RASELOV PARADOKS

 $S = \{x \mid x \notin x\}$ – Ako $S \in S$, onda $S \notin S$ i obrnuto.

AKSIOMA EGZISTENCIJE

Dva skupa su jednaka ako imaju iste elemente.

AKSIOMA PRAZNOG SKUPA

Postoji skup koji nema nijedan element. Označavamo sa Ø. Prazan skup je jedinstven. Prazan skup je podskup svakog skupa.

PODSKUP

Skup A je podskup skupa B (oznaka $A \subseteq B$) ako za sve $x \in A$ važi da $x \in B$.

AKSIOMA PARTITIVNOG SKUPA

Za svaki skup X postoji skup $\mathcal{P}(x)$ koji se sastoji od svih podskupova skupa X. $\mathcal{P}(x) = \{Y \mid Y \subseteq X\}$

AKSIOMA IZDVAJANJA PODSKUPA (AKSIOMA SEPARACIJE)

Ako je A skup i P(x) neka formula, onda postoji skup $\{x \in A \mid P(x)\}$.

AKSIOMA UNIJE

Za svaki skup X postoji postoji skup Z tako da $u \in Z$ ako i samo ako $u \in Y$ za neko $Y \in X$. Skup Z predstavlja uniju članova skupa X i označavamo ga sa $\cup X$. $\cup \{A, B\} = A \cup B$

INDEKSIRANA FAMILIJA SKUPOVA

Indeksirana familija skupova je familija skupova \mathcal{F} koja je oblika $\mathcal{F} = \{A_i \mid i \in I\}$ gde je I indeksni skup.

<u>UREDJENI PAR</u>

Uredjeni par elemenata a i b je objekat (a, b) koji zadovoljava osobinu (a, b) = (c, d) akko a = c i b = d.

Uredjeni par možemo definisati:

$$(a,b) \coloneqq \{\{a\},\{a,b\}\}\$$

DEKARTOV PROIZVOD SKUPOVA

Dekartov proizvod skupova A i B je skup $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

UREDIENA N-TORKA

Uredjena n-torka elemenata $a_1, a_2, ..., a_n$ je objekat $(a_1, a_2, ..., a_n)$ takav da važi: $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ ako i samo ako $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$.

REKURZIVNA DEFINICIJA UREDJENE N-TORKE

$$(a_1, a_2, ..., a_n) := (a_1, (a_2, (..., (a_{n-1}, a_n) ...))).$$

DEKARTOV STEPEN SKUPA

$$A^n := A \times A \times ... \times A \quad (n \ge 1)$$

Specijalno: $A^0 := \{\emptyset\}$

BINARNA RELACIJA

Binarna relacija izmedju skupova A i B je bilo koji podskup $\rho \subseteq A \times B$. Pišemo $a\rho b$ ($a \in A$, $b \in B$).

Ako je A = B, tj. ako $\rho \in A^2$, kažemo da je ρ binarna relacija na skupu A.

N-ARNA RELACIJA

N-arna relacija izmedju skupova A_1, \ldots, A_n je bilo koji podskup $\rho \subseteq A_1 \times A_2 \times \ldots \times A_n$. Ako je $A_1 = A_2 = \cdots = A_n = A$, tj. ako $\rho \in A^n$, kažemo da je ρ n-arna relacija na skupu A.

Za n = 1, $\rho \subseteq A$ je unarna relacija na A.

DOMEN RELACIJE

 $\rho \subseteq A \times B$;

 $Dom(\rho) = \{a \in A \mid a\rho b, b \in B\} \subseteq A$

IMIDŽ/SLIKA RELACIJE

 $\rho \subseteq A \times B$;

 $Im(\rho) = \{b \in B \mid a\rho b, a \in A\} \subseteq B$

INVERZNA RELACIJA

Ako $\rho \subseteq A \times B$:

$$\rho^{-1} = \{(b, a) \mid (a, b) \in \rho\} \subseteq B \times A$$

 $(b,a)\in \rho^{-1} \Longleftrightarrow (a,b)\in \rho$

KOMPOZICIJA RELACIJA

Ako $\rho \subseteq A \times B$, $\sigma \subseteq B \times C$:

 $\sigma \circ \rho = \{(a,c) \in A \times C \mid (a,b) \in \rho, (b,c) \in \sigma, b \in B\} \subseteq A \times C$ je kompozicija ρ i σ .

