

SEQUENCE LISTING

<110> Jane H. Morse and James A. Knowles

<120> Role of PPH1 Gene in Pulmonary Hypertension

<130> 0575/62430-A/JPW/SHS

<140> 09/904,380

<141> 2001-07-12

<160> 30

<170> PatentIn version 3.1

<210> 1

<211> 6234

<212> DNA

<213> Human

<400> 1

atgacttect egetgeageg geeetggegg gtgeeetgge taccatggae tactgaagga 60 gcgacgtcgc cgggaccgcc cacgggaccg atggtacctg catcctgctg gtcagcactg 120 cggctgcttc gcagaatcaa gaacggctat gtaggacgac cagtcgtgac gccgacgaag 180 240 cqtcttaqtt cttgccgata gtgcgtttaa agatccgtat cagcaagacc ttgggatagg tgagagtaga cacgcaaatt tctaggcata gtcgttctgg aaccctatcc actctcatct 300 atctctcatg aaaatgggac aatattatgc tcgaaaggta gcacctgcta tagagagtac 360 ttttaccctg ttataatacg agetttccat cgtggacgat tggcctttgg gagaaatcaa 420 aaggggacat aaatcttgta aaacaaggat accggaaacc ctctttagtt ttcccctgta 480 tttagaacat tttgttccta gttggtctca cattggagat ccccaagagt gtcactatga 540 600 agaatgtgta caaccagagt gtaacctcta ggggttctca cagtgatact tcttacacat gtaactacca ctcctccctc aattcagaat ggaacatacc gtttctgctg cattgatggt 660

gaggagggag ttaagtctta	ccttgtatgg	caaagacgac	ttgtagcaca	gatttatgta	720
atgtcaactt tactgagaat	tttccacctc	aacatcgtgt	ctaaatacat	tacagttgaa	780
atgactctta aaaggtggag	g ctgacacaac	accactcagt	ccacctcatt	catttaaccg	840
agatgagaca gactgtgttg	tggtgagtca	ggtggagtaa	gtaaattggc	tctactctgt	900
ataatcattg ctttggcato	agtetetgta	ttagctgttt	tgatagttgc	tattagtaac	960
gaaaccgtag tcagagacat	aatcgacaaa	actatcaacg	cttatgcttt	ggatacagaa	1020
tgttgacagg agaccgtaaa	caaggtcttc	gaatacgaaa	cctatgtctt	acaactgtcc	1080
tctggcattt gttccagaaq	acagtatgaa	catgatggag	gcagcagcat	ccgaaccctc	1140
tcttgatcta tgtcatactt	gtactacctc	cgtcgtcgta	ggcttgggag	agaactagat	1200
gataatctga aactgttgga	gctgattggc	cgaggtcgat	atggagcagt	ctattagact	1260
ttgacaacct cgactaaccg	gctccagcta	tacctcgtca	atataaaggc	tccttggatg	1320
agcgtccagt tgctgtaaaa	gtgttttcct	tatatttccg	aggaacctac	tcgcaggtca	1380
acgacatttt cacaaaagga	ttgcaaaccg	tcagaatttt	atcaacgaaa	agaacattta	1440
cagagtgcct aacgtttgg	agtcttaaaa	tagttgcttt	tcttgtaaat	gtctcacgga	1500
ttgatggaac atgacaaca	tgcccgcttt	atagttggag	atgagagagt	aactaccttg	1560
tactgttgta acgggcgaaa	a tatcaacctc	tactctctca	cactgcagat	ggacgcatgg	1620
aatatttgct tgtgatgga	g tactatccca	gtgacgtcta	cctgcgtacc	ttataaacga	1680
acactacctc atgataggg	atggatcttt	atgcaagtat	ttaagtctcc	acacaagtga	1740
ctgggtaagc tacctagaa	a tacgttcata	aattcagagg	tgtgttcact	gacccattcg	1800
tcttgccgtc ttgctcatt	tgttactaga	ggactggctt	atcttcacac	agaacggcag	1860
aacgagtaag acaatgatc	cctgaccgaa	tagaagtgtg	agaattacca	cgaggagatc	1920
attataaacc tgcaatttc	c catcgagatt	tcttaatggt	gctcctctag	taatatttgg	1980

