Student Name:	
Student Number:	
Signature:	

University of New South Wales School of Computer Science and Engineering Foundations of Computer Science (COMP9020) FINAL EXAM — Session 1, 2017

This paper must be submitted and cannot be retained by the student

Assignment Project Exam Help

- Ensure you enter your correct name and student number above!
- This exam paper contains 10 multiple-choice questions (pages 1-3) plus 5 open questions (pages 448) LOTCS. COM

 Each multiple-choice question is worth 4 marks $(10 \times 4 = 40)$.

 Each open question is worth 12 marks $(5 \times 12 = 60)$.

 Total exam marks $\frac{1}{1094}$ CSTULOTCS
- Only use a blue or black pen. All answers must be recorded in this paper.
- For the multiple-choice questions, tick **one** box for your answer directly (each multiple-choice question has only one correct answer).

 To make a correction, tick *all* boxes, then *circle* one box for your answer.
- For the open questions, write your answer in the space provided (if you need more space, you can write on the back of the sheet).
- A separate white booklet is provided for scratch work only. **Do not write** your answers in the Examination Answer Book, it will not be marked.
- Time allowed 120 minutes + 10 minutes reading time.
- The exam is *closed book*. Reference materials are not allowed, apart from one A4-sized sheet (double-sided is ok) of your own notes.
- Number of pages in this exam paper: 8 (in addition to this cover sheet).

1. How many integers in the interval [-100, 100] are divisible by 5 or 7 (or both)? □ 64 **X** 65 $N = 2 \cdot (\lfloor 100/5 \rfloor + \lfloor 100/7 \rfloor - \lfloor 100/35 \rfloor) + 1 = 2 \cdot (20 + 14 - 2) + 1 = 65$ \Box 67 \square 68 2. Consider the alphabets $\Sigma = \{s, e, a\}$ and $\Psi = \{a, r, t\}$. How many words are in the set $\{\omega \in (\Sigma \setminus \Psi)^* : \text{length}(\omega) \le 2\}$? Assignment Project Exam Help 3. Which of the proving trutto presentating? $\square A \lor B \equiv \neg (B \land \neg A)$ $\square A \bigvee B \in C B \lor A \land CSTUTOTCS$ $\square A \Rightarrow \neg B \equiv B \Rightarrow \neg A$ 4. Consider the functions $f: \mathbb{N} \longrightarrow \{0,1,2\}$ and $g: \{0,1,2\} \longrightarrow \{0,1,2\}$ defined by $f(x) = x \mod 3$ g(x) = |x-2|Which of the following statements is true? \Box $f \circ f \neq f$

 \Box $f \circ g$ is **not** onto

 \square $g \circ f$ is **not** onto

5.	Consider the partial order \leq on $S = \{1, 2, 3, 4, 6, 12\}$ defined by
	$x \le y$ if and only if $x \mid y$ (i.e., x is a divisor of y)
	Which of the following is not true?
	\square lub({1, 4, 6}) = 12
	\boxtimes glb({4, 6, 12}) = 1 correct is glb({4, 6, 12}) = 2
	\square (S, \leq) is a lattice
	\square 1 < 3 < 2 < 6 < 4 < 12 is a topological sort of (S, \leq)
6. A	All connected graphs with n vertices and k edges satisfy Singh Project Exam Help $n \le k$ $n \le k$ $n \le k$ Alttps://tutorcs.com
7.	We would like to prove that $P(n)$ for all $n \ge 0$. Which of the following conditions imply this conclusion?
	\square $P(0)$ and $\forall n \ge 1 (P(n) \Rightarrow P(n+1))$
	$P(0)$ and $P(1)$ and $\forall n \ge 0 (P(n) \land P(n+1) \Rightarrow P(n+2))$

 \square P(0) and P(1) and $\forall n \ge 1 (P(n) \Rightarrow P(n+2))$

8.		sider the recurrence given by $T(1) = 1$ and $T(n) = 4 \cdot T(\frac{n}{2}) + n$. has order of magnitude
		O(n)
	_	$O(n \cdot \log n)$
		$O(n^2)$
		master theorem
		$O(2^n)$
9.	Let S	$S = \{1, 2, 3\} \text{ and } \mathbb{B} = \{0, 1\}.$
	How	many different <i>onto</i> functions $f: S \longrightarrow \mathbb{B}$ are there?
		0
	\boxtimes	
A	SS	$ \begin{array}{c} 2^3 - 2 = 6 \text{ since there } \\ \text{are not onto. } \\ f_1 : s \mapsto 0 \text{ and } \\ f_2 : s \mapsto 0 \\ \text{and } \\ f_3 : s \mapsto 0 \\ \text{and } \\ f_4 : s \mapsto 0 \\ \text{and } \\ f_5 : s \mapsto 0 \\ \text{and } \\ f_6 : s \mapsto 0 \\ and $
		8
		9https://tutorcs.com
10.	Whi	ch of the following is true for all A, B?
	\boxtimes	PWeChat: cstutorcs
		$P(A \cap B) = P(B) \cdot P(B A)$
		$P(A \cup B) \ge P(A) + P(B)$
		$P(A B) + P(A \bar{B}) = 1$

