Sprawozdanie PAMSI

Graf nieskierowany, metody przechodzenia BFS i DFS.

Wstęp teoretyczny

Graf nieskierowany jest to struktura składająca się z wierzchołków i krawędzi. W odróżnieniu od grafu skierowanego, w grafie nieskierowanym można się poruszać pomiędzy wierzchołkami w obie strony. Do reprezentacji zbioru połączeń pomiędzy wierzchołkami, można wykorzystać macierz o rozmiarach nxn, lub tablicę list o rozmiarze n + e (e - ilość krawędzi). Największą różnicą pomiędzy reprezentacją za pomocy macierzy lub tablicy jest alokowana pamięć na potrzeby utrzymania struktury. W przypadku tablicy list, zużycie pamięci jest o wiele mniejsze, dla tego też zdecydowałem się na wybór tej właśnie metody.

Do przechodzenia grafu wykorzystuje się dwie podstawowe metody:

DFS - (Przeszukiwanie w głąb) polega na badaniu wszystkich krawędzi wychodzących z podanego wierzchołka. Po zbadaniu wszystkich krawędzi wychodzących z danego wierzchołka algorytm powraca do wierzchołka, z którego dany wierzchołek został odwiedzony.

BFS - (Przeszukiwanie wszerz) Przechodzenie grafu rozpoczyna się od zadanego wierzchołka i polega na odwiedzeniu wszystkich osiągalnych z niego wierzchołków.

llość Wierzchołków	Algorytm BFS [ms]	Algorytm DFS [ms]
10	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
	0	0
100	0	0
	0	0
	1	0
	0	0
	1	0
	0	0
	0	0
	1	0
	1	0
	0	0
1000	3	4
	3	4
	3	4
	2	4
	2	6
	2	4
	3	4
	2	6
	4	4
	3	4
10000	227	351
	254	350
	220	364
	225	358
	233	359
	236	351
	216	358
	301	349
	220	350
	222	361
100000	2527	3791
	2552	3828
	2546	3819
	2551	3827
	2548	3822
	2619	3929
	2553	3830
	2547	3821
	2551	3827
	2496	3744
1000000	30987	46481
	29930	44895
	30019	45029
	29975	44963
	30031	45047

Uśrednione wyniki		
llość Wierzchołków	Algorytm BFS [ms]	Algorytm DFS [ms]
10	0	0
100	0,4	0
1000	2,7	4,4
10000	235,4	355,1
100000	2549	3823,5
1000000	30188,4	45282,6

Tabela 2

Wykres BFS DFS

Czas przechodzenia grafu w zależości od ilości elementów grafu

Wykres 1

Wnioski

Celem ćwiczenia było przeprowadzenie pomiarów czasu przechodzenia grafu dwoma różnymi sposobami, DFS i BFS. Teoretyczna złożoność obliczeniowa algorytmów wynosi O (|n|+|e|). Bazując na wynikach otrzymanych w *Tabela 2* i *Wykres 1* możemy stwierdzić, że algorytm BFS jest wyraźnie szybszy od algorytmu DFS. Zgodnie z przewidywaniami wraz ze wzrostem ilości wierzchołków i krawędzi pomiędzy nimi czas przechodzenia grafu wzrastał.