Les Développements Limités

Définition. Soit I un intervalle et $f: I \to \mathbb{R}$ une application. Soit x_0 un élément de I ou une extrémité de I (exemple : $si\ I =]a,b[$ alors x_0 peut être dans [a,b]). Soit n un entier naturel. On dit que f admet un **développement limité** à l'ordre n en x_0 , en abrégé $DL_n(x_0)$, s'il existe des réels a_0, \dots, a_n et une fonction $\varepsilon: I \to \mathbb{R}$ tels que :

pour tout
$$x \in I$$
, $f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon(x)$, avec $\lim_{x \to x_0} \varepsilon(x) = 0$

Le polynôme $P(x) = a_0 + a_1(x - x_0) + \cdots + a_n(x - x_0)^n$ est appellé la partie parincipale ou tout simplement le développement limité à l'ordre n en x_0 de f.

Exemple. Comme $1 - x^{n+1} = (1 - x)(1 + x + \dots + x^n)$, on a

$$\frac{1-x^{n+1}}{1-x} = \frac{(1-x)(1+x+\dots+x^n)}{1-x} = 1+x+\dots+x^n$$

d'où

$$\frac{1}{1-x} = 1 + x + \dots + x^n - \frac{x^{n+1}}{1-x} = 1 + x + \dots + x^n + x^n \frac{-x}{1-x}$$

Donc la fonction $f(x) = \frac{1}{1-x}$ admet un DL au point 0 à l'ordre n, avec dans ce cas $\varepsilon(x) = \frac{-x}{1-x}$. On ne cherche généralement pas à déterminer la fonction $\varepsilon(x)$.

Propriétés.

(1) (*Unicité d'un DL*). Si f admet un $DL_n(x_0)$, alors ce développement limité est unique. Autrement dit si :

$$a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon_1(x)$$

$$= b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)^n + (x - x_0)^n \varepsilon_2(x),$$

avec $\lim_{x\to x_0} \varepsilon_1(x) = 0$ et $\lim_{x\to x_0} \varepsilon_2(x) = 0$, alors $a_0 = b_0, a_1 = b_1, \dots, a_n = b_n$.

(2) (Troncature d'un DL). Si f admet un DL à l'ordre n en x_0 ,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon_1(x)$$

alors pour tout $p \le n$, elle admet un DL à l'ordre p en x_0 , obtenu par troncature,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^p + (x - x_0)^p \varepsilon_2(x).$$

(3) Si f admet un DL à l'ordre n en x_0 ,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon_1(x)$$

alors $\lim_{x\to x_0} f(x)$ existe et finie et est égale à a_0 . C'est clair il suffit de calculer la limite.

Ce critère sert généralement à démontrer qu'une fonction n'admet pas de DL.

Exemple. La fonction $\ln(x)$ n'admet pas de DL en 0, car $\lim_{x\to 0} \ln(x) = -\infty$.

(4) Si f admet un DL à l'ordre n en x_0 , avec $n \ge 1$,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon_1(x)$$

alors f est dérivable en x_0 , si elle est définie en x_0 , (sinon, c'est le prolongement par continuité de f en x_0), et la dérivée de f en x_0 est a_1 .

(5) Le DL à l'ordre n en 0 d'un polynôme P(x) de degré n est lui même.

Attention. En revanche si f admet un DL à l'ordre 2 en x_0 , f (ou son prolongement) n'est pas forcement deux fois dérivable en x_0 , contre exemple $f(x) = x^3 \sin(\frac{1}{x})$ au point 0.

Importance des développements limités à l'origine

Critère. f admet un développement limité à l'ordre n en x_0 si et seulement si la fonction g définie par $g(h) = f(x_0 + h)$ admet un développement limité à l'ordre n en 0.

Plus précésiment, si $a_0+a_1h+\cdots+a_nh^n$ est le DL de g en 0, alors $a_0+a_1(x-x_0)+\cdots+a_n(x-x_0)^n$ est le DL de f en x_0 .

