

Zero-knowledge on the blockchain

Privacy-preserving cryptocurrencies

Privacy-preserving smart contracts

Proof of regulatory compliance

Blockchain-based sovereign identity

Zero-knowledge on the blockchain

Privacy-preserving cryptocurrencies

Privacy-preserving smart contracts

Proof of regulatory compliance

Blockchain-based sovereign identity

see [ZKProof Standardization – Applications Track]

Zero-knowledge on the blockchain

Privacy-preserving cryptocurrencies

Privacy-preserving smart contracts

Proof of regulatory compliance

Blockchain-based sovereign identity

see [ZKProof Standardization – Applications Track]

Need zero-knowledge non-interactive arguments of knowledge, ideally succinct ones: zk-SNARK.

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.
Require a Common Reference String (CRS)

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.

Require a Common Reference String (CRS)

Standardization

Reference String (SRS)

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.
Require a Structured Reference String (SRS)

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.
Require a Structured Reference String (SRS)

Generating an SRS:

Trusted setup

QAP-based

[GGPR13][PGHR13][BCGTV13][DFGK14] [Groth16][GM17][BG18]...

Fastest verification. Widely used.
Require a Structured Reference String (SRS)

Generating an SRS:

- Trusted setup
- MPC + destruction
- Updatable SRS

[BCGTV15][BGG17]

[GKMMM18, MBKM19]

Scalable SRS generation ("Powers of Tau")

[BGM18]

Avoiding a Structured Reference String

Other zk-SNARKs

PCP-based (e.g., libSTARK)

[Micali94][BCGT13][BCS16][BBCGGHPRSTV17][BBHR18]

Asymptotically succinct but large constants.

Avoiding a Structured Reference String

Other zk-SNARKs

PCP-based (e.g., libSTARK)

[Micali94][BCGT13][BCS16][BBCGGHPRSTV17][BBHR18]

Asymptotically succinct but large constants.

Non-succinct ZK:

Avoiding a Structured Reference String

Other zk-SNARKs

• PCP-based (e.g., libSTARK)

[Micali94][BCGT13][BCS16][BBCGGHPRSTV17][BBHR18]

Asymptotically succinct but large constants.

Non-succinct ZK:

• Aurora [BCRSVW19]

• Bulletproofs [BCCGP16][BBBPWM17]

• Hyrax [WTSTW17]

• Ligero [AHIV17]

• ZKBoo(++) [GMO16][CDGORRSZ17]

Slow verification and/or large proofs (as statement grows).

Seeing transactions

Slow verification

- → miners get a head start by not validating
- → double-spends and chain splits [July 2015 Bitcoin fork]

Slow verification

- → miners get a head start by not validating
- → double-spends and chain splits [July 2015 Bitcoin fork]

Slow verification

- → miners get a head start by not validating
- → double-spends and chain splits [July 2015 Bitcoin fork]

zero-knowledge succinct <u>hybrid</u> argument of knowledge

zero-knowledge succinct <u>hybrid</u> argument of knowledge

zero-knowledge succinct <u>hybrid</u> argument of knowledge

zero-knowledge succinct <u>hybrid</u> argument of knowledge

Relies on SRS

Fast (comparable to QAP-based SNARK)

Optimistically verify during propagation.

Optimistically verify during propagation.

Optimistically verify during propagation.

Optimistically verify tx for inclusion in block template.

Prudently verify later, during PoW.

– Such pair of proofs is a fraud proof for compromised SRS!

- Such pair of proofs is a fraud proof for compromised SRS!
- Recovery

- Such pair of proofs is a fraud proof for compromised SRS!
- Recovery
 - Soundness: prudently verify

- Such pair of proofs is a fraud proof for compromised SRS!
- Recovery
 - Soundness: prudently verify
 - Speed: regenerate SRS + refresh the optimistic proofs.

- Such pair of proofs is a fraud proof for compromised SRS!
- Recovery
 - Soundness: prudently verify
 - Speed: regenerate SRS + refresh the optimistic proofs.

