1

Contents

```
1 ubuntu
1.1 run . .
2 Basic
2.1 ascii . . . . . . . . . . . . . . . . . .
3 字串
3.2 stringstream . . . . . . . . . . . . . . . . .
4 STI
4.5 unordered_map
sort
5.1 大數排序
math
6.1 質數與因數
   6.4 atan
7 algorithm
7.3 三分搜
7.4 prefix sum
7.16 ArticulationPoints Tarjan \dots \dots \dots \dots \dots \dots \dots \dots
geometry
動能規劃
9.1 LCS 和 LIS . . . . . . . . . . . . . . .
                16
10 Section2
                16
10.1 thm . . . . . . . . . . . . . . . . . .
11 dp 表格
                16
11.1 DPlist . . . . . . . . . . . . .
                16
12 slogan
                26
 ubuntu
```

1.1 run

```
1 ~ $ bash cp.sh PA
```

1.2 cp.sh

```
1 #!/bin/bash
2
  clear
  g++ $1.cpp -DDBG -o $1
3
  if [[ "$?" == "0" ]]; then
          echo Running
          ./$1 < $1.in > $1.out
6
          echo END
8 fi
```

Basic

2.1 ascii

1	int	char	int	char	int	char
2	32		64	0	96	`
3	33	!	65	Α	97	a
4	34	"	66	В	98	b
5	35	#	67	С	99	С
6	36	\$	68	D	100	d
7	37	%	69	E	101	e
8	38	&	70	F	102	f
9	39	,	71	G	103	g
10	40	(72	Н	104	h
11	41)	73	I	105	i
12	42	*	74	J	106	j
13	43	+	<i>75</i>	K	107	k
14	44	,	76	L	108	1
15	45	-	77	М	109	m
16	46		78	N	110	n
17	47	/	79	0	111	0
18	48	0	80	P	112	p
19	49	1	81	Q	113	q
20	50	2	82	R	114	r
21	51	3	83	S	115	S
22	52	4	84	Τ	116	t
23	53	5	85	U	117	u
24	54	6	86	V	118	V
25	55	7	87	W	119	W
26	56	8	88	Χ	120	X
27	<i>57</i>	9	89	Υ	121	y
28	58	:	90	Z	122	Z
29	59	;	91	Γ	123	{
30	60	<	92	1	124	1
31	61	=	93	J	125	}
32	62	>	94	٨	126	~
33	63	?	95	_		

2.2 limits

```
[size]
1 [Type]
                                   [range]
2
  char
                       1
                                 127 to -128
  signed char
                                 127 to -128
                        1
  unsigned char
                       1
                                 0 to 255
                       2
                                 32767 to -32768
5
  short
  int
                                 2147483647 to -2147483648
  unsigned int
                        4
                                 0 to 4294967295
                                 2147483647 to -2147483648
  long
8
  unsigned long
                       4
                                 0 to 18446744073709551615
                       8
  long long
10
11
              9223372036854775807 to -9223372036854775808
                       8
                             1.79769e+308 to 2.22507e-308
12
  double
13
  long double
                        16
                             1.18973e+4932 to 3.3621e-4932
14
  float
                        4
                                3.40282e+38 to 1.17549e-38
15 unsigned long long
                       8
                                 0 to 18446744073709551615
16 string
                        32
```

3 字串

3.1 最長迴文子字串

```
1 | #include < bits / stdc++. h>
  #define T(x) ((x)%2 ? s[(x)/2] : '.')
3 using namespace std;
5 string s;
6 int n;
8 int ex(int 1, int r){
    int i=0:
     while (1-i)=0&&r+i<0&T(1-i)==T(r+i) i++;
10
11
     return i;
12 }
13
14 int main(){
     cin>>s;
15
     n=2*s.size()+1;
16
17
     int mx = 0;
     int center=0;
18
19
     vector<int> r(n);
     int ans=1;
20
     r[0]=1;
21
     for(int i=1;i<n;i++){</pre>
22
       int ii=center-(i-center);
23
24
       int len=mx-i+1;
25
       if(i>mx){
         r[i]=ex(i,i);
26
27
         center=i:
         mx=i+r[i]-1;
28
29
       else if(r[ii]==len){
30
31
          r[i]=len+ex(i-len,i+len);
         center=i:
32
33
         mx=i+r[i]-1;
34
35
       else r[i]=min(r[ii],len);
       ans=max(ans,r[i]);
36
37
     cout << ans -1 << "\n";
38
39
     return 0;
40 }
```

3.2 stringstream

```
1 string s,word;
2 stringstream ss;
3 getline(cin,s);
4 ss<<s;
bwhile(ss>>word) cout<<word<<endl;</pre>
```

4 STL

4.1 BIT

```
1 template <class T> class BIT {
2
  private:
    int size:
3
    vector<T> bit;
    vector<T> arr;
5
6
7
    BIT(int sz=0): size(sz), bit(sz+1), arr(sz) {}
10
    /** Sets the value at index idx to val. */
    void set(int idx, T val) {
11
          add(idx, val - arr[idx]);
12
13
```

```
14
15
     /** Adds val to the element at index idx. */
16
     void add(int idx, T val) {
17
       arr[idx] += val;
       for (++idx; idx<=size; idx+=(idx & -idx))</pre>
18
               bit[idx] += val;
19
20
21
     /** @return The sum of all values in [0, idx]. */
22
    T pre_sum(int idx) {
23
24
       T total = 0;
       for (++idx; idx>0; idx-=(idx & -idx))
25
26
               total += bit[idx];
27
       return total:
28
    }
29 };
```

4.2 priority_queue

```
1 priority_queue: 優先隊列,資料預設由大到小排序。
  讀取優先權最高的值:
3
4
     x = pq.top();
                            //讀取後刪除
5
     pq.pop();
  判斷是否為空的priority_queue:
6
                            //回傳 true
7
     pq.empty()
     pq.size()
                            //回傳@
8
  如需改變priority_queue的優先權定義:
9
                            //預設由大到小
     priority_queue<T> pq;
10
     priority_queue<T, vector<T>, greater<T> > pq;
11
                            //改成由小到大
12
13
     priority_queue<T, vector<T>, cmp> pq;
```

4.3 deque

```
1 deque 是 C++ 標準模板函式庫
     (Standard Template Library, STL)
2
     中的雙向佇列容器 (Double-ended Queue),
3
     跟 vector 相似,不過在 vector
4
        中若是要添加新元素至開端,
     其時間複雜度為 O(N), 但在 deque 中則是 O(1)。
5
     同樣也能在我們需要儲存更多元素的時候自動擴展空間,
6
     讓我們不必煩惱佇列長度的問題。
7
 dq.push_back() //在 deque 的最尾端新增元素
8
 dq.push_front() //在 deque 的開頭新增元素
9
              //移除 deque 最尾端的元素
10 dq.pop_back()
11 dq.pop_front() //移除 deque 最開頭的元素
              //取出 deque 最尾端的元素
12 dq.back()
              //回傳 deque 最開頭的元素
13 dq.front()
 dq.insert()
14
 dq.insert(position, n, val)
     position: 插入元素的 index 值
16
     n: 元素插入次數
17
    val: 插入的元素值
19 dq.erase()
     //刪除元素,需要使用迭代器指定刪除的元素或位置,
              //同時也會返回指向刪除元素下一元素的迭代器。
20
              //清空整個 deque 佇列。
21 dq.clear()
              //檢查 deque 的尺寸
22 dq.size()
              //如果 deque 佇列為空返回 1;
23 dq.empty()
              //若是存在任何元素,則返回0
24
              //返回一個指向 deque 開頭的迭代器
25 dq.begin()
26 dq.end()
              //指向 deque 結尾,
27
              //不是最後一個元素,
              //而是最後一個元素的下一個位置
28
```

4.4 map

```
1 map:存放 key-value pairs 的映射資料結構,
       會按 key 由小到大排序。
3 元素存取
  operator[]:存取指定的[i]元素的資料
4
6| 迭代器
7| begin():回傳指向map頭部元素的迭代器
8 end():回傳指向map末尾的迭代器
9 rbegin():回傳一個指向map尾部的反向迭代器
10 rend():回傳一個指向map頭部的反向迭代器
11
12 遍歷整個map時,利用iterator操作:
13 取key:it->first 或 (*it).first
14 取value:it->second 或 (*it).second
15
16 容量
17 empty():檢查容器是否為空,空則回傳true
18 size():回傳元素數量
19 | max_size():回傳可以容納的最大元素個數
20
21 修改器
22 clear():刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
25 swap(): 交換兩個map
26
28 count():回傳指定元素出現的次數
29 find(): 查找一個元素
30
31 //實作範例
32 #include <bits/stdc++.h>
33 using namespace std;
34
  int main(){
      //declaration container and iterator
35
36
      map<string, string> mp;
37
      map<string, string>::iterator iter;
38
      map<string, string>::reverse_iterator iter_r;
39
40
      //insert element
      mp.insert(pair<string, string>
41
              ("r000", "student_zero"));
42
      mp["r123"] = "student_first";
43
      mp["r456"] = "student_second";
44
45
46
      //traversal
      for(iter=mp.begin();iter!=mp.end();iter++)
47
          cout << iter -> first << " "
48
49
                     <<iter->second<<endl;
      for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
50
51
          cout << iter_r -> first << "
              "<<iter_r->second<<endl;
52
      //find and erase the element
53
      iter=mp.find("r123");
54
      mp.erase(iter);
55
56
      iter=mp.find("r123");
57
      if(iter!=mp.end())
         cout << "Find, the value is "
58
59
                 <<iter->second<<endl;
      else cout<<"Do not Find"<<endl;</pre>
60
61
      return 0;
62 }
```

4.5 unordered_map

```
1 unordered_map: 存放 key-value pairs
2 的「無序」映射資料結構。
3 用法與map相同
```

4.6 set

```
set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
4
     x = *st.begin();
             // set中的第一個元素(最小的元素)。
5
      x = *st.rbegin();
6
             // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
     st.empty() 回傳true
10
     st.size() 回傳零
11
12
  常用來搭配的member function:
13
14
     st.count(x):
15
     auto it = st.find(x);
16
         // binary search, O(log(N))
      auto it = st.lower_bound(x);
17
18
         // binary search, O(log(N))
19
      auto it = st.upper_bound(x);
         // binary search, O(log(N))
20
```

4.7 multiset

```
1與 set 用法雷同,但會保留重複的元素。2資料由小到大排序。3宣告:4multiset<int>st;5刪除資料:6st.erase(val);7//會刪除所有值為 val 的元素。8st.erase(st.find(val));9//只刪除第一個值為 val 的元素。
```

4.8 unordered_set

```
unordered_set 的實作方式通常是用雜湊表(hash table),
資料插入和查詢的時間複雜度很低,為常數級別0(1),
相對的代價是消耗較多的記憶體,空間複雜度較高,
無自動排序功能。
unordered_set 判斷元素是否存在
unordered_set <int> myunordered_set;
myunordered_set.insert(2);
myunordered_set.insert(4);
myunordered_set.insert(6);
cout << myunordered_set.count(4) << "\n"; // 1
cout << myunordered_set.count(8) << "\n"; // 0
```

4.9 單調隊列

```
1 // 單調隊列
 "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
2
3
 example
5
 給出一個長度為 n 的數組,
  輸出每 k 個連續的數中的最大值和最小值。
 #include <bits/stdc++.h>
10 #define maxn 1000100
11 using namespace std;
12 int q[maxn], a[maxn];
13 int n, k;
15 void getmin() {
     // 得到這個隊列裡的最小值,直接找到最後的就行了
16
```

```
17
        int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
19
            while(head<=tail&&a[q[tail]]>=a[i]) tail--;
20
            q[++tail]=i;
21
        for(int i=k; i<=n;i++) {</pre>
22
23
            while(head<=tail&&a[q[tail]]>=a[i]) tail--;
24
            α[++tail]=i:
25
            while(q[head]<=i-k) head++;</pre>
26
            cout << a[q[head]] << " ";
27
28
       cout << endl;
29 }
30
   void getmax() { // 和上面同理
31
       int head=0,tail=0;
32
33
        for(int i=1;i<k;i++) {</pre>
            while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
34
35
            q[++tail]=i;
36
       for(int i=k;i<=n;i++) {</pre>
37
38
            while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
39
            q[++tail]=i;
40
            while(q[head]<=i-k) head++;</pre>
41
            cout << a[q[head]] << " ";
       }
42
       cout << endl;</pre>
43
44
  }
45
46
   int main(){
       cin>>n>>k; //每k個連續的數
47
       for(int i=1;i<=n;i++) cin>>a[i];
48
49
        getmin();
50
        getmax();
51
        return 0;
52 }
```

5 sort

5.1 大數排序

```
1 | #python 大數排序
  while True:
4
    try:
                              # 有幾筆數字需要排序
     n = int(input())
5
                               # 建立空串列
6
     arr = []
7
     for i in range(n):
       arr.append(int(input())) # 依序將數字存入串列
8
                               # 串列排序
9
     arr.sort()
10
     for i in arr:
                            # 依序印出串列中每個項目
11
       print(i)
12
    except:
13
     break
```

6 math

6.1 質數與因數

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
5 for(int i=2;i*i<=n;i++){
        if(isprime[i])
        for(int j=i*i;j<=n;j+=i) isprime[j]=0;
8 }
9
10 歐拉篩O(n)
11 #define MAXN 47000 //sqrt(2^31)=46,340...
```

