THE LNM INSTITUTE OF INFORMATION TECHNOLOGY JAIPUR, RAJASTHAN MATHEMATICS-I

Note: Each question carry 3 marks for correct answer and carry a negative marking of 1 mark for wrong

Roll No.:

NOVEMBER 18, 2015

(D) ray.

TIME: 50 MINUTES, MAXIMUM MARKS: 30

End	Term	Evam	(Part-1)	١
PHICE	renn	глханн	(Fart-I)	ı

6. The curve $r = 2\cos\theta, 0 \le \theta \le \pi$ represents a

(B) cardioid,

Then f is continuous. TRUE or FALSE ______.

(A) circle,

Series: A

NAME:

rect. Encircle/Tick the corre		A, B, C, D) out of which one or more of will be treated as a wrong answer and the answer.			
1. Consider the sequence	ce $a_n = \frac{n}{n+2}$. The minimum	n_0 such that $ a_n-1 <\frac{1}{100}$ for n	$n \geq n_0$, is		
(A) 198,	(B) 199,	(C) 200,	(D) 201.		
2. Given $\epsilon>0$, the largest δ which fits the definition of continuity of the function $f(x)=\begin{cases} \frac{x+3}{2} & \text{if } x\leq 1\\ \frac{7-x}{3} & \text{if } 1\leq x \end{cases} \text{at } x=1 \text{ is}$ (A) $\epsilon/2$, (B) $\epsilon/3$, (C) 2ϵ , (D) 3ϵ .					
(A) $\epsilon/2$,	$(\mathbf{B}) \ \epsilon/3,$	(C) 2ϵ ,	(D) 3ϵ .		
3. The function $f(x) = e^{-\frac{1}{ x }}$ for $x \neq 0$ and $f(0) = 0$ is concave up in m open intervals and concave down in n open intervals. Then (m,n) equals. (A) $(0,1)$, (B) $(1,0)$, (C) $(1,2)$, (D) $(2,1)$.					
4. The sequence $a_n = \sum_{k=1}^{n} (-1)^k$ is (A) bounded but not convergent, (C) convergent but not bounded, (B) both bounded and convergent, (D) neither bounded nor convergent.					
5. Let $f:[0,1] \to \mathbb{R}$ be a the partitions of $[0,1]$ $(\mathbf{A}\ L(P,f) \le L(Q,f) \le (\mathbf{C})\ L(Q,f) \le L(P,f)$ a	. Then $U(Q, f) \leq U(P, f)$,	$= \left\{0, \frac{1}{10}, \frac{2}{10}, \cdots, 1\right\} \text{ and } Q = \left\{0, \frac{1}{10}, \frac{1}{10}, \cdots, 1\right\}$ $(\mathbf{B}) \ L(Q, f) \le L(P, f) \le 1$,		

 $x^{2} + y^{2} = 4$ equals: (A) $\pi(e^{-1} - e^{-3})$, (B) $\pi(e^{-1} - e^{-4})$, (C) $\pi(e^{-2} - e^{-3})$, (D) $\pi(e^{-2} - e^{-4})$.

7. Parametric equations of the line through P(-1,4,2) and in the direction of $\overrightarrow{v}=(1,2,3)$ is: ______.

8. Let f be a scalar field defined on \mathbb{R}^2 and suppose directional derivatives of f exist for all directions.

9. The double integral $\int \int_D e^{-(x^2+y^2)} dA$, where D is the region between the two circles $x^2+y^2=1$ and

(C) lemniscate,

10. The value of the line integral $\int_C x - y \ ds$, where C is the line segment from (1,3) to (5,-2) is: