

张宇预测卷

第1套·填空选择题

考研数学错题本

A4标准版

"心无旁骛,行稳致远。"

学生 最后更新时间:2025 年 10 月 28 日

目录

第1章	张宇预测卷·第1套]
1.1	填空题和选择题	2

第1章 张宇预测卷·第1套

1.1 填空题和选择题

- 1. 设总体 $X \sim N(\mu, 1)$, $H_0: \mu = 0$, $H_1: \mu = 1$. 来自总体 X 的样本容量为 9 的简单随机样本均值为 \bar{X} , 设拒绝域为 $W = \{\bar{X} \geq 0.55\}$, 则不犯第二类错误的概率为
 - A. $1 \Phi(1.35)$
 - B. $\Phi(1.35)$
 - C. $\Phi(1.65)$
 - D. $1 \Phi(1.65)$

解答

解题步骤

- 1. 理解第二类错误及其概率
 - 第二类错误(Type II Error)是指原假设 H_0 不成立,但我们没有拒绝 H_0 (即接受了 H_0)。
 - 犯第二类错误的概率通常记为 β 。
 - $\beta = P(接受 H_0|H_1 为真)$ 。
 - 本题要求的是"不犯第二类错误的概率",这个概率就是统计检验中的**功效(Power)**,等于 $1-\beta$ 。
 - 功效的定义是: 当备择假设 H_1 为真时, 我们能够正确地拒绝原假设 H_0 的概率。即 $1-\beta=P$ (拒绝 $H_0|H_1$ 为真)。

2. 确定检验的条件

- 拒绝域为 $W = \{\bar{X} \ge 0.55\}$ 。
- 备择假设 H_1 为真,意味着总体的真实均值为 $\mu=1$ 。
- 总体方差 $\sigma^2 = 1$,样本容量 n = 9。
- 根据中心极限定理,样本均值 \bar{X} 的分布为 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ 。
- 当 H_1 为真时, $\mu = 1$, 所以 $\bar{X} \sim N(1, \frac{1}{9})$.
- 3. 计算不犯第二类错误的概率
 - 我们需要计算 $P(\bar{X} \in W | \mu = 1)$, 即 $P(\bar{X} \ge 0.55 | \mu = 1)$ 。

- 标准化公式为 $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$ 。
- 在这里, $\mu = 1$, $\sigma = 1$, n = 9, 所以标准差为 $\frac{\sigma}{\sqrt{n}} = \frac{1}{\sqrt{9}} = \frac{1}{3}$.
- $P(\bar{X} \ge 0.55) = P\left(\frac{\bar{X}-1}{1/3} \ge \frac{0.55-1}{1/3}\right) = P(Z \ge -1.35)$
- 根据标准正态分布的对称性, $P(Z \ge -z) = P(Z \le z)$.
- 所以, $P(Z \ge -1.35) = P(Z \le 1.35) = \Phi(1.35)$.

最终答案:B(Φ(1.35))

2. $z = \arcsin y^x$ 在点 (-1,2) 处的全微分为 dz =

解答

解题步骤

1. 全微分公式

函数 z = f(x, y) 的全微分公式为: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ 。我们需要先求出 z 对 x 和 y 的偏导数。

2. 求偏导数 ^{ðz} _{ðr}

将 y 视为常数,对 x 求导。根据链式法则和基本求导公式 ($\arcsin u$)' = $\frac{1}{\sqrt{1-u^2}}$ 和 (a^x)' = $a^x \ln a$:

$$\frac{\partial z}{\partial x} = \frac{1}{\sqrt{1 - (y^x)^2}} \cdot \frac{\partial (y^x)}{\partial x} = \frac{y^x \ln y}{\sqrt{1 - y^{2x}}}$$

3. 求偏导数 ^{∂z}_{∂v}

将 x 视为常数,对 y 求导。根据链式法则和基本求导公式 $(\arcsin u)' = \frac{1}{\sqrt{1-u^2}}$ 和 $(y^n)' = ny^{n-1}$:

$$\frac{\partial z}{\partial y} = \frac{1}{\sqrt{1 - (y^x)^2}} \cdot \frac{\partial (y^x)}{\partial y} = \frac{xy^{x-1}}{\sqrt{1 - y^{2x}}}$$

