAGCCAGCT TGGAGGCCAA GACCTACACC     | 5880 |
| 55 | GAACTGAGAT ACCTACAGCG TGACCATGAA GAAAGGCCA CGCTTCCGA AGGGAGAAAG     | 5940 |
|    | GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCCGACGAG GGAGCTTCCA   | 6000 |
|    | GGGGGAAACG CCTGGTATCT TTATACTGCTT GTCCGGGTTTC GCCACCTCTG ACTTGAGCGT | 6060 |
| 60 | CGATTTTGT GATGTCGTC AGGGGGCCGG AGCCTATGGA AAAACGCCAG CAACGCCAG      | 6120 |
|    | ATGCCGCCGC TCGAGTACAC CTGCGTCATG CTGAGACCTC CAAGCCTCAC TAAAAGGTC    | 6180 |
| 65 | CCTGCCTAGT TCTGTTACT AATCTGCCTT ATTCTGTTT TGTCCCATG TAAAAGATAG      | 6240 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| AGTAAATGCA GTATTCTCCA CATAGAGATA TAGACTTCTG AAATTCTAAG ATTAGAATTA | 6300 |
| TTTACAAGAA GAAGTGGGGA A                                           | 6321 |

## 5 (2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 5754 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

15

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| 20 TGAAGAATAA AAAATTACTG GCCTCTTGTG AGAACATGAA CTTTCACCTC GGAGGCCACC  | 60   |
| CCCTCCCATC TGGAAAACAT ACTTGAGAAA AACATTTCT GGAACAAACCA CAGAATGTTT     | 120  |
| 25 CAACAGGCCA GATGTATTGC CAAACACAGG ATATGACTCT TTGGTTGAGT AAATTGTGG   | 180  |
| TTGTTAACT TCCCCTTATT CCTCCCCATT CCCCTCCCA GTTTGTGGTT TTTTCTTAA        | 240  |
| AAAGCTTGTG AAAATTGGA GTGCTCGTCG AGACTCTCT ACCCTGTGCA AAGGTGTATG       | 300  |
| 30 AGTTTCGACC CCAGAGCTCT GTGTGCTTTC TGGTGTGCTG TTATTCGAC CCCAGAGCTC   | 360  |
| TGGTGTGCTG GCTTCATGT CGCTGCTTAA TAAATCTTA CCTCTACAT TTTATGTATG        | 420  |
| 35 GTCTCAGTGT CTCTTGGGTG ACGGCGGTGT CCCGGGACTT GAGTGTCTGA GTGAGGGTCT  | 480  |
| TCCCTCGAGG GTCTTCATT TGGTACATGG GCCGGGAATT CGAGAACATT TCATTTGGTG      | 540  |
| CATTGGCCGG GAATTCGAAA ATCTTCATT TGGTGCATTG GCCGGGAAAC AGCGCAGACCA     | 600  |
| 40 CCCAGAGGTC CTAGACCCAC TTAGAGGTA GATTCTTGT TCTGTTTGG TCTGATGTCT     | 660  |
| GTGTTCTGAT GTCTGTGTT TGTTCTAAG TCTGGTGGCA TCGCAGTTTC AGTTTGCGG        | 720  |
| 45 ACGCTCAGTG AGACCGCGCT CGCAGAGGGA GTGCGGGGTG GATAAGGATA GACGTGTCCA  | 780  |
| GGGTGTCACC CGTCCGTTCGC CCTGGGGAGAC GTCCCAGGGAG GAACAGGGGA GGATCAGGG   | 840  |
| CGCCTGGTGG ACCCCTTGA AGGCCAAGAG ACCATTTGGG GTTGCAGAGAT CGTGGGTTCG     | 900  |
| 50 AGTCCCACCT CGTGCCTTCACTG TGCGAGATCG TGGGTTCGAG TCCCACCTCG TGTTTGTG | 960  |
| CGAGATCGTG GGTTGAGTC CCACCTCGCG TCTGGTCACG GGATCGTGGG TTCGAGTCCC      | 1020 |
| 55 ACCTCGTGTG TTGTTGCGAG ATCGTGGGTT CGAGTCCCCAC CTCGCGTCTG GTCACGGGAT | 1080 |
| CGTGGGTTCG AGTCCCACCT CGTGCAGAGG GTCTCAATTG GCCGGCCTTA GAGAGGCCAT     | 1140 |
| CTGATTCTTC TGGTTCTCT TTTTGTCTTA GTCTCGTGTG CGCTCTTGTGTT GTGACTACTG    | 1200 |
| 60 TTTTTCTAAA ATGGGACAA TCTGTGTCCA CTCCCCCTTC TCTGACTCTG GTTCTGTCGC   | 1260 |
| TTGGTAAATTG TTGTTGTTA CGTTTGTGTT GTGTGAGTCG CTATGTTGTC TGTTACTATC     | 1320 |
| 65 TTGTTTTGT TTGTTGTTA CGGTTCTGT GTGTGCTTGTG TGTTGTCCTT TGTTGTCAGA    | 1380 |
| CTTGGACTGA TGACTGACGA CTGTTTTAA GTTATGCCTT CTAAAAAAG CCTAAAAATC       | 1440 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | CTGTCAGATC CCTATGCTGA CCACCTCCCTT TCAGATCAAC AGCTGCCCTT ACTCGAGCTC  | 1500 |
| 5  | AAGCTCGAA TTCTGCAGTC GACGGTACCG CGGGCCCGG ATCCACCGGT CGCCACCATG     | 1560 |
|    | GGTAAGGG AAGAACTTTT CACAGGAGTT GTCCAATTC TTGTTGAATT AGATGGTAT       | 1620 |
|    | GTAAATGGGC ACAAAATTTTC TGTCAGTGGG GAGGGTGAG GTGATGCAAC ATACGGAAAA   | 1680 |
| 10 | CCTACCCCTTA AATTTATTG CACTACTGGA AAACATACCTG TTCCATGGCC AACACTTGT   | 1740 |
|    | ACTACTTTCA CTTATGGTGT TCAATGCTT TCAAGATACC CAGATCATAT GAAACGGCAT    | 1800 |
| 15 | GACTTTTCAGAAGGT TATGTCAGG AAAGAACTAT ATTTTCAAA                      | 1860 |
|    | GATGACGGGA ACTACAAGAC ACCTGCTGAA GTCAAGTTG AAGGTGATAC CCTTGTAAAT    | 1920 |
|    | AGAATCGAGT TAAAAGGTAT TGATTTAAA GAAGATGGAA ACATCTTGG ACACAAATTG     | 1980 |
| 20 | GAATACAACT ATAACCTACA CAATGTATAC ATCATGGAG ACAACACAAA GATGGAAC      | 2040 |
|    | AAAGTTAACT TCAAATTAG ACACAACATT GAAGATGGAA GCCTTCAACT AGCAGACCAT    | 2100 |
| 25 | TATCAACAAA ATACTCCAT TGGCGATGGC CCTGTCCTT TACCAGACAA CCATTACCTG     | 2160 |
|    | TCCACACAAAT CTGCCCTTC GAAAGATCCC AAGCAAAGA GAGACCACAT GGCTCTT       | 2220 |
|    | GAGTTGTAA CAGCTGCTGG GATTACACAT GGATGGATG AACTATACAA GTCCGGATCT     | 2280 |
| 30 | AGATAACTGT ATCGATGGAT CGAAGGGCGG GGACAGCAGT GCAGTGGTGG ACAGAAAGCA   | 2340 |
|    | AGTGTATCTAG GCCAGCAGCC TCCCTAAAGG GACTTCAGCC CACAAAGCCA AACTTGTGGC  | 2400 |
| 35 | TTTAAATACAA GCTCTGTAAA TGGTAAAAA AAAAAGACTT ACACGGACAG CAGGTATGCT   | 2460 |
|    | CTTGGCCACTG TACAGAGCAA TATACAGACA AAGAGAACTG TTGACATCTG CAGAGAAAAGA | 2520 |
|    | CCTAAGATGC TGTGGCTAAA AGAAATCAGA TGGCAAATCT AACGGCCCG AGTCTAAA      | 2580 |
| 40 | GAGGAATGAT CCTGCAGCTC TGAAGACTAT CAAAGTTATAG ACAAAATTAG ACTGGTAAAAA | 2640 |
|    | AAACCCCTGT ATAAAATAGT AAAAAGCTGA AAAAGAAAC TAGTCTCTC ATGAGAAAGAC    | 2700 |
|    | AGACCTGACA TCTACTGAAA AATAGACTTT ACTGGAAAAA ATATGTGTAT GAATACCTTC   | 2760 |
| 45 | TAGTTTTGT GAACGTTCTC AAGATGGATA AAAGCTTTT CTTGTAAAAC GAGACTGATC     | 2820 |
|    | AGATAGTCAT CAAGAAGATT GTTAAAGAAA ATTTCCTCAAG GTTGGAGTG CCAAAAGCAA   | 2880 |
| 50 | TAGTGTCA TAATGGTCT GCCTTGTG CCCAGTAAG TCAGGGTGTG GCAAAGTATT         | 2940 |
|    | TAGAGGTCAA ATGAAAATTC CATTGTTGTG ACAGACCTCA GAGCTCAGGA AAGATAAAAAA  | 3000 |
|    | AGAATAATAA AAACTCTAAA CAGACCTGA CAAAATTAAT CCTAGAGACT GGCACAGACT    | 3060 |
| 55 | TACTGGTAC TCTTCCCTT TGCCCTATTT AGAACTGRGA ATACTCCCTC TTGATTCGGT     | 3120 |
|    | TTTACTCTTT TTAAGATCCT TTATGGGCT CCTATGCCAT CACTGTCTTA AATGATGTGT    | 3180 |
| 60 | TTAACCTAT GTTGTGTATAA TAATGATCTA TATGTTAAGT TAAAGGCTT GCAGGTGGTG    | 3240 |
|    | CAGAAAGAAG TCTGGTCACA ACTGGTACA TGAAACAAGC TGGGTACCCCC AAGGACATCT   | 3300 |
|    | TACCAAGTCC AGCCAGAGAT CTGATCTACG ATCCCCGGGT CGACCCGGGT CGACCCCTGT   | 3360 |
| 65 | GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGCAGGCA GAAGTATGCA   | 3420 |

|    |             |             |             |             |             |              |      |
|----|-------------|-------------|-------------|-------------|-------------|--------------|------|
|    | AAGCATGCAT  | CTCAATTAGT  | CAGCAACCG   | GTGTGAAAG   | TCCCCAGGCT  | CCCCAGCAGG   | 3480 |
|    | CAGAAGTATG  | CAAAGCATGC  | ATCTCAATTA  | GTCAGCAACC  | ATAGTCCCGC  | CCCTAACTCC   | 3540 |
| 5  | GCCCCATCCG  | CCCCTAACTC  | CGCCCCAGTTC | CGCCCCATTCT | CCGCCCCATG  | GCTGACTATAAT | 3600 |
|    | TTTTTTTATT  | TATGCAGAGG  | CCGAGGGCCG  | CTCGGCTCT   | GAGCTATTCC  | AGAAGTAGTG   | 3660 |
| 10 | AGGAGGCTTT  | TTTGGAGGCC  | TAGGCTTTG   | CAAAAAGCTT  | CACGCTGCCG  | CAAGCACTCA   | 3720 |
|    | GGGCGCAAGG  | GCTGCTAAAG  | GAAGCGGAAC  | ACGTAGAAAG  | CCAGTCCGCA  | GAACCGTGC    | 3780 |
|    | TGACCCCGGA  | TGAATGTCAG  | CTACTGGGCT  | ATCTGGACAA  | GGGAAAACGC  | AAGCGCAAAG   | 3840 |
| 15 | AGAACACAGG  | TAGCTTGCAG  | TGGGCTTACA  | TGGCGATAGC  | TAGACTGGGC  | GGTTTATGG    | 3900 |
|    | ACAGCAAGCG  | AACCGGAATT  | GCCAGCTGGG  | GCGCCCTCTG  | GTAAGGTTGG  | GAAGCCCTGC   | 3960 |
|    | AAAGTAAACT  | GGATGGCTT   | CTTGCCGCCA  | AGGATCTGAT  | GGCGCAGGGG  | ATCAAGATCT   | 4020 |
| 20 | GATCAAGAGA  | CAGGATGAGG  | ATCGTTTCG   | ATGATTGAAC  | AAAGATGGATT | GCACGCAGGT   | 4080 |
|    | TCTCCGGCCG  | CTTGGGGTGA  | GAGGCTATTCT | GGCTATGACT  | GGGCACACAA  | GACAATCGGC   | 4140 |
| 25 | TGCTCTGATG  | CCGGCGTGT   | CCGGCTGTCA  | GCGCAGGGGC  | GCCGGTTCT   | TTTGTCAAG    | 4200 |
|    | ACCGACACTGT | CCGGTGGCCCT | GAATGAACTG  | CAGGACGAGG  | CAGCGCGGCT  | ATCGTGGCTG   | 4260 |
|    | GCCACGACGG  | CGCTTCTTG   | CGCAGCTGTG  | CTCGACGTTG  | TCACTGAAGC  | GGAAAGGGAC   | 4320 |
| 30 | TGGCTGCTAT  | TGGGCGAACT  | GCCGGGGCAG  | GATCTCTGT   | CATCTCACCT  | TGCTCCTGCC   | 4380 |
|    | GAGAAAGTAT  | CCATCATGGC  | TGATGCAATG  | CGGCGCTGC   | ATACGCTTGA  | TCCGGTACCC   | 4440 |
| 35 | TGCCCATTGCG | ACCACCAAGC  | GAAACATCGC  | ATCGACGGAG  | CACGTACTCG  | GATGGAAGCC   | 4500 |
|    | GGTCTTGTG   | ATCAGGATGA  | TCTGGACGAA  | GAGCATCAGG  | GGCTCGCGCC  | AGCCGAACTG   | 4560 |
| 40 | TTGCCAGGC   | TCAAGGGCGC  | CATGCCGCAC  | GGCGAGGATC  | TCGTCGTGAC  | CCATGGCGAT   | 4620 |
|    | GCCTGTTGC   | CGAATATCAT  | GGTGGAAAT   | GGCCGTTTT   | CTGGATTATC  | CGACTGTGGC   | 4680 |
|    | CGGCTGGGTG  | TGGCGGACCG  | CTATCAGGAC  | ATAGCCTTGG  | CTACCGTGA   | TATTGCTGAA   | 4740 |
| 45 | GAGCTTGGCG  | CGCAATGGGC  | TGACCGCTTC  | CTCGTGTCTT  | ACGGTATCGC  | CGCTCCCGAT   | 4800 |
|    | TCGCAGCGCA  | TCGCCTCTA   | TCGCCTCTT   | GACGAGTTCT  | TCTGAGCGGG  | ACTCTGGGGT   | 4860 |
|    | TCGAAATGAC  | CGACCAAGCG  | ACGCCAAC    | TGCCATCACG  | AGATTCGAT   | TCCACCGCCG   | 4920 |
| 50 | CCTCTCATGA  | AAGGTTGGGC  | TTCGGAATCG  | TTTCCGGGA   | CGGAATTCTG  | AATCTGCTGC   | 4980 |
|    | TTGCAACAA   | AAAAACCAACC | GCTACCAGCG  | GTGGTTGTGTT | TGCCGGATCA  | AGAGCTACCA   | 5040 |
| 55 | ACTCTTTTC   | CGAAGGTAAC  | TGGCTTCAGC  | AGAGGCCAGA  | TACCAAATAC  | TGCTCCTCTA   | 5100 |
|    | GTGTAGCCGT  | AGTTAGGCCA  | CCACTTCAAG  | AACTCTGTAG  | CACCGCCTAC  | ATACCTCGCT   | 5160 |
|    | CTGCTAATCC  | TGTTACCACT  | GGCTGCTGCC  | AGTGGCGATA  | AGTCGTGTCT  | TACCGGGTTG   | 5220 |
| 60 | GAECTCAAGAC | GATAGTATTAC | GGATAAAGGC  | CAGCGGTGCG  | GCTGAACGGG  | GGGTTCTGTC   | 5280 |
|    | ACACAGCCCA  | GCTTGGAGCG  | AACGACCTAC  | ACCGAAGCTGA | GATACTACA   | GGCGTGAGCAT  | 5340 |
| 65 | TGAGAAAGCG  | CCACGCTTCC  | CGAAGGGAGA  | AAGGCGGACA  | GGTATCCGGT  | AAGCGGCGAG   | 5400 |
|    | GTCGGAACAG  | GAGAGCGCAC  | GAGGGAGCTT  | CCAGGGGGAA  | ACGCCTGGTA  | TCTTTATAGT   | 5460 |

CCTGTCGGGT TCGCCACCT CTGACTTGAG CGTCGATTT TGTGATGCTC GTCAGGGGG 5520  
 5 CGGAGCCTAT GGAAAAACGC CAGCAACGCC GAGATGCGCC GCCTCGAGTA CACCTGCGTC 5580  
 ATGCTGAGAC CCTCAAGCCT CACTAAAAGG GTCCCTGCCT AGTCTGTGTT ACTAATCTGC 5640  
 CTTATTCTGT TTTGTTCCC ATGTTAAAGA TAGAGTAAAT GCAGTATTCT CCACATAGAG 5700  
 10 ATATAGACTT CTGAAATTCT AAGATTAGAA TTATTTACAA GAAGAAGTGG GGAA 5754

## (2) INFORMATION FOR SEQ ID NO:19:

- 15 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 5754 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear  
 20 (ii) MOLECULE TYPE: DNA (genomic)

## 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

TGAAGAATAA AAAATTACTG GCCTCTTG TG AGAACATGAA CTTTCACCTC GGAGCCCCACC 60  
 30 CCCTCCCATC TGGAAAACAT ACTTGAGAAA AACATTTCTC GGAACAACCA CAGAAATGTTT 120  
 CAACAGGCCA GATGTATTGC CAAACACAGG ATATGACTCT TTGGTTGAGT AAATTTGTGG 180  
 TTGTTAAACT TCCCCATTAC CCTCCCCATT CCCCTCCCA GTTTGTTGTT TTTCCCTTTA 240  
 35 AAAGCTTGTG AAAAATTGTA GTCTGCTCG AGACTCCTCT ACCCTGTGCA AAGGTGTATG 300  
 AGTTTCGACC CCAGAGCTCT GTGTGCTTTC TGTTGCTGCT TTATTCGAC CCCAGAGCTC 360  
 40 TGGCTGTG GTCTTCATGT CGTGTGTTTA TAAATCTTA CCTTCTACAT TTTATGTATG 420  
 GTCTCAGTGT CTTCCTGGT ACCTGGCTGT CCCGGGACTT GAGTGTCTGA GTGAGGGTCT 480  
 TCCCTCGAGG GTCTTCATT TGTTACATGG CCCGGGAATT CGAGAACATTT TCATTTGGTG 540  
 45 CATTGGCCGG GAATTCGAAA ATCTTCATT TGTTGCTATT CCCGGGAAAC AGCGCGACCA 600  
 CCCAGAGGTC CTAGACCCAC TTAGAGGTTA GATTCTTGT TCTGTTTGG TCTGATGTCT 660  
 50 GTGTTCTGAT GTCTGCTGTC TGTTCTAAG TCTGGTGCAG TCGCAGTTTC AGTTTGCGG 720  
 ACGCTCAGTG AGACCCGCCT CCGAGAGGGG TGCGGGGGTG GATAAGGATA GACGTGTCCA 780  
 GGTGTCACCC GTCCGTTCGC CCTGGGAGAC GTCCCGAGG GAACAGGGGA GGATCAGGGGA 840  
 55 CGCCTGGTGG ACCCTTGTG AGGCCAAGAG ACCATTGGG GTTGGAGAT CGTGGGTTCG 900  
 AGTCCCACCT CGTGGCCAGT TGCGAGATCG TGGGTTGAG TCCCACCTCG TGTTTTGTTG 960  
 60 CGAGATCGTG GTTGTGAGTC CCACCTCGCG TCTGGTCACG GGATCGTGGG TTGAGTCCC 1020  
 ACCTCGTGTG TTGTTGCGAG ATCGTGGGTT CGAGTCCAC CTCGCGTCTG GTCACGGGAT 1080  
 CGTGGGTTCG AGTCCCACCT CGTGCAGAGG GTCTCAATTG GCCGGCCTTA GAGAGGCCAT 1140  
 65 CTGATTCTTC TGGTTCTCT TTTGTTCTTA GTCTCGTGC CGCTCTTGTG TTGACTACTG 1200

