TOÁN RÒI RẠC 2

CHUONG 2

Giảng viên: Vũ Văn Thỏa

CHƯƠNG 2. CÁC THUẬT TOÁN TÌM KIẾM TRÊN ĐỒ THỊ

- Bài toán tìm kiếm
- Tìm kiếm theo chiều sâu
- Tìm kiếm theo chiều rộng
- Ung dung

Bài toán tìm kiếm

■ Đặt bài toán:

Input: Đồ thị G = (V, E) gồm n đỉnh, m cạnh; Một đỉnh $u \in G$;

Output: Thứ tự tìm kiếm các đỉnh $v \in G$ bắt đầu từ đỉnh u và các cạnh sử dụng trong quá trình tìm kiếm;

■ Yêu cầu:

Mỗi đỉnh v ∈ G chỉ được tìm kiếm đúng 1 lần.

Phương pháp giải bài toán tìm kiếm

- Thuật toán DFS
- Thuật toán BFS

19/03/2022 TOAN RR2 4/107

2.1 Thuật toán tìm kiếm theo chiếu sâu (Depth-First Search)

- Giới thiệu thuật toán
- Mô tả thuật toán
- Cài đặt và kiểm nghiệm thuật toán

2.1.1 Giới thiệu thuật toán

Bước khởi tạo: Tất cả các đỉnh $v \in G$ chưa được xét (vs[v] = 0) và chưa sử dụng cạnh nào liên thuộc v (e[v] = 0);

Bước 1: Tìm kiếm theo chiều sâu bắt đầu từ u bằng cách thăm u và đánh dấu u được xét (vs[u] = 1);

Bước 2: Chọn một đỉnh v kề với u và chưa được xét;

Bước 3: Nếu chọn được v thì cập nhật e[v]= u (cạnh từ u đến v được sử dụng) và quay lại bước 1 với v đóng vai trò u;

Bước 4: Nếu không chọn được v thì quay lại bước 2 và đỉnh đóng vai trò u là đỉnh i có thứ tự duyệt ngay trước đỉnh đóng vai trò u hiện thời;

Bước 5: Nếu tất cả các đỉnh kề của u đều đã được xét thì dừng;

2.1.2 Mô tả thuật toán

```
Thuật toán: Dfs(u){
            Thăm(u);
            vs[u] = 1;
            for v \in ke(u) do
                if (vs[v] = 0) {
                  e[v]=u; Dfs(v);
```


Ví du 1: Dfs(u) với u = 1, G vô hướng

Dfs(1)= $\{1(0); 2(1); 4(2); 3(4); 5(4); 6(5)\}$

Ví du 2: Dfs(u) với u = 2, G có hướng

Dfs(2)= $\{2(0); 3(2); 1(3); 4(2); 5(4); 6(5)\}$

2.1.3 Cài đặt và kiểm nghiệm thuật toán

```
Cài đặt 1: (Đệ qui)
// G cho bởi ma trận kề a[i][i]
int a[100][100], n, u, vs[100], e[100];
void DfsDequy(int u) { int v;
    cout << u << " ":
    vs[u]= 1;
    for (v= 1; v<=n; v++)
       if (vs[v]==0 \&\& a[u][v]==1){e[v]= u};
                DfsDequy(v);
```


Cài đặt 2: (Sử dụng ngăn xếp)

```
// G cho bởi ma trận kề a[i][j]
int a[100][100], n, u, vs[100], e[100], s[100];
void DfsNx(int u){int top= 1; s[top]= u; vs[u] = 1;
     while (top > 0){ int v = s[top]; int ok = 1;
     for (int i = 1; i < = n; i + +)
        if (vs[i]==0 \&\& a[v][i]==1) \{ top++; s[top] = i; \}
              vs[i] = 1; e[i] = v; ok = 0; break;
        if (ok==1) top--;
```


<u>Ví dụ 3</u>: Dfs(u), u = 1, G vô hướng gồm 13 đỉnh biểu diễn b<u>ởi ma trận kề</u>

```
13
      0
                                   0
                                                               0
                                       0
                                            0
                                                 0
2
                                   0
                                                               0
                                                 0
3
                                   0
                                                 0
                                                               0
4
                    0
                                                 0
                                                               0
5
                                                 0
                                                               0
6
      0
                     0
                                                 0
                                                               0
                0
                                   0
                                                 0
                                                               0
8
      0
                    0
                                                               0
9
      0
                    0
                                   0
LO
      0
                     0
                                   0
                                                 0
11
      0
                    0
                                   0
12
                                   0
                                                               0
13
                     0
                                   0
                                                               0
```

```
Dfs(1)= \{1(0); 2(1); 3(2); 4(3); 7(4); 5(7); 6(5); 12(6); 8(12); 10(12); 9(10); 11(9); 13(11)\}
```


Ví dụ 4: Dfs(u), u = 1, G có hướng gồm 13 đỉnh biểu diễn bởi ma trận kề

```
13
                                                              0
          0
                        0
                                                              0
          0
                        0
          0
                                                              0
          0
                        0
                                      0
                                                              0
          0
                        0
                                       0
                                                              0
          0
               0
                        0
                                      0
 8
          0
          0
                                      0
                                                     0
10
                        0
11
                        0
12
          0
                        0
                                                              0
                        0
                                       0
                                                          0
                                                              0
```

```
Dfs(1)= \{1(0); 6(1); 10(6); 2(10); 3(2), 9(3); 5(9); 7(5); 11(7); 8(11); 4(8); 12(8); 13(7)\}
```


Độ phức tạp của thuật toán DFS

Độ phức tạp của thuật toán DFS phụ thuộc vào phương pháp biểu diễn đồ thị:

- Biểu diễn đồ thị bằng ma trận kề
 - Độ phức tạp: O(n²), với n là số đỉnh;
- Biểu diễn đồ thị bằng danh sách cạnh
 Độ phức tạp: O(nxm), với n là số đỉnh, m là số cạnh;
- Biểu diễn đồ thị bằng danh sách kề

Độ phức tạp: O(n), với n là số đỉnh;

19/03/2022 TOAN RR2 14/107

2.2 Thuật toán tìm kiếm theo chiều rộng (Breadth - first Search)

- Giới thiệu thuật toán
- Mô tả thuật toán
- Cài đặt và kiểm nghiệm thuật toán

2.2.1 Giới thiệu thuật toán

- Bước khởi tạo: Tất cả các đỉnh v ∈ G chưa được xét (vs[v]= 0) và chưa sử dụng cạnh liên thuộc v (e[v]= 0);
- **Bước 1**: Xây dựng hàng đợi q bắt đầu từ u và đánh dấu u đã xét (vs[u] = 1);
- **Bước 2**: Nếu q rỗng thì kết thúc. Ngược lại, lấy v ra khỏi hàng đợi và thăm v;
- **Bước 3**: Đưa vào hàng đợi tất các đỉnh i kề với v và chưa được xét, đánh dấu i đã xét (vs[i]= 1), cập nhật e[i]= v (cạnh từ v đến i được sử dụng);
- Bước 4: Quay lại bước 2.

2.2.2 Mô tả thuật toán

```
Thuật toán: Bfs(u){ q = \emptyset;
              <Đưa u vào q>;
               vs[u] = 1;
               while q \neq \emptyset { <Lấy v ra khỏi q>; Thăm(v);
                   for i \in ke(v) do
                       vs[i] = 1; e[i] = v;
```


<u>Ví dụ 5</u>: Bfs(u), u = 1, G vô hướng

Bfs(1)= $\{1(0); 2(1), 3(1); 4(2), 5(2); 6(4)\}$

Vi du 6: Bfs(u), u = 2, G có hướng

Bfs(2)= $\{2(0); 3(2), 4(2), 5(2); 1(3); 6(5)\}$

2.2.3 Cài đặt và kiểm nghiệm thuật toán

```
// G cho bởi ma trận kề a[i][j]
int a[100][100], n, u, vs[100], e[100], q[100];
void Bfs(int u){ int v, dq = 1, cq = 0;
       cq++; q[cq] = u; vs[u] = 1;
       while (dq \le cq)\{ v = q[dq]; dq++;
            cout << v << " ":
            for (int i = 1; i < = n; i + +)
               if (vs[i]==0 \&\& a[v][i]==1) {
                 cq++; q[cq] = i; vs[i] = 1; e[i] = v;
```


Ví dụ 7: Bfs(u), u = 1, G vô hướng gồm 13 đỉnh biểu diễn bởi ma trận kề

	. 1	2	3	4	5	6	7	8	9	10	11	12	13	
1	0	1	1	1	0	0	0	0	0	0	0	0	0	
2	1	0	1	1	0	1	0	0	0	0	0	0	0	
3	1	1	0	1	1	0	0	0	0	0	0	0	0	
4	1	1	1	0	0	0	1	0	0	0	0	0	0	
5	0	0	1	0	0	1	1	1	0	0	0	1	0	
6	0	1	0	O	1	0	1	O	O	0	0	1	0	
7	0	0	O	1	1	1	0	1	O	0	0	O	0	
8	0	0	O	0	1	0	1	O	O	0	0	1	0	
9	0	0	0	0	0	0	0	0	O	1	1	O	1	
LO	0	0	O	0	0	0	0	0	1	0	1	1	1	
11	0	0	O	0	0	0	0	O	1	1	0	0	1	
12	0	0	0	0	1	1	0	1	0	1	0	0	0	
<u>13</u>	0	0	O	0	0	0	0	O	1	1	1	0	0	

Bfs(1)= {1(0); 2(1), 3(1), 4(1); 6(2); 5(3); 7(4); 12(6); 8(5); 10(12); 9(10), 11(10), 13(10)}

<u>Ví dụ 8</u>: Bfs(u), u = 1, G có hướng gồm 13 đỉnh biểu diễn bởi ma trận kề

```
13
                                                              0
          0
                        0
                                                               0
          0
          0
                                                               0
          0
                        0
                                       0
                                                               0
          0
                                       0
                                                               0
          0
               0
                        0
                                       0
          0
          0
                                       0
                                                     0
10
                        0
                        0
12
          0
                        0
                                                               0
                        0
                                       0
                                                          0
                                                               0
```

Bfs(1)= $\{1(0); 6(1); 10(6), 12(6); 2(10), 3(10); 4(12); 8(2); 9(3), 13(3); 5(9), 7(9); 11(13)\}$

Độ phức tạp thuật toán BFS

Độ phức tạp của thuật toán BFS phụ thuộc vào phương pháp biểu diễn đồ thị:

- Biểu diễn đồ thị bằng ma trận kề
 - Độ phức tạp: O(n²), với n là số đỉnh;
- Biểu diễn đồ thị bằng danh sách cạnh
 Độ phức tạp: O(nxm), với n là số đỉnh, m là số cạnh;
- Biểu diễn đồ thị bằng danh sách kề Độ phức tạp: O(n), với n là số đỉnh;

Ghi chú

- Khi thực hiện Dfs(u)/Bfs(u) các đỉnh được duyệt đến là các đỉnh có đường đi tới xuất phát từ u.
- Đối với đồ thị vô hướng G, tập hợp các đỉnh thuộc Dfs(u)/Bfs(u) là một thành phần liên thông của G chứa đỉnh u.

