Efficient algorithms for infectious disease resource allocation model

Michael Ajao-olarinoye

April 2023

0.1 new

Algorithm 1 Physics-Informed Neural Network (PINN) Training for Epidemic Modeling

Require: Training data tensors S_{data} , I_{data} , R_{data} , Time tensor t_{data} , Population N, Neural Network NN with weights w and biases b

Ensure: Preprocessed tensors on the same device

- 1: Initialize NN with Xavier initialization for weights w and biases b
- 2: Define early stopping criteria with patience and delta
- 3: Set learning rate lr and regularization parameters λ , p
- 4: for each epoch up to num_epochs do
- 5: Compute predictions: S_{pred} , I_{pred} , $R_{pred} \leftarrow NN(t_{data})$
- 6: Compute time derivatives of S_{pred} , I_{pred} , R_{pred} via autograd
- 7: Calculate residuals using SIR model equations:

$$\begin{split} \frac{dS}{dt} &= -\beta \frac{S_{pred}I_{pred}}{N} \\ \frac{dI}{dt} &= \beta \frac{S_{pred}I_{pred}}{N} - \gamma I_{pred} \\ \frac{dR}{dt} &= \gamma I_{pred} \end{split}$$

- 8: Compute loss function components:
- 9: $MSE_{SIR} \leftarrow \frac{1}{q} \sum_{i=1}^{q} \left[(S_i \dot{S}_{pred_i})^2 + (I_i I_{pred_i})^2 + (R_i R_{pred_i})^2 \right]$

10:
$$MSE_{residuals} \leftarrow \frac{1}{q} \sum_{i=1}^{q} \left[\left(\frac{dS_i}{dt} - \frac{dS_{pred_i}}{dt} \right)^2 + \left(\frac{dI_i}{dt} - \frac{dI_{pred_i}}{dt} \right)^2 + \left(\frac{dR_i}{dt} - \frac{dR_{pred_i}}{dt} \right)^2 \right]$$

- 11: $Loss \leftarrow MSE_{SIR} + MSE_{residuals} + \lambda \cdot \text{Regularization}(NN)$
- 12: Update NN parameters via backpropagation and optimization step
- 13: Adjust learning rate with learning rate scheduler if needed
- 14: Check for early stopping, break if condition is met
- 15: end for
- 16: Output: Trained PINN model NN

The SIR model is described by the following set of differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N},\tag{1}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I,\tag{2}$$

$$\frac{dR}{dt} = \gamma I,\tag{3}$$

where S is the number of susceptible individuals, I is the number of infectious individuals, R

is the number of recovered individuals, and N is the total population.

Parameter	Definition
$eta \ \gamma$	Transmission rate Recovery rate

Algorithm 2 Training of Physics-Informed Neural Network (PINN) for Epidemic Modeling

Require: Training data tensors S_{data} , I_{data} , R_{data} , time tensor t_{data} , population size N, initial learning rate lr, regularization parameters λ_{reg} , p_{reg} , and number of epochs num_epochs .

Ensure: All tensors are on the computational device, e.g., GPU.

- 1: Initialize PINN NN with weights w and biases b using Xavier initialization.
- 2: Define EarlyStopping class with patience, delta, and verbose output.
- 3: Set up the Adam optimizer with learning rate lr and weight decay.
- 4: Set up learning rate scheduler with reduction factor and patience.
- 5: for epoch = 1 to num_epochs do
- Compute predictions S_{pred} , I_{pred} , R_{pred} from $NN(t_{data})$. Compute gradients $\frac{dS_{pred}}{dt}$, $\frac{dI_{pred}}{dt}$, $\frac{dR_{pred}}{dt}$ with respect to t_{data} using automatic differen-7: tiation.
- Define the SIR model's theoretical dynamics: 8:

$$\begin{split} \frac{dS}{dt} &= -\beta \frac{SI}{N}, \\ \frac{dI}{dt} &= \beta \frac{SI}{N} - \gamma I, \\ \frac{dR}{dt} &= \gamma I. \end{split}$$