```
12 bool isPrime[MAXN];
  int prime[MAXN];
13
  int primeSize=0;
  void getPrimes(){
15
16
       memset(isPrime, true, sizeof(isPrime));
17
       isPrime[0]=isPrime[1]=false;
       for(int i=2;i<MAXN;i++){</pre>
18
19
           if(isPrime[i]) prime[primeSize++]=i;
           for(int
20
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
                if(i%prime[j]==0) break;
22
23
           }
       }
24
25
  }
26
  最大公因數 O(log(min(a,b)))
27
28
  int GCD(int a, int b){
29
       if(b==0) return a;
30
       return GCD(b,a%b);
31
  }
32
  質因數分解
33
  void primeFactorization(int n){
35
       for(int i=0;i<(int)p.size();++i){</pre>
36
           if(p[i]*p[i]>n) break;
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
39
           while(n%p[i]==0) n/=p[i];
40
       }
41
       if(n!=1) cout << n << ' ';
42
       cout << '\n';
43 }
44
  擴展歐幾里得算法
45
  //ax+by=GCD(a,b)
46
  #include <bits/stdc++.h>
48
  using namespace std;
49
50
  int ext_euc(int a, int b, int &x, int &y){
51
       if(b==0){
52
           x=1, y=0;
53
           return a;
54
55
       int d=ext_euc(b,a%b,y,x);
56
       y -= a/b * x;
57
       return d;
58 }
59
60
  int main(){
61
       int a,b,x,y;
       cin>>a>>b;
62
63
       ext_euc(a,b,x,y);
       cout << x << ' '<< y << end1;
65
       return 0;
66
67
68
69
  歌德巴赫猜想
70
  solution : 把偶數 N (6≤N≤10^6) 寫成兩個質數的和。
  #include <iostream>
72
  using namespace std;
74
  #define N 2000000
75
  int ox[N],p[N],pr;
  void PrimeTable(){
76
77
       ox[0]=ox[1]=1;
78
79
       for(int i=2;i<N;i++){</pre>
80
           if(!ox[i]) p[pr++]=i;
81
           for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
                ox[i*p[j]]=1;
83
  }
84
85
86 int main(){
       PrimeTable();
```

```
88
       int n;
       while(cin>>n,n){
89
90
           int x;
91
           for(x=1;;x+=2)
92
               if(!ox[x]&&!ox[n-x]) break;
93
           printf("%d = %d + %d \setminus n", n, x, n-x);
94
95 }
  |problem : 給定整數 N,
           求 N 最少可以拆成多少個質數的和。
98 如果 N 是質數,則答案為 1。
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
100 如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
101 其他狀況答案為 3 (弱歌德巴赫猜想)。
  #include < bits/stdc++.h>
102
103
   using namespace std;
104
   bool isPrime(int n){
105
106
       for(int i=2;i<n;++i){</pre>
           if(i*i>n) return true;
107
108
           if(n%i==0) return false;
       }
109
110
       return true;
111 }
112
113
   int main(){
       int n:
114
115
       cin>>n:
       if(isPrime(n)) cout << "1\n";</pre>
116
117
       else if(n\%2==0||isPrime(n-2)) cout<<"2\n";
118
       else cout << "3\n";</pre>
119 }
```

6.2 快速冪

```
1|計算a^b
  #include < iostream >
  #define ll long long
4 using namespace std;
6 const 11 MOD=1000000007;
  11 fp(ll a, ll b) {
7
8
       int ans=1;
       while(b>0){
10
            if(b&1) ans=ans*a%MOD;
11
            a=a*a%MOD;
            b>>=1;
12
13
14
       return ans;
15 }
16
17 int main() {
18
     int a,b;
     cin>>a>>b:
19
     cout << fp(a,b);</pre>
20
21 | }
```

6.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
  int phi(){
3
      int ans=n;
5
      for(int i=2;i*i<=n;i++)</pre>
6
          if(n%i==0){
7
               ans=ans-ans/i;
8
               while(n%i==0) n/=i;
9
      if(n>1) ans=ans-ans/n;
10
11
      return ans;
12 }
```

6.4 atan

```
1| 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
2
3
  回覆值
4
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
7
    如果 atan2() 函數的兩個引數都是零,
    則函數會將 errno 設為 EDOM,並傳回值 0。
9
10
  範例
  #include <math.h>
  #include <stdio.h>
12
13
  int main(void){
14
      double a,b,c,d;
15
16
17
      c = 0.45:
18
      d=0.23;
19
20
      a=atan(c):
21
      b=atan2(c,d);
22
23
      printf("atan(%1f)=%1f/n",c,a);
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
24
25
26
  }
27
  atan(0.450000)=0.422854
30
  atan2(0.450000,0.230000)=1.098299
31
```

6.5 大步小步

LL fpow(LL a, LL b, LL c){

LL res=1;

33

```
給定 B,N,P,求出 L 滿足 B^L N(mod P)。
2
3
4
   題解
  餘數的循環節長度必定為 P 的因數,因此
5
     B^0 B^P, B^1 B^(P+1), ...,
  也就是說如果有解則 L<N,枚舉0,1,2,L-1
6
     能得到結果,但會超時。
8
  將 L 拆成 mx+y, 只要分別枚舉 x,y 就能得到答案,
9
  設 m=√P 能保證最多枚舉 2√P 次 。
10
  B^(mx+y) N(mod P)
12 B^(mx)B^y N(mod P)
13
  B^y N(B^(-m))^x \pmod{P}
14
15
  先求出 B^0,B^1,B^2,...,B^(m-1),
16 再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
17
  這種算法稱為大步小步演算法,
  大步指的是枚舉 x (一次跨 m 步),
18
  小步指的是枚舉 y (一次跨 1 步)。
19
20
21
   複雜度分析
22 利用 map/unorder_map 存放 B^0,B^1,B^2,...,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
24
25
26
27
28 #include <bits/stdc++.h>
29 using namespace std:
30 using LL = long long;
31 LL B, N, P;
```

```
35
        for(;b;b >>=1){
            if(b&1)
36
37
                 res=(res*a)%c;
38
            a=(a*a)%c;
39
40
        return res;
41 }
42
  LL BSGS(LL a, LL b, LL p){
43
44
       a%=p,b%=p;
       if(a==0)
45
            return b==0?1:-1;
46
47
       if(b==1)
48
            return 0;
49
       map<LL, LL> tb;
       LL sq=ceil(sqrt(p-1));
50
51
       LL inv=fpow(a,p-sq-1,p);
52
       tb[1]=sq;
       for(LL i=1, tmp=1; i < sq; ++i){</pre>
53
54
            tmp=(tmp*a)%p;
55
            if(!tb.count(tmp))
56
                 tb[tmp]=i;
57
       for(LL i=0;i<sq;++i){</pre>
58
59
            if(tb.count(b)){
60
                 LL res=tb[b]:
                 return i*sq+(res==sq?0:res);
61
            }
62
63
            b=(b*inv)%p;
64
65
       return -1;
66 }
67
68 int main(){
69
       ios::sync_with_stdio(false);
70
       cin.tie(0),cout.tie(0);
71
        while(cin>>P>>B>>N){
            LL ans=BSGS(B,N,P);
72
            if(ans==-1)
73
                 cout << "no solution\n";</pre>
74
75
76
                 cout << ans << '\n';
77
       }
78 }
```

7 algorithm

7.1 basic

```
1 min_element:找尋最小元素
2 min_element(first, last)
3 max_element:找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
7 sort(first, last, cmp):可自行定義比較運算子 cmp 。
8 | find: 尋找元素。
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
            如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
            如果不存在,則回傳 last 。
14
15 upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                 如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
20
                 如果存在回傳 true,反之回傳 false。
21 prev_permutation(first, last)
```

7.2 二分搜

```
1 int binary_search(int target) {
  // For range [ok, ng) or (ng, ok], "ok" is for the
  // index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
  // For first lower_bound, ok=maxn and ng=-1,
  // for last lower_bound, ok = -1 and ng = maxn
  // (the "check" funtion
7
8
  // should be changed depending on it.)
      while(abs(ok - ng) > 1) {
9
          int mid = (ok + ng) >> 1;
10
          if(check(mid)) ok = mid;
11
  else ng = mid;
// Be careful, "arr[mid]>=target" for first
12
13
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
  // [ok, mid) and [mid, ng) and than choose
  // the second one.
19
20
21
      return ok;
22 }
23
24 lower_bound(arr, arr + n, k);
                                    //最左邊 ≥ k 的位置
25 upper_bound(arr, arr + n, k);
                                   //最左邊 > k 的位置
26 upper_bound(arr, arr + n, k) - 1; //最右邊 ≤ k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
28 (lower_bound, upper_bound)
                                   //等於 k 的範圍
29 equal_range(arr, arr+n, k);
```

7.3 三分搜

```
題意
  給定兩射線方向和速度,問兩射線最近距離。
2
3
    題解
4
  假設 F(t) 為兩射線在時間 t 的距離, F(t) 為二次函數,
5
  可用三分搜找二次函數最小值。
8
  #include <bits/stdc++.h>
9
  using namespace std;
10
  struct Point{
11
12
      double x, y, z;
      Point() {}
13
14
      Point(double _x, double _y, double _z):
15
          x(_x),y(_y),z(_z){}
      friend istream& operator>>(istream& is, Point& p)
16
          is >> p.x >> p.y >> p.z;
17
18
          return is:
19
20
      Point operator+(const Point &rhs) const{
21
          return Point(x+rhs.x,y+rhs.y,z+rhs.z);
22
23
      Point operator - (const Point &rhs) const{
24
          return Point(x-rhs.x,y-rhs.y,z-rhs.z);
25
26
      Point operator*(const double &d) const{
27
          return Point(x*d,y*d,z*d);
28
      Point operator/(const double &d) const{
29
30
          return Point(x/d,y/d,z/d);
      }
31
32
      double dist(const Point &rhs) const{
33
          double res = 0;
          res+=(x-rhs.x)*(x-rhs.x);
34
35
          res+=(y-rhs.y)*(y-rhs.y);
          res+=(z-rhs.z)*(z-rhs.z);
36
37
          return res;
38
      }
39 };
```

```
40
41
   int main(){
       ios::sync_with_stdio(false);
42
       cin.tie(0),cout.tie(0);
43
44
       int T;
45
       cin>>T;
       for(int ti=1;ti<=T;++ti){</pre>
46
47
            double time:
            Point x1, y1, d1, x2, y2, d2;
48
49
            cin>>time>>x1>>y1>>x2>>y2;
50
            d1=(y1-x1)/time;
            d2=(y2-x2)/time;
51
            double L=0,R=1e8,m1,m2,f1,f2;
52
            double ans = x1.dist(x2);
53
54
            while(abs(L-R)>1e-10){
55
                 m1 = (L+R)/2;
                m2=(m1+R)/2;
56
57
                f1=((d1*m1)+x1).dist((d2*m1)+x2);
                 f2=((d1*m2)+x1).dist((d2*m2)+x2);
58
59
                 ans = min(ans, min(f1, f2));
                if(f1<f2) R=m2;
60
                 else L=m1;
61
            }
62
            cout << "Case "<<ti << ": ";
63
            cout << fixed << setprecision(4) << sqrt(ans) << '\n';</pre>
64
65
66 }
```

7.4 prefix sum

```
1 // 前綴和
2 陣列前n項的和。
3 b[i]=a[0]+a[1]+a[2]+ \cdots +a[i]
  區間和 [l, r]:b[r]-b[l-1] (要保留b[l]所以-1)
6 #include <bits/stdc++.h>
  using namespace std;
8 int main(){
      int n;
       cin>>n;
10
11
       int a[n],b[n];
       for(int i=0;i<n;i++) cin>>a[i];
12
13
       for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
15
       for(int i=0;i<n;i++) cout<<b[i]<< ' ';</pre>
16
       cout << '\n';
17
       int 1,r;
       cin>>l>>r:
18
19
       cout <<b[r]-b[1-1]; //區間和
20 }
```

7.5 差分

```
1 // 差分
2|用途:在區間 [1, r] 加上一個數字v。
3 b[1] += v; (b[0~1] 加上v)
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5|給的 a[] 是前綴和數列,建構 b[],
6 因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7 所以 b[i] = a[i] - a[i-1]。
8 在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 這樣一來,b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
15 // a: 前綴和數列, b: 差分數列
16 int main(){
17
     int n, 1, r, v;
18
     cin >> n;
     for(int i=1; i<=n; i++){</pre>
19
```

```
20
           cin >> a[i];
           b[i] = a[i] - a[i-1]; //建構差分數列
21
22
       cin >> 1 >> r >> v;
23
       b[1] += v;
24
25
       b[r+1] -= v;
26
       for(int i=1; i<=n; i++){</pre>
27
           b[i] += b[i-1];
28
           cout << b[i] << ' ';
29
30
31 }
```

```
7.6 greedy
1 // 貪心
2| 貪心演算法的核心為,
  採取在目前狀態下最好或最佳(即最有利)的選擇。
  貪心演算法雖然能獲得當前最佳解,
  但不保證能獲得最後(全域)最佳解,
  提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
6
  確認無誤再實作。
10 刪數字問題
12 給定一個數字 N(≤10<sup>1</sup>00),需要刪除 K 個數字,
13 請問刪除 K 個數字後最小的數字為何?
14
15
  刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
16
  扣除高位數的影響較扣除低位數的大。
17
18
  //code
19
  int main(){
20
21
     string s;
22
     int k;
23
     cin>>s>>k;
     for(int i=0;i<k;++i){</pre>
24
25
        if((int)s.size()==0) break;
        int pos =(int)s.size()-1;
26
        for(int j=0;j<(int)s.size()-1;++j){</pre>
28
           if(s[j]>s[j+1]){
              pos=j;
29
           }
31
        }
32
        s.erase(pos,1);
33
34
35
     while((int)s.size()>0&&s[0]=='0')
        s.erase(0,1);
36
37
     if((int)s.size()) cout<<s<'\n';</pre>
     else cout << 0 << '\n';
38
39
40
42 最小區間覆蓋長度
43
44 給定 n 條線段區間為 [Li,Ri],
45 請問最少要選幾個區間才能完全覆蓋 [0,S]?
46
47
  //solution
49 對於當前區間 [Li,Ri],要從左界 >Ri 的所有區間中,
50 | 找到有著最大的右界的區間,連接當前區間。
51
52
  //problem
  長度 n 的直線中有數個加熱器,
  在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
```

