### VECTOR CALCULUS FOR ELECTRODYNAMICS - II

Lecture notes for PH5020. Instructor: Rajesh Singh (rsingh@smail.iitm.ac.in)

## I. A GENERIC SET ORTHOGONAL CURVILINEAR COORDINATES

Consider a generic orthogonal coordinate system  $(x_1, x_2, x_3)$ . In genera, these are curvilinear coordinates (coordinate lines may be curved, and thus, unit vectors are no longer constant). The line element  $d\vec{l}$  of displacement from  $x_1, x_2, x_3$  to  $x_1 + dx_1, x_2 + dx_2, x_3 + dx_3$  is:

$$d\vec{l} = \sum_{i=1}^{3} \frac{\partial \vec{r}}{\partial x_i} dx_i = \sum_{i=1}^{3} \left| \frac{\partial \vec{r}}{\partial x_i} \right| dx_i \, \hat{x}_i = \sum_{i=1}^{3} h_i \, dx_i \, \hat{x}_i$$
 (1)

The surface area element da and volume element  $d\tau$  are

$$da = h_1 h_2 \delta x_1 \delta x_2, \qquad d\tau = h_1 h_2 h_3 \delta x_1 \delta x_2 \delta x_3 \tag{2}$$

The above is a general expression. In the case of Cartesian coordinates, we have  $h_i = 1$ , while  $x_1 = x$ ,  $x_2 = y$ , and  $x_3 = z$ .

### A. The gradient operator

Since a scalar field f depends on all three coordinates, there are three independent first derivatives  $\frac{\partial f}{\partial x}$ ,  $\frac{\partial f}{\partial y}$  and  $\frac{\partial f}{\partial x}$  at each point (x, y, z). These three quantities form the components of a vector field. This is called the gradient of the scalar field. We define this below. The change in a scalar field f as we move from a point  $\vec{r}$  to a neighbouring point  $\vec{r} + d\vec{l}$  can be written in this coordinate as:

$$df = \vec{\nabla} f \cdot d\vec{l} = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \frac{\partial f}{\partial x_3} dx_3 \tag{3}$$

From the definition of the gradient  $df = \vec{\nabla} f \cdot d\vec{l}$ , and the expression of line element given in Eq.(1), we can identify the Gradient operator in spherical coordinates:

$$\vec{\nabla}f = \hat{x}_1 \frac{1}{h_1} \frac{\partial f}{\partial x_1} + \hat{x}_2 \frac{1}{h_2} \frac{\partial f}{\partial x_2} + \hat{x}_3 \frac{1}{h_3} \frac{\partial f}{\partial x_3} = \hat{x}_1 \frac{1}{h_1} \partial_{x_1} f + \hat{x}_2 \frac{1}{h_2} \partial_{x_2} f + \hat{x}_3 \frac{1}{h_3} \partial_{x_3} f \tag{4}$$

## B. Divergence of a vector field

The divergence of a vector field in arbitrary orthogonal coordinate is given in:

$$\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[ \partial_{x_1} (h_2 h_3 A_1) + \partial_{x_2} (h_1 h_3 A_2) + \partial_{x_3} (h_1 h_2 A_3) \right] \tag{5}$$

A derivation of the above follows closely to the one done for Cartesian coordinates. It is left as an exercise.

### C. Curl of a vector field

The divergence of a vector field in arbitrary orthogonal coordinate is given in:

$$\vec{\nabla} \times \vec{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} \hat{x}_1 h_1 & \hat{x}_2 h_2 & \hat{x}_3 h_3 \\ \partial_{x_1} & \partial_{x_2} & \partial_{x_3} \\ A_1 h_1 & A_2 h_2 & A_3 h_3 \end{vmatrix}$$
(6)

A derivation of the above follows closely to the one done for Cartesian coordinates. It is left as an exercise.

## D. The Laplacian

Using the expression of grad (section IA) and divergence (section IB), we can write the expression of the Laplacian of scalar field as:

$$\nabla^2 f = \vec{\nabla} \cdot \vec{\nabla} f = \frac{1}{h_1 h_2 h_3} \left[ \partial_{x_1} \left( \frac{h_2 h_3}{h_1} A_1 \right) + \partial_{x_2} \left( \frac{h_1 h_3}{h_2} A_2 \right) + \partial_{x_3} \left( \frac{h_1 h_2}{h_3} A_3 \right) \right] \tag{7}$$

- A gradient produces a vector from a scalar.
- A divergence produces a scalar from a vector.
- A curl produces a vector from a vector.
- A Laplacian produces a scalar from a scalar.
- The Laplacian is the divergence of a gradient. The Laplacian of a scalar function f is written as:

$$\nabla^2 f = \vec{\nabla} \cdot (\vec{\nabla} f). \tag{8}$$

• Consider the average value of a function f over a spherical surface of of radius r. Call it  $\langle f \rangle_r$ . The explicit form of  $\langle f \rangle_b$  is then:

$$\langle f \rangle_r = \frac{1}{4\pi r^2} \int f r^2 d\Omega = \frac{1}{4\pi} \int f \sin\theta d\theta d\phi$$
 (9)

