Analiză 1

Notițe de seminar

ADRIAN MANEA
Curs: R. Purnichescu-Purtan

15 noiembrie 2018

Cuprins

1	Serii	Serii de numere reale		
	1.1	Generalități	3	
	1.2	Serii cu termeni pozitivi	4	
	1.3	Seria geometrică și seria armonică	6	
	1.4	Convergență absolută și semiconvergență	6	
	1.5	Exerciții	7	
2	Șiruri și serii de funcții			
	2.1	Convergență punctuală și convergență uniformă	9	
	2.2	Transferul proprietăților	10	
	2.3	Serii de funcții	10	
	2.4	Polinomul Taylor și seria Taylor	11	
	2.5	Serii de puteri	12	
	2.6	Exerciții	13	
3	Serii	Serii Taylor		
	3.1	Exerciții suplimentare	17	
4	Funcții de mai multe variabile			
	4.1	Probleme de extrem	21	
	4.2	Exerciții	23	
	Inde	x	25	
Bibliografie			25	

SEMINAR 1

SERII DE NUMERE REALE

1.1 Generalități

O serie, înțeleasă informal ca o sumă infinită, este definită formal de două elemente:

- șirul termenilor generali;
- șirul sumelor parțiale.

Astfel, de exemplu, dacă luăm seria $\sum_{n>0} \frac{2^n}{n!}$, avem:

- sirul termenilor generali este $x_n = \frac{2^n}{n!}$;
- șirul sumelor parțiale este $s_p = \sum_{k=0}^p \frac{2^k}{k!}$.

Seria se numește *convergentă* dacă șirul sumelor parțiale este convergent, iar limita acestui șir se numește *suma seriei*. În caz contrar, seria se numește *divergentă*, adică șirul sumelor parțiale nu are limită sau aceasta este infinită. Cînd vorbim despre *natura seriei*, ne referim dacă aceasta este convergentă sau divergentă.

Spre deosebire de cazul șirurilor din liceu, în cazul seriilor trebuie mai multă atenție cînd discutăm convergența. Aceasta deoarece seriile au o *natură cumulativă*, adică toți termenii anteriori din șirul sumelor parțiale își aduc contribuția. Mai precis, avem o recurență de forma:

$$s_{p+1} = s_p + x_{p+1}.$$

De aceea, următoarele proprietăți sînt specifice seriilor:

- (a) Dacă într-o serie schimbăm ordinea unui număr finit de termeni, obținem o serie nouă, care are aceeasi natură cu cea initială. Dacă există, suma seriei nu se schimbă.
- (b) Dacă eliminăm un număr finit de termeni dintr-o serie, se obține o serie nouă, cu aceeași natură. Dacă există, suma seriei poate să se schimbe.
- (c) Dacă o serie este convergentă, atunci ea are șirul sumelor parțiale mărginit.
- (d) Dacă o serie este convergentă, atunci șirul termenilor săi generali tinde către zero. Reciproca este, în general, falsă (contraexemplu $\sum_{n} \frac{1}{n}$).
 - Această proprietate ne permite să formulăm o condiție necesară de convergență:
- (e) Dacă șirul termenilor generali ai unei serii nu este convergent către zero, atunci seria este divergentă.

1.2 Serii cu termeni pozitivi

În cazul seriilor care au sirul termenilor generali alcătuit numai din numere pozitive, avem următoarele proprietăți, dintre care unele rezultă prin particularizarea celor de mai sus:

- (a) Sirul sumelor parțiale al unei serii cu termeni pozitivi este strict crescător.
- (b) O serie cu termeni pozitivi are întotdeauna sumă (finită sau nu).
- (c) O serie cu termeni pozitivi este convergentă dacă și numai dacă șirul sumelor parțiale este mărginit.
- (d) Criteriul de comparație termen cu termen: O serie care are termeni mai mari (doi cîte doi) decît o serie divergentă este divergentă. O serie care are termeni mai mici (doi cîte doi) decît o serie convergentă este convergentă.
- (e) Criteriul de comparație la limită, termen cu termen: Fie $\sum_n x_n$ și $\sum_n y_n$ două serii cu termeni pozitivi. Presupunem că $\frac{x_{n+1}}{x_n} \le \frac{y_{n+1}}{y_n}$. Atunci:
 - Dacă seria $\sum_n y_n$ este convergentă, atunci și seria $\sum x_n$ este convergentă;
 - Dacă seria $\sum_n x_n$ este divergentă, atunci și seria $\sum_n y_n$ este divergentă.
- (f) **Criteriul de comparație la limită:** Fie $\sum_n x_n$ și $\sum_n y_n$ două serii cu termeni pozitivi, astfel încît $\lim_{n\to\infty} \frac{x_n}{y_n} = \ell$.
 - Dacă 0 < ℓ < ∞, atunci cele două serii au aceeași natură;

