Carthage University

INSAT

Department of Mathematics & Computer Sciences

Practical works: Markov Chain

Practice # 1

Consider the function

$$\varphi(x) = \frac{1}{2} \left(x + \frac{a}{x} \right).$$

- i. Show that φ_a is a contraction on $]0, +\infty[$, for all a > 0, and determine its contraction coefficient.
- ii. Show that the recursive sequence defined below

$$\begin{cases} x_0 > 0 \\ x_{n+1} = \varphi_a(x_n) \end{cases}$$

is convergent to \sqrt{a} for all given initial value x_0 .

- iii. Write a code that generate the n^{th} term of the sequence above for a given initial value x_0 and a given positive number a > 0.
- iv. Plot the dynamics of your recursive sequence, and compare it with the value of \sqrt{a} .

Practice #2

Given a Markov Chain with three states "red", "green", "blue", defined by its transition matrix \mathbb{T} and its initial states' distribution \mathbb{P}_{X_0} .

- i. Write a program that generates the n first distributions states.
- ii. Visualize your the dynamics of the underlying MC, where at each step you plot a simulation of the corresponding states' distribution. You should get something similar to the next figure

