

UNIT 3 关系的完整性约束

本讲主要目标

学完本讲后。你应该能够了解:

- 1、关系的完整性约束是关系模型中的一些规则,告诉我们在表结构中哪些变化是允许的,哪些检索操作是受限的;
 - 2、商用DBMS提供接口给用户来定义完整性约束;
 - 3、关系是满足一些约束(或者说是具有某些特性)的表;
- 4、规则1说明关系DBMS所能接受的表——第一范式,即并非 手工处理的所有表格都是关系DBMS所能接受的;
 - 5、规则2规定关系DBMS提供的表检索方式——基于表的内容;
 - 6、规则3规定表中行的唯一性;
 - 7、规则4保证主键必须起唯一标识作用;
 - 8、规则5保证表之间的联系。

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

1、关系完整性约束(见教材P41-44)

数据完整性是指数据正确性和相容性。

关系完整性约束是对关系的某种约束条件,是关系模型中的一些规则,告诉我们在表结构中哪些变化是允许的,哪些检索操作是受限的。

完整性约束条件 ---- 加在数据库数据之上的语义约束条件。

- 关系完整性约束反映了关系模型的特点
- > 在不同的商业数据库产品的标准化工作方面起了很大的 作用
- ▶ 通过保证完整性约束,使数据库中的数据正确、一致

2、完整性约束分类

从对象粒度来分(见教材P149)

- ◆关系约束
 - ——是若干元组间、关系集合上以及关系之间的联系的约束。
- ◆元组约束
 - ——是元组中各个字段间的联系的约束。
- →列约束
 - **一一**列的类型、取值范围、精度、排序等约束。

从对象状态来分(见教材P149)

→静态约束

——指数据库每一确定状态时的数据对象所应满足的约束条件,它是反映数据库状态合理性的约束。

→动态约束

一指数据库从一种状态转变为另一种状态时,新、旧值之间所应满足的约束条件,它是反映数据库状态变迁的约束。

结合上述两种分类方式共有6类完整性约束条件

对象状态

6类完整性约束条件的含义概述

粒度	列级	元组级	关系级
状态			
	列定义	元组值应	实体完整性约束
	◆类型	满足的条	参照完整性约束
静态	♦格式	件	函数依赖约束
	♦值域		统计约束
	◆空值		
	改变列定	元组新旧	关系新旧状态间
动态	义或列值	值之间应	应满足的约束条
		满足的约	件
		東条件 	

3、关系完整性控制(见教材P151)

关系完整性控制是为了防止数据库中存在不符合语义的数据,防止错误信息的输入和输出,即所谓垃圾进垃圾出所造成的无效操作和错误结果。

完整性控制 ---- DBMS中检查数据是否满足完整性约束条件的机制。

DBMS的完整性控制机制应具有定义、检查和保证 数据完整性三个功能

4、关系完整性控制的实现原理

关系完整性控制功能说明:

- ◆定义功能
- ——提供定义完整性约束条件的机制
- ◆检查功能
- ——在一定的时机,检查用户操作请求是否违背 完整性约束条件
 - ◆保证数据完整性功能
- ——如果发现用户操作请求使数据违背了完整性 约束,则采取一定的动作来保证数据的完整性。

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

二、关系的性质

一个基本关系通常有如下性质:

(参见教材P39-41)

- ① 关系名唯一;
- ② 属性名唯一;
- ③ 属性的顺序并不重要;
- ④ 理论上来说, 元组的顺序不重要 (但实际上, 这个顺序将影响对元组的访问效率);
- ⑤ 单值属性: 关系的分量仅包含一个原子 (单一) 值;
- ⑥ 非结构属性: 同一属性中的各个值都取自相同的域;
- ⑦ 元组唯一: 各个元组互不相同, 不存在重复的元组

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

(参见教材P183)

范式是指符合某一种级别的关系模式的集合。满足不同程度 要求的为不同的范式

目前关系数据库有六种范式,即第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,又称完美范式)。一般来说,数据库只需满足第三范式(3NF)。

满足数据库设计范式规范的数据库是简洁的、结构明晰的; 不会发生插入、删除和更新操作异常。反之,不仅给数据库的 编程人员带来麻烦,而且存储了大量的冗余信息。

应用数据库范式的主要优点有: (1) 可以减少数据冗余, 这是最重要的优点; (2) 可以消除异常; (3) 可以让数据组 织得更加和谐、合理、高效。

1、关系 = 表?

