

# **MEIC – ALAMEDA**

# 2017/18

## Sistemas de Apoio à Decisão

### Lab 4 - KNN

### Goals:

- KNN
- · Accuracy and Confusion Matrix
- Training strategies
- 1. Load the <u>iris</u> data. Train a classifier using the KNN algorithm. Keep all parameters with their default values Use percentage split with 70%. Keep <u>class</u> as the class attribute.
  - a. What is the accuracy achieved?
  - b. And the number FP and FN for Iris-virginica?
  - c. And for Iris-setosa?
  - d. Compare the results achieved through Cross-validation with 10 folds.
- Load the <u>glass</u> data. Train a classifier using the KNN algorithm. Keep all parameters
  with their default values, but the number of neighbors (KNN). Keep <u>type</u> as the class
  attribute
  - a. What is the accuracy with 1 neighbor?
  - b. And with 5, 10, 15, 50 and 100 neighbors?
  - c. How does the accuracy change?
  - d. Is any of the models in overfitting?

### R packages

- caret
- e1071

| Technique | Weka                     | R                         |
|-----------|--------------------------|---------------------------|
| kNN       | weka.cassifiers.lazy.lBk | caret.train(method='knn') |
|           |                          | caret.knn3                |

By Cláudia Antunes