INSIEME POTENZA E PRODOTTO CARTESIANO

Università degli Studi di Udine

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1*A* = insieme degli studenti di una classe della scuola.

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1A = insieme degli studenti di una classe della scuola.

 $1A \subseteq S$.

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1*A* = insieme degli studenti di una classe della scuola.

$$1A \subseteq S$$
.

CI= insieme di tutte le classi della scuola, ad esempio:

$$CI = \{1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C\}.$$

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1A = insieme degli studenti di una classe della scuola.

$$1A \subseteq S$$
.

CI= insieme di tutte le classi della scuola, ad esempio:

$$CI = \{1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C\}.$$

• CI ha qualche cosa di diverso rispetto agli insiemi di cui ci siamo occupati finora:

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1*A* = insieme degli studenti di una classe della scuola.

$$1A \subseteq S$$
.

CI= insieme di tutte le classi della scuola, ad esempio:

$$CI = \{1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C\}.$$

 CI ha qualche cosa di diverso rispetto agli insiemi di cui ci siamo occupati finora: è un insieme di insiemi, un insieme, cioè, che ha per elementi le classi, che sono a loro volta insiemi (di studenti).

ESEMPIO

S = insieme di tutti gli studenti di una scuola;

1A = insieme degli studenti di una classe della scuola.

$$1A \subseteq S$$
.

CI= insieme di tutte le classi della scuola, ad esempio:

$$CI = \{1A, 1B, 1C, 2A, 2B, 2C, 3A, 3B, 3C\}.$$

- CI ha qualche cosa di diverso rispetto agli insiemi di cui ci siamo occupati finora: è un *insieme di insiemi*, un insieme, cioè, che ha per elementi le classi, che sono a loro volta insiemi (di studenti).
- Ha senso allora scrivere Dario ∈ 3A e 3A ∈ CI, che scriveremo anche come una catena:

Dario
$$\in$$
 3*A* ∈ *CI*.

Una catena del tipo $a \in b \in \mathbb{N}$, invece, non è possibile. . .

 $\{1A, 2A, \dots, 3C, D'Agostino, Rossi, D'Andrea, \dots\}.$

$$\{1A, 2A, \dots, 3C, D'Agostino, Rossi, D'Andrea, \dots\}.$$

Più in generale, esistono degli insiemi che hanno elementi che sono a loro volta degli insiemi.

$$\{1A, 2A, \dots, 3C, D'Agostino, Rossi, D'Andrea, \dots\}.$$

Più in generale, esistono degli insiemi che hanno elementi che sono a loro volta degli insiemi.

Ad esempio, se $A=\{0,1,\mathbb{N}\}$ vale $\mathbb{N}\in A$, mentre non è vero che $\mathbb{N}\subseteq A$.

$$\{1A, 2A, \dots, 3C, D'Agostino, Rossi, D'Andrea, \dots\}.$$

Più in generale, esistono degli insiemi che hanno elementi che sono a loro volta degli insiemi.

Ad esempio, se $A = \{0, 1, \mathbb{N}\}$ vale $\mathbb{N} \in A$, mentre non è vero che $\mathbb{N} \subseteq A$.

Se invece consideriamo l'insieme $B = \mathbb{N} \cup \{\mathbb{N}\}$ avremo sia $\mathbb{N} \in B$ che $\mathbb{N} \subseteq B$.

ESEMPIO

Dato l'insieme $A = \{0, 1, 2\}$, possiamo considerare tutti i suoi sottoinsiemi, ovvero:

$$\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}.$$

ESEMPIO

Dato l'insieme $A = \{0, 1, 2\}$, possiamo considerare tutti i suoi sottoinsiemi, ovvero:

$$\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}.$$

Possiamo poi collezionare tutti questi insiemi e farne elementi di un nuovo insieme :

$$\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}.$$

ESEMPIO

Dato l'insieme $A = \{0, 1, 2\}$, possiamo considerare tutti i suoi sottoinsiemi, ovvero:

$$\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}.$$

Possiamo poi collezionare tutti questi insiemi e farne elementi di un nuovo insieme :

$$\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}.$$

DEFINIZIONE

L'insieme di tutti i sottoinsiemi di un insieme A si indica con P(A) o Pow(A) (l'insieme delle parti di A, o l'insieme potenza di A (Powerset, in inglese).

ESEMPIO

Dato l'insieme $A = \{0, 1, 2\}$, possiamo considerare tutti i suoi sottoinsiemi, ovvero:

$$\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}.$$

Possiamo poi collezionare tutti questi insiemi e farne elementi di un nuovo insieme :

$$\{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}.$$

DEFINIZIONE

L'insieme di tutti i sottoinsiemi di un insieme A si indica con P(A) o Pow(A) (l'insieme delle parti di A, o l'insieme potenza di A (Powerset, in inglese).

