#### 1. 选择填空题

- (1) 从电路结构上看,时序电路必须含有 。

- (a) 门电路 (b) 存储电路 (c) RC 电路 (d) 译码电路
- (2) 下面描述同一逻辑电路内、外输入输出逻辑关系的方程中, 表明该电路为时序逻辑电路。
  - (a)  $Z(t_n) = F[X(t_n), Q(t_n)]$
- (b)  $W(t_n) = H[X(t_n), Q(t_n)]$
- (c)  $Q(t_{n+1}) = G[W(t_n), Q(t_n)]$  (d)  $Y(t_n) = G[X(t_n), Q(t_n)]$
- (3) 每经十个 CP 脉冲状态循环一次的计数电路,知其有效状态中的最大数 为 1100,则欠妥的描述是。

  - (a) 模 10 计数器 (b) 计数容量为 10
  - (c) 10 进制计数器
- (d) 12 进制计数器



| (4) 欲把 36kHz 的脉冲信号变为 1Hz 的脉冲信号, 若采用 10 进制集成计数 |
|-----------------------------------------------|
| 器,则各级的分频系数为。                                  |
| (a) (3,6,10,10,10) (b) (4,9,10,10,10)         |
| (c) (3,12,10,10,10) (d) (6,3,10,10,10)        |
| (5) 用集成计数器设计 n 进制计数器时,不宜采用方法。                 |
| (a) 置最小数 (b) 反馈复位 (c) 反馈预置 (d) 时钟禁止           |
| (6) 欲把一脉冲信号延迟 8 个 CP 后输出,宜采用电路。               |
| (a) 计数器 (b) 分频器 (c) 移位寄存器 (d) 脉冲发生器           |
| (7) 欲把并行数据转换成串行数据,可用。                         |
| (a) 计数器 (b) 分频器 (c) 移位寄存器 (d) 脉冲发生器           |
| (8) 程序控制中,常用电路作定时器。                           |
| (a) 计数器 (b) 比较器 (c) 译码器 (d) 编码器               |
|                                               |

| 201          | + 7 +    | <b>大</b> 其础 |      |                |      |       |       |            |     |           |    |
|--------------|----------|-------------|------|----------------|------|-------|-------|------------|-----|-----------|----|
| <i>2</i> V-7 |          |             | (请在空 | 格中填上           | 合适品  | 的词语,  | 将题中   | 的论述补       | 充完藝 | <u>答)</u> |    |
|              | (1)      | 输出不         | 仅取决于 | 当前的结           | 输入,  | 而且与_  |       | 有关的电       | 路一  | 定是时序      | 亨电 |
| 路。           |          |             |      |                |      |       |       |            |     |           |    |
|              | (2)      | 所谓同         | 步时序电 | 路,是            | 指所有  | FF 公用 | J     | o          |     |           |    |
|              | (3)      | 输出仅         | 与电路_ |                | 的問   | 寸序电路  | 称为 M  | oore 型电    | 路。  |           |    |
|              | (4)      | 触发器         | 未公用同 | 可一 <i>CP</i> 自 | 勺电路- | 一定是_  |       | 电路。        |     |           |    |
|              | (5)      | 计数器         | 电路中, |                | 称为   | 有效状   | 态; 若尹 | <b>-</b> - | 2若干 | 个 CP I    | 脉冲 |
| 后能           | <u> </u> |             | , 称: | 其为具有           | 自启动  | 能力。   |       |            |     |           |    |
|              | (6)      | 计数器         | 的基本功 | 助能是            |      | _和    | o     |            |     |           |    |
|              | (7)      | 4 个触》       | 发器构成 | 的行波计           | 数器,  | 其计数   | 的模为   |            | 0   |           |    |
|              |          |             |      |                |      |       |       |            |     |           |    |
|              |          |             |      |                |      |       |       |            |     |           |    |

(9) 同步集成计数器是指构成计数器的所有触发器\_\_\_\_\_\_; 而同步操作 是指实现某功能要\_\_\_\_\_。

- (11) 用集成计数器实现任意进制时,采用\_\_\_\_\_\_控制计数循环的方法实现的电路工作较为可靠。
  - (12) 用\_\_\_\_\_控制计数循环的方法实现任意进制计数电路时存在瞬态。
- (13) *X* 进制计数电路中, 若所有 Q 同时输出, 则为\_\_\_\_\_\_功能; 若仅由最高位输出, 则为\_\_\_\_\_\_功能。
  - (14) \_\_\_\_\_的计数器称为可逆计数器。