19/03/2022 TOAN RR2 24/10⁻¹

2.3 Ứng dụng các thuật toán tìm kiếm trên đồ thị

- Duyệt tất cả các đỉnh của đồ thị
- Tìm đường đi giữa các đỉnh trên đồ thị
- Tính liên thông trong đồ thị vô hướng
- Đỉnh trụ và cạnh cầu trong đồ thị vô hướng
- Tính liên thông trong đồ thị có hướng

2.3.1 Duyệt tất cả các đỉnh của đồ thị

- Input: Đồ thị G = (V, E) gồm n đỉnh, m cạnh;
- Output: Thứ tự thăm tất cả các đỉnh v ∈ G bắt đầu từ đỉnh 1;

19/03/2022 TOAN RR2 **26/107**

Mô tả thuật toán

Thuật toán: Duyệt tất cả các đỉnh của đồ thị;

- **Bước khởi tạo**: Tất cả các đỉnh v ∈ G chưa được thăm (vs[v]= 0);
- **Bước 1**: Nếu tất cả các đỉnh đều được thăm thì kết thúc;
- Bước 2: Chọn v ∈ G chưa được thăm (bắt đầu từ v = 1);
- Bước 3: Thực hiện DFS(v)/BFS(v);
- Bước 4: Quay lại bước 1;


```
Cài đặt 1 (Sử dụng DFS):
void DuyetDfs(){int v;
   for (v = 1; v \le n; v++) {
       vs[v] = 0; e[v] = 0;
   for (v = 1; v \le n; v++)
      if (vs[v] == 0) DfsDequy(v);
```



```
Cài đặt 2 (Sử dụng BFS):
void DuyetBfs(){int v;
   for (v = 1; v \le n; v++) \{
              vs[v] = 0; e[v] = 0;
   for (v = 1; v \le n; v++)
      if (vs[v] == 0) Bfs(v);
```


Ví dụ 9: Duyệt các đỉnh của đồ thị vô hướng cho bởi danh sách kề

```
Ke(1) = \{6, 7\} Ke(2) = \{8, 9, 10\} Ke(3) = \{4\} Ke(4) = \{3\} Ke(5) = \{\} Ke(6) = \{1, 7\} Ke(7) = \{1, 6\} Ke(8) = \{2, 10\} Ke(9) = \{2, 10\} Ke(10) = \{2, 8, 9\}
```

Sử dụng DFS:

```
Dfs(1) = \{1(0); 6(1); 7(6)\}; Dfs(2) = \{2(0); 8(2); 10(8); 9(10)\}
```

- $Dfs(3) = {3(0); 4(3)}; Dfs(5) = {5(0)}$
- ⇒ Thứ tự duyệt: 1, 6, 7, 2, 8, 10, 9, 3, 4, 5

Sử dụng BFS:

```
Bfs(1)= \{1(0); 6(1), 7(1)\}; Bfs(2)= \{2(0); 8(2), 9(2), 10(2)\}
```

Bfs(3)=
$$\{3(0); 4(3)\}$$
; Bfs(5)= $\{5(0)\}$

⇒ Thứ tự duyệt: 1, 6, 7, 2, 8, 9, 10, 3, 4, 5

Ví dụ 10: Duyệt các đỉnh của đồ thị có hướng cho bởi danh sách kề

$$Ke(1) = \{6, 7\}$$
 $Ke(2) = \{8, 9\}$ $Ke(3) = \{4\}$ $Ke(4) = \{5\}$ $Ke(5) = \{3\}$ $Ke(6) = \{7\}$ $Ke(7) = \{1\}$ $Ke(8) = \{10\}$ $Ke(9) = \{10\}$ $Ke(10) = \{2\}$

■ Sử dụng DFS:

```
Dfs(1)= \{1(0); 6(1); 7(6)\}; Dfs(2)= \{2(0); 8(2); 10(8); 9(2)\}
Dfs(3)= \{3(0); 4(3); 5(4)\}
```

⇒ Thứ tự duyệt: 1, 6, 7, 2, 8, 10, 9, 3, 4, 5

Sử dụng BFS:

```
Bfs(1)= \{1(0); 6(1), 7(1)\}; Bfs(2)= \{2(0); 8(2), 9(2); 10(8)\}\}
Bfs(3)= \{3(0); 4(3); 5(4)\}
\Rightarrow Thứ tự duyệt: 1, 6, 7, 2, 8, 9, 10, 3, 4, 5
```


2.3.2 Tìm đường đi giữa các đỉnh trên đồ thi

Khái niệm

- Đường đi độ dài k từ u tới v ∈ G là dãy các đỉnh x₀, x₁, ..., x_k, trong đó x₀ = u, x_k = v và (x_{i-1}, x_i) ∈ E, 1 ≤ i ≤ k.
- Đường đi là đơn nếu không chứa một cạnh quá một lần.

