PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-154715

(43)Date of publication of application: 08.06.2001

(51)Int.Cl.

G05B 19/4093 B23Q 15/00 G05B 19/4097 G06F 17/50

(21)Application number: 11-334596

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

25.11.1999

(72)Inventor: MIYAZAKI KOICHI

OUCHI NOBORU

(54) THREE-DIMENSIONAL CAD DEVICE, THREE-DIMENSIONAL CAM DEVICE AND STORAGE MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain an environment in which a measure for avoiding an interference position is taken by previously investigating at least the movement of a worked object and a tool and checking interference with the whole working machine.

SOLUTION: In a three-dimensional(3D) CAM device 21, a previous working investigation part 34 checks interference with the whole working machine system including the worked object and an NC working machine 24 on the basis of 3D CAD data transferred from a 3D CAM device 20, i.e., executes interference check in the movement of the machine when a jig, a tool holder, a main shaft head, or a table is rotated or a tool is automatically substituted.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001 — 154715 (P2001 — 154715A)

(43)公開日 平成13年6月8日(2001.6.8)

(51) Int.Cl.7		識別記号	FΙ		· 7	-73-ド(参考)
G 0 5 B	19/4093		G 0 5 B	19/4093	E	5B046
B 2 3 Q	15/00		B 2 3 Q	15/00	В	5H269
G 0 5 B	19/4097		G 0 5 B	19/4097	С	9 A 0 0 1
G06F	17/50		G 0 6 F	15/60	628A	

審査請求 未請求 請求項の数10 OL (全 11 頁)

(21)出願番号	特顏平11-334596	(71)出願人 000003078
		株式会社東芝
(22)出顧日	平成11年11月25日(1999.11.25)	神奈川県川崎市幸区堀川町72番地
		(72)発明者 宮崎 耕一
	·	神奈川県横浜市磯子区新磯子町33番地 株
		式会社東芝生産技術センター内
		(72)発明者 大内 昇
		栃木県大田原市下石上1385番の1 株式会
		社東芝那須工場内
		(74)代理人 100058479
•		弁理士 鈴江 武彦 (外6名)
		Fターム(参考) 5B046 DA02 FA07 GA01 HA09 JA01
		5H269 AB19 AB31 BB14 CC02 DD01
		9A001 HH29 JJ49 JJ50 KK36

(54) 【発明の名称】 3次元CAD装置、3次元CAM装置及び配憶媒体

(57)【要約】

【課題】少なくとも被加工物と工具との動きを事前検討して加工機全体との干渉チェックを行い、干渉箇所についてその回避策を取れる環境を得ること。

【解決手段】3次元CAD装置20から渡された3次元CADデータの基づいて3次元CAM装置21において、加工パスの作成の前に、加工事前検討部34によって3次元CADデータに基づいて被加工物とNC加工機24を含む加工機械系全体との干渉チェック、すなわち治具、工具ホルダ、主軸頭、テーブル回転時又は工具自動交換時の機械の動きの干渉チェックを行う。

【特許請求の範囲】

製品の3次元モデルをモデリングして3 【請求項1】 次元CADデータを作成する3次元CAD装置におい て、

前記3次元CADデータに基づいて前記製品を製造する 加工機における少なくとも工具と被加工物との干渉チェ ックを行う加工検討手段、を具備したことを特徴とする 3 次元CAD装置。

前記被加工物と前記加工機械系全体との 【請求項2】 間に干渉があると、この干渉部分を報知する干渉報知手 10 段を備えたことを特徴とする請求項1記載の3次元CA D装置。

【請求項3】 少なくとも前記被加工物と前記工具との 干渉を回避するための回避策を入力する回避策入力手段 を備えたことを特徴とする請求項1記載の3次元CAD 装置。

【請求項4】 3次元CADから受け取った3次元CA Dデータに基づいて被加工物を加工するための加工パス を作成する3次元CAM装置において、

前記加工パスの作成の前に、前記3次元CADデータに 20 基づいて前記製品を製造する加工機における少なくとも 工具と被加工物との干渉チェックを行う加工検討手段、 を具備したことを特徴とする3次元CAM装置。

【請求項5】 前記被加工物と前記加工機械系全体との 間に干渉があると、この干渉部分を報知する干渉報知手 段を備えたことを特徴とする請求項4記載の3次元CA M装置。

【請求項6】 少なくとも前記被加工物と前記工具との 干渉を回避するための回避策を入力する回避策入力手段 を備えたことを特徴とする請求項4記載の3次元CAM 30 装置。

【請求項7】 少なくとも前記被加工物と前記工具との 干渉を回避するための前記加工パスの作成方法をデータ ベースに記述する干渉回避データ記述手段と、

この干渉回避データ記述手段に記述された前記加工パス の作成方法を加工パラメータに入力して干渉を回避した 前記加工パスを作成する加工パス作成手段と、を備えた ことを特徴とする請求項4記載の3次元CAM装置。

