第三部分 运输规划

Transportation Model

§ 3-1 运输规划模型

§ 3-2 运输模型的求解

§ 3-3 运输模型的扩展

问题的提出

运输问题:产地、销地、产量、销量

例1 有 A_1 , A_2 , A_3 三座铁矿,每天要把生产的铁矿石运往 B_1 , B_2 , B_3 , B_4 四个炼铁厂。各矿的产量、各厂的销量以及各厂矿间的运价如下表所示。问应如何组织调运才能使运费最少?

(百元/百吨)

	\mathbf{B}_1	${f B_2}$	$\mathbf{B_3}$	\mathbf{B}_4	产量
$\mathbf{A_1}$	6	3	2	5	5
$\mathbf{A_2}^-$	7	5	8	4	2
$\mathbf{A_3}$	3	2	9	7	3
销量	2	3	1	4	

 x_{ij} — A_i 运给 B_i 的铁矿石数量(百吨)

z — 总运费(百元)

(百元/百吨)

	\mathbf{B}_1	$\mathbf{B_2}$	$\mathbf{B_3}$	\mathbf{B}_4	产量
\mathbf{A}_{1}	6 x_{11}	x_{12}	2 x_{13}	5 x_{14}	5
$\mathbf{A_2}$	7 x ₂₁	5 X ₂₂	8 X ₂₃	4 X ₂₄	2
$\mathbf{A_3}$	³ x_{31}	2 X ₃₂	9 X ₃₃	7 x ₃₄	3
销量	2	3	1	4	

数学模型为:

$$\min \mathbf{z} = 6x_{11} + 3x_{12} + 2x_{13} + 5x_{14} + 7x_{21} + 5x_{22} + 8x_{23} + 4x_{24} \\ + 3x_{31} + 2x_{32} + 9x_{33} + 7x_{34} \\ \begin{pmatrix} x_{11} + x_{12} + x_{13} + x_{14} & = 5 & \textcircled{1} \\ x_{21} + x_{22} + x_{23} + x_{24} & = 2 & \textcircled{2} \\ x_{31} + x_{32} + x_{33} + x_{34} = 3 & \textcircled{3} \\ x_{11} & + x_{21} & + x_{31} & = 2 & \textcircled{4} \\ x_{12} & + x_{22} & + x_{32} & = 3 & \textcircled{5} \\ x_{13} & + x_{23} & + x_{33} & = 1 & \textcircled{6} \\ x_{14} & + x_{24} & + x_{34} = 4 & \textcircled{7} \\ x_{ij} \geqslant \mathbf{0} & (\mathbf{i} = 1, 2, 3; \ \mathbf{j} = 1, 2, 3, 4) \end{pmatrix}$$

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	x ₁₁	15 x ₁₂	8 8	16 x ₁₄	60
A_2	x ₂₁	14 x ₂₂	7	13 x ₂₄	25
A_3	11 x ₃₁	9	15 x ₃₃	10	50
销量	60	40	20	15	

解:设 x_{ij} 表示 A_i 加工厂运到 B_i 销售点的产品 i=1,2,3; j=1,2,3,4

$$i = 1,2,3;$$
 $j = 1,2,3,4$

$$\min z = 7x_{11} + 15x_{12} + 8x_{13} + 16x_{14} + 5x_{21} + 14x_{22} + 7x_{23} + 13x_{24} + 11x_{31} + 9x_{32} + 15x_{33} + 10x_{34}$$

产地约束:
$$x_{11} + x_{12} + x_{13} + x_{14} = 60$$

 $x_{21} + x_{22} + x_{23} + x_{24} = 25$
 $x_{31} + x_{32} + x_{33} + x_{34} = 50$

销地约束:
$$x_{11} + x_{21} + x_{31} = 60$$
$$x_{12} + x_{22} + x_{32} = 40$$
$$x_{13} + x_{23} + x_{33} = 20$$
$$x_{14} + x_{24} + x_{34} = 15$$

