Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Самостоятельная работа №1

по дисциплине «Сети и телекоммуникации»

Выполнил:Яровой В. ДГруппа:5130904/00104

Проверил: Медведев Б. М.

Содержание

1 Цель работы	1
2 Постановка задачи	2
3 Сбор даных	
3.1 Измерение мощности сигнала	
3.2 Расстояния до базовых станций	5
3.3 Скоростные измерения	
4 Обработка результатов	
4.1 Расчет ожидаемой мощности сигнала	
4.2 Определение вероятности нахождения телефона в зоне уверенного приема	
4.3 Обработка скорости	
4.4 Обработка задержки	
5 Вывод	

1 Цель работы

Изучение моделей линий в сотовых сетях и беспроводных локальных сетях Wi-Fi, которые позволяют рассчитать затухание сигнала в линии и ожидаемую мощность сигнала в месте приема.

2 Постановка задачи

- Подготовка к работе
 - 1. Установить программное обеспечение Network Cell Info Lite.
 - 2. Изучить руководство пользователя.
- Порядок выполнения работы

При помощи программы Network Cell Info Lite для каждого режима работы сети 2G, 3G, 4G и Wi-Fi выполнить следующие измерения по пунктам 1-4 Переключение режима работы сети осуществляется в настройках телефона, например, Настройки/SIM-карты и мобильные сети/SIM-карта (для которой выбирается режим)/Предпочтительный тип сети/Только 2G или Предпочтительно 3G или Предпочтительно 4G. Изменить режим работы можно также через меню программы Network Cell Info Lite: Настройки/Общие/Настройки системной сети.

- 1. Измерить мощность принимаемого сигнала (RSRP для 4G или RSSI для 3G, 2G, Wi-Fi) в 3 местах (в пределах помещения или в диапазоне 10 метров на улице). Программа Network Cell Info Lite, начиная с версии v.6.1.32, имеет большой интервал усреднения 10 секунд при измерении мощности сигнала. Записывать результаты измерения нужно после завершения интервала усреднения.
- 2. Записать результаты оценки статистики подключения к сети между 2G, 3G, 4G для контроля включения соответствующего режима работы сети. После переключения режима 2G, 3G, 4G нужно нажать кнопку Сброс на вкладке Статистика. Проверить установку нужного режима и отсутствие переключения режима работы под управлением базовой станции сети: 100% подключения должно соответствовать выбранному режиму работы.
- 3. Измерить расстояние до базовой станции по карте. Определить местоположение базовой станции и телефона на вкладке Карта. Измерить расстояние можно, например, при помощи Яндекс карты.
- 4. Измерить скорость передачи данных, задержку (ping) и вариацию задержки (jitter) для одного места измерения мощности сигнала 5 раз с интервалом 2 минуты. При включении Wi-Fi в телефоне программа Network Cell Info Lite автоматически переключает измерение скорости передачи на эту сеть.
- Обработка результатов
 - 1. Рассчитать ожидаемую мощность сигнала по применимым моделям для 2G, 3G, 4G при следующих параметрах:
 - Частота сигнала определяется как середина используемого в эксперименте диапазона частот Downlink.
 - Мощность передатчика базовой станции сотовой сети 43 дБм.
 - Коэффициент усиления антенны базовой станции 15 дБ, сотового телефона 0 дБ.
 - При отсутствии возможности оценить высоту установки антенны базовой станции использовать типовое значение для макросоты или микросоты.
 - 2. Рассчитать ожидаемую мощность сигнала для Wi-Fi при следующих параметрах:
 - Мощность передатчика точки доступа Wi-Fi 20 дБм.
 - Коэффициент усиления антенны точки доступа и Wi-Fi телефона 0 дБ.
 - 3. Сравнить результаты расчета мощности сигнала на входе приемника с измерениями.
 - 4. Определить вероятность нахождения телефона в зоне уверенного приема при условии:
 - измеренные значения мощности сигнала являются средними значениями случайной величины с нормальным законом распределения и стандартным отклонением, определенным в моделях для 2G, 3G, 4G;
 - мощность сигнала на входе приемника должна быть больше 100 дБм типового значения чувствительности приёмника, при котором достигается вероятность приема кадра без ошибки не менее 90%.

