Fonctions de références

Lycée secondaire cité Erriadh Sousse

Exercice 1

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x-1)^2$. On appelle \mathscr{C} la représentation de f dans un repère orthonormé (O,i,j)

- 1) Déterminer l'ensemble de définition de f
- a) Etudier les variations de f sur]-∞,1 et]1,+∞
 - b) Déterminer l'axe et le sommet de €
 - c) Tracer €
- a) ∡racer dans le même repère la droite ∆ d'équation v = 1
 - b) Résoudre graphiquement l'équation $x^2 2x = 0$
- 4) Soit la droite Δ' d'équation y = 4. Résoudre graphiquement $x^2 2x 3 < 0$

Exercice 2 ***

Le plan est muni d'un repère orthonormé (O,i,j)

- 1) Soit f la fonction d'éfinie par $f(x) = \frac{1}{2}x^2 2x 1$
 - a) Ecrire f(x) sous forme canonique
 - b) Etudier les variations de f sur R
- 2) Soit g la fonction définie par $g(x) = -\frac{1}{2}(x-1)^2 + \frac{7}{2}$
 - a) Tracer ℓ' la courbe représentative de g dans le repère (O,i,j)
 - b) Déterminer par le calcul les coordonnées des points d'intersection A et B de & et &
 - c) Résoudre graphiquement l'inéquation f(x) > g(x)
- Soit x ∈ [-1,4] et soit M et N les points respectifs de C et C' d'abscisse x. Déterminer la valeur de x pour laquelle la distance MN est maximale.
- 4) Soit h la fonction définie sur \mathbb{R} par $h(x) = \begin{cases} f(x) & \text{si } f(x) > g(x) \\ g(x) & \text{si } f(x) \le g(x) \end{cases}$
 - a) Déterminer l'expression de h(x) en fonction de x
 - b) Tracer la courbe représentative Γ de h (dans une figure séparée).
 - c) Soit m un nombre réel. Discuter suivant les valeurs de m, le nombre des solutions de l'équation h(x) = m

Exercice 3 ***

Le plan est muni d'un repère orthonormé (O,i,j)

- 1) Soit f la fonction définie par $f(x) = -\frac{1}{4}(x-3)^2 + 4$
 - a) Etudier les variations de f
 - b) Tracer € la courbe représentative de f
- Soit g la fonction définie par g(x) = |f(x)| et soit €' sa courbe représentative dans le repère (O,i,j)
 - a) Expliquer comment construire la courbe & à partir de &
 - b) Tracer €'
 - c) En déduire le tableau de variation de g
- 3) a) Tracer la droite D: $y = \frac{1}{2}x + \frac{1}{2}$
 - b) Résoudre graphiquement l'inéquation $\left| -\frac{1}{4}x^2 + \frac{3}{2}x + \frac{7}{4} \right| \ge \frac{1}{2}x + \frac{1}{2}$

Exercice 4 ***

Le plan est muni d'un repère orthonormé (O,i,j)

Sur le graphique ci-dessous, la parabole $\mathscr C$ est la courbe d'une fonction f définie sur $\mathbb R$ par $f(x) = ax^2 + bx + c$ où a, b et c sont des nombres réels.

- 1) En utilisant le graphique, déterminer les réels a, b et c
- 2) Soit g la fonction définie sur \mathbb{R} par $g(x) = \frac{1}{2}(x-3)^2 + 1$
 - a) Etudier le sens de variation de g sur chacun des intervalles $]-\infty,3]$ et $[3,+\infty[$
 - b) Caractériser puis tracer la courbe \mathscr{C} ' de g dans le repère $\left(0,\vec{i},\vec{j}\right)$
- 3) a) Déterminer une équation de la droite Δ passant par les points A(1,3) et B(3,1)
 - b) Résoudre graphiquement le système (S): $\begin{cases} 4 x \le f(x) \\ 4 x \le g(x) \end{cases}$

Soit la fonction f définie par $f(x) = \sqrt{x+4}$

- 1) Déterminer l'ensemble de définition de f
- 2) Etudier les variations de f
- Construire
 ^e la courbe représentative de f dans un repère orthonorme (O, i, j)
- 4) Soit la droite Δ : y = x 2
 - a) Tracer A dans le même repère.
 - b) Déterminer les coordonnés du point d'intersection de $\mathscr C$ et Δ
- 5) Soit la fonction g définie sur $[-4, +\infty[$ par $g(x) = \frac{x}{\sqrt{x+4}+2}$
 - a) Montrer que pour $x \in [-4, +\infty[, g(x) = f(x) 2]$
 - b) En déduire une construction de € la courbe représentative de g à partir de €

