DIGITALE SCHALTUNGEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

INHALT DER VORLESUNG

■ Grundlagen

- ☐ Beschreibungen über "0" und "1" (Boolesche Algebra)
- □ Beschreibungen von Schaltungen

■ Speichern

- ☐ Sequentielle Schaltungen
- □ Speicherelemente

■ Steuern

- ☐ Endliche Automaten
- ☐ Synthese von Steuerwerken

■ Rechnen

- ☐ Darstellung von Zahlen
- □ Digitale Schaltungen für Addition, Subtraktion, Multiplikation

■ Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- ☐ Logikminimierung

INHALT DER VORLESUNG

■ Grundlagen

- ☐ Beschreibungen über "0" und "1" (Boolesche Algebra)
- □ Beschreibungen von Schaltungen

■ Speichern

- ☐ Sequentielle Schaltungen
- ☐ Speicherelemente

■ Rechnen

- ☐ Darstellung von Zahlen
- □ Digitale Schaltungen für Addition, Subtraktion, Multiplikation

■ Steuern

- ☐ Endliche Automaten
- ☐ Synthese von Steuerwerken

■ Entwerfen

- ☐ Synthese von allgemeinen Schaltungen
- □ Logikminimierung

ENTWERFEN

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

LOGIKSYNTHESE UND - MINIMIERUNG

- Dedizierte Schaltungen lassen sich idR nicht gut/effizient "von Hand" entwickeln
- → Methodik für Schaltkreissynthese
- Logiksynthese und -minimierung: Versuch, Logik der Schaltung
 - □ zu generieren bzw.
 - □ zu minimieren
- Unterscheidung zwischen
 - □ kombinatorischer Synthese(Realisierung einer Booleschen Funktion)
 - □ sequentieller Synthese
 - (Realisierung eines endlichen Automaten;
 - kann als Boolesche Funktion repräsentiert werden)
- Ausgangspunkt: Funktionsbeschreibung (Wahrheitstabelle, Boolescher Ausdruck, ...)

WDHLG.: SYNTHESE (SIMPEL)

■ Realisierung beliebiger Wahrheitstabellen durch Grundgatter möglich

- Vorgehen:
 - ☐ Für jede Zeile mit Ausgabewert 1: Und-Gatter mit passender Eingangsbeschaltung
 - □ Oder-Verknüpfung aller Und-Gatter
- Funktioniert für alle Tabellen, aber
 - □ teuer und
 - □ nicht skalierbar

WDH.: SYNTHESE (SIMPEL) – BEISPIEL

WEITERE GRUNDLAGEN

- Die Booleschen Ausdrücke x_i und x_i' heißen Literale, wobei x_i als positives Literal und x_i' als negatives Literal bezeichnet wird.
- Eine Konjunktion von Literalen wird mit **Monom** bezeichnet, wenn zusätzlich folgendes gilt:
 - ☐ jedes Literal kommt höchstens einmal vor
 - ☐ es kommt nicht sowohl das positive als auch das negative Literal einer Variable vor
- Ein Monom heißt vollständig oder Minterm, wenn jede Variable entweder als positives oder als negatives Literal vorkommt.
- Eine Disjunktion von paarweise verschiedenen Monomen heißt Polynom. Sind alle Monome des Polynoms vollständig, so heißt das Polynom vollständig.

BEISPIEL / VERANSCHAULICHUNG DURCH WÜRFEL

■ Jede Boolesche Funktion *f* in *n* Variablen und einem Ausgang kann über einen *n*-dimensionalen Würfel durch Markierung der *ON(f)*-Menge spezifiziert werden.

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = f(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}x_{2}x_{3}'x_{4}' + x_{1}x_{2}x_{3}'x_{4} + x_{1}x_{2}x_{3}x_{4}' + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}'x_{3}'x_{4} + x_{1}'x_{2}'x_{3}'x_{4} + x_{1}'x_{2}'x_{3}'x$$

BEISPIEL / VERANSCHAULICHUNG DURCH WÜRFEL

■ Jede Boolesche Funktion *f* in *n* Variablen und einem Ausgang kann über einen *n*-dimensionalen Würfel durch Markierung der *ON(f)*-Menge spezifiziert werden.

$$f(x_{1}, x_{2}, x_{3}, x_{4}) = x_{1}x_{2}x_{3}'x_{4}' + x_{1}x_{2}x_{3}x_{4}' + x_{1}x_{2}x_{3}x_{4}' + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}'x_{3}'x_{4} + x_{1}'x_{2}'x_{3}'x_{4} + x_{1}$$

LOGIKMINIMIERUNG

■ Gegeben

Eine Boolesche Funktion f in n Variablen und einem Ausgang in Form eines markierten

n-dimensionalen Würfels

■ Gesucht

Eine minimale Überdeckung der markierten Knoten durch maximale Teilwürfel im *n*-dimensionalen Würfel.

