

LINMA2380 Matrix Computations

SIMON DESMIDT

Academic year 2024-2025 - Q1

Contents

1	Reminders					
	1.1	Algebraic structures	2			
	1.2	Matrix algebras				
2	QR	form	6			
3	Unitary transformations and SVD					
	3.1	Introduction and definitions	7			
	3.2	Diagonalization by unitary transformations	7			
	3.3	Linear operator point of view	8			
	3.4	Polar decomposition - formal point of view	8			
	3.5	Projectors and generalized inverses - algebraic point of view	9			
	3.6	Least squares	9			
	3.7	Unitarily invariant matrix norms - geometric point of view	9			
	3.8	Canonical angles	9			
	3.9	Variational problems	10			
4	Eigenvalues, eigenvectors and similarity transformations					
	4.1	Invariant subspaces	11			
	4.2	Jordan canonical form	12			
5	5 Summary					

Reminders

1.1 Algebraic structures

- A semigroupe is a set together with an associative binary operation (E, +).
- A monoid is a semigroup with a neutral element.
- A group is a monoid in which every element has an inverse.
- A commutative group is a group whose binary operation is commutative.
- A ring is a triple $(E, +, \cdot)$ such that
 - (E, +) is a commutative group;
 - (E, \cdot) is a monoid;
 - \cdot is distirbutive with respect to +.
- An integral domain is a commutative ring in which the product of any two nonzero elements in nonzero:

$$\forall x, y \in E, x, y \neq 0$$
 $xy \neq 0$

- . This implies that the equation ax = b with $a \neq 0$ has at most one solution.
- An Euclidean domain is an integral domain such that for every two elements in the domain, we can perform the Euclidean division:

$$\forall (a_1, a_2), \exists (q, r) : a_1 = a_2q + r \text{ with } r < a_2$$

- A field is a commutative ring $(E, +, \cdot)$ such that every $a \in E \setminus \{0\}$ has a multiplicative inverse.
- (K, E, +) is a module over the ring $(K, +, \cdot)$ if
 - (E, +) is a commutative group;
 - the external composition operation $\cdot : K \times E \rightarrow E$ satisfies

*
$$(a+b) \cdot x = a \cdot x + b \cdot x$$
 $a \cdot (x+y) = a \cdot x + a \cdot y$

- $* a \cdot (b \cdot x) = (a \cdot b) \cdot x$
- * $1 \cdot x = x$

- If, in addition to that, $(K, \cdot, +)$ is a field, then (K, E, +) is a vector space over $(K, +, \cdot)$.
- $(K, E, +, \cdot)$ is an algebra if
 - (K, E, +) is a module or a vector space;
 - the internal composition operation $\cdot : E \times E \rightarrow E$ is bilinear.

1.2 Matrix algebras

1.2.1 Product

Apart from the usual sum and product of two matrices, we can define the Hadamard and Kronecker products :

• Hadamard:

$$A_{m \times n} \odot B_{m \times n} \coloneqq [a_{ij} \cdot b_{ij}]_{i,j=1}^{m,n}$$

• Kronecker:

$$A \otimes B := \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{bmatrix}$$

A square matrix $A \in \mathbb{C}^{n \times n}$ is said normal if $AA^* = A^*$. In the real case, it is said to be orthogonal and * is equivalent to the transpose. Furthermore, it is said to be unitary if it satisfies the relations $AA^* = I_n = A^*A$.

1.2.2 Determinant

We define the quasi-diagonals of a matrix as the n-tuples of elements of a matrix A, $a_{1j_1,2j_2,\ldots,nj_n}$ where the indices $\mathbf{j}=(j_1,\ldots,j_n)$ constitute a permutation of the set $\{1,2,\ldots,n\}$. Thus a quasi-diagonal consists of n elements of the matrix A in such a way that no two of them lie in the same row or column of A. For each quasi-diagonal, we define the parity $t(\mathbf{j})$. It is the number of inversions $j_k > j_p$ for k < p in \mathbf{j} .