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | TTTTTCTAAA AATGGGACAA TCTGTGTCGA CTCCCCCTTC TCTGACTCTG GTTCTGTCGC   | 1260 |
|    | TTGGTAAATT TGTTTGTAA CGTTTGTAA TGAGTGACTGT CTATGTTGTC TGTTACTATC    | 1320 |
| 5  | TTGTTTTGT TTGTGGTTA CGGGTTCTGT GTGTGTCCTG TGTGTCCTT TGTGTTCAGA      | 1380 |
|    | CTTGGACTGA TGACTGACGA CTGTTTAA GTTATGCCCT CTAAAATAAG CCTAAAATC      | 1440 |
| 10 | CTGTCAGATC CCTATGCTGA CCACATCCCT TCAGATCAAC AGCTGCCCT ACCTGAGCTC    | 1500 |
|    | AAGCTCGAA TTCTGCAGTC GACGGTACCG CGGGCCCCGG ATCCACCGGT CGCCACCATG    | 1560 |
|    | GGTAAAGGAG AAGAACTTTT CACTGGAGT GTCCCAATTG TTGTTGAATT AGATGGTGT     | 1620 |
| 15 | GTTAATGGGC ACAAAATTTG TGTCAGTGGAA GAGGGTGAAG GTGATGCAAC ATACGGAAAA  | 1680 |
|    | CTTACCCCTA AATTATTTG CACTACTGGA AAACATACCTG TTCCATGCC AACACTTGTG    | 1740 |
| 20 | ACTACTTTCT CTTATGGTGT TCAATGCTT TCAAGATACC CAGATCATAT GAAACGGCAT    | 1800 |
|    | GACTTTTCA AGAGTGCAT GCGCGAAGGT TATGTACAGG AAAGAACTAT ATTTTTCAA      | 1860 |
|    | GATGACGGGA ACTACAAGAC ACGTGCCTGA GTCAAGTTG AAGGTGATAC CCTTGTAA      | 1920 |
| 25 | AGAACATCGAGT TAAAGGTTAT TGATTTAA GAAGATGGAA ACATTCTGG ACACAAATTG    | 1980 |
|    | GAATACAACAT ATAACCTACA CAATGTATAC ATCATGCCAG ACAAAACAAA GAATGGAA    | 2040 |
| 30 | AAAGTTAACT TCAAATTTAG ACACAAACATT GAAGATGGAA GCGTTCAACT AGCAGACCAT  | 2100 |
|    | TATCAACAAA ATACTCCAAT TGGCGATGGC CCTGTCCTT TACCAAGACAA CCATTACCTG   | 2160 |
|    | TCCACACAAAT CTGCCCTTC GAAAGATCCC AACGAAAAGA GAGACCATAT GGTCTCTT     | 2220 |
| 35 | GAGTTGTAA CAGCTGCTGG GATTACACAT GGCGATGGAT AACTATACAA GTCCGGATCT    | 2280 |
|    | AGATAACTGT ATCGATGGAT CGGAAGGGG GGACAGCAGT GCAGTGGTGG ACAGAAAGCA    | 2340 |
|    | AGTGTATCTAG GCCAGCAGCC TCCCTAAAGG GACTTCAGCC CACAAAGGCCA AACTTGTGGC | 2400 |
| 40 | TTTAAATACAA GCTCTGTAAA TGGTAAAAAA AAAAAGTCT ACACGGACAG CAGGTATGCT   | 2460 |
|    | CTTGCCTACTG TACAGACAA TATACAGACA AAGAGAACCTG TTGACATCTG CAGAGAAAGA  | 2520 |
| 45 | CCTAAAGATGC TGTGGTAAA AGAACATCAGA TGGCAAACTC AACCGCCAG GCATCCTAAA   | 2580 |
|    | GAGCAATGAT CCTGACAGTC TGAAGACTAT CAAGTTTATAG ACAAAATTAG ACTGGTAAA   | 2640 |
|    | AAAACCCCTGT ATAAAAATAG AAAAATCTGAA AAAAGAAAAG TAGTCTCTC ATGAGAAAGAC | 2700 |
| 50 | AGACCTGACA TCTACTGAAA AATAGACTTT ACTGGAAAAAA ATATGTGTAT GAATACCTTC  | 2760 |
|    | TAGTTTTGT GAACGTTCTC AAGATGGATA AAAGCTTTG CTTGTAAAC GAGACTGATC      | 2820 |
|    | AGATAGTCAT CAAGAAGATT GTTAAAGAAA ATTTTCAAG GTTCGGAGTG CCAAAAGCAA    | 2880 |
| 55 | TAGTGTCTAGA TAATGGCCCT GCCTTTGTG CCCAGGTAAAG TCAGGGTGTG GCCAAGTATT  | 2940 |
|    | TAGAGGTCAA ATGAAAATTC CATTGTGTGT ACAGACCTCA GAGCTCAGGA AAGATAAAA    | 3000 |
| 60 | AGAATAAAATA AAACTCTAAA CAGACCTTGA CAAAATTAT CCTAGAGACT GGACACAGCT   | 3060 |
|    | TACTTGGTAC TCCTTCCCCT TGCCCTATTG AGAACTGAGA ATACTCCCTC TTGATTGCGGT  | 3120 |
| 65 | TTTACTCTTT TTAAGATCCT TTATGGGGCT CCTATGCCAT CACTGTCTTA AATGATGTGT   | 3180 |
|    | TTAAACCTAT GTTGTATAA TAATGATCTA TATGTTAAGT AAAAGGCTT GCAGGTGGTG     | 3240 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | CAGRAAGAAG TCTGGTCACA ACTGGCTACA TGAAACAAGC TGGGTACCCC AAGGACATCT  | 3300 |
| 5  | TACCAAGTTC AGCCAGAGAT CTGATCTACG ATCCCCGGGT CGACCCGGGT CGACCTGTG   | 3360 |
|    | GAATGTGTGT CAGTTAGGGT GTGAAAGTC CCCAGCTCC CCAGCAGGCA GAAGTATGCA    | 3420 |
|    | AAGCATGCAT CTCAATTAGT CAGCAACCAG GTGTGAAAG TCCCCAGGCT CCCCAGCAGG   | 3480 |
| 10 | CAGAAAGTATG CAAACATGC ATCTCAATTG TGCAGCAACC ATAGTCCCGC CCCTAATCC   | 3540 |
|    | GCCCCATCCG CCCCTAACTC CGCCCAGTTC CGCCCATCT CGCCGCCATG GCTGACTTAAT  | 3600 |
| 15 | TTTTTTATT TATGCAGAGG CCGAGGCCG CTCGGCCTCT GAGCTATTCC AGAAGTAGTG    | 3660 |
|    | AGGGAGCTT TTTGGAGGCC TAGGCTTTG CAAAAGCTT CACGCTGCCG CAAGCACTCA     | 3720 |
|    | GGGCAGCAAGG GCTGCTAAAG GAAGCGAAC ACGTAGAAAG CCAGTCCGCA GAAACGGTGC  | 3780 |
| 20 | TGACCCCGGA TGAATGTCAG CTACTGGCT ATCTGGACAA GGGAAACCC AAGGCCAAAG    | 3840 |
|    | AGAAAGCAGG TAGCTTGCAG TGGGCTTACA TGGCGATAGC TAGACTGGGC GGTTTTATGG  | 3900 |
| 25 | ACAGCAAGCG AACCGGAATT GCCAGCTGGG CGCCCTCTG GTAAGGTTGG GAAGCCCTGC   | 3960 |
|    | AAAGTAAACT GGATGGCTT CTTGCCGCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT    | 4020 |
|    | GATCAAGAGA CAGGATGAGG ATCCTTCGC ATGATTGAA AGATGGATT GCACGAGGT      | 4080 |
| 30 | TCTCCGGCCG CTTGGGTGGA GAGGCTATTC GGCTATGACT GGGCACAAACA GACAATCGC  | 4140 |
|    | TGCTCTGATG CGCCCGTGT CCGCGCTGCA CGCGAGGGC GCGCGTTCT TTTTGTCAAG     | 4200 |
| 35 | ACCGACCTGT CGCGTGCCTT GAATGAACTG CAGGACGAGG CAGCGGGCT ATCGTGGCTG   | 4260 |
|    | GCCRCAGCGG CGCTTCTCTG CGCAGCTGTC CTGCAGCTTG TCACGAAAGC GGGAAAGGGAC | 4320 |
|    | TGGCTGTAT TGGGGAAAGT GCGGGGGAG GATCTCTGT CATCTCACCT TGCTCTGCC      | 4380 |
| 40 | GAGAAAGTAT CCATCATGGC TGATGCAATG CGGGCGCTGC ATACGCTTGA TCCGGCTACC  | 4440 |
|    | TGCCCATTCG ACCACCAAGC GAAACATCGC ATCGAGCGAG CACGTACTCG GATGGAAGCC  | 4500 |
|    | GGTCTTGTGCG ATCAGGATGA TCTGGACGAA GAGCATCAGG GGCTCGCGCC AGCCGAACGT | 4560 |
| 45 | TTCCCGAGGC TCAAGGCAGC CATGCCGAC CGCAGGAGTC TCAGCTGTGAC CCATGGCGAT  | 4620 |
|    | GCCTGCTTGC CGAATATCAT GGTGGAAAAT GGCGCGTTT CTGGATTCTAT CGACTGTGGC  | 4680 |
| 50 | CGGCTGGGTG TGGCGGACCG CTATCAGGAC ATAGCGTGG CTACCGCTGA TATTGCTGAA   | 4740 |
|    | GAGCTTGGCG CGGAATGGGC TGACCGCTTC CTCGCTGCTT ACGGTATCGC CGCTCCCGAT  | 4800 |
|    | TCGCAGCGCA TCGCCCTCTA TCGCCCTCTT GACGAGTTCT TCTGAGCGGG ACTCTGGGT   | 4860 |
| 55 | TCGAATGAC CGACCAAGCG ACGCCAACC TGCCATCAG AGATTTGAT TCCACCGCCG      | 4920 |
|    | CCTTCTATGA AAGGTTGGGC TTGGAATCG TTTCCGGGA CGGAATTCTG AATCTGCTGC    | 4980 |
| 60 | TTGCAAACAA AAAAACACC GCTACCGCG GTGGTTTGTG TGCGGATCA AGAGCTACCA     | 5040 |
|    | ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGGCCAGA TACCAAATAC TGTCCTCTA    | 5100 |
|    | GTGTAGCCGT AGTAAAGGCCA CCACCTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT | 5160 |
| 65 | CTGCTAATCC TGTTACCGAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG | 5220 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | GACTCAAGAC GATACTTACG GGATAAGCG CAGCGCTCG GCTGAACGGG GGGTTCTGTC    | 5280 |
|    | ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACCTGA GATACCTACA CGCTGAGCAT | 5340 |
| 5  | TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG  | 5400 |
|    | GTCGGAACAG GAGACGCCA GAGGGACCTT CCAGGGGAA ACGCCCTGTA TCTTTATAGT    | 5460 |
| 10 | CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTT TGTGATGCTC GTCAGGGGG    | 5520 |
|    | CGGAGCCTAT GAAAAAACGC CAGCACGCC GAGATGCCGC GCCTCGAGTA CACCTGCGTC   | 5580 |
|    | ATGCTGAGAC CCTCAGACCT CACTAAAAGG GTCCCCTGCC AGTCTCTT ACTAATCTGC    | 5640 |
| 15 | CTTATTCTGT TTTTGTCCC ATGTTAAAGA TAGAGTAAAT GCAGTATTCT CCACATAGAG   | 5700 |
|    | ATATAGACTT CTGAAATTCT AAGATTAGAA TTATTTACAA GAAGAAGTGG GGAA        | 5754 |

20 (2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 4958 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | AGGCAGGGGAC AGCAGTGCAG TGGTGGACAG AAAGCAAGTG ATCTAGGCCA GCAGCCTCCC | 60   |
| 35 | TAAAGGGACT TCAGGCCACA AAGCCTAAACT TGTGGCTTTA ATACAAGCTC TGAAATGGT  | 120  |
|    | AAAAAAAAAA AAGTCTACAC GGACAGCAGG TATGCTCTTG CCACTGTACA GAGCAATATA  | 180  |
| 40 | CAGACAAAGA GAACTGTTG CATCTGCAGA GAAAGACCTA AGATGCTGTG GCTAAAAGAA   | 240  |
|    | ATCAGATGGC AAATCTAACCC GCCCAGGCAT CCTAAAGAGC AATGATCCCG ACAGTCTGAA | 300  |
| 45 | GACTATCAAG TTATAGACAA ATTAAGACTG GTAAAAAAAAA CCCTGTATAA AATAGTAAAA | 360  |
|    | ACTGAAAAAA GAAACTAGT CCTCTCATGA GAAGACAGAC CTGACATCTA CTGAAAATA    | 420  |
|    | GACTTACTG GAAAAAAATAT GTGTATGAAT ACCTTCTAGT TTTTGTGAAC GTTCTCAAGA  | 480  |
| 50 | TGGATAAAAG CTTTCTTG TAAAACGAGA CTGATCAGAT AGTCATCAAG AAGATTGTTA    | 540  |
|    | AAGAAAATTT TCCAAGGTTG GGAGTGCCAA AAGCAATAGT GTCAGATAAT GGTCTGCC    | 600  |
| 55 | TTGTTGCCA GGTAAGTCAG GGTGTGCCA AGTATTAGA GGTCAARTGA AAATTCCATT     | 660  |
|    | GTGTGTACAG ACCTCAAGAGC TCAGGAAAGA TAAAAAGAA TAAATAAAAC TCTAAACAGA  | 720  |
|    | CCTTGACAAA ATTAATCCTA GAGACTGGCA CAGACTTACT TGTTACTCCT TCCCCCTGCC  | 780  |
| 60 | CTATTAGAA CTGAGAATAC CCCCTCTTGA TTGGTTTTA CTCTTTAA GATCCTTAT       | 840  |
|    | GGGGCTCTTA TGCCATCACT GTCTTAAATG ATGTGTTAA ACCTATGTTG TTATAATAAT   | 900  |
| 65 | GATCTATATG TTAAGTAAA AGGCTTGCAG GTGGTGAGA AAGAAGTCTG GTCACAACTG    | 960  |
|    | GCTACAGTGA ACAAGCTGGG TACCCCAAGG ACATCTTACC AGTCCAGCC AGAGATCTGA   | 1020 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | TCTACGATCC CCGGGTCGAC CCGGGTCGAC CCTGTGGAAT GTGTGTCAGT TAGGGTGTGG  | 1080 |
| 5  | AAAGTCCCCA GGCTCCCCAG CAGGAGAAC TATGCAGAAC ATGCATCTCA ATTAGTCAGC   | 1140 |
|    | AACCAGGTGT GGAAAGTCCC CAGGCTCCCC AGCAGGCCAG AGTATGCCAA GCATGCACIT  | 1200 |
|    | CAATTAGTCA GCAACCATAG TCCCGCCCT AACTCCGCC ATCCCGCCCC TAACTCCGCC    | 1260 |
| 10 | CAGTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTATTTATG CAGAGGCCGA    | 1320 |
|    | GGCCGCCCTG GCCTCTGAGC TATTCAGAA GTAGTGGAGA GGCTTTTTG GAGGCCTAGG    | 1380 |
| 15 | CTTTGCAA AAGCTTCACG CTGCCGAAG CACTCAGGGC GCAGGGCTG CTAAAGGAAG      | 1440 |
|    | CGGAAACACGT AGAAAGCCAG TCCCGAGAAA CGGTGCTGAC CCCGGATGAA TGTCAGCTAC | 1500 |
|    | TGGGCTATCT GGACAAGGG AAACGCAAGC GCAGGAGAA AGCAGGTAGC TTGCACTGGG    | 1560 |
| 20 | CTTACATGGC GATACTGAGA CTGGGGCGTT TTATGGACAG CAAGCGAACCC GGAATTGCCA | 1620 |
|    | GCTGGGGCGC CCTCTGGTA GGTTGGGAAG CCCTGCAAG TAAACTGGAT GGCTTTCTTG    | 1680 |
| 25 | CGGCAAGGA TCTGATGGCG CAGGGGATCA AGATCTGATC AAGAGACAGG ATGAGGATCG   | 1740 |
|    | TTTCGCGATG TTGAACAAGA TGGATTGAC GCAGGCTCTC CGGGCGCTTG GGTGGAGAGG   | 1800 |
|    | CTATTGGCT ATGACTGGGC ACAACAGACA ATCGGCTGCT CTGATGCCGC CGTGTCCGG    | 1860 |
| 30 | CTGTCAAGCAGC AGGGGCGCC GGTTTTTGTGCAAGACCCG ACCTGTCCCG TGCCCTGAAT   | 1920 |
|    | GAACCTGAGG AGCAGGGCAGC CGGGCTATCG TGGCTGGCCA CGACGGGGCT TGCTTGCCCA | 1980 |
| 35 | GCTGTGCTGC AGCTTGTAC TGAAGCGGA AGGGACTGGC TGCTATTGGG CGAAGTGGCG    | 2040 |
|    | GGGCAGGATC TCTGTGATC TCACCTTGCT CCTGGCGAGA AAGTATCCAT CATGGCTGAT   | 2100 |
|    | GCAATGCGC GGCTGCATAC GCTTGATCCG GCTACCTGCC CATTGACCCA CCAAGCGAA    | 2160 |
| 40 | CATCGCATCG AGCGAGCACG TACTCGGATG GAAGCGGGTC TTGTGATGCA GGATGATCTG  | 2220 |
|    | GACGAAGAGC ATCAGGGGCT CGGCCAGCC GAACCTTCTCG CCAGGCTCAA GCCGGCGATG  | 2280 |
|    | CCCGACGGCG AGGATCTCGT CGTGACCCAT GGCATGCT GCTTGCCGAA TATCATGGTG    | 2340 |
| 45 | GAAAATGCC GCTTTCTGG ATTATCGAC TGTGGCCGGC TGGGTGTGGC GGACCGCTAT     | 2400 |
|    | CAGGACATAG CGTGGCTAC CGGTGATATT GCTGAAGAGC TTGGCGCCGA ATGGGCTGAC   | 2460 |
| 50 | CGCTTCCCTG TGCTTACGG TATCGCCGCT CCCGATTGCG AGCGCATCGC CTTCTATCGC   | 2520 |
|    | CTTCTTGAGC AGTTCTCTG AGCGGGACTC TGGGGTTCGA AATGACCCGAC CAAGCGACGC  | 2580 |
|    | CCAACCTGCC ATCACGAGAT TTGATTCCA CGGGCCCTT CTATGAAAGG TTGGGCTTCG    | 2640 |
| 55 | GTATGTTT CGGGGAGGA ATTCTTAATC TGCTGTGTC AAAACAAAAA ACCACCGTA       | 2700 |
|    | CCAGCGGTGG TTTGTTGCG GGATCAAGAG CTACCAACTC TTTTCCGAA GTAACTGGC     | 2760 |
| 60 | TTCAAGAAGT CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACAC   | 2820 |
|    | TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCGTG ACCAGTGGCT   | 2880 |
|    | GCTGCCAGTG GCGATAAGTC GTGTCTTACG GGTTGGACT CAAGACGATA GTTACCGGAT   | 2940 |
| 65 | AAGGCGCAGC GGTCGGCTG AACGGGGGGT TCGTGCACAC AGCCCCAGCTT GGAGCGAACG  | 3000 |

|    |                                                                       |      |
|----|-----------------------------------------------------------------------|------|
|    | ACCTACACCG AACTGAGATA CCTACACCGT GAGCATTGAG AAAGGCCAC GCTTCGGAA       | 3060 |
|    | GGGAGAAAGG CGGACAGGT TCCGTAAGC GGCAGGGTC GAACAGGAGA GCGCACAGGG        | 3120 |
| 5  | GAGCTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA      | 3180 |
|    | CTTGAGCGTC GATTTTGTG ATGCTCCCTA GGGGGCCGA GCCTATGAA AAACGCCAGC        | 3240 |
| 10 | AACGCCAGA TGCGCCGCT CGAGTACACC TGCGTCATGC TGAGACCTC AACGCTCACT        | 3300 |
|    | AAAAGGGTCC CTGCTTAGTT CTGTTTACTA ATCTGCCTTA TTCTGTTTT GTTCCCAGT       | 3360 |
|    | TAAAGATAGA GTAAATGCAG TATTCTCCAC ATAGAGATAT AGACTTCTGA AATTCTAAGA     | 3420 |
| 15 | TTAGAATTAT TTACAAGAGA AAGTGGGGAA TGAAGAATAA AAAATTACTG GCCTCTTGTG     | 3480 |
|    | AGAACATGAA CTTTCACCTC GGAGCCACC CCCTCCCAC TGAAAACAT ACTTGAGAAA        | 3540 |
| 20 | AACATTCTCT GGAACAACCA CAGAATGTTT CAACAGGCCA GATGTATTGC CAAACACAGG     | 3600 |
|    | ATATGACTCT TTGGTGTGAGT AAATTGTGG TTGTTAACT TCCCTTATTC CCTCCCCATT      | 3660 |
|    | CCCCCTCCA GTTGTGGGT TTTCTTTA AAAGCTTGTG AAAATTTGA GTGTCGTGCG          | 3720 |
| 25 | AGACTCTCT ACCCTGTGCA AAGGTGTATG AGTTTCGACC CCAGAGCTCT GTGTGCTTTC      | 3780 |
|    | TGTTGCTGCT TTATTCGAC CCCAGAGCTC TGGTCTGTGT GCTTTCATGT CGCTGCTTTA      | 3840 |
| 30 | TTAAATCTTA CCTTCTACAT TTTATGTATG GTCTCAGTGT CTTCTGGGT AC CGCGGTGT     | 3900 |
|    | CCCGGGACTT GAGTGTCTGA GTGAGGGTCT TCCCTCGAGG GTCTTCATT TGGTACATGG      | 3960 |
|    | GCCGGGAATT CGAGAATCTT TCATTTGGTG CATTGGCCGG GAATTGAAAT ATCTTCATT      | 4020 |
| 35 | TGGTGCATTG GCCGGGAAAC AGCCCGAACCA CCCAGAGCTC CTAGACCCAC TTAGAGGTA     | 4080 |
|    | GATTCTTGT TCTGTTTTG TCTGATGTCT GTGTTCTGAT GTCTGTTGTC TGTTTCTAAG       | 4140 |
|    | TCTGGTGCAGA TCGCAGTTTC AGTTTCGCG AGCCTCAGTG AGACCGCGCT CCGAGAGGGA     | 4200 |
| 40 | GTGCGGGGTG GATAAGGATA GACGTGTCCA GGTGTCCACC GTCCGTTGC CCGAGGAGAC      | 4260 |
|    | GTCCCAGGAG GAACAGGGGA GGATCAGGGA CGCCTGGTGG ACCCCCTTGA AGGCCAAGAG     | 4320 |
| 45 | ACCATTGGG GTTGCAGAGT CGTGGGTCTG AGTCCCACCT CGTGCCTCAGT TGCGAGATCG     | 4380 |
|    | TGGGGTCTGAG TCCCACCTCG TGTTTTGTC CGAGATCCTG GTTGTGAGTC CCACCTCGCG     | 4440 |
|    | TCTGGTCAAC GGATCGTGGG TTGAGCTCCC ACCTCGTGTGTT TTGTTGCGAG ATCGTGGGTT   | 4500 |
| 50 | CGAGTCCCAC CTGGCTCTG GTCAAGGGAT CGTGGGTCTG AGTCCCACCT CGTGCAGAGG      | 4560 |
|    | GTCTCAATTG GCCGGCCCTTA GAGAGGCCAT CTGATTCTTC TGTTTCTCT TTTGTCTTA      | 4620 |
| 55 | GTCTCGTGTGTC CGCTCTTGTGTT GTGACTACTG TTTTTCTAAA AATGGGACAA TCTGTGTCCA | 4680 |
|    | CTCCCCCTTC TCTGACTCTG GTTCTGTGCG TTGTAATT TGTTGTTTA CGTTGTTTT         | 4740 |
|    | TGTGAGTCGT CTATGTGTC TGTTACTATC TTGTTTTGTT TGTTGTTTA CGGTTCTGT        | 4800 |
| 60 | GTGTTGCTTG TGTGTCCTT TGTTGTCAGA CTTGGACTGA TGACTGACGA CTGTTTTAA       | 4860 |
|    | GTTATGCCTT CTAAAAATAAG CCTAAAAATC CTGTCAGATC CCTATGCTGA CCACCTCCCTT   | 4920 |
| 65 | TCAGATCAAC AGCTGCCCTT AGCTATCGAT GGATCCGA                             | 4958 |

