Owotrent groups:

K∈G, G/K is the set of cosets. two is a go if K ≥ G:

(*) $CC' = C \cdot C' = \{ab \mid a \in C, b \in C'\}$

Since K is normal, (*) is a binery op:

Say $C = \alpha K$, $C' = \alpha' K$.

Then $CC' = (\chi K)(\chi' K) = \chi(K\chi') K = \chi(\chi' K) K$ = $\chi \chi' K$.

the coset 1k = K is identity in G/K. $C = \chi K$, $C^{-1} = (\chi K)^{-1} = K^{-1}\chi^{-1} = \chi^{-1} K$.

We denote XK by \$\overline{x}\$.

So (G/K, , T) is called the grotient grot G by K.

 $\overline{\chi}\overline{y} = \overline{\chi y}$, $\overline{\chi} = \overline{y} \Leftrightarrow \chi y^{-1} \in K$.

Prop K 1 G iff
$$K = Ker \varphi$$
 for some homomorphism φ on G . $= \{g \in G \mid \varphi(g) = 1\}$.

Note: if
$$\varphi: G \xrightarrow{\text{hom}} G'$$
 then $\varphi(1)=1'$, $\varphi(g^{-1})=\varphi(g)^{-1}$.

if
$$K = Ker \varphi$$
, then $g'K_g \subset K$ since $P(g'kg) = P(g'l' q (g) = 1)$
(hence $k = 6$).

$$\pi: G \mapsto G/K$$
 now Kernel K .

 $\chi \mapsto \chi K$

Thus let $\varphi: G \rightarrow G'$ be a homemorphism, Then

(surjective)
$$\pi$$
) $\sqrt{\varphi}$ (injective) $G/\ker \varphi$

countes, where $\overline{\varphi}(x \ker \varphi) = \varphi(x)$.

The Map $\overline{\Psi}$ is "induced by Ψ on $G/\ker \psi$ ".

i.e. $\Psi = \pi \cdot \Psi$.

Page 2

Thus If $\varphi: G \longrightarrow G'$ is a homomorphism

then φ is an isomorphism $G/\ker \varphi \cong_{\varphi} \operatorname{Im} \varphi := \varphi(G).$ (this is the I^{st} isomorphism than).

noneover HOG iff H/K OG/K.

Pf For $\overline{H} \leq \overline{G}$, \overline{H} is the image of $HK \leq G$ under $\overline{\Pi}$ let $H_1, H_2 \leq G$ containing K, this is a subgr soon If $\overline{H_1} = \overline{H_2}$, then $\forall h_1 \in H_1, h_1 K = h_2 K \text{ for Some } h_2 \in H_2.$ So $h_2^{-1}h_1 \in K$, so $h_2^{-1}h_1 = K$ for some $k \in K$.

So $h_1 = h_2 K$, so $h_1 \in H_2$. So $H_1 \subset H_2$.

Similarly, $H_2 CH_1$. So $H_1 = H_2$.

Other port is an exercise.

Thin let H, K be normal subject of G, G with $K \subseteq H$. Then $G/H \cong G/K/H/K$

Proof Consider the composition $\varphi \pi : G \longrightarrow \overline{G/H}$ of $\pi : G \longrightarrow \overline{G}$ and $\varphi : \overline{G} \longrightarrow \overline{G/H} , \qquad \varphi : \overline{g} \longmapsto \overline{g} \overline{H}.$

Note UTI is surjective.

 $\operatorname{Ker}(9\pi) = \left\{ g \in G \mid g \in H \right\} = \left\{ g \in G \mid g \in H \right\} = H.$ $= \left\{ g \in G \mid g \in H \right\} = \left\{ g \in G \mid g \in H \right\} = H.$

So use 1st isomorphism thm. D

The let $H \leq G$ and $K \subseteq G$. Then $HK \leq G$, $H \cap K \subseteq H$, and $\{kk : keH, kek\}\}$ $HK/k \cong H/(H \cap K)$.

Ukk

NeH, Dkn

NeH, Dkn

NeH, Dkn

Proof Since Kog, "HK=KH, and so (HK)"= K"H"= KH=HK.

Also, (HK)2= H2K2 = HK so HK is closed under withiplication & inverses. So HK & G.

For the look part, consider the restriction

Nom. Ti'= Ti|H where To: G -> G/K is natural proj.

Then im Ti'= HK/K and KerTi'= KerTi nH=KnH.

apply 1st isomorphism thm.

Det a group G is simple means only normal subgroups of G are G & 1.

eg if G is simple & P:G - G' than
P is injective or trivial.

Counting lame: If $H, K \leq 6$, H, K finite, then $\frac{|HK|}{|K|} = \frac{|H|}{|H_0K|}.$

Proof HK = UhK. Now $h_1 K = h_2 K$ iff $h_2^- h_1 \in K$ iff $h_2^- h_1 \in H \cap K$. $\frac{|HK|}{|K|}$ iff $h_1 (H \cap K) = h_2 (H \cap K)$.

So the # of distinct cosets hK as $h \in H$ is