

SOURIS PHYSIOLOGIQUE **SEMAINE D'INNOVATION**

Mathieu Choplain - Brice Noumi - Emma Robert

SOMMAIRE

- INTRODUCTION
- 02 ÉTAT DE L'ART
- **03** DESCRIPTION DU SYSTÈME
- ÉVALUATION
- DISCUSSION
- CONCLUSION

INTRODUCTION

- Problématique: 40 000 personnes en France touchées chaque année par des TMS*
- Facteur aggravant : Utilisation prolongée de la souris informatique
- Conséquences : Douleurs, incapacitations, arrêts de travail
- Objectif : Présenter une solution alternative pour réduire ces effets

*TMS = Troubles musculo-squelettiques

ÉTAT DE L'ART

- Définition des TMS
- Solutions existantes

Signaux physiques et physiologiques pour les TMS

HYPOTHÈSES DE RECHERCHE

- Hypothèse 1

Un système composé d'un accéléromètre, d'un capteur de force et d'un EMG a une précision suffisante pour permettre de contrôler le curseur d'un ordinateur.

Hypothèse 2

Une souris basée sur des capteurs physiques et physiologiques permet de prévenir ou de soulager les TMS.

DESCRIPTION DU SYSTÈME - MATÉRIEL

Capteurs Choisis

Accéléromètre triaxial

Capteur de force

Electromyogramme

DESCRIPTION DU SYSTÈME - MATÉRIEL

SUPPORT

ASSEMBLAGE

DESCRIPTION DU SYSTÈME – ARCHITECTURE

ACQUISITION DES DONNÉES

- Temps réel
- Environnement Python
- Un seul graphique pour représenter les signaux

DESCRIPTION DU SYSTÈME - ARCHITECTURE

TRAITEMENT DU SIGNAL

DESCRIPTION DU SYSTÈME – ARCHITECTURE

INTERFACE GRAPHIQUE PLANIFIÉE

Un panneau de contrôle

Une zone principale

Clic

Log

Une zone de log

ÉVALUATION

ÉVALUATION DES HR

- Notre système nous permet t'il de contrôler le curseur?
- Est ce que l'utilisation du système permet la réduction des symptômes des TMS?

ÉVALUATION À LONG TERME

- Expérimentation sur 12 mois
- Plus grand nombre de participants
- Résultats attendus

DISCUSSION

ASPECT TECHNIQUE

Contrôle du curseur

Interférences

IMPACT SUR LES TMS

Réduction des symptômes

Prévention des symptômes

Pas d'impact positif

LIMITES DU SYSTÈME

Stabilité accéléromètre

Mesure d'accélération

Seuil de détection universel

CONCLUSION

RÉSULTATS ATTENDUS

Précision

Fluidité de mouvement

Réduction des TMS

RÉSULTATS ACTUELS

Mouvements saccadés

Reconnaissance de tous les signaux

Capteur de pression et EMG fonctionnels

TRAVAUX FUTURS

Centrale inertielle

Machine learning et reconnaissance de mouvement

Suivi à long terme

MERCI POUR VOTRE ÉCOUTE!

Avez vous des questions?

Mathieu Choplain - Brice Noumi - Emma Robert

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**