Numerical Methods

Numerical Differentiation and Integration

Contents

- 1. Introduction
- 2. Roots of Non-linear equations
- 3. Systems of linear equations
- 4. LU decomposition
- 5. Linear Programming
- 6. Numerical Differentiation and Integration

Topics

- ➤ Numerical Integration
 - Newton-Cotes Formulas: Trapezoidal rule, Simpson's rule
 - Gauss Quadrature
- Numerical Differentiation

Integration

Mathematically, definite integration is represented by

$$I = \int_{a}^{b} f(x) \, dx$$

which stands for the integral of the function f(x) with respect to the independent variable x, evaluated between the limits x = a to x = b

numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration

The integral is equivalent to the area under the curve

Newton-Cotes formulas

The Newton-Cotes formulas are the most common numerical integration schemes. They are based on the strategy of replacing a complicated function or tabulated data with a polynomial that is easy to integrate:

$$I = \int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{n}(x) dx$$

where $f_n(x) = a$ polynomial of the form

$$f_n(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$

The approximation of an integral by the area under (a) a straight line and (b) a parabola

A series of polynomials: The approximation of an integral by the area under three straightline segments

trapezoidal rule

The trapezoidal rule is the first of the Newton-Cotes closed integration formulas. It corresponds to the case where the polynomial is first-order:

$$I = \int_a^b \left[f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \right] dx$$

The result of the integration is

$$I = (b-a)\frac{f(a) + f(b)}{2}$$

which is called the trapezoidal rule

trapezoidal rule

- If the function being integrated is linear, the trapezoidal rule will be exact
- Otherwise, for functions with second- and higher-order derivatives (that is, with curvature), some error can occur

Error of the Trapezoidal Rule
$$E_t = -\frac{1}{12}f''(\xi)(b-a)^3$$

where ξ lies somewhere in the interval from a to b

Case study

Application of the Trapezoidal Rule

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

Solution

The function values
$$\frac{f(0) = 0.2}{f(0.8) = 0.232} \implies I = (b-a) \frac{f(a) + f(b)}{2} \implies I \cong 0.8 \frac{0.2 + 0.232}{2} = 0.1728$$

which represents an error of $E_t = 1.640533 - 0.1728 = 1.467733$ $\varepsilon_t = 89.5\%$

which represents an error of $E_t = 1.640533 - 0.1728 = 1.467733$

 $\varepsilon_{\rm t} = 89.5\%$

multiple-application trapezoidal rule

The trapezoidal rule:

$$I = h \frac{f(x_0) + f(x_1)}{2} + h \frac{f(x_1) + f(x_2)}{2} + \dots + h \frac{f(x_{n-1}) + f(x_n)}{2}$$

or, grouping terms:

$$I = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Error of the Trapezoidal Rule

$$E_t = -\frac{(b-a)^3}{12n^3} \sum_{i=1}^n f''(\xi_i)$$

composite trapezoidal rule

Case study

Use the two-segment trapezoidal rule to estimate the integral of

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

Solution

The function values when n= 2 (h= 0.4):

$$f(0) = 0.2$$
, $f(0.4) = 2.456$, $f(0.8) = 0.232$

$$I = \frac{h}{2} \left[f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

$$\Rightarrow I = 0.8 \frac{0.2 + 2(2.456) + 0.232}{4} = 1.0688$$

which represents an error of

$$E_t = 1.640533 - 1.0688 = 0.57173$$
 $\varepsilon_t = 34.9\%$
$$E_a = -\frac{0.8^3}{12(2)^2}(-60) = 0.64$$

Simpson's rules

higher-order polynomials: to obtain a more accurate estimate of an integral is to use higher-order polynomials to connect the points

$$I = \int_a^b f(x) dx \cong \int_a^b f_2(x) dx$$

$$I = \int_{x_0}^{x_2} \left[\frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2) \right] dx$$

$$\Rightarrow I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] \qquad \Rightarrow I = (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$

Composite Simpson's rules

Simpson's rule can be improved by dividing the integration interval into a number of segments of equal width

$$I = \int_{x_0}^{x_2} f(x) \, dx + \int_{x_2}^{x_4} f(x) \, dx + \dots + \int_{x_{n-2}}^{x_n} f(x) \, dx$$

