ZÁKLADY SIGNÁLOVÝCH PROCESORŮ

Kurz: Signálové procesory

Autor: Petr Sysel

Lektor: Petr Sysel

Obsah přednášky

Rozdíly mikrokontrolérů a signálových procesorů

Dělení do generací

Struktura Von Neumann

Harvardská architektura

Vlastnosti architektury

Aritmetická logická jednotka

Instrukční soubor

Architektura LIW a VLIW

Superskalární architektura

Architektura paralelních systémů

Hlavní rozdíly mezi MCU a DSP?

	MCU	DSP
použití	řídicí aplikace	zpracování signálů
architektura CPU	von Neumannova	Harvardská
základní formát	integer	fixed/fractional
saturace	pouze softwarově	automatická
přesnost	jednoduchá	rozšířený střadač
násobička	jednokvadrantová	plně čtyřkvadrantová
typická instrukce	read-modify-write	multiply and accumulate
adresovací režimy	bitové	bitově reverzní, modulo
fáze zřetězené zpracování	1-3	5-11

Dělení do generací

- 1. generace 1980-1985 první signálové procesory, na čipu jsou již integrovány A/D a D/A převodníky, připojení vnějších periferií je však problematické stejně jako rozšiřování paměti, vzorkovací kmitočet je dán délkou vykonávání programu i2920, NEC μ P7720, TMS320C10
- 2. generace 1985procesory s pevnou řádovou čárkou, plně harvardská architektura, doplněny brány pro připojení periferií a vnější paměti, rozšíření o koprocesory NEC μ P77220, TMS320C25, ADSP2100,DSP56000,DSP56300
- 3. generace procesory s pohyblivou řádovou čárkou, podporují standard IEEE754 pro vyjádření v pohyblivé řádové čárce NEC μ P77230, TMS320C30, DSP96000,ADSP21000

Dělení do generací

- 4. generace 2000procesory s pevnou nebo pohyblivou řádovou čárkou s paralelní architekturou LIW (Long Instruction Word) nebo VLIW (Very Long Instruction Word) nebo VLES (Variable Length Execution Set), TMS320C6200, TMS320C6400, TMS320C6700, MSC8101,
- future ?
 vícejádrové signálové procesory TMS320C6678 (8 jader), TMS320C6657,
 kombinované signálové procesory kombinace jádra ARM a DSP –
 TMS320DM8168, OMAP-L138, ...,
 grafické procesory

Von Neumannova struktura

Navržena Johnem von Neumannem při vývoji počítače EDVAC - Electronic Discrete Variable Computer (1945).

Von Neumannovy zásady

- 1. Funkční jednotky paměť, řadič, aritmetická jednotka, vstupní a výstupní jednotka,
- 2. struktura je nezávislá na typu úlohy, programuje se obsahem paměti,
- 3. instrukce a operandy jsou v téže paměti,
- 4. paměť rozdělena do buněk stejné velikosti,
- 5. program tvoří instrukce, při změně dat se nemění,
- 6. změna pořadí instrukcí se vyvolá instrukcí skoku,
- 7. používají se dvojkové signály a dvojková číselná soustava.

Harvardská architektura

Navržena Howardem Aikenem na Harvardské univerzitě a použita pro elektronkový počítač ENIAC - Electronic Numerical Integrater and Calculator (1944).

Harvardská architektura

- 1. Paměť je rozdělena na paměť programu a jednu nebo dvě paměti dat tak, aby současně dva operandy mohli vstupovat do ALU,
- 2. součin dvou operandů provádí v jednom cyklu hardwarová násobička,
- 3. pro zvýšení výpočetního výkonu se používá zřetězené zpracování instrukcí,
- 4. pro současnou práci se dvěma operandy je zvýšen počet adresových a datových sběrnic,
- 5. využívá se přímý přístup do paměti DMA,
- 6. řízení jádra je odděleno od řízení vstupních výstupních jednotek a periferií.

Analog Devices - ADSP2191

Texas Instruments – TMS320C5510

Freescale – 56F8367

Zástupci signálových procesorů s harvardskou architekturou

	ADSP2191	TMS320C5510	56F8367
Max. kmitočet	160 MHz	200 MHz	60 MHz
Paměť programu	96 KB	256 KB SARAM	512 KB
Paměť dat	64 KB	64 KB DARAM	32 KB
BOOT ROM	3 KB	32 KB	32 KB
Délka slova	16 (program 24)	16 bitů	16 bitů
Rozhraní UART	1	3	0
Rozhraní SPI	2	Ize použít UART	2
Rozhraní SCI	3	lze použít UART	2
Rozhraní HPI	1	1	0
Časovače	3	2	4
DMA kanálů	12	6	0

Pozn. Paměť u TMS320C5510 používá sjednocený paměťový prostor.

Aritmetická logická jednotka

Jednotka je optimalizována pro operace násobení s akumulací.

Aritmetická logická jednotka – ADSP2191

Aritmetická logická jednotka TMS320C5510

Aritmetická logická jednotka DSP56858

Typické vlastnosti instrukčního souboru

- Typická je instrukce násobení mac multiply and accumulate, mac x0,y0,a, která provádí a = a + x0*y0,
- typické jsou paralelní přesuny, např. u 56F8367:

```
návěští instrukce operandy operandy přesuní přesuní přesuní instrukce operandy operando operandy opera
```

- a = a + x0*y0,
- přesun z paměti na adrese z registru r0 do registru x0,
- inkrementace adresy v registru r0,
- přesun z paměti na adrese z registru r3 do registru y0,
- inkrementace adresy v registru r3,
- podpora speciálních adresovacích režimu modulo, bitově reverzní adresování,
- hardwarová podpora provádění cyklů.

