15-213

"The course that gives CMU its Zip!"

Integer Representations Jan. 25, 2000

Topics

- Numeric Encodings
- Unsigned & Two's complement
- Programming Implications
- C promotion rules

Notation

W: Number of Bits in "Word"

-bit Alpha	64	32	16	∞
Typical 32-bit	32	32	16	∞
C Data Type	long int	int	short	char

Integers

- Lower case
- E.g., x, y, z

Bit Vectors

- Upper Case
- E.g., X, Y, Z
- Write individual bits as integers with value 0 or 1
- E.g., $X = X_{w-1}, X_{w-2}, \dots X_0$
- -Most significant bit on left

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

C short 2 bytes long

	Decimal	Hex	Binary	ary
×	15213	3B 6D	00111011	01101101
X	-15213	C4 93	11000100	10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
- -0 for nonnegative
- -1 for negative

Encoding Example (Cont.)

15213: 00111011 01101101 -15213: 11000100 10010011 II Ш X

																	S 213 S'00
3	_	7	0	0	16	0	0	128	0	0	1024	0	0	0	16384	-32768	-15213 CS
-15213	\vdash	\vdash	0	0	0	\vdash	1										
	_	0	4	<u></u>	0	32	64	0	256	512	0	2048	4096	8192	0	0	1 5213 -4-
15213	\vdash	0	\vdash	\vdash	\vdash	0	0										
Weight	_	7	4	<u></u>	16	32	64	128	256	512	1024	2048	4096	8192	16384	-32768	Sum

class03.ppt

Other Encoding Schemes

Other less common encodings

- One's complement: Invert bits for negative numbers
- Sign magnitude: Invert sign bit for negative numbers

short int

15213	Unsigned	00111011	01101101
-15213	Two's complement	11000100	10010011
-15213	-15213 One's complement	11000100	10010010
-15213	Sign magnitude	10111011	01101101

ISO C does not define what encoding machines use for signed integers, but 95% (or more) use two's complement.

For truly portable code, don't count on it.

class03.ppt

Unsigned Values

•
$$UMin = 0$$

000...0

•
$$UMax = 2^{w} - 1$$

111...1

Two's Complement Values

•
$$TMin = -2^{w-1}$$

100...0

•
$$TMax = 2^{w-1} - 1$$

011...1

Other Values

• Minus 1

111...1

Values for W = 16

	Decimal	Hex	×	Binary	ary
UMax	9899	дд	단단	11111111	11111111
TMax	32767	ЗL	FF	01111111	11111111
TMin	-32768	08	80 00	10000000	00000000
-1	L-	표 표	FF	11111111	11111111
0	0	00 00	00	00000000	00000000

Values for Different Word Sizes

			M	
	8	16	32	64
	255	65,535	4,294,967,295	18,446,744,073,709,551,615
٠.	127	32,767	2,147,483,647	9,223,372,036,854,775,807
- 1	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- |TMin| = TMax + 1
- Asymmetric range
- $\bullet UMax = 2 * TMax + 1$

C Programming

- #include limits.h>
- Harbison and Steele, 5.1
- Declares constants, e.g.,
- ULONG_MAX
- LONG_MAX
- LONG_MIN
- Values platform-specific

Unsigned & Signed Numeric Values

B2T(X)	0	1	2	3	4	2	9	7	8–	2-	9–	9-	4-	-3	-2	1
B2U(X)	0	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15
×	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Example Values

• W = **4**

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
- -Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
- Bit pattern for two's comp integer

class03.ppt

CS 213 S'00

| | | |

Casting Signed to Unsigned

C Allows Conversions from Signed to Unsigned

```
unsigned short int uy = (unsigned short) y;
                         unsigned short int ux = (unsigned short) x;
                                                 -15213;
15213;
                                                   II
    II
                                                  short int
short int
```

Resulting Value

- No change in bit representation
- Nonnegative values unchanged

$$-ux = 15213$$

Negative values change into (large) positive values

$$-uy = 50323$$

Relation Between 2's Comp. & Unsigned

Maintain Same Bit Pattern

 $+2^{w-1} - -2^{w-1} = 2*2^{w-1} = 2^w$

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

class03.ppt

Relation Between Signed & Unsigned

Weight	-15213	13	50323	23
_	\leftarrow	1	\vdash	1
2	П	2	П	2
4	0	0	0	0
00	0	0	0	0
16	Н	16	П	16
32	0	0	0	0
64	0	0	0	0
128	Н	128	Н	128
256	0	0	0	0
512	0	0	0	0
1024	Н	1024	\vdash	1024
2048	0	0	0	0
4096	0	0	0	0
8192	0	0	0	0
16384	Н	16384		16384
32768	Т	-32768	1	32768
Sum		-15213		50323

uy = y + 2 * 32768

= y + 65536

class03.ppt

111

CS 213 S'00

From Two's Complement to Unsigned

• T2U(x) = B2U(T2B(x))

$$= x + x_{w-1} 2^w$$

What you get in C:

unsigned t2u(int x)
{
 return (unsigned) x;

