Computational Statistics Hyperspherical VAE

Victor Deng Inès Vati

École Normale Supérieure Paris-Saclay, Master MVA

 10^{th} JAN 2024

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

Introduction

2018 paper from Tim R. Davidson et al. [?]

- Replacing the Gaussian prior and approximate posterior distributions with a von Mises-Fisher distribution
- Goal: better model data with a hyperspherical latent structure
- ullet Various experiments, where the $\mathcal{S}\text{-VAE}$ (von Mises-Fisher distributions) often outperforms the $\mathcal{N}\text{-VAE}$ (Gaussian distributions) in low dimensions

- 1 Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

Sampling z' from vMF

Algorithm 1 Overview of the sampling method from $vMF(\mu, \kappa)$

- 1: Sample $z \sim q(z|e_1, \kappa)$ where $e_1 = (1, 0, ..., 0)$
- 2: Compute Householder reflection $U(\mu)$ so that $U(\mu)e_1=\mu$
- 3: **return** $z' = U(\mu)z$

Sampling z from vMF

Algorithm 2 Overview of the sampling method from $vMF(\mu, \kappa)$

- 1: Sample $z \sim q(z|e_1, \kappa)$ where $e_1 = (1, 0, \dots, 0)$
- 2: Sample $w \in \mathbb{R} \sim g(w|\kappa)$ by acceptance rejection sampling
- 3: Sample $v \in \mathbb{R}^{d-1} \sim \mathcal{U}(S^{d-2})$ (uniform on the hypersphere S^{d-2} independent of w)
- 4: $z \leftarrow (w, \sqrt{1-w^2}v^T)^T$
- 5: Compute Householder reflection $U(\mu)$ so that $U(\mu)e_1=\mu$
- 6: **return** $z' = U(\mu)z \sim q(z'|\mu,\kappa)$

Sampling w from $g(w|\kappa, \theta)$

 S^2 : unit sphere in \mathbb{R}^3

Sampling w from $g(w|\kappa, \theta)$

Sample $w \in \mathbb{R} \sim g(w|\kappa,d)$ by acceptance rejection sampling

Sampling w from $g(w|\kappa)$

Generale case

- Sample target distribution $w \in \mathbb{R} \sim g(w|\kappa)$ by sampling a proposal w_{prop} of known density $r(w|\kappa)$
- Perform backpropagation by reparameterizing $r(w|\kappa)$ so that the sampling is independent of the parameters
- Note that r is not explicitly given in the article

Sampling w from $g(w|\kappa)$

- \blacksquare Case d=3: faster to use inverse transformation method
 - The vMF distribution explicity writes :

$$f_{vMF}(z) = \frac{\kappa}{4\pi \ sinh(\kappa)} exp(\kappa \mu^T z)$$

• $(w, \sqrt{1-w^2}v^T)^T \sim vMF(e_1, \kappa)$ where $v \sim S^2$ and $w \in [-1, 1]$ has density

$$f_W(w) = \frac{\kappa}{2 \ sinh(\kappa)} exp(\kappa w)$$

• We compute its cumulative distribution function $F_W(w)$ and its inverse

$$F_W^{-1}(u) = \frac{1}{\kappa} ln(\exp(-\kappa) + 2 \sinh(\kappa)u)$$

• As $sinh(\kappa)$ is numerically instable, we rewrites

$$F_W^{-1}(u) = 1 + \frac{1}{\kappa} ln(u + (1 - u)exp(-2\kappa))$$

Sampling ν from $\mathcal{U}(S^{d-2})$

Sample $v \in \mathbb{R}^{d-1} \sim \mathcal{U}(S^{d-2})$

Sampling v from $\mathcal{U}(S^{d-2})$

- $\mathcal{N}(0, I_{d-1})$ is rotationally symmetric around the origin
- $f_{Y_1,...,Y_{d-1}} = \frac{1}{\sqrt{2\pi}^{d-1}} exp(-(Y_1^2 + \cdots + Y_{d-1}^2)/2) = \frac{1}{\sqrt{2\pi}^{d-1}} exp(-1^2/2)$ which is constant in all of the angular variables.