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 7080 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
| 15 | GAATACAAGC TTGCATGCCT GCAGGTCGAC TCTAGAGGAT CTTGAAGAAAT AAAAAATTAC   | 60   |
|    | TGGCCCTTGT TGAGAACATG AACTTTCAAC TCGGAGGCCA CCCCTCCCA TCTGGAAAAC     | 120  |
| 20 | ATACTTGAGA AAAACATTTT CTGGAACAAC CACAGAATGT TTCAACAGGC CAGATGTATT    | 180  |
|    | GCCAAACACA GGATATGACT CTTTGGTTGA GTAAATTGTG GTTTGTTAAA CTTCCCTAT     | 240  |
|    | TCCCTCCCA TTCCCCCTCC CAGTTGTTGG TTTTTCTT TAAAAGCTTG TGAAAATT         | 300  |
| 25 | GAGTCGTCGT CGAGACTCCT CTACCCGTGT CAAAGGTGA TGAGTTTCGA CCCAGAGCT      | 360  |
|    | CTGTGTCCTT TCTGTGCTG CTTTATTTCG ACCCCAGAGC TCTGGCTGT GTGCTTTCAT      | 420  |
|    | GTCGCTGCTT TATTAATCT TACCTCTAC ATTTTATGTA TGGTCTCAGT GTCTTCTGG       | 480  |
| 30 | GTACCGGGGT GTCCCGGGAC TTGAGTGTCT GAGTGAGGGT CTTCCCTCGA GGGCTTTCA     | 540  |
|    | TTTGGTACAT GGGCCGGGAA TTGAGAACATC TTTCATTTGG TGCAATTGGCC GGGAAATTGCA | 600  |
| 35 | AAATCTTCA TTTGGTGCAT TGGCCGGAA ACAGCGCAGAC CACCCAGAGG TCCTAGACCC     | 660  |
|    | ACTTAGAGGT AAGATTCTTT GTTCTGTTT GGTCTGATGT CTGTGTTCTG ATGCTGTGT      | 720  |
| 40 | TCTTTCTA AGTCTGGTGC GATCGCAGTT TCAGTTTGC GGACGCTCAG TGAGACCCG        | 780  |
|    | CTCCGAGAGG GAGTGGGGGG TGGATAAGGA TAGACGTGTC CAGGTGTCGA CGTCCGTT      | 840  |
|    | GCCCTGGAG ACGTCCCAGG AGGAACAGGG GAGGATCAGG GACGCTGGT GGACCCCTT       | 900  |
| 45 | GAAGGCCAAG AGACCATTG GGGTTGCGAG ATCGTGGTT CGAGTCCCAC CATCGATGGT      | 960  |
|    | GCAGAGGGTC TCAATTGGCC GGCCTTAGAA TTACCGATCT AGCATGATTG AACAAAGATGG   | 1020 |
| 50 | ATTGACCGCA GGTTCCTCCG CCGCTTGGGT GGAGAGGCTA TTGCGCTATG ACTGGGCACA    | 1080 |
|    | ACAGACAATC GGCTGCTCTG ATGCCCGCTG GTTCCGGTGC TCAGCGCAGG GGCGCCGGT     | 1140 |
|    | TCTTTTGTCA AAGACCGACC TGTCGGTGC CCTGAATGAA CTGCAAGGAGC AGGCAGCCG     | 1200 |
| 55 | GCTATCGTGG CTGGCACGA CGGGCGTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA      | 1260 |
|    | AGCGGGAAAG GACTGGCTGC TATTGGCGA AGTGGGGGG CAGGATCTCC TGTCATCTCA      | 1320 |
| 60 | CCTTGCTCTT GCCGAGAAAG TATCCATCAT GGCTGATGCA ATGCGGGGGC TGCATACGCT    | 1380 |
|    | TGATCCGGCT ACCTGCCCAT TCGACCCACCA AGCGAAACAT CGCATCGAGC GAGCACGTAC   | 1440 |
|    | TCGGATGGAA GCCGGTCTTG TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC    | 1500 |
| 65 | GCCAGCCGAA CTGTTGCCA GGCTCAAGGC GCGCATGCCA GACGGCGAGG ATCTCGTCTG     | 1560 |

|    |             |             |             |              |             |             |      |
|----|-------------|-------------|-------------|--------------|-------------|-------------|------|
|    | GACCCATGGC  | GATGCCGTGCT | TGCCGAATAT  | CATGGTGAA    | AATGGCGCT   | TTTCTGGATT  | 1620 |
|    | CATCGACTGT  | GGCCGGCTGG  | GTGTGGCGGA  | CCGCTATCG    | GACATAGCGT  | TGGCTACCCG  | 1680 |
| 5  | TGATATTGCT  | GAAGAGCTTG  | GCGGCGAATG  | GGCTGACCGC   | TCCTCGTGC   | TTTACGGTAT  | 1740 |
|    | CGCCGCTCCC  | GATTGCGACG  | GCATGCCCTT  | CTATGCCCTT   | CTTGACGAGT  | TCTTCTGAGC  | 1800 |
| 10 | GGGACTCTGG  | GGTTCGTAAT  | GACCGACCAA  | GCGACGCCCA   | ACCTGCCATC  | ACGAGATTC   | 1860 |
|    | GATTCCACCG  | CCGCCTCTA   | TGAAAGGTTG  | GGCTTCGAG    | TTAGCTTGT   | TCTTACTGTT  | 1920 |
| 15 | TTGTCAATT   | TATTATTCTA  | ATACAGAACAA | ATAGCTCTA    | TAACTGAAAT  | ATATTTGCTA  | 1980 |
|    | TTGTATATTA  | TGATTGCCC   | TCGAACCATG  | AACACTCCCTC  | CAGCTGAATT  | TCACAATTCC  | 2040 |
| 20 | TCTGTCATCT  | GCCAGGCCAT  | TAAGTTATT   | ATGGAAGATC   | TTTGAGGAAC  | ACTGCAAGTT  | 2100 |
|    | CATATCATAA  | ACACATTGA   | AATTGAGTAT  | TGTTTGAT     | TGTATGGAGC  | TATGTTTGC   | 2160 |
| 25 | TGTATCTCA   | AAAAAAAAGT  | TTGTTATAAA  | GCATTCACAC   | CCATAAAAAG  | ATAGATTAA   | 2220 |
|    | ATATTCCAGC  | TATAGGAAAG  | AAAGTGCCTC  | TGCTCTTCAC   | TCTAGTCTCA  | GTGCGCTCT   | 2280 |
| 30 | TCACATGCT   | GCTTCTTAT   | TTCTCCTATT  | TTGTCAGAAGAA | AATAATAGGT  | CACGCTTGT   | 2340 |
|    | TCTCACTTAT  | GTCCGTGCTA  | GCATGGCTCA  | GATGCACCTT   | GTAGATACAA  | GAAGGATCAA  | 2400 |
| 35 | ATGAAACAGA  | CTTCTGGTCT  | GTTACTACAA  | CCATAGTAAT   | AAGCACACTA  | ACTAATAATT  | 2460 |
|    | GCTAAATTATG | TTTCCATCT   | CTAAGGTTC   | CACATTTTC    | TGTTTCTTA   | AAGATCCCAT  | 2520 |
| 40 | TATCTGGTTG  | TAACTGAAGC  | TCAATGGAAAC | ATGAGCAATA   | TTTCCCAGTC  | TCTCTCCCA   | 2580 |
|    | TCCAACAGTC  | CTGATGGATT  | AGCAGAACAG  | GCAGAAAACA   | CATTGTTACC  | CAGAATTAA   | 2640 |
| 45 | AACTAATTAT  | TGCTCTCCAT  | TCAATCCAAA  | ATGGACCTAT   | TGAAACTAAA  | ATCTAACCCA  | 2700 |
|    | ATCCCATTA   | ATGATTCTA   | TGGCGTCAA   | GGTCAAACCTT  | CTGAAGGGAA  | CCTGTGGGTG  | 2760 |
| 50 | GGTCACAATT  | CAGGCTATAT  | ATCCCCCAGG  | GCTCAGCCAG   | TGTCTGTACA  | TACACAAACGG | 2820 |
|    | ATCCCTGGGA  | CAGCTCACCT  | AGCTGCAATG  | GCTACAGGCT   | CCCGGACGTC  | CCTGCTCCCTG | 2880 |
| 55 | GCTTTGGCC   | TGCTCTGCCT  | GCCCTGGCTT  | CAAGAGGGCA   | GTGCGCTTCCC | AACCATTCCC  | 2940 |
|    | TTATCCAGGC  | TTTTGACAA   | CGCTATGCTC  | CGCGCCCATC   | GTCTGCACCA  | GCTGGCCTTT  | 3000 |
| 60 | GACACCTACC  | AGGAGTTGA   | AGAAGCCTAT  | ATCCCAAAGG   | AACAGAAAGTA | TTCATTCTG   | 3060 |
|    | CAGAACCCCC  | AGACCTCCCT  | CTGTTCTCA   | GAGTCATATT   | CGACACCCCTC | CAACAGGGAG  | 3120 |
| 65 | GAAACACAAAC | AGAAATCCAA  | CCTAGAGCTG  | CTCCGCATCT   | CCCTGCTGCT  | CATCCAGTCG  | 3180 |
|    | TGGCTGGAGC  | CCGTGCAAGT  | CCTCAGGAGT  | GTCTTCGCCA   | ACAGCCTGGT  | GTACGGCGCC  | 3240 |
|    | TCTGACAGAC  | ACGTCTATGA  | CCTCTTAAG   | GACCTAGAGG   | AAGGCATCCA  | AAACGCTGATG | 3300 |
|    | GGGAGGCTGG  | AAAGATGGCAG | CCCCCGGACT  | GGGCAGATCT   | TCAAGCAGAC  | CTACAGCAAG  | 3360 |
|    | TTCGACACAA  | ACTCACACAA  | CGATGACGCA  | CTACTCAAGA   | ACTACGGGCT  | GCTCTACTGC  | 3420 |
|    | TTCAAGGAGG  | ACATGGACAA  | GGTCGAGACA  | TTCTCGCGCA   | TCGTCAGTG   | CCGCTCTGTG  | 3480 |
|    | GAGGGCAGCT  | GTGGCTCTA   | GCTGCCCGGG  | TGGCATCTCT   | TGACCCCTCC  | CCAGTGCCTC  | 3540 |
|    | TCCTGGCCCT  | GGAAGTGCC   | ACTCCAGTGC  | CCACCAGCCT   | TGTCTTAATA  | AAATTAAGTT  | 3600 |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | GCATCAAAAA AAAAAGGAG CTAGCGCCG CTAGACTTCT GAAATTCTAA GATTAGAATT      | 3660 |
| 5  | ATTTACAAGA AGAAGTGGGG AATGAAGAAT AAAAATTAC TGGCCTCTTG TGAGAACATG     | 3720 |
|    | AACTTCACC CGGGAGGCCA CCCCTCCCCA TCTGGAAAAC ATACTGAGA AAAACATT        | 3780 |
|    | CTGGAACAAAC CACAGAAATGT TTCAACAGGC CAGATGTATT GCCAACACACA GGATATGACT | 3840 |
| 10 | CTTTGGTTGA GTAAATTGTG GGTTGTTAAA CTTCCCCAT TCCCTCCCCA TTCCCCCTCC     | 3900 |
|    | CAGTTGTGG TTTTTCTT TAAAAGCTTG TGAAAATTT GAGTCGTCGT CGAGACTCCT        | 3960 |
| 15 | CTACCTCTGTG CAAAGGTGTA TGAGTTCGA CCCCAGAGCT CTGTCGTCCT TCTGTCGTC     | 4020 |
|    | CTTTATTCG ACCCCAGAGC TCTGGCTGTG TGCTTCAT GTCGCTGCTT TATTAATCT        | 4080 |
|    | TACCTCTAC ATTTATGTAA TGGTCTCACT GTCTTCTGG GTACCGGCT GTCCCGGGAC       | 4140 |
| 20 | TTGAGTGTCT GAGTGGGGT CTTCCCCTCGA GGGTCTTCA TTTGGTACAT GGGCCGGGAA     | 4200 |
|    | TTCGAGAATC TTTCATTTGG TGCATTGGCC GGGATTCTGA AAATCTTCA GATCCCCGGG     | 4260 |
|    | TACCGAGCTC GAATTCCGGT CTCCCTATAG TGAGTCGAT TAATTCGAT AAGCCAGCTG      | 4320 |
| 25 | CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTGC GTATTGGCG CTCTTCCGCT      | 4380 |
|    | TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC GGCGAGCGGT ATCAGCTCAC    | 4440 |
| 30 | TCAAAGGCGG TAATACGGGT ATCCACAGAA TCAGGGGATA ACGCAGGAAA GAACATGTGA    | 4500 |
|    | GCAAAAGGCC AGCCAAAGCG CAGAACCGT AAAAAGGCC CGTTGCTGGC GTTTTTCCAT      | 4560 |
|    | AGGCTCGGCC CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAC     | 4620 |
| 35 | CCGACAGGAC TATAAAAGATA CCAGGGCTT CCCCTGGAA GCTCCCTCGT GCGCTCTCCT     | 4680 |
|    | GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGGCTTTC TCCCTCGGG AAGCGTGGCG     | 4740 |
| 40 | CTTCTCTATA GCTCACGCTG TAGGTATCTC AGTTCGCGTGT AGGTCGTCG CTCCAAGCTG    | 4800 |
|    | GGCTGTGTC ACGAACCCCC CGTTCAAGCC GACCGCTGCG CCTTATCCG TAACTATCGT      | 4860 |
|    | CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG    | 4920 |
| 45 | ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAAGTGGTG GCCTAACTAC   | 4980 |
|    | GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC TGAAGGCCAGT TACCTTCGGA   | 5040 |
| 50 | AAAAGAGTTG GTAGCTCTTG ATCCGGCAA AAAACCACCG CTGGTAGCGG TGGTTTTTT      | 5100 |
|    | GTTTGAAGC AGCAGATTAC CGCGAGAAAAA AAAGGATCTC AAGAAGATCC TTGATCTT      | 5160 |
|    | TCTACGGGGT CTGACCGCTCA GTGGACAGAA AACTCACGTT AAGGGATTAA GGTCATGAGA   | 5220 |
| 55 | TTATCAAAAA GGATCTTCACT CTAGATCTTCTT TAAATTTAA AATGAAGTTT TAAATCAATC  | 5280 |
|    | TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT GCTTAATCAG TGAGGCACCT    | 5340 |
|    | ATCTCAGCGA TCTGTCATT TCGTTCATCC ATAGTTGCCT GACTCCCCGT CGTGTAGATA     | 5400 |
| 60 | ACTACGATAC GGGAGGGCTT ACCATCTGGC CCCAGTCGCTG CAATGTACCG GCGAGACCCA   | 5460 |
|    | CGCTCACCGG CTCCAGATTT ATCAGCAATA AACCGAGCCAG CGGGAAGGGC CGAGCGCAGA   | 5520 |
| 65 | AGTGGTCTG CAACTTATC CGCCTCCATC CAGTCTATTA ATTGGTCCG GGAAGCTAGA       | 5580 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | GTAAGTAGTT CGCCAGTTAA TAGTTGCGC AACGTTGTTG CCATTGCTAC AGGCATCGT    | 5640 |
|    | GTGTCACGCT CGTCGTTGG TATGGCTCA TTCAGCTCG GTTCCCAAACG ATCAAGGCCA    | 5700 |
| 5  | GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT  | 5760 |
|    | GTCAGAAGTA AGTTGGCCG AGTGTATCA CTCATGGTA TGCGAGCACT GCATAATTCT     | 5820 |
| 10 | CTTACTGTCA TGCCATCCGT AAAGATGCTT TCTGTGACTG GTGAGTACTC AACCAAGTCA  | 5880 |
|    | TTCTGAGAAT AGTGTATCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAT ACGGGATAAT   | 5940 |
|    | ACCGCGGCCAC ATAGCAGAAC TTAAAAGTG CTCATCATG GAAAACGTT TCAGGGGCGA    | 6000 |
| 15 | AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC  | 6060 |
|    | AACTGATCTT CAGCATCTT TACTTTAACG AGCGTTCTG GGTGAGCRAA AACAGGAAGG    | 6120 |
| 20 | CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAT GTTGAATACT CATACTCTC    | 6180 |
|    | CTTTTCAAT ATTATTGAGA CATTATTCAG GTTATTGTC TCATGAGCGG ATACATATT     | 6240 |
|    | GAATGTATT AGAAAATAA ACAAAATGGG GTTCCCGCA CATTCCCCG AAAAGTCCA       | 6300 |
| 25 | CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAATAG GCGTATCACG   | 6360 |
|    | AGGGCCCTTC GTCTCGCGC TTTCGGTGT GACGGTAAA ACCTCTGACA CATCGAGCTC     | 6420 |
| 30 | CCGGAGACGG TCACAGCTTG TCTGTAAGCG GATGCCGGGA CGAGACAAGC CCGTCAGGGC  | 6480 |
|    | GCGTCAGCGG GTGTTGGCGG GTCTCGGGC TGGCTTAACG ATGCGGCATC AGAGCAGATT   | 6540 |
|    | GTACTGAGAG TGCCACCATAT CGACGCTCTC CCTTATGCGA CTCTGCATT AGGAAGCAGC  | 6600 |
| 35 | CCAGTAGTAG GTTGAGGCCG TTGAGCACCG CGGCCGAAG GAATGGTCA AGGAGATGGC    | 6660 |
|    | GCCCCAACAGT CCCCCGGCCA CGGGGCCTGC CACCATACCC ACGCCGAAC AACGCCATCAT | 6720 |
|    | GAGCCCGAAG TGGCGAGCCC GATCTTCCCC ATCGGTGATG TCGGCGATAT AGGGCCAGC   | 6780 |
| 40 | AACCGCACCT GTGGCGCCGG TGATGCCGGC CACGATGCGT CCGGCGTABA GGATCTGGCT  | 6840 |
|    | AGCGATGACC CTGCTGATTG GTTCGCTGAC CATTTCGGG GTGCCGAACG GCGTTACCAAG  | 6900 |
|    | AAACTCAGAA GGTTCTGCTCA ACCAAACCGA CTCTGACGGC AGTTTACGAG AGAGATGATA | 6960 |
| 45 | GGGTCTGCTT CAGTAAGCCA GATGCTACAC AATTAGGCTT GTACATATTG TCGTTAGAAC  | 7020 |
|    | GCGGCTACAA TTAATACATA ACCTTATGTA TCATACACAT ACGATTAGG TGACACTATA   | 7080 |
| 50 | (2) INFORMATION FOR SEQ ID NO:22:                                  |      |

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 6795 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

|    |                                                                  |    |
|----|------------------------------------------------------------------|----|
| 65 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:                         |    |
|    | AATGAAAGAC CCCACCTGTA GGTTGGCAA GCTAGCTTAA GTAACGCCAT TTTGCAAGGC | 60 |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | ATGGAAAAAT ACATAACTGA GAATAGAGAA GTTCAGATCA AGGTCAAGGAA CAGATGGAAC   | 120  |
| 5  | AGCTGAATAT GGGCCAAAACA GGATATCTGT GTTAAAGCAGT TCCCTGCCCG GCTCAGGGCC  | 180  |
|    | AGAAACAGAT GGAACAGCTG AATATGGGC AACACAGGATA TCTGTGTTAA GCAGTCTCTG    | 240  |
|    | CCCCGGCTCA GGGCCAAGAA CAGATGGTCC CCAGATGCGG TCCAGCCCTC AGCAGTTCT     | 300  |
| 10 | AGAGAACCAT CAGATGTTTC CAGGGTGCCTC CAAGGACCTG AAATGACCCCT GTGCCATTATT | 360  |
|    | TGAACTAACC AACAGTTCG CTTCTCGCTT CTGTCGCGC GCTTCTGCTC CCCGAGCTCA      | 420  |
| 15 | ATAAAAGAGC CCACAACCCC TCACCTGGGG CGCCAGTCTC CCGATTGACT GAGTCGCCGG    | 480  |
|    | GGTACCCGTG TATCCAATAA ACCCTCTTGC AGTTGCATC GACTTGTGGT CTCGCTGTT      | 540  |
|    | CTTGGGAGGG TCTCCTCTGA GTGATTGACT ACCCGTCAGC GGGGGCTTTT CATTGGGGG     | 600  |
| 20 | CTCGTCCGGG ATCGGGAGAC CCCTGCCCGG GGACCAACCGA CCCACCCAGG GGAGGTAAGC   | 660  |
|    | TGGCCAGCAA CTTATCTGTG TCTGTCGAT TGCTAGTGT CTATGACTGA TTTTATGCGC      | 720  |
| 25 | CTGCGTCGGT ACTAGTTAGC TAACTAGCTC TGATCTGCG GGACCCGTGG TGGAACTGAC     | 780  |
|    | GAGTCGGAA CACCCGGCCG CAACCTGGG AGACCTCCCA GGAGGAACAG GGGAGGATCA      | 840  |
|    | GGGACGCCCTG GTGGACCCCT TTGAAAGCCA AGAGACCAATT TGGGGTTGCG AGATCGGGG   | 900  |
|    | TTCGAGTCCC ACCTCTGCG CAGTTGCGAG ATCGTGGTT CGAGTCCAC CTCGTTTT         | 960  |
| 30 | GTTGGAGAT CGTGGGTTCG AGTCCCACCT CGCGTCTGGT CACGGGATCG TGGGTTGGAG     | 1020 |
|    | TCCCACCTCG TGTTTGTG CGAGATCGTG GGTTCGACTC CCACCTCGCG TCTGGTCACG      | 1080 |
| 35 | GGATCGTGGG TTGAGTCCC ACCTCTGCA GAGGGTCTCA ATTGGCCGGC CTTAGAGAGG      | 1140 |
|    | CCATCTGATT CTTCTGGTTT CTCTTTTGT CTAGTCTCG TGTCGGCTCT TGTTGTGACT      | 1200 |
| 40 | ACTGTTTTC TAAAAATGGG ACAATCTGTG TCCACTCCCC TTCTCTGAC TCTGGTTCTG      | 1260 |
|    | TCGCTTGGTA ATTTTGTGTT TTACCTTTC TTTTGTGAG TCGTCTATGT TGCTGTAC        | 1320 |
|    | TATCTGTGTT TTGTTGTGG TTACGGTTT CTGTCGTTGT CTTGTCGTC TCTTTGTGTT       | 1380 |
| 45 | CAGACTTGGA CTGATGACTG ACCGACTGTT TTAAGTATG CCTTCTAAAA TAAGCTAAA      | 1440 |
|    | AATCTCTGCA GATCCCTATG CTGACCACTT CTTTCAGAT CAACAGCTGC CCTTACTCGA     | 1500 |
| 50 | GCTCAAGCTT CGAACCTCTGC AGTCGACGGT ACCCGCGCCG CTAACATAA GCCCATTCTC    | 1560 |
|    | CAAGGTACGT AGCGGGGATC AATTCGCCCC CCCCCCTAAC GTTACTGGCC GAAGCCGCTT    | 1620 |
|    | GGAATAAGGC CGGTGTGGT TTGTCATAT GTTATTTC ACCATATTGC CGTCTTTGG         | 1680 |
| 55 | CAATGTGAGG GCCCCGAAAC CTGGCCCTGT CTCTCTGAG AGCATTCCTA GGGGTCTTC      | 1740 |
|    | CCCTCTCGCC AAAGGAATGC AAGGTCGTG GAATGTCGTG AAGGAAGCAG TTCCCTCTGGA    | 1800 |
| 60 | AGCTTCTTGA AGACAAACAA CGTCTGTAGC GACCTTGTG AGGCAGCGGA ACCCCCCACC     | 1860 |
|    | TGGCACAGG TGCCCTCTGCG GCCAAAAGCC ACAGTGTATAA GATACACCTG CAAAGGGCC    | 1920 |
|    | ACAACCCCCAG TGCCACGTG TGAGTTGGAT AGTTGTGGAA AGAGTCAAAT GGCTCTCTC     | 1980 |
| 65 | AAGCGTATTG AACRAGGGGC TGAAGGATGC CCAGAAGGTA CCCCATTGTA TGGGATCTGA    | 2040 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | TCTGGGCCT CGGTGCACAT GCTTTACATG TGTAGTCG AGGTTAAAAA AACGTCAGG      | 2100 |
|    | CCCCCGAAC CACGGGGACG TGTTTCCCT TTGAAAACA CGATACGGGA TCCACCGTC      | 2160 |
| 5  | GCCACCATGG GTAAAGGAGA AGAACTTTTC ACAGGAGTT TCCAATTCT TGTTGAATTA    | 2220 |
|    | GATGGTATG TTAATGGCA CAAATTTCT GTCACTGGAG AGGGTGAAGG TGATGCAACA     | 2280 |
| 10 | TACGGAAAAC TTACCCCTAA ATTATTTGC ACTACTGAA AACTACCTGT TCCATGCCA     | 2340 |
|    | ACACTTGTCA CTACTTTCAC TTATGGTGT CAATGCTTT CAAGATACCC AGATCATATG    | 2400 |
|    | AAACGGCATG ACTTTTCAA GAGTGCATG CCCGAAGGTT ATGTACAGGA AAGAACTATA    | 2460 |
| 15 | TTTTCAAG ATGACGGGAA CTACAAGACA CGTGTGAAG TCAAGTTGA AGGTGATACC      | 2520 |
|    | CTTGTTAATA GAATCAGATT AAAAGGTATT GATTTAAAG AAGATGAAA CATTCTGGA     | 2580 |
| 20 | CACAAATGG AATACAACTA TAACTCACAC AATGTATACA TCATGGCAGA CAAACAAAAG   | 2640 |
|    | AATGGAACCA AAGTTAACCT CAAAATTAGA CACAACTTG AAGATGGAAG CGTTCAACTA   | 2700 |
|    | GCAGACCAT TCAACACAAA TACTCCAATT GGCGATGCC CTGTCCTTT ACCAGAACAC     | 2760 |
| 25 | CATTACCTGT CCACACACATC TGCCCTTCTG AAAGATCCC ACGAAAAGAG AGACCACATG  | 2820 |
|    | GTCCCTTCTG AGTTTGTAAAC AGCTGCTGGG ATTACACATG GCATGGATGA ACTATACAAG | 2880 |
|    | TCCGGATCTA GATAACTGTA TCGATGGATC CGAAGGGGG GACAGCAGTG CAGTGGTGG    | 2940 |
| 30 | CAGAAACCAA GTGATCTAGG CCAGCAGCCT CCCTAAAGGG ACTTCAGCCC ACAAGCCAA   | 3000 |
|    | ACTTGTGCT TTAATACAAG CTCTGTAAT GGTAaaaaaaa AAAAAGTCTA CACGGACAGC   | 3060 |
| 35 | AGGTATGCTC TTGCCACTGT ACAGAGCAAT ATACAGACAA AGAGAACTGT TGACATCTGC  | 3120 |
|    | AGAGAAAGAC CTAAGATGCT GTGGCTAAAAA GAAATCAGAT GGCAAATCTA ACCGCCAGG  | 3180 |
|    | CATCCTAAAG AGCAATGATC CTGACAGTCT GAAGACTATC AAGTTATAGA CAAATTAAGA  | 3240 |
| 40 | CTGGTAAAAA AAACCTGTAA TAAAATAGTA AAAACTGAAA AAAGAAAAC ACTGTCCTCA   | 3300 |
|    | TGAGAAGACA GACCTGACAT CTACTGAAAA ATAGACTTTA CTGGAAAAAA TATGTGTATG  | 3360 |
|    | AATACCTCT AGTTTTGTG AACGTTCTCA AGATGGATAA AAGCTTTCC TTGTAACAG      | 3420 |
| 45 | AGACTGTATCA GATAGTCATC AAGAAGATG TTAAAGAAAAA TTTCCAAGG TTCGGAGTGC  | 3480 |
|    | CAAAGACAT AGTGTCAAGT AATGGTCTCTG CCTTGTGTC CCAGGTAAGT CAGGGTGTGG   | 3540 |
| 50 | CCAAGTATT AGAGGTCAA TGAAAATTCC ATTGTGTGTA CAGACCTCAG AGCTCAGGAA    | 3600 |
|    | AGATAaaaaaa GAATAAAATAA AACTCTAAC AGACCTTGAC AAAATTAATC CTAGAGACTG | 3660 |
| 55 | GCACAGACTT ACTTGGTACT CCTTCCCCCT GCCCTATTAA GAACTGAGAA TACTCCCTCT  | 3720 |
|    | TGATTCCGGT TTACTCTTT TAAGATCCTT TATGGGGCTC CTATGCCATC ACTGTCTAA    | 3780 |
|    | ATGATGTGTT TAAACCTATG TTGTTATAAT AATGATCTAT ATGTTAAGTT AAAAGGCTTG  | 3840 |
| 60 | CAGGTGGTGC AGAAAGAAGT CTGGTCACAA CTGGCTACAG TGAACAAGCT GGGTACCCCCA | 3900 |
|    | AGGACATCTT ACCAGTTCCA GCCAGAGATC TGATCTACGA TCCCCGGGTC GACCCGGGTC  | 3960 |
|    | GACCTGTGG AATGTGTGTC AGTTAGGGTG TGGAAAGTCC CCAGGCTCCC CAGCAGGAG    | 4020 |
| 65 | AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC  | 4080 |