【請求項8】 前記加工パスに基づいて前記加工機を動 作させてNC加工を行うためのNCデータを作成するN 40 Cデータ作成手段をを備えたことを特徴とする請求項4 記載の3次元CAM装置。

【請求項9】 被加工物と工具を含む加工機械系全体の 3次元モデルを作成し、この3次元モデルを3次元CA Dデータに基づいて動作させて前記加工機における少な くとも工具と前記被加工物との干渉チェックを行わさせ るプログラムが記憶されたことを特徴とする記憶媒体。

【請求項10】 前記被加工物と前記加工機械系全体と の間に干渉があると、この干渉部分を報知させるプログ ラムが記憶されたことを特徴とする請求項9記載の記憶 50 媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、製品設計を行うた めに対話形式で3次元モデルをモデリングして3次元C ADデータを作成する3次元CAD装置、この3次元C AD装置から受け取った3次元CADデータに基づいて 被加工物を加工するための加工パスを作成する3次元C AM装置、及び干渉チェックを事前検討しその回避策を 検討する環境を作るためのプログラムを記憶した記憶媒 体に関する。

2

[0002]

【従来の技術】製品開発における製品設計例えば鋳物部 品等の製品設計から製造までの各工程に3次元CAD/ CAMシステムが活用されている。この製品開発の工程 を簡単に説明すると、図11に示すように、先ず、設計 部門において3次元CAD装置1を用いて設計者2の対 話形式により製品の設計が行われ、その3次元CADモ デル(製品モデル)3が作成される。この3次元CAD モデル3の3次元CADデータは、IGES又はSTE P等の規格化されたデータ交換フォーマット4により変 換されて3次元CAM装置5に渡される。

【0003】これと共に、設計者2により3次元CAD 装置1を用いて製品の形状を2次元の図面(設計図面) 6に変換し、この2次元図面6上に寸法、加工タイプ、 表面粗さなどの付加情報6が記入され、その2次元図面 7が作成される。

【0004】一方、3次元CAM装置5は、3次元CA D装置1から3次元CADデータを受け取り、この3次 元CADデータに対して製造技術者8との対話形式によ り2次元図面7を参照することによる加工箇所、加工タ イプ、表面粗さなどの付加情報9が付加入力される。こ の3次元CAM装置5は、加工箇所、加工タイプ、表面 粗さなどの付加情報9が付加された3次元CADデータ から製品の展開データなどを求め、この展開データに基 づいてNC加工機における工具例えばカッターのパス

(加工パス:工具軌跡(CL)データ)10を計算し、 この加工パス10からNC加工機を動作させてNC加工 を行うためのNCデータ11を作成する。

【0005】このように3次元CAD/CAMシステム を使用して加工パスを作成した場合でも、この加工パス をそのまま実加工に使用すると、思わぬところで工具が 被加工物を削ってしまったり、工具ホルダやNC加工 機、特に主軸頭やアタッチメントが被加工物や治具に衝 突してしまったりいとう問題(以下、干渉と称する)が 発生していた。

【0006】この干渉が発生すると、被加工物は不良品 となったり、工具が折れたり、NC加工機を破損したり という問題が発生していた。このため、作成した加工パ スやNCデータの正否、特に干渉の有無をチェックする

必要があり、3次元CAM装置5にて干渉チェックを行 っている。

[0007]

【発明が解決しようとする課題】しかしながら、3次元 CAM装置には、加工パスの計算時に、工具と被加工物 との干渉チェックを行い、干渉を回避した加工パスを作 成する機能は有しているが、被加工物と治具、工具ホル ダ、さらにNC加工機の主軸頭や回転テーブル等の加工 機械系全体との干渉をチェックする機能は持っていな い。このため、加工機械系全体との干渉チェックは、N 10 C加工機上での方法又はNCシュミレータによる方法を 使用して干渉の有無をチェックする必要がある。

【0008】NC加工機上での方法では、干渉チェック のためにNC加工機を占有してしまい、又干渉チェック 時間も実際の加工と同程度の時間だけかかかってしま い、作業能率の阻害要因となっている。もし干渉が見つ かった場合には、再度干渉を回避する加工パスを作成し なければならず、この再作成の時間も被加工物の加工時 間がかかる原因と一つとなっている。

【0009】NCシュミレータによる方法では、加工機 20 械系全体の干渉チェックができるものもあるが、あくま でも一旦3次元CAMを操作して作成した加工パスやN Cデータに対する干渉チェックができるだけで、NCデ 一夕作成前には干渉の事前検討はできない。このため、 NCシミュレーションにより干渉が見つかった場合に は、干渉を回避する方法を検討し、再度3次元CAMを 操作して、加工パスの作成、NCデータへの変換作業を 行う必要がある。又、NCデータの再作成は、試行錯誤 で何回か繰り返すことが多く、無駄な時間がかかってい

【0010】そこで本発明は、少なくとも被加工物と工 具との動きを設計の段階で検討して干渉チェックを行 い、干渉箇所についてその回避策を取れる環境を得るこ とができる3次元CAD装置、3次元CAM装置を提供 することを目的とする。

