Curvas elípticas en criptografía

Curvas elípticas en criptografía

Yabir García Benchakhtir David Cabezas Berrido Patricia Córdoba Hidalgo Curvas elípticas en criptografía

Definición de curva elíptica

Contenido

Definición de curva elíptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas elípticas

Algoritmo de firma digital en curvas elípticas (ECDSA

Conceptos previos

de puntos en $K^{n+1} - \{0\}$ con la relación de equivalencia \sim que relaciona dos elementos de la siguiente forma

El **espacio proyectivo** sobre un cuerpo K, $\mathbb{P}_n(K)$, es el conjunto

$$(a_0,\ldots,a_n)\sim(a_0',\ldots,a_n')\iff\exists\lambda\in\mathcal{K}^*\ \mathsf{tal}\ \mathsf{que}\ (a_0,\ldots,a_n)=\lambda(a_0',\ldots,a_n')$$

En el caso $K=\mathbb{R}$, \mathbb{P}_2 tiene como elementos a las rectas vectoriales de \mathbb{R}^3 . Intuitivamente, este espacio se puede interpretar como un plano y una recta "en el infinito".

En $\mathbb{P}_n(K)$ dos rectas siempre se cortan, ya que las rectas paralelas se cortan "en el infinito".

Definición

Se define una curva elíptica como un par (E, O), donde E es una curva proyectiva no singular de genus uno y $O \in E$.

Al punto O se le denomina "punto en el infinito".

Denotaremos la curva como E, sobreentendiendo cual es el punto O.

El **genus** de una curva algebraica proyectiva no singular corresponde al número de agujeros de la superficie orientable compacta obtenida al considerar la curva como una variedad real.

Caracterización

Hay un isomorfismo Φ entre una curva elíptica E y la curva que cumple la ecuación de Weierstrass:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

con
$$a_1, \ldots, a_6 \in K$$
 y satisfaciendo $\Phi(O) = [0, 1, 0]$ y $\Phi(P) \in \{[x, y, 1]\} \quad \forall P \in E \setminus \{O\}.$

Si la característica de K es distinta de 2 y 3, podemos simplificar la ecuación así:

$$y^2 = x^3 + Ax + B$$

con $A, B \in K$.

La curva quedaría entonces:

$$E = \{(x, y) \in K \times K : y^2 = x^3 + Ax + B\} \cup \{O\}$$

Ejemplos de curvas elípticas

Figure 3.1: Three elliptic curves

Figure 3.2: Two singular cubic curves.

Ejemplos de curvas elípticas ($\Delta = -16(4A^3 + 27B^2)$)

Ejemplos de curvas elípticas

Consideraremos las curvas elípticas sobre grupos finitos, pero ayuda visualizarlas sobre $\mathbb R$ para entender las operaciones de grupo sobre ellas. Mostramos un ejemplo de curva elíptica sobre $\mathbb R$ y sobre un grupo finito.

Curva elíptica sobre \mathbb{R} y sobre \mathbb{Z}_{89}

Contenido

Definición de curva elíptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas elípticas

Algoritmo de firma digital en curvas elípticas (ECDSA)

Operaciones en el grupo de la curva

Estructura de grupo de la curva E

Definimos también O + O = O.

Estructura de grupo de la curva E

Producto por escalares

A partir de la suma de puntos definimos el producto de un punto P por un escalar n como:

$$nP = \underbrace{P + P + \ldots + P}_{n}$$

Esta operación puede calcularse con eficiencia $O(\log n)$ escribiendo n en base 2 y realizando duplicaciones sucesivas.

Encontrar subgrupo cíclico $< G > \subset E(\mathbb{F}_p)$

- 1. Calculamos el número de puntos de la curva elíptica, $N = \#E(\mathbb{F}_p)$. Esto se puede lograr mediante el algoritmo de Schoof.
- 2. Elegimos el factor primo mayor de N, al que llamaremos n.
- 3. Tomamos h = N/n. Para que una curva sea segura, el cofactor ha de ser pequeño.
- 4. Escogemos un punto cualquiera de la curva $P \in E(\mathbb{F}_p)$ y sea G = hP.
- 5. Si *G* es el punto en el infinito, cogemos otro punto *P*. De esta manera, el orden de *G* es *n*.