非负约束:
$$x_{ij} \ge 0, i = 1,2,3;$$
 $j = 1,2,3$

1、运输问题的数学模型

m个产地 A_i , 供应量(产量)分别为 a_i , $(i=1,2,\cdots,m)$ n个销地 B_j , 需要量(销量)分别为 b_j , $(j=1,2,\cdots,n)$

 A_i 到 B_j 的单位运价为: c_{ii}

 A_i 到 B_j 的运量为: x_{ij}

$$\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$
 称为产销平衡

在产销平衡条件下,要求总运费 最省的运输方案可表示为:

$$MinZ = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

销地产地		\boldsymbol{B}_1		•••	B ,	ı	产量
4		x_{11}		• • •		x_{1n}	
A_1	$c_{11}^{}$		• • •		c_{1n}		a_1
:	:	• • •	•••	•••	•	•	•
A_m		x_{m1}		• • •		\boldsymbol{x}_{mn}	a_{m}
	c_{m1}				\boldsymbol{c}_{mn}		
销量		b_1		• • •	\boldsymbol{b}_n		

$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_i & (i = 1, 2, \dots, m) & \text{产地约束} \\ \sum_{m=1}^{n} x_{ij} = b_j & (j = 1, 2, \dots, n) & \text{销地约束} \\ x_{ij} \ge 0 & \end{cases}$$

从运输问题约束条件系数矩阵中取出前m+n-1行和 x_{1n} , x_{2n} , …, x_{mn} , x_{11} , x_{12} , …, $x_{1,n-1}$ 对应的共m+n-1列组成m+n-1阶行列式,如下右面行列式所示:

因行列式不等于0,所以运输问题的秩为m+n-1。由秩、基、基变量之间的关系可以知道,运输问题基变量的个数为m+n-1个。

8

表式模型

销地产地		\boldsymbol{B}_1		•••	\boldsymbol{B}_{n}	ı	产量
4		x_{11}		• • •		x_{1n}	
A_{1}	c_{11}		•••		c_{1n}		a_1
:	:	•	•••	•	:	•	•
A_m		x_{m1}		• • •		X_{mn}	a_m
	c_{m1}				\boldsymbol{c}_{mn}		
销量		\boldsymbol{b}_1		•••	\boldsymbol{b}_n		

- 产销平衡的运输问题: $\sum a_i = \sum b_i$
- 产大于销的运输问题: $\Sigma a_i > \Sigma b_j$
- 产小于销的运输问题: $\Sigma a_i < \Sigma b_i$

运输模型有两个特点:

- (1) 它有m×n个变量,m+n个约束方程
- (2) 其系数阵具有特殊的结构

§ 3-2 运输模型的求解

求解运输问题的方法——表上作业法

步骤:

- (1) 给出初始可行方案;
- (2) 判断是否最优方案;
- (3) 基变换;
- (4) 重复(2)(3) 直到达优。

一、确定初始可行解

- (一)最小元素法
- (二) 伏格尔法

(一) 最小元素法

1、最小元素法的基本思想:从单位运价表中最小运价开始确定产销关系,依次类推,一直到给出初始方案为止。

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3 5	15 ×	8	16	60
A_2	5	14 ×	7 ×	13 ×	25
A_3	11 ×	9	15 ×	10	50
销量	60	40	20	15	

初始可行解为:
$$X = \begin{bmatrix} 35 & \times & 20 & 5 \\ 25 & \times & \times & \times \\ \times & 40 & \times & 10 \end{bmatrix}$$

运费为: $z = 35 \times 7 + 20 \times 8 + 16 \times 5 + 25 \times 5 + 40 \times 9 + 10 \times 10 = 1070$

(一)最小元素法

2、最小元素法给出的是基可行解

(1) 是可行解 $x_{ij} \leq \min(a_i, b_j)$ $x_{ij} \geq 0$ (运量 ≥ 0) \Rightarrow 是可行解 求解过程保证每行或每列为等式