4. 计算在点 (-1,2) 处的偏导数值

将 x = -1, y = 2 代入上述偏导数表达式:

•
$$\frac{\partial z}{\partial x}|_{(-1,2)} = \frac{2^{-1}\ln 2}{\sqrt{1-2^{-2}}} = \frac{\frac{1}{2}\ln 2}{\sqrt{1-\frac{1}{4}}} = \frac{\frac{1}{2}\ln 2}{\frac{\sqrt{3}}{2}} = \frac{\ln 2}{\sqrt{3}} = \frac{\sqrt{3}}{3}\ln 2$$

•
$$\frac{\partial z}{\partial y}|_{(-1,2)} = \frac{(-1)\cdot 2^{-2}}{\sqrt{1-\frac{1}{4}}} = \frac{-\frac{1}{4}}{\frac{\sqrt{3}}{2}} = -\frac{1}{2\sqrt{3}} = -\frac{\sqrt{3}}{6}$$

5. 写出全微分表达式

将计算出的偏导数值代入全微分公式。

最终答案: $dz = \frac{\sqrt{3}}{3} \ln 2 dx - \frac{\sqrt{3}}{6} dy$

3. 设 $e^{ax} \ge 1 + x$ 对任意实数 x 均成立,则 a 的取值范围为 _____.

解答

解题步骤

1. 构造辅助函数

设函数 $f(x) = e^{ax} - 1 - x$ 。题目条件等价于 $f(x) \ge 0$ 对任意实数 x 恒成立。这意味着函数 f(x) 的全局最小值必须大于或等于 0。

2. 求函数的最小值

对 f(x) 求导以寻找极值点:

$$f'(x) = ae^{ax} - 1$$

令 f'(x) = 0,得到 $ae^{ax} = 1$,即 $e^{ax} = \frac{1}{a}$ 。

- 要使该方程有解,必须有 $\frac{1}{a} > 0$,即 a > 0。
- 如果 a=0,不等式为 $1\ge 1+x$,化为 $x\le 0$,不满足对任意 x 成立。
- 如果 a < 0,则 $e^{ax} > 0$ 而 $\frac{1}{a} < 0$,方程无解。此时 $f'(x) = ae^{ax} 1$ 恒小于 0,函数单调递减,不可能恒大于等于 0。
- 因此,必须有 a > 0。

3. 确定极值点和最小值

当 a > 0 时,解 $e^{ax} = \frac{1}{a}$ 得 $x_0 = -\frac{\ln a}{a}$ 是唯一的驻点。

求二阶导数判断极值类型: $f''(x) = a^2 e^{ax} > 0$ 恒成立, 所以 x_0 是全局最小点。

4. 建立关于 a 的不等式

函数 f(x) 的最小值为:

$$f(x_0) = e^{-\ln a} - 1 + \frac{\ln a}{a} = \frac{1}{a} - 1 + \frac{\ln a}{a} \ge 0$$

化简得: $1-a+\ln a \ge 0$,即 $\ln a \ge a-1$ 。

5. 解关于 a 的不等式

分析函数 $g(a) = \ln a - (a-1)$ 在 a > 0 时的性质。

$$g'(a) = \frac{1}{a} - 1$$

令 g'(a) = 0,解得 a = 1。当 0 < a < 1 时,g'(a) > 0;当 a > 1 时,g'(a) < 0。因此 a = 1 是最大值点。 g(a) 的最大值为 g(1) = 0。因为 g(a) 的最大值是 0,所以 $g(a) \ge 0$ 当且仅当 a = 1。

最终答案: a=1

4. 已知 $\Omega = \{(x, y, z) | y^2 + z^2 \le 1, 0 \le x \le 1\}$, Σ 为 Ω 的边界面且取外侧,则 $\Re_{\Sigma}(y^3 + z \sin x) dy dz + z dx dy = _____.$

