Теория групп

prerequisite knowledge: база алгебры: множества, упорядоченные n-ки, декартово произведение, отображения, графики, классы отображений, отношения их их свойства.

Мотивация

Группа - одна из простейших алгебраических структур, свойства которой нам будут очень полезны.

Аксиомы и примеры:

Пусть есть какое-то непустое множество G с заданной на нём бинарной операцией звёздочкой $*:G\times G\to G$. Такое множество называется <u>группой</u>, если выполняются три аксиомы:

- 1. $\forall a,b,c \in G: a*(b*c) = (a*b)*c$ (ассоциативность операции)
- 2. $\exists e \in G : a*e = e*a = a$ (существование единицы)
- $\exists . \ \forall a \in G : \exists a' : a * a' = e \$ (существование обратных)

e называют нейтральным элементом, а a^\prime - обратным к a.

Заметим, что не для всех $a,b:a*b \neq b*a.$ Если для всех элементов группы справедлива

коммутативность умножения (a*b=b*a), то группа называется <u>абелевой</u>.

Обычно для абелевой группы вместо звездочки пишут плюс, вместо нейтрального элемента - 0, а вместо обратного к a - -a. Для неабелевой пишут знак умножения, вместо нейтрального - 1, вместо обратного к a - a^{-1} . Такие записи называются аддитивными и мультипликативными соответственно.

Далее группы обозначаются либо несущим множеством: G; либо парой множества и операции: (G,*).

≔ Примеры групп:

- 1. $(\mathbb{Z},+)$ целые числа по сложению. У каждого элемента есть обратный (он же со знаком минус), нейтральный 0, ассоциативность сложения выполняется.
- (ℚ \ {0}, •) рациональные числа без нуля по умножению. Обратный - перевернутая дробь, нейтральный - 1, ассоциативность умножения выполняется.
- 3. $(\mathbb{R}_{>0}, \bullet)$ положительные вещественные числа по умножению.
- 4. $(\{\pm 1\} \in \mathbb{R}, \bullet)$ группа из элементов -1, 1. Нейтральный - 1, обратный - он сам. Построим <u>таблицу Кэли</u> операции:

•	1	-1
1	1	-1
-1	-1	1

Смотреть так: чтобы получить результат операции двух элементов, надо взять один элемент из первого столбца и один элемент из первой строки. Затем посмотрим на пересечение соответствующих им строки и столбца. Это и есть результат операции этих двух элементов.

5. Множество поворотов правильного n-угольника на плоскости вокруг его центра на углы $\frac{2\pi k}{n}$.

На пятом примере можно остановиться поподробнее, так как это очень интересная группа. Рассмотрим простейшую из таких групп - группу поворотов правильного треугольника. Элементами группы будут такие повороты, которые оставляют его таким же, если бы мы не знали названия вершин. А именно:

- поворот на 0 градусов вокруг центра
- поворот на 120 градусов вокруг центра
- поворот на 240 градусов вокруг центра

Обозначим эти операции как $R_0,\ R_{120},\ R_{240}$ соответственно.

Заметим, что R_0 - тождественное отображение в треугольник до операции. Этот поворот не меняет ничего, поэтому его можно считать нейтральным элементом.

Зададим операцию на множестве поворотов: о - операцию композиции. Мы можем применить два поворота:

$$R_{120}\circ R_{120}=R_{240}.$$

Можете проверить, что любая композиция поворотов - это тоже поворот.

Для каждого поворота есть поворот, который возвращает треугольник в исходное положение. Например проверим, что обратное к R_{120} это R_{240} . Повернём треугольник на 120 градусов и затем на 240: $R_{240} \circ R_{120} = R_0$.

Получается, что у каждого элемента группы есть обратный. Композиция поворотов ассоциативна.

Получили группу поворотов правильного треугольника вокруг его центра. Таблица Кэли операции:

0	${f R_0}$	${f R_{120}}$	${f R_{240}}$
${f R_0}$	R_0	R_{120}	R_{240}
${f R_{120}}$	R_{120}	R_{240}	R_0
${f R_{240}}$	R_{240}	R_0	R_{120}

Но не только повороты оставляют треугольник на месте. Можем расширить нашу группу до группы самосовмещений треугольника. Симметрия относительно медианы тоже сохраняет треугольник. Таких симметрий три: S_a , S_b , S_c .

