The group G is isomorphic to the group labelled by [72, 41] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: Q8:

	1a	4a	2a	4b	4c	3a
χ_1	1	1	1	1	1	1
χ_2	1	-1	1	-1	1	1
χ_3	1	-1	1	1	-1	1
χ_4	1	1	1	-1	-1	1
χ_5	2	0	-2	0	0	2
χ_6	8	0	0	0	0	-1

Trivial source character table of $G \cong (C3 \times C3)$: Q8 at p = 3:

Normalisers N_i		N_1			N_2		N_3					
p-subgroups of G up to conjugacy in G		P_1			P_2		P_3					
Representatives $n_j \in N_i$		4a	2a	4b	4c	1a	2a	1a	4c	4a	2a	4b
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 2 \cdot \chi_6$		0	-2	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$		1	1	-1	-1	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	9	1	1	1	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$		-1	1	1	-1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	9	-1	1	-1	1	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 2 \cdot \chi_5 + 1 \cdot \chi_6$	12	0	-4	0	0	3	-1	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	12	0	4	0	0	3	1	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	-1	1	1	1	1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	-1	1	1	-1	1	1	1	-1	-1	1	1
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	-1	-1	1	1	1	-1	1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	2	0	-2	0	0	2	-2	2	0	0	-2	0

 $\begin{array}{l} P_1 = Group([()]) \cong 1 \\ P_2 = Group([(1,6,3)(2,8,5)(4,9,7)]) \cong \text{C3} \\ P_3 = Group([(1,6,3)(2,8,5)(4,9,7),(1,4,2)(3,7,5)(6,9,8)]) \cong \text{C3 x C3} \end{array}$

$$\begin{split} N_1 &= Group([(2,8,4,7)(3,9,6,5),(2,3,4,6)(5,7,9,8),(2,4)(3,6)(5,9)(7,8),(1,2,4)(3,5,7)(6,8,9),(1,3,6)(2,5,8)(4,7,9)]) \cong (\text{C3 x C3}): \text{Q8} \\ N_2 &= Group([(1,6,3)(2,8,5)(4,9,7),(2,4)(3,6)(5,9)(7,8),(1,2,4)(3,5,7)(6,8,9)]) \cong (\text{C3 x C3}): \text{C2} \\ N_3 &= Group([(1,4,2)(3,7,5)(6,9,8),(1,6,3)(2,8,5)(4,9,7),(2,6,4,3)(5,8,9,7),(2,7,4,8)(3,5,6,9)]) \cong (\text{C3 x C3}): \text{Q8} \end{split}$$