Uczenie Maszynowe: Wprowadzenie

(c) Marcir Sydow

Uczenie Maszynowe: Wprowadzenie

(c) Marcin Sydow

Plan

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

- Dane
- Eksploracja danych i uczenie maszynowe: motywacja
- Na czym polega uczenie z danych
- Tablice decyzyjne: atrybuty i obserwacje
- Uczenie z nadzorem i bez nadzoru
- Klasyfikacja i regresja
- Przykłady

Dane: Motywacja dla eksploracji danych

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

Obserwacje:

- Danych jest dużo, są interesujące ale trudne do analizy przez człowieka
- 2 są w formie elektronicznej

Ergo: zaprząc do tego algorytmy i komputery

Zalew danych

Uczenie Maszynowe: Wprowadzenie

(c) Marcin Sydow W każdej sekundzie produkowane są ogromne ilości danych:

- odwiedzenia stron WWW
- dzienne ceny ropy
- notowania partii politycznych
- zapytania do wyszukiwarek
- kliknięcia (logi serwerów WWW)
- zamówienia towarów w sklepach internetowych
- rachunki w elektronicznych kasach sklepowych
- wyniki pomiarów astronomicznych, fizycznych, etc...

Przykładowe zadania

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Svdow

- grupowanie obiektów podobnych
- rozpoznawanie istotnych wzorców w danych
- klasyfikacja nowo-obserwowanych przypadków
- przewidywanie przyszłości na podstawie poprzednich obserwacji
- wykrywanie trendów w danych (np. wczesne wykrycie kryzysów ekonomicznych, itp.)

W uczeniu maszynowym powyższe cele realizowane są automatycznie lub przy niewielkim wsparciu człowieka

Podział

Uczenie Maszynowe: Wprowadzenie

(c) Marcin

- Uczenie z nadzorem
- Uczenie bez nadzoru

Typowe fazy w uczeniu maszynowym

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Sydow

- zbieranie danych
- czyszczenie i wstępne przetworzenie danych
- (tylko w uczeniu z nadzorem) podział na zbiór treningowy i testowy
- uczenie się na danych
- ewaluacja (iteracyjnie)
- używanie systemu do zadań

Uczenie z nadzorem

Uczenie Maszynowe: Wprowadzenie

(c) Marcii

- podawanie systemowi "prawidłowych" rozwiązań w tzw zbiorze danych treningowych (sygnał uczący)
- system "uczy się" (dane treningowe) uogólnić sposób rozwiązania zadania poprzez automatyczne wykrycie związków pomiędzy danymi a prawidłowymi rozwiązaniami (automatyczne budowanie modelu prawidłowego rozwiązania)
- automatycznie "wyuczony" model jest stosowany do nowych przypadków (nie trenujących)

Uczenie bez Nadzoru

Uczenie Maszynowe: Wprowadzenie

(c) Marcin

- brak sygnału uczącego (surowe dane)
- cel: wykrycie pewnych związków między obiektami i atrybutami (np. grupowanie, reguły asocjacyjne)

Tablica Decyzyjna

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Svdow

Przykład - diagnostyka okulistyczna.

FIZYKIAU - C	Jiagiiostyka	OKUHSLYCZII	d.	
wiek	presc.	astygmatyzm	łzawienie	OKULARY
młody	myope	nie	niskie	zb ę dn e
młody	myope	nie	normalne	lekkie
młody	myope	yes	niskie	zb ę dn e
młody	myope	tak	normalne	mocne
młody	hypermetrope	nie	niskie	zb ę dn e
młody	hypermetrope	nie	normalne	lekkie
młody	hypermetrope	tak	niskie	zb ę dn e
młody	hypermetrope	tak	normalne	mocne
pre-presbyopic	myope	nie	niskie	zb ę dn e
pre-presbyopic	myope	nie	normalne	lekkie
pre-presbyopic	myope	tak	niskie	zb ę dn e
pre-presbyopic	myope	tak	normalne	mocne
pre-presbyopic	hypermetrope	nie	niskie	zb ę dn e
pre-presbyopic	hypermetrope	nie	normalne	lekkie
pre-presbyopic	hypermetrope	tak	niskie	zb ę dn e
pre-presbyopic	hypermetrope	tak	normalne	zb ę dn e
presbyopic	myope	nie	niskie	zb ę dn e
presbyopic	myope	nie	normalne	zb ę dn e
presbyopic	myope	tak	niskie	zb ę dn e
presbyopic	myope	tak	normalne	mocne
presbyopic	hypermetrope	nie	niskie	zb ę dn e
presbyopic	hypermetrope	nie	normalne	lekkie
presbyopic	hypermetrope	tak	niskie	zb ę dn e
presbyopic	hypermetrope	tak	normalne	zb ę dn e

Przykład: nieznana gra, możliwa tylko przy pewnych specyficznych warunkach atmosferycznych (nie wiemy jakich).

