Turbulent Premixed Combustion

Combustion Summer School 2018

Prof. Dr.-Ing. Heinz Pitsch

Example: LES of a stationary gas turbine

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Scales of Turbulent Premixed
 Combustion
- Regime-Diagram
- Turbulent Burning Velocity

Scales of Turbulent Premixed Combustion

Integral turbulent scales

$$l_{\mathrm{t}} = c_{1} rac{ar{k}^{3/2}}{ar{arepsilon}}, \qquad u' = \sqrt{rac{2}{3}ar{k}}, \qquad au = rac{l_{\mathrm{t}}}{u'} \sim rac{ar{k}}{ar{arepsilon}}$$

Smallest turbulent scales/Kolmogorov scales

$$\eta = \left(rac{
u^3}{\overline{arepsilon}}
ight)^{1/4}, \qquad u_\eta = (
u\overline{arepsilon})^{1/4}, \qquad t_\eta = \left(rac{
u}{\overline{arepsilon}}
ight)^{1/2}$$

Flame thickness and time, reaction zone thickness

$$I_{\mathsf{F}} = rac{D}{\mathsf{s}_{\mathsf{L}}} = rac{\lambda_{\mathsf{b}}}{
ho_{\mathsf{u}} c_{\mathsf{p}} \mathsf{s}_{\mathsf{L}}}, \qquad t_{\mathsf{F}} = rac{I_{\mathsf{F}}}{\mathsf{s}_{\mathsf{L}}} = rac{D}{\mathsf{s}_{\mathsf{L}}^2}, \qquad I_{\delta} \ll I_{\mathsf{F}}$$

Dimensionless Quantities in Premixed Turbulent Combustion

Turbulent Reynolds number

$$Sc = \frac{\nu}{D} = 1 \quad o \quad Re_{\mathsf{t}} = \frac{I_{\mathsf{t}}}{I_{\mathsf{F}}} \frac{u'}{s_{\mathsf{L}}}$$

Turbulent Damköhler number

$$Da_{\mathrm{t}} = rac{ au}{t_{\mathsf{F}}} = rac{I_{\mathsf{t}}}{I_{\mathsf{F}}} rac{s_{\mathsf{L}}}{u'}$$

 Karlovitz number (interaction of small-scale turbulence with the flame)

$$extit{Ka} = rac{t_{ extsf{F}}}{t_{\eta}} = rac{ extit{I}_{ extsf{F}}^2}{\eta^2} = \sqrt{rac{ extit{I}_{ extsf{F}}}{ extit{I}_{ extsf{t}}} \Big(rac{ extit{u}'}{ extsf{s}_{ extsf{L}}}\Big)^3} \quad ext{und} \quad extit{Ka}_{\delta} = rac{ extit{I}_{\delta}^2}{\eta^2} = \delta^2 ext{Ka}$$

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Scales of Turbulent Premixed
 Combustion
- Regime-Diagram
- Turbulent Burning Velocity

Regime Diagram

Corrugated Flamelet Regime

Regime Diagram: Corrugated Flamelets

- $Ka < 1 \rightarrow \eta > I_F$
 - Interaction of a very thin flame with a turbulent flow
 - Assumption: infinitely thin flame (compared to turbulent scales)

premixed flame in isotropic turbulence

OH-radical-distribution in a turbulent premixed flame

Buschmann (1996)

Regime Diagramm: Broken Reaction Zones Regime

Regime Diagramm: Broken Reaction Zones Regime

- $Ka_{\delta} > 1 \rightarrow \eta < I_{\delta}$
 - Smallest turbulent eddies enter the reaction zones
 - Turbulent transport
 radicals are removed from reaction zone
 - Local extinction in the inner reaction zone possible
 - Can lead to global flame extinction

Example: Supernovae flames with transport mechanisms very different from normal flames

