1 Probability

a. Calculating Simple probabilities

#Import necessary libraries import pandas as pd # Load your dataset

 $df = pd.read_csv('train.csv')$

Calculate probability of an event

probability_event = df['Survived'].value_counts() / len(df['Survived'])
print(probability_event)

OUTPUT

Survived

0 0.616162

1 0.383838

Name: count, dtype: float64

b.Applications of Probability Distributions

Import necessary libraries

import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm

Drop missing values in the 'Age' column for simplicity

titanic_data = df.dropna(subset=['Age'])

Plot the histogram

plt.hist(df['Age'], bins=30, density=True, alpha=0.5, color='b',label='Age Distribution')

Fit a normal distribution to the data

mu, std = norm.fit(titanic_data['Age']) xmin, xmax = plt.xlim() x = np.linspace(xmin, xmax, 100) p = norm.pdf(x, mu, std) plt.plot(x, p, 'k', linewidth=2)

Display the plot

plt.hist(df['Age'], bins=30, density=True, alpha=0.5, color='b',label='Age Distribution') plt.xlabel('Age') plt.ylabel('Frequency') plt.legend() plt.show()

2 Test of Significance

a. t-Test: one sample, two independent samples and Paired

from scipy.stats import ttest ind

Load the dataset

df = pd.read csv('StudentsPerformance.csv')

Separate data for male and female students

from scipy.stats import ttest_ind import pandas as pd

Separate data for male students

male_scores = df[df['gender'] == 'male']['math score'] male_scores

OUTPUT

```
47
4
        76
        40
8
        64
        58
985
        57
987
        81
990
        86
994
        63
996
        62
Name: math score, Length: 482, dtype: int64
```

Separate data for female students

997 59 998 68

77

999

Name: math score, Length: 518, dtype: int64

Perform independent two-sample t-test

t statistic, p value = ttest ind(male scores, female scores)

Print the results

```
print(f'T-Statistic: {t_statistic}')
print(f'P-Value: {p_value}')
```

OUTPUT

T-Statistic: 5.383245869828983 P-Value: 9.120185549328822e-08

Interpret the results

```
alpha = 0.05
if p value < al
```

if p value < alpha:

print("There is a significant difference in math scores between male and female students.")

else:

print("There is no significant difference in math scores between male and female students.")

OUTPUT

There is a significant difference in math scores between male and female students.

ANOVA: Comparing Multiple Groups (e.g., Ethnicity)

from scipy.stats import f_oneway

Load the dataset

 $df = pd.read_csv('StudentsPerformance.csv')$

Extract math scores for each ethnicity_groups

```
ethnicity_groups = df['ethnicity'].unique() ethnicity_groups
```

OUTPUT

Extract math scores for each ethnicity_data

ethnicity_data = {ethnicity: df[df['ethnicity'] == ethnicity]['math score'] for ethnicity in ethnicity_groups} ethnicity_data

OUTPUT

```
72
{ 'group B': 0
         90
         71
         88
         40
 969
         75
 976
 980
          8
 982
         79
 991
         65
Name: math score, Length: 190, dtype: int64,
 'group C': 1
                     69
         76
4
         58
10
15
         69
16
        88
 979
         91
 984
        74
 986
         40
 996
         62
        59
997
Name: math score, Length: 319, dtype: int64,
 'group A': 3
13
        78
14
         50
         73
 25
 46
         55
 974
         54
 983
        78
 985
         57
 988
         44
Name: math score, Length: 89, dtype: int64,
 'group D':
11
         40
20
         66
22
         44
 24
         74
 989
         67
 992
         55
 993
         62
 998
         68
        77
Name: math score, Length: 262, dtype: int64,
 'group E': 32
                      56
 34
          97
          81
35
 44
          50
 50
          53
```

```
962 100

968 68

987 81

990 86

995 88

Name: math score, Length: 140, dtype: int64}
```

Perform one-way ANOVA

f statistic, p value anova = f oneway(*ethnicity data.values())

Print the results

```
print(fF-Statistic: {f_statistic}')
print(fP-Value (ANOVA): {p value anova}')
```

OUTPUT

```
F-Statistic: 14.593885166332637
P-Value (ANOVA): 1.3732194030370688e-11
```

Interpret the results

if p value anova < alpha:

print("There is a significant difference in math scores among different ethnicities.") else:

print("There is no significant difference in math scores among different ethnicities.")

