MAC with feedback: Structure of optimal block Markov superposition codes

Aditya Mahajan

ITA Workshop, February 5, 2010

Are auxiliary random variables in info theory related to information states in stochastic control?

MAC with feedback: Structure of optimal block Markov superposition codes

Aditya Mahajan

ITA Workshop, February 5, 2010

The Setup

- i.i.d. messages: M¹ and M²
- **memoryless channel**: $P(Y_n \mid X_{[1:n]}^1, X_{[1:n]}^2) = P(Y_n \mid X_n^1, X_n^2)$
- **feedback**: $X_n^i = f_n^i(M^i, X_{[1:n-1]}^i, Y_{[1:n-1]})$, i = 1, 2.

Capacity of MAC with feedback

Feedback can increase capacity. (Gaarder and Wolf, 1975).

The encoders can communicate using feedback channel

© Capacity characterized by multi-letter directed information expression (Kramer, 1998)

$$\bigcup \left\{ \begin{matrix} R_1 \leqslant I(X^1 \rightarrow Y || X^2) \\ R_2 \leqslant I(X^2 \rightarrow Y || X^1) \\ R_1 + R_2 \leqslant I(X_1 X_2 \rightarrow Y) \end{matrix} \right\}$$

IM HAT HAT WHI HAT I

Achievable schemes

- Gaarder and Wolf, 1975: Code in two phases.
 - ► Two-way communication of independent messages
 - Point-to-point communication with side information
- © Cover and Leung, 1981: Superpose the two phases.
- Bross and Lapidoth, 2005: Add an explicit phase for two-way communication of correlated messages
- Wenkataramanan and Pradhan, 2009: Superpose the three phases
- The idea can be extended to more than three phases

IM HAT HAT HAT HAT H

Thinning of correlation graph

Venkataramanan and Pradhan, 2009

Can be extended to more than three phases

Venkataramanan and Pradhan, 2009

IM HAT HAT HAT HAT H

Block Markov superposition codes at the block level

- \odot i.i.d. source: M_t^1 and M_t^2
- **memoryless channel**: $P(Y_t \mid X_{[1:t]}^1, X_{[1:t]}^2) = P(Y_t \mid X_t^1, X_t^2)$

Block Markov superposition codes at the block level

Let $Z_t = (M_t^1, M_t^2, X_t^1, X_t^2)$. Assume delayed sharing of information.

encoders:

$$X_{t}^{i} = f_{t}^{i}(Z_{1:t-2}, Y_{1:t-1}, M_{t-1}^{i}, M_{t}^{i}, X_{t-1}^{i}), \quad i = 1, 2$$

decoders with decoding delay d:

$$(\hat{M}_{t-d}^1, \hat{M}_{t-d}^2) = g_t(Z_{1:t-3}, Y_{1:t})$$

distortion at time t:

$$\rho(M_{t-d}^1, \hat{M}_{t-d}^1) + \rho(M_{t-d}^2, \hat{M}_{t-d}^2)$$

Venkataramanan-Pradhan scheme

Encoder:

$$X_t^i = f_t^i(M_t^i, \mathbf{U}_t, \mathbf{W}_t, \mathbf{A}_t^i)$$

- Three auxiliary random variables:
 - \triangleright W_t : Compression of the past

$$W_{t+1} = \psi_t(U_t, W_t, A_t^1, A_t^2, Y_t)$$

▶ Ut: Common message

$$U_{t+1} = \hat{\psi}_t^1(A_t^1, M_t^1, Y_t) = \hat{\psi}_t^2(A_t^2, M_t^2, Y_t)$$

Alpha and A_t^2 : Messages for two-way communication between encoders 1 and 2.

Is the structure of this scheme optimal?
Will decentralized control give the same structure?

Information Structure

- **Encoder 1**: $(Z_{1:t-2}, Y_{1:t-1}, M_{t-1}^1, M_t^1, X_{t-1}^1)$
- **Encoder 2**: $(Z_{1:t-2}, Y_{1:t-1}, M_{t-1}^2, M_t^2, X_{t-1}^2)$
- **Decoder**: $(Z_{1:t-3}, Y_{1:t})$

Non-classical information structure

- Delayed sharing of information
 - ► Common info between encoders and decoder: $(Z_{1:t-3}, Y_{1:t-1})$
 - ightharpoonup Common info between encoders: $(Z_{1:t-2}, Y_{1:t-1})$

IM IM IM IM IM IM IM

Structural results in decentralized control

- © Consider a coordinator that observes common information (but does not observe the private information).
- Formulate a centralized optimization problem from the point of view of the coordinator
- Show that the coordinator's problem is equivalent to the original problem
- Find states sufficient for input-output mapping for the coordinator
- Find information states (state sufficient for dynamic programming) for the coordinator

[Mahajan-Nayyar-Teneketzis 08]