Si ha: $X \in P(A) \Leftrightarrow X \subseteq A$

 Fra i sottoinsiemi di A ce ne sono sempre due un po' speciali: l'insieme vuoto Ø e tutto A.
 Quindi, per ogni insieme A, vale:

$$\emptyset \in P(A), \qquad A \in P(A).$$

•

$$P(\emptyset) = \{\emptyset\} \neq \emptyset$$

(l'insieme vuoto ha solo il vuoto come sottoinsieme, quindi il suo insieme delle parti contiene un elemento e non è vuoto!)

QUIZ1

$$0 \in P(A)$$
$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{0,3\}\in P(A)$$

QUIZ1

$$0 \in P(A)$$
$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq \textit{P(A)}$$

$$\{0,3\} \in P(A)$$

INDIETRO (AVANTI)

RISPOSTA

No: 0 non è un sottoinsieme di A quindi 0 non appartiene a P(A), mentre potremmo scrivere correttamente $\{0\} \in P(A)$, perché $\{0\} \subseteq A$.

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\} \subseteq P(A)$$

$$\{0,3\} \in P(A)$$

VERO

VERO

VERO

VERO

FALSO

FALSO

FALSO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

QUIZ1

$$0 \in P(A)$$
$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{0,3\} \in P(A)$$

INDIETRO AVANTI

RISPOSTA

GIUSTO: \emptyset è un sottoinsieme di qualsiasi insieme, in particolare di P(A); inoltre poiché $\emptyset \subseteq A$ anche $\emptyset \in P(A)$ è vera.

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subset P(A) \land \emptyset \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{0,3\}\in P(A)$$

RISPOSTA

SBAGLIATO: \emptyset è un sottoinsieme di qualsiasi insieme, in particolare di P(A).

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{2\}\subseteq F(A)$$

$$\{0,3\}\in \textit{P(A)}$$

(INDIETRO AVANTI)

RISPOSTA

NO: $\{2\} \not\subseteq P(A)$ perché $2 \in \{2\}$ ma $2 \not\in P(A)$.

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\} \subseteq P(A)$$

$$\{0,3\} \in P(A)$$

VERO

VERO

FALSO

VERO

VERO

FALSO FALSO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO.

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\} \subseteq P(A)$$

$$\{0,3\} \in P(A)$$

VERO

VERO

VERO

VERO

FALSO

FALSO

FALSO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

QUIZ1

$$0 \in P(A)$$

$$\emptyset \subseteq P(A) \land \emptyset \in P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{2\}\subseteq P(A)$$

$$\{0,3\}\in \textit{P}(\textit{A})$$

INDIETRO AVANTI

RISPOSTA

SBAGLIATO: $\{0,3\} \in P(A)$ perché $\{0,3\} \subseteq A$.

 $\mathbb{N} \in P(\mathbb{Z})$

 $\mathbb{N}\subseteq P(\mathbb{Z})$

 $\mathbb{Z} \in P(\mathbb{N})$

 $\mathbb{N} \in P(\mathbb{N})$

VERO

VERO

VERO

VERO

FALSO

FALSO

FALSO

FALSO

INDIETRO (AVANTI)

 $\mathbb{N} \in P(\mathbb{Z})$

VERO VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

 $\mathbb{N} \in P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

SBAGLIATO: $\mathbb{N} \subseteq \mathbb{Z}$ quindi $\mathbb{N} \in P(\mathbb{Z})$

 $\mathbb{N} \in P(\mathbb{Z})$

 $\mathbb{N}\subseteq P(\mathbb{Z})$

 $\mathbb{Z} \in P(\mathbb{N})$

 $\mathbb{N} \in P(\mathbb{N})$

VERO

VERO

VERO

VERO

FALSO

FALSO

FALSO

FALSO

INDIETRO AVANTI

RISPOSTA

SBAGLIATO: $0 \in \mathbb{N}$ ma $0 \notin (P(\mathbb{Z})$ perché $0 \nsubseteq \mathbb{Z}$

 $\mathbb{N} \in P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

 $\mathbb{N} \in P(\mathbb{Z})$

 $\mathbb{N} \subseteq P(\mathbb{Z})$

 $\mathbb{Z} \in P(\mathbb{N})$

 $\mathbb{N} \in P(\mathbb{N})$

VERO

VERO

VERO VERO

FALSO

FALSO

FALSO

FALSO

INDIETRO AVANTI

RISPOSTA

SBAGLIATO: $\mathbb{Z} \not\subseteq \mathbb{N}$

 $\mathbb{N} \in P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

 $\mathbb{N} \in P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

GIUSTO

 $\mathbb{N} \in P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{N} \subseteq P(\mathbb{Z})$

VERO

FALSO

 $\mathbb{Z} \in P(\mathbb{N})$

VERO

FALSO

 $\mathbb{N} \in P(\mathbb{N})$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

SBAGLIATO: $\mathbb{N} \subseteq \mathbb{N}$ quindi $\mathbb{N} \in P(\mathbb{N})$.

