Лабораторная работа 1.05

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАЯТНИКА ОБЕРБЕКА

Д.Х. Нурлигареев, К.Ю. Харитонова

<u>Цель работы</u>: изучение законов вращательного движения на примере маятника Обербека.

<u>Задание</u>: определить момент инерции маятника Обербека, измеряя время прохождения фиксированного расстояния разными грузиками.

<u>Подготовка к выполнению лабораторной работы</u>: изучить понятия момента силы и момента импульса относительно точки и относительно оси, момента инерции точки и твердого тела; ознакомиться с понятиями угловой скорости и углового ускорения материальной точки, а также с уравнением вращательного движения твердого тела относительно неподвижной оси. Изучить принципы, на которых основана работа экспериментальной установки. Ответить на контрольные вопросы.

Библиографический список

- 1. Савельев И.В. Курс общей физики. В 3-х томах. Том 1. Механика. Молекулярная физика. СПб.: Издательство «Лань», 2018, гл. 2, §§ 6-11; гл. 5, §§ 36-39.
- 2. Трофимова Т.И. Курс физики. М.: Издательский центр «Академия», 2019, гл. 2, §§ 5 8; гл. 4, §§ 16 18.

Контрольные вопросы

- 1. Дайте определение момента инерции материальной точки и твердого тела относительно некоторой оси.
- 2. Дайте определение момента силы относительно точки и относительно некоторой оси.
- 3. Сформулируйте теорему Штейнера.
- 4. Приведите вывод основного уравнения динамики вращательного движения твёрдого тела.
- 5. Как определяется направление вектора угловой скорости $\vec{\omega}$ и вектора углового ускорения относительно некоторой оси?
- 6. Опишите устройство маятника Обербека.
- 7. Чему равен суммарный момент сил, действующих на ось вращения маятни-ка Обербека?

- 8. Выведите расчетную формулу для определения момента инерции маятника Обербека.
- 9. Выведите расчетную формулу для оценки относительной погрешности при определении момента инерции маятника Обербека.
- 10. Как, используя формулу (15), найти абсолютную погрешность измерения момента инерции маятника Обербека?

Теоретическое введение

При вращательном движении, кроме массы и сил, действующих на тело, вводятся физические величины, зависящие от точки приложения силы и от распределения массы тела. Такими величинами являются момент сил и момент инерции.

Момент силы относительно точки O определяется по формуле

$$\vec{M} = \vec{r} \times \vec{F} \,, \tag{1}$$

где $\overset{1}{r}$ – вектор, проведенный из точки O в точку приложения силы $\overset{1}{F}$.

Момент инерции — физическая величина, характеризующая распределение масс тела и являющаяся мерой инертности вращающегося тела. В общем случае момент инерции можно найти по формуле

$$J = \int_{m} r^2 dm = \int_{V} \rho r^2 dV, \qquad (2)$$

где dm и dV — элементарные масса и объем, r — кратчайшее расстояние от оси вращения до выбранной элементарной массы, $\rho = dm/dV$ — плотность тела в данной точке.

Рис. 1

оси Z получим

Схема используемого в работе маятника Обербека приведена на рисунке 1. Момент инерции маятника относительно оси вращения Z, перпендикулярной плоскости рисунка, равен сумме моментов инерции четырех грузов массы m_0 и четырех стержней массы $m_{\rm cr}$.

Момент инерции стержня длиной l относительно оси, проходящий через один из его концов можно рассчитать с помощью **теоремы Штейнера**. Он будет равен $m_{\rm cr} l^2/3$. Считая грузы материальными точками, для момента инерции маятника относительно

$$J_{Z_{\text{pac}}} = 4m_0 r^2 + 4m_{\text{cr}} l^2 / 3, \tag{3}$$

где r – расстояние от оси вращения до центра груза m_0 .

Момент силы M , действуя на тело с моментом инерции J, закрепленное на оси Z, сообщает ему угловое ускорение ε

$$\varepsilon = M_{z} / J_{z}, \tag{4}$$

где M_Z - проекция вектора \vec{M} на ось вращения. Уравнение (4) выражает основной закон динамики вращательного движения.

Вращение маятника Обербека создается за счет груза массой m, движущегося поступательно вертикально вниз. По второму закону Ньютона

$$m\vec{a} = m\vec{g} + \vec{T} \,, \tag{5}$$

где \vec{T} – сила натяжения нити, и \vec{a} – ускорение груза. В проекции на ось X имеем ma=mg-T . (6)

На крестообразный маятник действует, согласно третьему закону Ньютона, сила $\vec{T}_1 = -\vec{T}$, причем $\left| \vec{T}_1 \right| = \left| \vec{T} \right|$. Эта сила создает вращательный момент, проекция которого на ось вращения Z равна

$$M_Z = R T, (7)$$

где R — радиус шкива.

Основное уравнение динамики вращательного движения для маятника будет иметь вид

$$J_Z \varepsilon = TR, \tag{8}$$

где J_Z — момент инерции, рассчитываемый по формуле (3), ε - угловое ускорение.

