3D Sensor Data Processing Curriculum

No.	Title	Content	Date	Speaker
01	3D Point Cloud	 3D Point Clouds Point Cloud Processing Datasets	08.13	이용이 (<u>SOSLAB</u>)
02	3D Data Acquisition (Passive)	Stereo VisionPhotogrammetry & Multiview Geometry	08.20	박준휘 (<u>MagicLeap</u>)
03	3D Data Acquisition (Active)	RGB-D CameraLiDAR	08.20	함승록 (LG전자)
04	Differential Geometry	Differential Geometry	08.27	장승호 (<u>MORAI</u>)
05	Spatial Transformation	Spatial Transformation	08.27	이용이 (<u>SOSLAB</u>)
06	Point Cloud Analysis #1	FilteringNearest Neighbor Search	09.03	길현재 (서울대학교)
07	Point Cloud Analysis #2	Model FittingPoint Cloud Features	09.03	윤형석 (<u>CMES</u>)
08	Point Cloud Analysis #3	Classification and SegmentationRegistration	09.10	최재우 (<u>PLAIF</u>)
09	Point Cloud Analysis #4	• Clustering	09.10	신동훈 (<u>SOSLAB</u>)
10	Point Cloud Analysis #5	Deep Learning on Point-cloud	09.17	이종록 (<u>VUERON Technology</u>)
11	Point Cloud Analysis #6	CommunicationVisualization	09.17	이상운 (<u>Seoul Robotics</u>)
12	PCD Tools	PCLOpen3DCloudCompare	09.24	최준호 (<u>SOSLAB</u>)

3D Data Acquisition (Active)

2023. 08. 27

함 승 록 (hihihama@gmail.com)

Table of Contents

- Introduction
- Overview of RGB-D Camera
- 3D Shape Acquisition
 - Structed-Light
 - Time of Flight
- Overview of Lidar Sensor
- Four Important technology of Lidar Sensor
 - Measurement Process
 - Emitter: Laser
 - Beam Steering
 - Receiver: Photodetector

Introduction

Overview of RGB-D Camera Sensor

RGB-D Camera Type

- < Time of Flight >
- 3D < Hybrid Stereo > - Intel

- Apple

- Infineon
- Sony
- Samsung

3D Sensing Key Player & History

- Kinect v1 출시 (2011)
- Apple이 PrimeSense 인수 (2013)
- iphone X 출시 FaceID (2017)
- Intel Realsense D400 Family출시 (2018)
- SmartPhone에 3D Depth Module이 들어가면서, 시장이 증가 Size ↓, Cost ↓

Source) Yole Development, June 2018

Structed-Light

- Single camera with a structured pattern projected in the scene
- Instead of triangulating with two cameras, a camera is substituted by a laser projector
- Codified pattern that embed enough structure to provide unique correspondences to triangulate with the camera
- The direction of the structured pattern is known a priori by the camera, which is able to triangulate based on the pattern $\tan(\alpha) = \frac{x}{z} \qquad \cdots (1)$

$$\tan(\beta) = \frac{b - x}{z} \quad \cdots \quad (2)$$

$$z = \frac{b}{\tan(\alpha) + \tan(\beta)} \quad \cdots \quad (1) + (2)$$

Fig. 2.14 Triangulation with a single laser spot

Structed-Light

• The object point P=(X,Y,Z) is projected onto a point p=(x,y) in the image plane

$$\tan(\alpha) = \frac{Z}{b - X}$$

$$Z = \frac{X \cdot f}{x} = \tan(\alpha) \cdot (b - X)$$

$$X \cdot \left(\frac{f}{x} + \tan(\alpha)\right) = \tan(\alpha) \cdot b$$

$$X = \frac{\tan(\alpha) \cdot b \cdot x}{\left(\frac{f}{x} + \tan(\alpha)\right) \cdot x}$$

$$X = \frac{\tan(\alpha) \cdot b \cdot x}{f + x \cdot \tan(\alpha)}, Y = \frac{\tan(\alpha) \cdot b \cdot y}{f + x \cdot \tan(\alpha)}, Z = \frac{\tan(\alpha) \cdot b \cdot f}{f + x \cdot \tan(\alpha)}$$

Structed-Light

- Laser Blade
 - Instead of a single dot, a laser plane intersects the shape to reconstruct
 - The laser blade in the image and perform a triangulation for each point of the line
- Time-Multiplexing
 - The most common strategy when it comes to early structured-light
 - Do not allow for dynamic shape reconstruction
- Spatial Neighborhood
 - Spatially-structured pattern that creates uniqueness in the neighborhood of each projected pixel

