The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A compound that binds to an mpl receptor comprising the structure

5

$$TMP_1$$
- $(L_1)_n$ - TMP_2

wherein TMP₁ and TMP₂ are each independently selected from the group of core compounds comprising the structure:

10

$$X_{2}\text{-}X_{3}\text{-}X_{4}\text{-}X_{5}\text{-}X_{6}\text{-}X_{7}\text{-}X_{8}\text{-}X_{9}\text{-}X_{10},$$

wherein,

15

20

X₂ is selected from the group consisting of Glu, Asp, Lys, and Val,

X₃ is selected from the group consisting of Gly and Ala;

X₄ is Pro;

X₅ is selected from the group consisting of Thr and Ser;

X₆ is selected from the group consisting of Leu, Ile, Val, Ala, and Phe;

 X_7 is selected from the group consisting of Arg and Lys;

X₈ is selected from the group consisting of Gln, Asn, and Glu;

X₉ is selected from the group consisting of Trp, Tyr, and Phe;

 X_{10} is selected from the group consisting of Leu, Ile, Val, Ala, Phe, Met, and

Lys;

L₁ is a linker; and

n is 0 or 1;

and physiologically acceptable salts thereof.

30

25

2. The compound according to Claim 1 wherein said TMP₁ and TMP₂ are independently selected form the group consisting of:

20

25

30

$$X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}; \\ X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}; \\ X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}; \\ X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}-X_{14}; \\ 5 \qquad X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}; \\ X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}; \\ X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}; \\ X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}; \text{ and } \\ X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}; \text{ and } \\ X_{1}-X_{2}-X_{3}-X_{4}-X_{5}-X_{6}-X_{7}-X_{8}-X_{9}-X_{10}-X_{11}-X_{12}-X_{13}-X_{14}, \\ 10$$

wherein X_2 - X_{10} are as defined;

X₁ is selected from the group consisting of Ile, Ala, Val, Leu, Ser, and Arg;

 X_{11} is selected from the group consisting of Ala, Ile, Val, Leu, Phe, Ser, Thr, Lys, His, and Glu;

 X_{12} is selected from the group consisting of Ala, Ile, Val, Leu, Phe, Gly, Ser, and Gln;

 X_{13} is selected from the group consisting of Arg, Lys, Thr, Val, Asn, Gln, and Gly; and

 X_{14} is selected from the group consisting of Ala, Ile, Val, Leu, Phe, Thr, Arg, Glu, and Gly.

3. The compound according to Claim 1 wherein said TMP₁ and/or TMP₂ are derivatized as set forth in one or more of the following:

one or more of the peptidyl [-C(O)NR-] linkages (bonds) have been replaced by a non-peptidyl linkage such as a -CH₂-carbamate linkage [-CH₂-OC(O)NR-]; a phosphonate linkage; a -CH₂-sulfonamide [-CH₂-S(O)₂NR-] linkage; a urea [-NHC(O)NH-] linkage; a -CH₂-secondary amine linkage; or an alkylated peptidyl linkage [-C(O)NR⁶- where R⁶ is lower alkyl];

10

15

20

25

30

the N-terminus is a -NRR¹ group; to a -NRC(O)R group; to a -NRC(O)OR group; to a -NRS(O)₂R group; to a -NHC(O)NHR group where R and R¹ are hydrogen and lower alkyl with the proviso that R and R¹ are not both hydrogen; to a succinimide group; to a benzyloxycarbonyl-NH- (CBZ-NH-) group; or to a benzyloxycarbonyl-NH- group having from 1 to 3 substituents on the phenyl ring selected from the group consisting of lower alkyl, lower alkoxy, chloro, and bromo;

the C terminus is -C(O)R² where R² is selected from the group consisting of lower alkoxy and -NR³R⁴ where R³ and R⁴ are independently selected from the group consisting of hydrogen and lower alkyl.

- 4. The compound according to Claim 1 wherein all of the amino acids have a D configuration.
- 5. The compound according to Claim 1 wherein at least one of the amino acids has a D configuration.
 - 6. The compound according to Claim 1 which is cyclic.
- 7. The compound according to Claim 1 wherein TMP₁ and TMP₂ are each Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala. (SEQ ID NO: 1)
 - 8. The compound according to Claim 1 wherein L_1 comprises a peptide.
- 9. The compound according to Claim 8 wherein L_1 comprises Y_n , wherein Y is a naturally-occurring amino acid or a stereoisomer thereof and n is 1 through 20.
- 10. The compound according to Claim 8 wherein L_1 comprises $(Gly)_n$, wherein n is 1 through 20, and when n is greater than 1, up to half of the Gly residues may be substituted by another amino acid selected from the remaining 19 natural amino acids or a stereoisomer thereof.

