

Weight of evidence: definition

$$WoE = \ln(\frac{Proportion \ of \ good \ events}{Proportion \ of \ bad \ events})$$

Weight of Evidence (WoE) was developed primarily for the credit and financial industries to help build more predictive models to evaluate the risk of loan default.

That is, to predict how likely the money lent to a person or institution is to be lost.

Weight of evidence: definition

$$WoE = \ln(\frac{Proportion \ of \ good \ events}{Proportion \ of \ bad \ events})$$

- Proportion of good events:
 - sum of + observations per category / total positive observations
- Proportion of bad events:
 - sum of observations per category / total negative observations

Weight of evidence: example

	survived	non-survived
Α	50	30
В	75	40
С	25	15
total	150	85
total passengers		235

WoE-0.05716
0.060625
-0.05716

Weight of evidence: Advantages

- Creates a monotonic relationship between the target and the variables.
- It orders the categories on a "logistic" scale which is natural for logistic regression
- The transformed variables can then be compared because they are on the same scale.
 - Therefore, it is possible to determine which one is more predictive.

Weight of evidence: Limitations

May lead to over-fitting

Not defined when the denominator or numerator are 0

Weight of evidence: open source

THANK YOU

www.trainindata.com