

Today's Date: 5/23/2001

<u>DB Name</u>	<u>Query</u>	<u>Hit Count</u>	<u>Set Name</u>
USPT,JPAB,EPAB,DWPI	(\$absorbent polymers) same gel\$ same (transition metal)	2	<u>L9</u>
USPT,JPAB,EPAB,DWPI	l7 and alcohol\$	124	<u>L8</u>
USPT,JPAB,EPAB,DWPI	l6 and gel\$ and polymer\$ and (transition metal or cobalt)	141	<u>L7</u>
USPT,JPAB,EPAB,DWPI	(aminobutyric acid) or (aminocapronic acid)	4751	<u>L6</u>
USPT,JPAB,EPAB,DWPI	(acryl\$ aminobutyric acid) or (acryl\$ aminocapronic acid)	0	<u>L5</u>
USPT,JPAB,EPAB,DWPI	(acryloyl aminobutyric acid) or (acryloyl aminocapronic acid)	0	<u>L4</u>
USPT,JPAB,EPAB,DWPI	acrylamido methylpropane sulfonic acid	40	<u>L3</u>
USPT,JPAB,EPAB,DWPI	(gel\$ same polymer\$ same solvent)and (AMPS and transition metal)	57	<u>L2</u>
USPT,JPAB,EPAB,DWPI	(gel\$ same alcohol)and (AMPS same transition metal)	0	<u>L1</u>

WEST[Help](#)[Logout](#)[Interrupt](#)[Main Menu](#)[Search Form](#)[Posting Counts](#)[Show S Numbers](#)[Edit S Numbers](#)[Preferences](#)

Your wildcard search against 2000 terms has yielded the results below

[Search for additional matches among the next 2000 terms](#)

Search Results -

Term	Documents
\$ABSORBENT	0
ABSORBENT.DWPI,EPAB,JPAB,USPT.	100822
AABSORBENT.DWPI,EPAB,JPAB,USPT.	3
SUBABSORBENT.DWPI,EPAB,JPAB,USPT.	3
FORMEDABSORBENT.DWPI,EPAB,JPAB,USPT.	1
DRY-FORMEDABSORBENT DWPI,EPAB,JPAB,USPT.	1
FLUIDABSORBENT.DWPI,EPAB,JPAB,USPT.	1
LIQUIDABSORBENT.DWPI,EPAB,JPAB,USPT.	7
SOUNDABSORBENT.DWPI,EPAB,JPAB,USPT.	4
DEABSORBENT.DWPI,EPAB,JPAB,USPT.	1
.....	
GEL\$(GELATIN/M2).USPT,JPAB,EPAB,DWPI.	pickup term
((ABSORBENT POLYMERS) SAME GEL\$ SAME (TRANSITION METAL)).USPT,JPAB,EPAB,DWPI.	2

[There are more results than shown above. Click here to view the entire set.](#)

US Patents Full-Text Database
US Pre-Grant Publication Full-Text Database
JPO Abstracts Database
EPIC Abstracts Database
Derwent World Patents Index

Database: IBM Technical Disclosure Bulletins

(\$absorbent polymers) same gel\$ same
(transition metal)

[Refine Search:](#)

[Clear](#)

Search History

WEST Generate Collection

L3: Entry 26 of 40

File: USPT

Sep 10, 1985

DOCUMENT-IDENTIFIER: US 4540510 A

TITLE: Synergistic thickener mixtures of amps polymers with other thickeners

BSPR:

The mixtures of polymers of acrylamido-methylpropane sulfonic acid with the other thickeners such as the galactomannan gums or derivatives thereof, polyethylene oxide polymers and the cellulose alkyl ethers find utility in the areas where the polymers are used individually. Thus, the mixture with hydroxypropyl guar will find particular utility in earth formation fracturing for oil well stimulation because of this particular rheology. Examples of other applications include thickening textile print pastes and suspending pigments in paints as well as gelling alcohol-based cosmetic formulations.

BSPR:

The acrylamido-methylpropane sulfonic acid polymers employed in the present invention are prepared from an acrylamido-methylpropane sulfonic acid, such as, 2-acrylamido-2-methylpropane sulfonic acid, which is commercially available and sold under the trademark "AMPS" by the Lubrizol Corporation.