Exercice 6

Le plan est rapporté d'un repère orthonormé (O, i, j)

- 2) Soit g la fonction définie par $g(x) = \frac{-4}{x-1}$
 - a) Déterminer l'ensemble de définition de g
 - b) Préciser les asymptotes et le centre de symétrie de €g courbe représentative de la fonction g
 - c) Tracer €g dans le même repère.
- 3) En utilisant le graphe

- b) Résoudre l'inéquation g(x) ≤ f(x)
- 4) Soit h la fonction définie sur \mathbb{R} par $h(x) = \begin{cases} g(x) & \text{si } x < -1 \\ f(x) & \text{si } x \ge -1 \end{cases}$
 - a) Tracer Ch courbe représentative de la fonction h
 - b) Déduire les variations de h

Soit la fonction f définie sur \mathbb{R}^* par $f(x) = -\frac{4}{x}$

- 1) a) Etudier les variations de f sur son domaine de définition.
 - b) Tracer
 € la courbe représentative de f dans un repère orthonormé (O,i,j)
- Soit Δ la droite d'équation y = x 5
 - a) Tracer Δ dans le même repère.
 - b) Déterminer graphiquement puis par le calcul les coordonnées des points d'intersection de Δ avec &
 - c) Resoudre graphiquement $\frac{4}{x} + x < 5$

Exercice 8

Soit f la fonction définie sur $\mathbb{R}\setminus\{2\}$ par $f(x) = \frac{3x-3}{x-2}$

- 1) a) Vérifier que $f(x) = 3 + \frac{3}{x-2}$
 - b) Etudier le sens de variation de f sur chacun des intervalles]-∞,2[et]2,+∞[
- Caractériser puis tracer & la courbe représentative de f dans un repère orthonormé (O,i,i)
- 3|x|-3 et on désigne par \mathscr{C} ' sa courbe représentative. 3) Soit g la fonction définie par g(x)
 - a) Déterminer le domaine de définition de q
 - b) Montrer que g est paire.
 - c) Vérifier que g(x) = f(x) si x ≥ 0
- a) Expliquer comment construire la courbe €' à partir de €
 - b) Tracer la courbe €' dans le même repère (O,i,j)
- Discuter suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation g(x) = m

Exercice 9

Soit $f(x) = a + \frac{b}{x+2}$, avec a et b sont deux réels. $\mathscr{C}f$ la courbe de f dans un repère orthonormée $(0, \overline{i}, \overline{j})$.

- 1) a) Déterminer Df l'ensemble de définition de f
 - b) Déterminer l'expression de f sachant que Ef passe par les points A(0,1) et B(2,2)
- Dans la suite on prend a = 3 et b = -4
 - a) Etudier les variations de f sur chacun des intervalles]-∞, -2[et]-2,+∞
 - b) Tracer €f
- a) Résoudre graphiquement 1 < f(x) < 4
 - b) Déterminer l'intersection de $\mathscr{C}f$ et la droite $\Delta : y = x$
- Soit g la fonction définie sur IR par g(x) = √x + 2
 - a) Déterminer Dg puis tracer ℓg dans le repère (O,i,i)
 - b) Résoudre graphiquement $3x + 2 (x + 2)\sqrt{x + 2} < 0$
- 5) Soit h la fonction définie sur \mathbb{R} par $h(x) = \frac{3|x|+2}{|x|+2}$
 - a) Montrer que la courbe Ch de h est symétrique par rapport à l'axe des ordonnées.
 - b) Tracer &h à partir de &f

Exercice 10

On considère la fonction f définie par $f(x) = \frac{4x-7}{2x-5}$ et on désigne par $\mathscr C$ sa courbe dans un repère orthonormé

 $(O, \overline{i}, \overline{j})$

- 1) a) Déterminer l'ensemble de définition D de f
 - b) Montrer que $f(x) = 2 + \frac{3}{2x-5}$ pour tout $x \in D$
 - c) Etudier les variations de f sur $\left]-\infty, \frac{5}{2}\right[$ et $\left]\frac{5}{2}, +\infty\right[$
- 2) a) Préciser les asymptotes et le centre de symétrie ${\rm I}\,$ de la courbe ${\mathscr C}\,$
 - b) Tracer €
- Résoudre graphiquement l'équation f(x) ≥ 3
- 4) Soit g la fonction définie par $g(x) = \frac{4|x|-7}{2|x|-5}$
 - a) Etudier et interpréter graphiquement la parité de g
 - b) Tracer à partir de ℓ la courbe ℓ' de g dans le repère (O,i,j)