Ускорение груза a равно тангенциальному ускорению точек на ободе шкива вращающегося маятника a_{τ} , т.е. $a=a_{\tau}=\varepsilon R$, следовательно

$$\varepsilon_{\text{9KC}} = \frac{a}{R} \ . \tag{9}$$

Решая совместно уравнения (6), (8) и (9), определим $\varepsilon_{\mathrm{pac}}$

$$\varepsilon_{\text{pac}} = \frac{mgR}{J_{Z_{\text{pac}}} + mR^2}.$$
 (10)

Выражая T из (6) и подставляя в (7), получим

$$M_Z = Rm(g - a). \tag{11}$$

Как следует из (6) движение груза m является равноускоренным (силы, приложенные к грузу постоянны), и поэтому, учитывая, что его начальная скорость равна нулю, получим $h = at^2/2$. За время t груз проходит расстояние h, равное высоте поднятия груза над подставкой. Измерив время падения груза и высоту h, получим

$$a = 2h/t^2. (12)$$

Подставив последнее равенство в соотношение (11), получим

$$M_Z = Rm(g - 2h/t^2). (13)$$

Учитывая (12) из (9) получим выражение для определения углового ускорения

$$\varepsilon_{\rm 9KC} = \frac{2h}{t^2 R} \tag{14}$$

Момент инерции маятника найдем, решая совместно (4), (13) и (14)

$$J_{Z_{2KC}} = mR^2 (gt^2 - 2h)/2h. (15)$$

Описание аппаратуры и методики измерений

Изучение динамики вращательного движения производится на установке, получившей название «Маятник Обербека» и схематически изображенной на рисунке 2.

На шкиве 2 радиуса R размещены четыре тонких жестких металлических стержня, закрепленные в металлической муфте под прямым углом друг к другу. Муфта закреплена на кронштейне так, что ее ось вращения расположена горизонтально. Вдоль стержней могут свободно перемещаться грузы 3 массой m_0 , закрепляемые на произвольном расстоянии от оси вращения с помощью фиксаторов. Это дает возможность изменять момент инерции всей системы. При одинаковом расстоянии грузов от оси вращения система сбалансирована, т.е.

находится в состоянии безразличного равновесия. К шкиву прикрепляется нить 8, перекинутая через неподвижный блок 4. К концу нити подвешивается груз 6 общей массой *т*. На основании с автоматическим таймером 10 установлена подставка 9 с фотоэлектрическим датчиком. К штативу 1 прикреплена линейка 7, показывающая высоту поднятия груза 6.

Порядок выполнения работы

- 1. Подготовьте свой секундомер.
- 2. Установите 4 грузика на крестовине симметрично посередине стержней. Измерьте линейкой или по засечкам на стержнях (расстояние между двумя засечками 1 см) и расстояние от центра крестовины до середины грузика на крестовине.
- 3. Установите первую массу груза (например, в 1 грузик) и запишите ее в Таблицу 1 для опыта №1.
- 4. Вращая крестовину против часовой стрелки, поднимите груз на заранее выбранную Вами высоту *h* (отсчитывается по прикрепленной линейке по нижнему основанию груза). Будьте аккуратны и внимательны! Следите, чтобы нитка наматывалась на шкив! Старайтесь, чтобы груз не раскачивался!
- 5. Одновременно включите секундомер и отпустите крестовину.
- 6. Когда груз достигнет нижнего основания, остановите секундомер.
- 7. Запишите получившееся время в Таблицу 1.
- 8. Повторите этот опыт по пунктам 4 7 не менее 5-ти раз, чтобы накопить достаточное количество данных для вычисления среднего времени движения и оценить погрешность.
- 9. Увеличьте массу груза, запишите ее в Таблицу 1 и снова проведите тот же опыт не менее 5-ти раз.
- 10. Проделайте то же самое, установив наибольшую массу груза.

Таблица 1.

	Время падения, с							Случайная	Погреш-	Абсолютная
№	m,							погрешность	греш-	погрешность
опы-		t_1	t_2	t_3	t_4	t_5	$t_{\rm cp}$	$\Delta t_{ m c}$, с	ность	Δt , c
та	KI	<i>ι</i> 1	•2	13	14	ν ₂	Сер		прибора	
									$\Delta t_{\rm np}$, c	
1										
2										

Ī	J					
	5					

Обработка результатов измерений

- 1. Используя расчетную формулу (15), вычислите момент инерции маятника Обербека.
- 2. Рассчитайте случайную погрешность измерения времени для всех случаев по формуле

$$\Delta t_{cn} = \alpha_{n, p} \sqrt{\frac{\sum (\Delta t_i)^2}{n(n-1)}},$$

где $\alpha_{n,p}$ – коэффициент Стьюдента, n – число измерений.

- 3. Расчет абсолютной погрешности времени Δt проведите с учетом случайной погрешности $\Delta t_{\rm cn}$ и погрешности секундомера $\Delta t_{\rm np}$ Погрешность секундомера примите равной 0,1 с. В дальнейших расчетах используйте максимальную погрешность $\Delta t = \sqrt{\Delta t_{\rm cn}^2 + \Delta t_{\rm np}^2}$.
- 4. Определите абсолютную погрешность полученного значения момента инерции ΔJ по формуле $\Delta J = J \cdot E$ где E относительная погрешность измерений, получаемая из расчетной формулы (15)

$$E = \frac{\Delta g}{g} + \frac{\Delta h}{h} + 2\frac{\Delta R}{R} + \frac{\Delta m}{m} + 2\frac{\Delta t}{t}.$$

- 5. Запишите полученное значение момента инерции в виде $J \pm \Delta J$. Округление результатов произведите с учетом полученных значений абсолютных погрешностей измерений.
- 6. С помощью формулы (3) рассчитайте теоретическое значение момента инерции и сравните его со значением, полученным из эксперимента.