Uczenie Maszynowe: Wprowadzenie

(c) Marci

pogoda		temperatura	wilgotność	wiatr	GRAĆ?
	słonecznie	ciepło	wysoka	brak	nie
	słonecznie	ciepło	wysoka	jest	nie
	pochmurno	ciepło	wysoka	brak	tak
	deszczowo	normalnie	wysoka	brak	tak
	deszczowo	chłodno	normalna	brak	tak
	deszczowo	chłodno	normalna	jest	nie
	pochmurno	chłodno	normalna	jest	tak
	słonecznie	normalnie	wysoka	brak	nie
	słonecznie	chłodno	normalna	brak	tak
	deszczowo	normalnie	normalna	brak	tak
	słonecznie	normalnie	normalna	jest	tak
	pochmurno	normalnie	wysoka	jest	tak
	pochmurno	ciepło	normalna	brak	tak
	deszczowo	normalnie	wysoka	jest	nie

Przykład, cd

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Sydow

Zadanie:

"Przewidzieć przy jakich warunkach gra się w tę grę?"

Jeśli odpowiedź nie jest znana można posłużyć się wieloma zaobserwowanymi przypadkami i sprawić aby system wychwycił ogólną regułę.

Jeśli uda się w ten automatyczny sposób pozyskać "wiedzę" o regułach gry z obserwacji znanych przypadków można ją następnie zastosować do przypadków nieznanych

Nowy przypadek

Uczenie Maszynowe: Wprowadzenie

(c) Marcin Sydow

outlook		temperature	humidity	windy	PLAY?
słonecznie		ciepło	wysoka	brak	nie
	słonecznie	ciepło	wysoka	jest	nie
	pochmurno	ciepło	wysoka	brak	tak
	deszczowo	normalnie	wysoka	brak	tak
	deszczowo	chłodno	normalna	brak	tak
	deszczowo	chłodno	normalna	jest	nie
pochmurno		chłodno	normalna	jest	tak
	słonecznie	normalnie	wysoka	brak	nie
	słonecznie	chłodno	normalna	brak	tak
deszczowo		normalnie	normalna	brak	tak
	słonecznie	normalnie	normalna	jest	tak
pochmurno		normalnie	wysoka	jest	tak
pochmurno		ciepło	normalna	brak	tak
	deszczowo	normalnie	wysoka	jest	nie
	pochmurno	chłodno	wysoka	jest	???

Tablica decyzyjna: obserwacje i atrybuty

Uczenie Maszynowe: Wprowadzenie

(c) Marci Svdow

Wiedza może być budowana w oparciu o poprzednio zaobserwowane dane:

Każda obserwacja (przypadek) opisana za pomocą **atrybutów** określonego typu (nominalnego albo numerycznego)

Tablica Decyzyjna:

- obserwacje (przypadki) = wiersze
- atrybuty = kolumny

Atrybuty

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

- numeryczne albo kategoryczne
- uporządkowane lub nie
- przeskalowanie, transformacje atrybutów
- kwantyzacja (zamiana z numerycznych na kategoryczne)

Tabela Decyzyjna: atrybuty nominalne

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

pogoda	temperatura	wilgotność	wiatr	GRAĆ?
słonecznie	ciepło	wysoka	brak	nie
słonecznie	ciepło	wysoka	jest	nie
pochmurno	ciepło	wysoka	brak	tak
deszczowo	normalnie	wysoka	brak	tak
deszczowo	chłodno	normalna	brak	tak
deszczowo	chłodno	normalna	jest	nie
pochmurno	chłodno	normalna	jest	tak
słonecznie	normalnie	wysoka	brak	nie
słonecznie	chłodno	normalna	brak	tak
deszczowo	normalnie	normalna	brak	tak
słonecznie	normalnie	normalna	jest	tak
pochmurno	normalnie	wysoka	jest	tak
pochmurno	ciepło	normalna	brak	tak
deszczowo	normalnie	wysoka	jest	n ie

