# Санкт-Петербургский Политехнический университет Петра Великого

# Отчет по лабораторным работам №1-4 по дисциплине "Математическая статистика"

Студент: Скворцов Владимир Сергеевич

Преподаватель: Баженов Александр Николаевич

Группа: 5030102/10201

Санкт-Петербург 2024

# Содержание

| 1  | Пос | становка задачи                                                  | 2  |
|----|-----|------------------------------------------------------------------|----|
|    | 1.1 | Описательная статистика                                          | 2  |
|    | 1.2 | Точечное оценивание характеристик положения и рассеяния          | 2  |
| 2  | Teo | ретическое обоснование                                           | 2  |
|    | 2.1 | Функции распределения                                            | 2  |
|    | 2.2 | Характеристики положения и рассеяния                             | 3  |
| 3  | Оп  | исание работы                                                    | 3  |
| 4  | Рез | ультаты                                                          | 4  |
|    | 4.1 | Гистограммы и графики плотности распределения                    | 4  |
|    | 4.2 | Характеристики положения и рассеяния                             | 6  |
| 5  | Вы  | воды                                                             | 8  |
| 6  | Пос | становка задачи                                                  | 9  |
|    | 6.1 | Боксплот Тьюки                                                   | 9  |
|    | 6.2 | Доверительные интервалы для параметров нормального распределения | 9  |
| 7  | Teo | ретическое обоснование                                           | 9  |
|    | 7.1 | Функции распределения                                            | 9  |
|    | 7.2 | Боксплот Тьюки                                                   | 10 |
|    | 7.3 | Доверительные интервалы для параметров нормального распределения | 10 |
| 8  | Опп | исание работы                                                    | 10 |
| 9  | Рез | ультаты                                                          | 11 |
|    | 9.1 | Гистограммы и графики плотности распределения                    | 11 |
|    | 9.2 | Доверительные интервалы для параметров распределений             | 13 |
| 10 | Brn | ROILI                                                            | 14 |

## 1 Постановка задачи

#### 1.1 Описательная статистика

Для 5 распределений:

- Нормальное распределение N(x, 0, 1)
- распределение Коши C(x, 0, 1)
- Распределение Стьюдента t(x,0,3) с тремя степенями свободы
- Распределение Пуассона P(k, 10)
- Равномерное распределение  $U(x, -\sqrt{3}, \sqrt{3})$

Сгенерировать выборки размером 10, 50, 1000 элементов.

Построить на одном рисунке гистограмму и график плотности распределения.

#### 1.2 Точечное оценивание характеристик положения и рассеяния

Сгенерировать выборки размером 10, 50, 1000 элементов.

Для каждой выборки вычислить следующие статистические характеристики положения данных:  $\bar{x}$ ,  $med\ x$ ,  $z_Q$ ,  $z_R$ ,  $z_{tr}$ . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:  $E(z) = \bar{z}$ . Вычислить оценку дисперсии по формуле  $D(z) = \bar{z}^2 - \bar{z}^2$ .

## 2 Теоретическое обоснование

#### 2.1 Функции распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Стьюдента t(x,0,3) с тремя степенями свободы

$$t(x,0,3) = \frac{6\sqrt{3}}{\pi(3+t^2)^2} \tag{3}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при } |x| \le \sqrt{3} \\ 0 & \text{при } |x| > \sqrt{3} \end{cases}$$
 (5)

#### 2.2 Характеристики положения и рассеяния

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{6}$$

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при} \quad n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при} \quad n = 2l \end{cases}$$
 (7)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{8}$$

• Полусумма квартилей Выборочная квартиль  $z_p$  порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & \text{при} & np \text{ дробном} \\ x_{(np)} & \text{при} & np \text{ целом} \end{cases}$$
 (9)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{10}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n-2r} \sum_{i=r+1}^{n-r} x_{(i)}, \ r \approx \frac{n}{4}$$
 (11)

• Среднее характеристики

$$E(z) = \overline{z} \tag{12}$$

• Оценка дисперсии

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{13}$$

## 3 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек numpy, pandas, matplotlib, seaborn были построены гистограммы распределений и посчитаны характеристики пложения.

