TerpBuy: Project Report

MySQL analysis

By: Vishesh Dabas

Problem Statement #1

How many rows of data are stored for each table in the database? List the name of each table followed by the number of rows it has.

Query #1

select 'Category' as 'Tablename', count(*) as 'Row Count' from category union all select 'Customer' as 'Tablename', count(*) as 'Row Count' from customer union all select 'Department' as 'Tablename', count(*) as 'Row Count' from department union all select 'Order Line' as 'Tablename', count(*) as 'Row Count' from order_line union all select 'Orders' as 'Tablename', count(*) as 'Row Count' from orders union all select 'Product' as 'Tablename', count(*) as 'Row Count' from product;

Which products are considered high-priced products? A high-priced product has a price exceeding \$100.00. List the names and prices of the high-priced products.

Query #2

select product_name, product_price from product where product_price > 100 order by product_price desc;

List all orders placed by customers in the state of Florida. Note: The state abbreviation for Florida is 'FL'. Include the customers' first names, last names, city, and segment, along with the order ID and order date.

Query #3

select o.order_id, o.order_date, c.first_name, c.last_name, c.segment, c.city from customer c inner join orders o on o.customer_Id = c.customer_Id where c.state = 'FL';

List all products that fall in one of the following categories: 'Computers', 'Toys', 'Tennis & Racquet'. Include the products' names, category, department, and price.

Query #4

select p.product_name, c.category_name, p.product_price, d.department_name from product p inner join category c on c.category_id=p.category_id inner join department d on d.department_id =p.department_id where c.category_name in ('Computers', 'Toys', 'Tennis & Racquet');

TerpBuy is considering reducing its product offerings. Which products have not yet been sold? Include the name, category, and department for each such product.

Query #5

select p.product_id from product p
where p.product_id not in (select o.product_id from order_line o);

List the names of all cities from where orders are shipped. Also, for such cities, find the number of orders for which shipping was delayed. Sort the list of cities in order from the highest to the least number of shipping orders.

Query #6

SELECT orders.order_city, COUNT(*) AS 'Total Orders', COUNT(CASE WHEN actual_shipping_days - scheduled_shipping_days > 0 THEN 1 END) AS 'Number of Delayed Orders' FROM orders GROUP BY orders.order_city ORDER BY COUNT(CASE WHEN actual_shipping_days - scheduled_shipping_days > 0 THEN 1 END) DESC;

The <CASE WHEN> function helps us to generate a count of Delayed or Total orders to put in our Query when the query is grouped by the <order_city>, Then we can output that count in the final query.

How many customers are there in each segment? Show the most popular segment at the top of the result. Incorporate a column alias in the result.

Query #7

select distinct segment, count(customer_id) as 'Most Popular Segment by count of customers' from customer group by segment;

How many orders were placed in the first quarter of 2021?

Query #8

select order_date, count(order_id) as 'Total orders placed' from orders WHERE order_date >= '2021-01-01' AND order_date < '2021-04-01' group by order_date;

List in alphabetical order all states supporting multiple customer segments.

Query #9

select count(distinct segment) as 'Number of segments supported', state from customer group by state;

To help the commercial sales department with its marketing, find all customers in the corporate segment who have not placed any orders. Include each customers' first name, last name, street, city, state, and zip code. Sort the results by the last name first and then by the first name.

Query #10

select c.first_name, c.last_name, c.city, c.state, c.zipcode from customer c where c.customer_Id not in (select o.customer_Id from orders o) and c.segment ='CORPORATE'

order by c.last_name, c.first_name;

There has been a recall of the product Nike Mens Free 5.0+ Running Shoe. TerpBuy would have to offer a discount coupon to all customers who purchased this product. Find all orders that included this product as a part of the purchase. For all such orders, list the customers' first names, last names, street, state, zip code, and order date. Each customer can be offered only one discount coupon. Hence, do not list the same customer more than once.

Query #11

select p.product_name, p.product_id from product p where product_name = 'Nike Mens Free 5.0+ Running Shoe';

Part 1 shows us the product Id of 'Nike Mens Free 5.0+ Running Shoe'; Which can be used for further analysis

Part 2

select c.first_name, c.last_name, c.street, c.state, c.zipcode, ol.order_id from customer c inner join orders o on o.customer_Id = c.customer_Id inner join order_line ol on ol.order_id= o.order_id

where product_id = 191 group by ol.order_id HAVING COUNT(*) = 1;

Premium customers are those customers who have placed orders with order amounts greater than the average order amount. For each customer, find the first and last names, and the order amount for all orders that exceeded the average order amount.

Query #12

SELECT c.first_name, c.last_name, ol.total_price FROM customer c INNER JOIN orders o ON o.customer_Id = c.customer_Id INNER JOIN order_line ol ON ol.order_id = o.order_id where ol.total_price >(SELECT AVG(total_price) FROM order_line);

