

Port C:

Le port C est un port d'usage général et bidirectionnel dont le sens de chaque ligne est programmé grâce au registre DDRC.

La lecture ou écriture des données de ou vers le port C fait par contre appel à deux registres : PORTC et PORTCL.

En mode Etendu et mode Test, les bus de données et d'adresse sont multiplexés sur ce port et le registre PORTC est traité en tant que case mémoire externe

Port C:

Le registre DDRC: (\$1007) Data Direction Register for Port C

0: Entrée

• 1: Sortie

Le registre PORTC: Port C Data

RESETIIIIIII\$1003PC7PC6PC5PC4PC3PC2PC1PC0Exp/testADDR7ADDR6ADDR5ADDR4ADDR3ADDR3ADDR2ADDR1ADDR0DATA7DATA6DATA5DATA4DATA3DATA2DATA1DATA1

[6]

Port C:

Le registre PORCL: Port C Latched

RESET I I I I I I I I I I I I I STANDOS PCL7 PCL6 PCL5 PCL4 PCL3 PCL2 PCL1 PCL0

Le registre PORTCL est utilisé lorsque le Port C fonctionne en mode Handshcke. Lorsqu'un front actif est détecté sur l'entrée STRA (strobe input), les données du Port C sont mémorisées dans ce registre.

Port D:

Le port D est un port d'entrées sorties 8 bits à usage général partagé avec les interfaces séries asynchrones (SCI) et synchrones (SPI).

Tant que ces interfaces ne sont utilisées, le sens de travail des lignes du port est programmé par les bits correspondants du registre DDRD .

La sortie de données se fait par écriture de registre PORTD et c'est dans ce même registre que l'on vient lire l'état des broches qui sont positionnées en entrées.

Port D:

Le registre DDRD: (\$1009) Data Direction Register for Port D

DDRD5 à DDRD0: définit le sens de transfert

0: Entrée

1: Sortie

DDRD7 à DDRD6: ne sont pas utilisés

Le registre PORTD: Port D Data

RESET	_	-	I	I	I	Ι	I	I
\$1008	0	0	PD5	PD4	PD3	PD2	PD1	PD0
	-	-	PD5	PD4	PD3	PD2	PD1	PD0
			/SS	SCK	MOSI	MISO	TX	RX

Port E:

Le port E est un port d'entrées 8 bits à usage général partagé avec le convertisseur analogique-numérique.

Le registre PORTE: Port E Data

RESET	I	I	I	I	I	I	I	I
\$100A	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0

[6]

Liaison série asynchrone: (Asynchronous Serial Communications Interface)

Cette interface permet au microcontrôleur d'échanger des données avec des circuits périphériques utilisant une liaison série asynchrone (ordinateurs, tables traçantes, modem, instruments de musique...).

Les circuits internes de la SCI permettent :

- des échanges asynchrones bidirectionnels en full duplex
- de choisir la vitesse de transmission
- de choisir le format de transmission
- de choisir le mode d'activation de la partie réception (classique ou réveil)
- de gérer les erreurs de transmission
- d'indiquer la fin de transmission

Liaison série asynchrone :

La liaison est assurée par deux broches RxD – Receive Data- (PD0) et TxD – Transmit Data- (PD1) du port D.

Après un RESET, la SCI est inhibée et le port D est configuré comme un port d'usage général.

- La SCI peut être activée en réception et/ou en émission (half ou full duplex).
- Lorsque la SCI est activée en réception, PD0 devient l'entrée de réception des données RXD.
- Lorsque la SCI est activée en émission, PD1 devient la sortie de transmission des données TXD.

[6]

Liaison série asynchrone : Registres associés

Le registre SCDR:

DECET

Ce registre, accessible en lecture - écriture, est un registre 8 bits dans lequel on vient écrire la donnée à transmettre ou dans lequel on vient lire la donnée reçue.

KESEI	_	_	_	_	_	_	_	_
\$102F	D7	D6	D5	D4	D3	D2	D1	D0

Lors d'une transmission, c'est le bit de poids faible $D\theta$ qui apparaît en premier sur la ligne après le bit de start.

[6]

Liaison série asynchrone : Registres associés

Le registre BAUD:

Le récepteur et l'émetteur travaillent à la même vitesse, dérivée de l'horloge interne du microcontrôleur.

Le registre 8 bits BAUD, accessible en lecture – écriture permet de choisir cette vitesse.

RESET	0	0	0	0	0	0	0	0
\$102B	0	0	SCP1	SCP1	0	SCR2	SCR1	SCR0

[6]

Liaison série asynchrone: Registres associés

Le registre BAUD: SCR2 SCR1 SCR0 SCP1 **SCP0** \$102B 0 0 Débit de transmission $D_{\rm M}$ =125 000 bauds 0 0 D_M =41 666 bauds 0 D_M =31 250 bauds 0 D_M =9 600 bauds 1 1

Liaison série asynchrone: Registres associés

Le registre BAUD : SCP1 SCP1 SCR2 SCR1 **SCR0** \$102B $D_{\rm M}$ =9 600 bauds Débit de transmission en bauds 9600 bauds $D=D_M/1$ 00 0 $D=D_M/2$ 4800 bauds 0 0 $D=D_M/4$ 2400 bauds 0 0 $D=D_{M}/8$ 0 1200 bauds $D=D_M/16$ 600 bauds 0 $D=D_M/32$ 300 bauds 0 $D=D_M/64$ 150 bauds 0 $D=D_M/128$ 75 bauds 1

[6]

Liaison série asynchrone : Registres associés

Le registre SCSR :

Ce registre 8 bits, accessible uniquement en lecture, permet de surveiller le bon déroulement des opérations de la SCI.