Fig. 2.15 Triangulation with a laser blade

Fig. 2.16 From left to right: time-multiplexing strategy, direct coding and spatial neighborhood

Structed-Light

- Kinect V1
 https://www.youtube.com/watch?v=dTKINGSH9Po
- Apple iphone X
 https://www.youtube.com/watch?v=g4m6StzUcOw

< Kinect V1 >

< iphone X >

Time of Flight

- The TOF principle can directly estimate the device-target distance
- The core of an optical Time-of-Flight system consists of a light transmitter and a receiver
- The round-trip time from the transmitter to the receiver is an indicator of the distance of the object
- Integrated systems measures distances exploiting the TOF principle use either pulsed-modulation or Continuous-Wave (CW) modulation

$$d = \frac{c * \Delta t}{2}$$

c: light speedΔt: time delay

Fig. 2.17 Time-of-Flight emission, reflection and reception principle

Time of Flight

- Pulse-modulation
 - It requires very short light pulses with fast rise- and fall-times, as well as high optical power like
 lasers or laser diodes
 - It estimates the delay as the ratio of photons Q2 that strikes back C2 respect to the total energy
 Q1 + Q2 that strikes back both C1 and C2

Light Source

Reflection

C1 In Phase

C2 Out of Phase

Fig. 2.19 Pulsed-modulation method from Li (2014)

Time of Flight

- Continuous-Wave (CW) modulation
 - A cross-correlation operation between the emitted and the received signal to estimate the phase between the two signals
 - This operation also takes into account multiple samples hence provides <u>improved precision</u>

$$d = rac{c * \Delta t}{2}$$
 with $\Delta t = rac{\phi}{2\pi f}$ 각속도

Time of Flight

- Continuous-Wave (CW) modulation
 - The four-bucket technique that takes into consideration four samples of the emitted signal,
 phase-stepped by 90°
 - Electrical charges from the reflected signal accumulates during these four samples and the quantity of photons are probed in Q1, Q2, Q3 and Q4

$$d = \frac{c}{4\pi f} \phi \quad \text{with} \quad \phi = \arctan\left(\frac{Q_3 - Q_4}{Q_1 - Q_2}\right)$$

Fig. 2.20 Four phase-stepped samples according to Wyant (1982)

Time of Flight

- Continuous-Wave (CW) modulation
 - Let s(t) and r(t) be the optical powers of the emitted and received signals respectively

$$s(t) = a_1 + a_2 \cos(2\pi f t),$$

 $r(t) = A \cos(2\pi f t - 2\pi f \tau) + B,$

a1, a2 : of fset and amplitude of emitted signal

f : modulation frequency

 τ : time delay between the emitted and received signal

A, B : amplitude and of fset of received signal

The cross-correlation between the powers of the emitted and received signals can be written as:

$$C(x) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} s(t)r(t-x)dt.$$

$$\downarrow \cdots (1)$$

$$C(x,\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} \left(a_2 B \cos(2\pi f t) + a_2 A \cos(2\pi f t) \cos(2\pi f t - 2\pi f (\tau + x)) \right) dt$$

$$+ a_1 A \cos(2\pi f t - 2\pi f (\tau + x)) dt$$

$$+ a_1 B.$$

$$C(x,\tau) = \frac{a_2 A}{2} \cos(2\pi f (x+\tau)) + a_1 B$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$\psi$$

$$C(x, \tau) = \frac{a_2 A}{2} \cos(2\pi f(x + \tau)) + a_1 B.$$

$$\psi = 2\pi f x \text{ and } \phi = 2\pi f \tau,$$

$$C(\psi, \phi) = \frac{a_2 A}{2} \cos(\psi + \phi) + a_1 B.$$

Time of Flight

- Continuous-Wave (CW) modulation
 - Let's consider the values of the correlation function at four equally spaced samples within one modulation period, $\psi 0 = 0$, $\psi 1 = \pi/2$, $\psi 2 = \pi$, and $\psi 3 = 3\pi/2$, namely C0 = C(0, Φ), C1 = C(π /2, Φ), C2 = C(π , Φ), and C3 = C(3 π /2, Φ)

