Analyse 3

AMAL Youssef

2018-2019

Programme du cours

- **1** Topologie dans \mathbb{R}^n
- 2 Fonction de Plusieurs Variables
- Calcul Différentiel
- Calcul d'Intégrales Multiples
- Seconda d'Intégrales Curvilignes

Références:

- Mathématiques 3, par E. AZOULAY
- Mathématiques, par Francine Delmer
- Site web: www.bibmath.net, exo7.emath.fr

Note du Module: CC 1 (50%) + CC 2 (50%).

Soit E un \mathbb{K} -espace vectoriel, où $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Une application $N : E \to \mathbb{R}$ est appelée norme, notée encore par $\|\cdot\|$, s.s.i. les trois propriétés sont vérifiées:

- $N(x) = 0 \Longrightarrow x = 0$, pour $x \in E$.
- Soit $\alpha \in \mathbb{K}$, $N(\alpha x) = |\alpha| N(x)$.
- $\bullet \ \forall (x,y) \in E^2, N(x+y) \leq N(x) + N(y).$

Un espace vectoriel muni d'une norme est appelé espace vectoriel normé.

Remarque 1.2

• Soit N une norme définie sur l'e.v. E. Montrer que $N(x) \ge 0$ pour tout $x \in E$.

Exercice 1.3

• Montrer que les applications suivantes N_1 , N_2 , N_∞ définies sur l'espace vectoriel réel \mathbb{R}^n par:

$$N_1(x_1,...,x_n) = \sum_{i=1}^n |x_i|, N_2(x_1,...,x_n) = \sqrt{\sum_{i=1}^n x_i^2},$$

 $N_{\infty}(x_1,...,x_n) = \max\{|x_i| | 1 \le i \le n\}$ sont des normes.

Soit E un \mathbb{K} -espace vectoriel. Deux normes N_1 et N_2 sur E sont dites équivalentes s.s.i. $\exists \alpha, \beta > 0$ telle que

$$\forall x \in E, \ \alpha N_1(x) \le N_2(x) \le \beta N_1(x).$$

Exemple 1.5

• Les normes N_1 , N_2 et N_{∞} définies sur l'espace vectoriel réel \mathbb{R}^n sont équivalentes,

A vérifier que: $N_{\infty} \leq N_1 \leq nN_{\infty}$ et $N_{\infty} \leq N_2 \leq \sqrt{n}N_{\infty}$.

Exercice 1.6

• Les normes N_1 , N_2 et N_∞ définies sur l'espace $\mathbb{R}[X]$ des polynômes à coefficients réels et à degré quelconque par:

$$N_1(P) = \sum_{i \in \mathbb{N}} |a_i|, N_2(P) = \sqrt{\sum_{i \in \mathbb{N}} a_i^2}, N_{\infty}(P) = \sup_{i \in \mathbb{N}} |a_i|$$
 avec $P = \sum_{i=0}^n a_i X^i$ et $n \in \mathbb{N}$, ne sont pas équivalentes

AMAL Youssef Analyse 3 2018-2019 4/88

Soit (E, N) un espace vectoriel normé, $a \in E$ et $r \in]0, +\infty[$.

- La boule ouverte de centre a et de rayon r est : $B(a,r) = \{x \in E | N(x-a) < r\}.$
- La boule fermée de centre a et de rayon r est : $B_F(a,r) = \{x \in E | N(x-a) \le r\}$

- **1** Dans l'e.v. $(\mathbb{R}, |.|)$, on a: B(a, r) =]a r, a + r[et $B_F(a, r) = [a r, a + r].$
- ② Dans \mathbb{R}^2 , on a: $B_{1,F}(O,1) \subset B_{2,F}(O,1) \subset B_{\infty,F}(O,1)$

Un ensemble A d'un e.v.n E est appelé ouvert si, $\forall a \in A, \exists r > 0$ tq $B(a,r) \subset A$. L'ensemble des ouverts de E est noté par \mathcal{O} .

- **1** Dans l'e.v.n E, \emptyset et E sont des ouverts de E.
- **②** Soit a, b deux réels tels que a < b. L'intervalle]a, b[est un ouvert dans \mathbb{R} .
- 3 Dans l'e.v.n E, une boule ouverte est un ouvert.

Un ensemble A d'un e.v.n E est appelé fermé si son complémentaire A^c est ouvert. L'ensemble des fermés de E est noté par \mathcal{F} .

- **1** Dans l'e.v.n E, \emptyset et E sont des fermés de E.
- ullet Soit a,b deux réels tels que a < b. L'intervalle [a,b] est un fermé dans \mathbb{R} .
- 3 Dans l'e.v.n E, une boule fermée est un fermé.

Théorème 1.13

Deux normes équivalentes sur un e.v.n E définies mêmes parties ouvertes de E.

Théorème 1.14

Toutes les normes définies sur un espace vectoriel de dimension finie sont équivalente.

Exemple 1.15

- **1** les normes de l'e.v \mathbb{R}^n sont équivalentes.
- 2 Les normes de l'e.v $\mathbb{R}[X]$ ne sont pas forcément équivalentes.

Remarque 1.16

Si A est un ouvert pour une norme N_1 de \mathbb{R}^n alors A est aussi ouvert pour tout autre norme N_2 définie sur \mathbb{R}^n .

Propriété 1.17

Soit (E, N) un espace vectoriel normé.

- lacktriangledown \emptyset et E sont à la fois des ouverts et des fermés de E.

- Si $\forall i \in I, B_i \in \mathcal{F} Alors \bigcap_{i \in I} B_i \in \mathcal{F}.$
- \bullet Si $\forall i \in \{1,...,n\}, B_i \in \mathcal{F} Alors \bigcup_{i=1}^n B_i \in \mathcal{F}.$

Exercice 1.18

Soit la famille des ouverts $(A_n)_{n\in\mathbb{N}^*}$ avec $A_n=]-1/n,1/n[$. Montrer que $\bigcap A_n\notin\mathcal{O}.$

Soit $(E, \| . \|)$, un espace vectoriel normé, et $a \in E$. On dit que V est un **voisinage** de a s'il existe r > 0 tel que $B(a, r) \subset V$. L'ensemble des voisinages de a est noté par $\mathcal{V}(a)$.

- \bullet [0, 1] est un voisinage de 1/2.
- ② $B_F(O,1) \in \mathcal{V}((-1/2,0))$, par contre $B_F(O,1) \notin \mathcal{V}((0,1))$.
- toute partie ouverte est voisinage de chacun de ses points

Soit $(E, \| . \|)$, un espace vectoriel normé, A un ensemble de E et $a \in E$. On dit que a est *intérieur* à A ssi A est voisinage de a:

 $\exists r>0$ tel que $B(a,r)\subset A$. L'ensemble des points intérieurs à A est appelé l'intérieur de A est noté par \mathring{A} ou int(A).

Exemple 1.22

- int([0,1[)=]0,1[.
- $int(]0,1[\cup\{2\})=?.$

Propriété 1.23

Soit A, un sous-ensemble d'un espace vectoriel normé E.

- Å est un ouvert.
- ② \mathring{A} est le plus grand ouvert inclus dans A.
- **3** A est ouvert si et seulement si $A = \mathring{A}$.

Soit $(E, \| \cdot \|)$, un espace vectoriel normé, A un sous ensemble de E et $a \in E$. On dit que a est **adhérent** à A ssi $\forall r > 0$ tel que $B(a, r) \cap A \neq \emptyset$. L'adhérence de A, notée \overline{A} , est l'ensemble des adhérents de A.

- $\overline{ [0,1[\cup\{2\}]} = ?.$

Proposition 1.26

Soit A, un sous-ensemble d'un espace vectoriel normé E. Alors $(\overline{A})^c=(\mathring{A}^c)$.

Propriété 1.27

Soit A, un sous-ensemble d'un espace vectoriel normé E.

- \bullet \overline{A} est un fermé.
- ② \overline{A} est le plus petit fermé contenant A.
- **3** A est fermé si et seulement si $A = \overline{A}$.

