The Trotter 0774998145

Candidate Name

Centre Number

Candidate Number

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MATHEMATICS

4004/1

PAPER I

JUNE 2020 SESSION

2 hours 30 minutes

Candidates answer on the question paper

Additional materials: Mathematical Instruments

Allow candidates 5 minutes to count pages before the examination.

This booklet should not be punched or stapled and pages should not be removed.

Time 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your Name, Centre number and Candidate number in the spaces at the top of this page. Write your centre and candidate number in the box on the top right corner of every page of this

Check that all the pages are in the booklet and ask the invigilator for a replacement if there

are duplicate or missing pages.

Answer all questions.

Write your answers in the spaces provided on the question paper using black or blue pens. If working is needed for any question, it must be shown in the space below that question. Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given to three significant figures unless stated otherwise.

Mathematical tables, slide rules and calculators should not be brought into the examination

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

This question paper consists of 20 printed pages. Copyright: Zimbabwe School Examinations Council, J2020.

C ZIMSEC J2020

Turn over

Scanned by CamScanner Scanned with CamScanner

Candidate Name	Centre Number	Candidate Number	
	2		

Answer all questions NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER

1		Express 208,9		
	(a)	in standard form,		
	(b)	Answ correct to 3 significant figures.	wer (a)	[1]
	(c)	Answ correct to the nearest hundred.	wer (b)	[1]
2		Evaluate -10°,	ver (c)	[1]
	(b)	$\left(\frac{4}{9}\right)^{\frac{3}{2}}$.	ver (a)	[1]
		Answ	ver (b)	[2]

Candidate Name

Centre Number

Candidate Number

3

3

The Venn diagram shows three sets A, B and C with their respective elements.

- (a) List all elements of
 - (i) A∩B,

Answer (a)(i) [1]

(ii) (A∪B)'∩C.

Answer (a)(ii) _____ [1]

(b) Find n (AUC).

- Answer (b) [1]
- 4 (a) Solve the inequality 2 y < 3y 10.

Answer (a) [2]

(b) The perfect square, y, satisfies both 2 - y < 3y - 10 and $y \le 9$ Find the possible values of y.

Answer (b) [1]

4004/1 J2020

[Turn over

	Contra	Number Car	ndidate Number
Candidate Nam	e Centre	Number	\top
	4		
5	Solve the simultaneous equations: $2x + y = 4$ x - y = -2		
	on State of the state of the	aproves a rain	
			[2]
6 (a)	Convert 3014 to a number in base 10.		
			1 14,1
		6.3	
		Aлswer (a)	[1]
(b)	Evaluate		(LT)
(6)	Evaluate		
(i)	11012 + 1112, giving the answer in base	2,	
	*		
		Ann	
		Answer (b)(i)	[1]
(ii)	1315 - 425, giving the answer in base 5.		
			1
		Answer (L)	
		Answer (b)(ii)	[1]
	4004/01 J2020		

Candid	late Nar	ne	Centre Number	Candidate Number
		1		
7		The mean of 3 numbers is 7. Two of the Find the third number.	ne numbers are 4 and -5.	
			Answer	
8	(a)	Given that $m = \frac{1}{2}$ and $n = -2$, evaluate $m - n$.		
	(20.15		A	m
	(b)	$\frac{m n}{m + n}$.	Answer (a)	
			Answer (b)	[2]

[Turn over

Candidate Name	Centre Number	Candidate Number	
	6	30.00	

Express $\frac{2}{2-3n} - \frac{1}{n}$ as a single fraction in its simplest terms.

Answer [3]

The matrix $\begin{pmatrix} (x+2) & 4 \\ 6 & x \end{pmatrix}$ is singular. Find the possible values of x.

Given that $f(x) = \frac{k + x}{3x - 2}$ and that $f\left(-\frac{1}{3}\right) = \frac{1}{6}$ find the value of k.

Answer [3]

Candi	date Na	me	Centre Number	Candidate Number
_			Centre Ivaniber	
12		It is given that $\mathbf{p} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$ Find	and $\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}$.	
	(a)	$\left p \right $, leaving the answer in surd form,		
				[1]
	(b)	the value of x and the value of y if y	q = 2 r.	
			Answer (b)	[2]
13		A salesman's total monthly salary concommission on his monthly sales. In one month his total salary was \$56 Calculate		of \$200 and a 2%
	(a)	his commission for that month,		
			Answer (a)	[1]
		4004/1 J2020		Turn over

