Differentiable Neural Computers

Hybrid Computing using a neural network with dynamic external memory (Graves et al. 2016)

Konstantinos Kogkalidis

May 28, 2018

Logic and Computation

Overview: Probabilistic Programming

Cross-domain

- Data Flow Programming
- Bayesian Reasoning
- Machine Learning
- Functional Programming

Overview: Probabilistic Programming

Cross-domain

- Data Flow Programming
- Bayesian Reasoning
- Machine Learning
- Functional Programming

Intuition: "Rather than explicitly write a program, write some constraints on the behavior of the desired program and use computational tools to search the program space for models satisfying these constraints."

Overview: Probabilistic Programming

Cross-domain

- Data Flow Programming
- Bayesian Reasoning
- Machine Learning
- Functional Programming

Intuition: "Rather than explicitly write a program, write some constraints on the behavior of the desired program and use computational tools to search the program space for models satisfying these constraints."

Program	Model
Discrete	Continuous
Deterministic	Stochastic
Static	Adaptive

Differentiable Neural Computer

Differentiable Neural Computer

A recurrent neural network coupled with an external memory.

Extension of NTMs

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete
 - + Memory attention mechanisms

Differentiable Neural Computer

- Extension of NTMs
 - End-to-end differentiable
 - Auto-associative memory
 - Turing complete
 - + Memory attention mechanisms
- Mimic mammalian biological memory
- Employ classical concepts of computation

Introduction: Classic Computation

Von Neumann architecture

Introduction: RNNs

Simple Neural Net

 $NN: \boldsymbol{x}_{t_i} \mapsto \boldsymbol{y}_{t_i}$ No memory

Introduction: RNNs

Simple Neural Net

 $NN: \boldsymbol{x}_{t_i} \mapsto \boldsymbol{y}_{t_i}$ No memory

Simple Recurrent Net

 $\overline{RNN}: \boldsymbol{x}_{t_0} \otimes \boldsymbol{x}_{t_1} \otimes \cdots \otimes \boldsymbol{x}_{t_i} \mapsto \boldsymbol{y}_{t_i}$ Finite memory

Introduction: RNNs

Simple Neural Net

Simple Recurrent Net

 $NN: \boldsymbol{x}_{t_i} \mapsto \boldsymbol{y}_{t_i}$ No memory $RNN: \boldsymbol{x}_{t_0} \otimes \boldsymbol{x}_{t_1} \otimes \cdots \otimes \boldsymbol{x}_{t_i} \mapsto \boldsymbol{y}_{t_i}$ Finite memory

"If training vanilla neural nets is optimization over functions, training recurrent nets is optimization over programs."

Train a RNN to act as the controller of a memory matrix M of N addresses through R read heads and one write head.

Train a RNN to act as the controller of a memory matrix M of N addresses through R read heads and one write head.

1. Content Lookup

- Attention over memory defined by weightings $W \in \mathbb{R}^N$
- Compare controller output with memory objects (auto-associative memory)
- Allow partial matches (pattern completion)

Train a RNN to act as the controller of a memory matrix M of N addresses through R read heads and one write head.

1. Content Lookup

- Attention over memory defined by weightings $W \in \mathbb{R}^N$
- Compare controller output with memory objects (auto-associative memory)
- Allow partial matches (pattern completion)

2. Sequential Retrieval

- Fill $L \in [0,1]^{2N}$ indexing temporal transitions
- Shift operations defined by LW, L^TW

Train a RNN to act as the controller of a memory matrix M of N addresses through R read heads and one write head.

1. Content Lookup

- Attention over memory defined by weightings $W \in \mathbb{R}^N$
- Compare controller output with memory objects (auto-associative memory)
- Allow partial matches (pattern completion)

2. Sequential Retrieval

- Fill $L \in [0,1]^{2N}$ indexing temporal transitions
- Shift operations defined by LW, L^TW

3. Dynamic Allocation

- Mark memory locations with $\{0,1\}$ to signal usage
- Manipulate signals during R/W operations to enable reallocation
- Generalization to unbounded memory

Controller: Overview

A deep long short-term memory network receiving input:

$$\boldsymbol{\mathcal{X}}_t = [\boldsymbol{x}_t; \boldsymbol{r}_{t-1}^1; \dots; \boldsymbol{r}_{t-1}^R]$$

and producing output:

$$(oldsymbol{v}_t, oldsymbol{\xi}_t) = \mathcal{N}([oldsymbol{\mathcal{X}}_1; \dots; oldsymbol{\mathcal{X}}_T]; artheta)$$

where ${\cal N}$ a set of state equations and ϑ their trainable parameters.

