#### Geometric Data Structures

### Nearest Neighbor Queries



#### KD Tree



#### **KD** Tree

- Every node (except leaves) represents a hyperplane that divides the space into two parts.
- Points to the left (right) of this hyperplane represent the left (right) sub-tree of that node.





#### **KD** Tree

As we move down the tree, we divide the space along alternating (but not always) axis-aligned hyperplanes:

- Split by x-coordinate: split by a vertical line that has (ideally) half the points left or on, and half right.
- Split by y-coordinate: split by a horizontal line that has (ideally) half the points below or on and half above.

Split by x-coordinate: split by a vertical line that has approximately half the

points left or on, and half right. Points on the line go to the left subtree  $p_{10}$  $\ell_2$  $p_8$ 

Split by y-coordinate: split by a horizontal line that has approximately half the

points left or on, and half right.



Split by x-coordinate: split by a vertical line that has approximately half the

points left or on, and half right. Points on the line go to the left subtree  $p_{10}$  $\ell_2$  $p_8$ 

Split by y-coordinate: split by a horizontal line that has approximately half the



#### KD Tree Node Structure

- A KD-tree node has 5 fields
  - Splitting axis
  - Splitting value
  - Data
  - Left pointer
  - Right pointer



# KD Tree Splitting Strategies

 Divide by finding median Assumes all the points are available ahead of time.

- Divide perpendicular to the axis with widest spread
  - Split axes might not alternate
- And many more....





































### Region of node v



Region(v): the subtree rooted at v stores the points in black dots

### Recall Nearest Neighbor Queries



- KNN ☐ Find k nearest neighbor of the given query point.
- First we will discuss 1-NN and then generalize to K nearest neighbors.
- Key Idea: start off with an estimate on nearest neighbor and then keep updating whenever we find a better one.



- Two things to consider for such a approach:
- Need a smart way to prune through the data space without actually computing distance to the actual data points
- Also if my initial estimate is bad, I would end up doing a lot of replacements.



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Also if my initial estimate is bad, I would end up doing a lot of replacements.
  - □ Consider the left child of L3
  - What is the minimum possible distance between the query point and any point in the region of lc(L3)?



- Two things to consider for such a approach:
- Need a smart way to prune through the data space

Also if my initial astimate is had

- Consider the left child of L3
- What is the minimum possible distance between the query point and any point in the region of lc(L3)?
- If it is less than our current distance best estimate (P2), then what???



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- if initial estimate is bad 

  replacements.
  - E.g., P9 would be a very bad initial estimate



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- if initial estimate is bad 

  replacements.
  - E.g., P9 would be a very bad initial estimate
  - Structure of KD-Tree helps us again.



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Need good initial estimates
  - E.g., P9 would be a very bad
  - Structure of KD-Tree helps
  - "Search" of the query point in the query tree and take the leaf where the search terminates.
  - Works ok in practice



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Need good initial estimates
  - E.g., P9 would be a very bad
  - Structure of KD-Tree helps
  - "Search" of the query point in the query tree and take the leaf where the search terminates.
  - Works ok in practice



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Need good initial estimates
  - E.g., P9 would be a very bad
  - Structure of KD-Tree helps
  - "Search" of the query point in the query tree and take the leaf where the search terminates.
  - Works ok in practice



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Need good initial estimates
  - E.g., P9 would be a very bad
  - Structure of KD-Tree helps
  - "Search" of the query point in the query tree and take the leaf where the search terminates.
  - Works ok in practice



- Two things to consider for such a approach:
- Need a smart way to prune through the data space
- Need good initial estimates
  - E.g., P9 would be a very bad
  - Structure of KD-Tree helps
  - "Search" of the query point in the query tree and take the leaf where the search terminates.
  - Works ok in practice



#### KD-tree: 1-NN Query Running



#### KD-tree: 1-NN Query Running



### KD-tree: 1-NN Query Running







































# KD Trees – K-Nearest Neighbor Search

- Similar approach for K-nearest neighbors
- Three key ideas:
- Bounded Priority Queue:
- "d" thing is defined a distance from q to current farthest point.
- First we fill up k points in our bounded priority then begin searching the remaining tree while pruning.

query Point for 2-NN







