Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2019

Contents

Groups

Generated Subgroups Cyclic Groups Lagrange's Theorem Morphisms

Congruency

Congruency
Cayley Table
Bézout's Lemma
Linear Diophantine Equations

Generated Subgroups (P184)

Definition

Let (G, \cdot) be a group and let $A \subseteq G$. We define the subgroup generated by A, denoted $\langle A \rangle_G$, to be the \subseteq -least $H \subseteq G$ such that $A \cup \{e\} \subseteq H$ and for all $x, y \in H, x \cdot y^{-1} \in H$.

- $ightharpoonup \langle A \rangle_G$ is a recursively defined set.
- ▶ The closure conditions (constructors) ensure that $\langle A \rangle_G \leq G$.
- ▶ Moreover, if $H \leq G$ with $A \subseteq H$, then $\langle A \rangle_G \subseteq H$ and so $\langle A \rangle_G \leq H$.
- ▶ If $A \subseteq G$ is finite with $A = \{a_1, \ldots, a_n\}$, then we will often write $\langle a_1, \ldots, a_n \rangle_G$ instead of $\langle A \rangle_G$.
- ▶ We will often write $\langle A \rangle$ or $\langle a_1, \ldots, a_n \rangle$ instead of $\langle A \rangle_G$ and $\langle a_1, \ldots, a_n \rangle_G$.

Examples for Generated Subgroups (P185-P186)

e.g.

- $ightharpoonup \langle (01)(23), (0123) \rangle_{S_4} = D_4 \leq S_4.$
- ▶ Consider $(\mathbb{Z}, +)$,

$$\langle 2 \rangle = 2 \mathbb{Z} \leq \mathbb{Z}$$

▶ Consider $(\mathbb{R} \setminus \{0\}, \cdot)$,

$$\langle \mathbb{Z} \backslash \{0\} \rangle = \mathbb{Q} \backslash \{0\} \leq \mathbb{R}$$

▶ Consider S_n . If $A = \{ \sigma \in S_n | \sigma \text{ is a 2 -cycle } \}$, then $\langle A \rangle = S_n$.

The Cyclic Groups

Definitions (P187)

- 1. cyclic group of order $n \ C_n$: $\langle a \rangle$ where $a \in G$ has order n.
- 2. cyclic group of infinite order C_{∞} : $\langle b \rangle$ where $b \in G$ has infinite order.

Lemma

Let (G, \cdot) be a group. If $a \in G$, then

$$\langle a \rangle = \{a^m | m \in \mathbb{Z}\}$$

(Where, for all
$$k \in \mathbb{N}$$
, $a^{-k} = (a^{-1})^k$) (P188)

Proof.

The Cyclic Groups

Lemma

Let $n \in \mathbb{N} \setminus \{0\}$ or $n = \infty$. The group C_n is abelian. (P187)

Proof.

P188

Lemma

Let (G, \cdot) be a group and let $n \in \mathbb{N} \setminus \{0\}$. If $a \in G$ has order n, then $|\langle a \rangle| = n$.

Proof.

Cyclic Groups in the Symmetric Group (P190)

Lemma

Let $n \in \mathbb{N} \setminus \{0\}$ and let $m \le n$. Let $k_1, \ldots, k_m \in [n]$ be distinct. The m-cycle $(k_1 \cdots k_m)$ has order m in S_n .

Proof.

P190

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. For all $0 < k \le n, C_k \le S_n$.

Theorem (Refinement of Lagrange's Theorem)

If (G, \cdot) is a finite group and $x \in G$, then the order of x divides the order of G.

Proof.

Group of order p (P191)

Theorem

Let p be prime. Let (G, \cdot) be a finite group of order p. Then (G, \cdot) is the the group C_p .

Proof.

P191

Corollary

If (G, \cdot) is a finite group with order p, then the only subgroups of G are the trivial group and G.

