Тема 1. Відповідності між множинами

План

- 1. Декартів добуток двох множин.
- 2. Визначення відповідності.
- 3. Способи задання відповідностей.
- 4. Операції з відповідностями.
- 5. Властивості або характер відповідностей.
- 6. Види функціональних відповідностей.
- 7. Кардинальні числа.

Література 1. Конспект лекцій.

- 2. Новотарський М. А. Дискретна математика: навч. посіб. для студ. спеціальності 123 «Комп'ютерна інженерія». Київ :КПІ ім. Ігоря Сікорського, 2020. 278 с. URL: https://ela.kpi.ua/handle/123456789/37806
- 3. Тмєнова Н. П.. Дискретна математика. Теорія множин і відношень. Київ : ВПЦ «Київський університет», 2018. 103 с. URL : http://pdf.lib.vntu.edu.ua/books/2020/Tmenova_2018_103.pdf

1 Декартів добуток двох множин

Нехай задані дві множини $A = \{a_1, a_2, ..., a_n\}$ і $B = \{b_1, b_2, ..., b_m\}$.

Def. <u>Декартовим)</u> добутком множин A і B (позначається $A \times B$) називається нова множина всіх упорядкованих пар елементів $\left(a_i,b_j\right|$ $i=\overline{1,n};$ $j=\overline{1,m}$), таких, що перший елемент пари належить множині A, а другий - множині B.

Кардинальне число або кількість елементів цього декартова добутку

$$|A \times B| = card(A \times B) = m \cdot n$$
.

Приклади.

- Нехай $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2\}$. $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\}.$
- $A = \{a,b,c\}, B = \{1,2\}, A \times B = \{(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)\}.$
- $A = \{a,b,c\}, B = \{1,2\}, B \times A = \{(1,a),(2,a),(1,b),(2,b),(1,c),(2,c)\}.$
- $B = \{1,2\}, B \times B \equiv B^2 = \{(1,1),(1,2),(2,1),(2,2)\}.$
- $A = \{a_1, a_2, a_3\}, A \times A \equiv A^2 = \begin{cases} (a_1, a_1), (a_1, a_2), (a_1, a_3), (a_2, a_1), (a_2, a_2), \\ (a_2, a_3), (a_3, a_1), (a_3, a_2), (a_3, a_3) \end{cases}$

Порядок пар у декартовому добутку може бути будь-яким, але <u>порядок</u> елементів у кожній парі суворо визначений: першим елементом пари ϵ

елемент першого співмножника декартова добутку $A \times B$ (множина A), другим - елемент другого співмножника (множина B).

Діаграмами Ейлера-Венна декартів добуток не представляється.

Декартів добуток двох множин $A \times B$ можна представити графічно у вигляді точок на площині.

Декартів добуток асоціативний, але не ϵ комутативним:

$$A \times B \times C = (A \times B) \times C = A \times (B \times C);$$

 $A \times B \neq B \times A.$

Для декартова добутку виконуються закони дистрибутивності щодо операцій об'єднання, перетину та різниці :

$$(A_1 \cup A_2) \times B = (A_1 \times B) \cup (A_2 \times B);$$

$$(A_1 \cap A_2) \times B = (A_1 \times B) \cap (A_2 \times B);$$

$$(A_1 \setminus A_2) \times B = (A_1 \times B) \setminus (A_2 \times B).$$

Приклади.

- $A = \{1,2\}, B = \{a,b\}, C = \{\lambda\}$, тоді декартів добуток цих трьох множин $A \times B \times C = \{(1,a,\lambda), (1,b,\lambda), (2,a,\lambda), (2,b,\lambda)\}$.
- Нехай R множина дійсних чисел. Тоді $R \times R = R^2$ множина усіх точок площини, а $R \times R \times R = R^3$ множина усіх точок простору.
- $A = \{x : 0 \le x \le 1\}, B = \{y : 0 \le y \le 1\}$. Декартів добуток $A \times B$ представлений одиничним квадратом у декартовій системі координат.

2 Визначення відповідності

Def. <u>Відповідністю</u> (рос. **соответстие**, англ. **correspondence**) називається якийсь зв'язок між елементами однієї множини або елементами різних множин.

Відповідність — це будь-яка підмножина декартова добутку, тобто для двох множин $A = \{a_1, a_2, ..., a_n\}$ і $B = \{b_1, b_2, ..., b_m\}$ відповідність $G \subset A \times B$. Отже, Декартів добуток - універсум відповідності.

Поняття відповідності - це найбільш загальне поняття, що лежить в основі таких понять як, наприклад, функція.

Щоб поставити відповідність G між елементами множин X і Y необхідно вказати, які $y \in Y$ відповідають елементам $x \in X$, тобто. вказати пари (x, y).

