DEEP LEARNING FOR ACOUSTIC SIGNAL PROCESSING:

Speaker Recognition through One-Shot Learning and Siamese Neural Networks

- Jaime Pérez -

TABLE OF CONTENTS

Deep Learning in Acoustics

Map of Acoustics

Source: Agustín de los Riscos Mayorga

Deep Learning Applications for Acoustics "

Motivation

- What is speaker recognition? Identification of a person and distinguishes from others, based on its voice characteristics
- Speaker Verification (1:1) vs.
 Speaker Identification (1:N)
- Few-shot learning & deep learning?
 Siamese Neural Networks

Use Cases

- Simplify translating speech tasks
- Improved and personalized services (Alexa, Google Home, Customer service bots, etc.)
- Complement biometric verification methods in security systems
- Criminal investigations

☐ Dataset: LibriSpeech

- ☐ Dataset: LibriSpeech
- Siamese Neural Network

- Dataset: LibriSpeech
- Siamese Neural Network
- Validation: n-shot k-way classification task

- ☐ Dataset: LibriSpeech
- Siamese Neural Network
- □ Validation: n-shot k-way classification task
- Data Representations:
 - ☐ Raw Audio

- ☐ Dataset: LibriSpeech
- Siamese Neural Network
- Validation: n-shot k-way classification task
- Data Representations:
 - Raw Audio
 - MFCCs

- ☐ Dataset: LibriSpeech
- ☐ Siamese Neural Network
- ☐ Validation: n-shot k-way classification task
- Data Representations:
 - Raw Audio
 - □ MFCCs
 - VGGish Embeddings

Best Results

Neural Network Structure:

- ☐ Input: MFCC
- ☐ 3 x CNN Blocks
 - Filters: 128 | 256 | 384
 - ☐ Stride: 3 x 3
 - Batch Normalization
 - ☐ Dropout: 0.2
 - Max Pooling
 - ☐ Activation Function: ReLU
- Global Max Pooling
- Fully Connected Layer
 - Units: 1024
 - ☐ Dropout: 0.2
- Euclidean Distance

Training Parameters:

- Optimizer: RAdam
- ☐ Loss Function:
 - Binary Cross-Entropy

☐ Batch Size: 64

Training Phase

Validation Phase

 \blacksquare 1-shot 4-way classification, evaluated every 25 batches over 100 tasks \Box

Accuracy

Testing Phase

1-shot k-way classification, evaluated over 100 tasks per k

Accuracy

Embedding Space Visualization

- ☐ Vector embeddings obtained from 2 sets of 10 random selected speakers (10 random audios fragments each one)
- ☐ Dimensionality reduction through t-SNE algorithm

Result Discussion

- The three types of data representations have obtained satisfactory results
 - ☐ Small difference in performances, but huge in dimensionality
 - Raw audio is a very inefficient representation for transmitting information or extract patterns
- Best results obtained with MFCCs
 - Promising results for the join of Deep Learning and specific domain knowledge
- Siamese Network architecture has perform the task quite successfully
 - Very time and computational consuming approach
 - ☐ Number of possible pair combinations grows exponentially

Future Directions

- Intensive search of hyperparameters (length audio fragments, subsampling rates, neural structures, extended training times, different distance metrics, etc.)
- ☐ Use of CNN and LSTM neurons
- \square Implement validation tasks n-shot k-way, for n > 1 $^{"}$
- Better baseline model (e.g. k-NN)
- Compare performance of test with new samples against classes seen during training phase

THANKS!

jaime.perez.sanchez@gmail.com

linkedin.com/in/jaime-perez-sanchez

github.com/jaimeperezsanchez