习题课 (4) 朱俸民

玩具语言 λ 演复

《软件分析与验证》 第四次习题课:形式语义回顾

朱俸民

清华大学

2020 年 4 月

Contents

习题课 (4)

朱俸民

玩具语言 λ 演算

1 玩具语言

2 λ 演算

分类

朱俸民 元具语言

习题课 (4)

Operational semantics: The meaning of a construct is specified by the computation it induces when it is executed on a machine. In particular, it is of interest **how** the effect of a computation is produced.

Denotational semantics: Meanings are modelled by mathematical objects that represent the effect of executing the constructs. Thus only the **effect** is of interest, not how it is obtained.

Axiomatic semantics: Specific properties of the effect of executing the constructs are expressed as **assertions**. Thus there may be aspects of the executions that are ignored.

- Semantics with Applications: An Appetizer

Contents

习题课 (4)

玩具语言 λ 油笪

1 玩具语言

2 λ 演算

语法

习题课 (4) 朱俸民

玩具语言 λ 演算

项/表达式

$$e \in E ::= \mathsf{Const}(n) \mid \mathsf{Plus}(e_1, e_2)$$

其中 n 为自然数。

元变元 (meta-variable) 归纳定义 (inductive definition) 抽象语法 (abstract syntax)

大步操作语义

习题课 (4) 朱俸民

玩具语言 λ 演算

$$\llbracket \mathsf{Const}(n)
rbracket = n$$
 $\llbracket \mathsf{Plus}(e_1, e_2)
rbracket = \llbracket e_1
rbracket + \llbracket e_2
rbracket$

语义是一个函数/关系 语法制导 (syntax-directed) 语义对象 v.s. 语法对象

另一种写法

习题课 (4) 朱俸民

玩具语言 λ 演算

$$\begin{split} & \text{(Const)} \overline{\hspace{0.1cm} \left[\hspace{0.05cm} \mathsf{Const}(n) \right]\hspace{0.1cm} = n} \\ & \text{(Plus)} \overline{\hspace{0.1cm} \left[\hspace{0.05cm} \mathsf{e}_1 \right]\hspace{0.1cm} = n_1 \hspace{0.1cm} \left[\hspace{0.05cm} \mathsf{e}_2 \right]\hspace{0.1cm} = n_2} \\ & \overline{\hspace{0.1cm} \left[\hspace{0.05cm} \mathsf{Plus}(e_1, e_2) \right]\hspace{0.1cm} = n_1 + n_2} \end{split}$$

规则模式 (rule scheme)

横线: 蕴含

横线上方的空格: 合取 (conjunction)

上方为空: 公理 (axiom)

证明

习题课 (4) 朱俸民

玩具语言 λ 演算

如何证明 $[\![\mathsf{Plus}(\mathsf{Const}(1),\mathsf{Plus}(\mathsf{Const}(2),\mathsf{Const}(3)))]\!] = 6 \ ?$

"线性"的证明

"结构化"的证明:证明树 (proof tree)

还有一种写法

习题课 (4) 朱俸民

玩具语言

$$\begin{array}{c} \text{(R-Const)} \overline{\qquad \qquad } \\ \hline R(\mathsf{Const}(\textit{n}), \textit{n}) \\ \\ \text{(R-Plus)} \overline{\qquad \qquad } \\ \hline R(\mathsf{Plus}(\textit{e}_1, \textit{e}_1), \textit{n}_1 + \textit{n}_2) \end{array}$$

其中 R(e, n) 为 E 与 \mathbb{N} 上的二元关系。

小步操作语义: "左型"

习题课 (4) 朱俸民

玩具语言 λ 演算

$$(\mathsf{ST-L-PlusCC}) \cfrac{\mathsf{Plus}(\mathsf{Const}(n_1),\mathsf{Const}(n_2)) \to_{L} \mathsf{Const}(n_1+n_2)}{\mathsf{Plus}(e_1,e_2) \to_{L} \mathsf{Plus}(e_1',e_2)} \\ (\mathsf{ST-L-Plus1}) \cfrac{e_1 \to_{L} e_1'}{\mathsf{Plus}(e_1,e_2) \to_{L} \mathsf{Plus}(e_1',e_2)} \\ (\mathsf{ST-L-Plus2}) \cfrac{e_2 \to_{L} e_2'}{\mathsf{Plus}(\mathsf{Const}(n_1),e_2) \to_{L} \mathsf{Plus}(\mathsf{Const}(n_1),e_2')}$$

