Степенной метод

Степенной метод решает частичную проблему собственных значений и собственных векторов в предположении, что матрица A является матрицей простой структуры, т. е. имеет ровно n линейно независимых векторов (базис) $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$. Пусть нумерация этих векторов произведена в соответствии с убыванием по модулю соответствующим им собственных чисел: $|\lambda_1| \ge |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_n|$

Вычисление максимального по модулю собственного значения λ_1 и соответствующего ему собственного вектора x_1

Рассмотрим три случая:

- 1) $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_n|$, т. е. существует одно максимальное по модулю собственное значение;
- 2) $|\lambda_1| = |\lambda_2| = \dots = |\lambda_t| > |\lambda_{t+1}| \ge |\lambda_{t+2}| \ge \dots \ge |\lambda_n|$ и $\lambda_1 = \lambda_2 = \dots = \lambda_t$, т. е. существует t максимальных по модулю собственных значений равных знаков;
- 3) $|\lambda_1| = |\lambda_2| > |\lambda_3| \ge ... \ge |\lambda_n|$, $\lambda_1 = -\lambda_2$, т. е. существует два максимальных по модулю собственных значения, и они противоположны по знаку.
- 1. Пусть у матрицы A существует одно максимальное по модулю собственное значение: $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge ... \ge |\lambda_n|$. Выберем произвольный вектор $y^{(0)}$ и запишем его разложение по базису $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$:

$$y^{(0)} = \alpha_1 x^{(1)} + \alpha_2 x^{(2)} + \alpha_3 x^{(3)} + \dots + \alpha_n x^{(n)} = \sum_{i=1}^n \alpha_i x^{(i)}.$$
 (14.1)

Затем построим следующую последовательность векторов:

$$y^{(1)} = Ay^{(0)} = \sum_{i=1}^{n} \lambda_i \alpha_i x^{(i)},$$

$$y^{(2)} = Ay^{(1)} = \sum_{i=1}^{n} \lambda_i^2 \alpha_i x^{(i)},$$
...
$$y^{(k)} = Ay^{(k-1)} = \sum_{i=1}^{n} \lambda_i^k \alpha_i x^{(i)}.$$
(14.2)

Введя новое обозначение $\beta^{(i)} = \alpha_i x^{(i)}$, преобразуем (14.2) к виду

$$y^{(k)} = Ay^{(k-1)} = \sum_{i=1}^{n} \lambda_i^k \beta^{(i)}.$$

Тогда s-ая координата вектора $y^{(k)}$ имеет вид $(y^{(k)})_s = \sum_{i=1}^n \lambda_i^k \beta_s^{(i)}$, где

$$\beta_s^{(i)} = (\alpha_i x^{(i)})_s$$

Обозначим $\frac{\lambda_i}{\lambda_1} = \mu_i$ и рассмотрим отношение $\frac{(y^{(k+1)})_s}{(y^{(k)})_s}$: $\frac{(y^{(k+1)})_s}{(y^{(k)})_s} = \frac{\lambda_1^{k+1}\beta_s^{(1)} + \lambda_2^{k+1}\beta_s^{(2)} + \ldots + \lambda_n^{k+1}\beta_s^{(n)}}{\lambda_1^k\beta_s^{(1)} + \lambda_2^k\beta_s^{(2)} + \ldots + \lambda_n^k\beta_s^{(n)}} = \lambda_1 \frac{\beta_s^{(1)} + \mu_2^{k+1}\beta_s^{(2)} + \ldots + \mu_n^{k+1}\beta_s^{(n)}}{\beta_s^{(1)} + \mu_2^k\beta_s^{(2)} + \ldots + \mu_n^k\beta_s^{(n)}}.$

Так как $|\mu_i| < 1$, $i = \overline{2, n}$, то верно соотношение

$$\frac{(y^{(k+1)})_s}{(y^{(k)})_s} = \lambda_1 \left(1 + O(\mu_2^{k+1}) \right) = \lambda_1 + O(\mu_2^k).$$

Значит, $\frac{(y^{(k+1)})_s}{(y^{(k)})_s} \to \lambda_1$, при $k \to \infty$ для каждого $i = \overline{2,n}$, при котором $\left(x^{(1)}\right)_{\cdot} \neq 0$.

Следовательно, в качестве максимального по модулю собственного значения можно взять

$$\lambda_1 \approx \frac{(y^{(k+1)})_s}{(y^{(k)})_s}.$$
(14.3)

При достаточно больших k в представлении (14.2) вектора $y^{(k)}$ все слагаемые справа, начиная со второго, будут иметь значения меньше принятой погрешности вычислений, и сохранится лишь первое слагаемое. Отсюда получается правило для приближенного нахождения собственного вектора $x^{(1)}$, соответствующего максимальному по модулю собственному значению λ_1 :

$$x^{(1)} \approx y^{(k)}. (14.4)$$

Рассмотренный алгоритм вычисления λ_1 может приводить к переполнению разрядной сетки компьютера или машинному нулю.

