CAP4612 - Homework 2

- All the code you need to do this homework I have provided. You might have to do a little modification that is all. Do not overthink it.
- Important your results might be different than mine due to the samples that you are using. I provide you
 with numbers and figures are just to guide you.
- If I ask you to make a comment on some of your calculations, there is no right or wrong answer that I'm looking for. I want to see how you are interpreting and understanding the material.
- 0. On the top of your python script file put the following information:

```
# Name: YOUR NAME
# ID: YOUR PANTHER ID
```

CERTIFICATION: I understand FIU's academic policies, and I certify that this work is my

work and that none of it is the work of any other person.

1. Load the Cancer_Data.csv data into a dataframe named cancer_data and show the first 5 entries of the data frame. Here's an example of what I'm looking for:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 ri
0	842302	М	17.99	10.38	122.8	1001.0	0.11840	0.27760	0.3001	0.14710	
1	842517	М	20.57	17.77	132.9	1326.0	0.08474	0.07864	0.0869	0.07017	
2	84300903	М	19.69	21.25	130.0	1203.0	0.10960	0.15990	0.1974	0.12790	
3	84348301	М	11.42	20.38	NaN	386.1	0.14250	NaN	0.2414	0.10520	
4	84358402	М	20.29	14.34	135.1	1297.0	0.10030	0.13280	0.1980	0.10430	

Here is information on the features of the dataset:

- 1) ID number
- 2) Diagnosis (M = malignant, B = benign)
- 3-32)
- Ten real-valued features are computed for each cell nucleus:
- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

2. Print out the following information of the dataframe in step 1.

Hint: There is a simple function call on the dataframe that does this.

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symm€
count	5.690000e+02	565.000000	564.000000	565.000000	565.000000	568.000000	564.000000	556.000000	558.000000	5
mean	3.037183e+07	14.123581	19.286436	92.012319	655.822655	0.096316	0.103982	0.089747	0.049576	
std	1.250206e+08	3.515269	4.313091	24.219501	352.848451	0.014037	0.052455	0.079679	0.038692	
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	
25%	8.692180e+05	11.700000	16.167500	75.210000	420.300000	0.086290	0.064315	0.029930	0.020692	
50%	9.060240e+05	13.340000	18.835000	86.340000	551.100000	0.095865	0.092350	0.061880	0.033950	
75%	8.813129e+06	15.780000	21.802500	104.100000	788.500000	0.105300	0.130400	0.131950	0.074122	
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	
8 rows × 31 columns										

3. Write the code that prints out the following information of the dataframe in step 1. Replace #row with number of rows and #col with the number of columns in the dataframe

There are #row rows and #col columns

4. Print out the features (columns) of the dataframe

5. Use seaborn and mathplot to plot the following diagram.

If you get any warnings use this code to suppressed them: import warnings warnings.simplefilter(action="ignore", category=FutureWarning)

6. Use seaborn, mathplot, subplot and boxplot to plot the following diagram. Notice the number of row and columns in the diagram.

Boxplot are for the following features: radius_mean, texture_mean, perimeter_mean, area_mean, smoothness_mean and compactness_mean.

7. Plot the following diagram using the dataframe from step 1.

8. Write the code that prints out all the features name that have missing data:

```
['diagnosis',
 'radius mean',
 'texture_mean',
 'perimeter_mean',
 'area mean',
'smoothness_mean',
 'compactness mean',
 'concavity_mean',
 'concave points_mean',
 'symmetry_mean',
'fractal_dimension_mean',
 'radius_se',
'texture_se',
 'perimeter se',
 'area_se',
 'compactness_se',
 'concavity_se',
 'concave points se',
'symmetry_se',
'radius_worst',
 'texture_worst',
 'perimeter_worst',
 'area_worst',
 'smoothness_worst',
 'compactness worst',
 'concavity_worst',
'concave points_worst',
'symmetry_worst',
'fractal_dimension_worst']
```

