

પ્રકરણ 5 તત્ત્વોનું આવર્તી વર્ગીકરણ (Periodic Classification of Elements)

ધોરણ IXમાં આપણે શીખી ગયાં કે આપણી આસપાસની વસ્તુઓ તત્ત્વો, સંયોજનો અને મિશ્રણ રૂપે હાજર છે અને આ તત્ત્વો એક જ પ્રકારના પરમાણુઓ ધરાવે છે. શું તમે જાણો છો કે આજ દિન સુધી કેટલાં તત્ત્વો જાણીતાં થયાં છે ? હાલમાં 118 તત્ત્વો આપણા માટે જાણીતાં છે. આ તમામ તત્ત્વો જુદાં-જુદાં ગુણધર્મો ધરાવે છે. આ 118 પૈકી માત્ર 94 કુદરતી રીતે પ્રાપ્ય છે.

જેમ-જેમ જુદાં-જુદાં તત્ત્વોની શોધ થતી ગઈ તેમ-તેમ વૈજ્ઞાનિકોએ આ તત્ત્વોના ગુણધર્મો વિશે વધુ ને વધુ માહિતી એકત્ર કરી. તેઓને તત્ત્વોની આ માહિતીઓને વ્યવસ્થિત ગોઠવવી ઘણી મુશ્કેલ લાગી. તેમણે તેમના ગુણધર્મોમાં કોઈ ભાત (pattern) શોધવાનું શરૂ કર્યું કે જેના આધારે આટલી મોટી સંખ્યાનાં તત્ત્વોનો તેઓ સરળતાથી અભ્યાસ કરી શકે.

5.1 અવ્યવસ્થિતને વ્યવસ્થિત કરવું -તત્ત્વોના વર્ગીકરણના પ્રારંભિક પ્રયત્નો (Making Order Out of Chaos-Early Attempts at the Classification of Elements)

આપણે શીખી ગયાં છીએ કે જુદી-જુદી વસ્તુઓ અથવા સજીવોને તેમના ગુણધર્મીના આધારે વર્ગીકૃત કરી શકાય છે. અન્ય પરિસ્થિતિઓમાં પણ આપણને કેટલાક ગુણધર્મી પર આધારિત વ્યવસ્થાનાં ઉદાહરણો જોવા મળે છે. જેમકે દુકાનમાં સાબુને એક સાથે એક જ જગ્યાએ રાખવામાં આવે છે જ્યારે બિસ્કિટને એકસાથે અન્ય જગ્યા પર રાખવામાં આવે છે. સાબુમાં પણ નાહવાના સાબુઓને કપડાં ધોવાના સાબુઓથી અલગ રાખવામાં આવે છે. આ જ રીતે વૈજ્ઞાનિકોએ પણ તત્ત્વોને તેમના ગુણધર્મીના આધારે વર્ગીકૃત કરવા માટે ઘણા પ્રયત્નો કર્યા અને અવ્યવસ્થિતમાંથી વ્યવસ્થિત ક્રમિક ગોઠવણી મેળવી.

તત્ત્વોના વર્ગીકરણ માટેના સૌપ્રથમ પ્રયત્નના પરિણામ સ્વરૂપે જાણીતાં તત્ત્વોને ધાતુઓ અને અધાતુઓના જૂથમાં વહેંચવામાં આવ્યા. ત્યાર બાદ જેમ તત્ત્વો અને તેના ગુણધર્મો વિશે આપણું જ્ઞાન વધતું ગયું તેમ વધુ વર્ગીકરણ માટેના પ્રયત્નો થતા ગયા. 5.1.1 ડોબરેનરની ત્રિપુટી (Döbereiner's Triads)

1817 ના વર્ષમાં જર્મન રસાયણવિજ્ઞાની જહૉન વુલ્ફગેંગ ડોબરેનરે (Johann Wolfgang Döbereiner) સમાન ગુણધર્મો ધરાવતાં તત્ત્વોને જૂથમાં ગોઠવવાનો પ્રયાસ કર્યો. તેમણે ત્રણ તત્ત્વો ધરાવતાં કેટલાંક જૂથો ઓળખી બતાવ્યાં, તેથી તેમણે તે જૂથોને 'ત્રિપુટી' કહ્યા. ડોબરેનરે દર્શાવ્યું કે, ત્રિપુટીનાં ત્રણ તત્ત્વોને તેમના પરમાણ્વીય દળના ચડતા ક્રમમાં ગોઠવવામાં આવે ત્યારે

આકૃતિ 5.1

કલ્પના કરો કે તમને અને તમારા મિત્રોને ટુકડામાં વિભાજિત થયેલ એક નકશો મળે છે જે કોઈ ખજાનાની જગ્યા બતાવે છે. શું તે ખજાના સુધીનો રસ્તો જાણવો સહેલો હશે કે અવ્યવસ્થા ધરાવતો હશે? રસાયણવિજ્ઞાનમાં પણ આવી જ અવ્યવસ્થા હતી કે તત્ત્વો તો જાણીતાં હતાં પરંતુ તેમના વર્ગીકરણ અને અભ્યાસ કેવી રીતે કરવા તે અંગેનું કોઈ સૂચન ન હતું.

મધ્યમાં રહેલા તત્ત્વનું પરમાણ્વીય દળ અન્ય બે તત્ત્વોના પરમાણ્વીય દળના લગભગ સરેરાશ જેટલું થાય છે.

ઉદાહરણ તરીકે લિથિયમ (Li), સોડિયમ (Na) અને પોટેશિયમ (K) ધરાવતી ત્રિપુટી લો. જેના પરમાણ્વીય દળ ક્રમશ : 6.9, 23.0 અને 39.0 છે. Li અને Kના પરમાણ્વીય દળની સરેરાશ શું છે ? Naના પરમાણ્વીય દળ સાથે તેની તુલના કેવી રીતે કરી શકીએ ?

નીચે (કોષ્ટક 5.1) ત્રણ તત્ત્વોનાં કેટલાંક જૂથો આપેલ છે. આ તત્ત્વોને પરમાણ્વીય દળના ચડતા ક્રમમાં ઉપરથી નીચે તરફ ગોઠવવામાં આવ્યા છે. શું તમે શોધી શકો કે આ જૂથો પૈકી કયું ડોબરેનરની ત્રિપુટી બનાવે છે ?

કોષ્ટક 5.1

જૂથ A તત્ત્વ	પરમાણ્વીય દળ	थूथ B तπ्व	પરમાણ્વીય દળ	જૂથ C તત્ત્વ	પરમાણ્વીય દળ
N	14.0	Ca	40.1	Cl	35.5
P	31.0	Sr	87.6	Br	79.9
As	74.9	Ba	137.3	1	126.9

તમે શોધી શકશો કે સમૂહ B તથા C ડોબરેનરની ત્રિપુટી બનાવે છે. ડોબરેનર તે સમયે જાણીતાં તત્ત્વોમાં માત્ર ત્રણ જ ત્રિપુટીઓ જાણી શક્યા હતા (કોષ્ટક 5.2). તેથી ત્રિપુટીમાં વર્ગીકૃત કરવાની આ પદ્ધતિ સફળ ન રહી.

જ્હોન વુલ્ફગેંગ ડોબરેનર (1780-1849)

જહોન વુલ્ફગેંગ ડોબરેનરે જર્મનીના મ્યુન્શબર્ગમાં ઔષધીય વિજ્ઞાનનો અભ્યાસ કર્યો અને તે પછી સ્ટ્રેસબર્ગમાં રસાયણશાસ્ત્રનો અભ્યાસ કર્યો. આખરે તે જેના (Jena) વિશ્વવિદ્યાલયમાં રસાયણશાસ્ત્ર અને ઔષધીય વિજ્ઞાનના પ્રોફેસર બની ગયા. ડોબરેનરે જ સૌપ્રથમ પ્લેટિનમનું ઉદ્યીપક તરીકે અવલોકન કર્યું તથા તત્ત્વોની સામ્યતા ધરાવતી ત્રિપુટીની શોધ કરી. જેનાથી તત્ત્વોના આવર્ત કોષ્ટકનો વિકાસ થયો.

