

STGP14NC60KD - STGF14NC60KD STGB14NC60KD

N-CHANNEL 14A - 600V - TO-220/TO-220FP/D²PAK
SHORT CIRCUIT RATED PowerMESH™ IGBT

Table 1: General Features

TYPE	V _{CES}	V _{CE(sat)} (Max) @25°C	I _C (#) @100°C
STGB14NC60KD	600 V	< 2.5 V	14 A
STGF14NC60KD	600 V	< 2.5 V	7 A
STGP14NC60KD	600 V	< 2.5 V	14 A

- LOWER ON-VOLTAGE DROP (V_{cesat})
- OFF LOSSES INCLUDE TAIL CURRENT
- LOWER C_{RES} / C_{IES} RATIO
- SWITCHING LOSSES INCLUDE DIODE RECOVERY ENERGY
- VERY SOFT ULTRA FAST RECOVERY ANTIPARALLEL DIODE
- NEW GENERATION PRODUCTS WITH TIGHTER PARAMETER DISTRUBUTION

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "K" identifies a family optimized for high frequency motor control applications with short circuit withstand capability.

APPLICATIONS

- HIGH FREQUENCY INVERTERS
- SMPS and PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES
- MOTOR DRIVERS

Figure 1: Package

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGB14NC60KD4	GB14NC60KD	D ² PAK	TAPE & REEL
STGF14NC60KD	GF14NC60KD	TO-220FP	TUBE
STGP14NC60KD	GP14NC60KD	TO-220	TUBE

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value		Unit
		STGB14NC60KD STGP14NC60KD	STGF14NC60KD	
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600		V
V _{ECR}	Emitter-Collector Voltage	20		V
V _{GE}	Gate-Emitter Voltage	±20		V
I _C	Collector Current (continuous) at T _C = 25°C (#)	25	11	A
I _C	Collector Current (continuous) at T _C = 100°C (#)	14	7	A
I _{CM} (#)	Collector Current (pulsed)	50		A
I _F	Diode RMS Forward Current at T _C = 25°C	20		A
P _{TOT}	Total Dissipation at T _C = 25°C	80	25	W
	Derating Factor	0.64	0.20	W/°C
V _{ISO}	Insulation Withstand Voltage A.C.(t = 1 sec; T _C = 25°C)	--	2500	V
T _{stg}	Storage Temperature	– 55 to 150		
T _j	Operating Junction Temperature	– 55 to 150		

(*) Pulse width limited by Max Junction Temperature.

Table 4: Thermal Data

			Min.	Typ.	Max.	
R _{thj-case}	Thermal Resistance Junction-case	TO-220 D ² PAK			1.56	°C/W
		TO-220FP			5.0	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient				62.5	°C/W
T _L	Maximum Lead Temperature for Soldering Purpose (1.6 mm from case, for 10 sec.)			300		°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)**Table 5: Main Parameters**

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	I _C = 1 mA, V _{GE} = 0	600			V
I _{CES}	Collector cut-off Current (V _{GE} = 0)	V _{CE} = Max Rating, T _C = 25°C V _{CE} = Max Rating, T _C = 125°C			10 1	µA mA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ±20V , V _{CE} = 0			±100	nA
V _{GE(th)}	Gate Threshold Voltage	V _{CE} = V _{GE} , I _C = 250 µA	5		7	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	V _{GE} = 15V, I _C = 7A V _{GE} = 15V, I _C = 7A, T _C = 125°C		2.0 1.8	2.5	V V

(#) Calculated according to the iterative formula:

$$I_C(T_C) = \frac{T_{JMAX} - T_C}{R_{THJ-C} \times V_{CESAT(MAX)}(T_C, I_C)}$$

ELECTRICAL CHARACTERISTICS (CONTINUED)**Table 6: Dynamic**

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
g_{fs} (1)	Forward Transconductance	$V_{CE} = 15 \text{ V}$, $I_C = 7 \text{ A}$		3		S
C_{ies}	Input Capacitance	$V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$, $V_{GE} = 0$		760		pF
C_{oes}	Output Capacitance			86		pF
C_{res}	Reverse Transfer Capacitance			15.5		pF
Q_g	Total Gate Charge	$V_{CE} = 390 \text{ V}$, $I_C = 7 \text{ A}$,		34.4		nC
Q_{ge}	Gate-Emitter Charge	$V_{GE} = 15 \text{ V}$		8.1		nC
Q_{gc}	Gate-Collector Charge	(see Figure 21)		16.4		nC
t_{scw}	Short Circuit Withstand Time	$V_{CE} = 0.5 \text{ V}_{BR(CES)}$, $T_j = 125^\circ\text{C}$, $R_G = 10 \Omega$, $V_{GE} = 12 \text{ V}$	10			μs

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_d(on)$	Turn-on Delay Time	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$		22.5		ns
t_r (di/dt) _{on}	Current Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 \text{ V}$, $T_j = 25^\circ\text{C}$		8.5		ns
	Turn-on Current Slope	(see Figure 19)		700		A/ μs
$t_d(on)$	Turn-on Delay Time	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$		22		ns
t_r (di/dt) _{on}	Current Rise Time	$R_G = 10 \Omega$, $V_{GE} = 15 \text{ V}$, $T_j = 125^\circ\text{C}$		9.5		ns
	Turn-on Current Slope	(see Figure 19)		680		A/ μs

