

Mark Scheme (Results)

October 2020

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02/01)

Question Number	Solution	Marks	Notes
1.	$\mathbf{I} = 2[\lambda \mathbf{i} + \lambda \mathbf{j} - 5\mathbf{i} - 3\mathbf{j}]$	M1	Use of $\mathbf{I} = m(\mathbf{v} - \mathbf{u})$
	$=2(\lambda-5)\mathbf{i}+2(\lambda-3)\mathbf{j}$	A1	Any equivalent form
	$ I = \sqrt{40} \Rightarrow (\lambda - 5)^2 + (\lambda - 3)^2 = 10$	M1	Correct use of Pythagoras and their impulse to form an equation in λ
	$\lambda^2 - 8\lambda + 12 = 0 \Rightarrow \lambda = 2 \text{ or } \lambda = 6$	DM1	Solve to find both values for λ . Dependent on the 2 preceding M marks
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	And no others
	(a = -6, b = -2 or a = 2, b = 6)		
		(5)	
	Alternative working:		
	$\mathbf{I}(=a\mathbf{i}+b\mathbf{j})=2(\mathbf{v}-(5\mathbf{i}+3\mathbf{j}))$	M1A1	
	$\mathbf{v} = \frac{a+10}{2}\mathbf{i} + \frac{b+6}{2}\mathbf{j} \implies (\Rightarrow a+10=b+6)$		
	$a^{2} + b^{2} = 40 \implies b^{2} - 4b - 12 = 0$ or $a^{2} + 4a - 12 = 0$	M1	Correct use of Pythagoras and impulse to form an equation in <i>a</i> or <i>b</i> Any equivalent form
	$b^2 - 4b - 12 = 0 \implies b = 6 \text{ or } b = -2$	DM1	
	$\mathbf{I} = -6\mathbf{i} - 2\mathbf{j} \text{ or } \mathbf{I} = 2\mathbf{i} + 6\mathbf{j}$	A1	Or simplified equivalent
		[5]	

Question	Solution	Marks	Notes
Number 2	3 D	B1	Use of $P = Fv$
2	Driving force $=\frac{3P}{12}$	Di	
	12		Allow for $\frac{P}{12}$ in second equation if not
			awarded here
	N	3.61	N. I. W. G. I.
	Motion up the hill	M1	Need all terms. Condone sign errors and sin/cos confusion.
	$F - R - W \sin \theta = 0$	A1	Correct substituted equation
	$\frac{3P}{12} - R - \frac{9000}{15} = 0$	AI	Any equivalent form
	$\left(\frac{3P}{12} - R = 600\right)$		
	Motion down the hill	M1	Need all terms. Condone sign errors and
	$F + W \sin \theta - R = \frac{9000}{9.8} \times \frac{9.8}{20}$		sin/cos confusion.
	$\frac{P}{12} + \frac{9000}{15} - R = 450$	A1	Substituted equation with at most one
	$\frac{12}{12} + \frac{15}{15} - K = 430$. 1	error. Any equivalent form.
	$\left(\frac{P}{12} - R = -150\right)$	A1	Correct substituted equation. Any equivalent form.
	$\left(\frac{12}{12} - R = -130\right)$		equivalent form.
	Solve for <i>P</i> or <i>R</i>	DM1	Dependent on both preceding M marks
	$\left(\frac{2P}{12} = 750\right) \Rightarrow P = 4500$	A1	One correct
	R = 525 (530)	A1	Both correct
		(9)	
SC1	Misread mass = 9000kg		B1
	Gives equations $\frac{P}{4} = R + 5880$		M1A0
			M1A1ftA0 M1A1ftA1ft
	$\frac{P}{12} = R - 1470$		Total 7/9
	Solutions: $P = 44100$, $R = 5145$		
SC2	Use of mass = weight = 9000		B1
	Gives equations $\frac{P}{A} = R + 600$		M1A1
	Gives equations $\frac{-}{4} = K + 600$		M1A1A0
	$P_{-R+2910}$		M1A0A0 Total 6/9
	$\frac{P}{12} = R + 3810$		10(a) 0/9
	Solutions: $P = -19260$, $R = -5415$		
		[9]	

