Cheminformatics

- 2-week period
- Basic principles of cheminformatics and its terminology
- 2 home coding assignments
 - 2D structures representation (5 pts)
 - QSAR machine learning problem (5 pts)
- Prerequisites
 - Python + Jupyter notebooks
 - Familiarity with how ML algorithms run

Useful links

- https://training.galaxyproject.org/trainingmaterial/topics/computational-chemistry/tutorials/covid19docking/tutorial.html
- https://chem.libretexts.org/Courses/Intercollegiate_Courses/Cheminf ormatics_OLCC_(2019)
- https://www.rdkit.org/docs/GettingStartedInPython.html
- Full course (CZ version): http://www.chemickelisty.cz/ojs3/index.php/chemicke-listy/issue/view/250

The challenge

Chemical space

~10³⁶ drug-like compounds (1)

Biological space

~10⁴ human proteins ^{2}

Drug discovery

10¹⁷ sec - the age of the Universe

- (1) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A., J Comput Aided Mol Des 2013, 27, 675-679.
- (2) http://www.uniprot.otg

Vastness of chemical space

real datasets

Commercial

~ 102 M compounds

Free

ZINC

up to 1 B commercially available compounds

virtually enumerated dataset

GDB-17

166 B compounds = 1.66×10^{11}

estimated size of drug-like chemical space

10³⁶ compounds

Screening

High-throughput screening

up to 10⁶ of compounds can be tested

- expensive
- not all targets are suitable for HTS

Virtual screening

up to 109 of compounds can be tested

Virtual screening methods

Similarity search

Similarity principle

Similar compounds have similar properties

Similarity search

Rank and select similar compounds

Ranking of compounds: example

Structure representation spanning tree

- structural keys DEMO SMILES, InChl
- fingerprints

Similarity measure

Tanimoto DEMO

• Dice

Euclidian

• ...

НО	0	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0
		 CH₃

Dice						
Atom pairs	ECFP4	FCFP4				
0.327 (3)	0.219 (2)	0.233 (1)				
0.364 (1)	0.185 (3)	0.170 (2)				
0.333 (2)	0.291(1)	0.125 (3)				

^{*}binary fingerprints calculated with RDKit

Similarity search output depends on descriptors and similarity measure selected

Similarity search: example

agonists of CCR5

$$IC_{50} = 17 \, \mu M$$

$$IC_{50} = 5.8 \, \mu M$$

$$IO_{50} = 14.1 \, \mu M$$

$$IO_{50} = 14.1 \, \mu M$$

Kellenberger, E., et al., Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. *Journal of Medicinal Chemistry* **2007**, 50, 1294–1303.

Similarity search: conclusion

- + Little information is required to start searching
- + Different chemotypes can be retrieved
- + Ultra fast screening
- + Scaffold hopping
- Hits will share common substructures with reference structures that may reduce their patentability
- Results depend on chosen descriptors and similarity measure
- Chemical similarity is not always followed by biological one

Pharmacophore search

Pharmacophore definition

A **pharmacophore** is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interaction with a specific biological target structure and to trigger (or block) its biological response.

Annu. Rep. Med. Chem. 1998, 33, 385-395

Early pharmacophore hypotheses

Atom- and pharmacophore-based alignment

Methotrexate

Dihydrofolate

Hydrogen bonding patterns

Atom-based alignment

Pharmacophore alignment

Feature-based pharmacophore models

Features: Electrostatic interactions, H-bonding, aromatic interactions, hydrophobic regions, coordination to metal ions ...

Feature-based pharmacophores (LigandScout)

Typical ligand-based pharmacophore modeling workflow

Shared consensus pharmacophore (LigandScout)

RET Kinase Inhibitors

Pharmacophore examples

Shared model on 83 antagonists of fibrinogen receptor

Pharmacophore models obtained for clusters of compounds

Polishchuk, P. G. et al., Journal of Medicinal Chemistry 2015, 58, 7681-7694.

21

MD pharmacophores

Polishchuk, P. et al. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations. *International Journal of Molecular Sciences* **2019**, 20, (23), 5834.

