Two-Level Type Theory

Nicolai Kraus

12 March 2025, 9th Southern and Midlands Logic Seminar, Birmingham

Field: MLTT-style type theories

Two-Level Type Theory (2LTT)

Two-Level Type Theory (2LTT)

Early instance of 2LTT: Voevodsky's HTS (Homotopy Type System), 2013

what: HoTT, with the ability to reason about judgmental equalities

why: We want an internal theory of higher categories, via

semisimplicial types

Voevodsky's HTS (Homotopy Type System), 2013

what: HoTT, with the ability to reason about judgmental equalities

why: We want an internal theory of higher categories, via

semisimplicial types

...ok, better explanation:

something doesn't type-check, but we want it to type-check!

refl : 2 + 1 = 1 + 2

refl : 5 + 1 = 1 + 5

refl: 843 + 1 = 1 + 843

Voevodsky's HTS (Homotopy Type System), 2013

what: HoTT, with the ability to reason about judgmental equalities

why: We want an internal theory of higher categories, via

semisimplicial types

...ok, better explanation:

something doesn't type-check, but we want it to type-check!

refl: 2 + 1 = 1 + 2 refl: $\{n : Nat\} \rightarrow n + 1 = 1 + n$

refl : 5 + 1 = 1 + 5

refl: 843 + 1 = 1 + 843

Voevodsky's HTS (Homotopy Type System), 2013

what: HoTT, with the ability to reason about judgmental equalities

why: We want an internal theory of higher categories, via

semisimplicial types

...ok, better explanation:

something doesn't type-check, but we want it to type-check!

refl :
$$2 + 1 = 1 + 2$$

ref:
$$\{n : Nat\} \rightarrow n + 1 = 1 + n$$

refl :
$$5 + 1 = 1 + 5$$

refl:
$$843 + 1 = 1 + 843$$

Voevodsky's HTS (Homotopy Type System), 2013

Motivation: "Semisimplicial types"

Problem: construct a type of Reedy fibrant contravariant functors $\Delta_{+} \rightarrow \text{Type}$

A₀ : Type

 $A_1 : A_0 \rightarrow A_0 \rightarrow Type$

 A_2 : $(x y z : A_0) \rightarrow A_1 x y \rightarrow A_1 x z \rightarrow A_1 y z \rightarrow Type$

A3 : ...

Goal: Write down a function $S : \mathbb{N} \to \mathsf{Type_1}$ such that $S(n) \simeq \mathsf{type}$ of the tuple $(A_0, A_1, A_2, ..., A_n)$.

We can only write down an expression S(x) such that S(n) is correct for external n.

Early instance of 2LTT: Voevodsky's HTS (Homotopy Type System), 2013

Voevodsky's HTS (Homotopy Type System), 2013

HTS: HoTT extended with:

- "external/strict natural numbers" type
- "external/strict equality"
- ... and the infrastructure to make this work

Axiom of HTS:

 $\mathbb{N}^s \equiv \mathbb{N}$

(justified by sSet model)

=> Problem solved.

Capriotti's insight:
Without such axioms, we get conservativity.

More than an analogy:

yoneda: $C \rightarrow [C^{\circ p}, Set]$

Any type theory extends to a two-level type theory.

Details: Annenkov-Capriotti-Kraus-Sattler, Two-level type theory and applications.

Definition of general 2LTT

An instance of two-level type theory consists of:

- * a category **Con** of *contexts*;
- * **Ty**ⁱ and **Tm**ⁱ such that (Con, Tyⁱ, Tmⁱ) forms a cwf (the "inner/fibrant level")
- * **Ty**^s and **Tm**^s such that (Con, Ty^s, Tm^s) forms a cwf (the "outer/strict/exo level")
- * a conversion morphism **c** from the inner to the outer theory, s.t.: **c** is the identity on contexts
 - c preserves context extension
 (but not necessarily type formers!)

A type theory that has lots of type formers:

 Π , Σ , 1, 0, +, =, \mathbb{N} , higher inductive types, univalent universes

 Π , Σ , 1, 0, +, =, \mathbb{N} , inductive types, universes, equality reflection (or UIP & funext)

A type theory that has lots of type formers:

```
\Pi, \Sigma, 1, 0, +, =, \mathbb{N}, higher inductive types, univalent universes \Pi, \Sigma, 1, 0, +, =, \mathbb{N}, inductive types, universes, equality reflection (or UIP & funext)
```


Fibrant types: $\Pi, \Sigma, 1, 0, +, =, \mathbb{N}$, HITs, univalent universes; Strict types: $0^s, +^s, =^s, \mathbb{N}^s$, strict universes.

Rules: = only works for fibrant types, = works for everything.

Induction principles of fibrant types can only eliminate into fibrant types.

Example: $x = y \rightarrow x = y$ but not vice versa. $\mathbb{N}^s \rightarrow \mathbb{N}$ but not vice versa. $A + B \rightarrow A + B$ but not vice versa.

Fibrant types: $\Pi, \Sigma, 1, 0, +, =, \mathbb{N}$, HITs, univalent universes; Strict types: $0^s, +^s, =^s, \mathbb{N}^s$, strict universes.

Voevodsky's HTS is the special case with the assumptions $\mathbb{N}^s \equiv \mathbb{N}$, $0^s \equiv 0$, $+^s \equiv +$.

Example model

Simplicial sets (sSet):

- * Every simplicial set is a context.
- * inner/fibrant level: Kan fibrations (cf Kapulkin-Lumsdaine).
- * outer/strict level: usual presheaf model.

Applications

- * Language to formulate new axioms e.g. HTS.
- * Formalise meta-theoretic statements
 - e.g. Shulman's Reedy fibrant inverse diagrams,
 - e.g. "HoTT can define semisimplicial types up to any externally fixed n".
- * "Template programming"
 - e.g. for any strict number n, we can develop a theory of univalent n-categories; plug in 1, 2, 3, ... to get developments in HoTT.
- * Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
- * (conjectural:) factoring a structural extension $T_1 \rightarrow T_2$ as $T_1 \rightarrow 2LTT \rightarrow T_2$, where the second step is an axiomatic extension; use Agda's --two-level flag to work in T_2 .

Applications

- * Language to formulate new axioms e.g. HTS.
- * Formalise meta-theoretic statements
 - e.g. Shulman's Reedy fibrant inverse diagrams,
 - e.g. "HoTT can define semisimplicial types up to any externally fixed n".
- * "Template programming"
 - e.g. for any strict number n, we can develop a theory of univalent n-categories; plug in 1, 2, 3, ... to get developments in HoTT.
- * Staged Compilation with Two-Level Type Theory (ICFP paper by András Kovács).
- * (conjectural:) factoring a structural extension $T_1 \rightarrow T_2$ as $T_1 \rightarrow 2LTT \rightarrow T_2$, where the second step is an axiomatic extension; use Agda's --two-level flag to work in T_2 .

Thanks for your attention!