BSPR:

As indicated earlier, the other thickener polymers used in admixture with the acrylamido-methylpropane sulfonic acid polymers to provide a synergistic effect are the galactomannan gums, polyalkylene oxide polymers and cellulose alkyl ethers. The galactomannan gums includes the class of polysaccharides containing both galactose and mannose units. The polygalactomannans are usually found in the endosperm section of leguminous seeds such as guar, locust bean, honey locust and flametree. Derivatives of these gums such as the hydroxy alkyl ethers are particularly useful in admixture with the acrylamidomethylpropane sulfonic acid polymers.

BSPR:

As indicated earlier, other polymers which are employed in admixture with the acrylamido-methylpropane sulfonic acid polymers are the water soluble cellulose ethers and the polyalkylene oxide polymers. These polymers are well known and can be produced in accordance with known procedures. The cellulose ethers which may be used among others are the hydroxyl containing cellulose ethers such as hydroxyalkyl cellulose corresponding to the hydroxy alkyl ethers of galactomannans above such as hydroxyethyl and hydroxypropyl cellulose and the alkylhydroxyalkyl celluloses such as methylhydroxypropyl cellulose. The most common polyalkylene oxide polymers which are available commercially are the poly(ethylene oxide) polyether polymers.

DEPR:

The other polymer employed in admixture with the acrylamido-methylpropane sulfonic acid polymer, designated (B) polymer in the Tables are identified in accord with the following code:

WEST **Generate Collection**

L3: Entry 24 of 40

File: USPT

Nov 25, 1986

DOCUMENT-IDENTIFIER: US 4624795 A
TITLE: Aqueous acid gels and use thereof

DEPR:

In a 1 liter reaction vessel there was added 288 grams of distilled water, 132 grams of acrylamido methylpropane sulfonic acid, and 4.8 grams of vinyl phosphonic acid. The pH was adjusted with 277 grams of 10 weight percent sodium hydroxide to 8.5. Then 96 grams of acrylamide and 7.2 grams of vinylformamide were added to the vessel. The solution was degassed with N._{sub.2} for 30-45 minutes. The reaction was then initiated with 2 ml of aqueous 1 weight percent ammonium peroxydisulfate. After a short induction period the reaction began. As the reaction proceeded the temperature increased to 65.degree. C. The reaction was left undisturbed for 12 hours, yielding 30% by weight active copolymer. The water was evacuated from the gel yielding a dry, crystalline polymer that was easily ground into a fine white powder.

WEST
 Generate Collection

L3: Entry 38 of 40

File: DWPI

Aug 21, 1985

DERWENT-ACC-NO: 1985-204696

DERWENT-WEEK: 198534

COPYRIGHT 2001 DERWENT INFORMATION LTD

TITLE: Thickening of water or alcohol - using mixt. of poly-acrylamido-methane sulphonic acid and specified gums or other water-sol. polymers, showing synergism

INVENTOR: KARL, C L**PATENT-ASSIGNEE:** HENKEL CORP (HENK)**PRIORITY-DATA:** 1984US-0579242 (February 13, 1984)**PATENT-FAMILY:**

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
EP 152095 A	August 21, 1985	E	025	N/A
CA 1261516 A	September 26, 1989	N/A	000	N/A
DE 3564441 G	September 22, 1988	N/A	000	N/A
EP 152095 B	August 17, 1988	E	000	N/A
JP 60192753 A	October 1, 1985	N/A	000	N/A
US 4540510 A	September 10, 1985	N/A	000	N/A

DESIGNATED-STATES: AT BE CH DE FR GB IT LI NL AT BE CH DE FR GB IT LI NL**CITED-DOCUMENTS:** FR 2130542**APPLICATION-DATA:**

PUB-NO	APPL-DATE	APPL-NO	DESCRIPTOR
EP 152095A	February 12, 1985	1985EP-0101485	N/A
JP60192753A	February 13, 1985	1985JP-0027512	N/A
US 4540510A	February 13, 1984	1984US-0579242	N/A

INT-CL (IPC): C08B 37/00; C08F 128/02; C08L 1/28; C08L 5/14; C08L 33/26; C08L 71/02; C09K 7/00; G05D 24/00**ABSTRACTED-PUB-NO:** EP 152095A**BASIC-ABSTRACT:**

Compsn. comprises: (i) a polymer of an acrylamido methylpropane sulphonic acid; and (ii) a water-sol. polymer selected from galactomannan gums, hydroxyalkyl ethers thereof, hydroxyalkyl cellulose ethers, polyalkylene oxides and their mixts., the alkyl and alkylene gps. contg. 2-8C atoms.

