## DIUM – LESI/LMCC MÉTODOS DE PROGRAMAÇÃO I Exercícios

Carlos Bacelar, Luís Barbosa, José Barros, Alcino Cunha, Maria João Frade, Luís Neves, José Nuno Oliveira, Jorge Sousa Pinto

Dezembro 2004

# Capítulo 1

## Cálculo Não-recursivo

## I – Produtos e Coprodutos

1. Use a definição  $f \times g = \langle f \cdot \pi_1, g \cdot \pi_2 \rangle$  para provar que a propriedade

$$(g \cdot h) \times (i \cdot j) = (g \times i) \cdot (h \times j)$$

se verifica.

- 2. Aplique a lei da troca,  $[\langle f,g\rangle,\langle h,k\rangle]=\langle [f,h],[g,k]\rangle,$  à definição  $undistr~=~[id\times i_1,id\times i_2]$
- 3. Considere as declarações de tipo

$$\begin{split} f: A &\rightarrow B, \\ g: C &\rightarrow D, \\ i: X + Y &\rightarrow X', \\ j: X + Y &\rightarrow Y', \\ i': X &\rightarrow X' \times Y', \\ j': Y &\rightarrow X' \times Y' \end{split}$$

(a) Identifique a assinatura das seguintes funções:

i. 
$$f + \langle i, j \rangle \times g$$
  
ii.  $f + [i', j'] \times g$ 

(b) Serão as duas funções iguais? Justifique.

4. Sejam dadas as seguintes funções, no contexto da biblioteca Mpi.hs:

onde k é uma função arbitrária. Identifique, justificando,

- o tipo de [f,g], isto é, da lista contendo as funções f e g;
- o tipo de (f,g), isto é, do par de funções f e g.
- 5. Considere o seguinte raciocínio:

$$k = [f, g] \iff \begin{cases} k \cdot i_1 = f \\ k \cdot i_2 = g \end{cases}$$

$$\equiv \qquad \{ \dots (\text{justifique}) \dots \}$$

$$h \cdot [i, j] = [f, g] \iff \begin{cases} (h \cdot [i, j]) \cdot i_1 = f \\ (h \cdot [i, j]) \cdot i_2 = g \end{cases}$$

$$\equiv \qquad \{ \dots (\text{justifique}) \dots \}$$

$$h \cdot [i, j] = [f, g] \iff \begin{cases} h \cdot ([i, j] \cdot i_1) = f \\ h \cdot ([i, j] \cdot i_2) = g \end{cases}$$

$$\equiv \qquad \{ \dots (\text{justifique}) \dots \}$$

$$h \cdot [i, j] = [f, g] \iff \begin{cases} h \cdot i = f \\ h \cdot j = g \end{cases}$$

$$\equiv \qquad \{ \dots (\text{justifique}) \dots \}$$

$$h \cdot [i, j] = [h \cdot i, h \cdot j]$$

Como se chama a propriedade de que o raciocínio partiu? Justifique cada passo e indique qual das leis que constam do anexo foi deduzida.

6. Indique qual das leis que constam do anexo é justificada pelo raciocínio que se segue,

$$\langle i,j\rangle \cdot h = \langle f,g\rangle \iff \left\{ \begin{array}{l} \pi_1 \cdot (\langle i,j\rangle \cdot h) = f \\ \pi_2 \cdot (\langle i,j\rangle \cdot h) = g \end{array} \right.$$

$$\equiv \left\{ \begin{array}{l} \ldots (\text{justifique}) \ldots \right\} \\ \langle i,j\rangle \cdot h = \langle f,g\rangle \iff \left\{ \begin{array}{l} (\pi_1 \cdot \langle i,j\rangle) \cdot h = f \\ (\pi_2 \cdot \langle i,j\rangle) \cdot h = g \end{array} \right.$$

$$\equiv \left\{ \begin{array}{l} \ldots (\text{justifique}) \ldots \right\} \\ \langle i,j\rangle \cdot h = \langle f,g\rangle \iff \left\{ \begin{array}{l} i \cdot h = f \\ j \cdot h = g \end{array} \right.$$

$$\equiv \left\{ \begin{array}{l} \ldots (\text{justifique}) \ldots \right\} \\ \langle i,j\rangle \cdot h = \langle i \cdot h,j \cdot h \rangle \end{array} \right.$$

Justifique cada passo.