En pratique. Si je veux calculer le DL de f à l'ordre n en x_0 , je calcule le DL de $g(h) = f(x_0 + h)$ à l'ordre n en 0, ensuite je remplace dans le DL trouvé h par $(x - x_0)$.

Exemple. Calculons le DL de la fonction $f(x) = \cos x$ à l'ordre 3 au point $\frac{\pi}{2}$. On considère la fonction $g(h) = \cos(\frac{\pi}{2} + h)$ et on calcule son DL à l'ordre 3 au point 0.

On sait que $\cos(\frac{\pi}{2} + h) = \cos(\frac{\pi}{2}) \cdot \cos(h) - \sin(\frac{\pi}{2}) \cdot \sin(h) = -\sin(h)$. On a

$$-\sin(h) = -h + \frac{h^3}{6} + h^3 \varepsilon_1(h), \text{ au voisinage de 0}.$$

Maintenant on remplace h par $(x-\frac{\pi}{2})$ et on trouve le DL de $f(x)=\cos x$ à l'ordre 3 au point $\frac{\pi}{2}$:

$$\cos(x) = -(x - \frac{\pi}{2}) + \frac{1}{6}(x - \frac{\pi}{2})^3 + (x - \frac{\pi}{2})^3 \varepsilon_2(x),$$

avec $\varepsilon_2(x) = \varepsilon_1(x - \frac{\pi}{2})$. On a bien sûr $\lim_{x \to \pi/2} \varepsilon_2(x) = 0$.

Etant donné que le calcul des DL à un point x_0 se ramène au calcul des DL au point 0 on se contentera dans la suite à considérer seulement les DL à l'origine 0.

Opérations sur les Développements limités

Somme des DL. Si f admet un $DL_n(0)$,

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon_1(x),$$

et g admet un $DL_n(0)$,

$$q(x) = b_0 + b_1 x + \dots + b_n x^n + x^n \varepsilon_2(x),$$

alors f + g admet un $DL_n(0)$, qui est donné par la somme des deux DL :

$$(f+g)(x) = f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n + x^n \varepsilon(x)$$

Produit des DL. Si f admet un $DL_n(0)$,

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon_1(x),$$

et g admet un $DL_n(0)$,

$$g(x) = b_0 + b_1 x + \dots + b_n x^n + x^n \varepsilon_2(x),$$

alors f.g admet un $DL_n(0)$, obtenu en ne conservant que les monômes de degré $\leq n$ dans le produit

$$(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_nx^n).$$

Exemple. Calculons le DL de la fonction $f(x) = \cos x \cdot \sin x$ à l'ordre 5 au point 0. On a :

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + x^5 \varepsilon_1(x), \quad \cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^5 \varepsilon_2(x).$$

On calcule le produit

$$(x - \frac{x^3}{6} + \frac{x^5}{120})(1 - \frac{x^2}{2} + \frac{x^4}{24}),$$

en ne gardant que les monômes de degré ≤ 5

$$\left(x - \frac{x^3}{6} + \frac{x^5}{120}\right)\left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right) = x - x \cdot \frac{x^2}{2} + x \cdot \frac{x^4}{24} - \frac{x^3}{6} + \frac{x^3}{6} \cdot \frac{x^2}{2} + \dots + \frac{x^5}{120} - \dots + \dots$$

Donc on a

$$f(x) = \cos x \cdot \sin x = x - (\frac{2}{3})x^3 + (\frac{1}{24} + \frac{1}{12} + \frac{1}{120})x^5 + x^5 \varepsilon(x).$$

Quotient des DL. Si f admet un $DL_n(0)$,

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon_1(x),$$

et g admet un $DL_n(0)$,

$$g(x) = b_0 + b_1 x + \dots + b_n x - {n \choose 2} + x^n \varepsilon_2(x),$$

avec $\lim_{x\to 0} g(x) \neq 0$, (autrement dit $b_0 \neq 0$), alors $\frac{f}{g}$ admet un $DL_n(0)$, obtenu par la devision selon les puissances croissantes à l'ordre n du polynôme $a_0 + a_1x + \cdots + a_nx^n$ par le polynôme $b_0 + b_1x + \cdots + b_nx^n$.

