7.42. Какую работу A против сил поверхностного натяжения совершить, чтобы увеличить вдвое объем мыльного пузыря рацусом r=1 см? Поверхностное натяжение мыльного раствора a=0.043 H/м.

Решение:

Т.к. по условию $V_2 = 2V_1$, где $V_1 = \frac{4}{3}\pi r_1^3$ и $V_2 = \frac{4}{3}\pi r_2^3$ — объемы пузыря до и после совершения работы, то $r_2^3 = 2r_1^3$ или $r_2 = \sqrt[3]{2}r_1$. Изменение площади поверхности пузыря и после совершения работы — $\Delta S = S_2 - S_1 = \sqrt{2} \left[r_2^2 - r_1^2\right] = 4\pi r_1^2 \left[\sqrt[3]{4} - 1\right]$. Т. к. у оболочки пузыря две поверхности, наружная и внутренняя, то совершенная работа $A = 2\alpha\Delta S = 8\pi r_1^2 \alpha \left[\sqrt[3]{4} - 1\right] = 63,4$ мкДж.

7.43. Какую работу *А* против сил поверхностного натяжения нало совершить, чтобы выдуть мыльный пузырь диаметром 4.4 см? Поверхностное натяжение мыльного раствора - а. 0,043 H/м.

Решение:

Площадь поверхности мыльного пузыря $S = 4\pi r^2 = \pi d^2$, тогда совершенная работа против сил поверхностного натажения (см. задачу 7.42) $A = 2\alpha S = 2\pi d^2 \alpha = 432$ мкДж.

7.44. Найти давление p воздуха в воздушном пузырьке диаметром $d=0.01\,\mathrm{mm}$, находящемся на глубине $h=20\,\mathrm{cm}$ под поверхностью воды. Атмосферное давление $p_0=101.7\,\mathrm{k\Pi a}$.

Решение:

Давления воздуха в пузырьке $p = p_0 + p_1 + p_2$, где p_0 — атмосферное давление, $p_1 = \rho g h$ — гидростатическое давление воды, $p_2 = \frac{4\alpha}{d}$ — добавочное давление,

369

вызванное кривизной поверхности. Таким образом, $p = p_0 + \rho g h + \frac{4\alpha}{d} = 132,9 \text{ кПа.}$

7.45. Давление воздуха внутри мыльного пузыря $_{\rm Ha}$ $\Delta p=133,3$ Па больше атмосферного. Найти диаметр d пузыря. Поверхностное натяжение мыльного раствора $\alpha=0,043$ H/м.

Решение:

Добавочное давление внутри мыльного пузыря, вызванное кривизной его поверхности, $\Delta p = 2\alpha \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$. Т. к. пузырь сферический, то радиусы кривизны взаимно перпендикулярных поверхностей $R_1 = R_2 = \frac{d}{2}$, тогда $\Delta p = \frac{8\alpha}{d}$, откуда $d = \frac{8\alpha}{\Delta p} = 2,58$ мм.

7.46. На какой глубине h под водой находится пузырек воздуха если известно, что плотность воздуха в нем $p=2\,\mathrm{K}\Gamma\mathrm{M}^3$? Диаметр пузырька $d=15\,\mathrm{M}\mathrm{K}\mathrm{M}$, температура $t=20\,^{\circ}\mathrm{C}$, атмосферное давление $p_0=101.3\,\mathrm{K}\Pi\mathrm{a}$.

Решение:

Давление воздуха в пузырьке сложится из атмосферного давления p_0 , гидростатического давления воды $p_1=\rho_i gh$ и добавочного давления $\Delta p=\frac{4\alpha}{d}$, вызванного кривизной поверхности, т.е. $p=p_0+\rho_1 gh+\frac{4\alpha}{d}$. Из закона Бойля—Мариотта $p_0V=pV_0$ следует, что $\frac{p_0}{p}=\frac{V_0}{V}=\frac{\rho_0}{\rho}$, тогда

$$\frac{\rho_0}{\rho} = \frac{p_0}{\rho_0 + \rho_1 g h + 4\alpha/d}, \text{ откуда } p_0 + \rho_1 g h + \frac{4\alpha}{d} = \frac{p_0 \rho}{\rho_0} \text{ или}$$

$$\frac{\rho_0 g h}{\rho_0 g h} = \frac{p_0 \rho}{\rho_0} - \frac{4\alpha}{d} - p_0. \text{ Окончательно, глубина погружения:}$$

$$h = \frac{p_0 \rho d - 4\alpha \rho_0 - p_0 \rho_0 d}{\rho_0 + \rho_1 g d}; h = \frac{p_0 d (\rho - \rho_0) - 4\alpha \rho_0}{\rho_0 + \rho_1 g d}; h = 4,72 \text{ м.}$$

7.47. Во сколько раз плотность воздуха в пузырьке, нахоглящемся на глубине $h=5\,\mathrm{m}$ под водой, больше плотности воздуха при атмосферном давлении $p_0=101,3\,\mathrm{kHa}$? Радиус пузырь-

Решение:

Отношение плотностей воздуха в пузырьке и на поверхности (см. задачу 7.46) $\frac{\rho_0}{\rho} = \frac{p_0}{p_0 + \rho_1 g h + 2\alpha/r} = 4.4$.

7.48. В сосуд с ртутью опущен открытый капилляр, внутренней диаметр которого d=3 мм. Разность уровней в сосуде и в апилляре $\Delta h=3.7$ мм. Найти радиус R кривизны мениска в апилляре.

