

Suplemen B: Matriks dan Determinan

Daryono Budi Utomo

1

1

Suplemen B: Matriks, Determinan dan Sistem Persamaan Linier

- √ B.1 Matriks dan Operasinya
- √ B.2 Operasi Baris Elementer (OBE) dan Matriks Invers
- ▼ B.3 Sistem Persamaan Linier
 - **B.4 Determinan**
 - B.5 Nilai Eigen dan Vektor Eigen

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

B.1 Matriks dan Operasinya

Definisi Matriks

Matriks adalah susunan bilangan berbentuk segiempat.

Bilangan-bilangan dalam susunan dinamakan anggota/elemen matriks

Ukuran Matriks

Ukuran matriks dinyatakan oleh $m \times n$, m banyaknya baris, n banyaknya kolom Matriks A mempunyai ukuran $m \times n$, ditulis sebagai:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

2

3

Matriks Transpose

Transpose (A) adalah matriks yang entrinya diperoleh dari entri pada A dengan mengubah baris menjadi kolom dan kolom menjadi baris. yang dinyatakan dengan A^T

Sifat-sifat matriks transpose

1.
$$(A^T)^T = A$$

2.
$$(kA)^T = k(A^T)$$
, $k = skalar$

3.
$$(A \pm B)^T = A^T \pm B^T$$

4.
$$(AB)^{T} = B^{T}A^{T}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Contoh

Diberikan matriks
$$A = \begin{pmatrix} 3 & 4 & -3 & 12 \\ -2 & 2 & 9 & 21 \\ -3 & 2 & 6 & 22 \end{pmatrix}$$

Transpose matriks *A* yaitu:

$$A^{T} = \begin{pmatrix} 3 & -2 & -3 \\ 4 & 2 & 2 \\ -3 & 9 & 6 \\ 12 & 21 & 22 \end{pmatrix}$$

$$C = \begin{pmatrix} 7 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix} \to C^T = \begin{pmatrix} 7 & 3 \\ 2 & 4 \\ 5 & 6 \end{pmatrix} \to (C^T)^T = \begin{pmatrix} 7 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix} = C$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

5

5

Operasi Matriks

1. Penjumlahan dan Pengurangan Matriks

- Jika dua matriks A dan B mempunyai ukuran yang sama, maka kedua matriks tersebut dapat dijumlahkan atau dikurangkan.
- Untuk menambahkan atau mengurangkan kedua matriks tersebut anggota yang berpadanan dijumlahkan atau dikurangkan.
- Matriks yang tidak mempunyai ukuran yang sama tidak dapat dijumlahkan atau dikurangkan.

$$A = \begin{pmatrix} 2 & 4 \\ -3 & 6 \\ 5 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} -7 & 8 \\ 1 & 0 \\ 4 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 2 & 4 \\ -3 & 6 \\ 5 & 1 \end{pmatrix} + \begin{pmatrix} -7 & 8 \\ 1 & 0 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} -5 & 12 \\ -2 & 6 \\ 9 & 4 \end{pmatrix}; A - B = \begin{pmatrix} 2 & 4 \\ -3 & 6 \\ 5 & 1 \end{pmatrix} - \begin{pmatrix} -7 & 8 \\ 1 & 0 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 9 & -4 \\ -4 & 6 \\ 1 & -2 \end{pmatrix}$$

A + C dan A - C Tidak bisa karena ukuran matriks tidak sama

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

2. Perkalian Matriks

Perkalian AB (A dan B adalah matriks) dapat dilakukan jika jumlah kolom A = jumlah baris B.

Jadi jika A adalah matriks berorde $m \times n$ dan B adalah matriks berorde $n \times p$ maka AB dimungkinkan karena jumlah baris A = jumlah kolom B. Order AB adalah $m \times p$.