5.1.2 ન્યૂલૅન્ડનો અષ્ટકનો નિયમ (Newlands' Law of Octaves)

ડોબરેનરના પ્રયાસોએ બીજા રસાયણશાસ્ત્રીઓને તત્ત્વોના ગુણધર્મોના તેમના પરમાણ્વીય દળ સાથે સંબંધ સ્થાપવા માટે પ્રોત્સાહિત કર્યા. 1866 માં અંગ્રેજ વૈજ્ઞાનિક જહોન ન્યૂલૅન્ડે (John Newlands) જાણીતાં તત્ત્વોને પરમાણ્વીય દળના ચડતા ક્રમમાં ગોઠવ્યા. તેમણે સૌથી ઓછા પરમાણ્વીય દળ ધરાવતા તત્ત્વ (હાઇડ્રોજન)થી શરૂઆત કરી તથા 56મા તત્ત્વ થોરિયમ પર તેને પૂર્ણ કર્યું. તેમણે જોયું કે પ્રત્યેક આઠમા તત્ત્વના ગુણધર્મ પ્રથમ તત્ત્વના ગુણધર્મને મળતા આવે છે. તે જાણી તેની તુલના સંગીતના સૂરો સાથે કરી અને તેથી જ તેમણે તેને 'અષ્ટકનો સિદ્ધાંત' કહ્યો. તે 'ન્યૂલૅન્ડના અષ્ટકનો નિયમ' તરીકે જાણીતો છે. ન્યૂલૅન્ડના અષ્ટકમાં લિથિયમ અને સોડિયમના ગુણધર્મો સમાન હતા. સોડિયમ, લિથિયમ પછીનું આઠમું તત્ત્વ છે. આ જ રીતે બેરિલિયમ અને મૅગ્નેશિયમ એકબીજાને મળતા આવે છે. ન્યૂલૅન્ડના અષ્ટકના મૂળ સ્વરૂપનો એક ભાગ કોષ્ટક 5.3 માં આપેલ છે.

કોષ્ટક 5.2 ડોબરેનરની ત્રિપુટીઓ

Li	Ca	Cl
Na	Sr	Br
K	Ba	I

સંગીતના સૂર :

3

	સા	રે	ગ	મ	ų	ધ	નિ
	(y)	(ફે)	(મિ)	(ફા)	(સો)	(લા)	(ડી)
Ì	Н	Li	Ве	В	C	N	О
	F	Na	Mg	Al	Si	P	S
	Cl	K	Ca	Cr	Ti	Mn	Fe
	Co તથા Ni	Cu	Zn	Y	In	As	Se
	Br	Rb	Sr	Ce તથા La	Zr		_

֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏֏

શું તમે સંગીતના સૂરોથી પરિચિત છો ?

ભારતીય સંગીત પ્રણાલીમાં સંગીતના સાત સૂર હોય છે — સા, રે, ગ, મ, પ, ધ, નિ. પશ્ચિમમાં લોકો આ સૂરોના આ પ્રકારે ઉપયોગ કરે છે. — ડો, રે, મિ, ફ્રા, સો, લા, ટિ. સૂરના માપક્રમ, પૂર્ણ અને અર્ધ પદ આવૃત્તિ વિરામથી અલગ કરેલ છે. આ સૂરોનો ઉપયોગ કરી કોઈ સંગીતકાર સંગીતની રચના કરે છે. તે સ્પષ્ટ છે કે સૂર વારંવાર પુનરાવર્તિત કરાય છે. પ્રત્યેક આઠમો સૂર પ્રથમ સૂર જેવો હોય છે તથા તે પછીની પંક્તિનો પ્રથમ સૂર હોય છે.

- એવું શોધાયું છે કે અષ્ટકનો સિદ્ધાંત માત્ર કૅલ્શિયમ સુધી જ લાગુ પડતો હતો કારણ કે કૅલ્શિયમ
 પછી પ્રત્યેક આઠમા તત્ત્વના ગુણધર્મ પહેલા તત્ત્વને મળતા આવતા નથી.
- ન્યૂલૅન્ડે કલ્પના કરી કે કુદરતમાં માત્ર 56 તત્ત્વો હાજર છે અને ભવિષ્યમાં કોઈ અન્ય તત્ત્વ શોધાશે નહિ. પરંતુ ત્યાર બાદ અનેક નવાં તત્ત્વો શોધાયાં જેના ગુણધર્મો અષ્ટકના સિદ્ધાંતમાં બંધબેસતા નથી.
- પોતાના કોષ્ટકમાં તત્ત્વોને બંધ બેસાડવા માટે ન્યૂલૅન્ડે બે તત્ત્વોને એક જૂથમાં (slot) રાખી દીધા પરંતુ કેટલાંક અસમાન તત્ત્વોને પણ એક જૂથમાં રાખ્યા. શું તમે કોષ્ટક 5.3માં આવાં ઉદાહરણ શોધી શકો છો ? ધ્યાન આપો કે કોબાલ્ટ અને નિકલ એક જ જૂથમાં છે અને એક સાથે જ ફ્લોરિન, ક્લોરિન અને બ્રોમિન સાથે હરોળમાં રાખવામાં આવ્યા છે જેમના ગુણધર્મો આ તત્ત્વો કરતાં જુદાં છે. આયર્ન કે જે કોબાલ્ટ અને નિકલ સાથે ગુણધર્મોમાં સમાનતા ધરાવે છે તેને આ તત્ત્વોથી દૂર રાખવામાં આવ્યું છે.

આમ, ન્યૂલૅન્ડના અષ્ટકનો સિદ્ધાંત માત્ર હલકાં તત્ત્વો માટે જ યોગ્ય ઠર્યો.

પ્રશ્નો

- 1. શું ડોબરેનરની ત્રિપુટી ન્યૂલૅન્ડના અષ્ટકના સમૂહમાં પણ જોવા મળે છે ? સરખામણી કરી શોધી કાઢો.
- 2. ડોબરેનરના વર્ગીકરણની મર્યાદાઓ શું છે ?
- 3. ન્યૂલૅન્ડના અષ્ટકના સિદ્ધાંતની મર્યાદાઓ શું છે ?

5.2 અવ્યવસ્થિતમાંથી વ્યવસ્થિત કરવું – મેન્ડેલીફનું આવર્ત કોષ્ટક (Making Order Out of Chaos - Mendelee'v's Periodic Table)

ન્યૂલૅન્ડના અષ્ટકનો સિદ્ધાંત અસ્વીકાર્ય થયા બાદ પણ અનેક વૈજ્ઞાનિકોએ તત્ત્વોના ગુણધર્મીનો તેમના પરમાણ્વીય દળ સાથેના સંબંધની ભાત (pattern) શોધવાનું ચાલુ રાખ્યું.

તેમના પરમાણ્વીય દળ સાથેના સંબંધન

તત્ત્વોનું આવર્તી વર્ગીકરણ

81

તત્ત્વોના વર્ગીકરણનો મુખ્ય શ્રેય રશિયન રસાયણશાસ્ત્રી દમિત્રી ઈવાનોવિચ મેન્ડેલીફને (Dmitri Ivanovich Mendele'ev) ફાળે જાય છે. તત્ત્વોના આવર્તકોષ્ટકના પ્રારંભિક વિકાસમાં તેમનું યોગદાન મુખ્ય રહ્યું, કે જેમાં તત્ત્વોને તેમના મૂળભૂત ગુણધર્મી, પરમાણ્વીય દળ અને રાસાયણિક ગુણધર્મીમાં સામ્યતાના આધારે ગોઠવવામાં આવ્યા હતા.