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCCGC  | 4140 |
| 5  | CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC CGCCCCATGG  | 4200 |
|    | CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGC TCGGCCCTCG AGCTATTCCA   | 4260 |
|    | GAAGTAGTGA GGAGGCTTT TTGGAGGCCT AGGCTTTGC AAAAGCTTC ACGCTGCCGC     | 4320 |
| 10 | AAGCACTCG GGCAGCAAGGG CTGCTAAAGG AAGCGGAACA CGTAGAAAGC CAGTCGCCAG  | 4380 |
|    | AAACCGTGCT GACCCCGGAT GAATGTAGC TACTGGCTA TCTGGACAAG GGAAAAGCCA    | 4440 |
| 15 | AGCGCAAAGA GAAAGCAGGT AGCTTGCAGT GGGCTTACAT GGCGATAGCT AGACTGGCG   | 4500 |
|    | GTTTATGGA CAGCAAGCGA ACCGGAAATTG CCAGCTGGGG CGCCCTCTGG TAAGGTTGG   | 4560 |
|    | AAGCCCTGCA AAGTAAACTG GATGGCTTT TGCGGCCAA GGATCTGATG GCGCAGGGGA    | 4620 |
| 20 | TCAAGATCTG ATCAAGAGAC AGGATGAGGA TCGTTTCCGA TGATGAAACA AGATGGATG   | 4680 |
|    | CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTGC GCTATGACTG GGCACAAACAG | 4740 |
| 25 | ACAATCGGCT GCTCTGATGC CGCGCTGTTC CGGCTGTAG CGCAGGGGGC CCCGGTTCTT   | 4800 |
|    | TTTGTCAGA CGCACCTGTC CGGTGGCCCTG AATGAACTGC AGGACGAGGC AGCGCGGCTA  | 4860 |
|    | TCGTGGCTGG CCACACGGG CGTTCCTTGC GCAGCTGTGC TCGACGTTGT CACTGAAGCG   | 4920 |
| 30 | GGAAGGGACT GGCTGCTATT GGGCGAACGTG CGGGGGCAGG ATCTCTGTC ATCTCACCTT  | 4980 |
|    | GCTCTGCGC AGAAAAGTATC CATCATGGCT GATGCAATGC GGCGGCTGCA TACGCTTGAT  | 5040 |
|    | CCGGCTACCT GCCCATTGCA CCACCAAGCG AACACATCGA TCGAGCGAGC ACGTACTCGG  | 5100 |
| 35 | ATGGAAGCCG GTCTTGTGCA TCAGGATGAT CTGGACAGA AGCATCAGGG GCTCGGCCA    | 5160 |
|    | GCCGAACCTGT TCGCCAGGCT CAAGGGCGC ATGCCCGACG GCGAGGATCT CGTCGTGACC  | 5220 |
| 40 | CATGGCGATG CCTGCTTGC GAATATCATG TTGAAAAATG GCGCTTTTC TGGATTCATC    | 5280 |
|    | GACTGTGGCC GGCTGGGTGT GGCGGACCGC TATCAGGACA TAGCGTGGC TACCCGTGAT   | 5340 |
|    | ATTGCTGAAG AGCTTGGCGG CGAATGGCT GACCGCTTC TCGTGTCTTA CGGTATGCC     | 5400 |
| 45 | GCTCCCGATT CGCAGCGCAT CGCCTCTAT CGCCTCTTG ACAGGTTCTT CTGAGCGGGA    | 5460 |
|    | CTCTGGGGTT CGAAATGACC GACCAAGCGA CGCCCAACCT GCCATCACGA GATTCGATT   | 5520 |
| 50 | CCACCGCCGC CTTCTATGAA AGGTTGGCT TCGGAATCGT TTCCGGGAC GGAATTCTGTA   | 5580 |
|    | ATCTGCTGCT TGCAACACAA AAACCCACCG CTACCAAGCG TGTTTGTGTT GCGGGATCAA  | 5640 |
|    | GAGCTACCAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA GAGCGCAGAT ACCAAATACT   | 5700 |
| 55 | GTCTCTCTAG TGTAGCCGTG GTTACGCCAC CACTTCAGA ACTCTGTAGC ACCGCTTACA   | 5760 |
|    | TACCTCGCTC TGCTAATCTC GTTACCAAGTG GCTGCTGCCA GTGGCGATAA GTCGTGTCTT | 5820 |
| 60 | ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCCG AGCGGCTGGG CTGAACGGGG  | 5880 |
|    | GGTTCTGCA CACAGCCAG CTTGGAGCGA ACGACCTACA CGGAACCTGAG ATACCTACAG   | 5940 |
|    | CGTGAGCATT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGGCGACAG GTATCCGGTA  | 6000 |
| 65 | AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT  | 6060 |

|    |            |             |                                   |             |            |            |      |
|----|------------|-------------|-----------------------------------|-------------|------------|------------|------|
|    | CTTTATAGTC | CTGTCGGGGT  | TGCCCACCTC                        | TGACTTGAGC  | GTCGATTTTT | GTGATGCTCG | 6120 |
|    | TCAGGGGGGC | GGAGCCATATG | AAAAAACGCC                        | AGCAACGCCG  | AGATGCCCG  | CCTCGAGAAC | 6180 |
| 5  | CCTGGCCCTA | TTATTGGGTG  | GACTAACCAT                        | GGGGGGAAATT | GCCGCTGGAA | TAGGAACAGG | 6240 |
|    | GACTACTCT  | CTAATGCCA   | CTCAGCAATT                        | CCAGCAGCTC  | CAAGCCGCA  | TACAGGATGA | 6300 |
| 10 | TCTCAGGGAG | GTTGAAAAAT  | CAATCTCTAA                        | CCTAGAAAAG  | TCTCTCACCT | CCCTGTCTGA | 6360 |
|    | AGTTGCTCTA | AGAATCGAA   | GGGGCCTAGA                        | CTTGTATT    | CTAAAAGAAG | GAGGGCTGTG | 6420 |
| 15 | TGCTGCTCTA | AAAGAAGAAT  | GTTGCTCTA                         | TGCGGACAC   | ACAGGACTAG | TGAGAGACAG | 6480 |
|    | CATGCCAA   | TTGAGAGAGA  | GGCTTAATCA                        | GAGACAGAAA  | CTGTTTGAGT | CAAATCAAGG | 6540 |
| 20 | ATGGTTTGAG | GGACTGTTA   | ACAGATCCC                         | TTGGTTTACC  | ACCTTGATAT | CTACCATTT  | 6600 |
|    | GGGACCCCTC | ATTGTACTCC  | TAATGATTT                         | GCTCTCGGA   | CCCTGCATTC | TTAATCGATT | 6660 |
| 25 | AGTCCAATT  | GTAAAGACA   | GGATATCAGT                        | GGTCAGGCT   | CTAGTTTGA  | CTCAACAATA | 6720 |
|    | TCACCACTTG | AAGCCTATAG  | AGTACGAGCC                        | ATAGATAAAA  | TAAAAGATTT | TATTTAGTCT | 6780 |
|    | CCAGAAAAAG | GGGGG       | (2) INFORMATION FOR SEQ ID NO:23: |             |            |            | 6795 |

(i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 9093 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

|    |                                          |            |            |            |             |            |     |
|----|------------------------------------------|------------|------------|------------|-------------|------------|-----|
| 35 | (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: |            |            |            |             |            |     |
| 40 | AATGAAAGAC                               | CCCACCTGTA | GGTTTGGCAA | GCTAGCTAA  | GTAACGCCAT  | TTTGCAAGGC | 60  |
|    | ATGGAAAAAT                               | ACATAACTGA | GAATAGAGAA | GTTCAGATCA | AGGTCAAGGAA | CAGATGGAAC | 120 |
| 45 | AGCTGAATAT                               | GGGCCAACAA | GGATATCTGT | GGTAAGCAGT | TCCTGCCCG   | GCTCAGGGCC | 180 |
|    | AAGAACAGAT                               | GGAACAGCTG | AATATGGGCC | AAACAGGATA | TCTGTGGTAA  | GCAGTTCTG  | 240 |
| 50 | CCCCGGCTCA                               | GGGCAAAAGA | CAGATGGTCC | CCAGATGCCG | TCCAGCCCTC  | AGCAGTTCT  | 300 |
|    | AGAGAACCAT                               | CAGATGTTTC | CAGGGTCCCC | CAAGGACCTG | AAATGACCT   | GTGCTTATT  | 360 |
| 55 | TGAACTAACC                               | AATCAGTTCG | CTTCTCGCTT | CTGTTCGCG  | GCTCTGCTC   | CCCGAGCTCA | 420 |
|    | ATAAAAAGAGC                              | CCACAAACCC | TCACTCGGGG | CGCCAGTCT  | CCGATTGACT  | GAGTCGCCG  | 480 |
| 60 | GGTACCCGTG                               | TATCCAATAA | ACCCCTCTGC | AGTTGCATCC | GACTTGTGGT  | CTCGCTGTT  | 540 |
|    | CTTGGGAGGG                               | TCTCCTCTGA | GTGATTGACT | ACCCGTCA   | GGGGGTCTTT  | CATTGGGGG  | 600 |
| 65 | CTCGTCCGGG                               | ATCGGGAGAC | CCCTGCCAG  | GGACCACCGA | CCCACCA     | GGAGGTAAGC | 660 |
|    | TGGCCAGCAA                               | CTTATCTGTG | TCTGTCGAT  | TGTCTAGTGT | CTATGACTGA  | TTTATGCC   | 720 |
|    | CTGCGTCGGT                               | ACTAGTTAGC | TAACTAGCTC | TGTATCTGGC | GGACCCGTGG  | TGGAACGTAC | 780 |

|    |                                                                       |      |
|----|-----------------------------------------------------------------------|------|
|    | GAGTCGGAA CACCCGGCG CAACCTGGG AGACGCCA GGAGGAACAG GGGAGGATCA          | 840  |
|    | GGGACGCCTG GTGGACCCCT TTGAAGGCCA AGAGACCATT TGGGGTTGCG AGATCCTGGG     | 900  |
| 5  | TTCGAGTCCC ACCTCGTGC CAGTTGCGAG ATCGTGGTT CGAGTCCAC CTCGTGTTT         | 960  |
|    | GTTGCGAGAT CGTGGGTTCG AGTCCCACCT CGCGCTGTTG CACGGGATCG TGGGTTGAG      | 1020 |
|    | TCCCACCTCG TGTTTGTG CGAGATCGTG GTTCTGAGTC CCACCTCGCG TCTGGTCACG       | 1080 |
| 10 | GGATCGTGGG TTCGAGTCCC ACCTCGTGCAG GAGGGTCTCA ATTGGCCGGC CTTAGAGAGG    | 1140 |
|    | CCATCTGATT CTCTGGTT CTCTTTGTG CTTAGCTCG TGTCGGCTCT TGTGTGACT          | 1200 |
| 15 | ACTGTTTTTC TAAAAATGGG ACAATCTGTG TCCACTCCCC TTTCTCTGAC TCTGGTTCTG     | 1260 |
|    | TCGCTTGGTA ATTTTGTGTTT TTACGTTTG TTTTGTGAG TCCTCTATGT TGTCTGTAC       | 1320 |
| 20 | TATCTTGTGTTT TTGTTTGTGG TTACGGTTT CTGTTGTTGCT CTTGTTGTC TCTTTGTGTT    | 1380 |
|    | CAGACTTGGGA CTGATGACTG ACGACTGTGTT TAAAGTTAG CCTCTAAAAA TAAGCCTAAA    | 1440 |
|    | AATCTCTGTCA GATCCCTATG CTGACCACTT CCTTCTAGAT CAACAGCTGC CCTTACGTAT    | 1500 |
| 25 | CGATGGATCC CTCGACTAAC TAATAGCCCA TTCTCCAAGG TCGAGGGGA TCAATTCCGC      | 1560 |
|    | CCCCCCCTTA ACCTTACTGG CGGAACCCCG TTGGAATAAG GCGCGTGTGC GTTGTCTAT      | 1620 |
| 30 | ATGTTATTTT CCACCATATT GCGCTTTT GGCAATGTGA GGGCCGGAA ACCTGGCCCT        | 1680 |
|    | GTCTTCTTGA CGAGCATTCC TAGGGCTCTT TCCCCTCTCG CCAAAGGAAT GCAAGGTCTG     | 1740 |
|    | TTGAATGTG TGAAAGGAAGC AGTCTCTG GAAGCTTCTT GAAGACAAC AACGTCTGTA        | 1800 |
| 35 | GGCACCCCTT GCAGGCAGCG GAACCCCCCA CCTGGCAGACA GGTGCTCTG CGGCCAAAG      | 1860 |
|    | CCACCTGTAT AAGATACACC TGCAAAGCGC GCACACCCCC AGTGCACAGT TGTGAGTTGG     | 1920 |
| 40 | ATAGTTGTGG AAAGAGTCAA ATGGCTCTCC TCAAGCTGAT TCAACAAGGG GCTGAAGGAT     | 1980 |
|    | GCCAGAGG TACCCCATG TATGGATCT GATCTGGGC CTCGGTGCAC ATGCTTTACA          | 2040 |
|    | TGTGTTAGT CGAGGTTAAA AAAACGCTCA GGGCCCCCGA ACCACGGGA CGTGGTTTC        | 2100 |
| 45 | CTTTGAAAAAA CACGATAATA ATCATGGCG CGGATCCCGT CGTTTACAA CGTCGTGACT      | 2160 |
|    | GGGAAACCCCGG TGGCGTCTACC CAACTTAAATC GCCTTGCAGC ACATCCCCCT TTGCGCAGCT | 2220 |
| 50 | GGCGTAATAG CGAAGAGGCC CGCACCGATC GCCCTTCCCA ACAGTTGCGC AGCCTGAATG     | 2280 |
|    | CGCAATGGCG CTTTGCCTGG TTTCCGGCAC CAGAACGGGT GCGGAAAGC TGGCTGGAGT      | 2340 |
|    | GCGATCTTCC TGAGGGCGAT ACTGTCCTCG TCCCCTCAA CTGGCAGATG CACGGTTACG      | 2400 |
| 55 | ATGCGCCCAT CTACACCAAC GTAACTTATC CCATTACGGT CAATCCCGG TTGTTCCCA       | 2460 |
|    | CGGAGAAATCC GACGGGTTGT TACTCGCTCA CATTAAATGT TGATGAAAGC TGGCTACAGG    | 2520 |
| 60 | AAGGGCAGAC CGCAATTATT TTTGATGGCG TTAACTCGGC GTTTCATCTG TGGTGCACCG     | 2580 |
|    | GGCGCTGGGT CGGTTACGGC CAGGACAGTC GTTGGCCGTC TGAATTGAC CTGAGCCCAT      | 2640 |
|    | TTTACGGCAGC CGGAGAAAAC CGCCTCGCGG TGATGGTGCT CGCTGGAGT GACGGCAGTT     | 2700 |
| 65 | ATCTGGAAGA TCAGGATATG TGGCGGATGA CGGGCATTCTT CGGTGACGTC TCGTTGCTGC    | 2760 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | ATAAACCGAC TACACAAATC AGCGATTCC ATGTTGCCAC TCGCTTTAAT GATGATTC      | 2820 |
|    | GCCGCCTGT ACTGGAGGCT GAAGTTCAGA TGTGCGGGA GTTGCCTGAC TACCTACGGG     | 2880 |
| 5  | TAACAGTTTC TTATGCCAG GGTGAAACCG AGGTGCCAG CGGCACCGCG CCTTCGGCG      | 2940 |
|    | GTGAAATTAT CGATGAGCGT GGTGGTTATG CGGATCGGT CACACTACGT CTGAACCTCG    | 3000 |
| 10 | AAAACCGAA ACTGTGGAGC GCCGAAATCC CGAATCTCA TCGTGCCTG GTTGAACTGC      | 3060 |
|    | ACACCGCGA CGGCACCGT ATTGAAGCG AAGCCTGGA TGTCGTTTC CGCGAGGTC         | 3120 |
|    | GGATTGAAAA TGGTCTGCTG CTGCTGAACG GCAAGCCGTT GCTGATTGCA GGCGTTAAC    | 3180 |
| 15 | GTCACGAGCA TCATCCTCTG CATGGTCAGG TCATGGATGA GCAGACGATG GTGCAGGATA   | 3240 |
|    | TCCCTGCTGAT GAAGCAGAAC AACTTTAACG CGGTGCGCTG TTGCTGATTAT CGGAACCATC | 3300 |
|    | CGCTGTGGTA CACGCTGTGC GACCGCTACG GCCTGTATGT GGTGGATGAA GCCAATATTG   | 3360 |
| 20 | AAACCCACGG CATGGTGCCA ATGAATCGTC TGACCGATGA TCCGCCTGG CTACCGCGA     | 3420 |
|    | TGAGCGAACG CGTAACCGCA ATGGTGCAGC GCGATCGTA TCACCCGAGT GTGATCATCT    | 3480 |
| 25 | GGTCGCTGGG GAATGAATCA GGCCACGGCG CTAATCACGA CGCGCTGATCGTGGATAC      | 3540 |
|    | AATCTGTGCA TCCCTCCCCG CCGGTGCACT ATGAAGGGGG CGGAGCCGAC ACCACGCCA    | 3600 |
|    | CCGATATTAT TTGCCCGATG TACGCCCGG TGGATGAAGA CCAGCCTTC CCGCCTGTC      | 3660 |
| 30 | CGAAATGGTC CATCAAAAAA TGGCTTCGCA TACCTGGAGA GACGCGCCCG CTGATCCTT    | 3720 |
|    | CGCAATAACGC CCACCGCATG GGTAACAGTC TTGGCGGTTT CGCTAAATAC TGGCAGGCGT  | 3780 |
|    | TTCGTCAGTA TCCCCGTTA CAGGGCGGCT TCGTCTGGGA CTGGGTGGAT CAGTCGCTGA    | 3840 |
| 35 | TTAAATATGA TGAAAACCGC AACCCGTTGGT CGGCTTACGG CGGTGATTT GGCGATACGC   | 3900 |
|    | CGAACGATCG CCAGTTCTGT ATGAACGGTC TGGCTTTGC CGACCGCACG CGCATCCAG     | 3960 |
| 40 | CGCTGACGGA AGCAAAACAC CAGCAGCACT TTTTCAGTT CCGTTTATCC GGGCAAACCA    | 4020 |
|    | TCGAAGTGC CAGCGAATAC CTGTTCCGTC ATAGCGATAA CGAGCTCCCG CACTGGATGG    | 4080 |
|    | TGGCGCTGGA TGGTAAGCCG CTGGCAAGCG GTGAAGTGC TCTGGATGTC GCTCCACAAG    | 4140 |
| 45 | GTAAACAGTT GATTGAACTG CCTGAACTAC CGCAGCCGGA GAGGCCGGG CAACTCTGGC    | 4200 |
|    | TCACAGTAGC CGTAGTGCA CCGAACCGCA CGCGCATGGTC AGAAGCCGGG CACATCAGCG   | 4260 |
| 50 | CCTGGCAGCA GTGGCGCTG GCGGAAAACC TCAGTGTGAC GCTCCCCGCC GCGTCCCACG    | 4320 |
|    | CCATCCCGCA TCTGACCAACC AGCGAAATGG ATTTTGAT CGAGCTGGGT AATAAGCGTT    | 4380 |
| 55 | GGCAATTAA CGCCCACTCA GGCTTCTTT CACAGATGTG GATTGGCGAT AAAAACAAAC     | 4440 |
|    | TGCTGACGCC GCTGCGCGAT CAGTTCACCC GTGCACCGCT GGATAACCGAC ATTGGCGTAA  | 4500 |
|    | GTGAAGCGAC CGCGATTGAC CCTAACCGCT GGGTCGAACG CTGGAAGGCG GCGGGCCATT   | 4560 |
| 60 | ACCAAGCCGA AGCAGCGTTG TTGCACTGCA CGGCAGATAC ACTTGCTGAT GCGGTGCTGA   | 4620 |
|    | TTACGACCGC TCACGGCTGG CAGCATCAGG GGAAACCTT ATTATCACGC CGGAAAACCT    | 4680 |
|    | ACCGGATTGA TGGTAGTGGT CAAATGGCGA TTACCGTTGA TGTGAAAGTG GCGAGCGATA   | 4740 |
| 65 | CACCGCATCC GGCGCGGATT GGCGCTGAACG GCCAGCTGGC GCAGGTAGCA GAGCGGGTAA  | 4800 |