【0011】又、本発明は、少なくとも被加工物と工具 との動きを設計の段階で検討して干渉チェックを行い、 干渉箇所についてその回避策を取るためのプログラムを 記憶した記憶媒体を提供することを目的とする。

[0012]

【課題を解決するための手段】請求項1記載の発明は、 製品の3次元モデルをモデリングして3次元CADデー タを作成する3次元CAD装置において、3次元CAD データに基づいて製品を製造する加工機における少なく とも工具と被加工物との干渉チェックを行う加工検討手 段を具備した3次元CAD装置である。

【0013】請求項2記載の発明は、請求項1記載の3 次元CAD装置において、被加工物と加工機械系全体と の間に干渉があると、この干渉部分を報知する干渉報知 手段を備えたものである。

【0014】請求項3記載の発明は、請求項1記載の3 次元CAD装置において、少なくとも被加工物と工具と の干渉を回避するための回避策を入力する回避策入力手 段を備えたものである。

【0015】請求項4記載の発明は、3次元CADから 受け取った3次元CADデータに基づいて被加工物を加 工するための加工パスを作成する3次元CAM装置にお いて、加工パスの作成の前に、3次元CADデータに基 づいて製品を製造する加工機における少なくとも工具と 被加工物との干渉チェックを行う加工検討手段を備えた 3次元CAM装置である。

【0016】請求項5記載の発明は、請求項4記載の3 次元CAM装置において、被加工物と加工機械系全体と の間に干渉があると、この干渉部分を報知する干渉報知 手段を備えたものである。

【0017】請求項6記載の発明は、請求項4記載の3 次元CAM装置において、少なくとも被加工物と工具と の干渉を回避するための回避策を入力する回避策入力手 段を備えたものである。

【0018】請求項7記載の発明は、請求項4記載の3 次元CAM装置において、少なくとも被加工物と工具と の干渉を回避するための加工パスの作成方法をデータベ ースに記述する干渉回避データ記述手段と、この干渉回 避データ記述手段に記述された加工パスの作成方法を加 エパラメータに入力して干渉を回避した加工パスを作成 する加工パス作成手段とを備えたものである。

【0019】請求項8記載の発明は、請求項4記載の3 次元CAM装置において、加工パスに基づいて加工機を 動作させてNC加工を行うためのNCデータを作成する 30 NCデータ作成手段を備えたものである。

【0020】請求項9記載の発明は、被加工物と工具を 含む加工機械系全体の3次元モデルを作成し、この3次 元モデルを3次元CADデータに基づいて動作させて加 工機における少なくとも工具と被加工物との干渉チェッ クを行わさせるプログラムが記憶された記憶媒体であ

【0021】請求項10記載の発明は、請求項9記載の 記憶媒体において、被加工物と加工機械系全体との間に 干渉があると、この干渉部分を報知させるプログラムが 40 記憶されている。

[0022]

【発明の実施の形態】以下、本発明の一実施の形態につ いて図面を参照して説明する。

【0023】図1は3次元CAD/CAMシステムを適 用したNC加工システムの全体構成図である。このNC 加工システムは、3次元CAD装置20、3次元CAM 装置21、CAD/CAMファイルサーバ22、データ 転送システム(DNC)23及びNC加工機24を備 え、これらが通信回線25を介して相互に接続されてい 50 る。このうちCAD/CAMファイルサーバ22には、

20

NCデータを保管するための加工データベース26が接 続されている。又、NC加工システムには、通信回線2 5に対して後述するデータベース27が接続されてい る。

【0024】図2は3次元CAD装置20及び3次元C AM装置21の機能ブロック図である。3次元CAD装 置20は、製品の3次元CADモデルをモデリングして 設計し、この3次元CADモデルの3次元CADデータ をIGES又はSTEP等のデータ交換フォーマットに より変換して3次元CAM装置21に送るもので、3次 10 元CADモデル作成部30、CAD表示部31、プログ ラムメモリ32を有している。

【0025】3次元CADモデル作成部30は、3次元 設計専用のプログラムを用いてオペレータとの対話形式 によって3次元CADモデルをモデリングしながら製品 の設計を行う機能を有している。この製品設計では、3 次元CAD装置20に予め登録されている複数の3次元 CADモデルの中から所望の3次元CADモデルを読み 出すなどの操作を行うことによって行われる。

【0026】この設計中の製品の3次元CADモデル は、オペレータとの対話形式の操作とともにディスプレ **イ等のCAD表示部31に表示されるようになってい** る。

【0027】プログラムメモリ32には、3次元CAD 装置20において製品の3次元CADモデルをモデリン グさせる設計プログラム及びモデリングされた3次元C ADモデルの3次元CADデータをIGES又はSTE P等のデータ交換フォーマットにより変換させて3次元 CAM装置21に送らせるプログラムなどが記憶されて いる。

