année scolaire 2021-2022Professeur : $Zakaria\ Haouzan$ Établissement : $Lyc\acute{e}e\ SKHOR\ qualifiant$

Devoir N°3 Filière Tronc Commun Scientifique Durée 2h00

Chimie 7pts/42min _

Partie 1 :La quantité de matière et la concentration molaire (7pts)

On fait dissoudre une masse m = 6,35g de chlorure de fer II $(FeCl_2)$ dans l'eau pour préparer une solution (S_1) de volume $V_1 = 100mL$.

(b) de volume $V_1 = 100 mL$.	
1. Qu'appelle-t-on la solution (S_1) ?	(0.5pt)
2. Calculer la concentration massique C_{m1} de la solution (S_1)	(1pt)
3. Calculer la quantité de matière du soluté n_1 dissout dans (S_1)	(0.5pt)
4. Calculer la concentration molaire C_1 de la solution (S_1)	(1pt)
5. On dispose maintenant d'une solution aqueuse (S_2) de chlorure de fer II et de concentration $0,25mol.L^{-1}$ et de volume $V_2=200mL$. On mélange dans le même bêcher la solution (S_1) solution (S_2) pour obtenir une solution (S) .	
 (a) Calculer la quantité de matière du soluté n₂ dissout dans (S₂). (b) Calculer la quantité de matière totale n de soluté dissout dans la solution (S). (c) Déduire la concentration molaire C de la solution (S). (d) Déduire la concentration massique C_m de la même solution (S). 	(0.5pt)
 6. Le vinaigre commercial de degré d'acidité 6° est une solution de l'acide éthanoïque avec la facture de l'acidité représente le pourcentage massique d'acide contenu dans la soluti (a) Déterminer la masse molaire de l'acide éthanoïque. (b) Calculer la concentration molaire des molécules d'acide éthanoïque dans ce vinaigre. 	on. (0.5pt)

Données: masses molaires en g/mol : M(Fe) = 55, 8g/mol ; M(Cl) = 35, 5g/mol. La masse volumique du vinaigre commercial: $\rho = 1,02g/ml$

_Physique 13pts/72min _____

Les deux parties sont indépendantes

Partie 1 :La caractéristique d'une tension(5 pts)

On réalise deux circuits électriques dont les schémas sont représentés ci-dessous.

1. Quel est le type de la tension représentée dans chaque oscillogramme.....(1pt)

2. On se place dans le cas du circuit 2 qui a permis d'obtenir l'oscillogramme 2. La sensibilité verticale est de 5V /division.

- (a) Déterminer, la valeur de la tension maximale U_{max}(1pt)
- (b) Le voltmètre indique une tension U. Que représente U? calculer sa valeur.....(1pt)
- (c) La sensibilité horizontale est de 5 ms/division. Déterminer, la période T du signal en ms puis en(s). (1pt)
- (d) En déduire la fréquence f du signal.....(1pt)

Partie 2: Les associations de conducteurs ohmiques(8pts)

Soit le montage suivante :

- 1. Représenter $U_{AB},\,U_{PN},\,U_{PA},\,U_{CA},\,U_{BN}$ et U_{CB} et le sens des courants. (1pt)
- 2. Que vaut U_{BN} ?.....(1pt)
- 3. Calculer la tension U_{PA} et l'intensité du courant éléctrique I, I_2 puis les deux résistances R_1 et R_2 .(2pt)
- 4. Calculer la tension U_{CB} et l'intensité du courant éléctrique I_3 , I_4 puis la résistance R_5(2pt)
- 5. Calculer R_{eq} la résistance équivalente aux 5 résistances en 4 étapes......(2pt)

Données : $U_{PN} = 12V$, $U_{AB} = 8V$, $U_{AC} = 6V$, $R_3 = 200\Omega$, $R_4 = 200\Omega$, $I_1 = 15mA$.

