ESTADÍSTICA MULTIVARIANTE

UGR, GRADO EN MATEMÁTICAS Curso Académico 2023-2024

José Miguel Angulo Ibáñez (jmangulo@ugr.es)

Departamento de Estadística e Investigación Operativa Universidad de Granada

▶ TEMA 2. Inferencia en la Distribución Normal Multivariante

Estimadores de máxima verosimilitud de μ y Σ en una DNM (II): Propiedades. Teorema de Zehna. Complemento: Distribución asintótica de $\bar{\mathbf{X}}$ y A para poblaciones no necesariamente normales

Propiedades de los EMV $\hat{\mu}$ y $\hat{\Sigma}$

En este apartado se trata, a continuación, sobre el posible cumplimiento de algunas propiedades importantes por los EMV $\hat{\mu} = \bar{\mathbf{X}}$ y $\hat{\Sigma} = S_N$. Concretamente:

- INSESGADEZ
- CONSISTENCIA (fuerte, débil)
- EFICIENCIA

Propiedades de los EMV $\hat{\mu}$ y $\hat{\Sigma}$: Sobre INSESGADEZ

DEFINICIÓN: Sea $\{\mathbf{X}_{\alpha}: \alpha=1,\ldots,N\}$ una muestra aleatoria simple de una distribución dependiente de un parámetro (en general, multidimensional), $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_k)'\in\Theta\subseteq\mathbb{R}^k$. Un estimador $\hat{\boldsymbol{\theta}}$ (*i. e.*, función medible de la muestra, $\hat{\boldsymbol{\theta}}=\mathbf{T}(\mathbf{X})$) del parámetro $\boldsymbol{\theta}$ se dice *insesgado* si

$$E_{m{ heta}}[\hat{m{ heta}}-m{ heta}]=m{0}, \quad orall m{ heta}\in\Theta \qquad ext{(es decir, } E_{m{ heta}}[\hat{m{ heta}}]=m{ heta}, \quad orall m{ heta}\in\Theta)$$

Sea
$$\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$$
 $(\Sigma > 0)$

VECTOR DE MEDIAS MUESTRAL:

$$\hat{m{\mu}} := ar{f{X}}$$
 es un estimador insesgado de $m{\mu}$ (\Box Probar)

(En realidad, en este caso no hace falta suponer normalidad, solo la existencia de μ)

Propiedades de los EMV $\hat{\mu}$ y $\hat{\Sigma}$: Sobre INSESGADEZ (cont.)

MATRIZ DE COVARIANZAS MUESTRAL:

$$\hat{\Sigma} := S_N$$
 no es un estimador insesgado de Σ (\square Probar)

(Tener en cuenta, por el teorema de Fisher, que $A \stackrel{d}{=} \sum_{\alpha=1}^{N-1} \mathbf{Z}_{\alpha} \mathbf{Z}'_{\alpha}$, con $\mathbf{Z}_{\alpha} \sim N_p(\mathbf{0}, \Sigma), \alpha = 1, \ldots, N-1$, independientes)

Se tiene, en este caso, que

$$S_{N-1} = \frac{N}{N-1} S_N$$
 sí es un estimador insesgado de Σ

Propiedades de los EMV $\hat{\mu}$ y $\hat{\Sigma}$: Sobre CONSISTENCIA

DEFINICIÓN: Sea $\{\mathbf{X}_{\alpha}: \alpha=1,\ldots,N\}$ una muestra aleatoria simple (de tamaño N, considerado variable) de una distribución dependiente de un parámetro (en general, multidimensional), $\boldsymbol{\theta}=(\theta_1,\ldots,\theta_k)'\in\Theta\subseteq\mathbb{R}^k$. Un estimador $\hat{\boldsymbol{\theta}}_N$ (i. e., función medible de la muestra, $\hat{\boldsymbol{\theta}}_N=\mathbf{T}_N(\mathsf{X})$) del parámetro $\boldsymbol{\theta}$ se dice

(a) débilmente consistente si $\hat{\theta}_N$ converge en probabilidad a θ , es decir,

$$\forall \epsilon > 0, \quad \lim_{N \to \infty} P_{\theta} \left[\| \hat{\boldsymbol{\theta}}_N - \boldsymbol{\theta} \| < \epsilon \right] = 1$$

(b) fuertemente consistente si $\hat{\theta}_N$ converge casi seguramente a θ , es decir,

$$P_{\boldsymbol{\theta}}\left[\lim_{N\to\infty}\hat{\boldsymbol{\theta}}_N=\boldsymbol{\theta}\right]=1$$

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ $(\Sigma > 0)$. Se demuestra que

 $\hat{\mu}:=\bar{\mathbf{X}}$ y $\hat{\Sigma}:=S_N$ son estimadores **fuertemente** consistentes de μ y Σ , respectivamente

(En el caso de $\hat{\mu} := \bar{\mathbf{X}}$, no se requiere normalidad. S_{N-1} también es un estimador fuertemente consistente de Σ) [Se omite la demostración]

Propiedades de los EMV $\hat{\mu}$ y $\hat{\Sigma}$: Sobre EFICIENCIA

(Para estimadores insesgados)

DEFINICIÓN: Sea $\mathbf{T}=(T_1,\dots,T_k)'$ un estimador insesgado de un parámetro (en general, multidimensional) $\boldsymbol{\theta}=(\theta_1,\dots,\theta_k)'\in\overline{\Theta}$, siendo $\Theta=\mathbb{R}^k$ o un 'rectángulo' en \mathbb{R}^k . Se dice que \mathbf{T} es *eficiente* para $\boldsymbol{\theta}=(\theta_1,\dots,\theta_k)'$ si, para cualquier otro estimador insesgado \mathbf{U} de $\boldsymbol{\theta}$, se verifica que la diferencia de matrices de covarianzas $\overline{\mathrm{Cov}_{\boldsymbol{\theta}}(\mathbf{U})}-\mathrm{Cov}_{\boldsymbol{\theta}}(\mathbf{T})$, para todo $\boldsymbol{\theta}\in\Theta$, es una matriz definida no negativa [se suele denotar $\mathrm{Cov}_{\boldsymbol{\theta}}(\mathbf{U})\geq\mathrm{Cov}_{\boldsymbol{\theta}}(\mathbf{T})$]

Sea $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ $(\boldsymbol{\Sigma} > 0)$. Se demuestra que:

- $lackbox{ar{X}}$ es un estimador eficiente de μ en el espacio \mathbb{R}^p
- S_{N-1} es un estimador eficiente de Σ en el espacio de matrices simétricas definidas positivas de dimensión $p \times p$

Teorema de Zehna: INVARIANCIA de los estimadores MV

TEOREMA (Zehna, 1966): Sea $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ una familia de distribuciones de probabilidad sobre el espacio $(\mathbb{R}^p, \mathcal{B}^p)$. Sea $g: \Theta \to \Lambda$ una función arbitraria dada. Si $\hat{\theta}$ es un estimador máximo-verosímil de θ , entonces $g(\hat{\theta})$ es un estimador máximo-verosímil de $g(\theta)$

[OBSERVACIÓN: Este teorema hace uso del concepto de 'función de verosimilitud *inducida*' por g: Para cada $\lambda \in g(\Theta) \subseteq \Lambda$, se define

$$M(\lambda) = \sup_{\theta \in \Theta_{\lambda}} L(\theta), \qquad \text{con } \Theta_{\lambda} = \{\theta \in \Theta : g(\theta) = \lambda\}$$

Se entiende entonces que ' $g(\hat{\theta})$ es un EMV de $g(\theta)$ ' en el sentido de que $g(\hat{\theta})$ es un máximo para M]

En el contexto de la inferencia sobre la DNM, se tiene que para distintos coeficientes que dependen funcionalmente de μ y Σ (por ejemplo, coeficientes de correlación, regresión, etc.) los correspondientes estimadores máximo-verosímiles se obtienen mediante sustitución de μ y Σ por $\bar{\mathbf{X}}$ y S_N , respectivamente, en las expresiones que definen dichos coeficientes

J.M. Angulo

[Complemento] Distribuciones asintóticas de $\hat{\mu}$ y $\hat{\Sigma}$, con distribución de referencia no necesariamente normal

• MOTIVACIÓN (referida al vector de medias muestral):

