Quiz-1_27-02-2025
saranshprajapati2022@vitbhopal.ac.in Switch account Draft saved
* Indicates required question
Email * Record saranshprajapati2022@vitbhopal.ac.in as the email to be included with my response
Registration No * 22BCE10795
Name * Saransh Prajapati
email ld * saranshprajapati2022@vitbhopal.ac.in
Which of the following is NOT a valid inter-process communication mechanism? *
O Pipes
○ Semaphores
○ Shared memory
Thread synchronization

in the context of synchronization, what does a critical section refer to?
A section of code that is critical for the proper functioning of the program
A section of code that must be executed atomically by only one process or thread at a time
A section of code that handles error conditions
A section of code that performs I/O operations
What are the essential contents in each entry of a page table? *
Page frame number
Both virtual page number and page frame number
O Virtual page number
Access right information
Which of the following scheduling algorithms is non-preemptive? * Round Robin First-In First-Out Multilevel Queue Scheduling Multilevel Queue Scheduling with Feedback
Multilevel Quede Scheduling With Feedback
Consider a set of three processes P1, P2 and P3 arriving in the order P1, P2, P3 at * time instant 0 and having CPU burst times as shown below. Calculate the average waiting time and average turn around using FCFS algorithm.
Process Burst Time
P1 24
P2 3
P3 3
Avg Waiting Time:17ms, Avg TAT:27ms
Avg Waiting Time: 17ms, Avg TAT:27msAvg Waiting Time: 11ms, Avg TAT:27ms

Use the Shortest Job first Method in Primitive way to Calculate Average Waiting time and Average Turnaround Time for this question.

Processes(P) Burst Time Arrival Time

P1 4 0

P2 2

P3 6 2

Avg. TAT : 6.57, Avg. WT : 0.67

Avg. TAT : 5.67, Avg. WT : 1.67

O Avg. TAT : 1.67, Avg. WT : 5.67

O Avg. TAT: 0.67, Avg. WT: 1.67

Use the Shortest Job first Method in Non-Primitive way to Calculate Average Waiting time and Average Turnaround Time this question.

Processes(P) Burst Time Arrival Time

P1 5

P2 3

P3 8 2

Avg. TAT : 3.33, Avg. WT : 8.67

Avg. TAT: 0.67, Avg. WT: 1.67

Avg. TAT : 8.67, Avg. WT : 3.33

Avg. TAT : 1.67, Avg. WT : 0.67

In a system with two processors, if four processes arrive for execution with burst * times of 6, 4, 8, and 10 units, and a scheduling algorithm assigns them to processors in a Round Robin fashion with a time quantum of 5 units, what will be the total waiting time for all processes?

7 units

9 units

11 units

13 units

Three processes A,B and C each execute a loop of 50 iterations. In each iteration * of the loop, a process performs a single computation that requires to CPU milliseconds and then initiates a single I/O operation that lasts for tio milliseconds. It is assumed that the computer where the processes execute has sufficient number of I/O devices and the OS of the computer assigns different I/O devices to each process. Also the scheduling overhead of the OS is negligible. The processes have the following characteristics.

Process ID	Arrival Time	tc	tio
P1	0	100ms	450ms
P2	5	350ms	450ms
P3	10	200ms	250ms

The system is using round robin CPU scheduling with time quanta of 50ms. The time in milliseconds at which the process C would complete its first I/O operation is

() 750ms	s
-----------	---

500ms

1250ms

Consider the peterson's algorithm for mutual exclusion between two concurrent * processes K and L. The program executed by process is shown below. (Marks2)	
While(True)	
{	
Interested[k]=true;	
Turn =L	
While(X);	
Enter critical section,	
Perform action	
Exit critical section	
Interested[k]=False	
}	
For the program to guarantee mutual exclusion the predicate X in the while loop should be	
Interested[L]==True and Turn ==L	
Interested[L]!=True and Turn ==L	
Interested[k]==True and Turn ==k	
Interested[k]==True and Turn ==L	

Submit Clear form

Never submit passwords through Google Forms.

This form was created inside of VIT Bhopal University.

Does this form look suspicious? Report

Google Forms