COMP2511 Object Oriented Design & Programming

Course Introduction

Our Team

Lecturer-in-charge:

Dr Ashesh Mahidadia ashesh@cse.unsw.edu.au

Course Admin:

Matthew Perry cs2511@cse.unsw.edu.au

Class Web:

http://webcms3.cse.unsw.edu.au/COMP2511/20T3/

Course Context

COMP 2511 thoughts

- What have you heard about COMP2511?
- Why take COMP2511?

Pre-requisites

- Completed COMP 1511
 - competent C programmers who can understand and use abstract data types
- Completed COMP 1531
 - understand and know how to use git and Github reasonably
 - be familiar with fundamental object-oriented design concepts

COMP 2511 Major Themes

Object Oriented Design Process (SE)

- Understand the principles of object-oriented design
- Be able to follow a systematic object-oriented design process
- Be able to interpret and use tools for object-oriented design
- Learn how to apply design principles and design patterns effectively to design flexible, maintainable and reusable systems

COMP 2511 Major Themes

Object Oriented Programming in Java

Be able to write medium-scale object-oriented programs in Java

Software Engineering process

- Problem solving apply SE principles to solve a real-world problem
 - Be able to work within a small team in the context of a software development project
 - Be able to plan and execute a software project according a systematic software process

User Interfaces

- Effective coding and testing techniques

Credit teaching material

- No text book, the lecture slides cover the required topics.
- However, you are strongly encouraged to read additional material and the reference books.

- In the lecture notes, some content and ideas are drawn from:
 - Head First Design Patterns, by Elisabeth Freeman and Kathy Sierra, The State University of New Jersey
 - Refactoring: Improving the design of existing code, by Martin Fowler
- Links to useful tutorials will be uploaded as necessary

How do we obtain our educational objectives?

Lectures...

- 4 hour lectures (9 weeks)

* Tutorial (recording)... 1 hour each week (no tutorial in week-6)

- watch a 1-hour tutorial recording prior to attending your scheduled tutorial
- Your tutor or lab assistant will be available during your tutorial time-slot to answer any questions you may have regarding the tutorial questions after watching the tutorial recording.

Labs...

- 2 hours per week, weeks 1-5 and 7 10
- Labs comprise small design and practical programming exercises, individual or in pairs

A Group Project...

- Project iteration demos scheduled in some lab sessions

Tutorials

Tutorial recording - 1 hour each week

You will be expected to watch a 1-hour tutorial recording prior to attending your scheduled tutorial Q&A session each week. This video will discuss questions from that week's tutorial content.

Tutorials Q&A - 1 hour each week

Your tutor or lab assistant will be available during your tutorial time-slot to answer any questions you may have regarding the tutorial questions after watching the tutorial recording.

Laboratory classes

- There are six labs (weeks 1, 2, 3, 5, 7 and 9) with specified lab exercises.
- ❖ Your tutor or lab assistant will be available during your lab time-slot to answer any questions you may have regarding the lab questions.
- The other labs will be used for lab and project assessments.
- Please note that you must attend all nine lab and tutorial sessions during the term.
- ❖ You should **demonstrate** your work to your tutor during the lab or the following week's lab for feedback on your problem solving, approach, the style of your solution and importantly **marking**.

Summary: you must:

- demonstrate your work to your tutor in the week X lab class (for feedback and marking)
- OR demonstrate your work at the start of the lab in week X+1 (for feedback and marking)

Assessments

Item	Due	Marks
Assignment	Week 04 (Sunday)	15%
Project	Milestones: Weeks 5,7,9	35%
Labs	All Weeks	10%
Final Exam	Exam period	40%

Group Project

- Contributes to 35% of the final course mark
- Carried out in teams of two
- Project specification will be released in Week 04
- Implemented using an Agile Software Development Model
 - Working software to be delivered in iterations
 - Marks will be awarded for each iteration demo, which will count towards your overall group project mark
 - Responsibilities to be assigned to each group member during each iteration and all team members MUST contribute equally (Tutors will check GitLab)
 - Final project demo held in week 10

Course Mark

Final Mark

Your final mark for this course will be computed using the above assessments as follows:

- Course_Work_Mark = lab_mark + assignment_mark + project_mark (out of 60)
- Exam_Mark = Final Exam Mark (out of 40)
- Exam_OK = Exam_Mark >= 20
- Final_Mark = Exam_Mark + Course_Work_Mark
- Final_Grade =UF, if !Exam_OK

Supplementary Exam

- Students are eligible for a Supplementary Exam if :
 - they cannot attend the final exam due to illness or misadventure
 - successfully apply for a special consideration (must apply for a special consideration, and get approved)
 - For more information, read *Essential Advice for CSE Students*, the web link is available in the course outline.

https://www.engineering.unsw.edu.au/computer-science-engineering/about-us/organisational-structure/student-services/policies/essential-advice-for-cse-students

System

- Most work done on Linux or Mac
 - Lab work and group project can be done on the CSE machines (using vlab) or your own device
 - Technology stack
 - Java 11 SE,
 - Visual Studio Code
- Collaboration and Versioning Tool GitLab

Plagiarism

Just don't do it!