

Patent Application Transmittal
 (only for new nonprovisional applications under 37 C.F.R. 1.53(b))
 Correspondence Address:
 FROMMER LAWRENCE & HAUG LLP
 745 FIFTH AVENUE
 NEW YORK, NEW YORK 10151
 TEL: (212) 588-0800
 FAX: (212) 588-0500

Date: June 21, 2000
 Attorney Docket No.: 450117-02628

ASSISTANT COMMISSIONER FOR PATENTS
 Box Patent Application
 Washington, D.C. 20231

Sir:

With reference to the filing in the United States Patent and Trademark Office of an application for patent in the name(s) of:

Besma KRAIEM, Janos ENDERLEIN

entitled:

CALIBRATION PROCEDURE FOR WIRELESS NETWORKS WITH DIRECT MODE TRAFFIC

The following are enclosed:

Specification (10 pages)
 3 Sheet(s) of Drawings
 18 Claim(s) (including 3 independent claim(s))
 This application contains a multiple dependent claim

 Our check for \$ 690.00, calculated on the basis of the claims as amended by any enclosed preliminary amendment as follows:

Basic Fee, \$690.00 (\$345.00)	\$ 690.00
Number of Claims in excess of 20 at \$18.00 (\$9.00) each:	-0-
Number of Independent Claims in excess of 3 at \$78.00 (\$39.00) each:	-0-
Multiple Dependent Claim Fee at \$260.00 (\$130.00)	-0-
Total Filing Fee	\$ 690.00
Assignment Recording Fee \$40.00	-0-

Oath or Declaration and Power of Attorney
 New signed unsigned
 Copy from a prior application (37 C.F.R. 1.63(d))

 Certified copy of each of the following application(s) to substantiate the claim(s) for priority made in the Declaration:

<u>Application No.</u>	<u>Filed</u>	<u>In</u>
------------------------	--------------	-----------

Please charge any additional fees required for the filing of this application or credit any overpayment to Deposit Account No. 50-0320.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP
 Attorneys for Applicants

By
 William S. Frommer
 Reg. No. 25,506

FROMMER LAWRENCE & HAUG LLP

745 FIFTH AVENUE NEW YORK, NEW YORK 10151

WILLIAM S. FROMMER
WILLIAM F. LAWRENCE
EDCAR H. HAUG
MATTHEW K. RYAN
BARRY S. WHITE
THOMAS J. KOWALSKI
JOHN R. LANE
DENNIS M. SMID *
DANIEL G. BROWN
BARBARA Z. MORRISSEY
STEVEN M. AMUNDSON
MARILYN MATTHES BROGAN
JAMES K. STRONSKI

A. THOMAS S. SAFFORD
JEROME ROSENSTOCK
RAYMOND R. WITTEKIND, PH.D.
SUSAN K. LEHNHARDT, PH.D.
Of Counsel

GORDON KESSLER
MARK W. RUSSELL *
BRUNO POLTO
GRACE L. PAN *
JEFFREY A. HODVEN
JOE H. SHALLENBURGER
CHRISTIAN M. SMOLIZZA
GLENN F. SAVIT
ROBERT E. COLLETTI
DEÄTER T. CHANG
PETER J. WAIBEL
LINDSEY A. MÖHLE
DEENA P. LEVY
DARREN M. SIMON
YUFENG LIU, PH.D
CHRISTINE PEPE
CINDY HUANG
*Admitted to a Bar
other than New York

June 21, 2000

Assistant Commissioner for Patents
Washington, D.C. 20231

Re: U.S. Patent Application
Applicants: Besma KRAIEM, Janos ENDERLEIN
Our Ref.: 450117-02628

Dear Sir:

Enclosed are papers constituting the above patent application which is being filed under 37 C.F.R. 1.53 without a signed Declaration. Please accord a filing date and a serial number to such application and inform the undersigned thereof so that a signed Declaration and the surcharge required by 37 C.F.R. 1.16(e) may be duly filed.

Please address all correspondence to:

William S. Frommer, Esq.
FROMMER LAWRENCE & HAUG LLP
745 Fifth Avenue
New York, New York 10151

Respectfully,

William S. Frommer
Reg. No. 25,506
Attorney for Applicants
Enclosures

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants : Besma KRAIEM et al.

