CS161 Notes - Merge Sort

Yuren Hao

June 27, 2025

1 Merge Sort

Divide-and-conquer sorting algorithm: recursively divide array into halves, sort each half, then merge. **Algorithm:**

1. **Divide:** Split A[1..n] at midpoint $\lfloor n/2 \rfloor$

2. Conquer: Recursively sort both halves

3. Combine: Merge sorted halves

2 Pseudocode

 $\mathbf{MERGE\text{-}SORT}(A,p,r)\text{:}$

- 1. **if** p < r:
 - q = |(p+r)/2|
 - MERGE-SORT(A, p, q)
 - MERGE-SORT(A, q + 1, r)
 - MERGE(A, p, q, r)

 $\mathbf{MERGE}(A, p, q, r)$:

- 1. $n_1 = q p + 1$, $n_2 = r q$
- 2. Create arrays $L[1..n_1 + 1]$, $R[1..n_2 + 1]$
- 3. Copy $A[p..q] \to L[1..n_1], A[q+1..r] \to R[1..n_2]$
- 4. $L[n_1+1] = R[n_2+1] = \infty$
- 5. i = j = 1
- 6. for k = p to r:
 - if $L[i] \le R[j]$: A[k] = L[i++]
 - else: A[k] = R[j++]

3 Complexity Analysis

Time: $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$ (Master Theorem) **Space:** $\Theta(n)$ auxiliary arrays $+ \Theta(\log n)$ recursion stack $= \Theta(n)$

4 Properties

Advantages: Stable, predictable $O(n \log n)$, parallelizable Disadvantages: O(n) extra space, not in-place