IM IM IM IM IM IM IM

Coordinator for the system

Decisions made by the coordinators

$$(\phi_t, \gamma_t) = \psi_t(Z_{1:t-3}, Y_{1:t-1})$$
$$(\hat{f}_t^1, \hat{f}_t^2) = \xi_t(\phi_t, Z_{t-2})$$

Encoders and decoders simply use these partial functions

$$X_t^i = \hat{f}_t^i(M_{t-1}^i, M_t^i, X_{t-1}^i), \qquad (\hat{M}_{t-2}^1, \hat{M}_{t-2}^2) = \gamma_t(Y_t)$$

Structural results

- **©** Common information: $(Z_{1:t-3}, Y_{1:t-1})$
- **All private information**: $(Z_{t-2}, Z_{t-1}, M_t^1, M_t^2, Y^t)$

Structural results

Replace common information with P(state + all private info | common info)

[Mahajan-Nayyar-Teneketzis 08]

Structural results

- **©** Common information: $(Z_{1:t-3}, Y_{1:t-1})$
- **all private information**: $(Z_{t-2}, Z_{t-1}, M_t^1, M_t^2, Y_t)$

- Structural results
 - ► Define $\pi_t = P(Z_{t-2}, Z_{t-1}, M_t^1, M_t^2, Y_t \mid Z_{1:t-3}, Y_{1:t-1})$
 - **Encoder**: $X_t^i = f_t^i(\pi_t, Z_{t-2}, M_{t-1}^i, M_t^i, X_{t-1}^i)$
 - ▶ Decoder: $(\hat{M}_{t-d}^1, \hat{M}_{t-d}^2) = g_t(\pi_t, Y_t)$

[Mahajan-Nayyar-Teneketzis 08, Anastasopoulos 09, Ardestanizadeh-Javidi-Kim-Wigger, 09]

Is this related to auxiliary random variables?

$$\begin{split} \pi_t &= P(Z_{t-2}, Z_{t-1}, M_t^1, M_t^2, Y^t \mid Z_{1:t-3}, Y_{1:t-1}) \\ &= P(Z_{t-2} \mid Z_{1:t-3}, Y_{1:t-1}) \\ &\times P(Z_{t-1} \mid Z_{1:t-2}, Y_{1:t-1}) \\ &\times P(M_t^1 \mid Z_{1:t-1}, Y_{1:t-1}) \\ &\times P(M_t^2 \mid Z_{1:t-1}, Y_{1:t-1}) \\ &\times P(Y_t \mid Z_{1:t-1}, Y_{1:t-1}, M_t^1, M_t^2) \end{split}$$

Is this related to auxiliary random variables?

$$\begin{split} \pi_t &= P(Z_{t-2}, Z_{t-1}, M_t^1, M_t^2, Y^t \mid Z_{1:t-3}, Y_{1:t-1}) \\ &= P(Z_{t-2} \mid Z_{1:t-3}, Y_{1:t-1}) \\ &\times P(Z_{t-1} \mid Z_{1:t-2}, Y_{1:t-1}) \\ &\times P(M_t^1 \mid Z_{1:t-1}, Y_{1:t-1}) \\ &\times P(M_t^2 \mid Z_{1:t-1}, Y_{1:t-1}) \\ &\times P(Y_t \mid Z_{1:t-1}, Y_{1:t-1}, M_t^1, M_t^2) \end{split}$$

These "chunks" of information state appear to be related to auxiliary random variables, but the relation is not convincing.

Reevaluate information states

- summary of past past information
- computable at all agents
- sufficient for performance evaluation
- time-invariant domain
- minimal (although the notion of minimality is not clear)

Conditional probability (also called belief states) traditionally capture these notions in centralized stochastic control

JHY JHY JHY JHY JHY JHY J

In decentralized control, can we derive information states in a different manner?

Salient features of decentralized control

- The "control action" of the coordinator is a partial function that tells each agent what to do with their private information.
- Reason for double exponential complexity in space

Salient features of decentralized control

- The "control action" of the coordinator is a partial function that tells each agent what to do with their private information.
- Reason for double exponential complexity in space

Can we exploit this "control action is a partial function feature" to summarize the past in a different way?

Affect of functions on future can be compressed by partially evaluating the function

Partially evaluating a function

Consider

$$X_{t+1} = f_t(X_t, Y_t)$$

How do we compress the affect (f_t, X_t) affect X_{t+1} ?

