الصفحة الامتحان الوطني الموحد للبكالوريا الدورة العادية 2019 -الموضوع-

وزارة التربية الوئمنية والتكوين الممنى والتعليم العالم والبحث الع A SOCSIFX -XXIII

المركز الوطنى للتقويم والامتحانات والتوجيه ***** **NS22**

2		
4		

مدة الانجاز 3		الرياضيات	المادة	
7	المعامل	شعبة العلوم التجريبية بمسالكها	الشعبة أو المسلك	

تعليمات عامة

- _ يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- _ يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغي تفادي آستعمال اللون الأحمر عند تحرير الأجوبة.

مكونات الموضوع

يتكون الموضوع من ثلاثة تمارين و مسألة، مستقلة فيما بينها، و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل و المتتاليات العددية	المسألة

ln يرمز لدالة اللوغاريتم النبيري.

الصفحة 2 NS22	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 – الموضوع – مادة: الرياضيات – شعبة العلوم التجريبية بمسالكها	
	ac Est 2) tián a com	
C(1,-2,0) و	التمرين الأول (3 نقط): التمرين الأول (3 نقط): في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $O,\vec{i},\vec{j},\vec{k}$ ،نعتبر النقط $A(1,-1,-1)$ و $B(0,-2,1)$	
1	$\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ ا) بین اُن (1	0.75
	(ABC) ب) استنتج أن $x+y+z+1=0$ هي معادلة ديكارتية للمستوى	0.5
	$x^2 + y^2 + z^2 - 4x + 2y - 2z + 1 = 0$ الفلكة التي معادلتها (S) الفلكة التي معادلتها	
	$R=\sqrt{5}$ بين أن مركز الفلكة (S) هو النقطة $\Omega(2,-1,1)$ و أن شعاعها هو	0.75
	(ABC) مسافة النقطة Ω عن المستوى $d(\Omega,(ABC))$ مسافة النقطة Ω	0.5
(بر	ب) استنتج أن المستوى (ABC) يقطع الفلكة (S) وفق دائرة (Γ) (تحديد مركز وشعاع (Γ) غير مطلو	0.5
	التمرين الثاني (3 نقط):	
	$z^2-2z+4=0$ المعادلة: $\mathbb C$ المعادلة:	0.75
و D التي ألحاقها	C و B و A نعتبر النقط $(O,ec{u},ec{v})$ انعتبر النقط A و B و C	
	$d=-2+2\sqrt{3}$ و $c=\sqrt{3}+i$ و $b=2+2i$ و $a=1-i\sqrt{3}$ و على التوالي هي:	
	$a-d=-\sqrt{3}(c-d)$ ا) المحقق أن	0.5
	ب) استنتج أن النقط A و C و D مستقيمية .	0.25
$\frac{-\pi}{3}$	يكن z لحق نقطة M و z' لحق النقطة M صورة النقطة M بالدوران R الذي مركزه O و زاويته z	
	$z'=rac{1}{2}az$ تحقق أن	0.5
p:	=a-c عيث P النقطة B بالدوران R ، و h لحقها ، و P النقطة التي لحقها B عيث H	
	h=ip ا) تحقق أن $h=ip$	0.5
	Oبين أن المثلث OHP قائم الزاوية و متساوي الساقين في	0.5
	التمرين الثالث (3 نقط):	
بينها باللمس.	التعرین النالک (و تقط) : الله کرات خضراء و ست کرات حمراء و کرة واحدة سوداء لا یمکن التمییز	
	نسحب عشوائيا و تآنيا ثلاث كرات من الصندوق.	
	نعتبر الأحداث التالية : A:" الحصول على ثلاث كرات خضراء "	

و B: " الحصول على ثلاث كرات من نفس اللون "

و C: " المحصول على كرتين على الأقل من نفس اللون "

$$p(B) = \frac{7}{40}$$
 و $p(A) = \frac{1}{120}$: 2

p(C) احسب (2

الصفحة	
3	NS22
3	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2019 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها

المسألة (11 نقطة): الجزء الأول:

$$f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$$
 : يعتبر الدالة العددية f المعرفة على $]0, +\infty[$ بما يلي $]0, +\infty[$

(1cm المنحنى الممثل للدالة
$$f$$
 في معلم متعامد ممنظم $\left(C,\vec{i},\vec{j}\right)$ (الوحدة $\left(C\right)$

$$f(x) = x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right)\ln x$$
: $]0, +\infty[$ من المجال x من المجال) نحقق أن لكل x من المجال x من المجال x

$$\lim_{x \to +\infty} f(x) = +\infty$$
 ن استنتج آن (ب 0.5

$$\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0 : ثم استنتج أن : \frac{(\ln x)^2}{x} = 4 \left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^2 : \left]0, +\infty\right[$$
 عن نكل x من المجال $x \to +\infty$: $x \to +\infty$

$$y=x$$
 الذي معادلته (C) الذي معادلته (C) بين أن المنحنى المعادلة (C) الذي معادلته عبين أن المنحنى المعادلة عبين أن المعادلة عبين المعادلة عبين أن المنحنى المعادلة عبين المعادلة عبد المعادلة عبين المعادلة عبد ا

$$(x-1) + \ln x \ge 0$$
: $[1, +\infty[$ و أن لكل x من $[0,1] + \ln x \le 0$ و أن لكل $[0,1]$ و أن لكل $[0,1]$

$$f'(x) = \frac{x - 1 + \ln x}{x}$$
 : $]0, +\infty[$ ب) بین آن لکل x من $[$ من $]$

$$f$$
 ضع جدول تغيرات الدالة

0.75

0.5

0.5

0.5

1

0.5

$$]0,+\infty[$$
 نکل x من $f''(x)=\frac{2-\ln x}{x^2}$ نکل من (أن 4) 0.5

ب) استنتج أن المنحنى
$$(C)$$
 يقبل نقطة انعطاف يتم تحديد زوج إحداثيتيها

(
$$\Delta$$
) و المستقيم (C) و المستقيم النسبي المنحنى (C) و المستقيم النسبي المنحنى (C) و المستقيم (C) و

