CMSC 471: Reasoning with Bayesian Belief Network

Chapters 12 & 13

KMA Solaiman – ksolaima@umbc.edu

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, x_4, x_5) =$$

$$p(x_1)p(x_3)p(x_2|x_1, x_3)p(x_4|x_2, x_3)p(x_5|x_2, x_4)$$

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, ..., x_N) = \prod_i p(x_i \mid \pi(x_i))$$

exact inference in general DAGs is NP-hard inference in trees can be exact

X_i Markov blanket of a node x is its parents, children, and children's parents

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

=

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

— ...

Advanced topics

Variable Elimination

 Inference: Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_j)$$

- Variable elimination: An algorithm for exact inference
 - Uses dynamic programming
 - Not necessarily polynomial time!

Variable Elimination (High-level)

Goal:
$$p(Q|x_1,...,x_j)$$

(The word "factor" is used for each CPT.)

- 1. Pick one of the non-conditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_{0}\left(Tampering ight)$
P(Fire)	$f_1\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$ f_2\left(Tampering,Fire,Alarm ight) $
$P\left(Smoke = yes \mid Fire\right)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_1 (Fire)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P\left(Smoke = yes \mid Fire ight)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Fire

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P\left(Leaving \mid Alarm ight)$	$f_4 (Alarm, Leaving)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

f1(Fire) f2(Tampering, Fire, Alarm) f3(Fire)

f6(Tampering, Alarm) =

$$= \sum_{u} f_1(\text{Fire} = u) f_2(T, F = u, A) f_3(F = u)$$

$$= \sum_{u} p(\text{Fire} = u) p(A \mid T, F = u) p(S = y \mid F = u)$$

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_1 (Fire)$
$P(Alarm \mid Tampering, Fire)$	$f_{2}\left(Tampering, Fire, Alarm ight)$
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true) f6(Tampering, Alarm) =

$$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$$

=
$$p(\text{Fire} = y)p(A \mid T, F = y)p(S = y \mid F = y) + p(\text{Fire} = n)p(A \mid T, F = n)p(S = y \mid F = n)$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$f_1 (Fire)$
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true) f6(Tampering, Alarm) =

$$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$$

	u		
	Tamp.	Alarm	f6
	Yes	Yes	$p(\text{Fire} = y)p(A = y \mid T = y, F = y)p(S = y \mid F = y) + p(\text{Fire} = n)p(A = y \mid T = y, F = n)p(S = y \mid F = n)$
4	Yes	No	•••
	No	No	
	No	Yes	

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$\left f_{1}\left(Fire ight) ight $
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P\left(Smoke = yes \mid Fire ight)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Alarm

(The word "factor" is used for each CPT.)

- 1. Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	$\left f_{1}\left(Fire ight) ight $
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P\left(Smoke = yes \mid Fire ight)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_{5}\left(Leaving ight)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

...other computations not shown---see the book or lecture...

PM example 9.27

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	$ f_{2}\left(Tampering,Fire,Alarm ight) $
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P(Leaving \mid Alarm)$	$f_4 (Alarm, Leaving)$
	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f8(Tampering):

$$p(T=u) = \frac{f_8(T=u)}{\sum_v f_8(T=v)}$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	$f_0 \left(Tampering ight)$
P(Fire)	$f_{1}\left(Fire ight)$
$P(Alarm \mid Tampering, Fire)$	f_2 $(Tampering, Fire, Alarm)$
$P(Smoke = yes \mid Fire)$	$f_{3}\left(Fire ight)$
$P\left(Leaving \mid Alarm ight)$	$f_4\left(Alarm, Leaving ight)$
$P(Report = yes \mid Leaving)$	$f_5 (Leaving)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute *p(Tampering)*

We'll have a single factor f8(Tampering):

$$p(T = yes) = \frac{f_8(T = yes)}{f_8(T = yes) + f_8(T = no)}$$

 The posterior distribution over *Tampering* is given by

$$\frac{P(Tampering = u) f_8(Tampering = u)}{\sum_{v} P(Tampering = v) f_8(Tampering = v)}$$

