Série d'Exercices N° 6

Exercice 1.

Soit le réseau de transport ci-dessous (entre parenthèses les capacités des arcs). Trouver le flot maximal.

Exercice 2.

Une ville F est alimentée en eau grâce à des réservoirs situés dans 3 villes (A, B et C). Chaque réservoir est alimenté à partir de différentes sources (nappes souterraines, châteaux d'eau, ...) comme suit : $10000 \ m^3/jour$ pour A et C et $1\ 000 \ m^3/jour$ pour B. Le réseau de distribution reliant la ville F aux réservoirs passe par plusieurs points qui sont reliés entres eux à travers des canalisations de différentes capacités selon le tableau ci-dessous :

Point de départ	A	A	В	C	C	D	E	E
Point d'arrivée	C	D	D'	В	E	F	A	F
Capacité du canal (en milliers de <i>m</i> ³)	2	4	5	4	11	7	3	13

- 1. Modéliser le problème sous forme d'un graphe.
- 2. Déterminer le flot maximal de chaque canalisation.
- 3. Quelle est la quantité journalière maximale acheminée vers la ville *F*.

Exercice 3.

Soit le réseau de transport ci-dessous ayant comme entrée (source) le sommet E et comme sortie (puits) le sommet S.

Les poids des arcs représentent les capacités des canaux.

1. Compléter le flot suivant :

(E, a)	(E, b)	(a, b)	(a, d)	(b, c)	(<i>b</i> , <i>f</i>)	(c, S)	(<i>d</i> , <i>c</i>)	(d, S)	(f, a)	(f, c)	(f, d)
?	?	2	6	1	2	?	1	?	1	1	?

- 2. Le flot précédent n'est pas maximal, dites pourquoi.
- 3. Trouver le flot maximal en appliquant l'algorithme de Ford-Fulkerson.