Database Design

Lecture 11

Learning Outcomes

- To instill the concept that successful database design must reflect the information system of which the database is a part
- To discuss how successful IS are developed within a framework called SDLC
- To discuss the concept that within IS, the most successful databases are subject to frequent evaluation & revision within a framework called DBLC
- To be able to conduct evaluation & revision within the SDLC & DBLC frameworks

The Information System

- Provides for data collection, storage, and retrieval
- Information system helps to transform data into information
- Application program is usually composed of two parts:
 - Data
 - Code by which the data are transformed into information

Generating Information for Decision Making

Information System

- Performance depends on triad of factors:
 - Database design and implementation
 - Application design and implementation
 - Administrative procedures
- Database development
 - DB design to create complete, normalized, non-redundant and fully integrated conceptual, logical, and physical database models
 - DB implementation to create storage structure, load data into database, provide data for management

The Systems Development Life Cycle (SDLC)

- Traces history (life cycle) of an information system
- Provides "big picture" within which database design and application development can be mapped out and evaluated

The Systems Development Life Cycle (SDLC)

- Divided into five phases
 - Planning
 - Analysis
 - Detailed systems design
 - Implementation
 - Maintenance
- Iterative rather than sequential process

The Systems Development Life Cycle (SDLC)

Planning

- Yields a general overview of the company and its objectives.
- An initial assessment of the information-flow-andextent requirements must be made:
 - Should the existing system be continued, modified or replaced?
- A feasibility study must address the following issues if a new system is necessary:
 - Technical aspects of hardware and software requirements.
 - System cost.

Analysis

- Problems defined during the planning phase are examined in greater detail during analysis
- Goal : better understanding of system's functional areas, actual and potential problems, and opportunities
- A thorough audit of user requirements conducted
- Existing systems hardware and software are studied

Analysis

- Includes creation of logical systems design
 - Must specify appropriate conceptual data model, inputs, processes, and expected output requirements
 - Might use tools such as data flow diagrams (DFD), Unified Modeling Language (UML) diagrams, or entity relationship (ER) diagrams
 - Yields functional descriptions of system's components (modules) for each process within database environment

Detailed System Design ³

- The designer completes the design of the system's processes, including all technical specifications for:
 - Screen
 - Menus
 - Reports
 - Other devices
- Steps are laid out for conversion from old to new system
- Training principles and methodologies are planned.

Implementation

- Hardware, DBMS software, and application programs are installed
- Cycle of coding, testing, and debugging continues until database is ready to be delivered
- Database is created and system is customized by creation of tables and views, and user authorizations

Maintenance

- Maintenance activities:
 - Corrective maintenance in response to systems errors
 - 2. Adaptive maintenance due to changes in the business environment
 - 3. Perfective maintenance to enhance the system

Database Life Cycle (DBLC)

The Database Initial Study

Overall purpose:

- Analyze the company situation
- Define problems and constraints
- Define objectives, scope and boundaries

Analyze the Company Situation

- Analyze the company situation
 - Discover what the company's operational components are, how they function, and how they interact
 - Also analyze the company organization's structure

Define Problems and Constraints

- Managerial view of company's operation is often different from that of end users
- Designer must continue to carefully probe to generate additional information that will help define problems.
- Must address questions such as
 - What are the limits and constraints imposed on the system?
 - What is the input and required output?

Define Objectives

- Designer must begin to address the following questions:
 - What is the proposed system's initial objective?
 - Will the system interface with other existing or future systems in the company?
 - Will the system share data with other systems or users?

