Tutorial 3 solutions

- 1. a. We construct a new graph G' = (V, E') where E' contains every pair $\{x, y\}$ of vertices of G that is NOT an edge of G (that is, every $\{x, y\}$ such that $\{x, y\} \notin E$), and find the largest clique in G'. Because every subset W of V that is a clique in G' is an independent set in G, and every subset W of V that is an independent set in G is a clique in G', the largest clique in G' is the largest independent set in G.
 - b. Given G, we contruct a graph G' by adding one vertex v_e for each edge $e \in E$, and connecting this vertex to the endpoints of e. That is, if $e = \{x, y\}$ then we add the edges $\{v_e, x\}$ and $\{v_e, y\}$.

Suppose that G has a vertex cover W with at most K vertices. The same vertices will be a dominating set in G': a vertex of G' that is not in W is either (1) a vertex from G that's the endpoint of an edge of G, whose other endpoint must be in W, or (2) one of the new vertices v_e , which is connected to both endpoints of the edge e of G, and hence to a member of W.

Finally suppose that G' has a dominating set W with at most K vertices. We construct a vertex cover W' of G by choosing

- every element of W that is a vertex of G.
- one of the endpoints of the edge e, for every element v_e of W.

Consider an edge e of G: the vertex v_e of G' was dominated, which means that either it was in W (and so W' will contain one of the endpoints of e), or one of its two neighbours (an endpoint of e) is in W'. This means W' is a vertex cover of G.

2. a. We introduce a boolean variable X_i that corresponds to each vertex v_i of the graph. A True value assigned to this variable will mean that v_i belongs to V_1 ; a False value will mean that v_i belongs to V_2 .

We then add the following clauses to the instance of satisfiability: for every pair v_i , v_j of vertices of the graph:

- If the edge $\{v_i, v_j\}$ belongs to the graph, then we add the clause $X_i \vee X_j$ (the intended meaning is that it's not possible for both vertices to belong to V_2).
- If the edge $\{v_i, v_j\}$ does not belong to the graph, then we add the clause $\overline{X_i} \vee \overline{X_j}$ (the intended meaning is that it's not possible for both vertices to belong to V_1).

b.

$$\begin{array}{|c|c|c|} \hline X_0 \lor \overline{X_1} \\ \hline X_1 \lor \overline{X_2} \\ \hline X_1 \lor \overline{X_4} \\ \hline X_2 \lor \overline{X_3} \\ \hline \\ X_0 \lor X_2 \\ X_0 \lor X_3 \\ X_0 \lor X_4 \\ X_1 \lor X_3 \\ X_2 \lor X_4 \\ X_3 \lor X_4 \\ \hline \end{array}$$

- c. Suppose that G is a split graph. We assign the value True to every vertex of V_1 and the value False to every vertex of V_2 . Consider a clause in the instance of SAT generated by our algorithm:
 - If the clause is of the form $X_i \vee X_j$, then we know the edge $\{v_i, v_j\}$ belongs to the graph. At least one endpoint of this edge must belong to V_1 because no two vertices of V_2 are connected by an edge. Thus either X_1 or X_2 was assigned the value True, which means the clause is satisfied.
 - If the clause is of the form $\overline{X_i} \vee \overline{X_j}$, then we know the edge $\{v_i, v_j\}$ does not belong to the graph. At least one endpoint of this edge must belong to V_2 because every two vertices of V_1 are connected by an edge. Thus either X_1 or X_2 was assigned the value False, which means that either $\overline{X_1}$ or $\overline{X_2}$ is True. Therefore the clause is also satisfied.
- d. Suppose that there is a way to assign values to the variables in the instance of SAT that makes every clause TRUE. We define
 - V_1 as the set of all vertices v_i for which X_i is True.
 - V_2 as the set of all vertices v_i for which X_i is False.

Because every variable has a truth value, every vertex of the graph belongs to exactly one of V_1 , V_2 . Consider now two vertices v_i , v_j of the graph.

- If v_i and v_j both belong to V_1 , then X_i and X_j were both assigned the value True. This means that the clause $\overline{X_i} \vee \overline{X_j}$, which evaluates to False, is **not** in the instance of SAT. Thus is it not the case that v_i and v_j are not connected by an edge. That is, v_i and v_j are connected by an edge in the graph.
- If v_i and v_j both belong to V_2 , then X_i and X_j were both assigned the value False. This means that the clause $X_i \vee X_j$, which evaluates to False, is **not** in the instance of SAT. Thus v_i and v_j are not connected by an edge in the graph.