CHICAGO CAR CRASH PROJECT - ML

AGENDA

INTRODUCTION

SUMMARY

OUTLINE

BUSINESS PROBLEM

DATA

TECHNIQUES

RESULTS AND FINDIGS

RECOMMENDATION

MODELLING

REMARKS

PROBLEM STATEMENT

- The primary objective of this study is to identify and understand the main contributing factors to car accidents in Chicago, with a specific focus on driver behavior.
- By analyzing various modeling techniques and their results, the aim is to determine the primary causes of car accidents and provide insights that can contribute to the development of effective strategies for accident prevention and road safety improvement.

DATA

Data in this case is obtained from https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if

TECHNQUES

Data Collection

Data Preprocessing:

Exploratory Data Analysis

Feature Selection

Modeling Techniques:

Regression Analysis:

Classification Analysis:

Clustering Analysis

Model Evaluation

Interpretation and Recommendations

RESULT

RESULTS

INTRODUCTION

SUMMARY

OUTLINE

BUSINESS PROBLEM

DATA

TECHNIQUES

RESULTS AND FINDIGS

RECOMMENDATION

MODELLING

REMARKS

VISUALISATIONS

Some of the visualizations done

Distribution of Numeric Features

MODELLING: RANDOMCLASSIFER

RandomClassifer has been used to train and test

Train Accuracy: 0.9907520128378939 Test Accuracy: 0.9907520128378939 ROC Curve: 0.8871933925078359

RandomClassifier Model Bar Graph

MODELLING: KNN XGBOOST

Produces the poorest model results

MODELLING: KNN:GRIDSEARCH

- The accuracy score represents the proportion of correctly classified instances out of the total number of instances in the test set. In this case, the best KNN model achieved an accuracy score of approximately 0.9805, which means that it correctly predicted the class labels for approximately 98.05% of the instances in the test data.

```
# Evaluate the model
accuracy = accuracy_score(y_test, y_test_pred)
print(f"Accuracy Score (Best Model): {accuracy}")

Pytho
Accuracy Score (Best Model): 0.9805079821818886
```

CLASSIFICATION REPORT

fnom sklaann i	<pre>ion_rep = classification_report(y_test, y_test_pred)</pre>					2.5	0.37	0.50	0.31	1/301
Trom Skiedini	metrics impor	C (1922111)	cacton_repor	٠.		24	0.98	0.97	0.98	12011
# Calculate and print the classification report						25	0.00	0.00	0.00	9
<pre>classification_rep = classification_report(y_test, y_test_pred)</pre>						26	0.99	1.00	0.99	18816
<pre>print("Classification Report (KNN):\n", classification_rep)</pre>						27	1.00	0.15	0.26	34
3					Pyth	28	0.98	0.97	0.97	4589
Classification	Penort (KNN	1) •				29	1.00	0.21	0.35	38
Classification	precision	recall	f1-score	support		30	0.94	0.97	0.95	2228
						31	0.99	0.43	0.60	171
0	0.97 1.00	0.92 0.21	0.94 0.35	303 43		32	0.94	0.80	0.87	832
2	0.85	0.86	0.86	480						
3	0.87	0.83	0.85	767		33	0.89	0.88	0.89	927
4	0.89	0.77	0.82	451		34	0.92	0.47	0.63	160
5	0.96	0.98	0.97	4061		35	0.91	0.53	0.67	241
6	0.96	0.99	0.97	7033		36	0.99	1.00	1.00	139472
7	0.91	0.23	0.36	127						
8	0.93	0.95	0.94	2528		37	0.97	0.77	0.86	1793
9	0.94	0.88	0.91	1512		38	0.96	0.86	0.91	2099
10	0.97	0.54	0.70	162						
11	0.96	0.81	0.88	1935		39	0.97	0.98	0.98	5685
12	0.94	1.00	0.97	11726						
13	0.96	0.89	0.92	2269		5.6.611.75.611			0.00	361430
14	0.95	0.77	0.85	690		accuracy			0.98	
15	0.95	0.77	0.85	1002		macro avg	0.93	0.76	0.81	361430
16	0.90	0.57	0.70	893		weighted avg	0.98	0.98	0.98	361430
17	0.96	0.96	0.96	15259		mergineed dvg	0.00	0120	0130	001100
* * *	2 2 2	_ ^ ^ ^	_ ^ ^ ^	0.05.05						

CONCLUSION

shutterstock.com · 2669168

- Based on the different models conducted and the analysis
 of their results, one of the primary causes for car
 accidents in Chicago could be identified as the "Driver's
 Behavior."- Several factors related to driver behavior, such
 as speeding, reckless driving, distracted driving, and
 impaired driving, consistently appeared as significant
 features in the models and had a strong impact on crash
 outcomes.
- These findings suggest that driver-related factors play a crucial role in contributing to car accidents in Chicago..

RECOMMENDATION

 By analyzing the models' feature importance and coefficients, it can be inferred that addressing driver behavior through targeted interventions, awareness campaigns, and stricter enforcement of traffic regulations could potentially help mitigate the occurrence of car accidents in Chicago.

- However, it's important to note that the primary cause of accidents can vary based on various factors such as the dataset used, the modeling techniques employed, and the specific context of the analysis.
- It is recommended to consider a comprehensive approach that takes into account multiple factors, including road infrastructure, weather conditions, and other external influences, to gain a holistic understanding of the primary causes of car accidents in Chicago.