به نام خدا

گزارش تمرین سوم مبانی هوش

غزل زماني نژاد، 97522166

1. شبكه Hopfield

1.2.در این سوال می خواهیم دو پترن را در شبکه هاپفیلد ذخیره سازی کنیم. برای این کار، کلاسی با نام Hopfield تعریف می کنیم که constructor آن پترن ها را به عنوان ورودی می گیرد. سپس باید ماتریس وزن را به صورت دو بعدی و با ابعاد (طول هر پترن، طول هر پترن) تشکیل دهیم. برای پر کردن ماتریس وزن از متد calculate_weights کمک می گیریم. در این متد به کمک حلقه های for ابتدا تک تک عناصر یک پترن خاص را در هم ضرب می کنیم، سپس با مقدار قبلی وزن ها جمع می کنیم و هم در سطر و هم در ستون ماتریس وزن می نویسیم. (به گونه ای که این ماتریس متقارن شود.)

```
weights: [[ 0. 0. 2. -2. 0. -2.]
  [ 0. 0. 0. 0. -2. 0.]
  [ 2. 0. 0. -2. 0. -2.]
  [-2. 0. -2. 0. 0. 2.]
  [ 0. -2. 0. 0. 0. 0.]
  [-2. 0. -2. 2. 0. 0.]
```

مثال از نوع ضرب کردن در یک پترن:

```
[1, 2, 3] = [0, 2, 3,
2, 0, 6,
3, 6, 0]
```

پس از آن نوبت به تست کردن شبکه هاپفیلد می رسد.

ابتدا شبکه را با پترن (1- ,1- ,1- ,1- ,1- ,1-) تست می کنیم. از متد sync_update استفاده می کنیم. در این متد ابتدا یک حلقه while داریم که در آن به تعداد ocycle مورد نظر این کار انجام می شود. در یک حلقه for پترن تست را در هر سطر از ماتریس وزن ضرب داخلی می کنیم. سپس با توجه به sign آن، مقدار عنصر أم پترن تست را تغییر می دهیم. اگر پترن بدست آمده با پترنی که در حلقه قبل بدست آمده بود برابر باشد، پترن تست stable است. که این پترن بعد از iteration سوم پایدار می شود.

```
iteration: 0
after update: [1 1 1 1 1 1]
iteration: 1
after update: [-1 -1 -1 -1 -1 -1]
iteration: 2
after update: [-1 -1 -1 -1 -1 -1]
test pattern is stable
```

سپس پترن (1- ,1- ,1- ,1- ,1-) را وارد شبکه می کنیم. و متد sync_update را بر روی آن صدا می زنیم. و مشاهده می کنیم که این پترن مرتب در حال تغییر است و یک در میان جا به جا می شود. پس این پترن پایدار نیست.

```
iteration: 0
after update: [-1 1 1 1 1]
iteration: 1
after update: [ 1 -1 -1 1 -1 1]
iteration: 2
after update: [-1 -1 1 1 -1 1]
iteration: 3
after update: [ 1 -1 -1 1 -1 1]
after update: [-1 -1 1 1 -1 1]
iteration: 5
after update: [ 1 -1 -1 1 -1 1]
iteration: 6
after update: [-1 -1 1 1 -1 1]
iteration: 7
after update: [ 1 -1 -1 1 -1 1]
iteration: 8
after update: [-1 -1 1 1 -1 1]
iteration: 9
after update:
iteration: 10
after update:
iteration: 11
after update:
iteration: 12
after update:
iteration: 13
after update:
iteration: 14
after update: [-1 -1 1 1 -1 1]
iteration: 15
after update: [ 1 -1 -1 1 -1 1]
iteration: 16
after update:
after update:
iteration: 18
after update:
iteration: 19
after update: [ 1 -1 -1 1 -1 1] pattern is repeating with cycle of length 2
```

async_update این سوال مشابه سوال قبل است. با این تفاوت که برای آپدیت کردن از متد .1.3 استفاده می کنیم.

باید برای هر یک از اندازه های فونت، ابتدا تصاویر A تا J را در شبکه ذخیره کنیم و سپس شبکه را با تصاویر نویزی حروف امتحان کنیم.

