

Electronics Systems (938II)

Lecture 3.6

Semiconductor Memories – DRAM, SDRAM, and DDR

RAM – Reminder

- RAM classification
 - Static RAM (SRAM)
 - The memory content is hold over the time, as long as the memory is powered
 - Dynamic RAM (DRAM)
 - Even if the memory is powered, the memory content needs to be refreshed over the time, otherwise it is lost

RAM – Reminder

- RAM classification
 - Static RAM (SRAM)
 - The memory content is hold over the time, as long as the memory is powered
 - Dynamic RAM (DRAM)
 - Even if the memory is powered, the memory content needs to be refreshed over the time, otherwise it is lost

Capacitor

$$c \stackrel{\perp}{=}$$

- Capacitor
 - Memory bit = Voltage on capacitor (V_C)

- Capacitor
 - Memory bit = Voltage on capacitor (V_C)

$$c = V_{C}$$

$$V_{C} = \begin{cases} V_{CC} & (logic 1) \\ 0 & (logic 0) \end{cases}$$

- Architecture
 - Capacitor
 - 1x access transistor
 - WL_i = Word Line
 - BL_i = Bit Line

Working principle

- Working principle
 - Write
 - $WL_i = 1$
 - $BL_i = D$
 - 0 V (logic 0)
 - − *V_{CC}* (logic 1)

- Working principle
 - Write
 - $WL_i = 1$
 - $\blacksquare BL_i = D$
 - 0 V (logic 0)
 - $-V_{CC}$ (logic 1)

- Working principle
 - After write
 - $WL_i = 0$
 - Assume 1 (V_{CC}) written in memory cell / on capacitor

- Working principle
 - After write
 - $WL_i = 0$
 - Assume 1 (V_{CC}) written in memory cell / on capacitor
 - Access transistor ≈ resistor (R)
 - High impedance when $WL_i = 0$ (transistor OFF)

 WL_i

DRAM – Memory cell

- Working principle
 - After write
 - $WL_i = 0$
 - Assume 1 (V_{CC}) written in memory cell / on capacitor
 - Access transistor ≈ resistor (R)
 - High impedance when $WL_i = 0$ (transistor OFF)

So We can assume R is very high

- Working principle
 - After write
 - $WL_i = 0$
 - Assume 1 (V_{CC}) written in memory cell / on capacitor
 - Access transistor ≈ resistor (R)
 - High impedance when $WL_i = 0$ (transistor OFF)
 - Leakage (current, i) through capacitor dielectric
 - Not ideal!

- Working principle
 - After write
 - $WL_i = 0$
 - Assume 1 (V_{CC}) written in memory cell / on capacitor
 - Access transistor ≈ resistor (R)
 - High impedance when $WL_i = 0$ (transistor OFF)
 - Leakage (current, i) through capacitor dielectric
 - Not ideal!
 - C discharges!!!

- Working principle
 - After write
 - C discharges!!!

- Working principle
 - After write
 - C discharges!!!
 - Proportional to $R \cdot C = \tau$ (time constant)

- Working principle
 - After write
 - C discharges!!!
 - Proportional to $R \cdot C = \tau$ (time constant)
 - $-\tau = 10 \div 100 \, ms$

- Working principle
 - After write
 - C discharges!!!
 - Proportional to $R \cdot C = \tau$ (time constant)
 - $\tau = 10 \div 100 \, ms$
 - Need of refresh

- Working principle
 - After write
 - C discharges!!!
 - Proportional to $R \cdot C = \tau$ (time constant)
 - $\tau = 10 \div 100 \, ms$
 - Need of refresh

- Working principle
 - After write
 - C discharges!!!
 - Proportional to $R \cdot C = \tau$ (time constant)
 - $\tau = 10 \div 100 \, ms$
 - Need of refresh

- Working principle
 - Read

- Working principle
 - Read
 - Step 1

$$-WL_i=0$$

$$-BL_j = \frac{V_{CC}}{2} = V_R$$
 (reading voltage)

