Introduction to Computational Psychiatry

Klaas Enno Stephan

What is Computational Psychiatry?

From differential diagnosis to nosology

Stephan: Translational Neuromodeling & Computational Psychiatry, in prep.

>3,000 clinical tests in medicine

1 diagnostic instrument in psychiatry

Contemporary psychiatric classifications: ICD and DSM

International Classification of Diseases (ICD):

- curated by the World Health Organization (WHO)
- presently in its 11th revision (ICD-11)
- freely available

Diagnostic and Statistical Manual of Mental Disorders (DSM)

- published by the American Psychiatric Association (APA)
- presently: 5th edition (DSM-5; 2013); text revision (TR) in 2022
- not free

both schemes

- define mental disorders as syndromes
- reflect the consensus (or compromise) of expert committees
- are descriptive, without reference to mechanisms

DSM-5: Schizophrenia

- Positive symptoms:
 - Delusions
 - Hallucinations
 - Disorganized speech
- Grossly disorganized or catatonic behavior
- Negative symptoms (e.g., flat affect, anhedonia, avolition, asociality)
- + social or occupational dysfunction
- + continuous signs of the disturbance for at least six months

delusions hallucinations

delusions hallucinations

different symptoms, same symptoms, different outcome

disorganized speech negative symptoms

hallucinations

delusions hallucinations

delusions hallucinations

≥ 2 symptoms (at least one pos. symptom) over ≥ 1 month

Heterogeneity of psychiatric disorders

polygenetic basis
gene-environment interactions
environmental variation

variability in clinical trajectory and treatment response

multiple disease mechanisms

PERSPECTIVE

Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?

S Kapur¹, AG Phillips² and TR Insel³

The computational proposal

Developing & validating computational assays (Translational Neuromodeling) and applying them to clinical problems (Computational Psychiatry).

Computational assays

Translational Neuromodeling & Computational Psychiatry

2 Application to individual patients

4 Individual prediction

Mechanistic differentiation

- disease mechanism A
- disease mechanism B
- disease mechanism C

Generative models and "computational assays"

measured brain activity y

generative model m

hidden neuronal parameters θ

Example: Dynamic causal models (DCMs)

Generative models and "computational assays"

observed symptoms or behaviour y

generative model m

hidden algorithmic parameters θ

Example: Hierarchical Gaussian Filter (HGF)

$$\Delta belief \propto \frac{precision_{input}}{precision_{pred}} \times PE$$

The basis of generative modeling: Bayes' rule

The Reverend Thomas Bayes (1702-1761)

"... the theorem expresses how a degree of belief, expressed as a probability, should rationally change to account for the availability of related evidence."

Wikipedia

Generative models as a concept for brain function: the "Bayesian brain" hypothesis

neuronal states

environm, states others' mental states bodily states

y = sensory data x =states of the world m = the brain's generative model

perception = inference = inversion of a generative model

The "Two Cultures of Computational Psychiatry"

- **explanation**: generative models
 - data-generating process is of central interest
 - goal: identify the mechanisms underlying observations (e.g. clinical symptoms, brain activity)
- prediction: machine learning (ML)
 - data-generating process is treated as a black box
 - goal: prediction of clinically relevant outcomes, e.g. treatment response, remission, relapse

The "Two Cultures of Computational Psychiatry" ... and Generative Embedding as their bridge

- explanation: generative models
 - data-generating process is of central interest
 - goal: identify the mechanisms underlying observations (e.g. clinical symptoms, brain activity)
- prediction: machine learning (ML)
 - data-generating process is treated as a black box
 - goal: prediction of clinically relevant outcomes, e.g. treatment response, remission, relapse
- generative embedding:
 - applies ML to estimated quantities from generative models

Generative embedding

Computational assays: key clinical questions

- detecting and differentiating disease mechanisms
- identifying mechanistically distinct subgroups
- **3 prediction** of clinical trajectories and treatment response

Stephan: Translational Neuromodeling & Computational Psychiatry, in prep.

• Detecting mechanisms: inferring synaptic processes

neuronal circuit model

observation model

$$y(t) = h(x(t)) + \epsilon$$

Images: Pereira et al. 2021, NeuroImage

NMDA receptor antibody encephalitis

29 patients with NMDAR-antibody encephalitis18 control patients (with inflammatory/metabolic encephalopathy)

Prediction: two-year outcome in depression

N=85 MDD patients from NESDA study (Schmaal et al. 2015, Biol. Psychiatry)

Three distinct trajectories:

chronic (CHR): n = 15 gradually improving (IMP): n = 31 remission (REM): n = 39

emotional faces > scrambled faces

DCM + BMA

Frässle et al. 2020, NeuroImage Clinical

Prediction: two-year outcome in depression

Prediction: two-year outcome in depression

9 Prediction: depressive symptoms within next 3 years

Prediction: depressive symptoms within next 3 years

rsfMRI data from UKB (N=906):

- N=453 with indication for ≥1 depressive episode
- N=453 w/o depressive episode
- 1:1 matching for 7 criteria (age, sex, comorbidities)
- 80/20 split into training and test sets

Prediction: depressive symptoms within next 3 years

Generative embedding (55 IC rDCM + sigmoid SVM): Predictive performance on **held-out test set**

Prediction: early detection of dementia

- 103 patients with dementia from UK Biobank
 - N=22 with a diagnosis of dementia at the time of the scan
 - N=81 who would later develop dementia
- generative embedding
 - spectral DCM of default mode network ("resting state" fMRI)
 - elastic net regularized logistic regression
 - nested cross-validation
- effective connectivity estimates predicted both future dementia diagnosis (AUC=0.82) and time to diagnosis (ρ=0.53)
- ... while other measures (functional connectivity, volumetric data from structural MRI, cognitive scores) did not

Prediction: early detection of dementia

- 11th international edition
- originated from our local courses on Computational Psychiatry since 2012
- in hybrid mode since 2022
- key features
 - clinical, methodological & application topics
 - covers models of both neurophysiology and behaviour
 - practical exercises with different open source toolboxes
 - >40 presenters from >20 international institutions
 - >250 registered participants

CPC 2025: thematic structure

Further reading: reviews on computational psychiatry

- Bennett D, Silverstein SM, Niv Y (2019) The Two Cultures of Computational Psychiatry. JAMA Psychiatry 76: 563-564.
- Frässle S, Yao Y, Schöbi D, Aponte EA, Heinzle J, Stephan KE (2018) Generative models for clinical applications in computational psychiatry. Wiley Interdisciplinary Reviews: Cognitive Science 9: e1460.
- Friston KJ, Stephan KE, Montague R, Dolan RJ (2014) Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry 1: 148-158.
- Huys Q, Maia T, Frank M (2016) Computational psychiatry as a bridge between neuroscience and clinical applications. Nat. Neurosci. 19: 404-413
- Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn. Sci. 16, 72–80.
- Petzschner FH, Weber LAE, Gard T, Stephan KE (2017) Computational Psychosomatics and Computational Psychiatry: Toward a joint framework for differential diagnosis. Biological Psychiatry 82: 421-430.
- Stephan KE, Mathys C (2014) Computational Approaches to Psychiatry. Current Opinion in Neurobiology 25:85-92.
- Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015) Translational Perspectives for Computational Neuroimaging. Neuron 87: 716-732.
- Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A (2017) Computational Neuroimaging Strategies for Single Patient Predictions. NeuroImage 145:180-199
- Wang XJ, Krystal JH (2014) Computational psychiatry. Neuron 84: 638-654.

Once again, a very warm welcome – we hope you will enjoy the CPC 2025!

http://www.translationalneuromodeling.org/cpcourse/