- Dacă $\ell = 0$, iar seria $\sum_n y_n$ este convergentă, atunci și seria $\sum_n x_n$ este convergentă;
- Dacă $\ell = \infty$, iar seria $\sum_n y_n$ este divergentă, atunci și seria $\sum_n x_n$ este divergentă.
- (g) Criteriul radical: Fie $\sum_n x_n$ o serie cu termeni pozitiv, astfel încît $\lim_{n\to\infty} \sqrt[n]{x_n} = \ell$. Atunci:
 - Dacă ℓ < 1, seria este convergentă;
 - Dacă ℓ > 1, seria este divergentă;
 - Dacă $\ell = 1$, criteriul nu decide.
- (h) **Criteriul raportului:** Fie $\sum_n x_n$ o serie cu termeni pozitivi și fie $\ell = \lim_{n \to \infty} \frac{x_{n+1}}{x_n}$. Atunci:
 - Dacă ℓ < 1, seria este convergentă;
 - Dacă $\ell > 1$, seria este divergentă;
 - Dacă ℓ = 1, criteriul nu decide.
- (i) **Criteriul lui Raabe-Duhamel:** Fie $\sum_n x_n$ o serie cu termeni pozitivi și fie:

$$\ell = \lim_{n \to \infty} n \cdot \left(\frac{x_n}{x_{n+1}} - 1 \right).$$

Atunci:

- Dacă ℓ < 1, seria este divergentă;
- Dacă $\ell > 1$, seria este convergentă;
- Dacă $\ell = 1$, criteriul nu decide.
- (j) Criteriul logaritmic: Fie $\sum_n x_n$ o serie cu termeni pozitivi și presupunem că există limita:

$$\ell = \lim_{n \to \infty} \frac{\ln \frac{1}{n}}{\ln n}.$$

Atunci:

- Dacă ℓ < 1, seria este divergentă;
- Dacă ℓ > 1, seria este convergentă;
- Dacă $\ell = 1$, criteriul nu decide.
- (k) **Criteriul integral:** Fie $f:(0,\infty)\to [0,\infty)$ o funcție crescătoare și șirul $a_n=\int_1^n f(t)dt$. Atunci seria $\sum_n f(n)$ este convergentă dacă și numai dacă șirul (a_n) este convergent.
- (l) Criteriul condensării: Fie (x_n) un șir astfel încît $x_n \ge x_{n+1} \ge 0, \forall n$. Atunci seriile $\sum_n x_n$ și $\sum_n 2^n x_{2^n}$ au aceeași natură.

1.3 Seria geometrică și seria armonică

Două serii foarte importante pe care le putem folosi în comparații sînt următoarele.

Seria geometrică: Fie $a \in \mathbb{R}$ și $q \in \mathbb{R}$. Considerăm progresia geometrică de prim termen a și rație q, care definește seria $\sum_n aq^n$, pe care o numim *seria geometrică* de rație q.

Suma parțială de rang n se poate calcula cu formula cunoscută din liceu:

$$S_n = a + aq + \dots + aq^{n-1} = \begin{cases} a \cdot \frac{1 - q^n}{1 - q}, & q \neq 1 \\ na, & q = 1 \end{cases}$$

Pentru convergență, să remarcăm că dacă |q| < 1, atunci:

$$\lim_{n\to\infty} s_n = \frac{a}{1-q},$$

deci seria este convergentă și are suma $\frac{a}{1-q}$.

Dacă $|q| \ge 1$, se poate verifica ușor, folosind criteriul necesar, că seria geometrică este divergentă.

Un alt exemplu important este **seria armonică generalizată (Riemann)**, definită prin $\sum_{n} \frac{1}{n^{\alpha}}$, pentru α in \mathbb{R} . Se poate observa că:

- Dacă α ≤ 0, termenul general al seriei nu converge către zero, deci seria este divergentă, conform criteriului necesar;
- Dacă α > 0, termenii seriei formează un şir descrescător de numere pozitive. Seria este convergentă pentru α > 1 şi divergentă pentru α ≤ 1.

In cazul particular $\alpha = 1$, seria se numește simplu seria armonică.

1.4 Convergență absolută și semiconvergență

În cazul seriilor care pot avea și termeni negativi, convergența se studiază folosind o clasificare mai fină. Astfel, avem:

Definiție 1.1: Fie seria $\sum_{n} x_{n}$, cu termeni oarecare.

Seria se numește *absolut convergentă* dacă seria $\sum_n |x_n|$ este convergentă și *semiconvergentă* dacă seria modulelor este divergentă, dar seria initială este convergentă.

Să remarcăm că, deoarece, în general $|x| \ge x, \forall x \in \mathbb{R}$, orice serie absolut convergentă este convergentă. Reciproc, este fals: seria $\sum_n \frac{(-1)^n}{n}$ vom vedea că este convergentă, fără a fi absolut convergentă.

