| תורת הגרפים-2<br>תרצה הרסט ואילת בוטמן,<br>מבוסס על הספר ״מתמטיקה בדידה״<br>של נתי ליניאל ומיכל פרנס                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| גרפים מישורים (Planar Graphs) גרפים מישורים (הגדרה: גרף 6 נקרא מישורי אם ניתן לייצג אותו במישור מבלי שאף שתי צלעות תיחתכנה. ■ דוגמא: הגרף השלם ⊀ α'שורי: |
| יי מה עם הגרפים $K_{3,3}$ ו- $K_{3,3}$ ? $K_{3,3}$ יו מה עם הגרפים $M_{3,3}$                                                                             |

| <br>_ |
|-------|
| <br>  |
| <br>_ |
|       |
|       |
|       |
|       |
|       |
|       |
|       |
| <br>  |
| <br>  |
| <br>  |
| <br>_ |
|       |
|       |
|       |
|       |
|       |
|       |
| _     |
|       |
| <br>  |
|       |

## -פאות של גרף מישורי

- פאה היא אזור החסום על ידי צלעות של הגרף המישורי.
  - **הפאה האינסופית** היא הפאה החיצונית של הגרף.



4

DA.

## משפטים על גרף מישורי

- <u>משפט (נוסחת אוילר)</u>: יהי *G* גרף מישורי קשיר. יהיו:
  - ם n מספר הקדקודים,
  - מספר הצלעות, m 🗆
  - , מספר הפאות של הגרף f 🛚
    - .n+f-m=2 אזי מתקיים:
      - בעיון הוכחה:
- מקבעים את מס' הקודקודים: ח, ומוכיחים באינדוקציה
   על מס' הצלעות, שהינו: m≤n-1 (כי הגרף קשיר).

5



הוכחת נוסחת אוילר: יהיה G גרף מישורי קשיר אזי אזי מתקיים: n+f-m=2

אוילר הוכיח את הקשר הבא בין מספר הקדקודים, הצלעות והפאות של כל גרף מישורי.

**הוכחה:** נקבע את מספר הקדקודים n, ונוכיח את המשפט באינדוקציה על מספר הצלעות m של הגרף. מכיוון ש- G קשיר בהכרח  $m \geq n$  (טענה 5.1.14). בסיס האינדוקציה: m = n-1. במיס האינדוקציה: m = n-1. במיס האינדוקציה: m = n-1.

האינסופית, כלומר f=1. מכיוון ש-m=n-1 נוסחת אוילר מתקיימת. שלב האינדוקצרה: נוכרה לגרף קשיר עם  $n \leq m \leq m \leq m$  צלע שלב האינדוקצרה: נוכרה לגרף קשיר עם  $n \leq m \leq m \leq m$  קד היו ב G בשלע שהשמטתה אינה מנתקת את הגרף. לכן, בגרף G' = G' = G' = m = m על היו מכועה קשיר מכוא, על פי הנחת האינדוקציה לגבי G' = G' = G'

ь

| $3 \le n$ משפט: יהי $G$ גרף מישורי קשיר עם $n \ge 1$ קדקודים ו- $m \le 3(n-2)$ אז $m \le 3(n-2)$ מס' הצלעות. אז $m \ge 1$ מס' הצלעות החלות בפאה $m \ge 1$ מס' הצלעות החלות בפאה $m \ge 1$ בל פאה מכילה לפחות $m \ge 1$ צלעות, לכן לכל $m \ge 1$ פאות, לכן סכום כל צלע משותפת לכל היותר ל-2 פאות, לכן סכום $m \ge 1$ ב $m \ge 1$ ב $m \ge 1$ משילר: $m \ge 1$ מש"ל. $m \ge 1$ מש"ל. $m \ge 1$ מש"ל. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ! אינם מישוריים א K <sub>3,3</sub> -I K <sub>5</sub> מסקנה: הגרפים גרפים ב                                                                                                                                                                                                                                                                                                                         |
| אינו מישורי $K_5$ $m=5^*4/2=10$ $n=5$ $m=10 \le 3(n-2)=3^*3=9$ סתירה!                                                                                                                                                                                                                                                                                                                              |