Two-dimensional slices from three-dimensional simulations

Regime Diagramm: Thin Reaction Zones Regime

Regime Diagramm: Thin Reaction Zones Regime

- Ka > 1 und $Ka_{\delta} < 1 \rightarrow I_{\delta} < \eta < I_{F}$
 - − With $I_{\delta} \approx 0.1I_{F} \rightarrow Ka \approx 100Ka_{\delta}$
 - Turbulent mixing inside preheat zone
 - Assumption: infinitely thin reaction zone (compared to turbulent scales)

temperature distribution from DNS of a premixed turbulent flame

Case	A40	B40	C40	D40
Equivalence ratio (φ) Flame speed (s_L) $(m s^{-1})$ Flame width (l_L) (m)	$0.40 \\ 2.24 \times 10^{-1} \\ 6.29 \times 10^{-4}$	$0.40 \\ 2.24 \times 10^{-1} \\ 6.29 \times 10^{-4}$	$0.40 \\ 2.24 \times 10^{-1} \\ 6.29 \times 10^{-4}$	$0.40 \\ 2.24 \times 10^{-1} \\ 6.29 \times 10^{-4}$
Domain width (L) (m) Domain height (H) (m) Integral length scale (l) (m)	3.14×10^{-3} 2.512×10^{-2} 3.14×10^{-4}	3.14×10^{-3} 2.512×10^{-2} 3.14×10^{-4}	3.14×10^{-3} 2.512×10^{-2} 3.14×10^{-4}	3.14×10^{-3} 2.512×10^{-2} 3.14×10^{-4}
\rightarrow RMS velocity (\check{u}) (m s ⁻¹)	0.825	3.83	7.34	23.9
Damköhler number (Da_L)	1.36×10^{-1}	2.92×10^{-2}	1.52×10^{-2}	4.68×10^{-3}
Levels of refinement Effective resolution (N) Cell width (Δx) (m)	$ \begin{array}{c} 1 \\ 128^2 \times 1024 \\ 2.45 \times 10^{-5} \end{array} $	$ \begin{array}{c} 1 \\ 128^2 \times 1024 \\ 2.45 \times 10^{-5} \end{array} $	$ \begin{array}{c} 1 \\ 128^2 \times 1024 \\ 2.45 \times 10^{-5} \end{array} $	2 2562 × 2048 1.23 × 10-5
Kolmogorov length (η) (m) Cell Kolmogorov length $(\eta_{\Delta x})$ (m) Effective Kolmogorov length (η_e) (m)	4.33×10^{-5} 7.36×10^{-6} 4.33×10^{-5}	1.37×10^{-5} 7.36×10^{-6} 1.51×10^{-5}	8.41×10^{-6} 7.36×10^{-6} 11.2×10^{-6}	3.47×10^{-6} 3.68×10^{-6} 5.12×10^{-6}
Effective Kolmogorov length (η_e) (m)				

Table 2. Turbulent flame properties for the four simulations at equivalence ratio $\varphi = 0.40$.

broken reaction zones

 10^{3}

Source: A. J. Aspden et al. (JFM 2011)

Regime Diagram: Summary

FIGURE 8. Two-dimensional vertical slices through three-dimensional simulations showing density, burning rate and temperature at $\varphi = 0.40$, respectively. The density, burning rate and temperature ranges are $[0.2,1.02] \text{ kg m}^{-3}$, $[0,64] \text{ kg m}^{-3} \text{ s}^{-1}$ and [298,1600] K, respectively.

Source: A. J. Aspden et al. (JFM 2011)

Regime Diagram: Corrections from Ideal Scaling

Usual assumptions:

$$-Sc=1 \rightarrow v=D$$

$$-S_L I_F / v \approx 1$$

$$-I_{\delta} \approx 0.1I_{F}$$
 → $Ka \approx 100Ka_{\delta}$

-
$$Sc \approx 1$$
 → $v \approx D$

but

$$-S_L I_F / v \approx 5$$

$$-I_{\delta} \approx 0.5I_{F} \rightarrow Ka \approx 4Ka_{\delta}$$

Lines only for scaling, be careful with absolute values

DNS at Constant Ka for Various Re

- Lean methane flame T_u =800K, φ =0.7 (S_L =1m/s)
- Re variation: constant u' and increased $I_t \rightarrow$ constant Karlovitz (approximately)

Re	2800	5600	11200	22400
Ка	40	40	40	40
U _{bulk}	100 m/s	100 m/s	100 m/s	100 m/s
u'	10 m/s	10 m/s	10 m/s	10 m/s
Jet widths	0.6 mm	1.2 mm	2.4 mm	4.8 mm
Grid points	88 Million	350 Million	2.8 Billion	22 Billion

2800

5600

11200

22400

(from A. Attili et al, 2017)

