

AHO

Информационно - семантическое общество По развитию математических исследований

СКВОЗНЫЕ ТЕХНОЛОГИИ ЦИФРОВОЙ ЭКОНОМИКИ

НАШИ ЗАДАЧИ

- Интеграция научного потенциала Новосибирского Академгородка с производственными предприятиями
- Участие в программе цифровизации правительства России
- Подбор проектных команд для выполнения наукоемких проектов любой сложности
- Применение новейших научных разработок для повышения производительности труда и оптимизации производства
- Внедрение искусственного интеллекта

ПЛЮСЫ ЦИФРОВИЗАЦИИ

ИСТОЧНИК: Всемирный банк; McKinsey Global Institute

ОПРЕДЕЛЕНИЕ И ПЕРЕЧЕНЬ СКВОЗНЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ

В рамках Национальной технологической инициативы (НТИ) сквозные технологии были определены как ключевые научно-технические направления, которые оказывают наиболее существенное влияние на развитие рынков. По сути же, к сквозным относятся те технологии, которые одновременно охватывают несколько трендов или отраслей.

В программе "Цифровая экономика Российской Федерации", утвержденной премьер-министром РоссииДмитрием Медведевым в 2017 году и к 2019 году уже не действующей, был приведен перечень основных сквозных цифровых технологий:

большие данные;

нейротехнологии и искусственный интеллект;

системы распределенного реестра;

квантовые технологии;

новые производственные технологии;

промышленный интернет;

компоненты робототехники и сенсорика;

технологии беспроводной связи;

технологии виртуальной и дополненной реальностей.

>>> КАК РАБОТАЕТ БЛОКЧЕЙН

> >>> ЗАСЕДАНИЕ ЭКСПЕРТНОГО СОВЕТА 16.04.19

КЛЮЧЕВЫЕ ПОКАЗАТЕЛИ ДК СИСТЕМЫ РР

НАПРАВЛЕНИЕ РАЗВИТИЯ	СОСТОЯНИЕ НА 2019ГОД	ЦЕЛЕВОЙ РЕЗУЛЬТАТ НА 2024ГОД	ПРОГНОЗИР УЕМЫЕ БЮДЖЕТНЫ Е РАСХОДЫ млрд рублей	ПРОГНОЗИРУ ЕМЫЕ ВНЕБЮДЖЕТ НЫЕ РАСХОДЫ млрд рублей	ПОТЕНЦИАЛЬНЫ Е УЧАСТНИКИ РЕАЛИЗАЦИИ ДОРОЖНОЙ КАРТЫ
Технология организации и синхронизации данных	Среднее время, необходимое для подтверждения блоков 8.2 мин.; Высокие требования к мощности полных нод; Недостаток ПО для обращения к внешним данным и интероперабельности	Время, необходимое для подтверждения блоков 1 мс; 100% систем, соответствующих ГОСТ в части криптографии, интероперабельны	5.3	15.25	РВК; Фонд «Сколково»; Фонд «Бортника»; ООО «Вейвз»; Vostok; ERGO; ООО «Битфьюри Рус»
Технологии обеспечения консенсуса	Низкая скорость транзакций - 1-15 тыс./сек; Чувствительность к кол-ву и распределенности нод	Более 100 000 транзакций в сек. при обеспечении защиты от 76% захваченных мощностей сети и более, чем 10 000 полных нод	4.4	10.8	РВК; НПК «Криптонит»; ERGO; ЦЛСЗ ФСБ; Центр «Орбита»; Финтех Ассоциация
Технологии создания и исполнения децентрализованны х приложений и смарт-контрактов	Срок интеграции системы в бизнес-процессы — 120 ч.; Средний срок аудита смартконтрактов — 120 мин.	Срок интеграции системы в бизнес-процессы – до 1 ч.; Срок автоматизированного аудита смарт-контрактов – до 1 сек.	1.9	10.2	РВК; ВЭБ.РФ; Центр «Орбита»; Центр систем распределенного реестра Университета Иннополис; Финтех Ассоциация
Отраслевые проекты	Низкая прозрачность процессов, большое кол-во посредников, отсутствие доверия в цифровой среде	Затраты на урегулирование и клиринг транзакций сокращены на 30%; Сокращены админ. расходы на 20%; Уровень доверия населения к процессам госуправления вырос на 35%	6.5	17.85	Минтранс; Минздрав; Минпромторг; ПАО «РЖД»; ПАО «Сбербанк»; ПАО «Газпромнефть»; S7; ДИТ Москвы
Иные проекты/ мероприятия	Существуют регулятивные барьеры, отсутствуют тех. стандарты и комплексные концепции внедрения, низкая патентная активность — 285 заявок	Создано 6 НПА, 6 групп технологических стандартов (ГОСТ), 7 концепций и стратегий, увеличение количества патентных заявок — более 1300 ежегодно			Минюст; Минкомсвязь; Росстандарт; Центр систем распределенного реестра Университета Иннополис; ЦЦЭиФИ МГИМО МИД России
итого	Технология пилотируется в отдельных бизнес- процессах нескольких компаний	Созданы не менее 5 отраслевых платформ, к которым подключены регулирующие органы и не менее 50% компаний отраслей	18.1	54.1	