20

30

5

11. The compound according to Claim 8 wherein L_1 is selected from the group consisting of

(Gly)₃Lys(Gly)₄ (SEQ ID NO: 6); (Gly)₃AsnGlySer(Gly)₂ (SEQ ID NO: 7); (Gly)₃Cys(Gly)₄ (SEQ ID NO: 8); and GlyProAsnGly (SEQ ID NO: 9).

- 12. The compound according to Claim 8 wherein L_1 comprises a Cys residue.
 - 13. A dimer of the compound according to Claim 12.
 - 14. The dimer according to claim 13 which is

TMP₁-Gly₃-Cys-Gly₄-TMP₂

|
TMP₁-Gly₃-Cys-Gly₄-TMP₂

15. The compound according to Claim 1 wherein L_1 comprises $(CH_2)_n$, wherein n is 1 through 20.

16. The compound according to Claim 1, which is selected from the group consisting of

IEGPTLRQWLAARA (SEQ. ID NO: 9)

IEGPTLRQCLAARA (cyclic) (SEQ. ID NO: 10)

IEGPTLRQCLAARA-GGGGGGGGGGGIEGPTLRQCLAARA (linear)
(SEQ. ID NO: 11)

IEGPTLRQALAARA-GGGGGGGG-IEGPTLRQALAARA (SEQ. ID NO: 12)

	IEGPTLRQWLAARA-GGGKGGGG-IEGPTLRQWLAARA	(SEQ. ID NO: 13)
	IEGPTLRQWLAARA-GGGK(BrAc)GGGG-IEGPTLRQWLA	ARA
5		(SEQ. ID NO: 14)
	IEGPTLRQWLAARA-GGGCGGGG-IEGPTLRQWLAARA	(SEQ. ID NO: 15)
	IEGPTLRQWLAARA-GGGK(PEG)GGGG-IEGPTLRQWLAA	ARA (SEQ. ID NO: 16)
10		(BEQ. ID 110. 10)
	IEGPTLRQWLAARA-GGGC(PEG)GGGG-IEGPTLRQWLA	
		(SEQ. ID NO: 17)
	IEGPTLRQWLAARA-GGGNGSGG-IEGPTLRQWLAARA	(SEQ. ID NO: 18)
15		(-(
	IEGPTLRQWLAARA-GGGCGGGG-IEGPTLRQWLAARA	
	\	SEQ. ID NO: 19);
20	HECDEL BOWL AAD A COCCCCC HECDEL BOWL AAD A	(SEO, ID NO, 20)
	IEGPTLRQWLAARA-GGGGGGGG-IEGPTLRQWLAARA ((SEQ. ID NO: 20).
	17. The compound according to Claim 1 or 2, which ha	s the formula
	17. The compound according to Claim 1 of 2, which ha	s the formula
25	$(Fc)_{m}$ - $(L_{2})_{q}$ - TMP_{1} - $(L_{1})_{n}$ - TMP_{2} - $(L_{3})_{r}$ - $(Fc)_{p}$	
23	$(10)_{m} (10)_{q} (10)_{p} (10)_{p}$	
	wherein L_1 , L_2 and L_3 are linker groups which are each independent	dently selected from
	the linker groups consisting of	
	and mare. Drawby compromise or	
30	Y _n , wherein Y is a naturally-occurring amino acid or a s	stereoisomer thereof
	and n is 1 through 20;	
	,	

remaining 19 natural amino acids or a stereoisomer thereof;

(Gly)_n, wherein n is 1 through 20, and when n is greater than 1, up to half of the Gly residues may be substituted by another amino acid selected from the

20

25

(Gly)₃Lys(Gly)₄ (SEQ ID NO: 6); (Gly)₃AsnGlySer(Gly)₂ (SEQ ID NO: 7); 5 (Gly)₃Cys(Gly)₄ (SEQ ID NO: 8); GlyProAsnGly (SEQ ID NO: 9); a Cys residue; and 10 (CH₂)_n, wherein n is 1 through 20

Fc is an Fc region of an immunoglobulin; m, p, q and r are each independently selected from the group consisting of 0 and 1, wherein at least one of m or p is 1, and further wherein if m is 0 then q is 0, and if p is 0, then r is 0; and physiologically acceptable salts thereof.

