

NNSE 784 Advanced Analytics Methods

Instructor: F Doyle (CESTM L210)

MW 4:30 – 5:50, NFN 203

Slide Set #17 Decision Trees

Lecture Outline

- The "tree" data structure
- Decision Tree concept
- Building a decision tree
 - Information Entropy
 - Attribute Selection
 - Information Gain
- Jupyter Notebook exercises

Tree Structures

Examples of Tree Data Structures

File System

Asset Hierarchy

```
Zero Energy Nanotechnology (ZEN)
-- Air Handling Unit Group
     -- AHU_02A
         -- Chilled Water Coil
             -- Valve Position
         -- Demand Control Ventilation
             -- PID Loop Output
         -- Discharge Air
             -- Static Pressure
             -- Static Pressure Setpoint
             -- Temperature
             -- Temperature Setpoint
             -- VAV Damper Position Avg
             -- Differential Pressure
             -- Temperature
           Outside Air
```

Decision Trees

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
р6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	M	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A
p15	Middle-age	F	Low	Normal	?

- Decision trees are built using recursive partitioning to classify the data
- The algorithm chooses the most predictive feature to split the data

First...What Do We Mean by "Recursion" - Example

```
def factorial(x):
    """This is a recursive function
    to find the factorial of an integer"""
   if x == 1:
        return 1
    else:
        return (x * factorial(x-1))
num = 3
print("The factorial of", num, "is", factorial(num))
```

Remember: 3! = 3*2*1 = 6

The factorial of 3 is 6

• Let's try a different attribute...

Informational Entropy

 Measure of randomness or uncertainty

Entropy = $-p(A)\log_2(p(A))-p(B)\log_2(p(B))$

The lower the Entropy, the less uniform the distribution, the purer the node.

Calculating the Starting Entropy

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
р3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
p6	Senior	М	Low	High	Drug A
p7	Middle-age	М	Low	High (Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	М	Low	Normal	Drug B
p10	Senior	М	Normal	Normal	Drug B
p11	Young	М	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	М	High	Normal	Drug B
p14	Senior	F	Normal	High (Drug A

S: [9 B, 5 A] $E = -p(B)\log_2(p(B)) - p(A)\log_2(p(A))$ $E = -(9/14)\log_2(9/14) - (5/14)\log_2(5/14)$ E = 0.940

Entropy of a Cholesterol First Split

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	М	Low	Normal	Drug B
р6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	M	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	M	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

Entropy of a Sex First Split

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
p5	Senior	M	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
р7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
р9	Young	M	Low	Normal	Drug B
p10	Senior	М	Normal	Normal	Drug B
p11	Young	M	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

Which Attribute is Best?

Answer: The tree with the higher Information Gain after splitting.

What is Information Gain?

• Information gain is the information that can increase the level of certainty after splitting.

Information Gain = (Entropy before split) – (weighted entropy after split)

Weighted entropy after split

Weighted Entropy 🌷

Which Attribute is Best?

Patient ID	Age	Sex	BP	Cholesterol	Drug
p1	Young	F	High	Normal	Drug A
p2	Young	F	High	High	Drug A
p3	Middle-age	F	Hiigh	Normal	Drug B
p4	Senior	F	Normal	Normal	Drug B
pS	Senior	M	Low	Normal	Drug B
p6	Senior	M	Low	High	Drug A
p7	Middle-age	M	Low	High	Drug B
p8	Young	F	Normal	Normal	Drug A
p9	Young	M	Low	Normal	Drug B
p10	Senior	M	Normal	Normal	Drug B
p11	Young	M	Normal	High	Drug B
p12	Middle-age	F	Normal	High	Drug B
p13	Middle-age	M	High	Normal	Drug B
p14	Senior	F	Normal	High	Drug A

S: [3 B, 4 A]	S: [6 B, 1 A]
E = 0.985	E = 0.592

Gain (s, Cholesterol) = 0.940 - [(8/14).811 + (6/14)1.0] =0.048

Gain (s, Sex)	
= 0.940 - [(7/14)0.985 + (7/14)0.592]	
=0.151	