Neural Network Graph Classifier

of Probability Distributions

by

Patrick Spohr

20th February 2024

Master's Program

Finanzmathematik, Aktuarwissenschaften und Risikomanagement

Department

Informatik, Kommunikation und Wirtschaft

Course

Statistical Learning in Finance and Insurance

Professor

Dr. Alle Petukhina

Inhalt

1	Mo	tivation	2
	1.1	Graph Classifier	2
2	Obj	ectives	3
	2.1	Main Goal	3
	2.2	Literature Overview	3
	2.3	Hurdles to Overcome	3
3	Dat	a	4
	3.1	CIFAR-10 Images	4
	3.2	Scraped Graphs	4
	3.3	Generated Graphs	4
4	Met	thoden	5
	4.1	Overview	5
	4.2	Feed-Forward Neural Networks	5
	4.3	Convolutional Neural Networks	5
	4.4	Rectified Linear Units	5
	4.5	Adam Optimizer	6
	4.6	Python, Keras, and Libaries	7
	4.7	Simplified Graph Classifier	7
	4.8	Distribution Graph Classifier	8
5	Res	ults	8
	5.1	Simple Graph Classifiers	8
	5.2	Distribution Graph Classifiers	8
	5.3	Conclusions and Further Research	10
$\mathbf{R}_{\mathbf{c}}$	efere	nces	10

- 1 Motivation
- 1.1 Graph Classifier

- 2 Objectives
- 2.1 Main Goal
- 2.2 Literature Overview
- 2.3 Hurdles to Overcome

3 Data

3.1 CIFAR-10 Images

3.2 Scraped Graphs

Ticker	Name	Geschäft
COHR	Coherent, Inc.	Laser
СТВ	Cooper Tire & Rubber Company	Reifen
EQT	EQT Corporation	Energie
GOLD	Barrick Gold Corporation	Bergarbeit
NSEC	National Security Group, Inc.	Versicherung
OTTR	Otter Tail Corporation	Energie
PEP	PepsiCo, Inc.	Getränke
SKYW	SkyWest, Inc.	Fluglinie
SNFCA	Security National Financial Corporation	Lebensversicherung
WY	Weyerhaeuser Company	Abholzung

3.3 Generated Graphs

4 Methoden

4.1 Overview

Figure 1: Feed-Forward Neuronales Netz [2]

4.2 Feed-Forward Neural Networks

Figure 2: Long Short-Term Memory Unit [3]

4.3 Convolutional Neural Networks

4.4 Rectified Linear Units

Figure 3: Long Short-Term Memory Unit [1]

$$Sharpe = \frac{R_p - R_f}{\sigma_p}$$

 $R_p = \text{Portfolio Renditen}$

 $R_f = {\rm risikofreier~Zinssatz}$ $\sigma_p = {\rm Standardabweichung~der~Renditen}$

Adam Optimizer 4.5

Figure 4: Long Short-Term Memory Unit [4]

Library	Versionen
python	3.10.13
tensorflow	2.10.0
numpy	1.26.0
pandas	2.1.1
matplotlib	3.8.0

Table 1: Python und Library Versionen

- 4.6 Python, Keras, and Libaries
- 4.7 Simplified Graph Classifier

$$V_p = \sum_{j=1}^{A} \sum_{i=1}^{M} P_{i+1}^T \cdot w_i$$

M = 360 Monate

w = monatliche Gewicht von Aktie A im Monat M

A = 10 Aktien

 $P_{1+1} = \text{Preise im Februar 1990 von Aktie A}$

P = tägliche Preise von Aktie A im Monat M

 $w_1 = \mbox{Gewicht im Januar 1990 von Aktie A}$

4.8 Distribution Graph Classifier

5 Results

5.1 Simple Graph Classifiers

Figure 5: Normalisierte Portfoliowerte von 1990 bis 2020

5.2 Distribution Graph Classifiers

Portfolio	Summe Monatlichen Renditen %
OPT mit RFR	6604,73
OPT ohne RFR	5331,83
EQU	213,32
GSPC	248,56

Table 2: Summe Monatlichen Renditen

Portfolio	Monatlicher Durchschnitt
OPT mit RFR	39,9735
OPT ohne RFR	41,1696
EQU	52,8962
GSPC	72,302

Table 3: Gesamtsumme der Sharpe-Quotienten ohne den Risikofreinen Zinssatz

Portfolio	Monatlicher Durchschnitt
OPT mit RFR	-0,0026
OPT ohne RFR	0,0225
EQU	0,0934
GSPC	1,7403

Table 4: Monatlicher Durchschnitt der Sharpe-Quotienten ohne den Risikofreinen Zinssatz

Portfolio	Monatlicher Durchschnitt
OPT mit RFR	30,2492
OPT ohne RFR	28,7633
EQU	-345,5259
GSPC	-395,0716

Table 5: Gesamtsumme der Sharpe-Quotienten mit dem Risikofreinen Zinssatz

Figure 6: Summe monatlichen Renditen von 1990 bis 2020

Portfolio	Monatlicher Durchschnitt
OPT mit RFR	0,08449
OPT ohne RFR	0,08034
EQU	-0,9651
GSPC	-1,1035

Table 6: Monatlicher Durchschnitt der Sharpe-Quotienten mit dem Risikofreinen Zinssatz

5.3 Conclusions and Further Research

References

- [1] Data Basecamp. May 2023. URL: https://databasecamp.de/en/ml/softmax-function.
- [2] Christopher M. Bishop. "Neural Networks for Pattern Recognition". In: (1995). URL: https://people.sabanciuniv.edu/berrin/cs512/lectures/Book-Bishop-Neural% 20Networks%20for%20Pattern%20Recognition.pdf.
- [3] Shi Yan. Understanding LSTM and its diagrams. Mar. 2016. URL: https://blog.mlreview.com/understanding-lstm-and-its-diagrams-37e2f46f1714.

[4] Zihao Zhang, Stefan Zohren, and Stephen Roberts. "Deep Learning for Portfolio Optimization". In: *The Journal of Financial Data Science* 2.4 (Aug. 2020), pp. 8–20. ISSN: 2640-3943. URL: https://arxiv.org/pdf/2005.13665v3.pdf.