Problems 2: Bottom-up parsing

- 1. Construct the LR(0) automaton for the following grammar. The start symbol is S' and the other non-terminal symbols are S and D.
 - 1. $S' \rightarrow S$ \$
 - 2. $S \rightarrow SD$
 - 3. $S \rightarrow D$
 - 4. $D \rightarrow [D]$
 - 5. $D \rightarrow x$

2. Construct the GOTO and ACTION tables for the grammar of Q1.

GOTO	S	D
0	4	1
2		5
4		7

ACTION	X	[]	\$
0	s3	s2		
1	r3	r3	r3	r3
2	s3	s2		
3	r5	r5	r5	r5
4	s3	s2		acc
5			s6	
6	r4	r4	r4	r4
7	r2	r2	r2	r2

3. For the grammar in Q1, apply the LR(0) parsing algorithm on the string

x[x]\$For each parsing step show the stack, the input, action, and output.

Stack	Input	Action	Output
0	x[x]\$	s3	
0 3	[x]\$	r5	$D \rightarrow X$
0 1	[x]\$	r3	$S \rightarrow D$
0 4	[x]\$	s2	
0 4 2	x]\$	s3	
0 4 2 3]\$	r5	$D \rightarrow X$
0 4 2 5]\$	s6	
04256	\$	r4	$D \rightarrow [D]$
0 4 7	\$	r2	$S \rightarrow SD$
0 4	\$	acc	