Решение:

У рисунка видно, что $r = R\cos\varphi = R\cos \times (180^{\circ} - \theta) = -R\cos\theta$, где θ — краевой угол. Добавочное давление, вызванное кривизной мениска, $\Delta p = -\frac{2\alpha\cos\theta}{r}$. Т.к. для ртути $\cos\theta < 0$, то $\Delta p > 0$, следовательно, уровень ртути в капилляре будет ниже, чем в сосуде. Разность уровней $\Delta h = -\frac{4\alpha\cos\theta}{\cos\theta}$, отсюда

$$-\cos\theta = \frac{\Delta h \rho g d}{4\alpha} = 0.74$$
. Следовательно, радиус кривизны мениска ртути $R = -\frac{r}{\cos\theta} = 2$ мм.

7.49. В сосуд с водой опущен открытый капилляр, внутренней диаметр которого $d=1\,\mathrm{mm}$. Разность уровней в сосуде и в капилляре $\Delta h=2.8\,\mathrm{cm}$. Найти радиус кривизны R мениска в капилляре. Какова была бы разность уровней Δh в сосуде и в капилляре, если бы смачивание было полным?

Решение:

Высота поднятия жидкости в трубке
$$\Delta h = \frac{2\alpha\cos\theta}{r\rho g}$$
 — (1). Раднус кривизны мениска $R = r\cos\phi = r\cos\left(180^{\circ} - \theta\right) =$ $= \left|-r\cos\theta\right|$ — (2). Из (1) $\cos\theta = \frac{\Delta hr\rho g}{2\alpha}$, и т. к. $r = \frac{d}{2}$, то окончательно $R = \frac{d^2\Delta h\rho g}{8\alpha} = 0,46$ мм. Если бы смачивание было полным, то $\theta = 0^{\circ}$ и $\cos\theta = 1$, тогда из (1) $\Delta h = \frac{4\alpha}{d\rho g} = 2,98$ мм.

7.50. На какую высоту h поднимается бензол в капилляре, внутренний диаметр которого $d=1\,\mathrm{mm}$? Смачивание считать полным.

Решение:

Т. к. смачивание полное, то высота поднятия бензола в капилляре (см. задачу 7.49) $h = \frac{4\alpha}{d\rho g} = 13,86$ мм.

7.51. Каким должен быть внутренний диаметр d капилляра, чтобы при полном смачивании вода в нем поднималась на 372

и = 2 см? Задачу решить, когда капилляр находится: а) на мле, б) на Луне.

Решение:

Три полном смачивании высота поднятия жидкости в апилляре (см. задачу 7.49) $\Delta h = \frac{4\alpha}{d\rho g}$, откуда $d = \frac{4\alpha}{\rho g \Delta h}$. На Земле $g = 9.8 \text{ m/c}^2$, тогда d = 1.48 мм. б) На Луне $= 1.65 \text{ m/c}^2$, тогда d = 8.83 мм.

7.52. Найти разность уровней Δh ртути в двух сообщарамихся капиллярах, внутренние диаметры которых равны a=1 мм и $d_2=2$ мм. Несмачивание считать полным.

ешение:

исота поднятия жидкости в капилляре (см. задачу 7.49)

$$\frac{2\alpha\cos\theta}{r\rho g}$$
 . Поскольку $r=\frac{d}{2}$, то $h=\frac{4\alpha\cos\theta}{\rho gd}$. При пол-

ом несмачивании $\theta = 180^\circ$ и $\cos \theta = -1$, тогда высота однятия жидкости в первом и втором капилляре соответ-

венно равна
$$h_1=-\frac{4\alpha}{\rho g d_1}$$
 и $h_2=-\frac{4\alpha}{\rho g d_2}$. Тогда разность

равней
$$\Delta h = h_2 - h_1 = -\frac{4\alpha}{\rho g d_2} - \left(-\frac{4\alpha}{\rho g d_1}\right) = \frac{4\alpha}{\rho g} \left(\frac{1}{d_1} - \frac{1}{d_2}\right) =$$

$$\frac{4\alpha(d_2 - d_1)}{\rho g d_1 d_2} = 7.5 \text{ MM}.$$

7.53. Каким должен быть наибольший днаметр d пор в финие керосинки, чтобы керосин поднимался от дна керосинки дорелки (высота h = 10 см)? Считать поры цилиндрическими убками и смачивание полным.

Решение:

Т. к. по условию поры цилиндрические и смачивание полное, то наибольший диаметр капилляра (см. задачу 7.51) $d = \frac{4\alpha}{\rho gh} = 0.15 \text{ мм}.$

7.54. Капилляр внутренним радпусом r = 2 мм опущен в жидкость. Найти поверхностное натяжение α жидкости, если известно, что в капилляр поднялась масса жидкости m = 0.09 г.

Решение:

При полном смачивании высота поднятия жидкости в капилляре (см. задачу 7.49) $h=\frac{2\alpha}{\rho gr}$ — (1). Масса поднятой жидкости $m=\rho V$, где V=Sh и $S=2\pi r^2$, т. к. у пленки две стороны, тогда $m=2\rho\pi r^2h$, отсюда $h=\frac{m}{2\rho\pi r^2}$ — (2) Т. к. в формулах (1) и (2) левые части равны, то можно приравнять и правые части, тогда $\frac{2\alpha}{\rho gr}=\frac{m}{2\rho\pi r^2}$ или $\frac{2\alpha}{g}=\frac{m}{2\pi r}$, отсюда окончательно $\alpha=\frac{gm}{4\pi r}=0.07\,\mathrm{H/M}$.

7.55. В сосуд с водой опущен капилляр, внутренний радиус которого r=0.16 мм. Каким должно быть давление ρ воздуха над жидкостью в капилляре, чтобы уровень воды в капилляре и в сосуде был одинаков? Атмосферное давление $p_0=101.3$ кПа. Смачивание считать полным.

