Álgebra I Práctica 5 resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

- Notas teóricas
- Ejercicios de la guía:

1.	5.	9.	13.	17.	21.	25 .	29.
2.	6.	10.	14.	18.	22.	26.	30.
3.	7.	11.	15.	19.	23.	27.	
4.	8.	12.	16.	20.	24.	28.	

• Ejercicios Extras

Notas teóricas:

- Sea aX + bY = c con $a, b, c \in \mathbb{Z}, a \neq 0 \land b \neq 0$ y sea $S = \{(x, y) \in \mathbb{Z}^2 : aX + bY = C\}.$ Entonces $S \neq \emptyset \iff (a:b) \mid c$
- Las soluciones al sistema: $S = \left\{ (x,y) \in \mathbb{Z}^2 \text{ con } \left\{ \begin{array}{l} x = x_0 + kb' \\ y = y_0 + kb' \end{array} \right\}, k \in \mathbb{Z} \right\}$
- $aX \equiv c$ (b) con $a, b \neq 0$ tiene solución \iff $(a:b) \mid c$ tiene solución \iff $(a:b) \mid c$. En ese caso, coprimizando:

Ecuaciones de congruencia

- Algoritmo de solución:
 - 1) reducir a, c módulo m. Podemos suponer $0 \le a, c < m$
 - 2) tiene solución \iff $(a:m) \mid c$. Y en ese caso coprimizo:

$$aX \equiv c \ (m) \iff a'X \equiv c' \ (m), \ \ \operatorname{con} \ a' = \frac{a}{(a:m)}, \ m' = \frac{m}{(a:m)} \ \operatorname{y} \ c' = \frac{c}{(a:m)}$$

3) Ahora que $a' \perp m'$, puedo limpiar los factores comunes entre a' y c' (los puedo simplificar)

$$a'X \equiv c' \ (m') \iff a''X \equiv c'' \ (m') \ \text{con} \ a'' = \frac{a'}{(a':c')} \ \text{y} \ c'' = \frac{c'}{(a':c')}$$

4) Encuentro una solución particular X_0 con $0 \le X_0 < m'$ y tenemos

$$aX \equiv c \ (m) \iff X \equiv X_0 \ (m')$$

Ecuaciones de congruencia Sean $m_1, \dots m_n \in \mathbb{Z}$ coprimos dos a dos $(\forall i \neq j, \text{ se tiene } m_i \perp m_j)$. Entonces, dados $c_1, \ldots, c_n \in \mathbb{Z}$ cualesquiera, el sistema de ecuaciones de congruencia.

$$\begin{cases} X \equiv c_1 \ (m_1) \\ X \equiv c_2 \ (m_2) \\ \vdots \\ X \equiv c_n \ (m_n) \end{cases}$$

es equivalente al sistema (tienen misma soluciones)

$$X \equiv x_0 \ (m_1 \cdot m_2 \cdots m_n)$$

para algún x_0 con $0 \le x_0 < m_1 \cdot m_2 \cdots m_n$ Pequeño teorema de Fermat

- Sea p primo, y sea $a \in \mathbb{Z}$. Entonces:
 - 1.) $a^p \equiv a(p)$
 - 2.) $p \nmid a \Rightarrow a^{p-1} \equiv 1 \ (p)$
- Sea p primo, entonces $\forall a \in \mathbb{Z}$ tal que $p \nmid a$ se tiene:

$$a^n \equiv a^{r_{p-1}(n)}(p), \ \forall n \in \mathbb{N}$$

• Sea $a \in \mathbb{Z}$ y p > 0 primo tal que $\underbrace{(a:p) = 1}_{a \perp p}$, y sea $d \in \mathbb{N}$ con $d \leq p-1$ el mínimo tal que:

$$a^d \equiv 1 \ (p) \Rightarrow d \ | \ (p-1)$$

Aritmética modular:

- Sea $n \in \mathbb{N}, n \ge 2$ $\mathbb{Z}/_{n\mathbb{Z}} = \{\overline{0}, \overline{1}, \cdots, \overline{n-1}\}$ $\overline{a}, \overline{b} \in \mathbb{Z}/_{n\mathbb{Z}} : \{ \overline{a} + \overline{b} := \overline{r_n(a+b)}$ $\overline{a} \cdot \overline{b} := \overline{r_n(a \cdot b)}$
- Sea p primo, en $\mathbb{Z}/_{p\mathbb{Z}}$ todo elemento no nulo tiene inverso multiplicativo, análogamente a \mathbb{Z} . Si $m \in \mathbb{N}$ es compuesto,
 - No todo $\overline{a} \in \mathbb{Z}/_{m\mathbb{Z}}$ con $\overline{a} \neq \overline{0}$ es inversible.
 - $-\exists \overline{a}, \overline{b} \in \mathbb{Z}/_{m\mathbb{Z}} \text{ con } \overline{a}, \overline{b} \neq 0 \text{ tal que } \overline{a} \cdot \overline{b} = \overline{0}$
 - $\operatorname{Inv}(\mathbb{Z}/_{m\mathbb{Z}}) = \{\overline{a} \in \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}\}$ tales que $a \perp m$
- $\bullet\,$ Si m=p, con p primo, todo elemento no nulo de $\mathbb{Z}/_{p\mathbb{Z}}$ tiene inverso:
 - $-\operatorname{Inv}(\mathbb{Z}/_{p\mathbb{Z}}) = \{\overline{1}, \dots, \overline{p-1}\}.$
 - -p primo $\Rightarrow \mathbb{Z}/p\mathbb{Z}$ es un cuerpo.
 - $\text{ en } \mathbb{Z}/_{p\mathbb{Z}}: (\overline{a} + \overline{b})^p = \overline{a}^p + \overline{b}^p$