11. Consider the following two formulae:

$$\begin{array}{ll} \phi \ = & \neg (A \Rightarrow (B \land C)) \\ \psi \ = & \neg A \lor C \end{array}$$

- (a) Transform ϕ into *disjunctive* normal form (DNF).
- (b) Prove that $\phi, \psi \models \neg B$ (i.e., $\neg B$ is a logical consequence of ϕ and ψ).
- (c) Is $\phi \lor \psi$ a tautology (i.e., always true)? **Explain your answer.**

(a)
$$\overline{\overline{A} + BC} = \overline{\overline{A}} \cdot \overline{BC} = A \cdot (\overline{B} + \overline{C}) = A\overline{B} + A\overline{C}$$

(b) From ψ it follows that $\neg (A \land \neg C)$. From (a) it then follows that $A \land \neg B$, which implies $\neg B$.

Alternative solution using a truth table:

Assignment Project Exam Help

(c) $\phi \lor \psi$ is always true:

Case 1: A is false or C is true. Then ψ is true.

Case 2: Case 1 is false, then $A \wedge \neg C$, hence ϕ is true according to (a).

Alternative solution extends the truth table from above by $\phi \lor \psi$.

12. Prove that for all binary relations $\mathcal{R}_1 \subseteq S \times S$ and $\mathcal{R}_2 \subseteq S \times S$ the following holds:

If \mathcal{R}_1 and \mathcal{R}_2 are symmetric, then $\mathcal{R}_1 \setminus \mathcal{R}_2$ is symmetric.

If $(x, y) \in \mathcal{R}_1 \setminus \mathcal{R}_2$ then $(x, y) \in \mathcal{R}_1$ and $(x, y) \notin \mathcal{R}_2$.

By symmetry of \mathcal{R}_1 and \mathcal{R}_2 it follows that $(y, x) \in \mathcal{R}_1$ and $(y, x) \notin \mathcal{R}_2$.

Hence, $(y, x) \in \mathcal{R}_1 \setminus \mathcal{R}_2$.

Alternative proof by contradiction:

If $\mathcal{R}_1 \setminus \mathcal{R}_2$ is not symmetric, then there exist $x, y \in S$ such that $(x, y) \in \mathcal{R}_1$ and $(x, y) \notin \mathcal{R}_2$ but $(y, x) \notin \mathcal{R}_1 \setminus \mathcal{R}_2$.

Assignment Project Exam Help From $G, x) \notin \mathcal{R}_1 \cup \mathcal{R}_2$ it follows that $(y, x) \notin \mathcal{R}_1$ of $(y, x) \in \mathcal{R}_2$.

But $(y, x) \notin \mathcal{R}_1$ contradicts $(x, y) \in \mathcal{R}_1$ given that \mathcal{R}_1 is symmetric, and (1) Sontradict to (2) is symmetric.

WeChat: cstutorcs

13. The *Fibonacci numbers* are defined as follows:

$$F_1 = 1$$
; $F_2 = 1$; $F_i = F_{i-1} + F_{i-2}$ for $i \ge 3$

Write a proof by induction for the statement that every *third* Fibonacci number (that is, F_3 , F_6 , F_9 , ...) is even (i.e., divisible by 2).

Base case n = 3:

$$F_1 = 1$$
; $F_2 = 1$; $F_3 = 2$. Hence, $2 \mid F_3$.

Inductive step $n \longrightarrow n + 3$: By definition,

$$F_{n+3} = F_{n+2} + F_{n+1}$$

$$= (F_{n+1} + F_n) + F_{n+1}$$

$$= 2 \cdot F_{n+1} + F_n$$

A Springerinduction hypothesis of Feit follows that 2113F THE IP

https://tutorcs.com

WeChat: cstutorcs

14. Consider the following graph *G*:

- (a) Give all 3-cliques of G.
- (b) What is the chromatic number $\chi(G)$ of G? Explain your answer.
- (c) What is the maximal number of edges that can be added to *G* such that *G* remains planar? **Explain your answer.**

(a) $\{a,b,c\}$, $\{a,b,d\}$

A Significant ar Potosic Citains & Aim Help
3 colours are also sufficient:

(c) A maximum of 2 edges can be added, for example:

3 edges cannot be added since this would result in K_5 , which is not planar.

- 15. Consider a deck of six cards containing 2 jacks and 4 aces. One card is randomly drawn from the deck at a time. Calculate the expected number of drawing attempts until an ace is drawn:
 - (a) if the cards are put back into the deck after each drawing;
 - (b) if the cards are **not** put back into the deck after each drawing.

Briefly explain your answers.

(a) Each drawing event has the probability $p = \frac{4}{6} = \frac{2}{3}$. Hence, the expected number of drawing attempts is $\frac{1}{p} = 1.5$

(b)
$$1 \cdot \frac{4}{6} + 2 \cdot \frac{2}{6} \cdot \frac{4}{5} + 3 \cdot \frac{2}{6} \cdot \frac{1}{5} \cdot 1 = \frac{2}{3} + \frac{8}{15} + \frac{1}{5} = \frac{21}{15} = \frac{7}{5} = 1.4$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs