

Não Otimização Booleana

- (A) cross_type == "in" Quando a reta conta apenas entradas;
- (B) cross_type == "both" Quando a reta realiza contagem nas duas direções;
- (C) cos < 0 Quando o cosseno do ângulo entre a reta de contagem e a pessoa é menor que zero.

A: Reta é do tipo in

B: Reta é do tipo both

C : Cosseno é menor que zero (saiu)

if ABC or ABC or ABC or ABC :

print("Registra o Evento")

else:

print("Não Registra o Evento")

A : Reta **não** é do tipo **in**

 $\overline{\mathbf{B}}$: Reta **não** é do tipo **both**

\overline C : Cosseno é maior que zero (entrou)

⁽A) cross_type != "in" - Quando a reta não realiza contagens apenas para entradas;

⁽B) cross_type != "both" - Quando a reta não realiza contagens nas duas direções;

⁽C) cos > 0 - Quando o cosseno do ângulo entre a reta de contagem e a pessoa é maior que zero.

NÃO Otimização Booleana-

Para **facilitar** a aplicação de uma estrutura de

decisão

de registrar ou não um

evento

(entrada **C** ou saída **C**)

é necessário

simplificar

a expressão booleana

anterior:

ABC or ABC or ABC

Ш

ABC + ABC + ABC + ABC

→Otimização Booleana←

Otimização Booleana

Para a construção de um bloco condicional 'if' de maneira simplificada, é possível utilizar da álgebra booleana. Para isto, constrói-se a tabela verdade:

A = 0 Não Registra Entradas	Α	В	С	S	A = 1 Registra ■ Entradas
B = 0	0	0	0	0	B = 1
Não Registra	0	0	1	1	Registra -Entradas
Entradas e Saídas	0	1	0	1	e Saídas
C = 0	0	1	1	1	C = 1
Entrou Cos > 0	1	0	0	1	Saiu
	1	0	1	0	Cos < 0
S = 0 Não Registrar		S = 1 Registrar			

A tabela-verdade deve ser entendida como a população do problema analisado, ou seja, toda a combinatória de possibilidades das entradas (ABC) e sua saída (S).

$$S = \bar{A}\bar{B}C + \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C}$$

$$S = \bar{A}(\bar{B}C + B\bar{C} + BC) + A\bar{B}\bar{C}$$

$$S = \bar{A}(\bar{B}C + B(\bar{C} + C)) + A\bar{B}\bar{C}$$

Otimização Booleana

Segue a verificação de resultado booleano para simplificação da expressão destacada anteriormente:

С	<u></u>	$C + \overline{C}$
0	1	1
1	0	1

Então:

$$S = \bar{A}(\bar{B}C + B(\bar{C} + C)) + A\bar{B}\bar{C}$$

$$S = \bar{A}(\bar{B}C + B) + A\bar{B}\bar{C}$$

$$S = \bar{A}\bar{B}C + \bar{A}B + A\bar{B}\bar{C}$$

$$S = \bar{B}(\bar{A}C + A\bar{C}) + \bar{A}B$$

Segue a verificação de resultado booleano dentro do parêntesis:

A	С	$ar{A}$	Ē	$\overline{A}C + A\overline{C}$	A xor C
0	0	1	1	0	0
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Então:

$$S = \bar{B}(\bar{A}C + A\bar{C}) + \bar{A}B$$

$$S = \bar{B} \text{ and } (A \text{ xor } C) \text{ or } \bar{A} \text{ and } B$$

Computacionalmente, temos:

```
if S == True:
    print("Registrar Evento")
else:
    print("NÃO Registrar Evento"")
```

Otimização Booleana

Caso 1

 $S = \bar{B}$ and $((\bar{A}C) xor (A\bar{C}))or \bar{A}$ and B

 $S = \overline{True}$ and $(\overline{False} \text{ and } True) \text{ xor } (False \text{ and } \overline{True}))$ or \overline{False} and True

 $S = False \ and \ ((True \ and \ True) \ xor \ (False \ and \ False)) \ or \ True \ and \ True$

S = False and (True xor False) or True and True

S = True and (True) or True and True

 $S = True \ or \ True$

S = True (registrar o evento)

Caso 2

 $S = \overline{B}$ and $((\overline{A} \text{ and } C) \text{ xor } (A \text{ and } \overline{C}))$ or \overline{A} and B

 $S = \overline{False}$ and $(\overline{False} \text{ and } False)$ xor $(\overline{False} \text{ and } \overline{False})$ or \overline{False} and \overline{False}

 $S = True \ and \ ((True \ and \ False) \ xor \ (False \ and \ True)) or \ True \ and \ False$

S = True and (False xor False) or True and False

S = True and (False) or True and False

S = False or False

S = False (NÃO Registrar o evento)

Caso 3

 $S = \bar{B}$ and $((\bar{A}C) xor (A\bar{C}))or \bar{A}$ and B

 $S = \overline{False}$ and $(\overline{True} \text{ and } False) \text{ xor } (True \text{ and } \overline{False}))$ or \overline{True} and \overline{False}

 $S = True \ and \ ((False \ and \ False) \ xor \ (True \ and \ True)) \ or \ False \ and \ False$

S = True and (False xor True) or False and False

 $S = True \ and \ (True) \ or \ False \ and \ False$

 $S = True \ or \ False$

S = True (Registrar o evento)