Partially evaluating a function

Consider

$$X_{t+1} = f_t(X_t, Y_t)$$

How do we compress the affect (f_t, X_t) affect X_{t+1} ?

$$f_t(X_t, \cdot)$$

Coordinator for the system

Decisions made by the coordinators

$$\begin{split} (\phi_t, \gamma_t) &= \psi_t(Z_{1:t-3}, Y_{1:t-1}) \\ (\hat{f}_t^1, \hat{f}_t^2) &= \xi_t(\phi_t, Z_{t-2}) \end{split}$$

Encoders and decoders simply use these partial functions

$$\begin{split} X_t^i &= \hat{f}_t^i(M_{t-1}^i, M_t^i, X_{t-1}^i), \qquad (\hat{M}_{t-2}^1, \hat{M}_{t-2}^2) = \gamma_t(Y_t) \\ & \text{III III III III III} \end{split}$$

The coordinator's point of view

Information at coordinator:

$$(Z_{1:t-3},Y_{1:t-1},\phi_{1:t-1},\gamma_{1:t-1},\hat{f}_{1:t-1}^1,\hat{f}_{1:t-1}^2)$$

Information state

$$(Z_{t-3}, Y_{t-2}, Y_{t-1}, \hat{f}_{t-1}^1, \hat{f}_{t-1}^2, \tilde{f}_{t-2}^1, \tilde{f}_{t-2}^2)$$

where

$$\tilde{\mathbf{f}}_{t-2}^{i}(\cdot) = \hat{\mathbf{f}}_{t-2}^{i}(\mathbf{M}_{t-3}^{i}, \mathbf{X}_{t-3}^{i}, \cdot)$$

Information states

$$(Z_{t-3}, Y_{t-2}, Y_{t-1}, \hat{f}_{t-1}^1, \hat{f}_{t-1}^2, \tilde{f}_{t-2}^1, \tilde{f}_{t-2}^1)$$

where

$$\tilde{f}_{t-2}^{i}(\cdot) = \hat{f}_{t-2}^{i}(M_{t-3}^{i}, X_{t-3}^{i}, \cdot)$$

Can show that

- the state is a controlled Markov process
- is sufficient to evaluate expected instantaneous cost

Structural Results

© Encoder

$$X_t^i = \hat{f}_t^i(M_t^i, M_{t-1}^i, X_{t-1}^i) = f_t^i(M_t^i, M_{t-1}^i, X_{t-1}^i, \boldsymbol{Z_{t-2}}, \hat{f}_{t-1}^{1,2}, \tilde{f}_{t-2}^{1,2})$$

- components of information state
 - ► Information state $(Z_{t-3}, Y_{t-2}, Y_{t-1}, \hat{f}_{t-1}^1, \hat{f}_{t-1}^2, \tilde{f}_{t-2}^1, \tilde{f}_{t-2}^1)$
 - Partial function that determines the current message $\phi_t = \psi_t(Z_{t-3}, Y_{t-2}, Y_{t-1}, \hat{f}^1_{t-1}, \hat{f}^2_{t-1}, \tilde{f}^1_{t-2}, \tilde{f}^2_{t-2})$
 - Partial function that determines the one step old message $\hat{f}_{t-1}^i(\cdot) = \phi_{t-1}(Z_{t-3}, \cdot)$
 - Partial function that determines the two step old message $\tilde{\mathbf{f}}_{t-2}^{i}(\cdot) = \hat{\mathbf{f}}_{t-2}^{i}(M_{t-3}^{i}, X_{t-3}^{i}, \cdot)$

IM IM IM IM IM IM IM

Venkataramanan-Pradhan scheme

© Encoder:

$$X_t^i = f_t^i(M_t^i, U_t, W_t, A_t^i)$$

- Three auxiliary random variables:
 - \triangleright W_t: Compression of the past

$$W_{t} \equiv (Z_{t-3}, Y_{t-1}, Y_{t-2})$$

Ut: Common message

$$U_t \equiv (Z_{t-2}, \tilde{f}_{t-1}^1, \tilde{f}_{t-1}^2)$$

Alpha At and At. Messages for two-way communication between encoders 1 and 2.

$$A_t^i \equiv \hat{f}_{t-1}^i$$

JAN JAN JAN JAN JAN JAN JAN JA

Comparison of the two schemes

- The dynamics of auxiliary random variables and partial functions in the information state are similar
- The semantics are different
- The structure results derived using stochastic control are simpler
 - ► We do not need a "compression of the past"; rather a few recent common observations are sufficient.
- The achievable scheme of Venkataramanan-Pradhan can be adapted to use this simpler structure (or so it appears after a few back of the envelop calculations)

JHI JHI JHI JHI JHI JHI J

Conclusion (for block Markov superposition coding)

- Horses for courses
 - Use stochastic control to determine the form of coding scheme across blocks
 - ► Use information theory to determine the form of functions within a block
- Future directions

Does this idea works for other channels (broadcast, relay, interference, . . .)

IM IM IM IM IM IM IM

Thoughts (on relations to auxiliary random variables)

- Past can be summarized in two ways
 - conditional probability (belief)
 - partial function

Do auxiliary random variables also exhibit this behavior?

- Can be useful for proving converses
- © Can results that bound the cardinality of auxiliary random variables help in numerical computation of decentralized stochastic control problems?

IM HAT HAT WHI HAT M

Thank you