UNCLASSIFIED

AD 404 310

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMEBON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

TECHNICAL MEMORANDUM 1133

GROWTH

OF

COMPOSITION B TYPE CHARGES

ROBERT T. SCHIMMEL STANLEY J. LOWELL

AMCMS 5520 21 43401

COPY NO. - OF 1

M1RCH 1963

404310

PICATINNY ARSENAL DOVER, NEW JERSEY

The findings in this report are not to be construed as an official Department of the Army Position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

ASTIA AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from ASTIA.

TECHNICAL MEMORANLUM 1133 AMMUNITION GROUP

GROWTH
OF
COMPOSITION B TYPE CHARGES

BY

ROBERT T. SCHIMMEL STANLEY J. LOWELL

AMCM8 5520.21.43401

MARCH 1963

SUBMITTED BY

Chief, Explosives

Initiator Section

REVIEWED BY:

E.H. BUCHANAN

Chief, Artillery

Ammunition Laboratory

APPROVED BY:

R.W. VOGEL
Chief, Ammunition

Development Division

PICATINNY ARSENAL DOVER, NEW JERSEY

TABLE OF CONTENTS

OBJECT	1
SUMMARY	1
CONCLUSIONS	3
RECOMMENDATIONS	3
INTRODUCTION	3
RESULTS	5
DISCUSSION OF RESULTS	5
EXPERIMENTAL PROCEDURE	7
REFERENCE	9
APPENDICES	
A. Table	A1-5
B. Figures	B1-13
TABLE OF DISTRIBITION	•

OBJECT

To determine an effective method of controlling the growth of Composition B type charges.

SUMMARY

The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B, Composition B/calcium silicate (99.5/0.5) Composition B4 and TNT. These explosives were either standard or vacuum melted and cast in XM83 Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160° F for 15 days.

The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black paint coated-burster tubes. The addition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth considerably but did not eliminate it. The tests showed that Composition B4, when cast into MIL-P-22332 primer paint coated burster tubes, yielded the least growth (0.070 inch). Explosive growth ca not be entirely eliminated. However, by loading below the top of the tube, the growth can be tolerated.

CONCLUSIONS

- 1. Of the compositions tested, least growth is obtained with Composition B4 surrounded by an interior coating of MIL-P-22332 primer paint. Vacuum melting is immaterial.
- 2. The growth of Composition B/calcium silicate is reduced by vacuum melting when cast into burster tubes coated with acid-proof black paint.
- 3. Composition B4, surrounded by the interior coating MIL-P-22332 primer paint, grows less than any of the systems tested with Composition B/calcium silicate (99 5/0.5).

RECOMMENDATIONS

- 1. Composition B4 should replace Composition B and should be used with M1L-P-22332 primer paint as the interior coating in ammunition rather than acid-proof black paint.
- 2. When casting Composition B4 into burster tubes, allow for 0.1 inch growth of the charge.

INTRODUCTION

- 1. During March 1961 20 Composition B-loaded XM83 Bursters were subjected to 160° F storage at Dugway Proving Ground, Utah. After a few days the bursters were examined and, although there was no evidence of exudation, all of the charges had grown so they protruded from the tubes. After 14 days one of the charges had grown 0.70 inch.
- 2. A hurried investigation was conducted so the XM71E3 Bursters being loaded for acceptance tests would not be delayed. The results of this preliminary investigation showed that by vacuum melting Composition B4, and pouring it in the burster tube one-fourth inch below the top of the tube, the growth was tolerable. Then a more detailed study was undertaken to determine if the growth problem could be entirely eliminated.

