## Construction

- 1. Check whether 13 cm, 12 cm, 5 cm can be the sides of a right triangle.
- 2. (a) If a PL and PM are two tangents to a circle with center **O** from an external point **P** and PL = 4 cm, find the length of OP, where radius of the circle is 3 cm.
  - (b) Find the distance between two parallel tangents of a circle of radius  $2.5~\mathrm{cm}.$
- 3. (a)  ${\bf D}$  and  ${\bf E}$  are points on the sides CA and CB respectively of a triangle ABC, right-angled at  ${\bf C}.$

Prove that  $AE^2 + BD^2 = AB^2 + DE^2$ .

- (b) Diagonals of a trapezium ABCD with  $AB \parallel DC$  intersect each other at the point **O**. If AB = 2CD, find the ratio of the areas of triangles AOB and COD.
- 4. Answer any **four** of the following questions:
  - (i) Given  $\triangle ABC \sim \triangle PQR$ . If  $\frac{AB}{PQ} = \frac{1}{3}$ , then  $\frac{ar(\triangle ABC)}{ar(\triangle PQR)}$  is
    - (A)  $\frac{1}{3}$
    - (B) 3
    - (C)  $\frac{2}{3}$
    - (D)  $\frac{1}{9}$
  - (ii) The length of an altitude of an equilateral triangle of side 8 cm is
    - (A) 4 cm
    - (B)  $4\sqrt{3}$  cm
    - (C)  $\frac{8}{3}$  cm
    - (D) 12 cm
  - (iii) In  $\triangle PQR,\ PQ=6\sqrt{3}$  cm, PR=12cm and QR=6 cm. The measure of angle  ${\bf Q}$  is
    - (A) 120°
    - (B) 60°
    - (C)  $90^{\circ}$
    - (D) 40°
  - (iv) If  $\triangle ABC \sim \triangle PQR$  and  $\angle B = 46^\circ$  and  $\angle R = 69^\circ$ , then the measure of  $\angle A$  is
    - (A) 65°
    - (B) 111°
    - (C) 44°
    - (D) 115°

- (v) **P** and **Q** are the points on the sides AB and AC respectively of a  $\triangle ABC$  such that  $PQ \parallel BC$ . If AP : PB = 2 : 3 and AQ = 4 cm,then AC is equal to
  - (A) 6 cm
  - (B) 8 cm
  - (C) 10 cm
  - (D) 12 cm
- 5. Write the steps of construction of drawing a line segment AB = 4.8 cm and finding a point **P** on it such that  $AP = \frac{1}{4}AB$ .
- 6. Answer any **four** of the following questions:
  - (i) ABC and BDE are two equilateral triangles such that **D** is the midpoint of BC. The ratio of the areas of the triangles ABC and BDE is
    - (A) 2:1
    - (B) 1:2
    - (C) 4:1
    - (D) 1:4
  - (ii) In  $\triangle$  ABC ,  $AB=4\sqrt{3}$  cm, AC=8 cm and BC=4 cm. The angle B is
    - (A) 120°
    - (B) 90°
    - (C)  $60^{\circ}$
    - (D) 45°
  - (iii) The perimeters of two similar triangles are 35 cm and 21 cm respectively. If one side of the first triangle is 9 cm, then the corresponding side of the second triangle is
    - (A) 5.4 cm
    - (B) 4.5 cm
    - (C) 5.6 cm
    - (D) 15 cm
  - (iv) In a  $\triangle ABC$ , **D** and **E** are points on the sides AB and AC respectively such that  $DE \parallel BC$  and AD:DB=3:1. If AE=3.3 cm, then AC is equal to
    - (A) 4 cm
    - (B) 1.1 cm
    - (C) 4.5 cm
    - (D) 5.5 cm
  - (v) In an isosceles triangle ABC, if AC=BC and  $AB^2=2AC^2$ , the  $\angle C$  is equal to

- (A) 30°
- (B) 45°
- (C) 60°
- (D) 90°