Discrete Mathematic

Chapter 2: Set Theory

2.1

Sets

2.2

Set Operations

Dr Patrick Chan

School of Computer Science and Engineering South China University of Technology

Agenda

- Ch 2.1
 - Set
 - The Power Set
 - Cartesian Products
 - Using Set Notation with Quantifiers
 - Truth Sets of Quantifiers
- Ch 2.2
 - Set Combination
 - Set Identifies
 - Generalized Unions and Intersections

Set

- Definition
 - A set is an unordered collection of objects
- The objects in a set are called the elements, or members, of the set
- Notation:
 - a ∈ A denote that a is an element of the set A
 - a ∉ A denotes that a is not an element of the set A

Ch 2.1 & 2.2

Set

- There are many ways to express the sets
 - Listing all the elements
 - Set builder notation
 - Venn diagrams

Listing all the elements

$$S = \{e_1, e_2, e_3, ..., e_n\}$$

where e; is element in the set

- Example
 - All vowels in the English alphabet: V = {a, e, i, o, u}
 - Odd positive integers < 10: O = {1, 3, 5, 7, 9}</p>
 - Unrelated elements: U = {John, 3, *}
- Ellipsis (...) can be used to represent the general pattern of elements
 - Positive integers less than 100 can be denoted by {1, 2, 3, ..., 99}

Ch 2.1 & 2.2

-

Set

Set Builder

 Describe the properties the elements must have to be members

$$S = \{x \mid P(x)\}$$

S contains all the elements which make the predicate P true

- Example:
 - R = { x | x is integer < 100 and > 40}
 - O = { x | x is an odd positive integer less than 10}
 = {x ∈ Z⁺ | x is odd and x < 10}
 - Z is the set of positive integers

Set

Set Builder

- Important Sets:
 - Real NumbersR
 - Natural Numbers

 $N = \{0, 1, 2, 3, ...\}$, counting numbers (sometimes not consider 0)

Integers

$$Z = \{..., -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

- Positive / Negative Integers: Z⁺ / Z⁻
- Rational Numbers

$$\mathbf{Q} = \{ p / q \mid p \in \mathbf{Z}, p \in \mathbf{Z}, \text{ and } q \neq 0 \}$$

Ch 2.1 & 2.2

Set

Venn Diagrams

- Venn Diagrams are named after the English mathematician John Venn
- A rectangle represents the universal set U
 - Contains all the objects under consideration
 - U may varies depends on which objects are of interest

- Inside the rectangle, circles, or other geometrical figures are used to represent sets
 - Points may represents elements

Set

Venn Diagrams

- Example
 - A Venn diagram that represents V, the set of vowels in the English alphabet
 - Rectangle: U
 - 26 letters of the English alphabet
 - Circle: V
 - the set of vowels
 - Elements: a, e, i, o, u

Ch 2.1 & 2.2

Set

- Two sets are equal if and only if they have the same elements
 - A and B are sets
 - A and B are equal if and only if

$$\forall x (x \in A \leftrightarrow x \in B)$$

- Notation (=)
 - We write A = B if A and B are equal sets

Empty Set and Singleton Set

- Empty set (null set) is a special set that has no elements, denoted by Ø or { }
- Example
 - The set of all positive integers that are greater than their squares is the null set
- A set with one element is called a singleton set

Ch 2.1 & 2.2

Set with Empty set

- A common error is to confuse with
 - Ø : the empty set
 - $\{\emptyset\}$: the set consisting of just the empty set
 - Singleton set:
 The single element is the empty set itself
- A useful analogy: Folders
 - The empty set
 - An empty folder
 - The set consisting of just the empty set:
 - A folder with exactly one folder inside, namely, the empty folder

Subset

- The set A is said to be a subset of B if and only if every element of A is also an element of B
- We use the notation A ⊆ B to indicate that A is a subset of the set B
- We see that A ⊆ B if and only if the quantification

$$\forall x (x \in A \rightarrow x \in B)$$

Ch 2.1 & 2.2

Subset

Subset: $\forall x (x \in A \rightarrow x \in B)$

- Every nonempty set S is guaranteed to have at least two subsets,
 - Empty set $(\emptyset \subseteq S)$
 - $\mathbf{x} \in \emptyset$ is always false
 - Set S itself (S ⊆ S)
 - $x \in S \rightarrow x \in S$ must be true