RESULTS

- 3. Table I shows that a TNT charge 24" long, (the length used throughout) grew 0.178". The addition of 1.25% calcium silicate to TNT reduced the growth to 0.065 inch (63% reduction). Composition B, when standard melted and cast into acid-proof black paint coated burster tubes yielded 0.430 inch growth; with 0.5% calcium silicate added the growth was reduced to 0.351 inch (25% reduction).
- 4. Composition B/calcium silicate cast into a MIL-P-22332 primer paint coated tube grew 0.244 inch, which is 47% less than the control (Composition B with acid-proof black paint). Changing the type of melt from standard to vacuum reducted the growth to 0.147 inch (65%) when acid-proof black paint was used and 0.222 inch (49%) when MIL-P-22332 primer paint was used.
- 5. Composition B4 tested with an interior coating of primer paint in one case and acid-proof black paint in another reduces growth to 0.070 inch (87%) and 0.099 inch (78%) respectively. Vacuum melting the explosive in either case does not change the effect.
- 6. Five acid-proof black paint-coated burster tubes were loaded with Composition B/calcium silicate, four of the tubes were stored in a horizontal position and the other tube was placed vertical (open end up) with a 40-lb. weight on top of it. The latter charge grew 41% less (0.095 inch) than the average horizontal charge (0.162 inch).
- 7. Figures 1 6 illustrate graphically the rate of explosive growth under the various test conditions. The condition that fostered the most growth was Composition B when cast into acid-proof black painted-coated burster tubes using standard melt procedures (0.430 inch).

DISCUSSION OF RESULTS

- 8. The smallest average growth of charge in all the tests was encountered by using Composition B4 with a surround of MIL-P-22332 primer paint. Vacate melting the charge prior to loading did not reduce growth. Using acid-proof black paint as a surround significantly increased growth.
- 9. Under no circumstances could either Composition B or Composition B/calcium silicate be made to approach the extent of growth reduction accomplished very simply, with Composition B4. Since the only difference between Composition B/calcium silicate and Composition B4 is the absence of 1% desensitizing wax in Composition B4, the wax must be a contributing factor in growth. The exact relationship behavior of desensitizing wax in respect to growth is not known, but it is assumed that during high temperature storage (160° F) the wax softens sufficiently or becomes liquid, thus allowing the wax to flow along the path of least resistance, out of the tube.

During this flow it is possible for the wax to either push ahead or carry along small explosive; articles. In the overall picture, the phenomenon of TNT crystal growth surely plays some part. The amount it contributes in RDX/TNT compositions must be small since TNT alone grew maximum 0.178 inch while Composition B under the same conditions grew maximum 0.436 inch.

- 10. The results show that a 40-b. weight on the expressive charge could not stop growth although it reduced it by 41%. Evidently, there is a considerable force exerted in the growing process, sufficient to distort and perhaps burst a thin metal container.
- 11. Originally calcium silicate was incorporated into TNT (and TNT containing explosives) to prevent exudation (Ref 1). Table I shows that the incorporation of calcium silicate into TNT and Composition B significantly reduces the amount of growth obtained.
- 12. In all of the tests conducted only one group showed a significant difference in growth when vacuum melting was used, Composition B/calcium silicate in a surround of acid-proof black paint. The standard melt averaged 0.334 as compared to the vacuum melt 0.116 inch. Although this is a significant reduction it is not as simple a procedure nor as effective as the best Composition B1 system which averaged 0.057" growth under the same test conditions.
- 13. The growth of explosive charge cannot be completely eliminated, however, it can be tolerated when loaded into burster tubes by facing off the explosive below the top of the tube to allow for the growth of the charge. For Composition B4, an allowance of 1/8" would be ample.

EXPERIMENTAL PROCEDURE

In all of the growth tests conducted, XM83 Burster Tubes (Figure 7) were used rather than the XM71E3 because of their greater length and volume. The tubes were coated with either acid-proof black paint (MIL-P-450B) or priming paint (MIL-P-22332) and loaded with either standard melted or vacuum melted explosives. All of the tests were run for 15 days at 160° F.

