Amplifier Heating Model

The model for the amplifier heating is:

$$T_{amp}(k) = R_{eff} * I(k-1) * deltaT + (1 - heatTransferRate) * T_{amp}(k-1)$$
(1)

Where:

T_amp(k) Amplifier temperature at time k

R_eff Effective resistance of the amplifier. This controls the rate at which the

amplifier heats [0.065]

I(k) Actual current sent to the motor at time k. Also called motorCurrent in the

simulation below.

deltaT Time step [0.001 s]

heatTransferRate Rate at which the amplifier transfers heat out, or cools [0.00008]

I_avail Current available from the amplifier based on the amplifier temperature.

I_peak Peak current that the amplifier can source [30 A]

I_cont Current level that the amplifier can source indefinitely [15 A]

T_amp_max Maximum allowable amplifier temperature before current is clipped to

continuous level. [150]

I_request Requested current from the controller.

To calculate the I_avail:

Update T_amp according to equation (1).

If $(T_amp < T_amp_max)$

Else

$$I_avail = I_cont$$

To determine the current send from the amplifier:

If (| I_request| < I_avail)

$$I(k) = I_request$$

Else

Here is a simulation of the amplifier temperature response:

At
$$t=0$$

 $I_request = 30A$

 $T_amp = 25$ (nominal temperature)

$$I_avail = 30A$$

$$motorCurrent = 30A$$

Amplifier heats up and output current is clipped to continuous level:

At
$$t=2.439$$

$$T_amp = 150$$

$$I_request = 30A$$

$$I_avail = 15A$$

$$motorCurrent = 15A$$

Amplifier reaches close to steady state temperature. Requested current is now set to zero which allows the amp to cool.

At
$$t = 10.28s$$

$$T_amp = 165$$

$$I_request = 0A$$

$$I_avail = 15A$$

$$motorCurrent = 0A$$

After about 1.25s amplifier cools to just below maximum allowable temperature and available current is now the peak. However, any current draw at this point will heat the amp above the maximum allowable.

At t= 11.5s T_amp = 150 I_request = 0A I_avail = 30A

motorCurrent = 0A

After about 20 seconds of cooling, the amplifier has reached nominal temperature

At t = 31.6s

 $T_amp = 30$

 $I_request = 0A$

 $I_avail = 30A$

motorCurrent = 0A