Teorema CSB y aplicaciones

Clase 16

IIC 1253

Prof. Cristian Riveros

Recordatorio: Cardinalidad

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

Recordatorio: Cardinalidad

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Recordatorio: Conjuntos numerables

Definición

Decimos que un conjunto A es numerable si: $|A| = |\mathbb{N}|$.

Proposición

A es numerable si, y solo si, existe una secuencia infinita:

$$a_0, a_1, a_2, a_3, \ldots, a_n, a_{n+1}, \ldots$$

- 1. $a_i \in A$ para todo $i \in \mathbb{N}$.
- 2. $a_i \neq a_j$ para todo $i \neq j$.
- 3. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una lista infinita.

Recordatorio: Conjuntos numerables y no-numerables

Sabemos que...

- Los conjuntos \mathbb{P} , \mathbb{Z} , \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son numerables.
- Los conjuntos \mathbb{R} y $2^{\mathbb{N}}$ son no-numerables.

Teorema de Cantor

Para todo conjunto no vacío A,

NO existe una **biyección** entre A y el conjunto potencia 2^A .

Outline

Teorema CSB

Aplicación: Algoritmos

Aplicación: Números

Funciones y cardinalidad

Sea A y B dos conjuntos no vacíos.

Definición

Decimos que B es al menos tan numeroso como A:

$$|A| \leq |B|$$

si existe una función inyectiva $f: A \rightarrow B$.

¿qué tipo de relación es $|\cdot| \le |\cdot|$?

Sea A y B dos conjuntos no vacíos.

Teorema (Cantor-Schröder-Bernstein)

Si existen funciones **inyectivas** $f: A \rightarrow B$ y $g: B \rightarrow A$, entonces existe una función **biyectiva** $h: A \rightarrow B$.

En otras palabras, |A| = |B| si, y solo si, $|A| \le |B|$ y $|B| \le |A|$

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B, g: B \to A$ funciones inyectivas. Sin perdida de generalidad, suponga que A y B son disjuntos $(A \cap B = \emptyset)$.

¿cómo hacemos una biyección desde A hasta B?

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B$, $g: B \to A$ funciones **inyectivas**. Sin perdida de generalidad, suponga que A y B son **disjuntos** $(A \cap B = \emptyset)$.

Demostración

Sea A, B conjuntos no vacíos y $f: A \to B$, $g: B \to A$ funciones inyectivas. Sin perdida de generalidad, suponga que A y B son disjuntos $(A \cap B = \emptyset)$.

Caso 1:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} \cdots \xrightarrow{g} a_k \xrightarrow{f} b_k$$

Caso 2: $a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$

Caso 3: $a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$

Caso 4:
$$b_0 \xrightarrow{g} a_0 \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} \cdots$$

Demostración

Para $a \in A$, sea $C_a \subseteq A \cup B$ "todos los elementos alcanzables desde a":

$$C_{a} = \left\{ x \in A \cup B \mid \exists i \geq 0. \quad x = (f \circ g)^{i}(a) \quad \lor \\ x = (f \circ g)^{i} \circ f(a) \quad \lor \\ x = (g^{-1} \circ f^{-1})^{i}(a) \quad \lor \\ x = (g^{-1} \circ f^{-1})^{i} \circ g^{-1}(a) \quad \right\}$$

donde $(f \circ g)^i$ es la función $f \circ g$ aplicada i-veces $(con (f \circ g)^0(a) = a)$.

Algunos hechos:

- $C_a = C_{a'}$ o $C_a \cap C_{a'} = \emptyset$ para todo $a, a' \in A$. (¿por qué?)
 el conjunto $\{C_a \mid a \in A\}$ forma una partición de $A \cup B$. (¿por qué?)

Demostración

PD: Para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \to (B \cap C_a)$.

Caso 1:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} \cdots \xrightarrow{g} a_k \xrightarrow{f} b_k$$

$$g$$

$$f_a(a_i) = b_i \text{ para todo } a_i \in A \cap C_a$$

Caso 2:
$$\longrightarrow a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$$

$$f_a(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Demostración

PD: Para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \to (B \cap C_a)$.

Caso 3:
$$a_0 \xrightarrow{f} b_0 \xrightarrow{g} a_1 \xrightarrow{f} b_1 \xrightarrow{g} \cdots$$

$$f_a(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Caso 4:
$$b_0 \xrightarrow{g} a_0 \xrightarrow{f} b_1 \xrightarrow{g} a_1 \xrightarrow{f} \cdots$$

$$f_a(a_i) = g^{-1}(a_i) = b_i$$
 para todo $a_i \in A \cap C_a$

Demostración

Por lo tanto, como:

- lacksquare $\{C_a \mid a \in A\}$ forma una partición de $A \cup B$ y
- para todo $a \in A$, existe una biyección $f_a : (A \cap C_a) \to (B \cap C_a)$

entonces:

$$\big(h:A\to B\big)\ =\ \bigcup_{a\in A}f_a$$

es una biyección de A en B.

Outline

Teorema CSB

Aplicación: Algoritmos

Aplicación: Números

Problemas de decisión

Definición

Un problema de decisión esta compuesto por:

- 1. Un conjunto de inputs (llamados instancias).
 - Números, grafos, palabras, funciones, etc ...
- 2. Una pregunta sobre los inputs que se responde con SI o NO

Problemas de decisión

Ejemplo

Números Primos

Input: Un número N

Pregunta: ¿es N primo?

