### Michał Kwarciński

# **Kacper Marchlewicz**

# Polecenie:

Proszę zaimplementować perceptron dwuwarstwowy i nauczyć go reprezentować funkcję  $J: [-5,5] \rightarrow R$ , daną wzorem:  $J(x) = \sin(x* \operatorname{sqrt}(p[0]+1)) + \cos(x* \operatorname{sqrt}(p[1]+1))$ , gdzie p[0] i p[1] to najmłodsze cyfry numerów indeksów wykonawców.

Ostatnie cyfry indeksów - 5, 3

Wynik dla parametrów początkowych: liczba neuronów = 9, learning rate = 0.003, liczba iteracji = 15000



Jak liczba neuronów w warstwie ukrytej wpływa na jakość aproksymacji? Testy:

• Dla 1 neurona:





#### • Dla 3 neuronów:

Hidden neurons: 3, Learning rate: 0.003, Error: 83.41



#### • Dla 5 neuronów:

Hidden neurons: 5, Learning rate: 0.003, Error: 14.53



#### • Dla 7 neuronów:

Hidden neurons: 7, Learning rate: 0.003, Error: 1.7



#### • Dla 12 neuronów:

Hidden neurons: 12, Learning rate: 0.003, Error: 1.59



#### • Dla 15 neuronów:

Hidden neurons: 15, Learning rate: 0.003, Error: 1.49



#### • Dla 20 neuronów:

Hidden neurons: 20, Learning rate: 0.003, Error: 1.23



#### • Dla 30 neuronów:

Hidden neurons: 30, Learning rate: 0.003, Error: 1.62



#### • Dla 40 neuronów:

Hidden neurons: 40, Learning rate: 0.003, Error: 1.94



| Ilość<br>neuronów<br>w<br>warstwie | 1      | 3     | 5     | 7   | 9    | 12   | 15   | 20   | 30   | 40   |
|------------------------------------|--------|-------|-------|-----|------|------|------|------|------|------|
| ukrytej                            |        |       |       |     |      |      |      |      |      |      |
| Błąd                               | 576,93 | 83,41 | 14,53 | 1,7 | 1,65 | 1,59 | 1,49 | 1,23 | 1,62 | 1,94 |

Najlepszy wynik został osiągnięty dla 20 neuronów.

Dla tej liczby testowaliśmy zmianą ilości iteracji.

# Testy:

• Dla 7,5 tys. iteracji:

Hidden neurons: 20, Learning rate: 0.003, Error: 2.07



• Dla 30 tys. iteracji:

Hidden neurons: 20, Learning rate: 0.003, Error: 0.96



• Dla 60 tys. iteracji:

Hidden neurons: 20, Learning rate: 0.003, Error: 0.65



### • Dla 90 tys. iteracji:





| Liczba iteracji<br>[tys] | 7,5  | 15   | 30   | 60   | 90   |
|--------------------------|------|------|------|------|------|
| Błąd                     | 2,07 | 1,23 | 0,96 | 0,65 | 0.12 |

Najlepszy wynik został osiągnięty dla największej testowanej liczby iteracji i 20 neuronów w warstwie ukrytej. Sieć praktycznie idealnie odwzorowuje aproksymowaną funkcje.

#### Wnioski:

Liczba neuronów potrzebnych do dobrej aproksymacji problemu jest zależna od jego skomplikowania. Gdy jest ich zbyt mało (w testowanym przypadku 1, 3, 5 neuronów) sieć będzie niedokładna. Można zauważyć, że za duża ilość neuronów również może negatywnie wpłynąć błąd sieci (dla 30, 40 neuronów zaczyna być widoczny wzrost błędu), może wynikać to z przewymiarowania i przeuczenia sieci, i zdecydowanie wydłużyć czas obliczeń.

Z testów modyfikacji liczby iteracji, można zauważyć, że gdy jest ich za mało to sieć nie ma wystarczająco dużo czasu, żeby się nauczyć.