દમિત્રી ઈવાનોવિચ મેન્ડેલીફ (1834-1907)

મેન્ડેલીફનો જન્મ 8 ફેબ્રુઆરી, 1834માં રશિયાના પશ્ચિમી સાઇબિરિયાના ટોબોલ્સ્કમાં થયો હતો. તેમની પ્રાથમિક શિક્ષા પછી મેન્ડેલીફ પોતાની માતાના પ્રયાસોને કારણે વિશ્વવિદ્યાલયમાં પ્રવેશ મેળવી શક્યા. પોતાની શોધને તેમણે પોતાની માતાને સમર્પિત કરતાં લખ્યું, ''તેણીએ મને ઉદાહરણ આપી સમજાવ્યું, પ્રેમથી સમજાવ્યું, પોતાનાં બાકી કાર્ય અને શક્તિનો ઉપયોગ

કરીને મારી સાથે જુદી-જુદી જગ્યાઓએ પ્રવાસ કર્યો. તેણી જાણતી હતી કે વિજ્ઞાનની મદદથી, હિંસા વગર પરંતુ પ્રેમ અને દઢતાથી અંધવિશ્વાસ, અસત્ય ધારણાઓ અને ભૂલોને દૂર કરી શકાય છે." તેમના દ્વારા આપેલ તત્ત્વોની ગોઠવણીને મેન્ડેલીફનું આવર્તકોષ્ટક કહે છે. આવર્તકોષ્ટક રસાયણશાસ્ત્રમાં એક જ એવો નિયમ સાબિત થયો કે, જેનાથી નવાં તત્ત્વોની શોધને પ્રેરણા મળી.

જયારે મેન્ડેલીફે પોતાનાં કાર્યની શરૂઆત કરી ત્યારે 63 તત્ત્વો જાણીતાં હતાં. તેમણે તત્ત્વોના પરમાણ્વીય દળ અને તેમના ભૌતિક તેમજ રાસાયણિક ગુણધર્મો વચ્ચેના સંબંધો તપાસ્યા. રાસાયણિક ગુણધર્મોની વચ્ચે મેન્ડેલીફે તત્ત્વોના ઑક્સિજન અને હાઇડ્રોજન સાથે બનતાં સંયોજનો પર ધ્યાન કેન્દ્રિત કર્યું. તેમણે ઑક્સિજન અને હાઇડ્રોજનને પસંદ કર્યા કેમ કે તે અતિસક્રિય છે તથા મોટા ભાગનાં તત્ત્વો સાથે સંયોજનો બનાવે છે. તત્ત્વો દ્વારા બનતા હાઇડ્રાઇડ અને ઑક્સાઇડનાં સૂત્રોને તત્ત્વના વર્ગીકરણ માટેના મૂળભૂત ગુણધર્મો પૈકીના એક ગુણધર્મ તરીકે ગણવામાં આવ્યો. ત્યાર બાદ તેમણે 63 કાર્ડ લીધા અને પ્રત્યેક કાર્ડ પર એક તત્ત્વના ગુણધર્મો લખ્યા. તેમણે સમાન ગુણધર્મો ધરાવતાં તત્ત્વોને અલગ કર્યાં અને તે કાર્ડ પર ટાંકણી લગાવીને દીવાલ પર એકસાથે લગાવ્યા. તેમણે અવલોકન કર્યું કે મોટા ભાગનાં તત્ત્વોને આવર્તકોષ્ટકમાં સ્થાન મળી ગયું હતું તથા પોતાના પરમાણવીય દળના ચડતા ક્રમમાં તે તત્ત્વો ગોઠવાઈ ગયાં હતાં. તે પણ અવલોકન કરવામાં આવ્યું કે સમાન ભૌતિક અને રાસાયણિક ગુણધર્મો ધરાવતાં જુદાં-જુદાં તત્ત્વો એક નિશ્ચિત વિરામ પછી ફરીથી આવે છે તેને આધારે મેન્ડેલીફે આવર્ત નિયમ બનાવ્યો. જે દર્શાવે છે કે 'તત્ત્વોના ગુણધર્મો તેના પરમાણવીય દળના આવર્તનીય વિધેય છે.'

મેન્ડેલીફનાં આવર્તકોષ્ટકમાં ઊભા સ્તંભ કે જેને 'સમૂહ' તથા આડી હરોળ કે જેને 'આવર્ત' કહે છે તેનો સમાવેશ થયેલ છે (કોષ્ટક 5.4).

કોષ્ટક 5.4 મેન્ડેલીફનું આવર્તકોષ્ટક

સમૂહ	1	П	ш	rv	V	VI	VII	VIII	
ઑક્સાઇડ હાઇડ્રાઇડ						R_2O_5 RO_3 RH_3 RH_2		RO ₄	
આવર્ત ↓	A B	A B	A B	A B A B		A B	A B	સંક્રાંતિ શ્રેણી	
1	H 1.008								
2	Li 6.939		B 10.81						
3	Na 22.99	Mg 24.31	Al 29.98	Si 28.09	P 30.974	S 32.06	Cl 35.453		
શ્રેણી : દ્વિતીય	39.102 Cu	40.08 Zn	Sc 44.96 Ga 69.72	47.90 Ge	50.94 As	50.20 Se	54.94 Br	Fe Co Ni 55.85 58.93 58.71	
િ ની ય	Art	Cd	88.91 In 114.82	Sn	Sh	Te	T	Ru Rh Pd 101.07 102.91 106.4	
6 પ્રથમ શ્રેણી : દિતીય	Cs 132.90 Au	Ba 137.34 Hg	La 138.91 Tl 204.37	Hf 178.49 Pb	Ta 180.95	W		Os Ir Pt 190.2 192.2 195.09	

મેન્ડેલીફનું આવર્તકોષ્ટક 1872 માં જર્મન સામયિક (Journal)માં પ્રકાશિત થયું હતું. સમૂહની ઉપર ઑક્સાઇડ તથા હાઇડ્રાઇડના સૂત્રમાં અંગ્રેજી અક્ષર 'R' સમૂહના કોઈ પણ તત્ત્વને દર્શાવે છે. સૂત્ર લખવાની ઢબ પર ધ્યાન આપો. ઉદાહરણ તરીકે કાર્બનના હાઇડ્રાઇડ, $\mathrm{CH_4}$ ને $\mathrm{RH_4}$ તરીકે તથા તેના ઑક્સાઇડ $\mathrm{CO_2}$ ને $\mathrm{RO_2}$ તરીકે લખવામાં આવેલું છે.

5.2.1 મેન્ડેલીફના આવર્તકોષ્ટકની ઉપલબ્ધિઓ (Achievements of Mendeleev's Periodic Table)

આવર્તકોષ્ટક ગોઠવતી વખતે કેટલાક એવા દાખલા બન્યા કે જ્યાં થોડા વધુ પરમાણ્વીય દળ ધરાવતા તત્ત્વને થોડા ઓછા પરમાણ્વીય દળ ધરાવતા તત્ત્વ કરતાં પહેલા મૂકવું પડ્યું. ક્રમ ઊલટો કરવામાં આવેલો કે જેથી સમાન ગુણધર્મો ધરાવતાં તત્ત્વો એકસાથે ગોઠવી શકાયાં. ઉદાહરણ તરીકે કોષ્ટકમાં કોબાલ્ટ (પરમાણ્વીય દળ 58.9) નિકલ (પરમાણ્વીય દળ 58.7) કરતાં પહેલાં દેખાયું. કોષ્ટક 5.4 જોઈને શું તમે આવી અન્ય એક વિસંગતતા શોધી શકો ?

વધુમાં, મેન્ડેલીફને પોતાના આવર્તકોષ્ટકમાં કેટલાંક સ્થાન ખાલી છોડવા પડ્યાં. આ ખાલી સ્થાનને મર્યાદાના રૂપમાં જોવાના બદલે મેન્ડેલીફે નીડરતાપૂર્વક કોઈ એવાં તત્ત્વોના અસ્તિત્વની આગાહી કરી જે-તે સમયે શોધાયા ન હતાં. મેન્ડેલીફે તેમનું નામકરણ તે જ સમૂહના તેનાથી પહેલાં આવતા તત્ત્વના નામમાં સંસ્કૃત શબ્દ એકા (એક) પૂર્વગ લગાવીને કર્યું. ઉદાહરણ તરીકે, પછી શોધાયેલ સ્કેન્ડિયમ, ગેલિયમ અને જર્મેનિયમના ગુણધર્મો ક્રમશઃ એકા-બોરોન, એકા-ઍલ્યુમિનિયમ

તત્ત્વોનું આવર્તી વર્ગીકરણ

અને એકા-સિલિકોન જેવા જ હતા. મેન્ડેલીફ દ્વારા આગાહી કરાયેલ એકા- ઍલ્યુમિનિયમ તથા પછીથી શોધાયેલ અને એકા-ઍલ્યુમિનિયમનું સ્થાન મેળવેલ ગેલિયમના ગુણધર્મો નીચે (કોષ્ટક 5.5)માં દર્શાવેલ છે.