☐ Minimal: mit minimal vielen Teilwürfeln

NOCH MEHR GRUNDLAGEN....

- Sei *f* eine Boolesche Funktion mit einem Ausgang.
 - \square Ein Implikant von f ist ein Monom q mit $\psi(q) \leq f$.

Ein Monom m ist genau dann ein Implikant von f, wenn entweder

- m ein Minterm von f ist, oder
- $m \cdot x$ und $m \cdot x'$ Implikanten von f sind für eine Variable x, die nicht in m vorkommt
- □ Ein **Primimplikant von** f ist ein maximaler Implikant q von f, d.h. es gibt keinen Implikanten s ($s \neq q$) von f mit $\psi(q) \leq \psi(s)$.
- \rightarrow Die Monome eines Polynoms p von f sind alle Implikanten von f.
- Ein Minimalpolynom p einer Booleschen Funktion f ist ein Polynom von f mit minimalen Kosten, d.h. mit der Eigenschaft $cost(p) \le cost(p')$ für jedes Polynom p' von f.
- \rightarrow Jedes Minimalpolynom p einer Booleschen Funktion f besteht ausschließlich aus Primimplikanten von f.

EINSCHUB: KOSTEN

- Die **primären Kosten** $cost_1(p)$ sind gleich der Anzahl der Monome in p
- Die sekundären Kosten $cost_2(p)$ sind gleich der Anzahl der Literale in p plus die Anzahl der Monome in p.
- Sei im Folgenden $cost = (cost_1, cost_2)$ die Kostenfunktion mit der Eigenschaft, dass für zwei Polynome p und p' die Ungleichung $cost(p) \le cost(p')$ genau dann gilt, wenn entweder
 - $\square \cos t_1(p) \le \cos t_1(p')$ oder
 - \square cost₁(p) = cost₁(p') und cost₂(p) \leq cost₂(p')

gilt.

OFFEN

- Sei *f* eine Boolesche Funktion mit einem Ausgang.
 - □ Wie berechnet man alle Primimplikanten?
 - □ Welche Primimplikanten bilden mein Minimalpolynom? (Überdeckungsproblem)

NOTATION IM FOLGENDEN

K-MAPS

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

EINSCHUB GRAY-CODE

- Bisher Binary-Coded-Decimal (BCD)
 - \Box 1001 = 9
 - ☐ Most-Significant-Bit (MSB) links,
 Least-Significant-Bit (LSB) rechts)
- BCD ist sehr ineffizient:
 - ☐ Beispiel Zähler: 0111 → 1000 (von 7 auf 8)
 - ☐ Es ändern sich alle 4 Bits
- Hamming Distanz 1
 - Zwei Binäre Zahlen haben genau dann Hamming Distanz
 1, wenn sie sich nur in einem Bit unterscheiden.
- Gray-Code: Binär Code mit Hamming Diszanz 1

BCD Zahl	Gray Code Zahl
000	000
001	001
010	011
011	010
100	110
101	111
110	101
111	100

- Darstellung einer Funktion als 2-dimensionales Feld
- Einzelne Zellen geben den Funktionswert des jeweiligen Minterms an
- Benachbarte Zellen unterscheiden sich in ihren Koordinaten nur durch ein Bit (dadurch lassen sich benachbarte Zellen mit gleichem Funktionswert kürzen)

CA	B 00	01	11	10
0	ĀBC	ĀBŌ	ABC	ABC
1	ĀBC	ĀBC	ABC	ABC

Keine weitere Kürzung möglich!