Candidate Name	Centre Number	Candidate Number
andidate Ivanie		
	8	
(b)	the sales he made for that month.	
(-/		
	Answe	er (b) [2]
14	It is given that $Sin y = 5$ and that y is an ad	cute angle.
	$\overline{13}$	
	Find as a common fraction,	
(a)	$Cos (180^{\circ} - y^{\circ})$	
	Answe	er (a) [2]
(b)	Tan y°.	
- 4		
	Ancus	er (b) [1]
15	The table shows grades obtained by 150 candida	A B C D E U
	Grade Frequency	5 25 30 29 21 40
(-)	Find the median grade.	
(a)	rind the median grade.	
	Answ	rer (a) [1]
	4004/01 12020	

Candi	date Na	me	Centre Number	Candidate Number
		9		
	(b)	Calculate the probability that two cobtained grade A or B.	andidates chosen at rand	lom from the 150
			Answer (b)	[2]
16	(a)	Point R(-3; -2) is mapped onto point matrix (1 0).	nt R ₁ by a transformation	n represented by the
		matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Find the coordinates of R ₁		
			Answer (a)	[1]

Turn over

(b) In the diagram triangle P is the image of triangle Q under a certain transformation.

Describe fully the single transformation that maps triangle P onto triangle Q.

Answer (•)	
)	

	22.1 mm 1	
		121
***************************************		[2]

Cand	idate Nan	ne	Centre Number	Candidate Numb
_	- 27	11		
17	(a)	It is given that $g \propto \frac{m}{r}$ and $g = 1$ w Find the formula connecting g , m and r ,		
			.6 S (2 - 4)	
			Answer (a)	[2]
	(b)	numerical value of g when $m = 10$	and $r=3$.	

Turn over

Candio	late Nan	ne	Centre Number	Candidate Number
19	(a)	Simplify $4b - 3(4 - 2b)$.		
	(b)	Factorise completely	Answer (a)	[2]
	()	$x - y - xy + x^2$		
			*	
			Answer (b)	[2]
20	(a)	Name the regular polygon which ha	s rotational symmetr	y of order 5.
			Answer (a)	[1]
	(b)	The sum of the interior angles of a lare 140°, 120° and 160°. The remaining angles are in the rational Calculate the size of the largest of	02:3:5.	
			Answer (b)	[3]

|Turn over

Candidate Name	Centre Number Candidate Number
21	14
	It is given that $Log \ x = 6$ and $Log \ y = -2$. Evaluate
(a)	Log(xy),
(b)	Answer (a) [2] $Log\left(\frac{1}{\sqrt{x}}\right).$
	Answer (b) [2]
22 (a)	On a certain map, a length of 2cm represents a distance of 5km.
(4)	Express the scale of the map giving the answer in the form 1: n.
(b)	Answer (a) [2] Calculate the area on the map in cm ² which represents an actual area of 4km ² .
	Answer (b) [2]
	4004/01 J2020

Answer (b) _____ [2]
4004/1 J2020 [Turn over

Candidate Name	Centre Number	Candidate Number		
	16			

24 (a) A straight line has gradient -1 and passes through the point (3; 0). Find the equation of the line in the form y = mx + c.

Answer (a) _____ [2]

(b) The solutions of a quadratic equation are x = -1 and x = 3. Write down the quadratic equation in the form $ax^2 + bx + c = 0$ where a, b and c are integers.

Answer (b) _____ [3]

25

The diagram shows triangle XYZ with XY = 6cm, XZ = 10cm and $Y\hat{X}Z$ = 30°. Use as much of the information given below as is necessary. |Sin 30° = 0,50: Cos 30° = 0,87: Tan 30° = 0,58| Calculate the

(a) area of the triangle XYZ,

Answer (a) [2]

(b) length of YZ leaving the answer in surd form.

Answer (b) [3]

4004/L J2020

Turn over

The diagram is a speed-time graph of an object which decelerates uniformly from a speed of 50 m/s to a speed of 30 m/s in 20 seconds. It further decelerates uniformly for 10 seconds until it comes to rest.

(a) Find the speed when t = 5 seconds.

Answer (a)		

- (b) Calculate the
 - (i) acceleration of the object during the last 10 seconds.

Answer (b)(i) _____ [2]

(ii) distance travelled during the 30 seconds.

	Answer (b)(ii	[2]
C 0,4 D		F 0,4 G
В	2,2	\Box _A

The diagram shows the cross-section of a concrete drinking trough which is 3m long. AB = 2.2m, BC = AG = 1m and CD = FG = 0.4m. DF the diameter of the drinking trough is 1.4m. Take π to be 22.

Calculate the

27

(a) perimeter of the cross-section,

Answer (a)		[3]
4004/1 J2020		[Turn over

Candidate Name		Centre Number	Candio	late Number	
		20			
(b)	area of the cross-section,				٠
		Answer (b)		[3]
(c)	volume of the concrete used				•
				•	
		Answer	(c)		[2]