Se A e B sono insiemi allora vale sempre che:

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

VERO

FALSO

(FALSO)

VERO

FALSO

VERO

FALSO

AVANTI

Se A e B sono insiemi allora vale sempre che:

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

RISPOSTA

GIUSTO

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

(INDIETRO (AVANTI)

RISPOSTA

SBAGLIATO: A è un sottoinsieme di B quindi $A \in P(B)$

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

RISPOSTA

SBAGLIATO: ad esempio, se $A = \emptyset$, $B = \mathbb{N}$, allora $A \subseteq B$ ma

$$B = \mathbb{N} \not\in P(A) = \{\emptyset\}$$

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

INDIETRO AVANTI

RISPOSTA

GIUSTO

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

Se
$$A \subseteq B$$
 allota $B \in I(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

(INDIETRO (AVANTI)

RISPOSTA

SBAGLIATO: $\emptyset \in P(A) \cap P(B)$ quindi $P(A) \cap P(B) \neq \emptyset$

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

(INDIETRO (AVANTI)

RISPOSTA

GIUSTO: $P(A) \cap P(B)$ è non vuoto perché contiene \emptyset

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

(INDIETRO (AVANTI)

RISPOSTA

SBAGLIATO: $\emptyset \in P(B)$ quindi $\emptyset \notin P(A) \setminus P(B)$.

QUIZ3

se
$$A \subseteq B$$
 allora $A \in P(B)$

se
$$A \subseteq B$$
 allora $B \in P(A)$

se
$$A \cap B = \emptyset$$
 allora $P(A) \cap P(B) = \emptyset$

$$\emptyset \in P(A) \setminus P(B)$$

INDIETRO (AVANTI)

RISPOSTA

GIUSTO.

ESEMPIO

```
S = insieme degli studenti di una scuola = \{Gianni, Andrea, ...\} Cl = insieme delle classi della scuola = \{1A, 1B, ...\}.
```

ESEMPIO

```
S= insieme degli studenti di una scuola =\{Gianni, Andrea, \ldots\} CI= insieme delle classi della scuola =\{1A, 1B, \ldots\}. Se x \in CI allora x \subseteq S e quindi x \in P(S);
```

ESEMPIO

```
S= insieme degli studenti di una scuola =\{Gianni, Andrea, \ldots\} Cl= insieme delle classi della scuola =\{1A, 1B, \ldots\}. Se x\in Cl allora x\subseteq S e quindi x\in P(S); quindi Cl\subseteq P(S).
```

ESEMPIO

 $S = \text{insieme degli studenti di una scuola } = \{Gianni, Andrea, ...\}$

CI = insieme delle classi della scuola = {1A, 1B, ...}.

Se $x \in CI$ allora $x \subseteq S$ e quindi $x \in P(S)$; quindi $CI \subseteq P(S)$.

L'insieme CI verifica le seguenti proprietà:

due elementi diversi di CI (due classi differenti) sono disgiunte (cioè: non hanno studenti in comune):

$$\forall A \forall B (A \in CI \land B \in CI \land A \neq B \rightarrow A \cap B = \emptyset),$$

2 tutti gli studenti della scuola appartengono ad almeno una classe.

$$\forall s(s \in S \rightarrow \exists A(A \in Cl \land s \in A)).$$

L'insieme delle classi è un esempio di *PARTIZIONE* dell'insieme degli studenti della scuola.

Più in generale, abbiamo:

DEFINIZIONE

Un insieme P è una partizione di un insieme S se P contiene sottoinsiemi di S che sono a due a due disgiunti e che *ricoprono* tutto S. In formule:

ESEMPI

L'insieme

$$P = \{2\mathbb{N}, 2\mathbb{N} + 1\},\$$

dove $2\mathbb{N}$ = numeri pari, $2\mathbb{N}+1$ =numeri dispari, è una partizione dei numeri naturali.

• Una partizione può anche avere infiniti elementi:

$$P = \{\{n, -n\} : n \in \mathbb{N}\}$$

è una partizione di \mathbb{Z} con infiniti elementi.

Se A è un insieme non vuoto, allora

$$P = \{A\}, \quad e \quad P' = \{\{a\} : a \in A\}$$

sono partizioni (partizioni banali).