$$A_{m \times n} \times B_{n \times r} = C_{m \times r}$$

Banyak Kolom matriks A = Banyak Baris matriks B

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

7

7

Contoh

a.
$$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 6 & 3 \end{pmatrix} = \begin{pmatrix} 1 \times 4 + 2 \times 6 & 1 \times -3 + 2 \times 3 \\ 3 \times 4 + 4 \times 6 & 3 \times -3 + 4 \times 3 \end{pmatrix} = \begin{pmatrix} 16 & 3 \\ 36 & 3 \end{pmatrix}$$

b.
$$BA = \begin{pmatrix} 4 & -3 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 4 \times 1 - 3 \times 3 & 4 \times 2 - 3 \times 4 \\ 6 \times 1 + 3 \times 3 & 6 \times 2 + 3 \times 4 \end{pmatrix} = \begin{pmatrix} -5 & -4 \\ 15 & 24 \end{pmatrix}$$

c.
$$AC = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 \times 7 + 2 \times 3 & 1 \times 2 + 2 \times 4 & 1 \times 5 + 2 \times 6 \\ 3 \times 7 + 4 \times 3 & 3 \times 2 + 4 \times 4 & 3 \times 5 + 4 \times 6 \end{pmatrix}$$
$$= \begin{pmatrix} 12 & 10 & 15 \\ 33 & 14 & 39 \end{pmatrix}$$

d.
$$CA = \begin{pmatrix} 7 & 2 & 5 \\ 3 & 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rightarrow tidak bisa karena$$

 $banyak \ kolom \ C \neq banyak \ baris \ A$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

B.2 Operasi Baris Elementer (OBE) dan Matriks Invers

B.2.1 Operasi Baris Elementer (OBE)

Operasi Baris Elementer disingkat dengan OBE adalah operasi baris pada suatu matriks menghasikan matriks baru yang tetap ekuivalen/similar artinya matriks baru mempunyai karakteristik yang tetap sama apabila dilakukan Operasi Baris Elementer. Adapun langkahlangkah OBE beserta notasi dari langkah tersebut sebagai berikut:

- 1. B_{ij} notasi untuk operasi penukaran baris ke-i dengan baris ke-j
- 2. $B_i(k)$) notasi untuk operasi menggandakan tiap entri baris ke-i dengan scalar $k \neq 0$
- 3. $B_i + kB_j$ notasi untuk operasi menambahkan tiap entri baris ke-i dengan scalar $k, k \neq 0$ kali baris ke-j

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

q

9

B.2.2 Matriks Invers

• Matriks persegi A dikatakan mempunyai invers, jika terdapat matriks B sedemikian hingga:

$$AB = BA = I$$
.

dimana I matriks identitas

• B dikatakan invers matriks A ditulis A^{-1} , maka $AA^{-1} = A^{-1}A = I$

Contoh 1.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix}$$

$$AA^{-1} = A^{-1}A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 3 & -1 \\ 0 & -3 & 2 \\ 1 & 1 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Mencari Matriks Invers

Diberikan matriks *A* tambahkan pada sisi kanan matriks identitas, ubahlah matriks *A* menjadi bentuk matriks identitas dengan menggunakan *OBE*. Hasil dari matriks sisi kanan merupakan matriks invers dari matriks *A*.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & 1 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} & 0 & 1 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} & 0 & 0 & 1 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} & 0 & 0 & 0 & 1 \end{pmatrix} \sim OBE$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & 1 & 0 & 0 & b_{21} & b_{22} & b_{23} & b_{24} \\ 0 & 0 & 1 & 0 & b_{31} & b_{32} & b_{33} & b_{34} \\ 0 & 0 & 0 & 1 & b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

$$A \qquad I \qquad I \qquad A^{-1}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

11

11

Langkah - langkah OBE Mencari Matriks Invers

Langkah 1. Membuat elemen diagonal sama dengan 1 dan dibawah diagonal sama dengan 0

- Perhatikan apakah $a_{11} = 1$, jika tidak bagi baris 1 dengan a_{11}
- Gunakan OBE untuk membuat semua elemen kolom dibawah a_{11} sama dengan 0 dengan pedoman a_{11}
- Perhatikan apakah $a_{22} = 1$, jika tidak bagi baris 1 dengan a_{22}
- Gunakan OBE untuk membuat semua elemen kolom dibawah a_{22} sama dengan 0 dengan pedoman a_{22}
- Dan seterusnya.

Langkah 2. Membuat elemen diatas diagonal sama dengan 0

- Gunakan OBE untuk membuat semua elemen kolom diatas a_{nn} sama dengan 0 dengan pedoman a_{nn}
- Gunakan OBE untuk membuat semua elemen kolom diatas $a_{(n-1)(n-1)}$ sama dengan 0 dengan pedoman $a_{(n-1)(n-1)}$
- Dan seterusnya.

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Contoh 2.

