

CIRCUIT TECHNOLOGY www.aeroflex.com/act1.htm

Features

- 4 Low Voltage/Power AMD 2M x 8 FLASH Die in One MCM Package
- Overall Configuration is 2M x 32
- +5V Power Supply / +5V Programing Operation
- Access Times of 90, 120 and 150 ns
- **■** Erase/Program Cycles 100,000 Minimum
- Sector erase architecture (Each Die)
 - 32 uniform sectors of 64 Kbytes each
 - Any combination of sectors can be erased. Also supports full chip erase
 - Sector group protection is user definable
- Embedded Erase Algorithims Automatically pre-programs and erases the die or any sector
- Embedded Program Algorithims Automatically programs and verifies data at specified address

- Ready/Busy output (RY/BY) Hardware method for detection of program or erase cycle completion
- Hardware RESET pin Resets internal state machine to the read mode
- Erase Suspend/Resume Supports reading or programming data to a sector not being erased
- Packaging Hermetic Ceramic
 - 68 Lead, .94" x .94" x .140" Single-Cavity Small Outline Gull Wing, Aeroflex code# "F18" (Drops into the 68 Lead JEDEC .99"SQ CQFJ footprint)
- Internal Decoupling Capacitors for Low Noise Operation
- Commercial, Industrial and Military Temperature Ranges
- MIL-PRF-38534 Compliant MCMs Available

Block Diagram – CQFP(F18) Optional Configuration WE1 CE1 WE2 CE2 WE3 CE3 WE4 CE4 RESET OE A0 – A20 2Mx8 2Mx8 2Mx8 2Mx8 2Mx8 2Mx8 1/O0-7 1/O8-15 1/O16-23 1/O24-31

I/O0-31 Data I/O A0-20 **Address Inputs WE**1-4 Write Enable CE1-4 **Chip Enables** OE **Output Enable** RESET Reset VCC **Power Supply GND** Ground NC **Not Connected**

Pin Description

General Description

Utilizing AMD's Sector Erase Flash Memory Die, the ACT-F2M32A is a high speed, 64 megabit CMOS flash multichip module (MCM) designed for full temperature range, military, space, or high reliability applications.

The ACT-F2M32A consists of four high-performance AMD Am29F016 16Mbit (16,777,216 bit) memory die. Each die contains 8 separately write or erase sector groups of 256Kbytes (A sector group consists of 4 adjacent sectors of 64Kbytes each).

The command register is written by bringing WE to a logic low level (VIL), while CE is low and OE is high (VIH). Reading is accomplished by chip Enable (CE) and Output Enable (OE) being logically active. Access time grades of 90ns, 120ns and 150ns maximum are standard.

General Description, Cont'd,

The ACT-F2M32A is packaged in a hermetically sealed co-fired ceramic 68 lead, .94" SQ Ceramic Gull Wing CQFP package. This allows operation in a military environment temperature range of -55°C to +125°C.

The ACT-F2M32A can be programmed (both read and write functions) in-system using the +5.0V VCC power supply. A 12.0V VPP is not required for programming or erase operations. The end of program or erase is detected by the RY/BY pin, Data Polling of DQ7, or by the Toggle bit (DQ6).

The ACT-F2M32A also has a hardware RESET pin. When this pin is driven low, execution of any Embedded Program Alggorithm or Embedded Erase Algorithm will be terminated.

Each block can be independently erased and programmed 100,000 times at +25°C.

For Detail Information regarding the operation of the Am29F016 Sector Erase Flash Memory, see the AMD datasheet (Publication 18805).

Absolute Maximum Ratings

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Voltage with Respect to GND (All pins except A9) (1)	-2.0 to +7.0	V
Voltage on Pins A9, $\overline{\text{OE}}$, $\overline{\text{RESET}}^{\text{(2)}}$	-2.0 to +13.5	V
Vcc Supply Voltage with Respect to Ground (1)	-2.0 to +7.0	V
Output Short Circuit Current (3)	200	mA

NOTICE: Stresses above those listed under "Absolute Maximums Rating" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may effect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Minimum	Maximum	Units
Vcc	5V Power Supply Voltage (10%)	+4.5	+5.5	V
VIH	Input High Voltage (CMOS)	0.7 x Vcc	V _{cc} + 0.3	V
VIL	Input Low Voltage	-0.5	+0.8	V
Tc	Operating Temperature (Military)	-55	+125	°C

Capacitance

(f = 1MHz, Tc = 25°C, Standard Configuration)

Symbol	Parameter	Maximum	Units
CAD	A0 – A20 Capacitance	50	pF
COE	OE Capacitance	50	pF
CCE	CE Capacitance	20	pF
CRESET	RESET Capacitance	50	pF
CWE	WE Capacitance	60	pF
CRY/BY	RY/BY Capacitance	50	pF
Cı/o	I/O0 – I/O31 Capacitance	20	pF

Capacitance Guaranteed by design, but not tested.

