ESTIMATING CAUSAL EFFECTS USING PROXY INTERFERENCE NETWORKS

BAR WEINSTEIN DANIEL NEVO

STATISTICS & OR TEL AVIV UNIVERSITY

IDSAI 2025

BACKGROUND

- Causal Inference. Estimate the effect of treatment on an outcome.
- Interference. Treatment of one unit affect the outcomes of others.
- Treatments spreads through a network.
 - ► Nodes: units; Edges: magntiude of pairwise interfernce.

BACKGROUND

- Causal Inference. Estimate the effect of treatment on an outcome.
- Interference. Treatment of one unit affect the outcomes of others.
- Treatments spreads through a network.
 - ► Nodes: units; Edges: magntiude of pairwise interfernce.
- Examples:
 - Social networks. Transmission of information, behavior, encouragements, etc.
 - ► Epidemiology. Mitigating spread of infectious diseases or addictive drugs.
 - ► A/B testing in marketplaces.

THE CHALLENGE

- Accurately measuring social networks is challenging.
- We observe only proxy measurements of the true network.
 - ► Measurements error.
 - ► Multiple sources of data.
 - ► Multilayer networks.
- True network remains latent.

THE CHALLENGE

- Accurately measuring social networks is challenging.
- We observe only proxy measurements of the true network.
 - Measurements error.
 - Multiple sources of data.
 - ► Multilayer networks.
- True network remains latent.

How can we estimate causal effects using proxy networks?

ILLUSTRATIVE EXAMPLE - PALUCK ET AL. (2016)

- Field experiement in 56 middle-schools.
- Study how anti-conflict education spread through social networks.
- Measured social networks using self-reported friendships.
 - ► Bi-layer networks: frequently interacted and best friends.
 - Measured at pre- and post-intervention period.

ILLUSTRATIVE EXAMPLE - PALUCK ET AL. (2016)

- Field experiement in 56 middle-schools.
- Study how anti-conflict education spread through social networks.
- Measured social networks using self-reported friendships.
 - ▶ Bi-layer networks: frequently interacted and best friends.
 - ► Measured at pre- and post-intervention period.
- Which of the networks, if any, is the true network?
- **Objective:** Estimate the intervention effects using the proxy networks.

FORMAL SETUP

- Finite population $i \in \{1, ..., N\}$.
- Treatments: $\mathbf{Z} \in \{0, 1\}^N$.
- Outcomes: $\mathbf{Y} \in \mathbb{R}^N$.
- Covariates/features: X.
- True interference network: $\mathbf{A}^* \in \{0, 1\}^{N \times N}$.
- Proxy networks: $\mathbf{A} = (\mathbf{A}^1, \dots, \mathbf{A}^B)$.

STRUCTURAL CAUSAL MODEL

■ Population-level directed acyclic graph (DAG):

STRUCTURAL CAUSAL MODEL

■ Population-level directed acyclic graph (DAG):

- Requires probabilistic models:
 - 1. True network. $p(\mathbf{A}^*|\mathbf{X},\theta)$.
 - 2. Proxy networks. $p(\mathbf{A}|\mathbf{A}^*, \mathbf{X}, \gamma)$.
 - 3. Outcomes. $p(Y|Z, A^*, X, \eta)$.

STRUCTURAL CAUSAL MODEL

Population-level directed acyclic graph (DAG):

- Requires probabilistic models:
 - 1. True network. $p(\mathbf{A}^*|\mathbf{X},\theta)$.
 - 2. Proxy networks. $p(\mathbf{A}|\mathbf{A}^*, \mathbf{X}, \gamma)$.
 - 3. Outcomes. $p(Y|Z, A^*, X, \eta)$.
- Outcome often simplified to $p(Y_i|Z_i, \mathbf{X}_i, \phi_1(\mathbf{Z}_{-i}, \mathbf{A}^*), \phi_2(\mathbf{X}_{-i}, \mathbf{A}^*), \phi_{3,i}(\mathbf{A}^*))$.

CAUSAL ESTIMANDS

Causal effects are the impact of hypothetical interventions on **Z**. Can be viewed as population-level treatment assignment policies.

CAUSAL ESTIMANDS

Causal effects are the impact of hypothetical interventions on **Z**. Can be viewed as population-level treatment assignment policies.

- 1. Static. $\mathbb{E}[Y_i | do(Z = z), X, A^*]$.
 - ► Treating all (**z** = 1) versus none (**z** = 0).
- 2. **Dynamic.** $\mathbb{E}[Y_i|do(\mathbf{Z}=h(\mathbf{X},\mathbf{A}^*)),\mathbf{X},\mathbf{A}^*].$
 - ► Treating units with specific features, e.g., above certain age.
- 3. Stochastic. $\mathbb{E}_{\pi_{\kappa}(\mathbf{Z})}\mathbb{E}[Y_i|do(\mathbf{Z}),\mathbf{X},\mathbf{A}^*].$
 - ightharpoonup Expected impact of randomly treating α_1 vs α_0 percent of units.

■ Observed data $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent variables $(\mathbf{A}^*, \eta, \gamma, \theta)$.

- Observed data $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent variables $(\mathbf{A}^*, \eta, \gamma, \theta)$.
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta) \times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma) \times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

- Observed data $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent variables $(\mathbf{A}^*, \eta, \gamma, \theta)$.
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta)$$

$$\times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma)$$

$$\times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

■ Mixed space of continuous (η, γ, θ) and discrete \mathbf{A}^* . Discrete have $O(N^2)$ terms!

- Observed data $\mathbf{O} = (\mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A})$. Latent variables $(\mathbf{A}^*, \eta, \gamma, \theta)$.
- Posterior distribution:

$$p(\mathbf{A}^*, \eta, \gamma, \theta | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{A}^*, \mathbf{X}, \eta) p(\eta)$$
$$\times p(\mathbf{A} | \mathbf{A}^*, \mathbf{X}, \gamma) p(\gamma)$$
$$\times p(\mathbf{A}^* | \mathbf{X}, \theta) p(\theta).$$

- Mixed space of continuous (η, γ, θ) and discrete \mathbf{A}^* . Discrete have $O(N^2)$ terms!
- Propose two sampling schemes:
 - 1. Modularization. "break" the posterior into smaller, more manageable parts.
 - 2. Gibbs. Iterate between continuous and discrete. Sample discrete with Local Informed Proposals.

SIMULATIONS

Two figures: MAPE of estimated treatment effects and MAE of exposure mapping.

DATA ANALYSIS

Results of Paluck et al. (2016) analysis.

FIGURES AND TABLES

Figure 1: Figure caption.

	Heading 1	Heading 2
Row 1	v ₁₁	v ₁₂
Row 2	v ₂₁	V_{22}
Row 3	v ₃₁	V ₃₂

Table 1: Table caption.

Thanks for using **Focus**!

REFERENCES

DONALD E. KNUTH.

Computer Programming as an ART. Commun. ACM, pages 667–673, 1974.

DONALD E. KNUTH.

TWO NOTES ON NOTATION.

Amer. Math. Monthly, 99:403–422, 1992.

LESLIE LAMPORT.

LATEX: A DOCUMENT PREPARATION SYSTEM.

Pearson Education India, 1994.

APPENDIX

More math details.