

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехники и комплексной автоматизации» КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ №3

по дисциплине «Вычислительная математика»

Студент:	Турунов Дмитрий Николаевич
Группа:	PK6-53B
Тип задания:	Лабораторная работа
Тема:	Вынужденные колебания маятника

Студент	подпись, дата	$\frac{\text{Турунов } \mathcal{A}.H.}{\Phi_{\text{амилия, И.O.}}}$
Преподаватель	подпись, дата	 Фамилия, И.О.

Содержание

Bı	ынух	кденные колебания маятника	3
	Зада	ание	3
	Цел	ь выполнения лабораторной работы	4
	1	Базовая часть	4
		1. Преобразование ОДУ 2-го порядка в систему ОДУ 1-го порядка	4
		2. Разработка функций для численного решения системы ОДУ	5
		3. Численное решение и графическое представление	6
		4. Сравнение методов численного решения ОДУ	8
		5. Определение шага, при котором методы становятся неустойчивыми	8
	2	Продвинутая часть	10
		6. Фазовые траектории для разных начальных условий	10
		7. Сравнение методов для одного начального условия	11
		8. Оценка временных затрат на вычисления	12
		9. Асимптотические состояния системы и их физический смысл	12
	2	Partitionalities	12

Вынужденные колебания маятника

Задание

Задача 3.4 (Вынужденные колебания маятника) Дано ОДУ 2-го порядка:

$$\frac{d^2}{dt^2}\theta + 0.1\frac{d}{dt}\theta + \sin(\theta) = \cos(t)$$

где $\theta(t)$ обозначает угол отклонения маятника от вертикальной оси как функцию времени t.

Требуется (базовая часть):

- 1. Преобразовать данное ОДУ в систему ОДУ 1-го порядка.
- 2. Разработать следующие функции, каждая из которых возвращает дискретную траекторию системы ОДУ с правой частью, заданной функцией f, начальным условием x_0 , шагом по времени h и конечным временем t_n :
 - runge_kutta (x_0, t_n, f, h) , где дискретная траектория строится с помощью явного метода Рунге-Кутта 4-го порядка;
 - adams_moulton (x_0, t_n, f, h) , где дискретная траектория строится с помощью неявного трёхшагового метода Адамса-Моултона (выполняется в рамках продвинутой части);
 - milne_simpson (x_0, t_n, f, h) , где дискретная траектория строится с помощью метода Милна-Симпсона (схема предиктор-корректор).
- 3. Для каждого из реализованных методов:
 - Численно каждым из методов найти траектории заданной динамической системы, используя шаг h=0.1 и 15 различных начальных условий, для которых: $\theta(0)=0$ и $\frac{d\theta}{dt}\Big|_{t=0}$ следует выбрать случайно из интервала [1.85; 2.1].
 - Вывести полученные траектории на едином графике как зависимости $\theta(t)$ (для каждого метода на отдельном графике).
- 4. В чем принципиальные отличия реализованных методов друг от друга? В чем они схожи?
- 5. Для каждой из схем каково значение шага, при котором она становится неустойчивой?

Требуется (продвинутая часть):

6. Вывести разными цветами фазовые траектории на едином двумерном графике: по оси абсцисс θ , по оси ординат $-\frac{d\theta}{dt}$, при всех различных начальных условиях (для каждого метода на отдельном графике).

- 7. Зафиксировать одно начальное условие (произвольно). Вывести фазовые траектории на одном двумерном графике, формируемые разными методами. Сделать вывод.
- 8. Какая из схем является наиболее затратной с точки зрения времени вычислений при произвольном значении шага, дающем устойчивое решение для каждой из схем? Наименее затратной?
- 9. Как вы можете охарактеризовать асимптотические состояния, к которым сходится решение в зависимости от начальных условий? Опишите их физический смысл.

Цель выполнения лабораторной работы

Исследовать динамику вынужденных колебаний маятника с использованием численных методов Рунге-Кутта, Адамса-Моултона и Милна-Симпсона для решения ОДУ 2-го порядка, а также анализировать и сравнивать результаты этих методов в разных условиях.

1 Базовая часть

1. Преобразование ОДУ 2-го порядка в систему ОДУ 1-го порядка

В контексте системы ОДУ первого порядка уравнение, описывающее динамику маятника, преобразуется следующим образом. Пусть $\theta(t)$ обозначает угол отклонения, тогда его производная по времени, $\frac{d\theta}{dt}$, обозначается через ω . Исходное уравнение второго порядка принимает форму системы первого порядка, записываемой в виде:

$$\frac{d\theta}{dt} = \omega,$$

$$\frac{d\omega}{dt} = \cos(t) - 0.1\omega - \sin(\theta).$$

Для реализации численного решения данной системы, применяется функция, код в листинге 1. Определены переменные 'theta' и 'omega', соответствующие θ и $\frac{d\theta}{dt}$. Выражения для производных $\frac{d\theta}{dt}$ и $\frac{d\omega}{dt}$ задаются согласно преобразованной системе уравнений. Функция возвращает массив, содержащий производные состояний системы в заданный момент времени.

