

Universidade Federal de Pelotas

Instituto de Física e Matemática

Departamento de Informática Bacharelado em Ciência da Computação

Arquitetura e Organização de Computadores II Aula 21

6. Interface Processador/Periféricos: Barramentos.

Prof. José Luís Güntzel

guntzel@ufpel.edu.br

www.ufpel.edu.br/~guntzel/AOC2/AOC2.html

Barramentos

• Os diversos subsistemas de um sistema computacional precisam ter interfaces uns com os outros:

Conceito de Barramento:

"é um link de comunicação compartilhado"

Barramentos

- Vantagens da conexão via barramento:
 - Versatilidade (fácil inclusão de novos dispositivos)
 - Baixo custo (conjunto de fios é compartilhado por dispositivos)
- Desvantagem: "gargalo" de comunicação (limitação no throughput)
- Fatores (físicos) que limitam a velocidade do barramento:
 - Comprimento do barramento
 - Número de dispositivos conectados
- O barramento precisa suportar uma gama ampla de dispositivos, com latências e velocidades distintas

Composição de um Barramento

Linhas de Controle

- Sinalizam requisições (REQ) e reconhecimentos de requisições (ACK) (protocolo de comunicação do barramento)
- Indicam o tipo de dado que está nas linhas de dados

Linhas de Dados

- Transportam a informação da fonte ao destino
- Informações = dados, comandos complexos ou endereços
- Alguns barramentos tem dois conjuntos de linhas: um para dados e outro para endereços

Transação com o Barramento (bus transaction)

- Envolve dois passos:
 - 1. Envio do endereço
 - 2. Envio ou recepção dos dados
- Definindo operações de entrada e de saída

Os Três Passos de uma Operação de Saída

Início da leitura da memória principal:

- Linhas de dados contêm o endereço
- Linhas de controle sinalizam uma requisição de leitura

Memória principal acessa o dado

- Memória coloca o dado nas linhas de dados
- Usando as linhas de controle, a memória sinaliza ao dispositivo de E/S que o dado está disponível nas linhas de dados
- Dispositivo armazena o dado

Prof. José Luís Güntzel

Os Três Passos de uma Operação de Entrada

- Linhas de controle indicam uma requisição de escrita feita à memória principal
- Linhas de dados contêm o endereço da escrita

OBS: geralmente, o dispositivo de E/S não precisa esperar que a escrita na memória termine (pois há um *buffer* de escrita)

- Linhas de controle sinalizam ao dispositivo de E/S que a memória principal está pronta
- Dispositivo transfere os dados
- A memória armazena os dados da maneira como os recebe

Prof. José Luís Güntzel

Tipos de Barramentos

Classificação usual:

- 1. Barramento processador-memória
- 2. Barramento de E/S
- 3. Barramento do backplane
- Barramentos processador-memória:
 - Curtos, extremamente velozes
 - Maximizam a banda passante memória-processador
 - Geralmente, são proprietários do fabricante de processador e/ou máquina

Tipos de Barramentos

Barramentos de E/S:

- Mais longos
- Podem ter muitos tipos de dispositivos conectados a eles
- Precisam atender a uma ampla faixa de bandas passantes (levando em conta dispositivos que venham a ser conectados)
- Não necessariamente têm interface direta com a memória
 - Podem usar o barramento processador-memória ou o barramento do *backplane* para se comunicar com a memória principal
- São padronizados
- Apresentam uma interface moderadamente simples e de baixo nível (pouca eletrônica adicional necessária ao dispositivo)

Tipos de Barramentos

• Barramentos do Backplane:

- Projetados para permitir que processador, memória e dispositivos de E/S possam coexistir em um único barramento físico
- Balanceiam as demandas de comunicação processador-memória com as demandas de comunicação dispositivos de E/S-memória
- Muitas vezes são construídos diretamente no backplane da máquina (placa-mãe)
- São padronizados
- Necessidade de uma lógica adicional para interface barramento de backplane-dispositivo

Tipos de Barramentos

1- Máquinas com Barramento Único

Tipos de Barramentos

2- Máquinas com Barramento Memória-Processador Separado do Barramento de E/S

Tipos de Barramentos

3- Máquinas com Três Barramentos

Tipos de Barramentos

Sistema de Barramentos Tradicional (ISA) com Cache

© Stallings, W. "Arquitetura e Organização de Computadores", 5ª edição. Prentice-Hall, 2002

Tipos de Barramentos

Sistema de Barramentos de Alto Desempenho

© Stallings, W. "Arquitetura e Organização de Computadores", 5ª edição. Prentice-Hall, 2002

Sistema de Barramentos

Pentium II

ComputaçãoUFPel

Arquitetura e Organização de Computadores II

Barramentos Síncronos

- O relógio (*clock*) é um dos sinais de controle
- Possui um protocolo de comunicação relacionado ao relógio
- Protocolo simples, conhecido e implementado por um circuito (máquina de estados)
- Desvantagem 1: os dispositivos devem trabalhar na mesma freqüência do relógio
- Desvantagem 2: devido ao *clock skew*, barramentos síncronos não podem ser muito longos

Barramentos processador-memória são majoritariamente síncronos!