【0028】一方、3次元CAM装置21は、3次元C AD装置20からの3次元CADデータを受け取り、こ の3次元CADデータからNC加工機24を動作させて NC加工を行うためのNCデータを作成する機能を有す るもので、展開処理部33、加工事前検討部34、干渉 報知部35、回避策入力部36、干渉回避データ記述部 37、加工パス作成部38、NCデータ作成部39、C AD表示部40、プログラムメモリ41を有している。

【0029】展開処理部33は、3次元CAD装置20 からの3次元CADデータをIGES又はSTEP等の 40 データ交換フォーマットにより変換したデータから製品 の展開を行ってその展開データを求め、この展開データ をCAM表示部40のCAM画面上に表示する機能を有 している。

【0030】加工事前検討部34は、加工パスの作成の 前に事前に、3次元CAD装置20から受け取った3次 元CADデータに基づいて製品を製造するNC加工機2 4における工具と被加工物との干渉チェックを行う機能 を有している。この加工事前検討部34は、工具と被加 工物との干渉チェックに限らず、被加工物とNC加工機 50

24を含む加工機械系全体との干渉チェック、すなわち 治具、工具ホルダ、主軸頭、テーブル回転時又は工具自 動交換時の機械の動きの干渉チェックを行う機能を有し ている。

【0031】この加工事前検討部34は、干渉チェック を、被加工物と工具を含む加工機械系全体の3次元モデ ルを読み出し、この3次元モデルを3次元CADデータ に基づいて動作させて干渉チェックを行う機能を有して いる。具体的には、製造技術者によってCAM表示部4 0の表示画面上の加工検討機能メニュー又はアイコンが 操作されることにより、被加工物とNC加工機24を含 む加工機械系全体の中の加工部分の3次元CADデータ を読み出し、加工工程に従ってCAM表示部40の表示 画面上で3次元CADモデルの姿勢を回転、移動させ、 加工箇所に工具を動かし、このときの治具、工具ホル ダ、主軸頭、テーブル回転時又は工具自動交換時の機械 の動きを3次元モデル同士の演算から干渉を自動的にチ ェックするものとなっている。又、工具を交換する動き や加工姿勢を変えるための回転テーブルを回転させる動 きに関しても3次元モデル同士の演算から干渉の有無を 自動的にチェックするものとなっている。

【0032】干渉報知部35は、加工事前検討部34に よる事前検討の結果、被加工物と加工機械系全体との間 に干渉があると、この干渉部分をCAM表示部40に報 知、例えばCAM表示部40の表示画面上において干渉 発生のエラーメッセージ及び被加工物と工具を含む加工 機械系全体の3次元モデル中の干渉部分を所定の色例え ば赤色で表示する機能を有している。

【0033】回避策入力部36は、加工事前検討部34 による事前検討の結果を参照して製造技術者から対話形 式で入力される干渉回避のための回避策、例えば工具に 関する変更、加工機に関する変更、干渉の発生しない加 工方法、干渉回避のための補助線又は補助形状のデータ を入力する機能を有している。

【0034】このうち、補助線は、次の通りに入力され る。図3(a)(b)は3次元モデルを動かしたときの被加工 物50と主軸51に取付けられた工具52とが干渉した ときの位置関係を示しており、同図(a)はNC加工機2 4の主軸の方向から見た正面図、同図(b)は側面図であ る。工具52には、カッター53が取付けられている。

【0035】このように被加工物50と工具52との干 渉を回避するための図 4 (a) (b) に示すように CAM表示 部40の表示画面上において補助線Fが引かれる。この 補助線Fは、工具52に付いているカッター53が被加 工物51に衝突しない位置となっている。この補助線F のデータは、3次元CADデータに付加され、NC加工 機24の主軸の動きを被加工物50と工具52との干渉 を回避するために規制するものとなる。

【0036】干渉回避データ記述部37は、被加工物と NC加工機24を含む加工機械系全体との干渉チェッ

ク、すなわち治具、工具ホルダ、主軸頭、テーブル回転 時又は工具自動交換時の機械の動きの干渉を回避するた めの加工パス作成の方略が後で参照できるようにデータ ベース27に記述する機能を有している。

【0037】加工パス作成部38は、展開処理部33に より得られた展開データ、又は回避策入力部により入力 された干渉回避のための回避策、例えば工具に関する変 更、加工機に関する変更、干渉の発生しない加工方法、 干渉回避のための補助線又は補助形状のデータの付加さ れた展開データ、さらに加工する箇所や測定を行う箇所 10 における加工タイプ、表面粗さ、公差の各データに基づ いてNC加工機24における工具、例えばカッターのパ ス(加工パス)を計算する機能を有している。

【0038】又、加工パス作成部38は、干渉回避デー タ記述部37によってデータベース27に記述された加 エパスの作成方法を加エパラメータに入力して干渉を回 避した加工パスを作成する機能を有している。

【0039】NCデータ作成部39は、加工パス作成部 38により作成された加工パスを受、この加工パスから NC加工機24を動作させてNC加工を行うためのNC 20 データを作成する機能を有している。