Однако это действие меняет свойство треугольника - его ориентацию. Применив симметрию, мы как бы попали в зазеркалье - там меняется направление. То есть, из элемента симметрии мы не сможем получить элемент поворота, не применив симметрию ещё раз. Таблица Кэли новой группы:

0	${f R_0}$	$ m R_{120}$	$ m R_{240}$	$\mathbf{S_a}$	$\mathbf{S_b}$	$\mathbf{S_c}$
${f R_0}$	R_0	R_{120}	R_{240}	S_a	S_b	S_c
${f R_{120}}$	R_{120}	R_{240}	R_0	S_b	S_c	S_a
${f R_{240}}$	R_{240}	R_0	R_{120}	S_c	S_a	S_b
$\mathbf{S_a}$	S_a	S_c	S_b	R_0	R_{240}	R_{120}
$\mathbf{S_{b}}$	S_b	S_a	S_c	R_{120}	R_0	R_{240}
$\mathbf{S_c}$	S_c	S_b	S_a	R_{240}	R_{120}	R_0

Группа поворотов треугольника - **подгруппа** этой более большой группы самосовмещений правильного треугольника на плоскости. Вот она в верхнем левом углу таблицы. О подгруппах поговорим чуточку позднее.

Вообще все эти преобразования можно было бы записать без поворотов и симметрий. Например, заменим элементы

группы поворотов треугольника на **перестановки вершин** треугольника:

$$R_0=id=egin{pmatrix}A&B&C\A&B&C\end{pmatrix},\ R_{120}=egin{pmatrix}A&B&C\B&C&A\end{pmatrix},\ R_{240}=egin{pmatrix}A&B&C\C&A&B\end{pmatrix}$$

Под каждой вершиной пишется та, в которую она переходит при повороте. И у нас получилась группа не поворотов треугольника, а **группа перестановок**. Это вроде бы разные группы, но они представляют что-то одно по своей сути. Такое явление называется **изоморфизмом** групп, про который поговорим буквально через пункт (в следующем параграфе).

Свойства групп:

1. Нейтральный элемент единственный.

В Доказательство >

Пусть есть какие-то два нейтральных e,e'. Тогда e=e*e'=e' по определению нейтрального.

2. Для каждого элемента обратный единственный.

🖹 Док-во >

Пусть
$$g',g''$$
 - обратные к g . Тогда
$$g'=g'_e=g'_(g*g'')=g'*g*g''=(g'*g)*g''=e*g''=g''$$

3. Уравнения ax = b, ya = b разрешимы относительно x, y единственным способом.

🖹 Док-во: >

Рассмотрим ax=b. Пусть есть решение x. Домножим на a^{-1} слева:

$$a^{-1}(ax) = a^{-1}bex = a^{-1}bx = a^{-1}b$$
 - единственность.

Проверим, что это решение:

$$a(a^{-1}b) = beb = b$$
. Ч.Т.Д.

Для y аналогично. Домножаем на a^{-1} справа и получаем $y=ba^{-1}$.

4. Если (ax=ay) или (xa=ya), то x=y. (то есть возможно сокращение слева и справа)

□ D: >

Пусть ax=ay. Домножим на a^{-1} слева. ex=ey, x=y. Аналогично и для xa=ya.

Из этих свойств следует небольшой факт:

Пусть G - группа, $a \in G$, заданы два отображения:

$$egin{aligned} \phi_a:G o G & \psi_a:G o G \ x\mapsto ax & y\mapsto ya \end{aligned}$$

Эти отображения - биекции.

Докажем для ϕ_a :

Сюръективность: $\forall b \in G \quad \phi(x) = ax = b$. По третьему свойству x существует, причем единственный, следовательно для всякого b есть прообраз.

