MATEMATIKA

2. letnik – splošna gimnazija

Jan Kastelic

Gimnazija Antona Aškerca, Šolski center Ljubljana

19. oktober 2025

Vsebina

- Motne funkcije
- Vektorji

2 / 48

Section 1

Kotne funkcije

3 / 48

Jan Kastelic (GAA) MATEMATIKA

- Kotne funkcije
 - Definicija kotnih funkcij v pravokotnem trikotniku
 - Računanje vrednosti kotnih funkcij
 - Zveze med kotnimi funkcijami
 - Razširitev pojma kotne funkcije do polnega kota
- 2 Vektorji

4 / 48

Kotne funkcije v pravokotnem trikotniku

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り○○

5 / 48

Kotne funkcije v pravokotnem trikotniku

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ®

5 / 48

Kotne funkcije

Kotne funkcije v pravokotnem trikotniku

Sinus kota α je razmerje med dolžinama kotu α nasprotne katete in hipotenuze:

$$\sin \alpha = \frac{\text{nasprotna kateta}}{\text{hipotenuza}} = \frac{a}{c}.$$

5 / 48

Kotne funkcije v pravokotnem trikotniku

Sinus kota α je razmerje med dolžinama kotu α nasprotne katete in hipotenuze:

$$\sin \alpha = \frac{\text{nasprotna kateta}}{\text{hipotenuza}} = \frac{\textit{a}}{\textit{c}}.$$

Kosinus kota α je razmerje med dolžinama kotu α priležne katete in hipotenuze:

$$\cos \alpha = \frac{\text{priležna kateta}}{\text{hipotenuza}} = \frac{b}{c}.$$

(□ > ←□ > ← □ > ←

5 / 48

Kotne funkcije v pravokotnem trikotniku

Tangens kota α je razmerje med dolžinama kotu α nasprotne katete in priležne katete:

$$\tan \alpha = \frac{\text{nasprotna kateta}}{\text{priležna kateta}} = \frac{\textbf{a}}{\textbf{b}}.$$

Sinus kota α je razmerje med dolžinama kotu α nasprotne katete in hipotenuze:

$$\sin \alpha = \frac{\text{nasprotna kateta}}{\text{hipotenuza}} = \frac{a}{c}.$$

Kosinus kota α je razmerje med dolžinama kotu α priležne katete in hipotenuze:

$$\cos \alpha = \frac{\text{priležna kateta}}{\text{hipotenuza}} = \frac{b}{c}.$$

5 / 48

Jan Kastelic (GAA) MATEMATIKA

V pravokotnem trikotniku sta dolžini katet a=12~cm in b=5~cm. Natančno izračunajte vrednosti kotnih funkcij kota β .

6 / 48

V pravokotnem trikotniku sta dolžini katet a=12~cm in b=5~cm. Natančno izračunajte vrednosti kotnih funkcij kota β .

Naloga

V pravokotnem trikotniku sta dolžini katet a=6 cm in b=5 cm. Natančno izračunajte vrednosti kotnih funkcij kota β .

6 / 48

V pravokotnem trikotniku sta dolžini katet a=12 cm in b=5 cm. Natančno izračunajte vrednosti kotnih funkcij kota β .

Naloga

V pravokotnem trikotniku sta dolžini katet a=6 cm in b=5 cm. Natančno izračunajte vrednosti kotnih funkcij kota β .

Naloga

V pravokotnem trikotniku je dolžina hipotenuze c=10 in dolžina katete a=6. Natančno izračunajte vrednosti kotnih funkcij za kot α .

6/48

Načrtajte pravokotni trikotnik $\triangle ABC$, v katerem velja:

- $\bullet \, \sin \alpha = \frac{2}{5}$
- $\cos \alpha = \frac{5}{6}$
- $\tan \alpha = \frac{3}{7}$
- $\cos \beta = \frac{4}{7}$
- $\bullet \ \tan \beta = \frac{0.3}{0.2}$

Jan Kastelic (GAA)

Vrednosti kotnih funkcij nekaterih kotov

Jan Kastelic (GAA) MATEMATIKA

Vrednosti kotnih funkcij nekaterih kotov

φ [rad]	φ [°]	$\sin arphi$	$\cos arphi$	anarphi	$\cot arphi$
0	0°	0	1	0	/
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	/	0

Kotne funkcije komplementarnih kotov

9 / 48

Kotne funkcije komplementarnih kotov

Sinus kota je enak kosinusu komplementarnega kota in obratno.

$$\sin{(90^{\circ}-\varphi)}=\cos{\varphi}$$

$$\cos\left(90^\circ - \varphi\right) = \sin\varphi$$

9 / 48

Kotne funkcije komplementarnih kotov

Sinus kota je enak kosinusu komplementarnega kota in obratno.

$$\sin\left(90^\circ - \varphi\right) = \cos\varphi$$

$$\cos\left(90^\circ - \varphi\right) = \sin\varphi$$

Tangens kota je enak kotangensu komplementarnega kota in obratno.

$$\tan{(90^{\circ}-\varphi)}=\cot{\varphi}$$

$$\cot (90^{\circ} - \varphi) = \tan \varphi$$

(ロト 4년) ト 4 분 ト 4 분 - - 9 Q (C)

9 / 48

Računanje vrednosti kotnih funkcij

Na štiri decimalna mesta natančno izračunajte vrednosti kotnih funkcij za kot x.