問最少要幾個加熱器可以把 [0,n] 的範圍加熱。

58| 對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,

57

//solution

```
59 更新已加熱範圍,重複上述動作繼續尋找加熱器。
                                                           135
                                                              //code
60
                                                           136
                                                              struct Work{
61
   //code
                                                           137
  int main(){
62
                                                           138
                                                                   int t, d;
       int n, r;
63
                                                           139
                                                                   bool operator<(const Work &rhs)const{</pre>
64
       int a[1005];
                                                           140
                                                                       return d<rhs.d;</pre>
       cin>>n>>r;
65
                                                           141
66
       for(int i=1;i<=n;++i) cin>>a[i];
                                                           142
                                                              }:
       int i=1, ans=0;
67
                                                           143
       while(i<=n){
68
                                                           144
                                                              int main(){
69
           int R=min(i+r-1,n),L=max(i-r+1,0)
                                                           145
                                                                   int n;
           int nextR=-1;
                                                                   Work a[10000];
70
                                                           146
71
           for(int j=R;j>=L;--j){
                                                           147
                                                                   cin>>n;
               if(a[j]){
                                                                   for(int i=0:i<n:++i)</pre>
72
                                                           148
73
                   nextR=i:
                                                           149
                                                                       cin>>a[i].t>>a[i].d;
74
                   break;
                                                           150
                                                                   sort(a,a+n);
75
               }
                                                           151
                                                                   int maxL=0, sumT=0;
76
           }
                                                           152
                                                                   for(int i=0;i<n;++i){</pre>
77
           if(nextR==-1){
                                                                       sumT+=a[i].t;
                                                           153
78
               ans=-1;
                                                           154
                                                                       maxL=max(maxL,sumT-a[i].d);
                                                           155
79
               break;
80
           }
                                                           156
                                                                   cout << maxL << '\n';</pre>
81
           ++ans;
                                                           157
                                                              }
           i=nextR+r;
                                                           158
82
83
                                                           159
84
       cout << ans << '\n':
                                                              最少延遲數量問題
                                                           160
85
  }
                                                           161
                                                              //problem
86
                                                           162| 給定 N 個工作,每個工作的需要處理時長為 Ti,
87
                                                              期限是 Di,求一種工作排序使得逾期工作數量最小。
                                                           163
88 最多不重疊區間
                                                           164
89
   //problem
                                                           165
                                                              //solution
90 給你 n 條線段區間為 [Li,Ri],
                                                              期限越早到期的工作越先做。將工作依照到期時間從早到晚排序,
                                                           166
   請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
91
                                                              依序放入工作列表中,如果發現有工作預期,
                                                           167
92
                                                              就從目前選擇的工作中,移除耗時最長的工作。
                                                           168
93 //solution
                                                           169
94 依照右界由小到大排序,
                                                           170
                                                              上述方法為 Moore-Hodgson s Algorithm。
95 每次取到一個不重疊的線段,答案 +1。
                                                           171
96
                                                              //problem
                                                           172
97
                                                              給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
                                                           173
98
   struct Line{
                                                           174
       int L,R;
99
                                                           175
                                                              //solution
100
       bool operator < (const Line &rhs)const{</pre>
                                                           176 和最少延遲數量問題是相同的問題,只要將題敘做轉換。
101
            return R<rhs.R;</pre>
                                                              工作處裡時長 → 烏龜重量
                                                           177
102
                                                              工作期限 → 烏龜可承受重量
                                                           178
103
  };
                                                              多少工作不延期 → 可以疊幾隻烏龜
                                                           179
104
                                                           180
105
   int main(){
                                                           181
                                                               //code
106
       int t;
                                                              struct Work{
                                                           182
       cin>>t;
107
                                                           183
                                                                   int t, d;
108
       Line a[30]:
                                                                   bool operator < (const Work &rhs)const{</pre>
                                                           184
109
       while(t--){
                                                           185
                                                                       return d<rhs.d;</pre>
110
           int n=0;
                                                           186
           while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
111
                                                           187
                                                              };
112
                                                           188
           sort(a.a+n):
113
                                                              int main(){
                                                           189
114
           int ans=1,R=a[0].R;
                                                           190
                                                                   int n=0:
115
           for(int i=1;i<n;i++){</pre>
                                                                   Work a[10000];
116
               if(a[i].L>=R){
                                                           191
                                                           192
                                                                   priority_queue<int> pq;
117
                   ++ans;
                                                                   while(cin>>a[n].t>>a[n].d)
                                                           193
                   R=a[i].R;
118
                                                           194
                                                                       ++n;
119
               }
                                                           195
                                                                   sort(a,a+n);
120
           }
                                                                   int sumT=0,ans=n;
                                                           196
121
           cout << ans << '\n';
                                                                   for(int i=0;i<n;++i){</pre>
       }
                                                           197
122
                                                                       pq.push(a[i].t);
                                                           198
123
  }
                                                           199
                                                                       sumT+=a[i].t;
124
                                                           200
                                                                       if(a[i].d<sumT){</pre>
125
                                                                           int x=pq.top();
                                                           201
126 最小化最大延遲問題
                                                           202
                                                                           pq.pop();
   //problem
                                                                           sumT -=x;
                                                           203
   給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                           204
                                                                           --ans;
   期限是 Di, 第 i 項工作延遲的時間為 Li=max(0,Fi-Di),
129
                                                                       }
                                                           205
   原本Fi 為第 i 項工作的完成時間,
130
                                                           206
   求一種工作排序使 maxLi 最小。
131
                                                           207
                                                                   cout << ans << '\n';
132
                                                              }
                                                           208
133 //solution
```

210 任務調度問題

134 按照到期時間從早到晚處理。

```
212 給定 N 項工作,每項工作的需要處理時長為 Ti,
  期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
   請問最少會受到多少單位懲罰。
214
215
216 //solution
217 依照懲罰由大到小排序,
218 每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
219 如果有空閒就放進去,否則延後執行。
220
  //problem
221
222 給定 N 項工作,每項工作的需要處理時長為 Ti,
   期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
       單位獎勵,
224
   請問最多會獲得多少單位獎勵。
225
   //solution
226
227 和上題相似,這題變成依照獎勵由大到小排序。
228
229
  //code
230
  struct Work{
231
      int d,p;
      bool operator<(const Work &rhs)const{</pre>
232
233
          return p>rhs.p;
234
235
  };
236
237
   int main(){
238
      int n;
      Work a[100005];
239
      bitset<100005> ok;
240
      while(cin>>n){
241
          ok.reset();
242
243
          for(int i=0;i<n;++i)</pre>
              cin>>a[i].d>>a[i].p;
244
245
          sort(a,a+n);
          int ans=0:
246
          for(int i=0;i<n;++i){</pre>
247
248
              int j=a[i].d;
249
              while(j--)
250
                  if(!ok[j]){
                      ans+=a[i].p;
251
                      ok[j]=true;
252
253
                      break:
254
255
          3
256
          cout << ans << '\n';</pre>
257
258 }
```

7.7 floyd warshall

211 //problem

```
1 int w[n][n];
2 int d[n][n];
3 int p[n][n];
4// 由i點到j點的路徑,其中繼點為 p[i][j]。
6
  void floyd_warshall(){
                                1/0(V^3)
7
    for(int i=0;i<n;i++)</pre>
8
       for(int j=0;j<n;j++){</pre>
         d[i][j]=w[i][j];
9
                          // 預設為沒有中繼點
10
         p[i][j]=-1;
11
12
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
13
     for(int k=0;k<n;k++)</pre>
14
       for(int i=0;i<n;i++)</pre>
         for(int j=0;j<n;j++)</pre>
15
16
           if(d[i][k]+d[k][j]<d[i][j]){</pre>
17
             d[i][j]=d[i][k]+d[k][j];
18
             p[i][j]=k; // 由 i 點 走 到 j 點 經 過 了 k 點
19
20 }
21
22 // 這支函式並不會印出起點和終點,必須另行印出。
```

9

7.8 dinic

```
const int maxn = 1e5 + 10;
2
  const int inf = 0x3f3f3f3f;
  struct Edge {
5
       int s, t, cap, flow;
6
  };
  int n, m, S, T;
8
  int level[maxn], dfs_idx[maxn];
  vector < Edge > E;
10
11
  vector<vector<int>> G;
12
13
  void init() {
14
       S = 0;
       T = n + m;
15
16
       E.clear();
17
       G.assign(maxn, vector<int>());
18 }
19
  void addEdge(int s, int t, int cap) {
20
       E.push_back({s, t, cap, 0});
21
       E.push_back({t, s, 0, 0});
22
23
       G[s].push_back(E.size()-2);
24
       G[t].push_back(E.size()-1);
25 }
26
  bool bfs() {
27
28
       queue<int> q({S});
29
30
       memset(level, -1, sizeof(level));
31
       level[S] = 0;
32
33
       while(!q.empty()) {
34
           int cur = q.front();
35
           q.pop();
36
37
           for(int i : G[cur]) {
38
                Edge e = E[i];
                if(level[e.t]==-1 && e.cap>e.flow) {
39
40
                    level[e.t] = level[e.s] + 1;
41
                    q.push(e.t);
42
               }
43
           }
44
45
       return ~level[T];
  }
46
47
48
  int dfs(int cur, int lim) {
       if(cur==T || lim==0) return lim;
49
50
       int result = 0;
51
52
       for(int& i=dfs_idx[cur]; i<G[cur].size() && lim;</pre>
           i++) {
           Edge& e = E[G[cur][i]];
53
54
           if(level[e.s]+1 != level[e.t]) continue;
55
           int flow = dfs(e.t, min(lim, e.cap-e.flow));
           if(flow <= 0) continue;</pre>
57
58
59
           e.flow += flow;
           result += flow;
60
61
           E[G[cur][i]^1].flow -= flow;
62
           lim -= flow;
63
64
       return result;
```

```
66
                                                                62
                                                                       if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
  int dinic() {
                        // O((V^2)E)
                                                                       if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
67
                                                                63
       int result = 0;
                                                                       st[i] = pull(i * 2, i * 2 + 1);
68
                                                                64
       while(bfs()) {
                                                                65 }
69
70
           memset(dfs_idx, 0, sizeof(dfs_idx));
71
           result += dfs(S, inf);
                                                                67 // 改值從 += 改成 =
72
       }
73
       return result;
74 }
```

SegmentTree

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
3 int st[4 * MAXN]; //線段樹
4 int tag[4 * MAXN]; //懶標
6 inline int pull(int 1, int r) {
7 // 隨題目改變 sum 、 max 、 min
8 // 1、r是左右樹的 index
9
      return st[l] + st[r];
10 }
11
12 void build(int 1, int r, int i) {
13 // 在[1, r]區間建樹, 目前根的 index為 i
      if (1 == r) {
14
15
          st[i] = data[l];
16
          return:
17
      int mid = 1 + ((r - 1) >> 1);
18
      build(1, mid, i * 2);
19
20
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
21
22 }
23
24 int query(int ql, int qr, int l, int r, int i) {
  | // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
      if (ql <= 1 && r <= qr)</pre>
26
27
          return st[i];
      int mid = 1 + ((r - 1) >> 1);
28
29
      if (tag[i]) {
          //如果當前懶標有值則更新左右節點
30
          st[i * 2] += tag[i] * (mid - 1 + 1);
31
          st[i * 2 + 1] += tag[i] * (r - mid);
32
          tag[i * 2] += tag[i];//下傳懶標至左節點
33
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
34
35
          tag[i] = 0;
36
37
      int sum = 0;
38
      if (ql <= mid)</pre>
          sum += query(q1, qr, 1, mid, i * 2);
39
40
      if (ar > mid)
          sum += query(ql, qr, mid + 1, r, i*2+1);
41
42
      return sum;
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
  // c是變化量
47
      if (ql <= 1 && r <= qr) {</pre>
48
          st[i] += (r - l + 1) * c;
49
               //求和,此需乘上區間長度
50
          tag[i] += c;
51
          return:
52
      int mid = 1 + ((r - 1) >> 1);
53
      if (tag[i] && l != r) {
54
55
          //如果當前懶標有值則更新左右節點
          st[i * 2] += tag[i] * (mid - 1 + 1);
56
57
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i]; //下傳懶標至左節點
58
59
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
60
          tag[i] = 0;
      }
61
```