Инъективность следует из четвёртого свойства:

$$\phi(x)=\phi(y)\iff ax=ay,\ a^{-1}ax=a^{-1}ay,\ x=y.$$

Значит ϕ_a биективно. Аналогично доказывается и для ψ_a .

Далее поговорим про изоморфизм групп.

2. Изоморфизм групп

Пусть есть две группы $(G,*), (H,\circ)$, отображение $f:G\to H.$ Это отображение называется изоморфизмом, если

- 1. f биективно
- 2. $\forall g_1, g_2 \in G : f(g_1 * g_2) = f(g_1) \circ f(g_2)$

Если между двумя группами есть изоморфизм, то они называются <u>изоморфными</u>:

$$G\cong H$$

≔ Например

Группа $\{\pm 1\}$ с операцией умножения и группа перестановок $\{a,b\}$ изоморфны.

$$f:egin{cases} 1 & \mapsto id \ -1 & \mapsto (a \leftrightarrow b) \end{cases}$$

 $(1\ {
m переходит}\ {
m B}\ {
m нейтральную\ перестановку,}\ {
m -1}\ {
m B}\ {
m единственную\ отсавшуюся\ перестановку,}\ {
m которая\ меняет}\ {
m элемент}\ {
m на\ другой:}\ a\ {
m Ha\ }b,$ и наоборот) Можете проверить второе свойство самостоятельно.

Некоторые свойства изоморфизма

- $1.\ G\cong G$ (группа изоморфна сама себе)
- $2.~G\cong H\implies H\cong G$ (изоморфизм симметричен)

□ D: >

Пусть есть изоморфизм f из G в H. У биекции есть обрантое: f^{-1} , проверим для него второй критерий изоморфизма: Пусть есть $h_1,h_2\in H$, $\exists g_1,g_2\in G$:

$$egin{aligned} h_1 &= f(g_1) \iff g_1 = f^{-1}(h_1) \ h_2 &= f(g_2) \iff g_2 = f^{-1}(h_2) \ h_1 h_2 &= f(g_1) f(g_2) = f(g_1 g_2) \ f^{-1}(h_1 h_2) &= g_1 g_2 = f^{-1}(h_1) f^{-1}(h_2) \end{aligned}$$

 $3.\ G\cong H, H\cong K\implies G\cong K.$ (композиция изоморфизмов - изоморфизм)

```
f:G	o H,\ d:H	o K.\ d\circ f - биекция. (d\circ f)(g_1g_2)=d(f(g_1g_2))=d(f(g_1)f(g_2))=d(f(g_1))d(f(g_2))=(d\circ f)(g_1)(d\circ f)(g_2)
```

Гомоморфизм:

Пусть всё ещё есть группы $(G,*), (H,\circ)$, но теперь $f:G\to H$ не биективно. Тогда f называется <u>гомоморфизмом</u>, если

$$\forall g_1,g_2 \in G: f(g_1*g_2) = f(g_1) \circ f(g_2)$$

Таким образом **изоморфизм** - это биективный гомоморфизм. Некоторые свойства гомоморфизма:

1.
$$f(e_G) = e_H$$

$$f(e_G)=f(e_G*e_G)=f(e_G)\circ f(e_G) \quad | \ (f(e_G))^{-1}\circ \ e_H=e_H\circ f(e_G) \implies e_H=f(e_G)$$

2.
$$f(g^{-1}) = (f(g))^{-1}$$

$$e_H=f(e_G)=f(g*g^{-1})=f(g)\circ f(g^{-1})\ e_H=f(e_G)=f(g^{-1}*g)=f(g^{-1})\circ f(g)$$
 \Longrightarrow $f(g^{-1})$ - обратный к $f(g).$

3. Подгруппы

В начале главы мы познакомились с примером группы самосовмещений треугольника. В этой группе была подгруппа поворотов относительно центра. Строго определим это понятие.

Пусть есть группа (G,*) и непустое подмножество $\varnothing \neq H \subseteq G$. (H,*) - подгруппа G, если H - группа относительно той же самой операции (*):

$$(*):G imes G o G$$

$$(*)|_{H imes H}: H imes H o H$$
 (сужение операции на H)

Подгруппа обозначается так: $H \leq G$.

