日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年 4月16日

出願番号 Application Number:

特願2004-121721

[ST. 10/C]:

 \mathcal{N}_{i}

[JP2004-121721]

出 願 / Applicant(s):

日本電信電話株式会社

2005年 1月28日

特許庁長官 Commissioner, Japan Patent Office)\ \(\(\(\(\) \)

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 NTTH157338 平成16年 4月16日 【提出日】 【あて先】 特許庁長官 殿 【国際特許分類】 G11B 7/00 【発明者】 【住所又は居所】 東京都千代田区大手町二丁目3番1号 日本電信電話株式会社内 【氏名】 千田 正勝 【発明者】 東京都千代田区大手町二丁目3番1号 日本電信電話株式会社内 【住所又は居所】 【氏名】 三反崎 晩経 【特許出願人】 【識別番号】 000004226 【氏名又は名称】 日本電信電話株式会社 【代理人】 【識別番号】 100064908 【弁理士】 【氏名又は名称】 志賀 正武 【選任した代理人】 【識別番号】 100108453 【弁理士】 【氏名又は名称】 村山 靖彦 【手数料の表示】 【予納台帳番号】 008707 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1

要約書 1

【包括委任状番号】 0401166

【物件名】

【請求項1】

少なくとも、1つ以上のコア層と、コア層の上面あるいは下面あるいはコア層内に設けられ形状あるいは屈折率分布により形成され再生光を出射する1つ以上の記録データ用回 折格子層と、コア層あるいは記録データ用回折格子層に隣接して、あるいはコア層あるい は記録データ用回折格子層にギャップ層を介して設けられ情報データが光の透過性、不透 過性を持つ記録マークの有無として記録される1つ以上の記録層とから構成されることを 特徴とする認証シート。

【請求項2】

前記記録層上での前記記録マークの有無および位置が、光の明暗の有無および位置として再生されるように、前記記録データ用回折格子層が形成されていることを特徴とする請求項1に記載の認証シート。

【請求項3】

前記コア層あるいは前記記録データ用回折格子層の片面あるいは両面にクラッド層を設けたことを特徴とする請求項1または2のいずれかに記載の認証シート。

【請求項4】

少なくとも記録層を有する認証シートに情報データを記録する装置であって、

少なくとも、前記記録層に光線を照射し情報データを描画あるいは一括投影する光線照射 系、あるいは前記記録層に電子線を照射し情報データを描画あるいは一括投影する電子線 照射系のいずれかを有することを特徴とする記録装置。

【請求項5】

少なくとも記録層を有する認証シートに、少なくとも光線照射系あるいは電子線照射系 のいずれかを有する記録装置を用いて情報データを記録する方法であって、

情報データを光線照射系あるいは電子線照射系からの光線あるいは電子線により、光の透過、不透過性を持つ記録マークの有無に対応させて前記記録層に、描画あるいは一括投影することによって記録することを特徴とする記録方法。

【請求項6】

少なくとも記録データ用回折格子層、コア層を有する認証シートに記録された情報データを再生する装置であって、

少なくとも、前記記録データ用回折格子層に隣接してあるいはギャップ層を介して配されたコア層に入射光を入射させる光ヘッドと、

前記記録データ用回折格子層から出射した再生光を検出する光検出器と、

を有することを特徴とする再生装置。

【請求項7】

前記認証シートから出射した再生光が前記光検出器に入るまでの光路の途中に配置され、前記認証シートから出射した再生光を前記光検出器に結像させる再生光学系を有することを特徴とする請求項6に記載の再生装置。

【請求項8】

前記認証シートに対して前記光検出器及び前記再生光学系を相対的に移動させる手段を 有することを特徴とする請求項7に記載の再生装置。

【請求項9】

少なくとも記録データ用回折格子層、コア層、記録層、記録マークを有する認証シート に記録された情報データを、少なくとも光ヘッド及び光検出器を有する再生装置を用いて 再生する方法であって、

前記記録データ用回折格子層に隣接して、あるいはギャップ層を介して配されたコア層に 前記光ヘッドからの入射光を入射させ、前記記録データ用回折格子層から出射される再生 光を、情報データを持った前記記録層における前記記録マークの有無に対応させて、前記 光検出器の位置で光の明暗パターンとして検出再生することにより、前記記録層に記録された情報データを再生することを特徴とする再生方法。

【書類名】明細書

【発明の名称】認証シート及びその記録装置/記録方法、並びに再生装置/再生方法 【技術分野】

[0001]

本発明は、積層ホログラムROM媒体に設けられた記録層に記録マークを記録した認証 シート及びその記録装置/記録方法、並びに再生装置/再生方法に関する。

【背景技術】

[0002]

従来の積層ホログラムROM媒体を用いた認証シート、記録再生装置、記録再生方法を 以下に説明する(特許文献1、2参照)。

図20は、認証シート1'の側面(断面)を示す図であり、コア層2'とクラッド層3'とが交互に積層し、コア層2'とクラッド層3'との境界に回折格子層4'が設けられた構造を成す。回折格子層4'には情報データが例えば凹凸形状によって記憶されている。

[0003]

図21は認証シート1'に対する再生装置5'の側面を示す図であり、光ヘッド6'と、光検出器7'とから構成される。光ヘッド6'は認証シート1'の所望のコア層2'に入射光8'を入射させる機能を持つ。再生方法は以下である。

[0004]

光ヘッド6'により認証シート1'の所望のコア層2'に入射光8'を入射させると、光は回折格子層4'に記憶されている情報データ(ホログラムデータ)に依存して回折され、再生光9'が認証シート1'の上面に出射する。これを光検出器7'で検出すると認証シート1'に記憶された情報データを再生することができる。

[0005]

認証シート1'は小型大容量化でき、また再生装置5'は構成、構造が単純なため小型化できる。この技術は、メモリ、鍵、保障シール、梱包用シール、タグなどへの適用が期待されている。

