Introduction to Linux Operating System

- Introduction to Linux Operating System
 - a. Understanding the Linux kernel architecture.
 - b. Kernel space vs. User space.
 - c. Overview of various Linux distributions (Ubuntu, CentOS, Debian, etc.).
 - d. Selection criteria for different use cases.
- Comparison of Linux/Unix/Windows Operating Systems:
 - a. Technical differentiators between Linux, Unix, and Windows
 - b. Kernel, file system, and security model comparisons.
- 3. Operating System Concepts:
 - a. Process management, scheduling, and synchronization.
 - b. Memory management and virtual memory.
 - c. Input/output operations and their handling in Linux
 - d. Device drivers and I/O subsystem.
 - e. File system types (ext4, XFS, Btrfs) and their features.
 - f. Inode structure and file attributes.
 - g. User account management.
 - h. Group administration and permissions.
 - i. Understanding file permissions and access control.
 - j. Ownership concepts and implications.
 - k. RAM management and monitoring.
 - I. Storage technologies and management (LVM, RAID).
 - m. Process creation, termination, and monitoring.
 - n. Process priorities and resource management.
 - Managing system services (systemd).
 - p. Customizing system startup processes.

a.

- 4. Network Firewall Configuration:
 - a. Networking fundamentals in Linux.
 - Configuring network interfaces and routing
 - c. iptables and firewalld usage.
 - d. Configuring and managing firewall rules.
- 5. POSIX Standard:
 - a. Compliance with POSIX standards in Linux.
 - b. POSIX threads and synchronization.
- 6. Linux Terminal:
 - a. Terminal emulators and characteristics.
 - b. Terminal control sequences and ANSI escape codes.
 - c. Shell as a command-line interpreter.
 - d. Types of shells in Linux.
 - e. Features and functionalities of SH and Bash shells.

- f. Shell scripting capabilities.
- g. Writing and executing shell scripts.
- h. Variables, loops, and conditional statements.
- i. Automating tasks with cron.
- j. Scheduling recurring jobs.
- k. Essential command-line utilities and their usage.
- I. Command syntax and options.
- m. Text Editor VI / VIM / NANO:
- n. Advanced text editing with Vim.
- o. Nano as a simple text editor.
- p. Environment variables and their significance.
- q. Setting and managing environment variables.
- r. System monitoring tools (top, htop).
- s. Log files and system event tracking.
- t. Package management with apt (Debian/Ubuntu) and yum (CentOS/RHEL).
- u. Dependency resolution and package installation.
- v. Understand the software dependencies
- w. Library management and linking.
- x. Debian and RPM package formats.
- y. Package structure and metadata.
- z. Apt package manager usage and commands.
- aa. Repository configuration and package installation.
- bb. Yum package manager usage and commands.
- cc. Repository configuration and package installation.
- dd. Creating daemon processes.
- ee. Running processes in the background.
- ff. Creating and extracting archives (tar, zip).
- gg. Compression techniques and tools.
- hh. Efficient shell navigation and workflow.
- ii. Command-line shortcuts and tricks.

7. MANPAGES:

- a. Utilizing manual pages for command reference.
- b. Understanding manpage sections.
- 8. Terminal Multiplexing Screen and Tmux:
 - a. Multiplexing terminal sessions.
 - b. Session management and control.

9. Remote Access:

- a. Secure Shell (SSH) configuration and usage.
- b. Remote file transfer (SCP, SFTP).

This technical breakdown provides a comprehensive understanding of Linux fundamentals and their relevance to Electronic Health Records (EHR) systems.