Lineaire Afbeeldingen p164-165

Vincent Van Schependom

9 januari 2025

Gegeven:

De surjectieve lineaire afbeelding $L: V \to W$ en het voorbrengend deel $\{v_1, ..., v_n\}$ voor V

Te bewijzen:

W wordt voortgebracht door $\{L(v_1),...,L(v_n)\}$

Bewijs. Neem $w \in W$ willekeurig. L is surjectief, dus er geldt dat $\exists v \in V : L(v) = w$.

Omdat V wordt voortgebracht door $\{v_1, ..., v_n\}$, is $v = \sum x_i v_i$ $(x_i \in \mathbb{R})$.

En dus volgt uit $w = L(v) = L(\sum x_i v_i) = \sum x_i L(v_i)$ dat elke $w \in W$ een lineaire combinatie is van vectoren uit $\{L(v_1), ..., L(v_n)\}$, wat betekent dat W wordt voortgebracht door $\{L(v_1), ..., L(v_n)\}$.

Gegeven:

De injectieve lineaire afbeelding $L: V \to W$ en het vrij deel $\{v_1, ..., v_n\}$ voor V

Te bewijzen:

 $\{L(v_1),...,L(v_n)\}$ is vrij in W

Bewijs. Om te bewijzen dat $\{L(v_1),...,L(v_n)\}$ vrij is, nemen we een lineaire combinatie van de vectoren in deze verzameling en bewijzen we dat alle coëfficiënten in deze lineaire combinatie gelijk zijn aan 0.

Stel dat $\sum x_i L(v_i) = L(\sum x_i v_i) = 0$. Omdat L injectief is en ook L(0) = 0, moet $\sum x_i v_i = 0$. Aangezien nu $\{v_1, ..., v_n\}$ een vrij deel is, moeten de x_i allemaal gelijk zijn aan 0, wat wil zeggen dat ook $\{L(v_1), ..., L(v_n)\}$ vrij is.

Gegeven:

Het isomorfisme $L: V \to W$ en de basis $\{v_1, ..., v_n\}$ voor V

Te bewijzen:

 $\{L(v_1),...,L(v_n)\}$ is een basis voor W

Bewijs. Omdat $\{v_1, ..., v_n\}$ een basis is voor V, is deze verzameling zowel vrij als voortbrengend. Anderzijds volgt uit het feit dat L een isomorfisme is, uiteraard dat L een lineaire afbeelding is.

Uit voorgaande bewijzen volgt dan dat $\{L(v_1),...,L(v_n)\}$ voortbrengend voor W is en bovendien ook vrij, wat wil zeggen dat $\{L(v_1),...,L(v_n)\}$ een basis is voor W.