$$\left(O, \vec{i}, \vec{j}
ight)$$
 ب $\left(\Delta\right)$ و $\left(\Delta\right)$ في نفس المعلم $\left(\Delta\right)$

$$]0,+\infty[$$
 اين أن الدالة $h:x\mapsto \ln x$ هي دالة أصلية للدالة $h:x\mapsto \ln x$ على المجال $H:x\mapsto x\ln x-x$ على المجال 0.5

$$\int_{1}^{e} (\ln x)^{2} dx = e - 2$$
 باستعمال مكاملة بالأجزاء بين أن **0.75**

$$x=e$$
 و $x=1$ و احسب ب cm^2 مساحة حيز المستوى المحصور بين m و m و المستقيمين اللذين معادلتاهما m

الجزء الثاتى:

$$I\!\!N$$
 نتكن $u_{n+1}=f(u_n)$ و $u_0=1$ يلي: المتتالية العدية المعرفة كما يلي ا $u_0=1$

استنتج أن المنتالية
$$(u_n)$$
 متقاربة (u_n)

$$(u_n)$$
 أحسب نهاية المتتالية (2 0.75

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

 $\overline{\mathrm{A}(1,-1,-1)}$ اء منسوب إلى معلم متعامد ممنظم مباشر $\overline{\mathrm{A}(1,-1,j,k)}$ ، نعتبر النقط $\overline{\mathrm{A}(1,-1,-1)}$ و

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$: ين أن $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$

$$\overrightarrow{AC}$$
 $\begin{pmatrix} 1-1 \\ -2+1 \\ 0+1 \end{pmatrix} = \overrightarrow{AC} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$. $\overrightarrow{AB} \begin{pmatrix} 0-1 \\ -2+1 \\ 1+1 \end{pmatrix} = \overrightarrow{AB} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} :$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{vmatrix} -1 & -1 \\ 2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} -1 & 0 \\ -1 & -1 \end{vmatrix} \vec{k} = (-1+2)\vec{i} - (-1+0)\vec{j} + (1+0)\vec{k}$$
 و منه :

 $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ خلاصة

طريقة 1:

(ABC) المتجهة $\overrightarrow{AB} \wedge \overrightarrow{AC}(1,1,1)$ المتجهة $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ منظمية على المستوى

$$M(x,y,z) \in (ABC) \Leftrightarrow \overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$$

$$\Leftrightarrow \begin{pmatrix} x-1 \\ y+1 \\ z+1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$$

$$\Leftrightarrow 1 \times (x-1) + 1 \times (y+1) + 1 \times (z+1) = 0$$

$$\Leftrightarrow x-1+y+1+z+1=0$$

$$\Leftrightarrow x + y + z + 1 = 0$$

 $\left(ABC \right)$ خلاصة: $\left(x+y+z+1=0 \right)$ هي معادلة ديكارتية للمستوى

- $\cdot x+y+z+d=0$ متجهة منظمية على (ABC) إذن معادلة ديكارتية له هي على شكل $\overline{AB} \wedge \overline{AC}(1,1,1)$
 - . d=1: و منه A(1,-1,-1) النقطة A(1,-1,-1) تنتمي إلى المستوى A(1,-1) فإن A(1,-1)

(ABC) هي معادلة ديكارتية للمستوى x+y+z+1=0

 $\Omega(2,-1,1)$ هو (S) الفلكة التي معادلتها (S) هو (S) الفلكة التي معادلتها والمعادلتها والمعادلته

$$x^{2} + y^{2} + z^{2} - 4x + 2y - 2z + 1 = 0 \Leftrightarrow \underbrace{x^{2} - 4x + 4}_{(x-2)^{2}} - 4 + \underbrace{y^{2} + 2y + 1}_{(y+1)^{2}} - 1 + \underbrace{z^{2} - 2z + 1}_{(z-1)^{2}} - 1 + 1 = 0 \qquad \vdots$$

$$\Leftrightarrow (x-2)^2 - 4 + (y+1)^2 - 1 + (z-1)^2 - 1 + 1 = 0$$

$$\Leftrightarrow (x-2)^2 + (y+1)^2 + (z-1)^2 = 5 = \sqrt{5}^2$$

udi 13<u>-i</u>uin 2019 13/06/2019 17:23:54

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

لصفحة

 $R=\sqrt{5}$ و شعاعها $\Omegaig(2,-1,1ig)$ و شعاعها Ω

. ${f R}=\sqrt{5}$ في النقطة $\Omegaig(2,-1,1ig)$ و أن شعاعها ${f S}$

.. **.03**

 $ext{d}\left(\Omega, (ABC)\right):$ نحسب $ext{d}\left(\Omega, (ABC)\right)$

$$d(\Omega,(ABC)) = \frac{|2-1+1+1|}{\sqrt{1^2+1^2+1^2}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

 $\cdot d(\Omega,(ABC)) = \sqrt{3}$ خلاصة:

(0.5) يقطع الفلكة وفق دائرة (Γ) يقطع الفلكة وفق دائرة ين المستوى ينتج أن المستوى المستوى ينتج أن المستوى المستوى ينتج أن المستوى المستول المستوى المستوى المستوى المستوى المستوى المستوى المستوى المستوى

 $d(\Omega,(ABC)) = \sqrt{3} < \sqrt{5}$: بما أن $\sqrt{5}$ هو شعاع الدائرة و لدينا

 (Γ) علاصة : المستوى (ABC) يقطع الفلكة وفق دائرة

.02 قط)