7. Considere a seguinte definição de uma função t, em Haskell:

Qual  $\acute{e}$  o tipo de t? Justifique convenientemente a sua resposta.

8. (a) Preencha as reticências do diagrama funcional que se segue:



- (b) Exprima g e f como splits envolvendo outras funções no diagrama. Em seguida, escreva f em Haskell com variáveis, isto é, sem recorrer ao construtor split e às projecções  $\pi_1$  e  $\pi_2$ .
- (c) Que função f sua conhecida é definida pelo diagrama? Qual é a sua inversa? Justifique.
- 9. Calcule (caso exista) o tipo da função  $\langle i_1, \pi_1 \rangle$

10. Dadas as definições

$$f = (h \cdot \pi_2) \cdot swap$$
  
$$g = \pi_1 \cdot (h \times (id^A \cdot ap))$$

represente f e g sob a forma de diagramas evidenciando o seu tipo, e mostre que f=g, para todo o h.

11. Apresente, justificando todos os passos, uma prova equacional do facto

$$(id \times \pi_2) \cdot assocr = \pi_1 \times id$$

### II – Isomorfismos

12. Demonstre a seguinte igualdade

$$[id \times i_1, id \times i_2] = \langle [\pi_1, \pi_1], \pi_2 + \pi_2 \rangle$$

Qual o isomorfismo que esta função estabelece?

- 13. Seja distr (ler:  $distribute\ right)$ a bijecção que estabelece o isomorfismo  $A\times (B+C)\cong A\times B+A\times C.$ 
  - (a) Preencha as reticências no diagrama que se segue por forma a ver nele especificada a bijecção distl (ler:  $distribute\ left$ ) que estabelece o isomorfismo  $(B+C)\times A\cong B\times A+C\times A$ :

$$(B+C)\times A \xrightarrow{swap} \cdots \xrightarrow{distr} \cdots \xrightarrow{m} B \times A + C \times A$$

(b) Mostre que

$$[g,h] \times f = [g \times f, h \times f] \cdot distl$$

é uma propriedade válida sobre distl, aplicando, entre outras leis que conhece, as seguintes:

$$f \times [g,h] = [f \times g, f \times h] \cdot distr$$
  
 $swap \cdot (f \times g) = (g \times f) \cdot swap$ 

14. Por inferência de tipos, escolha a função que, de entre as seguintes,

$$[id, id]$$

$$[\langle \underline{True}, id \rangle, \langle \underline{False}, id \rangle]$$

$$[\langle \underline{True}, \underline{False} \rangle, id]$$

$$id + id$$

estabelece o isomorfismo

$$2 \times A \cong A + A$$

da direita para a esquerda.

Aplique-lhe a lei da troca e codifique o resultado em Haskell.

- 15. Por analogia com  $swap = \langle \pi_2, \pi_1 \rangle$ , mostre que  $[i_2, i_1]$  é a sua própria inversa. Qual o isomorfismo que esta função estabelece?
- 16. Relembre

$$assocr: A \times (B \times C) \rightarrow (A \times B) \times C$$

e escreva a sua dual, isto é, a bijecção que estabelece o isomorfismo

$$A + (B + C) \cong (A + B) + C$$

da esquerda para a direita. Codifique essa função em Haskell.

17. (a) Identifique ou defina as funções f e g que testemunham o isomorfismo

$$A \times 1 \cong A$$

da esquerda para a direita e da direita para a esquerda, respectivamente (nota: assuma  $1 \cong \{()\}$ ).