• With the notation above, we define the determinant of a square matrix $A_{n\times n}$ as

$$\det(A) = \sum_{\mathbf{j}} (-1)^{t(\mathbf{j})} a_{1j_1} \cdot a_{2j_2} \cdot \dots \cdot a_{nj_n}$$

The determinant has the following properties:

• The determinant is multilinear in the rows of *A* :

$$\det \begin{bmatrix} a_{1:} \\ \vdots \\ b_{k:} + \lambda c_{k:} \\ \vdots \\ a_{n:} \end{bmatrix} = \det \begin{bmatrix} a_{1:} \\ \vdots \\ b_{k:} \\ \vdots \\ a_{n:} \end{bmatrix} + \det \begin{bmatrix} a_{1:} \\ \vdots \\ \lambda c_{k:} \\ \vdots \\ a_{n:} \end{bmatrix}$$

- The determinant is alternating in the rows of A: for $i \neq j$, $a_{i:} = a_{j:} \Longrightarrow \det(A) = 0$
- $det(I_n) = 1$, where I_n is the identity matrix.

$$\bullet \det \begin{bmatrix} a_{1:} \\ \vdots \\ a_{i:} \\ \vdots \\ a_{j:} \\ \vdots \\ a_{n:} \end{bmatrix} = -\det \begin{bmatrix} a_{1:} \\ \vdots \\ a_{j:} \\ \vdots \\ a_{n:} \end{bmatrix}$$

$$\bullet \det \begin{bmatrix} a_{1:} \\ \vdots \\ a_{i:} + \lambda a_{j:} \\ \vdots \\ a_{n:} \end{bmatrix} = \det \begin{bmatrix} a_{1:} \\ \vdots \\ a_{i:} \\ \vdots \\ a_{n:} \end{bmatrix}$$

- $\det(\lambda A) = \lambda^n \det(A)$
- for $i \neq j$, $a_{i:} = \lambda a_{j:} \Longrightarrow \det(A) = 0$
- $det(A^T) = det(A)$
- $\det(A^*) = \overline{\det(A)}$, if $A \in \mathbb{C}^{n \times n}$
- → N.B.: any property of the determinant established for the rows of matrices also holds for the columns.
- The minor $A_{(kl)}$ of dimension n-1 of a matrix $A_{n\times n}$ is the determinant of the submatrix obtained by removing the kthe row and the lth column. From this, we can note the determinant as a linear combination of the elements of a row or column :

$$\det(A) = a_{1j}A_{1j}^c + a_{2j}A_{2j}^c + \dots + a_{nj}A_{nj}^c \det(A) = a_{i1}A_{i1}^c + a_{i2}A_{i2}^c + \dots + a_{in}A_{in}^c$$

where the coefficient A_{kl}^c is called the cofactors of the corresponding element a_{kl}^{-1}

Laplace and Binet-Cauchy relations

For the pairs of *p*-tuples

$$\mathbf{i}_p \coloneqq (i_1, \dots, i_p) \text{ and } \mathbf{j}_p \coloneqq (j_1, \dots j_p)$$

satisfying

$$1 \le i_1 < \dots < i_p \le n \text{ and } 1 \le j_1 < \dots < j_p \le n$$

we define the minors of order *p* of *A* as

$$A\begin{pmatrix} \mathbf{i}_p \\ \mathbf{j}_p \end{pmatrix} := \det[a_{i_k, j_l}]_{k, l=1}^p \tag{1.1}$$

We also define the complementary cofactors of *A* as

$$A^{c} \begin{pmatrix} \mathbf{i}_{p} \\ \mathbf{j}_{p} \end{pmatrix} := (-1)^{s} A \begin{pmatrix} \mathbf{i}_{p}^{c} \\ \mathbf{j}_{p}^{c} \end{pmatrix}$$
 (1.2)

 $^{{}^{1}}A_{kl}^{c} = (-1)^{k+l}A_{(kl)}.$

where $s = \sum_{k=1}^{p} (i_k + j_k)$ and \mathbf{i}_p^c is the set complement of \mathbf{i}_p (same for \mathbf{j}_p). Laplace Theorem:

