On réalise le montage ci-dessus dans lequel le génerateur G délivre une tension proportionnelle à l'intensité du courant qu'il débite. $U_g=R_0$.i.
-Le générateur G se comporte comme une résistance négative de valeur – R_0 Etude théorique :
On considère le montage d'entretien d'oscillation ci-dessus,
D'après la loi d'additivité des tensions on a : $u_R + u_c + u_L = u_g$
Si la résistance réglable R ₀ est égale à la résistance R du circuit RLC, l'équation devient
On retrouve une équation différentielle semblable à l'équation du circuit LC. Le circuit RLC devient équivalent à un

Série N°P8 : Les oscillations libre RLC série

circuit LC et oscille avec une période propre T₀ qui dépend uniquement de la valeur de L et de la valeur de C :

Exercice 1: On charge totalement un condensateur de capacité $C=45.3\mu F$ par un générateur idéal de f.é.m. E et on le monte à une bobine d'inductance L et de résistance \mathbf{r} à t=0. On visualise par un oscilloscope la courbe qui représente la tension $u_C(t)$ en fonction du temps.

- 1-Montrer comment relier l'oscilloscope pour visualiser la tension $u_C(t)$.
- **2-**Quel est le régime observé ?
- **3-**Quelle est la forme d'énergie stocké dans le circuit à t=60ms ? justifier.
- **4-**En considérant la pseudo-période T est égale à la période propre T₀ de l'oscillateur **LC** déterminer la valeur **L**.
- 5-Calculer ΔE la variation de l'énergie totale entre les instants t=0 et $t_1=90$ ms expliquer le résultat.

- b-Déterminer l'équation vérifiée par la charge q dans ce cas.
- **c**-Trouver **r** la résistance de la bobine.

Exercice 2: Le condensateur et la bobine échangent l'énergie lorsqu'ils sont montés tous les deux.

On étudie le circuit idéal LC. Un groupe d'élèves ont chargés totalement le condensateur de capacité C sous une tension U puis ils ont montés le condensateur avec une bobine d'inductance L et de résistance négligeable.

3-Déterminer l'équation différentielle vérifiée par la tension
$$uc$$

a-Montrer que l'énergie E_m s'écrit :

$$E_m(t) = \frac{1}{4} CU^2 (1 - \cos(\frac{4\pi}{t})). \text{ (rappel : } \sin^2 x = 1/2.(1 - \cos(2x)))$$

Exercice 3: Pour connaître l'effet de la résistance r d'une bobine (b) sur l'énergie totale du circuit RLC, un élève a monté à t=0 un condensateur de capacité $c=2.5\mu F$ initialement changé avec la bobine. Par un dispositif adéquat on visualise les variations des énergies E_e et E_m en

fonction du temps.

b-Montrer que l'énergie totale diminue au cours du temps selon la relation
$$dE = -ri2dt$$
. expliquer cette diminution.

5-Calculer l'énergie dissipée entre les instants **t=2ms** et **t=3ms**

Exercice 4: Le circuit RLC est formé d'un conducteur ohmique de résistance R, un condensateur de capacité C et une bobine d'inductance L = 80mH.On visualise par un oscilloscope la tension u_C.

- 2-Quel est le régime des oscillations.
- 3-Déterminer la pseudo-période T.
- **4**-A quoi due l'amortissement des oscillations.

6-Calculer l'énergie totale stockée dans le circuit entre les instants t₁=3 ms et t₂=12 ms, déduire l'énergie dissipée entre ces instants.

0,3

0,2
