Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант<u>29</u>

Виконав студент	<u> III-15 Рибалка Ілля Сергійович</u>	
·	(шифр, прізвище, ім'я, по батькові)	
Перевірив		
	(прізвище, ім'я, по батькові)	

Лабораторна робота 3

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 29

Для заданого натурального числа п обчислити:

$$\underbrace{\sqrt{2+\sqrt{2+...+\sqrt{2}}}}_{n \text{ коренів}}.$$

1. Постановка задачі

Обчислити вираз $\sqrt{2 + ...}$ задану n кількість разів.

2. Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Кількість коренів	Натуральне	n	Вхідні дані
Лічильник	Натуральне	i	Проміжні дані
Результат	Дійсне	res	Проміжні, Вихідні дані

Обчислення будуть виконуватися в арифметичному циклі(від 0 до n, в якості лічильника використана змінна i), в тілі циклу спочатку до змінної res додається 2, а потім res підноситься до квадратного кореня. В якості дії кореня буде використано дію піднесення до степеня(**) 0.5.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми. *Крок 1*. Визначимо основні дії.

Крок 2. Деталізуємо дію задання початкового значення res.

Крок 3. Деталізуємо крок знаходження res за рахунок арифметичного циклу.

Крок 4. Деталізуємо тіло циклу.

Псевдокод

крок 1

початок

Введення п

Задання початкового значення res

Знаходження res

кінець

крок 2

початок

Введення п

res = 0

Знаходження res

Виведення res

кінець

крок 3

початок

Введення п

res = 0

для і від 0 до п повторити

Знаходження res

все повторити

Виведення res

кінець

крок 4

початок

Введення n

res = 0

для і від 0 до п повторити

res += 2

res **= 0.5

все повторити

Виведення res

кінець

Блок-Схема

Основи програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія
	Початок
1	n = 3
2	res = 0
3.1	i=0, i <n =="" res="1.4142135623730951</td" true,=""></n>
3.2	i=1, i <n =="" res="1.8477590650225735</td" true,=""></n>
3.3	i=2, i <n =="" res="1.9615705608064609</td" true,=""></n>
4	Виведення res = 1.9615705608064609
	Кінець

Висновок

Я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи було створено алгоритм розрахунку виразу задану кількість разів. Алгоритм було протестовано при значенні n = 3, результатом слугувало число 1.9615705608064609.