توضیح برای فونت 16: ابتدا متد save_images را صدا می زنیم. در آن حروف الفبا را با فونت 16 تشکیل می دهیم و به عنوان تصاویر را ذخیره می کنیم. آن ها را در یک لیست می ریزیم و return می کنیم. سپس سایز بزرگترین عکس را پیدا می کنیم و به عنوان سایز شبکه در نظر می گیریم. بعد متد data_test را با ورودی لیست تصاویر و سایز شبکه هاپفیلد صدا می زنیم. در آن تمامی عکس ها را با سایز شبکه presize می کنیم تا تمامی تصاویر هم اندازه شوند. سپس آن ها را به numpy ها را با سایز شبکه عناصری که 0 هستند (پیکسل های سفید تصویر) در آرایه 1- می نویسیم و سایر عناصر را با 1 پر می کنیم. و به لیست پترن ها append می کنیم. اکنون نوبت به ساختن تصاویر نویزی از پترن ها می رسد. این کار را با تابع noisy_data انجام می دهیم. این تابع تصویر و درصد نویز را به عنوان ورودی دریافت می کند. سپس در یک حلقه for، عددی را به صورت

رندوم generate می کند. اگر آن عدد از درصد نویز ورودی کمتر باشد به جای آن صفر یا یک می گذارد. یا اگر آن عدد از مکمل نویز ورودی بیشتر باشد به جای آن صفر یا یک می گذارد. در غیر این صورت آن پیکسل را تغییر نمی دهد. این کار را برای نویز 10، 30 و 60 درصد انجام می دهیم. پس از ساختن پترن ها و تست دیتا، نوبت به train و test شبکه می رسد. ابتدا شبکه را با پترن ها async_update را بر می می کنیم و وزن ها را بدست می آوریم (مشابه سوال قبل). سپس تابع cycle ها تست دیتا روی تک تک تصاویر نویزی صدا می زنیم. در این متد، در یک حلقه for به تعداد eycle ها تست دیتا را آپدیت می کنیم. نحوه آپدیت به صورت asynchronous است؛ یعنی یکی از ایندکس های پترن را آپدیت می کنیم. نخوم انتخاب می کنیم. سپس حاصل ضرب داخلی آن پترن در وزن [ایندکس رندوم انتخاب شده] را بدست می آوریم و با توجه به sign آن آن ایندکس از پترن را آپدیت می کنیم. در هر لوپ، مقدار انرژی را نیز بر اساس فرمول زیر محاسبه می کنیم:

$$E = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} V_i V_j$$

و در هر لوپ مقادیر انرژی را در یک لیست ذخیره می کنیم. در پایان لوپ خروجی و لیست انرژی را برمی گردانیم.

در پایان با تابع print_output تصویر نویزی، خروجی شبکه هاپفیلد و تابع انرژی را چاپ می کنیم. مشاهده می شود که تابع انرژی در گذر زمان به کمترین مقدار خودش رسیده است.

هم چنین برای محاسبه دقت از فرمول زیر استفاده می کنیم:

تعداد عناصر
$$(pattern == ouput)$$
 $*100$ طول پترن

و برای هر اندازه فونت و درصد نویز، میانگین دقت آن سایز و درصد نویز را محاسبه می کنیم. نتایج در جدول زیر مشاهده می شود:

	10%	30%	60%
16	76.98	76.85	76.53
32	84.36	82.05	72.92
64	89.68	77.89	61.49

نمونه یکی از خروجی ها در شکل زیر مشاهده می شود:

		Fuzzy
ر سیم مینیم. دران ط	ا برای طروی گر فرن در دید مترها	
	· · · · · · · · · · · · · · · · · · ·	
ر فال سنواس	مغیرهای دردن میزان شنی دندع کشفی لباس ، خودم	
	——————————————————————————————————————	
المن نهم	linguistic term . win 2 st.	
	· · · · · · · · · · · · · · · · · · ·	
linguistic terms (H)={ vl, l, M, H, VH}	
1		
linguistic terms(D)	={ sweaty, bloody, inky, greasy}	
į		
linguistic terms(T)-	{VL, I, M, H, VH}	
می مرن ماده مانی آن	function with a silve some state laction	
مرده وأنها را كامد ميسم.	Mensership pi - Turiou	
i 4(R) 4	H <10 do	
VL L M	H VH 0 < H < 20	
	X 1 10 (H < 30 doing	
10 20	30 40 H 204 H 40 Ju	
	30 < H Nice	
5 /4 (D)4		
F /407	D < 20 UF	
SB	T. G 10 < D < 30 (30)	-
5	20 & D & 40 US 09	
	30×D , , , , , , , , , , , , , , , , , , ,	
E 10 20 3	30 40 D GART	