Решение:

При полном смачивании высота поднятия жидкости в капилляре (см. задачу 7.49) $h = \frac{2\alpha}{\rho gr}$. Чтобы уровень воды в сосуде и капилляре был одинаковым, необходимо, чтобы 374

давление было равно
$$p=p_0+\rho gh=p_0+\rho g\frac{2\alpha}{\rho gr}=p_0+\frac{2\alpha}{\rho gr}=p_0+\frac{2\alpha}{r}=102.2$$
 кПа.

7.56. Капиллярная трубка опущена вертикально в сосуд с водой. Верхний конец трубки запаян. Для того чтобы уровень воды в трубке и в широком сосуде был одинаков, трубку пришлось погрузить в воду на 15% ее длины. Найти внутренней радиус r трубки. Атмосферное давление $p_0 = 100$ кПа. Смачивание считать полным.

Решение:

По закону Бойля — Мариотта $p_0V_0=pV$, где p_0 и p — давления воздуха в капилляре до и после погружения его в воду, V_0 и V — объемы воздуха в капилляре до и после погружения. $p=p_0+\frac{2\alpha}{r}$, $V_0=Sh_0$, где S — площадь сечения капилляра и h_0 — его длина, V=Sh, где h — длина непогруженной части капилляра. С учетом этого $p_0h_0=\left(p_0+\frac{2\alpha}{r}\right)h$, откуда $r=\frac{2\alpha h}{p_0(h_0-h)}$ — (1). По условию $\frac{\left(h_0-h\right)}{h_0}=0.015$, или $\frac{h}{\left(h_0-h\right)}=65.7$. Подставляя числовые данные в (1), получим r=0.1 мм.

7.57. Барометрическая трубка A, заполненная ртугью, имест внутренний диаметр d, равный: а) 5мм; б) 1,5см. Можно ли определить атмосферное давление непосредственно по высотс ртутного столба? Найти высоту ртутного столба в каждом из этих случаев. Атмосферное давление $p_0 = 758 \,\mathrm{Mm}$ рт. ст. Несмачивание считать полным.

Решение:

Высота поднятия жидкости в капилляре
$$h = \frac{2\alpha \cos \theta}{\rho gr}$$
, где θ — краевой угол, α — поверхностное натяжение. При полном несмачивании $\theta = \pi$ и $\cos \theta = -1$, тогда $h = \left| -\frac{2\alpha}{\rho gr} \right| = \frac{4\alpha}{\rho gd}$ — (1) — высота, создавающая дополни-

(1) — высота, создавающая дополнительное давление за счет кривизны поверхности мениска. а) Если $d=5\,\mathrm{mm}$, то из (1) найдем $h=3\,\mathrm{mm}$, тогда $p=p_0-h=755\,\mathrm{mm}$ рт. ст. б) Если $d=1,5\,\mathrm{cm}$, то $h=1\,\mathrm{mm}$, тогда $p=p_0-h=757\,\mathrm{mm}$ рт. ст. Таким образом, если трубка узкая, то атмосферное давление не может быть непосредственно определено по высоте ртутного столба h, т. к. к давлению столба прибавляется еще давление выпуклого мениска в трубке.

7.58. Внутренний диаметр барометрической трубки d = 0.75 см. Какую поправку надо ввести, измеряя атмосферное давление по высоте ртутного столба? Несмачивание считать полным.

Решение:

Поправка к атмосферному давлению при полном несмачивании (см. задачу 7.57) $h = \frac{4\alpha}{\rho g d} = 2$ мм.

7.59. Какую относительную ошибку мы допускаем, вычисляя атмосферное давление $p_0 = 101,3$ кПа по высоте ртутного столба, если внутренний диаметр барометрической трубки d равен: а) 5мм; б) 10мм? Несмачивание считать полным.

Решение:

Из закона Паскаля $p_0 = \rho g h_0$. Тогда высота ртутного столба $h_0 = \frac{p_0}{\rho g} = 760$ мм. рт. ст. Поправка к атмосферному давлению при полном несмачивании (см. задачу 7.57) $h = \frac{4\alpha}{\rho g d}$. Тогда относительная ошибка $x = \frac{h}{h_0} = \frac{4\alpha}{\rho g d} \frac{\rho g}{p_0} = \frac{4\alpha}{dp_0}$. а) Если $d_1 = 5$ мм, то $x_1 = 0.39\%$. б) Если d = 10 мм, **5то** $x_2 = 0.19\%$.

7.60. На поверхность воды положили жирную (полностью **несма**чиваемую водой) стальную иголку. Каков наибольший **диам**етр d иголки, при котором она еще может держаться на **воде**?

Решение:

Для того чтобы иголка не тонула, необходимо, чтобы **давление**, оказываемое иголкой на площадь ее опоры, было **не** больше давления, вызванного кривизной поверхности **жид**кости в углублении под иголкой. Давление иголки на **воду** $p_1 = \frac{mg}{ld} = \frac{\rho Vg}{ld} = \frac{\rho \pi dg}{4}$, где l — длина иголки и V — ее объем. Давление, вызванное кривизной поверхности жидкости, определяется формулой Лапласа $p_2 = \alpha \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$. В нашем случае поверхность жидкости **шили**ндрическая, т.е. $R_1 = \infty$ и $R_2 = r$ — радиус иголки. Тогда $p_2 = \frac{\alpha}{r} = \frac{2\alpha}{d}$. Т. к. необходимо, чтобы $p_1 \le p_2$, то $\frac{\rho \pi dg}{4} \le \frac{2\alpha}{d}$, откуда $d \le \sqrt{\frac{8\alpha}{\rho \pi g}} = 1,6$ мм.

7.61. Будет ли плавать на поверхности воды жирная (польностью несмачиваемая водой) платиновая проволока диаметр $M = 1 \, \mathrm{MM}$?