- $x = 55^{\circ}$
- $x = 39^{\circ}$
- $x = 12^{\circ}$

10 / 48

Na štiri decimalna mesta natančno izračunajte vrednosti kotnih funkcij za kot x.

- $x = 55^{\circ}$
- $x = 39^{\circ}$
- $x = 12^{\circ}$

Naloga

Na minuto natančno izračunaj velikost kota, če je:

- $\sin x = 0.25$
- $\cos x = 0.6$
- tan x = 3
- $\sin x = 2$
- $\cos x = \frac{2}{5}$

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 11 / 48

Računanje vrednosti kotnih funkcij

Natančno izračunajte vrednost izraza.

$$\bullet$$
 $\sin 90^{\circ} + \cos 0^{\circ} + \tan 45^{\circ}$

$$\bullet \frac{\tan 30^{\circ}}{\sin 60^{\circ}} - \frac{\tan 60^{\circ}}{\cos 60^{\circ}}$$

•
$$\tan 30^{\circ} \cdot \frac{\sin 45^{\circ}}{\cos 30^{\circ}}$$

•
$$\sin 60^{\circ} + \cos 30^{\circ} - \tan 45^{\circ}$$

$$\bullet \quad \frac{\sin 30^{\circ}}{\cos 30^{\circ}}$$

$$\bullet \ \frac{1-\sin 45^{\circ}}{\cos 45^{\circ}}$$

$$ullet$$
 $rac{\mathsf{sin}\,90^\circ}{1-\mathsf{tan}\,30}$

•
$$\cos 45^{\circ} + \sin 45^{\circ} - 3 \tan 30^{\circ}$$

Računanje vrednosti kotnih funkcij

V pravokotniku meri stranica $a=10\ cm$, diagonala pa 14 cm. Izračunajte natančno dolžino druge stranice in velikost kota med stranico a in diagonalo na dve decimalki stopinje natančno.

12 / 48

V pravokotniku meri stranica $a=10\ cm$, diagonala pa 14 cm. Izračunajte natančno dolžino druge stranice in velikost kota med stranico a in diagonalo na dve decimalki stopinje natančno.

Naloga

V enakokrakem trikotniku meri višina na osnovnico 24 cm, osnovnica pa 14 cm. Izračunajte dolžino kraka in velikost kota med krakom in osnovnico na dve decimalki stopinje natančno.

12 / 48

V pravokotniku meri stranica $a=10\ cm$, diagonala pa 14 cm. Izračunajte natančno dolžino druge stranice in velikost kota med stranico a in diagonalo na dve decimalki stopinje natančno.

Naloga

V enakokrakem trikotniku meri višina na osnovnico 24 *cm*, osnovnica pa 14 *cm*. Izračunajte dolžino kraka in velikost kota med krakom in osnovnico na dve decimalki stopinje natančno.

Naloga

Enakokraki trapez ima osnovnici dolgi 45 cm in 23 cm, višina pa je 60 cm. Izračunajte dolžino kraka in velikost kota med krakom in osnovnico na minuto natančno.

12 / 48

V pravokotniku meri stranica $a=10\ cm$, diagonala pa 14 cm. Izračunajte natančno dolžino druge stranice in velikost kota med stranico a in diagonalo na dve decimalki stopinje natančno.

Naloga

V enakokrakem trikotniku meri višina na osnovnico 24 cm, osnovnica pa 14 cm. Izračunajte dolžino kraka in velikost kota med krakom in osnovnico na dve decimalki stopinje natančno.

Naloga

Enakokraki trapez ima osnovnici dolgi 45 cm in 23 cm, višina pa je 60 cm. Izračunajte dolžino kraka in velikost kota med krakom in osnovnico na minuto natančno.

Naloga

Vrh stolpa vidimo pod kotom 19.17° , če pa se mu približamo za 50~m, ga vidimo pod kotom 34.23° . Izračunajte višino stolpa, če je točka gledišča na višini 1.7~m.

Računanje vrednosti kotnih funkcij

Koliko meri središčni kot nad lokom AB v krogu s polmerom 8 cm, če je |AB| = 6 cm? Kot izrazite v stopinjah na štiri decimalke natančno.

13 / 48

Koliko meri središčni kot nad lokom AB v krogu s polmerom 8 cm, če je |AB| = 6 cm? Kot izrazite v stopinjah na štiri decimalke natančno.

Naloga

V enakokrakem trapezu z osnovnicama 12 cm in 6 cm kot ob osnovnici meri $\alpha=73^\circ$. Izračunajte dolžino kraka.

13 / 48

Koliko meri središčni kot nad lokom AB v krogu s polmerom 8 cm, če je |AB| = 6 cm? Kot izrazite v stopinjah na štiri decimalke natančno.

