# **Vector Calculus**

Central to vector calculus is the concept of a function f, which is a quantity that relates 2 quantities, the inputs  $x \in \mathbb{R}^D$  (the *domain*) and targets f(x) (the *image/codomain*), to each other.

$$f: \mathbb{R}^D o \mathbb{R} \ x \mapsto f(x)$$

A function f assigns every input x exactly one function value f(x).

## **Example**

Use the dot product as a special case of an inner product. The function  $f(x) = x^T x, x \in \mathbb{R}^2$  would be

$$f: \mathbb{R}^2 o \mathbb{R} \ x \mapsto x_1^2 + x_2^2$$

# **Differentiation of Univariate Functions**

*Derivative.* For h>0 the derivative of f at x is defined as the limit

$$rac{df}{dx} := \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

The derivative of f points in the direction of steepest ascent of f.

Derivative of Polynomial

We want to compute the derivative of  $f(x) = x^n$ ,  $n \in \mathbb{N}$ . We may already know that the answer will be  $nx^{n-1}$ , but we want to derive this result using the definition of the derivative as the limit of the difference quotient.

Using the definition of the derivative in (5.4), we obtain

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{5.5a}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$
 (5.5b)

$$= \lim_{h \to 0} \frac{\sum_{i=0}^{n} \binom{n}{i} x^{n-i} h^{i} - x^{n}}{h}.$$
 (5.5c)

We see that  $x^n = \binom{n}{0} x^{n-0} h^0$ . By starting the sum at 1, the  $x^n$ -term cancels, and we obtain

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \lim_{h \to 0} \frac{\sum_{i=1}^{n} \binom{n}{i} x^{n-i} h^{i}}{h}$$
 (5.6a)

$$= \lim_{h \to 0} \sum_{i=1}^{n} \binom{n}{i} x^{n-i} h^{i-1}$$
 (5.6b)

$$= \lim_{h \to 0} \binom{n}{1} x^{n-1} + \underbrace{\sum_{i=2}^{n} \binom{n}{i} x^{n-i} h^{i-1}}_{\to 0 \text{ as } h \to 0}$$
 (5.6c)

$$= \frac{n!}{1!(n-1)!}x^{n-1} = nx^{n-1}.$$
 (5.6d)

# **Taylor Series**

The Taylor series is a representation of a function f as an infinite sum of terms. These terms are determined using derivatives of f evaluated at  $x_0$ .

*Taylor Polynomial.* The Taylor polynomial of degree n of  $f:\mathbb{R} o \mathbb{R}$  at  $x_0$  is defined as:

$$T_n(x) := \sum_{k=0}^n rac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$

where  $f^{(k)}(x_0)$  is the k-th derivative of f at  $x_0$  and  $\frac{f^{(k)}(x_0)}{k!}$  are the coefficients of the polynomial.

For a smooth function  $f\in C^\infty, f:\mathbb{R} o\mathbb{R}$  , the Taylor series of f at  $x_0$  is defined as

$$T_{\infty}(x) = \sum_{k=0}^{\infty} rac{f^{(k)}(x_0)}{k!} (x-x_0)^k$$

For  $x_0=0$ , we obtain the *Maclaurin series* as a special instance of the Taylor series.

If  $f(x) = T_{\infty}(x)$ , then f is called *analytic*.

### **Differentiation rules**

Product rule:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

Quotient rule

$$(rac{f(x)}{g(x)})' = rac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Sum rule

$$(f(x) + g(x))' = f'(x) + g'(x)$$

Chain Rule

$$(g(f(x)))' = (g \circ f)'(x) = g'(f(x))f'(x)$$

where  $g\circ f$  denotes function composition  $x\mapsto f(x)\mapsto g(f(x))$ 

# **Partial Differentiation and Gradients**

The generalisation of the derivative to functions of several variables is the *gradient*.

Find the gradient to the function f with respect to x by varying one variable at time and keeping the others constant. The gradient is then the collection of these partial derivatives.

