ниу итмо

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа № 1 по дисциплине «Частотные методы»

 Выполнил:
 Гридусов Д.Д

 Преподаватель:
 Перегудин А.А

Санкт-Петербург $2024 \, \text{г.}$

Содержание

1	Вещественные функции		
	1.1	Квадратная волна	2
	1.2	Четная функция	3
	1.3	Нечетная функция	Ę
	1.4	Произвольная функция	7
	1.5	Вывод	8
2	Ком	иплекснозначные функции	8

Вещественные функции 1

1.1 Квадратная волна

Для начала зафиксируем параметры: $a=2,\,b=4$, $t_0=1,\,t_1=5,\,t_2=10.$ Тогда общий вид квадратной волны:

$$f(t) = \begin{cases} 2, t \in [1, 5) \\ 4, t \in [5, 10) \end{cases}$$

Запомним на будущее, что $T=9 \to w_n = \frac{2\pi n}{9}$ Найдем коэффициенты разложения в ряд Фурье:

$$a_n = \frac{2}{9} \int_{1}^{10} f(t) \cos(\frac{2\pi nt}{9}) dt = \frac{2}{9} \int_{1}^{5} 2 \cos(\frac{2\pi nt}{9}) dt + \frac{2}{9} \int_{5}^{10} 4 \cos(\frac{2\pi nt}{9}) dt$$

$$b_n = \frac{2}{9} \int_{1}^{10} f(t) \sin(\frac{2\pi nt}{9}) dt = \frac{2}{9} \int_{1}^{5} 2 \sin(\frac{2\pi nt}{9}) dt + \frac{2}{9} \int_{5}^{10} 4 \sin(\frac{2\pi nt}{9}) dt$$

$$c_n = \frac{1}{9} \int_{1}^{10} f(t) e^{-iw_n t} dt = \frac{1}{9} \int_{1}^{5} 2 e^{-iw_n t} dt + \frac{1}{9} \int_{5}^{10} 4 e^{-iw_n t} dt$$

Результат ручного подсчета:

$$a_0 = 6.22 \ b_0 = 0 \ c_0 = 3.11$$

 $a_1 = 0.63 \ b_1 = -1.08 \ c_1 = 0.31 + 0.54i$
 $a_2 = 0.11 \ b_2 = 0.19 \ c_2 = 0.05 - 0.10i$

Программно посчитанные коэффициенты Фурье:

$$a_0 = 6.22 \ b_0 = 0 \ c_0 = 3.11$$

$$a_1 = 0.63 \ b_1 = -1.08 \ c_1 = 0.31 + 0.54i$$

$$a_2 = 0.11 \ b_2 = 0.19 \ c_2 = 0.05 - 0.09i$$

Рис. 2: $F_N(t), N = 2$

Рис. 3: $F_N(t), N = 3$

Рис. 4: $F_N(t), N = 5$

Рис. 5: $F_N(t), N = 10$

Рис. 6: $F_N(t), N = 30$

Рис. 7: $F_N(t), N = 1$

Рис. 8: $F_N(t), N = 2$

Рис. 9: $F_N(t), N = 3$

Рис. 10: $G_N(t), N = 5$

Рис. 11: $G_N(t), N = 10$

Рис. 12: $G_N(t), N = 30$

1.2 Четная функция

Возьмем функцию:

$$y = t^2, t \in [-2, 2]$$

Программно посчитанные коэффициенты Фурье:

$$a_0 = 2.67 \ b_0 = 0 \ c_0 = 1.33$$

$$a_1 = -1.62 \ b_1 = 0 \ c_1 = -0.81$$

$$a_2 = 0.41 \ b_2 = 0 \ c_2 = 0.2$$

Также выполним проверку равенства Персиваля при N=25:

 $\int\limits_{-\infty}^{+\infty}f(t)dt=6.400, \int\limits_{-\infty}^{+\infty}|F_N(j\omega)|^2d\omega=6.413$ -равенство выполняется, если дополнительно учитывать погрешность, возникающую при численном интегрировании.

