

	0	d	C_	∞
1	Θ,	0-25	+0.2	0°
2	900	Li	0	900
3	900	La	0	900
4	04	\bigcirc	0	-900
5	05	0.5 m	\bigcirc	00

$$T_{0}^{3} = T_{0}T_{1}T_{2}^{3}$$

$$= \begin{bmatrix} \cos\theta_{1} & \cos\theta_{1} & \cos\theta_{1} & \cos\theta_{1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

To with
$$\Theta_1 = 0^{\circ} \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

4.

	0	d	a	×
1	Θ_{i}	1.3m	0-8m	00
R	D°	Li	\bigcirc	-90°
3	03	-0.5m	0	-900
4	00	1.2+ La	0	900
5	05	0	\bigcirc	-90°
6	06			

$$= \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0.8 \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0.8 \sin \theta_1 \\ 0 & 0 & 1 & 1.23 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0.8 \sin \theta_1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_2 & 0 & -\sin \theta_3 & 0 \\ \cos \theta_3 & 0 & \cos \theta_3 & 0 \\ 0 & -1 & 0 & \cos \theta_3 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta_3 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Origin displaced by 0.5m in negative #2 direction

appeals and the second	0,	d	a	×
1	⊘,	204m	0	-900
2	02		0	-900
3	Θ_3	1.45m	0	900
4	04	0	1-2m	00
5	05	0	0	-900
6	06	O. 7m	0	00

$$T_{0} = T_{0} T_{1} T_{2} T_{3} T_{4}$$

$$= \begin{bmatrix} \cos \theta_{1} & 0 & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & 0 & \cos \theta_{2} & 0 \end{bmatrix} \begin{bmatrix} \cos \theta_{2} & 0 & -\sin \theta_{2} & 0 \\ \sin \theta_{3} & 0 & \cos \theta_{2} & 0 \end{bmatrix} \begin{bmatrix} \cos \theta_{3} & 0 & +\sin \theta_{3} & 0 \\ \sin \theta_{3} & 0 & \cos \theta_{2} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta_{1} & 0 & \cos \theta_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta_{2} & -\sin \theta_{3} & 0 \\ \cos \theta_{4} & -\sin \theta_{4} & 0 \end{bmatrix} \begin{bmatrix} \cos \theta_{4} & \cos \theta_{4} & 0 \\ \cos \theta_{4} & \cos \theta_{4} & 0 \end{bmatrix} \begin{bmatrix} \cos \theta_{4} & \cos \theta_{4} & 0 \\ \cos \theta_{4} & \cos \theta_{4} & 0 \end{bmatrix} \begin{bmatrix} \cos \theta_{3} & \cos \theta_{4} & \cos \theta_{4} \\ \cos \theta_{4} & \cos \theta_{4} & 0 \end{bmatrix}$$

6.6)

	b) X2 72	b2 / 01	sin / 94	
	42	X3	5 ,	
	Z		h	
D cir	у _' х,		35 ×5 75	
/ 3°	5,			

5)		Θ	d	a	04_	
	l	Θ_{i}	0.16m	0. Im	00	
	2	900	L,	O	900	
	3	-90°	La	0	-900	
	4	Θ.,	0	0	-900	
	5	Θ_{S}	0.34m	0	O°	

$$C) \overline{I_b} = \overline{I_0} \overline{I_1} \overline{I_2}$$

 Cə	-S⊖,	0	0.100.	0	0	1	0	0	0	1	0	
50,	CO,	0	0.150,	l	0	0	0	-1	0	0	0	
0	0	1	0.16	0	1	0	L	0	-1	0	Lz	
0	0	0	ļ	0	0	0	1	0	0	O	1_	

d) To @ 0, = 0° To =	ı	0	Ð	0.1	
From diagram:	0	1	0	0	
x, dir = xo dir	0	0	1	0.16	
dir = yo dir	0	0	0	1	

Z. dir = Zo dir

· · Verified b, is displaced by 0.16m along to axis 7 0.1m along x, axis.

Appendix I Denavit-Hartenberg Algorithm and Matrix

- 1. Number the joints from 1 to n starting with the base and ending with the tool yaw, pitch and roll, in that order.
- 2. Assign a right-handed orthonormal coordinate frame L_0 to the robot base, making sure that z^0 aligns with the axis of joint 1. Set k = 1.
- 3. Align z^k with the axis of joint k+1.
- 4. Locate the origin of L_k at the intersection of the z^k and z^{k-1} axes. If they do not intersect, use the intersection of z^k with a common normal between z^k and z^{k-1} .
- 5. Select x^k to be orthogonal to both z^k and z^{k-1} . If z^k and z^{k-1} are parallel, point x^k away from z^{k-1} .
- 6. Select y^k to form a right-handed orthonormal coordinate frame L_k .
- 7. Set k = k + 1. If k < n, go to step 3; else, continue.
- 8. Set the origin of L_n at the tool tip. Align z^n with the approach vector, y^n with the sliding vector, and x^n with the normal vector of the tool. Set k = 1.
- 9. Locate point b^k at the intersection of the x^k and z^{k-1} axes. If they do not intersect, use the intersection of x^k with a common normal between x^k and z^{k-1} .
- 10. Compute Θ_k as the angle of rotation from x^{k-1} to x^k measured about z^{k-1} .
- 11. Compute d_k as the distance from the origin of frame L_{k-1} to point b_k measured along z^{k-1} .
- 12. Compute a_k as the distance from point b^k to the origin of frame L_k measured along x^k .
- 13. Compute α_k as the angle of rotation from z^{k-1} to z^k measured about x^k .
- 14. Set k = k + 1. If $k \le n$, go to step 9; else, stop.

DENAVIT-HARTENBERG MATRIX:

$$T_{i-1}^i = \begin{bmatrix} C\Theta_i & -S\Theta_i C\alpha_i & S\Theta_i S\alpha_i & a_i C\Theta_i \\ S\Theta_i & C\Theta_i C\alpha_i & -C\Theta_i S\alpha_i & a_i S\Theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$