Решение:

Чтобы проволока могла держаться на воде, необходимо, чтобы давление, оказываемое проволокой на площадь ее опоры, не превышало давления, вызванного кривизней поверхности жидкости в углублении под проволокой и направленного вверх (силой Архимеда пренебрегаем). Давление проволоки на воду $p_1 = \frac{mg}{ld} = \frac{\rho Vg}{ld} = \frac{\rho\pi dg}{4}$, где $l=\frac{\rho Mg}{ld}$ давление, вызванное кривизной поверхности жидкости, определяется формулой Лапласа $p_2 = \frac{\alpha}{r} = \frac{2\alpha}{d}$. Т. к. необходимо, чтобы $p_1 \leq p_2$, го $\frac{\rho\pi dg}{4} \leq \frac{2\alpha}{d}$, откуда $d_{max} = \sqrt{\frac{8\alpha}{\rho\pi g}}$. Для платины $\rho = 21.4 \times 10^3$ кг/м³, для воды $\alpha = 0.073$ Н/м, тогда $\alpha_{max} = 0.09$ мм, а по условию d=1 мм, значит, проволока плавать не будет.

7.62. В дне сосуда с ртутью имеется отверстие. Каким может быть наибольший днаметр d отверстия, чтобы ртуть из сосуда не выливалась при высоте столба ртути h=3 см?

Решение:

Чтобы ртуть не выливалась из сосуда, давление ртутного столба высотой h должно быть равно добавочному давлению, вызванному кривизной поверхности жидкостите. $p = \Delta p$. По закону Паскаля $p = \rho g h$, а по формуле

Лапласа
$$\Delta p = \frac{4\alpha}{d}$$
, тогда $\rho g h = \frac{4\alpha}{\rho g h}$, откуда $d_{max} = \frac{4\alpha}{\rho g h} = 0.5$ мм.

7.63. В дне стеклянного сосуда площадью $S = 30 \text{ см}^2$ имеется **пруглое** отверстие днаметром d = 0.5 мм. В сосуд налита ртуть. **Жакая** масса ртути останется в сосуде?

Решение:

Павление ртути на дно сосуда $p = \frac{mg}{S}$. Добавочное **пав**ление, вызванное кривизной поверхности жидкости, $\Delta p = \frac{4\alpha}{d}$. Чтобы ртуть осталась в сосуде, необходимо, **тобы** $p = \Delta p$ или $\frac{mg}{S} = \frac{4\alpha}{d}$, тогда $m = \frac{4\alpha S}{gd} = 1,22$ кг.

7.64. Водомерка бегает по новерхности воды. Найти массу **водом**ерки, если известно, что под каждой из шести лапок насе-**смого** образуется ямка, равная полусфере радиусом r = 0.1 мм.

Решение:

Иля того чтобы водомерка держалась на воде, необходимо, **побы** давление, оказываемое ею на площадь опоры, не превышало давления, вызванного кривизной поверхности жидкости в углублениях под ее лапками. Давление одной

Дапки на воду $p_1 = \frac{mg}{6 \cdot 2\pi r^2}$. Давление, вызванное кри-

Визной поверхности жидкости, $p_2 = \frac{\alpha}{r}$ (см. задачу 7.60).

Приравнивая p_1 и p_2 , получим $\frac{\alpha}{r} = \frac{mg}{12\pi r^2}$, отсюда $m = \frac{12\pi r\alpha}{g}$; m = 28 мг.

7.65. Какую силу F надо приложить, чтобы оторвать друг от руга (без сдвига) две смоченные фотопластинки размером $5 = 9 \times 12$ см²? Толицина водяной прослойки между иластинками 6 = 0.05 мм. Смачивание считать полным.

Решение:

Поверхность жидкости между пластинками имеет раднус кривизны $R = \frac{d}{2}$ (Рис.). Тогда добавочное отрицательное давление

под цилиндрической вогнутой поверхностью $p=\dfrac{\alpha}{R}=\dfrac{2\alpha}{d}$. Величина p — избыток

новерхностью $p = \frac{1}{R} - \frac{1}{d}$. Величина $p = \frac{1}{R}$ изовнок внешнего давления, действующего на площадь пластинок S. Следовательно, сила, которую надо приложить, чтобы оторвать пластинки друг от друга, $F = pS = \frac{2\alpha}{d}S = 31,5 \text{ H}$.

7.66. Между двумя вертикальными плоскопараллельными стеклянными пластинками, находящимися на расстоянии $d=0.25\,\mathrm{mm}$ друг от друга, налита жидкость. Найти плотность ρ жидкости, если известно, что высота поднятия жидкости между пластинками $h=3.1\,\mathrm{cm}$. Поверхностное натяжение жидкости $\alpha=0.03\,\mathrm{H/m}$. Смачивание считать полным.

Решение:

Поверхность смачивающей жидкости между пластинками имсет цилиндрическую форму с радиусом кривизны $R = \frac{d}{2}$. Тогда добавочное отрицательное давление под

цилиндрической вогнутой поверхностью $p=\frac{\alpha}{R}=\frac{2\alpha}{d}$. С другой стороны, по закону Паскаля $p=\rho gh$. Тогда $\frac{2\alpha}{d}=\rho gh$, отсюда $\rho=\frac{2\alpha}{dgh}=0.79\cdot 10^3\,\mathrm{kg/m}^3$.

7.67. Между двумя горизонтальными плоскопараллельными стеклянными пластинками помещена масса m = 5 г ртути. Когда 380

на верхнюю пластинку положили груз массой M=5 кг, расстоние между пластинками стало равным d=0.087 мм. Пренебрегая массой пластинки по сравнению с массой груза, найти поверхностное натяжение α ртути. Несмачивание считать полным.