Evident, dacă seria inițială este divergentă (suma ei fiind $\pm \infty$), problema convergenței absolute nu se mai pune, deoarece seria modulelor va fi tot divergentă, cu suma $+\infty$.

1.5 Exerciții

1. Studiați natura următoarelor serii, definite de șirul termenilor generali (x_n) , cu:

(1)
$$x_n = \left(\frac{3n}{3n+1}\right)^n$$
 (D, necesar);

(16)
$$x_n = \left(\frac{1}{\ln n}\right)^{\ln(\ln n)}$$
 (D, logaritmic);

(2)
$$x_n = \frac{1}{n!}$$
 (C, comparație);

(17)
$$x_n = \frac{1}{n \ln n}$$
 (D, integral);

(3)
$$x_n = \frac{1}{n\sqrt{n+1}}$$
 (C, comparație);

(18)
$$x_n = \frac{1}{n \ln^2 n}$$
 (C, integral);

(4)
$$x_n = \arcsin \frac{n+1}{2n+3}$$
 (D, necesar);

(19)
$$x_n = \frac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}$$
 (D, necesar + Cauchy);

(5)
$$x_n = \left(1 - \frac{1}{n}\right)^n$$
 (D, necesar);

(20)
$$x_n = \frac{1}{7^n + 3^n}$$
 (C, comparație termen cu termen);

(6)
$$x_n = \frac{n!}{n^{2n}}$$
 (C, raport);

(21)
$$x_n = \frac{2 + \sin n}{n^2}$$
 (C, comparație termen cu termen):

(7)
$$x_n = n! \left(\frac{a}{n}\right)^n$$
, $a \in \mathbb{R}$ (discutie, raport);

(22)
$$x_n = \frac{\cos^2 n}{3^n}$$
 (C, comparație termen cu termen);

(8)
$$x_n = \frac{(n!)^2}{(2n)!}$$
 (C, raport);

(23)
$$x_n = \frac{\sin^2 n}{n^2 + 1}$$
 (C, comparație termen cu termen);

(9)
$$x_n = \frac{n!}{(a+1)(a+2)\cdots(a+n)}, a > -1$$
 (discutie, Raabe);

(24)
$$x_n = \frac{\sqrt{n}}{\ln(n+1)}$$
 (D, necesar);

(10)
$$x_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}$$
 (D, Raabe);

(25)
$$x_n = \left[3 + \left(1 + \frac{1}{n}\right)^n\right]$$
 (D, necesar);

(11)
$$x_n = \left(1 - \frac{3 \ln n}{2n}\right)^n$$
 (C, logaritmic);

(26)
$$x_n = \frac{1}{n\sqrt[n]{n}}$$
 (D, comparație);

(12)
$$x_n = \left(\frac{n+1}{3n+1}\right)^n \text{ (C, radical)};$$

(27)
$$x_n = \sqrt{n^4 + 2n + 1} - n^2$$
 (D, comparație);

(13) $x_n = \left(1 - \frac{1}{n}\right)^{n^2}$ (C, radical); (14) $x_n = \left(\sqrt{n^2 + a \cdot n + 1} - n\right)^n, a \ge 0$ (discutie,

(28)
$$x_n = n^2 e^{-\sqrt{n}}$$
 (C, logaritmic):

(15)
$$x_n = \frac{\sqrt{7n}}{n^2 + 3n + 5}$$
 (C, comparație);

(29)
$$x_n = \frac{\ln n}{n^2}$$
 (C, comparație)

- 2. Studiați convergența absolută a seriilor cu termenul general dat de:
- (a) $x_n = \frac{1}{n+i}$ (raționalizează, distribuie numărătorul, aplică un criteriu de comparație \Rightarrow D);
- (b) $x_n = \frac{1}{(n+i)\sqrt{n}}$ (AC [comparație la limită] \Rightarrow C);
- (c) $x_n = \frac{n(2+i)^n}{3^n}$ (AC [raport] \Rightarrow C).

SEMINAR 2

ȘIRURI ȘI SERII DE FUNCȚII

2.1 Convergență punctuală și convergență uniformă

Definiție 2.1: Fie (X, d) un spațiu metric și $f_n: X \to \mathbb{R}$ termenul general al unui șir de funcții. Fie $f: X \to \mathbb{R}$ o funcție arbitrară.

Spunem că șirul (f_n) converge punctual (simplu) la f dacă are loc:

$$\lim_{n\to\infty} f_n(x) = f(x), \quad \forall x \in X.$$

Notăm acest lucru cu $f_n \xrightarrow{PC} f$ și numim f limita punctuală a șirului (f_n) .

Celălalt tip de convergență care ne va interesa este definit mai jos:

Definiție 2.2: În condițiile și cu notațiile de mai sus, spunem că șirul (f_n) este *uniform convergent* la f dacă:

$$\forall \varepsilon > 0, \exists N_{\varepsilon} > 0 \text{ a.i. } |f_n(x) - f(x)| < \varepsilon, \forall n \ge N_{\varepsilon}, \forall x \in X.$$

Vom nota această situație cu $f_n \xrightarrow{UC} f$.

