Optimization

Hassan OMRAN

Lecture 4: Least-Squares Optimization

Télécom Physique Strasbourg Université de Strasbourg

Outline of the talk

1. Introduction

- 2. Solving Ax = b
 - Least-Squares solution to an overdetermined Ax = b
 - Solution to Ax=b minimizing ||x||
 - The general solution to Ax = b

3. Nonlinear Least-Squares

1. Introduction

- 2. Solving Ax = b
 - Least-Squares solution to an overdetermined Ax = b
 - Solution to Ax=b minimizing ||x||
 - The general solution to Ax = b

3. Nonlinear Least-Squares

Introduction

- ⋄ Least squares problem is an old important problem
- Early contributions by Gauss and Legendre in the beginning of the 19th century
- Fitting a model to measurements and observations subject to errors is a basic problem in science
- This lecture is a brief review of linear and nonlinear least-squares optimization

Carl Friedrich Gauss

Adrien-Marie Legendre

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 4/22

1. Introduction

- 2. Solving Ax = b
 - Least-Squares solution to an overdetermined Ax = b
 - Solution to Ax=b minimizing ||x||
 - The general solution to Ax = b

3. Nonlinear Least-Squares

Motivational example:

Consider the problem of **data fitting**, where we want to find the best line fit to the measurement of the output of a process

That is, using a set of measurements $\{y_1, \ldots, y_m\}$ at $\{t_1, \ldots, t_m\}$, we want to find the best linear model

$$y(t) = at + b$$

In other words, we want to find the "optimal" a and b, such that the model "fits" the data

Measured data of a process

6/22

Motivational example:

We want to find a and b such that

$$y_1 = at_1 + b$$

$$\vdots$$

$$y_m = at_m + b$$

Which can be written as

$$Ax = b$$

However, the above system of equations is (often) inconsistent (no solution can be found). Instead, we can find the line which minimizes

$$\sum_{i=1}^{m} (y_i - at_i - b)^2 = ||Ax - b||^2$$

The best line fit

Consider a system of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. We consider here the case where $m \ge n$ rank $(\mathbf{A}) = n$. When \mathbf{b} does not belong to the range of \mathbf{A} ($\mathbf{b} \notin \mathcal{R}(\mathbf{A})$), in this case there is no solution to (1). In this case we say that (1) is overdetermined (or inconsistent)

We aim to find the vector x* such that

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \quad ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$

s.t. $\mathbf{x} \in \mathbb{R}^n$ (2)

Note that \mathbf{x}^* is equal to the solution of (1) when it does have a solution, otherwise it minimizes the difference between its left and right sides. Before presenting the solution to (2), we need the following interesting Theorem.

Theorem 1

Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$, such that $m \ge n$. In this case, rank $(\mathbf{A}) = n$ if and only if rank $(\mathbf{A}^T \mathbf{A}) = n$.

The above Theorem states that **A** is a full column rank if and only if $\mathbf{A}_{\square}^{\mathsf{T}}\mathbf{A}$ is nonsingular. \mathbf{b}_{\square}

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 8 / 22

9/22

Least-Squares solution to an overdetermined Ax = b

Theorem 2

The vector \mathbf{x}^* that minimizes $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ is given by the solution to the equation $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$. That is

$$\mathbf{x}^{\star} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b} \tag{3}$$

Proof.

Note that in this case $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is nonsingular and definite positive.

$$||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$
$$= \frac{1}{2}\mathbf{x}^T (2\mathbf{A}^T \mathbf{A})\mathbf{x} + (-2\mathbf{b}^T \mathbf{A})\mathbf{x} + \mathbf{b}^T \mathbf{b}$$

This show that the problem in (2) is actually the problem of finding the minimum of a convex quadratic function:

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} \underbrace{(2\mathbf{A}^{T} \mathbf{A})}_{Q} \mathbf{x} + \underbrace{(-2\mathbf{b}^{T} \mathbf{A})}_{\mathbf{a}^{T}} \mathbf{x}$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI

Proof.

using SOSF we see that the unique minimizer is given by

$$0 = \nabla f(\mathbf{x}^*)$$

= $(2\mathbf{A}^T\mathbf{A})\mathbf{x}^* + (-2\mathbf{A}^T\mathbf{b})$

That is

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}^{\star} = \mathbf{A}^{\mathsf{T}}\mathbf{b} \qquad \Rightarrow \qquad \mathbf{x}^{\star} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$

The geometric interpretation of the problem (2)

See Gauss-Markov Theorem for the statistical interpretation of the ordinary least-squares problem

Solution to Ax=b minimizing ||x||

Motivational example:

Consider the intersection between two hyperplanes $a_1 \mathbf{x} = b_1$ and $a_2 \mathbf{x} = b_2$ (with $\mathbf{x} \in \mathbb{R}^3$). The points belonging to the intersection verify the system of linear equations

$$\underbrace{\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}}_{\mathbf{A}} \mathbf{x} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}}_{\mathbf{b}}$$

Here there exists an infinite number of solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

We are interested in the solution which is the closest to the origin.