Листинг 1. Функция для системы ОДУ 1-го порядка

```
1 def system_of_odes(t, y):
2     theta, omega = y
3     dtheta_dt = omega
4     domega_dt = np.cos(t) - 0.1 * omega - np.sin(theta)
5     return np.array([dtheta_dt, domega_dt])
```

2. Разработка функций для численного решения системы ОДУ

а) Функция 'runge_kutta(x_0, t_n, f, h)'

Пусть дана система ОДУ вида $\frac{dy}{dt} = f(t,y)$ с начальным условием $y(0) = y_0$. Метод Рунге-Кутта 4-го порядка для нахождения приближенного решения на шаге n+1 определяется следующим образом:

$$k_{1} = h \cdot f(t_{n}, y_{n}),$$

$$k_{2} = h \cdot f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right),$$

$$k_{3} = h \cdot f\left(t_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right),$$

$$k_{4} = h \cdot f(t_{n} + h, y_{n} + k_{3}),$$

$$y_{n+1} = y_{n} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4}).$$

Для численного интегрирования системы ОДУ применяется явный метод Рунге-Кутта 4-го порядка. Функция принимает начальное состояние системы 'x_0', конечное время 't n', функцию правой части системы 'f' и шаг интегрирования 'h'.

Листинг 2. Метод Рунге-Кутта

```
1 def runge kutta(x 0, t n, f, h):
       N = int(t n / h)
       t = np.linspace(0, t n, N + 1)
 3
       y = np.zeros((N + 1, len(x 0)))
 4
 5
       y[0] = x 0
       for i in range(N):
 6
           k1 = h * f(t[i], y[i])
 7
           k2 = h * f(t[i] + h/2, y[i] + k1/2)
 8
           k3 = h * f(t[i] + h/2, y[i] + k2/2)
9
10
           k4 = h * f(t[i] + h, y[i] + k3)
           y[i + 1] = y[i] + (k1 + 2 * k2 + 2 * k3 + k4) / 6
11
12
       return t, y
```

b) Функция 'adams_moulton(x_0, t_n, f, h)'

Метод Адамса-Моултона для шага n+3 определяется следующим образом¹:

$$y_{n+3} = y_{n+2} + \frac{h}{24} \left(9f(t_{n+3}, y_{n+3}) + 19f(t_{n+2}, y_{n+2}) - 5f(t_{n+1}, y_{n+1}) + f(t_n, y_n) \right),$$

где h — шаг по времени, y_n — приближенное решение в момент времени t_n , а функция f(t,y) представляет собой правую часть системы ОДУ $\frac{dy}{dt} = f(t,y)$. Начальные условия для метода определяются с помощью метода Рунге-Кутта.

Листинг 3. Метод Адамса-Моултона

```
2
       t initial, y initial = runge kutta(x 0, 4 * h, f, h)
3
       N = int(t n / h)
       t = np.linspace(0, t n, N + 1)
4
       y = np.zeros((N + 1, len(x 0)))
5
       y[:len(t initial)] = y initial
 6
       for i in range(3, N):
           func to solve = \frac{lambda}{d} y next: y next - y[i] - h * (9 * f(t[i+1], y next) + 19
 8
                * f(t[i], y[i]) - 5 * f(t[i-1], y[i-1]) + f(t[i-2], y[i-2])) / 24
9
           y next = root(func to solve, y[i]).x
10
           y[i + 1] = y next
       return t, y
11
```

Данный код (листинг 3) реализует метод Адамса-Моултона.

c) Функция 'milne_simpson(x_0, t_n, f, h)'

В рамках этого метода прогнозирующий и корректирующий шаги определяются следующим образом:

Предиктор:
$$y_{n+1}^p = y_{n-3} + \frac{4h}{3} [2f(t_{n-2}, y_{n-2}) - f(t_{n-1}, y_{n-1}) + 2f(t_n, y_n)],$$
 Корректор: $y_{n+1} = y_{n-1} + \frac{h}{3} [f(t_{n-1}, y_{n-1}) + 4f(t_n, y_n) + f(t_{n+1}, y_{n+1}^p)].$

Метод Милна-Симпсона, являющийся схемой предиктор-корректор, применяется для интегрирования системы ОДУ. Подход начинается с использования метода Рунге-Кутта для генерации начальных приближений.

