# TANZANIA TOURISM PREDICTION

The objective of this hackathon is to develop a machine learning model to predict what a tourist will spend when visiting Tanzania.

## DATA UNDERSTANDING

| Column Name           | Definition                                                       |
|-----------------------|------------------------------------------------------------------|
| id                    | Unique identifier for each tourist                               |
| country               | The country a tourist coming from.                               |
| age_group             | The age group of a tourist.                                      |
| travel_with           | The relation of people a tourist travel with to Tanzania         |
| total_female          | Total number of females                                          |
| total_male            | Total number of males                                            |
| purpose               | The purpose of visiting Tanzania                                 |
| main_activity         | The main activity of tourism in Tanzania                         |
| infor_source          | The source of information about tourism in Tanzania              |
| tour_arrangment       | The arrangment of visiting Tanzania                              |
| package_transport_int | If the tour package include international transportation service |
| package_accomodation  | If the tour package include accommodation service                |
| package_food          | If the tour package include food service                         |
| package_transport_tz  | If the tour package include transport service within Tanzania    |
| package_sightseeing   | If the tour package include sightseeing service                  |
| package_guided_tour   | If the tour package include tour guide                           |
| package_insurance     | if the tour package include insurance service                    |
| night_mainland        | Number of nights a tourist spent in Tanzania mainland            |
| night_zanzibar        | Number of nights a tourist spent in Zanzibar                     |
| payment_mode          | The mode of payment for tourism service                          |
| first_trip_tz         | If it was a first trip to Tanzania                               |
| most_impressing       | what impressed a toursit in Tanzania                             |
| total_cost            | The total tourist expenditure in TZS(currency)                   |
|                       |                                                                  |

## E.D.A

| E* | ID                    | 0    |
|----|-----------------------|------|
|    | country               | 0    |
|    | age_group             | 0    |
|    | travel_with           | 1114 |
|    | total_female          | 3    |
|    | total_male            | 5    |
|    | purpose               | 0    |
|    | main_activity         | Θ    |
|    | info_source           | Θ    |
|    | tour_arrangement      | Θ    |
|    | package_transport_int | Θ    |
|    | package accomodation  | Θ    |
|    | package_food          | Θ    |
|    | package_transport_tz  | Θ    |
|    | package_sightseeing   | 0    |
|    | package_guided_tour   | Θ    |
|    | package_insurance     | 0    |
|    | night mainland        | Θ    |
|    | night_zanzibar        | 0    |
|    | payment mode          | 0    |
|    | first trip tz         | Θ    |
|    | most_impressing       | 313  |
|    | total_cost            | 0    |
|    | dtype: int64          |      |
|    |                       |      |

## COLUMNS WITH MISSING DATA

#### **Most missing values**

- 1. Travel\_with
- 2. Most\_impressing

I dropped these columns

#### **Few missing values**

- 3. Total\_male
- 4. Total\_female

Replaced with mean

### E.D.A

- COLUMNS DROPPED
- Most\_impressing
- Travel\_with
- ID
- Combined total\_male with total\_female to give me total tourists then I dropped them(due to high multicollinearity)
- Info\_source

## E.D.A

| age_group             | Θ |
|-----------------------|---|
| total_female          | Θ |
| total_male            | Θ |
| purpose               | Θ |
| main_activity         | Θ |
| info_source           | Θ |
| tour_arrangement      | Θ |
| package_transport_int | Θ |
| package accomodation  | Θ |
| package_food          | Θ |
| package_transport_tz  | Θ |
| package_sightseeing   | Θ |
| package_guided_tour   | Θ |
| package_insurance     | Θ |
| night_mainland        | Θ |
| night_zanzibar        | Θ |
| payment_mode          | Θ |
| first_trip_tz         | Θ |
| total_cost            | Θ |
| dtype: int64          |   |
|                       |   |

COLUMNS I WAS LEFT WITH

## DATA MODELING

- Encoded the categorical using one-hot encoding
- Scaled the numerical data
- Split it into train and test sets(25%)

# MODEL BUILDING AND EVALUATION

- K-nearest-neighbour
- Linear regression
- Random forest regressor
- Gradient boosting
- Stacking regressors
- Neural network
- Xgb\_boost

## MODEL EVALUATION

| - □ |   | Model                   | Score        |
|-----|---|-------------------------|--------------|
|     | 5 | large_nn                | 4.992640e+06 |
|     | 6 | xgb_r                   | 5.229569e+06 |
|     | 7 | stacking_regressor      | 5.304558e+06 |
|     | 1 | random_forest_regressor | 5.332560e+06 |
|     | 2 | gradientboosting        | 5.361186e+06 |
|     | 4 | medium_nn               | 5.533231e+06 |
|     | 8 | linear_regressor        | 5.727607e+06 |
|     | 3 | simple_nn               | 5.909512e+06 |
|     | 0 | knn                     | 6.388657e+06 |
|     |   |                         |              |

## MODEL EVALUATION



### NEURAL NETWORK

```
large nn = Sequential()
large nn.add(InputLayer((32,)))
large nn.add(Dense(512, 'relu'))
large nn.add(Dropout(0.01))
large nn.add(Dense(256, 'relu'))
large nn.add(Dropout(0.01))
large nn.add(Dense(128, 'relu'))
large nn.add(Dropout(0.01))
large nn.add(Dense(64, 'relu'))
large nn.add(Dropout(0.01))
large nn.add(Dense(32, 'relu'))
large nn.add(Dropout(0.01))
large nn.add(Dense(1, 'linear'))
opt = Adam(learning rate=.1)
cp = ModelCheckpoint('/content/drive/MyDrive/Colab Notebooks/models/large nn4', save best only=True)
large nn.compile(optimizer=opt, loss='mse', metrics=[MeanAbsoluteError()])
large nn.fit(x=X train, y=y train, validation data=(X test, y test), callbacks=[cp], epochs=100)
```

## ZINDI SCORE

• PUBLIC LEADERBOARD SCORE: 5295675.062