

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

- State the 1st Principle of Mathematical Induction
- 2. What is the difference between the 1st, 2nd and strong principles of Mathematical Induction. (Describe in plain English)
- 3. What is the big-O complexity of Euclid's Algorithm?

Lecture 21

Chapter 4. Induction and Recursion

4.3 Recursive Definitions and Structural Induction

- In induction, we prove all members of an infinite set satisfy some predicate P by:
 - proving the truth of the predicate for larger members in terms of that of smaller members.
- In recursive definitions, we similarly define a function, a predicate, a set, or a more complex structure over an infinite domain (universe of discourse) by:
 - defining the function, predicate value, set membership, or structure of larger elements in terms of those of smaller ones.

Recursion

- Recursion is the general term for the practice of defining an object in terms of itself
 - or of part of itself.
 - This may seem circular, but it isn't necessarily.
- An inductive proof establishes the truth of P(k+1) recursively in terms of P(k).
- There are also recursive algorithms, definitions, functions, sequences, sets, and other structures.

Recursively Defined Functions

- Simplest case: One way to define a function f:N→S (for any set S) or series a_n= f(n) is to:
 - Define *f*(0)
 - For n > 0, define f(n) in terms of f(0),...,f(n-1)
- Example: Define the series a_n = 2ⁿ where n is a nonnegative integer recursively:
 - a_n looks like 2^0 , 2^1 , 2^2 , 2^3 ,...
 - Let $a_0 = 1$
 - For n > 0, let $a_n = 2 \cdot a_{n-1}$

Another Example

- Suppose we define f(n) for all $n \in \mathbb{N}$ recursively by:
 - Let f(0) = 3
 - For all n > 0, let $f(n) = 2 \cdot f(n-1) + 3$
- What are the values of the following?

$$f(1) = 2 \cdot f(0) + 3 = 2 \cdot 3 + 3 = 9$$

$$f(2) = 2 \cdot f(1) + 3 = 2 \cdot 9 + 3 = 21$$

$$f(3) = 2 \cdot f(2) + 3 = 2 \cdot 21 + 3 = 45$$

$$f(4) = 2 \cdot f(3) + 3 = 2 \cdot 45 + 3 = 93$$

Recursive Definition of Factorial

 Give an inductive (recursive) definition of the factorial function,

$$F(n) = n! = \prod_{1 \le i \le n} i = 1 \cdot 2 \cdots n$$

- Basis step: F(1) = 1
- Recursive step: $F(n) = n \cdot F(n-1)$ for n > 1

$$F(2) = 2 \cdot F(1) = 2 \cdot 1 = 2$$

$$F(3) = 3 \cdot F(2) = 3 \cdot \{2 \cdot F(1)\} = 3 \cdot 2 \cdot 1 = 6$$

$$F(4) = 4 \cdot F(3) = 4 \cdot \{3 \cdot F(2)\} = 4 \cdot \{3 \cdot 2 \cdot F(1)\}$$
$$= 4 \cdot 3 \cdot 2 \cdot 1 = 24$$

The Fibonacci Numbers

■ The *Fibonacci numbers* $f_{n\geq 0}$ is a famous series defined by:

$$f_0 = 0$$
, $f_1 = 1$, $f_{n \ge 2} = f_{n-1} + f_{n-2}$

Inductive Proof about Fibonacci Numbers

- **Theorem**: $f_n < 2^n$. ←—Implicitly for all $n \in \mathbb{N}$
- Proof: By induction

Basis step:
$$f_0 = 0 < 2^0 = 1$$
 Note: use of base cases of recursive definition

 Inductive step: Use 2nd principle of induction (strong induction).

Assume $\forall 0 \le i \le k$, $f_i < 2^i$. Then

$$f_{k+1} = f_k + f_{k-1}$$
 is
 $< 2^k + 2^{k-1}$
 $< 2^k + 2^k = 2^{k+1}$.