(2) 得到m+n-1个数字格

每填入一个数字划去一行或一列,总共m+n行,最后一个数填入时同时划去一行和一列。

(3) (m+n-1) 个数字格对应的系数列向量是线性无关的

(3) (m+n-1) 个数字格对应的系数列向量是线性无关的

相当于在系数矩阵划去了 $P_{22}=e_2+e_{3+2}$ 、 $P_{23}=e_2+e_{3+3}$ 和 $P_{24}=e_2+e_{3+4}$,剩余的系数列向量中不再包含 e_2 ,不可能与 P_{21} 线性相关,因此从剩余的变量中任选一个变量都不会与已选变量线性相关。

当 x_{21} 填入数字划去一列后, x_{22} 、 x_{23} 和 x_{24} 均被划去,不可能为数字格。

销地产地	B_1	B_2	B_3	B_4	产量
A_1	7	15	8	16	60
A_2	5	14 ×	7 ×	13 ×	25
A_3	11	9	15	10	50
销量	60	40	20	15	

(二) 伏格尔法(Vogel)

伏格尔法的基本思想:

最小运费与次小运费之间有差额,差额越大,不按最小运费调运时,运费增加越多,因而对差额最大处应采用最小运费调运方案。

产粮区化肥厂	B ₁		B ₂		产量
A ₁	7	15	5	×	15
4		5		20	25
A_2	2		1		25
销量	20	0	20		<i>z</i> =180

产粮区化肥厂	B ₁		E	\mathbf{B}_{2}	产量
A_1		×		15	15
71	7		5		13
A		20		5	25
A_2	2		1		25
销量	20		20		<i>z</i> =165

(二) 伏格尔法(Vogel)

销地 产地	B_1	B_2	B_3	B_4	产量		行差	<u></u> 	
A_1	7	15 ×	8	16 ×	60	1	1	1	1
A_2	5	14 ×	7 ×	13	25	2	2	2	2
A_3	11 ×	9	15 ×	10	50	1	1		
销量	60	40	20	15					•
	2	[5]	1	3					
加美娜	2		1	[3]					
列差额	2		1	[3]					
	[2]		1						

初始可行解为:
$$\begin{bmatrix} 40 & \times & 20 & \times \\ 20 & \times & \times & 5 \\ \times & 40 & \times & 10 \end{bmatrix}$$
 运费为: $z = 40 \times 7 + 20 \times 8 + 20 \times 5 + 5 \times 13 + 40 \times 9 + 10 \times 10$

$$z = 40 \times 7 + 20 \times 8 + 20 \times 5 + 5 \times 13 + 40 \times 9 + 10 \times 10$$

= 1065

两种方法的区别

最小元素法: 从最小单位运价开始

伏格尔法: 差额最大的行或列中的最小单位运价

二、解的最优性判定

(一) 闭回路法

(二)位势法

(一) 闭回路法

1、闭回路:从某一空格出发,沿水平或垂直方向前进,当遇到有数字格时可以任 意转90度继续前进,也可以穿过有数字格继续前进,直到回到起始点。 这样就可以找到一个且只有一个闭回路。

- 说明: (1) 闭回路中,除起始点为空格外,其余角点均为数字格
 - (2) 对每一个空格,闭回路存在且唯一。
 - (3)任意空格对应的是非基变量,非基变量对应的系数列向量可用其闭回路上所有 角点处数字格(基变量)的系数列向量线性表示。
 - (4) 利用表上作业法得到的m+n-1个基变量之间不存在闭回路。

(一) 闭回路法

2、闭回路法计算检验数

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	7 +	35 2 15	8 -	16	60
A_2	5 -	25 14	×	13 ×	25
A_3	11	× 9	15 ×	10	50
销量	60	40	20	15	

(23)的闭回路为(23)-(21)-(11)-(13)-(23)

运费变化: 7-5+7-8=1

说明给(23)格运1吨,相应调整其它相关运量后,总运费会增加。

$$\sigma_{23} = 1$$

2、闭回路法计算检验数

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	7 +	15 ×	8 -	16	60
A_2	5 -	14 ×	7 +	13 ×	25
A_3	11	9	15 ×	10	50
销量	60	40	20	15	

