Anneaux et corps

Exercice 1 ★★

Entiers de Gauss

On note $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$

- **1.** Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.
- **2.** Déterminer les éléments inversibles de $\mathbb{Z}[i]$.

Exercice 2 ★★

Éléments nilpotents

Soit $(A, +, \times)$ un anneau. Un élément a de A est dit nilpotent s'il existe $n \in \mathbb{N}$ tel que $a^n = 0_A$.

- **1.** Soit $(x, y) \in A^2$. Montrer que si $x \times y$ est nilpotent, alors $y \times x$ est nilpotent.
- **2.** Soit $(x, y) \in A^2$. Montrer que si x et y commutent et que l'un des deux est nilpotent, alors $x \times y$ est nilpotent.
- 3. Soit $(x, y) \in A^2$. Montrer que si x et y sont nilpotents et commutent, alors x + y est nilpotent.
- **4.** Soit $x \in A$. Montrer que si x est nilpotent, alors $1_A x$ est inversible et calculer son inverse.

Exercice 3 ★

Soit A un anneau tel que $\forall x \in A$, $x^2 = x$ (on dit que les éléments de A sont idempotents).

- 1. Montrer que $\forall x \in A, 2x = 0$.
- **2.** Montrer que A est commutatif.

Exercice 4 ★★

Endomorphismes de corps de $\mathbb R$

Soit f un endomorphisme de corps de \mathbb{R} .

- **1.** Montrer que $f_{|\mathbb{Q}} = \mathrm{Id}_{\mathbb{Q}}$.
- **2.** Montrer que f est croissant.
- **3.** Montrer que $f = Id_{\mathbb{R}}$.

Exercice 5 ★★

Différence symétrique

Soit E un ensemble non vide. Pour A, B $\in \mathcal{P}(E)$, on définit la différence de A et B par $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

- **1.** Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif. Préciser les éléments neutres pour Δ et \cap .
- **2.** Quels sont les éléments de $\mathcal{P}(E)$ inversibles pour \cap ?
- **3.** L'anneau $(\mathcal{P}(E), \Delta, \cap)$ est-il intègre?

Exercice 6 ★

Corps quadratique

On note $\mathbb{Q}[\sqrt{3}]$ l'ensemble des réels de la forme $a + b\sqrt{3}$ avec $(a, b) \in \mathbb{Q}^2$. Montrer que $\mathbb{Q}[\sqrt{3}]$ est un corps.

Exercice 7 ★

Soit A un anneau intègre commutatif fini.

- **1.** Soit a un élément non nul de A. Montrer que l'application ϕ : $\begin{cases} A & \longrightarrow & A \\ x & \longmapsto & ax \end{cases}$ est bijective.
- 2. En déduire que A est un corps.

Exercice 8 ★

On note $\mathbb{Z}[\sqrt{3}]$ l'ensemble des réels de la forme $a + b\sqrt{3}$ avec $a, b \in \mathbb{Z}$.

- **1.** Montrer que $\mathbb{Z}[\sqrt{3}]$ est un sous-anneau de $(\mathbb{R}, +, \times)$.
- **2. a.** Montrer que $\sqrt{3}$ est irrationnel. On pourra raisonner par l'absurde en écrivant $\sqrt{3}$ sous la forme d'une fraction irréductible $\frac{p}{q}$ i.e. avec $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ tel que $p \wedge q = 1$.
 - **b.** Montrer que f: $\begin{cases} \mathbb{Z}^2 & \longrightarrow \mathbb{Z}[\sqrt{3}] \\ (a,b) & \longmapsto a+b\sqrt{3} \end{cases}$ est un isomorphisme du groupe $(\mathbb{Z}^2,+) \text{ sur le groupe } (\mathbb{Z}[\sqrt{3}],+).$
- **3.** Pour tout $x \in \mathbb{Z}[\sqrt{3}]$, il existe donc un unique couple $(a,b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{3}$.
 - **a.** Pour tout réel $x = a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ avec $(a,b) \in \mathbb{Z}^2$, on appelle *conjugué* de x, noté \tilde{x} , le réel $a b\sqrt{3}$.

