▼ 2차원 데이터의 정리

▼ 두 데이터 사이의 관계를 나타내는 지표

english mathematics student 65 Α 42 В 69 80 C 56 63 D 63 41 76 Ε 57 48 60 G 81 65 Н 49 66 78 65 58

▼ 공분산

```
summary_df = scores_df.copy()
summary_df['english_deviation'] =\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\te\
```

stı	udent						
	Α	42	65	-13.0	-6.4	83.2	
	В	69	80	14.0	8.6	120.4	
	C	56	63	1.0	-8.4	-8.4	
summary_df['product of deviations'].mean()							
62.8	300						
	ı	⊣ ∪	00	1.0	11.7	13.0	
<pre>cov_mat = np.cov(en_scores, ma_scores, ddof=0) cov_mat</pre>							
arra	ay([[86. , [62.8 ,	62.8], 68.44]])					
cov_mat	[0, 1],	cov_mat[1,	, 0]				
(62.	. 8000000000	000004, 62.80	0000000000004)				
cov_mat	[0, 0],	cov_mat[1,	, 1]				
(86.	.0, 68.4400	0000000001)					
np.var(en_score	s, ddof=0)), np.var(ma_	_scores, ddof=0)			
(86.	.0, 68.4400	00000000001)					

▼ 상관계수

		english	mathematics	
	english	1.000	0.819	
m	nathematics	0.819	1.000	

▼ 2차원 데이터의 시각화

▼ 산점도

```
import matplotlib.pyplot as plt

%matplotlib inline

english_scores = np.array(df['english'])
math_scores = np.array(df['mathematics'])

fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111)
# 산점도
ax.scatter(english_scores, math_scores)
```

```
ax.set_xlabel('english')
ax.set_ylabel('mathematics')
plt.show()
```


▼ 회귀직선

```
# 계수β_0와β_1를 구한다
poly_fit = np.polyfit(english_scores, math_scores, 1)
# \beta_0+\beta_1 x를 반환하는 함수를 작성
poly_1d = np.poly1d(poly_fit)
# 직선을 그리기 위해 x좌표를 생성
xs = np.linspace(english_scores.min(), english_scores.max())
# xs에 대응하는 y좌표를 구한다
ys = poly_1d(xs)
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111)
ax.set_xlabel('english')
ax.set_ylabel('mathematics')
ax.scatter(english_scores, math_scores, label='score')
ax.plot(xs, ys, color='gray',
       label=f'{poly_fit[1]:.2f}+{poly_fit[0]:.2f}x')
# 범례의 표시
ax.legend(loc='upper left')
plt.show()
```

```
95 - 42.60+0.62x

score
```

▼ 히트맵

▼ 앤스컴의 예

```
# npy 형식으로 저장된 NumPy array를 읽음
anscombe_data = np.load('anscombe.npy')
print(anscombe_data.shape)
anscombe_data[0]

(4, 11, 2)
array([[10. , 8.04],
[ 8. , 6.95],
[ 12. 7.59]
```

```
[ 8. , 6.95],
[13. , 7.58],
[ 9. , 8.81],
[11. , 8.33],
[14. , 9.96],
[ 6. , 7.24],
[ 4. , 4.26],
[ 12. , 10.84],
[ 7. , 4.82],
[ 5. , 5.68]])
```

	data1	data2	data3	data4
X_mean	9.00	9.00	9.00	9.00
X_variance	10.00	10.00	10.00	10.00
Y_mean	7.50	7.50	7.50	7.50
Y_variance	3.75	3.75	3.75	3.75
X&Y_correlation	0.82	0.82	0.82	0.82

X&Y_regression line 3.00+0.50x 3.00+0.50x 3.00+0.50x 3.00+0.50x

```
# 그래프를 그리기 위한 영역을 2x2개 생성
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 10),
                       sharex=True, sharey=True)
xs = np.linspace(0, 30, 100)
for i, data in enumerate(anscombe_data):
   poly_fit = np.polyfit(data[:,0], data[:,1], 1)
   poly_1d = np.poly1d(poly_fit)
   ys = poly_1d(xs)
   # 그리는 영역을 선택
   ax = axes[i//2, i\%2]
   ax.set_xlim([4, 20])
   ax.set_ylim([3, 13])
   # 타이틀을 부여
   ax.set_title(f'data{i+1}')
   ax.scatter(data[:,0], data[:,1])
   ax.plot(xs, ys, color='gray')
# 그래프 사이의 간격을 좁힘
plt.tight_layout()
plt.show()
```

