Plan:

- 1. Discuss rank-based statistics
- 2. Discuss KS test
- 3. Explain nonparametric approaches to prediction

Nonparametric Statistics II

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

2) Rank Statistics

We rank things in the real world *all the time!*

- International rankings (economics, happiness, government performance)
- Sports (teams, players, leagues)
- Search Engines
- Academic Journals' prestige
- Reviews online (1-4 stars)

Rank Statistics

Data are transformed from their quantitative value to their rank.

quantitative data ordinal data 1, 4.5, 6.6, 9.2

1, 2, 3, 4

Ordinal data - categorical, where the variables have a natural order

Particularly helpful when data have a ranking but no clear numerical interpretation (i.e. movie reviews)

Wilcoxon rank-sum test (Mann Whitney U test)

- Determine whether two independent samples were selected from the same populations, having the same distribution
- Similar to t-test (but does not require normal distributions) & tests <u>median</u>

Assumptions:

- Observations in each group are independent of one another
- Responses are ordinal

H_o: distributions of both populations are equal

H_a: distributions are *not* equal

Mann-Whitney U: question example

In a clinical trial, is there a difference in the number of episodes of shortness of breath between placebo and treatment?

Step 1: Participants record number of episodes they have.

Step 2: Episodes from both groups are combined, sorted, and ranked

Step 2: Re-sort the ranks into separate samples (placebo vs. treatment)

Step 3: Carry out statistical test

			Total Sample (Ordered Smallest to Largest)	Ranks
	Placebo	New Drug		
	7	3		
	5	6		
	6	4		
Sum of ranks:	4	2		
	12	1		
Placebo = 37				
New Drug = 18			<u> </u>]

Mann-Whitney *U*: calculating the *U* statistic

Ho: low and high scores are approximately evenly distributed in the two groups

Ha: low and high scores are NOT evenly distributed in the two groups (U <= 2)

 n_a = number of elements in group A n_b = number of elements in group B

$$U_{Placebo} = 3$$
 $0 < U < n_1^* n_2$ $U_{tractured} = 22$ Complete separation \rightarrow no separation

We reject the null if U is small.

3) Kolmogorov-Smirnov (KS) test

• Given (limited) samples from two populations, how do we quantify whether they come from the same distribution?

Kolmogorov-Smirnov (KS) test

Comparing cumulative distributions empirically

between the CDFs.

Tests:

- whether a sample is drawn from a given distribution
 - Whether two samples are drawn from the same distribution

Kolmogorov-Smirnov (KS) test

• Given (limited) samples from two populations, how do we quantify whether they come from the same distribution?

Kolmogorov-Smirnov (KS) test

gamma vs. normall: p = 0.0106803628411 normall vs. normal2: p = 0.550735998243

4) Non-parametric prediction models

- When you have lots of data and no prior knowledge
- When you're not focused/worried about choosing the right features
- Goal: fit training data while being able to generalize to unseen data

- Examples:

- KNN (K-Nearest Neighbors)
- Decision Trees (CART)
- Support Vector Machines (SVM)

Why do we even teach/use parametric statistics anyway?

Parametric approaches:

- Lots of data follow expected patterns
- Require less data
- More sensitive
- Quicker to run/train/predict
- More resistant to overfitting