

Объектно-ориентированное программирование

Петрусевич Денис Андреевич

Доцент Кафедры Высшей математики petrusevich@mirea.ru

Тема 0. Знакомство со структурами данных

Последовательные контейнеры (сохранен порядок, в котором добавлены элементы)

Ассоциативные контейнеры (элементы упорядочены, пары «ключ – значение»)

Тема 0. Работа с массивом

- Массив непрерывный участок памяти, состоящий из одинаковых по структуре элементов
- Есть эффективная индексация [i]

«Стоимость» операций

Производительность операций определяется по порядку величин, зависящих от длины массива (чаще n)

Выделяют оценки $\Theta()$, O(), $\Omega()$

Оценка операции в среднем: О()

f(n) – оценка количества действий

O(n): $\lim f(n) / n = const$

O(1): $f(n) \le A$, A = const

Операции над массивом

• Добавление в конец: О(1)

• Добавление в начало: O(n)

• Обращение к і-му элементу (инлексация [i])

Операции над массивом

• Обращение к і-му элементу (индексация [і])

&arr[i] = &arr[0] + i*sizeof(arr[0])

Не требуется перечислять элементы в массиве

3 1 0 4 8 -3 2 1 2

Поиск в неотсортированном массиве – линейный поиск, O(n)

Поиск элемента *elem_to_find* в массиве *arr* длиной *len*

```
for(i=0;i<len;i++)
  if(arr[i]==elem_to_find)</pre>
```

• • •

Поиск в отсортированном массиве – бинарный поиск. Поиск элемента «3»

Размер рассматриваемой части массива уменьшается в два раза на каждой итерации

Бинарный поиск. Поиск элемента «12»

Бинарный поиск. Оценка максимального числа шагов

Размер рассматриваемой части уменьшается в 2 раза на каждой итерации, пока не останется 1 элемент: n/2, n/4, n/8, n/16, ... $n/2^k$

 $\max k = ?$

 $n / 2^k \sim 1$

 $k \sim log n$

Индексация [і] О(1)

Вставка/удаление O(n)

Добавление в конец О(1)

Поиск в

отсортированном массиве O(log n)

Поиск в

неотсортированном массиве O(n)

n — число элементов в массиве

Связные списки

Участок памяти не обязан быть непрерывным

Односвязный список: в каждом элементе есть указатель на следующий next

Двусвязный список: вдобавок, есть указатель на предыдущий элемент previous

Связные списки

В такой структуре удобно вставлять/удалять элементы:

Бинарный поиск хуже линейного

Связные списки

Примеры применения:

- 1. Структура файловой системы FAT
- 2. Список объектов с одинаковым значением хэшфункций в хэш-таблице
- 3. Список объектов, в который часто надо добавлять/удалять элементы

Стек/очередь

Стек: LIFO (Last In First Out: добавление в конец / извлечение с конца, напоминает стопку бумаги)

Очередь: FIFO (First In First Out: добавление в конец / извлечение с начала)

Литература. Связные списки

- Шилдт. Самоучитель С++ (о наследовании)
- Топп, Форд. Структуры данных (о связных списках). Глава 9.
- Вирт. Структуры данных (о связных списках). Пункт 4.3.
- Кормен. Алгоритмы: построение и анализ (о связных списках). Пункт 10.2.
- Weiss. Пункт 3.2
- Das. Глава 5
- Лекции Data Structures. Unit 1
- Ha openedu.ru доступен курс ИТМО «Алгоритмы и структуры данных». Неделя 4. Элементарные структуры данных. https://openedu.ru/course/ITMOUniversity/PADS/

Спасибо за внимание!

Петрусевич Денис Андреевич

Доцент Кафедры Высшей математики petrusevich@mirea.ru