Рис. 13: $F_N(t), N = 1$

Рис. 14: $F_N(t), N = 2$

Рис. 15: $F_N(t), N = 3$

Рис. 16: $F_N(t), N = 5$

Рис. 17: $F_N(t), N = 10$

Рис. 18: $G_N(t), N = 1$

Рис. 19: $G_N(t), N=2$

Рис. 20: $G_N(t), N = 3$

Рис. 21: $G_N(t), N = 5$

Рис. 22: $G_N(t), N = 10$

1.3 Нечетная функция

Возьмем функцию:

$$y = t^3, t \in [-2, 2]$$

Программно посчитанные коэффициенты Фурье:

$$a_0 = 2.67 \ b_0 = 0 \ c_0 = 1.33$$

$$a_1 = -1.62 \ b_1 = 0 \ c_1 = -0.81$$

$$a_2 = 0.41 \ b_2 = 0 \ c_2 = 0.2$$

Также выполним проверку равенства Персиваля при N=25:

 $\int\limits_{-\infty}^{+\infty}f(t)dt=18.28,$ $\int\limits_{-\infty}^{+\infty}|F_N(j\omega)|^2d\omega=17.26$ -равенство выполняется, если дополнительно учитывать погрешность, возникающую при численном интегрировании.

Рис. 23: $F_N(t), N = 1$

Рис. 24: $F_N(t), N = 2$

Рис. 25: $F_N(t), N = 3$

8 original F_n = 10

4 2

0 -2 -4 -6 -8 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Рис. 26: $F_N(t), N = 5$

Рис. 27: $F_N(t), N = 10$

Рис. 28: $G_N(t), N = 1$

Рис. 29: $G_N(t), N=2$

Рис. 30: $G_N(t), N = 3$

Рис. 31: $G_N(t), N = 5$

Рис. 32: $G_N(t), N = 10$

1.4 Произвольная функция

Возьмем функцию:

$$y = t + t^3 + 2^t, t \in [-2, 2]$$

Программно посчитанные коэффициенты Фурье:

$$a_0 = 2.7 \ b_0 = 0 \ c_0 = 1.35$$

$$a_1 = -0.44 \ b_1 = 4.27 \ c_1 = -0.22 - 2.13i$$

$$a_2 = 0.12 \ b_2 = -3.37 \ c_2 = 0.06 + 1.68i$$

Также выполним проверку равенства Персиваля при N=25:

 $\int\limits_{-\infty}^{+\infty}f(t)dt=55.019,$ $\int\limits_{-\infty}^{+\infty}|F_N(j\omega)|^2d\omega=52.756$ -равенство выполняется, если дополнительно учитывать погрешность, возникающую при численном интегрировании.

Рис. 34: $F_N(t), N = 2$

Рис. 35: $F_N(t), N = 3$

Рис. 36: $F_N(t), N = 5$

Рис. 37: $F_N(t), N = 10$

Рис. 39: $G_N(t), N = 2$

Рис. 40: $G_N(t), N = 3$

Рис. 41: $G_N(t), N = 5$

Рис. 42: $G_N(t), N = 10$

1.5 Вывод

Как показывает практика, программно рассчитанные коэффициенты Фурье не отличаются (в пределах 2 порядков) от точных рассчетов, даже несмотря на численное интегрирование. Хотя, учитывая вклад Wolfram alpha в данную работу, это достаточно сомнительный вывод, конечно.

2 Комплекснозначные функции

Зададимся параметрами $T=8,\,R=5.$ Тогда вид функции следующий:

$$Ref(t) = \begin{cases} 5, t \in [-1, 1) \\ 10 - 5t, t \in [1, 3) \\ -5, t \in [3, 5) \\ -30 + 5t, t \in [5, 7) \end{cases}$$

$$Imf(t) = \begin{cases} 5t, t \in [-1, 1) \\ 5, t \in [1, 3) \\ 20 - 5t, t \in [3, 5) \\ -5, t \in [5, 7) \end{cases}$$

Рис. 43: $ReG_N(t), N = 1$

Рис. 44: $ReG_N(t), N = 2$

Рис. 45: $ReG_N(t), N = 3$

4 2 0 -2 -4 Re(f(t)) Re(G_N) -1 0 1 2 3 4 5 6 7

Рис. 46: $ReG_N(t), N = 5$

Рис. 47: $ReG_N(t), N = 10$

Построим графики для $ImG_N(t)$

Рис. 48: $ImG_N(t), N = 1$

Рис. 49: $ImG_N(t), N = 2$

Рис. 50: $ImG_N(t), N = 3$

Рис. 51: $ImG_N(t), N = 5$

Рис. 52: $ImG_N(t), N = 10$

Рис. 54: $G_N(t), N=2$

Рис. 55: $G_N(t), N = 3$

Рис. 56: $G_N(t), N = 5$

Рис. 57: $G_N(t), N = 10$

Код всей лабораторной работы: github