Interest Points

Computer Vision

Adduru U G Sankararao, IIIT Sri City

What have we learned so far?

- Light and color
 - What an image records
- Filtering in spatial domain
 - Filtering = weighted sum of neighboring pixels
 - Smoothing, sharpening, measuring texture
- Filtering in frequency domain
 - Filtering = change frequency of the input image
 - Denoising, sampling, image compression
- Image pyramid (Gaussian and Laplacian)
 - Multi-scale analysis
- Edge detection
 - Canny edge = smooth -> derivative -> thin -> threshold -> link
 - Finding straight lines

Today's class

What is interest point?

Blob detection

Corner detection

Handling scale and orientation

- Motivation: panorama stitching
 - We have two images how do we combine them?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

Applications

- Key Points/Interest Points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Object recognition
 - Robot navigation
 - Indexing and database retrieval

Desired Properties of local features

- repeatable: in a transformed image, the same feature is detected at a transformed position
- distinctive: different image features can be discriminated by their local appearance
- localized: relatively small regions, robust to occlusion

- elongated: edges, ridges
- + isotropic: blobs, extremal regions
- + points: corners and junctions

1. Find a set of distinctive keypoints

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor (feature vector) from the normalized region

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor (feature vector) from the normalized region 5. Match local
- 5. Match local descriptors

Goals for Keypoints

Detect points that are repeatable and distinctive

Laplacian of Gaussian

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Laplacian of Gaussian

Example of a 3 × 3 Laplacian of Gaussian filter:

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

How did we obtain this filter?

• Discrete approximation of the second derivative:

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Substituting in the LoG equation: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 y}{\partial y^2}$

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

• Converting this equation to a filter results in the given LoG matrix.

Laplacian of Gaussian

Original Image.

Laplacian of Gaussian

What else can LoG do? → Blob detection

Blob detection

- Blobs: regions in an image that differ in properties (like brightness, colour, or texture) compared to surrounding areas.
- A blob is simply a group of connected pixels that share some common property (e.g., intensity > threshold).
- A *blob* could be circular, oval, or just any connected region of pixels.
- Blobs often correspond to objects or features in the image.

Basic idea

 Convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting scale space

T. Lindeberg. <u>Feature detection with automatic scale selection</u>. *IJCV* 30(2), pp 77-116, 1998.

LoG as Blob filter

 Laplacian of Gaussian: Circularly symmetric operator, can be used for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Recall: Edge detection

Edge detection, Take 2

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale selection

- The scale of the blob is found by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

• To keep response the same (scale-invariant), must multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

Blob detection in 2D

Scale-normalized Laplacian of Gaussian:

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Scale-space blob detector

- Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

sigma = 2

sigma = 2.5018

sigma = 3.1296

sigma = 3.9149

sigma = 4.8972

sigma = 6.126

sigma = 7.6631

sigma = 9.5859

sigma = 11.9912

sigma = 15

From Blobs to Corners

 In the following image, what are some interesting features to choose?

From Blobs to Cornes

- Look for image regions that are unusual. How to define "unusual"?
- Texture-less patches are nearly impossible to localize.
- Patches with large contrast changes (gradients) are easier to localize.
- But straight line segments at a single orientation suffer from the aperture problem (we'll see next slide), i.e., it is only possible to align the patches along the direction normal to the edge direction.
- Gradients in at least two (significantly) different orientations are the easiest, e.g., corners.

Corner Detection: Basic Idea

- Consider a small window of pixels.
- How does the window change when you shift it?

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

- In the previous slide, how to quantify the "significant" change of the window?
- Answer: Autocorrelation function (ACF)
 or Sum of squared differences (SSD).

Consider shifting the window W by $(u,v) = (\Delta u, \Delta v)$

- how do the pixels in W change?
- compare each pixel before and after by finding the ACF
- this defines an ACF "error" E(u,v):

Consider shifting the window W by $(u,v) = (\Delta u, \Delta v)$

- how do the pixels in W change?
- compare each pixel before and after by finding ACF
- this defines an ACF "error" E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

Window function
$$w(x,y) = 0$$

1 in window, 0 outside Gaussian

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x,y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Corner detection: the math

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

$$pprox \sum_{(x,y)\in W} (I(x,y) + I_x(x,y)u + I_y(x,y)v - I(x,y))^2$$

Using the small motion assumption, replace I with a linear approximation

(Shorthand:
$$I_x = \frac{\partial I}{\partial x}$$
)

$$E(u,v) = \sum_{(x,y)\in W} (I(x+u,y+v) - I(x,y))^{2}$$

$$pprox \sum_{(x,y)\in W} (I(x,y) + I_x(x,y)u + I_y(x,y)v - I(x,y))^2$$

$$pprox \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$E(u,v) \approx \sum_{(x,y) \in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} (I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2)$$

$$E(u,v) \approx \sum_{(x,y) \in W} I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y)\in W} (I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2)$$

$$E(u,v) = [u \ v] H [u \ v]^T$$

$$H = \sum \sum w(x,y) : \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = w * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• Thus, E(u,v) is locally approximated as a *quadratic form*

