

Operazioni con i limiti Il limite delle somme, prodotto, quoziente di due funzioni e uguale alle somme, prodotto, quoziente dei limiti delle funzioni, of meno che non si presentino delle forme indeterminate. Limiti Notevoli • $\lim_{x\to 00} \frac{\sin x}{x} = 1$ • $\lim_{x\to +\infty} \left(1 + \frac{1}{x}\right)^{x} = e$ $\lim_{x\to 00^{\dagger}} \chi^{\frac{1}{2}} \log_{\Theta} \chi \equiv \lim_{x\to 00^{\dagger}} \frac{\log \chi}{\log \chi} = \frac{\log \chi - D - \infty}{\left(\frac{1}{\chi}\right)^{\frac{1}{2}} - D + \infty} \times^{\frac{1}{2}} >> \log \chi = D - D = 0$ Da cui otteniamo.. $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{(1 - \cos x) \cdot (1 + \cos x)}{x^2 (1 + \cos x)} = \frac{1 + \cos x - \cos x - \cos^2 x}{x^2 (1 + \cos x)} = \frac{1 + \cos x - \cos x}{x^2 (1 + \cos x)}$ $= \left(\frac{\sin^2 x}{x^2}\right)^{\frac{1}{2}} \left(\frac{1}{x^2}\right)^{\frac{1}{2}} = \frac{1}{2}$ · lim tam x = $\frac{\sin x}{x}$ = $\frac{\sin x}{x}$ = $\frac{\sin x}{x}$ = $\frac{\sin x}{x}$ = $\frac{1}{\cos x}$ Teoreme sui limiti di f. composte Usiamo due funzioni: g. x-ry lim g(x) = yo lim f (y)= e Consideriamo Questa y non e altro che y = g(x) ovvero l'immagine di g(x) f(y) = f(g(x))Quindi se il Dominio di fe uguale o contenuto nel codominio di g(x), si puo' considerare la funzione composta, che si denota come $f \circ g : x \in X \xrightarrow{g} g(x) = y \in y \xrightarrow{f} f(y) = f(g(x)) \in \mathbb{Z}$ Ovvero: esiste un intorno di 20 all interno del quale, Esiste solo un punto dove Praticomente quando col colo g(2), l'immagine q(X)= yo owero 20. e diversa da yo - 00:27 Quinoli Il $\lim_{x\to\infty} f(g(x)) = \ell$

Es:
$$\lim_{X\to +\infty} \frac{\sin\left(\frac{t}{X}\right)}{\frac{1}{X}}$$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$

Sin $\left(\frac{t}{X}\right)$: $x = \frac{8}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{1}{9} \Rightarrow \frac{t}{X} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{t}{2} \Rightarrow \frac{t}{2} \to 0$ Sin $\left(\frac{t}{X}\right)$: $x = \frac{t}{2} \to 0$ Sin $\left($

