RETAIL DATA ANALYSIS PROJECT

CAPSTONE PROJECT

PRESENTED BY: SHILPA GIRIDHAR

CONTENTS

PROJECT NOTES 1 – EDA	
DESCRIPTION	2
OBJECTIVE	2
REQUIREMENTS	3
DATA EXPLORATION	3
Data Type of all varaibles	3
Missing Values and Outlier Treatment	5
Unique Values in each feature	8
Univariate Analysis	
Bivariate Analysis	13
PROJECT NOTES 2 - MODELLING	21
Normalize and Split dataset	21
GBM Models	24
Model 1 (on subset 1)	24
Model 2 (on subset 2)	25
Model 3 (on subset 3)	26
Linear Regression Model	30
Model 1 (on entire dataset)	30
Model 2 (on entire dataset)	32
Decision Trees	35
Model 1 (on subset 1)	35
Model 2 (on subset 2)	37
Model 3 (on entire dataset)	40
Random Forest	44
Model 1	44
Comparison Table	C
PECOMMENDATIONS	C

DESCRIPTION

The data set provides historical sales data from 2010-02-05 to 2012-11-01 for 45 stores located in different regions - each store contains a number of departments.

The company also runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of which are **the Super Bowl**, **Labor Day**, **Thanksgiving**, and **Christmas**. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks.

Within this dataset you will find the following fields:

1	Store	the store number
2	Dept	the department number
3	Date	the week
4	IsHoliday	whether the week is a special holiday week
5	Туре	the type of store
6	Size	the size of store
7	Weekly_Sales	sales for the given department in the given store
8	Temperature	average temperature in the region
9	Fuel_Price	cost of fuel in the region
10	MarkDown1-5	anonymized data related to promotional markdowns. MarkDown data is only available after Nov 2011, and is not available for all stores all the time. Any missing value is marked with an NA
11	СРІ	the consumer price index
12	Unemployment	the unemployment rate

OBJECTIVE

- Predict the department-wide sales for each store for the following year
- Model the effects of markdowns on holiday weeks
- Provide recommended actions based on the insights drawn, with prioritization placed on largest business impact.

The Challenge - One challenge of modeling retail data is the need to make decisions based on limited history. Holidays and select major events come once a year, and so does the chance to see how strategic decisions impacted the bottom line. In addition, markdowns are known to affect sales – the challenge is to predict which departments will be affected and to what extent.

REQUIREMENTS

Project Notes- 1 Expectations:

- 1) Business Problem Understanding and Problem definition
- 2) Generate a data report.
- 3) Exploratory Data analysis and insights driven from it.

DATA EXPLORATION

DATA TYPE OF ALL VARAIBLES

The data shows that there are

- 8190 observations and 12 variables in Features Dataset
- 45 observations and 3 variables in Stores Dataset
- 421570 observations and 5 variables in Sales Dataset

We perform a left join the 3 datasets using the "Store" Column to get a combined dataset with

421570 observations and 16 variables.

```
tibble [421,570 x 16] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
            : num [1:421570] 1 1 1 1 1 1 1 1 1 1 ...
: chr [1:421570] "01/04/2011" "01/04/2011" "01/04/2011" "01/04/2011" ...
 $ Store
 $ Date
$ ISHOliday : logi [1:421570] FALSE FALSE FALSE FALSE FALSE FALSE ...
               : num [1:421570] 49 26 81 34 59 30 7 85 8 28 ...
$ weekly_sales: num [1:421570] 13168 5947 28545 9950 317 ...
$ Type : chr [1:421570] "A" "A" "A" "A" ...
$ Type
          : chr [1:421570] "A" "A" "A" "A" ...
: num [1:421570] 151315 151315 151315 151315 ...
 $ Size
 $ Temperature : num [1:421570] 59.2 59.2 59.2 59.2 59.2 ...
$ CPI
               : num [1:421570] 215 215 215 215 215 .
 $ Unemployment: num [1:421570] 7.68 7.68 7.68 7.68 7.68 ...
 - attr(*,
           "spec")=
  .. cols(
       Store = col_double(),
      Date = col_character()
  . .
      IsHoliday = col_logical(),
  . .
      Dept = col_double(),
      Weekly_Sales = col_double(),
  . .
      Type = col_character(),
      size = col_double(),
       Temperature = col_double(),
       Fuel_Price = col_double(),
      MarkDown1 = col_double(),
      MarkDown2 = col_double(),
      MarkDown3 = col_double(),
      MarkDown4 = col_double(),
MarkDown5 = col_double(),
  . .
  . .
      CPI = col_double(),
       Unemployment = col_double()
```

A summary on the dataset shows that columns "Markdown 1-5" have NAs.