Exercice: Soit $(E, \| . \|)$, un espace vectoriel normé, et $a \in E$. Soit r > 0. Alors:

- $B_F(a,r) = B(a,r).$

Soit $(E, \| . \|)$, un espace vectoriel normé, A un sous ensemble de E. On appelle frontière de A et on note Fr(A), l'ensemble $\overline{A} \setminus \mathring{A}$.

Exemple 1.29

- **2** $B_F(O,1) \setminus B(O,1/2)$

Propriété 1.30

Fr(A) est une partie fermée de E.

Une partie A de \mathbb{R}^n est une partie bornée de \mathbb{R}^n si: $\exists r > 0, \forall x \in A$ on a $\parallel x \parallel \leq r$.

Exemple: Toute boule est bornée dans \mathbb{R}^n .

Définition 1.32

On dit qu'une partie A de \mathbb{R}^n est compacte de \mathbb{R}^n si A est à la fois fermée et bornée.

Exemple: $[0,1] \times [-2,0]$ est un compacte de \mathbb{R}^2 .

On appelle suite à valeurs dans \mathbb{R}^n toute application de $\{p_0,p_0+1,...\}$ dans \mathbb{R}^n , une telle suite est dite définie à partir du rang p_0 . On la note $(U_p)_{p\geq p_0}$. Le vecteur $U_p=(U_{1,p},...,U_{n,p})\in\mathbb{R}^n$ est appelé terme générale de la suite.

Définition 1.34

Une suite $(U_p)_{p\in\mathbb{N}}$ dans \mathbb{R}^n a pour limite le vecteur $l\in\mathbb{R}^n$ si: $\forall \ \varepsilon>0 \ \exists N\in\mathbb{N} \ \text{tel que} \parallel U_p-l \parallel < \varepsilon$ et on écrit $\lim_{p\to +\infty} U_p=l$.

Exercice:

Soit N_1 et N_2 deux normes définies sur \mathbb{R}^n et soit $(U_p)_p$ une suite dans \mathbb{R}^n et $l \in \mathbb{R}^n$ tels que $\lim_{p \to +\infty} N_1(U_p - l) = 0$. Montrer qu'on a aussi: $\lim_{p \to +\infty} N_2(U_p - l) = 0$.

Exemple:

• La suite de terme générale $U_p = (1/p, -1)$ converge vers l = ? dans \mathbb{R}^2 .

2 La suite de terme générale $U_p = (0, p)$ définie dans \mathbb{R}^2 ...?.

Propriété 1.35

Soient $(U_p)_p$, $(V_p)_p$ deux suites de \mathbb{R}^n , $(l, l') \in \mathbb{R}^n \times \mathbb{R}^n$ et $\alpha \in \mathbb{R}$.

- Si $\lim_{n \to +\infty} U_p = l$ alors l est unique.
- ② Si $\lim_{p\to +\infty} U_p = l$ alors pour toute suite extraite $(U_{\phi(p)})_p$ de $(U_p)_p$ (ϕ est une application strictement croissante de \mathbb{N} dans \mathbb{N}) on a $\lim_{n\to+\infty} U_{\phi(p)} = l$.
- \circ Si $\lim_{n \to +\infty} U_p = l$ et $\lim_{p \to +\infty} V_p = l'$ alors $\lim_{p\to +\infty} U_p + V_p = \lim_{p\to +\infty} U_p + \lim_{p\to +\infty} V_p = l + l'.$

- $\forall i=1,\ldots,n.$

Exemple:

Calculer les limites suivantes:

- $\bullet \lim_{n \to +\infty} (\cos(1/n), \arctan(n)).$

Proposition 1.36

Une partie A de \mathbb{R}^n est fermée s.s.i. $\forall (U_p)_p \subset A$ telle que $\lim_{p \to +\infty} U_p = l$ alors $l \in A$.

Exercice:

Montrer que $A=\{(x,y)\in\mathbb{R}^2|\ x^2+y>1\}$ n'est pas une partie fermée de \mathbb{R}^2 .

Théorème 1.37 (Bolzano-Weierstrass)

Une partie A de \mathbb{R}^n est compacte s.s.i. toute suite $(U_p)_p$, à valeurs dans A, admet une sous-suite $(U_{\phi(p)})_p$ qui converge vers une limite $l \in A$.

Exercice:

Soit K une partie compacte de \mathbb{R}^2 et soit X une partie fermée de \mathbb{R}^2 telles que $K\cap X=\emptyset$. Montrer que la distance entre K et X est non nulle: il existe $\delta>0$ tel que $\parallel k-x\parallel\geq \delta$ pour tout $(k,x)\in K\times X$.

Fonction scalaire

Définition 2.1

Une fonction réelle, dite aussi fonction scalaire, de p variables réelles est une application d'une partie D de \mathbb{R}^p à valeurs dans \mathbb{R} , notée par:

$$f: D \subset \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$(x_1, ..., x_p) \mapsto z = f(x_1, ..., x_p)$$

où D est l'ensemble de définition de f, constitué de tout vecteur de $\mathbb{R}p$ dont l'image par f existe dans \mathbb{R} .

Exemple:

La fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \mapsto f(x,y) = \sqrt{1 - x^2 - y^2}$

est définie pour les valeurs de x et y telles que $x^2 + y^2 \le 1$. Dans un repère orthonormé, $D_f = B_F(O, 1)$.

19/88

Graphe

- \bullet $f: \mathbb{R}^2 \to \mathbb{R}$
- $\bullet \ S = \{(x,y,z) \in \mathbb{R}^3 \mid \ z = f(x,y)\}.$
- S est le graphe de la fonction f.

Fonction vectorielle

Définition 2.2

Une fonction vectorielle de p variables réelles est une application d'une partie $D \subset \mathbb{R}^p$ à valeurs dans \mathbb{R}^q , noté par:

$$\begin{split} f: D \subset \mathbb{R}^p &\longrightarrow \mathbb{R}^q \\ (x_1, ..., x_p) &\mapsto (f_1(x_1, ..., x_p), ..., f_q(x_1, ..., x_p)) \end{split}$$

où D est l'ensemble de définition de f, constitué de tout vecteur de \mathbb{R}^p dont l'image par f existe dans \mathbb{R}^q . Les f_i sont appelées fonctions coordonnées de f.

Remarque: Le domaine de définition de la fonction vectorielle f est:

$$D_f = \bigcap_{i=1}^q D_{f_i}.$$

Exemple:

Déterminer le domaine de définition de la fonction vectorielle suivante:

$$\begin{split} f: \mathbb{R}^2 &\longrightarrow \mathbb{R}^3 \\ (x,y) &\mapsto f(x,y) = (\sqrt{1-x^2-y^2}, xy, \frac{1}{x-y}) \end{split}$$

Fonction partielle

Définition 2.3

Soit $f: D \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$. Soit $a = (a_1, ..., a_p) \in D$. Pour i = 1, ..., p, on appelle i-ème fonction partielle de f en a définie sur le domaine $D_i = \{x \in \mathbb{R} \mid (a_1, ..., a_{i-1}, x, a_{i+1}, ..., a_p) \in D\}$ la fonction suivante :

$$f_{a,i}: D_i \subset \mathbb{R} \longrightarrow \mathbb{R}^q$$

 $x \mapsto f(a_0, ..., a_{i-1}, x, a_{i+1}, ..., a_p)$

Exemple:

Donner les expressions de la 1-ère et de la 2-ème fonction partielle en a=(1/2,1) de la fonction suivante:

$$f: B_2(O,2) \longrightarrow \mathbb{R}$$

 $(x,y) \mapsto f(x,y) = \sqrt{4-x^2-y^2}$

Soit f une fonction de $D \subset \mathbb{R}^p$ dans \mathbb{R}^q et $l \in \mathbb{R}^q$. Soit $a \in \overline{D}$. On dit que $\lim_{x \to a} f(x) = l$ si $\forall \varepsilon > 0 \; \exists \alpha > 0$ tels que $\forall x \in D$ et $0 < \parallel x - a \parallel < \alpha$ impliquent $\parallel f(x) - l \parallel < \varepsilon$.