Algorithm 3 Sampling v from $\mathcal{U}(S^{d-2})$

- 1: Generate d-1 iid variables (X_i) from $\mathcal{N}(0,1)$
- 2: $Y_i \leftarrow \frac{X_i}{\sqrt{X_1^1 + \dots + X_{d-1}^2}}$
- 3: **return** $(Y_i)_{i=1,...,d-1} \sim \mathcal{U}(S^{d-2})$

Sampling z from $q(z|e_1, \kappa)$

$$z = (w, \sqrt{1 - w^2}v^T)^T$$

Transform z

Algorithm 4 Overview of the sampling method from $vMF(\mu, \kappa)$

```
Require: \mu \in \mathbb{R}^d, \kappa \in \mathbb{R}_+
```

- 1: Sample $z \sim q(z|e_1, \kappa)$ where $e_1 = (1, 0, ..., 0)$
- 2: Compute Householder reflection $U(\mu)$ so that $U(\mu)e_1=\mu$
- 3: $u \leftarrow Normalize(e_1 \mu)$
- 4: $U \leftarrow I 2uu^T$
- 5: **return** $z' = U(\mu)z$

Sampling results

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

Reparameterization Trick

The authors use a reparameterization trick that has been extended to distributions that can be sampled using rejection sampling [?].

Algorithm 5 Reparameterized Rejection Sampling (from [?])

- 1: $i \leftarrow 0$
- 2: repeat
- 3: $i \leftarrow i + 1$
- 4: Propose $\varepsilon_i \sim s(\varepsilon)$
- 5: Simulate $u_i \sim \mathcal{U}[0,1]$
- 6: **until** $u_i < \frac{g(h(\varepsilon_i,\theta);\theta)}{r(h(\varepsilon_i,\theta);\theta)}$
- 7: return ε_i

Monte Carlo estimation

By noting $\pi(\varepsilon|\theta)$ the distribution of the resulting ε , we have

$$abla_{ heta} \mathbb{E}_{g(arepsilon| heta)}[...] = \mathbb{E}_{\pi(arepsilon| heta)}[...]$$
" = $\mathbb{E}_{(arepsilon_i,U_i)_i}[...]$ "

Problem: $(\varepsilon_i, U_i)_{i \in \mathbb{N}}$ is not a random variable (it is a stochastic process) No reference to a convergence proof in [?, ?, ?]

- 1 Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

Experiments on link prediction

- Link prediction on a graph dataset: given a graph with some edges removed, predict the likelihood for each pair of nodes to be connected by an edge
- Cora dataset [?]: 2708 publications, 5429 links, 1433-dimensional feature vectors
- Using a Variational Graph Auto-Encoder [?]: a variational encoder which uses a graph neural network (GNN) as encoder
- Reconstruction loss:

$$\mathbb{E}_{q(\mathbf{Z}|\mathbf{X},\mathbf{A})}(\log p(\mathbf{A}|\mathbf{Z})) \quad \text{where} p(\mathbf{A}|\mathbf{Z}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p(A_{i,j}|\mathbf{z}_{i},\mathbf{z}_{j})$$

• Negative sampling: in the sum $\sum_{i,j} \log p(A_{i,j}|\mathbf{z}_i,\mathbf{z}_j)$, keep all positive edges and one randomly sampled negative edge per positive edge

TODO

reproduire l'experience

- data (Ines)
- implementer les modèles (Victor VGAE)
- gradients pour le hyperspherical VAE (Inès)
- courbes d'entraînement dans le cas normal (Victor)
- entrainement et evaluation

- 1. Introduction
- 2. Sampling method
- 3. Reparameterization Trick
- 4. Experiments on link prediction
- 5. Conclusion and Discussion

Conclusion and Discussion

- Quite meaningful contribution in low dimensions
- \bullet Algorithm not really useful in high dimensions, due to vanishing surface problem and soap bubble effect of the $\mathcal{N}\textsc{-VAE}$
- Much less variance parameters (1 vs. d for $\mathcal{N}\text{-VAE}$), so possibly less expressivity
- vérifier différentes dimensions de l'espace latent
- et algo vraiment utile en petite ou moyenne dimension ?

References