$A_{H} = \begin{cases} 0.1 \text{ h} & 0 \text{ she} = 0 \\ -0.1 \text{ h} + 2 & 10 \text{ she} = 20 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 1 & 10 \text{ she} = 20 \\ -0.1 \text{ h} + 3 & 20 \text{ she} = 30 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 2 & 20 \text{ she} = 30 \\ -0.1 \text{ h} + 4 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ h} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{H} = \begin{cases} 0.1 \text{ she} - 3 & 30 \text{ she} = 40 \end{cases}$ $A_{$	(1	£ € 0	, , , , , , , , , , , , , , , , , , , ,	E
$A_{H}(h) = \begin{cases} 0.1h + 2 & 10 & k & k & 20 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 1 & 10 & k & k & 20 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 2 & 20 & k & k & 30 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & k & 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & k & k \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & k & k & k \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & k & k \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & 30 & k & k & k & k \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & k & k & k & k & k \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 3 & k & k & k & k & k $	(1, (h) = {-0.1 k.	+1 0 < h < 10	-	E
$A_{H}(L) = \begin{cases} 0.1L - 1 & 10 & 10 & 10 & 10 & 10 \\ -0.1L + 3 & 20 & 10 & 10 \\ 1 & 20 & 10 & 10 \\ -0.1L + 4 & 30 & 10 & 10 \\ 1 & 40 & 10 & 10 \\ 1 & 40 & 10 & 10 \\ 1 & 40 & 10 & 10 \\ 1 & 10 & 10 & 10 & 10 \\ 1 & 10 & 10$	10.1 h	0 < h < 10		E
$A_{H}(h) = \begin{cases} -0.1h + 3 & 20 \le h \le 30 \\ 20 \le h \le 40 \end{cases}$ $A_{H}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 40 \\ -0.1h + 4 & 30 \le h \le 40 \end{cases}$ $A_{VH}(h) = \begin{cases} 0.1h - 3 & 30 \le h \le 40 \\ 1 & 40 \le h \end{cases}$ $A_{S}(h) = \begin{cases} -0.1h + 2 & 10 \le h \le 20 \\ -0.1h + 2 & 10 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 2 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \\ -0.1h + 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h \le 20 \end{cases}$ $A_{S}(h) = \begin{cases} 0.1h - 3 & 20 \le h$		10 KK & 20		E
$A_{H}(L) = \begin{cases} 0.1 L - 2 & 20 \le k \le 30 \\ -0.1 L + 4 & 30 \le k \le 40 \end{cases}$ $A_{VH}(L) = \begin{cases} 0.1 L - 3 & 30 \le k \le 40 \\ 1 & 40 \le k \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0 \le 0 \le 20 \\ -0.1 C + 2 & 10 \le 0 \le 20 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 20 \\ -0.1 C + 3 & 20 \le k \le 20 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 20 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 20 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \\ -0.1 C + 3 \le 40 \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 C - 2 & 30 \le k \le 40 \end{cases}$ A	H 10.11.1	10 & L & 20		
$A_{H}(h) = \begin{cases} -0.1k + 4 & 20 \leq k \leq 40 \\ 40 \leq k \end{cases}$ $A_{S}(d) = \begin{cases} 0.1k - 3 & 30 \leq k \leq 40 \\ 1 & 40 \leq k \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0 \leq 10 \\ -0.1c + 2 & 10 \leq d \leq 20 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 1 & 10 \leq d \leq 20 \\ -0.1c + 3 & 20 \leq d \leq 20 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 20 \\ -0.1c + 3 & 20 \leq d \leq 20 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 20 \\ -0.1c + 3 & 20 \leq d \leq 40 \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{S}(d) = \begin{cases} 0.1c - 2 & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$	M(L) = \ -0.1L+3	20 E L E 30		Ę
