Tc	MRKSVCPKQKFFFSAFPFFFFCVFPLISRTGQEKLLFDQKY <u>KIIK</u> GEKKEKKKNQRANRREHQQKREIMRFKKS	- 5
Tc	ftcidmhtegeaar <u>ivtsglphipg</u> snmaekkaylqenmdylrrgimleprghddmfgaflfdpieegadlgmyf	153
Tc	MDTGGYLNMCGHNSIAAVTAAVETGIVSVPAK <u>ATNVPVVLDTPAGLVR</u> GTAHLQSGTESEVSNASIINVPSFLYQ	225
Tc	QDVVVVLPKPYGEVR <u>VDIAFGGNF</u> FAIVPAEQLGIDISVQNLSRLQEAGELLRTEINRSVKVQHPQLPHINTVDC	300
Tc	VEIYGPPTNPEANYK <u>NVVIFGNRQADR</u> SPCGT FTSAKMATLYAKGQLRIGETFVYESILGSLFQGRVLGEE	373
īc	RIPGVKVPVTKDAEEGMLVVTAEITGKAFIMGFNTMLFDPTDPFKNGFTLKO* 423	

TC	RTGQEKLLFDQKY <u>KIIK</u> GEKKEKKKNQRANRREHÇQKREIMRFKKS	. 7
Tc	ftcidmhtegeaar <u>ivtsglphipg</u> smmaekkaylqenmdylrrgimleprghddmfgaflfdpieegadlgmvf	15
Tc	MDTGGYLNMCGHNSIAAVTAAVETGIVSVPAK <u>ATNVPVVLDTPAGLVR</u> GTAHLQSGTESEVSNASIINVPSFLYQ	22
T¢	QDVVVVLPKPYGEVR <u>VDIAFGGNF</u> FAIVPAEQLGIDISVQNLSRLQEAGELLRTEINRSVKVQHPQLPHINTVDC	300
Tc	velygpptnpeanyk <u>nvvifgnr</u> qadr SPCGT gtsak <u>matlyak</u> gqlrigetfvyesilgslfqgrvlgee	37
Tc	RIPGVKVPVTKDAEEGMLVVTAEITGKAFIMGFNTMLFDPTDPFKNGFTLKO* 423	

To MRKSVCPKQKFF#SAFPFFFFFCVFPLIS

SEQUENCE ID NO.4

STROMENSTATION AND STROMENS SEEDS STROMENS TO THE STROMENS SEEDS S

SEQUENCE ID NO:5

Cs		£
Cs	IHAIDSHTMGEPTRIVVGGIPQINGETMADKKKYLEDNLDYVRTALMHEPRGHNDMFGSIITSSNNKEADFGIIF	3:
Cs	MDGGGYLNMCGHGSIGAATVAVETGMVEMVEPVTNINMEAPAGLIKAKVMVENEKVKEVSITNVPSFLYM	151
C <i>s</i> ′	EDAKLEVPSLNKTITFDISFGGSFFAIHAKELGVKVETSQVDVLKKLGIEIRDLINEKIKVQHPELEHIKTVDL	226
Cs	VEIYDEPSNPEATYK <u>NVVIFGOG</u> QVDR SPCGT GTSAK <u>LATLYKK</u> GHLKIDEKEVYESITGTMFKGRVLEET	297
Cs	KVGEFDAITPETTGGAYTTGENHEVIDPEDPLKYGFTV* 335	

Pa	XQR	3
Pa	IRIIDSHTGGEPTRLVIGGFPDLGQGDMAERRRLLGERHDAWRAACILEPRGSDVLVGALLCAPVDPEACAGVIF	- :
Pa	FNNSGYLGMCGHGTIGLVASLAHLGRIGPGVHRIETPVGEVEATLHEDGSVSVRNVPAYRYR	143
?a	RQVSVEVPGI-GRVSGDIAWGGNWFFLVAGHGQRLAGDNLDALTAYTVAVQQALDDQDIRGEDGGAIDH	223
Pa	IELFADDPHADSRNFVLCPGKAYDR SPCGT GTSAKLACLAADGKLLPGQPWRQASVIGSQFEGRYEWLDGQ	27
?a	PGGPIVPTIRGRAHVSAEATLLLADDDPFAWGIRR* 314	