Barramentos Assíncronos

- Não segue um relógio (clock)
- Pode acomodar uma grande variedade de dispositivos (não exige sincronismo entre os dispositivos)
- Menor preocupação com o comprimento das linhas
- Protocolo *handshake* coordena a transmissão dos dados entre transmissor e receptor (transmissor e receptor só passa para um passo seguinte quando ambas as partes concordam)
- O protocolo é implementado por meio de um conjunto adicional de linhas de controle

Handshake

Suponha que um determinado dispositivo requisitou uma palavra de dados ao sistema de memória

Suponha que estão disponíveis três linhas de controle:

- ReqLeit: usada para indicar uma solicitação de leitura da memória principal. O endereço da leitura é colocado nas linhas de dados no mesmo instante em que o sinal indicativo da solicitação fica ativo;
- DadoPrt: usada para indicar que a palavra de dados está pronta para ser lida, colocada nas linhas de dados;
- Ack: sinal usado para reconhecer o ReqLeit ou o DadoPrt da outra parte envolvida na comunicação.

Handshake

- 1. Quando a memória principal enxerga a linha ReqLeit ativa, ela
 - lê o endereço contido na linha de dados do barramento e
 - ativa o sinal Ack, indicando que tomou as providências neccessárias para a passagem ao passo seguinte
- 2. Quando o dispositivo de E/S enxerga a linha Ack ativada, ele libera ReqLeit e as linhas de dados
- 3. A memória enxerga a ReqLeit desativada e baixa a linha de Ack

Handshake

- 4. A memória disponibiliza os dados requisitados, colocando-os na linha de dados do barramento, e ativando o sinal DadoPrt
- 5. O Dispositivo de E/S enxerga o sinal DadoPrt ativo, lê os dados do barramento e sinaliza que obteve os dados levantando o sinal Ack
- 6. A memória enxerga o Ack ativo, baixa o DadoPrt e libera as linhas de dados
- 7. Finalmente, o dispositivo de E/S, enxergando o sinal DadoPrt baixo, baixa a linha Ack, indicando que a transmissão se completou.

ComputaçãoUFPel

slide 21.22

Prof. José Luís Güntzel

Desempenho de Barramentos Síncrono e Assíncrono

Exemplo:

Considere os seguintes dados:

- Barramento síncrono:
 - Período do clock: 50ns
 - Cada transmissão gasta 1 ciclo de clock
- Barramento assíncrono:
 - 40 ns para cada passo do protocolo *handshake*
- Considerar dados com 32 bits em ambos casos (barramento com 32 bits)

Encontre a banda passante para cada barramento, ao realizar leituras de uma palavra em uma memória cujo tempo de acesso é 200ns

Desempenho de Barramentos Síncrono e Assíncrono

Exemplo: banda passante máxima do barramento síncrono

- 1. Envio do endereço para a memória: 50 ns
- 2. Leitura da memória: 200 ns
- 3. Envio do dado para o dispositivo: 50 ns

Portanto, a banda passante máxima será de 4 bytes a cada 300ns ou

$$\frac{4 \text{ bytes}}{300 \text{ ns}} = \frac{4 \text{ MB}}{0.3 \text{ s}} = 13.3 \frac{\text{MB}}{\text{s}}$$

Desempenho de Barramentos Síncrono e Assíncrono

Exemplo: banda passante máxima do barramento assíncrono

A memória recebe o endereço no final do passo 1, mas o dado só precisa estar disponível no início do passo 5. Logo, a leitura da memória pode ser feita em paralelo com os passos 2, 3 e 4.

Passo 1: 40 ns

Passos 2, 3, 4: maior entre $\{200 \text{ ns e } 3 \text{ x } 40 \text{ns}\} = 200 \text{ ns}$

Passos 5, 6, 7: $3 \times 40 \text{ ns} = 120 \text{ ns}$

Portanto, a banda passante máxima será de 4 bytes a cada 360ns ou

$$\frac{4 \text{ bytes}}{360 \text{ ns}} = \frac{4 \text{ MB}}{0,36 \text{ s}} = 11,1 \frac{\text{MB}}{\text{s}}$$

Conclusão: o barramento síncrono é apenas 20% mais rápido que o assíncrono

Desempenho de Barramentos Síncrono e Assíncrono

Escolha entre barramentos assíncronos e síncronos tem implicações outras além da banda passante:

- Distância física entre os componentes do sistema
- Número de componentes

Barramentos assíncronos:

- São menos sensíveis a mudanças tecnológicas
- Podem suportar dispositivos com tempos de resposta bastantes diversos
- Barramentos de E/S são majoritariamente assíncronos

Incremento da Banda Passante de Barramentos

Além do modo de funcionamento (síncrono x assíncrono), fatores que afetam a banda passante dos barramentos:

- 1. Tamanho do barramento: mais de uma palavra pode ser transferida por ciclo de clock
- 2. Linhas de endereço e linhas de dados separadas versus multiplexadas: em uma escrita, endereço e dado podem trafegar simultaneamente
- 3. Transferências de blocos: quando palavras de endereços contíguos são transferidas, somente o endereço da primeira palavra precisa ser enviado (transferência "em rajadas" ou modo "burst")