Package 'PatientLevelPrediction'

October 19, 2016

```
Title Package for patient level prediction using data in the OMOP Common Data
Version 1.1.1
Date 2016-04-18
Author Martijn J. Schuemie [aut, cre],
      Marc A. Suchard [aut],
      Patrick B. Ryan [aut],
      Jenna Reps [aut],
      Peter Rijnbeek [aut]
Maintainer Martijn J. Schuemie <schuemie@ohdsi.org>
Description A package for creating patient level prediction models. Given a
      cohort of interest and an outcome of interest, the package can use data in the
      Common Data Model to build a large set of features. These features can then
      be used by the Cyclops package to fit a predictive model. Also included are
      function for evaluating the predictive models.
License Apache License 2.0
Depends R (>= 3.2.2),
      DatabaseConnector (>= 1.3.0),
      Cyclops (>= 1.2.1-2)
Imports ggplot2,
      gridExtra,
      bit,
      ff,
      ffbase (>= 0.12.1),
      plyr,
      survAUC,
      Rcpp (>= 0.11.2),
      RJDBC,
      SqlRender (\geq 1.1.3),
      survival.
      FeatureExtraction,
      xgboost,
      Matrix,
      AUC,
      PythonInR,
```

Type Package

futile.logger,

2 R topics documented:

utils,
methods,
BigKnn,
reshape2
Suggests testthat,
pROC,
gnm,
knitr,
rmarkdown,
scoring,
Metrics,
SparseM,
ResourceSelection
LinkingTo Rcpp
NeedsCompilation yes
RoxygenNote 5.0.1

R topics documented:

accuracy	3
applyModel	4
averagePrecision	5
brierScore	5
bySumFf	6
calibrationLine	6
computeAuc	7
computeAucFromDataFrames	7
createPlpSimulationProfile	8
createStudyPopulation	8
diagnosticOddsRatio	0
evaluatePlp	1
exportPlpDataToCsv	1
f1Score	2
falseDiscoveryRate	3
falseNegativeRate	3
falseOmissionRate	4
falsePositiveRate	4
fitGLMModel	5
fitPlp	5
getAttritionTable	6
getCalibration	7
getModelDetails	7
getPlpData	8
getPredictionDistribution	0
getThresholdSummary	0
grepCovariateNames	1
insertDbPopulation	2
loadPlpData	2
loadPlpModel	3
	3

accuracy 3

negativeLikelihoodR negativePredictiveVa PatientLevelPredictive personSplitter plotDemographicSur plotF1Measure plotGenerlizability plotPlp plotPrecisionRecall plotPredictedPDF . plotPredictionDistrib plotPreferencePDF plotRoc plotSparseCalibratio plotSparseRoc plotVariableScatterp	tatio alue on mmary oution oution oution	24 24 25 26 27 27 28 29 29 30 31 31 32 32 33
positiveLikelihoodR positivePredictiveVa predictFfdf predictPlp predictProbabilities RunPlp savePlpData savePlpModel savePlpResult savePrediction sensitivity	atio	33 34 34 35 36 36 39 40 40 41 41
setKNN	gression	42 42 43 43 43 44 45 45 46 47
accuracy	Calculate the accuracy	

Description

Calculate the accuracy

4 applyModel

Usage

```
accuracy(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the accuracy

Value

accuracy value

plyModel Apply train model on new data
--

Description

Apply a Patient Level Prediction model on Patient Level Prediction Data and get the predicted risk in [0,1] for each person in the population. If the user inputs a population with an outcomeCount column then the function also returns the evaluation of the prediction (AUC, brier score, calibration)

Usage

```
applyModel(population, plpData, plpModel, logConnection = NULL,
  databaseOutput = NULL, silent = F)
```

Arguments

population The population of people who you want to predict the risk for

plpData The plpData for the population

plpModel The trained PatientLevelPrediction model

logConnection A connection to output any logging during the process databaseOutput Whether to save the details into the prediction database

silent Whether to turn off progress reporting

averagePrecision 5

Examples

```
## Not run:
# load the model and data
plpData <- loadPlpData('C:/plpdata')
plpModel <- loadPlpModel('C:/plpmodel')

# use the same population settings as the model:
populationSettings <- plpModel$populationSettings
populationSettings$plpData <- plpData
population <- do.call(createStudyPopulation, populationSettings)

# get the prediction:
prediction <- applyModel(population, plpData, plpModel)$prediction

## End(Not run)</pre>
```

 $average \hbox{Precision}$

Calculate the average precision

Description

Calculate the average precision

Usage

averagePrecision(prediction)

Arguments

prediction

A prediction object as generated using the predictProbabilities function.

Details

Calculates the average precision from a predition object

Value

The average precision

brierScore

brierScore

Description

brierScore

Usage

brierScore(prediction)

6 calibrationLine

Arguments

prediction A prediction object as generated using the predictProbabilities function.

Details

Calculates the brierScore from prediction object

Value

A list containing the brier score and the scaled brier score

bySumFf

Compute sum of values binned by a second variable

Description

Compute sum of values binned by a second variable

Usage

```
bySumFf(values, bins)
```

Arguments

values An ff object containing the numeric values to be summed bins An ff object containing the numeric values to bin by

Examples

```
values <- ff::as.ff(c(1, 1, 2, 2, 1))
bins <- ff::as.ff(c(1, 1, 1, 2, 2))
bySumFf(values, bins)</pre>
```

calibrationLine

calibrationLine

Description

calibrationLine

Usage

```
calibrationLine(prediction, numberOfStrata = 10)
```

Arguments

```
prediction A prediction object as generated using the predictProbabilities function. numberOfStrata The number of groups to split the prediction into
```

Details

Calculates the calibration from prediction object

computeAuc 7

Description

Compute the area under the ROC curve

Usage

```
computeAuc(prediction, confidenceInterval = FALSE)
```

Arguments

```
\begin{tabular}{ll} \textbf{prediction} & A \ prediction \ object \ as \ generated \ using \ the \ predict \ functions. \\ confidence Interval \end{tabular}
```

Should 95 percebt confidence intervals be computed?

Details

Computes the area under the ROC curve for the predicted probabilities, given the true observed outcomes.