- Working principle
 - Read
 - Step 1

$$-WL_i=0$$

$$-BL_j = \frac{V_{CC}}{2} = V_R$$

Step 2

$$-WL_i=1$$

- Working principle
 - Read
 - Step 1

$$-WL_i=0$$

$$-BL_j = \frac{V_{CC}}{2} = V_R$$

- Step 2
 - $-WL_i=1$
 - $-BL_{j}pprox C_{B_{L}}$ (capacitor)
 - $-C_{B_I}\gg C$
 - $-V_{B_L}$ = voltage on $C_{B_L} = V_{C_L}$

- Working principle
 - Read
 - Step 1

$$-WL_i=0$$

$$-BL_j = \frac{V_{CC}}{2} = V_R$$

- Step 2
 - $-WL_i=1$
 - $-BL_{j}pprox C_{B_{L}}$ (capacitor)
 - $-C_{B_I}\gg C$
 - $-V_{B_L}$ = voltage on C_{B_L}

- Working principle
 - Read
 - Step 1

$$-WL_i=0$$

$$-BL_j = \frac{V_{CC}}{2} = V_R$$

- Step 2
 - $-WL_i=1$
 - $-BL_i \approx C_{B_L}$ (capacitor)
 - $-C_{B_I}\gg C$
 - $-V_{B_L}$ = voltage on C_{B_L}

- Charge redistribution between C_{B_L} and C!

- Working principle
 - Read
 - Charge redistribution!

$$V_{B_L}$$
 C_{B_L}
 C_{B_L}
 C_{B_L}
 C_{B_L}

- Read destroys data!
- Need of re-write!

- Working principle
 - Read
 - Charge redistribution!

$$V_{B_L}$$
 C_{B_L} C_{B_L} C_{B_L}

Read destroys data!

- Working principle
 - Read
 - Charge redistribution!

$$V_{B_L}$$
 C_{B_L} C_{B_L} C_{B_L}

- Read destroys data!
- Need of re-write!

Memory bit = 1 ($V_C = V_{CC}$)

- Working principle
 - Read
 - How to re-write?

$$-$$
 If $V_{B_L} > V_R \rightarrow 1$

$$- \text{ If } V_{B_L} < V_R \to 0$$

Memory bit = 1 ($V_C = V_{CC}$)

- Working principle
 - Read
 - How to re-write?

- If
$$V_{B_L} > V_R \rightarrow 1$$

- If
$$V_{B_L} < V_R \rightarrow 0$$

- $\begin{array}{c|c} \bullet & |V_{B_L} V_R| & \text{Amplify} & \text{The lands of the lands$
 - Must be amplified!

Memory bit = 1 ($V_C = V_{CC}$)

- Working principle
 - Read
 - How to re-write?

- If
$$V_{B_L} > V_R \rightarrow 1$$

$$- \text{ If } V_{B_L} < V_R \rightarrow 0$$

- $|V_{B_L} V_R|$
 - Very small value
 - Must be amplified!
- Sense Amplifier (SA)

DRAM – Architecture and working principle

- Draft
 - Sense Amplifier (SA)

DRAM – Architecture and working principle

- Draft
 - Sense Amplifier (SA)
 - How?
 - Bistable !
 - We have already seen in SRAM

DRAM – Architecture and working principle

- Draft
 - Sense Amplifier (SA)
 - How?
 - Bistable !
 - We have already seen in SRAM

You will have a strong loge of even with a mot strong 1. A strong loge of regionsales a strong logic 1.