- Df = IR
- a) Soit a,b ∈]-∞,1 tel que a < b

$$f(b) - f(a) = (b-1)^2 - (a-1)^2 = (b-1+a-1)(b-1-a+1) = (b+a-2)(b-a)$$

 $a,b \in]-\infty,1[$ donc $a < 1$ et $b < 1$ donc $b+a-2 < 0$

d'autre part a < b donc b - a < 0 et par suite f(b) - f(a) < 0 donc f est décroissante sur]-∞,1[Soit $a,b \in]1,+\infty[$ tel que a < b

$$f(b) - f(a) = (b-1)^2 - (a-1)^2 = (b-1+a-1)(b-1-a+1) = (b+a-2)(b-a)$$

 $a, b \in [1, +\infty[$ donc a > 1 et b > 1 donc b + a - 2 > 0

d'autre part a < b donc b - a < 0 et par suite f(b) - f(a) > 0 donc f est croissante sur $]1, +\infty[$

b) \mathscr{C} est une parabole se sommet S(1,0) et d'axe x=1

3) b)
$$x^2 - 2x = 0 \Leftrightarrow x^2 - 2x + 1 - 1 = 0 \Leftrightarrow (x - 1)^2 = 1 \Leftrightarrow f(x) = 1 \Leftrightarrow x = 0 \text{ ou } x = 2$$

 $S_R = \{0, 2\}$

4) $x^2 - 2x - 3 < 0 \Leftrightarrow x^2 - 2x + 1 < 4 \Leftrightarrow (x - 1)^2 < 4 \Leftrightarrow f(x) < 4$ $S_{p} =]-1.3[$

Exercice 2

1) a)
$$f(x) = \frac{1}{2}x^2 - 2x - 1 = \frac{1}{2}(x^2 - 4x - 2) = \frac{1}{2}(x^2 - 4x + 4 - 6) = \frac{1}{2}((x - 2)^2 - 6) = \frac{1}{2}(x - 2)^2 - 3$$

b) - Soit $a,b \in]-\infty,2]$ tels que a < b

$$a < b \Leftrightarrow a-2 < b-2$$

$$\Leftrightarrow (a-2)^2 > (b-2)^2 \text{ car } a-2 < b-2 \le 0$$

$$\Leftrightarrow \frac{1}{2}(a-2)^2 > \frac{1}{2}(b-2)^2$$

$$\Leftrightarrow \frac{1}{2}(a-2)^2-3>\frac{1}{2}(b-2)^2-3$$

$$\Leftrightarrow f(a) > f(b)$$

donc f est strictement décroissante sur]-∞,2]

$$a < b \Leftrightarrow a-2 < b-2$$

$$\Leftrightarrow (a-2)^2 < (b-2)^2 \text{ car } 0 \le a-2 < b-2$$

$$\Leftrightarrow \frac{1}{2}(a-2)^{2} < \frac{1}{2}(b-2)^{2}$$

$$\Leftrightarrow \frac{1}{2}(a-2)^{2} - 3 < \frac{1}{2}(b-2)^{2} - 3$$

$$\Leftrightarrow f(a) < f(b)$$

donc f est strictement croissante sur]-∞,2]

×	 2	+00
f		\rightarrow
	-3 -	

c) La courbe de f est une parabole d'axe x = 2 et de sommet S(2,-3)

2) a) \mathscr{C}' est une parabole d'axe x = 1 et de sommet S' $\left(-1, \frac{7}{2}\right)$

x	2	3	4	5
g(x)	3	3 2	-1	$-\frac{9}{2}$

b)
$$f(x) = g(x) \Leftrightarrow \frac{1}{2}x^2 - 2x - 1 = -\frac{1}{2}(x - 1)^2 + \frac{7}{2}$$

 $\Leftrightarrow \frac{1}{2}x^2 - 2x - 1 = -\frac{1}{2}(x^2 - 2x + 1) + \frac{7}{2}$
 $\Leftrightarrow \frac{1}{2}x^2 - 2x - 1 = -\frac{1}{2}x^2 + x + 3$
 $\Leftrightarrow x^2 - 3x - 4 = 0$
 $\Leftrightarrow x = -1 \text{ ou } x = 4$

c)
$$f(x) > g(x)$$

$$S_R =]-\infty, -1[\cup]4, +\infty[$$

Soit x ∈ [-1,4]