ي نحل في مجموعة الأعداد العقدية $\mathbb C$ المعادلة : $\mathbf z^2 - 2\mathbf z + 4 = 0$ نحل في مجموعة الأعداد العقدية $\mathbf z^2 - 2\mathbf z + 4 = 0$

 $\Delta = (-2)^2 - 4 \times 1 \times 4 = 4 - 16 = -12 < 0$: لدينا : Δ : لدينا \checkmark

. $z_2 = \overline{z}_1 = 1 - i\sqrt{3}$ و $z_1 = \frac{2 + i\sqrt{-\Delta}}{2 \times 1} = \frac{2 + i\sqrt{12}}{2} = \frac{2 + i2\sqrt{3}}{2} = 1 + i\sqrt{3}$ و ندن المعادلة لها حلين عقديين مترافقين هما :

 $\mathbf{S} = \left\{1 + \mathrm{i}\sqrt{3} \; ; \; 1 - \mathrm{i}\sqrt{3}
ight\}$ خلاصة : مجموعة حلول المعادلة هي

يعتبر النقط (P) و (P) المنسوب إلى معلم متعامد ممنظم مباشر (O,\vec{u},\vec{v}) نعتبر النقط (P) و (D,\vec{u},\vec{v}) المستوى العقدي (P)

. $d=-2+2\sqrt{3}$ و $c=\sqrt{3}+i$, b=2+2i , $a=1-i\sqrt{3}$: التوالي هي

 $[\underline{b}] = \mathbf{a} - \sqrt{3} (\mathbf{c} - \mathbf{d}) : \mathbf{d}$ ن ن $\mathbf{a} - \mathbf{d} = -\sqrt{3} (\mathbf{c} - \mathbf{d}) : \mathbf{d}$

$$c-d = \sqrt{3} + i - (-2 + 2\sqrt{3}) = -\sqrt{3} + 2 + i$$
 لاينا:

$$.a - d = 1 - i\sqrt{3} - \left(-2 + 2\sqrt{3}\right) = 3 - 2\sqrt{3} - i\sqrt{3} = -\sqrt{3}\left(\underbrace{-\sqrt{3} + 2 + i}_{c - d}\right) = -\sqrt{3}\left(c - d\right)$$

 $a-d=-\sqrt{3}(c-d)$: خلاصة

(0.25) و (0.25)

 $z_{\overline{DC}}$ و \overline{DC} و \overline{DC} و \overline{DC} على التوالي) $z_{\overline{DC}}$ و $z_{\overline{DC}}$ على التوالي) $z_{\overline{DC}}$ على التوالي)

 $\Leftrightarrow \overrightarrow{DA} = -\sqrt{3}\overrightarrow{DC}$

و بالتالي المتجهتين $\overrightarrow{\mathbf{DA}}$ و $\overrightarrow{\mathbf{DC}}$ مستقيميتين .

خلاصة : النقط C,A و D مستقيمية .

یکن z لحق نقطهٔ M و z' لحق النقطهٔ M' صورهٔ M بالدوران R الذي مرکزه O و زاويته $\frac{-\pi}{3}$.

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

$$(\dot{\mathbf{0}}.\mathbf{5})$$
 $\mathbf{z'} = \frac{1}{2}\mathbf{a}\mathbf{z}$: نتحقق أن

الكتابة العقدية للدوران و $\omega:z'-\omega=(z-\omega)e^{i\theta}$ هو لحق مركز الدوران و $\alpha:z'-\omega=(z-\omega)e^{i\theta}$ الكتابة العقدية للدوران و

ومنه:
$$\mathbf{c} = \frac{-\pi}{3}$$
 ومنه: $\mathbf{c} = \frac{-\pi}{3}$ ومنه: $\mathbf{c} = \mathbf{c}$ واوية الدوران $\mathbf{c} = \mathbf{c}$ واوية الدوران)

$$z' = z \times \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right)\right)$$

$$= z \times \left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)$$

$$= z\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$= z\frac{1}{2}(1 - i\sqrt{3})$$

$$= \frac{1}{2}az \qquad ; \left(1 - i\sqrt{3} = a\right)$$

. $\mathbf{z'} = \frac{1}{2} \mathbf{a} \mathbf{z}$ هي \mathbf{R} التالي الكتابة العقدية للدوران

 $z' = \frac{1}{2}az$: خلاصة

p=a-c بتكن p صورة النقطة p بالدوران p ؛ و p لحقها ؛ و p النقطة التي لحقها p حيث p

لدينا:

> $R(B) = H \Leftrightarrow h = \frac{1}{2}ab$ $\Leftrightarrow h = \frac{1}{2} \left(1 - i\sqrt{3} \right) \left(2 + 2i \right)$ $\Leftrightarrow h = (1 - i\sqrt{3})(1 + i)$ \Leftrightarrow h = $\left(1 - i\sqrt{3}\right) + i\left(1 - i\sqrt{3}\right)$

$$\Leftrightarrow \mathbf{h} = i \underbrace{\left(-i - \sqrt{3}\right)}_{-c} + i \underbrace{\left(1 - i \sqrt{3}\right)}_{a}$$

$$\Leftrightarrow \mathbf{h} = \mathbf{i} (\mathbf{a} - \mathbf{c})$$

$$\Leftrightarrow$$
 h = ip

udi 13 <u>j</u>uin 2019 13/06/2019 17:23:54

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

اصفحة

$$\begin{split} \frac{h-0}{p-0} &= \frac{ip}{p} = i \Rightarrow \begin{cases} \frac{\left|h-0\right|}{\left|p-0\right|} = \left|i\right| \\ \hline \left(\overrightarrow{OP}, \overrightarrow{OH}\right) &= \arg\left(\frac{h-0}{p-0}\right) \left[2\pi\right] \end{cases} \\ &\Rightarrow \begin{cases} \frac{OH}{OP} = 1 \\ \hline \left(\overrightarrow{OP}, \overrightarrow{OH}\right) &= \arg\left(i\right) \left[2\pi\right] ; \left(\frac{h}{p} = i\right) \end{cases} \\ &\Rightarrow \begin{cases} \frac{OH = OP}{\left(\overrightarrow{OP}, \overrightarrow{OH}\right)} &= \frac{\pi}{2} \left[2\pi\right] \end{cases}$$

ومنه

- OH = OP المثلث OHP متساوي الساقين في O.
- $\overrightarrow{OP}, \overrightarrow{OH} \equiv \frac{\pi}{2}$ المثلث $\overrightarrow{OP}, \overrightarrow{OH} \equiv \frac{\pi}{2}$ [2 π]

خلاصة : المثلث OHP قائم الزاوية و متساوي الساقين في O .

