Réseaux Applicatifs - Théorie

Grégoire Roumache

Janvier 2020

1 Introduction

- Caractéristiques des architectures de réseaux:
 - fault tolerance (= tolérance aux pannes),
 - scalability (= capable de grandir),
 - quality of service,
 - security.
- Types de réseaux:
 - L'appareil représentatif du LAN est le switch qui connecte les appareils entre eux.
 - Wide Area Networks (WAN)
 L'appareil représentatif du WAN est le routeur qui connecte les réseaux entre eux.
 - Internet (interconnected networks) est un ensemble de réseaux interconnectés au niveau mondial.
 - Metropolitan Area Network (MAN) est un réseau de la taille d'une ville.
- Modèles OSI et TCP/IP:

	Modèle OSI	Modèle TCP/IP
7.	Application	
6.	Presentation	Application
5.	Session	
4.	Transport	Transport
3.	Network	Internet
2.	Data Link	Network Access
1.	Physical	Network Access

• Avantages liés à l'utilisation d'un modèle en couches:

- aide à la conception de protocole,
- favorise la concurrence,
- les changements dans une couche n'affectent pas les autres couches,
- fournit un langage commun.

2 Couche Applicative

- La couche application fournit l'interface entre les applications/utilisateurs et le réseau.
- Protocoles de résolution des noms:
 - NetBIOS (= nom d'hôte dans les réseaux Microsoft),
 - DNS (= Domain Name Service).

Objectif = résoudre des noms de domaines en IP (et inversement).

• Structure du système DNS:

- Le système DNS s'appuie sur une structure arborescente.
- $-\,$ Chaque noeud est un domaine et possède une étiquette (label).
- Chaque feuille (extrémité d'une branche) est un hôte.
- Le nom correspondant au chemin d'un hôte jusqu'à la racine est l'adresse FQDN.
- Chaque domaine possède un serveur DNS.
- Chaque serveur DNS est déclaré dans un DNS de niveau directement supérieur.
- Chaque entité est responsable de la gestion de son nom de domaine.

Remarque: TLD = Top Level Domain.

• Types d'enregistrements DNS:

Enregistrement	Signification du nom	Fonction
A	Adresse IPv4	nom de domaine \implies IPv4
AAAA	Adresse IPv6 (4× la taille d'une IPv4)	nom de domaine \implies IPv6
CNAME	Nom Canonique	$nom de domaine \implies nom de domaine$
MX	Mail Exchanger	$nom de domaine \implies liste de serveurs (= hôtes)$
NS	Name Server	délègue la gestion d'une zone à un autre serveur DNS

- Types de zones & serveurs DNS:
 - zone maître (Master ou Primary),
 - zone esclave (Slave ou Secondary),
 - zone cache (caching),
 - zone inverse (Reverse),
 - serveur forwarder.
- Le DNS utilise le port 53 et les protocoles TCP et UDP:
 - UDP pour les requêtes,
 - TCP pour la synchronisation entre zones.
- 3 types de requêtes DNS: itératives, récursives, inverses.
 - itérative = demande la meilleure réponse possible (y compris partielle) typique d'un serveur
 - récursive = réponse obligatoire soit correcte et complète, soit négative typique d'un client
- Types de réponses DNS:
 - autoritative: réponse d'un serveur qui gère la zone concernant la requête.
 - non-autoritative: réponse d'un serveur qui connaît la réponse via le mécanisme de cache.
- Fonctionnement protocole HTTP (port 80, https = port 443):
 - 1. le client effectue une requête http,
 - 2. le serveur répond avec le code html demandé,
 - 3. le client interprète le code html et formate/affche la page,
 - 4. la session est terminée.
- DHCP est un protocole qui assure la configuration automatique des paramètres IP. Avantages:
 - gestion des IP centralisée et simplifiée,
 - partage optimisé des adresses disponibles,
 - évite les conflits IP,
 - portable et universel: idéal pour assigner des paramètres aux clients mobiles.
- Étapes du cycle de vie DHCP:
 - 1. affectation: acquisition des paramètres par le client,
 - 2. réallocation: le client redemande au serveur ses paramètres toujours valides,
 - 3. opérations "normales": utilisation des paramètres fournis,
 - 4. renouvellement: le client tente de renouveler son bail,
 - 5. réafectation: le client tente de renouveler son bail auprès d'un autre serveur si l'ancien est injoignable,
 - 6. libération: le client libère le bail.
- Les messages DHCP:
 - DHCP DISCOVER = diffusion du client pour localiser les serveurs disponibles.
 - DHCP OFFER = réponse du serveur avec les paramètres de configuration.
 - DHCP REQUEST = message client (3 possibilités):
 - 1. qui demande les paramètres à un serveur.
 - 2. qui confirme la validité des adresses précédemment allouées.
 - 3. qui étend le bail sur une adresse réseau en particulier.

