MATH 119: Midterm 2

Name: .			
		,	

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Proble	m	Score	Points
1			10
2			10
3			10
4			10
5			10
6			10
7			10
8			10

1. Prove the identity

$$\frac{(\sin x + \cos x)^2}{\sin^2 x - \cos^2 x} = \frac{\sin^2 x - \cos^2 x}{(\sin x - \cos x)^2}$$

2. Evaluate the following:

(a)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(b)
$$\cos 112.5^{\circ}$$

(c)
$$\sin 75^{\circ}$$

3. Solve the equation for θ . Check your work if necessary.

(a)
$$\sqrt{2}\sin\theta + 1 = 0$$

(b) $\sqrt{2} \tan \theta \sin \theta - \tan \theta = 0$

4. Prove these identities algebraically:

(a)
$$\frac{\sin \theta}{\tan \theta} = \cos \theta$$

(b)
$$\frac{\cos x}{\sec x} + \frac{\sin x}{\csc x} = 1$$

(c)
$$\cos^4 x - \sin^4 x = \cos 2x$$

- 5. Answer the following:
 - (a) A triangle ABC has $\angle A=90^\circ, \angle B=30^\circ$ and A=25. Solve the triangle and draw a picture of it.

(b) Are $\frac{-\pi}{4}$ rad and 315° coterminal? Show with calculations.

(c) If the directrix of a parabola is a vertical line and the focus is to the right of the directrix, which way does the parabola open?

- 6. Answer the following:
 - (a) Convert $(\sqrt{8},\sqrt{8})$ into polar coordinates.

(b) Convert $r = \frac{1}{1 + \sin \theta}$ into rectangular form.

(c) Convert $r = 6\cos\theta$ into rectangular form.

7. Simplify the following trigonometric expressions:

(a)
$$\sin 20^{\circ}\cos 40^{\circ} + \cos 20^{\circ}\sin 40^{\circ}$$

(b)
$$\frac{\sin(x+y) - \sin(x-y)}{\cos(x+y) + \cos(x-y)}$$

8. Here is a pair of parametric equations

$$x = 2t$$
 $y = t + 2$

(a) Sketch the curve represented by the equations.

(b) Find a rectangular coordinate equation for the curve by eliminating the parameter.