Chapter 2: Getting to Know Your Data

CSE 435:Data Mining

Md. Atikuzzaman

Department of Computer Science & Engineering Green University of Bangladesh atik@cse.green.edu.bd

Table of Contents

- Data Objects and Attribute Types
- 2 Hierarchy of Attribute Types
- 3 Basic Statistical Descriptions of Data
- 4 Data Visualization
- 5 Measuring Similarity and Dissimilarity

Data Objects and Attributes

What is a Data Object?

A data object represents an entity. In a dataset, these are the rows.

- Also known as: samples, instances, data points, tuples.
- Examples: A customer in a sales database, a patient in medical records.

What is an Attribute?

An **attribute** is a feature or characteristic of a data object. In a dataset, these are the **columns**.

- Also known as: dimensions, features, variables.
- Examples: customer_ID, age, product_price.

Customer Dataset

ID	age	price	segment	active
C001	22	799	Student	0
C002	35	1299	Regular	1
C003	29	499	Budget	0
C004	41	2199	Premium	0
C005	54	899	Regular	1
C006	31	1499	Premium	0

ID:
age, price:
segment:
active:

nominal (identifier) numeric (ratio) nominal binary (asymmetric

Attribute Types — Qualitative (Categorical)

Qualitative (Categorical)

- Nominal: Distinct symbols, no order.
 - Ex: eye_color, zip_codes.
- Ordinal: Values have rank/sequence.
 - Ex: drink_size (small, medium, large).
- Binary: Two states (0/1).
 - Symmetric: both outcomes equally important.
 - Asymmetric: one outcome more important (e.g., positive test).

Nominal red blue Ordinal Poor Very Good Good **Binary**

(symmetric/asymmetric)

Fall 2025

Attribute Types — Quantitative (Numeric)

Quantitative (Numeric)

- Interval-Scaled: Ordered values, meaningful differences, no true zero.
 - Ex: Temperature in Celsius, calendar dates.
- Ratio-Scaled: True zero; ratios are meaningful.
 - Ex: length, weight, salary.

Numeric (distribution view)

Interval vs Ratio (number lines)

Fall 2025

Discrete vs. Continuous Attributes

Discrete

- Takes values from a countable set (often integers).
- Examples: num_items_bought, clicks, defects.
- Described by a PMF p(x) = Pr(X = x) with $\sum_{x} p(x) = 1$.
- Typical summaries: frequency table, mode, entropy.

Continuous

- Takes values from an uncountable interval (real numbers).
- Examples: temperature, weight, time.
- Described by a PDF $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.
- $Pr(a \le X \le b) = \int_a^b f(x) dx$; single points have prob. 0.

Measuring the Central Tendency — Mean

Mean (Average)

The sum of all values divided by the count of values. Sensitive to outliers.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Sample mean: arithmetic average of *n* values.
- Population mean: average over all N population units.

Measuring the Central Tendency — Median

Median

The middle value of a sorted dataset. Robust to outliers.

- If n is odd: the $\frac{n+1}{2}$ -th value; if n is even: average of the two middle values.
- Median for grouped data:

$$\tilde{x} = L + \left(\frac{\frac{n}{2} - \mathrm{cf}}{f_m}\right) w$$

- L: lower boundary of the median class
- n: total frequency
- cf: cumulative freq. before median class
- f_m : freq. of median class
- w : class width

Measuring the Central Tendency — Mode

Mode

The value that appears most frequently. A dataset can be unimodal, bimodal, or trimodal.

- Grouped data (modal class interpolation): estimate the peak inside the modal class.
- Useful empirical relation (for moderately skewed data):

$$\mathsf{mean}-\mathsf{mode} pprox 3 \, (\mathsf{mean}-\mathsf{median})$$

• Mode for grouped data:

$$\hat{m} = L + \left(\frac{d_1}{d_1 + d_2}\right) w$$

- L : lower boundary of the modal class
- w : class width
- f_m : freq. of modal class
- f_{m-1} , f_{m+1} : freqs. of adjacent classes
- $d_1 = f_m f_{m-1}$, $d_2 = f_m f_{m+1}$

Descriptive Statistics: Central Tendency (Salaries Example)

- Dataset (thousands): {30, 35, 40, 40, 55, 60, 150}
- Mean $\bar{x} = \frac{410}{7} \approx 58.57$; Median = 40; Mode = 40.