- 5. Определить среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Сравнить с максимальной достижимой скоростью передачи и с типовыми значениями из табл. 1.9.
- 6. Определить среднюю задержку (ping) передачи и диапазон изменения задержки для всех режимов работы. Сравнить с типовыми значениями из табл. 1.10. Рассчитать задержку сигнала в радиолинии и определить долю этой величины в общей задержке передачи кадров.

3 Сбор даных

3.1 Измерение мощности сигнала

Все три места для измерений были выбранны внутри помещения

	Мощность											
Поколение	Поколение стандарт тип Место 1 Место 2											
2G	EDGE	RSII	$-63~\mathrm{dBm}$	$-59~\mathrm{dBm}$	$-65~\mathrm{dBm}$							
3G	HSPA+	RSII	−81 dBm	$-83~\mathrm{dBm}$	$-78~\mathrm{dBm}$							
4G	LTE+	RSRP	−81 dBm	$-94~\mathrm{dBm}$	$-89~\mathrm{dBm}$							
			Место 1	Место 2	Место 3							
Wi-Fi	Wi-Fi 6	RSII	-53 dBm	$-85~\mathrm{dBm}$	−61 dBm							

Для контроля включения соответствующего режима сети, была проверена установка нужного режима и отсутствие переключения режима работы под управлением базовой станции сети (должно было соответствовать 100%).

3.2 Расстояния до базовых станций

Во всех трех местах и на всех трех поколениях сотовой связи было осуществлено подключение к одной и той же базовой станции. Расположение сети 4G не указано на предоставленном скриншоте, однако она находится в том же местоположении. Было проверенно с помощью поика по номеру базовой станции в открытых источниках.

Скриншоты отсальных двух точек в которых проводились измерения не приведенны, так как они ни чем не отличаются

Расстояние до базовых станций было измеренно в Яндекс картах

Поколение	Место 1	Место 2	Место 3
2G	155 m	152 m	158 m
3 G	155 m	152 m	158 m
4G	155 m	152 m	158 m

3.3 Скоростные измерения

В качесте места для измерения скорости было выбранно место №1

		Измер	ение 1	Измер	ение 2	Измер	ение 3	Измер	ение 4	Измер	ение 5
	Upload	57.2	Kb/s	57.3	Kb/s	52.7	Kb/s	57.3	Kb/s	57.2	Kb/s
2G	Download	130.3	Kb/s	132.8	Kb/s	101.3	Kb/s	120.2	Kb/s	131.1	Kb/s
2 G	Ping	183	ms	197	ms	394	ms	234	ms	194	ms
	Jitter	15	ms	100	ms	521	ms	22	ms	85	ms
	Upload	1.1	Mb/s	2.6	Mb/s	1.8	Mb/s	3.5	Mb/s	2.7	Mb/s
3 G	Download	1.8	Mb/s	1.6	Mb/s	4.4	Mb/s	5.5	Mb/s	5.1	Mb/s
3G	Ping	32	ms	35	ms	28	ms	31	ms	29	ms
	Jitter	9	ms	10	ms	47	ms	8	ms	8	ms
	Upload	40.0	Mb/s	47.6	Mb/s	33.0	Mb/s	50.6	Mb/s	32.9	Mb/s
4G	Download	25.9	Mb/s	55.3	Mb/s	99.2	Mb/s	81.3	Mb/s	74.4	Mb/s
4G	Ping	47	ms	47	ms	57	ms	43	ms	44	ms
	Jitter	9	ms	9	ms	17	ms	7	ms	7	ms

4 Обработка результатов

4.1 Расчет ожидаемой мощности сигнала

Мощность сигнала на входе приемника в логарифмическом масштабе по отношению к измерительному уровню 1 мВт (записывается как дБм):

$$P_r = P_t - PL(d)$$
, dBm

где мощность сигнала на выходе передатчика P_t задана в дБм.

Модели для вычисления затухания:

• 2G

Формула для расчета затухания сигнала в условиях города записывается следующим образом

$$\begin{split} PL(d) &= 46.3 + 33.9 \lg(f_c) - 13.82 \lg(h_{te}) - a(h_{re}) + \\ &+ (44.9 - 6.55 \lg(h_{te})) \lg(d) + C_m \; \text{, dB} \end{split}$$

 $a(h_{re})$ – корректирующий фактор для эффективной высоты мобильной антенны, который является функцией величины зоны обслуживания.