A Lower Bound on Fibonacci Numbers

- **Theorem:** For all integers $n \ge 3$, $f_n > \alpha^{n-2}$, where $\alpha = (1 + 5^{1/2})/2 \approx 1.61803$.
- Proof. (Using strong induction.)
 - Let $P(n) = (f_n > \alpha^{n-2})$.
 - Basis step:

For
$$n = 3$$
, note that $\alpha^{n-2} = \alpha < 2 = f_3$.
For $n = 4$, $\alpha^{n-2} = \alpha^2$

$$= (1 + 2 \cdot 5^{1/2} + 5)/4$$

$$= (3 + 5^{1/2})/2$$

$$\approx 2.61803 \qquad (= \alpha + 1)$$

$$< 3 = f_4$$
.

A Lower Bound on Fibonacci Numbers: Proof Continues...

- Inductive step: For $k \ge 4$, assume P(j) for $3 \le j \le k$, prove P(k+1).
 - $f_{k+1} = f_k + f_{k-1} > \alpha^{k-2} + \alpha^{k-3}$ (by inductive hypothesis, $f_{k-1} > \alpha^{k-3}$ and $f_k > \alpha^{k-2}$).
 - Note that $\alpha^2 = \alpha + 1$. since $(3 + 5^{1/2})/2 = (1 + 5^{1/2})/2 + 1$
 - Thus, $\alpha^{k-1} = \alpha^2 \alpha^{k-3} = (\alpha + 1)\alpha^{k-3}$ = $\alpha \alpha^{k-3} + \alpha^{k-3} = \alpha^{k-2} + \alpha^{k-3}$.
 - So, $f_{k+1} = f_k + f_{k-1} > \alpha^{k-2} + \alpha^{k-3} = \alpha^{k-1}$.
 - Thus P(k+1). ■

Recursively Defined Sets

- An infinite set S may be defined recursively, by giving:
 - A small finite set of base elements of S.
 - A rule for constructing new elements of S from previously-established elements.
 - Implicitly, S has no other elements but these.

base element (basis step)

construction rule (recursive step)

■ **Example:** Let $3 \in S$, and let $x+y \in S$ if $x,y \in S$. What is S?

Example cont.

- Let $3 \in S$, and let $x+y \in S$ if $x,y \in S$. What is S?
 - 3 ∈ S (basis step)
 - 6 (= 3 + 3) is in S (first application of recursive step)
 - 9 (= 3 + 6) and 12 (= 6 + 6) are in S (second application of the recursive step)
 - 15 (= 3 + 12 or 6 + 9), 18 (= 6 + 12 or 9 + 9), 21 (= 9 + 12), 24 (= 12 + 12) are in S (third application of the recursive step)
 - ... so on
 - Therefore, S = {3, 6, 9, 12, 15, 18, 21, 24,...}
 = set of all positive multiples of 3

- Given an alphabet Σ, the set Σ* of all strings over Σ can be recursively defined by:
 - Basis step: $\lambda \in \Sigma^*$ (λ : empty string)
 - Recursive step: $(w \in \Sigma^* \land x \in \Sigma) \rightarrow wx \in \Sigma^*$
- **Example**: If $\Sigma = \{0, 1\}$ then
 - λ∈ Σ* (basis step)
 - 0 and 1 are in Σ* (first application of recursive step)
 - 00, 01, 10, and 11 are in Σ* (second application of the recursive step)
 - ... so on
 - Therefore, Σ* consists of all finite strings of 0's and 1's together with the empty string

String: Example

- Show that if Σ = {a, b} then aab is in Σ*.
 Proof: We construct it with a finite number of applications of the basis and recursive steps in the definition of Σ*:
- 1. $\lambda \in \Sigma^*$ by the basis step.
- 2. By step 1, the recursive step in the definition of Σ^* and the fact that $a \in \Sigma$, we can conclude that $\lambda a = a \in \Sigma^*$.

Proof cont.

- 3. Since $a \in \Sigma^*$ from step 2, and $a \in \Sigma$, applying the recursive step again we conclude that $aa \in \Sigma^*$.
- 4. Since $aa \in \Sigma^*$ from step 3 and $b \in \Sigma$, applying the recursive step again we conclude that $aab \in \Sigma^*$.
- Since we have shown aab∈Σ* with a finite number of applications of the basis and recursive steps in the definition we have finished the proof.