REFERENCE

1. R.W. Heinemann, <u>Control of Exudation by Absorbents</u>, Picatinny Arsenal Technical Report 2568, October 1958.

APPENDIX A

TABLE

TABLE I

MAXIMUM GROWTH OF EXPLOSIVE CHARGES AFTER 15 DAYS STORAGE AT 160°F

					,	;		9
	Explosive	Additive	Type of Melt	Coating	AVS SYS	Growth (in.)	Min	Number Samples
	TNT	None	Standard	Acid-Proof Black Paint	90.	. 178	.048	4
	TNT	1.25% Calcium Silicate	Standard	Acid-Proof Black Paint	.046	990.	. 030	4
	Composition B	None	Standard	Acid-Proof Black Paint	.317	.430	.226	rc
	Composition B	0.5% Calcium Silicate	Standard	Acid-Proof Black Paint	. 186	.351	.097	rc
	Composition B	0.5% Calcium Silicate	Standard	Acid-Proof Black Paint	. 222	.317.	.188	ß
	Composition B	0.5% Calcium Silicate	Standard	MIL-P-22332 Primer Paint*	. 108	. 244	. 049	c
	Composition B	0.5% Calcium Silicate	Standard	MIL-P-22332 Primer Paint	.116	1232	101	ເດ
	Composition B	0.5% Calcium Silicate	Standard	MIL-P-22332 Primer Paint	.065	. 209	900.	10
	Composition B	0.5% Calcium Silicate	Vacuum	Acid-Proof Black Paint	.074	.085	.060	ß
	Composition B	0.5% Calcium Silicate	Vacuum	Acid-Proof Black Paint	.087	. 147	. 055	ល
A-1	Composition B	0.5% Calcium Silicate	Vacuum	MIL-P-22332 Primer Paint	¥50.	.094	.024	ນ

TABLE I (Continued)

M AXIMUM GROWTH OF EXPLOSIVE CHARGES AFTER 15 DAYS STORAGE AT 160° F

Explosive	Additive	Type of Melt	Interior Burster Coating	Gro	Growth (in.)	Min	Number
Composition B	9.5% Calcium Silicate	Vacuum	MIL-P-22332 Primer Paint	. 151	. 222	. 142	က
Composition B	0.5% Calcium Silicate	Vacuum	MIL-P-22332 Primer Paint	.054	.118	. 005	10
Composition B	None	Standard	Unpainted	. 174	. 226	. 142	10
Composition B4	None	Standard	Acid-Proof Black Paint	620.	660.	. 046	9
Composition B4	None	Standard	Acid-Proof Black Paint	890.	980.	. 028	5
Composition B4	None	Standard	Acid-Proof Black Paint	.085	. 093	.067	S
Composition B4	None	Standard	MIL-P-22332 Primer Paint	.046	.070	.016	လ
Composition BA	None	Standard	MIL-P-22332 Primer Paint	.050	.067	. 027	အ
Composition B4	None	Standard	MIL-P-22332 Primer Paint	.014	.034	.003	10
Composition B4	None	Vacuum	Acid-Proof Black Paint	.046	. 102	.027	10
Composition B4	None	Vacuum	Acid-Proof Black Paint	. 074	.083	. 030	က

TABLE I (Continued)

	Number of Samples	တ	လ	လ	10
7 160° F	1.) <u>Min</u>	.019	. 049	.001	.010
AAGE AT	Growth (in.)	.083	.073	.031	.055
AYS STO	AVE	990.	.057	.013	. 032
MAXIMUM GROWTH OF EXPLOSIVE CHARGES AFTER 15 DAYS STOAAGE AT 160° F	Interior Burster Coating	Acid-Proof Black Paint	MIL-P-22332 Primer Paint	MIL-P-22332 Primer Paint	MIL-P-22332 Primer Paint
EXPLOSIVE CHA	Interior Bur Type of Melt Coating	Vacuum	Vacuum	Vacuum	Vacuum
UM GROWTH OF	Additive	None	None	None	None
MAXIM	Explosive	Composition B4 None	Composition B4 None	Composition B4 None	Composition B4 None

* Code H4929 Primer Paint

APPENDIX B

FIGURES

Figure 2.

Figure 3.

Pigure 4.

Figure 5.

ŧ

Figure 6.

Figure 7. Container Burster

ABSTRACT DATA

Accession No. AD

Picatinny Arsenal, Dover, New Jersey

GROWTH OF COMPOSITION B TYPE CHARGES

Robert T. Schimmel, Stanley J. Lowell

Technical Memorandum 1133, March 1963 18 pp, figures, tables Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Group.

The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B, Composition B/calcium silicate (99.5/0.5), Composition B4 and TNT. They were either standard or vacuum melted and cast in XM83 Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days.

The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.070 inch) when cast into MIL-P-22332 primer paint coated burster tubes. The addition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.

UNCLASSIFIED

- 1. Composition B-type charges -- Growth
- I. Schimmel, Robert T.
- II. Lowell, Stanley J.
- III. Composition B-type charges

UNITERMS

Composition B
Composition B4
TNT
Growth
XM83
Burster TubSchimmel, R.T.
Lowell, S.J.

