3COLOR es NP completo (2025)

En este documento daremos la prueba (mas o menos) que dimos en el 2025 de que 3COLOR es NP completo.

Para probar eso, sabiendo que 3SAT es NP completo, demostraremos que 3SAT se reduce polinomialmente a 3COLOR.

Es decir, debemos, dada una instancia de 3SAT, es decir, una expresion booleana B en CNF con exactamente 3 literales por disjuncion, debemos crear polinomialmente una instancia de 3COLOR, es decir, un grafo G, tal que B es satisfacible si y solo si G se puede colorear con 3 colores.

Sean $x_1, ..., x_n$ las variables de B y sean D_i disjunciones cada una con tres literales tales que

$$B = D_1 \wedge D_2 \wedge \dots \wedge D_m$$

Como cada D_j tiene 3 literales, sean ℓ_{jk} , k=1,2,3 los 3 literales de D_j . Es decir, $D_j=\ell_{j1}\vee\ell_{j2}\vee\ell_{j3}$. Construiremos ahora G.

Observacion: G debe ser construido en forma polinomial a partir de B. Por lo tanto no debemos hacer trampa y decir algo como "si B es satisfacible tomo G un triangulo y si no tomo G un K_4 " porque DECIDIR si B es o no satisfacible no es polinomial. (al menos, en 2025 no conocemos ningún algoritmo polinomial que lo pueda resolver).

Primero daremos los vértices de G.

Primero, dos vertices especiales, s y t.

Ademas vértices v_i para cada i = 1, 2, ..., 2n (observar que el número de estos vértices es el doble del número de variables de B).

Ademas, para cada j = 1, ..., m tendremos 6 vertices $a_{j1}, a_{j2}, a_{j3}, q_{j1}, q_{j2}, q_{j3}$.

Observemos que la construcción de los vertices es directa a partir de solamente saber n y m y es polinomial.

Ahora daremos los lados.

Entonces definimos los siguientes lados:

- 1. *st*
- 2. tv_i , i = 1, ..., 2n.
- 3. $v_i v_{i+n}$, i = 1, ..., n.
- 4. Triangulos $\{a_{j1}a_{j2}, a_{j2}a_{j3}, a_{j1}a_{j3}\}, j = 1, .., m.$
- 5. Unir bases con extremos: $a_{jk}q_{jk}$, j = 1, ..., m, k = 1, 2, 3. (nota: los triangulos anteriores mas estos ultimos lados se llaman las "garras" porque al dibujarlos parecen unas garras).
- 6. sq_{ik} , j = 1, ..., m, k = 1, 2, 3.
- 7. Un conjunto F de lados que definimos abajo:

Observar que salvo por F, todos los otros lados se construyen directo simplemente a partir de n y m. Para poder definir F, debemos definir una función $\Psi: \{x_1,...,x_n,\overline{x}_1,...,\overline{x}_n\} \mapsto \{v_i: i=1,...,2n\}$ dada por

$$\Psi(x_i) = v_i \qquad \Psi(\overline{x}_i) = v_{i+n}$$

Usando esta función, definimos F como

$$F = \{q_{ik}\Psi(\ell_{ik}): j = 1,..,m, k = 1,2,3\}$$

Estos son los únicos lados que toman en cuenta concretamente quienes son los literales que aparecen en cada D_i .

Como G tiene triangulos, sabemos que $\chi(G) \geq 3$, asi que tenemos que demostrar eque B es satisfacible si y solo si X(G) = 3.

B es satisfacible $\Leftarrow X(G) = 3$:

Sea c un coloreo propio con 3 colores de G.

Como st es un lado, sus colores son distintos. Por lo tanto los 3 colores son c(s), c(t) y algún "tercer" color, distinto de esos dos.

Definamos un vector de bits $b \in \{0,1\}^n$ como:

 $b_i = 1$ si $c(v_i) = c(s)$ y $b_i = 0$ si no, para i = 1, ...n.

Para demostrar que B(b) = 1 basta con ver que $D_j(b) = 1$ para todo j.

Fijemos entonces un j en $\{1, 2, ..., m\}$.