acgttaaagg gtagctctaa taaacagcag aaatgtccta gtgaaaaatg atggaacctg 2040 tgttattagt atttgtcgtc tttacaggat cactttttac taccttggac acaataatca 2100 2160 gactttggac tgtccatgag gctgactgga aatagactgg tgcgcccagg ctgaaacctg acaggtactc cgactgacct ttatctgacc acgcgggtcc ggaggaagat aatgcagcca 2220 2280 taagcgaggt tggcactatc agatatatgg cctccttcta ttacgtcggt attcgctcca acceptgatag tetatatace caccagaagt getagaagga getgtgaact tgagggactg 2340 tgaatcagct gtggtcttca cgatcttcct cgacacttga actccctgac acttagtcga 2400 ttgaaacaag tagacatgta tgctcttgga ctaatctatt gggagatatt aactttgttc 2460 2520 atctgtacat acgagaacct gattagataa ccctctataa tatgagatgt acagacctct 2580 tcccagggga atccgtacca gagtaccaga atactctaca tgtctggaga agggtcccct 2640 taggcatggt ctcatggtct tggcttttca gacagaggtt ggaaaccatc ccacttttga 2700 ggatatgcag accgaaaagt ctgtctccaa cctttggtag ggtgaaaact cctatacgtc 2760 gttctcgtgt ctagggaaaa acagagaccc aagttcccag aagcctggaa caagagcaca gatccctttt tgtctctggg ttcaagggtc ttcggacctt agaaaatagc ctggcagtga 2820 ggtcactcaa ggagacaatc gaagactgtt tcttttatcg gaccgtcact ccagtgagtt 2880 2940 cctctgttag cttctgacaa gggaccagga tgcagaggct cggcttactg cacagtgtgc 3000 tgaggaaagg ccctggtcct acgtctccga gccgaatgac gtgtcacacg actcctttcc 3060 atggctgaac ttatgatgat ttgggaaaga aacaaatctg tgagcccaac taccgacttg aatactacta aaccetttet ttgtttagae actegggttg agteaateea atgtetaetg 3120 3180 ctatgcagaa tgaacgcaac ctgtcacata tcagttaggt tacagatgac gatacgtctt acttgcgttg gacagtgtat ataggcgtgt gccaaaaatt ggtccttatc cagattattc 3240

tteeteetea tateegeaca eggtttttaa eeaggaatag gtetaataag aaggaggagt 3300 tacattgaag actctatcca tcatactgac agcatcgtga agaatatttc atgtaacttc 3360 tgagataggt agtatgactg tcgtagcact tcttataaag ctctgagcat tctatgtcca 3420 gcacaccttt gactataggg gaaaaaaacc gagactcgta agatacaggt cgtgtggaaa 3480 ctgatatccc ctttttttgg gaaattcaat taactatgaa cgacagcaag cacaagctcg 3540 3600 aatccccagc ctttaagtta attgatactt gctgtcgttc gtgttcgagc ttaggggtcg cctgaaacaa gtgtcaccag cctctccacc aacacaacaa ccacaaacac ggactttgtt 3660 3720 cacagtggtc ggagaggtgg ttgtgttgtt ggtgtttgtg cacaggactc acgccaagta ctggcatgac tactatatct gagatgccat gtgtcctgag tgcggttcat gaccgtactg 3780 3840 atgatataga ctctacggta acccagatga aacaaatctg cataccacaa atgttgcaca gtcaattggg tgggtctact ttgtttagac gtatggtgtt tacaacgtgt cagttaaccc 3900 ccaaccctg tctgcttaca gctgacagaa gaagacttgg aaaccaacaa ggttggggac 3960 4020 agacgaatgt cgactgtctt cttctgaacc tttggttgtt gctagaccca aaagaagttg 4080 ataaqaacct caaggaaagc tctgatgaga cgatctgggt tttcttcaac tattcttgga 4140 gttcctttcg agactactct atctcatgga gcactctctt aaacagttca gtggcccaga cccactgagc tagagtacct cgtgagagaa tttgtcaagt caccgggtct gggtgactcg 4200 agtactagtt ctagcttgct ttacccactc ataaaacttg cagtagaagc tcatgatcaa 4260 gatcgaacga aatgggtgag tattttgaac gtcatcttcg aactggacag caggacttca 4320 4380 cacagactgc aaatggccaa gcatgtttga ttgacctgtc gtcctgaagt gtgtctgacg 4440 tttaccggtt cgtacaaact ttcctgatgt tctgcctact cagatctatc ctctccccaa 4500 gcagcagaac aaggactaca agacggatga gtctagatag gagaggggtt cgtcgtcttg 4560 cttcccaaga gacctactag tttgcctttg aacaccaaaa attcaacaaa gaagggttct