EMPLOYEES 是一张表, 它是一个关系吗?

EMPLOYEES

eid	ename	position	dependents
e001	Smith, John	Agent	Michael J., Susan R.
e002	Andrews, David	Superintendent	David M. Jr.
e003	Jones, Franklin	Agent	Andrew K., Mark W., Louisa M.

2、关系的性质⑤: 分量的原子性

EMPLOYEES

eid	ename	position	dependents
e001	Smith, John	Agent	Michael J., Susan R.
e002	Andrews, David	Superintendent	David M. Jr.
e003	Jones, Franklin	Agent	Andrew K., Mark W., Louisa M.

EMPLOYEES

eid	ename	position	dependent1	dependent2	dependent3	•••
e001	Smith, John	Agent	Michael J.	Susan R.		
e002	Andrews, David	Superintenden	David M. Jr.			
e003	Jones, Franklin	t Agent	Andrew K.	Mark W.	Louisa M.	

EMPLOYEES

R	見引	灵.	至	间

eid	ename	position	dependent1	dependent2	dependent3	
e001	Smith, John	Agent	Michael J.	Susan R.		
e002	Andrews, David	Superintendent	David M. Jr.			
e003	Jones, Franklin	Agent	Andrew K.	Mark W.	Louisa M.	

EMPLOYEES

eid	ename	position
e001	Smith, John	Agent
e002	Andrews, David	Superintendent
e003	Jones, Franklin	Agent

DEPENDENTS

eid	dependent
e001	Michael J.
e001	Susan R.
e002	David M. Jr.
e003	Andrew K.
e003	Mark W.
e003	Louisa M.

结构属性

3、关系的性质⑥: 非结构属性

EMPLOYEES

eid	ename	position
e001	Smith, John	Agent
e002	Andrews, David	Superintenden
e003	Jones, Franklin	t Agent

EMPLOYEES

eid	lname	fname	position
e001	Smith	John	Agent
e002	Andrews	David	Superintenden
e003	Jones	Franklin	Agent

4、第一范式规则(= ⑤+⑥)

——在定义的表中,关系模型坚持不允许含有多值 属性 (有时称为重复字段)和含有内部结构 (比如记录 类型)的列。

即:每个属性值都是不可再分的最小数据单位

规则1说明数据库系统能够处理的表对于手工处理的表的限制

5、第一范式关系

— 遵守规则1的表称为第一范式关系

EMPLOYEES

eid	ename		position	dependents	
	lname	fname			
e001	Smith	John	Agent	Michael J.	
				Susan R.	
e002	Andrews	David	Superintendent	David M. Jr.	
e003	Jones	Franklin	Agent	Andrew K.	
				Mark W.	
				Louisa M.	

EMPLOYEES

eid	lname	fname	position
e001	Smith	John	Agent
e002	Andrews	David	Superintendent
e003	Jones	Franklin	Agent

DEPENDENTS

eid	dependent
e001	Michael J.
e001	Susan R.
e002	David M.
e003	Andrew K.
e003	Mark W.
e003	Louisa M.

手工处理的表

第一范式关系

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

四、规则2基于内容存取规则

规则2 基于内容存取行

- > 数学上的合理性: 行是没有次序的 (性质4)
 - ❖ 关系是行的集合:

A	В	C	
	b_1		$\{(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)\}$
\mathbf{a}_2	b_2	\mathbf{c}_2	
a_3	b ₃	c_3	

- > 标准查询语言不提供对指定行的存取

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

五、规则3 行唯一性规则

规则3 行唯一性规则: 关系中任何两个元组(表中的行)的值在同一时刻不能是完全相同的(性质7)

- 》 数学上的合理性: 关系是元组的集合, 而集合不允 许包含相同的元素
- 》数据模型上的合理性: 关系中的每一个元组代表一个客观存在的事物, 而事物具有唯一性
- 》在商业数据库管理系统中,很大一部分工作要求保证在插入一条新记录的时候,原数据库中没有相同记录存在

