MICHAEL SIKORA

msikora.umd@gmail.com

(443) 938-6873

EDUCATION

400 LEVEL COURSES

University of Maryland, College Park

Bachelor of Science, Mechanical Engineering (2014) Dean's List | Fall 2013 Cumulative GPA | 3.1

WORK EXPERIENCE

Mechanical Design of Electronic Systems
Control Systems and Optimization
Product Engineering and Manufacturing
Integrated Product and Process Development
Mircoelectromechanical Systems (MEMS)
Computer-Aided Design

UMD CECD Lab: Mechanical Engineer

- Research position focusing on assistive robotics for the blind.
- Interpreting sensor data using C++ in a Linux environment.

AP Ventures: Web Developer

May 2013 to Oct 2013

Feb 2014 to Present

- Developed online courses for Maryland's STEM program.
- Used HTML, CSS, and Jquery to impliment an interactive design.

S&V Development: Co-Founder

May 2012 to Sep 2012

- My first serious buisness venture with software development.
- Developed Android applications and an online educational resource for young UMD engineering students.

SOFTWARE

MATLAB SIMULINK
Solidworks Inventor
PTC CREO Eclipse
The Adobe Suite

CODE

Ruby on Rails C++
Arduino C Android

ENGINEERING PROJECTS

Capstone Project: The Lacrosse Sidekick Fall 2013

• Designed, benchmarked, and prototyped an autonomous return device for lacrosse practices, the prototype was presented at the UMD design showcase. I personally coordinated the design. Additional responsibilities included CAD, presentations, and technical writing.

DeWalt Power Tool Redesign

Spring 2013

• Wrote a 130 page benchmark report on a DeWalt screw gun comparing performance and costs to competitors. Redesigned the DeWalt to operate more efficiently during withdrawal tasks. Modeled and 3D printed a prototype which was presented to a board of DeWalt engineers.

Drug Delivery System

Fall 2012

• Simulated a magnetized particle traveling through a blood vessel and attracted to an infected area by a magnetic field, using MATLAB. Used dimensionless analysis to account for scaling between models.