Compute the loss components: 9:

$$MSE_{SIR} = \frac{1}{q} \sum_{i=1}^{q} \left[(S_i - S_{pred_i})^2 + (I_i - I_{pred_i})^2 + (R_i - R_{pred_i})^2 \right],$$

$$MSE_{residuals} = \frac{1}{q} \sum_{i=1}^{q} \left[\left(\frac{dS_{pred_i}}{dt} + \beta \frac{S_{pred_i}I_{pred_i}}{N} \right)^2 + \left(\frac{dI_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}}{dt} - \beta \frac{S_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 + \left(\frac{dR_{pred_i}I_{pred_i}}{N} + \gamma I_{pred_i} \right)^2 +$$

Compute regularization term (if L2 regularization is used): 10:

$$Reg_{L2} = \lambda_{reg} \sum_{w} ||w||^{p_{reg}}.$$

11: Compute total loss:

$$Loss = MSE_{SIR} + MSE_{residuals} + Reg_{L2}.$$

- 12: Perform backpropagation and update PINN parameters using the optimizer.
- Update learning rate with scheduler based on the validation loss. 13:
- if EarlyStopping condition is met then 14:
- break 15:
- end if 16:
- if $(epoch + 1) \mod 100 = 0$ or epoch = 0 then 17:
- Log current epoch and loss for monitoring. 18:
- 19: end if
- 20: end for
- 21: Output: Trained PINN NN.

Algorithm 3 Physics-Informed Neural Network (PINN) for SIR Dynamics

Require: Training dataset $\mathcal{D} = \{(t_i, S_i, I_i, R_i)\}_{i=1}^N$, where t_i denotes time, and S_i , I_i , R_i represent susceptible, infected, and recovered individuals at time t_i , respectively.

- 1: Data Preprocessing:
- 2: Convert \mathcal{D} into tensors: $\mathbf{S}, \mathbf{I}, \mathbf{R} \in \mathbb{R}^{N \times 1}$ and $\mathbf{t} \in \mathbb{R}^{N \times 1}$.
- 3: Neural Network Architecture:
- 4: Define a fully connected neural network $\mathcal{N}(\mathbf{t};\theta)$ with input \mathbf{t} , parameters θ , hidden layers, and Tanh activation functions. The network predicts $\hat{\mathbf{S}}, \hat{\mathbf{I}}, \hat{\mathbf{R}}$ at times \mathbf{t} .
- 5: Loss Function:
- 6: The loss function $\mathcal{L}(\theta)$ consists of two parts: the prediction loss and the differential equation loss.
- 7: Prediction loss: $\mathcal{L}_{\text{pred}} = \frac{1}{N} \sum_{i=1}^{N} \left(||\hat{\mathbf{S}}_i \mathbf{S}_i||^2 + ||\hat{\mathbf{I}}_i \mathbf{I}_i||^2 + ||\hat{\mathbf{R}}_i \mathbf{R}_i||^2 \right).$
- 8: DE loss: Compute the gradients $\frac{d\hat{\mathbf{S}}}{dt}$, $\frac{d\hat{\mathbf{I}}}{dt}$, $\frac{d\hat{\mathbf{R}}}{dt}$ using automatic differentiation. Use these to define the SIR model's dynamics:

$$\begin{split} \frac{dS}{dt} &= -\beta \frac{SI}{N}, \\ \frac{dI}{dt} &= \beta \frac{SI}{N} - \gamma I, \\ \frac{dR}{dt} &= \gamma I. \end{split}$$

9:
$$\mathcal{L}_{DE} = \frac{1}{N} \sum_{i=1}^{N} \left(||\frac{d\hat{\mathbf{S}}_{i}}{dt} + \beta \frac{\hat{\mathbf{S}}_{i}\hat{\mathbf{I}}_{i}}{N}||^{2} + ||\frac{d\hat{\mathbf{I}}_{i}}{dt} - \beta \frac{\hat{\mathbf{S}}_{i}\hat{\mathbf{I}}_{i}}{N} + \gamma \hat{\mathbf{I}}_{i}||^{2} + ||\frac{d\hat{\mathbf{R}}_{i}}{dt} - \gamma \hat{\mathbf{I}}_{i}||^{2} \right)$$

- 10: Total loss: $\mathcal{L} = \mathcal{L}_{pred} + \mathcal{L}_{DE}$.
- 11: **Training:**
- 12: Use gradient descent to minimize $\mathcal{L}(\theta)$ with respect to θ .
- 13: Apply early stopping based on validation loss to prevent overfitting.
- 14: Evaluation:
- 15: Evaluate the trained model $\mathcal{N}(\mathbf{t}; \theta^*)$ on test data to predict $\hat{\mathbf{S}}, \hat{\mathbf{I}}, \hat{\mathbf{R}}$.
- 16: Compare predictions with actual data to assess model performance.