【特許文献1】特開平11-345419号公報

【特許文献2】特開2002-19338号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

上述した適用分野では、個々の認証シートは各々固有の情報データを持つことが各々を 個別に認証可能となるため利用の範囲、領域を拡大できる点で有利である。

しかしながら、上記従来技術においては、認証シート1'は例えば原版を用いたスタンピング技術により作製されるため、全く同一の情報データを有した認証シートを大量に生産することは適しているものの、1枚1枚異なる情報データを有する認証シートを作製することは生産性、コスト面で割が合わず適していない。

以上、従来技術では認証シート個々に情報データを容易に記録することができないという問題があった。

[0007]

本発明は、このような事情に鑑みてなされたものであり、認証シート個々への情報データ記録を容易に可能とする認証シート及びその記録装置/記録方法、並びに再生装置/再生方法を提供することを目的とする。

【課題を解決するための手段】

[0008]

上記目的を達成するために請求項1に記載の認証シートは、少なくとも、1つ以上のコア層と、コア層の上面あるいは下面あるいはコア層内に設けられ形状あるいは屈折率分布により形成され再生光を出射する1つ以上の記録データ用回折格子層と、コア層あるいは記録データ用回折格子層に隣接して、あるいはコア層あるいは記録データ用回折格子層に

ギャップ層を介して設けられ情報データが光の透過性、不透過性を持つ記録マークの有無として記録される1つ以上の記録層とから構成されることを特徴とする。

[0009]

また、請求項2に記載の認証シートは、請求項1に記載の認証シートにおいて、前記記録層上での前記記録マークの有無および位置が、光の明暗の有無および位置として再生されるように、前記記録データ用回折格子層が形成されていることを特徴とする。

[0010]

また、請求項3に記載の認証シートは、請求項1または2のいずれかに記載の認証シートにおいて、前記コア層あるいは前記記録データ用回折格子層の片面あるいは両面にクラッド層を設けたことを特徴とする。

[0011]

また、請求項4に記載の記録装置は、少なくとも記録層を有する認証シートに情報データを記録する装置であって、少なくとも、前記記録層に光線を照射し情報データを描画あるいは一括投影する光線照射系、あるいは前記記録層に電子線を照射し情報データを描画あるいは一括投影する電子線照射系のいずれかを有することを特徴とする。

[0012]

また、請求項5に記載の記録方法は、少なくとも記録層を有する認証シートに、少なくとも光線照射系あるいは電子線照射系のいずれかを有する記録装置を用いて情報データを記録する方法であって、情報データを光線照射系あるいは電子線照射系からの光線あるいは電子線により、光の透過、不透過性を持つ記録マークの有無に対応させて前記記録層に、描画あるいは一括投影することによって記録することを特徴とする。

[0013]

また、請求項6に記載の再生装置は、少なくとも記録データ用回折格子層、コア層を有する認証シートに記録された情報データを再生する装置であって、少なくとも、前記記録データ用回折格子層に隣接してあるいはギャップ層を介して配されたコア層に入射光を入射させる光ヘッドと、前記記録データ用回折格子層から出射した再生光を検出する光検出器とを有することを特徴とする。

[0014]

また、請求項7に記載の再生装置は、請求項6に記載の再生装置において、前記認証シートから出射した再生光が前記光検出器に入るまでの光路の途中に配置され、前記認証シートから出射した再生光を前記光検出器に結像させる再生光学系を有することを特徴とする。

[0015]

また、請求項8に記載の再生装置は、請求項7に記載の再生装置において、前記認証シートに対して前記光検出器及び前記再生光学系を相対的に移動させる手段を有することを特徴とする。

[0016]

また、請求項9に記載の再生方法は、少なくとも記録データ用回折格子層、コア層、記録層、記録マークを有する認証シートに記録された情報データを、少なくとも光ヘッド及び光検出器を有する再生装置を用いて再生する方法であって、前記記録データ用回折格子層に隣接して、あるいはギャップ層を介して配されたコア層に前記光ヘッドからの入射光を入射させ、前記記録データ用回折格子層から出射される再生光を、情報データを持った前記記録層における前記記録マークの有無に対応させて、前記光検出器の位置で光の明暗パターンとして検出再生することにより、前記記録層に記録された情報データを再生することを特徴とする。

【発明の効果】

0

[0017]

以上説明したように、本発明によれば、本発明に係る認証シートの作製時に、本発明に 係る記録装置および記録方法を用いて、上記認証シートに情報データを容易に記録できる

これにより、認証シート個々に固有の情報データを記録しこれを再生することができ、 認証シートおよびこれを貼り付けたものの個々を管理することが可能となり、後述する種 々の応用分野へ適用することができる、という効果が得られる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の実施形態を、図面を参照して詳細に説明する。以下、具体的な実施例を 挙げて説明する。

[0019]

<認証シートの実施形態>

本発明に係る認証シートは、少なくとも、1つ以上のコア層と、コア層の上面あるいは 下面あるいはコア層内に設けられ形状あるいは屈折率分布により形成され再生光を出射する1つ以上の記録データ用回折格子層と、コア層あるいは記録データ用回折格子層に隣接 して、あるいはコア層あるいは記録データ用回折格子層にギャップ層を介して設けられ情報データが光の透過性、不透過性を持つ記録マークの有無として記録される1つ以上の記録層とから構成されることを特徴とする。

[0020]

また、記録層上での記録マークの有無および位置が、光の明暗の有無および位置として再生されるように、記録データ用回折格子層が形成されていることを特徴とする。 また、コア層あるいは記録データ用回折格子層の片面あるいは両面にクラッド層を設けたことを特徴とする。

[0021]

図1〜図6は本発明の各実施形態に係る認証シート1の側面(断面)を示す図である。 図1は本発明の第1実施形態に係る認証シート1の構成を示しており、同図において、認 証シート1は、1つのコア層2と、コア層2の下面コア層内に設けられた1つの記録デー 夕用回折格子層43と、コア層2に隣接して設けられた1つの記録層42とから構成され ている。

