Music Emotion Classification

- LSTM i Transformer -

Julijana Jevtić Jelena Milošević

Matematički fakultet, Univerzitet u Beogradu

Septembar, 2025

Pregled

- Uvod
- 2 Modeli
 - Long Short-Term Memory (LSTM)
 - Transformer
- Rezultati primene modela
 - Loss and Accuracy
 - Metrički rezultati modela
 - F1 skor po klasama
 - Normalizovana matrica konfuzije
 - ROC krive po klasama
 - Precision-recall krive
- 4 Zaključak

Uvod

- Klasifikacija emocija iz muzičkih tekstova
- Cilj prepoznavanje emocija (sreća, tuga, ljubav, ljutnja)
- Primena u muzičkim preporukama i personalizaciji
- Zadatak podrazumeva analizu teksta i modelovanje sekvenci

Modeli

LSTM - Long Short-Term Memory

Sekvencijalni model za dugoročne zavisnosti.

Transformer

Model zasnovan na pažnji (attention), efikasniji u NLP zadacima.

Long Short-Term Memory (LSTM)

- Vrsta RNN-a koja rešava problem nestajanja gradijenata.
- Koristi memorijske ćelije i gate mehanizme (input, forget, output) za kontrolu informacija.
- Obrada sekvenci:
 - Zaboravljanje irelevantnih podataka.
 - 2 Dodavanje novih informacija.
 - Ažuriranje i prosleđivanje značajnih podataka.
- Primene: NLP (analiza, prevođenje, generisanje teksta), prepoznavanje govora, vremenske serije, biomedicina, računarska vizija, robotika, optimizacija resursa...
- Prednosti: stabilno učenje, dobar za dugoročne zavisnosti.
- Ograničenja: složeniji od RNN-a, osetljiv na inicijalizaciju.

Transformer

- Arhitektura zasnovana na mehanizmu pažnje (self-attention).
- Obrada celih sekvenci **paralelno**, za razliku od RNN-a.
- Ključne komponente:
 - Self-attention za hvatanje odnosa između svih reči.
 - Multi-head pažnja za učenje različitih tipova zavisnosti.
 - Pozicionalno kodiranje za očuvanje redosleda.
 - Feedforward mreže i rezidualne veze.
- **Primene:** mašinsko prevođenje, sažimanje teksta, generisanje teksta, odgovaranje na pitanja, obrada slika i govora.
- Prednosti: skalabilnost, hvatanje dugoročnih zavisnosti, osnova savremenih modela (BERT, GPT, T5...).
- Ograničenja: visoka složenost, velika potrošnja memorije i resursa.

Rezultati primene modela

• U ovom poglavlju prikazani su rezultati evaluacije LSTM modela nad test skupom podataka.

Tok funkcije gubitka i tačnosti tokom epoha

Slika: LSTM krive (gore) i Transformer krive (dole)

Metrički rezultati modela

Slika: LSTM metrike

Slika: Transformer metrike

F1 skor po klasama

Slika: LSTM F1 Score

Slika: Transformer F1 Score

Normalizovana matrica konfuzije

Slika: LSTM matrica

Slika: Transformer matrica

ROC krive po klasama

Slika: LSTM kriva

Slika: Transformer kriva

Precision-recall krive

Slika: LSTM kriva

Slika: Transformer kriva

Primeri predviđanja na osnovu teksta

Text snippet	True	Pred	Prob
"i told you that i loved you"	joy	love	0.798
"merry christmas have a very"	joy	joy	0.999
"this ending is all but an"	anger	sadness	0.727
"i catch a vibe when i am"	joy	joy	0.927
"so many memories and so"	joy	sadness	0.614

Tabela: Primeri predikcija LSTM modela za emocije u pesmama (skraćeni tekstovi).

Zaključak

- Poređenje LSTM i Transformer modela dalo je vrlo slične rezultate.
- Uprkos dominaciji Transformer arhitektura u savremenim NLP zadacima, LSTM modeli su i dalje relevantni i konkurentni modeli.