DNS at Constant Ka for Various Re

- Lean methane flame T_{ij} =800K, φ =0.7 (S_{ij} =1m/s)
- Re variation: constant u' and increased $I_t \rightarrow$ constant Karlovitz (approximately)

Re	2800	5600	11200	22400
Ка	40	40	40	40
U _{bulk}	100 m/s	100 m/s	100 m/s	100 m/s
u'	10 m/s	10 m/s	10 m/s	10 m/s
Jet widths	0.6 mm	1.2 mm	2.4 mm	4.8 mm
Grid points	88 Million	350 Million	2.8 Billion	22 Billion

- Reynolds number changed by jet width H
- L_t ~ H
- $\eta = I_t \operatorname{Re}_t^{-3/4} \sim I_t^{1/4}$, hence η increases slightly with increasing H

Not clear in which regime the flames are

- Thin reaction zone
- Broken reaction zone

Different Re and constant Ka DNS: regime assessment

- gradient PDF is wide
- PDF close to log normal (typical for gradients in turbulence)
- far from the gradient in a laminar 1D flame

- Reaction zone not affected by change in turbulence
 - gradient PDF is narrow
 - close to the gradient in laminar unstretched 1D flame

The flames are in the thin reaction zone regime

Different Re and constant Ka DNS: flame structure

- Flame structure very similar to 1D laminar flame
 - Conditional mean from DNS agrees well with 1D flame profile
 - Small scatter
- Reynolds number effects are related to different transport in the preheat zone, not to modifications of the flame structure

Course Overview

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Scales of Turbulent Premixed
 Combustion
 - Regime-Diagram
 - Turbulent Burning Velocity

Turbulent Burning Velocity

Comparison: Laminar/Measured Burning Velocity

Laminar burning velocity of iso-octane

Exemplary measurements in gasoline engine with tumble generator of flame velocity at spark plug position during full load (Source: Merker, "Grundlagen Verbrennungsmotoren")

Comparison: Laminar/Measured Burning Velocity

Experimental data of s_T vs. wrinkled laminar-flame theories of turbulent flame propagation (data from Turns 2000)

Turbulent Burning Velocity

- Main problem for turbulent premixed combustion: Quantification of turbulent burning velocity s_T
- s_T : Velocity which quantifies the propagation of the turbulent flame front into unburnt mixture
- Distinction of two limiting cases by Damköhler (1940)
 - Large scale turbulence ↔
 corrugated flamelets
 - Small scale turbulence ↔
 thin reaction zones

Turbulent Burning Velocity: Corrugated Flamelets

- Instantaneous flame front
 - Flame surface area A_T
 - Propagates locally with laminar burning velocity s_L into unburnt mixture
- Mean flame front
 - Mean flame surface area A
 - Propagates with turbulent burning velocity s_T

Turbulent Burning Velocity: Corrugated Flamelets

With the mass flux trough A and A_T

$$\dot{m} =
ho_{\mathsf{u}} s_{\mathsf{L}} A_{\mathsf{T}} = \overline{
ho}_{\mathsf{u}} s_{\mathsf{T}} A_{\mathsf{T}}$$

• Assume constant density in the unburnt mixture (assumption) $\rho_{\rm u} = \overline{\rho}_{\rm u}$

$$s_{\rm L} = \frac{A_{\rm T}}{s_{\rm L}}$$

• Wrinkling of the laminar flame $(A_{\mathsf{T}} \uparrow) \rightarrow \text{increase of } s_{\mathsf{T}}$

Turbulent Burning Velocity: Corrugated Flamelets

- Turbulence → flame surface area ↑
- Using an analogy with a Bunsen flame

$$s_{\rm L} = u_{\rm u} \sin \alpha \quad \stackrel{\rm hier}{\longrightarrow} \quad \sin \alpha = \frac{s_{\rm L}}{u'} \quad \Rightarrow \quad \frac{A_{\rm T}}{A} \sim \frac{d/\sin \alpha}{d} = \frac{u'}{s_{\rm L}}$$

• Limit for $u' \rightarrow 0$

$$rac{oldsymbol{s_{\mathsf{T}}}}{oldsymbol{s_{\mathsf{L}}}} = rac{oldsymbol{A}_{\mathsf{T}}}{oldsymbol{A}} = 1 + rac{oldsymbol{u}'}{oldsymbol{s_{\mathsf{L}}}}$$