În exercitii se va folosi mai mult caracterizarea:

Propoziție 2.1: În condițiile și cu notațiile de mai sus, șirul (f_n) converge uniform la f dacă și numai dacă:

$$\lim_{n\to\infty}\sup_{x\in X}|f_n(x)-f(x)|=0.$$

Legătura între cele două tipuri de convergență este dată de:

Teoremă 2.1: Orice șir de funcții uniform convergent pe un interval este punctual convergent pe același interval.

Reciproca este falsă, după cum arată contraexemplul: fie [a, b] = [0, 1] și definim șirul de funcții $f_n(x) = x^n$, $n \ge 1$.

Pentru orice $x \in [a, b]$, avem:

$$\lim_{n\to\infty} f_n(x) = \begin{cases} 0, & x\in[0,1)\\ 1, & x=1 \end{cases}$$

Rezultă că $f_n \xrightarrow{PC} f$, unde f este funcția definită pe cazuri de limita de mai sus. Dar se poate vedea imediat că

$$\lim_{n\to\infty}\sup_{x\in X}|f_n(x)-f(x)|=1\neq 0,$$

deci sirul este doar punctual convergent, nu uniform convergent.

2.2 Transferul proprietăților

Unele dintre proprietățile funcțiilor sînt transferate de la termenii șirurilor la funcția-limită, iar altele nu, aceasta oferindu-ne uneori metode de calcul, iar alteori, metode de demonstrație.

Teoremă 2.2 (Transfer de continuitate): $Dacă f_n$ sînt funcții continue, iar șirul f_n converge uniform la f, atunci funcția f este continuă.

Rezultă de aici că avem o metodă de a demonstra că nu are loc continuitatea uniformă: dacă f_n sînt funcții continue, iar f, obținută din convergența punctuală, nu este continuă, rezultă că f_n nu tinde uniform la f.

Teoremă 2.3 (Integrare termen cu termen): Fie $f_n, f: [a, b] \to \mathbb{R}$ funcții continue. Dacă f_n converge uniform la f, atunci are loc proprietatea de integrare termen cu termen, adică:

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f(x)dx.$$

Teoremă 2.4 (Derivare termen cu termen): Presupunem că funcțiile f_n sînt derivabile, pentru orice $n \in \mathbb{N}$. Dacă șirul f_n converge punctual la f și dacă există funcția $g:[a,b] \to \mathbb{R}$ astfel încît f'_n converge uniform la g, atunci f este derivabilă și f'=g.

2.3 Serii de functii

Pentru convergența seriilor de funcții, avem un singur criteriu de utilizat:

Teoremă 2.5 (Weierstrass): Dacă există un șir cu termeni pozitivi a_n astfel încît $|u_n(x)| \le a_n$ pentru orice $x \in X$, iar seria $\sum a_n$ converge, atunci seria $\sum u_n$ converge uniform.

Pentru proprietătile de transfer, avem:

Teoremă 2.6: • Transfer de continuitate: $Dacă u_n$ sînt funcții continue, iar seria $\sum u_n$ converge uniform la f, atunci funcția f este continuă.

• Integrare termen cu termen: Dacă seria $\sum u_n$ converge uniform la f, atunci f este integrabilă si avem:

$$\int_a^b \sum_n u_n(x) dx = \sum_n \int_a^b u_n(x) dx.$$

• Derivare termen cu termen: Presupunem că toate funcțiile u_n sînt derivabile. Dacă seria $\sum u_n$ converge punctual la f și dacă există $g:[a,b] \to \mathbb{R}$ astfel încît $\sum_n u'_n$ converge uniform la g, atunci f este derivabilă și f'=g.

2.4 Polinomul Taylor și seria Taylor

Orice functie cu anumite proprietăti poate fi aproximată cu un polinom:

Definiție 2.3: Fie $I \subseteq \mathbb{R}$ un interval deschis și $f: I \to \mathbb{R}$ o funcție de clasă $\mathbb{C}^m(I)$. Pentru orice $a \in I$, definim *polinomul Taylor* de gradul $n \le m$ asociat funcției f în punctual a prin:

$$T_{n,f,a}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}.$$

Restul (eroarea de aproximare) este definit prin:

$$R_{n,f,a} = f(x) - T_{n,f,a}(x).$$

Acest polinom poate fi mai departe utilizat pentru a studia seria Taylor asociată unei funcții.

Teoremă 2.7: Fie a < b și $f \in \mathbb{C}^{\infty}([a, b])$ astfel încît să existe M > 0 cu proprietatea că $\forall n \in \mathbb{N}$ și $x \in [a, b]$, avem $|f^{(n)}(x)| \leq M$.