≡ Пример:

$$(2\mathbb{Z},+) \leq (\mathbb{Z},+)$$

Критерий подгруппы

Как понять, подгруппа перед нами или нет?

Пусть есть группа (G,*), $\varnothing \neq H \subset G$. Тогда:

$$H \leq G \iff egin{cases} orall h_1, h_2 \in H &: h_1 * h_2 \in H \ orall h \in H &: h^{-1} \in H \end{cases}$$

 $(H-подгруппа\ G,\ если\ H\ замкнута\ относительно\ умножения\ и\ замкнута\ относительно\ взятия\ обратного.)$

□ D: >

 \implies Пусть H - подгруппа. Значит, H - группа относительно этой же операции. Значит, операция задана на $H \times H \to H$. Получается, что H замкнута относительно умножения, и обратные лежат в H.

 $\mathrel{\sqsubseteq}$ Пусть выполнены оба условия. На H задана операция группы G :

$$orall g_1,g_2,g_3\in G: g_1(g_2g_3)=(g_1g_2)g_3 \implies$$

$$orall g_1, g_2, g_3 \in H: g_1(g_2g_3) = (g_1g_2)g_3$$
 (ассоциативность)

Возьмём $h \in H.$ По второму свойству $h^{-1} \in H$, по первому

$$h*h^{-1}\in H\implies e_G\in H.$$

$$\forall g \in G : e_G * g = g * e_G = g \implies$$

$$orall g \in H : e_G * g = g * e_G = g.$$

 e_G будет нейтральным в H. Обратные тоже в H

 $\implies H$ - группа относительно той же операции - подгруппа.

Пересечения подгрупп

У подгрупп одной группы есть наверняка что-то общее. Хотя бы нейтральный. Об этом в следующем предложении:

Пусть есть группа (G,\cdot) , семейство подгрупп $\{H_i\}_{i\in I},\ H_i\leq G.$ Тогда пересечение подгрупп - группа:

$$igcap_{i\in I} H_i \leq G$$

□ D: >

Каждая H_i содержит $e=e_G\implies e\in \bigcap H_i,\ \bigcap H_i
eq \varnothing.$

Рассмотрим $h,g\in\bigcap H_i$. Тогда

 $h,g\in H_i$ для всех $i\in I.$

 $h\cdot g\in H_i$ (T.K. $H_i\leq G$).

 $h^{-1} \in H_i$ (T.K. $H_i \leq G$).

Таким образом, $hg \in \bigcap H_i, \ h^{-1} \in \bigcap H_i$, по выбору h,g это справедливо для всех элементов пересечения, и по критерию подгруппы $\bigcap H_i \leq G$.

Подгруппа, порождённая множеством

Есть группа G, рассмотрим пересечение подгрупп, содержащие множество S: $H = \bigcap_{S \subseteq F < G} F$.

H - подгруппа G, т.к. пересечение подгрупп F - группа.

H - наименьшая (по включению) подгруппа G, содержащая S.

H - подгруппа, порождённая множеством S:

$$H = \langle S \rangle$$

S - множество образующих подгруппы H.

≡ Пример

$$\langle \varnothing \rangle = \{e\}$$

$$\langle e \rangle = \{e\}$$

$$\langle -1 \rangle = (\{\pm 1\}, \cdot)$$

Пусть F - любая подгруппа, содержащая S.

ВF есть $e,\ s\in S,\ s^{-1}\in S.$

Можем рассматривать всевозможные следующие произведения: $s_1^{n_1}, s_2^{n_2}, \dots, s_k^{n_k} \in F$, где $s_i \in S, \ n_i \in \{\pm 1\}, \ k \geq 0.$

Предложение. $\langle S
angle = \{s_1^{n_1} \cdot \ldots \cdot s_k^{n_k} \mid k \geq 0, \; n_i \in \{\pm 1\}, \; s_i \in S\}.$

4. Теорема о делении с остатком в \mathbb{Z} .