Let A ne a matrix of dimensions $n \times n$ and \mathbf{i}_p be a p-tuple of rows (and \mathbf{j}_p for the columns). Then, $\det(A)$ is equal to the sum of the products of all possibles minors located in these rows/columns with their complementary cofactors:

$$\begin{cases} \det(A) = \sum_{\mathbf{j}_{p}} A \begin{pmatrix} \mathbf{i}_{p} \\ \mathbf{j}_{p} \end{pmatrix} A^{c} \begin{pmatrix} \mathbf{i}_{p} \\ \mathbf{j}_{p} \end{pmatrix} \\ \det(A) = \sum_{\mathbf{i}_{p}} A \begin{pmatrix} \mathbf{i}_{p} \\ \mathbf{j}_{p} \end{pmatrix} A^{c} \begin{pmatrix} \mathbf{i}_{p} \\ \mathbf{j}_{p} \end{pmatrix} \end{cases}$$

$$(1.3)$$

Binet-Cauchy Theorem:

Let **m** be the *m*-tuple (1, ..., m). Let *A* and *B* be matrices of dimensions $m \times n$ and $n \times m$ respectively. If $m \le n$, then

$$\det(AB) = \sum_{\mathbf{j}_m} = A \begin{pmatrix} \mathbf{m} \\ \mathbf{j}_m \end{pmatrix} B \begin{pmatrix} \mathbf{j}_m \\ \mathbf{m} \end{pmatrix}$$
 (1.4)

1.2.3 Inverse and rank

• The adjugate matrix of a square matrix $A_{n \times n}$ is defined as

$$adj(A) := [A_{ji}^c]_{i,j=1}^n$$

Then, for every square matrix $A_{n \times n}$, we have

$$A \cdot adj(A) = \det(A)I_n = adj(A) \cdot A \tag{1.5}$$

Every matrix $A_{m \times n}$ whose elements belong to a field \mathcal{F} can be brought to the following form by means of invertible (or elementary) transformations of rows and columns:

$$RAQ = \begin{pmatrix} I_r & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{pmatrix}$$
 (1.6)

The rank of a matrix $A_{m \times n}$ whose elements belong to a field \mathcal{F} is equal to the largest size of its nonzero minors. As a corollary, any non-singular matrix whose elements belong to a field \mathcal{F} can be written as a product of elementary transformations.

Schur complement:

Let $\overline{A_{n \times n}}$ be an invertible submatrix of the matrix

$$M_{(n+p)\times(n+m)} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

Then the rank of *M* satisfies

$$rank(M) = n + rank(D - CA^{-1}B)$$
(1.7)

And the matrix $D - CA^{-1}B$ is called the Schur complement of M.

QR form

TODO

Unitary transformations and SVD

3.1 Introduction and definitions

- A unitary matrix is a matrix $U \in \mathbb{C}^{n \times n}$ such that $U^*U = I$, i.e. its column are orthogonal.
- An isometry is a matrix $U \in \mathbb{C}^{m \times n}$, $m \neq n$, such that $U^*U = I$. We have ||Ux|| = ||x||.

3.2 Diagonalization by unitary transformations

The goal here is to have a matrix decomposition of the form

$$A = R \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} Q^{-1} \tag{3.1}$$

for any arbitrary matrix $A_{m \times n}$, and with R, Q being unitary (if A is complex) or orthogonal (if A is real). We limit ourselves here to transformation matrices that are isometries¹. This means that the invariants that we obtain characterize the way the matrix act on the norm of vectors.

Theorem 3.1. Every Hermitian² matrix $A \in \mathbb{C}^{n \times n}$ can be diagonalized by a unitary transformation $U \in \mathbb{C}^{n \times n}$:

$$U^*AU = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \dots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
(3.2)

with $\lambda_i \in \mathbb{R}$.

Theorem 3.2. The eigenvalues of a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ are invariant under unitary similarity transformations:

$$B = U^* A U \tag{3.3}$$

Every class of equivalence defined by this transformation group has a unique canonical representative which is the diagonal matrix Λ with the eigenvalues of A decreasing along the diagonal.

¹To define.