Naloga

V enakokrakem trapezu z osnovnicama 12 cm in 6 cm kot ob osnovnici meri $\alpha=73^\circ$. Izračunajte dolžino kraka.

Naloga

Pravokotnik ima stranici dolgi 5 cm in 6 cm. Na minuto natančno izračunajte kot, ki ga oklepata diagonali v pravokotniku.

13 / 48

Koliko meri središčni kot nad lokom AB v krogu s polmerom 8 cm, če je |AB| = 6 cm? Kot izrazite v stopinjah na štiri decimalke natančno.

Naloga

V enakokrakem trapezu z osnovnicama 12 cm in 6 cm kot ob osnovnici meri $\alpha=73^\circ$. Izračunajte dolžino kraka.

Naloga

Pravokotnik ima stranici dolgi 5 cm in 6 cm. Na minuto natančno izračunajte kot, ki ga oklepata diagonali v pravokotniku.

Naloga

V rombu je dolžina diagonale e dvakrat tolikšna kot dolžina diagonale f. Na minuto natančno izračunajte velikost kota α .

Zveze med kotnimi funkcijami

14 / 48

$$\tan \varphi = \frac{b}{a} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\sin \varphi}{\cos \varphi}$$

14 / 48

$$\tan \varphi = \frac{b}{a} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\sin \varphi}{\cos \varphi}$$

$$\cot \varphi = \frac{a}{b} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{\cos \varphi}{\sin \varphi}$$

14 / 48

$$\tan \varphi = \frac{b}{a} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\sin \varphi}{\cos \varphi}$$

$$\cot \varphi = \frac{a}{b} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{\cos \varphi}{\sin \varphi}$$

$$\tan \varphi \cdot \cot \varphi = \frac{a}{b} \cdot \frac{b}{a} = 1$$

14 / 48

$$\tan \varphi = \frac{b}{a} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\sin \varphi}{\cos \varphi}$$

$$\cot \varphi = \frac{a}{b} = \frac{\frac{b}{c}}{\frac{a}{c}} = \frac{\cos \varphi}{\sin \varphi}$$

$$\tan \varphi \cdot \cot \varphi = \frac{a}{b} \cdot \frac{b}{a} = 1$$

$$\sin^2\varphi + \cos^2\varphi = 1$$

Jan Kastelic (GAA) MATEMATIKA

Naloga

Natančno izračunajte vrednosti preostalih kotnih funnkcj v pravokotnem trikotniku, če je kot α oster in velja:

- $\cos \alpha = 0.1$
- $\bullet \, \sin \alpha = \frac{8}{17}$
- $\tan \alpha = 2$

Jan Kastelic (GAA)

Naloga

Poenostavite izraze s pomočjo zvez med kotnimi funkcijami.

$$\bullet 1 - \sqrt{(1-\sin^2 x)\cos^2 x}$$

$$\bullet \ \tan^2 x - \frac{1}{1 - \sin^2 x}$$

$$\bullet \ \frac{\cos x}{1+\sin x} + \frac{\cos x}{\sin x - 1}$$

$$\bullet \ \frac{\sin x}{\tan x} \cdot \cos x - 1$$

$$\bullet \ \cos x \left(1 + \tan^2 x \right)$$

$$\bullet \frac{\left(\sin x + \cos x\right)^2 - 1}{\tan x}$$

$$\bullet \ \frac{1}{\tan x} + \frac{1 - 2\cos^2 x}{\sin x \cos x}$$

$$\bullet \ \sin x + \cos^2 x \cdot \sin^{-1} x$$

$$\frac{1}{\left(\frac{\tan^{-1} x \cdot \sin x}{\sqrt{1 - \cos^2 x}}\right)}$$

$$\bullet \left(\left(\tan x \cos x \right)^{-2} + \cos^{-2} x \right) \sin^2 x$$

$$\bullet \left(\frac{1}{\cot x}\sin^{-1}x\right)^{-2} + \sin x \tan x \cos x$$

4□ > 4□ > 4 = > 4 = > = 90

19. oktober 2025

Naloga

Natančno izračunajte brez uporabe računala.

$$\bullet \ \frac{\cos 15^{\circ}}{\sin 75^{\circ}} - 2 \cdot \frac{\sin 15^{\circ}}{\cos 75^{\circ}}$$

$$\bullet \sin^2 55^\circ + \cos^2 45^\circ - \frac{\tan 33^\circ}{\sin 33^\circ} \sin 57^\circ$$

$$\bullet \ \sin^2 86^\circ \cdot \left(\sin^2 5^\circ + \sin^2 85^\circ + \tan^2 4^\circ\right)$$

$$\bullet \ \frac{1-\sin^2 15^\circ}{\sin^2 75^\circ}$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

18 / 48

Enotska krožnica je krožnica s polmerom ene enote in s središčem v koordinatnem izhodišču.

18 / 48

Enotska krožnica je krožnica s polmerom ene enote in s središčem v koordinatnem izhodišču.

18 / 48

Enotska krožnica je krožnica s polmerom ene enote in s središčem v koordinatnem izhodišču.