ACTGGCTCGG ATTAGGGCCG CAAGAAAAT ATCCCACCG CCTTACTGC GCTGTGTTG  
5 ACCGCTGGG TCTGCCATTG TCAGACATGT ATACCCCGTA CGTCTTCCCG AGCGAAACCG  
GTCTGCCGTG CGGGACGCCG GAATTGAATT ATGCCGCCACA CCAGTGCGC GGGGACTTC  
AGTTCACAT CAGGCCCTAC AGTCACAGC AACTGATGGA ACCAGCCAT CGCCATCTGC  
10 TGCACGGGA AGAAGGCACA TGGCTGAATA TCGACGGTTT CCATATGGGG ATTGGTGGCG  
ACGACTCTG GAGCCCGTCA GTATCGGGGG AATTCCAGGT GAGGCCCGGT CGCTACCATT  
15 ACCAGTTGGT CTGGTGTCAA AAATAATAAT AACCGGGCAG GGGGGATCCG AAGGCGGGGA  
CAGCAGTGC A GTGGTGGACA GAAAGCAAGT GATCTAGGGC AGCACGCTCC CTAAAGGGAC  
TTCAGCCCCA AAAGCCAAAC TTGTGGCTT AATACAAAGCT CTGTAATATTG TAAAAAAA  
20 AAAGTCTACA CGGACAGCG AGTATGCTTT GCCACTGTAC AGAGCAATAT ACAGACAAAG  
AGAACTGTG ACATCTCGAG AGAAAAGCCT AAGATGCTGT GGCTAAAGAA AATCAGATGG  
CAAATCTAAC CGCCCCAGGCA TCCTAAAGAG CAATGATCTT GACAGCTGA AGACTATCAA  
25 GTTATAGACA AATTAAGACT GGAAAAAAAA ACCCTGTATA AAATAGTAA AACTGAAAAA  
AGAAAACCTAG TCCCTCTCATG AGAAGACAGA CCTGACATCT ACTGAAAAAT AGACTTTACT  
30 GGAAAAAAATA TGTGTATGAA TACCTCTAG TTTTTGTGAA CGTCTTCAAG ATGGATAAAA  
GCTTTCTT GTAAAACGAG ACTGATCAGA TAGTCATCAA GAAGATTGTT AAAGAAAATT  
TTCCAAGGGT CCGAGGTGCCA AAAGCAATAG TGTCAGATAA TGGTCTGCC TTTGTTGCC  
35 AGGTAACTCA GGGTGTGCCG AAGTATTAG AGGTCAAATG AAAATTCCAT TGTGTGTACA  
GACCTCAGAG CTCAGGAAAG ATAAAAAAGA ATAAAATAAA CTCTAAACAG ACCTTGACAA  
40 AATTAATCTT AGAGACTGGC ACAGACTTAC TTGGTACTCC TTCCCCCTGC CCTATTAGA  
ACTGAGAATA CTCCCTCTTG ATTCGGTTT ACTCTTTTA AGATCCTTTA TGGGGCTCCT  
ATGCCATCAC TGTCCTAAAT GATGTGTTA AACCTATGTT GTTATAATAA TGATCTATAT  
45 GTTAAGTTA AAGGCTTGCAG GGTGGTGCAG AAAGAACTCT GTCTCACACT GGCTACAGTG  
AACAAGCTGG GTACCCCCAAG GACATCTTAC CAGTTCCAGC CAGAGATCTG ATCTACGATC  
50 CCCGGGTGCA CCCGGGTGCA CCCTGTGAA TGTTGTCAG TTAGGGTGTG GAAAGTCCCC  
AGGCTCCCCA GCAGGGCAGAA GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCCAGGT  
TGGAAAGTCC CCAGGCTCCC CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC  
55 AGCAACCATA GTCCCCCCCC TAACTCCGCC CATCCCCCCC CTAACTCCGC CCAGTCCCGC  
CCATTCTCGG CCCCATGGCT GACTATTGTT TTTTATTATG CGAGAGGGCCG AGGCCGCTC  
60 GGCCTCTGAG CTATTCCAGA AGTAGTGAGG AGGCTTTTT GGAGGGCTAG GCTTTTGC  
AAAGCTTCAC GCTGCCGCAA GCACTCAGGG CGAAGGGCT GCTAAAGGAA CGGAAACACG  
TAGAAAGCCA GTCCGCAGAA ACGGTGCTGA CCCGGATGA ATGTCAGCTA CTGGGCTATC  
65 TGGACAAGGG AAAACGCAAG CGCAAAGAGA AAGCAGGTAG CTTGCAGTGG GCTTACATGG  
6800

|    |                                                                    |      |
|----|--------------------------------------------------------------------|------|
|    | CGATAGCTAG ACTGGGCGGT TTTATGGACA GCAAGCGAAC CGGAATTGCC AGCTGGGGCG  | 6840 |
|    | CCCTCTGGTA AGGTTGGGAA GCCCTGCRAA GTAAACTGGA TGCTTCTTCCC GCCGCCAAGG | 6900 |
| 5  | ATCTGATGGC GCAGGGGATC AAGATCTGAT CAAGAGACAG GATGAGGATC GTTCGCGATG  | 6960 |
|    | ATTGAAACAG ATGGATTGCA CGCAGGTTCT CCGGGCGCTT GGGTGGAGAG GCTATTGGC   | 7020 |
| 10 | TATGACTGGG CACAAACAGAC AATCGGCTGC TCTGATGCCG CCGTGTTCCG GCTGTCAGCG | 7080 |
|    | CAGGGGGCGCC CGGTTCTTT TGTCAAGACC GACCTGTCCG GTGCCCTGAA TGAACTGCAG  | 7140 |
|    | GACGAGGAGCG CGCGGCTATC GTGGCTGCC ACACGGGGCG TTCCCTGCC AGCTGTGCTC   | 7200 |
| 15 | GACGTTGCTA CTGAAGCGGG AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT  | 7260 |
|    | CTCCTGTCAT CTCACCTTGC TCCTGCCAGG AAAGTATCCA TCATGGCTGA TGCAATCGGG  | 7320 |
|    | CGGCTGCATA CGCTTGATCC GGCTACCTGC CCATTGACCC ACCAAGCGAA ACATCGCATC  | 7380 |
| 20 | GAGCGAGCAC GTACTCGAT GGAAGCCGGT CTTGTCGATC AGGATGACTT GGACGAAAGAG  | 7440 |
|    | CATCAGGGC TCGCGCCAGC CGAACCTGTC GGCAAGGCTA AGGGCGCAT GCCCCACGGC    | 7500 |
|    | GAGGATCTCG TCGTGACCCA TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC  | 7560 |
| 25 | CGCTTTCTG GATTATCGA CTGTTGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA    | 7620 |
|    | GGCTTGCTA CCCGTGATAT TGCTGAAGAG CTTGGCGCG AATGGGCTGA CGCCTTCTC     | 7680 |
| 30 | GTGCTTTACG GTATCGCCG TCCCGATTG CAGCGCATCG CCTTCTATCG CCTTCTTGAC    | 7740 |
|    | GAGTTCTCT GAGCGGGACT CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC   | 7800 |
|    | CATCACGAGA TTTCGATTC ACCGGCGCT TCTATGAAAG GTTGGGCTTC GGAATCGTTT    | 7860 |
| 35 | TCCGGGACGG AATTCTGTAAT CTGCTGCTTG CAAACAAAAA AACACCCGCT ACCAGCGGTG | 7920 |
|    | GTGGTTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG CTTCAGCAGA   | 7980 |
| 40 | GCGCAGATAC CAAATACTGT CCTCTAGTG TAGCGTAGT TAGGCCACCA CTTCAAGAAC    | 8040 |
|    | TCTGTACGAC CGCCTACATA CCTCGCTCG CTAATCTGT TACCACTGGC TGCTGCCAGT    | 8100 |
| 45 | GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTACCGGA TAAGGCGCAG   | 8160 |
|    | CGGTCGGGCT GAACGGGGGG TTCGTGCACA CAGCCCGACT TGGAGCGAAC GACCTACACC  | 8220 |
|    | GAACCTGAGAT ACCTACAGCC TGAGCATGAA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG | 8280 |
| 50 | GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGGAG AGCGCACAGG GGAGCTCCA  | 8340 |
|    | GGGGAAACG CCTGGTATCT TTATAGTCCT GTGGGGTTTC GCCACCTCTG ACTTGAGCGT   | 8400 |
| 55 | CGATTTTGT GATGTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG CAACGCCAG      | 8460 |
|    | ATGCGCCGCC TCGAGAAACCC TGGCCCTATT ATTGGGTGGA CTAACCATGG GGGGAATTGC | 8520 |
|    | CGCTGGAATA GGAACAGGGCA CTACTGCTCT AATGGCCACT CAGCAATTCC AGCAGCTCCA | 8580 |
| 60 | AGCGCAGTA CAGGATGATC TCAGGGAGGT TGGAAATCA ATCTCTAACC TAGAAAAGTC    | 8640 |
|    | TCTCACTTCC CTGCTCTGAAG TTGCTCTACA GAATCGAAGG GGCCTAGACT TGTTATTTCT | 8700 |
|    | AAAAGAAGGA GGGCTGTG TGCTCTAAA AGAAGAATGT TGCTTCTATG CGGACCACAC     | 8760 |
| 65 | AGGACTAGTG AGAGACAGCA TGGCCAAATT GAGAGAGGAGG CTTATCAGA GACAGAAACT  | 8820 |

|    |                                                                   |      |
|----|-------------------------------------------------------------------|------|
| 5  | GTTTGAGTCA ACTCAAGGAT GGTTTGGAGG ACTGTTAAC AGATCCCTT GGTTTACAC    | 8880 |
|    | CCTTGATATCT ACCATTATGG GACCCCTCAT TGTACTCCTA ATGATTTGC TCTTCGGACC | 8940 |
|    | CTGCATTCTT AATCGATTAG TCACATTGT TAAAGACAGG ATATCAGTGG TCCAGGGCTCT | 9000 |
| 10 | AGTTTGACT CAACAATATC ACCAGCTGAA GCCTATAGAG TACGAGCCAT AGATAAAATA  | 9060 |
|    | AAAGATTTA TTAGTCTCC AGAAAAAGGG GGG                                | 9093 |

## (2) INFORMATION FOR SEQ ID NO:24:

- 15 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 46 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear
- 20 (ii) MOLECULE TYPE: DNA (genomic)

## 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

|    |                                                 |    |
|----|-------------------------------------------------|----|
| 25 | GACTAACCTT GATTCCTGG AGGGGGGGT CTTTCATTG GGGGCT | 46 |
|----|-------------------------------------------------|----|

## (2) INFORMATION FOR SEQ ID NO:25:

- 30 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 4834 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA (genomic)

## 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

|    |                                                                   |     |
|----|-------------------------------------------------------------------|-----|
| 40 | TGAAGAATAA AAAATTACTG GCCTCTTGTG AGAACATGAA CTTTCACCTC GGAGCCCACC | 60  |
| 45 | CCCTCCCACAT TGGAAAACAT ACTTGAGAAA AACATTCTT GGAACAACCA CAGAATGTTT | 120 |
|    | CAACAGGCCA GATGTATTGC CAAACACAGG ATATGACTCT TTGGTTGAGT AAATTGTTG  | 180 |
| 50 | TTGTTAAACT TCCCCATT CCTCCCCATT CCCCTCCCA GTTTGTGGTT TTTTCCTTTA    | 240 |
|    | AAAGCTTGTG AAAAATTGTA GTCGTGTGCG AGACTCTCTT ACCCTGTGCA AAGGTGTATG | 300 |
|    | AGTTTCGACC CCAGAGCTCT GTGTGCTTTC TGTTGTGCT TTATTCGAC CCCAGAGCTC   | 360 |
| 55 | TGGTCTGTG GCTTCTATGT CGCTGCTTAA TTAAATCTTAC CTTCTACAT TTTATGTATG  | 420 |
|    | GTCTCAGTGT CTTCTTGGGT ACAGCGCTGT CCCGGGACTT GAGTGTCTGA GTGAGGGTCT | 480 |
| 60 | TCCCTCGAGG GTCTTCATT TGTCACATGG GCCGGGAAATT CGAGAACTT TCATTTGGTG  | 540 |
|    | CATTGGCCGG GAATTGAAA ATCTTCATT TGTCGATTG GCCGGGAAAC AGCGCGACCA    | 600 |
|    | CCCGAGGTC CTAGACCCAC TTAGAGGTAAG GATTCTTGT TCTGTTTGG TCTGATGTCT   | 660 |
| 65 | GTGTTCTGAT GTCTGTGTTG TGTTCTAAG TCTGGTGCAGA TCGCAGTTTC AGTTTGCGG  | 720 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | ACGCTCAGTG AGACCGCGCT CCGAGAGGGGA GTGCCGGGTG GATAAGGATA GACGTGTCCA  | 780  |
|    | GGTGTCCACC GTCCGTTCGC CCTGGGGAGAC GTCCCAGGAG GAACAGGGGA GGATCAGGGA  | 840  |
| 5  | CGCCTGGTGG ACCCCCTTGA AGGCCAAGAG ACCATTGGG GTTGCAGAT CGTGGGTTCG     | 900  |
|    | AGTCCCACCT CGTGCCCCAGT TCGGAGATCG TGGGTTCGAG TCCCACCTCG TGTTTTGTTG  | 960  |
| 10 | CGAGATCGT GGTTCGAGTC CCACCTCGCG TCTGGTCACG GGATCGTGGG TTTCGAGTCCC   | 1020 |
|    | ACCTCGTGT TTGTTGGAG ATCGTGGGTT CGAGTCCCAC CTTCGCGTCTG GTCACGGGAT    | 1080 |
|    | CGTGGGTTCG AGTCCCACCT CGTGAGGAG GTCTCAATG GCCGGCCTTA GAGAGGCCAT     | 1140 |
| 15 | CTGATTCCTC TGGTTCTCT TTTTGTCTTA GTCTCGTGT CGCTCTTGT GTGACTACTG      | 1200 |
|    | TTTTCTAAA AATGGGACAA TCTGTGTCCA CTCCCCCTTC TCTGACTCTG GTTCTGTGCG    | 1260 |
| 20 | TTGGTAATT TGGTTGTTA CGTTGGTTT TGTGAGTCGT CTATGTTGTC TGTTACTATC      | 1320 |
|    | TTGTTTGTG TTGTTGTTA CGGGTTCTGT GTGTCGTT TGTTGTCCTT TGTTGTCAGA       | 1380 |
|    | CTTGGACTGA TGACTGACGA CTGTTTTAA GTTATGCCCTT CTAAAATAAG CCTAAAAATC   | 1440 |
| 25 | CTGTCAGATC CCTATGCTGA CCACCTCCCT TCAGATCAAC AGCTGCCCTG CCTCCCACTC   | 1500 |
|    | CAACTCCAGA GAGCAGCCAG CGGGTACAG TGGTCCCCC CATGAACCTG GAGCCTAGGG     | 1560 |
|    | AAAAATGAGC TCGGAAATCC GGAGCAAATG AGGACTGGTC CCTGAGAAAGT CAGTGGCCTA  | 1620 |
| 30 | AATGTTGAGC CTGCTGAAGC AAAAGAAGAG GAGGCTGTT GAGTAGCCGG CCAAGAGCGC    | 1680 |
|    | CGCGGGTTC CAGGCAGCTT CTCATCCCC TGTCCTCCC ATCCCGTCT TGTTAACAG        | 1740 |
|    | AAAAACTGCT TTCACCTTGA GATATGAGTG GCCCAGATACA GCCAGCTGTG AGAGCTGTAC  | 1800 |
| 35 | TCCCTTCCCT GCCCCACGTG TTTCTCTTC TCAGGGGACCC CCTCCCTGAG CTGCTGGCAG   | 1860 |
|    | TGAGTCTGTT CTAAGCTCCA GTGAGGGAGG CATCCGCCA CTTGGGGCTT CTGTCAAAGG    | 1920 |
| 40 | TAAGGAGCAC CTGTGAGTCT AAC TGCCAGG CTCTGATGGG GGTCTCGTCT CTGTTGGACT  | 1980 |
|    | AGAAAGTGT CCAACAACTC GACCAAGGTA ACAGGAAGTT AAGACAAAGA CAGAGACCAA    | 2040 |
|    | AGTCAGAACATC AGAGCTGTG TGAGAGACAA AAAGATAAAA AAAATAAAAT GCTGGCCACA  | 2100 |
| 45 | AAAGTCAGGA AAAACTAGAAA ACTTAGATAG TACCTGGCAA CAAAAGAAAG CTTTGGCTA   | 2160 |
|    | AAGATCAACG TGATATACTGT AAAGAAAATG AGCACTGGGT GAGAGACTGC CCCAACAAAA  | 2220 |
| 50 | AGAAGAGGAG CCCCCCTCAT GACCAAAACCC TTCACCTGTT CGTGGCTAAA AGTAAAGAGA  | 2280 |
|    | TAACAAAAGG GGTGCTAACCA CAGAAGCTGA GTCCCTAAAAA GAGTCCGGTG GCCTACCTGT | 2340 |
| 55 | TGAAGGCAGCT AAAAAAGAGA CTGTGTTCA TACTCCTCCA CTGACCAGTG CAAAACAAGC   | 2400 |
|    | AAAAAAGTTC CTGGGCACAG CGGGCTTGTG CAGATTGTGG ATTCCAGGTT TTGCTGAGGT   | 2460 |
|    | AAAGAGATAACAGCCCTTC GTATAGAAAAA ATAAAAAAACA ACCTTGGRTG TCCTTGGATG   | 2520 |
| 60 | CTATTGAGAC TGCCCTAATG TTGCCCCAG CTATGGACT CCTAGATGTG ACTGAGAACAA    | 2580 |
|    | AAGGTTATTGC CAAAGAAGTT CTTACTCAGA GATTGGGACCC CTGAAAAAGA CCTGTGGCAT | 2640 |
|    | ACTTGTAAGA AATTAGACCT GGTGGCTGTA AGATGGCCTG CTTGCTGCA CATACTGGCT    | 2700 |
| 65 | TCTGGTCAGA GACGAGATA AATTGACTCT GAGACAAAC TTGGCACATG TCCTAGAAAG     | 2760 |

|    |                                                                     |      |
|----|---------------------------------------------------------------------|------|
|    | TGTGGTTAG CCCCCATGAC CGATGGCTGA CTAAACGCTCT TGAAAACATT ATCCAACGTG   | 2820 |
| 5  | TCCCCCTGACC GATGGACACA TTGTCAGAGC TTTTTTGAC TGAAACGAGTG ACCTTCGCTC  | 2880 |
|    | CCCCCTGCTAT CCTCGATCTC ACTACTGCCT GAGACTTCAC CTACTCATCA TTGTCGTCAC  | 2940 |
|    | ATTCTGGCAG AAGAAACTCA TACTCGAAT GATCTGAAGG ATCAGATCAG CCTTGGCCCTG   | 3000 |
| 10 | AGAGTTGAG CTGGTACACG GATGGCAGTA GCCTGGAGGT TAAGGGTAAG CGGAAGGGCGG   | 3060 |
|    | GGACAGCAGT GCAGTGGTGG ACAGAAAGCA AGTGATCTAG GCCAGCAGCC TCCCCTAARGG  | 3120 |
|    | GACTTCAGCC CACAAAGCCA AACTTGTGGC TTTAACACAA GCTCTGTAAA TGGTAAAAAA   | 3180 |
| 15 | AAAAAAAGCTC ACACGGACAG CAGGTATGCT CTTGCCACTG TACAGAGCAGA TATACAGACA | 3240 |
|    | AAGAGAACTG TTGACATCTG CAGAGAAAGA CCTAAAGATGC TGTTGGCTAAA AGAAATCAGA | 3300 |
| 20 | TGGCAAATCT AACCGCCCG GCATCCTAAA GAGCAATGAT CCTGACAGTC TGAAGACTAT    | 3360 |
|    | CAAGTTATAG ACAAAATTAG ACTGGTAAAAA AAAACCTGT ATAAAATAGT AAAAACATGAA  | 3420 |
|    | AAAAGAAAAC TAGTCCTCTC ATGAGAAAGAC AGACCTGACA TCTACTGAAA ATAGACTTT   | 3480 |
| 25 | ACTGGAAAAA ATATGTGTAT GAATACCTTC TAGTTTTGT GAACGTTCTC AAGATGGATA    | 3540 |
|    | AAAGCTTTT CTTGTAAAAC GAGACTGATC AGATAGTCAT CAAGAAGATT GTTAAAGAAA    | 3600 |
| 30 | ATTTCCAAG GTTCGGAGTG CAAAAGCAA TAGTGTAGA TAATGGTCT GCCTTTGTTG       | 3660 |
|    | CCCAGGTAAAG TCAGGGTGTG GCCAAGTATT TAGAGGTCAA ATGAAAATTC CATTGTGTG   | 3720 |
|    | ACAGACCTCA GAGCTCAGGA AGATAAAAAA AGAATAAAA AAACCTCTAA CAGACCTTGA    | 3780 |
| 35 | CAAAATTAAT CCTAGAGACT GGCAACAGACT TACTTGGTAC TCCTTCCCT TGCCCTATT    | 3840 |
|    | AGAAACTGAGA ATACTCCCTC TTGATTCCGT TTTACTCTTT TTAAGATCCT TTATGGGCT   | 3900 |
| 40 | CCTATGCCAT CACTGTCTTA ATATGATGTG TAAACCTAT GTTGTATAA TAATGATCTA     | 3960 |
|    | TATGTTAAGT TAAAAGCTT GCAGGGTGTG CAGAAAAGAG TCTGGTCACA ACTGGCTACA    | 4020 |
|    | GTGAACAAGC TGGGTACCCC AAGGACATCT TACCAAGTCC AGCCAGAGAT CTGATCTACG   | 4080 |
| 45 | TACACCTGCG TCATGCTGAG ACCCTCAAGC CTCACTAAAAA GGGTCCCTGC CTAGTTCTGT  | 4140 |
|    | TTACTAATCT GCCTTATTCT GTTTTGTTCC CCATGTTAAA GATAGAGTAA ATGCGATATT   | 4200 |
| 50 | CTCCACATAG AGATATAGAC TTCTGAAATT CTAAGATTAG ATTATTTAC AAGAAGAAGT    | 4260 |
|    | GGGGAAATGAA GAATAAAAAAA TTACTGGCTC CTTGTGAGAA CATGAACCTT CACCTCGAG  | 4320 |
|    | CCCACCCCT CCCATCTGGA AAACATACCTT GAGAAAAACAA TTTTCTGGAA CAACCACAGA  | 4380 |
| 55 | ATGTTTCAAC AGGCCAGATG TATTGCCAA CACAGGATAT GACTTTTGG TTGAGTAAAT     | 4440 |
|    | TTGTTGGTTGT TAAACTTCCC CTATTCCTC CCCATTCCCC CTCCCAGTT GTGGTTTTT     | 4500 |
| 60 | CCTTTAAAAG CCTGTGAAAAA ATTTGAGTCG TCGTCGAGAC TCCTCTACCC TGTGCAAAGG  | 4560 |
|    | TGTATGAGTT TCGACCCCG AGCTCTGTGTT GCTTTCTGTT GCTGCTTAT TTCGACCCCA    | 4620 |
|    | GAGCTCTGGT CTGTTGCTT TCATGTCGCT GCTTTATTAA ATCTTACCTT CTACATTAA     | 4680 |
| 65 | TGTATGGTCT CAGTGTCTTC TTGGGTACGC GGCTGTCCCG GGACTTGAGT GTCTGAGTGA   | 4740 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| GGGTCTTCCC TCGAGGGTCT TTCATTTGGT ACATGGGCCG GGAATTCGAG AATCTTTCAT | 4800 |
| TTGGTGCATT GGCCGGAAAT TCGAAAATC TTCA                              | 4834 |