Remarque:

- La notion de limite ne dépend pas des normes utilisées.
- 2 La limite si elle existe est unique.

Proposition 2.5

Soit
$$f$$
 une fonction de $D \subset \mathbb{R}^p$ dans \mathbb{R}^q et $l \in \mathbb{R}^q$. Soit $a \in \overline{D}$. Alors $\lim_{x \to a} f(x) = l$ ssi $\forall (x_n)_n \subset D \setminus \{a\}$ tel que $\lim_{n \to +\infty} x_n = a$ implique $\lim_{n \to +\infty} f(x_n) = l$

Exemple:

On considère la fonction suivante:

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
$$(x,y) \mapsto \frac{xy}{x^2 + y^2}$$

Étudier la limite de f en (0,0)?

Propriété 2.6

Soient f et g deux fonctions sur $D \subset \mathbb{R}^p$ à valeurs dans \mathbb{R}^q telles que $\lim_{x \to a} f(x) = l_1$ et $\lim_{x \to a} g(x) = l_2$, alors

- Pour tout $(\alpha, \beta) \in \mathbb{R}^2$ on $a \lim_{x \to a} \alpha f(x) + \beta g(x) = \alpha l_1 + \beta l_2$.
- $\lim_{x \to a} \langle f(x), g(x) \rangle = \langle l_1, l_2 \rangle.$
- **3** Dans le cas où q=1, si $l_2 \neq 0$ alors $\lim_{x\to a} f(x)/g(x) = l_1/l_2$.

Calculer
$$\lim_{(x,y)\to(0,0)} \frac{(1+x^2y^2)\sin(y)}{y}$$
.

Théorème 2.7 (Théorème des Gendarmes)

Soit $a \in \mathbb{R}^p$ et soient f, g et h trois fonctions définies sur $D \subset \mathbb{R}^p$ à valeurs dans \mathbb{R} vérifiant les deux propriétés suivantes:

- ② Il existe $\alpha > 0$ tel que pour tout $x \in D$, $0 < \|x a\| < \alpha$ on a $f(x) \le h(x) \le g(x)$. Alors $\lim_{x \to a} h(x) = l$.

Calculer
$$\lim_{(x,y)\to(0,0)} x^2 \sin(\frac{1}{x^2+y^2}).$$

Proposition 2.8

Soient
$$f: D_f \subset \mathbb{R}^n \to \mathbb{R}^p$$
 et $g: D_g \subset \mathbb{R}^m \to \mathbb{R}^n$. Supposons que $g(D_g) \subset D_f$, $\lim_{t \to a} g(t) = b$ et que $\lim_{x \to b} f(x) = l$. Alors, $\lim_{t \to a} f \circ g(t) = l$.

• Calculer
$$\lim_{(x,y)\to(0,0)} (x+y) \ln(x+y)$$
.

Chaque point P(x,y) du plan \mathbb{R}^2 peut être déterminée par les coordonnées polaires qui sont la coordonnée radiale $r = \parallel \overrightarrow{OP} \parallel$ et la coordonné angulaire θ , suivant l'application suivante:

$$\begin{split} \mathbb{R}_+^* \times [0, 2\pi[\to \mathbb{R}^2 \setminus (0, 0) \\ (r, \theta) \mapsto (x, y) = (r \cos(\theta), r \sin(\theta)), \end{split}$$

dont l'application réciproque est l'application suivante:

$$\mathbb{R}^2 \setminus (0,0) \to \mathbb{R}_+^* \times [0,2\pi[(x,y) \mapsto (r,\theta),$$

$$\text{où } r = \sqrt{x^2 + y^2} \text{ et } \theta \text{ est d\'efini comme suit: } \theta = \left\{ \begin{array}{ll} \arctan(y/x) & \text{si } x > 0 \text{ et } y \geq 0, \\ \arctan(y/x) + 2\pi & \text{si } x > 0 \text{ et } y < 0, \\ \arctan(y/x) + \pi & \text{si } x < 0, \\ \pi/2 & \text{si } x = 0 \text{ et } y > 0, \\ 3\pi/2 & \text{si } x = 0 \text{ et } y < 0. \end{array} \right.$$

- La condition sur les deux variables $(x,y) \to 0$ devient une condition sur une seule variable $r \to 0$.
- Si on étudie une limite quand $(x,y) \to (a,b)$, on ramène le problème en (0,0) par translation des
- $\begin{array}{l} \text{variables, } x=a+h, y=b+k \text{ avec } (h,k) \xrightarrow{\rightarrow} (0,0). \\ \bullet \text{ Calculer les limites suivantes: } \lim_{(x,y)\rightarrow(0,0)} \frac{x^3}{x^2+y^2}, \lim_{(x,y)\rightarrow(0,0)} \frac{x^2-y^2}{x^2+y^2} \text{ et } \lim_{(x,y)\rightarrow(0,0)} \frac{x^2+y^2}{x}. \end{array}$

Une fonction $f:D\subset\mathbb{R}^p\to\mathbb{R}^q$ est continue en $a\in D$ ssi $\lim_{x\to a}f(x)=f(a)$. On dit que f est continue sur D si elle est continue en tout point de D.

Proposition 2.11

Une fonction $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$ est continue en $a \in D$ ssi pour toute suite $(x_n)_n \subset D$ telle que $\lim_{n \to +\infty} x_n = a$, on $a \lim_{x \to a} f(x_n) = f(a)$.

Proposition 2.12

Soit $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$ une fonction continue au point $a = (a_1, ..., a_p)$ alors les p fonctions partielles $f_{a,i}$ de f sont continues en a_i pour tout i = 1, ..., p.

Exemple: Soit
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, $\forall (x,y) \neq (0,0)$ et $f(0,0) = 0$.

- Étudier la continuité des fonctions partielles $f_{O,1}$ et $f_{O,2}$ de la fonction f au point (0,0).
- ② Que peut dire de la continuité de la fonction f au point (0,0).

Propriété 2.13

Soient f et g deux fonctions définies sur $D \subset \mathbb{R}^p$ à valeurs dans \mathbb{R}^q et continues en a, alors:

- **1** Pour tout $(\alpha, \beta) \in \mathbb{R}^2$, la fonction $\alpha f + \beta g$ est continue en a.
- $② \ \ de \ \textit{même} < f,g > \textit{et} \parallel f \parallel \textit{sont continues en } a.$
- **3** Dans le cas où q = 1, si $g \neq 0$ au voisinage de a alors la fonction f/g est continue en a.
- la composée de fonctions continues est continue.

Exemples: les fonctions suivantes sont continues:

- ② $f: \mathbb{R}^p \to \mathbb{R}$ avec $f(x_1, ..., x_p) = ax_1^{i_1} x_2^{i_2} ... x_p^{i_p}, a \in \mathbb{R}$ et $i_1, ..., i_p \in \mathbb{N}$.
- \bullet les fonctions polynômes définis sur \mathbb{R}^p .
- **1** les applications linéaires définies sur \mathbb{R}^p dans \mathbb{R}^q (même lipschitzienne).

Soit $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$. Soit $a \in \overline{D} \setminus D$. Si f a une limite l lorsque x tend vers a, on peut étendre le domaine de définition de f à $D \cup \{a\}$ en posant f(a) = l. Et on dit que f est prolongeable par continuité au point a.

Exemple: Pour quel paramètre $\alpha > 0$ la fonction $f:(x,y) \mapsto \frac{x^{\alpha}y}{x^2 + y^2}$ est-elle prolongeable par continuité au point (0,0)?