Diberikan matriks A sebagai berikut:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

Tentukan invers matriks A

Penyelesaian

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{pmatrix} \sim (B_2 - 2B_1) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 2 & 5 & -1 & 0 & 1 \end{pmatrix} \sim (B_3 + 2B_2) \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{pmatrix}$$

$$\sim (B_2 - 2B_1) : 2 - (2 * 1) = 0 \quad \sim (B_3 - B_1) : 1 - 1 = 0 \quad \sim (B_3 + 2B_2) : 0 + 2 * 0 = 0$$

$$5 - (2 * 2) = 1 \quad 0 - 2 = -2 \quad -2 + 2 * 1 = 0$$

$$3 - (2 * 3) = -3 \quad 8 - 3 = 5 \quad 5 + 2 * (-3) = -1$$

$$0 - (2 * 1) = -2 \quad 0 - 1 = -1 \quad -1 + 2 * (-2) = -5$$

$$1 - (2 * 0) = 1 \quad 0 - 0 = 0 \quad 0 + 2 * 1 = 2$$

$$0 - (2 * 0) = 0 \quad 1 - 0 = 1 \quad 1 + 2 * 0 = 1$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

13

13

Sistem Persamaan Linear (SPL)

- 1. Tak Homogen (selanjutnya disebut SPL)
- 2. Homogen

1. SPL Tak Homogen

- Sistem persamaan linear tak homogen adalah koleksi sebanyak berhingga persamaanpersamaan linier dengan konstanta semuanya tidak nol (nilai b_m semuanya tidak nol).
- Bentuk umum sistem persamaan linier tak homogen dengan m persamaan dan n variabel adalah sebagai berikut :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_2 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_2 + \dots + a_{mn}x_n = b_m$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

1 =

15

Sistem Persamaan Linear (SPL)

- 1. Tak Homogen (selanjutnya disebut SPL)
- 2. Homogen

1. SPL Tak Homogen

- Sistem persamaan linear tak homogen adalah koleksi sebanyak berhingga persamaanpersamaan linier dengan konstanta semuanya tidak nol (nilai b_m semuanya tidak nol).
- Bentuk umum sistem persamaan linier tak homogen dengan m persamaan dan n variabel adalah sebagai berikut :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_2 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_2 + \dots + a_{3n}x_n = b_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_2 + \dots + a_{mn}x_n = b_m$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

2. SPL Homogen

- Sistem persamaan linear homogen adalah koleksi sebanyak berhingga persamaan-persamaan linier dengan semua konstanta bernilai $0 \text{ (nol)} \rightarrow (b_m = 0)$.
- Bentuk umum sistem persamaan linier homogen dengan m persamaan dan n variabel adalah sebagai berikut:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_2 + \dots + a_{2n}x_n = 0$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_2 + \dots + a_{3n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_2 + \dots + a_{mn}x_n = 0$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

17

17

Sistem Persamaan Linear (SPL) dengan *n* Persamaan

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots + \vdots + \vdots + \dots + \vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

Dinyatakan dalam bentuk matriks

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{pmatrix} \Rightarrow \text{Ditulis} : Ax = b$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

B.3.1 Penyelesaian SPL dengan Menggunakan Matriks Invers

 \rightarrow Bentuk SPL dinyatakan: Ax = b

Kalikan kedua ruas dengan A^{-1} didapat:

$$A^{-1}Ax = A^{-1}b$$
$$Ix = A^{-1}b$$
$$x = A^{-1}b$$

Jadi untuk mendapatkan penyelesaian SPL: invers matriks *A* dikalikan dengan matriks kolom b

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

10

19

Contoh B.3.1.

Dapatkan penyelesaian SPL berikut:

$$2x_1 - 3x_2 + x_3 = 1$$
$$x_1 + x_2 - 4x_3 = 1$$
$$3x_1 - 4x_2 = 1$$

Jawab Bentuk matriks
$$A = \begin{pmatrix} 2 & -3 & 1 \\ 1 & 1 & -4 \\ 3 & -4 & 0 \end{pmatrix}$$
 Dapatkan invers $A : A^{-1}$

$$a_{11} = 1 \rightarrow \frac{1}{2}B_{1}$$

$$\begin{pmatrix} 2 & -3 & 1 & | & 1 & 0 & 0 \\ 1 & 1 & -4 & | & 0 & 1 & 0 \\ 3 & -4 & 0 & | & 0 & 0 & 0 \end{pmatrix} \sim {\binom{1}{2}}B_{1}\begin{pmatrix} 1 & -\frac{3}{2} & \frac{1}{2} & | & \frac{1}{2} & 0 & 0 \\ 1 & 1 & -4 & | & 0 & 1 & 0 \\ 3 & -4 & 0 & | & 0 & 0 & 0 \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