## 5 (2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 4518 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| 20 CACCTGACGC GCCCTGTAGC GGCGCATTAA GCGCGGGCGGG TGTGGTGGTT ACGCGCAGCG | 60   |
| TGACCGCTAC ACTTGCCAGC GCCCTAGCGC CCGCTCCTTT CGCTTTCTTC CCTTCCTTTC     | 120  |
| 25 TCGCCACGTT CGCCGGCTTT CCCCGTCAAG CTCTAAATCG GGGGCTCCCT TTAGGGTTCC  | 180  |
| GATTTAGTGC TTTACGGAC CTCGACCCCA AAAAACATTGA TTAGGGTGTAG GTTTCACGTA    | 240  |
| 30 GTGGGCCATC GCCCTGTAGAG ACGGTTTTC GCCTTTGAC GTTGGACTCC AGTTCTTTA    | 300  |
| ATAGTGGACT CTTGTCCAA ACTGGAACAA CACTCAACCC TATCTGGTC TATTCTTTG        | 360  |
| 35 ATTATATAAGG GATTTGGCG ATTTCGGCCT ATTGGTTAAA AAATGAGCTG ATTTAACAAA  | 420  |
| AATTTAACGC GAATTTAAC AAAATATTAA CGCTTACAAT TTACGCGTTA AGATACATTG      | 480  |
| 40 ATGAGTTGG ACAAAACCACA ACTAGAATGC AGTAAAAAAA ATGCTTTATT TGTGAAATT   | 540  |
| GTGATGCTAT TGCTTTATT GTAACCATTA TAAGCTGCAA TAAACAAAGTT AACAAACA       | 600  |
| 45 ATTGCATTCA TTTTATGTT CAGGTTCAAGG GGGAGGTGTG GGAGGTTTT TAAAGCAAGT   | 660  |
| AAAACCTCTA CAAATGTGGT ATGGCTGATT ATGATCATGA ACAGACTGTG AGGACTGAGG     | 720  |
| 50 GGCCCTGAAAT GAGCCTGGGG ACTGTGAATC TAAAATACAC AAACAATTAG AATCAGTAGT | 780  |
| TTAACACATT ATACACTTAA AAATTGGATC TCCATTGCC ATTCAAGCTG CGCAACTGTT      | 840  |
| GGGAAGGGCG ATCGGTGCGG GCCTTCCGCA TATTACGCCA GCTGGCGAAA GGGGGATGTG     | 900  |
| 55 CTGCAAGGCG ATTAAGTGG GTAACGCCAG GGTTTCCCA GTCACGACGT TGAAACAGA     | 960  |
| CGGCGACTGA ATTGTAATAC GACTCACTAT AGGGCGAATT GGGTACACTT ACCTGGTACC     | 1020 |
| CCACCCGGGT GGAAAATCGA TGGGCCCGCG GCCGCTCTAG AAGTACTCTC GAGAAGCTT      | 1080 |
| 60 TTGAATTCTT TGGATCCACT AGTGTGACCC TGCAGGCCCG CGAGCTCCAG CTTTGTTCC   | 1140 |
| CTTTAGTGAG GGTTAATTTC GAGCTGGCG TAATCAAGGT CATACTGTTT CCCTGTGTGA      | 1200 |
| 65 AATTGTTATC CGCTCACAAAT TCCACACAAAT ATACGAGGGC GAAGTATAAA GTGTAAGCC | 1260 |
| TGGGGTGCCT AATGAGTGAG CTAACCTACA GTAAATTGGCG CTAGCGGATC TGACGGTTCA    | 1320 |
| CTAAACCCAGC TCTGCTTATA TAGACCTCCC ACCGTACACG CCTACCGCCC ATTGCGTCA     | 1380 |
| ATGGGGCGGA GTTGTACGA CATTGGAA AGTCCCGTTG ATTTGGTGC CAAAACAAAC         | 1440 |

|    |             |             |             |             |             |             |      |
|----|-------------|-------------|-------------|-------------|-------------|-------------|------|
|    | TCCCATTGAC  | GTCATGGGG   | TGGAGACTTG  | GAAATCCCCG  | TGAGTCAAAC  | CGCTATCCAC  | 1500 |
| 5  | GCCCCATTGAT | GTACTGCCA   | AACCGCATCA  | CCATGGTAAT  | AGCGATGACT  | AATACTGAGA  | 1560 |
|    | TGTA        | CTGCA       | AGTAGGAAAG  | TCCCATAAGG  | TCATGTACTG  | GGCATAATGC  | 1620 |
|    | TTTACCGTC   | ATTGACGTCA  | ATAGGGGGCG  | TACTTGGCAT  | ATGATACTACT | TGATGTACTG  | 1680 |
| 10 | CCAAGTGGGC  | AGTTAACCGT  | AAATACTCCA  | CCCATGGACG  | TCAATGGAAA  | GTCCCATTG   | 1740 |
|    | GGCGTTACTAT | GGGAACATAC  | GTCATTATTG  | ACGTCAATTG  | GGCGGGGTG   | TTGGCGGTC   | 1800 |
| 15 | AGCCAGCGG   | GCCATTATTAC | GTAAGTATG   | TAACCGGAA   | CTCCATATAT  | GGGCTATGAA  | 1860 |
|    | CTAATGACCC  | CGTAAATTGAT | TACTTAAAT   | AACTAATGCA  | TGGCGGTAAT  | ACGGTTATCC  | 1920 |
|    | ACAGAATCAG  | GGGATAACGC  | AGGAAGAAC   | ATGTGACCA   | AAGGCCAGCA  | AAAGGCCAGG  | 1980 |
| 20 | AACCGTAAAA  | AGGCCCGGTT  | GCTGGGTTT   | TTCCATAGGC  | TCCGCCCCCC  | TGACGAGCAT  | 2040 |
|    | CACAAAATC   | GACGCTCAAG  | TCAGAGGGT   | CGAAACCCGA  | CAGGACTATA  | AAGATACCAG  | 2100 |
|    | GGCGTTCCCC  | CTGGAAGCTC  | CCTCGTGC    | TCTCCTGTT   | CGACCCCTG   | GCTTACCGGA  | 2160 |
| 25 | TACCTGTCCG  | CCTTTCTCCC  | TTCGGGAAAGC | GTGGCGTTT   | CTCATAGCTC  | ACGCTGTAGG  | 2220 |
|    | TATCTCAGT   | CGGTGTAGGT  | CGTTCCTCC   | AACTGGGCT   | GTGTCACGA   | ACCCCCCGTT  | 2280 |
|    | CAGCCCGACC  | GCTGCGCC    | ATCCGGTAAC  | TATCGCTTG   | AGTCCAACCC  | GGTAAGACAC  | 2340 |
| 30 | GACTTATCGC  | CACTGGCAGC  | ACCCACTGGT  | AAACAGGATTA | GCAGAGCG    | GTATGTAGGC  | 2400 |
|    | GGTGTACAG   | AGTTCTGAA   | GTGGTGGCCT  | AACTACGGCT  | ACACTAGAAC  | GACAGTATT   | 2460 |
| 35 | GGTATCTGCG  | CTCTGCTGAA  | GCCAGTAC    | TTCGGGAAAA  | GAGTTGGTAG  | CTCTTGATCC  | 2520 |
|    | GGCAAAACAAA | CCACCGCTGG  | TAGCGGTGGT  | TTTTGGTTT   | GCAAGCAGCA  | GATTACCGC   | 2580 |
| 40 | AGAAAAAAAG  | GATCTCAAGA  | AGATCCTTTG  | ATCTTTCTA   | CGGGGTCTGA  | CGCTCAGTGG  | 2640 |
|    | AACGAAAAC   | CACCTTAAGG  | GTTTTGGTC   | ATGAGATTAT  | CAAAAGGAT   | CTTCACCTAG  | 2700 |
|    | ATCCTTTAA   | ATTTAAATG   | AGTTTTAA    | TCAATCTAA   | GTATATATGA  | GTAACCTGAG  | 2760 |
| 45 | GCTATGGCAG  | GGCCTGCCG   | CCCGACGTTG  | GCTCGCGAC   | CTGGGCC     | ACCCGAACTT  | 2820 |
|    | GGGGGGTGGG  | GTGGGGAAA   | GGAGAACCG   | CGGGCGTATT  | GGCCCGAATG  | GGGTCTCGGT  | 2880 |
| 50 | GGGGTATCGA  | CAGAGTGCCA  | GGCCCTGGGAC | CGAACCCCG   | GTTTATGAC   | AAACGACCCA  | 2940 |
|    | ACACCGTGC   | TTTATTCTG   | TCTTTTATT   | GGCGTCATAG  | CGCGGGT     | TTCCGGTATT  | 3000 |
|    | GTCTCTTCC   | GTGTTTCAGT  | TAGCCTCCC   | CTAGGGTGGG  | CGAAGAAC    | TGAGCATGAGA | 3060 |
| 55 | TCCCCCGCT   | GGAGGATCAT  | CCAGCCGGG   | TCCCGGAAA   | CGATTCGAA   | GCCCAACCTT  | 3120 |
|    | TCATAGAAGG  | CGGCGGTGGA  | ATCGAAATCT  | CGTGATGGCA  | GGTTGGGCGT  | CGCTTGGT    | 3180 |
| 60 | GTCATTCGA   | ACCCCAGAGT  | CCCGCTCAGA  | AGAACTCTC   | AAGAAGGCGA  | TAGAAGGCGA  | 3240 |
|    | TGCGCTGCCA  | ATCGGGAGCG  | GGCATACCGT  | AAAGCACGAG  | GAAGCGGTCA  | GCCCATTC    | 3300 |
|    | CGCCAAGCTC  | TTCAGCAATA  | TCACGGGTAG  | CCAAGCTAT   | GTCTGATAG   | CGGTCCGCCA  | 3360 |
| 65 | CACCCAGCCG  | GCCACAGTCG  | ATGAATCCAG  | AAAAGGGCC   | ATTTCCACC   | ATGATATTG   | 3420 |

|    |                                                                   |      |
|----|-------------------------------------------------------------------|------|
|    | GCAAGCAGGC ATCGCCATGG GTCACGACGA GATCCTGCC GTCGGGCATG CTCGCCCTGA  | 3480 |
|    | GCCTGGCAA CAGTTCCGGT GGCGCGAGCC CCTGATGCTC TTGCTCCAGA TCATCCTGAT  | 3540 |
| 5  | CGACAAGACC GGCTTCCATC CGAGTAGCTG CTCGCTCGAT GCGATGTTTC GCTTGGTGGT | 3600 |
|    | CGAAATGGCA GGTAGCCCGA TCAAGCGTAT GCAGCCGGG CATTGCATCA GCCATGATGG  | 3660 |
| 10 | ATACTTTCTC GGCAAGGAGCA AGGTGAGATG ACAGGAGATC CTGCCCCGGC ACTTCGCCA | 3720 |
|    | ATAGCAGCCA GTCCTTCCC GCTTCAGTGA CAACGTCGAG CACAGCTGCG CAAGGAACGC  | 3780 |
|    | CCGCTGTGGC CAGCCACGAT AGCCGCGCTG CCTCGTCTTG CAGTTCATTC AGGGCACCGG | 3840 |
| 15 | ACAGGGCTGGT CTTGACAAAA AGAACCGGGC GCCCCTGCC TGACAGCCGG AACACGGGG  | 3900 |
|    | CATCAGAGCA GCGGATTGTC TGTGTCGCC AGTCATAGCC GAATAGCCTC TCCACCCAAG  | 3960 |
|    | CGGCGGAGA ACCTCGCTGC AATCCATCTT GTTCAATCAT GCGAAACGAT CCTCATCTG   | 4020 |
| 20 | TCTCTTGATC GATCTTTGCA AAAGCCTAGG CCTCCAAAAA AGCCTCTCA CTACTTCTGG  | 4080 |
|    | AATAGCTCG AGGCCGAGGC GGCCCTGCC TCTGCATAAA TAAAAAAAAT TAGTCAGCCA   | 4140 |
| 25 | TGGGGCGGAG AATGGGGCGA ACTGGGGCGA GTTAGGGCGG GGATGGGGCG AGTTAGGGGC | 4200 |
|    | GGGACTATGG TTGCTGACTA ATTGAGATGC ATGCTTTGCA TACTTCTGCC TGCTGGGGAG | 4260 |
|    | CCTGGGACT TTCCACACCT GGTTGCTGAC TAATTGAGAT GCATGCTTGC CATACTTCTG  | 4320 |
| 30 | CCTGCTGGGG AGCCTGGGGA CTTTCCACAC CCTAACTGAC ACACATTCA CAGCTGGTC   | 4380 |
|    | TTCCCGCCTC AGGACTCTTC CTTTTCAAT ATTATTGAAG CATTATCAG GGTTATTGTC   | 4440 |
| 35 | TCATGAGCGG ATACATATT GAATGTATTT AGAAAAATAA ACAAAATAGGG GTTCCGCGCA | 4500 |
|    | CATTCCCCG AAAAGTGC                                                | 4518 |

## (2) INFORMATION FOR SEQ ID NO:27:

- 40       (i) SEQUENCE CHARACTERISTICS:  
           (A) LENGTH: 25 base pairs  
           (B) TYPE: nucleic acid  
           (C) STRANDEDNESS: single  
           (D) TOPOLOGY: linear
- 45       (ii) MOLECULE TYPE: DNA (genomic)

50       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:  
 CTCCACATAG AGATATAGAC TTCTG

25

## 55       (2) INFORMATION FOR SEQ ID NO:28:

- 60       (i) SEQUENCE CHARACTERISTICS:  
           (A) LENGTH: 45 base pairs  
           (B) TYPE: nucleic acid  
           (C) STRANDEDNESS: single  
           (D) TOPOLOGY: linear
- 65       (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CGATCTTATT ATATTAACCTGG AGTTTGAGC CCRMCCCCCTC CCATC

45

5 (2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5594 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

20 TGCAATTAGTT ATTAATAGTA ATCAATTACG GGGTCATTAG TTCATAGCCC ATATATGGAG

60

TTCCCGCTTA CATAACTTAC GGTAATGGC CCGCCTGGCT GACCGCCAA CGACCCCCGC

120

25 CCATTGACGT CAATAATGAC GTATGTTCCC ATAGTAACGC CAATAGGGC TTTCCATTGA

180

CGTCAATGGG TGGAGTATTT ACGGTAACCT GCCCACTTGG CAGTACATCA AGTGTATCAT

240

ATGCCAAGTA CGCCCCCTAT TGACGTCAT GACGGTAAT GGCCCGCCTG GCATTATGCC

300

30 CAGTACATGA CCTTATGGGA CTTTCTACT TGCGAGTACA TCTACGTATT AGTCATCGCT

360

ATTACCATGG TGATGCGGTT TTGGCAGTAC ATCAATGGC GTGGATAGCG GTTTGACTCA

420

35 CGGGGATTC CAAGTCTCCA CCCATTGAC GTCAATGGGA GTTGTGTTG GCACCAAAAT

480

CAACGGGACT TTCCAAAATG TCGTAACAC TCCGCCCAT TGACGCAAAT GGGCGTAGG

540

CGTGTACGGT GGGAGGTCTA TATAAGCAGA GCTGGTTAG TGAACCGTA GATCCGGCC

600

40 AGTCCTCGA TTGACTGAGT CGCCCGGTA CCCGTGTATC CAATAAACCC TCTTGCAGTT

660

GCATCCGACT TGTGGCTCG CTGTTCTTG GGAGGGTCTC CTCTGAGTGA TTGACTACCC

720

45 GTCAGCGGGG GTCTTTCATT TGGGGGCTCG TCCGGGATCG GGAGACCCCT GCCCAGGGAC

780

CACCGACCCA CCACCGGGAG GTAAGCTGG CAGCAACTTA TCTGTGTCG TCCGATTGTC

840

TAGTGTAT GACTGATTT ATGCCCTGC GTCGGACTA GTTAGCTAAC TAGTCTGTA

900

50 TCTGGCGGAC CGCTGGTGG ACTGACGAGT TCGGAACACC CGGCCGCAAC CCTGGGAGAC

960

GTCGGCAGG GAACAGGGGA GGATCAGGGA CGCCTGGTGG ACCCCTTTGA AGGCCAAGAG

1020

55 ACCATTTGGG GTTGGCGAGAT CGTGGGTTCG AGTCCCACCT CGTCCCCAGT TGCGAGATCG

1080

TGGGGTCAG TCCCCACCTCG TGTGGGTTG CGAGATCGTG GGTCGAGTC CCACCTCGCG

1140

TCTGGTCACG GGATCGTGGG TTGAGTCCCG ACCTCGTGTG TTGTTGCGAG ATCGTGGGTT

1200

60 CGAGTCCCCAC CTCGCGCTCG GTCACGGGAT CGTGGGTTCG AGTCCCACCT CGTGCAGAGG

1260

GTCTCAATTG GCCGGCTTA GAGAGGCCAT CTGATCTTC TGTTTCTCT TTTTGTCTTA

1320

65 GTCTCGTGTGTC CGCTCTTGTGTT GTGACTACTG TTTTTCTAAA AATGGACAA TCTGTGTCCA

1380

CTCCCGTTTC TCTGACTCTG GTTCTGTCGC TTGTTAATTT TGTTGTTTA CGTTGTTTT

1440

|    |              |             |             |             |             |             |      |
|----|--------------|-------------|-------------|-------------|-------------|-------------|------|
|    | TGTGAGTCGT   | CTATGTTGTC  | TGTTACTATC  | TTGTTTTGT   | TTGTGGTTA   | CGGTTTCTGT  | 1500 |
| 5  | GTGTGCTTG    | TGTGTCCTT   | TGTGTCAGA   | CTTGGACTGA  | TGACTGACGA  | CTGTTTTAA   | 1560 |
|    | GTATGCCTT    | CTAAAATAAG  | CCTAAAAATC  | CTGTCAGATC  | CCTATGCTGA  | CCACTTCCCT  | 1620 |
|    | TCAGATCAAC   | AGCTGCCCTT  | ACGTATCGAT  | GGATCCTCG   | ACTAACTAAT  | AGCCCATTCT  | 1680 |
| 10 | CCAAGGTGCA   | GCGGGATCAA  | TTCCGCCCCC  | CCCTAACAGT  | TACTGGCCGA  | AGCCGCTTGG  | 1740 |
|    | AATAAGGCCG   | GTGTGCGTTT  | GTCTATATGT  | TATTTCCAC   | CATATTGCCG  | TCTTTGGCA   | 1800 |
|    | ATGTGAGGGC   | CCGGAAACCT  | GGCCCTGTCT  | TCTTGACAGG  | CATTCTAGG   | GGTCTTTCCC  | 1860 |
| 15 | CTCTCGCCAA   | AGGAATCCAA  | GGTCTGTGA   | ATGTCGTGA   | GGAAGCAGTT  | CCTCTGGAAAG | 1920 |
|    | CTTCTTGAAG   | ACAAACAACG  | TCTGTAGCGA  | CCCTTGCAG   | GCAGCGGAAC  | CCCCCACCTG  | 1980 |
| 20 | GCGACAGGTG   | CCTCTGCGGC  | CAAAGGCCAC  | GTGTATAAGA  | TACACCTGCA  | AAGGCGGCAC  | 2040 |
|    | AACCCCAGTG   | CCACGTGTTG  | AGTTGGATAG  | TTGTGGAAAG  | AGTCAAATGG  | CTCTCCTCAA  | 2100 |
|    | GCGTATTCAA   | CAAGGGCTG   | AAGGATGCC   | AGAAGGTACC  | CCATTGTATG  | GGATCTGATC  | 2160 |
| 25 | TGGGGCCTCG   | GTGCACATGC  | TTTACATGTG  | TTTAGTCGAG  | GTAAAAAAAAA | CGTCTAGGCC  | 2220 |
|    | CCCCGAACCA   | CGGGGACGTG  | TTTTTCTTTT  | AAAAAACACG  | ATAATAATCA  | TGGCTACAGG  | 2280 |
| 30 | CTCCCGGACG   | TCCCTGTC    | TGGCTTTGG   | CCTGCTCTGC  | CTGCCCTGGC  | TTCAAGAGGG  | 2340 |
|    | CAGTGCCTTC   | CCAACCATT   | CCTTATCCAG  | GCTTTTGAC   | AACGTATGC   | TCCGGCCCA   | 2400 |
|    | TCGTCTGCAC   | CAGCTGGCCT  | TTGACACCTA  | CCAGGAGTTT  | GAAGAAGCCT  | ATATCCAAA   | 2460 |
| 35 | GGAAACAGAAG  | TATTCTATCC  | TGCAGAACCC  | CCAGACCTCC  | CTCTGTTCT   | CAGACTCTAT  | 2520 |
|    | TCCGACACCC   | TCCAACAGGG  | AGGAAACACA  | ACAGAAATCC  | AACCTAGAGC  | TGCTCCGCAT  | 2580 |
| 40 | CTCCCTGCTG   | CTCATCCAGT  | CGTGGCTGGA  | GCCCCGTGCAG | TTCCTCAGGA  | GTGTCTTCGC  | 2640 |
|    | CAACAGCTG    | GTGTACGGCG  | CCTCTGACAG  | CAACGCTAT   | GACCTCTAA   | AGGACCTAGA  | 2700 |
|    | GGAAAGGCATC  | CAAACGCTGA  | TGGGGAGGCT  | GGAAAGATGGC | AGCCCCGGGA  | CTGGGCAGAT  | 2760 |
| 45 | CTTCAAAGCAG  | ACCTACAGCA  | AGTCGACAC   | AAACTCACAC  | AACGTATGAGC | CACTACTCAA  | 2820 |
|    | GAACATACGGG  | CTGCTCTACT  | GCTTCAGGAA  | GGACATGGAC  | AAGGTGAGA   | CATTCTGGC   | 2880 |
| 50 | CATCGTGCAG   | TGCCGCTCTG  | TGGAGGGCAG  | CTGTGGCTTC  | TAGCTGCCCG  | GGTGGCATCC  | 2940 |
|    | TGTGACCCCT   | CCCCCAGTGCC | TCTCCTGGCC  | CTGGAAGTTG  | CCACTCCAGT  | GCCCACCAAGC | 3000 |
|    | CTTGTCTCAA   | TGTGTGTCAG  | TTAGGGTGTG  | GAAAGTCCCC  | AGGCTCCCCA  | GCAGGCAGAA  | 3060 |
| 55 | GTATGCAAAG   | CATGCATCTC  | AATTAGTCAG  | CAACCAGGTG  | TGGAAAGTCC  | CCAGGCTCCC  | 3120 |
|    | CAGCAGGGCAG  | AAAGTATGCAA | AGCATGCATC  | TCAATTAGTC  | AGCAACCATA  | GTCCCGCCCC  | 3180 |
| 60 | TAACCTCGCC   | CATCCGCC    | CTAACCTCGC  | CCAGTCCCG   | CCATTCTCCG  | CCCCATGGCT  | 3240 |
|    | GACTAATTTT   | TTTATTTT    | GCAGAGGCCG  | AGGCCGCTC   | GGCCTCTGAG  | CTATTCCAGA  | 3300 |
|    | AGTAGTGAGG   | AGGCTTTTT   | GGAGGCCCTAG | GCTTTGCAA   | AAAGCTTCAC  | GCTGCCGCAA  | 3360 |
| 65 | GCACACTCAGGG | GCACAAAGGGT | GCTAAAGGAA  | GCGGAACACG  | TAGAAAGCCA  | GTCCGCAGAA  | 3420 |