```
computeAucFromDataFrames
```

Compute the area under the ROC curve

Description

Compute the area under the ROC curve

Usage

```
computeAucFromDataFrames(prediction, status, time = NULL,
  confidenceInterval = FALSE, timePoint, modelType = "logistic")
```

Arguments

prediction A vector with the predicted hazard rate.

status A vector with the status of 1 (event) or 0 (no event).

Only for survival models: a vector with the time to event or censor (which ever

comes first).

confidenceInterval

Should 95 percebt confidence intervals be computed?

timePoint Only for survival models: time point when the AUC should be evaluated

modelType Type of model. Currently supported are "logistic" and "survival".

Details

Computes the area under the ROC curve for the predicted probabilities, given the true observed outcomes.

 ${\tt createPlpSimulationProfile}$

Create simulation profile

Description

createplpDataSimulationProfile creates a profile based on the provided plpData object, which can be used to generate simulated data that has similar characteristics.

Usage

createPlpSimulationProfile(plpData)

Arguments

plpData

An object of type plpData as generated using getDbplpData.

Details

The output of this function is an object that can be used by the simulateplpData function to generate a plpData object.

Value

An object of type plpDataSimulationProfile.

createStudyPopulation Create a study population

Description

Create a study population

Usage

```
createStudyPopulation(plpData, population = NULL, outcomeId, binary = T,
  includeAllOutcomes = T, firstExposureOnly = FALSE, washoutPeriod = 0,
  removeSubjectsWithPriorOutcome = TRUE, priorOutcomeLookback = 99999,
  requireTimeAtRisk = T, minTimeAtRisk = 365, riskWindowStart = 0,
  addExposureDaysToStart = FALSE, riskWindowEnd = 365,
  addExposureDaysToEnd = F, verbosity = futile.logger::INFO, ...)
```

createStudyPopulation 9

Arguments

plpData An object of type plpData as generated using getDbplpData.

population If specified, this population will be used as the starting point instead of the co-

horts in the plpData object.

outcomeId The ID of the outcome. If not specified, no outcome-specific transformations

will be performed.

binary Forces the outcomeCount to be 0 or 1 (use for binary prediction problems)

includeAllOutcomes

(binary) indicating whether to include people with outcomes who are not ob-

served for the whole at risk period

firstExposureOnly

Should only the first exposure per subject be included? Note that this is typically

done in the createStudyPopulation function,

washoutPeriod The minimum required continuous observation time prior to index date for a

person to be included in the cohort.

removeSubjectsWithPriorOutcome

Remove subjects that have the outcome prior to the risk window start?

priorOutcomeLookback

How many days should we look back when identifying prior outcomes?

requireTimeAtRisk

Should subject without time at risk be removed?

minTimeAtRisk The minimum number of days at risk required to be included

riskWindowStart

The start of the risk window (in days) relative to the index date (+ days of exposure if the addExposureDaysToStart parameter is specified).

 ${\it add} {\it Exposure Days To Start}$

Add the length of exposure the start of the risk window?

riskWindowEnd The end of the risk window (in days) relative to the index data (+ days of expo-

sure if the addExposureDaysToEnd parameter is specified).

addExposureDaysToEnd

Add the length of exposure the risk window?

verbosity Sets the level of the verbosity. If the log level is at or higher in priority than the

logger threshold, a message will print. The levels are:

• DEBUGHighest verbosity showing all debug statements

- TRACEShowing information about start and end of steps
- INFOShow informative information (Default)
- WARNShow warning messages
- ERRORShow error messages
- FATALBe silent except for fatal errors

... Other inputs

Details

Create a study population by enforcing certain inclusion and exclusion criteria, defining a risk window, and determining which outcomes fall inside the risk window.

10 diagnosticOddsRatio

Value

A data frame specifying the study population. This data frame will have the following columns:

rowId A unique identifier for an exposure

subjectId The person ID of the subject

cohortStartdate The index date

outcomeCount The number of outcomes observed during the risk window

timeAtRisk The number of days in the risk window

survivalTime The number of days until either the outcome or the end of the risk window

diagnosticOddsRatio

Calculate the diagnostic odds ratio

Description

Calculate the diagnostic odds ratio

Usage

```
diagnosticOddsRatio(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the diagnostic odds ratio

Value

diagnosticOddsRatio value

evaluatePlp 11

evaluatePlp evaluatePlp

Description

Evaluates the performance of the patient level prediction model

Usage

```
evaluatePlp(prediction, plpData)
```

Arguments

prediction The patient level prediction model's prediction

plpData The patient level prediction data

Details

The function calculates various metrics to measure the performance of the model

Value

A list containing the performance values

exportPlpDataToCsv Export all data in a plpData object to CSV files

Description

Export all data in a plpData object to CSV files

Usage

```
exportPlpDataToCsv(plpData, outputFolder)
```

Arguments

plpData An object of type plpData.

outputFolder The folder on the file system where the CSV files will be created. If the folder

does not yet exist it will be created.

12 f1Score

Details

Created a set of CSV files in the output folder with all the data in the plplData object. This function is intended to be used for research into prediction methods. The following files will be created:

cohort.csv Listing all persons and their prediction periods. This file will have these fields: row_id (a unique ID per period), person_id, cohort_start_date, cohort_id, time (number of days in the window).

outcomes.csv Listing all outcomes per period. This file will have these fields: row_id, outcome_id, outcome_count, time_to_event.

exclude.csv Either not exported or a file listing per outcome ID which windows had the outcome prior to the window and should therefore be removed prior to fitting the model. This object will have these fields: rowId, outcomeId.

covariates.csv Listing the baseline covariates per person in the cohorts. This is done using a sparse representation: covariates with a value of 0 are omitted to save space. The covariates file will have three columns: rowId, covariateId, and covariateValue.

covariateRef.csv A file describing the covariates that have been extracted. **metaData** Some information on how the plpData object was constructed.

