1. What is DFS and BFS?

- **DFS (Depth First Search)** is a graph traversal algorithm that explores as far as possible along one branch before backtracking. It uses a **stack** (or recursion).
- BFS (Breadth First Search) is another traversal algorithm that explores all neighboring nodes before moving to the next level. It uses a queue structure.

2. What is recursive algorithm?

A **recursive algorithm** is a method where the solution to a problem depends on solving smaller instances of the same problem. It **calls itself** with a modified parameter and stops when a **base condition** is reached.

Example: Finding factorial using recursion.

3. Explain DFS and BFS with an example.

In DFS, you start from a node, visit a neighbor, then a neighbor's neighbor, and so on until you can't go further, then backtrack.

In BFS, you start from a node, visit all its direct neighbors first, then move to the neighbors' neighbors.

Example (Graph: A \(\mathbb{B} \) B, A \(\mathbb{C} \) C, B \(\mathbb{D} \):

DFS: A \(\text{B} \(\text{B} \(\text{D} \(\text{C} \)

BFS: A 🛭 B 🖺 C 🖺 D

4. Explain A* algorithm.

•

A* (A Star) is a popular pathfinding and graph traversal algorithm. It is used to find the **shortest possible path** from a start node to a goal node.

A* uses a combination of the actual cost to reach a node (g(n)) and the estimated cost to the goal (h(n)) to choose the next node.

5. Formula of A*?

The A* algorithm uses the formula: $\mathbb{I} f(n) = g(n) + h(n)$ where:

g(n) = cost from the start node to the current node.

h(n) = estimated cost from the current node to the goal (heuristic).

6. What is heuristic function?

- A heuristic function is a function that estimates how close a state is to the goal.
- It helps in guiding the search algorithm (like A* and Greedy Search) to find the solution faster.
- Example: In a map, straight-line distance is a heuristic.

7. What is greedy search algorithm?

- Greedy Search algorithm selects the node that looks most promising (lowest heuristic cost) without considering the overall path cost.
- It aims to make the optimal choice at each step but does not guarantee the best global solution.

8. Use of minimal spanning tree algorithm?

- A Minimal Spanning Tree (MST) connects all vertices in a graph with the minimum total edge weight, without any cycles.
- It is used in **network design**, such as computer networks, water supply networks, and electrical grids.

9. Explain N-Queen problem with example.

- The N-Queen problem is placing N queens on an N×N chessboard so that no two queens attack each other.
- A queen can attack horizontally, vertically, and diagonally.
- Example: In 4-queen problem, one solution is queens at (row, col): (1,2), (2,4), (3,1), (4,3).

10. Explain backtracking process.

- **Backtracking** is a method where you build a solution step-by-step, and if you find an invalid solution, you **undo** the last step and try another option.
- It is used in solving puzzles, N-Queens problem, and maze problems.

11. What is chatbot?

- A **chatbot** is an Al program designed to simulate conversation with human users.
- Chatbots are commonly used in customer support, virtual assistants (like Siri, Alexa), and online help centers.

12. Explain DES algorithm.

- DES (Data Encryption Standard) is a symmetric-key block cipher that encrypts data in 64-bit blocks using a 56-bit key.
- It applies 16 rounds of processing and uses permutation and substitution techniques to secure the data.

13. Explain AES algorithm.

- AES (Advanced Encryption Standard) is a symmetric encryption algorithm that encrypts data in 128-bit blocks using keys of 128, 192, or 256 bits.
- It uses multiple rounds (10, 12, 14) of substitution, permutation, and mixing to provide strong encryption.

14. Difference between AES and DES algorithm?

Feature	AES	DES
Key Size	128/192/256 bits	56 bits
Block Size	128 bits	64 bits
Security	Strong	Weak (easily broken)
Speed	Faster	Slower

15. Explain RSA algorithm.

- RSA is an asymmetric encryption algorithm that uses two keys: a public key for encryption and a private key for decryption.
- It is based on the mathematical difficulty of factoring large prime numbers.

16. Explain Diffie Hellman algorithm.

Diffie-Hellman algorithm allow	s two parties to securel	v share a secret kev	v over an insecure channel.

It is used in creating secure communications and key exchange in protocols like HTTPS.

17. Explain MD5 algorithm.

MD5 (Message Digest 5) is a hashing algorithm that produces a 128-bit hash value.

It is mainly used to verify data integrity, like verifying downloaded files or password storage (though it's less secure today).

18. What is public key?

A **public key** is a cryptographic key that can be shared openly with everyone.

It is used for **encrypting data** or **verifying signatures** in asymmetric cryptography.

19. What is private key?

- A **private key** is kept secret and known only to the owner.
- It is used for decrypting data encrypted with the public key or signing messages.

20. What is Asymmetric Key Cryptography?

- Asymmetric Key Cryptography uses two different keys: a public key and a private key.
- It is commonly used in secure communications, digital signatures, and authentication.

21. What is Symmetric Key Cryptography?

- Symmetric Key Cryptography uses the same key for both encryption and decryption.
- It is faster than asymmetric encryption and used for bulk data encryption.

22. Difference between Asymmetric and Symmetric key cryptography?

Feature	Symmetric Key	Asymmetric Key
Keys Used	Same key	Different keys (public/private)
Speed	Faster	Slower
Example	AES, DES	RSA, Diffie-Hellman
Use Case	Data encryption	Secure key exchange

23. What is secret key?

A secret key is the private key used in symmetric key cryptography for encrypting and decrypting the information.

It must be shared securely between parties before communication.

24. List of Asymmetric Key Cryptography algorithms?

RSA

Diffie-Hellman

ElGamal

ECC (Elliptic Curve Cryptography)

25. List of Symmetric Key Cryptography algorithms?

AES (Advanced Encryption Standard)

DES (Data Encryption Standard)

Triple DES

Blowfish

RC4

26. What is Cryptography, Cryptanalysis?

- Cryptography is the practice of securing communication by converting data into an unreadable form (encryption).
- Cryptanalysis is the art of breaking cryptographic security and decoding the encrypted data.

27. What is Artificial Intelligence?

- Artificial Intelligence (AI) is the branch of computer science that deals with creating machines capable of performing tasks that require human intelligence.
- These tasks include learning, reasoning, problem-solving, perception, and language understanding.

28. Real world application of Al.

Al is used in various real-world applications like self-driving cars, virtual assistants (Siri, Alexa), medical diagnosis, fraud detection, robotics, and recommendation systems (Netflix, Amazon).

29. What is CIA triad?

- The CIA Triad is a fundamental concept in information security that stands for:
- Confidentiality: Keeping data private and secure.
- Integrity: Maintaining accuracy and trustworthiness of data.
- Availability: Ensuring data is accessible when needed.