કોષ્ટક 5.5 એકા-ઍલ્યુમિનિયમ તથા ગેલિયમના ગુણધર્મો

ગુજ્ઞધર્મ	એકા-ઍલ્યુમિનિયમ	ગેલિયમ
પરમાણ્વીય દળ	68	69.7
ઑક્સાઇડનું સૂત્ર	E_2O_3	Ga ₂ O ₃
ક્લોરાઇડનું સૂત્ર	ECl ₃	GaCl ₃

તે મેન્ડેલીફના આવર્તકોષ્ટકની સત્યતા તથા ઉપયોગિતાનો સબળ પુરાવો પૂરો પાડે છે. તેનાથી વિશેષ મેન્ડેલીફની અભિધારણાની અસાધારણ સફળતા એ હતી કે, રસાયણશાસ્ત્રીઓએ તેમના આવર્તકોષ્ટકનો માત્ર સ્વીકાર જ ન કર્યો પરંતુ તે ખ્યાલ કે જેના પર તે ધારણા આધારિત હતી તેના તેમને સર્જનહાર માન્યા. નિષ્ક્રિય વાયુઓ જેવા કે હિલિયમ (He), નિયૉન (Ne) અને આર્ગોનનો (Ar) અગાઉ પણ અનેક સંદર્ભમાં ઉપયોગ થતો હતો. આ વાયુઓની શોધ ઘણી મોડી થઈ કારણ કે તે નિષ્ક્રિય હતા અને વાતાવરણમાં તેમનું પ્રમાણ ઘણું ઓછું છે. મેન્ડેલીફના આવર્તકોષ્ટકની એક વિશેષતા એ પણ છે કે જયારે આ વાયુઓની શોધ થઈ ત્યારે અગાઉની શ્રેણી (વ્યવસ્થા) ગોઠવણી ને ખલેલ પહોંચાડ્યા વગર તેને નવા સમૃહમાં રાખવામાં આવ્યા.

5.2.2 મેન્ડેલીકના વર્ગીકરણની મર્યાદાઓ

(Limitations of Mendeleev's Classification)

હાઇડ્રોજનની ઇલેક્ટ્રૉનીય રચના આલ્કલી ધાતુઓને મળતી આવે છે. આલ્કલી ધાતુઓની માફક હાઇડ્રોજન પણ હેલોજન, ઑક્સિજન અને સલ્ફર સાથે એક સમાન સૂત્ર ધરાવતાં સંયોજનો બનાવે છે કે જે અહીં ઉદાહરણમાં દર્શાવેલા છે.

બીજી તરફ હેલોજનની માફક હાઇડોજન

હાઈડ્રોજનના સંયોજનો	સોડિયમના સંયોજનો
HCl	NaCl
H ₂ O	Na ₂ O
H ₂ S	Na ₂ S

પણ દ્વિપરમાણ્વીય અણુ સ્વરૂપે અસ્તિત્વ ધરાવે છે તેમજ તે ધાતુઓ અને અધાતુઓ સાથે સંયોજાઈને સહસંયોજક સંયોજનો બનાવે છે.

प्रवृत्ति 5.1

- હાઇડ્રોજનની આલ્કલી ધાતુઓ અને હેલોજન પરિવાર સાથેની સમાનતાને જોતાં તેને મેન્ડેલીફના આવર્તકોષ્ટકમાં યોગ્ય સ્થાન પર મૂકો.
- હાઇડ્રોજનને કયા સમૂહ અને આવર્તમાં રાખવું જોઈએ ?

ચોક્કસપણે આવર્તકોષ્ટકમાં હાઇડ્રોજનને નિશ્ચિત સ્થાન આપી શકાય નહિ. આ મેન્ડેલીફના આવર્તકોષ્ટકની પ્રથમ મર્યાદા હતી. તે પોતાના આવર્ત કોષ્ટકમાં હાઇડ્રોજનને યોગ્ય સ્થાન આપી ન શક્યા.

મેન્ડેલીફે તત્ત્વોના આવર્તી વર્ગીકરણ આપ્યા બાદ લાંબા સમય પછી સમસ્થાનિકો શોધાયા. ચાલો આપણે યાદ કરીએ, કોઈ પણ તત્ત્વના સમસ્થાનિકોના રાસાયણિક ગુણધર્મો સમાન હોય છે પરંતુ તેના પરમાણ્વીય દળ જુદા હોય છે.

प्रवृत्ति 5.2

- ક્લોરિનના સમસ્થાનિકો Cl-35 અને Cl-37 ધ્યાનમાં લો.
- તેમના પરમાણ્વીય દળ જુદા-જુદા હોવાથી શું તમે તેઓને અલગ-અલગ જૂથમાં મૂકશો ?
- અથવા તેમના રાસાયણિક ગુણધર્મો સમાન હોવાથી તમે તેમને એક જ સ્થાન પર રાખશો ?

આમ બધાં તત્ત્વોના સમસ્થાનિકો મેન્ડેલીફના આવર્ત નિયમ માટે એક પડકાર હતો. બીજી સમસ્યા એ પણ હતી કે, એક તત્ત્વથી બીજા તત્ત્વ તરફ આગળ વધતાં પરમાણ્વીય દળ નિયમિત રૂપથી વધતા ન હતા. આથી જ તે અનુમાન લગાવવું મુશ્કેલ થઈ ગયું હતું કે બે તત્ત્વો વચ્ચે કેટલાં તત્ત્વો શોધી શકાય છે. વિશેષ રૂપે જયારે આપણે ભારે તત્ત્વોનો વિચાર કરીએ છીએ ત્યારે.

પ્રશ્નો

- મેન્ડેલીફના આવર્તકોષ્ટકનો ઉપયોગ કરી નીચેનાં તત્ત્વોના ઑક્સાઇડનાં સૂત્રોનું અનુમાન લગાવો : K, C, Al, Si, Ba
- 2. ગેલિયમ સિવાય અત્યાર સુધી કયાં-કયાં તત્ત્વો વિશે જાણ થઈ છે જેના માટે મેન્ડેલીફે પોતાના આવર્તકોષ્ટકમાં ખાલી સ્થાન છોડ્યું હતું ? (ગમે તે બે)
- 3. મેન્ડેલીફે પોતાનું આવર્તકોષ્ટક તૈયાર કરવા માટે કયાં માપદંડ (criteria) ધ્યાનમાં લીધાં ?
- 4. તમારા મત મુજબ નિષ્ક્રિય વાયુને શા માટે અલગ સમૂહમાં રાખવામાં આવ્યા ?

1913માં હેન્ની મોસેલે (Henry Moseley) દર્શાવ્યું કે, નીચે વર્શવ્યા પ્રમાણે તત્ત્વના પરમાણ્વીય દળની તુલનામાં તેનો પરમાણ્વીય-ક્રમાંક (Z સંકેત દ્વારા દર્શાવાય છે.) વધુ આધારભૂત ગુણધર્મ છે. તે અનુસાર મેન્ડેલીફના આવર્તકોષ્ટકમાં બદલાવ કરવામાં આવ્યો અને પરમાણ્વીય-ક્રમાંકને આધુનિક આવર્તકોષ્ટકના આધાર સ્વરૂપે સ્વીકારવામાં આવ્યો તેમજ આધુનિક આવર્ત નિયમને આ પ્રમાણે રજૂ કરી શકાય :

ચાલો આપણે યાદ કરીએ કે પરમાણવીય-ક્રમાંક આપણને પરમાણુના કેન્દ્રમાં રહેલા પ્રોટોનની સંખ્યા આપે છે અને એક તત્ત્વથી બીજા તત્ત્વ તરફ જતા આ સંખ્યામાં એક એકમનો વધારો થાય છે. તત્ત્વોની તેમના પરમાણવીય-ક્રમાંકના ચડતા ક્રમમાં ગોઠવણી આપણને આધુનિક આર્વતકોષ્ટક તરીકે ઓળખાતા વર્ગીકરણ તરફ દોરી જાય છે (કોષ્ટક 5.6). જ્યારે તત્ત્વોને પરમાણવીય-ક્રમાંકના ચડતા ક્રમમાં ગોઠવી શકાયા ત્યારે તત્ત્વોના ગુણધર્મોની આગાહી વધુ ચોકસાઈપૂર્વક થઈ શકી.

