ITsMOre than a UNIVERSITY

Современная теория информации

Лекция 5. Кодирование дискретных источников при неизвестной статистике

Содержание лекции

- 🚺 Постановка задачи универсального кодирования;
- Двухпроходное кодирование;
- Нумерационное кодирование;
- Адаптивное кодирование.

Универсальное кодирование

Постановка задачи

- Алгоритмы кодирования, такие как код Хаффмана или арифметическое кодирование предполагают знание распределения вероятностей символов источника.
- В реальных задачах данное распределение вероятностей не известно.
 - ▶ Можно оценить распределение вероятностей и передать его декодеру (двухпроходное кодирование или off-line coding).
 - Можно оценивать распределение вероятностей адаптивно одинаковым образом на стороне кодера и декодера используя уже закодированные/декодированные символы (адаптивное кодирование или online coding).

Универсальное кодирование Постановка задачи

- Предположим, что мы будем кодировать стационарные источники.
- Для стационарного источника мы можем вычислить энтропию H, которая является нижней границей средней скорости кодирования R.
- "Хорошие" методы универсального кодирования должны обеспечить скорость кодирования, близкую к скорости кодирования, достигаемой в случае, если распределение вероятностей известно.

Универсальное кодирование

Постановка задачи

Предположим, что

- $\Omega = \{\omega\}$ множество моделей источников.
- Если Ω множество дискретных постоянных источников, то каждая ω определяется распределением вероятностей $\theta(\omega)=(\theta_1,...,\theta_K)$
- ullet ω , а значит и $oldsymbol{ heta}$, неизвестны как кодеру, так и декодеру.

Универсальное кодирование

Постановка задачи

Введем следующие обозначения:

- ullet $H(\omega)$ энтропия доя заданного ω .
- $\bar{R}_n(\omega)$ средняя по последовательности из n символов скорость кодирования для ω .
- $r_n(\omega) = \bar{R}_n(\omega) H(\omega)$ средняя избыточность для модели ω и длины последовательности n

Тогда, задача заключается в построении алгорима, который минимизирует

$$r_n(\Omega) = \max_{\omega \in \Omega} r_n(\omega).$$

Если $\lim_{n \to \infty} r_n(\Omega) = 0$, то такое кодирования является *универсальным* для множества Ω

Универсальное кодирование Постановка задачи

При разработке алгоритма универсального кодирования, необходимо учитывать (как для кодера, так и для декодера):

- Задержку. В соответствии с этим критерием, алгоритмы разделяются на:
 - ► Двухпроходные (off-line) алгоритмы.
 - ► Адаптивные (on-line) алгоритмы.
- Сложность.
- Объём памяти.

Двухпроходное кодирование Общая идея

- Проход 1.
 - $oldsymbol{0}$ Оценить $oldsymbol{ heta}$ (обозначим оценку через $\hat{oldsymbol{ heta}}$).
 - $oldsymbol{arrho}$ Кодировать $\hat{oldsymbol{ heta}}$. На выходе получим кодовые слова $oldsymbol{c}_1$.
- Проход 2.
 - $oldsymbol{0}$ Кодировать символы источника $oldsymbol{x}$ используя $\hat{oldsymbol{ heta}}$. На выходе получим кодовые слова $oldsymbol{c}_2$.
 - $oldsymbol{2}$ Сформировать кодовое слово из двух частей $oldsymbol{c} = (oldsymbol{c}_1, oldsymbol{c}_2).$

На примере кода Хаффмана

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

$$I(\mathbf{x}) = I_1(\mathbf{x}) + I_2(\mathbf{x})$$

При равномерном кодировании получим $50 \times 8{=}400$ бит.

