Une boule ouverte est voisinage de chacun de ses points ÉNONCÉ

Une partie $\mathcal O$ de $\mathbb R^2$ est ouverte si, et seulement si, $\mathcal O$ est « Voisinage de chacun de ses points »

C'est-à-dire:

$$\forall x \in \mathcal{O}, \exists r > 0, B(x, r) \subset \mathcal{O}$$

DÉMONSTRATION

Par double implication:

 $* \Rightarrow$: Soit \mathcal{O} un ouvert, si $\mathcal{O} = \emptyset$, on a le resultat.

Sinon, c'est une réunion de boules ouvertes. Soit un point $x \in \mathcal{O}$, alors x est dans une boule B(a, r) incluse dans \mathcal{O} . Ainsi, il reste à montrer qu'une boule ouverte est voisinage de chacuns de ses points.

Graphiquement, on voit qu'on peut espérer $B(x, r - ||x - a||) \subset B(a, r)$.

Soit donc $y \in B(x, r')$, avec r' = r - ||x - a|| note que r' > 0 puisque $x \subset B(a, r)$ Alors:

$$\|y-a\| = \|y-x+x-a\| \leqslant r' + \|x-a\| = r$$

Ce qui donne bien $B(x, r - ||x - a||) \subset B(a, r)$. O est donc bien voisinage de x

 $* \not = :$ Soit $\mathcal O$ une partie de $\mathbb R^2$ voisinage de chacun de ses points.

Cela signifie que pour tout $x\in\mathcal{O}$ il existe un rayon strictement positif r_x tel que $B(x,r_x)\subset\mathcal{O}.$

En posant $\mathcal{O}' = \bigcup_{x \in \mathcal{O}} B(x, r_x)$, on a $\mathcal{O}' \subset \mathcal{O}$ par construction, et clairement $\mathcal{O} \subset \mathcal{O}'$

puisque tout $x \in \mathcal{O}$ appartient à \mathcal{O}' , donc finalement $\mathcal{O}' = \mathcal{O}$ ce qui montre bien que O est une réunion de boules ouvertes.

D'après le principe de double implication, on a l'équivalence.

6 ▶

Définition de la continuité ; les applications linéaires sont continues

Continuité

DÉFINITION

 $f:D\subset\mathbb{R}^2$ où D est un ouvert de \mathbb{R}^2 , est continue en $a\in D$, si f admet f(a) pour limite en en a:

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in D, \|x - a\| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Les applications linéaires (de \mathbb{R}^2 dans \mathbb{R}) sont continues DÉMONSTRATION

On a déjà vu dans le deuxième chapitre d'applications linéaires que toute application linéaire $f: \mathbb{R}^2 \to \mathbb{R}$ prend la forme : $(x_1, x_2) \mapsto \lambda x_1 + \mu x_2$, où λ, μ sont deux éléments de la matrice représentative de l'application sur la base canonique, ou encore ses coordonnées sur la base des formes coordonnées relativement à la base canonique.

Pour $a = a_1e_1 + a_2e_2$ et $x = x_1e_1 + x_2e_2$ dans \mathbb{R}^2 , il vient :

$$\begin{split} |f(x)-f(a)| &= |\lambda(x_1-a_1) + \mu(x_2-a_2)| \leqslant \sqrt{\lambda^2 + \mu^2} \ \|x-a\| \\ &\leqslant \operatorname{Max}(|\lambda|, |\mu|) \sqrt{2} \|x-a\| \end{split}$$

En utilisant l'inégalité de Cauchy-Schwarz (avec $u=(\lambda,\mu),v=(x_1-a_1,x_2-a_2)$). Ainsi f est k-lipschitzienne donc (uniformément) continue

* en particulier les formes coordonnées $(x_1,x_2)\mapsto x_1$ et $(x_1,x_2)\mapsto x_2$ sont continues sur \mathbb{R}^2 .