Tabela Decyzyjna: atrybuty numeryczne

Uczenie Maszynowe: Wprowadzenie

(c) Marci Svdow

pogoda		temperatura (F)	wilgotność	wiatr	GRAĆ?
	słonecznie	85	85	brak	nie
	słonecznie	80	90	jest	nie
	pochmurno	83	86	brak	tak
	deszczowo	70	96	brak	tak
	deszczowo	68	80	brak	tak
	deszczowo	65	70	jest	nie
	pochmurno	64	65	jest	tak
	słonecznie	72	95	brak	nie
	słonecznie	69	70	brak	tak
	deszczowo	75	80	brak	tak
	słonecznie	75	70	jest	tak
	pochmurno	72	90	jest	tak
	pochmurno	81	75	brak	tak
	deszczowo	71	91	jest	nie

Inne formy danych

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

Dane nie muszą być w formie prostokątnej tablicy

- logi (np. serwerów)
- dane relacyjne (np. w sieciach społecznych)
- dane sekwencyjne (np. bioinformatyka)
- dane grafowe, etc.

Uczenie Maszynowe

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

Zadanie: "nauczyć się" relacji pomiędzy wartościami atrybutów

Dwa główne podejścia:

- Uczenie z nadzorem
- Uczenie bez nadzoru

Uczenie z nadzorem

Uczenie Maszynowe: Wprowadzenie

(c) Marcir Svdow

- **1 atrybut decyzyjny**: wyszczególniony atrybut w tabeli decyzyjnej (np. "GRAĆ?")
- Zadanie: "przewidzieć" prawidłową (nieznaną) wartość atrybutu decyzyjnego na podstawie (znanych) wartości pozostałych atrybutów
- 3 Wykorzystać do tego zbiór treningowy tj taki zbiór obserwacji (przypadków), dla których prawidłowa wartość atrybutu decyzyjnego (oraz wszystkich pozostałych atrybutów) jest znana

Uczenie z nadzorem nazywane jest:

- klasyfikacją, gdy przewidywany atrybut decyzyjny jest nominalny
- regresją, gdy przewidywany atrybut decyzyjny jest numeryczny

Podsumowanie idei uczenia z nadzorem

Uczenie Maszynowe: Wprowadzenie

(c) Marcir Sydow Cel:

input: nowy przypadek (obserwacja) z nieznaną wartością atrybutu decyzyjnego

output: "prawidłowa" wartość atrybutu decyzyjnego

System może "uczyć się" tylko na ograniczonej liczbie znanych przypadków (zbiór treningowy) dodstarczonych przez nadzorującego

Problemy praktyczne:

- brakujące wartości (jak je wypełnić?)
- błędne wartości (jak je wykryć i poprawić?)
- dane zaszumione (jak je "odszumić"?)
- dane sprzeczne (co z tym zrobić?)

Przykład zadania klasyfikacji

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Sydow Botanika: rozpoznawanie gatunków roślin (dane "Iris")

Rozpatrzmy 3 różne podgatunki kwiatu o łac. nazwie Iris:

- Iris-setosa
- Iris-versicolor
- Iris-virginica

Task: nauczyć się rozpoznawać gatunek rośliny na podstawie rozmiarów liści i płatków (atrybuty):

- długość listka (cm)
- szerokość listka (cm)
- długość płatka (cm)
- szerokość płatka (cm)

Rozpoznawanie roślin, cont.

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow Zbiór trenujący:

150 znanych przypadków (zmierzone części roślin i znana prawidłowa klasyfikacja)

System "uczy się" na zbiorze treningowym

Następnie, każdy nowy (nieznany) przypadek jest klasyfikowany na podstawie pomiarów płatków i listków Automatycznie "wyuczona" wiedza jest stosowana do klasyfikacji nowych przypadków (dla których prawidłowa odpowiedź nie musi być znana przez nadzorującego proces)

Zbiór danych (fragment)