Théorème 2.15

Soit f une fonction continue sur $D \subset \mathbb{R}^p$ à valeurs dans $F \subset \mathbb{R}^q$. Les propriétés suivantes sont équivalentes:

- f est continue en tout point de D,
- ② pour tout ouvert U de F, $f^{-1}(U) = \{x \in D \mid f(x) \in U\}$ est un ouvert de D.
- pour tout fermé V de F, $f^{-1}(V)$ est un fermé de D.

Exemple: Montrer que l'ensemble $A = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x(1 - 2x)\}$ est fermé de \mathbb{R}^2 .

Théorème 2.16

Soit f une fonction continue sur $D \subset \mathbb{R}^p$ à valeurs dans \mathbb{R}^q . Soit A un compact de \mathbb{R}^p tel que $A \subset D$. Alors f(A) est un compact de \mathbb{R}^q .

Corollaire 2.17

Soit A un compact de \mathbb{R}^p . Soit f une fonction continue sur $A \subset \mathbb{R}^p$ à valeurs dans \mathbb{R} . Alors f est bornée et atteint ses bornes sur A.

Exercice: Soit $C = \{(x,y) \in \mathbb{R}^2; x+y=1, x \geq 0, y \geq 0\}$. et Soit $f: C \to \mathbb{R}^{+*}$ une fonction continue. Démontrer que $\inf_{x \in C} f(x) > 0$.

Soit $A \subset \mathbb{R}^n$, avec $n \geq 1$. Une séparation de A est une paire (O, O') d'ouverts non vides de \mathbb{R}^n tels que:

Exemple:

• Dans \mathbb{R} , le paire (]-1,1[,]1/2,2[) est une séparation de l'ensemble $[0,1/2[\cup]1,3/2]$.

Soit $A \subset \mathbb{R}^n$, avec $n \geq 1$. A est dit connexe si A n'admet aucune séparation.

Exemple:

• l'ensemble $[0,1/2[\cup]1,3/2]$ n'est pas un connexe.

Proposition 2.20

Dans \mathbb{R} , tout ensemble est connexe si seulement s'il est un intervalle.

Soient x et y sont deux points de \mathbb{R}^n , avec $n \geq 1$, on appelle chemin d'origine x et d'extrémité y toute application continue $\gamma:[0,1] \to \mathbb{R}^n$ telle que $\gamma(0)=x$ et $\gamma(1)=y$.

Définition 2.22

Une partie A de \mathbb{R}^n est dite connexe par arcs si tout couple de points de A est relié par un chemin restant dans A.

Définition 2.23

Soit $A \subset \mathbb{R}^n$, avec $n \ge 1$. A est dit convexe si pour tout a et b de A, le segment $[a,b] = \{(1-t)a + tb; \ t \in [0,1]\}$ est contenu dans A.

- Dans \mathbb{R}^n , toute partie convexe est connexe par arcs
- Un cercle est un connexe par arcs.

Théorème 2.24

Soit $p, q \in \mathbb{N}^*$. Soit A une partie connexe (respectivement connexe par arcs) de \mathbb{R}^p . Soit $f: A \to \mathbb{R}^q$ une application continue. Alors f(A) est aussi connexe (respectivement connexe par arcs).

Corollaire 2.25

Si $A \subset \mathbb{R}^p$, avec $p \in \mathbb{N}^*$, est connexe par arc alors A est connexe.

Exemple:

• Tout ensemble convexe est connexe.

Définition 2.26

Une partie A de \mathbb{R}^p est dite étoilée s'il existe $a \in A$ tel que $[a, x] \subset A$ pour tout $x \in A$.

Exercice:

- Toute partie convexe est une partie étoilé dans \mathbb{R}^p . La réciproque n'est pas en générale vraie.
- $A = ([0,1] \times [0,1]) \cup ([1,2] \times [0,2])$ est étolé mais non convexe.

AMAL Youssef Analyse 3 2018-2019

37/88

Soit $f: D \in \mathcal{O}_{\mathbb{R}^n} \to \mathbb{R}$. On dit que f admet en $a=(a_1,...,a_i,..,a_n)$ une i-ème dérivée partielle si la i-ème application partielle associée à f au point a est dérivable en a_i , on note cette dérivée par $\frac{\partial f}{\partial x_i}(a)$, et on écrit:

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f_{a,i}(a_i + h) - f_{a,i}(a_i)}{h}$$

Exemple: Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 telle que $f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et $f(x,y) = 0$ si $(x,y) = (0,0)$. Calculer $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$.

AMAL Youssef Analyse 3 2018-2019 38/88

Soit $f:D\in\mathcal{O}_{\mathbb{R}^n}\to\mathbb{R}$. On dit que f est de classe \mathcal{C}^1 sur D si f admet en tout point $x\in D, n$ dérivées partielles $\dfrac{\partial f}{\partial x_1},...,\dfrac{\partial f}{\partial x_n}$ continues sur D. L'ensemble des fonctions de classe \mathcal{C}^1 sur D est noté: $\mathcal{C}^1(D,\mathbb{R})$. f est dite de $\mathcal{C}^k(D,\mathbb{R})$, avec $k\in\mathbb{N}^*$, si f est de $\mathcal{C}^{k-1}(D,\mathbb{R})$ et admettent des dérivées partielles d'ordre k sur D, notées par: $\dfrac{\partial^k f}{\partial^{\alpha_1} x_1...\partial^{\alpha_n} x_n}$ avec $\alpha_1,...,\alpha_n\in\mathbb{N}$ tels que $\sum_{i=1}^n\alpha_i=k$, et qui sont continues pour tout α_i .

Exemple: Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 telle que $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et $f(x,y) = 0$ si $(x,y) = (0,0)$.

- Montrer que f admet des dérivées partielles en (0,0).
- 2 f est-elle de classe C^1 en (0,0).

AMAL Youssef Analyse 3 2018-2019 39/88

Théorème 3.3 (Schwarz)

Soit $f \in \mathcal{C}^1(D,\mathbb{R})$, avec $D \in \mathcal{O}_{\mathbb{R}^n}$, admettant des dérivées partielles secondes sur D et $i, j \in \{1, ..., n\}$.

- Si $\frac{\partial^2 f}{\partial x_i \partial x_i}$ et $\frac{\partial^2 f}{\partial x_i \partial x_i}$ sont continues en $a \in D$ alors: $\frac{\partial^2 f}{\partial x_i \partial x_i}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$
- ② Si $f \in \mathcal{C}^2(D, \mathbb{R})$ alors on a sur D: $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_j \partial x_i}$

Exemple: Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que $f(x,y) = \frac{xy(x^2 - y^2)}{r^2 + v^2}$ si $(x,y) \neq (0,0)$ et f(x,y) = 0 si (x,y) = (0,0).

- Calculer $\frac{\partial^2 f}{\partial x \partial u}(0,0)$ et $\frac{\partial^2 f}{\partial u \partial x}(0,0)$.
- Que peut-on déduire?

AMAL Youssef Analyse 3 2018-2019 40/88

Soit $f:D\in\mathcal{O}_{\mathbb{R}^p}\to\mathbb{R}^q$. On dit que f est différentiable en un point $a\in D$ s'il existe une application linéaire $l\in\mathcal{L}(\mathbb{R}^p,\mathbb{R}^q)$ telle que $\lim_{h\to 0_p}\left(f(a+h)-f(a)-l(h)\right)/\parallel h\parallel=0$

Remarque:

$$\lim_{h\to 0_p} \left(f(a+h) - f(a) - l(h)\right) / \parallel h \parallel = 0 \Longleftrightarrow \exists \varepsilon : h \in \mathcal{V}(0_p) \to \mathbb{R}^q \text{ telle que } \lim_{h\to 0_p} \varepsilon(h) = 0_q \text{ et } f(a+h) = f(a) + l(h) + \parallel h \parallel \varepsilon(h).$$

Théorème 3.5

Soit $f: D \in \mathcal{V}(a) \to \mathbb{R}^q$. Si f est différentiable en a alors l'application linéaire l vérifiant \bigstar : $f(a+h) = f(a) + l(h) + \parallel h \parallel \varepsilon(h)$ avec $\lim_{h \to 0_p} \varepsilon(h) = 0_q$, est unique.