Le partizioni risulteranno particolarmente utili quando studieremo le relazioni di equivalenza.

QUIZ4

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\} \text{ dove } A_i = \{i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P=\{\textit{C}_0,\textit{C}_1,\ldots,\textit{C}_n,\ldots\} \text{ dove } \textit{C}_0=\mathbb{N}\setminus\{0\},\textit{C}_1=\mathbb{N}\setminus\{0,1\},\ldots,\textit{C}_n=\mathbb{N}\setminus\{0,1,\ldots,n\},\ldots\}$$

FALSO

VERO

VERO FALSO

FALSO

FALSO

INDIETRO AVANTI

QUIZ4

$$P = 2\mathbb{N} \cup (2\mathbb{N} + 1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\}$$
 dove $A_i = \{i\}, i \in \mathbb{N}$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$r = \{b_0, b_1, \ldots, b_n, \ldots\}$$
 dove $b_i = \{0, 1, \ldots, r\}, r \in \mathbb{N}$

$$P=\{\textit{C}_0,\textit{C}_1,\ldots,\textit{C}_n,\ldots\} \text{ dove } \textit{C}_0=\mathbb{N}\setminus\{0\},\textit{C}_1=\mathbb{N}\setminus\{0,1\},\ldots,\textit{C}_n=\mathbb{N}\setminus\{0,1,\ldots,n\},\ldots\}$$

INDIETRO AVANTI

RISPOSTA

Sbagliato: in questo caso $P=\mathbb{N}$ e non è una partizione di \mathbb{N} (i suoi elementi non sono sottoinsiemi di \mathbb{N} , ma numeri naturali)

QUIZ4

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\}$$
 dove $A_i = \{i\}, i \in \mathbb{N}$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\}$$
 dove $B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$

$$P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$$

INDIETRO AVANTI

RISPOSTA

Giusto

FALSO

FALSO

FALSO

FALSO

VERO

VERO

QUIZ4

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\}$$
 dove $A_i = \{i\}, i \in \mathbb{N}$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\}$$
 dove $B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$

$$P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$$

INDIETRO AVANTI

RISPOSTA

Giusto

FALSO

FALSO

FALSO

FALSO

VERO

VERO

QUI74

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\} \text{ dove } A_i = \{i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

RISPOSTA

Sbagliato: P è una partizione di $\mathbb N$ perché i suoi elementi sono sottoinsiemi non vuoti, a due a due disgiunti e ricoprono tutto $\mathbb N$

 $P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$

QUI74

$$P = 2\mathbb{N} \cup (2\mathbb{N} + 1)$$

$$\textit{P} = \{\textit{A}_{0}, \textit{A}_{1}, \ldots, \textit{A}_{n}, \ldots\} \text{ dove } \textit{A}_{i} = \{\textit{i}\}, \textit{i} \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$$

RISPOSTA

Sbagliato: gli elementi di P non sono a due a due disgiunti

QUIZ4

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\}$$
 dove $A_i = \{i\}, i \in \mathbb{N}$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\}$$
 dove $B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$

$$P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$$

INDIETRO AVANTI

RISPOSTA

Giusto

FALSO

FALSO

FALSO

FALSO

VERO

VERO

QUI74

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

FALSO

FALSO

$$\textit{P} = \{\textit{A}_0, \textit{A}_1, \ldots, \textit{A}_n, \ldots\} \text{ dove } \textit{A}_i = \{\textit{i}\}, \textit{i} \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

RISPOSTA

Sbagliato: P non è una partizione di N perché i suoi elementi non sono a due a due disgiunti

 $P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$

QUIZ4

$$P=2\mathbb{N}\cup(2\mathbb{N}+1)$$

$$P = \{A_0, A_1, \dots, A_n, \dots\}$$
 dove $A_i = \{i\}, i \in \mathbb{N}$

$$P = \{B_0, B_1, \dots, B_n, \dots\} \text{ dove } B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$$

$$P = \{B_0, B_1, \dots, B_n, \dots\}$$
 dove $B_i = \{0, 1, \dots, i\}, i \in \mathbb{N}$

$$P = \{C_0, C_1, \dots, C_n, \dots\} \text{ dove } C_0 = \mathbb{N} \setminus \{0\}, C_1 = \mathbb{N} \setminus \{0, 1\}, \dots, C_n = \mathbb{N} \setminus \{0, 1, \dots, n\}, \dots$$

INDIETRO AVANTI

RISPOSTA

Giusto

FALSO

FALSO

FALSO

FALSO

VERO

VERO

PROVIAMO A CONTARE:

● l'insieme vuoto Ø ha 1 sottoinsieme:

Ø;