Measures of Data Dispersion

Range and Five-Number Summary

A summary of the distribution: Minimum, Q1, Median (Q2), Q3, Maximum.

Interquartile Range (IQR)

The range of the middle 50% of the data. Robust to outliers.

$$IQR = Q_3 - Q_1$$

Measures of Data Dispersion

Variance (σ^2) and Standard Deviation (σ)

The variance is the average squared deviation from the mean; the standard deviation is its square root.

$$\underbrace{s^2}_{\text{sample variance}} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2, \qquad \underbrace{s}_{\text{sample std. dev.}} = \sqrt{s^2}.$$

$$\underbrace{\sigma^2}_{\text{population variance}} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2, \qquad \underbrace{\sigma}_{\text{population std. dev.}} = \sqrt{\sigma^2}.$$

Computational (shortcut) forms:

$$s^2 = \frac{1}{n-1} \Big(\sum_{i=1}^n x_i^2 - n \bar{x}^2 \Big), \qquad \sigma^2 = \frac{1}{N} \Big(\sum_{i=1}^N x_i^2 - N \mu^2 \Big).$$

Dispersion: Worked Example (Salaries)

Dataset (thousands): {30, 35, 40, 40, 55, 60, 150}

Five-Number Summary

- Min = 30
- Q_1 (25th pct) = **35**
- Median $(Q_2) = 40$
- Q_3 (75th pct) = **60**
- Max = 150

Interquartile Range

$$IQR = Q_3 - Q_1 = 60 - 35 = 25$$

Mean
$$\bar{x} = \frac{410}{7} \approx 58.57$$
, $n = 7$.

Variance and Standard Deviation

$$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}$$

$$\approx \frac{816.5 + 555.5 + 344.8 + 344.8 + 12.7 + 2.0 + 8359.2}{6}$$

$$\approx 1739.25,$$

$$s=\sqrt{1739.25} \approx \boxed{41.7}.$$

Note: The outlier **150** inflates **5** (high variability).

Symmetric vs. Skewed Data

Median, Mean, Mode

- Symmetric: Mean = Median = Mode.
- Positively skewed (right tail): Mode
 Median < Mean.
- Negatively skewed (left tail): Mean < Median < Mode.

Correlation of Data

Correlation measures the linear relationship between two variables.

- Positive Correlation: As one variable increases, the other tends to increase. $(r \approx +1)$
- Negative Correlation: As one increases, the other decreases. $(r \approx -1)$
- No Correlation: No clear linear relationship. $(r \approx 0)$

Negative Correlation

Boxplot Analysis

What a boxplot shows

- Five-number summary: min, Q_1 , median (Q_2) , Q_3 , max.
- Box spans the interquartile range: $IOR = Q_3 Q_1$.
- Whiskers: extend to the most extreme points within $[Q_1 1.5 \text{ IOR}, Q_3 + 1.5 \text{ IOR}]$.
- Outliers: observations outside the whisker range (plotted as points).
- Quickly compares center (median), spread (IQR), and skewness/outliers across groups.

Properties of the Normal Distribution

Key Characteristics

- The curve is bell-shaped and symmetric about the mean (μ) .
- The mean, median, and mode are all equal and located at the center.
- The total area under the curve is equal to 1 (or 100%).
- The curve is described by its mean (μ) and standard deviation (σ) .

Probability Density Function (PDF) The formula

that defines the curve is: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$

Fall 2025

Why Visualize Data?

From Numbers to Insights

Data visualization turns raw data into charts and graphics so patterns, trends, and outliers jump out quickly.