$$a_{21} = 0 \rightarrow B_2 - B_1$$
; $a_{31} = 0 \rightarrow B_3 - 3B_1$

$$\begin{pmatrix} 1 & -\frac{3}{2} & \frac{1}{2} & | & \frac{1}{2} & 0 & 0 \\ 1 & 1 & -4 & | & 0 & 1 & 0 \\ 3 & -4 & 0 & | & 0 & 0 & 1 \end{pmatrix} \sim B_2 - B_1 \\ \sim B_3 - 3B_1 \\ \Rightarrow a_{21} = 0; \ a_{31} = 0$$

$$\begin{pmatrix} 1 & -\frac{3}{2} & \frac{1}{2} & | & \frac{1}{2} & 0 & 0 \\ 0 & \frac{5}{2} & -\frac{9}{2} & | & -\frac{1}{2} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & | & -\frac{3}{2} & 0 & 1 \end{pmatrix}$$

$$a_{21} = 0; \ a_{31} = 0$$

$$\sim B_2 - B_1 : 1 - 1 = 0; \quad 0 - \frac{1}{2} = -\frac{1}{2}$$

$$1 - \left(-\frac{3}{2}\right) = \frac{5}{2}; \quad 1 - 0 = 1$$

$$-4 - \frac{1}{2} = -\frac{9}{2}; \quad 0 - 0 = 0$$

$$\sim B_3 - 3B_1 : 3 - 3.1 = 0; \quad 0 - 3.\frac{1}{2} = -\frac{3}{2}$$

$$-4 - 3\left(-\frac{3}{2}\right) = \frac{1}{2}; \quad 0 - 3.0 = 0$$

$$0 - 3.\frac{1}{2} = -\frac{3}{2}; \quad 1 - 3.0 = 1$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

23

$$x = A^{-1}b$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{16}{3} & \frac{4}{3} & -\frac{11}{3} \\ \frac{4}{3} & 1 & -\frac{3}{3} \\ \frac{7}{3} & \frac{1}{3} & -\frac{5}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$x_1 = \frac{16}{3} \cdot 1 + \frac{4}{3} \cdot 1 - \frac{11}{3} \cdot 1 = \frac{9}{3} = 3$$

$$x_2 = 4 \cdot 1 + 1 \cdot 1 - 3 \cdot 1 = 2$$

$$x_3 = \frac{7}{3} \cdot 1 + \frac{1}{3} \cdot 1 - \frac{5}{3} \cdot 1 = \frac{3}{3} = 1$$

Penyelesaian SPL = (3, 2, 1)

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Sistem Persamaan Linear (SPL) dengan *n* Persamaan

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$$

$$\vdots + \vdots + \vdots + \dots + \vdots = \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$$

Bentuk Augmented matriks (matriks yang diperbesar)

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} & b_m \end{pmatrix}$$

Koefisen peubah x Nilai sisi kanan

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

25

25

B.3.2 Penyelesaian Sistem Persamaan Linear Metoda Eliminasi Gauss

- Untuk SPL yang mempunyai banyak persamaan lebih mudah menggunakan metode Eliminasi Gauss
- Metode Eliminasi Gauss dari bentuk Augmented matriks diubah menjadi matriks segitiga (bawah atau atas) dengan OBE

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} & b_n \end{pmatrix} \longrightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ 0 & k_{22} & k_{23} & \cdots & k_{2n} & l_2 \\ 0 & 0 & k_{33} & \cdots & k_{3n} & l_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & k_{nn} & l_n \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Langkah-langkah OBE membuat matriks segitiga atas

- Ubah kolom a_{21} sampai a_{n1} menjadi 0 dengan OBE, baris ke-1 sebagai basis
 - ► Baris ke-2 (a_{21}/a_{11}) x Baris 1 didapat baris 2 dengan nilai baru
 - \triangleright Baris ke-3 (a_{31}/a_{11}) x Baris 1 didapat baris 3 dengan nilai baru
 - × ...
 - > Baris ke- $n (a_{n1}/a_{11})$ x Baris 1 didapat baris n dengan nilai baru

Bentuk Matriks menjadi

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ 0 & k_{22} & k_{23} & \cdots & k_{2n} & l_2 \\ 0 & p_{32} & p_{33} & \cdots & p_{3n} & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & p_{n2} & p_{n3} & \cdots & p_{nn} & c_n \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

2-

27

Langkah-langkah OBE (lanjutan ...)

