

محينة زويـل للهـلوم والتكنـولوچيـا Zewail City of Science and Technology

Nanotechnology and Nano-electronics Engineering Program Fall 2022

NANENG 501

Advanced Digital ASIC Design

Project Phase 2

Muhammad Abdelnaby 201800510

Under supervision of,

Dr.Hassan

Eng Tareq

Eng. Yousef

First, start the design using spartan 6 family: xc6slx45t kit

Then insert the design verilog files:

Setting the core as a top module and run the PFGA flow. Adjust the clock period to be 20ns and using the regular 50% duty cycle condition.

Finish synthesis, flolrplaning and implementation with no errors:

Performance Summary [_						
Final Timing Score:	0 (Setup: 0, Hold: 0, Component Switching Limit: 0)	Pinout Data:	Pinout Report			
Routing Results:	All Signals Completely Routed	Clock Data:	Clock Report			
Timing Constraints:	All Constraints Met					
Detailed Reports [-						

All constraints met.

The utaliztion is small due to relatively advanced kit:

Device Utilization Summary					
Slice Logic Utilization	Used	Available	Utilization	Note(s)	
Number of Slice Registers	478	54,576	1%		
Number used as Flip Flops	478				
Number used as Latches	0				
Number used as Latch-thrus	0				
Number used as AND/OR logics	0				
Number of Slice LUTs	1,580	27,288	5%		
Number used as logic	1,533	27,288	5%		
Number using O6 output only	1,174				
Number using O5 output only	110				
Number using O5 and O6	249				
Number used as ROM	0				
Number used as Memory	44	6,408	1%		
Number used as Dual Port RAM	44				
Number using O6 output only	0				
Number using O5 output only	0				
Number using O5 and O6	44				
Number used as Single Port RAM	0				
Number used as Shift Register	0				
Number used exclusively as route-thrus	3				

The used clock is 20ns while the minimum clock allowed is around 16.5ns

The power consumption is: 2. Summary

	The second secon		
2.1.	On-Chip	Power	Summary

On-Chip Power Summary						1						
	On-Chip	1	Power	(mW)	1	Used	1	Available	1	Utilization	(%)	50
3	Clocks	1		3.94	1	2	1		1	, , , , , , , , , , , , , , , , , , ,		53
	Logic	1		3.85	1	1580	1	27288	1		6	
	Signals	1		6.31	1	2090	1	5555	1	555555		
	IOs	1	- 2	24.97	1	254	1	296	1		86	
	DSPs	1		0.00	1	4	1	58	1		7	
	Quiescent	1		36.64	1		1		1			
	Total	1		75.71	1		1		1			

Comparison between the ASIC and FPGA flow:

ASIC	2.78 mW
FPGA	75.71 mW

ASIC is better for power consumption optimization.