Решенис:

Поверхность ртути между пластинками имеет цилиндрическую форму и радиус кривизны $R=\frac{d}{2}$. Силу добавочного отрицательного давления можно определить по формуле $F=\frac{2\alpha}{d}S$ из задачи 7.65, но в данном случае поверхность будет выпуклая, т. к. имеет место полное несмачивание. Груз давит на ртуть с силой P=Mg — (2). Поскольку силы уравновешены, то $\vec{F}+\vec{P}=0$ или F=P. Подставляя (1) и (2), получим $\frac{2\alpha}{d}S=Mg$ — (3). Масса ртути $m=\rho V=\rho Sd$, откуда $S=\frac{m}{\rho d}$. Подставим это выражение в (3): $\frac{2\alpha m}{d^2\rho}=Mg$, откуда $\alpha=\frac{Mg\rho d^2}{2m}$;

7.68. В открытом капилляре, внутренний диаметр которого $d=1\,\mathrm{mm}$, находится капля воды. При вертикальном положении капилляра капля образует столбик высотой h, равной: а) 2см, 6) 4см, в) 2,98см. Найти радиусы кривизны R_1 и R_2 верхнего и нижнего менисков в каждом из этих случаев. Смачивание считать полным.

Решение:

 $\alpha = 0.5 \, \text{H/M}.$

Верхний мениск будет вогнут, давление p_1 , вызванное кривизной этого мениска, направлено вверх и равно

 $p_{\rm I} = \frac{2\alpha}{R_{\rm I}}$, где $R_{\rm I}$ — радиус кривизны верхнего мениска,

При полном смачивании $p_1 = \frac{2\alpha}{r}$, где r — радиус кепилляра. Гидростатическое давление столба жидкости р направлено вниз; $p_2 = \rho g h$. Если $p_1 > p_2$, результирующее давление, направленное вверх, заставляс. нижний мениск быть вогнутым. При этом давление p_{γ} вызванное кривизной нижнего мениска, направлено вниз и равно $p_3 = \frac{2\alpha}{R_2}$, где R_2 — радиус кривизны нижнего мениска. В равновесии $p_1 = p_2 + p_3$. Если $p_1 < p_2$, 10 результирующее давление направлено вниз и нижний мениск будет выпуклым. При этом давление $p_3 = \frac{2\alpha}{R}$ будет направлено уже вверх. В этом случае $p_1 + p_3 = p_2$. Если $p_1 = p_2$, то нижний мениск будет плоским и $p_3 = 0$. Подставив числовые данные, получим: a) $R_1 = 0.5 \, \text{мм}$. $R_2 = -1.52 \text{ mm}$; 6) $R_1 = 0.5 \text{ mm}$, $R_2 = 1.46 \text{ mm}$; B) $R_1 = 0.5 \text{ mm}$. $R_{2}=\infty$.

7.69. Горизонтальный капилляр, внутренний диаметр которого d=2 мм, наполнен водой так, что в нем образовался столбик длиной h=10 см. Какая масса m воды вытечет из капилляра, если его поставить вертикально? Смачивание считать полным. Указание: учесть, что предельная длина столбика воды оставшейся в капилляре, должна соответствовать радиусу кривизны нижнего меннска, равному радиусу капилляра.

Решение:

При вертикальном положении капилляра верхний менис: вогнут и давление, вызванное кривизной этого мениска, 382

всегда направлено вверх и равно $p_1 = \frac{2\alpha}{r} = \frac{4\alpha}{d}$, где d диаметр капилляра. Гидростатическое давление столба жидкости всегда направлено вниз и равно $p_2 = \rho g h$. Предельная длина столбика воды, оставшейся в капилляре, должна соответствовать радиусу кривизны мениска, равному радиусу капилляра, поэтому $p_1 < p_2$, результирующее давление будет направлено вниз и нижний мениск будет выпуклым. При этом давление $p_3 = \frac{4\alpha}{d}$ будет направлено уже вверх и $p_1 + p_3 = p_2$ или $\frac{8\alpha}{d} = \rho g h_{\rm i}$, откуда $h_{\rm i} = \frac{8\alpha}{\rho g d}$ — высота столбика жидкости, оставшейся в капилляре $m_1 = \rho S h_1$, а ее первоначальная масса $m_2 = \rho Sh_0$, тогда масса жидкости, которая выльется $m = m_0 - m_1 = \rho S(h_0 - h_1),$ где $S = \frac{\pi d^2}{4}$ — площадь поперечного сечения капилляра, поэтому окончательно $m = \frac{\rho \pi d^2}{4} \left(h_0 - \frac{8\alpha}{\alpha \sigma^2} \right) = 0.22 \, \text{r}.$

7.70. В открытом вертикальном капилляре, внутренний радиус которого r=0.6 мм, находится столбик спирта. Нижний мениск этого столбика нависает на нижний конец капилляра. Найти высоту h столбика спирта, при которой радиус кривизны R нижнего мениска равен: а) 3r; б) 2r; в) r. Смачивание считать полным.

Решение:

По условию, нижний мениск выпуклый, тогда результирующее давление направлено вниз, следовательно (см.

задачу 7.69),
$$p_1+p_3=p_2$$
, где $p_1=\frac{2\alpha}{r}$, $p_2=\rho gh$ и $p_3=\frac{2\alpha}{R}$. Тогда $\frac{2\alpha}{r}+\frac{2\alpha}{R}=\rho gh$, откуда $h=\frac{2\alpha(R+r)}{\rho grR}$. a) Если $R=3r$, то $h=\frac{8\alpha}{3\rho gr}=11,5\,\mathrm{mm}$. б) Если $R=2r$, то $h=\frac{3\alpha}{\rho gr}=12,9\,\mathrm{mm}$. В) Если $R=r$, то $h=\frac{4\alpha}{\rho gr}=17,2\,\mathrm{mm}$.