$$M(x,f(x))$$
 et $N(x,g(x))$

$$M(x,f(x)) \text{ et } N(x,g(x))$$

$$MN = \sqrt{(x-x)^2 + (f(x)-g(x))^2}$$

$$= \sqrt{(f(x)-g(x))^2}$$

$$= |f(x)-g(x)|$$

$$= g(x)-f(x)$$

$$= -\frac{1}{2}(x-1)^2 + \frac{7}{2} - \frac{1}{2}x^2 + 2x + 1$$

$$= -\frac{1}{2}x^2 + x - \frac{1}{2} + \frac{7}{2} - \frac{1}{2}x^2 + 2x + 1$$

$$= -x^3 + 3x + 4$$

$$= -(x^2 - 3x - 4)$$

$$= -(x^2 - 3x + \frac{9}{4} - \frac{9}{4} - 4)$$

$$= -(\left(x - \frac{3}{2}\right)^2 - \frac{25}{4}$$

$$= \frac{25}{4} - \left(x - \frac{3}{2}\right)^2$$

La distance MN est maximale lorsque $x = \frac{3}{2}$ et dans ce cas MN = $\frac{25}{4}$

4) a)
$$h(x) = \begin{cases} \frac{1}{2}x^2 - x - 1 & \text{si } x \le -1 \\ -\frac{1}{2}(x - 1)^2 + \frac{7}{2} & \text{si } -1 < x < 4 \\ \frac{1}{2}x^2 - x - 1 & \text{si } x \ge 4 \end{cases}$$

b)

- c) → Si m < -1, l'équation h(x) = m ne possède pas de solution
 - → Si m = -1, l'équation h(x) = m possède une solution unique.
 - → Si $-1 < m < \frac{3}{2}$, l'équation h(x) = m possède exactement deux solutions.

- \rightarrow Si m = $\frac{3}{2}$, l'équation h(x) = m possède exactement trois solutions.
- → Si $\frac{3}{2}$ < m < $\frac{7}{2}$, l'équation h(x) = m possède exactement quatre solutions.
- \rightarrow Si m = $\frac{7}{2}$, l'équation h(x) = m possède exactement trois solutions.
- \rightarrow Si m > $\frac{7}{2}$, l'équation h(x) = m possède exactement deux solutions.

1) a) Soit a et b deux réels de]-∞,3] tels que a < b

a < b
$$\Leftrightarrow$$
 a - 3 < b - 3
 \Leftrightarrow (a - 3)² > (b - 3)² car a < b < 3
 \Leftrightarrow $-\frac{1}{4}(a-3)^2 < -\frac{1}{4}(b-3)^2$
 \Leftrightarrow $-\frac{1}{4}(a-3)^2 + 4 < -\frac{1}{4}(b-3)^2 + 4$
 \Leftrightarrow f(a) < f(b)

done f est strictement croissante sur]-∞,3]

- Soit a et b deux réels de]3, +∞[tels que a < b

$$a < b \Leftrightarrow a - 3 < b > 3$$

$$\Leftrightarrow (a - 3)^{2} < (b - 3)^{2} \text{ car } 3 < a < b$$

$$\Leftrightarrow -\frac{1}{4}(a - 3)^{2} > -\frac{1}{4}(b - 3)^{2}$$

$$\Leftrightarrow -\frac{1}{4}(a - 3)^{2} + 4 > -\frac{1}{4}(b - 3)^{2} + 4$$

$$\Leftrightarrow f(a) > f(b)$$

donc f est strictement décroissante sur 3,+x

х		3	+00
f	-	4	

b) La courbe de f est une parabole d'axe x = 3 et de sommet S(3,4)

×	-2	-1	0	1	2
f(x)	$-\frac{9}{4}$	0	7/4	3	15

c)

3) b)
$$\left| -\frac{1}{4}x^2 + \frac{3}{2}x + \frac{7}{4} \right| \ge \frac{1}{2}x + \frac{1}{2} \Leftrightarrow g(x) \ge \frac{1}{2}x + \frac{1}{2}$$

 $S_R =]-\infty, 5] \cup [9, +\infty[$

Exercice 4

1)
$$f(0) = 0$$
 donc $c = 0$

$$f(2) = 4$$
 donc $4a + 2b = 4$

$$f(4) = 0$$
 donc $16a + 4b = 0$

$$\begin{cases} 4a+2b=4 \\ 16a+4b=0 \end{cases} \Leftrightarrow \begin{cases} 2a+b=2 \\ 4a+b=0 \end{cases} \Leftrightarrow \begin{cases} b=2-2a \\ 4a+(2-2a)=0 \end{cases} \Leftrightarrow \begin{cases} b=2-2a \\ 2a+2=0 \end{cases} \Leftrightarrow \begin{cases} b=2-2a \\ a=-1 \end{cases} \Leftrightarrow \begin{cases} b=4a+2b=4 \\ a=-1 \end{cases} \end{cases} \Leftrightarrow \begin{cases} b=4a+2b=4 \\ a=-1 \end{cases} \Leftrightarrow \begin{cases} b=4a+2b=4 \\ a=-1 \end{cases} \end{cases} \Leftrightarrow \begin{cases} b=4a+2b=4 \\ a$$