```
66 //如果是直接改值而不是加值,query與update中的tag與st的
```

7.10 Nim Game

```
1 1 // 兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
 2 //但不能同時在兩堆取銅板,直到最後,
 3 //將銅板拿光的人贏得此遊戲。
 5
  #include <bits/stdc++.h>
 6
  #define maxn 23+5
  using namespace std;
  int SG[maxn];
  int visited[1000+5];
10
11
  int pile[maxn],ans;
12
13
  void calculateSG(){
14
       SG[0]=0;
       for(int i=1;i<=maxn;i++){</pre>
15
16
            int cur=0;
17
            for(int j=0;j<i;j++)</pre>
                for(int k=0; k<=j; k++)</pre>
18
19
                    visited[SG[j]^SG[k]]=i;
20
            while(visited[cur]==i) cur++;
21
            SG[i]=cur;
       }
22
23
  }
24
25
  int main(){
26
       calculateSG():
27
       int Case=0.n:
28
       while(cin>>n,n){
29
         ans=0;
         for(int i=1;i<=n;i++) cin>>pile[i];
30
31
         for(int i=1;i<=n;i++)</pre>
           if(pile[i]&1) ans^=SG[n-i];
32
         cout << "Game "<<++Case << ": ";
33
34
         if(!ans) cout<<"-1 -1 -1\n";
35
         else{
36
            bool flag=0;
37
            for(int i=1;i<=n;i++){</pre>
38
              if(pile[i]){
                for(int j=i+1; j<=n; j++){</pre>
39
40
                  for(int k=j;k<=n;k++){</pre>
                    if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
41
                      cout << i - 1 << " " << j - 1 << " " << k - 1 << endl;
42
43
                       flag=1;
44
                      break;
45
                    }
46
47
                  if(flag) break;
48
                if(flag) break;
49
50
           }
51
52
         }
53
54
       return 0;
55
  }
56
58
   input
59
  4 1 0 1 100
     1 0 5
60
  2 2 1
61
62 0
63
   output
  Game 1: 0 2 3
  Game 2: 0 1 1
65
66 Game 3: -1 -1 -1
```

74 75

76 */

```
7.11 Trie
```

67 */

```
1| #include <bits/stdc++.h>
2 using namespace std;
4 const int maxn = 300000 + 10:
5 const int mod = 20071027;
  int dp[maxn];
7
8 int mp[4000*100 + 10][26];
9 char str[maxn];
10
11 struct Trie {
12
       int sea:
13
       int val[maxn];
14
15
       Trie() {
           seq = 0;
16
17
           memset(val, 0, sizeof(val));
           memset(mp, 0, sizeof(mp));
18
19
20
21
       void insert(char* s, int len) {
22
            int r = 0;
           for(int i=0; i<len; i++) {</pre>
23
                int c = s[i] - 'a';
24
25
                if(!mp[r][c]) mp[r][c] = ++seq;
26
                r = mp[r][c];
27
           }
           val[r] = len;
28
29
           return;
30
31
       int find(int idx, int len) {
32
           int result = 0:
33
            for(int r=0; idx<len; idx++) {</pre>
34
                int c = str[idx] - 'a';
35
                if(!(r = mp[r][c])) return result;
36
37
                if(val[r])
                    result = (result + dp[idx + 1]) % mod;
38
39
           }
40
           return result;
41
42 };
43
44 int main() {
       int n, tc = 1;
45
46
       while(~scanf("%s%d", str, &n)) {
47
           Trie tr;
48
49
           int len = strlen(str);
           char word[100+10];
50
51
           memset(dp, 0, sizeof(dp));
52
           dp[len] = 1;
53
54
           while(n--) {
55
                scanf("%s", word);
56
57
                tr.insert(word, strlen(word));
58
59
           for(int i=len-1; i>=0; i--)
60
61
                dp[i] = tr.find(i, len);
           printf("Case %d: %d\n", tc++, dp[0]);
62
63
       return 0;
64
65 }
66
67 /********
   ****Input****
   * abcd
69
   * 4
70
71
   * a b cd ab
    *****
```

7.12 SPFA

****Output***

* Case 1: 2

```
1 struct Edge
 2
  {
3
       int t;
 4
       long long w;
5
       Edge(){};
       Edge(\textbf{int } \_t , \textbf{ long long } \_w) \ : \ t(\_t), \ w(\_w) \ \{\}
 6
 7
   };
8
9 bool SPFA(int st) // 平均O(V + E) 最糟O(VE)
10
       vector<int> cnt(n, 0);
11
12
       bitset < MXV > inq(0);
13
       queue < int > q;
       q.push(st);
14
15
       dis[st] = 0;
       inq[st] = true;
16
17
       while (!q.empty())
18
       {
19
            int cur = q.front();
20
            q.pop();
            inq[cur] = false;
21
22
            for (auto &e : G[cur])
23
24
                 if (dis[e.t] <= dis[cur] + e.w)</pre>
25
                 dis[e.t] = dis[cur] + e.w;
26
27
                 if (inq[e.t])
28
                     continue;
29
                 ++cnt[e.t];
30
                 if (cnt[e.t] > n)
                     return false; // negtive cycle
31
32
                 inq[e.t] = true;
33
                 q.push(e.t);
34
       }
35
36
       return true;
37 }
```

7.13 dijkstra

```
1 #include < bits / stdc ++ . h>
2 #define maxn 50000+5
  #define INF 0x3f3f3f3f
  using namespace std;
6
  struct edge{
7
       int v,w;
  };
8
10
  struct Item{
11
       int u, dis;
12
       bool operator < (const Item &rhs)const{</pre>
13
           return dis>rhs.dis;
       }
14
15
  };
16
  vector<edge> G[maxn];
18 int dist[maxn];
19
  void dijkstra(int s){ // O((V + E)log(E))
20
       memset(dist,INF,sizeof(dist));
21
22
       dist[s]=0;
23
       priority_queue < Item > pq;
24
       pq.push({s,0});
25
       while(!pq.empty()){
           Item now=pq.top();
26
```

```
27
            if(now.dis>dist[now.u]) continue;
28
29
            for(edge e:G[now.u]){
                 if(dist[e.v]>dist[now.u]+e.w){
30
31
                     dist[e.v]=dist[now.u]+e.w;
32
                     pq.push({e.v,dist[e.v]});
                }
33
34
            }
35
       }
36
37
  int main(){
38
       int t, cas=1;
39
40
       cin>>t;
41
       while(t--){
42
            int n,m,s,t;
            cin>>n>>m>>s>>t;
43
44
            for(int i=0;i<=n;i++) G[i].clear();</pre>
45
            int u,v,w;
46
            for(int i=0;i<m;i++){</pre>
                 cin>>u>>v>>w:
47
48
                 G[u].push_back({v,w});
49
                G[v].push_back({u,w});
50
51
            dijkstra(s);
            cout << "Case #"<<cas++<<": ";
52
            if(dist[t]==INF) cout<<"unreachable\n";</pre>
53
54
            else cout<<dist[t]<<endl;</pre>
55
       }
56 }
```

7.14 SCC Tarjan

```
1 //Strongly Connected Components
2 //Tarjan O(V + E)
3 int dfn[N], low[N], dfncnt, sk[N], in_stack[N], tp;
4 //dfn[u]: dfs時u被visited的順序
5 //low[u]: 在u的dfs子樹中能回到最早已在stack中的節點
6| int scc[N], sc;//節點 u 所在 SCC 的編號
7 int sz[N]; //強連通 u 的大小
8
9
  void tarjan(int u) {
      low[u] = dfn[u] = ++dfncnt, s[++tp] = u,
10
           in_stack[u] = 1;
      for (int i = h[u]; i; i = e[i].nex) {
11
           const int &v = e[i].t;
12
13
           if (!dfn[v]) {
14
               tarjan(v);
15
              low[u] = min(low[u], low[v]);
16
          } else if (in_stack[v]) {
               low[u] = min(low[u], dfn[v]);
17
18
          }
19
20
      if (dfn[u] == low[u]) {
          ++sc;
21
22
          while (s[tp] != u) {
23
               scc[s[tp]] = sc;
24
               sz[sc]++:
               in_stack[s[tp]] = 0;
25
26
               --tp;
27
          }
28
           scc[s[tp]] = sc;
29
          sz[sc]++:
           in_stack[s[tp]] = 0;
30
31
           --tp;
32
      }
33 }
```

7.15 SCC Kosaraju

```
1 //做兩次dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是dfs離開的節點
```

```
void dfs1(int u) {
       vis[u] = true;
 5
       for (int v : g[u])
7
           if (!vis[v]) dfs1(v);
8
       s.push_back(u);
  }
9
10
11
  void dfs2(int u) {
       group[u] = sccCnt;
12
13
       for (int v : g2[u])
14
            if (!group[v]) dfs2(v);
15 }
16
  void kosaraju() {
17
18
       sccCnt = 0;
       for (int i = 1; i <= n; ++i)</pre>
19
20
            if (!vis[i]) dfs1(i);
21
       for (int i = n; i >= 1; --i)
22
           if (!group[s[i]]) {
23
                ++sccCnt;
24
                dfs2(s[i]);
25
           }
26 }
```

7.16 ArticulationPoints Tarjan

```
1 #include <bits/stdc++.h>
  using namespace std;
4
  vector<vector<int>> G;
5
  int N;
  int timer;
  bool visited[105];
  int visTime[105]; // 第一次visit的時間
9 int low[105];
10 // 最小能回到的父節點(不能是自己的parent)的visTime
11 int res;
12
  //求割點數量
  void tarjan(int u, int parent) {
13
      int child = 0;
14
15
      bool isCut = false;
16
      visited[u] = true;
17
       visTime[u] = low[u] = ++timer;
18
       for (int v: G[u]) {
           if (!visited[v]) {
19
20
               ++child:
21
               tarjan(v, u);
22
               low[u] = min(low[u], low[v]);
               if (parent != -1 && low[v] >= visTime[u])
23
24
                   isCut = true;
25
           else if (v != parent)
26
27
               low[u] = min(low[u], visTime[v]);
28
       //If u is root of DFS tree->有兩個以上的children
29
       if (parent == -1 && child >= 2)
30
31
           isCut = true;
       if (isCut)
32
33
           ++res;
34 }
35
36
  int main()
37
  {
38
       char input[105];
      char* token;
39
40
      while (scanf("%d", &N) != EOF && N)
      {
41
42
          G.assign(105, vector<int>());
43
           memset(visited, false, sizeof(visited));
          memset(low, 0, sizeof(low));
44
45
           memset(visTime, 0, sizeof(visited));
           timer = 0;
46
47
           res = 0;
           getchar(); // for \n
48
49
          while (fgets(input, 105, stdin))
```

```
50
            {
                if (input[0] == '0')
51
52
                     break:
                 int size = strlen(input);
53
54
                 input[size - 1] = ' \setminus 0';
55
                 --size;
                 token = strtok(input, " ");
56
57
                int u = atoi(token);
                int v;
58
                 while (token = strtok(NULL, " "))
59
60
                     v = atoi(token);
61
                     G[u].emplace_back(v);
62
                     G[v].emplace_back(u);
63
64
                }
            }
65
            tarjan(1, -1);
66
67
            printf("%d\n", res);
68
       }
69
       return 0;
70 }
```

7.17 最小樹狀圖

```
2 有向圖上的最小生成樹 (Directed Minimum Spanning Tree)
3 稱為最小樹形圖。
5 const int maxn = 60 + 10;
6 const int inf = 0x3f3f3f3f3f;
8 struct Edge {
     int s, t, cap, cost;
10|}; // cap 為頻寬 (optional)
11
12 int n, m, c;
13 int inEdge[maxn], idx[maxn], pre[maxn], vis[maxn];
14
15 // 對於每個點,選擇對它入度最小的那條邊
16 // 找環,如果沒有則 return;
17 // 進行縮環並更新其他點到環的距離。
18 int dirMST(vector<Edge> edges, int low) {
      int result = 0, root = 0, N = n;
19
20
21
      while(true) {
          memset(inEdge, 0x3f, sizeof(inEdge));
22
23
          // 找所有點的 in edge 放進 inEdge
24
25
          // optional: low 為最小 cap 限制
          for(const Edge& e : edges) {
26
27
              if(e.cap < low) continue;</pre>
              if(e.s!=e.t && e.cost<inEdge[e.t]) {</pre>
28
                  inEdge[e.t] = e.cost;
29
30
                  pre[e.t] = e.s;
              }
31
32
          }
33
          for(int i=0; i<N; i++) {</pre>
34
35
              if(i!=root && inEdge[i]==inf)
                  return -1; // 除了 root 還有點沒有 in
36
                      edge
37
          }
38
          int seq = inEdge[root] = 0;
39
          memset(idx, -1, sizeof(idx));
40
41
          memset(vis, -1, sizeof(vis));
42
          // 找所有的 cycle,一起編號為 seq
43
          for(int i=0; i<N; i++) {</pre>
44
45
              result += inEdge[i];
46
              int cur = i;
              while(vis[cur]!=i && idx[cur]==-1) {
47
                  if(cur == root) break;
48
                  vis[cur] = i;
49
```

