Security Functions

Before we jump into security concepts, let us familiarize ourselves with the mathematical background required for it.

Set X is a collection of elements. Here, $X=\{1,2,3\}$ is one such example. A collection of integers is also a set.

Given two sets, X and Y, we define a function f that maps every element in X to precisely $\mathbf 1$ element in $\mathbf Y$

If
$$X=\{1,2,3\}$$
 and $Y=\{lpha,\gamma,\delta\}$, the function f will return:

$$f(1) = \alpha$$
, $f(2) = \gamma$ and $f(3) = \delta$.

Let us define a function $f_1(x)=x_r$, where $x\in X$ and $x_r\in Y$. Here, x_r is defined as the remainder of x when divided by 11.

Your task is to complete the function that takes the input $m{x}$ and $m{returns}~m{x_r}$

Constraints

$$1 \le x \le 1000$$