Power/Performance analysis and optimization for deep learning on CPU-GPU platform

Ahmet Fatih Inci

Ting-Wu (Rudy) Chin

18-743 Energy-Aware Computing

Outline

- » Motivation
- » Introduction
- » Methodology
- » Objectives & Deliverables
- » Milestones

Motivation

- » focus on GPU to run DNNs faster
 - » data parallelism of DNNs
- » what is left to be done on CPU?
 - » share same power budget
 - » close to each other on SoC
 - » underutilized CPU
- » characterize the optimum system performance

Introduction

» Profiling power/performance of embedded platform (TX1) while inferencing DNN on GPU and running SPLASH on CPU.

Methodology

- » GPU
 - » various DNN architectures
 - » various frequency
- » CPU
 - » various SPLASH benchmarks
 - » various frequency
- » characterize power/performance individually and jointly

Methodology

- » Power
 - » current sensors in TX1
- » Performance
 - » DNN execution time (Caffe framework)
 - » CPU utilization (stats)
 - » IPC (performance counters)
- » Temperature
 - » thermal sensors in TX1
 - » take off heat sink to simulate embedded platforms

Objectives & Deliverables

- » how different CPU frequency and workloads affect GPU performance and system power under TDP constraint.
- » how CPU-GPU workloads affect temperature
- » what type of CPU workloads (memory and compute intensive) has more IPC

» e.g.

Low GPU frequency

uency High GPU frequency

- » I/O operations on CPU
- » Thermal Design Power (TDP) constraint

Milestones

- » M1
 - » come up with CPU-GPU benchmarks
 - » run CPU-GPU workloads individually (baseline)
- » M2
 - » run CPU-GPU together by changing CPU-GPU frequency
 - » analyze results

Q&A