Examples

```
## Not run:
exportPlpDataToCsv(plpData, "s:/temp/exportTest")
## End(Not run)
```

f1Score

Calculate the f1Score

Description

Calculate the f1Score

Usage

```
f1Score(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the f1Score

Value

f1Score value

falseDiscoveryRate 13

falseDiscoveryRate	Calculate the	falseDiscoveryRate

Description

Calculate the falseDiscoveryRate

Usage

```
falseDiscoveryRate(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the falseDiscoveryRate

Value

falseDiscoveryRate value

falseNegativeRate Calculate the fals	seNegativeRate
--------------------------------------	----------------

Description

Calculate the falseNegativeRate

Usage

```
falseNegativeRate(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the falseNegativeRate

Value

falseNegativeRate value

14 falsePositiveRate

falseOmissionRate

Calculate the falseOmissionRate

Description

Calculate the falseOmissionRate

Usage

```
falseOmissionRate(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the falseOmissionRate

Value

falseOmissionRate value

 ${\tt falsePositiveRate}$

 ${\it Calculate the false Positive Rate}$

Description

Calculate the falsePositiveRate

Usage

```
falsePositiveRate(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the falsePositiveRate

Value

falsePositiveRate value

fitGLMModel 15

fitGLMModel	Fit a predictive model

Description

Fit a predictive model

Usage

```
fitGLMModel(population, plpData, modelType = "logistic",
   excludeCovariateIds = c(), includeCovariateIds = c(),
   prior = createPrior("laplace", useCrossValidation = TRUE),
   control = createControl(cvType = "auto", fold = 3, startingVariance = 0.01,
   tolerance = 2e-06, cvRepetitions = 1, selectorType = "byPid", noiseLevel =
   "silent", threads = -1, maxIterations = 3000))
```

Arguments

population	A population object generated b	v createStudvPopulation.	potentially filtered
роритацтоп	A population object generated b	y createstudyPopulation,	potentiany intere

by other functions.

plpData An object of type plpData as generated using getDbPlpData.

modelType The type of outcome model that will be used. Possible values are "logistic",

"poisson", or "cox".

excludeCovariateIds

Exclude these covariates from the outcome model.

includeCovariateIds

Include only these covariates in the outcome model.

prior The prior used to fit the model. See createPrior for details.

The prior does to its the income of the control of

control The control object used to control the cross-validation used to determine the

hyperparameters of the prior (if applicable). See createControl for details.

fitPlp fitPlp

Description

Train various models using a default parameter gird search or user specified parameters

Usage

```
fitPlp(population, data, modelSettings, cohortId, outcomeId)
```

16 getAttritionTable

Arguments

population The population created using createStudyPopulation() who will have their risks

predicted

data An object of type plpData - the patient level prediction data extracted from the

CDM.

modelSettings An object of class modelSettings created using one of the function:

• logisticRegressionModel() A lasso logistic regression model

• GBMclassifier() A gradient boosting machine

• RFclassifier() A random forest model

• GLMclassifier () A generalised linear model

• KNNclassifier() A KNN model

cohortId Id of study cohort
outcomeId Id of outcome cohort

Details

The user can define the machine learning model to train (regularised logistic regression, random forest, gradient boosting machine, neural network and)

Value

An object of class plpModel containing:

model The trained prediction model

modelLoc The path to where the model is saved (if saved)

trainAuc The AUC obtained on the training set

trainCalibration

The calibration obtained on the training set

modelSettings A list specifiying the model, preprocessing, outcomeId and cohortId

metaData The model meta data

trainingTime The time taken to train the classifier

getAttritionTable Get the attrition table for a population

Description

Get the attrition table for a population

Usage

getAttritionTable(object)

Arguments

object Either an object of type plpData, a population object generated by functions

like createStudyPopulation, or an object of type outcomeModel.

getCalibration 17

Value

A data frame specifying the number of people and exposures in the population after specific steps of filtering.

getCalibration

Get a sparse summary of the calibration

Description

Get a sparse summary of the calibration

Usage

```
getCalibration(prediction, numberOfStrata = 10, truncateFraction = 0.01)
```

Arguments

prediction A prediction object as generated using the predict functions. numberOfStrata The number of strata in the plot.

truncateFraction

This fraction of probability values will be ignored when plotting, to avoid the x-axis scale being dominated by a few outliers.

Details

Generates a sparse summary showing the predicted probabilities and the observed fractions. Predictions are stratefied into equally sized bins of predicted probabilities.

Value

A dataframe with the calibration summary

getModelDetails

Get the predictive model details

Description

getModelDetails shows the full model, so showing the betas of all variables included in the model, along with the variable names

Usage

```
getModelDetails(predictiveModel, plpData)
```

Arguments

predictiveModel

An object of type predictiveModel as generated using he fitPlp function.

plpData A

An object of type plpData as generated using getPlpData.

18 getPlpData

Details

Shows the coefficients and names of the covariates with non-zero coefficients.

getPlpData

Get the patient level prediction data from the server

Description

This function executes a large set of SQL statements against the database in OMOP CDM format to extract the data needed to perform the analysis.

Usage

