# >> IN THE NAME OF GOD <<

# Moment-Curvature Analysis of Unconfined Circular Concrete Section with MATLAB and SAP2000

The MATLAB Program is Verified by SAP2000 v.15.1.0 (Linear and Nonlinear Structural Analysis Program)

This program is written by Salar Delavar Ghashghaei - Date of Publication: June/23/2016

E-mail: salar.d.ghashghaei@gmail.com





Figure(2) Steel rebar material properties in SAP2000



Figure(3) Unconfined concrete material properties in SAP2000

# **Section Properties:**

%% Section Properties

D=500;% [mm]

%As: As1 As2 As3 As4 As5 As6

As=[490.8594 981.7188 981.7188 981.7188 0 490.8594]; % NOTE: As1 & As6 =

8fi25

%d:d1 d2 d3 d4 d5 d6

d=[37.5 99.74 250 400.26 0 462.26];

# Stress-Strain of materials

# Steel Rebar: Stress-Strain Relationship



#### Unconfined Concrete compressive: Stress-Strain Relationship



#### **Unconfined Concrete Tensile: Stress-Strain Relationship**



Figure(4) Material properties in MATLAB

# **Concrete Properties:**

fc =25;% [N/mm^2] Unconfined concrete strength
ecu=0.004;% Ultimate concrete strain
Ec=5000\*sqrt(fc);
ec0=(2\*fc)/Ec;
fct=-0.7\*sqrt(fc);% Concrete tension stress
ect1=(2\*fct)/Ec;ect2=(2.625\*fct)/Ec;ect3=(9.292\*fct)/Ec;% Concrete tension
strain

# **Steel Reinforcing Properties:**

fy =400;% [N/mm^2] Yield strength of reinforcing steel
Es =2e5;% [N/mm^2] Modulus of elasticity of steel
fu=1.5\*fy;% Ultimate steel stress
ey=fy/Es;% Yeild steel strain
esh=0.01;% Strain at steel strain-hardening
esu=0.09;% Ultimate steel strain

# **Analysis Report:**

```
# Moment-Curvature Analysis #
(+)Increment 1: It is converged in 8 iterations - strain: 0.000042 - x: 220.50 - Phi: 0.00019 - Moment: 13.57
(+)Increment 2: It is converged in 7 iterations - strain: 0.000092 - x: 220.84 - Phi: 0.00042 - Moment: 29.71
(+)Increment 3: It is converged in 8 iterations - strain: 0.000188 - x: 221.48 - Phi: 0.00085 - Moment: 59.80
(+)Increment 4: It is converged in 9 iterations - strain: 0.000280 - x: 219.50 - Phi: 0.00128 - Moment: 85.15
(+)Increment 5: It is converged in 11 iterations - strain: 0.000367 - x: 207.72 - Phi: 0.00177 - Moment: 98.11
(+)Increment 6: It is converged in 12 iterations - strain: 0.000429 - x: 199.69 - Phi: 0.00215 - Moment: 107.96
(+)Increment 7: It is converged in 15 iterations - strain: 0.000872 - x: 170.40 - Phi: 0.00512 - Moment: 173.08
(+)Increment 8: It is converged in 15 iterations - strain: 0.001041 - x: 167.16 - Phi: 0.00623 - Moment: 201.17
(+)Increment 9: It is converged in 17 iterations - strain: 0.001171 - x: 165.11 - Phi: 0.00709 - Moment: 220.93
(+)Increment 10: It is converged in 18 iterations - strain: 0.001301 - x: 162.61 - Phi: 0.00800 - Moment: 236.93
(+)Increment 11: It is converged in 24 iterations - strain: 0.001600 - x: 151.68 - Phi: 0.01055 - Moment: 252.61
(+)Increment 12: It is converged in 26 iterations - strain: 0.002000 - x: 142.55 - Phi: 0.01403 - Moment: 268.20
(+)Increment 13: It is converged in 28 iterations - strain: 0.002400 - x: 138.07 - Phi: 0.01738 - Moment: 283.03
(+)Increment 14: It is converged in 44 iterations - strain: 0.002800 - x: 129.63 - Phi: 0.02160 - Moment: 286.24
(+)Increment 15: It is converged in 49 iterations - strain: 0.003200 - x: 124.89 - Phi: 0.02562 - Moment: 286.23
(+)Increment 16: It is converged in 52 iterations - strain: 0.003600 - x: 121.66 - Phi: 0.02959 - Moment: 286.07
(+)Increment 17: It is converged in 55 iterations - strain: 0.004000 - x: 119.43 - Phi: 0.03349 - Moment: 286.41
  ## Unconfined Concrete Strain Reached to Ultimate Strain: 0.0040 ##
= Analysis curve fitted =
Curvature Moment
 (1/m) (kN.m)
    0 0
 0.0033 231.9855
 0.0335 286.4053
+=======+
Elastic EI: 71223.50 (kN.m^2)
Plastic EI: 1799.95 (kN.m^2)
Unconfined Section Ductility Rito: 10.28
+=======+
     Analysis
Curvature Moment
 (1/m) (kN.m)
 0.00000 0.000
 0.00019 13.566
 0.00042 29.711
 0.00085 59.803
 0.00128
           85.148
 0.00177 98.113
 0.00215 107.956
 0.00512 173.076
 0.00623 201.168
 0.00709 220.926
 0.00800 236.925
 0.01055 252.614
 0.01403 268.203
 0.01738 283.027
 0.02160 286.242
 0.02562 286.233
 0.02959 286.068
 0.03349 286.405
+=======+
= Analysis curve fitted =
```