其中 \rightarrow _L 是 E 上的二元关系。

语法制导 (syntax-directed)

有些项没有可应用的规则

确定性 (deterministic): 若 $e \rightarrow_L e_1$ 且 $e \rightarrow_L e_2$, 则

$$e_1 = e_2$$

多步归约

习题课 (4) 朱俸民

玩具语言 λ 油質

记二元关系 \rightarrow_L^* 为 \rightarrow_L 的自反传递闭包,即:

$$\begin{array}{c} \text{(Refl)} \overline{\begin{array}{c} e \rightarrow_L^* e \\ \end{array}} \\ \text{(Trans)} \overline{\begin{array}{cccc} e_1 \rightarrow_L^* e_2 & e_2 \rightarrow_L^* e_3 \\ \hline e_1 \rightarrow_L^* e_3 \end{array}} \end{array}$$

思考: 证明

 $\mathsf{Plus}(\mathsf{Const}(1),\mathsf{Plus}(\mathsf{Const}(2),\mathsf{Const}(3))) \to_{\mathit{L}}^* \mathsf{Const}(6)$

范式/常态

习题课 (4) 朱俸民

玩具语言 λ 演算

一般定义: 给定一个集合 S 上的二元关系 R, 设 R^* 为其自反传递闭包。若不存在 $s' \in S$ 使得 R(s,s'), 则称 s 为范式/常态 (normal form)。

例如: $\mathbf{A} \to_{\mathbf{L}} \mathbf{A}$ 系统中, $\mathbf{Const}(6)$ 是一个常态。

来一点奇怪的操作

习题课 (4) 朱俸民

玩具语言 λ 演算

去掉 (ST-L-Plus2):

$$\begin{array}{c} \text{(ST-L-PlusCC)} \hline \\ \text{Plus}(\mathsf{Const}(\textit{n}_1),\mathsf{Const}(\textit{n}_2)) \rightarrow_{\textit{L}} \mathsf{Const}(\textit{n}_1 + \textit{n}_2) \\ \\ \text{(ST-L-Plus1)} \hline \\ \hline \\ \text{Plus}(\textit{e}_1,\textit{e}_2) \rightarrow_{\textit{L}} \mathsf{Plus}(\textit{e}_1',\textit{e}_2) \\ \end{array}$$

发现 Plus(Const(1), Plus(Const(2), Const(3))) 是常态,这符合直观吗?

小步操作语义: "右型"

习题课 (4) 朱俸民

玩具语言 λ 演算

$$(ST-R-PlusCC)$$
 $Plus(Const(n_1), Const(n_2)) \rightarrow_R Const(n_1 + n_2)$ $e_2 \rightarrow_R e'_2$ $Plus(e_1, e_2) \rightarrow_R Plus(e_1, e'_2)$ $e_1 \rightarrow_R e'_1$ $Plus(e_1, Const(n_2)) \rightarrow_R Plus(e'_1, Const(n_2))$ 其中 \rightarrow_R 是 E 上的二元关系。

小步操作语义:"非确定型"

习题课 (4)

玩具语言

$$(ST-N-PlusCC)$$
 $Plus(Const(n_1), Const(n_2)) \rightarrow_N Const(n_1 + n_2)$ $e_1 \rightarrow_N e'_1$ $Plus(e_1, e_2) \rightarrow_N Plus(e'_1, e_2)$ $e_2 \rightarrow_N e'_2$ $Plus(e_1, e_2) \rightarrow_N Plus(e_2, e'_2)$ 甘中 $\rightarrow_N Plus(e_1, e_2) \rightarrow_N Plus(e_2, e'_2)$

其中 \rightarrow_N 是 E 上的二元关系。

等价性

习题课 (4) 朱俸民

玩具语言 λ 演算

不难发现, \rightarrow_L , \rightarrow_R 和 \rightarrow_N 是三种不同但"等价"的设计: 若 $e \rightarrow_L^* e_1$, $e \rightarrow_R^* e_2$, $e \rightarrow_N^* e_3$ 且 e_1 , e_2 , e_3 均为常态,则 $e_1 = e_2 = e_3$ 。

