Sistemas de control y automatización

Kjartan Halvorsen

October 12, 2022

CENEVAL

Área/ Subárea	Núm. de reactivos	% en el examen	reactiv ses	ición de vos por sión
A. Análisis elemental de procesos	25	25.00%	1a. 25	2a.
Principio de conservación de masa y energía	15	15.00	15	
2. Conceptos básicos termodinámicos	10	10.00	10	
B. Análisis fenomenológico de procesos	26	26.00%	26	
Fenómenos de transporte	11	11.00	11	
Equilibrio físico y químico	9	9.00	9	
Cinética química y catálisis	6	6.00	6	
C. Análisis y diseño de procesos básicos	26	26.00%		26
Operaciones unitarias	13	13.00		13
Reactores químicos	13	13.00		13
D. Análisis, diseño y control de sistemas de procesos	23	23.00%		23
 Análisis, síntesis y optimización de procesos 	16	16.00		16
Instrumentación y control de procesos	7	7.00		7
Total	100*	100%	51	49

^{*}Adicionalmente se incluye un 20% de reactivos piloto.

Estructura aprobada por el Consejo Técnico del EGEL-IQUIM el 16 de mayo de 2011.

CENEVAL

D. Análisis, diseño y control de sistemas de procesos

D 1. Análisis, síntesis y optimización de procesos

- Aplicación de los conceptos de la tecnología del punto de pliegue a la síntesis de intercambiadores de calor
- · Análisis de las rutas químicas para la síntesis del proceso
- Aplicación de heurísticas para síntesis de secuencias de separación
- Utilización de técnicas de optimización en diferentes situaciones de procesos

D 2. Instrumentación y control de procesos

- Análisis del comportamiento de sistemas dinámicos
- Análisis de los sistemas de control sencillos basados en los modos de control proporcional, integral y derivativo

Sistemas de control son ubicuos

Control en lazo cerrado

Control en lazo cerrado

Diseño de control: Determinar un controlador para que el sistema en lazo cerrado cumple con ciertas especificaciones de rendimiento.

Especificaciones de rendimiento

Especificaciones de rendimiento

Actividad ¿Cumple el sistema con las especificaciones?

Sobreimpulso < 20% Tiempo de levantamiento < 1.5s

Sistemas de primer orden

Respuesta al escalón por medio de la transformada de Laplace

Parametrizaciónes alternativas

$$\frac{d}{dt}y + \alpha y = \beta u \qquad \Leftrightarrow \qquad \tau \frac{d}{dt}y + y = ku$$

Función de transferencia por prueba

$$Y(s) = \frac{K}{s\tau + 1} U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K \left(1 - e^{-\frac{t}{\tau}} \right) u_H(t)$$

Actividad Evalua la respuesta y(t) por $t = \tau$, y por $t \to \infty$!

Función de transferencia por prueba

$$Y(s) = \frac{K}{s\tau + 1}U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K(1 - e^{-\frac{t}{\tau}})u_H(t)$$

Constante de tiempo: El tiempo $t=\tau$ que tarde la respuesta en llegar a 63.2% del valor final.

Ganancia:
$$y_f = \lim_{t \to \infty} y(t) = Ku_f \implies K = \frac{y_f}{u_f}$$

Animación

Sistemas de primer orden

Sistemas de primer orden con retraso

Intermezzo: La función de transferencia de un retraso

$$\underbrace{u(t)}_{\text{e}^{-s\theta}} \underbrace{y(t) = u(t - \theta)}$$

$$Y(s) = \mathcal{L}\left\{y(t)\right\} = \int_0^\infty y(t) e^{-st} dt$$

Función de transferencia por prueba

Modelo de primer orden con constante de tiempo au y retraso heta

$$Y(s) = \frac{Ke^{-s\theta}}{s\tau + 1}U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K(1 - e^{-\frac{t-\theta}{\tau}})u_H(t-\theta)$$

Actividad Evalua la respuesta y(t) por $t = \theta + \frac{\tau}{3}$ y $t = \theta + \tau!$

Función de transferencia por prueba

Modelo de primer orden con constante de tiempo au y retraso heta

$$Y(s) = \frac{Ke^{-s\theta}}{s\tau + 1}U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K(1 - e^{-\frac{t-\theta}{\tau}})u_H(t-\theta)$$

i

$$y_f = \lim_{t \to \infty} y(t) = u_f K \quad \Rightarrow \quad K = \frac{y_f}{u_f}.$$

$$Y(s) = \frac{K e^{-s\theta}}{s\tau + 1} U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K \left(1 - e^{-\frac{t-\theta}{\tau}}\right) u_s(t-\theta)$$

$$Y(s) = rac{K \mathrm{e}^{-s heta}}{s au + 1} U(s) \stackrel{U(s) = rac{u_f}{s}}{\Longrightarrow} y(t) = u_f K \left(1 - \mathrm{e}^{-rac{t - heta}{ au}}\right) u_s(t - heta)$$