The result of the integration is

$$f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)$$

$$I = (b-a) \frac{3n}{3n}$$

The Composite Simpson's 1/3 Rule

Higher-order Newton-Cotes formulas

Segments (n)	Points	Name	Formula
1	2	Trapezoidal rule	$(b-a)\frac{f(x_0)+f(x_1)}{2}$
2	3	Simpson's 1/3 rule	$(b-a)\frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$
3	4	Simpson's 3/8 rule	$(b-a)\frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$
4	5	Boole's rule	$(b-a)\frac{7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)}{90}$
5	6		$(b-a)\frac{19f(x_0) + 75f(x_1) + 50f(x_2) + 50f(x_3) + 75f(x_4) + 19f(x_5)}{288}$

The step size is given by h = (b - a)/n

Case study

Use the composite Simson's rule to estimate the integral of

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

Solution

The function values when n=4 (h=0.2):

$$f(0) = 0.2$$
, $f(0.4) = 2.456$, $f(0.8) = 0.232$, $f(0.2) = 1.288$, $f(0.6) = 3.464$

$$I = 0.8 \frac{0.2 + 4(1.288 + 3.464) + 2(2.456) + 0.232}{12} = 1.623467$$

which represents an error of

$$E_t = 1.640533 - 1.623467 = 0.017067$$
 $\varepsilon_t = 1.04\%$

$$E_a = -\frac{(0.8)^5}{180(4)^4}(-2400) = 0.017067$$

Gauss quadrature

- A characteristic of Newton-cotes formulas was that the integral estimate was based on evenly spaced function values.
- Consequently, the location of the base points used in these equations was predetermined or fixed

□ large error

- Suppose that the constraint of fixed base points was removed and we were free to evaluate the area under a straight line joining any two points on the curve.
- By positioning these points wisely, we could define a straight line that would balance the positive and negative errors. Hence, we would arrive at an improved estimate of the integral

trapezoidal rule

Gauss quadrature

Basis of the Gaussian Quadrature Rule

Previously, the Trapezoidal Rule was developed by the method of undetermined coefficients. The result of that development is summarized below.

$$\int_{a}^{b} f(x)dx \approx c_1 f(a) + c_2 f(b)$$

$$= \frac{b-a}{2} f(a) + \frac{b-a}{2} f(b)$$

Basis of the Gaussian Quadrature Rule

- The two-point Gauss Quadrature Rule is an extension of the Trapezoidal Rule approximation where the arguments of the function are not predetermined as a and b but as unknowns x_1 and x_2 .
- In the two-point Gauss Quadrature Rule, the integral is approximated as

$$I = \int_{a}^{b} f(x) dx \approx c_{1} f(x_{1}) + c_{2} f(x_{2})$$

The previous four simultaneous nonlinear Equations have only one acceptable solution,

$$x_1 = \left(\frac{b-a}{2}\right)\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$
 $x_2 = \left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$

$$x_2 = \left(\frac{b-a}{2}\right)\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}$$

$$c_1 = \frac{b - a}{2}$$

$$c_2 = \frac{b-a}{2}$$

Two-Point Gaussian Quadrature Rule

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2})$$

$$= \frac{b-a}{2}f\left(\frac{b-a}{2}\left(-\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right) + \frac{b-a}{2}f\left(\frac{b-a}{2}\left(\frac{1}{\sqrt{3}}\right) + \frac{b+a}{2}\right)$$

If
$$a = -1$$
, $b = 1$

$$\int_{-1}^{1} f(x)dx \cong \sum_{i=1}^{2} c_i f(x_i) = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

1D quardrature rule recap

Choose the integration points **and** weights to maximize accuracy

$$\int_a^b f(x) \, dx = ?$$

Gauss quadrature

An integral over [a, b] must be changed into an integral over [-1, 1] before applying the Gaussian quadrature rule. This change of interval can be done in the following way:

$$\int_a^b f(x)\,dx = \frac{b-a}{2}\int_{-1}^1 f\left(\frac{b-a}{2}x+\frac{a+b}{2}\right)\,dx \qquad \text{avec} \qquad x = \frac{(b+a)+(b-a)x_d}{2}$$

$$dx = \frac{b-a}{2}\,dx_d$$

Applying the Gaussian quadrature rule then results in the following approximation

$$\int_a^b f(x)\,dx pprox rac{b-a}{2} \sum_{i=1}^n w_i f\left(rac{b-a}{2} x_i + rac{a+b}{2}
ight).$$

