Solitons et cosmologie ou symétrie et beauté intersidérale Conférence du vendredi

Éric Dupuis

Université de Montréal, département de physique des particules

- Cosmologie
 - Symétrie des groupes de Lie
 - Symétrie et cosmologie
- Solitons Appareillage mathématique
 - Équation d'ondes et soliton
 - Formalisme Lagrangien
 - Kink
- 3 Symétrie Modèles de l'univers
- 4 Quotidien en cosmologie théorique des particules

Cosmologie 101

- Cosmologie : Étude de la structure/origine/évolution de l'univers
- 2 Constantes de couplage, paramètres libres
- Univers primordial et théorie d'unification (particules)
- 4 Atteinte du vide : brisure spontanée de symétrie

Symétries en physique des particules

Modèle standard permet les associations suivantes :

Groupes de Lie pour les forces

• nucléaire faible : SU(2)

2 nucléaire forte : SU(3)

électromagnétique : U(1)

Brisure spontanée de symétrie

Les lois de la nature peuvent posséder des symétries sans que l'état de vide (fondamental) le soit nécessairement

Boson : Goldstone, Higgs et les jauges

2 Exemple : Glashow, Salam et Weinberg : SU(2)xU(1)

Un exemple pour les copains de Mat Con

Exemple : aimantation dans un matériau ferromagnétique Hamiltonien d'intéraction :

Et bien plus encore : vortex pour expliquer les supra type I et II

De retour aux aimants :

- L'atteinte d'une température critique (Curie)
- Différentes configurations de vide prises
- Rencontre : murs de domaine

- max : univers primordial (densité d'énergie)
- 2 min : notre état de l'univers ?
- transition, et apparition d'un vrai vide

Cordes cosmiques : Ligne 1d (quasi) Défauts topologiques : brisure de symétrie cylindrique Même objet que les lignes de vortex, supra

Équation d'ondes

• champ scalaire défini dans \mathbb{R}^n : $\phi(\vec{x},t)$

équation d'onde

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \Box \phi = 0 \tag{1}$$

Deux propriétés étudiées dans les solutions ϕ

- Forme et vitesse de l'onde conservées
- Deux ondes retrouvent asymptotiquement leur forme et vitesse

• Équation d'onde : V=0

Potentiels différents - Équations du mouvements modifiées

• terme dispersif : $\Box \phi + m^2 \phi = 0$ (Klein-Gordon)

1 onde plane : $k^2 \rightarrow k^2 + m^2$

2 terme non-linéaire : ϕ^3

En s'éloignant de l'équation d'onde, les deux propriétés peuvent être conservées : ondes solitaires et solitons

Équation d'ondes et soliton Formalisme Lagrangien Kink

Sur sa monture, John Russell poursuit sa destinée qui le mène vers l'onde solitaire

- **1** Densité d'énergie d'un soliton $\epsilon(x,t)$: localisée dans l'espace
- Énergie finie :
 - $\lim_{x\to\pm\infty}\partial_x E=0$
 - $\lim_{x\to\pm\infty}\phi[x]=g^{(i)}$

Formalisme Lagrangien

Quelques notions pratiques

• Notation covariante :

$$\mathbf{0} \ \ x_{\mu} = (x_0, \vec{x})$$

$$2 x_0 = ct, x_{1,2,3} = x, y, z$$

3 indices répétés :
$$v_a \cdot v_a = \sum_{i=0}^3 x_i^2$$
 (produit scalaire)

2 Métrique :
$$x^{\mu} = g^{\nu\mu} x_{\nu}$$

$$\odot$$
 Minkowski : $\eta^{\nu\mu}$ diag(1,-1,-1,-1)

• Action :
$$S[\phi] = \int dt (L[\phi]) = \int dx_{\mu} (\mathcal{L}[\phi])$$

- **1** Principe d'Hamilton : ϕ_0 | action minimisée
- Premier ordre nul pour un minimum d'action

$$2 \mathcal{L}[\phi] = \frac{1}{2} \partial_{\mu} \phi (\partial^{\mu} \phi)^* - V$$

3 Euler-Lagrange :
$$\partial_{\mu}\left(\frac{\mathcal{L}}{\partial(\partial_{\mu}\phi)}\right) = \frac{\partial\mathcal{L}}{\partial\phi}$$

$$\begin{split} V &= 0 \\ &\rightarrow (E - L)\partial_{\mu}(\frac{\partial_{a}\phi(\partial^{a}\phi)^{*}}{\partial_{\mu}\phi}) = 0 \\ &\partial_{t}(\partial^{t}\phi)^{*} + \partial_{x}(\partial^{x}\phi)^{*} + \dots = 0 \\ &\Box \phi = 0 \end{split}$$

Kink: cas de figure typique

Potentiel d'ordre 4

deux minimums absolus

$$V(\phi) = \frac{\lambda}{4} (|\phi|^2 - \frac{m^2}{\lambda})^2$$

a ..

$$\mathcal{L} = \frac{1}{2}(\partial_x \phi)^2 - V$$

$$\to \phi'' = \lambda \phi^3 - m^2 \phi$$

Analogie mécanique classique

Champ

$$\bullet \mathcal{H} = \frac{1}{2} (\partial_t \phi)^2 + \frac{1}{2} (\partial_x \phi)^2 + V(\phi)$$

On étudie alors : -V

Particule

$$\frac{\partial^2 \phi}{\partial_x^2} = -\frac{\partial U}{\partial \phi}$$

$$V(\pm\infty) \rightarrow \pm 1$$

Solution privilégiée : D'un max à l'autre

Récapitulons :

- travailler en 1+1 dimensions, mais solution statique
- 2 Potentiel $V \rightarrow \text{Équations d'Euler-Lagrange}$
- $\mathbf{3} \rightarrow \text{équation du mouvement}$:
 - $\bullet \to \phi'' = \lambda \phi^3 m^2 \phi \text{ (équation statique)}$
 - solution : kink

Cosmologie
Solitons - Appareillage mathématique
Symétrie - Modèles de l'univers
Quotidien en cosmologie théorique des particules

Potentiel à deux champs $\phi(x,t)$ et $\psi(x,t)$

$$V(\phi,\psi) = (\psi^2 - \delta_1)(\psi^2 - 1)^2 + \frac{\alpha}{\psi^2 + \gamma}[(\phi^2 - 1)^2 - \frac{\delta_2}{4}(\phi - 2)(\phi + 1)^2]$$

- 1+1 dimensions (x,t) mais on cherche une solution statique
- **2** Beaucoup de paramètres : $\alpha, \gamma, \delta_1, \delta_2$
- Les champs sont couplés

 $\delta_2 \to \text{contrôle de la séparation}$ entre minimum

Pourquoi bâtir un potentiel comme ça en premier lieu?!?!

 $\delta_1
ightarrow$ contrôle du minima central Potentiel d'ordre 6, CLASSIQUE!

 α : importance 2ème terme

 γ : importance couplage

 $\delta_2 \rightarrow$ contrôle de la séparation entre minimum