

- · take fft azimuthally
 - · use half of θ data to avoid aliasing
- find correlation in t,t^\prime described in Smits2017.below.eq.2.4.

$$\mathbf{R}\left(k;m;t,t'\right) = \int_{r} \mathbf{u}(k;m;r,t) \mathbf{u}^{*}\left(k;m;r,t'\right) r \, \mathrm{d}r \tag{1}$$

• take fft in x of the above correlation to get k modes.

1

 $\boldsymbol{\cdot}$ the crossspectra for the kernal of the pod

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{R}\left(k; m; t, t'\right) \alpha^{(n)}\left(k; m; t'\right) dt' = \lambda^{(n)}(k; m) \alpha^{(n)}(k; m; t)$$
(2)

· Find the (sorted) eigenvalues $\alpha^{(n)}$ found in (2) to solve for $\Phi^{(n)}$,

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{u}_{\mathrm{T}}(k; m; r, t) \alpha^{(n)*}(k; m; t) \mathrm{d}t = \Phi_{\mathrm{T}}^{(n)}(k; m; r) \lambda^{(n)}(k; m)$$