```
50
              cur = pre[cur];
51
52
           if(cur!=root && idx[cur]==-1) {
53
              for(int j=pre[cur]; j!=cur; j=pre[j])
54
                 idx[j] = seq;
55
              idx[cur] = seq++;
56
           }
57
        }
58
59
        if(seq == 0) return result; // 沒有 cycle
60
61
        for(int i=0; i<N; i++)</pre>
           // 沒有被縮點的點
62
           if(idx[i] == -1) idx[i] = seq++;
63
64
        // 縮點並重新編號
65
        for(Edge& e : edges) {
66
67
           if(idx[e.s] != idx[e.t])
              e.cost -= inEdge[e.t];
68
69
           e.s = idx[e.s];
70
           e.t = idx[e.t];
71
72
        N = seq;
73
        root = idx[root];
     }
74
75
  }
76
77
  ______
78
79
   Tarjan 的DMST 演算法
80 Tarjan 提出了一種能夠在
  0(m+nlog n)時間內解決最小樹形圖問題的演算法。
82
83
    流 程
84 Tarjan 的演算法分為收縮與伸展兩個過程。
85 接下來先介紹收縮的過程。
  我們要假設輸入的圖是滿足強連通的,
87 如果不滿足那就加入 O(n) 條邊使其滿足,
  並且這些邊的邊權是無窮大的。
88
89
  我們需要一個堆存儲結點的入邊編號,入邊權值,
90
91 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
92 這裡採用左偏樹 與並查集實現。
93
  演算法的每一步都選擇一個任意結點v,
  需要保證 v 不 是 根 節 點 , 並 且 在 堆 中 沒 有 它 的 入 邊 。
94
95
  再將v的最小入邊加入到堆中,
96
  如果新加入的這條邊使堆中的邊形成了環,
97
  那麼將構成環的那些結點收縮,
  我們不妨將這些已經收縮的結點命名為超級結點,
98
  再繼續這個過程,如果所有的頂點都縮成了超級結點,
99
  那麼收縮過程就結束了。
100
  整個收縮過程結束後會得到一棵收縮樹,
101
102
  之後就會對它進行伸展操作。
103
  堆中的邊總是會形成一條路徑v0 <- v1<- ... <- vk,
104
  由於圖是強連通的,這個路徑必然存在,
  並且其中的 vi 可能是最初的單一結點,
  也可能是壓縮後的超級結點。
107
108
109 最初有 v0=a,其中 a 是圖中任意的一個結點,
110 每次都選擇一條最小入邊 vk <- u,
111 如果 u 不是v0,v1,...,vk中的一個結點,
112 那麼就將結點擴展到 v k+1=u。
113 如果 u 是他們其中的一個結點 vi,
114 前麼就找到了一個關於 vi <- ... <- vk <- vi的環,
115 再將他們收縮為一個超級結點c。
117 向隊列 P 中放入所有的結點或超級結點,
118 並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
119
120 選擇 a 的最小入邊,保證不存在自環,
121 並找到另一頭的結點 b。
```

122 如果結點b沒有被記錄過說明未形成環,

```
令 a <- b,繼續目前操作尋找環。
123
                                                             200
                                                                     queue < Heap *> q;
                                                                     for (int j = 0; j < in[i].size(); j++)</pre>
124
                                                             201
                                                                       q.push(new Heap(&in[i][j]));
125 如果 b 被記錄過了,就表示出現了環。
                                                              202
                                                             ,203
                                                                     while (q.size() > 1) {
126 | 總結點數加一,並將環上的所有結點重新編號,對堆進行合併
                                                             204
                                                                       Heap *u = q.front();
127 以及結點/超級結點的總權值的更新。
                                                             205
                                                                       q.pop();
128 更新權值操作就是將環上所有結點的入邊都收集起來,
                                                                       Heap *v = q.front();
                                                             206
   並減去環上入邊的邊權。
129
                                                                       q.pop();
                                                             207
                                                             208
                                                                       q.push(merge(u, v));
131 typedef long long ll;
                                                              209
132
   #define maxn 102
                                                             210
                                                                     Q[i] = q.front();
133 #define INF 0x3f3f3f3f
                                                                   }
                                                             211
134
                                                                   mark[1] = true;
                                                             212
   struct UnionFind {
135
                                                                   for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
                                                             213
     int fa[maxn << 1];</pre>
136
                                                                     //尋找最小入邊以及其端點,保證無環
                                                             214
137
     UnionFind() { memset(fa, 0, sizeof(fa)); }
                                                             215
138
     void clear(int n) {
                                                             216
                                                                       ed[a] = extract(Q[a]);
       memset(fa + 1, 0, sizeof(int) * n);
139
                                                             217
                                                                       a = id[ed[a]->u];
140
     }
                                                             218
                                                                     } while (a == b && Q[a]);
     int find(int x) {
141
                                                                     if (a == b) break;
                                                             219
       return fa[x] ? fa[x] = find(fa[x]) : x;
142
                                                                     if (!mark[a]) continue;
                                                             220
143
                                                                     //對發現的環進行收縮,以及環內的節點重新編號,
                                                             221
144
     int operator[](int x) { return find(x); }
                                                                     //總權值更新
                                                              222
145 };
                                                                     for (a = b, n++; a != n; a = p) {
                                                             223
146
                                                                       id.fa[a] = fa[a] = n;
                                                             224
   struct Edge {
147
                                                             225
                                                                       if (Q[a]) Q[a]->constant -= ed[a]->w;
148
    int u, v, w, w0;
                                                             226
                                                                       Q[n] = merge(Q[n], Q[a]);
149 };
                                                             227
                                                                       p = id[ed[a]->u];
150
                                                                       nxt[p == n ? b : p] = a;
                                                             228
151 struct Heap {
                                                             229
152
     Edge *e;
                                                             230
                                                                   }
     int rk, constant;
153
                                                             231
                                                                 }
     Heap *lch, *rch;
154
                                                             232
155
                                                             233 ll expand(int x, int r);
156
     Heap(Edge *_e):
                                                             234 ll expand_iter(int x) {
157
       e(_e),rk(1),constant(0),lch(NULL),rch(NULL){}
                                                                   11 r = 0;
                                                             235
158
                                                             236
                                                                   for(int u=nxt[x];u!=x;u=nxt[u]){
     void push() {
159
                                                             237
                                                                     if (ed[u]->w0 >= INF)
       if (lch) lch->constant += constant;
160
                                                             238
                                                                       return INF;
161
       if (rch) rch->constant += constant;
                                                             239
                                                                     else
162
       e->w += constant;
                                                                       r += expand(ed[u]->v,u)+ed[u]->w0;
                                                             240
       constant = 0;
163
                                                             241
                                                                   }
     }
164
                                                             242
                                                                   return r;
165|};
                                                             243 }
166
                                                             244
167
   Heap *merge(Heap *x, Heap *y) {
                                                             245 ll expand(int x, int t) {
    if (!x) return y;
168
                                                             246
                                                                   11 r = 0;
169
     if (!y) return x;
                                                                   for (; x != t; x = fa[x]) {
                                                             247
     if(x->e->w + x->constant > y->e->w + y->constant)
170
                                                             248
                                                                     r += expand_iter(x);
171
       swap(x, y);
                                                             249
                                                                     if (r >= INF) return INF;
172
     x - push();
                                                             250
                                                                   }
173
     x - rch = merge(x - rch, y);
                                                              251
                                                                   return r;
174
     if (!x->1ch || x->1ch->rk < x->rch->rk)
       swap(x->lch, x->rch);
                                                             252 }
175
                                                             253
176
     if (x->rch)
                                                             254
                                                                 void link(int u, int v, int w) {
       x - rk = x - rch - rk + 1;
177
                                                             255
                                                                   in[v].push_back({u, v, w, w});
178
                                                             256 }
179
       x - rk = 1;
                                                             257
180
     return x:
                                                             258
                                                                 int main() {
181 }
                                                             259
                                                                   int rt;
182
                                                             260
                                                                   scanf("%d %d %d", &n, &m, &rt);
183 Edge *extract(Heap *&x) {
                                                             261
                                                                   for (int i = 0; i < m; i++) {
184
     Edge *r = x->e;
                                                             262
                                                                     int u. v. w:
185
     x->push();
                                                                     scanf("%d %d %d", &u, &v, &w);
                                                             263
186
     x = merge(x->lch, x->rch);
                                                             264
                                                                     link(u, v, w);
187
     return r;
                                                             265
188 }
                                                                   //保證強連通
                                                             266
189
                                                             267
                                                                   for (int i = 1; i <= n; i++)
190 vector < Edge > in [maxn];
                                                                     link(i > 1 ? i - 1 : n, i, INF);
191 int n, m, fa[maxn << 1], nxt[maxn << 1];
                                                             268
                                                             269
192 Edge *ed[maxn << 1];
                                                                   contract();
                                                                   11 ans = expand(rt, n);
                                                             270
193 | Heap *Q[maxn << 1];
194 UnionFind id;
                                                                   if (ans >= INF)
                                                             271
                                                                     puts("-1");
195
                                                             272
                                                             273
   void contract() {
196
                                                             274
                                                                     printf("%11d\n", ans);
197
     bool mark[maxn << 1];</pre>
                                                             275
     //將圖上的每一個節點與其相連的那些節點進行記錄
                                                                   return 0;
198
                                                             276 }
199
     for (int i = 1; i <= n; i++) {
```

8 geometry

8.1 intersection

```
1 using LL = long long;
3 struct Point2D {
4
      LL x, y;
5 };
6
7 struct Line2D {
      Point2D s, e;
9
                               // L: ax + by = c
      LL a. b. c:
10
      Line2D(Point2D s, Point2D e): s(s), e(e) {
          a = e.y - s.y;
11
           b = s.x - e.x;
12
13
           c = a * s.x + b * s.y;
14
15 };
16
17 // 用克拉馬公式求二元一次解
18 Point2D intersection2D(Line2D 11, Line2D 12) {
      LL D = 11.a * 12.b - 12.a * 11.b;
19
       LL Dx = 11.c * 12.b - 12.c * 11.b;
20
       LL Dy = 11.a * 12.c - 12.a * 11.c;
21
22
23
       if(D) {
                       // intersection
           double x = 1.0 * Dx / D;
24
           double y = 1.0 * Dy / D;
25
26
       } else {
           if(Dx || Dy) // Parallel lines
27
28
           else
                       // Same line
29
      }
30 }
```

8.2 凸包

```
1 /* ******************
2 * Q: 平面上給定多個區域,由多個座標點所形成,再給定
3 * 多點(x,y),判斷有落點的區域(destroyed)的面積總和。
5 #include <bits/stdc++.h>
6 using namespace std;
8 const int maxn = 500 + 10;
9 const int maxCoordinate = 500 + 10;
10
11 struct Point {
12
     int x, y;
13 };
14
15 int n;
16 bool destroyed[maxn];
17 Point arr[maxn];
18 vector < Point > polygons[maxn];
19
20 void scanAndSortPoints() {
21
      int minX = maxCoordinate, minY = maxCoordinate;
      for(int i=0; i<n; i++) {</pre>
22
23
         int x, y;
         scanf("%d%d", &x, &y);
24
         arr[i] = (Point)\{x, y\};
25
26
         if(y < minY || (y == minY && x < minX)) {</pre>
      // If there are floating points, use:
27
28
      // if(y<minY || (fabs(y-minY)<eps && x<minX)) {
             minX = x, minY = y;
29
30
31
      sort(arr, arr+n, [minX, minY](Point& a, Point& b){
32
         double theta1 = atan2(a.y - minY, a.x - minX);
33
         double theta2 = atan2(b.y - minY, b.x - minX);
34
35
         return theta1 < theta2;</pre>
36
      }):
37
      return:
```

