

Relatório de Sistemas de Comunicação 1

Análise de sinais no domínio do tempo e da frequência e construção de filtros utilizando o Matlab

Sumário

0.1	Introd	duçâ	ão .																							
0.2	Conce	Conceitos Teóricos																								
0.3	.3 Desenvolvimento																									
	0.3.1	\mathbf{E}	xercíc	io 1																						
	0.3.2	\mathbf{E}	xercíc	io 2																						4
	0.3.3	\mathbf{E}	xercíc	io 3																						(
0.4	Conclu	lusã	о																							Ć

0.1 Introdução

Este relatório visa apresentar as análises dos sinais e ruídos construídos a partir dos softwares Matlab e Octave, para observar, através dos gráficos, seus comportamentos no domínio do tempo e da frequência, e seu resultado após passar por filtros passa baixa, passa faixa e passa alta.

0.2 Conceitos Teóricos

A transformada de Fourier possibilita uma análise mais detalhada dos sinais por permitir a observação de seus comportamentos no domínio da frequência. Através dessas observações, é possível trabalhar estes sinais em filtros e técnicas de modulações para a utilização em sistemas de comunicações.

$$\begin{split} \mathcal{F}\left\{f(t)\right\} &= F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \\ \mathcal{F}^{-1}\left\{F(\omega)\right\} &= f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega \end{split}$$

Dessa forma, um sinal $\sin(\omega t)$ pode ser visto em termos da sua amplitude e frequência com mostrado na imagem a seguir.

Figura 1: Seno de 1KHz no domínio do tempo e da frequência

Através da convolução no tempo ou da multiplicação na frequência de dois sinais, é possível obter um sinal resultante com apenas as componentes de frequências de passagem permitidas pelo filtro, mantendo assim a informação e eliminando o máximo o ruído.

0.3 Desenvolvimento

0.3.1 Exercício 1

Para o primeiro exercício foi gerado um sinal composto pela somatória de três senos com amplitudes de 6, 2 e 4 volts e de frequências 1, 3, 5 kHz respectivamente, em seguida o sinal foi plotado na domínio do tempo e da frequência. A potência média do sinal pode ser observada utilizando a função 'norm', gerando um valor de 118.32 W, e com a função 'pwelch' foi possível obter a Densidade Espectral de Potência.

Para poder plotar o sinal, primeiro é necessário determinar a sua frequência de amostragem. Segundo nyquist, esta frequência (fs) deve ser, pelo menos, duas vezes a frequência do sinal que

ifsc - Campus São José $3~{
m de}~9$

deseja amostrar. O ideal é utilizar sempre um valor bem acima para garantia de uma melhor visualização.

Nesse caso foi utilizado fa = 50 * f3. E para o vetor de tempo foi gerado 1 segundo considerando o tempo de amostragem de $ta = 1/fa = 4\mu s$

Figura 2: Sinal composto no domínio do tempo

Figura 3: Sinal composto no domínio da frequência

0.3.2 Exercício 2

No segundo exercício foi trabalhado filtro ideais. Estes filtro são gerados através de vetores utilizando as funções 'zeros' e 'ones' do matlab. É utilizado zero na faixa de frequência onde deseja-se atenuar o espectro e ones onde deseja manter. Foram construídos três filtros, um passa baixa com frequência de corte em 2kHz, um passa faixa com banda de passagem entre 2kHz e 4kHz¹ e, por fim, um filtro passa alta com frequência de corte de 4kHz. No final pode-se observar que cada frequência pode ser recuperada indiviualmente ao passar pelos filtros.

IFSC - Campus São José 4 de 9

¹Neste exercício utilizei o octave em um PC particular, o qual acusava problema de memória para os sinais em KiloHertz, fiz o exercício em Hertz apenas. Caso fosse feito como descrito no exercício, seria necessário apenas um ajuste nos vetores de tempo e frequência.

Figura 4: Sinal composto no domínio da tempo

Figura 5: Sinal composto no domínio da frequência

Figura 6: Filtros ideias passa-baixa, passa-alta e passa-faixa

IFSC - Campus São José $5~{
m de}~9$

Figura 7: Sinais recuperados pelos filtros passa-baixa, passa-faica e passa alta respectivamente

0.3.3 Exercício 3

O último exercício teve como objetivo analisar a passagem de um ruído branco por um filtro passa baixa, utilizando a função 'fir1' com frequência de corte de 1kHz. Foi utilizado também a função xcorr para verificar a autocorrelação do ruído. Como é possível observar na imagem[10], o ruído possui correlação apenas quando estiver sobreposto. É possível verificar a resposta em frequência filtro criado pela função 'fir1' utilizando a função 'freqz', observando a curva de atenuação do sinal. Com o histograma do ruído é possível perceber sua distribuição gaussiana e, observar também a diminuição variância entre imagem[8] e a imagem[13] após a passagem pelo filtro.

Figura 8: Histograma do ruído original

IFSC - Campus São José 6 de 9

Figura 9: Sinal original do ruído no domínio do tempo e da frequência

Figura 10: Autocorrelação do ruído

Figura 11: Resposta em frequência do filtro

IFSC - Campus São José $7~{
m de}~9$

Figura 12: Ruído no domínio do tempo de da frequência após a passagem pelo filtro

Figura 13: Histograma do ruído após sua passagem pelo filtro

IFSC - Campus São José $8\ de\ 9$

0.4 Conclusão

O matlab e octave são ferramentas excelentes que possibilitam uma análise rápida e detalhada do sinal. Como foi possível observar, é possível trabalhar a informação para uma transmissão e recepção.

Este laboratório teve o objetivo de fixar os conceitos aprendidos em sala de aula e desenvolver o contato dos alunos com ferramentas que possibilitam o cálculo e uma melhor visualização do que está sendo trabalhado.

IFSC - Campus São José $9 \ de \ 9$