Relaciones de equivalencia

Input: Una relación finita $R \subseteq A \times A$

Pregunta: ¿es R una relación de equivalencia?

Problemas de decisión

Ejemplo

MINIMIZACIÓN DE FUNCIONES

Input: Un función $f: \mathbb{N} \to \mathbb{N}$ y un número cPregunta: ¿es el mínimo de f mayor que c?

Busqueda en texto

Input: Una página de texto T y una palabra w

Pregunta: ¿Aparece w mencionada en T?

Problemas de decisión (definición formal)

Sea \mathcal{I} un conjunto de inputs (instancias).

Definición

Un problema de decisión es una función:

$$P: \mathcal{I} \rightarrow \{0,1\}$$

Ejemplo

Sea PRIMO: $\mathbb{N} \to \{0,1\}$ tal que para todo $n \in \mathbb{N}$:

PRIMO(n) = 1 si, y solo si, n es un número primo.

Por ejemplo:

- PRIMO(49) = 0
- PRIMO(29) = 1
- PRIMO(997) = ?

Solución a los problemas de decisión

Considere su lenguaje de programación favorita (python?).

Definición

Sea \mathcal{I} un conjunto de inputs y $P:\mathcal{I}\to\{0,1\}$ un problema de decisión.

- Una solución Program es un programa en python que recibe inputs en \mathcal{I} y retorna 0 o 1.
- Una solución Program es un solución para el problema de decisión P si para todo input $X \in \mathcal{I}$ se cumple:
 - P(X) = 1 si, y solo si, al ejecutar Program con X retorna 1

Solución a los problemas de decisión

Ejemplo

```
Sea PRIMO : \mathbb{N} \to \{0,1\} tal que para todo n \in \mathbb{N}:
```

```
PRIMO(n) = 1 si, y solo si, n es un número primo.
```

Una solución para el problema de decisión PRIMO es el siguiente:

```
import math
def is_prime(n):
    if n % 2 == 0 and n > 2:
        return 0
    for i in range(3, n):
        if n % i == 0:
            return 0
    return 1
```

¿cuántas soluciones/programas en python existen?

Simplificación

Todo programa en python

lo podemos representar con una palabra de ceros y unos. (¿por qué?)

Teorema

El conjunto de todas las palabras $\{0,1\}^*$ es numerable.

Demostración (ejercicio)

Considere la siguiente lista infinita de $\{0,1\}^*$:

```
\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \dots
```

Corolario

La cantidad de programas en python es numerable.

¿cuántos problemas de decisión existen?

Simplificación

Todo input como números, matrices, conjuntos, relaciónes, etc, lo podemos representar con palabras de ceros y unos. (¿por qué?)

Definición

Un problema de decisión P es una función: $P: \{0,1\}^* \rightarrow \{0,1\}$.

Ejemplo

Sea $PRIMO : \{0,1\}^* \to \{0,1\}$ tal que para todo $n \in \mathbb{N}$:

PRIMO(bin(n)) = 1 si, y solo si, n es un número primo.

- Arr Primo(00110001) = 0
- PRIMO(00011101) = 1
- Primo(0000001111100101) = 1

¿cuántos problemas de decisión existen?

Simplificación

Todo input como números, matrices, conjuntos, relaciónes, etc, lo podemos representar con palabras de ceros y unos. (¿por qué?)

Definición

Un problema de decisión P es una función: $P: \{0,1\}^* \rightarrow \{0,1\}$.

■ Un problema de decisión P lo podemos ver como $L_P \subseteq \{0,1\}^*$:

$$L_P = \{ w \in \{0,1\}^* \mid P(w) = 1 \}$$

■ Definimos \mathcal{P} como el conjunto de todos los problemas de decisión:

$$\mathcal{P} \ = \ \left\{ \ L_P \subseteq \left\{0,1\right\}^* \ | \ P: \left\{0,1\right\}^* \to \left\{0,1\right\} \ \right\}$$

¿a qué equivale \mathcal{P} ?

¿cuántos problemas de decisión existen?

Teorema

El conjunto \mathcal{P} es NO numerable.

Conclusión

Hay problemas de decisión que NO tienen una solución computacional (algoritmo).

¿cuál es un problema sin solución en computación?

Outline

Teorema CSB

Aplicación: Algoritmos

Aplicación: Números

Números reales y nombres

Podemos asociar nombres a los reales:

¿podemos asociar un nombre a cada número real?

Números algebraicos y trascendentes

Definición

Un número $a \in \mathbb{R}$ se dice algebraico si existe un polinomio (no nulo) p(x):

- 1. p(x) tiene coeficientes en los enteros.
- 2. p(a) = 0.

Ejemplo

- todos los números en ℚ.
- $\sqrt{2}$, $\sqrt[5]{17}$, ...

Definición

Un número $a \in \mathbb{R}$ es trascendente si NO es algebraico.

¿ existen números trascendentes?

¿existen números trascendentes?

Los matemáticos se demoraron en demostrar que existían números trascendentes, desde 1600 hasta:

- Liouville (1844): $\sum_{i=1}^{\infty} 10^{-i!}$
- Hermite (1873): *e*
- Lindemann (1882): π

¿cómo demostramos que existen números trascendentes?

¿existen números trascendentes?

Teorema

Los números algebraicos son numerables.

Demostración (ejercicio)

Conclusión

Como $\mathbb R$ es NO numerable, por lo tanto tienen que existir números trascendentes.