WORKSHEET 4

The main caveat of elementary measure is that it only allows us to measure elementary sets, which is a fairly restrictive family of sets. Building on the old intuition (going back at least to Archimedes) we can lower bound (respectively upper bound) the measure of a set by approximating it from within (respectively without) by an elementary set, i.e. if A and B are elementary and $A \subset E \subset B$, then the measure of E (if it exists) should be sandwiched between that of A and B.

Definitions: Let $E \subset \mathbb{R}^d$ be a bounded set.

• The Jordan inner measure $\underline{m}_J(E)$ of E is defined as

$$\underline{m}_J(E) = \sup_{A \subset E, A \text{ elementary}} m(A).$$

Here m(A) is the elementary measure of A.

• The Jordan outer measure $\overline{m}_J(E)$ of E is defined as

$$\overline{m}_J(E) = \inf_{A\supset E, A \text{ elementary}} m(A).$$

• If $\underline{m}_J(E) = \overline{m}_J(E)$, we say that E is Jordan measurable, and call the common value m(E) (the Jordan measure of E).

By convention, we do not consider unbounded sets to be Jordan measurable.

Problem A: Assume that $E \subset \mathbb{R}^d$ is bounded. Show that the following are equivalent:

- a) E is Jordan measurable.
- b) For every $\epsilon > 0$, there exists elementary sets A and B such that $A \subset E \subset B$ and $m(B \setminus A) \leq \epsilon$.
- c) For every $\epsilon > 0$, there exists an elementary set A such that $\overline{m}_J(E\Delta A) \leq \epsilon$.

Problem B: Deduce that every elementary set E is Jordan measurable and that its Jordan measure is the same as its elementary measure. In particular, $m(\emptyset) = 0$.

Problem C: Let E, F be Jordan measurable sets. Clearly $m(E) \geq 0$. Show that

- (1) $E \cup F$, $E \cap F$, $E \setminus F$, and $E\Delta F$ are all Jordan measurable.
- (2) (Finite additivity) If E and F are disjoint, then $m(E \cup F) = m(E) + m(F)$.

WORKSHEET 4

- (3) (Monotonicity) If $E \subset F$, then $m(E) \leq m(F)$.
- (4) (Finite subadditivity) $m(E \cup F) \leq m(E) + m(F)$.
- (5) (Translation invariance) for any $x \in \mathbb{R}^d$, m(E+x) = m(E).

Problem D: Let B be a closed box of \mathbb{R}^d and $f: B \to \mathbb{R}$ a continuous function.

- (1) Show that the graph $\{(x, f(x)) : x \in B\} \subset \mathbb{R}^{d+1}$ is Jordan measurable in \mathbb{R}^{d+1} and that it has Jordan measure 0. *Hint:* Use that f is uniformly continuous.
- (2) Show that the set $\{(x,t): x\in B, 0\leq t\leq f(x)\}\subset \mathbb{R}^{d+1}$ is Jordan measurable.

From this we conclude that some familiar sets like triangles in \mathbb{R}^2 and balls in \mathbb{R}^d are Jordan measurable.

Problem E: Is $\mathbb{Q} \cap [0,1]$ Jordan measurable? What are its inner and outer Jordan measure?