Définition 3.6

Si f est différentiable en a, l'application linéaire unique l vérifiant la relation (\bigstar) est appelée la différentielle de f en a et notée par df_a . Si f est différentiable en tout point de D. On dit qu'elle est différentiable sur D.

Exemple: Soit $f, g : \mathbb{R}^2 \to \mathbb{R}$ avec f(x, y) = xy et g(x, y) = x + y. Montrer que les fonctions f et g sont différentiables sur \mathbb{R}^2 et donner leurs différentielles.

Théorème 3.7

Soient f et g deux fonctions différentiables en $a \in D$. Alors:

- f est continue en a.
- \bullet f+g est différentiable en a et $d(f+g)_a=df_a+dg_a$.
- \bullet αf est différentiable en a et $d(\alpha f)_a = \alpha df_a$.

Exemple: Calculer la différentielle de la fonction suivante:

$$h(x,y) = x + xy + y.$$

Théorème 3.8

Soient $a \in \mathbb{R}^n$ et $f: D \subset \mathcal{V}(a) \to \mathbb{R}$ différentiable en a. Alors f admet n dérivées partielles en a telles qu'on a: $df_a(h) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a).h_i$.

Remarque: La réciproque est fausse, par exemple: On considère la fonction f définie par $f(x,y)=\frac{xy}{x^2+y^2}$ si $(x,y)\neq (0,0)$ et f(x,y)=0 si (x,y)=(0,0).

Théorème 3.9

Soient $a \in \mathbb{R}^n$ et $f : D \subset \mathcal{V}(a) \to \mathbb{R}$. Si f est de C^1 sur D alors f est différentiable en a et on a: $df_a(h) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a).h_i$.

Exemple: Calculer la différentielle à l'origine de la fonction f définie par: $f(x,y) = \sqrt{1+x^2+y^2}$.

Théorème 3.10

Soient $a \in \mathbb{R}^p$ et $f: D \subset \mathcal{V}(a) \to \mathbb{R}^q$ telle que $f = (f_1, ..., f_q)$. Alors f est différentiable en a s.s.i. f_i est différentiable en a pour tout i = 1, ..., q, Dans ce cas

$$\textit{on \'ecrit: } df_a(h) = (d(f_1)_a(h), ..., d(f_q)_a(h)) = \left(\begin{array}{c} \sum_{i=1}^p \frac{\partial f_1}{\partial x_i}(a).h_i \\ ... \\ \sum_{i=1}^p \frac{\partial f_q}{\partial x_i}(a).h_i \end{array} \right).$$

Exemple: Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ avec f(x, y) = (x + y, xy).

Montrer que la fonctions f est différentiable sur \mathbb{R}^2 et donner sa différentielle.

AMAL Youssef Analyse 3 2018-2019 43/88

Soient $a \in \mathbb{R}^p$ et $f: D \subset \mathcal{V}(a) \to \mathbb{R}^q$ telle que $f=(f_1,...,f_q)$. On appelle *Matrice Jacobienne* de f en a, la matrice notée $J_f(a)$ définie par:

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_p}(a) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_q}{\partial x_1}(a) & \dots & \frac{\partial f_q}{\partial x_p}(a) \end{pmatrix}$$

On écrit ainsi: $df_a(h) = J_f(a).h$ pour tout $h \in \mathbb{R}^p$.

Proposition 3.12

Soient $a \in \mathbb{R}^p$, $f: D_f \subset \mathcal{V}(a) \to \mathbb{R}^n$ différentiable en a et $g: D_g \subset \mathcal{V}(f(a)) \to \mathbb{R}^q$ différentiable en f(a), alors la composée $g \circ f$ est différentiable en a et

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$

En termes de Jacobiennes, on écrit:

$$J_{g \circ f}(a) = J_g(f(a)).J_f(a).$$

Exemple: Soit f une fonction définie sur \mathbb{R}^2 dans \mathbb{R} telle que f(x,y)=f(y,x) et qu'elle est différentiable sur \mathbb{R}^2 . Montrer que $\frac{\partial f}{\partial y}(x,y)=\frac{\partial f}{\partial x}(y,x)$.

Théorème 3.13

Soient x = x(u) et y = y(u) deux fonctions dérivables au point u et soit z = f(x,y) une fonction différentiable au point (x,y), Alors z = f(x(u),y(u)) admet des dérivées partielles de premier ordre au point u et on écrit:

$$\frac{dz}{du} = \frac{\partial z}{\partial x}\frac{dx}{du} + \frac{\partial z}{\partial y}\frac{dy}{du}.$$

Théorème 3.14

Soient x=x(u,v) et y=y(u,v) deux fonctions admettant des dérivées partielles de premier ordre au point (u,v) et soit z=f(x,y) une fonction différentiable au point (x,y), Alors z(u,v)=f(x(u,v),y(u,v)) admet des dérivées partielles de premier ordre au point (u,v) et on écrit: $\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial u}$ et $\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial v}$

Exercice:

- On considère $z = \sqrt{xy + y}$, $x = \cos(\theta)$ et $y = \sin(\theta)$. Calculer $\frac{dz}{d\theta}$ en $\theta = \pi/2$.
- On considère $z = \exp{(xy)}$, x = 2u + v et y = u/v. Calculer $\frac{\partial z}{\partial u}$ et $\frac{\partial z}{\partial v}$ au point (1, -1).

Pour une fonction à valeurs scalaires $f:D\subset\mathbb{R}^p\to\mathbb{R}$ dont les dérivées partielles existent, son **gradient**, noté grad(f), est défini par:

$$\begin{split} grad(f): & \quad D \subset \mathbb{R}^p \to \mathbb{R}^p \\ & \quad x \mapsto \left(\frac{\partial f}{\partial x_1}(x), ..., \frac{\partial f}{\partial x_p}(x)\right) \end{split}$$

Soit $f:D\subset\mathbb{R}^p\to\mathbb{R}$, $a\in D$ et u un vecteur **non nul** de \mathbb{R}^p . On dit que f a une *dérivée directionnelle*, notée par $D_uf(a)$, au point a suivant la direction u si l'expression: $\lim_{s\to 0}\frac{f(a+su)-f(a)}{s}$ existe.

Proposition 3.17

Soit $f: D \subset \mathbb{R}^p \to \mathbb{R}$ différentiable en $a \in D$ et u un vecteur **non nul** de \mathbb{R}^p . Alors $D_u f(a) = \nabla f(a).u = df_a(u)$.

Remarques:

- L'existence de la dérivée directionnelle de f en a suivant toutes les directions n'implique pas la différentiabilité de f en a.
- Donner un contre exemple.

Soit f une fonction de $D \subset \mathbb{R}^2$ à valeurs réelles. On appelle courbe de niveau de hauteur k l'ensemble: $L_k(f) = \{(x,y)|f(x,y) = k\}.$

• Soit $(x,y) \in D$. Si f(x,y) = k alors $(x,y) \in L_k(f)$.

AMAL Youssef Analyse 3 2018-2019 48 / 88

Proposition 3.19

Soit f une fonction de $D \subset \mathbb{R}^2$ à valeurs réelles. Soit $(x,y) \in D$ tel que f(x,y) = k. Le vecteur gradient $\nabla f(x,y)$ est normal à la courbe $L_k(f)$ au point (x,y).

• Le gradient indique la direction de plus grande pente positive sur une courbe de niveau à partir d'un point donné.

AMAL Youssef Analyse 3 2018-2019 49/88

Soit $f:D\subset\mathbb{R}^2\to\mathbb{R}$ une fonction de classe C^1 sur D. L'équation du droite tangente à la courbe de niveau $L_k(f)$ en un point (x_0, y_0) , tel que $\nabla f \neq 0$, est donné par:

$$\frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0) = 0.$$

AMAL Youssef Analyse 3 2018-2019 50/88

Soit $P_0(x_0, y_0, f(x_0, y_0))$ un point de la surface z = f(x, y). Si f est une fonction différentiable au point (x_0, y_0) alors la surface admet un plan tangent au point P_0 dont l'équation est la suivante:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

AMAL Youssef Analyse 3 2018-2019 51/88

Soit f, une fonction définie sur une partie D de \mathbb{R}^n et à valeur dans \mathbb{R} .