```
getPlpData(connectionDetails, cdmDatabaseSchema,
 oracleTempSchema = cdmDatabaseSchema, cohortId, outcomeIds,
 studyStartDate = "", studyEndDate = "",
 cohortDatabaseSchema = cdmDatabaseSchema, cohortTable = "cohort",
 outcomeDatabaseSchema = cdmDatabaseSchema, outcomeTable = "cohort",
 cdmVersion = "5", excludeDrugsFromCovariates = F,
 firstExposureOnly = FALSE, washoutPeriod = 0, covariateSettings)
```

Arguments

connectionDetails

An R object of type

connectionDetails created using the function createConnectionDetails in the DatabaseConnector package.

cdmDatabaseSchema

The name of the database schema that contains the OMOP CDM instance. Requires read permissions to this database. On SQL Server, this should specifiy both the database and the schema, so for example 'cdm_instance.dbo'.

oracleTempSchema

For Oracle only: the name of the database schema where you want all temporary tables to be managed. Requires create/insert permissions to this database.

cohortId

A unique identifier to define the at risk cohort. If cohortTable = DRUG_ERA, cohortId is a CONCEPT_ID and all descendant concepts within that CON-CEPT_ID will be used to define the cohort. If cohortTable <> DRUG_ERA, cohortId is used to select the cohort_concept_id in the cohort-like table.

outcomeIds

A list of cohort_definition_ids used to define outcomes.

studyStartDate A calendar date specifying the minimum date that a cohort index date can appear. Date format is 'yyyymmdd'.

studyEndDate

A calendar date specifying the maximum date that a cohort index date can appear. Date format is 'yyyymmdd'. Important: the study end data is also used to truncate risk windows, meaning no outcomes beyond the study end date will be considered

cohortDatabaseSchema

The name of the database schema that is the location where the cohort data used to define the at risk cohort is available. If cohortTable = DRUG_ERA, cohortDatabaseSchema is not used by assumed to be cdmSchema. Requires read permissions to this database.

getPlpData 19

cohortTable The tablename that contains the at risk cohort. If cohortTable <> DRUG ERA,

then expectation is cohort Table has format of COHORT table: cohort concept id,

SUBJECT_ID, COHORT_START_DATE, COHORT_END_DATE.

outcomeDatabaseSchema

The name of the database schema that is the location where the data used to define the outcome cohorts is available. If cohortTable = CONDITION ERA, exposureDatabaseSchema is not used by assumed to be cdmSchema. Requires

read permissions to this database.

outcomeTable The tablename that contains the outcome cohorts. If outcome Table <> CONDI-

> TION OCCURRENCE, then expectation is outcome Table has format of CO-HORT table: COHORT_DEFINITION_ID, SUBJECT_ID, COHORT_START_DATE,

COHORT_END_DATE.

Define the OMOP CDM version used: currently support "4" and "5". cdmVersion

excludeDrugsFromCovariates

Should the target and comparator drugs (and their descendant concepts) be excluded from the covariates? Note that this will work if the drugs are actualy drug

concept IDs (and not cohort IDs).

firstExposureOnly

Should only the first exposure per subject be included? Note that this is typically done in the createStudyPopulation function, but can already be done here for

efficiency reasons.

The mininum required continuous observation time prior to index date for a washoutPeriod person to be included in the at risk cohort. Note that this is typically done in the

createStudyPopulation function, but can already be done here for efficiency

reasons.

covariateSettings

An object of type covariateSettings as created using the createCovariateSettings function in the FeatureExtraction package.

Details

Based on the arguments, the at risk cohort data is retrieved, as well as outcomes occurring in these subjects. The at risk cohort can be identified using the drug_era table, or through user-defined cohorts in a cohort table either inside the CDM instance or in a separate schema. Similarly, outcomes are identified using the condition_era table or through user-defined cohorts in a cohort table either inside the CDM instance or in a separate schema. Covariates are automatically extracted from the appropriate tables within the CDM. Important: The concepts used to define the at risk cohort must not be included in the covariates, including any descendant concepts. If the cohortId arguments represent real concept IDs, you can set the excludeDrugsFromCovariates argument to TRUE and automatically the drugs and their descendants will be excluded from the covariates. However, if the cohortId argument does not represent concept IDs, you will need to manually add the concept_ids and descendants to the excludedCovariateConceptIds of the covariateSettings argument.

Value

Returns an object of type plpData, containing information on the cohorts, their outcomes, and baseline covariates. Information about multiple outcomes can be captured at once for efficiency reasons. This object is a list with the following components:

outcomes A data frame listing the outcomes per person, including the time to event, and the outcome id. Outcomes are not yet filtered based on risk window, since this is done at a later stage.

cohorts A data frame listing the persons in each cohort, listing their exposure status as well as the time to the end of the observation period and time to the end of the cohort (usually the end of the exposure era).

covariates An ffdf object listing the baseline covariates per person in the two cohorts. This is done using a sparse representation: covariates with a value of 0 are omitted to save space.

covariateRef An ffdf object describing the covariates that have been extracted.

metaData A list of objects with information on how the cohortMethodData object was constructed.

The generic () and summary() functions have been implemented for this object.

getPredictionDistribution

Calculates the prediction distribution

Description

Calculates the prediction distribution

Usage

getPredictionDistribution(prediction)

Arguments

prediction

A prediction object as generated using the predictProbabilities function.

Details

Calculates the quantiles from a predition object

Value

The 0.00, 0.1, 0.25, 0.5, 0.75, 0.9, 1.00 quantile pf the prediction, the mean and standard deviation per class

 ${\tt getThresholdSummary}$

Calculate all measures for sparse ROC

Description

Calculate all measures for sparse ROC

Usage

getThresholdSummary(prediction)

Arguments

prediction

A prediction object as generated using the predictProbabilities function.

grepCovariateNames 21

Details

Calculates the TP, FP, TN, FN, TPR, FPR, accuracy, PPF, FOR and Fmeasure from a predition object

Value

A data frame with all the measures

grepCovariateNames

Extract covariate names

Description

Extracts covariate names using a regular-expression.

Usage

grepCovariateNames(pattern, object)

Arguments

pattern A regular expression with which to name covariate names

object An R object of type plpData or covariateData.

Details

This function extracts covariate names that match a regular-expression for a plpData or covariateData object.

Value

Returns a data.frame containing information about covariates that match a regular expression. This data.frame has the following columns:

covariateId Numerical identifier for use in model fitting using these covariates

covariateName Text identifier

analysisId Analysis identifier

conceptId OMOP common data model concept identifier, or 0

22 loadPlpData

insertDbPopulation	Insert a population into a database
Thiser coordoputation	mseri a population into a aatabase

Description

Insert a population into a database

Usage

```
insertDbPopulation(population, cohortIds = 1, connectionDetails,
  cohortDatabaseSchema, cohortTable = "cohort", createTable = FALSE,
  dropTableIfExists = TRUE, cdmVersion = "5")
```

Arguments

population Either an object of type plpData or a population object generated by functions

like createStudyPopulation.

cohortIds The IDs to be used for the treated and comparator cohort, respectively.

connectionDetails

An R object of type

 ${\tt connectionDetails}\ created\ using\ the\ function\ create{\tt ConnectionDetails}\ in$

the DatabaseConnector package.

cohortDatabaseSchema

The name of the database schema where the data will be written. Requires write permissions to this database. On SQL Server, this should specify both the

database and the schema, so for example 'cdm_instance.dbo'.

cohortTable The name of the table in the database schema where the data will be written.

createTable Should a new table be created? If not, the data will be inserted into an existing

table.

 ${\tt dropTableIfExists}$

If createTable = TRUE and the table already exists it will be overwritten.

cdmVersion Define the OMOP CDM version used: currently support "4" and "5".

Details

Inserts a population table into a database. The table in the database will have the same structure as the 'cohort' table in the Common Data Model.

	loadPlpData	Load the cohort data from a folder	
--	-------------	------------------------------------	--

Description

loadPlpData loads an object of type plpData from a folder in the file system.

Usage

