TABLE II: Comparison of transition wavelengths for Li $^-$, Be $^-$ with literature data. a.u.=27.2113834 eV. $\hbar c$ =197.3269602 eV nm. X-only values are enclosed in parentheses.

	Wavelength (nm)		
Transition	This work	Other theory	Experiment
${\rm Li^-~1s2s2p^2~^5P^e \to 1s2p^3~^5S^o}$	345.96 (321.55)	$346.06^a, 349.12^b, 349.0^c, 348.98^d$	$349.07^e, 349.0^f$
Be ⁻ [He] 2s2p ² $^4\mathrm{P}^e \rightarrow$ [He] 2p ³ $^4\mathrm{S}^o$	264.14 (252.29)	$267.1^g, 265.4^h, 265.370^i, 265.32^j, \ 265.04^k$	$265.301^{l}, 265.318^{m}, 265.331^{n}$

 ${}^{\rm a}{\rm Ref.}$ [7]. ${}^{\rm b}{\rm Ref.}$ [6]. ${}^{\rm c}{\rm Ref.}$ [33]. ${}^{\rm d}{\rm Ref.}$ [4]. ${}^{\rm e}{\rm Ref.}$ [9]. ${}^{\rm f}{\rm Ref.}$ [10]. ${}^{\rm g}{\rm Ref.}$ [15].

 $^{{}^{\}rm h}{\rm Ref.}$ [34]. ${}^{\rm i}{\rm Ref.}$ [20]. ${}^{\rm j}{\rm Ref.}$ [5]. ${}^{\rm k}{\rm Ref.}$ [19]. ${}^{\rm l}{\rm Ref.}$ [12]. ${}^{\rm m}{\rm Ref.}$ [13]. ${}^{\rm n}{\rm Ref.}$ [35].

FIG. 1: Radial density plots for several states of (a) Li⁻ and (b) Be⁻.

large distances, all these three states show similar behavior with the ground state having greater charge density and decaying rather slowly than the two excited states; ${}^5P^e$ dying out fastest. Similar radial density plots for all three excited states of Be⁻ are given in Fig. 1(b). In the vicinity of nucleus, the ${}^4P^e$, ${}^4S^o$ states show similar behavior and have much larger charge densities compared to the ${}^6S^o$ state, again presumably because the former two have two core 1s electrons while the latter has only one. At the intermediate distance after the first minimum and up to r=3.5 a.u., this situation changes with ${}^6S^o$ having the largest charge density. Also the ${}^4S^o$, ${}^4P^e$ states branch out in this region with the latter showing slightly larger peak value than the former. After that at larger distances, all the three states decay in a similar pattern with ${}^4S^o$ having higher values and oozing out slowly than the other two and ${}^6S^o$ decaying out first. These behaviors in electron density are also reflected