$$C_{0} = \frac{a_{2}A}{2}\cos(\phi) + a_{1}B \qquad C_{1} = \frac{a_{2}A}{2}\cos\left(\frac{\pi}{2} + \phi\right) + a_{1}B \qquad C_{2} = \frac{a_{2}A}{2}\cos(\pi + \phi) + a_{1}B \qquad C_{3} = \frac{a_{2}A}{2}\cos\left(\frac{3\pi}{2} + \phi\right) + a_{1}B$$

$$C_{1} = -\frac{a_{2}A}{2}\sin(\phi) + a_{1}B \qquad C_{2} = -\frac{a_{2}A}{2}\cos(\phi) + a_{1}B \qquad C_{3} = \frac{a_{2}A}{2}\sin(\phi) + a_{1}B$$

$$\frac{C_0 - C_2 = a_2 A \cos(\phi) \quad \cdots (1)}{C_2 - C_1 = a_2 A \sin(\phi) \quad \cdots (2)} \qquad \frac{C_3 - C_1}{C_0 - C_2} = \frac{a_2 A \sin(\phi)}{a_2 A \cos(\phi)} \quad \cdots (3)$$

$$C_0 - C_2 = a_2 A \cos(\phi) \quad \cdots \quad (1)$$

$$C_3 - C_1 = a_2 A \sin(\phi) \quad \cdots \quad (2)$$

$$C_3 - C_1 = a_2 A \sin(\phi) \quad \cdots \quad (2)$$

$$C_3 - C_1 = a_2 A \sin(\phi) \quad \cdots \quad (2)$$

$$C_3 - C_2 = \frac{a_2 A \sin(\phi)}{a_2 A \cos(\phi)} \quad \cdots \quad (3)$$

$$A = \frac{1}{a_2} \sqrt{(C_3 - C_1)^2 + (C_0 - C_2)^2}$$

$$B = \frac{1}{4a_1} (C_0 + C_1 + C_2 + C_3)$$
The Overview of Depth Cameras and Range Scanners Based on Time-of-Flight Technologies

3D Shape Acquisition (Depth Map to Point Cloud)

Depth Map to Point Cloud

- Distance measurements, a minimum of information about the intrinsic parameters are necessary such as focal length, optical center and distortion
- RGB-D cameras usually perform it independently and provide range maps along the optical axis
- A 3D point (X, Y, Z) is obtained from the depth information Dx,y, (x, y) being the rectified pixel position on the sensor $X D_{x,y,x} * (c_x x)/f_x$

$$X = \mathbf{D}_{x,y} * (c_x - x)/\mathbf{f}_x$$
$$Y = \mathbf{D}_{x,y} * (c_y - y)/\mathbf{f}_y$$
$$Z = \mathbf{D}_{x,y}$$

(b) Point Cloud

(b) Colored point cloud

Fig. 2.25 Point cloud (b) obtained from the depth map (a)

Fig. 2.26 Color Point cloud (b) obtained from the colored depth map (a)

Overview of Lidar Sensor

Lidar Sensor Type

1st Gen: Spinning Rotating

Lidar Key Player & History

1930년대	1950년대	1980년대	1990년대	2000년대	현재
탐조등 빛의 세 기를 통한공기 밀도분석	레이저의 본격적 개발	레이저 고도계 시스템 개발	거리즉정용 레이저	카메라 기능 보완용	레이저 스캐너 및 3D 기술
공기밀도 분석	위성, 해양 및 대기 관측	대기 해양 라이 다 및 맵핑	항공기, 위성 탑재 정밀 대기 분석	우주선 및 로봇 적용 자동차 속도 측정	자율주행 및 무인이동체 적용

Lidar Sensor 핵심 기술

Four important technology choices in designing or selecting a 3D lidar module. Source: IDTechEx

Lidar Sensor 핵심 기술 조합

Lidar Sensor 핵심 기술(1) – 거리 측정 방식

Lidar Sensor 핵심 기술(1) - 거리 측정 방식

Time of Flight

- 대다수의 Lidar Sensor들은 ToF 방식을 사용
- 레이저 광선을 쏘아 물체에서 반사되어 오는 반사광의 걸리는 시간을 측정하여, 물체의 거리 감지

Frequency Modulated Continuous Wave (FMCW)

- 연속적으로 변하는 연속파 방식의 주파수 변조 레이저 광으로 되돌아온 신호의 위상과 주파수로 거리와
 속도를 측정
- 연속적인 빛의 흐름을 통해 더 먼 거리를 측정할 수 있고, 악천후와 태양광 간섭에 강인하지만,
 크기와 비용이 단점

