Лабораторная работа 1.2.1 Определение скорости полёта пули при помощи баллистического маятника 27 октября 2023 г.

1. Цели и задачи

• определить скорость полёта пули, применяя законы сохранения и используя баллистические маятники

2. Оборудование

- духовое ружьё на штативе
- осветитель
- оптическая система для измерения отклонений маятника
- измерительная линейка
- пули и весы для их взвешивания
- баллистические маятники

3. Теория

Поступательный маятник:

Скорость пули:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} x \tag{1}$$

Погрешность:

$$\Delta u = \sqrt{\left(\frac{\Delta M}{M}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + 0.5\left(\frac{\Delta g}{g}\right)^2 + 0.5\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta x}{x}\right)^2} \tag{2}$$

Крутильный маятник:

Отклонение:

$$\varphi \approx \frac{x}{d} \tag{3}$$

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \tag{4}$$

Скорость пули:

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{5}$$

Погрешности:

$$\Delta u = \sqrt{\left(\frac{\Delta\varphi}{\varphi}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta\left(\sqrt{kI}\right)}{\left(\sqrt{kI}\right)}\right)^2} \tag{6}$$

$$\Delta\varphi = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta d}{d}\right)^2} \tag{7}$$

$$\Delta \left(\sqrt{kI} \right) = \sqrt{\left(\frac{\Delta M}{M} \right)^2 + 2 \left(\frac{\Delta R}{R} \right)^2 + \left(\frac{\Delta T_1}{T_1} \right)^2 + \left(\frac{\Delta (T_1^2 - T_2^2)}{(T_1^2 - T_2^2)} \right)^2}$$
 (8)

4. Ход работы

Таблица 1. Масса пуль

N пули	m, мг		
1	502		
2	508		
3	508		
4	487		
5	504		
6	507		
7	516		
8	507		
9	509		
10	499		

I. Метод баллистического маятника, совершающего поступательное движение

Длина подвеса

Масса подвеса

Ускорение свободного падения

$$L = 220,0 \pm 0,5$$
 см

$$M=2925\pm 5$$
г

$$g = 9.810 \pm 0.010 \text{ m} \cdot \text{c}^{-2}$$

Рис. 1. Схема установки для измерения скорости пули

Рис. 2. Установка после попадания пули

Таблица 3. Результаты измерений

N пули	$\Delta x, \mathrm{cm}$	u, m/c	
1	12,20	150±6	
2	12,10	147 ± 6	
3	12,00	146±6	
4	12,10	153±6	
5	12,05	148±6	

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x$$

$$u_1 = \langle u \rangle = 148.9 \pm 2.8 \ \mathrm{m} \cdot \mathrm{c}^{-1}$$

II. Метод крутильного баллистичего маятника

Расстояние от мишени до оси

 $r = 22,00 \pm 0,20$ см

Расстояние от груза до оси

 $R = 33,00 \pm 0,20$ см

Масса груза

 $M = 727,2 \pm 0,5$ г

Расстояние до шкалы

 $d = 130,0 \pm 0,5$ см

Рис. 3. Схема крутильного баллистического маятника

Таблица 5. Результаты измерений

N пули	N	t, c	T, c	x, cm	arphi, рад	u, m/c
6	10	52,50	5,25	6,10	0,047	—
7	10	69,11	6,91	4,50	0,035	$104,9 \pm 2,0$
8	10	69,03	6,90	4,80	0,037	$113,8 \pm 2,1$
9	10	68,71	6,87	4,70	0,036	$111,0 \pm 2,1$
10	10	68,86	6,89	4,40	0,034	$106,0 \pm 2,1$

$$\varphi \approx \frac{x}{d}$$

$$\sqrt{kI} = \frac{4\pi MR^2T_1}{T_1^2 - T_2^2} = 0.344 \pm 0.004 \; \text{kg} \cdot \text{m}^2 \cdot \text{c}^{-1}$$

$$u = \varphi \frac{\sqrt{kI}}{mr}$$

$$u_2 = \langle u \rangle = 108.9 \pm 1.8 \; \text{m} \cdot \text{c}^{-1}$$

5. Вывод

Мы измерили скорость полёта пуль духового ружья и пистолета с помощью поступательного и крутильного баллистического маятника.

$$\begin{split} u_1 &= 148.9 \pm 2.8 \,\, \mathrm{m \cdot c^{-1}} \\ u_2 &= 108.9 \pm 1.8 \,\, \mathrm{m \cdot c^{-1}} \end{split}$$