- (b) Recorrendo à função swap, como definiria a função que estabelece o isomorfismo  $1 \times A \cong A$  da esquerda para a direita?
- 18. Considerando os isomorfismos bem conhecidos
  - $A^2 \cong A \times A$
  - $2 \times A \cong A + A$
  - $A \times (B \times C) \cong (A \times B) \times C$
  - $A \times (B+C) \cong (A \times B) + (A \times C)$

sintetize, justificando, o seguinte isomorfismo

$$v: A \times (1+X)^2 \to A + A \times X + A \times X + A \times X^2$$

- 19. Determine, usando as funções  $swap :: X \times Y \to Y \times X$  e  $distr :: X \times (Y + Z) \to X \times Y + X \times Z$ , um isomorfismo entre  $(A \times B + C) \times D$  e  $A \times (D \times B) + D \times C$ . Apresente ainda uma codificação dessa função em Haskell.
- 20. Defina em Haskell um isomorfismo entre os tipos Maybe a e Either () a.
- 21. Os tipos (a, Maybe b) e Either a (b,a) são isomorfos. Use as funções swap, distrl e as do exercício anterior para definir (em notação pointfree) as funções que testemunham esse isomorfismo.

### III - Condicional

22. Prove a lei de fusão do condicional de McCarthy:

$$f \cdot (p \to g, h) = p \to f \cdot g, f \cdot h$$

23. Partindo da definição do combinador condicional de McCarthy e da propriedade

$$p? \cdot f = (f+f) \cdot (p \cdot f)?$$

prove a validade de

$$(p \to f,g) \cdot h \ = \ (p \cdot h) \to (f \cdot h), (g \cdot h)$$

### IV – Exponenciais

24. Identifique quais das igualdades seguintes,

curry f a b = 
$$f(a,b)$$
  
curry g (f a) c = curry (g .\((a,c)->(f a, c)) a c

(expressas em sintaxe Haskell) são propriedades válidas, e identifique-as, desenhando o diagrama correspondente.

25. Identifique as funções que estabelecem o isomorfismo que se segue

$$B^{C\times A}\cong (B^A)^C$$

e defina-as.

- 26. Mostre que se  $f:A\to B$  é um isomorfismo então  $f^C$  tambem o é.
- 27. Use o resultado do exercício anterior para mostrar que  $(A \times B)^C \cong (B \times A)^C$ .
- 28. Demonstre as leis de fusão e reflexão da exponenciação, partindo da propriedade universal respectiva.
- 29. A função  $distl: (A+B) \times C \to A \times C + B \times C$  (distributividade à esquerda) dispõe de uma definição point-free particularmente complicada:

$$distl = ap \cdot ([i_1^C \cdot \overline{id}, i_2^C \cdot \overline{id}] \times id)$$

(a) Preencha o diagrama seguinte que justifica o tipo atribuído à função.



| (b) Conjecture a inversa <i>undistl</i> e a | apresente diagramas | que justifiquem o s | seu tipo. |
|---------------------------------------------|---------------------|---------------------|-----------|
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |
|                                             |                     |                     |           |

## V – Point-free na definição de funções

- 30. O Haskell permite programar com funções constantes <u>c</u> basta escrever const c. Verifique qual o tipo das expressões f . const c e const (f c), para qualquer f e c. Que mais se pode dizer sobre estas expressões funcionais? Justifique.
- 31. Considere, em Haskell, a seguinte definição recursiva da função factorial,

fac 
$$0 = 1$$
  
fac  $(n+1) = (n+1) * fac n$ 

Mostre que essa definição pode ser convertida na seguinte definição pointfree:

$$fac \cdot [0, succ] = [1, mul \cdot (succ \times id)] \cdot (id + \langle id, fac \rangle)$$

onde mul é um operador uncurried de multiplicação (em Haskell, designa a versão uncurried de \* na class Num).

32. Considere a seguinte função em Haskell que calcula o quadrado de um número:

$$sq 0 = 0$$
  
 $sq (n+1) = 2*n+1 + sq n$ 

Mostre que sq satisfaz a equação

$$sq \cdot in = [\underline{0}, add \cdot \langle odd, sq \rangle]$$

onde  $in = [\underline{0}, succ], \overline{add} = (+) e \ odd = suc \cdot add \cdot \langle id, id \rangle.$ 

Sugestão: Recupere o código Haskell acima a partir da conversão da equação dada para notação com variáveis.

