### COMPITO DI CONTROLLI AUTOMATICI

# Corso di Laurea in Ingegneria dell'Informazione 22 Giugno 2012

Esercizio 1. (punti 10) Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento:

$$G(s) = 100 \frac{s^2 + 1}{s(s + 0.1)(s - 10)^2}.$$

- 1. Si determini il diagramma di Bode (modulo e fase) della risposta in frequenza del sistema (**punti 4.5**);
- 2. Si determini il diagramma di Nyquist di  $G(j\omega)$  per  $\omega \in \mathbb{R}$ , e si studi, attraverso il criterio di Nyquist, la stabilità BIBO del sistema ottenuto per retroazione unitaria negativa da G(s) e si determini l'eventuale numero di poli a parte reale positiva di W(s) (Nota. Non è richiesto il calcolo esplicito di asintoti e/o intersezioni con gli assi) (punti 5.5).

Esercizio 2. (punti 9) Si consideri il seguente schema, in cui  $Z_1(s), Z_2(s), Z_3(s)$  sono generiche impedenze



- 1. Nell'ipotesi di operazionale ideale, si calcoli la FDT  $W_{id}(s)$  (punti 2);
- 2. Nell'ipotesi di operazionale reale caratterizzato da  $Y(s) = K[V_{+}(s) V_{-}(s)]$  (K > 0), e nel caso particolare in cui  $Z_{1}(s)$  sia una resistenza di valore R, mentre  $Z_{2}(s)$  e  $Z_{3}(s)$  siano condensatori di capacità C e  $\alpha C$  rispettivamente, con RC = 1 e  $\alpha > 0$ , si calcoli la FDT  $W_{r}(s)$  (punti 3.5);
- 3. Si studi la stabilità di  $W_r(s)$  per K molto elevato (ma comunque finito), al variare del parametro  $\alpha > 0$ . Cosa cambierebbe in tale analisi se si scambiassero i morsetti + e -? (punti 3.5).

Esercizio 3. (punti 7) Dato il processo di FDT

$$G(s) = \frac{1}{(1+s)^2}$$

si progettino 2 compensatori stabilizzanti,  $C_1(s)$  e  $C_2(s)$ , soddisfacenti le seguenti specifiche: entrambi devono garantire che il tipo sia 1 e l'errore di regime permanente alla rampa lineare sia  $e_{rp} = 0.01$ , ed inoltre

- 1.  $C_1(s)$  garantisca  $\omega_a \simeq 0.1$  rad/s e  $m_\phi \simeq 90^o$  (**punti 3.5**);
- 2.  $C_2(s)$  sia di tipo PID e garantisca  $\omega_a \simeq 1000$  rad/s e  $m_\phi \simeq 90^o$  (punti 3.5).

#### Teoria. (solo per 9 CFU) (punti 5)

- 1. Si definiscano i concetti di tipo e relativo errore di regime permanente di un generico sistema di funzione di trasferimento W(s) (punti 2);
- 2. Si dimostri, a scelta, UNA delle seguenti caratterizzazioni (punti 3):
  - che, per un generico sistema di FDT W(s), il tipo e l'errore di regime permanente sono esprimibili in termini di  $W(0), W^{(1)}(0), \ldots$ , per sistemi di tipo 0, 1 e 2;
  - che, per un sistema di FDT W(s), ottenuto per retroazione unitaria negativa da un sistema di funzione di trasferimento G(s)(così che  $W(s) = \frac{G(s)}{1+G(s)}$ ), il tipo e l'errore di regime permanente sono esprimibili in termini del numero di integratori (poli nell'origine) presenti in G(s).

Nota. É facoltativo dimostrare entrambe le caratterizzazioni precedenti. Chi riesce a dimostrarle entrambe, prende (al massimo) punti 1 in più (cioé tale esercizio teorico puó arrivare fino a punti 6).

Esercizio 4. (solo per 7 CFU) (punti 7) Data

$$G(s) = \frac{s-1}{s^2 + 2s + 2}$$

é richiesto di

- Tracciare il luogo delle radici positivo, individuando asintoti e punti doppi (punti 3);
- 2. Determinare le intersezioni del luogo con l'asse immaginario, e discutere quindi per quali valori di K > 0 l'anello chiuso è stabile (**punti 2**);
- 3. Determinare per quali valori di K l'anello chiuso è privo di modi oscillatori **punti** 1);
- 4. Quando l'anello chiuso ha almeno un polo a parte reale nulla, individuare i suoi modi (**punti 1**).

