Fusion Splice, 1-5-2000 ideas (1) Directly Splicing change: Splicing time Arc Position: The his point, the closer the highe energy distribution whereat closere position: The are position that the temperature in be fibrers is nearly to melting fiber. (at Bast the soften fer iedaa(z) Immediate Low temperature fiber Immediate melting poin two fiber system 07,207,407 Order [PF1 (ThorLabs) of Ultra-high NA Silica fibers

Exhibit A

	CLS ion	501,2	e te	s f	on	M	E_		Jan	2 9,	120	01	\perp
. SM	+ 5 M	p-01								-			i
Tes	tt	ime		ŢĒ.	 	 IE	 آ خ	E.	Œ				
Los	e 0	.02	dB	Œ	=								-
				_								- 0-	1
	e o	.03	215_	<u> </u>	t_								
Los	e 0	.04	d B	Ī.								· · ·	
los	0 0	01	dD	.τ.	0		- -						+
.10	se o	. 0'9	d B*	-		/							
: (o s	e 0	11:0	el B 2 B		* 	-	<u> </u>		-		:		
cleve			F	Du	re f	-G (he	Die	amo	and			-
clever	has	not	me	12	all	the	wi	y.	Cro	55.	1		Ŧ
	+++	+++		+			T						+
						1 1		+ 1	1			1	1
	+++	+ + +	++			++	+	1	÷		+		+
* lose	beco	ine (0.04	d	3 (2	de.	at	ter	-!r	e fus	e_		土
	+++	+++	+	-		` 	H	-		+			+
			11		İ		Ħ						\pm
Cut	& Re	fuse	1 1		H	-	1			-	-	1	+
Fai	lure		F	i		il	\vdash		\pm		\vdash		+
		1 1	44	1		1	11	1 1	4	-	-		F
XX Le-	ff "re		emid	rei	ise		ΗĖ	$\dot{\top}$		-	-		1
							H	\perp	4		1		
-> RO	ght "	new	33 d	R	H	1	\vdash	+	+	-	+		+
					Ш	II	П	П	I				1
+ + +	+++		+		H	H	+	+	$\dot{+}$	+	+		+
After	elect	trode	clea	n P	mgr	ann	nu	5	T	e l	25 €	estim	
to much	lawe	2	drou	nd m	0. 2.5 pl		0.	0 2	d B	F	ren	one	+
5 au 10 (d	10721	rec	4116		1 1	10	1	++	+	1 1	-	+++	1

	1 mual Mode Spiring	Jan 10	2001
	SM + SM POI		
A SERVICE NAME OF STREET OF STREET	Totate test time IE		
	lose c. oldB		
	Lose 0.02dB T		
	(05e 0.04dB		
	105e 0.05dB		
- 	1058 0.06dB 1058 6.08dB		
			1 : -
			111
			+++-
+++		, i	++++
+++			1
		7	+++
			++++
			1111
			+++
++++			
+++			+++
			++++
++++	+		TIL
			+++
			
+++	+++++++++++++++++++++++++++++++++++++++	++++	
++++		++++	++++

<u>83</u>

54	
:	Change Parame rs (Prefuse cum)
	POI PII Changel
	Profuse time 025 0.25
	Prefixe Curr 10.0 mA 080mA
	Gap 50.0 M 50.0 M
	overlas 10,0 Mm 10,0 Mm
	fus.on time! 0.35 0.35
	Fusin Curr 1 10.5 mA 10.5 mA
	time 2 2.05 2.05
	Curr 2 (6.3 mg (6.3 mg
	times 2,65 2.05
	Carr 3 12.5 mA 12.5 mA
	left MFD 9,8 Mm 9.8 Mm
	Rynt MFD 9.8 Mm 9.8 Mm
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
-	Aligh Acchra 0.15 Mm 0.15 Mm
	1054 56154
	Anto Arc Conter No No
	770 51
<	
1	
Т	
T	P12 change Parameter (fusion Curri)
$\overline{}$	P(2)
<u> </u>	Prefuse 0,25
	Prefuse cur 8.0 mA
+	125 075 001
-	1400
$\dot{-}$	overlap login fusion time 1 0,35
+	tusion time: 1 0,3
-	tusion Francisco
-	
	Curl 2 (6.)
+	
+	Carr 3 16-35-12.55
-	Left MED 910 MM
-	Right MI-1 7.80m
	Scenter 123
1	ADA CUTT
	Early Prefus No

POS ecceneric Sitsm Total test time if— (ase acolds T	·
Total test time if—	
lose acolds T	
lose ocolds T	
lase ocolals	
10se 0.02dB T	
Lase 0.02dB T	
lose 0.05dB T	
1056 0.02 GB I	
	1 1 1
	TIT
	-
	+
PII first programed	+++
TIBE (10 g.w.ea	+++
	+++
lose old ab T	
1056 0.08 90 -4	
(0)	1 1 1
	1 1
	111
	1 1
P12 changed (fusion curr	-1)
lose o.os dB T	
Lose G.04 dB T	
1052 006 dB -	
10 se 0.01 dB	111
* 0.04 d 8 refuse	
	\top
	111
	1

