Лабораторная работа №9. Решение задач машинного обучения с помощью логических методов классификации.

Используемый набор данных: <u>Breast Cancer Wisconsin (Prognostic)</u> (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Prognostic%29)

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report, roc_curve, roc_auc_score
import os
import requests

// matplotlib inline

pd.options.display.max_columns = None
```

In [2]:

```
def downloadFile(url, filePath):
    if not os.path.exists(filePath):
        req = requests.get(url)
        f = open(filePath, "wb")
        f.write(req.content)
        f.close

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin"
downloadFile(url + "/wpbc.data", "dataset/wpbc.data")
downloadFile(url + "/wpbc.names", "dataset/wpbc.names")
```

In [3]:

Out[3]:

	ID	Outcome	Time	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactnes Mea
64	868826	N	36	14.95	17.57	96.85	678.1	0.11670	0.130
34	855625	R	9	19.07	24.81	128.30	1104.0	0.09081	0.219(
133	901088	N	61	20.44	21.78	133.80	1293.0	0.09150	0.113
108	887256	N	27	15.53	33.56	103.70	744.9	0.10630	0.1639
94	881190	N	74	19.53	32.47	128.00	1223.0	0.08420	0.113(
88	879523	R	17	15.12	16.68	98.78	716.6	0.08876	0.0958
26	854002	N	53	19.27	26.47	127.90	1162.0	0.09401	0.1719
41	857793	N	62	14.71	21.59	95.55	656.9	0.11370	0.136ŧ
8	844981	N	119	13.00	21.82	87.50	519.8	0.12730	0.1932
5	843786	R	77	12.75	15.29	84.60	502.7	0.11890	0.1569
109	887549	R	39	20.31	27.06	132.90	1288.0	0.10000	0.1088
119	892189	N	1	11.76	18.14	75.00	431.1	0.09968	0.059
184	937664	N	17	17.98	23.96	120.00	995.0	0.11570	0.1739
63	868202	N	10	12.77	22.47	81.72	506.3	0.09055	0.0576
185	937897	N	17	13.63	24.70	89.65	569.2	0.10550	0.1312
59	866203	R	73	19.00	18.91	123.40	1138.0	0.08217	0.0802
107	887181	N	64	15.66	23.20	110.20	773.5	0.11090	0.3114
44	859283	N	106	14.78	23.94	97.40	668.3	0.11720	0.1479
157	914062	R	12	18.01	20.56	118.40	1007.0	0.10010	0.1289
135	9012000	R	2	22.01	21.90	147.20	1482.0	0.10630	0.1954
155	913505	R	14	19.44	18.82	128.10	1167.0	0.10890	0.144{
190	939426	N	8	19.96	27.41	130.80	1238.0	0.09075	0.1167
31	855138	N	76	13.48	20.82	88.40	559.2	0.10160	0.125
47	8610637	N	97	19.55	15.49	128.00	1156.0	0.10790	0.1747
118	8912280	N	8	16.24	18.77	108.80	805.1	0.10660	0.1802
101	884180	N	62	19.40	23.50	129.10	1155.0	0.10270	0.1558
189	939095	N	6	19.80	20.46	130.20	1235.0	0.09652	0.1077
176	929684	R	14	17.53	25.28	114.00	966.6	0.09278	0.0917
104	886452	N	58	13.96	17.05	91.43	602.4	0.10960	0.1279
111	889403	N	62	15.61	19.38	100.00	758.6	0.07840	0.0561
17	851509	R	10	21.16	23.04	137.20	1404.0	0.09428	0.1022
10	845636	N	123	16.02	23.24	102.70	797.8	0.08206	0.0666
39	857438	R	48	15.10	22.02	97.26	712.8	0.09056	0.0708
66	869691	N	43	11.80	16.58	78.99	432.0	0.10910	0.1700
50	86208	R	10	20.77	22.83	137.40	1336.0	0.10330	0.151
14	848406	N	123	14.68	20.13	94.74	684.5	0.09867	0.0720

	ID	Outcome	Time	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactnes Mea
178	931678	N	24	24.29	25.48	161.80	1715.0	0.09374	0.2284
75	873592	R	17	27.22	21.87	182.10	2250.0	0.10940	0.1914
96	881861	N	77	12.83	22.33	85.26	503.2	0.10880	0.1799
125	89539	R	78	16.27	20.71	106.90	813.7	0.11690	0.1319
4									+

In [4]:

data.dtypes

Out[4]:

ID	int64
Outcome	category
Time	int64
Radius Mean	float64
Texture Mean	float64
Perimeter Mean	float64
Area Mean	float64
Smoothness Mean	float64
Compactness Mean	float64
Concavity Mean	float64
Concave points Mean	float64
Symmetry Mean	float64
Fractal dimension Mean	float64
Radius SE	float64
Texture SE	float64
Perimeter SE	float64
Area SE	float64
Smoothness SE	float64
Compactness SE	float64
Concavity SE	float64
Concave points SE	float64
Symmetry SE	float64
Fractal dimension SE	float64
Radius Worst	float64
Texture Worst	float64
Perimeter Worst	float64
Area Worst	float64
Smoothness Worst	float64
Compactness Worst	float64
Concavity Worst	float64
Concave points Worst	float64
Symmetry Worst	float64
Fractal dimension Worst	float64
Tumor size	float64
Lymph node status	object
dtype: object	

...,

Колонка Lymph node status имеет тип object. Проверим, имеются ли в ней пропуски.

In [5]:

