

UNIT-3: ATTRIBUTE DATA VISUALIZATION

Dipesh Koirala

OUTLINE

- Visualization of one, two and multi-dimensional data, Tabular data, quantitative values (scatter plot)
- Separate, Order and align (Bar, staked bar, dots and line charts),
- Tree data, Displaying Hierarchical structures,
- Graph data, Rules for graph drawing and labeling
- Time series data, Characteristics of time data, Visualization time series data, Mapping of time

VISUAL REPRESENTATION

ATTRIBUTE DATA VISUALIZATION

- Is a way of representing attributes of data through visual elements such as graphs, charts and diagrams.
- Useful for displaying data that has attributes or characteristics such as categories, time periods and numerical values.
- Attribute data visualization is an essential tool for displaying data in a graphical format that enables easy interpretation and analysis.

It can be categorical, numerical or time-series data.

ATTRIBUTE DATA VISUALIZATION

Dataset Types

- A dataset is any collection of information that is the target of analysis.
- The four basic dataset types are tables, networks, fields, and geometry.

ATTRIBUTE DATA VISUALIZATION

Data Types

- An item is an *individual entity* that is discrete, such as a row in a simple table or a node.
- An attribute is some specific property that can be measured, observed, or logged.
- For e.g., attributes could be salary, price, number of sales, protein expression levels, or temperature.

One Dimensional Data

- Given a one-dimensional sequence of univariate data or only one value per data item.
- **E.g.,** temperature, age, sales of category etc.

```
# One-Dimensional Data
category = pd.Series(['A','B','A','B','A','C','A','B','A','C','A','B','A'])
```

One Dimensional Data

- ❖ Visualization Techniques:
 - Categorical: Bar Plots, Count Plots, Pie Charts (for few categories)

- Continuous: Histograms, Density Plots, Box Plots
- *These plots help to understand distribution, patterns, count within a single variable.

2-Dimensional Data

- When there is two variables present in data.
- E.g., height vs. weight, age vs. income, month vs. sales
- Visualization techniques:

Scatter plots, bar plots, line plots

* These plot reveal relationships, correlations and outliers between two variables.

	carat	price
0	0.23	326
1	0.21	326
2	0.23	327
3	0.29	334
4	0.31	335
5	0.24	336
6	0.24	336
7	0.26	337
8	0.22	337
9	0.23	338

Multi-Dimensional Data

- When there is more than two variables present in data.
- **E.g.,** Temperature, humidity, wind speed and pressure

Visualization Techniques:

Bubble Chart

Heat Map

These plots allow to explore complex interactions among multiple variables.

TABULAR DATA

Tabular data is data that is organized in rows and columns in a table format.

df.head()												
	carat	cut	color	clarity	depth	table	price	x	у	z		
7980	0.84	Ideal	G	VS1	61.8	56.0	4325	6.02	6.11	3.75		
36902	0.40	Ideal	F	VS1	61.4	57.0	960	4.74	4.77	2.92		
1187	0.72	Ideal	F	VS2	61.8	59.0	2931	5.71	5.74	3.54		
29546	0.38	Very Good	G	VS2	61.6	59.0	705	4.65	4.70	2.88		
24980	1.75	Premium	D	SI2	60.6	60.0	13485	7.78	7.74	4.70		

Different types of plots can be applied in different attributes of column data.

QUANTITATIVE VALUES (SCATTER PLOT)

- Quantitative values are numerical values that can be measured and analyzed mathematically.
- In data visualization, scatter plots are a useful way to visualize relationships between two quantitative values.

Separate

- Practice of distinguishing different data groups or categories from each other.
- This can be done through the use of color, shape, size, or spatial separation.

Order

- Involves arranging data in a specific sequence to convey a meaningful pattern or relationship.
- This can be done in ascending or descending order, or according to some other logical progression (e.g., chronological, alphabetical, or by magnitude).

Align

- ❖ Placing data points in a way that they form a straight line, either horizontally or vertically.
- Alignment helps in making comparisons and recognizing patterns or trends within the data more easily.

- Separate helps to distinguish different groups of data.
- Order helps to show progression or ranking within the data.
- Align helps to facilitate comparison by placing data points along a common axis.

Identify Problem Here:

TREE DATA, DISPLAYING HIERARCHICAL STRUCTURES

- * Important application of visualization is also the conveying of relational information, e.g., how data items are related to each other. These interrelationships can take many forms:
 - part/subpart, parent/child or other hierarchical relation
 - connectedness, such as cities connected by roads or computer connected by networks.

* Tress or hierarchies are one of the most common structures to hold relational information.

TREE DATA, DISPLAYING HIERARCHICAL STRUCTURES

- The most common visual encoding idiom for tree and network data is with node-link diagrams.
- Nodes are drawn as point marks and the links connecting them are drawn as line marks.
- This idiom uses connection marks to indicate the relationships between items.
- In addition to the connection marks, it uses vertical spatial position channel to show the depth in the tree.
- The horizontal spatial position of a node does not directly encode any attributes.

GRAPH DATA, RULES FOR GRAPH DRAWING AND LABELING

- Graph consists of nodes and edges (connections).
- Graphs can be directed or undirected.
- Used in social networks, transportation networks, representation of map.

Rules for Graph Drawing and Labeling:

- 1. Node Placement: Place nodes to minimize edge crossings.
- 2.Edge Drawing: Use straight lines or smooth curves for edges.
- 3.Labeling: Clearly label nodes and edges. Use consistent font sizes and styles.
- 4.Color Coding: Use colors to differentiate between different types of nodes or edges.
- 5. Hierarchy: If representing a hierarchy, ensure the levels are clearly distinguishable

TIME SERIES DATA

- Time series data is a sequence of data points collected or recorded at regular time intervals.
- This type of data is crucial for analyzing trends, patterns, and changes over time.

- Timestamped Data Points data point is associated with a specific timestamp
- Continuous or Discrete Time: senor data recorded every second vs monthly sales data
- Univariate vs. Multivariate:

CHARACTERISTICS OF TIME DATA

Characteristics:

- ❖ **Trend**: The long-term movement or direction in the data.
- **Seasonality**: Regular, repeating patterns or cycles in the data.
- ❖ **Noise**: Random variations or fluctuations that do not follow a pattern.
- Cyclic Patterns: Long-term oscillations that are not of a fixed period.
- *Stationarity: Mean, variance doesn't change over time

VISUALIZATION OF TIME SERIES DATA

Visualization of Time Series Data

- Line charts
- Heat maps
- Moving Averages
- Autocorrelation Plots

E.g., Stock Market Trends, Weather Data, Economic Data, Sales Data

THANK YOU...

Dipesh Koirala