 $^{^{2}}A = A^{*}$

Theorem 3.3 (Singular Value Decomposition). For every matrix $A \in \mathbb{C}^{m \times n}$, there exist unitary transformations $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that

$$A = U\Sigma V^* \qquad \Sigma = \begin{pmatrix} \sigma_1 & & 0 & \\ & \ddots & & 0_{r\times(n-r)} \\ 0 & & \sigma_r & \\ \hline & 0_{(m-r)\times r} & 0_{(m-r)\times(n-r)} \end{pmatrix}$$
(3.4)

with real positive singular values $\sigma_1 \geq \cdots \geq \sigma_r > 0$. The value r and the r-tuple $(\sigma_1,\ldots,\sigma_r)$ are uniquely defined and, as a consequence, the matrix Σ constitutes a canonical form under unitary transformations, i.e. under transformations of the forme $B = \tilde{U}^* A \tilde{V}$. Where \tilde{U} , \tilde{V} are two unitary matrices.

Properties:

- If the matrix *A* is real, *U*, *V* are orthogonal matrices;
- The transformations U, V diagonalize the matrices AA^* and A^*A respectively, since $U^*AA^*A = \Sigma\Sigma^T$, $V^*A^*AV = \Sigma^T\Sigma$, and the columns of U, V are the eigenvectors of AA^* and A^*A respectively.
- The transformations *U*, *V* are not uniquely defined.

Linear operator point of view 3.3

We define the compact SVD form: $A = U_1 \Sigma_r V_1^*$, to have Σ_r invertible. In this form, Σ_r is $r \times r$, r being the number of nonzero singular values. U_1 contains the r first columns of U and V_1^* the r first lines of V^* . The other columns (resp. rows) of U (resp. V) are denoted by the matrix U_2 (resp. V_2^*).

Definition 3.4. If \mathcal{X}_1 , \mathcal{X}_2 are subspaces of \mathbb{R}^n such that their intersection is the origin, then we note $\mathcal{X}_1 \oplus \mathcal{X}_2 = \mathcal{X}_1 + \mathcal{X}_2$ the direct sum of the two spaces.

Any vector $x \in \mathcal{X}_1 \oplus \mathcal{X}_2$ has a unique decomposition $x = x_1 + x_2$, $x_i \in \mathcal{X}_i$. For the SVD, we have

$$\mathcal{X}_1 = Im(V_1) \qquad \qquad \mathcal{X}_2 = Im(V_2) = Ker(A) \tag{3.5}$$

$$\mathcal{X}_1 = Im(V_1)$$
 $\mathcal{X}_2 = Im(V_2) = Ker(A)$ (3.5)
 $\mathcal{Y}_1 = Im(U_1) = Im(A)$ $\mathcal{Y}_2 = Im(U_2)$ (3.6)

Polar decomposition - formal point of view 3.4

Any matrix $A_{n \times n}$ can be expressed in the following form:

$$A = \underbrace{U\Sigma U^*}_{=:H_1} UV^* = H_1 Q = H_1 \exp(iH_2)$$
(3.7)

with H_1 a positive definite Hermitian matrix, Q unitary and H_2 also Hermitian.

3.5 Projectors and generalized inverses - algebraic point of view

Definition 3.5. A projector is a matrix $P \in \mathbb{C}^{n \times n}$ such that $P^2 = P$. It is said to be orthogonal if $\forall x$, $(Px)^*(x - Px) = 0$.

Theorem 3.6. Any projector P can be written $P = XY^*$ with $Y^*X = I_r$, r being the rank of P. If P is orthogonal, then X = Y.

- $Im(P) = Ker(P^{\perp})$
- $P = P^*$

3.6 Least squares

Theorem 3.7. Given a linear system Ax = y, the generalized inverse $A^I = V_1 \Sigma_r^{-1} U_1^*$ gives $x^* = A^I y$ the solution minimizing the norm of Ax - y. If there are more than one such solution, it returns the one of smallest norm.

3.7 Unitarily invariant matrix norms - geometric point of view

A matrix norm is unitarily invariant if, for every $A \in \mathbb{C}^{m \times n}$, we have $||A|| = ||U^*AV||$ if U, V are unitary.

