LINEAR PROGRAMMING PROBLEM

Definition and Examples

Linear Program

Objective Function

Decision Variables x_1, x_2, x_3, x_4

maximize $(2x_1)$

$$2x_1$$

$$+3x_2$$
 $-x_3$

$$-x_3$$

$$+x_4$$

subject to

$$x_1 - x_2$$

$$+x_2$$

$$-x$$

$$x_{\varepsilon}$$

$$x_4 =$$

Linear Program (General Form)

Constraints

Linear Programming Problem

Solution: $x_1 = 6$, $x_2 = 11$ Optimal Objective Value: 28

 $x_1 + 2 x_2 = 0$

Overview

- Solving a Linear Program.
 - Visualizing Linear Programs.
 - What does solving a Linear Program mean?

- Algorithms for Linear Programming.
 - Simplex.
 - Ellipsoidal Methods.
 - Interior Point Methods.

VISUALIZING LINEAR PROGRAMS

Linear Program (General Form)

Constraints

Feasible Region

Feasible Region: Polyhedron (n dimensional)

$$c_{1x_{1}} + \dots + c_{n}x_{n} = z_{1}$$

$$c_{1x_{1}} + \dots + c_{n}x_{n} = z_{1}$$

$$c_{1x_{1}} + \dots + c_{n}x_{n} = z_{0}$$

Solving Linear Programs

$$\begin{array}{cccc} \mathsf{max} & \mathbf{c}^\mathsf{T} \ \mathbf{x} \\ & A \ \mathbf{x} & \leq & \mathbf{b} \end{array}$$

Outcome #1: Optimal Solution(s) exists.

Outcome #2: Objective Function is unbounded.

• Outcome #3: Feasible Region is empty.

Unbounded Problem (Example)

 $\begin{array}{cccc} \max & x \\ \text{s.t.} & x & \geq & 0 \\ & x & +y & \geq & 1 \\ & & y & \geq 0 \end{array}$

Infeasible Problem

• Issue: Constraints contradict each other.

$$\begin{array}{cccc} \max & x \\ \text{s.t.} & x & \geq & 0 \\ \hline x & +y & \geq & 1 \\ \hline y & \geq 0 \\ \hline x & +y & \leq & \frac{1}{2} \end{array}$$

Solving Linear Programs

- 1. Find which of the three cases are applicable.
 - Infeasible?
 - Unbounded?
 - Feasible + Bounded = Optimal?

- 2. If Optimal, find optimal solution.
 - Note multiple optimal solutions possible.

LINEAR PROGRAMMING ALGORITHMS

Linear Programming

- Solving systems of Linear Inequalities.
 - Early work by Fourier (Fourier-Motzkin Elimination Algorithm).
 - In symbolic logic, this is called "Linear Arithmetic".

- World War II: Optimal allocation of resources.
 - Advent of electronic/mechanical calculating machines.
 - L.V. Kantorovich in USSR (1940) and G.B. Dantzig et al. in the USA (1947).

SIMPLEX

• Simplex: algorithm for solving LPs.

First Published by George B. Dantzig

G.B Dantzig: Maximization of a linear function of variables subject to linear inequalities, 1947.

Photo credit: Stanford University

 Prof. Dantzig contributed numerous seminal ideas to this field.

Your instructor (many years ago)

A very special picture for your instructor!!

Visualizing the Simplex Algorithm

Not drawn to scale

Solution: $x_1 = 6$, $x_2 = 11$ Objective Value: 28

Linear Programming Theory

- Duality: John Von Neumann
 - Early work by Lagrange.
 - Connections to game theory.
- Generalized to Karush-Kuhn-Tucker Conditions.

- Complexity of Simplex:
 - Exponential time in the worst case (Klee + Minty).
 - Polynomial time in the "average case".
 - Much remains to be understood.

Polynomial Time Algorithms

- Leonid Khachiyan's ellipsoidal algorithm [Kachiyan'1980]
 - First polynomial time algorithm.

- Interior Point Methods
 - Ideas go back to Isaac Newton (Newton-Raphson).
 - First algorithms for Linear Programs by Narendra Karmarkar [Karmarkar'1984]
 - Interior point methods are useful for non-linear programming (Cf. Nocedal + Wright textbook).

Applications of Linear Programming Theory

Too numerous to list exhaustively...

- Major application areas:
 - Operations Research.
 - Optimal allocation of resources.
 - Decision making.
 - Computer Science
 - Algorithms, Machine Learning, Automated Reasoning, Robotics.
 - Engineering
 - Control Theory

In this course...

- We will first study Simplex algorithm.
 - Understand duality of Linear Programs.

• Finally, study interior point methods.

INTEGER LINEAR PROGRAMMING

Real vs. Integer Variables

Feasible Region

Feasible Region: Polyhedron (n dimensional)

Linear vs. Integer Linear Programs

Integer Linear Programming

Linear vs. Integer Linear Programs (Complexity)

Linear Programming (Integers)

Nondeterministic Polynomial Time

Million Dollar Question: Can Integer Linear Programs be solved in polynomial time?

$$(P = ? = NP)$$

Example #1

Solution: $x_1 = 6$, $x_2 = 110$ pt. Objective Value: 28

Not drawn to scale

Example #2