33. Derive a versão pointwise em Haskell da função f caracterizada pela seguinte equação

$$f \cdot [\underline{0}, \text{succ}] = [\langle \underline{0}, \underline{1} \rangle, \langle \pi_2, \text{uncurry } (+) \rangle] \cdot (id + f)$$

34. Considere a função

Mostre que

$$obsNat = (id + \langle succ, id \rangle) \cdot out_{\mathbf{N}_0}$$

se verifica, onde  $out_{\mathbf{N}_0}$  é o isomorfismo inverso de  $in_{\mathbf{N}_0} = [\underline{0}, succ]$  em  $\mathbf{N}_0 \cong 1 + \mathbf{N}_0$ . Sugestão: componha ambos os membros da igualdade com  $in_{\mathbf{N}_0}$ .

35. Considere a seguinte definição point-free de uma função f:

$$f = [\operatorname{succ} \cdot \underline{0}, \operatorname{plus} \cdot \langle f \cdot \operatorname{pred}, f \cdot \operatorname{pred2} \rangle] \cdot \operatorname{zeroOrOne}?$$

em que

zeroOrOne 
$$x=(x==0) \mid\mid (x==1)$$
 plus = uncurry  $(+)$  pred2 = pred  $\cdot$  pred

Escreva uma definição de f no estilo pointwise, justificando todos os passos para a sua obtenção.

36. A seguinte função codifica um algoritmo de ordenação clássico, normalmente conhecido pelo nome de *heapsort*.

$$\mathsf{hsort} = [\mathsf{id}, \mathsf{cons} \cdot (\mathsf{id} \times (\mathsf{merge} \cdot (\mathsf{hsort} \times \mathsf{hsort})))) \cdot \mathsf{aux} \cdot \mathsf{cons}] \cdot \mathsf{out}_{\mathsf{RList}}$$

em que **merge** é a usual função de fusão de listas ordenadas; e **aux** é definida como se segue:

Escreva uma definição de hsort no estilo *pointwise*, justificando todos os passos para a sua obtenção.

# Capítulo 2

## Cálculo Recursivo

### I – Catamorfismos

1. Para descrever documentos HTML usou-se o seguinte tipo:

(a) Desenhe o diagrama de definição de catamorfismos sobre DocHtml.

T "body" (L [S "Hello Word"]) ])

(b) Defina, como um catamorfismo sobre  ${\tt DocHtml},$ a função

```
imprime :: DocHtml -> String
```

2. Considere a função que se segue:

```
f [] = ([],[])
f (h:t) = let (l,r) = f t in (h:r,l)
```

Determine a sua assinatura, diga por palavras suas o que calcula a função, e exprimaa como um catamorfismo.

3. A seguinte versão linear do algoritmo de Fibonacci,

é uma codificação em Haskell cuja função auxiliar f resultou do diagrama que se segue:

$$\mathbf{N} \xleftarrow{[0,succ]} 1 + \mathbf{N}$$

$$f \downarrow \qquad \qquad \downarrow id+f$$

$$\mathbf{N} \times \mathbf{N} \xleftarrow{q} 1 + \mathbf{N} \times \mathbf{N}$$

Caracterize o  $gene\ g$  do catamorfismo em causa.

4. Para representar expressões aritméticas com variáveis, pode usar-se o seguinte tipo:

```
data ExpVar = Var String | Const Int | Op(BinOp,ExpVar,ExpVar)
data BinOp = Mais | Menos | Vezes | Div
```

(a) Relembre a definição

e determine tipos A e B tais que FTree A B seja isomorfo a ExpVar. Defina em Haskell os isomorfismos entre esses dois tipos de dados.

- (b) Defina como um catamorfismo a função vars :: ExpVar -> [String] que calcula a lista das variáveis que ocorrem numa expressão. Qual o valor de vars (Op(Mais,Var "x",Var "x"))?
- (c) A função subst :: String -> Exp -> Exp tem como objectivo substituir todas as ocorrências de uma variável de uma expressão por uma outra expressão. Por exemplo

isto é (na notação habitual): substituindo por 3+4 a variável x que ocorre em x-y, obtém-se a expressão (3+4)-y.

Defina como um catamorfismo sobre ExpVar a função subst v e.

5. No decorrer deste curso foi explicitada a relação entre a função foldr existente no prelúdio do HASKELL e os *catamorfismos* das listas. Em analogia com a função foldr das listas, considere a seguinte assinatura de função:

```
foldrX :: (String -> a -> a -> a) -> (Int -> a) -> X -> a
```

Conjecture um tipo de dados X para o qual a função foldrX possa ser entendida de forma análoga a foldr nas listas.