The 2-norm and the Frobenius norm of $A \in \mathbb{C}^{m \times n}$ are unitarily invariant.

$$||A||_2 := \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} \qquad ||A||_F := \left(\sum_{i,j} |a_{i,j}^2|\right)^{1/2}$$
 (3.8)

3.8 Canonical angles

Theorem 3.8. Given two subspaces $S_i \subseteq \mathbb{C}^n$ (i = 1, 2), there exist orthonormal bases given by the columns of \hat{S}_i respectively, and satisfying

$$\hat{S}_{1}^{*}\hat{S}_{2} = \begin{pmatrix} \sigma_{1} & 0 & 0 \\ & \ddots & & 0 \\ 0 & \sigma_{r} & & & \\ \hline & 0_{(r_{1}-r)\times r} & 0_{(r_{1}-r)\times r_{2}-r} \end{pmatrix} \qquad 1 \geq \sigma_{1} \geq \cdots \geq \sigma_{r} > 0 \qquad (3.9)$$

Add the paper sheet of notes.

3.9 Variational problems

Theorem 3.9. For a Hermitian matrix $H \in \mathbb{C}^{n \times n}$, the Rayleigh quotient is defined as

$$R(x) := \frac{\langle Hx, x \rangle}{\langle x, x \rangle} = \frac{x^* Hx}{x^* x} \qquad x \neq 0 \in \mathbb{C}^n$$
 (3.10)

The Rayleigh quotient of a Hermitian matrix $H \in \mathbb{C}^{n \times n}$ is real and satisfies

$$\lambda_{\min}(H) \le R(x) \le \lambda_{\max}(H) \tag{3.11}$$

Furthermore, supposing that $\lambda_1 \ge \cdots \ge \lambda_n$, we have

$$\lambda_n = \min_{x \neq 0} R(x) \qquad \lambda_1 = \max_{x \neq 0} R(x) \tag{3.12}$$

Lemma 3.10. Let $S_j \subseteq \mathbb{C}^n$ be a subspace of dimension j. Then, it holds that

$$\min_{x \neq 0 \in \mathcal{S}_j} R(x) \le \lambda_j \qquad \max_{x \neq 0 \in \mathcal{S}_j} R(x) \ge \lambda_{n-j+1} \tag{3.13}$$

Theorem 3.11 (Courant-Fisher). For any Hermitian matrix $H \in \mathbb{C}^{n \times n}$, the Rayleigh quotient R(x) satisfies

$$\lambda_{j} = \max_{\mathcal{S}_{j}} \min_{x \neq 0 \in \mathcal{S}_{j}} R(x) \qquad \lambda_{n-j+1} = \min_{\mathcal{S}_{j}} \max_{x \neq 0 \in \mathcal{S}_{j}} R(x)$$
(3.14)

Theorem 3.12. The singular values of an arbitrary matrix $A \in \mathbb{C}^{m \times n}$ are given by

$$\sigma_j(A) = \max_{S_j} \min_{x \neq 0 \in S_j} \frac{\|Ax\|_2}{\|x\|_2}$$
 (3.15)

$$\sigma_{n-j+1}(A) = \min_{S_j} \max_{x \neq 0 \in S_j} \frac{\|Ax\|_2}{\|x\|_2}$$
 (3.16)

The following theorem is a major application of the SVD, as it allows to store a matrix with much less information that it contains.

Theorem 3.13. Let $A \in \mathbb{C}^{m \times n}$ be a matrix of rank r. The best approximation of A by a matrix $B \in \mathbb{C}^{m \times n}$ of rank s < r satisfies

$$\min_{\text{rank}(B) \le s} ||A - B||_2 = \sigma_{s+1}(A)$$
(3.17)

Theorem 3.14 (Eckart-Young). Furthermore, the matrix *A* from the last theorem also satisfies

$$\min_{\text{rank}(B) \le s} ||A - B||_F^2 = \sigma_{s+1}^2 + \dots + \sigma_r^2$$
 (3.18)

Eigenvalues, eigenvectors and similarity transformations

The eigenvalues of a matrix are invariant under similarity transformations. The similarity transformations $A \to TAT^{-1}$ define an equivalence class of matrices and every matrix A_T belonging to the similarity class of A has the same eigenvalues.

Theorem 4.1 (Schur). Every matrix $A \in \mathbb{C}^{n \times n}$ can be upper triangularized under unitary similarity transformations:

$$U^*AU = \begin{bmatrix} \lambda_1 & \times & \cdots & \times \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} =: A_S$$

$$(4.1)$$

where the diagonal of A_S consists of the eigenvalues of A.