解答

解题步骤

1. 应用高斯散度定理

该积分是第二类曲面积分,区域 Ω 是封闭的,曲面 Σ 取外侧,满足高斯公式的应用条件。

2. 确定 P,Q,R 并计算散度

从积分表达式 ∯_Σ Pdydz + Qdzdx + Rdxdy 中:

- $P = y^3 + z \sin x$
- Q = 0
- R = z

计算散度:

$$\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0 + 3y^2 + 1 = 3y^2 + 1$$

3. 转化为三重积分

由高斯公式:

$$\oint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} (3y^2 + 1) dV$$

4. 计算三重积分

先对 yz 平面上的圆盘 $D: y^2 + z^2 \le 1$ 积分,再对 x 积分。使用极坐标变换: $y = r\cos\theta, z = r\sin\theta$ 。

$$\iint_D (3y^2 + 1) \, dy \, dz = \int_0^{2\pi} \int_0^1 (3r^2 \cos^2 \theta + 1) r \, dr \, d\theta$$

先对r积分:

$$\int_0^1 (3r^3 \cos^2 \theta + r) dr = \frac{3}{4} \cos^2 \theta + \frac{1}{2}$$

再对 θ 积分,利用 $\cos^2\theta = \frac{1+\cos(2\theta)}{2}$:

$$\int_0^{2\pi} \left(\frac{3}{4} \cos^2 \theta + \frac{1}{2} \right) d\theta = \frac{7\pi}{4}$$

完成对 x 的积分:

$$\iiint_{\Omega} (3y^2 + 1) \, dV = \int_0^1 \frac{7\pi}{4} \, dx = \frac{7\pi}{4}$$

最终答案: 7/4

5. 设随机变量 $X \sim B(2, \frac{1}{2})$,则 $E(e^{2X}) = ____.$

解答

解题步骤

方法一:利用矩母函数(MGF)

- 随机变量 X 的矩母函数定义为 $M_X(t) = E(e^{tX})$ 。
- 对于服从二项分布 B(n,p) 的随机变量,其矩母函数为 $M_X(t) = (1-p+pe^t)^n$ 。
- 本题中, n = 2, $p = \frac{1}{2}$, 所以 X 的矩母函数为:

$$M_X(t) = (1 - \frac{1}{2} + \frac{1}{2}e^t)^2 = \left(\frac{1 + e^t}{2}\right)^2$$

• 题目所求为 $E(e^{2X})$,这正好是矩母函数在 t=2 处的值。

•

$$E(e^{2X}) = M_X(2) = \left(\frac{1+e^2}{2}\right)^2 = \frac{(1+e^2)^2}{4}$$

方法二:利用期望的定义

- $X \sim B(2, \frac{1}{2})$, 所以 X 可能的取值为 0,1,2。
- 其概率分布: $P(X=0) = \frac{1}{4}$, $P(X=1) = \frac{1}{2}$, $P(X=2) = \frac{1}{4}$
- 根据期望的定义:

$$E(e^{2X}) = e^0 \cdot \frac{1}{4} + e^2 \cdot \frac{1}{2} + e^4 \cdot \frac{1}{4} = \frac{1 + 2e^2 + e^4}{4}$$

- 分子是完全平方式: $(1+e^2)^2 = 1^2 + 2 \cdot 1 \cdot e^2 + (e^2)^2 = 1 + 2e^2 + e^4$
- 所以,

$$E(e^{2X}) = \frac{(1+e^2)^2}{4}$$

最终答案: $\frac{(1+e^2)^2}{4}$ (或 $\frac{1+2e^2+e^4}{4}$)

6. 计算二重积分 $\int_0^1 dx \int_1^x (e^{-y^2} + e^y \sin y) dy =$ _____.