Kot φ z vrhom v koordinatnem izhodišču določata:

18 / 48

Enotska krožnica je krožnica s polmerom ene enote in s središčem v koordinatnem izhodišču.

Kot φ z vrhom v koordinatnem izhodišču določata:

 fiksni/nepremični krak kota leži na pozitivnem delu abscisne osi in

18 / 48

Enotska krožnica je krožnica s polmerom ene enote in s središčem v koordinatnem izhodišču.

Kot φ z vrhom v koordinatnem izhodišču določata:

- fiksni/nepremični krak kota leži na pozitivnem delu abscisne osi in
- premični krak določa velikost kota in leži v enem izmed štirih kvadrantov ter seka enotsko krožnico v točki (cos x, sin x).

18 / 48

19. oktober 2025

19. oktober 2025

Kosinus kota φ je enak abscisi presečišča premičnega kraka z enotsko krožnico.

Kosinus kota φ je enak abscisi presečišča premičnega kraka z enotsko krožnico.

Tangens kota φ je enak ordinati presečišča nosilke premičnega kraka z navpično tangento enotskega kroga v točki (1,0).

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 19 / 48

Kosinus kota φ je enak abscisi presečišča premičnega kraka z enotsko krožnico.

Tangens kota φ je enak ordinati presečišča nosilke premičnega kraka z navpično tangento enotskega kroga v točki (1,0).

Kotangens kota φ je enak abscisi presečišča nosilke premičnega kraka z vodoravno tangento enotskega kroga v točki (0,1).

Jan Kastelic (GAA) MATEMATIKA

Radian

Loku na krožnici, ki je enako dolg kot polmer krožnice, pripada središčni kot, velik 1 radian.

20 / 48

Radian

Loku na krožnici, ki je enako dolg kot polmer krožnice, pripada središčni kot, velik 1 radian.

$$1~\mathrm{rad} = \frac{180^{\circ}}{\pi} \doteq 57, 3^{\circ}$$

20 / 48

Radian

Loku na krožnici, ki je enako dolg kot polmer krožnice, pripada središčni kot, velik 1 radian.

$$1 \text{ rad} = \frac{180^{\circ}}{\pi} \doteq 57, 3^{\circ}$$

Pretvorba med stopinjami in radiani

Naj bo kot φ podan v radianih, ϕ pa njemu pripadajoči kot podan v stopinjah. Potem velja:

20 / 48

Radian

Loku na krožnici, ki je enako dolg kot polmer krožnice, pripada središčni kot, velik 1 radian.

$$1 \text{ rad} = \frac{180^{\circ}}{\pi} \doteq 57, 3^{\circ}$$

Pretvorba med stopinjami in radiani

Naj bo kot φ podan v radianih, ϕ pa njemu pripadajoči kot podan v stopinjah. Potem velja:

$$\varphi = \frac{\pi}{180^{\circ}} \phi$$

Radian

Loku na krožnici, ki je enako dolg kot polmer krožnice, pripada središčni kot, velik 1 radian.

$$1 \text{ rad} = \frac{180^{\circ}}{\pi} \doteq 57, 3^{\circ}$$

Pretvorba med stopinjami in radiani

Naj bo kot φ podan v radianih, ϕ pa njemu pripadajoči kot podan v stopinjah. Potem velja:

$$\varphi = \frac{\pi}{180^{\circ}} \phi$$

in

$$\phi = \frac{180^{\circ}}{\pi} \varphi.$$

(ロ > 4 個 > 4 差 > 4 差 > 差 9 9 0 0 c

Jan Kastelic (GAA) MATEMATIKA

Sinusa suplementarnih kotov sta enaka;

$$\sin{(180^{\circ} - \psi)} = \sin{\psi}$$

21 / 48

Sinusa suplementarnih kotov sta enaka; kosinusa suplementarnih kotov sta nasprotno enaka.

$$\sin{(180^\circ-\psi)}=\sin{\psi}$$

$$\cos{(180^{\circ} - \psi)} = -\cos{\psi}$$

21 / 48

Sinusa suplementarnih kotov sta enaka; kosinusa suplementarnih kotov sta nasprotno enaka.

$$\sin\left(180^\circ - \psi\right) = \sin\psi$$

$$\cos{(180^\circ - \psi)} = -\cos{\psi}$$

Tangensa in kotangensa suplementarnih kotov sta nasprotno enaka.

$$\tan{(180^{\circ} - \psi)} = -\tan{\psi}$$

$$\cot (180^{\circ} - \psi) = -\cot \psi$$

 Jan Kastelic (GAA)
 MATEMATIKA
 19. oktober 2025
 21 / 48

Kot φ med 180° in 270°

Jan Kastelic (GAA) MATEMATIKA

Kot φ med 180° in 270°

Kot φ med 180° in 270°

Sinusa in kosinusa kotov, ki se razlikujeta za π , sta nasprotno enaka.

$$\sin\left(180^\circ + \psi\right) = -\sin\psi$$

$$\cos{(180^\circ + \psi)} = -\cos{\psi}$$

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 22 / 48

Kot φ med 180° in 270°

Sinusa in kosinusa kotov, ki se razlikujeta za π , sta nasprotno enaka.

