# Markov Sick-Sicker model in R

# with age-dependency

#### The DARTH workgroup

Developed by the Decision Analysis in R for Technologies in Health (DARTH) workgroup:

Fernando Alarid-Escudero, PhD (1)

Eva A. Enns, MS, PhD (2)

M.G. Myriam Hunink, MD, PhD (3,4)

Hawre J. Jalal, MD, PhD (5)

Eline M. Krijkamp, MSc (3)

Petros Pechlivanoglou, PhD (6,7)

Alan Yang, MSc (7)

In collaboration of:

- 1. Drug Policy Program, Center for Research and Teaching in Economics (CIDE) CONACyT, Aguas-calientes, Mexico
- 2. University of Minnesota School of Public Health, Minneapolis, MN, USA
- 3. Erasmus MC, Rotterdam, The Netherlands
- 4. Harvard T.H. Chan School of Public Health, Boston, USA
- 5. University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- 6. University of Toronto, Toronto ON, Canada
- 7. The Hospital for Sick Children, Toronto ON, Canada

Please cite our publications when using this code:

- Jalal H, Pechlivanoglou P, Krijkamp E, Alarid-Escudero F, Enns E, Hunink MG. An Overview of R in Health Decision Sciences. Med Decis Making. 2017; 37(3): 735-746. https://journals.sagepub.com/doi/abs/10.1177/0272989X16686559
- Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou P. Microsimulation modeling for health decision sciences using R: A tutorial. Med Decis Making. 2018;38(3):400–22. https://journals.sagepub.com/doi/abs/10.1177/0272989X18754513
- Krijkamp EM, Alarid-Escudero F, Enns E, Pechlivanoglou P, Hunink MM, Jalal H. A Multidimensional Array Representation of State-Transition Model Dynamics. Med Decis Making. Feb;40(2):242-248. https://doi.org/10.1177/0272989X19893973

Copyright 2017, THE HOSPITAL FOR SICK CHILDREN AND THE COLLABORATING INSTITUTIONS. All rights reserved in Canada, the United States and worldwide. Copyright, trademarks, trade names and any and all associated intellectual property are exclusively owned by THE HOSPITAL FOR SICK CHILDREN and the collaborating institutions. These materials may be used, reproduced, modified, distributed and adapted with proper attribution.

Change eval to TRUE if you want to knit this document.

```
rm(list = ls())  # clear memory (removes all the variables from the workspace)
```

# 01 Load packages

```
if (!require('pacman')) install.packages('pacman'); library(pacman) # use this package to conveniently
# load (install if required) packages from CRAN
p_load("dplyr", "devtools", "scales", "ellipse", "ggplot2", "lazyeval", "igraph", "truncnorm", "ggraph"
# load (install if required) packages from GitHub
# install_github("DARTH-git/darthtools", force = TRUE) Uncomment if there is a newer version
p_load_gh("DARTH-git/darthtools")
```