ctggatgatc aaacggaaac ttgtggtttt taagttgttt agagccccgg ctaaaatttg 4620 gcagcaagca caaatcaaac ttgaaacaag tctcggggcc gattttaaac cgtcgttcgt 4680 gtttagtttg aactttgttc tcgaaactgg agttgccaag atgaatacaa tcaatgcagc 4740 4800 agaacctcat agctttgacc tcaacggttc tacttatgtt agttacgtcg tcttggagta 4860 gtggtgacag tcaccatgaa tggtgtggca ggtagaaacc acagtgttaa caccactgtc agtggtactt accacaccgt ccatctttgg tgtcacaatt ctcccatgct gccacaaccc 4920 aatatgccaa taggacagta ctatctggcc gagggtacga cggtgttggg ttatacggtt 4980 5040 atcctgtcat gatagaccgg aaacaaccaa catagtgaca catagggccc aagaaatgtt 5100 gcagaatcag tttgttggtt gtatcactgt gtatcccggg ttctttacaa cgtcttagtc 5160 tttattggtg aggacacccg gctgaatatt aattccagtc ctgatgagca aaataaccac 5220 tcctgtgggc cgacttataa ttaaggtcag gactactcgt tgagccttta ctgagacgag 5280 agcaacaage tggecatgat gaaggtgtte acteggaaat gaetetgete tegttgtteg accggtacta cttccacaag tggatcgtct tgtggacagg agggaacggc cactagaagg 5340 tggccgaact acctagcaga acacctgtcc tcccttgccg gtgatcttcc accggcttga 5400 5460 aattccaata acaacaacag caatccatgt tcagaacaag atgttcttgc ttaaggttat 5520 tgttgttgtc gttaggtaca agtcttgttc tacaagaacg acagggtgtt ccaagcacag 5580 cagcagatcc tgggccatca aagcccagaa tgtcccacaa ggttcgtgtc gtcgtctagg 5640 acceggtagt ttcgggtctt gagcacagag gcctaattct ctggatcttt cagccacaaa 5700 tgtcctggat ctcgtgtctc cggattaaga gacctagaaa gtcggtgttt acaggaccta 5760 ggcagcagta tacagatagg tgagtcaaca caagatggca aatcaggatc ccgtcgtcat atgtctatcc actcagttgt gttctaccgt ttagtcctag aggtgaaaag atcaagaaac 5820

gtgtgaaaac	tccctattct	cttaagcggt	tccacttttc	tagttctttg	cacacttttg	5880
agggataaga	gaattcgcca	ggcgcccctc	cacctgggtc	atctccactg	aatcgctgga	5940
ctgtgaagtc	ccgcggggag	gtggacccag	tagaggtgac	ttagcgacct	gacacttcag	6000
aacaataatg	gcagtaacag	ggcagttcat	tccaaatcca	gcactgctgt	ttgttattac	6060
cgtcattgtc	ccgtcaagta	aggtttaggt	cgtgacgaca	ttaccttgca	gaaggaggca	6120
ctgctacaac	catggtgtct	aaagatatag	aatggaacgt	cttcctccgt	gacgatgttg	6180
gtaccacaga	tttctatatc	gaatgaactg	tctġtgactt	acttgacaga	cact	6234