- If A is Hermitian, then A_S is Hermitian, and thus diagonal and real. This is its canonical form.
- The eigenvalues in the Schur form can be ordered.
- If $A \in \mathbb{R}^{n \times n}$, the eigenvalues and eigenvectors can be complex. Then, their complex conjugates are also eigenvalues and eigenvectors of A.

Definition 4.2. A normal matrix is a square matrix $A \in \mathbb{C}^{n \times n}$ satisfying $AA^* = A^*A$.

Theorem 4.3. A matrix $A \in \mathbb{C}^{n \times n}$ is normal if and only if it is diagonalizable under unitary similarity transformations: $A = U \Lambda U^*$.

4.1 Invariant subspaces

Definition 4.4. A subset $\mathcal{X} \subseteq \mathbb{C}^n$ is an invariant subspace under the operator $A \in \mathbb{C}^{n \times n}$ if $A\mathcal{X} \subseteq \mathcal{X}$.

Theorem 4.5. Let $\mathcal{X} \subseteq \mathbb{C}^n$ be a subspace of dimension k. Let $X \in \mathbb{C}^{n \times k}$ be such that the columns of X form a basis of \mathcal{X} , and let X_c be a completion of X such that $T := [X|X_c]$ is non-singular. Then, the following three propositions are equivalent:

• $AX \subset X$;

• $AX = XA_{11}$;

•
$$T^{-1}AT = \begin{bmatrix} A_{11} & A_{12} \\ 0_{(n-k)\times k} & A_{22} \end{bmatrix}$$

where $A_{11} \in \mathbb{C}^{k \times k}$, $A_{12} \in \mathbb{C}^{k \times (n-k)}$ and $A_{22} \in \mathbb{C}^{(n-k) \times (n-k)}$.

Theorem 4.6 (Real Schur form). Every matrix $A \in \mathbb{R}^{n \times n}$ can be almost triangularized under real similarity transformations $U \in \mathbb{R}^{n \times n}$, and with blocks of dimension 1×1 or 2×2 :

$$U^{T}AU = \begin{bmatrix} A_{11} & \times & \dots & \times \\ & A_{22} & \ddots & \vdots \\ & & \ddots & \times \\ & & & A_{kk} \end{bmatrix} \qquad A_{ii} \in \mathbb{R}^{1 \times 1} \cup \mathbb{R}^{2 \times 2}$$

$$(4.2)$$

4.2 Jordan canonical form

Theorem 4.7. Every matrix $A \in \mathbb{C}^{n \times n}$ admits a block-diagonal form under similarity transformations:

$$T^{-1}AT = A_S = diag\{A_{11}, \dots, A_{kk}\}$$
(4.3)

where each block A_{ii} has only one eigenvalue (with multiplicity possibly larger than 1).

Theorem 4.8. Every matrix $A \in \mathbb{C}^{n \times n}$ can be transformed by similarity transformations into a block-diagonal form:

$$T^{-1}AT = diag\{J_1(\lambda), \dots, J_k(\lambda)\}$$
(4.4)

where each $J_i(\lambda) \in \mathbb{C}^{n_i \times n_i}$ is a Jordan block:

$$J_{i}(\lambda) = \begin{bmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & \lambda \end{bmatrix}$$
(4.5)

Corollary 4.9. Two matrices $A, B \in \mathbb{C}^{n \times n}$ are similar iff they have the same Jordan form.

For a real matrix $A \in \mathbb{R}^{n \times n}$, we can separate the real and imaginary parts of the eigenvalues: $\lambda = \alpha + \beta j$. Separating the eigenvectors v = x + iy:

$$A \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$$
 (4.6)

Corollary 4.10. Any real matrix $A \in \mathbb{R}^{n \times n}$ has an invariant space of dimensionn 1 or 2:

$$\begin{bmatrix} \alpha & \beta & 1 & 0 & & & & \\ -\beta & \alpha & 0 & 1 & & & & \\ & & \alpha & \beta & 1 & 0 & & & \\ & & -\beta & \alpha & 0 & 1 & & & \\ & & & \ddots & \ddots & & & \\ & & & & 1 & 0 & & \\ & & & & 1 & 0 & & \\ & & & & 0 & 1 & & \\ & & & & \alpha & \beta & \\ & & & -\beta & \alpha \end{bmatrix}$$

$$(4.7)$$

Definition 4.11. Given a polynomial $p(x) = p_0 + p_1 x + \cdots + p_d x^d$, we define the matrix polynomial $p(A) = p_0 I + p_1 A + \cdots + p_d A^d$.