- Draft
 - Sense Amplifier (SA)
 - Write (W = 1)
 - Bistable is bypassed (OFF)
 - Write value on Bit Line

When we want to wrote, we need to force obsconnection to achieve withy.

write value

- Draft
 - Sense Amplifier (SA)
 - Write (W = 1)
 - Bistable is bypassed (OFF)
 - Write value on Bit Line
 - Read (W = 0)
 - Bistable is ON
 - Bistable regenerates memory bit (V_C)

to here the bistable is free to evolve and regeverable

Draft

- Bit Lines are "big" capacitors (C_{B_L})
- In addition
 - SA block merged with the column-decoder for resource saving and architecture simplification

• Draft

• Draft

• Draft

- Draft
 - Other problem(s)
 - When reading (or writing)
 - $-WL_i$ moves from 0 to 1

- Draft
 - Other problem(s)
 - When reading (or writing)
 - $-WL_i$ moves from 0 to 1

- Draft
 - Other problem(s)
 - When reading (or writing)
 - $-WL_i$ moves from 0 to 1
 - Capacitive coupling between WL_i and BL_i

This behaves like copacitive couply.

Nove couply-

- Draft
 - Other problem(s)
 - When reading (or writing)
 - $-WL_i$ moves from 0 to 1
 - $-\,$ Capacitive coupling between WL_i and BL_j
 - To counteract this, the capacitive load seen by the SA must be balanced!

- Draft
 - Balancing capacitive load seen by SA
 - Same distance ℓ in opposite directions
 - Same WL_i
 - Dummy memory cell
 - Opposite half
 - Preloaded at V_R

- Draft
 - Including dummy cells

- Draft
 - Including dummy cells
 - Example
 - Balancing lower half

- Final
 - To complete the architecture, they should be integrated
 - Address
 - Write command/signal
 - Input data (D) and output data (Q) ports

- Final
 - To complete the architecture, they should be integrated
 - Address
 - Write command/signal
 - Input data (D) and output data (Q) ports
 - To reduce costs/save resources
 - Single I/O port
 - Single address port shared by row and column decoders
 - Buffer to store row/column address
 - RAB = Row Address Buffer
- ← triggered by signal RAS = Row Address Strobe
- CAB = Column Address Buffer
- ← triggered by signal CAS = Column Address Strobe

- Final
 - A = address port
 - Q = output (data) port
 - D = input (data) port
 - W = write command

- Memory bit stored inside the cells lasts at most $10-100\ ms$
 - REFRESH operation is required

We need to prechange Blames 16 Vcc

- Only row must be addressed to refresh the memory
 - All cells in the same row (Word Line) can be refreshed at the same time
- T_{REF} = maximum time before refresh
- Different approaches
 - Wait for T_{REF} and then refresh all memory rows M_{m} sequese
 - Wait for $\frac{T_{REF}}{row \ number}$ and refresh one row at a time

• Memory bit stored inside the cells lasts at most $10 - 100 \ ms$

REFRESH operation is required

- DRAM "knows" where (which row) to perform the refresh
 - Counter
- Processor/CPU "knows" when to perform the refresh
 - Timer

SDRAM

- Modern DRAMs are synchronous
 - Control and data operations referenced to a common clock signal
 - SDRAM = Synchronous DRAM
 - - Initial latency followed by a flood of data

DDR

- DDR = Double Data Rate
 - SDRAM in which control and data operations are performed on both edges of clock signal Lo Both edges used to perform operation.
 - Rising edge
 - Falling edge
 - Data transfer rate is doubled!
 - From here the name
 - Standardized throughout the years

DDR

Latest

DDR

• Standards/generations

Generation	SDRAM	DDR	DDR2	DDR3	DDR4	DDR5
Year	1988	2000	2003	2007	2014	2021
Transfer rate (MT/s)	100 – 166	266 – 400	533 – 800	1066 – 1600	2133 – 5100	3200 – 6400
Data rate (GB/s)	0.8 – 1.3	2.1 – 2.3	4.2 – 4.6	8.5 – 14.9	17 – 25.6	38.4 – 51.2
Voltage (V_{CC})	3.3	2.5 - 2.6	1.8	1.35 – 1.5	1.2	1.1
meyn Musters						lower rai

Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)