

Instituto Politécnico de Leiria

Escola Superior de Tecnologia e Gestão Matemática Discreta - Componente PL EI (D+PL)

Ano letivo $2018/2019 - 2.^{o}$ Sem.

Ficha prática 8

Algoritmos de busca

Seja G um grafo orientado com m vértices, $v_1, v_2, ..., v_m$.

Suponha que nos encontramos num vértice v_i do grafo e que queremos encontrar e identificar os vértices que são alcançáveis a partir de v_i .

De seguida, vamos estudar dois algoritmos que permitem atingir este objectivo. São eles o algoritmo de busca em profundidade e o algoritmo de busca em largura.

Algoritmo de busca em largura

Dado um grafo G = G(V, E) e dado um vértice v_i , a busca em largura começa por visitar primeiro os vértices que são alcançáveis usando apenas uma aresta, de seguida os vértices que são alcançáveis usando duas arestas e assim sucessivamente, até visitar todos os vértices alcançáveis a partir de v_i , ou seja, o algoritmo descobre todos os vértices alcançáveis por um caminho de comprimento k a partir de v_i , antes de descobrir qualquer vértice alcançável por um caminho de comprimento k+1.

Pseudocódigo do algoritmo de busca em largura:

Este algoritmo executa a busca em largura num grafo G a partir de um vértice de partida A.

- 1 Colocar todos os vértices com estado "não visitado" (símbolo 1);
- 2 Colocar o vértice de partida A na FILA e alterar o seu estado para estado "em espera" (símbolo 2);
- 3 Enquanto a FILA não estiver vazia, realizar o seguinte:
 - 3.1 remover o vértice N da frente da FILA e alterar o seu estado para "processado" (símbolo 3);
 - 3.2 avaliar os sucessores J de N:
 - 3.2.1 se estado(J) = 1, inserir o vértice J no fim da FILA e fazer estado(J) = 2;
 - 3.2.1 se estado(J) = 2 ou estado(J) = 3, ignorar o vértice J;

Exemplo: Considere o grafo G representado na seguinte figura:

Adjacency lists		
A:B,E,F		
B: E , L		
C:D,E,J		
D: E		
E: F		
F: D		
J:D,K		
K: C, L		
L: C , E		

Vamos realizar o algoritmo de busca em largura a partir do vértice ${\cal A}$:

	Vértice visitado	$FILA(\leftarrow)$
iterada 1		A
iterada 2	A	B^A, E^A, F^A
iterada 3	B^A	E^A, F^A, L^B
iterada 4	E^A	F^A, L^B
iterada 5	F^A	L^B, D^F
iterada 6	L^B	D^F, C^L
iterada 7	D^F	C^L
iterada 8	C^L	J^C
iterada 9	J^C	K^{J}
iterada 10	K^{J}	Ø

Esta busca deu origem à seguinte ordem

$$A - B - E - F - L - D - C - J - K,$$

que pode ser representada pela seguinte árvore:

Algoritmo de busca em profundidade

Dado um grafo G = G(V, E) e dado um vértice v_i , na busca em profundidade visitamos sempre primeiro os vértices adjacentes ao último vértice visitado. Neste caso, o objetivo é explorar o grafo em profundidade.

Pseudocódigo do algoritmo de busca em profundidade:

Este algoritmo executa a busca em profundidade num grafo G a partir de um vértice de partida A.

- 1 Colocar todos os vértices com estado "não visitado" (símbolo 1);
- 2 Colocar o vértice de partida A na PILHA e alterar o seu estado para estado "em espera" (símbolo 2);
- 3 Enquanto PILHA não estiver vazia, realizar o seguinte:
 - 3.1 remover o vértice N do topo da PILHA e alterar o seu estado para "processado" (símbolo 3);
 - 3.2 avaliar os sucessores J de N :
 - 3.2.1 se estado(J) = 1, inserir o vértice J no topo da PILHA e fazer estado(J) = 2;
 - 3.2.1 se estado(J) = 2, eliminar o velho J e inserir o novo J no topo da PILHA;
 - 3.2.1 se estado(J) = 3, ignorar o vértice J.

Exemplo: Realizar uma busca em profundidade ao grafo G do exemplo anterior, a partir do vértice A.

	Vértice visitado	PILHA (←)
iterada 1		A
iterada 2	A	B^A, E^A, F^A
iterada 3	F^A	B^A, E^A, D^F
iterada 4	D^F	B^A, E^D
iterada 5	E^D	B^A
iterada 6	B^A	L^B
iterada 7	L^B	C^L
iterada 8	C^L	J^C
iterada 9	J^C	K^{J}
iterada 10	K^J	Ø

Esta busca deu origem à seguinte ordem

$$A - F - D - E - B - L - C - J - K,$$

que pode ser representada pela seguinte árvore:

Exemplo: Realizar uma busca em profundidade ao grafo G do exemplo anterior, a partir do vértice B.

	Vértice visitado	PILHA (←)
iterada 1		B
iterada 2	B	E^B, L^B
iterada 3	L^B	C^L, E^L
iterada 4	E^L	C^L, F^E
iterada 5	F^E	C^L, D^F
iterada 6	D^F	C^L
iterada 7	C^L	J^C
iterada 8	J^C	K^J
iterada 9	K^{J}	Ø

Esta busca deu origem à seguinte ordem

$$B-L-E-F-D-C-J-K$$

que pode ser representada pela seguinte árvore:

Exercícios propostos

- 1. Construa uma função com o nome blargura que execute o algoritmo de busca em largura, tendo por base a matriz A de adjacências de um grafo orientado G, ou seja, ao executar o comando blargura(A,vert), deverá ser fornecida uma lista com os vértices alcançáveis partindo do vértice vert, segundo a ordem pela qual foram visitados.
 - Aplique a função ao exemplo dado anteriormente, sabendo que a respectiva matriz de adjacências se encontra no ficheiro "grafo f8.xls".
- 2. Construa uma função com o nome bprofundidade que execute o algoritmo de busca em profundidade, tendo por base a matriz A de adjacências de um grafo orientado G, ou seja, ao executar o comando bprofundidade(A,vert), deverá ser fornecida uma lista com os vértices alcançáveis partindo do vértice vert, segundo a ordem pela qual foram visitados.
 - Aplique a função ao exemplo dado anteriormente, sabendo que a respectiva matriz de adjacências se encontra no ficheiro "grafo f8.xls".