```
38 }
39
 40 // returns cross product of u(AB) x v(AC)
41 int cross(Point& A, Point& B, Point& C) {
       int u[2] = {B.x - A.x, B.y - A.y};
int v[2] = {C.x - A.x, C.y - A.y};
43
       return (u[0] * v[1]) - (u[1] * v[0]);
44
45 }
46
47
   // size of arr = n >= 3
   // st = the stack using vector, m = index of the top
48
   vector < Point > convex_hull() {
49
       vector<Point> st(arr, arr+3);
       for(int i=3, m=2; i<n; i++, m++) {</pre>
51
52
            while (m >= 2) {
                if(cross(st[m], st[m-1], arr[i]) < 0)</pre>
53
54
                    break:
55
                st.pop_back();
56
                m - - ;
            }
57
58
            st.push_back(arr[i]);
 59
60
       return st;
61 }
62
63 bool inPolygon(vector < Point > & vec, Point p) {
       vec.push_back(vec[0]);
65
       for(int i=1; i<vec.size(); i++) {</pre>
66
            if(cross(vec[i-1], vec[i], p) < 0) {</pre>
67
                vec.pop_back();
                return false;
68
69
70
       }
71
       vec.pop_back();
72
       return true;
73 }
74
75
          1 | x1 x2 x3 x4 x5
      76
           2 | y1 y2 y3 y4 y5
77
   double calculateArea(vector<Point>& v) {
 78
79
       v.push_back(v[0]);
                                     // make v[n] = v[0]
       double result = 0.0;
80
       for(int i=1; i<v.size(); i++)</pre>
81
           result += v[i-1].x*v[i].y - v[i-1].y*v[i].x;
82
       v.pop_back();
83
84
       return result / 2.0;
85 }
86
87
   int main() {
88
        int p = 0;
        while(~scanf("%d", &n) && (n != -1)) {
89
90
            scanAndSortPoints();
91
            polygons[p++] = convex_hull();
92
93
94
       int x, y;
95
        double result = 0.0;
96
        while(~scanf("%d%d", &x, &y)) {
            for(int i=0; i<p; i++) {</pre>
97
                if(inPolygon(polygons[i], (Point){x, y}))
                    destroyed[i] = true;
99
100
101
102
       for(int i=0; i<p; i++) {</pre>
103
            if(destroyed[i])
                result += calculateArea(polygons[i]);
104
105
       printf("%.21f\n", result);
106
        return 0;
```

9 動態規劃

9.1 LCS 和 LIS

1 //最長共同子序列(LCS)

2 給定兩序列 A,B ,求最長的序列 C ,

3 C 同時為 A,B 的子序列。

5 //最長遞增子序列 (LIS)

6 給你一個序列 A , 求最長的序列 B ,

B 是一個(非)嚴格遞增序列,且為 A 的子序列。

9 //LCS 和 LIS 題目轉換

10 LIS 轉成 LCS

- 1. A 為原序列, B=sort(A)
- 2. 對 A,B 做 LCS

13 LCS 轉成 LIS

17

18

19

20

- 1. A, B 為原本的兩序列
- 2. 最 A 序列作編號轉換,將轉換規則套用在 B
- 3. 對 B 做 LIS
- 4. 重複的數字在編號轉換時後要變成不同的數字, 越早出現的數字要越小
- 5. 如果有數字在 B 裡面而不在 A 裡面, 直接忽略這個數字不做轉換即可

10 Section2

10.1 thm

- 中文測試
- $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
- $\int_0^\infty e^{-x} dx$
- $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

11 dp 表格

11.1 DPlist

1							
2	1	1	I	I	I	l I	
3	1	1	l	l	l	l I	
4							
5	1	1	I	I	I	l I	
6	i	İ				i i	
7							
8	1	I	I	I	I	l I	
9	1	I I	l	l	l	l I	
10							
11	1	I I	l	l	l	l I	
12	1	l I				l I	
13							
14	1	l I				l I	
15	1	l I	l	l	l	l I	
16							
17	1	l I	l	l	l	l I	
18	1	l I				l I	
19							
20	1	l I					
21	1	l I	l	l	l		
22							
23	1	l I					
24	1					l I	
25							

26 27		 	 	 	
28					
29 30			l '		
31		 :	 	 :	
32		l	l	l	
33 34		 	 	 	
35	1 1	I	I	I	l I
36	1 1	l	I	l	l I
37 38	l I		 I	 I	
39	i i	İ	i	İ	i i
40 41	1 1	· I	· I	· I	 I I
42		 	! 	 	
43					
44 45			 		
46		' 	' 	' 	
47			ļ		
48 49		 	 	 	l I
50	1 1	I	I	I	l I
51 52		 	 	 	
53	1 1	l	I	l	l I
54	1 1	l	I	l	l I
55 56			 I	 I	
57	i i	İ	i	İ	i i
58 59	1 1	· I	· I	· I	 I I
60		 	! 	 	
61		·	·	·	
62 63		 	 	 	
64					
65 66			l '		
67		 	 	 	
68	!!!	!	ļ	!	!!!
69 70		 :	 	 :	
71	1 1	l	I	l	l I
72 73		 	 	 	
74	1 1	l	I	l	l I
75	1	l	I	l	l I
76 77		 I	 I	 I	
78	i i	İ	i	İ	i i
79 80	l I	 I	 I	 I	 I I
81		 	! 	 	
82		·	·	·	
83 84		 	 	 	
85					
86 87		 	 -	 	
88			 		
89	1 1		!		!!!
90 91		 :	 	 :	
92	1 1	l	I	l	l I
93 94		 	 	 	
95	1 1	l	I	l	I I
96	I	I	I	I	l I
97 98		· 	 I	· 	
99	i i	i	I	i	i i
100 101		· I	· I	· I	 I '
102		i	İ	i	i i

103			 				- 186) I	1	I	I	I	1 1
104	1	1	I I	l	l I	I	181						
105	I	I	l 1		l	I	182	1	l I			<u> </u>	
106 107	1	 I	 	 I			- 183 184		 	 	 	 	
108	i	i		<u> </u> 		' 	185	!	1	I	I	I	l I
109			 				- 186		1	I	l	l	l I
110	!	ļ	! !				187	1					
111 112	I 		 	 	l 	l 	188 - 189		l I	1	l I	 	l I I I
113	1	- 1	I I		I	I	196		'		' 	' 	
114	1		l 1	l	l I	l	191		1	I	l	l	l l
115			 				- 192 - 192		I	I	l	l	l I
116 117	1	 	l 	 	 	l I	193 194	1	I	1			
118			 				- 195		i	i	İ	i İ	i i
119	1	- 1		l	l I	l	196	1					
120	I		I I		l	l	197		ļ				
121 122	1	1	 I I	1	l		- 198 199		 		 	I 	l I
123	i	i	i i		i		206	1	I	I	I	I	l l
124			 	·			- 201		I	I	l	l	I I
125 126	!					 	202 203			1	· I		 I I
127			 	 	 	 	- 204	1 '	i I		l 	! 	l l
128	1	-		l	l I	l	205	5					
129	I	1	I I	l	l I	l	206		ļ.	ļ.	l	ļ ·	
130 131	1		 I	 I			- 207 208	1 '	 	 	 	l 	
132	1		I I	 	 	l I	200		I	1	I		l I
133			 				- 216		i	i	i İ	I	i i
134	1	1		<u> </u>	<u> </u>	l	211	!			·		
135 136			 l	 	l 	l 	212 - 213		l	1	 	 -	
137	1	1	1	1	I	I	213		 		 	 	· · · · · · · · · · · · · · · · · · ·
138	i	i	i i	İ	İ	İ	215	5 1	1	I	l	I	1
139			 				- 216		1	I	I	I	l I
140 141	1		 	 	 	 	217 218			1	· I	 I	
142			 		 	 	- 219		i	<u> </u>	! 	! 	! !
143	1	- 1	I I		I	I	226)					
144	I	I			l	l	221		l	!		!	ļ !
145 146	1		 				- 222 223		 	 	 	 	
147	i	i				' 	224		1	I	I	I	I I
148			 				- 225	5 1	1	I	I	I	l l
149	!	ļ	! !				226						
150 151	I 		 	 	 	 	227 - 228		l I	 	l I	 	
152	1	1	I I		I	I	229	1 '					
153	1	- 1	l I		l I	l	236		1	1	l	l	
154			 				- 231		 		l 	l 	
155 156	1	 	ı 	! 	 	ı 	232 233	!		1	 	I	
157	· 		 				- 234	1 1	i	i		İ	I I
158	ļ.		ļ !		<u> </u>	l	235	!			·		
159 160	I 		 I 	 	l 	l 	236 - 237		l I	I I	l I	l I	
161	1	I	 	 		_	237					' 	ı I
162	İ	i	ı i	I	ı	I	239)	I	I	I	I	l I
163			 				- 246		I	1		l	l I
164 165	I I		I I] 	 	l I	241 242	1		1	· I	 I	
166			 				- 243	1 '		i			' '
167	1	1	I I	l	l I	I	244	1					
168	I	I	l I	l	I		245	1 '	!	!		!	 :
169 170	1	 I	 I	· I			- 246 247		 	I	l 	l 	ı l
171	i		· !				247	!	I	I	I	I	l I
172			 				- 249	1	I	I	I	I	i i
173	ļ	1			<u> </u>	<u> </u>	256				·		
174 175	 		 I 	 	l 	l 	251 - 252		l I	I I	l I	l I	
176	I	I			I	I	252						ı I
177	Ì	i	ı	l	ı	I	254	1	I	I	I	I	l l
178			 				- 255		I	I	I	I	l I
179	1	- 1			l	l	256						

															_
257	1	1	ı		ı	1	ı	334							
258	<u> </u>	i	<u>'</u>		l I	! !	! !	335	1	ı	ı	ı			
	I	'		'	 	! 	! 		-		1	 	!	! !	
259								- 336	1	ı	ı	ı	ı	1 1	
260	!	!	!			!	! :	337							
261	I	ı	I			l	l	338	1	1	1		l		
262								- 339		I	I	l	l	1 1	
263	1	I	I			l	l	340							
264	1	I				l	l	341	1	I	I	l	I	1 1	
265								- 342	1	I	I	l	I	1 1	
266	1	- 1	ı			I	I] 343							
267	i	i	i	i	i	i i	I	344	1	I	I	I	I	1 1	
268								- 345	i	i	i	I	i	i i	
269	1	1	ı		ı	1	ı	346							
270		-	<u>'</u>		l I	! !	! !	347	1	ı	ı	ı			
	ı	'	ı		ı	1	1		!	!		l '	!	! !	
271								- 348	ı	I	I	l	I	1 1	
272	ı	ı				l	l	349							
273	1	I	I			l	l	350	I	I	I	l	I	1 1	
274								- 351	1		1	l	l	1	
275	1	- 1	1			I	l	352							
276	i	i	i	i		İ	I	353	1	I	I	I	I	1 1	
277								- 354	i	i	i	I	i	i i	
					ı		ı	355	'	'	'	' 	' 	' '	
278	!	- !	!			!	! !				1				
279	I	ı	I			I	l	356	!	!	!	!	!	!!!	
280								- 357	I	I	I	l	l	1 1	
281	1	I	I			l	l	358							
282	1	I				l	l	359	1		1	l	l	1	
283								- 360	1	I	I	l	I	1 1	
284	1	- 1	ı		I	I	I	J 361							
285	i	i	i			i	I	362	1	ı	ı	I	ı	1 1	
286								- 363	i	<u> </u>		ı I	<u>.</u>	; ;	
									1	1	1	1	'	1 1	
287	!	!	. !			!	 -	364							
288	ı	ı	I			I	l	365	1	1	1	l		1 1	
289								- 366	I	I	I	l	l	1 1	
290	1	I				l	l	367							
291	1	I				l	l	368	1	I	I	l	I	1 1	
292								- 369	1	I	I	I	I	1 1	
293	1	- 1	1		ı	I	I	370		· 	· 				
294	i	i	i			i	I	371	1	ı	ı	ı	1	1 1	
	·	'		'	 	! 	 		1	1	!	l I	! !	1 1	
295								- 372	ı	I	I	I	I	1 1	
296	!	!	. !			!	l	373							
297	ı	ı	I			l	l	374	I	I	I	l	l	1 1	
298								- 375	I	I	I	l	I	1 1	
299	1	I				l	l	376							
300	1	- 1	1			I	l	377	1	I	I	l	I	1 1	
301								- 378	1	I	I	I	I	1 1	
302	1	1	1		I	I	I	J 379		· 	· 				
303	i	i	i			i	' 	380	1	ı	ı	ı	1	1 1	
304		'			' 	' 	' 	- 381	1	1	1	l I	! !		
									1	1	1	ı	ı	1 1	
305	!	!	. !			!	l	382							
306	I	I	I		l	I	l	383	1	!	!	l	!	<u>.</u> 1	
307								- 384	1		I			1 1	
308	1	I				l	l	385							
309	1	1	I	1				J 386	1				l	1 1	
310								- 387	1	I	I		I	į i	
311	1	1	ı	1	l	I	I	388							
312	i	i	i			I	I	389	1	I	ı	I	ı	1	
313			ا 			' 	' 	- 390	i	i	i	I	I	; ;	
- 1		1				1	ı			I 		 	I 		
314	!	!			l	l ·	l	391							
315	I	I	I		l	I	l	392	1	!	!	l	!	<u>.</u> 1	
316								- 393	1	1	1		l	1 1	
317	I		I					394							
318	1	1	- 1			l		J 395	1		I		l	1	
319								- 396	1	I	I		I	į i	