Atunci pentru orice $x_0 \in (a, b)$, seria Taylor a lui f în jurul punctului x_0 este uniform convergentă pe [a, b] și suma ei este funcția f, adică avem:

$$f(x) = \sum_{n > 0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad \forall x \in [a, b].$$

Pentru cazul particular $x_0 = 0$, seria se numește *Maclaurin*.

2.5 Serii de puteri

Seriile de puteri sînt un caz particular al seriilor de funcții, luînd doar funcții de tip polinomial.

Definiție 2.4: Fie (a_n) un șir de numere reale și fie $a \in \mathbb{R}$.

Seria $\sum_{n\geq 0} a_n(x-a)^n$ se numește seria de puteri centrată în a, definită de șirul a_n .

Toate rezultatele privitoare la serii de funcții sînt valabile și pentru serii de puteri. Rezultatele specifice urmează.

Teoremă 2.8 (Abel): Pentru orice serie de puteri $\sum a_n x^n$ există un număr $0 \le R \le \infty$ astfel încît:

- Seria este absolut convergentă pe intervalul (-R, R);
- Seria este divergentă pentru orice |x| > R;
- Seria este uniform convergentă pe [-r, r], unde 0 < r < R.

Numărul R se numește raza de convergență a seriei, iar intervalul (-R, R) se numește intervalul de convergență.

Calculul razei de convergentă se poate face cu unul dintre următoarele criterii:

Teoremă 2.9 (Cauchy-Hadamard): Fie $\sum a_n x^n$ o serie de puteri, R raza sa de convergență și definim:

$$\omega = \limsup \sqrt[n]{|a_n|}.$$

Atunci:

- $R = \omega^{-1} dac \breve{a} 0 < \omega < \infty$;
- $R = 0 \ dac\ \omega = \infty$;
- $R = \infty \ dac\ a\omega = 0$.

Teoremă 2.10: Raza de convergență se poate calcula cu formula:

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}.$$

Observație 2.1: Din natura seriilor de puteri, teoremele de derivare și integrare termen cu termen sînt automate. Așadar, dacă $\sum a_n(x-a)^n$ este o serie de puteri iar S(x) este suma sa, atunci:

- Seria derivatelor, $\sum na_n(x-a)^{n-1}$, are aceeași rază de convergență cu seria inițială, iar suma sa este S'(x);
- Seria primitivelor, $\sum a_n \frac{(x-a)^{n+1}}{n+1}$, are aceeași rază de convergență cu seria inițială, iar suma sa este o primitivă a lui S.

2.6 Exerciții

1. Să se studieze convergența punctuală și uniformă a șirurilor de funcții:

(a)
$$f_n: (0,1) \to \mathbb{R}, f_n(x) = \frac{1}{nx+1}, n \ge 0;$$

(b)
$$f_n: [0,1] \to \mathbb{R}, f_n(x) = x^n - x^{2n}, n \ge 0;$$

(c)
$$f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, n > 0;$$

(d)
$$f_n : [-1, 1] \to \mathbb{R}, f_n(x) = \frac{x}{1 + nx^2};$$

(e)
$$f_n: (-1,1) \to \mathbb{R}, f_n(x) = \frac{1-x^n}{1-x};$$

(f)
$$f_n: [0,1] \to \mathbb{R}, f_n(x) = \frac{2nx}{1+n^2x^2};$$

(g)
$$f_n: \mathbb{R}_+ \to \mathbb{R}, f_n(x) = \frac{x+n}{x+n+1};$$

(h)
$$f_n: \mathbb{R}_+ \to \mathbb{R}, f_n(x) = \frac{x}{1 + nx^2}$$
.

2. Să se arate că șirul de funcții dat de:

$$f_n: \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{1}{n} \arctan x^n$$

converge uniform pe R, dar:

$$\left(\lim_{n\to\infty}f_n(x)\right)'_{r-1}\neq\lim_{n\to\infty}f'_n(1).$$

Rezultatele diferă deoarece sirul derivatelor nu converge uniform pe R.

3. Să se arate că șirul de funcții dat de:

$$f_n: [0,1] \rightarrow \mathbb{R}, \quad f_n(x) = nxe^{-nx^2}$$

este convergent, dar:

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx \neq \int_0^1 \lim_{n\to\infty} f_n(x)dx.$$

Rezultatul se explică prin faptul că șirul nu este uniform convergent. De exemplu, pentru $x_n = \frac{1}{n}$, avem $f_n(x_n) \to 1$, dar, în general, $f_n(x) \to 0$.

4. Să se dezvolte următoarele funcții în serie Maclaurin, precizînd și domeniul de convergență:

- (a) $f(x) = e^x$;
- (b) $f(x) = \sin x$;
- (c) $f(x) = \cos x$;
- (d) $f(x) = (1 + x)^{\alpha}, \alpha \in \mathbb{R};$
- (e) $f(x) = \frac{1}{1+x}$;
- (f) $f(x) = \ln(1 + x)$;
- (g) $f(x) = \arctan x$;
- (h) $f(x) = \ln(1 + 5x)$;
- (i) $f(x) = 3 \ln(2 + 3x)$.