Controller: State Equations

A more detailed look into \mathcal{N} :

$$\begin{split} & \boldsymbol{i}_t^l = \sigma(W_i^l[\boldsymbol{\chi}_t; \boldsymbol{h}_{t-1}^l; \boldsymbol{h}_t^{l-1}] + \boldsymbol{b}_i^l) & \text{(input gate)} \\ & \boldsymbol{f}_t^l = \sigma(W_f^l[\boldsymbol{\chi}_t; \boldsymbol{h}_{t-1}^l; \boldsymbol{h}_t^{l-1}] + \boldsymbol{b}_f^l) & \text{(forget gate)} \\ & \boldsymbol{s}_t^l = \boldsymbol{f}_t^l \boldsymbol{s}_{t-1}^l + \boldsymbol{i}_t^l \tanh(W_s^l[\boldsymbol{\chi}_t; \boldsymbol{h}_{t_1}^l; \boldsymbol{h}_t^{l-1}] + \boldsymbol{b}_s^l) & \text{(state)} \\ & \boldsymbol{o}_t^l = \sigma(W_o^l[\boldsymbol{\chi}_t; \boldsymbol{h}_{t-1}^l; \boldsymbol{h}_t^{l-1}] + \boldsymbol{b}_o^l) & \text{(output gate)} \\ & \boldsymbol{h}_t^l = \boldsymbol{o}_t^l \tanh(\boldsymbol{s}_t^l) & \text{(hidden)} \\ & \boldsymbol{v}_t = W_y[\boldsymbol{h}_t^1; \dots; \boldsymbol{h}_t^l] & \text{(output vector)} \\ & \boldsymbol{\xi}_t = W_{\mathcal{E}}[\boldsymbol{h}_t^l; \dots; \boldsymbol{h}_t^l] & \text{(interface vector)} \end{split}$$

Controller: Signal-Flow (1/2)

Single LSTM layer

Controller: Signal-Flow (2/2)

LSTM Network (multiple layers)

Controller: Outputs

$$(\boldsymbol{v}_t, \boldsymbol{\xi}_t) = \mathcal{N}([\boldsymbol{\chi}_1; \dots; \boldsymbol{\chi}_T]; \vartheta)$$

Controller: Outputs

$$(\boldsymbol{v}_t, \boldsymbol{\xi}_t) = \mathcal{N}([\boldsymbol{\chi}_1; \dots; \boldsymbol{\chi}_T]; \vartheta)$$

Intermediate output
$$m{v}_t = W_y[m{h}_t^1;\ldots;m{h}_t^L]$$

$$m{y}_t = m{v}_t + W_R[m{r}_t^1;\ldots;m{r}_t^R] \qquad \qquad \text{(Memory-conditioning)}$$

Controller: Outputs

$$(oldsymbol{v}_t, oldsymbol{\xi}_t) = \mathcal{N}([oldsymbol{\mathcal{X}}_1; \dots; oldsymbol{\mathcal{X}}_T]; artheta)$$

Intermediate output
$$m{v}_t = W_y[m{h}_t^1;\ldots;m{h}_t^L]$$

$$m{y}_t = m{v}_t + W_R[m{r}_t^1;\ldots;m{r}_t^R] \qquad \qquad \text{(Memory-conditioning)}$$

Interface vector $\boldsymbol{\xi}_t = W_{\boldsymbol{\xi}}[\boldsymbol{h}_t^1; \dots; \boldsymbol{h}_t^L]$

- Read keys
- Read strengths
- Write key
- Write strength
- Erase vector

- Write vector
- Free gates
- Allocation gate
- Write gate
- Read modes

Memory Adressing: Content-Lookup

R read keys $\mathbf{k}^{r,i} \in \mathbb{R}^W, i = 1 \dots R$ R read strengths $\beta^{r,i} \in [1,\infty), i = 1 \dots R$ Write key $\mathbf{k}^w \in \mathbb{R}^W$ Write strength $\beta^w \in [1,\infty)$

Memory Adressing: Content-Lookup

R read keys $\mathbf{k}^{r,i} \in \mathbb{R}^W, i = 1 \dots R$ R read strengths $\beta^{r,i} \in [1,\infty), i = 1 \dots R$ Write key $\mathbf{k}^w \in \mathbb{R}^W$ Write strength $\beta^w \in [1,\infty)$

Weightings w given by C

$$C(M, \mathbf{k}, \beta)[i] = \frac{\exp\{\mathcal{D}(\mathbf{k}, M[i,:])\beta\}}{\sum_{j} \exp\{\mathcal{D}(\mathbf{k}, M[j,:])\beta\}}$$

Memory Adressing: Content-Lookup

R read keys $\mathbf{k}^{r,i} \in \mathbb{R}^W, i = 1...R$

R read strengths $\beta^{r,i} \in [1,\infty), i = 1 \dots R$

Write key $k^w \in \mathbb{R}^W$

Write strength $\beta^w \in [1, \infty)$

Weightings w given by C

$$C(M, \mathbf{k}, \beta)[i] = \frac{\exp\{\mathcal{D}(\mathbf{k}, M[i,:])\beta\}}{\sum_{j} \exp\{\mathcal{D}(\mathbf{k}, M[j,:])\beta\}}$$

Read operations

$$\mathbf{r}_t^i = M_t^T \mathbf{w}_t^{r,i}$$

Write operations

$$M_t = M_{t-1} \circ (\mathbf{1} - oldsymbol{w}_t^W oldsymbol{e}_t^T) + oldsymbol{w}_t^W oldsymbol{v}_t^T$$

Further Reading

- Neural Turing Machines (Graves, Wayne, Danihelka)
- Entity Networks (Henaff, Weston, Szlam, Bordes, LeCun)
- End-to-End Memory Networks (Sukhbaatar, Szlam, Weston, Fergus)
- Jointly Learning to Align and Translate (Bahdanau, Cho, Bengio)
- Principles of Probabilistic Programming Languages (Goodman)
- Backprop as a Functor (Fong, Spivak, Tuyras)
- Formal Methods for Probabilistic Programming (Selsam, Liang, Dill)