Định lý (Đếm số lượng đường đi giữa cặp đỉnh)

Cho G là đồ thị với ma trận kề A gồm n đỉnh đánh số 1, 2, ..., n. Số các đường đi khác nhau độ dài r từ i đến j (r nguyên dương) bằng giá trị của phần tử (i, j) của ma trận A^r.

Ví dụ 11: Tìm số lượng đường đi độ dài 4 từ đỉnh 1 đến 4 trên đồ thị vô hướng

Có ma trân kể của G:

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \Rightarrow A^{4} = \begin{bmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{bmatrix} \Rightarrow \text{c\'o } 8 \text{ dw\'ong d\'i d\'o dài } 4 \text{ từ } 1 \text{ d\'en } 4.$$

TOAN RR2 19/03/2022 33/107

Tìm đường đi trên đồ thị từ đỉnh u đến đỉnh v

Input: Đồ thị G = (V, E) gồm n đỉnh, m cạnh; Hai đỉnh u, $v \in G$;

Output: Đường đi từ đỉnh u đến đỉnh v;

Mô tả thuật toán

Thuật toán: Tìm đường đi từ đỉnh u đến đỉnh v;

Bước khởi tạo: Tất cả $x \in G$ chưa được thăm (vs[x]= 0) và chưa xác định cạnh (e[x] = 0);

Bước 1: Thực hiện DFS(u)/BFS(u);

Bước 2: (Trả lại kết quả)

Nếu $vs[v] = 0 \Rightarrow không có đường đi từ u đến v;$

Nếu vs[v] = 1 \Rightarrow xuất đường đi từ u đến v bằng cách sử dụng e[];


```
Cài đặt 1 (Sử dụng DFS):
int a[100][100], n, u, v, vs[100], e[100];
void DuongDiDfs(int u, int v) {
     for (int x = 1; x <= n; x ++ ){ vs[x] = 0; e[x] = 0;}
     DfsDequy(u);
     if (vs[v] == 1){ int t = v;
        while(t > 0){ cout << t << ";
          t = e[t];
           }; else
         cout << " NO ";
```



```
Cài đặt 2 (Sử dụng BFS):
int a[100][100], n, u, v, vs[100], e[100];
void DuongDiBfs(int u, int v) {
     for (int x=1; x<=n; x++){ vs[x]=0; e[x]=0;}
     Bfs(u);
     if (vs[v] == 1)\{ int t = v;
        while(t> 0){ cout << t << " <- ";
          t=e[t];
           }; else
        cout << " NO ";
```


Ví dụ 12: Tìm đường đi từ u= 2 đến v= 13 trên G vô hướng gồm 13 đỉnh cho bởi ma trận kề

	. 1	2	3	4	5	6	7	8	9	10	11	12	13	
1	0	1	1	1	0	0	0	O	O	0	0	0	0	
2	1	0	1	1	0	1	0	O	0	0	O	0	0	
3	1	1	0	1	1	0	0	0	O	0	0	O	0	
4	1	1	1	0	0	0	1	O	O	O	O	O	0	
5	0	0	1	0	0	1	1	1	O	O	O	1	0	
6	0	1	O	O	1	0	1	0	O	0	0	1	0	
7	0	0	O	1	1	1	O	1	O	O	0	O	0	
8	0	0	O	O	1	0	1	O	O	O	O	1	0	
9	0	0	O	O	0	0	O	O	O	1	1	O	1	
LO	0	0	0	O	0	0	0	O	1	O	1	1	1	
11	0	0	O	0	0	0	0	O	1	1	O	0	1	
12	0	0	O	0	1	1	0	1	O	1	O	0	0	
<u>13</u>	0	0	0	0	0	0	0	0	1	1	1	0	0	

 $Dfs(2) = \{2(0); 1(2); 3(1); 4(3); 7(4); 5(7); 6(5); 12(6); 8(12); 10(12); 9(10); 11(9); 13(11)\}$

⇒ Đường đi từ 2 đến 13: 13<-11<-9<-10<-12<-6<-5<-7<-4<-3<-1<-2

 $Bfs(2) = \{2(0); 1(2), 3(2), 4(2), 6(2); 5(3); 7(4); 12(6); 8(5); 10(12); 9(10), 11((10), 13(10)\}$

⇒ Đường đi từ 2 đến 13: 13<--10<-12<-6<-2

Ví dụ 13: Tìm đường đi từ u= 13 đến v= 1 trên G có hướng gồm 13 đỉnh cho bởi ma trận kề

	1	2	3	4	5	6	7	8	9	10	11	12	13	
1	0	0	0	0	0	1	0	0	0	0	O	0	0	
2	o	0	1	0	0	0	0	1	0	O	O	O	0	
3	0	0	0	0	0	0	0	0	1	0	O	0	1	
4	1	0	0	0	0	1	0	0	0	O	O	O	0	
5	0	0	0	0	0	0	1	0	0	0	O	0	0	
6	0	0	0	0	0	0	0	0	0	1	O	1	0	
7	0	0	0	0	0	0	0	0	0	O	1	0	1	
8	0	0	0	1	0	0	0	0	0	O	O	1	0	
9	0	0	0	0	1	0	1	0	0	O	O	O	0	
10	0	1	1	0	0	O	0	0	0	O	O	O	0	
11	0	1	0	0	0	O	0	1	0	O	O	O	0	
<mark>12</mark>	o	0	O	1	o	O	O	O	o	1	O	O	O	
13	O	0	0	0	0	O	0	0	1	0	1	O	0	