3 نقط)

<u>.....</u> <u>.U3</u>

يحتوي صندوق: على 10 كرات: <u>ثلاث كرات خضراء</u> و <u>ست كرات حمراء</u> و <u>كرة واحدة سوداء لا يمكن التميز بينها باللمس.</u> نعتبر التجربة التالية: نسحب عشوائيا و تأنيا ثلاث كرات من الصندوق.

- ✓ الحدث A: " الحصول على ثلاث كرات خضراء "
- الحصول على ثلاث كرات من نفس اللون " : ${f B}$
- ✓ الحدث C: " الحصول على كرتين على الأقل من نفس اللون "

 $\mathbf{p}(\mathbf{B}) = \frac{7}{40}$ و $\mathbf{p}(\mathbf{A}) = \frac{1}{120}$ نبین أن : $\mathbf{p}(\mathbf{A}) = \frac{1}{120}$ و نبین أن :

 \checkmark عدد السحبات الممكنة (أي $\cot\Omega$): سحب ثلاث كرات في آن واحد من بين 10 كرات يمثل تأليفة ل3 من بين 10 ومنه عدد السحبات هو عدد التأليفات ل3 من

$${
m card}\Omega=C_{10}^3=rac{10 imes9 imes8}{1 imes2 imes3}=120$$
 : بين 10 إذن

. $card\Omega = C_{10}^3 = 120$: إذن

- $\cdot \mathbf{p}(\mathbf{A}) = \frac{1}{120}$: نبین أن
- ✓ عدد السحبات الّتي تحقق الحدث A (أي cardA (
- ✓ الحدث Ä " الحصول على ثلاث كرات خضراء "
- ($C_n^n = 1$ ملحوظة $\frac{3 \times 2 \times 1}{1 \times 2 \times 3} = 1$ الكرات الثلاث المسحوبة في آن واحد من اللون الأخضر من بين 3 إذن $\frac{3 \times 2 \times 1}{1 \times 2 \times 3} = 1$

.
$$p(A) = \frac{\text{card}A}{\text{card}\Omega} = \frac{C_3^3}{C_{10}^3} = \frac{1}{120}$$
 و منه : $\frac{\text{card}A = C_3^3 = 1}{\text{card}A}$

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

الصفحة

.
$$p(B) = \frac{7}{40}$$
: نبین أن

- ✓ عدد السحبات التي تحقق الحدث B (أي cardB)
- الحصول على ثلاث كرات من نفس اللون ${\bf P}$ الحدث ${\bf B}$

الحدث В نعبر عنه أيضا بما يلي: В " الكرات الثلاث المسحوبة من اللون أخضر أو الكرات الثلاث المسحوبة من اللون أحمر "

- . $C_3^3 = 1$ الكرات الثلاث المسحوبة و في آن واحد و من اللون أخضر من بين 3 كرات من اللون أخضر إذن $C_3^3 = 1$
- . $C_6^3 = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$: الكرات الثلاث المسحوبة و في آن واحد و من اللون أحمر من بين 6 كرات من اللون أحمر إذن : $C_6^3 = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20$
 - cardB = $C_3^3 + C_6^3 = 1 + 20 = 21$

.
$$p(B) = \frac{\text{card}B}{\text{card}\Omega} = \frac{C_3^3 + C_6^3}{C_{10}^3} = \frac{21}{120} = \frac{7 \times \cancel{3}}{\cancel{3} \times 40} = \frac{7}{40}$$
:

 $p(B) = \frac{7}{40} :$ خلاصة

- ٧ الحدث C : " الحصول على كرتين على الأقل من نفس اللون "
 - : (cardC أي) C عدد السحبات التي تحقق الحدث \checkmark

الطريقة 1:

الحدث المضاد للحدث $\overline{\mathbf{C}}$ هو $\overline{\mathbf{C}}$ " الحصول على كرة واحدة من كل لون "

الحدث $\overline{\mathbf{C}}$ نعبر عنه أيضا بما يلى : $\overline{\mathbf{C}}$ " الكرات الثلاث المسحوبة من ألوان مختلفة "

 $\operatorname{card} \overline{C} = C_3^1 \times C_6^1 \times C_1^1 = 3 \times 6 \times 1 = 18 : 0$

 $cardC = card\Omega - card\overline{C} = 120 - 18 = 102$: each

$$p(C) = \frac{\text{card}C}{\text{card}\Omega} = \frac{\text{card}\Omega - \text{card}\overline{C}}{C_{10}^3} = \frac{120 - 18}{120} = \frac{\cancel{10} \times 17}{\cancel{10} \times 20} = \frac{17}{\cancel{10} \times 20} = \frac{17}{\cancel{$$

 $\mathbf{p(C)} = \frac{17}{20} :$

الطريقة 2:

الحدث C نعبر عنه أيضا بما يلي : C " (الحصول على ثلاث كرات من نفس اللون) أو (الحصول على كرتين بالضبط من نفس اللون) "