```
loadPlpData(file, readOnly = TRUE)
```

loadPlpModel 23

Arguments

file The name of the folder containing the data.

readOnly If true, the data is opened read only.

Details

The data will be written to a set of files in the folder specified by the user.

Value

An object of class plpData.

Examples

todo

loadPlpModel

loads the plp model

Description

loads the plp model

Usage

loadPlpModel(dirPath)

Arguments

dirPath

The location of the model

Details

Loads a plp model that was saved using savePlpModel()

loadPlpResult

Loads the evaluation dataframe

Description

Loads the evaluation dataframe

Usage

loadPlpResult(dirPath)

Arguments

dirPath

The directory where the evaluation was saved

Details

Loads the evaluation

loadPrediction Load

Loads the prediciton dataframe to csv

Description

Loads the prediciton dataframe to csv

Usage

loadPrediction(dirPath)

Arguments

dirPath

The directory to saved the csv

Details

Loads the prediciton csv file

 ${\tt negativeLikelihoodRatio}$

Calculate the negativeLikelihoodRatio

Description

Calculate the negativeLikelihoodRatio

Usage

```
negativeLikelihoodRatio(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the negativeLikelihoodRatio

Value

negativeLikelihoodRatio value

${\tt negativePredictiveValue}$

 $Calculate\ the\ negative Predictive Value$

Description

Calculate the negativePredictiveValue

Usage

```
negativePredictiveValue(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the negativePredictiveValue

Value

negativePredictiveValue value

PatientLevelPrediction

 ${\it Patient Level Prediction}$

Description

PatientLevelPrediction

personSplitter	Split data into random subsets stratified by class
----------------	--

Description

Split data into random subsets stratified by class

Usage

```
personSplitter(population, test = 0.3, nfold = 3, seed = NULL)
```

Arguments

population An object created using createStudyPopulation().

A real number between 0 and 1 indicating the test set fraction of the data

An integer >= 1 specifying the number of folds used in cross validation

seed If set a fixed seed is used, otherwise a random split is performed

Details

Returns a dataframe of rowIds and indexes with a -1 index indicating the rowId belongs to the test set and a positive integer index value indicating the rowId's cross valiation fold within the train set.

Value

A dataframe containing the columns: rowId and index

```
plotDemographicSummary
```

Plot the Observed vs. expected incidence, by age and gender

Description

Plot the Observed vs. expected incidence, by age and gender

Usage

```
plotDemographicSummary(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the Observed vs. expected incidence, by age and gender #'

plotF1Measure 27

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotF1Measure

Plot the F1 measure efficiency frontier using the sparse thresholdSummary data frame

Description

Plot the F1 measure efficiency frontier using the sparse thresholdSummary data frame

Usage

```
plotF1Measure(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the F1 measure efficiency frontier using the sparse thresholdSummary data frame

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotGenerlizability

Plot the train/test generalizability diagnostic

Description

Plot the train/test generalizability diagnostic

Usage

```
plotGenerlizability(covariateSummary, fileName = NULL)
```

Arguments

covariateSummary

A prediction object as generated using the RunPlp function.

fileName

Name of the file where the plot should be saved, for example 'plot.png'. See the function ggsave in the ggplot2 package for supported file formats.

28 plotPrecisionRecall

Details

Create a plot showing the train/test generalizability diagnostic #'

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotPlp

Plot all the PatientLevelPrediction plots

Description

Plot all the PatientLevelPrediction plots

Usage

```
plotPlp(result, filename)
```

Arguments

result Object returned by the RunPlp() function

filename Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a directory with all the plots

Value

TRUE if it ran

plotPrecisionRecall

Plot the precision-recall curve using the sparse thresholdSummary data frame

Description

Plot the precision-recall curve using the sparse thresholdSummary data frame

Usage

```
plotPrecisionRecall(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

plotPredictedPDF 29

Details

Create a plot showing the precision-recall curve using the sparse thresholdSummary data frame

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotPredictedPDF Plot the Predicted probability density function, showing prediction overlap between true and false cases

Description

Plot the Predicted probability density function, showing prediction overlap between true and false cases

Usage

```
plotPredictedPDF(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the predicted probability density function, showing prediction overlap between true and false cases

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotPredictionDistribution

Plot the side-by-side boxplots of prediction distribution, by class#'

Description

Plot the side-by-side boxplots of prediction distribution, by class#'

Usage

```
plotPredictionDistribution(evaluation, fileName = NULL)
```

30 plotPreferencePDF

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the side-by-side boxplots of prediction distribution, by class #'

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotPreferencePDF Plot the preference score probability density function, showing predic-

tion overlap between true and false cases #

Description

Plot the preference score probability density function, showing prediction overlap between true and false cases #'

Usage

plotPreferencePDF(evaluation, fileName = NULL)

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the preference score probability density function, showing prediction overlap between true and false cases #'

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotRoc 31

plotRoc

Plot the ROC curve

Description

Plot the ROC curve

Usage

```
plotRoc(prediction, fileName = NULL)
```

Arguments

prediction A prediction object as generated using the predictProbabilities function.

Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the Receiver Operator Characteristics (ROC) curve.

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotSparseCalibration Plot the calibration

Description

Plot the calibration

Usage

```
plotSparseCalibration(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the calibration #'

Value

A ggplot object. Use the ggsave function to save to file in a different format.

plotSparseRoc

Plot the ROC curve using the sparse thresholdSummary data frame

Description

Plot the ROC curve using the sparse thresholdSummary data frame

Usage

```
plotSparseRoc(evaluation, fileName = NULL)
```

Arguments

evaluation A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the Receiver Operator Characteristics (ROC) curve.