- Summarize a dataset at a glance.
- Reveal patterns/trends that are hard to see in tables.
- Spot outliers and data quality issues.
- Communicate findings clearly to others.

"The greatest value of a picture is when it forces us to notice what we never expected to see." — John Tukey

Visualizing Distributions: The Histogram

Use Case

 Distribution of a single continuous variable.

Questions

Symmetry? Skew? Unimodal/bimodal?

Examples

Exam scores, ages, temperatures.

Comparing Categories: The Bar Chart

Use Case

 Compare a numeric value across discrete categories.

Examples

 Sales by quarter, population by country, feature importance.

Exploring Relationships: The Scatter Plot

Use Case

 Relationship between two continuous variables.

Examples

 Ads spend vs. revenue; height vs. weight; temperature vs. sales.

Showing Proportions: The Pie Chart

Use Case

- To show the proportional composition or percentage share of a whole.
- It's most effective with a small number of categories (usually 2-6).

Examples

- Market share of competing companies.
- Breakdown of a budget by department.
- Survey responses (e.g., "Agree", "Disagree", "Neutral").

Federal Budget

Fall 2025

Similarity and Dissimilarity: The Basics

Core Concepts

- **Dissimilarity** (or **distance**) measures how *different* two data objects are. A low value means they are alike.
- Similarity measures how alike two data objects are. A high value means they are alike.

Relationship

Often, they are inverse concepts. A similarity measure sim(x, y) in the range [0, 1] can be converted into a dissimilarity measure d(x, y) using: d(x, y) = 1 - sim(x, y)

Why is this important?

 It's the foundation for many data mining tasks like clustering, classification (k-Nearest Neighbors), and anomaly detection.

Numeric Data: Minkowski Distance (Lp Norm)

General Formula

For two n-dimensional data points $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$, the Minkowski distance is: $d(\mathbf{x}, \mathbf{y}) = (\sum_{k=1}^{n} |x_k - y_k|^p)^{1/p}$

Three Common Cases:

- p = 1: Manhattan Distance (L_1)
 - The "city block" distance. You can only travel along grid lines. $d_1(x,y) = \sum_{k=1}^{n} |x_k y_k|$
- p = 2: Euclidean Distance (L_2)
 - The straight-line distance ("as the crow flies"). $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^n (x_k y_k)^2}$
- p = ∞ : Supremum Distance (L_{∞})
 - The maximum difference along any single dimension. $d_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{k} |x_k y_k|$

Minkowski Distance: Worked Example

Let's calculate the distance between two points in a 2D space: $\mathbf{x} = (2, 2)$, $\mathbf{y} = (5, 6)$

1. Euclidean Distance (p = 2)

$$d_2 = \sqrt{(5-2)^2 + (6-2)^2}$$

$$= \sqrt{3^2 + 4^2}$$

$$= \sqrt{9+16}$$

$$= \sqrt{25} = \mathbf{5}$$

2. Manhattan Distance (p = 1)

$$d_1 = |5 - 2| + |6 - 2|$$

$$= 3 + 4$$

$$= 7$$

3. Supremum Distance $(p = \infty)$

$$d_{\infty} = \max(|5-2|, |6-2|)$$

= $\max(3, 4) = 4$

Numeric Data: Cosine Similarity

Concept

Measures the cosine of the angle (θ) between two non-zero vectors. It evaluates **orientation**, not magnitude, making it excellent for comparing documents or profiles.

Formula:

$$sim_{cos}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|} = \frac{\sum_{k=1}^{n} x_k y_k}{\sqrt{\sum_{k=1}^{n} x_k^2} \sqrt{\sum_{k=1}^{n} y_k^2}}$$

Interpretation (for non-negative data):

- Result is in the range [0, 1].
- $sim_{cos} = 1$ \Longrightarrow Vectors point in the same direction (most similar).
- $sim_{cos} = 0 \implies Vectors$ are orthogonal (unrelated).