प्रवृत्ति **5.3**

- 🔳 આધુનિક આવર્તકોષ્ટકમાં નિકલ અને કોબાલ્ટનાં સ્થાન કેવી રીતે નિશ્ચિત કરવામાં આવ્યાં છે ?
- આધુનિક આવર્તકોષ્ટકમાં જુદાં-જુદાં તત્ત્વોના સમસ્થાનિકોનાં સ્થાન કેવી રીતે નિશ્ચિત કરવામાં આવ્યાં છે ?
- શું 1.5 પરમાણ્વીય-ક્રમાંક ધરાવતા તત્ત્વને હાઇડ્રોજન અને હિલિયમની વચ્ચે રાખવું શક્ય છે ?
- તમારા મત મુજબ આધુનિક આવર્તકોષ્ટકમાં હાઇડ્રોજનને કયાં રાખવું જોઈએ ?

તત્ત્વોનું આવર્તી વર્ગીકરણ

વાંકીચૂંકી રેખા પાતુઓને અધાતુઓથી અલગ કરે છે કોષ્ટક 5.6 આધુનિક આવર્તકોષ્ટક અર્ધધાતુઓ

18	0	Maun 4.0	0	Ser.	00	Ar Selicity 1908	9	4	F(S)4	4	o at	9	Fast	000	О g ынчы (294)
_	17		1	ACR	_	₹ ₹	3	X	· 36	Ś	K is 5	00	MAG	1000	
		17	6	F sealig-	17	D#3	35	Ŗ	79.9	53	अस्तित-	85	At At Callon	117	Ts हेनेसाईन (294)
	સ્ક	91	8	O Missert 16.0	91	S sucks	34	Se	29.0 79.0	52	Te Septem	84	Po uleilian (210)	911	Lv (Razulížun (293)
	સમૃહ ક	15	7	N Tubalwa 14.0	15	P sheets	33	As	24.9	51	Sp	83	Bi Glant 209.0	1115	Мс нोस्डीविधम (290)
		14	9	120 HZ	14	Si Rabid	32	Ge	226 72.6	50	Sa	82	P. P.	114	F1 ##शिविषम (289)
		13	5	Bigh Selection	13	Al अस्युविनिधम	31	Ga	3[Get]	46	H-Gland	81	TI Maux 2044	113	N h Резігчн (286)
					1	12		Zn	65.4	48	PO Steen	80	H G	112	Cn stratstaun (285)
						11	29	₫.	60.5	47	Ag Beet	79	Au altes 197.0	111	Rg thers Hun (282)
						10	28	Z	58.7	46	Pd	78	Pt Maria	110	Ds з422/8104 (281)
						6	27	රී	58.9	45	42 mg/m	77	Ir Seldun 197.2	109	Mt це-Кечн (278)
				મક		8	26	Fe	3444 55.9	44	Ru Selen	9/	OS Militara 1902	108	HS stilaun (277)
				सम्ब	6	7	25	Mn	43/43	43	Tc	75	Residence Services	107	Вh мајвин (270)
						9	24	Ö	52.0	42	Mo	74	W solved	106	Sg (Red)[6]44 (269)
						2	23	>	4-134H 50.9	41	Sellen Fellen	73	Ta	105	Db 30/Pun (268)
						4	22	H	(22)F444	40	Zr	72	Hf dasflun 178.5	104	Rf 2423(324 (227)
					+	3	21	Sc	45,0	39	≻	57	La .	68	Ac**
		2	4	Ве Мявич 9.0	12	Mg the lighter	20	చ్చ	40.1	38	Sr.	56	Ba Men U73	88	Ser Ser
समूद क्रम	1 H	હાઇડ્રોજન 1.0	3	Li Albun 6.9	11	Na alibun 23.0	19	X	39.1	37	Sellen Sellen	55	CS allbun	87	Fr Mann
יא	3 2 2							ы 4			2		9	18	7

17	La cardinara estrinara	103	नुस्य
70	YP define	102	No. application of the control of th
69	Tm gleun salen	101	PW
89	Heller Strain	100	H
19	Ho	66	ES subsection
99	Devilleum	86	Page Hand
65	The sast	16	Bk
29	PS Paragraph	96	5
63	Eu gelffun isz.e	95	American (MC)
62	Sm anteun	94	P. S.
19	Pm xiltifique (145)	93	N deal Application
09	PN PN THI	92	
59	Pr Gradistara Hass	91	Pa Militarium (251)
58	Ser Head	06	

*લેન્થેનોઇડ્સ **ઍક્ટિનોઇડ્સ

86

આપણે જોઈ શકીએ છીએ તેમ આધુનિક આવર્તકોષ્ટકમાં મેન્ડેલીફની ત્રણેય મર્યાદાઓમાં સુધારો કરવામાં આવ્યો છે. આધુનિક આવર્તકોષ્ટકમાં તત્ત્વોનું સ્થાન કઈ બાબત પર આધારિત છે તે જાણ્યા બાદ આપણે હાઇડ્રોજનના વિસંગત સ્થાનની ચર્ચા કરીશું.

5.3.1 આધુનિક આવર્તકોષ્ટકમાં તત્ત્વોનું સ્થાન

(Position of Elements in the Modern Periodic Table)

આધુનિક આવર્તકોષ્ટકમાં 18 ઊભા સ્તંભ કે જેને 'સમૂહ' કહેવાય છે અને 7 આડી હરોળ કે જેને 'આવર્ત' કહેવાય છે તેનો સમાવેશ થાય છે. ચાલો, આપણે જોઈએ કે કોઈ સમૂહ અથવા આવર્તમાં કોઈ તત્ત્વનું સ્થાન કેવી રીતે નક્કી કરવામાં આવે છે ?

प्रवृत्ति 5.4

- આધુનિક આવર્તકોષ્ટકમાં સમૂહ 1 જુઓ અને તેમાં રહેલાં તત્ત્વોનાં નામ આપો.
- સમૂહ 1 નાં પ્રથમ ત્રણ તત્ત્વોની ઇલેક્ટ્રૉનીય રચના લખો.
- 🍙 તેમની ઇલેક્ટ્રૉનીય રચનામાં તમને શું સમાનતા જોવા મળે છે ?
- આ ત્રણ તત્ત્વોમાં કેટલા સંયોજકતા ઇલેક્ટ્રૉન હાજર છે ?

તમે જોશો કે આ તમામ તત્ત્વો સંયોજકતા ઇલેક્ટ્રૉનની સમાન સંખ્યા ધરાવે છે. તેવી જ રીતે તમે જોશો કે કોઈ એક જ સમૂહમાં રહેલાં તત્ત્વોના સંયોજકતા ઇલેક્ટ્રૉનની સંખ્યા સમાન હોય છે. ઉદાહરણ તરીકે, ફ્લોરિન (F) તથા ક્લોરિન (CI) કે જે સમૂહ 17 નાં તત્ત્વો છે. ફ્લોરિન અને ક્લોરિનની બાહ્યતમ કક્ષામાં કેટલા ઇલેક્ટ્રૉન છે ? તેથી આપણે કહી શકીએ કે આધુનિક આવર્તકોષ્ટકમાં રહેલા સમૂહ બાહ્યતમ કક્ષાની સમાન ઇલેક્ટ્રૉનીય રચના દર્શાવે છે જયારે બીજી તરફ જો આપણે સમૂહમાં ઉપરથી નીચેની તરફ જઈએ તો કક્ષાની સંખ્યા વધતી જાય છે.

