(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-195237

(43)公開日 平成10年(1998)7月28日

(51) Int.CL ⁶		識別記号	ΡΙ
C08L	7/00		C 0 8 L 7/00
C08K	3/00		C 0 8 K 3/00
	3/06		3/06
	5/41		5/41
C08L	9/00		C08L 9/00
			審査請求 未請求 請求項の数1 OL (全 4 頁) 最終頁に続く
(21)出願番号		特顧平9-1985	(71)出版人 000005278
			株式会社プリヂストン
(22)出顧日		平成9年(1997)1月9日	東京都中央区京橋1丁目10番1号
			(72)発明者 藤木 寛治
			東京都小平市小川東町 3 — 5 — 5 —838
			(74)代理人 弁理士 杉村 暁秀 (外3名)
•			

(54) 【発明の名称】 接着性ゴム組成物

(57)【要約】

【課題】 ゴムの耐熱老化性および接着性を共に改善する。

【解決手段】 天然ゴム50重量%以上と残部合成ゴムとよりなるゴム成分100重量部に対して、1,6一へキサメチレンージチオ硫酸ナトリウム・二水和物0.3~5.0重量部、無機合水塩0.1~7.0重量部、および硫黄2.0~8.0重量部を配合したゴム組成物とする。

物。 【化1】

1

【特許請求の範囲】

【請求項1】 天然ゴム50重量%以上と残部合成ゴム とよりなるゴム成分100重量部に対して、〔化1〕の 化学式で示される1,6-ヘキサメチレンージチオ硫酸 ナトリウム・二水和物0.3~5.0重量部、無機含水*

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、接着性ゴム組成物 に関し、特に、黄銅メッキを施したスチールコードとの 接着に適した接着性ゴム組成物に関する。

[0002]

【従来の技術】自動車タイヤ、コンベヤベルト等の性能 を向上させるため、一般に、スチールコードを補強材と して使用している。かかるスチールコードには、その補 強効果つまりゴムとの接着力を高めるため、黄銅メッキ 20 を施している。一方、ゴム組成物には、ゴムとスチール コードとの接着力を高めるため、接着促進剤として、有 機酸コバルト塩等を配合している。

【0003】有機酸コバルト塩は、黄銅メッキーゴム接 着系において、その接着界面層にCur Sの生成を促進 する作用を有しているため、加硫直後の接着力は高いも のの、加硫後のタイヤ走行によって発生する熱により、 Cux Sのさらなる生成を促進するため、接着界面層の 肥大化を助長し、凝集破壊を起こし、その接着力は徐々 に低下する。さらに、コバルトはゴム物性、特に、耐熱 30 老化性には好ましくない特性を有する。よって、有機酸 コバルト塩を用いた接着性ゴム組成物は、タイヤの耐久 性向上に好ましくない。

ニッケル等の他の有機酸塩を配合した場合には、加硫直 後の接着力が劣り、コバルトに代わる金属の有機酸塩は 実用化に至っていない。さらに、今日、タイヤの耐久性 に対する要求レベルは、益々高くなっている。 [0005]

※【0004】また、有機酸コバルト塩に代えて、亜鉛、

*塩0.1~7.0重量部、および硫黄2.0~8.0重 量部を配合してなることを特徴とする接着性ゴム組成

【発明が解決しようとする課題】そこで、本発明は、ゴ ム物性が耐熱老化性に優れ、しかも安定した接着力を有 する接着性ゴム組成物を提供することを目的とする。 [0006]

【課題を解決するための手段】上記目的を達成するた め、本発明の接着性ゴム組成物は以下の構成とする。す なわち、天然ゴム50重量%以上と残部合成ゴムとより なるゴム成分100重量部に対して、〔化2〕の化学式 で示される1、6一ヘキサメチレンージチオ硫酸ナトリ ウム・二水和物(以下、HTSという。)0.3~5. 0重量部、好ましくは、1.0~3.0重量部、無機含 水塩0.1~7.0重量部、好ましくは、0.5~2. 0重量部、および硫黄2.0~8.0重量部を配合して なることを特徴とする。

[0007] 【化2】

[8000]

