Camera Parameters Extraction Using Real-Time Video Analysis In Football Broadcasting

——Miguel Ramirez and Pereira Duarte. 2015

What it do

• Extract the camera's parameters using real-time video analysis in football broadcasting.

Camera Parameters

- 外参数R, T, C
- 内参数f
- 利用这些参数,可以将世界坐标系下的3D点投影到图像的对应位置,投影公式: $\mathbf{x} = \mathrm{KR}[\mathbf{I} \mid -\widetilde{\mathbf{C}}]\mathbf{X}$

$$m{K} = \left[egin{array}{ccc} f & 0 & c_x \ 0 & f & c_y \ 0 & 0 & 1 \end{array}
ight]$$

Flow Chart——initialization

Flow Chart—tracking

Flow Chart

Flow Chart——initialization

Line Pixels Detection (1)

$$LW(x,y) = \begin{cases} 1, & \text{if } l(x,y) \geq \sigma_l & \wedge & l(x,y) - l(x-\delta,y) \geq \sigma_d & \wedge & l(x,y) - l(x+\delta,y) \geq \sigma_d \\ 1, & \text{if } l(x,y) \geq \sigma_l & \wedge & l(x,y) - l(x,y-\delta) \geq \sigma_d & \wedge & l(x,y) - l(x,y+\delta) \geq \sigma_d \\ 0, & \text{otherwise}. \end{cases}$$

Line Pixels Detection (2)

Field mask (Hue Histogram)

$$\begin{cases} 1, & \text{if } H_{low} \leq h(x,y) \leq H_{high} \\ 0, & \text{otherwise.} \end{cases}$$

Line Pixels Detection (3)

Flow Chart——initialization

Line Detection

Hough+Deduplication

Line Detection

Classification+Sort

	Vertical θ [$^{\circ}$]	Horizontal θ [$^{\circ}$]
Left cam.]-85, 70[$[-90, -85] \cup [70, 89]$
Main cam.]-73,73[$[-90, -73] \cup [73, 89]$
Right cam.]-70,85[$[-90, -70] \cup [85, 89]$

Flow Chart——initialization

Model Fitting

• Solve the homography (8 degree of freedom)

Model Fitting

• Conditional filter

Score Homography

• Score: 1*cover pixel-0.2*no cover pixel

Flow Chart——initialization

Homography and Refine

Back project (project image to field model)

$$E_T = \sum_{i}^{\#points} \left[l_i^T \mathcal{L} \{ H^{-1} p_i \} \right]^2$$
. $E_{\mu} = \text{Et / N_points}$

Flow Chart—tracking

Extract Camera Parameters

$$E_h = \sum_{i=1}^{3} \sum_{j=1}^{3} \left[h_{ij} - h_{ij}(\boldsymbol{\Psi}) \right]^2$$

Solve: $(f, \gamma, \beta, \alpha, X_{cam}, Y_{cam}, Z_{cam})$

Refine Camera Parameters

$$E_T = \sum_{i}^{\#points} \left[l_{m{i}}^T \mathcal{L} \{ \mathcal{H}^{^{-1}}(m{\Psi}) p_{m{i}} \}
ight]^2.$$

Refine Position

Experiment

Image Resolution:384 x 215, CPU

	Average time
line pixels detection	1,97 ms
Field area mask	2,85 ms
Lines detection	1,56 ms
Lines classification	1,77 ms
Extra lines removal	0,47 ms
Field side	2,03 μs
Image's lines intersection	8,77 μs
Rejection test #1	0,94 μs
Homography computation	21,40 μs
Rejection tests #2 and #3	$3,55 \mu$
Homography score	0,53 ms
Homography refinement	12,80 ms

Advantage

- 1, For the sport field, automatic calibration camera.
- 2, High precision.
- 3, Fast.

Disadvantage

- 1, Some inconvenience on part of line detection.
- 2, Need two pairs of parallel white lines at least.
- 3, Chose initial value for part of refine parameters.

Improve

• 1, Combine other knowledge to be robust.

Thank you