MORFOLOGÍA MATEMÁTICA

FILTROS MORFOLÓGICOS

¿QUÉ SIGNIFICA MORFOLOGÍA?

- Estudio de la <u>forma</u> y de la <u>estructura</u>
- Y ¿cómo aparece en el diccionario?

Viene de "morfo" y "logia" ... parte de la Biología que trata de la forma y estructura de los seres orgánicos.... (Diccionario Enciclopédico UTEHA, 1952, México)

¿MORFOLOGÍA MATEMÁTICA EN IMÁGENES?

- Se usa para extraer determinadas características o descriptores de la imagen basada en la forma o la estructura de la imagen
- Se basa en la Teoría de Conjuntos
- Se utilizó inicialmente para el procesamiento de imágenes binarias

IMÁGENES BINARIAS: "FOREGROUND" Y "BACKGROUND"

<u>Imagen Binaria</u>: Cada pixel puede tomar solo valor 1 o valor 0

Valores: "1" se asocia a "high", "true" o "on"

"0" se asocia a "low", "false" o "off"

Foreground pixels: Pixeles con valor "1"

Background pixels: Pixeles con valor "0"

Objeto: Cualquier grupo de pixeles conectados

<u>Propiedades de interés en imágenes binarias</u>: forma, tamaño y Ubicación de los objetos en la imagen

Figure 8.1 The binary image depicted above contains two objects (groups of connected pixels) under 8-connectedness but three objects under 4-connectedness

El efecto de cualquier procesamiento morfológico se reduce a determinar cuáles píxeles de foreground se convirtieron en píxeles de background y viceversa.....

IMÁGENES BINARIAS: "FOREGROUND" Y "BACKGROUND"

El cambio de valor de los píxeles de foreground o de background depende de tres aspectos:

- 1. La imagen
- 2. El tipo de operación morfológica
- 3. El elemento estructurante

ELEMENTOS ESTRUCTURANTES Y VECINDADES

Los <u>elementos estructurantes</u> son arreglos rectangualres de píxeles que contienen el valor 0 o 1 y en los cuales se ha designado un <u>pixel centro</u>

<u>La vecindad del pixel</u> centro esta determinada por aquellos píxeles que tienen valor 1 en el elemento estructurante

LAS DOS OPERACIONES MORFOLÓGICAS MAS IMPORTANTES:

1. EROSIÓN $A \ominus B$ Imagen A, Elemento Estructurante B

Se posiciona el centro del elemento estructurante sucesivamente sobre cada pixel del foreground (valor 1) y si algún pixel de la vecindad es del background, i.e. tiene valor 0, se cambia ese pixel de foreground a background, es decir, se le asigna el valor 0.

LAS DOS OPERACIONES MORFOLÓGICAS MAS IMPORTANTES: 2. DILATACIÓN $A \oplus B$ Imagen A, Elemento Estructurante B

Se posiciona el centro del elemento estructurante en cada pixel de background y si algún pixel de la vecindad tiene el valor 1, es decir, es del foreground entonces se le asigna el valor 1 al pixel de background y con ello pasa a ser del foreground.

EFECTOS DEL USO DE LA EROSIÓN Y LA DILATACIÓN: UNIR LÍNEAS DISCONTINUAS DE CONTORNO

<u>Tres simples pas</u>os:

- 1. Dilatar hasta que se cierre el contorno
- 2. Rellenar los pixeles de background encerrados en el contorno (región filling)
- 3. Erosionar la imagen la misma cantidad de veces que se dilató para mantener el tamaño dela región

IMPORTANCIA DEL USO DE UN ELEMENTO ESTRUCTURANTE ADECUADO

Figure 8.6 Using dilation and erosion to identify features based on shape: (a) original; (b) result after thresholding; (c) After erosion with horizontal line. (d) after erosion with vertical line; (e) after dilation with same vertical and horizontal lines; (f) boundary of remaining objects superimposed on original

APERTURA Y CIERRE MORFOLÓGICO

Apertura = **Erosión seguida de dilatación**

$$A \circ B = (A \ominus B) \oplus B$$

- La apertura elimina los pequeños objetos y aislados en el foreground y los pone en el background
- La apertura tiende a suavizar el contorno de un objeto binario y rompe las uniones estrechas entre objetos

