

طراحی سیستم های VLSI

مدارهای ترکیبی MOS استاتیک

دكتر مهدى فاضلى

مدارهای ترکیبی ایستا با شبکه پائین بر به عنوان راه انداز

مدارهای ترکیبی ایستا با شبکه بالابر به عنوان راه انداز

مدارهای ترکیبی ایستا با شبکه بالابر به عنوان راه انداز

حالت هدایت و یا عدم هدایت ترانزیستور NMOS

حالت هدایت و یا عدم هدایت ترانزیستور PMOS

NAND و NOR

NAND و NOR

$$Z={
m PDN}$$
 تابع منطقی شبکه = $\overline{A.ar{B}+(C+ar{E}).D+F}$

NAND و NOR

NAND و NOR

$$Z=PUN$$
 تابع منطقی شبکه $=A.\,ar{B}+(ar{C}+ar{E}).\,D+F$

مدارهای دوگان و استفاده از آن در مدارهای ترکیبی ایستا

xy تابع هدایت دو سر = (A+B).C

مدارهای دوگان و استفاده از آن در مدارهای ترکیبی ایستا

xy تابع هدایت دو سر = (A+B).C

XY'تابع هدایت دو سر $\overline{(A+B).C}$ (ب)

مدارهای دوگان و استفاده از آن در مدارهای ترکیبی ایستا

• ابتدا به ازای دو گره ابتدا و انتهائی شبکه یک خط فرضی عمودی در نظر بگیرید. این خط شبکه را به دو بخش مجزای چپ و راست تقسیم می-کند.

- ابتدا به ازای دو گره ابتدا و انتهائی شبکه یک خط فرضی عمودی در نظر بگیرید. این خط شبکه را به دو بخش مجزای چپ و راست تقسیم می-کند.
- در دو طرف خط فرضی دو گره را برای گراف معادل ترسیم کنید. این دو گره ابتدا و انتهای گراف معادل را مشخص می-کنند.

- ابتدا به ازای دو گره ابتدا و انتهائی شبکه یک خط فرضی عمودی در نظر بگیرید. این خط شبکه را به دو بخش مجزای چپ و راست تقسیم می-کند.
- در دو طرف خط فرضی دو گره را برای گراف معادل ترسیم کنید. این دو گره ابتدا و انتهای گراف معادل را مشخص می-کنند.
- به ازای هر مش- موجود در گراف، یک گره برای گراف معادل در نظر گرفته، درون آن قرار دهید.

- ابتدا به ازای دو گره ابتدا و انتهائی شبکه یک خط فرضی عمودی در نظر بگیرید. این خط شبکه را به دو بخش مجزای چپ و راست تقسیم می-کند.
- در دو طرف خط فرضی دو گره را برای گراف معادل ترسیم کنید. این دو گره ابتدا و انتهای گراف معادل را مشخص می-کنند.
- به ازای هر مش- موجود در گراف، یک گره برای گراف معادل در نظر گرفته، درون آن قرار دهید.
- به ازای هر لبه از گراف اصلی که میان دو مش درونی قرار گرفته، یک لبه را میان دو گره متناظر مش-ها رسم کنید.

- ابتدا به ازای دو گره ابتدا و انتهائی شبکه یک خط فرضی عمودی در نظر بگیرید. این خط شبکه را به دو بخش مجزای چپ و راست تقسیم می-کند.
- در دو طرف خط فرضی دو گره را برای گراف معادل ترسیم کنید. این دو گره ابتدا و انتهای گراف معادل را مشخص می-کنند.
- به ازای هر مش- موجود در گراف، یک گره برای گراف معادل در نظر گرفته، درون آن قرار دهید.
- به ازای هر لبه از گراف اصلی که میان دو مش درونی قرار گرفته، یک لبه را میان دو
 گره متناظر مش-ها رسم کنید.
- متناظر لبه-های بیرونی که تنها به یک مش درونی متصل است و در سمت چپ یا راست قرار گرفته، لبه-ای در گراف دوم در نظر بگیرید. این لبه که از یک طرف به گره متناظر مش و از طرف دیگر به گره بیرونی نزدیک آن لبه وصل می-شود.

خط فرضی عمود ی تقسیم کننده گراف به دو بخش چپ و راست

- سوال : محاسبه V_{OH} ، V_{OH} ، V_{OL} و V_{M} در این مدار چگونه است؟
- جواب: در مواردی که لازم است از ترکیب ترانزیستورها به صورت سری یا موازی استفاده میکنیم.

 $V_{OH} \bullet$

§ V_{OH} ●

§ V_{OH} ●

$$V_{OH} = V_{DD}$$

محاسبه V_{OL} مشابه مدار وارونگر

محاسبه V_{M} مشابه مدار وارونگر

$$V_{OH} = V_{DD}$$

$$V_{OH} = V_{DD}$$

$$V_{OL} = 0$$

$$V_{OH} = V_{DD}$$

$$V_{OL} = 0$$

$$V_M = ?$$

$$V_{OH} = V_{DD}$$

$$V_{OL} = 0$$

$$V_M = ?$$

محاسبه V_{M} مشابه مدار وارونگر