An Important Consequence of Lagrange's Theorem (P192)

Theorem

Let (G, \cdot) be a group and let $g \in G$ have order n. If there exists $m, k \in \mathbb{N} \setminus \{0\}$ with n = mk, then the order of g^m is k.

Proof.

P192

Theorem

If (G, \cdot) is a finite group with order n, then for all $g \in G, g^n = e$.

Proof.

Generated Subgroups Cyclic Groups Lagrange's Theorem Morphisms Slide 10 文大家面很学院

Examples for Lagrange's Theorem (P193)

Theorem (Lagrange's Theorem)

Let (G,\cdot) be a finite group. If $H\leq G$, then the order of H divides the order of G.

Converse to Lagrange's Theorem

Let (G, \cdot) be a finite group. If a natural number k divides the order of G, then there exists $g \in G$ with order k.

e.g.

Let A_4 be the group of all even bijections in S_4 . There is no $\sigma \in A_4$ with order 6. (This example indicates there is no converse to Lagrange's Theorem.)

Theorem

If (G, \cdot) is a group of order 6, then there exists $g \in G$ with order 2.

Proof.

Isomorphisms & Homomorphisms (P195)

Definitions

- 1. (group) homomorphism: (G, \cdot) and (K, \star) are groups. $f: G \to K$ is a (group) homomorphism if $\forall a, b \in G, f(a \cdot b) = f(a) \star f(b)$.
- 2. (group) isomorphism: based on f is (group) homomorphism, f is a bijection.
- 3. isomorphic: $G \cong K$ $((G, \cdot) \cong (K, \star))$ if there exists an isomorphism between (G, \cdot) and (K, \star) .

Theorem

Let (G,\cdot) be a group. Let $g,h\in G$ both have order n. Then $\langle g\rangle\cong\langle h\rangle$. (P196)

Examples for Morphisms (P196-P197)

e.g.

- Let (G,\cdot) be any group with $G \neq \{e\}$ and let $H = \{e\}$, i.e. H is the trivial subgroup of (G,\cdot) . The function $f:G \longrightarrow H$ defined by: for all $x \in G$, f(x) = e, is a homomorphism. The function $g:H \longrightarrow G$ defined by: g(e) = e, is also a homomorphism. The homomorphism f is surjective but not injective, and the homomorphism g is injective, but not surjective.
- Let $n \in \mathbb{N}$ with $n \geq 2$. Let (G, \cdot) be a group and let $a \in G$ have order n. Let $H = \langle a \rangle$, i.e. H is (isomorphic to) C_n . Consider the group $(\mathbb{Z}, +)$. Define $f : \mathbb{Z} \longrightarrow H$ by: for all $x \in \mathbb{Z}, f(x) = a^x$. Then f is a homomorphism because for all $x, y \in \mathbb{Z}$,

$$f(x+y)=a^{x+y}=a^x\cdot a^y$$

Examples for Morphisms (P196)

Theorem

Consider the group (Z, +). If $n \in \mathbb{N} \backslash \{0\}$, define

$$n\mathbb{Z} = \{ m \in \mathbb{Z} | (\exists k \in \mathbb{Z}) (m = nk) \}$$

Then $n\mathbb{Z} \leq \mathbb{Z}$ and $n\mathbb{Z} \cong \mathbb{Z}$

Proof.

Define $f: \mathbb{Z} \longrightarrow n\mathbb{Z}$ by: for all $x \in \mathbb{Z}$, f(x) = nx. Now, f is a bijection and for all $x, y \in \mathbb{Z}$,

$$f(x + y) = n(x + y) = nx + ny = f(x) + f(y)$$

Congruency

Definitions.(P199)

- 1. $a \equiv b \pmod{n}$ if and only if $n \mid (a b)$
- 2. $\mathbb{Z}/n\mathbb{Z} = \{[a]_n | a \in \mathbb{Z}\}$
- 3. $\bigoplus_n : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$: $\forall a, b \in \mathbb{Z}$,

$$[a]_n \oplus_n [b]_n = [a+b]_n$$

4. $\otimes_n : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$: $\forall a, b \in \mathbb{Z}$,

$$[a]_n \otimes_n [b]_n = [ab]_n$$

5. well-defined: A function is well-defined if it gives the same result when the representation of the input is changed without changing the value of the input.