 $Dfs(13) = \{13(0); 9(13); 5(9); 7(5); 11(7); 2(11); 3(2); 8(2); 4(8), 1(4); 6(1), 10(6); 12(6)\}$

⇒ Đường đi từ 13 đến 1: 1<-4<-8<-2<-11<-7<-5<-9<-13

 $Bfs(13) = \{13(0); 9(13), 11(13); 5(9), 7(9); 2(11), 8(11); 3(2); 4(8), 12(8); 1(4), 6(4); 10(12)\}$

⇒ Đường đi từ 13 đến 1: 1<-4<-8<-11<13

Ghi chú:

- Độ phức tạp tính toán của thuật toán tìm đường đi từ đỉnh u đến đỉnh v thuộc G bằng độ phức tạp của DFS(u)/BFS(u) sử dụng cài đặt.
- Đường đi từ u đến v sử dụng BFS là đường đi có ít canh nhất.

2.3.3 Tính liên thông trong đồ thị vô hướng

- <u>Định nghĩa</u>: Một đồ thị vô hướng *liên thông* ⇔ có đường đi giữa hai đỉnh bất kỳ.
- Đồ thị vô hướng G không liên thông là hợp các đồ thị con liên thông, không có đỉnh chung gọi là các thành phần liên thông của G.
- Đồ thị vô hướng G liên thông ⇔ số thành phần liên thông của G là 1.

19/03/2022 TOAN RR2 41/107

- Input: Đồ thị vô hướng G = (V, E) gồm n đỉnh và m cạnh;
- Output: Giá trị 1 nếu G liên thông, giá trị 0 nếu G không liên thông;

19/03/2022 TOAN RR2 42/107

Mô Tả thuật toán

Thuật toán: Kiểm tra tính liên thông của đồ thị vô hướng;

Bước 1: Thực hiện Dfs(1)/Bfs(1);.

Bước 2: Tính số lượng k các đỉnh được duyệt;

Bước 3: Nếu k= n xuất 1; nếu k < n xuất 0.


```
Cài đặt 1: Sử dụng DFS
// G cho bởi ma trận kề a[i][j]
int a[100][100], vs[100], n;
int ItDfs() {int v;
 for (v=1; v \le n; v++) v \le [v] = 0;
 DfsDequy(1);
    for (v=1; v \le n; v++) if (v \le [v] == 0) return(0);
      return(1);
```



```
Cài đặt 2: Sử dụng BFS
// G cho bởi ma trận kề a[i][i]
int a[100][100], vs[100], n;
int ItBfs() {int v;
 for (v=1; v \le n; v++) v \le [v] = 0;
 Bfs(1);
     for (v=1; v \le n; v++) if (v \le [v]==0) return(0);
   return(1);
```


Ví dụ 14: Tính liên thông của G vô hướng

- Cách 1: Dfs(1)= {1(0); 2(1); 4(2); 3(4); 5(4); 6(5)} = V ⇒ G liên thông
- Cách 2: Bfs(1)= {1(0); 2(1), 3(1); 4(2), 5(2); 6(4)} = V ⇒ G liên thông

Thành phần liên thông của đồ thị vô hướng

Input: Đồ thị vô hướng G = (V, E) gồm n đỉnh và m cạnh;

Output:

- Số k các thành phần liên thông của G;
- Số thứ tự của thành phần liên thông chứa u của mọi đỉnh u;

19/03/2022 TOAN RR2 47/107

Mô tả thuật toán

Thuật toán: Tìm các thành phần liên thông của đồ thị vô hướng;

Bước khởi tạo: k= 0; lt[u]= 0 với mọi đỉnh u;

Bước 1: Nếu mọi đỉnh u đều có lt[u] > 0 thì chuyển bước 3, ngược lại chọn đỉnh u có lt[u] = 0;

Bước 2: k= k + 1, thực hiện Dfs(u)/Bfs(u) và gán cho các đỉnh i được duyệt tới lt[i]= k (thay vs[] bởi lt[]); quay lại bước 1;

Bước 3: Xuất k và lt[u] với mọi đỉnh u;

Cài đặt thuật toán

```
Cài đặt 1: Sử dụng DFS
// G cho bởi ma trận kề a[i][j]
int a[100][100], lt[100], n;
int tpltDfs()\{int u, int k=0;
  for (u= 1; u \le n; u++) lt[u]= 0;
  for (u= 1; u \le n; u++) if (lt[u] == 0) {
       k++; DfsDequy(u); }
 return(k);
```


Cài đặt thuật toán

```
Cài đặt 2: Sử dụng BFS
// G cho bởi ma trận kề a[i][j]
int a[100][100], lt[100], n, dq, cq, q[100];
int tpltBfs()\{int u, int k=0;
  for (u = 1; u \le n; u++) |t[u] = 0;
  for (u= 1; u \le n; u++) if (lt[u] == 0) {
       k++; Bfs(u); }
 return(k);
```


Ví dụ 15: Tìm số thành phần liên thông của G vô hướng cho bởi danh sách kề

```
Ke(1) = \{6, 7\} Ke(2) = \{8, 9, 10\} Ke(3) = \{4\} Ke(4) = \{3\} Ke(5) = \{\} Ke(6) = \{1, 7\} Ke(7) = \{1, 6\} Ke(8) = \{2, 10\} Ke(9) = \{2, 10\} Ke(10) = \{2, 8, 9\}
```