Этот недостаток можно исправить путем нормирования вектора $y^{(k)}$ после каждого шага.

Введем $z^{(k)} = \frac{y^{(k)}}{\|y^{(k)}\|}$, $y^{(k+1)} = Az^{(k)}$ и будем рассматривать соотношения

$$\frac{\left(y^{(k+1)}\right)_{s}}{\left(z^{(k)}\right)_{s}}$$
, $s=\overline{1,n}$. Если значения близки, то максимальное по модулю

собственное значение вычислено, если нет, то продолжаем вычисления. Таким образом,

$$\lambda_1 = \lim_{k \to \infty} \frac{\left(y^{(k+1)}\right)_s}{\left(z^{(k)}\right)_s}, \ x^{(1)} \approx z^{(k)}.$$
(14.5)

Можно утверждать, что сходимость итерационного процесса (14.2), (14.3) является линейной, т. е. итерационный процесс сходится со скоростью геометрической прогрессии, знаменатель которой в основном определяется величиной отношения $|\mu_2| = \left|\frac{\lambda_2}{\lambda_1}\right|$. Значит, сходимость будет тем лучше, чем сильнее доминирует в спектре матрицы A собственное значение λ_1 . Подмеченный факт вместе со свойством 12.4 собственных пар позволяет существенно ускорить нахождение наибольшего по модулю собственного

значения матрицы A путем удачного смещения ее спектра, чему могут

способствовать какие-либо априорные сведения об исходной задаче. Например, пусть матрица A шестого порядка имеет собственные числа $\lambda_i \in \{100, 99, 98, 97, 96, 95\}$. Непосредственное применение степенного метода к вычислению λ_1 порождает итерационный процесс, сходящийся со скоростью порядка $\left(\frac{99}{100}\right)^k$. Если же степенной метод применить к матрице B = A - 97E, то для нахождения максимального по модулю собственного значения μ_1 матрицы B можно построить итерационный процесс со

скоростью $\left(\frac{2}{3}\right)^k$ и затем определить $\lambda_1 = 97 + \mu_1$.

Запишем алгоритм степенного метода с пошаговой нормировкой векторов.

Шаг 1. Ввести квадратную матрицу A порядка n, задать n-мерный нормированный вектор z.

Шаг 2. Вычислить вектор y = Az.

Шаг 3. Вычислить отношения $\lambda_i = \frac{y_i}{z_i}$ координат векторов y и x таких, что $|z_i| > \delta$, где $\delta > 0$ — некоторое число (допуск).

Шаг 4. Если $\left|\max_{i}\lambda_{i}-\min_{i}\lambda_{i}\right|<\epsilon$, где ϵ – требуемая точность, то работу алгоритма прекратить и в качестве максимального по модулю собственного значения выбрать усредненное по i значение λ_{i} . В качестве соответствующего собственного вектора взять z, если $\left|\max_{i}\lambda_{i}-\min_{i}\lambda_{i}\right|\geq\epsilon$, то положить $z=\frac{y}{\|y\|}$ и перейти к шагу 2 алгоритма. (Правильнее было бы

критерием остановки выбрать малость нормы двух приближений $\lambda^{(k+1)}$ и $\lambda^{(k)}$ на (k+1)-é и k-é итерациях: $\left\|\lambda^{(k+1)} - \lambda^{(k)}\right\| < \epsilon$.)

Вычисление максимального по модулю собственного значения λ_1 и соответствующего ему собственного вектора x_1 для симметрической матрицы

Если матрица A симметрическая, можно применить метод с более высокой скоростью сходимости к максимальному по модулю собственному значению λ_1 . Симметрическая матрица имеет полную систему собственных векторов $x^{(1)}$, $x^{(2)}$, ..., $x^{(n)}$, и их всегда можно считать ортонормированными.