જયારે હાઇડ્રોજનના સ્થાનની વાત આવે ત્યારે અનિશ્ચિતતા ઉદ્ભવે છે કારણ કે તેને પ્રથમ આવર્તમાં સમૂહ 1 અથવા સમૂહ 17 માં રાખી શકાય છે. શું તમે કહી શકો. શા માટે ?

प्रवृत्ति 5.5

- જો તમે આધુનિક આવર્તકોષ્ટકને (કોષ્ટક 5.6) જોશો તો ખ્યાલ આવશે કે Li, Be, B, C, N, O, F અને Ne બીજા આવર્તનાં તત્ત્વો છે. તેમની ઇલેક્ટ્રૉનીય રચના લખો.
- શું આ બધાં તત્ત્વો પણ સમાન સંખ્યાના સંયોજકતા ઇલેક્ટ્રૉન ધરાવે છે ?
- શું તેઓ સમાન સંખ્યાની કક્ષાઓ ધરાવે છે ?

તમે જોશો કે બીજા આવર્તના આ તત્ત્વો સમાન સંખ્યામાં સંયોજકતા ઇલેક્ટ્રૉન ધરાવતા નથી. પરંતુ તેઓ સમાન સંખ્યામાં કક્ષાઓ ધરાવે છે. તમે તે પણ અવલોકન કરો છો કે, આવર્તમાં ડાબીથી જમણી તરફ જતાં જો પરમાણ્વીય-ક્રમાંકમાં એક એકમનો વધારો થાય તો સંયોજકતા કક્ષાના ઇલેક્ટ્રૉનમાં પણ એક એકમનો વધારો થાય છે.

અથવા આપણે કહી શકીએ કે સમાન સંખ્યામાં ભરાયેલી કક્ષાઓ ધરાવતાં જુદાં-જુદાં તત્ત્વોના પરમાણુઓ એક જ આવર્તમાં મૂકવામાં આવેલા છે. Na, Mg, Al, Si, P, S, Cl અને Ar આધુનિક આવર્તકોષ્ટકના ત્રીજા આવર્તમાં રહેલા છે તેથી આ તત્ત્વોના પરમાણુઓના ઇલેક્ટ્રૉન K, L અને M કક્ષાઓમાં (કોશ) ભરાયેલા છે. આ તત્ત્વોની ઇલેક્ટ્રૉનીય રચના લખો અને ઉપર્યુક્ત વિધાનની ચકાસણી કરો. દરેક આવર્ત નવી ભરાયેલી ઇલેક્ટ્રૉન કક્ષા દર્શાવે છે.

તત્ત્વોનું આવર્તી વર્ગીકરણ

પહેલા, બીજા, ત્રીજા અને ચોથા આવર્તમાં કેટલાં તત્ત્વો છે ?

જુદી-જુદી કક્ષાઓમાં ઇલેક્ટ્રૉન કેવી રીતે ભરાય છે તેના આધારે આપણે આ આવર્તમાં તત્ત્વોની સંખ્યા સમજાવી શકીએ છીએ. ઉપલાં ધોરણોમાં તમે આ વિશે વિસ્તૃત અભ્યાસ કરશો. યાદ કરો કે કોઈ કક્ષામાં ઇલેક્ટ્રૉનની મહત્તમ સંખ્યા $2n^2$ સૂત્ર પર આધાર રાખે છે જ્યાં, n એ કેન્દ્રથી દૂર આપેલ કક્ષાનો ક્રમ છે.

ઉદાહરણ તરીકે

K sau
$$-2 \times (1)^2 = 2$$
,

L sau
$$-2 \times (2)^2 = 8$$
,

પ્રથમ આવર્તમાં 2, બીજા આવર્તમાં 8 અને ત્રીજા, ચોથા, પાંચમા, છકા અને સાતમા આવર્તમાં અનુક્રમે 8, 18, 18, 32 અને 32 તત્ત્વો છે. આ માટેનું કારણ તમે ઉપલાં ધોરણોમાં શીખશો.

આવર્તકોષ્ટકમાં તત્ત્વનું સ્થાન તેની રાસાયિક પ્રતિક્રિયાત્મકતા વિશે માહિતી આપે છે. તમે શીખી ગયાં છો તે મુજબ સંયોજકતા ઇલેક્ટ્રૉન તત્ત્વ દ્વારા બનતા બંધના પ્રકાર અને સંખ્યા નક્કી કરે છે. શું હવે તમે કહી શકો કે મેન્ડેલીફે પોતાના કોષ્ટકમાં તત્ત્વોના સ્થાન નક્કી કરવા માટે સંયોજનોનાં સૂત્રોનો આધાર લીધો હતો તે શા માટે યોગ્ય હતો ? તેના આધારે સમાન રાસાયિક ગુણધર્મો ધરાવતાં તત્ત્વોને એક જ સમૂહમાં કેવી રીતે લખી શકાય ?

5.3.2 આધુનિક આવર્તકોષ્ટકમાં વલણ

(Trends in the Modern Periodic Table)

સંયોજકતા : તમે જાણો છો કે તત્ત્વની સંયોજકતા તેના પરમાણુની બાહ્યતમ કક્ષામાં રહેલા સંયોજકતા ઇલેક્ટ્રૉનની સંખ્યા દ્વારા નક્કી થાય છે.

प्रवृत्ति 5.6

- કોઈ પણ તત્ત્વની ઇલેક્ટ્રૉનીય રચનાના આધારે તમે તેની સંયોજકતાની ગણતરી કેવી રીતે કરશો ?
- પરમાણ્વીય-ક્રમાંક 12 ધરાવતા મૅગ્નેશિયમ અને પરમાણ્વીય-ક્રમાંક 16 ધરાવતા સલ્ફરની સંયોજકતા કેટલી છે ?
- તે જ રીતે પ્રથમ વીસ તત્ત્વોની સંયોજકતાઓ શોધો.
- આવર્તમાં ડાબીથી જમણી તરફ જતાં સંયોજકતા કેવી રીતે બદલાય છે ?
- સમહમાં ઉપરથી નીચે તરફ જતાં સંયોજકતા કેવી રીતે બદલાય છે ?

પરમાણ્વીય કદ: પરમાણ્વીય કદ શબ્દ પરમાણુની ત્રિજ્યાનો ઉલ્લેખ કરે છે. પરમાણ્વીય કદને એક સ્વતંત્ર પરમાણુના કેન્દ્રથી તેની સૌથી બહારની કક્ષા વચ્ચેના અંતર સ્વરૂપે જોવામાં આવે છે. હાઇડ્રોજન પરમાણુની પરમાણ્વીય ત્રિજ્યા 37 pm છે (પિકોમીટર, $1 \text{ pm} = 10^{-12} \text{ m}$).

ચાલો આપશે સમૂહ અને આવર્તમાં પરમાણ્વીય કદના જુદાપણા વિશે અભ્યાસ કરીએ.

प्रवृत्ति 5.7

- બીજા આવર્તનાં તત્ત્વોની પરમાણ્વીય ત્રિજયા નીચે આપેલી છે :
 આવર્ત 2નાં તત્ત્વો : B Be O N Li C
 પરમાણ્વીય ત્રિજયા (pm) : 88 111 66 74 152 77
- તેઓને તેમની પરમાણ્વીય ત્રિજ્યાના ઊતરતા ક્રમમાં ગોઠવો.
- શું હવે આ તત્ત્વો આવર્તકોષ્ટકમાં આપેલ આવર્તની ભાતમાં ગોઠવાયેલ છે ?
- કયાં તત્ત્વો સૌથી મોટા પરમાણુઓ અને સૌથી નાના પરમાણુઓ ધરાવે છે ?
- આવર્તમાં તમે ડાબીથી જમણી તરફ જાઓ ત્યારે પરમાણ્વીય ત્રિજ્યામાં કેવી રીતે ફેરફાર થાય છે ?

તમે જોશો કે આવર્તમાં ડાબીથી જમણી તરફ જતાં પરમાણ્વીય ત્રિજ્યા ઘટે છે. કેન્દ્રીય વીજભાર વધવાની સાથે ઇલેક્ટ્રૉન કેન્દ્ર તરફ ખેંચાવાનું વલણ ધરાવે છે જેને કારણે પરમાણ્વીય કદ ઘટે છે.