donc $f(x) = -x^2 + 4x$

$$a < b \Leftrightarrow a - 3 < b - 3$$

$$\Leftrightarrow (a - 3)^{2} > (b - 3)^{2} \text{ car } a < b < 3$$

$$\Leftrightarrow \frac{1}{2}(a - 3)^{2} > \frac{1}{2}(b - 3)^{2}$$

$$\Leftrightarrow \frac{1}{2}(a - 3)^{2} + 1 > \frac{1}{2}(b - 3)^{2} + 1$$

$$\Leftrightarrow g(a) > g(b)$$

donc g est strictement décroissante sur]-∞,3]

$$a < b \Leftrightarrow a - 3 < b - 3$$

 $\Leftrightarrow (a - 3)^2 < (b - 3)^2 \text{ car } 3 < a < b$
 $\Leftrightarrow \frac{1}{2}(a - 3)^2 < \frac{1}{2}(b - 3)^2$
 $\Leftrightarrow \frac{1}{2}(a - 3)^2 + 1 < \frac{1}{2}(b - 3)^2 + 1$
 $\Leftrightarrow g(a) < g(b)$

donc g est strictement croissante sur [3,+∞[

b) La courbe \mathscr{C}' de g est une parabole d'axe x = 3 et de sommet B(3,1)

3) a)
$$\Delta : y = mx + p$$

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{1-3}{3-1} = -1 \text{ donc } \Delta : y = -x + p$$

$$A\in\Delta\Leftrightarrow3=-1+p\Leftrightarrow p=4$$

donc
$$\Delta$$
: $y = -x + 4$

b) (S):
$$\begin{cases} 4-x \le f(x) \\ 4-x \le g(x) \end{cases}$$

Les solutions du système (S) sont les abscisses des points de Δ où celle-ci est au-dessous de $\mathscr C$ et au-dessous de $\mathscr C$: $S_R = [3,4]$

1)
$$x + 4 \ge 0 \Leftrightarrow x \ge -4 \Leftrightarrow x \in [-4, +\infty[$$
 donc $Df = [-4, +\infty[$

2) Soit
$$a,b \in [-4,+\infty[$$
 tel que $a < b$

$$-4 \le a < b \Leftrightarrow 0 \le a+4 < b+4$$

 $\Leftrightarrow 0 \le \sqrt{a+4} < \sqrt{b+4}$
 $\Leftrightarrow 0 \le f(a) < f(b)$

donc f est strictement croissante sur [-4,+∞[

3) La courbe de f est une demi parabole de direction l'axe des abscisses.

		x	-4	0	5	12				
		f(x)	0	2	3	4				
			1-	8		A	Δ	8		
-6	4 -3 -3 	-1		/2	3 4	5	6 7	8	9	10

4) b) $f(x) = x - 2 \Leftrightarrow \sqrt{x + 4} = x - 2$

X	-∞	-4		2	+00
x + 4	523	ф	+		+
x-2	(37)		-	ф	+

$$DE = [-4, +\infty[$$

→ Si
$$x \in [-4,2[$$
, $\sqrt{x+4} = x-2 < 0$ impossible

$$\rightarrow$$
 Si $x \in [2, +\infty[$, $\sqrt{x+4} = x-2 \Leftrightarrow x+4 = (x-2)^2$

$$\Leftrightarrow x + 4 = x^2 - 4x + 4$$

$$\Leftrightarrow x^2 - 5x = 0$$

$$\Leftrightarrow x(x-5)=0$$

 Δ coupe la courbe \mathscr{C} au point A = (5, f(5)) = (5,3)

5) a) Soit
$$x \in [-4, +\infty[$$
, $f(x) - 2 = \sqrt{x+4} - 2 = \frac{(\sqrt{x+4}-2)(\sqrt{x+4}+2)}{\sqrt{x+4}+2} = \frac{x+4-4}{\sqrt{x+4}+2} = \frac{x}{\sqrt{x+4}+2} = g(x)$

b) La courbe €' est l'image de € par la translation du vecteur -2j

Exercice 6

1) La courbe $\mathscr{C}f$ de la fonction f est une parabole de sommet S(0,-1) et d'axe x=0

