Di-electron Widths of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$

Jim Pivarski

CLEO Collaboration

Introduction

Even though Nuclear Strong force is "simpler" than Electroweak, it is an obstacle to understanding Electroweak

Nuclear Strong force (QCD)

- Highly symmetric
- One tunable parameter (+ quark masses)

Non-perturbative below 1 GeV

Electroweak interaction

- P, CP symmetries broken
- No obvious pattern in flavor-changing interactions:

$$P(q_1
ightarrow q_2) \propto \left| q_2 \cdot \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \cdot q_1
ight|^2$$

Perturbative

All measurements of quark properties must involve QCD

To learn more about electroweak interactions, we need to understand QCD better!

A typical electroweak measurement: $b \rightarrow u$ process

Outline for this Talk

1. Show how V_{td} is obfuscated by QCD and how our knowledge of it is limited by our ability to compute QCD

2. Introduce Lattice QCD as a tool which can help to compute the necessary parameter

3. Describe a CLEO experiment which tests this calculation: di-electron widths of $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

Measuring V_{td}

 $B\text{-}\bar{B}$ mixing:

$$B\left\{\begin{array}{c|c} b & t & d \\ \hline \hline w \lessgtr & \lessgtr w \\ \hline \overline d & \overline t & \overline b \end{array}\right\} \overline{B}$$

$$\Delta M_{B_d} = (known) \times (f_B^2 B_B) \times |V_{td}|^2 = 0.510 \pm 0.005 \text{ ps}^{-1}$$
, a 1% measurement!

But f_B is only known to 20% of itself

Hence the 20% uncertainty in V_{td} (blue band)

What is f_B ?

QCD corrections to b- \bar{d} -electroweak "vertex"

On QCD length scales, B-mixing diagram

$$B\left\{\begin{array}{c|c} b & t & d \\ \hline \hline w & & w \\ \hline \overline{d} & \overline{t} & \overline{b} \end{array}\right\} \overline{B}$$

looks like this:

 f_B expresses the probability that the $ar{d}$ will fluctuate onto the b quark

That is, the value of the spatial wavefunction at the origin

Determining f_B

Experimentally? $B^- \to \ell^- \bar{\nu}$

$$\bullet \Gamma(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2}{8\pi} \quad |V_{ub}|^2 \quad m_l^2 M_B \left(1 - \frac{m_l^2}{M_B^2}\right)^2 \quad f_B^2$$
small small

•
$$\mathcal{B}(B^- \to \tau^- \bar{\nu}) < 1.8 \times 10^{-4}$$
 at 90% C.L. (253 fb $^{-1}$ at Belle 2005)

Theoretically? Need non-perturbative techniques. . .

Lattice QCD

- Evaluate path integral with Monte Carlo integration
- Very computationally intensive

Recent Breakthrough (c. 1999)

Allows for calculation of vacuum polarization $\overline{u}, \overline{d}, \overline{s}$

f_B from Lattice QCD

$$f_B = 216 \pm 9 \pm 19 \pm 4 \pm 6 \text{ MeV}$$

Phys. Rev. Lett. 95, 212001 (2005)

But how can we verify this?

Test with Processes that Differ by One Quark Flavor

$$f_B$$
 B- $\{$ \mathbb{R}^- LQCD only

$$f_D$$
 $\mathsf{D}^+\{ egin{array}{c} \mathsf{C} & \mathsf{W}^+ & \ell^- \ \hline \mathsf{d} & \mathsf{V} \ \end{array} \}$ LQCD vs CLEO

A Brief Look at f_D

CLEO-c: 281 pb $^{-1}$ at $\psi(3770)=3$ million D^+D^- (30 times MARK-III, 8.5 times BES-II)

50 events
$$-$$
 2.8 background $=$ 47.2 \pm 7.1 $^{+0.3}_{-0.8}$ $\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66 \, ^{+0.09}_{-0.12}) \times 10^{-4}$ $f_{D^+} = (222.6 \pm 16.7 \, ^{+2.8}_{-3.4}) \; \text{MeV}$

A Brief Look at f_D

Projected final precision: 4.5% on f_D and 4.5% on f_{D_s}

Di-electron widths of $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

- Three high-precision measurements (1.5%, 1.8%, and 1.8%)
- Largely share systematics
- See top of screen for an outline