7.71. Трубка, изображенная на рисунке, открыта с обонх концов и наполнена керосином. Внутренние радиусы трубок 1 и 2 равны $r_1 = 0.5$ мм и $r_2 = 0.9$ мм. При какой разности уровней Δh мениск на конце трубки 1 будет: а) вогнутым с радиусом кривизны $R = r_1$; б) плоским; в) выпуклым с радиусом кривизны $R = r_2$; г) выпуклым с радиусом кривизны $R = r_1$? Смачивание считать полным.

Решение:

Высота поднятия жидкости в капилляре $h = \frac{2\alpha\cos\theta}{\rho gr}$. Тогда для каждой трубки $h_1 = \frac{2\alpha\cos\theta}{\rho gR}$ и $h_2 = \frac{2\alpha\cos\theta}{R}$. Т. к. по условию

смачивание полное, то во второй трубке всегда $\theta=0$, отсюда $\cos\theta=1$. Тогда перепад высот в трубках $\Delta h = h_2 - h_1 = \frac{2\alpha}{\rho g} \left(\frac{\cos\theta}{R} - \frac{1}{r_2}\right).$ а) Мениск на конце трубки

будет вогнутым, с $R=r_1$, если $\theta=0$, отсюда $\cos\theta=1$ — 384

полное смачивание $\Delta h = \frac{2\alpha}{\rho g} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = 6.8$ мм. б) Мениск на конце трубки 1 будет плоским, если $\theta = \frac{\pi}{2}$, отсюда $\cos \theta = 0$; $\Delta h = \frac{2\alpha}{\rho g r_2} = 8.5$ мм. в) Мениск на конце трубки 1 будет выпуклым, с $R = r_2$, если $\theta = \pi$, отсюда $\cos \theta = -1$ $\Delta h = \frac{2\alpha}{\rho g} \frac{2}{r_2} = 17$ мм. г) Мениск на конце трубки 1 будет выпуклым, с $R = r_1$, если $\theta = \pi$, отсюда $\cos \theta = -1$ — полное несмачивание $\Delta h = \frac{2\alpha}{\rho g} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) = 23.8$ мм.

7.72. В широкий сосуд с водой опущен капилляр так, что верхний его конец находится выше уровня воды в сосуде на h=2 см. Внутренний радиус капилляра r=0,5 мм. Найти радиус кривизны R мениска в капилляре. Смачивание считать полным.

Решение:

Если бы капилляр был достаточно длинным, то вода поднялась бы в нем на высоту $h' = \frac{2\alpha \cos \theta}{\rho g r} = 2,98$ см. Но высота капилляра над водой h < h'. К мениску приложены давление $p_0 = \frac{2\alpha}{R}$, вызванное кривизной мениска и направленное вверх, и гидростатическое давление $p = \rho g h$. Для любой высоты h будем иметь $\rho g h = \frac{2\alpha}{R}$, откуда $R = \frac{2\alpha}{\rho g h} = 0,75$ мм.

7.73. Ареометр плавает в воде, полностью смачивающей его стенки. Диаметр вертикальной цилиндрической трубки аресметра $d=9\,\mathrm{mm}$. На сколько изменится глубина погружения ареометра, если на поверхность воды налить несколько капель спирта?

Решение:

На плавающий ареометр действуют сила Архимеда \vec{F}_A , направленная вверх, сила тяжести \vec{P} , направленная вниз, сила поверхностного натяжения \vec{F} , направленная вниз, т. к. смачивание является полным. Условие равновесия имеет вид: $\vec{P} + \vec{F} + \vec{F}_A = 0$ или в скалярном виде $P + F = F_A$. Имеем P = mg; $F = 2\pi r\alpha = \pi d\alpha$; $F_A = \rho g \times (V + Sh)$, где V — объем ареометра (без трубки), S — площадь поперечного сечения трубки ареометра, h — длина трубки. Тогда для воды $mg + \pi d\alpha_1 = \rho g(V + Sh_1)$; для спирта $mg + \pi d\alpha_2 = \rho g(V + Sh_2)$ (считаем, что плотность воды не изменилась). Решая совместно эти два уравнения. найдем $\Delta h = \frac{4(\alpha_1 - \alpha_2)}{\rho g d} = 2,4$ мм.

7.74. Ареометр плавает в жидкости, полностью смачивающей его стенки. Диаметр вертикальной цилиндрической трубки ареометра d=9 мм. Плотность жидкости $\rho=0.8\cdot 10^3$ кг/м 3 . поверхностное натяжение жидкости $\alpha=0.03$ Н/м. На сколько изменится глубина погружения ареометра, если вследствие замасливания ареометр стал полностью несмачиваемым этой жидкостью?

Решение:

На ареометр, плавающий в жидкости, действуют: сила тяжести P, направленная вниз, сила поверхностного 386

натяжения $F = \pi d\alpha$, направленная при полном смачивании вниз, а при полном несмачивании вверх и сила Архимеда $F_A = \rho g(V + Sh)$, направленная вверх, где V — объем цилиндрической части ареометра, S — площадь поперечного сечения трубки ареометра и h — длина цилиндрической трубки, находящейся в жидкости. Условие равновесия при полном смачивании $P+F=F_{A1}$, а при полном несмачивании $P=F+F_{A2}$, следовательно, $F_{A1}-F=F+F_{A2}$ или $\rho gV+\rho gSh_1-\pi d\alpha=\pi d\alpha+\rho gV++\rho gSh_2$. Отеюда $\rho gS(h_1-h_2)=\rho gS\Delta h=2\pi d\alpha$ и, окончательно, $\Delta h=\frac{2\pi d\alpha}{\rho gS}=\frac{2\pi d\alpha}{\rho g}=\frac{8\alpha}{\rho gd}=3,4$ мм.

