OREGON STATE UNIV CORVALLIS SCHOOL OF OCEANOGRAPHY F/G 8/10 EXPOSURE. A NEWSLETTER FOR OCEAN TECHNOLOGISTS. VOLUME 9, NUMBER—ETC(U) MAY 81 R MESECAR MESCAR

AD-A100 161

(12)

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER VOI. 9 NO.2 2. GOVT ACCESSION NO. AD - A 100 16	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subsisse) EXPOSURE	5. TYPE OF REPORT & PERIOD COVERED
A newsletter for ocean technologists	5. PERFORMING ORG. REPORT NUMBER
Roderick Mesecar (Ed.)	N00014-79-C-0004
School of Oceanography Oregon State University, Corvallis, OR 97331	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 083-103
NORDA, NSTL Bay St. Louis, MS 39520, Attn: Code 410	May 1381
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)
	15m. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimi	ted
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different fro	Per Report)
Published every two months by the School of Ocea Oregon State University, Corvallis, OR 9	nography 17331
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	,
Ocean technology; instrumentation	
Line Passing Torpedo For Use Under Sea Ice, a Bibliography. Marine Electronics.	

DD 1 JAN 73 1473 | EDITION OF 1 NOV 85 IS OBSOLETE

THE

EXPOSURE

vol.9 no.2

a newsletter for ocean technologists

Line Passing "Torpedo" For Use Under Sea Ice

For a variety of deployment and recovery tasks, it is essential to pass ropes and wires under the Arctic sea ice. The technical staff of the Frozen Sea Research Group developed an under ice line passing "torpedo" which has, for the last two years, performed very well during winter field operations. Figure 1 shows the torpedo complete with launch pole being readied for deployment.

Description

The torpedo is 120 cm overall length, approximately 20 cm in diameter, and weighs 40 lb in air and 21 lb in water. A 30-cm-diameter hole is required through the ice to deploy the torpedo and subsurface float (see Figure 2). The torpedo is hung on a single rope approximately 2 meters below the float. This subsurface float bounces along the underside of the sea ice and, having about 15 to 20 lb excess buoyancy, supports

the torpedo. Attached to the rear steering bridle are two main power wires which are 35 m long. The electric drive motor was a 48 V dc, counter-rotating torpedo motor which was rewound for 12 V dc. Due to line loss, it is necessary to start with three 12-V, heavy duty lead acid batteries, in series on the surface, to get the required power to the motor. As the torpedo operates in a cold marine environment, heat dissipation is no problem.

May 1981

Λ

Operation

Before launching the torpedo, two 30-cm-diameter holes are drilled in the desired direction and distance apart. A 20-m grapnel line, having five or six treble 3-inch fish hooks, spaced approximately 30 cm apart and weighted with a 1-lb lead weight on its lower end, is deployed down the target hole. When aiming at the target hole, the torpedo is launched from its deployment hole at an azimuth

angle of approximately 20° to the left of the desired target (Figure 3). When the torpedo reaches the length of the desired run, the power wires are tethered and the power to the motor is reversed. This reversing of electrical power does not affect the direction of the motor and so it continues to drive, maintaining tension on the tethered power wires. This reversal of current causes a diodecontrolled solonoid on the front of the

pressure case housing to trip, allowing the steering bridle to offset to the right of the case (see Figure 4). This offset, in conjunction with power still being applied to the propellors, allows the torpedo to sweep to the right in a large circle (see Figure 3). When the tether wires cross the grapnel line (previously deployed through the target hole), the power is shut off and the torpedo pulled back by its power wires to and through the

34.

deployment hole, thus pulling the grapnel line with it (see Figure 5). Another hole is then drilled and the process repeated until the desired distance has been reached. Both ends of the rope are then joined together to form a continuous loop above and below the ice. This loop is then used to pass lines, etc., under the ice from hole to hole. The torpedo is removed, washed, and stored away. As local current speed and direction may play a significant role in the

successful deployment, aiming, sweeping, and recovery of the torpedo, it is desired to identify these parameters before launching and to use them to your advantage where possible.

