Add A Catchy Title Here

FirstName LastName EmailAddress@utdallas.edu

Abstract

Write this last. Summarize each of the below sections using ~ 1 sentence each.

1. Introduction

Write 1 short paragraph on the importance of xNN accuracy vs performance.

Write 1 short paragraph on the contents of the rest of the paper.

2. Related Work

The network in this paper was heavily inspired by SENet [1], MobileNetV2 [2], MnasNet [3], CondConv [4], MobileNetV3 [5] and EfficientNet [6].

Summarize the following papers with 1 or 2 sentences on the key ideas in each (I'm not looking for a book). I've included some starters to get you going.

MobileNetV2 [2] used inverted residuals ...

MnasNet [3] added squeeze and excite operations to the inverted residuals and used neural architecture search to optimize the network depth and width ...

MobileNetV3 [5] replaced the swish nonlinearity with a hard swish nonlinearity, improved the design of the final encoder stages and used a new neural architecture search to optimize the depth and width ...

EfficientNet [6] refined the mobile baseline network and focused on the combined scaling of network input resolution, depth and width to design larger networks ...

A variant of EfficientNet replaced the convolution operations with conditional convolution operations [4] ...

3. Design

Describe that it's a relatively standard ImageNet structure in figure 1 and table 1 with the 1st 2 stride by 2 operations change to a stride by 1 operation as the image size has 1/4 the rows and cols of typical

ImageNet images. Think encoder (stem and body) and decoder (head).

Describe the operations in the 3 types of building blocks in figures 2 that can be used within this modified ImageNet structure: standard building block, SE enhanced building block (see figure 3 for details on the SE operation) and SE and conditional convolution enhanced building block (see figure 4 for details on the conditional convolution operation).

Note a few key points on differences with this design and EfficientNet: this design only used 3x3 filters in the fully grouped convolution, modified the stem width, modified the depth and width of various blocks, modified the inverted residual expansion ratio, simplified the nonlinearity choice to ReLU (or Sigmoid where appropriate), only included 3 levels of down sampling as the cropped input is 3x56x56, ...

For implementations based on the SE enhanced building block, the internal rank reduction ratio R=4.

For implementations based on SE and conditional convolution enhanced building blocks, the number of experts M = 4.

Figure 1: Network structure; the linear layer output dimension and bias dimension is the number of classes

Figure 2: [A] Standard building block, [B] SE enhanced building block and [C] SE and conditional convolution enhanced building block

Figure 3: Squeeze and excite uses a learned input dependent per channel weighting to re weight input feature maps with internal rank reduction R

Figure 4: Conditional convolution uses 3D/4D convolution weight tensors W_m from M experts combined to a single 3D/4D weight tensor W via a learned input dependent weighted sum with fully grouped convolution / not fully grouped convolution

Re-	Input	Operation
peat	NixWxH	
1	3x56x56	Conv (3x3/1), Batch Norm, ReLU
1	16x56x56	Block (Ne=4Ni, F=3, S=1, ID=True)
1	16x56x56	Block (Ne=4Ni, F=3, S=1, ID=False)
1	24x56x56	Block (Ne=4Ni, F=3, S=1, ID=True)
1	24x56x56	Block (Ne=4Ni, F=3, S=2, ID=False)
2	40x28x28	Block (Ne=4Ni, F=3, S=1, ID=True)
1	40x28x28	Block (Ne=4Ni, F=3, S=2, ID=False)

3	80x14x14	Block (Ne=4Ni, F=3, S=1, ID=True)
1	80x14x14	Block (Ne=4Ni, F=3, S=2, ID=False)
4	160x7x7	Block (Ne=4Ni, F=3, S=1, ID=True)
1	160x7x7	Block (Ne=4Ni, F=3, S=1, ID=False)
1	320x7x7	Conv (1x1/1), Batch Norm, ReLU
1	1280x7x7	Global Avg Pool, Linear, Bias
1	1x100	Output

Table 1: Network specification; block is either a [A] standard building block, [B] SE enhanced building block or [C] conditional convolution enhanced building block

4. Training

Table 2 includes a summary of all training hyper parameters. Note that this is a ~ generic ImageNet training routine such as you would find in RegNetX/Y [7]. Training routines that use more complex data augmentation, additional data, different train and test resolutions, more epochs, ... can achieve higher accuracies.

Table 3 includes final training results and figure 5 shows a plot of the per epoch accuracy and loss curves.

Parameter	Value
Add	Add
Add	Add
Add	Add

Table 2: Training hyper parameters

Block	Training time	Accuracy	
Standard	Add	Add	
SE enhanced	Optional	Optional	
SE and cond conv enhanced	Optional	Optional	

Table 3: Training final results

Add a per epoch plot of accuracy and loss here

Figure 5: Training per epoch accuracy and loss curves

5. Implementation

Table 4 shows per operation MACs and number of filter coefficients for the stem convolution, convolutions in all standard blocks (taking into account repeats) and the head convolution and matrix multiplication, along with their sum for the full network.

Operation	Rep	MAC	Filter
			Cx
Conv (3x3/1), Batch Norm, ReLU	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=True)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=False)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=True)	Add	Add	Add
Block (Ne=4Ni, F=3, S=2, ID=False)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=True)	Add	Add	Add
Block (Ne=4Ni, F=3, S=2, ID=False)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=True)	Add	Add	Add
Block (Ne=4Ni, F=3, S=2, ID=False)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=True)	Add	Add	Add
Block (Ne=4Ni, F=3, S=1, ID=False)	Add	Add	Add
Conv (1x1/1), Batch Norm, ReLU	Add	Add	Add
Global Avg Pool, Linear, Bias	Add	Add	Add
Total	_	Add	Add

Table 4: Per operation and total MAC and filter coefficient counts for all trainable operations

6. Conclusion

Write this paragraph next to last. Summarize the introduction, related work, design, training and implementation sections with ~ 1 sentence each.

Then add a final paragraph with some thoughts for future modifications and experiments (e.g., different filter sizes, different widths, depths and repeats of different blocks, different residual expansion factors, different SE rank reduction factors, different numbers of mixtures of experts, different training strategies, ...).

References

- [1] J. Hu et. al., "Squeeze-and-excitation networks," arXiv:1709.01507, 2017.
- [2] M. Sandler et. al., "MobileNetV2: inverted residuals and linear bottlenecks," axXiv:1801.04381, 2018.
- [3] M. Tan et. al., "MnasNet: platform-aware neural architecture search for mobile," arXiv:1807.11626, 2018.
- [4] B. Yang et. al., "CondConv: conditionally parameterized convolutions for efficient inference," arXiv:1904.04971, 2019.
- [5] A. Howard et. al., "Searching for MobileNetV3," arXiv:1905.02244, 2019.
- [6] M. Tan and Q. Le, "EfficientNet: rethinking model scaling for convolutional neural networks," arXiv:1905.11946, 2019.

[7] I. Radosavovic et. al., "Designing network design spaces," arXiv:2003.13678, 2020.