|    |             |             |             |            |            |             |      |
|----|-------------|-------------|-------------|------------|------------|-------------|------|
|    | ACGGTGCTGA  | CCCCGGATGA  | ATGTCAGCTA  | CTGGGCATAC | TGGACAAAGG | AAAACGCAAG  | 3480 |
| 5  | CGCAAAGAGA  | AAGCAGGTAG  | CTTGCAGTGG  | GCTTACATGG | CGATAGCTAG | ACTGGGGCGT  | 3540 |
|    | TTTATGGACA  | CGAACGGAC   | CGGAATTGCC  | AGCTGGGGC  | CCCTCTGGTA | AGGTTGGGAA  | 3600 |
|    | GCCCTGCAA   | AA          | GTAAACTGGA  | TGGCTTCTT  | GCCGCCAAGG | ATCTGATGGC  | 3660 |
| 10 | AAGATCTGAT  | CAAGAGACAG  | GATGAGGATC  | TTTCGATG   | ATTGAACAAG | ATGGATTGCA  | 3720 |
|    | CGCAGGTTCT  | CCGGCCGCTT  | GGGTGGAGAG  | GCTATTGCGC | TATGACTGGG | CACAACAGAC  | 3780 |
|    | AATCGGCTGC  | TCTGATGCC   | CCGTTTCTCC  | GCTGTCAGCG | CAGGGGGCCC | CGGTTCTTT   | 3840 |
| 15 | TGTCAAGACC  | GACCTGTCGG  | GTGCCCCTGAA | TGAACCTGCG | GACGAGGCAG | CGCGGCTATC  | 3900 |
|    | GTGGCTGGCC  | ACGACGGGCG  | TTCCTTGC    | AGCTGTGCTC | GACGTTGTCA | CTGAAGCGG   | 3960 |
| 20 | AAGGGACTGG  | CTGCTATTG   | CGGAAGTGC   | GGGGCAGGAT | CTCCTGTCT  | CTCACCTTGC  | 4020 |
|    | TCCTGCGAG   | AAAGTATCCA  | TCATGGCTGA  | TCATGGCGG  | CGGCTGCATA | CGCTTGATCC  | 4080 |
|    | GGCTACCTGC  | CCATTGAC    | ACCAAGCGA   | ACATCGCATC | GAGCAGCAC  | GTACTCGGAT  | 4140 |
| 25 | GGAAGCCGGT  | CTTGTGATC   | AGGATGATCT  | GGACGAAGAG | CATCAGGGC  | TCGCGCCAGC  | 4200 |
|    | CGAACGTTC   | GCCAGGCTCA  | AGGCAGCGCAT | CCCCGACGCG | GAGGATCTCG | TCGTGACCCA  | 4260 |
|    | TGGCGATGCC  | TGCTTGC     | ATATCATGGT  | GGAAAATGGC | CGCTTTCTG  | GATTGATCGA  | 4320 |
| 30 | CTGTGGCCG   | CTGGGTGTGG  | CGGACCGCTA  | TCAGGACATA | CGCTTGCTA  | CCCCTGATAT  | 4380 |
|    | TGCTGAAGAG  | CTTGGCGCG   | AATGGGCTGA  | CCGCTTCTC  | GTGCTTACG  | GTATGCCGC   | 4440 |
| 35 | TCCCGATTG   | CAGCGCATCG  | CCTTCTATCG  | CCTCTTGAC  | GAGTCTTCT  | GAGCGGGACT  | 4500 |
|    | CTGGGGTTCG  | AAATGACCGA  | CCAAGCCAGC  | CCCAACCTCC | AGAAAAAGGG | GGGAATGAAA  | 4560 |
| 40 | GACCCCCACCT | GTAGGTTGG   | CAAGCTAGCT  | TAAGTAACCG | CATTTC     | GGCATGGAAA  | 4620 |
|    | AATACTAAC   | TGAAATAGA   | GAAGTTCAGA  | TCAAGGTGAG | GAACAGATGG | AACTGTCGA   | 4680 |
|    | TATGGGCCAA  | ACAGGATATC  | TGTGGTAAGC  | AGTTCCTGCC | CCGGCTCAGG | GCCAAGAAC   | 4740 |
| 45 | GATGGAACAG  | CTGAAATATGG | GCCAAACAGG  | ATATCTGTGG | TAAGCAGTTC | CTGCCCGGC   | 4800 |
|    | TCAGGGCCAA  | GAACAGATGG  | TCCCCAGATG  | CGGTCCAGCG | CTCAGCAGT  | TCTAGAGAAC  | 4860 |
|    | CATCAGATGT  | TTCCAGGGTG  | CCCCAAGGAC  | CTGAAATGAC | CCTGTGCTT  | ATTGAACTA   | 4920 |
| 50 | ACCAATCAGT  | TCGCTTCTCG  | CTTCTGTTCG  | CGCGCTCTG  | CTCCCCGAGC | TCAATAAAAG  | 4980 |
|    | AGCCCCAAC   | CCCTCACTCG  | GGGCGCCAGT  | AATCTGCTC  | TTGCAAACAA | AAAAACACCC  | 5040 |
| 55 | GCTACCCAGC  | GTGGTTTGT   | TGCGGATCA   | AGAGCTACCA | ACTCTTTTC  | CGAAGGTAAC  | 5100 |
|    | TGGCTTCAGC  | AGAGCGCAGA  | TACCAAATAC  | TGTCCTTCTA | GTGTAGCCGT | AGTTAGGCCA  | 5160 |
| 60 | CCACTCTAAC  | AACTCTGTAG  | CACCGCTAC   | ATACCTCG   | CTGCTAACCC | TGTTACCAAGT | 5220 |
|    | GGCTGCTGCC  | AGTGGCGATA  | AGTCGTGTCT  | TACCGGGTTG | GACTCAAGAC | GATAGTTACC  | 5280 |
|    | GGATAAGGCG  | CAGCGGTCGG  | GCTGAACGGG  | GGGTTCTGTC | ACACAGCCCA | GCTTGGAGCG  | 5340 |
| 65 | AACGACCTAC  | ACCGAAGTGA  | GATACTACA   | CGCTGAGCAT | TGAGAAAGCG | CCACGCTTCC  | 5400 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| CGAAGGGAGA AAGGCGGACA GGTATCCGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC  | 5460 |
| GAGGGAGCTT CCAGGGGAA ACGCCCTGGTA TCTTTATAGT CCTGTCGGGT TTCGCCACCT | 5520 |
| 5 CTGACTTGAG CGTCGATTT TGTGATGCTC GTCAGGGGG CGGAGCCTAT GGAAAACGC  | 5580 |
| CAGCAACGCC GAGA                                                   | 5594 |

## (2) INFORMATION FOR SEQ ID NO:30:

- 10 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 6561 base pairs  
 (B) TYPE: nucleic acid  
 15 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

## 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

|                                                                       |      |
|-----------------------------------------------------------------------|------|
| GATCCCCGGG TCGACCAGGG TCGACCCCTGT GGAATGTGTG TCAGTTAGGG TGTTGAAAGT    | 60   |
| CCCCAGGCTC CCCAGCAGGC AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA     | 120  |
| GGTGTGAAA GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAGAACATG CATTCAATT       | 180  |
| 30 AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC GCCCTAACT CGGCCAGGT    | 240  |
| CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT TTATGCAGAG GCCGAGGCG      | 300  |
| 35 CCTCGGGCTC TGAGCTATT CAGAAGTAGT GAGGAGGCTT TTTGGAGGC CTAGGCTTT     | 360  |
| GCAGAAAAGCT TCACGCTGCC GCAAGCACTC AGGGCGCAAG GGCTGCTAAA GGAAGCGAA     | 420  |
| CACGTAGAAA GCCAGTCGC AGAAACGGTG CTGACCCCGG ATGAATGTCA GCTACTGGC       | 480  |
| 40 TATCTGGACA AGGGAAAACG CAAGCGAAA GAGAAAGCAG GTAGCTTGCA GTGGCTTAC    | 540  |
| ATGGCGATAG CTAGACTGG CGGTTTTATG GACAGCAAGC GAACCGGAAT TGCCAGCTGG      | 600  |
| 45 GGCGCCCTCT GGTAAGGTTG GGAGGCCCTG CAAAGTAAAC TGGATGGCTT TCTTGCCGCC  | 660  |
| AAGGATCTGA TGGCGCAGGG GATCAAGATC TGATCAAGAG ACAGGATGAG GATCGTTCG      | 720  |
| CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC GCTTGGGTGG AGAGGCTATT     | 780  |
| 50 CGGCTATGAC TGGGCACAAAC AGACAATCGG CTGCTCTGAT GCCGCGCTGT TCCGGCTGTC | 840  |
| AGCGCAGGGG CGCCCGGTT TTTTGTCAA GACCGACCTG TCCGGTGCCT TGAATGAAC        | 900  |
| 55 GCAGGACGAG GCAGCGCCGC TATCGTGGCT GGCCACGACG GGCCTTCCTT GCGCAGCTGT  | 960  |
| GCTCGACGTT GTCACTGAAG CGGGAAAGGA CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA     | 1020 |
| GGATCTCTG TCATCTCACC TTGCTCTGC CGAGAAAAGTA TCCATCATGG CTGATGCAAT      | 1080 |
| 60 GCGGCGGCTG CATACTGTT ATCCGGTAC CTGCCCATTC GACCACCAA CGAACATCG      | 1140 |
| CATCGAGCGA GCACGTACTC GGATGGAAGC CGGTCTTGTG GATCAGGATG ATCTGGACGA     | 1200 |
| 65 AGAGCAGTCAG GGGCTCGCGC CAGCGGAACG GTTCGCCAGG CTCAAGGCGC GCATGCCGA  | 1260 |
| CGGCGAGGAT CTCGCTGTGA CCCATGGCGA TGCGCTTGC CGAATATCA TGGTGGAAAA       | 1320 |

|    |                                                                                                                                        |              |
|----|----------------------------------------------------------------------------------------------------------------------------------------|--------------|
|    | TGGCCGCTTT TCTGGATTCA TCGACTGTGG CCGGCTGGGT GTGGCGGACC GCTATCAGGA                                                                      | 1380         |
| 5  | CATAGCGTT GCTACCCGTG ATATGGCTA AGAGCTTGGC GGCGAATGGG CTGACCGCTT                                                                        | 1440         |
|    | CCTCGTGCTT TACGGTATCG CCGCTCCCGA TTTCGACCGC ATCGCCTCT ATCGCCTCT                                                                        | 1500         |
|    | TGACGAGTTC TTCTGAGCGG GACTCTGGGG TTCGAATGAA CGCGACCAAGC GACGCCAAC                                                                      | 1560         |
| 10 | CTGCCATCAC GAGATTTCGA TTCCACCGCC GCCTTCTATG AAAGGTTGGG CTTCGGAAATC<br>GTTTTCCGG ACGCCCGCTG GATGATCCTC CAGCGCCGGG ATCTCATGCT GGAGTTCTTC | 1620<br>1680 |
|    | GCCCCACCCCG GAATTCTAA TCTGCTGCTT GCAAACAAAA AAACCCACCCG TACCAAGGGT                                                                     | 1740         |
| 15 | GGTTTGTG TGCGGATCAAG AGCTACCAAC TCTTTTCCG AAGGTAACGT GCTTCAGCAG<br>AGCGCAGATA CCAARACTG TCCTTCTAGT GTAGCCGTAG TTAGGCCACC ACTTCAAGAA    | 1800<br>1860 |
| 20 | CTCTGTAGCA CCGCCTACAT ACCTCGCTCT GCTAATCTG TTACCAAGTGG CTGCTGCCAG<br>TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAGAGCGA TAGTTACCGG ATAAGGGCGA | 1920<br>1980 |
|    | GCGGTGGGC TGAAACGGGG GTTCGTCGAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC                                                                       | 2040         |
| 25 | CGAACTGAGA TACCTACAGC GTGAGCATGG AGAAAGGCC AGCGCTCCCG AAGGGAGAAA<br>GGCGGACAGG TATCCGTAA CGGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC   | 2100<br>2160 |
| 30 | AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGTTT CGCCACCTCT GACTTGAGCG<br>TCGATTTTG TGATGCTCGT CAGGGGGGCC GAGCCTATGG AAAAACGCCA GCAACGCCGA   | 2220<br>2280 |
|    | GATGCGCCGC CTCGAGTACA CCTGCGCTAT GCTGAGAACCC TCAAGCCTCA CTAAAGGGT                                                                      | 2340         |
| 35 | CCCTGCTAG TTCTGTTAC TAATCTGC TATTCTGTTT TTGTCCTCCAT GTTAAAGATA<br>GAGTAAATGC AGTATTCTCC ACATAGAGAT ATAGACTCT GAAATTCTAA GATTAGAATT     | 2400<br>2460 |
| 40 | ATTACAAGA AGAAGTGGGG AATGAGAAT AAAAATTAC TGGCCTCTTG TGAGAACATG<br>AACTTCACC TCGGAGCCCA CCCCTCCCA TCTGGAAACATG ATACTTGAGA AAAACATTT     | 2520<br>2580 |
|    | CTGGAACAAAC CACAGAATGT TTCAACAGGC CAGATGTATT GCCAAACACA GGATATGACT                                                                     | 2640         |
| 45 | CTTTGGTTGA GTAAATTGTG GTGGTTAAA CTTCCTCTAT TCCCTCCCA TTCCCCCTCC<br>CAGTTGTGG TTTTTCTT TAAAAGCTTG TGAAAAAATT GAGTCGCTCGT CGAGACTCCT     | 2700<br>2760 |
| 50 | CTACCTCTG CAAAGGGTGA TGAGTTCTGA CCCCAGAGCT CTGTCGCTT TCTGTTGCTG<br>CTTTATTCG ACCCCAGAGC TCTGGTCTGT GTGCTTCTAT GTCGCTGCTT TATTAATCT     | 2820<br>2880 |
|    | TACCTCTAC ATTTTATGTA TTGGTCTCAGT GTCTTCTTG GTACCGGGCT GTCCCGGGAC                                                                       | 2940         |
| 55 | TTGAGTGCT GAGTGAGGGT CTTCCTCGA GGGCTTTCA TTGGTACAT GGGCCGGGAA<br>TTCGAGAAC TTTCATTTGG TGCATTGGCC GGGAAATCGA AAATCTTCA TTGGTGCAT        | 3000<br>3060 |
| 60 | TGGCCGGAA ACAGCGCAGC CACCCAGAGG TCCTAGACCC ACTTAGAGGT AAGATTCTT<br>GTTCTGTTT GGTCTGATGT CTGTCGCTCT ATGTCGCTGT TCTGTTCTA AGTCTGGTGC     | 3120<br>3180 |
|    | GATCGCAGTT TCAGTTTGC GGACGCTCAG TGAGACCGCG CTCCGAGAGG GAGTGCAGGG                                                                       | 3240         |
| 65 | TGGATAAGGA TAGACGTGTC CAGGTGTCCA CGCTCCGTT GCGCTGGGAG ACGTCCCAGG                                                                       | 3300         |

|    |                                                                      |      |
|----|----------------------------------------------------------------------|------|
|    | AGGAACAGGG GAGGATCAGG GACGCCTGGT GGACCCCTTT GAAGGCCAAG AGACCATTG     | 3360 |
|    | GGGTGCGAG ATCGTGGGTT CGAGTCCCAC CTCGTGCCCA GTTGCAGAT CGTGGGTTCG      | 3420 |
| 5  | AGTCCCACCT CGTGTTTGT TGCGAGATCG TGGGTTGGAG TCCCACCTCG CGTCTGGTCA     | 3480 |
|    | CGGGATCTG GGTTGGAGTC CCACCTCGT TTTGTTGGC AGATCGTGGG TTGAGTCTG        | 3540 |
| 10 | ACCTCGCGTC TGGTCACGGG ATCGTGGGTT CGAGTCCCAC CTCGTGCAGA GGGTCTCAAT    | 3600 |
|    | TGGCGGCT TAGAGAGGCC ATCTGATTC TCTGGTTCT CTTTTGTC TAGTCTCGT           | 3660 |
|    | TCCGCTCTG TTGTGACTAC TGTTTTCTA AAAATGGAC AATCTGTGTC CACTCCCCCT       | 3720 |
| 15 | TCTCTGACTC TGGTTCTGTC GCTTGGTAAT TTGTTTTT TACGTTTTT TTTGTGAGTC       | 3780 |
|    | GTCTATTTG TCTGTTACTA TCTTGTGTTT GTTTGTGTT TACGGTTCT GTGTGTGTC        | 3840 |
|    | TGTGTGTC TTTGTGTC GACTTGGACT GATGACTGAC GACTGTTTT AAGTTATGCC         | 3900 |
| 20 | TTCTAAAATA AGCCTAAAAAA TCCCTGTCAAGA TCCCTATGCT GACCACTTCC TTTCAGATCA | 3960 |
|    | ACAGCTGCC TGCCTCCAC TCCAACCTCA GAGAGCACCC AGCGGGTCAC AGTGGTCCCG      | 4020 |
| 25 | CCCATGAACC TGGAGGCTAG GGAAAATGA GCTCGGAAAT CCGGAGCAA TGAGGACTGG      | 4080 |
|    | TCCCTGAGAA GTCAGTGGCC TAAATGTTGT GGCTGCTGAA GCAGGAAAG AGGAGGCTGT     | 4140 |
|    | TCGAGTAGCC GGCCAAAGAGC GCGCGGGTT CCCAGGCAGC TTCTCATTCC CCTGTCCTC     | 4200 |
| 30 | CCATCCCGTC TCTTGTAAAC AGAAAACATG CTTCACHTT GAGATATGAG TGGCCCGATA     | 4260 |
|    | CAGCCAGCTG TGAGAGCTGT ACTCCCTCTC CTGCCAACAG TGTTTCTCT TCTCAGGCGA     | 4320 |
|    | CCCTCCCTG AGCTGCTGGC AGTGAGTCTG TTCTAAGCTC CAGTGAGGGA GGCATCCGCC     | 4380 |
| 35 | CACTTGGGGC TTCTGTCCAA GGTAAGGAGC ACCTGTGAGT CTAACGTCCA GGCTCTGATG    | 4440 |
|    | GGGGTCTCGT CTCTGTGGG CTAGAAAATG TCCCAACAAAT CTGACCAAGG TAACAGGAAG    | 4500 |
| 40 | TTAAGACAAA GACAGAGACC AAAGTCAGAA TCAGAGCTGT GCTGTGAGAC AAAAGATAA     | 4560 |
|    | AAAAAAATAA ATGCTGGCCA CAAAATCTAG AAAAACTAGA AAACCTAGAT AGTACCTGGC    | 4620 |
| 45 | AACAAAAGAA AGCTTTTGGC TAAAGATCAA CGTGTATACT GTAAAGAAAA TGAGCAGTGG    | 4680 |
|    | GTGAGAGACT GCCCCAACAA AAAGAAGAGG AGCCCCCTCT ATGACCAAAAC CCTTCACCTG   | 4740 |
|    | TTCTGTGCTA AAAGTAAAGA GATAACAAAA GGGGTGCTAA CACAGAAGCT GAGTCCTTAA    | 4800 |
| 50 | AAGAGTCCGG TGGCCTACCT GTTGAAGCAG CTAAAAAAGA GACTGTGTTT CATACTCCTC    | 4860 |
|    | CACTGACCAAG TGCAAAACAA GCTAAAAGT TCCTGGCAC TGCGGGCTTT TGCAAGATTG     | 4920 |
|    | GGATTCCAGG TTTTGCTGAG TTTAAAGAGAT AAACAGCCT TCGTATAGAA AAATAAAAAA    | 4980 |
| 55 | CAACCTTGGA TGCTCTTGGA TGCTATTGAG ACTGCCCTAA TGTTGTCCCC AGCTATGGGA    | 5040 |
|    | CTCTCTAGATG TGACTGAGAA CAAAGGTATT GCCAAAGAAG TTCTTACTCA GAGATTGGGA   | 5100 |
| 60 | CCCTGAAAAA GACCTGTGGC ATACTGTAA GAAATTAGAC CTGGTGGCTG TAAGATGGCC     | 5160 |
|    | TGCTTGTCTG CACATAGTGC CTCTGTGCA AGGACGAGA TAAATTGACT CTGAGACAAA      | 5220 |
|    | ACTTGGCACA TGTCTAGAA AGTGTGGTTC AGCCCCCATG ACCGATGGCT GACTAACGCT     | 5280 |
| 65 | CTTGAAAACA TTATCCAAT GTTCCCCCTGA CGGATGGACA CATTGTCAAGA GCTTTTTG     | 5340 |

|    |            |              |             |             |             |             |      |
|----|------------|--------------|-------------|-------------|-------------|-------------|------|
|    | ACTGAACGAG | TGACCTTCGC   | TCCCCCTGCT  | ATCCTCGATC  | TCACTACTGC  | CTGAGACTTC  | 5400 |
| 5  | ACCTACTCAT | CATTGTGCTG   | ACATTCCTGGC | AGAAGAAACT  | CATACTCGAA  | ATGATCTGAA  | 5460 |
|    | GGATCAGATC | AGCCTTGGCC   | TGAGAGTTG   | AGCTGGTACA  | CGGATGGCAG  | TAGCCTGGAG  | 5520 |
| 10 | GTAAAGGGTA | AGCGGAAGGC   | GGGGACAGCA  | GTGCACTGGT  | GGACAGAAAAG | CAAGTGATCT  | 5580 |
|    | AGGCCAGCAG | CCTCCCTAAA   | GGGACTTCAG  | CCCACAAAGC  | CAAACCTTGTG | GCTTTAACATC | 5640 |
| 15 | AAGCTCTGTA | AATGGTAAAAA  | AAAAAAAAAGT | CTACACCGAC  | AGCAGGTATG  | CTCTTGGCAC  | 5700 |
|    | TGTACAGAGC | AATATACAGA   | CAAAGAGAAC  | TGTTGACATC  | TGCAGAGAAA  | GACCTAAAGAT | 5760 |
| 20 | GCTGTGGCTA | AAAGAAATCA   | GATGGCAAAT  | CTAACCGCCC  | AGGCATCCTA  | AAAGGCAATG  | 5820 |
|    | ATCCTGACAG | TCTGAAGACT   | ATCAAGTTAT  | AGACAAATTAA | AGACTGGTAA  | AAAAAAACCT  | 5880 |
| 25 | GTATAAAATA | GTAAAAAACTG  | AAAAAAGAAA  | ACTAGTCCTC  | TCATGAGAAG  | ACAGACCTGA  | 5940 |
|    | CATCTACTGA | AAAATAGACT   | TTACTGGAA   | AAATATGTGT  | ATGAATAACCT | TCTAGTTTTT  | 6000 |
| 30 | GTGAACGTT  | TCAAGATGGA   | TAAAAGCTT   | TCCTTGTAAA  | ACGAGACTGA  | TCAGATAGTC  | 6060 |
| 35 | ATCAAGAAGA | TTGTTAAAGA   | AAATTTCCA   | AGGTTCCGGAG | TGCCAAAAGC  | AAATAGTGTC  | 6120 |
|    | GATAATGGTC | CTGCCCTTGT   | TGCCCAAGTA  | AGTCAGGGTG  | TGGCCAAGTA  | TTTAGAGGTC  | 6180 |
| 40 | AAATGAAAAT | TCCATTGTGT   | GTACAGACCT  | CAGAGCTAG   | GAAAGATAAA  | AAAGAATAAA  | 6240 |
|    | TAAAACCTTA | AACAGACCTT   | GACAAAATTAA | ATCCTAGAGA  | CTGGCACAGA  | CTTACTTGGT  | 6300 |
| 45 | ACTCCCTCCC | CTTGCCTTAT   | TTAGAACTGA  | GAATACTCCC  | TCTTGATTG   | GTTTACTCT   | 6360 |
|    | TTTTAAGATC | CTTTATGGGG   | CTCCTATGCC  | ATCACTGTCT  | AAAATGATGT  | GTTTAAACCT  | 6420 |
| 50 | ATGTTGTTAT | AATAATGATC   | TATATGTAA   | GTTAAAAGGC  | TTGCAGGTGG  | TGCAGAAAAGA | 6480 |
|    | AGTCTGGTCA | CAACTGGCTA   | CAGTGAACAA  | GCTGGTACC   | CCAAGGACAT  | CTTACCAAGTT | 6540 |
| 55 | CCAGCCAGAG | ATCTGATCTA C |             |             |             |             | 6561 |