Sử dụng DFS:

```
Dfs(1)= \{1(0); 6(1); 7(6)\}; Dfs(2)= \{2(0); 8(2); 10(8); 9(10)\}
Dfs(3)= \{3(0); 4(3)\}; Dfs(5)= \{5(0)\}
```

⇒ Số thành phần liên thông k= 4;

```
Thành phần liên thông 1= { 1, 6, 7};
```

Thành phần liên thông 2= {2, 8, 9, 10};

Thành phần liên thông 3= {3, 4};

Thành phần liên thông 4= {5};

Ví dụ 15: Sử dụng BFS

```
Ke(1) = \{6, 7\} Ke(2) = \{8, 9, 10\} Ke(3) = \{4\} Ke(4) = \{3\} Ke(5) = \{\} Ke(6) = \{1, 7\} Ke(7) = \{1, 6\} Ke(8) = \{2, 10\} Ke(9) = \{2, 10\} Ke(10) = \{2, 8, 9\}
```

Sử dụng BFS:

```
Bfs(1)= \{1(0); 6(1), 7(1)\}; Bfs(2)= \{2(0); 8(2), 9(2), 10(2)\}\} Bfs(3)= \{3(0); 4(3)\}; Bfs(5)= \{5(0)\}\} \Rightarrow Số thành phần liên thông k= 4; Thành phần liên thông 1 = \{1, 6, 7\}; Thành phần liên thông 2 = \{2, 8, 9, 10\}; Thành phần liên thông 3 = \{3, 4\}; Thành phần liên thông 4 = \{5\};
```


2.3.4 Đỉnh trụ và cạnh cầu trong đồ thị vô hướng

- Đỉnh u∈ G vô hướng là đỉnh trụ (đỉnh cắt hay đỉnh khớp) ⇔ xóa u và các cạnh liên thuộc sẽ tạo ra một đồ thị mới G\{u} có nhiều thành phần liên thông hơn G.
- Cạnh $e=(u,v) \in G$ là cạnh cầu (hay cạnh cắt) \Leftrightarrow xóa e sẽ được đồ thị mới $G\setminus\{e\}$ có nhiều thành phần liên thông hơn G.

19/03/2022 TOAN RR2 53/107

Tìm các đỉnh trụ của đồ thị vô hướng

- Input: Đồ thị vô hướng G = (V, E) gồm n đỉnh và m cạnh;
- Output: Các đỉnh trụ của G;

Mô tả thuật toán

Thuật toán: Tìm đỉnh trụ của đồ thị vô hướng G;

Bước 1: Tìm số k thành phần liên thông của G;

Bước 2: Xét mọi đỉnh $u \in G$:

2.1: Bở u và các cạnh liên thuộc u và tính số thành phần liên thông l của đồ thị G\{u};

2.2: Nếu l > k thì ghi nhận u là đỉnh trụ;

2.3: Trả lại u và các cạnh liên thuộc u;

Bước 3: Xuất danh sách các đỉnh trụ;

Cài đặt thuật toán

Sinh viên tự cài đặt xem như bài tập

Ví dụ 16: Tìm đỉnh trụ của G vô hướng cho bởi danh sách kề

$$Ke(1) = \{2, 3, 4\}$$
 $Ke(2) = \{1, 3\}$ $Ke(3) = \{1, 2\}$ $Ke(4) = \{1, 5, 6\}$ $Ke(5) = \{4, 6\}$ $Ke(6) = \{4, 5\}$

Sử dụng DFS:

Số đỉnh n = 6

Dfs(1)= $\{1(0); 2(1); 3(2); 4(1); 5(4); 6(5)\}$

 \Rightarrow Số thành phần liên thông của G: $\hat{k} = 1$.

Ví dụ 16: Tìm đỉnh trụ với DFS

$$Ke(1) = \{2, 3, 4\}$$
 $Ke(2) = \{1, 3\}$ $Ke(3) = \{1, 2\}$ $Ke(4) = \{1, 5, 6\}$ $Ke(5) = \{4, 6\}$ $Ke(6) = \{4, 5\}$

Lập bảng:

(۱) جر

Đỉnh u	Số thành phần liên thông của G\{u}	l> k?	Đỉnh trụ
1	Dfs(2)= {2(0);3(2)}, Dfs(4)= {4(0);5(4);6(5)} \Rightarrow I = 2	Yes	1
2	Dfs(1)= $\{1(0);3(1);4(1);5(4);6(5)\} \Rightarrow l = 1$	No	-
3	Dfs(1)= $\{1(0);2(1);4(1);5(4);6(5)\} \Rightarrow l = 1$	No	-
4	Dfs(1)= $\{1(0);2(1);3(2), Dfs(5)=\{5(0);6(5)\} \Rightarrow l=2$	Yes	4
5	Dfs(1)= $\{1(0);2(1);3(2);4(1);6(4)\} \Rightarrow l = 1$	No	-
6	Dfs(1)= $\{1(0);2(1);3(2);4(1);5(4)\} \Rightarrow l = 1$	No	-

Kết luận: G có 2 đỉnh trụ là 1 và 4.