| N.                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------|
| . אינו מישורי ! K <sub>3.3</sub>                                                                                  |
| ,                                                                                                                 |
| <u>הוכחה</u> נניח בשלילה ש-K <sub>3,3</sub> מישורי.<br>לגרף 6 קודקודים ו-9 צלעות.                                 |
| n+f-m = 6+f-9 = 2 לפי נוסחת אוילר:                                                                                |
| לכן יש לגרף 5 פאות.                                                                                               |
| <br>לכל פאה יש לפחות שלוש צלעות, וכל צלע יכולה<br>לבשתתם בשתו סעות                                                |
| להשתתף בשתי פאות.                                                                                                 |
| 10                                                                                                                |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| N-                                                                                                                |
|                                                                                                                   |
|                                                                                                                   |
| מכאן שמספר הצלעות הממוצע בכל פאה: $2m$                                                                            |
| $\frac{2m}{5} = 3.6$                                                                                              |
| לכן חייבת להיות פאה עם לכל הפחות 3 צלעות ולכל                                                                     |
| היותר 3.6 צלעות - כלומר פאה בעלת 3 צלעות.<br>קיבלנו סתירה מאחר ש- K <sub>3.3</sub> הינו גרף דו צדדי שלא           |
| . מכיל משולשים מאחר שכל מעגליו באורך זוגי.                                                                        |
|                                                                                                                   |
| <br>11                                                                                                            |
|                                                                                                                   |
|                                                                                                                   |
| N.                                                                                                                |
|                                                                                                                   |
| הומיאומורף                                                                                                        |
| ■ <u>הגדרה</u> : גרף המתקבל מהחלפה של כל צלע ב-K <sub>s</sub><br>במסלול כלשהו, כאשר המסלולים זרים, נקרא           |
| בנוסרות פרסות, פאסו הוביסרות בית בנוסרות פיתוח בנוסרות של $K_5$ (בדומה ניתן להגדיר גם הומיאומורף של $(K_{3.3})$ . |
| . 5,5                                                                                                             |
|                                                                                                                   |
| 12                                                                                                                |
|                                                                                                                   |

| _   |   |   | _ |
|-----|---|---|---|
| ь.  |   | _ | - |
| 16- | L | - |   |
|     | - |   |   |
|     |   |   |   |

משפט (Kuratowski): (ללא הוכחה בקורס שלנו)

הגרף  ${\sf G}$  אינו מישורי אם ורק אם הוא מכיל תת-גרף שהוא הומיאומורף של  ${\sf K}_5$  או תת-גרף שהוא הומיאומורף של  ${\sf K}_{3,3}$ 

13



# קיים G=(V,E) מישורי קבכל גרף מישורי קודקוד שדרגתו לכל היותר 5.

#### וכחה:

מספיק להוכיח כי הדרגה הממוצעת של קודקוד בגרף מישורי קטנה ממש מ6.

$$\frac{\sum_{v \in V} \deg(v)}{|V|} = \frac{2|E|}{|V|} \le \frac{1}{|V|} \cdot 2 \cdot 3 \cdot (|V| - 2)$$
$$= 6 \cdot \frac{|V| - 2}{|V|} < 6$$