Ejercicios de la guía:

- 1. Hacer!
- **2.** Determinar todos los (a, b) que simultáneamente $4 \mid a, 8 \mid b \land 33a + 9b = 120$.

Si
$$(33:9) \mid 120 \Rightarrow 33a + 9b = 120$$
 tiene solución. $(33:9) = 3$, $3 \mid 120$ \checkmark
$$\begin{cases} 4 \mid a \to a = 4k_1 \\ 8 \mid b \to b = 8k_2 \end{cases} \xrightarrow{\text{meto en} \atop 33a + 9b = 120} 132k_1 + 72k_2 = 120 \xrightarrow{\text{(132:72)} = 12 \mid 120 \atop \text{coprimizo}} 11k_1 + 6k_2 = 10$$

Busco solución particular con algo parecido a Euclides:

$$\left\{ \begin{array}{l} 11 = 6 \cdot 1 + 5 \\ 6 = 5 \cdot 1 + 1 \end{array} \right\} \xrightarrow{\text{escribo al 1 como} \atop \text{combinación entera de 11 y 6}} 1 = 11 \cdot -1 + 6 \cdot -2 \xrightarrow{\text{particular} \atop \text{particular}} 10 = 11 \cdot \left(\underbrace{-10}_{k_1} \right) + 6 \cdot \underbrace{20}_{k_2}$$

Para $11k_1 + 6k_2 = 10$ tengo la solución general $(k_1, k_2) = (-10 + (-6)k, 20 + 11k)$ con $k \in \mathbb{Z}$

Pero quiero los valores de a y b:

La solución general será $(a,b) = (4k_1, 8k_2) = (-40 + 24k, 160 + (-88)k)$

Otra respuesta con solución a ojo menos falopa, esta recta es la misma que la anterior:

 $(a,b) = (2+3k, 6-11k) \text{ con } k \equiv 2 (8)$

3. Si se sabe que cada unidad de un cierto producto A cuesta 39 pesos y que cada unidad de un cierto producto B cuesta 48 pesos, ¿cuántas unidades de cada producto se pueden comprar gastando exactamente 135 pesos?

$$\begin{cases} A \geq 0 \land B \geq 0. \text{ Dado que son productos.} \\ (A:B) = 3 \Rightarrow 39A + 28B = 135 \xrightarrow{\text{coprimizar}} 13A + 16B = 45 \\ \text{A ojo } \rightarrow (A,B) = (1,2) \end{cases}$$

- 4. Hallar, cuando existan, todas las soluciones de las siguientes ecuaciones de congruencia:
- ; algún error?; cómo aportar?

- i) $17X \equiv 3 \ (11) \xrightarrow{\text{respuesta}} X \equiv 6 \ (11)$
- ii) $56X \equiv 28 (35)$

$$\begin{cases} 56X \equiv 28 \ (35) \iff 7X \equiv 21 \ (35) \iff 7X - 35K = 21 \\ \xrightarrow{\text{a}} (X, K) = (-2, -1) + q \cdot (-5, 1) \\ X \equiv -2 \ (5) \iff X \equiv 3 \ (5) = \{\dots, -2, 3, 8, \dots, 5q + 3\} \end{cases}$$

 $\xrightarrow{\text{respuesta}} X \equiv 3 (5) \text{ corroborar}$

iii)

iv) $78X \equiv 30 \ (12126) \rightarrow 78X - 12126Y = 30 \xrightarrow[\text{coprimizando}]{(78:12126) = 6} 13X - 2021Y = 5$ Busco solución particular con algo parecido a Euclides:

$$\begin{cases} 2021 = 13 \cdot 155 + 6 \\ 13 = 6 \cdot 2 + 1 \end{cases} \xrightarrow{\text{Escribo al 1 como} \atop \text{combinación de 13 y2021}} 1 = 13 \cdot 311 + 2021 \cdot (-2) \xrightarrow{\text{quiero} \atop \text{al 5}} 5 = 13 \cdot 1555 + 2021 \cdot (-10)$$

Respuesta: $|78X \equiv 30 (12126) \iff X \equiv 1555 (2021)$

Hallar todos los $(a, b) \in \mathbb{Z}^2$ tales que $b \equiv 2a$ (5) y 28a + 10b = 26. **5**.

