

FUNCTION GROWTH CLASSES

Why

We want to describe how fast a function grows or declines.¹

Definition

Let $f: \mathbf{R} \to \mathbf{R}$. The lower growth class of f (toward infinity) is the set of all functions $g: \mathbf{R} \to \mathbf{R}$ for which there exists C, M > 0 so that $|g(x)| \leq C|f(x)|$ for all x > M. The intuition is that if $h: \mathbf{R} \to \mathbf{R}$ is in the lower growth class of f, h does not grow faster than f. In this case we say that h grows at order f.

The lower limit class of f at x_0 is the set of all functions g: $\mathbb{R} \to \mathbb{R}$ for which there exists $C, \varepsilon > 0$ so that $|g(x)| \le C|f(x)|$ for all $|x - x_0| < \varepsilon$. The intuition is that for x sufficiently close to x_0 , the magnitude of f is bounded by a constant times the magnitude of g. Often x_0 is 0.

The upper growth class of f (toward infinity) is the set of all functions $g: \mathbb{R} \to \mathbb{R}$ for which there exists C, M > 0 so that $|g(x)| \geq C|f(x)|$ for all x > M. The intuition is that if h is in the upper growth class of f, h grows at least as fast as f. We similarly define the upper growth class at a limit x_0 .

The *(exact) growth class* of f is the set of all functions $g: \mathbf{R} \to \mathbf{R}$ for which there exists C_1, C_2, M so that $C_1 |f(x)| \le |g(x)| \le C_2 |f(x)|$ for all x > M. The intuition is that if h is

 $^{^1\}mathrm{Future}$ editions will expand this vague introduction.

in the growth class of f, then h and f grow at the same rate. Again, we similarly define the growth class at limit x_0 .

Notation

We denote the upper, lower and exact growth classes of a function $f: \mathbf{R} \to \mathbf{R}$ by of f by O(f), $\Omega(f)$ and $\Theta(f)$, respectively. We read the notation O(f) as "order at most f," we read $\Omega(f)$ as "order at least f," and $\Theta(f)$ as "order exactly f."

The letter O is a mnemonic for order, and Ω and Θ build on this mnemonic. The term order appears to arise from the use of growth classes when discussing Taylor approximations. In this case of small x (i.e., |x| < 1), $|x^p| < |x^q|$ if q < p and so higher order terms are "smaller" and "negligible." This notation is sometimes called $Big\ O\ notation$ or Laundau's symbol.

Let $\phi, \psi: \mathbf{R} \to \mathbf{R}$. Many authors use $\phi = O(\psi)$ or $\phi(t) = O(\psi(t))$ to assert that ϕ is in the upper growth class of ψ at some understood limit (e.g., 0 or ∞). In other words, the equation asserts that there exists some positive constant C > 0 sot that, for all t sufficiently close to the understood limit, $|\phi(t)| \leq C |\psi(t)|$. For example, the statement $\sin^2(t) = P(t^2)$ as $t \to 0$ (or for $t \to 0$) means that there exists constants $C, \varepsilon > 0$ so that, $|t| < \varepsilon \longrightarrow |\sin^2(t)| \leq Ct^2$.

²Often also defined $|\phi(t)| < C\psi(t)$, with no absolute value on ψ .

