Binary Trees

Outline

- Tree Concepts
 - Trees
 - Binary Trees
 - Implementation of a Binary Tree
- Tree Traversals Depth First
 - Preorder
 - Inorder
 - Postorder
- Breadth First Tree Traversal
- Binary Search Trees

Trees

- Another Abstract Data Type
- Heavily used for indexing data points
- Data structure made of nodes and pointers
- Much like a linked list
 - The difference between the two is how they are organized.
- A linked list represents a linear structure
 - A predecessor/successor relationship between the nodes of the list
- A tree represents a hierarchical relationship between the nodes (ancestral relationship)
 - A node in a tree can have several successors, which we refer to as children
 - A nodes predecessor would be its parent

Trees

- General Tree Information:
 - Top node in a tree is called the root
 - the root node has no parent above it
 - Every node in the tree can have "children" nodes
 - Each child node can, in turn, be a parent to its children and so on
 - Nodes having no children are called leaves
 - Any node that is not a root or a leaf is an interior node
 - The height of a tree is defined to be the length of the longest path from the root to a leaf in that tree.
 - A tree with only one node (the root) has a height of zero.

Tree Stuff

■ Trees:

- Here's an example picture of a tree:
 - 2 is the root
 - 2, 5, 11, and 4 are leaves 7, 5, 6, and 9 are interior nodes

Binary Tree

• Each node can have of most 2 children

Binary Trees

- A tree in which each node can have a maximum of two children
 - Each node can have no child, one child, or two children
 - And a child can only have one parent
 - Pointers help us to identify if it is a right child or a left one

Examples of two Binary Trees:

Trees

- A tree with maximum n child of a node is called n-ary tree.
- Examples of trees that are NOT Binary Trees:

More Binary Tree

A full binary tree:

Every node, other than the leaves, has two children

A binary tree T is full if each node is either a leaf or possesses exactly two child

More Binary Tree

- A complete binary tree:
 - Every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Complete Vs Full Binary Tree

Again Height of a Binary Tree

- The **height of a binary tree** is the largest number of edges in a path from the root node to a leaf node.
- Essentially, it is the height of the root node.
- Note that if a tree has only one node, then that node is at the same time the root node and the only leaf node, so the height of the tree is 0.

More Binary Tree

- The root of the tree is at level 0
- The level of any other node in the tree is one more than the level of its parent
- Total max# of nodes (n) in a

complete binary tree:

- $n = 2^{h+1} 1$ (maximum)
- So, if height = 3, then $n = 2^{3+1} 1 = 15$
- See the example in two slides ago on complete binary tree
- Height (h) of the tree:
 - $h = \log((n + 1)/2)$
 - If we have 15 nodes
 - $h = \log(16/2) = \log(8) = 3$

Implementation of a Binary Tree:

- A binary tree has a natural implementation using linked storage
- Each node of a binary tree has both left and right subtrees that can be reached with pointers:

```
struct tree_node {
    int data;
    struct tree_node *left_child;
    struct tree_node *right_child;
}
```


■ Traversal of Binary Trees:

- We need a way of walk through through a tree for searching, inserting, etc.
- In Linked lists are traversed from the head to the last node sequentially
 - Can't we just "do that" for binary trees.?.
 - NO! There is no such natural linear ordering for nodes of a tree.
- Turns out, there are THREE ways/orderings of traversing a binary tree:
 - Preorder,
 - Inorder, and
 - Postorder

But before we get into the nitty gritty of those three, let's describe..

- A depth-first search (DFS) explores a path all the way to a leaf before backtracking and exploring another path
- For example, after searching A, then B, then D, the search backtracks and tries another path from B
- Node are explored in the order ABDEHLMNIOPCF GJKQ
- N will be found before J

- There are 3 ways/orderings of traversing a binary tree (all 3 are depth first search methods):
 - Preorder, Inorder, and Postorder
 - These names are chosen according to the step at which the root node is visited:
 - With preorder traversal, the root is visited before its left and right subtrees.
 - With inorder traversal, the root is visited between the subtrees.
 - With postorder traversal, the root is visited after both subtrees.

