

Statistics for Economics

Today

- Review T-test
- Review confidence intervals
- Introduce binomial t-test

What are the three things that economists are looking for in applied analysis?

0.100	1.644854	1.281552
0.050	1.959964	1.644854

2.575829

3.290527

2.326348

3.090232

desired alpha level two-sided test one-sided test

0.010

0.001

(simple) T Tests = z-test

$$z_{\bar{X}} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{N}}$$

#1. We can make a normal with the mean and the standard deviation

$$\bar{x} = \frac{\sum x}{15} = \frac{1238}{15} = 82$$

$$\sigma = \sqrt{\frac{(\sum x - \bar{x})^2}{N - 1}} = \sqrt{\frac{4672}{14}} = 18.2$$

Can use the abstraction to compare to other abstractions:

Compare 2 classes:

Class1: 82 (18)

Class2: 72 (18)

T-test

$$t = \frac{X_1 - X_2}{SE}$$

where

$$SE = \sqrt{\frac{\sigma_1^2}{N1} + \frac{\sigma_2^2}{N2}}$$

Difference between two groups with different sample sizes and variance

 $H_0: \quad \mu_1 = \mu_2$

 $H_1: \mu_1 \neq \mu_2$

• Classroom 1

o Avg: 82

o Stdev: 18

• Size: 15

• Classroom 2

• Avg: 72

o Stdev: 22

• Size: 30

- Classroom 1
 - O Avg: 82
 - Stdev: 18
 - O Size: 15
- Classroom 2
 - O Avg: 72
 - O Stdev: 22
 - o Size: 24

$$ttest = \frac{\mu_1 - \mu_2}{\sqrt{\frac{stdev_1^2}{n_1} + \frac{stdev_2^2}{n_2}}}$$

 $t - stat = \frac{82 - 72}{\sqrt{\frac{18^2}{15} + \frac{22^2}{24}}} = \frac{10}{6.46} = 1.54$

Linear Regression

$$y_i = a + b * x_i + u_i$$

$$\hat{y}_i = \hat{a} + \hat{b} * x_i$$

$$\hat{u}_i = y_i - \hat{y}_i$$

$$\hat{y_i} = \hat{a} + \hat{b} * x_i$$

$$\hat{b} = \frac{\text{cov}(x,y)}{\text{var}(x)} = \frac{\sum (x_i - \bar{x}) \sum (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\hat{a} = \bar{y} - \hat{b} * \bar{x}$$

Walk through example

X	У	demean_x	demean_x_sq	demean_y	demean_y_sq	demean_x*demean_y	
3	6	-2.4	5.76	1.6	2.56	-3.84	
5	9	-0.4	0.16	0.16 4.6 21.16		-1.84	
2	2	-3.4	11.56	-2.4	5.76	8.16]
8	1	2.6	6.76	-3.4	11.56	-8.84	
9	4	3.6	12.96	-0.4	0.16	-1.44	
	AV.	Å.	37.2		41.2	-7.8	SL
							+

yhat	y-yhat
b0 + b1*x	error
4.90	1.10
4.48	4.52
5.11	-3.11
3.85	-2.85
3.65	0.35

mean_y	4.4
mean_x	5.4

numerator	-1.95	-1.95	-0.199	correlation	
denom	sqrt(37.2/4 * 41.2/4)	9.79		111	

-1.95

sum/(n-1)

slope	-0.210		
intercept	5.53		

Confidence Interval

 H_0 : b_1 = 0 (we don't believe there is a slope (relationship))

H_A: b₁not equal o (we believe there is a slope (relationship))

$$t = \frac{b_1 - 0}{SE_{b_1}} = \frac{b_1}{SE_{b_1}}$$

Confidence interval is $b1 + /- CV^*$ SE, where CV is critical value. This is easier to show than anything else (see notebook).

$$(\bar{x_1} - \bar{x_2}) = SE * t$$

 $(\bar{x_1} - \bar{x_2}) \pm SE * t = 0$

 $t = \frac{\bar{x_1} - \bar{x_2}}{SE}$

Dep. Variabl	.e:			У	R-sq	uared:		0.269
Model:				OLS	Adj.	R-squared:		0.254
Method:		L	east Squ	ares	F-st	atistic:		17.68
Date:		Tue,	04 Apr	2023	Prob	(F-statisti	c):	0.000113
Time:			12:5	59:08	Log-	Likelihood:		-294.80
No. Observat	ions:			50	AIC:			593.6
Df Residuals	s :			48	BIC:			597.4
Df Model:				1				
Covariance T	Type:		nonro	bust				
========							========	
	coei	E :	std err		t	P> t	[0.025	0.975]
Intercept	15.4229	 9	12.700		1.214	0.231	-10.113	40.959
x	_5.7164	1	1.360		-4.204	0.000	-8.450	-2.983
Omnibus:			 :	.825	Durb	======== in-Watson:		1.558
Prob(Omnibus	5):		(0.401	Jarq	ue-Bera (JB)	:	1.428
Skew:			-(.414	Prob	(JB):		0.490
Kurtosis:			2	2.975	Cond	. No.		9.34
=========	========	=====	======	=====	======	=========	========	========

SE

1.360

0.000

b1-1.96*b1

b1+1.96*b1

Cov(x, y)

Var(x)

Binary Standard Error

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

When an estimate is of a binomial (1,0) there are some simplifications in the variance.

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

See here if you are interested in the derivation https://en.wikipedia.org/wiki/Binomial_proportio n confidence interval

$$\hat{p}\pm z\sqrt{rac{\hat{p}\left(1-\hat{p}
ight)}{n}}$$

A newspaper says a randomized national survey found that 40% of the population has covid.

What are the confident intervals with different n?
$$n = 10, \qquad \sqrt{\frac{0.4(1-0.4)}{10}} = 0.15, CI = [10\%, 70\%]$$

$$n = 100, \qquad \sqrt{\frac{0.4(1-0.4)}{100}} = 0.05, CI = [30\%, 50\%]$$

$$n = 1000, \qquad \sqrt{\frac{0.4(1-0.4)}{1000}} = 0.015, CI = [37\%, 43\%]$$

n = 1000, = 0.015, CI = [39%, 41%]n = 10,000,