CPE201 Digital Design

By Benjamin Haas

Class 11: POS Karnaugh Maps and Troubleshooting

SOP Minimization Example

- B' + A'B + ABC'
- 3 4-cell groups
- A' + B' + C'

Don't Care Condition

 Used for conditions that cannot occur

Can be used to further

simplify logic

Inputs					Output
	A	B	\boldsymbol{C}	D	Y
	0	0	0	0	0
	0	0	0	1	0
	0	0	1	0	0
	0	0	1	1	0
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	X
	1	0	1	1	X
	1	1	0	0	X
	1	1	0	1	X
	1	1	1	0	X
	1	1	1	1	X

Don't cares

Example

• <u>Can be used</u> to further simplif CD 00 01 11 10

AB CL	00	01	11	10
00	1	X		
01	1	1		
11	1			
10	1			

AB $\subset L$	00	01	11	10
00	1			
01	1	1		
11	1		Х	
10	1		X	

Karnaugh Maps and POS

- All the same concepts apply, but now with 0's
- Write all simplified terms as POS terms

Example

• (A+B+C')(A+B'+C')(A'+B')(A'+B+C AB

(A'+C)(A'+B')(A+C')

Conversions

- Same as with truth tables
 - Fill in the Karnaugh Map with what you have
 - Then group the other truth value
 - Finally write out the terms

Example

• (A+B+C')(A+B'+C')(A'+B')(A'+B+C AB

• A'C' + AB'C

Minterms and Maxterms

- Inputs that give 1 on truth table = minterms
- Inputs that give 0 on truth table = maxterms

Example

Α	В	С	Outpu t	Minter m	Maxter m
0	0	0	1	m_0	
0	0	1	0		M_1
0	1	0	0		M ₂
0	1	1	1	m ₃	
1	0	0	1	m ₄	
1	0	1	1	m ₅	
1	1	0	1	m ₆	
1	1	1	0		M ₇

7-Segment Displays

(a) Segment arrangement

(b) Formation of the ten digits and certain letters

7-Segment Displays

Symb ol	Segments Active
1	b, c
2	a, b, d, e, g
7	a, b, c
Α	a, b, c, e, f, g
b	c, d, e, f, g
С	a, d, e, f

Display Hex Digits

Symbol	Hex Input (H ₃ H ₂ H ₁ H ₀)	Segments Active
1	0001	b, c
2	0010	a, b, d, e, g
7	0111	a, b, c
Α	1010	a, b, c, e, f, g
b	1011	c, d, e, f, g
С	1100	a, d, e, f

Logic for One Segment

Segment 'a' is used in: 0, 2, 3, 5, 6, 7, 8,
 9, A, C,

H_3H_2	$^{1}H_{0}$ 00	01	11	10
00	1		1	1
01		1	1	1
11	1		1	1
10	1	1		1

Logic for One Segment

• $H_2'H_1'H_0' + H_3H_1'H_0' + H_3H_2'H_1' + H_3'H_2H_0' + H_3'H_1 + H_2H_1 + H_1H_0'$

Troubleshooting

- Being a detective
- Never discount something that looks off
- Always test to narrow down what is wrong

The Basic Steps

- 1. Gather information on the problem
- 2. Identify the symptom and possible failures
- 3. Isolate the point(s) of failure
- 4. Apply proper tools to determine the cause of the problem
- 5. Fix the problem

Obvious Stuff First

- Is there power to the circuit?
- Are there any loose wires/connections?
- Is there a troubleshooting guide?
- Is there a wiring diagram?

Replace/Reproduce

- Is there another circuit that works in place of this one?
 - Isolate the problem to one circuit
- Is the problem reproduceable?
- Can you change the input to make it reproduceable?

Half-Splitting Method

Signal-Tracing Method

Open Circuits

Open Circuits

Internal Example

(b) Pin 12 input is open.

External Example

Reading

- This lecture
 - Sections 1.8, 3.9, 4.10-4.11, Ch4 Applied
 Logic
- Next lecture
 - Sections 5.1-5.3