Roll no: 20k-0409

Name: MUKAND KRISHNA

EXAMPLE

A	В	С	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

CIRCUIT# 1

А	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

CIRCUIT# 2

А	В	Z
^	0	-
0	0	1
0	1	0
1	0	0
1	1	0

CIRCUIT#3

Boolean Expression: Z= A.(B+C)

BOOLEAN EXPRESSION: Z = A+(B.C)

EXPRESSION: Z = (A.B) + (A.C)

CIRCUIT#6

CIRCUIT# 7

EXPRESSION: Z = (A.B).B`

EXPRESSION: Z = (A.B) + (C.D)

CIRCUIT# 8 ---->>>

EXPRESSION: Z = (A.B) + (A.B)

LOGIC CIRCUIT DIAGRAM

EXPRESSION: $Z = (A^{\sim}. B) + (B+C)^{\sim}$

Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

COMMUTATIVE LAW

ADDITION: a + b = b+a

Α	В	A+B	А	В	В+А
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	1

MULTIPLICATION: ab = b.a

Α	В	A.B	Α	В	A.B
0	0	0	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Associative law

ADDITION: a + (b + c) = (a + b) + c

В	C	(a+b)+c	A	В	C	a+(b+c)
0	0	0	0	0	0	0
0	1	1	0	0	1	1
1	0	1	0	1	0	1
1	1	1	0	1	1	1
0	0	1	1	0	0	1
0	1	1	1	0	1	1
1	0	1	1	1	0	1
1	1	1	1	1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0	0 0 0 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1	0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1	0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1	0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0

MULTIPLICATION: a(bc) = (a.b)c

A	В	С	(a.b).c	A	В	C	(a.b)c
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	0
1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	0
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1

Distributive Law

Addition: A+(B+C) = (A+B)+(A+C)

A	В	С	A+(B+C)	A	В	С	(A+B)+(A+C)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1
0	1	1	1	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

A	В	С	A+(B.C)	A	В	С	(A+B).(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	0	1	1	1
1	0	0	1	1	0	0	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Lab# 3 tasks

1. Design 3 input XOR and XNOR gate. Truth table, draw the circuit diagram.

Truth Table

A B C X 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1				
0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0	Α	В	С	X
0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0	0	0	0	0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0	0	0	1	1
1 0 0 1 1 0 1 0 1 1 0 0	0	1	0	1
1 0 1 0 1 1 0 0	0	1	1	0
1 1 0 0	1	0	0	1
	1	0	1	0
1 1 1	1	1	0	0
	1	1	1	1

Circuit diagram of XOR gate using and, or gate

Boolean Expression: X = ABC + A`B`C + AB`C` + A`BC`

Truth Table

Circuit diagram of XNOR gate

using and, or gate

Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Boolean Expression: X = (ABC + A`B`C + AB`C` + A`BC`)~

2. Implement the following logic circuit on logic trainer, and write Boolean Expression.

Boolean Expression: $X = (A.B)+(C.D)^{\sim}+B^{\sim}).C^{\sim}$

3. Write the Boolean expression and draw Truth tables

Truth Table

Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Circuit Diagram

Boolean Expression: ((A~.B)~+C)~

4. Draw a circuit diagram corresponding to the following Boolean expression and implement it.

Circuit # 1: Boolean Expression: (A + B) . (B + C)

Truth table

Α	В	С	Χ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Circuit Diagram

Circuit # 2: Boolean Expression: (AB + C)D

Truth table

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Circuit Diagram

Circuit # 3: Boolean Expression: ((A + B^C)(A + BC))~

I ruth table

В	С	X
0	0	1
0	1	1
1	0	1
1	1	1
0	0	0
0	1	0
1	0	0
1	1	0
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Circuit Diagram

Circuit # 4: Boolean Expression: A'BC + AB'C + ABC' + (ABC)'

Truth table

Circuit Diagram

Circuit # 5: Boolean Expression: (A~ + BC)~

Truth table

Circuit Diagram

Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

5. Transform the given diagram circuit to new logic diagram using NAND /NOR gates. Implement the transformed logic circuit.

Circuit Diagram