^_

+ 16

			7	<u> </u>						\dashv	$\sum_{0111}^{\mathbf{L}} 2^{w-1}$	
					+	7						0110
											0011 0101	0100 0110
											0001 00	0010
T2U(x)	2w				 	$\frac{1}{1}$				0 -	1 0 1111 0	0000
H	2				- 5w-1	+					1101	1100 1110
					\dashv	\dashv					11	1100
						\dashv					100	1010
					V						-2^{w-1}	1000

class03.ppt

CS 213 S'00

- 12 -

From Unsigned to Two's Complement

U2T(x)= B2T(U2B(x))U2T(x)

 $= x - x_{w-1} 2^w$

- 13 -

CS 213 S'00

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32

Evaluation	unsigned	signed	unsigned	signed	unsigned	signed	unsigned	unsigned	signed
Relation		V	^	^	V	٨	٨	V	× 18
Constant ₂ R	00	0	0.0	-2147483648	-2147483648	- 2	- 2	2147483648U	(int) 2147483648U
Sonstant, (0	<u>,</u>	<u>,</u>	2147483647	2147483647U	1-	(unsigned) -1	2147483647	2147483647

class03.ppt

Explanation of Casting Surprises

2's Comp. → Unsigned

- **Ordering Inversion**
- Negative → Big Positive

class03.ppt

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

class03.ppt

CS 213 S'00

- 17 -

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

	Decimal		Ĭ	Hex			Bina	ary	
×	15213			3B	Ф			00111011	01101101
ix	15213 00	00	00	C4	92	00000000	00000000	00111011	01101101
Y	-15213			C4	93			11000100	10010011
iy	-15213	년년	된된	C4	93	11111111	11111111	11000100	10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

CS 213 S'00

Justification For Sign Extension

Prove Correctness by Induction on k

Induction Step: extending by single bit maintains value

- Key observation:
- $-2^{w-1} = -2^w + 2^{w-1}$
- Look at weight of upper bits:

Casting Order Dependencies

```
01101101
                                                                                                                                                                                                                                                       10010011
                                                                                                                                                                                                                                                                       10010011
                                                                                                                                                                                                                            10010011
                             short)
                                           short)
                                                                                                                                  iuy
                                                                                                                                                                                                                            00000000 11000100
                                                                                                                                                                                                                                                        11000100
                                                                                                                                                                                                                                                                       11000100
                                                                                                                                                                                     Vin |
                                                                                                                                                                 (unsigned)
                                                                                                                                                                                                              00000000 00111011
                                                                                                                                                                                                                                         00111011
                                                                                                             (unsigned)
                            (unsigned)(unsigned
                                          (unsigned)(unsigned
                                                        (unsigned) (int) x;
                                                                      (int) y;
                                                                                                                                                                                                                                          00000000
                                                                                                                                                                                                                                                                       11111111
                                                                                                                                                                                         unsigned
                                                                                                                                    Fill 0's
                                                                        (nusigned)
                                                                                                             (unsigned short)
              -15213;
                                                                                                                                                                                                              00000000
                                                                                                                                                                                                                            00000000
                                                                                                                                                                                                                                          00000000
                                                                                                                                                                                                                                                        11111111
                                                                                                                                                                                                                                                                      11111111
                                                                                                                                                                (int)
                                                                                                                                                                                       Sign Extend
                                                          II
  Ш
                                                                                                                                     unsigned
                            unsigned iux
                                                        unsigned uix
                                          unsigned iuy
                                                                       unsigned uiy
                                                                                     unsigned uuy
short int x
              short int y
                                                                                                                                                                                                                                          15213:
                                                                                                                                                                                                                                                                       4294952083:
                                                                                                                                                                                                                                                        4294952083
                                                                                                                                                                                                                                                                         Ш
                                                                                                                                                                                                                            iuy
                                                                                                                                                                                                                                                                         uuy
```

class03.ppt

20 –

CS 213 S'00

Don't Use Just Because Number is Never Negative

- C compiler on Alpha generates less efficient code
- Comparable code on Intel/Linux

```
unsigned i;
for (i = 1; i < cnt; i++)
a[i] += a[i-1];
```

Easy to make mistakes

```
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic
- Other esoteric stuff

Do Use When Need Extra Bit's Worth of Range

Working right up to limit of word size