

M66, Modélisation et analyse numérique

TP3: Valeurs singulières, moindres carrés

Vous êtes invité à télécharger le fichier tp3_fonction.sci qui contient la procédure plotimage nécessaire pour l'exercice 3, ainsi que les fichiers avec des données temperatures.dat, lena.dat et george.dat.

Pour chaque exercice, il va falloir créer un fichier, tp3_exo1.sce, ..., tp3_exo3.sce, comportant les lignes de code correspondant à la résolution de l'exercice. Ces fichiers doivent commencer avec les initialisations habituelles (clear,clc,...).

Présentation et indications

Décomposition en valeurs singulières. Étant donné une matrice $A \in \mathcal{M}_{m,n}(\mathbb{R})$ de rang $p \leq \min(m, n)$, la décomposition en valeurs singulières de A est

$$U^t A V = S$$
 avec $S = \operatorname{diag}(\nu_1, \dots, \nu_n)$

où les $\{\nu_1 \geq \cdots \geq \nu_p > 0\}$ sont les valeurs singulières non nulles de A.

La commande Scilab qui permet d'obtenir cette décomposition pour une matrice A est [U,S,V] = svd(A).

Approximation de rang inférieur. D'après le théorème de Eckart et Young, la meilleur approximation de rang $k \leq p$, aussi bien en norme 2 d'opérateur, qu'en norme de Frobenius, est donnée par

$$A_k = US_kV^t$$
 où $S = \operatorname{diag}(\nu_1, \dots, \nu_k)$

La commande Scilab qui permet d'obtenir cette approximation pour une matrice A est [U,S,V] = sva(A,k).

Lecture de données à partir d'un fichier. Étant donné un fichier texte nomfichier.dat contenant mn valeurs, il peut être lu est stocké dans une matrice M de taille $m \times n$ avec la commande M = read('nomfichier.dat', m, n);

Exercices

Exercice 1 (Vérification de résultats du cours)

- a) Créer une matrice aléatoire A de taille 30×50 dont les coéfficients suivent la loi uniforme $A_{i,j} \sim \mathcal{U}[-10, 10]$.
- b) Représenter sur un graphique la relation entre les valeurs singulières de A et le spectre de A^tA .
- c) Créer la matrice B qui est la meilleur approximation de rang 10 de A. Puis calculer, dans une variable opt, l'erreur de cette approximation en norme de Frobenius.
- d) Pour un grand nombre (par exemple 1000) de matrices aléatoires de rang 10, si possible pas trop différentes de B, calculer et stocker dans un vecteur err, leurs erreurs d'approximation de A en norme de Frobenius.
- e) Vérifier visuellement le théorème de Eckart et Young en représentant sur un même graphique les erreurs stockées dans err et la valeur optimale qui se trouve dans opt.

Exercice 2 (Approximation au sens des moindres carrés)

D'après l'exercice 4 de la feuille de TD3, la résolution au sens des moindres carrés du système AX = B est équivalente à la résolution du système $A^tAX = A^tB$. Et si le rang de A est égal au nombre de variables (qui est égal au nombre de colonnes de A), alors cette solution est unique.

On se propose dans cet exercice de déterminer le polynôme de degré 2 qui approxime au mieux, au sens des moindres carrés, l'évolution de la température à Villeneuve d'Ascq pendant un mois.

- a) Le fichier temperatures dat contient les valeurs de la température relevées à midi chaque jour à Villeneuve d'Ascq au mois de septembre 2008. Stocker ces données dans un vecteur colonne temp.
- b) On cherche le polynôme $P \in \mathbb{R}_2[X]$ de meilleure approximation au sens des moindres carrés de cette évolution, c'est-à-dire celui qui réalise le minimum de

$$\sum_{i=1}^{30} |T_i - P(i)|^2,$$

où les T_i sont les températures stockées dans temp. Soit P le vecteur colonne à trois coordonnées qui contient les coefficients de P. Écrire la matrice A du système linéaire A*P=temp qui correspond à $P(i)=T_i$ pour $i=1,\ldots,30$.

c) Résoudre ce système au sens des moindres carrés et stocker les 30 valeurs approchées de la température dans une variable apptemp.

d) Afficher sur un même graphique les valeurs relevées et les valeurs approchées de la température pendant ce mois.

Exercice 3 (Visualisation des approximations de rang inférieur)

Les fichiers lena.dat et george.dat contienne les valeurs matricielles qui représente les images suivantes :

Dans cette exercice on se propose de visualiser l'approximation de ces images par des matrices de rang inférieur.

- a) Stocker les valeurs d'une de ces deux images dans une matrice photo de taille 256 × 256. L'affichage de cette photo peut se faire avec la commande plotimage(photo) qui se trouve dans le fichier tp3_fonction.sci.
- **b)** Afficher sur 4 graphiques côte-à-côte l'image choisi ainsi que les approximations de rang 5, 25 et 75 de cette même image.