Propositional Logic: Hilbert System, \mathcal{H} CS402, Spring 2016

Shin Yoo

Hilbert System, \mathcal{H}

Unlike \mathcal{G} , which deals with sets of formulas, \mathcal{H} is a deductive system for single formulas. In \mathcal{G} , there is one definition of axioms, and multiple rules. In \mathcal{H} , there are many axioms, but only one rule.

Definition 1 (3.9, Ben-Ari)

 ${\cal H}$ is a deductive system with three axiom schemes and one rule of inference. For any formulas, A,B and C, the following formulas are axioms:

- $\bullet \vdash (A \rightarrow (B \rightarrow A)$
- $\bullet \vdash ((A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- $\bullet \vdash (\neg B \to \neg A) \to (A \to B)$

 ${\cal H}$ uses *Modus Ponens* (MP) as the single inference rule:

$$\frac{\vdash A \quad \vdash A \rightarrow B}{\vdash B} MP$$

Hilbert System, \mathcal{H}

Theorem 1 (3.10, Ben-Ari)

For any formula ϕ , $\phi \vdash \phi$.

Proof.

Think $A: \phi, B: \phi \to \phi, C: \phi$ when we refer to axiom schemes.

1.
$$\vdash (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow ((\phi \rightarrow (\phi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi)))$$

Axiom 2

2.
$$\vdash \phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)$$

Axiom 1 MP, 1, 2

3.
$$\vdash (\phi \rightarrow (\phi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi))$$

Axiom 1 $(A, B : \phi)$

4.
$$\vdash \phi \rightarrow (\phi \rightarrow \phi)$$

MP. 3. 4

5.
$$\vdash \phi \rightarrow \phi$$

Hilbert System, \mathcal{H}

Note that $\{\rightarrow, \neg\}$ is an adequate set of opeartors, i.e. can replace all other binary operators throuth semantic equivalence.

However, for the sake of expressiveness, we introduce new rules of inference, called *derived rules*, to \mathcal{H} . We then use use derived rules to transform a proof into another (usually longer) proof, which uses just the original axioms and MP.

Consequently, derived rules should be proven to be *sound* with respect to \mathcal{H} . That is, the use of the derived rule does not increase the set of provable theorems in \mathcal{H} . That is, it should be possible to prove a derived rule of interest, without using itself.

Deduction Rule

Definition 2 (3.12, Ben-Ari, slight different betw. 2nd and 3rd ed.)

Let U be a set of formulas, and A a formula. The notation $U \vdash A$ means that the formulas in U are assumptions in the proof of A. A proof is a sequence of lines $U_i \vdash \phi_i$, such that for each i, $U_i \subseteq U$, and ϕ_i is an axiom, a previously proved theorem, a member of U_i or can be derived by MP from previous lines $U_i' \vdash \phi_i'$, $U_i'' \vdash \phi_i''$, where i', i'' < i.

Definition 3 (3.13, Ben-Ari)

Deduction rule: suppose you want to prove $A \to B$. First, we assume A, that is, treat A as if it is an additional axiom, in addition to the given ones, U. Then prove $U \cup \{A\} \vdash B$. This conclusion discharges our initial assumption A. That is, we have $\underbrace{U \cup \{A\} \vdash B}_{\text{now proved that } A \to B}.$ In other words, $\underbrace{U \cup \{A\} \vdash B}_{U \vdash A \to B}$.

Soundness of the Deduction Rule in ${\cal H}$

Theorem 2 (3.14, Ben-Ari)

The deduction rule is a sound derived rule.

Proof.

We show, by induction on the length n of the proof of $U \cup A \vdash B$, how to obtain a proof of $U \vdash A \rightarrow B$ that does not use the deduction rule (i.e. show *soundness*).

For n = 1, B is proved in a single step. Consequently, B is either an element of $U \cup \{A\}$, an axiom in \mathcal{H} , or a previously proved theorem.

- If B is actually A, then $\vdash A \rightarrow A$ by Theorem 1, so naturally $U \vdash A \rightarrow A$.
- If $B \in U$ (i.e. B is a proven theorem), or B is an axiom, then $U \vdash B$. Then B is proved in a single application of MP as follows:
 - 1. $U \vdash B$ Axiom or Theorem
 - 2. $U \vdash B \rightarrow (A \rightarrow B)$ Axiom #1
 - 3. $U \vdash A \rightarrow B$ MP, 1, 2

Soundness of the Deduction Rule in ${\cal H}$

Proof.

If n > 1, the last step in the proof of $U \cup \{A\} \vdash B$ is either a one-step inference of B or an inference of B using MP.

In the first case, the result holds by the proof for n = 1.