5. Să se calculeze raza de convergență și mulțimea de convergență pentru următoarele serii de puteri:

- (a) $\sum_{n\geq 0} x^n$;
- (b) $\sum_{n\geq 1} n^n x^n;$
- (c) $\sum_{n\geq 1} (-1)^{n+1} \frac{x^n}{n}$;
- (d) $\sum_{n\geq 1} \frac{n^n x^n}{n!};$
- (e) $\sum \frac{(x-1)^{2n}}{n \cdot 9^n}$;
- (f) $\sum \frac{(x+3)^n}{n^2}.$

6. Găsiți mulțimea de convergență și suma seriei:

$$\sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{2n+1}.$$

Indicație: Se derivează termen cu termen și rezultă seria geometrică de rază $-x^2$, căreia i se poate calcula suma, care apoi se integrează.

7. Să se calculeze cu o eroare mai mică decît 10^{-3} integralele:

(a)
$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} dx;$$

(b)
$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx;$$

(c)
$$\int_0^1 e^{-x^2} dx$$
.

8. Să se calculeze polinomul Taylor de grad 3 în jurul originii pentru funcțiile:

(a)
$$f(x) = 3 \ln(2 + x)$$
;

(b)
$$f(x) = \arctan x$$
;

(c)
$$f(x) = \sqrt{1 + 2x}$$
.

SEMINAR 3

SERII TAYLOR

3.1 Exerciții suplimentare

1. Găsiți aproximarea liniară și pătratică a funcțiilor:

- (a) $f(x) = \sqrt[3]{x}$;
- (b) $f(x) = \sin(\cos x)$;
- (c) $f(x) = e^{\sin x}$;
- (d) $f(x) = \arcsin x$.

2. Folosind seria Taylor, aproximați cu o eroare mai mică decît 10^{-3} numerele:

- (a) $\sqrt[3]{65}$;
- (b) sin 32;
- (c) $\arctan \frac{1}{2}$;
- (d) $e^{-0.2}$;
- (e) ln 1, 1;
- (f) ln 4;
- (g) ln 5.

Indicație: Atenție la domeniile de convergență!

3. Să se calculeze cu o eroare mai mică decît 10^{-3} integralele:

(a)
$$\int_0^{\frac{1}{2}} \frac{\sin x}{x} dx;$$

(b)
$$\int_0^{\frac{1}{2}} \frac{\ln(1+x)}{x} dx;$$

(c)
$$\int_0^{\frac{1}{3}} \frac{\arctan x}{x} dx;$$

(d)
$$\int_0^1 e^{-x^2} dx$$
.

4. Găsiți mulțimea de convergență și suma seriei:

$$sum_{n\geq 0}(-1)^n\frac{x^{2n+1}}{2n+1}.$$

Indicație: R=1 (raport), iar suma se poate afla derivînd termen cu termen. Rezultă (prin derivare) seria geometrică de rază $-x^2$, cu suma $\frac{1}{x^2+1}$, valabilă pentru $x \in (-1,1)$.

Rezultă $f(x) = \arctan x + c$.

5. Arătați că seriile numerice de mai jos sînt convergente și calculați sumele lor, folosind serii de puteri:

(a)
$$\sum_{n\geq 0} \frac{(-1)^n}{3n+1}$$
;

(b)
$$\sum_{n>0} \frac{(n+1)^2}{n!}$$
;

(c)
$$\sum_{n>1} \frac{n^2(3^n-2^n)}{6^n}.$$

Indicatii:

(a) Seria satisface criteriul lui Leibniz, deci este convergentă.

Pentru a găsi suma, pornim cu seria de puteri $\sum (-1)^n \frac{x^{3n+1}}{3n+1}$.

Intervalul de convergență este (-1, 1), iar pentru x = 1, avem seria dată.

Fie f suma acestei serii de puteri în intervalul (-1, 1). Derivăm termen cu termen și obținem:

$$f'(x) = \sum (-1)^n x^{3n} = \frac{1}{1+x^3},$$

pentru |x| < 1, ca suma unei serii geometrice alternate.

Rezultă:

$$f(x) = \int \frac{dx}{1+x^3} = \frac{1}{6} \ln \frac{(x+1)^2}{x^2-x+1} + \frac{1}{\sqrt{3}} \arctan 2x - 1\sqrt{3} + c,$$

pentru |x| < 1. Calculind f(0), găsim $c = \frac{\pi}{6\sqrt{3}}$.

(b) Se folosește seria pentru e^x , din care obținem seria pentru $(x+x^2)e^x$, pe care o derivăm termen cu termen.

Pentru x = 1, se obține seria cerută, cu suma 5e.

