

Mathematik für Infotronik (3)

Gerald Kupris
11.10.2010

Lösen von Gleichungen: Quadratische Gleichung

Quadratische Gleichung

Eine Gleichung, die man in der Form

$$ax^2 + bx + c = 0$$
, $a, b, c \in \mathbb{R}$, $a \neq 0$

darstellen kann, bezeichnet man als quadratische Gleichung für die Unbekannte x. Falls die Diskriminante $D = b^2 - 4 a c$ nicht negativ ist, hat die Gleichung die Lösungen

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 a c}}{2 a}.$$

Beispiele

Formen der Quadratischen Gleichung

allgemeine Form

$ax^2 + bx + c = 0 \qquad (a, b, c \in \mathbb{R}, \ a \neq 0)$

"Mitternachtsformel"

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Normalform

$$x^2 + px + q = 0 \qquad (p, q \in \mathbb{R})$$

$$p = \frac{b}{a} \qquad q = \frac{c}{a}$$

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$= -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Lösen von Gleichungen: Wurzelgleichungen

Wurzelgleichung

Gleichungen, bei denen die Unbekannte unter einer Wurzel vorkommt, versucht man durch Potenzieren zu lösen. Dabei ist Folgendes zu beachten:

- Vor dem Potenzieren isoliert man eine Wurzel.
- (2) Wenn in der Gleichung mehrere Wurzelausdrücke vorkommen, muss man die Vorgehensweise wiederholen.
- (3) Bei den durch Potenzieren berechneten Lösungen muss man unbedingt kontrollieren, ob sie tatsächlich die ursprüngliche Wurzelgleichung erfüllen.

Beispiele

Ungleichungen

Eine Ungleichung ist eine vergleichende Aussage über zwei Terme, die besagt, dass einer der Terme kleiner beziehungsweise kleiner-gleich ist als der andere.

Multiplikation bei Ungleichungen

Wird eine Ungleichung mit einer negativen Zahl multipliziert oder durch eine negative Zahl dividiert, so dreht sich das Relationszeichen um:

- Aus < wird > und umgekehrt.
- Aus ≤ wird ≥ und umgekehrt.

Multipliziert oder dividiert man eine Ungleichung mit einem Faktor, dessen Vorzeichen man nicht kennt, benötigt man eine Fallunterscheidung.

11.10.2010 5

Ungleichungen

Kehrwert bei Ungleichungen

Wird der Kehrwert einer Ungleichung gebildet, bei der beide Seiten das gleiche Vorzeichen haben, so dreht sich das Relationszeichen um:

- Aus < wird > und umgekehrt.
- Aus ≤ wird ≥ und umgekehrt.

Haben beide Seiten der Ungleichung unterschiedliches Vorzeichen, so ändert die Kehrwertbildung das Relationszeichen nicht.

Beispiel

Lösung einer Ungleichung

Beim Lösen von Ungleichungen über den reellen Zahlen versucht man, eine unübersichtliche Ungleichung so weit zu vereinfachen, dass sich einfache Aussagen etwa der Form x>5 bilden, die unmittelbar zu verstehen sind oder die sich an der Zahlengeraden veranschaulichen lassen.

Lösen einer Ungleichung

Zur Bestimmung der Lösung einer Ungleichung kann man folgendermaßen vorgehen:

- Bestimme diejenigen Werte, für welche die Ungleichung nicht definiert ist.
- (2) Bestimme alle Lösungen der entsprechenden Gleichung.
- (3) Identifiziere durch Testen geeigneter Werte diejenigen Bereiche, die zur Lösungsmenge gehören.

Beispiel

Binominalkoeffizient

Der Binomialkoeffizient der beiden natürlichen Zahl $m \ge n$ ist definiert durch

$$\binom{m}{n} = \frac{m!}{n! (m-n)!}.$$

Für
$$n \ge k$$
: $\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$.

Wie lautet der Binominalkoeffizient, wenn n = k ist ?

Wie lautet der Binominalkoeffizient, wenn n < k ist ?

Wie lautet der Binominalkoeffizient, wenn k = 0 ist ?

Binomialkoeffizienten spielen in der abzählenden Kombinatorik eine zentrale Rolle, denn $\binom{n}{k}$ ist die Anzahl der Möglichkeiten, aus einer Menge mit n Elementen k Elemente auszuwählen, wobei die Reihenfolge der ausgewählten Elemente nicht berücksichtigt wird.

Binomischer Satz

Für jede natürliche Hochzahl n und beliebige Zahlen a und b gilt die Formel

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{n-1}ab^{n-1} + b^n = \sum_{k=0}^n \binom{n}{k}a^kb^{n-k}.$$

Für beliebige Zahlen a und b gelten die binomischen Formeln:

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Pascalsches Dreieck

Die Binomialkoeffizienten im Pascalschen Dreieck ergeben sich jeweils aus der Summe der beiden darüber stehenden Koeffizienten:

$$\binom{m+1}{n+1} = \binom{m}{n} + \binom{m}{n+1}.$$

$$\begin{pmatrix} \binom{0}{0} \\ \binom{1}{0} \\ \binom{1}{1} \\ \binom{2}{0} \\ \binom{2}{1} \\ \binom{2}{2} \\ \binom{3}{0} \\ \binom{3}{1} \\ \binom{2}{2} \\ \binom{3}{2} \\ \binom{3}{3} \\ \binom{3}{3} \\ \binom{3}{1} \\ \binom{3}{2} \\ \binom{3}{3} \\ \binom{3}{3} \\ \binom{4}{3} \\ \binom{4}{4} \\ \binom{5}{0} \\ \binom{5}{1} \\ \binom{5}{2} \\ \binom{5}{3} \\ \binom{5}{3} \\ \binom{5}{4} \\ \binom{5}{5} \\ \binom{6}{6} \\ \binom{7}{0} \\ \binom{7}{1} \\ \binom{7}{2} \\ \binom{7}{3} \\ \binom{7}{4} \\ \binom{7}{5} \\ \binom{7}{6} \\ \binom{7}{7}$$

Erweitertes Pascalsches Dreieck

Quellen

Peter Hartmann: Mathematik für Informatiker, Vieweg Verlag, Wiesbaden 2006

Manfred Brill: Mathematik für Informatiker, Hanser Verlag, München 2005

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München 2010