Testowanie średnich

Preliminaria

Rozpatrujemy dwie próbki: $X = \{x_1, \dots, x_{n_x}\}$ oraz $Y = \{y_1, \dots, y_{n_y}\}$. Zakładamy, że obserwacje są niezależne i podlegają rozkładom $N(\mu_x, \sigma_x^2)$, $N(\mu_y, \sigma_y^2)$. Przy tych założeniach mamy:

(i)
$$\bar{X} \sim N\left(\mu_x, \frac{\sigma_x^2}{n_x}\right)$$
, $\bar{Y} \sim N\left(\mu_y, \frac{\sigma_y^2}{n_y}\right)$,

(ii)
$$\frac{n_x S_x^2}{\sigma_x^2} \sim \chi^2(n_x - 1), \quad \frac{n_y \dot{S}_y^2}{\sigma_y^2} \sim \chi^2(n_y - 1),$$

(iii)
$$V\left(\frac{n_x S_x^2}{\sigma_x^2}\right) = 2(n_x - 1), V\left(\frac{n_y S_y^2}{\sigma_y^2}\right) = 2(n_y - 1),$$

(iv)
$$V(\bar{X} - \bar{Y}) = \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}$$

(v) \bar{X}, S_x^2 są niezależne; także \bar{Y}, S_y^2 są niezależne.

Przypomnijmy też, że zmienna t(k) ma rozkład t-Studenta z k stopniami swobody wtedy gdy

$$t(k) = \frac{U}{\sqrt{V/k}}$$
, gdzie $U \sim N(0,1)$, $V \sim \chi^2(k)$, U, V - niezależne.

Hipoteza H_0

 H_0 : $\mu_x = \mu_y$.

1. Różne (znane) wariancje

Przy założeniu, że hipoteza H_0 jest prawdziwa i znane są wariancje $\sigma_x^2, \sigma_y^2,$ mamy:

(c)
$$\bar{X} - \bar{Y} \sim N\left(0, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)$$

Stąd otrzymujemy

$$z = \frac{\bar{X} - \bar{Y}}{\sqrt{\left(\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}\right)}} \sim N(0, 1). \tag{1}$$

2. Równe (nieznane) wariancje

Przy założeniu, że hipoteza H_0 jest prawdziwa i wariancje są równe $(\sigma_x^2 = \sigma_y^2 =: \sigma^2)$ jest:

(a)
$$\bar{X} - \bar{Y} \sim N\left(0, \sigma^2\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\right)$$

(b)
$$\frac{n_x S_x^2}{\sigma^2} + \frac{n_y S_y^2}{\sigma^2} \sim \chi^2 (n_x + n_y - 2).$$

Ze wzorów (a) oraz (b) wynika (wobec niezależności zmiennych)

$$\left[\frac{\bar{X} - \bar{Y}}{\sigma \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}\right] / \sqrt{\frac{n_x S_x^2 + n_y S_y^2}{\sigma^2} \frac{1}{n_x + n_y - 2}} \sim t(n_x - n_y - 2),$$

skad otrzymujemy ostatecznie

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{\left(n_x S_x^2 + n_y S_y^2\right) \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} \sqrt{n_x + n_y - 2} \sim t(n_x + n_y - 2). \tag{2}$$

Zwróćmy uwagę na to iż nie jest istotne czy znamy wariancje σ_x^2, σ_y^2 , korzystaliśmy wyłącznie z równości $\sigma_x^2 = \sigma_y^2$.

3. Różne (nieznane) wariancje – test Welcha

Rozważmy ponownie zmienną $\bar{X} - \bar{Y}$. Jak w poprzednim punkcie $\sigma^2 = \text{Var}(\bar{X} - \bar{Y}) = \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}$. Jako przybliżoną wartość σ^2 przyjmijmy $S^2 = \frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}$. Załóżmy też, dla pewnego r zmienna $\frac{rS^2}{\sigma^2}$ podlega rozkładowi $\chi^2(r)$. Z własności rozkładu χ^2 wynika, że $V\left(\frac{rS^2}{\sigma^2}\right) = 2r$. Stąd mamy $V\left(\frac{rS^2}{\sigma^2}\right) = \frac{r^2}{\sigma^4} V(S^2) = 2r$ czyli $\frac{1}{\sigma^4} V(S^2) = \frac{2}{r}$.

Wstawiając do ostatniego wzoru wyrażenie na S^2 otrzymujemy wzór

$$\frac{1}{\sigma^4} \left(\frac{V(S_x^2)}{n_x^2} + \frac{V(S_y^2)}{n_y^2} \right) = \frac{2}{r}.$$
 (3)

Wariancję S_x^2 obliczamy z zależności $2 \cdot (n_x - 1) = V\left(\frac{n_x S_x^2}{\sigma_x^2}\right) = \frac{n_x^2}{\sigma_x^4} \cdot V(S_x^2)$ oraz z analogicznego wzoru dla S_y^2 . Następnie przybliżamy wielkości $\sigma^2, \sigma_x^2, \sigma_y^2$ przez S^2, S_x^2, S_y^2 . Równanie (3) przepisujemy w (przybliżonej) postaci:

$$\frac{2}{r} = \frac{1}{S^4} \left(\frac{2 \cdot (n_x - 1)S_x^4}{n_x^4} + \frac{2 \cdot (n_y - 1)S_y^4}{n_y^4} \right),$$

skąd ostatecznie wynika postać wzoru jak poniżej

$$r = \frac{\left(\frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}\right)^2}{\left(\frac{S_x^2}{n_x}\right)^2 \cdot \frac{n_x - 1}{n_x^2} + \left(\frac{S_y^2}{n_y}\right)^2 \cdot \frac{n_y - 1}{n_y^2}}.$$
 (4)

Statystyka testowa jest postaci:

$$t = \frac{X - Y}{S} \approx t(r). \tag{5}$$

Wzory (1), (2), (5) opisują statystyki testowe, $S^2 = \frac{S_x^2}{n_x} + \frac{S_y^2}{n_y}$.

Witold Karczewski