Uczenie Maszynowe: Wprowadzenie

(c) Marci

S - iris setosa, V - iris versicolor, VG - iris virginica

11	lw	pl	pw	?	11	l w	pl	pw	?		Iw	pl	pw	?
5.1	3.5	1.4	0.2	S	7.0	3.2	4.7	1.4	V	6.3	3.3	6.0	2.5	V
4.9	3.0	1.4	0.2	S	6.4	3.2	4.5	1.5	V	5.8	2.7	5.1	1.9	V
4.7	3.2	1.3	0.2	S	6.9	3.1	4.9	1.5	V	7.1	3.0	5.9	2.1	V
4.6	3.1	1.5	0.2	S	5.5	2.3	4.0	1.3	V	6.3	2.9	5.6	1.8	V
5.0	3.6	1.4	0.2	S	6.5	2.8	4.6	1.5	V	6.5	3.0	5.8	2.2	V
5.4	3.9	1.7	0.4	S	5.7	2.8	4.5	1.3	V	7.6	3.0	6.6	2.1	V
4.6	3.4	1.4	0.3	S	6.3	3.3	4.7	1.6	V	4.9	2.5	4.5	1.7	V
5.0	3.4	1.5	0.2	S	4.9	2.4	3.3	1.0	V	7.3	2.9	6.3	1.8	V
4.4	2.9	1.4	0.2	S	6.6	2.9	4.6	1.3	V	6.7	2.5	5.8	1.8	V
4.9	3.1	1.5	0.1	S	5.2	2.7	3.9	1.4	V	7.2	3.6	6.1	2.5	V
5.4	3.7	1.5	0.2	S	5.0	2.0	3.5	1.0	V	6.5	3.2	5.1	2.0	V
4.8	3.4	1.6	0.2	S	5.9	3.0	4.2	1.5	V	6.4	2.7	5.3	1.9	V
4.8	3.0	1.4	0.1	S	6.0	2.2	4.0	1.0	V	6.8	3.0	5.5	2.1	V
4.3	3.0	1.1	0.1	S	6.1	2.9	4.7	1.4	V	5.7	2.5	5.0	2.0	V
5.8	4.0	1.2	0.2	S	5.6	2.9	3.6	1.3	V	5.8	2.8	5.1	2.4	V
5.7	4.4	1.5	0.4	S	6.7	3.1	4.4	1.4	V	6.4	3.2	5.3	2.3	V
5.4	3.9	1.3	0.4	S	5.6	3.0	4.5	1.5	V	6.5	3.0	5.5	1.8	V
5.1	3.5	1.4	0.3	S	5.8	2.7	4.1	1.0	V	7.7	3.8	6.7	2.2	V
5.7	3.8	1.7	0.3	S	6.2	2.2	4.5	1.5	V	7.7	2.6	6.9	2.3	V
5.1	3.8	1.5	0.3	S	5.6	2.5	3.9	1.1	V	6.0	2.2	5.0	1.5	V
5.4	3.4	1.7	0.2	S	5.9	3.2	4.8	1.8	V	6.9	3.2	5.7	2.3	V
5.1	3.7	1.5	0.4	S	6.1	2.8	4.0	1.3	V	5.6	2.8	4.9	2.0	V
5.0	3.0	1.6	0.2	S	6.6	3.0	4.4	1.4	V	7.2	3.2	6.0	1.8	V
5.0	3.4	1.6	0.4	S	6.8	2.8	4.8	1.4	V	6.2	2.8	4.8	1.8	V

Wizualizacja zbioru danych: rzut na płaszczyznę 2-wym.

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Svdow (zbiór jest 4-wymiarowy) np.: szerokość/długość listka - nie jest to wystarczająca informacja

Inna wizualizacja rzutu na płaszczyznę 2-wym.

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow szerokość listka/długość płatka - niesie dużo "wiedzy" (tzw. dobry dyskriminant)

W jaki sposób system sam "uczy się" zależności?

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow Istnieje wiele podejść/modeli, przykłady:

- metoda k najbliższych sąsiadów (kNN)
- Oparte na regułach decyzyjnych
- Drzewa decyzyjne
- Podejście Bayesowskie
- Regresja liniowa
- Sztuczne Sieci Neuronowe (Perceptron, sieci wielo-wartswowe)
- SVM (support vector machines)
- wiele innych...

Inne przykłady problemu klasyfikacji

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

- Maszynowe rozpoznawanie ręcznie pisanych cyfr na formularzach
- Klasyfikacja zdolności kredytowej klienta banku
- Identyfikacja chłamu pocztowego (ang. e-mail spam)
- Automatyczne rozróżnianie wycieków oleju z tankowców od ciepłych prądów na podstawie zdjęć satelitarnych
- Maszynowa identyfikacja języka w dokumentach tekstowych (np. portugalski czy hiszpański, itp.)
- Automatyczna klasyfikacja tematu dokumentu elektronicznego (do jednej z kilku kategorii)
- Identyfikacja tzw. chłamu wyszukiwarkowego (ang. Search Engine Spam)

Zadanie Regresji

Uczenie Maszynowe: Wprowadzenie

(c) Marcii Sydow W zadaniu klasyfikacji system "przewidywał" wartość atrybutu decyzyjnego typu nominalnego.

