Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №3 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-51

Махньов О. I.

Перевірив:

доц. Короткий \in В.

- 1. Дослідження залежності Іс(Uзв) для п-канального польового МДН транзистора 2N7000
 - а. Було проведно симуляцію роботи моделі польового МДН транзистора 2N7000 в режимі лінійного підвищєння напруги затвор-виток та отримано таку залежність струму стоку:

Для розрахунку порогової напруги оберемо струм стоку 20 мА, який протікає при напрузі на затворі 2.1В.

Струм, що в 4 рази більший за нього, тобто, 80 мА, протікає при напрузі стоку 2,62В. Тоді порогова напруга буде дорівнювати:

$$U_{\pi} = 2U_{\text{3Bl}} - U_{\text{3B2}}$$

$$U_{\Pi} = 2 * 2,1 - 2,62 = 1,58B,$$

що цілком відповідає графіку залежності.

Якщо підставити отриману порогову напругу в формулу $I_c = \frac{b}{2} (U_{3B} - U_{II})^2$, то можна отримати:

$$80 * 10^{-3} = \frac{b}{2} (2,62 - 1,58)^{2}$$

$$80 * 10^{-3} = \frac{b}{2} 1,0816$$

$$b = \frac{80 * 10^{-3} * 2}{1,0816} = 147,9 * 10^{-3}$$

b. Таку ж залежність було відзнято на реальному транзисторі. Отримали такі результати:

U,V	I, uA		
0,5	0		
0,6	0		
0,7	0		
0,8	0,2		
0,9	1,1		
1	6,7		
1,1	39,7		
1,2	173		
1,3	483		
1,4	958		

I,mA		
1,55		
2,2		
2,9		
3,6		
4,4		
23,9		
28,8		
33,9		
39,1		
44,5		
50		
101,3		

На малюнку наведено графік отриманої залежності з апроксимуючою кривою:

З залежності видно, що істотний струм стоку починає протікати при напрузі 1,2÷1,6В, а залежність досить непогано апроксимується квадратичною функцією, що в цілому відповідає очікуванням. Похибку в визначенні порогової напруги може бути викликана технологічними особливостями виготовлення польових транзисторів — порогова напруга для деяких транзисторів може коливатися в межах 0,5÷5В.

Для експериментальних даних коефіцієнт b:

$$I_{c} = \frac{b}{2}(U_{_{3\mathrm{B}}} - U_{_{\Pi}})^{2}$$

$$39,1*10^{-3} = \frac{b}{2}(2,3-1,58)^2$$

$$39,1 * 10^{-3} = \frac{b}{2}0,5184$$

$$b = \frac{39.1 * 10^{-3} * 2}{0.5184} = 75.42 * 10^{-3}$$

Отримали величину одного порядку, тому модель можна вважати вірною. Відхилення можна пояснити так само: технологічні процеси у деяких транзисторів дають відхилення передавальної провідності до 5 разів.

- 2. Дослідження залежності Іс(Uвс) для n-канального польового МДН транзистора 2N7000
 - а. Було проведено симуляцію наступної схеми:

Під час симуляції отримали таке сімейство характеристик:

Перевіримо, чи виконується умова досягнення струму насичення каналу при $Uec \ge U3e - Un$ для проведеної симуляції:

- 1. U3e = 2,3B. Насичення досягнуто при U6c = 0,7B ≥ 2.3B − 1,58B = 0,72B
- 2. $U_{36} = 2,5$ В. Насичення досягнуто при $U_{6c} = 0,9$ В ≥ 2.5 В 1,58В = 0,92В
- 3. U3e = 2,7B. Насичення досягнуто при U6c = 1,1B ≥ 2.7B − 1,58B = 1,12B

- 4. $U_{36} = 2.9$ В. Насичення досягнуто при $U_{6c} = 1.2$ В ≈ 2.9 В 1.58В = 1.32В
- 5. $U_{36} = 3,1B$. Насичення досягнуто при $U_{6c} = 1.3B < 2.5B 1,58B = 1,522B$

Умова виконується для початку сімейства характеристик і із точністю до першого знаку після коми. Похибки можуть бути пов'язані з деякими відхиленнями в попередньому розрахунку порогової напруги.