Exemple. Calculons le DL de la fonction $f(x) = \sin x/\cos x$ à l'ordre 3 au point 0. Comme $\lim_{x\to 0}\cos x\neq 0$, on peut appliquer le critère précédent. On a

$$\sin x = x - \frac{x^3}{6} + x^3 \varepsilon_1(x), \quad \cos x = 1 - \frac{x^2}{2} + x^3 \varepsilon_2(x).$$

Appliquons la division selon les puissances croissantes :

$$\begin{array}{c|cccc}
x - \frac{1}{6}x^3 & 1 - \frac{1}{2}x^2 \\
\hline
x - \frac{1}{2}x^3 & x + \frac{1}{3}x^3
\end{array}$$

Par conséquent, $\frac{\sin x}{\cos x} = x + \frac{1}{3}x^3 + x^3\varepsilon(x)$.

Attention. Le critère précédent dit tout simplement que si $\lim_{x\to 0} g(x) \neq 0$, alors $\frac{f}{g}$ admet un $DL_n(0)$ et il ne nous dit pas si $\lim_{x\to 0} g(x) = 0$, alors $\frac{f}{g}$ n'admet pas un $DL_n(0)$!! Il se peut que $\lim_{x\to 0} g(x) = 0$, avec $\frac{f}{g}$ admet un $DL_n(0)$.

Exemple. La fonction $\frac{\sin x}{x}$ admet un DL d'ordre 3 en 0, alors que $\lim_{x\to 0} x = 0$.

Traitement du cas $\lim_{x\to 0} g(x) = 0$.

- (1). $\lim_{x\to 0} f(x) \neq 0$. Dans ce cas, f/g n'admet pas de $DL_n(0)$, car $\lim_{x\to 0} \frac{f(x)}{g(x)} = \pm \infty$.
- (2). $\lim_{x\to 0} f(x) = 0$. Dans ce cas le DL de f est de la forme

$$f(x) = a_p x^p + \dots + a_n x^n + x^n \varepsilon_1(x),$$

et celui de g de la forme

$$g(x) = b_q x^q + \dots + b_n x^n + x^n \varepsilon_2(x),$$

avec $a_p \neq 0$ et $b_q \neq 0$.

On traite le quotient f/g selon les valeurs de p et q.

• p < q. Alors

$$\frac{f}{g} = \frac{a_p x^p + \dots + a_n x^n + x^n \varepsilon_1(x)}{b_q x^q + \dots + b_n x^n + x^n \varepsilon_2(x)} =$$

$$= \frac{a_p + \dots + a_n x^{n-p} + x^{n-p} \varepsilon_1(x)}{b_q x^{q-p} + \dots + b_n x^{n-p} + x^{n-p} \varepsilon_2(x)}.$$

Comme q-p>0, et $a_p\neq 0$, on a $\lim_{x\to 0}\frac{f(x)}{g(x)}=\pm\infty$ et par conséquent f/g n'admet pas de $DL_n(0)$.

• $p \ge q$. Alors

$$\frac{f}{g} = \frac{a_p x^p + \dots + a_n x^n + x^n \varepsilon_1(x)}{b_q x^q + \dots + b_n x^n + x^n \varepsilon_2(x)} =$$

$$= \frac{a_p x^{p-q} + \dots + a_n x^{n-q} + x^{n-q} \varepsilon_1(x)}{b_q + \dots + b_n x^{n-q} + x^{n-q} \varepsilon_2(x)}.$$

Dans ce cas on est raméné au cas où $\lim_{x\to 0} g(x) \neq 0$. Donc pour calculer le DL de f/g à l'ordre n au point 0, on calcule le DL de f est g à **l'ordre** n+q, et ensuite on utilise la méthode de la division selon les puissances croissantes.