Cierre = Dilatación seguida de Erosión

$$A \cdot B = (A \oplus B) \ominus B$$

- El cierre tiende a eliminar pequeños huecos en el foreground
- Cambia pequeñas regiones del background al foreground
- Tiende a unir pequeños istmos entre objetos

DIFERENCIAS ENTRE EROSIÓN Y DILATACIÓN MORFOLÓGICAS

Las diferencias entre la Erosión y la Dilatación:

- Si la Erosión elimina un objeto, la Dilatación no puede recuperarlo
- La dilatación necesita al menos un pixel de foreground para operar
- Los elementos estructurantes pueden elegirse de las dos formas, grandes y de diferentes formas según la aplicación

DIFERENCIAS ENTRE APERTURA Y CIERRE MORFOLÓGICOS: ANALOGÍA CON "ROLLING BALL"

Figure 8.8 The *opening* of object A by structuring element B, $A \circ B$. This can be visualized as all possible points within object A which can be reached by moving the ball within object A without breaching the boundary. For a solid object A (no holes), the boundary of $A \circ B$ is simply given by 'rolling' B within A so as to never lose contact with the boundary. This is the circumference of the area shaded dark grey

APERTURA Y CIERRE MORFOLÓGICOS: ANALOGÍA CON "ROLLING BALL"

Figure 8.9 The *closing* of object A by structuring element B, $A \cdot B$. This can be visualized as all possible points contained within the boundary defined by the contour as B is rolled around the outer boundary of object A. Strictly, this analogy holds only for a 'solid' object A (one containing no holes)

EXTRACCIÓN DE CONTORNO

$$A_P = A - A \ominus B$$

Se define el contorno de un objeto como el resultado de erosionar con un elemento estructurante pequeño y el resultado restarlo de A

Figure 8.11 Boundary extraction. Left: original.; centre: single-pixel boundary; right: thick boundary extracted through use of larger structuring element

EROSIÓN Y DILATACIÓN EN ESCALAS DE GRISES

1. EROSIÓN $A \ominus B$ Imagen A, Elemento Estructurante B ESCALA DE GRISES

- Colocar sucesivamente el elemento estructurante sobre cada pixel de la imagen A
- Para cada posición calcule el mínimo valor de A-B teniendo en cuenta los vecinos definidos por B

2. DILATACIÓN $A \oplus B$ Imagen A, Elemento Estructurante B ESCALA DE GRISES

- Colocar sucesivamente el elemento estructurante sobre cada pixel de la imagen A
- Para cada posición calcule el máximo valor de A + B teniendo en cuenta los vecinos definidos por B

EROSIÓN Y DILATACIÓN EN ESCALAS DE GRISES

Cuando se considera Morfología en escala de grises, los elementos estructurantes tienen en general dos partes:

- 1. Un arreglo de 1's y 0's donde el 1 indica la vecindad local definida por el elemento estructurante.
- 2. Un arreglo de la misma dimensión que contiene valores numéricos del elemento estructurante, que denotamos con v_p .

Example 8.13

A structuring element comprising a domain

$$b = \begin{matrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{matrix}$$

and values

$$v_b = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 1 & 3 \\ 0 & 3 & 0 \end{pmatrix}$$

is placed on a section of an image given by

$$A = \begin{matrix} 12 & 13 & 11 \\ 7 & 14 & 8 \\ 10 & 9 & 10 \end{matrix}$$

Consider positioning the central pixel of the structuring element on the centre pixel of the image segment (value = 14). What is the value after erosion?

Solution

The value of this pixel after grey-scale erosion is the minimum of the values $A-\nu_b$ over the domain defined by

$$b = \min \left\{ \begin{array}{rrr} - & 13 - 3 & - \\ 7 - 3 & 14 - 1 & 8 - 3 \\ - & 9 - 3 & - \end{array} \right\} = \min \left\{ \begin{array}{rrr} - & 10 & - \\ 4 & 13 & 5 \\ - & 6 & - \end{array} \right\} = 4$$

EROSIÓN Y DILATACIÓN EN ESCALAS DE GRISES CON ELEMENTO ESTRUCTURANTE PLANO

ELEMENTO ESTRUCTURANTE PLANO es aquel en el cual todos sus valores son cero y por lo tanto los valores resultantes de la Erosión y la Dilatación están <u>completamente determinados por la vecindad</u>

Cuando se asume un <u>elemento estructurante</u> plano la Erosión y la Dilatación corresponden con los filtros de mínimo local y máximo local respectivamente.