销地 产地	B_1	B_2	B_3	B_4	产量
A_1		0			60
A_2		1	1	-1	25
A_3	10		13		50
销量	60	40	20	15	

结论:

- 1、运输问题肯定存在可行解
- 2、判断所给的解是初始基可行解的依据
 - (1) (m+n-1) 个数字格; (2) 数字格之间不存在闭回路

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3	11	3	10	7
A_2	1	9	2	8	4
A_3	7	4	10	5	9
销量	3	6	5	6	

(二)位势法

设:对应前m行的对偶变量为 u_i ,

$c_{11} c_{12} \cdots c_{1n} c_{21} c_{22} \cdots c_{2n} \cdots c_{m1} c_{m2} \cdots c_{mn}$ $x_{11} x_{12} \cdots x_{1n} x_{21} x_{22} \cdots x_{2n} \cdots x_{m1} x_{m2} \cdots x_{mn}$ u_{2} u_{m} v_1 \boldsymbol{v}_2

对应后
$$\mathbf{n}$$
行的对偶变量为 \mathbf{v}_{j}

$$u_{1} + v_{1} \leq c_{11}$$

$$u_{1} + v_{2} \leq c_{12}$$

$$\vdots$$

$$u_{1} + v_{n} \leq c_{1n}$$

$$u_{2} + v_{1} \leq c_{21}$$

$$u_{2} + v_{2} \leq c_{22}$$

$$\vdots$$

$$u_{2} + v_{n} \leq c_{2n}$$

$$\vdots$$

$$u_{m} + v_{1} \leq c_{m1}$$

$$u_{m} + v_{2} \leq c_{m2}$$

$$\vdots$$

$$u_{m} + v_{n} \leq c_{mn}$$

$$\max \omega = \sum_{i=1}^{m} a_i u_i + \sum_{j=1}^{n} b_j v_j$$

$$\begin{cases} u_i + v_j \le c_{ij} \\ u_i, v_j$$
 无约束, $i = 1, \dots, m; j = 1, \dots, n \end{cases}$

$$c_{11} c_{12} \cdots c_{1n} c_{21} c_{22} \cdots c_{2n} \cdots c_{m1} c_{m2} \cdots c_{mn}$$

$$x_{11} x_{12} \cdots x_{1n} x_{21} x_{22} \cdots x_{2n} \cdots x_{m1} x_{m2} \cdots x_{mn}$$

原问题任意变量的检验数

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & & & & & & & & & & \\ & 1 & 1 & \cdots & 1 & & & & & & & \\ & 1 & 1 & \cdots & 1 & & & & \ddots & & & \\ & 1 & 1 & 1 & \cdots & 1 & & & \cdots & 1 & & & \\ 1 & 1 & 1 & 1 & & & \cdots & 1 & & & \\ & 1 & 1 & 1 & & & 1 & & & \ddots & \\ & 1 & 1 & & 1 & & & 1 & & & \ddots & \\ & & 1 & & 1 & & & 1 & & & 1 \end{bmatrix} \begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \\ v_1 \\ v_2 \\ \vdots \\ v_n \\ \end{array}$$

