

Ejercicio 4:

Inducción Estructural y Relaciones

Profesores: Alejando Hevia, Federico Olmedo Auxiliares: Ismael Correa, Nahuel Gómez, Nelson Marambio, Javier Oliva, Fernanda Sanchirico, Lucas Torrealba, Ayudantes: Felix Avilés, Daniel Báez

Definiciones

Definición 1 (Conjunto de palabras sobre un alfabeto Σ) El conjunto Σ^* de palabras sobre el alfabeto finito Σ , se define inductivamente como sigue:

- Regla Base: $\epsilon \in \Sigma^*$ (con ϵ la palabra vacía).
- Regla Inductiva: Dado un símbolo $x \in \Sigma$, y una palabra $w \in \Sigma^*$, luego $wx \in \Sigma^*$.

Definición 2 (Orden Lexicográfico sobre strings) Dado un alfabeto finito Σ , parcialmente ordenado de acuerdo a la relación de orden $<_{\Sigma}$, entonces un orden lexicográfico \preceq es una relación de orden parcial sobre Σ^* definida recursivamente como sigue:

- Regla Base: $\forall w \in \Sigma^*, \epsilon \leq w \ (con \ \epsilon \ la \ palabra \ vacía).$
- Regla Recursiva: $\forall w_1, w_2 \in \Sigma^* \setminus \{\epsilon\} \text{ tales que } w_1 = x_1 x_2 ... x_n \text{ y } w_2 = z_1 z_2 ... z_m : w_1 \leq w_2 \text{ ssi } x_1 <_{\Sigma} z_1 \quad \forall \quad (x_1 = z_1 \land x_2 ... x_n \leq z_2 ... z_m)$

Definición 3 (Operador de inversión de palabras) Dado un alfabeto finito Σ , y una palabra $w \in \Sigma^*$, se define la inversión de w como la palabra w^R construida con los mismos símbolos que w pero en orden inverso.

Definición 4 (Isomorfismo de strings) Dadas dos palabras en Σ^* , $w_1 = x_1x_2...x_n$ y $w_2 = z_1z_2...z_n$, decimos que w_1 es isomorfa con w_2 , denotado por $w_1 \cong w_2$, si existe una biyección $f: \Sigma \to \Sigma$ tal que $w_2 = f(x_1)f(x_2)...f(x_n)$.

Definición 5 (Relaciones bien fundadas) Dado un conjunto parcialmente ordenado (X, \prec) , este se dice bien fundado ssi no posee una secuencia de elementos infinitamente descendiente. Esto es, si no existe una secuencia $(x_i)_{i\in\mathbb{N}}$ tal que $x_{i+1} \leq x_i \ \forall i \in \mathbb{N}$.

Definición 6 (Relaciones densas) Asimismo, dado un conjunto parcialmente ordenado (X, \prec) , este se dice denso ssi $\forall x_1, x_2 \in X$ tales que $x_1 \prec x_2$, $\exists y \in X$ tal que $x_1 \prec y \prec x_2$.

Ejercicio 4:

P1.-

1.

De una definición recursiva del operador de inversión.

Solución:

Dado un alfabeto finito Σ , definimos el operador de inversión de palabras en Σ^* recursivamente como sigue:

• Regla Base: $\epsilon^R = \epsilon$ (con ϵ la palabra vacía).

• Regla Recursiva: Sea w = vx, con $v \in \Sigma^*$ y $x \in \Sigma$, luego:

$$w^R = (vx)^R$$
$$= xv^R$$

2.

Muestre que $\forall w_1, w_2 \in \Sigma^*$, se tiene que $(w_1w_2)^R = w_2^R w_1^R$

Solución:

Procedemos por inducción estructural:

• Caso Base: Sea $w \in \Sigma^*$:

$$(\epsilon w)^R = w^R$$

$$= \epsilon w^R$$

$$= \epsilon^R w^R$$
Regla base operador i

• Caso Recursivo: Sean $w_1, w_2, v \in \Sigma^*$ y $x \in \Sigma^*$ tales que $w_2 = vx$. Asumiendo que $(w_1v)^R = v^Rw_1^R$, demostremos que $(w_1w_2)^R = w_2^Rw_1^R$:

$$(w_1w_2)^R = (w_1vx)^R$$
 Def. w_2

$$= ((w_1v) \cdot x)^R$$
 Associatividad ·
$$= x(w_1v)^R$$
 Regla recursiva operador inversión
$$= xv^Rw_1^R$$
 Hipótesis Inductiva
$$= (xv^R) \cdot w_1^R$$
 Associatividad ·
$$= w_2^Rw_1^R$$
 Def. w_2

P2.-

1.

Demuestre que la relación de isomorfismo de strings \cong es relación de equivalencia. solución:

Sea Σ un alfabeto finito, para mostrar que la relación \cong sobre Σ^* es de equivalencia, debemos mostrar que es reflexiva, simétrica y transitiva; mostremos cada una de estas propiedades por separado.

