Algorithm Design and Analysis

吴长亮

Assignment 1

1 Question 1

1.1 Algorithm Description

1.1.1 Description

- 分别找到两个数组的n/2位置的中位数M1, M2
- 比较M1、M2大小,去掉每个数组一半的数据
- 递归执行比较

1.1.2 Pseudo-code

- 1: $find_{-}mid(l_1,r_1,l_2,r_2)$
- 2: if $l_1 == r_1$ then
- 3: return $(l_1+l_2)/2$
- 4: end if
- 5: M1=array1_mid
- 6: M2=array2_mid
- 7: if M1 < M2 then
- 8: $\operatorname{find_mid}(\operatorname{array1_mid}, r_1, l_2, \operatorname{array2_mid})$
- 9: else

10: $\operatorname{find_mid}(l_1,\operatorname{array1_mid},\operatorname{array2_mid},r_2)$

11: end if

1.2 Subproblem Reduction Graph

1.3 Correctness

中点划分中位数,包含所有的数据

1.4 Complexity

$$T(n) = T(n/2) + c$$

所以复杂度为 $O(log_n)$

2 Question 2

2.1 Algorithm Description

2.1.1 Description

- 二叉树的最长路径: 1.左子树的最长路径2.右子树的最长路径3.左子树的高度加右子树的高度
- 分别递归左右子树

- 计算节点高度
- 左子树的最大长度,右子树的最大长度,左子树的最大深度+右子树的最大深度,取三者的最大值就是当前节点的最长路径

2.1.2 Pseudo-code

- 1: max_dis(root)
- 2: if 叶子节点 than
- 3: return
- 4: left=max_dis(左节点)
- 5: right=max_dis(右节点)
- 6: max=max(左子树高度,右子树高度)
- 7: return $\max(左子树的最大长度, 右子树的最大长度, 左子树的最大深度+右子树的最大深度+2)$

2.2 Subproblem Reduction Graph

2.3 Correctness

子树递归调用遍历所有的节点

2.4 Complexity

$$T(n) = 2T(n/2) + c$$

所以复杂度为O(n)

3 Question 3

3.1 Algorithm Description

3.1.1 Description

- 根节点符合
- 取左右子树较小的树,必有极小值

3.1.2 Pseudo-code

- 1: local_min(root)
- 2: if 根节点最小
- 3: return
- 4: local_min(min(root->left,root->right))

3.2 Subproblem Reduction Graph

3.3 Correctness

取较小值之后,如果左右子树大,那么该节点就最小,否则走到叶子 节点就是最小

3.4 Complexity

最坏情况走到叶子节点,复杂度为树高,即 $O(log_n)$