Indian Statistical Institute, Bangalore

B. Math.

Third Year, First Semester Analysis on Graphs

Home Assignment I

Due Date: September 8, 2023 Instructor: B V Rajarama Bhat

- (1) Let A be an $n \times n$ complex matrix. Show that the sum of $k \times k$ principal minors of A is same as the sum of products of eigenvalues of A, taken k at a time.
- (2) (Star-graph) Fix $n \geq 2$. Consider the graph G = (V, E) where $V = \{1, 2, \ldots, n\}$ and $E = \{\{1, j\} : 2 \le j \le n\}$. Write down the spectral decompositions of the adjacency matrix and the Laplacian matrix of G.
- (3) Let $K = K_{p,q}$ be the complete bi-partite graph with p,q vertices. (i) Write down the incidence matrix of K (using suitable orientation); (ii) Write down the spectral decomposition of the adjacency matrix of K (iii) Write down the Laplacian of K. (iv) Compute all eigenvalues of the Laplacian of K.
- (4) Let G be a graph with vertex set $V = \{1, 2, \dots, n\}$ and edge set $E = \{e_1, e_2, \dots, e_m\}$. For $i, j \in V$, write $i \sim j$ (i is adjacent to j) if $\{i, j\} \in E$. Let D be the degree matrix and let A be the adjacency matrix of G. Then the 'sign-less Laplacian' is defined as:

$$L_0(G) = D + A$$

Let $\{v_1, \ldots, v_n\}$ be the standard basis of \mathbb{C}^n . Show that

- (i) $L_0(G)$ is positive;
- (ii) $L_0(G) = \sum_{i \sim j} (v_i + v_j)(v_i + v_j)^*.$ (iii) $L(G) = \sum_{i \sim j} (v_i v_j)(v_i v_j)^*.$
- (iv) Show that $L_0(G)$ is singular iff G is bipartite.
- (5) Let Q be an $n \times m$ matrix with $n \leq m$. Let p, q be the characteristic polynomials of QQ^* and Q^*Q respectively. Show that $q(x) = p(x)x^{m-n}$. In particular, the spectrum of Q^*Q is same as that of QQ^* except for some additional zeros. (Hint: You may use the polar decomposition for Q.)
- (6) Let G be the graph with $V = \{1, 2, 3, 4, 5\}$ and $\{i, j\}$ is an edge if either i divides j or j divides i. Compute the number of spanning trees of this graph.
- (7) Show that if G is a connected graph with n vertices and n-1 edges then G is a
- (8) Let G be a graph with $V(G) = \{1, 2, \dots, n\}$ and edge set E(G). Then the complement graph G^c is defined as $V(G^c) = \{1, 2, ..., n\}$ and the edge set $E(G^c) =$ $\{\{i,j\}:i\neq j,\{i,j\}\notin E(G)\}$. Compute the spectrum of the Laplacian of G^c in terms of the spectrum of G. Show that n is an eigenvalue of L(G) if and only if G^c is disconnected.
- (9) Let G be a graph. The normalized Laplacian of G is defined as $N(G) = D^{-\frac{1}{2}}L(G)D^{-\frac{1}{2}}$, where for the degree matrix D with diagonal entries $d_1, \ldots, d_n, D^{-\frac{1}{2}}$ is the diagonal matrix with diagonal entries $d_1^{-\frac{1}{2}}, d_2^{-\frac{1}{2}}, \dots, d_n^{-\frac{1}{2}}$, with the convention that $0^{-\frac{1}{2}} = 0$. Show that (i) N(G) is a positive matrix. (ii) The sum of eigenvalues of N(G) is n-l where l is the number of isolated vertices of G.
- (10) Assume that the graph G has no isolated vertices. Using the notation of the previous question: (i) Show that the multiplicity of the eigenvalue 0 of the adjacency matrix A(G) is same as the multiplicity of 1 of N(G). (ii) The multiplicity of the eigenvalue 0 of N(G) is the number of connected components of G.