Congruency

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. The operation \oplus_n is well-defined. (P200)

Proof.

P200

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. The operation \otimes_n is well defined.(P201)

Proof.

Cayley Table

Lemma

If $n \in \mathbb{N} \setminus \{0\}$, then $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ is group.(P202)

Take $(\mathbb{Z}/4\mathbb{Z}, \oplus_4)$ as an example, we construct Cayley Table:

	⊕4	[0]4	$[1]_4$	[2] ₄	[3] ₄
	[0]4	[0]4	$[1]_4$	[2]4	[3]4
ĺ	$[1]_4$	$[1]_4$	[2] ₄	[3] ₄	[0] ₄
ĺ	[2] ₄	$[2]_4$	[3] ₄	$[0]_4$	$[1]_4$
	[3] ₄	[3]4	[0]4	$[1]_4$	[2] ₄

Lemma

If $n \in \mathbb{N} \setminus \{0\}$, then $(\mathbb{Z}/n\mathbb{Z}, \oplus_n)$ is abelian with order n. Moreover, $(\mathbb{Z}/n\mathbb{Z}, \oplus_n) = C_n$

Proof.

Cayley Table (P203)

- ▶ $(\mathbb{Z}/n\mathbb{Z}, \otimes_n)$ is not group $([0]_n$ does not have inverse).
- ▶ $(\mathbb{Z}/n\mathbb{Z}\setminus\{[0]_n\},\otimes_n)$ is not group (operation is not close on $(\mathbb{Z}/n\mathbb{Z}\setminus\{[0]_n\},\otimes_n)$ e.g. $[2]_6\cdot[3]_6=[6]_6=[0]_6)$
- ▶ In order (G_n, \otimes_n) to be group, $[1]_n$ must be the identity. For all $[k]_n \in G_n$, there must exist $[m]_n \in G_n$ such that

$$[k]_n \otimes_n [m]_n = [km]_n = [1]_n$$

I.e. for all $[k]_n \in G_n$, there must exists $x \in \mathbb{Z}$ such that

$$kx \equiv 1 \pmod{n}$$

Cayley Table

Definition.

$$(\mathbb{Z}/n\mathbb{Z})^* = \{[k]_n \in \mathbb{Z}/n\mathbb{Z} | (\exists x \in \mathbb{Z}) (kx \equiv 1 (\bmod n))\} (\mathsf{P205})$$

Theorem

Let $n \in \mathbb{N}$ with $n \geq 2$. Then $((\mathbb{Z}/n\mathbb{Z})^*, \otimes_n)$ is a group.

Proof.

P206

 $\mathbf{e} \, \mathbf{\sigma} \, [1]_c \text{ and } [5]_c \text{ are elements}$

e.g. [1]₆ and [5]₆ are elements of $((\mathbb{Z}/6\mathbb{Z})^*, \otimes_6)$, moreover, $((\mathbb{Z}/6\mathbb{Z})^*, \otimes_6) \cong ((\mathbb{Z}/3\mathbb{Z})^*, \otimes_3) \cong C_2$. (P207)

\otimes_6	$ [1]_6$	[5] ₆	
$[1]_{6}$	$[1]_{6}$	[5] ₆	
[5] ₆	[5] ₆	$[1]_{6}$	

Cayley Table

Lemma

Let $n \in \mathbb{N}$ with $n \ge 2$. If $1 < m \le n$ is such that there exists $1 < d \le m$ with $d \mid m$ and $d \mid n$, then $[m]_n \notin (\mathbb{Z}/n\mathbb{Z})^*$. (P208)

Proof.