Nota. I punti in gioco sono lievemente sovrabbondanti per 7 CFU (rispetto a 9 CFU). Verrá quindi operato un (lievissimo) scalamento per rendere il totale pari a 31.5 invece che a 33 punti (chi fa il compito da 9 CFU puó al massimo ottenere 31 o 32 a seconda che faccia o meno la domanda facoltativa sull'esercizio di teoria).

## **SOLUZIONI**

#### Esercizio 1.

1. [4.5 punti] È immediato verificare che la funzione di trasferimento ha la seguente forma di Bode:

$$G(s) = 10 \ \frac{1 + s^2}{s \left(1 + \frac{s}{10^{-1}}\right) \left(1 - \frac{s}{10}\right)^2}.$$

Pertanto  $K_B=10$  e la risposta in frequenza presenta un polo semplice nell'origine  $(\nu=1)$ , un polo reale negativo in  $-10^{-1}=-0.1$   $(1/T_1=0.1$  e  $\mu_1=1)$ , un polo reale positivo doppio in 10  $(1/T_2=-10$  e  $\mu_2=2)$  ed una coppia di zeri immaginari coniugati con  $\omega_n'=1$  (e  $\xi=0$ ). Sulla base di tali considerazioni e dei diagrammi di Bode, sia asintotici che effettivi, dei termini elementari, è immediato determinare i diagrammi di Bode della preassegnata risposta in frequenza, riportati nelle figure che seguono.





Per motivi numerici il picco (verso il basso) in corrispondenza alla pulsazione  $\omega = 1$  rad/s appare finito mentre è infinito, in quanto |G(j1)| = 0 e quindi  $|G(j1)|_{dB} = -\infty$ .

2. [5.5 punti] Il diagramma di Nyquist, per  $\omega \in \mathbb{R}$ , della risposta in frequenza di cui abbiamo tracciato il diagramma di Bode al punto i) è (assieme ad un suo dettaglio in prossimità del cerchio unitario):

3





Aggiungendo il semicerchio orario all'infinito dovuto al polo in s=0, si vede chiaramente come il diagramma di Nyquist non compie giri attorno a -1+j0, ovvero N=0. Poichè G(s) ha 2 poli a parte reale positiva, ovvero  $n_{G+}=2$ , la condizione N=0 implica  $n_{W+}=2$ . Pertanto il sistema retroazionato non è BIBO stabile ed ha due poli a parte reale positiva.

**Esercizio 2.** Calcoliamo prima  $V_{+}(s)$  e  $V_{-}(s)$ . Dal bilancio delle correnti sul nodo + si trova

$$\frac{U(s) - V_{+}(s)}{Z_{1}(s)} = \frac{V_{+}(s) - Y(s)}{Z_{3}(s)}$$

che porta a

$$V_{+}(s) = \frac{Z_{3}(s)U(s) + Z_{1}(s)Y(s)}{Z_{1}(s) + Z_{3}(s)}.$$

In modo assolutamente analogo si ottiene

$$\frac{U(s) - V_{-}(s)}{Z_{1}(s)} = \frac{V_{-}(s) - Y(s)}{Z_{2}(s)}$$

che porta a

$$V_{-}(s) = \frac{Z_{2}(s)U(s) + Z_{1}(s)Y(s)}{Z_{1}(s) + Z_{2}(s)}.$$

- 1. [2 punti] Nel caso ideale, ponendo  $V_{+}(s) = V_{-}(s)$ , si ottiene facilmente Y(s) = U(s), da cui  $W_{id}(s) = 1$ .
- 2. [3.5 punti] Nel caso reale, sostituendo  $Z_1(s) = R, Z_2(s) = \frac{1}{sC}, Z_3(s) = \frac{1}{\alpha sC}$ , ricordando RC = 1 e ponendo  $Y(s) = K[V_+(s) V_-(s)]$  si ottiene, dopo alcuni conti e ricordando che RC = 1,

$$W_r(s) = \frac{K(1-\alpha)s}{\alpha s^2 + [(1+\alpha) + (1-\alpha)K]s + 1}.$$

3. [3.5 punti] Per K elevato, il segno del termine di I grado al denominatore è positivo se  $\alpha \leq 1$ , mentre è negativo se  $\alpha > 1$ . Dalla regola dei segni di Cartesio si ha BIBO stabilità per  $\alpha \leq 1$ , instabilità altrimenti. Lo scambio dei morsetti equivale ad operare lo scambio  $K \leftrightarrow -K$ , con il che le conclusioni sulla BIBO stabilità sarebbero quasi opposte: stabilità per  $\alpha \geq 1$  ed instabilità altrimenti.