Theorem 4.12. If $A = TJT^{-1}$, $p(A) = Tp(J)T^{-1}$, and thus

$$\lambda_i(p(A)) = p(\lambda_i(A)) \tag{4.8}$$

Corollary 4.13. The characteristic polynomial of A satisfies $\chi(A) = \prod_i (A - \lambda_i I)^{m_i} = 0$, with m_i the algebraic multiplicity of the eigenvalue λ_i .

Theorem 4.14. (Bendixson) The eigenvalues $\alpha + \beta j$ of a matrix $A \in \mathbb{C}^{n \times n}$ are in the rectangle

$$\lambda_{\min}\left(\frac{A+A^*}{2}\right) \le \alpha \le \lambda_{\max}\left(\frac{A+A^*}{2}\right)$$
 (4.9)

$$\lambda_{\min}\left(\frac{A-A^*}{2j}\right) \le \beta \le \lambda_{\max}\left(\frac{A-A^*}{2j}\right)$$
 (4.10)

Theorem 4.15. Let $A \in \mathbb{C}^{n \times n}$. Its eigenvalues are all in the union of the Gershgorin circles:

$$|z - a_{pp}| \le \sum_{k \ne p} |a_{pk}| \tag{4.11}$$

Summary

Relation	Definition	Definition	Invariant	Canonical element	
Relation	set	$A \sim B$	$A \sim B$	Canonical element	
Equivalence relation under elementary transformations on the left and on the right	$\mathbb{C}^{m \times n}$	$\exists P_1 \in K^{m \times m}, P_2 \in \mathbb{C}^{n \times n}$ inversible : $B = P_1 A P_2$	$ \begin{array}{c} \operatorname{Rank} \\ \operatorname{rank}(A) = \operatorname{rank}(B) \end{array} $	$\begin{pmatrix} I_r & 0_{r\times(n-r)} \\ 0_{(m-r)\times r} & 0_{(m-r)\times(n-r)} \end{pmatrix}$	
Similarity relation	$\mathbb{C}^{n \times n}$	$\exists P \in \mathbb{C}^{n \times n}$ inversible : $B = P^{-1}AP$	Jordan canonical form $J(A) = J(B)$	$\begin{bmatrix} J_{n_1}(\lambda_1) & & & & \\ & \ddots & & & \\ & & J_{n_p}(\lambda_p) \end{bmatrix}$	
Congruence relation	$\mathbb{R}^{n \times n}$ symmetric	$\exists P \in \mathbb{R}^{n \times n}$ inversible : $B = P^{\top} A P$		$\begin{bmatrix} I_{\mathrm{ind}_{+}(A)} & & \\ & -I_{\mathrm{ind}_{-}(A)} & \\ & 0_{\mathrm{ind}_{0}(A)}) \end{bmatrix}$	
Equivalence relation under unitary transformations on the left and on the right	$\mathbb{C}^{m \times n}$	$\exists U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ unitary: $B = UAV^*$	Singular values	$ \begin{pmatrix} \sigma_1 & 0 \\ & \ddots & \\ 0 & \sigma_r & \\ \hline 0_{(m-r)\times r} & 0_{(m-r)\times (n-r)} \end{pmatrix} $	
Equivalence relation under unimodular transformations on the left and on the right	$\mathbb{C}^{m \times n}[\lambda]$	$\exists M(\lambda) \in \mathbb{C}^{m \times m}[\lambda], N(\lambda) \in \mathbb{C}^{n \times n}[\lambda]$ unimodular: $B(\lambda) = M(\lambda)A(\lambda)N(\lambda)$	Smith normal form	$ \begin{pmatrix} e_1(\lambda) & 0 & & \\ & \ddots & & \\ 0 & e_r(\lambda) & & \\ \hline & 0_{(m-r)\times r} & 0_{(m-r)\times (n-r)} \\ \end{pmatrix} $ where $e_i(\lambda)$ divides $e_{i+1}(\lambda)$ $(i=1,\ldots,r-1)$.	