VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Mid Semester Examination, May - 2019

COURSE NAME: B.TECH

SEMESTER: 2nd

BRANCH NAME: Sec A, B, C, D, E, F, G(Common to all)

FULL MARKS:20

TIME:2 Hours

SUBJECT NAME: BASIC ELECTRONICS

Answer AllQuestions.

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

- Q1 Answer all Questions. [1×5] Draw the frequency response of a high pass filter(HPF) with proper labelling. a) -CO1 b) If the frequency of the input signal to a full wave rectifier is 'f', then calculate the -CO1 frequency of the rectified output signal. Calculate peak inverse voltage for the diodes in full wave bridge rectifier which c) -CO1 produces an average output voltage of 30 V. Perform the conversion: $(145.51)_{10} = (?)_2 = (?)_8 = (?)_{16}$ d) -CO5 Simplify using Boolean algebra e) -CO5 $Y = \overline{A.\overline{B} + A.B.C} + A(B + A.\overline{B}) \qquad (1/2)$ 02 [5]
 - (a) 1.Explain the operation of bridge rectifier with the help of a circuit diagram. -CO1

 Mention its advantages and disadvantages when compared to a center-tap full wave rectifier.
 - 2.A bridge full wave rectifier is used to supply 60 V DC to a resistive load of 800 Ω . The diodes used in rectifier circuit have internal resistance of 25 Ω each. Calculate the AC voltage required at the input. Also calculate the ripple factor at output.

OR

- b) 1.Draw and explain the forward and reverse characteristics of a P-N junction diode. -CO1 Also, discuss the reverse breakdown mechanism of a diode.
 - 2. Determine average value of the functions given in fig1 and 2 below.

Fig. 1

Fig. 2

What do you understand by universal gates? Mention the types of universal gates. a) -CO5 Implement NOT, AND, OR, EX-OR and EX-NOR gates using NAND gates only.

OR

1.Subtract $(136)_{10}$ from $(125)_{10}$ using 1's and 2's complement method. b) 2. Construct the truth table for the logical function: $Y = \overline{A + B} + C\overline{D}$

Q4

[5]

-CO1 1. Considering the diodes as ideal ones analyze and draw the output of the following a) circuit

2.Determine the current I₁, I₂ and I₃ assuming Silicon diodes with forward resistance of 20 Ω each.

OR

-CO5

1.State and Prove DeMorgan's theorem. Perform the addition of three binary b) numbers—111000111, 101010101 and 11011. (3) 2. Write the Boolean expression in Sum of Product (SOP) format for Y from the truth table given below. Minimize the expression using Boolean algebra and implement the minimized Boolean expression with gates.

	B	C	Y
A	D	0	0
0	0	0	1 4
0	0	1	1. (gr
0	1	0	1. 1000
0	1	1	0
0.	0	0	1 6
1	0	1	0
1	0	0	IV
1	1	1	111
1	1		-