1. Como tenemos el triangulo $\{a_{j1}a_{j2}, a_{j2}a_{j3}, a_{j1}a_{j3}\}$, y c es un coloreo propio con 3 colores, entonces los 3 colores deben aparecer en los vertices de ese triangulo.

Por lo tanto, existe $k_j \in \{1, 2, 3\}$ tal que $c(a_{jk_j}) = c(t)$.

- 2. Como $a_{jk_j}q_{jk_j}$ es un lado, entonces $c(q_{jk_j}) \neq c(a_{jk_j})$, por lo tanto por [1], concluimos $c(q_{jk_j}) \neq c(t)$.
- 3. Como sq_{jk_j} es un lado, concluimos que $c(q_{jk_j}) \neq c(s)$.
- 4. Los items [2] y [3] nos dicen que el color de q_{jk_j} debe ser igual al "tercer" color.
- 5. Como $q_{jk_j}\Psi(\ell_{jk_j})$ es un lado, entonces $c(\Psi(\ell_{jk_j})) \neq c(q_{jk_j})$. Es decir, por el item [4], el color de $\Psi(\ell_{jk_j})$ NO ES el tercer color.
- 6. Como $t\Psi(\ell_{jk_i})$ es un lado, entonces $c(\Psi(\ell_{jk_i})) \neq c(t)$.
- 7. Los tems [5] y [6] implican que $c(\Psi(\ell_{jk_j})) = c(s)$.

A partir del item [7] veamos de probar que $D_j(\vec{b}) = 1$. Para ello tenemos que analizar que clase de literal es ℓ_{jr} .

• Caso 1: ℓ_{jk_i} es una variable:

Entonces existe $i \in \{1, ...n\}$ tal que $\ell_{jr} = x_i$.

Por lo tanto $\Psi(\ell_{jk_j}) = v_i$.

Entonces [7] implica que $c(v_i) = c(s)$, y esto, por definición de \vec{b} implica que $b_i = 1$.

Entonces $\ell_{jk_j}(\vec{b}) = x_i(\vec{b}) = b_i = 1$ lo cual implica $D_j(\vec{b}) = 1$ como queriamos.

• Caso 2: ℓ_{jk_i} es la negación de una variable:

Entonces existe i con $\ell_{jk_i} = \overline{x}_i$. Por lo tanto $\Psi(\ell_{jk_i}) = v_{i+n}$.

Entonces [7] implica que $c(v_{i+n}) = c(s)$.

Como $v_i v_{i+n}$ es un lado, entonces el color de v_i debe ser distinto del color de v_{i+n} . Por lo tanto $c(v_i) \neq c(s)$.

Esto, por definición de \vec{b} implica que $b_i = 0$.

Entonces:

$$\ell_{jk_i}(\vec{b}) = \overline{x}_i(\vec{b}) = 1 - b_i = 1 - 0 = 1$$

lo cual otra vez implica $D_j(\vec{b})=1$ como queriamos.

 $Fin \Leftarrow$.

$$B$$
 es satisfacible $\Rightarrow X(G) = 3$:

Como B es satisfacible, existe \vec{b} un vector de bits tal que $B(\vec{b}) = 1$.

Colorearemos G a partir de \vec{b} , y cada vez que coloreemos un vértices o conjunto de vértices debemos asegurarnos que el coloreo sigue siendo propio.

Para empezar, definimos c(s) = 1, c(t) = 2. Entonces el lado st no crea problemas porque sus extremos tienen colores distintos.

Luego definimos

$$c(v_i) = b_i$$
 si $i \le n$ y $c(v_i) = 1 - b_i$ si $i \ge n + 1$

Como $b_i \in \{0, 1\}$, entonces tambien vale $1 - b_i \in \{0, 1\}$. Por lo tanto $c(v_i) \in \{0, 1\}$ $\forall i = 1, ..., 2n$. Como $c(t) = 2 \neq 0, 1$, esto implica que los lados tv_i no crean problemas porque un extremo tiene color 2 y el otro color 0 o 1.

