10 Qüestions de TEORIA (6 punts). Puntuació: BE:+0.6 punts; MAL: -0.15 punts; N.C: 0

1. En el circuit de la figura i per a les dades que s'indiquen, quina serà la tensió d'eixida Vs del circuit?

Dades: Ve = 10V; V1 = 4V; Díode D1: $V_v = 0.7V$

- [A] 7V
- [B] 5V
- [C] 4V
- [D] -0.7V

2. El circuit de la figura inclou 4 LED idèntics (D1 a D4) i una resistència R el valor de la qual s'ha d'escollir per a polaritzar els LED segons les dades de baix. Assenyale l'afirmació **VERTADERA**:

Dades: $V_{LED} = 1.5V$; $I_{LED} = 10mA$; $V_{CC} = 5V$

- [A] El corrent que circula per R serà 40mA.
- [B] En aquesta configuració els 4 LED no poden brillar simultàniament, ja que V_{CC} deuria ser major de 6V.
- [C] El voltatge en el punt (a) és 3V.
- [D] Un valor adequat per a R és 100Ω .

3. En el circuit de la figura hi ha dos subcircuits digitals fets amb díodes, transistors i resistències: el 1), amb entrades A i B, i eixida C; i el 2) amb entrada D, i eixida F. Suposant que es connecta C i D, assenyale l'afirmació **FALSA**:

Dades: $V_Y = 0.7V$ (per a tots els díodes); $V_{BEON} = 0.7V$; $\beta = 100$ (per al transistor)

- [A] Quan les entrades son A = 5V i B = 0V, els díodes D1 i D3 estan tallats i pel díode D2 circula un corrent de 2.15mA.
- [B] Quan les entrades son A = 0V i B = 5V aleshores la tensió ànode-càtode del díode D2 és -4.3V.
- [C] Quan les entrades son A = B = "1", el corrent pel díode D3 és 2.15mA.
- [D] Quan les entrades son A = B = "1", el transistor condueix en la regió de saturació (F = "0").

4. En el circuit de la figura, i per a les dades que s'indiquen, es pot obtindre el valor de la resistència R2?

Dades: V_{BEON} =0.7V; V_{CESAT} =0.2V; V1= 0V; R1=200k Ω ; β =500

- [A] Si, 400Ω
- [B] No, ja que podem comprovar que el transistor està tallat.
- [C] Si, $2k\Omega$
- [D] No, perquè desconeguem el valor de Vcc.
- 5. El circuit de la figura és un inversor lògic que deu treballar entre tall i saturació. Per a quin valor de Rc podem assegurar este comportament?

Dades: Vcc = 5V; Rb = 100 k Ω ; V_{BE(ON)} = 0.7V; V_{CE(SAT)} = 0.2V; β =100; Vi és digital (0V o 5V)

- [A] 2kΩ
- [B] 940Ω
- [C] $0.5k\Omega$
- [D] 600Ω

6. En un transistor bipolar NPN que està funcionant en un circuit i el guany de corrent del qual, β , és de 50, es mesuren els següents corrents i tensions continues:

 $V_{BE} = 0.7V$ $I_B = 0.2mA$ $I_E = 5mA$

Assenyale l'afirmació VERTADERA:

- [A] Està en tall.
- [B] Està funcionant en zona activa.
- [C] No podem indicar la zona de funcionament, ja que ens falta el valor de Vce.
- [D] Està saturat.
- 7. Sobre el transistor de la figura, assenyale la resposta **FALSA**.
 - [A] Es tracta d'un transistor MOSFET de canal N, en el que el canal està estrangulat per la relació entre V_{DS} i V_{GS}.
 - [B] El transistor es troba en una zona de funcionament en la que el corrent depèn nomes de la tensió V_{GS} i ja no depèn de V_{DS}.
 - [C] El transistor NMOS es troba en una zona de funcionament que és equivalent a la de saturació en els transistors BJT.
 - [D] Esta situació succeix quan: V_{GS} > V_T i V_{DS} >= V_{GS} V_T

8. Donat el circuit amb Mosfet PMOS de la figura, indique la resposta VERTADERA:

Dades: $|V_T| = 2V$, K = 0.5 mA/V²

- [A] Si Vi = 0 el transistor està en tall.
- [B] Si Vi es connecta a la S (font) el transistor estarà en saturació, perquè la tensió de font és igual a la tensió de la porta.
- [C] Si Vi = 4V el transistor condueix.
- [D] Si Vi = 2V el transistor condueix.

- 9. Sobre el transistor MOSFET de canal N, assenyale la resposta FALSA:
 - [A] En la zona de saturació, el corrent augmenta quadràticament en funció de V_{GS}-V_T.
 - [B] En la zona òhmica, la Ron és directament proporcional a V_{GS}.
 - [C] El corrent de porta sempre el considerem nul, independentment de la regió de funcionament del transistor.
 - [D] En la zona òhmica, el corrent depèn de V_{DS} i V_{GS} , inclús quan V_{DS} es positiva i pròxima a 0V.
- 10. Sobre la gràfica V-l de la figura d'un NMOS, assenyale la resposta FALSA:
 - [A] La K del transistor és 0.5 mA/V²
 - [B] La V_T del transistor és 2V
 - [C] La línia en forma de paràbola, separa les zones B (saturació) i C (òhmica).
 - [D] Per a V_{GS} = 6V i V_{DS} positiva i pròxima a 0V, el transistor es comporta com una resistència de valor 100Ω

PÀGINA INTENCIONADAMENT EN BLANC

Cognoms: Nom:

PROBLEMA 1 (4 PUNTS)

El circuit de la figura és una porta lògica NMOS. Es demana:

Dades:

 $V_T = 1V$

 $K = 1mA/V^2$

En zona òhmica: $I_{DS} \approx 2K(V_{GS} - V_T) V_{DS}$

"0" equival a 0V

"1" equival a 10V

Nota: Assumir la mateixa R_{ON} per a tots els transistors en cas de conducció i que aquests treballen en commutació.

[A] (1p) Replene els valors de la següent taula:

Α	В	С	F(valor lògic)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[B]

(0.5p) Quina funció lògica realitza el circuit?

F(A,B,C) =

[C] (0.3p) Calcule el voltatge en F quan A="0", B="0", C="0". Dibuixe el circuit equivalent i justifique la seua resposta.

[D] (0.3p) Calcule el voltatge en F quan A="1", B="0", C="0". Dibuixe el circuit equivalent i justifique la seua resposta.

[E] (0.3p) Calcule el voltatge en F quan A="0", B="1", C="1". Dibuixe el circuit equivalent i justifique la seua resposta.

[F] (0.3p) Calcule el voltatge en F quan A="1", B="1", C="0". Dibuixe el circuit equivalent i justifique la seua resposta.

[G] (0.3p) Calcule el voltatge en F quan A="1", B="1", C="1". Dibuixe el circuit equivalent i justifique la seua resposta.

[H] (1p) Per al cas A="1", B="1", C="1", indique quin efecte tindria en la tensió d'eixida V_F augmentar la resistència de 10kΩ. Justifique la seua resposta.

DNI							
0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8 9	8 9	8 9	8 9	8 9	8 9	8 9

E i Silve - i echologia de computadore	S
--	---

NO BORRAR, corregir con Typex

Primer pa	rcial - 28/03/2	2019
Apellidos		
Nombre .		
Marque a	sí	Así NO marque

1		b		d
2		b		
3		b		d
4		b		d
5		b		
6		b		d —
7		b		
8	а	b	С	d
9		b		