Date column needs to be parsed as Date class type.

The Store, Dept, and Type columns need to be parsed as factor type. After parsing the columns, we get a summary of the dataset as follows -

```
Weekly_Sales
    Store
                   IsHoliday
                                          Dept
                                                                          Туре
                                                                                            Size
13
       : 10474 Mode :logical
                                    Min. : 1.00 Min. : -4989 A:215478
                                                                                      Min. : 34875
                                     : 10315 FALSE:391909
                                                                                      1st Qu.: 93638
10
4
        : 10272
                  TRUE :29661
                                                                                      Median :140167
       : 10244
                                     Mean :44.26 Mean : 15981
                                                                                      Mean :136728
                                    3rd Qu.:74.00 3rd Qu.: 20206
Max. :99.00 Max. :693099
       : 10238
                                                                                      3rd Qu.:202505
        : 10228
                                                                                      Max.
(Other):359799
 Temperature
                    Fuel_Price
                                      MarkDown1
                                                            MarkDown2
                                                                                 MarkDown3
Min. : -2.06 Min. :2.472
1st Qu.: 46.68 1st Qu.:2.933
                                    Min. : 0.27 Min. : -265.8 Min. : -29.10
1st Qu.: 2240.27 1st Qu.: 41.6 1st Qu.: 5.08
Median : 62.09 Median :3.452
                                    Median : 5347.45 Median : 192.0 Median :
                                                                                             24.60
Mean : 60.09 Mean :3.361 Mean : 7246.42 Mean : 3334.6 Mean : 1439.42
3rd Qu.: 74.28 3rd Qu.:3.738 3rd Qu.: 9210.90 3rd Qu.: 1926.9 3rd Qu.: 103.99
      :100.14 Max. :4.468 Max. :88646.76 Max. :104519.5
NA'S :270889 NA'S :310322
                                                                               Max. :141630.61
Max.
                                                                              NA'S
                                                                                      :284479
  MarkDown4
                       MarkDown5
                                              CPI
                                                            Unemployment
                                                                                  Date2
Min. : 0.22 Min. : 135.2 Min. :126.1 Min. :3.879 Min. :2010-02-05
1st Qu.: 504.22 1st Qu.: 1878.4 1st Qu.:132.0 1st Qu.: 6.891 1st Qu.:2010-10-08
Median: 1481.31 Median: 3359.4 Median: 182.3 Median: 7.866 Median: 2011-06-17
Mean: 3383.17 Mean: 4629.0 Mean: 171.2 Mean: 7.960 Mean: 2011-06-18
3rd Qu.: 3595.04 3rd Qu.: 5563.8 3rd Qu.:212.4 3rd Qu.: 8.572 3rd Qu.:2012-02-24
                                                                              Median :2011-06-17
Max. :67474.85 Max. :108519.3 Max. :227.2 Max. :14.313 Max. :2012-10-26
NA's :286603 NA's :270138
```

Data Type of each variable

\$Store	\$IsHoliday
[1] "factor"	[1] "logical"
\$Dept	\$Weekly_Sales
[1] "numeric"	[1] "numeric"
\$Type	\$Size
[1] "factor"	[1] "numeric"
\$Temperature	\$Fuel_Price
[1] "numeric"	[1] "numeric"
\$MarkDown1	\$MarkDown2
[1] "numeric"	[1] "numeric"
\$MarkDown3	\$MarkDown4
[1] "numeric"	[1] "numeric"
\$MarkDown5	\$CPI
[1] "numeric"	[1] "numeric"
\$Unemployment	\$Date2
[1] "numeric"	[1] "Date"

Missing Values and Outlier Treatment

- Missing Data Plot Used the "library(DataExplorer)" and use the function "plot_missing()" to ascertain that the missing data; Markdown 1 to 5 column show missing data.
- MarkDowns columns with NA's or negative numbers will be replaced by zeros to overcome the missing value data problems.

