Module 8: Bayesian Fellegi and Sunter

Rebecca C. Steorts

Reading

- ▶ Binette and Steorts (2020)
- ► Sadinle (2014)

Duplicate detection

Duplicate detection is the task of finding sets of records that refer to the same entities within a data file.

Overview of Bayesian Fellegi and Sunter

Give an overview of the framework

Notation

Assume there are a total of n records in a database.

Assume there is one database with r records labeled

$$\{1,2,\dots,r\}$$

where more than one record can refer to the same entity.

Assume that n < r.

Thus, we can view this problem as partitioning the database into n groups of matches/non-matches.

Representation of partitions

A partition of a set is a collection of nonempty and non-overlapping subsets whose union is the original set.

Sadinle (2014) refers such subsets groups or cells.

Example

Suppose the database has five records total $\{1, 2, 3, 4, 5\}$.

One potential partition can be represented by the following three groups:

$$\{1,3\},\{2\},\{4,5\}.$$

Each group represents an underlying entity.

In this example, records 1,3 are co-referent; records 4,5 are co-referent, and record 2 is a singleton record.

Co-reference matrix

A partition can also be represented by a matrix.

Consider the matrix Δ of dimension $r \times r$, where

$$\Delta_{ij} = egin{cases} 1, & ext{if records i,j are co-referent} \\ 0, & ext{otherwise}. \end{cases}$$

 Δ is referred to as the co-reference matrix.

 $\boldsymbol{\Delta}$ is symmetric with only ones in the diagonal.

Labellings of the partition's groups

Unfortunately, it is not computationally inefficient to utilized the co-reference matrix in practice.

An alternative is to use arbitrary labelings of the partition's groups.

Labellings of the partition's groups

Assume that r the maximum number of entities possibly represented in the database.

Define

$$Z_i = q, \quad i = 1, \ldots, r$$

if record *i* represents entity q, $1 \le q \le r$.

$$Z=(Z_1,Z_2,\ldots,Z_r)$$

contains all the records labels.

Thus,

$$\Delta_{ij}=I(Z_i=Z_j).$$

Example (Continued)

Recall our database has $\{1, 2, 3, 4, 5\}$ records and the partition can be represented by the three groups:

$$\{1,3\},\{2\},\{4,5\}.$$

What would be examples Z of arbitary labellings for this example?

Example (Continued)

The labelings

$$Z = (1, 2, 1, 3, 3)$$

or

$$Z = (4, 1, 4, 2, 2)$$

would correspond to this partition because both $Z_1 = Z_3 = Z_4 = Z_5$ and Z_2 gets its own value.

Connection to the rth Bell number

The number of ways in which a data file with r records can be partitioned is given by the rth Bell number, which grows rapidly with r.

See Rota (1964).

Comparison data

- Comparison data are obtained by comparing pairs of records, with the goal of finding evidence of whether two records refer to the same entity.
- ► Intuitively, two records referring to the same entity should be very similar.

Notation

Assume f features.

Compare features f of records (i,j) by computing some similarity measure $S_f(i,j)$.

The range of $S_f(i,j)$ is divided into $L_f + 1$ intervals

$$I_{f0}, I_{f1}, \ldots, I_{fL_f},$$

which represent levels of disagreement.

By convention, I_{f0} denotes the **highest level of agreement** and I_{fL_f} denotes the **lowest level of agreement**.

Notation

For records (i, j) define

$$\gamma_{ij}^f = \ell$$
 if $S_f(i,j) \in I_{f\ell}$.

- ► The larger the value of γ_{ij}^f the large the disagreement between records (i,j) with respect to feature f.
- These feature comparisons are collected into a vector for each record pair denoted by

$$\gamma_{ij} = (\gamma_{ij}^1, \gamma_{ij}^2, \dots \gamma_{ij}^F),$$

which denotes the comparison vector for records (i, j), where F is the number of features being compared.

Model for the Comparison Data

Assume that the comparison vector γ_{ij} is a realization of a random vector Γ_{ij} .

The set of record pairs is composed of two types – co-referent and non co-referent record pairs.

Model for the Comparison Data

One expects the distribution of the comparison vectors Γ_{ij} of co-referent/non co-referent record pairs to be quite different.