9. Output the dtypes of the dataframe:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
                              Non-Null Count
 # Column
                                              Dtype
 0 id
                              569 non-null
                                               int64
    diagnosis
                              543 non-null
                                               object
    radius_mean
                              565 non-null
                                               float64
                              564 non-null
    texture mean
                                               float64
                              565 non-null
                                               float64
    perimeter mean
                              565 non-null
 6 smoothness mean
                              568 non-null
                                               float64
    compactness mean
                              564 non-null
                                               float64
    concavity mean
                              556 non-null
                                               float64
                                               float64
    concave points mean
                              558 non-null
 10 symmetry_mean
                              567 non-null
 11 fractal_dimension_mean 567 non-null
                                               float64
 12 radius_se
                              567 non-null
                                               float64
 13 texture se
                              564 non-null
                                               float64
 14 perimeter_se
                              568 non-null
                                               float64
 15 area_se
                              501 non-null
                                               float64
 16 smoothness se
                             569 non-null
                                               float64
                            564 non-null
 17 compactness se
                                               float64
 18 concavity se
                              557 non-null
                                               float64
 19 concave points_se
                              559 non-null
 20 symmetry_se
                              565 non-null
                                               float64
 21 fractal dimension se
                              569 non-null
                                               float64
 22 radius_worst
23 texture_worst
                              567 non-null
                                               float64
                              568 non-null
                                               float64
 24 perimeter worst
                              567 non-null
 25 area_worst
                              567 non-null
                                               float64
 26 smoothness_worst
27 compactness worst
                              434 non-null
                                               float.64
                              567 non-null
                                               float64
                              556 non-null
 28 concavity worst
                                               float64
 29 concave points worst
                              557 non-null
 30 symmetry_worst
                              563 non-null
                                               float64
 31 fractal dimension worst 562 non-null
                                               float64
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB
```

10. Write the code that outputs all the percentage of missing data for the features listed in step 8.

```
diagnosis: 26 (4.569%)
radius mean : 4 (0.703%)
texture mean : 5 (0.879%)
perimeter mean : 4 (0.703%)
area mean : 4 (0.703%)
smoothness mean: 1 (0.176%)
compactness mean: 5 (0.879%)
concavity mean : 13 (2.285%)
concave points mean: 11 (1.933%)
symmetry_mean : 2 (0.351%)
fractal dimension mean : 2 (0.351%)
radius se : 2 (0.351\%)
texture se : 5 (0.879%)
perimeter_se : 1 (0.176%)
area se : 68 (11.951%)
compactness se : 5 (0.879%)
concavity se : 12 (2.109%)
concave points se : 10 (1.757\%)
symmetry se : \overline{4} (0.703%)
radius_worst : 2 (0.351%)
texture worst : 1 (0.176%)
perimeter worst : 2 (0.351%)
area worst : 2 (0.351\%)
smoothness worst : 135 (23.726%)
compactness worst : 2 (0.351%)
concavity worst : 13 (2.285%)
concave points worst : 12 (2.109%)
symmetry worst: 6 (1.054%)
fractal_dimension_worst : 7 (1.23%)
```

11. Write the code that drops features that have more than 22% of their data missing from the cancer_data dataframe. Create a new dataframe named **cancer_data_cleaned** that has all the features that have less than 22% of their data missing. Show the percentage of missing data of the cancer data cleaned dataframe.

Important: You are to automate this process by defining a method and calling it.

```
diagnosis: 26 (4.569%)
radius mean : 4 (0.703%)
texture_mean : 5 (0.879%)
perimeter mean: 4 (0.703%)
area mean : 4 (0.703%)
smoothness_mean : 1 (0.176%)
compactness mean : 5 (0.879%)
concavity_mean : 13 (2.285%)
concave points mean: 11 (1.933\%)
symmetry mean : 2 (0.351%)
fractal dimension mean : 2 (0.351%)
radius se : 2 (0.351\%)
texture_se : 5 (0.879%)
perimeter_se : 1 (0.176%)
area se : 68 (11.951%)
compactness se : 5 (0.879%)
concavity_se : 12 (2.109%)
concave points se : 10 (1.757%)
symmetry_se : \frac{1}{4} (0.703%)
radius_worst : 2 (0.351%)
texture worst : 1 (0.176%)
perimeter_worst : 2 (0.351%)
area worst : 2 (0.351\%)
compactness_worst : 2 (0.351%)
concavity worst : 13 (2.285%)
concave points_worst : 12 (2.109%)
symmetry worst: 6 (1.054%)
fractal dimension worst : 7 (1.23%)
```

11. Drop all rows with a threshold of 1, print out the information shown below on the cancer data cleaned dataframe.

Hint: Look at the drop row function in the notes. Your numbers maybe a little different