• <u>Приклад 1</u>. Нехай між елементами множин $X = \{x_1, x_2, x_3\}$ і $Y = \{y_1, y_2\}$ задано відповідність $G = \{(x_1, y_1), (x_1, y_2), (x_2, y_1)\}$, $G \subseteq X \times Y$, і може повністю збігатися з ним у окремих випадках.

Def. Областю визначення $D_1(G)$ відповідності $G \subseteq X \times Y$ є множина його перших координат, $D_1(G) \subseteq X$. Область визначення відповідності часто називають множиною прообразів.

Областю визначення відповідності, наведеної в прикладі 1, є множина $D_1(G) = \{x_1, x_2\} \subset X$.

Def. <u>Область значень</u> $D_2(G)$ відповідності $G \subseteq X \times Y$ є множина його других координат, $D_2(G) \subseteq Y$. Область значень відповідності часто називають множиною образів.

Область значень відповідності, наведеної в прикладі $1, \epsilon$ множина $D_2(G) = \{y_1, y_2\} = Y.$

3 Способи задання відповідностей

1. *Перерахування* всіх елементів (пар) відповідності $G \subseteq X \times Y$. Відповідність у прикладі 1 задано саме цим способом.

2. Табличний чи матричний спосіб.

Перший рядок таблиці містить усі елементи множини У, а перший стовпець цієї таблиці містить усі елементи множини Х. Якщо у відповідність входить пара (x_1, y_2) , то на перетині рядка, що відповідає $X = x_1$, і стовпця, що відповідає $Y = y_2$, ставиться 1. Таким чином, пари, що входять у відповідність, відзначаються в таблиці одиницями, інші клітини таблиці заповнюються нулями.

Приклад 1 заданий таким чином:

X Y	y 1	<i>y</i> 2
<i>x</i> ₁	1	1
<i>x</i> ₂	1	0
х 3	0	0

3. Графічний спосіб.

Відповідність задається графом (граф – це множина точок, що звуться вершинами, і множина ліній, що з'єднують вершини і звуться ребрами чи дугами). Кожному елементу множини, на якій задано відповідність, відповідає вершина графа. Якщо елементу x_1 відповідає елемент y_1 то з вершини x_1 у вершину y_1 проводиться стрілка (дуга графа) (рис. 1). Якщо елемент x_1 поставлений у відповідність сам до себе, тобто, відповідно є пара (x_1, x_1) , то ребро графа починається і закінчується у вершині x_1 (рис. 2). Таке ребро називається петлею.

Рисунок
$$1 - G = \{(x_1, y_1), (x_1, y_2), (x_2, y_1)\}$$
 Рисунок $2 - \Pi$ етля (x_1, x_1)

4. Кортеж із трьох множин

Відповідність описується кортежем з трьох множин у такій послідовності: множина прообразів, множина образів, підмножина декартова добутку.

Приклад 1 можна описати таким чином: q=(X,Y,G), де $X=\left\{x_1,x_2,x_3\right\}$, $Y=\left\{y_1,y_2\right\}$, $G=\left\{(x_1,y_1),(x_1,y_2),(x_2,y_1)\right\}$,

4 Операції з відповідностями

Оскільки відповідності ϵ множинами, то над ними можливі всі ті операції, які виконуються над множинами: об'єднання, перетин, різниця, симетрична різниця, доповнення (до універсуму, тобто до декартова добутку $X \times Y$).

Серед інших операцій найважливішими новими операціями ϵ **інверсія** (унарна операція) та **композиція** (бінарна операція).

4.1 Інверсія відповідності

Інверсія відповідності будується з урахуванням поняття <u>інверсії пари</u>. Інверсія пари здійснюється перестановкою координат пари. Інверсією пари (x, y) буде пара (y, x). Для інверсії введемо позначення: $(x, y)^{-1} = (y, x)$.

Def. <u>Інверсією відповідності</u> $G \subseteq X \times Y$ називається відповідність $G^{-1} \subseteq Y \times X$, утворена інверсіями всіх пар, що належать G. Очевидно, що при цьому мають місце такі співвідношення:

$$D_1(G^{-1}) = D_2(G), \quad D_2(G^{-1}) = D_1(G).$$

• <u>Приклад 2</u>. На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2\}$ задано відповідність $G = \{(x_1, y_2), (x_3, y_1), (x_3, y_2), (x_4, y_2)\}$. Інверсна відповідність має такий вигляд