Value

A ggplot object. Use the ggsave function to save to file in a different format.

```
plotVariableScatterplot
```

Plot the variable importance scatterplot

Description

Plot the variable importance scatterplot

Usage

```
plotVariableScatterplot(covariateSummary, fileName = NULL)
```

Arguments

covariateSummary

A prediction object as generated using the RunPlp function.

fileName Name of the file where the plot should be saved, for example 'plot.png'. See the

function ggsave in the ggplot2 package for supported file formats.

Details

Create a plot showing the variable importance scatterplot #'

Value

A ggplot object. Use the ggsave function to save to file in a different format.

```
{\tt plpDataSimulationProfile}
```

A simulation profile

Description

A simulation profile

Usage

```
data(plpDataSimulationProfile)
```

```
positive Likelihood Ratio\\
```

 ${\it Calculate\ the\ positive Likelihood Ratio}$

Description

 $Calculate\ the\ positive Likelihood Ratio$

Usage

```
positiveLikelihoodRatio(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the positiveLikelihoodRatio

Value

positiveLikelihoodRatio value

34 predictFfdf

positivePredictiveValue

 $Calculate\ the\ positive Predictive Value$

Description

Calculate the positivePredictiveValue

Usage

```
positivePredictiveValue(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the positivePredictiveValue

Value

positivePredictiveValue value

predictFfdf	Generated predictions from a regression model
-------------	---

Description

Generated predictions from a regression model

Usage

```
predictFfdf(coefficients, population, covariates, modelType = "logistic")
```

Arguments

coefficients	A names numeric vector where the names are the covariateIds, except for the first value which is expected to be the intercept.
population	A data frame containing the population to do the prediction for
covariates	A data frame or ffdf object containing the covariates with predefined columns (see below).
modelType	Current supported types are "logistic", "poisson", or "survival".

Details

These columns are expected in the outcome object:

predictPlp 35

rowId (integer) Row ID is used to link multiple covariates (x) to a single outcome (y) time (real) For models that use time (e.g. Poisson or Cox regression) this contains time (e.g. number of days)

These columns are expected in the covariates object:

rowId	(integer)	Row ID is used to link multiple covariates (x) to a single outcome (y)
covariateId	(integer)	A numeric identifier of a covariate
covariateValue	(real)	The value of the specified covariate

Description

Predict the risk of the outcome using the input plpModel for the input plpData

Usage

```
predictPlp(plpModel, population, plpData, index = NULL)
```

Arguments

plpModel An object of type plpModel - a patient level prediction model

population The population created using createStudyPopulation() who will have their risks predicted

plpData An object of type plpData - the patient level prediction data extracted from the CDM.

index A data frame containing rowId: a vector of rowids and index: a vector of doubles the same length as the rowIds. If used, only the rowIds with a negative index

value are used to calculate the prediction.

Details

The function applied the trained model on the plpData to make predictions

Value

A dataframe containing the prediction for each person in the population with an attribute metaData containing prediction details.

36 RunPlp

```
predictProbabilities Create predictive probabilities
```

Description

Create predictive probabilities

Usage

```
predictProbabilities(predictiveModel, population, covariates)
```

Arguments

predictiveModel

An object of type predictiveModel as generated using fitPlp.

population The population to calculate the prediction for

covariates The covariate part of PlpData containing the covariates for the population

Details

Generates predictions for the population specified in plpData given the model.

Value

The value column in the result data.frame is: logistic: probabilities of the outcome, poisson: Poisson rate (per day) of the outcome, survival: hazard rate (per day) of the outcome.

RunPlp

RunPlp - Train and evaluate the model

Description

This provides a general framework for training patient level prediction models. The user can select various default feature selection methods or incorporate their own, The user can also select from a range of default classifiers or incorporate their own. There are three types of evaluations for the model patient (randomly splits people into train/validation sets) or year (randomly splits data into train/validation sets based on index year - older in training, newer in validation) or both (same as year spliting but checks there are no overlaps in patients within training set and validation set - any overlaps are removed from validation set)

Usage

```
RunPlp(population, plpData, modelSettings, testSplit = "time",
  testFraction = 0.3, nfold = 3, indexes = NULL, save = NULL,
  saveModel = T, verbosity = futile.logger::INFO, timeStamp = FALSE,
  analysisId = NULL)
```

RunPlp 37

Arguments

population The population created using createStudyPopulation() who will be used to de-

velop the model

plpData An object of type plpData - the patient level prediction data extracted from the

CDM.

modelSettings An object of class modelSettings created using one of the function:

• logisticRegressionModel() A lasso logistic regression model

• GBMclassifier() A gradient boosting machine

• RFclassifier() A random forest model

• GLMclassifier () A generalised linear model

• KNNclassifier() A KNN model

testSplit Either 'person' or 'time' specifying the type of evaluation used. 'time' find

the date where testFraction of patients had an index after the date and assigns patients with an index prior to this date into the training set and post the date into the test set 'person' splits the data into test (1-testFraction of the data) and train (validationFraction of the data) sets. The split is stratified by the class label.

testFraction The fraction of the data to be used as the test set in the patient split evaluation.

nfold The number of folds used in the cross validation (default 3)

indexes A dataframe containing a rowId and index column where the index value of -1

means in the test set, and positive integer represents the cross validation fold

(default is NULL)

save The path to the directory where the models will be saved (if NULL uses working

directory)

saveModel Binary indicating whether to save the model once it is trained (default is T)

verbosity Sets the level of the verbosity. If the log level is at or higher in priority than the

logger threshold, a message will print. The levels are:

• DEBUGHighest verbosity showing all debug statements

• TRACEShowing information about start and end of steps

• INFOShow informative information (Default)

• WARNShow warning messages

ERRORShow error messages

• FATALBe silent except for fatal errors

timeStamp If TRUE a timestamp will be added to each logging statement. Automatically

switched on for TRACE level.

analysisId Identifier for the analysis. It is used to create, e.g., the result folder. Default is a

timestamp.

Details

Users can define a risk period of interest for the prediction of the outcome relative to index or use the cohprt dates. The user can then specify whether they wish to exclude patients who are not observed during the whole risk period, cohort period or experienced the outcome prior to the risk period.