Tree Traversals - Preorder

- the root is visited before its left and right subtrees.
- For the following example, the "visiting" of a node is represented by printing that node
 - Code for Preorder Traversal:

```
void preorder (struct tree_node *p) {
    if (p != NULL) {
        printf("%d ", p->data);
        preorder(p->left_child);
        preorder(p->right_child);
    }
}
```

Tree Traversals - Preorder

- Preorder Traversal Example 1
 - the root is visited before its left and right subtrees

Tree Traversals - Preorder

■ Preorder Traversal – Example 2

Order of Visiting Nodes: a b d g h e i c f j

Example: Preorder

Tree Traversals - Inorder

- the root is visited between the left and right subtrees
 - For the following example, the "visiting" of a node is represented by printing that node
- Code for Inorder Traversal:

```
void inorder (struct tree_node *p) {
    if (p != NULL) {
        inorder(p->left_child);
        printf("%d ", p->data);
        inorder(p->right_child);
    }
}
```

Tree Traversals - Inorder

- Inorder Traversal Example 1
 - the root is visited between the subtrees

bac

Tree Traversals - Inorder

■ Inorder Traversal – Example 2

Order of Visiting Nodes: g dhbeiafjc

Example 3: Inorder

Tree Traversals – Postorder

- Postorder Traversal
 - the root is visited after both the left and right subtrees
 - For the following example, the "visiting" of a node is represented by printing that node
 - Code for Postorder Traversal:

```
void postorder (struct tree_node *p) {
    if (p != NULL) {
        postorder(p->left_child);
        postorder(p->right_child);
        printf("%d ", p->data);
    }
}
```

Tree Traversals – Postorder

- Postorder Traversal Example 1
 - the root is visited after both subtrees

bca

Tree Traversals – Postorder

■ Postorder Traversal – Example 2

Order of Visiting Nodes: ghdiebjfca

Example: Postorder

Tree Traversals

Final Traversal Example

• Preorder: a b c d f g e

• Inorder: b a f d g c e

• Postorder: b f g d e c a

- Binary Search Trees
 - We've seen how to traverse binary trees
 - But it is not quite clear how this data structure helps us
 - What is the purpose of binary trees?
 - What if we added a restriction...
 - Consider the following
 - binary tree:
 - What pattern can you see?

Binary Search Trees

- For each node N, all the values stored in the left subtree of N are LESS than the value stored in N.
- Also, all the values stored in the right subtree of N are GREATER than the value stored in N.
- Why might this property be a desirable one?
 - Searching for a node is super fast!
- Normally, if we search through n nodes, it takes O(n) time
- But notice what is going on here:
 - This ordering property of the tree tells us where to search
 - We choose to look to the left OR look to the right of a node
 - We are HALVING the search space

...O(log n) time

- ALL of the data values in the left subtree of each node are smaller than the data value in the node itself (root of said subtree)
- Stated another way, the value of the node itself is larger than the value of every node in its left subtree.
- ALL of the data values in the right subtree of each node are larger than the data value in the node itself (root of the subtree)
- Stated another way, the value of the node itself is smaller than the value of every node in its right subtree.
- Both the left and right subtrees, of any given node, are themselves binary search trees.

A Binary Search Tree

- A binary search tree, commonly referred to as a BST, is extremely useful for efficient searching
- Basically, a BST amounts to embedding the binary search into the data structure itself.
- Notice how the root of every subtree in the BST on the previous page is the root of a BST.
- So, how about inserting something in a BST?
- This ordering of nodes in the tree means that insertions into a BST are not placed arbitrarily
 - Rather, there is a specific way to insert
 - We will learn it

Binary Trees Practice

Binary Tree Traversals – Practice Problems

Binary Tree Traversals – Practice Problems

Practice Problem Solutions – Tree #1

Preorder Traversal:

3, 13, 22, 19, 26, 54, 71, 33, 14, 11, 87, 8, 56, 9, 75, 28, 15, 10, 63, 36, 7, 69, 59, 68, 44

Inorder Traversal:

54, 26, 71, 19, 22, 11, 14, 33, 8, 87, 56, 13, 9, 75, 3, 63, 10, 15, 28, 59, 69, 68, 7, 36, 44

Postorder Traversal:

54, 71, 26, 19, 11, 14, 8, 56, 87, 33, 22, 75, 9, 13, 63, 10, 15, 59, 68, 69, 7, 44, 36, 28, 3

Practice Problem Solutions – Tree #2

Preorder Traversal:

3, 28, 36, 44, 7, 69, 68, 59, 15, 10, 63, 13, 9, 75, 22, 33, 87, 56, 8, 14, 11, 19, 26, 71, 54

Inorder Traversal:

44, 36, 7, 68, 69, 59, 28, 15, 10, 63, 3, 75, 9, 13, 56, 87, 8, 33, 14, 11, 22, 19, 71, 26, 54

Postorder Traversal:

44, 68, 59, 69, 7, 36, 63, 10, 15, 28, 75, 9, 56, 8, 87, 11, 14, 33, 71, 54, 26, 19, 22, 13, 3

References and Acknowledgement

1.) Many slides and text where taken from:

https://www.cs.ucf.edu/courses/cop3502/spr2012/notes/COP3502_22_Bin aryTrees1.pdf

2. More Reading Resource:

http://www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/lec/BinaryTrees -1.doc