$$\sin{(180^\circ + \psi)} = -\sin{\psi}$$

$$\cos{(180^\circ + \psi)} = -\cos{\psi}$$

Tangensa in kotangensa kotov, ki se razlikujeta za π , sta enaka.

$$\tan{(180^{\circ} + \psi)} = \tan{\psi}$$

$$\cot (180^{\circ} + \psi) = \cot \psi$$

4□ > 4回 > 4 直 > 4 直 > 直 の 9 ○ ○

22 / 48

Kot φ med 270 $^{\circ}$ in 360 $^{\circ}$

Kot φ med 270 $^{\circ}$ in 360 $^{\circ}$

 Jan Kastelic (GAA)
 MATEMATIKA
 19. oktober 2025
 23 / 48

$$\sin{(360^\circ-\psi)}=-\sin{\psi}$$

$$\sin\left(-\psi\right) = -\sin\psi$$

23 / 48

$$\sin (360^{\circ} - \psi) = -\sin \psi$$
$$\cos (360^{\circ} - \psi) = \cos \psi$$

$$\sin(-\psi) = -\sin\psi$$
$$\cos(-\psi) = \cos\psi$$

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 23 / 48

$$\sin (360^{\circ} - \psi) = -\sin \psi$$
$$\cos (360^{\circ} - \psi) = \cos \psi$$
$$\tan (360^{\circ} - \psi) = -\tan \psi$$

$$\sin(-\psi) = -\sin\psi$$
$$\cos(-\psi) = \cos\psi$$
$$\tan(-\psi) = -\tan\psi$$

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 23 / 48

$$\sin (360^{\circ} - \psi) = -\sin \psi$$

$$\cos (360^{\circ} - \psi) = \cos \psi$$

$$\tan (360^{\circ} - \psi) = -\tan \psi$$

$$\cot (360^{\circ} - \psi) = -\cot \psi$$

$$\sin(-\psi) = -\sin\psi$$

$$\cos(-\psi) = \cos\psi$$

$$\tan(-\psi) = -\tan\psi$$

$$\cot(-\psi) = -\cot\psi$$

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 23 / 48

Vrednosti kotnih funkcij nekaterih kotov

24 / 48

Vrednosti kotnih funkcij nekaterih kotov

φ [rad]	φ [°]	$\sin arphi$	$\cos arphi$	$\tan\varphi$	$\cot arphi$
0	0	0	1	0	/
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	90°	1	0	/	0
π	180°	0	-1	0	/
$\frac{3\pi}{2}$	270°	-1	0	/	0

25 / 48

Izrazite s kotno funkcijo kota, manjšega od 45° .

• sin 200°

• cot 335°

• cos 154°

 \bullet cos 115°

tan 163°

sin 245°

 \bullet tan 170°

• cos 255°

ullet tan 140°

• sin 299°

sin 190°

• cos 218°

• cos 355°

• cot 203°

• tan 179°

Najprej izrazite vrednost dane kotne funkcije s kotno funkcijo ostrega kota in nato izračunajte njeno natančno vrednost.

- \bullet sin 300°
- \bullet cos 330°
- \bullet tan 315°
- cos 225°

- sin 240°
- \bullet tan 150°
- \bullet cos 120°
- sin 180°

Jan Kastelic (GAA) MATEMATIKA 19. oktober 2025 27 / 48

Natančno izračunajte.

$$\frac{\cos 300^{\circ} - \sin 210^{\circ} - \sin 0^{\circ}}{\tan 300^{\circ} + \tan 135^{\circ}}$$

•
$$(\sin 150^{\circ} - \cos 210^{\circ})^2 + \tan^2 315^{\circ}$$

•
$$\frac{\cos 135^{\circ} + \sin 225^{\circ}}{\tan 300^{\circ} - \tan 120^{\circ} - \sin 270^{\circ}}$$

$$\bullet$$
 $\sin 120^{\circ} - \cos 150^{\circ} + \tan 225^{\circ}$

$$\cos 240^{\circ} + \tan 135^{\circ} - \sin^2 315^{\circ} \over \tan 300^{\circ}$$

27 / 48

Za kot x je podana vrednost ene kotne funkcije in območje velikost kota. Izračunajte natančne vrednosti drugih kotnih funkcij za kot x.

•
$$x \in [180^{\circ}, 270^{\circ}]$$
; $\sin x = -0.6$

•
$$x \in [90^{\circ}, 180^{\circ}]; \cos x = \frac{\sqrt{2}}{3}$$

• *IV*. kvadrant;
$$\tan x = -\sqrt{3}$$

• II. kvadrant;
$$tan x = -2$$

• III. kvadrant;
$$tan x = 3$$

• *II*. kvadrant;
$$\sin x = \frac{3}{4}$$

•
$$x \in [270^\circ, 360^\circ]; \cos x = \frac{1}{3}$$

•
$$x \in [180^\circ, 270^\circ]; \cos x = -\frac{4}{5}$$

•
$$IV$$
. kvadrant; $\sin x = -\frac{15}{17}$

Podana je vrednost ene kotne funkcije za kot x. Izračunajte velikost kota x glede na pogoj o njegovi velikosti.