1:38

```
Infinitesimi
  f(x) e un infinitesimo in xo se lim f(x)=0
Supponions che feg sions due inf. in x_0, direns che feg sons inf. dello stesso ordine se \lim_{x\to x_0} \frac{f^{(x)}}{g(x)} = e, con \ell \neq 0 e finito.
f e un inf di ordine superiore a g se \lim_{x\to x_0} \frac{f}{g} = 0 f >> g , f = o(g)
f e un inf di ordine inferiore a g se \lim_{x\to x_0} \frac{f}{g} = \infty f < g
Es: \lim_{x\to 0} \frac{\sin x}{x} = 1 = D Sin x e x sono infin. dello stesso ordine.
ES: \lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} = 0 1-cosx e x^2 sono infin. dello stesso ordine.
ES: \lim_{x\to 0} \frac{\log(1+x)}{x} = 1 = 0 \log(1) = x \text{ sono infin. dello stesso ordine.}
 Si dice che se \lim_{x\to\infty} \frac{f(x)}{g(x)} = 1 = 0 fe g sono asintotiche : f \sim g
 Se pero lim f(x) \neq 1, "si puo fore qual cosa lo stesso":
 ES: \lim_{x\to 0} \frac{1-\cos x}{x^2} | 0 scrivions come \lim_{x\to 0} \frac{1-\cos x}{\left(\frac{1}{2}\right)} = 1 = 0 \int \sqrt{\frac{1}{2}}g = 0 \int -\cos x \sqrt{\frac{1}{2}}x^2
      \lim_{X\to 0} \frac{\log(1+x^3)}{\exp(1+x^3)} \frac{1}{2} = 0 \text{ where } \frac{\log(1+x)}{x^3} = 0 \text{ where } \frac{\log(1+x)}{x} = 1
2) e^{\sin x} - 1 \cdot \frac{\sin x}{\sin x} \text{ owhere } \frac{e^x - 1}{x} = 1
        quindi possiomo dire che:
         \frac{\log (1+x^3)}{\sin^4 x} \sim \frac{x^3}{\sin^4 x} = 0 \quad \lim_{x \to 0} \frac{x^3}{x} = 0
ES: \lim_{x\to 0} \frac{1-\cos x^2}{\tan^2 x_2} 1) \left(1-\cos x \cdot \frac{1}{x^2}\right) \times^2 2) \tan^2 x \sim x^2
                                                    1- COSX -D 1/2
 =D \frac{1-\cos x}{\tan^2 x} \sim \frac{\frac{1}{2}x^2}{x^2} = \frac{1}{2}
ES: (1+x)2-1 ~ dx
```

Limiti notevoli

funzioni goniometriche			
$\lim_{x \to 0} \frac{senx}{x} = 1$	$\lim_{x \to 0} \frac{tgx}{x} = 1$		
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$\lim_{x \to 0} \frac{arcsenx}{x} = 1$		
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{arctgx}{x} = 1$		

funzioni esponenziali e logaritmiche				
$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$	$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e$			
$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$	$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$			
$ \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a $	$\lim_{x\to 0^+} x^{\alpha} \ln x = 0 \; ; \lim_{x\to +\infty} \frac{\ln x}{x^{\alpha}} = 0 \qquad \alpha > 0$			
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to +\infty} \frac{x^{\alpha}}{a^{x}} = 0 \; ; \qquad \lim_{x \to +\infty} \frac{\ln x}{a^{x}} = 0 a > 1$			
$\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{x} = \alpha$	$[f(x)]^{g(x)} = e^{g(x) \cdot ln}[f(x)]$ l'uguaglianza a sinistra può essere utile per risolvere alcuni limiti che si presentano nelle forme indeterminate 0^0 $1^{\pm \infty}$ $+\infty^0$			

ad ogni limite notevole si possono applicare le seguenti proprietà che lasciano invariato il risultato					
limite iniziale	se il testo del limite è invertito anche il risultato sarà invertito	se nel limite al posto di x c'è nx il risultato del limite resta lo stesso	se il testo del limite è invertito anche il risultato sarà invertito		
$\lim_{x\to 0}\frac{senx}{x}=1$	$\lim_{x\to 0} \frac{x}{senx} = 1$	$\lim_{x\to 0} \frac{sennx}{nx} = 1$	$\lim_{x \to 0} \frac{nx}{sen nx} = 1$		