$$\sigma_{ij} = c_{ij} - YP_{ij}$$

$$= c_{ij} - (u_1, \dots, u_m, v_1, \dots, v_n)$$

$$\vdots$$

$$= c_{ij} - (u_i + v_j)$$

$$\vdots$$

$$\vdots$$

基变量的检验数 $\sigma_{ij} = \mathbf{0}$,则 $u_i + v_j = c_{ij}$

(m+n-1) 个基变量

得到 (m+n-1) 个 $u_i + v_j = c_{ij}$, 令任一个 u_i 或 v_j 等于0, 解出所有 u_i 和 v_j

然后利用已经求得的 u_i 和 v_j 计算所有非基变量的检验数

$u_i + v_j$	$=c_{ii}$		$\sigma_{ij} = c_{ij} - (u_i + v_j)$								
<i>-</i>	9			位势表		, 3	•	J	检验	数表	
	销地 产地	B_1	B_2	B_3	B_4	产量	u_i	B_1	B_2	B_3	B_4
	A_1	7 +	15	8	16 _	60	0		0		
	A_2	5 25	11	<u>×</u>	13 +	25	-2		1	1	-1
	A_3	11 ×	9	15	10	50	-6	10		13	
	销量	60	40	20	15						
	v_j	7	15	8	16			Z=10'	70		
	A_1	7	15 ×	8	16 ×	60	0		1		1
	A_2	5	14 ×	7 ×	13	25	-2		2	1	
	A_3	11	9	15	10 10	50	-5	9		12	
	销量	60	40	20	15		7 10/5				
	v_j	7	14	8	15		Z=1065				25

三、解的改进—闭回路调整法

- 1、确定换入变量: $\min\{\sigma_{ij} \prec \mathbf{0}\}$ x_{ij} 换入
- 2、确定换出变量
 - (1) 以 x_{ii} 为起点寻找闭合回路

 - 3、迭代

标有"一"的格,减去 θ ;标有"十"的格加上 θ 。

4、判优

计算新解的非基变量检验数,若所有 $\sigma_{ii} \geq 0$,则得优,否则重复以上步骤。

四、无穷多最优解

					位	势表						检验	数表	
销地 产地]	B_1	B	\mathbf{B}_{2}	I	B_3	В	4	产量	u_{i}	B_1	B_2	B_3	B_4
A_1	3	×	11	×	3	5	10	2	7	0	0	2		
A_2	1	3	9	×	2	×	8	1	4	-2		2	1	
A_3	7	×	4	6	10	×	5	3	9	-5	9		12	
销量	3		6		ţ	5		6	Z=85					
v_{j}	3		9		3	3	1	0						

 x_{11} 的检验数为0,则可得到另外一个最优解

$$\begin{bmatrix} \times & \times & 5 & 2 \\ 3 & \times & \times & 1 \\ \times & 6 & \times & 3 \end{bmatrix} \qquad \begin{bmatrix} 2 & \times & 5 & \times \\ 1 & \times & \times & 3 \\ \times & 6 & \times & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & \times & 5 & 1 \\ 2 & \times & \times & 2 \\ \times & 6 & \times & 3 \end{bmatrix}$$

$$z = 3 \times 2 + 3 \times 5 + 1 \times 1 + 8 \times 1 + 4 \times 6 + 5 \times 3 = 85$$

1、确定初始解时出现退化解(用最小元素法)

销地 产地	B_1	1	B_2		B_3		В	4	产量
A_1	3	×	11	×	4	1_	5	6	7
A_2	7	×	7	×	3	4	8	×	4
A_3	1	3	2	6	10	×	6	\otimes	9
销量	3		6		5		6	6	

补充0的原则:

- (1) 尽量先选运费小的变量;
- (2) 补充后不能由某个基变量独占一行和一列。(否则,检验数无法计算)

五、退化解

- 2、闭回路调整过程中出现退化解
 - (1) 闭回路中标有"一"的基变量,同时有多个达到最小。

设
$$\sigma_{22}$$
 \prec 0

$$\begin{bmatrix} 2 \times 5 \times \\ 1 \times 3 \times 6 \end{bmatrix} \qquad \begin{bmatrix} 2 \times 5 \times \\ 1 & 3 \times 0 \\ \times \times \times 9 \end{bmatrix}$$

(2) 作改进时,该闭回路上标记为"一"的数字格中含有0,此时调整量为 $\theta = 0$ 。

设
$$\sigma_{14}$$
 \prec 0

$$\begin{bmatrix} 2 & \times & 5 & \times \\ 1 & \times & \times & 0 \\ \times & 3 & \times & 6 \end{bmatrix} \qquad \begin{bmatrix} 2 & \times & 5 & 0 \\ 1 & \times & \times & \times \\ \times & 3 & \times & 6 \end{bmatrix}$$