Subset

- If A and B are sets with A ⊆ B and B ⊆ A, then A = B
- A = B, where A and B are sets, if and only if

$$\forall x (x \in A \rightarrow x \in B) \text{ and } A \subseteq B$$

$$\forall x (x \in B \rightarrow x \in A), B \subseteq A$$

or equivalently if and only if

$$\forall \mathbf{x} \ (\mathbf{x} \in \mathbf{A} \leftrightarrow \mathbf{x} \in \mathbf{B}) \qquad \mathbf{A} = \mathbf{B}$$

Ch 2.1 & 2.2

Subset: Proper Subset

- When we wish to emphasize that a set A is a subset of the set B but that A ≠ B, we write A ⊂ B and say that A is a proper subset of B
- For A ⊂ B to be true, it must be the case that A ⊆ B and there must exist an element x of B that is not an element of A
- That is, A is a proper subset of B if

$$\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \rightarrow x \notin A)$$

n 2.1 & 2.2 16

Subset

- Sets may have other sets as members
- Example:
 - $A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
 - B = {x | x is a subset of the set {a, b}}
 - Note that A = B

 $\{a\} \in A$, but $a \notin A$

Ch 2.1 & 2.2

Finite and Infinite Subset

- Let S be a set
- If there are exist n distinct elements in S
- S is a finite set and that n is the cardinality of S
- The cardinality of S is denoted by S
- Example:
 - A be the set of odd positive integers less than 10, |A| = 5
 - S be the set of letters in the English alphabet, |S| = 26
 - |∅| = 0
- A set is said to be infinite if it is not finite
 - The set of positive integers is infinite

Power Set

- Many problems involve testing all combinations of elements of a set to see if they satisfy some properties
- Power set of S is a set has as its members all the subsets of S
 - The power set of S is denoted by P(S)
- If a set has n elements, then its power set has 2ⁿ elements

Ch 2.1 & 2.2

Power Set: Example

- What is the power set of {0, 1, 2}?
 - $P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1, 2\}, \{0,1,2\}\}\}$
- What is the power set of {a}?
 - $P(\{a\}) = \{\emptyset, \{a\}\}$
- What is the power set of Ø?
 - $P(\varnothing) = \{\varnothing\}$
- What is the power set of {∅}?
 - $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

- The order of elements in a collection is often important
- However, sets are unordered
- Ordered n-tuple (a₁, a₂,..., a_n) is the ordered collection that has
 - a₁ as its first element
 - a₂ as its second element
 - **.** . . .
 - a_n as its nth element

Ch 2.1 & 2.2

Ordered n-tuple

 Two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal

$$(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$$

if and only if $a_i = b_i$, for i = 1,2, ..., n

- Ordered 2-tuples are called ordered pairs
- The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d
- Note that (a, b) and (b, a) are not equal unless a = b

Ch 2.1 & 2.2

Ordered n-tuple

Cartesian Products

- A subset R of the Cartesian product
 A x B is called a relation from the set A to the set B
- The elements of R are ordered pairs, where the first element belongs to A and the second to B

Cartesian Products

- Let A and B be sets
- The Cartesian product of A and B, denoted by A x B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Ch 2.1 & 2.2

Ordered n-tuple

Cartesian Products: Example 1

- Given A = {1, 2} and B = {a, b, c}
- What are A x B and B x A?
- A x B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
- B x A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}
- A x B and B x A are not equal, unless
 - $A = \emptyset$ or $B = \emptyset$ (so that $A \times B = \emptyset$) or
 - A = B

Cartesian Products: Example 3

- Given
 - A represent the set of all students at a university
 - B represent the set of all courses offered at the university
- What is the meaning of A x B?
- A x B represents all possible enrollments of students in courses at the university

Ch 2.1 & 2.2

Ordered n-tuple

Cartesian Products

Generally, the Cartesian product of the sets A₁, A₂, ..., A_n, denoted by A₁ x A₂ x... x A_n, is the set of ordered n-tuples (a₁, a₂, ..., a_n), where a_i belongs to A_i for i = 1, 2, ..., n.