Algorithm 4 PINNs used to determine simultaneously the parameters of the neural network and the embedded SIR model.

Require: Time points t, initial susceptible S^0 , infected I^0 , and recovered R^0 populations.

- 1: Randomly initialize weights w, biases b, and dynamics parameters β, γ ;
- 2: for each epoch in epochs do
- The values of each compartment of the SIR model can be obtained from the forward propagation of the neural network with the input as t:
- 4: S, I, R = NN(t);
- Evaluate the composed loss function, including the data loss (with s to be the number of observations in each compartment, thus the number of time points collected):
- $MSE_{SIR} = \frac{1}{s} \sum_{i=1}^{s} ((S_i S_i^0)^2 + (I_i I_i^0)^2 + (R_i R_i^0)^2)$, denoting the mismatch of the output of the neural network and observation data. 6:
- 7: Here the residual loss:
- $MSE_{residuals} = \frac{1}{q} \sum_{i=1}^{q} \left(\left| \left| \frac{dS_i}{dt_i} + \frac{\beta S_i I_i}{N} \right| \right|^2 + \left| \left| \frac{dI_i}{dt_i} \frac{\beta S_i I_i}{N} + \gamma I_i \right| \right|^2 + \left| \left| \frac{dR_i}{dt_i} \gamma I_i \right| \right|^2 \right),$ 8:
- stands for the sum of the residual errors for each compartment of the SIR model. 9:
- Thus, the total loss function can be obtained: 10:
- $Loss = MSE_{SIR} + MSE_{residuals};$ 11:
- The Adam Optimizer toolkit in Pytorch is utilized to update the weights w and biases 12: b, as well as β and γ by minimizing the loss function.
- 13: end for

Algorithm 5 Training PINN for SIR Model

Require: Time points t, initial susceptible S_0 , infected I_0 , recovered R_0 , population N.

- 1: Randomly initialize neural network parameters θ .
- 2: for each epoch do
- Obtain S, I, R from neural network: $S, I, R = \mathcal{N}(t; \theta)$. 3:
- 4:
- Calculate data loss MSE_{SIR} : $MSE_{SIR} = \frac{1}{N} \sum_{i=1}^{N} ((S_i S_{0i})^2 + (I_i I_{0i})^2 + (R_i R_{0i})^2)$. Compute residuals $\frac{dS}{dt}$, $\frac{dI}{dt}$, $\frac{dR}{dt}$ via autodiff.
- 6:
- 7:
- Calculate SIR model loss $MSE_{residuals}$: $MSE_{residuals} = \frac{1}{N} \sum_{i=1}^{N} \left(\left| \frac{dS_i}{dt} + \beta \frac{S_i I_i}{N} \right|^2 + \left| \frac{dI_i}{dt} \beta \frac{S_i I_i}{N} + \gamma I_i \right|^2 + \left| \frac{dR_i}{dt} \gamma I_i \right|^2 \right).$ 8:
- 9: Total loss $Loss = MSE_{SIR} + MSE_{residuals}$.
- 10: Update θ using optimizer to minimize Loss.
- Implement early stopping if validation loss does not improve. 11:
- 12: end for

Algorithm 6 Streamlined PINN Algorithm for SIR Model

Require: Time points t, initial conditions S_0 , I_0 , R_0 , total population N.