b. Сімейство характеристик було отримано на реальному транзисторі в лабораторії. Отримали такі результати вимірювань:

	I3,A					
Uc, B	U3 = 1,2	1,4	1,6	1,8	2	
0,3		35,4u	342u	1,3m	2,14m	
0,6	2,6u	43u	372u	1,8m	4,08m	
0,9	9u	48,8u	386u	1,88m	6,3m	
1,2	15,3u	56u	395u	1,92m	6,4m	
1,5	21u	61,7u	404u	1,94m	6,47m	
1,8	26,4u	66,9u	410u	1,95m	6,5m	
2,1	31,6u	71,6u	416u	1,97m	6,54m	
2,4	36,3u	77,5u	421u	1,98m	6,6m	
2,7	41,2u	82,4u	427u	1,99m	6,65m	
3,0	45,7u	87u	432u	2m	6,7m	

Отримані характеристики на графіку:

Нажаль, для кривих, отриманих в лабораторії, умова $Uec \ge Use - Un$ не виконується, так як порогова напруга транзистору, на якому проводився вимір, відрізняється від порогової напруги транзистору, що був використаний у першому завданні.

- 3. Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000
 - а. Було проведено симуляцію схеми підсилювача з загальним витоком з наступними параметрами компонентів:

R1 = 120 kOm

R2 = 51 кОм

R3 = 200 Om

C1 = C2 = 10 мкФ

На виході підсилювача при синусоїдальному вхідному сигналі амплітудою 20 мВ нелінійних спотворень не відбувається, що свідчить про коректний підбір робочої точки.

Таку ж схему було складено в лабораторії та досліджено при таких же вхідних сигналах. Отримали наступні результати:

b. Для перевірки робочої точки напругу генератора сигналу виставили рівною нулю. Отримали такі параметри робочої точки спокою:

$$U_{3B0} = 1,45B$$

$$U_{Bc0} = 3.9B$$

$$I_{c0} = 5.2 \text{mA}$$

с. На вхід підсилювача подали сигнал, аналогічний вхідному в симуляції. На виході отримали синусоїдальний сигнал без нелінійних спотворень, обернений по фазі на 180 градусів:

Коефіцієнт підсилення за напругою визначили як відношення амплітуди вихідного сигналу до амплітуди вхідного:

$$K_U = \frac{U_{\text{вих}}}{U_{\text{вх}}} = \frac{-194 \text{ MB}}{20 \text{ MB}} = -9.7$$

d. Для знаходження максимальної амплітуди вхідного сигналу напругу на вході підвищували до тих пір, поки на виході не з'явились нелінійні спотворення. Такою напругою виявилась 50÷80 мВ. Спотворення виглядали так:

е. Для експериментального визначення передавальної провідності робочу точку транзистора змістили на 0,14В шляхом включення до резистору R2 послідовно додатковий резистор на 10 кОм. Струм спокою виріс з 5,2 мА до 20 мА. Тоді $\Delta U_{3B} = 0,14$ В, а $\Delta I_{c} = 14,8$ мА.

$$g_m = \frac{\Delta I_c}{\Delta U_{3B}} = \frac{14.8 * 10^{-3}}{0.14} = 105 \text{ MC}$$

3 технічної документації на 2N7000 g_m має складати мінімум 100 мС, що підтверджує коректність проведеного дослідження.

Зі знайденої передавальної провідності можна знайти теоретичний коефіцієнт підсилення за напругою:

$$K_U = \frac{U_{\text{BMX}}}{U_{\text{BY}}} = -g_m R_3 = -105 * 10^{-3} * 200 = -21$$

Отримали число в 2 рази більше за експериментально визначене.

Висновки

В даній лабораторній роботі провели експериментальне дослідження поведінки польового транзистору в різних режимах роботи: відзняли статичну вихідну та передавальну характеристики, розрахували коефіцієнт b, порівняли їх з даними симуляцій. Також було складено схему підсилювача з загальним витоком і досліджено його роботу при різних вхідних параметрах. Експериментально та теоретично визначили коефіцієнт підсилення та передавальну провідність.

В цілому, отримані результати свідчать про коректність математичних моделей роботи транзистора, але і про наявність невідповідностей у комп'ютерних моделях транзисторів.