• We now take the d/dr derivative of both sides:

$$\frac{d\langle f \rangle_r}{dr} = \frac{1}{4\pi} \int \frac{\partial f}{\partial r} d\Omega = \frac{1}{4\pi r^2} \int \left[ \hat{r} \frac{\partial f}{\partial r} \cdot \hat{r} \right] r^2 d\Omega = \frac{1}{4\pi r^2} \int \vec{\nabla} f \cdot d\vec{a}$$
 (10)

• Using the divergence theorem, we have:

$$\frac{d\langle f \rangle_r}{dr} = \frac{1}{4\pi r^2} \int \nabla^2 f \, d\tau \tag{11}$$

1. Thus, if  $\nabla^2 f = 0$  everywhere, then  $d\langle f \rangle_r / dr$  vanishes. Or the value of the function does not change as the radius is varied. In other words:

$$\nabla^2 f = 0 \implies \langle f \rangle_r = f_{\text{center}} \tag{12}$$

2. For small values of r, we can consider  $\nabla^2 f$  to be constant for a well-behaved function f. Then, we have:

$$\frac{d\langle f \rangle_r}{dr} = \frac{1}{4\pi r^2} [\nabla^2 f]_{\text{center}} \frac{4\pi r^3}{3} = \frac{r}{3} [\nabla^2 f]_{\text{center}}$$
(13)

3. Thus, we have:

$$\langle f \rangle_r = f_{\text{center}} + \frac{r^2}{6} [\nabla^2 f]_{\text{center}},$$
 for small r (14)

### E. Connection to other coordinates

- Cartesian coordinates. Here  $x_1 = x$ ,  $x_2 = y$ ,  $x_3 = z$ ; while  $h_1 = h_2 = h_3 = 1$ .
- Cylindrical coordinates. Here  $x_1 = s$ ,  $x_2 = \phi$ ,  $x_3 = z$ ; while  $h_1 = 1$ ,  $h_2 = s$ ,  $h_3 = 1$ .
- Spherical coordinates. Here  $x_1 = r$ ,  $x_2 = \theta$ ,  $x_3 = \phi$ ; while  $h_1 = 1$ ,  $h_2 = r$ , and  $h_3 = r \sin \theta$ .

#### II. 2D PLANE POLAR COORDINATES

The position vector is (see Fig.1)

$$\vec{r} = s\hat{s} \tag{15}$$

- $s = \sqrt{x^2 + y^2}$  is the distance from the origin
- $\phi = \tan^{-1}(y/x)$  is the angle measured from the x-axis. Note that the quadrant need to be accounted in this defintion.

## A. Line element and area element

The line element is the change  $d\vec{l}$  in the position vector as one moves from  $(s, \phi)$  to  $(s + ds, \phi + d\phi)$ . There are two ways to find it: (a) geometrically (graphically) or (b) algebraically. In Fig.1, we show this graphically. The line element is:

$$d\vec{l} = ds\,\hat{s} + s\,d\phi\,\hat{\phi} \tag{16}$$

We can also define the area element da as

$$da = s \, ds \, d\phi \tag{17}$$

# B. The gradient operator in 2D polar coordinates

The change in a scalar field f as we move from a point  $\vec{r}$  to a neighbouring point  $\vec{r} + d\vec{l}$  can be written in polar coordinates as:

$$df = \frac{\partial f}{\partial s}\delta s + \frac{\partial f}{\partial \phi}\delta \phi \tag{18}$$

From the definition of the gradient  $df = \vec{\nabla} f \cdot d\vec{l}$ , and the expression of line element given in Eq.(16), we can identify the Gradient operator in 2D polar coordinates:

$$\vec{\nabla} = \hat{s}\frac{\partial}{\partial s} + \hat{\phi}\frac{1}{s}\frac{\partial}{\partial \phi} \tag{19}$$



FIG. 1. Line element of the two-dimensional (2D) polar coordinates  $(s, \phi)$ .

# III. CYLINDRICAL COORDINATES

The cylindrical coordinate system is one of many three-dimensional coordinate systems.

The following can be used to convert them to Cartesian coordinates

$$x = s\cos\phi, \qquad y = s\sin\phi, \qquad z = z.$$
 (20)

The position vector is

$$\boxed{\vec{r} = s\hat{s} + z\hat{z}} \tag{21}$$

- $s = \sqrt{x^2 + y^2}$  is the distance in xy-plane
- $\phi = \tan^{-1}(y/x)$  is the angle measured up from the x-axis.

The line element  $d\vec{r}$  for an infinitesimal displacement from  $(s, \phi, z)$  to  $(s + ds, \phi + d\phi, z + dz)$  is given as:

$$d\vec{l} = ds\,\hat{s} + sd\phi\,\hat{\phi} + dz\,\hat{z}.\tag{22}$$



FIG. 2. The cylindrical coordinates  $(s, \phi, z)$ .