[0022]

図2は本発明の第2実施形態に係る認証シート1の構成を示しており、同図において、 認証シート1は、1つのコア層2と、コア層2の下面コア層内に設けられた1つの記録データ用回折格子層43と、コア層2にギャップ層44を介して設けられた1つの記録層4 2とから構成されている。

[0023]

図3は本発明の第3実施形態に係る認証シートの構成を示しており、図1に示した第1実施形態に係る認証シート1における記録データ用回折格子層43の下と記録層42の上にクラッド層3を設けた構成例である。

図4は本発明の第4実施形態に係る認証シートの構成を示しており、図2に示した第2実施形態に係る認証シート1における記録データ用回折格子層43の下にクラッド層3を設けた構成例である。いずれも同様の効果を奏する。

[0024]

また、図5は本発明の第3実施形態に係る認証シートの構成を示しており、図3に示した第3実施形態に係る認証シート1におけるクラッド層3の上に、従来技術同様、回折格子層4、コア層2、クラッド層3を設けた構成例である。

さらに、図6は本発明の第6実施形態に係る認証シートの構成を示しており、図4に示した第4実施形態に係る認証シート1における記録層42の上に、従来技術同様、クラッド層3、回折格子層4、コア層2、クラッド層3を設けた構成例である。

[0025]

このように、適宜、認証シート1に、1つ以上のコア層2とコア層2を挟むように配置した2つ以上のクラッド層3と、コア層2とクラッド層3との境界あるいはコア層内に設け

[0026]

回折格子層 4 には情報データが例えば凹凸形状、あるいは屈折率分布として(ホログラムデータとして)記憶されている。記録層 4 2 は 1 つだけでなく、複数でも同様の効果を奏する。また回折格子層 4 、記録層 4 2 は、コア層 2 に直接隣接するだけでなく、ギャップ層 4 4 を設けても配されても同様の効果を奏する。

[0027]

コア層 2、クラッド層 3 の材料としては樹脂、ガラス、光学結晶などが使用でき、ギャップ層 4 4 としてはクラッド層 3 と同様の特性を有する材料(樹脂、ガラス、光学結晶など)を用いることができる。コア層 2 の厚さは 1 μ m程度、クラッド層 3 の厚さは 1 0 μ m程度である。回折格子層 4 はコア層 2 の上下に 2 箇所あっても良い。コア 2 層の屈折率はクラッド層 3 の屈折率より大きいことが必要である。

[0028]

記録層42は、情報データが光の透過性、不透過性を持つ記録マークの有無として記録されるものである。光(赤外光、可視光、紫外光、レーザ光、X線、電子線などを含む)あるいは熱が当たると形状あるいは屈折率などの光学特性が変化し、結果として光に対する透過/不透過性(透明/不透明変化、穴有り/無しなどを含む)機能を有する材料が利用できる。例えば、特定の光、熱が当たると不透明から透明に変わる(あるいはその逆)、あるいは形状変化/昇華により消失する(穴が開く)ような特性を有する材料が利用できる(記録層42上にこのようにして形成された跡を記録マーク45と呼ぶこととする)

[0029]

透過部分を記録マークとしても、あるいは不透過部分を記録マークとしても良い。本明細書では透過部分を記録マークとした前提で記述していることが多いが、不透過部分が記録マークである場合にも同様の効果を奏する。この場合は例えば明暗ドッドの明暗が逆になるなど本明細書の実施形態の記述が適宜変わるが、これらを含めて全て本実施形態の範疇とする(全実施形態で同様)。

[0030]

具体的な記録層42の材料としては、金属(アルミ、クロムなど)、酸化物(酸化クロム、酸化銀など)、半導体(アンチモンなど)、樹脂(UV硬化樹脂、熱硬化樹脂など、およびこれら樹脂にフラーレン、色素などを添加したものなど)、インク、塗料、紙などが使用できる。

[0031]

図1ではギャップ層44がない認証シート1の構成例、図2ではギャップ層44がある 認証シート1の構成例を示したが、いずれも同様の効果を奏する。

また、記録層42は記録データ用回折格子層43に対し、再生光9が出射する側に(認証レシート1に対して光検出器7が配される側に)配されればよく、記録層42と記録データ用回折格子層43との間にはギャップ層44以外の層、例えばコア層2、クラッド層3、回折格子層4などが配されても構わない。

[0032]

但し、通常は回折格子層4にはデータ情報が記憶されているため、これを再生するためには、回折格子層4は記録層42と記録データ用回折格子層43との間に位置しない方が有利である(記録層42、記録データ用回折格子層43が回折格子層4からの再生光9を遮蔽し回折格子層4の情報データが再生できなくなるため)。

[0033]

記録データ用回折格子層43は、形状あるいは屈折率分布により形成され再生光を出射するものである。記録データ用回折格子層43は、回折格子層4と同様の特性を持つものであり、凹凸形状あるいは屈折率分布により隣接するコア層2に入射した入射光8を再生光9として出射するものである。再生光9の出射角としては例えば真上、光ヘッド6からの入射光8に対して前方、後方でもよく、また平行光でも種々の角度をもった光が混在し

[0034]

後述する、本発明の実施形態に係る再生装置、再生方法で示すように、記録層42上での記録マーク45の有無および位置は、光検出器7上での光の明暗の有無および位置に対応するように、記録データ用回折格子層43が形成されていても良い。

また、記録層 4 2 上での記録マーク 4 5 の有無および位置は、光検出器 7 上での光の明暗の有無および位置と 1 対 1 に対応していても良いし、また必ずしも 1 対 1 に対応していなくても良い。

[0035]

すなわち、1個の記録マーク5に対して光検出器7上の明暗ドット1個が対応しても良いし、あるいは1個の記録マーク5に対して複数の明暗ドット、あるいは複数の記録マーク45に対して1個の明暗ドット、あるいは複数の記録マーク45に対して複数の明暗ドットが対応するよう記録データ用回折格子層43を形成しても良い。