[6]

Liaison série asynchrone: Registres associés

\$102E TDRE TC RDRF IDLE OR NF FE 0 Indicateur de fin de transmission (Transmit Complete Bit) O Transmission en cours (Transmetteur occupé) 1 Transmission terminée (Transmetteur en attente) (RAZ par lecture du SCSR puis lecture du SCDR)

[6]

Liaison série asynchrone: Registres associés

Le registre SCSR : RDRF \$102E TC IDLE OR NF FE 0 Indicateur d'état du registre de réception de données (Receive Data Register Full Bit) Registre de données SCDR vide (Réception incomplète) Registre de données SCDR plein (Réception terminée) (RAZ par lecture du SCSR puis lecture du SCDR)

[6]

Liaison série asynchrone: Registres associés

\$102E TDRE TC RDRF IDLE OR NF FE 0

Indicateur de détection d'un état de veille (Idle-Line Detect Bit)

O Ligne RxD en activité

1 Ligne RxD en attente au niveau 1 (RAZ par lecture du SCSR puis lecture du SCDR)

[6]

Liaison série asynchrone: Registres associés

\$102E TDRE TC RDRF IDLE OR NF FE 0

Indicateur de dépassement (Overrun Error Bit)

O Pas de surcharge

1 Surcharge du registre de réception (RAZ par lecture du SCSR puis lecture du SCDR)

[6]

Liaison série asynchrone: Registres associés

[6]

Liaison série asynchrone: Registres associés

Liaison série asynchrone: Fonctionnement de l'interface

Fonctionnement en émission:

PSHX
Envoi LDX #SCSR
BRCLR 0,X \$80 Envoi
STAA SCDR
PULX
RTS

Liaison série asynchrone: Fonctionnement de l'interface

Fonctionnement en émission:

PSHX
Attente LDX #SCSR
BRCLR 0,X \$80 attente
LDAA SCDR
PULX
RTS

[6]

Liaison série asynchrone : Registres associés

le registre SCCR1:

Ce registre huit bits, accessible en lecture – écriture, permet de définir le format de transmission et la procédure de réveil de réception.

[6]

Liaison série asynchrone : Registres associés

le registre SCCR1 :

\$102C R8 T8 0 M WAKE 0 0 0

9 bits
R8 Réception sur 9 bits
T8 Emission sur 9 bits

[6]

Liaison série asynchrone: Registres associés

[6]

Liaison série asynchrone: Registres associés

Pr A. RAIHANI

[6]

Liaison série asynchrone : Registres associés

le registre SCCR2:

Ce registre 8 bits, accessible en lecture – écriture, permet de valider ou inhiber certaines fonctions de l'interface.

[6]

Liaison série asynchrone: Registres associés

```
le registre SCCR2:
$102D
            TIE
                   TCIE
                           RIE
                                   ILIE
                                            TE
                                                          RWU
                                                                   SBK
                                                    RE
                  Autorisation de l'interruption « transmission complète »
                  Interruption inhibées
             0
                  Interruption si TC = 1
             1
```


[6]

Liaison série asynchrone : Registres associés

```
le registre SCCR2:
                                                         RWU
$102D
            TIE
                   TCIE
                           RIE
                                  ILIE
                                           TE
                                                                  SBK
                                                   RE
                  Autorisation des interruptions en réception
                 Interruption inhibées
            0
                 Interruption si RDRF = 1
            1
```


[6]

Liaison série asynchrone : Registres associés

```
le registre SCCR2:
$102D
            TIE
                   TCIE
                            RIE
                                   ILIE
                                            TE
                                                           RWU
                                                                    SBK
                                                     RE
                  Autorisation d'interruption « ligne en attente »
                  Interruption inhibée
             0
                  Interruption dès que la ligne est à « MARK » (10 ou 11 bits à1)
             1
```


[6]

Liaison série asynchrone: Registres associés

le registre SCCR2:

\$102D	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
Activation	de la SC	I						
SCI désact	tivée (PD	0 et PD1 E/S	0	0				
Half duple	ex en réc	eption (P	D1 usage g	général)	0	1		
Half duplex en émission (PD0 usage général)						0		
Full duple	X		1	1				

[6]

Liaison série asynchrone: Registres associés

le registre SCCR2:

\$1020	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
	UART Classique							
	Mode réveil	l					1	

[6]

Liaison série asynchrone: Registres associés

le registre SCCR2:

\$102D	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	
	Emission d'un BREAK								
	Opération normale en réception								
	Er	nission e	n contin	u d'un B	REAK (1	0 ou 11 k	oits à 1)	1	

[6]

Liaison série asynchrone : Registres associés

Le registre SPCR:

La liaison série asynchrone, tout comme la liaison série synchrone, peut être configurée pour disposer de sorties de type « drain ouvert ». Le choix se fait en positionnant le bit DWOM du registre SPCR et influence le comportement de l'ensemble du port D.

[6]

Application:

- 1. Ecrire le sous-programme "Init_SCI" pour la configuration suivante: Vitesse de 1200 Bauds, Données :8 bits, 1 bit de stop
- 1. Ecrire le SP pour émettre un caractère « Out_Char »
- Ecrire le SP pour recevoir un caractère « In_Char »
- 3. Ecrire le programme pour recevoir une chaine de « STRLEN » caractères

RAM EQU \$0000; Start of Ram STK EQU \$0041; User Stack RAM

PROG EQU \$0100; Program space in RAM EEPROM EQU \$B600; Start of EEPROM REGS EQU \$1000; Internal Register Block

BAUD EQU \$102B; Baud-rate register

DDRD EQU \$1009; Port D Data Direction register

SCCR1 EQU \$102C; SCI Control Register-1 SCCR2 EQU \$102D; SCI Control Register-2

SCSR EQU \$102E; SCI Status Register SCDR EQU \$102F; SCI Data Register
