West Nile Virus Prediction

Alicia, Jonathan, Mok, Zaini

Agenda

- 1. Background
- 2. Problem Statement
- 3. Datasets, Feature Engineering, EDA
- 4. Metric for Modelling
- 5. Modelling Process
- 6. Findings
- 7. Cost Benefit Analysis
- 8. Recommendations

Background

What's the story?

- WNV was first identified in the US in 2001.
- The following year, Illinois recorded 884 human cases, 67 more than in any other state.

- The battle against the West Nile virus is an annual affair Chicago grapples with:
 - Infection can be asymptomatic or symptomatic in humans, with a 4:1 ratio
 - Can be mild, resulting in flu-like symptoms (West Nile fever **[WNF]**), or severe, causing paralysis and even death(West Nile neuroinvasive disease **[WNND]**)

Background

Who are we?

- Team of Data Scientists at Disease And Treatment Agency

What are we doing?

- Fight the spread through **prediction** of future clusters
- Collect and analyze data such as weather conditions, species and population of mosquitos and location data that may affect WNV propagation

Problem Statement

- 1. **Predicting presence** of West Nile Virus
- 2. What are the main factors that may result in the virus being spread?
- 3. What cost-effective methods should we adopt to prevent WNV mosquitoes from breeding?

Datasets

- 1. Train & Test Dataset
- 2. Weather Dataset
- 3. Spray Dataset

Train and Test Dataset

- Train dataset consists data from 2007, 2009, 2011, 2013
 - Date
 - Species and Sample size of all mosquitos
 - Presence of WNV
 - Trap ID
 - Location details of Trap

- Test dataset requires us to predict presence of WNV for 2008, 2010, 2012, 2014

Feature Selection/Engineering

- Address accuracy is mostly 8 and 9
- Accuracy score of 5 is accurate to: "Center of the ZIP or postal code area"

- Drop all address details other than
 Longitude and Latitude
- Data points with same date and location were grouped together and summed

Feature Selection/Engineering

- Collected data are split into separate rows once mosquito counts exceed 50
- We needed to combine these data entries together

					NumMosquitos	WnvPresent
Date	Trap	Latitude	Longitude	Species		
	T000	44 054600	87 888884	CULEX PIPIENS/RESTUANS	1	0
	1002	41.954690	-87.800991	CULEX RESTUANS	1	0
007-05-29	T007	41.994991	-87.769279	CULEX RESTUANS	1	0
	T015	44 074090	-87.824812	CULEX PIPIENS/RESTUANS	1	0
	1015	41.974009	-07.024012	CULEX RESTUANS	4	0
						1000
	T232	41.912563	-87.668055	CULEX PIPIENS/RESTUANS	1	0
	T233	42.009876	-87.807277	CULEX PIPIENS/RESTUANS	5	0
013-09-26	T235	41.776428	-87.627096	CULEX PIPIENS/RESTUANS	1	0
	T900	41 074690	-87.890615	CULEX PIPIENS	37	0
	1 900	41.3/4009	-07.090013	CULEX PIPIENS/RESTUANS	43	1

Feature Selection/Engineering

 After grouping and summing up, we ended up with WnvPresent values of more than 1

 Since we are mainly concerned with predicting presence of virus or not (0 or 1), we map all the values above 1 to 1 (virus present)

```
train_new['WnvPresent'].value_counts()

0    8018
1    409
2    31
3    9
4    2
7    1
6    1
5    1
10    1
9    1
8    1
Name: WnvPresent, dtype: int64
```

```
train_new['WnvPresent'] = train_new['WnvPresent'].map(lambda x : 1 if x > 0 else x)

train_new['WnvPresent'].value_counts()

0 8018
1 457
Name: WnvPresent, dtype: int64
```

Presence of WNV by Species

- Not all mosquito species carry the WNV virus
- Culex Pipens/Restuans is **not** a hybrid species, but is recorded as such when tests do are <u>not able to differentiate them</u> adequately.

WNV Presence over time

- **August is the peak month** for WNV mosquito reproduction
- Number of WNV mosquitoes **dropped after 2007**, but **steadily rose from 2009**

Weather Dataset

- Contains 22 features of weather conditions recorded from 2007 to 2014 from 2 stations: Chicago O'Hare Intl Airport and Chicago Midway Intl Airport
- Station 2 has many missing values, compared to Station 1

```
station1.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1472 entries, 0 to 2942
Data columns (total 25 columns):
     Column
                   Non-Null Count
                                   Dtype
     Station
                   1472 non-null
                                    int64
     Date
                   1472 non-null
                                   datetime64[ns]
     Tmax
                   1472 non-null
                                    int64
     Tmin
                   1472 non-null
                                    int64
     Tavg
                   1472 non-null
                                    float64
     Depart
                   1472 non-null
                                    float64
     DewPoint
                   1472 non-null
                                    int64
     WetBulb
                   1469 non-null
                                    float64
     Heat
                   1472 non-null
                                    float64
     Cool
                   1472
                        non-null
                                    float64
     Sunrise
                   1472 non-null
                                    object
     Sunset
                   1472
                        non-null
                                    object
     CodeSum
                   1472 non-null
                                    object
                                    float64
 13
     Depth
                   1472 non-null
 14
     Water1
                   0 non-null
                                    float64
     SnowFall
                   1472 non-null
                                    float64
     PrecipTotal
                   1472 non-null
                                    float64
                                    float64
     StnPressure
                   1470 non-null
     SeaLevel
                                    float64
                   1467 non-null
     ResultSpeed
                  1472 non-null
                                    float64
     ResultDir
                   1472 non-null
                                    float64
     AvgSpeed
                   1472 non-null
                                    float64
 22
     day
                   1472 non-null
                                    int64
 23
     month
                   1472 non-null
                                    int64
 24
     year
                   1472 non-null
                                    int64
```

```
station2.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1472 entries, 1 to 2943
Data columns (total 25 columns):
     Column
                   Non-Null Count
                                    Dtvpe
     Station
                   1472 non-null
                                    int64
     Date
                   1472 non-null
                                    datetime64[ns]
                   1472 non-null
                                    int64
     Tmax
     Tmin
                   1472 non-null
                                    int64
                                    float64
     Tavq
                   1461 non-null
                                    float64
     Depart
                   0 non-null
     DewPoint
                   1472 non-null
                                    int64
                                    float64
     WetBulb
                   1471 non-null
                                    float64
     Heat
                   1461 non-null
     Cool
                   1461 non-null
                                    float64
     Sunrise
                   0 non-null
                                    object
     Sunset
                   0 non-null
                                    object
     CodeSum
                   1472 non-null
                                    object
 12
                                    float64
     Depth
                   0 non-null
     Water1
                   0 non-null
                                    float64
     SnowFall
                   0 non-null
                                    float64
                                    float64
     PrecipTotal
                   1470 non-null
                                    float64
 17
     StnPressure
                   1470 non-null
     SeaLevel
                   1468 non-null
                                    float64
                                    float64
     ResultSpeed
                   1472 non-null
     ResultDir
                   1472 non-null
                                    float64
     AvgSpeed
                                    float64
                   1469 non-null
 22
     day
                   1472 non-null
                                    int64
 23
                                    int64
     month
                   1472 non-null
 24
    year
                   1472 non-null
                                    int64
```

Weather Dataset

Correlation Values between S1 & S2

Dropping Station 2

- Values from station 1
 and station 2 appear to
 have little significant
 difference, with high
 correlation between each
 other (>0.7) other than
 PrecipTotal.
- We retain PrecipTotal feature to investigate its influence

8	Correlation
StnPressure	0.998212
SeaLevel	0.997670
WetBulb	0.994167
Tavg	0.992288
DewPoint	0.989713
Heat	0.989423
Tmax	0.986896
Cool	0.982518
Tmin	0.977881
AvgSpeed	0.950779
ResultSpeed	0.950507
ResultDir	0.822797
PrecipTotal	0.669457

Weather Dataset

Dealing with inconsequential features

- Other features had values of 0 or no significant values
- We dropped these features as well