[0036]

認証シート1としては、記録層42を含む認証シート1を一体で作製し、その後、記録層42に記録するもの、記録層42を含む部分と記録層42を含まない部分の二体で作製し、記録層42を含む部分に対して記録層42に記録を行った後、これと記録層42を含まない部分を貼り付け最終的に一体にするもの、まず記録層42を含む部分の記録層42に記録し、これに記録層42を含まない部分を追加作製するもの、が挙げられる。

[0037]

認証シート1としては、そのままの形態で使用する方法、パッケージ/カートリッジなどの容器に入れて使用ずる方法、そのままの形態で使用し片面(再生光が出射しない側)にラベルを貼付して使用する方法などが挙げられる。記録装置、再生装置の構成要素を、認証シート、パッケージ、カートリッジの構成要素として持たせてもよく(あるいはその逆など相互に構成要素を交換して構成しても)、同様の効果を奏する。

なお、本発明による認証シート1の層の構成としては、適宜各層の間にギャップ層、クラッド層、保護層を挿入してもよく、また上下の最表面にはクラッド層あるいは保護層がある場合、ない場合が考えられ、いずれも同様の動作、効果が得られる。

[0038]

図7に本発明の認証シート1をカード11に貼り付けた実施形態を示す。認証シート1はカード11の上面、下面、内部の、各々全面あるいは一部に貼付されることができる。認証シート1は単独で機能しても良いし、また後述する〈本発明が適用される応用分野の例〉に示すカードあるいはシールなど別のもの(カード、シールのように薄いものに限らずブロック状のものも含む)に貼付されて機能しても良い。

[0039]

本発明の実施形態では認証シート1のみを図示している場合が多いが、これらの実施形態においても、認証シート1が単独のものだけでなく図7に示すように別のものに認証シート1が貼付されたものも本発明の範疇に含むものとする。即ち、例えば本発明において記録装置、再生装置の中に入れる認証シート1は単独でも良良いし、、また図4に示すようにカード11など別のものに貼付されていても良い。

[0040]

<記録装置、記録方法の実施例〉

本発明の実施形態に係る記録装置は、少なくとも記録層を有する認証シートに情報データを記録する装置であって、少なくとも、前記記録層に光線を照射し情報データを描画あるいは一括投影する機能を有する光線照射系、あるいは前記記録層に電子線を照射し情報データを描画あるいは一括投影する機能を有する電子線照射系のいずれかを有することを特徴とする。認証シートとしては例えば、本発明の実施形態に係る認証シートが使用できる。

[0041]

本発明の記録方法は、少なくとも記録層を有する認証シートに、少なくとも光線照射系

認証シートとしては例えば、本発明の実施形態に係る認証シートが使用できる。また、記録装置としては例えば、本発明の実施形態に係る記録装置が使用できる。

[0042]

図8、図9に本発明の実施形態に係る記録装置52の構成(側面図)を示す。図8では記録装置52は、記録層42に光線93を照射し描画する機能を有する光線照射系102から構成され、図9では記録装置52は、記録層42に電子線94を照射し描画する機能を有する電子線照射系103から構成される。

[0043]

なお、認証シート1における記録層42に穴開けする場合には、記録層42は表面に露出している方が穴開けし易い。図8は、認証シート1において、記録層42が露出した例、図9は認証シート1において、記録層42の上にクラッド層3が配された例を示している。

[0044]

認証シート1として記録層42を含む部分と記録層42を含まない部分が一体となって作製されたものを記録しても良いし、また記録層42を含む部分に対して記録を行った後これと記録層42を含まない部分を貼り付け最終的に一体とされ認証シート1が作製されても良い。

図8、図9の光線93と電子線94、光線照射系102と電子線照射系103が入れ替わったものも同様の効果を奏する。

[0045]

以下、記録装置 5 2 の記録動作を説明する。記録に際しては光線照射系 1 0 2 、電子線照射系 1 0 3 を用いて、記録層 4 2 に光または、電子線に対する透過/不透過性を示す箇所(記録マーク 4 5 。透明/不透明、穴有り/無しなどを含む)を描画、あるいは空間光変調器などを用いた一括投影により形成する。この記録マーク 4 5 の有無(数、位置、形状など)により、記録層 4 2 に情報データを記録することが可能となる。記録層 4 2 の形状、屈折率変化、消失(穴開き)などが記録マーク 4 5 として機能する。

[0046]

光線93としては、赤外光、可視光、紫外光、レーザ光、X線などが利用できる。光線 照射系102、電子線照射系103は必要に応じてレンズ、コリメータなどの光学部品、 電子線用部品を構成部品として有しても良い。

また、光線照射系102、電子線照射系103、認証シート1は、必要に応じて相対的に 角度、位置を変化させてもよく、このため一次元、二次元あるいは三次元駆動する機構お よび機能を有しても良い。

[0047]

さらに、記録装置52は、再生光を確認するため、図10に示す再生装置における光へッド6、光検出器7などを有してもよく、必要に応じて開口マスク、再生光学系、認証シート支持部など本発明の再生装置5が有する構成要素、機能を有しても良い。

なお、光線93、電子線94などを用いて記録層42に記録する方法以外に、インクジェットプリント、レーザプリント、スクリーン印刷など種々の印刷/プリント技術を用いて、インク、塗料などを所望のパターンで認証シート1上に印刷することによっても記録することができる。

[0048]

また、紙、インク、樹脂などのラベルを認証シート1に貼り、これに記録パターンを記録する方法、あるいは予め記録パターンが記録された前述ラベルを認証シート1に貼る方法を用いることもできる。よってこれらも本発明の範疇とする。

また、光線93、光線照射系102、電子線94、電子線照射系103に加え、イオンビ

[0049]