- ① On dit que la fonction f admet un maximum relatif en un point x_0 de D lorsqu'il existe un ouvert $O \subset D$ telle que : $f(x) \le f(x_0)$, $\forall x \in O \setminus \{x_0\}$.
- ② On dit que la fonction f admet un minimum relatif en un point x₀ de D lorsqu'il existe un ouvert O ⊂ D telle que : f(x) ≥ f(x₀), ∀x ∈ O \ {x₀}.
- On dit que la fonction f admet un maximum absolu en un point x₀ de D lorsque: $∀x ∈ D, f(x) ≤ f(x_0).$
- On dit que la fonction f admet un minimum absolu en un point x_0 de D lorsque: $\forall x \in D, \ f(x) \geq f(x_0).$

Exemple: On définit la fonction f sur \mathbb{R}^2 par: $f(x,y) = x^2 + 4xy + 4y^2$. Déterminer le minimum absolu de f sur \mathbb{R}^2 .

Soit $n \in \mathbb{N}^*$, Ω un ouvert de \mathbb{R}^n , $a \in \Omega$ et f une application de Ω dans \mathbb{R} . a est dite point critique de f, si une des conditions suivantes est satisfaite:

- Une ou plusieurs des dérivées partielles de f n'existent pas au point a.
- Dans le cas où toutes les dérivées partielles de f existent au point a, on a $\nabla f(a) = 0$.

Exemple: On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par la relation: $f(x,y) = x^2 + y^4$.

Un point critique $a \in \mathbb{R}^n$ est appelé point selle de f s'il existe deux vecteurs $v_1, v_2 \in \mathbb{R}^n$ tels que la fonction $t \mapsto f(a+tv_1)$ admet un maximum locale stricte en t=0 et $t\mapsto f(a+tv_2)$ admet un minimum locale stricte en t=0.

• $f(x,y) = y^2 - x^2$.

Théorème 3.25

Soit $x_0 = (x_0^1, ..., x_0^n) \in \mathbb{R}^n$ et soit 0 < r. Soit f une fonction de classe C^2 définie sur $B(x_0, r)$ à valeur dans \mathbb{R} . Alors le développement limité de f à l'ordre 2 est donné par:

$$f(x_0 + h) = f(x_0) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x_0) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) + \|h\|^2 \varepsilon(h),$$

$$\forall \parallel h \parallel < r, \ h = (h_1, ..., h_n), \ avec \lim_{h \to 0} \varepsilon(h) = 0.$$

Exemple: On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par la relation: $f(x,y) = x^2 + y^4$.

AMAL Youssef Analyse 3 2018-2019 55/88

Soit $n \in \mathbb{N}^*$, Ω un ouvert de \mathbb{R}^n et f une application de Ω dans \mathbb{R} , de classe C^2 . Soit $a \in \Omega$. On appelle matrice hessienne de f en a la matrice à n lignes et n colonnes dont le terme à la i-ieme ligne et j-ieme colonne est $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$. On note $H_f(a)$ cette matrice.

Remarque: La matrice hessienne est toujours symétrique.

Proposition 3.27

Soit $n \in \mathbb{N}^*$, Ω un ouvert de \mathbb{R}^n et f une application de Ω dans \mathbb{R} , de classe C^2 . Soit $a \in \Omega$.

- (Condition nécessaire) On suppose que f atteint un minimum relatif (respectivement, maximum relatif) en a. On a alors $\nabla f(a) = 0$ et $h^t.H_f(a).h > 0$ pour tout $h \in \mathbb{R}^n$ (respectivement, $h^t.H_f(a).h < 0$ pour tout $h \in \mathcal{V}(0)$).
- **2** (Condition suffisante) On suppose que $\nabla f(a) = 0$ et que $h^t.H_f(a).h > 0$ pour tout $h \in \mathbb{R}^n$, $h \neq 0$ (respectivement, $h^t.H_f(a).h < 0$ pour tout $h \in \mathcal{V}(0)$, $h \neq 0$). Alors, f atteint un minimum relatif en a (respectivement, f atteint un maximum relatif en a).

AMAL Youssef Analyse 3 2018-2019 56/88

Théorème 3.28

Soit f une fonction de classe C^2 dans un voisinage de a. $H_f(a)$ est alors une matrice symétrique réelle dont les valeurs propres, nécessairement réelles, sont ordonnées comme suit: $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$. On alors:

- **1** Si $\lambda_i > 0$ pour tout $i \in 1, ..., n$, f admet un minimum relatif en a.
- **2** Si $\lambda_i < 0$ pour tout $i \in 1, ..., n$, f admet un maximum relatif en a.
- § Si $\lambda_1 < 0$ et $\lambda_n > 0$, alors f n'admet pas d'extremum relatif en a (Dans \mathbb{R}^2 , ce point est appelé point selle).
- **3** S'il existe $i \in 1, ..., n$ tel que $\lambda_i = 0$, on ne peut rien conclure (voir TD).

Exemple: On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par la relation: $f(x,y) = x^2 + 3y^2$.

AMAL Youssef Analyse 3 2018-2019 57/88

Pour toute fonction f définie sur l'intervalle [a,b], l'intégrale simple de f sur [a,b] est définie par:

$$\int_{a}^{b} f(x)dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

à condition que la limite existe et qu'elle est indépendante du choix du $c_i \in [x_{i-1}, x_i]$, pour i=1,2,...,n. Dans ce cas, f est dite intégrable sur [a,b].

Surface associée à l'intégrale simple.

Surface approchée sur un sous-intervalle $[x_{i-1}, x_i]$.

Intégrale Double sur un rectangle

Définition 4.2

Pour toute fonction f(x,y) définie sur le rectangle $R=\{(x,y)\in\mathbb{R}^2|\ a\leq x\leq b\ et\ c\leq y\leq d\}$, l'intégrale double de f sur R est définie par:

$$\int \int_R f(x,y) \ dA = \lim_{n \to +\infty} \sum_{i=1}^n f(u_i, v_i) \Delta A_i$$

à condition que la limite existe et qu'elle est indépendante du choix du $(u_i, v_i) \in R_i$, pour i=1,2,...,n. Dans ce cas, f est dite intégrable sur R. La somme $\sum_{i=1}^n f(u_i, v_i) \Delta A_i$ est appelée somme de Riemann.

Approximation du volume par des parallélépipèdes.

AMAL Youssef Analyse 3 2018-2019 59/88

Théorème 4.3 (Théorème de Fubini)

Soit f une fonction intégrable sur le rectangle $R=\{(x,y)\in\mathbb{R}^2|\ a\leq x\leq b\ et\ c\leq y\leq d\}$. Alors l'intégrale double de f sur R peut être exprimée comme suit:

$$\int \int_R f(x,y) \; dA = \int_a^b \int_c^d \; f(x,y) \; dy dx = \int_c^d \int_a^b \; f(x,y) \; dx dy.$$

Tranchage du solide parallèlement au plan yz et au plan xz: $V=\int_a^b A(x)dx=\int_c^d A(y)dy$; avec $A(x)=\int_c^d f(x,y)\ dy$ et $A(y)=\int_a^b f(x,y)\ dx$.

Exemple 4.4

Calculer le volume compris entre la surface $z = x^3 \sin(x^2 y)$ et le rectangle $R = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le \sqrt{\pi} \text{ et } 0 \le y \le 1\}.$

Intégrale Double sur une région comprise entre deux courbes en x

Théorème 4.5 (Théorème de Fubini)

Soit f une fonction continue sur la région définie par $R = \{(x,y) \in \mathbb{R}^2 | a \le x \le b \text{ et } g_1(x) \le y \le g_2(x)\}$, où $g_1(x)$ et $g_2(x)$ sont deux fonctions continues avec $g_1(x) \le g_2(x)$ pour tout $x \in [a,b]$. Alors:

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) dy dx.$$

Région comprise entre deux courbes.

