Nelineární nejmenší čtverce

Tomáš Werner, 2011

Mějme m bodů v rovině, $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^2$. Chceme najít kružnici se středem $\mathbf{c} \in \mathbb{R}^2$ a poloměrem r takovou, že součet čtverců vzdáleností bodů od kružnice je nejmenší.

Označte jako $\mathbf{x} = (\mathbf{c}, r) \in \mathbb{R}^3$ vektor parametrů kružnice. Nechť dist (\mathbf{a}, \mathbf{x}) je vzdálenost se znaménkem (signed distance) bodu \mathbf{a} od kružnice s parametry \mathbf{x} . Tedy $|\operatorname{dist}(\mathbf{a}, \mathbf{x})|$ je kolmá Eukleidovská vzdálenost bodu \mathbf{a} od kružnice, přičemž pro \mathbf{a} vně kružnice bude dist $(\mathbf{a}, \mathbf{x}) > 0$ a pro \mathbf{a} uvnitř kružnice bude dist $(\mathbf{a}, \mathbf{x}) < 0$. Chceme minimalizovat funkci

$$f(\mathbf{x}) = \sum_{i=1}^{m} [\operatorname{dist}(\mathbf{a}_i, \mathbf{x})]^2$$

Implementační úkoly

- 1. Implementujte funkci d=dist(a,x), kde a je matice 2×1 , x je matice 3×1 , d je skalár.
- 2. Udělejte jednoduché grafické rozhraní s názvem enter_points, které dovolí naklikat body \mathbf{a}_i a uložit je do souboru points.mat. Bude fungovat takto:
 - Po spuštění funkce se objeví prázdný obrázek se zafixovaným rozsahem souřadnicových os, přičemž tento rozsah se nebude v průběhu klikání měnit (použijte funkci axis).
 - Uživatel pak může naklikat libovolné množství bodů, přičemž končí klávesou 'enter' (použijte funkci ginput).
 - Na konci se body uloží do souboru (funkcí save).
- 3. Implementujte optimalizační algoritmus jako grafické rozhraní x=fit_circle(method), kde method je řetězec se jménem optimalizační metody a x jsou konečné parametry kružnice. Funkcionalita rozhraní:
 - Funkce nejprve nahraje soubor points.mat a zobrazí body \mathbf{a}_i jako žluté křížky.
 - Pak uživatel dvojím kliknutím zadá počáteční kružnici, přičemž první kliknutí určí střed \mathbf{c}_0 a druhé určí poloměr r_0 . Vykreslí se počáteční kružnice s parametry $\mathbf{x}_0 = (\mathbf{c}_0, r_0)$ červenou barvou.
 - Poté se po každém stisknutí klávesy 'space' kružnice překreslí kružnicí s parametry \mathbf{x}_k , kde k je index iterace. V obrázku budou vždy body a jediná kružnice. V průběhu toho se do příkazového okna vypisuje aktuální hodnota $f(\mathbf{x}_k)$ (případně další údaje, navrhněte).
 - Po stisknutí klávesy 'enter' grafické rozhraní skončí.

Takto tedy při postupném mačkání klávesy 'space' uvidíme jednotlivé iterace optimalizačního algoritmu v podobě měnící se kružnice. Implementujte nejméně dva optimalizační algoritmy: čistou (tedy s jednotkovou délkou kroku) Gaussovu-Newtonovu metodu (method='GN') a Levenbergovu-Marquardtovu metodu (method='LM').

Teoretické úkoly

- 1. Cílem tohoto úkolu je prozkoumat naši účelovou funkci. Jedná se o funkci tří proměnných, tedy ji nemůžeme přímo vizualizovat. Nicméně můžeme zkoumat její dvourozměrné řezy. Nakreslete v Matlabu graf funkce $f(\mathbf{x}) = f(\mathbf{c}, r)$ v závislosti na středu kružnice \mathbf{c} při konstantním poloměru r=1. Tedy kreslíme graf funkce $f(\mathbf{c},1)$, což je funkce dvou proměnných (c_1,c_2) . K tomu můžeme použít příkazy mesh, surf, contour, imagesc apod. Nakreslete graf této funkce pro počet bodů m=1, m=2 a pak pro m rovné nějakému většímu číslu $m \geq 10$. Případně můžete funkci nakreslit pro jednu dimenzi (tj. body jsou skaláry, $\mathbf{c}, \mathbf{a}_j \in \mathbb{R}$). Odpovězte: Je funkce f všude diferencovatelná? Má jedno nebo více lokálních minim?
- 2. Diskutujte, jaký algoritmus je vhodný na minimalizaci funkce $f(\mathbf{x})$ a proč. Čím více myšlenek a argumentů uvedete, tím lépe.
- 3. Najděte takovou dvojici počátečních parametrů kružnice \mathbf{x}_0 , aby algoritmus inicializovaný každými těmito parametry skončil v různých lokálních minimech. Přemýšlejte, jaký soubor bodů je pro to nejvhodnější. Vykreslete body a dvě výsledné kružnice. Diskutujte, které z těchto lokálních minim je lepší.

Dokážete vypozorovat (neformálně), jak závisí výsledné lokální optimum příp. rychlost konvergence na souboru bodů \mathbf{a}_i a na počáteční kružnici \mathbf{x}_0 ? Divergoval Gaussův-Newtonův algoritmus někdy?

Výstupem bude implementace v Matlabu s implementačními úkoly a písemná zpráva s teoretickými úkoly.

Poznámka: Export obrázku z Matlabu do zprávy je nejlepší dělat příkazem

print -depsc jmeno.eps

který obrázek exportuje do formátu *Encapsulated Postscript*. Ten pak již převedete např. do PDF. Přímý export z Matlabu do PDF nedoporučujeme, jsou s ním problémy.