Di-electron width Γ_{ee} = rate of $\Upsilon \to e^+e^- = \Gamma \times \mathcal{B}_{ee}$

Cannot obtain Γ_{ee} from \mathcal{B}_{ee} because Γ is unresolvable

Instead, determine
$$\Upsilon(nS)$$
 { b γ e^- from e^+ from e^+ b $\Upsilon(nS)$

$$\Gamma_{ee} = \frac{M_{\Upsilon}^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE$$

Scan e^+e^- collision energies across M_Υ , measure cross-section $\sigma(E)$, and integrate

$$\Gamma_{ee} = \frac{M_{\Upsilon}^2}{6\pi^2} \int \sigma(e^+e^- \to \Upsilon) dE$$

Anatomy of an \(\gamma \) Lineshape

- Breit-Wigner resonance is convoluted by beam energy spread
- Further spread by initial-state radiation $(e^+e^- \to \gamma \Upsilon)$
- Flat backgrounds

Simulate all effects with a fit function, report Breit-Wigner area only

Solid = data, dashed = scaled Monte Carlo, log scale

- 1. Bhabhas
- 2.
- 3.
- 4.

Solid = data, dashed = scaled Monte Carlo, log scale

- 1. Bhabhas
- 2. Two-photon fusion
- 3.
- 4.

Solid = data, dashed = scaled Monte Carlo, log scale

- 1. Bhabhas
- 2. Two-photon fusion
- 3. Cosmic rays
- 4.

Solid = data, dashed = scaled Monte Carlo, log scale

- 1. Bhabhas
- 2. Two-photon fusion
- 3. Cosmic rays
- 4. Beam-gas

Event selection rejects e^+e^- , $\mu^+\mu^-$, and 43% of $\tau^+\tau^-$

Correct apparent cross-section with
$$\frac{1}{1-2.43\mathcal{B}_{\mu\mu}}$$

Define hadronic efficiency = probability that non-leptonic decays pass cuts and trigger

Data-Derived Efficiency Study

- Select $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ events by the $\pi^+\pi^-$ only
- ullet Count how many $\Upsilon(1S)$ decays pass cuts and trigger

Data-Derived Efficiency Study

- Select $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ events by the $\pi^+\pi^-$ only
- ullet Count how many $\Upsilon(1S)$ decays pass cuts and trigger

- \bullet $\Upsilon(1S)$ hadronic efficiency is 97.8% \pm 0.5%
- 90% upper limit on invisible $\Upsilon(1S)$ decays is $\mathcal{B}_{\mathsf{inv}} < 1.0\%$

results

theory

Integrated luminosity = observed Bhabhas / efficiency-weighted Bhabha cross-section

Overall scale of e^+e^- calculation is checked by $\mu^+\mu^-$ and $\gamma\gamma$

- Beam energy determined by dipole magnet measurement
- Calibration drifts with time (0.5 MeV/month)
- Each resonance completely scanned in 48 hours (repeated scans for statistical precision)
- Measurements alternated above and below resonance peak
- Repeated point of high slope (1 & 5): convert cross-section reproducibility into beam energy reproducibility
- $\bullet \Rightarrow 0.07$ MeV uncertainty in center-of-mass differences, 0.2% in Γ_{ee}

Lineshape Distortions

- \bullet Non-Gaussian beam energy spread? No, not observed with 0.3% statistical precision
- ullet Variable beam energy spread? Yes, we observed 1% variation in a month
- Interference between $e^+e^- \to \Upsilon \to \text{hadrons}$ and $e^+e^- \to \text{hadrons}$? Yes!