	UNCLASSIFIED 1. Composition B-type charges – growth 1. Schmmel, Robert T. 11. Lowell, Stanley J. 11. Composition B-type charges UNITERMS Composition B Composition B Composition B Composition B TNT Growth NM83 Burster Tube Schmmel, Robert T. Lowell, S, J. UNCLASSIFIED	
	Ficationy Arsenal, Dover, New Jersey GROWTH OF COMPOSITION B TYPE CHARGES GROWTH OF COMPOSITION B TYPE CHARGES Robert T. Schimmel, Stanley J. Lowell Technical Memorandum 1133, March 1963, 18 pp, figures, tables. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Group. The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The cyposives tested were Composition B4 and TYP. They were either standard or vacuum melted and cast in NM83 Burster. The interior of the burster tube was coated with Schimmel, Robert T. Lowell, S. J. (over) UNCLASSIFIED UNCLASSIFIED	Picatinny Arsenal, Dover, New Jersey GROWTH OF COMPOSITION B TYPE CHARGES Robert T. Schimmel, Stanley J. Louvell Technical Memorandum 1133, March 1963, 18 pp, figures, tables. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Group. The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B. Composition B. Calcium silicate (99.570.5), Composition B. A and TNT. They were either standard or vacuum melted and cast in NM83 Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days.
	UNCLASSIFIED 1. Composition B-type charges – growth 1. Schmmel, Robert T. 11. Lowell, Stanley J. 111. Composition B-type charges UNITERMS Composition B B Composition B B	UNCLASSIFIED 1. Composition B-type charges – growth 1. Schemel, Robert T. 11. Lowell, Stanley J. 11. Lowell, Stanley J. 11. Lowell, Stanley J. 11. Composition B-type charges UNITERMS Composition B Cowth XM83 Burster Tube Schammel, Robert T. Lowell, S. J. UNCLASSIFIED
8	UNN Changes Compos Comp	UNCLASSIF 1. Composition charges – 6 1. Schmmel, R 11. Lowell, Stan 11. Lowell, Stan 11. Composition charges UNITERN Composition B4 Co
	Accession No. AD ONCLASSIFIED Picatinny Arsenal, Dover, New Jersey CROWTH OF COMPOSITION B TYPE CHARGES Robert T. Schimmel, Stanley J. Lowell Trybuical Memorandum 1133, March 1963, 18 pp, figures, solies. Unclassified memorandum from the Artillery Amenumition Laboratory, Ammunition Group. The grow'h of Composition B-type charges was investigated by cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The cause or its potential safety hazard during firing. The charges to the composition B composition B and TNY. They were either standard or vacuum melted and cast in XM83 Burster. The interior of the burster tube was coated with Schimmel, Robert T. Lowell, S. J. Composition B and TNY. They were either acid-proof black paint or MIL-P-22332 primer paint. Lowell, S. J. Lowell, S	Accession No. Picatumy Arsenal, Dover, New Jersey I. Com GROWTH OF COMPOSITION B TYPE CHARGES I. Com Ghar Technical Memorandum 1133. March 1963. 18 pp. figures, tables. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Grout. The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The captosives tested were Composition B. Compositi

UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	
The maximum growth (0.430 inch) was observed with Composition B when standard melted and east into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.070 inch) when east into MIL-P-22332 primer paint coated burster tubes. The addition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.		The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.070 inch) when cast into MIL-P-22332 primer paint coated burster tubes. The addition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth coansiderably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.		
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	
The maximum grow h (0.430 inch) was observed with Composition B when st. idard anched and cast into acid-proof black painted coated-burster tubes and Composition B4 viewed the least growth (0.070 inch) when cast into MIL-9-2232 primer paint coated burster tubes. The addition of reliefum silicate, vacuum melting the explosive and change of the interior coating to MIL-9-22332 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.		The maximum growth (0.430 inch) was observed with Censoration B when standard melted and cast into acid-proof black painted coated-burster tubes and Composition B4-lefted the least growth (0.070 inch) when cast into MIL-P-2232 primer paint coated burster tubes. The addition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-2232 primer paint reduced the growth cannot be entirely eliminated; but by loading below the top of the tube, the growth can be tolerated.		

