Deep Learning for Natural Language Processing

Course logistics

Examples of NLP Tasks

What is the topic of this article?

Which of several texts looks more natural?

Is this replica toxic?

What could be the text with such a heading?

What does the user ask for from a smart speaker?

Are these two texts on the same topic?

What grammatical errors are in the text?

Where are the names of organizations in this text?

How can the bot answer the user if there is no ready-made suitable answer?

What is the point of this article - in a couple of sentences?

How would it be in Tatar?

Types of NLP tasks

classification

generation

tagging

seq2seq

Deep Learning (DL) for Natural Language Processing (NLP)

This course is based and relies on multiple sources

- Based on the materials from several courses:
 - "Transformers" at Sberbank Corporate University
 - "Neural Networks for Natural Language Processing" course by Nikolay Arefyev (Samsung Research Center & Moscow State University).
 - NLP course of Yandex School of Data Analysis.
 - Stanford course on "Natural Language Processing with Deep Learning" (cs224n).
 - Multiple other sources, indicating them where appropriate in the bottom of the slides.

Textbooks

- Yoav Goldberg (2017): Neural Network Methods in Natural Language Processing. Synthesis Lectures on Human Language Technologies.
 - https://doi.org/10.2200/S00762ED1V01Y201703HLT037
 - Available at Skoltech library online
- Dan Jurafsky and James H. Martin (2022): Speech and Language Processing. https://web.stanford.edu/~jurafsky/slp3/
- Lewis Tunstall, Leanadro von Werra, Thomas Wolf (2022): NLP with Transformers. O'Really. https://www.oreilly.com/library/view/natural-language-processing/9781098103231/
- Kyunghyun Cho (2015): Natural Language Understanding with Distributed Representation.
 Lecture note for the course DS-GA 3001 on Natural Language Understanding with Distributed
 Representation at the Center for Data Science, New York University.
 https://arxiv.org/abs/1511.07916
- Delip Rao and Brian McMahan (2019) Natural Language Processing with PyTorch. O'Really. https://www.oreilly.com/library/view/natural-language-processing/9781491978221/
- Denis Rothman (2021). Transformers for Natural Language Processing. Packt.
 https://www.packtpub.com/product/transformers-for-natural-language-processing/978180056579

Team of instructors

Course logistics

Schedule of the course

Ochedale of the course										
Week	Date	Time	Session Type	Topic	Lecture	Seminar				
1	28.03	16-19	Lecture+Seminar	Course logistics. Base neural architectures.	Alexander	Mikhail				
	31.03	16-19	Lecture+Seminar	Text detoxification talk (TrueTechDay) + Embeddings	Alexander	Daniil				
2				Motivation for Transformer. Attention. The original Transformer						
	4.04	16-19	Lecture+Seminar	architecture.	Alexander	Maria				
	4.04	EoD	Assignment 1 release	Transformer and transliteration seq2seq task	Irina					
				Motivation for Transformer. Attention. The original Transformer						
	7.04	16-19	Lecture+Seminar	architecture (cont'd)	Alexander	Maria				
	9.04	EoD	Assignment 1 deadline	Transformer and transliteration seq2seq task	Irina					
3				Transformer-based Encoders. Masked language models based on the						
	11.04	16-19	Lecture+Seminar	Transformer architecture. BERT and related models.	Alexander	Daniil				
	11.04	EoD	Assignment 1 deadline	Transformer and transliteration seq2seq task	Irina					
	11.04	EoD	Assignment 2 release	Text categorization and argument mining task	Irina					
				Transformer-based Encoders. Masked language models based on the						
	14.04	16-19	Lecture+Seminar	Transformer architecture. BERT and related models (cont'd)	Alexander	Daniil				
4				Classification and sequence tagging with Transformers. Using encoders						
	18.04	16-19	Lecture+Seminar	to generate feature representation for NLU tasks.	Alexander	Mikhail				
				Classification and sequence tagging with Transformers. Using encoders						
	21.04	16-19	Lecture+Seminar	to generate feature representation for NLU tasks (cont'd).	Alexander	Mikhail				
	23.04	EoD	Assignment 2 release	Text categorization and argument mining task	Irina					
5	25.04			Transformer-based Decoders. Generation of text based on the						
		10.10		Transformer architecture. GPT and related decoders. Text generation						
		16-19	Lecture+Seminar	methods. Prompt tuning.	Victoriia	Maria				
	25.04	EoD	Assignment 3 release	Text detoxification and textual style transfer	Irina					
	28.04	10.10		Sequence to sequence tasks: machine translation, text detoxification,						
	40.00	16-19	Lecture+Seminar	question answering, dialogue.	Alexander	Mikhail				
6	12.05	16-19	Lecture+Seminar	Uncertanty estimation for Transformer-based NLP models	Artem S	Artem V				
	14.05	EoD	Assignment 3 deadline	Text detoxification and textual style transfer	Irina					
7	16.05	16-19	Lecture+Seminar	Multilingual language models based on the Transformer architecture.	Alexander	Maria				
	19.05	16-19	Lecture+Seminar	Network encoders with Transformers	Irina	Irina				
8	23.05	16-19	Lecture+Seminar	Compression of transformer models. Efficient transformers.	Victoriia	Victoriia				
	26.05	16-19	Lecture+Seminar	Multimodal transformer-based models for text and images	Anton	Anton				
	28.05	EoD	Assignment deadline	End of course and all late submissions.	Irina					

Assessment

- Three individual assignments 33.33% each
- You can also gain extra points (on top 100%) for
 - Top results on the assignments: top 1 or top 20% in leaderboard across all registered students
 - Top 20% results on quiz questions during lectures worth 15% (1% per each of 15 sessions) across all registered students
 - No exam, but a final individual test may be arranged (20% of extra points)

Assignments

A Kaggle-style competition for the best score

RESULTS

Three tasks: transliteration, classification, and style

transfer

User

RefalMachine2

mkunilovskaya

aleksei_pronkin

vadim bz

lilaspourpre

Igor Karpikov

iamdenay

vvyadrincev

Entries

334

25

29

9

8

3

7

2

Date of Last Entry

08/28/20

03/17/20

03/07/20

11/23/20

12/20/20

03/04/20

03/12/20

11/23/20

Total Daily Submissions

1.2

Assignments – Grading policy

Technical repor	t	Code		Results		Total
Methodology	Discussion of results	Readability			top-1 - 10 points top-20% - 5 points	100% + bonus
5	5	5	5	5	5 or 10	25 + 5 or 10

- Late submission:
 - There will be no deadline extension.
 - 7 extra days are given to everyone for any assignment

Presentation of code and reports

 A single colab notebook following a pre-defined format

This part of the should contain description of all methods that you tried and, most importantly, that worked the best for you. Here you can include some tricks of your preprocessing, description of the models and motivation of their usage, the description of the training process details (train-test split, cross-validation, etc.). So, everything valuable that will help us to understand the scope of your work