- The weighted summations have been replaced with discrete convolutions with the weighting kernel w.
- The eigenvalues of **H** reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

$$H = \mathbf{U} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{U}^T$$
 with $H \mathbf{u}_i = \lambda \mathbf{u}_i$

$$E(u, v) \approx \sum_{(x,y) \in W} (I_x(x,y)u + I_y(x,y)v)^2$$

$$\approx \sum_{(x,y) \in W} (I_x^2u^2 + 2I_xI_yuv + I_y^2v^2)$$

$$\approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y) \in W} I_x^2 \quad B = \sum_{(x,y) \in W} I_xI_y \quad C = \sum_{(x,y) \in W} I_y^2$$

• Thus, E(u,v) is locally approximated as a *quadratic form*

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u, v) \approx Au^{2} + 2Buv + Cv^{2}$$

$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_{x}^{2}$$

$$H$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \left[\begin{array}{ccc} u & v \end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C \end{array}\right] \left[\begin{array}{ccc} u \\ v \end{array}\right]$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge: $I_x=0$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge:
$$I_x=0$$

$$H = \left[\begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right]$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Horizontal edge: $I_x=0$

$$H = \left| \begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right|$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge: $I_y=0$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge:
$$I_y=0$$

$$H = \left| \begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right|$$

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$

Vertical edge:
$$I_y=0$$

$$H = \left| \begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right|$$

Interpretation

- The shape of H tells us something about the distribution of gradients around a pixel
- We can visualize H as an ellipse with axis lengths determined by the eigenvalues of H and orientation determined by the eigenvectors of H

Ellipse equation:

$$\begin{bmatrix} u & v \end{bmatrix} & H & \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix \mathbf{A} are the vectors \mathbf{x} that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

In our case, A = H is a 2x2 matrix, so we have

$$\det \left[\begin{array}{cc} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{array} \right] = 0$$

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

In our case, A = H is a 2x2 matrix, so we have

$$\det\left[\begin{array}{cc} h_{11}-\lambda & h_{12} \\ h_{21} & h_{22}-\lambda \end{array}\right]=0$$
 • The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

In our case, A = H is a 2x2 matrix, so we have

$$\det \left[\begin{array}{cc} h_{11}-\lambda & h_{12} \\ h_{21} & h_{22}-\lambda \end{array} \right] = 0$$
 • The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know λ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

Interpreting the eigenvalues

How do the eigenvalues determine if an image point is a corner?

Credit: N Snavely, R Urtasun

Interpreting the eigenvalues

How do the eigenvalues determine if an image point is a corner?

"edge":

$$\lambda_1 >> \lambda_2$$

 $\lambda_2 >> \lambda_1$

$$\lambda_2 >> \lambda_1$$

"corner":

$$\lambda_1$$
 and λ_2 are large, $\lambda_1 \sim \lambda_2$;

"flat" region λ_1 and λ_2 are small;

Credit: N Snavely, R Urtasun

Harris Corner Detector

Here's what you do

- Compute the gradient at each point in the image
- Compute **H** for each image window to get its cornerness scores.
- Compute the eigen values or compute the following function

$$Mc = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 = det(H) - k trace^2(H)$$

- Find points whose surrounding window gave larger cornerness response (Mc > threshold)
- Take points of local maxima, perform non-maximum suppression.

Credit: N Snavely, R Urtasun

Harris detector example

Computer cornerness scores (red high, blue low)

Computer cornerness scores (red high, blue low)

Threshold (Mc > value)

Find local maxima of Mc (Nonmax Suppression)

Harris features (in red)

Harris Corner Detector: Variants

• Harris and Stephens '88 is rotationally invariant and downweights edge-like features where $\lambda_1 >> \lambda_0$.

$$det(\mathbf{A}) - \alpha trace(\mathbf{A})^2 = \lambda_0 \lambda_1 - \alpha (\lambda_0 + \lambda_1)^2$$

- Triggs '04 suggested $\lambda_0 \alpha \lambda_1$.
- Brown et al, '05 use harmonic mean:

$$\frac{\det(\mathbf{A})}{\operatorname{trace}(\mathbf{A})} = \frac{\lambda_0 \lambda_1}{\lambda_0 + \lambda_1}$$

which is smoother when $\lambda_0 \approx \lambda_1$

Harris Detector — Responses [Harris88]

Effect: A very precise corner detector.

Harris Detector — Responses [Harris88]

Scaling

Scaling

Scaling

Not invariant to scaling

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

- Photometric change: Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$

- Photometric change: Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

- Photometric change: Affine intensity change: $I \rightarrow aI + b$
 - ✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
 - ✓ Intensity scale: $I \rightarrow a I$

Partially invariant to affine intensity change

Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners,
 - Invariant to scale, rotation, etc.

- Rotation Invariant
- Partial Intensity Change Invariant
- Not Invariant to Scale