Otherwise, MP was used, so there is a formula C and lines i,j < n in the proof such that line i in the proof is $U \cup \{A\} \vdash C$ and line j is $U \cup \{A\} \vdash C \rightarrow B$. By the inductive hypothesis, $U \vdash A \rightarrow C$ and $U \vdash A \rightarrow (C \rightarrow B)$. Based on these, the proof of $U \vdash A \rightarrow B$ is given by:

1
$$U \vdash A \rightarrow C$$

2. $U \vdash A \rightarrow (C \rightarrow B)$

3. $U \vdash (A \rightarrow (C \rightarrow B)) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow B))$

4. $U \vdash (A \rightarrow C) \rightarrow (A \rightarrow B)$

5. $U \vdash A \rightarrow B$

Inductive Hypothesis

Inductive Hypothesis

Axiom #2

MP, 2, 3

MP, 1, 4

Derived Rules in \mathcal{H}

Theorem 3 (3.16, Ben-Ari)

$$\vdash (A \to B) \to ((B \to C) \to (A \to C))$$

Proof.

1.
$$\{A \rightarrow B, B \rightarrow C, A\} \vdash A$$
 Assumption

2.
$$\{A \rightarrow B, B \rightarrow C, A\} \vdash A \rightarrow B$$
 Assumption

$$\{A \to B, B \to C, A\} \vdash B$$

4.
$$\{A \rightarrow B, B \rightarrow C, A\} \vdash B \rightarrow C$$

5. $\{A \rightarrow B, B \rightarrow C, A\} \vdash C$

$$\{A \to B, B \to C\} \vdash A \to C$$

Deduction, 5

7.
$${A \rightarrow B} \vdash [(B \rightarrow C) \rightarrow (A \rightarrow C)]$$

Deduction, 6

8.
$$\vdash (A \rightarrow B) \rightarrow [(B \rightarrow C) \rightarrow (A \rightarrow C)]$$

Deduction, 7

Definition 4 (Rule of Transtivity)

$$\frac{U \vdash A \to B \quad U \vdash B \to C}{U \vdash A \to C}$$

Derived Rules in \mathcal{H}

Theorem 4

$$\vdash (A \to (B \to C)) \to (B \to (A \to C))$$

Proof.

1.
$$\{A \rightarrow (B \rightarrow C), B, A\} \vdash A$$
 Assumption

2.
$$\{A \rightarrow (B \rightarrow C), B, A\} \vdash A \rightarrow (B \rightarrow C)$$
 Assumption

3.
$$\{A \rightarrow (B \rightarrow C), B, A\} \vdash B \rightarrow C$$
 MP, 1, 2

4.
$$\{A \rightarrow (B \rightarrow C), B, A\} \vdash B$$
 Assumption

5.
$$\{A \to (B \to C), B, A\} \vdash C$$
 MP, 4, 3

6.
$$\{A \rightarrow (B \rightarrow C), B\} \vdash A \rightarrow C$$
 Deduction, 5

7.
$$\{A \rightarrow (B \rightarrow C)\} \vdash B \rightarrow (A \rightarrow C)$$
 Deduction, 6

8.
$$\vdash (A \rightarrow (B \rightarrow C)) \rightarrow (B \rightarrow (A \rightarrow C))$$
 Deduction, 7

Definition 5 (Rule of Exchanged Antecedent)

$$\frac{A \to (B \to C)}{II \vdash B \to A \to C}$$

Theorems for other operators in \mathcal{H}

Theorem 5

$$\vdash A \to (B \to (A \land B))$$

Proof.

1.
$$\{A, B\} \vdash (A \rightarrow \neg B) \rightarrow (A \rightarrow \neg B)$$
 Theorem 1

2.
$$\{A, B\} \vdash A \rightarrow ((A \rightarrow \neg B) \rightarrow \neg B)$$
 Exchange of Antecedent

$$3. \qquad \{A,B\} \vdash A$$

$$\{A,B\} \vdash (A \rightarrow \neg B) \rightarrow \neg B \qquad MP, 3, 2$$

5.
$$\{A, B\} \vdash \neg \neg B \rightarrow \neg (A \rightarrow \neg B)$$
 Contrapositive

6.
$$\{A,B\} \vdash B$$

7.
$$\{A, B\} \vdash \neg \neg B$$

8.
$$\{A,B\} \vdash \neg (A \rightarrow \neg B)$$

9.
$${A} \vdash B \rightarrow \neg (A \rightarrow \neg B)$$

10.
$$\vdash A \rightarrow (B \rightarrow \neg (A \rightarrow \neg B))$$

11.
$$\vdash A \rightarrow (B \rightarrow (A \land B))$$

Assumption

$$A \wedge B \models \neg (A \rightarrow \neg B)$$

Exercise

Prove the following theorems in \mathcal{H} :

- \vdash $(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$ (Contraposition)
- $\vdash \neg \neg A \rightarrow A$ (Double Negation)
- given that $\vdash true$ and $\vdash \neg false$, prove $\vdash (\neg A \rightarrow false) \rightarrow A$ (Reductio Ad Absurdum)