Detect and treat outliers for non holiday records

```
outlier_capping = function(x){
  qnt = quantile(x, probs=c(.25, .75), na.rm = T)
  caps = quantile(x, probs=c(.05, .95), na.rm = T)
  H = 1.5 * IQR(x, na.rm = T)
  x[x < (qnt[1] - H)] <- caps[1]
  x[x > (qnt[2] + H)] <- caps[2]
  return(x) }
  df$Weekly_Sales=outlier_capping(df$Weekly_Sales)
  df$MarkDown1=outlier_capping(df$MarkDown1)
  df$MarkDown2=outlier_capping(df$MarkDown2)
  df$MarkDown3=outlier_capping(df$MarkDown3)
  df$MarkDown4=outlier_capping(df$MarkDown4)</pre>
```

• Individual box plots after outlier treatment in Weekly Sales and Markdown columns

UNIQUE VALUES IN EACH FEATURE

- How many stores, department, store types are present in data?
- Stores 45
- Department 81
- Store Types 3 (noted as A,B, C) based on the size of the store
- Dates ranging from 2010-02-05 to 2012-11-01
- Markdown 1 to 5 indicate certain discounts and this data is available only from Nov-2011
- Aggregate Functions to summarize different variables
- Weekly Sales vs Type of Store

Type <fctr></fctr>	<db ></db >
A	4331014723
В	2000700737
C	405503528

3 rows

22 Stores in Type 1, 17 Stores of Type 2, 6 Stores of Type 3 Each Store has number of departments ranging from 60 -70 Average Sales across stores is about $\,^{\sim}\,$ \$14K Quite evident that Sales is proportional to size of the store

UNIVARIATE ANALYSIS

Histogram plot to understand continuous variables

Size of the Stores

Density Plot

Fuel Price distribution

• CPI distribution

Unemployment distribution

• Temperature Distribution

BIVARIATE ANALYSIS

• "Weekly Sales" vs "Store Type"; From this plot, we notice that type C stores have fewer sales. But both Type A and B stores have outliers.

 "Weekly Sales" vs "Month of the Year" and "Holiday Week" It shows that weekly sales volume peak during certain weeks of the year.

• Plot of Sales Distribution by Stores

• Plot of Sales Distribution by Department

Bivariate Analysis – "Weekly Sales" vs "Holiday"

Weekly sales distribution during holiday Weeks

Super Bowl Code = 1, Labour Day Code = 2, Thanksgiving Code = 3, Christmas Code = 4

Holiday Week	0	Super Bowl Week (1)	Labour Day Week (2)	Thanksgiving & Black Friday Week (3)	Christmas Week (4)
Number of Records	391909	8895	8861	5959	5946
Sum of Weekly Sales	6231919436	145682278	140727685	132414609	86474980
Percentage of Total Weekly Sales	92.49%	2.16%	2.08%	1.96%	1.28%
Avg Weekly Sales	15901.45	16378.00	15881.69	22220.94	14543.39

• Significant sales are happening on holidays. We can identify the days on which the holidays occur from the given dataset as below –

```
# Filter holiday set
hdf <- df1 %>% filter(df1$Holiday==1)
ulst <- unique(hdf$Date2)
ulst

"2012-02-10" "2012-09-07"

"2011-02-11" "2011-09-09" "2011-11-25" "2011-12-30"

"2010-02-12" "2010-09-10" "2010-11-26" "2010-12-31"

O Super Bowl: 12-Feb-2010, 11-Feb-2011, 10-Feb-2012 (first Sunday in February)
O Labor Day: 10-Sep-2010, 9-Sep-2011, 7-Sep-2012 (first Monday of September)
O Thanksgiving: 26-Nov-2010, 25-Nov-2011 (fourth Thursday of November)
O Christmas: 31-Dec-2010, 30-Dec-2011 (typical holidays are from 25<sup>th</sup> December to 5<sup>th</sup> January)
```

Thanksgiving Day is the day with the highest food consumption of the year. It is followed by Black Friday which follows after Thanksgiving Day (which is usually the fourth Friday of November) marks the beginning of the Christmas shopping season and has become the busiest shopping day and the day with the highest retail turnover of the year in the United States.