На примере кода Хаффмана

X	Число появлений	Длина кодового	Кодовое	
^	\times B \mathbf{x} , $\tau(\mathbf{x})$	слова, $I(x)$	слово	$\tau(x) \times I(x)$
П	1	6	010000	6
F	1	6	010001	6
	12	2	00	24
W	5	3	100	15
Е	4	4	0101	16
С	2	5	01001	10
Α	4	4	1010	16
N	3	4	1011	12
0	5	3	110	15
Т	1	6	011110	6
D	4	4	0110	16
S	3	4	1110	12
U	2	4	1111	8
L	2	5	01110	10
Н	1	6	011111	6
Bcero $I_2(x)$				178 бит

На примере кода Хаффмана

 $c_1 = (0\ 00\ 1000\ 001010\ 01101111\ 0110\ 1111,\ \mathsf{ASCII}(\mathsf{x}),...)$

 $I_1 = 29 + 8 \times 15 = 149$ бит, $I = I_1 + I_2 = 149 + 178 = 327$ бит.

На примере канонического кода Хаффмана

- Для заданного распределения вероятностей можно построить несколько одинаково эффективных кодов Хаффмана.
- Код Хаффмана называется каноническим, если его короткие кодовые слова лексикографически предшествуют более длинным.

X	Длина кодового слова $I(x)$	Кодовое слово
_	2	00
0	3	010
W	3	011
Α	4	1000
D	4	1001
Е	4	1010
N	4	1011
S	4	1100
U	4	1101
С	5	11100
L	5	11101
F	6	111100
Н	6	111101
- 1	6	111110
Т	6	111111

На примере канонического кода Хаффмана

На примере канонического кода Хаффмана

• Достаточно указать количество концевых вершин для ярусов с номерами $0,...,I_{max}$, где I_{max} — максимальная длина кодового слова.

Ярус	Число	Число концевых	Диапазон	Затраты
	вершин	вершин <i>п</i> ;	значений <i>п;</i>	в битах
0	1	0	01	1
1	2	0	02	2
2	4	1	04	3
3	6	2	06	3
4	8	6	08	4
5	4	2	04	3
6	4	4	04	3
	19			

$$c_1 = (0\ 00\ 001\ 010\ 0110\ 010\ 100\ ASCII(x),...)$$

$$I_1 = 19 + 8 \times 15 = 139$$
 бит, $I = I_1 + I_2 = 139 + 178 = 317$ бит.

Скорость кодирования кодом Хаффмана

Theorem

Полное кодовое дерево, имеющее M концевых вершин, имеет M-1 промежуточных вершин. Поэтому, M+M-1=2M-1 бит достаточно для описания полного описания дерева.

Скорость кодирования кодом Хаффмана

•
$$I_1(x) \le 2M - 1 + M \lceil \log M \rceil$$

•
$$l_2(\mathbf{x}) = \sum_{i=1}^n l(x_i) = \sum_{x \in X} \tau(x) l(x) = n \sum_{x \in X} \frac{\tau(x)}{n} l(x) = n \sum_{x \in X} \hat{\theta}(x) l(x) = n \mathbb{E}_{\hat{\theta}_n} \{ l(x) \} \le n (H(\hat{\theta}_n) + 1)$$

•
$$E\left(H(\hat{\theta}_n)\right) \leq H\left(E(\hat{\theta}_n)\right) = H(\theta) = H.$$

•
$$\bar{R}(x) = \frac{l_1(x) + l_2(x)}{n} \le H + 1 + \frac{2M - 1 + M\lceil \log M \rceil}{n}$$

Постановка задачи

- ullet Последовательность на выходе источника $oldsymbol{x} \in X^n$, $X = \{0, 1, \dots, M-1\}$.
- Композиция $au(x) = (au_0(x), ..., au_{M-1}(x)), \ M = |X|.$

Кодирование:

- $m{\circ}$ Кодовое слово $m{c}$ состоит из двух частей $m{c} = (m{c}_1, m{c}_2).$
- ullet $oldsymbol{c}_1$ описывает $oldsymbol{ au}=oldsymbol{ au}(oldsymbol{x})$.
- $m{c}_2$ описывает номер $m{x}$ в лексикографически упорядоченном списке всех возможных $\{m{x}\}$, которые имеют композицию $m{ au}(m{x})=m{ au}$.