- Such pair of proofs is a fraud proof for compromised SRS!
- Recovery
 - Soundness: prudently verify
 - Speed: regenerate SRS + refresh the optimistic proofs.

SHARK requirement: anyone can refresh, without original sender.

Attempt – parallel composition:

Attempt – parallel composition:

Attempt – parallel composition:

Attempt – parallel composition:

Attempt – parallel composition:

Attempt – parallel composition:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

Attempt – parallel composition:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

(2) Construct a SNARK for the same L:

Attempt – parallel composition:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

(2) Construct a SNARK for the same L:

Not pictured: G_{NIZK} , G_{SNARK}

Attempt – parallel composition:

1) Fix a language L and construct a NIZK for it:

② Construct a SNARK for the same L:

Call π "prudent proof"

Optimistic proofs should be refreshable without *w*

Not pictured: G_{NIZK} , G_{SNARK}

Attempt – parallel composition:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

(2) Construct a SNARK for the same L:

Optimistic proofs should be refreshable without *w*

 $\Rightarrow \phi$ is **not** a SHARK optimistic proof

Not pictured: G_{NIZK} , G_{SNARK}

Construction:

Construction:

Construction:

Construction:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

Construction:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

② Construct a SNARK for " V_{NIZK} accepts"

Construction:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

② Construct a SNARK for " V_{NIZK} accepts"

Construction:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

② Construct a SNARK for " V_{NIZK} accepts"

Construction:

1 Fix a language L and construct a NIZK for it:

Call π "prudent proof"

② Construct a SNARK for " V_{NIZK} accepts"

Construction:

1) Fix a language L and construct a NIZK for it:

② Construct a SNARK for " V_{NIZK} accepts"

Not pictured: G_{NIZK} , G_{SNARK}

Construction:

1) Fix a language L and construct a NIZK for it:

Call π "prudent proof"

Call ϕ "optimistic proof"

② Construct a SNARK for " V_{NIZK} accepts"

Generically combining state-of-the-art components:

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

+O(|C|)-size circuit

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

 $+ O(\lambda |C|)$ group ops in V_{NIZK}

+O(|C|)-size circuit

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

Generically combining state-of-the-art components:

Bulletproofs NIZK + Groth I 6 SNARK

NIZK for RICS

"arithmetic circuits with bilinear gates"
 a new compilation technique for linear PCPs
 NIZK for RICS

 \approx "arithmetic circuits with bilinear gates"

NIZK for RICS

- a new compilation technique for linear PCPs
- public coin NIZK from LPCPs ⇒ prudent mode

 \approx "arithmetic circuits with bilinear gates"

• a new compilation technique for linear PCPs

• public coin NIZK from LPCPs ⇒ prudent mode

 an optimized variant of Bulletproofs' inner product argument

≈ "arithmetic circuits with bilinear gates"

NIZK for RICS

- a new compilation technique for linear PCPs
- public coin NIZK from LPCPs ⇒ prudent mode
 - an optimized variant of Bulletproofs' inner product argument

 $\Rightarrow V_{\text{NIZK}}$ has an "algebraic heart"

≈ "arithmetic circuits with bilinear gates"

NIZK for RICS

- a new compilation technique for linear PCPs
- public coin NIZK from LPCPs ⇒ prudent mode
 - an optimized variant of Bulletproofs' inner product argument

 $\Rightarrow V_{\text{NIZK}}$ has an "algebraic heart"

A special-purpose SNARK

≈ "arithmetic circuits with bilinear gates"

- a new compilation technique for linear PCPs
- NIZK for RICS public coin NIZK from LPCPs ⇒ prudent mode
 - an optimized variant of Bulletproofs' inner product argument

 $\Rightarrow V_{\text{NIZK}}$ has an "algebraic heart"

A special-purpose SNARK

for "encoded polynomial delegation", a problem we introduce

[GGPR12] [BCIOP13]

[GGPR12] [BCIOP13]

1 Design a proof system sound against linear provers

- 1) Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1) Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2) Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

decision predicate

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

- 1 Design a proof system sound against linear provers
- 2 Force prover to be linear using a cryptographic encoding

Can define natural notions of completeness, PoK, ZK.