Analysis of sales during holiday weeks can help stores keep inventory as well as staff as per demand.

Used the library(corrplot) to plot correlation and check for high correlation between the numerical variables.
 Correlation plot does not show high correlation between the variables.

• Use timeseries package to plot Weekly Sales vs Year. Unusual high sales is shown in early year 2011.

NORMALIZE AND SPLIT DATASET

Sometimes we need to normalize data in order to compare different variables that are not in the same scale. In this case CPI, Unemployment rate, Temperature, Markdowns and sales are all different levels. If we don't normalize these variables the weight in some predictive models could be very different.

The function to normalize data is (x - min(x))/(max(x) - min(x)).

We take only the numerical values to normalize. For this sake we duplicate dataset and exclude factor variables to numerical type.

To ease the modelling performance, we split the main dataset to 4 Subsets based on the grouping of Departments -> Subset 1 -> Type A Stores

Subset 2-> Type B Stores

Subset 3 -> Type C Stores

Above is the split for train and test data to perform predictive modelling using ensemble learning techniques such as Gradient Boosting Models, Random Forest, and Decision Tree. The results are compared against Liner Regression models to select best performing model for prediction.

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed.

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees.

Whereas random forests build an ensemble of deep independent trees, GBMs uses Boosting framework to build an ensemble of weak successive trees . that iteratively improves with each tree learning and improving on the previous.

Here is cumulative weekly sale s distribution graph per Department -

GBM MODELS

MODEL 1 (ON SUBSET 1)

> summary(fit.gbm1)

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + CPI + Unemployment + Temperature, distribution = "gaussian", data = df.train.1, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, bag.fraction = GBM_Bag.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 452.

There were 7 predictors of which 7 had non-zero influence.

With External Variables -

	var <chr></chr>	rel.inf <dbl></dbl>
Size	Size	72.12008767
Week	Week	14.48425387
Unemployment	Unemployment	6.50989996
CPI	CPI	5.85176676
Temperature	Temperature	0.62213083
Year	Year	0.31757263
Month	Month	0.09428829

With Internal Variables -

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDown4 + MarkDown5, distribution = "gaussian", data = df.train.1, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, bag.fraction = GBM_Bag.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 480.

There were 9 predictors of which 9 had non-zero influence.

	var <chr></chr>	rel.inf <dbl></dbl>
Size	Size	83.73479531
Week	Week	14.27637986
MarkDown4	MarkDown4	0.53950407
MarkDown1	MarkDown1	0.48727389
MarkDown5	MarkDown5	0.43832397
Year	Year	0.17735483
MarkDown3	MarkDown3	0.15948254
Month	Month	0.10816016
MarkDown2	MarkDown2	0.07872538

Confusion Matrix and RMSE

[1] "Accuracy :- 81.3799540025561"
[1] "FNR :- 18.6200459974439"
[1] "FPR :- 18.6200459974439"
[1] "precision :- 81.3799540025561"
[1] "recall//TPR :- 81.3799540025561"
[1] "Specificity :- 81.3799540025561"
[1] "Specificity :- 81.3799540025561"

sqrt(min(fit.gbm1\$cv.error))	Train RMSE	Test RMSE
18926.43	18873.12	18897.12

MODEL 2 (ON SUBSET 2)

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + CPI + Unemployment + Temperature, distribution = "gaussian", data = df.train.2, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, bag.fraction = GBM_Bag.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 389.

There were 7 predictors of which 7 had non-zero influence.

