Linear Regression

Independent Variable

Linear regression in machine learning

- supervised learning
- simple to use and understand
- well-known pros and cons
- model finds the best fit linear line between the independent and dependent variable

Simple regression

slope intercept
$$y = m \cdot x + b$$

Occam's razor

Occam's razor

"Entia non sunt multiplicanda praeter necessitatem"

Occam's razor

"Entities must not be multiplied beyond necessity"

Overfitting

Overfitting

Multilinear regression

$$y = m_1 \cdot x_1 + m_2 \cdot x_2 + \dots + m_n \cdot x_n + b$$

$$R^2 = 0.93$$

Simple regression

Coefficient of determination - R^2

$$SS_{res} = \sum_{i} (y_i - y_{pr})^2$$

$$SS_{tot} = \sum_{i} (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

$$R^2 = 1 - FVU$$

unexplained variation

Coefficient of determination $-R^2$

- unitless
- $R^2 = 0 \rightarrow random\ prediction$
- $R^2 = 1 \rightarrow perfect\ predictive\ model$

https://ocw.mit.edu/courses/sloan-school-of-management/15-071-the-analytics-edge-spring-2017/linear-regression/the-statistical-sommelier-an-introduction-to-linear-regression/quick-question-54/

Conditions for linear regression

 Relationship between indenpendent and dependent variable should be linear

- Data is not noisy
- Gaussian distribution of input and output data is better
- Rescaling input (standarization or normalization)

normalization

VS

standarization

$$X_{new} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

$$X_{new} = \frac{(X - \bar{X})}{SD(X)}$$

Minimum and maximum value of features are used for scaling	Mean and standard deviation is used for scaling.
It is used when features are of different scales.	It is used when we want to ensure zero mean and unit standard deviation.
Scales values between [0, 1] or [-1, 1].	It is not bounded to a certain range.
It is really affected by outliers.	It is much less affected by outliers.
Scikit-Learn provides a transformer called MinMaxScaler for Normalization.	Scikit-Learn provides a transformer called StandardScaler for standardization.
This transformation squishes the n-dimensional data into an n-dimensional unit hypercube.	It translates the data to the mean vector of original data to the origin and squishes or expands.
It is useful when we don't know about the distribution	It is useful when the feature distribution is Normal or Gaussian.
It is a often called as Scaling Normalization	It is a often called as Z-Score Normalization.

Gaussian distribution

Kinds of distribution

Distribution?

Traps of linear regression

Other prediction methods

Importing data example

```
import pandas as pd
file = 'file_name.csv'
df = pd.read_csv(file)
```

Importing data example

```
import pandas as pd
file = 'file_name.csv'
df = pd.read_csv(file)
print(df.head(10))
```

Linear regression – sklearn

- sklearn - - > linear_model
- your_regression = linear_model.LinearRegression()
- your_model = your_regression.fit(X, y)

creating model of your data set

print(your_model.coef_)

dependent variable $\int_{0}^{\infty} training} training$

only if fit_intercept = true is set

Contains slope and intercept

• print(your_model.score(X,y) \leftarrow Contains value of R^2

https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html

Linear regression – sklearn

Predictions with ready models:

y_prediction = model.predict(x_pred)

reshaping might be needed

can be generated via np.linspace method

Result can be shown using matplotlib

or

list comprehension

interpolation vs extrapolation

MY HOBBY: EXTRAPOLATING

interpolation vs extrapolation

Zbiór danych

• https://www.kaggle.com/kumarajarshi/life-expectancy-who

 https://www.enjoyalgorithms.com/blog/life-expectancy-predictionusing-linear-regression