```
data['Lymph node status'].replace({'?': np.nan}, inplace=True)
display(data.isna().sum())
```

ID 0 Outcome 0 Time 0 Radius Mean 0 Texture Mean 0 Perimeter Mean 0 0 Area Mean Smoothness Mean 0 Compactness Mean 0 Concavity Mean 0 Concave points Mean 0 Symmetry Mean 0 Fractal dimension Mean 0 Radius SE 0 Texture SE 0 Perimeter SE 0 Area SE 0 Smoothness SE 0 Compactness SE 0 0 Concavity SE Concave points SE 0 Symmetry SE 0 Fractal dimension SE 0 Radius Worst 0 Texture Worst 0 Perimeter Worst 0 Area Worst 0 Smoothness Worst 0 Compactness Worst 0 Concavity Worst 0 Concave points Worst 0 Symmetry Worst 0 Fractal dimension Worst 0 Tumor size 0 Lymph node status 4

dtype: int64

Имеется 4 пропуска в колонке *Lymph node status*. <u>Заполним</u> (https://basegroup.ru/community/articles/missing) их модой. Малое количество пропусков не должно привести к существенному искажению распределения.

In [6]:

```
data["Lymph node status"].fillna(data["Lymph node status"].mode()[0], inplace=True)
data = data.astype({"Lymph node status": "float64"})
data.drop(columns=["ID"], inplace=True)

display(data.dtypes["Lymph node status"])
display(data.describe())
```

dtype('float64')

	Time	Radius Mean	Texture Mean	Perimeter Mean	Area Mean	Smoothness Mean	Compactne Me
count	198.000000	198.000000	198.00000	198.000000	198.000000	198.000000	198.0000
mean	46.732323	17.412323	22.27601	114.856566	970.040909	0.102681	0.1426
std	34.462870	3.161676	4.29829	21.383402	352.149215	0.012522	0.0498
min	1.000000	10.950000	10.38000	71.900000	361.600000	0.074970	0.0460
25%	14.000000	15.052500	19.41250	98.160000	702.525000	0.093900	0.1102
50%	39.500000	17.290000	21.75000	113.700000	929.100000	0.101900	0.1317
75%	72.750000	19.580000	24.65500	129.650000	1193.500000	0.110975	0.1722
max	125.000000	27.220000	39.28000	182.100000	2250.000000	0.144700	0.3114

Подготовим тренировочные и тестовые выборки.

In [26]:

```
X = data.drop(columns=["Outcome"]).copy()
y = data["Outcome"].replace({'N': -1, 'R': 1})

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.35, random_state=
27)
```

Создадим классификатор, обучим его, а затем выполним классификацию.

In [27]:

```
y_pred = DecisionTreeClassifier(max_depth=25).fit(X_train, y_train).predict(X_test)
```

Оценим получившуюся классификацию.

In [28]:

```
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
-1	0.88	0.79	0.83	57
1	0.37	0.54	0.44	13
accuracy			0.74	70
macro avg	0.63	0.66	0.64	70
weighted avg	0.79	0.74	0.76	70

In [29]:

```
fpr, tpr, _ = roc_curve(y_test, y_pred)
auc = roc_auc_score(y_test, y_pred)
```

In [30]:

```
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = "AUC = %0.2f"%auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```