DC Characteristics – CMOS Compatible

(Tc = -55°C to +125°C, Vcc = +4.5V to + 5.5V, Unless otherwise specified)

Parameter	Sym	Conditions	Min	Max	Units
Input Load Current	lı∟	Vcc = VccMax., Vin = Vcc or GND		10	μΑ
A9 Leakage Current	ILIT	Vcc = VccMax., A9 = +12V		50	μΑ
Output Leakage Current	ILO	Vcc = VccMax., Vin = GND to Vcc		10	μΑ
Vcc Active Read Current	Icc1	$\overline{CE} = VIL, \overline{OE} = VIH$		160	mA
Vcc Active Program/Erase Current (1)	Icc2	$\overline{CE} = VIL, \overline{OE} = VIH$		240	mA
Vcc Standby Current	Icc3	$Vcc = VccMax., \overline{CE} = \overline{RESET} = Vcc \pm 0.3V$		4	mA
Vcc Standby Current (Reset)	Icc4	Vcc = VccMax., RESET = Vcc ± 0.3V		4	mA
Output Low Voltage	Vol	VCC = VCCMin., IOL = 12 mA		0.45	V
Output High Voltage	VoH1	VCC = VCCMin., IOH = -2.5 mA	0.85 x Vcc		V
	VoH2	Vcc = VccMin., IoH = -100 μA	Vcc - 0.4V		V
Low Vcc Lock-Out Voltage	VLKO		3.2	4.2	V

Notes:

1. Not 100% tested.

^{1.} Minimum DC voltage is -0.5V on input/output pins. During Transitions, inputs may undershoot GND to -2.0V for periods up to 20ns. Maximum DC voltage on input/output pins is Vcc + 0.5V, which may overshoot to Vcc + 2.0V for periods up to 20ns.

2. Minimum DC input voltage on A9, OE, RESET pins is -0.5V. During Voltage transitions, A9, OE & RESET may overshoot GND to -2.0V for periods up to 20ns.

Maximum DC input voltage on A9 is +12.5V which may overshoot to 14V for periods up to 20ns.

3. No more than one output shorted to ground for no more than 1 second.

$\begin{tabular}{ll} AC \ Characteristics - Write/Erase/Program \ Operations - \overline{WE} \ Controlled \\ (Tc = -55 ^{\circ}C \ to +125 ^{\circ}C, \ Vcc = +4.5 V \ to +5.5 V, \ Unless \ otherwise \ specified) \\ \end{tabular}$

		Parameter	Parameter	90	ns	120	0ns	150	0ns	
Parameter		Symbol Standard	Symbol JEDEC	Min	Max	Min	Max	Min	Max	Units
Write Cycle Time		twc	tavav	90		120		150		ns
Address Setup to WE Going Low		tas	tavwl	0		0		0		ns
Address Hold Time from $\overline{\text{CE}}$ High		tah	twlax	45		50		50		ns
Data Setup to WE Going High		tos	tovwh	45		50		50		ns
Data Hold Time from WE High		tрн	twndx	0		0		0		ns
Output Enable Hold Time	Read	tоен		0		0		0		ns
Output Enable Floid Fillie	Toggle Bit I and Data Polling	toen		10		10		10		ns
Read Recover Time Before Write (OE High to WE Low)		tgHWL	tgHWL	0		0		0		ns
CE Setup Time from WE Low		tcs	telwl	0		0		0		ns
CE Hold Time from WE High		tсн	twheh	0		0		0		ns
WE Pulse Width		twp	twLwH	45		50		50		ns
WE Pulse Width High		twрн	twhwL	20		20		20		ns
Byte Programming Operation		twnwh1	twnwH1	8		8		8		μs
Sector Erase Operation		twnwh2	twnwh2		15		15		15	Sec
Vcc Set-Up Time		tvcs		50		50		50		μs
Rise Time to VID		tvidr		500		500		500		ns
OE Setup Time to WE Active		toesp		4		4		4		μs
Reset Pulse Width		trp		500		500		500		ns
Program/Erase Valid to RY/BY Delay		tвиsy		40		50		60		ns

Notes:

AC Characteristics – Read Only Operations (Tc = -55°C to +125°C, Vcc = +4.5V to + 5.5V, Unless otherwise specified)

	Parameter Parameter		90ns		120ns		150ns		
Parameter	Symbol Standard	Symbol JEDEC	Min	Max	Min	Max	Min	Max	Units
Read Cycle Time (1)	trc	tavav	90		120		150		ns
Address to Output Delay	tacc	tavqv		90		120		150	ns
CE to Output Delay	tce	telqv		90		120		150	ns
OE to Output Delay	toe	tglqv		40		50		55	ns
CE to Output in High Z (1)	tdF	tehqz		20		30		35	ns
OE to Output in High Z (1)	tdF	tghqz		20	0	30	0	35	ns
Output Hold from Addresses, $\overline{\sf CE}$ or $\overline{\sf OE}$ Change, Whichever Occurs First	toн	taxqx	0		0		0		ns
RESET Low to Read Mode (1)	tready			20		20		20	μs

^{1.} Not 100% tested.

Notes: 1. Not 100% tested.