Три способа кодирования композиции

- ullet Кодируем каждый $au_i(oldsymbol{x})$, кроме i=M-1, прямым кодом, используя $\lceil \log(n+1)
 ceil$ бит.
- ② Представим композицию $au_0(\mathbf{x}),..., au_{M-1}(\mathbf{x})$ как двоичную последовательность вида $0^{ au_0}10^{ au_1}1,...,10^{ au_{M-1}}$, которая имеет длину (n+M-1) и вес (количество единиц) M-1.
 - Количество строк такой же длины и веса: $N_{\tau}(n,M) = \binom{n+M-1}{M-1}$.
 - Лексикографически упорядочиваем все строки.
 - Кодируем равномерным кодом номер последовательности, используя $\lceil N_{\tau}(n,M) \rceil$ бит.
- ullet Упорядочим Q ненулевых компонент $m{ au}$ по убыванию, т.е., $au_0 \in \{1,..,n\}, \ au_1 \in \{1,.., au_0\}, \ au_2 \in \{1,.., au_1\}$ и т.д.
 - ▶ au_Q кодируем АК с вероятностью $rac{1}{n} rac{1}{ au_0} rac{1}{ au_1} rac{1}{ au_2} ... rac{1}{ au_{Q-2}}$
 - ▶ При помощи АК кодируем буквы, которые соответствуют компонентам композиции с вероятностью $\frac{1}{M}\frac{1}{M-1}\frac{1}{M-2}...\frac{1}{M-Q+2}.$

Три способа кодирования композиции. Пример.

$$n = 50, M = 256, Q = 15.$$

- $m{0}$ $I_1 = 255 imes \lceil \log 50 \rceil = 255 \cdot 6 = 1530$ бит.
- **2** $I_1 = \left\lceil \log \binom{255+50}{255} \right\rceil = 193$ бит.

$$I_1 = \lceil \log (50 \cdot 12 \cdot 5^2 \cdot 4^3 \cdot 3^2 \cdot 2^3 \times 256 \cdot 255... \cdot 243) \rceil$$

= 27 + 120 = 147 бит.

Кодирование x при известном au(x)

Пусть M=3, и $m{ au}=(au_0, au_1, au_2)$. Тогда количество всех возможных $m{x}$ для $m{ au}(m{x})$

$$N(\tau) = \binom{n}{\tau_0} \binom{n - \tau_0}{\tau_1} = \frac{n!}{\tau_0!(n - \tau_0)!} \frac{(n - \tau_0!)}{\tau_1!(n - \tau_0 - \tau_1)!} = \frac{n!}{\tau_0!\tau_1!\tau_2!}$$

В общем случае, для алфавмита объёмом M имеем:

$$N(\tau) = \frac{n!}{\tau_0!\tau_1!\dots\tau_{M-1}!}$$

Кодирование x при известном au(x). Пример.

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

$$I_2 = \left\lceil \log \frac{50!}{12! \ (5!)^2 \ (4!)^3 \ (3!)^2 \ (2!)^3} \right\rceil = 150 \$$
бит.
$$I = I_1 + I_2 = 147 + 150 = 297 \$$
бит.

Кодирование x при известном au(x) арифметическим кодером. Пример.

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

t	Х	$\hat{p}(x)$	Композиция $ au(extbf{ extit{x}})$
0	_	_	12,5,5,4,4,4,3,3,2,2,2,1,1,1,1
1		1/50	12,5,5,4,4,4,3,3,2,2,2,1,1,1,0
2	F	1/49	12,5,5,4,4,4,3,3,2,2,2,1,1,0
3		12/48	11,5,5,4,4,4,3,3,2,2,2,1,1
4	W	5/47	11,4,5,5,4,4,4,3,3,2,2,2,1,1
5	Е	4/46	11,4,5,5,3,4,4,3,3,2,2,2,1,1
6	_	10/45	10,4,5,5,3,4,4,3,3,2,2,2,1,1

$$G = \frac{12!(5!)^2(4!)^3(3!)^2(2!)^3}{50!}$$

$$L = \lceil -\log G \rceil + 1 = 151$$
 бит.