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

1、键、超键、主键和空值(参见教材P39)

(1) 超键

——超键是能唯一区分任意两行数据的属性或属性集。例如在表students中,通过哪些属性可以区别不同的学生?

students

sid	lname	fname	class	telephone
1	Jones	Allan	2	555-1234
2	Smith	John	3	555-4321
3	Brown	Harry	2	555-1122
5	White	Edward	3	555-3344

(lname, fname)

telephone

(lname, fname, telephone)

(sid, fname)

包含超键的多个属性都是超键

(2) 鍵(key, candidate key)

一 给定一个表T,标题 $Head(T)=A_1...A_n$ 。表T的一个键,有时也称为候选键,是具有以下两个特征的一组属性的集合 $K=A_{i1}...A_{ik}$:

- ①如果u, v是T中两个不同的元组,则 $u[K] \neq v[K];$
- ②沒有樣的真子集份具有特征①。

即:候选键本身是超键,但其任何子集都不再是超键

注意:

- * 表在某一时刻的内容无法告诉我们表中的键是什么
- ◆ 每个表都至少有一个键·。

为什么?、

✓ 键包含的属性称为主属性 (prime attribute)

(3) 主键(Primary key)

—— 主键是被数据库设计者选择出来作为表T的行的唯一性标识符的候选键

键是客观的概念。主键是主观的概念

例如 下表中的键和主键是什么?

sid	Iname	fname	class	telephone
1	Jones	Allan	2	555-1234
2	Smith	John	3	555-4321
3	Brown	Harry	2	555-1122
5	White	Edward	3	555-3344

如果学校不允许重名, 则键为sid, (lname, fname). 可以任选一个作主键

如果学校允许重 名呢?

✓ 主键包含的属性称为主键属性 (key attribute)

- (4) 空值 (NULL Value)
 - —— 未知的或者尚未定义的值
 - 空值与数字()(对于一个数值属性)是不同的
 - ❖ 空值与空串 (对于字符串属性) 是不同的

2、规则4 实体完整性规则

(Entity integrity rules) (参见教材P41-42)

——表T中的任意行在主键列的取值都不允许为空 (若属性A是基本关系R的主属性,则A不允许有空值)

下面的理解中, 哪个是正确的?

规则4.1 实体完整性规则 若属性A是基本关系R的主属性,则属性A不能取空值。

规则4.1 实体完整性规则 若属性A是基本关系R的主键属性,则属性A不能取空值。

规则4.1 实体完整性规则 任何主键属性都不能为空。

规则4.1 实体完整性规则 主键不能为空。

主键属性不能为空

3、什么操作可能破坏实体完整性规则?

假定关系R的主键为K,对R的操作有:检索和更新两大类。

- 检索操作不可能破坏实体完整性规则
- ▶ 更新操作:
 - ❖ 插入元组 (可能, 当插入元组的主键属性为空时)
 - ❖ 删除元组 (不可能)
 - ◇ 修改元组 (可能, 当修改元组的主键属性为空时)
 (修改元组 = 删除元组 + 插入元组)

4、如何选择有效的主键

enrollment

sid	cno	major
1	101	No
1	108	Yes
2	105	No
3	101	Yes
3	108	No
5	102	No
5	105	No

enrollment

sid	cno	major	first
1	101	No	Y
1	108	Yes	Y
2	105	No	Y
3	101	Yes	Y
3	108	No	Y
5	102	No	Y
5	105	No	Y

sid	cno	major	time
1	101	No	1
1	108	Yes	1
2	105	No	1
3	101	Yes	1
3	108	No	1
5	102	No	1
5	105	No	1

- × sid 为主键?
- x cno 为主键?
- √ (sid, cno) **为主**键 ?
- × (sid, cno, major) 为主键?

(sid, cno, first)

为主键?

(sid, cno, time)

为主键?

3.