→ Primimplikanten

LOGIKMINIMIERUNG NACH QUINE/MCCLUSKEY

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

GENERIERUNG VON PRIMIMPLIKANTEN NACH QUINE

■ Berechne alle Primimplikanten polynom function Quine ($f: \mathbf{B}^n \to \mathbf{B}$) begin $L_0 := Minterm(f);$ i=0; // L_i enthält alle Implikanten von f der Länge n-i $\operatorname{\mathcal{F}\!\mathit{rim}}(f) := \emptyset;$ while $(L_i \neq \emptyset)$ and (i < n)loop $L_{i+1} := \{m \mid mx \text{ und } mx' \text{ sind in } L_i \text{ für ein } x\};$ $Prim(f) := Prim(f) \cup$ $\{m \mid m \in L_i \text{ und } m \text{ wird } von \text{ keinem } q \in L_{i+1} \text{ "uberdeckt"}\};$ i := i + 1;pool; return $\operatorname{Prim}(f) \cup L_i$; end;

VERBESSERUNG DURCH MCCLUSKEY

Vergleiche nur Monome untereinander,

- □ welche die gleichen Variablen enthalten und
- □ bei denen sich die Anzahl der positiven Literale um 1 unterscheidet.

Kann erreicht werden durch

- □ Partitioniere L_i in Klassen L_i^M , mit $M \subseteq \{x_1, ..., x_n\}$ und |M| = n i. L_i^M enthalte die Implikanten aus L_i , deren Literale alle aus M sind.
- □ Ordne die Monome in L_i^M gemäß der Anzahl der positiven Literale.

DAS VERFAHREN VON QUINE-MCCLUSKEY: BEISPIEL (1)

Vergleiche im Folgenden nur Monome aus benachbarten Blöcken!

BEISPIEL QUINE-MCCLUSKEY (2)

BEISPIEL QUINE-MCCLUSKEY (3)

BEISPIEL QUINE-MCCLUSKEY (4)

BEISPIEL QUINE-MCCLUSKEY (5)

BEISPIEL QUINE-MCCLUSKEY (6)

$L_1^{\{x1,x2,x4\}}$:	$L_1^{\{x1,x2,x3\}}$		
0 0 - 1	000-		
<u>10-0</u>	010-		
01-1	<u> 100-</u>		
11-0	110-		

$L_1^{\{x2,x3,x4\}}$	$L_1^{\{x1,x3,x4\}}$		
-000	0 - 0 0		
-001	0 - 0 1		
<u>-100</u>	1 - 0 0		
-101	0 - 1 1		
	1 - 0 1		
	1 - 1 0		

Alle Minterme von f sind Eckpunkte von Kanten, die Implikanten sind $\Rightarrow \mathcal{P}rim(f) = \emptyset$.

BEISPIEL QUINE-MCCLUSKEY (7)

$L_1^{\{x2,x3,x4\}}$	$L_1^{\{x1,x3,x4\}}$
<u>- 0 0 0</u>	0 - 0 0
-001	0 - 0 1
<u>-100</u>	1 - 0 0
-101	0 - 1 1
	1 - 0 1
	1 - 1 0

Alle Implikanten aus $L_1^{\{x^1,x^2,x^4\}}$ sind Kanten von Flächen, die Implikanten sind $\Rightarrow \mathcal{P}rim(f) = \emptyset$.

BEISPIEL QUINE-MCCLUSKEY (8)

$L_1^{\{x^1,x^2,x^4\}}$:	$L_1^{\{x^1,x^2,x^3\}}$
0 0 - 1	000-
<u>10-0</u>	010-
01-1	<u> 100-</u>
11-0	110-
L ₁ {x2,x3,x4}:	$L_{1}^{\{x1,x3,x4\}}$
-000	0 - 0 0
0.04	0 0 4

1 - 1 0

Alle Implikanten aus L_1^M sind Kanten von Flächen, die Implikanten sind $\Rightarrow \mathcal{P}rim(f) = \emptyset$.

BEISPIEL QUINE-MCCLUSKEY (9)

BEISPIEL QUINE-MCCLUSKEY (10)

Die markierten Implikanten-Flächen sind Rand eines 3-dimensionalen Implikanten. Sie sind also nicht prim! $\Rightarrow \mathcal{P}rim(f) = \{x_1, x_4, x_4, x_4, x_4\}$