Рассмотрим отношение
$$\frac{\left(y^{(k+1)}, y^{(k)}\right)}{\left(y^{(k)}, y^{(k)}\right)}$$
:

$$\frac{\left(y^{(k+1)}, y^{(k)}\right)^{y^{(k)} = \sum\limits_{i=1}^{n} \lambda_{i}^{k} \alpha_{i} x^{(i)}}{\left(y^{(k)}, y^{(k)}\right)} = \frac{\lambda_{1}^{2k+1} \alpha_{1}^{2} + \lambda_{2}^{2k+1} \alpha_{2}^{2} + \ldots + \lambda_{n}^{2k+1} \alpha_{n}^{2}}{\lambda_{1}^{2k} \alpha_{1}^{2} + \lambda_{2}^{2k} \alpha_{2}^{2} + \ldots + \lambda_{n}^{2k} \alpha_{n}^{2}}.$$

Обозначим
$$\frac{\lambda_i}{\lambda_1} = \mu_i$$
, тогда

$$\frac{\left(y^{(k+1)}, y^{(k)}\right)}{\left(y^{(k)}, y^{(k)}\right)} = \lambda_1 \frac{\alpha_1^2 + \mu_2^{2k+1}\alpha_2^2 + \ldots + \mu_n^{2k+1}\alpha_n^2}{\alpha_1^2 + \mu_2^{2k}\alpha_2^2 + \ldots + \mu_n^{2k}\alpha_n^2} = \lambda_1(1 + O(\mu_2^{2k+1})) = \lambda_1 + O(\mu_2^{2k}),$$
и

в качестве максимального по модулю собственного значения можно взять

$$\lambda_1 \approx \frac{\left(y^{(k+1)}, y^{(k)}\right)}{\left(y^{(k)}, y^{(k)}\right)}.$$
(14.6)

Базирующаяся на таком подходе модификация степенного метода называется методом скалярных произведений или методом частных Рэлея. Отметим, что скорость сходимости предложенного алгоритма будет выше, чем у степенного метода $\left(O(\mu_2^{2k})\right)$ против $O(\mu_2^k)$. Поэтому точность приближенного равенства

$$x^{(1)} \approx y^{(k)} \tag{14.7}$$

для соответствующего собственного вектора может оказаться недостаточной.

Запишем алгоритм метода скалярных произведений с пошаговой нормировкой векторов.

Шаг 1. Ввести квадратную симметрическую матрицу A порядка n, задать n-мерный нормированный вектор z и начальное приближение λs для начального сравнения (например, 0).

Шаг 2. Вычислить вектор y = Az.

Шаг 3. Вычислить отношение нового приближения к максимальному по модулю собственному вектору $\lambda n = \frac{(y,z)}{(z,z)}$.

Шаг 4. Если $|\lambda n - \lambda s| < \varepsilon$, где ε – требуемая точность, то работу алгоритма прекратить и в качестве максимального по модулю собственного значения выбрать λn , в качестве соответствующего собственного вектора взять z; если $|\lambda n - \lambda s| \ge \varepsilon$, то положить $z = \frac{y}{\|y\|}$ и перейти к шагу 2 алгоритма.

2. Рассмотрим случай, когда существует кратное максимальное по модулю собственное значение:

$$\left|\lambda_1\right| = \left|\lambda_2\right| = \ldots = \left|\lambda_t\right| > \left|\lambda_{t+1}\right| \ge \left|\lambda_{t+2}\right| \ge \ldots \ge \left|\lambda_n\right| \text{ и } \lambda_1 = \lambda_2 = \ldots \lambda_t.$$

Найдем отношение:

$$\frac{(y^{(k+1)})_s}{(y^{(k)})_s} = \frac{\lambda_1^{k+1}\beta_s^{(1)} + \ldots + \lambda_1^{k+1}\beta_s^{(t)} + \lambda_{t+1}^{k+1}\beta_s^{(t+1)} + \ldots + \lambda_n^{k+1}\beta_s^{(n)}}{\lambda_1^k\beta_s^{(1)} + \ldots + \lambda_1^k\beta_s^{(t)} + \lambda_{t+1}^k\beta_s^{(t+1)} + \ldots + \lambda_n^k\beta_s^{(n)}}.$$

Обозначим $\frac{\lambda_i}{\lambda_1} = \mu_i$ и получим

$$\frac{(y^{(k+1)})_s}{(y^{(k)})_s} = \lambda_1 \frac{\beta_s^{(1)} + \ldots + \beta_s^{(t)} + \mu_{t+1}^{k+1} \beta_s^{(t+1)} + \ldots + \mu_n^{k+1} \beta_s^{(n)}}{\beta_s^{(1)} + \ldots + \beta_s^{(t)} + \mu_{t+1}^{k} \beta_s^{(t+1)} + \ldots + \mu_n^{k} \beta_s^{(n)}} = \\ = \lambda_1 (1 + O(\mu_{t+1}^{k+1})) = \lambda_1 + O(\mu_{t+1}^{k}).$$

Значит,

$$\lambda_1 = \dots = \lambda_t = \lim_{k \to \infty} \frac{\left(y^{(k+1)}\right)_s}{\left(y^{(k)}\right)_s}, \ x^{(1)} \approx y^{(k)}.$$
 (14.8)

Для нахождения остальных t-1 собственных векторов, соответствующих собственному значению λ_1 , нужно изменить начальный вектор $y^{(0)}$ и вновь проделать все указанные выше вычисления.

