Injectivité de la tranformée de Fourier 40 Ref : El Amorani, p 156-157 (Comme) et p 115-116 (tllm) Pour f dans (1(R), en affinit sa transformée de fourier 6 par : B: Ex +> SB(x) e-ix Equax. On soit que l'application 3e: 21(R) -> Co(R) est bien définie, linéaire et continue. lemme: Soit a $\in \mathbb{R}^{\#}$. Alors pour tout & dans \mathbb{R} , $Se(e^{-asc^2})(\xi) = \sqrt{\frac{\pi}{a}}e^{\frac{\xi^2}{4a}}$ ie si l'on note δa : $t \mapsto e^{-at^2}$, alors $\delta a(\xi) = \sqrt{\frac{\pi}{a}} \mathcal{S}_{4a}(\xi)$ pour tout ξ dans \mathbb{R} Theoreme & L'application Be & (UR) -> Co(R) est injective. Browne du lamme: Seit $\alpha \in \mathbb{R}^{2}$. La function $\delta a : \infty \mapsto e^{-asc^{2}}$ est dans $\mathcal{C}(\mathbb{R})$, alle admet donc une transformée de Fourier. Bur tout $\xi \in \mathbb{R}$, en a donc $\delta a(\xi_{1}) = \int_{\mathbb{R}} e^{-asc^{2} - i \chi \cdot \xi_{1}} dx$. Or en meltant sous forme caronique, on a, powr $\xi \in \mathbb{R}$, $ax^2 + ix \xi = a(x^2 + i\frac{x\xi}{a}) = a((x + i\frac{\xi}{2a})^2 + \frac{\xi^2}{4a^2})$. Ainsi pour tout & ER, en a $\delta a(\xi) = e^{-\frac{62}{4}4\alpha} \int e^{-a(x+\frac{i\xi}{2a})^2} dx$. Colculons maintenant I grace authoreme R de Canchy. On anxidere la fonction (-> (Soit R>0 et GER. On anxidere le lacet $\Gamma(R)$ définit par le rectangle de sommets $\pm R$, $\pm R + i \frac{E}{2a}$ parcourcuen sens direct :

Rei 4/20 Prince 1 at 10 1 Rti \$120

Rti \$120

Rti \$120

Rti \$120

Resigne f est holomorphe (= compose de fet o holomorphes) sux I et que le lacet IVR) est forme, d'image contenue dans I convexe, en a d'après le théorème de Cauchy : S.e. - avz etz = 0 Ainsi, en décomposant l'intégrale en obtient : $O = \int e^{-\alpha z^2} dz = \int e^{-ax^2} dx + \int e^{-a(R+ix)^2} dx - \int e^{-a(x+i)/2} dx$ $e^{-a(x+i)/2} dx$ = 3 I(R) + I2(R) - I3(R) - I4(R). Tout d'abord, on sait que II(R) admet une limite en [R-> too] qui est lem II(R) = JT (Star - 12 CVAR u= Vax)

Ensuite, pour $I_2(R)$, en α , par inegalité triangulaire e^{α} $|I_2(R)| \leq \int_0^{\frac{2}{2}} |e^{-\alpha(R+ix)^2}| dx$. Or $|e^{-\alpha(R+ix)^2}| = |e^{-\alpha(R^2-2inxR+ax^2)}| = |e^{-\alpha(R^2-x^2)}| = e^{-\alpha(R^2-x^2)}|$ Denc $|I_2(R)| \le \int_0^{\frac{9}{2}a} e^{-a(R^2-x^2)} e^{-aR^2} \int_0^{\frac{9}{2}a} e^{ax^2} dx \xrightarrow{R \to +\infty} 0$ Donc lim I2(R) = O. De la même manière, en montre lim I4(R)=0 Enfin, on a lim $I_3(R) = \int_{-\infty}^{+\infty} e^{-\alpha(x+\frac{i\xi}{2\alpha})^2} dx$ (intégrale absolument convergente). Ainsi, en faixant (R -> + ∞) dans (R -) , on obtaint donc (R -) = (R -) + (RBrance du Médième : Soit $f \in C'(R)$ telle que $\hat{f} = 0$. On note pour $D \in R^{\#}$, $X_{\Delta} : X_{E} \mapsto \frac{1}{\sqrt{2\pi s}} e^{-\frac{2s^{2}}{2s}}$ le noyau de Gauss $(X_{\Delta} = \frac{1}{\sqrt{2\pi s}})$ et en définit $g_{s} \circ x \mapsto \chi_{s}(a) e^{i\alpha s}$ pour $\alpha \in \mathbb{R}$. (4) $\hat{\chi}_{s} = \chi_{\frac{1}{2}} = \sqrt{\frac{2\pi}{3}} \chi_{s}$ Soit $s \in \mathbb{R}^{+}$, $\alpha \in \mathbb{R}$. On a d'après la formule du duolité \circ (Fubine)

