CAPITOLUL 2. MODELUL DE REGRESIE LINIARĂ SIMPLĂ

ESTIMAREA		INTERPRETARE				
punctuală a parametrilor	b_0	b_0 : <i>nivelul mediu estimat</i> al variabilei dependente (Y) atunci când variabila independenta (X) ia valoarea zero				
$m{eta_0}$ (ordonata la origine) și $m{eta_1}$ (panta dreptei de regresie)	$b_1 \\ b_1 = \frac{\Delta Y}{\Delta X}$	b_1 : la o creștere a variabilei independente X cu 1 unitate, variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu b_1				
prin interval de încredere a parametrilor β_0 și β_1	$\operatorname{IC}(eta_0)$: $\left[oldsymbol{b_0} \pm oldsymbol{t_{lpha/2;n-2}} oldsymbol{s_{\widehat{eta}_0}} ight]$	Cu o probabilitate de $(1-\alpha)$, se poate garanta că parametrul β_0 (sau ordonata la origine) este acoperit_de intervalul $\begin{bmatrix} b_0 \pm t_{\alpha/2;n-2}s_{\widehat{\beta}_0} \end{bmatrix}$ În condițiile unui risc α , se consideră că valoarea reală a parametrului β_0 (sau ordonata la origine) se află în afara limitelor intervalului $\begin{bmatrix} b_0 \pm t_{\alpha/2;n-2}s_{\widehat{\beta}_0} \end{bmatrix}$				
	$\operatorname{IC}(eta_1)$: $\left[oldsymbol{b_1} \pm oldsymbol{t_{lpha/2;n-2}} oldsymbol{s_{\widehat{eta}_1}} ight]$	Cu o probabilitate de $(1 - \alpha)$, se poate garanta că parametrul β_1 (sau panta că de regresie) este acoperit_de intervalul $\begin{bmatrix} b_1 \pm t_{\alpha/2;n-2}s_{\widehat{\beta}_1} \end{bmatrix}$ În condițiile unui risc α , se consideră că valoarea reală a parametrului β_1 (sau panta dreptei de regresie) se află în afara limitelor intervalului $\begin{bmatrix} b_1 \pm t_{\alpha/2;n-2}s_{\beta_1} \end{bmatrix}$			trului eta_1 (sau	
coeficientului de corelație	$ \begin{array}{l} \text{între } Y \text{ si } X \text{: } \mathbf{r} \\ -1 \leq \mathbf{r} \leq 1 \end{array} $	r: indică sensul (după semn) și măsoară intensitatea (după valoarea în modul) legăturii dintre două variabile.			rea în modul)	
	$r = \widetilde{b}_1$	r = 0	0 ← <i>r</i>	$ r \rightarrow 0, 5 \leftarrow r $	r o 1	r =1
	•	nu există o leg. liniară între Y și X	leg. liniară de intensitate slabă între Y și X	leg. liniară de intensitate <i>moderată</i> între Y și X	leg. liniară de intensitate <i>puternică</i> între <i>Y</i> și <i>X</i>	leg. liniară perfectă între Y și X
		Exemplu:				_
		r = 0,25: între Y și X există o legătură liniară directă (după semn) și de intensitate slabă (după valoarea în modul $ r $)				
raportului de determinație η ²	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$	R^2 : măsoară cât din variația totală a variabilei dependente (Y) este explicată de modelul de regresie SAU de variabila independentă (X)				

	$0 \le R^2 \le 1$ $R^2 = (R)^2$ $R^2 = (r)^2$	 1 - R²: arată cât din variația totală a variabilei dependente (Y) este explicată de influența factorilor reziduali (aleatori) sau de factorii nespecificați (neincluși) în model Exemplu: R² = 0,311 (R²% = 31,1%) Variația variabilei dependente (Y) este explicată în proporție de 31,1% de variația variabilei independente (X). Restul de 68,9% reprezintă influența altor factori nespecificați în model (factorii reziduali). 		
raportului de corelație multiplă η	$R = \sqrt{R^2}$ $0 \le R \le 1$	nespecificați în model (factorii reziduali). R: măsoară intensitatea legăturii liniare dintre variabile $R = 0$ $0 \leftarrow R$ $R \rightarrow 0, 5 \leftarrow R$ $R \rightarrow 1$ nu există o leg. liniară de leg. liniară de intensitate variabile leg. liniară de intensitate resistate perfectă între variabile $slabă$ între nu există o leg. liniară de intensitate puternică variabile		leg. liniară perfectă între variabile între variabile