7.75. При растворении массы $m = 10 \,\mathrm{r}$ сахара $\left(\mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11}\right)$ в объеме $V = 0.5 \,\mathrm{л}$ воды осмотическое давление раствора $p = 152 \,\mathrm{k\Pi a}$. При какой температуре T находится раствор? Диссоциация молекул сахара отсутствует.

Решение:

Осмотическое давление раствора связано с термодинамической температурой формулой Вант-Гоффа p=CRT. Молярная концентрация раствора $C=\frac{m}{\mu V}$, где $\mu=0.342$ кг/моль, тогда $p=\frac{mRT}{\mu V}$, откуда $T=\frac{\mu Vp}{mR}$. Подставляя в полученное выражение числовые данные, получим: $T=\frac{0.342\cdot 0.5\cdot 10^{-3}\cdot 152\cdot 10^{3}}{10^{-2}\cdot 8.31}=313$ К.

7.76. Осмотическое давление раствора, находящегося при температуре $t = 87^{\circ}$ С, p = 165 кПа. Какое число N молекул воды приходится на одну молекулу растворенного вещества в этом растворе? Диссоциация молекул вещества отсутствует.

Решение:

Осмотическое давление (см. задачу 7.75) p = CRT . Т. к. по условию диссоциация молекул в растворе отсутствует, то молярная концентрация $C = \frac{N_1}{N_A}$, тогда $p = \frac{N_1RT}{N_A} = N_1kT$, откуда $N_1 = \frac{vN_A}{V}$, где $v = \frac{m}{\mu} = \frac{\rho V}{\mu}$, тогда $N_2 = \frac{\rho N_A}{\mu}$. Следовательно, $N = \frac{N_2}{N_1} = \frac{\rho N_A}{\mu} \frac{kT}{p} = \frac{\rho RT}{\mu p} = 1007$ молекул.

7.77. Масса m=2 г поваренной соли растворена в объеме V=0.5 л воды. Степень диссоциации молекул поваренной соли $\alpha=0.75$. Найти осмотическое давление p раствора при температуре $t=17^{\circ}$ С.

Решение:

Если масса всей растворенной в воде поваренной соли равна m, а степень диссоциации α , то масса диссоциированной соли равна αm , а масса недиссоциированной — $(1-\alpha)m$. Тогда молярная концентрация раствора $C = \frac{((1-\alpha)m)/\mu + \alpha m/(2\mu_1) + \alpha m/(2\mu_2)}{V}$;

$$C = \frac{m(2\mu_1\mu_2(1-\alpha) + \alpha\mu^2)}{2\mu\mu_1\mu_2V} = 124,5 \text{ моль/м}^3.$$
 Следовательно,

осмотическое давление $p = CRT = 300 \text{ к}\Pi a$.

7.78. Степень диссоциации молекул поваренной соли при растворении ее в воде $\alpha = 0.4$. При этом осмотическое дав-

ление раствора, находящегося при температуре $t = 27^{\circ}$ C, p = 118,6 кПа. Какая масса m поваренной соли растворена в объеме V = 1 л воды?

Решение:

Молярная концентрация частично диссоциированного раствора поваренной соли (см. задачу 7.78) $C = \frac{m \left(2 \mu_1 \mu_2 (1 - \alpha) + \alpha \mu^2 \right)}{2 \mu \mu_1 \mu_2 V}.$ С другой стороны, из формулы

Вант-Гоффа
$$C = \frac{P}{RT}$$
, тогда $\frac{P}{RT} = \frac{m\left(2\mu_1\mu_2(1-\alpha) + \alpha\mu^2\right)}{2\mu\mu_1\mu_2V}$, откуда $m = \frac{2\mu\mu_1\mu_2Vp}{RT\left(2\mu_1\mu_2(1-\alpha) + \alpha\mu^2\right)} = 1,93$ г.

7.79. Масса m=2.5 г поваренной соли растворена в объеме V=1 л воды. Температура раствора $t=18^{\circ}$ С. Осмотическое давление раствора p=160 кПа. Какова степень диссоциации молекул поваренной соли в этом случае? Сколько частиц растворенного вещества находится в единице объема раствора?

Решение:

Масса растворенной в воде частично диссоциированной соли (см. задачу 7.78) равна: $m=\frac{2\mu\mu_1\mu_2Vp}{RT\left(2\mu_1\mu_2(1-\alpha)+\alpha\mu^2\right)},$ гкуда получим $2\mu_1\mu_2(1-\alpha)+\alpha\mu^2=\frac{2\mu\mu_1\mu_2Vp}{mRT}$ или $\alpha\mu^2-2\alpha\mu_1\mu_2=\frac{2\mu_1\mu_2(\mu Vp-mRT)}{mRT}.$ Из последнего выражения, после преобразований, найдем степень диссоциации $\alpha=\frac{2\mu_1\mu_2(\mu Vp-mRT)}{mRT\left(\mu^2-2\mu_1\mu_2\right)}=0,52$. Число частиц в единице объема (см. задачу 7.76) $n=\frac{p}{\nu T}=3,98\cdot 10^{25}\,\mathrm{M}^{-3}.$

7.80. Масса m=40 г сахара $\left(C_{12}H_{22}O_{11}\right)$ растворена в стаеме V=0.5 л воды. Температура раствора $t=50^{\circ}$ С. Найти дал тение p насышенного водяного пара над раствором.