($f(u) \hat{q}_{s}(u) du = (f(u) q_{s}(u) du$. Splus golus du = Splus golus du. Ord'une part, (B(u)gs(u)du = 0 Et d'autre part, $\int \beta(u)\hat{g_s}(u)du = \int \beta(u)\hat{\chi_s}(u-a)du$ (our $\hat{g_s} = \tau_a\hat{\chi_s}$) = (f(u) l's(a-u)du (cor l'sest pouro) = f # Ks (a) = JII f x Xs-1(a). Ainsi, pour tout DER*, pour tout a ER, BAXS-1(a) = 0; donc pour tout & ER+, BA Ks-1=0. Mais la famille (Xs1) s>0 est une approscimation de l'unité, Obne & Xs-1 converge vers & dans ("(R)

0 = lim 11 f * 85-1 - fll = lem 11 fll = 11 fll -Donc &= 0 presque partout. Ainsi, peusque B'est linéaire, en en décluit que B'est injective. Avant de passer aux remorques, quelques rappels sur les apprescimations de l'unité : On appelle approscimation de l'unité (ou unité appoile) dans ("(R), toute unte ((In)n » 1 de fot mesurables sur 1R telles que 1) Vne IN #, In > 0 et & Pn(x) dsc=1 Con part aussi induscer part ER#1 2) VE>0, lim function = 6 Examples of Captice $P_m(x) = \frac{m}{2}e^{-m|x|}$, Cauchy $P_m(x) = \frac{m}{11} \times \frac{1}{1+n^2x^2}$.

Gives $P_m(x) = \frac{m}{\sqrt{2\pi}} e^{-\frac{m^2x^2}{2}}$ Up $P_m \ge 0$ et $P_m = 1$ obt et $P_m(x) dx = 1 - \int_{1}^{\infty} \frac{e^{-\frac{m^2x^2}{2}}}{\sqrt{2\pi}} dx$ $P_m(x) = 1 + \int_{1}^{\infty} \frac{e^{-\frac{m^2x^2}{2}}}{\sqrt{2\pi}} dx$ -> JZTI C'Vdom. The d'approximation & Soit (Palaz 1 une approximate de l'unité.
1) Si f est uniformament continue sur Rd et bornée, alors (fix Palaz 1 CV uniformement vers &. 2) Si BELP(R) pour PEA, took, alors (Bot Polinis) CV vous folans (MR Cour le montrer, en passe d'abend par les fet ° Co (R) et en étend par densite) Remarques: * la formule d'inversion pormet de retrouver le résultat : si $\beta = 0$, la formule nous donne $\beta = 0$ pp (en peut d'ailleurs obtenir la formule avec le même type d'outils : convolut; approscient d'unité etc + Riesz - Fischer). L'application Je n'est en revanche pas surjective (dux, utilise le thm d'isomorphisme de Banach!, mais Yell'(R) ext donse dans Co(R)

(on affet, SCR) = Se(SCR)) C Se(L1(R)), et D(R) C S(R) dense dons Co(R), donc Se(L1(R)) Egaloment). * Exemple d'application : les équations de convolution : por exemple Topudre $\beta + e^{-2|x|} = e^{-3|x|}$ o pour $a \in \mathbb{R}^{\#}$, $(x) - e^{-a|x|} \in \mathcal{C}'(\mathbb{R})$ et $\mathcal{S}(e^{-a|x|})(\xi) = \frac{2a}{\xi^2 + a^2}$, $x \in \mathcal{B}(\mathcal{C}'(\mathbb{R}), \beta + e^{-2|x|})$ bien defet BADE-21x1 = e-31x1 (=) Se(BADE-21x1) = Se(e-31x1) par injectivité, OT $3e(\beta \Rightarrow e^{-2|x|}) = \hat{\beta} e^{-2|x|}$, donc $\forall \xi \in \mathbb{R}$, $\hat{\beta}(\xi) = \frac{3}{2} \frac{\xi^2 + 4}{\xi^2 + 9}$, lim $\hat{\beta}(\xi) = \frac{3}{2} \frac{\xi}{2} + \frac{3$ Eur 2s, la formule (qui l'on toppelle: f(a) = IT Sel 4)e is de, in B = 2TT f(-1) pp) est claire: $\chi_s = \frac{1}{2\pi} \chi_{s-1}$, donc Vis = VZT Xs1 = UZT x VZTS Xs = 277 Xs, et ensule si fecter) to BELURI, on Ecrit pour a ER? (# 7/s (-a) = S& 7/s/4) e in 4 a 4 = SB(4) xs(4) e in 4 a 4 = (f(x) 3/ Xs(g) english (dealite) = Sete) Xà (x-a)dx = 27 (B(x) Xx(a-x)dx =2TI GAZSIA) De formule est vivie pour foxxs et ensute on s'en sert per approximation (mas @ xibble, utilisat " de Rivis - Fixher peut extraire une seus suite avec CV pp etc etc). D'Autre exemple d'équation de convolution: f * f = fSi f dans $i^{1}(R)$ vérifie (f* f bien def) fro f = f, alors $\hat{f}^{2} = \hat{f}$, d'au $\forall \xi \in \mathbb{R}, \ \hat{f}(\xi)(\hat{f}(\xi)-1)=0$, or \hat{f} est continuo sur \mathbb{R} , donc $\hat{f}=0$ ou $\hat{f}=1$ Comme $f \in C_0(\mathbb{R})$, on en déduit $\hat{f}=0$, et pour enjectivité f=0 dans $C^1(\mathbb{R})$, donc C^1 équation admot f=0 comme senique solution. Concorro altos tron 17/1/2)