•
$$x \in [270^{\circ}, 360^{\circ}]; \cos x = 0.5$$

$$ullet$$
 $x\in[0^\circ,360^\circ]$; $an x=-1$

•
$$x \in [180^{\circ}, 360^{\circ}]; \sin x = \frac{\sqrt{2}}{2}$$

•
$$x \in [0^{\circ}, 360^{\circ}]; \cos x = \frac{\sqrt{2}}{2}$$

•
$$x \in [180^{\circ}, 360^{\circ}]; \cos x = -1$$

•
$$x \in [0^{\circ}, 180^{\circ}]$$
; $\tan x = 1$

•
$$x \in [180^{\circ}, 270^{\circ}]; \sin x = \frac{\sqrt{3}}{2}$$

•
$$x \in [0^{\circ}, 360^{\circ}]; \cos x = \frac{\sqrt{3}}{2}$$

•
$$x \in [0^{\circ}, 270^{\circ}]$$
; $\tan x = -\sqrt{3}$

V enotski krožnici narišite vse kote, za ketere velja dani podatek. Izračunajte velikosti kotov na štiri decimalna mesta natančno.

•
$$\sin x = 0.6$$

•
$$\cos x = 0.3$$

•
$$\tan x = 0.8$$

$$\bullet \, \sin x = -\frac{2}{3}$$

$$\bullet \cos x = -\frac{3}{5}$$

•
$$\tan x = -\frac{3}{2}$$

•
$$tan x = 2$$

30 / 48

Natančno izračunajte.

$$\frac{\sin 315^{\circ} + \cos 135^{\circ} - \tan^2 120^{\circ}}{\sin^2 150^{\circ} - \cos^2 225^{\circ}}$$

31 / 48

Natančno izračunajte.

$$\frac{\sin 315^{\circ} + \cos 135^{\circ} - \tan^{2} 120^{\circ}}{\sin^{2} 150^{\circ} - \cos^{2} 225^{\circ}}$$

Naloga

Poenostavite izraz.

$$1 + \left(\frac{\sin^2 x + \tan^{-1} x \cdot \sin x \cdot \cos x}{\frac{1}{\sin^2 x} - 1}\right)^{-1}$$

31 / 48

Natančno izračunajte.

$$\frac{\sin 315^{\circ} + \cos 135^{\circ} - \tan^{2} 120^{\circ}}{\sin^{2} 150^{\circ} - \cos^{2} 225^{\circ}}$$

Naloga

Poenostavite izraz.

$$1 + \left(\frac{\sin^2 x + \tan^{-1} x \cdot \sin x \cdot \cos x}{\frac{1}{\sin^2 x} - 1}\right)^{-1}$$

Naloga

Za $\tan x = -5$ in $270^{\circ} \le x \le 360^{\circ}$ izračunajte velikost kota x, na minuto natančno, in natančne vrednosti preostalih kotnih funkcij.

Zapišite s kotno funkcijo kota, manjšega od 45°.

- sin 355°
- cos 291°
- tan 174°
- sin 247°

32 / 48

Zapišite s kotno funkcijo kota, manjšega od 45°.

- sin 355°
- cos 291°
- \bullet tan 174°
- sin 247°

Naloga

Voznik podmornice na višini -200~m vidi razbitino ladje, ki leži potopljena na višini -1200~m, pod kotom 8.4° . Izračunajte razdaljo, ki jo mora prevoziti, da bo točno nad razbitino, če se vozi s hitrostjo 40~km/h. Koliko časa potrebuje za to pot?

32 / 48

Section 2

Vektorji

33 / 48

- 1 Kotne funkcije
- Vektorji
 - Vektorske količine
 - Računanje z vektorji
 - Linearna kombinacija vektorjev, baza
 - Skalarni produkt vektorjev
 - Vektorji v koordinatnem sistemu
 - Skalarni produkt v koordinatnem sistemu
 - (i) Vektorski produkt
 - (i) Premice v prostoru
 - (i) Ravnine v prostoru

34 / 48

Vektorske količine

Računanje z vektorji

36 / 48

19. oktober 2025

37 / 48

19. oktober 2025

Vektorji so koplanarni, če ležijo na isti ravnini. Rečemo tudi, da so linearno odvisni.

37 / 48

Vektorji so koplanarni, če ležijo na isti ravnini. Rečemo tudi, da so linearno odvisni.

Če so \vec{a} . \vec{b} in \vec{c} koplanarni vektorji, potem velja vsaj ena izmed naslednjih zvez:

$$\vec{c} = \alpha \vec{a} + \beta \vec{b}; \ \alpha, \beta \in \mathbb{R}$$

$$\vec{b} = \alpha \vec{a} + \gamma \vec{c}; \ \alpha, \gamma \in \mathbb{R}$$

$$\vec{a} = \beta \vec{b} + \gamma \vec{c}; \ \beta, \gamma \in \mathbb{R}$$

37 / 48

Vektorji so koplanarni, če ležijo na isti ravnini. Rečemo tudi, da so linearno odvisni.

