10-Day Generative AI Course Content

Day	Topic	Details Covered
1	Introduction to Generative AI	- Overview of AI and ML
		- What is Generative AI? Definitions and key concepts
		- Generative vs. Discriminative models
		- Historical context and evolution of Generative Al
		- Popular generative models: GANs, VAEs, Transformers
		- Ethical considerations and biases in generative models
2	Deep Learning Foundations for Generative	At Deep Learning fundamentals and neural networks
		- Key concepts: feedforward networks, backpropagation,
		gradient descent
		- CNNs for image generation
		- RNNs for language modeling
		- Intro to frameworks (TensorFlow, PyTorch) for generative
		modeling
3	Generative Adversarial Networks (GANs)	- Structure and components of GANs
		- Types of GANs: DCGAN, StyleGAN, CycleGAN
		- Training dynamics of GANs
		- Challenges: mode collapse, instability
		- Applications: image synthesis, super-resolution, style transfer
4	Variational Autoencoders (VAEs)	- Overview of VAEs and applications
		- GANs vs. VAEs
		- Encoder-decoder architecture and latent space
		- Training objectives: Evidence Lower Bound (ELBO)
		- Hands-on: building a simple VAE for image generation
5	Transformers and Language Models	- Transformer architecture and attention mechanism

	,	
		- Large language models (LLMs): GPT, BERT, T5
		- Text generation using Transformers
		- Prompt engineering, zero-shot/few-shot learning
		- Hands-on: text generation with GPT-3 or similar models
6	Diffusion Models and Emerging Techniques	- Understanding Diffusion models
		- Practical applications: text-to-image generation
		- Comparisons to GANs and VAEs
		- Other techniques: Normalizing flows, Autoregressive models
		- Case study: DALL-E, Stable Diffusion
7	Applications of Generative AI in Domains	- Text generation: chatbots, summarization, content creation
		- Image generation: art, restoration, design
		- Video generation: deepfakes, animation, video prediction
		- Audio generation: speech synthesis, music, sound design
		- Ethical and legal considerations
8	Fine-tuning and Customizing Models	- Fine-tuning pre-trained models
	•	- Transfer learning for specific tasks
		- Applications: fine-tuning GPT, DALL-E
		- Tools and frameworks for fine-tuning and transfer learning
9	Evaluation and Metrics in Generative Al	- Evaluation for text, image, audio generation
		- Metrics: FID, BLEU, perplexity
		- Human-in-the-loop evaluation
		- Addressing biases in evaluation
		- Setting up A/B testing and user feedback
10	Capstone Project: Building a Generative Al I	Prடுண்டிect design from concept to execution
		- Steps: data collection, preprocessing, model training
		- Fine-tuning and optimization
		- Deploying models as APIs or in applications
	· ·	ı

- Final presentations: showcasing results and feedback