- Reflexividad: Por definición, tenemos que todo string es isomorfo consigo mismo, esto pues la función identidad $id_{\Sigma}: \Sigma \to \Sigma$ es una función biyectiva tal que, $\forall w \in \Sigma^*$ de la forma $x_1x_2...x_n$, tenemos que $w = id_{\Sigma}(x_1) \cdot id_{\Sigma}(x_2) \cdot ... \cdot id_{\Sigma}(x_n) = x_1x_2...x_n$. Dado lo anterior, tenemos que $\forall w \in \Sigma^*$, $w \cong w$, por lo tanto \cong es reflexiva.
- Simetría: Sean $w_1, w_2 \in \Sigma^*$ tales que $w_1 \cong w_2$; por definición, tendremos que existe una función biyectiva $f: \Sigma \to \Sigma$ tal que, si w_1 es de la forma $x_1x_2...x_n$, luego $w_2 = f(x_1) \cdot f(x_2) \cdot ... \cdot f(x_n)$. A continuación, notamos que por la biyectividad de f, existe una función $f^{-1}: \Sigma \to \Sigma$, también biyectiva, tal que $\forall x \in \Sigma$, $f^{-1} \circ f = id_{\Sigma}$. De esta manera, si w_2 es de la forma $z_1z_2...z_n$, aplicando la función f^{-1} carácter a carácter a las palabras a ambos lados de la definición de $w_1 \cong w_2$, obtenemos que:

$$f^{-1}(z_{1}) \cdot f^{-1}(z_{n}) \cdot \dots \cdot f^{-1}(z_{n}) = (f^{-1} \circ f)(x_{1}) \cdot (f^{-1} \circ f)(x_{2}) \cdot \dots \cdot (f^{-1} \circ f)(x_{n})$$

$$= id_{\Sigma}(x_{1}) \cdot id_{\Sigma}(x_{2}) \cdot \dots \cdot id_{\Sigma}(x_{n})$$

$$= x_{1}x_{2}...x_{n}$$

$$= w_{1}$$

$$\Rightarrow w_{2} \cong w_{1}$$

De esta manera, tenemos que si $w_1 \cong w_2 \implies w_2 \cong w_1$.

• Transitividad: Sean $w_1, w_2, w_3 \in \Sigma^*$ tales que $w_1 \cong w_2$ y $w_2 \cong w_3$; por definición, tendremos que existen funciones biyectiva $f, g: \Sigma \to \Sigma$ tales que, si w_1 es de la forma $x_1x_2...x_n$, w_2 de la forma $z_1z_2...z_n$, y w_3 de la forma $s_1s_2...s_n$, luego $w_2 = f(x_1) \cdot f(x_2) \cdot ... \cdot f(x_n)$ y $w_3 = g(z_1) \cdot g(z_2) \cdot ... \cdot g(z_n)$. Notemos a continuación que la función $g \circ f$ será también biyectiva, y cumplirá que:

$$w_3 = s_1 s_2 \dots s_n$$

$$= g(z_1) \cdot g(z_2) \cdot \dots \cdot g(z_n)$$

$$= g(f(x_1)) \cdot g(f(x_2)) \cdot \dots \cdot g(f(x_n))$$

$$= (g \circ f)(x_1) \cdot (g \circ f)(x_2) \cdot \dots \cdot (g \circ f)(x_n)$$

$$\Rightarrow w_1 \cong w_3$$

De esta manera tenemos que $w_1 \cong w_2 \wedge w_2 \cong w_3 \Rightarrow w_1 \cong w_3$, por lo tanto la relación \cong es transitiva.

Ejercicio 4:

Así, teniendo que \cong es reflexiva, simétrica y transitiva, podemos concluir que la relación de isomorfismo de strings es de equivalencia.

2.

Demuestre que, para cualquier alfabeto finito Σ con más de un símbolo, el conjunto de palabras Σ^* ordenado según el orden lexicográfico, no es ni bien fundado ni denso.

Asuma que el alfabeto Σ está bien ordenado de acuerdo a una relación de orden $<_{\Sigma}$.

Solución:

Sea Σ un alfabeto finito con más de un símbolo, sin perdida de generalidad tomamos $\Sigma = \{x_1, ..., x_n\}$, bien ordenado de acuerdo a un orden total \leq_{Σ} . Tendremos así que $x_1 \leq_{\Sigma} x_2 \leq_{\Sigma} ... \leq_{\Sigma} x_n$, y que todo subconjunto $\Sigma_0 \subseteq \Sigma$ tiene un menor elemento.

Mostremos primero que el poset (Σ^*, \preceq) no es bien fundado:

Procedemos constructivamente tomando la secuencia $(x_1^i \cdot x_2)_{i \in \mathbb{N}}$, y notamos que ésta es, por definición de orden lexicográfico, monótonamente decreciente:

$$x_2 \succeq x_1 x_2 \succeq x_1 x_1 x_2 \succeq x_1 x_1 x_1 x_2 \succeq \dots$$

Es decir, aunque existe un menor elemento $\epsilon \in \Sigma^*$, existe una secuencia de elementos en Σ^* infinitamente descendiente, y por lo tanto el poset (Σ^*, \preceq) no es bien fundado.

Mostremos ahora que (Σ^*, \preceq) no es denso:

Acá sencillamente damos un contraejemplo; notemos que la palabra $\epsilon \in \Sigma^*$ es el menor elemento en Σ^* de acuerdo a la regla base del orden lexicográfico. Aún mas, tomando la palabra $x_1 \in \Sigma^*$, tenemos que $\epsilon \leq x_1$ y no es posible construir una palabra $s \in \Sigma^*$ tal que $\epsilon \leq s \leq x_1$, esto pues x_1 es el menor símbolo en el conjunto bien ordenado Σ^* de acuerdo al orden total $<_{\Sigma}$, y por la regla recursiva de orden lexicográfico, cualquier palabra de un largo mayor a uno, será mayor a x_1 .

Ejercicio 4: