

AIE 311 : Data structure and Algorithm

• Sorting => การเรียงลำดับข้อมูล

Diagram of a Tree Data Structure

• ประเภทของการ Sorting

1. Comparison sort

การเรียงลำดับโดยการเปรียบเทียบค่าหรือองค์ประกอบต่าง ๆ ระหว่างข้อมูล

2. Non-comparison sort

การเรียงลำดับโดยไม่มีการเปรียบเทียบค่าหรือองค์ประกอบต่าง ๆ ระหว่างข้อมูล แต่ใช้คุณสมบัติโดยตรง ของข้อมูล เช่น การใช้ค่าความถี่ของข้อมูล

• ประเภทของการ Sorting

- 1. Comparison sort
 - Bubble Sort
 - Selection Sort
 - Insertion Sort
 - Merge Sort
 - Quick Sort
 - Heap Sort

- ประเภทของการ Sorting
 - 1. Non-comparison sort
 - Counting Sort
 - Radix Sort
 - Bucket Sort

Bubble Sort

• Bubble sort is the sorting method that the selected value will compare and swap location in every pair until reach the last value of array. This meant this method will slow at start pace but faster after sorting.

Figure 2: Paring with 1st index and 2nd index then swap

Figure 3: Paring with 2nd index and 3rd index then swap

Figure 5: Paring with 4th index and 5th index then swap

Figure 7: Paring with 6th index and 7th index but 6th index value is less than 7th index value

• Bubble Sort (continued)

Figure 8: Current value is now index 7th because 7th index value is more than 6th index value then compare and swap value between 7th index and 8th index

Figure 9: The last index is now locked.

This mean in every run, the locked index will greater and the sorting will be faster.

Figure 10: 2nd run with remaining remaing area/index

Figure 11: 3rd run with remaining remaing area/index

• Bubble Sort (continued)

Figure 13: Sorted array

10

13

Sorted

9

5

Selection Sort

• Selection sort is the method to find the lowest value from array then swap to the index of current run. The first run index will equal to 0 and the third run index will equal to 2 which means index will equal

running round. - 1.

Figure 15: Lock 1st index after swapped.

Selection Sort (Continued)

Figure 16: Find the minimum value after 2nd index but its value is the smallest

Selection Sort (Continued)

Figure 18: Lock 3rd index after swapped.

Insertion Sort

• Insertion sort is similar to bubble sort but only compare and will stop when current value is less than the previous value. After insert sorted value the new run will started.

Figure 20: Insertion sort 1st run

Figure 21: Insertion sort 2nd run

Figure 22: Insertion sort 3rd run

Figure 24: Insertion sort 5th run which similar to the 3rd run

Figure 25: Insertion sort 6th run and no need to swap in this run

Figure 26: Insertion sort 7th run which similar to the 3rd run (part 1)

Figure 28: Insertion sort 7th run which similar to the 3rd run (part 3)

Figure 30: Insertion sort 7th run which similar to the 3rd run (part 5)

Figure 33: Sorted array