Project Title: Cross-Camera Player Mapping

Objective

The goal of this project is to assign consistent player IDs across two different camera views of the same gameplay:

- broadcast.mp4: Traditional game view from a high and wide angle.
- tacticam.mp4: Tactical low-angle or close-up camera capturing the same action.

Players must be matched across both feeds, even though:

- Camera angles differ
- Player positions may shift
- Appearances may slightly change

Problem Statement

How do we ensure that:

Player A in broadcast.mp4 is matched correctly to the same Player A in tacticam.mp4, even though they appear different due to camera angles?

This is a cross-view re-identification (Re-ID) challenge, and we solve it using **visual embeddings**.

Methodology & Approach

The solution is broken into the following stages:

1. Player Detection using YOLOv8

- We use a **custom-trained YOLOv8 model** (best.pt) to detect players in both videos.
- YOLO outputs bounding boxes and confidence scores for each detected player.
- Detections with confidence above 0.8 are considered valid.

2. Visual Embedding Extraction with ResNet50

- For each detected player (bounding box), we:
 - o Crop the player from the frame.
 - Pass it through a **pretrained ResNet50** model (without the final classification layer).

3. Embedding Comparison Using Cosine Similarity

- Once we extract embeddings for all players from both videos:
 - We use cosine similarity to compare the visual features of each player in tacticam.mp4 against every player in broadcast.mp4.
 - o The player in tacticam is matched to the one in broadcast with the highest similarity score (above a defined threshold).

4. Player ID Mapping

• After similarity matching, we build a mapping:

```
mapping = { }

for i, t_id in enumerate(t_ids):

    best_match_index = np.argmax(sim_matrix[i])

    b_id = b_ids[best_match_index]

    mapping[t_id] = b_id
```

• This ensures **consistent IDs** across camera angles.

Techniques Tried and Outcomes

Component	Technique Used	Result
Model	YOLOv8 with best.pt	Accurate bounding boxes
Feature Extraction	ResNet50	Good visual differentiation
Matching	Cosine similarity	Effective in clean visual cases

Challenges Encountered

Issue	Description
Different camera angles	Same player can look different due to angle, lighting, and size variations
Player occlusion or blur	Visual features may degrade for partially visible players
Similar jerseys	Matching players from the same team can lead to incorrect mapping
Frame mismatch	Slight timing differences in frames between the two videos

Results

- **High accuracy** in matching players when:
 - o Players are fully visible
 - o Background contrast is decent
 - o Players have distinct shapes or jersey numbers
- Lower accuracy when:
 - o Players are occluded or heavily blurred
 - o Frames are too different in timing