$$G^{-1} = \{(y_2, x_1), (y_1, x_3), (y_2, x_3), (y_2, x_4)\}.$$

4.2 Композиція відповідностей

Композиція відповідностей будується виходячи з поняття композиції пар. Нехай $x_i \in X, y_j, y_n \in Y, z_k \in Z$. Складемо такі пари: $(x_i, y_j) \in X \times Y$, $(y_j, z_k), (y_n, z_k) \in Y \times Z$. Композицією пар (x_i, y_j) і (y_j, z_k) називається пара $(x_i, z_k) \in X \times Z$. Позначення композиції: $(x_i, y_j) \circ (y_j, z_k) = (x_i, z_k)$. Композицію пар (x_i, y_j) та (y_j, z_k) можна трактувати таким чином. Якщо елементу $x_i \in X$ поставлений у відповідність елемент $y_j \in Y$, а цьому елементу своєю чергою

поставлений у відповідність елемент $z_k \in Z$, це означає, що елементу $x_i \in X$ відповідає елемент $z_k \in Z$.

Композицією пар вигляду (x_i,y_j) і (y_n,z_k) у випадку, якщо $j\neq n$ буде пуста множина, тобто $(x_i,y_j)\circ (y_n,z_k)=\varnothing$.

Def. <u>Композицією відповідностей</u> $G \subseteq X \times Y$ і $H \subseteq Y \times Z$ називається відповідність $F \subseteq X \times Z$, складена з усіх можливих композицій пар відповідностей G і H.

• *Приклад* 3. На множинах

$$X = \{x_1, x_2, x_3, x_4\}, Y = \{y_1, y_2, y_3, y_4\}, Z = \{z_1, z_2, z_3, z_4, z_5\}$$

задані відповідності

$$G = \left\{ \underline{(x_1, y_1)}, \underline{(x_1, y_2)}, \underline{(x_2, y_2)}, \underline{(x_4, y_2)}, (x_3, y_4), (x_4, y_4) \right\},$$

$$H = \left\{ \underline{(y_1, z_2)}, \underline{(y_1, z_5)}, \underline{(y_2, z_2)}, (y_3, z_4), (y_3, z_1) \right\}$$

Композицію цих відповідностей складемо на підставі композицій пар (рис. 3):

$$F = \{(x_1, z_2), (x_1, z_5), (x_2, z_2), (x_4, z_2)\}.$$

Рисунок 3 – Приклад композиції відповідностей

5 Властивості або характер відповідностей

Основними властивостями (або типом характеру) відповідностей є такі:

- 1. Функціональність (fun);
- 2. Ін'єктивність (*in*);
- 3. Усюди визначеність (def);
- 4. Сюр'єктивність (*sur*) ;
- 5. Бієктивність (bi) або взаємно однозначність.

5.1 ФУНКЦІОНАЛЬНІСТЬ

Def. Відповідність $G \subseteq X \times Y$ називається функціональною, якщо всі її пари мають різні перші координати, або іншими словами, кожному елементу $x \in X$, такому, що $(x, y) \in G$, відповідає один і тільки один елемент $y \in Y$, або кожен прообраз має тільки один образ.

Відповідність із прикладу 1 не ϵ функціональною, так як елементу x_1 відповідають два образи: y_1 і ty_2 .

• **Приклад 4.** На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3\}$ задано відповідність $G = \{(x_2, y_2), (x_3, y_3), (x_4, y_2)\}$. Ця відповідність функціональна, оскільки всі перші координати різні. Їй відповідає граф, наведений на рис. 4. Областю визначення даної відповідності є множина $D_1(G) = \{x_2, x_3, x_4\}$, областю значень є множина $D_2(G) = \{y_2, y_3\}$.

5.2 Ін'єктивність

Def. Відповідність $G \subseteq X \times Y$ називається <u>ін'єктивною</u>, якщо <u>всі</u> її пари мають <u>різні</u> другі координати. Або інакше, відповідність ін'єктивна, якщо кожен елемент $y \in Y$ є образом лише одного елемента $x \in X$ або взагалі не має прообразу.

Відповідності з прикладів 1 і 4 не ϵ ін'єктивними, так як елементу y_1 з прикладу 1 відповідають два прообрази: x_1 і x_2 , а елементу y_2 з прикладу 4 відповідають прообрази x_2 і x_4 .

• **Приклад 5.** На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3, y_4\}$ задано відповідність $G = \{(x_1, y_1), (x_1, y_3), (x_3, y_2)\}$. Ця відповідність ін'єктивна, оскільки всі інші координати різні, але не є функціональною. Їй відповідає граф, наведений на рис. 5. Областю визначення даної відповідності є множина $D_1(G) = \{x_1, x_3\}$, областю значень є множина $D_2(G) = \{y_1, y_2, y_3\}$.

