Problem Set 2

Natasha Watkins

Exercise 4.4

By 4.3, the characteristic polynomial of $A^H = A$ is

$$p(\lambda) = \lambda^2 - tr(A)\lambda + \det(A)$$

where A is a 2×2 matrix of the form

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The diagonal elements of a Hermitian matrix are real. So the diagonal elements of A are also real. We can check that the roots of the characteristic polynomial are real by finding the discriminant.

$$[tr(A)]^{2} - 4\det(A) = (a+d)^{2} - 4(ad-bc)$$

$$= a^{2} + 2ad + d^{2} - 4ad + 4bc$$

$$= a^{2} - 4ad + d^{2} + 4bc$$

$$= (a-d)^{2} + 4bc$$

Part i)

As A^H is Hermitian, $b = \bar{c}$, so $4bc \ge 0$. Therefore the discriminant is positive and the roots are real.

Part ii)

If $A^H = -A$, then $b = -\bar{c}$, so $4bc \le 0$. Therefore, the discriminant is negative and the roots are imaginary.

Exercise 4.6

Consider a matrix A that is upper triangular. We know that the determinant of an upper triangular matrix is the product of its diagonal elements, ie. $\det(A) = \prod_{i=1}^{n} a_{ii}$.

The eigenvalues of a matrix are such that $det(\lambda I - A) = 0$.

Therefore,

$$\det(\lambda I - A) = \prod_{i=1}^{n} (\lambda_i - a_{ii}) = 0$$
$$= (\lambda_1 - a_{11}) \cdot (\lambda_2 - a_{22}) \cdots (\lambda_n - a_{nn}) = 0$$

The roots of the characteristic polynomial (ie. the eigenvalues) are given by the diagonal elements of A.

Exercise 4.13

Solving for the spectrum of A gives $\sigma(A) = \{\frac{2}{5}, 1\}$, with corresponding eigenvectors of $[1, -1]^T$ and $[2, 1]^T$. Let P be the transition matrix, where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} \frac{2}{5} & 0 \\ 0 & 1 \end{bmatrix}, \quad P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$

Solving $P^{-1}AP$ gives

$$\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0.8 & 0.4 \\ 0, 2 & 0.6 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & 0 \\ 0 & 1 \end{bmatrix} = D$$

Exercise 4.18

We know that λ satisfies $A\mathbf{x} = \lambda \mathbf{x}$ for some \mathbf{x} . Taking the transpose, we see $\mathbf{x}^T A^T = \lambda \mathbf{x}^T$. This is equivalent to $\det(A^T - \lambda I) = 0$.

The determinant of a matrix A is equal to the determinant of its transpose, so

$$\det(A^T - \lambda I) = \det(A - \lambda I) = 0$$

As we know $\det(A - \lambda I) = 0$ holds for some \mathbf{x} , there exists a vector \mathbf{x}^T such that $\det(A^T - \lambda I) = 0$ holds.

Exercise 4.20

If A^H and B are orthornormally similar, then there is U such that $B = U^H A^H U$.

$$B^{H} = (U^{H}A^{H}U)^{H} = U^{H}AU = U^{H}A^{H}U = B$$

Therefore, B is also Hermitian.

Exercise 4.27

A is a positive definite matrix, so it is Hermitian. The diagonal elements of a Hermitian matrix are real, as they are their own complex conjugate.

It also is true that $\langle \mathbf{x}, A\mathbf{x} \rangle = \mathbf{x}^H A\mathbf{x} > 0$ for any vector \mathbf{x} . Consider the vector $e_1 = [1 \ 0 \ 0 \ \cdots \ 0]^T$. $e_1^H A e_1$ selects the first diagonal element of A. Likewise, the vector e_2 selects the second diagonal element of A. As $A\mathbf{x} \rangle = \mathbf{x}^H A \mathbf{x} > 0$ holds for all vectors, the diagonal elements are all positive.

Exercise 3.38

i)
$$AA^{\dagger}A = U_1\Sigma_1V_1^HV_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = U_1\Sigma_1V_1^H = A$$

ii)
$$A^{\dagger}AA^{\dagger} = V_1 \Sigma_1^{-1} U_1^H U_1 \Sigma_1 V_1^H V_1 \Sigma_1^{-1} U_1^H = V_1 \Sigma_1^{-1} U_1^H = A^{\dagger}$$

iii)
$$(AA^{\dagger})^H = ((V_1\Sigma_1U_1^H)(U_1\Sigma_1^{-1}V_1^H))^H = V_1\Sigma_1^{-1}U_1^HU_1\Sigma_1V_1^H = A^{\dagger}A$$

iv)
$$(A^{\dagger}A)^H = ((V_1 \Sigma_1^{-1} U_1^H)(U_1 \Sigma_1 V_1^H))^H = V_1 \Sigma_1 U_1^H U_1 \Sigma_1^{-1} V_1^H = V_1 V_1^H = A^{\dagger}A$$