RELACIJE NA SKUPU A

 $\rho \subseteq A \times A$

Kažemo da je ρ :

- refleksivna ako za $\forall a \in A$ važi $a \rho a ((a, a) \in \rho)$
- antirefleksivna ako za $\forall a \in A$ NE važi $a \rho a$
- **simetrična** ako za $\forall a, b \in A : a\rho b \Rightarrow b\rho a$
- antisimetrična ako za $\forall a, b \in A$: $a\rho b \land b\rho a \Rightarrow a = b$
- **asimetrična** ako za $\forall a, b \in A$: $a\rho b \implies NE$ važi $b\rho a$
- tranzitivna ako za $\forall a, b, c \in A$: $a\rho b \land b\rho c \Rightarrow a\rho c$

RELACIJA DIJAGONALA

 $\Delta_A \subseteq A \times A$

 $\Delta_A = \{(a, a) \mid a \in A\} - \text{dijagonala}$

RELACIJA EKVIVALENCIJE

Relacija $\rho \subseteq A^2$ je ekvivalencija ako je refleksivna, simetrična i tranzitivna.

KLASA EKVIVALENCIJE

Neka je $\rho \subseteq A^2$ ekvivalencija. Klasa ekvivalencije elementa $a \in A$ je skup:

$$C_a = a_{/\rho} = [a]_{\rho} = \{x \in A \mid a\rho x\}$$

Zbog simetričnosti važi $[a]_{\rho} = \{x \in A \mid x\rho a\}.$

KOLIČNIČKI SKUP EKVIVALENCIJE

Neka je $\rho\subseteq A^2$ relacija ekvivalencije. Količnički skup ekvivalencije ρ je skup:

$$A_{/\rho} = \{ C_a \mid a \in A \} \subseteq \mathcal{P}(A)$$

PARTICIJA SKUPA

Particija skupa A je bilo koji podskup $P \subseteq \mathcal{P}(A)$ koji zadovoljava sledeće uslove:

- 1. Ako $X, Y \in P$ i $X \neq Y$, važi $X \cap Y = \emptyset$
- 2. $\cup P = A$
- 3. Za svako $X \in P$ važi $X \neq \emptyset$

 A_{I_0} je particija skupa A.

RELACIJA PORETKA

Refleksivna, antisimetrična, tranzitivna.

Elementi a i b su uporedivi ako važi $a\rho b$ ili $b\rho a$. Inače su neuporedivi.

LINEARNI (TOTALNI) POREDAK

Poredak je linearan ako su svaka dva elementa uporediva. Inače, poredak je parcijalan.

MINIMALNI, MAKSIMALNI, NAJMANJI I NAJVEĆI ELEMENT

Neka je ρ uredjenje na skupu A i neka je $B \subseteq A$. $a\rho b$ čitamo "a je ρ -manje od b."

- b je **najmanji** element (**minimum**) skupa B ako $b \in B$ i za sve $x \in B$ važi $b \rho x$.
- b je **najveći** element (**maksimum**) skupa B ako $b \in B$ i za sve $x \in B$ važi $x \rho b$.
- b je **minimalan** element skupa B ako $b \in B$ i važi: ako $x \rho b$, onda je x = b za sve $x \in B$ (ne postoji ništa ρ -manje od b).
- b je **maksimalan** element skupa B ako $b \in B$ i važi: ako $b\rho x$, onda je x = b, za sve $x \in B$ (ne postoji ništa ρ -veće od b).

<u>OGRANIČENJE SKUPA</u>

Neka je $\rho \subseteq A^2$ poredak, $B \subseteq A$ i $a \in A$.