## (2) INFORMATION FOR SEQ ID NO:31:

- 45 (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 55 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

55 GACTAACCTT GATTCACACTG GAGCCGTATT ACCGCCATGC ATTAGTTATT AATAG

## 60 (2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 47 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

5  
(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:  
GACTAACCTT GATTCCACTG GAGTAATTGC GGCTAGCGGA TCTGACG

47

10 (2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 66 base pairs  
(B) TYPE: nucleic acid  
15 (C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:  
GACTAACCTT GATTCCACTG GAGACACTTG ACCTCTACCG CGCCAGTCCT CCGATTGACT

60

GAGTCG

66

30 (2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 48 base pairs  
(B) TYPE: nucleic acid  
35 (C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:  
GACTAACCTT GATTCCACTG GAGGGATCCG CGCCCAGTATGAT TATTATCG

48

45 (2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 55 base pairs  
(B) TYPE: nucleic acid  
50 (C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

55 (ii) MOLECULE TYPE: DNA (genomic)

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:  
GACTAACCTT GATTCCAGCA ATGTCATGGC TACAGGCTCC CGGACGTCCC TGCTC

55

65 (2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 48 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5       (ii) MOLECULE TYPE: DNA (genomic)

10       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

GACTAACCTT GATTCCAGCA ATGTTAGGAC AAGGCTGGTG GGCACTGG

48

15       (2) INFORMATION FOR SEQ ID NO:37:

- 15       (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 49 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

20       (ii) MOLECULE TYPE: DNA (genomic)

25       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GACTAACCTT GATTCCACTG GAGGGTCGAC CCTGTGGAAT GTCTGTCAG

49

30       (2) INFORMATION FOR SEQ ID NO:38:

- 30       (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 48 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

35       (ii) MOLECULE TYPE: DNA (genomic)

40

50       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

45       GACTAACCTT GATTCCACTG GAGAATCTCG TGATGGCAGG TTGGGCGT

48

55       (2) INFORMATION FOR SEQ ID NO:39:

- 55       (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 54 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

55       (ii) MOLECULE TYPE: DNA (genomic)

60       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GACTAACCTT GATTCCACTG AAGAGATTTT ATTTAGTCTC CAGAAAAAGG GGGG

54

65       (2) INFORMATION FOR SEQ ID NO:40:

- 65       (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 50 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5           (i) MOLECULE TYPE: DNA (genomic)

10           (ii) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GAATACCTT GATTCCACTG AAGCCCCAA ATGAAAGACC CCCGCTGAGC

50

15           (2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 49 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

20           (ii) MOLECULE TYPE: DNA (genomic)

25

              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

30           GAATACCTT GATTCCACTG GAGCCGGGAC GGAATTCGTA ATCTGCTGC

49

              (2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 47 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

40           (ii) MOLECULE TYPE: DNA (genomic)

45           (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

GAATACCTT GATTCCACTG GAGTTCTCGA GGCGGCCGCAT CTCGGCG

47

50           (2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 20 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

55           (ii) MOLECULE TYPE: DNA (genomic)

60

              (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CGCTCTAGAA CTAGTGGATC

20

65           (2) INFORMATION FOR SEQ ID NO:44:

- 5                   (i) SEQUENCE CHARACTERISTICS:  
                      (A) LENGTH: 21 base pairs  
                      (B) TYPE: nucleic acid  
                      (C) STRANDEDNESS: single  
                      (D) TOPOLOGY: linear

10                  (ii) MOLECULE TYPE: DNA (genomic)

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

15                  GTAATACGAC TCACTATAGG G

21

(2) INFORMATION FOR SEQ ID NO:45:

- 20                   (i) SEQUENCE CHARACTERISTICS:  
                      (A) LENGTH: 43 base pairs  
                      (B) TYPE: nucleic acid  
                      (C) STRANDEDNESS: single  
                      (D) TOPOLOGY: linear

25                  (ii) MOLECULE TYPE: DNA (genomic)

30                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

CGATCCACTG GAGCTCGGAG CCCACCCCT CCCATCTAGA GGT

43

35                  (2) INFORMATION FOR SEQ ID NO:46:

- 40                   (i) SEQUENCE CHARACTERISTICS:  
                      (A) LENGTH: 43 base pairs  
                      (B) TYPE: nucleic acid  
                      (C) STRANDEDNESS: single  
                      (D) TOPOLOGY: linear

45                  (iii) MOLECULE TYPE: DNA (genomic)

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

50                  CGCTCTCTG GAGAGCACAG GGTAGAGGAG TCTCGACGGT CAG

43

55                  (2) INFORMATION FOR SEQ ID NO:47:

- 55                   (i) SEQUENCE CHARACTERISTICS:  
                      (A) LENGTH: 43 base pairs  
                      (B) TYPE: nucleic acid  
                      (C) STRANDEDNESS: single  
                      (D) TOPOLOGY: linear

60                  (iii) MOLECULE TYPE: DNA (genomic)

65                  (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGCAACCTG GAGACCTCTA GATGGGAGGG GGTGGGCTCC GAG

43

## (2) INFORMATION FOR SEQ ID NO:48:

- 5 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 43 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GCAGGACCTG GAGCTGACCG TCGAGACTCC TCTACCCTGT GCT

43

## (2) INFORMATION FOR SEQ ID NO:49:

- 20 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 20 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CGCTCTAGAA CTAGTGGATC

20

## (2) INFORMATION FOR SEQ ID NO:50:

- 35 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 21 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

45 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

50 GTAATACGAC TCACTATAGG G

21

## (2) INFORMATION FOR SEQ ID NO:51:

- 55 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 19 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

60 (ii) MOLECULE TYPE: DNA (genomic)

65 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

TACGTATCGA TGGATCCGA  
(2) INFORMATION FOR SEQ ID NO:52:

19

- 5       (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 19 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear  
10      (ii) MOLECULE TYPE: DNA (genomic)

15      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

GGATCCATCG ATACGTAAG

19

20      (2) INFORMATION FOR SEQ ID NO:53:

- 25       (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 38 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear  
30      (ii) MOLECULE TYPE: DNA (genomic)

35      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

38      GGCGCTAAC TAATAGCCA TTCTCCAAGG TACGTAGC

40      (2) INFORMATION FOR SEQ ID NO:54:

- 45       (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 38 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear  
50      (ii) MOLECULE TYPE: DNA (genomic)

55      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

38      TACGTACCTT GGAGAAATGGG CTATTAGTTA GCGGCCGC

55      (2) INFORMATION FOR SEQ ID NO:55:

- 60       (i) SEQUENCE CHARACTERISTICS:  
          (A) LENGTH: 55 base pairs  
          (B) TYPE: nucleic acid  
          (C) STRANDEDNESS: single  
          (D) TOPOLOGY: linear  
65      (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:  
GACTAACCTT GATTCCACTG GAGTTTTCTC TATTCTTCAT TCCCCACTTC TTCTT

55

## (2) INFORMATION FOR SEQ ID NO:56:

- 5 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 60 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

GACTAACCTT GATTCCACTG GAGAAATCTGG ACCAATTCTA TATAAGCCTG TGAAAAATT

60

## 20 (2) INFORMATION FOR SEQ ID NO:57:

- 25 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 46 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: DNA (genomic)

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

GACTAACCTT GATTCCACTG GAGAAGAAGA AGTGGGGAAT GAAGAA

46

## 40 (2) INFORMATION FOR SEQ ID NO:58:

- 45 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 51 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

50 (ii) MOLECULE TYPE: DNA (genomic)

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

GACTAACCTT GATTCCACTG GAGATCTCTA GATGGGAGGG GGTCTGGGCT C

51

## 55 (2) INFORMATION FOR SEQ ID NO:59:

- 60 (i) SEQUENCE CHARACTERISTICS:  
(A) LENGTH: 47 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

65 (ii) MOLECULE TYPE: DNA (genomic)

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:
- GACTAACCTT GATTCCACTG GAGCTCGGAG CCCACCCCTT CCCATCT 47
- 5 (2) INFORMATION FOR SEQ ID NO:60:
- (i) SEQUENCE CHARACTERISTICS:
- 10 (A) LENGTH: 47 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear
- 15 (ii) MOLECULE TYPE: DNA (genomic)
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:
- GACTAACCTT GATTCCACTG GAGGGAGGCC CTTATCTCAA AAATGTT 47
- 25 (2) INFORMATION FOR SEQ ID NO:61:
- 25 (i) SEQUENCE CHARACTERISTICS:
- 30 (A) LENGTH: 51 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA (genomic)
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:
- GACTAACCTT GATTCCACTG GAGTCTAAGA ACATTTTG AATAAGGCC T 51
- 40 (2) INFORMATION FOR SEQ ID NO:62:
- (i) SEQUENCE CHARACTERISTICS:
- 45 (A) LENGTH: 44 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear
- 50 (ii) MOLECULE TYPE: DNA (genomic)
- 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:
- GACTAACCTT GATTCCACTG GAGTCACAGG CTTATATAGT GAAA 44
- 60 (2) INFORMATION FOR SEQ ID NO:63:
- (i) SEQUENCE CHARACTERISTICS:
- 65 (A) LENGTH: 46 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear
- 65 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

5 GACTAACCTT GATTCCCTGG AGACTGCACT GCTGTCCCCG CCTTCG 46

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 53 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GAGTAAACCTT GATTCCTCTGG AGATTTCTCA GACCCGGGTC GACCCTGTGG AAT 53

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 44 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (genomic)

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

GACTAACCTT GATTCCCTGG AGCTCGAGGC GGCGCATCTC GGGG 44

40 (2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 47 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: DNA (genomic)

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

GACTAACCTT GATTCCCTGA AGACCTGGGT CATGCTGAGA CCCTCAA 47

(2) INFORMATION FOR SEQ ID NO:67:

60 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 50 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

65 (ii) MOLECULE TYPE: DNA (genomic)

## 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GACTAACCTT GATTCCTGAA AGCGGCCAAT GCACCAAATG AAAGATTTTC

50

## (2) INFORMATION FOR SEQ ID NO:68:

## 10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 50 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

## 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

CGCATCTTTT AATTAACCTGG AGARAATTTT TYACAGGCTT ATATAGKAAA

50

We claim:

1. A method for assembling a gene or gene vector comprising the steps of:

- 5           a) designing at least 6 primers to produce at least three fragments in at least three separate polymerase chain reactions wherein each primer comprises at least one predetermined restriction endonuclease recognition site that recognizes a restriction endonuclease that cleaves at a distance from the recognition site, a sequence complementary to a template sequence for amplification, and bases positioned at the restriction endonuclease  
10 cleavage site that are selected to be complementary to only one other overhanging created from enzymatic cleavage of the fragments;
- b) combining the primers with template nucleic acid and performing a gene amplification reaction to produce multiple copies of an amplified template fragment incorporating the restriction endonuclease recognition site;
- 15           c) digesting the amplified template fragments with one or more restriction endonucleases that recognize the restriction endonuclease recognition site of the primers to create overhanging termini wherein each overhanging termini is complementary to only one other overhanging termini on another fragment; and
- d) combining the amplified and digested template fragments in a ligation  
20 reaction to produce a directionally ordered gene, nucleic acid fragment or gene vector.

2. The method of claim 1 wherein the restriction endonuclease is at least one class IIS restriction endonuclease.

- 25           3. The method of claim 2 wherein the class IIS restriction endonuclease is selected from the group consisting of: *Alw1*, *Alw26I*, *BbsI*, *BbvI*, *BpmI*, *BsmAI*, *BsmI*, *BsmBI*, *BspMI*,  
*BsrI*, *BsrDI*, *Eco57I*, *EarI*, *FokI*, *GsI*, *HgaI*, *HphI*, *MboII*, *MnII*, *PleI*, *SapI*, *SfaNI*,  
*TaqII*, *Tth111II*.
- 30           4. The method of claim 1 wherein class II restriction endonuclease recognition sites, linkers, or adapters are not used to create the gene or gene vector.

5. The method of claim 1 wherein the product of the ligation reaction is introduced into prokaryotic or eukaryotic cells.

5 6. The method of claim 1 wherein at least one target nucleic acid sequence is chosen from the group consisting of : transcriptional regulatory sequences; genetic vectors; introns and/or exons; viral encapsidation sequences; integration signals intended for introducing nucleic acid molecules into other nucleic acid molecules; retrotransposon(s); VL30 elements; or multiple allelic forms of a sequence.

10

7. The method of claim 1 wherein the method is used to generate combinatorial libraries of a target sequence.

8. The method of claim 7 wherein the target sequence is part or all of a gene.

15

9. The method of claim 8 wherein the gene encodes a protein.

10. The method of claim 8 wherein the primers amplify allelic variants of part or all of a gene.

20

11. The method of claim 1 wherein the product of the ligation reaction is passed between eukaryotic cells using a virus particle, by cell fusion, or by transfection.

25

12. The method of claim 1 wherein the product of the ligation reaction is not introduced into prokaryotic cells.

13. The method of claim 1 further combining at least one screening or selection step to select the products of the ligation reaction.

30 14. The method of claim 1 wherein the product of the ligation reaction is mutated during passage in cells in order to generate genetic diversity.

15. The method of claim 14 wherein the product of the ligation reaction is mutated by homologous recombination during passage in cells.
16. The method of claim 1, wherein the method is used to isolate and identify regulatory sequences from a cell.  
5
17. The method of claim 11, wherein cells containing the product of the ligation reaction are selected for enhanced biological activity.
- 10 18. The method of claim 17, wherein the cells containing the product of the ligation reaction are selected for tissue-specific, hormone-specific or developmental-specific gene expression.
- 15 19. The method of claim 1 wherein the product of the ligation reaction is a circularized gene vector.
20. A nucleic acid primer having a 5' and a 3' end to amplify a nucleic acid fragment for the ligation of at least two fragments comprising:
  - a restriction endonuclease recognition site that recognizes a restriction endonuclease,
  - 20 wherein the restriction endonuclease cleaves at a distance from the recognition site and creates overhanging termini;
  - a sequence complementary to a template sequence to be amplified to produce the nucleic acid fragment;
  - at least two nucleic acid bases positioned at the restriction endonuclease cleavage site
  - 25 and that form an overhanging terminus after cleavage by the restriction endonuclease,
  - wherein the at least two nucleic acid bases are selected to be complementary to only one other overhanging terminus on another fragment of the ligation; and
  - an affinity handle on the 5' end of the primer.
- 30 21. The primer of claim 20 further comprising an anchor to provide stability to the restriction enzyme at the restriction enzyme recognition site.

22. A method for isolating and identifying promoters comprising the steps of:

- a) obtaining a vector comprising at least a portion of a promoter region from a retrovirus transposon LTR and having two non-complementary overhanging termini;
- b) designing at least two PCR primers to amplify at least one region of a 5 retro-transposon LTR from template nucleic acid to produce at least one nucleic acid fragment wherein each primer comprises at least one predetermined restriction endonuclease recognition site that recognizes a restriction endonuclease that cleaves at a distance from the recognition site, a sequence complementary to a template sequence from a retrovirus transposon, and bases positioned at the restriction endonuclease cleavage site that are selected 10 to be complementary to only one other overhanging terminus of the vector wherein the restriction endonuclease cleavage site is created from enzymatic cleavage of the fragments:
  - c) combining the primers with template nucleic acid and performing a gene amplification reaction to produce multiple copies of an amplified template fragment incorporating the restriction endonuclease recognition site;
  - d) digesting the amplified template fragments with one or more restriction endonuclease that recognize the restriction endonuclease recognition site of the primer to create overhanging termini; and
  - e) combining the amplified and digested template fragment in a ligation reaction with the vector to produce a gene vector with an intact LTR sequence.

20

23. The method of claim 22 wherein the template nucleic acid is DNA or RNA.

24. The method of claim 22 further comprising the step of sequencing the insert to identify the promoter sequence.

25

25. Promoter sequences of SEQ ID NOS:2-13 identified using the methods of claim 22.

26. The vector of SEQ ID NO:1.

30

Fig 1A

A.



Fig 1B

B.





Fig. 3



Fig. 4 A.



Fig 4 B.



Fig. 5

|       |            |           |          |           |           |          |           |          |       |
|-------|------------|-----------|----------|-----------|-----------|----------|-----------|----------|-------|
| I.D.2 | CCCGGAGCTT | AGGGGTTTC | CCTGGGAC | TCTTAACTT | CTTGAGCT  | ATTCGCA  | GAAAAGTC  | TTCCAGAC | 90    |
| I.D.3 | -----      | -----     | -----    | -----     | -----     | -----    | -----     | -----    | ----- |
| I.D.2 | ATTTTCAA   | TTAAGGCTC | CTTAAC   | GTTCGAA   | TTAAGACA  | TTACTCTA | GGAGGAG   | TTCTGAG  | 180   |
| I.D.3 | -----      | -----     | -----    | -----     | -----     | -----    | -----     | -----    | ----- |
| I.D.2 | GGACATCT   | CTTGTTCCT | GGTTGCT  | TTAAGACA  | TTAAGACA  | TTACTCTA | TTGAGGCT  | AGAGCTCT | 270   |
| I.D.3 | ACCATGAC   | CTTGTTCCT | GGTTGCT  | TTAAGACA  | TTAAGACA  | TTACTCTA | TTGAGGCT  | AGAGCTCT | ----- |
| I.D.2 | ACCTGACTT  | TTCTGCA   | GGTTGCC  | TTTGGTTT  | ACTTATAG  | TTTGGTTT | ACCTTATAG | TTTGGTTT | 321   |
| I.D.3 | ACCTGACTT  | TTCTGCA   | GGTTGCC  | TTTGGTTT  | ACCTTATAG | TTTGGTTT | ACCTTATAG | TTTGGTTT | ----- |

Fig. 6

|    |                    | 91        | 92        | 93        | 94        | 95        | 96        | 97        | 98        | 99        | 100        |
|----|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| 1  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GATGATGG  | TCTTCGCGA | CAACTCTGA | ATGAGCTGG | TAGTGCGCA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 2  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 3  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 4  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 5  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 6  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 7  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 8  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 9  | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 10 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 11 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 12 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 13 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 14 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |
| 15 | CCTAATAG ACTCTCCAA | GACATTTTT | GAGATTTGG | GCTTCGCGA | CAACTCTGA | ATGAGCTGG | TCTTCGCGA | ATGATGCGA | ATGATGCGA | ATGATGCGA | ANTARTAGGA |

Fig. 7



Fig. 8



## INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 98/03918

**A. CLASSIFICATION OF SUBJECT MATTER**  
 IPC 6 C12N15/86 C12N15/10

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category | Citation of document with indication, where appropriate, of the relevant passages                                                                                                                                                                                                             | Relevant to claim No   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| X        | PADGETT K A ET AL: "Creating seamless junctions independent of restriction sites in PCR cloning"<br>GENE,<br>vol. 168, no. 1, 2 February 1996,<br>page 31-35 XP004042930<br>see the whole document                                                                                            | 1,2,<br>4-14,<br>19-21 |
| Y        | TOMIC, M. ET AL.: "A rapid and simple method for introducing specific mutations into any position of DNA leaving all other positions unaltered"<br>NUCLEIC ACIDS RESEARCH,<br>vol. 18, no. 6, 1990, OXFORD GB,<br>page 1656 XP002069445<br>cited in the application<br>see the whole document | 3                      |
| Y        | -----<br>-----<br>-----<br>-----                                                                                                                                                                                                                                                              | 3                      |
|          | -----                                                                                                                                                                                                                                                                                         | -/-                    |

 Further documents are listed in the continuation of box C Patent family members are listed in annex

## Special categories of cited documents

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step if it were combined with such document alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"Z" document member of the same patent family

Date of the actual completion of the international search

26 June 1998

Date of mailing of the international search report

09/07/1998

Name and mailing address of the ISA

European Patent Office P.B. 5818 Patentstaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  
Fax: (+31-70) 340-3016

Authorized officer

Chambonnet, F

## INTERNATIONAL SEARCH REPORT

In International Application No  
PCT/US 98/03918

## C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication where appropriate, of the relevant passages                                                                                                                                                                                      | Relevant to claim No.  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| A        | LEBEDENKO, E.N. ET AL.: "Method of artificial DNA splicing by directed ligation"<br>NUCLEIC ACIDS RESEARCH,<br>vol. 19, no. 24, 1991, OXFORD GB,<br>pages 6757-6761, XP002069446<br>cited in the application<br>see the whole document<br>----                         | 1                      |
| A        | CHAKRABORTY, A.K. ET AL.: "Synthetic retrotransposon vectors for gene therapy"<br>FASEB JOURNAL,<br>vol. 7, no. 10, July 1993, FOR EXPERIMENTAL BIOLOGY, BETHESDA, MD US,<br>pages 971-977, XP002029486<br>see the whole document<br>----                              | 1                      |
| P.X      | WO 97 28282 A (STRATAGENE INC) 7 August 1997                                                                                                                                                                                                                           | 1.2,<br>4-14,<br>19-21 |
| P.Y      | see the whole document<br>----                                                                                                                                                                                                                                         | 3                      |
| P.X      | HODGSON, C.P. ET AL.: "Self-assembling genes (SAGE) : construction of complex vectors and combinatorial libraries without sub-cloning"<br>CANCER GENE THERAPY,<br>vol. 4, no. 6 conf. suppl., November 1997,<br>page s27 XP002069448<br>see the whole document<br>---- | 1                      |
| P.X      | ZINK, A. M. ET AL.: "Transcriptional targeting with rescued LTRs : a hepatocyte promoter"<br>CANCER GENE THERAPY,<br>vol. 4, no. 6 conf. suppl., November 1997,<br>page s28 XP002069449<br>see the whole document<br>-----                                             | 22                     |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/US 98/03918

|                                        |                  |                         |                  |
|----------------------------------------|------------------|-------------------------|------------------|
| Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
| WO 9728282                             | A                | 07-08-1997              | NONE             |
|                                        |                  |                         |                  |