Figure 8.24 Calculating the morphological gradient: (a) grey-scale dilation with flat 3×3 structuring element; (b) grey-scale erosion with flat 3×3 structuring element; (c) difference of (a) and (b) = morphological gradient

GRADIENTE MORFOLÓGICO

<u>Gradiente de Beucher</u>, se define como:

$$\rho_B = (I \oplus B) - (I \ominus B) = \delta_B(f) - \varepsilon_B(f)$$

Gradiente medio por erosión o gradiente interno, el cual se obtiene con la diferencia aritmética entre la imagen original y la imagen erosionada

$$\rho_B^- = I - (I \ominus B) = f - \varepsilon_B(f).$$

Gradiente medio por dilatación o gradiente externo

$$\rho_B^+ = (I \oplus B) - I = \delta_B(f) - f.$$

APERTURA Y CIERRE EN ESCALAS DE GRISES

LA APERTURA tiende a suprimir regiones pequeñas brillantes dejando el resto de la imagen prácticamente sin cambios.

EL CIERRE tiende a suprimir pequeñas regiones oscuras.

Figure 8.25 Correction of nonuniform illumination through morphological opening. Left to right:

(a) original image; (b) estimate of illumination function by morphological opening of original;

(c) original with illumination subtracted; (d) contrast-enhanced version of image (c)

LA TRANSFORMACIÓN TOP-HAT

Figure 8.26 Morphological top-hat filtering to increase local image detail. Left to right: (a) original image; (b) after application of top-hat filter (circular structuring element of diameter approximately equal to dimension of grains); (c) after contrast enhancement

$$A - (A \ominus B) \oplus B$$

- La apertura elimina los pequeños detalles brillantes dejando las regiones oscuras invariantes.
- Al efectuar la diferencia con la imagen y la imagen "abierta" se tiende a eliminar los detalles locales de la imagen independientemente de la variación de intensidades.
- Se utiliza para resaltar los elementos individuales.

¿CÓMO HEMOS APLICADO LOS FILTROS MORFOLÓGICOS?

- FILTROS PARA REDUCCIÓN DEL RUIDO
- FILTROS PARA REALCE DE CONTRASTE
- PARA SEGMENTACIÓN LA MORFOLOGÍA MATEMÁTICA

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

- alternateFilter
- fullAlternateFilter
- autoMedianFilter
- strongLevelingFilter

Ceyli M. Ricardo Gomar

FILTROS PARA REALCE DEL CONTRASTE

- contrast
- contrastEnhancer

Ceyli M. Ricardo Gomar

FILTROS PARA REALCE DEL CONTRASTE

- contrast
- contrastEnhancer

Ceyli M. Ricardo Gomar

FILTROS PARA REALCE DEL CONTRASTE

- contrast
- contrastEnhancer

Ceyli M. Ricardo Gomar

SEGMENTACIÓN MORFOLÓGICA

- Transformada de Watershed
- Transformada de Waterfall
- buildSupWhiteTopHat

Ceyli M. Ricardo Gomar

SEGMENTACIÓN MORFOLÓGICA

- Transformada de Watershed
- Transformada de Waterfall
- buildSupWhiteTopHat

Ceyli M. Ricardo Gomar

SEGMENTACIÓN MORFOLÓGICA

- Transformada de Watershed
- Transformada de Waterfall
- buildSupWhiteTopHat

Ceyli M. Ricardo Gomar

SEGMENTACIÓN TRAS LA APLICACIÓN DE FILTROS MORFOLÓGICOS

Ceyli M. Ricardo Gomar

MORFOLOGÍA MATEMÁTICA

FILTROS MORFOLÓGICOS