Other Uses

The torpedo is useful for sampling under the ice or sweeping up to 70-m-diameter circles when searching for lost equipment. It can also be used to deploy drag lines.

FOR FURTHER INFORMATION, CONTACT:

C. L. Richards or S. W. Moorhouse Frozen Sea Research Group Institute of Ocean Sciences P.O. Box 6000 Sidney, B.C. Canada V8L 4B2

Telephone: (604) 656-8278

Dennis Richards
has been a
member of the
Frozen Sea Research Group for
the past 11 years,
working primarily in the
Canadian High
Arctic. A
machinist by
trade, his
primary function
is the design
and building

of electro/mechanical equipment for the group.

Syd. Moorhouse is a senior logistics and design technol-ogist with the Frozen Sea Research Group. He has spent 17 years in the Canadian High Arctic, involved with the designing, development, and installations of

instrumented data collection systems.

Bibliography: Marine Electronics

The following is a list of recent books and reports for ocean technologists and instrumentation system designers. They cover the physics, sensor technology, amplifier design, data transmission, signal analysis, and computer programming necessary for marine instrumentation systems. They are more practical than theoretical. I have found the majority of these books to be the most useful ones in their fields. Items with an * are especially recommended.

FOR FURTHER INFORMATION, CONTACT:

Henry Lahore
Applied Physics Laboratory
University of Washington HN-10
Seattle, Washington 98195

Telephone: (206) 543-1371

Henry Lahore is a senior electrical engineer at Applied Physics Laboratory, University of Washington. He received his BSEE and MSEE (1970) at UW and then worked in Atmospheric Sciences and Oceanography departments before coming to AFL in 1979.

MARINE ELECTRONICS AND INSTRUMENTATION

Marine Electronic Navigation. S. F. Appleyard 1980 Routledge
Electronic Surveying & Navigation. S. Lavrila 1976 Wiley (42.00)
Radio Direction-Finding and The Resolution of Multicomponent Wave-Fields P.J.D. Gething
1978 Peregrinus Ltd. (30.00)

Handbook of Marine Electronics. Safford 1978 TAB BOOKS

- Designers Handbook of Pressure-sensing Devices. J. Lyons 1980 Van Nostrand
- * Fundamentals of Temperature, Pressure and Flow Measurements. Robert Benedict 1977 Wiley
- * Air-Sea Interaction: Instruments and Methods. ed. F. Dobson 1980 Plenum (800 pages)

 Current Measurement: Proceedings of a Working Conference 1978 NOAA College of Marine Studies

 Tech. Rept. DEL-SG-3-78 Univ. of Delaware Newark, DE 19711

Applied Fluid Flow Measurement. Cheremisinoff 1979 Dekker

Flowmeters. A.T.J. Hayward 1979 John Wiley & Sons (24.95)

- Manual on the Use of Thermocouples in Temperature Measurement American Society for Testing and Materials Special Tech. Pub. 470A 1974 1916 Race St., Philadelphia, PA 19103
- * Transducer Interfacing Handbook. Ed. Daniel H. Sheingold 1980 Analog Devices, Inc. (14.50)
 Analog Signal Processing and Instrumentation. Arbel 1980 Cambridge

Transducers for Biomedical Measurements: Principles and Applications Richard Cubbold 1974 Wiley Geoscience Instrumentation. E. Wolff and E. Mercanti 1974 Wiley (59.50)

Microprocessor-controlled Digitization and Acquisition of Underwater Measurements of Conductivity,
Temperature, and Depth. 1980 207 p., Petroconsultants S. A., International Energy Services,
2 rue Vallin, Geneva, Switzerland. Contains good review of CTD techniques.