TESTAREA						
Testarea constantei sau a ordonatei la origine β_0 și a pantei dreptei de regresie β_1	Ipoteze:	H_0 : $\beta_0 = 0$ (parametrul β_0 nu diferă semnificativ de 0 SAU constanta modelului nu este semnificativă statistic) H_1 : $\beta_0 \neq 0$ (parametrul β_0 diferă semnificativ de 0 SAU constanta modelului este semnificativă statistic)	H_0 : $β_1 = 0$ (coeficientul de regresie $β_1$ nu diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X nu are o influență liniară semnificativă asupra variabilei dependente Y SAU X nu explică semnificativ variația lui Y) H_1 : $β_1 ≠ 0$ (coeficientul de regresie $β_1$ diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X are o influență liniară semnificativă asupra variabilei dependente Y SAU X explică semnificativ variația lui Y)			
	Valoarea teoretică a statisticii test <i>Student</i> :	$t_{teoretic} = t_{lpha/2;n-2}$				
	Valoarea calculată a statisticii test <i>Student</i> :	$(\beta_0): \boldsymbol{t_{calc}} = \frac{\boldsymbol{b_0}}{s_{\widehat{\boldsymbol{\beta}_0}}}$	$(\beta_j): t_{calc} = \frac{b_j}{s_{\widehat{\beta}_j}}$			
	Decizia:	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $ t_{calc} \le t_{\alpha/2;n-2}$, nu se respinge ipoteza nulă (H_0) - dacă $ t_{calc} > t_{\alpha/2;n-2}$, se respinge ipoteza nulă (H_0) , în condițiile unui α Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \ge \alpha$, nu se respinge ipoteza nulă (H_0) - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α				
Testarea coeficientului de corelație <i>ρ</i>	Ipoteze:	$H_0: \rho_{y1} = 0$ (coeficientul de corelație ρ nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile $(Y \text{ și } X)$ nu există o legătură liniară semnificativă SAU cele două variabile $(Y \text{ și } X)$ nu sunt corelate semnificativ) $H_1: \rho_{y1} \neq 0$ (coeficientul de corelație ρ diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile $(Y \text{ și } X)$ există o legătură liniară semnificativă SAU cele două variabile $(Y \text{ și } X)$ sunt corelate semnificativ)				
	Valoarea teoretică a statisticii test <i>Student</i> :	$t_{teoretic} = t_{lpha/2;n-2}$				

	Valoarea calculată a statisticii test <i>Student</i> : Decizia:	$t_{calc} = \frac{r_{y1}}{\sqrt{\frac{1-r^2}{n-2}}}$ Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $ t_{calc} \leq t_{\alpha/2;n-2}$, nu se respinge ipoteza nulă (H_0) - dacă $ t_{calc} > t_{\alpha/2;n-2}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \geq \alpha$, nu se respinge ipoteza nulă (H_0) - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α		
Testarea modelului de regresie și a raportului de determinație η^2 (sau raportului de corelație η)	Ipoteze:	$H_0: \beta_0 = 0, \beta_1 = 0$ (modelul de regresie nu explică semnificativ dependența liniară dintre cele două variabile SAU între cele două variabile nu există o legătură liniară semnificativă SAU modelul de regresie construit nu este corect specificat) $H_1: \beta_1 \neq 0$ (modelul de regresie explică semnificativ dependența liniară dintre cele două variabile SAU între cele două variabile există o legătură liniară semnificativă)	$H_0: \eta = 0$ (raportul de determinație η^2 sau raportul de corelația η nu diferă semnificativ de 0, ceea ce înseamnă că între variabile nu există o legătură liniară semnificativă) $H_1: \eta > 0$ (raportul de determinație η^2 sau raportul de corelația η este semnificativ mai mare decât 0, ceea ce înseamnă că între variabile există o legătură liniară semnificativă)	
	Valoarea teoretică a statisticii test <i>Fisher</i> :	$F_{teoretic} = F_{\alpha;k-1;n-k}$		
	Valoarea calculată a statisticii test <i>Fisher</i> :	$F_{calc} = rac{rac{ESS}{k-1}}{rac{RSS}{n-k}} = rac{ESS}{RSS} \cdot rac{n-k}{k-1}$	$F_{calc} = \frac{R^2}{1 - R^2} \cdot \frac{n - k}{k - 1}$	
	Decizia:	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $F_{calc} \leq F_{\alpha; k-1; n-k}$, nu se respinge ipoteza nulă (H_0) - dacă $F_{calc} > F_{\alpha; k-1; n-k}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $SigF \geq \alpha$, nu se respinge ipoteza nulă (H_0) - dacă $SigF < \alpha$, se respinge H_0 , în condițiile unui risc α		