

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

What Is Pattern Discovery?

- □ What are patterns? Thung patterns Thung
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - □ What products were often purchased together? โมลาการโก้น โน้าที่ได้สิทาใต้

Mer our son more en Enghol hus

- What are the subsequent purchases after buying an iPad?
- What code segments likely contain copy-and-paste bugs?
- What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- □ Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- ☐ Itemset: A set of one or more items
- \Box k-itemset: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}:

 Frequency or the number of production occurrences of an itemset X
 - \Box Ex. sup{Beer} = 3
 - \Box Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - \Box Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
10	Beer, Nuts, Diaper 🗠 ฟาร์งมูเด็ก	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	
อามารถรูงอนาน แมา มูกากเมาการการ		

(*relative*) *support*, *s*{*X*}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

- \Box Ex. s{Beer} = 3/5 = 60%
- \Box Ex. s{Diaper} = 4/5 = 80%
- \blacksquare Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - □ Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - □ Ex. Diaper → Beer hourd Diaper or Third Beer on
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both *X* and *Y* are itemsets
 - Support, s: The probability that a transaction contains $X \cup Y$
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%) $\frac{3/5 \div 4/5}{4}$
 - Confidence, c: The conditional probability that a transaction containing X also contains Y
 - \Box Calculation: $c = \sup(X \cup Y) / \sup(X)$
 - \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{34}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: $X \cup Y$: the union of two itemsets

The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining
 - ☐ Given two thresholds: *minsup, minconf*
 - \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - \square such that, $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,
 - Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
 - $C = 2nb(XnA) \setminus 2nb(X)$

mostruca minsup, min conf

- Let minconf = 50%
 - \Box Beer \rightarrow Diaper (60%, 100%)
 - \Box Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought	
110	items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- Observation: From TDB_{1:} T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - □ Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ..., $\{a_{10}, a_{10}\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- □ Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - ☐ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
                                           Molicing to be was with months of
F_k: Frequent itemset of size k
K := 1;
F_k := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
                      // return F_k generated at each level
return \bigcup_k F_k
```

The Apriori Algorithm—An Example

on one itenset ha mand which it is itenset had mand which it is it it i

Database TDB

minsup = 2

Itemset {A}

Itemset sup **{A}** {B} {C}

{E}

2 000

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

1st scan

sup {B} {C} 3 {D} {E} 3

V	En. Blook &	40.) M	NY) A	Å
7.	L L			

F_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

of I tem nitosom 2 can a

and a M. A. Lohrar A. M.		
Itemset	sup	
{A, B}	1	
{A, C}	2	
{A, E}	1	
{B, C}	2	
{B, E}	3	
{C, E}	2	

2nd scan

 F_1

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

3

3

3

Itemset {B, C, E}

3rd scan

Itemset	sup
{B, C, E}	2