Parallel Programming

Course Introduction

Professor Yi-Ping You (游逸平)
Department of Computer Science
http://www.cs.nctu.edu.tw/~ypyou/

Parallel Processing/Computing

Page 2

Finding the integer solutions for $x^3+y^3+z^3=3$

The first two solutions might be obvious

$$1^3 + 1^3 + 1^3 = 3$$

 $4^3 + 4^3 + (-5)^3 = 3$

Is it even possible to know whether other solutions for 3 exist? (Louis Mordell, 1953)

- Roughly 4 million tasks (three hours/task)
- Using Charity Engine's grid comprised over 400,000 computers around the world

https://phys.org/news/2021-03-sum-cubes-puzzle-solution.html https://www.pnas.org/doi/10.1073/pnas.2022377118 https://github.com/AndrewVSutherland/SumsOfThreeCubes

Motivation

Creating a Parallel Program

- In theory, can be done by programmer, compiler, run-time system, or OS
- In practice, parallel programs are created with
 - Explicitly parallel language (e.g., High Performance Fortran)
 - Library for implementing a programming model
 - Shared-memory library (Pthreads, OpenMP)
 - Distributed-memory library (Message Passing Interface)
 - Heterogeneous-programming library (CUDA, OpenCL)
 - Cluster-based library (MapReduce)

Steps for Creating a Parallel Program

- Decomposition into tasks
- Assignment of tasks to processes/threads
- Orchestration of data access, communication, etc.
- Mapping processes to processors

Shared-Memory Systems

 Multiple processors can operate independently but share the same memory resources

Distributed-Memory Systems

- Processors have their own local memory
- Memory addresses in one processor do not map to another processor
 - So there is no concept of global address space across all processors

Hybrid Distributed-Shared Systems

The distributed memory component is the networking of multiple shared memory machines, which know only about their own memory - not the memory on another machine

Administrative Stuff

Course information

Parallel Programing

Credit: 3

Time: Thursdays 9:00-12:00

Place: EDB27

Course website

- https://nycu-sslab.github.io/PP-f22/
- The URL is also provided on my Web page
 - Authorization required to access lecture slides

Prerequisites

- This course assumes that you
 - write good code in C/C++ and
 - are familiar with the Linux environment
- Requirements
 - Have taken a C/C++ course or have a fair amount of practical experience with C/C++ programming
 - Know how to connect to remote machines with ssh, scp, etc.
 - Know how to work on Linux systems (i.e., basic commands such as cd, rm, and running executables and GNU tools such as make and gcc)

Aims of This Course

 The skills and knowledge needed to develop applications using parallel programing models

Lecture Topics

- Background
 - Parallel and distributed programming
 - Introduction to parallel hardware and software
- Shared-memory programming
 - Pthreads and OpenMP

- Distributed-memory programming
 - MPI and MapReduce
- GPGPU programming
 - CUDA and OpenCL

MPICH

Textbook

 Peter Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann; 1 edition (January 21, 2011)

Grading

- Grades will be assigned based on
 - Homework assignments (70%)
 - 6 assignments related to parallel programming
 - Slackers beware!
 - The penalty for late homework is 15% per day (weekends count as 1 day).
 - NO PLAGIARISM!
 - Homework assignments must be individual work
 - Course project (30%)
 - 3 students form a group to work on development of parallel applications
 - Proposal (4%)
 - Final oral presentation (13%)
 - Final report (13%)
- These weights are subject to minor variation

Project Schedule

- Group registration due on September 29, 2022 (Week 3)
 - https://ppt.cc/fT5Eqx

- Project proposal due on October 27, 2022 (Week 7)
- Presentation slides due by 23:59 day prior to your presentation
- Final report and source codes due on January 3, 2023 (Week 17)

HW0: A Warming-Up Assignment

- To assess whether you are familiar with Makefile and C/C++ programming
- See the URL below for details
 - https://nycu-sslab.github.io/PP-f22/HW0/

Discord

https://discord.gg/qnR9kw8Z

 For general discussion about the course, especially the assignments