With External Variables -

	var <chr></chr>	rel.inf <dbl></dbl>
Size	Size	39.04781929
CPI	CPI	37.98053599
Week	Week	11.81350622
Unemployment	Unemployment	10.57494943
Temperature	Temperature	0.37410520
Year	Year	0.16939551
Month	Month	0.03968837
7 rows		

With Internal Variables -

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + CPI + Unemployment + Temperature, distribution = "gaussian", data = df.train.2, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, baq.fraction = GBM_Baq.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 389.

There were 7 predictors of which 7 had non-zero influence.

	var <chr></chr>	rel.inf <dbl></dbl>
Size	Size	87.32019656
Week	Week	11.49430332
MarkDown1	MarkDown1	0.27866601
MarkDown4	MarkDown4	0.22615029
MarkDown5	MarkDown5	0.19727734
Year	Year	0.18699311
MarkDown3	MarkDown3	0.17196187
Month	Month	0.07422548
MarkDown2	MarkDown2	0.05022602

Confusion Matrix and RMSE

[1] "Accuracy :- 75.9877536849342"

[1] "FNR :- 24.0122463150658"

[1] "FPR :- 24.0122463150658"

[1] "precision :- 75.9877536849342"

[1] "recall//TPR:- 75.9877536849342"

[1] "Sensitivity :- 75.9877536849342"

[1] "Specificity:- 75.9877536849342"

sqrt(min(fit.gbm2\$cv.error))	Train RMSE	Test RMSE
14212.84	14152.51	14174.01

MODEL 3 (ON SUBSET 3)

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + CPI + Unemployment + Temperature, distribution = "gaussian", data = df.train.3, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, bag.fraction = GBM_Bag.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 90.

There were 7 predictors of which 5 had non-zero influence.

With External Variables -

	var <chr></chr>	rel.inf <dbl></dbl>
Week	Week	43.1575393
Unemployment	Unemployment	24.9220819
CPI	CPI	17.6375885
Size	Size	10.0054440
Temperature	Temperature	3.0171909
Year	Year	0.8134889
Month	Month	0.446665

With Internal Variables -

gbm(formula = Weekly_Sales ~ Week + Month + Year + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDown4 + MarkDown5, distribution = "gaussian", data = df.train.3, n.trees = GBM_Ntrees, interaction.depth = 10, shrinkage = GBM_Shrinkage, bag.fraction = GBM_Bag.fraction, cv.folds = 16, verbose = F, n.cores = 2)

A gradient boosted model with gaussian loss function.

500 iterations were performed.

The best cross-validation iteration was 46.

There were 9 predictors of which 8 had non-zero influence.

	var <chr></chr>	rel.inf <dbl></dbl>
Week	Week	53.4109963
Size	Size	26.1013983
MarkDown5	MarkDown5	6.1676533
MarkDown1	MarkDown1	5.6143990
MarkDown3	MarkDown3	2.8802517
MarkDown4	MarkDown4	2.3330369
Year	Year	2.2149476
Month	Month	0.6898233
MarkDown2	MarkDown2	0.5874936

9 rows

Confusion Matrix and RMSE

[1] "Accuracy :- 89.6531575669645"

[1] "FNR :- 10.3468424330355"

[1] "FPR :- 10.3468424330355"

[1] "precision :- 89.6531575669645"

[1] "recall//TPR :- 89.6531575669645"

[1] "Sensitivity :- 89.6531575669645"

[1] "Specificity :- 89.6531575669645"

<pre>sqrt(min(fit.gbm3\$cv.error))</pre>	Train RMSE	Test RMSE
15430.54	15352.1	15325.19