Example. Calculons le DL de $\frac{\ln(1+x)}{\sin x}$ à l'ordre 3 en 0. Il faut déterminer q tel que $b_q \neq 0$ dans le DL de $\sin x$. On a

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon(x).$$

Par conséquent le premier coefficient non-nul est b_1 . Donc q=1. On doit calculer le DL de $\ln(1+x)$ et $\sin x$ à l'ordre 3+q=4. On a

$$\sin x = x - \frac{x^3}{3!} + x^4 \varepsilon_1(x), \quad \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + x^4 \varepsilon_2(x).$$

Donc

$$\frac{\ln(1+x)}{\sin x} = \frac{1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + x^3 \varepsilon_2(x)}{1 - \frac{x^2}{3!} + x^3 \varepsilon_1(x)}.$$

Par conséquent on a un DL d'ordre 3 en haut et en bas et avec $\lim_{x\to x_0} g_1(x) \neq 0$, où $g_1(x) = 1 - \frac{x^2}{3!} + x^3 \varepsilon_1(x)$. Donc on peut appliquer le critère précédent et faire la division selon les puissances croissantes.

Composition des DL. Si f admet un $DL_n(g(0))$,

$$f(x) = a_0 + a_1(x - g(0)) + \dots + a_n(x - g(0))^n + (x - g(0))^n \varepsilon_1(x),$$

et q admet un $DL_n(0)$,

$$g(x) = b_0 + b_1 x + \dots + b_n x^n + x^n \varepsilon_2(x),$$

alors la fonction composé $f \circ g(x) = f(g(x))$ admet un $DL_n(0)$, obtenu en remplaçant le DL de g dans celui de f et en ne gardant que les monômes de degré $\leq n$.

En pratique. Si je veux calculer le DL de f(g(x)) en 0, je calcule le DL de f en g(0) et je trouve un DL de la forme

$$f(x) = a_0 + a_1(x - g(0)) + \dots + a_n(x - g(0))^n + (x - g(0))^n \varepsilon_1(x).$$

Ensuite je remplace le DL de g dans celui de f et je ne garde que les monômes de de degré $\leq n$. (Dans les calculs le terme g(0) disparaît).

Exemple. Calculer le DL de $e^{\cos x}$ à l'ordre 3 en 0. Comme $\cos 0 = 1$, on calcule le DL de e^x en 1. Pour cela, d'après ce qui précède, on calcule le DL de la fonction e^{1+h} en 0. On a

$$e^{1+h} = e \cdot e^h = e(1+h+\frac{h^2}{2}+\frac{h^3}{3!}+h^3\varepsilon_1(h)).$$

Pour trouver le DL de e^x en 1, on remplace h par x-1

$$e^x = e(x + \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3!} + (x-1)^3 \varepsilon_1(x-1)).$$

Ensuite on remplace le DL de $\cos x = 1 - \frac{x^2}{2} + x^3 \varepsilon_2(x)$, dans le précédent, en ne gardant que les monômes de degré ≤ 3

$$e^{\cos x} = e\left(\left(1 - \frac{x^2}{2}\right) + \frac{\left(1 - \frac{x^2}{2} - 1\right)^2}{2} + \frac{\left(1 - \frac{x^2}{2} - 1\right)^3}{3!} + \left(1 - \frac{x^2}{2} - 1\right)^3 \varepsilon_1 \left(1 - \frac{x^2}{2} - 1\right)\right)$$
$$= e - \frac{e}{2}x^2 + x^3 \varepsilon_3(x).$$

Attention. Le critère précédent dit tout simplement que si f admet un $DL_n(g(x_0))$ et g admet un $DL_n(x_0)$, alors la fonction composé $f \circ g(x) = f(g(x))$ admet un $DL_n(x_0)$ et il ne nous dit rien dans le cas où f et g n'admettent pas de DL. Il se peut que f admet un DL et g n'admet pas de DL, alors que $f \circ g$ admet un DL.

Exemple. La fonction $f(x) = cos(\sqrt{x})$ admet un $DL_2(0)$ alors que la fonction $x \mapsto \sqrt{x}$ n'admet pas de DL en 0 à l'ordre 2 car $x \mapsto \sqrt{x}$ n'est pas dérivable en 0 donc elle n'admet pas de DL d'ordre 1.