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1,2,...,n\}$$

Cartesian Products: Example 3

What is A x B x C, where A = {0, 1}, B = {1, 2}, and C = {0, 1, 2}?

```
    A x B x C =
        {(0,1,0), (0,1,1), (0,1,2),
        (0,2,0), (0,2,1), (0,2,2),
        (1,1,0), (1,1,1), (1,1,2),
        (1,2,0), (1,2,1), (1,2,2)}
```

Ch 2.1 & 2.2

Set Notation with Quantifiers

- Sometimes we restrict the domain of a quantified statement explicitly by making use of set
- Example
 - ∀x ∈ S (P(x)) denotes the universal quantification of P(x) over all elements in the set S
 - $\forall x \in S (P(x))$ is shorthand for $\forall x (x \in S \rightarrow P(x))$
 - Similarly, $\exists x \in S$ (P(x)) denotes the existential quantification of P(x) over all elements in S
 - $\exists x \in S (P(x))$ is shorthand for $\exists x (x \in S \land P(x))$

Set Notation with Quantifiers

- Example
 - What do the statements $\forall x \in R \ (x^2 \ge 0)$ and $\exists x \in Z \ (x^2 = 1)$ mean?
 - $\forall x \in R (x^2 \ge 0)$
 - For every real number $x, x^2 \ge 0$
 - The square of every real number is nonnegative
 - $\exists x \in Z (x^2 = 1)$
 - There exists an integer x such that $x^2 = 1$
 - There is an integer whose square is 1

Ch 2.1 & 2.2

Truth Sets of Quantifiers

- We will now tie together concepts from set theory and from predicate logic
- Given a predicate P, and a domain D, we define the truth set of P to be the set of elements x in D for which P(x) is true
- The truth set of P(x) is denoted by {x ∈ D | P(x)}

Truth Sets of Quantifiers

- Given the domain is the set of integers, what is the truth set of the following predicate?
 - P(x) is "|x| = 1"
 - |x| = 1 when x = 1 or x = -1
 - The truth set of P is the set {-1, 1}
 - Q(x) is " $x^2 = 2$ "
 - There is no integer x for which $x^2 = 2$
 - The truth set of Q is empty set
 - R(x) is "|x| = x"
 - |x| = x if and only if $x \ge 0$
 - The truth set of R is N, the set of nonnegative integers

Ch 2.1 & 2.2

Truth Sets of Quantifiers

- Note that
 - ∀x P(x) is true over the domain U if and only if the truth set of P is the set U
 - ∃x P(x) is true over the domain U if and only if the truth set of P is non empty

- Two sets can be combined in many different ways
 - Complement (—)
 - **■** Union (∪)
 - Intersection (∩)
 - Difference (-)
 - Symmetric Difference (⊕)

Ch 2.1 & 2.2 3.

Set Combination

Complement

- Let U be the universal set
 The complement of the set A, denoted by A, is the complement of A with respect to U
- The complement of the set \overline{A} is U A.
- An element x belongs to A if and only if x ∉ A

$$\overline{A} = \{x \mid x \notin A\}$$

Union

- Let A and B be sets
 Union of the sets A and B, denoted by A U B, is the set that contains those elements that are either in A or in B, or in both
- An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Notation: U (Union)

Ch 2.1 & 2.2

Set Combination

Intersection

- Let A and B be sets
 Intersection of the sets A and B, denoted by A ∩
 B, is the set containing those elements in both A and B
- An element x belongs to the intersection of the sets
 A and B if and only if x belongs to A and B

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Notation: ∩ (i∩teraction)

Difference

- Let A and B be sets Difference of A and B, denoted by A - B, is the set containing those elements that are in A but not in B
- The difference of A and B is also called the complement of B with respect to A
- An element x belongs to the difference of A and B if and only if $x \in A$ and $x \notin B$

$$x \in A$$
 and $x \notin B$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