				Splice	leader			
				accepto		Sic	nal Peptide	
Polypyrimid	ine rich r	egion						
Û				/				
CCTTTTTCTTT	<u>TT</u> AAAAACA	AAAAAATTO	CGGGGGGAATAT	GGAAC <u>AG</u> GGT:	¥7 <u>A∱</u> 3067A	AAAGTGTCTG7	CCCAAACAAAATT	:TTTT 90
					<u>₩ ३ :</u>		PKOKE	12
	P F F	<u> </u>	TGTGTGTTTCCC C V F P		BAAC <u>AG</u> GGC: R T G (AAAAOOADTTTBTO!	ATAT 180
		222262226	AAAAAAAATCAA			Q E K L accilcilli	L F D Q K AAGGGAAATTATGCG	
KIIK	G E K	KEK	K K N Q			H O C K	R E I M R	
AAGAAATCATT	CACATGCAT	CGACATGCAT	ACGGAAGGTGAA	.GCAGCACGGA	TTGTGACGA:	GTGGTTTGCC	ACACATTOCAGGTTS	GAAT 360
K K S F	T C I	D M H	T E G E			S G L ?	H I P G S	5 N 102
							TGGTCATGATGATAT	
M A E K	K A Y	L Q E	N W D Y	LRR	G I M :	L E P R	S H D D M	
TO A T I	F D P	I E E	G A D L	G M V	rusiogaia F M D '	T G G Y	iilaanimiG.3.33 C N M C 3	SACAT 520 3 H 163
AACTCAATTGC			GAAACGGGAATT			. O O : CAACAAATGTT	0	KCACA 610
N S I A	A V T	A A V	ETGI	v s v	PAK	A T N V	2	
CCTGCGGGGTT	GGTGCGCGG	TACGGCACAC	CTTCAGAGTGGT	ACTGAGAGTG.	REGTETCAR	ATGCGAGTATT	TATCAATGTACCCTC	700
P A G L	<u>VR</u> G	T A H	L Q S G	T E S	E V S :	N A'S I	I N V P S	5 F 222
	GGATGTGGT			'GGTGAAGTAC	gggttgata [,]	TTGCATTTGG	AGGCAATTTTTTCGC	CATT 790
T Y Q Q	D V V	V V L	P K P Y	G E V	R <u>V D :</u>	I A F G	<u>g % F</u> F A	A I 253
GTTCCCGCGGA	O L G	ARIIGAIAIC	S V O N	L S R	L Q E	CAGGAGAACI; 1 G F :	L R T E I	CAAT 530 N 232
	_		GCCCATATTAAC		STGTTGAGA	A G E E TATACGGTCC	CCPFCGPYCCCGG	232 NGGCA 970
R S V K	V Q H	P Q L	PHIN	TVD	C V E	I Y G P	P T N P E	
AACTACAAGAA	CGTTGTGAT.	ATTTGGCAAT	CGCCAGGCGGAT	CGCTCTCCAT	GTGGGACAG	GCACCAGCGC	CAAGATGGCAACACT	TATT
: Y K <u>N</u>		F G N	<u>R</u> Q A D	2 2 2	c g t (GTSA	K <u>M A T 1</u>	<u>. :</u> 3+2
	GCTTCGCAT		TTTGTGTACGAG		GCTCACTCT	TCCAGGGCAGG	GGTACTTGGGGAGGA	
<u> </u>	L R I	G E T	i v i b Kinocoolocia	S I L	5 S L :	FQGR	Y L G E E	E R 373 SCATG 1240
I 9 G V	K V P	V T K	O A E E	G M L	risiamess. V V T	omammiino. 1 f t t	.ggmmgggm. G K A F I	. DAIG 1240
GETTTCAACAC			GATCCGTTTAAG	AACGGATTCA	• •	AGTAGATOTG	STAGAGCACAGAAAS	TATT 133
3 F % T	M L F	D P T	D P F K	N G F	7 L K	ર		423
GGGGAACACGT	GCGAACAGG	TGCTGCTACC	GTGAAGGGTATTG	AATGAATCGT	TTTTTTTA	TTTTTATTTT	TATTTTTATTAGTC	GCATT 1429
ATTATTAAATT	TTTTTTTTG	TTTTGGGGTT	TCAACGGTACCG	CGTTGGGAGC	AGGGAAGCG.	ATAGEGGEEG	GACAATTTTTTGCTT	TTTAT 151
TTTCATTTTCA	TCTTCCTAC	CCAACCCCCT	TTGGTTCCACCG	TOGOGGCGGG	stittstss	STSSAGGAGT	CCTAPATCCCGCACC	TTCGG 1600
AGGAATAAACA	TATTTCAAT	TTCATATCTT	rggaatcaaaagg	SCAT				165