(c) Descompunem seria în două, apoi folosim seria de puteri $\sum n^2 x^n$, pe care o derivăm termen cu termen, pentru a obține seria pentru nx^{n-1} , apoi seria pentru nx^n .

SEMINAR 4

FUNCȚII DE MAI MULTE VARIABILE

4.1 Probleme de extrem

Studiul problemelor de extrem pentru funcții de mai multe variabile se face prin următorii pași. Presupunem că pornim cu o funcție $f = f(x, y) : D \subseteq \mathbb{R}^2 \to \mathbb{R}$.

(1) Se determină punctele care anulează *simultan* derivatele parțiale. Adică, rezolvăm sistemul de ecuatii:

$$\begin{cases} \frac{\partial f}{\partial x} &= 0\\ \frac{\partial f}{\partial y} &= 0 \end{cases}$$

(2) Pentru fiecare dintre punctele determinate anterior, se alcătuiește *matricea hessiană* asociată, alcătuită din derivatele parțiale de ordinul al doilea:

$$H_f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

- (3) Se determină valorile proprii ale matricei hessiene (pentru fiecare dintre punctele găsite la primul pas).
- (4) Fie λ_1 , λ_2 valorile proprii.
 - Dacă ambele valori proprii sînt pozitive, punctul găsit este de minim local;
 - Dacă ambele valori proprii sînt negative, punctul găsit este *de maxim local*;
 - Dacă valorile proprii au semne opuse, punctul găsit nu este de extrem.

Alternativ, se poate proceda astfel. Fie elementele matricei hessiene:

$$r_0 = \frac{\partial^2 f}{\partial x^2}, s_0 = \frac{\partial^2 f}{\partial x \partial y}, t_0 = \frac{\partial^2 f}{\partial y^2}.$$

Se calculează r_0 , s_0 , t_0 și expresia $p=r_0t_0-s_0^2$ (pentru fiecare dintre punctele critice găsite).

- (a) Dacă p > 0 și $r_0 > 0$, punctul găsit este de *minim local*;
- (b) Dacă p > 0 și $r_0 < 0$, punctul găsit este de *maxim local*;
- (c) Dacă p < 0, punctul găsit nu este de extrem.

Indiferent de metodă, dacă p = 0 sau una dintre valorile proprii ale H_f este nulă corespunzător punctului $A(x_0, y_0)$, se evaluează semnul diferenței $f(x, y) - f(x_0, y_0)$ într-o vecinătate a lui A:

- (i) Dacă $f(x, y) f(x_0, y_0)$ nu are semn constant în orice vecinătate a lui (x_0, y_0) , punctul A nu este de extrem;
- (ii) Dacă $f(x, y) f(x_0, y_0)$ este pozitiv în orice vecinătate a lui (x_0, y_0) , punctul A este de minim local;
- (iii) Dacă $f(x, y) f(x_0, y_0)$ este negativ în orice vecinătate a lui (x_0, y_0) , punctul A este de maxim local

Diferența $f(x, y) - f(x_0, y_0)$ se studiază cu ajutorul formulei lui Taylor pentru 2 variabile reale. Fie $A(x_0, y_0) \in D$, pentru $f: D \to \mathbb{R}^2$ și presupunem că $f \in \mathcal{C}^2(D)$. Atunci avem dezvoltarea:

$$f(x, y) = f(a) + \frac{1}{1!} \left[(x - x_0) \frac{\partial f}{\partial x_A} + (y - y_0) \frac{\partial f}{\partial y_A} \right] + \frac{1}{2!} \left[(x - x_0)^2 \frac{\partial^2 f}{\partial x^2_A} + 2(x - x_0)(y - y_0) \frac{\partial^2 f}{\partial x \partial y_A} + (y - y_0)^2 \frac{\partial^2 f}{\partial y^2_A} \right] + \frac{1}{3!} \left[(x - x_0)^3 \frac{\partial^3 f}{\partial x^3_A} + 3(x - x_0)^2 (y - y_0) \frac{\partial^3 f}{\partial^2 x \partial y_A} + 3(x - x_0)(y - y_0)^2 \frac{\partial^3 f}{\partial x \partial^2 y_A} + (y - y_0)^3 \frac{\partial^3 f}{\partial y^3_A} \right] + \dots$$

Observație 4.1: În general, dacă domeniul de definiție al funcției este o mulțime compactă (de exemplu, interval închis), problema de extrem se studiază în două etape:

- (1) Pentru interiorul lui *D*, unde se procedează ca mai sus;
- (2) Pentru frontiera lui *D*, care devine o problemă pentru o funcție de o singură variabilă sau o problemă de extreme cu legături.

4.2 Exerciții

1. Să se calculeze derivatele parțiale de ordinul întîi pentru funcțiile:

(a)
$$f(x, y) = e^{x-y^2}$$
;

(b)
$$f(x, y) = \arctan \frac{x}{y} + \arctan \frac{y}{x}$$
;

(c)
$$f(x, y) = e^{x^2+y^2}$$
;

(d)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
.