BEISPIEL QUINE-MCCLUSKEY (11)

$$L_3^{\{x1\}}$$
: $L_3^{\{x2\}}$:

$$Frim(f) = \{x_1' x_4, x_1x_4'\}$$

$$\Rightarrow \operatorname{Frim}(\mathbf{f}) = \{ x_1' x_4, x_1 x_4', x_3' \}$$

$$\Rightarrow$$
 $p_{complete}(f) = x_1' x_4 + x_1 x_4' + x_3'$

ZUSAMMENFASSUNG DES BEISPIELS

$L_0^{\{x1,x2,x3,x4\}}$:	$L_1^{\{x1,x2,x4\}}$:	L ₁ {x1,x2,x3};	<i>L</i> ₂ {x1,x2}:	<i>L</i> ₂ {x1,x3}:	L ₃ {x1}:
<u>0 0 0 0</u>	00-1	<u>0 0 0 -</u> 0 1 0 -		<u>0 - 0 -</u> 1 - 0 -	∠ ₃ {×3}:
0001	<u>1 0 - 0</u> 0 1 - 1	100-		. •	Nicht kürzbar 0 -
0100	11-0	110-	L ₂ {x1,x4}:	<i>L</i> ₂ {x2,x3}:	→ prim!
<u>1000</u>			Nicht kürzbar 0 1	<u>- 0 0 -</u>	
0011	$L_1^{\{x2,x3,x4\}}$	L ₁ {x1,x3,x4}:	→ prim! <u>1 0</u>	- 1 0 -	
0101	<u>- 0 0 0</u>	0 - 0 0			
1001	- 0 0 1	0 - 0 1	L ₂ {x2,x4}:	$L_2^{\{x3,x4\}}$:	
1010	<u>- 1 0 0</u>	1 - 0 0		<u> 0 0</u>	
<u>1 1 0 0</u>	- 1 0 1	0 - 1 1		0 1	
0 1 1 1		1 - 0 1			
1101		1 - 1 0	\Rightarrow $m{p}_{compl}$	$x_{ete}(f) = x_1' x_4$	+x ₁ x ₄ ' + x ₃ '
1110					

LÖSEN DES ÜBERDECKUNGSPROBLEMS (1)

Sei im Folgenden die Menge $\mathcal{F}_{vim}(f)$ der Primimplikanten von f gegeben.

Gesucht

ist eine kostenminimale Teilmenge M von $\mathcal{Frim}(f)$, mit deren Monomen die Funktion f beschreibbar ist.

LÖSEN DES ÜBERDECKUNGSPROBLEMS (2)

Definiere eine Boolesche Matrix **PIT(f)**, die **Primimplikantentafel von f**

- die Zeilen entsprechen eineindeutig den Primimplikanten von f
- die Spalten entsprechen eineindeutig den Mintermen von f
- Sei $min(\alpha)$ ein beliebiger Minterm von f. Dann gilt für PI m: $PIT(f) [m, min(\alpha)] = 1 \Leftrightarrow \psi(m)(\alpha) = 1$

Der Eintrag an der Stelle [m, $min(\alpha)$] ist also genau dann 1, wenn $min(\alpha)$ eine Ecke des Würfels m beschreibt.

Gesucht

```
eine kostenminimale Teilmenge M von \mathcal{Prim}(f), so dass jede Spalte von PIT(f) überdeckt ist, d.h. \forall \alpha \in ON(f) \exists m \in M \text{ mit } PIT(f)[m, min(\alpha)]=1.
```


LÖSEN DES ÜBERDECKUNGSPROBLEMS (3)

Primimplikantentafel PIT(f):

⇒ Alle Primimplikanten sind wesentlich!

$$Prim(f) = \{ x_1'x_4, x_1x_4', x_3' \}$$

DAS MATRIX-ÜBERDECKUNGSPROBLEM (4)

Ein anderes Beispiel

Primimplikantentafel *PIT(f)*:

	3	5	7	9	11	<u>13</u>
{7,5}		1	1			
{5,13}		1				1
{13,9}				1		1
{9,11}				1	1	
{11,3}	1				1	
{3,7}	1		1			

Kein Primimplikant ist wesentlich!

REDUKTIONSREGELN

- Entferne aus der Primimplikantentafel PIT(f) alle wesentlichen Primimplikanten und alle Minterme, die von diesen überdeckt werden.
- 2. Entferne aus der Primimplikantentafel PIT(f) alle Minterme, die einen anderen Minterm in PIT(f) dominieren.
- 3. Entferne aus PIT(f) alle Primimplikanten, die durch einen anderen, nicht teureren Primimplikanten dominiert werden.

ERSTE REDUKTIONSREGEL

ERSTE REDUKTIONSREGEL

ERSTE REDUKTIONSREGEL

Überdeckungsproblem nach Anwendung der ersten Reduktionsregel:

	9	10	11	12	13	14	15	16	17
5	1								1
6		1							1
7			1						
8				1					
9	1				1				
10		1				1			1
11			1				1		
12				1				1	
13					1	1	1	1	

Die Matrix enthält keine wesentlichen Zeilen mehr!