Contents

习题课 (4)

朱俸民

玩具语言 **λ 演算**

1 玩具语言

2 λ 演算

SICP

习题课 (4)

朱俸民

元具语言

λ 演算

语法

习题课 (4) 朱俸民

玩具语言 み **演算**

```
项 t ::= x (variable) \mid (t_1t_2) \qquad \qquad (\lambda	ext{-application}) \mid (\lambda x.t) \qquad (\lambda	ext{-abstraction})
```

其中, $x \in V$ 是一个变元, λ 相当于量词 (如同 \forall)。

惯例: λ -application 具有最高优先级、左结合; λ -abstraction 的点具有最低优先级。

非确定性小步语义

习题课 (4) 朱俸民

玩具语言 **み 油**算

$$(\beta) \overline{(\lambda x.t_1)t_2 \rightarrow t_1[x:=t_2]}$$

$$(\mathsf{App1}) \overline{t_1 \rightarrow t_1'} \overline{t_1t_2 \rightarrow t_1't_2} \qquad (\mathsf{App2}) \overline{t_2 \rightarrow t_2'} \overline{t_1t_2 \rightarrow t_1t_2'}$$

其中, \rightarrow 是项上的二元关系; 记号 t[x := t'] 表示将 t 中所有自由出现的 x 替换为 t'。同样有 \rightarrow * 是 \rightarrow 的自反传递闭包。

思考: (1) 哪些项是常态?(2) 为何非确定?

非确定性不好吗

习题课 (4) 朱俸民

玩具语言 み **油**算

定理

(Church-Rosser) 对任意项 t, t_1 , t_2 , 若 $t \rightarrow^* t_1$ 且 $t \rightarrow^* t_2$, 则存在一个项 s 使得 $t_1 \rightarrow^* s$ 且 $t_2 \rightarrow^* s$ 。

推论

如果一个项能求值到常态,那么常态是唯一的。

换言之,无论按照何种顺序归约,最终结果都一样!

确定性小步语义: Call-by-value

习题课 (4) 朱俸民

玩具语言 **λ 演算** 定义谓词 val(v) 表示项 v 是一个 λ -abstraction 或变元。

$$(\mathsf{CBV-App1}) \frac{t_1 \to_{\mathit{CBV}} t_1'}{t_1 t_2 \to_{\mathit{CBV}} t_1' t_2} \\ (\mathsf{CBV-App2}) \frac{t_2 \to_{\mathit{CBV}} t_2'}{(\lambda x. t) t_2 \to_{\mathit{CBV}} (\lambda x. t) t_2'} \\ (\mathsf{CBV-\beta}) \frac{val(v)}{(\lambda x. t) v \to_{\mathit{CBV}} t[x := v]}$$

直观含义:函数调用时,先求值参数到常态。

确定性小步语义: Call-by-name

习题课 (4) 朱俸民

玩具语言 み **演算**

直观含义:函数调用时,直接用参数替换函数体。

每个项都可以求值到常态吗

习题课 (4) 朱俸民

玩具语言 **み 演算**

经典反例: $\omega\omega$, 其中 $\omega = \lambda x.xx$

小结

习题课 (4) 朱俸民

玩具语言 **λ 演算** 纯 (pure) 语言的小步语义比不纯 (impure) 的在形式上更"简单"

小结

习题课 (4) 朱俸民

玩具语言 **み 演算** 纯 (pure) 语言的小步语义比不纯 (impure) 的在形式上更"简单"

研究形式系统

"理解"规则,包括一些非形式化的直观 内定理证明(本课程要求) 元性质证明(本课程不要求)

小结

习题课 (4) 朱俸民

玩具语言 **λ 演算** 纯 (pure) 语言的小步语义比不纯 (impure) 的在形式上更"简单"

研究形式系统

"理解"规则,包括一些非形式化的直观 内定理证明(本课程要求) 元性质证明(本课程不要求)

形式语义有什么用

更准确地理解已学过的语言(或片段)的语义 更本质地了解新语言(或片段)的语义 一种研究程序语言 (PL) 的手段