Question	Solution	Marks	Notes			
3						
	$\wedge \frac{3}{5}$					
	$s \longrightarrow \begin{bmatrix} 1 & 5 & 1 \\ B & 1 & 1 \end{bmatrix}$					
	R					
	25g					
	$\stackrel{\theta}{\longrightarrow} \frac{4}{4_R}$					
	5					
	Use of $F = \mu R$	B1	At least once			
	Resolve horizontally	M1	Allow with their horizontal friction			
	$S = \frac{4}{5}R (S = F_A)$	A1	Correct unsimplified equation			
	Resolve vertically	M1	Allow with their vertical friction			
	$\frac{3}{5}S + R = 25g F_B + R = 25g$	A 1	Compaty ungined lifted agreetion			
	$\left(\frac{3}{5}S + \frac{5}{4}S = 25g, S = \frac{500}{37}g\right)$	A1	Correct unsimplified equation			
	Moments equation	M1	Any moments equation. Need all terms & dimensionally correct			
	$M(A): 25g \times 1.5\cos\theta = S \times 3\sin\theta + \frac{3}{5}S \times 3\cos\theta$					
	$\left(25g\cos\theta - \frac{6}{5}S\cos\theta = 2S\sin\theta\right)$	A1	Correct unsimplified equation			
	$M(B): R \times 3\cos\theta = 25g \times 1.5\cos\theta + \frac{4}{5}R \times 3\sin\theta$					
	M1A1 for first equation, M1A1 for second equation,		- '			
	order in which they appear rather than as listed on the mark scheme). If there are more than 3 equations, mark the 3 used or the best 3 if they go no further.					
	Can also be solved using one resolution and two mos					
	Friction acting in the wrong direction scores A0.					
	$\tan \theta = \left(\frac{25g - \frac{6}{5}S}{2S} = \right) \frac{25 - \frac{600}{37}}{\frac{1000}{37}}$		Substitute to form equation in $\tan \theta$ only			
	$\tan \theta = \left \frac{5}{2S} \right = \left \frac{37}{1000} \right $	DM1	Condone in decimals			
	$\frac{25}{37}$		Dependent on M marks for the			
	225 (12)		equations			
	$=\frac{325}{1000}\left(=\frac{13}{40}\right)$	A1	Or exact equivalent (0.325)			
		(9)				
SC	It is possible to solve by resolving horizontally or		M1A1 for a correct resolution			
	vertically and taking moments about the centre:		M2A2 for a complete sets of equations to solve			
	$1.5\cos\theta \times R = 1.5\cos\theta \times \frac{3}{5}S$		-1-1-11-11-11-11-11-11-11-11-11-11-11-1			
	15: 0 5:15: 0 4 5					
	$+1.5\sin\theta \times S + 1.5\sin\theta \times \frac{4}{5}R$					
		[9]				

Question	Solution					Marks	Notes
Number 4a	1	ABCD	PQRV	RSTU	L		
ти	Mass						
	ratio c of m	64	4	16	44	B1	Correct mass ratios for their split
	from AD	4 <i>a</i>	2 <i>a</i>	5 <i>a</i>	(d)	B1	Correct distances from vertical axis for their split
	M(AD)					M1	Must be multiples of <i>a</i> Moments about <i>AD</i> or a parallel axis. Need all terms and
							dimensionally consistent.
	64×4 <i>a</i> –	$-4\times 2a$	16×5a =	= 44 <i>d</i>		A1	Correct unsimplified equation Accept as part of a vector equation
	$\Rightarrow d = \frac{16}{4}$	$\frac{68}{44}a = \frac{42}{11}$	2 a *			A1*	Obtain given answer from correct working
						(5)	
4b	C of M of		midpt of	AC		B1	Seen or implied
	M(Mid pt	(AB)				M1	Use of moments to form equation in k .
	(4 42)	1.6 4	116			A1	Correct unsimplified equation.
	$\left \left(\frac{4-}{11} \right) \right $	aM = 4a	akM				Allow with a not seen
	$k = \frac{1}{22}$					A1	0.05 or better (0.0454545) Allow with <i>a</i> not seen
						(4)	
4b alt	C of M of	<i>L</i> lies at	midpt of	`AC		B1	Seen or implied by use of $\overline{x} = \overline{y}$ or $\tan 45^{\circ} = 1$
	Find \overline{x} ar	\overline{y} for	system			M1	
	From AB: From BC:)My	A1	Correct unsimplified equations in \overline{x} and \overline{y} Allow with a not seen
	$\overline{x} = \overline{y} \Longrightarrow$					A1	Allow with a not seen
4b alt	C of M of	<i>L</i> lies at	midpt of	AC		B1	Seen or implied in moments equation
	If G is c o	of m of L	then tan	ABG =	$\frac{42}{46}$ and tak	e M1	Complete method for moments about B
	moments						
	8 <i>a</i> sin 45					A1	Correct unsimplified equation in k
	$=\frac{Ma}{}$	$4\sqrt{46^2+46^2+46^2+46^2+46^2+46^2+46^2+46^2+$	$\frac{12^2}{\sin(4\pi)}$ sin (4	45° – A1	BG		Allow with a not seen
			$\Rightarrow k =$	$=\frac{1}{22}$		A1	Allow with a not seen
41	0.275	27.11		C		7.1	
4b alt	C of M of	L lies at	midpt of	AC		B1	Seen or implied in moments equation