Schmmel, Robert T. Lowell, Stanley J. III. Composition B-type I. Schmmel, Robert T. II. Lowell, Stanley J. III. Composition B-type Composition B-type 1. Composition B-type charges - growth charges - growth UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Schmmel, Robert T. Lowell, S. J. UNCLASSIFIED Schimmel, Robert T. Lowell, S. J. UNITERMS UNITERMS m W Composition B Burster Tube Composition Composition **Burster Tube** charges Growth Growth XM83 XM83 K Z The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B, Composition B/calcium silicate (99.5/0.5). Composition B4 and TNT. They were either standard or vacuum melted and cast in XM83 Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days. The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B, Composition B, Calcium an silicate (995/0.5), Composition B and TNT. They were either standard or vacuum melted and cast in XMS3 Technical Memorandum 1133, March 1963, 18 pp, figures, tables. Unclassified memorandum from the Artillery Am-Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days. Fechnical Memorandum 1133, March 1963, 18 pp, figures, tables. Unclassified memorandum from the Artillery Am-GROWTH OF COMPOSITION B TYPE CHARGES GROWTH OF COMPOSITION B TYPE CHARGES 4 P munition Laboratory, Ammunition Group. munition Laboratory, Ammunition Group. Robert T. Schimmel, Stanley J. Lowell Robert T. Schimmel, Stanley J. Lowell Picatinny Arsenal, Dover, New Jersey Picatinny Arsenal, Dover, New Jersey (OVCE) Accession No. Accession No. Schmmel, Robert T. Lowell, Stanley J. Composition B-type I. Schmmel, Robert T. II. Lowell, Stanley J. III. Composition B-type Composition B-type Composition B-type Composition B-type charges - growth charges - growth UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Schmmel, Robert T. Lowell, S. J. UNCLASSIFIED Schmmel, Robert T. Lowell, S. J. UNITERMS UNITERMS Composition B Composition B4 TNT m Z Composition E Composition F TNT Burster Tube Burster Tube charges charges Growth XM83 Growth XM83 The growth of Composition B-type charges was investigated been use of its potential safety hazard during firing. The explosives tested were Composition B. Composition B/calcium silicate (99.5/0.5), Composition B4 and TNT. They were either standard or vacuum melted and cast in XMS3 Bursters. The interior of the burster tube was coated with either acid-proof black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days. The growth of Composition B-type charges was investigated because of its potential safety hazard during firing. The explosives tested were Composition B, Composition B/caleirum silicate (99.5/0.5), Composition B4 and TNT. They were either standard or vacuum melled and east in XM83 Bursters. The interior of the burster tube was coated with either acid-proc black paint or MIL-P-22332 primer paint. Then these charges were subjected to 160°F for 15 days. Technical Memorandum 1133, March 1963, 18 pp, figures, ables. Unclassified memorandum from the Artillery Am-Technical Memorandum 1133, March 1963, 18 pp, figures, tables. Unclassified memorandum from the Artillery Am-CROWTH OF COMPOSITION B TYPE CHARGES CROWTH OF COMPOSITION B TYPE CHARGES AD P munition Laboratory, Ammunition Group. nunition Laboratory, Ammunition Group. Robert T. Schimmel, Stanley J. Lowell Robert T. Schimmel, Stanley J. Lowell Picatinny Arsenal, Dover, New Jersey Picatinny Arsenal, Dover, New Jersey (over) Accession No. Accession No

I NC.ASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIPTED	
The maximum growth (0.430 inch) was observed with Composition Be when standard methed and cast into acid-proof black painted coated-burster rubes and Composition Be yielded the least growth (0.070 inch) when cast into MIL-P-22332 primer paint coated burster tubes. The addition of calcium silicate, vacuum mething the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth coasiderably but did not eliminate it Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.		The maximum growth (0.430 inch) was observed with Composition B when standard merled and cast into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.070 inch) when cast into MILP-22332 primer paint coated burster tubes. The addition of calcium silicate, vacuum meling the explosive and changing the interior coating to MILP-22332 primer paint reduced the growth considerably but did not eliminate at Explosive growth cannot be estirally eliminated, but by kading below the top of the tube, the growth can be tolerated.		
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	
The maximum growth (0.430 inch) was observed with Composition B when varieties and cast into acid-proof black named cut-ed-burster tubes and Composition B wiedded the least mowth (0.070 inch) when cast into MIL-2-2332 grinner p int coated burster tubes. The addition of calcium silicate vacuum melting the explosive, and change us; the interior ceating to MIL-P-22332 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be rolerated.		The maximum growth (0.430 inch) was observed with Con- sosition B when standard melved and cast into acid-proof back painted coated-burster tubes and Composition B4 wided the least growth (0.070 inch) when cast into MILL- F-2.1332 primer paint coated burster tubes. The addition ofdrium silicate, wexum melking the explosive and chang- ing the interfer coating to MILP-22332 primer paints re- duced the growth considerably but did not eliminate it. Explosive growth cannot be estirably eliminated, but by backing below the top of the tube, the growth can be tolerated.		