320	1	1	ı	1		I	I	397							
	i	1			ı I	I	ı I	398	1	ı	ı	I	ı		
321	I 		:		 	 	 		1	1	1	l I	 	; !	
322								- 399	1	I	1	I	I	1 1	
323	I		I			l	l	400							
324	I	1	I			l		401	1				l	1 1	
325								- 402	1	I			l	į į	
326	1	1	I			I	l	403							
327	i	i	i			I	I	404	1	I	I	I	ı		
328			ا 	·		' 	' 	- 405	i	i	i	I	I	; ;	
		1					I			I 		 	I 	ı l	
329	!	!			l	l	l	406							
330	I	I	I		l	I	l	407	1	1	1	l	l	i I	
331								- 408	1					1 1	
332	I	1	I					409							
333	1	i	i	i		I		410	1		1		I	1	
- 1						-		1	*	•	•		-	. '	

411	_	1		1		1	1 400	1	1			1		
411 412		 l 	 	 	 	l 	488 - 489	 	l I	I I	l I	l I	I I	
413	I	l	I	l	I	l	490	·					· 	
414	I	I	I	I	l I	I	491	1	l	<u> </u>	l ·	l		
415 416	1	 I		· I			- 492 493		 	 	 	 	 	
417	i	! 	! 	! 	 	! 	494	I	I	I	I	I	1 1	
418		 					- 495	İ	I	I	I	I	i i	
419	ļ		!		<u> </u>		496					·		
420 421	 	 	 	 	 	 	497 - 498	l I	 	 	 	 	 	
422	ī	I	I	I	I	I	499							
423	İ	i İ	İ	i İ	İ	i İ	500	1	I	I	I	I	l I	
424		 					- 501	I		l	l		l I	
425 426		l I	 	l I	 	l I	502 503	1	 I	 I	 I	· · · · · · · · · · · · ·		i
427		 					- 504	i	' 	' 		' 	I I	
428	1	I	I	I	l I	I	J 505							
429	I	l	I	I	I	l	506	1		<u> </u>	<u> </u>			
430 431	1	 					- 507 508	I 	l 	 	 	 	l I	
432	i	' 	İ	' 	İ	' 	509	I	I	I	I	I	l I	
433		 					- 510	1	l	l	l	l	1 1	
434	!						511	1		 I	· I	· ı		
435 436		 l 	 	 	 	l 	512 - 513	I I	l I	! !	! !	l I		
437	I	I	I	I	I	I	514							
438	I	I	I	I	l I	I	J 515	1	l	l	l	l		
439		 I	 I	· ·		 I	- 516		l 	 	 	 	l l	
440 441	i	l I	 	l I	I I	l I	517 518	1	I		I	I	I I	
442		 					- 519	i	i İ	I	I	i İ	i i	
443	1	l	1	l		l	J 520		·		·	·		
444 445		 		 	 	 	521 - 522	1		 -				
446	ı	I	I	I	I	I	522		 	 	 	 		
447	i	İ	İ	İ	i i	İ	524	1	l	I	I	l	I I	
448		 					- 525	1	I	I	I	I	l I	
449 450		 	 	 	 	 	526 527	1		· I				i
451		 					- 528	i	! 	! 	! 	! 		
452	1	I	I	I	l I	I	J 529							
453	I	I	I	I	I	I	J 530	1		<u> </u>	<u> </u>			
454 455	1	 					- 531 532	I	 	 	 	 	l I	
456	i		i İ		i i		J 533	1	l	l	l	l	1 1	
457		 					- 534	1	I	I	I	I	l I	
458 459		 	 	 	 	 	535 536	1		· I				i
460		 ı 				ı 	- 537	¦ 	! 	! 	! 	! 	' ' 	
461	Ι	I	I	I	I	I	J 538							
462	I	I	I	l	I	I	539	1		<u> </u>	<u> </u>			
463 464	1	 					- 540 541	I	 	 	 	 	l I	
465	i		i		İ		542	1	l	I	I	l	l I	
466		 		·			- 543	1	I	I	I	I	l I	
467 468	I	 	I I	l I	l I	 	544 545	1		· I	· I	· I	 '	i
469		 					- 546	i					. ! 	
470	Ι	I	I	I		I	547						<u>·</u>	
471	1	 	I	 			548		 -	 -	 -	 -		
472 473	1	 	 I	· I	I		- 549 550	I	I 	l 	I 	 	ı l	
474	i	i İ	i	i İ		i İ	551	1	I	I	I	I	1 1	
475		 		·			- 552	1	I	l	l	I	l İ	
476		 -		 -		 -	553	1	· I	· I	· I	· I	 '	i .
477 478	 	 I 	I 	 	I 	I 	554 - 555	1	I I	! 	! 	I I	ı 	
479	ı	I	I	I	I	I	J 556							
480	I	l	I	I	I	l	557	1	l	l	l	l	l I	
481		 	 I	· I	·		- 558		 	 	 	 		
482 483	I	1 	! 	1 	 	1 	559 560	 	l	I	I	l		ı
484		 					- 561	i	i	I	I	i	i i	
485	ļ		!	l	<u> </u>		562			·		·		
486 487	 	 l 	I 	l 	l 	l 	563 - 564	1	 	l I	l I	 	 '	
40/	_	 	= = = -				504	1	ı	ı	ı	ı	ı 1	

565							- 642	1	l	I	l	l I	1
566		1	1	1	1	1	l 643		·		· ·		
567 568			 	 	 	 	644 - 645			 	 		
569	1	į.	!	I	I	I	l 646						
570 571	 		 	 	 	 	647 - 648			 	 		
572	I	1	1	I	I	I	l 649		· 				
573 574	 	 	 	l 	l 	l 	650 - 651		 		 		
575	I	1	1	I	I	I	652		 	 	 :	 	
576	I	I	1	1	I	I	653	!		<u> </u>			l l
577 578	1	 	1	I	I		- 654 655	I	 	 	 	 	
579	i	i	İ	i	i	i	J 656	1	l	I	l		I
580 581	1	I	 I	 I	 I	 I	- 657 658		 	 	 	 	
582	i	i	i	i	i	i	l 659	1	l	l I	l	l I	1
583 584	 I	I					- 660 661		 	 	 	 	
585	i	i	i	i	İ	i	662	1	l	I	l	l I	1
586 587						·	- 663 664	1	 	l	 		<u> </u>
588	¦	i		 	 	! 	665	1		I			1
589							- 666	1	l	l I	I	l I	1
590 591			1	1 1	 	 	667 668	1	· 	I	· I		
592				<u>-</u>			- 669	İ	ĺ	İ	ĺ	İ	i
593 594		l I	1	 	 	 	670 671	I	· I		· I		
595							- 672	i		i			i
596 597		I	1		 	 	673 674	1			· I		
598							- 675						
599	!	Į.	1	1	1	I	676						
600 601			 	 	I 	 	677 - 678		 	 	 	 	
602	ļ.	!	ļ.	Į.	!	Į.	679						
603 604		 	 	 	I 	 	680 - 681]]	 	
605	1	į.	1	I	I	1	l 682	<u></u>					
606 607	 		 	 	 	 	683 - 684	 		 			
608	1	Į.	ļ	I	I	I	J 685	·					
609 610	 	 	 	 	 	 	686 - 687			 			
611	I	1	1	I	1	I	J 688						'
612 613	 		 	 	 	 	689 - 690			 			
614	I	1	1	I	I	I	J 691		· 				
615 616	 		 	 	I	 	- 692 - 693		 	 	 		
617	I	1	1	I	I	I	l 694						
618 619	1			<u> </u>	<u> </u>	<u> </u>	695 - 696		 		 		
620	1			 	1	1	- 696 697						
621	I .					l 	l 698		 		 		
622 623				 	 	 	- 699 700	I	 	I 	 		
624	I	İ	1	I	I	I	701	1		<u> </u>		!	. !
625 626	1			 	 	 I	- 702 703	I	 	l 	 	l 	
627	İ	i	İ	Ī	İ	İ	704	<u> </u>	l	<u> </u>	l		1
628 629	 I	I	 I	 I	 I	 I	- 705 706		 	 	 	 	
630	i	İ	i	i	i	i	J 707	1	I	l I	I	l I	1
631 632	 I	I		 I	 I	 I	- 708 709		 	 	 	 	
633	i		ί	İ	i	i	710	1	I	I	I	I	1
634							- 711		 	 :			
635 636			 	 	 	! 	712 713		· · · · · · · · · · · · ·	 	· 		
637							- 714	1	I	I i	I	ı	i i
638 639	I I		l I	I 	I 	! 	715 716		· 	 	· 	 	I
640	· 		· 	· 	· 		- 717	i	İ	İ	İ	İ	i
641	I	1	1	1	1	I	718						

719 720	1	l I	1	 	 	 	796 797	1	1	 I	 I		I I
721							- 798	i	i		' 		i i
722	1	1	1		I	I	J 799						
723	I	I	1	1	I	I	800	1	1	<u> </u>	l	<u> </u>	
724 725					 I	 1	- 801 802			 	 	 	
726	1	1	1	 	I I	I I	803	1	1	 I			I I
727				' 		' 	- 804	i	i	! 	! 	! 	i i
728	1	1	1		I	I	805						
729	I	1	1	I	I	I	l 806	1	1	l	l	l	I I
730							- 807	I	I	l	l	l	I I
731 732	1	1	1	 	 	 	808 809	1	1	· I			I I
733							- 810	i	i	i I	' 	i I	i i
734	1	1	1	I	I	I	811						
735	I	1	1	I	I	I	812	1	1	l	l	l	I I
736							- 813 814			 	 	 	l I
737 738	1	I	1	I I	I I	I I	815	1	1	 I			I I
739				' 	' 	' 	- 816	i	i	i I	' 	i I	i i
740	1	1	1	1	I	I	817						
741	I	I	I	I	I	I	818	!	!	!	l	!	!!!
742 743					 !	 !	- 819 I 820			 	 	 	l I
744	1	l	1	1	: 	! 	820 821	1	1	I	I	I	
745	· 	-	· 				- 822	i	İ				i i
746	1	1	1		I	I	823						
747	I	I	I		I	I	824	1		<u> </u>		<u> </u>	
748 749	1			1	 I	 I	- 825 826		 	 	 	 	
750	i	i	i	 	i I	i İ	827	1	ı	I	l	I	1 1
751			· 				- 828	i	i	I	I	I	i i
752	1	1	1	1	I	I	829						
753	I	I	I		I	I	830	1					
754 755	1				 I	 I	- 831 832		I 	 	l 	 	
756	i	i	i	i İ	i I	i I	833	1	ı	I	l	I	1 1
757			·				- 834	i	İ	I	İ	I	i i
758	1	1	1	1	I	I	835			·			
759	I	I	I	I	I	I	836	1					
760 761	1		1	I	 I	 I	- 837 838	I 	I 	 	l 	 	l I
762	i	i	i	i i	İ	i	839	1	I	I	I	I	Ι Ι
763							- 840	1	I	l	l	l	1
764	Į.	Į.	Į.	1	!	!	841						
765 766	I 	 	 	 	 	 	- 842 - 843	1		 	l I	 	! ! ! !
767	1	1	1	I	I	I	844						
768	Ī	ĺ	Ì	Ī	l	ĺ	845	1	I	I	l	I	Ι Ι
769							- 846	1	I	l	l	l	I I
770 771	1	I	1	 	 	 	847 848	1	1				I I
772					' 	' 	- 849			' 	! 	' 	ı l l
773	I	1	1	I	I	I	850						
774	I	I	I	I	I	I	851	I	1	ļ	l	ļ	I I
775							- 852	1	I	l 	l :	l 	I I
776 777	1	l I	 	I I	I 	I I	853 854	1	1	 			
778							- 855	i	i	İ	İ	İ	; ;
779	1	1	1	I	I	I	l 856						
780	I	I	1	I	I	I	857	!	!	!	l	!	
781 782	1			 I	 I	 I	- 858 859	1	l 	 	 	 	I
783	1	İ		! 	! 	! 	859	1	1	I	I	I	
784	· 		· 				- 861	i	İ				i i
785	1	1	1	I	I	I	l 862						
786	I	I	1	I	I	I	863	!	!	<u> </u>		<u> </u>	ļ ļ
787 788	1	 I		 I	 I	 I	- 864 865	1	I	I 	l 	l 	ı l
789	<u> </u>			' 			866	1	1	I	I	I	
790	· 		· 				- 867	i	i	I	I	I	i i
791	ļ.	ļ	!	I	I	I	868					·	
792	1		1	I	I 	I	869	1	1	 -	 -	 -	[
793 794	1	 I	I	 I	 I	 I	- 870 871	1	I	l 	I 	l 	ı l
795	i	i	i	İ		İ	871	I	I	I	l	I	
- 1	•	•	-	-	-	-	1		-	-	-	-	

873	I	I	I	I			950	1	1	1		1	1 1
874							951		l			I	1 1
875	!	I	I				952						
876 877		ا 	ا	ا	 	 	953 - 954		 	1	 	 	1 1
878	1	1	ı		l	I	955				 	 	
879	i	i	i			' 	956	1	I	1	1	I	1 1
880							957	i	I	İ	i	i I	i i
881	1	1	I				958						
882	1		I				959	I	l		1	1	1 1
883							960	1	l			1	1 1
884	!		ļ				961						
885 886		ا 	ا	ا	 	 	962		 	1	 	 	1 1
887	1	ı	ı			I	964						
888	i	i	i			! 	965	- 1	I	ı	I	I	1 1
889							966	i i	İ	i	i	i İ	i i
890	1	- 1	I	1		l	967	:					
891	1	- 1	I	1			968	1	I		1	1	1 1
892							969	1	I	1		I	1 1
893	Į.	ļ	ļ				970						
894	ı	I	ı				971						!!!
895 896	I						972 973	I 	I 	I 	I 	I 	ı l
897			l I				974	1	I	1	I	I	
898							975	i	i	i	i	i	; ;
899	1	- 1	ı	1			976				· 		
900	1		I				977	. 1	I	1	1	1	I I
901							978	I	l		1	1	1 1
902	!	ļ	ļ				979						
903	ı	I	ı				980		!	!		!	!!!
904							981 982		l 		 	 	1 1
905 906	! !	I I	 			 	983	. I		1		I	I I
907						 	984	i i	! 	i	! 	i I	i i
908	1	I	ı				985	,			· 		
909	Ĺ	ĺ	ĺ	ĺ			986	. 1	I	1	1	1	I I
910							987	1	I		1	1	1 1
911	!	ļ	ļ				988						
912	I		I				989	<u> </u>	<u> </u>	!		!	!!!
913							990	.	I	I	I	I	1 1
914 915	!					l I	991 992	. 1		1		I	1 1
916						 	993	i i	! 	i	! 	i I	i i
917	1	1	ı				994	·					
918	1	- 1	I				995	. 1	I		1	1	I I
919							996	1	I		1	1	1 1
920	!	ļ	ļ				997						
921	I		ı				998		<u> </u>	!		!	!!!
