注意事项:

- 1. 进入AI-1系统,密码100875(不要进入其他系统)。
- 2. 由于本课程和AI-1课程共享一个系统,所以还有别的同学在别的课程的作业,所以不要删除系统内任何已经存在的文件!
- 3. 由于下一组同学和大家使用相同的系统,所以请大家离开教室前**务必做好备份(U盘or邮件)并删除208机房上你的作业**。
- 4. 每一次上机后,助教都会检查每一台电脑中作业是否删除,如果还存在,助教会删除。

程序保存目录

- home\目录下,新建 "image_processing" 文件夹。
- 这里面你们可以随意鼓捣!

让我们先安装一些依赖库

"Ctrl+Alt+t"进入终端界面。

- 1. 输入 sudo pip install matplotlib 回车 输入密码100875
- 2. 输入sudo apt-get install python-tk回车
- 2. 输入sudo pip install h5py回车

Deep Learning for Computer Vision: Experiment1:CNN

Libao Zhang, Jie Ma 2017.12.1

内容

- •实验原理
- ·网络结构
- •实验步骤

实验原理

· 将卷积层和池化层堆叠,完成图像的*特征提取*,通过全连接层完成特征的*非线性分类*。

网络结构

The architecture of CNN

实验步骤

- 1. 完成 demo1 中"1.1网络结构"部分,根据 demo1 中的网络结构写出每一层的网络结构和参数个数。
- 2. 运行 demo1.py, 训练网络, 完成 "1.2网络训练"。
- 3. 自己完成代码 demo2.py, 找出训练好的模型中判错的且能组成自己学号的数字, 完成 "1.3 找出 10 副判错图像"。例如:助教的学号是 201731210003 输出的图像为:

这些数字的 groundtruth 为: 201731210003 但是都被模型判错了。

- 4.改写demo1中的核心代码,自己设计一个层数大于 10 且准确率大于 0.99 的网络,并完成 2.1-2.3。
- 5.结合课件, demo1.py, demo2.py, 完成 "问题"部分。

Demo1.py

```
#batch size, num classes and epochs
                                      确定batch size大小
batch size = 128
                                      根据分类任务,确定类别个数。
num classes = 10
epochs = 10
                                       角定迭代次数。
# input image dimensions
                                      输入待识别图像的尺寸。
img rows, img cols = 28, 28
# load minst and reshape the input data
(x_train, y_train), (x test, y test) = mnist.load data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x test = x test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input shape = (img rows, img cols, 1)
                                      载入mnist数据集,重新排列每
                                     张图像的像素点位置,使其和
x train = x train.astype('float32')
                                     网络的输入维度相同。
x test = x test.astype('float32')
x train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x test.shape[0], 'test samples')
  convert class vectors to binary class matrices
y train = keras.utils.np utils.to categorical(y train, num classes)
y test = keras.utils.np utils.to categorical(y test, num classes)
```

将标签变为one-of-c 标签

	/		U	U	U	U) U	U	T	U	U								
	1		0	1	0	0 (0 (0	0	0	0	1	弱	立			京字	 模型	J
	5		0	0	0	0 (1	0	0	0	0				•	טית ן	K/ J·		-
#######	4######	#####	###	###	###	####	####	####	####	###	####	###	##7	###	###	####	###	####	###
model = model.ad model.ad model.ad model.ad ####################################	d(Conv2 d(MaxPo d(Flatt d(Dense d(Dense ***********************************	D(10, ooling sen()); (20, sen()); (10, sen()); (20, sen()	(3 (2D) accompact cl. ###	(po tiv ass ### nct as.	ol_ ati es, ### ion met era	size on=' act #### , op rics s.op	reluivat #### timi .cat	(2) () () () () () () () () () ()) ='s ###	oft ### ind :al_	tmax #### met	(')) ##7 cs ent	7##	###	####		1ape	
	metrics=['accuracy']) visualize the architecture of CNN bodel.summary()											量							
#train t model.fi #save we	the mode t(x_tra verbo	in, y	/_t , v	rai ali	n, dat	batc ion_	h_si data	ze= =(x	bat _te	ch_ st,	_siz	e, te	eŗ st)	ooc	hs=	_		训	练
model.sa	ve('mni		emo	1.h	5')											保	存	参数	
<pre>#evaluat score_te score_tr print(sc print(sc</pre>	est = mo ain = m ore_tes	del.e odel. t)	eva .ev	lua alu	te(: ate	x_te (x_t	st, rain	y_t	est tra	;, \ in,	vert , ver	os bo	e=(se=	9) = <mark>0</mark>)		ř	平估	模型	<u>Ī</u>

One of C

0.00000100

类别

7

构建一个CNN

The architecture of CN

增加第一层,用10个3*3的卷积核和Relu激活函数构建第一层,需要告诉网络输入的维度input_shape。

增加max-pooling层,每2*2的点使用max函数映射到一个点。

input_shape = (img_rows, img_cols, 1)

Demo2.py

```
#batch size, num classes and epochs
batch size = 128
num classes = 10
epochs = 10
 input image dimensions
ima rows, ima cols = 28, 28
 the data, shuffled and split between train and test sets
(x train, y train), (x test, y test) = mnist.load data()
x train = x train.reshape(x train.shape[0], img rows, img cols, 1)
x test = x test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input shape = (img rows, img cols, 1)
 train = x train.astype('float32')
 test = x test.astype('float32')
 train /= 255
x test /= 255
print('x train shape:', x train.shape)
print(x train.shape[0], 'train samples')
print(x test.shape[0], 'test samples')
 convert class vectors to binary class matrices
 train = keras.utils.np utils.to categorical(y train, num classes)
v test = keras.utils.np utils.to categorical(y test, num classes)
```

```
construct a convolutional neuron network
model = Sequential()
nodel.add(Conv2D(10,(3,3),activation='relu',input shape=input shape))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(20, activation='relu'))
nodel.add(Dense(num classes, activation='softmax'))
 model compile:loss function, optimiazer and metrics
nodel.compile(loss=keras.metrics.categorical crossentropy,
              optimizer=keras.optimizers.Adadelta(),
             metrics=['accuracy'])
#visualize the architecture of CNN
model.summarv()
#load the well-trained parameters, including weights and bio
nodel.load weights('mnist demo1.h5')
#obtain the model prediction in testing set
model prediction = model.predict(x test)
```

Demo2.py—tips