Теоретический анализ ибыточности

Аппроксимация Стирлинга:

$$n! pprox \sqrt{2\pi n} n^n e^{-n}$$
 $\log N(au) pprox nH\left(rac{ au}{n}
ight) - rac{M-1}{2} \log(2\pi n)$
 $\log N_{ au}(n,M) pprox (M-1) \log(n+1)$

Поэтому,

$$\bar{R} \approx H + \frac{M-1}{2} \frac{\log n}{n} + \frac{const}{n} \xrightarrow{n \to \infty} H$$

Это минимальная достижимая избыточность.

Адаптивное кодирование Общая идея

- Кодеру не доступны сообщения, которые появятся в будущем, т.е., при кодировании x_i , сообщения x_{i+1}, x_{i+2}, \dots считаются неизвестными.
- По последовательности уже закодированных сообщений $x_0, x_1, ..., x_{i-1}$ кодер оценивает вероятность для символа x_i и строит для него код в соответствии с этой оценкой.
- После декодирования сообщений $x_0, x_1, ..., x_{i-1}$ декодер оценивает вероятность для символа x_i так же как и кодер, после чего декодирует x_i .

Оценка вероятности с ипользованием счётчиков

$$\hat{p}_t(a) = \frac{ au_t(a)}{t}$$
, где $au_t(a)$ число сивмолов a в $x_1,...,x_{t-1}$. $\hat{p}_t(a) = \frac{ au_t(a)+1}{t+M}$, поправка, чтобы избежать нулевых вероятностей. $\hat{p}_t(a) = \frac{ au_t(a)+1/2}{t+M/2}$.

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}.$$

Оценка вероятности с ипользованием счётчиков

$$\hat{p}_t(a) = \frac{ au_t(a)}{t},$$
 где $au_t(a)$ число сивмолов a в $x_1,...,x_{t-1}$.

$$\hat{p}_t(a) = rac{ au_t(a)+1}{t+M},$$
 поправка, чтобы избежать нулевых вероятностей. $\hat{p}_t(a) = rac{ au_t(a)+1/2}{t+M/2}.$

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}.$$

Оценка вероятности с ипользованием счётчиков

$$\hat{p}_t(a) = \frac{\tau_t(a)}{t}$$
, где $\tau_t(a)$ число сивмолов a в $x_1, ..., x_{t-1}$.

$$\hat{
ho}_t(a) = rac{ au_t(a)+1}{t+M},$$
 поправка, чтобы избежать нулевых вероятностей. $\hat{
ho}_t(a) = rac{ au_t(a)+1/2}{t+M/2}.$

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}.$$

Оценка вероятности с ипользованием счётчиков

$$\hat{p}_t(a) = \frac{ au_t(a)}{t}$$
, где $au_t(a)$ число сивмолов a в $x_1,...,x_{t-1}$.

$$\hat{
ho}_t(a)=rac{ au_t(a)+1}{t+M},$$
 поправка, чтобы избежать нулевых вероятностей. $\hat{
ho}_t(a)=rac{ au_t(a)+1/2}{t+M/2}.$

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}$$

Оценка вероятности с ипользованием счётчиков. Пример.

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

$$\tau = (12, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, ...)$$

t	Х	$\hat{ ho}_t(a) = rac{ au_t(a) + 1}{t + M}$	$\hat{ ho}_t(a) = rac{ au_t(a) + 1/2}{t + M/2}$
0	I	(0+1)/(0+256)=1/256	(2*0+1)/(2*0+256)=1/256
1	F	(0+1)/(1+256)=1/257	(2*0+1)/(2*1+256)=1/258
2	_	(0+1)/(2+256)=1/258	(2*0+1)/(2*2+256)=1/260
3	W	(0+1)/(3+256)=1/259	(2*0+1)/(2*3+256)=1/262
4	E	(0+1)/(4+256)=1/260	(2*0+1)/(2*4+256)=1/264
5	_	(1+1)/(5+256)=2/261	(2*1+1)/(2*5+256)=3/266
		* * *	4.4.4
12	_	(2+1)/(12+256)=3/268	(2*2+1)/(2*12+256)=5/280
			4.4.4
15	_	(3+1)/(15+256)=4/271	(2*3+1)/(2*15+256)=7/286
49		(2+1)/(49+256) = 3/305	(2*2+1)/(2*49+256) = 5/354