Листинг 4. Метод Милна-Симпсона

```
1 def milne simpson(x 0, t n, f, h):
                                       t initial, y initial = runge kutta(x 0, 4 * h, f, h)
     2
    3
                                       N = int(t n / h)
                                       t = np.linspace(0, t n, N + 1)
     4
                                       y = np.zeros((N + 1, len(x 0)))
     5
                                      y[:5] = y_initial
    6
                                       for i in range(4, N):
      7
                                                                predictor = y[i-3] + 4 * h / 3 * (2 * f(t[i-2], y[i-2]) - f(t[i-1], y[i-1]) + 2 *
     8
                                                                                       f(t[i], y[i]))
                                                                corrector = y[i-1] + h / 3 * (f(t[i-1], y[i-1]) + 4 * f(t[i], y[i]) + f(t[i+1], y[i-1]) + f(t[i-1], y[i-
    9
                                                                                        predictor))
                                                               y[i + 1] = corrector
10
11
                                       return t, y
```

3. Численное решение и графическое представление

Для каждого метода выполняется численное интегрирование системы ОДУ с заданными начальными условиями, выбранными случайно из интервала [1.85; 2.1]. и шагом h = 0.1. Результаты представляются в виде графиков зависимости $\theta(t)$ (рис 1).

Рис. 1. Графики зависимости $\theta(t)$

4. Сравнение методов численного решения ОДУ

Отличия между методами Рунге-Кутта, Адамса-Моултона и Милна-Симпсона характеризуются следующим образом:

1. Требования к предыдущим значениям:

- В методе Адамса-Моултона количество учитываемых предыдущих шагов является регулируемым параметром.
- Метод Рунге-Кутта не требует значений с последующих шагов, в отличие от методов Адамса-Моултона и Милна-Симпсона.

2. Характеристики вычислений:

- В методе Рунге-Кутта функция вычисляется четыре раза на каждом шаге.
- Количество вычислений функции в методе Адамса-Моултона не фиксировано, поскольку оно зависит от процесса оптимизации.
- В методе Милна-Симпсона функция вычисляется два раза на каждом шаге.

3. Устойчивость и особенности:

- Метод Милна-Симпсона демонстрирует неустойчивость из-за нарастания погрешности на этапах предиктора и корректора, что приводит к увеличению высокочастотных колебаний.
- Метод Милна-Симпсона уникален своим подходом, сочетающим два метода решения дифференциальных уравнений.

4. Погрешность и оптимальный шаг:

• Методы обладают различной погрешностью, что определяет их различный оптимальный шаг интегрирования.

Сходства между методами:

- Несмотря на различия в подходах, методы Адамса-Моултона и Милна-Симпсона схожи тем, что оба опираются на значение следующего шага.
- Все три метода имеют четвёртый порядок точности и предназначены для вычисления дискретных траекторий систем ОДУ.

5. Определение шага, при котором методы становятся неустойчивыми

Устойчивость метода сохраняется до тех пор, пока при незначительном изменении шага различия в полученных решениях ОДУ являются минимальными. При превышении значения оптимального шага это считается нарушением условия. Оптимальный шаг для каждого из методов подлежит определению. Для этого требуется построение графиков (рис. 2) и анализ влияния изменения шага на сильное изменение решения.

Рис. 2. Графики зависимости $\theta(t)$ при различном шаге.

Таким образом, получены следующие значения шага, при котором схема с начальными значениями $\theta(0) = 0, \frac{d\theta}{dt} = 1.85$ становится неустойчивой:

• Метод Рунге-Кутта: ≈ 0.96

• Метод Адамса-Моултона: ≈ <mark>0.8</mark>

Метод Милна-Симпсона: ≈ 0.27

При меньших значениях графики практически полностью совпадают.

2 Продвинутая часть

6. Фазовые траектории для разных начальных условий

Фазовые траектории, полученные с использованием метода Рунге-Кутта, Адамса-Моултона и Милна-Симпсона, были изображены на отдельных двумерных графиках (рис. 3, 4, 5). На этих графиках по оси абсцисс отложено значение θ , а по оси ординат - значение $\frac{d\theta}{dt}$. Для каждого метода траектории были представлены разными цветами в зависимости от начальных условий.

Рис. 3. Фазовые траектории метода Рунге-Кутта.

Рис. 4. Фазовые траектории метода Адамса-Моултона.

Рис. 5. Фазовые траектории метода Милна-Симпсона.

7. Сравнение методов для одного начального условия

Для одного и того же начального условия ($\omega_0 = 1.98$) были построены фазовые траектории, используя все три метода. При маленьком шаге все методы хорошо описывают фазовую траекторию, что можно видеть из рисунка 6.