- Ubah kolom p_{32} sampai p_{n2} menjadi 0 dengan OBE, baris ke-2 sebagai basis
 - ► Baris ke-3 (p_{32}/k_{22}) x Baris 2 didapat baris 3 dengan nilai baru
 - ightharpoonup Baris ke-4 (p_{42}/k_{22}) x Baris 2 didapat baris 4 dengan nilai baru
 - **>** ...
 - ightharpoonup Baris ke- $n-(p_{n2}/k_{22})$ x Baris 2 didapat baris n dengan nilai baru

Bentuk Matriks menjadi

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ 0 & k_{22} & k_{23} & \cdots & k_{2n} & l_2 \\ 0 & 0 & k_{33} & \cdots & k_{3n} & l_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & q_{n3} & \cdots & q_{nn} & d_n \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Langkah-langkah OBE (lanjutan ...)

- Gunakan cara yang sama untuk mengubah kolom q_{43} sampai q_{n3} menjadi 0
- Dan seterusnya sampai pada kolom ke-(*n*-2)

Bentuk Matriks menjadi

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

29

29

Contoh

Selesaikan SPL dibawah ini dengan metode eliminasi Gauss

$$3x_1 + 5x_2 - x_3 = 17$$

 $3x_1 - 2x_2 + 2x_3 = 8$
 $x_1 + x_2 + 10x_3 = 45$

Jawab

Matriks augmented dan OBE

Matriks augmented dan OBE
$$\begin{pmatrix}
3 & 5 & -1 & 17 \\
3 & -2 & 2 & 8 \\
1 & 1 & 10 & 45
\end{pmatrix}
B_3 tukar B_1
\begin{pmatrix}
1 & 1 & 10 & 45 \\
3 & -2 & 2 & 8 \\
1 & 1 & 10 & 45
\end{pmatrix}
\sim (B_2 - 3B_1)
\begin{pmatrix}
1 & 1 & 10 & 45 \\
0 & -5 & -28 & -127 \\
0 & 2 & -31 & -118
\end{pmatrix}$$

$$\sim (B_2 - 3B_1)$$
: $3 - 3 * (1) = 0$; $\sim (B_3 - 3B_1)$: $3 - 3 * (1) = 0$; $-2 - 3 * (1) = -5$; $5 - 3 * (1) = 2$; $-1 - 3 * (10) = -31$; $8 - 3 * (45) = -127$ $17 - 3 * (45) = -118$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

$$\begin{pmatrix} 1 & 1 & 10 & 45 \\ 0 & -5 & -28 & -127 \\ 0 & 2 & -31 & -118 \end{pmatrix} \sim \begin{pmatrix} B_3 + \frac{2}{5}B_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 10 & 45 \\ 0 & -5 & -28 & -127 \\ 0 & 0 & -\frac{211}{5} & -\frac{844}{5} \end{pmatrix}$$

$$\sim \begin{pmatrix} B_3 + \frac{2}{5}B_2 \end{pmatrix} : 0 + \frac{2}{5}(& 0) = 0 ; \qquad x_1 x_2 x_3 b$$

$$\sim (5B_3 + 2B_2) \quad 5.0 + 2.0 = 0 ;$$

$$2 + \frac{2}{5}(-5) = 0 ;$$

$$-31 + \frac{2}{5}(-28) = -\frac{211}{5} ; \qquad 5.(-31) + 2.(-28) = -211;$$

$$-118 + \frac{2}{5}(-127) = -\frac{844}{5} \qquad 5.(-118) + 2.(-127) = -844 ;$$

$$-\frac{211}{5}x_3 = -\frac{844}{5} \rightarrow x_3 = -\frac{844}{5} : \left(-\frac{211}{5}\right) = -\frac{844}{5} \times \left(-\frac{5}{211}\right) = -\frac{5}{211} = 4$$

$$-5x_2 - 28x_3 = -127 \leftrightarrow -5x_2 - 28(4) = -127 \leftrightarrow -5x_2 = -127 + 132 \rightarrow x_2 = \frac{15}{5} = 3$$