本讲主要内容

- 一、关系的完整性
- 二. 关系的性质
- 三. 规则1 第一范式规则
- 四. 规则2 基于内容存取规则
- 五. 规则3 行唯一性规则
- 六. 规则4 实体完整性规则
- 七. 规则5 参照完整性规则

1、外键(Foreign key)

设F是基本关系R的一个或一组属性,但不是R的键。如果F与基本关系S的主键 K_S 相对应,则称F是R的外键,并称R为参照关系(Referencing Relation),S为被参照关系。关系R和S不一定是不同的关系。

S	被参	照的关系	R —	参照 参 照	关系	外键	
K_{S}			K _R		F		

2、规则5 参照完整性规则

(Referential integrity rule) (参见教材P42-43)

若属性(或属性组)F是基本关系R的外键,它与基本关系S的主键 K_S 相对应(关系R和S不一定是不同的关系),则对于R中每个元组在F上的值必须为:

- (1) 或者取空值 (F的每个属性值均为空值);
- (2) 或者等于S中某个元组的主键值。

举例说明:

例1 两个关系间

学生(<u>学号</u>, 姓名, 性别, 专业号, 年龄) 专业(<u>专业号</u>, 专业名)

例2 两个以上的关系间

学生 (学号, 姓名, 性别, 专业号, 年龄)

课程 (课程号, 课程名, 学分)

选修 (学号, 课程号, 成绩)

例3 同一关系

学生2(学号, 姓名, 性别, 专业号, 年龄, 班长)

(同一关系内部属性之间也可能存在相互引用关系)

3、什么操作可能破坏参照完整性

更新操作可 能会破坏参 照完整性

	S	R
插入元组		~
删除元组	~	
修改元组	~	~

用户定义的完整性

- 除了上述关系模型所要求的完整性约束之外,不同的关系数据库系统根据其应用环境的不同,往往还需要一些特殊的约束条件。
- □ 这些约束条件可以由用户指定,反映了某一具体的应用所涉及的数据必须满足的要求。
- □ 称为用户定义的完整性。

(参见教材P44)

Questions?

学完本讲后, 你应该能够了解:

- 1、关系的完整性约束是关系模型中的一些规则,告诉我们在表结构中哪些变化是允许的,哪些检索操作是受限的;
 - 2、商用DBMS提供接口给用户来定义完整性约束;
 - 3、关系是满足一些约束(或者说是具有某些特性)的表;
- 4、规则1说明关系DBMS所能接受的表——第一范式,即并非 手工处理的所有表格都是关系DBMS所能接受的;
 - 5、规则2规定关系DBMS提供的表检索方式——基于表的内容;
 - 6、规则3规定表中行的唯一性;
 - 7、规则4保证主键必须起唯一标识作用;
 - 8、规则5保证表之间的联系。

问题讨论

- 1、关系完整性约束的作用?
- 2、完整性约束的检测对系统性能的影响如何?
- 3、下面的关系R与关系S相同吗?为什么?
- 4、对关系的何种操作可能破坏实体完整性?对关系的何种操作可能破坏参照完整性?

R

A	В	C
a_1	b_1	\mathbf{c}_1
a_2	b_2	\mathbf{c}_2
a_3	b_3	\mathbf{c}_3

S

A	C	В
a_2	\mathbf{c}_2	b_2
\mathbf{a}_1	\mathbf{c}_1	b_1
\mathbf{a}_3	\mathbf{c}_3	b_3

- 5、主键的选取影响到数据库应用系统提供的服务吗?请你举例说明。
- 6、目前商用的或你所使用的RDBMS产品对关系规则支持的程度如何?

- 1、关系模型的完整性规则有哪几类?
- 2、什么是实体完整性?举一例说明。
- 3、什么是参照完整性?举一例说明。
- 4、在关系模型的参照完整性规则中,外键属性的值是否可以为空?什么情况下才可以为空?
- 5、设关系模式R (K, X, A) 中, K, X, A都是属性组, 其中, K为R的主键, X为R的外键, 下面的操作中, 哪个既可能破坏实体完整性, 也可能破坏参照完整性。
 - ①插入一个元组 (kl, xl, al), kl不为空
 - ②删除一个存在元组 (k2, x2, a2)
 - ③将存在元组 (k2, x2, a2) 修改为元组 (k2, x2, a1)
 - ④将存在元组 (k2, x2, a2) 修改为元组 (k2, x3, a2)