	Edit profuse curr 6, mA toup too high
	Edit Shefuse curr 4.5 mA. X Matchistick
	Edit Strotise Curr 3.75 mA (3.8 mA)
	Edit I refuse Curr 3 (3 mA (3.8 mA)) = DC frefuse fine 0.3 S Matchstlel
	Edy Sprefuse Curr 3.4 mA No meleing
	Profuse (ine 0.35
	Prefuse Cur 36 m A just a little
	Prefuse time 035 too high
	D. fiber cannot be contiby clover
	Mechanical property is poor
	2gPrefuse current 3.6 mA
	Prefuse time 0.35
111	· Current is very low
	`

	P14	
	Profise time 0.25	
	Prefuse carr 3.4 mA	
	Gao 50 Mm	
	Gap - 50 MM	
	overlap	
	overlap 104A fusion time 1 0.35 fusion curren 1 3.55mA	
	fusion time 2 30 S	
	trusion times	
	fusion Court 2 365mA fusion time 3 205	
	tasia tina 3 3.0 3	
	Pus an Curr 3 34 mA	
	Left MFD 9.8um	
+	right MED 9.8 MM	-
	Set tenter +255	
	Ao A Curr o mA	+
+	Early profise NO	
+	Aligh Accura pricum	+ + +
-	1 ors 54.71 ods	+++
	Auto Arc Center NO	+
		111
H + H		+
	too high for Erbium Glass too how for s	4F 28
	The fiber of Enbium Glass is not unite,	
4	in tadi Dia metan	$\perp \perp \perp$
		1!!
1		
444		
200		
7 th		
2		
2		
3 1		
Jan		
11 1 1		\top
.:		
		TII
7		

~ /

38			
	Fibercore glass.		İ
	Troercore glass.		
*1 *12	PF1500 F-980 Erbium Doped	Fibre	
	5D 278 A-01 A	£	
	DFISOOL Special Erbium -dop	ed Fibre	·
	DFISOC F-990 Ectium Doped SD 228 A-01 A "C-band" 1530-1560 nm DFISOOL Special Erbium adop "L-Band" SD 1868-00	6	
		~ DF-1500 F	
	~ 1600 hm		
- t			ļ. :
7	DF1500L		
	D.C.	1500 F-098	0
† †	Fiber Diameter (25 Min)	125	uin
	Cut off 955 nm	0.24	200
1 1	Attenuation 25dB/Km 1200 nm	970	nm
† †	Absorption [1.5dB/m@979nm	6.80	B/K
1	14.6 d 8/m@ 1531nm		B/m
+			
	Composition Core Silica germani	۸	11
++	Inner e adding Silica	, , , , , , , , , , , , , , , , , , ,	me
		a	5
	Coating Dual Coat UV Cure Ac	rylate le	11
+	240 M Diameter	0	
	Mechanical		140
	Proof test @ 13 Strain		101
14			- i
- - -			
			
7 ;			
			<u>:</u>

2.8 mA	15e 0,25 2,9 mA	15f 0.25 2.9 MA	15 a 0.15 3.3 mA	3.2mA
	50 MM	50 Mm	50,UM	soum
	10 um	10 rum	10/LM	Lorum
0.35	0.3 .5	0.05	o.ls	0.15
2.8 mA 1.35	3.0 mA	3.9m1	3.3 MA	3.2mA
2.8 mA	1,35 29mA	1,35 2.9 mA	1732	\$
138 2	1.35	1,35	2.8 mA 1.3s	2.8 nvA
2.8 mA	2.9 mA	2.9 mA	2.8m/A_	2.8 MA
4		\		07-71
-	<i>E</i>	← :::	1	
←	< ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	<u> </u>		
6			-	= 4
£	\$	5		\longrightarrow
E	\sum	$-\sum$		
6	\geq	2		
NP fiber Did No		melt !//	Prefuse work	Profuse
NP fiber Did No mel+ "!			Prefuse work	
mel+ "!				
NP fiber Did N mel+ "! Discharge!			fuse > mel	
mel+ "!	D.U melf		fuse > nel	
mel+ "!	D.W.melf		fuse > mel	
mel+ "!	D.U.melf		fuse > hell	
mel+ "!	D.U.melf		fuse > hell	
mel+ "!	D.U.melf		fuse > hell	
mel+"!! Discharge!	D.W. melf		fuse > hell	
mel+"!! Discharge!	D.W. melf		fuse > hell	-f.use
mel+"!! Discharge!	D.W. melf		fuse > helt	
mel+"!! Discharge!	D.W. melf		fuse > hell	
mel+"!! Discharge!	D.W. melf		fuse > helt	
mel+"!! Discharge!	D.W. melf		fuse > helt	
mel+"!! Discharge!	D.W. melf		fuse > helt	
mel+"!! Discharge!	D.W. melf		fuse > mel	
mel+"!! Discharge!	D.W. melf		fuse > mel	
mel+"!! Discharge!	D.W. melf		fuse > mel	
mel+"!! Discharge!	D.W. melf		fuse > mel	

.. NPID-10

Exhibit B

NP Photonics, Inc. Invention Disclosure Form

I. Description

Please provide a title for your invention and a brief description. Inventions include new processes, products, apparatus, compositions of matter, living organisms – OR improvements to (or new uses for) things that already exist. Use additional sheets and attach descriptive materials to expand answers to questions. (Sketches, drawings, photos, reports and manuscripts will be helpful.)