$$x_1 + x_2 + 10x_3 = 45 \rightarrow x_1 + 3 + 10(4) = 45 \rightarrow x_1 = 45 - 3 - 40 = 2$$

$$(x_1, x_2, x_3) = (2, 3, 4)$$

$$Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan$$

31

Contoh

Selesaikan SPL dibawah ini dengan metode eliminasi Gauss

$$x_1 - x_2 - x_3 - x_4 = 5$$

 $x_1 + 2x_2 + 3x_3 + x_4 = -2$
 $3x_1 + x_2 + 2x_4 = 1$

$$2x_1 + 2x_3 + 3x_4 = 3$$

Jawab

Matriks augmented dan OBE

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

32

$$\begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 4 & 3 & 5 & -14 \\ 0 & 2 & 4 & 5 & -7 \end{pmatrix} \sim \begin{pmatrix} B_3 - \frac{4}{3}B_2 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{14}{3} \\ 0 & 0 & \frac{4}{3} & \frac{11}{3} & -\frac{7}{3} \end{pmatrix} \sim \begin{pmatrix} B_4 + \frac{4}{7}B_3 \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

33

33

$$\begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{14}{3} \\ 0 & 0 & 0 & 5 & -5 \end{pmatrix}$$

$$5x_4 = -5 \rightarrow x_4 = -1$$

$$-\frac{7}{3}x_3 + \frac{7}{3}x_4 = -\frac{14}{3} \leftrightarrow -\frac{7}{3}x_3 + \frac{7}{3}(-1) = -\frac{14}{3} \leftrightarrow -\frac{7}{3}x_3 = -\frac{14}{3} + \frac{7}{3} \to x_3 = 1$$

$$3x_2 + 4x_3 + 2x_4 = -7 \leftrightarrow 3x_2 + 4 * 1 + 2 * (-1) = -7 \rightarrow 3x_2 = -9 \rightarrow x_2 = -3$$

$$x_1 - x_2 - x_3 - x_4 = -5 \leftrightarrow x_1 - (-3) - 1 - (-1) = 5 \to x_1 = 2$$

$$(x_1, x_2, x_3, x_4) = (2, -3, 1, -1)$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

3/

Contoh 4. SPL Homogen

Tentukan penyelesaian SPL homogen berikut.

$$3x_1 + 3x_2 + 2x_3 + 2x_4 = 0$$

$$-2x_1 - 2x_2 + x_3 + x_4 = 0$$

$$2x_1 + 2x_2 - 3x_3 - 3x_4 = 0$$

$$3x_1 + 3x_2 + 4x_3 + 4x_4 = 0$$

Penyelesaian:

$$\begin{bmatrix} 3 & 3 & 2 & 2 \\ -2 & -2 & 1 & 1 \\ 2 & 2 & -3 & -3 \\ 3 & 3 & 4 & 4 \end{bmatrix} \sim (B_1 + B_2) \begin{bmatrix} 1 & 1 & 3 & 3 \\ 2 & 2 & -3 & -3 \\ 3 & 3 & 4 & 4 \end{bmatrix} \sim (B_2 + 2B_1) \begin{bmatrix} 1 & 1 & 3 & 3 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & -9 & -9 \\ 0 & 0 & -5 & -5 \end{bmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

35

35

MATEMATIKA ITS

$$\begin{bmatrix} 1 & 1 & 3 & 3 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & -9 & -9 \\ 0 & 0 & -5 & -5 \end{bmatrix} \sim \frac{1}{7}B_2 \begin{bmatrix} 1 & 1 & 3 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 9 & -9 \\ 0 & 0 & 5 & -5 \end{bmatrix} \sim (B_3 + 9B_2) \begin{bmatrix} 1 & 1 & 3 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim (B_1 - 3B_2) \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_1 + x_2 = 0$$
 atau $x_1 = -x_2$
 $x_3 + x_4 = 0$ atau $x_3 = -x_4$

Karena x_2 dan x_4 bernilai sebarang bilangan riil maka keduanya dapat diganti dengan parameter, misalnya, $x_2 = t$ dan $x_4 = s$, sehingga penyelesaian SPL homogen tersebut ialah: $\{t, s \in R | x_1 = -t, x_2 = t, x_3 = -s, x_4 = s\}$.