Problémy instrukčního souboru

- Velký počet možných kombinací komplikuje kódování do strojového kódu,
- z důvodu zachování malých paměťových nároků (kompaktnosti) instrukčního souboru je používáno krátké instrukční slovo (16 bitů),
- krátké instrukční slovo zpětně komplikuje kódování typu instrukce a operandů,
- tatáž instrukce může být kódována různě v závislosti na operandech, přítomnosti paralelních přesunů, atd.,
- kvůli krátkému slovu nejsou povoleny všechny možné kombinace operandů a paralelních přesunů –instrukční soubor není ortogonální,
- to vše komplikuje zápis programu v asembleru, překlad i dekódovací jednotku řadiče programu.

Příklad kódování instrukce ABS

Procesor DSC 56F8367

Instruction Opcodes:

15			12	11			8	7			4	3			0
0	0	0	0	1	G	G	G	F	0	1	0	0	m	R	R
. 15			10	. 11			0	. 7			,				_
15			12	- 11			8	/			4	3			. 0
0	0	1	0	1	G	G	G	F	0	1	0	0	m	R	R
						•									
15			12	11			8	7			4	3			0
0	1	1	1	0	1	F	F	F	0	1	0	0	1	1	1

Příklad kódování instrukce MAC

Procesor DSC 56F8367

Parallel Dual Reads:

Data ALU	Operation ¹	First Mei	mory Read	Second Memory Read				
Operation	Operands	Source 1	Destination 1	Source 2 Destination				
MAC ²	Y1,X0,F Y1,Y0,F Y0,X0,F C1,Y0,F	X:(R0)+ X:(R0)+N X:(R1)+ X:(R1)+N X:(R4)+ X:(R4)+N	Y0 Y1	X:(R3)+ X:(R3)- X:(R3)+ X:(R3)+N3	Xo			
		X:(R0)+ X:(R0)+ X:(R0)+N X:(R4)+ X:(R4)+N	Y1	X:(R3)+N3 X:(R3)+ X:(R3)+N3	С			

Architektura LIW a VLIW

Procesor obsahuje několik nezávislých jednotek, které jsou řízeny odděleně samostatnými instrukcemi sdruženými do jedné velké instrukce (instrukčního paketu).

Achitektura LIW a VLIW

Jádro signálového procesoru TMS320C6416 obsahuje 8 funkčních jednotek a může provádět až 8 instrukcí současně.

Vlastnosti instrukčního souboru

- Rozdělení instrukčního souboru na skupiny instrukcí podle funkčních jednotek,
- jednoduché kódování instrukcí, operandů i paralelního zpracování,
- téměř ortogonální instrukční soubor instrukce mohou používat libovolný registr,
- proměnná délka instrukčního paketu umožňuje efektivní využití paměti.

Příklad kódování instrukce ABS

Procesor TMS320C6416

. 3	1 29	28	. 27	23	22	18	17	16	15	14	13	12	11	5	4	3	2	1	0
	creg	z		dst	src2		0	0	0	0	0	х	ор		1	1	0	s	р
	3	1		5	5							1	7					1	1

Opcode map field used	For operand type	Unit	Optield
src2 dst	xsint sint	.L1, .L2	001 1010
src2	slong	.L1, L2	011 1000
dst	slong		

Signálové procesory

Příklad kódování instrukce SMPY

Procesor TMS320C6416

Opcode

31	29	28	27		23	22	18	17	13	12	11	10	9	8	7	6	5	4	3	2	1	0
creg	7	Z		dst		src2		src1		х	1	1	0	1	0	0	0	0	0	0	s	р
3		1		5		5		5		1											1	1

Opcode map field used	For operand type	Unit
src1	slsb16	.M1, .M2
src2	xslsb16	
dst	sint	

Příklad kódování instrukčních paketů

Procesor TMS320C6416

Example 3-3. Partially Serial p-Bit Pattern in a Fetch Packet

Cycle/Execute Packet		Instructions								
1	Α									
2	В									
3	С	D	E							
4	F	G	Н							

Superskalární architektura

- Podobně jako architektura VLIW využívá paralelně pracující funkční jednotky.
- Rozdělování instrukcí mezi funkční jednotky řídí speciální hardwarová jednotka (scheduler) za běhu programu.
 - binární kompatibilita,
 - složitost rozvrhovače,
 - obtížná optimalizace,
- Nejznámějším představitelem je procesor INTEL PENTIUM.

Superskalární architektura

Architektura paralelních systémů

Podle současně zpracovávaných instrukcí rozlišujeme systémy:

- SI Single Instruction jeden zpracovávaný proud instrukcí,
- MI Multiple Instructions více zpracovávaných proudů instrukcí.

Podle současně zpracovávaných datových proudů rozlišujeme systémy:

- SD Single Data jeden zpracovávaný proud dat,
- MD Multiple Data více zpracovávaných proudů dat.

Vzájemnou kombinací vzniknou čtyři možnosti:

- SISD klasický von Neumannův počítač,
- SIMD jeden proud instrukcí zpracovává více datových proudů (např. MMX u Pentia, LIW, VLIW, VLES architektury),
- MISD hypotetická kombinace, kdy několik proudů instrukcí zpracovává jeden datový proud,
- MIMD obecný typ paralelního systému, kdy několik proudů instrukcí zpracovává několik proudů dat.

Paralelní zpracování dat SIMD

Využívá např. rozšíření instrukční sady MMX procesoru Pentium nebo signálové procesory řady TMS320C6400.