- (a) Defina a função foldrX para o tipo de dados por si escolhido.
- (b) Considere as funções seguintes,

```
f = foldrX (\x y z -> 1+y+z) (\x -> 0)

g = foldrX (\x y z -> y ++ x ++ z) (\x -> (show x))
```

Qual o tipo de cada uma das funções apresentadas? Diga resumidamente o que faz e para que serve cada uma. Dê exemplos de valores x e y de tal forma que (f x)=2 e (g y)="5 H 7".

- (c) Diga como poderia utilizar o tipo de dados X por si definido para representar funções aritméticas simples. Como representaria a expressão 5+(3\*2)?
- (d) Utilize agora a função foldrX para realizar a função de cálculo de expressões.
- 6. Uma das primeiras linguagens de programação funcional foi o Lisp, que apareceu há cerca de 40 anos. Nesta linguagem existe um único suporte para representação de dados, designado por expressão-S abreviatura de expressão simbólica. Uma expressão-S é ou um valor atómico, ou uma sequência (possivelmente vazia) de expressões-S. Considera-se um átomo toda a unidade de informação indivisível, não-estruturada (i.e., atómica).

Por exemplo, são átomos os inteiros e os strings alfanuméricos, por exemplo 10, -5, a12, xyz. Dão-se a seguir exemplos de expressões-S não atómicas, escritas na própria sintaxe concreta do Lisp:

```
()
(1)
(1 um 2 dois)
(1 (2 (3 (4))))
```

Seja

a declaração de um tipo de dados em Haskell para descrever expressões-S.

Desenhe o diagrama dos catamorfismos deste tipo e exprima a operação que conta o número de átomos presentes numa expressão-S como um desses catamorfismos.

7. Para encontrar todos os divisores de um dado número, é vulgar recorrer-se a uma árvore *n*-ária construída com base nos factores primos desse número, procedendo-se depois à multiplicação dos elementos que fazem parte dos diferentes *caminhos* da árvore. Por exemplo, ao número 30 corresponde a árvore seguinte:



A multiplicação dos elementos dos seus vários *caminhos* dá como resultado todos os divisores de 30, i.e.

Considere agora o seguinte tipo indutivo que define a estrutura de uma árvore tal n-ária não vazia

a cujos catamorfismos corresponde o diagrama que se segue:

$$\begin{split} \mathsf{XTree}\, A & \stackrel{in}{\longleftarrow} A + A \times [\ \mathsf{XTree}\, A\ ] \\ & \downarrow^{id + id \times map\ (\mid g \mid)} \\ & [\ [\ A\ ]\ ] & \stackrel{g}{\longleftarrow} A + A \times [\ [\ [\ A\ ]\ ]\ ] \end{split}$$

(a) Complete a seguinte definição de uma função que deverá calcular todos os caminhos de uma árvore XTree A:

```
traces = cataXTree (either ... ...)
```

- (b) Suponha que alguém já programou uma função  $f: \mathbf{N} \to \mathsf{XTree} \mathbf{N}$  que, dado um número  $n \in \mathbf{N}$ , constroi a respectiva árvore de primos. Defina então uma função  $g: \mathbf{N} \to [\mathbf{N}]$  que lhe permita obter a lista dos divisores de um dado número  $n \in \mathbf{N}$ .
- 8. Nesta disciplina estudou-se um método de programação que estende a tipos indutivos polinomiais algumas construções bem conhecidas, como por exemplo, map e fold. Contudo, em lugar de folds falou-se de catas. Isto porque de um cata se obtém facilmente o respectivo fold desdobrando o seu gene nos seus componentes, explicitando constantes e fazendo o currying dos operadores com mais de um argumento por exemplo:

Defina foldLTree e foldBTree.

9. Caracterize a função que é definida por  $([\underline{[]}, h])$  para cada uma das seguintes definições de h:

$$h(x, (y_1, y_2)) = y_1 ++ [x] ++ y_2$$

$$h = app \cdot (singl \times app)$$

$$h = app \cdot (app \times singl) \cdot swap$$

assumindo

$$singl \ a = [a]$$
  
 $app = uncurry (++)$ 

Qual é o tipo de dados em jogo? Justifique.