Parecido al 2..

$$b \equiv 2a \ (5) \iff b = 5k + 2a \xrightarrow{\text{meto en} \atop 28a + 10b = 26} 48a + 50k = 26 \xrightarrow{(48:59)=2} 24a + 25k = 13 \xrightarrow{\text{a}} \left\{ \begin{array}{c} a = -13 + (-25)q \\ k = 13 + 24q \end{array} \right\}$$

Let's corroborate:

$$b = 5 \cdot \underbrace{(13 + 24q)}_{b} + 2 \cdot \underbrace{(-13 + (-25)q)}_{c} = 39 + 70q \begin{cases} b = 39 + 70q \equiv 4 \ (5) & \checkmark \\ 2a = -26 - 50q \equiv -1 \ (5) \equiv 4 \ (5) & \checkmark \end{cases}$$

- 6. Hacer!
- 7. Hacer!
- 8. Hacer!

- 9. Hacer!
- 10. Hallar, cuando existan, todos los enteros a que satisfacen simultáneamente:

i)
$$\begin{cases} \star^1 a \equiv 3 \ (10) \\ \star^2 a \equiv 2 \ (7) \\ \star^3 a \equiv 5 \ (9) \end{cases}$$

i) $\begin{cases} \bigstar^1 \ a \equiv 3 \ (10) \\ \bigstar^2 \ a \equiv 2 \ (7) \\ \bigstar^3 \ a \equiv 5 \ (9) \end{cases}$ El sistema tiene solución dado que 10, 7 y 9 son coprimos dos a dos. Resuelvo:

$$\xrightarrow[\text{en } \star^1]{\text{Arranco}} a = 10k + 3 \stackrel{\text{(7)}}{\equiv} 3k + 3 \stackrel{\text{(*)}}{\equiv} 2 \text{ (7)} \xrightarrow{\text{usando que}} k \equiv 2 \text{ (7)} \rightarrow k = 7q + 2$$

$$\frac{\text{Arranco}}{\text{en}^{\star 1}} a = 10k + 3 \stackrel{(7)}{\equiv} 3k + 3 \stackrel{(\star^{\star 2})}{\equiv} 2 (7) \xrightarrow{\text{usando que}} k \equiv 2 (7) \rightarrow k = 7q + 2.$$

$$\frac{\text{actualizo}}{a} a = 10 \cdot \underbrace{(7q+2)}_{k} + 3 = 70q + 23 \stackrel{(9)}{\equiv} 7q \stackrel{(\star^{\star 3})}{\equiv} 5 (9) \xrightarrow{\text{usando que}} q \equiv 0 (9) \rightarrow q = 9j$$

$$\frac{\text{actualizo}}{a} a = 70 \underbrace{(9j)}_{q} + 23 = 680j + 23 \rightarrow \boxed{a \equiv 23 (630)} \qquad \checkmark$$

$$\xrightarrow{\text{actualizo}} a = 70 \underbrace{(9j)}_{a} + 23 = 680j + 23 \rightarrow \boxed{a \equiv 23 (630)} \quad \checkmark$$

La solución hallada es la que el Teorema chino del Resto me garantiza que tengo en el intervalo $[0, 10 \cdot 7 \cdot 9)$

ii)

iii)
$$\begin{cases} \star^1 & a \equiv 1 \ (12) \\ \star^2 & a \equiv 7 \ (10) \\ \star^3 & a \equiv 4 \ (9) \end{cases}$$

- 11. Hacer!
- 12. Hacer!
- Hacer! 13.

14. Hacer!

- 15. Hallar el resto de la división de a por p en los casos.
 - i) $a = 71^{22283}$, p = 11

$$\overline{a = 71^{22283}} = 71^{10 \cdot 2228 + 2 + 1} = \underbrace{(71^{10})^{2228}}_{\stackrel{11/p}{\equiv} 1^{2228} (11)} \cdot 71^2 \cdot 71^1 \equiv 71^3 (11) \rightarrow a \equiv 5^3 (11) \quad \checkmark$$

Usando corolario con p primo y $p \perp 71$, $\rightarrow 71^{22283} \equiv 71^{r_{10}(22283)}$ (11) $\equiv 71^3$ (11) $\rightarrow a \equiv 5^3$ (11)

ii) $a = 5 \cdot 7^{2451} + 3 \cdot 65^{2345} - 23 \cdot 8^{138}, p = 13$

$$\overline{a \equiv 5 \cdot 7^{204 \cdot 12 + 3} + 3 \cdot 8^{11 \cdot 12 + 6} (13)} \rightarrow a \equiv 5 \cdot (7^{12})^{204} \cdot 7^3 + 3 \cdot (8^{12})^{11} \cdot 8^6 (13)$$

$$\xrightarrow[p \text{ f 7}]{p \text{ f 8}} a \equiv 5 \cdot 7^3 + 3 \cdot 8^6 (13) \rightarrow a \equiv 5 \cdot (-6^3 + 3 \cdot 5^5) (13) \text{ consultar}$$

- 16. Resolver en \mathbb{Z} las siguientes eecuaciones de congruencia:
 - i) $2^{194}X \equiv 7 (97)$

$$\frac{2 \perp 97}{2} 2^{194} = (2^{96})^2 \cdot 2^2 \equiv 4 (97) \to 4X \equiv 7 (97) \xrightarrow{\times 24} -X \equiv \underbrace{168}_{\stackrel{(97)}{=}71} (97) \xrightarrow{-71 \stackrel{(97)}{=} 26} X \equiv 26 (97) \checkmark$$

ii) $5^{86}X \equiv 3 \ (89)$

Hacer!

17. Probar que para todo $a \in \mathbb{Z}$ vale

- i) $728 \mid a^{27} a^3$
- ii) $\frac{2a^7}{35} + \frac{a}{7} \frac{a^3}{5} \in \mathbb{Z}$
- i) $728 = 2^3 \cdot 7 \cdot 13$

Pruebo congruencia con 2^3 , 7 y 13.

$$728 \mid a^{27} - a^3 \Rightarrow$$

$$\begin{cases}
2 \mid a^{27} - a^{3} \Rightarrow \\
2 \mid a^{27} - a^{3} \xrightarrow{2 \not | a} (a)^{27} - (a)^{3} \equiv 0 \ (2) \Rightarrow 2 \mid a^{27} - a^{3}
\end{cases}$$

$$\begin{cases}
2 \mid a^{27} - a^{3} \xrightarrow{2 \not | a} (a)^{27} - (2k)^{3} \equiv 0 \ (8) \Leftrightarrow 2^{3} \cdot (2^{3})^{8} \cdot k^{27} - 2^{3} \cdot k^{3} \equiv 0 \ (8) \end{cases}$$

$$\begin{cases}
3 \mid a^{27} - a^{3} \Leftrightarrow 3^{27} - 3^{3} \equiv 0 \ (8) \Leftrightarrow (3^{2})^{13} \cdot 3 - 3^{2} \cdot 3 \equiv 0 \ (8)
\end{cases}$$

$$\begin{cases}
3 \mid a^{27} - a^{3} \Leftrightarrow 3^{27} - 3^{3} \equiv 0 \ (8) \Leftrightarrow (5^{2})^{13} \cdot 3 - 3^{2} \cdot 3 \equiv 0 \ (8)
\end{cases}$$

$$\begin{cases}
5 \mid a^{27} - a^{3} \Leftrightarrow 5^{27} - 5^{3} \equiv 0 \ (8) \Leftrightarrow (5^{2})^{13} \cdot 5 - 5^{2} \cdot 5 \equiv 0 \ (8)
\end{cases}$$

$$\begin{cases}
7 \mid a^{27} - a^{3} \Leftrightarrow 7^{27} - 7^{3} \equiv 0 \ (8) \Leftrightarrow (7)^{27} - 7^{3} \equiv 0 \ (8)
\end{cases}$$

$$\begin{cases}
7 \mid a^{27} - a^{3} \Leftrightarrow a^{27} - a^{3} \equiv 0 \ (7) \xrightarrow{\text{rerimo} \atop \text{caso } 7 \not | a} a^{27} - a^{3} \equiv 0 \ (7) \Leftrightarrow a^{3} - a^{3} \equiv 0 \ (7)
\end{cases}$$

$$\begin{cases}
13 \mid a^{27} - a^{3} \Leftrightarrow a^{27} - a^{3} \equiv 0 \ (13) \xrightarrow{\text{respirator} \atop \text{caso } 13 \not | a} a^{27} - a^{3} \equiv 0 \ (13) \Leftrightarrow a^{3} - a^{3} \equiv 0 \ (13)
\end{cases}$$

- 18. Hacer!
- 19. Hacer!
- 20. Hallar el resto de la división de:
 - i) $43 \cdot 7^{135} + 24^{78} + 11^{222}$ por 70
 - ii) $\sum_{i=1}^{1759} i^{42}$ por 56
 - i) Hacer!

ii) Calcular el resto pedido equivale a resolver la ecuaición de equivalenc

$$X \equiv \sum_{i=1}^{1759} i^{42} (56) \text{ que será aún más simple en la forma: } \begin{cases} X \equiv \sum_{i=1}^{1759} i^{42} (7) \\ X \equiv \sum_{i=1}^{1759} i^{42} (8) \end{cases}$$

Primerlo estudio la ecuación de módulo 7:
$$\begin{cases} \sum_{i=1}^{1759} i^{42} \equiv X \ (7) & \stackrel{\star}{\overset{1}{\overset{7}{=}}} \frac{7 \text{ es primo, uso Fermat}}{\text{si } p \not | i \to i^{42} = (i^6)^7 \equiv 1 \ (7)} & \sum_{i=1}^{1759} i^{42} = \sum_{i=1}^{1759} (i^6)^7 & \frac{251 \cdot 7 + 2 = 1759}{\overset{1759}{\overset{1759}{=}}} & \sum_{i=1}^{1759} (i^6)^7 & \frac{(7)}{\overset{1}{\overset{1759}{=}}} 251 \cdot ((1^6)^7 + (2^6)^7 + (3^6)^7 + (4^6)^7 + (5^6)^7 + (6^6)^7 + (7^6)^7) + ((1^6)^7 + (2^6)^7 + (3^6)^7 + (4^6)^7) \\ \sum_{i=1}^{1759} (i^6)^7 & \stackrel{(7)}{\overset{1}{\overset{1}{\overset{1759}{=}}}} 251 \cdot (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) + (1 + 1 + 1 + 1) = 251 \cdot 6 + 4 & \stackrel{(7)}{\overset{1}{\overset{1}{\overset{1759}{=}}}} 3 \\ \xrightarrow{\star^1} X \equiv 3 \ (7) \\ \text{Ahora se labura el módulo 8}. \end{cases}$$

$$\begin{cases} \sum_{i=1}^{1759} i^{42} \equiv X \ (8) \xrightarrow{\text{8 no es primo} \\ \text{no uso Fermat}} \text{ Analizo a mano} \xrightarrow{219 \cdot 8 + 7 = 1759} X \equiv \sum_{i=1}^{1759} i^{42} \ (8) \stackrel{\text{(8)}}{\equiv} \\ i^{42} \equiv 219 \cdot \underbrace{\left(1^{42} + 2^{42} + 3^{42} + 4^{42} + 5^{42} + 6^{42} + 7^{42} + 0^{42}\right)}_{\text{8 términos: } r_8(i^{42}) = (r_8(i))^{42}} + \underbrace{\left(1^{42} + 2^{42} + 3^{42} + 4^{42} + 5^{42} + 6^{42} + 7^{42}\right)}_{\text{8 términos: } r_8(i^{42}) = (r_8(i))^{42}} \right. \\ \begin{cases} 2^{42} = (2^3)^{14} \stackrel{\text{(8)}}{\equiv} 0 \\ 4^{42} = (2^3)^{14} \cdot (2^3)^{14} \stackrel{\text{(8)}}{\equiv} 0 \\ 4^{42} = (2^3)^{14} \cdot 3^{42} \stackrel{\text{(8)}}{\equiv} 0 \\ 1^{42} = 1 \\ 3^{42} = (3^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \\ 5^{42} = (5^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \\ 7^{42} = (7^2)^{21} \stackrel{\text{(8)}}{\equiv} 1^{21} = 1 \end{cases} \\ \frac{\text{reemplazo}}{\text{esa en}} \sum_{i=1}^{1759} i^{42} \stackrel{\text{(8)}}{\equiv} 219 \cdot 4 + 4 = 880 \stackrel{\text{(8)}}{\equiv} 0 \rightarrow X \equiv 0 \text{ (8)} \end{cases}$$

El sistema $\begin{cases} X \equiv 3 \ (7) \\ X \equiv 0 \ (8) \end{cases}$ tiene solución $X \equiv 24 \ (56)$, por lo tanto el resto pedido: r_{56}

$$r_{56} \left(\sum_{i=1}^{1759} i^{42} \right) = 24$$

21. Hacer!

Resolver en \mathbb{Z} la ecuación de congruencia $7X^{45} \equiv 1$ (46). 22.

$$7X^{45} \equiv 1 \text{ (46)} \xrightarrow{\text{multiplico por} \atop 13} 91X^{45} \equiv 13 \text{ (46)} \rightarrow X^{45} \equiv -13 \text{ (46)} \rightarrow X^{45} \equiv 33 \text{ (46)}$$

$$\rightarrow \left\{ \begin{array}{l} X^{45} \equiv 33 \ (23) \rightarrow X^{45} \equiv 10 \ (23) \xrightarrow{23 \ \mathrm{primo} \ \mathrm{y} \ 23 \ / \ X} X^{22} X^{22} X^{1} \stackrel{(23)}{\equiv} X \equiv 10 \ (23) \\ X^{45} \equiv 10 \ (2) \rightarrow X^{45} \equiv 0 \ (2) \xrightarrow{X \ \mathrm{multiplicado \ por} \atop \mathrm{si \ mismo \ impar \ veces}} X \equiv 0 \ (2) \end{array} \right.$$

Hallar todos los divisores positivos de $5^{140}=25^{70}$ que sean congruentes a 2 módulo 9 y 3 módulo 23. 11.

Quiero que ocurra algo así: $\begin{cases} 25^{70} \equiv 0 \ (d) \to 5^{140} \equiv 0 \ (d) \\ d \equiv 2 \ (9) \\ d \equiv 3 \ (11) \end{cases}$. De la primera ecuación queda que el divisor $d \equiv 3 \ (11)$

 $d = 5^{\alpha}$ con α compatible con las otras ecuaciones. $\rightarrow \begin{cases} 5^{\alpha} \equiv 2 \ (9) \\ 5^{\alpha} \equiv 3 \ (11) \end{cases}$

 \rightarrow Busco periodicidad en los restos de las exponenciales $5^{i\alpha?} \equiv 1$:

$$5^{\alpha} \equiv 3 \text{ (11)} \xrightarrow{\text{fermateo en búsqueda de}} 5^{10} \equiv 1 \text{ (11)}$$