Rooted Trees

- Trees will be covered in more depth in chapter 10.
 - Briefly, a tree is a graph in which there is exactly one undirected path between each pair of nodes.
 - An undirected graph can be represented as a set of unordered pairs (called arcs) of objects called nodes.
- Definition of the set of rooted trees:
 - **Basis step**: Any single node *r* is a rooted tree.
 - Recursive step: If $T_1,...,T_n$ are disjoint rooted trees with respective roots $r_1,...,r_n$, and r is a node not in any of the T_i 's, then another rooted tree is $\{(r, r_1),...,(r, r_n)\} \cup T_1 \cup \cdots \cup T_n$.

Illustrating Rooted Tree Definition

 How rooted trees can be combined to form a new rooted tree...

Building Up Rooted Trees

© The McGraw-Hill Companies, Inc. all rights reserved.

Basis step

Step 1

Step 2

Extended Binary Trees

- A special case of rooted trees.
- Recursive definition of extended binary trees:
 - Basis step: The empty set Ø is an extended binary tree.
 - Recursive step: If T_1 , T_2 are disjoint extended binary trees, then $e_1 \cup e_2 \cup T_1 \cup T_2$ is an extended binary tree, where $e_1 = \emptyset$ if $T_1 = \emptyset$, and $e_1 = \{(r, r_1)\}$ if $T_1 \neq \emptyset$ and has root r_1 , and similarly for e_2 . (T_1 is the left subtree and T_2 is the right subtree.)

rees

© The McGraw-Hill Companies, Inc. all rights reserved.

Basis step Step 1 Step 2 Step 3

Lamé's Theorem

- **Theorem:** $\forall a,b$ ∈**N**, a≥b>0, and let n be the number of steps Euclid's algorithm needs to compute gcd(a,b).
 - Then $n \le 5k$, where $k = \lfloor \log_{10} b \rfloor + 1$ is the number of decimal digits in b.
 - Thus, Euclid's algorithm is linear-time in the number of digits in b. (or, Euclid's algorithm is O(log a))

Proof:

Uses the Fibonacci sequence! (See next!)

Proof of Lamé's Theorem

 Consider the sequence of division-algorithm equations used in Euclid's alg.:

$$r_0 = r_1 q_1 + r_2$$
 with $0 \le r_2 < r_1$
 $r_1 = r_2 q_2 + r_3$ with $0 \le r_3 < r_2$

Where $a = r_0$, $b = r_1$, and $gcd(a,b)=r_n$.

$$r_{n-2} = r_{n-1}q_{n-1} + r_n$$
 with $0 \le r_n < r_{n-1}$
 $r_{n-1} = r_nq_n + r_{n+1}$ with $r_{n+1} = 0$ (terminate)

The number of divisions (iterations) is n.

Continued on next slide...

Lamé Proof cont.

- Since $r_0 \ge r_1 > r_2 > \dots > r_n$, each quotient $q_i \equiv \lfloor r_{i-1}/r_i \rfloor \ge 1$.
- Since $r_{n-1} = r_n q_n$ and $r_{n-1} > r_n$, $q_n \ge 2$.
- So we have the following relations between r and f:

$$r_n \ge 1 = f_2$$

 $r_{n-1} \ge 2r_n \ge 2f_2 = f_3$
 $r_{n-2} \ge r_{n-1} + r_n \ge f_2 + f_3 = f_4$
...
 $r_2 \ge r_3 + r_4 \ge f_{n-1} + f_{n-2} = f_n$

$$r_2 \ge r_3 + r_4 \ge t_{n-1} + t_{n-2} = t_n$$

 $b = r_1 \ge r_2 + r_3 \ge t_n + t_{n-1} = t_{n+1}$

- Thus, if n > 2 divisions are used, then $b \ge f_{n+1} > α^{n-1}$.
 - Thus, $\log_{10} b > \log_{10}(\alpha^{n-1}) = (n-1)\log_{10} \alpha \approx (n-1)0.208 > (n-1)/5$.
 - If b has k decimal digits, then $\log_{10} b < k$, so n-1 < 5k, so $n \le 5k$.