解答

解题步骤

1. 分析积分区域

这道题的关键在于: 被积函数中的 e^{-y^2} 不存在初等函数原函数, 不能直接对 y 进行积分, 因此必须**交换积分次序**。

原积分为: $I = \int_0^1 dx \int_1^x (e^{-y^2} + e^y \sin y) dy$

观察积分限: 当 $0 \le x \le 1$ 时, $1 \le y \le x$ 。由于在大部分区间内x < 1, 所以积分上限小于下限, 这是"反向"积分。

根据定积分的性质 $\int_a^b f(x)dx = -\int_b^a f(x)dx$,将原积分改写为:

$$I = -\int_0^1 dx \int_x^1 (e^{-y^2} + e^y \sin y) dy$$

现在的积分区域 D 为: $0 \le x \le 1, x \le y \le 1$

这是由直线 x = 0、y = 1、y = x 围成的三角形区域, 顶点为 (0,0)、(0,1)、(1,1)。

积分区域详细图示:

步骤 1: 原题中的反向积分 $I = \int_0^1 dx \int_1^x (...) dy$,其中 $1 \le y \le x$ (反向)

使用
$$\int_a^b = -\int_b^a$$

步骤 2: 转化后的正向积分 $I = -\int_0^1 dx \int_x^1 (...) dy$, 其中 $x \le y \le 1$ (正向)

2. 交换积分次序

观察三角形区域:

- *y* 的取值范围:0≤*y*≤1
- 对于固定的 y, x 的范围: $0 \le x \le y$ (从左边界 x = 0 到斜边 x = y)

交换积分次序后:

$$I = -\int_0^1 dy \int_0^y (e^{-y^2} + e^y \sin y) dx$$

3. 计算新的积分

第一步:计算内层对 x 的积分

被积函数对 x 积分时可视为常数:

$$\int_0^y (e^{-y^2} + e^y \sin y) dx = (e^{-y^2} + e^y \sin y) \cdot y = ye^{-y^2} + ye^y \sin y$$

第二步:计算外层对 y 的积分

$$I = -\int_0^1 (ye^{-y^2} + ye^y \sin y) \, dy = -\left[\int_0^1 ye^{-y^2} \, dy + \int_0^1 ye^y \sin y \, dy \right]$$

计算积分 A: $\int_0^1 y e^{-y^2} dy$

当 y = 0 时, u = 0; 当 y = 1 时, u = -1.

$$\int_0^1 y e^{-y^2} dy = \int_0^{-1} e^u \left(-\frac{1}{2} \right) du = \frac{1}{2} \int_{-1}^0 e^u du$$
$$= \frac{1}{2} [e^u]_{-1}^0 = \frac{1}{2} (1 - e^{-1}) = \frac{1}{2} \left(1 - \frac{1}{e} \right)$$

计算积分 \mathbf{B} : $\int_0^1 y e^y \sin y \, dy$

先计算 $\int e^y \sin y \, dy$ (分部积分两次):

$$\int e^y \sin y \, dy = \frac{1}{2} e^y (\sin y - \cos y) + C$$

对 $\int ye^y \sin y \, dy$ 用分部积分: 令 $u = y, dv = e^y \sin y \, dy$

$$v = \frac{1}{2}e^{y}(\sin y - \cos y)$$

$$\int y e^{y} \sin y \, dy = \frac{1}{2} y e^{y} (\sin y - \cos y) - \frac{1}{2} \int e^{y} (\sin y - \cos y) \, dy$$

其中 $\int e^y \sin y \, dy = \frac{1}{2} e^y (\sin y - \cos y)$, $\int e^y \cos y \, dy = \frac{1}{2} e^y (\sin y + \cos y)$

代入计算得:

$$\int y e^{y} \sin y \, dy = \frac{1}{2} y e^{y} (\sin y - \cos y) + \frac{1}{2} e^{y} \cos y$$

计算定积分:

$$\int_0^1 y e^y \sin y \, dy = \left[\frac{1}{2} y e^y (\sin y - \cos y) + \frac{1}{2} e^y \cos y \right]_0^1$$
$$= \left[\frac{e}{2} (\sin 1 - \cos 1) + \frac{e}{2} \cos 1 \right] - \left[0 + \frac{1}{2} \right]$$
$$= \frac{e}{2} \sin 1 - \frac{1}{2}$$