 ${\it Cc}$  Ссылка на GitHub peпозиторий: <a href="https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics">https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics</a>

# 4 Результаты

#### 4.1 Гистограммы и графики плотности распределения



Рис. 1: Нормальное распределение (14)



Рис. 2: Распределение Коши (15)



Рис. 3: Распределение Стьюдента (16)



Рис. 4: Распределение Пуассона (17)



Рис. 5: Равномерное распределение (18)

## 4.2 Характеристики положения и рассеяния

| n = 10    |                    |                 |           |              |               |
|-----------|--------------------|-----------------|-----------|--------------|---------------|
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | -0.017466          | -0.019283       | -0.019494 | -0.014486    | -0.007937     |
| D(z) (13) | 0.100879           | 0.142707        | 0.187775  | 0.115437     | 0.160836      |
| n = 50    |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | -0.007937          | 0.100879        | 0.142707  | 0.187775     | 0.115437      |
| D(z) (13) | 0.009941           | 0.015535        | 0.095586  | 0.012392     | 0.020005      |
| n = 1000  |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | 0.000038           | -0.001779       | -0.002971 | 0.001002     | -0.000085     |
| D(z) (13) | 0.000985           | 0.001682        | 0.061385  | 0.001243     | 0.001939      |

Таблица 1: Нормальное распределение

| n = 10    |                    |                 |                 |            |               |
|-----------|--------------------|-----------------|-----------------|------------|---------------|
|           | $\overline{x}$ (6) | med x (7)       | $z_R$ (8)       | $z_Q (10)$ | $z_{tr}$ (11) |
| E(z) (12) | -4.724165          | -0.015986       | -23.612109      | -0.015176  | -8.310631     |
| D(z) (13) | 11477.749749       | 0.337081        | 286469.541418   | 1.163577   | 31698.450396  |
| n = 50    |                    |                 |                 |            |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8)       | $z_Q (10)$ | $z_{tr} (11)$ |
| E(z) (12) | 0.781733           | 0.012225        | 37.029997       | 0.008637   | 0.857304      |
| D(z) (13) | 431.900044         | 0.025323        | 1060046.375320  | 0.055008   | 167.707860    |
| n = 1000  |                    |                 |                 |            |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8)       | $z_Q (10)$ | $z_{tr} (11)$ |
| E(z) (12) | -0.336134          | -0.001532       | -129.057477     | -0.001540  | -0.049715     |
| D(z) (13) | 240.553988         | 0.002310        | 50362265.313181 | 0.004735   | 174.261104    |

Таблица 2: Распределение Коши

| n = 10    |                    |                 |           |              |               |
|-----------|--------------------|-----------------|-----------|--------------|---------------|
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | 0.016265           | 0.004667        | 0.040925  | 0.014315     | 0.000750      |
| D(z) (13) | 0.259126           | 0.183832        | 1.659319  | 0.184564     | 0.431912      |
| n = 50    |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr}$ (11) |
| E(z) (12) | -0.002158          | -0.001389       | 0.021238  | 0.003592     | -0.016753     |
| D(z) (13) | 0.026907           | 0.019051        | 9.893951  | 0.018478     | 0.052782      |
| n = 1000  |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | 0.000335           | -0.000238       | -0.054818 | 0.000162     | 0.000679      |
| D(z) (13) | 0.002898           | 0.001903        | 32.527888 | 0.001944     | 0.005656      |

Таблица 3: Распределение Стьюдента

| n = 10    |                    |                 |             |              |                 |
|-----------|--------------------|-----------------|-------------|--------------|-----------------|
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R \ (8)$ | $z_Q \ (10)$ | $z_{tr} (11)$   |
| E(z) (12) | 10.002500          | 9.874000        | 10.294500   | 9.917625     | 9.937000        |
| D(z) (13) | 1.081944           | 1.477624        | 2.018020    | 1.283917     | 1.699309        |
| n = 50    |                    |                 |             |              |                 |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8)   | $z_Q \ (10)$ | $z_{tr} (11)$   |
| E(z) (12) | 10.013690          | 9.855500        | 10.896000   | 9.945125     | 10.013560       |
| D(z) (13) | 0.095748           | 0.197370        | 0.957184    | 0.139817     | 0.204837        |
| n = 1000  |                    |                 |             |              |                 |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8)   | $z_Q \ (10)$ | $z_{tr} \ (11)$ |
| E(z) (12) | 10.005702          | 9.997000        | 11.627000   | 9.994000     | 10.004912       |
| D(z) (13) | 0.010137           | 0.002991        | 0.634371    | 0.002964     | 0.020719        |