Directory of Defense Electronic Products & Services. U. S. Suppliers 1980 Information Clearing House, Inc. \$40.00

ELECTRONICS - OTHER

The Art of Electronics. P. Horowitz and Windfield Hill. 1980 Cambridge U. Press (excellent coverage of the entire electronics field)

Electric Motor Handbook. Ed. E. H. Werninck 1978 McGraw-Hill

Lead-Acid Batteries. Hans Bode 1977 Wiley

Electronic Components Handbook. T. H. Jones 1979 Reston Publishing Company (7.95)

A User's Guide to Selecting Electronic Components. G. L. Ginsberg 1981 (25.00) Wiley

Crystal Oscillator Design and Temperature Components in Marvin Frerking 1977 Van Nostrand

Cooling Techniques for Electronic Equipment D. Steinberg 1980 Wiley (27.50)

Optoelectronics Applications Manual Hewlett-Packard 1981

Handbook of Electronic Table: & Formulas. Sams 1979

Precis: Monthly review of such magazines as Computer Design, Datamation, Digital Design, EDN,

Electronic Design, Electronic Products, Electronics, IEEE Spectrum, Mini-Micro Systems.

By Technical Information Distribution Service. 40 West Ridgewood Ave.,

Ridgewood NJ 07450 (50.00/year)

STRUCTURED PROGRAMMING

Managing the Structured Techniques. E. Yourdon 1979 Prentice-Hall (25.95)

A Primer on Structured Program Design. G. L. Richardson, C. W. Buffer and J. D. Tomlinson 1980
Petrocelli Books, Inc. (14.95)

The Practical Guide to Structured Systems Design. M. Page-Jones 1980 Yourdon Press (22.50)

Structured Analysis V. Weinberg 1980 Yourdon

COMPUTERS

The CP/M Handbook with MP/M R. Zaks 1980 Sybex, Inc. (14.95)
Data Communications: A Users Guide K. Sherman 1981 Reston
PET and the IEEE 488 Bus (GPIB). E. Fisher and C. W. Jensen 1980 OSBORNE/McGraw-Hill (15.00)
The S-100 Bus Handbook. D. Bursky 1980 Hayden Book Company (12.95)
The S-100 & Other Micro Buses. E. C. Poe & J. C. Goodwin 1979 Howard W. Sams & Co. (5.95)
Interfacing small computers to the Real World. M. Sargent 1980 Addison-Wesley.
Microcomputer Primer. M. Waite 1980 Sams (good for person with some digital hardware background)
Microcomputer Interfacing J. Lipouski 1981 Lexington Books (25.00)
1981 APPLE II/III Software Director G. Vandiver Vital Information Inc., 350 Union
Station, Kansas City MO 64108 (20.00) (Has good reviews and intercomparisons of software and some hardware.

INTEGRATED CIRCUITS

* The Master IC Cookbook. C. L. Hallmark 1980 TAB BOOKS (condensed data on many IC Families) IC Array Cookbook W. G. Jung 1980 Hayden Book Company (7.95) IC Converter Cookbook W. G. Jung 1978 Howard W. Sams & Co. IC Timer Cookbook. W. G. Jung 1977 Howard W. Sams & Co. The 555 Timer Applications Sourcebook with Experiments. H. M. Berlin 1976 Howard W. Sams & Co. * CMOS Cookbook. D. Lancaster 1977 Howard W. Sams & Co. CMOS Databook. B. Hunter 1978 TAB BOOKS (6.95) TTL Cookbook. D. Lancaster 1979 Sams The PLL Synthesizer Cookbook. H. Kinley 1980 TAB BOOKS (7.95) Design of Phase-locked Loop Circuits. H. M. Berlin 1978 Howard W. Sams & Co. Phase-locked Loops A. Blanchard 1976 Wiley Phase-locked Loops & Their Application. Ed. W. C. Lindsey & M. K. Simon 1978 IEEE PRESS (reprints) Phase-lock Techniques. F. Gardner 1979 Wiley 2nd edition of classic reference. Counting and Counters R.M.M. Oberman 1981 Wiley (29.95) Charge Coupled Devices and Applications Beynon 1980 McGraw Master Handbook of 1001 More Practical Electronics Circuits. Ed. M.L. Fair 1979 TAB (\$13) How to Design and Build Audio Amplifiers. M. Horowitz 1980 TAB BOOKS (9.95) * IC Master 1981 United Technical Publications, 645 Stewart Ave., Garden City, NY 11530 (82.50)

OPERATIONAL AMPLIFIERS & FILTERS

* Randbook of Operational Amplifier Circuit Design. D. F. Stout 1976 McGraw-Hill (31.50)
detailed design equations.

