2024-01-12

610642

Key takeaways:

- Cross-product $\mathbf{a} \times \mathbf{b}$ computations, it is \perp both \mathbf{a} and \mathbf{b} .
- Area of triangles

The Cross Product of

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k} = (b_1, b_2, b_3)$

is a vector that is perpendicular to both \mathbf{a} and \mathbf{b} .

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \mathbf{i} \underbrace{\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}}_{a_2b_3 - b_2a_3} - \mathbf{j} \underbrace{\begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix}}_{a_1b_3 - b_1a_3} + \mathbf{k} \underbrace{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}_{a_1b_2 - b_1a_2}.$$

Example Evaluate $(1, 2, 3) \times (-2, 1, 0)$.

Notes and Theorem $\mathbf{a} \cdot \mathbf{b}$ is a number, while $\mathbf{a} \times \mathbf{b}$ is a vector.

- (a) $\mathbf{a} \times \mathbf{b}$ is both perpendicular to \mathbf{a} and \mathbf{b} .
- (b) If θ is the angle between $\mathbf{a} \cdot \mathbf{b}$ ($0 \le \theta \le \pi$) then $|\mathbf{a} \cdot \mathbf{b}| = |\mathbf{a}| . |\mathbf{b}| \sin \theta$.
- (c) Two nonzero vectors **a** and **b** are parallel if and only if $|\mathbf{a} \times \mathbf{b}| = 0$.

Example Find a vector **u** that satisfies $\mathbf{u} \cdot (9,3,1) = 0$ and $\mathbf{u} \cdot (-2,4,0) = 0$.

Theorem - Direction of the Cross Product Take two non-zero non-parallel vectors \mathbf{a} and \mathbf{b} . Then the direction of $\mathbf{a} \times \mathbf{b}$ is determined by the right-hand rule. That is: the way your right thumb handrub right points when your right-hand fingers curl through the angle θ from \mathbf{a} to \mathbf{b} .

Computing area of triangle

Given a triangle ABC, we have

$$S_{ABC} = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} |AB|.|AC|.\sin(\theta).$$

Example Find the area of the triangle with vertices P(1,0,1), Q(-2,1,3), and R(4,2,5).