Таблица 4: Распределение Пуассона

| n = 10    |                    |                 |           |              |               |
|-----------|--------------------|-----------------|-----------|--------------|---------------|
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr}$ (11) |
| E(z) (12) | -0.005450          | -0.006939       | -0.005412 | -0.007901    | -0.015610     |
| D(z) (13) | 0.104110           | 0.240206        | 0.044016  | 0.144291     | 0.172234      |
| n = 50    |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | -0.001915          | -0.006312       | -0.001349 | 0.001960     | -0.004766     |
| D(z) (13) | 0.010019           | 0.029723        | 0.000599  | 0.014276     | 0.018935      |
| n = 1000  |                    |                 |           |              |               |
|           | $\overline{x}$ (6) | $med \ x \ (7)$ | $z_R$ (8) | $z_Q \ (10)$ | $z_{tr} (11)$ |
| E(z) (12) | 0.000470           | 0.000924        | -0.000133 | -0.000355    | -0.000387     |
| D(z) (13) | 0.001014           | 0.003127        | 0.000005  | 0.001469     | 0.001887      |

Таблица 5: Равномерное распределение

#### 5 Выводы

В процессе выполнения лабораторной работы был проведен анализ пяти уникальных распределений: нормальное, Коши, Стьюдента, Пуассона и равномерное. Были сгенерированы выборки разных объемов для каждого из них - 10, 50 и 1000 элементов. Были созданы гистограммы каждого распределения и нанесены на них графики плотности соответствующих распределений, что облегчило наглядное сопоставление формы распределения выборок с их теоретическими аналогами. Были также рассчитаны разные показатели положения и рассеяния для каждой выборки, включая выборочную среднюю величину, медиану, полусумму крайних элементов выборки, полусумму квартилей и усеченное среднее. Использовалась стандартная формула для оценки дисперсии.

На основании полученных данных были сделаны следующие выводы:

- 1. В случае нормального распределения, оценки показателей положения и рассеяния становятся ближе к их теоретическим значениям по мере увеличения размера выборки.
- 2. Для распределения Коши показатели положения и рассеяния менее стабильны и могут сильно отличаться от теоретических даже при больших размерах выборки.
- 3. Распределение Стьюдента при небольших размерах выборки также демонстрирует определенную нестабильность оценок, однако с увеличением размера выборки результаты становятся более точными.
- 4. Для распределения Пуассона и равномерного распределения, оценки показателей положения и рассеяния кажутся стабильными при любом объеме выборки.
- 5. В общем, выборочное среднее является наиболее чувствительным к экстремальным значениям по сравнению с медианой, особенно в меньших выборках. Однако с увеличением размера выборки, влияние этих экстремальных значений на среднее значение уменьшается. В то же время, медиана обычно более устойчива к выбросам и мало варьирует с изменением размера выборки.
- 6. Медиана является чувствительной к типу распределения: в нормальном и распределении Стьюдента медиана равна среднему, в распределении Коши она дает надежные, устойчивые к выбросам оценки, в Пуассоновском приближается к среднему, и в равномерном равна половине суммы минимального и максимального значений.

#### 6 Постановка задачи

#### 6.1 Боксплот Тьюки

Сгенерировать выборки размером 20 и 100 элементов. Построить для них боксплот Тьюки.

#### 6.2 Доверительные интервалы для параметров нормального распределения

Сгенерировать выборки размером 20 и 100 элементов. Вычислить параметры положения и рассеяния:

- для нормального распределения,
- для произвольного распределения.

## 7 Теоретическое обоснование

#### 7.1 Функции распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{14}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{15}$$

• Распределение Стьюдента t(x,0,3) с тремя степенями свободы

$$t(x,0,3) = \frac{6\sqrt{3}}{\pi(3+t^2)^2} \tag{16}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{17}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, & |x| \le \sqrt{3} \\ 0, & |x| > \sqrt{3} \end{cases}$$
 (18)

#### 7.2 Боксплот Тьюки

Боксплот (англ. box plot) — график, использующихся в описательной статистике, компактно изобрадающий одномерное распределение вероятностей. Такой вид диаграммы в удобной форме показывает медиану, нижний и верхний квартили и выбросы. Границами ящика служат первый и третий квартили, линия в середине ящика — медиана. Концы усов — края статистически значимой выборки (без выброса). Длину «усов» определяют разность первого квартиля и полутора межквартальных расстояний и сумма третьего квартиля и полутора межквартальных расстояний. Формула имеет вид

$$X_1 = Q_1 - \frac{3}{2}(Q_3 - Q_1), \ X_2 = Q_3 + \frac{3}{2}(Q_3 - Q_1),$$
 (19)

