Révisions

Interaction gravitationnelle

Deux corps A et B, de masses $m_{\rm A}$ et $m_{\rm B}$ uniformément réparties autour de leurs centres séparés d'une distance d, exercent l'un sur l'autre des forces d'attraction gravitationnelle dont la valeur est donnée par la relation ci-contre.

$$F_{A/B} = F_{B/A} = G \frac{m_A \cdot m_B}{d^2} m_A \text{ et } m_B \text{ en kilogramme (kg)}$$
 $d \text{ en mètre (m)}$
 $G = 6,67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
(constante universelle de gravitation)

Champs et forces

- ▶ Un corps de masse m placé dans une région de l'espace où règne un champ de pesanteur \vec{g} est soumis à une force $\vec{P} = m \cdot \vec{g}$ appelée le **poids.**
- Une particule de charge q placée dans une région de l'espace où règne un champ électrostatique \vec{E} est soumise à une force $\vec{F} = q \cdot \vec{E}$.

Énergies

▶ L'énergie cinétique \mathscr{C}_c d'un solide en translation est l'énergie qu'il possède du fait de son mouvement. Elle est définie par la relation ci-contre.

- ▶ L'énergie potentielle de pesanteur \mathscr{E}_p d'un solide est l'énergie qu'il possède du fait de sa position par rapport à la référence choisie ($\mathscr{E}_{p_0} = 0$ quand z = 0), l'axe vertical (Oz) étant orienté vers le haut. Elle est définie par la relation ci-contre.
- joule (J) $\mathscr{E}_p = m \cdot g \cdot z$ joule (J) mètre (m) $g \approx 9,8 \text{ N} \cdot \text{kg}^{-1}$ (intensité (kg) de la pensateur à la surface de la Terre)
- **)** L'énergie mécanique \mathscr{E}_{m} d'un solide est $\mathscr{E}_{m} = \mathscr{E}_{c} + \mathscr{E}_{p}$.
- L'énergie d'un système isolé se conserve : elle peut être transférée d'une partie du système à un autre et/ou transformée d'une forme en une autre.
- ▶ Entre des corps en contact à des températures différentes, il y a échange d'énergie par transfert thermique.

Puissance et énergie

ightharpoonup L'énergie eals consommée ou produite par un appareil de puissance eals est liée à sa durée de fonctionnement Δt par la relation ci-contre.

Onde électromagnétique et énergie

▶ L'énergie de la lumière est transportée par des **photons**. Dans une radiation de fréquence v de longueur d'onde dans le vide λ , chaque photon transporte un quantum d'énergie % défini par la relation ci-contre.

