SUPPORT VECTOR MACHINES

Lab 02 – Machine Learning Ivan & Simon

Linear kernel

- two data clusters
- clearly linearly separable

Harder case

- three data clusters
- clusters reasonably close but not trivial

Linear kernel – problem cases

No overlap, but not linearly separable

New kernel functions

Overlapping data

Introduction of slack

Non-Linear Kernels

Polynomial Kernel

Radial Basis Function Kernel

$$\mathcal{K}(\vec{x}, \vec{y}) = (\vec{x}^T \cdot \vec{y} + 1)^p$$

$$\mathcal{K}(\vec{x}, \vec{y}) = e^{-\frac{||\vec{x} - \vec{y}||^2}{2\sigma^2}}$$

Non-linear kernels

Polynomial kernel with order 2

RBF kernel with sigma = 1.0

Non-linear kernels

Polynomial kernel with order 2

RBF kernel with sigma = 1.0

Non-linear kernels

Polynomial kernel with order 3
- Order 2 was not "enough" to solve the problem

RBF kernel with sigma = 1.0

Bias-variance tradeoff Polynomial kernel - order

low variance, high bias ← high variance, low bias

Bias-variance tradeoff RBF kernel - sigma

high variance, low bias ← low variance, high bias

Slack variables

Weakening the constraints

$$t_i(\vec{w}^T \cdot \phi(\vec{x}_i) - b) \ge 1 - \xi_i$$

Influence of slack parameter C - noise

C controls how much we penalize points lying inside of the margin

Influence of slack parameter C – wrong label

C controls how much we penalize points lying inside of the margin

What to do with difficult data? More slack or complex model?

High noise? — More slack!

Otherwise overfitting