$r_{10}(\alpha)$	0	1	2	3	4	5
$r_{11}(5^{\alpha})$	1	5	3	4	9	1

$$5^{\alpha} \equiv 3 \ (11) \Leftrightarrow \boxed{\alpha \equiv 2 \ (5)}$$

$$\begin{bmatrix} r_{10}(\alpha) & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline r_{11}(5^{\alpha}) & 1 & 5 & 3 & 4 & 9 & 1 \\ \hline por lo tanto hay periodicidad de 5 \\ 5^{\alpha} \equiv 3 \ (11) \Leftrightarrow \boxed{\alpha \equiv 2 \ (5)} \quad \checkmark$$
 El sistema
$$\begin{cases} \alpha \equiv 5 \ (6) \\ \alpha \equiv 2 \ (5) \end{cases}$$
 6 y 5 son coprimos, se resuelve para $\alpha \equiv 17 \ (30)$ y además $0 < \alpha \le 140$ lo que se cumple para $\alpha = 30k + 17 = \begin{cases} 17 & \text{si} \quad k = 0 \\ 47 & \text{si} \quad k = 1 \\ 77 & \text{si} \quad k = 2 \\ 107 & \text{si} \quad k = 3 \\ 137 & \text{si} \quad k = 4 \end{cases}$ $\rightarrow \boxed{\mathcal{D}_{+}(25^{70}) = \{5^{17}, 5^{47}, 5^{77}, 5^{107}, 5^{137}\}}$

24. Hacer!

30. Hacer!

Ejercicios extras:

1. Hallar los posibles restos de dividir a a por 70, sabiendo que $(a^{1081} + 3a + 17:105) = 35$

$$\underbrace{(a^{1081} + 3a + 17 : 105)}_{m} = \underbrace{35}_{5\cdot7} \xrightarrow{\text{debe ocurrif}} \begin{cases} 5 \mid m \\ y \\ 7 \mid m \\ y \\ 3 \not \mid m \end{cases}$$

$$5 \mid m \to a^{1081} + 3a + \underbrace{17}_{5 \supseteq 2} \equiv 0 \text{ (5)} \to \begin{cases} \text{si } 5 \mid a \to 2 \equiv 0 \text{ (5)} \to a \not \equiv 0 \text{ (5)} \\ \text{si } 5 \not \mid a \xrightarrow{\text{d}^{1081} = a(a^4)^{270}} \Rightarrow a + 3a + 2 \equiv 0 \text{ (5)} \to a \equiv 2 \text{ (5)} \end{cases}$$

$$7 \mid m \to a^{1081} + 3a + \underbrace{17}_{5 \supseteq 3} \equiv 0 \text{ (7)} \to \begin{cases} \text{si } 7 \mid a \to 3 \equiv 0 \text{ (7)} \to a \not \equiv 0 \text{ (7)} \\ \text{si } 7 \not \mid a \xrightarrow{\text{d}^{1081} = a(a^6)^{180}} \Rightarrow a + 3a + 3 \equiv 0 \text{ (7)} \to 4a \equiv -3 \text{ (7)} \Rightarrow a \equiv 1 \text{ (7)} \end{cases}$$

$$3 \not \mid m \to a^{1081} + \underbrace{3}_{0} \Rightarrow \underbrace{17}_{0} \Rightarrow \underbrace{1$$

2. Sea $a \in \mathbb{Z}$ tal que $(a^{197} - 26:15) = 1$. Hallar los posibles valores de $(a^{97} - 36:135)$

Nota: No perder foco en que no hay que encontrar "para que a el mcd vale tanto", sino se pone más complicado en el final.

$$(a^{97} - 36 : \overbrace{135}^{3^{3} \cdot 5}) = 3^{\alpha} \cdot 5^{\beta} \text{ con } \bigstar^{1} \left\{ \begin{array}{l} 0 \leq \alpha \leq 3 \\ 0 \leq \beta \leq 1 \end{array} \right\}.$$
 Luego $(a^{197} - 26 : \underbrace{15}_{3 \cdot 5}) = 1$ se debe cumplir que: $\left\{ \begin{array}{l} 5 \not \mid a^{197} - 26 \\ 3 \not \mid a^{197} - 26 \end{array} \right.$

Análisis de $(a^{197} - 26:15) = 1$:

Estudio la divisibilidad 5:

$$5 \nmid a^{197} - 26 \iff a^{197} - 26 \not\equiv 0 \ (5) \iff a^{197} - 1 \not\equiv 0 \ (5) \xrightarrow{\text{analizo casos} \atop 5 \mid a \text{ o } 5 \mid a}$$

$$a^{197} \not\equiv 1 \ (5) \Leftrightarrow \begin{cases} (\operatorname{rama} 5 \not\mid a) \xrightarrow{5 \text{ es primo}} a \cdot (\overbrace{a^4})^{49} \not\equiv 1 \ (5) \Leftrightarrow a \not\equiv 1 \ (5) \end{cases} \checkmark$$

$$(\operatorname{rama} 5 \mid a) \xrightarrow{5 \text{ es primo}} 0 \not\equiv 1 \ (5) \to a \equiv 0 \ (5)$$

