Solve as many problems as possible by giving clear and essential explenations. Write each solution in the appropriate space. SOLUTIONS IN OTHER SHEETS WILL NOT BE ACCEPTED. 1 Problem = 4 points. Time: 2 hours.

SIGNATURE	1	2	3	4	5	6	7	8	TOT.

Let p be a prime number, let F_{pⁿ} be a finite field with pⁿ elements, let f ∈ F_p[x] and let α ∈ F_{pⁿ} be a root of f.
a. Show that also α^p is a root of f.
b. Show that for every positive integer k, α^{p^k} is a root of f.
c. Show that if f is irriducibile and n = deg f, then α, α^p, ···, α^{pⁿ⁻¹} are all distinct.
d. Deduce that every finite field with pⁿ elements is a normal extension of F_p.

2. Give the definition of an algebraic closed field and of the algebraic closure of a field.

3.	. Determine the degree of the splitting field of ($(x^3-2)(x^3-5)(x^2+x+1)$ over Q .

4. Show that if $(x,y) \in \mathbf{C}$ is costructible, then $\mathbf{Q}(x,y)/\mathbf{Q}$ is finite and $[\mathbf{Q}(x,y):\mathbf{Q}]$ is a power of 2.

5. Let $K = \mathbf{Q}(\sqrt{3}, \sqrt{5})$ a. Compute $[K: \mathbf{Q}]$ and show that $K = \mathbf{Q}(\sqrt{3} + \sqrt{5})$ a. Compute minimum polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbf{Q} and over $\mathbf{Q}(\sqrt{3})$ a. After having shown that $\mathbf{Q}(\sqrt{15}) \subseteq K$, describe the monomorphisms $K \to \mathbf{C}$ that fix $\mathbf{Q}(\sqrt{15})$.

- 6. Consider the cyclotomic field $\mathbf{Q}(\zeta_{15})$ ($\zeta_{15}=e^{2\pi/15}$). a. Compute the mimimal polynomial of ζ_{15} over \mathbf{Q} b. Compute the mimimal polynomial of ζ_{15} over $\mathbf{Q}(\zeta_3)$ and over $\mathbf{Q}(\zeta_5)$ c. Determine all the automorphisms of $\mathbf{Q}(\zeta_{15})$ that fix $\mathbf{Q}(\zeta_3)$

7.	. After having shown that it is algebraic, compute the minimal polynomial of $\cos 2\pi/15$ over Q. (hin consider the $\cos(5\theta)$ and apply the classical formulas from trigonometry)	ıt:	$\mathbf{if} \theta =$	$2\pi/15$,
8.	. State and prove the "multiplicativity of degrees Theorem" (if $K \subseteq L \subseteq M$, then $[M:K] = [M:L][L:L]$	K]).		