Population genomics RNA-seq

Eyal Privman

Department of Ecology and Evolution, University of Lausanne

PhD Summer School June 2012

Population genomics

Population *genetics*:

The study of *allele frequency distribution and change* under the influence of evolutionary processes:

- genetic drift
- mutation
- natural selection
- recombination
- gene flow

(Wikipedia)

Population genomics: applications

- Reconstruct demographic history
 - Population expansion; bottlenecks; founder effect
 - Migration / invasion (fire ants, pharaoh ants, humans, flies...)

Unil

Population genomics:

- NIAs (including CA) southern USA ForA SA (others)

 Talwan China AUS CA southern USA

 K=8
- Reconstruct demographic h
 - Population expansion; t
 - Migration / invasion (fire

Ascunce et al. Science 2011

Population genomics: applications

- Reconstruct demographic history
 - Population expansion; bottlenecks; founder effect
 - Migration / invasion (fire ants, humans, flies...)
 - Admixture of populations (African Americans)

OPEN & ACCESS Freely available online

PLOS GENETICS

Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X

Cheng et al. 2009

Population genomics: applications

- Reconstruct demographic history
 - Population expansion; bottlenecks; founder effect
 - Migration / invasion (fire ants, humans, flies...)
 - Admixture of populations (African Americans)
- Association studies linking genotype & phenotype
 - Genome-Wide Association Studies (GWAS)
 - Admixture mapping
 - Quantitative Trait Loci (QTL) mapping; hybrid cross
- Detect selection
 - Local adaptation (F_{ST})
 - Selective sweep

Population genomic data

- SNP-chips
- RNA-seq
- RAD-seq
- Whole genome seq?

SNP discovery and genotyping from RNA-seq

- Short read RNA-seq assembled de novo or aligned to ref genome
- Each sample may contain one allele (haploid), two (diploid) or more, as in our case of pooled samples:
- Fire ant RNA-seq data mapped to genome:
 - 5 males = 5 alleles
 - 4 queens = 8 alleles
 - 200 workers = 400 alleles
- Note: this is not a "proper" population sample
 - It's more useful to sequence individual separately
 - It's more useful to detect SNPs using large cohorts of sequenced individuals

SAMtools

- Process SAM (Sequence Alignment/Map) and BAM format (compressed binary version of SAM)
- E.g. Process Bowtie or TopHat alignments of RNA-seq or RAD-seq to a reference genome
- Use the manual page to write samtools command lines: <u>http://samtools.sourceforge.net/samtools.shtml</u>

Convert BAM to SAM

Use **samtools** view to convert the binary format to readable text:

```
$ samtools view W422.accepted hits.sort.bam | head
R2D2_0117:2:44:1714:17921#0 16 SIgn00001 79 50 75M * 0
ATTAAGTTCTAGTTCAAATAACTTAGGATTGTCTGTTGTATAGCTCACAAGCATGACGTAACCATTTGGTCCACG
HHHHHFGGFGEDHHHHFHFHHBHDHHHHHHHHHHGGGGGD3HHHHHFHHHGGG>GGHHHGGHHHHGHHHHEHHHH
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
ATAACTTAGGATTGTCTGTTGTATAGCTCACAAGCATGACGTAACCATTTGGTCCACGAACTTCCTGTATACCTG
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
R2D2_0117:2:26:7962:5823#0 16 SIgn00001 101 50 75M * 0
TTAGGATTGTCTGTTGTATAGCTCACAAGCATGACGTAACCATTTGGTCCACGAACTTCCTGTATACCTGTCTTA
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
R2D2_0117:2:75:3630:14196#0 0 SIgn00001 113 50 75M * 0
GTTGTATAGCTCACAAGCATGACGTAACCATTTGGTCCACGAACTTCCTGTATACCTGTCTTAGTCTTGTTCTTA
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
```

Convert BAM to SAM

samtools view can cut a desired region for us:

(Note: BAM file needs to be sorted)

```
$ samtools view W422.accepted hits.sort.bam SIgn00002:100,000-110,000
R2D2 0117:2:68:6557:15142#0 0 SIgn00002 108809 50 75M *
CTTAGAACTCATCATGTCTCACAATATACGCATCGCAAAACAGAAATTATCATCTATGGATCGAGGGTAAGCGTC
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
R2D2 0117:2:116:5195:5494#0 0 SIgn00002 109328 50 75M * 0
GTCGGCAATACTTTAGTGATCGCGGCTGTAATTACCACGAGGAGATTACGGTCTGTGACTAATTGTTACGTGTCT
XA:i:1 MD:Z:67T7
            NM: i:1 NH: i:1
R2D2_0117:2:60:3752:12219#0 16 SIgn00002 109341 50 75M * 0
TAGTGATCGCGGCTGTAATTACCACGAGGAGATTACGGTCTGTGACTAATTGTTTCGTGTCTAGCTTGGCTGCTG
XA:i:0 MD:Z:75 NM:i:0 NH:i:1
R2D2 0117:2:26:8854:8712#0 16 SIgn00002 109374 50
XA:i:1 MD:Z:21T53
            NM:i:1 NH:i:1
```