Partial Derivative. For a function  $f:\mathbb{R}^m o\mathbb{R}, x\mapsto f(x), x\in\mathbb{R}^n$  of n variables  $x_1,\dots,x_n$  we define the partial derivatives as:

$$egin{aligned} rac{\partial f}{\partial x_1} &= \lim_{h o 0} rac{f(x_1 + h, x_2, \dots, x_n) - f(x)}{h} \ &dots \ rac{\partial f}{\partial x_n} &= \lim_{h o 0} rac{f(x_1, \dots, x_{n-1}, x_n + h) - f(x)}{h} \end{aligned}$$

and collect them in the row vector, the row vector is also called *Jacobian*,

$$abla_x f = \mathrm{grad} f = rac{df}{dx} = [rac{\partial f(x)}{\partial x_1} rac{\partial f(x)}{\partial x_2} \cdots rac{\partial f(x)}{\partial x_n}] \in \mathbb{R}^{1 imes n}$$

where n is the number of variables and 1 is the dimension of the image of f.

For any vector v tangent to the level surface, the gradient is perpendicular to it,  $\nabla f \cdot v = 0$ . The  $\nabla f$  is normal vector to the tangent plane.

### **Basic rules of partial differentiation**

Pay attention here the gradients involve vectors and matrices, and matrix multiplication is not commutative, the order is important.

#### Product rule

$$rac{\partial}{\partial x}(f(x)g(x)) = rac{\partial f}{\partial x}g(x) + f(x)rac{\partial g}{\partial x}$$

Sum rule

$$rac{\partial}{\partial x}(f(x)+g(x))=rac{\partial f}{\partial x}+rac{\partial g}{\partial x}$$

Chain rule

$$\frac{\partial}{\partial x}(g\circ f)(x)=\frac{\partial}{\partial x}(g(f(x)))=\frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$$

### Chain rule

Consider a function  $f: \mathbb{R}^2 \to \mathbb{R}$  of 2 variables  $x_1, x_2$ . And  $x_1(t), x_2(t)$  are themselves functions of t. To compute the gradient of f with respect to t:

$$rac{df}{dt} = \left[rac{\partial f}{\partial x_1}rac{\partial f}{\partial x_2}
ight] \left[rac{\partial x_1(t)}{\partial t}
ight] = rac{\partial f}{\partial x_1}rac{\partial x_1}{\partial t} + rac{\partial f}{\partial x_2}rac{\partial x_2}{\partial t}$$

If  $f(x_1, x_2)$  is a function of  $x_1$  and  $x_2$ , where  $x_1(s, t)$  and  $x_2(s, t)$  are functions to s, t, the chain rule yields

$$egin{aligned} rac{\partial f}{\partial s} &= rac{\partial f}{\partial x_1} rac{\partial x_1}{\partial s} + rac{\partial f}{\partial x_2} rac{\partial x_2}{\partial s} \ rac{\partial f}{\partial t} &= rac{\partial f}{\partial x_1} rac{\partial x_1}{\partial t} + rac{\partial f}{\partial x_2} rac{\partial x_2}{\partial t} \end{aligned}$$

and the gradient is obtained by the matrix multiplication

$$\frac{\mathrm{d}f}{\mathrm{d}(s,t)} = \frac{\partial f}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{x}}{\partial (s,t)} = \underbrace{\begin{bmatrix} \partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix}}_{=} \underbrace{\begin{bmatrix} \frac{\partial x_1}{\partial s} & \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial s} & \frac{\partial x_2}{\partial t} \end{bmatrix}}_{=} \underbrace{\begin{bmatrix} \frac{\partial x_1}{\partial s} & \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial s} & \frac{\partial x_2}{\partial t} \end{bmatrix}}_{=} .$$

#### The Hessian Matrix

The notations for higher-order gradients,

- $rac{\partial^n f}{\partial x^n}$  is the n-th partial derivative of f to x
- ullet  $rac{\partial^2 f}{\partial y \partial x} = rac{\partial}{\partial y} (rac{\partial f}{\partial x})$  is the partial derivative obtained to x then to y

The Hessian is the collection of all second-order partial derivatives.

If f(x,y) is a twice (continuously) differentiable function, then

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

the order of differentiation doesn't matter, the corresponding Hessian matrix

$$m{H} = egin{bmatrix} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \ rac{\partial^2 f}{\partial x \partial y} & rac{\partial^2 f}{\partial y^2} \end{bmatrix}$$

is symmetric, and the Hessian is denoted as  $abla_{x,y}^2 f(x,y)$ .