Confidential

LINEAR REGRESSION MODEL

MODEL 1 (ON ENTIRE DATASET)

```
call:
lm(formula = Weekly_Sales ~ Dept + Week + Size + CPI + Temperature +
    Fuel_Price + Unemployment, data = df.train)
Residuals:
    Min
              1Q Median
                                3Q
-1.3025 -0.5759 -0.2590 0.2355 29.6984
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               0.0002436
                           0.0019150
                                         0.127 0.898784
               0.1129493
                           0.0019161
                                        58.948
                                                < 2e-16 ***
Dept
week
               0.0234916
                            0.0019855
                                       11.832
                                                < 2e-16
size
               0.2434112
                            0.0019211 126.702
                                                 < 2e-16
                                                < 2e-16 ***
CPI
              -0.0275753
                            0.0021208 -13.002
                            0.0020876
                                         6.401 1.55e-10 ***
               0.0133622
Temperature
Fuel_Price
              -0.0065867
                            0.0020012
                                        -3.291 0.000997 ***
Unemployment -0.0194879
                           0.0020596
                                        -9.462
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.9631 on 252935 degrees of freedom
Multiple R-squared: 0.07411, Adjusted R-squared: 0.07409
F-statistic: 2892 on 7 and 252935 DF, p-value: < 2.2e-16
                                                        Quantiles of standard normal
     8
                                                             8
Residuals
     8
                                                             8
     9
                                                             9
     0
                                                             0
           -0.6
                -0.4
                       -0.2
                             0.0
                                   0.2
                                         0.4
                                               0.6
                                                                     -4
                                                                             -2
                                                                                     0
                                                                                             2
                                                                                                     4
                      Linear predictor
                                                                         Ordered deviance residuals
Cook statistic
                                                        Cook statistic
                                        0
                                                                                     0
                                                             0.0015
     0.0015
     0.000.0
                                                             0.000.0
                                                                        50000
             2e-05
                      4e-05
                               6e-05
                                       8e-05
                                                                                      150000
                                                                                                     250000
                          h/(1-h)
                                                                                   Case
```

> summary(aov(model1))

```
Pr(>F)
               Df Sum Sq Mean Sq F value
Dept
                1
                    3318 3318 3577.204 < 2e-16 ***
                           187
                                           < 2e-16 ***
                1
                     187
                                 201.930
week
                                           < 2e-16 ***
Size
                1 15086
                         15086 16263.243
CPI
                1
                      84
                             84
                                   90.330
                                           < 2e-16 ***
                      18
                            18
                                   19.229 0.0000116 ***
Temperature
                1
                1
                                   4.392 0.0361 *
                      4
                             4
Fuel_Price
                                           < 2e-16 ***
               1
                      83
                             83
                                   89.529
Unemployment
Residuals
         252935 234626
                              1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Important Variables

> car::vif(model1)

Dept	week	Size	CPI	Temperature	Fuel_Price	Unemployment
1.000150	1.075971	1.007992	1.226880	1.187257	1.092695	1.155606

Confusion Matrix

- [1] "Accuracy :- 78.7130560761136"
- [1] "FNR :- 21.2869439238864"
- [1] "FPR :- 21.2869439238864"
- [1] "precision :- 78.7130560761136"
- [1] "recall//TPR :- 78.7130560761136"
- [1] "Sensitivity :- 78.7130560761136"
- [1] "Specificity :- 78.7130560761136"

MODEL 2 (ON ENTIRE DATASET)

Call:

Im(formula = Weekly_Sales ~ Dept + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDown4 + MarkDown5 + Week + HN, data = norm.df.train)

Residuals:

Min 1Q Median 3Q Max -0.07693 -0.03277 -0.01636 0.01226 0.94308

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept) 0.0110624 0.0006468 17.102 < 2e-16 *** 0.0115194 0.0006660 17.297 < 2e-16 *** Dept Size 0.0362075 0.0006392 56.645 < 2e-16 *** MarkDown1 -0.0002806 0.0046433 -0.060 0.9518 MarkDown2 0.0026303 0.0036418 0.722 0.4701 0.0220085 0.0043571 5.051 4.40e-07 *** MarkDown3 MarkDown4 0.0032425 0.0047843 0.678 0.4979 MarkDown5 0.0062906 0.0024633 2.554 0.0107 * Week 0.0058850 0.0007752 7.592 3.19e-14 ***

-0.0001885 0.0014692 -0.128 0.8979 HN

Signif. codes: 0 ***' 0.001 **' 0.05 \.' 0.1 \' 1

Residual standard error: 0.05437 on 74337 degrees of freedom Multiple R-squared: 0.0484, Adjusted R-squared: 0.04829 F-statistic: 420.1 on 9 and 74337 DF, p-value: < 2.2e-16

lm(Weekly_Sales ~ Dept + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDow ...

Im(Weekly_Sales ~ Dept + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDow ...

lm(Weekly_Sales ~ Dept + Size + MarkDown1 + MarkDown2 + MarkDown3 + MarkDow ...

> summary(aov(model2))

> summary(aov(model2))