Primitivation des DL. Si $f: I \to \mathbb{R}$ admet un $DL_n(0)$ et F est une primitive de f sur I (autrement dit F est dérivable sur I et F'(x) = f(x) pour tout $x \in I$), alors F admet un $DL_{n+1}(0)$, obtenu en intégrant le DL de f.

Plus précisement, si

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + x^n \varepsilon_1(x),$$

alors

$$F(x) = F(0) + a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1} + x^{n+1} \varepsilon(x).$$

Attention. Ne pas oublier le terme F(0)!

Exemple. Calculons le DL de arctan(x) à l'ordre 5 en 0. On a

$$\arctan'(x) = \frac{1}{1+x^2}, \quad \frac{1}{1+x^2} = 1 - x^2 + x^4 + x^4 \varepsilon_1(x).$$

En intégrant on obtient

$$\arctan(x) - \arctan(0) = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 + x^5\varepsilon_2(x).$$

Dérivation des DL. Si $f: I \to \mathbb{R}$ admet un $DL_{n+1}(0)$ et f est de classe C^{n+1} , alors f' admet un $DL_n(0)$, obtenu en dérivant le DL de f.

Exemple. Calculons le DL d'ordre 3 en 0 de $\frac{1}{1-x^2}$.

On sait que

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^4 \varepsilon_1(x).$$

Comme $\frac{1}{1-x}$ est de classe C^4 , alors on applique le critère précédent et par dérivation on a

$$\frac{1}{1-x^2} = 1 + 2x + 3x^2 + 4x^3 + x^3 \varepsilon_1(x).$$

Application des Développements limités

Calculer des limites.

Généralement sont des limites de forme indéterminée. Il est toujours possible, avec un changement de variable, de se ramener à une limite quand x tends vers 0.

Exemples.

(1) Calculer $\lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}) \cdot \tan(x)$.

On voit que cette limite est de la forme indéterminée $0.\infty$. On pose $X=x-\frac{\pi}{2}$, pour se ramener à une limite quand X tends vers 0. Alors on a

$$(x - \frac{\pi}{2}) \cdot \tan(x) = X \tan(X + \frac{\pi}{2}) = X \frac{\sin(X + \frac{\pi}{2})}{\cos(X + \frac{\pi}{2})} = X \frac{1}{\tan(X)}.$$

On connait le DL de tan(X) en 0

$$\tan(X) = X + \frac{X^3}{3} + X^3 \varepsilon(X),$$

en remplçant on a

$$\lim_{x \to \frac{\pi}{2}} (x - \frac{\pi}{2}). \tan(x) = \lim_{X \to 0} X \frac{1}{\tan(X)} = \lim_{X \to 0} \frac{1}{1 + \frac{X^2}{3} + X^2 \varepsilon(X)} = 1.$$

(2) Calculer $\lim_{x\to +\infty} x^2 (e^{\frac{1}{x}} - e^{\frac{1}{1+x}})$. On pose $X = \frac{1}{x}$. Alors on a $x\to +\infty$ ssi $X\to 0$.

$$x^{2}(e^{\frac{1}{x}} - e^{\frac{1}{1+x}}) = \frac{1}{X^{2}}(e^{X} - e^{\frac{X}{1+X}}).$$

Il suffit de calculer le DL de $\frac{1}{X^2}(e^X-e^{\frac{X}{1+X}})$ à un certian ordre en 0. Comme $\frac{1}{X^2}$ figure on devine qu'on doit calculer un DL de $(e^X-e^{\frac{X}{1+X}})$ au moins à l'ordre 2. Calculons le DL à l'ordre 2. Le seul problème se pose pour la fonction $e^{\frac{X}{1+X}}$. Comme c'est une fonction composé on va utiliser la composition des DL. On a

$$\frac{X}{1+X} = X - X^2 + X^2 \varepsilon_1(X)$$

$$e^{Y} = 1 + Y + \frac{Y^{2}}{2} + Y^{2} \varepsilon_{2}(Y)$$

En remplçant et après calcul on a

$$e^{\frac{X}{1+X}} = 1 + X - \frac{1}{2}X^2 + X^2\varepsilon_3(X).$$

Donc $\frac{1}{X^2}(e^X - e^{\frac{X}{1+X}}) = \frac{1}{X^2}[1 + X + \frac{X^2}{2} - (1 + X - \frac{1}{2}X^2) + X^2\varepsilon_4(X)] = 1 + \varepsilon_4(X)$, par conséquent $\lim_{x \to +\infty} x^2(e^{\frac{1}{x}} - e^{\frac{1}{1+x}}) = 1$.