922							999 1000	 	 		 	 	1 1
923 924	;	I I	 			l I	1000	1	ı	ı	I	I	1 1
925						' 	1002	i '	i I	i		i i	i i
926	1	1	ı			I	1003			· 			
927	ĺ	i	i	i		I	1004		I	I	I '	I	1
928					. .	·	1005	I	I	I	I	I	1 1
929	!	!		!		 -	1006						
930						 	1007	1	[1	[[
931 932	I	1			 -	I	1008 1009	I 	I 	I 	I 	I 	ı 1
933			 				1010	1	I	I	I	I	
934							1011	i	I	i	İ	İ	i i
935	1	- 1	I	1		l	1012	:					
936	ĺ	i	i	i		I	1013	1	I	I	I '	I	1
937					·		1014	1	I	I	I '	I	1 1
938	<u> </u>	ļ	ļ			ļ	1015						
939	I	I	I	I		I	1016		I	1	[I	[[
940	ı					· I	1017	 	l 	I	I 	I 	l
941 942	l I		l I		 	ı İ	1018 1019	. I	I	1	I	I	
943		ا 		ا		' 	1020		' 			' 	, l
944	1	1	ı	1		l	1020						
945	i	i	i				1022	. 1	I	I	1	I	1
946		<u>-</u>					1023		I	I	I .	I	i i
	1	1	I			l	1024						
947													
947 948 949	i	İ	i	i		l	1025 1026		!	!	!	ļ .	

1027							- 1104	1 1	I	l	I	l I
1028 1029	1		1		1		1105 1106	1 1		 I	· I	
1030						 	- 1107		İ	 	! 	
1031	1	!	!	<u> </u>	!	l	1108				·	
1032 1033	I 	I 	I 	I 	 	 	1109 - 1110]]	l 	l I I I
1034	1	I	I	I	I	I	1111	<u></u>				·
1035 1036	l 	l 	l 	 	 	 	1112 - 1113		1		 	
1037	1	1	I	I	I	I	1114	·	·			·
1038 1039		 	 	 	 	 	1115 - 1116		1		 	
1040	1	I	I	I	I	I	1117			' 	' 	
1041 1042		 	 	 	 	 	1118 - 1119		1		 	
1043	1	I	I	I	I	I	1120					
1044 1045	l 	l 	l 	l 	 	 	1121 - 1122		1	<u> </u>	 	
1046	1	I	I	I	I	I	1123			· 		
1047 1048		l 	 	 	 	 	1124 - 1125		1		 	
1049	I	I	I	I	I	I	1126					
1050 1051	I	 	l 	 	 	 	1127 - 1128		1	 	 -	
1052	1	I	I	I	I	I	1129					
1053 1054	I	I	l 	 	l 	 	1130 - 1131		1	 	 	
1055	1	I	I	I	I	I	1132					
1056 1057	1	I	l	l 	l	l 	1133 - 1134		1	<u> </u>	 -	
1058	1	I	I	I	I	I	1134				 	
1059 1060	1	I	l	l	l	l 	1136	1 1	1			
1061	1	I	1	 	1	 	- 1137 1138			 :	 	
1062 1063	1	l	l	l 	l	l 	1139 - 1140		1	 -	 -	
1064	I	I	1	I	1	I	1140			 :	 	I I
1065 1066	1	l	l	l 	l	l 	1142 - 1143		1	 -	 -	
1067	1	I	I	I	I	I	1143				 	
1068 1069	1	l	l	l 	l	l 	1145 - 1146		1	 -	 -	
1070	1	I	I	I	I	I	1140				 	
1071 1072		l 	l 	l 	l 	 	1148 - 1149		1	 	 	
1073	1	I	I	I	I	I	1150				 	
1074 1075	I	I	l 	l 	l 	l 	1151 - 1152		1	 	 	
1076	1	I	I	I	I	I	1153					
1077 1078	I	I	l 	l 	l 	l 	1154 - 1155		1	 	 	
1079	1	I	I	I	I	I	1156					
1080 1081	I	I	l 	l 	 	 	1157 - 1158		1	 	 	
1082	1	I	I	I	I	I	1159	ı l			ı 	ı I
1083 1084	I	I	 	 	 	 	1160 - 1161		1	 	 	 '
1085	1	I	I	I	I	I	1162	ı l				ı I
1086 1087	I	I	l 	l 	l 	 	1163 - 1164		1	 	 	
1087	1	I	I	I	I	I	1165					
1089 1090	1	I	l	l 	l	l 	1166 - 1167		1	<u> </u>	 -	
1090	I	I	I	I	I	I	1167			 	 	· · · · · · · · · · · · · · · · · · ·
1092		l 	 	 	l 	 	1169		1	 	 	 '
1093 1094	1		1		1	 	- 1170 1171	ı I		 	 	ı 1
1095		<u> </u>	 	 	 	 	1172		1	 	 	
1096 1097		 	 		 	 	- 1173 1174	ı I	I 		 	ı 1
1098	1	I	I	l 	I	I	1175		1	<u> </u>	 -	
1099 1100			 	 	 	 	- 1176 1177	ı l	I 	 	 	ı l
1101	I	I	1	l	1	l	1178		1		l	!!!
1102 1103		 	 	 	 	 	- 1179 1180		I	 	I 	ı l
,												

				_			. 1						
1181	1				!	<u> </u>	1258						
1182 1183		 	 	 	 	 	1259 - 1260	1 1			l I	 	
1184	1	ı	ı	ı	ı	ı	1261				 	 	
1185	i	i	i	i	i I	! 	1262	1 1			l	I	l I
1186							- 1263	i i		i		İ	i i
1187	1	I	1	1	I	l	l 1264						
1188	1		1	1	I	l	l 1265	1				l	
1189						· ·	- 1266	1				l	
1190	1	!	!	!	!	!	1267						
1191		I 	 	 	 	 	1268 - 1269				 	 	
1192 1193	1	 I	I	I	 I		1209			 :	 	 	l I
1194	i	i i	! 	! 	! 	! 	1270	1 1			I	ı	l I
1195							- 1272	i i				i İ	i i
1196	1	I	1	1	I	l	J 1273						
1197	1	I	1	1	I	l	1274	1				I	l I
1198							- 1275	1 1				I	
1199	1				!	<u> </u>	1276						
1200		I 	 	 	 	 	1277				 	 	
1201 1202	1	 I	I	I	 I		- 1278 1279			 :	 	 	l I
1203	i	i	i I	i I	i I	! 	1280	1 1			I	I	l I
1204							- 1281	i i				i İ	i i
1205	1	I	1	1	I	l	J 1282						
1206			1	1	1	l	l 1283	1 1				1	
1207						· ·	- 1284	1				l	
1208	1		1	1			1285						
1209 1210		 	l 	 	l 	 	1286 - 1287	1 1			l I	 	
1211	1	ı	ı	ı	ı	ı	1287				 	 	l
1212	i	i	i	i	I	i I	1289	1 1				I	
1213		· 					- 1290	i i				·	I I
1214	1	I	I	I	I	l	1291						
1215			I	I	I	l	1292	1 1				I	
1216							- 1293					l	l l
1217			1	1			1294						
1218 1219		 	 	 	 	 	1295 - 1296	1 1			l I	 	
1220	1	ı	ı	ı	ı	ı	1297				 	 	l
1221	i	i	i	i	I	i I	1298	1 1				I	
1222							- 1299	İ				l	
1223	1	I	1	1	I	l	J 1300						
1224		I	1	1	l	l	1301	! !				!	
1225							- 1302	1				I	l l
1226 1227	1	 	 	 	 	 	1303 1304	1				 I	
1228				 		 	- 1305				I 	! 	l I
1229	1	I	I	I	I	I	J 1306						
1230	1		1	1	I	l	1307	1 !				I	
1231							- 1308	1				I	
1232	!	ļ.	!	!	<u> </u>	<u> </u>	1309						
1233		I 	 	 	 	 	1310				 	 	
1234 1235	1	I	I	I		I	- 1311 1312				 	I 	ı l
1236	i	i	İ	İ	İ		1313				I	I	
1237							- 1314	1 i	ı	ı	l	I	ı i
1238	1	1	1	1	I	l	1315						
1239	I	I	I	I	I	l	1316]			l	ļ	
1240 1241	1	 I			 I	· I	- 1317 1318		 	 	l 	l 	ı İ
1241	1	 	 	 	 	l I	1318	1				 I	
1243						 	- 1320	;			I 	i I	
1244	1	I	I	I	I	I	1321						·
1245	i	İ	İ	İ	İ	I	1322	1 1				I	
1246							- 1323	1			l	I	l I
1247	1	1	I	I	I	l ·	1324				·		
1248	I	I	I	I	I	l	1325]				ļ	
1249	1	 I			 I	· I	- 1326 I 1327		 	 	l 	l 	ı İ
1250 1251	I	I I	I I	I I	I I	I I	1327 1328	1			· ·		
1251	·	ı 			ı 	 	- 1329			· 	: 		ı l
1253	1	I	I	I	I	I	1330			· 			
1254	İ	Ī	İ	İ	İ		1331	1 1			I	I	l I
1255							- 1332	1			I	I	l I
1256	1	1	I	I	I	l ·	1333				·		
1257	I	I	I	I	I	I	1334	1 1			l	I	l l

1335	1 1	1 1	1	1 1	1412	1	1		I	ı
1336					1413	1	1		I	1
1337 1338			l I		1414 1415	I I	I .			۱
1339				· · · · · · · · · · · · · · · · · · ·	1415				i	<u> </u>
1340	1 1	1 1	1	1 1	1417	·				
1341	1 1	1 1	1	1 1	1418	1 1	1		1	1
1342 1343		·			1419 1420					
1344	i i		i	i i	1420	1 1	1		ı	1
1345	·		· · ·		1422	i i	i	i	i	i
1346	!!!	!!!	Į.	!!!	1423					
1347 1348					1424 1425		 		I	
1349	1 1	1 1	1	1 1	1425			·		
1350	i i	i i	i	i i	1427	1 1	1		I	1
1351					1428	1 1	1		I	I
1352 1353			l I		1429 1430	I I	I			
1354					1431	i i	i		i	i
1355	1	1 1	1	1 1	1432					
1356	I I	l I	I	1 1	1433				I	Į.
1357 1358	I I	I I	ı	I I	1434 1435		 	 	ا	
1359	i i	iii	i	ii	1436	1 1	1		1	1
1360					1437	1	1	İ	ĺ	1
1361 1362			ļ		1438 1439					ı
1362	ı I	ا ا		ı l	1440	ı 			l I	
1364	1 1	1 1	1	1 1	1441	·				
1365	1 1	1 1	I	1 1	1442	!!!	!		!	!
1366 1367	1 1				1443 1444		 	 	ا 	
1368	i i	iii	i	ii	1445	1 1	1		ı	1
1369					1446	i i	i	ĺ	İ	ĺ
1370 1371			Į.		1447					
1371		ا ا 		· · · · · · · · · · · · · · · · · · ·	1448 1449		l I		 	
1373	1 1	1 1	1	1 1	1450					
1374	1 1	1 1	1	1 1	1451	!!!	<u> </u>		1	1
1375 1376	1 1				1452 1453		 	 	ا	
1377	i i	iii	i	ii	1454	1 1	1		ı	1
1378					1455	i i	i	ĺ	İ	ĺ
1379			ļ	!!!	1456					
1380 1381		 		· · · · · · · · · · · · · · · · · · ·	1457 1458		l		l I	!
1382	1 1	1 1	1	1 1	1459					
1383	1 1	1 1	1	1 1	1460		1		1	1
1384 1385		·			1461 1462					
1386	i i	iii	i	ii	1463	1 1	1		ı	1
1387					1464	i i	i	ĺ	İ	ĺ
1388	!!!	!!!	Į.	!!!	1465					
1389 1390		 	 		1466 1467		l I		I	
1391	1 1	1 1	1	1 1	1468			· 		
1392	1	l Ì	1	1 1	1469	<u> </u>	<u>!</u>	1	1	1
1393 1394	1 1		·		1470 1471					
1394					1471				I	I
1396			· ·		1473	i i	i	i	i	i
1397	1 1	!!!	!	1 1	1474					
1398 1399	ı l	ا ا		ı l	1475 1476	 	l I		l I	
1400	1 1	1 1	1	1 1	1477					
1401	ı i	ı i	İ	i i	1478	1 1	1		1	1
1402	1 '				1479		<u> </u>			
1403 1404			l I		1480 1481				ı	I
1405					1482	i i	i		i	i
1406	<u> </u>	! !	Į.	1 1	1483					
1407 1408					1484 1485				ļ	
1409	1 1		1		1486	ı I			ا	ا
1410	i i	i i	i	i i	1487	1	1		1	1
1411					1488	1 1	1		I	I

1489						
1490	1	1	1	I	1	1 1
1491	i	i		i I		i i
1492	· 			' 		
1493	1	1		I		1 1
1494	i	i		I		i i
1495	· 		' 	' 	' 	
1496	1	1		I		1 1
1497	i	i		! 		i i
1498	· 		' 	' 	' 	
1499	1	1		I		1 1
1500	i	i		I		i i
1501				' 		
1502	1	1	1	I	1	1 1
1503	i	i		I		i i
1504	·			, 		
1505	1	1		I		1
1506	i	i	i	I	i	i i
1507			· 	·	· 	
1508	1	1				l l
1509	1	1				l l
1510						
1511	1	1				l l
1512	1	1				l I
1513						
1514	1	1				l l
1515	I	1		l		l I
1516						
1517	1	1				l l
1518	I	1				l l
1519						
1520	1	<u> </u>		<u> </u>		!!!
1521	I	ı		l		l I
1522						
1523 1524	!	!		 -		
1524		I	 	 	 	l I
1525	1					
1527	1	!		l I		
1528			 	 	 	l I
1529	1	1		I		1
1530	i			! 		, ! !
1531				I 		ı l
1532	1	1		I		1
1533	i	i	' 	' 	' 	i i
1534	'					

12 slogan

12.1 slogan

1	
2	/\\\\\\\/\\\\\\\/\\\\\\\\\\\\\
3	_\///\\\////\\\/////\/\\\//////\\\/\\\/////_
4	\/\\\/\\\/\/\\\
5	\/\\\/\\\\/\\\\\\\\\\\\
6	\/\\\\/\\\
7	\/\\\\//\\\\//\\\\//\\\
8	\/\\\\///\\\\///\\
9	/\\\\\\\\////_\/\\\
10	_\///////_\//\///\///
11	
12	/\\\\\\\/\\\\\\
13	/\\\////\\\/\\\////\\\/\\\////\\\/\\\////_
14	_\///\/\\\\/\\\\//\\\\///\//\\\///\
15	/\\/\/\\\\/\\\
16	/\\\//\/\\\\//_
17	/\\\//\/\\\\/\\\/\\\//
18	/\\////\\/\\\/\\//_
19	/\\\\\\\\\\\///\\\\\\\/\/\/\\\\\\
20	_\///////\///\//////