 Montrer que $g: \left\{ \begin{array}{ccc} \mathbb{Z}[\sqrt{3}] & \longrightarrow & \mathbb{Z}[\sqrt{3}] \\ x & \longmapsto & \tilde{x} \end{array} \right.$ est un automorphisme d'anneau.
 - **b.** Pour tout réel $x = a + b\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ avec $(a,b) \in \mathbb{Z}^2$, on pose $N(x) = x\tilde{x}$. Vérifier que pour tout $(x,y) \in \left(\mathbb{Z}[\sqrt{3}]\right)^2$, N(xy) = N(x)N(y).
 - **c.** Montrer que $x \in \mathbb{Z}[\sqrt{3}]$ est inversible si et seulement si N(x) = 1 ou N(x) = -1. Que vaut alors son inverse? On distinguera les cas N(x) = 1 et N(x) = -1.

Idéaux

Exercice 9 ★★★

Radical d'un idéal

Soit A un anneau commutatif. Pour tout idéal I de A, on note

$$R(I) = \{x \in A, \exists n \in \mathbb{N}, x^n \in I\}$$

L'ensemble R(I) est appelé radical de I.

- 1. Soit I un idéal de A. Montrer que R(I) est un idéal de A contenant I.
- **2.** Soit I un idéal de A. Montrer que R(R(I)) = R(I).
- 3. Soient I et J deux idéaux de A. Montrer que $R(I \cap J) = R(I) \cap R(J)$.

Exercice 10 ★★

Q est un anneau principal

Montrer que $(\mathbb{Q}, +, \times = \text{est un anneau principal, c'est-à-dire que tous ses idéaux sont principaux i.e. de la forme <math>a\mathbb{Q}$ avec $a \in \mathbb{Q}$.

Exercice 11 ★★

D est un anneau principal

Montrer que $(\mathbb{D}, +, \times)$ est un anneau principal, c'est-à-dire que tous ses idéaux sont principaux i.e. de la forme $a\mathbb{D}$ avec $a\in\mathbb{D}$.

Exercice 12 ★★

CCINP (ou CCP) MP 2015

Soit $(A, +, \times)$ un anneau commutatif.

- 1. Rappeler la définition d'un anneau et d'un idéal.
- **2.** Soit I un idéal de A. Montrer que si $1_A \in I$, alors I = A.
- **3.** On pose $I_a = \{ax, x \in A\}$. Montrer que I_a est bien un idéal de A.
- **4.** On suppose que A n'est pas l'anneau nul. Montrer que A est un corps si et seulement si les seuls idéaux de A sont $\{0_A\}$ et A.

Arithmétique de \mathbb{Z}

Exercice 13 ★★★

Soit $(a, b) \in \mathbb{Z} \times \mathbb{N}^*$.

- **1.** Montrer que le quotient de la division euclidienne de a par b est $\left\lfloor \frac{a}{b} \right\rfloor$. A partir de maintenant, on suppose $a \wedge b = 1$.
- 2. Montrer que l'application $\begin{cases} \mathbb{Z}/b\mathbb{Z} & \longrightarrow & \mathbb{Z}/b\mathbb{Z} \\ \overline{k} & \longmapsto & \overline{ak} \end{cases}$ est bijective.
- 3. En déduire que $\sum_{k=1}^{b-1} \left\lfloor \frac{ka}{b} \right\rfloor = \frac{(a-1)(b-1)}{2}.$

Exercice 14 ★★★★

Soit a et N des entiers naturels non nuls. On définit u_n par $u_0 = 1$ et $u_{n+1} = a^{u_n}$ pour $n \in \mathbb{N}$. Montrer que la suite de terme général $u_n \mod N$ est stationnaire (on note $a \mod b$ le reste de la division euclidienne de a par b).

Exercice 15 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

- **1.** Résoudre $x^2 = x$ dans $\mathbb{Z}/p\mathbb{Z}$, p premier.
- **2.** Résoudre $x^2 = x$ dans $\mathbb{Z}/34\mathbb{Z}$.

Exercice 16 ★★

Nombres de Mersenne

Pour $n \in \mathbb{N}^*$, on appelle $n^{\text{ème}}$ nombre de Mersenne l'entier $M_n = 2^n - 1$.