Filed : Herewith

For : CALIBRATION PROCEDURE FOR WIRELESS NETWORKS WITH
DIRECT MODE TRAFFIC

745 Fifth Avenue
New York, New York 10151
Tel. (212) 588-0800

EXPRESS MAIL

Mailing Label Number EL560675834US

Date of Deposit June 21, 2000
I hereby certify that this paper or fee is being
deposited with the United States Postal Service
"Express Mail Post Office to Addressee" Service
under 37 CFR 1.10 on the date indicated above and
is addressed to the Assistant Commissioner for
Patents, Washington, D.C. 20231.

Charles Jackson
(Typed or printed name of person
mailing paper or fee)

Charles Jackson
(Signature of person mailing paper or fee)

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Before the issuance of the first Official Action,
please amend the above-identified application as follows:

IN THE CLAIMS:

Please amend the claims as follows:

Claim 3, line 1, delete "or 2";

Claim 4, line 1, delete "anyone of the preceding
claims" and insert --claim 1--;

Claim 5, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 6, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 7, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 8, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 9, line 1, delete "anyone of claims 1 to 7" and insert --claim 1--;

Claim 10, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 11, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 12, line 1, delete "anyone of the preceding claims" and insert --claim 1--;

Claim 15, line 1, delete "or 14";

Claim 17, line 1, delete "anyone of claims 13 to 16" and insert --claim 13--;

Cancel claim 19.

REMARKS

The claims have been amended to eliminate multiple dependencies. The filing fee has been calculated based upon these amendments to the claims.

Respectfully submitted,

FROMMER LAWRENCE & HAUG LLP
Attorneys for Applicants

By:
William S. Frommer
Reg. No. 25,506
Tel. (212) 588-0800

PATENT
450117-02628

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
APPLICATION FOR LETTERS PATENT

TITLE: CALIBRATION PROCEDURE FOR WIRELESS
NETWORKS WITH DIRECT MODE TRAFFIC

INVENTORS: Besma KRAIEM, Janos ENDERLEIN

William S. Frommer
Registration No. 25,506
FROMMER LAWRENCE & HAUG LLP
745 Fifth Avenue
New York, New York 10151
Tel. (212) 588-0800

Description

1 The present invention relates to the calibration procedure for wireless networks with direct mode traffic, and in particular to the creation of a topology map indicating the quality of connectivity of each wireless device of a wireless network with all other wireless devices in said wireless network.

5

A typical wireless network, such as the IEEE 1394 based HIPERLAN type 2 broadband radio access network which specification is developed by ETSI is shown in Fig. 3. An access point or central controller 15 has an up- and down-link communication with several mobile terminals 11, 12, 13, and 14 and the 10 mobile terminals can also have a direct communication in-between each other so that apart from the granting of resources for peer mobile terminals, e. g. the first mobile terminal 11 and the second mobile terminal 12, the access point or central controller 15 is not involved in the communication. Such direct communications in-between two or more mobile terminals are called direct mode.

15 An IEEE 1394 bus with connected network devices is exemplary shown only for the fourth mobile terminal 14.

The problem in wireless networks including direct mode traffic is that the mobile terminals do not know with which other devices they have radio link.

20 Thus, they intend to request the central controller 15 to set up certain connections even though they are not possible. A second problem is the transmit power control during direct mode traffic. Without knowledge about the radio link quality always maximum transmit power levels have to be used until appropriate levels are identified.

25

Therefore, a topology map has been introduced indicating the quality of connectivity of each network device of a wireless network with all other network devices in said wireless network. After distribution of this topology map, a mobile terminal can check whether a connection is possible or not before 30 requesting it with the central controller. Furtheron, transmit power control can be performed using an initial power level determined on the quality of connectivity of the particular radio link.

Also, in case the topology map of the wireless network is not distributed in the whole network, but only stored within the central controller enables the cen-

1 tral controller to accept or reject connection requests between two wireless de-
vices depending on the radio link quality. Furthermore, once the topology map
has been created, the central controller can inform the peer wireless devices to
set up their transmit power levels accordingly until accurate transmit power
5 control is performed.

Therefore, it is the object of the present invention to provide a method to
create a topology map indicating the quality of connectivity of each network
device of a wireless network with all other network devices in said wireless
10 network. Furtheron, it is the object of the present invention to provide network
devices that are adapted to work according to the inventive method.

These objects are solved by the inventive method to create a topology map
according to independent claim 1 and network devices for a wireless network
15 according to independent claims 13 and 18. Preferred embodiments thereof are
respectively defined in the respective dependent claims.