×	0	1	2
f(x)	-1	2	11

- 2) a) Il faut que x 1 ≠ 0 c'est-à-dire x ≠ 1 donc Dg = IR \ {1}
 - b) La courbe représentative de g est une hyperbole d'asymptotes x = 1 et y = 0 Le centre de symétrie de &g est le point I(10)
 - C)

×	. 2	3	4
g(x)	-4	-2	$-\frac{4}{3}$

- 3) a) A(-1,2)
 - a) $g(x) \le f(x)$ $S_R =]-\infty,-1]$

$$S_{\infty} =]-\infty, -1]$$

4) b)

X	 -1	0	+0
h	7 ² \		7

Corrigés

Exercice 7

1) a) Df = IR"

Soit a et b deux réels distincts et non nuls.

$$\frac{f(b) - f(a)}{b - a} = \frac{-\frac{4}{b} + \frac{4}{a}}{b - a} = \frac{\frac{b - a}{ab}}{b - a} = \frac{1}{ab}$$

 $— Si \ a,b ∈]-∞,0[\ alors \ ab>0 \ et \ par \ suite \ \frac{f(b)-f(a)}{b-a}>0 \ donc \ f \ est \ strictement \ croissante \ sur \]-∞,0[$

→ Si a,b ∈]0,+∞[alors ab > 0 et par suite $\frac{f(b)-f(a)}{b}$ > 0 donc f est strictement croissante sur]0,+∞[

	income comments	The second of the second	D-a	200000000000000000000000000000000000000
2	×		0	+∞
	f		<i>→</i> .	->

b) La courbe \mathscr{C} est une hyperbole d'asymptotes x = 0 et y = 0

x	1	2	3	4
f(x)	-4	-2	$-\frac{4}{3}$	-1

2) b) Graphiquement : ∆ coupe € au points A(4,-1) et B(1,-4)

Par le calcul : Pour $x \in \mathbb{R}^*$, $f(x) = x - 5 \Leftrightarrow -\frac{4}{x} = x - 5$

$$\Leftrightarrow$$
 $-4 = x^2 - 5x$

$$\Leftrightarrow x^2 - 5x + 4 = 0$$

$$\Leftrightarrow$$
 x = 1 ou x = 4

 Δ coupe $\mathscr C$ au points A(4,f(4))=(4,-1) et B(1,f(1))=(1,-4)

c)
$$\frac{4}{x} + x < 5 \Leftrightarrow x - 5 < -\frac{4}{x} \Leftrightarrow x - 5 < f(x)$$

1) a) Pour
$$x \in \mathbb{R} \setminus \{2\}$$
, $3 + \frac{3}{x-2} = \frac{3(x-2)}{x-2} + \frac{3}{x-2} = \frac{3x-6+3}{x-2} = \frac{3x-3}{x-2} = f(x)$

b)
$$\rightarrow$$
 Soit $a,b \in]-\infty,2[$ tel que $a < b$

$$a < b \Leftrightarrow a-2 < b-2$$

$$\Leftrightarrow \frac{1}{b-2} < \frac{1}{a-2} \text{ car } a-2 < b-2 < 0$$

$$\Leftrightarrow \frac{3}{b-2} < \frac{3}{a-2}$$

$$\Leftrightarrow 3 + \frac{3}{b-2} < 3 + \frac{3}{a-2}$$

$$\Leftrightarrow f(b) < f(a)$$

donc f est strictement décroissante sur]-∞,2[

→ Soit
$$a,b \in]2,+\infty[$$
 tel que $a < b$

$$a < b \Leftrightarrow a - 2 < b - 2$$

$$\Leftrightarrow \frac{1}{b - 2} < \frac{1}{a - 2} \text{ car } 0 < a - 2 < b - 2$$

$$\Leftrightarrow \frac{3}{b - 2} < \frac{3}{a - 2}$$

$$\Leftrightarrow 3 + \frac{3}{b - 2} < 3 + \frac{3}{a - 2}$$

$$\Leftrightarrow f(b) < f(a)$$

donc f est strictement décroissante sur $]2,+\infty[$

2) \mathscr{C} est une hyperbole d'asymptotes x = 2 et y = 3

3) a)
$$|x| - 2 = 0 \Leftrightarrow |x| = 2 \Leftrightarrow x = -2 \text{ ou } x = 2 \text{ done Dg} = \mathbb{R} \setminus \{-2, 2\}$$

b)
$$-x \in Dg \Leftrightarrow x \neq -2$$
 et $x \neq 2 \Leftrightarrow -x \neq 2$ et $-x \neq -2 \Leftrightarrow -x \in Dg$

$$- g(-x) = \frac{3|-x|-3}{|-x|-2} = \frac{3|x|-3}{|x|-2} = g(x) \text{ pour tout } x ∈ Dg$$

donc g est une fonction paire.