$A_{VH}(h) = \begin{cases} 0.1 \text{ $k-3$} & 30 \text{ k k 40} \\ 1 & 40 \text{ k k} \end{cases}$ $\begin{cases} A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k 10} \\ -0.1 \text{ k $1,20$} \end{cases} & 0.1 \text{ k 10} \\ -0.1 \text{ k $1,20$} & 20 \text{ k 20} \end{cases}$ $A_{S}(d) = \begin{cases} 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $2,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ -0.1 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 \text{ k $1,20$} \end{cases}$ $A_{S}(d) = \begin{cases} 1 & 0.1 \text{ k $1,20$} \\ 1 & 40 \text{ k $1,20$} \end{cases} & 20 $	10.14-2	20 < h < 30		Ę
$\begin{cases} A_{5}(d) = \begin{cases} 1 & 40 \leq 1 \\ -0.1 d + 2 & 10 \leq d \leq 20 \end{cases} \\ A_{5}(d) = \begin{cases} 0.1 d - 1 & 10 \leq d \leq 20 \\ -0.1 d + 3 & 20 \leq d \leq 20 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 2 & 20 \leq d \leq 20 \\ -0.1 d + 4 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d$	H (L)= (-0.1h+4	30 & h & 40		1
$\begin{cases} A_{5}(d) = \begin{cases} 1 & 40 \leq 1 \\ -0.1 d + 2 & 10 \leq d \leq 20 \end{cases} \\ A_{5}(d) = \begin{cases} 0.1 d - 1 & 10 \leq d \leq 20 \\ -0.1 d + 3 & 20 \leq d \leq 20 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 2 & 20 \leq d \leq 20 \\ -0.1 d + 4 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 & 20 \leq d \leq 40 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d) = \begin{cases} 0.1 d - 3 \end{cases} \\ A_{7}(d$	10.16-	3 306h<40		
$ \frac{1}{5}(d) = \begin{cases} -0.1d+2 & 10 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-1 & 10 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-2 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-2 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-2 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $ \frac{1}{5}(d) = \begin{cases} 0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-3 & 20 \leqslant d \leqslant 20 \end{cases} $ $0.1d-$	(A) = (1	406/		
$A_{T} = \begin{cases} 0.1 d_{-1} & 10 \leq d \leq 20 \\ -0.1 d_{+3} & 20 \leq d \leq 20 \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-2} & 20 \leq d \leq 20 \\ -0.1 d_{+4} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} (d) = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \\ 1 & 40 \leq d \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40 \end{cases}$ $A_{T} = \begin{cases} 0.1 d_{-3} & 20 \leq d \leq 40$	(, (1) 1			
My (d) = {0.1 d - 2 20 d 130 (-0.1 d 24 20 d 140 My (d) = {0.1 d - 3 20 d 140 1 40 d d d d d d d d d d d d d d d d d d	S(a) = \(-0.1 cl + \)	2 10/d (20		
My (d) = {0.1 d - 2 20 d 130 (-0.1 d 24 20 d 140 My (d) = {0.1 d - 3 20 d 140 1 40 d d d d d d d d d d d d d d d d d d	0.14-1	10 € q € 50		
1 (d) = (-0.1 d + u 30 \ d \ \ (u) \) (4) = \begin{pmatrix} 0.1 d - 3 & 30 \ \ d \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3 20 Cd (20		
المرافع عاد المرافع عاد المرافع المرا	D 10.1d-	2 206 d 130	1,	ii.
الله الله الله الله الله الله الله الله	1 (a) = (-0.1d)	eu 305 d. 540		
الله الله الله الله الله الله الله الله	10.10-3	3059.340		
VL L H H VH 20 <t<60 20="" td="" δ0="" δ0<=""><td>(Ac (a) =) 1</td><td>40¢d</td><td></td><td>1</td></t<60>	(Ac (a) =) 1	40¢d		1
VL L H H VH 20 <t<60 20="" td="" δ0="" δ0<=""><td></td><td>र्भ</td><td>T (20)</td><td>/</td></t<60>		र्भ	T (20)	/
الله الله الله الله الله الله الله الله	17			
40 × T × 80	.rl M	и Ун		
XIXIXI				ر بروتر
	XXX	1		رماد
20 40 60 80 T (min) 60<7 110 cho	70 40	60 80 T (mi)	J 60KT JUIC	-