Пусть $a,b\in\mathbb{Z},\;b
eq0.$ Тогда

$$\exists !q,r \in \mathbb{Z}: a=bq+r, \ 0 \leq r \leq |b|$$

q - неполное частное, r - остаток от деления a на b.

5. Циклические группы

Группа, <u>порождённая</u> одним элементом, - <u>циклическая</u>.

≡ Примеры

- 1. $\langle e \rangle = \{e\}$
- $2. \mathbb{Z}, + \langle 1 \rangle = (\mathbb{Z}, +)$
- 3. Группы поворотов плоскости вокруг нуля на углы $\frac{2\pi n}{k}, k \in \mathbb{Z}$ порождаются поворотом на $\frac{2\pi}{n}$.

Назовём группу из примера номер 3 C_n .

Теорема. Всякая циклическая группа изоморфна либо группе целых чисел по сложению, либо $C_n, n \geq 1$.

Порядок группы

 $a \in (G, \cdot).$

Если $a^k
eq a^j \quad \forall k \neq j$ (т.е. $\langle a \rangle \cong (\mathbb{Z},+)$), то говорят, что у a

бесконечный порядок.

В противном случае, существует наименьшее положительное n, что $a^n=e_G$. Тогда n - порядок a.

Порядок группы - её мощность - |G|.

Порядок a совпадает с порядком $\langle a \rangle$.

6. Классы смежности

#todo мотивацию и примеры

$$G$$
 - группа, $H \leq G$. $a,b \in G$.

Левый класс смежности

$$a \equiv b \iff b^{-1}a \in H.$$

Лемма. \equiv_{T} - отношение эквивалентости.

 $[a]_L$ - **левый класс смежности** по подгруппе H.

$$[a]_L = \{b \in G \mid b^{-1}a = h, \; h \in H\} = \{b \in G \mid b = ah^{-1}, \; h \in H\} = \underline{aH}$$

Правый класс смежности

$$a \equiv b \iff ab^{-1} \in H$$
.

Лемма. $\equiv -$ отношение эквивалентности.

Аналогично предыдущей лемме.

 $[a]_R$ - **правый класс смежности** по подгруппе H.

$$[a]_R = \{b \in G \mid b = h^{-1}a, \; h \in H\} = Ha$$

В общем случае $aH \neq Ha$. Равенство в случае абелевой группы.

Если H = G, то только 1 класс смежности.

Если $H = \langle e \rangle$, то каждый класс смежности содержит 1 элемент.

7. Теорема Лагранжа

Лемма. (G, \cdot) - группа, $H \leq G, \ a \in G$.

Множества H и aH равномощны и множества H и Ha равномощны.

Все левые классы смежности образуют разбиение множества G на подмножества aH, равномощные H.

Равномощны ли фактормножества $G/_{\overline{\overline{R}}}$ и $G/_{\overline{\overline{R}}}$?

Лемма 2. Фактормножества $G/_{\frac{1}{L}}$ и $G/_{\frac{1}{R}}$ равномощны. (неформально: число левых классов равно числу правых)

Индекс подгруппы H в G - это мощность $G/_{\frac{1}{\overline{L}}}$ (или тоже самое, что $G/_{\frac{1}{\overline{R}}}$). (количество левых классов смежности) Индекс подгруппы обозначается так: [G:H]. Далее будем различать индекс конечный и бесконечный.

Теорема Лагранжа. G - конечная группа, $H \leq G$.

$$|G| = |H| \cdot [G:H]$$

Следствие 1. |H| делит |G|. **Следствие 2.** $a \in G$. Порядок a делит |G|.

8. Симметрические группы

Пусть есть какое-то множество $X=\{1,2,\ldots,n\}.$ S(X) - множество всех биекций на X. S_n - симметрическая группа, группа перестановок степени n . Элементы группы - перестановки:

$$\sigma \in S_n \quad \sigma = egin{pmatrix} 1 & 2 & \dots & n \ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Иногда пишут только вторую строку. σ^{-1} - та же перестановка, только надо поменять строки местами.