ZWEITE REDUKTIONSREGEL

Definition

Es sei A eine Boolesche Matrix. Spalte j der Matrix A dominiert Spalte i der Matrix A, wenn $A[k,i] \le A[k,j]$ für jede Zeile k gilt.

Nutzen für unser Problem

Dominiert ein Minterm w' von f einen anderen Minterm w von f, so braucht man w' nicht mehr weiter zu betrachten, da w auf jeden Fall überdeckt werden muss und hierdurch auch Minterm w' überdeckt wird.

Jeder noch in PIT(f) vorhandene Primimplikant p, der w überdeckt, überdeckt auch w'.

ZWEITE REDUKTIONSREGEL

Spalte 17 dominiert Spalte 10 ⇒ Spalte 17 kann gelöscht werden!

DRITTE REDUKTIONSREGEL

Definition

Sei A eine Boolesche Matrix. Zeile i der Matrix A dominiert Zeile j der Matrix A, wenn $A[i,k] \ge A[j,k]$ für jede Spalte k gilt.

Nutzen für unser Problem

Dominiert ein Primimplikant m einen Primimplikanten m', so braucht man m' nicht mehr weiter zu betrachten, wenn $cost(m') \ge cost(m)$ gilt.

Der Primimplikant *m* überdeckt jeden noch nicht überdeckten Minterm von *f*, der von *m'* überdeckt wird, obwohl er nicht teurer ist.

DRITTE REDUKTIONSREGEL (2)

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

DRITTE REDUKTIONSREGEL (2)

Nehme an, dass die Zeilen 5 bis 12 gleiche Kosten haben.

DRITTE REDUKTIONSREGEL (3)

Überdeckungsproblem nach Anwendung der dritten Reduktionsregel:

Offensichtlich kann nun wieder die erste Reduktionsregel angewendet werden, da die Zeilen 9, 10, 11, 12 wesentlich sind.

- ⇒ Die resultierende Matrix ist leer
- \Rightarrow Das gefundene Minimalpolynom ist 1+2+3+4+9+10+11+12

... enthält nicht (wie erwartet) die Zeile mit der maximalen Anzahl Einsen!

ZYKLISCHE ÜBERDECKUNGSPROBLEME

Definition

Eine Primimplikantentafel heißt **reduziert**, wenn keine der drei Reduktionsregeln anwendbar ist.

Ist eine reduzierte Tafel nicht-leer, spricht man von einem zyklischen Überdeckungsproblem.

Primimplikantentafel *PIT(f)*:

	3	5	7	9	11	13
{7,5}		1	1			
{5,13}		1				1
{13,9}				1		1
{9,11}				1	1	
{11,3}	1				1	
{3,7}	1		1			

LÖSUNG DES ZYKLISCHEN ÜBERDECKUNGSPROBLEMS

Verfahren von Petrick

- Übersetze die PIT in eine Produktsumme, d.h. in ein (OR,AND)-Polynom, das alle Möglichkeiten der Überdeckung enthält.
- Multipliziere die Produktsumme aus, so dass ein (AND-OR) Polynom entsteht.
- Die gesuchte minimale Überdeckung ist gegeben durch das kürzeste Monom

	1	2	3	_4
1	1	1		
2			1	1
3	1		1	
4		1		1
5	1			1
6		1	1	

```
wird übersetzt in
(1+3+5)(1+4+6)(2+3+6)(2+4+5)
= (1+14+16+13+34+36+15+45+56)*
(2+24+25+23+34+35+26+46+56)
= 12+124+125+123+134+...+34+...+56
```


BINÄRE ENTSCHEIDUNGSDIAGRAMME

Robert Wille (robert.wille@jku.at)
Sebastian Pointner (sebastian.pointner@jku.at)

Institut für Integrierte Schaltungen Abteilung für Schaltkreis- und Systementwurf

PROBLEME BISHERIGER VERFAHREN

■ Komplexität/Skalierbarkeit

X ₁	X ₂	X ₃	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

■ Vergleichbarkeit

PROBLEME BISHERIGER VERFAHREN

■ Komplexität/Skalierbarkeit

- ☐ Gelungener Kompromiss zwischen kompakter Darstellung und effizienter Manipulation
- ☐ Kanonische Darstellung

