MATH 424 HW6 Dilys Wu

Dilys Wu

March 7, 2024

1 Q1

Suppose X is a topological space and $A, B \subset X$ are two connected subsets with $A \cap B \neq \emptyset$. Prove that their union $A \cup B$ is connected.

Proof:

Suppose $A \cup B$ is not connected, then it can be partitioned into two disjoint, non-empty, relatively open subsets U,V. Let $x \in A \cap B$. Without loss of generality assume $x \in U$ and $x \notin V$. Then $A \subseteq U$ and $B \subseteq U$ cannot hold at the same time, or else $A \cup B \subseteq U, V = \varnothing$. Suppose $A \subset U$, then $A \cap V$ and $A \cap U$ is a partition of A. But since $x \in A \cap U, A \cap U \neq \varnothing$, and thus A is the union of two disjoint open sets, contradicting that A is connected. Therefore, $A \cup B$ must be connected.

2 Q2

Suppose (E,d) is a metric space, $f:[0,1] \to E, g:[0,1] \to E$ two continuous maps with f(1)=g(0), i.e., f,g are two paths with the second starting where the first ended. Define $h:[0,2] \to E$ by

$$h(t) = \begin{cases} f(t), & \text{if } t \in [0, 1] \\ g(t - 1), & \text{if } t \in [1, 2] \end{cases}$$

Prove that h is continuous. (The fact that E is a metric space should not matter; the same result holds if E is a topological space.)

Proof

Since f, g are continuous, any closed sets $C \subseteq E$, the preimages $f^{-1}(C), g^{-1}(C)$ are closed in [0, 1] and [1, 2], respectively. Since $f^{-1}(C), g^{-1}(C)$ are closed, their union $f^{-1}(C) \cup g^{-1}(C) = h^{-1}(C)$ is also closed, and thus suggesting that h is continuous since [0, 2] is closed as well.

3 Q3

We will assume in this homework that the function $g(u) = \sin(u)$ is differentiable. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Prove that f is differentiable at every point of \mathbb{R} .

Proof:

We've shown in class that x^2 is differentiable and $(x^2)' = 2x$. When $x \neq 0$, $f'(x) = \frac{dx^2}{dx} \sin(\frac{1}{x}) + x^2 \frac{d\sin(\frac{1}{x})}{dx} = 2x \sin(\frac{1}{x}) + x^2 \frac{d\sin(\frac{1}{x})}{dx}$. Note that $\sin(u)$ is differentiable, and thus $x^2 \sin(1/x)$ where $x \neq 0$ is differentiable since it's the composite of two differentiable functions.

When x = 0, f'(0) = 0 since f(0) is constant. Thus f is differentiable.

4 Q4

Prove that the function

$$f(x) = \begin{cases} x^2, & x \text{ is rational} \\ 0, & x \text{ is irrational} \end{cases}$$

is differentiable at 0.

Proof:

When x is rational, $\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=\lim_{x\to a}\frac{x^2-a^2}{x-a}=\lim_{x\to a}\frac{(x+a)(x-a)}{x-a}=\lim_{x\to a}x+a=2a$. When x is irrational, f'(x)=0 since f(x) is constant. Thus f is differentiable.

5 Q5

Prove that the function

$$f(x) = \begin{cases} x^2 & x \ge 0\\ 0, & x \le 0 \end{cases}$$

is differentiable at 0.

Proof:

When $x \ge 0$, $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = \lim_{x\to a} \frac{x^2-a^2}{x-a} = \lim_{x\to a} \frac{(x+a)(x-a)}{x-a} = \lim_{x\to a} x+a = 2a$. When $x \le 0$, f'(x) = 0 since f(x) is constant. Thus f is differentiable.

6 Q6

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Assume that its derivative f' is also differentiable (i.e., suppose f is twice differentiable). Show that if f''(x) = 0 for all $x \in \mathbb{R}$ then

$$f(x) = f(0) + f'(0)x$$

for all $x \in \mathbb{R}$

Proof:

Since $f''(x) = 0, \forall x \in \mathbb{R}, f'(x) = c$, where c is a constant. In particular, f'(0) = c. Consider the function h(x) = f(x) - f'(0)x and look at its derivative. Notice that h'(x) = f'(x) - f'(0) = c - c = 0, so h(x) must be a constant function. To find the value of h(x), let x = 0, then h(0) = f(0) - 0 = f(0), so h(x) = f(0) for all x. Rearranging the expression of h(x) and we get f(x) = h(x) + f'(0)x = f(0) + f'(0)x.

7 Q7

Consider the function $f: \mathbb{R} \to \mathbb{R}$ from problem 3:

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Let g(x) = f(x) + x/2. Prove that g'(0) is positive but g is not increasing on any open interval containing 0.

Proof:

If the distribution of the second structure of the sign of the si