なお、記録装置、記録方法として、記録マーク45の加工スポット形状の精度、位置の 精度を高精度に出す機構、方法として、サンプル(認証シート1)下から加工面を観察し ながら加工する装置、方法とすることにより、スポット形状、スポット位置を高精度に制 御可能とでき、有利である。

[0050]

次に、図15に本発明の第3実施形態に係る記録装置の他の構成例を示す。同図において、光線照射系(あるいは電子線照射系)102は例えば光線93を照射する機能を有し、また、上下方向(光線の光軸方向)に移動、記憶媒体1の面内に一次元あるいは、二次元で光線あるいは照射系自体が走査する機能を有する。

[0051]

ステージ401は記憶媒体1を安定に設置する機能を有し、記憶媒体1の加工箇所周辺に あたるステージ部は穴が開いているか、あるいは透明体から成る窓部402が設けられて いる。

フィルタミラー406は、光線(電子線)93を透過し、ライト403からのライト光404は反射する機能を有し、例えば光線93の光軸に対し、45度でステージ401の下部に設置される。

[0052]

ライト403はライト光404を照射する機能を有し、ライト光404はフィルタミラー406で反射され、記憶媒体1の加工面で反射し、フィルタミラー406で再度反射した後、カメラ405に入射するよう設置される。カメラ405はライト403からのライト光404が入射する位置に設置され、ライト光404により記憶媒体1の加工面を観察する機能を有する。

[0053]

例えば、光線としてYAG(Ndドープ、YVO4)レーザ光を使用した場合、波長は1064ナノメートル程度であり、ライト光を可視光である波長100~600ナノメートルとすれば、フィルタミラーとして、波長数百ナノメートル以上の光は透過し、これ以下の光は反射する特性とすることで、上記実施形態(図15)を実現することができる。この実施形態により、記憶媒体1の加工スポットを光軸上で観察でき、この観察結果を光線照射系102あるいはステージ401の制御機構へフィードバックすることで、スポット形状、スポット位置を高精度に制御可能となる。

[0054]

従来、加工面を観察する方法としては、加工面近傍の斜め上にカメラを設置する方法があったが斜め上方からの観察であるためスポット形状、スポット位置を高精度に観察できないという欠点があった。

また別の従来法としては、光線の入射側で、ハーフミラーあるいは偏光ビームスプリッタなどを用いて、加工面からの反射光を光線の入射方向と逆方向にたどってカメラで観察する方法があった。この方法では光線の光軸上にカメラを配置できるため、スポット形状、位置を高精度で観察、制御できるものの、ハーフミラー、偏光ビームスプリッタを光線が記憶媒体に届く前の光路中に入れる必要があるため、ハーフミラー、偏光ビームスプリッタに光線が吸収、反射され、光線のパワーの一部しか記憶媒体の加工に使えないという欠点があった。

[0055]

これら従来法に比べ、本実施形態では、光線93の光軸上にカメラがあるため、スポット 形状、位置を高精度で観察、制御でき、また光線照射系102と記憶媒体1との間に観察 系(カメラ、ハーフミラー、偏光ビームスプリッタなど)が入らず、加工した後段に観察 系が入るため、光線のパワーを損失させることもないという利点がある。

[0056]

<再生装置、再生方法の実施形態>

本発明の実施形態に係る再生装置は、少なくとも記録データ用回折格子層、コア層を有する認証シートに記録された情報データを再生する装置であって、少なくとも、前記記録データ用回折格子層に隣接してあるいはギャップ層を介入して配されたコア層に入射光を入射させる機能を有する光ヘッドと、前記記録データ用回折格子層から出射した再生光を検出する機能を有する光検出器とを有することを特徴とする。認証シートとしては例えば、本発明の実施形態に係る認証シートが使用できる。

[0057]

本発明の実施形態に係る再生方法は、少なくとも記録データ用回折格子層、コア層、記録層、記録マークを有する認証シートに記録された情報データを、少なくとも光ヘッド及び光検出器を有する再生装置を用いて再生する方法であって、前記記録データ用回折格子層に隣接して、あるいはギャップ層を介して配されたコア層に光ヘッドからの入射光を入射させ、前記記録データ用回折格子層から出射される再生光を、情報報データを持った前記記録層における前記記録マークの有無に対応させて、前記光検出器の位置で光の明暗パターンとして検出再生することにより、前記記録層に記録された情報データを再生することを特徴とする。認証シートとしては例えば、本発明の実施形態に係る認証シートが使用できる。再生装置としては例えば、本発明の実施形態に係る再生装置が使用できる。

[0058]

図10は本発明の実施形態に係る再生装置の構成、及び本発明の実施形態に係る再生方法の内容を示す図である。同図において、再生装置5は光ヘッド6と、光検出器7とから構成され、光ヘッド6は認証シート1の所望のコア層2に入射光8を入射する機能を持つ

なお、認証シート1が回折格子層4を持つ場合、回折格子層4に隣接したコア層2に入射 光8を入射させれば、各回折格子層4に(ホログラムデータとして)記憶された情報デー タを読み出せることは従来技術と同様である。

[0059]

コア層 2への入射光 8 の入射方法としては、認証シート 1 の端面から入射させる方法、各コア層 2 に光結合部を設け認証シート 1 の上面あるいは下面から入射させる方法、各コア層 2 にミラー面を設け認証シート 1 の上面あるいは下面から入射させる方法が挙げられ、これらの方法は、同様の効果を奏する。但し、認証シート 1 の端面から入射させる方法は認証シート 1 に光結合部、ミラー面などを設ける必要がない点で有利である。

[0060]

光ヘッド6は、入射光8の発生源を有し、発生源としては例えば各種レーザ光源が使用できる。また光ヘッド6は例えば、光を引き回すミラー、コリメータなど光学部品、入射光8をコア層2に集光させる機能をもつ集光レンズ、入射光8を所望のコア層2の位置、角度で入射させる機能(機構、サーボ機能など)を持つアクチュエータなどと組み合わさって構成される。

