Primeira Avaliação de Circuitos Elétricos II e Circuitos Elétricos Aplicados – $1^{0}/2015$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:			Turma	n:
Matrícula:/				
Data://				
Questão 1 – Para a forma	3+ 2+ 1-	5	llcule a sua transforma	da de Laplace.
	-1 1 2 -1- -2-	3 6	t(s)	
Questão 1 - resposta:				
Questão 2 — Utilizando funções a seguir.	"inspeção + propriedad	des" determine	a transformada de La	aplace para as
$a) x(t) = te^{-2t}u(t)$	-3)	b) $x(t) =$	$=2\cos\left(2t+\frac{\pi}{3}\right)u(t)$	
Questão 2.a – resposta:		Questão 2.b -	– resposta:	

Questão 3 — A partir do diagrama de pólos e zeros associados a função de transferência de um Circuito Linear Invariante no Tempo (CLIT), calcule a respectiva resposta ao impulso unitário.

Questão 3 - resposta:

Questão 4 — A seguir é apresentada uma função racional no domínio da Transformada de Laplace. Utilizando "inspeção + propriedades", derive a Transformada Inversa de Laplace.

$$X(s) = \frac{2s+4}{(s^2+4s+5)^2}$$

Questão 4 - resposta:

Questão 5 – Para a o circuito escada do tipo passa-altas, determine a sua função de transferência no domínio da Laplace: $R = 2\Omega$; $C = \frac{1}{2}$ F.

Questão 5 - resposta:

Questão 6 – O circuito abaixo é excitado com a entrada $V_s(t)$. Determine analiticamente a resposta do circuito resolvendo no domínio de Laplace: $V_s(t) = 5e^{-t}u(t)$; $R = I\Omega$; $L = \frac{1}{2}H$.

Questão 6 - resposta:

Questão 7 – O circuito a seguir com condições iniciais não nulas é excitado com uma função degrau. Resolva o circuito obtendo a sua resposta temporal. Utilize a Transformada de Laplace na sua solução.

$$V_s(t) = 5u(t); R_1 = 4\Omega; R_2 = 2\Omega; C = 1/2F; A = 2; V_c(0^-) = 2V$$

Questão 7 - resposta:

Questão 8 – A figura a seguir mostra um circuito onde Vs(t) é a fonte de sinal de entrada e Vo(t) representa o sinal de tensão de saída. São dados os seguintes parâmetros do circuito:

 $R_1 = 2\Omega$; $R_2 = 4\Omega$; L = 2H; C = 1/2F; $g_m = 1/4$ A/V. Calcule a função de transferência no domínio da Transformada de Laplace que descreve o ganho de tensão $H(s) = V_o(t)/V_s(t)$. Calcule a resposta impulsional h(t).

Questão 8.a – resposta:

Questão 8.b – resposta: