APRENDIZAGEM POR REFORÇO

Luís Morgado
ISEL-ADEETC

EXPLORAÇÃO vs. APROVEITAMENTO

Estimativas de valor de uma acção a

$$-Q_t(a) \approx Q^*(a)$$

Acção de aproveitamento (greedy)

$$-a^*_t = \operatorname{argmax}_a[Q_t(a)]$$

Aproveitamento

$$-a_{t}=a_{t}^{*}$$

Exploração

$$-a_t \neq a_t^*$$

• Estratégia greedy

$$a_t = a_t^* = \operatorname{argmax}_a Q_t(a)$$

• Estratégia ε-greedy

$$a_t = \begin{cases} a^*_t \text{ com probabilidade 1 - } \epsilon \\ \text{acção aleatória com probabilidade } \epsilon \end{cases}$$

– Balanceamento de *exploração* vs. *aproveitamento*

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and ε -greedy action-value methods, we compared them numerically on a suite of test problems. This was a set of 2000 randomly generated k-armed bandit problems with k = 10. For each bandit problem, such as the one shown in Figure 2.1, the action values, $q_*(a)$, $a = 1, \ldots, 10$,

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$, unit-variance normal distribution, as suggested by these gray distributions.

Actions taken by different agents

Cumulative Average reward recieved over time

Actions taken by different agents

Cumulative Average reward recieved over time

Valores iniciais optimistas

Upper Confidence Bounds (UCB)

$$A_t \doteq \operatorname*{arg\,max}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

 $N_t(a)$ denotes the number of times that action a has been selected prior to time tIf $N_t(a) = 0$, then a is considered to be a maximizing action

Upper Confidence Bounds (UCB)

$$A_t \doteq \operatorname*{arg\,max}_{a} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

ESTRATÉGIAS DE SELECÇÃO DE ACÇÃO Upper Confidence Bounds (UCB)

Distribuição Soft-max

$$\Pr\{A_t = a\} \doteq \frac{e^{H_t(a)}}{\sum_{b=1}^k e^{H_t(b)}}$$

 $H_t(a) \in \mathbb{R}$ numerical preference for each action a

$$H_t(a) = Q_t(a)/\tau$$

 $\Pr\{A_t = a\} = \frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^k e^{Q_t(b)/\tau}}$

 τ is a positive parameter called the *temperature*

In the limit as $\tau \to 0$ softmax action selection becomes the same as greedy action selection

Distribuição Soft-max

$$\Pr\{A_t = a\} = \frac{e^{Q_t(a)/\tau}}{\sum_{b=1}^k e^{Q_t(b)/\tau}}$$

Distribuição Soft-max

REFERÊNCIAS

[Sutton & Barto, 2020]

R. Sutton, A. Barto, "Reinforcement Learning: An Introduction", 2nd Edition, MIT Press, 2020

[Poole & Mackworth, 2010]

D. Poole, A. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010

[Barnard, 2003]

C. Barnard, "Animal Behaviour: Mechanism, Development, Ecology and Evolution", Prentice Hall, 2003

[Koppula, 2020]

R. Koppula, "Exploration vs. Exploitation In Reinforcement Learning", https://www.manifold.ai/exploration-vs-exploitation-in-reinforcement-learning, 2020