	Take moments about the centre of ABCD	M1	
	$M \times \frac{2\sqrt{2}}{11}a = kM \times 4\sqrt{2}a$	A1	Correct unsimplified equation in <i>k</i> Allow with <i>a</i> not seen
	$\Rightarrow k = \frac{1}{22}$	A1	Allow with a not seen
		[9]	
Question Number	Solution	Marks	Notes
5a	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1	Differentiate to obtain a – powers going down
	$= (6t - 9)\mathbf{i} + (2t + 1)\mathbf{j}$	A1	differentiation correct
	$=9\mathbf{i}+7\mathbf{j} \ (\mathrm{m \ s}^{-2})$	A1	ISW if go on to find a
		(3)	
5b	Instantaneous rest \Rightarrow $\mathbf{v} = 0\mathbf{i} + 0\mathbf{j}$	M1	Set $\mathbf{v} = 0$ and solve for t (Need both components equal to
	$\Rightarrow 3(t-1)(t-2) = 0$		zero)
	and $(t-2)(t+3)=0$		
	$\Rightarrow t = 2$	A1	
	$\mathbf{r} = \int \mathbf{v} dt$	M1	Integrate to obtain r – powers going up. Condone if no constant of integration seen.
	$= \left(t^3 - \frac{9}{2}t^2 + 6t\right)\mathbf{i} + \left(\frac{1}{3}t^3 + \frac{1}{2}t^2 - 6t\right)\mathbf{j}$	A1	At most one error
	$-\left(t-\frac{1}{2}t+6t\right)^{1+}\left(\frac{1}{3}t+\frac{1}{2}t-6t\right)^{3}$	A1	Correct integration Allow column vector.
			Allow A1A0 for correct integration
			and non-zero constants(s) of
		DM1	integration Correct strategy to find the
	$=2\mathbf{i}-\frac{22}{3}\mathbf{j}$, distance $=\sqrt{2^2+\left(\frac{22}{3}\right)^2}$	D1711	distance, i.e. substitute their value
	$\sqrt{3}$		for t and use Pythagoras
			Dependent on the two preceding M marks
	$=\frac{2\sqrt{130}}{3} = 7.60 \text{ (m)}$	A1	7.6 or better from correct work
		(7)	
		[10]	

Question Number	Solution	Marks	Notes
6a	$R = 6g\cos\alpha$	B1	Correct normal reaction
	Work done = $15 \times 0.25 \times R$	M1	Correct method with their <i>R</i>
	= 204(J)	A1	Or 200(J) Accept 21g or better. (20.7692g) Not $\frac{2646}{13}$
		(3)	
6b	NB The question specifies that the work-energy <i>suvat</i> equations are not accepted.	principle sho	ould be used, so solutions based on
	Initial KE – GPE lost – WD = final KE	M1	Use of work-energy to form equation in <i>v</i> . Dimensionally correct. Ignore sign errors. Allow WD or their WD
	$\frac{1}{2} \times 6 \times 14^{2} - 6g \times 15 \times \frac{5}{13} - 6g \times 15 \times \frac{3}{13}$ $= \frac{1}{2} \times 6v^{2}$ (450g 270g)	A1ft A1ft	Unsimplified equation with at most one error Correct unsimplified equation Follow their WD
	$\left(3 \times 196 - \frac{450g}{13} - \frac{270g}{13} = 3v^2\right)$		
	v = 3.88 (3.9)	A1	Max 3 sf
	Work-energy equation	M1	Complete method using work- energy to form equation in w. Dimensionally correct. Ignore sign errors.
	$\frac{1}{2} \times 6 \times 14^{2} - 6g \times 15 \times \frac{3}{13} = \frac{1}{2} \times 6w^{2}$ $1 2 1 2 15 \times 5$	A1ft	Correct unsimplified equation Follow their WD or their <i>v</i>
	or $\frac{1}{2}mw^2 = \frac{1}{2}mv^2 + mg \times \frac{15 \times 5}{13}$		
	w = 11.3 (11)	A1	Max 3 sf
		(7)	
		[10]	