For example, one expects to observe more agreements among co-referent pairs than among non0coreferent pairs.

Similarly, one expects many more disagreements among non-coreferent pairs than among co-referent pairs.

Model for the Comparison Data

This intuition can be formalized by assuming that the distribution of Γ_{ij} is the same for all record pairs that refer to the same entity and is the same for all record pairs that refer to different entities.

This is modeled as follows:

$$\Gamma_{ij} \mid \Delta_{ij} = 1 \stackrel{iid}{\sim} G_1 \tag{1}$$

$$\Gamma_{ij} \mid \Delta_{ij} = 0 \stackrel{iid}{\sim} G_0 \tag{2}$$

for all $i, j \in P$, where G_1, G_0 represent the models of the comparison vectors for pairs that are coreferent and noncoreferent, respectively.

Prior distribution on the coreference partition

The co-reference matrix reprents a partition of the entries of Δ .

Let *D* represent the set of possible co-reference partitions.

The author assumes a uniform prior that assigns equal probability to each partition in D.

This can be written as

$$\pi(\Delta) \propto I(\Delta \in D)$$
.

Prior distribution on the coreference partition

One simple way to obtain this prior for Z is to assign equal probability to each of the r!/(r-n)! labelings of a partition with n cells/groups.

This leads to the prior

$$p(\mathbf{Z}) \propto \frac{(r - n(\mathbf{Z}))}{r!} I(\mathbf{Z} \in Z)$$

where n(Z) measure the number of different labelings of Z.

A model for independent comparison fields

We describe a simple parametrization for G_1 and G_0 .

This model assumes that the comparison fields are independent for both co-referent and non co-referent records.

Assuming that Γ^f_{ij} takes L_f+1 values corresponding to levels disagreement, one can model

$$\Gamma_{ij}^f \mid \boldsymbol{m}_f \sim \mathsf{Multinomial}(\boldsymbol{m}_f),$$

where

$$\mathbf{m}_f = (m_{f0}, m_{f1}, \dots, m_{f, L_f-1}).$$

A model for independent comparison fields

Similarly,

$$\Gamma_{ij}^f \mid \boldsymbol{u}_f \sim \text{Multinomial}(\boldsymbol{u}_f),$$

where

$$\mathbf{u}_f = (u_{f0}, u_{f1}, \dots, u_{f, L_f - 1}).$$

A model for independent comparison fields

Following the notation of Sadinle (2014), $\Phi_0=(u_1,\ldots,u_F) \text{ and } \Phi_1=(m_1,\ldots,m_F) \text{ such that } \Phi_f=(m_f,u_f).$

Prior speciification for the model parameters

Sadinle (2014) specified that

$$m_{\mathit{fl}} \sim \mathsf{TruncatedBeta}(\alpha_{\mathit{f\ell}}^1, \beta_{\mathit{f\ell}}^1, \lambda_{\mathit{f\ell}}, 1)$$

for
$$\ell=2,\ldots,L_f-1$$
.

In addition,

$$m_{f0} \sim \text{Beta}(\alpha_{f0}^1, \beta_{f0}^1).$$

Prior speciification for the model parameters

Sadinle (2014) specified that

$$u_{f\ell} \sim \mathtt{Uniform}(0,1)$$

for all features and disagreement.

The author stated that one might take

$$u_{f\ell} \sim \mathsf{Beta}(\alpha_{f0}^0, \beta_{f0}^0)$$

if prior information is available.

Gibbs sampling

In order to approximate the joint posterior of \boldsymbol{Z} and $\boldsymbol{\Phi}$, one must use a Gibbs sampler.

sadinle14 package

- ▶ Marchant et. al (2020) have provided a package for implementing Sadinle (2014).
- ▶ We investigate it on the RLdata500 data set.

