EJEMPLO 5.2.11 $C^{1}[0, 1]$ es un subespacio propio de C[0, 1]

Sea $C^1[0, 1]$ el conjunto de funciones con primeras derivadas continuas definidas en [0, 1]. Como toda función diferenciable es continua, se tiene $C^1[0, 1] \subset C[0, 1]$. Puesto que la suma de dos funciones diferenciables es diferenciable y un múltiplo constante de una función diferenciable es diferenciable, se ve que $C^1[0, 1]$ es un subespacio de C[0, 1]. Se trata de un subespacio propio porque no toda función continua es diferenciable.

EJEMPLO 5.2.12 Otro subespacio propio de C[0, 1]

Si $f \in C[0, 1]$, entonces $\int_0^1 f(x) \, dx$ existe. Sea $H = \{ f \in C[0, 1] : \int_0^1 f(x) \, dx = 0 \}$. Si $f \in H$ y $g \in H$, entonces $\int_0^1 [f(x) + g(x)] \, dx = \int_0^1 f(x) \, dx + \int_0^1 g(x) \, dx = 0 + 0 = 0$ y $\int_0^1 \alpha f(x) \, dx = \alpha \int_0^1 f(x) \, dx = 0$. Asi f + g y αf están en H para todo número real α . Esto muestra que H es un subespacio propio de C[0, 1].

Como lo ilustran los últimos tres ejemplos, un espacio vectorial puede tener un número grande y variado de subespacios propios. Antes de terminar esta sección se demostrará un hecho interesante sobre subespacios.

Teorema 5.2.2

Sean H_1 y H_2 dos subespacios de un espacio vectorial V. Entonces $H_1 \cap H_2$ es un subespacio de V.

Demostración

Observe que $H_1 \cap H_2$ es no vacío porque contiene al **0**. Sea $\mathbf{x}_1 \in H_1 \cap H_2$ y $\mathbf{x}_2 \in H_1 \cap H_2$. Entonces como H_1 y H_2 son subespacios, $\mathbf{x}_1 + \mathbf{x}_2 \in H_1$, y $\mathbf{x}_1 + \mathbf{x}_2 \in H_2$. Esto significa que $\mathbf{x}_1 + \mathbf{x}_2 \in H_1 \cap H_2$ De manera similar, $\alpha \mathbf{x}_1 \in H_1 \cap H_2$. Por lo tanto, se cumplen los dos axiomas de cerradura y $H_1 \cap H_2$ es un subespacio.

EJEMPLO 5.2.13 La intersección de dos subespacios de \mathbb{R}^3 es un subespacio

En \mathbb{R}^3 sea $H_1 = \{(x, y, z): 2x - y - z = 0\}$ y $H_2 = \{(x, y, z): x + 2y + 3z = 0\}$. Entonces H_1 y H_2 consisten en vectores que se encuentran sobre planos que pasan por el origen y son, según el ejemplo 5.2.5, subespacios de \mathbb{R}^3 . $H_1 \cap H_2$ es la intersección de los dos planos que se calculan como en el ejemplo 4.5.9 de la sección 4.5:

$$x + 2y + 3z = 0$$
$$2x - y - z = 0$$

Reduciendo renglones se tiene

$$\begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & -5 & -7 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{5} & | & 0 \\ 0 & 1 & \frac{7}{5} & | & 0 \end{pmatrix}$$