<210> 2

<211> 1080

<212> PRT

<213> Human

<400> 2

Met Thr Ser Ser Leu Gln Arg Pro Trp Arg Val Pro Trp Leu Pro Trp 1 5 10 15

Thr Thr Ile Leu Leu Val Ser Thr Ala Ala Ala Ser Gln Asn Gln Glu 20 25 30

Arg Leu Cys Cys Ala Phe Lys Asp Pro Tyr Gln Gln Asp Leu Gly Ile 35 40 45

Gly Glu Ser Arg Ile Ser His Glu Asn Gly Thr Ile Leu Cys Ser Lys 50 55 60

Gly Ser Thr Cys Tyr Tyr Gly Leu Trp Glu Lys Ser Lys Gly Asp Ile 65 70 75 80

Asn Leu Val Lys Gln Gly Cys Cys Trp Ser His Ile Gly Asp Pro Gln

Glu Cys His Tyr Glu Glu Cys Val Val Thr Thr Pro Pro Ser Ile Gln Asn Gly Thr Tyr Arg Phe Cys Cys Cys Cys Ser Thr Asp Leu Cys Asn Val Asn Phe Thr Glu Asn Phe Pro Pro Pro Asp Thr Thr Pro Leu Ser Pro Pro His Ser Phe Asn Arg Asp Glu Thr Ile Ile Ile Ala Leu Ala Ser Val Ser Val Leu Ala Val Leu Ile Val Ala Ala Leu Cys Phe Gly Tyr Arg Met Leu Thr Gly Asp Arg Lys Gln Gly Leu His His Ser Met Asn Met Met Glu Ala Ala Ser Glu Pro Ser Leu Asp Leu Asp Asn Leu Lys Leu Leu Glu Leu Ile Gly Arg Gly Arg Tyr Gly Ala

Phe Ser Phe Phe Ala Asn Arg Gln Asn Phe Ile Asn Glu Lys Asn Ile 245 250 255

Val Val Tyr Lys Gly Ser Leu Asp Glu Arg Pro Val Ala Val Lys Val

Tyr	Arg	Val	Pro 260	Leu	Met	Glu	His	Asp 265	Asn	Ile	Ala	Arg	Phe 270	Ile	Val
Gly	Asp	Glu 275	Arg	Val	Val	Thr	Ala 280	Asp	Gly	Arg	Met	Glu 285	Tyr	Leu	Leu
Val	Met 290	Glu	Tyr	Tyr	Pro	Asn 295	Asn	Gly	Ser	Leu	Cys 300	Lys	Tyr	Leu	Ser
Leu 305	His	Thr	Ser	Asp	Trp 310	Val	Ser	Ser	Cys	Arg 315	Leu	Ala	His	Ser	Val 320
Thr	Arg	Gly	Leu	Ala 325	Tyr	Leu	His	Thr	Thr 330	Glu	Leu	Pro	Arg	Gly 335	Asp
His	Tyr	Lys	Pro 340	Ala	Ile	Ser	His	Arg 345	Asp	Leu	Leu	Asn	Ser 350	Arg	Asn
Val	Leu	Val 355	Lys	Asn	Asp	Gly	Thr 360	Cys	Val	Ile	Ser	Asp 365	Phe	Gly	Leu
Ser	Met 370	Arg	Leu	Thr	Gly	Asn 375	Arg	Leu	Val	Arg	Pro 380	Gly	Gly	Glu	Glu
Asp 385	Asn	Ala	Ala	Ile	Ser 390	Glu	Val	Gly	Thr	Ile 395	Arg	Tyr	Met	Ala	Ala 400
Pro	Glu	Val	Leu	Glu 405	Gly	Ala	Val	Asn	Leu 410	Arg	Asp	Cys	Glu	Ser 415	Ala
Leu	Lys	Gln	Val 420	Asp	Met	Tyr	Ala	Leu 425	Gly	Leu	Ile	Tyr	Trp 430	Glu	Ile