Cosine Similarity: Worked Example

Consider two documents represented by term-frequency vectors: $\mathbf{x} = (3,2)$ $\mathbf{y} = (2,3)$

Step 1: Calculate the dot product $(x \cdot y) x \cdot y = (3)(2) + (2)(3) = 6 + 6 = 12$

Step 2: Calculate the magnitude of each vector ($\|\mathbf{x}\|$ and $\|\mathbf{y}\|$)

$$\|\mathbf{x}\| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$$

$$\|\mathbf{y}\| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$$

Step 3: Calculate the cosine similarity

$$sim_{cos}(\mathbf{x}, \mathbf{y}) = \frac{12}{\sqrt{13} \times \sqrt{13}} = \frac{12}{13} \approx \mathbf{0.923}$$

Conclusion: The vectors are very similar in orientation.

Proximity for Binary Data

For binary vectors, we use a **contingency table** based on matching attributes.

		Object y			
		1	0	Total	
Object x	1	q	r	q+r	
	0	S	t	s+t	
	Total	q+s	r+t	n	

- q: number of attributes where x = 1, y = 1
- t: number of attributes where x = 0, y = 0

Simple Matching Coefficient (SMC)

• For **symmetric** variables (0 and 1 have equal weight, e.g., gender).

$$\mathsf{SMC} = \frac{q+t}{q+r+s+t}$$

Jaccard Coefficient

• For **asymmetric** variables (0-0 matches are ignored, e.g., presence of a disease).

$$J = \frac{q}{q + r + s}$$

Binary Proximity: Worked Example (Part 1/3)

Problem Data

We want to calculate the proximity between Jack and Mary using their attributes.

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Υ	N	Р	N	Ν	N
Mary	F	Y	N	Р	N	Р	N

Step 1: Convert to Binary Vectors We convert the attributes to a numerical binary format using the following mapping:

- Symmetric Attributes (Gender): M=1, F=0
- Asymmetric Attributes (Fever, Cough, Tests): Y/P=1 (presence), N=0 (absence)

This gives us the binary vectors:

- Jack (x): (Gender, Fever, Cough, Test-1, Test-2, Test-3, Test-4) = (1, 1, 0, 1, 0, 0, 0)
- Mary (y): (Gender, Fever, Cough, Test-1, Test-2, Test-3, Test-4) = (0, 1, 0, 1, 0, 1, 0)

Binary Proximity: Worked Example (Part 2/3)

Recall Binary Vectors:

- Jack (x): (1,1,0,1,0,0,0)
- Mary (y): (0,1,0,1,0,1,0)

Step 2: Create the Contingency Table By comparing the vectors attribute by attribute:

- q (attributes where x = 1, y = 1): 2 (Fever, Test-1)
- r (attributes where x = 1, y = 0): 1 (Gender)
- s (attributes where x = 0, y = 1): 1 (Test-3)
- t (attributes where x = 0, y = 0): 3 (Cough, Test-2, Test-4)

Binary Proximity: Worked Example (Part 3/3)

Step 3: Calculate Similarity Measures

Simple Matching Coefficient (SMC) (Used for symmetric binary attributes, considers all matches/mismatches)

$$SMC = \frac{q+t}{q+r+s+t}$$

$$= \frac{2+3}{2+1+1+3}$$

$$= \frac{5}{7} \approx 0.714$$

The SMC considers the mismatch in Gender and the matches in absent symptoms (Cough, Test-2, Test-4) equally important.

Jaccard Coefficient

(Used for asymmetric binary attributes, ignores 0-0 matches)

$$J = \frac{q}{q+r+s}$$
$$= \frac{2}{2+1+1}$$
$$= \frac{2}{4} = \mathbf{0.5}$$

The Jaccard coefficient focuses only on shared presences (Fever, Test-1) and mismatches where at least one attribute is present. It ignores attributes where both are absent.

Why Standardize Numeric Data?