A method to create a topology map indicating the quality of connectivity of
each network device of a wireless network with all other network devices in
20 said wireless network according to the present invention comprises the follow-
ing steps: performing a measurement phase in which a calibration signal is
successively broadcasted by each network device and in which all respective
other network devices receiving said calibration signal measure the received
signal quality; performing a reporting phase in which the measurement results
25 are transmitted from each network device to the network device creating said
topology map; and performing a creating phase in which said topology map of
the network is created within the network device creating said topology map on
basis of all received measurement results.

30 Therefore, according to the present invention a very quick creation of the to-
pology map is possible, since no bandwidth is wasted transmitting small
amounts of data, namely single measurement results, from the network
devices that have measured the received signal quality of one control signal to
the network device creating said topology map, but since first all measurement
35 results are collected before they are transmitted to the network device creating
the topology map.

1 Preferably said measurement phase and/or said reporting phase are initiated by the network device creating the topology map.

Further, preferably the topology map is updated when a new network device
5 joins the network and/or after a predetermined amount of time has lapsed.

A first type of network device for a wireless network according to the present invention is characterized by means to broadcast a calibration signal, to measure a power level of a received calibration signal, and to transmit its measurement results to another network device or to store it internally.
10

Preferably these functions are carried out on demand of another network device, but they can also be carried out on an internal demand. Therefore, the network device according to the present invention preferably comprises a
15 decoder that initiates the broadcast of a control signal and the measurement of the reception quality of one or more incoming broadcast signals upon reception of a measurement control signal and that further preferably initiates the transmission of one or more measurement results upon reception of a reporting control signal.

20 Preferably the network device according to the present invention is characterized by a report encoder that receives one or more signal quality indication signals and encodes therefrom a signal quality control signal to be transmitted to said other network device or to be stored internally.

25 A second type of network device according to the present invention is characterized by means to initiate a measurement phase, to initiate a reporting phase, and to perform a creation of a topology map on basis of measurement results received during the reporting phase.

30 This second type of network device preferably includes all features of the first type of network device according to the present invention.

The first type of network device according to the present invention is either a
35 mobile terminal or a mobile terminal having the functionality of a central controller, whereas the second type of network device according to the present invention always has the functionality of a central controller.

- 1 The present invention and its numerous embodiments will be better understood on basis of the following exemplary description thereof taken in conjunction with the accompanying drawings, in which
- 5 **Fig. 1** shows a network device according to the present invention;
- Fig. 2 shows the messaging in-between the central controller and two mobile terminals during the calibration procedure to create the topology map; and
- Fig. 3 shows an exemplary wireless network.

10

The mobile terminal shown in Fig. 1 is adapted to perform a direct mode calibration according to the present invention. The shown mobile terminal has one antenna 1 which is connected to the movable terminal of a transmit/receive selection switch 2 which fixed terminals are respectively connected to the

15 transmitter and receiver signal path of the mobile terminal. In the receiver signal path a receiver 3 is directly connected to the respective fixed terminal of the transmit/receive selection switch 2. This receiver 3 produces a data and control signal input to a controller 6 and also outputs a signal wherfrom a signal quality measurement unit 5 can determine the received signal strength

20 which is output to the controller 6. For the transmitter signal path the controller 6 outputs a data and control signal to a transmitter 4 which modulates, up-converts and amplifies this signal to a given signal strength which is indicated to the transmitter 4 by a control signal generated by the controller 6 and outputs the generated transmission signal to the respective fixed terminal of

25 the transmit/receive selection switch 2. Bi-directionally connected to the controller are a user interface 7 and a memory 8. Furtheron, the controller 6 is connected to a direct mode calibration decoder 9 and a direct mode report encoder 10.

30 The direct mode calibration decoder 9 receives the control signals generated by the receiver 3 via the controller 6 and initiates the broadcast of a calibration signal and the measurement of the reception quality of one or more incoming broadcasted calibration signals from other mobile terminals upon reception of a measurement control signal which is transmitted from the central controller

35 15. Furtheron, upon reception of a reporting control signal which is also transmitted from the central controller 15 the direct mode calibration decoder 9 initiates the transmission of one or more measurement results to said central

1 controller 15. Therefore, all measurement results stored within the memory 8
are communicated to the direct mode report encoder 10 by the controller 6 and
said direct mode report encoder 10 generates a signal quality control signal
that is transmitted via the controller 6 and the transmitter 4 to the central
5 controller 15. The central controller 15 creates a topology map on basis of all
measurement results received from all mobile terminals during the reporting
phase.