See Fig.2 for a graphical representation of the line element. The change in a scalar field f as we move from a point  $\vec{r}$  to a neighbouring point  $\vec{r} + d\vec{l}$  can be written in cylindrical polar coordinates as:

$$df = \frac{\partial f}{\partial s} \delta s + \frac{\partial f}{\partial \phi} \delta \phi + \frac{\partial f}{\partial z} \delta z \tag{23}$$

From the definition of the gradient  $df = \vec{\nabla} f \cdot d\vec{l}$ , and the expression of line element given in Eq.(22), we can identify the Gradient operator in cylindrical coordinates:

$$\vec{\nabla} = \hat{s}\frac{\partial}{\partial s} + \hat{\phi}\frac{1}{s}\frac{\partial}{\partial \phi} + \hat{z}\frac{\partial}{\partial z}$$
 (24)

## IV. SPHERICAL COORDINATES

The spherical coordinate system is one of many three-dimensional coordinate systems. They are useful in problems with spherical symmetry. The position vector is

$$\vec{r} = r\,\hat{r} \tag{25}$$





FIG. 3. The spherical coordinates  $(r, \theta, \phi)$ .

The following can be used to convert them to Cartesian coordinates

$$x = s\cos\phi = r\cos\phi\sin\theta, \qquad y = s\sin\phi = r\sin\phi\sin\theta, \quad z = r\cos\theta$$
 (26)

(27)

A careful observation of Fig.3 reveals that the line element  $d\vec{l}$  for an infinitesimal displacement from  $r,\theta,\phi$  to  $r+dr,\theta+d\theta,\phi+d\phi$  is

$$d\vec{r} = dr\,\hat{r} + r\,d\theta\,\hat{\theta} + r\sin\theta\,d\phi\,\hat{\phi} \tag{28}$$

The change in a scalar field f as we move from a point  $\vec{r}$  to a neighbouring point  $\vec{r} + d\vec{l}$  can be written in spherical polar coordinates as:

$$df = \frac{\partial f}{\partial r}dr + \frac{\partial f}{\partial \theta}d\theta + \frac{\partial f}{\partial \phi}d\phi \tag{29}$$

From the definition of the gradient  $df = \vec{\nabla} f \cdot d\vec{l}$ , and the expression of line element given in Eq.(22), we can identify the Gradient operator in spherical coordinates:

$$\vec{\nabla} = \hat{r}\frac{\partial}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}$$
 (30)

## V. THE HELMHOLTZ THEOREM

If we know the curl and divergence of a vector, then is the vector field uniquely known? The Helmholtz Theorem states an arbitrary vector field  $\vec{A}(\vec{r})$  can always be decomposed

into the sum of two vector fields: one with zero divergence and one with zero curl:

$$\vec{A} = \vec{A}_1 + \vec{A}_2$$
, where  $\vec{\nabla} \times \vec{A}_1 = 0$ ,  $\vec{\nabla} \cdot \vec{A}_1 = 0$ . (31)

We will pursue the proof of the above in tutorial by choosing  $\vec{A}_1 = -\vec{\nabla}\Psi$  and  $\vec{A}_2 = \vec{\nabla} \times \vec{W}$ .

## VI. FOURIER TRANSFORM

We define the Fourier transforms in d-dimensions as:

$$\hat{f}(\vec{k}) = \int f(\vec{r}) e^{-i\vec{k}\cdot\vec{r}} d\vec{r}, \qquad f(\vec{r}) = \frac{1}{(2\pi)^d} \int \hat{f}(\vec{k}) e^{i\vec{k}\cdot\vec{r}} d\vec{k}.$$
 (32)

#### VII. THE DIRAC DELTA FUNCTION

The Dirac delta function  $\delta(x)$  follows:

- $\int_{-\infty}^{\infty} \delta(x-a) dx = 1$
- $\int_{-\infty}^{\infty} f(x) \, \delta(x-a) \, dx = f(a)$
- The three-dimensional Dirac delta function:  $\delta(\vec{r}) = \delta(x) \, \delta(y) \, \delta(z)$
- $\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = 4\pi \,\delta(\vec{r})$
- $\nabla^2 \left( \frac{1}{r} \right) = -4\pi \, \delta(\vec{r})$
- $\delta(\vec{r}) = \frac{1}{(2\pi)^3} \int e^{i\vec{k}\cdot\vec{r}} d\vec{k}$ ,
- For a constant  $a \neq 0$ , we have:

$$\delta(ax) = \frac{1}{|a|}\delta(x)$$

• For a function f(x), which has simple zeros at  $x_i$ , we have:

$$\delta[f(x)] = \sum_{i} \frac{1}{\left| \left[ \frac{df}{dx} \right]_{x_{i}} \right| \delta(x - x_{i})}$$