Esercizio 3. In entrambi i casi le richieste su tipo ed  $e_{rp}$  impongono la presenza di un polo in 0 e di un guadagno pari a 100 nel controllore. Ciò fa sì che il controllore presenti un fattore  $\frac{100}{s}$ . Tracciamo allora i diagrammi di Bode della FDT in catena aperta  $\frac{100}{s}G(s)$ 





1. [3.5 punti] Nel primo caso, per garantire che  $\omega_a = 0.1 \text{ rad/s}$ , il modulo va abbassato di 60db in corrispondenza a tale pulsazione, così che il diagramma (asintotico e reale) dei moduli attraversi lì l'asse delle ascisse (a 0 dB). Se l'attraversamento avviene con pendenza di -20 dB/dec, il margine di fase è già a posto. A tal fine è sufficiente utilizare una rete ritardatrice, con la coppia polo-zero distante 3 decadi, posizionata prima di  $\omega_a$ . Ad esempio

$$C_1(s) = \frac{100}{s} \frac{1 + 100s}{1 + 10^5 s}$$

ve bene.

2. [3.5 punti] Nel secondo caso la struttura del PID è già assegnata:  $C_2(s) = \frac{K_i}{s}(1 + s\tau_1)(1 + s\tau_2)$ , dove la costante  $K_i$  deve valere 100 per le considerazioni precedenti. Quindi si tratta di aggiungere 2 zeri di modo che si soddisfi il doppio requisito di aumentare di 180° il margine di fase e di 140db il modulo in  $\omega = 1000$  rad/s. Per la fase basta che i 2 zeri siano prima di 1000, dopodiché esistono infiniti modi di collocare la coppia di zeri. Ad esempio si può mettere uno zero in -0.1 ed uno in -1, il che corrisponde al controllore

$$C_2(s) = \frac{100}{s}(1+10s)(1+s).$$

In figura i diagrammi di Bode del modulo per  $C_i(s)G(s)$ , i=1,2 (la verifica sul margine di fase è lasciata al lettore).



Teoria. [2+3+(1) punti] Vedi libro (pag. 164-165-166 e pag. 243-244). Esercizio 4.

1. [3 punti] L'equazione dei punti doppi  $s^2-2s-4=0$  porge le 2 soluzioni  $s=1+\sqrt{5}>0$  (cui corrisponde il valore  $K=-2(2+\sqrt{5})<0$ , quindi non accettabile) e  $s=1-\sqrt{5}\simeq -1.24<0$  (cui corrisponde il valore  $K=2(\sqrt{5}-2)\simeq 0.47>0$ , quindi accettabile). L'asintoto è il semiasse reale negativo, da cui il luogo di figura



- 2. [2 punti] Cercando le intersezioni con l'asse immaginario,  $d(i\omega) + Kn(i\omega) = 0$  porge  $(2-K-\omega^2) + i\omega(K+2) = 0$ , da cui  $K=2-\omega^2$  e  $\omega(K+2) = 0$ . La seconda  $(K \ge 0)$  implica  $\omega = 0$  che, sostituita nella seconda, porge K=2. Quindi si attraversa l'asse in s=0 per K=2. Si ha quindi stabilità per  $0 \le K < 2$
- 3. [punti 1] Fino a  $K=2(\sqrt{5}-2)\simeq 0.47$  si hanno rami complessi, quindi modi oscillatori sono assenti per  $K\geq 0.47$
- 4. [punti 1] Per K=2 (unico valore per cui il luogo interseca l'asse immaginario) si ha d(s)+Kn(s)=d(s)+2n(s)=s(s+4), da cui i modi  $1=e^{0t}$  e  $e^{-4t}$