本発明の実施形態に係る再生装置5は、必要に応じてサーボ用光検出器を具備しても良い

[0061]

光検出器7は認証シート1から出射した再生光9を検出する機能を持つ。必要に応じて移動機構を有しても良い。なお、この際、光検出器7と認証シート1が相対的に移動すれば良く、認証シート1側を移動させる機構を有しても良い。例えば、CCD、CMOSなど二次元光検出器、ラインセンサなど一次元光検出器、フォトダイオードなどを利用することができる。

再生光9は二次元データとして出射されるため一次元光検出器、さらに二次元光検出器で

[0062]

再生装置5は、必要に応じて認証シート1から出射した再生光9が光検出器7に入るまでの光路の途中に配置された再生光学系300を構成要素として含んでも良い。図11では、再生光学系300を含んだ構成を示している(再生光学系300がない実施形態も同様に効果を奏する)。

[0063]

再生光学系300は、回折格子層4および記録データ用回折格子層43から出射した再生 光9を光検出器7に結像させる機能を持ち、例えば開口マスク302、レンズ301、プリズム、ハーフミラー、(偏光)ビームスプリッタ、ミラー、偏光子、液晶素子など各種 光学部品およびこれらを組合せたものから構成することができる。

[0064]

ここで開口マスクは認証シート1から出射した再生光9が光検出器7に入射するまでの光路の途中に配置され、(回折格子層4を持った認証シート1において)各々の回折格子層4に多重に情報データ(コンテンツなど)を記憶した場合、各回折格子層4から出射する複数の再生光9を分離再生する機能を持つ。開口マスクを用いると、1つの回折格子層4から、光検出器7の複数画面分の情報データを再生することができるため、光検出器7のピクセル数に制限されることなく、認証シート1が有する記憶容量のポテンシャルを最大限に引き出すことが可能となる。即ち、情報データの多重記憶・再生が可能となるため大容量化が図れるという効果がある。

[0065]

開口マスクとしては、液晶素子から成り電気的に開口の位置を変化させるもの、開口の位置を固定したマスクを移動させるもの等が挙げられる。前者が機械的駆動を不要とし有利である。一度に開ける開口の数は1つあるいは複数でも構わない。

[0066]

以下、本発明の実施形態に係る再生装置の再生動作について説明する。記録データ用回 折格子層43に隣接するコア層2に光ヘッド6から入射光8を入射させると、コア層2に 入射した入射光8は記録データ用回折格子層43で回折され、再生光9として(図10、 図11の場合)上方に出射する。記録層42には、本発明の実施形態に係る記録装置52 、記録方法により記録マーク45が形成されており、記録層42のうち例えば、記録マーク45が有る箇所では再生光9は透過し、記録マーク45が無い箇所では再生光9は透過 しない。

[0067]

よって、光検出器 7 には、記録層 4 2 上の記録マーク 4 5 の有り無しパターンに対応した明暗のパターンが検出され、例えば、認証シート 1 の個別情報データを記録マーク 4 5 の有り無し(数、位置、形状など)に対応させて記録しておけば、光検出器 7 によりこれを検出再生できる。

[0068]

再生光9として平行光を記録データ用回折格子層43から出射することにより、記録層45に形成した記録マーク45のパターンをそのまま(記録マークの有無、位置と、光検出器上の明暗、その位置が1:1に対応し、拡大縮小関係もほぼ1:1の比率となる)光検出器7で検出することができる。これは再生装置7の構成要素として再生光学系300がない場合に特に容易となる。

[0069]

一方、記録マーク45を通過した再生光9が(再生光学系300がある場合には、これを再生光9が通過して)光検出器7に結像するように、記録データ用回折格子層43に予めホログラムデータとして情報データを形成しておけば、上記同様に記録層42に形成した記録マーク45のパターンを光検出器7で検出することができる。この場合、再生光9は一般に平行光ではなく種々の角度(場合によっては位相、強度なども種々となる)を持った光となる。なおこの場合には、再生光学系300の有無、種類、特性などに依らず記

[0070]

上記の様子を図12、図13に説明する。図12に記録層42の実施形態、図13に光 検出器7の実施形態を示す。図12において、記録層42には記録マーク45パターンが 二次元的に形成されておりこれが情報データとして機能する。

図13に示すように、光検出器7には記録層42の情報データに対応した明暗の二次元パターンが再生されている。記録データ用回折格子層43から出射した再生光9が平行光の場合には、情報データと明暗パターンは(ほぼ)同サイズとなり、また記録マークの有無、位置と、光検出器上の明暗、その位置が1対1に対応する。即ち、図12のA,B,C,…は各々図13のA,B',C',…というように1対1に対応して再生される。

[0071]

一方、記録データ用回折格子層43が上述のようなホログラムデータとして形成されている場合には、同サイズ、あるいは拡大あるいは縮小したサイズで光検出器7に再生される。記録層42上での記録マーク45の有無および位置は、光検出器7上での光の明暗の有無および位置と1対1に対応していても良いし、また必ずしも1対1に対応していなくても良い。

[0072]

すなわち、1個の記録マーク45に対して光検出器7上の明暗ドット1個が対応しても良いし、あるいは1個の記録マーク45に対して複数の明暗ドット、あるいは複数の記録マーク45に対して1個の明暗ドット、あるいは複数の記録マーク45に対して複数の明暗ドットが対応するよう記録データ用回折格子層43を形成しても良い。例えば、1個の記録マーク45に対して光検出器7上の明暗ドット1個を対応させる場合には、図12のAから出射した再生光は図13のA、に結像するよう、図12のBから出射した再生光は図13のB、に結像するよう(以下同様に)、記録データ用回折格子層43のホログラムデータを形成してやることにより、これを実現できる。

[0073]