第三步:合并结果

$$I = -\left[\frac{1}{2}\left(1 - \frac{1}{e}\right) + \frac{e}{2}\sin 1 - \frac{1}{2}\right]$$

$$= -\left[\frac{1}{2} - \frac{1}{2e} + \frac{e}{2}\sin 1 - \frac{1}{2}\right]$$

$$= -\left[-\frac{1}{2e} + \frac{e}{2}\sin 1\right]$$

$$= \frac{1}{2e} - \frac{e\sin 1}{2}$$

最终答案: $\frac{1}{2e} - \frac{e \sin 1}{2}$ (或 $\frac{1}{2e} - \frac{e \sin 1}{2}$)

- 7. 设 y = y(x) 满足 $x^2y' + (x^2 3)y^2 = 0$ 且 y(1) = 1。
- (1) 求 y = y(x) 的表达式;(2) 计算 $\int_0^3 y^2(x) dx$.

解答

解题步骤

(1)求 y = y(x) 的表达式

第一步:分离变量

原方程为: $x^2y' + (x^2 - 3)y^2 = 0$

整理得: $x^2y' = -(x^2 - 3)y^2 = (3 - x^2)y^2$

当 $y \neq 0$ 时,两边同时除以 x^2y^2 并整理:

$$\frac{dy}{v^2} = \frac{3 - x^2}{x^2} dx$$

第二步:两边积分

左边:
$$\int y^{-2} dy = -\frac{1}{y}$$

右边: $\int \frac{3-x^2}{x^2} dx = \int \left(\frac{3}{x^2} - 1\right) dx = -\frac{3}{x} - x + C$

因此得到通解:

$$-\frac{1}{y} = -\frac{3}{x} - x + C$$

或写成:

$$\frac{1}{v} = \frac{3}{x} + x + C_1$$

(其中 $C_1 = -C$ 为新的常数)

第三步:利用初始条件确定常数

将 y(1) = 1 代入:

$$1 = 3 + 1 + C_1 \implies C_1 = -3$$

第四步:得到特解

代入 $C_1 = -3$:

$$\frac{1}{v} = \frac{3}{x} + x - 3$$

通分:

$$\frac{1}{v} = \frac{3 + x^2 - 3x}{x} = \frac{x^2 - 3x + 3}{x}$$

因此:

$$y(x) = \frac{x}{x^2 - 3x + 3}$$

(2)计算 $\int_0^3 y^2(x) dx$

关键观察:直接计算 $\int_0^3 \frac{x^2}{(x^2-3x+3)^2} dx$ 非常困难。这暗示我们应该进行巧妙的代数分解。

第一步:被积函数的分解

 $\Rightarrow D(x) = x^2 - 3x + 3, D'(x) = 2x - 3.$

我们尝试将分子 x2 表示为:

$$x^2 = A \cdot D(x) + B \cdot D'(x) + C$$

代入:

$$x^2 = A(x^2 - 3x + 3) + B(2x - 3) + C$$

比较系数:

- x^2 系数: A = 1
- $x \le 2B = 0 \implies B = \frac{3}{2}$

• 常数项:
$$3A-3B+C=0 \Longrightarrow C=\frac{3}{2}$$

因此:

$$x^{2} = (x^{2} - 3x + 3) + \frac{3}{2}(2x - 3) + \frac{3}{2}$$

第二步:拆分积分

$$I = \int_0^3 \frac{x^2}{(x^2 - 3x + 3)^2} dx = \int_0^3 \frac{D(x)}{D(x)^2} dx + \frac{3}{2} \int_0^3 \frac{D'(x)}{D(x)^2} dx + \frac{3}{2} \int_0^3 \frac{1}{D(x)^2} dx$$

$$I = I_1 + I_2 + I_3$$

计算 $I_1 = \int_0^3 \frac{1}{D(x)} dx$:

对 $D(x) = x^2 - 3x + 3$ 配方:

$$D(x) = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4}$$

使用反正切积分公式 $\int \frac{1}{u^2 + a^2} du = \frac{1}{a} \arctan(\frac{u}{a})$:

$$I_1 = \left[\frac{2}{\sqrt{3}}\arctan\left(\frac{2x-3}{\sqrt{3}}\right)\right]_0^3$$

$$I_1 = \frac{2}{\sqrt{3}} \left[\arctan(\sqrt{3}) - \arctan(-\sqrt{3}) \right] = \frac{2}{\sqrt{3}} \left[\frac{\pi}{3} + \frac{\pi}{3} \right] = \frac{4\pi}{3\sqrt{3}}$$

计算 $I_2 = \frac{3}{2} \int_0^3 \frac{D'(x)}{D(x)^2} dx$:

 $\Rightarrow u = D(x), \text{ } \exists u = D'(x) dx :$

$$I_2 = \frac{3}{2} \left[-\frac{1}{D(x)} \right]_0^3 = \frac{3}{2} \left[-\frac{1}{D(3)} + \frac{1}{D(0)} \right]$$

其中 D(3) = 9 - 9 + 3 = 3, D(0) = 3, 所以:

$$I_2 = \frac{3}{2} \left[-\frac{1}{3} + \frac{1}{3} \right] = 0$$

计算 $I_3 = \frac{3}{2} \int_0^3 \frac{1}{D(x)^2} dx$:

当 x = 0 时, $\theta = -\frac{\pi}{3}$; 当 x = 3 时, $\theta = \frac{\pi}{3}$.

分母变为:
$$D(x)^2 = \left[\frac{3}{4}(\tan^2\theta + 1)\right]^2 = \frac{9}{16}\sec^4\theta$$

$$I_3 = \frac{3}{2} \int_{-\pi/3}^{\pi/3} \frac{\frac{\sqrt{3}}{2}\sec^2\theta}{\frac{9}{16}\sec^4\theta} d\theta = \frac{3}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{16}{9} \int_{-\pi/3}^{\pi/3} \cos^2\theta d\theta$$

$$I_3 = \frac{4\sqrt{3}}{3} \int_{-\pi/3}^{\pi/3} \frac{1 + \cos(2\theta)}{2} d\theta = \frac{2\sqrt{3}}{3} \left[\theta + \frac{\sin(2\theta)}{2}\right]_{-\pi/3}^{\pi/3}$$

$$I_3 = \frac{2\sqrt{3}}{3} \left[\frac{2\pi}{3} + \frac{\sqrt{3}}{2}\right] = \frac{4\pi\sqrt{3}}{9} + 1 = \frac{4\pi}{3\sqrt{3}} + 1$$

第三步:合并结果

$$I = I_1 + I_2 + I_3 = \frac{4\pi}{3\sqrt{3}} + 0 + \frac{4\pi}{3\sqrt{3}} + 1 = \frac{8\pi}{3\sqrt{3}} + 1$$

分母有理化:

$$\frac{8\pi}{3\sqrt{3}} = \frac{8\pi\sqrt{3}}{9}$$

最终答案:

(1)
$$y(x) = \frac{x}{x^2 - 3x + 3}$$

(2) $\int_0^3 y^2(x) dx = \frac{8\pi\sqrt{3}}{9} + 1$

- 8. 设一组两台机器同时启动开始制作产品,其独立工作时间 T_1, T_2 均服从参数为 1 的指数分
- 布。X 表示两台机器较早出现故障的时间,且收益 $Y = \begin{cases} X-1, & X>1, \\ 0, & X\leq 1. \end{cases}$
- (1) 求 P(Y > 0); (2) 若有 N 组机器承接制作产品的任务,收益大于 0 的组数记为 M。记 $N \sim P(2e^2)$,在 N = n $(n \ge 1)$ 的条件下, $M \sim B(n, P(Y > 0))$,求 M 的概率分布。

解答

解题步骤

(1) 求 P(Y > 0)