Greatest Common Divisor

Definitions

- 1. gcd(P209): Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. We say that $d \in \mathbb{N}$ is the greatest common divisor of a and b, and write this element gcd (a, b), if
 - 1.1 d|a and d|b
 - 1.2 For all $c \in \mathbb{Z}$, if c| a and c|b, then c|d
- 2. linear Diophantine equation in two variables(P210):

$$ax+by=c$$
 where $a,b,c\in\mathbb{Z}$ are constants with $|a|+|b|\neq 0$

- 3. relatively prime (P214): a, b are relatively prime if gcd(a, b) = 1
- ▶ A solution is a pair $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$ with $ax_0 + by_0 = c$
- ▶ This means that in order to show that $[m]_n \in (\mathbb{Z}/n\mathbb{Z})^*$, we show that the linear Diophantine equation mx + ny = 1 has a solution.

Theorem

Congruency

Let $a,b\in\mathbb{Z}$ with $|a|+|b|\neq 0$. Then there exists $x,y\in\mathbb{Z}$ such that $\gcd(a,b)=ax+by$

Proof.

P211-P212

Corollary

(P212) Let $n \in \mathbb{N}$ with $n \geq 2$. For all $m \in \mathbb{Z}$,

$$[m]_n \in (\mathbb{Z}/n\mathbb{Z})^*$$
 if and only if $\gcd(m,n)=1$

Corollary

(P213) Let $n \in \mathbb{N}$ with n > 2.

$$(\mathbb{Z}/n\mathbb{Z})^* = \{ [m]_n | (m < n) \land (\gcd(m, n) = 1) \}$$

Bézout's Lemma

Lemma

Let $a \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$. If $q, r \in \mathbb{Z}$ with a = qb + r, then gcd(a, b) = gcd(b, r) (P213)

Proof.

Euler's Totient Function

Definition

Euler's Totient Function: $\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$

Lemma

If $p \in \mathbb{N}$ is prime, then $\varphi(p) = p - 1$

Proof.

P216

Theorem (Euler's Theorem)

Let $a, n \in \mathbb{N}$ with $n \geqslant 2$ and gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$

Proof.

Euler's Totient Function

Theorem (Fermat's Little Theorem)

If $a, p \in \mathbb{N}$, p is prime and $\gcd(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.

Proof.

P217

Theorem (Euler's Product Formula)

$$\varphi(n) = n \cdot \prod_{p \in A} \left(1 - \frac{1}{p}\right)$$

Bézout's Lemma

Corollary

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. Then gcd(a, b) = 1 if and only if there exists a solution to the Diophantine equation ax + by = 1

Proof.

P220

Corollary

Let $a, b \in \mathbb{Z}$ with $|a| + |b| \neq 0$. If gcd(a, b) = d, then

$$\gcd\left(\frac{a}{d},\frac{b}{d}\right)=1$$

Proof.

Fundamental Theorem of Arithmetic

Theorem

Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. If $a \mid c$ and $b \mid c$, then $ab \mid c$.

Proof.

P222

Theorem (Euclid's Lemma)

Let $a, b, c \in \mathbb{Z}$ with gcd(a, b) = 1. If a|bc, then a|c.

Proof.

P223

Theorem

Let $p \in \mathbb{N}$ and let $a, b \in \mathbb{Z}$. If p is prime and p|ab, then p|a or p|b.

Proof.

Fundamental Theorem of Arithmetic

Theorem

Let $p \in \mathbb{N}$ be prime. If $a_1, \ldots, a_n \in \mathbb{Z}$ and $p|a_1 \cdots a_n$, then there exists $1 \leq k \leq n$ such that $p|a_k$.

Proof.

P224

Theorem

Let $p, q_1, \ldots, q_n \in \mathbb{N}$ be primes. If $p|q_1 \cdots q_n$, then there exists 1 < k < n such that $p = q_k$.