પ્રવૃત્તિ 5.8

 નીચે આપેલ પ્રથમ સમૂહનાં તત્ત્વોની પરમાણ્વીય ત્રિજ્યામાં ફેરફારનો અભ્યાસ કરો અને તેમને ચડતા ક્રમમાં ગોઠવો :

સમૂહ 1નાં તત્ત્વો : Na Li Rb Cs K પરમાણ્વીય ત્રિજ્યા (pm) : 186 152 244 262 231

- 🏿 એવાં તત્ત્વોનાં નામ આપો જે સૌથી મોટા અને સૌથી નાના પરમાણુઓ ધરાવતા હોય ?
- સમૂહમાં ઉપરથી નીચે તરફ જતાં પરમાણ્વીય કદમાં કેવી રીતે ફેરફાર થાય છે ?

તમે જોશો કે સમૂહમાં ઉપરથી નીચે તરફ જતાં પરમાણ્વીય કદ વધે છે. આવું એટલા માટે થાય છે કે સમૂહમાં નીચે તરફ જતા નવી કક્ષાઓ ઉમેરાય છે. તેનાથી કેન્દ્ર તથા સૌથી બહારની કક્ષા વચ્ચેનું અંતર વધે છે. તેથી જ કેન્દ્રીય વીજભાર વધવા છતાં પરમાણ્વીય કદ વધી જાય છે.

ધાત્વીય અને અધાત્વીય ગુણધર્મો (Metallic and Non-metallic Properties)

प्रवृत्ति 5.9

- ત્રીજા આવર્તનાં તત્ત્વો તપાસો અને તેમને ધાતુઓ તેમજ અધાતુઓ સ્વરૂપે વર્ગીકૃત કરો.
- આવર્તકોષ્ટકની કઈ બાજુ તમને ધાતુઓ જોવા મળે છે ?
- આવર્તકોષ્ટકની કઈ બાજુ તમને અધાતુઓ જોવા મળે છે ?

આપણે જોઈ શકીએ છીએ તેમ Na અને Mg જેવી ધાતુઓ આવર્તકોષ્ટકમાં ડાબી બાજુ અને સલ્ફર અને ક્લોરિન જેવી અધાતુઓ જમણી બાજુ રહેલી છે. મધ્યમાં આપણી પાસે સિલિકોન છે કે જે અર્ધધાતુ અથવા ઉપધાતુ તરીકે વર્ગીકૃત થયેલ છે કારણ કે તે ધાતુઓ અને અધાતુઓ બંનેના કેટલાક ગુણધર્મો ધરાવે છે.

આધુનિક આવર્તકોષ્ટકમાં એક વાંકીચૂંકી રેખા ધાતુને અધાતુથી અલગ કરે છે. આ રેખાની કિનારી પર આવેલાં તત્ત્વો-બોરોન, સિલિકોન, જર્મેનિયમ, આર્સીનક, ઍન્ટિમની, ટેલુરિયમ અને પોલોનિયમ મધ્યવર્તી ગુણધર્મો ધરાવે છે અને તેઓ ઉપધાતુ (Metalloid) અથવા અર્ધધાતુ (Semi-metal) કહેવાય છે.

પ્રકરણ 3 માં તમે જોયું છે તે પ્રમાણે બંધ નિર્માણ દરમિયાન ધાતુ ઇલેક્ટ્રૉન ગુમાવવાની વૃત્તિ ધરાવે છે એટલે કે તેઓ સ્વભાવે વિદ્યુતધનમય (Electropositive) છે.

પ્રવૃત્તિ 5.10

- 🔳 તમારા મત મુજબ સમૂહમાં ઇલેક્ટ્રૉન ગુમાવવાની વૃત્તિ કેવી રીતે બદલાય છે ?
- આવર્તમાં આ વૃત્તિ કેવી રીતે બદલાય છે ?

આવર્તમાં જેમ સંયોજકતા કક્ષાના ઇલેક્ટ્રૉન પર કાર્ય કરતો અસરકારક કેન્દ્રીય વીજભાર વધે છે તેમ ઇલેક્ટ્રૉન ગુમાવવાની વૃત્તિ ઘટશે. સમૂહમાં નીચે તરફ જતાં સંયોજકતા ઇલેક્ટ્રૉન દ્વારા અનુભવાતો અસરકારક કેન્દ્રીય વીજભાર ઘટે છે કારણ કે સૌથી બહારના ઇલેક્ટ્રૉન કેન્દ્રથી વધારે તત્ત્વોનું આવર્તી વર્ગીકરણ

દૂર હોય છે. તેથી તે સહેલાઈથી દૂર થઈ શકે છે. તેથી ધાત્વીય લક્ષણ આવર્તમાં ડાબી બાજુથી જમણી બાજુ તરફ જતાં ઘટે છે અને સમુહમાં નીચે તરફ જતાં વધે છે.

બીજી બાજુ, અધાતુઓ વિદ્યુતઋણમય (Electronegative) હોય છે. તે ઇલેક્ટ્રૉન મેળવીને બંધ બનાવવાની વૃત્તિ ધરાવે છે. ચાલો આપણે આ ગુણધર્મના ફેરફાર વિશે શીખીએ.

प्रवृत्ति 5.11

- આવર્તમાં ડાબીથી જમણી તરફ જતાં ઇલેક્ટ્રૉન સ્વીકારવાની વૃત્તિ કેવી રીતે બદલાશે ?
- સમૂહમાં નીચે તરફ જતાં ઇલેક્ટ્રૉન સ્વીકારવાની વૃત્તિ કેવી રીતે બદલાશે ?

વિદ્યુતઋશતાના વલણમાં દર્શાવ્યા પ્રમાણે અધાતુઓ આવર્તકોષ્ટકમાં જમણી તરફ ઉપરની બાજુ રહેલી હોય છે.

આ વલશ આપણને તત્ત્વો દ્વારા બનતા ઑક્સાઇડના સ્વભાવ વિશે અનુમાન કરવા માટે પણ મદદરૂપ થાય છે, કારણ કે તમે જાણો છો કે સામાન્ય રીતે ધાતુઓના ઑક્સાઇડ બેઝિક અને અધાતુઓના ઑક્સાઇડ ઍસિડિક હોય છે.

પ્રશ્નો

- 1. આધુનિક આવર્તકોષ્ટક મેન્ડેલીફના આવર્તકોષ્ટકની વિવિધ વિસંગતતાઓ કેવી રીતે દૂર કરી શક્યું ?
- તમારી ધારણા મુજબ મૅગ્નેશિયમ જેવી રાસાયણિક પ્રક્રિયાઓ દર્શાવતાં બે તત્ત્વોનાં નામ આપો.
 તમારી પસંદગીનો આધાર શું છે ?
- 3. નામ આપો :
 - (a) ત્રણ તત્ત્વો કે જે તેમની બાહ્યતમ કક્ષામાં એક ઇલેક્ટ્રૉન ધરાવે છે.
 - (b) બે તત્ત્વો કે જે તેમની બાહ્યતમ કક્ષામાં બે ઇલેક્ટ્રૉન ધરાવે છે.
 - (c) સંપૂર્ણ ભરાયેલી બાહ્યતમ કક્ષા ધરાવતાં ત્રણ તત્ત્વો.
- 4. (a) લિથિયમ, સોડિયમ, પોટેશિયમ આ બધી એવી ધાતુઓ છે કે જે પાણી સાથે પ્રક્રિયા કરી હાઇડ્રોજન વાયુ મુક્ત કરે છે. શું આ તત્ત્વોના પરમાણુઓમાં કોઈ સમાનતા છે ?
 - (b) હીલિયમ એક નિષ્ક્રિય વાયુ છે જ્યારે નિયૉનની પ્રતિક્રિયાત્મકતા ખૂબ જ ઓછી છે. તેમના પરમાણુઓમાં કોઈ સમાનતા છે ?
- 5. આધુનિક આવર્તકોષ્ટકમાં પ્રથમ દસ તત્ત્વોમાં કઈ ધાતુઓ છે ?
- 6. આવર્તકોષ્ટકમાં તેમના સ્થાનને ધ્યાનમાં લેતા નીચે દર્શાવેલાં તત્ત્વો પૈકી કયું તત્ત્વ તમારી ધારણા અનુસાર સૌથી વધુ ધાત્વીય લક્ષણ ધરાવે છે ?
 - Ga Ge As Se Be