- 10. No contexto do exercício 33 do Cap. 1, defina f como um catamorfismo no tipo conveniente. Apresente os diagramas necessários.
- 11. Antes de resolver as duas alíneas desta questão analize com atenção a seguinte arquitectura para a função

$$mdc = mul \cdot fpc \cdot (fp \times fp)$$

que calcula o máximo divisor comum entre dois números naturais, conforme o diagrama

$$\mathbf{N} \times \mathbf{N} \xrightarrow{fp \times fp} \mathbf{N}^* \times \mathbf{N}^* \xrightarrow{fpc} \mathbf{N}^* \xrightarrow{mul} \mathbf{N}$$

onde

- fp calcula os factores primos de um número listados por ordem crescente, por exemplo fp 60 = [2, 2, 3, 5] e fp 42 = [2, 3, 7];
- fpc intersecta duas listas de factores primos (fpc abrevia factores primos comuns), por exemplo fpc ([2, 2, 3, 5], [2, 3, 7]) = [2, 3];
- mul multiplica os factores da lista produzida por fpc, inferindo assim o máximo divisor comum mdc (60, 42) = 2 \* 3 = 6.
- (a) Complete a seguinte definição, em Haskell, da função

que é a versão curried de fpc (isto é,  $fpc' = \overline{fpc}$ ):

- (b) Escreva mul como um catamorfismo (de listas).
- 12. A seguinte versão linear do algoritmo de Fibonacci,

é uma codificação em Haskell cuja função auxiliar f é o catamorfismo de naturais representado no diagrama que se segue:

$$\mathbf{N} \xleftarrow{[\underline{0},succ]} 1 + \mathbf{N}$$

$$f \downarrow \qquad \qquad \downarrow id+f$$

$$\mathbf{N} \times \mathbf{N} \xleftarrow{g} 1 + \mathbf{N} \times \mathbf{N}$$

Caracterize o  $gene\ g$  do catamorfismo em causa.

13. A seguinte função em Haskell, extraída de Prelude.hs,

procura um dado elemento k numa lista de pares (x, y) e, se o encontrar, devolve o y correspondente.

(a) Escreva  $lookup\ k$  sob a forma de um catamorfismo de listas, isto é, calcule o gene g em

$$lookup \ k = (|g|)$$

Qual o seu comportamento para o caso da chave k estar repetida na lista argumento?

- (b) Defina a função equivalente a  $lookup\ k$  para árvores binárias (em BTree.hs). Qual o seu comportamento para o caso da chave k vir repetida na árvore argumento?
- 14. Recorde a biblioteca LTree.hs, a que se acrescenta a função

Que "faz" esta função? Converta-a para notação Haskell com variáveis.

15. Considere a função definida como

- (a) Defina aux como um catamorfismo.
- (b) Poderá a função media ser definida como um catamorfismo? Justifique a sua resposta.
- 16. Considere a seguinte definição duma função que calcula a média de todos os inteiros que são folhas de uma árvore binária:

```
media :: LTree Integer -> Integer
media = (uncurry div) . calc
```

Defina calc como um catamorfismo.

17. Considere a seguinte função para calcular as posições de um elemento numa lista:

```
posicoes :: (Eq a) => a -> [a] -> [Int] posicoes a l = [y | (x,y) <- zip l [1..], x == a]
```

- (a) Apresente uma versão recursiva desta função.
- (b) Reescreva a definição da função posicoes x definida na alínea anterior como um catamorfismo. Apresente os diagramas correspondentes.
- (c) Modifique o gene do catamorfismo da alínea anterior de forma a obter uma função que calcula quantas vezes um determinado elemento ocorre numa lista.
- 18. Considere a seguinte declaração de tipo em Haskell

- (a) Demonstre que o tipo DT a é isomorfo ao tipo BTree a.
- (b) Defina em Haskell, como catamorfismos de DT a e BTree a, as funções testemunhas do isomorfismo DT a  $\cong$  BTree a.
- (c) Considere a função

Explique por palavras suas porque é que, para um dado t do tipo DT a, a função (resp t) não pode ser expressa como um catamorfismo sobre listas.