PROVIAMO A CONTARE:

● l'insieme vuoto Ø ha 1 sottoinsieme:

Ø;

• un insieme con un solo elemento, $\{a_1\}$, ha 2 sottoinsiemi:

$$\emptyset$$
, $\{a_1\} = A$;

PROVIAMO A CONTARE:

● l'insieme vuoto Ø ha 1 sottoinsieme:

Ø;

• un insieme con un solo elemento, {a₁}, ha 2 sottoinsiemi:

$$\emptyset, \{a_1\} = A;$$

• un insieme con due elementi, {a₁, a₂} ha 4 sottoinsiemi:

$$\emptyset$$
, $\{a_1\}$, $\{a_2\}$, $\{a_1, a_2\}$;

PROVIAMO A CONTARE:

● l'insieme vuoto Ø ha 1 sottoinsieme:

Ø;

• un insieme con un solo elemento, {a₁}, ha 2 sottoinsiemi:

$$\emptyset$$
, $\{a_1\} = A$;

• un insieme con due elementi, $\{a_1, a_2\}$ ha 4 sottoinsiemi:

$$\emptyset$$
, $\{a_1\}$, $\{a_2\}$, $\{a_1, a_2\}$;

un insieme con tre elementi, {a₁, a₂, a₃} ha 8 sottoinsiemi (elencarli per esercizio).

Quindi nel caso di insiemi con 0,1 o 2 elementi il numero dei sottoinsiemi raddoppia quando si passa da un insieme ad un insieme con un elemento in più

Questo risultato vale per ogni insieme finito:

PROPOSIZIONE

Se l'insieme A ha un numero finito di elementi e a è un oggetto che non appartiene ad A, allora l'insieme $A \cup \{a\}$ ha il doppio dei sottoinsiemi di A.

Prima di dimostrare questo teorema in generale, vediamo di convincerci nel caso in cui $A = \{1, 2\}$ ed aggiungiamo il numero 3 all'insieme A:

$$A' = A \cup \{3\} = \{1, 2, 3\}$$

Questo risultato vale per ogni insieme finito:

PROPOSIZIONE

Se l'insieme A ha un numero finito di elementi e a è un oggetto che non appartiene ad A, allora l'insieme $A \cup \{a\}$ ha il doppio dei sottoinsiemi di A.

Prima di dimostrare questo teorema in generale, vediamo di convincerci nel caso in cui $A = \{1, 2\}$ ed aggiungiamo il numero 3 all'insieme A:

$$A' = A \cup \{3\} = \{1, 2, 3\}$$

I sottoinsiemi di A sono

$$\emptyset$$
, {1}, {2}, {1,2};

Questi sono anche sottoinsiemi di A', che però ha altri sottoinsiemi:

$$\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}.$$

Le due liste esauriscono tutti i possibili sottoinsiemi di A' e la seconda lista si ottiene dalla prima aggiungendo ad ogni insieme il nuovo elemento 3. Ci accorgiamo quindi che i sottoinsiemi di A' sono il doppio di quelli di A.

La dimostrazione nel caso di un qualsiasi insieme A segue lo stesso tipo di ragionamento.

La dimostrazione nel caso di un qualsiasi insieme A segue lo stesso tipo di ragionamento.

Elenchiamo tutti i sottoinsiemi di A in una lista finita

$$A_1, A_2, \ldots, A_k$$
.

La dimostrazione nel caso di un qualsiasi insieme A segue lo stesso tipo di ragionamento.

Elenchiamo tutti i sottoinsiemi di A in una lista finita

$$A_1, A_2, \ldots, A_k$$
.

Poiché $A \subseteq A \cup \{a\}$, gli A_1, A_2, \dots, A_k sono anche sottoinsiemi di $A \cup \{a\}$.

La dimostrazione nel caso di un qualsiasi insieme A segue lo stesso tipo di ragionamento.

Elenchiamo tutti i sottoinsiemi di A in una lista finita

$$A_1, A_2, \ldots, A_k$$
.

Poiché $A \subseteq A \cup \{a\}$, gli A_1, A_2, \ldots, A_k sono anche sottoinsiemi di $A \cup \{a\}$. Tutti gli altri sottoinsiemi di $A \cup \{a\}$ si possono ottenere aggiungendo l'elemento a alla lista precedente:

$$A_1 \cup \{a\}, A_2 \cup \{a\}, \dots, A_k \cup \{a\}.$$

La dimostrazione nel caso di un qualsiasi insieme A segue lo stesso tipo di ragionamento.

Elenchiamo tutti i sottoinsiemi di A in una lista finita

$$A_1, A_2, \ldots, A_k$$
.