Position de la courbe par rapport à une tangente.

On suppose que f admet un $DL_n(x_0)$,

$$f(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n + (x - x_0)^n \varepsilon_1(x),$$

avec $n \geq 2$. Cela implique que f (où son plongement si f n'est pas définie en x_0), est continue et dérivable en x_0 , avec $f(x_0) = a_0$ et $f'(x_0) = a_1$. Donc l'équation de la tangente est $y = a_0 + a_1(x - x_0)$. Par conséquent le signe de $f(x) - (a_0 + a_1(x - x_0))$ se déduit, au voisinage de x_0 , du signe de

$$a_2(x-x_0)^2 + \cdots + a_n(x-x_0)^n + (x-x_0)^n \varepsilon_1(x).$$

Soit m le plus petit entier tel que $a_m \neq 0$. Alors on a

- si m est pair alors le signe de $f(x) (a_0 + a_1(x x_0))$ est **localement** de même signe que a_m et on a
- (1) si $a_m > 0$ alors $f(x) (a_0 + a_1(x x_0)) \ge 0$ localement et donc la courbe est localement "au-dessus" de sa tangente.
- (2) si $a_m < 0$ alors $f(x) (a_0 + a_1(x x_0)) \le 0$ localement et donc la courbe est localement "en-dessous" de sa tangente.
- si m est impair alors la courbe traverse la tangenet en $(x_0, f(x_0))$, c'est une tangenet d'inflexion.

Position de la courbe par rapport à une asymptote.

On suppose que f admet une asymptote d'équation $y = a_0x + a_1$. Pour trouver a_0 et a_1 on sait qu'on doit calculer les limites : $\lim_{x \to +\infty} \frac{f(x)}{x}$ qui doit être égale à a_0 et $\lim_{x \to +\infty} f(x) - a_0x$ qui doit être égale à a_1 .

Pour trouver a_0 et a_1 en utilisant la méthode des DL on calcule le DL à l'ordre 1 en 0 de la fonction $Xf(\frac{1}{X})$ (autrement dit en fait le changement de variable $X=\frac{1}{x}$).

Si $Xf(\frac{1}{X}) = a_0 + a_1X + X\varepsilon(X)$ en 0, en remplçant on a

$$\frac{f(x)}{x} = a_0 + a_1 \frac{1}{x} + \frac{1}{x} \varepsilon(\frac{1}{x}),$$

au voisinage de $+\infty$. On voit que $\lim_{x \to +\infty} \frac{f(x)}{x} = a_0$ et $\lim_{x \to +\infty} f(x) - a_0 x = a_1$.

Pour connaître la position de la courbe par rapport à l'asymptote, on doit calculer un DL d'ordre supérieur de $Xf(\frac{1}{X})$ en 0. Si

$$Xf(\frac{1}{X}) = a_0 + a_1X + \dots + a_nX^n + X^n\varepsilon(X),$$

en 0, en remplçant on a

$$f(x) - a_0 x + a_1 = a_2 \frac{1}{x} + \dots + a_n \frac{1}{x^{n-1}} + \frac{1}{x^{n-1}} \varepsilon(\frac{1}{x}).$$

Soit m le plus petit entier tel que $a_m \neq 0$. Alors

- si $a_m > 0$ alors $f(x) (a_0x + a_1) \ge 0$ donc la courbe est "au-dessus" de l'asymptote au voisinage de $+\infty$.
- si $a_m < 0$ alors $f(x) (a_0x + a_1) \le 0$, donc la courbe est "en-dessous" de l'asymptote au voisinage de $+\infty$.