Phe Phe Met Arg Cys Thr Asp Leu Phe Pro Gly Glu Ser Val Pro Glu Tyr Gln Met Met Ala Phe Gln Thr Glu Val Gly Asn His Pro Thr Phe Glu Asp Met Gln Val Leu Val Ser Arg Glu Lys Gln Arg Pro Lys Phe Pro Glu Ala Trp Lys Lys Glu Asn Ser Leu Ala Val Arg Ser Leu Lys Glu Thr Ile Glu Asp Cys Trp Trp Asp Gln Asp Ala Glu Ala Arg Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu Met Met Ile Trp Glu Arg Asn Lys Ser Val Ser Pro Thr Thr Val Asn Pro Met Ser Thr Ala Met Gln Asn Glu Arg Asn Leu Ser His Asn Asn Arg Arg Val Pro Lys Ile Gly Pro Tyr Pro Asp Tyr Ser Ser Ser Tyr Ile Glu Asp Ser Ile His His Thr Asp Ser Ile Val Lys Asn Ile Ser Ser Glu His

Ser Met Ser Ser Thr Pro Leu Thr Ile Gly Glu Lys Asn Arg Arg Asn

Ser	Ile 610	Asn	Tyr	Glu	Arg	Gln 615	Gln	Ala	Gln	Ala	Arg 620	Ile	Pro	Ser	Pro
Glu 625	Thr	Ser	Val	Thr	Ser 630	Leu	Ser	Thr	Asn	Thr 635	Thr	Thr	Thr	Asn	Thr 640
Thr	Thr	Gly	Leu	Thr 645	Pro	Ser	Thr	Gly	Met 650	Thr	Thr	Ile	Ser	Glu 655	Met
Pro	Tyr	Tyr	Pro 660	Asp	Glu	Thr	Asn	Leu 665	His	Thr	Thr	Asn	Val 670	Ala	Gln
Ser	Ile	Gly 675	Pro	Thr	Pro	Val	Cys 680	Leu	Gln	Leu	Thr	Glu 685	Glu	Asp	Leu
Glu	Thr 690	Asn	Lys	Lys	Leu	Asp 695	Pro	Lys	Glu	Val	Asp 700	Lys	Asn	Leu	Lys
Glu 705	Ser	Ser	Asp	Glu	Asn 710	Asn	Leu	Met	Glu	His 715	Ser	Leu	Lys	Gln	Phe 720
Ser	Gly	Pro	Asp	Pro 725	Leu	Ser	Ser	Thr	Ser 730	Ser	Ser	Leu	Leu	Tyr 735	Pro
Leu	Ile	Lys	Leu 740	Ala	Val	Glu	Ala	Ala 745	Thr	Gly	Gln	Gln	Gln 750	Asp	Phe
Thr	Gln	Thr 755	Ala	Asn	Gly	Gln	Ala 760	Cys	Leu	Ile	Ile	Pro 765	Asp	Val	Leu
Pro	Thr	Gln	Ile	Tyr	Pro	Leu	Pro	Lys	Gln	Gln	Asn	Leu	Pro	Lys	Arg

Pro Thr Ser Leu Pro Leu Asn Thr Lys Asn Ser Thr Lys Lys Glu Pro Arg Leu Lys Phe Gly Ser Lys His Lys Ser Asn Leu Lys Gln Val Val Glu Thr Gly Val Ala Lys Met Asn Thr Ile Asn Ala Ala Glu Pro His Val Val Thr Val Thr Met Asn Gly Val Ala Gly Arg Asn His Ser Val . 845 Asn Asn Ser His Ala Ala Thr Thr Gln Tyr Ala Asn Arg Thr Val Leu Ser Gly Gln Gln Thr Thr Asn Ile Val Thr His Arg Ala Gln Glu Met Leu Gln Asn Gln Phe Ile Gly Glu Asp Thr Arg Leu Asn Ile Asn Ser Ser Pro Asp Glu His His Glu Pro Leu Leu Arg Arg Glu Gln Gln Ala 905 . Gly His Asp Glu Gly Val Leu Leu Asp Arg Leu Val Asp Arg Arg Glu