10 In the following the calibration procedure will be described in connection with
Fig. 2 which shows the messaging in-between the central controller 15 having
a medium access control identifier, i. e. MAC-ID3, and a first mobile terminal
11 having a MAC-ID1 and a second mobile terminal 12 having a MAC-ID2,
after the calibration procedure is decided to be started, since either a new mo-
15 bile terminal joins the network or a timer has expired.

15 In a first step S1 the central controller 15 send measurement control signals
to both mobile terminals 11 and 12. Of course, the central controller 15 itself
knows that the measurement phase of the calibration procedure will be per-
formed. Therefore, after the first step S1 all three network devices, namely the
20 central controller 15 and the first and second mobile terminals 11 and 12, are
initialized to perform the measurement phase. During the measurement phase
all network devices within the wireless network successively broadcast a cali-
bration signal and receive the calibration signals transmitted by the other net-
work devices to determine their respective signal quality. Therefore, in a step
25 S2 the first mobile terminal 11 broadcasts its calibration signal to the central
controller 15 and the second mobile terminal 12 which receive said calibration
signal, measure its signal quality, and store it in an internal memory.

30 Thereafter, the central controller 15 itself performs the broadcast of a calibra-
tion signal to the first and second mobile terminals 11 and 12 in a step S3.
Both mobile terminals 11 and 12 respectively receive the calibration signal,
measure its signal quality and store this value in an internal memory. Follow-
ing in a step S4 the second mobile terminal 12 also broadcasts a calibration
35 signal to the first mobile terminal 11 and the central controller 15 which
respectively receive this calibration signal, measure its signal quality and store
this measured value in an internal memory. After all mobile terminals have
broadcasted their calibration signals and these calibration signals are received

1 and measured by all respective other devices, the central controller 15 trans-
mits a reporting control signal in a step S5 to the first mobile terminal 11 and
the second mobile terminal 12. After reception of the reporting control signal,
both mobile terminals generate a signal quality control signal comprising one
5 or more measurement results and transmit it respectively to the central con-
troller 15. The first mobile terminal 11 transmits its signal quality control sig-
nal in a step S6 to the central controller 15 and the second mobile terminal 12
transmits its signal quality control signal to the central controller 15 in a step
S7.

10

Of course, the central controller 15 knows its own measurement results, since
they are already stored in its internal memory. Upon reception of all measure-
ment results from all other mobile terminals within the network, the central
controller 15 generates the topology map which indicates the reception quality
15 for every radio link available within the network.

To summarize the above procedure it can be said that the calibration proce-
dure mainly consists of two phases, namely the measurement phase and the
reporting phase. In an exemplary embodiment of an IEEE 1394 based HIPER-
20 LAN type 2 network during the measurement phase the calibration slot is
transmitted using a dedicated control channel. It contains the source identi-
fier. The calibration slot is transmitted using the maximum allowed transmit
power level in order to avoid artificial hidden nodes. Each other wireless device
measures the received quality, e. g. by means of the received signal strength
25 and stores it in an internal memory. During the reporting phase each wireless
device reports its measurement results to the central controller using a dedi-
cated control channel. The report slot contains the identifier of the wireless
device and the report measurements. One or more measurement results can be
transmitted in one report slot.

30

Once all wireless devices have reported their measurement results to the cen-
tral controller, the central controller (in a third phase) creates a topology map
of the network which indicates the quality of connectivity of each wireless
device with all others. A possible topology map of a network with n active devis
35 represented into a matrix is shown below:

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1		MAC-ID1	MAC-ID2	MAC-ID3	MAC-IDn
5	MAC-ID1	RSS 1-2	RSS 1-3	RSS 1-n
10	MAC-ID2	RSS 2-1	RSS 2-3	RSS 2-n
15	MAC-ID3	RSS 3-1		RSS31-n
20
25
30
35	MAC-IDn	RSS n-1	RSS n-2	RSS n-3

RSS n-m represents the received signal strength at mobile terminal n when transmitted by mobile terminal m. The central controller is also regarded as mobile terminal, since in a wireless network environment with mobile terminals the task of the central controller might be switched from one mobile terminal to another. According to the example shown hereinafter 4 bits are used to map the received signal quality, i. e. the received power to a signal strength code. Therefore, there exist sixteen possibilities of designated received power levels to be included in the topology map. According to the shown example, a bandwidth of < -90 dBm to > -30dBm is set with a step size of 3 dB and a range of -69 dBm to -48 dBm as a medium range mapped to one coding value.

