

## MTP3N60 MTP3N60FI

# N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

| TYPE      | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub> |
|-----------|------------------|---------------------|----------------|
| MTP3N60   | 600 V            | < 2.5 Ω             | 3.9 A          |
| MTP3N60FI | 600 V            | < 2.5 Ω             | 2.5 A          |

- TYPICAL  $R_{DS(on)} = 2 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- APPLICATION ORIENTED CHARACTERIZATION

## **APPLICATIONS**

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- CHOPPER REGULATORS, CONVERTERS, MOTOR CONTROL, LIGHTING FOR INDUSTRIAL AND CONSUMER ENVIRONMENT





## **ABSOLUTE MAXIMUM RATINGS**

| Symbol              | Parameter                                             | Value      |           | Unit |
|---------------------|-------------------------------------------------------|------------|-----------|------|
|                     |                                                       | MTP3N60    | MTP3N60FI |      |
| V <sub>DS</sub>     | Drain-source Voltage (V <sub>GS</sub> = 0)            | 60         | 600       |      |
| $V_{DGR}$           | Drain- gate Voltage ( $R_{GS} = 20 \text{ k}\Omega$ ) | 60         | 00        | V    |
| V <sub>G</sub> s    | Gate-source Voltage                                   | ±          | 20        | V    |
| I <sub>D</sub>      | Drain Current (continuous) at T <sub>c</sub> = 25 °C  | 3.9        | 2.5       | Α    |
| $I_{D}$             | Drain Current (continuous) at T <sub>c</sub> = 100 °C | 2.4        | 1.5       | А    |
| I <sub>DM</sub> (•) | Drain Current (pulsed)                                | 14         | 14        | Α    |
| P <sub>tot</sub>    | Total Dissipation at T <sub>c</sub> = 25 °C           | 100        | 35        | W    |
|                     | Derating Factor                                       | 0.8        | 0.28      | W/°C |
| V <sub>ISO</sub>    | Insulation Withstand Voltage (DC)                     |            |           | V    |
| T <sub>stg</sub>    | Storage Temperature                                   | -65 to 150 |           | °C   |
| Tj                  | Max. Operating Junction Temperature                   | 15         | 50        | °C   |

<sup>(•)</sup> Pulse width limited by safe operating area

November 1996 1/10

## THERMAL DATA

|                                                                 |                                                                                                            |                      | TO-220         | ISOWATT220 |                    |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------|----------------|------------|--------------------|
| R <sub>thj-case</sub>                                           | Thermal Resistance Junction-case                                                                           | Max                  | 1.25           | 3.57       | °C/W               |
| R <sub>thj-amb</sub><br>R <sub>thc-sink</sub><br>T <sub>I</sub> | Thermal Resistance Junction-ambient Thermal Resistance Case-sink Maximum Lead Temperature For Soldering Pu | Max<br>Typ<br>irpose | 62<br>0.<br>30 | 5          | °C/W<br>°C/W<br>°C |

## **AVALANCHE CHARACTERISTICS**

| Symbol          | Parameter                                                                                                                                       | Max Value | Unit |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by $T_j$ max, $\delta < 1\%$ )                                             | 3.9       | А    |
| Eas             | Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$ , $V_{DD} = 25$ V)                                                        | 300       | mJ   |
| E <sub>AR</sub> | Repetitive Avalanche Energy (pulse width limited by $T_j$ max, $\delta < 1\%$ )                                                                 | 7.7       | mJ   |
| I <sub>AR</sub> | Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100  ^{\circ}\text{C}, \text{ pulse width limited by } T_j \text{ max, } \delta < 1\%)$ | 2.4       | А    |

# **ELECTRICAL CHARACTERISTICS** ( $T_{case} = 25$ $^{\circ}C$ unless otherwise specified) OFF

| Symbol               | Parameter                                                | Test Conditions                                                   | Min. | Тур. | Max.      | Unit     |
|----------------------|----------------------------------------------------------|-------------------------------------------------------------------|------|------|-----------|----------|
| V <sub>(BR)DSS</sub> | Drain-source<br>Breakdown Voltage                        | $I_D = 250 \ \mu A$ $V_{GS} = 0$                                  | 600  |      |           | V        |
| I <sub>DSS</sub>     | Zero Gate Voltage<br>Drain Current (V <sub>GS</sub> = 0) | $V_{DS} = Max Rating$<br>$V_{DS} = Max Rating x 0.8 T_c = 125 °C$ |      |      | 25<br>250 | μA<br>μA |
| I <sub>GSS</sub>     | Gate-body Leakage<br>Current (V <sub>DS</sub> = 0)       | V <sub>GS</sub> = ± 20 V                                          |      |      | ± 100     | nA       |