19. Considere o tipo de dados

A função alt :: BTree a -> Int define-se como um catamorfimo de BTree da seguinte forma

$$\mathtt{alt} = \left(\!\left[\,\underline{0}\,,\,succ\,\ldotp\,max\,\ldotp\,\pi_2\,\right]\,\right)$$

sendo max a versão "uncurried" da função que calcula o máximo de dois inteiros.

Com base nas leis de catamorfismos traduza a função alt para a notação com variáveis.

20. Considere a seguinte função que testa se uma árvore binária está equilibrada

A função equi poderá ser definida como um catamorfismo de BTree ? Justifique a sua resposta.

21. A lei seguinte

$$\langle (|i)_{\mathsf{F}}, (|j)_{\mathsf{F}} \rangle = (|(i \times j) \cdot \langle \mathsf{F} \ \pi_1, \mathsf{F} \ \pi_2 \rangle)_{\mathsf{F}}$$

que é popularmente conhecida pelo nome de banana-split, permite combinar dois catamorfismos num só.

(a) Identique os tipos genéricos de entrada e saída da função

$$f = \langle ([g1, g2]), ([g1, g3]) \rangle$$

onde

```
g1 = const []
g2(Left a, 1) = 1
g2(Right b, 1) = b:1
g3(Left a, 1) = a:1
g3(Right b, 1) = 1
```

Faça um diagrama explicativo e descreva (sucintamente) o que a função "faz" através de um exemplo.

- (b) Aplique a lei banana-split à função f e exprima o resultado do seu cálculo em Haskell com variáveis. Qual é a vantagem desta versão da função em relação à original?
- 22. Defina como um catamorfismo sobre listas não vazias, uma função que agrupa elementos consecutivos iguais; note que, quando aplicada à lista "aaabccdddd", por exemplo, esta função deve retornar [('a',3),('b',1),('c',2),('d',4)].

#### II – Anamorfismos

- 23. Escreva sob a forma de um anamorfismo de listas a função que calcula a sequência de todos os inteiros pares não negativos inferiores a um dado número. Codifique o resultado em Haskell.
- 24. Apresente as funções testemunhas do isomorfismo DT a ≅ BTree a do Ex. 18, agora definidas como anamorfismos.
- 25. Considere a função

$$g:[a]\times[b]\to 1+(a\times b)\times(([a]\times[b])\times([a]\times[b]))$$

definida em Haskell como se segue (Nota: null = (==[])):

```
g = ((const ()) -|- (split g1 g2)) . (grd (null . p2))
where g1 = (head >< head)
g2 = (split (tail >< tail) (tail >< tail))
```

- (a) Desenhe o diagrama do anamorfismo do qual g é gene. Qual é o propósito desta função?
- (b) Calcule a função [g] em notação com variáveis e exprima-a em Haskell.
- 26. A seguinte função em Haskell testa se uma dada lista (não vazia) está ou não ordenada.

```
ordenada :: (Ord a) => [a] -> Bool ordenada = and . (map (uncurry (<=))) . (uncurry zip) . (split id tail)
```

(a) Mostre que esta função pode ser expressa como o seguinte anamorfismo de listas.

$$ordenada = and \cdot [g \cdot \langle id, tail \rangle]$$

Para isso defina a função g.

- (b) Obtenha uma definição equivalente e recursiva de ordenada.
- 27. Considere a seguinte função soma:

```
soma ([],x) = x

soma (x,[]) = x

soma ((a:as),(b:bs)) = (a+b):(soma (as,bs))
```

Qual o tipo da função? Exprima-a como um anamorfismo.

28. Considere as seguintes definições

(a) Defina a função unfold como um anamorfismo de listas, i.e., complete a seguinte definição

```
unfold f = anaList (g f)
where g ... = ...
```

(b) Por analogia com a função da primeira alínea (relembre também o Ex. 20 do Cap. 1), defina unfoldLTree

```
unfoldLTree :: ...
unfoldLTree f = anaLTree (h f)
    where h ... = ...
```

29. Escreva  $[(id + \langle odd, id \rangle) \cdot out_F]_G$  em Haskell com variáveis e descreva o resultado da aplicação deste anamorfismo ao argumento n = 3, sendo odd a função

$$odd = suc \cdot add \cdot \langle id, id \rangle$$

e F, G os functores-base dos naturais e listas de naturais, respectivamente.