- $cardB = C_3^3 + C_6^3 = 1 + 20 = 21$ إذن B إذن الحصول على ثلاث كرات من نفس اللون) إذن الحدث B
- (الحصول على كرتين بالضبط من نفس اللون) إذن: " (كرتين من اللون أخضر وكرة من اللونين المتبقيين) او (كرتين من اللون أحمر وكرة من اللونين المتبقيين) او (كرتين من اللون أحمر وكرة من اللونين المتبقيين) "
 - . كرتين من اللون أخضر وكرة من اللونين المتبقيين وعددها 7) و هو يتم ب ${
 m C}_3^2 imes {
 m C}_7^2$ كيفية مختلفة .
 - (كرتين من اللون أحمر و كرة من اللونين المتبقيين و عددها 4) و هو يتم ب $\mathbf{C}_6^2 \times \mathbf{C}_4^1$ كيفية مختلفة .
- و هو يتم ب 10 10 + 10 على كرتين بالضبط من نفس اللون) و هو يتم ب $10 10 + 10 \times 10^2 + 10^2 \times 10^3 + 10^2 \times 10^2 = 10^3 \times 10^3 + 10^2 \times 10^3 = 10^3 \times 10^3 \times 10^3 = 10^3 \times 10^3 \times 10^3 \times 10^3 = 10^3 \times 10^3 \times 10^3 \times 10^3 = 10^3 \times 10^3 \times$
 - $cardC = C_3^3 + C_6^3 + C_3^2 \times C_7^1 + C_6^2 \times C_4^1 = 1 + 20 + 3 \times 7 + 15 \times 4 = 102$

.
$$p(C) = \frac{cardC}{card\Omega} = \frac{C_3^3 + C_6^3 + C_3^2 \times C_7^1 + C_6^2 \times C_4^1}{C_{10}^3} = \frac{1 + 20 + 3 \times 7 + 15 \times 4}{120} = \frac{102}{120} = \frac{\cancel{6} \times 17}{\cancel{6} \times 20} = \frac{17}{20}$$
 : و بالتالي:

 $p(C) = \frac{17}{20}$: خلاصة

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

الصفحة

السنة الدراسية 2018 - 2019

.04

(11 نقطة)

. $f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$: يعتبر الدالة العددية f المعرفة على $f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$ المعرفة على $f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$

و $\left(\mathrm{C} \right)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(\mathrm{C} \right)$ (الوحدة C

I. الجزء الأول:

النتيجة هندسيا يا النتيجة هندسيا يا النتيجة هندسيا $\lim_{\substack{{
m x} o 0 \ {
m x}>0}} {
m f}({
m x})$ المسب $\lim_{\substack{{
m x} o 0 \ {
m x}>0}} {
m f}({
m x})$

 $\lim_{\substack{x\to 0\\x>0}} f(x) : \Leftrightarrow$

لدينا:

 $\lim_{\substack{x \to 0 \\ y > 0}} x + \frac{1}{2} = \frac{1}{2} \quad \bullet$

$$\lim_{\substack{x \to 0 \\ x > 0}} \ln x = -\infty \Rightarrow \begin{cases} \lim_{\substack{x \to 0 \\ x > 0}} -\ln x = +\infty \\ \lim_{\substack{x \to 0 \\ x > 0}} \left(\ln x\right)^2 = +\infty \end{cases}$$

 $\lim_{\substack{x \to 0 \\ y > 0}} f(x) = \lim_{\substack{x \to 0 \\ y > 0}} x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 = +\infty : \bullet$

 $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty :$

نؤول النتيجة هندسيا:

بما أن : $\infty + = \lim_{\substack{x \to 0 \ x o 0}} |$ إذن المنحنى (C) يقبل مقاربا عموديا هو المستقيم الذي معادلته $(x) = +\infty$ (أي محور الأراتيب)

...02

 $f(x) = x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right)\ln x :]0,+\infty[$ نتحقق أن : لكل x من المجال 0.25 الدينا :

$$x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right) \ln x = x + \frac{1}{2} + \frac{1}{2}\ln x \times \ln x - \ln x$$
$$= x + \frac{1}{2} + \frac{1}{2}(\ln x)^{2} - \ln x$$
$$= f(x)$$

. $f(x) = x + \frac{1}{2} + \left(\frac{1}{2} \ln x - 1\right) \ln x :]0, +\infty[$ خلاصة : لكل x من المجال

 $(\circ 0.5)$... $\lim_{x \to +\infty} f(x) = +\infty : 0.5$

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

اصفحة

$$\lim_{x \to +\infty} \left(\frac{1}{2} \ln x - 1 \right) \ln x = +\infty :$$

$$\lim_{x \to +\infty} \ln x = +\infty :$$

$$\lim_{x \to +\infty} \ln x + \frac{1}{2} = \lim_{x \to +\infty} x = +\infty :$$

$$\lim_{x \to +\infty} \left(\frac{1}{2} \ln x - 1 \right) \ln x = +\infty :$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x + \frac{1}{2} + \left(\frac{1}{2} \ln x - 1 \right) \ln x \right) = +\infty \quad : 0$$

 $\lim_{x\to +\infty} f(x) = +\infty$ خلاصة:

. $\frac{\left(\ln x\right)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2 : نبین أن •$

لدينا

$$\frac{\left(\ln x\right)^{2}}{x} = \frac{\left(\ln\left(\sqrt{x}^{2}\right)\right)^{2}}{\left(\sqrt{x}\right)^{2}}$$

$$= \frac{\left(2\ln\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}} ; \left(\ln x^{r} = r\ln x ; r \in \mathbb{Q}\right)$$

$$= \frac{4\left(\ln\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}$$

$$= 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^{2}$$

$$.\frac{\left(\ln x\right)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$$
 خلاصة:

. $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$: نستنتج أن

لدينا

$$\lim_{x \to +\infty} \frac{\left(\ln x\right)^{2}}{x} = \lim_{x \to +\infty} 4 \left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^{2}$$

$$= \lim_{t \to +\infty} 4 \left(\frac{\ln t}{t}\right)^{2} \quad ; \quad \left(t = \sqrt{x} \; ; \; x \to +\infty \; ; \; t \to +\infty\right)$$

$$= 0 \qquad \qquad ; \quad \left(\lim_{t \to +\infty} \frac{\ln t}{t} = 0\right)$$

 $\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = 0$ خلاصة:

jeudi 13 juin 2019

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطني _ الدورة العادية 2019 _

لصفحة

y = x نبين أن المنحنى (C) يقبل فرعا شلجميا بجوار $+\infty$ اتجاهه المقارب المستقيم (Δ) الذي معادلته y = xلاينا :

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^{2}}{x} = \lim_{x \to +\infty} 1 + \frac{1}{2x} - \frac{\ln x}{x} + \frac{1}{2} \frac{(\ln x)^{2}}{x} = 1$$

(حسب ما سبق)
$$\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = 0$$
 و $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ و $\lim_{x \to +\infty} 1 + \frac{1}{2x} = 1$: لأن : 1 = 1

$$a = \lim_{x \to +\infty} \frac{f(x)}{x} = 1 : \frac{1}{x}$$

$$\left(\lim_{x\to +\infty} \ln x = +\infty \right) \lim_{x\to +\infty} f(x) - x = \lim_{x\to +\infty} x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right) \ln x - x = +\infty$$

$$\mathbf{b} = \lim_{\mathbf{x} \to +\infty} \mathbf{f}(\mathbf{x}) - \mathbf{x} = +\infty$$
 ! إذن

$$b = \lim_{x \to +\infty} f(x) - x = +\infty$$
 و بالتالي: $a = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$ و بالتالي: $a = \lim_{x \to +\infty} f(x) = +\infty$

. + ∞ بجوار y=x المنحنى (C) يقبل فرعا شلجميا في اتجاه المستقيم (Δ) الذي معادلته

...03

 $(x-1) + \ln x \ge 0: [1,+\infty[$ ف أن لكل x من $(x-1) + \ln x \le 0: [0,1]$ $(x-1) + \ln x \le 0: [0,1]$

. $(x-1) + \ln x \le 0$:]0,1] من [0,1] نبین أن لكل [0,1]

دينا:

$$0 < x \le 1 \Rightarrow \begin{cases} -1 < x - 1 \le 0 \\ \ln x \le 0 \end{cases}$$
$$\Rightarrow (x - 1) + \ln x \le 0$$

(مجموع عددين سالبين هو عدد سالب).

 $: [1,+\infty[$ من کل $_{
m X}$ نبین أن لكل و

لدينا

$$x \ge 1 \Rightarrow \begin{cases} x-1 \ge 0 \\ \ln x \ge 0 \end{cases}$$
 (مجموع عددین موجبین هو عدد موجب $\Rightarrow (x-1) + \ln x \le 0$

. $(x-1)+\ln x\geq 0: \left[1,+\infty
ight[$. و منه : لكل x من

. $(x-1)+\ln x \geq 0: [1,+\infty[$ و أن لكل x من $[0,1]+\ln x \leq 0:]$ فلاصة : لكل x من $[0,1]+\ln x \leq 0$

 $[0,+\infty[$ على المجال $[0,+\infty[$ ملحوظة : يمكن استعمال جدول الإشارة لكل من $[0,+\infty[$

$$(1)$$
 نبین آن لکل (x) من $(x)=rac{x-1+\ln x}{x}$ نبین آن لکل (x) من $(x)=\frac{x-1+\ln x}{x}$

لدينا:

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

امرفحة

$$f'(x) = \left(x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2\right)^{\frac{1}{2}}$$
$$= 1 - \frac{1}{x} + \frac{1}{2} \times 2(\ln x)^{\frac{1}{2}} \ln x$$
$$= 1 - \frac{1}{x} + \frac{1}{x} \times \ln x$$
$$= \frac{x - 1 + \ln x}{x}$$

.
$$\mathbf{f}'(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{1} + \ln \mathbf{x}}{\mathbf{x}} :]0, +\infty[$$
خلاصة : لكل \mathbf{x} من

X	0 1 +∞
f'(x)	- 0 +
f(x)	$\begin{array}{c c} +\infty & +\infty \\ & \searrow & \nearrow \\ & \frac{3}{2} \end{array}$

..04

$$f''(x) = (f'(x))'$$

$$= \left(\frac{x-1+\ln x}{x}\right)'$$

$$= \frac{\left(1+\frac{1}{x}\right) \times x - (x-1+\ln x) \times 1}{x^2}$$

$$= \frac{x+1-x+1-\ln x}{x^2}$$

$$= \frac{2-\ln x}{x^2}$$

.
$$\mathbf{f}''(\mathbf{x}) = \frac{2 - \ln \mathbf{x}}{\mathbf{x}^2} :]0, +\infty[$$
 خلاصة : لكل \mathbf{x} من

(0.5) يقبل نقطة انعطاف يتم تحديد إحداثيتيها يستنتج أن المنحنى (C) يقبل نقطة انعطاف يتم تحديد إحداثيتيها

- ♦ لتحديد نقطة انعطاف الدالة f ندرس إشارة '' f الدالة المشتقة الثانية ل f .
 - $x^2 > 0$ لأن $2 \ln x$ إشارة " f المارة " أشارة " أسارة "

 $2-\ln x \ge 0 \Leftrightarrow \ln x \le 2$: لدينا

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

المبفحة

 $\Leftrightarrow x \leq e^2$ eath [miles of the content of the cont

X	0	e^2			*
f''(x)		+	0	_	

♦ من خلال الجدول:

 $\left(e^2, f\left(e^2\right)\right) = \left(e^2, \frac{2e^2 + 1}{2}\right)$ الدالة المشتقة الثانية " f تنعدم في e^2 و تتغير إشارتها بجوار e^2 إذن النقطة التي زوج إحداثيتيها

هي نقطة انعطاف لمنحني الدالة f

...05

(C) نم نستنتج الوضع النسبي للمنحنى (C) و المستقيم (C) ثم نستنتج الوضع النسبي للمنحنى (C) و المستقيم (C) ثم نستنتج الوضع النسبي للمنحنى (C)

 $f(x)-x=\frac{1}{2}(\ln x-1)^2:]0,+\infty[$ نبین أن لکل x من •

$$\frac{1}{2}(\ln x - 1)^{2} = \frac{1}{2}((\ln x)^{2} - 2\ln x + 1) : \frac{1}{2}$$

$$= \frac{1}{2}(\ln x)^{2} - \ln x + \frac{1}{2}$$

$$= \frac{1}{2}(\ln x)^{2} - \ln x + \frac{1}{2} + x - x$$

$$= f(x) - x$$

 $f(x) - x = \frac{1}{2} (\ln x - 1)^2 :]0, +\infty$ خلاصة : لكل x من

• نستنتج الوضع النسبي للمنحنى (C) و المستقيم (Δ) .

. $\mathbf{x} = \mathbf{e}$ ای اشارة $\mathbf{f}(\mathbf{x}) - \mathbf{x} = 0$ ای اشارة $\mathbf{f}(\mathbf{x}) = \mathbf{e}$ و هي بدورها موجبة على $\mathbf{g} = \mathbf{e}$ و الكن تنعدم في $\mathbf{f}(\mathbf{x}) - \mathbf{x} = \mathbf{e}$ اي المذا ندرس اشارة $\mathbf{f}(\mathbf{x}) - \mathbf{x}$ اي المذا ندرس اشارة $\mathbf{f}(\mathbf{x}) - \mathbf{x}$ اي المدا ندرس اشارة $\mathbf{f}(\mathbf{x}) - \mathbf{x}$ اي المدا ندرس اشارة $\mathbf{f}(\mathbf{x}) - \mathbf{x}$ اي المدا ندرس المدا الم

- $[e,+\infty[$ و]0,e[المنحنى [C) يوجد قطعا فوق المستقيم [A] على كل من المجالين [C]
 - $\left(\mathrm{e,f}\left(\mathrm{e}\right)\right) = \left(\mathrm{e,e}\right)$ المنحنى $\left(\mathrm{C}\right)$ يقطع المستقيم $\left(\Delta\right)$ في النقطة التي إحداثيتيها
 - > نلخص ذلك بواسطة الجدول التالى:

x		0	e	+∞
و $f(x)-1$ لهما نفس الإشارة $f(x)-x$	П	+	0	+
		(C) فوق (A)		(C) فوق (A)
الوضع النسبي للمنحنى $ig(oldsymbol{\mathrm{C}} ig)$ و المستقيم $ig(oldsymbol{\Delta} ig)$	$\mathbf{x} = \mathbf{e}$ و (Δ) يتقطعان في (\mathbf{C})			

(11)

بنموسى محمد (أستاذ متقاعد وسابق بثانوية عمر بوجدة) المستوى: 2 علوم فيزياء و 2 علوم الحياة و الأرض

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

الصفحة

.06

لهذا نبين أن : H'(x) = h(x)

$$= (x)^{-1} \ln x + (x) (\ln x)^{-1} - (x)^{-1}$$

$$=1\times \ln x + \sqrt{1 \times \frac{1}{x}} - 1$$

$$=\ln x + \lambda - \lambda$$

$$= \ln x = h(x)$$

$$H'(x) = h(x)$$
 : و منه

. الدالة $ext{H}: ext{x} \mapsto ext{x} ext{ln} ext{x}$ على $ext{d} ext{0}, +\infty$ على $ext{d} ext{0}, +\infty$

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

لصفحة

$$\int_{1}^{e} (\ln x)^{2} dx = \int_{1}^{e} (\ln x) \times (\ln x) dx :$$

نضع:

$$u(x) = \ln x \qquad u'(x) = \frac{1}{x}$$

$$(1) \downarrow \qquad (2) \searrow \qquad - \downarrow (3)$$

$$v'(x) = \ln x \qquad v(x) = x \ln x - x$$

ومنه:

$$\int_{1}^{e} (\ln x)^{2} dx = \left[\ln x \times (x \ln x - x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \times (x \ln x - x) dx$$

$$= (\ln e \times (e \ln e - e)) - (\ln 1 \times (1 \ln 1 - 1)) - \int_{1}^{e} (\ln x - 1) dx$$

$$= (1(e \times 1 - e) - 0) - \int_{1}^{e} \ln x dx + \int_{1}^{e} 1 dx$$

$$= 0 - \left[x \ln x - x \right]_{1}^{e} + \left[x \right]_{1}^{e} \quad ; \quad (H'(x) = h(x))$$

$$= -((e \times 1 - e) - (1 \times 0 - 1)) + (e - 1)$$

$$= 0 - 1 + e - 1$$

$$= e - 2$$

x=e و x=1 مساحة حيز المستوى المحصور بين المنحنى x=0 و x=1 المستقيمين اللذين معادلتاهما x=1 و x=1

المساحة المطلوبة هي:

$$\begin{aligned} & (\ [1,e]_{\cdot}) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| = \left(\int_{1}^{e} (f(x)-x) dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \ cm^{2} \ (\ \forall i \ |x|) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| = \left(\int_{1}^{e} (f(x)-x) dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \ cm^{2} \ (\ \forall i \ |x|) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| = \left(\int_{1}^{e} (f(x)-x) dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \ cm^{2} \ (\ \forall i \ |x|) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| = \left(\int_{1}^{e} (f(x)-x) dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \times \|\vec{j}\| \ cm^{2} \ (\ \forall i \ |x|) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \times \|\vec{j}\| \times \|\vec{j}\| \ cm^{2} \ (\ \forall i \ |x|) \cdot \left(\int_{1}^{e} |f(x)-x| dx \right) \times \|\vec{i}\| \times \|\vec{j}\| \times \|\vec{j}\|$$

