Universidade do Minho

Departamento de Matemática

Lic. em Ciências da Computação 6 de novembro de 2023

1º teste de Álgebra Linear CC

Duração: 1h50min

Nome do aluno:	Número:	

Grupo I

Em cada uma das questões deste grupo, indique se cada uma das afirmações é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

- 1. Para quaisquer matrizes reais A e B, se a matriz A + B está definida, \square então a expressão AB^TA define uma matriz.
- 2. Para quaisquer $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$, se as matrizes A e B são \square antissimétricas, então a matriz AB + BA é simétrica.
- 3. Para quaisquer matrizes $A, B \in \mathcal{M}_{3\times 3}(\mathbb{R})$, se car(A) = car(B) = 3, \square então a matriz A + B é invertível.
- 4. Para quaisquer matrizes invertíveis $A,B\in\mathcal{M}_{2\times 2}(\mathbb{R}),$ tem-se \square \square $((AB)^{-1})^2=(B^{-1})^2(A^{-1})^2.$
- 5. Existem matrizes $A \in \mathcal{M}_{5\times 3}(\mathbb{R})$ e $b \in \mathcal{M}_{5\times 1}(\mathbb{R})$ tais que o sistema \square \square Ax = 0 é possível determinado e o sistema Ax = b é impossível.
- 6. Para quaisquer matrizes $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$, se o sistema $Bx = 0_{2\times 2}$ é determinado, então o sistema $ABx = 0_{2\times 2}$ é determinado.
- 7. Para qualquer espaço vetorial V sobre um corpo \mathbb{K} e para quaisquer $v_1, v_2, v_3 \in V$, se a sequência (v_1, v_2, v_3) é linearmente independente, então $(v_1, v_1 + v_2 + v_3, v_3)$ é linearmente independente.
- 8. O conjunto $\{(x,y,z)\in\mathbb{R}^3: xy=0\}$ é um subespaço vetorial do espaço \square vetorial real \mathbb{R}^3 .

Grupo II

Resolva cada uma das questões deste grupo na folha de exame. Justifique as suas respostas.

1. Sejam

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Justifique que a matriz A é invertível e determine uma matriz $X \in \mathcal{M}_{3\times 3}(\mathbb{R})$ tal que

$$2X - ((A^{-1})^T B)^T = I_3.$$

2. Para cada $\alpha \in \mathbb{R}$, considere o sistema de equações lineares de coeficientes reais correspondente à equação matricial $A_{\alpha}x = b_{\alpha}$, onde

$$A_{\alpha} = \begin{bmatrix} 1 & -1 & \alpha \\ 1 & \alpha - 1 & \alpha + 1 \\ -\alpha & \alpha & -9 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \text{e} \quad b_{\alpha} = \begin{bmatrix} -1 \\ \alpha \\ 2\alpha - 3 \end{bmatrix}.$$

- (a) Discuta o sistema $A_{\alpha}x = b_{\alpha}$ em função do parâmetro α .
- (b) Considere $\alpha = 3$. Utilizando o método de eliminação de Gauss ou o método de eliminação de Gauss-Jordan, determine o conjunto de soluções do sistema $A_3x = b_3$.
- 3. No espaço vetorial real \mathbb{R}^3 , considere os subespaços vetoriais

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x - 3y = 0\}, \quad G = <(3, 1, 0), (0, 0, 2), (6, 2, -10)>,$$

$$H = <(1, 1, 0), (0, 1, 0)>.$$

- (a) Mostre que F = G.
- (b) Determine uma base de F + H e a dimensão de $F \cap H$.
- (c) Determine um subespaço U de \mathbb{R}^3 tal que $\mathbb{R}^3 = F \bigoplus U$.