OUTPUT

There is a significant difference in math scores among different ethnicities.

3. Correlation and Regression Analysis

a. Scatter Diagram, Calculating of Crrelation coefficient

#Importing necessary libraries

import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.api as sm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, confusion_matrix

Load the Housedata dataset

df = pd.read csv('data.csv')

#To display the Columns in dataset

df.columns

Display the first five rows of the dataset

print(df.head())

1		11	1 1	C+ 1	C+ 1-+	\	
aa	-	bedrooms		sqft_living	_	\	
0	2014-05-02 00	:00:00 31	3000.0	3.0	1.50	1340	7912
1	2014-05-02 00	:00:00 238	4000.0	5.0	2.50	3650	9050
2	2014-05-02 00	:00:00 34	2000.0	3.0	2.00	1930	11947
3	2014-05-02 00	:00:00 42	0000.0	3.0	2.25	2000	8030
4	2014-05-02 00	:00:00 55	0000.0	4.0	2.50	1940	10500
	floors water	front view	condition	sqft above	sqft ba	sement	<pre>yr built \</pre>
0	1.5	0 0	3	1340		0	1955
1	2.0	0 4	5	3370)	280	1921
2	1.0	0 0	4	1930)	0	1966
3	1.0	0 0	4	1000		1000	1963
4	1.0	0 0	4	1140		800	1976
-	2.0		-		•		23.0
	yr renovated		stre	eet ci	ty state:	zip cour	ntrv
0	2005	18810	Densmore Ave		=	_	USA
1	0		09 W Blaine				USA
Τ						_	
2	0		4 143rd Ave		ent WA 980		USA
3	0	8	57 170th Pl	NE Belle	7ue WA 980	800	USA
4	1992	910	5 170th Ave	NE Redmo	ond WA 98	052	USA

a. Scatter Diagram

Scatter diagram for two variables (e.g., sqft living vs. price)

plt.scatter(df['sqft_living'], df['price'])
plt.title('Scatter Diagram: sqft_living vs. price')
plt.xlabel('sqft_living')
plt.ylabel('price')
plt.show()

Calculate the correlation coefficient

correlation_coefficient = df['sqft_living'].corr(df['price'])
print(f'Correlation Coefficient (sqft_living vs. price): {correlation_coefficient}')

OUTPUT

Correlation Coefficient (sqft_living vs. price): 0.43041002543262824

b. Linear Regression: Fitting, Testing Model Adequacy, and Prediction (Simple and Multiple)

Simple Linear Regression

X_simple = sm.add_constant(df[['sqft_living']])
y_simple = df['price']
model simple = sm.OLS(y simple, X simple).fit()

Summary of the simple linear regression

print(model simple.summary())

OUTPUT

OLS Regression Results

Dep. Variable:	price	R-squared:	0.185		
Model:	OLS	Adj. R-squared:	0.185		
Method:	Least Squares	F-statistic:	1045.		
Date:	Fri, 24 Nov 2023	Prob (F-statistic):	7.55e-207		
Time:	17:00:16	Log-Likelihood:	-66971.		
No. Observations:	4600	AIC:	1.339e+05		
Df Residuals:	4598	BIC:	1.340e+05		
Df Model:	1				
Covariance Type:	nonrobust				

	21					
========	coef	std err	======= t	P> t	[0.025	0.975]
const sqft_living	1.295e+04 251.9501	1.83e+04 7.792	0.709 32.334	0.479	-2.29e+04 236.674	4.88e+04 267.227
Omnibus: Prob(Omnibus): Skew: Kurtosis:		12550.690 0.000 33.420 1623.778	Jarque- Prob(JE		5043	1.980 349454.972 0.00 5.72e+03