【0040】プログラムメモリ41には、3次元CAD データからNC加工機24を動作させてNC加工を行う ためのNCデータを作成するためのプログラム、3次元 CADデータから製品の展開を行ってその展開データを 求め、この展開データをCAM表示部31の表示画面上 に表示するためのプログラム、被加工物と工具を含む加 工機械系全体の3次元モデルを作成し、この3次元モデ ルを3次元CADデータに基づいて動作させてNC加工. 機24における被加工物とNC加工機24を含む加工機 30 械系全体との干渉チェック、すなわち治具、工具ホル ダ、主軸頭、テーブル回転時又は工具自動交換時の機械 の動きの干渉チェックを行わさせるプログラム、被加工 物と加工機械系全体との間に干渉があると、この干渉部 分を報知させるプログラム、工具に関する変更、NC加 工機24に関する変更、干渉回避のための補助線又は補 助形状を入力させるプログラムが記憶されている。

【0041】上記CAD/CAMファイルサーバ22 は、3次元CAD装置20からの3次元CADデータを 受け取って保管し、かつ3次元CAM装置21からの読 40 取り指示を受けて保管している3次元CADデータを読 み出して3次元CAM装置21に渡す機能を有してい る。

【0042】又、CAD/CAMファイルサーバ22 は、3次元CAM装置21により生成されるNCデータ を加工データベース26に保管しており、データ転送シ ステム23からの読取り指示を受けることにより加工デ ータベース26に保管されているNCデータを読み出し てデータ転送システム23に渡す機能を有している。

【0043】このデータ転送システム23は、加工デー 50

タベース26に保管されているNCデータを各種NC加 工機24に応じたフォーマットに変換して、NC加工機 24に転送する機能を有している。

【0044】次に、上記の如く構成されたシステムの作 用について図5に示す製品開発の工程を示す流れ図に従 って説明する。

【0045】3次元CAD装置20は、3次元CADモ デル作成部30が提供するユーザインタフェースにより 設計者との対話的に行って3次元CADモデル(製品モ デル)3、例えば鋳物部品の3次元CADモデルのモデ リングを行う。この製品設計は、設計者との対話形式に よって3次元CAD装置20に予め登録されている複数 の3次元CADモデルの中から所望の3次元CADモデ ルを読み出すことによって行われる。この設計者との対 話形式による3次元CADモデルのモデリング中、この 3次元CADモデルは、その鋳物部品の形状データに基 づいて設計者との対話形式の操作とともにCAD表示部 31に表示される。

【0046】次に、3次元CAD装置20は、モデリン グした3次元CADモデル3を標準化、すなわちIGE S又はSTEP等のデータ交換フォーマット4により変 換してCAD/CAMファイルサーバ22に送る。

【0047】このCAD/CAMファイルサーバ22 は、3次元CAD装置20からの3次元CADデータを 受け取って加工データベース26に保管する。

【0048】一方、3次元CAM装置21からCAD/ CAMファイルサーバ22に対して3次元CADデータ の読取り指令が入力されると、このCAD/CAMファ イルサーバ22は、保管されているIGES又はSTE P等のデータ交換フォーマット2により変換された3次 元CADデータを読み出して3次元CAM装置21に渡

【0049】この3次元CAM装置21は、CAD/C AMファイルサーバ22から受け取った3次元CADデ ータをこの3次元CAM装置21独自のフォーマットに 変換する。

【0050】次に、3次元CAM装置21の展開処理部 36は、独自のフォーマットに変換した3次元CADデ ータから製品の展開を行ってその展開データを求め、こ の展開データをCAM表示部40の表示画面上に表示す

【0051】又、3次元CAM装置21は、3次元CA D装置20から3次元CADデータを受け取ると製造技 術者との対話インタフェースを提供し、ここにおいて加 工箇所、加工タイプ、表面粗さなどの3次元CADデー 夕に関する付加情報が付加入力される。製造技術者は、 この付加情報に基づいて製品の部品形状と加工箇所を把 握し、使用するNC加工機24を選定し、工程や段取り を決定する。又、製造技術者は、個々の加工箇所に対 し、選定されたNC加工機24を用いての加工方法やN

C加工機24に使用する工具や加工条件等を含む加工法 案を検討し、作成する。

【0052】次に、加工パスを作成する前に加工に対す る事前検討が行われる。この事前検討では、先ず、製造 技術者によってCAM表示部40の表示画面上の加工検 討機能メニュー又はアイコンが操作される。

【0053】加工事前検討部34は、加工検討機能メニ ュー又はアイコンの操作を受けて、被加工物とNC加工 機24を含む加工機械系全体の中の加工部分の3次元C ADデータを読み出し、加工法案に従って座標を合せ て、同一の座標系内で各データを展開し、これを表示さ せ、加工法案に基づく加工工程に従ってCAM表示部4 0の表示画面上で3次元CADモデルの姿勢を回転、移 動させ、加工箇所に工具を動かす。