For a square matrix A,

• PD:  $x^TAx>0$ , ND:  $x^TAx<0$ • PSD:  $x^TAx\geq 0$ , NSD:  $x^TAx\leq 0$ 

- If Hessian is Positive Defined at a point, the function is locally convex. Its critical point is local minimum.
- If Hessian is Negative Defined, then the function is locally concave. Its critical point is local maximum.

The Hessian measures the *local curvature* at some point (x, y), and the gradient tells the *local* slope.

### **Gradients of Vector-Valued Functions**

For a function  $f:\mathbb{R}^n o\mathbb{R}^m$  and a vector  $x=[x_1,\ldots,x_n]^T\in\mathbb{R}^n$  , the corresponding vector of function values is

$$f(x) = egin{bmatrix} f_1(x) \ dots \ f_m(x) \end{bmatrix} \in \mathbb{R}^m$$

The gradient of  $f:\mathbb{R}^n o \mathbb{R}^m$  to  $x \in \mathbb{R}^n$  by collecting these partial derivatives:

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = \left[\begin{array}{c} \frac{\partial f(x)}{\partial x_1} \cdots \begin{bmatrix} \frac{\partial f(x)}{\partial x_n} \end{bmatrix} \\ \vdots \\ \frac{\partial f_n(x)}{\partial x_1} \cdots \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_n} \\ \vdots \\ \frac{\partial f_m(x)}{\partial x_1} \cdots \end{bmatrix} \right] \in \mathbb{R}^{m \times n}.$$

*Jacobian.* The collection of all first-order partial derivatives of a vector-valued function  $f:\mathbb{R}^n \to \mathbb{R}^m$  is called the *Jacobian*. The Jacobian J is an  $m \times m$  matrix,

$$J = \nabla_{x} f = \frac{\mathrm{d} f(x)}{\mathrm{d} x} = \left[ \frac{\partial f(x)}{\partial x_{1}} \cdots \frac{\partial f(x)}{\partial x_{n}} \right]$$

$$= \left[ \frac{\partial f_{1}(x)}{\partial x_{1}} \cdots \frac{\partial f_{1}(x)}{\partial x_{n}} \right],$$

$$\vdots$$

$$\vdots$$

$$\frac{\partial f_{m}(x)}{\partial x_{1}} \cdots \frac{\partial f_{m}(x)}{\partial x_{n}} \right],$$

$$x = \left[ x_{1} \right];$$

$$x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{n} \end{bmatrix}, \quad J(i,j) = \frac{\partial f_{i}}{\partial x_{j}}.$$

A summary of the dimensions of those derivatives.

ullet  $f:\mathbb{R} o\mathbb{R}$ , the gradient is a scalar

 $oldsymbol{\cdot} f: \mathbb{R}^D 
ightarrow \mathbb{R}$  , the gradient is a 1 imes D row vector

 $oldsymbol{\cdot} f: \mathbb{R} 
ightarrow \mathbb{R}^E$  , the gradient is an E imes 1 column vector

 $oldsymbol{\cdot} f: \mathbb{R}^D 
ightarrow \mathbb{R}^E$  , the gradient is an E imes D matrix

Dimensionality of (partial) derivatives.



## Example

We are given

$$oldsymbol{f}(oldsymbol{x}) = oldsymbol{A}oldsymbol{x}\,, \quad oldsymbol{f}(oldsymbol{x}) \in \mathbb{R}^M, \quad oldsymbol{A} \in \mathbb{R}^{M imes N}, \quad oldsymbol{x} \in \mathbb{R}^N\,.$$

To compute the gradient  $d\mathbf{f}/d\mathbf{x}$  we first determine the dimension of  $d\mathbf{f}/d\mathbf{x}$ : Since  $\mathbf{f}: \mathbb{R}^N \to \mathbb{R}^M$ , it follows that  $d\mathbf{f}/d\mathbf{x} \in \mathbb{R}^{M \times N}$ . Second, to compute the gradient we determine the partial derivatives of f with respect to every  $x_i$ :

$$f_i(\boldsymbol{x}) = \sum_{j=1}^{N} A_{ij} x_j \implies \frac{\partial f_i}{\partial x_j} = A_{ij}$$
 (5.67)

