Grado en Ingeniería de Comunicaciones Móviles y Espaciales Grado en Ingeniería Telemática

Notación

ullet $\widehat{S}_{\mathrm{MMSE}}$: Estimador de mínimo error cuadrático medio.

 $flue{\hat{S}}_{\mathrm{MAD}}$: Estimador de mínimo error absoluto medio.

• \hat{S}_{MAP} : Estimador de máximo a posteriori.

 $flue{\hat{S}}_{\rm ML}$: Estimador de máxima verosimilitud.

• $\widehat{S}_{\text{LMSE}}$: Estimador lineal de mínimo error cuadrático medio.

1. Se conoce que la distribución a posteriori de S a la vista X es

$$p_{S|X}(s|x) = \frac{2s}{x^2}$$
 $0 \le s \le x, \ 0 \le x \le 1$

Obtenga:

(a) El estimador de mínimo error cuadrático medio de S a la vista de X, $\widehat{S}_{\text{MMSE}}$.

(b) El estimador de mínimo error absoluto medio de S a la vista de X, $\widehat{S}_{\mathrm{MAD}}$.

Solution:

(a)
$$\widehat{S}_{\text{MMSE}} = \frac{2}{3}X$$
.

(b)
$$\widehat{S}_{MAD} = \frac{X}{\sqrt{2}}$$
.

2. Suponiendo que

$$p_{S,X}(s,x) = \frac{5}{4} - sx, \qquad s \in [0,1], x \in [0,1]$$

Determine el estimador lineal de la forma $\hat{S} = wX$ de mínimo error cuadrático medio.

Solution:

$$\widehat{S} = \frac{29}{42}X$$

3. La variable aleatoria X tiene distribución

$$p_X(x) = \sqrt{\frac{2}{\pi a}} \exp\left(-\frac{x^2}{2a}\right), \qquad x > 0$$

siendo a un parámetro determinista tal que a > 0.

(a) Determine el estimador ML de dicho parámetro, $\widehat{A}_{\mathrm{ML}}$, en función de los valores de K observaciones independientes de X, $\{X^{(k)}\}_{k=1}^{K}$.

(b) ¿Es $\widehat{A}_{\mathrm{ML}}$ un estimador insesgado?

Nota: Si lo necesita, $\mathbb{E}[X|a] = 0$ y $\mathbb{E}[X^2|a] = a$.

Solution:

(a)
$$\hat{A}_{ML} = \frac{1}{K} \sum_{k=1}^{K} (x^{(k)})^2$$
.

- (b) Sí es un estimador insesgado, porque se cumple que $\mathbb{E}[a \widehat{A}_{ML}|a] = 0$.
- 4. Considere el sistema de comunicaciones mostrado en la figura:

donde la atenuación del canal, α , es igual a 1/2, el ruido, N, es gaussiano de media nula y varianza unidad independiente de la señal transmitida, $S \in \mathbb{R}$. Si el receptor recibe la observación x=0.5, indique:

- (a) Cuál sería la estimación de máxima verosimilitud de S, \hat{s}_{ML} , basada en x.
- (b) Sabiendo que la señal transmitida S se puede modelar como una v.a. gaussiana de media nula y con varianza igual 4, obtenga la estimación de mínimo error cuadrático medio de S, \hat{s}_{MMSE} , basada en x.

Solution:

(a)
$$\hat{S}_{ML} = 2X$$
, $\hat{s}_{ML} = 1$

(b)
$$\hat{S}_{\text{MMSE}} = X, \, \hat{s}_{\text{MMSE}} = 0.5$$