السنة الدراسية 2018 - 2019

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

$\frac{2e-5}{2}$ cm² و x=e و x=1 هي x=e و المستقيمين اللذين معادلتاهما x=e هي x=e

II. الجزء الثانى:

 $oxed{u}_n$ لكل $oxed{u}_{n+1}=f\left(oxed{u}_n
ight)$ و $oxed{u}_0=1$ لكل $oxed{u}_n$ من

.. **.01**

 $\mathbb N$ من $\mathbb N$ اكل $\mathbf u_n \le \mathbf e$ لكل $\mathbf u_n \le \mathbf v_n$

 $\mathbf{n} = \mathbf{0}$ نتحقق أن العلاقة صحيحة ل

n=0 و منه العلاقة صحيحة من أجل $1 \le u_0 = 1 \le e$ لدينا

- . الترجع) $1 \le u_n \le e$ نفترض أن العلاقة صحيحة للرتبة n : أي $1 \le u_n \le e$
 - $1 \le \mathbf{u}_{n+1} \le \mathbf{e}$: أي نبين أن العلاقة صحيحة ل n+1 : أي نبين أن العلاقة صحيحة ل

 $1 \le u \le e$: حسب معطيات الترجع لدينا

و منه : $\mathbf{1} \leq \mathbf{u}_{\mathrm{n}} \leq \mathbf{e}$ و منه :

 $\Rightarrow \frac{3}{2} \le u_{n+1} \le e$ (لأن $f(e) = \frac{3}{2}$ تقاطع مع المستقيم (Δ) و f(e) = e جدول تغيرات)

 $\Rightarrow 1 \le \frac{3}{2} \le u_{n+1} \le e$

و منه: العلاقة صحيحة ل n+1.

 $rac{N}{2}$ کلاصة : $1 \leq u_n \leq e$ لکل n من

 \mathbf{u}_{n} نبين أن المتتالية $(\mathbf{u}_{\mathrm{n}})$ تزايدية

. $\mathbb N$ من $\mathbf u_{n+1} - \mathbf u_n \geq \mathbf 0$: لكل المذا نبين أن

 $u_n \in \! \left[1, e \right]$ ليكن n و لاينا ي $x = u_n$ نضع \mathbb{N} من n ليكن

 $f(x) \ge x$ على $f(x) \ge x$ من $f(x) - x \ge 0$ فوق $f(x) - x \ge 0$ على f(x) = 1 إذن : لكل f(x) = 1 فإن f(x) = 1 أي $f(x) \ge 1$ الله الموال f(x) = 1

 $x \in [1,e] \Rightarrow f(x) \ge x$

 $\Rightarrow f(u_n) \ge u_n$; $(u_n = x \ni 1 \le u_n \le e)$

 $\Rightarrow u_{n+1} \ge u_n$; $(u_{n+1} = f(u_n))$

 $\Rightarrow u_{n+1} - u_n \ge 0$

و بالتالي: لكل n من \mathbb{N} لدينا $u_{n+1} \geq u_n$ (أو أيضا $u_{n+1} \geq u_n$

خلاصة : المتتالية (u_n) تزايدية .

 $(\mathbf{u}_{n+1} \geq \mathbf{u}_n$ الدينا \mathbb{N} من \mathbf{u} لدينا الترجع $(\mathbf{u}_{n+1} \geq \mathbf{u}_n$ الدينا

 $(\mathbf{u}_{\mathrm{n}})$ متقاربة

لدينا:

أى :

- $\sqrt{u_n}$ المتتالية u_n تزايدية.
- $(1 \le \mathbf{u}_n \le \mathbf{e})$ المتتالية (\mathbf{u}_n) مكبورة (الأن (\mathbf{u}_n)

udi 13<u>j</u>uin 2019 13/06/2019 17:23:54

تصحيح الامتحان الوطنى - الدورة العادية 2019 -

اصفحة

 $\ell \in \mathbb{R}$ متقاربة (مع نهايتها ℓ حيث (المنتالية المنتالية (المنتالية ℓ

خلاصة : $\left(\mathbf{u}_{\mathrm{n}}
ight)$ متقاربة

(ن 75.0 ن) نحدد نهاية المتتالية $(\mathbf{u}_{\mathrm{n}})$ نحدد نهاية المتتالية $\mathbf{02}$

- $\mathbf{u}_{\mathrm{n+1}} = \mathbf{f}\left(\mathbf{u}_{\mathrm{n}}
 ight)$ المتتالية تكتب على شكل ullet
 - I = [1,e] على الدالة f متصلة على •
- ($f(1) = \frac{3}{2}$ و f(e) = e و f(e) =
 - $\mathbf{u}_0 = \mathbf{1} \in [1, \mathbf{e}]$: لدينا
 - . \mathbb{R} متقاربة إذن نهايتها ℓ متقاربة إذ

. (حسب خاصية) $x \in I = [1,e] \; ; \; f(x) = x$ المعادلة ℓ

أي ندرس تقاطع المنحنى (C) و المستقيم (Δ) على [1,e] و حسب ما سبق المنحنى (C) و المستقيم (Δ) يتقاطعان في نقطة وحيدة حيث زوج إحداثيتيها هي [e,e] و منه حل المعادلة السابقة هي $[x=e\in[1,e]]$ و منه حل المعادلة السابقة هي $[x=e\in[1,e]]$

 $\lim_{n\to +\infty} \mathbf{u}_n = \mathbf{e}$: خلاصة