Arg Pro Leu Glu Gly Gly Arg Thr Asn Ser Asn Asn Asn Ser Asn 930 935 940

Pro Cys Ser Glu Gln Asp Val Leu Ala Ala Gln Gly Val Pro Ser Thr 945 950 955 960

Ala Ala Asp Pro Gly Pro Ser Lys Pro Arg Arg Arg Ala Gln Arg Pro 965 970 975

Asn Ser Leu Asp Leu Ser Ala Thr Asn Val Leu Asp Gly Ser Ser Ile 980 985 990

Gln Ile Gly Glu Ser Thr Gln Asp Gly Lys Ser Gly Ser Ser Gly Glu 995 1000 1005

Lys Ile Lys Lys Arg Val Lys Thr Pro Tyr Ser Leu Lys Arg Trp 1010 1015 1020

Trp Arg Pro Ser Thr Trp Val Ile Ser Thr Glu Ser Leu Asp Cys 1025 1030 1035

Glu Val Asn Asn Gly Ser Asn Arg Ala Val His Ser Lys Ser 1040 1045 1050

Ser Thr Ala Val Val Thr Leu Ala Glu Gly Gly Thr Ala Thr Thr 1055 1060 1065

Met Val Ser Lys Asp Ile Gly Gly Met Asn Cys Leu 1070 1075 1080

<210> 3

<211> 39

<212> DNA

<213> Human

<400> 3

gctggtgagt agctccggct ttcctttatt ttagcttcg

<210>						
<211>						
<212>						
<213>	Huma	an				
400	4					
<400>	4					
caagge	aagt	gatactttcc	atattgattt	ataggatat		3.9
<210>	5					
<211>						
<212>						
<213>		an				
<400>	5					
ctcagt	aagt	aaagtaacct	ttgttttctt	ttaggtcca		39
<210>	_					
<210>						
<211>						
<213>		n				
(213)	Truma	111				
<400>	6					
acaggta	aaaa	attaccattt	tcctgttctt	ataggagac		39
				33 3		
<210>	7					
	42					
<212>						
<213>	Huma	n				
<400>	7			·		
		gtttgccgtt	attaaaacac	ttgcagctga	tt	42
<210>	8					
<211>	42					
<212>	DNA					
<213>	Huma	n				

	<400> cccaat		gttcttcata	gttttcctct	atatagggat	ct	42
	<210><211><212><213>	39 DNA	an				
	<400> ggaggt		tagtcaataa	aattatccaa	acagatcat		39
	<210><211><212><213>	DNA	an				
	<400> agcgago		gtgtatacaa	aactctaatt	tatcaggttg	gc	42
<	<210>(212>(213>)	DNA	ın				
		11 aaaa	actactgtct	ctacaaatcc	acaggggaa		39
<	210> 211> 212> 213>	12 42 DNA Huma	.n				
	:400> igcctgg	12 gtaa	gaaaaaacta	atactttgtc	ttacaggcag	tg	42
<	210> 211> 212>	13 39 DNA					

```
<213>
       Human
<400>
       13
gaacggtaag accctaaggg ctttctttct ttaagcaac
                                                                           39
<210>
       14
<211>
       39
<212>
       DNA
<213>
       Human
<400>
       14
cagagtaagt ggagggatcc acttttattt tcagtaggt
                                                                           39
<210>
       15
<211>
       29
<212>
       PRT
<213>
       Human
<400>
       15
Leu Lys Glu Thr Ile Glu Asp Cys Trp Asp Gln Asp Ala Glu Ala Trp
                                      10
Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu
            20
                                  25
<210>
       16
<211>
       29
<212>
      PRT
<213>
      Homo sapiens
<400>
       16
Leu Lys Glu Thr Ile Glu Asp Cys Trp Asp Gln Asp Ala Glu Ala Arg
1
                 5
                                      10
                                                           15
Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu
            20
                                  25
```

```
<210>
       17
<211>
       29
<212>
       PRT
<213>
       Mus musculus
<400>
       17
Leu Lys Glu Thr Ile Glu Asp Cys Trp Asp Gln Asp Ala Glu Ala Arg
                                      10
Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu
            20
                                  25
<210>
       18
<211>
       29
<212>
      PRT
<213>
       Xenopus laevis
<400>
       18
Leu Lys Glu Thr Ile Asp Asp Cys Trp Asp Gln Asp Ala Glu Ala Arg
                 5
                                      10
                                                           15
Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu
            20
                                 25
<210>
       19
<211>
       29
<212>
       PRT
       Gallus gallus
<213>
<400>
       19
Leu Lys Glu Thr Ile Glu Asp Cys Trp Asp Gln Asp Ala Glu Ala Arg
```

