

4RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree in Applied Biology Second Year – Semester II Examination – April/May2016

BIO 2114- Statistical methods in Biology II

Time: One and half $(1 \frac{1}{2})$ hours

Answer all three (3) questions.

Illustrate your answers with labeled diagrams where appropriate.

- 1. a). Write down short notes on each of the following.
 - i. Treatment structure and design structure
 - ii). Blinding
 - b). Draw two possible 4x4 Latin square designs for the treatment variables named A,B, C, and D and state four advantages of the Latin square experimental design. (15 marks)
- 2. a) What are the assumptions made in when carrying out an Analysis of variance?
 - b) Fish in three three habitats, "Flooded forest", "Mangrove habitat" and "Rice paddies" were sampled using nets. Each habitat was independently sampled 5 time and the CPUE (catch per unit effort) was calculated each time. CPUE values are given below.

Flooded forest	Mangrove habitat	Rice paddies
2	3	9
4	7	8
6	6	10
8	5	12
5	9	9

- i) Name the **experimental design** used in this study.
- ii) Mention three (03) characteristics features of this type of experimental design.
- iii) State the appropriate null and alternative hypotheses for the study.
- iv) Conduct an appropriate statistical test to determine if there are significant diffence in CPUE values between the three habitats at the 0.05 significance level.
- v) Present your computed values in relavant Analysis of Variance (ANOVA) table

(35 marks)

3. Twnty four patients with agoraphobia are randomly assigned to one of **three drug conditions**: Paroxetine, antianxiety, and placebo. Within each drug condition, patients are randomly assigned to each of **two types** of **psychotherapy**: psychodynamic and cognitive. After 6 months of treatment, the severity of agoraphobia is measured as **phobia score**, for each subject (15 is the maximum possible phobia score) and recorded scores are given in table below.

Types of	Type of drug				
psychotherapy	Paroxetine	Antianxiety,	Placebo		
Psychodynamic	09	06	05		
	12	09	04 02		
	11	07			
	14	12	03		
cognitive	12	12	04		
	14	10	06		
	15	15	02		
	10	09	08		

- i) Name the experimental design.
- ii) Name the factors and numbers of levels in each factor in this experiment.
- iii) What would be the null and alternative hypotheses in this research study?
- iv) Conduct a relevant statistical test and complete the following ANOVA table.
- v) Conduct a relevant test to find out any significant difference in phobia scores at the 0.05 level of significance due to the :
 - a. type of drugs?
 - b. types of psychotherapy?
 - c. interaction between types of drugs and psychotherapy?
- vi) Present computed data in appropriate ANOVA table.

(50 marks)

$$SS_{A} = n_{i} \sum_{i} (\overline{X}_{i,i} - \overline{\overline{X}}_{i,i})^{2} \qquad {}^{1} \delta_{SS_{B}} = n_{ij} \sum_{i} (\overline{X}_{i,j} - \overline{\overline{X}}_{i,i})^{2}$$

$$SS_{error} = \sum (X - \overline{X}_j) \qquad SS_{AB} = [n_{ij} \sum (\overline{X}_{ij} - \overline{\overline{X}}_j)^2] - SS_A - SS_B$$

$$SS_{total} = SS_{error} + SS_A + SS_B + SS_{AB}$$

 $MS_A = SS_A/df_A$ $MS_B = SS_B/df_B$ $MS_{AB} = SS_{AB}/df_{AB}$ $MS_{error} = SS_{error}/df_{error}$

 $F_A = MS_A / MS_{error}$ $F_B = MS_B / MS_{error}$ $F_{AB} = MS_{AB} / MS_{error}$

SSTo =
$$\sum_{j=1}^{c} \sum_{i=1}^{r} (X_{ij} - \overline{X})^2$$
 SSTr / SSA = $r \sum_{j=1}^{c} (\overline{X}_{.j} - \overline{X})^2$

$$r[(\bar{X}_1 - \bar{\bar{X}})^2 + (\bar{X}_2 - \bar{\bar{X}})^2 + \dots + (\bar{X}_c - \bar{\bar{X}})^2]$$

$$SSBL = c \sum_{i=1}^{r} (\overline{X}_{i.} - \overline{\overline{X}})^{2} \quad r[(\overline{b}_{1} - \overline{X})^{2} + (\overline{b}_{2} - \overline{X})^{2} + + (\overline{b}_{r} - \overline{X})^{2}]$$

SSE = SSTo - SSTr - SSBL

MSA = SSA/c-1 MSBL = SSBL/r-1 MSE = SSE/(r-1)(c-1)

 $F_{STAT} = MSA/MSE$ $F_{STAT} = MSBL/MSE$

$$SSW = \sum_{i}^{n} (X_{i} - \bar{X}_{group(i)})^{2}$$

$$SSTr = \sum_{j=1}^{n} n_{j}(\bar{x}_{j} - \bar{\bar{x}})^{2} \quad SS_{Total} = \sum_{i}^{n} (X_{i} - \bar{\bar{x}})^{2}$$

MS Treat = SST/k-1 MSE = SSE/n-k F = MST/MSE

Correction factor (CF) = Y2/r2 Where Y = grand total, r = Number of rows, column or treatment

$$TotalSS = \sum Y_{y}^{2} - CF \qquad RowSS = \frac{\sum Row^{2}}{r} - CF \qquad Col.SS = \frac{\sum Col^{2}}{r} - CF \qquad TrtSS = \frac{\sum Y_{i}^{2}}{r} - CF$$

Error SS = Total SS - Row SS- Column SS - Treatment SS

MS row= SS row/df row MS Col = SS col/df col MS treat= SS tr/df treat F treat = MS Treat/MS error F col = MS col/MS error F Row = MS row/MS error

$$r = \frac{SS_{XY}}{\sqrt{(SS_{XX})(SS_{YY})}}$$

Coefficient of correlation = $COV(X,Y)/S_XS_y$ or

 $N\Sigma xy - (\Sigma x)(\Sigma y)$

 $\sqrt{[N\Sigma x^2 - (\Sigma x)^2][N\Sigma y^2 - (\Sigma y)^2]}$

Table F The F Distribution

		-							$\alpha = .05$	
dl _D		2	3	4	5	6	7	8	9	10
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5	241.9
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.4
3	16.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.7
4	7.71	6.94	6.59	6.39	6.26	5.16	6.09	6.04	6.00	5.9
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.7
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.0
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.6
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.3
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.9
1.1	4.84	3.98	3.59	3,36	3.20	3.09	3.01	2.95	2.90	2.8
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.7
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.6
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.5
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2,59	2.54	2.49
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.43
18	4.41	3,55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.4
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2,38
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2,45	2.39	2.3
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2,32
22	4.30	3.44	3.05	2,82	2.66	2.55	2.46	2.40	2.34	2.30
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2,32	2.27	2.22
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20
28	4.20	3,34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2,15
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99
120	3,92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91
00	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83