•

•

	, , ,			
		+) - 51	€ €0	1
	VL	$t) = \begin{cases} 1 \\ \frac{-1}{20} t + 1 \end{cases}$	0 { t < 20	11:
			0 {t { 20	
) [$= \begin{cases} \frac{1}{20}t \\ \frac{1}{20}t + 2 \end{cases}$	20 £ £ {40	
1 -	L_(t)	= 1 /20t-1	20 < t < 40	1
Т	Men	$= \begin{cases} \frac{1}{20} t - 1 \\ \frac{1}{20} t + 3 \end{cases}$	405 t 560	
	4 (+)	- 1 %ot-2	406 t 660	1
	H	= { ½0 t-2	60 £ t £ 80	
	1. (+)	= { ½0 t-3	€0 € £ € 80 ·	
	(VH	1	80 ¢ t	
			in a	ا د ت ت
			- 3,5,000	المس و لعسن توانا
			ې د	expert 11
1);£	dure of elia	is a just of	dienie ie li Ha I	
-/ 41	ale or care	in lineary of a	icliness is H, then t	ine is medium
2)		blood a		
4	,	bloody &	" very low,	· · · Loui.
21			. 1-1	
3)	te te	inky &	high,	high.
<i>"</i>)				1
64 1	и	greosy &	u medium,	., "high
7/ /				
-1/ -			. / //	,
-1/ "		1-0	الله من معدول عامِن مي	لداريه قواعد را ب

•

•

2	VL	L	н	н	VН
5		V)	М	М	н
8		1	М	н	V Η
I		М	Н	Н_	VH
G	м	Н	Н	VΗ	VH
		- wi	- Ma	mdani	agregation.

3.2 در این سوال باید برای همه ورودی ها و خروجی ترم های فازی تعریف کنیم و سپس قوانینی برای حل مسئله تعریف کنیم.

نمودار membership function ورودی ها و خروجی مطابق تصویر زیر است:

این ترم ها را در بلاک های

FUZZIFY

...

END_FUZZIFY

تعریف می کنیم.

سپس قوانینی که بدست آورده ایم را در بلاک

RULEBLOCK

...

END_ RULEBLOCK

تعریف می کنیم.

(ربع های این دایره یکی از ربع های اصلی عقبتر است.)

قانون 1: اگر زاویه در ربع 4 دایره و زیاد باشد و سرعت زاویه ای در خلاف جهت عقربه های ساعت و کم باشد، نیروی بسیار زیاد به سمت چپ وارد شود.

قانون 2: اگر زاویه در ربع 1 دایره و کم باشد و سرعت زاویه ای در جهت عقربه های ساعت و کم باشد، نیروی بسیار زیاد به سمت راست وارد شود.

قانون 3: اگر زاویه در ربع 3 دایره و کم باشد و سرعت زاویه ای در خلاف جهت عقربه های ساعت و کم باشد، نیروی بسیار زیاد به سمت چپ وارد شود.

قانون 4: اگر زاویه در ربع 2 دایره و زیاد باشد و سرعت زاویه ای در جهت عقربه های ساعت باشد، نیروی بسیار زیاد به سمت راست وارد شود.

قانون 5: اگر زاویه در ربع 3 دایره و بسیار به 180 درجه نزدیک باشد و سرعت زاویه ای در خلاف جهت عقربه های ساعت باشد، نیروی کم به سمت چپ وارد شود.

قانون 6: اگر زاویه در ربع 2 دایره و بسیار به 180 درجه نزدیک باشد و سرعت زاویه ای در جهت عقربه های ساعت باشد، نیروی کم به سمت راست وارد شود.

نتیجه را در تصویر زیر مشاهده می کنیم:

Report for initial_theta: 154