```
Df Sum Sq Mean Sq
                                   F value
Dept
                     1.01
                            1.011
                                    342.095
Size
                     9.80
                             9.804 3315.897
                 1
                                              < 2e-16
MarkDown1
                 1
                     0.01
                            0.007
                                      2.483 0.115096
MarkDown2
                 1
                     0.00
                            0.003
                                      0.853 0.355779
MarkDown3
                 1
                     0.13
                            0.132
                                     44.768 2.23e-11
MarkDown4
                 1
                     0.00
                            0.000
                                      0.000 0.999386
MarkDown5
                     0.04
                             0.041
                                     13.910 0.000192
week
                 1
                     0.18
                            0.181
                                     61.224 5.16e-15
ΗN
                 1
                     0.00
                             0.000
                                      0.016 0.897939
Residuals
             74337 219.78
                            0.003
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
```

Confusion Matrix

```
> calc(cm.lm2)
[1] "Accuracy :- 78.6988650137505"
[1] "FNR :- 21.3011349862495"
[1] "FPR :- 21.3011349862495"
[1] "precision :- 78.6988650137505"
[1] "recall//TPR :- 78.6988650137505"
[1] "Sensitivity :- 78.6988650137505"
[1] "Specificity :- 78.6988650137505"
```

DECISION TREES

We use rpart – Recursive Partitioning and Regression Trees for classification. rpart uses K-fold cross validation to validate the optimal complexity parameter (cp). The model also plots important variables as given below.

Following are the subset data for initial modelling purposes.

```
df.train1 <- df.subset1[index,]
df.test1 <- df.subset1[-index,]</pre>
```

Using the important parameters derived from the above, the rpart is performed on the entire dataset

```
df.train <- df[index,]
df.test <- df[-index,]</pre>
```

MODEL 1 (ON SUBSET 1)

Call:

```
rpart(formula = Weekly_Sales ~ CPI + Unemployment + Temperature + MarkDown3 + Type + HN, data = df.train1[, -c(15)], control = r.ctrl)
n= 99127
```

```
CP nsplit
                   rel error
                               xerror
                                        xstd
1 0.071489558
                0 1.0000000 1.0000180 0.01303429
2 0.018773567
                1 0.9285104 0.9285319 0.01267714
                3 0.8909633 0.8895702 0.01230387
3 0.010468895
4 0.007716610
                6 0.8595566 0.8585745 0.01181162
5 0.007522926
                7 0.8518400 0.8554767 0.01170325
6 0.006704325
                8 0.8443171 0.8479527 0.01155879
                9 0.8376128 0.8380999 0.01145940
7 0.005697351
8 0.005000000
               10 0.8319154 0.8324073 0.01134583
```

Variable Importance

```
Variable importance
Type Unemployment CPI Temperature MarkDown3
43 26 21 5 4
```


Rattle 2020-Sep-15 16:41:54 Shilpa

MODEL 2 (ON SUBSET 2)

61

```
rpart(formula = Weekly_Sales ~ MarkDown1 + MarkDown2 + MarkDown3 +
    MarkDown4 + MarkDown5 + Type + HN, data = df.train1[, -c(15)],
    control = r.ctrl)
```

10

Variables actually used in tree construction:

[1] MarkDown1 MarkDown3 MarkDown4 MarkDown5 Type

11

MODEL 3 (ON ENTIRE DATASET)

Regression tree:

rpart(formula = Weekly_Sales ~ Dept + CPI + Unemployment + Temperature + MarkDown3 + MarkDown5 + Type + HN, data = df.train[, -c(15)], control = r.ctrl)

Variables actually used in tree construction:

[1] CPI Dept Type

Root node error: 5.2386e+13/74347 = 704610237

n= 74347

Rattle 2020-Sep-15 18:42:59 Shilpa

Prediction

rpart.prediction <- predict(train.rpart,df.test, type="vector")</pre>