第一步:理解收益函数

由收益函数的定义,Y > 0 当且仅当 X - 1 > 0,即 X > 1。

因此, P(Y > 0) = P(X > 1)。

第二步:确定 X 的分布

 $X = \min(T_1, T_2)$ 表示两台机器较早出现故障的时间。

已知 T_1, T_2 相互独立,都服从参数为 $\lambda = 1$ 的指数分布。

根据指数分布的性质,两个独立指数分布随机变量的最小值仍然服从指数分布,其参数为两者 参数之和:

$$X = \min(T_1, T_2) \sim \operatorname{Exp}(2)$$

指数分布 $Exp(\lambda)$ 的分布函数为 $F(x) = 1 - e^{-\lambda x}(x > 0)$ 。

第三步:计算概率

$$P(Y > 0) = P(X > 1) = 1 - F(1) = 1 - (1 - e^{-2 \cdot 1}) = e^{-2}$$

答案: $P(Y > 0) = e^{-2}$

(2) 求 M 的概率分布

第一步:建立概率模型

这是一个条件概率的复合分布问题:

- 总组数: $N \sim P(2e^2)$, 即 $P(N=n) = \frac{(2e^2)^n e^{-2e^2}}{n!}$, n = 0, 1, 2, ...
- 在 N = n 的条件下: $M \sim B(n, p)$, 其中 $p = P(Y > 0) = e^{-2}$
- 条件概率: $P(M = k | N = n) = \binom{n}{k} (e^{-2})^k (1 e^{-2})^{n-k} (0 \le k \le n)$

第二步:利用全概率公式

$$P(M=k) = \sum_{n=k}^{\infty} P(M=k|N=n)P(N=n)$$

$$= \sum_{n=k}^{\infty} \binom{n}{k} (e^{-2})^k (1 - e^{-2})^{n-k} \cdot \frac{(2e^2)^n e^{-2e^2}}{n!}$$

第三步:化简求和式

$$P(M = k) = \sum_{n=k}^{\infty} \frac{n!}{k!(n-k)!} (e^{-2})^k (1 - e^{-2})^{n-k} \frac{(2e^2)^n e^{-2e^2}}{n!}$$
$$= \frac{(e^{-2})^k e^{-2e^2}}{k!} \sum_{n=k}^{\infty} \frac{(1 - e^{-2})^{n-k} (2e^2)^n}{(n-k)!}$$

$$\begin{split} P(M=k) &= \frac{(e^{-2})^k e^{-2e^2}}{k!} \sum_{j=0}^{\infty} \frac{(1-e^{-2})^j (2e^2)^{j+k}}{j!} \\ &= \frac{e^{-2k} \cdot e^{-2e^2} \cdot (2e^2)^k}{k!} \sum_{j=0}^{\infty} \frac{[(1-e^{-2}) \cdot 2e^2]^j}{j!} \\ &= \frac{2^k e^{-2e^2}}{k!} \sum_{j=0}^{\infty} \frac{[2e^2-2]^j}{j!} \end{split}$$

第四步:识别指数函数

注意到 $\sum_{i=0}^{\infty} \frac{x^j}{i!} = e^x$,因此:

$$\sum_{j=0}^{\infty} \frac{[2e^2 - 2]^j}{j!} = e^{2e^2 - 2}$$

代入得:

$$P(M = k) = \frac{2^{k} e^{-2e^{2}}}{k!} \cdot e^{2e^{2}-2}$$

$$= \frac{2^{k} e^{-2e^{2}+2e^{2}-2}}{k!}$$

$$= \frac{2^{k} e^{-2}}{k!}$$

第五步:识别分布

这正是参数为 $\lambda = 2$ 的泊松分布的概率质量函数。 **答案**: $M \sim P(2)$,即 $P(M = k) = \frac{2^k e^{-2}}{k!}$,k = 0, 1, 2, ...

关键观察:复合分布问题通过全概率公式展开后,通常会出现指数函数的泰勒级数,这是识别 最终分布的重要线索。