ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА» ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНОЙ ФИЗИКО-ХИМИЧЕСКОЙ ИНЖЕНЕРИИ

Биологический факультет МГУ имени М.В. Ломоносова Кафедра биоинженерии Группа интегративной биологии

БАКАЛАВРСКАЯ РАБОТА

«Анализ взаимодействий пионерных транскрипционных факторов с белками ядра клеток человека с помощью методов искусственного интеллекта»

Выполнила студентка 4 курса 401 группы Хасанова Ума Наурузовна Научный руководитель (д.ф.-м.н., профессор, чл.-корр. РАН) Шайтан Алексей Константинович Научный консультант (м.н.с.) Грибкова Анна Кирилловна

Введение. Организация ДНК в клетке

Шайтан А.К., диссертация д.ф-м.н. 2021 (с изменениями)

Введение. Пионерные транскрипционные факторы

Пионерные транскрипционные факторы (ПТФ) - особые белки, которые:

- связываются с "закрытой" ДНК, открывая доступ другим белкам
- SOX2, KLF4, OCT4 способны перепрограммировать клетки в стволовые ("коктейль Яманаки", Нобелевская премия по медицине, 2012)
- перспективны для лечения болезней (рак, регенеративная медицина)

Белок В

Цель и задачи работы

Цель работы: предсказание и анализ белок-белковых взаимодействий между пионерными транскрипционными факторами (ПТФ) и ядерными белками человека с использованием методов генеративного ИИ.

Задачи:

- 1. Формирование репрезентативного набора ядерных белков и предсказание комплексов ПТФ с ядерными белками;
- 2. Структурный анализ предсказанных белковых комплексов;
- 3. Функциональная характеристика и анализ представленности в экспериментальных базах данных белков-партнеров.

Методы. Общая схема исследования

Методы. AlphaFold2

Нобелевская премия по химии, 2024

Jumper et al., 2021

 $\mathsf{Bxod} \to \mathsf{Эвоформер} \to \mathsf{Структурный}$ модуль $\to \mathsf{Bыxod}$

Аминокислотная последовательность белка Анализ коэволюции аминокислот и парных представлений

3D-координаты атомов с учетом геометрических ограничений (длины связей, углы)

3D-структура с оценкой достоверности предсказания (pIDDT, pTM, ipTM)

Методы. Метрики качества

ірТМ - оценка достоверности предсказания интерфейса взаимодействия

$$pTM_{ij} = \sum_{b=1}^{64} p_{ij}^{b} \left(\frac{1}{1 + \left(\frac{\Delta_{b}}{d_{0}}\right)^{2}} \right) \quad ipTM\left(A \to B\right) = \max_{i \in A} \left[\max_{i \in B} \left(pTM_{ij} \right) \right] \\ ipTM = \max\left[ipTM\left(A \to B\right), ipTM\left(B \to A\right) \right]$$

ipSAE - усовершенствованная версия ipTM

$$ipSAE\left(A \to B\right) = \max_{i \in A} \left[\max_{\substack{j \in B \\ PAE_{ij} < cutoff}} \left(\frac{1}{1 + \left(\frac{PAE_{ij}}{d_0}\right)^2} \right) \right] PAE_{ij} = \sum_{b=1}^{64} p_{ij}^b \Delta_b$$
$$ipSAE\left(A, B\right) = \max\left[ipSAE\left(A \to B\right), ipSAE\left(B \to A\right)\right]$$

pDockQ - аппроксимированная версия DockQ

$$ext{pDockQ} = rac{L}{1 + e^{-k(x - x_0)}} + ext{b}$$

Среднее качество:

 $pDockQ(A, B) \ge 0.23$ $ipTM(A, B) \ge 0.6$ $ipSAE(A, B) \ge 0.3$

Высокое качество:

 $pDockQ(A, B) \ge 0.5$ $ipTM(A, B) \ge 0.8$ $ipSAE(A, B) \ge 0.5$

Результаты. Анализ конформационных переходов

Результаты. Функциональная принадлежность белков-партнеров. Сравнение с базами данных

Выводы

- 1. Методами генеративного ИИ было предсказано 10 632 комплекса белков ПТФ (SOX2, OCT4, KLF4) человека с другими белками ядра. Из числа предсказанных структур 14% имеют высокое качество, большая часть полученных взаимодействий ранее не была описана в литературе.
- 2. Были выявлены ключевые участки ПТФ в белок-белковых комплексах для которых характерен переход в упорядоченное состояние при связывании. Подтверждены специфические взаимодействия KLF4 с ядерными рецепторами гормонов. Предложен механизм действия онкологической мутации K409Q/N в KLF4: показано, что она слабо дестабилизирует белокбелковые комплексы.
- **3.** Выявлено, что среди белков-партнеров ПТФ преимущественно представлены транскрипционные факторы, гистон-модифицирующие ферменты, белки репарации ДНК и ядерные рецепторы.

Благодарности

Выражаю благодарность

- **Научным руководителям** Шайтану Алексею Константиновичу, Грибковой Анне Кирилловне, Армееву Григорию Алексеевичу
- Факультету фундаментальной физико-химической инженерии МГУ имени М.В. Ломоносова
- моей семье

за поддержку на всех этапах работы.