Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Conclusion

Fault Dominance

- Detecting set of fault f (denoted as T_f) is set of all test patterns that detect fault f
- Fault f dominates fault g if the detecting set of fault f contains that of fault g i.e. $T_f \supseteq T_g$
- Example: C/1 fault dominates A/1 fault
 - C/1 detecting set {00, 01, 10} contains A/1 detecting set {01}
 - C/1 is dominating fault; A/1 is dominated fault

Ī										A - A
	Inp	ut	Out	put	with \$	Stuck	Faul	t		Detecting set of C/1
-	<u>A</u>	В	good	A /0	<u>A/1</u>	<u>B/0</u>	B/1	C/0	<u>C/1</u>	
P1	0	0	0	0	0	0	0	0	(1)	P1
P2	0	1	0	0	1	0	0	0	(1)	Detecting set
P3	1	1	1	0	1	0	1	0	1	\ of \/1
P4	1	0	0	0	0	0	1	0	1	. OI A/ 1 P2 P4
_										

Dominance Fault Collapsing, DFC

- DFC reduces fault list using fault dominance relation
 - If a test pattern detects a dominated fault, then it must detect its dominating fault
 - so dominating faults can be removed
- Property
 - If two faults are equivalent, then they dominate each other
- Therefore, the number of dominance collapsed faults must be smaller or equal to that of equivalence collapsed faults

DFC on Elementary Gates

- Example: 2-input AND/OR/NAND/NOR gates
 - original 6 faults → 3 faults after DFC
- For n-input elementary gate,
 - n+1 stuck-at faults after dominance fault collapsing

Q: is DFC unique?

DFC on Fanout-free Circuits

- Our DFC Rules
 - (1) one collapsed fault for every primary input
 - Stuck at non-controlling values (see p.19)
 - (2) one collapsed fault for each gate output whose gate inputs are *all* primary inputs
- Example
 - No fault is needed for G2 output because it is not an input gate.
 - E/0 fault dominates C/1 fault so the former can be removed.
 - Original 14 faults → 8 faults after EFC → 5 faults after DFC

Exercise: show H/0 can be collapsed

Fanout Stem and Branches

- Fanout branch faults do not always dominate stem faults
- Example
 - F/1 fault dominates E/1. but L/1 fault does not dominate E/1.
 - Actually, L/1 has empty detecting set so L/1 is a redundant fault

Input			Output							
Α	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	1	0	0	0	

Example of Simple DFC

- Partition into 2 subcircuits
- Original 18 faults, → after EFC 10 faults → after DFC 7 faults
- Result is NOT optimal
 - J/0 is equivalent to F/1, which dominates E/1.
- Notice:
 - G₂ is input gate
 - J is consider input because inverter G₃ is ignored

Simple DFC Algorithm

- Linear time
 - No stem analysis

```
simple DFC (N) /*N is a netlist*/
 0. fault list = \{\};
 1. foreach gate or PI or PO g in N
 2.
       if ((g is PI and fanout stem) \parallel (g is PO and fanout branch)) then
 3.
          fault list = fault list \cup g output stuck-at 0 and 1;
 4.
       else if (g is gate) then
          foreach gate input i of gate g
               h = \text{backtrace inverters starting from } i;
 6.
 7.
               if (h is PI or fanout branch) then /* rule #1 */
 8.
                  if (gate g is AND) \parallel (gate g is NAND) then
 9.
                    fault list = fault list \cup i stuck-at 1;
10.
                  else if (gate g is OR) \parallel (gate g is NOR)
11.
                    fault list = fault list \cup i stuck-at 0;
12.
                  end if
13.
               end if
14.
          end foreach
15.
          if (every gate input of g has a fault) then /* rule #2 */
16.
             if (gate g is AND) \parallel (gate g is NOR) then
17.
                fault list = fault list \cup g output stuck-at 0;
18.
             else if (gate g is OR) \parallel (gate g is NAND) then
19.
                fault list = fault list \cup g output stuck-at 1;
20.
             end if
21.
          end if
22.
       end if
23. end foreach
24. return (fault list);
```

Why DFC not Used Often?

- Because DFC fault coverage is pessimistic. A test pattern can detect
 a dominating fault without detecting its dominated fault
- Example: ABC=100 does NOT detect dominated fault E/1
 - but it detects dominating fault F/1 (but not in DFC fault list)

Input			Outpu	Output						
A	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	1	O VLS	θ _{est} Δ	O _{© Na}	

Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Conclusion

Concluding Remarks

- Fault collapsing helps
 - Speed up ATPG
 - Shorten test length
- EFC is often used but DFC is not
- Fault coverage often cited in two numbers
 - Uncollapsed fault coverage

$$F.C._{uncollapsed} = \frac{\text{detected } uncollapsed \text{ faults}}{\text{total } uncollapsed \text{ faults}} \times 100\%$$

Collapsed fault coverage (usually EFC)

$$F.C._{collapsed} = \frac{\text{detected } collapsed \text{ } \text{faults}}{\text{total } collapsed \text{ } \text{faults}} \times 100\%$$

Example ATPG Report

	uncollapsed	Collapsed
Total Faults	1,234	800
Detected faults	1,000	700
Untestable faults	230	98
aborted faults	4	2
Fault Coverage	1,000/1,234 %	700/800 %
ATPG effectiveness	1,000/1,004 %	700/702 %