```
Samples Before Removal: 569
Samples After Removal: 413
```

12. Output the dtypes of the cancer data cleaned dataframe:

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 413 entries, 0 to 568
Data columns (total 32 columns):
                                   Non-Null Count Dtype
  # Column
0 id 413 non-null
1 diagnosis 413 non-null
2 radius_mean 413 non-null
3 texture_mean 413 non-null
5 area_mean 413 non-null
6 smoothness_mean 413 non-null
7 compactness_mean 413 non-null
8 concavity_mean 413 non-null
9 concave_points_mean 413 non-null
10 symmetry_mean 413 non-null
11 fractal_dimension_mean 413 non-null
12 radius_se 413 non-null
13 texture_se 413 non-null
14 perimeter_se 413 non-null
15 remain 413 non-null
17 ractal_dimension_mean 413 non-null
18 radius_se 413 non-null
19 remain 413 non-null
10 symmetry_mean 413 non-null
11 fractal_dimension_mean 413 non-null
12 radius_se 413 non-null
13 texture_se 413 non-null
14 perimeter_se 413 non-null
                                                                                                 float64
                                                                                                float64
                                                                                                  float64
                                                                                                 float64
                                                                                                 float64
                                                                                                 float64
                                                                                                  float64
                                                                                                  float64
float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
                                                                                                  float64
  30 fractal_dimension_worst 413 non-null
                                                                                                  float64
31 missing_count 413 non-nudtypes: float64(30), int64(1), object(1)
                                                              413 non-null
                                                                                                  float64
memory usage: 106.5+ KB
```

13. Encode all object type features in **cancer_data_cleaned** dataframe the using the LabelEncoder(). Output the first five rows of **cancer data cleaned**.

See that the diagnosis is encoded.

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 ri
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	
5	843786	1	12.45	15.70	82.57	477.1	0.12780	0.17000	0.15780	0.08089	
7	84458202	1	13.71	20.83	90.20	577.9	0.11890	0.16450	0.09366	0.05985	