Conclusión divisilidad 5:

Para que
$$5 \not\mid a^{197} - 26 \iff a \not\equiv 1 (5) \bigstar^2$$

Estudio la divisibilidad 3:

$$3 \nmid a^{197} - 26 \iff a^{197} - 2 \not\equiv 0 \ (3) \iff a^{197} - 2 \not\equiv 0 \ (3) \xrightarrow{\text{analizo casos}} 3 \mid a \circ 3 \mid a$$

$$a^{197} \not\equiv 2 \ (3) \Leftrightarrow \left\{ \begin{array}{l} (\operatorname{rama} \ 3 \not\mid a) \xrightarrow{3 \text{ es primo}} a \cdot (\overbrace{a^2})^{98} \not\equiv 2 \ (3) \Leftrightarrow a \not\equiv 2 \ (3) \\ (\operatorname{rama} \ 3 \mid a) \xrightarrow{3 \text{ es primo}} 0 \not\equiv 2 \ (3) \to a \equiv 0 \ (3) \end{array} \right.$$

Conclusió<u>n divisilidad 3:</u>

Para que
$$3 \not\mid a^{197} - 26 \iff a \not\equiv 2 (3) \not\uparrow^3$$

Necesito que
$$\left\{ \begin{array}{l} 3 \mid a^{97} - 36 : 135) : \\ 0 \quad \text{bien,} \\ 5 \mid a^{97} - 36 \end{array} \right\}$$
, para obtener valores distintos de 1 para el MCD.

Estudio la divisibilidad 5 (sujeto a \star^2 y \star^3):

Si
$$5 \mid a^{97} - 36 \iff a^{97} - 1 \equiv 0 \ (5) \iff a^{97} \equiv 1 \ (5) \xrightarrow{\text{analizo casos} \atop 5 \mid a \circ 5 \mid a}$$

$$a^{97} \equiv 1 \ (5) \Leftrightarrow \begin{cases} (\operatorname{rama} \ 5 \not\mid a) \xrightarrow{5 \text{ es primo}} a \cdot (\overbrace{a^4})^{24} \equiv 1 \ (5) \Leftrightarrow a \equiv 1 \ (5), \text{ absurdo con } \bigstar^2 \ (\operatorname{rama} \ 5 \mid a) \xrightarrow{5 \text{ es primo}} 0 \equiv 1 \ (3) \to \text{ si } a \equiv 0 \ (5) \Rightarrow a^{97} \not\equiv 1 \ (5) \end{cases}$$

Conclusión divisilidad 5:

$$5 \not\mid a^{97} - 36 \quad \forall a \in \mathbb{Z} \rightarrow$$
el MCD no puede tener un 5 en su factorización.

Estudio la divisibilidad 3 (sujeto a \star^2 y \star^3):

$$3 \mid a^{97} - 36 \iff a^{97} \equiv 0 \ (3) \iff a^{97} \equiv 0 \ (3) \xrightarrow{\text{analizo casos}} 3 \mid a^{97} = 0 \ (3) \xrightarrow{\text{analizo casos}} 3$$

$$a^{97} \equiv 0 \ (3) \Leftrightarrow \begin{cases} (\operatorname{rama} 3 \not | a) \xrightarrow{3 \text{ es primo}} a \cdot (a^2)^{48} \equiv 0 \ (3) \Leftrightarrow a \equiv 0 \ (3) \end{cases} \checkmark$$

$$(\operatorname{rama} 3 | a) \xrightarrow{3 \text{ es primo}} a \equiv 0 \ (3) \Leftrightarrow 0 \equiv 0 \ (3) \to \text{ si } a \equiv 0 \ (3) \Rightarrow a^{97} \equiv 0 \ (3)$$

Conclusión divisilidad 3:

$$3 \mid a^{97} - 36 \iff a \equiv 0 \ (3)$$

De \star^1 3 es un posible MCD, tengo que ver si 3^2 o 3^3 también dividen.

Estudio la divisibilidad 9 en a = 3k por \star^4 :

Estudio la divisionidad 9 en
$$d = 5k$$
 por \sim :
$$9 \mid (3k)^{97} - 36 \iff 3k^{97} \equiv 0 \ (9) \iff 3 \cdot (3^2)^{48} \cdot k^{97} \equiv 0 \ (9) \iff 0 \equiv 0 \ (9) \quad \checkmark \quad \forall k \in \mathbb{Z}$$

Conclusión divisilidad 9:

$$9 \mid a^{97} - 36 \text{ puede ser que } (a^{97} - 26:135) = 9$$

Estudio la divisibilidad 27 en a = 3k por \star^4 :

$$27 \mid (3k)^{97} - 36 \iff (3k)^{97} \equiv 9 \ (27) \iff 3 \cdot (3^3)^{32} \cdot k^{97} \equiv 9 \ (27) \iff 0 \equiv 9 \ (27)$$

Conclusión divisilidad 27:

Si
$$a \equiv 0 \ (3) \Rightarrow 27 \not | a^{97} - 36$$

Finalmente: el mcd es 9

3. Determinar todos los $n \in \mathbb{Z}$ tales que

$$(n^{433} + 7n + 91:931) = 133.$$

Expresar las soluciones mediante una única ecuación.