$\begin{tabular}{ll} AC \ Characteristics - Write/Erase/Program \ Operations - \overline{CE} \ Controlled \\ (Tc = -55^{\circ}C \ to +125^{\circ}C, \ Vcc = +4.5 \ V \ to +5.5 \ V, \ Unless \ otherwise \ specified) \\ \end{tabular}$

Parameter		Parameter	Parameter	90	ns	120	0ns	150	0ns	
		Symbol Standard	Symbol JEDEC	Min	Max	Min	Max	Min	Max	Units
Write Cycle Time (1)		twc	tavav	90		120		150		ns
Address Setup to CE Going Low		tas	tavel	0		0		0		ns
Address Hold Time from CE Low		tан	telax	45		50		50		ns
Data Setup to CE Going High		tos	tdveh	45		50		50		ns
Data Hold Time from CE High		tрн	tehdx	0		0		0		ns
Output Enable Setup Time (1)		toes		0		0		0		ns
Output Enable Hold Time (1)	Read	tоен		0		0		0		ns
Output Enable Hold Tillle V	Toggle Bit I and Data Polling			10		10		10		ns
Read Recover Time Before Write (OE High to WE Low)		tghel	tghel	0		0		0		ns
CE Setup Time from WE Low		tws	twlel	0		0		0		ns
WE Hold Time from CE High		twн	tehwh	0		0		0		ns
WE Pulse Width		tcp	teleh	45		50		50		ns
WE Pulse Width High		tсрн	TELEL	20		20		20		ns
Byte Programming Operation		twnwH1	twnwh1	8		8		8		μs
Sector Erase Operation		twnwh2	twnwh2		15		15		15	Sec
Notoo:		-	-	-			-			· · · · · · · · · · · · · · · · · · ·

^{1.} Not 100% tested.

AC Test Circuit

Test Configuration Component Values

NOTES: CL includes jig capacitance.

Device Under	 R1
Test	R2

Parameter	Typical	Units
Input Pulse Level	0 – 3.0	V
Input Rise and Fall	5	ns
Input and Output Timing Reference Level	1.5	V

AC Waveforms for Write and Erase Operations, WE Controlled

AC Waveforms for Write and Erase Operations, $\overline{\text{CE}}$ Controlled

AC Waveform For Read Operations

Pin Numbers & Functions

	68 Pins — Dual-Cavity CQFP (Standard Configuration)								
Pin #	Function	Pin#	Function	Pin #	Function	Pin#	Function		
1	GND	18	GND	35	ŌĒ	52	GND		
2	CE ₃	19	I/O8	36	CE ₂	53	I/O23		
3	A 5	20	I/O9	37	A17	54	I/O22		
4	A4	21	I/O10	38	RY/BY	55	I/O21		
5	Аз	22	I/O11	39	NC	56	I/O20		
6	A2	23	I/O12	40	NC	57	I/O19		
7	A1	24	I/O13	41	A18	58	I/O18		
8	Ao	25	I/O14	42	A 19	59	I/O17		
9	RESET	26	I/O15	43	A20	60	I/O16		
10	I/Oo	27	Vcc	44	I/O31	61	Vcc		
11	I/O1	28	A11	45	I/O30	62	A10		
12	I/O2	29	A12	46	I/O29	63	A 9		
13	I/O ₃	30	A13	47	I/O28	64	A8		
14	I/O4	31	A14	48	I/O27	65	A7		
15	I/O ₅	32	A15	49	I/O26	66	A6		
16	I/O6	33	A16	50	I/O25	67	WE		
17	I/O7	34	CE ₁	51	I/O24	68	CE ₄		

Consult Factory for Special order (Optional Configuration): Pin 38 - \overline{WE} 2, Pin 39 - \overline{WE} 3, Pin 40 - \overline{WE} 4 and Pin 67 - \overline{WE} 1

Ordering Information

Model Number	Screening	Speed	Package
ACT-F2M32A-090F18C	Commercial (0°C to +70°C)	90 ns	CQFP
ACT-F2M32A-120F18C	Commercial (0°C to +70°C)	120 ns	CQFP
ACT-F2M32A-150F18C	Commercial (0°C to +70°C)	150 ns	CQFP
ACT-F2M32A-090F18I	Industrial (-40°C to +85°C)	90 ns	CQFP
ACT-F2M32A-120F18I	Industrial (-40°C to +85°C)	120 ns	CQFP
ACT-F2M32A-150F18I	Industrial (-40°C to +85°C)	150 ns	CQFP
ACT-F2M32A-090F18M	Military (-55°C to +125°C)	90 ns	CQFP
ACT-F2M32A-120F18M	Military (-55°C to +125°C)	120 ns	CQFP
ACT-F2M32A-150F18M	Military (-55°C to +125°C)	150 ns	CQFP
ACT-F2M32A-090F18Q	DESC Drawing Pending MIL-PRF-38534 Compliant	90 ns	CQFP
ACT-F2M32A-120F18Q	DESC Drawing Pending MIL-PRF-38534 Compliant	120 ns	CQFP
ACT-F2M32A-150F18Q	DESC Drawing Pending MIL-PRF-38534 Compliant	150 ns	CQFP

Part Number Breakdown

Specifications subject to change without notice

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830 www.aeroflex.com/act1.htm Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: (800) 843-1553 E-Mail: sales-act@aeroflex.com