図14は、図11に示す再生装置5の再生光学系300がレンズ301、開口マスク302から構成される場合の構成例を示している。この場合、開口マスク302の開口および各開口間隙が再生光9を遮る恐れがあるが、開口をオープン状態とし、開口間隙を避けるよう記録層42上の記録マーク45を配置することにより問題なく再生光9を光検出器7に結像させることができる。

[0074]

図14は認証シート1 (記録層42)が光検出器7より面積が大きい例であり、再生光学系300により情報データを縮小して光検出器7で再生している。広い記録層42とすることで多くの情報データを入れることができる、小さな光検出器7を使うため再生装置を安価、小型にできるなどの利点がある。

また、必要に応じて、光検出器 7、再生光学系 3 0 0 を認証シート 1 と相対的に移動させることで記録面の面積が広い認証シート 1 から出射した再生光 9 (情報データ)を容易に効率よく光検出器 7 により再生でき、大容量化を図ることができる(全ての実施形態について同様である)。

[0075]

図15は図11に示した再生装置における再生光学系300(ここでは例としてレンズ301、開口マスク302から構成される)が光検出器7と一体化した場合の構成例を示している。再生動作は上述したのと同様である。

なお、開口マスクの開口が少数の場合、例えば1個の場合には、光検出器7には図13に 示すように全情報データを一度に再生することは不可能となることがある。

[0076]

この場合には例えば、光検出器 7 の中央付近に記録マーク 4 5 の 1 個に対応した明暗のドットが 1 個再生され、光検出器 7 および再生光学系 3 0 0 の一体化部を認証シート 1 に対して相対的に(認証シート 1 面に沿って)二次元(あるいは一次元)移動させることで、

[0077]

図12、図13では記録層42上の記録マーク45のパターンと、光検出器7上の明暗ドットのパターンが同一あるいは拡大縮小(相似形)となった例を示した。本発明では記録層42上での記録マーク45の有無および位置が、光検出器7上での光の明暗の有無および位置に対応していれば、これらが図12、図13に示すように1対1に対応していてもい良いし、また1対1に対応していなくても良い。

[0078]

図16、図17にこれらが1対1に対応していない例を示す。例えば、図16のDと図17のD'は、Dが1個の△に対し、これに対応するD'が3個の○となる例である。また、図16のEと図17のE'は、図16のEが2個の○と1個の△に対し、図17では、これに対応するE'が1個の○となる例である。

[0079]

これらの図に示すように記録マーク45のパターンと、光検出器7上の明暗ドットのパターンは、それらの数、形状(○、□、△など)、位置が必ずしも1対1に対応している必要はなく、光検出器7上の明暗ドットのパターンの数、形状、位置などを記録マーク45のパターンの数、形状、位置などにより制御できれば、このような状態であっても図12、図13の場合と同様の効果を奏する。

[0080]

図18は本発明の第7実施形態に係る認証シート1の構成を示し、記録層42、記録データ用回折格子層43が複数ある場合の認証シート1の構成を示している。図18では省略してあるが、各記録層42、記録データ用回折格子層43などの間には1つあるいは複数の記録層42、記録データ用回折格子層43、コア層2、クラッド層3、回折格子層4、ギャップ層44、保護層などが配置されていても良い。

[0081]

このように記録層 4 2、記録データ用回折格子層 4 3 は複数層あっても同様の効果を奏する。例えば、図 1 8 の一番下の記録層 4 2 と下から 2 番目の記録層 4 2 のように記録マーク 4 5 の位置を少しずらして形成すると、両者の重なり部分のみを実効的に記録マーク 4 5 として機能させることができ、記録マーク 4 5 のサイズを記録装置 5 2 における光線照射系 1 0 2、電子線照射系 1 0 3 などの記録精度、記録分解能に制限されることなく、正確かつ微細に形成できるという利点がある。

[0082]

なお、記録層 4 2 としては必要に応じて全部(図で上から 2 番目の記録層 4 5) あるいは一部(図で一番上の記録層 4 5) を透過性(あるいは不透過性)にすることもできる。このように記録層 4 2 、記録データ用回折格子層 4 3 を複数有すると、ある記録層 4 2 に記録ミスをした場合にも別の記録層 4 2 を利用できるという記録過程における歩留まりを向上させる効果もある。

[0083]

また、複数の再生光学系300(および再生装置5)に対応した複数の記録データ用回折格子層43を認証シート1(あるいはその一部)に準備しておくことで、複数の再生光学系300(および再生装置5)に対応した共通の認証シート1(あるいはその一部)とすることができ効率が良いという効果もある。

[0084]

また、記録データ用回折格子層 4 3 が複数あると、記録マーク 4 5 のパターンと光検出器 7 上の明暗ドットパターンとの対応を複数準備することができ、情報データの記録、再生 にバリエーションが増え、これを認証シートの固有情報データとして利用した場合、より

[0085]

なお、光学部品、機構部品など本明細書に記載の記録装置 5 2 、再生装置 5 の構成要素の数は 1 つあるいは複数でも良く同様の効果を奏する。

記録装置52、再生装置5の構成要素として、認証シート1を装填する入口である認証シート装填口、認証シート1が装填されるスペースである認証シート装填スペース、認証シート1を固定しローディング、チャック、取出し機能を有する認証シート装填台などを具備しても良い。これらは認証シート1を容易にかつ安定に装填する効果がある。記録装置52、再生装置5の他の構成要素としては、例えば論理/制御回路が挙げられる。

[0086]

論理/制御回路は、データ信号の処理および本明細書に記載の光源、光線照射系、光検出器、液晶素子、各種駆動機構等のアクティブ素子を駆動制御する機能を持つ回路である。

本明細書で図示した記録装置52、再生装置5は、本発明の典型的な実施形態に過ぎず、各構成要素の配置が変わったもの、各実施形態を組み合せ、あるいは組み替えたものも同様の効果を奏し、本発明の範疇とする。

[0087]

ここで認証シートとは、認証シートのみであるいは他のものを貼り合せてカード状、シール状、板状としたものも含み(厚さを問わない)、また形状も四角形、円盤(ディスク)状など特に形状を問わず、これらのものを全て含むものとする。