USE/ADVANTAGE - The compsns. are useful in the same fields as their individual components are, e.g. formation fracturing for oil well stimulation (where (ii) is hydroxypropyl guar), thickening textile print pastes, suspending pigments in paints, and gelling alcohol-based cosmetic formulations. The components of the compsn. have a synergistic thickening effect in water and alcohol solvents: e.g. the actual viscosity is 1-30 times that predicted from the viscosities of separate solns. of (i) and (ii).

ABSTRACTED-PUB-NO: EP 152095B

EQUIVALENT-ABSTRACTS:

A composition comprising a mixture of a polymer of an acrylamido methylpropanesulfonic acid and a water soluble polymer selected from galactomannan gums, hydroxyalkyl ethers of galactomannan gums, hydroxyalkyl cellulose ethers, polyalkylene oxide polymers and mixtures thereof, wherein the alkyl and alkylene groups contain from 2 to 8 carbon atoms. (16pp)

US 4540510A

Compsn. comprises a mixt. of (A) acrylamido methylpropane sulphonic acid polymer of mol. wt. above 1000000 and (B) water soluble polymer. (B) is galactomannan gum, hydroxyalkyl ether of galactomannan gum, hydroxyalkyl cellulose ether or polyalkylene oxide polymer. The alkyl and alkylene gps. have 2-8C.

USE/ADVANTAGE - The polymers exhibit a synergistic thickening effect. The compsn. can be used for earth formation fracturing for oil well stimulation and in textile print pastes, paints, cosmetic formulation s, etc. (7pp)

CHOSEN-DRAWING: Dwg.0/0

DERWENT-CLASS: A97 D21 H01

CPI-CODES: A03-A04A; A03-C02; A04-A; A04-D04; A05-H01; A07-A01; A07-A04F; D08-B; D10-A01; H01-C03;

WEST
Collections
Definition, Editing, Browsing

Name: Undefined

Contents:

6124391	
5856370	
5413731	
4952327	
4845138	
4624795	
4540510	

Comment:

Database:

US Patents Full-Text Database	
US Patents Pre-Grant Publication Full-Text Database	
JPO Abstracts Database	
EPO Abstracts Database	
Derwent World Patents Index	
IBM Technical Disclosure Bulletins	

WEST **Generate Collection**

L3: Entry 37 of 40

File: DWPI

Sep 19, 1990

DERWENT-ACC-NO: 1990-284304

DERWENT-WEEK: 199038

COPYRIGHT 2001 DERWENT INFORMATION LTD

TITLE: Treatment of red mud filter cake waste from Bayer process - by addn. of water-swellable, water-insol. polymers to improve rigidification after pumping

ABTX:

The dispersed particles to be pumped are pref. of very small size e.g. all less than 100 microns, pref. with at least 90% below 20 microns, esp. a filter cake of red mud from the Bayer process of recovering alumina from bauxite. In particular the process is effected on muds with solids content 30-80 (esp. 55-65) wt.%. The polymer is pref. made from a water-sol. monomer (or blend) with a di- or poly-ethylenically unsatd. crosslinker, esp. anionic polymers of (meth)acrylic acid, allyl sulphonic acid or 2-acrylamido-methylpropane sulphonic acid.

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
613255	January 1961	CAX	400/6
727178	February 1966	CAX	117/45
873290	June 1971	CAX	
2180590	January 1997	CAX	
0 705 643A1	April 1996	EPX	
0 755 964A2	January 1997	EPX	
1200535	September 1965	DEX	
56 95936	December 1979	JPX	
94/22940	October 1994	WOX	
97/19582	June 1997	WOX	

OTHER PUBLICATIONS

Buchholz, "Keeping Dry with Superabsorbent Polymers", Chemtech, (Sep. 1994) pp. 38-43.

"The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals", edited by Budavari et al. (1989).

"NeoGen.TM.2000--Basic Formulating Tips" (Sep. 1996).

"NeoGen, TM, DGH" (Sep. 1996).

