

EAST WEST UNIVERSITY

Department of Computer Science and Engineering B.Sc. in Computer Science and Engineering Program Lab Examination, Summer 2024 Semester

Course: CSE 302 Database Systems (Section – 2)

Instructor: Mahmuda Rawnak Jahan, Lecturer, CSE Department

Full Marks: 25 (10 will be counted for final grading)

Time: 1 Hour and 15 Minutes

Note: Answer ALL the questions.

1. Consider the following "Hospital Management Database" Schema.

Marks: 3+1.5+1 = 5.5]

Patients (<u>patient_id</u>, patient_name, gender, admission_date, discharge_date, medical condition)

Doctors(<u>doctor_id</u>, doctor_name, specialization, contact_number)
Admissions(<u>admission_id</u>, patient_id, doctor_id)

Create the necessary tables with the following specifications:

A. Table "Patients":

- **a.** Attributes: patient_id (Primary Key), patient_name, gender, admission date, discharge date, medical condition.
- b. Constraints:
 - i. Add not-null constraints on *patient name*, *gender*.
 - ii. Ensure that admission date is not after discharge date..

B. Table "Doctors":

- **a.** Attributes: doctor_id (Primary Key), doctor_name, specialization, contact number, salary.
- b. Constraints:
 - i. Add a constraint on *salary* to ensure it is greater than or equal to 20.000.

C. Table "Admissions":

a. Attributes: admission_id (Primary Key), patient_id (Foreign Key references Patients table), doctor_id (Foreign Key references Doctors table).

2. Insert the provided sample data to each table:

Patients:

[M	ar.	KS): :
1.5	X	3	=
4.5]		

patient _id	patient_ name	gender	admission_ date	discharge_ date	medical_ condition
101	Muhammad Yunus	Male	2024-04-01	2024-04-10	Flu
102	Taslima Nasrin	Female	2024-04-05	2024-04-12	Fractured Leg
103	Humayun Ahmed	Male	2024-04-11	2024-04-23	Appendicitis
104	Jafor Iqbal	Male	2024-04-08	2024-04-11	Pneumonia

Doctors:

doctor_id	doctor_name	specialization	contact_number	Salary
201	Dr. Jahid	Neurology	01798354011	45000
202	Dr. Kabir	Orthopedics	01997085841	67000
203	Dr. Topu	Cardiology	01844442005	80000
204	Dr. Gitanjali	Neurology	01711910555	90000

Admissions:

admission_id	patient_id	doctor_id
301	101	201
302	102	202
303	103	201
304	104	204

3. Write SQL statements for the following queries:

[Marks: 2 x 5 = 10]

- I. Find the doctor's name with the lowest salary.
- II. List the names of doctors who have admitted more patients than the average number of patients admitted by any doctor.
- III. Find the details of male doctors whose names contain both 'm' and 'n' and who specialize in Cardiology.
- IV. Retrieve the patient(s) name in descending order, who were treated by multiple doctors.
- V. Create a view named 'Admission_under_Neurology' containing the names of patients who were admitted by doctors specializing in Neurology.