Our compilation technique

P

V

Observe that P_{LPCP} does not need to know queries a priori.

P

Observe that P_{LPCP} does not need to know queries a priori.

Observe that P_{LPCP} does not need to know queries a priori.

state,

Observe that P_{LPCP} does not need to know queries a priori.

Observe that P_{LPCP} does not need to know queries a priori.

Observe that P_{LPCP} does not need to know queries a priori.

Observe that P_{LPCP} does not need to know queries a priori.

Verifier knows: \Re , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Verifier knows: \Re , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\vec{u}}$, $\mathbf{cm}_{\vec{v}}$, and $z \in \mathbb{F}$.

Verifier knows: \S , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\vec{u}}$, $\mathbf{cm}_{\vec{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

Verifier knows: \Re , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGPI6,BBBPWMI8]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\overrightarrow{u}}$, $\mathbf{cm}_{\overrightarrow{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

So the verifier:

Verifier knows: \Re , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGPI6,BBBPWMI8]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\overrightarrow{u}}$, $\mathbf{cm}_{\overrightarrow{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

So the verifier: \bullet computes commitments to queries: $\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$

Verifier knows: \S , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\vec{u}}$, $\mathbf{cm}_{\vec{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

So the verifier: \bullet computes commitments to queries: $\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$

• engages in IP arguments for $(\mathbf{cm}_{\vec{q}}, \mathbf{cm}_{\vec{\pi}}, a)$

Verifier knows: \S , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\overrightarrow{u}}$, $\mathbf{cm}_{\overrightarrow{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

So the verifier: \bullet computes commitments to queries: $\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$

• engages in IP arguments for $(\mathbf{cm}_{\vec{q}}, \mathbf{cm}_{\vec{\pi}}, a)$

Result: NIZK from linear PCPs!

Verifier knows: \S , a's, and commitment to proof $\mathbf{cm}_{\vec{\pi}} \coloneqq \mathrm{Commit}(\vec{\pi})$

Goal: for every query \vec{q} check $a = \langle \vec{q}, \vec{\pi} \rangle$ for a pre-committed $\vec{\pi}$

Technique: inner-product arguments

[BCCGP16,BBBPWM18]

Input: Two vector Pedersen commitments $\mathbf{cm}_{\vec{u}}$, $\mathbf{cm}_{\vec{v}}$, and $z \in \mathbb{F}$.

Prove: The decommitments $\vec{u}, \vec{v} \in \mathbb{F}^n$ have the specified inner-product $z = \langle \vec{u}, \vec{v} \rangle$

So the verifier: \bullet computes commitments to queries: $\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$

• engages in IP arguments for $(\mathbf{cm}_{\vec{q}}, \mathbf{cm}_{\vec{\pi}}, a)$

Result: NIZK from linear PCPs!

SHARK prudent proofs

$V_{\scriptscriptstyle{ m NIZK}}$

 check that LPCP decision predicate accepts (cheap)

V_{NIZK}

- check that LPCP decision predicate accepts (cheap)
- compute Pedersen commitment to each LPCP query \vec{q} (costly)

V_{NIZK}

- check that LPCP decision predicate accepts (cheap)
- compute Pedersen commitment to each LPCP query \vec{q} (costly)
- check that each inner product argument verifier accepts (costly)

$V_{\scriptscriptstyle{ m NIZK}}$

- check that LPCP decision predicate accepts (cheap)
- compute Pedersen commitment to each LPCP query \vec{q} (costly)
- check that each inner product argument verifier accepts (costly)

(Not pictured: Fiat-Shamir transform, ...)

$V_{\scriptscriptstyle{ ext{NIZK}}}$

- check that LPCP decision predicate accepts (cheap)
- compute Pedersen commitment to each LPCP query \vec{q} (costly)
- check that each inner product argument verifier accepts (costly)

we will make P_{SNARK} do both

(Not pictured: Fiat-Shamir transform, ...)