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Contoh

Selesaikan SPL dibawah ini dengan metode eliminasi Gauss

$$3x_1 + 5x_2 - x_3 = 17$$
$$3x_1 - 2x_2 + 2x_3 = 8$$
$$x_1 + x_2 + 10x_3 = 45$$

Jawab

Matriks augmented dan OBE

$$\begin{pmatrix} 3 & 5 & -1 & 17 \\ 3 & -2 & 2 & 8 \\ 1 & 1 & 10 & 45 \end{pmatrix} B_3 tukar B_1 \begin{pmatrix} 1 & 1 & 10 & 45 \\ 3 & -2 & 2 & 8 \\ 1 & 5 & -1 & 17 \end{pmatrix} \sim (B_2 - 3B_1) \begin{pmatrix} 1 & 1 & 10 & 45 \\ 0 & -5 & -28 & -127 \\ 0 & 2 & -31 & -118 \end{pmatrix}$$

$$\sim (B_2 - 3B_1)$$
: $3 - 3 * (1) = 0$; $\sim (B_3 - 3B_1)$: $3 - 3 * (1) = 0$; $-2 - 3 * (1) = -5$; $5 - 3 * (1) = 2$; $-1 - 3 * (10) = -31$; $8 - 3 * (45) = -127$ $17 - 3 * (45) = -118$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

37

37

$$\begin{pmatrix} 1 & 1 & 10 & 45 \\ 0 & -5 & -28 & -127 \\ 0 & 2 & -31 & -118 \end{pmatrix} \sim \begin{pmatrix} B_3 + \frac{2}{5}B_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 10 & 45 \\ 0 & -5 & -28 & -127 \\ 0 & 0 & -\frac{211}{5} & -\frac{844}{5} \end{pmatrix}$$

$$\sim \begin{pmatrix} B_3 + \frac{2}{5}B_2 \end{pmatrix} : 0 + \frac{2}{5}(& 0) = & 0 ; & x_1 & x_2 & x_3 & b \\ & 2 + \frac{2}{5}(& -5) = & 0 ; & & (5B_3 + 2B_2) & 5.0 + 2.0 = 0 ; \\ & -31 + \frac{2}{5}(-28) = -\frac{211}{5} ; & & 5.(-31) + 2.(-28) = -211; \\ & -118 + \frac{2}{5}(-127) = -\frac{844}{5} & & 5.(-118) + 2.(-127) = -844 ; \\ -\frac{211}{5}x_3 = -\frac{844}{5} \rightarrow x_3 = -\frac{844}{5} : \left(-\frac{211}{5} \right) = -\frac{844}{5} \times \left(-\frac{5}{211} \right) = -\frac{5}{211} = 4 \\ & -5x_2 - 28x_3 = -127 \leftrightarrow -5x_2 - 28(4) = -127 \leftrightarrow -5x_2 = -127 + 132 \rightarrow x_2 = \frac{15}{5} = 3 \\ x_1 + x_2 + 10x_3 = 45 \rightarrow x_1 + 3 + 10(4) = 45 \rightarrow x_1 = 45 - 3 - 40 = 2 \\ (x_1, x_2, x_3) = (2, 3, 4)$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Contoh

Selesaikan SPL dibawah ini dengan metode eliminasi Gauss

$$x_{1} - x_{2} - x_{3} - x_{4} = 5$$

$$x_{1} + 2x_{2} + 3x_{3} + x_{4} = -2$$

$$3x_{1} + x_{2} + 2x_{4} = 1$$

$$2x_{1} + 2x_{3} + 3x_{4} = 3$$

Jawab

Matriks augmented dan OBE

$$\begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 1 & 2 & 3 & 1 & -2 \\ \hline 3 & 1 & 0 & 2 & 1 \\ 2 & 0 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} B_2 - B_1 \\ \sim \begin{pmatrix} B_3 - 3B_1 \\ \sim \begin{pmatrix} B_4 - 2B_1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 4 & 3 & 5 & -14 \\ 0 & 2 & 4 & 5 & -5 \end{pmatrix}$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

39

39

$$\begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{14}{3} \\ 0 & 0 & 0 & 5 & -5 \\ x_1 & x_2 & x_3 & x_4 & b \end{pmatrix}$$

$$5x_4 = -5 \rightarrow x_4 = -1$$

$$-\frac{7}{3}x_3 + \frac{7}{3}x_4 = -\frac{14}{3} \leftrightarrow -\frac{7}{3}x_3 + \frac{7}{3}(-1) = -\frac{14}{3} \leftrightarrow -\frac{7}{3}x_3 = -\frac{14}{3} + \frac{7}{3} \to x_3 = 1$$

$$3x_2 + 4x_3 + 2x_4 = -7 \leftrightarrow 3x_2 + 4 * 1 + 2 * (-1) = -7 \to 3x_2 = -9 \to x_2 = -3$$

$$x_1 - x_2 - x_3 - x_4 = -5 \leftrightarrow x_1 - (-3) - 1 - (-1) = 5 \to x_1 = 2$$

$$(x_1, x_2, x_3, x_4) = (2, -3, 1, -1)$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

