ФиПЛ-2022

Линейная регрессия

Метрики. Функционал ошибки. Градиентный спуск

Линейная регрессия: веса

 Цель: подобрать такие коэффициенты уравнения прямой, чтобы по нашим признакам можно было угадать примерный ответ (целевую переменную):

$$w_1x_1 + w_2x_2 + ... + w_0 = y$$

- $x_1, x_2, ...$ это наши признаки (площадь квартиры, время до метро...)
- у это целевая переменная (цена квартиры)
- w_1, w_2, \dots это веса, или коэффициенты
- w_0 это свободный коэффициент (шум)

Как оценить качество обученного алгоритма?

- Надо отложить кусочек всех данных, чтобы алгоритм их не видел: а потом на них можно тестировать
- По какой формуле оценивать качество? Например, среднеквадратичная ошибка:

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Как подобрать веса?

- Инициализируем их случайным образом
- Считаем, насколько ошибся наш алгоритм с такими весами на объектах из обучающей выборки
- Корректируем веса...
- НО КАК ИХ КОРРЕКТИРОВАТЬ?

Великий, ужасный – градиентный спуск

- Основная идея: нам нужно найти минимум функции ошибки $(\frac{1}{n}\sum_{i=1}^n(y_i-\overline{y_i})^2)$, то есть, такие коэффициенты, при которых ошибка самая маленькая
- Есть такой специальный математический алгоритм, который задействует производные...
- Градиент касательная к нашей функции, которая смотрит в ту сторону, куда функция растет

$y = 3x^2$ (1;3)y = 6x - 3

Градиентный спуск

- Градиент это на самом деле (частная) производная
- Magick: если будем вычислять значение градиента и вычитать его из наших весов, то веса будут становиться лучше!
- Слишком много про это лучше не думать, а то недолго и моск сломать...

Виды градиентного спуска

 Обычный градиентный спуск: считаем градиенты для каждого веса на всех примерах и потом вычисляем усредненные градиенты, которые вычитаем из их весов

 $w_{i+1} = w_i - \eta \nabla f(w_i) (\eta - \text{learning rate, скорость спуска})$

- Но это же для каждого шага обучения вычислять градиенты для всех весов и для всех примеров в выборке! Затратно
- А что, если считать не для всех примеров сразу?...

Виды градиентного спуска

- Стохастический (SGD)
- Mini-batch (MBGD)
- Nesterov Momentum
- Adam
- Adadelta
- Adagrad
- Тысячи их!

Переобучение и недообучение

- Переобучение: алгоритм тупо заучил существующие в тренировочной выборке объекты (слишком долго гоняли)
- Недообучение: недогоняли

Категориальные признаки и ОНЕ

- Хотим угадывать цену квартиры по району, в котором она находится: Мытищи – фу, Красная Пресня – найс
- Но они не числовые?.. Просто заменить их на 1-2-3 нечестно
- Ответ: использовать One Hot Encoding (OHE)

id	color	
1	red	
2	blue	
3	green	
4	blue	

One Hot Encoding

id	color_red	color_blue	color_green
1	1	Θ	Θ
2	0	1	Θ
3	0	Θ	1
4	0	1	Θ

Наконец – практическая часть!

устанавливаем библиотеку <u>scikit-learn</u>:

pip install scikit-learn