Jeśli natomiast przewidujemy atrybut numerycznego mówimy o regresji

Przykłady zadania regresji:

- przewidzieć wartość (cenę) papieru wartościowego na podstawie poprzednich notowań i innych czynników (ekonomicznych, politycznych, etc.)
- oszacować ilościowe zapotrzebowanie na dany towar (np. woda mineralna) w przyszłym tygodniu w supermarkecie na podstawie bieżącej sprzedaży, pory roku, pogody, etc.
- przewidzieć temperaturę powietrza w następnym dniu

Przykład zadania regresji

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow Przewidywana skuteczność procesora na podstawie jego parametrów technicznych

Przykładowe atrybuty:

- MYCT cycle time (ns)
- MMIN main memory min
- MMAX main memory max
- CACH cache
- CHMIN channels min
- CHMAX channels max

Example: regression

Uczenie Maszynowe: Wprowadzenie

(c) Marcin Sydow

MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	performance
125	256	6000	256	16	128	199
29	8000	32000	32	8	32	253
29	8000	16000	32	8	16	132
26	8000	32000	64	8	32	290
23	16000	32000	64	16	32	381
23	16000	32000	64	16	32	381
23	16000	64000	64	16	32	749
23	32000	64000	128	32	64	1238
400	1000	3000	0	1	2	23
400	512	3500	4	1	6	24
60	2000	8000	65	1	8	70
50	4000	16000	65	1	8	117
167	524	2000	8	4	15	23
143	512	5000	0	7	32	29
143	1000	2000	0	5	16	22
110	5000	5000	142	8	64	124
143	1500	6300	0	5	32	35
143	3100	6200	0	5	20	39
143	2300	6200	0	6	64	40

Uczenie bez Nadzoru

Uczenie Maszynowe: Wprowadzenie

(c) Marci Svdow

Nie dajemy systemowi przykładów (nie dysponujemy). System musi automatycznie "odkryć" zależności pomiędzy danymi. Podstawowe zadania uczenia bez nadzoru:

- grupowanie (ang. clustering)
- wykrywanie przypadków nietypowych (ang. outliers)
- odkrywanie reguł asocjacyjnych

Grupowanie (ang. clustering)

Uczenie Maszynowe: Wprowadzenie

(c) Marci

Należy podzielić wszystkie badane przypadki na grupy obiektów podobnych do siebie (wewnątrz każdej grupy), przy czym obiekty z różnych grup powinny się jak najbardziej różnić między sobą.

Nie wiemy jaka jest faktyczna kategoria odpowiadająca każdej grupie - nie mamy przykładów.

Jest to często wstępny etap analizy danych.

Najprostszy algorytm grupowania: K-means

Wykrywanie przypadków nietypowych (ang. outliers)

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow Należy automatycznie wykryć obiekty, które z jakichś powodów odstają od pozostałych elementów. Mamy tu tylko do dyspozycji same wartości atrybutów. Obiekty wyraźnie odstające od ogółu są w pewnym sensie "podejrzane". Zastosowania:

- automatyczne wykrywanie włamań do systemów komputerowych
- wykrywanie nadużyć (ang. fraud) w handlu elektronicznym
- wykrywanie "prania brudnych pieniędzy" na podstawie analizy transferów bankowych
- wykrywanie błędów w danych i błędów urządzeń pomiarowych
- czyszczenie danych

Minimum z tego wykładu:

Uczenie Maszynowe: Wprowadzenie

(c) Marci Sydow

- Reprezentacja danych w Uczeniu Maszynowym
- Schemat Uczenia Maszynowego (w krokach)
- Na czym polega podział: "z nadzorem" i "bez nadzoru"
- Co to jest klasyfikacja a co to jest regresja
- Przykłady zadań klasyfikacji i regresji (po 3)
- Przykłady zadań uczenia bez nadzoru
- Na czym polega zadanie grupowania (ang. clustering)?
- Przykłady technik uczenia z nadzorem

Dziękuję za uwagę

Uczenie Maszynowe: Wprowadzenie

(c) Marcir Sydow

Dziękuję za uwagę.