Tempistiche e diagrammi temporali

La funzione è giusta ma il circuito non funziona

Perché

I circuiti che costruiamo hanno ingressi che variano nel tempo

- Perché qualcuno preme un pulsante
- Perché cambia la lettura di un sensore
- Perché i dati sono in forma seriale
- Etc.

Anche le uscite cambieranno nel tempo

- Passato il transitorio, si stabilizzano sul valore dettato dalla funzione logica
- Come influisce la rete sulle tempistiche delle uscite?
 - Ogni porta logica introduce un ritardo
 - La somma dei ritardi lungo il cammino del segnale definisce il ritardo finale dell'uscita
 - Ci interessa poter rappresentare il comportamente del circuito durante la fase di transitorio

Diagramma temporale

Rappresentazione dell'evoluzione dei valori dei nodi della rete nel tempo

- Esattamente come i diagrammi temporali in elettronica analogica
- Normalmente però non ci interessano i dettagli della fase di salita e discesa delle singole porte
- Usiamo solo due livelli

Due versioni

- Senza ritardi delle porte: le variazioni degli ingressi si propagano immediatamente ai nodi interni e all'uscita
 - Utile per verificare e debuggare la funzione logica
- Con i ritardi delle porte: le variazioni degli ingressi impiegano del tempo per propagarsi ai nodi interni e all'uscita
 - Utile per valutare prestazioni, trovare i percorsi critici ed analizzare eventuali anomalie

Diagramma dell'invertitore

- ▶ Ingresso *x* e uscita *y*
- No ritardo attraverso la porta
- Per ogni istante di tempo, l'uscita ha valore opposto a quello dell'ingresso

Diagramma dell'invertitore con ritardo

Due nodi

- ▶ Ingresso *x* e uscita *y*
- ▶ Ritardo ∆t attraverso la porta
- L'uscita raggiunge il valore finale solo dopo il ritardo della porta

Rete logica: il multiplexer

Come completare un diagramma

- Si osservi che, se non succede niente, i valori dei nodi non cambiano
 - \blacktriangleright Si assume, per convenzione, che gli ingressi siano costanti per t < 0
 - Ci interessano solo i punti in cui qualche segnale cambia di valore
- Si valuta il valore di tutti i nodi al tempo t = 0 applicando la funzione logica a partire dagli ingressi
 - ▶ Si assume che a t = 0 tutto sia a regime
- Ci si sposta al minimo tempo t* per il quale uno qualunque dei segnali (non solo gli ingressi) commuta di valore
 - Si dice che il segnale ha un evento a t*
 - Si calcolano i nuovi valori nella rete
 - Si fanno commutare i segnali corrispondenti ai nodi che cambiano valore aggiungendo nuovi eventi al diagramma
 - Tenendo eventualmente conto dei ritardi
- Quindi ci si sposta al prossimo evento
 - Si ripete la procedura fino ad aver esaurito tutti gli eventi

Rete logica: il multiplexer con ritardi

- Supponiamo, per semplicità, che le porte abbiano tutte lo stesso ritardo
 - Trasliamo verso destra i segnali all'uscita delle varie porte
 - Accumuliamo i ritardi della rete

Osservazioni

Il ritardo tra gli ingressi e l'uscita non è sempre lo stesso

- Dipende da quale ingresso cambia
- \blacktriangleright Per esempio la variazione su *a* impiega due Δt per arrivare all'uscita
- \blacktriangleright La transizione su *s* impiega tre Δt
- Per trovare il massimo e il minimo occorrerebbe provare tutte le possibili transizioni
- Ma ci sono metodi più semplici che analizzano la topologia della rete

Modelli di ritardo

- Abbiamo usato un modello di ritardo molto semplice
- Lo si può complicare a piacere
 - Porte con ritardi diversi a seconda di quale ingresso cambia
 - Aggiustamento dei ritardi secondo il carico (fan-out)
 - Tenuta in conto dei tempi di salita e discesa
 - Modello inerziale che elimina brevi transizioni degli ingressi

Alee (glitch)

- Sono brevi cambiamenti di valore che si esauriscono con il transitorio
 - Sono dovuti a particolari combinazioni di ritardi nelle reti logiche
 - Influiscono solo sul transitorio
 - ▶ Possono dare molto fastidio quando si realizzano circuiti sensibili ai fronti dei segnali (circuiti sequenziali asincroni)

Alee

In assenza di ritardi

- Un implicante si disattiva, l'altro si attiva
- ▶ L'uscita rimane al valore 1 costante

Alee nel multiplexer

b c e d

Con ritardi

- ▶ L'implicante c si disattiva prima che l'implicante d possa mantenere l'uscita a livello alto
- ▶ L'uscita si porta per un periodo a livello basso

Alee sulla mappa di Karnaugh

- Si verifica una alea solo se gli ingressi cambiano in modo da passare da un implicante all'altro
 - Inoltre i ritardi devono essere tali da disattivare il primo, prima di attivare il secondo
 - Nella mappa di Karnaugh si salta da una casella ad un'altra senza stare in uno stesso implicante
 - Se invece non si cambia implicante non si può verificare una alea

s\ab	00	01	11	10
0	0	0	(1)	1
1	0	1	(1)	0

Come prevenire le alee

▶ E' sufficiente aggiungere implicanti di collegamento

- ▶ La realizzazione non è più minima
- Indispensabile per i circuiti asincroni
- Utile nei circuiti sincroni solo per ridurre eventualmente i consumi
- Provate a costruire il diagramma temporale del circuito

s\ab	00	01	11	10
0	0	0	1	1
1	0	1		0

Take away

Le tempistiche influenzano il funzionamento del circuito

- I ritardi introducono asimmetrie nella rete logica
- Diversi modelli, con differente accuratezza, ci aiutano a stimare le tempistiche
- Utile conoscere i ritardi minimi e massimi attraverso una rete logica

Asimmetrie danno luogo a fenomeni di alee

- ▶ Le alee, o glitch, possono aumentare i consumi di potenza
- Sono particolarmente insidiose in certi tipi di circuiti sensibili ai fronti dei segnali
- Si possono eliminare introducendo elementi che neutralizzano le transizioni spurie