Retaining Aggregated Features

Several features have aggregated variables

- tmin, tmax > tavg
- resultspeed > avgspeed

All variables will be retained to keep any nuances in the data

Feature Engineering

- 1. Splitting up Codesum
- 2. Daylight Mins
 - a. Aggregating data from sunset and sunrise
- 3. Rolling weather elements with 7 and 14 days
 - a. To investigate the effect of previous weather patterns on WNV
 - b. Larvae takes 7-14 days to develop into an adult

	BCFG	BR	DZ	FG	FU	ΗZ	MIFG	RA	SN	SQ	TS	TSRA	VCTS
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1.	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	1	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0

```
def minute_converter(time):
    return (int(time[0:2])*60 + int(time[2:4]))
```

WNV Presence over temperature

Mosquitoes counts at various temperatures

WNV carrying mosquitoes thrive in warmer temperatures

Spray Dataset

- Spraying was attempted as part of mosquito control efforts
- We collected data on the Date, Time, and Location of these spraying efforts

Locations where Sprays are conducted (with Traps visualized)

Sprays were done in 2011 and 2013, and after sunset hours

Spray Dataset

Investigating the impact on Mosquito Counts after spraying

Based on most optimistic scenario: Aug 2013 where sprayed occured over the most areas where WNV presence was detected

Investigating the impact on Mosquito Counts after spraying

Count of mosquitoes did not seem to drop after spray dates

Pre-Modeling

Imbalance of classes

- Since there is a strong imbalance in the classes, SMOTE is used before modeling

```
combined_df['WnvPresent'].value_counts(normalize=True)

0    0.946077
1    0.053923
Name: WnvPresent, dtype: float64
```

```
# SMOTEing features and target variables
sm = SMOTE(random_state=42)

X_train_sm, y_train_sm = sm.fit_sample(X_train_ss, y_train)
```

Metric of Focus

ROC-AUC, with emphasis on Sensitivity

- Since there is a strong imbalance in the classes, ROC-AUC will be a better metric for modelling because it measures the degree of separability. It tells how much model is capable of distinguishing between classes.
- Unnecessary spraying might have detrimental effects on public health and ecosystems
- High sensitivity focuses on true positive areas, and penalizes false positive to reduce indiscriminate spraying

Sensitivity =
$$\frac{True\ Positives}{All\ Positives} = \frac{TP}{TP+FN} = \frac{TP}{P}$$

Modelling

- Log Reg, SGD and AdaBoost all have similar ROC-AUC scores
- However, AdaBoost seems to prioritise Specificity over Sensitivity
- We selected Log Reg as it has the highest ROC-AUC and Sensitivity Score

	Score	tn	fp	fn	tp	Sensitivity	Specificity	Accuracy
lr	0.775758	1766	640	25	112	0.817518	0.733998	0.738498
rf	0.659193	2171	235	80	57	0.416058	0.902328	0.876131
sgd	0.768459	1766	640	27	110	0.80292	0.733998	0.737711
ada	0.770175	1985	421	39	98	0.715328	0.825021	0.819111
bag	0.65792	2200	206	82	55	0.40146	0.914381	0.886748
xgb	0.702989	2171	235	68	69	0.50365	0.902328	0.880849
svc	0.661606	1726	680	54	83	0.605839	0.717373	0.711365

Feature Importance

Strong Predictors

- Dewpoint (Rolling 7, 14)
- Wetbulb (Rolling 7, 14)
- Thunderstorm, rain (Rolling 7, 14) (within vicinity as well)
- Airpressure (Stn level, sea level)
- Fog
- Species of mosquitoes

Log Reg

Weight Weight 2.552 DewPoint 7 898.824 **DewPoint 14** 73.806 Species_CULEX PIPIENS/RESTUANS 2.142 **StnPressure** Species_CULEX PIPIENS/RESTUANS DewPoint 7 2.091 24.410 **Species CULEX PIPIENS** 1.990 AvgSpeed_14 20.879 WetBulb 14 1.725 Tmin 20.457 **Species CULEX PIPIENS** 15.866 TSRA 7 1.662 SeaLevel 14 1.609 DewPoint 14 14.611 WetBulb 7 13.808 1.501 BCFG 7 Species_CULEX RESTUANS 11.906 BCFG_7 1.473 Tmin 14 6.764 month 8 1.457 MIFG_7 6.245 StnPressure_14 1.430 5.891 FG 1.413 Depart Heat 7 5.612 **StnPressure** 1.405 DZ_14 month_7 5.383 1.398 VCTS 14 3.602 ResultDir_7 1.394 SeaLevel 14 3.597 1.391 WetBulb 14 3.248 **VCTS** 1.374 3.081 1.344 RA 7 **VCTS** 2.738 ResultSpeed 14 1.332 FG 2.573 1.327 Tmax