Če so \vec{a} , \vec{b} in \vec{c} koplanarni vektorji, potem velja vsaj ena izmed naslednjih zvez:

$$\vec{c} = \alpha \vec{a} + \beta \vec{b}; \ \alpha, \beta \in \mathbb{R}$$

$$\vec{b} = \alpha \vec{a} + \gamma \vec{c}; \ \alpha, \gamma \in \mathbb{R}$$

$$\vec{a} = \beta \vec{b} + \gamma \vec{c}; \ \beta, \gamma \in \mathbb{R}$$

Če so vektorji \vec{a} , \vec{b} in \vec{c} nekoplanarni oziroma linearno neodvisni, velja:

$$\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} = \vec{0} \Leftrightarrow \alpha = \beta = \gamma = 0$$

19. oktober 2025

Baza prostora

38 / 48

Baza prostora

Bazo prostora tvorijo trije neničelni vektorji $(\vec{a}, \vec{b}, \vec{c})$, ki ne ležijo na isti ravnini (so nekoplanarni). Imenujemo jih **bazni vektorji** prostora.

38 / 48

Baza prostora

Bazo prostora tvorijo trije neničelni vektorji $(\vec{a}, \vec{b}, \vec{c})$, ki ne ležijo na isti ravnini (so nekoplanarni). Imenujemo jih **bazni vektorji** prostora.

38 / 48

Vektori

Baza prostora

Bazo prostora tvorijo trije neničelni vektorji $(\vec{a}, \vec{b}, \vec{c})$, ki ne ležijo na isti ravnini (so nekoplanarni).

Imenujemo jih bazni vektorji prostora.

Katerikoli vektor \vec{v} v tem prostoru lahko na en sam način zapišemo kot linearno kombinacijo teh vektorjev $(\vec{a}, \vec{b}, \vec{c})$:

$$\vec{v} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$
, za neke $\alpha, \beta, \gamma \in \mathbb{R}$.

38 / 48

MATEMATIKA Jan Kastelic (GAA) 19. oktober 2025

◆ロト ◆問 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q Q

39 / 48

Pravokotni koordinatni sistem v prostoru oziroma kartezični prostorski koordinatni sistem določajo tri paroma pravokotne številske premice (koordinatne osi), ki se sekajo v koordinatnem izhodišču (O).

Pravokotni koordinatni sistem v prostoru oziroma kartezični prostorski koordinatni sistem določajo tri paroma pravokotne številske premice (koordinatne osi), ki se sekajo v koordinatnem izhodišču (*O*).

Koordinatne osi imenujemo:

Pravokotni koordinatni sistem v prostoru oziroma kartezični prostorski koordinatni sistem določajo tri paroma pravokotne številske premice (koordinatne osi), ki se sekajo v koordinatnem izhodišču (*O*).

Koordinatne osi imenujemo:

os x ali abscisna os,

Pravokotni koordinatni sistem v prostoru oziroma kartezični prostorski koordinatni sistem določajo tri paroma pravokotne številske premice (koordinatne osi), ki se sekajo v koordinatnem izhodišču (*O*).

Koordinatne osi imenujemo:

- os x ali abscisna os,
- os y ali ordinatna os in

Pravokotni koordinatni sistem v prostoru oziroma kartezični prostorski koordinatni sistem določajo tri paroma pravokotne številske premice (koordinatne osi), ki se sekajo v koordinatnem izhodišču (*O*).

Koordinatne osi imenujemo:

- os x ali abscisna os,
- os y ali ordinatna os in
- os z ali aplikatna os.

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$.

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

• prva koordinata x_0 je abscisa točke T,

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

- prva koordinata x_0 je abscisa točke T,
- druga koordinata y_0 je ordinata točke T in

Poljubni točki T v prostoru s pravokotnim koordinatnim sistemom lahko določimo **koordinate točke**: $T(x_0, y_0, z_0)$. To so števila, ki nam povedo, kje ležijo projekcije točke T na koordinatnih oseh.

Koordinate točke imenujemo:

- prva koordinata x_0 je abscisa točke T,
- druga koordinata y_0 je ordinata točke T in
- tretja koordinata z_0 je aplikata točke T.

Vektorji v koordinatnem sistemu

Baza prostora je **ortogonalna**, če je sestavljena iz paroma pravokotnih vektorjev.

Baza prostora je ortogonalna, če je sestavljena iz paroma pravokotnih vektorjev.

Ortonormirana baza

41 / 48

Baza prostora je **ortogonalna**, če je sestavljena iz paroma pravokotnih vektorjev.

Ortonormirana baza

Baza prostora je **ortonormirana**, če je ortogonalna in jo sestavljajo sami **enotski vektorji** – vektorji dolžine 1.

41 / 48

Baza prostora je **ortogonalna**, če je sestavljena iz paroma pravokotnih vektorjev.

