IIITDM KANCHEEPURAM

MA1000 Calculus Assignment 1

January 20, 2021

Marks: 10

Submit by: January 26, 2021

- 1. Find the limit of the sequence $a_n = \left(1 + \frac{3}{4n}\right)^{\frac{8}{3}n}$.
- 2. If α is a rational number, find $\lim_{n\to\infty} \sin(n!\alpha\pi)$.
- 3. Let $a_0 = 1$ and $a_1 = 1$. For $n \ge 2$, let $a_n = a_{n-1} + a_{n-2}$. Then the sequence $\{a_n\}$ is called the Fibonacci sequence. Find $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
- 4. Find the limit of the sequence $\{a_n\}$, where $a_1 = \sqrt{2}$, $a_n = \sqrt{2 + \sqrt{a_{n-1}}}$ for $n \ge 2$.
- 5. Find the limit of the sequence $\{a_n\}$ if $a_n = \frac{1}{n^2+1} + \frac{1}{n^2+2} + \cdots + \frac{1}{n^2+n}$.
- 6. If $a_n \to a$ and $b_n \to b$ and if a < b, show that the sequence $\{s_n\}$, where $s_n = \max\{a_n, b_n\}$, converges to b.
- 7. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p} \cos(\frac{1}{n})$ converges for p > 1 and diverges for 0 .
- 8. If $\sum a_n$ converges and $a_n \geq 0$, does $\sum a_n^2$ converge? If yes, prove.
- 9. If $\sum a_n$ converges and $a_n \geq 0$, does $\sum \sqrt{a_n a_{n+1}}$ converge? If yes, then prove.
- 10. Find the value of *b* for which $1 + e^b + e^{2b} + e^{3b} + \dots = 9$.
- 11. For what values of r, if any, does the infinite series $1+2r+r^2+2r^3+r^4+2r^5+r^6+\cdots=$ converge? Find the sum of the series when it converges.
- 12. Are there any values of x for which $\sum \frac{1}{nx}$ converges? Give reason.
- 13. Show by an example that $\sum a_n b_n$ may diverge even if $\sum a_n$ and $\sum b_n$ both converge.
- 14. Decide whether the following series converge or diverge.
 - (a) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}.$
 - (b) $\sum_{n=2}^{\infty} \frac{1}{\ln(\ln n)}.$
 - (c) $\sum_{n=1}^{\infty} \frac{2^n}{3+4^n}$.
 - (d) $\sum_{n=1}^{\infty} \left[\frac{(n+1)^{n+1}}{n+1} \frac{n+1}{n} \right]^{-n}$.

(e)
$$\sum_{n=1}^{\infty} \frac{n5^n}{(2n+3)\ln(n+1)}$$
.

15. Find the radius and interval of convergence of the power series below. For what values of x does the series converge (i) absolutely, (ii) conditionally?

(a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 3^n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^3 3^n}$$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{n+1}}{\sqrt{n+3}}$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} x^n$$

- 16. Find the Taylor series of $f(x) = \cos(2x + \frac{\pi}{2})$ about $x = \frac{\pi}{4}$.
- 17. Find the Maclaurin series of $f(x) = \frac{1}{(1-x)^3}$.
- 18. Using substitution, find the Taylor series about x = 0 (i.e., the Maclaurin series) of the following functions.

(a)
$$\tan^{-1}(3x^4)$$
;

(b)
$$\frac{1}{1+\frac{3}{4}x^3}$$
.

19. Use the idea of power series multiplication to find the Taylor series about x = 0 (i.e., the Maclaurin series) of the functions

(a)
$$x^2 \cos(x^2)$$
,

(b)
$$x \ln(1+2x)$$
,

(c)
$$\cos^2 x$$
.

20. Use the identity $\sin^2 x = \frac{1-\cos 2x}{2}$ to obtain the Maclaurin series for $\sin^2 x$. Then differentitate this series to obtain the Maclaurin series for $2\sin x \cos x$. Check that this is the series for $\sin 2x$.