```
> calc(cm.rpart)
[1] "Accuracy :- 88.3480825958702"
[1] "FNR :- 100"
[1] "FPR :- 7.98771121351766"
[1] "precision :- 0"
[1] "recall//TPR :- 0"
[1] "Sensitivity :- 0"
[1] "Specificity :- 92.0122887864823"
```

Regression tree:

rpart(formula = Weekly_Sales ~ Dept + Store + MarkDown1 + MarkDown2 + MarkDown3 + MarkDown4 + MarkDown5 + Month + Type, data = df.train[,-c(15)], control = r.ctrl)

Variables actually used in tree construction:

[1] Dept Store

Root node error: 5.2386e+13/74347 = 704610237


```
> calc(cm.rpart)
[1] "Accuracy :- 91.0133843212237"
[1] "FNR :- 100"
[1] "FPR :- 8.81226053639847"
[1] "precision :- 0"
[1] "recall//TPR :- 0"
[1] "Sensitivity :- 0"
[1] "Specificity :- 91.1877394636015"
```

RANDOM FOREST

MODEL 1

Call:

randomForest(formula = Weekly_Sales ~ ., data = df.train[, -15], ntree = 101, mtry = 3, nodesize = 10, importance = TRUE)

Type of random forest: regression Number of trees: 101 No. of variables tried at each split: 3

Mean of squared residuals: 289284733

% Var explained: 58.94

```
> impVar[order(impVar[,2],decreasing = TRUE),]
            %IncMSE IncNodePurity
Dept
              41.17 2.012610e+13
              16.47 2.616257e+12
Size
              9.26 1.353362e+12
Туре
              12.71 1.281371e+12
Store
CPI
              14.14
                    1.137865e+12
Unemployment 10.38 7.531497e+11
              7.65 5.918914e+11
Temperature
              8.15 5.472732e+11
week
Fuel_Price
              5.90 5.372920e+11
              6.84 2.665928e+11
Month
MarkDown3
              1.78 2.442191e+11
MarkDown5
              1.77
                    2.194203e+11
MarkDown1
              2.16 2.107912e+11
MarkDown4
              4.01 1.992302e+11
              2.59 1.613994e+11
MarkDown2
HN
              0.39 1.424665e+11
Year
              6.92 5.907415e+10
```


Random Forest Plots

COMPARISON TABLE

Going by the accuracy and output of all models, the Gradient Boosting Model and Decision tree models are most effective. These models clearly provide insights on how the external and internal variables are affecting the weekly sales. We learned that when the RMSE decreases, the model's performance improves.

1.

	GBM	Decision Trees	Linear Regression
	Model 1,	Model 1, Model 2	Model 1, Model 2
	Model 2,		
	Model3		
RMSE	18926.43	12852.76	18100.23
	14212.84	12052.70	14700.21
	15430.54	13356.9	15567.09
Accuracy	81.37%	88%	71.59%
	75.98%	0070	49.9%
	89.65	91%	46.3%

RECOMMENDATIONS

- Going by the accuracy and output of all models, the GBM, decision trees and random forest models are most
 accurate and provides insights on how the external and internal variables are affecting the weekly sales. Both
 RMSE and R2 indicate the goodness of the fit.
- Stores are making huge sales during holiday season, which is an important indicator for planning inventory and staff to handle this surge in demand during holiday season.
- By EDA, we can infer that type A store is the largest store and C is the smallest. Size of the Store is significantly affecting in overall sales, it is recommended to open new stores of Type A or enhance the area of existing ones
- External factors such as CPI, Fuel and Unemployment are also significantly affecting the Sales. Sales are higher at warmer temperatures. At higher CPI and Unemployment rate, Weekly Sales decreases
- Holiday and Store do not show significant relations; there is a residual boost in sales peak during the weeks surrounding the holidays. This can probably be attributed to promotions before and after the holiday itself however Department and Sales are significant as certain departments indicate higher sales compared to others.
- Fuel, Temperature, CPI are external data indicators important for estimating running cost to business.
- Markdowns are affecting mainly Type B and C stores. Markdown 3, 5 are most effective.