Для крупных городов:

$$a(h_{re}) = 3.2 (\lg(11.75 h_{re}))^2 - 4.97 \ , \, \mathrm{dB}$$
 $C_m = 3 \ , \, \mathrm{dB}$

Входные данные:

Место	f_c	h_{te}	h_{re}	d	C_m	P_t	$P_{ m crit}$
1	960	30	10	0.1564	3	43	100
2	960	30	10	0.1534	3	43	100
3	960	30	10	0.1594	3	43	100

• 3G

Модель потерь на трассе внутри помещения (в логарифмическом масштабе, дБ) представлена в следующей упрощенной форме, которая получена из модели COST внутри помещения:

$$PL(d) = 37 + 30 \lg(d) + 18.3 n^{\left(\frac{n+2}{n+1} - 0.46\right)}$$
, dB

Где:

- 1. d расстояние между передатчиком и приемником (м),
- 2. п количество этажей на пути.

Входные данные:

Место	d	\overline{n}	P_t	$P_{ m crit}$
1	156.4	0	43	100
2	153.4	0	43	100
3	159.4	0	43	100

• 4G

Для случая отсутствия прямой видимости расчет затухания сигнала в 3D-UMa учитывает характеристики городской среды:

$$\begin{split} PL_{3D-UMa-NLOS} &= 161.04 - 7.1 \lg(W) + 7.5 \lg(h) - \left(24.37 - 3.7 \left(\frac{h}{h_{BS}}\right)^2\right) \\ \lg(h_{Bs}) + &(43.42 - 3.1 \lg(h_{BS})) (\lg(d_{3D}) - 3) + 20 \lg(f_c) - \\ &- \left(3.2 (\lg(17.625))^2 - 4.97\right) - 0.6 (h_{UT} - 1.5) \text{ , dB} \end{split}$$

где расстояние d_{3D} измеряется в метрах, частота сигнала f_c – в ГГц, h – средняя высота зданий в диапазоне $5\mathrm{m} < h < 50\mathrm{m}$, типовое значение $h=20\mathrm{m}$, W – ширина улицы в диапазоне $5\mathrm{m} < W < 50\mathrm{m}$, типовое значение W 20 м, типовое значение $h_{BS}=25\mathrm{m}$ и $10\mathrm{m} < h_{BS} < 150\mathrm{m}$, $1.5\mathrm{m} \le h_{UT} \le 22.5\mathrm{m}$,

Входные данные:

Место	f_c	h	\overline{W}	d	h_{BS}	h_{UT}	P_t	$P_{ m crit}$
1	2.6	25	20	156.4	30	17.5	43	100
2	2.6	25	20	153.4	30	17.5	43	100
3	2.6	25	20	159.4	30	17.5	43	100

Полученные мощности и сравнение с измеренными значениями:

		Мест	o 1			Мест	o 2		Место 3			
	Эксперимент Расчет			Эксперимент Расчет			Экспе	римент	Расчет			
2G	-63	dBm	-64	dBm	-59	dBm	-64	dBm	-65	dBm	-65	dBm
3 G	-81	dBm	-74	dBm	-83	dBm	-74	dBm	-78	dBm	-75	dBm
4G	-81	dBm	-73	dBm	−94 dBm		-72	dBm	-89	dBm	-73	dBm
Wi-Fi			-85	dBm	-75	dBm	-61	dBm	-66	dBm		

Сравним результаты расчета мощности сигнала на входе приемника с измерениями.

- 2G формула была использована неправильно, так как расстояние до базовой станции было меньше 1 км, но расхождения оказались приемлемыми
- 3G расхождения допустимы
- **4G** расхождение оказалось верным для 1 из 3 мест, для двух оставшихся формула оказалась неверной (расхождение более 10 dBm). Причиной таких отклонений может быть плохая модель условий среды (начличие стен, деревьев на пути сигнала).

4.2 Определение вероятности нахождения телефона в зоне уверенного приема

• 2G

Стандартное отклонение 12 дБ.