- 1: Randomly initialize network parameters θ and disease parameters β, γ .
- 2: for each epoch do
- 3: Propagate t through network to get $S, I, R = \mathcal{N}(t; \theta)$.
- 4: Compute data fidelity loss MSE_{SIR} :
- $MSE_{SIR} = \frac{1}{N} \sum_{i=1}^{N} \left((S_i S_{0i})^2 + (I_i I_{0i})^2 + (R_i R_{0i})^2 \right).$ Derive SIR dynamics residuals via autodiff: 5:
- 6:
- $MSE_{residuals} = \frac{1}{N} \sum_{i=1}^{N} \left(\left| \frac{dS_i}{dt} + \beta \frac{S_i I_i}{N} \right|^2 + \left| \frac{dI_i}{dt} \beta \frac{S_i I_i}{N} + \gamma I_i \right|^2 + \left| \frac{dR_i}{dt} \gamma I_i \right|^2 \right).$ 7:
- Define total loss $Loss = MSE_{SIR} + MSE_{residuals}$. 8:
- 9: Minimize Loss to update θ , β , and γ with optimizer.
- Apply early stopping based on validation loss. 10:
- 11: end for

Algorithm 7 Parameter Estimation for SEIRD Model via Differential Equation Learning

Require: Time series data, population data, initial infected and death counts.

- 1: Normalize and partition data for model inputs.
- 2: Initialize model states $u(t_0) = [S_0, E_0, I_0, R_0, D_0].$
- 3: Discretize time domain into t_1, t_2, \ldots, t_n .
- 4: Construct neural networks $NN_{\beta}(t;\theta_{\beta})$, $NN_{\gamma}(t;\theta_{\gamma})$, $NN_{\delta}(t;\theta_{\delta})$, $NN_{\alpha}(t;\theta_{\alpha})$ with parameters θ_{β} , θ_{γ} , θ_{δ} , θ_{α} .
- 5: Define the SEIRD differential equations with learned parameters:
- 6: **function** SEIRD(\dot{u}, u, θ, t)
- $\beta(t), \gamma(t), \delta(t), \alpha(t) \leftarrow |NN_{\beta}(t; \theta_{\beta})|, |NN_{\gamma}(t; \theta_{\gamma})|, |NN_{\delta}(t; \theta_{\delta})|, |NN_{\alpha}(t; \theta_{\alpha})|$
- $S, E, I, R, D \leftarrow \text{transitions based on SEIRD dynamics and } \beta(t), \gamma(t), \delta(t), \alpha(t)$
- 9: end function
- 10: Formulate the initial value problem (IVP) using $u(t_0)$ and SEIRD dynamics.
- 11: Define loss function $\mathcal{L}(\theta)$ combining prediction errors and parameter trajectory regularizations.
- 12: Minimize $\mathcal{L}(\theta)$ using gradient-based optimization with callbacks to monitor convergence.
- 13: Evaluate model fit with metrics such as MSE, MAE, MAPE, RMSE.

The SEIRD model extends the SIR model by including compartments for exposed (E) and dead (D) individuals:

$$\frac{dS}{dt} = -\beta \frac{SI}{N},\tag{4}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - \delta E, \qquad (5)$$

$$\frac{dI}{dt} = \delta E - (\gamma + \alpha)I, \qquad (6)$$

$$\frac{dR}{dt} = \gamma I, \qquad (7)$$

$$\frac{dI}{dt} = \delta E - (\gamma + \alpha)I,\tag{6}$$

$$\frac{dR}{dt} = \gamma I,\tag{7}$$

$$\frac{dD}{dt} = \alpha I,\tag{8}$$

where E represents the exposed individuals who are infected but not yet infectious, and Drepresents the deceased individuals.

Parameter	Definition
β	Transmission rate
δ	Rate at which exposed individuals become infectious
γ	Recovery rate
α	Mortality rate

Figure 1: weekly ICU bed occupancy across NHS regions.

Figure 2: new confirmed COVID-19 cases per 100k people overtime by NHS regions.

Figure 3: Predicted number of infectious individuals in the East Midlands region.

Figure 4: Predicted number of recovered individuals in the East Midlands region.

Figure 5: Training history of the PINN model for the East Midlands region.

Figure 6: Predicted number of infectious individuals in the East of England region.

Figure 7: Predicted number of recovered individuals in the East of England region.

Figure 8: Training history of the PINN model for the East of England region.

Figure 9: Predicted number of infectious individuals in the London region.

Figure 10: Predicted number of recovered individuals in the London region.

Figure 11: Training history of the PINN model for the London region.