- a je **donje ograničenje** skupa B ako $a\rho x$ za sve $x \in B$.
- a je **gornje ograničenje** skupa B ako $x \rho a$ za sve $x \in B$.
- **infimum** (inf (B)) je najveće donje ograničenje od B (ako postoji).
- **supremum** $(\sup(B))$ je najmanje gornje ograničenje od B (ako postoji).

Ako postoji minimum od B, onda je on inf(B).

Ako postoji maksimum od B, onda je on sup(B).

FUNKCIJA

Relacija $f \subseteq A \times B$ je funkcija ako i samo ako: za svaki element $a \in A$ postoji tačno jedan element $b \in B$ tako da je afb (tj. $(a, b) \in f$). Pišemo $f: A \to B$.

A je domen funkcije f, a B je kodomen funkcije. Slika funkcije f je skup $Im(f) = \{f(a) \mid a \in A\} \subseteq B$.

INVERZNA FUNKCIJA

Relacija $f^{-1} \subseteq B \times A$ je funkcija ako i samo ako: za svako $b \in Im(f)$ postoji tačno jedno $a \in A$ takvo da $(b, a) \in f^{-1}$, odnosno akko za svako $b \in Im(f)$ postoji tačno jedno a takvo da je $(a, b) \in f$.

 f^{-1} je funkcija ako i samo ako je f "1-1". f^{-1} : $B \to A$ ako i samo ako je f bijekcija.

"I-I" FUNKCIJA

f je "1-1" (injektivna) ako za sve $a_1, a_2 \in A$ važi: Ako je $f(a_1) = f(a_2)$, tada je $a_1 = a_2$.

"NA" FUNKCIJA

f je "NA" (surjektivna) ako za sve $b \in B$ postoji $a \in A$ takvo da je b = f(a). Odnosno, Im(f) = B.

BIJEKCIJA

f je bijekcija ako je i "1-1" i "NA".

KOMPOZICIJA FUNKCIJA

Ako su $f \subseteq A \times B$ i $g \subseteq B \times C$ funkcije, onda je i $g \circ f \subseteq A \times C$ funkcija i važi $(g \circ f)(a) = g(f(a)).$

IDENTITET

 $id_A: A \to A$ je definisana sa $id_A(a) = a$ za sve $a \in A$.

DIREKTNA I INVERZNA SLIKA SKUPA

Neka $f: X \to Y, A \subseteq X, B \subseteq Y$

- Direktna slika skupa A pri preslikavanju f je skup $f[A] = \{f(x) \mid x \in A\} \subseteq Y$.
- Inverzna slika skupa B pri preslikavanju f je skup $f^{-1}[B] = \{x \in X \mid f(x) \in B\} \subseteq X$.

KARAKTERISTIČNE FUNKCIJE

Neka je U skup (univerzum) za $A \subseteq U$ definišemo funkciju $\chi_A: U \to 2$ na sledeći način: $\chi_A \begin{cases} 0, x \notin A \\ 1, x \in A \end{cases}$

Funkciju χ_A zovemo karakteristična funkcija.

$$2^U = \{ f \mid f: U \to 2 \}$$

A = B ako i samo ako $\chi_A = \chi_B$.

KARDINALNOST

Neka su A i B skupovi:

- 1. Kažemo da je skup A kardinalnosti manje ili jednake od B, oznaka $|A| \le |B|$, ako postoji "1-1" funkcija $f: A \to B$.
- 2. Kažemo da je A jednake kardinalnosti sa B, |A| = |B|, ako postoji bijekcija $f: A \to B$.
- 3. Kažemo da je kardinalnost od A strogo manja od B, |A| < |B|, ako $|A| \le |B|$ $\land |A| \ne |B|$.

KANTOROVA TEOREMA

Za svaki skup X važi $|X| < |\mathcal{P}(X)|$.

PREBROJIV SKUP

Skup A je prebrojiv ako je iste kardinalnosti kao skup prirodnih brojeva (tj. $|A| = |\mathbb{N}|$).