Poiché $A \subseteq A \cup \{a\}$, gli A_1, A_2, \ldots, A_k sono anche sottoinsiemi di $A \cup \{a\}$. Tutti gli altri sottoinsiemi di $A \cup \{a\}$ si possono ottenere aggiungendo l'elemento a alla lista precedente:

$$A_1 \cup \{a\}, A_2 \cup \{a\}, \dots, A_k \cup \{a\}.$$

Ne segue che $A \cup \{a\}$ ha il doppio dei sottoinsiemi di A.

Riassumendo: passando da un insieme ad un insieme che contiene un elemento in più, i sottoinsiemi raddoppiano.

Riassumendo: passando da un insieme ad un insieme che contiene un elemento in più, i sottoinsiemi raddoppiano.

Se chiamiamo a_0 il numero dei sottoinsiemi dell'insieme vuoto, a_1 il numero dei sottoinsiemi dell'insieme con 1 elemento, ..., a_n il numero dei sottoinsiemi dell'insieme con n elementi, i primi elementi della la successione

$$a_0, a_1, a_2, \dots$$

sono:

$$1, 2, 4, 8, 16, 32, \dots$$

Riassumendo: passando da un insieme ad un insieme che contiene un elemento in più, i sottoinsiemi raddoppiano.

Se chiamiamo a_0 il numero dei sottoinsiemi dell'insieme vuoto, a_1 il numero dei sottoinsiemi dell'insieme con 1 elemento, ..., a_n il numero dei sottoinsiemi dell'insieme con n elementi, i primi elementi della la successione

$$a_0, a_1, a_2, \dots$$

sono:

$$1, 2, 4, 8, 16, 32, \dots$$

Più in generale, se un insieme ha n elementi, il numero dei suoi sottoinsiemi si trova dopo n passi nella lista (cominciando da zero, come si fa quasi sempre in matematica).

Riassumendo: passando da un insieme ad un insieme che contiene un elemento in più, i sottoinsiemi raddoppiano.

Se chiamiamo a_0 il numero dei sottoinsiemi dell'insieme vuoto, a_1 il numero dei sottoinsiemi dell'insieme con 1 elemento, ..., a_n il numero dei sottoinsiemi dell'insieme con n elementi, i primi elementi della la successione

$$a_0, a_1, a_2, \dots$$

sono:

$$1, 2, 4, 8, 16, 32, \dots$$

Più in generale, se un insieme ha n elementi, il numero dei suoi sottoinsiemi si trova dopo n passi nella lista (cominciando da zero, come si fa quasi sempre in matematica).

Possiamo anche facilmente trovare una formula per il valore di a_n : visto che moltiplichiamo sempre per 2 partendo da 1, dopo n passi il numero sarà $a_n = 2^n$. Abbiamo così dimostrato:

Riassumendo: passando da un insieme ad un insieme che contiene un elemento in più, i sottoinsiemi raddoppiano.

Se chiamiamo a_0 il numero dei sottoinsiemi dell'insieme vuoto, a_1 il numero dei sottoinsiemi dell'insieme con 1 elemento, ..., a_n il numero dei sottoinsiemi dell'insieme con n elementi, i primi elementi della la successione

$$a_0, a_1, a_2, \dots$$

sono:

$$1, 2, 4, 8, 16, 32, \dots$$

Più in generale, se un insieme ha n elementi, il numero dei suoi sottoinsiemi si trova dopo n passi nella lista (cominciando da zero, come si fa quasi sempre in matematica).

Possiamo anche facilmente trovare una formula per il valore di a_n : visto che moltiplichiamo sempre per 2 partendo da 1, dopo n passi il numero sarà $a_n = 2^n$. Abbiamo così dimostrato:

Corollario

Se A è un insieme finito con n elementi, il numero degli elementi di P(A) (ovvero il numero dei sottoinsiemi di A) è 2^n .

Un ospedale vuole archiviare in una banca dati l'età e il peso dei suoi pazienti.

Un ospedale vuole archiviare in una banca dati l'età e il peso dei suoi pazienti. Usare insiemi del tipo {età, peso} non è utile per formalizzare questi dati:

Un ospedale vuole archiviare in una banca dati l'età e il peso dei suoi pazienti. Usare insiemi del tipo {età, peso} non è utile per formalizzare questi dati: se ad esempio volessimo ricavare l'età di un paziente da un dato archiviato come {54,80}, non potremmo decidere se questa età è 54 o 80, visto che in un insieme gli elementi non sono ordinati e il dato {54,80} viene identificato con il dato {80,54}.