14



### בעיית אוילר



15

| N <del>-</del>                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ■ מסלול אוילר - מסלול (לא בהכרח פשוט) שמבקר בכל<br>צלע בדיוק פעם אחת נקרא.                                                                                                                                                        |
| <ul><li>■ מעגל אוילר - מעגל (לא בהכרח פשוט) שמבקר בכל צלע<br/>בדיוק פעם אחת נקרא.</li></ul>                                                                                                                                       |
| ■ <u>משפט אוילר:</u><br>הי <i>G</i> גרף קשיר לא מכוון. ב- <i>G</i> יש מעגל אוילר אם"ם<br>כל הדרגות בגרף זוגיות.<br>יהי <i>G</i> גרף קשיר . ב- <i>G</i> יש מעגל אוילר אם"ם דרגת הכניסה<br>של כל קדקוד שווה לדרגת היציאה של הקדקוד. |
| N-                                                                                                                                                                                                                                |
| מעגל אוילר                                                                                                                                                                                                                        |
| <ul> <li>בלמה: יהי (G=(V,E) גרף לא מכוון שכל דרגותיו</li> <li>זוגיות. אז כל קדקוד ב-G שדרגתו חיובית שייך</li> <li>למעגל כלשהו (לאו דווקא פשוט).</li> </ul>                                                                        |
| ■ תרגיל: מצא מעגל אוילר 3 בעזרת השיטה שתיארנו 5 בהוכחת המשפט.                                                                                                                                                                     |
| 17                                                                                                                                                                                                                                |
| N-                                                                                                                                                                                                                                |
| מסלול אוילר                                                                                                                                                                                                                       |
| ■ <u>מסקנה</u> : בגרף קשיר לא-מכוון יש מסלול אוילר<br>אם"ם יש בו 0 או 2 קדקודים בעלי דרגה אי-זוגית.                                                                                                                               |
| ■ תרגיל:<br>מצא מסלול אוילר<br>בגרף הבא:                                                                                                                                                                                          |
| 4 5                                                                                                                                                                                                                               |

| N-                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| מעגל המילטון                                                                                                                                                                |
| ■ מעגל (מסלול) המילטון - מעגל (מסלול) שמבקר בכל<br>קדקוד של הגרף בדיוק פעם אחת.                                                                                             |
| ■ האם יש לגרפים אלו<br>מעגל המילטון?                                                                                                                                        |
| <ul><li>סיבוכיות הבעיה של מציאת מעגל המילטון לגרף הינה</li></ul>                                                                                                            |
| . י .<br>NP-שלמה!                                                                                                                                                           |
| 19                                                                                                                                                                          |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| N-A-                                                                                                                                                                        |
| דוגמאות                                                                                                                                                                     |
|                                                                                                                                                                             |
| <ul> <li>האם ניתן לכסות את כל משבצות לוח שחמט על ידי צעדי</li> <li>פרש מבלי לדרוך במשבצת יותר מפעם אחת ולחזור</li> <li>לנקודת ההתחלה? (המילטון הראה שהדבר אפשרי)</li> </ul> |
| ינקודת ההתתולהי (המיטון הראה שהדבר אפשרי)                                                                                                                                   |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| 20                                                                                                                                                                          |
|                                                                                                                                                                             |
|                                                                                                                                                                             |
| N.                                                                                                                                                                          |
| בבחבב של בעות מענל במולמוו                                                                                                                                                  |
| הרחבה של בעית מעגל המילטון<br>יפריג ר                                                                                                                                       |
| ■ בעיית הסוכן הנוסע:<br>סוכן מעוניין לבקר בכל אחת                                                                                                                           |
| מערי הארץ, בכל עיר בדיוק<br>פעם אחת, ולחזור בסיום יישלים                                                                                                                    |
| לנקודת ההתחלה של מסעו.<br>המטרה היא למצוא את                                                                                                                                |
| המסלול הקצר ביותר שיקיים<br>את הדרוש.                                                                                                                                       |
| ע<br>אלת<br>21                                                                                                                                                              |
|                                                                                                                                                                             |

# משפטים על מעגל המילטון

- <u>משפט (Ove):</u> אם בגרף בעל n קדקודים מתקיים לכל שני קדקודים x,y שאינם שכנים, אזי לכל שני קדקודים y.x שאינם שכנים, אזי יש בגרף **מעגל** המילטון.
  - 9 שאלה: האם הכיוון ההפוך מתקיים ₪
- <u>מסקנה (תנאי מספיק לקיום מסלול המילטון בגרף):</u> אם בגרף בעל n קדקודים מתקיים 1-d(x)+d(y)≥n-1 לכל שני קדקודים x,y שאינם שכנים, אזי יש בגרף **מסלול** המילטון.

22