Recordemos que, al enunciar y probar el teorema de Fisher, se ha obtenido que para una muestra aleatoria simple $\mathbf{X}_1,\ldots,\mathbf{X}_N$ de una distribución $N_p(\boldsymbol{\mu},\Sigma)$ se tiene que

$$ar{\mathbf{X}} \sim N_p\left(oldsymbol{\mu}, rac{\Sigma}{N}
ight);$$

es decir, normalizando en media y tamaño muestral,

$$N^{\frac{1}{2}}(\bar{\mathbf{X}}-\boldsymbol{\mu})=N^{-\frac{1}{2}}\sum_{\alpha=1}^{N}(\mathbf{X}_{\alpha}-\boldsymbol{\mu})\sim N_{p}(\mathbf{0},\Sigma)$$

(la distribución límite ya no depende de N).

ightharpoonup ¿Qué puede afirmarse, al menos como aproximación límite (para $N \to \infty$), cuando la distribución de origen no es necesariamente una DNM?

[Complemento] Distribuciones asintóticas de $\hat{\mu}$ y $\hat{\Sigma}$, con distribución de referencia no necesariamente normal (cont.)

Distribución asintótica del vector de medias muestral, X

RESULTADO: Sea $\mathbf{X}_1,\dots,\mathbf{X}_N,\dots$ una sucesión de vectores aleatorios p-dimensionales independientes e idénticamente distribuidos, con <u>vector de medias</u> $\boldsymbol{\mu}$ y <u>matriz de covarianzas</u> Σ (i. e., $\mathbf{X}_{\alpha} \sim (\boldsymbol{\mu}, \Sigma)$, $\alpha = 1,\dots,N,\dots$). Sea $\bar{\mathbf{X}}_N = \frac{1}{N} \sum_{\alpha=1}^N \mathbf{X}_{\alpha}$, $\forall N \geq 1$. Entonces, cuando $N \to \infty$, se tiene la distribución asintótica

$$N^{\frac{1}{2}}(\bar{\mathbf{X}}_N - \boldsymbol{\mu}) = N^{-\frac{1}{2}} \sum_{\alpha=1}^N (\mathbf{X}_\alpha - \boldsymbol{\mu}) \underset{N \to \infty}{\sim} N_p(\mathbf{0}, \Sigma)$$

(Se trata de una versión del Teorema Central del Límite, para vectores i.i.d. $\sim (\mu, \Sigma)$)

[Complemento] Distribuciones asintóticas de $\hat{\mu}$ y $\hat{\Sigma}$, con distribución de referencia no necesariamente normal (cont.)

Distribución asintótica de la matriz de dispersiones muestral, A

RESULTADO: Sea $\mathbf{X}_1,\ldots,\mathbf{X}_N,\ldots$ una sucesión de vectores aleatorios p-dimensionales independientes e idénticamente distribuidos, con vector de medias $\boldsymbol{\mu}$ y matriz de covarianzas Σ (i. e., $\mathbf{X}_{\alpha} \sim (\boldsymbol{\mu}, \Sigma)$, $\alpha = 1, \ldots, N, \ldots$), y con momentos de orden cuatro finitos. Sean $\bar{\mathbf{X}}_N = \frac{1}{N} \sum_{\alpha=1}^N \mathbf{X}_{\alpha}$ y $A_N = \sum_{\alpha=1}^N (\mathbf{X}_{\alpha} - \bar{\mathbf{X}}_N)(\mathbf{X}_{\alpha} - \bar{\mathbf{X}}_N)'$, $\forall N \geq 1$. Entonces, cuando $N \to \infty$, se tiene la distribución asintótica

$$N^{-\frac{1}{2}}(A_N-N\Sigma) \underset{N\to\infty}{\sim} N_{p^2}(\mathbf{0},V)$$

(en el sentido de que $N^{-\frac{1}{2}}(\operatorname{Vec}(A_N) - N\operatorname{Vec}(\Sigma)) \underset{N \to \infty}{\sim} N_{p^2}(\mathbf{0}, V)$), con $V = \operatorname{Cov}(\operatorname{Vec}((\mathbf{X}_{\alpha} - \boldsymbol{\mu})(\mathbf{X}_{\alpha} - \boldsymbol{\mu})'))$

(OBSERVACIÓN: La matriz V será necesariamente singular, por lo que la distribución límite se refiere al caso general de la DNM)