

Maths pour l'Info

PL2 le 14 avril 2016

Interro 2A solutions

Exercice 1

Voici un automate fini non déterministe :

TOTAL BILL BUILDING THE HOLL BUILDING T					
	Etat	a	b		
	A	A,C,E	В		
S	В	-	В		
E/S	С	D	A,C		
Е	D	-	C,E		
	Е	=	A,D,E		

a) Obtenir l'automate fini déterministe complet minimal équivalent à cet automate

Solution:

Il faut déterminiser et compléter d'abord :

		a	b
E/S	CD	D	ACE
	D	P	CE
S	ACE	ACDE	ABCDE
S	CE	D	ACDE
S	ACDE	ACDE	ABCDE
S	ABCDE	ACDE	ABCDE
	P	P	P

Pas besoin de dessiner cet automate car on cherche l'AM Minimisation:

 Θ_0 ={T, NT} où T={CD, ACE, CE, ACDE, ABCDE} et NT={D, P}

Un autor	mate déterministe n'a qu'UNE entrée. C'est l'éta
composé	é qui est l'ensemble des entrées de l'automate
qu'on dé	eterminise.

La partition initiale consiste en DEUX groupes. Le fait d'être une entrée n'influence aucunement l'appartenance de l'état au groupe T ou NT. Si l'automate possède une poubelle, elle appartient au groupe NT.

				sous Θ_0	
		a	b	a	b
	CD	D	ACE	NT	Т
	ACE	ACDE	ABCDE	Т	Т
Т	CE	D	ACDE	NT	Т
	ACDE	ACDE	ABCDE	Т	Т
	ABCDE	ACDE	ABCDE	Т	Т
NT	P	P	P	NT	NT
	D	P	CE	NT	Т

On évite soigneusement de mélanger les groupes. (Je les ai séparés par une ligne vide)..

$\Theta_1 = \{I, II, (P), (D)\}$ ou I=	={CD, CE}, II={ACE,	ACDE,ABCDE}
--	---------------------	-------------

- () / (,, ,,	<u>, , ,, , , , , , , , , , , , , , , , ,</u>	· · · · · · · · · · · · · · · · · · ·	,		
					sous Θ_1		
			a	b	a	b	
		ACE	ACDE	ABCDE	II	II	aucuno
	Ш	ACDE	ACDE	ABCDE	II	II	aucune séparation
		ABCDE	ACDE	ABCDE	II	II	Separation
		CD	D	ACE	D	II	aucune
	1	CE	D	ACDE	D	II	séparation

Donc $\Theta_2 = \Theta_1 = \Theta_{fin}$, et l'AM consiste en 4 états. L'entrée est en I car il contient CD. Les sorties sont en I et II car ils descendent du groupe T. La table des transitions :

ÉCOLES D'INGÉNIEUR généralistes du numérique

Interro 2A solutions

Maths pour l'Info

PL2 le 14 avril 2016

	a	b			a	b	
CD	D	ACE		I	D	II	
D	P	CE		D	P	I	
ACE	ACDE	ABCDE		II	II	II	
CE	D	ACDE	devient	I	D	II	dáid maia
ACDE	ACDE	ABCDE		II	II	II	déjà pris en compte
ABCDE	ACDE	ABCDE		II	II	II	cii compte
P	P	P		P	P	P	

Il est absolument obligatoire de fournir l'AM **de façon explicite**, soit comme une table de transition avec les E/S marquées, soit comme dessin, soit les deux. Si cela n'est pas fait, tout ce que vous avez fait, c'est de trouver le contenu de l'AM en états.

b) Obtenir l'automate fini déterministe complet minimal reconnaissant le langage complémentaire à celui que reconnait l'automate initial.

Solution

Exercice 2.

 a) construire, suivant les règles données en cours, un automate asynchrone reconnaissant le langage qu'on peut exprimer par l'expression rationnelle suivante : L=b*b + (ab)*.

Solution

Maths pour l'Info

PL2 le 14 avril 2016

Interro 2A solutions

b) Déterminiser cet automate asynchrone.

Solution

Les ϵ -clôtures :

0'=0 1 2 4 6 7 10 11 (terminal) 3'=234 5'=2 11 (terminal) 8'=8, 9'=7 9 10 11 (terminal)

		a	b
E/S	0'	8'	3'5'
	8'	Р	9'
S	3'5'	Р	3'5'
S	9'	8'	Р
	Р	Р	Р