

Tutorium 42, #1,5

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Kartesisches Produkt

M = {1, 2}, N = {A, B}
M
$$\times$$
 N = { $(m, n)|m \in M, n \in N$ } ergibt eine Menge aus Tupeln aus M und N

Konkret:

 $M \times N = \{ (1, A), (2, A), (1, B), (2, B) \}$

Relation

Relation R \subseteq A \times B, also enthält R Tupel aus der Menge A \times B. Im Fall R \subseteq A \times A heißt R "Relation auf A".

Aufgaben

Relation 1, "größer-gleich-Relation": A = {1,2,4}, R = {
$$(a_1, a_2)$$
 | $a_1, a_2 \in A$: $a_1 \ge a_2$ }

Relation 2, "Ungleich-Relation":
$$A = \{1,2\}, B = \{2,3,4\}, R = \{(a,b) \mid a \in A, b \in B : a \neq b\}$$

Welche Tupel sind in der Relation drin?

Eigenschaften von Relationen

- linkstotal: $\forall a \in A \exists b \in B : (a, b) \in R$
- rechtseindeutig:

$$\nexists a \in A : (\exists b_1, b_2 \in B, b_1 \neq b_2 : (a, b_1) \in R \land (a, b_2) \in R)$$

- rechtstotal: $\forall b \in B \exists a \in A : (a, b) \in R$
- linkseindeutig: $\forall (a_1, b_1), (a_2, b_2) \in R : a_1 \neq a_2 \Rightarrow b_1 \neq b_2$

Linkstotal

linkstotal: $\forall a \in A \exists b \in B : (a, b) \in R$

- In Worten: Jedes Element a aus A hat mindestens ein Element b aus B als Partner.
- Eselsbrücke: Die "totale" (also komplette) linke Menge (A) wird in R verwendet.
- Voraussetzung für eine Funktion

Linkstotal

Figure: Linkstotal, Jedes linke Element hat min. ein rechtes Element

Rechtstotal

 $\forall b \in B \exists a \in A : (a, b) \in R$

- In Worten: Jedes Element b aus B hat mindestens ein Element a aus A als Partner.
- Eselsbrücke: Die "totale" (also komplette) rechte Menge (B) wird in R verwendet.
- Auch surjektiv genannt

Rechtstotal

Figure: Rechtstotal, Jedes rechte Element hat min. ein linkes Element

Linkseindeutig

$$\forall (a_1, b_1), (a_2, b_2) \in R : a_1 \neq a_2 \Rightarrow b_1 \neq b_2$$

- In Worten: Wenn ich zwei a aus A angucke und $a_1 \neq a_2$ so ist auch $b_1 \neq b_2$
- Einfacher: Jedes Element b aus B hat höchstens ein Element a aus A als Partner.
- Eselsbrücke: Das linke Element ist zum rechten Element eindeutig.
- Auch injektiv genannt

Linkseindeutig

Figure: Linkseindeutig, Jedes rechte Element hat höchtens ein linkes Element

Rechtseindeutig

$$\forall (a_1, b_1), (a_2, b_2) \in R : b_1 \neq b_2 \Rightarrow a_1 \neq a_2$$

- In Worten: Wenn ich zwei b aus B angucke und $b_1 \neq b_2$ so ist auch $a_1 \neq a_2$
- Einfacher: Jedes Element a aus A hat höchstens ein Element b aus B als Partner.
- Eselsbrücke: Das rechte Element ist zum linken Element eindeutig.
- Voraussetzung für eine Funktion

Rechtseindeutig

Figure: Rechtseindeutig, Jedes linke Element hat höchtens ein rechtes Element

Funktionen

Funktionen sind Relationen, die linkstotal und rechtseindeutig sind

- Jedes Element der Urmenge ("linke" Menge) wird abgebildet (linkstotal)
- Für jedes Element gibt es nur einen oder keinen Partner in der Zielmenge (rechtseind.)
- Auch Funktionen k\u00f6nnen injektiv und surjektiv sein (Sie sind ja Relationen)

Funktionen

Injektive Funktionen sind zum Beispiel

- $f_1: \mathbb{N} \to \mathbb{N}, x \mapsto 2x$
- $f_2: \mathbb{N} \to \mathbb{N}, x \mapsto x^2$

aber nicht

• $f_3: \mathbb{Z} \to \mathbb{Z}, x \mapsto x^2$

Funktionen

Surjektive Funktionen sind zum Beispiel

- $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1$

aber nicht

• $f_3: \mathbb{Z} \to \mathbb{Z}, x \mapsto x^2$

Aufgabe

Ist die Funktion $f_1: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ surjektiv bzw. injektiv? Surjektiv, da mit x^3 jede reelle Zahl getroffen werden kann. Injektiv, da kein x in der Zielmenge doppelt getroffen wird (x^3 ist für positive x positiv und für negative x negativ)

Und wieso ist $f_3: \mathbb{Z} \to \mathbb{Z}, x \mapsto x^2$ weder injektiv noch surjektiv? Beweise mit je einem Gegenbeispiel. Nicht injektiv, da $f_3(2) = f_3(-2) = 4$. Nicht surjektiv, da -1 nicht getroffen wird.