38 RunPlp

Value

An object containing the model or location where the model is save, the data selection settings, the preprocessing and training settings as well as various performance measures obtained by the model.

predict A function that can be applied to new data to apply the trained model and make

predictions

model A list of class plpModel containing the model, training metrics and model meta-

data

prediction A dataframe containing the prediction for each person in the test set evalType The type of evaluation that was performed ('person' or 'time')

performanceTest

A list detailing the size of the test sets

performanceTrain

A list detailing the size of the train sets

time The complete time taken to do the model framework

Examples

```
## Not run:
#**** EXAMPLE 1 ******
#load plpData:
plpData <- loadPlpData(file.path('C:','User','home','data'))</pre>
#create study population to develop model on
#require minimum of 365 days observation prior to at risk start
#no prior outcome and person must be observed for 365 after index (minTimeAtRisk)
#with risk window from 0 to 365 days after index
population <- createStudyPopulation(plpData,outcomeId=2042,</pre>
                                     firstExposureOnly = FALSE,
                                     washoutPeriod = 365,
                                     removeSubjectsWithPriorOutcome = TRUE,
                                     priorOutcomeLookback = 99999,
                                     requireTimeAtRisk = TRUE,
                                    minTimeAtRisk=365,
                                     riskWindowStart = 0,
                                     addExposureDaysToStart = FALSE,
                                     riskWindowEnd = 365.
                                     addExposureDaysToEnd = FALSE)
#lasso logistic regression predicting outcome 200 in cohorts 10
#using no feature selection with a time split evaluation with 30% in test set
#70% in train set where the model hyper-parameters are selected using 3-fold cross validation:
#and results are saved to file.path('C:','User','home')
model.lr <- lassoLogisticRegression.set()</pre>
mod.lr <- RunPlp(population=population,</pre>
                        plpData= plpData,
                        modelSettings = model.lr
                        testSplit = 'time', testFraction=0.3,
                        nfold=3, indexes=NULL,
                        save=file.path('C:','User','home'),
                        verbosity='INFO')
#***** EXAMPLE 2 ******
# Gradient boosting machine with a grid search to select hyper parameters
```

savePlpData 39

savePlpData

Save the cohort data to folder

Description

savePlpData saves an object of type plpData to folder.

Usage

```
savePlpData(plpData, file, envir = NULL)
```

Arguments

plpData An object of type plpData as generated using getDbPlpData.

file The name of the folder where the data will be written. The folder should not yet

exist.

envir The environment for to evaluate variables when saving

Details

The data will be written to a set of files in the folder specified by the user.

Examples

todo

savePlpModel

Saves the plp model

Description

Saves the plp model

Usage

```
savePlpModel(plpModel, dirPath)
```

40 savePrediction

Arguments

plpModel A trained classifier returned by running RunPlp()\$model

dirPath A location to save the model to

Details

Saves the plp model to a user specificed folder

 ${\tt savePlpResult}$

Saves the result from runPlp into the location directory

Description

Saves the result from runPlp into the location directory

Usage

```
savePlpResult(result, dirPath)
```

Arguments

result The result of running RunPlp()
dirPath The directory to save the csv

Details

Saves the result from runPlp into the location directory

 ${\tt save Prediction}$

Saves the prediction dataframe to csv

Description

Saves the prediction dataframe to csv

Usage

```
savePrediction(prediction, dirPath)
```

Arguments

prediction The prediciton data.frame
dirPath The directory to save the csv

Details

Saves the prediction data frame returned by predict.R to a csv file

sensitivity 41

sensitivity	Calculate the sensitivity	
-------------	---------------------------	--

Description

Calculate the sensitivity

Usage

```
sensitivity(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the sensitivity

Value

sensitivity value

```
{\tt setGradientBoostingMachine}
```

Create setting for gradient boosting machine model using gbm_xgboost implementation

Description

Create setting for gradient boosting machine model using gbm_xgboost implementation

Usage

```
setGradientBoostingMachine(ntrees = c(10, 100), nthread = 20,
  max_depth = 6, min_rows = 20, learn_rate = 0.1)
```

Arguments

ntrees	The number of trees to build
nthread	The number of computer threads to (how many cores do you have?)
max_depth	Maximum number of interactions - a large value will lead to slow model training
min_rows	The minimum number of rows required at each end node of the tree
learn_rate	The boosting learn rate

Examples

```
\label{loss_model_gbm} $$\ensuremath{^{-}}$ setGradientBoostingMachine(ntrees=c(10,100), nthread=20, \\ max\_depth=c(4,6), learn\_rate=c(0.1,0.3)) $$
```

setKNN

Create setting for knn model

Description

Create setting for knn model

Usage

```
setKNN(k = 1000, indexFolder = file.path(getwd(), "knn"))
```

Arguments

k The number of neighbors to consider

indexFolder The directory where the results and intermediate steps are output

Examples

```
model.knn <- setKNN(k=c(3,100,1000))
```

 ${\tt setLassoLogisticRegression}$

Create setting for lasso logistic regression

Description

Create setting for lasso logistic regression

Usage

```
setLassoLogisticRegression(variance = 0.01)
```

Arguments

variance

a single value or vector of values to be used to train multiple models and the model with the best performance on the cross validation set is choosen

Examples

```
model.lr <- setLassoLogisticRegression()</pre>
```

setMLP 43

setMLP

Create setting for neural network model with python

Description

Create setting for neural network model with python

Usage

```
setMLP()
```

Examples

```
## Not run:
model.mlp <- setMLP()
## End(Not run)</pre>
```

setNaiveBayes

Create setting for naive bayes model with python

Description

Create setting for naive bayes model with python

Usage

```
setNaiveBayes()
```

Examples

```
## Not run:
model.nb <- setNaiveBayes()
## End(Not run)</pre>
```

setRandomForest

Create setting for random forest model with python (very fast)

Description

Create setting for random forest model with python (very fast)

Usage

