$c_h\left[q,h ight]$	Artificial output function harmonic coefficient of dimensions q and h
$c_p\left[q,p ight]$	Artificial output function polynomial coefficient of dimensions q and p
$f\left(t\left[q\right]\right)\forall q\in\left[1,Q\right]$	Artificial output parameter
H	Maximum degree of harmonic fitting
h	Artificial output function harmonic coefficient degree dimension index
i	Index of measurement instance
P	Maximum degree of polynomial fitting
p	Artificial output function polynomial coefficient degree dimension index
Q	Input parameter dimension count
q	Input paramater dimensional index
$t\left[q ight]$	Artificial input parameter of dimension q
$x\left[q,i ight]$	Measured input parameter of dimension q at instance i
$y\left[i ight]$	Measured output parameter at instance i
$\delta\left[q,h ight]$	Phase offset of harmonic fitting of dimensions q and n
$arepsilon\left[i ight]$	Phase offset of harmonic fitting of dimensions q and n
$\omega\left[q ight]$	Fundamental frequency of harmonic fitting of dimension q

This document describes the formulation of an algorithm to select parameters for a function that is fitted to a measured data set. The family of functions that are generated by this algorithm are a linear combination of polynomial and harmonic terms. This may be considered as a hybrid of Taylor-series and Fourier-series fitting.

Assume we are given a set of measurements. We arbitrarily select one dimension of these measurements as our output parameter set, y[i]. The remainder are the input parameter set, x[q,i].

The goal of the algorithm is to determine the coefficients of the function that best match the measure dataset.

The function has the form described in equation (1).

$$f\left(t\left[q\right]\right) = c_{p}\left[1,0\right] + \sum_{q=1}^{q=Q} \left(\left(\sum_{n=1}^{p=P} c_{p}\left[q,n\right] \cdot \left(t\left[q\right]\right)^{n}\right) + \left(\sum_{h=1}^{h=H} c_{h}\left[q,h\right] \cdot \cos\left(h \cdot \omega\left[q\right] \cdot t\left[q\right] + \delta\left[q,h\right]\right) \right) \right) \tag{1}$$

 c_p [1,0] is the static offset of the fitting function.

The error between the fitting function and the measured data is defined as in equation (2).

$$\varepsilon[i] = f(x[q,i]) - y[i] \tag{2}$$

The algorithm minimizes the net square error.

$$0 = \frac{\partial}{\partial c_h[q, h]} \left(\varepsilon^2[i] \right) = \varepsilon[i] \cdot \frac{\partial \varepsilon[i]}{\partial c_h[q, h]}$$
(3a)

$$0 = \frac{\partial}{\partial \delta[q, h]} \left(\varepsilon^{2}[i] \right) = \varepsilon[i] \cdot \frac{\partial \varepsilon[i]}{\partial \delta[q, h]}$$
(3b)

$$0 = \frac{\partial}{\partial \omega [q]} \left(\varepsilon^{2} [i] \right) = \varepsilon [i] \cdot \frac{\partial \varepsilon [i]}{\partial \omega [q]}$$
(3c)

$$0 = \frac{\partial}{\partial c_{p}[q, p]} \left(\varepsilon^{2}[i] \right) = \varepsilon[i] \cdot \frac{\partial \varepsilon[i]}{\partial c_{p}[q, p]}$$
(3d)

Each of the partial derivatives in equation (3) are expanded in equation (4)

$$\frac{\partial \varepsilon [i]}{\partial c_{h} [q, h]} = \cos (h \cdot \omega [q] x [q, i] + \delta [q, h])$$
(4a)