- Internal combustion engine:
 - Engine speed n ↑ → burning velocity s_T ↑ due to

$$u' \sim u_{\mathsf{piston}} \sim n$$

→ High engine speed achievable

Turbulent Burning Velocity: large-scale turbulence

In experiments often used empirical relation

$$\frac{s_{\mathsf{T}}}{s_{\mathsf{L}}} = 1 + C \left(\frac{u'}{s_{\mathsf{L}}} \right)^n$$

- Constant C experimentally determined
- Typical values: 0.5 < n < 1.0
- From experimental data →
 - For small u', $s_T \sim u'$ applies
 - Consistent with Damköhler theory
 - Increase of turbulent intensity
 - s_T grows linearly
 - With further increase less than linear

Turbulent Burning Velocity: Thin Reaction Zones

- Reduced increase of turbulent burning velocity
 - → second limiting case of Damköhler
- Thin reaction zones/small-scaled turbulence
- In analogy to

$$s_{\mathsf{L}} = \sqrt{rac{D}{t_{\mathsf{c}}}}$$

Damköhler uses

$$s_{\mathsf{T}} = \sqrt{rac{D_{\mathsf{t}}}{t_{\mathsf{c}}}}$$

- $-t_{\rm c}$: chemical time scale
- Dimensional analysis $D_{\rm t} \sim u' I_{\rm t}$
- Constant of proportionality 0.78

$$\frac{s_{\mathsf{T}}}{s_{\mathsf{L}}} = \sqrt{\frac{D_{\mathsf{t}}}{D}} = \sqrt{\frac{0.78u'l_{\mathsf{t}}}{s_{\mathsf{L}}l_{\mathsf{F}}}}$$

consistent with experimental data

Turbulent Burning Velocity: Thin Reaction Zones

Flame length vs
Reynolds number

10

2800 5800 11200 22400
Re.

- Decreased length → increased flame speed
- Turbulent flame speed increases with increasing Reynolds number
 - u' is constant
 - Increased flame speed due to increased integral scale

Turbulent Burning Velocity

Damköhler-limits can be combined to a single formula (Peters, 1999):

$$rac{oldsymbol{s_{\mathsf{T}}}}{oldsymbol{s_{\mathsf{L}}}} = 1 - lpha rac{oldsymbol{l_{\mathsf{t}}}}{oldsymbol{l_{\mathsf{F}}}} + \sqrt{\left(lpha rac{oldsymbol{l_{\mathsf{t}}}}{oldsymbol{l_{\mathsf{F}}}}
ight)^2 + 4lpha rac{oldsymbol{u'} oldsymbol{l_{\mathsf{t}}}}{oldsymbol{s_{\mathsf{L}}} oldsymbol{l_{\mathsf{F}}}}}$$

- constant α = 0,195
- Low turbulence intensity →

$$\frac{s_{\mathsf{T}}}{s_{\mathsf{L}}} = 1 + 2\frac{u'}{s_{\mathsf{L}}}$$

High turbulence intensity →

$$rac{s_{\mathsf{T}}}{s_{\mathsf{L}}} = 1 + \sqrt{rac{0.78 u' \mathit{I}_{\mathsf{t}}}{s_{\mathsf{L}} \mathit{I}_{\mathsf{F}}}}$$

Turbulent Burning Velocity

• By rearranging this formula with $Da_t = (I_t s_L)/(I_F u') \rightarrow$

$$rac{s_{\mathsf{T}} - s_{\mathsf{L}}}{u'} = -lpha Da_{\mathsf{t}} + \sqrt{lpha^2 Da_{\mathsf{t}}^2 + 4lpha Da_{\mathsf{t}}}$$

Limit for high
 Damköhler number →

$$\lim_{Da_{\mathsf{t}}\to\infty}\frac{s_{\mathsf{T}}-s_{\mathsf{L}}}{u'}=2$$

Summary

Part II: Turbulent Combustion

- Turbulence
- Turbulent Premixed Combustion
- Turbulent Non-Premixed
 Combustion
- Turbulent Combustion Modeling
- Applications

- Scales of Turbulent Premixed
 Combustion
- Regime-Diagram
- Turbulent Burning Velocity