તમે શીખ્યાં કે

- તત્ત્વોને તેમના ગુણધર્મીમાં સમાનતાના આધારે વર્ગીકૃત કરવામાં આવ્યા છે.
- ડોબરેનરે તત્ત્વોને ત્રિપુટીમાં વર્ગીકૃત કર્યા જ્યારે ન્યૂલૅન્ડે અષ્ટકનો નિયમ આપ્યો.
- મેન્ડેલીફે તત્ત્વોને તેમના પરમાણ્વીય દળના ચડતા ક્રમ તથા રાસાયણિક ગુણધર્મોને આધારે ગોઠવ્યા.
- મેન્ડેલીફે તેમના આવર્તકોષ્ટકમાં ખાલી સ્થાનના આધારે હજી શોધાવાનાં બાકી તત્ત્વોના અસ્તિત્વ વિશે પણ આગાહી કરી.
- પરમાણ્વીય દળના ચડતા ક્રમને આધારે તત્ત્વોને ગોઠવતા થતી વિસંગતતા, પરમાણ્વીય-ક્રમાંકના ચડતા ક્રમમાં ગોઠવતા દૂર થઈ ગઈ. તત્ત્વના આ મૂળભૂત ગુણધર્મની શોધ મોસેલે (Moseley) દ્વારા થઈ હતી.
- આધુનિક આવર્તકોષ્ટકમાં તત્ત્વોને 18 ઊભા સ્તંભો કે જેને સમૂહ કહે છે અને 7 આડી હરોળ કે જેને આવર્ત કહે છે તેમાં ગોઠવવામાં આવેલા છે.
- આ પ્રકારે ગોઠવાયેલાં તત્ત્વો પરમાણ્વીય કદ, સંયોજકતા અથવા સંયોજાવાની ક્ષમતા તથા ધાત્વીય અને અધાત્વીય લક્ષણ જેવા ગુણધર્મોની આવર્તનીયતા દર્શાવે છે.

સ્વાધ્યાય

- 1. આવર્તકોષ્ટકમાં ડાબીથી જમણી તરફ જતાં બદલાતા વલણ વિશે નીચેનાં વિધાનો પૈકી કયું વિધાન સાચું નથી ?
 - (a) તત્ત્વનો ધાત્વીય ગુણ ઘટતો જાય છે.
 - (b) સંયોજકતા ઇલેક્ટ્રૉનની સંખ્યા વધતી જાય છે.
 - (c) પરમાણુઓ સહેલાઈથી તેમના ઇલેક્ટૉન ગુમાવે છે.
 - (d) ઑક્સાઇડ વધુ ઍસિડિક બને છે.
- 2. તત્ત્વ X, XCI_2 સૂત્ર ધરાવતો ક્લોરાઇડ બનાવે છે, જે ઊંચું ગલનબિંદુ ધરાવતો ઘન પદાર્થ છે. X મહદંશે એવા સમાન સમૂહમાં હશે કે જેમાં હશે.
 - (a) Na
- (b) Mg
- (c) Al
- (d) Si

- 3. કયા તત્ત્વમાં
 - (a) બે કક્ષાઓ છે તથા બંને ઇલેક્ટ્રૉનથી સંપૂર્ણ ભરાયેલ છે ?
 - (b) ઇલેક્ટ્રૉનીય રચના 2, 8, 2 છે ?
 - (c) કુલ ત્રણ કક્ષા છે કે જે સંયોજકતા કક્ષામાં ચાર ઇલેક્ટ્રૉન ધરાવે છે ?
 - (d) કુલ બે કક્ષા છે કે જે સંયોજકતા કક્ષામાં ત્રણ ઇલેક્ટ્રૉન ધરાવે છે ?
 - (e) બીજી કક્ષામાં પ્રથમ કક્ષા કરતાં બમણા ઇલેક્ટ્રૉન છે ?
- 4. (a) આર્વતકોષ્ટકમાં બોરોન જે સમુહમાં છે તે જ સમુહનાં તમામ તત્ત્વોનો કયો ગુણધર્મ સમાન છે ?
 - (b) આવર્તકોષ્ટકમાં ફ્લોરિન જે સમૂહમાં છે તે જ સમૂહનાં તમામ તત્ત્વોનો કયો ગુણધર્મ સમાન છે ?
- 5. એક પરમાણની ઇલેક્ટ્રૉનીય રચના 2, 8, 7 છે.
 - (a) આ તત્ત્વનો પરમાણ્વીય-ક્રમાંક કેટલો છે?
 - (b) નીચેના પૈકી કયા તત્ત્વ સાથે તે રાસાયણિક રીતે સમાનતા ધરાવતું હશે ? (પરમાણ્વીય-ક્રમાંક કૌંસમાં આપેલ છે.)
 - N(7)
- F(9)
- P(15)
- Ar(18)

6. આવર્તકોષ્ટકમાં ત્રણ તત્ત્વો A, B તથા Cનું સ્થાન નીચે દર્શાવેલ છે –

સમૂહ	16	સમૂહ 1	l
₽.		-	
-		A	
		_	
В		С	

- (a) જણાવો કે, A ધાતુ છે કે અધાતુ.
- (b) જણાવો કે, A ની સરખામણીમાં C વધુ પ્રતિક્રિયાત્મક છે કે ઓછું પ્રતિક્રિયાત્મક.
- (c) C નું કદ B કરતાં મોટું હશે કે નાનું ?
- (d) તત્ત્વ A કયા પ્રકારના આયન-ધનાયન કે ઋશાયન બનાવશે ?
- 7. નાઇટ્રોજન (પરમાણ્વીય–ક્રમાંક 7) તથા ફૉસ્ફરસ (પરમાણ્વીય-ક્રમાંક 15) આવર્તકોષ્ટકના સમૂહ 15 ના સભ્યો છે. આ બંને તત્ત્વોની ઇલેક્ટ્રૉનીય રચના લખો. આમાંથી કયું તત્ત્વ વધુ વિદ્યુતઋણમય હશે ? શા માટે ?
- 8. પરમાણુની ઇલેક્ટ્રૉનીય રચનાને તેના આધુનિક આવર્તકોષ્ટકમાં સ્થાન સાથે શો સંબંધ છે ?
- 9. આધુનિક આવર્તકોષ્ટકમાં કૅલ્શિયમ (પરમાણ્વીય-ક્રમાંક 20)ની ચારે તરફ 12, 19, 21 તથા 38 પરમાણ્વીય-ક્રમાંક ધરાવતાં તત્ત્વો રહેલાં છે. આમાંથી કયાં તત્ત્વોના ભૌતિક અને રાસાયણિક ગુણધર્મો કૅલ્શિયમ જેવા જ છે ?
- 10. મેન્ડેલીફના આવર્તકોષ્ટકમાં અને આધુનિક આવર્તકોષ્ટકમાં તત્ત્વોની ગોઠવણીમાં સમાનતા અને ભિન્નતા દર્શાવો.

જूथ-प्रवृत्ति

- (I) આપણે તત્ત્વોનું વર્ગીકરણ કરવા માટે કરેલા મુખ્ય પ્રયત્નોની ચર્ચા કરી (ઈન્ટરનેટ અથવા લાઇબ્રેરીમાંથી) આ વર્ગીકરણ માટે કરેલા અન્ય પ્રયત્નો વિશે જાણકારી મેળવો.
- (II) આપણે આવર્તકોષ્ટકના વિસ્તૃત સ્વરૂપનો અભ્યાસ કર્યો છે. આધુનિક આવર્ત નિયમનો ઉપયોગ તત્ત્વોને અન્ય રીતો દ્વારા ગોઠવવા માટે પણ થયેલો છે. શોધી કાઢો તે કઈ રીતો છે ?