Оценка вероятности с ипользованием счётчиков. Пример.

$$\hat{p}_t(a) = \frac{\tau_t(a)+1}{t+M}$$

$$G = 1 \cdot \frac{1}{256} \cdot \frac{1}{257} \cdot \frac{1}{258} \cdot \frac{1}{259} \cdot \frac{1}{260} \cdot \frac{2}{261} \cdots = \frac{12!(5!)^2(4!)^3(3!)^2(2!)^3}{256 \cdot 257 \cdot \cdots \cdot 305}.$$

▶
$$L = \lceil -\log G \rceil + 1 = 343$$
 бит.

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}$$

$$G = 1 \cdot \frac{1}{256} \cdot \frac{1}{258} \cdot \frac{1}{260} \cdot \frac{1}{262} \cdot \frac{1}{264} \cdot \frac{3}{266} \cdot \dots = \frac{(23)!!(9!!)^2(7!!)^3(5!!)^2(3!!)^3}{256 \cdot 258 \cdot \dots \cdot 354}$$

▶
$$L = \lceil -\log G \rceil + 1 = 323$$
 бит.

Адаптивное кодирование Алгоритмы A и D

- Можно использовать подход основанный на так называемом esc-символе.
- В этом случае, мы добавляем дополнительный символ в алфавит. Этот символ передаётся, если на вход приходит символ, который ранее не появлялся.

Алгоритмы A и D

Общая идея:

- ullet Используется оценка $p_t(a)=rac{ au_t(a)}{t+1}$, если $au_t(a)>0$.
- ullet Передаётся "esc", если $au_t(a)=0$, $p_t(esc)=rac{1}{t+1}$

Алгоритм А:

$$\hat{p}_t(a) = \left\{ egin{array}{ll} rac{ au_t(a)}{t+1}, & ext{если } au_t(a) > 0; \ rac{1}{t+1}rac{1}{M-M_t}, & ext{если } au_t(a) = 0, \end{array}
ight.$$

 M_t — число различных символов, встретившихся на момент времени t.

Алгоритмы A и D

Алгоритм D:

$$\hat{
ho}_t(a)=\left\{egin{array}{ll} rac{ au_t(a)-1/2}{t}, & ext{ если } au_t(a)>0; \ & rac{1}{M}, & ext{ если } au_t(a)=0, t=0 \ & rac{M_t}{2t}rac{1}{M-M_t}, & ext{ если } au_t(a)=0, t>0 \end{array}
ight.$$

Алгоритмы А и D. Пример.

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

$$\tau = (12, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, ...)$$

t	X	\hat{p}_A	$\hat{ ho}_D$
0		1*1/256	1/256
1	F	1/2*1/255	1/2*1/255
2		1/3*1/254	2/4*1/254
3	W	1/4*1/253	3/6*1/253
4	Е	1/5*1/252	4/8*1/252
5		1/6	1/10
12		2/13	3/24
15		3/16	5/30
49	N	2/50	3/98

Алгоритмы А и D. Пример.

$$G_A = \frac{11!(4!)^2(3!)^3(2!)^2(1!)^3}{50!} \cdot \frac{1}{256 \cdot 255 \cdot \dots \cdot 242}$$

$$L_A = \lceil -\log G_A \rceil + 1 = 291 \text{ bits}$$

$$G_D = \frac{(2 \cdot 12 - 3)!!((2 \cdot 5 - 3)!!)^2((2 \cdot 4 - 3)!!)^3((2 \cdot 3 - 3)!!)^2}{98!!}$$

$$\times \frac{14!}{256 \cdot 255 \cdot \dots \cdot 242}$$

$$L_D = \lceil -\log G_2 \rceil + 1 = 287 \text{ бит},$$

где

$$n!! = \left\{ \begin{array}{l} 1 \cdot 3 \dots \cdot n, & n - \text{нечетные.} \\ 2 \cdot 4 \dots \cdot n, & n - \text{четныe.} \end{array} \right.$$

Избыточность адаптивного арифметического кодирования

Theorem

При кодировании дискретного постоянного источника с энтропией H, средняя скорость адаптивного арифметического кодирования удовлетворяет неравенству

$$\bar{R} \leq H + \frac{M}{2} \frac{\log(n+1) + K}{n},$$

где К не зависит от длины последовательности п.

