SQL MAJOR ASSISGNMENT

By-SAURABH SHAHI

Q1.

1. Create a table "Station" to store information about weather observation stations:

ID	Number	Primary key
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	Number	
LONG_W	Number	

SOL 1.

```
create TABLE STATION

(ID NUMBER PRIMARY KEY,

CITY CHAR(20),

STATE CHAR(2),

LAT_N NUMBER,

LONG_W NUMBER)

Table created.
```

Q2.

2. Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

SOL 2.

```
INSERT INTO STATION VALUES(13, 'PHOENIX', 'AZ', 33,112)

1 row(s) inserted.

INSERT INTO STATION VALUES(44, 'DENVER', 'CO', 40,105)

1 row(s) inserted.

INSERT INTO STATION VALUES(66, 'CARIBOU', 'ME', 47,68)

1 row(s) inserted.
```

Q3. Execute a query to look at table STATION in undefined order.

SOL 3.

```
1 --3. Execute a query to look at table STATION in undefined order.

2
3 SELECT * FROM STATION
```

ID	CITY	STATE	LAT_N	LONG_N
13	PHOENIX	AZ	33	112
44	DENVER	со	40	105
66	CARIBOU	ME	47	68

Q4. Execute a query to select Northern stations (Northern latitude > 39.7).

SOL 4.

```
1 --4. Execute a query to select Northern stations (Northern latitude > 39.7).
2
3 SELECT * FROM STATION
4 WHERE LAT_N > 39.7
```

ID	CITY	STATE	LAT_N	LONG_W
44	DENVER	со	40	105
66	CARIBOU	ME	47	68

Q5.

Create another table, 'STATS', to store normalized temperature and precipitation data:

Column	Data type	Remark
ID	Number	must match some STATION table ID(so name & location will be known).
MONTH	Number	Range between 1 and 12
TEMP_F	Number	in Fahrenheit degrees,Range between -80 and 150
RAIN_I	Number	in inches, Range between 0 and 100

There will be no Duplicate ID and MONTH combination.

SOL 5.

```
CREATE TABLE STATS

(ID NUMBER,

MONTH NUMBER(2),

TEMP_FAH NUMBER,

RAIN_INCH NUMBER,

FOREIGN KEY (ID) REFERENCES STATION (ID))
```

Table created.

Q6.

6. Populate the table STATS with some statistics for January and July:

ID	монтн	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

SOL 6.

INSERT INTO STATS VALUES (13,1,57.4,.31)

1 row(s) inserted.

INSERT INTO STATS VALUES (13,7,91.7,5.15)

1 row(s) inserted.

INSERT INTO STATS VALUES (44,1,27.3,.18)

1 row(s) inserted.

INSERT INTO STATS VALUES (44,7,74.8,2.11)

1 row(s) inserted.

INSERT INTO STATS VALUES (66,1,6.7,2.1)

1 row(s) inserted.

INSERT INTO STATS VALUES (66,7,65.8,4.52)

1 row(s) inserted.

Q7. Execute a query to display temperature stats (from STATS table) for each city (from Station table).

SOL 7.

--Execute a query to display temperature stats (from STATS table) for each city (from Station table).

SELECT STATION.CITY, STATS.TEMP_FAH
FROM STATION
LEFT JOIN STATS ON STATION.ID = STATS.ID

CITY	TEMP_FAH
PHOENIX	57.4
PHOENIX	91.7
DENVER	27.3
DENVER	74.8
CARIBOU	6.7
CARIBOU	65.8

Q8. Execute a query to look at the table STATS, ordered by month and greatest rainfall, with columns rearranged. It should also show the corresponding cities.

SOL 8.

- 4 SELECT *
 5 FROM(Select STATS.ID, STATS.MONTH, STATS.TEMP_FAH, STATS.RAIN_INCH AS "RAINFALL", STATION.CITY
 6 from STATS INNER JOIN STATION ON STATION.ID = STATS.ID
 7 ORDER BY MONTH)
 8 order by rainfall desc
- ID MONTH TEMP_FAH RAINFALL CITY 13 7 91.7 5.15 PHOENIX 65.8 4.52 CARIBOU 66 74.8 2.11 DENVER 6.7 2.1 CARIBOU 66 1 PHOENIX 13 1 57.4 .31 1 27.3 DENVER

Q9. Execute a query to look at temperatures for July from table STATS, lowest temperatures first, picking up city name and latitude. SOL 9.

SELECT CITY, MONTH, LAT_N, TEMP_FAH

FROM STATION

INNER JOIN STATS ON STATION.ID = STATS.ID

WHERE MONTH = 7

ORDER BY TEMP_FAH

CITY	MONTH	LAT_N	TEMP_FAH
CARIBOU	7	47	65.8
DENVER	7	40	74.8
PHOENIX	7	33	91.7

Q10. Execute a query to show MAX and MIN temperatures as well as average rainfall for each city.

SOL 10.

SELECT MAX(TEMP_FAH) AS "MAXIMUM TEMPERATURE", MIN(TEMP_FAH) AS "MINIMUM TEMPERATURE", AVG(RAIN_INCH) AS "AVERAGE RAINFALL", CITY FROM STATION

INNER JOIN STATS ON STATION.ID = STATS.ID

GROUP BY CITY

MAXIMUM TEMPERATURE	MINIMUM TEMPERATURE	AVERAGE RAINFALL	CITY
65.8	6.7	3.31	CARIBOU
74.8	27.3	1.145	DENVER
91.7	57.4	2.73	PHOENIX

Q11. Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter.

SOL 11.

- --Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter
 SELECT CITY, MONTH, round(RAIN_INCH*2.54,2) AS "RAIN IN CM", round(((TEMP_FAH-32)*5/9),2) AS "TEMP IN CELCIUS"
- 3 FROM STATION
 4 INNER JOIN STATS ON STATION.ID = STATS.ID

CITY MONTH RAIN IN CM TEMP IN CELCIUS PHOENIX .79 14.11 PHOENIX 13.08 33.17 DENVER 1 .46 -2.61 DENVER 7 5.36 23.78 CARIBOU 1 5.33 -14.06 CARIBOU 7 11.48 18.78

Q12. Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.

SOL 12.

- 1 --Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.
- 2 UPDATE STATS SET RAIN_INCH = RAIN_INCH + 0.01;
- 3 SELECT * FROM STATS

6 row(s) updated.

ID	MONTH	TEMP_FAH	RAIN_INCH
13	1	57.4	.32
13	7	91.7	5.16
44	1	27.3	.19
44	7	74.8	2.12
66	1	6.7	2.11
66	7.	65.8	4.53

Q13. Update Denver's July temperature reading as 74.9

SOL 13.

```
--Update Denver's July temperature reading as 74.9

UPDATE STATS SET TEMP_FAH = 74.9

WHERE MONTH = 7 AND ID = 44;

SELECT * FROM STATS
```

1 row(s) updated.

ID	MONTH	TEMP_FAH	RAIN_INCH
13	1	57.4	.32
13	7	91.7	5.16
44	1	27.3	.19
44	7	74.9	2.12
66	1	6.7	2.11
66	7	65.8	4.53