Prof. Fernando Figueira (adaptado do material do Prof. Rafael Beserra Gomes)

UFRN

Material compilado em 13 de outubro de 2025. Licenca desta apresentação:

http://creativecommons.org/licenses/

- Arranjos (array): conjunto de elementos identificáveis por um índice
- Arranjos unidimensionais: vetores (aula anterior)
- Arranjos bidimensionais: matrizes

Representações de matrizes:

Matematicamente:

$$M = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{1m} \\ \dots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix}$$

os elementos são indexados por dois índice (M_{ij}) e esses começam do índice 1

Representações de matrizes:

- Computacionalmente:
 - Em geral há um armazenamento contíguo na memória 1
 - Os elementos s\u00e3o indexados por dois \u00edndices (geralmente m[i][j])
 - O usual é primeiro índice para linha e segundo índice para coluna!
 - Geralmente começam do índice 0

¹Se a alocação da matriz for dinâmica, há a possibilidade de alocar linhas diferentes em regiões diferentes da memória.

Representação de matrizes na memória

$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

A matriz M pode ser representada da seguinte forma na memória:

Endereço									valor	tipo	identificação
0xbffff22c	0	0	0	0	0	1	0	1	5	inteiro curto	valorIndice
0xbffff22d	0	1	0	0	0	0	1	0	В	caractere	letra1
0xbffff22e	0	1	0	0	0	0	1	1	С	caractere	letra2
0xbffff22f	0	0	0	0	0	0	0	1	1	inteiro curto	M[0][0]
0xbffff230	0	0	0	0	0	0	1	0	2	inteiro curto	M[0][1]
0xbffff231	0	0	0	0	0	0	1	1	3	inteiro curto	M[0][2]
0xbffff232	0	0	0	0	0	1	0	0	4	inteiro curto	M[1][0]
0xbffff233	0	0	0	0	0	1	0	1	5	inteiro curto	M[1][1]
0xbffff234	0	0	0	0	0	1	1	0	6	inteiro curto	M[1][2]
0xbffff235	0	0	1	1	0	0	1	0	2	caractere	letra1

Aplicações

Jogos

Jogos

computação gráfica:

²By Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=35180401

 resolução de outros problemas matemáticos, exemplo: regressão por mínimos quadrados

Regressão linear:

$$\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

imagens digitais

- qualquer conjunto de dados n-dimensionais
 - **E**xemplo: um conjunto de **n** coordenadas no plano cartesiano pode ser representada em uma matriz $\mathbf{n} \times 2$ ou $2 \times \mathbf{n}$:

ou

Matrizes em C

Declarando uma matriz em C

Opções:

```
1 #include <stdio.h>
2
3 int main() {
4
5    int matriz1[5][8];
6    int m[][4] = {{1, 2, 3, 4}, {6, 7, 8, 9}, {11, 12, 13, 14}};
7
8    return 0;
9 }
```

Acesso ao elemento

Basta identificar o elemento usando seus **índices** entre [] (lembre-se de que começa com 0):

```
1 #include <stdio.h>
2
3 int main() {
4
5   int m[][4] = {{1, 2, 3, 4}, {6, 7, 8, 9}, {11, 12, 13, 14}};
6
7   printf("%d\n", m[2][3]);
8
9   return 0;
10 }
```

a maioria dos programadores usam linha como primeiro índice e coluna como segundo índice; melhor então se acostumar a pensar dessa forma

Exemplo 1

■ Escrever em uma matriz 5 x 5 os seguintes valores:

```
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
```

```
1 #include <stdio.h>
2
3 int main() {
4
5   int m[5][5];
6
7   //algoritmo para preencher a matriz
8
9   return 0;
10 }
```

$i \downarrow \rightarrow j$	0	1	2	3	4
0	0	1	2	3	4
1	?	?	?	?	?
2	?	?	?	?	?
3	?	?	?	?	?
4	?	?	?	?	?

$i \downarrow \rightarrow j$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	5
2	?	?	?	?	?
3	?	?	?	?	?
4	?	?	?	?	?

$i \downarrow \rightarrow j$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	5
2	2	3	4	5	6
3	?	?	?	?	?
4	?	?	?	?	?

$i \downarrow \rightarrow j$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	5
2	2	3	4	5	6
3	3	4	5	6	7
4	?	?	?	?	?

$i \downarrow \rightarrow j$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	5
2	2	3	4	5	6
3	3	4	5	6	7
4	4	5	6	7	8

Exemplo 2

■ Ler do usuário uma matriz 5 × 5:

```
#include <stdio.h>
 2
   int main() {
 4
 5
       int m[5][5];
 6
       int i, j;
 8
       //leitura
 9
       for(i = 0; i < 5; i++) {
10
           for (j = 0; j < 5; j++) {
11
                scanf("%d", &m[i][j]);
12
13
14
       //escrita
15
       for(i = 0; i < 5; i++) {
16
           for(j = 0; j < 5; j++) {
17
                printf("%d ", m[i][j]);
18
19
           printf("\n");
20
21
       return 0;
22
```


🔊 Exercício em sala

Declare uma matriz 5×5 e preencha com uma matriz triangular superior. Depois escreva os valores da matriz na tela.

- 1		- 1	- 1	- 1
0	1	1	1	1
0	0	1	1	1
0	0	0	1	1
0	0	0	0	1

Exercício em sala

Declare uma matriz 5×5 e preencha com a seguinte matriz de tal forma que:

- A primeira linha é 1, 2, 3, 4, 5
- Qualquer outro número da matriz, exceto da última coluna, é igual à soma do número acima com o número à nordeste
- O número da última coluna (exceto o da primeira linha) é igual ao da penúltima coluna

Depois escreva os valores da matriz na tela.

1	2	3	4	5
3	5	7	9	9
8	12	16	18	18
20	30	34	36	36
50	64	70	72	72