Мощность группы перестановок: $|S_n| = n!$

Цикл длины k - переводит каждый элемент в следующий, а последний (k-тый) - в первый. Пишут ($i_1 i_2 \dots i_k$).

Количество различных циклов длины k в $S_n: \frac{n(n-1)\dots(n-k+1)}{k}$.

Цикл длины два - **транспозиция**: $(i\ j)$ Два цикла называются **незацепляющимися**, если у них нет общих элементов из X.

 $x \in X$ - неподвижная точка для σ , если $\sigma(x) = x$.

Лемма 1. Произведение двух незацепляющихся циклов не зависит от порядка сомножителей.

Теорема. Всякая перестановка представляется в виде произведения попарно незацепляющихся циклов, и такое представление единственно с точностью до перестановок сомножителей.

Перестановки $\sigma,\ \sigma'$ сопряженные, если существует $au\in S_n: \sigma'= au\sigma au^{-1},\ \sigma= au^{-1}\sigma' au.$

Некоторые семейства образующих S_n :

- $1. \, S_n$ порождается циклами.
- 2. Все транспозиции пораждают $S_n,\ n\geq 2.$
- 3. S_n пораждаются транспозициями, меняющих два соседних элемента

9. Чётность перестановок

$$\sigma \in S_n, \quad 1 \leq i, j \leq n.$$

i,j - инверсия для σ , если $i < j, \ \sigma(i) < \sigma(j).$

 $I(\sigma)$ - множество всех инверсий перестановки $\sigma.$ $|I(\sigma)|=\#\sigma.$

≡ Пример:

 $egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$ - инверсии, любые два элемента - инверсия.

$$\#id=0 \ \#egin{pmatrix} 1\dots n \ n\dots 1 \end{pmatrix} = rac{n(n-1)}{2}$$

Определим $l(\sigma) = n$ — число циклов в цикловом типе . (это не тире, а минус) (считаем неподвижные точки как циклы длины 1).

≡ Пример:

Цикловый тип σ' : $(5\ 5\ 3\ 2\ 2\ 1\ 1\ 1)$ - цикл длины 5, цикл длины 3, . . .

$$l(\sigma') = 20 - 8 = 12$$

Наша цель: $\sigma = \tau_1 \tau_2 \dots \tau_m, \quad \tau_i$ - транспозиции. Хотим докажем, что $m, \ l(\sigma), \ \#\sigma$ имеют одну чётность.

Теорема 1. $\sigma \in S_n, \ au$ - транспозиция. Тогда $l(\sigma), \ l(\sigma au)$ имеют разную чётность.

Теорема 2. au - транспозиция. Тогда $\#\sigma$ и $\#(\sigma\tau)$ имеют разную чётность.

Лемма. $au=(i\ i+1)$. Тогда # au и $\#(\sigma au)$ имеют разную чётность.

Теорема. Пусть $\sigma = \tau_1 \dots \tau_m, \quad \tau_i \in S_n, \ \tau_i$ - транспозиции. Тогда три числа имеют одинаковую чётность:

$$\#\sigma$$
 $l(\sigma)$ m

Следствие. $\sigma \in S_n, \ \tau$ - транспозиция. Тогда $\#\sigma$ и $\#\tau\sigma$ имеют разную чётность. И $l(\sigma)$ и $l(\tau\sigma)$ имеют разную чётность.

Перестановка σ называется <u>чётной</u>, если выполнено любое из трёх равносильных условий:

- 1. σ произведение чётного числа транспозиций.
- $2. \# \sigma$ чётно.
- 3. $l(\sigma)$ чётно.

В противном случае перестановка нечётная.

Множество всех чётных перестановок в S_n обозначается за A_n .

Произведение чётных - чётно, произведение двух нечётных - чётно, произведение чётной и нечётной - нечётное. Обратная к чётной - чётна, к нечётной - нечётна.

Предложение. $A_n \leq S_n$.

Предложение.
$$|A_n|=egin{cases} 1, & n=1 \ n!\cdot 1/2 & n>1 \end{cases}$$