【0054】図6はCAM表示部40に表示された被加 工物とNC加工機24を含む加工機械系全体の3次元C ADモデルを示す。この3次元CADモデルは、加工機 ヘッド60の2方向摺動面61上に主軸コラム62を移 動自在に載せ、この主軸コラム62のY方向摺動面63 に主軸頭64を移動自在に保持させている。この主軸頭 20 64には、回転駆動源に連結される上記主軸51が設け られ、この主軸51に工具52aが工具ホルダー65を 介して取付けられている。この主軸51には、工具52 a 又は図3及び図4に示す工具52などの各種工具が取 付け可能となっている。主軸51の対向する側には、加 工機ヘッド60上に回転テーブル66が設けられ、この 回転テーブル66上に治具67が載置されている。この 治具67には、図3及び図4に示すような被加工物50 が保持される。この3次元CADモデルでは、加工機へ ッド60、主軸コラム62、主軸頭64、回転テーブル 30 66、治具67、被加工物50の各座標が加工法案に基 づいて合せられている。

【0055】このような3次元CADモデルが、加工事 前検討部34において加工法案に基づいて作成される加 エパスを仮設定し、これに基づきCAM表示部40の表 示画面上で動かされる。例えば、治具66を載置した回 転テーブル65が回転し、治具66に保持された被加工 物50の加工部分を工具52aと対向するように位置決 めし、これと共に主軸コラム62が前進して工具52a を被加工物50に近付けられるという動作が加工法案に 基づき仮設定され、これに基づいて動画が表示される。

【0056】このCAM表示部40の表示画面には、3 次元CADモデルにおける表示部分を切換可能となって いる。例えば、図6に示すように3次元CADモデルの 全体の表示、被加工物50及び工具52aの拡大表示、 3次元CADモデルを回転させたり移動させたりして見 る方向を変更しての表示などである。

【0057】このとき加工事前検討部34は、治具6 7、主軸51、主軸頭64、回転テーブル66の回転時 又は工具自動交換時の機械の動きに基づいて3次元モデ 50

ル同士を演算して干渉の有無をチェックしている。又、 加工事前検討部34は、工具を交換する動きや加工姿勢 を変えるための回転テーブル65を回転させる動きに関 しても3次元モデル同士を演算して干渉の有無をチェッ クしている。

10

【0058】この干渉チェックは、例えば被加工物50 と工具52とであれば、工具52を加工開始位置まで回 転移動させたときのカッター53の先端の軌跡が被加工 物50に干渉するか否かを判断するものとなる。

【0059】この干渉チェックの結果、例えば上記図3 (a) (b) に示すように 3 次元 CAD モデルを動かしたとき に被加工物50と主軸51に取付けられた工具52とが 干渉したことが検出されると、干渉報知部35は、干渉 部分をCAM表示部40に報知、例えばCAM表示部4 0の表示画面上において干渉発生のエラーメッセージ又 はこれにあわせて加工中であることを示すメッセージ及 び被加工物50と工具52を含む加工機械系全体の3次 元モデル中の干渉部分を元のモデルの表示色とは異なる 所定の色例えば赤色で表示する。これにより、干渉する 位置が把握し易くなり後の修正が容易になる。

【0060】さて、干渉が確認された場合、製造技術者 から対話形式で干渉回避のための回避策、例えば工具に 関する変更、加工機に関する変更、干渉の発生しない加 工方法、干渉回避のための補助線又は補助形状が3次元 CADデータとして入力される。回避策入力部36は、 これら回避策のデータ54bを入力して保持する。例え ば、上記図3(a)(b)に示す被加工物50と工具52との 干渉であれば、上記図4(a)(b)に示すようにCAM表示 部40の表示画面上において、NC加工機24の主軸の 動きを規制するための補助線Fが引かれる。なお、この 補助線Fも所定の色、例えば青色で引かれる。

【0061】又、干渉チェックの結果、例えば図7(a) (b) に示すように 3 次元 C A D モデルを動かしたときに 被加工物50と主軸51とが干渉したことが検出される と、干渉報知部35は、CAM表示部40の表示画面上 において干渉発生のエラーメッセージ及び被加工物50 と主軸51との干渉部分を所定の色例えば赤色で表示す る。

【0062】この場合でも上記同様に、製造技術者から 対話形式で干渉回避のための回避策、例えば工具に関す る変更、加工機に関する変更、干渉の発生しない加工方 法、干渉回避のための補助線又は補助形状が入力され る。例えば、図8(a)(b)に示すようにCAM表示部40 の表示画面上において、NC加工機24の主軸の動きを 規制するための補助線Fが例えば青色で引かれる。

【0063】又、干渉チェックの結果、例えば図9に示 すように3次元CADモデルの回転テーブル65を動か したときに治具67aと工具52aとが干渉したことが 検出されると、干渉報知部35は、CAM表示部40の 表示画面上において干渉発生のエラーメッセージ及び治