Сравнение алгоритмов

Алгоритм	Количество	Битовые затраты
	проходов	
Двухпроходное кодирование	2	317
кодом Хаффмана		
Нумерационное кодирование	2	298
Адаптивное арифметическое	1	291
кодирование, \hat{p}_A		
Адаптивное арифметическое	1	287
кодирование, \hat{p}_D		
7z	1	289-296

Оценка вероятности при помощи "скользящего окна"

$$\hat{\rho}_t(a) = \frac{\tau_t(a) + 1}{W + 1}.$$

Аппроксимация "скользящего окна" для двоичного случая

- Обозначим через s_t количество единиц в скользящем окне после кодирования t символов.
- Можно не хранить окно в памяти, а s_t аппроксимировать следующим образом:
 - Из окна удаляется среднее число единиц:

$$s_{t+1} \leftarrow s_t - \frac{s_t}{W}$$
.

Иовый символ добавляется в окно:

$$s_{t+1} \leftarrow s_{t+1} + x_t$$
.

Итоговое правило обновления:

$$s_{t+1} = \left(1 - \frac{1}{W}\right) \cdot s_t + x_t.$$

Оценка вероятности в M-coder

$$\begin{cases} \hat{\rho}_s = (1 - \gamma)\hat{\rho}_{s-1}, \text{ where } s = 1, ..., 63, \hat{\rho}_0 = 0.5, \\ \gamma = 1 - \left(\frac{\hat{\rho}_{min}}{0.5}\right)^{\frac{1}{63}}, \hat{\rho}_{min} = 0.01875. \end{cases}$$

Оценка вероятности для символа x_{t+1} вычисляется как:

$$\hat{\rho}_{t+1} = \left\{ \begin{array}{l} (1-\gamma)\hat{\rho}_t + \gamma, \text{ if } x_t = \text{LPS}, \\ \max\{(1-\gamma)\hat{\rho}_t, \hat{\rho}_{\min}\}, \text{ if } x_t = \text{MPS}, \end{array} \right.$$

Реализация адаптивного двоичного арифметического кодирования без умножений

1:
$$T \leftarrow R \times p(x_t)$$

2:
$$R \leftarrow R - T$$

3: if
$$x_t = 1$$
 then

4:
$$L \leftarrow L + R$$

5:
$$R \leftarrow T$$

6: end if

7: *call* Ренормализация

1:
$$T \leftarrow R \times p(x_t)$$

2:
$$R \leftarrow R - T$$

3: if F < R then

4:
$$x_t = 0$$

5: **else**

6:
$$L \leftarrow L + R$$

7:
$$R \leftarrow T$$

8:
$$x_t = 1$$

9: end if

10: *call* Ренормализация

Реализация адаптивного двоичного арифметического кодирования без умножений

```
1: while R < 2^{b-2} do
      if L > 2^{b-1} then
       WriteOnes(1)
 3:
 4:
          WriteZeros(bits to follow), bits to follow \leftarrow 0
         I \leftarrow I - 2^{b-1}
      else if I < 2^{b-2} then
 6:
          WriteZeros(1)
7:
          WriteOnes(bits to follow), bits to follow \leftarrow 0
8:
 9:
       else
          bits to follow \leftarrow bits to follow + 1
10:
         L \leftarrow L - 2^{b-2}
11:
    end if
12:
      L \leftarrow L \ll 1 \ R \leftarrow R \ll 1
13:
14: end while
```

Реализация адаптивного двоичного арифметического кодирования без умножений

После ренормализации регистр R находится в интервале:

$$\frac{1}{2}2^{b-1} \le R < 2^{b-1}.$$

Поэтому умножением может быть аппроксимировано следующим образом:

$$T = R \times \hat{\rho}_t \approx \alpha 2^{b-1} \times \hat{\rho}_t,$$

где $\alpha \in [\frac{1}{2},...,1)$. Для улучшения точности M-coder квантует интервал $[\frac{1}{2}2^{b-1};2^{b-1})$ равномерно на 4 интервала. Затем, для каждого из четырёх интервалов результат умножения $R \times \hat{p}_s$ помещается в таблицу $TabRangeLPS[s][\Delta]$, состоящую из 64×4 значений.