$V_{\scriptscriptstyle{ m NIZK}}$

- check that LPCP decision predicate accepts (cheap)
- compute Pedersen commitment to each LPCP query \vec{q} (costly)
- check that each inner product argument verifier accepts (costly)

A new building block: "encoded polynomial delegation"

we will make P_{SNARK} do both

(Not pictured: Fiat-Shamir transform, ...)

Goal: compute $\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$

Goal: compute $\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \mathsf{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow \Theta$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

Each query \vec{q} has nice algebraic structure:

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \mathsf{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I2]

$$au = \mathbf{S}$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_1(\tau), p_2(\tau), ..., p_n(\tau))$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_1(\tau), p_2(\tau), ..., p_n(\tau))$$

$$p_i(\tau) = p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^d$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_1(\tau), p_2(\tau), ..., p_n(\tau))$$

$$= (p_{1,0}, p_{2,0}, ..., p_{n,0})$$

$$p_i(\tau) = p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^d$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= (p_{1,0}, p_{2,0}, \dots, p_{n,0}) + \tau \cdot (p_{1,1}, p_{2,1}, \dots, p_{n,1})$$

$$p_i(\tau) = p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^d$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= (p_{1,0}, p_{2,0}, \dots, p_{n,0}) + \tau \cdot (p_{1,1}, p_{2,1}, \dots, p_{n,1}) + \dots$$

$$\tau^d \cdot (p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

$$p_i(\tau) = p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^d$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \mathrm{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\begin{split} \vec{q} &= (p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau)) \\ &= (& p_{1,0}, & p_{2,0}, \dots, & p_{n,0}) \\ & \tau \cdot (& p_{1,1}, & p_{2,1}, \dots, & p_{n,1}) \\ & \cdots \\ & \tau^{d} \cdot (& p_{1,d}, & p_{2,d}, \dots, & p_{n,d}) \end{split}$$

$$cm_{\vec{q}} &= \operatorname{Commit}(p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau))$$

$$\tau^{d} \cdot (& p_{1,d}, & p_{2,d}, \dots, & p_{n,d})$$

$$p_{i}(\tau) &= p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^{d}$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\vec{q} = (p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau))$$

$$= (p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot (p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\cdots$$

$$\tau^{d} \cdot (p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

$$cm_{\vec{q}} = Commit(p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau))$$

$$= Commit(p_{1,0}, p_{2,0}, \dots, p_{n,0})$$

$$\tau^{d} \cdot (p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow \emptyset$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\mathbf{cm}_{\vec{q}} = \text{Commit}(p_{1}(\tau), p_{2}(\tau), ..., p_{n}(\tau))$$

$$= \text{Commit}(p_{1,0}, p_{2,0}, ..., p_{n,0}) + \tau \cdot \text{Commit}(p_{1,1}, p_{2,1}, ..., p_{n,1})$$

$$\vec{q} = (p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau))$$

$$= (p_{1,0}, p_{2,0}, \dots, p_{n,0}) + \tau \cdot (p_{1,1}, p_{2,1}, \dots, p_{n,1}) + \tau \cdot (p_{1,1}, p_{2,1}, \dots, p_{n,1}) + \tau \cdot (p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

$$\vec{p}_{i}(\tau) = \vec{p}_{i,0} + \vec{p}_{i,1}\tau + \dots + \vec{p}_{i,d}\tau^{d}$$

Goal: compute
$$\mathbf{cm}_{\vec{q}} \coloneqq \operatorname{Commit}(\vec{q})$$

$$\vec{q} \leftarrow Q \leftarrow Q$$

Most efficient linear PCP: quadratic arithmetic programs of [GGPR I 2]

$$\tau = 3$$

$$\begin{split} \vec{q} &= (p_{1}(\tau), p_{2}(\tau), \dots, p_{n}(\tau)) \\ &= (& p_{1,0}, & p_{2,0}, \dots, & p_{n,0}) + \\ & \tau \cdot (& p_{1,1}, & p_{2,1}, \dots, & p_{n,1}) + \\ & \tau^{d} \cdot (& p_{1,d}, & p_{2,d}, \dots, & p_{n,d}) \end{split}$$

$$p_i(\tau) = p_{i,0} + p_{i,1}\tau + \dots + p_{i,d}\tau^d$$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$ Goal: given input $\tau \in \mathbb{F}$,