Polyadenilation site

Obs : Underlined the sequenced peptides used to deduce degenerated primers for cloning

(d) Nucleotide sequence and peptide sequence TcPA45

SEQ ID NO.8

ogaacagggcaggaaaagcttotgtttgaccallaa LISRIGQEKULFDQK aaaattattaagggcgagaaaaagaaaagaaaaaaaatcaacgagcaaacaggagagaacaccaacaaaaagggaaatt<u>atg</u>cgat IIKGEKKEKKNQRANRREHQQKREIMRF AAGAAATCATTCACATGCATCGACATGCATACGGAAGGTGAAGCAGCACGGATTGTGACGAGTGGTTTGCCACACATTCCAGGTTCGAAT K K S F T C I D M H T E G E A A R I V T'S G L P H I ATGGCGGAGAAGAAAGCATACCTGCAGGAAAACATGGATTATTTGAGGCGTGGCATAATGCTGGAACCACGTGGTCATGATGATATGTTT 132 MAEKKAYLQENMDYLRRGIMLEPRGHD 520 ggageetttttatttgaeeetattgaagaaggegetgaettgggeatggtatteatggataeeggtggetatttaaatatgtgtggaeat 162 G A F L F D P I E E G A D L G M V F M D T G G Y L N M C G H 610 AACTCAATTGCAGCGGTTACGGCGGCAGTTGAAACGGGAATTGTGAGCGTGCCGGCGAAGGCAACAATGTTCCGGTTGTCCTGGACACA N S I A A V T A A V E T G I V S V P A K <u>A T</u> N V 2 V V t ootgogggttggtggggggtacggcacaccttcagagtggtactgagagtgaggtgtcaaatgcgagtattatcaatgtacctca 222 VRGTAHLQSGTESEVSNASII y 793 STATCASCAGGATGTGGTGGTTGTTGCCAAAGCCCTATGGTGAAGTACGGGTTGATATTGCATTTGGAGGCAATTTTTTCGCCAT 252 LYQQDVVVVLPKPYGEVR<u>V</u>DI<u>A</u>FG<u>GN</u>FFAI 330 gttecegeggageagttgggaattgatateteegtteaaaaceteteeaggetge<mark>aggaggeaggagaacttetgesta</mark>ttgaaateaat 232 V P A E Q L G I D I S V Q N L S R L Q E A G E L L ROT E I S 970 CGCAGTGTGAAGGTTCAGCACCCTCAGCTGCCCCATATTAACACTGTGGACTGTGTTGAGATATACGGTCCGCCAACGAACCGGAGGCA 3:2 RSVKVQHPQLPHINTVDCVEIYGPPTNPEA 1060 RACTACAAGAACGTTGTGATATTTGGCAATCGCCAGGCGGATCGCTCTCCATGTGGGACAGGCACCAGCGCCAAGATGGCAACACT 3:2 NYK<u>NVVIFGNR</u>QADRSPCGTGTSAK<u>MAT</u>L 1150 GCCAAAGGCCAGCTTCGCATCGGAGAGACTTTTGTGTACGAGAGCATACTCGGCCTCACTCTTCCAGGGCAGGGTAC 372 K G Q L R I G E T F V Y E S I L G S L F Q G R V L G E E R 1240 _____ COGGGGGTGAAGGTGCCGGTGACCAAAGATGCCGAGGAAGGGATGCTCGTTGTAACGGCAGAAATTACTGGAAAAGGCTTTTATCATG 402 PGVKVPVTKDAEEGMLVVTAEITGKAE 1330 ggtttcaacaccatgctgtttgacccaacggatccgtttaagaacggattcacattaaagcagtagatctggtagagcacagaaactatt 423 FNTMLFDPTDPFKNGFTLKQ 1420 1510 ATTATTAAATTTTTTTTTTTTGGGGTTTCAACGGTACCGCGTTGGGAGCAGGGAAGCGATAGCGGCCGGACAATTTTTTGGTTTTAT 1600 AGGAATAAACATATTTCAATTTCATATCTTGGAATCAAAAGGCAT

