CMOS 4 x 4 Multiport Register

High-Voltage Types (20-Volt Rating)

The RCA-CD40108B is a 4 x 4 multiport register containing four 4-bit registers, write address decoder, two separate read address decoders, and two 3-state output buses.

When the ENABLE input is low, the corresponding output bus is switched, independently of the clock, to a high-impedance state. The high-impedance third state provides the outputs with the capability of being connected to the bus lines in a bus-organized system without the need for interface or pull-up components.

When the WRITE ENABLE input is high, all data input lines are latched on the positive transition of the CLOCK and the data is entered into the word selected by the write address lines. When WRITE ENABLE is low, the CLOCK is inhibited and no new data is entered. In either case, the contents of any word may be accessed via the read address lines independent of the state of the CLOCK input.

The CD40108B types are supplied in hermetic 24-lead dual-in-line ceramic packages (D and F suffixes); 24-lead dualin-line plastic packages (E suffix), 24-lead ceramic flat packages (K suffix), and in chip form (H suffix).

DC SUPPLY-VOLTAGE BANGE (V--)

Features:

- Four 4-bit registers
- One input and two output buses
- Unlimited expansion in bit and word directions
- Data lines have latched inputs
- 3-state outputs
- Separate control of each bus, allowing simultaneous independent reading of any of four registers on Bus A and Bus B and independent writing into any of the four registers
- CD40108B is pin-compatible with industry type MC14580
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full packagetemperature range):

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V

- 2.5 V at V_{DD} = 15 V 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC
- Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Scratch-pad memories
- Arithmetic units
- Data storage

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE HANGE, (VDD)
(Voltages referenced to VSS Terminal)0.5 to +20 V
INPUT VOLTAGE RANGE, ALL INPUTS0.5 to V _{DD} +0.5 V
DC INPUT CURRENT, ANY ONE INPUT
POWER DISSIPATION PER PACKAGE (PD):
For T _A = -40 to +60°C (PACKAGE TYPE E)
For TA = +60 to +85°C (PACKAGE TYPE E) Derate Linearly at 12 mW/°C to 200 mW
For TA = -55 to +100°C (PACKAGE TYPES D, F, K)
For TA = +100 to +125°C (PACKAGE TYPES D, F, K) Derate Linearly at 12 mW/°C to 200 mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR:
For TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA):
PACKAGE TYPES D, F, K, H
PACKAGE TYPE E
STORAGE TEMPERATURE RANGE (T _{stq})65 to +150°C
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 ± 1/32 inch (1.59 ± 0.79 mm) from case for 10 s max +265°C

TRUTH TABLE

CLOCK	WRITE ENABLE	WRITE 1	WRITE 0	READ 1A	READ OA	READ 18	READ OB	ENABLE A	ENABLE B	D _n	a _{nA}	O _{n B}
	1	S1	S2	S1	S2	S1	S2	1	1	1	1	1
_	1	S1	S2	S1	S2	S1	S2	1	1	0	0	Ó
×	×	х	×	х	х	х	×	0	0	X	Z	Z
	1	0	0	0	1	Ī	0	I	ī	On to word 0	Word 1	Word 2
	0	0	0	0	1	1	0	1	1	Word 0 not altered	Word 1 out	Word 2
×	×	×	X	1	0	0	1	1	1	×	Word 2	Word 1
~_	×	x	×	х	х	х	х	1	1	х	NC	NC

HIGH LEVEL. 0 LOW LEVEL. X DON'T CARE Z= HIGH IMPEDANCE

CD40108B Types

Fig. 1 - Block diagram.

Fig. 2— Typical output low (sink) current characteristics.

Fig. 3- Minimum output low (sink) current characteristics.

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}C$, Except as Noted. For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	l v _{DD}	LIN	UNITS		
CHARACTERISTIC	(V)	MIN.	MAX.	Divilia	
Supply Voltage Range (For T _A = Full Package Temperature Range)	-	3	18	٧	
Set-Up Time: Data to Clock, t _{S(D)}	5 10 15	0 0 0		ns	
Write Enable to Clock, †S(WE)	5 10 15	250 100 70	- - -	ns	
Write Address to Clock, tS(WA)	5 10 15	250 100 70	- - -	ns	
Hold Time: Data to Clock, t _{H(D)}	5 10 15	220 100 80	_ _ _	ns	
Write Enable to Clock, [†] H(WE)	5 10 15	270 130 80	-	ns	
Write Address to Clock, [†] H(WA)	5 10 15	330 140 90	-	ns	
Clock Input Frequency, fCL	5 10 15		1.5 3.5 4.5	MHz	
Clock Pulse Width, CL or WE t _W	5 10 15	350 130 90	- - -	ns	
Clock Rise or Fall Time, t _r CL or t _f CL	5 10 15		15 5 5	μs	

Fig. 4— Timing diagram.

Fig. 5— Typical output high (source) current characteristics.

Fig. 6— Minimum output high (source) current characteristics.

Fig. 7-- Typical propagation delay time as a function of load capacitance (CL or WE to Q).

