WHAT IS CLAIMED IS:

1	1. In a database system, a method for constructing an optimal query execution plan	
2	for executing a query, the method comprising:	
3	receiving a query specifying at least one join condition between two or more database	
4	tables;	
5	identifying each query block within said query, each query block comprising an	
6	atomic portion of said query;	
7	creating subplans for each query block based on grouping portions of each query	
8	block;	
9	determining at least one favorable access plan for each subplan of each query block,	
0	said at least one favorable access plan determined based at least in part on estimated	
1	execution costs;	
2	generating an optimal access plan for each query block based upon said at least one	
3	favorable access plan determined for each subplan; and	
4	constructing an optimal query execution plan based upon said optimal access plan	
5	generated for each query block.	
1	2. The method of claim 1, wherein said step of identifying each query block within	
2	said query includes building a query optimization graph for each query block.	
1	3. The method of claim 1, further comprising:	
2	generating a query optimization graph for each query block.	
1	4. The method of claim 3, wherein said step of generating a query optimization	
2	graph includes generating subplans for each query block.	
1	5. The method of claim 3, wherein said step of generating a query optimization	
2	graph includes generating plan nodes for each subplan, said plan nodes for joining tables an	
3	subplans.	
1	6. The method of claim 5, wherein said step of generating a query optimization	
2	graph includes generating an array of access methods for each plan node	

1	7. The method of claim 5, wherein said step of generating a query optimization
2	graph includes generating an array of join methods for each plan node.
1	8. The method of claim 1, wherein a subplan represents a table expression of a query
2	block.
1	9. The method of claim 1, wherein said step of determining at least one favorable
2	access plan for each subplan includes generating at least one access plan for each different
3	set of outer references.
1	10. The method of claim 1, wherein the step of determining at least one favorable
2	access plan for each subplan includes the substeps of:
3	placing a candidate plan segment in the next position in a current access plan being
4	generated, said candidate plan segment representing a particular plan node, access method
5	and join method valid at said next position;
6	evaluating the current access plan including said candidate plan segment; and
7	if the current access plan is less favorable than a favorable access plan previously
8	identified, replacing said candidate plan segment with another available candidate plan
9	segment and repeating said evaluating substep.
0	
1	11. The method of claim 10, wherein a plan node comprises a quantifier object.
1	12. The method of claim 11, wherein said quantifier object represents a base table.
1,	13. The method of claim 11, wherein said quantifier object represents a derived table.
1	14. The method of claim 10, wherein a plan node comprises a subplan object.
1 :	15. The method of claim 14, wherein said subplan object represents a join tree of a
2	table expression of a query block.

İ	16. The method of claim 10, further comprising:
2	if the current access plan is more favorable than a favorable access plan previously
3	identified, determining whether the current access plan comprises a complete plan;
4	if the current access plan is determined not to comprise a complete plan, retaining the
5	current access plan and repeating the above substeps for placing a candidate plan segment in
6	the next position of the current access plan; and
7	otherwise, if the current access plan is determined to be a complete plan, retaining the
8	current access plan as a favorable access plan and repeating the above substeps to consider
9	other available alternatives to the current access plan while alternatives are available.
1	17. The method of claim 10, further comprising:
2.	generating a property vector for said current access plan including said candidate plan
3	segment.
1	18. The method of claim 17, wherein said property vector includes estimated
2	execution costs for said current access plan.
1	19. The method of claim 17, wherein said property vector includes pipeline
2	characteristics for said current access plan.
1	20. The method of claim 17, wherein said property vector includes order properties
2	for said current access plan.
1	21. The method of claim 1, wherein said step of generating at least one favorable
2	access plan for each subplan of each query block includes using a left-deep join enumeration
3	strategy.
1	22. The method of claim 1, wherein said step of generating at least one favorable
2	access plan for each subplan of each query block includes starting with the innermost nested
3	subplans.

1	23. The method of claim 1, wherein said step of generating at least one favorable	
2	access plan for each subplan includes evaluating execution costs of partial access plans and	
3 pruning partial access plans less favorable than previously generated complete a		
1	24. A computer-readable medium having computer-executable instructions for	
2	performing the method of claim 1.	
1	25. A decombe debte set of a mountain accountable in atmostic as Commercial	
1	25. A downloadable set of computer-executable instructions for performing the	
2	method of claim 1.	
1	26. In a database system, a method for generating a bushy trees during optimization	
2	of a database query, the method comprising:	
3	receiving a database query specifying at least one join condition between two or more	
4	database tables;	
5	identifying each query block within said query, said query block comprising an	
6	atomic block of said query;	
7	building a query optimization graph for each query block, said query optimization	
8	graph including plan nodes representing subplans and quantifiers of each query block;	
9	constructing a join tree for each subplan based upon selecting access methods, join	
0	methods, and join order for plan nodes of said query optimization graph having favorable	
1	execution costs;	
2	constructing an optimal access plan for each query block based upon said join tree	
3	constructed for each subplan; and	
4	generating a bushy execution tree based upon the optimal access plan determined for	
5	each query block.	
1	27. The method of claim 26, wherein a query block comprises a selected one of a	
2	main block of a Structured Query Language (SQL) statement, a main block of a derived	
3	table, a main block of a view, a main block of a subquery used in a SQL statement, a derived	
1	table and a view	