2. Să se calculeze derivatele parțiale de ordinul întîi și al doilea pentru funcțiile:

(a)
$$f(x, y) = e^x \cos y$$
;

(b)
$$f(x, y) = \frac{x - y}{x + y}, (x, y) \neq (0, 0);$$

(c)
$$f(x, y) = \ln(x^2 + y^2), (x, y) \neq (0, 0);$$

(d)
$$f(x, y) = x^3 + xy$$
;

(e)
$$f(x, y, z) = y \sin(x + z)$$
;

(f)
$$f(x, y, z) = \ln(x^2 + y^2 + z^2), (x, y, z) \neq (0, 0, 0).$$

3. Să se calculeze derivatele parțiale în punctele indicate:

(a)
$$f(x, y) = 2x^2 + xy, \frac{\partial f}{\partial x}(1, 1), \frac{\partial f}{\partial y}(3, 2);$$

(b)
$$f(x, y) = \sqrt{\sin^2 x + \sin^2 y}, \frac{\partial f}{\partial x} \left(\frac{\pi}{4}, 0\right), \frac{\partial f}{\partial y} \left(\frac{\pi}{4}, \frac{\pi}{4}\right);$$

(c)
$$f(x, y) = \ln(1 + x^2 + y^2), \frac{\partial f}{\partial x}(1, 1), \frac{\partial f}{\partial y}(1, 1);$$

(d)
$$f(x, y) = \sqrt[3]{x^2 y}, \frac{\partial f}{\partial x}(-2, 2), \frac{\partial f}{\partial y}(-2, 2), \frac{\partial^2 f}{\partial x \partial y}(-2, 2);$$

(e)
$$f(x, y) = xy \ln x, x \neq 0, \frac{\partial^2 f}{\partial x \partial y}(1, 1), \frac{\partial^2 f}{\partial y} \partial x(1, 1).$$

4. Calculați derivatele parțiale de ordinul I pentru funcțiile compuse:

(a)
$$f(x, y) = \ln(u^2 + v)$$
, unde $u(x, y) = e^{x+y^2}$ și $v(x, y) = x^2 + y$;

(b)
$$f(x, y) = \arctan \frac{2u}{v}$$
, unde $u(x, y) = x \sin y$ și $v(x, y) = x \cos y$;

(c)
$$f(x, y) = \varphi(2xe^y + 3y\sin 2x)$$
.

5. Arătați că funcțiile următoare verifică ecuațiile indicate:

(a)
$$f(x, y) = \varphi\left(\frac{y}{x}\right)$$
,

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0.$$

(b)
$$f(x, y, z) = \varphi(xy, x^2 + y^2 + z^2)$$
,

$$xz\frac{\partial f}{\partial x} - yz\frac{\partial f}{\partial y} + (y^2 - x^2)\frac{\partial f}{\partial z} = 0.$$

(c)
$$f(x, y) = y\varphi(x^2 - y^2)$$
,

$$\frac{1}{x}\frac{\partial f}{\partial x} + \frac{1}{y}\frac{\partial f}{\partial y} = \frac{1}{y^2}f(x, y).$$

6. Fie funcția
$$f:D\subseteq\mathbb{R}^2\longrightarrow\mathbb{R}, f(x,y)=x^3+y^3-6xy.$$

- (a) Pentru $D = \mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte;
- (b) Pentru $D = \{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0, x + y \le 5\}$ determinați valoarea minimă și valoarea maximă a functiei.

7. Fie
$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}, f(x, y) = 4xy - x^4 - y^4$$
.

- (a) Pentru $D = \mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte;
- (b) Pentru $D = [-1, 2] \times [0, 2]$, determinați valoarea minimă și valoarea maximă a funcției.

8. Fie
$$f:D\subseteq\mathbb{R}^2\to\mathbb{R}, f(x,y)=x^4+y^3-4x^3+3y^2+3y$$
. Pentru domeniul de definiție:

$$D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 4\},\$$

determinați punctele de extrem ale funcției.

INDEX

Symbols	comparație termen cu termen, 4
șiruri funcții	integral, 5
convergență	logaritmic, 5
punctuală, 9	necesar, 4
uniformă, 9	Raabe-Duhamel, 5
derivare termen cu termen, 10	radical, 5
integrare termen cu termen, 10	raport, 5
transfer de continuitate, 10	divergente, 3
M	funcții
matrice	Weierstrass, 10
hessiană, 21	Maclaurin, 11
S	polinom Taylor, 11
serii	puteri, 12
șirul sumelor parțiale, 3	Abel, 12
șirul termenilor generali, 3	Cauchy-Hadamard, 12
absolut convergente, 6	raport, 12
convergente, 3	semiconvergente, 6
criteriu	seria armonică, 6
comparație la limită, 5	seria geometrică, 6
comparație la limită termen cu	suma seriei, 3
termen, 4	Taylor, 11