Реализация адаптивного двоичного арифметического кодирования без умножений

Двоичное арифметическое кодирование

Реализация M-coder¹

1:
$$\Delta \leftarrow (R-2^{b-2}) \gg (b-4)$$

2:
$$T \leftarrow TabRangeLPS[s][\Delta]$$

3:
$$R \leftarrow R - T$$

4: if
$$x_i \neq MPS$$
 then

5:
$$L \leftarrow L + R$$

7: if
$$s = 0$$
 then

10:
$$s \leftarrow TransStateLPS[s]$$

12:
$$s \leftarrow TransStateMPS[s]$$

- 13: end if
- 14: call Renormalization procedure

Реализация без умножений и таблиц²

Умножим обе части правила на $\alpha 2^{b-1}$:

$$s'_{t+1} = \left(1 - \frac{1}{W}\right) \cdot s'_t + \alpha 2^{b-1} x_t,$$

где $s_t' = \alpha 2^{b-1} s_t$. Целочисленная реализация:

$$s_{t+1}' = \left\{ \begin{array}{l} s_t' + \left\lfloor \frac{\alpha 2^{b-1} 2^w - s_t' + 2^{w-1}}{2^w} \right\rfloor, \text{ if } x_t = 1 \\ \\ s_t' - \left\lfloor \frac{s_t' + 2^{w-1}}{2^w} \right\rfloor, \text{ if } x_t = 0, \end{array} \right.$$

Тогда умножение может быть аппроксимировано следующим образом:

$$T = R \times \hat{p}_t \approx \alpha 2^{b-1} \times \hat{p}_t = \frac{s'_t}{2^w}.$$

²E.Belyaev, A.Turlikov, K.Egiazarian and M.Gabbouj, An efficient adaptive binary arithmetic coder with low memory requirement // IEEE Journal of Selected Topics in Signal Processing. Special Issue on Video Coding: HEVC and beyond, 2013.

Реализация без умножений и таблиц

Для увеличения точности аппроксимации интервал $[\frac{1}{2}2^{b-1};2^{b-1})$ квантуется на 4 подинтервала:

$$\left\{\frac{9}{16}2^{b-1}, \frac{11}{16}2^{b-1}, \frac{13}{16}2^{b-1}, \frac{15}{16}2^{b-1}\right\}.$$

Для этого сначала вычисляется s_t' для $lpha = \frac{9}{16}$. Затем, умножение аппроксимируется как:

$$T=R imes\hat{
ho}_tpproxrac{s_t'+\Delta imesrac{1}{4}s_t'}{2^w},$$
 where $\Delta=rac{R-2^{b-2}}{2^{b-4}}.$

Реализация без умножений и таблиц

1:
$$\Delta \leftarrow (R-2^{b-2}) \gg (b-4)$$

2:
$$T \leftarrow (s + \Delta \times (s \gg 2)) \gg w$$

3:
$$T \leftarrow \max(1, T)$$

4:
$$R \leftarrow R - T$$

5: if
$$x_i \neq MPS$$
 then

6:
$$L \leftarrow L + R$$

7:
$$R \leftarrow T$$

8:
$$s \leftarrow s + ((\alpha 2^{b-1} 2^w - s + 2^{w-1}) \gg w)$$

9: if
$$s > \alpha 2^{b-2} 2^w$$
 then

10: MPS
$$\leftarrow$$
! MPS;

11:
$$s \leftarrow \alpha 2^{b-2} 2^w$$
;

14:
$$s \leftarrow s - ((s + 2^{w-1}) \gg w)$$