c) Si
$$x \ge 0$$
 alors $|x| = x$ et par suite $g(x) = \frac{3|x| - 3}{|x| - 2} = \frac{3x - 3}{x - 2} = f(x)$

4) a)
$$-$$
 à droite de l'axe des ordonnées (pour $x \ge 0$) $g(x) = f(x)$ donc \mathscr{C} coı̈ncide avec \mathscr{C}

Exercice 9

1) a) If faut que
$$x + 2 \neq 0$$
 c'est-à-dire $x \neq -2$ donc $Df = \mathbb{R} \setminus \{-2\}$

b)
$$\mathscr{C}f$$
 passe par $A(0,1)$ donc $f(0) = 1 \Leftrightarrow a + \frac{1}{2}b = 1$

 $\mathscr{C}f$ passe par B(2,2) donc f(2) = 2 \Leftrightarrow a + $\frac{1}{4}$ b = 2

$$\begin{cases} a + \frac{1}{2}b = 1 \\ a + \frac{1}{4}b = 2 \end{cases} \Leftrightarrow \begin{cases} a = 1 - \frac{1}{2}b \\ a + \frac{1}{4}b = 2 \end{cases} \Leftrightarrow \begin{cases} a = 1 - \frac{1}{2}b \\ 1 - \frac{1}{2}b + \frac{1}{4}b = 2 \end{cases} \Leftrightarrow \begin{cases} a = 1 - \frac{1}{2}b \\ -\frac{1}{4}b = 1 \end{cases} \Leftrightarrow \begin{cases} a = 1 - \frac{1}{2}b \\ b = -4 \end{cases} \Leftrightarrow \begin{cases} a = 3 \\ b = -4 \end{cases}$$

$$donc f(x) = 3 - \frac{4}{x+2}$$

$$\Leftrightarrow \frac{1}{b+2} < \frac{1}{a+2}$$
 (a + 2 et b + 2 sont de même signe)

$$\Leftrightarrow -\frac{4}{b+2} > -\frac{4}{a+2}$$

$$\Leftrightarrow 3 - \frac{4}{b+2} > 3 - \frac{4}{a+2}$$
$$\Leftrightarrow f(b) > f(a)$$

donc f est strictement croissante sur]-∞, -2[

→ Soit a,b ∈]-2,+∞[tel que a < b</p>

$$a < b \Leftrightarrow a + 2 < b + 2$$

$$\Leftrightarrow \frac{1}{b+2} < \frac{1}{a+2}$$
 (a + 2 et b + 2 sont de même signe)

$$\Leftrightarrow -\frac{4}{b+2} > -\frac{4}{a+2}$$

$$\Leftrightarrow 3-\frac{4}{b+2}>3-\frac{4}{a+2}$$

$$\Leftrightarrow f(b) > f(a)$$

donc f est strictement croissante sur]-2,+∞[

b) $f(x) = 3 - \frac{4}{x+2} = \frac{3x+6-4}{x+2} = \frac{3x+2}{x+2}$ donc $\mathscr{C}f$ est un hyperbole d'asymptotes x = -2 et y = 3

×	-6	-4	-3	-1	0	2
f(x)	4	5	7	-1	1	2

- 3) a) 1<f(x)<4
- $S_R =]-\infty, -6[\cup]0, +\infty[$
- b) Pour $x \ne -2$, $f(x) = x \Leftrightarrow 3 \frac{4}{x+2} = x$

$$\Leftrightarrow 3 - x = \frac{4}{x + 2}$$

$$\Leftrightarrow (3-x)(x+2)=4$$

$$\Leftrightarrow$$
 $-x^2 + x + 6 = 4$

$$\Leftrightarrow x^2 - x - 2 = 0$$

 $\Leftrightarrow x = -1$ ou x = 2

donc Δ coupe $\mathcal{C}f$ aux points A(-1,-1) et B=(2,2)

4) a) Il faut que x + 2 ≥ 0 c'est-à-dire x ≥ -2 donc Dg = [-2,+∞[La courbe &g est une demi-parabole de direction l'axe des abscisses.