# 作业

## 8.3 试分析图题所示电路的逻辑功能。



#### [解](1)驱动程式和时钟方程

$$J_0 = \overline{Q_2^n} \qquad K_0 = 1$$

$$K_0 = 1$$

$$CP_0 = CP$$

$$J_1 = K_1 = 1$$

$$CP_1 = \overline{Q_0^n}$$

$$J_2 = Q_1^n Q_0^n$$
  $K_2 = 1$   $CP_2 = CP$ 

$$K_2 = 1$$

$$CP_2 = CP$$

#### (2) 将驱动方程代入特性方程得状态方程

$$Q_0^{n+1} = J_0 \overline{Q_0^n} + \overline{K_0} Q_0^n = \overline{Q_2^n} \overline{Q_0^n}$$
 (CP)

$$Q_1^{n+1} = \overline{Q_1^n} \qquad \qquad C P_1 = \overline{Q_0^n}$$

$$Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n \tag{CP}$$



| $Q_2^n$ | $Q_{\rm l}^n$ | $Q_0^{n}$ | $Q_2^{n+}$ | $Q_1^{n+1}$ | $Q_0^{n+1}$ | $CP_2$        | $CP_1$       | $CP_{0^{ u}}$             |
|---------|---------------|-----------|------------|-------------|-------------|---------------|--------------|---------------------------|
| 0       | 0             | 0⊷        | 0          | 1           | 1₊          | $\rightarrow$ | $\downarrow$ | <b>↓</b> ₊                |
| 0       | 1             | 1⊬        | 1          | 1           | 0₊          | $\downarrow$  |              | $\downarrow_{\leftarrow}$ |
| 1       | 1             | 0₊₁       | 0          | 1           | 0₊          | $\downarrow$  |              | $\downarrow_{\leftarrow}$ |
| 0       | 1             | 0⊷        | 0          | 0           | 1⊬          | $\downarrow$  | $\downarrow$ | $\downarrow_{+}$          |
| 0       | 0             | 1₽        | 0          | 0           | 0₽          | $\downarrow$  |              | <b>↓</b> ₽                |

由状态转换图可见该 电路为异步5进制计数器。

# 8.6 用JK触发器设计图题所示两相脉冲发生电路。



[解] 电路的循环状态为 $00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00$ ,因此可按同步计数器设计,用两个JK FF实现。

# (1) 作次态卡诺图求状态方程和输出方程

| $Q_1^n Q_0^n$ | $Q_1^{n+1}Q_0^{n+1}$ |
|---------------|----------------------|
| 00            | 10                   |
| 01            | 00                   |
| 10            | 11                   |
| 11            | 01                   |



| $Q_1^n Q_0^n$ | $Q_1^{n+1} Q_0^{n+1}$ |
|---------------|-----------------------|
| 00            | 10                    |
| 01            | 00                    |
| 10            | 11                    |
| 11            | 01                    |

| $Q_1^{n+1}$ | $Q_0^n$          | 1_ |
|-------------|------------------|----|
| 0           | $\overline{(E)}$ | 0  |
| 1           | 1                | 0  |



$$Q_1^{n+1} = \overline{Q_1^n} \, \overline{Q_0^n} + Q_1^n \overline{Q_0^n}$$
,  $Q_0^{n+1} = Q_1^n \overline{Q_0^n} + Q_1^n Q_0^n$ 

$$Z_2 = Q_1^n$$
,  $Z_1 = Q_0^n + Q_0^n$ 

# (2) 求驱动方程

#### 将状态方程与JK触发器的特性方程对比

$$J_1 = \overline{Q_0^n} , \quad K_1 = Q_0^n$$

$$J_0 = Q_1^n , \quad K_0 = \overline{Q_1^n}$$







例:一个同步时序电路如图题所示。设触发器的初态 $Q_1 = Q_0 = 0$ 。

- (1) 画出 $Q_0$ 、 $Q_1$ 和F相对于CP的波形;
- (2) 从F与CP的关系看,该电路实现何种功能?