Рисунок 4 – *Fun*

Рисунок 5 - In

5.3 Всюди визначеність

Def. Відповідність $G \subseteq X \times Y$ називається всюди визначеною, якщо його область визначення збігається з усією множиною X, тобто. $D_1(G) = X$.

Відповідності з прикладів 1, 4, 5 не ϵ всюди визначеними.

• *Приклад 6*. На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3\}$ задано відповідність $G = \{(x_2, y_1), (x_1, y_3), (x_3, y_3), (x_4, y_3)\}$ (рис. 6). Ця відповідність всюди визначена, а також функціональна, але не ін'єктивна.

5.4 Сюр'єктивність

Def. Відповідність $G \subseteq X \times Y$ називається **сюр'єктивною**, якщо її область значень збігається з усією множиною Y, тобто $D_1(G) = Y$.

Відповідність прикладу 1 сюр'єктивна, так як $D_1(G) = \{y_1, y_2\} = Y$. Відповідності прикладів 4, 5, 6 не сюр'єктивні.

• **Приклад 7.** На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2\}$ задано відповідність $G = \{(x_1, y_1), (x_2, y_2), (x_4, y_2)\}$ (рис. 7). Ця відповідність сюр'єктивна та функціональна, але не ін'єктивна та не всюди визначена.

5.5 БІЄКТИВНІСТЬ

Def. Відповідність $G \subseteq X \times Y$ називається <u>бієктивною</u>, якщо вона одночасно функціональна, ін'єктивна, всюди визначена і сюр'єктивна.

Відповідності з прикладів 1-5 не бієктивні.

• **Приклад 8**. На множинах $X = \{x_1, x_2, x_3, x_4\}$ і $Y = \{y_1, y_2, y_3, y_4\}$ задано відповідність $G = \{(x_1, y_1), (x_2, y_3), (x_3, y_2), (x_4, y_4)\}$ (рис. 8). Ця відповідність бієктивна.

Зв'язок між властивостями наведений на рис. 9.

Рисунок 8 - Bi

Рисунок 9 – Властивості відповідностей

6. Види відповідностей

Def. <u>Функцією</u> f на множині X у множину Y називається всюди визначена функціональна відповідність між числовими множинами, позначається $f: X \to Y$ або y = f(x), наприклад, елементарні функції.

<u>Приклад 8</u>. $y = \sin(x)$.

Це функція, область визначення: $D_I(G) = \{x \in (-\infty; +\infty)\};$ область значень: $D_2(G) = [-1; +1].$

Def. Функціоналом називається всюди визначена функціональна відповідність f між множиною функцій X та числовою множиною Y, наприклад, визначений інтеграл.

Приклад 10.
$$y = \int_{0}^{1} f(x) dx$$
.

Це функціонал, область визначення: $D_I(G) = \{f(x)\};$ область значень: $D_2(G) = \{y \in (-\infty; +\infty)\}.$

Def. Оператором називається всюди визначена функціональна відповідність f між множинами функцій X та Y, наприклад, похідна.

Приклад 11.
$$y = \frac{\partial f(x,y)}{\partial x}$$
.

Це оператор, область визначення: $D_1(G) = \{f(x, y), \text{ які мають часткову по-хідну по } x\};$ область значень: $D_2(G) = \{f(x, y)\}.$

7 Кардинальні числа

Def. Дві множини називаються <u>рівносильними</u>, якщо між елементами цих множин можна встановити взаємно-однозначну відповідність.

Очевидно, що між двома кінцевими множинами можна встановити взаємно-однозначну (бієктивну) відповідність тоді і тільки тоді, коли обидві множини містять однакову кількість елементів.

Таку відповідність можна встановити і між деякими нескінченними множинами. Наприклад, якщо кожному натуральному числу n поставити у відповідність число 2n, то вийде взаємно-однозначна відповідність між множиною всіх натуральних чисел і множиною парних чисел. Звідси випливає, що ці дві множини рівносильні, незважаючи на те, що множина парних чисел є частиною (підмножиною) множини натуральних чисел.

В теорії множин не завжди вірно те, що частина менше цілого. Цінність поняття потужності, особливо у застосуванні до нескінченних множин, у тому, що ϵ нерівні нескінченні множини, тобто мова може йти про те, що одна нескінченність більше (або менше) іншої нескінченності.

Наприклад, потужність булеана нескінченної множини М більша за потужність самої множини М.

Множина, котра рівносильна множині натуральних чисел, називається <u>зліченою</u> множиною, тобто елементи зліченної множини можна пронумерувати натуральними числами.

Def. *Кардинальне число* – клас рівносильних множин.

Всі злчені множини мають одне кардинальне число, яке позначають через \aleph_0 (читається «алеф-нуль»).