Un ospedale vuole archiviare in una banca dati l'età e il peso dei suoi pazienti. Usare insiemi del tipo {età, peso} non è utile per formalizzare questi dati: se ad esempio volessimo ricavare l'età di un paziente da un dato archiviato come {54,80}, non potremmo decidere se questa età è 54 o 80, visto che in un insieme gli elementi non sono ordinati e il dato {54,80} viene identificato con il dato {80,54}. Abbiamo bisogno quindi di oggetti che tengano conto dell'ordine dei propri componenti.

COPPIE ORDINATE

Dati due elementi a, b, la coppia ordinata (a, b) differisce dall'insieme $\{a, b\}$ proprio per l'importanza che diamo all'ordine in cui gli elementi sono presentati nella coppia, per cui, ad esempio, la coppia (1, 2) è differente dalla coppia (2, 1) (mentre l'insieme $\{1, 2\}$ è uguale all'insieme $\{2, 1\}$).

Un modo formale per esprimere questa proprietà è :

$$(a,b)=(c,d)\Rightarrow a=c\wedge b=d.$$

Avendo a disposizione le coppie, possiamo definire

PRODOTTO CARTESIANO

Il prodotto cartesiano di due insiemi A, B è l'insieme che contiene tutte le coppie in cui il primo elemento appartiene ad A ed il secondo elemento appartiene a B. In simboli:

$$A \times B = \{(a, b) : a \in A \land b \in B\}$$

Esempi:

• Siano
$$A = \{1,2\}$$
 e $B = \{a,b,c\}$. Allora
$$A \times B = \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\},$$

$$B \times A = \{(a,1),(b,1),(c,1),(a,2),(b,2),(c,2)\}.$$

• Siano $A = \mathbb{Z}$ e $B = \mathbb{N}$. Allora

$$A \times B = \{(n, m) : n \in \mathbb{Z}, m \in \mathbb{N}\},\$$

Si noti che in generale risulta $A \times B \neq B \times A$: ad esempio, se $A = \{0\}$ e $B = \{1, 2\}$ allora:

$$A \times B = \{(0,1),(0,2)\}$$

mentre

$$B \times A = \{(1,0),(2,0)\}$$

(si noti che $(0,1) \neq (1,0)$ perché il primo elemento di (0,1) è 0, mentre il primo elemento di (1,0) è 1).

QUIZ5

$$(4,-1) \in B \times A$$

 $(9,7) \in B \times A$

 $(7,7) \notin A \times B$

 $(7,9) \notin B \times B$

VERO

VERO

VERO

VERO

FALSO

[FALSO]

FALSO

FALSO

INDIETRO (AVANTI)

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERO

FALSO

$$(7,7) \notin A \times B$$

VERO

FALSO

$$(7,9)\notin B\times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: l'elemento -1 non appartiene ad A

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERO

FALSO

$$(7,7) \notin A \times B$$

VERO

(FALSO)

$$(7,9) \notin B \times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERO

FALSO

$$(7,7) \notin A \times B$$

VERO

(FALSO)

$$(7,9) \notin B \times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERC

FALSO

$$(7,7) \notin A \times B$$

FALSO

$$(7,9) \notin B \times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: poichè $9 \in B$ e $7 \in A$, risulta $(9,7) \in B \times A$.

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERC

FALSO

$$(7,7) \notin A \times B$$

FALSO

$$(7,9) \notin B \times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: poichè $7 \in A$ e $7 \in B$, risulta $(7,7) \in A \times B$.

QUIZ5

$$(4,-1) \in B \times A$$

FALSO

$$(9,7) \in B \times A$$

$$(7,7) \notin A \times B$$

$$(7,9) \notin B \times B$$

INDIETRO AVANTI

RISPOSTA

QUIZ5

$$(4,-1) \in B \times A$$

VERO

FALSO

$$(9,7) \in B \times A$$

VERO

FALSO

$$(7,7) \notin A \times B$$

VEITO

FALSO

$$(7,9) \notin B \times B$$

VERO

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: poichè $7 \in B$ e $9 \in B$, risulta $(7,9) \in B \times B$.

QUIZ5

$$(4,-1) \in B \times A$$

FALSO

$$(9,7) \in B \times A$$

$$(7,7) \notin A \times B$$

$$(7,9) \notin B \times B$$

INDIETRO AVANTI

RISPOSTA

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

 $\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$

 $\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$

 $\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$

/ERO

FALSO

VERO

FALSO

VERO

FALSO

VERO

FALS

INDIETRO)

AVANTI

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

FALSO

$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$$

INDIETRO AVANTI

RISPOSTA

Sbagliato: poichè $15 \notin B$, $(100, 15) \notin A \times B$.

