深度学习 + 大数据 TensorFlow on Yarn

李远策 2017年4月17日

促进软件开发领域知识与创新的传播

关注InfoQ官方信息

及时获取QCon软件开发者 大会演讲视频信息

[深圳站]

2017年7月7-8日 深圳·华侨城洲际酒店

咨询热线: 010-89880682

全球软件开发大会 [上海站]

2017年10月19-21日

咨询热线: 010-64738142

内容大纲

- ➤ TensorFlow使用现状及痛点
- ➤ TensorFlow on Yarn设计
- ➤ TensorFlow on Yarn技术细节揭秘
- ▶ 深度学习平台演进及SparkFlow介绍

背景

坐标: 360-系统部-大数据团队

专业: Yarn、Spark、MR、HDFS …

挑战: 深度学习空前火爆, 各种深度学习框架层出不穷, 业务部

门拥抱新兴技术。平台怎么应对?

机遇: Maybe 深度学习 + 大数据

场景 (1)

场景 (2)

分布式版本ClusterSpec定义:

```
tf.train.ClusterSpec({
    "worker": [
          "worker0.example.com:2222",
          "worker1.example.com:2222",
          "worker2.example.com:2222"
    ],
    "ps": [
          "ps0.example.com:2222",
          "ps1.example.com:2222"
    ]})
```

带来的问题:

- •手动指定机器很繁琐
- •端口冲突
- •机器负载不均

- 手动分发训练样本
- 手动拉取训练模型

总结:

- 多人多服务器使用混乱, 计算资源如何划分?
- 没有GPUs集群资源管理和调度(内存、CPU、GPU、端口),集群资源负载不均
- 训练数据手动分发,训练模型手动保存
- 进程遗留问题, 需要手动杀死
- 缺乏作业统一管理, 不便对作业运行状态跟踪
- 日志查看不方便

Yarn能解决什么问题:

- 集群资源的管理(目前支持CPU、内存,需要扩展GPU资源管理)
- 作业的统一管理、状态跟踪
- 资源组 (Schedule Pool) 的划分
- 作业进程的资源隔离

基本目标:

- 同时支持单机和分布式TensorFlow程序
- 支持GPU资源管理和调度
- 不再需要手动配置CluserSpec信息, 仅需要设置work和ps 的数量
- 训练数据和训练模型基于HDFS统一存储
- 作业训练结束自动回收work、ps和Tensorboard进程
- 训练效果和性能没有损失

扩展目标:

- 支持GPU亲和性调度(提高通信效率)
- · Web的方式查看作业的运行状况和作业日志
- 在线查看Tensorboard
- HistoryServer支持查看结束作业的日志和状态信息
- 控制已有的TensorFlow作业的迁移成本(最多改三行代码)

提交脚本示例 (分布式版本):

```
tensorflow-submit \
 --app-name "tfdemo" \ #作业名
 --files tfTestDemo.py,dataDeal.py \ #依赖的本地文件
 --tfcmd "python tfTestDemo.py --training_epochs=20" \ #TF运行指
 --input /home/xitong/tf-test/data \ #训练样本HDFS路径
 --output /home/xitong/tf-test/outputTest \ #保存模型的HDFS路径
 --worker-num 3 \ #work数量
 --worker-memory 8192M \ #每个worker需要的内存
 --worker-cores 1 \ #每个worker需要的CPU核数
 --worker-gpus 2 \ #每个worker需要的GPU卡数
 --ps-num 2 \ #ps数量
 --ps-memory 1024M \ #每个ps需要的内存
 --ps-cores 1\ #每个ps需要的CPU核数
 --priority VERY_LOW \ #作业优先级
 --board-enable true \#是否开启Tensorboard服务
 --conf tf.file.download.thread.nums=10#其他参数设置
```


Yarn首页作业信息:

TensorFlow作业Tensorboard页面:

TensorFlow作业history页面:

All Containers:

Logged in as: dr.who

Tensorflow Application application_1491884189069_0031

	Container ID		Container Host	GPU Device ID	Container Role	Container Status	
<u>c</u>	container_e05_1491884189069_0031_01_000002		hpcgpu19.ai.zzzc.qihoo.net	_	ps	SUCCEEDED	
<u>c</u>	container_e05_1491884189069_0031_01_000003		hpcgpu13.ai.zzzc.qihoo.net	_	ps	SUCCEEDED	
<u>c</u>	container_e05_1491884189069_0031_01_000004		hpcgpu19.ai.zzzc.qihoo.net	0,1,2	worker	SUCCEEDED	
<u>c</u>	container_e05_1491884189069_0031_01_000005		hpcgpu13.ai.zzzc.qihoo.net	0,1,2	worker	SUCCEEDED	
<u>c</u>	container_e05_1491884189069_0031_01_000006		hpcgpu10.ai.zzzc.qihoo.net	0,1,2	worker	SUCCEEDED	
L							
View TensorBoard:							
		Tensorboard Info tensorboardlogdir=hdfs://m01.ai.zzzc.qihoo.net:9000/home/yarn/tensorflow/eventLog/application_1491884189069_0031					
Saved Model							
Saved timeStamp				Saved path			
2017–04–11 15:47:51			/home/liyuance/outputdemo/interResult/interResult_2017_04_11_15_47_51				

* 查看历史日志

Event log上传到了HDFS

实现Yarn Application的标准流程:

集成TensorFlow到Yarn面临的特定问题:

- 如何自组织ClusterSpec信息
- 训练数据的划分
- 如何启动Tensorboard服务
- 如何降低迁移成本
- 已分配的物理GPU设备号到用户态GPU设备号的映射

自动构建ClusterSpec的流程图:

训练数据的划分:

启动Tensorboard服务:

降低已有tensorflow程序迁移成本:

(1) 单机模式

不需要修改代码

(2) 分布式模式(最多修改三行代码)

```
cluster = tf.train.ClusterSpec(json.loads(os.environ["TF_CLUSTER_DEF"]))
job_name = os.environ["TF_ROLE"]
task_index = int(os.environ["TF_INDEX"])
```


已分配的物理GPU设备号到用户态GPU设备号的映射:

TensorFlow on Yarn系统架构图:

Yarn支持CPU调度 vs GPU调度:

CPU	GPU
每个NodeManager配置可用CPU核心 数量	每个NodeManager配置可用GPU卡数量
ResourceManager统计计数并按数量 分配	ResourceManager统计计数并按数量 分配
作业必须占用CPU资源	作业可以不需要GPU资源
系统自动分配物理CPU核心	需要知道具体GPU卡号,代码分配 计算任务到指定GPU设备
设备亲和性影响较小	设备亲和性影响较大

Yarn支持GPU调度ResourceManager端实现:

扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现, 增加:

public abstract int getGpuCores();

public abstract void setGpuCores(int gCores);

最终在ResourceManager端需要完成:

- 1、对NodeManager GPU卡数量的统计管理
- 2、调度器统计管理每个Pool的GPU设备数的分配情况

具体可以参考下面Patch的实现思路:

https://issues.apache.org/jira/browse/YARN-5517

Yarn支持GPU调度NodeManager端实现:

NodeManager yarn-site.xml中添加配置:

NodeManager上可用的GPU卡数是: 2+2=4

```
<!-- K80 -->
< name>yarn.nodemanager.resource.gpu-cores
<value>((2,2),(2,2))</value>
```

NodeManager上可用的GPU卡数是: 2+2+2+2=8

NodeManager端GPU亲和性调度:

-深度优先

深度学习平台演进

SparkFlow介绍

SparkFlow: 360系统部大数据团队设计的TensorFlow on Spark解决方案

- Coordinator负责协调生成ClusterSpec(扩展的TensorFlow gRPC server)
- Worker通过读取RDD获取训练样本
- RDD的数据cache到内存或者磁盘供多次迭代训练使用

SparkFlow介绍

SparkFlow与TensorFlow on Yarn对比:

SparkFlow	TensorFlow on Yarn
通过RDD读取训练样本数据,关心 文件存储格式	直接读取HDFS数据,不关心文件存储格式
Worker和PS的资源同构	Worker和PS可以各自配置资源
不支持GPU调度	支持GPU调度
迁移成本较高	迁移成本低
嵌入到Spark计算框架里,方便打通 数据流	实现了一种新的Yarn Application,可以与TensorFlow灵活整合和功能定制
代码量几百行	代码量几千行

About Me

谢谢!

