black hat BRIEFINGS

AUGUST 6-7, 2025

MANDALAY BAY / LAS VEGAS

FACADE

High-Precision Insider Threat Detection Using Contrastive Learning

Alex Kantchelian
Google

Elie Bursztein
Google DeepMind

with Casper Neo, Ryan Stevens, Sadegh Momeni, Birkett Huber, Yanis Pavlidis and many other Googlers

Presentation slides: https://elie.net/facade

10 billion+

events processed annually to protect Google from insider threats

Insider attacks threat model

Example of insider threats

Intentional

access of confidential documents without business justification through access permissions abuse

Unwilling

access made using an employee account compromised by a malware

Accidental

share confidential documents with external party without NDA in good faith

Why detecting insider attacks is hard

Very low incidence

Insider threat incidence events are extremely low volume

Heavily context dependent

Risk depends on user roles and their relations to the resources accessed

Wide attack surface

Insider attackers have broad access to the enterprise infrastructure via legitimate credentials

low false alerts

FACADE: A High-Precision Insider Threat Detection Using Deep Contextual Anomaly Detection

Deep learning model User and resource aware

How likely is the acces?

Highly accurate anomaly detection? Really?

Red Team attacks ranked in the top 0.01% of suspicious events and many red team attackers in the top-10 most suspicious users during the attack period, with 10+ millions events ranked by FACADE during that timespan.

Agenda

FACADE Overview

Featurization of Resources and Users

Scoring Arbitrary Time Periods

Finding Insider Attacks with FACADE

FACADE Overview

Problem formulation

Is it normal for a given user to access a given resource?

TPU schematics

Normal pattern

Legitimate user Hardware division

Rogue actor Ads Sales

TPU schematics

Abnormal pattern

FACADE model architecture

How do we train such model with little to no insider attack examples?

User A embedding

TPU doc embedding

TPU schematics

User A
Hardware division

User B Google DeepMind

AlphaSecret Model results

AlphaSecret doc embedding

Unsupervised Training dataset construction

Featurization of Resources and Users

Featurization of Resources

Resource Featurization Challenges

Must handle massive, heterogeneous resources billions of distinct items document, spreadsheet, video, data table, RPC endpoint, URL, ...

Content-based features are impractical case-by-case development & maintenance cost computationally expensive at inference time

Large distribution drift

new resources at inference time is the norm, e.g., documents inherent difficulty in predicting appearance of novel topics in content

How to turn the open space of resources into a dense representation suitable to deep-learning training?

Intuition

If the following held, could treat resource as categorical feature: the set of resources is mostly constant the set of resources is not too large

each resource keeps a stable meaning throughout its existence

Idea: project resources into a more stable set of opaque identifiers the set of user ids on a corporate system is a good candidate

History-based Featurization
Bag-of-words of user ids who have previously accessed it

History-based Featurization

Resource Access History

Resource featurizations for given time periods

Handles distribution drift (changing content)

Access Event Input Example

```
id: "e767..."  # An unique identifier for this access event
occurred_at: 1710...  # Timestamp of the event
principal: "A"  # The id of the user performing the access
type: "doc_access"  # Resource type (doc, db table, hostname, ...)
resource_id: "8bca..."  # Resource identifier, e.g., document id
}
```

You only need to choose a stable-in-time resource identifier Facade takes care of the rest (history-based featurization)

History Set to Dense Vector

Featurization of Users

Two Types of User Attributes

Low cardinality, stable attributes

E.g. Job title (receptionist, software engineer, hardware engineer, etc)

→ Direct categorical featurization

High cardinality, unstable attributes

E.g. team, projects assigned, meetings attended, PRs reviewed, ... Large distribution drift (re-orgs, new projects, employees, etc)

→ Implicit social network featurization

Implicit Social Network Featurization

"project" feature for user A is bag-of-words {B, C, D}

Any user is featurized by a set of sets of other user ids one set per attribute type (team, project, department, etc)

User Context Event Input Example

```
valid_from: 1700... # Start of validity for this context fragment
principal: "A" # The id of the user this pertains to
name: "project" # User attribute (team, project, meetings, ...)
value: "XYZ" # Opaque identifier
}
```

You only need to choose the user attributes you want to use Facade takes care of the rest (implicit social network featurization)

User features to dense vector

Featurization Takeaways

1

Universal featurization method

2

Robust to distribution drift

3

New resources and users w/o retraining

4

Fast and efficient

Scoring Arbitrary Time Periods

Pointwise VS Activity Set Scoring

single access scores

A Simple Problem?

Average of scores attacker can decrease score by adding benign accesses

Sum of scores

users with more activity will be more anomalous

Max score

ignores all but one access

Scoring Diversity of Anomalous Activity

Eliminate redundant and repetitive anomalies

Use the resource embeddings for similarity

- 1. Cluster similarly-anomalous accesses together
- 2. Sum together max score of each cluster

Prevent attacker from hiding malicious activity

More diversely-anomalous sets score higher

Example

Finding Insider Attacks with FACADE

Red Team Insider Threat Scenarios

Media Sharing Platform Attackers seek corporate financial data, individual creators' earnings, ...

Attackers seek next gen device design, timelines, pictures, schematics, ...

Hardware Product

Attackers seek next gen Al: unpublished papers, code, model weights, ...

Al Research

Operational Setup

15 participants

Full-time employees with interest in cyber security

High-level playbooks provided

attackers seek to discover and access sensitive information attackers not provided detailed attack plans or target resources

Various levels of attack success per participant

Evaluation results

~180,000+ user accounts

Triaging budget: top 10 users/day

Detects 4 out of 15 attackers

More details in https://arxiv.org/abs/2412.06700

Try it yourself

Reference implementation

https://github.com/google/facade

Note: as mentioned Facade is meant to work on large scale data and requires you bring your own modeling. Using it on small datasets won't work well.

Insider threats: low incidence high impact attacks
Detection requires contextual analysis

Takeaways

FACADE: high-precision contextual anomaly detection Works for single-access *and* activity set

Adaptable to many systems and use-cases Open-source model and featurizer code available

Slides:

https://elie.net/facade

Code:

https://github.com/google/facade