Вероятность нахождения телефона в зоне уверенного приема $P_{\rm 2G}=0.999$

• 3G

Стандартное отклонение 12 дБ.

Вероятность нахождения телефона в зоне уверенного приема $P_{
m 3G}=0.944$

• 4G

Стандартное отклонение 6 дБ.

Вероятность нахождения телефона в зоне уверенного приема $P_{
m 4G}=0.936$

Чем современнее сеть тем она более хрупкая, как аргумент можно привести то, что для новых по-колений сети мощьность сигнала должна быть больше, чтобы обеспечить уверенный прием >90% пакетов.

4.3 Обработка скорости

Выпишем скорости загрузок из эксперементов

		1	2	2	3	3	4	4		5
2G	0.13	Mbs	0.13	Mbs	0.10	Mbs	0.12	Mbs	0.13	Mbs
3 G	1.8	Mbs	1.6	Mbs	4.4	Mbs	5.5	Mbs	5.1	Mbs
4G	25.9	Mbs	55.3	Mbs	99.2	Mbs	81.3	Mbs	74.4	Mbs

Определим среднюю скорость передачи и диапазон изменения скорости для всех режимов работы. Также приведем типовые значения

	Диапазо	ш	Сред	пяя	Ma	акс.	Типовое		
	дианазон			ОСТЬ	скор	ость	значение		
2G	0.10 - 0.13	Mbs	0.122	Mbs	0.3	Mbs	0.1	Mbs	
3G	1.6 - 5.5	Mbs	3.68	Mbs	21	Mbs	4	Mbs	
4G	25.9 - 99.2	Mbs	67.22	Mbs	300	Mbs	30	Mbs	

Итого:

- 2G соответствует типовому значению, значения скорости остается примерно неизменным во всех эксперементах
- **3G** соответствует типовому значению, значения скорости немного отличается между эксперементами, можно сказать что это погрешность, или же влияние некорректно принятых пакетов и их повторный запрос (то есть качество сети)
- 4G превосходит типовое значение, значения скорости отличается между эксперементами, сеть является самой используемой в текущий момент времени, поэтому ресурсы сети напрямую зависят от кол-ва подключенных пользователей и качества сигнала и потеренных пакетов, более того можно предположить что происходит переключение категорий LTE cat, что также влияет на скорость передачи данных

4.4 Обработка задержки

Выпишем задержки загрузок из эксперементов

	1	_	2	2	3	3	4		5	5
2G	183	ms	197	ms	394	ms	234	ms	194	ms
3 G	32	ms	35	ms	28	ms	31	ms	29	ms
4G	47	ms	47	ms	57	ms	43	ms	44	ms

Определим среднюю задержку передачи и диапазон изменения задержки для всех режимов работы.

	Диапазо	Н	•		Типовое значение		
2G	183 - 394	ms	240.4	ms	500	ms	
3G	28 - 35	ms	31	ms	100	ms	
4G	43 - 57	ms	47.6	ms	50	ms	

Итого:

- 2G меньше типового значения
- 3G меньше типового значения, можно также заметить что задержка меньше чем у 4 поколения, что не является очевидным
- **4G** меньше типового значения, но больше чем у 3 поколения, возможная причина большее колво узлов коммутации на пути до шлюза

Рассчитаем задержку сигнала в радиолинии, как расстояние до вышки связи, разделённое на скорость света:

	Расстояние		Задержка в радиолинии	
2G	155	m	0.00051766	ms
3G	155	m	0.00051766	ms
4G	155	m	0.00051766	ms

Если сравнить это с задержкой (ping), которую рассчитала программа, то увидим, что доля задержки сигнала в радиолинии невелика по сравнению с задержками в технических системах сотового оператора. Основная задержка в маршрутизаторах, обратных шлюзах, которые содержатся в технических средствах сотового оператора.

5 Вывод

В ходе выполнения работы, были измерены мощности принимаемых сигналов для 4G, 3G, 2G, Wi-Fi, а также скорость передачи данных, ping и jitter с помощью программы Network Cell Info Lite. С помощью теоретических формул, была рассчитана ожидаемая мощность сигнала для 4G, 3G, 2G и Wi-Fi, средняя задержка сигнала в радиолинии, средняя скорость передачи, определена вероятность нахождения телефона в зоне уверенного приема.