Proof.

P224

Theorem (Fundamental Theorem of Arithmetic)

If $n \in \mathbb{N}$ with $n \ge 2$, then n can be uniquely factored into a product of primes.

Euclidean Algorithm

Congruency

Definition(P228)

euclidean algorithm: Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a. Recursively define $F_{a,b}(0) = a$ and $F_{a,b}(1) = b$

$$F_{a,b}(n+2) = \begin{cases} 0 & \text{if } F_{a,b}(n+1) = 0 \\ r & \text{where } (\exists q \in \mathbb{Z}) \begin{pmatrix} F_{a,b}(n) = qF_{a,b}(n+1) + r \\ \land (0 \leqslant r < F_{a,b}(n+1)) \\ \text{and } F_{a,b}(n+1) \neq 0 \end{pmatrix}$$

Lemma

Let $a, b, n \in \mathbb{N} \setminus \{0\}$ with b < a. If $F_{a,b}(n) \neq 0$, then $F_{a,b}(n+1) < F_{a,b}(n)$. (P228)

Lemma

Let $a, b, n \in \mathbb{N} \setminus \{0\}$ with b < a. If $F_{a,b}(n) = 0$, then for all $m \ge n$, $F_{a,b}(m) = 0$ (P229)

Euclidean Algorithm

Lemma

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a. There exists $n \in \mathbb{N}$ such $F_{a,b}(n) = 0$.

Proof.

Proof by Contradiction (P229)

Lemma

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a and let $n \in \mathbb{N}$. If $F_{a,b}(n) \neq 0$, then $\gcd(a,b) = \gcd(F_{a,b}(n), F_{a,b}(n+1))$

Proof.

Euclidean Algorithm

Lemma

Let $a,b \in \mathbb{N} \setminus \{0\}$ with b < a. Let $n_0 \ge 2$ be least such that $F_{a,b}\left(n_0\right) = 0$ Then $\gcd\left(a,b\right) = F_{a,b}\left(n_0 - 1\right)$

Proof.

Linear Diophantine Equations

Definition

Diophantine equation in two variables(P210):

$$ax+by=c$$
 where $a,b,c\in\mathbb{Z}$ are constants with $|a|+|b|\neq 0$

Theorem

Let $a, b, c \in \mathbb{Z}$. There exists a solution to the linear Diophantine equation ax + by = c if and only if gcd(a, b)|c.

Proof.

Linear Diophantine Equations

Theorem

Let $a, b, c, d \in \mathbb{Z}$ with $d = \gcd(a, b)$ and $d \mid c$. Let (x_0, y_0) be a solution to ax + by = c. For all $t \in \mathbb{Z}, (x_t, y_t)$ is a solution to ax + by = c where

$$x_t = x_0 + \frac{b}{d}t$$
 and $y_t = y_0 - \frac{a}{d}t$

Moreover, if (x', y') is a solution to ax + by = c, then there exists a $t \in \mathbb{Z}$ such that $(x', y') = (x_t, y_t)$

Proof.

P239-P240

Procedure for solving LDEs

Given LDE: ax + by = c, with a, b, c are constants and x, y are unknowns, $|a| + |b| \neq 0$:

- 1. Use Euclidean algorithm to calculate gcd(a, b).
- 2. Check whether this LDE has solutions (does gcd(a, b)|c?)
- Apply euclidean algorithm in reverse direction to obtain one solution.
- 4. Write general solutions.

Linear Congruency Equations

Definition

linear congruence: an equation in the form

$$a \cdot x \equiv b \pmod{n}$$

Theorem

Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}\{0\}$. The linear congruence equation

$$ax \equiv b \pmod{n}$$

has a solution if and only if gcd(a, n)|b. Moreover, if gcd(a, n)|b, then the linear congruence equation has exactly gcd(a, n) solutions that are mutually incongruent (mod n).

Proof.

P247-P250