5 rows × 32 columns

14. Output the dtypes of the cancer_data_cleaned dataframe:

See the diagnosis type changed

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 413 entries, 0 to 568
Data columns (total 32 columns):
 # Column
                                                     Non-Null Count Dtype
                                                       413 non-null
                                                      413 non-null
413 non-null
413 non-null
                                                                                    int64
float64
       diagnosis
        radius_mean
texture_mean
                                                                                    float64
                                                      413 non-null
413 non-null
413 non-null
        perimeter_mean area_mean
                                                                                    float64
float64
        smoothness mean
                                                                                    float64
        compactness_mean
concavity_mean
                                                      413 non-null
413 non-null
                                                                                    float64
float64
  9 concave points_mean
10 symmetry_mean
11 fractal_dimension_mean
                                                      413 non-null
                                                                                    float64
                                                      413 non-null
413 non-null
                                                                                    float64
float64
        radius_se
texture_se
                                                                                    float64
                                                       413 non-null
                                                       413 non-null
                                                                                    float64
  14 perimeter_se
                                                       413 non-null
                                                                                    float64
                                                      413 non-null
413 non-null
413 non-null
                                                                                    float64
float64
float64
        compactness se
 18
19
20
                                                     413 non-null
413 non-null
413 non-null
        concavity_se
concave points_se
                                                                                    float64
float64
         symmetry se
                                                                                    float64
 21 fractal_dimension_se
22 radius_worst
23 texture_worst
24 perimeter_worst
                                                      413 non-null
413 non-null
413 non-null
                                                                                    float64
float64
                                                                                    float64
                                                      413 non-null
413 non-null
                                                                                    float64
        area worst
                                                                                    float64
 25 area worst 413 non-null
26 compactness worst 413 non-null
27 concavity_worst 413 non-null
28 concave points worst 413 non-null
29 symmetry_worst 413 non-null
30 fractal_dimension_worst 413 non-null
                                                      413 non-null
                                                                                    float64
                                                      413 non-null
413 non-null
                                                                                    float64
                                                       413 non-null
                                                                                    float64
  30
31
31 missing_count
dtypes: float64(30), int64(2)
memory usage: 106.5 KB
                                                       413 non-null
                                                                                    float64
```

15. Write a function that automates the logistic regression with test size from 0.1 - 0.9. It returns a dataframe named report_dataframe.

Example of the report_dataframe that is returned

	Test_Size	Train_Accurary_Score	Test_Accurary_Score	Normalized_Score
0	0.1	0.973046	0.928571	0.954294
1	0.2	0.966667	0.927711	0.959701
2	0.3	0.965398	0.959677	0.994074
3	0.4	0.963563	0.939759	0.975296
4	0.5	0.956311	0.956522	1.000221
5	0.6	0.987879	0.923387	0.934717
6	0.7	0.991870	0.944828	0.952572
7	0.8	1.000000	0.939577	0.939577
8	0.9	1.000000	0.895161	0.895161

16. Call automation_lr(x, y) with x being features 2-31 and y being feature 1 of the cancer_data_cleaned dataframe. Look at step 14 to see where I am getting the feature numbers. Then output the report dataframe after the function call.

	Test_Size	Train_Accurary_Score	Test_Accurary_Score	Normalized_Score
0	0.1	0.973046	0.928571	0.954294
1	0.2	0.966667	0.927711	0.959701
2	0.3	0.965398	0.959677	0.994074
3	0.4	0.963563	0.939759	0.975296
4	0.5	0.956311	0.956522	1.000221
5	0.6	0.987879	0.923387	0.934717
6	0.7	0.991870	0.944828	0.952572
7	0.8	1.000000	0.939577	0.939577
8	0.9	1.000000	0.895161	0.895161

17. Pick a test size that you think is the best then re-estimate the Logistic Regression with x being features 2-31 and y being feature 1. Output the following:

```
Train Accurary Score = 0.9818181818181818
Test Accurary Score = 0.9314516129032258
```

Your numbers maybe different.....

- 18. Take the first 10 rows of the cancer_data_cleaned features 2-31 and then use your model from step 17 to predict the diagnosis on these rows.
- 19. Write 2-3 sentences about how you feel about your estimated model's predictions.
- 20. We will now be working with K-Nearest Meighbors. Make a copy of the cancer_data from step1. Name your copy **knn_data**. Output the following diagram using the knn_data

21. Drop all features on the knn_data with more than 22% data. Create a new dataframe named **knn_data_cleaned** that contains the feature with less than 22% data missing. This is like step 10. Display dtypes knn data cleaned dataframe.

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	
(842302	М	17.99	10.38	122.8	1001.0	0.11840	0.27760	0.3001	0.14710	
	1 842517	М	20.57	17.77	132.9	1326.0	0.08474	0.07864	0.0869	0.07017	
:	2 84300903	М	19.69	21.25	130.0	1203.0	0.10960	0.15990	0.1974	0.12790	
;	3 84348301	М	11.42	20.38	NaN	386.1	0.14250	NaN	0.2414	0.10520	
	4 84358402	М	20.29	14.34	135.1	1297.0	0.10030	0.13280	0.1980	0.10430	

22. Drop all rows with a threshold of 1, print out the information shown below on the knn data cleaned dataframe.

Hint: Look at the drop_row function in the notes. Your numbers maybe a little different

Samples Before Removal : 569 Samples After Removal : 320

- 23. Repeat steps 12-19 using the knn_data_cleaned dataframe.
- 24. Put the data file and your python script into a folder and zip the folder. Upload the zipped file to Canvas using the assignment link. You are done ©