Solution to Ax=b minimizing ||x||

Consider a system of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{4}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. We consider here the case where $m \le n$ rank $(\mathbf{A}) = m$.

We aim to find the vector x* such that

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \quad \|\mathbf{x}\|^2$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ (5)

Theorem 3

The unique solution to (4) that minimizes $||\mathbf{x}||^2$ is

$$\mathbf{x}^{\star} = \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{\mathsf{T}})^{-1} \mathbf{b} \tag{6}$$

13 / 22

Solution to Ax=b minimizing ||x||

Proof.

Consider \mathbf{x}^* which any solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ different from $\mathbf{x}^* = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T)^{-1} \mathbf{b}$. Note that

$$||\mathbf{x}||^{2} = ||(\mathbf{x} - \mathbf{x}^{*}) + \mathbf{x}^{*}||^{2}$$

$$= ||\mathbf{x} - \mathbf{x}^{*}||^{2} + ||\mathbf{x}^{*}||^{2} + 2\mathbf{x}^{*T}(\mathbf{x} - \mathbf{x}^{*})$$
(7)

The last term is

$$\mathbf{x}^{\star T}(\mathbf{x} - \mathbf{x}^{\star}) = \left(\mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\mathbf{b}\right)^{T}\left(\mathbf{x} - \mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\mathbf{b}\right)$$

$$= \left(\mathbf{b}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\right)\mathbf{A}\left(\mathbf{x} - \mathbf{A}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\mathbf{b}\right)$$

$$= \left(\mathbf{b}^{T}(\mathbf{A}\mathbf{A}^{T})^{-1}\right)\left(\underbrace{\mathbf{A}\mathbf{x} - \mathbf{b}}_{=\mathbf{0}}\right) = 0$$

Thus, from (7) we have that

$$\|\mathbf{x}\|^2 = \|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{x}^*\|^2 > \|\mathbf{x}^*\|^2$$
 (since $\mathbf{x} \neq \mathbf{x}^* \Rightarrow \|\mathbf{x} - \mathbf{x}^*\|^2 > 0$)

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI

The general solution to Ax = b

Consider a system of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{8}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, rank $(\mathbf{A}) = r$. Note that $r \leq \min(m, n)$. We are interested in a generalized approach to solve (8) using the notion of **pseudoinverse**.

In particular we are interested in **Moore-Penrose inverse** which is denoted by \mathbf{A}^{\dagger} .

The pseudoinverse

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, a matrix $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ is called a **pseudoinverse** of the matrix \mathbf{A} if

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A}=\mathbf{A}$$

and there exist $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{A}^{\dagger} = U\mathbf{A}^{\mathsf{T}}$$
 and

and
$$\mathbf{A}^{\dagger} = \mathbf{A}^T V$$

The general solution to Ax = b

The left pseudoinverse

For the case $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \ge n$ and rank $(\mathbf{A}) = n$, verify that

$$\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

is a pseudoinverse that satisfies $\mathbf{A}^{\dagger}\mathbf{A} = I_n$. Note that this pseudoinverse appears in (3).

The right pseudoinverse

For the case $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \le n$ and rank $(\mathbf{A}) = m$, verify that

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^T (\boldsymbol{A} \boldsymbol{A}^T)^{-1}$$

is a pseudoinverse that satisfies ${\bf A}{\bf A}^\dagger={\bf I}_m.$ Note that this pseudoinverse appears in (6).

16 / 22

The general solution to Ax = b

The pseudoinverse has the following nice existence and uniqueness property 1

Theorem 4

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the pseudoinverse always **exists** and it is **unique**.

Finally, the pseudoinverse can be interpreted in the context of solving a system $\mathbf{A}\mathbf{x} = \mathbf{b}$

Theorem 5

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$, where rank $(\mathbf{A}) = r$, consider the system $\mathbf{A}\mathbf{x} = \mathbf{b}$. The vector $\mathbf{x}^* = \mathbf{A}^\dagger \mathbf{b}$ is a solution to the problem of minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ on \mathbb{R}^n . Moreover, $\mathbf{x}^* = \mathbf{A}^\dagger \mathbf{b}$ is the unique vector with minimal norm among all solutions that minimize $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$.

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI

¹ For more information about generalized inverses see **Generalized Inverses, Theory and Applications** by Adi Ben-Israel and

1. Introduction

- 2. Solving Ax = b
 - Least-Squares solution to an overdetermined Ax = b
 - Solution to Ax=b minimizing ||x||
 - The general solution to Ax = b

3. Nonlinear Least-Squares

Motivational example:

Consider the problem of **data fitting**, where we want to find the best fit to the measurement of the output of a process

That is, using a set of measurements $\{y_1, \ldots, y_m\}$ at $\{t_1, \ldots, t_m\}$, we want to find the best nonlinear model

$$y(t) = asin(\omega t + \phi)$$

In other words, we want to find the "optimal" model that "fits" the data.