KONAČAN SKUP

Skup A je konačan ako ima *n* elemenata, gde je *n* prirodan broj. Ako A nije konačan, onda je beskonačan.

A je beskonačan akko postoji pravi podskup $A' \subset A$ takav da su A i A' u bijekciji. Skup \mathbb{N} je beskonačan.

Ako je skup konačan ili prebrojiv, kažemo da je najviše prebrojiv. Inače je neprebrojiv.

KANTOR-BERNŠTAJNOVA TEOREMA

Ako postoji injekcija $A \to B$ i surjekcija $A \to B$, onda postoji bijekcija $A \to B$.

AKSIOMA IZBORA

Neka je dat skup F čija su svi elementi neprazni skupovi i medjusobno disjunktni. Tada postoji skup C takav da je $C \cap X$ jednočlan za sve $x \in F$. Taj skup se naziva izborni skup (transverzala).

AKSIOMA DOBROG ZASNIVANJA (REGULARNOSTI)

Svaki neprazan skup A sadrži element a takav da je $A \cap a = \emptyset$.

Posledice:

- Ne postoji skup X takav da je $X \in X$.
- Ne postoje skupovi X i Y takvi da $X \in Y$ i $Y \in X$.
- Ne postoji niz skupova $X_0, X_1, ...$ takvih da $X_0 \ni X_1 \ni X_2 \ni ...$

PEANOVE AKSIOME

- Π_1 : 0 je prirodan broj.
- Π_2 : Ako je x prirodan broj, onda je i x' (njegov naslednik) prirodan broj.
- Π_3 : Ako su x i y prirodni brojevi i x' = y', onda je x = y.
- Π_4 : Za svaki prirodan broj x važi $x' \neq 0$.
- Π_5 : Neka je Φ svojstvo prirodnih brojeva za koje važi:
 - 1. 0 ima svojstvo Φ.
 - 2. Ako prirodan broj x ima svojstvo Φ, tada i x' ima svojstvo Φ. Tada svaki prirodan broj ima svojstvo Φ.

FON NOIMANOV MODEL PRIRODNIH BROJEVA

$$0 := \emptyset$$

$$n' := n \cup \{n\}$$

$$1 := 0' = 0 \cup \{0\} = \emptyset \cup \{\emptyset\} = \{\emptyset\} = \{0\}$$

$$2 := 1' = 1 \cup \{1\} = \{0\} \cup \{1\} = \{0, 1\}$$

$$3 := 2' = 2 \cup \{2\} = \{2\} \cup \{0, 1\} = \{0, 1, 2\}$$
...
$$n + 1 = n' = n \cup \{n\} = \{0, 1, ..., n - 1\} \cup \{n\} = \{0, 1, 2, ..., n\}$$

AKSIOMA INDUKCIJE

Peanovu aksiomu Π_5 nazivamo aksiomom indukcije.

Uslov 1. nazivamo baza indukcije. Uslov 2. nazivamo induktivni korak.

PRINCIP POTPUNE INDUKCIJE

Neka je Φ svojstvo prirodnih brojeva i neka važi: ako je tačno $\Phi(0)$, $\Phi(1)$, ..., $\Phi(n)$ tačno je i $\Phi(n')$ za sve $n \in \mathbb{N}$ (dakle, $\Phi(n)$ važi za sve prirodne brojeve).

PRINCIP NAJMANJEG ELEMENTA

Ako je $A \subseteq \mathbb{N}$ i $A \neq \emptyset$ onda A ima najmanji element.

DELJIVOST

U N:

a|b akko $b = a \cdot q$ za neko $q \in \mathbb{N}$. | je relacija poretka.

DELIENIE U Z

Neka su $a, b \in \mathbb{Z}$ i $b \neq 0$. Tada postoje jedinstveni $q, r \in \mathbb{Z}$ takvi da je: $a = b \cdot q + r$, gde je $0 \leq r < |b|$.

NZD

Neka $a, b \in \mathbb{Z}$.