■ Vergleichbarkeit

BINÄRES ENTSCHEIDUNGSDIAGRAMM

- azyklischer Graph mit einer Wurzel
- Innere Knoten
 - ☐ sind mit einer Variablen markiert
 - □ haben zwei Nachfolger,
 - das low-Kind (hier: gestrichelte Kante) und
 - das high-Kind (hier: durchgezogene Kante)
- Blätter/Terminale Knoten
 - □ sind mit einer Konstanten (0 oder 1) markiert
- Jeder Knoten repräsentiert eine (Teil-)Funktion
 - ☐ Blatt: Konstante Funktion, die jede Eingabe auf 0/1 abbildet
 - □ Innere Knoten (markiert mit x_j): $f_v = (x_j \land f_{high(v)}) \lor (x_j \land f_{low(v)})$

ILLUSTRATION

X ₁	X ₂	X ₃	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

X ₁	0	0	0 1 0	0	1	1	1	1
X ₂	0	0	1	1	0	0	1	1
X ₃	0	1	0	1	0	1	0	1
F	0	0	0	1	0	1	0	1

REDUKTIONSREGELN

Regel 1: Isomorphismus

Führe ismomorphe Knoten zusammen.

(I-Reduction)

Regel 2: Elimination

Entferne Knoten, dessen beide Kinder zum gleichen Nachfolger zeigen. (S-Reduktion)

ANWENDUNG DER REDUKTIONSREGELN

WAS PASSIERT KONKRET?

- Funktion wird in Teilfunktionen zerlegt
- Kofaktor von *f*
 - \square in Bezug auf $x_i = 1$: $f_{x_i = 1} = f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$
 - \square in Bezug auf $x_i = 0$: $f_{x_i=0} = f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$
- Shannon Zerlegung

$$f = (x_i \wedge f_{x_i=1}) \vee (x_i' \wedge f_{x_i=0})$$

- Weitere Zelegungstypen (im Folgenden nicht weiter betrachtet):
 - \square Positiv Davio: $f = f_{x_i=0} \oplus x_i \land (f_{x_i=0} \oplus f_{x_i=1})$
 - \square Negativ Davio: $f = f_{x_i=1} \oplus x_i' \land (f_{x_i=0} \oplus f_{x_i=1})$

BEISPIEL

$$f_v = (x_j \wedge f_{high(v)}) \vee (x_j \wedge f_{low(v)})$$

BDDS VON TYPISCHEN FUNKTIONEN

WEITERE BEISPIELE FÜR BDDS

... beschreiben beide die Boolesche Funktion x₁x₂x₃+x₂'x₄+x₃'x₄

GEORDNETE ENTSCHEIDUNGSDIAGRAMME

- Ein Entscheidungsdiagramm heißt frei, wenn auf jedem Pfad von der Wurzel zu einem Blatt jede Variable höchstens einmal als Markierung vorkommt.
- Ein Entscheidungsdiagramm heißt geordnet, wenn auf jedem Pfad von der Wurzel zu einem Blatt die Variablen in der gleichen Reihenfolge abgefragt werden.
- Ein Entscheidungsdiagramm heißt reduziert, wenn sich keine Reduktionsregeln mehr anwenden lassen.
- → Reduced Ordered Binary Decision Diagrams (ROBDDs)

EFFEKT DER VARIABLENORDNUNG

$$f = X_1 X_3 + X_2 X_4$$

FINDEN DER BESTEN VARIABLENORDNUNG

- Komplexitätstheoretisch schwierig
 - □ NP-vollständig
 - □ Es gibt (nur laufzeitintensive) exakte Algorithmen!
- Heuristiken zur BDD-Minimierung
 - ☐ Initiale Verfahren
 - bauen ausgehend von einer anderen Darstellung einen ersten BDD auf
 - ☐ Umordnungsverfahren
 - versuchen, eine bestehende Variablenordnung zu verbessern
 - □ Beispiel: Sifting

GRÖßE VON BDDS

- In schlechtesten Fall: exponentiell (gilt für die meisten Booleschen Funktionen)
- Aber deutlich besser für viele praktisch relevante Funktionieren, z.B.
 - ☐ Symmetrische Functions (polynomiell)
 - □ Addierer (linear)
 - ☐ AND, OR, ... (linear)

KANONIZITÄT VON BDD: SATZ VON BRYANT (1986)

Geordnete reduzierte binäre Entscheidungsdiagramme sind kanonische Darstellungen Boolescher Funktionen.

SYNTHESE

... beschreibt die Boolesche Funktion $x_1'x_2'x_3'+x_1'x_2+x_1x_2'$

VERIFIKATION