Tìm các cạnh cầu của đồ thị vô hướng

- Input: Đồ thị vô hướng G = (V, E) gồm n đỉnh và m cạnh;
- Output: Các cạnh cầu của G;

Mô tả thuật toán

Thuật toán: Tìm cạnh cầu của đồ thị vô hướng G;

Bước 1: Tìm số k thành phần liên thông của G;

Bước 2: Xét mọi cạnh $e \in G$:

2.1: Bỏ cạnh e = (u,v) (các đỉnh u và v vẫn giữ lại) và tính số thành phần liên thông l của đồ thị G\{e};

2.2: Nếu l > k thì ghi nhận e là cạnh cầu;

2.3: Trả lại e;

Bước 3: Xuất danh sách các cạnh cầu;

Cài đặt thuật toán

Sinh viên tự cài đặt xem như bài tập

Ví dụ 17: Tìm cạnh cầu của G vô hướng cho bởi danh sách kề

$$Ke(1) = \{2, 3, 4\}$$
 $Ke(2) = \{1, 3\}$ $Ke(3) = \{1, 2\}$ $Ke(4) = \{1, 5, 6\}$ $Ke(5) = \{4, 6\}$ $Ke(6) = \{4, 5\}$

Sử dụng BFS:

Số đỉnh n = 6

Bfs(1)= $\{1(0); 2(1), 3(1), 4(1); 5(4), 6(4)\}$

 \Rightarrow Số thành phần liên thông của G: k = 1.

Ví dụ 17: Tìm cạnh cầu với BFS

$$Ke(1) = \{2, 3, 4\}$$
 $Ke(2) = \{1, 3\}$ $Ke(3) = \{1, 2\}$ $Ke(4) = \{1, 5, 6\}$ $Ke(5) = \{4, 6\}$ $Ke(6) = \{4, 5\}$

Lập bảng:

	cạnh e	Số thành phần liên thông của G\{e}	l> k?	Cạnh cầu
<u></u>	(1,2)	Bfs(1)= $\{1(0); 3(1), 4(1); 2(3); 5(4), 6(4)\} \Rightarrow l=1$	No	
	(1,3)	Bfs(1)= $\{1(0); 2(1), 4(1); 3(2); 5(4), 6(4)\} \Rightarrow l=1$	No	
<u></u>	(1,4)	Bfs(1)= $\{1(0); 2(1), 3(1)\}$, Bfs(4)= $\{4(0); 5(4), 6(4)\} \Rightarrow l= 2$	Yes	(1,4)
	(2,3)	Bfs(1)= $\{1(0); 2(1), 3(1), 4(1); 5(4), 6(4)\} \Rightarrow l=1$	No	
	(4,5)	Bfs(1)= $\{1(0); 2(1), 3(1), 4(1); 6(4); 5(6)\} \Rightarrow l=1$	No	
	(4,6)	Bfs(1)= $\{1(0); 2(1), 3(1), 4(1); 5(4); 6(5)\} \Rightarrow l=1$	No	
	(5,6)	Bfs(1)= $\{1(0); 2(1), 3(1), 4(1); 5(4), 6(4)\} \Rightarrow l=1$	No	

Kết luận: G có 1 cạnh cầu là (1,4).

- Khi kiểm tra đỉnh u có phải là đỉnh trụ cần xét đồ thị G\{u} không chứa đỉnh u.
- Khi kiểm tra cạnh e= (u, v) có phải là cạnh cầu cần xét đồ thị G\{e} không chứa cạnh e những vẫn bao gồm cả hai đỉnh u và v.

2.3.5 Tính liên thông trong đồ thị có hướng

<u>Định nghĩa</u>.

- Đồ thị có hướng G là *liên thông mạnh* ⇔ có đường đi giữa hai đỉnh bất kỳ u, v ∈ G.
- Đồ thị có hướng G là *liên thông yếu* ⇔ đồ thị vô hướng nền là liên thông
- ⇒ đồ thị liên thông mạnh thì cũng liên thông yếu.
- Đồ thị có hướng G không liên thông mạnh là hợp các đồ thị con có hướng liên thông mạnh, không có đỉnh chung gọi là các thành phần liên thông mạnh của G.

Kiểm tra tính liên thông của đồ thị có hướng

- Input: Đồ thị có hướng G = (V, E) gồm n đỉnh và m cạnh;
- Output: Giá trị 1 nếu G liên thông mạnh, giá trị 2 nếu G không liên thông mạnh nhưng liên thông yếu, giá trị 0 trong trường hợp còn lại;

Mô tả thuật toán

Thuật toán: Kiểm tra tính liên thông của đồ thị có hướng

Bước khởi tạo: i = 1;

Bước 1: Thực hiện Dfs(i)/Bfs(i) và Tính số k các đỉnh đã duyệt;

Bước 2: Nếu k < n chuyển bước 4; nếu k = n thì chuyển bước 3;

Bước 3: Nếu i=n xuất 1, nếu i< n thì i= i+1 và quay lại bước 1;

Bước 4: Thực hiện Dfs(1)/Bfs(1) khi coi các cạnh của đồ thị là vô hướng và Tính số k các đỉnh đã duyệt;

Bước 5: Nếu k < n xuất 0; nếu k = n thì xuất 2;

Cài đặt thuật toán

Sinh viên tự cài đặt xem như bài tập

Ví dụ 18: Kiểm tra tính liên thông của đồ thị có hướng dạng ma trận kề

Số đỉnh của G là n = 6.