```
setRandomForest(mtries = -1, ntrees = c(10, 500), max_depth = 17, varImp = T)
```

44 simulatePlpData

Arguments

mtries The number of features to include in each tree (-1 defaults to square root of total

features)

ntrees The number of trees to build

max_depth Maximum number of interactions - a large value will lead to slow model training

varImp Perform an initial variable selection prior to fitting the model to select the useful

variables

Examples

simulatePlpData

Generate simulated data

Description

simulateplpData creates a plpData object with simulated data.

Usage

```
simulatePlpData(plpDataSimulationProfile, n = 10000)
```

Arguments

plpDataSimulationProfile

An object of type plpDataSimulationProfile as generated using the

 $\verb|createplpDataSimulationProfile function|.$

n The size of the population to be generated.

Details

This function generates simulated data that is in many ways similar to the original data on which the simulation profile is based. The contains same outcome, comparator, and outcome concept IDs, and the covariates and their 1st order statistics should be comparable.

Value

An object of type plpData.

specificity 45

Description

Calculate the specificity

Usage

```
specificity(TP, TN, FN, FP)
```

Arguments

TP	Number of true positives
TN	Number of true negatives
FN	Number of false negatives
FP	Number of false positives

Details

Calculate the specificity

Value

specificity value

timeSplitter	Split test/train data by time and then partitions training set into ran-
	dom folds stratified by class

Description

Split test/train data by time and then partitions training set into random folds stratified by class

Usage

```
timeSplitter(population, test = 0.3, nfold = 3, seed = NULL)
```

Arguments

population	An object created using createStudyPopulation().
test	A real number between 0 and 1 indicating the test set fraction of the data
nfold	An integer >= 1 specifying the number of folds used in cross validation
seed	If set a fixed seed is used, otherwise a random split is performed

Details

Returns a dataframe of rowIds and indexes with a -1 index indicating the rowId belongs to the test set and a positive integer index value indicating the rowId's cross valiation fold within the train set.

46 toSparseM

Value

A dataframe containing the columns: rowId and index

toSparseM Convert the plpData in COO format into a sparse R matrix

Description

Converts the standard plpData to a sparse matrix

Usage

```
toSparseM(plpData, population, map = NULL)
```

Arguments

plpData An object of type plpData with covariate in coo format - the patient level pre-

diction data extracted from the CDM.

population The population to include in the matrix

map A covariate map (telling us the column number for covariates)

Details

This function converts the covariate file from ffdf in COO format into a sparse matrix from the package Matrix

Value

Returns a list, containing the data as a sparse matrix, the plpData covariateRef and a data.frame named map that tells us what covariate corresponds to each column This object is a list with the following components:

data A sparse matrix with the rows corresponding to each person in the plpData and the columns corresponding to the covariates.

covariateRef The plpData covariateRef.

map A data frame containing the data column ids and the corresponding covariateId from covariateRef.

Examples

#TODO

toSparsePython 47

toSparsePython	Convert the plpData in COO format into a sparse python matrix	

Description

Converts the standard plpData to a sparse matrix firectly into python

Usage

```
toSparsePython(plpData, population, map = NULL)
```

Arguments

plpData An object of type plpData with covariate in coo format - the patient level pre-

diction data extracted from the CDM.

population The population to include in the matrix

map A covariate map (telling us the column number for covariates)

Details

This function converts the covariate file from ffdf in COO format into a sparse matrix from the package Matrix

Value

Returns a list, containing the python object name of the sparse matrix, the plpData covariateRef and a data.frame named map that tells us what covariate corresponds to each column This object is a list with the following components:

data The python object name containing a sparse matrix with the rows corresponding to each person in the plpData and the columns corresponding to the covariates.

covariateRef The plpData covariateRef.

map A data frame containing the data column ids and the corresponding covariateId from covariateRef.

Examples

#TODO

Index

*Topic datasets	loadPrediction, 24
plpDataSimulationProfile, 33	
	negativeLikelihoodRatio,24
accuracy, 3	negativePredictiveValue, 25
applyModel, 4	
averagePrecision, 5	PatientLevelPrediction, 25
	PatientLevelPrediction-package
brierScore, 5	(PatientLevelPrediction), 25
bySumFf, 6	personSplitter, 26
	plotDemographicSummary, 26
calibrationLine, 6	plotF1Measure, 27
computeAuc, 7	plotGenerlizability, 27
computeAucFromDataFrames, 7	plotPlp, 28
createControl, 15	plotPrecisionRecall, 28
createPlpSimulationProfile, 8	plotPredictedPDF, 29
createPrior, 15	plotPredictionDistribution, 29
createStudyPopulation, 8	plotPreferencePDF, 30
diagnosticOddoDatio 10	plotRoc, 31
diagnosticOddsRatio, 10	plotSparseCalibration, 31
evaluatePlp, 11	plotSparseRoc, 32
exportPlpDataToCsv, 11	plotVariableScatterplot, 32
exporti ippatarocsv, ii	plpDataSimulationProfile, 33
f1Score, 12	positiveLikelihoodRatio,33
falseDiscoveryRate, 13	positivePredictiveValue, 34
falseNegativeRate, 13	predict, <i>7</i> , <i>17</i>
falseOmissionRate, 14	predictFfdf, 34
falsePositiveRate, 14	predictPlp, 35
fitGLMModel, 15	predictProbabilities, <i>5</i> , <i>6</i> , <i>20</i> , <i>31</i> , 36
fitPlp, 15, <i>17</i> , <i>36</i>	
120.26, 10, 17, 00	RunPlp, <i>26–32</i> , 36
getAttritionTable, 16	
getCalibration, 17	savePlpData, 39
getModelDetails, 17	savePlpModel, 39
getPlpData, 17, 18	${\sf savePlpResult}, 40$
getPredictionDistribution, 20	savePrediction, 40
getThresholdSummary, 20	sensitivity, 41
ggsave, 27–32	setGradientBoostingMachine, 41
grepCovariateNames, 21	setKNN, 42
	setLassoLogisticRegression, 42
insertDbPopulation, 22	setMLP, 43
	setNaiveBayes, 43
loadPlpData, 22	setRandomForest, 43
loadPlpModel, 23	simulatePlpData,44
loadPlpResult, 23	specificity, 45

INDEX 49

timeSplitter, 45 toSparseM, 46 toSparsePython, 47