Решение:

Давление масыщенного пара над раствором меньше, чем над чистым растворителем (водой). При достаточно малой концентрации раствора относительное уменьшение мавления насыщенного пара над раствором определяется законом Рауля $\frac{p_0-p}{p_0}=\frac{v'}{v+v'}$, где p_0 — давление насыщенного пара над чистым растворителем, p— давление насыщенного пара над раствором, v— количество жидкости. Отсюда $p=p_0\bigg(1-\frac{v'}{v+v'}\bigg)$. По таблице 8 находим для $t=50^{\circ}$ С давление насыщенного водяного пара $p_0=12302\,\mathrm{Ta}$. Количество сахара $p_0=12302\,\mathrm{Ta}$. Количество воды $p_0=12302\,\mathrm{Ta}$ к

7.81. Давление насыщенного пара над раствором при температуре $t = 30^{\circ}$ С равно $p_1 = 4.2$ кПа. Найти давление p_2 насыщенного водяного пара над этим раствором при температуре $t_2 = 60^{\circ}$ С.

Решение:

Давление насыщенного пара над раствором (см. 43 гачу 7.80) $p = p_0 \left(1 - \frac{v'}{v + v'} \right)$. Т. к. количество растворенного

го $\frac{p_1}{p_2} = \frac{p_0(t_1)}{p_0(t_2)}$, тогда $p_2 = \frac{p_1p_0(t_2)}{p_0(t_1)}$. По таблице 8 находим $p_0(t_1) = 4229 \, \text{Па}$, $p_0(t_2) = 19817 \, \text{Па}$, тогда $p = 19.68 \, \text{к}$ Па.

7.82. Давление p насышенного пара над раствором в 1,02 раза меньше давления p_0 насыщенного пара чистой воды. Какое число N молекул воды приходится на одну молекулу растворенного вещества?

Решение:

Давление насыщенного пара над раствором (см. задачу **7.80**)
$$p = p_0 \left(1 - \frac{v'}{v - v'} \right)$$
, отсюда $\frac{p_0}{p} = \frac{v - v'}{v - 2v'} = \frac{v/v' - 1}{v/v' - 2}$

(у). Число молекул растворенного вещества и растворителя

[см. задачу 7.76) соответственно равно $N = \frac{vN_A}{V}$ и

$$N' = \frac{\nu' N_A}{V}$$
, тогда $\frac{N}{N'} = \frac{\nu}{\nu'}$ — (2). Из (1) имеем $p_0 \left(\frac{\nu}{\nu'} - 2 \right) = p \left(\frac{\nu}{\nu'} - 1 \right)$ или $\frac{\nu}{\nu'} (p_0 - p) = 2p_0 - p$, откуда

$$\frac{\mathbf{v}}{\mathbf{v'}} = \frac{2p_0 - p}{p_0 - p} = \frac{2p_0 / p - 1}{p_0 / p - 1}$$
 или с учетом (2)
$$\frac{N}{N'} = \frac{2p_0 / p - 1}{p_0 / p - 1}.$$

Отсюда окончательно $N = \frac{N'(2p_0/p-1)}{p_0/p-1} = 52$ молекулы.

7.83. Масса m = 100 г нелетучего вещества растворена в ооъеме V = 1 л воды. Температура раствора t = 90° С. Давление насыщенного пара над раствором p = 68.8 кПа. Найти молярную массу μ растворенного вещества.

Решение:

Закон Рауля можно применить для определения молярной массы вещества. Действительно, закон Рауля можно запи-

сать так:
$$\frac{p_0}{p_0-p} = \frac{\nu}{\nu'} + 1$$
, или $\frac{p_0}{p_0-p} - 1 = \frac{p}{p_0-p} = \frac{\nu}{\nu'}$ — (1).

Замечая, что
$$v = \frac{m}{\mu}$$
 и $v' = \frac{m'}{\mu'}$, нетрудно из (1) полу-

чить
$$\mu' = \mu \frac{m'}{m} \frac{p}{p_0 - p}$$
 — (2), где m — масса растворителя,

 μ — молярная масса растворителя и μ' — молярная масса растворенного вещества. Подставляя числовые данные, получим $\mu' = 0.092$ кг/моль.

7.84. Нелетучее вещество с молярной массой $\mu = 0,060$ кг/моль растворено в воде. Температура раствора $t = 80^{\circ}$ С. Давление насыщенного пара над раствором p = 47,1 кПа. Найти осмотическое давление p_{oc} раствора.

Решение:

Осмотическое давление (см. задачу 7.75)
$$p_{\text{ос}} = \frac{mRT}{\mu V}$$
. Давление насыщенного пара над раствором (см. задачу 7.80) $p = p_0 \bigg(1 - \frac{v'}{v + v'} \bigg)$, отсюда $v' = \frac{(p_0 - p)v}{p}$. Число молей воды $v = \frac{m}{\mu_1} = \frac{\rho V}{\mu_1}$, тогда $v' = \frac{(p_0 - p)\rho V}{p\mu_1}$. С другой

тороны,
$$v' = \frac{m}{\mu}$$
, тогда $m = v'\mu = \frac{(p_0 - p)\rho V\mu}{p\mu_1}$. Для $p_0 = 47215 \, \Pi a$, следовательно, осмотическое давление $p_0 = \frac{RT}{\mu V} \frac{(p_0 - p)\rho V\mu}{p\mu_1} = \frac{(p_0 - p)\rho RT}{p\mu_1}$; $p_{0c} = \frac{(47215 - 47100) \cdot 10^3 \cdot 8.31 \cdot 353}{47.1 \cdot 10^3 \cdot 0.018} = 398 \, \mathrm{kHz}^{\circ}$.

^{*}Ответ в данной задаче не совпадает с ответом первоисточника: $p_{\infty} = 925 \,\mathrm{k\Pi a}$.