8. Оценка временных затрат на вычисления

Исходя из замеров времени вычислений для каждого метода, можно сделать следующие выводы:

- Метод Рунге-Кутта затратил примерно 0.01576 секунды на вычисления, что делает его одним из самых быстрых в данном сравнении.
- Метод Адамса-Моултона показал значительно большее время вычислений, составляющее приблизительно 0.11160 секунды. Это указывает на его относительно высокую вычислительную затратность по сравнению с другими рассмотренными методами. Так как он требует решения нелинейного уравнения, это может объяснить повышенные временные затраты на его выполнение.
- Время, затраченное на вычисления методом Милна-Симпсона, составило около 0.01613 секунды, что делает его сопоставимым по скорости с методом Рунге-Кутта.

Таким образом, на основе представленных данных, метод Адамса-Моултона является наиболее затратным с точки зрения времени вычислений, в то время как методы Рунге-Кутта и Милна-Симпсона демонстрируют схожие и более низкие временные затраты.

9. Асимптотические состояния системы и их физический смысл

В процессе анализа результатов базовой части было установлено, что траектории на графиках аппроксимируют к асимптотическим состояниям, располагающимся на интервалах $2\pi n$, где n представляет собой целое число.

Физический смысл - *п* соответствует количеству полных оборотов маятника. Таким образом, при увеличении начальной скорости маятника асимптотическое состояние изменяется пропорционально, что является логичным следствием динамики системы.

Переходные процессы связаны с тем, что маятнику для синхронизации с вынужденными колебаниями необходимо некоторое время. Дополнительно было замечено, что на графике 6 траектории формируют орбиту, напоминающую эллипс. Такая конфигурация траекторий рассматривается как аттрактор или область притяжения системы. Визуализация этого аттрактора может быть достигнута путем анализа одного периода колебаний в устоявшейся фазе системы.

3 Заключение

В заключении лабораторной работы по численному решению системы обыкновенных дифференциальных уравнений (ОДУ) можно отметить следующее:

- 1. Преобразование и численное решение ОДУ:
 - Успешно выполнено преобразование уравнения второго порядка в систему ОДУ первого порядка, что позволило применить численные методы для решения задачи.
 - Разработанные функции 'runge_kutta', 'adams_moulton', и 'milne_simpson' демонстрируют различные подходы к численному интегрированию, каждый со своими особенностями и требованиями к начальным данным и шагу интегрирования.

2. Сравнительный анализ методов:

- Проведенное сравнение методов Рунге-Кутта, Адамса-Моултона и Милна-Симпсона показало различия в их требованиях к предыдущим значениям, характеристиках вычислений, устойчивости и оптимальных шагах интегрирования.
- Наблюдения показывают, что метод Адамса-Моултона является наиболее затратным с точки зрения времени вычислений, в то время как методы Рунге-Кутта и Милна-Симпсона демонстрируют схожие и более низкие временные затраты.

3. Фазовые траектории и их физический смысл:

- Анализ фазовых траекторий различных методов при разных начальных условиях выявил интересные особенности динамики маятника, включая асимптотические состояния, сдвигающиеся на $2\pi n$ при изменении начальных условий.
- Эти асимптотические состояния связаны с количеством полных оборотов маятника и его синхронизацией с вынужденными колебаниями, что имеет важное физическое значение.

В целом, лабораторная работа подчеркнула значимость выбора подходящего метода численного решения для конкретной системы ОДУ и позволила глубже понять физический смысл исследуемой динамики маятника.

Список использованных источников

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров: Учеб. пособие. М.: Высш. шк., 1994. (Страница 451)
- 2. Першин А.Ю. Лекции по курсу «Вычислительная математика». Mockba, 2018-2021. C. 140. URL: https://archrk6.bmstu.ru/index.php/f/810046.
- 3. Соколов, А.П. Инструкция по выполнению лабораторных работ (общая). Москва: Соколов, А.П., 2018-2021. С. 9. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 4. Соколов, А.П. Инструкция по выполнению заданий к семинарским занятиям (общая). Москва: Соколов, А.П., 2018-2022. С. 7. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 5. Першин А.Ю. Сборник задач семинарских занятий по курсу «Вычислительная математика»: Учебное пособие. / Под редакцией Соколова А.П. [Электронный ресурс]. Москва, 2018-2021. С. 20. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры PK6).
- 6. Першин А.Ю., Соколов А.П. Сборник постановок задач на лабораторные работы по курсу «Вычислительная математика»: Учебное пособие. [Электронный ресурс]. Москва, 2021. С. 54. URL: https://archrk6.bmstu.ru. (облачный сервис кафедры РК6).

Выходные данные

Турунов Д.Н.Отчет о выполнении лабораторной работы №3 по дисциплине «Вычислительная математика». [Электронный ресурс] — Москва: 2023. — 14 с. URL: https://sa2systems.ru: 88 (система контроля версий кафедры PK6)

Постановка:

 \bullet аспирант кафедры РК-6, Гудым A.B.

Решение и вёрстка: Студент группы РК6-53Б, Турунов Д.Н.

2023, осенний семестр