- 1. a. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{N}^*$ un diviseur positif de n. Montrer que $2^a 1$ divise M_n .
 - **b.** En déduire que si M_n est un nombre premier, alors n est un nombre premier.
- **2.** Soient p et q des nombres premiers avec p impair. On suppose que q divise M_p .
 - **a.** Montrer que q est impair. En déduire que $2^{q-1} \equiv 1[q]$.
 - **b.** En considérant l'ordre de $\overline{2}$ dans $(\mathbb{Z}/q\mathbb{Z})^*$, montrer que $q \equiv 1[p]$ puis que $q \equiv 1[2p]$.
- 3. Soient p un nombre premier impair et $n \in \mathbb{N}^*$ divisant M_p . En utilisant la décomposition en facteurs premiers de n et la question précédente, montrer que $n \equiv 1[2p]$.

Exercice 17 ***

Navale MP 2017

On note φ l'indicatrice d'Euler. Soit $n \in \mathbb{N}^*$.

- **1.** Soit *d* un diviseur positif de *n*. Montrer qu'il y a $\varphi(d)$ éléments du groupe $(\mathbb{Z}/n\mathbb{Z}, +)$ d'ordre *d*.
- **2.** Montrer que $n = \sum_{d|n} \varphi(d)$.
- **3.** En déduire un programme Python permettant de calculer $\varphi(n)$.

Exercice 18 ***

Magistère MP 2018

1. Soit n_1, \dots, n_k des entiers deux à deux distincts supérieurs ou égaux à 2. Montrer que

$$\prod_{i=1}^{k} \left(1 - \frac{1}{n_i} \right) \ge \frac{1}{k+1}$$

2. On note φ l'indicatrice d'Euler. Montrer que

$$\forall n \in \mathbb{N}^*, \ \varphi(n) \ge \frac{n \ln(2)}{\ln(n) + \ln(2)}$$

Exercice 19 ★★★

Indicatrice d'Euler et fonction de Möbius

On note μ la fonction de Möbius définie sur \mathbb{N}^* par

 $\forall n \in \mathbb{N}^*, \ \mu(n) = \begin{cases} 0 & \text{si } n \text{ est divisible par le carr\'e d'un nombre premier} \\ (-1)^k & \text{si } n \text{ est le produit de } k \text{ nombres premiers } distincts \end{cases}$

Montrer que pour tout $n \in \mathbb{N}^*$,

$$\varphi(n) = \sum_{d \mid n} \frac{n}{d} \mu(d)$$

où la somme porte sur les diviseurs positifs de n.

Arithmétique de $\mathbb{K}[X]$

Exercice 20 ★★

Pour quelles valeurs de $m \in \mathbb{N}$ le polynôme $P_m = (X+1)^m - X^m - 1$ est il divisible par $Q = X^2 + X + 1$?

Exercice 21 ★★

- 1. Le polynôme $(X + 1)^{2009} + X^{2009} + 1$ est-il divisible par le polynôme $X^2 + X + 1$?
- **2.** Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $X^2 + X + 1$ divise-t-il le polynôme $(X+1)^n + X^n + 1$?

Exercice 22 ★

Banque CCP

On considère les polynômes $P = 3X^4 - 9X^3 + 7X^2 - 3X + 2$ et $Q = X^4 - 3X^3 + 3X^2 - 3X + 2$.

- **1.** Décomposez P et Q en facteurs irréductibles sur $\mathbb{R}[X]$, puis sur $\mathbb{C}[X]$ (on pourra calculer les valeurs de P et Q en 1 et 2).
- 2. Déterminer le PPCM et le PGCD des polynômes P et Q.

Exercice 23 ★★

Banque CCP

Soient $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$. Décomposez en produit de polynômes irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$ le polynôme :

$$P = X^{2n} - 2X^n \cos(n\theta) + 1$$

Exercice 24 **

Soient $n, p \in \mathbb{N}^*$. Déterminer le pgcd de $X^n - 1$ et $X^p - 1$.

Exercice 25 ★★★

Soit $(P, Q) \in \mathbb{Z}[X]^2$ tel que $P \wedge Q = 1$. Pour $n \in \mathbb{N}$, on pose $u_n = P(n) \wedge Q(n)$. Montrer que la suite (u_n) est périodique.

Exercice 26 ★★

Soit $P \in \mathbb{K}[X]$ un polynôme scindé. Exprimer $P \wedge P'$ à l'aide des racines de P et de leurs multiplicités.