Третья задача

Векнков К. С. – М8О-105Б-23 – 7 вариант $\label{eq:Manuscondition} \text{Май, 2024}$

Условие

Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности

Дано

Матрица смежности A орграфа:

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

	V1	V2	V3	V4	V5	V6	V7	V8
V1	0	0	1	0	0	1	0	0
V2	1	0	1	1	1	1	1	1
V3	1	0	0	0	1	1	1	0
V4	1	1	1	0	1	0	0	0
V5	1	0	1	1	0	0	1	0
V6	0	0	1	0	1	0	1	0
V7	1	0	1	1	1	1	1	0
V8	1	0	1	1	0	0	1	0

(V1)	$FW_0 = \{V1\}$	k=0
V3 V6	$FW_1 = \{ \mathrm{V3,V6} \}$	k=1
V5 V7	$FW_2 = \{ V5, V7 \}$	k=2
V4	$FW_3 = \{ \mathrm{V4} \}$	k=3
V2	$FW_4{=}\{ ext{V2}\}$	k=4
V8	$FW_5 = \{ V8 \}$	k=5

Обратный ход

$$1. \ V_{8}$$

$$2. \ FW_{4} \cap F^{-1}V_{8} = \{V_{2}\} \cap \{V_{2}\} = \{V_{2}\}$$

$$3. \ FW_{3} \cap F^{-1}V_{2} = \{V_{4}\} \cap \{V_{4}\} = \{V_{4}\}$$

$$4. \ FW_{2} \cap F^{-1}V_{4} = \{V_{5}, V_{7}\} \cap \{V_{2}, V_{5}, V_{7}, V_{8}\} = \{V_{5}, V_{7}\}$$

$$5.1. \ FW_{1} \cap F^{-1}V_{5} = \{V_{3}, V_{6}\} \cap \{V_{2}, V_{3}, V_{4}, V_{6}, V_{7}\} = \{V_{3}, V_{6}\}$$

$$5.1. \ FW_{1} \cap F^{-1}V_{7} = \{V_{3}, V_{6}\} \cap \{V_{2}, V_{3}, V_{5}, V_{6}, V_{7}, V_{8}\} = \{V_{3}, V_{6}\}$$

$$6.1. \ FW_{0} \cap F^{-1}V_{3} = \{V_{1}\} \cap \{V_{1}, V_{2}, V_{4}, V_{5}, V_{6}, V_{7}, V_{8}\} = \{V_{1}\}$$

$$6.2. \ FW_{0} \cap F^{-1}V_{6} = \{V_{1}\} \cap \{V_{1}, V_{2}, V_{3}, V_{7}\} = \{V_{1}\}$$

Кратчайших путей четыре:

1.
$$V_1 o V_3 o V_5 o V_4 o V_2 o V_8$$

2. $V_1 o V_3 o V_7 o V_4 o V_2 o V_8$
3. $V_1 o V_6 o V_5 o V_4 o V_2 o V_8$
4. $V_1 o V_6 o V_7 o V_4 o V_2 o V_8$

Ответ: Минимальные пути из V_1 В V_8

- 1. $V_1V_3V_5V_4V_2V_8$
- 2. $V_1V_3V_7V_4V_2V_8$
- 3. $V_1V_6V_5V_4V_2V_8$
- 4. $V_1V_6V_7V_4V_2V_8$