где  $X_1$  — нижняя граница уса,  $X_2$  — верхняя граница уса,  $Q_1$  — первый квартиль,  $Q_3$  - третий квартиль. Данные, выходящие за границы усов (выбросы), отображаются на графике в виде маленьких кружков. Выбросами считаются величины, такие что:

$$\begin{bmatrix}
x < X_1^T \\
x > X_2^T
\end{bmatrix}$$
(20)

#### 7.3 Доверительные интервалы для параметров нормального распределения

Пусть  $F_T(x)$  — функция распределения Стьюдента с n-1 степенями свободы. Полагаем, что  $2F_T(x)-1=1-\alpha$ , где  $\alpha$  — выбранный уровень значимости. Тогда  $F_T(x)=1-\alpha/2$ . Пусть  $st_{1-\alpha/2}(n-1)$  — квантиль распределения Стьюдента с n-1 степенями свободы и порядка  $1-\alpha/2$ . Тогда получаем

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,\tag{21}$$

что и даст доверительный интервал для m с доверительной вероятностью  $\gamma=1\alpha$  для нормального распределения.

Случайная величина  $n\frac{s^2}{\sigma^2}$  распределена по закону  $\chi^2$  с n-1 степенями свободы. Тогда

$$P\left(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}\right) = 1 - \alpha,\tag{22}$$

#### 8 Описание работы

Лабораторные работы выполнены с использованием Python и его сторонних библиотек: numpy, pandas, matplotlib, seaborn.

Ссылка на GitHub репозиторий: https://github.com/vladimir-skvortsov/spbstu-mathematical-statistics

# 9 Результаты

#### 9.1 Гистограммы и графики плотности распределения



Рис. 6: Нормальное распределение (14)



Рис. 7: Распределение Коши (15)



Рис. 8: Распределение Стьюдента (16)



Рис. 9: Распределение Пуассона (17)



Рис. 10: Равномерное распределение (18)

## 9.2 Доверительные интервалы для параметров распределений

| n = 20  | m                | σ                      |
|---------|------------------|------------------------|
|         | -0.43 < m < 0.37 | $0.66 < \sigma < 1.25$ |
| n = 100 | m                | σ                      |
|         | -0.12 < m < 0.24 | $0.81 < \sigma < 1.07$ |

Таблица 6: Доверительные интервалы для параметров нормального распределения (14)

| n = 20  | m               | $\sigma$               |
|---------|-----------------|------------------------|
|         | 0.11 < m < 0.97 | $0.29 < \sigma < 0.33$ |
| n = 100 | m               | σ                      |
|         | 0.30 < m < 0.67 | $0.28 < \sigma < 0.33$ |

 Таблица 7: Доверительные интервалы для параметров произвольного распределения.

 Асимптотический подход



Рис. 11: Гистограммы и оценки для параметров нормального распределения

(0.663480, -0.434162, 0.374849, 1.252336)

(-0.117590, 0.248381, 0.810296, 1.070570)

## 10 Выводы

По результатам выполнения лабораторной работы были сгенерированы выборки размером 20 и 100 элементов и построены для них боксплоты Тьюки.

Боксплот позволяет наглядно представить основные характеристики выборки - медиану, квартили, межквартальный размах и выбросы. На основе построенных графиков можно увидеть разницу в распределении данных для двух выборок. Для выборки размером в 100 элементов представленные метрики имеют более проработанный вид, ведь с увеличением размера выборки улучшается точность оценок параметров распределения, но при этом количество выбросов растет.

Также в ходе выполнения лабораторной работы были сгенерированы две выборки размерами 20 и 100 элементов для нормального и произвольного распределения. Затем для каждой из них были вычислены параметры распределения: среднее значение и дисперсия.

Результаты, представленные графически, демонстрируют, что количество элементов в выборке влияет на точность оценок параметров. Более большое количество наблюдений (т.е. 100 элементов) приводит к более точным и стабильным оценкам среднего и дисперсии, как для нормального, так и для произвольного распределения. Для выборки с меньшим количеством элементов (20 элементов) оценки могут сильно варьироваться в зависимости от конкретной выборки, что также наглядно отображено на графиках.

Лабораторная работа иллюстрирует важнейший статистический принцип: точность статистической оценки увеличивается с ростом объема выборки. Результаты этого исследования подчеркивают значимость использования достаточно больших выборок для надежного анализа данных.