| Curvature Moment (1/m) (kN.m)                                     |         |        |          |               |       |
|-------------------------------------------------------------------|---------|--------|----------|---------------|-------|
| 0.00000 0.000<br>0.00326 231.985<br>0.03349 286.405<br>+========+ |         |        |          |               |       |
| +========+++++++++++++++++++++++++++++                            |         |        |          |               |       |
| =======================================                           |         |        |          |               |       |
| (i)                                                               | (1) (1  | mm)    | (1/m)    | (kN.m^2)      |       |
| 1                                                                 | 0.00004 | 220.50 | 0.000190 | <br>) Na      | aN    |
| 2                                                                 | 0.00009 | 220.84 | 0.000418 | 7122          | 3.50  |
| 3                                                                 | 0.00019 | 221.48 | 0.000847 | 7 7100        | 9.85  |
| 4                                                                 | 0.00028 | 219.50 | 0.001276 | 7060          | 2.84  |
| 5                                                                 | 0.00037 | 207.72 | 0.001769 | 6674          | 9.47  |
| 6                                                                 | 0.00043 | 199.69 | 0.002150 | 5545          | 5.19  |
| 7                                                                 | 0.00087 | 170.40 | 0.005115 | 5 5021        | 7.54  |
| 8                                                                 | 0.00104 | 167.16 | 0.006226 | 3383          | 6.75  |
| 9                                                                 | 0.00117 | 165.11 | 0.007091 | l <b>3231</b> | 2.64  |
| 10                                                                | 0.00130 | 162.61 | 0.00800  | 0 311         | 55.83 |
| 11                                                                | 0.00160 | 151.68 | 0.01054  | 8 2963        | 15.00 |
| 12                                                                | 0.00200 | 142.55 | 0.01403  | 0 2394        | 48.02 |
| 13                                                                | 0.00240 | 138.07 | 0.01738  | 2 191         | 16.36 |
| 14                                                                | 0.00280 | 129.63 | 0.02160  | 0 1628        | 32.67 |
| 15                                                                | 0.00320 | 124.89 | 0.02562  | 3 132         | 52.04 |
| 16                                                                | 0.00360 | 121.66 | 0.02959  | 2 111         | 70.88 |
| 17                                                                | 0.00400 | 119.43 | 0.03349  | 1 966         | 7.15  |
| +=======+                                                         |         |        |          |               |       |









Figure(9) Fiber strain-Height of section in MATLAB





