Contrôle 4: Physique

Cours de mathématiques spéciales (CMS)

12 juin 2018 Semestre de printemps ID: -999

(écrire lisibler	nen	t s	.v.p).)																
Nom : .					 	 		 •	 	•		 				•				
Prénom	:				 			 	 		 	 			 		 	 	 	

Question	Barème	Points					
1	61/2						
2	7						
3	61/2						
Total	20						

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

On place un condensateur plan dans une région de l'espace où règne un champ magnétique horizontal uniforme \vec{B} , de sens et d'intensité inconnus. Les surfaces des deux plaques (armatures) du condensateur sont disposées verticalement, parallèlement au champ \vec{B} et séparées par une distance d.

Après avoir chargé le condensateur de manière à obtenir une tension U entre ses armatures, on envoie dans ce dernier une petite boule de charge q, q < 0, et de masse inconnue. La boule arrive par le haut avec une vitesse \vec{v}_0 faisant un angle α avec la verticale et on observe que son mouvement à l'intérieur du condensateur est rectiligne uniforme :

- (a) Indiquer sur le dessin les forces s'exerçant sur la boule et préciser le sens du champ magnétique \vec{B} .
- (b) Indiquer précisément où se trouvent les charges sur les plaques du condensateur et déterminer la densité de charge superficielle.
- (c) Déterminer la norme du champ magnétique \vec{B} et l'expression de la masse m de la boule.

Réponses:

$$\begin{array}{c}
q\vec{v}\times\vec{B}\\
q\vec{E}\\
\vec{m}\vec{g}\downarrow\vec{v_0}\\
\vec{B}\odot
\end{array}$$

Les charges portées par les plaques se trouvent sur leur surface intérieure et $\sigma = \epsilon_0 \frac{U}{d}$, $B = \frac{U}{v_0 d \cos \alpha}$ et $m = \frac{|q|U}{gd} \tan \alpha$.

Question 2 (à 7 points)

Points obtenus: (laisser vide)

On considère le circuit électrique ci-dessous. Il comprend un moteur M de résistance interne négligeable, trois générateurs (de tensions respectives U_1 , U_2 , U_3 et possédant chacun une résistance interne r), ainsi qu'un fusible de résistance R = r/2 branché en série avec le moteur.

En régime habituel, on observe une tension U_M aux bornes du moteur.

(a) Déterminer entièrement (intensité et sens) les courants dans chaque branche du circuit.

Suite à un problème avec les générateurs, la tension U_M reste pratiquement identique, mais le courant traversant le moteur augmente jusqu'à atteindre une valeur I_{max} proche de la valeur limite à laquelle le fusible fond.

- (b) Déterminer l'énergie qui est alors dissipée dans la résistance R pendant un intervalle de temps Δt .
- (c) Déterminer le rendement du moteur si on observe que ce dernier permet alors de soulever verticalement une masse m à une vitesse constante \vec{v} .

Application numérique : $U_1 = 80 \,\text{V}$, $U_2 = 120 \,\text{V}$, $U_3 = 100 \,\text{V}$, $U_M = 40 \,\text{V}$, $r = 2 \,\Omega$, $I_{\text{max}} = 50 \,\text{A}$, $\Delta t = 2 \,\text{s}$, $m = 80 \,\text{kg}$, $||\vec{v}|| = 1.5 \,\text{m/s}$ et $g \cong 10 \,\text{m/s}^2$.

Réponses:

2A, 22A, 12A et 36A.

5000 J.

60% .

On considère une fine plaque rectangulaire homogène, de côtés a et b et de masse m, pouvant pivoter autour d'un de ses côtés maintenu en contact avec le sol. On attache sur le côté opposé à cette charnière un fil conducteur, de longueur b, de masse négligeable, et parcouru par un courant I_1 .

On fixe alors un second fil conducteur sur le sol, parallèlement à la charnière de la plaque et à une distance a de cette dernière. Lorsqu'un courant I_2 inconnu circule dans ce second fil, on observe que la plaque se soulève pour finalement s'équilibrer en formant un angle α avec le sol :

- (a) Indiquer sur le dessin les forces s'exerçant sur la plaque.
- (b) Préciser le sens du courant I_2 et déterminer l'expression de son intensité.

Supposons que le courant I_2 est deux fois plus important que le courant $I_1:I_2=2I_1$.

- (c) Représenter précisément le vecteur champ magnétique résultant de la présence des deux fils à l'endroit où se trouve la charnière.
 - On prendra comme échelle $3\,\mathrm{cm}$ pour le champ produit par le courant I_2 .

On fait l'hypothèse que les fils sont suffisamment longs pour pouvoir négliger d'éventuels effets de bord.

Réponses :

$$I_2 = \frac{2\pi mga}{\mu_0 b I_1} \tan \frac{\alpha}{2} \cos \alpha .$$