The Problem of Varying Scales

Many machine learning algorithms and distance metrics are sensitive to the scale of input features. An attribute with a large range (e.g., salary) can dominate and bias the outcome, while an attribute with a small range (e.g., age) might be treated as less important.

Example: Consider calculating the distance between two customers.

- **Customer A:** Age = 25, Salary = \$50,000
- **Customer B:** Age = 30, Salary = \$60,000

The difference in salary (\$10,000) is numerically much larger than the difference in age (5). Without standardization, the salary attribute would almost completely determine the distance.

Goal of Standardization

To transform data attributes onto a common scale, ensuring that all features contribute more equally to the analysis, without distorting the differences in the ranges of values.

Method 1: Min-Max Normalization

Concept

This technique rescales a feature to a fixed range, typically [0,1]. It preserves the relationships among the original data values.

Formula (to scale to [0, 1]): For a value v of an attribute A, the normalized value v' is:

$$v' = \frac{v - \min_A}{\max_A - \min_A}$$

- min_A: The minimum value of attribute A.
- max_A: The maximum value of attribute A.

Pros & Cons:

Pro: Guarantees all features will have the exact same scale. Useful for algorithms that require bounded inputs.

Con: Highly sensitive to outliers. A single extreme value can compress the rest of the data into a tiny sub-range.

Min-Max Normalization: Worked Example

Consider an 'Income' attribute (in thousands) with the following values:

$$\{25, 30, 45, 60, 150\}$$

Normalize the value v = 45 to the range [0, 1].

Step 1: Find the min and max values

- $min_A = 25$
- $\max_{A} = 150$

Step 2: Apply the formula

$$v' = \frac{v - \min_A}{\max_A - \min_A} = \frac{45 - 25}{150 - 25} = \frac{20}{125} = \mathbf{0.16}$$

Result: The income of 45k is mapped to 0.16 on a [0, 1] scale. The extreme outlier (150) is mapped to 1.

Method 2: Z-Score Standardization

Concept

This technique transforms data to have a **mean of 0** and a **standard deviation of 1**. The resulting value is called a z-score.

Formula: For a value v, the standardized value v' is:

$$v' = \frac{v - \mu}{\sigma}$$
 or $v' = \frac{v - \bar{x}}{s}$

- μ or \bar{x} : The mean of the attribute.
- \bullet σ or s: The standard deviation of the attribute.

The resulting z-score tells us how many standard deviations a value is from the mean.

Pros & Cons:

Pro: Much less sensitive to outliers than min-max normalization. It is the default choice for many machine learning models.

Con: Does not map data to a specific bounded range.

Z-Score Standardization: Worked Example

Problem: Using the 'Income' data $\{25, 30, 45, 60, 150\}$, **Step 3: Apply Z-Score Formula** standardize the value v = 45.

Step 1: Calculate the Mean (\bar{x})

$$\bar{x} = \frac{\sum x_i}{n} = \frac{310}{5} = 62$$

Step 2: Calculate Standard Deviation (s)

The sum of squared differences is $\sum (x_i - \bar{x})^2 = 10430$.

$$s^2 = \frac{10430}{4} = 2607.5$$
$$s = \sqrt{2607.5} \approx 51.06$$

$$v' = \frac{v - \bar{x}}{s}$$
$$= \frac{45 - 62}{51.06}$$
$$= \frac{-17}{51.06}$$
$$\approx -0.333$$

he income of 15k is 0 333 st

The income of 45k is **0.333** standard deviations **below** the mean

References

- [1] Jiawei Han, Micheline Kamber, & Jian Pei, *Data Mining: Concepts and Techniques*, 4th Edition, Morgan Kaufmann, 2012.
- [2] David J. Hand, Heikki Mannila, & Padhraic Smyth, *Principles of Data Mining*, First Edition, A Bradford Book, 2001.
- [3] Richard O. Duda, Peter E. Hart, & David G. Stork, *Pattern Classification*, 2nd Edition, Wiley, 2001.