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: given input $\tau \in \mathbb{F}$, outsource this computation:

$$U \coloneqq U_0 + \tau \cdot U_1 + \dots + \tau^d \cdot U_d \ .$$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Encoded polynomial delegation

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: given input $\tau \in \mathbb{F}$, outsource this computation:

$$U \coloneqq U_0 + \tau \cdot U_1 + \dots + \tau^d \cdot U_d \ .$$

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Encoded polynomial delegation

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: given input $\tau \in \mathbb{F}$, outsource this computation:

$$U \coloneqq U_0 + \tau \cdot U_1 + \dots + \tau^d \cdot U_d .$$

For outsourcing $\mathbf{cm}_{\vec{q}}$ set $U_k = \text{Com}(p_{1,k}, p_{2,k}, ..., p_{n,k})$

New building block: SNARK for encoded polynomial delegation in pairing groups

Goal: outsource computation of
$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= \mathrm{Com}(p_{1,0}, p_{2,0}, \dots, p_{n,0}) +$$

$$\tau \cdot \mathrm{Com}(p_{1,1}, p_{2,1}, \dots, p_{n,1}) +$$

$$\dots$$

$$\tau^d \cdot \mathrm{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Encoded polynomial delegation

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: given input $\tau \in \mathbb{F}$, outsource this computation:

$$U \coloneqq U_0 + \tau \cdot U_1 + \dots + \tau^d \cdot U_d \ .$$

For outsourcing $\mathbf{cm}_{\vec{q}}$ set $U_k = \text{Com}(p_{1,k}, p_{2,k}, ..., p_{n,k})$

New building block: SNARK for encoded polynomial delegation in pairing groups + multilinear variant for our optimized IP argument.

SHARK optimistic proofs

Goal: outsource computation of

$$\mathbf{cm}_{\vec{q}} = \mathrm{Com}(p_1(\tau), p_2(\tau), \dots, p_n(\tau))$$

$$= Com(p_{1,0}, p_{2,0}, ..., p_{n,0}) +$$

$$\tau \cdot \text{Com}(p_{1,1}, p_{2,1}, ..., p_{n,1}) +$$

...

$$\tau^d \cdot \mathsf{Com}(p_{1,d}, p_{2,d}, \dots, p_{n,d})$$

Com()'s are fully determined by L!

Encoded polynomial delegation

Fixed parameters $U_0, U_1, \dots, U_d \in \mathbb{G}$

Goal: given input $\tau \in \mathbb{F}$, outsource this computation:

$$U \coloneqq U_0 + \tau \cdot U_1 + \dots + \tau^d \cdot U_d \ .$$

For outsourcing $\mathbf{cm}_{\vec{q}}$ set $U_k = \text{Com}(p_{1,k}, p_{2,k}, ..., p_{n,k})$

New building block: SNARK for encoded polynomial delegation in pairing groups + multilinear variant for our optimized IP argument.

Generic instantiation

Generic instantiation

Generic instantiation

Generic instantiation

Generic instantiation

Generic instantiation

Generic instantiation

 New primitive: private-coin setup needed for performance but not for soundness or ZK

- New primitive: private-coin setup needed for performance but not for soundness or ZK
- Compromised setup can be quickly detected and easily replaced

- New primitive: private-coin setup needed for performance but not for soundness or ZK
- Compromised setup can be quickly detected and easily replaced
- Speed competitive with best current zk-SNARKs

- New primitive: private-coin setup needed for performance but not for soundness or ZK
- Compromised setup can be quickly detected and easily replaced
- Speed competitive with best current zk-SNARKs
- New building blocks along the way:
 - Optimized inner product argument
 - SNARK for encoded polynomial delegation