Fig. 8— Typical transition time as a function of load capacitance.

DYNAMIC ELECTRICAL CI	IARACTERISTICS at $T_A = 25^{\circ}C$; Input $t_r, t_f = 20 \text{ ns}$,
$C_L = 50 \text{ pF}, R_L = 200 \text{ k}\Omega$	A = 1

CHARACTERISTIC	V _{DD}					
	(V)	Min.	Тур.	Max.	UNITS	
Propagation Delay Time:	5		360	720		
[‡] PHL ^{, ‡} PLH	10		140	280	ns	
Clock or Write Enable to Q	15		100	200	ł	
Read or Write Address to Q	5	-	300	600		
	10	-	120	240	ns	
	15	-	85	170	ļ	
3-State Disable Delay Time:	5		100	200		
	10	~	50	100	ns	
^t PZH ^{, t} PHZ	15		40	80		
^t PZL ^{, t} PLZ	5		130	260		
	10	-	60	120	ns	
	15	~-	50	100	<u> </u>	
Output Transition Time:	5	~-	100	200	}	
^t THL ^{, t} TLH	10	-	50	100	ns	
	15		40	80		
Minimum Setup Time:	5	~	-95	0		
Data to Clock t _{S(D)}	10	-	- 35	0	ns	
	15		-20	0		
	5		125	250		
Write Enable to Clock tS(WE)	10		50	100	ns	
	15		35	70		
-th-Taylor-	5		125	250		
Write Address to Clock tS(WA)	10	-	50	100	ns	
	15		35	70		
Clock Rise and Fall Time:	5	~	-	15		
t _r CL, t _f CL	10	~	-	5	μs	
<u> </u>	15			5		
Minimum Hold Time:	5	-	110	220	j	
Data to Clock tH(D)	10		50	100	ns	
	15		40	80		
· · · · · · · · · · · · · · · · · · ·	5	-	135	270		
Write Enable to Clock tH(WE)	10		65	130	ns	
	15		40	80		
···· 	5	~	165	330		
Write Address to Clock th(WA)	10	~	70	140	ns	
	15		45	90		
Maximum Clock Input Frequency,	5	1.5	3	-		
fCL	10	3.5	7	_	MHz	
	15	4.5	9			
Minimum Clock Pulse Width,	5	~	175	350		
Clock or Write Enable	10	~	65	130	ns	
tW(CL)	15		45	90		
Write Address	5		150	300		
tW(WA)	10 (75	150	ns	
VV(VVA)		_			113	
	15		45	90		
Average Input Capacitance, (Any Input) C ₁		1			pF	

Fig. 9— Typical power dissipation as a function of input frequency.

Fig. 10- Input leakage current test circuit.

Fig. 11 - Quiescent-device-current test circuit.

Fig. 12- Input-voltage test circuit.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	COND	ITION	ıs	Values	at -55,	INDICA 25, +125 , +25, +8	Apply to	D, F, K	UNITS					
ISTIC	Vo (V)	V _{IN}	V _{DD}	-55	-40	+85	+125	+25 Min. Typ. Max						
Quiescent Device		0,5	5	5	5	150	150	_	0.04	5	μА			
Current.		0,10	10	10	10	300	300		0.04	10				
IDD Max.		0,15	15	20	20	600	600		0.04	20				
		0,20	20	100	100	3000	3000		0.08	100				
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-				
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	_				
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8]				
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA			
(Source)	2,5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	~3.2	-				
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	2.6	-				
IOH Min.	13.5	0,15	15	-4.2	4	-2.8	-2.4	-3.4	-6.8	-				
Output Voltage:	_	0,5	5		0	.05		-	0	0.05				
Low-Level,	_	0,10	10		0	.05		-	0	0.05	_			
VOL Max.	_	0,15	15		0	.05		-	0	0.05				
Output Voltage:	-	0,5	5	4.95				4.95	5	-	'			
High-Level,		0,10	10		9	.95		9.95	10]			
VOH Min.		0,15	15		14	1.95		14.95	15					
Input Low	0.5, 4.5	_	5	1.5						1.5]			
Voltage,	1, 9		10			3		[3	1			
VIL Max.	1.5, 13.5	_	15			4				4	l _v			
Input High	0.5, 4.5	_	5			3.5		3.5			1			
Voltage, VIH Min.	1, 9	_	10			7		7			4			
	1.5,13.5	-	15			11		11						
Input Current IIN Max.	_	0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μΑ			
3-State Output Leakage Current IOUT Max.	0,18	0,18	18	±0.4	±0.4	±12	±12	_	±10 ⁻⁴	±0.4	μΑ			

TERMINAL ASSIGNMENT

Dimensions and Pad Layout for CD40108BH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3}) inch).

The photographs and dimensions of each CMOS chip represent a chip when it is part of the water. When the water is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should consider a tolerance of -3 mils to +16 mils applicable to the nominal dimensions shown.

Fig. 14— Output-enable-delay-times test circuit and waveforms.

Fig. 15— Power-dissipation test circuit and waveforms.