 $A - B = A \cap \overline{B}$

Ch 2.1 & 2.2

Set Combination

Symmetric Difference

- Let A and B be sets **Symmetric Difference** of **A** and **B**, denoted by **A** \oplus B, is the set containing those elements is either in A or B, but not in both
- An element x belongs to the symmetric different of the sets A and B if and only if x belongs to A XOR B

$$A \oplus B = \{ x \mid (x \in A \lor x \in B) \land \\ \neg (x \in A \land x \in B) \}$$

$$A \oplus B = (A - B) \cup (B - A)$$

 $A \oplus B = (A \cup B) - (B \cap A)$

Summary

- $\overline{A} = \{x \mid x \notin A\}$
- $A U B = \{ x | x \in A \lor x \in B \}$
- $A \cap B = \{ x \mid x \in A \land x \in B \}$

• $A \oplus B = \{ x \mid (x \in A \lor x \in B) \land \neg (x \in A \land x \in B) \}$

Ch 2.1 & 2.2 4

Set Combination: Example

- Universal set is {1...6},
- A = {1, 3, 5} and B = {1, 2, 3}
- $\overline{A} = \{2, 4, 6\}$
- \blacksquare A U B = $\{1, 2, 3, 5\}$
- $A \cap B = \{1, 3\}$
- $A B = \{5\}$
- $B A = \{2\}$
- $A \oplus B = \{2, 5\}$

Set Combination: Property

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = A \cap \overline{B}$$

Ch 2.1 & 2.2

Set Combination: Property

$$|A \cup B| = |A| + |B| - |A \cap B|$$

 The generalization of this result to unions of an arbitrary number of sets is called the principle of inclusion-exclusion

Set Combination: Property

Principle of Inclusion-Exclusion for three sets:

Set Combination: Property

 Two sets are called disjoint if their intersection is the empty set

- Example:
 - A = $\{1,3,5,7,9\}$ and B = $\{2,4,6,8,10\}$
 - A ∩ B = Ø
 - A and B are disjoint

Set Iden Ide

Recall... In Chapter 1

Identify Laws	$p \wedge T \equiv p$ $p \vee F \equiv p$
Domination Laws	$p \lor T \equiv T$ $p \land F \equiv F$
Idempotent Laws	$p \lor p \equiv p$ $p \land p \equiv p$
Double Negation Law	¬ (¬p) ≡ p
Commutative Laws	$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$
Associative Laws	$p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$
Distributive Laws	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
De Morgan's Laws	$ \neg (p \lor q) \equiv \neg p \land \neg q \neg (p \land q) \equiv \neg p \lor \neg q $
Absorption Laws	$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$
Negation Laws	$p \lor \neg p \equiv T$ $p \land \neg p \equiv F$

Ch 2.1 & 2.2

For Set...

	47
Identity Laws	$AU\varnothing = A$ $A\cap U = A$
Domination Laws	$ \begin{array}{l} A \cup U = U \\ A \cap \emptyset = \emptyset \end{array} $
Idempotent Laws	$A \cup A = A$ $A \cap A = A$
Complementation Law	$(\overline{\overline{A}}) = A$
Commutative Laws	$A \cup B = B \cup A$ $A \cap B = B \cap A$
Associative Laws	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
Distributive Laws	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan's Laws	
Absorption Laws	A U (A ∩ B) = A A ∩ (A U B) = A
Complement Laws	$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$

Set Identifies

- How to show two sets (A and B) are identical?
 - Membership Table
 - Builder Notation
 - Subset (i.e. $A \subseteq B$ and $B \subseteq A$)

Ch 2.1 & 2.2 4

Set Identifies

Membership Table

- Prove that $\overline{A \cap B} = \overline{A \cup B}$
- Using membership table

Α	В	$A \cap B$	$\overline{A \cap B}$	A	В	AUB
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Builder Notation

