Mémoire d'alternance - Master II

Quantification de l'impact des modèles, des taux et de leur interaction sur le risque induit par les produits non échéancés

Giovanni MANCHE

Université Paris-Dauphine - PSL — M2 Ingénierie Économique et Financière (272),
Parcours Finance quantitative
Crédit Agricole S.A.

19 Juin 2025

- Périmètre du mémoire
 - Produits non échéancés : définition et risques
 - Sujet et démarche méthodologique
- 2 Modélisation quantitative de l'écoulement des produits non échéancés : Time-Series Model
- 3 Projection des taux d'intérêt : une approche dynamic Nelson-Siegel
- 4 Estimation de la marge future : rémunérations des NMDs et des clients
- Impact des modèles, des taux et de leur interaction sur la marge future des NMDs

Produits non échéancés : définition et risques

- NMDs: dépôts sans maturité contractuelle (ex: comptes courants, livrets,...)
- Deux risques majeurs :
 - Risque de liquidité : exemple des bank runs
 - Risque de taux : hausse des taux ⇒ pression pour mieux rémunérer les dépôts et comportement arbitragiste des clients.

Deux défis sources de risque :

- Comment correctement modéliser l'écoulement des NMDs ?
- Comment quantifier le risque sur la marge ?

Sujet et objectifs

Quels sont les impacts marginaux et croisés d'un changement de modèle d'écoulement et d'un changement de régime de taux sur la marge des NMDs ?

 Réponse à la problématique : nécessite de projeter la marge sous différents scénarios.

Etape 1 : Comment modéliser l'écoulement futur des NMDs ?

Etape 2 : Comment projeter la courbe de taux future ?

Etape 3 : Comment estimer la marge future des NMDs (rémunération et coût) ? Etape 4 : Comment quantifier les impacts respectifs des modèles, taux et de leur interaction sur la marge ?

- Périmètre du mémoire
- 2 Modélisation quantitative de l'écoulement des produits non échéancés : Time-Series Model
 - Cadre conceptuel de la modélisation
 - Mesurer le pass-through rate : approche à correction d'erreur
 - Obtention des parts
- 3 Projection des taux d'intérêt : une approche dynamic Nelson-Siegel
- 4 Estimation de la marge future : rémunérations des NMDs et des clients
- 5 Impact des modèles, des taux et de leur interaction sur la marge future des NMDs

Cadre conceptuel de la modélisation

Constat	Réponse en modélisation	
Stabilité empirique des encours	Part stable, écoulée à long terme	
Concentration des encours sur	Part concentrée, écoulée à court	
quelques clients	terme	
Présence de saisonnalité dans les vol-	Part fluctuante, écoulée selon le cycle	
umes d'encours	saisonnier	
Sensibilité des encours aux taux de	Part "Taux variable" déduite de la	
marché (stabilité conditionnée à un	part stable, écoulée à court terme	
scénario de taux stable)		

$$E_i = \underbrace{\mathsf{Part\ Taux\ Fixe} + \mathsf{Part\ Taux\ Variable}}_{\mathsf{Part\ stable}} + \mathsf{Part\ Fluctuante}$$

+ Part concentrée + Part Volatile

Mesurer le pass-through rate : approche à correction d'erreur

Spécification initiale : $r_{client,t} = c + PTR_{LT} \times EUR_{12M,t} + \varepsilon_t$ Mais séries cointégrées ⇒ modèle à correction d'erreur :

$$\Delta r_{\text{client},t} = b + PTR_{CT} \times \Delta EUR_{12M,t} + \gamma \varepsilon_{t-1} + u_t,$$

⇒ proposition d'un pass-through rate qui combine la dynamique de court et long terme.

Obtention des parts

- Constat avec courbe de Lorenz : 1% des clients détient 25% des encours ⇒ part concentrée.
- Part stable : décomposition temporelle $\Rightarrow E_t = T_t \times S_t \times \varepsilon_t$
- Traitement de la saisonnalité + étude du bruit
- Part stable comme % de la tendance stable face à la saisonnalité et au bruit et corrigée de la part concentrée

Part	% MM (tendance)	Maturité	Amortissement
Stable – taux fixe	57%	6 ans	Linéaire, trimestriel
Stable – taux variable	16% (PTR = 22.44%)	1 an	Linéaire, mensuel
Fluctuante	2%	1 an	Linéaire, mensuel
Concentrée	25%	1 mois	Linéaire, mensuel

Table: Modèle d'écoulement en taux post-Time Series Model

- Périmètre du mémoire
- 2 Modélisation quantitative de l'écoulement des produits non échéancés : Time-Series Model
- Projection des taux d'intérêt : une approche dynamic Nelson-Siegel
 - Dynamic Nelson-Siegel initial
 - Instabilité des coefficients : Time-Varying Parameters VARs
- 4 Estimation de la marge future : rémunérations des NMDs et des clients
- 6 Impact des modèles, des taux et de leur interaction sur la marge future des NMDs

Dynamic Nelson-Siegel initial

$$r_t(\tau) = \underbrace{\beta_{1t}}_{\text{niveau}} + \underbrace{\beta_{2t}}_{\text{pente}} \left(\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau} \right) + \underbrace{\beta_{3t}}_{\text{courbure}} \left(\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau} - e^{-\lambda_t \tau} \right)$$