25

30

35

	RSS2	Received Power at ARP [dBm]	Step Size
1	0000	< -90 dBm (no radio link)	
5	0001	-90	
	0010	-87	
	0011	-84	
10	0100	-81	3 dB
	0101	-78	
	0110	-75	
	0111	-72	
15	1000	-69 ... -48	21 dB
	1001	-45	
	1010	-42	
	1011	-39	
20	1100	-36	3 dB
	1101	-33	
	1110	-30	
	1111	> -30 dBm	

Of course, any other mapping e. g. in a strictly linear or non-linear fashion can be performed as well.

25 An update of the topology map is always triggered by the central controller. It is started as a high priority calibration when a new mobile terminal joins the network so that an updated topology map is nearly immediately created, e. g. within 2 ms. Furtheron, a low priority calibration is started every time when a 30 timer expires, e. g. every 100 ms. Low priority in this sense means that the calibration is carried out every time free resources are available.

35 The topology map of the network might be broadcast by the central controller to all mobile terminals and depending on the used system it might be transmitted as a whole or line by line. A mobile terminal receiving the topology map preferably stores this topology map together with a time stamp. Another possibility to give knowledge about the network topology to a mobile terminal is to

- 1 just transmit a particular line or value of the topology map to the corresponding network device.

Of course, the present invention is not only to be used with an IEEE 1394
5 based HIPERLAN type 2 network, but with any wireless network, preferably
with such supporting direct mode.

10

15

20

25

30

35

Claims

1 1. Method to create a topology map indicating the quality of connectivity of each network device of a wireless network with all other network devices in said wireless network, **characterized by** the following steps:

5 - performing a measurement phase in which a calibration signal is successively broadcasted by each network device and in which all respective other network devices receiving said calibration signal measure the received signal quality;

10 - performing a reporting phase in which the measurement results are transmitted from each network device to the network device creating said topology map; and

- performing a creating phase in which said topology map of the network is created within the network device creating said topology map on basis of all received measurement results.

15 2. Method according to claim 1, **characterized in** that said calibration signal is transmitted in a dedicated control channel.

3. Method according to claim 1 or 2, **characterized in** that said measurement results are reported in a respective dedicated control channel.

20 4. Method according to anyone of the preceding claims, **characterized in** that said calibration signal is transmitted with the maximum allowed transmit power level.

25 5. Method according to anyone of the preceding claims, **characterized in** that said topology map is updated when a new network device joins the network.

30 6. Method according to anyone of the preceding claims, **characterized in** that said topology map is updated after a predetermined amount of time.

7. Method according to anyone of the preceding claims, **characterized in** that said topology map is stored in the central controller.

1 8. Method according to anyone of the preceding claims, **characterized in**
that said topology map is broadcasted in the whole network.

5 9. Method according to anyone of claims 1 to 7, **characterized in** that only
the parts of the topology map related to a specific network device are transmitted
to said specific network device.

10 10. Method according to anyone of the preceding claims, **characterized in**
that said calibration signal is transmitted using an omni-directional antenna.

10 11. Method according to anyone of the preceding claims, **characterized in**
that the contents of the topology map are codes that are mapped to receive
power values.

15 12. Method according to anyone of the preceding claims, **characterized in**
that said measurement phase and/or reporting phase is initiated by the network device creating said topology map.

20 13. Network device for a wireless network, **characterized by** means to
broadcast a calibration signal, to measure a power level of a received calibration signal,
and to transmit its measurement results to another network device or to store it internally.

25 14. Network device according to claim 13, **characterized in** that said functions are performed on demand of another network device or on an internal demand.

30 15. Network device according to claim 13 or 14, **characterized by** a calibration decoder (9) that initiates the broadcast of a calibration signal and the measurement of the reception quality of one or more incoming calibration signals upon reception of a measurement control signal.

35 16. Network device according to claim 15, **characterized in** that said calibration decoder (9) initiates the transmission of one or more measurement results upon reception of a reporting control signal.