Pharmacophore example

Pharmacophores: conclusion

- + Universal representation of binding pattern
- + Qualitative output
- + Very fast screening
- + Scaffold hopping
- Structure-based models can be very specific
- Ligand-based models depend on conformational sampling

Machine learning (QSAR)

Modeling of compounds properties

Activity = F(structure)

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	 X _N
1	0	9	0	11	1	 1
4	0	1	0	0	0	 1
0	0	0	0	0	4	 6
0	2	3	6	0	0	 3
4	0	0	0	1	2	 1

Activity = M(E(structure))

M – mapping function E – encoding function

QSAR modeling workflow

Descriptors (features)

End-point values

Model

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆		X _N
1	0	9	0	11	1		1
4	0	1	0	0	0		1
0	0	0	0	0	4	•••	6
0	2	3	6	0	0		3
4	0	0	0	1	2		1

Encoding (represent structure with numerical features)

Mapping (machine learning)

Overall QSAR workflow

Input data

Bioassays Databases

Preprocessing

Data
normalization
& curation
Feature

extraction

Feature engineering

$$x_{i}^{'} = \frac{x_{i} - \overline{x}}{\sum_{j} z_{j}}$$

selection Feature combination

Feature

Model training

Classification Regression Clustering Model validation

Cross-validation

Bootstrap

Test set

Applicability Domain

OECD principles for the validation, for regulatory purposes, of (Q)SAR models

- 1) a defined endpoint
- 2) an unambiguous algorithm
- 3) a defined domain of applicability
- 4) appropriate measures of goodness-of-fit, robustness and predictivity
- 5) a mechanistic interpretation, if possible

Interpretation

QSAR model building

Hansch equation

plant growth inhibition activity of phenoxyacetic acids

$$1/C = 4.08\pi - 2.14\pi^2 + 2.78\sigma + 3.38$$

$$π = logP_X - logP_H$$
 $σ - Hammet constant$

Free-Wilson models

Inhibition activity of compounds against *Staphylococcus aureus*

R is H or CH_3 ; X is Br, Cl, NO_2 and Y is NO_2 , NH_2 , $NHC(=O)CH_3$

$$Act = 75R_{H} - 112R_{CH3} + 84X_{CI} - 16X_{Br} - 26X_{NO2} + 123Y_{NH2} + 18Y_{NHC(=O)CH3} - 218Y_{NO2}$$

QSAR: example

Antimalarial activity

$$EC_{50} = 95 \text{ nM}$$

QSAR: conclusion

- + Qualitative and quantitative output
- + May work for compounds having different mechanisms of action
- + Fast screening
- Very demanding to the quality of input data
- Applicability limited by the training set structures
- Hard to encode stereochemistry

Molecular docking

Docking is an in silico tool which predicts

Pose – a possible relative orientation of a ligand and a receptor as well as conformation of a ligand and a receptor when they are form complex

Score – the strength of binding of the ligand and the receptor.

Bioorganic & Medicinal Chemistry, 20 (12), 2012, 3756–3767.

Why docking is a hard task

Complex 3D jigsaw puzzle

Conformational flexibility – many degrees of freedom

Mutual adaptation ("induced fit")

Solvation in aqueous media

Complexity of thermodynamic contribution

No easy route to evaluation of ΔG

Simplification and heuristic approaches are necessary

"At its simplest level, this is a problem of subtraction of large numbers, inaccurately calculated, to arrive at a small number."

(Leach A.R., Shoichet B.K., Peishoff C.E., *J. Med. Chem.* 2006, *49*, 5851-5855)

Sampling and scoring

Protein-ligand docking software consists of two main components which work together:

- 1. Search algorithm (sampling) generates a large number of poses of a molecule in the binding site.
- 2. Scoring function calculates a score or binding affinity for a particular pose

Search algorithms (sampling)

Ligand	Receptor	
Rigid	Rigid	Fast & Simple
Flexible	Rigid	
Flexible	Flexible	Slow & Complex

Search algorithms (sampling)

Classes of scoring function

Forcefield-based

Based on terms from molecular mechanics forcefields GoldScore, DOCK, AutoDock

Empirical

Parameterised against experimental binding affinities ChemScore, PLP, Glide SP/XP

Knowledge-based potentials

Based on statistical analysis of observed pairwise distributions PMF, DrugScore, ASP

Docking quality assessment

Su, M. et al Comparative Assessment of Scoring Functions: The CASF-2016 Update. *Journal of Chemical Information and Modeling* **2019**, 59, (2), 895-913.

Lu, J et al, Journal of Chemical Information and Modeling **2019**, 59, (11), 4540-4549.

Docking quality assessment

Compound

Krysko, A.A., et al., Bioorganic & Medicinal Chemistry Letters, 2016, 26, 1839-1843

Validation

Self-docking – reproducibility of a pose

Docking of a set of ligands with known affinity – reproducibility of affinity

Molecular docking: example

ligands of D4 receptor enumerated library 138 M compounds **DOCK** remove similar to known (ChEMBL) and in 3.5 M instock library 1000 clusters 124 + 444 selected $K_i < 8.3 \mu M$

81 compounds

Lyu, J. et al Ultra-large library docking for discovering new chemotypes. *Nature* **2019**, 566, 224-229.

Molecular docking: conclusion

- + Relatively fast
- + Determine binding poses
- + Good in ranking ligands for virtual screening
- Low accuracy of binding energy estimation
- Require knowledge about binding site