- Prove that $\overline{A \cap B} = \overline{A \cup B}$
- Using Builder Notation and equivalence rules

```
\overline{\mathsf{A} \cap \mathsf{B}}
= \{ x \mid x \notin (A \cap B) \}
= \{x \mid \neg((x \in A) \land (x \in B)) \}
= \{x \mid \neg(x \in A) \lor \neg(x \in B)) \}
= \{ x \mid (x \notin A) \lor (x \notin B) \}
= \{ x \mid (x \in A) \lor (x \in B) \}
= \overline{A} U \overline{B}
```

Set Identifies

Subset

- Prove that $\overline{A \cap B} = \overline{A \cup B}$
- Using subset (implication & equivalence rules)
 - Show $A \cap B \subseteq A \cup B$ Show $A \cup B \subseteq A \cap B$

$$\overline{A} \cup \overline{B}$$
Let $(x \in \overline{A}) \lor (x \in \overline{B})$

$$= (x \notin A) \lor (x \notin B)$$

$$= \neg(x \in A) \lor \neg(x \in B))$$

$$= \neg((x \in A) \land (x \in B))$$

$$= x \notin (A \cap B)$$
Therefore, subset of $\overline{A} \cap B$

Generalized Unions and Intersections

 Union of a collection of sets is the set that contains those elements that are members of at least one set in the collection

$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

 Intersection of a collection of sets is the set that contains those elements that are members of all the sets in the collection

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$$

n maybe infinite

Ch 2.1 & 2.2 5

Generalized Unions and Intersections

Another notation

Set of i, e.g. {1..n}

x is union of all A_i

For any i, $x \in A_i$ is correct x is an element in any A_i

Set of i, e.g. {1..n}

$$\bigcap_{i \in I} A_i = \{x \mid \forall i \in I (x \in A_i)\}$$

x is intersection of all A_i

For all i, $x \in A_i$ is correct x is an element in all A_i

n 2.1 & 2.2 54

Generalized Unions and Intersections

Example 1

■ Let
$$A = \{0,2,4,6,8\}$$
, $B = \{0,1,2,3,4\}$, $C = \{0,3,6,9\}$

■ What are A U B U C and A ∩ B ∩ C?

$$\blacksquare$$
AUBUC = $\{0,1,2,3,4,6,8,9\}$

$$-A \cap B \cap C = \{0\}$$

Ch 2.1 & 2.2 55

Generalized Unions and Intersections

- Example 2
 - Suppose that $A_i = \{1,2,3,...,i\}$ for i = 1,2,3,...

$$\bigcup_{i \in I} A_i = \bigcup_{i \in I} \{1, 2, 3, \dots, i\} = \{1, 2, 3, \dots, i\}$$

$$\bigcap_{i \in I} A_i = \bigcap_{i \in I} \{1, 2, 3, \dots, i\} = \{1\}$$

Computer Representation of Sets

- Many ways to represent sets in a computer
- One method is to store the elements of the set in an unordered fashion
 - E.g. in C++, we can use set to store set

```
set <int> a;
a.insert(9);
```

- The operations of computing the union, intersection, or difference of two sets would be time-consuming
 - Including searching a large amount of element
- A easier way is discussed

Ch 2.1 & 2.2 57

Computer Representation of Sets

- Assume the universal set U is
 - Finite
 - Reasonable size
 - Smaller than the memory size

Methods

 First, specify an arbitrary ordering of the elements of U, for instance a₁, a₂,

- 1 if a_i belongs to A
- 0 if a, does not belong to A

 a_1 a_2 a_3 a_4

1010

0111

n 2.1 & 2.2 5

Computer Representation of Sets

Equal

Union bitwise OR

bitwise AND Intersection

Complement bitwise NOT

1010

Computer Representation of Sets

Example

• Let $U = \{1,2,3,4,5,6,7,8,9,10\}$ $A = \{1, 3, 5, 7, 9\}$ $B = \{1, 2, 3, 4, 5\}$

What is the bit string of

1010101010 A

B 1111100000

■ B 0000011111

■ A ∩ B 1010100000

- A U B 1111101010