General Purpose Input/Output (GPIO)

Ben Latimer Electrical Engineering and Computer Science Dept University of Missouri

Spring 2018

Raspberry Pi GPIO pins

Raspberry Pi (Rev1)

3V3	1	2	5V		
GPIOØ	3	4	5V		
GPIO1	5	6	GND		
GPIO4	7	8	GPIO14		
GND	9	10	GPIO15		
GPIO17	11	12	GPIO18		
GP1027	13	14	GND		
GPIO22	15	16	GPIO23		
3V3	17	18	GPIO24		
GPIO10	19	20	GND		
GPIO9	21	22	GPIO25		
GPIO11	23	24	GPI08		
GND	25	26	GPIO7		

Raspberry Pi (Rev 2)

3V3	1	2	5V	
GPIO2	3	4	5V	
GPIO3	5	6	GND	
GPIO4	7	8	GPIO14	
GND	9	10	GPIO15	
GPIO17	11	12	GPIO18	
GPIO27	13	14	GND	
GPIO22	15	16	GPIO23	
3V3	17	18	GPIO24	
GPIO10	19	20	GND	
GPIO9	21	22	GPIO25	
GPIO11	23	24	GPIO8	
GND	25	26	GPIO7	

Raspberry Pi B+, 2, 3 & Zero

3V3	1	2	5V	
GPIO2	3	4	5V	
GPIO3	5	6	GND	
GPIO4	7	8	GPIO14	
GND	9	10	GPIO15	
GPIO17	11	12	GPIO18	
GPIO27	13	14	GND	
GPIO22	15	16	GPIO23	
3V3	17	18	GPIO24	
GPIO10	19	20	GND	
GPIO9	21	22	GPIO25	
GPIO11	23	24	GPIO8	
GND	25	26	GPIO7	
DNC	27	28	DNC	
GPI05	29	30	GND	
GPIO6	31	32	GPIO12	
GPIO13	33	34	GND	
GPIO19	35	36	GPIO16	
GPIO26	37	38	GPIO20	
GND	39	40	GPIO21	

Key	
+	
Ground	
UART	
I2C	
SPI	
GPIO	
Pin Number	

Interfacing Peripherals

Port-mapped I/O

▶ Use special CPU instructions: Special_instruction Reg, Port

Memory-mapped I/O

- ▶ A simpler and more convenient way to interface I/O devices
- Each device registers is assigned to a memory address in the address space of the microprocessor
- Use native CPU load/store instructions: LDR/STR Reg, [Reg, #imm]

Memory Map of Cortex-M4 (Pi uses Cortex-A53)

Memory Map of STM32L4

Steps to using GPIO pins

- ▶ I) Configure the pin as an input or an output
 - A) Get the address of the appropriate GPSEL0 register
 - ▶ B) ORR the current value with the value you want

- I) Set or clear the pin
 - ▶ A) Get the address of GPSET or GPCLR register
 - ▶ B) ORR the current value with the value you want

Memory-mapped GPIO Cortex-A53 (Pi)

Thinking about memory addresses

GPSEL Registers on ARM-Cortex A53 (Pi)

No	Name	Off	Pins
0	GPIO Function Select 0 (GPSEL0)	#0	0-9
1	GPIO Function Select 1 (GPSEL1)	#4	10- 19
2	GPIO Function Select 2 (GPSEL2)	#8	20- 29
3	GPIO Function Select 3 (GPSEL3)	#12	30 - 39
4	GPIO Function Select 4 (GPSEL4)	#16	40- 49
5	GPIO Function Select 5 (GPSEL5)	#20	50 - 53

Figure 25b. GPIO registers and pin control.

GPSEL0 Register

How would we set pin 2 as an output in assembly?

LDR RI, =GPSEL0 LDR R2, [RI] MOV R3, #I << 6 ORR R2, R3 STR R2, [RI]

General Purpose Input/Output (GPIO)

Basic Structure of an I/O Port Bit Input and Output

Basic Structure of an I/O Port Bit: Output

GPIO Pull-up/Pull-down Register (PUPDR)

00 = No pull-up, pull-down 01 = Pull-up

10 = Pull-down 11 = Reserved

GPIO Input: Pull Up and Pull Down

A digital input can have three states: High, Low, and High-Impedance (also called floating, tri-stated, HiZ)

Pull-Up

If external input is HiZ, the input is read as a valid HIGH.

Pull-Down

If external input is HiZ, the input is read as a valid LOW.

GPIO Output: Push-Pull

GPIO Output = 1 **Source** current to external circuit

GPIO Output: Push-Pull

GPIO Output = 0 **Drain** current from external circuit

GPIO Output: Open-Drain

GPIO Output = 0 **Drain** current from external circuit

GPIO Output: Open-Drain

Output = 1

GPIO Pin has high-impedance to external circuit

Basic Structure of an I/O Port Bit Input and Output

Basic Structure of an I/O Port Bit: Input

GPIO Pull-up/Pull-down Register (PUPDR)

00 = No pull-up, pull-down 01 = Pull-up

10 = Pull-down 11 = Reserved

Schmitt Trigger

Analog signals

- Noisy
- Rise and fall slowly (small slew rate)

Schmitt Trigger

Schmitt Trigger