> > CЦТ – ИССКУСТВЕННЫЙ ИНТЕЛЛЕКТ об искусственный интеллект (ии, англ. artificial intelligence, аі) —

НАУКА И ТЕХНОЛОГИЯ СОЗДАНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ МАШИН,

ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ ПРОГРАММ.

РАЗВИТИЕ СЦТ ИССКУСТВЕННЫЙ ИНТЕЛЛЕКТ

НАПРАВЛЕНИЕ РАЗВИТИЯ	СОСТОЯНИЕ НА 2019 ГОД 2-3 технические характеристики	ЦЕЛЕВОЙ РЕЗУЛЬТАТ НА 2024 ГОД 2-3 технические характеристики	БЮДЖЕТНЫЕ РАСХОДЫ без / с внедрением в отраслях млрд рублей	ВНЕ- БЮДЖЕТНЫЕ РАСХОДЫ млрд рублей	ПОТЕНЦИАЛЬНЫЕ УЧАСТНИКИ РЕАЛИЗАЦИИ ДК
1. Компьютерное зрение	 Синтез изображений/видео и подмена объектов в видео/фото затруднены (легко отличить синтезированное изображение) Идентификация небольшого числа объектов в реальном времени 	 Синтез 3D, 2D изображений и видео объектов с сохранением узнаваемости (системы умеют синтезировать любой видеоряд, человек не может отличить синтезированное видео от настоящего) Высокоскоростная идентификация большого количества объектов (более 200) в видео и фото реальном времен и сложной среде (погода, помехи) 	12/32	160	Цифра, Сбербанк, Mail.ru group, Яндекс, Камаз, Wayray, VisionLabs, Cognitive Technologies
2. Обработка естественного языка	 Распознавание слов в тексте Простые чат-боты (не понимают сленг, сокращения и ошибки, не могут поддерживать разговор на свободную тему) 	 Распознавание общего смысла текста; возможность выделять ключевые тезисы из текста (включая тексты со сленгом и литературными приемами) Многофункциональные Чат-боты (разговор на свободную тему, выполнение большого количества задач (более 10), разговаривают с учетом сленга и ошибок, распознают более 98% запросов) 	9/24	120	Росатом, Сбербанк, Mail.ru group, Яндекс, MTC, S7 Airlines, JustAl, iPavlov.ai
3. Рекомендательные системы и системы поддержки принятия решений	 Принятие решений/рекомендации на основе длительного анализа Тестирование моделей производиться при помощи А/В тестов Принятие решений для 1 объекта 	 Принятие решений в рамках непрерывного процесса (оборудование/робот; до 0,1с) Тестирование моделей без участия пользователя Принятие решений в рамках группы (более 5 объектов, работа при потере части объектов) 	12/32	160	Росатом, Цифра, Аэрофлот, Газпром, Сбербанк, Mail.ru group, Яндекс, МТС, S7 Airlines, Газпром, Cubic Robotics
4. Распознавание и синтез речи	 Распознавание речи на небольшом расстоянии (до 3м) при отсутствие внешних факторов (шумы/помехи), и малом количестве источников звука 	 Распознавание речи на большом (до 50м) расстоянии, с учетом помех/шумов Распознавние более 10 источников звуков Распознавание антропологических признаков и эмоций с высокой (более 80%) точностью 	9/24	120	Mail.ru group, Яндекс, MTC, voximplant, Центр Речевых Технологий, Cognitive Technologies
5. Перспективные методы и технологии в ИИ*	 Обучение моделей требует большого количества данных и трудозатрат Обучение и дообучение моделей производится в ручном режиме 	 One-Shot Learning (Обучение моделей производится на нескольких (от 30) объектах) AutoML (системы на основе ИИ обладают способностью к самостоятельному обучению) 	6/16	80	Яндекс, Kaspersky Lab, Прана, Ланит, Ротек
6. Нейро- протезирование	 Простые протезы для ног и рук (без мелкой моторики) 	 Протезы с мелкой моторикой, протезы органов чувств и внутренних органов 	6/16	80	Neurotrend, Exoatlet
7. Нейростимуляция, Нейросенсинги Нейроинтерфейсы	 Системы отслеживания мозговой активности с низкой точностью, без взаимодействия человек- машина 	 Системы нейроинтерфейсов, позволяющие управлять простыми объектами (например мышка), при помощи мозговой активности 	6/16	80	Neurotrend, Викиум
8. Организационные мероприятия	Большое количества барьеров (люди, аппаратное обеспечение, алгоритмы и матметоды, регуляторика, данные)	Аппаратное обеспечение, спроектированное в России, отсутствие дефицита кадров, более 3% публикаций в WOS по ИИ, доступные данные	15/15	-	Минкомсвязь России, Минпромторг России, Сколково
итого	Низкий уровень развития отрасли ИИ	Россия в десятке ведущих стран по развитию отрасли ИИ и уровню внедрения ИИ по отраслям экономики	75/175	800	

КВАНТОВЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ — УСТРОЙСТВА, ИСПОЛЬЗУЮЩИЕ ЯВЛЕНИЯ КВАНТОВОЙ СУПЕРПОЗИЦИИ И КВАНТОВОЙ ЗАПУТАННОСТИ ДЛЯ ПЕРЕДАЧИ И ОБРАБОТКИ ДАННЫХ. ТАКИЕ УСТРОЙСТВА ОПЕРИРУЮТ КУБИТАМИ (КВАНТОВЫМИ БИТАМИ), КОТОРЫЕ МОГУТ ОДНОВРЕМЕННО ПРИНИМАТЬ ЗНАЧЕНИЕ И ЛОГИЧЕСКОГО НОЛЯ, И ЛОГИЧЕСКОЙ ЕДИНИЦЫ. ПОЭТОМУ С РОСТОМ КОЛИЧЕСТВА ИСПОЛЬЗУЮЩИХСЯ КУБИТОВ ЧИСЛО ОБРАБАТЫВАЕМЫХ ОДНОВРЕМЕННО ЗНАЧЕНИЙ УВЕЛИЧИВАЕТСЯ В ГЕОМЕТРИЧЕСКОЙ

НАПРАВЛЕНИЕ РАЗВИТИЯ	состояние на 2019 год 2-3 технические характеристики	ЦЕЛЕВОЙ РЕЗУЛЬТАТ НА 2024 ГОД 2-3 технические характеристики	ПРОГНОЗИРУЕМЫЕ БЮДЖЕТНЫЕ РАСХОДЫ	ПРОГНОЗИРУЕМЫЕ ВНЕБЮДЖЕТНЫЕ РАСХОДЫ Млрд, рублей	ПОТЕНЦИАЛЬНЫЕ УЧАСТНИКИ РЕАЛИЗАЦИИ ДК	
			Млрд. рублей			
1. Квантовые вычисления	1. 2-кубитный процессор 2. 10-кубитный симулятор 3. Научный задел по квантовым алгоритмам	1. 30–50-кубитный компьютер 2. 100-1000-кубитный симулятор 3. Разработано 5-10 квантовых алгоритмов. 4. Создана платформа с 10 000 запусками в год для решения задач	12,8	2,4	ЦКТ МГУ, МИСиС, ИФТТ РАН, ВНИИА им. Н.Л. Духова, РКЦ, МФТИ, Сколтех, Сбербанк, ГПБ, РЖД, Сибур, ГПН, Аэрофлот, Минауки, Минкомсвязи, Росатом и др.	
2. Квантовые коммуникации	Решение точка-точка для оптоволоконных линий до 100 км и скоростями до 10 кбит/сек Лабораторные демонстрации для открытого пространства на десятки метров Прототипы сетей до 4х узлов	Продуктовые решения точка-точка на расстояния более 200 км и скоростью 1-10 мбит/сек на 25 км Междугородние квантовые сети и развитые городские сети общей протяженностью более 10 000 км Решения точка-многоточка - более 128 пользователей	7,8	3,4	ЦК НТИ «Квантовые коммуникации» МИСиС, РКЦ, ЦКТ МГУ, ИТМО, ККЦ МПГУ, ФСБ, Министерство Обороны, ФСТЭК, КуРэйт, Инфотекс, ГПБ, Сбербанк, Ростелеком, С-Терра, Т8, Код безопасности, Квант телеком, Росатом и др.	