11 **▶**

Énoncé des définitions des dérivées partielles et dérivée partielle suivant un vecteur, théorème-définition du gradient

DÉFINITIONS

Dérivées partielles:

 $* \ \textit{En un point} \ a = (a_1, a_2)$

Première dérivée partielle de f en a :

c'est la dérivée, si elle existe, de $f_{a,1}$ en a_1 autrement dit, si la limite existe :

$$\frac{\partial f}{\partial x_1}(a) = \partial_1 f(a) = \lim_{h \to 0} \frac{f(a_1 + h, a_2) - f(a)}{h}$$

de même pour f_2 :

$$\frac{\partial f}{\partial x_2}(a) = \partial_2 f(a) = \lim_{h \to 0} \frac{f(a_1, a_2 + h) - f(a)}{h}$$

st En un vecteur v

Soit v un vecteur non-nul de \mathbb{R}^2

f admet en $a\in D$ une dérivée partielle suivant le vecteur v, noté $\partial_v f(a)$, quand la limite suivante existe :

$$\lim_{h\to 0}\frac{f(a+hv)-f(a)}{h}=\partial_v f(a)$$

Gradient:

Soit f de classe C^1 sur D. En tout point a de D et pour tout $h=(h_1,h_2)$ dans \mathbb{R}^2 :

$$\begin{split} f(a+h) &= f(a) + h_1 \frac{\partial f}{\partial x_1}(a) + h_2 \frac{\partial f}{\partial x_2}(a) + \mathop{\mathrm{o}}_{h \to 0_{\mathbb{R}^2}}(\|h\|) \\ &= f(a) + (\nabla f(a) \, | \, h) + \mathop{\mathrm{o}}_{x \to 0_{\mathbb{R}^2}}(\|h\|) \end{split}$$

Où on note $\nabla f(a)=egin{pmatrix}\partial_1 f(a)\\\partial_2 f(a)\end{pmatrix}$ l'unique vecteur de \mathbb{R}^2 vérifiant cette relation, appelé gradient de f en a

$\| \ \|$ est C^1 sur \mathbb{R}^2 privé de l'origine, mais pas sur \mathbb{R}^2 , gradient **DÉMONSTRATIONS**

Posons $f: x \mapsto ||x||$ définie sur \mathbb{R}^2 , en tout point (x_1, x_2) distinct de (0, 0), $\partial_1 f(x_1, x_2) = \frac{x_1}{\|x\|}$ et $\partial_2 f(x_1, x_2) = \frac{x_2}{\|x\|}$ ces deux fonctions sont continues sur \mathbb{R}^2 privé de l'origine, par théorème d'opérations, donc f y est de classe C^1 . En $0_{\mathbb{R}^2}$, f est nulle et il n'y a pas de dérivée première partielle : les limites à gauche et à droite en 0 des rapports de définition sont distinctes (-1 àgauche, 1 à droite). Dont f n'est pas de classe C^1 sur \mathbb{R}^2 .

Pour le gradient, on prend ce que l'on a trouvé dans la démonstration :

$$\nabla(\|\ \|)(a) = \begin{pmatrix} \frac{a_2}{\|a\|} \\ \frac{a_1}{\|a\|} \end{pmatrix} = \frac{1}{\|a\|}a$$

(Pratiques 2 et 3)

Énoncé du théorème d'opérations sur les fonctions \mathbb{C}^1 (gradients d'une somme, d'un produit, d'une composée si définis, dont règle de la chaîne)

Théorème d'opérations

- a) L'ensemble $C^1(D,\mathbb{R})$ des fonctions de classe C^1 sur D ouvert de \mathbb{R}^2 , muni de la somme et de la multiplication externe par un réel, forme un espace vectoriel sur \mathbb{R} stable par produit
- b) Soit f de classe C^1 sur un ouvert U de \mathbb{R}^2 à valeurs dans \mathbb{R} et g de classe C^1 sur un ouvert V de \mathbb{R} contenant f(U) (et à valeurs réelles).

Alors $g \circ f$ est de classe C^1 sur U et pour tout a dans $U : \nabla (g \circ f)(a) =$ $g'(f(a))\nabla f(a)$

c) Règle de la Chaîne : Si u et v sont de classe C^1 sur un ouvert U de $\mathbb R$ et g sur un ouvert V de \mathbb{R}^2 contenant (u,v)(U) alors $h:t\mapsto g(u(t),v(t))$ est de classe C^1 sur U et pour tout a de U :

$$h'(a) = \partial_1 g(u(a), v(a)).u'(a) + \partial_2 g(u(a), v(a)).v'((a)) = \left(\nabla g(u(a), v(a)) \middle| \begin{pmatrix} u'(a) \\ v'(a) \end{pmatrix}\right)$$

$$(On \ peut \ le \ voir \ comme : \frac{dh}{dt} = \frac{\partial g}{\partial u} \frac{du}{dt} + \frac{\partial g}{\partial v} \frac{dv}{dt} \ \text{ \'evalu\'ee en } t = a, \ \text{on voit}$$

$$hien \ d'où \ vient \ le \ nom \ u \ r\`edle \ de \ la \ cha re v$$

bien d'où vient le nom « règle de la chaîne » ;