Define Scope and Boundaries

Scope

- Defines extent of design according to operational requirements (one department vs. entire org.)
- Helps define required data structures, type and number of entities, and physical size of the database

Boundaries

- Limits (external to the system)
- Often imposed by existing hardware and software and budget allocated

Database Design

- Two views of data within system:
 - Business view
 - Designer's view

Database Design Process

- Ensure that all data needed are in the ER model, and that all data in the model are needed
- Must take into account business rules (derived from description of operations)

- Designer must communicate and enforce appropriate standards to be used in the documentation of design
 - Use of diagrams and symbols
 - Documentation writing style
 - Layout
 - Other conventions to be followed during documentation

Developing the Conceptual Model Using ER Diagrams		
STEP	ACTIVITY	
1	Identify, analyze, and refine the business rules.	
2	Identify the main entities, using the results of Step 1.	
3	Define the relationships among the entities, using the results of Steps 1 and 2.	
4	Define the attributes, primary keys, and foreign keys for each of the entities.	
5	Normalize the entities. (Remember that entities are implemented as tables in an RDBMS.)	
6	Complete the initial ER diagram.	
7	Validate the ER model against the end users' information and processing requirements.	
8	Modify the ER model, using the results of Step 7.	

ER Modeling Is an Iterative Process Based on Many Activities

- Model must be verified against proposed system processes to corroborate that intended processes can be supported by database model
- Revision of original design starts with a careful reevaluation of entities, followed by a detailed examination of attributes that describe these entities

The ER Model Verification Process

TABLE 2.5 The ER Model Verification Process		
STEP	ACTIVITY	
1	Identify the ER model's central entity.	
2	Identify each module and its components.	
3	Identify each module's transaction requirements: Internal: updates/inserts/deletes/queries/reports External: module interfaces	
4	Verify all processes against system requirements.	
5	Make all necessary changes suggested in Step 4.	
6	Repeat Steps 2–5 for all modules.	

The ER Model Verification Process

DBMS Software Selection

- Critical to the information system's smooth operation
- Advantages and disadvantages should be carefully studied
 - Cost
 - Features and tools
 - Underlying model
 - Portability
 - Hardware requirements

Logical Design

- Translate conceptual design into internal model for a selected database management system
- Logical design is software-dependent
- Requires that all objects in the model be mapped to specific constructs used by selected database software

Logical Design

Figure 2.13: A simple conceptual model which had been converted into Logical Model

Physical Design

- Process of selecting data storage and data access characteristics of the database
- Particularly important in the older hierarchical and network models
- Becomes more complex when data are distributed at different locations

Implementation and Loading

- Install database
- C reate database to house the end-user tables

Implementation and Loading Issues

Performance

Varies according to the hardware and software environment used.

Security

- Data must be protected from access by unauthorized users
 - Eg: password security, access right, audit trails

Backup and Recovery

- Database can be subject to data loss through unintended data deletion and power outages
 - Full backup copied whole database
 - Differential backup copied the last modifications done on database
 - Backup transaction log copied the last transaction log operations made

Implementation and Loading Issues

- Integrity
 - Enforced through proper use of primary and foreign key rules
- Company Standards
 - May partially define database standards
 - Database administrator must implement and enforce such standards

Testing and Evaluation

- Occurs in parallel with applications programming
- If implementation fails to meet some of the system's evaluation criteria
 - Fine-tune specific system and DBMS configuration parameters
 - Modify the logical/physical design
 - Upgrade or change the DBMS software and/or the hardware platform

Operation

- Once the database has passed the evaluation stage, it is considered operational
- Beginning of the operational phase starts the process of system evolution

Maintenance and Evolution

- Required periodic maintenance:
 - Perfective maintenance (enhancement)
 - Corrective maintenance (recovery)
 - Adaptive maintenance (changes in env.)
- Assignment of access permissions and their maintenance for new and old users
- Periodic security audits (DB access statistics)
- Periodic system-usage summaries

Parallel Activities in the DBLC and the SDLC

Database Design Strategies

- Two classical approaches to database design:
 - Top-down design
 - Bottom-up design

Centralized vs. Decentralized Design

- Database design may be based on two very different design philosophies:
 - Centralized design
 - 2. Decentralized design

Summary

- Information system facilitates transformation of data into information
 - Manages both data and information
- SDLC traces history (life cycle) of an application within the information system
- DBLC describes history of database within the information system
- Database design and implementation process moves through series of well-defined stages