GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Análisis de Circuitos Eléctricos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	170403	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento, la habilidad y la aptitud para entender, manipular y diseñar circuitos eléctricos para resolver problemas que se presentan en el campo de la ingeniería electrónica y eléctrica.

TEMAS Y SUBTEMAS

1. Componentes básicos y circuitos eléctricos

- 1.1 Unidades y escalares.
- 1.2 Carga, corriente, tensión y potencia.
- 1.3 Fuentes de tensión y de corriente.
- 1.4 Ley de Ohm.

2. Leyes de tensión y de corriente

- 2.1 Nodos, trayectorias, lazos y ramas.
- 2.2 Ley de Kirchhoff de corriente.
- 2.3 Ley de Kirchhoff de tensión.
- 2.4 El circuito de un lazo.
- 2.5 El circuito de un par de nodos.
- 2.6 Fuentes independientes conectadas en serie y paralelo.
- 2.7 Resistores en serie y en paralelo.
- 2.8 División de tensión y corriente.

3. Análisis nodal y de malla básicos

- 3.1 Análisis nodal.
- 3.2 El supernodo.
- 3.3 Análisis de mallas.
- 3.4 La supermalla.
- 3.5 Comparación entre el análisis nodal y el de malla.
- 3.6 Análisis de circuitos asistido por computadora.

4. Técnicas útiles del análisis de circuitos

- 4.1 Linealidad y superposición.
- 4.2 Transformaciones de fuente.
- 4.3 Circuitos equivalentes de Thévenin y Norton.
- 4.4 Transferencia de potencia máxima.
- 4.5 Conversión delta-estrella.
- 4.6 Selección de un procedimiento: comparación de diversas técnicas.

5. Capacitores e inductores

- 5.1 El capacitor y el inductor.
- 5.2 Combinaciones de inductancia y capacitancia.
- 5.3 Consecuencias de la linealidad.
- 5.4 Construcción de modelos para capacitores e inductores con PSpice.

COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

Circuitos RL y RC

- 6.1 El circuito RL sin fuente.
- 6.2 Propiedades de la respuesta exponencial.
- 6.3 El circuito RC sin fuente.
- 6.4 Una perspectiva más general.
- 6.5 La función escalón unitario.
- 6.6 Accionamiento de circuitos RL.
- 6.7 Respuesta natural y forzada.
- 6.8 Accionamiento de circuitos RC.

7. Circuito RLC

- 7.1 Circuito RLC en paralelo sin fuente.
- 7.2 Circuito RLC en paralelo sobreamortiguado.
- 7.3 Amortiguamiento crítico.
- 7.4 Circuito RLC en paralelo subamortiguado.
- 7.5 Circuito RLC en serie sin fuente.
- 7.6 Respuesta completa del circuito RLC.
- 7.7 Circuito LC sin pérdidas.

8. Análisis de estado senoidal permanente (circuitos de CA)

- 8.1 Características de las senoides.
- 8.2 Respuesta forzada a funciones senoidales.
- 8.3 Función forzada compleja.
- 8.4 Fasor.
- 8.5 Relaciones fasoriales para R, L y C.
- 8.6 Impedancia.
- 8.7 Admitancia.
- 8.8 Análisis nodal y de malla.
- 8.9 Superposición, transformaciones de fuente y teorema de Thévenin.
- 8.10 Diagramas fasoriales.

Análisis de potencia en circuitos de CA

- 9.1 Potencia instantánea.
- 9.2 Potencia promedio (o activa).
- 9.3 Valores eficaces de corriente y de tensión.
- 9.4 Potencia aparente y factor de potencia.
- 9.5 Potencia compleja.
- 9.6 Comparación de la terminología de la potencia.

10. Circuitos polifásicos

- 10.1 Introducción.
- 10.2 Sistemas polifásicos.
- 10.3 Sistemas monofásicos de tres hilos.
- 10.4 Conexión Y-Y trifásica.
- 10.5 Conexión delta (Δ).
- 10.6 Medición de potencia en sistemas trifásicos

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio con un constante uso de aparatos y equipos de cómputo en los aspectos teóricos y prácticos, fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de cómputo, generando solución a problemas sobre los temas del curso. Las sesiones se desarrollaran utilizando medios de apoyo didáctico como son los retroproyectores, las videocaseteras, los programas de cómputo educativo, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá prender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y acticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asocian a procupar esta del curso; además se considerará el trabajo extraclase, la participación du la serio de curso y central de curso y considerará el trabajo extraclase, la participación du la serio de curso y central de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase, la participación du la serio de curso y considerará el trabajo extraclase el curso y considerará el t

MEDIA SUPERIOR Y SUPERIOR

BIBLIOGRAFÍA

Libros Básicos:

- 1. **Análisis de circuitos en ingeniería,** William H. Hayt Jr., Jack E. Kemmerly y Steven M. Durban, Mcgraw-Hill Interamericana, sexta edición 2003.
- 2. Fundamentos de circuitos eléctricos, Charles K. Alexander y Mattehem N. O. Sadiku, McGrawHill, tercera edición 2006.
- 3. Análisis básico de circuitos eléctricos, Johnson, David, Quinta ed, Prentice Hall Hispanoamericana S.A, México 1997.
- 4. Circuitos eléctricos y electrónicos, 4ª edición, Mahamood Nahvi, , Mcgraw-Hill 2005.

Libros de Consulta:

- 1. Teoria de circuitos : fundamentos, Alfaomega, Ras Oliva, Enrique, /Marcombo México 1991.
- 2. Teoria de sistemas y circuitos, Alfaomega, Gerez Greiser Victor, Murray Lasso M. A, México 1996.
- 3. Teoria y problemas de circuitos electricos, Edminister, Joseph A., Mcgraw-Hill, México 1986.

PERFIL PROFESIONAL DEL DOCENTE

Licenciado o Ingeniero en Física ó Electrónica, Maestría o Doctorado en Física, Electrónica o Áreas Afines.

