EXPONENTIELLE ET INTÉGRALE

1.) f définie sur \mathbb{R} par $f(x) = (1-x^2)e^x$.

Lorsque x tend vers $+\infty$, alors $(1-x^2)$ tend vers $-\infty$, e^x tend vers $+\infty$ et f(x) tend vers $-\infty$.

Lorsque *x* tend vers $-\infty$:

$$f(x) = e^x - x^2 e^x = e^x - (xe^{(x/2)})^2$$

Or
$$\lim_{x\to -\infty} e^x = 0$$

Et en posant $X = \frac{x}{2}$:

 $\lim_{x \to -\infty} x e^{\frac{x}{2}} = \lim_{X \to -\infty} 2X e^{X} = 0 \text{ (car d'après le cours } \lim_{X \to -\infty} X e^{X} = 0 \text{)}.$

Par conséquent $\lim_{x \to -\infty} f(x) = 0$

2.a)
$$f(x) = uv$$
 avec $u = 1 - x^2$ et $v = e^x$. Alors $u' = -2x$, $v' = x$ et : $f'(x) = u'v + uv' = (-x^2 - 2x + 1)e^x$.

2.b) Comme e^x est strictement positif sur \mathbb{R} , le signe de f'(x) est celui de $(-x^2-2x+1)$. C'est une fonction trinôme dont le coefficient de x^2 est négatif.

En cherchant les racines de l'équation de second degré $-x^2 - 2x + 1 = 0$, on trouve que f'(x) = 0 pour $x_1 = -\sqrt{2} - 1$ et $x_2 = \sqrt{2} - 1$.

On en déduit le signe de f'(x):

x	$-\infty$	$-\sqrt{2}-1$		$\sqrt{2}-1$		$+\infty$
f'(x)	_	0	+	0	_	_

2.c) On dresse le tableau de variations de f:

X	$-\infty$	$\sqrt{-\sqrt{2}-1}$	$\sqrt{2}-1$	 + ∞
f(x)	0	$f(-\sqrt{2}-1)$	$f(\sqrt{2}-1)$	→ -∞

3) La courbe représentative de f coupe l'axe des ordonnées en f(0) = 1.