Mid-semester feedback

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

Prerequisites

Should I take this class?

- Requires more **math** than traditional CS courses
- Programming experience is required
 consider taking this course at a later time if necessary
- Less emphasis on "how to use this library"
 - ✓ focus on understanding/implementing major algorithms
- High grades require high effort
 - ✓ long and challenging assignments/exams

Math resources

- ▶ Linear Algebra Review and Reference
 - ✓ http://cs229.stanford.edu/summer2019/cs229-linalg.pdf
- Review of Probability Theory
 - ✓ http://cs229.stanford.edu/summer2019/cs229-prob.pdf
- Computational Linear Algebra for Coders
 - ✓ https://github.com/fastai/numerical-linear-algebra
- Mathematics for Machine Learning
 - ✓ https://gwthomas.github.io/docs/math4ml.pdf

Python/Numpy resources

- → Google's Python Class
 - ✓ https://developers.google.com/edu/python/
- From Python to Numpy
 - ✓ https://www.labri.fr/perso/nrougier/from-python-to-numpy/
- Python Numpy Tutorial
 - ✓ http://cs231n.github.io/python-numpy-tutorial/

Grading

Programming assignments

- ▶ Still working on it ...
 - ✓ should finish soon
 - ✓ grading takes significantly more work
- Kaggle and assignment 3
 - ✓ very low number of submissions
 - ✓ not really exciting results

 \checkmark

(old) Grading

- ► Assignments (25%)
 - ✓ ~6 Homework Assignments
- ▶ Midterm Exam (25%)
- ► Technical Presentation (20%)
 - ✓ groups of 2
- Final Project
 - ✓ progress report (5%)
 - ✓ final report (15%)
 - ✓ presentation (10%)

Final Projects

(new) Grading

- → Assignments (30%)
 - ✓ ~6 Homework Assignments
- → Midterm Exam (30%)
 - ✓ second Midterm Exam (keep highest score)
 - ✓ covers everything until the week before the exam
 - ✓ applied on Nov 21st
- Final Project (40%)
 - ✓ progress report (5%)
 - ✓ final report (15%)
 - ✓ poster presentation (10%)
 - ✓ GitHub repo with the source code (10%)

Final project

- Group composition
 - ✓ 2-3 students per group
- Deliverables
 - ✓ progress report (Nov 16th)
 - ✓ final report (Dec 20th)
 - ✓ poster presentation (Dec 21st)
 - ✓ GitHub repository with all the code (Dec 20th)

Topics

- Implement some interesting machine learning application
- Reproduce an academic paper
- ▶ Tweak an existing ML algorithm to solve a particular type of problem
- Your own graduate/undergraduate research

Final Project

- Considerations
 - ✓ pick a publicly available dataset (can also collect your own)
 - ✓ define your ML goals and methods
 - ✓ pick a good framework and learn it
- **▶** Inspiration
 - ✓ visit cs229 project list (http://cs229.stanford.edu/projects.html)
 - ✓ visit SOTA (https://paperswithcode.com/sota)

Outstanding projects

- Demonstrated knowledge of Machine Learning (theory/practice)
- ➤ Significant implementation effort (awesome final product, produces at least one WOW)
- Novelty (can't find this online)
- Use of interactive tools such as:
 - ✓ huggingface, gradio, etc.

straight A in this course

Progress report

- **→** Title
- ▶ Team members
- **→** Introduction
 - \checkmark provide context and existing work for the problem
- Problem Definition
 - ✓ precisely define what is the ML problem
- ▶ Data
 - ✓ provide detailed description of data
- Methods
 - ✓ provide a clear pipeline of the methods used for solving the problem
- Preliminary Results (optional)

Final report

- **→** Title
- ▶ Team members
- Introduction
- Problem definition
- ▶ Data
- Methods
- Experiments
- ▶ Conclusion