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.72e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Multiple Linear Regression

X_multi = sm.add_constant(df[['sqft_living', 'bedrooms', 'bathrooms']])
y_multi = df['price']
model_multi = sm.OLS(y_multi, X_multi).fit()
Summary of the multiple linear regression
print(model_multi.summary())

OUTPUT

OLS Regression Results

=======================================		==========	=======	=========		=======
Dep. Variable:		price	R-squar	ed:		0.190
Model:		OLS	Adj. R-squared:			0.190
Method:		Least Squares	F-stati	stic:		359.8
Date:	Fri	, 24 Nov 2023	<pre>Prob (F-statistic):</pre>			6.78e-210
Time:		17:00:49	Log-Likelihood:			-66957.
No. Observations:		4600	AIC:			1.339e+05
Df Residuals:		4596	BIC:			1.339e+05
Df Model:		3				
Covariance Type:		nonrobust				
=======================================	coef	========= std err	======= t	========= P> t	======= [0.025	0.975]

const	1.232e+05	3.02e+04	4.080	0.000	6.4e+04	1.82e+05
sqft living	274.6629	12.692	21.641	0.000	249.781	299.545
bedrooms	-5.514e+04	1.04e+04	-5.296	0.000	-7.56e+04	-3.47e+04
bathrooms	1.33e+04	1.5e+04	0.889	0.374	-1.6e+04	4.26e+04
========						
Omnibus:		12588.478	Durbin-	-Watson:		1.978
Prob(Omnibus):		0.000 Jarque-Bera (JB):		516518988.559		
Skew:		33.683	Prob(JB):		0.00	
Kurtosis:		1643.227	Cond. No.		9.83e+03	
========	=========		=======		========	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.83e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Prediction

predictions_simple = model_simple.predict(X_simple)
predictions_simple

OUTPUT

```
350567.418016
1
        932572.220763
2
        499217.995341
3
        516854.504515
        501737.496651
4595
        393398.940296
        380801.433743
4597
        771324.136885
4598
        539530.016310
4599
        388359.937675
Length: 4600, dtype: float64
```

Prediction

```
X_multi = sm.add_constant(df[['sqft_living', 'bedrooms', 'bathrooms']])
y_multi = df['price']
model_multi = sm.OLS(y_multi, X_multi).fit()
predictions_multi = model_multi.predict(X_multi)
predictions_multipredictions_multi = model_multi.predict(X_multi)
predictions_multi
```

OUTPUT

```
0 345726.155445

1 883214.890294

2 514428.895515

3 536981.112223

4 468684.238234

...

4595 395744.662521

4596 391988.957691

4597 817716.458384

4598 503232.046882

4599 400228.844801

Length: 4600, dtype: float64
```

c. Fitting of Linear regression

Assuming 'waterfront' is a binary variable indicating waterfront or not

```
X_logistic = df[['sqft_living', 'waterfront']]
y_logistic = (df['price'] > df['price'].median()).astype(int)
# Binary target variable
X_train_log, X_test_log, y_train_log, y_test_log = train_test_split(X_logistic, y_logistic, test_size=0.2, random_state=42)
print(X_logistic)
print(y_logistic)
```

OUTPUT

X logistic:

	sqft living	waterfront
0	1340	0
1	3650	0
2	1930	0
3	2000	0
4	1940	0
4595	1510	0
4596	1460	0
4597	3010	0
4598	2090	0
4599	1490	0

[4600 rows x 2 columns]

v logistic:

```
0 0

1 1

2 0

3 0

4 1

...

4595 0

4596 1

4597 0

4598 0

4599 0

Name: price, Length: 4600, dtype: int32
```

Logistic Regression

logreg = LogisticRegression()
logreg.fit(X_train_log, y_train_log)