なお、再生光9を目視できる場合には、光検出器7は必ずしも要らない場合もある。また電子的に再生光9の情報を取り扱わない場合、例えば光検出器7として、すりガラスなどを使用することもでき、再生光9をこれに映すことで情報データを得ることが可能である。

[0088]

また、再生装置5は、一体で構成されるだけでなく、光ヘッド6を含む部分と光検出器7を含む部分が分離し二体以上になって構成されても同様の効果を奏する。

また、記録層42に記録した記録マーク45のパターンが同じであっても、記録データ 用回折格子層43に形成するデータを異なるものとすることで、光検出器7には異なる情 報データを再生することが可能である。

[0089]

これにより、目視で確認した記録マーク42のパターンと再生される情報データとの対応を容易に取れなくすることができ、より高セキュリティとすることが可能となる。

また、記録層 4 2 に記録する記録マーク 4 5 のパターンおよび記録データ用回折格子層 4 3 に形成するデータの組合せで多数の情報を記録再生できるという利点がある。

[0090]

<本発明が適用される応用分野の例>

この技術は、認証シール単独で機能するか、あるいは別のものに貼付されて機能し、例えばメモリ(コンテンツ配布メモリ/メディアなど)、鍵(例:家/ルームキー、 PCなどのアクセスキーなど)、保障シール、クレジットカード、パスポート、紙幣、免許証、保険証、会員証、梱包用シール、タグ、入場券、診察券、IDカード、パーソナルキー、ギフト券、ビジネスソフト、証明シール、パッケージシール、プリペイドカード、ゲームカード、トレーディングカード、アミューズメントソフト、記念切手、グリーティングカード、プロモーションツール、偽造防止シール、著作権保護シール、純正品認証シールなどの分野への適用が考えられる。

[0091]

図19に認証シート1を図7に示すように上記応用分野におけるカード、シール (総称してカード11とする)に貼付し、再生装置5に挿入した様子の実施形態を示す。例えば、このカード11が鍵の場合、再生装置5は家/部屋の入口に設置するカードリーダ (あるいはカードリーダの一部)の役割をする他の応用分野においても同様に、認証シート1単独あるいは認証シート1を(総称の意味での)カードに貼付したものと、再生装置5を

以上、本発明によって、容易に認証シート個々に情報データを記録および再生できることが示された。

【図面の簡単な説明】

[0092]

- 【図1】本発明の第1実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図2】本発明の第2実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図3】本発明の第3実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図4】本発明の第4実施形態に係る認証シートの構成を示す側面(断面)図。
- 「図「「大水明の体に皮性形能に反う到証シートの様式を子才側面(斯面)図
- 【図5】本発明の第5実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図6】本発明の第6実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図7】本発明の実施形態に係る認証シートをカードに貼り付けて使用する場合の実施形態を示す図。
- 【図8】本発明の第1実施形態に係る記録装置の構成を示す図。
- 【図9】本発明の第2実施形態に係る記録装置の構成を示す図。
- 【図10】本発明の第1実施形態に係る再生装置の構成を示す図。
- 【図11】本発明の第2実施形態に係る再生装置の構成を示す図。
- 【図12】本発明の実施形態に係る認証シートにおける記録層の具体例を示す説明図
- 【図13】本発明の実施形態に係る再生装置の光検出器における再生状態の一例を示す図。
- 【図14】本発明の実施形態に係る再生装置における再生光学系の構成の一例を示す図。
- 【図15】本発明の実施形態に係る再生装置における再生光学系の構成の他の例を示す図。
- 【図16】本発明の実施形態に係る認証シートにおける記録層の他の具体例を示す説明図。
- 【図17】本発明の実施形態に係る再生装置の光検出器における再生状態の他の例を示す図。
- 【図18】本発明の第7実施形態に係る認証シートの構成を示す側面(断面)図。
- 【図19】本発明の実施形態に係る認証シートを再生装置のカード差込口に挿入した 状態を示す説明図。
- 【図20】従来の認証シートの構成を示す側面(断面)図。
- 【図21】従来の再生装置の構成を示す図。
- 【図22】本発明の第3実施形態に係る記録装置の構成を示す図。

【符号の説明】

[0093]

1、1、…認証シート、2、2、…コア層、3、3、…クラッド層、4、4、…回折格子層、5、5、…再生装置、6、6、…光ヘッド、7、7、2、光検出器、8、8、…入射光、9、9、…再生光、11:カード、42…記録層、43…記録データ用回折格子層、44…ギャップ層、45…記録マーク、52…記録装置、93…光線、94…電子線、102…光線照射系、103…電子線照射系、300…再生光学系、301…レンズ、302…開口マスク、401…ステージ、402…窓部、403…ライト、404…ライト光、405…カメラ、406…フィルタミラー

【図2】

【図3】

【図4】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図13】

【図14】

【図15】

【図16】

【図17】

【図19】

【図21】

【要約】

【課題】 認証シート個々への情報データ記録を容易に可能とする。

【解決手段】 本発明に係る認証シート1は、少なくとも、1つ以上のコア層2と、コア層2の上面あるいは下面あるいはコア層2内に設けられ形状あるいは屈折率分布により形成され再生光を出射する1つ以上の記録データ用回折格子層43と、コア層2あるいは記録データ用回折格子層43にギャップ層44を介して設けられ情報データが光の透過性、不透過性を持つ記録マークの有無として記録される1つ以上の記録層42とから構成される。

【選択図】 図 6

特願2004-121721

出 願 人 履 歴 情 報

識別番号

[000004226]

1. 変更年月日

1999年 7月15日

[変更理由]

住所変更

住 所 氏 名 東京都千代田区大手町二丁目3番1号

名 日本電信電話株式会社

Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP04/018400

International filing date:

09 December 2004 (09.12.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-121721

Filing date: 16 April 2004 (16.04.2004)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.