10

15

Leu Thr Ala Gln Cys Ala Glu Glu Arg Met Ala Glu Leu 20 25

<210> 20

<211> 29

<212> PRT

<213> Home sapiens

<400> 20

Val Cys Glu Thr Leu Thr Glu Cys Trp Asp His Asp Pro Glu Ala Arg 5 10

Leu Thr Ala Gln Cys Val Ala Glu Arg Phe Ser Glu Leu 20

<210> 21

<211> 29

<212> PRT

Mus musculus <213>

<400> 21

Val Cys Glu Thr Leu Thr Glu Cys Trp Asp His Asp Pro Glu Ala Arg 1 5 10 15

Leu Thr Ala Gln Cys Val Ala Glu Arg Phe Ser Glu Leu 25 20

<210> 22

<211> 29

<212> PRT

Rattus Norvegicus <213>

<400> 22

Val Cys Glu Thr Leu Thr Glu Cys Trp Asp His Asp Pro Glu Ala Arg 15 10 5

Leu Thr Ala Gln Cys Val Ala Glu Arg Phe Ser Glu Leu 20 25

<210> 23

<211> 29

<212> PRT

<213> Homo sapiens

<400> 23

Leu Cys Val Thr Ile Glu Asp Cys Trp Asp His Asp Ala Glu Ala Arg
1 10 15

Leu Ser Ala Gly Cys Val Glu Glu Arg Val Ser Leu Ile 20 25

<210> 24

<211> 29

<212> PRT

<213> sheep

<400> 24

Leu Cys Glu Thr Ile Glu Glu Cys Trp Asp His Asp Ala Glu Ala Arg

1 10 15

Leu Ser Ala Gly Cys Val Gly Glu Arg Ile Thr Gln Met 20 25

<210> 25

<211> 29

<212> PRT

<213> Gallus gallus

<400> 25

Leu Cys Glu Thr Ile Glu Glu Cys Trp Asp His Asp Ala Glu Ala Arg

1 10 15

Leu Ser Ala Gly Cys Val Glu Glu Arg Ile Ile Gln Met 20 25

<210> 26

<211> 29

<212> PRT

<213> Homo sapiens

<400> 26

Leu Arg Glu Leu Leu Glu Asp Cys Trp Asp Ala Asp Pro Glu Ala Arg 1 5 10 15

Leu Thr Ala Glu Cys Val Gln Gln Arg Leu Ala Ala Leu 20 25

<210> 27

<211> 29

<212> PRT

<213> Rattus Norvegicus

<400> 27

Leu Arg Glu Leu Leu Glu Asp Cys Trp Asp Ala Asp Pro Glu Ala Arg

1 10 15

Leu Thr Ala Glu Cys Val Gln Gln Arg Leu Ala Ala Leu 20 25

<210> 28

<211> 29

<212> PRT

<213> C.elegans

<400> 28

Leu Lys Lys Val Thr Glu Glu Met Trp Asp Pro Glu Ala Cys Ala Arg 1 5 10 15

Ile Thr Ala Gly Cys Ala Phe Ala Arg Val Trp Asn His

<210> 29

<211> 29

<212> PRT

<213> Xenopus laevis

<400> 29

Leu Cys Val Thr Ile Glu Glu Cys Trp Asp His Asp Ala Glu Ala Arg 1 5 10 15

Leu Ser Ala Gly Cys Val Glu Glu Arg Ile Ser Gln Ile 20 25

<210> 30

<211> 28

<212> PRT

<213> Human

<400> 30

Leu Lys Glu Thr Ile Glu Asp Cys Trp Asp Asp Ala Glu Ala Arg Leu

1 10 15

Thr Ala Gln Cys Val Glu Glu Arg Met Ala Glu Leu 20 25

