CLAIMS

]]	1	An o	nnaratus	comprising:
T T	. <i>I</i>	ATI OF	Jpai atus	comprising:

- 2 at least one processor;
- a memory coupled to the at least one processor;
- 4 a plurality of logical partitions defined on the apparatus; and
- 5 a capacity manager residing in the memory and executed by the at least one
- 6 processor, the capacity manager managing at least one temporary resource on demand for
- 7 a specified resource-time for at least one of the plurality of logical partitions, the capacity
- 8 manager controlling access to a minimum resource specification for each of the plurality of
- 9 logical partitions to assure the at least one temporary resource may be recovered when the
- specified resource-time has expired.
- 1 2. The apparatus of claim 1 wherein the capacity manager resides in a partition
- 2 manager that manages the plurality of logical partitions.
- 1 3. The apparatus of claim 1 wherein the capacity manager controls access to the
- 2 minimum resource specification for each of the plurality of logical partitions by not
- 3 allowing a sum of all the minimum resource specifications for all of the plurality of logical
- 4 partitions to exceed a total of base resources in the apparatus.

1	4. An apparatus comprising:			
2	at least one processor;			
3	a memory coupled to the at least one processor;			
4	a plurality of logical partitions defined on the apparatus;			
5	a partition manager residing in the memory and executed by the at least one			
6	processor, the partition manager managing the plurality of logical partitions, the partition			
7	manager comprising:			
8	a capacity manager that manages at least one temporary resource on			
9	demand for a specified resource-time for at least one of the plurality of logical			
10	partitions, the capacity manager comprising:			
11	a minimum resource enforcement mechanism that controls access to			
12	a minimum resource specification for each of the plurality of logical			
13	partitions to assure the at least one temporary resource may be recovered			
14	when the specified resource-time has expired.			
1				
1	5. The apparatus of claim 4 wherein the partition manager further comprises:			
2	an enablement code mechanism that evaluates an enablement code to determine			
3	whether the code is valid, wherein the enablement code includes the specified resource-			
4	time.			
1	6. The apparatus of claim 4 wherein the partition manager further comprises a			
2	resource allocator that enables the at least one temporary resource.			

- 1 7. The apparatus of claim 6 wherein the resource allocator recovers the at least one
- 2 temporary resource when the specified resource-time has expired.

- 1 8. A computer-implemented method for providing at least one temporary resource on
- demand for a specified resource-time in a computer system that includes a plurality of
- 3 logical partitions, the method comprising the steps of:
- 4 enabling the at least one temporary resource for the specified resource-time; and
- 5 controlling access to a minimum resource specification for each of the plurality of
- 6 logical partitions to assure the at least one temporary resource may be recovered when the
- 7 specified resource-time expires.
- 1 9. The method of claim 8 wherein the step of controlling access to the minimum
- 2 resource specification for each of the plurality of logical partitions comprises the step of
- 3 not allowing a sum of all the minimum resource specifications for all of the plurality of
- 4 logical partitions to exceed a total of base resources in the computer system.

- 1 10. A computer-implemented method for providing at least one temporary resource on
- 2 demand for a specified resource-time in a computer system that includes a plurality of
- 3 logical partitions, the method comprising the steps of:
- 4 requesting an enablement code corresponding to the at least one temporary
- 5 resource for the specified resource-time;
- 6 receiving the enablement code;
- 7 enabling the at least one temporary resource for the specified resource-time;
- 8 using the at least one temporary resource for the specified resource-time; and
- 9 controlling access to a minimum resource specification for each of the plurality of
- logical partitions to assure the at least one temporary resource may be recovered when the
- 11 specified resource-time expires.
- 1 11. The method of claim 10 further comprising the step of evaluating an enablement
- 2 code to determine whether the code is valid, wherein the enablement code includes the
- 3 specified resource-time.
- 1 12. The method of claim 10 further comprising the step of enabling the at least one
- 2 temporary resource.
- 1 13. The method of claim 10 further comprising the step of recovering the at least one
- 2 temporary resource when the specified resource-time expires.

- 1 14. A program product comprising:
- a capacity manager that manages at least one temporary resource on demand for a
- 3 specified resource-time in a computer system that includes a plurality of logical partitions,
- 4 the capacity manager controlling access to a minimum resource specification for each of
- 5 the plurality of logical partitions to assure the at least one temporary resource may be
- 6 recovered when the specified resource-time has expired; and
- 7 computer readable signal bearing media bearing the capacity manager.
- 1 15. The program product of claim 14 wherein the signal bearing media comprises
- 2 recordable media.
- 1 16. The program product of claim 14 wherein the signal bearing media comprises
- 2 transmission media.
- 1 17. The program product of claim 14 wherein the capacity manager resides in a
- 2 partition manager that manages the plurality of logical partitions.
- 1 18. The program product of claim 14 wherein the capacity manager controls access to
- 2 the minimum resource specification for each of the plurality of logical partitions by not
- 3 allowing a sum of all the minimum resource specifications for all of the plurality of logical
- 4 partitions to exceed a total of base resources in the computer system.

1	19.	A program product comprising:
2		(A) a partition manager comprising:
3		(A1) a capacity manager that manages at least one temporary resource on
4		demand for a specified resource-time in a computer system that includes a plurality
5		of logical partitions, the capacity manager comprising:
6		(A1a) a minimum resource enforcement mechanism that controls
7		access to a minimum resource specification for each of the plurality of
8		logical partitions to assure the at least one temporary resource may be
9		recovered when the specified resource-time has expired; and
10		(B) computer readable signal bearing media bearing the partition manager.
1	20.	The program product of claim 19 wherein the signal bearing media comprises
2	recor	dable media.
1	21.	The program product of claim 19 wherein the signal bearing media comprises
2	transı	mission media.
1	22.	The program product of claim 19 wherein the partition manager further comprises:
2		an enablement code mechanism that evaluates an enablement code to determine

1 23. The program product of claim 19 wherein the partition manager further comprises

whether the code is valid, wherein the enablement code includes the specified resource-

2 a resource allocator that enables the at least one temporary resource.

3

4

time.

- 1 24. The program product of claim 23 wherein the resource allocator recovers the at
- 2 least one temporary resource when the specified resource-time has expired.

* * * * *