The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black painted control-burster tubes and Composition By yielded the least rowth (0.70 inch) when cast into MILP-23338 primer paint coated burster tubes. The addition of calcum silicate, waruum melting the explosive and change in the interior ceating to MILP-23332 primer paint reduced the growth cannot be entirely eliminated. But by loading below the top of the tube, the growth can be colerated.	UNCLASSIFIED	The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.070 inch) when cast into MIL-P-22332 primer paint coated burster tubes. The addition of calcium silicate, wocum melting the explosive and changing the interior coating to MIL-P-22332 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by loading below the top of the tube, the growth can be tolerated.	UNCLASSIFIED
The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into exid-proof black painted onsted-burster tubes and Composition B4 yielded the least growth (0.070 inch) when cast into MIL-P-21333 primer gainst coated burster tubes. The addition of calcium silicate, we come melting the emploave and changing the innerfer coating to MIL-P-22338 primer paint reduced the growth cannot be entirely but ded not eliminate in Explosive growth cannot be entirely eliminated, but by inclining below the top of the tube, the growth can be tolerated.	UNCLASSIFIED	The maximum growth (0.430 inch) was observed with Composition B when standard melted and cast into acid-proof black painted coated-burster tubes and Composition B4 yielded the least growth (0.770 inch) when cast into MIL-P-28233 primer paint coated burster tubes. The acidition of calcium silicate, vacuum melting the explosive and changing the interior coating to MIL-P-28233 primer paint reduced the growth considerably but did not eliminate it. Explosive growth cannot be entirely eliminated, but by locking below the top of the tube, the growth can be tolerated.	UNCLASSIFIED

TABLE OF DISTRIBUTION

DISTRIBUTION LIST

		Copy No.
1.	Commanding Officer	
	U.S. Army Materiel Command	
	Washington 25, D.C.	
	ATTN: Infantry & Aircraft Weapons Systems Branch	1
2.	Commanding General	
	U.S. Army Munitions Command	
	Dover, New Jersey	
	ATTN: AMSMU-A	2
3.	Commanding Officer	
	Picatinny Arsenal	
	Dover, New Jersey	
	ATTN: SMUPA-VA6	3-7
	SMUPA-DC (Mr. E.E. Pawluk)	8-9
	SMUPA-DR1 (Mr. W. F. Shirk)	10 - 11
	SMUPA-DR4 (Mr. D.E. Seeger)	12-16
	SMUPA-G (Mr. R.E. Young)	17
4.	Commander	
	Armed Services Technical Information Agency	
	Arlington Hall Station	
	Arlington 12, Virginia	
	ATTN: TIPDR	18-27
5.	Commanding General	
	U.S. Army Test & Evaluation Command	
	Aberdeen Proving Ground, Maryland	
	ATTN: Technical Library	28-29
6.	Commanding Officer	
	Iowa Ordnance Plant	
	Burlington, Iowa	30-31
7.	Commanding Officer	
	Lone Star Ordnance Plant	
	Texarkana, Texas	92_99

DISTRIBUTION LIST (Continued)

		Copy No
8.	Commanding Officer	
	Edgewood Arsenal	
	Edgewood, Maryland	
	ATTN: Technical Library	34
9.	Department of the Navy	
	Chief of Naval Research	
	Washington 25, D.C.	35
10.	Canadian /rmw Staff	
	2450 Massachusetts Ave., N.W.	
	Washington 8, D.C.	36
11.	Commanding Officer	
	Dugway Proving Ground	
	Dugway, Utah	
	ATTN: Technical Library	. 37
12.	Commanding Officer	
	Holston Ordnance Works	
	Kingsport Tennessee	30