Podemos utilizar una curva de la lista de curvas seguras ya conocidas con cofactor pequeño.

Contenido

Definición de curva elíptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas elípticas

Algoritmo de firma digital en curvas elípticas (ECDSA

Problema del logaritmo discreto

Sea < G > un subgrupo aditivo de E(K), **el problema del logaritmo discreto** para curvas elípticas es el problema de encontrar k de manera que kG = P, para un punto dado $P \in < G >$.

La seguridad de las curvas elípticas en criptografía, descansa en la dificultad de resolver este problema.

Contenido

Definición de curva elíptica

Operaciones en el grupo de la curva

Problema del logaritmo discreto

Cifrado y firma con curvas elípticas

Algoritmo de firma digital en curvas elípticas (ECDSA)

Parámetros compartidos

Alice y Bob intercambian los siguientes parámetros por un canal potencialmente inseguro:

- ▶ Una curva $E(\mathbb{F}_p)$ segura.
- ▶ *G* un punto de la curva de orden primo.
- Ambos deben conocer el valor n que es el orden del grupo $\langle G \rangle \subset E(\mathbb{F}_p)$.

Claves pública y privada

Las claves son:

- ▶ Clave privada: Un entero $d_X \in [1, n-1]$ elegido de manera aleatoria.
- ► Clave pública: $Q_X = d_X G$.

Con X = A para las clavas de Alice y X = B para las de Bob.

El cálculo de Q_X se puede realizar en tiempo $O(\log d_X)$.

Algoritmo de firma digital en curvas elípticas (ECDSA)

Para firmar un mensaje, Alice sigue los siguientes pasos:

- 1. Calcula e = HASH(m).
- 2. Si definimos L_n como el número de bits de n, toma z los L_n bits menos significativos de e.
- 3. Elige de manera aleatoria un entero secreto $k \in [1, n-1]$.
- 4. Calcula el punto de la curva $(x_1, y_1) = kG$.
- 5. Toma $r = x_1 \mod n$. En el caso de que r sea 0, vuelve al paso 3.
- 6. Calcula $s = k^{-1}(z + rd_A) \mod n$. Si s es 0, vuelve al paso 3.

La firma es el par (r, s).

Verificación de la firma

Para verificar que el emisor es Alice, Bob seguir \tilde{A}_i los pasos siguentes:

- 1. Comprueba que $Q_A \neq O$.
- 2. Se debe cumplir que $nQ_A = O$

Si las comprobaciones anteriores son satisfactorias, Bob deberá entonces proceder de la siguiente manera:

- 1. Comprueba que $r,s\in [1,n-1]$, en otro caso, la firma es inválida.
- 2. Calcula e usando la misma función de hashing que uso Alice.
- 3. Toma de nuevo z los L_n bits menos significativos de e.
- 4. Obtiene $u_1 = zs^{-1} \mod n \vee u_2 = rs^{-1} \mod n$.

Comprobación de los pasos de Bob

Veremos por qué con $C=u_1G+u_2Q_A$ obtenemos el resultado que queremos. Para ello notamos en primer lugar que $Q_A=d_AG$ por lo que

$$C = u_1G + u_2d_AG$$

Ahora usamos la propiedad asociativa:

$$C=(u_1+u_2d_A)G$$

desarrollamos las expresiones de u_1 y u_2

$$C = (zs^{-1} + rd_A s^{-1})G$$

y aplicamos la propiedad asociativa de nuevo con lo que

$$C = (z + rd_A)s^{-1}G$$

Sustituimos *s* por su expresión tal y como se calculó en el algoritmo:

$$C = (z + rd_{\Delta})(z + rd_{\Delta})^{-1}(k^{-1})^{-1}G$$

Curvas elípticas en criptografía Cifrado y firma con curvas elípticas Algoritmo de firma digital en curvas elípticas (ECDSA)

Problema

Curvas elípticas en criptografía Cifrado y firma con curvas elípticas
LAlgoritmo de firma digital en curvas elípticas (ECDSA)