		•
1 .	28. The method of claim 26, wherein said step of building said query optimization	
2	graph includes modeling left outer joins, right outer joins, and full outer joins as subplans	
3	which correspond to null-supplying sides of an outer join.	•
1	29. The method of claim 26, wherein said step of generating a query optimization	
2	graph includes generating an array of access methods for each plan node.	•
1	30. The method of claim 26, wherein said step of generating a query optimization	
2	graph includes generating an array of join methods for each plan node.	
1	31. The method of claim 26, wherein said step of constructing bushy join trees for	
2	each subplan includes using a left-deep enumeration strategy.	
1	32. The method of claim 26, wherein said step of constructing a join tree includes	
2	evaluating execution costs of a candidate plan segment to be added to said join tree being	
3	constructed.	
1	33. The method of claim 32, wherein said candidate plan segment comprises a	
2	selected plan node together with an access method and a join method.	
		*
ļ	34. The method of claim 26, wherein said bushy tree comprises a processing tree	
2	having composite relations for left and right children of join nodes.	
1	35. The method of claim 26, wherein said step of constructing an optimal bushy	
2	access plan includes evaluating execution costs of partial access plans enabling earlier	
3	pruning of unfavorable access plans.	·
1	36. In a database system, a method for optimizing execution of a query, the method	
2	comprising:	
3	receiving a query specifying selection of data from a plurality of database tables;	

•

4	enumerating candidate plan segments for inclusion in an access plan for selecting data	
5	specified by the query, said candidate plan segments representing alternative strategies for	
6	joining relations and selecting data;	
7	for each query block comprising an atomic portion of said query, determining an	
8	optimal access plan by performing the substeps of:	
9	placing a candidate plan segment in a partial access plan being generated for	
0	said query block;	
1	evaluating said partial access plan including said candidate plan segment;	
2	if said partial access plan is less favorable than a complete access plan	
3	previously identified for said query block, pruning said candidate plan segment;	
4	otherwise, adding an additional candidate plan segment to said partial access	
5	plan and repeating the above steps until a complete access plan for said query block is	
6	generated;	
.7	retaining a complete access plan if it is more favorable than other complete	
8	access plans previously generated for the query block; and	
9	otherwise pruning a complete access plan which is less favorable than other	
20	complete access plans; and	
21	generating a query execution plan based upon the optimal access plan determined for	
22	each query block.	
_		
1	37. The method of claim 36, wherein each said candidate plan segment comprises a	
2	plan node, an access method and a join method.	
1	38. The method of claim 37, wherein a plan node comprises a subplan object.	
1	39. The method of claim 37, wherein a plan node comprises a quantifier object.	
1	40. The method of claim 36, where said substep of evaluating said partial access plan	
2	includes comparing estimated execution costs of said partial access plan to estimated	
3	execution costs of a complete access plan previously generated for said query block.	

1	41. The method of claim 36, where said substep of evaluating said partial access plan
2	before a complete access plan is generated enables early pruning of less favorable access
3	plans.
1	42. The method of claim 36, wherein said step of generating an optimal access plan
2	for each query block includes generating an optimal access plan for each subplan of each
3	query block.
1	43. The method of claim 42, wherein said step of generating an optimal access plan
2	for each subplan of each query block includes starting with the innermost nested subplans.
1	44. The method of claim 36, wherein said step of generating an optimal access plan
2	for each query block includes using a left-deep join enumeration strategy.
1	45. The method of claim 36, further comprising:
2	generating a property vector for each said partial access plan.
1	46. The method of claim 45, wherein said property vector includes estimated
2	execution costs for a candidate plan segment.
1.	47. The method of claim 45, wherein said evaluating substep includes comparing said
2	property vector of said partial access plan to a property vector of a complete access plan
3	previously generated for said query block.
1	48. The method of claim 45, further comprising:
2	retaining a property vector of a complete plan generated for a query block if said
3	complete plan is more favorable than any other complete access plan previously generated
4	for the query block.
1	49. The method of claim 36, wherein said substep of pruning said candidate plan
2	segment includes replacing said candidate plan segment with another available candidate
3	plan segment and repeating said evaluating substep.