Gauss quadrature

2 points

$$I = \int_{-1}^{1} f(x)dx \cong f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

3 points

$$I = \int_{-1}^{1} f(x)dx = \frac{5}{9}f(-\sqrt{\frac{3}{5}}) + \frac{8}{9}f(\theta) + \frac{5}{9}f(\sqrt{\frac{3}{5}})$$

Number of points, n	Points, x_i	Weights, w_i
1	0	2
2	$\pm\sqrt{rac{1}{3}}$	1
_	0	$\frac{8}{9}$
3	$\pm\sqrt{\frac{3}{5}}$	$\frac{5}{9}$
4	$\pm\sqrt{\tfrac{3}{7}-\tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18+\sqrt{30}}{36}$
4	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	$\frac{18-\sqrt{30}}{36}$
	0	$\frac{128}{225}$
5	$\pmrac{1}{3}\sqrt{5-2\sqrt{rac{10}{7}}}$	$\frac{322 + 13\sqrt{70}}{900}$
	$\pmrac{1}{3}\sqrt{5+2\sqrt{rac{10}{7}}}$	$\frac{322 - 13\sqrt{70}}{900}$

Differentiation

Points	Weighting Factors	Function Arguments	Truncation Error
1	$c_0 = 2$	$x_0 = 0.0$	$\cong f^{(2)}(\xi)$
2	$c_0 = 1$ $c_1 = 1$	$x_0 = -1/\sqrt{3}$ $x_1 = 1/\sqrt{3}$	$\cong f^{(4)}(\xi)$
3	$c_0 = 5/9$ $c_1 = 8/9$	$x_0 = -\sqrt{3/5}$ $x_1 = 0.0$	$\cong f^{(6)}(\xi)$
4	$c_2 = 5/9$ $c_0 = (18 - \sqrt{30})/36$ $c_1 = (18 + \sqrt{30})/36$	$x_2 = \sqrt{3/5}$ $x_0 = -\sqrt{525 + 70\sqrt{30}/35}$ $x_1 = -\sqrt{525 - 70\sqrt{30}/35}$	$\cong f^{(8)}(\xi)$
	$c_2 = (18 + \sqrt{30})/36$ $c_3 = (18 - \sqrt{30})/36$	$x_2 = \sqrt{525 - 70\sqrt{30}}/35$ $x_3 = \sqrt{525 + 70\sqrt{30}}/35$	
5	$c_0 = (322 - 13\sqrt{70})/900$ $c_1 = (322 + 13\sqrt{70})/900$	$x_0 = -\sqrt{245 + 14\sqrt{70}/21}$ $x_1 = -\sqrt{245 - 14\sqrt{70}/21}$	$\cong f^{(10)}(\xi)$
	$c_2 = 128/225$ $c_3 = (322 + 13\sqrt{70})/900$ $c_4 = (322 - 13\sqrt{70})/900$	$x_2 = 0.0$ $x_3 = \sqrt{245 - 14\sqrt{70}}/21$ $x_4 = \sqrt{245 + 14\sqrt{70}}/21$	
6	$c_0 = 0.171324492379170$ $c_1 = 0.360761573048139$ $c_2 = 0.467913934572691$ $c_3 = 0.467913934572691$ $c_4 = 0.360761573048131$ $c_5 = 0.171324492379170$	$x_0 = -0.932469514203152$ $x_1 = -0.661209386466265$ $x_2 = -0.238619186083197$ $x_3 = 0.238619186083197$ $x_4 = 0.661209386466265$ $x_5 = 0.932469514203152$	$\cong f^{(12)}(\xi)$

Weighting factors and function arguments used in Gauss-Legendre formulas.