41

41

B.3.3 Penyelesaian Sistem Persamaan Linear Metoda Eliminasi Gauss - Jordan

- Metoda Eliminasi Gauss Jordan merupakan lanjutan dari metoda eliminasi Gauss
- Bentuk matriks segitiga atas/bawah dilakukan OBE sehingga membentuk matriks diagonal

Augmented Matriks

Matriks Segitiga Atas

Matriks Diagonal

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Contoh 10.

Selesaiakan SPL dibawah ini dengan metode eliminasi Gauss - Jordan

$$3x_1 + 5x_2 - x_3 = 17$$

 $3x_1 - 2x_2 + 2x_3 = 8$
 $x_1 + x_2 + 10x_3 = 45$

Jawab

Matriks segitiga atas dan OBE Jordan dari Contoh 8.

Baris 2 dibagi (-5) agar diagonal $a_{22} = 1$

$$\sim (B_1 - B_2): 1 - 0 = 1; 10 - \frac{28}{5} = \frac{22}{5};$$

Baris 3 dibagi $\left(-\frac{211}{5}\right)$ agar diagonal $a_{33}=1$

$$1-1 = 0$$
; $45 - \frac{127}{5} = \frac{98}{5}$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

13

43

Dibuat sama dengan 0, basis B₃

Dibuat sama dengan 0, basis B_3

$$\begin{pmatrix} 1 & 0 & \frac{22}{5} & \frac{98}{5} \\ 0 & 1 & \frac{28}{5} & \frac{127}{5} \\ 0 & 0 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} B_1 - \frac{22}{5}B_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & \frac{1}{28} \\ 0 & 1 & \frac{28}{5} & \frac{127}{5} \\ 0 & 0 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} B_2 - \frac{28}{5}B_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & \frac{28}{5} & \frac{127}{5} \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\sim (B_1 - \frac{22}{5}B_3): 1 - \frac{22}{5}*0 = 1; \qquad \sim (B_2 - \frac{5}{28}B_3): 0 - \frac{28}{5}*0 = 0; \qquad x_1 = 2$$

$$0 - \frac{22}{5}*0 = 0; \qquad 1 - \frac{28}{5}*0 = 1; \qquad x_2 = 3$$

$$\frac{22}{5} - \frac{22}{5}*1 = 0; \qquad \frac{28}{5} - \frac{28}{5}*1 = 0; \qquad (x_1, x_2, x_3) = (2, 3, 4)$$

$$\frac{98}{5} - \frac{22}{5}*4 = 2; \qquad \frac{127}{5} - \frac{28}{5}*4 = \frac{127}{5} - \frac{112}{5} = 3;$$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

44

Contoh

Selesaiakan SPL dibawah ini dengan metode eliminasi Gauss - Jordan

$$x_{1} - x_{2} - x_{3} - x_{4} = 5$$

$$x_{1} + 2x_{2} + 3x_{3} + x_{4} = -2$$

$$3x_{1} + x_{2} + 2x_{4} = 1$$

$$2x_{1} + 2x_{3} + 3x_{4} = 3$$

Jawab

Matriks segitiga atas Gauss

$$\begin{pmatrix}
1 & -1 & -1 & -1 & 5 \\
0 & 3 & 4 & 2 & -7 \\
0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{14}{3} \\
0 & 0 & 0 & 5 & -5
\end{pmatrix}$$

 $\begin{pmatrix} 1 & -1 & -1 & -1 & 5 \\ 0 & 3 & 4 & 2 & -7 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{14}{3} \\ 0 & 0 & 0 & 5 & -5 \end{pmatrix} \quad \begin{array}{c} \text{Buat menjadi matriks Gauss-Jordan} \\ \text{Untuk latihan } !!! \\ \end{array}$

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan

Lanjut ke topik: Determinan

Daryono, Kalkulus 1: Suplemen B Matriks dan Determinan