We collect the partial derivatives in the Jacobian and obtain the gradient

$$\frac{\mathrm{d}\boldsymbol{f}}{\mathrm{d}\boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & & \vdots \\ \frac{\partial f_M}{\partial x_1} & \cdots & \frac{\partial f_M}{\partial x_N} \end{bmatrix} = \begin{bmatrix} A_{11} & \cdots & A_{1N} \\ \vdots & & \vdots \\ A_{M1} & \cdots & A_{MN} \end{bmatrix} = \boldsymbol{A} \in \mathbb{R}^{M \times N} . \quad (5.68)$$

### Chain Rule

Consider the function  $h: \mathbb{R} \to \mathbb{R}$ ,  $h(t) = (f \circ g)(t)$  with

$$f: \mathbb{R}^2 \to \mathbb{R} \tag{5.69}$$

$$g: \mathbb{R} \to \mathbb{R}^2 \tag{5.70}$$

$$f(x) = \exp(x_1 x_2^2), \tag{5.71}$$

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = g(t) = \begin{bmatrix} t \cos t \\ t \sin t \end{bmatrix}$$
 (5.72)

and compute the gradient of h with respect to t. Since  $f: \mathbb{R}^2 \to \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}^2$  we note that

$$\frac{\partial f}{\partial x} \in \mathbb{R}^{1 \times 2}, \quad \frac{\partial g}{\partial t} \in \mathbb{R}^{2 \times 1}.$$
 (5.73)

The desired gradient is computed by applying the chain rule:

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\partial f}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial t} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1}{\partial t} \\ \frac{\partial x_2}{\partial t} \end{bmatrix}$$
(5.74a)

$$= \left[\exp(x_1 x_2^2) x_2^2 \quad 2 \exp(x_1 x_2^2) x_1 x_2\right] \begin{bmatrix} \cos t - t \sin t \\ \sin t + t \cos t \end{bmatrix}$$
 (5.74b)

$$= \exp(x_1 x_2^2) \left( x_2^2 (\cos t - t \sin t) + 2x_1 x_2 (\sin t + t \cos t) \right), \quad (5.74c)$$

where  $x_1 = t \cos t$  and  $x_2 = t \sin t$ ; see (5.72).

# Useful identities for computing gradients

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{\top} = \left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}}\right)^{\top}$$
 (5.99)

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{f}(\mathbf{X})) = \operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}}\right) \tag{5.100}$$

$$\frac{\partial}{\partial \mathbf{X}} \det(\mathbf{f}(\mathbf{X})) = \det(\mathbf{f}(\mathbf{X})) \operatorname{tr} \left( \mathbf{f}(\mathbf{X})^{-1} \frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \right)$$
(5.101)

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{-1} = -\mathbf{f}(\mathbf{X})^{-1} \frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{-1}$$
(5.102)

$$\frac{\partial \boldsymbol{a}^{\top} \boldsymbol{X}^{-1} \boldsymbol{b}}{\partial \boldsymbol{X}} = -(\boldsymbol{X}^{-1})^{\top} \boldsymbol{a} \boldsymbol{b}^{\top} (\boldsymbol{X}^{-1})^{\top}$$
(5.103)

$$\frac{\partial \boldsymbol{x}^{\top} \boldsymbol{a}}{\partial \boldsymbol{x}} = \boldsymbol{a}^{\top} \tag{5.104}$$

$$\frac{\partial \boldsymbol{a}^{\top} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{a}^{\top} \tag{5.105}$$

$$\frac{\partial a^{\top} X b}{\partial X} = a b^{\top} \tag{5.106}$$

$$\frac{\partial \boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{x}^{\top} (\boldsymbol{B} + \boldsymbol{B}^{\top})$$
 (5.107)

 $\frac{\partial}{\partial s}(x - As)^{\top} W(x - As) = -2(x - As)^{\top} WA \quad \text{for symmetric } W$ (5.108)