Measured data

Motivational example:

We want to find \mathbf{a} , ω and ϕ such that

$$y_1 = asin(\omega t_1 + \phi)$$

 \vdots
 $y_m = asin(\omega t_m + \phi)$

However, (often) no solution can be found.

Instead, we can find the line which minimizes

$$\sum_{i=1}^{m} \left(y_i - a sin(\omega t_i + \phi) \right)^2$$

The best sinusoidal fit

Consider the following nonlinear least-squares problem

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \quad F(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x})^2$$
s.t.
$$\mathbf{x} \in \mathbb{R}^n$$
(9)

where $f_i: \mathbb{R}^n \to \mathbb{R}$, for $i \in \{1, ..., m\}$. By defining

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

the cost function can be written as $F(\mathbf{x}) = f(\mathbf{x})^T f(\mathbf{x})$. Several methods can be used to solve this optimization problem. Here we consider applying Newton's method. We need to calculate the gradient and the Hessian of $F(\cdot)$. First, using the product rules for derivation we have

$$DF(\mathbf{x}) = 2f(\mathbf{x})^{\mathsf{T}}J(\mathbf{x}) \quad \Leftrightarrow \quad \nabla F(\mathbf{x}) = 2J(\mathbf{x})^{\mathsf{T}}f(\mathbf{x})$$
 (10)

401491471717

Hassan OMBAN Optimization TI Santé, IR, G et M1 ASI 19 / 22

where $J(\cdot)$ is a the Jacobian of $f(\cdot)$

$$J(\mathbf{x}) = Df(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{x}) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(\mathbf{x}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{x}) \end{bmatrix} := [J_1(\mathbf{x}) \cdots J_n(\mathbf{x})]$$
(11)

Where $J_i(\mathbf{x})$ are the columns of the Jacobian $J(\mathbf{x})$. Lets also calculate the Hessian:

$$D^{2}F(\mathbf{x}) = D(\nabla F(\mathbf{x}))$$

$$= 2D(J(\mathbf{x})^{T}f(\mathbf{x}))$$

$$= 2D\begin{bmatrix} J_{1}(\mathbf{x})^{T}f(\mathbf{x}) \\ \vdots \\ J_{n}(\mathbf{x})^{T}f(\mathbf{x}) \end{bmatrix} = 2\begin{bmatrix} D(J_{1}(\mathbf{x})^{T}f(\mathbf{x})) \\ \vdots \\ D(J_{n}(\mathbf{x})^{T}f(\mathbf{x})) \end{bmatrix}$$

$$= 2\begin{bmatrix} J_{1}(\mathbf{x})^{T}J(\mathbf{x}) + f(\mathbf{x})^{T}D(J_{1}(\mathbf{x})) \\ \vdots \\ J_{n}(\mathbf{x})^{T}J(\mathbf{x}) + f(\mathbf{x})^{T}D(J_{n}(\mathbf{x})) \end{bmatrix} = 2(J(\mathbf{x})^{T}J(\mathbf{x}) + \begin{bmatrix} f(\mathbf{x})^{T}D(J_{1}(\mathbf{x})) \\ \vdots \\ f(\mathbf{x})^{T}D(J_{n}(\mathbf{x})) \end{bmatrix})$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 20 / 22

$$D^{2}F(\mathbf{x}) = 2\Big(J(\mathbf{x})^{T}J(\mathbf{x}) + \mathbf{S}(\mathbf{x})\Big) \quad \text{with} \quad \mathbf{S}(\mathbf{x}) = \begin{bmatrix} f(\mathbf{x})^{T}D(J_{1}(\mathbf{x})) \\ \vdots \\ f(\mathbf{x})^{T}D(J_{n}(\mathbf{x})) \end{bmatrix}$$
(12)

From (12) and (10) and by applying Newton's method we get

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(J(\mathbf{x}_k)^T J(\mathbf{x}_k) + \mathbf{S}(\mathbf{x}_k)\right)^{-1} J(\mathbf{x}_k)^T f(\mathbf{x}_k)$$
(13)

In several applications, the term $S(\cdot)$ can be ignored, which yields

Gauss-Newton method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(J(\mathbf{x}_k)^T J(\mathbf{x}_k)\right)^{-1} J(\mathbf{x}_k)^T f(\mathbf{x}_k)$$

Hassan OMRAN Optimization TI Santé, IR, G et M1 ASI 21 / 22

In order to overcome the potential problem of not having a positive definite $J(\mathbf{x}_k)^T J(\mathbf{x}_k)$, the method can be modified using Levenberg-Marquardt modification

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(J(\mathbf{x}_k)^T J(\mathbf{x}_k) + \mu_k I\right)^{-1} J(\mathbf{x}_k)^T f(\mathbf{x}_k)$$
(14)

The term $\mu_k I$ can be used to approximate $S(\mathbf{x}_k)$ in (13).

Note that Levenberg-Marquardt method was originally modified for nonlinear least-squares problem.

Finally, note that other methods such as quasi-Newton can also be used to solve (9).