Table 8: Switching Off

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_r(V_{off})$	Off Voltage Rise Time	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$,		60		ns
$t_d(off)$	Turn-off Delay Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 \text{ V}$		116		ns
t_f	Current Fall Time	$T_j = 25^\circ\text{C}$		75		ns
		(see Figure 19)				
$t_r(V_{off})$	Off Voltage Rise Time	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$,		24		ns
$t_d(off)$	Turn-off Delay Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 \text{ V}$		196		ns
t_f	Current Fall Time	$T_j = 125^\circ\text{C}$		144		ns
		(see Figure 19)				

Table 9: Switching Energy

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$E_{on}(2)$	Turn-on Switching Losses	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$		82		μJ
$E_{off}(3)$	Turn-off Switching Losses	$R_G = 10 \Omega$, $V_{GE} = 15 \text{ V}$, $T_j = 25^\circ\text{C}$		155		μJ
E_{ts}	Total Switching Losses	(see Figure 19)		237		μJ
$E_{on}(2)$	Turn-on Switching Losses	$V_{CC} = 390 \text{ V}$, $I_C = 7 \text{ A}$		131		μJ
$E_{off}(3)$	Turn-off Switching Losses	$R_G = 10 \Omega$, $V_{GE} = 15 \text{ V}$, $T_j = 125^\circ\text{C}$		370		μJ
E_{ts}	Total Switching Losses	(see Figure 19)		501		μJ

(1) Pulsed: Pulse duration = 300 μs , duty cycle 1.5%

(2) Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & DIODE are at the same temperature (25°C and 125°C)

(3) Turn-off losses include also the tail of the collector current.

Table 10: Collector-Emitter Diode

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_f	Forward On-Voltage	$I_f = 3.5 \text{ A}$ $I_f = 3.5 \text{ A}, T_j = 125 \text{ }^\circ\text{C}$		1.3 1.1	1.9	V V
t_{rr} t_a Q_{rr} I_{rrm} S	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Softness factor of the diode	$I_f = 7 \text{ A}, V_R = 40 \text{ V},$ $T_j = 25 \text{ }^\circ\text{C}, di/dt = 100 \text{ A}/\mu\text{s}$		37 22 40 2.1 0.68		ns ns nC A
t_{rr} t_a Q_{rr} I_{rrm} S	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current Softness factor of the diode	$I_f = 7 \text{ A}, V_R = 40 \text{ V},$ $T_j = 125 \text{ }^\circ\text{C}, di/dt = 100 \text{ A}/\mu\text{s}$		61 34 98 3.2 0.79		ns ns nC A

Figure 3: Output Characteristics**Figure 4: Transconductance****Figure 5: Collector-Emitter On Voltage vs Collector Current****Figure 6: Transfer Characteristics****Figure 7: Collector-Emitter On Voltage vs Temperature****Figure 8: Normalized Gate Threshold vs Temperature**

Figure 9: Normalized Breakdown Voltage vs Temperature

Figure 10: Capacitance Variations

Figure 11: Total Switching Losses vs Gate Resistance

Figure 12: Gate Charge vs Gate-Emitter Voltage

Figure 13: Total Switching Losses vs Temperature

Figure 14: Total Switching Losses vs Collector Current

Figure 15: Thermal Impedance For TO-220/D²PAK

Figure 16: Thermal Impedance For TO-220FP

Figure 17: Turn-Off SOA

Figure 18: Emitter-Collector Diode Characteristics

Figure 19: Test Circuit for Inductive Load Switching

Figure 20: Switching Waveforms

Figure 21: Gate Charge Test Circuit

Figure 22: Diode Recovery Times Waveform

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
B	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
C	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
M	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	0°		4°			

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

TO-220 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.15		1.70	0.045		0.066
c	0.49		0.70	0.019		0.027
D	15.25		15.75	0.60		0.620
E	10		10.40	0.393		0.409
e	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.052
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
ϕP	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

D²PAK FOOTPRINT**TAPE AND REEL SHIPMENT**

TAPE MECHANICAL DATA					REEL MECHANICAL DATA				
DIM.	mm		inch		DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.		MIN.	MAX.	MIN.	MAX.
A0	10.5	10.7	0.413	0.421	A	330		12.992	
B0	15.7	15.9	0.618	0.626	B	1.5		0.059	
D	1.5	1.6	0.059	0.063	C	12.8	13.2	0.504	0.520
D1	1.59	1.61	0.062	0.063	D	20.2		0.795	
E	1.65	1.85	0.065	0.073	G	24.4	26.4	0.960	1.039
F	11.4	11.6	0.449	0.456	N	100		3.937	
K0	4.8	5.0	0.189	0.197	T		30.4		1.197
P0	3.9	4.1	0.153	0.161					
P1	11.9	12.1	0.468	0.476					
P2	1.9	2.1	0.075	0.082					
R	50		1.574						
T	0.25	0.35	0.0098	0.0137					
W	23.7	24.3	0.933	0.956					

TAPE MECHANICAL DATA

40 mm min. Access hole at slot location
Full radius
Tape slot in core for tape start 2.5mm min. width

REEL MECHANICAL DATA

Dimensions: A=16.90 mm, B=1.5 mm, C=12.8 mm, D=20.2 mm, G=24.4 mm, N=100 mm, T=30.4 mm

BASE QTY **BULK QTY**

1000 1000

TRL **FEED DIRECTION** **User Direction of Feed**

Bending radius R min.

10 pitches cumulative tolerance on tape +/- 0.2 mm

Center line of cavity

* on sales type

Table 11: Revision History

Date	Revision	Description of Changes
14-Jun-2005	1	New release
22-Jul-2005	2	Complete version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from :

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com