OUTPUT

• LogisticRegression
LogisticRegression()

11

```
# Predictions
y pred log = logreg.predict(X test log)
y pred log
OUTPUT
array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,
       0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
       1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1,
         0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1,
         0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
         0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0,
         1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1,
                                                      0, 1, 1, 0, 1, 1,
       0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
       0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,
         1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
                                                      1, 0, 0, 0,
       1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
                                                             0, 0, 0, 0,
                               0, 1, 0, 0, 0, 1, 1, 0,
       0, 0, 1, 0, 0, 0, 1, 1,
                                                      0, 1,
                                                             1, 1,
                               0, 1, 1, 1, 0, 0, 0, 1,
         0, 1, 0, 0, 0, 0, 1,
                                                      0, 1, 1, 0, 0,
       0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1,
       0, 1, 0, 0, 1, 0, 0, 1,
                               0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0,
         0, 0, 0, 0, 1, 1, 1,
                               1, 1, 1,
                                        0, 1, 1, 1, 1, 1, 0, 0, 1,
         0, 0, 1, 0, 0, 0, 0,
                               0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,
       0, 1, 1, 1, 0, 0, 1,
                            0, 1, 0, 1, 1, 0, 0, 0, 1,
                                                       0, 0, 1, 1, 0,
       0, 0, 1, 0, 0, 0, 1,
                            0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
         0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0,
                               0, 1,
                                     0, 0, 0, 1, 1,
                                                   1,
       0, 1, 0, 1, 0, 1, 0, 1,
                                                       0, 0, 0, 1, 1,
       0, 1, 1, 0, 0, 0, 1, 0, 1, 0,
                                     0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
       0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,
       0, 0, 1, 1, 0, 1, 0, 1,
                               0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,
          0, 0, 0, 1, 1, 0, 0,
                               0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0,
            1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1,
                                     0, 1, 1, 1, 0, 0, 1, 0,
               1, 0, 1, 1, 0, 1, 0,
       0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1,
                                        1, 0, 0, 0, 1, 1, 1, 0,
                            0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
         1, 0, 1, 1, 1, 0,
                                                             Ο,
                            1, 0, 1,
             1, 0, 0, 0, 0,
                                     1, 0, 1, 0, 1, 0, 0, 0,
                                        1, 0, 0, 1,
         1, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                                                   0, 0, 1,
                                                       1, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
                                        1, 0, 0, 1,
                                     1,
                                                   1,
               0, 1, 0, 1, 1, 1, 0, 0, 1,
                                          1, 1,
                                                       1, 1,
            Ο,
                                                 1,
                                                   1,
                                                             Ο,
                     0, 0, 0, 1, 1,
               0, 1,
                                     Ο,
                                           1, 0, 0,
                                                   Ο,
                                                      0, 0,
            Ο,
                                       1,
               0, 1, 1, 0, 0, 1, 0, 1,
                                          0, 1, 0,
             1,
                                       1,
                                                    1,
                                                       1,
                                                          1,
                                                             Ο,
          1, 0, 0, 1,
                     0, 0, 0, 0, 1,
                                       0, 1, 0, 0,
                                                   Ο,
                                     1,
                                                      1,
                                                          1,
                                                            Ο,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1,
                                       0, 0, 0, 1,
                                                   0, 1, 1,
                  1, 0, 1, 1,
                                       1,
                              0, 1, 1,
                                          0, 1, 1, 1, 1, 1, 0, 1, 1,
                  0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
             0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1])
# Model Evaluation
accuracy log = accuracy score(y test log, y pred log)
conf matrix log = confusion matrix(y test log, y pred log)
print(f'Accuracy (Logistic Regression): {accuracy log}')
print(f'Confusion Matrix (Logistic Regression): \n{conf matrix log}')
OUTPUT
Accuracy (Logistic Regression): 0.7184782608695652
Confusion Matrix (Logistic Regression):
[[351 119]
 [140 310]]
```