frazioni equivalenti					
per il calcolo dei limiti notevoli può essere utile ricordare alcune delle possibili operazioni con le frazioni:					
scomporre la frazione iniziale in due frazioni	dividere ogni monomio del nu- meratore e del denominatore per la stessa quantità n	moltiplicare e dividere la fra- zione per la stessa quantità n	moltiplicare e dividere il numeratore per $oldsymbol{n}$ e/o moltiplicare e dividere il denominatore per $oldsymbol{m}$		
$\frac{a}{b} = a \cdot \frac{1}{b}$	$\frac{a}{b} = \frac{\frac{a}{n}}{\frac{b}{n}}$	$\frac{a}{b} = \frac{a}{b} \cdot \frac{n}{n}$	$\frac{a}{b} = \frac{\frac{a}{n} \cdot n}{\frac{b}{m} \cdot m}$		
$\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\boldsymbol{c} \cdot \boldsymbol{d}} = \frac{a}{c} \cdot \frac{b}{d}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$	$\frac{a \cdot b}{c \cdot d} = \frac{a \cdot b}{c \cdot d} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c \cdot d} = \frac{\frac{a \cdot b}{n}}{\frac{d \cdot c}{n}}$		
$\frac{a+b}{c+d} = \frac{a}{c+d} + \frac{b}{c+d}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a+b}{c+d} = \frac{(a+b)}{(c+d)} \cdot \frac{n}{n}$	$\frac{a+b}{c+d} = \frac{\frac{a}{n} + \frac{b}{n}}{\frac{c}{n} + \frac{d}{n}}$		
$\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{c}+\boldsymbol{d}}=\boldsymbol{a}\cdot\frac{\boldsymbol{b}}{\boldsymbol{c}+\boldsymbol{d}}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$	$\frac{a \cdot b}{c+d} = \frac{a \cdot b}{(c+d)} \cdot \frac{n}{n}$	$\frac{a \cdot b}{c + d} = \frac{\frac{a \cdot b}{n}}{\frac{c}{n} + \frac{d}{n}}$		

Teorema Principio di Sostituzione degli infinitesimi $Signo f_1$ ed f_2 infinitesimi in x_0 / $f_1 = o(f_2)$ (f_1 tende piu' velocemente a 0 di f_2) Abbiono onche g_1 e g_2 infinitesime in x_0 / $g_1 = o(g_2)$. Allora $\lim_{x\to\infty} \frac{f_2(x) + f_2(x)}{g_1(x) + g_2(x)} = \lim_{x\to\infty} \frac{f_2}{g_2}$ In pache parole: possiomo sostituire (eliminare) degli infinitesimi di ordine Superiore. Dim: $\lim_{t \to \infty} \frac{f_1 + f_2}{g_1 + g_2} = \lim_{t \to \infty} \frac{f_2(\frac{f_1}{f_2} + f_1)}{g_2(\frac{g_1}{g_2} + 1)} = \lim_{x \to \infty} \frac{f_2}{g_2}$ Stessa cosa dei limiti "normali"

ES: $\lim_{t \to \infty} \frac{f_3}{g_2} + \lim_{t \to \infty} \frac{f_2(\frac{g_1}{f_2} + f_1)}{g_2} = \lim_{x \to \infty} \frac{f_2}{g_2}$ ES: $\lim_{x\to 0^{+}} \frac{\xi g^{3}x + \sin x + 1 - \cos x}{\log^{4}(2+x) - (e^{x^{5}} - 1)}$ = Posso ignorare quelli di ordine superiore = $\lim_{x\to 0^+} \frac{\sin x}{\log^4(z+x)} \sim \frac{\pi}{x^4} = \frac{1}{x^3} \to \infty$ Ordine di un infinitesimo Si confronte un infinitesimo con l'infinitesimo campione x^d in $x_0=0$ (ovveroune f che in x_0 tende a 0). Nei casi generali l'inf. compione $e^ (x-x_0)^d$ in x_0 Definizione: $f \in Un$ in finitesimo di ordine d se $\lim_{x\to 0} \frac{f(x)}{x^d} = \ell$ con $\ell \neq 0$ e finito, ovvero se f(x) ha lo stesso ordine eli x^d $\ell = \ell$ con $\ell \neq 0$ e finito, $\ell = \ell$ to $\ell = \ell$ ES: $(1-\cos x)^8$ $\lim_{x\to 0} \frac{(1-\cos x)^8}{(x^2)^8} = \frac{1}{2^8}$ perchi $\frac{1-\cos x}{x^2} = \frac{1}{2}$