Combine, sort, index BAM files

Concatenate: samtools cat combines several files into one:

\$ samtools cat *.bam > all.bam
(Note: SAMtools commands were designed for combination by UNIX pipes)

Sort: Use samtools sort to sort the data in a BAM file: (needed before indexing)

\$ samtools sort W422.bam W422.sort (Note: the ".bam" suffix will be added to the output parameter)

<u>Index:</u> samtools index creates an index file for a (sorted!) BAM file that allows instantaneous access to individual records:

\$ samtools index W422.sort.bam

Merge: samtools merge combines (sorted!) BAM files:

\$ samtools merge merge.sort.bam *.sort.bam

* **Note:** When merging files you may need to correct the header information and read group (RG) information. See exercise instructions.

GATK

- Package for population genomics from the BROAD Institute: http://www.broadinstitute.org/gsa/wiki/index.php/Main_Page
 (used in the 1000 genomes project)
- Disclaimer: GATK (and others) were designed for genotyping diploid individuals only.
 - We will use them to genotype pools with >2 alleles, which does not fit with the probabilistic model used.
 - So our best are pools of 5 males (haploids)

GATK single sample genotype likelihoods

- Priors applied during multi-sample calculation; P(G) = 1
- Likelihood of data computed using pileup of bases and associated quality scores at given locus
- Only "good bases" are included: those satisfying minimum base quality, mapping read quality, pair mapping quality, NQS
- P(b | G) uses a platform-specific confusion matrix
- L(G|D) computed for all 10 genotypes

The Broad Unified Genotyper SNP caller multiplesample allele frequency and genotype estimates

 This approach allows us to combine weak single sample calls to discover variation among samples with high confidence

Genotype: the Unified Genotyper

- The main program for genotyping SNPs: http://www.broadinstitute.org/gsa/wiki/index.php/Unified_genotyper
- Example usage:

 http://www.broadinstitute.org/gsa/gatkdocs/release/
 org_broadinstitute_sting_gatk_walkers_genotyper_UnifiedGenotype-right
- Example usage:

 http://www.broadinstitute.org/gsa/gatkdocs/release/
 org-broadinstitute sting gatk walkers genotyper UnifiedGenotype
 r.html

Genotype: the Unified Genotyper

The **UnifiedGenotyper** function in **GenomeAnalysisTK** detects SNPs and genotypes samples:

```
$ java -jar $GATK_HOME/GenomeAnalysisTK.jar \
-R SINV_subset_1.fa \
-I M350B.accepted_hits.sort.rg.bam \
-T UnifiedGenotyper \
-o M350B.accepted_hits.sort.rg.bam.snps.raw.vcf
```

(Note: Assumes the BAM file is sorted and indexed)

(Note: Requires read group information and corresponding header lines. See exercise instructions)

This will analyze one sample. The same command can be used for multiple samples.

The VCF output format

GATK outputs a VCF (Variant Call Format) file:

[HEADER	LINES]								
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA12878
chr1	873762		T	G	5231.78	PASS	[ANNOTATIONS]	GT:AD:DP:GQ:PL	0/1:173,141:282:99:255,0,255
chr1	877664	rs3828047	A	G	3931.66	PASS	[ANNOTATIONS]	GT:AD:DP:GQ:PL	1/1:0,105:94:99:255,255,0
chr1	899282	rs28548431	С	T	71.77	PASS	[ANNOTATIONS]	GT:AD:DP:GQ:PL	0/1:1,3:4:25.92:103,0,26
chr1	974165	rs9442391	T	С	29.84	LowQual	[ANNOTATIONS]	GT:AD:DP:GQ:PL	0/1:14,4:14:60.91:61,0,255

- QUAL: The Phred scaled probability that REF/ALT polymorphism exists given sequencing data.
- Default threshold is 30.0
- Format field names describe the next list of values:
 - GT (genotype): 0/1 means heterozygote ref/alt
 - DP (depth): total number of reads mapped
 - AD (allele depth): count of ref/alt alleles