Ví du 18: Sử dụng DFS

Dfs(1)=
$$\{1(0); 2(1); 3(2); 4(2); 5(4); 6(5)\} = V$$

Dfs(2)=
$$\{2(0); 3(2); 1(3); 4(2); 5(4); 6(5)\} = V$$

Dfs(3)=
$$\{3(0); 1(3); 2(1); 4(2); 5(4); 6(5)\} = V$$

Dfs(4)=
$$\{4(0); 3(4); 1(3); 2(1); 5(2); 6(5)\} = V$$

Dfs(5)=
$$\{5(0); 6(5); 4(6); 3(4); 1(3); 2(1)\} = V$$

Dfs(6)=
$$\{6(0); 4(6); 3(4); 1(3); 2(1); 5(2)\} = V$$

Kết luận: G là liên thông mạnh

Ví du 18: Sử dụng BFS

0	1	0	0	0	0
0	0	1	1	1	0
1	0	0	0	0	0
0	0	1	0	1	0
0	0	0	0	0	1
0	0	0	1	0	0

Bfs(1)=
$$\{1(0); 2(1); 3(2), 4(2), 5(2); 6(5)\} = V$$

Bfs(2)=
$$\{2(0); 3(2), 4(2), 5(2); 1(3); 6(5)\} = V$$

Bfs(3)=
$$\{3(0); 1(3); 2(1); 4(2), 5(2); 6(5)\} = V$$

Bfs(4)=
$$\{4(0); 3(4), 5(4); 1(3); 2(1); 6(5)\} = V$$

Bfs(5)=
$$\{5(0); 6(5); 4(6); 3(4); 1(3); 2(1)\} = V$$

Bfs(6)=
$$\{6(0); 4(6); 3(4), 5(4); 1(3); 2(1)\} = V$$

Kết luận: G là liên thông mạnh

Ví dụ 19: Kiểm tra tính liên thông của đồ thị có hướng cho bởi danh sách kề

$$Ke(1) = \{6, 7\}$$
 $Ke(2) = \{8, 9\}$ $Ke(3) = \{4\}$ $Ke(4) = \{5\}$ $Ke(5) = \{3\}$ $Ke(6) = \{7\}$ $Ke(7) = \{1\}$ $Ke(8) = \{10\}$ $Ke(9) = \{10\}$ $Ke(10) = \{2\}$

Sử dụng DFS:

Dfs(1)= $\{1(0); 6(1); 7(6)\} \neq V$

Kết luận: G không liên thông mạnh, không liên thông yếu.

Sử dụng BFS:

Bfs(1)=
$$\{1(0); 6(1), 7(1)\} \neq V$$

Xét đồ thị vô hướng nền của G: Bfs(1)= {1(0); 6(1), 7(1)} ≠ V

Kết luận: G không liên thông mạnh, không liên thông yếu.

Tìm các thành phần liên thông mạnh của đồ thị có hướng

- Input: Đồ thị có hướng G = (V, E) gồm n đỉnh và m cạnh;
- Output:
- Số k các thành phần liên thông mạnh của G;
- Số thứ tự của thành phần liên thông chứa u của mọi đỉnh u;

19/03/2022 TOAN RR2 73/107

Mô tả thuật toán

Thuật toán: Tìm các thành phần liên thông mạnh của đồ thị có hướng

Bước khởi tạo: k= 0; lt[u]= 0 với mọi đỉnh u;

Bước 1: Thực hiện DFS(u)/BFS(u) với mọi u ∈ G và đánh dấu vs[u][v]=1 với mỗi v được duyệt đến;

Bước 2: Nếu mọi đỉnh u đều có It[u] > 0 thì chuyển bước 4, ngược lại chọn đỉnh u có It[u] = 0;

Bước 3: k = k + 1, lt[u] = k và xét tất cả các đỉnh v có vs[u][v] = 1, vs[v][u] = 1 và lt[v] = 0 thì lt[v] = k; quay lại bước 2;

Bước 4: Xuất k và lt[u] với mọi đỉnh u;

Bài toán định chiều đồ thị vô hướng

• Định nghĩa

Phép định chiều đồ thị vô hướng liên thông G là phép biến đổi G thành đồ thị có hướng liên thông mạnh bằng cách định chiều mỗi cạnh vô hướng thành một cung có hướng.

■ Đồ thị vô hướng G = (V,E) được gọi là đồ thị định chiều được nếu có thể biến đổi thành đồ thị có hướng liên thông mạnh bằng một phép định chiều.

19/03/2022 TOAN RR2 75/10

Ví dụ 20: Định chiều đồ thị vô hướng

Điều kiện để đồ thị vô hướng định chiều được

■ Định lý

Đồ thị vô hướng G định chiều được \Leftrightarrow G liên thông và không chứa cạnh cầu.

19/03/2022 TOAN RR2 77/107

Ghi chú: Một số vấn đề nâng cao

Sinh viên tự tìm hiểu một số vấn đề nâng cao:

- Viết chương trình tìm thành phần liên thông mạnh của đồ thị có hướng G
- Chứng minh một đồ thị vô hướng G là định chiều được
- Viết chương trình kiểm tra định chiều được một đồ thị vô hướng
- Chỉ ra một phép định chiều trên một đồ thị vô hướng

Tổng kết chương 2

■ Về lý thuyết:

- Hai thuật toán DFS và BFS
- Ứng dụng DFS/BFS giải quyết các bài toán cụ thể

Về các dạng bài tập

- Cài đặt được các hàm mô tả các thuật toán
- Sử dụng DFS/BFS giải các bài toán theo mẫu

Thảo luận