Para que se cumpla que $(n^{433} + 7n + 91 : \underbrace{931}_{7^2 \cdot 19}) = \underbrace{133}_{7 \cdot 19}$ deben ocurrir las siguientes condiciones:

$$\begin{cases} 7 \mid n^{433} + 7n + 91 \\ 19 \mid n^{433} + 7n + 91 \\ 7^2 \not\mid n^{433} + 7n + 91 \end{cases}$$

Estudio la divisibilidad 7:

Si
$$7 \mid n^{433} + 7n + 91 \iff n^{433} + 7n + 91 \equiv 0 \ (7) \iff n^{433} \equiv 0 \ (7) \xrightarrow[7]{n \ o \ 7 \mid n}$$

$$n^{433} \equiv 0 \ (7) \Leftrightarrow \begin{cases} \text{(rama 7 / n)} & \xrightarrow{\text{7 es primo}} (\underbrace{n^6}_{7 / n})^{72} \cdot n \equiv 0 \ (7) \Leftrightarrow n \equiv 0 \ (7), \text{ pero esta rama 7 / } n \to 2 \end{cases}$$

$$(\text{rama 7 | n)} & \xrightarrow{\text{7 es primo}} 0 \equiv 0 \ (7) \text{ y como esta rama 7 | } n \to [n \equiv 0 \ (7)] \quad \checkmark^{*1}$$

Conclusión divisibilidad 7:

$$7 \mid n^{433} + 7n + 91 \Leftrightarrow n \equiv 0 \ (7)$$

Estudio la divisibilidad $7^2 = 49$:

Si
$$7^2 \not/ n^{433} + 7n + 91 \iff n^{433} + 7n + 91 \not\equiv 0 \ (49) \iff n^{433} + 7n + 42 \not\equiv 0 \ (49)$$

$$\xrightarrow{\text{de } ^* \text{tengo que}} (7k)^{433} + 7 \cdot 7k + 42 \not\equiv 0 \ (49) \Leftrightarrow 7 \cdot (49)^{216} \cdot k^{433} + 49k + 42 \not\equiv 0 \ (49) \Leftrightarrow 42 \not\equiv 0 \ (49)$$

Conclusión divisibilidad 49:

$$49 \not\mid n^{433} + 7n + 91 \quad \forall n \in \mathbb{Z}$$

Estudio la divisibilidad 19:

Conclusión divisibilidad 19:

$$19 \mid n^{433} + 7n + 91 \Leftrightarrow n \equiv 10 \ (19)$$

$$\begin{cases} \star^{1} n \equiv 0 \ (7) \\ \star^{2} n \equiv 10 \ (19) \end{cases} \xrightarrow{\begin{array}{c} 7 \perp 19 \\ \text{hay solución por TCH} \end{array}} \begin{cases} \frac{\star^{2}}{\text{en } \star^{1}} n = 7(19k + 10) = 133k + 70 \rightarrow \boxed{n \equiv 70 \ (133)} \end{cases} \checkmark$$

Determinar para cada $n \in \mathbb{N}$ el resto de dividir a 8^{3^n-2} por 20. 4.

Quiero encontrar $r_{20}(8^{3^n-2})$ entonces analizo congruecia.

Pasar

Sea $n \in \mathbb{N}$ tal que $(n^{109} + 37:52) = 26$ y $(n^{63} - 21:39) = 39$. Calcular el resto de dividir a n por **5**. 156.

$$(n^{109} + 37 : \underbrace{52}_{13.2^2}) = \underbrace{26}_{13.2} \text{ y } (n^{63} - 21 : \underbrace{39}_{13.3}) = \underbrace{39}_{13.3}.$$

Info de los MCD:

Para que $(n^{109} + 37:52) = 26$ debe ocurrir que:

$$\begin{cases}
13 \mid n^{109} + 37 \\
2 \mid n^{109} + 37
\end{cases} \text{ Para que } (n^{63} - 21 : 39) = 39 \text{ debe ocurrir que:} \\
4 \not\mid n^{109} + 37
\end{cases}$$

$$\begin{cases}
13 \mid n^{63} - 21 \\
3 \mid n^{63} - 21
\end{cases}$$

$$\begin{cases}
n \equiv 1 \ (2) \\
n \equiv 2 \ (13) \\
n \not\equiv 3 \ (4) \\
n \equiv 0 \ (3)
\end{cases} \iff \begin{cases}
n \equiv 1 \ (2) \\
n \equiv 2 \ (13) \\
n \equiv 1 \ (4) \\
n \equiv 0 \ (3)
\end{cases}$$

$$Completer R: $r_{156}(n) = 93$$$

6. Hallar el resto de la división de 12^{2^n} por 7 para cada $n \in \mathbb{N}$

R: $12^{2^n} \equiv 4 \ (7) \text{ si } n \text{ impar}$ $12^{2^n} \equiv 2 \ (7) \text{ si } n \text{ par}$

pasar