A. Invention Title: Method of Fusion Splicing Silica Fiber with Multi-component Glass Fiber

B. Description:

This invention discloses a method of fusion splicing silica fiber with multi-component glass fibers. Here the multi-component glass referees to glass containing glass network former, network modifier and/or glass network intermediator, such as phosphate glass, silicate glass, borate glass, germante glass and tellurite glass. Figure 1 (a) and (b) illustrate the design of the multi-component glass fiber for fusion splicing with silica fiber.

In Figure 1 (a), the single mode core is the doped glass, for example, erbium and ytterbium doped phosphate glass, the first cladding layer is undoped or specially doped glass, for example, undoped phosphate glass or specially doped phosphate glass or specially doped phosphate glass the second cladding layer is a slicitate glass which will play a key rule in fusion splicing. The diameters of the single mode core, the first cladding layer and the second cladding layer could be around 4 to 10 μm , 15 to 50 μm , and 125 μm , respectively. The silicate glass for the second cladding glass would be selected that the offening temperature of the glass is close to the core glass and the first cladding glass, so these three glasses can be drawn into fiber without problem. The cross section of the second cladding layer is significantly larger than the core and the first cladding layer. The second cladding layer plays a key rule in fusion splicing. Typically the decreases are the vorking temperature range for silicate glasses is broader than that of phosphate glasses. In addition, the bond strength between the silicate glass fiber and silica fiber should be stronger than that between the phosphate glass fiber and silica fiber should be stronger than that between the phosphate glass fiber and silica fiber should be stronger than that between the phosphate glass fiber and silica fiber should be stronger than that between the phosphate glass fiber and silica fiber should be stronger than that between the silicate glass fiber and silica fiber should be stronger than that between the silicate glass fiber and silica fiber should be stronger than that between the silicate glass fiber and silica fiber should be stronger than that between the silicate glass fiber and silica fiber should be stronger than that between the silicate glass fiber and silica fiber should be stronger than that between the silicate glass and silica.

Figure 1. Design of single mode fiber for fusion splicing with silica fiber

It should be pointed out that in some cases, the first cladding layer might not be necessary as illustrated in Figure 1 (b). In Figure 1 (b), the single mode core is the doped glass, for example, erbium and ytterbium doped phosphate glass, and the cladding is a silicate glass.

v					
	C. What are the immedia	ate and/or future applications of the inve	ention?		
	Fiber amplifiers, fiber la	sers, fiber optical communications			
	D. Why is the invention features? What problem		ent technology? What are its novel and unusual		
	There is no existing tech	nology to fusion splicing silica fiber and	d phosphate glass fiber.		
	E. Is work on the inventi practical application? A		be overcome or other tasks to be done prior to		
	Yes. No test data yet.				
	F. Have products, appara	atus or compositions, etc. actually been i	made and tested?		
		II.Publications, Public	Use and Sale		
	Note: valid patent depends on accurate answers to the following items.				
	A. Has invention been di	isclosed in an abstract, paper, talk, news	story or a thesis?		
	Type of disclosure:	No. (Please enclose a copy)	Disclosure Date:		
	B. Is a publication or oth	er disclosure planned in the next six mo	onths?		
	Type of disclosure:	No. (Enclose drafts, abstracts, preprints) Use and Sale – Continued)	Disclosure Date:		
		ablic use or sale of products embodying	the invention?		
	No.				
	Describe, giving dates:				
	D. Are you aware of rela or publications would be		olease give citations. Copies of any relevant patents		
	No.				
		III.Sponsorship			
	If the research that led to agreement if possible.	the invention was sponsored, please fill	in the details and attach a copy of the contract or		
	A. Government agency:	No.	Contract/Grant no.		
	B. Name of industry, uni	iversity, foundation or other sponsor: No	.		

	s the invention been disclosed of companies and their repre	to industry representatives? If "yes." please provide details, including the sentatives.
		IV.For Our Records
A. Naı	mes and titles of inventors (p	ease print; sign where indicated)
1.	Shibin Jiang	Signature Date 01/31/6/
2.	Jiafu Wang	Signature Swang 2W Date 01/31/0
B. Cor	ntact for more data	Tel.
C. Ma	iling address for inventor(s) NP Photonics, Inc., UA Sc (520) 799-7402, (520) 799	ence and Technology Park, 9030 S. Rita Rd., Suite 120 • Tucson, AZ 85747 7-403 fax
D. Nai	me and title of institutional re	presentative (please sign where indicated)
Signat	ure	Date
Depart	tment	Tel.

Mailing address

NP Photonics, Inc.
UA Science and Technology Park
9030 S. Rita Rd., Suite 120 • Tucson, AZ 85747
(520) 799-7402, (520) 799-7403 fax