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$$

RISPOSTA

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$$

RISPOSTA

 $\{(a,b): a \in \mathbb{N}, b \in \mathbb{Z}, a > 15, b < -2\} \subset A \times B$

QUIZ6

$$\{(-4,2), (100,15)\} \subseteq A \times B$$

 $\{(0,n): n \in \mathbb{N}\} \subseteq B \times A$

$$\{(0, II): II \in \mathbb{N}\} \subseteq B \times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

AVANTI

RISPOSTA

INDIETRO

Sbagliato: Poichè $0 \in B$ e $\mathbb{N} \subseteq A$, ogni coppia (0, n) con $n \in \mathbb{N}$ appartiene ad $A \times B$.

QUI76

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

$$\{(a,b): a \in \mathbb{N}, b \in \mathbb{Z}, a \geq 15, b \leq -2\} \subseteq A \times B$$

INDIETRO) AVANTI

RISPOSTA

Sbagliato: Tutte le coppie (0, n) con n < -5 hanno seconda componente che non appartiene ad A e quindi non appartengono a $B \times A$

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$$

RISPOSTA

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$

$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$

$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$

$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq15,b\leq-2\}\subseteq A\times B$$

RISPOSTA

QUIZ6

$$\{(-4,2),(100,15)\}\subseteq A\times B$$
 VERO FALSO
$$\{(0,n):n\in\mathbb{N}\}\subseteq B\times A$$
 VERO FALSO
$$\{(0,n):n\in\mathbb{Z}\}\subseteq B\times A$$
 VERO FALSO
$$\{(a,b):a\in\mathbb{N},b\in\mathbb{Z},a\geq 15,b\leq -2\}\subseteq A\times B$$
 VERO FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: Tutte le coppie del primo insieme hanno prima componente appartenente ad A e seconda componente appartenente a B e quindi appartengono ad $A \times B$.

Sia
$$A = \{-1, 0, 1\}$$
 e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

VERO

FALSO

FALSO FALSO

VERO

FALSO

VERO

FALSO

INDIETRO AVANTI

Sia $A = \{-1, 0, 1\}$ e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1)\in (A\times B)\setminus (B\times A)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: $(0,1) \in A \times B$, ma $(0,1) \notin B \times A$

Sia
$$A = \{-1, 0, 1\}$$
 e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}\$$

RISPOSTA

Sia $A = \{-1, 0, 1\}$ e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

INDIETRO AVANTI

RISPOSTA

Sbagliato: $(-1,1) \in A \times B$, ma $(-1,1) \notin B \times A$, quindi $(-1,1) \notin (A \times B) \cap (B \times A)$

Sia
$$A = \{-1, 0, 1\}$$
 e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \cup B) \cap (B \cup A) = (A \cup B)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

RISPOSTA

Sia
$$A = \{-1, 0, 1\}$$
 e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \cup B) \cap (B \cup A) = (A \cup B)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

RISPOSTA

Sia $A = \{-1, 0, 1\}$ e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: $(-1,1) \in A \times B$, ma $(-1,1) \notin B \times A$, quindi $(-1,1) \notin (A \times B) \setminus (B \times A)$

Sia
$$A = \{-1, 0, 1\}$$
 e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \cup B) \cap (B \cup A) = (A \cup B)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

RISPOSTA

Sia $A = \{-1, 0, 1\}$ e $B = \{1, 2\}$.

QUIZ7

$$(0,1) \in B \times A$$

$$(-1,1) \in (A \times B) \cap (B \times A)$$

$$(-1,1) \in (A \times B) \setminus (B \times A)$$

$$(A \cup B) \cap (B \cup A) \quad ((4.4)$$

$$(A \times B) \cap (B \times A) = \{(1,1)\}$$

FALSO

INDIETRO AVANTI

RISPOSTA

Sbagliato: l'unica coppia che appartiene sia a $A \times B$ che a $B \times A$ è (1,1) qundi $(A \times B) \cap (B \times A) = \{(1,1)\}$

CARDINALITA' DEL PRODOTTO CARTESIANO DI INSIEMI FINITI

NOTA BENE

Se A ha n elementi, B ha m elementi, allora $A \times B$ ha $n \cdot m$ elementi, ovvero,

$$|A\times B|=|A|\cdot |B|.$$

Possiamo facilmente convincerci di questo con una tabella in cui abbiamo sistemato le coppie appartenenti ad $A \times B$

	<i>b</i> ₁	b_2	b_3		b_m
a ₁	(a_1,b_1)	(a_1, b_2)	(a_1, b_3)		(a_1,b_m)
a ₂	(a_2, b_1)	(a_2, b_2)	(a_2, b_3)		(a_2,b_m)
:	:	:	:	:	:
an	(a_n,b_1)	(a_n,b_2)	(a_n,b_3)		(a_n,b_m)