Evolución de los Procesadores Intel: Desde el 8086 hasta los Core Ultra

Un viaje por más de 4 décadas de innovación tecnológica

EL PROCESADOR 8086: EL INICIO DE UNA ERA

Importancia Histórica

Primer procesador en establecer la arquitectura **x86**, base de la mayoría de computadoras y servidores hasta hoy.

Intel 8086

El pionero de la arquitectura x86

- ✓ Lanzado el 8 de junio de 1978
- Proceso de fabricación de 3,000 nm
- Utilizado en la IBM PC original

TIMELINE DE LAS GENERACIONES DE PROCESADORES INTEL

1978

8086

Primer procesador x86 de 16 bits

1982

80286

Modo protegido y 16 MB de memoria

1985

80386

Primer procesador x86 de 32 bits

1989

80486

Integración de **FPU** y caché

1993

Pentium

Arquitectura superscalar

1997

Pentium II

Tecnología MMX y cartridge SEC

1999

Pentium III

Extensiones **SSE**

2000

Pentium 4

Arquitectura **NetBurst**

2006

Core/Core 2

Nueva arquitectura y múltiples núcleos

2008

Core i

Series **i3, i5, i7 e i9**

2023

Core Ultra

Enfoque en IA y eficiencia

NOMBRES HISTÓRICOS DE LAS ARQUITECTUR. Desde 2008 INTEL

Convención de Nomenclatura

Intel utiliza nombres de **lagos** como convención para identificar generaciones. Comenzó con **Nehalem** en 2008.

≅ Nehalem	2008	≅ Westmere	2010
≋ Sandy Bridge	2011	≋ Ivy Bridge	2012
≋ Haswell	2013	≋ Broadwell	2014
≅ Skylake	2015	≅ Kaby Lake	2016

Nombres Históricos de las Arquitecturas Intel: ¿Por Qué Nombres de Lagos?

Convención de Nomenclatura

Intel utiliza nombres de lagos como convención para identificar y diferenciar generaciones de procesadores. Esta práctica comenzó con Nehalem en 2008.

≋ Nehalem	2008	≋ Westmere	2010
Sandy Bridge	2011	🗮 Ivy Bridge	2012
≅ Haswell	2013	≋ Broadwell	2014
Skylake	2015	≋ Kaby Lake	2016

Evolución de las arquitecturas de procesadores Intel con nombres de lagos

¿Por Qué Nombres de Lagos?

- Orden alfabético Facilita la identificación cronológica
- Memorabilidad Nombres más fáciles de recordar
- Consistencia Tradición que ayuda a usuarios y desarrolladores

≅ Coffee Lake	2017	≋ Ice Lake	2019
≅ Tiger Lake	2020	≋ Alder Lake	2021
Raptor Lake	2022	≋ Meteor Lake	2023

IDENTIFICACIÓN DE LAS GENERACIONES DE PROCESADORES INTEL

2023

LOS PROCESADORES INTEL CORE ULTRA

Hasta 13 TOPS de rendimiento de IA

P-cores, E-cores y LP-cores

Gráficos Mejorados

Hasta 8 núcleos Xe con ray tracing

Eficiencia Energética

Proceso de fabricación de 7nm

Característica	Core 13 ^a Gen	Core Ultra
Proceso de fabricación	Intel 7 10nm	7nm
NPU	No integrada	Integrada 13TOP S
Gráficos	Xe con 96 EU	Xe con 128 EU
Arquitectura	P-cores y E-cores	P-cores, E-cores y LP- cores
Conectividad	Thunderbolt 4	Thunderbolt 5
Enfoque	Rendimiento general	IA y eficiencia

★ Ventajas Clave

✓ 40% más eficiente en consumo energético

2x rendimiento en tareas de IA

⊘ Thunderbolt 5 con 80 Gbps

Aplicaciones Destacadas

Asistentes de IA

Procesamiento local de modelos LLM

ContenidoEdición de video 4K en

Creación de

Edición de video 4K en tiempo real

Gaming Avanzado

Ray tracing y upscaling con IA

Movilidad

Hasta 10 horas de batería