1 Trace

DEFINITION 1.1: Let V be f.d.v.s. Then Trace is a linear map: $\mathcal{L}(V) \to \mathbf{F.i.e.}$, $\operatorname{tr} \in \mathcal{L}(\mathcal{L}(V), \mathbf{F})$ such that

- 1. $T \in \mathcal{L}(V)$, eigenvalues $\lambda_1...,\lambda_m$ multiplicities $d_1,...,d_m$ (over \mathcal{C}) $\mathrm{Tr}(T)=d_1\lambda_1+\cdots+d_m\lambda_m$
- 2. $\operatorname{Tr}(S+T) = \operatorname{Tr}(S) + \operatorname{Tr}(T)$
- 3. Let B be a basis for V