Broj $d \ge 0$ je najveći zajednički delilac od a i b, kraće NZD(a, b), ako zadovoljava sledeće uslove:

- d|a i d|b
- ako e|a i e|b, onda e|d.

NZS

Neka $a, b \in \mathbb{Z}$.

Broj $s \ge 0$ je najmanji zajednički sadržalac od a i b, kraće NZS(a, b), ako zadovoljava sledeće uslove:

- a|s i b|s
- ako a|t i b|t, onda s|t.

DIOFANTOVE JEDNAČINE

Jednačina oblika:

ax + by = c $(a, b, c \in \mathbb{Z}; a, b \neq 0)$ Ima rešenje akko $NZD(a,b) \mid c$.

PROSTI BROJEVI

Broj p > 1 je prost ako su mu jedini delioci 1 i p.

Ako p|ab onda p|a ili p|b, odnosno ako $p|a_1a_2...a_k \Rightarrow p|a_1$ ili $p|a_2$ ili ... ili $p|a_k$. Svaki prirodan broj n > 1 je prost ili se može predstaviti kao proizvod prostih brojeva.

OSNOVNA TEOREMA ARITMETIKE

Svaki prirodan broj n > 1 se (do na redosled članova) na jedinstven način zapisuje kao proizvod prostih.

KONGRUENCIJA PO MODULU

Neka je $m \ge 2$. Definišemo binarnu relaciju \equiv_m na \mathbb{Z} sa: $a \equiv_m b$ akko m | (a - b).

VILSONOVA TEOREMA

Ako je p prost broj, tada je $(p-1)! \equiv_{n} -1$

KINESKA TEOREMA O OSTACIMA

Neka su $m_1, m_2, \ldots, m_n \geq 2$ uzajamno prosti u parovima i neka su $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. Tada sistem kongruencija $\begin{cases} x \equiv_{m1} a_1 \\ \cdots \\ x \equiv_{mn} a_n \end{cases}$ ima rešenje, jedinstveno u intervalu $[0, m_1 m_2 \ldots m_n)$.

Opšte rešenje je oblika $x_0 + t \cdot m_1 m_2 \dots m_n$ gde $t \in \mathbb{Z}$, a $x_0 \in [0, NZS(m_1, \dots, m_n)]$.

OILEROVA FUNKCIJA

Ojlerov skup: $\Phi(n) = \{a \mid 1 \le a \le n, NZD(a, n) = 1\}$ za $n \ge 1$.

Na primer: $\Phi(12) = \{1, 5, 7, 11\}; \ \Phi(5) = \{1, 2, 3, 4\}; \text{ itd.}$

Ojlerova funkcija: $\varphi(n) = |\Phi(n)|$ – broji koliko ima elemenata koji su uzajamno prosti sa n.

Na primer: $\varphi(5) = \varphi(12) = 4$

p – prost broj:

$$\varphi(p) = p - 1$$

$$\varphi(p^n) = p^n \left(1 - \frac{1}{p}\right)$$

Ojlerova funkcija je multiplikativna, tj. $\varphi(mn) = \varphi(m) \cdot \varphi(n)$ kad god NZD(m,n) = 1

7

OILEROVA TEOREMA

Neka je NZD(a, n) = 1, tada je $a^{\varphi(n)} \equiv_n 1$.

MALA FERMAOVA TEOREMA

Ako je p prost broj, tada je $a^p \equiv_p a$.

BULOVA ALGEBRA

Bulova algebra je algebarska struktura $\mathbb{B} = (B, V, \Lambda, ', 0, 1)$ koja zadovoljava sledeće aksiome:

- 1. $x \lor y = y \lor x$
- 2. $x \wedge y = y \wedge x$
- 3. $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
- 4. $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$
- 5. $x \lor 0 = x$
- 6. $x \wedge 1 = x$
- 7. $x \lor x' = 1$
- 8. $x \wedge x' = 0$
- 9. $0 \neq 1$

za svako $x, y, z \in \mathbb{B}$.