【発明の実施の形態】以下に、本発明を詳細に説明す る。本発明では、ゴム成分のうち、天然ゴムを50重量 %以上含有することを規定するが、50重量%未満で は、接着特性およびゴム破壊特性の低下を招き好ましく ないからである。また、ゴム成分の残部をなす合成ゴム としては、スチレン・ブタジエンゴム(SBR)、ブタ ジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、好ま しくは、臭素化ブチルゴム、パラメチルスチレン基を有 するブチルゴム (具体的には、イソブチレンとp-ハロ -ゲン化メチルスチレンとの共重合体等)、エチレン・プ ロピレン・ジエンゴム、イソプレンゴム等が挙げられ ★50 られている。このHTSは、接着の際には、熱により、

★る。

【0009】SBRの場合、ビニル含有量が35~85 重量%であり、かつスチレン含有量が30重量%以下で ある、溶液重合スチレン・ブタジエンゴムであると好ま しいが、これは、溶液重合SBRのビニル含有量が35 重量%未満では、ゴムの耐熱老化性が改良できず、85 重量%超過では、ゴムの破壊特性が低下し、また、スチ レン含有量が30重量%超過では、接着性が低下するか らである。

【0010】また、HTSは、硫黄架橋と比較して、熱 的に安定な架橋構造を与えるため、耐熱架橋剤として知

ラジカル開裂し、·S-(CH2)6-S·を発生さ せ、金属の表面およびポリマー中の二重結合と反応する と考えられている。また、配合量は、ゴム成分100重 量部に対して、HTSが0.3~5.0重量部必要で、 0.3重量部未満では、その効果が少なく、5.0重量 部超過では、加硫後のゴム中に未反応のまま残存する量 が増えるため、HTSの特徴である安定な架橋形態を生 成して、耐熱老化性を高めるという効果が損なわれる。 同様の理由で、HTSは、好ましくは、1.0~3.0 重量部である。さらに、HTSは、水分を捕捉する作用 10 があるため、含水塩と組み合わせた場合、ゴム練り中あ るいは加硫中に含水塩から放出された水をより効果的に 捕捉することができる。

【0011】また、接着力を発現させるCur Sの生成 には、水分の影響が大きく、水分が少ないとCur Sの 生成は著しく遅くなるため、接着力の確保には、ある程 度の水分が必要であり、ゴム練り中に、あるいは、加硫 中に、無機含水塩から放出される水により、それを補 い、接着力を安定化させる。この目的のためには、ゴム 成分100重量部に対して、無機含水塩が0.1~7. 0重量部必要で、0.1重量部未満では、その効果が少 なく、7.0重量部超過では、水分率が過剰となり、接 着力が低下する。同様の理由で、無機含水塩は、好まし くは、0.5~2.0重量部である。

【0012】本発明に好適に使用される無機含水塩とし ては、NiSO4·7H2O、CoSO4·7H2O、 NaSO4 · 10H2 O, CaSO4 · 2H2 O, Cu $SO_4 \cdot 5H_2 O_1 Al_2 (SO_4)_3 \cdot 18H_2 O_1$ FeSO₄ · 7H₂ O₂ ZnSO₄ · 7H₂ O₂ MgS O4 · 7H2 O, Na2 S · 9H2 O, Na3 PO4 · 12H2 O, NaH2 PO4 · 2H2 O, Na2 HPO 4 · 12H2 O, Ni3 (PO4) 2 · 8H2 O, Mg 3 (PO4) 2 · 8H2 O, Li3 PO4 5H2 O, N a4 P2 O7 · 10H2 O, Ni2 P2 O7 · 6H 2 O, Mn4 (P2O7) 3 · 14H2 O, CoCO3 \cdot 6 H₂ O, N i CO₃ \cdot 6 H₂ O, N a₂ CO₃ \cdot 1 OH_2 O, Nd_2 (CO₃)₃ · $8H_2$ O, Na_2 SO 3 · 7 H₂ O, CaCl₂ · 6 H₂ O, NiCl₂ · 6 H2 O, Na₂ B₄ O₇ · 10H₂ O, FeCl₃ · 6 H₂ O、Na₂ SiO₃·9H₂ O等が挙げられる。 【0013】このような無機含水塩を配合した場合、含 まれるH2 Oが放出されることで、含水率の比較的低い 合成ゴムを配合したり、空気が乾燥する冬季にあって も、水分を確保することができ、接着力の低下を回避す ることができる。さらに、ホウ素は、防錆効果を有する ため、無機含水塩として、ホウ素を含有する塩を使用し た場合には、蒸気老化処理後の接着力が低下しないの で、この点においても有利である。