§ 3-3 运输模型的扩展

- 一、不平衡运输模型
- 二、需求不确定运输模型
- 三、运输模型的应用

二、 不平衡运输问题

前面所述运输问题的理论与表上作业法的计算,都是以产销平衡为前提的,即各产业的总产出等于各销地的总销量。即:

$$\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$$

但在实际的运输问题中,产销量往往是不平衡的,为了应用上述理论和表上作业法进行计算,就需要一定的技术措施,把产销不平衡的运输问题化为产销平衡的运输问题 来处理。

1、产大于销:加入假想销地

$$MinZ = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\sum_{i=1}^m a_i > \sum_{j=1}^n b_j$$

此时考虑多余的物资在何处存 贮,假想一个存贮地

$$\sum_{i=1}^{m} x_{ij} = b_{j}$$
 $(j = 1, 2, \dots, n)$ 销地约束

31

$$x_{ij} \geq 0$$

销地 产地	B_1	B_2	B_3	B_4	假想 销地	产量
A_1	3	11	4	5	0	8
A_2	7	7	3	8	0	5
A_3	1	2	10	6	0	10
销量	3	6	5	6	3	

$$MinZ = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$egin{aligned} extit{Min} Z &= \sum_{i=1}^m \sum_{j=1}^n c_{ij} \cdot x_{ij} \ &= \sum_{j=1}^{n+1} x_{ij} = a_i \qquad (i=1,2,\cdots,m) \qquad ext{产地约束} \ &\sum_{i=1}^m x_{ij} = b_j \qquad (j=1,2,\cdots,n) \qquad ext{销地约束} \ &x_{ij} \geq 0 \end{aligned}$$

2、销大于产: 加入假想产地

销地 产地	B_1	B_2	B_3	B_4	产量
A_1	3	11	4	5	8
A_2	7	7	3	8	5
A_3	1	2	10	6	10
假想产地	0	0	0	0	4
销量	5	7	7	8	

$$MinZ = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \cdot x_{ij}$$

$$\begin{cases} \sum_{j=1}^{n} x_{ij} = a_{i} & (i = 1, 2, \dots, m) &$$
产地约束 $\\ \sum_{i=1}^{m+1} x_{ij} = b_{j} & (j = 1, 2, \dots, n) &$ 销地约束 $x_{ij} \geq 0$

二、需求不确定运输模型

例3.1

销地 产地	I	II	III	IV	产量
Α	16	13	22	17	50
В	14	13	19	15	60
С	19	20	23	_	50
最低需求	30	70	0	10	
最高需求	50	70	30	不限	

产量: 50+60+50=160

最低需求: 30+70+0+10=110

最高需求不限

现有产量下, I、II、III满足最低需求, IV的最大分配量为160 -100=60, 所以, 最高需求为 50+70+30+60=210

因为最低需求不能由假想产地供给,所以模型如下。

销地 产地	ľ	l "	II	III	IV'	IV"	产量
Α	16	16	13	22	17	17	50
В	14	14	13	19	15	15	60
С	19	19	20	23	М	M	50
D	M	0	M	0	M	0	50
最高需求	30	20	70	30	10	50	

三、运输模型的应用

例3.2 某厂按合同规定需于当年每个季度末分别提供10,15,25,20台同一规格的柴油机,已知该厂各季度的生产能力及生产每台柴油机的成本如表,又如果生产出来的柴油机当季度不交货,每台积压一个季度需要存储费用、维护费用0.15万元,要求在完成合同的情况下,作出使该厂全年生产(包括存储、维护)费用最小的决策。

季度	生产能力(台)	单位成本 (万元)		
l	25	10.8		
II	35	11.1		
III	30	11.0		
IV	10	11.3		

季度	I	II	III	IV	D	产量
ı	10.8	10.95	11.10	11.25	0	25
II	М	11.1	11.25	11.40	0	35
W	М	M	11.0	11.15	0	30
IV	М	M	M	11.3	0	10
销量	10	15	25	20	30	