Another example

 $\mathbf{P}(Burglary|JohnCalls=true,MaryCalls=true)=\langle 0.284,0.716\rangle.$

$$\mathbf{P}(B|j,m) = lpha \, \mathbf{P}(B,j,m) = lpha \, \sum_e \sum_a \mathbf{P}(B,j,m,e,a).$$

$$P(b|j,m) = lpha \sum_a \sum_a P(b)P(e)P(a|b,e)P(j|a)P(m|a).$$

$$P(b|j,m) = lpha \, P(b) \sum_e P(e) \sum_a P(a|b,e) P(j|a) P(m|a).$$

$$\mathbf{P}(B|j,m) = lpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_1(B)} \sum_e \underbrace{P(e)}_{\mathbf{f}_2(E)} \sum_a \underbrace{\mathbf{P}(a|B,e)}_{\mathbf{f}_3(A,B,E)} \underbrace{P(j|a)}_{\mathbf{f}_4(A)} \underbrace{P(m|a)}_{\mathbf{f}_5(A)}.$$

$$\mathbf{P}(B|j,\!m) = lpha \, \mathbf{f}_1(B) imes \sum_e \mathbf{f}_2(E) imes \sum_a \mathbf{f}_3(A,\!B,\!E) imes \mathbf{f}_4(A) imes \mathbf{f}_5(A).$$

$$\mathbf{f}_6(B,E) = \sum_a \mathbf{f}_3(A,B,E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$$

= $(\mathbf{f}_3(a,B,E) \times \mathbf{f}_4(a) \times \mathbf{f}_5(a)) + (\mathbf{f}_3(\neg a,B,E) \times \mathbf{f}_4(\neg a) \times \mathbf{f}_5(\neg a)).$

Now we are left with the expression

$$\mathbf{P}(B|j,m) = lpha \, \mathbf{f}_1(B) imes \sum_e \mathbf{f}_2(E) imes \mathbf{f}_6(B,E).$$

Next, we sum out E from the product of f₂ and f₆:

$$\mathbf{f}_7(B) = \sum_e \mathbf{f}_2(E) \times \mathbf{f}_6(B,E)$$

= $\mathbf{f}_2(e) \times \mathbf{f}_6(B,e) + \mathbf{f}_2(\neg e) \times \mathbf{f}_6(B,\neg e).$

This leaves the expression

$$\mathbf{P}(B|j,m) = \alpha \mathbf{f}_1(B) \times \mathbf{f}_7(B)$$

Learning Bayesian networks

- Given training set $D = \{x[1],...,x[M]\}$
- Find graph that best matches D
 - model selection
 - parameter estimation

Data D

Learning Bayesian Networks

- Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- Both can be learned from data, but
 - —learning structure much harder than learning parameters
 - -learning when some nodes are hidden, or with missing data harder still

Four cases:

Structure	Observability	v Method
Known	Full	Maximum Likelihood Estimation
Known	Partial	EM (or gradient ascent)
Unknown	Full	Search through model space
Unknown	Partial	EM + search through model
space		

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Fundamental Inference Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1,...,x_i)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

— ...

Advanced topics

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
 - entries in local probability models, P(X | Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$L(\theta: D) = P(D \mid \theta) = \prod_{m} P(x[m] \mid \theta)$$
i.i.d. samples

• Maximum Likelihood Estimation (MLE) Principle: Choose θ^* so as to maximize L

Parameter estimation II

- The likelihood decomposes according to the structure of the network
 - → we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution for discrete data & RV values:
 - for each value x of a node X
 - and each instantiation u of Parents(X)

$$\theta_{x|u}^* = \frac{N(x,u)}{N(u)}$$
 sufficient statistics

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads (X = 1) or tails (X = 0)
- You flip it repeatedly, observing
 - it turns up heads α_1 times
 - it turns up tails α_0 times
- Your estimate for P(X = 1) is....?

