

Student's Name: Ravi Ranjan Mobile No: 9304228691

Roll Number: B20313 Branch:EE

Figure 1 No. of COVID-19 cases vs. days

Inferences:

- 1. First wave lasts in 7 months and second wave last in 5 months.
- **b.** The value of the Pearson's correlation coefficient is 0.999

Inferences:

- 1. Series is strongly correlated that's mean future value is highly dependent on past value.
- 2. The Pearson's coefficient is 0.999 that mean variation of covid cases highly depend upon in past value.

c.

Figure 2 Scatter plot one day lagged sequence vs. given time sequence

Inferences:

- 1. Pearson's correlation is very high that's mean variable are highly dependent on each other.
- 2. the scatter plot seems to obey the nature reflected by Pearson's correlation coefficient.

Figure 3 Correlation coefficient vs. lags in given sequence

1. d.

a. correlation coefficient decreases as lag value increases.

e.

Figure 4 Correlation coefficient vs. lags in given sequence generated using 'plot_acf' function

Inferences:

1. Correlation coefficient decreases as value of lag increases.

2

a. The coefficients obtained from the AR model are; [59.955,1.03,0.26,0.028, -0.175, -0.152]

b. i.

Figure 5 Scatter plot actual vs. predicted values

Inferences:

- 1. Both variables are strongly positive correlated.
- 2. Yes, scatter plot seems to obey the nature reflected by Pearson's correlation coefficient calculated.

ii.

Figure 6 Predicted test data time sequence vs. original test data sequence

Inferences:

1. This model is very highly reliable as both the graph almost coincide each other.

iii.

The RMSE(\%) and MAPE between predicted power consumed for test data and original values for test data are 1.8245,1.5274 respectively.

3

Table 1 RMSE (%) and MAPE between predicted and original data values wrt lags in time sequence

Lag value	RMSE (%)	MAPE
1	5.44%	3.48
5	1.83%	1.62
10	1.74%	1.55
15	1.70%	1.56
25	1.79%	1.60

Figure 7 RMSE(%) vs. time lag

Inferences:

1. Lag decreases as rmse value increases.

Figure 8 MAPE vs. time lag

Inferences:

1. MAPE increases as lag value decreases.

4

The heuristic value for the optimal number of lags is 77.

The RMSE(%) and MAPE value between test data time sequence and original test data sequence are1.7593,2.0264 respectively.

Inferences:

1. Based upon the RMSE(%) and MAPE value, heuristics for calculating the optimal number of lags does not improve the prediction accuracy of the model.