Time Series and Forecasting Cross-correlation

Maria Eduarda Silva mesilva@fep.up.pt

School of Economics, University of Porto

LMU, July 1 2022

Daily Pollution, Temperature and Cardiovascular Mortality in Los Angeles County

Cardiovascular Mortality

Temperature

Particulates

TV advertising and insurance quotations

Percentage changes in quarterly personal consumption expenditure and personal disposable income for the US, 1970 to 2010.

usconsumption

Sample Cross correlation

- $\hat{\rho}_{XY}(h) = Corr(X_{t+h}, Y_t)$ $h = 0, \pm 1, \pm 2, ...$
- $\hat{\rho}_{XY}(h) = \hat{\rho}_{YX}(-h)$
- If X_t and Y_t are independent, then, for large sample sizes

$$\hat{\rho}_{xy}(h) \approx N(0, \frac{1}{n})$$

if at least one of the series is independent white noise

SOI and REC correlation analysis

Cross correlation and pre-whitening

- To assess the significance of the cross correlations we need that (at least) one the series is white noise.
- Therefore we should pre-whiten a series prior to a cross-correlation analysis.
- Otherwise we may get spurious correlations.

Example of spurious correlations: 2 time series generated independently but showing high cross correlation.

$$x_t = 2\cos(2\pi t \frac{1}{12}) + e_{t1}, \ e_{t1} \sim N(0, 1)$$
 $y_t = 2\cos(2\pi (t+5)\frac{1}{12}) + e_{t2}, \ e_{t2} \sim N(0, 1)$

Cross correlation and pre-whitening

More on Spurious correlation

- A word of caution: spurious relationships arise also between trending time series
- Two independent random walks

High correlation

Significant linear relationship

```
> summary(sr.reg1)
Call:
lm(formula = v1 \sim v2)
Residuals:
            10 Median
    Min
                            30
                                   Max
-12.6878 -5.3229 -0.0348 4.9765 13.1047
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
y2
          -0.44224 0.02312 -19.13 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.107 on 498 degrees of freedom
Multiple R-squared: 0.4235, Adjusted R-squared: 0.4223
F-statistic: 365.8 on 1 and 498 DF, p-value: < 2.2e-16
```

- Determining leading/lagging relations between stationary time series x_t , y_t is important for predicting y_t from x_t purposes
- If for some unknown I the model $y_t = Ax_{t-1} + e_t$ holds, then
 - ▶ I > 0 then x_t leads y_t
 - ▶ $I < 0 x_t \text{ lags } y_t$

TV advertising and insurance quotations: which is the leading series?

Insurance advertising and quotations

- $\gamma_{yx}(h) = A\gamma_x(h-1)$
- $\gamma_{yx}(h)$ will look like $\gamma_x(h-1)$
- Largest value of $\gamma_{vx}(h)$ is $\gamma_x(0)$ when h = I
- That is $\gamma_{VX}(h)$ has a peak at lag h = I
- Peak on positive lags h if x_t leads y_t
- Peak on negative lags if x_t lags y_t

$$y_t = x_{t-5} + e_t$$

This plot indicates a lag l < 0 around -6 (months) and so soi leads

This plot indicates a lag l > 0 around 6 (months) and so soi leads

Measures of Dependence - bivariate context

If we have two time series X_t and Y_t we define

Cross covariance function

$$\gamma_{XY}(s,t) = cov(X_s, Y_t) = E[(X_s - \mu_{X_s})(Y_t - \mu_{Y_t})]$$
 (1)

• Cross Correlation function (CCF)

$$\rho_{XY}(s,t) = \frac{\gamma_{XY}(s,t)}{\sqrt{\gamma_X(t,t)\gamma_Y(s,s)}}$$
(2)

Jointly stationary time series

 $\{X_t\}$ and $\{Y_t\}$ time series are jointly stationary if

- $\{X_t\}$ is stationary
- $\{Y_t\}$ is stationary
- ullet The cross-correlation between $\{X_t\}$ and $\{Y_t\}$ depends only on the lag

Jointly stationary time series

Formaly

- $E(X_t) = \mu_X$
- $E(Y_t) = \mu_Y$
- $\gamma_X(h)$ ACF of X_t
- $\gamma_Y(h)$ ACF of Y_t
- Cross covariance:

$$Cov(X_s, Y_t) = E[(X_s - \mu_X)(Y_t - \mu_Y)] = \gamma_{XY}(s - t)$$

$$\gamma_{XY}(h) = Cov(X_{t+h}, Y_t) = E[(X_{t+h} - \mu_X)(Y_t - \mu_Y)]$$

• Cross correlation, CCF:

$$\rho_{XY}(h) = \frac{\gamma_{XY}(h)}{\sqrt{\gamma_X(0)\gamma_Y(0)}}$$

Properties of CCF

Note that

$$\gamma_{XY}(-h) = E[(X_{t-h} - \mu_X)(Y_t - \mu_Y)] = E[(Y_t - \mu_Y)(X_{t-h} - \mu_X)] = \gamma_{YX}(h)$$

- $\bullet \ \gamma_{XY}(h) = \gamma_{YX}(-h).$
- $\rho_{XY}(h) = \rho_{YX}(-h)$.