具67aと工具52aとの干渉部分を所定の色例えば赤 色で表示する。

【0064】この場合も製造技術者から対話形式で干渉 回避のための回避策、例えば工具に関する変更、加工機 に関する変更、干渉の発生しない加工方法など、干渉を 回避する加工法案検討のための補助線又は補助形状が入 力される。例えば、図10に示すように回転テーブル6 6の回転を規制するように干渉の発生しない加工方法が 入力される。

【0065】以上のように加工パス作成の前に、3次元 10 的に被加工物と工具を含む加工機械系全体との干渉の事 前検討が終了すると、加工パス作成部38は、展開処理 部33により得られた展開データ、又は回避策入力部に より入力された干渉回避のための回避策、例えば工具に 関する変更、加工機に関する変更、干渉の発生しない加 工方法など、干渉を回避する加工法案検討のための補助 線又は補助形状のデータの付加された展開データ、さら に加工する箇所や測定を行う箇所における加工タイプ、 表面粗さ、公差の各データに基づいてNC加工機24に おける工具、例えばカッターのパス (加工パス) を計算 20 する。

【0066】なお、干渉回避データ記述部37は、被加 工物とNC加工機24を含む加工機械系全体との干渉チ エック、すなわち治具、工具ホルダ、主軸頭、テーブル 回転時又は工具自動交換時の機械の動きの干渉を回避す るための加工パス55の作成方法を予め表現形式が定め られた文字表記によって読み取り容易なように表現し、 これをデータベース27に記述する。

【0067】次に、NCデータ作成部39は、加工パス 作成部38により作成された加工パス55を受け、この 加工パス55からNC加工機24を動作させてNC加工 を行うためのNCデータを作成する。

【0068】このように3次元CAM装置21で作成さ れたNCデータは、CAD/CAMファイルサーバ22 に送られ、このCAD/CAMファイルサーバ22の加 エデータベース26に保管される。

【0069】そして、データ転送システム23からCA D/CAMファイルサーバ22に対して読取り指示が送 られると、このCAD/CAMファイルサーバ22は、 加工データベース26に保管されているNCデータ56 を読み出してデータ転送システム23に渡す。

【0070】このデータ転送システム23は、加工デー タベース26に保管されているNCデータを各種NC加 工機24に応じたフォーマットに変換して、該当するN C加工機24に転送する。このNC加工機24は、NC データに従って被加工物すなわち鋳物に対するNC加工 を行うものとなる。

【0071】一方、上記NCデータが作成されると、決 定した加工法案からNC加工機24、被加工物の取付け 方法、加工工程、使用工具等を必要に応じて2次元図面 50

と併記させてドキュメントとして出力可能なようにデー タが処理され保持される。このドキュメントを出力する ことによって製造技術者が機械作業者に指示可能にす

12

【0072】機械作業者は、上記ドキュメントに従って 指定のNC加工機24に指定の治具を使用して、指定の 姿勢と位置に被加工物を取付ける。さらに、機械作業者 は、NC加工機24に指定の工具をセットして、上記の 如くNCデータをNC加工機24に転送してNC加工を 行うものとなる。

【0073】このように上記一実施の形態においては、 加工パスの作成の前に、3次元CADデータに基づいて 被加工物とNC加工機24を含む加工機械系全体との干 渉チェック、すなわち治具、工具ホルダ、主軸頭、テー ブル回転時又は工具自動交換時の機械の動きの干渉チェ ックを行うようにしたので、被加工物とNC加工機24 を含む加工機械系全体との動きを事前検討して干渉チェ ックを行い、干渉箇所についてその回避策を取れる環境 を提供できる。

【0074】このような環境から例えば、干渉の回避策 として工具に関する変更、NC加工機に関する変更、干 渉の発生しない加工方法、干渉回避のための補助線F又 は補助形状のデータの付加などができる。具体的には、 干渉しないような治具形状やその取付け位置、工具が近 付ける限界位置の把握、干渉しないような長い工具との 交換、機械ストロークが不足する場合にはより大きな機 械との交換などの加工法案が加工パスを作成する前に事 前に検討できる。

【0075】干渉チェックでは、干渉部分が3次元CA M装置21の表示画面上で例えば赤色で表示されるの で、干渉部分が視覚的に容易に分かる。

【0076】又、干渉の回避策として3次元CADモデ ル上に補助線Fを引くことによって容易に工具等の送り 限界を規制して干渉を回避させることができる。しか も、この干渉の回避策は、表示される3次元CAMモデ ル上で視覚的に補助線Fを引くだけでよく、容易にかつ 確実に干渉を回避できるところに補助線Fが引ける。

【0077】従って、干渉の事前検討によって干渉の回 避策が取られた加工パスに基づいてNCデータを作成す るので、干渉の無いNCデータをそのままNC加工機2 4に渡して実際のNC加工ができる。例えば、5軸の加 工機や5面加工機のアタッチメントを使用した複雑な加 工においても、干渉のない加工が実現できる。又、工具 交換時の干渉や加工姿勢を変更するたびに回転テーブル を回転させたときの干渉も事前にチェックすることがで き、機械作業者は安心して加工を行うことができる。