## 02 Load functions

```
# all functions are in the darthtools package
```

# 03 Input model parameters

```
# Strategy names
v_names_str <- c("No Treatment", "Treatment")</pre>
# Markov model parameters
      <- 25
age
                                     # age at baseline
max_age <- 55
                                   # maximum age of follow up
n_t <- max_age - age
                                   # time horizon, number of cycles
v_names_states <- c("H", "S1", "S2", "D") # the 4 states of the model: Healthy (H),
                                    # Sick (S1), Sicker (S2), Dead (D)
v init <- c("H" = 1,
            "S1" = 0,
                                   # initial cohort distribution (everyone
            "S2" = 0,
                                    # allocated to the "healthy" state)
            "D" = 0)
# Transition probabilities (per cycle) and hazard ratios
# Read age-specific mortality rates from csv file for the age 25 - 54
lt_usa_2015 <- read.csv("../data/HMD_USA_Mx_2015.csv")</pre>
v_r_HD <- lt_usa_2015 %>%
  filter(Age >= age & Age <= (max_age - 1)) %>%
  select(Total) %>%
  as.matrix()
# Transition probabilities (per cycle)
p_HD <- rate_to_prob(r = v_r_HD, t = 1) # probability to die when healthy (vector)
p_HS1 <- 0.15
                                     # probability to become sick when healthy, conditional on survivin
p_S1H <- 0.5
                                     # probability to become healthy when sick, conditional on survivin
```

```
p_S1S2 <- 0.105
                                    # probability to become sicker when sick, conditional on surviving
hr_S1
       <- 3
                                    # hazard ratio of death in sick vs healthy
hr S2
        <- 10
                                    # hazard ratio of death in sicker vs healthy
r S1D <- hr S1 * v r HD
                                     # rate of death in sick (vector)
r_S2D <- hr_S2 * v_r_HD
                                      # rate of death in sicker (vector)
p_S1D <- rate_to_prob(r = r_S1D, t = 1) # probability to die in sick (vector)
p_S2D
       <- rate_to_prob(r = r_S2D, t = 1) # probability to die in sicker (vector)</pre>
# Cost and utility inputs
      <- 2000
                                    # cost of remaining one cycle in the healthy state
c_H
c_S1
       <- 4000
                                    # cost of remaining one cycle in the sick state
c_S2
       <- 15000
                                    # cost of remaining one cycle in the sicker state
c_trt <- 12000
                                   # cost of treatment (per cycle)
       <- 0
                                    # cost of being in the death state
c_D
       <- 1
                                   # utility when healthy
\mathtt{u}_{-}\mathtt{H}
u_S1
       <- 0.75
                                   # utility when sick
u_S2
       <- 0.5
                                   # utility when sicker
        <- 0
                                    # utility when dead
u D
u_trt <- 0.95
                                   # utility when being treated
    <- d_c <- 0.03
                                   # discount rate per cycle equal discount of costs and QALYs by 3%
d_e
n str
        <- length(v_names_str) # Number of strategies</pre>
n_states <- length(v_names_states) # number of states</pre>
# Discount weights for costs and effects
v_dwc \leftarrow 1 / (1 + d_c) ^ (0:n_t)
v_dwe \leftarrow 1 / (1 + d_e) ^ (0:n_t)
```

#### Create a state-transition diagram of the cohort model

#### 04 Define and initialize matrices and vectors

#### 04.1 Cohort trace

#### 04.2 Transition probability matrix

Fill in the transition probability matrix:

```
# from Healthy
a_P_{i} = (1 - p_{i}) * (1 - p_{i})
a_P_notrt["H", "S1", ] <- (1 - p_HD) *
a_P_notrt["H", "D", ] <- p_HD</pre>
# from Sick
a_P_notrt["S1", "H", ] <- (1 - p_S1D) * p_S1H
a_P_notrt["S1", "S1", ] \leftarrow (1 - p_S1D) * (1 - (p_S1H + p_S1S2))
a_P_notrt["S1", "S2", ] <- (1 - p_S1D) * p_S1S2
a_P_notrt["S1", "D", ] <- p_S1D</pre>
# from Sicker
a_P_notrt["S2", "S2", ] <- 1 - p_S2D
a_P_notrt["S2", "D", ] <- p_S2D</pre>
# from Dead
a_P_notrt["D", "D", ] <- 1
# Check that transition probabilities are in [0, 1]
check_transition_probability(a_P_notrt, verbose = TRUE)
# Check that all rows sum to 1
check_sum_of_transition_array(a_P_notrt, n_states = n_states, n_cycles = n_t, verbose = TRUE)
# create transition probability matrix for treatment (same as no treatment)
a_P_trt <- a_P_notrt</pre>
```

## 05 Run Markov model

# 06 Compute and Plot Epidemiological Outcomes

#### 06.1 Cohort trace

The transition probabilities are similar in both strategies. Therefore, the cohort trace figure applies to both strategies.

## 06.2 Overall Survival (OS)

```
# calculate the overall survival (OS) probability for no treatment
v_os_notrt <- 1 - m_M_notrt[, "D"]
# alternative way of calculating the OS probability
v_os_notrt <- rowSums(m_M_notrt[, 1:3])
# create a simple plot showing the OS
plot(0:n_t, v_os_notrt, type = 'l',
    ylim = c(0, 1),
    ylab = "Survival probability",
    xlab = "Cycle",
    main = "Overall Survival")
# add grid
grid(nx = n_t, ny = 10, col = "lightgray", lty = "dotted", lwd = par("lwd"),
    equilogs = TRUE)</pre>
```

#### 06.2.1 Life Expectancy (LE)

```
v_le <- sum(v_os_notrt) # summing probability of OS over time (i.e. life expectancy)</pre>
```

## 06.3 Disease prevalence

### 06.4 Proportion of sick in S1 state

# 07 Compute Cost-Effectiveness Outcomes

## 07.1 Mean Costs and QALYs for Treatment and NO Treatment

#### 07.2 Discounted Mean Costs and QALYs

# 07.3 Compute ICERs of the Markov model

## 07.4 Plot frontier of the Markov model