[그림 9] Pulsed TOF 방식(좌)과 FMCW 방식(우)의 비교

Laser Source

Target

Target

TX/RX Optics

TX/RX Optics

Range Detector

Lidar Sensor 핵심 기술(1) - 거리 측정 방식

Frequency Modulated Continuous Wave (FMCW)

Lidar Sensor 핵심 기술(1) – 거리 측정 방식

Frequency Modulated Continuous Wave (FMCW)

Lidar Sensor 핵심 기술(1) – 거리 측정 방식

Frequency Modulated Continuous Wave (FMCW)

$$d = \frac{c \cdot \Delta t}{2}$$

$$\gamma = \frac{\Delta f}{t_c} = \frac{f_b}{\Delta t}$$

 $d = \frac{c \cdot \Delta t}{2} \qquad \gamma = \frac{\Delta f}{t_s} = \frac{f_b}{\Delta t} \qquad \begin{array}{l} f_b : \textit{Beat frequency} \\ \Delta f : \textit{sweep bandwidth} \end{array}$

 t_s : sweep time

$$d = \frac{c \cdot \Delta t}{2} = \frac{c \cdot f_b \cdot t_s}{2 \cdot \Delta f}$$

Lidar Sensor 핵심 기술(2) – 레이저 스캐닝 방식

Lidar Sensor 핵심 기술(2) – 레이저 스캐닝 방식

그림51 라이다 핵심 부품 및 구동방식 비교

자료: SOSLAB, 이베스트투자증권 리서치센터

Lidar Sensor 핵심 기술(3) – 레이저 기술

Lidar Sensor 핵심 기술(3) – 레이저 기술

Laser Technology

• VCSEL은 파장이 안정적이고 우수한 성능을 제공하며, 최근에는 스마트폰 등 다양한 제품에 탑재되어, 향후 성장세가 확대될 것

그림65 핵심 송신 소자

Lidar Sensor 핵심 기술(3) – 레이저 기술

WaveLength

- Lidar Sensor 파장 대역은 주로 905nm, 1,550nm
- 905nm는 상대적으로 인식범위가 좁지만, 소모전력이 낮고 수분 흡수력이 낮다
- 사이즈도 작아 제품화에 유리하고, 비용에서도 우세

그림67 라이다용 레이저 파장 대역

항목	905 nm (830~940)	1,550 nm
레이저 형상		Size Mrd Miz (<1/100)
17.19.000000000	*Source: II-VI(Finisar)	*Source: AeroDiode
구성 부품 Size	소형	대형
tirii Ari	제한	우세
최대 출력	(Eye safety ↓)	(Eye safety †)
환경 영향성	우세	제한
(수중기, 안개 外)	(출력 효율†)	(출력 효율↓)
가격	우세	열세
11-1	(Si, CMOS 집적화 유리)	(Si, CMOS 집적화 유리)
MELH	우세	열세
신뢰성	(905 nm 레이저 신뢰성 우수)	(1550 nm 레이저 신뢰성 우수)
상용화 소자	다수	제한

Lidar Sensor 핵심 기술(4) – 디텍터 기술

Lidar Sensor 핵심 기술(4) — 디텍터 기술

Diode

- 한쪽 방향으로 전류를 흐르게 하는 부품
- 역방향 전압을 걸어주면 부도체가 되지만, 일정 전압 이상에서 전류가 흐르는 성질이 있음 (Avalanche Breakdown Voltage)

Lidar Sensor 핵심 기술(4) - 디텍터 기술

그림66 핵심 수신 소자

항목	*APD	*SPAD 🗸	*SIPM
형상	SECRETARIAN SECRET		The state of the s
	*Source: First-Sensor	*Source: On Semiconductor	*Source: On Semiconductor
수신감도	0.06 kA/W	100 kA/W	100 kA/W
대역폭	<1 GHz	⇒1 GHz	>1 GHz
온도 특성	1 V/K	21 mV/K	21 mV/K
출력 정보	Intensity + Timing	Intensity + Timing	Intensity + Timing
동작 전압	~ 250V	~ 30V	~ 30V
수신 회로	복참	간단	보통
노이즈 특성	우세	열세	보통
가격	열세	우세	우세
Array 개수	제약(<128)	가능 (>10k)	제약(<128)

^{*}APD: Avalanche Photo Diode / *SPAD: Single Photo Avalanche Diode / *SIPM: Silicon Photo Multiplier

자료: 각 업체, SOSLAB, 이베스트투자증권 리서치센터

Thank You

3D Sensor Data Processing Curriculum