- 18. The compound according to Claim 17 wherein L_1 , L_2 and L_3 are each independently selected from the group consisting of Y_n , wherein Y is selected a naturally-occurring amino acid or a stereoisomer thereof and n is 1 through 20.
- 19. The compound according to Claim 18 wherein L_1 comprises $(Gly)_n$, wherein n is 1 through 20, and when n is greater than 1, up to half of the Gly residues may be substituted by another amino acid selected from the remaining 19 natural amino acids or a stereoisomer thereof.
- 20. The compound according to Claim 18 wherein L_1 , L_2 and L_3 are independently selected from the group consisting of

```
30 (Gly)<sub>3</sub>Lys(Gly)<sub>4</sub> (SEQ ID NO: 6);

(Gly)<sub>3</sub>AsnGlySer(Gly)<sub>2</sub> (SEQ ID NO: 7);

(Gly)<sub>3</sub>Cys(Gly)<sub>4</sub> (SEQ ID NO: 8); and
```

10

15

20

25

30

GlyProAsnGly (SEQ ID NO: 9).

- 21. The compound according to Claim 18 wherein L_1 , L_2 , or L_3 comprises a Cys residue.
 - 22. A dimer of the compound according to Claim 21.
- 23. The compound according to Claim 17 wherein L_1 , L_2 or L_3 comprises $(CH_2)_n$, wherein n is 1 through 20.

24. The compound according to Claim 1, which is selected from the group consisting of

Fc-IEGPTLRQWLAARA-GPNG-IEGPTLRQWLAARA (SEQ. ID NO: 21)

Fc-IEGPTLRQWLAARA-GPNG-IEGPTLRQWLAARA-Fc (SEQ. ID NO: 22)

IEGPTLRQWLAARA-GGGGGGGGGGGIEGPTLRQWLAARA-Fc (SEQ. ID NO: 23)

Fc-GG-IEGPTLRQWLAARA (SEQ. ID NO: 24)

Fc-IEGPTLRQWLAARA (SEQ. ID NO: 25)

Fc-IEGPTLRQCLAARA-GGGGGGGGG-IEGPTLRQCLAARA (cyclic)
(SEQ. ID NO: 26)

Fc-IEGPTLRQCLAARA-GGGGGGGGGGGGGGTLRQCLAARA (linear)
(SEQ. ID NO: 27)

Fc-IEGPTLRQALAARA-GGGGGGGGG-IEGPTLRQALAARA (SEQ. ID NO: 28)

Fc-IEGPTLRQWLAARA-GGGKGGGG-IEGPTLRQWLAARA (SEQ. ID NO: 29)

35

	Fc-IEGPTLRQWLAARA-GGGCGGGG-IEGPTLRQWLAARA (SEQ. ID NO: 30)
	Fc-IEGPTLRQWLAARA-GGGNGSGG-IEGPTLRQWLAARA (SEQ. ID NO: 31)
5	Fc-IEGPTLRQWLAARA-GGGCGGGG-IEGPTLRQWLAARA
	Fc-IEGPTLRQWLAARA-GGGCGGGG-IEGPTLRQWLAARA (SEQ. ID NO: 32)
10	Fc-GGGGG-IEGPTLRQWLAARA-GGGGGGGG-IEGPTLRQWLAARA (SEQ. ID NO: 33).
	25. A method of increasing megakaryocytes or platelets in a patient in need
	thereof, which comprises administering to said patient an effective amount of a
	compound according to Claim 1.
15	
	26. The method according to Claim 25, wherein said amount is from 1
	μg/kg to 100 mg/kg.
20	27. A pharmaceutical composition comprising a compound according to Claim 1 in admixture with a pharmaceutically acceptable carrier thereof.
20	Ciami i in admixture with a pharmaceuticany acceptable carrier thereof.
	28. A polynucleotide that encodes a compound according to claim 8.
25	29. A polynucleotide that encodes a compound according to claim 13.
23	30. A polynucleotide that encodes a compound according to claim 18.
	31. A polynucleotide that encodes a compound according to claim 22.
30	32. A vector that comprises a polynucleotide according to any of claims 28-31.
	J1.
	33. A host cell that comprises a vector according to claim 32.

34. A method of producing a compound according to claims 8, 13, 18 or 22, which comprises growing a host cell according to claim 33 in a suitable nutrient medium and isolating said compound from said cell or nutrient medium.