【0014】また、ゴム成分100重量部に対して、硫 黄が2重量部未満では、接着力発現の元となるCuxS 50 (ア)初期加硫とは、160℃×10分間の加硫処理を

の生成に充分な硫黄を供給できず、接着力が低下し、8 重量部超過では、Cur Sが過剰に生成するため、肥大 化したCur Sの凝集破壊が起こり、接着力が低下す る。また、ゴム物性の耐熱老化性も低下する。

【0015】さらに、本発明では、上記成分の他に、ゴ ム業界で通常使用される配合剤を適宜配合することがで きる。 具体的には、 ゴム成分100重量部に対して、 亜 鉛華を2~10重量部、加硫促進剤を0.3~2重量 部、カーボンブラックを30~70重量部、および接着 促進剤を0.25~3重量部等であり、これは、ゴム成 分100重量部に対して、亜鉛華が2重量部未満では、 ゴム弾性率が十分に得られず、10重量部超過では、接 着が低下し、加硫促進剤が0.3重量部未満では、十分 なゴム弾性率が得られず、2重量部超過では、接着性が 低下し、カーボンブラックが30重量部未満では、十分 なゴム弾性率が得られず、70重量部超過では、破壊特 性が低下し、接着促進剤が0.25重量部未満では、効 果が得られず、3重量部超過では耐熱老化性が劣るから である。また、スチールコードの黄銅メッキ中のCu含 有率が75重量%以下、好ましくは55~70重量% 20 で、良好で安定な接着が得られる。

[0016]

【実施例】以下に、本発明を実施例および比較例に基づ いて説明する。表1記載の配合に従い、ゴム組成物を調 製し、下記の方法により試験し、結果を同じく表1中に 記載する。

【0017】(1)耐熱老化性

耐熱老化性の指標として、JIS K 6301に準拠 して、加硫直後および熱老化処理後の引張強さ

- (T_B)、伸び(E_B)および引張応力(M₃₀₀)をそ れぞれ測定し、指数表示した。また、保持率は、加硫直 後の値に対する熱老化処理後の値を百分率でそれぞれ示 し、100%に近い程、物性の変化が少なく良好である ことを示す。
 - (ア)加硫直後とは、加硫後、室温に戻ったときをい
 - (イ) 熱老化処理後とは、160℃×20分間加硫した ゴム組成物からなる試験サンプルを100℃の雰囲気下 で48時間老化させた後の状態をいう。

【0018】(2)接着性

黄銅メッキ (Cu:63重量%, Zn:37重量%) し たスチールコード (1×5構造、素線径0.25mm)を 12.5㎜間隔で平行に並べ、該スチールコードを両側 からゴム組成物でコーティングしてサンプルを作製し た。これについて、それぞれ、下記の(ア)~(エ)に 従い、ASTM-D-2229に準拠してスチールコー ドを引き抜き、その時の引き抜き力を測定し、指数表示 した。数値が大きい程接着力が大きく、良好であること を示す。

5

いう。

(イ) 通常加硫とは、160℃×20分間の加硫処理をいう。

(ウ) 熱老化処理後とは、通常加硫後の加硫サンプル

* (エ)蒸気老化処理後とは、通常加硫後の加硫サンプルを、95%のスチーム×70℃×10日間処理した後をいう。

[0019]