Volume par tranchage: $V=\int_a^b A(x)dx$ avec $A(x)=\int_{g_1(x)}^{g_2(x)} f(x,y)\ dy.$

Exemple 4.6

Soit R région délimitée par le graphes $y=x,\,y=0$ et x=4. Calculer l'intégrale

$$\int \int_R 4 \exp(x^2) \, dA.$$

La région R.

Intégrale Double sur une région comprise entre deux courbes en y

Théorème 4.7 (Théorème de Fubini)

Soit f une fonction continue sur la région définie par $R=\{(x,y)\in\mathbb{R}^2|\ c\leq x\leq d\ et\ h_1(y)\leq x\leq h_2(y)\}$, où $h_1(y)$ et $h_2(y)$ sont deux fonctions continues avec $h_1(y)\leq h_2(y)$ pour tout $y\in[c,d]$. Alors:

$$\iint_{R} f(x,y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) dxdy.$$

Région comprise entre deux courbes.

AMAL Youssef Analyse 3 2018-2019 64/88

Exemple 4.8

Calculer l'intégrale $\int_0^1 \int_y^1 \, \exp(x^2) \, dx dy.$

La région R.

Théorème 4.9 (Propriétés)

Soit f et g deux fonction intégrable sur la région $R \subset \mathbb{R}^2$ et soit c une constante réelle. Alors:

- **3** si $R = R_1 \cup R_2$ et $\mathring{R}_1 \cap \mathring{R}_2 = \emptyset$ alors $\iint_R f(x,y) dA = \iint_{R_1} f(x,y) dA + \iint_{R_2} f(x,y) dA$.
- si $f \leq g$ sur R alors $\int \int_R f(x,y) dA \leq \int \int_R g(x,y) dA$.

Applications: Aire, Volume, Aire de surface

Exemple 4.10

Déterminer le volume du tétraèdre délimité par le plan d'équation 2x+y+z=2 et les trois plans du repère cartésien.

Théorème 4.11 (Théorème de Fubini)

Soit $f(r,\theta)$ une fonction continue sur la région $R = \{(r,\theta) | \alpha \le \theta \le \beta \text{ et } g_1(\theta) \le r \le g_2(\theta) \}$ où g_1 et g_2 sont deux fonctions continues avec $0 \le g_1(\theta) \le g_2(\theta)$ pour toute $\theta \in [\alpha,\beta]$. Alors,

$$\int \int_{R} f(r,\theta) dA = \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r,\theta) r dr d\theta$$

Région polaire élémentaire.

Exemple 4.12

Calculer l'intégrale $\int \int_R \sin(\theta) dA$ où R est la zone sombre dans la figure suivante:

La région R.

Théorème 4.13 (Théorème de Fubini)

Soit $f(r,\theta)$ une fonction continue sur la région $R=\{(r,\theta)|\ h_1(r)\leq \theta\leq h_2(r)\ \ \text{et}\ \ 0\leq a\leq r\leq b\}$ où h_1 et h_2 sont deux fonctions continues avec $h_1(r) \leq h_2(r)$ pour toute $r \in [a, b]$. Alors,

$$\int \int_R f(r,\theta) dA = \int_a^b \int_{h_1(r)}^{h_2(r)} f(r,\theta) r d\theta dr$$

La région R.

Exemple 4.14

Reprendre l'intégrale $\iint_B \sin(\theta) dA$ en utilisant le résultat de ce théorème.

AMAL Youssef Analyse 3 2018-2019 70/88

Pour toute fonction f(x,y,z) définie sur la région Q, l'intégrale triple de f sur Q est définie par:

$$\int \int \int_{Q} f(x, y, z) dV = \lim_{n \to +\infty} \sum_{i=1}^{n} f(u_i, v_i, w_i) \Delta V_i.$$

à condition que la limite existe et qu'elle est indépendante du choix du $(u_i,v_i,w_i)\in Q_i$, pour i=1,2,...,n. Dans ce cas, f est dite intégrable sur Q.

- Si f(x, y, z) est la densité d'un corps Q au point (x,y,z) alors $\int \int \int_Q f(x,y,z) \ dV$ est la masse du corps Q.
- $\int \int \int_Q 1 \ dV$ est le volume du corps Q.

Théorème 5.2 (Théorème de Fubini)

Soit f une fonction intégrable sur la boite rectangulaire $Q=\{(x,y,z)|\ a\leq x\leq b,\ c\leq y\leq d\ et\ r\leq z\leq s\}.$ Alors l'intégrale triple de f sur R peut être exprimée comme suit:

$$\iint \int_{Q} f(x, y, z) dV = \int_{a}^{b} \int_{c}^{d} \int_{r}^{s} f(x, y, z) dz dy dx$$

avec toutes les permutations possibles entre les trois intégrales.

Exemple 5.3

Calculer l'intégrale triple suivante $\int \int \int_Q 2x e^y \sin(z) \ dV$ avec $Q=\{(x,y,z)|\ 1\leq x\leq 2,\ 0\leq y\leq 1 \ et \ 0\leq z\leq \pi\}$

AMAL Youssef Analyse 3 2018-2019 72/88

Théorème 5.4 (Théorème de Fubini)

Soit f une fonction continue sur le solide défini par $Q = \{(x, y, z) | (x, y) \in R \text{ et } g_1(x, y) \le z \le g_2(x, y)\}$, où $q_1(x,y)$ et $q_2(x,y)$ sont deux fonctions continues avec $g_1(x,y) \le g_2(x,y)$ pour tout $(x,y) \in R$. Alors:

$$\int\int\int\int_{R}\,f(x,y,z)\;dV=\int\int_{R}\int_{g_{1}(x,y)}^{g_{2}(x,y)}\,f(x,y,z)\;dzdA.$$

Solide compris entre deux surfaces données.

AMAL Youssef Analyse 3 2018-2019 73/88

Exemple 5.5

Trouver la masse du solide Q de densité massique $\rho(x,y,z)=2z$ et qui est délimité par les graphes: le cone circulaire droit de surface $z=\sqrt{x^2+y^2}$ et le plan z=4.

Le solide Q et sa projection R sur le plan (xOy).

Théorème 6.1

On suppose que la région S dans le plan uOv est mis en correspondance à la région R dans le plan xOy par la transformation bijective T définie par: x = g(u,v) et y = h(u,v) où h et g sont supposées de classe C^1 . Si f est continue sur R et le Jacobien $det(J_T)$ est non nul sur S alors:

$$\int \int_{R} f(x,y) dx dy = \int \int_{S} f(g(u,v),h(u,v)) |det(J_{T}(u,v))| du dv$$

Transformation T de la région S vers la région R.

•
$$(x = g(u, v), y = h(u, v)) \in R \Leftrightarrow (u, v) \in S$$
.

AMAL Youssef Analyse 3 2018-2019 75/88

Exemple 6.2

Soit R une région comprise entre les droites d'équations: y=2x+3, y=2x+1, y=5-x et y=2-x. Calculer l'intégrale $\int \int_R (x^2+2xy)dA$.

Transformation T de la région S vers la région R.

Théorème 6.3

On suppose que la région S dans l'espace uvw est mis en correspondance à la région R dans l'espace xyz par la transformation bijective T définie par : x = g(u, v, w), y = h(u, v, w) et z = l(u, v, w) où h, g et l sont supposées de classe C^1 . Si f est continue sur R et l Jacobien $det(J_T)$ est non nul sur S alors:

$$\int \int \int_R f(x,y) dV = \int \int \int_S f(g(u,v,w),h(u,v,w),l(u,v,w)) |det(J_T(u,v,w))| du dv dw$$

Transformation T de la région S vers la région R.

