Predicate logic

Predicates P(x), M(x): statements involving variables x, y, z.

Using propositional logic alone cannot adequately express the meaning of all statements in mathematics.

- Neither true nor false statements
 - Every computer connected to the university is functioning properly.
 - CS2 is under attack by an intruder
 - Mr. x is not here

if x > 3 then x := x + 1, when this statement encountered, the value of x is entered into P(x) " x > 3"

- If x is >3 then x := x + 1 will be executed.
- If P(x) is false, x will not change.

x > 7

x > 3. x is the **subject**, x > 7 is the **predicate**, x > 7 is the **propositional function** (a generalization of propositions, contains variables that are replaced by elements from their domain)

• If we have a value x, then P(x) -the propositional function- becomes a proposition and has a truth value.

Predicates used to verify that program produces <u>desired output</u> (postconditions) when given <u>valid input</u> (preconditions)

n-place predicate, n-ary predicate

A statement involving the n variable $x_1, x_2, ...x_n$ Can be denoted by $P(x_1, x_2, ...x_n)$ iCliker through 5

Compound Expressions

Connectives (AND, OR, NOT, \rightarrow ...) from propositional logic can be used with predicate logic P(1) V P(3)

iCliker through 10

Predicates, Propositions and Quantifiers

Predicates: propositions which contain variables.

Predicates become propositions once every variable is **bound-by**

- assigning it a value from the Universe of Discourse U (Domain of the Discourse- Domain)
- Or **quantifying** it (Quantity)
 - Universal quantification
 - Existential quantification

Quantifiers

The quantifiers bind the variable *x* in the expressions.

Quantifications: all, some, many, none, one, and few.

- Universal quantification
 - Tells us that a predicate is true for every element under consideration (in the domain)
 - Needs domain of discourse or universe of discourse
- For all x P(x), For every x P(x)
- U={1,2,3}
- $\forall x P(x) = P(1) \land P(2) \land P(3)$
- Counterexample of $\forall x \ P(x)$ is an element for which P(x) is false
- When you can list the element then
 - $\forall x P(x) \text{ is } P(x_1) \land P(x_2) \land \dots \land P(x_n)$
- for all, for every, all of, for each, for any...

• Avoid for any x (it could mean every or some) we want to avoid ambiguity.

Implicit Assumption

- Domain of discourse for quantifiers are <u>nonempty</u>.
- If domain is empty, $\forall x P(x)$ is true for any propositional function P(x)

• Existential quantification

- Tells us that <u>there is one or more elements</u> under consideration for which the <u>predicate</u> is true it is <u>true</u> for <u>some element</u> in the domain
- There exist an element x in the domain such that P(X)
- $\exists x P(x)$ Existential Quantifier of P(x)
- There is an x such that P(x)
- There is at least one x such that P(x)
- True for at least one value of x in the domain
- For some xP(x)
- U={1,2,3}
- $\exists x P(x) = P(1) \lor P(2) \lor P(3)$
- When you can list the element then $\exists x P(x) \text{ is } P(x_1) V P(x_2) V..... P(x_n)$

Implicit Assumption

- Domain of discourse for quantifiers are nonempty.
- If the domain is empty, then $\exists x P(x)$ is false. There is no element where P(x) is true.

Unique Existential

- P(x) is true for **one and only one x** in the universe of discourse.
- Notation: unique existential quantifier
- $\exists !xP(x) \text{ or } \exists 1P(x)$
 - $\exists !x P(x) \text{ or } \exists 1x P(x) \text{ there exists a unique x such that } P(x) \text{ is true}$
- 'There is a unique x such that P(x),' 'There is one and only one x such that P(x),' 'One can find only one x such that P(x).'

P(1)	P(2)	P(3)	∃! <i>xP(x)</i>	∃ x P(x)	∀x P(x)
0	0	0	0	0	0
0	0	1	1	1	0
0	1	0	1	1	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	1	1

Remember

A <u>predicate is not a proposition until all variables have</u> been bound either by quantification or assignment of a value!

Statement	When True?	When False?	
$\forall x P(x) \\ \exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .	

Examples:

- 1- $\forall y \neq 0 \ (y^3 \neq 0)$, the domain: Real number
 - For every real y with $y \neq 0$ and $y^3 \neq 0$
 - The cube of every nonzero real number is nonzero
 - $\forall y (y \neq 0 \rightarrow y^3 \neq 0)$
- 2- $\exists z > 0$ ($z^2 = 2$), Domain, real numbers
 - There exist a real number z with z > 0 such that $z^2 = 2$ (there is a positive square root of 2)
 - The Square of every nonzero real number is nonzero
 - $\exists z (z > 0 \land z^2 = 2)$

Precedence of Quantifiers

∀ and ∃ have higher precedence than all logical operators from propositional calculus

• $\forall x P(x) V Q(x) = (\forall x P(x)) V Q(x)$ and not $\forall x (P(x) V Q(x))$

Bound & Free variables

$\exists x(x+y=1)$

- X is bound by ∃x
 - Bound when a quantifier is used on the variable
- Y is free
 - if it is outside the scope of all quantifiers in the formula that specifies this variable
- x + y = 1 is the scope of the quantifier $\exists x$
 - the part of a logical expression to which a quantifier is applied

REMEMBER A <u>predicate is not a proposition</u> until *all variables have* been bound either by quantification or assignment of a value!

Logical Equivalences

iff they have the <u>same truth value</u> no matter what predicates are substituted into those statements \Box \Box \Box

Example:

 $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

- No matter what the predicates P and Q are
- No matter which domain of discourse is used
 - We show if \forall x(P(x) \land Q(x)) is true then \forall x P(x) \land \forall x Q(x)
 - \forall x(P(x) \land Q(x)) is true, if a in the domain then P(a) \land Q(a) is true, hence P(a) is true and Q(a) is true for every element in the domain, and this means that \forall x P(x) \land \forall x Q(x) is true

- And we show if $\forall x P(x) \land \forall x Q(x)$ is true then $\forall x (P(x) \land Q(x))$

Negating Quantified Expressions

Example:

Every student in the class has taken a course in calculus \forall x P(x), the domain (students in my class)

- Negate it using "It is not the case"
- It is not the case that every student in the class... (equivalent to..) \(\times\) there is a student who has not taken..(translate back..)
- Existential quantification $\exists x \neg P(x)$

De Morgan's Laws for Quantifiers

Negation	Equivalent statement	When true?	When False?
¬∃х Р(х)	∀ x¬ P(x)	For every x, P(x) is false	There is an x for which P(x) is true
¬∀x P(x)	∃x¬ P(x)	There is an x for which P(x) is false	P(x) is true for every x

Distributing a negation operator across a quantifier changes a universal to an existential and vice versa.

Examples

Negate $\forall x(x^2 > x)$

Negate $\exists x (x^2 = 2)$

Negate $\neg \forall x (P(x) \rightarrow Q(x))$. (or show that ... are logically equivalent)