×	-2	2	7
g(x)	0	2	3

b) Pour
$$x > -2$$
, $3x + 2 - (x + 2)\sqrt{x + 2} < 0 \Leftrightarrow 3x + 2 < (x + 2)\sqrt{x + 2}$

$$\Leftrightarrow \frac{3x + 2}{x + 2} < \sqrt{x + 2}$$

$$\Leftrightarrow f(x) < g(x)$$

$$S_{R} =]-2,2[\ \cup\]2,+\infty[$$

5) a)
$$|x| + 2 = 0 \Leftrightarrow |x| = -2$$
 impossible donc Dh = IR
- Si $x \in \mathbb{R}$ alors $-x \in \mathbb{R}$
- $h(-x) = \frac{3|-x|+2}{|-x|+2} = \frac{3|x|+2}{|x|+2} = h(x)$

donc h est une fonction paire et par suite Ch est symétrique par rapport à l'axe des ordonnées.

b) Sur $[0, +\infty[$, $h(x) = \frac{3x+2}{x+2} = f(x)$ donc $\mathscr{C}h$ coïncide avec $\mathscr{C}f$

Exercice 10

1) a)
$$2x-5=0 \Leftrightarrow 2x=5 \Leftrightarrow x=\frac{5}{2}$$
 donc $D=\mathbb{R}\setminus\left\{\frac{5}{2}\right\}$

b) Soit
$$x \in D$$
 alors $2 + \frac{3}{2x - 5} = \frac{2(2x - 5) + 3}{2x - 5} = \frac{4x - 7}{2x - 5} = f(x)$

c)
$$\rightarrow$$
 Soit $a,b \in \left] -\infty, \frac{5}{2} \right[$ tel que $a < b$ alors $2a - 5 < 0$ et $2b - 5 < 0$
 $a < b \Leftrightarrow 2a < 2b$
 $\Leftrightarrow 2a - 5 < 2b - 5$

$$\Leftrightarrow \frac{1}{2b-5} < \frac{1}{2a-5}$$

$$\Leftrightarrow \frac{3}{2b-5} < \frac{3}{2a-5}$$

$$\Leftrightarrow 2 + \frac{3}{2b-5} < 2 + \frac{3}{2a-5}$$

$$\Leftrightarrow f(b) < f(a)$$

donc f est strictement décroissante sur $-\infty, \frac{5}{2}$

$$\rightarrow \text{ Soit } a,b \in \left] \frac{5}{2}, +\infty \right[\text{ tel que } a < b \text{ alors } 2a-5>0 \text{ et } 2b-5>0$$

$$a < b \Leftrightarrow 2a < 2b$$

$$\Leftrightarrow 2a - 5 < 2b - 5$$

$$\Leftrightarrow \frac{1}{2b - 5} < \frac{1}{2a - 5}$$

$$\Leftrightarrow \frac{3}{2b - 5} < \frac{3}{2a - 5}$$

$$\Leftrightarrow 2 + \frac{3}{2b - 5} < 2 + \frac{3}{2a - 5}$$

$$\Leftrightarrow f(b) < f(a)$$

donc f est strictement décroissante sur $\frac{5}{2}$, $+\infty$

2) a) \mathscr{C} est une hyperbole d'asymptotes $x = \frac{5}{2}$ et y = 2

Le point $I\left(\frac{5}{2},2\right)$ (l'intersection de ses deux asymptotes) est le centre de symétrie de $\mathscr C$

b)

х	1	2	3	4
f(x)	1	-1	5	3

3)
$$f(x) \ge 3$$
 $S_R = \left[\frac{5}{2}, 4\right]$

4) a)
$$2|x|-5=0 \Leftrightarrow |x|=\frac{5}{2} \Leftrightarrow x=-\frac{5}{2} \text{ ou } x=\frac{5}{2} \text{ donc Dg} = \mathbb{R} \setminus \left\{-\frac{5}{2},\frac{5}{2}\right\}$$

$$-x \in Dg \Leftrightarrow x \neq -\frac{5}{2} \text{ et } x \neq \frac{5}{2} \Leftrightarrow -x \neq \frac{5}{2} \text{ et } -x \neq -\frac{5}{2} \Leftrightarrow -x \in Dg$$

$$-g(-x) = \frac{4|-x|-7}{2|-x|-5} = \frac{4|x|-7}{2|x|-5} = g(x) \text{ pour tout } x \in Dg$$

donc g est une fonction paire et par suite sa courbe \mathscr{C} ' est symétrique par rapport à l'axe des ordonnées.

b) Sur
$$\left[0,\frac{5}{2}\right]\cup\left]\frac{5}{2},+\infty\right[$$
, $g(x)=f(|x|)=f(x)$ donc \mathscr{C} coı̈ncide avec \mathscr{C}