## ON (\*)

| Symbol              | Parameter                         | Test Conditions                                                      | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------|----------------------------------------------------------------------|------|------|------|------|
| $V_{GS(th)}$        | Gate Threshold Voltage            | $V_{DS} = V_{GS}$ $I_D = 1 \text{ mA}$                               | 2    | 3    | 4.5  | V    |
| R <sub>DS(on)</sub> | Static Drain-source On Resistance | $V_{GS} = 10V  I_D = 1.5 \text{ A}$                                  |      | 2    | 2.5  | Ω    |
| I <sub>D(on)</sub>  | On State Drain Current            | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$<br>$V_{GS} = 10 \text{ V}$ | 3.9  |      |      | А    |

## **DYNAMIC**

| Symbol                                                   | Parameter                                                         | Test Conditions                                                 | Min. | Тур.            | Max.             | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------|-----------------|------------------|----------------|
| g <sub>fs</sub> (*)                                      | Forward<br>Transconductance                                       | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 1.5 \text{ A}$ | 1.5  | 2.6             |                  | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input Capacitance Output Capacitance Reverse Transfer Capacitance | V <sub>DS</sub> = 25 V f = 1 MHz V <sub>GS</sub> = 0            |      | 560<br>90<br>40 | 800<br>130<br>55 | pF<br>pF<br>pF |



## **ELECTRICAL CHARACTERISTICS** (continued)

## **SWITCHING ON**

| Symbol                                               | Parameter                                                    | Test Conditions                                                                                                       | Min. | Тур.          | Max.     | Unit           |
|------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|---------------|----------|----------------|
| t <sub>d(on)</sub><br>t <sub>r</sub>                 | Turn-on Time<br>Rise Time                                    | $V_{DD} = 225 \text{ V}$ $I_D = 2.5 \text{ A}$ $R_G = 15 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 3) |      | 45<br>33      | 60<br>42 | ns<br>ns       |
| (di/dt) <sub>on</sub>                                | Turn-on Current Slope                                        | $V_{DD} = 480 \text{ V}$ $I_D = 4 \text{ A}$ $R_G = 15 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 5)   |      | 200           |          | A/μs           |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub> | Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge | V <sub>DD</sub> = 480 V I <sub>D</sub> = 4 A V <sub>GS</sub> = 10 V                                                   |      | 43<br>6<br>21 | 55       | nC<br>nC<br>nC |

## **SWITCHING OFF**

| Symbol               | Parameter       | Test Conditions                               | Min. | Тур. | Max. | Unit |
|----------------------|-----------------|-----------------------------------------------|------|------|------|------|
| t <sub>r(Voff)</sub> |                 | $V_{DD} = 480 \text{ V}  I_{D} = 4 \text{ A}$ |      | 35   | 45   | ns   |
| tf                   | Fall Time       | $R_G = 15 \Omega$ $V_{GS} = 10 V$             |      | 40   | 55   | ns   |
| t <sub>c</sub>       | Cross-over Time | (see test circuit, figure 5)                  |      | 60   | 75   | ns   |

## SOURCE DRAIN DIODE

| Symbol                                  | Parameter                                                | Test Conditions                             | Min. | Тур. | Max.      | Unit   |
|-----------------------------------------|----------------------------------------------------------|---------------------------------------------|------|------|-----------|--------|
| I <sub>SD</sub><br>I <sub>SDM</sub> (•) | Source-drain Current<br>Source-drain Current<br>(pulsed) |                                             |      |      | 3.9<br>14 | A<br>A |
| Vsp (*)                                 | Forward On Voltage                                       | I <sub>SD</sub> = 3.9 A V <sub>GS</sub> = 0 |      |      | 2         | V      |
| t <sub>rr</sub>                         | Reverse Recovery<br>Time                                 | $I_{SD} = 4 \text{ A}$                      |      | 420  |           | ns     |
| Qrr                                     | Reverse Recovery<br>Charge                               | (see test circuit, figure 5)                |      | 3.7  |           | μС     |
| $I_{RRM}$                               | Reverse Recovery<br>Current                              |                                             |      | 18   |           | А      |