Ademas, como $b_i \in \{0, 1\}$, entonces $b_i \neq 1 - b_i$. Esto implica que el color de v_i es distinto del color de v_{i+n} , así que los lados $v_i v_{i+n}$ tampoco crean problemas.

Todavia no usamos que $B(\vec{b}) = 1$. Esa propiedad implica que $D_j(\vec{b}) = 1$ para todo j, y como D_j es una disjunción eso implica que:

$$\forall j \in \{1, .., m\} \exists k_j \in \{1, 2, 3\} : \ell_{jk_j}(\vec{b}) = 1$$

(si hay mas de un tal " k_i " elejimos uno solo, pej el primero)

Entonces coloreamos, para cada j = 1, ..., m:

 $c(a_{jk_j})=2$ y para los dos indices r distintos de k_j , definimos $c(a_{jr})$ como uno de ellos igual a 1 y el otro igual a 0.

De esta forma los triangulos $a_{j1}a_{j2}$, $a_{j2}a_{j3}$, $a_{j1}a_{j3}$ no crean problemas porque sus vertices tienen los tres colores 0, 1, 2 distintos.

Luego coloreamos los extremos:

$$c(q_{jr}) = 2 \text{ para } r \neq k_j, \text{ y:}$$

$$c(q_{jk_i}) = 0$$

Ya tenemos coloreado todo el grafo, pero nos quedan por chequear varios lados.

Los lados $a_{jk_j}q_{jk_j}$ no crean problemas porque uno de sus extremos tiene color 2 y el otro 0.

Y para $r \neq k_j$, los lados $a_{jr}q_{jr}$ no crean problemas porque uno de sus extremos tiene color 0 o 1 y el otro color 2.

Ademas los lados sq_{jr} (r = 1, 2, 3) no crean problemas porque el color de s es 1 y el de los q_{jr} es 0 o 2.

Para $r \neq k_j$ los lados $q_{jr}\Psi(\ell_{jr})$ no crean problemas porque el color de q_{jr} es 2 para esos r, mientras que el color de $\Psi(\ell_{jr})$, que es algún $v_i, i = 1, ..., 2n$, va a ser 0 o 1.

Por lo tanto, solo quedan por ver los lados $q_{jk_i}v(\ell_{jk_i})$.

Si bien lo que queda es sólo un fragmento de la prueba, es la parte **esencial** de la prueba, porque en todo el resto de la prueba, nunca se usa quien es k_j , y por lo tanto no se usa que $D_j(\vec{b}) = 1$. Este es el único lado donde se usa, y por eso es clave, y si no lo ponen en la prueba, no tendrán muchos puntos en esta parte.

El color de q_{jk_j} es 0. Veremos que el color de $\Psi(\ell_{jk_j})$ es 1, y entonces no habrá problemas y habremos terminado la prueba.

Para probar esto, debemos analizar que tipo de literal es ℓ_{jk_i} :

1. Si ℓ_{jk_i} es una variable:

Entonces existe $i \leq n$ tal que $\ell_{jk_i} = x_i$.

 $\ell_{jk_j} = x_i$ implica por definición de Ψ que $\Psi(\ell_{jk_j}) = v_i$. (*)

Pero tambien, $\ell_{jk_j} = x_i$ implica que $\ell_{jk_j}(\vec{b}) = x_i(\vec{b}) = b_i$.

Como $1 = \ell_{jr_i}(\vec{b})$, concluimos que $b_i = 1$.

Entonces, como $i \leq n$, tenemos $c(v_i) = b_i = 1$ (**)

(*) y (**) nos dicen que, efectivamente, $c(\Psi(\ell_{jk_j})) = 1$.

2. Si ℓ_{jr_j} es la negación de una variable:

Entonces existe i tal que $\ell_{jk_i} = \overline{x}_i$.

Por lo tanto $\Psi(\ell_{jk_i}) = v_{i+n}$ (†)

Tenemos: $1 = \ell_{jk_i}(\vec{b}) = (\overline{x}_i)(\vec{b}) = 1 - b_i = c(v_{i+n})$. Esto ultimo junto con † dice que $c(\Psi(\ell_{jk_i})) = 1$.

 $Fin \Rightarrow .$

Fin