Polyadenilation site

Obs : Underlined the sequenced peptides used to deduce degenerated primers for cloning

(a) Nucleotide sequence and peptide sequence TcPA45

SEQ ID NO.9

CGAACAGGGCAGGAAAAGCTTCTGTTTGACCAA AAATAT 270 F S A F P F F F F C V F P L I S R T G Q E K L L F D Q K Y aarattattaagggcgagaaaaaagaaaaaaaaaatcaacgagcaracaggagagacacccaacaaaaaagggaaatt<u>atg</u>cgattt 430 K K S F T C I D M H T E G E A A R \underline{I} V T \underline{S} G \underline{I} P \underline{H} \underline{I} P \underline{G} S $\underline{\mathbb{N}}$ 132 ATGGCGGAGAAGAAGCATACCTGCAGGAAAACATGGATTATTTGAGGCGTGGCATAATGCTGGAACCACGTGGTCATGATGATATGTTT M A E K K A Y L Q E N M DYLRRGIMLEPRGHDDMF GGAGCCTTTTTATTTGACCCTATTGAAGAAGGCGCTGACTTGGGCATGGTATTCATGGATACCGGTGGCTATTTAAATATGTGTGGACAT 610 G A F L F D P I E E G A D L G M V F M D T G G Y L N M 192 AACTCAATTGCAGCGGTTACGGCGGCAGTTGAAACGGGAATTGTGAGCGTGCCGGCGAAGGCAACAAATGTTCCGGTTGTCCTGGACACA 700 N S I A A V T A A V E T G I V S V P A K A T N V P V V L 222 cctgcggggttggtgcgcggtacggcacaccttcagagtggtactgagagtgaggtgtcaaatgcgagtattatcaatgtaccctcattt 790 AGLVRGTAHLQSGTESEVSNASIINVPSF 252 TTGTATCAGCAGGATGTGGTGGTTGTGTTGCCAAAGCCCTATGGTGAAGTACGGGTTGATATTGCATTTGGAGGCAATTTTTTCGCCATT 880 LYQQDVVVVLPKPYGEVR<u>V</u>DIAF 232 GTTCCCGCGGAGCAGTTGGGAATTGATATCTCCGTTCAAAACCTCTCCAGGCTGCAGGAGGGGAGGAGAACTTCTGCGTACTGAAATCAAT 970 V P A E Q L G I D I S V Q N L S R L Q E A G E L L R T E I N 312 RSVKVQHPQLPHINTVDCVEIYGPPTNPEA 342 ARCTACAAGAACGTTGTGATATTTGGCAATCGCCAGGCGGATCGCTCTCCATGTGGGACAGGCACCAGCGCCAAGATGGCAACACTTTAT 1150 NYKNVVI<u>FGNR</u>QADRSPCGTGTSAK<u>M</u>A 372 gccaaaggccagcttcgcatcggagagacttttgtgtacgagagcatactcggctcactcttccagggcagggtacttggggaggaggagca 1240 AKGQLRIGETFVYESILGSLFQGRVLGEER + 22 a<mark>tacc</mark>gggggtgaaggtgccggtgaccaaagatgccgaggaagggatgctcgttgtaacggcagaaattactggaaaggcttttatcatg 1330 I P G V K V P V T K D A E E G M L V V T A E I T G K A F I M +23 ggtttcaacaccatgctgtttgacccaacggatccgtttaagaacggattcacattaaagcagtagatctggtagagcacagaaactatt 1420 FNTMLFDPTDPFKNGETLKQ+ 1510 1600 ATTATTAAATTTTTTTTTTTTTGGGGTTTCAACGGTACCGCGTTGGGAGCAGGGAAGCGATAGGGGCCGGACAATTTTTTGGTTTTAT 1651 AGGAATAAACATATTTCAATTTCATATCTTGGAATCAAAAGGCAT

Polyadenilation site

Obs : Underlined the sequenced peptides used to deduce degenerated primers for cloning

(b) Nucleotide sequence and peptide sequence TcPA45

SEQUENCE ID NO:10

<u> Simal क्लांट</u>

MRKSVEPKQKFF

Nucleotide sequence of signal sequence TcPA45

SEQUENCE ID NO:11

ATG CGATTT 4 -:: X S J T C T D K R T I C I A A I I V T S G L ? Y KAIITAY DORYKOTERICIKERI A O E D D K : 1 7 0 0 2 Y Y Y Y 1 7 X 7 7 5 5 7 2 Y Y 3 7 3 7 5 3 Y 7 7 X 2 =12 4=2 : 7.5 Y x Y 7 Y 7 X 2 A 2 2 5 K L Y Y 7 A 2 1 7 5 X A 7 2 K ەدىد