Case study

estimate the integral of

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from a = 0 to b = 0.8, the exact value: 1.640533

Solution

Before integrating the function, we must perform a change of variable so that the limits are from -1 to +1

$$x = 0.4 + 0.4x_d$$
 and $dx = 0.4dx_d$

Both of these can be substituted into the original equation to yield

$$\int_{0}^{0.8} (0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5}) dx$$

$$= \int_{-1}^{1} [0.2 + 25(0.4 + 0.4x_{d}) - 200(0.4 + 0.4x_{d})^{2} + 675(0.4 + 0.4x_{d})^{3}$$

$$- 900(0.4 + 0.4x_{d})^{4} + 400(0.4 + 0.4x_{d})^{5}]0.4dx_{d}$$

Topics

- >Numerical Integration
 - Newton-Cotes Formulas: Trapezoidal rule, Simpson's rule
 - Gauss Quadrature
- Numerical Differentiation

Differentiation

Notion

> the derivative represents the rate of change of a dependent variable with respect to an independent variable

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Notion

- the derivative can be visualized as the slope of a function.
- > Integration is the inverse of differentiation
- ➤ High-accuracy divided-difference formulas can be generated by including additional terms from the Taylor series expansion

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \cdots$$

$$\Rightarrow f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2!}h + O(h^2)$$

$$\Rightarrow f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Differentiation

Forward Differences

$$f'(x_i) \approx \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h}$$

Backward Differences

$$f'(x_i) \approx \frac{y_{i-1} - y_i}{x_{i-1} - x_i} = \frac{y_{i-1} - y_i}{h}$$

<u>Central Difference</u>

$$f'(x_i) \approx \frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}} = \frac{y_{i+1} - y_{i-1}}{2h}$$

Differentiation

First Derivative
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} \qquad O(h)$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} \qquad O(h^2)$$
Second Derivative
$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} \qquad O(h)$$

$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2} \qquad O(h^2)$$
Third Derivative
$$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3} \qquad O(h)$$

$$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3} \qquad O(h^2)$$
Fourth Derivative
$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4} \qquad O(h)$$

$$f''''(x_i) = \frac{-2f(x_{i+3}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4} \qquad O(h^2)$$

Case study

Use the numerical differentiation to estimate the integral of

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

at x = 0.5 using finite-differences and a step size of h = 0.25

the true value of f'(0.5) = -0.9125

Differentiation

Solution

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

$$x_{i-2} = 0$$
 $f(x_{i-2}) = 1.2$
 $x_{i-1} = 0.25$ $f(x_{i-1}) = 1.1035156$
 $x_i = 0.5$ $f(x_i) = 0.925$
 $x_{i+1} = 0.75$ $f(x_{i+1}) = 0.6363281$
 $x_{i+2} = 1$ $f(x_{i+2}) = 0.2$

	Backward $O(h)$	Centered $O(h^2)$	Forward $O(h)$
Estimate ε_t	-0.714	-0.934	-1.155
	21.7%	-2.4%	-26.5%

Matlab

Exercises

Results for the composite trapezoidal rule to a estimate the integral of $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$ from x = 0 to 0.8. The exact value is 1.640533.

n	h	I	ε_{t} (%)
2	0.4	1.0688	34.9
3	0.2667	1.3695	16.5
4	0.2	1.4848	9.5
5	0.16	1.5399	6.1
6	0.1333	1.5703	4.3
7	0.1143	1.5887	3.2
8	0.1	1.6008	2.4
9	0.0889	1.6091	1.9
10	0.08	1.6150	1.6

Using diff for Differentiation

Explore how the MATLAB diff function can be employed to differentiate the function

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from x = 0 to 0.8. Compare your results with the exact solution

$$f'(x) = 25 - 400x^2 + 2025x^2 - 3600x^3 + 2000x^4$$

Using diff for Differentiation

Comparison of the exact derivative (line) with numerical estimates (circles) computed with MATLAB's diff function

>> plot(xm,d,'o',xa,ya)

Using gradient for Differentiation fx = gradient(f, h)

Explore how the MATLAB diff function can be employed to differentiate the function

$$f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$$

from x = 0 to 0.8. Compare your results with the exact solution

$$f'(x) = 25 - 400x^2 + 2025x^2 - 3600x^3 + 2000x^4$$

Using gradient for Differentiation fx = gradient(f, h)