[解]

# 1) 写方程式



- ① 驱动方程:  $D_0 = \overline{Q_1^n}$   $D_1 = Q_0^n$
- ② 复位方程:  $\overline{R_{D1}} = Q_0^n$
- ③ 输出方程:  $F = \overline{CP + Q_0^n}$

$$Q_0^{n+1} = D_0 = \overline{Q_1^n}$$
  $Q_1^{n+1} = Q_0^n$   $(\overline{R_{D1}} = Q_0^n)$ 

#### 状态转换表

| $Q_1^n Q_0^n$ | $Q_1^{n+1} Q_0^{n+1}$ |
|---------------|-----------------------|
| 00            | 01                    |
| 01            | 11                    |
| 10            | 00                    |
| 11            | 00                    |



### 从F与CP的关系可以看出该电路实现三分频。

# 8.7 用74LS293及其它必要的电路组成六十进制计数器,画出电路连接图。

[解] 74LS293为异步2-8-16进制集成计数器,需要两片级联实现60进制计数器。

#### 方法一:全局反馈清零

- (1) N = 60,  $S_n = [60]_D = [00111100]_B$
- (2)  $F = R_{01}R_{02} = \prod Q^1 = Q_5Q_4Q_3Q_2$



上页

下页

返回

# 方法二: 局部反馈清零

(1) 
$$N = 60 = 6 \times 10 = N_2 \times N_1$$
 o  $S_{n2} = 0110$  ,  $S_{n1} = 1010$   $\sim$ 

(2) 
$$F_2 = R_{01}R_{02} = \prod Q^1 = Q_2Q_1$$
  $F_1 = R_{01}R_{02} = \prod Q^1 = Q_3Q_1$ 



# 8.12 计数器74161构成电路如图题5.20所示,试说明其逻辑功能。



# [解]

74161(1)的CO输出控制着74161(2)的 $CT_P$ 和 $CT_T$ ,而74161(2)的输出CO又作为反馈控制预置信号,又 $CO=Q_3Q_2Q_1Q_0CT_T$ ,因此,两片计数器的满状态和预置状态即为计数器的结束和初始状态。

$$N = (S_{n-1} + 1) - S_0 = (111111111)_B + 1 - (00111100)_B = 196$$

所以,该电路为同步196进制计数器。







# 8.16 74154是4-16线译码器。试画出CP及 $S_0$ 、 $S_1$ 、 $S_2$ 、 $S_3$ 、 $S_4$ 、 $S_5$ 、 $S_6$ 和 $S_7$

各输出的波形图。



[解] 由图可见,74194 构成扭环形计数器,CP 到来前先清零。因此,74194 从 0000 开始,在 $M_1M_0$  = 01 方式控制信号及 CP 脉冲作用下,执行右移操作,由于 $D_{SR} = \overline{Q_3}$ ,可得计数态序表如表解 8.16 所示;74194 输出作为4/16 线译码器的输出,译码器输出低有效,经非门后  $S_0 \sim S_7$  高有效





上页 下页 返回

# 8.17 电路如图题所示,要求

- (1) 列出电路的状态迁移关系(设初始状态为0110);
- (2) 写出F的输出序列。





| <sup>₽</sup> CP <sub>₽</sub> | $Q_0Q_1Q_2Q_3^{-1}$  | A | <sub>2</sub> A <sub>1</sub> | <b>A</b> <sub>0</sub> ₽ | $D_{\mathrm{i}^{\wp}}$  | $F_{e}$  |
|------------------------------|----------------------|---|-----------------------------|-------------------------|-------------------------|----------|
| 0+<br>1+                     | 0110                 | 1 |                             | 04                      | <i>D</i> <sub>6</sub> ↔ | 0↔       |
| 4 24                         | 0 0 1 1↓<br>1 0 0 1↓ | 0 | 0                           | 0₊/<br>1₊/              | $D_{1^{e^{j}}}$         | 0⊬<br>1⊬ |
| 3<br>4.0                     | 1 1 0 0€<br>0 1 1 0€ | 0 | 1                           | 1₽<br>0₽                | $D_{6^{arphi}}$         | 0∉<br>0  |

**[解]** (1) 电路由移位寄存器 74194 和多选一 MUX 构成。由于 74194 中 右移数据输入  $D_{SR} = Q_3$ ,且工作方式控制信号  $M_1 M_0 = 01$ ,构成了环形计数器;而 8 选 1MUX 的地址输入  $A_2 A_1 A_0 = Q_2 Q_1 Q_0$ ,  $D_7 = D_5 = D_2 = 1$ ,  $D_4 = D_3 = D_0 = 0$ ,  $D_6 = D_1 = Q_3$ ,因此,根据 74194 的输出态序和 MUX 的选择功能就能得出 F 的输出序列。

(2) 由表可见, F 的输出序列为 0010。 J

**泛** 下

