Problem 1 (2.7.1).

Proof. First we will show that N is normal. Then given $g \in N$ for all $x \in G$ there exists an $h \in H$ such that $g = xhx^{-1}$. Let $k \in G$ then $kgk^{-1} = h \in H$ as $g \in k^{-1}Hk$. However $g \in k^{-1}xHx^{-1}k$ for any $x \in G$. It then follows that

$$h = kgk^{-1} = kk^{-1}xh'x^{-1}kk^{-1} = xh'x$$

which implies that $h \in xHx^{-1}$ for all $x \in G$ and therefore $h \in N$. Therefore N is a normal subgroup of G.

Now we will show that N is the largest normal subgroup of G contained in H. Let M be a subgroup of G such that $M \subseteq G$ and $M \subseteq H$. Then given $g \in M$ and $x \in G$ we have $x^{-1}gx = h \in M$. However this implies that $g = xhx^{-1}$ for all x and since $M \subseteq H$ we have that $h \in H$ and therefore $g \in N$ and M < N.

Therefore since N is normal and normal subgroup contained in H is contained in N we have that N is the largest normal subgroup contained in H.

Problem 2 (2.7.2).

Proof. a) For reflexivity, since $H, K \leq G$ we have $exe = x \in HxK$.

For symmetry if $x \sim y$ then $x \in HyK$ which implies that x = hyk for some $h \in H$ and $k \in K$. However since $H, G \leq G$ we have that $h^{-1}xk^{-1} = y$ which implies that $y \in HxK$ and therefore $y \sim x$.

For transitivity suppose that we have $x \sim y$ and $y \sim z$. Then as before we have x = hyk and y = h'zk'. It then follows that x = hh'zk'k which implies that $x \in HzK$ and therefore $x \sim z$.

Let \bar{x} denote the equivalence class of x. Then if $y \in HxK$ by definition $y \sim x$ and $y \in X$. Otherwise if $y \in \bar{x}$ by definition $y \sim x$ which implies that $y \in HxK$.

Therefore \sim is an equivalence relation, the equivalence classes are of the form HxK, and as such $H \setminus G/K$ forms a partition of G.

b)

c)

Problem 3 (2.8).

Proof. 1. We'll start by showing that $C_G(A)$ is a subgroup. If we have $g, h \in C_G(A)$ then gha = gah = agh so it is closed under the group operation. Then if $g \in C_G(A)$ we have ga = ag. Multiply on the left by and right by g^{-1} and we get $ag^{-1} = g^{-1}a$. Therefore $C_G(A)$ is a subgroup.

Next consider $N_G((A))$. If we have $g, h \in N_G(A)$ then $hah^{-1} = a' \in A$. This implies that $ga'g^{-1} \in A$ and therefore $ghah^{-1}g^{-1} \in A$. Next let $g \in N_G(A)$ and $a \in A$. Then **Closed under inverses**.

Let $g \in C_G(A)$ then for $a \in A$ we have $gag^{-1} = agg^{-1} = a$ which implies that $g \in N_G(A)$. Therefore $C_G(A) \subset N_G(A)$.

- 2. Let $a \in A$ and $n \in N_G(A)$. Then $nan^{-1} \in A$ be definition of $N_G(A)$. Therefore if $A \leq G$ then $A \subseteq N_G(A)$.
- 3. Let $z \in Z(G)$ and let $g \in G$. Then $zgz^{-1} = gzz^{-1} = g$ which implies that Z(G) is a normal subgroup of G.
- 4. For the group S_3 take the subgroup $\langle (1\ 2) \rangle$. Then $(1\ 2\ 3)(1\ 2)(3\ 2\ 1) = (2\ 3) \notin \langle (1\ 2) \rangle$ which implies that $\langle (1\ 2) \rangle$ is not normal.
- 5. If n is even then the center consists of $r^{n/2}$ and the identity. Otherwise if n is odd then the center is just the identity.
- 6. The subgroups of Q_8 are $<1>,<-1>,< i>,< i>,< j>,< k>, Q_8$. The trivial group and Q_8 are both normal. For the others we have

< -1 >

 $\begin{array}{c|cccc} g & g(-1)g \\ \hline 1 & -1 \\ -1 & \\ i & \\ -i & \\ j & \\ -j & \\ k & \\ -k & \\ \end{array}$

< i >

 $\begin{array}{c|c} g & g(i)g \\ \hline 1 & i \\ -1 & i \\ -i & j \\ -j & k \\ -k & \\ \end{array}$

< j >

 $\begin{array}{c|c} g & g(j)g \\ \hline 1 & j \\ -1 & i \\ -i & j \\ -j & k \\ -k & -k \\ \end{array}$

< k >

g	g(k)g
1	k
-1	
i	
-i	
j	
-j	
k	
-k	

Problem 4 (2.9.1).

Proof. Since |G| = p where p is prime by Lagrange's Theorem (2.12 in notes) the order of any subgroup must be either 1 or p. However the only subgroups that fulfill these criterion are either the trivial group or G itself. Therefore G cannot have any non-trivial subgroups.

Let $g \in G \setminus \{e\}$. Since there is no non-trivial subgroup the element $\langle g \rangle$ must generate the whole group. Then by definition G is cyclic.

Problem 5 (2.9.2).

Proof.

Problem 6 (2.10).

Proof.