$$Y(s) = rac{K \mathrm{e}^{-s heta}}{s au + 1} U(s) \stackrel{U(s) = rac{u_f}{s}}{\Longrightarrow} y(t) = u_f K \left(1 - \mathrm{e}^{-rac{t - heta}{ au}}\right) u_s(t - heta)$$

$$Y(s) = \frac{K e^{-s\theta}}{s\tau + 1} U(s) \quad \stackrel{U(s) = \frac{u_f}{s}}{\Longrightarrow} \quad y(t) = u_f K \left(1 - e^{-\frac{t - \theta}{\tau}}\right) u_s(t - \theta)$$

$$y_{f} = 1.6 \text{ -1.5} \xrightarrow{\text{-1.5}} \xrightarrow{\text{-1.5}}$$

Sistemas de segundo orden

Sistemas de segundo orden

PID control

Control en lazo cerrado

Controlador PID - Formas estándar

ISA

$$u(t) = k_c \left(e(t) + \frac{1}{\tau_i} \int_0^t e(\xi) d\xi + \tau_d \frac{d}{dt} e(t) \right)$$

Paralela

$$u(t) = K_p e(t) + K_i \int_0^t e(\xi) d\xi + K_d \frac{d}{dt} e(t)$$

Controlador PID

Controlador PID

P Proporcional: Modifica la velocidad del sistema de control

Integral: Elimina el error e(t) en estado estable

D Derivativa: Mejora la amortiguación

Controlador PID - efecto de las ganancias

Dado un sistema controlado por un PID $U(s) = (K_P + K_I \frac{1}{s} + K_D s) E(s)$

Encuentra la respuesta del sistema en lazo cerrado para cada de los siguientes casos

Caso	K_P	K_{I}	K_D
i)	1	0	0
ii)	1	1	0
iii)	1	0	1
iv)	1	1	1

Controlador PID - ajustar las ganancias

Actividad Cómo ajustar las ganancias K_P , K_I y K_D para obtener una respuesta mejor?

Caso	K_P	K_{I}	K_D
Α			
В			
C			
D			

Sintonización de controladores PID

Hay varios métodos. Entre otros:

- Ziegler & Nichols método en lazo abierto, y método en lazo cerrado
- ► Smith & Corripio (usando tabla de Ziegler & Nichols)
- ► Cohen & Coon (como Smith & Corripio, pero otros valores en la tabla)
- ► Simple Internal Model Control (SIMC)

Método de Smith & Corripio con tabla de Ziegler & Nichols

Dado modelo

$$G(s) = K \frac{\mathrm{e}^{-s\theta}}{\tau s + 1},$$

v controlador PID en forma

$$F(s) = k_c \left(1 + \frac{1}{\tau_i s} + \tau_d s \right).$$

Elige los parámetros PID según la tabla siguiente (Ziegler & Nichols, 1943)

Controller	k _c	$ au_{\pmb{i}}$	$ au_{d}$
Р	$\frac{ au}{ heta K}$		
PI	$rac{0.9 au}{ heta K}$	$\frac{\theta}{0.3}$	
PID	$rac{1.2 au}{ heta K}$	2θ	$\frac{ heta}{2}$

Restricción:

$$0.1 < \frac{\theta}{\tau} < 0.6.$$

Método de Cohen & Coon

Dado modelo

$$G(s) = K rac{\mathrm{e}^{-s heta}}{ au s + 1},$$

elige los parámetros PID según la tabla siguiente (Cohen & Coon, 1953)

Controller	k_c	$ au_i$	$ au_{m{d}}$
P	$\left(1.03+0.35\left(rac{ heta}{ au} ight) ight)rac{ au}{ heta ext{K}}$		
PI	$\left(0.9+0.083\left(rac{ heta}{ au} ight) ight)rac{ au}{ heta K}$	$rac{ hetaigg(0.9+0.083igg(rac{ heta}{ au}igg)igg)}{igg(1.27+0.6igg(rac{ heta}{ au}igg)igg)} heta igg(1.35+0.25igg(rac{ heta}{ au}igg)igg)$	
PID	$\left(1.35+0.25ig(rac{ heta}{ au}ig) ight)rac{ au}{ heta K}$	$\frac{\theta\left(1.35+0.25\left(\frac{\theta}{\tau}\right)\right)}{\left(0.54+0.33\left(\frac{\theta}{\tau}\right)\right)}$	$\frac{\theta}{2\bigg(1.35+0.25\Big(\frac{\theta}{\tau}\Big)\bigg)}$

Automatización

Automatización de un sistema neumático

Automatización de un sistema neumático

En la automatización de una prensa se requiere un pulsador para accionar un cilindro de simple efecto que permita sujetar una pieza metálica hasta que otro pulsador active el regreso del cilindro, liberando la pieza.

Automatizción de un sistema neumático

Diagrama de escalera

Automatizción de un sistema neumático

Diagrama de escalera

Elementos de control

- 1. Pulsador NA
- 2. Pulsador NC
- 3. Contacto NA
- 4. Contacto NC

Respuestas alternativas

- 1. A 1, B 2, C 3
- 2. A 2, B 4, C 3
- 3. A 1, B 2, C 4

¡Suerte!

Lykke til!