3. Квантовые сенсоры и метрология	Созданы 2 типа квантовых сенсоров Пространственное разрешение 10 мкм Погрешность часов не более 10-17	Созданы 6 типов квантовых сенсоров Пространственное разрешение - 0.5 мкм Погрешность часов не более 10 ⁻¹⁸ Внедрение в IoT и медицину	7	0,5	РКЦ, МГУ, ФИАН, ВНИИФТРИИ, ИТМО, МФТИ, МИСиС, НПП «Салют», «Медицинские технологии лтд», Ростех, Роскосмос, ООО Дефан, Минздрав, Росатом и др.	
4. Отраслевые проекты	Рынок квантовых технологий в РФ пока не сформирован	Рост ключевых финансовых показателей в 5 профильных российских предприятий из ТОП 10 Внедрение 30-40 продуктов, основанных на квантовых технологиях в ключевые отрасли экономики	3,6	2,4	Росатом, ФСБ, Министерство Обороны, ФСТЭК, Минкомсвязи, Сбербанк, ГПБ, РЖД, Сибур, ГПН, Аэрофлот, Минауки, Роскосмос, Ростех, Минздрав.	
5. Орг. мероприятия	Проходят отраслевые конференции и научные школы Научных публикаций в год — 500 Количество РИДов в год — 15	Cоздана орг. структура по управлению ДК Проведено 20 мероприятий по консолидации сообщества Сформирована инфраструктура для стартапов Создан межотраслевой центр внедрения. Научных публикаций в год — 1200 Количество РИДов в год — 50	11,2	0	ЦКТ МГУ, МИСиС, ИТМО ИФТТ РАН, ВНИИА, РКЦ, МФТИ, Росатом, ФСБ, Министерство Обороны, ФСТЭК, КуРэйт, Инфотекс, ГПБ, Сбербанк, Ростелеком, С-Терра, Т8, Код безопасности, Квант телеком, Минкомсвязи, Сбербанк, ГПБ, РЖД, Сибур, ГПН, Аэрофлот, Минауки,, Ростех, Минздрав и др.	
итого	По большинству направлений представлены лабораторные решения	РФ в ТОП 10 по квантовым технологиям в целом и в ТОП 5 по коммуникациям, в частности.	42,4	8,7		