 $\bullet \ (x=g(u,v,w),y=h(u,v,w),z=l(u,v,w)) \in R \Leftrightarrow (u,v,w) \in S.$

AMAL Youssef Analyse 3 2018-2019 77/88

Exemple 6.4

Utiliser le théorème du changement de variables pour établir la formule de l'intégrale triple dans les coordonnées sphériques.

Coordonnées sphériques.

L'intégrale curviligne de $(x,y)\mapsto f(x,y)$ au longue d'une courbe C orientée dans l'espace (xOy), noté $\operatorname{par}\int_C f(x,y)dl$, est définie par

$$\int_C f(x,y)dl = \lim_{n \to +\infty} \sum_{i=1}^n f(x_i^*, y_i^*) \Delta l_i$$

à condition que la limite existe et qu'elle est indépendante du choix de point (x_i^*, y_i^*) . De la même manière on peut définir l'intégrale $\int_C f(x, y, z) dl$.

Interprétation géométrique de l'intégrale curviligne.

• Si f(x,y) est la densité massique d'un fil mince C au point (x,y) alors $\int_C f(x,y) dl$ est la masse du fil C.

• $\int_C 1 dl$ est la longueur du fil C.

AMAL Youssef Analyse 3 2018-2019 79/88

Théorème 7.2

On suppose que $(x,y) \mapsto f(x,y)$ soit continue sur une région D contenant la courbe C et que C est décrit paramétriquement par (x(t), y(t)), pour $t \in [a, b]$ où x(t) et y(t) sont de classe C^1 . Alors:

$$\int_{C} f(x,y)dl = \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

De la même manière on peut définir l'intégrale $\int_C f(x,y,z)dl$.

Exemple 7.3

Trouver la masse du ressort de forme curviligne paramétrée par: $x(t) = 2\cos(t)$, $y(t) = t, z = 2\sin(t)$, pour $t \in [0, 6\pi]$, avec une densité linéique $\rho(x, y, z) = 2y$.

AMAL Youssef Analyse 3 2018-2019 80/88

Théorème 7.4

On suppose que $(x,y) \mapsto f(x,y)$ soit continue sur une région Q contenant la courbe C et que C est décrit paramétriquement par (x(t), y(t)), pour $t \in [a, b]$ où x(t) et y(t) sont de classe C^1 . Alors:

Théorème 7.5

On suppose que $(x,y) \mapsto f(x,y)$ est continue sur une région Q contenant une courbe orientée C. Alors si C est de classe C^1 avec $C = C_1 \cup ... \cup C_n$, où $C_1,...,C_n$ sont de classe C^1 et où le point final du C_i est le même point initial du C_{i+1} , pour i = 1, ..., n-1, Alors:

Exemple 7.6

Calculer l'intégrale curviligne $\int_C 2x^2ydl$, où C est la partie du parabole $y=x^2$ de (-1,1) au (2,4).

AMAL Youssef Analyse 3 2018-2019 81/88

Exemple 7.7

Calculer l'intégrale curviligne $\int_C 3x - y dl$ où C est le segment entre (1,2) et (3,3) suivie par la partie du cercle $x^2 + y^2 = 18$ définie entre le point (3,3) et le point (3,-3) orientée au sens des aiguilles du montre.

Le chemin C.

Remarque 7.8

Tous les résultats obtenus pour une fonction à deux variables peuvent être généralisés pour une function à trois variables $(x, y, z) \mapsto f(x, y, z)$.

Exemple 7.9

Calculer l'intégrale curviligne $\int_C 4xdy + 2ydz$ où C est composé du segment du (0,1,0) au (0,1,1) suivie par le segment du (0,1,1) au (2,1,1) et suivie par le segment du (2,1,1) au (2,4,1).

Le chemin C.

AMAL Youssef Analyse 3 2018-2019 83/88

Un champ de vecteurs sur $D \subset \mathbb{R}^p$ est une application qui à tout point M de D associe un vecteur $\overrightarrow{F}(M)$ de \mathbb{R}^p .

En particulier, soit $\{\overrightarrow{i}, \overrightarrow{j}\}$ un repère orthonormé de \mathbb{R}^2 , alors un champ de vecteurs $\overrightarrow{F}(x, y)$, $(x,y) \in D \subset \mathbb{R}^2$ est donné par deux fonctions P et Q sur D à valeurs réelles:

$$\overrightarrow{F}(x,y) = P(x,y)\overrightarrow{i} + Q(x,y)\overrightarrow{j}$$

On dit que le champ de vecteurs \overrightarrow{F} est de classe C^p sur D si P et Q sont de classe C^p .

Champ de vecteurs F(x, y) = (y, -x).

AMAL Youssef Analyse 3 2018-2019 84/88

Soit $(x,y)\mapsto F(x,y)=(P(x,y),Q(x,y))$ continue sur une région D contenant la courbe C et que C est décrit paramétriquement par (x(t),y(t)), pour $t\in [a,b]$ où x(t) et y(t) sont de classe C^1 . L'intégrale curviligne du champs de vecteurs F sur la courbe orientée C dans \mathbb{R}^2 est donnée par:

$$\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr} = \int_{C} P(x,y)dx + \int_{C} Q(x,y)dy$$

$$= \int_{a}^{b} P(x(t),y(t))x'(t)dt + \int_{a}^{b} Q(x(t),y(t))y'(t)dt$$

En physique, $W=\int_{C}\overrightarrow{F}.\overrightarrow{dr}$ est interprété par le Travail fourni par le champ de force F exercé sur un objet qui se déplace au long du chemin C.

Exemple 7.12

Calculer le Travail effectué par le champ de force F(x,y)=(y,-x) de la parabole $y=x^2-1$ du point (1,0) au point (-2,3).

AMAL Youssef Analyse 3 2018-2019 85/88

Un champ de vecteurs F est un champ gradient s'il existe f de $D \subset \mathbb{R}^n$ dans \mathbb{R} telle que $F = \nabla f$ sur D. f est dite le potentiel du champ de vecteurs F.

Exemple 7.14

- Le champ de vecteurs F(x,y) = (y,x) est un champ gradient.
- Le champ de vecteurs F(x,y)=(y,-x) n'est pas un champ gradient.

Théorème 7.15

Si F est un champ de gradient alors $\int_C \overrightarrow{F}.\overrightarrow{dr}$ ne dépend que des extrémités de C.

Théorème 7.16

Soit $F = (F_1, F_2, ..., F_n)$ un champ de vecteurs de classe C^1 sur un ouvert D. Alors:

$$F$$
 est un champ de gradient $\Longrightarrow \frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ pour tout i et tout j .

Théorème 7.17

Soit $F=(F_1,F_2,...,F_n)$ un champ de vecteurs de classe C^1 sur un ouvert D simplement connexe (c.à.d connexe sans trou). Alors: $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \text{ pour tout } i \text{ et tout } j \text{ sur } D \text{ s.s.i. } F \text{ est un champ de gradient sur } D.$

Exemple 7.18

Soit $F(x,y)=(2xy^3,1+3x^2y^2)$. F est-il un champ de gradient? si oui, trouver son potentiel f.

Théorème 7.19 (Green-Riemann)

Soit D un compact de \mathbb{R}^2 limité par un bord C = Fr(D) de classe C^1 par morceaux et orienté positivement. $P,Q:D\to\mathbb{R}$ des fonctions de classe C^1 . On a

$$\oint_C P(x,y)dx + Q(x,y)dy = \int \int_D \frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y}dA.$$

Exemple 7.20

On considère l'intégrale curviligne $I = \oint_C (2xy - x^2) dx + (x + y^2) dy$ avec C une courbe fermée constituée par les deux arcs de parabole $y=x^2$ et $x = y^2$ orientée positivement.

- Calculer l'intégrale curviligne I.
- Vérifier le résultat en utilisant la formule de Green-Riemann.

Analyse 3 2018-2019 88/88