<sup>(\*)</sup> Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

## Safe Operating Areas For TO-220



## Safe Operating Areas For ISOWATT220



<sup>(•)</sup> Pulse width limited by safe operating area

## Thermal Impedeance For TO-220



## Derating Curve For TO-220



**Output Characteristics** 



## Thermal Impedance For ISOWATT220



Derating Curve For ISOWATT220



**Transfer Characteristics** 



4/10

## Transconductance



Gate Charge vs Gate-source Voltage



Normalized Gate Threshold Voltage vs Temperature



Static Drain-source On Resistance



Capacitance Variations



Normalized On Resistance vs Temperature



## Turn-on Current Slope



## Cross-over Time



#### Accidental Overload Area



## Turn-off Drain-source Voltage Slope



## Switching Safe Operating Area



## Source-drain Diode Forward Characteristics



Fig. 1: Unclamped Inductive Load Test Circuits



**Fig. 3:** Switching Times Test Circuits For Resistive Load



**Fig. 5:** Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time



Fig. 2: Unclamped Inductive Waveforms



Fig. 4: Gate Charge Test Circuit



7/10

## **TO-220 MECHANICAL DATA**

| DIM.   |       | mm   |       |       | inch  |       |
|--------|-------|------|-------|-------|-------|-------|
| DIIVI. | MIN.  | TYP. | MAX.  | MIN.  | TYP.  | MAX.  |
| А      | 4.40  |      | 4.60  | 0.173 |       | 0.181 |
| С      | 1.23  |      | 1.32  | 0.048 |       | 0.051 |
| D      | 2.40  |      | 2.72  | 0.094 |       | 0.107 |
| D1     |       | 1.27 |       |       | 0.050 |       |
| Е      | 0.49  |      | 0.70  | 0.019 |       | 0.027 |
| F      | 0.61  |      | 0.88  | 0.024 |       | 0.034 |
| F1     | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| F2     | 1.14  |      | 1.70  | 0.044 |       | 0.067 |
| G      | 4.95  |      | 5.15  | 0.194 |       | 0.203 |
| G1     | 2.4   |      | 2.7   | 0.094 |       | 0.106 |
| H2     | 10.0  |      | 10.40 | 0.393 |       | 0.409 |
| L2     |       | 16.4 |       |       | 0.645 |       |
| L4     | 13.0  |      | 14.0  | 0.511 |       | 0.551 |
| L5     | 2.65  |      | 2.95  | 0.104 |       | 0.116 |
| L6     | 15.25 |      | 15.75 | 0.600 |       | 0.620 |
| L7     | 6.2   |      | 6.6   | 0.244 |       | 0.260 |
| L9     | 3.5   |      | 3.93  | 0.137 |       | 0.154 |
| DIA.   | 3.75  |      | 3.85  | 0.147 |       | 0.151 |



## **ISOWATT220 MECHANICAL DATA**

| DIM.   |      | mm   |      |       | inch  |       |
|--------|------|------|------|-------|-------|-------|
| DIIVI. | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| А      | 4.4  |      | 4.6  | 0.173 |       | 0.181 |
| В      | 2.5  |      | 2.7  | 0.098 |       | 0.106 |
| D      | 2.5  |      | 2.75 | 0.098 |       | 0.108 |
| E      | 0.4  |      | 0.7  | 0.015 |       | 0.027 |
| F      | 0.75 |      | 1    | 0.030 |       | 0.039 |
| F1     | 1.15 |      | 1.7  | 0.045 |       | 0.067 |
| F2     | 1.15 |      | 1.7  | 0.045 |       | 0.067 |
| G      | 4.95 |      | 5.2  | 0.195 |       | 0.204 |
| G1     | 2.4  |      | 2.7  | 0.094 |       | 0.106 |
| Н      | 10   |      | 10.4 | 0.393 |       | 0.409 |
| L2     |      | 16   |      |       | 0.630 |       |
| L3     | 28.6 |      | 30.6 | 1.126 |       | 1.204 |
| L4     | 9.8  |      | 10.6 | 0.385 |       | 0.417 |
| L6     | 15.9 |      | 16.4 | 0.626 |       | 0.645 |
| L7     | 9    |      | 9.3  | 0.354 |       | 0.366 |
| Ø      | 3    |      | 3.2  | 0.118 |       | 0.126 |



Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

@ 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