SGD

Inferences

Most predictors give an emphasis on humidity of weather

Rainy weather also seems to be an important predictor

Warm temperatures are a factor, but not as strong as initially thought

August and September seem to be prime months for WNV propagation

Log Reg

	Weight	
DewPoint_14	898.824	DewPoint_7
Species_CULEX PIPIENS/RESTUANS	73.806	StnPressure
DewPoint_7	24.410	ecies_CULEX PIPIENS/RESTUANS
Species_CULEX PIPIENS	20.879	AvgSpeed_14
WetBulb_14	20.457	Tmin
TSRA_7	15.866	Species_CULEX PIPIENS
SeaLevel_14	14.611	DewPoint_14
WetBulb_7	13.808	BCFG_7
BCFG_7	11.906	Species_CULEX RESTUANS
month_8	6.764	Tmin_14
StnPressure_14	6.245	MIFG_7
FG	5.891	Depart
StnPressure	5.612	Heat_7
DZ_14	5.383	month_7
ResultDir_7	3.602	VCTS_14
TS_14	3.597	SeaLevel_14
VCTS	3.248	WetBulb_14
RA_7	3.081	RA_7
ResultSpeed_14	2.738	VCTS
Tmax	2.573	FG

Weight

SGD

Case Study: Sacramento 2005

Case study: Economic Cost Analysis of WNV Outbreak in Sacramento County, 2005

- Chicago's infected cases were estimated based on population ratio
 - Helps to estimate costs on social landscape, and medical resources
- Chicago's spraying costs were based on area ratio
 - Helps to estimate cost of intervention

Cost Benefit Analysis

Socio-economic

Productivity Loss per Sick Day reported

+ Cost of human lives

Medical Costs

- Diagnostic tests
- Physician visits
- Treatment costs

+ Inpatient and Outpatient costs

Ecology Costs

 Death in horses and birds more commonly

WNND

WNF

Estimated \$ of Virus

Socio-economic **Ecology Costs Medical Costs** *Requires further USD 586,305 Sacramento USD2.86 Million study *Requires further ~USD1.21 Million ~USD5.9 Million Chicago study

Case Study: Singapore

- Natural Suppression Technology
 - a. Wolbachia-Aedes
- 2. Intra- and Inter-sectoral collaboration
 - a. Drains were designed with sufficient gradient to prevent water pooling
 - b. Regular removal of floating vegetation in parks
- 3. Vector Surveillance
 - a. Monitoring traps every 2 weeks
 - b. Insecticides
 - c. Monitoring construction sites
- 4. Engagement of communities
 - a. Activations in dormitories, shopping mall
 - b. Education via the '5-Step Mozzie Wipeout'

Cost Benefit Analysis

Socio-economic

Manpower hours
Business Costs

Manpower hours

Manpower hours

Production Costs

Spray Cost

Advertising/ Campaign Costs

*Requires further study

Ecology Costs

Environmental Pollution

Nil

*Minimal with proper mitigation

Natural Suppression

Community

Engagement

Aerial Spraying

Estimated \$ of Intervention

Ecology Costs Aerial Spraying Education Costs Sacramento/ *Requires further USD701,790 SGD5 Million study Singapore *Requires further ~USD0.165 Million ~USD0.391 Million Chicago study

Recommendations

- Cost of life is valued at \$9.1 million per citizen, much valued over the cost of spraying

Spraying

- Propose re-examination of insecticide spraying as it does not seem to be very effective
- Consider oil treatment of stagnant water bodies to kill off larvae
- When: 1-2 weeks prior to warm and/or humid seasons (e.g. August)

Educational/Awareness campaign

- E.g. Clearing stagnant water in the community

- Smart Engineering for water infrastructure projects

- E.g. Prevention of water pooling in drainage infrastructure