【0078】又、最新のNCシミュレーションのソフト ウエアを使用した場合では、一旦3次元CAMを操作し て加工パスを作成し、NCデータに変換した後でしか干 渉チェックを行えないため、NCシミュレーションによ

り干渉が発見された場合には、干渉を回避する方法を検討して、再度3次元CAMを操作して加エパスを作成し、NCデータに変換する作業を行う必要があった。そのうえ、NCデータの再作成は、試行錯誤で何回か繰り返すことが多い。

【0079】これに対して上記装置では、従来のような加工前にNC加工機24上での干渉チェックの時間を削減でき、もし干渉があった場合に再度干渉を回避するための加工パスを作成する時間を削減でき、部品加工時間を大幅に短縮できる。

【0080】又、干渉回避データ記述部37によって被加工物とNC加工機24を含む加工機械系全体との干渉チェック、すなわち治具、工具ホルダ、主軸頭、テーブル回転時又は工具自動交換時の機械の動きの干渉を回避するための加工パスの作成方法をデータベース27に記述された干渉回避方法を加工パラメータに自動的に入力することにより、干渉を回避した加工パスやNCデータを自動的に作成できる。

【0081】なお、本発明は、上記一実施の形態に限定 20 されるものでなく次の通りに変形してもよい。

【0082】例えば、3次元CAD装置20から製品の 設計段階で、設計者が設計する製品、部品の加工の可否 を事前検討するようにしてもよい。

【0083】この3次元CAD装置20であれば、3次元CADモデル作成部30により3次元での製品の設計専用のプログラムを用いて設計者2との対話形式によって3次元CADモデル(製品モデル)、例えば鋳物部品の3次元CADモデルをモデリングしながら製品の設計を行うとき、設計者がイメージする加工法案に対応する加工装置や工具などの3次元モデルを予め登録されている複数の3次元CADモデルの中から読み出し、これら3次元CADモデルを読み出すごとの必要時に、その3次元CADモデルの姿勢を回転、移動させるなどして座標を合せ表示する。設計者は、加工法案に応じて各3次元モデルを動かすことにより干渉チェックを行うことが可能である。

[0084]

【発明の効果】以上詳記したように本発明によれば、少なくとも被加工物と工具との動きを設計の段階で検討し 40 て干渉チェックを行い、干渉箇所についてその回避策を取れる環境を得ることができる3次元CAD装置、3次元CAM装置を提供できる。

【0085】又、本発明は、少なくとも被加工物と工具 との動きを設計の段階で検討して干渉チェックを行い、 干渉箇所についてその回避策を取るためのプログラムを 記憶した記憶媒体を提供できる。

【図面の簡単な説明】

【図1】本発明に係わる3次元CAD/CAMシステム を適用したNC加工システムの一実施の形態を示す構成 50 図。

【図2】本発明に係わるNC加工システムの一実施の形態における3次元CAD/CAMシステムの機能プロック図。

14

【図3】本発明に係わるNC加工システムの一実施の形態における被加工物と工具とが干渉したときの位置関係を示す図。

【図4】本発明に係わるNC加工システムの一実施の形態における被加工物と工具との干渉を回避するための補助線を示す図。

【図5】本発明に係わるNC加工システムの一実施の形態における製品開発の工程を示す流れ図。

【図6】本発明に係わるNC加工システムの一実施の形態におけるCAM表示部に表示された被加工物と加工機械系全体の3次元CADモデルを示す図。

【図7】本発明に係わるNC加工システムの一実施の形態における被加工物と主軸頭とが干渉したときの位置関係を示す図。

【図8】本発明に係わるNC加工システムの一実施の形態における被加工物と主軸頭との干渉を回避するための補助線を示す図。

【図9】本発明に係わるNC加工システムの一実施の形態における治具と工具とが干渉したときの位置関係を示す図。

【図10】本発明に係わるNC加工システムの一実施の 形態における治具と工具との干渉を回避するための加工 方法の入力を示す図。

【図11】従来における3次元CAD/CAMシステムを用いての製品開発の工程を示す流れ図。

) 【符号の説明】

20:3次元CAD

21:3次元CAM

22:CAD/CAMファイルサーバコンピュータ

23:データ転送システム(DNC)

24:NC加工機

25:通信回線

26:加工データベース

27: データベース

30:3次元CADモデル作成部

0 31:CAD表示部

32:プログラムメモリ

33:展開処理部

34:加工事前検討部

35:干涉報知部

36:回避策入力部

37:干渉回避データ記述部

38:加工パス作成部

39: NCデータ作成部

40:CAD表示部

41:プログラムメモリ

16

50:被加工物 51:主軸頭

52:工具

53:カッター

60:加工機ヘッド 61:2方向摺動面

63:Y方向摺動面

64:主軸頭

*62: 主軸コラム

65:回転テーブル

66:治具

*

【図1】

【図3】

【図4】

【図2】

【図6】

【図10】

【図11】

