Messbericht Anpassung

Felix Schiller Sebastian Littau E1FS2

Reutlingen, am 02.02.2015

Inhaltsverzeichnis

1	Spa	Spannungsabhängigkeit										
	1.1	Messschaltung										
	1.2	Aufbau der Schaltung										
	1.3	Messung der Spannung bei verschiedenen Belastungsfällen										
	1.4	Grafische Darstellung										
		Grenzfälle										
2	Stro	Stromabhängigkeit										
	2.1	Messung der Spannung bei verschiedenen Belastungsfällen										
3	Leis	eistungsabhängigkeit										
	3.1	Leistung in allen Belastungsfällen										
		Grafische Darstellung										
		Grenzfälle der Leistung										
4	Erke	enntnisse										

Messaufgabe

Es sind bei einer Spannungsquelle mit Innenwidrstand R_i Spannungs-, Strom- und Leistungsabhängigkeit bei verschiedenen Belastungsfällen zu untersuchen.

1 Spannungsabhängigkeit

1.1 Messschaltung

1.2 Aufbau der Schaltung

In der oben skizzierten Schaltung ist aus dem Generator G und dem Widerstand R_i , einem Lastwiderstand mit $100\Omega/10W$ eine Spannungsquelle aufgebaut. Die Spannungsquelle wird mit mehreren den Belastungswiderständen zwischen 1Ω und $10k\Omega$ belastet.

1.3 Messung der Spannung bei verschiedenen Belastungsfällen

In einem ersten Messdurchgang wird die Ausgangsspannung U_L für die Belastungsfälle zwischen 1Ω und $10k\Omega$ gemessen.

R_L in V	n V 1		33	56	82	100	120	150	330
U_L in V	0,1	0,88	2,43	3,49	4,22	4,91	5,35	5,91	7,67
$\overline{R_L \text{ in V}}$	560 820		1000 150		0 330	00 56	00 82	200 10	0000
U_L in V	8,48	8,92	9,12	9,38	3 9,7	6 9,	86 9,	,93 9	9,96

1.4 Grafische Darstellung

Werden die Widerstandswerte im logarithmischen Maßstab aufgetragen lassen sich die Messwerte als Diagramm darstellen.

1.5 Grenzfälle

Bei einem Lastwiderstand von $R_1=0\Omega$, der einem Kurzschluss der Spannungsquelle gleichkommt wird der Strom nur von dem Innenwiderstand der Spannungsquelle, hier $R_i=100\Omega$ begrenzt. Dementsprechend kann maximal ein Strom von $I_L=\frac{U_0}{R_i}=\frac{10V}{100\Omega}=100mA$ fließen. Die gemessene Ausgangsspannung U_A bricht auf 0V zusammen. Ein Lastwiderstand von $R_L=\infty\Omega$ kommt einem offenen Stromkreis gleich. Es fließt kein strom und die gemessene Ausgangsspannung bleibt bei 10V

2 Stromabhängigkeit

2.1 Messung der Spannung bei verschiedenen Belastungsfällen

Im zweiten Messdurchgang werden die Stromwerte für den Parameter I_L gemessen und die Tabelle erweitert.

R_L in V	1	10	33	56	82	10	00	12	0	15	0	330
U_L in V	0,1	0,88	2,43	3,49	4,22	4,	,91 5,		35 5,9		1	7,67
I_L in mA	95	88	73	63	54	49	9,5 45		$5,5 \mid 40$)	23
$R_L \text{ in V}$	560	820	1000	150	0 330	3300		5600 8		200		0.000
U_L in V	8,48	8,92	9,12	9,38	9,7	76	9,86		9,93		9,96	
I_L in mA	15	11	9,1	6,3	2,9	95	1,7	75	1.	,2	(),99

Mit den gemessenen Werten kann man das vorhin erstellte Diagramm um eine Stromkurve erweitern.

3 Leistungsabhängigkeit

3.1 Leistung in allen Belastungsfällen

Die elektrische Leistung, die im Lastwiderstand in Wärme umgesetzt wird, errechnet sich aus $P_{el} = U_L \cdot I_L$.

R_L in V	1	10	33	56	82	100	12	0	150	330
	1									
$U_L \text{ in V} = 0.1$		$0,\!88$	2,43	$3,\!49$	4,22	4,91	5,3	5	5,91	7,67
I_L in mA	$I_L \text{ in mA} = 95$		73	63	54	49,5	45,	5	40	23
P in mW	9,5	77,44	177,39	$219,\!87$	238,86	243,0	$4 \mid 243,$	42	236,4	176,41
R_L in V	560	820	1000	1500	3300	5600	8200	10.000		
U_L in V	8,48	8,92	9,12	9,38	9,76	9,86	9,93	9,96		
I_L in mA	$I_L \text{ in mA}$ 15		9,1	6,3	2,95	1,75	1,2 0		99	
P in mW	127,	2 98,1	$2 \mid 82,99$	59,09	28,79	17,25	11,91	9,8	86	

3.2 Grafische Darstellung

Mit den gemessenen werten kann man das vorhin erstellte Diagramm um eine Stromkurve erweitern, sodass nun alle drei Kennlinien überlagert sind.

3.3 Grenzfälle der Leistung

blub blub, hier muss noch text hin

4 Erkenntnisse

blub blub, hier muss noch text hin