Estimating $\theta = P(X=1)$

100 flips: 51 Heads (X=1), 49 Tails (X=0)

$$\frac{\chi_1}{\chi_1 + \chi_0} = \frac{51}{100} \rightarrow P(\chi_{<1}) = 0.51$$

Test B:

3 flips: 2 Heads (X=1), 1 Tails (X=0)

$$=\frac{2}{3+1}=0.666$$

Maximum Likelihood Estimation

$$P(X=1) = \theta \qquad P(X=0) = (1-\theta)$$
Data D: = \(\begin{aligned} \text{D} & \text{O} & \text{

Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_1 and α_0 are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Maximum Likelihood Estimate for Θ

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero:

$$rac{d}{d heta}$$
 In $P(\mathcal{D} \mid heta) = 0$

$$\hat{\theta} = \arg\max_{\theta} \ \ln P(D|\theta)$$
 • Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$= \arg\max_{\theta} \ln[\theta^{\alpha}] (1-\theta)^{\alpha_0}]$$

$$0 = 2 \frac{1}{10} - \frac{20}{1-0}$$

$$\phi = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

$$\frac{\partial I_{h}(I-\theta)}{\partial (I-\theta)} \cdot \frac{\int (I-\theta)}{\partial \theta}$$

hint:
$$\frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

Summary: Maximum Likelihood Estimate

X=1 X=0

 $P(X=1) = \theta$ $P(X=0) = 1-\theta$

(Bernoulli)

$$\bullet$$
 Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

Learning: Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

$$p(2) = ?$$

$$p(4) = ?$$

$$p(5) = ?$$

$$p(6) = ?$$

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$

$$p(2) = 1/9$$

$$p(3) = 1/9$$

$$p(4) = 3/9$$

$$p(5) = 1/9$$

maximum

likelihood

$$p(6) = 1/9$$

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

How do we "learn appropriate value(s) of φ?"

Many different options: a common one is maximum likelihood estimation (MLE)

- Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized
- Independence assumptions are very useful here!
- Logarithms are also useful!

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, ..., x_N\})$ is maximized

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely

Maximum Likelihood

Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, ..., x_N\})$ is maximized

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- Gamma? √
- Exponential? √
- Bernoulli? X
- Poisson? X

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X• Gamma? $\sqrt{p(X=x)} = \frac{x^{k-1}\exp(\frac{-k}{\theta})}{\theta^k\Gamma(k)}$
- Exponential?
- Bernoulli? X
- Poisson? X

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from q

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful/nice-to-compute-and-good-enough probability distribution for x_i ?

- Normal? $X \checkmark$ $\frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$
- Exponential? √?
- Bernoulli? X X
- Poisson? X X

Advanced topic

MLE Snowfall Example

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

Advanced topic

MLE Snowfall Example

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

$$x_i \sim \text{Normal}(\mu, \sigma^2)$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

A: Differentiate and find that

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$$

$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \hat{\mu})^{2}}{N}$$

Learning: Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$

Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data (X, Y)
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$
 - Sometimes written $f(X; \theta)$
- Parameters are learned to minimize error (loss) €

Advanced topic

Maximum Likelihood Estimation (MLE)

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, ..., y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
 - y_{n+1}^* from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$
 - $f(X) \to \{p(\text{yes}|X), p(\text{no}|X)\}$
- Then re: θ , {predicting, explaining, generating} y means... what?

Some software tools

- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - Commercial product, free for small networks
 - Includes graphical editor, compiler, inference engine, etc.
 - To run in OS X or Linus you need Wire or Crossover
- Hugin: free demo versions for Linux, Mac, and Windows are available
- BBN.ipynb based on an AIMA notebook

Same BBN model in Hugin app

See the 4-minute **HUGIN Tutorial** on YouTube

Python Code

See this <u>AIMA notebook</u> on colab showing how to construct this BBN Network in Python

Judea Pearl example

There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John & Mary, might call the owner to say the alarm is sounding.