In problems 1. through 4. determine whether the **sequence** $\{a_n\}$ converges or diverges, where:

1.
$$a_n = \frac{5^{n-1}}{7^{n+1}} = \left(\frac{5}{7}\right)^{n-1} \cdot \frac{1}{49}$$
 $\left|\frac{5}{7}\right| < 1 \implies converges$

2.
$$a_n = \frac{(\ln n)^2}{n}$$
 $\lim_{n \to \infty} \frac{(\ln n)^2}{n} = \lim_{n \to \infty} \frac{2 \ln n}{n} = \lim_{n \to \infty} \frac{2 \ln n}{n} = 0$

$$\Rightarrow \cos n = \lim_{n \to \infty} \frac{2 \ln n}{n} = 0$$

3.
$$a_n = \ln(3n^2 + 5) - \ln(3n^2 + 1) = \ln(3n^2 + 5)$$

$$= \frac{\ln(3n^2 + 5) - \ln(3n^2 + 1)}{\ln(3n^2 + 1)} = \frac{\ln(3n^2 + 5)}{\ln(3n^2 + 1)} = \frac{\ln(3n^2 + 5) - \ln(3n^2 + 1)}{\ln(3n^2 +$$

4.
$$a_n = \frac{(3n+1)!}{(3n-1)!} = (3n)$$
. $(3n+1)$

$$\Rightarrow Com Q_n = \infty$$

In problems 5. through 10. determine whether the series converge or diverge.

5.
$$\sum_{n=1}^{\infty} \frac{2n}{3n+5}$$
 Com ou = Com $\frac{2n}{3n+5}$ = $\frac{2}{3} \neq 0$

$$\Rightarrow \infty$$
 = diverpes

6.
$$\sum_{n=1}^{\infty} \frac{2+3^n}{5^n} = \sum_{n=1}^{\infty} \frac{2}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n}$$

$$= \sum_{n=1}^{\infty} \frac{2+3^n}{5^n} = \sum_{n=1}^{\infty} \frac{2}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n}$$

$$= \sum_{n=1}^{\infty} \frac{2+3^n}{5^n} = \sum_{n=1}^{\infty} \frac{2}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n}$$

$$= \sum_{n=1}^{\infty} \frac{2}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n}$$

$$= \sum_{n=1}^{\infty} \frac{2}{5^n} + \sum_{n=1}^{\infty} \frac{3}{5^n} + \sum_{n=$$

7.
$$\sum_{n=1}^{\infty} \arctan(n)$$

8.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$$

$$\Rightarrow \sum$$

9.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$$
, $\frac{2}{n(n+1)} = 2 \left[\frac{1}{n+1} \right]$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right) + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n+1} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{3} - \frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{n(n+1)} \right] + \left(\frac{1}{n(n+1)} \right)$
 $S_n = 2 \left[\frac{1}{$

11. Find the arclength of the curve
$$y = x^2 - \frac{1}{8} \ln x$$
 from $x = e \text{ to } x = e^2$
 $y' = 2x - \frac{1}{8x}$, $y' = \frac{2}{3} + \frac{1}{3} + \frac{1}{3} = \frac{2}{3} + \frac{1}{3}$

12. The curve $y = \sqrt{1 + e^x}$, $0 \le x \le 1$, is rotated around the **x-axis**. Find the **surface**

area of the solid generated.

$$y' = \frac{1}{2} \frac{e^{x}}{\sqrt{1+e^{x}}}, \quad y' = \frac{1}{4} \frac{e^{x}}{\sqrt{1+e^{x}}} = \frac{e^{x}}{4} \frac{1+e^{x}}{\sqrt{1+e^{x}}}$$

$$\sqrt{1+y'^{12}} = \frac{e^{x}+2}{2\sqrt{1+e^{x}}} = Azea = A\pi\sqrt{1+e^{x}}$$

$$= \pi \int e^{x}+2 dx = \pi \int e^{x}+2x = \pi \int e^{x}+2x = \pi \int e^{x}+2 dx$$

$$= \pi \int e^{x}+2 dx = \pi \int e^{x}+2x = \pi \int e^{x}+2x = \pi \int e^{x}+2 dx$$

13. The region bounded by the **three** curves $y = \sin x$, $y = \cos x$ and x = 0 is rotated around the line y = 2. Find the **volume** of the solid generated.

R- 2-510X $IR^{2} - IR^{2} = II (z - 51NX) - II (z - 600X)$ = II [4 - 451NX + 51NX - 4 + 400X - 60] $= \frac{11}{5} = \frac{11}{5$ = TT 4 52 + 4 52 -1 -41 = TI [452 - 97]