Diebold & Li, 2006 : pour projeter les taux, il faut prévoir les facteurs Nelson-Siegel

- AR(1) ou VAR(1) sur les facteurs
- Mais problème : présence de ruptures structurelles (avril 2012, octobre 2015 et mai 2022 d'après Bai-Perron)

Giovanni MANCHE Mémoire d'alternance - M2 Juin 2025 10 / 21

Instabilité des coefficients : *Time-Varying Parameters* VARs

$$B_t = M_t B_{t-1} + C_t + v_t, v_t \sim N(0, Q_t)$$
 (équation de transition)
 $\beta_t = B_t \beta_{t-1} + D_t + w_t, w_t \sim N(0, H_t)$ (équation de mesure)

- ullet C'est un **modèle espace-état** linéaire-gaussien. La variance-covariance des coefficients : Q_t
- Intérêt : les coefficients changent **en cas de ruptures structurelles** (*ex : restriction monétaire brutale à partir de juillet 2022*).
- Estimation des coefficients avec le filtre de Kalman (filtre récursif avec étape de prédiction puis de mise à jour).

Giovanni MANCHE Mémoire d'alternance - M2 Juin 2025 11 / 21

Forgetting factor et Dynamic Model Averaging

Koop & Korobilis (2012):

$$Q_t = \left(rac{1}{\lambda} - 1
ight) extit{Var}(B_t | eta_{1:t-1})$$

- Forgetting factor λ : contrôle la mémoire du modèle. Plus λ est bas, plus les coefficients s'ajustent vite.
- DMA: on fait tourner plusieurs filtres de Kalman en parallèle (avec différents λ), puis on combine les prévisions par moyenne pondérée.
- Poids égaux à la probabilité que le modèle soit le "bon" pour la prévision.
- Les poids sont mis à jour dynamiquement selon les performances passées de chaque modèle.

Résultats d'estimation - intérêt du DMA

Résultats d'estimation - intérêt du TVP-VAR

- Périmètre du mémoire
- 2 Modélisation quantitative de l'écoulement des produits non échéancés : Time-Series Model
- Projection des taux d'intérêt : une approche dynamic Nelson-Siegel
- 4 Estimation de la marge future : rémunérations des NMDs et des clients
 - Mécanisme de stratification : prise en compte de la dynamique des dépôts
 - Calculer la marge sur les NMDs
- 5 Impact des modèles, des taux et de leur interaction sur la marge future des NMDs

Mécanisme de stratification : prise en compte de la dynamique des dépôts

- Amortissement linéaire des parts \Rightarrow création de "strates" pour chaque date d'amortissement. Montant de la strate $\frac{1}{n} \times$ montant de la part.
- Strate = "morceau" d'encours adossé à des actifs à plus ou moins long terme.
- Gestion de la dynamique des encours selon le schéma :

Calculer la marge sur les NMDs

- Rémunération des NMDs = rémunération de ce qu'ils financent (adossement). Taux de rémunération de la strate = taux de marché pour sa maturité.
- À encours constants, l'évolution du taux de rémunération d'une part est :

$$r_{t+1,\mathit{part}} = (1 - \underbrace{\theta}_{\textrm{% de la part arrivant à maturit\'e}}) r_{t,\mathit{part}} + heta r_{t+1,\mathit{T}}$$

- Taux client : sa dynamique suit le modèle à correction d'erreur estimé lors du calcul du PTR.
- Finalement,

$$\mathit{Marge}_{t,\mathit{NMD}} = \sum_{\mathit{part} \in \mathit{parts}} \omega_{\mathit{part}} r_{t,\mathit{part}} - r_{t,\mathit{client}}$$

avec ω_{part} le % de MM associé à la part.

- Périmètre du mémoire
- 2 Modélisation quantitative de l'écoulement des produits non échéancés Time-Series Model
- Projection des taux d'intérêt : une approche dynamic Nelson-Siegel
- $oldsymbol{4}$ Estimation de la marge future : rémunérations des NMDs et des clients
- Impact des modèles, des taux et de leur interaction sur la marge future des NMDs

Projection des marges selon différents modèles et scénarios de taux

Quantification de l'impact

- Analyse en risques : qu'est ce qui explique la variation de la marge ?
- Mesure à l'aide d'une analyse de la variance (ANOVA) à deux facteurs avec interaction :

$$\textit{Marge}_{ij} = c + \underbrace{\alpha_i}_{\text{Effet modèle}} + \underbrace{\gamma_j}_{\text{Effet taux}} + \underbrace{\alpha\gamma_{ij}}_{\text{Effet interaction}} + \varepsilon_{ijk}$$

Facteur	% de variance expliquée	Significativité (p-value)
Modèle	0.15%	0.381
Scénario	65.13%	$< 10^{-180}$
Interaction Modèle × Scénario	11.40%	$< 10^{-40}$
Résidu	23.33%	_

Table: Résultats du test ANOVA

20 / 21

Conclusion

- Projection d'écoulement et de taux à l'aide d'outils économétriques avancés...
- Pour identifier des risques concrets : présence réelle d'un risque d'interaction à prendre en compte.
- Limites de l'étude : encours supposés constants, projections à court terme
- Ce mémoire fut l'occasion de combiner un sujet concret d'analyse de risque et mon parcours axé sur les modélisations quantitatives et statistiques.