- DHCP ACK = message du serveur avec les paramètres de configuration.
- DHCP $\operatorname{NACK} = \operatorname{message}$ du serveur indiquant que le bail a expiré.
- DHCP DECLINE = message du client indiquant que l'adresse réseau est déjà utilisée.
- DHCP RELEASE = message du client libérant l'adresse réseau et annulant le bail.

Remarque: DHCP REQUEST est utilisé lors de l'affectation, du renouvèlement et de la réaffectation.

- Les protocoles mail:
 - SMTP (= Simple Mail Transfer Protocol), port = $25\,$
 - POP3 (= Post Office Protocol), port = 110
 - IMAP (= Internet Message Access Protocol), port = 143
 - SMTPS, POPS, IMAPS
- Agents de messagerie:
 - MDA = Mail Delivery Agent
 - MUA = Mail User Agent
 - MTA = Mail Transfer Agent
- Envoi d'un email:

- Fonctionnement de POP3:
 - 1. connexion au serveur,
 - 2. téléchargement des fichiers,
 - 3. effacement des fichiers sur le serveur.
- Autre protocole de réception de mail, IMAP:
 - les dossiers manipulés (contenant les mails) ne sont pas locaux mais sur le serveur,
 - les manipulation (ex: suppression de mail) sont donc répercutées sur le serveur,
 - des copies locales sont toujours possibles.
- Protocole de transfert de fichier, **FTP** (= File Transfer Protocol):
 - fiable,

- performant,
- versions sécurisées: SFTP, FTPS,
- port 21 = commande et réponses,
- port 20 =transfert de fichiers.
- Protocole TFTP (= Trivial File Transfer Protocol):
 - port 69,
 - version simplifiée de FTP:
 - * UDP au lieu TCP,
 - * pas de listing de fichier ou dossiers,
 - * pas d'authentification,
 - * pas de chiffrement,

3 Couche Réseaux

- Caractéristiques du protocole IP (= Internet Protocol):
 - 1. sans connection,
 - 2. au mieux (non fiable),
 - 3. indépendant du média.

Remarque: le protocole IP n'est pas fiable, mais d'autres protocoles gèrent le processus de suivi des paquets (ex: TCP).

- Avantages de créer des sous-réseaux:
 - 1. plus facile à administrer,
 - 2. plus performant,
 - 3. augmente la sécurité,
 - 4. l'adressage est hiérarchisé: réseau sous-réseau hôte.
- Routeur v.s. Switch:

	Routeur	Switch
vitesse	lent	rapide
couche OSI	couche 3	couche 2
adressage utilisé	IP	MAC
broadcast	bloqués	transmis
sécurité	élevée	faible

- Une **route** a 3 composants:
 - le réseau de destination,
 - le masque,
 - le gateway.

Notation d'une route: <réseau>/<masque> via <ip_gateway>.

4 Couche Transport

- Quand un serveur exécute plusieurs services (ex: mail & www), il sait quels paquets sont destinés à quels services grâce aux numéros de port.
- Quand un client ouvre plusieurs sessions sur un même serveur, le serveur distingue les sessions en attribuant à chacune un numéro de port différent.
- Fonctionnalités communes TCP/UDP:
 - segmentation,
 - multiplexage,
 - contrôle d'erreur.
- Fonctionnalités de TCP:
 - fiabilité
 - * accusés de réception
 - * retransmission des segments perdus
 - délivre les données dans le bon ordre
 - * segmente
 - * numérote
 - * réassemble
 - orienté connexion
 - * session TCP (3-way handshake)
 - contrôle de flux
 - * fenêtre glissante
 - * garde une trace de la connexion
- Étapes d'une session TCP:
 - 1. établissement de la session,
 - 2. session,
 - 3. fin de la session.
- Les flags TCP:
 - SYN = ouverture de session,
 - ACK = accusé de réception,
 - FIN = fermeture de session.
- Autres éléments importants du header TCP:
 - sequence number = le numéro du premier octet de données du segment,
 - -acknowledgement number = le numéro du prochain octet (segment) attendu par le récepteur.
- Remarques:
 - Full duplex \implies périphérique = émetteur & récepteur.
 - Si un segment envoyé ne reçoit pas d'acknowledgement après un certain temps, il est renvoyé.
 - Ni TCP, ni UDP ne sont sécurisés.
 - TCP est fiable.
 - UDP est rapide.