Section 51: Separable Extensions

Def: Let $f(x) \in F[x]$. An element $\alpha \in \bar{F}$ such that $f(\alpha) = 0$ is a zero of multiplicity v, if v is the greatest integer such that $(x - \alpha)^v$ is a factor of f(x) in $\bar{F}[x]$.

Thm. Let f(x) be irreducible in F[x]. Then all the zeros of f(x) in \bar{F} have the same multiplicity.

Corollary: If f(x) is irreducible in F[x], then f(x) has a factorization in $\bar{F}[x]$ of the form

$$a\prod_{i}(x-\alpha_{i})^{v}$$

where the α_i are the distinct zeros of f(x) in \bar{F} and $a \in F$.