5'TTICCRAADATIACIACGTT 3'

SEQ ID NO : 13

5' ATHGCITTYGGIGGIAAYTTT 3'

SEQ ID NO : 14

5' TTICCRAADATIACIACGTT 3'

SEQ ID NO : 15

5' CTCTCCCATGGGGCAGGAAAAGCTTCTG 3'

SEQ ID NO : 16

5' CTGAGCTCGACCAGATCTATCTGC 3'

```
1 cotttttctt tttaaaaaca aaaaaaatto oggggggaat atggaacagg gtatatgogt
  61 aaaagtgtot gtoocaaaca aaaatttttt ttttoogoot toocattttt tttttt
 121 tgtgtgtttc cottgatoto togaacaggg caggaaaago ttotgtttga coasaaatat
 131 aaaattatta agggogagaa aaaagaaaag aaaaaaaato aacgagcaaa caggagagaa
 241 caccaacaaa aaagggaaat tatgcgattt aagaaatcat tcacatgcat cgacatgcat
 301 acggaaggig aagcagcacg gatigigacg agiggitige cacacatice aggitegaat
 361 atggcggaga agaaagcata cotgcaggaa aacatggatt atttgaggog tggcataatg
 421 ctggaaccae gtggteatga tgatatgttt ggageetttt tatttgacce tattgaagaa
 481 ggegetgast tgggeatggt atteatggat aceggtgget atttaaatat gtgtggaeat
 541 aactcaattg cagoggttac ggoggoagtt gaaacgggaa ttgtgagogt googgogaag
 601 gcaacaaatg ttooggttgt cotggacaca cotgoggggt tggtgogogg taoggcacac
 661 ottoagagig glacigagag igaggigida aaigogagta italdaatgi accoldatti
 721 tigtatoago aggatgiggi ggitgigtig ocaaagooot atggigaagi acgggiigat
 781 attgeattig gaggeaatti tttegspatt giteeogegg ageagtiggg aaitgatate
 341 teegtteaaa aeeteteeag getgeaggag geaggagaae ttetgegtae tgaaateaat
 901 ogcagigiga aggitcagoa occicagoig occoatatia acacigigga oigigitgag
 961 atatacggto ogocaacgaa cooggaggoa aactacaaga acgttgtgat atttggcaat
1021 egecaggegg ategetetee atgtgggaca ggcaccageg ccaagatgge aacaetttat
1081 godaaaggod agottogoat oggagagadt titgtgtadg agagdatadt oggotdadto
1141 ttocagggca gggtacttgg ggaggagoga ataccggggg tgaaggtgco ggtgaccaaa
1201 gatgoogagg aagggatgot ogitgiaacg goagaaatta otggaaaggo tittatoatg
1261 ggtttcaaca coatgotgtt tgacccaacg gatccgttta agaacggatt cacattaaag
1321 cagtagatot ggtagagoac agaaactatt ggggaacacg tgcgaacagg tgctgctacg
1381 tgaagggtat tgaatgaato gttttttttt atttttattt tttattttta ttagtgcatt
1441 attattaaat tittititty tittggggtt toaacggtac cgcgttggga gcagggaagc
1501 gatagoggos ggacaattit tigottitat titoattito atottoctac coaaccocct
1561 tggitecaco ggiogoggog gggiotigtg ggiggaggag tectaaatoo egeacetegg
1621 aggaataaac atatticaat ticatatott ggaatcaaaa ggoat
```

WIIK

SEQ ID NO : 19

IVTGSLPDISG

SEQ ID NO : 20

ATNVPVVLDTPAGLVR

SEQ ID NO : 21

VDIAFGGNF

SEQ ID NO : 22

NVVIFGNR

SEQ ID NO : 23

MATLYAK

5' TCCGTATCCATGTCGATGC 3'

SEQ ID NO : 25

5' TATTATTGATACAGTTTCTG 3'

SEQ ID NO : 26

5' CTCTCCCATGGGGCAGGAAAAGCTTCTG 3'