Question	Solution	Marks	Notes
Number			
7			
	$\longrightarrow 2u \longrightarrow u$		
	$\begin{pmatrix} A \\ 3m \end{pmatrix} \qquad \begin{pmatrix} B \\ m \end{pmatrix}$		
	$\longrightarrow v \longrightarrow w$ $v \longleftarrow$		
	v		
	<u> </u>		
7a	KE gain = final KE - initial KE	M1	KE equation for B .
			Allow for change in KE
	$\frac{48}{25}mu^2 = \frac{1}{2}mw^2 - \frac{1}{2}mu^2$	A1	Correct unsimplified equation to
	25 2 2 2		find w
	$\begin{pmatrix} 121 & 121 & 11 \end{pmatrix}$		
	$\left(w^2 = \frac{121}{25}u^2, w = \frac{11}{5}u\right)$		
	$CLM: 3m \times 2u + mu = 3mv + mw$	M1	All terms required. Condone sign
			errors
	$\left(7mu = 3mv + \frac{11}{5}mu\right)\left(v = \frac{8}{5}u\right)$	A1	Correct unsimplified equation in <i>v</i> and <i>w</i> or their <i>w</i>
	Impact law:	M1	Used correctly
	w - v = e(2u - u)	A1	Correct unsimplified equation in <i>v</i>
	, ,		and w or their v and w
	Solve for <i>e</i>	DM1	Dependent on the preceding M marks
	3	A1	
	$\frac{3}{5}u = eu, e = \frac{3}{5}$		
		(8)	
7b	Impact law: $fw=v$	M1	Condone sign error
	. 8	A1	0.73 or better
	$f = \frac{8}{11}$		Final answer must be positive
		(2)	
		[10]	

Question Number	Solution	Marks	Notes
8a	Horizontal component: $p = 8$	B1	
	Vertical component: $-12 = q - 3g$	M1	Complete method to find <i>q</i> using <i>suvat</i> . Condone sign errors.
	q = 17.4	A1	17 or better
	Speed = $\sqrt{8^2 + 17.4^2}$	M1	Use of Pythagoras to find speed using their velocity. Independent M mark
	$=19.2 (19) (m s^{-1})$	A1	3 sf or 2 sf
	()	(5)	
8b	Use of Pythagoras to find vertical component	M1	
80	vertical component $=\pm 6$	Al	Seen or implied Accept without +/-
	-6 = 6 - 9.8T	DM1	Complete method using <i>suvat</i> to find required time Dependent on the previous M1
	T = 1.22 (1.2)	A1	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8b alt	Use <i>suvat</i> and Pythagoras to form an equation in <i>t</i>	M1	Or an inequality
	$8^2 + (17.4 - gt)^2 = 100$	A1	Correct unsimplified equation for <i>t</i> Accept inequality
	Solve for <i>T</i>	DM1	Complete method to obtain <i>T</i> Dependent on the previous M1
	T = 1.22 (1.2)	A1	3 sf or 2 sf. Not $\frac{60}{49}$
		(4)	
8c	Velocity perpendicular $\Rightarrow \text{ vertical component } = \frac{2}{3} \times 8$	M1	Complete method to find vertical component of velocity at <i>B</i>
	$=\frac{16}{3}$	A1	
	$(-12)^2 = \left(\frac{16}{3}\right)^2 - 2g(-h)$	DM1	Complete method to find the required vertical distance using their vertical component of the velocity Dependent on the previous M1
	h = 5.90 (5.9) (m)	A1	Max 3 sf
		(4)	
8c alt	$\begin{pmatrix} 8 \\ 17.4 - gt \end{pmatrix} \cdot \begin{pmatrix} 8 \\ -12 \end{pmatrix} = 0 \text{ and time } = 3 - t$	M1	Complete method to find the time from B to A
	Time = $3-1.23=1.768$	A1	
	Time = $3-1.23=1.768$ $s = vt - \frac{1}{2}gt^2 = 12t - 4.9t^2$	DM1	Complete method to find the required vertical distance using their time Dependent on the previous M1
	s = 5.9 (m)	A1	Max 3 sf
	/	1	

	[13]	