1 17. Network device according to anyone of claims 13 to 16, **characterized**
by a report encoder (10) that receives one or more signal quality indication sig-
nals and encodes therefrom a signal quality control signal to be transmitted to
said other network device.

5

~~18.~~ Network device for a wireless network, **characterized by** means to initi-
ate a measurement phase, to initiate a reporting phase and to perform a crea-
tion of a topology map on basis of measurement results received during the
reporting phase.

10

19. Network device according to claim 18 including the features of anyone of
claims 16 to 20.

DEUTSCHE PATENT- UND MARKEN AUSZEICHNUNGS AUSGABE

15

20

25

30

35

Abstract

Calibration Procedure for Wireless Networks with Direct Mode Traffic

A calibration procedure of wireless networks to create a topology map mainly consists of two phases: a measurement phase during which each wireless device, i. e. all mobile terminals and the central controller, transmits a calibration signal in broadcast mode (S2, S3, S4) and each other wireless device measures the received signal quality and the reporting phase during which each mobile terminal reports the measured results to the central controller of the network (S6, S7). Both of these phases are preferably initiated by the central controller, the measurement phase with the broadcast of a measurement control signal to all mobile terminals (S1) and the reporting phase with the broadcast of a reporting control signal to all mobile terminals (S5). Based on all measurement results the central controller creates a topology map of the network once all reports have been received. This topology map is updated in two cases, namely when a new device joins the network with a high priority calibration and when a timer expires with a low priority calibration, i. e. only when there are enough free resources.

(Fig. 2)

Fig. 1

Fig. 2

— — — Direct Mode

— — — Up- and Downlink

Fig. 3

DECLARATION FOR PATENT APPLICATION (JOINT OR SOLE)

(Under 37 CFR § 1.63; with Power of Attorney)

FROMMER LAWRENCE & HAUG LLP

FLH File No. 450117-02628

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention ENTITLED:

CALIBRATION PROCEDURE FOR WIRELESS NETWORKS WITH DIRECT MODE TRAFFIC

the specification of which

X is attached hereto.

was filed on _____ as Application Serial No. _____,

with amendment(s) through _____ (if applicable, give dates).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Sec. 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s) [list additional applications on separate page]: Priority Claimed:

<u>Number:</u>	<u>Country:</u>	<u>Filed (Day/Month/Year):</u>	<u>Yes</u>	<u>No</u>
99 112 129.4	Europe	23 June 1999	X	

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code § 112, I acknowledge the duty to disclose to the United States Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, Sec. 1.56, which became available between the filing date of the prior application and the national or PCT international filing date of this application:

Prior U.S. Application(s) [list additional applications on separate page]:

Appln. Ser. Number: Filed (Day/Month/Year): Status (patented, pending, abandoned):

I hereby appoint WILLIAM S. FROMMER, Registration No. 25,506, and DENNIS M. SMID, Registration No. 34,930 or their duly appointed associate, my attorneys, with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to file continuation and divisional applications thereof, to receive the Patent, and to transact all business in the Patent and Trademark Office and in the Courts in connection therewith, and specify that all communications about the application are to be directed to the following correspondence address:

WILLIAM S. FROMMER, Esq.
c/o FROMMER LAWRENCE & HAUG LLP
745 Fifth Avenue
New York, New York 10151

Direct all telephone calls to:
(212) 588-0800
to the attention of:
WILLIAM S. FROMMER

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

INVENTOR(S):

Signature: _____ Date: _____

Full name of sole or first inventor: Besma KRAIEM
Residence: Fellbach, Germany
Citizenship: Tunisia

Signature: _____ Date: _____

Full name of 2nd joint inventor (if any): Janos ENDERLEIN
Residence: Stuttgart, Germany
Citizenship: Germany

Signature: _____ Date: _____

Full name of 3rd joint inventor (if any):
Residence:
Citizenship:

[Similarly list additional inventors on separate page]

Post Office Address(es) of inventor(s):
[if all inventors have the same post office address]
SONY International (Europe) GmbH
Kemperplatz 1
D-10785 Berlin
GERMANY

Note: In order to qualify for reduced fees available to Small Entities, each inventor and any other individual or entity having rights to the invention must also sign an appropriate separate "Verified Statement (Declaration) Claiming [or Supporting a Claim by Another for] Small Entity Status" form [e.g. for Independent Inventor, Small Business Concern, Nonprofit Organization, individual Non-Inventor].

Note: A post office address must be provided for each inventor.