СЦТ - ТЕХНОЛОГИИ ВИРТУАЛЬНОЙ И ДОПОЛНЕННОЙ О РЕАЛЬНОСТИ

НАПРАВЛЕНИЕ РИТИВСАЧ	СОСТОЯНИЕ НА 2019 ГОД технические характеристики	ЦЕЛЕВОЙ РЕЗУЛЬТАТ НА 2024 ГОД технические характеристики	ПРОГНОЗИРУЕМЫЕ БЮДЖЕТНЫЕ РАСХОДЫ млрд рублей	ПРОГНОЗИРУЕМЫЕ ВНЕБЮДЖЕТНЫЕ РАСХОДЫ млрд рублей	ПОТЕНЦИАЛЬНЫЕ УЧАСТНИКИ РЕАЛИЗАЦИИ ДК
1. Средства разработки VR/AR-контента, UX (пользовательск ий опыт)	Полигональный формат представления, сжатие на 20%. Нишевой конвертер, 25- 30% данных поддерживает. Разрозненный подход к UX	Аналитический формат представления данных без потери детализации, с сжатием от 7 до 50 раз и поддержкой web-интерфейса. Универсальный коннектор и конвертер поддерживают до 90% форматов представления 3D-данных, в тч digital twin. Сформированы отраслевые стандарты и методология UX	1,5	1,8	Сибур, Газпромнефть, Ростех, Росатом, ДВФУ, ModumLab, Rubius, Фонд Сколково
2.Платформенн ые решения для создания контента пользователем	Система доставки развлекательн контента, поддерживает 30-40% устройств. Нет универсальных способов интеграции контента на разных платформ	Универсальный интерфейс с потенциалом стать стандартом, сопоставление цифровой копии с реальным объектом в реальном времени. Конструктор и система доставки, поддерживающие 80% VR/AR-устройств на рынке	0,5	0,65	Почта России, МТС, Сбербанк, ДВФУ, ТГУ, Газпромнефть, Сибур, Кванториум
3. Технологии захвата движений в VR/AR и фотограметрии	Системы обратной связи на виброотдаче без сбора биометрических данных, без стимуляции запаха или вкуса	ПАК миостимуляции и сбора биометрических данных, универсальные 6D-платформы для «full flight» симуляторов и экзоскелетов с возможностью симулировать запах	4,5	5,4	Газпромнефть, Сибур, Камаз, Альт, Минпромторг, Фонд Сколково
4. Интерфейсы обратной связи, сенсоры (VR/AR)	Разрозненные системы трекинга с высокой стоимостью. Отсутствие высокоточных спец систем трекинга без захвата 3D-объектов	Универсальная система трекинга, объединяющая все доступные системы с потенциалом стать тех. стандартом, включая специализированные системы трекинга (медицина, промышленность), с распознаванием 3D-объектов real time	3	3,9	Сеть клиник Медси, МТС, ИНВИТРО, ДВФУ, Газпромнефть
5.Технологии графического вывода	Система визуализации - монофокальные гарнитуры с разрешением 2К без трекинга глаз, линейное окружение	Варифокальная VR-гарнитура с биотическим разрешением 50 пикселей на 1°с трекингом глаз и интеллектуальным графическим и физическим окружением	5,7	6,84	Ростех, ГК Динамика, ФПИ, Камаз, НИИ Глазных болезней, МГУ, СамГУ, Фонд Сколково
6. Технологии оптимизации передачи данных	При проверке качества передачи данных: эхотест равен 50-100мс при канале 50Мбит/сек	При проверке качества оптимизированного под VR/AR протокола передачи данных: эхотест менее 20мс при канале 50Мбит/сек через wi-fi и сети пятого поколения	0,9	1,17	Вертолеты России, Газпромнефть, Сбербанк, Медси
7. Отраслевые проекты	В промышленности, образовании, медицине проведены пилотные внедрения. Для широкого распространения в отраслях необходимо проведение НИОКР	60% крупных промышленных компаний провели пилоты с VR/AR, 30% внедрили в проектирование и обучение персонала 80% объектов проектирования и строительства принимается в VR запущено более 100 образовательных решений и курсов с VR/AR 20 реабилитационных решений с VR/AR доказали эффективность	5,63	6,76	Вертолеты России, Газпромнефть, Камаз, Сбербанк, Медси, ФПИ, Ростех, ГК Динамика, НИИ Глазных болезней,
8. Иные проекты / мероприятия	Подготовка профильных специалистов проводится в единичных ВУЗах. Запрос отрасли на проф.специалистов	Открыто не менее 2 международных проектных офиса для внедрения технологии (образование и медицина), обучено не менее 30 000 чел начальным навыкам программирования, выпущено ВУЗами не менее 14 000 профильных специалистов	2,41	3,1	ДВФУ, МГУ, ИТМО, СамГУ, Казанский ГУ, ТГУ и др. ВУЗы, Фонд Сколково
итого	Отдельные прикладные продукты - мировые лидеры	Не менее 3 российских отраслевых продукта занимают 30+% мирового рынка с потенциалом стать отраслевыми стандартами.	24,14	29,62	

СЦТ – НОВЫЕ ПРОИЗВОДСТВЕННЫЕ ТЕХНОЛОГИИ