*Common to all resonances

Contribution to Γ_{ee}	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Correction for leptonic modes	0.2%	0.2%	0.3%
Hadronic efficiency*	0.5%	0.5%	0.5%
Xe^+e^- , $X\mu^+\mu^-$ correction	0	0.15%	0.13%
Overall luminosity scale*	1.3%	1.3%	1.3%
Bhabha/ $\gamma\gamma$ inconsistency	0.4%	0.4%	0.4%
Beam energy measurement drift	0.2%	0.2%	0.2%
Fit function shape	0.1%	0.1%	0.1%
χ^2 inconsistency	0.2%	0.6%	0
Total systematic uncertainty	1.5%	1.6%	1.5%
Statistical uncertainty	0.3%	0.7%	1.0%
Total	1.5%	1.8%	1.8%

$\Gamma_{ee}(1S)$	=	$1.354\pm0.004\pm0.020$ keV	1.5%
$\Gamma_{ee}(2S)$	=	$0.619\pm0.004\pm0.010$ keV	1.8%
$\Gamma_{ee}(3S)$	=	$0.446\pm0.004\pm0.007$ keV	1.8%
$\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$	_	$0.457\pm0.004\pm0.004$ keV	1.2%
$\Gamma_{ee}(3S)/\Gamma_{ee}(1S)$	=	$0.329\pm0.003\pm0.003\;{ m keV}$	1.3%
$\Gamma_{ee}(3S)/\Gamma_{ee}(2S)$	=	$0.720\pm0.009\pm0.007\;{ m keV}$	1.6%
$\Gamma(1S)$	=	54.4 \pm 0.2 \pm 0.8 \pm 1.6 keV	3.3%
$\Gamma(2S)$	=	$30.5\pm0.2\pm0.5\pm1.3$ keV	4.6%
$\Gamma(3S)$	=	$18.6\pm0.2\pm0.3\pm$ 0.9 keV 0.9 keV	5.2%

 Γ_{ee} : J.L. Rosner et~al. (CLEO Collaboration) Phys. Rev. Lett. **96**, 092003 (2006)

 $\mathcal{B}_{\mu\mu}$: G.S. Adams et~al. (CLEO Collaboration), Phys. Rev. Lett. 94, 012001 (2005)

Lattice QCD Calculations of Γ_{ee}

Summer 2005: 10%-level prediction of $\Gamma_{ee}(2S)/\Gamma_{ee}(1S)$ ratio

Later this summer: few-percent ratios, 10% absolute Γ_{ee}

Why the Steep Dependence on Lattice Spacing?

Decay constants sample wavefunction at the origin, which is discretized

 Υ is a small meson, making discretization more severe

How Relevant is this Test to f_B ?

- ullet Γ_{ee} and f_B calculations share the same NRQCD action and staggered-quark formalism
- ullet Discretization errors in f_B are smaller than discretization errors in Γ_{ee}
- ullet Though Υ couples to vector current, the factor this introduces cancels in ratios of Γ_{ee}

Compliments f_D and $\Gamma(\psi \to e^+e^-)$ tests

CLEO has also measured Γ_{ee} for J/ψ and $\psi(2S)$

Measured with initial-state radiation, rather than scans

- Requires dedicated scans
- Measure inclusive cross-section
- Requires detailed understanding of the lineshape

radiate photon

- Distinctive final states $(\pi^+\pi^-J/\psi)$
- Requires precise knowledge of $\mathcal{B}(\pi^+\pi^-J/\psi)$

Γ_{ee} for J/ψ and $\psi(2S)$

$$\Gamma_{ee}(J/\psi) = 5.68 \pm 0.11 \pm 0.13 \; ext{keV} \; 3.0\%$$
 $\Gamma_{ee}(\psi(2S)) = 2.54 \pm 0.03 \pm 0.11 \; ext{keV} \; 4.5\%$
 $\Gamma_{ee}(\psi(2S))/\Gamma_{ee}(J/\psi) = 0.45 \pm 0.01 \pm 0.02 \; ext{keV} \; 5.0\%$

N.E. Adam (CLEO Collaboration) Phys. Rev. Lett. 96 082004 (2006) and

G.S. Adams (CLEO Collaboration) Phys. Rev. D73 051103 (2006)

Summary

CLEO provides key tests of Lattice QCD relevant for f_B

	heavy-heavy	heavy-light
bottom	Γ_{ee} for Υ	f_B
charm	Γ_{ee} for ψ	f_D

 Γ_{ee} for $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, and ratios have better than 2% precision

Few-percent calculations of Γ_{ee} from Lattice QCD are expected this summer

If they compare favorably, we can have greater confidence in V_{td} determinations and our understanding of QCD in general