PRINCIP DUALNOSTI

Formule F_1 i F_2 su dvojne ako se F_2 može dobiti od formule F_1 tako što se svako pojavljivanje Λ zameni sa V i obrnuto, svako pojavljivanje 1 zameni sa 0 i obrnuto.

BULOVO UREDIENIE

Na proizvoljnoj Bulovoj algebri $\mathbb{B} = (B, V, \Lambda, ', 0, 1)$ možemo uvesti uredjenje na sledeći način:

$$x \le y \iff x \land y = x$$

Važi da je $x \land y = y$.

 (\mathbb{B}, \leq) je parcijalno uredjen skup (skup kod kojeg postoji relacija za koju važe antisimetričnost, tranzitivnost i refleksivnost.

ATOM

Element x Bulove algebre $\mathbb{B} = (B, V, \Lambda, ', 0, 1)$ je atom ukoliko x > 0 i ako važi: ako postoji $y \le x$ tada je y = x ili y = 0.

STONOVA TEOREMA

Za svaku konačnu Bulovu algebru $\mathbb{B} = (B, \vee, \wedge, ', 0, 1)$ postoji skup X takav da postoji bijekcija:

$$\mathcal{F} \colon \mathbb{B} \to \mathcal{P}(X)$$

za koju važi:

$$f(x \lor y) = f(x) \lor f(y)$$

$$f(x \wedge y) = f(x) \wedge f(y)$$

$$f(x') = f(x)^c = x \backslash f(x)$$

Konačnu Bulovu algebru moguće je konstruisati na skupu koji ima 2^m elemenata, $m \in \mathbb{N}$.

IEZIK ISKAZNE ALGEBRE

- P prebrojiv skup promenljivih
- $C = \{T, \bot\}$ skup logičkih konstanti
- logički veznici: $\neg, \land, \lor, \Longrightarrow, \iff, \uparrow, \downarrow, \checkmark$
- zagrade: (,)

VALUACIJA

Valuacija je preslikavanje $v: P \rightarrow \{0,1\}$.

INTERPRETACIJA

Interpretacija pri valuaciji v je preslikavanje I_v : $For \mathcal{L} \to \{0,1\}$, gde je For \mathcal{L} skup svih formula jezika iskazne algebre \mathcal{L} .

ZADOVOLJIVA/PORECIVA FORMULA

Formula F je zadovoljiva ako postoji bar jedna valuacija v tdj. $I_v(F) = 1$. $(v \models F)$ Formula F je poreciva ako postoji bar jedna valuacija v tdj. $I_v(F) = 0$. $(v \not\models F)$

TAUTOLOGIJA

Ako za sve valuacije v važi da je $I_{\nu}(F) = 1$, F je tautologija.

KONTRADIKCIJA

Ako za sve valuacije v važi da je $I_v(F) = 0$, F je kontradikcija.

ZADOVOLJIV SKUP

 $\Gamma \subseteq For \mathcal{L}$

Skup Γ je zadovoljiv ako postoji valuacija $v: P \to \{0, 1\}$ td. za sve $F \in \Gamma$ važi $I_v(F) = 1$. Pišemo $v \models \Gamma$.

F je logička posledica skupa Γ (pišemo $\Gamma \vDash F$) ako za svaku valuaciju v za koju važi $v \vDash \Gamma$ važi $v \vDash F$.

LOGIČKI EKVIVALENTNE FORMULE

Formule A i B su logički ekvivalentne ako $A \models B$ i $B \models A$. (Zapis $A \equiv B$)

KONJUKTIVNA NORMALNA FORMA

Formula je u KNF ako je oblika $A_1 \wedge A_2 \wedge ... \wedge A_n$, gde su A_i disjunkcije iskaznih slova. Na primer $(p \vee q) \wedge (p \vee r) \wedge (q \vee \neg r) \wedge \neg p$ je u KNF.

DISJUNKTIVNA NORMALNA FORMA

Formula je u DNF ako je oblika $A_1 \vee A_2 \vee ... \vee A_n$, gde su A_i konjukcije iskaznih slova.