を、100℃×10日間処理した後をいう。

【表1】

		₹ТОДЩÆ¥EU		[24.1]													
	_		比較例1	实施例1	実施例2	実施例3	比較例2	実施例も	比較例3	比較例(実施例5	比較例5	比較例6	実施例 6	比較例7	実施例?	実施例8
		NR IR-	100	100	100	100	100	100	100	100	100	100	100	100	100	70 30	70
IR2		SBR C/B	50	50	50	50	50	50	50	50	50	50	50	50	50	50	30 50
(重量部)		老化防止剤 *' 乙n〇 ナフテン酸コパルト	2 5 1	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 5	2 5	5	2 5	2 5	2 5
		HTS **	•	2	2	2	2 0, 05	2 2	2 8	2	2	2	0, 2 1	4	7	2	2 1
		Ma ₂ SiO ₂ • 9H ₂ O Ma ₂ B ₄ O ₇ • 10H ₂ O			1	1											
		加硫促進剂 ** 磁黄	1 5	1 4	1	1 4	1 4	1 4	1 4	1 1	1 6	1 10	1	1 4	1 4	1.4	1 4
1	熱相	東直後のE。 を化処理後のE。	100°° 60	90 63	93 66	96 66	90 63	90 63	85 58	150 114	88 60	80 42	100 60	85 57	80 51	90 62	90 69
热老		の保持率 (%) な直後のT。	100*4	70 96	7 <u>1</u> 100	100	70 95	70 96	<u>68</u> 90	76 112	92	53 82	60 98	67 95	64 90	69 95	90
化化	 点を化処理後のT。 化 T。の保持率(%) 性 加硫直後のM。。 魚老化処理後のM。。 		76 76	81 85	81 81	76 76	80 84	81 84	76 84	99 88	76 83	61 74	74 78	74 78	76 84	80 84	90 100
性			100°°	102 138	96 124	94 124	100 135	105 138	100 138	40 47	107 145	125 179	97 131	110 152	125 175	102 138	100 131
接	初期	の保持率(%)	138 70 100	135 70	70	132 55	135 40	131 75	70	117	135 75	144 B0	135	138 70	65 65	70	70
着 性	撒花	通常加磁後の接着力 熱老化処理後の接着力 議気老化処理後の接着力		100 70 65	100 60 65	100 60 95	100 60 55	100 60 60	80 80 45	30 20 20	100 70 65	95 50 55	100 50 55	100 60 65	90 40 50	100 70 65	100 65 65
			55		,				,,								

- *1) N- (1,3-ジメチループチル) -N' -フェニル-p-フェニレンジアミン (大内新興化学工業株式会社製 ノクラック6C)
- *2) フレキシス社製デュラリンクHTS
- *3) N,N' ジシクロヘキシルー2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業株式会社製 ノクセラーD2)
- *4) コントロール

【0020】以上の結果より、各実施例は、各比較例に 較べて、ゴム物性の変化が少なく、耐熱老化性に優れる と共に、接着力の低下も少ないことかわかる。

[0021]

【発明の効果】以上説明したように、HTSと無機含水 塩とを組み合わせることにより、従来の有機コバルト酸※ ※塩の問題点であったゴム物性の劣化および接着の劣化を 共に改善することができる。従って、特に、スチールコ ードを補強材としたタイヤやコンベヤベルト等のゴム物 品に本発明の接着性ゴム組成物を適用した場合、これら のゴム物品の耐久性を大幅に向上させることができる。

フロントページの続き

(51) Int. Cl. 6

識別記号

FΙ

CO9J 107/00

C O 9 J 107/00

DERWENT-ACC-NO:

1998-462958

DERWENT-WEEK:

199840

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Adhesive rubber composition for tyres and belt

conveyors

having steel cord as reinforcement - comprises

natural

rubber, synthetic rubber,

sodium-1,6-hexa:methylene-di:thiosulphate

di:hydrate,

inorganic hydrate and sulphur

PRIORITY-DATA: 1997JP-0001965 (January 9, 1997)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

JP 10195237 A

July 28, 1998

N/A

004

C08L 007/00

INT-CL (IPC): C08K003/00, C08K003/06, C08K005/41, C08L007/00,
C08L009/00, C09J107/00

ABSTRACTED-PUB-NO: JP 10195237A

BASIC-ABSTRACT:

An adhesive rubber compsn. (X) comprises: (A) 100 pts.wt. of a rubber component

comprising more than 50 wt.% natural rubber (NR) and the residual of a

synthetic rubber, (B) 0.3-5.0 pts.wt. of Na-1,6-hexamethylene-dithiosulphate

dihydrate (HTS), (C) 0.1-7.0 pts.wt. of an inorganic hydrate, and (D) 2.0-8.0

pts.wt. of S.

USE - (X) is used for tyres and belt conveyers having steel cord as a reinforcement.

ADVANTAGE - (X) gives high adhesivity and durability to rubber parts.