Operational Amplifiers and Linear Integrated Circuits R. F. Coughlin and F. F. Driscoll 1977
Prentice-Hall (18.95)

Operational Amplifiers. George Clayton 1979 Butterworth

* IC OP-Amp Cookbook Jung 1980 Howard W. Sams & Co.
The Active Filter Handbook. F. P. Tedeschi: 1979 TAB BOOKS (7.95)

* Electronic Filter Design Handbook. A. B. Williams 1981 McGraw-Hill (32.50)

Introduction to the Theory and Design of Active Filters L. Huelsman and P. Allen 1981 Mc-Gra

POWER ELECTRONICS

Design of VMOS Circuits with Experiments. R. T. Stone & H. M. Berlin 1980 Sams (\$9)
Practical Transformer Pesign Handbook. E. Lowdon 1980 Howard W. Sams & Co. (21.95)
Ferromagnetic Core Design and Application Handbook. M. F. DeMaw 1981 Prentice-Hall
Transformer and Induction Design Handbook C. McLyman 1978 Marcel Dekker, Inc.
Principles and Applications of Inverters & Converters. I. M. Gottlieb 1977 Sams (\$8)
Design of Solid-state Power Supplies. E. R. Hnatek 1981 Van Nostrand Reinhold Company (24.50)
Handbook of Audio Circuit Design D. Cameron 1978 Reston
Solid State Radio Engineering H. Kraus 1980 Wiley
Design of Microcomputer-based Medical Instrumentation. Ed. W. J. Tompkins & J. G. Webster. 1981
Prentice all, Inc. (27.95)

NOISE

Handbook of Electrical Noise: Measurement & Technology. C. A. Vergers 1979 TAB BOOKS (6.95)
(Basic treatment)
Handbook of Noise Measurement. Arnold Peterson 8th ed. 1978 General Radio (order direct)
Noise Reduction Techniques in Electronic Systems. H. W. Ott 1976 John Wiley & Sons (24.50)
Principles of Electromagnetic Compatibility B. Kei:e 1979 Artech (43.00)
Low Noise Electronic Design C. Motchenbacher 1973 Wiley (transistor design)

ELECTRONIC SYSTEM DESIGN

Design of Continuous and Digital Electronic Systems. G.J.A. Bird 1980 McGraw-Hill An Engineering Approach to Digital Design. W. I. Fletcher 1980 Prentice-Hall (28.00)

The Art of Digital Design. D. Winkel 1980 Prentice-Hall

Planning and Creating Successful Engineered Designs S. F. Love 1980 Van Nostrand Reinhold Co. Digital Design with Standard MSI & LSI. Thomas Blakeslee. 2nd ed. 1979 Wiley (20.00)

Circuit Design for Electronic Instruments A&D Devices from Sensor to Display. Darold Wobschall 1979 McGraw

RELIABILITY

Reliability & Maintainability of Electric Systems. Ed. J. E. Arsenault & J. A. Roberts 1980 Computer Service Press

Computer System Reliability. R. Longbottom 1980 John Wiley & Sons (31.95)

Accelerated Testing Handbook. Technology Associates, 51 Hillbrook Drive, Portola Valley CA 94025 (\$50)

Electrical Overstress/Electrostatic Discharge Symposium Proceedings (1979) Reliability Analysis Center (Rome Air Development Center) 1980

Electrical Overstress/Electrostatic Discharge Symposium Proceedings (1980) Reliability Analysis Center (Rome Air Development Center) 1981 RADC/RBRNC Griffiss AFB NY 13441 (20.00 approx.)