3. Рассмотрим случай двух наибольших по модулю собственных значений, отличающихся знаком: $|\lambda_1| = |\lambda_2| > |\lambda_3| \ge ... \ge |\lambda_n|, \ \lambda_1 = -\lambda_2$. Найдем отношение:

$$\frac{(y^{(k+1)})_s}{(y^{(k)})_s} = \frac{\lambda_1^{k+1}\beta_s^{(1)} + (-1)^{k+1}\lambda_1^{k+1}\beta_s^{(2)} + \lambda_3^{k+1}\beta_s^{(3)} + \dots + \lambda_n^{k+1}\beta_s^{(n)}}{\lambda_1^k\beta_s^{(1)} + (-1)^k\lambda_1^k\beta_s^{(2)} + \lambda_3^k\beta_s^{(3)} + \dots + \lambda_n^k\beta_s^{(n)}} \Longrightarrow$$

не существует предела $\lim_{k\to\infty} \frac{\left(y^{(k+1)}\right)_s}{\left(y^{(k)}\right)_s}$, поскольку из этой последовательности

можно выделить две сходящиеся к разным пределам подпоследовательности. Рассмотрим вместо предыдущего отношения новое отношение:

$$\begin{split} \frac{(y^{(k+2)})_s}{(y^{(k)})_s} = & \frac{\lambda_1^{k+2}\beta_s^{(1)} + (-1)^{k+2}\lambda_1^{k+2}\beta_s^{(2)} + \lambda_3^{k+2}\beta_s^{(3)} + \ldots + \lambda_n^{k+2}\beta_s^{(n)}}{\lambda_1^k\beta_s^{(1)} + (-1)^k\lambda_1^k\beta_s^{(2)} + \lambda_3^k\beta_s^{(3)} + \ldots + \lambda_n^k\beta_s^{(n)}} = \\ = & \lambda_1^2(1 + O(\mu_3^{k+2})) = \lambda_1^2 + O(\mu_3^k), \text{ где } \frac{\lambda_i}{\lambda_1} = \mu_i, \end{split}$$

То есть

$$\lambda_1^2 \approx \frac{(y^{(k+2)})_s}{(y^{(k)})_s}.$$
 (14.9)

Пусть $\lambda_1 \approx \sqrt{\frac{(y^{(k+2)})_s}{(y^{(k)})_s}}$. Поскольку $\lambda_1 = -\lambda_2$, получаем, что $y^{(k)} \approx \lambda_1^k \alpha_1 x^{(1)} + (-\lambda_1)^k \alpha_2 x^{(2)}$, $y^{(k+1)} \approx \lambda_1^{k+1} \alpha_1 x^{(1)} + (-\lambda_1)^{k+1} \alpha_2 x^{(2)}$. Тогда $y^{(k+1)} + \lambda_1 y^{(k)} = 2\lambda_1^{k+1} \alpha_1 x^{(1)}$, $y^{(k+1)} - \lambda_1 y^{(k)} = 2(-\lambda_1)^{k+1} \alpha_2 x^{(2)}$. Откуда $x^{(1)} = \frac{1}{2\lambda_1^{k+1} \alpha_1} \left(y^{(k+1)} + \lambda_1 y^{(k)} \right)$, $x^{(2)} = \frac{1}{2(-\lambda_1)^{k+1} \alpha_2} \left(y^{(k+1)} - \lambda_1 y^{(k)} \right)$. (14.10)

Значит, в качестве собственного вектора, соответствующего собственному значению λ_1 , можно взять вектор $x^{(1)} = y^{(k+1)} + \lambda_1 y^{(k)}$, а в качестве собственного вектора, соответствующего собственному значению λ_2 – вектор $x^{(2)} = y^{(k+1)} - \lambda_1 y^{(k)}$.

Расчётные задания

Используя варианты заданий из лабораторной работы "Метод Данилевского", выполнить следующее:

- а) вычислить наибольшее по модулю собственное значение и соответствующий ему собственный вектор ($\epsilon = \frac{1}{2} \cdot 10^{-3}$), используя степенной итерационный метод;
- б) вычислить наибольшее по модулю собственное значение и соответствующий ему собственный вектор ($\varepsilon = \frac{1}{2} \cdot 10^{-3}$), используя метод скалярных произведений (матрица симметрическая);