Ortonormirana baza

Baza prostora je **ortonormirana**, če je ortogonalna in jo sestavljajo sami **enotski vektorji** – vektorji dolžine 1.

Standardna baza prostora

41 / 48

Baza prostora je **ortogonalna**, če je sestavljena iz paroma pravokotnih vektorjev.

Ortonormirana baza

Baza prostora je **ortonormirana**, če je ortogonalna in jo sestavljajo sami **enotski vektorji** – vektorji dolžine 1.

Standardna baza prostora

Standardna baza prostora je ena izmed ortonormiranih baz prostora. Sestavljajo jo enotski vektorji \vec{i} , \vec{j} in \vec{k} , ki ležijo zapored na pozitivnih poltrakih koordinatnih osi x, y in z.

Krajevni vektor točke

Krajevni vektor točke T je vektor, ki se začne v koordinatnem izhodišču sistema in konča v točki T.
Označimo ga z $\vec{r_T}$.

Krajevni vektor točke

Krajevni vektor točke T je vektor, ki se začne v koordinatnem izhodišču sistema in konča v točki T.
Označimo ga z $\vec{r_T}$.

Komponente krajevnega vektorja $\vec{r_T}$ točke T so enake koordinatam točke T.

$$T(x_0, y_0, z_0)$$

$$\vec{r_T} = (x_0, y_0, z_0)$$

Vektorji v koordinatnem sistemu

Tudi standardne bazne vektorje \vec{i} , \vec{j} in \vec{k} lahko zapišemo kot krajevne vektorje: $\vec{i} = (1, 0, 0)$, $\vec{j} = (0, 1, 0)$ in $\vec{k} = (0, 0, 1)$.

Tudi standardne bazne vektorje \vec{i} , \vec{j} in \vec{k} lahko zapišemo kot krajevne vektorje: $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ in $\vec{k} = (0,0,1)$.

Poljuben vektor \vec{v} v prostoru lahko zapišemo kot linearno kombinacijo standardnih baznih vektorjev:

$$\vec{\mathbf{v}} = \alpha \vec{\mathbf{i}} + \beta \vec{\mathbf{j}} + \gamma \vec{\mathbf{k}} = (\alpha, \beta, \gamma)$$

43 / 48

Tudi standardne bazne vektorje \vec{i} , \vec{j} in \vec{k} lahko zapišemo kot krajevne vektorje: $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ in $\vec{k} = (0,0,1)$.

Poljuben vektor \vec{v} v prostoru lahko zapišemo kot linearno kombinacijo standardnih baznih vektorjev:

$$\vec{\mathbf{v}} = \alpha \vec{\mathbf{i}} + \beta \vec{\mathbf{j}} + \gamma \vec{\mathbf{k}} = (\alpha, \beta, \gamma)$$

S krajevnimi vektorji lahko izrazimo poljuben vektor \overrightarrow{AB} , z začetkom v točki A in koncem v točki B:

Tudi standardne bazne vektorje \vec{i} , \vec{j} in \vec{k} lahko zapišemo kot krajevne vektorje: $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ in $\vec{k} = (0,0,1)$.

Poljuben vektor \vec{v} v prostoru lahko zapišemo kot linearno kombinacijo standardnih baznih vektorjev:

$$\vec{\mathbf{v}} = \alpha \vec{\mathbf{i}} + \beta \vec{\mathbf{j}} + \gamma \vec{\mathbf{k}} = (\alpha, \beta, \gamma)$$

S krajevnimi vektorji lahko izrazimo poljuben vektor \overrightarrow{AB} , z začetkom v točki A in koncem v točki B:

$$\vec{AB} = \vec{r_B} - \vec{r_A}$$

44 / 48

Seštevanje in odštevanje

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ りへで

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Množenje s skalarjem

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Množenje s skalarjem

$$n(a_1, a_2, a_3) = (na_1, na_2, na_3)$$

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Množenje s skalarjem

$$n(a_1, a_2, a_3) = (na_1, na_2, na_3)$$

Skalarno množenje

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Množenje s skalarjem

$$n(a_1, a_2, a_3) = (na_1, na_2, na_3)$$

Skalarno množenje

$$(a_1, a_2, a_3)(b_1, b_2, b_3) = a_1b_1 + a_2b_2 + a_3b_3$$

44 / 48

Seštevanje in odštevanje

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$(a_1, a_2, a_3) - (b_1, b_2, b_3) = (a_1 - b_1, a_2 - b_2, a_3 - b_3)$$

Množenje s skalarjem

$$n(a_1, a_2, a_3) = (na_1, na_2, na_3)$$

Skalarno množenje

$$(a_1, a_2, a_3)(b_1, b_2, b_3) = a_1b_1 + a_2b_2 + a_3b_3$$

$$\vec{a} = \vec{b} \Leftrightarrow a_1 = b_1 \wedge a_2 = b_2 \wedge a_3 = b_3$$

Skalarni produkt v koordinatnem sistemu

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

45 / 48

(i) Vektorski produkt

46 / 48

19. oktober 2025

(i) Premice v prostoru

47 / 48

19. oktober 2025

(i) Ravnine v prostoru