ART-UNIT: 174

PRIMARY-EXAMINER: Sanders; Kriellion

ATTY-AGENT-FIRM: Jenkins & Wilson, P.A.

ABSTRACT:

A particulate material composition of superabsorbent polymer particles, wherein less than about 60% by weight of the superabsorbent polymer particles will pass through a U.S. Standard 50 mesh sieve. The composition has anti-caking properties and also reduced dusting. The composition can be produced by mixing the superabsorbent polymer particles with an inorganic powder, such as clay.

67 Claims, 0 Drawing figures

WEST **Generate Collection**

L3: Entry 2 of 40

File: USPT

Sep 26, 2000

US-PAT-NO: 6124391
DOCUMENT-IDENTIFIER: US 6124391 A

TITLE: Superabsorbent polymers having anti-caking characteristics

DATE-ISSUED: September 26, 2000

INVENTOR-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY
Sun; Fang	Lisle	IL	N/A	N/A
Jones; Heather S.	Greensboro	NC	N/A	N/A
Kaiser; Thomas A.	Greensboro	NC	N/A	N/A
Hsu; Whei-Neen	Greensboro	NC	N/A	N/A
Molen; Ronald L.	Greensboro	NC	N/A	N/A
Deaton; Peter A.	Greensboro	NC	N/A	N/A
Messner; Bernfried A.	Greensboro	NC	N/A	N/A

ASSIGNEE-INFORMATION:

NAME	CITY	STATE	ZIP CODE	COUNTRY	TYPE CODE
Stockhausen GmbH & Co. KG	N/A	N/A	N/A	DEX	03

APPL-NO: 9/ 135844
DATE FILED: August 18, 1998

INT-CL: [7] C08K 3/34
US-CL-ISSUED: 524/447; 523/223
US-CL-CURRENT: 524/447; 523/223
FIELD-OF-SEARCH: 524/447, 523/223

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

 Search Selected Search ALL

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
<u>3012900</u>	December 1961	Kleinmann et al.	117/4
<u>3723153</u>	March 1973	Nagata et al.	117/21
<u>4107382</u>	August 1978	Augustine et al.	428/368
<u>4286082</u>	August 1981	Tsubakimoto et al.	526/240
<u>4359492</u>	November 1982	Schlademan	427/222
<u>4381782</u>	May 1983	Mazurak et al.	604/368
<u>4448900</u>	May 1984	Schwarz	521/57
<u>4533562</u>	August 1985	Ikegami et al.	427/3
<u>4576835</u>	March 1986	Gardenier et al.	427/222
<u>4610678</u>	September 1986	Weisman et al.	604/368
<u>4734478</u>	March 1988	Tsubakimoto et al.	527/300
<u>4774138</u>	September 1988	Gardenier et al.	428/407
<u>4833179</u>	May 1989	Young et al.	522/183
<u>4880470</u>	November 1989	Hyche et al.	106/271
<u>4898616</u>	February 1990	Hyche et al.	106/271
<u>4952650</u>	August 1990	Young et al.	526/194
<u>4960644</u>	October 1990	Hyche et al.	428/407
<u>4975120</u>	December 1990	Hyche et al.	106/271
<u>5006565</u>	April 1991	Tusim et al.	521/57
<u>5007961</u>	April 1991	Hyche et al.	106/18
<u>5096493</u>	March 1992	Hyche et al.	106/271
<u>5190579</u>	March 1993	Gose et al.	106/18
<u>5200270</u>	April 1993	Ishida et al.	428/403
<u>5236649</u>	August 1993	Hall et al.	264/130
<u>5322731</u>	June 1994	Callahan, Jr. et al.	428/327
<u>5334644</u>	August 1994	Gose et al.	524/487
<u>5409771</u>	April 1995	Dahmen et al.	428/327
<u>5413747</u>	May 1995	Akers et al.	N/A
<u>5419956</u>	May 1995	Roe	428/283
<u>5443910</u>	August 1995	Gose et al.	428/407
<u>5455288</u>	October 1995	Needham	523/205
<u>5466731</u>	November 1995	Akers et al.	N/A
<u>5536576</u>	July 1996	Hishida	428/403
<u>5688449</u>	November 1997	Fox	264/54
<u>5728742</u>	March 1998	Staples et al.	521/57

FOREIGN PATENT DOCUMENTS