MARINE ENGINEERING

Seawater Corrosion Handbook. M. Schumacher 1979 hoyes (36.00) Marine Corrosion F. LaQue 1975 Wiley Corrosion, 2 volumes. 1976 Ed. L. L. Shreir Newnes-Butterworths, London Corrosion Control by Coatings. Henry Leidheiser 1979 Science Press, Princeton. Sound Noise and Vibration Control. L. Yerges 1978 Van Nostrand Handbook of Oceanographic Engineering Materials. Stephen Dexter 1979 Wiley Development of Supercorroding Alloys for use as Timed Releases ... Civil Eng. Lab CEL TN 1550 Handbook of Pressure-Proof Connector and Cable Harness Design for Sonar Systems. November 1980 Naval Research Lab Memorandum Report - useful for description of thru hull connector techniques. Dynamics of Marine Vehicles. Bhattacharyya 1978 Wiley Ship Design and Construction 3rd ed. R. Taggart 1980 Soc. Naval Architects (52.00) Remotely Operated Vehicles 1979 NOAA U.S. Dept. of Commerce Super. of Documents, GPO #003-017-00-465-1 Submersibles and Their Use in Oceanography and Ocean Engineering. R. Geyer 1977 Elsevier Underwater Handbook. Shilling 1976 Plennum

SIGNAL ANALYSIS

Geophysical Signal Processing. Robinson, E. 1980 Prentice * Applied Time Series Analysis Otnes 1978 Wiley 1977 Signal Analysis. A Papoulis McGraw Signal Processing: Discrete Spectral Analysis, Detection, and Estimation M. Schwartz 1975 McGraw Digital and Kalman Filtering S.M. Bozic 1980 Halsted Press (23.95) Pourier Transform and its Application R. Bracewell 2nd ed. 1978 Past Fourier Transform E.O. Brigham 1974 Prentice Hall Programs for Digital Signal Processing 1979 IEEE/Wiley Applications of Correlation and Spectral Analysis J. Bendat, A. Piersol 1980 Wiley (\$30)

UNDERWATER SOUND

Mechanics of Underwater Noise Donald Ross 1976 Pergamon *Principles of Underwater Sound R. Urick 2nd. ed. 1975 McGraw Sound Propagation in the Sea. R. Urick 1979 Sup. of Documents #008-051-0071-2 Acquisition, Reduction, and Analysis of Acoustical Data 1974 Naval Air Dev. Center NADC-AWG-SU Oceanic Sound Scattering Prediction. Niel Anderson 1977 Plenum Sound Transmission through a Fluctuating Ocean. Stanley Flatte' 1979 Cambridge Statistical Methods in Sonar. V. V. Ol'Shevskii Animal Sonar Systems. Busnel 1979 Plenum 1978 Plenum (45.00) Ocean Acoustics. J. DeSanto 1979 Springer (37.00) Fundamentals of Marine Acoustics Caruthers 1977 Elsevier (39.00) Sonar and Underwater Sound A. Cox 1975 Lexington Ultrasonics International 79 Conference Proceedings 1979 IPC Science and Technology Press The Physics of Sound in Marine Sediments. L. Hampton Plenum (45.00) Handbook of Array Design Technology 1976 AD-A038073 for Naval Electronics Systems Command Principles of Aperture and Array System Design B. Steinberg 1976 Introduction to Radar Systems M. Skolnik 1980 McGraw Wiley Coding and Information Theory R. W. Hamming 1980 Prentice Hall (21.95) Error-Control Coding and Applications D. Wiggert Artech House (28.50) Communication Systems. A. B. Carlson 2nd ed. 1975 McGraw (good description of different types of modulations)

Periodical Guide for Computerists annual E. Berg Publications, 622 - 3rd, Kimball,
Nebraska 69145 Index to computer articles in Computer Design, Creative Computing,
Digital Design, Dr. Dobbs, EDN, Electronics, Electronic Design, Interface Age,
Kilobaud, etc.

TABLE OF CONTENTS		
Page	Article	Author
1	Line Passing "Torpedo" for Use Under Sea Ice	Richards/ Moorhouse
5	Bibliography: Marine Electronics	Lahore

Dr. Rod Mesecar, Editor EXPOSURE School of Oceanography Oregon State University Corvallis, Oregon 97331

Telephone: (503) 754-2206