sadinle14 package

```
library(sadinle14)
library(exchangeableER)
library(magrittr)
library(clevr)
RLdata500[['rec_id']] <- seq.int(length.out=nrow(RLdata500))
head(RLdata500)</pre>
```

```
##
    fname_c1 fname_c2 lname_c1 lname_c2 by bm bd rec_id
     CARSTEN
               <NA>
                      MEIER.
                              <NA> 1949 7 22
## 1
       GERD
                              <NA> 1968 7 27
## 2
               <NA>
                      BAUER.
     ROBERT
## 3
              <NA> HARTMANN
                              <NA> 1930 4 30
## 4
     STEFAN <NA>
                      WOLFF
                              <NA> 1957 9 2
## 5
       RALF
               <NA> KRUEGER
                              <NA> 1966 1 13
                                                5
## 6
     JUERGEN
               <NA>
                     FRANKE
                              <NA> 1929 7 4
                                                6
```

distance functions

```
scoringFns <- list(
  fname_c1 = function(x, y) dist_NormLevenshtein(x, y, return.matrix =
  lname_c1 = function(x, y) dist_NormLevenshtein(x, y, return.matrix =
  by = function(x, y) dist_AbsoluteDifference(x, y, return.matrix = FAL
  bm = function(x, y) dist_AbsoluteDifference(x, y, return.matrix = FAL
  bd = function(x, y) dist_AbsoluteDifference(x, y, return.matrix = FAL</pre>
```

breaks

For each scoring function above, we provide a breaks vectors which specifies the discrete levels of agreement (from 'high' agreement to 'low').

```
scoringBreaks <- list(
  fname_c1 = c(-Inf,.05,.15,.3,Inf),
  lname_c1 = c(-Inf,.05,.15,.3,Inf),
  by = c(-Inf,0,1,3,Inf),
  bm = c(-Inf,0,1,3,Inf),
  bd = c(-Inf,0,2,7,Inf)
)</pre>
```

comparison vectors

- Now we are ready to compute the attribute comparison scores for the record pairs.
- Since this is a small data set, we consider all pairs using the computePairs_all function.
- ► For larger data sets, blocking/indexing is recommended using computePairs_Hamming orcomputePairs_AttrDist.

comparison vectors

```
pairs <- RLdata500 %>%
  computePairs_all(id.col = 'rec_id') %>%
  computeScores(scoringFns) %>%
  discretizeScores(scoringBreaks)
```

speeding up inference

- ➤ To speed up inference, we only consider a subset of the pairs as candidate matches.
- Specifically, we consider pairs that have a strong agreement on name (accounting for missing names).

speeding up inference

```
pairs[['candidate']] <-
   (pairs$fname_c1 < 4) &
   (pairs$lname_c1 < 4) |
   is.na(pairs$fname_c1) |
   is.na(pairs$lname_c1)</pre>
```

priors on *m* and *u* probabilities

- Next we specify the priors on the m* and u* probabilities for each attribute and agreement level.
- ▶ lambda contains the lower truncation points for the truncated Beta priors on the m* probabilities. alpha1 and beta1 are the shape parameters for the truncated Beta distributions.
- ► For simplicity, we specify a flat (uniform) prior. Note: the priors on the u* probabilities are uniform by default.

priors on *m* and *u* probabilities

```
lambda <- list(</pre>
  fname c1 = c(0.8, 0.85, 0.99),
  lname_c1 = c(0.8, 0.85, 0.99),
  bv = c(0.8, 0.85, 0.99),
  bm = c(0.8, 0.85, 0.99),
  bd = c(0.8, 0.85, 0.99)
alpha1 <- lapply(lambda, function(x) rep(1, length(x)))</pre>
beta1 <- alpha1
```

intialization and Gibbs sampler

Finally we initialize the model and run inference using Markov chain Monte Carlo.

posterior samples of linkage structure

The posterior samples of the linkage structure (deduplication) are accessible from result@history\$linkage.

However the linkage structure only includes the record in pairs.

We can obtain samples of the complete linkage structure (for all record) using the following function.

evaluations

- ▶ We evaluate the quality of the posterior linkage structure (deduplication) based on a point estimate computed using the shared most probable maximal matching sets method from Steorts, Hall, Fienberg (2016).
- This functionality is available from the exchangeableER package.

```
#mpc <- exchangeableER::mostProbableClusters(linkageChain)
#predClusters <- exchangeableER::sharedMostProbableClusters
#predMatches <- exchangeableER::clustersToPairs(predClusters
#trueClusters <- exchangeableER::membershipToClusters(idens)
#trueMatches <- exchangeableER::clustersToPairs(trueClusters)</pre>
```