# Machine Learning Logistic Regression



Given: Training data:  $(x_1, y_1), \ldots, (x_n, y_n)/x_i \in \mathbb{R}^d$  and  $y_i$  is discrete (categorical/qualitative),  $y_i \in \mathbb{Y}$ .

Example 
$$\mathbb{Y} = \{-1, +1\}, \mathbb{Y} = \{0, 1\}.$$

**Task:** Learn a classification function:

$$f: \mathbb{R}^d \longrightarrow \mathbb{Y}$$

**Linear Classification:** A classification model is said to be linear if it is represented by a linear function f (linear hyperplane)

### Classification: examples

- 1. Email Spam/Ham  $\rightarrow$  Which email is junk?
- 2. Tumor benign/malignant  $\rightarrow$  Which patient has cancer?
- 3. Credit default/not default → Which customers will default on their credit card debt?

| Balance | Income      | Default |
|---------|-------------|---------|
| 300     | \$20,000.00 | no      |
| 2000    | \$60,000.00 | no      |
| 5000    | \$45,000.00 | yes     |
|         |             |         |
|         |             |         |
|         |             |         |

# Classification: example



Credit: Introduction to Statistical Learning.

- We can't predict Credit Card Default with any certainty. Suppose we want to predict how likely is a customer to default.

  That is output a probability between 0 and 1 that a customer will default.
- It makes sense and would be suitable and practical.
- In this case, the output is real (regression) but is bounded (classification).

$$P(y|x) = P(\text{default} = \text{yes |balance})$$

- Can we use linear regression?
- Yes. However...
  - Works only for *Binary* classification (2 classes). Won't work for *Multiclass* classification e.g.,  $\mathbb{Y} = \{ \text{ green, blue, brown} \}$   $\mathbb{Y} = \{ \text{ stroke, heart attack, drug overdose} \}$
  - If we use linear regression, some of the predictions will be outside of [0,1].
  - Model can be poor. Example.

#### Classification: example



Credit: Introduction to Statistical Learning.

$$y = f(x) = \beta_0 + \beta_1 x$$

Default = 
$$\beta_0 + \beta_1 \times Balance$$

$$y = f(x) = \beta_0 + \beta_1 x$$

Default = 
$$\beta_0 + \beta_1 \times Balance$$

We want 
$$0 \le f(x) \le 1$$
;  $f(x) = P(y = 1|x)$ 

$$y = f(x) = \beta_0 + \beta_1 x$$

Default = 
$$\beta_0 + \beta_1 \times Balance$$

We want 
$$0 \le f(x) \le 1$$
;  $f(x) = P(y = 1|x)$ 

We use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$y = f(x) = \beta_0 + \beta_1 x$$

Default = 
$$\beta_0 + \beta_1 \times Balance$$

We want  $0 \le f(x) \le 1$ ; f(x) = P(y = 1|x)

We use the sigmoid function:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$



$$g(z) \to 1$$
 when  $z \to +\infty$ 

$$g(z) \to 1$$
 when  $z \to +\infty$   $g(z) \to 0$  when  $z \to -\infty$ 

$$g(\beta_0 + \beta_1 x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

New 
$$f(x) = g(\beta_0 + \beta_1 x)$$

In general:

$$f(x) = g(\sum_{j=1}^{d} \beta_j x_j)$$

In other words, cast the output to bring the linear function quantity between 0 and 1.

Note: One can use other S-shaped functions.



Credit: Introduction to Statistical Learning.

Logistic regression is not a regression method but a classification method!

How to make a prediction?

• Suppose  $\beta_0 = -10.65$  and  $\beta_1 = 0.0055$ . What is the probability of default for a customer with \$1,000 balance?

How to make a prediction?

• Suppose  $\beta_0 = -10.65$  and  $\beta_1 = 0.0055$ . What is the probability of default for a customer with \$1,000 balance?

$$P(default = yes|balance = 1000) = \frac{1}{1 + e^{10.65 - 0.0055 * 1000}}$$
$$P(default = yes|balance = 1000) = 0.00576$$

How to make a prediction?

• Suppose  $\beta_0 = -10.65$  and  $\beta_1 = 0.0055$ . What is the probability of default for a customer with \$1,000 balance?

$$P(default = yes|balance = 1000) = \frac{1}{1 + e^{10.65 - 0.0055 * 1000}}$$
$$P(default = yes|balance = 1000) = 0.00576$$

• To predict the class:

If 
$$g(z) \ge 0.5$$
 predict  $y = 1$   $(z \ge 0)$ 

If 
$$g(z) < 0.5$$
 predict  $y = 0$   $(z < 0)$ 

How to find the  $\beta$ 's?

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{m} \frac{1}{2} (f(x) - y)^2$$

$$Loss = \frac{1}{2}(f(x) - y)^2$$

- Remember, f(x) is now the logistic function so the  $(f(x) y)^2$  is not the quadratic function we had when f was linear.
- Cost is a complicated non-linear function!
- Many local optima, hence Gradient Descent will not find the global optimum!
- We need a different function that is convex.

New Convex function:

$$Cost(f(x), y) = \begin{cases} -log(f(x)) & \text{if } y = 1\\ -log(1 - f(x)) & \text{if } y = 0 \end{cases}$$

- 1. If y = 1 if the prediction f(x) = 1 then cost = 0If y = 1 if the prediction f(x) = 0 then  $cost \to \infty$
- 2. If y = 0 if the prediction f(x) = 0 then  $\cos t \to 0$ If y = 0 if the prediction f(x) = 1 then  $\cos t = \infty$



Case 1



Case 2

Nice convex functions!

Let's combine them in a compact function (because y = 0 or y = 1!):

$$Loss(f(x), y) = -ylogf(x) - (1 - y)log(1 - f(x))$$

$$R(\beta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y \log f(x) + (1 - y) \log (1 - f(x)) \right]$$

#### **Gradient Descent**

Repeat {

Simultaneously update for all  $\beta$ 's

$$\beta_j := \beta_j - \alpha \frac{\partial}{\partial \beta_j} R(\beta)$$

}

After some calculus:

Repeat {

Simultaneously update for all  $\beta$ 's

$$\beta_j := \beta_j - \alpha \sum_{i=1}^m (f(x) - y) x_j$$

}

Note: Same as linear regression BUT with the new function f.

#### Credit

• When mentioned, some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013)" with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.