30. A função cref :: (Eq a) => [a] -> [(a,Int)] calcula, para cada elemento de uma lista, o número de vezes que ele ocorre nessa lista. Por exemplo,

cref 
$$[1,2,3,1,3,1] = [(1,3),(2,1),(3,2)]$$

(a) Defina a função cref como um anamorfismo.

- (b) Considere agora uma variante desta função que, em vez de calcular o número de ocorrências, calcula as posições onde os elementos ocorrem. Explique por palavras suas por que é que esta função não pode ser descrita por uma modificação do gene da função da alínea anterior.
- 31. Considere a função seguinte:

Apresente a definição de altern como anamorfismo do tipo [Char].

32. Considere a seguinte definição:

```
minDiv :: Integral a \Rightarrow a \rightarrow a
minDiv n = head [x | x \leftarrow [2..n], n 'mod' x == 0]
```

que calcula o mínimo divisor de um número natural (maior do que 1).

Use esta função na definição de um anamorfismo factPrimos que calcula a lista (não vazia) dos factores primos de um número inteiro, maior do que 1. (Note que o tipo de dados do resultado é "listas não vazias". Apresente o diagrama dos anamorfismos para este tipo).

#### III – Outros Exercícios sobre Anas e Catas

33. Relembre as definições de árvores binárias e listas:

```
data Lista a = Nil | Cons (a, Lista a)
data ArvBin a = Empty | Bin (a,(ArvBin a , ArvBin a))
```

Defina a função posorder :: ArvBin a -> Lista a como:

- (a) um catamorfismo sobre árvores binárias
- (b) um anamorfismo sobre listas
- 34. Considere a seguinte declaração de tipo em Haskell

```
data Nat = Zero | Succ Nat
```

- (a) Defina as operações cata e ana para esse tipo de dados. Acompanhe essas definições com os diagramas respectivos.
- (b) O tipo apresentado é isomorfo ao tipo primitivo do Haskell [()]. Apresente a definição em Haskell das funções que testemunham esse isomorfismo.
- (c) Defina a função comp :: [a] -> Nat (determina o comprimento de uma lista) como um anamorfismo do tipo Nat.
- 35. Relembre as definições seguintes:

```
data BTree a = Empty | Node(a, (BTree a, BTree a))
data LTree a = Leaf a | Split (LTree a, LTree a)
```

Enquanto que na primeira há informação apenas em nodos intermédios (nas folhas encontram-se apenas Empty's), na segunda a informação encontra-se só nas folhas. Considere agora uma outra variante de árvores binárias — shape trees — em que se guarda apenas a forma de uma árvore. O tipo STree das shape trees pode ser definido como:

```
data STree = V | N STree STree
```

(a) Defina em Haskell as usuais funções in, out, rec, ana, e cata para o tipo STree. Desenhe os correspondentes diagramas.

(b) Defina como anamorfismos em STree as funções

i. shapeB :: BTree a -> STree
ii. shapeL :: LTree a -> STree

que devolvem a forma das árvores em causa. Por exemplo, a forma da BTree

e da LTree

Split (Leaf 'a', Split (Split (Leaf 'b', Leaf 'c'), Leaf 'd'))
é a STree

(c) Defina como um catamorfismo de BTrees a função

```
separa :: BTree a -> (STree, [a])
```

que, dada uma árvore binária de procura, devolve um par (t,c) em que t é a forma da árvore e c é a lista ordenada dos nodos da árvore.

(d) Considere a seguinte definição (cataFTree gera os catamorfismos do tipo Full Tree):

Qual o tipo de f? Qual o resultado de f (Comp (3,(Comp (2,(Unit 'a',Unit 'b')),Unit 'c')))? O que calcula a função f?

36. Considere o tipo de dados indutivo das listas não vazias:

- (a) Comece por definir inNRList, outNRList, recNRList, cataNRList e anaNRList.
- (b) Dada a função f = (const ()) -|- id, qual é o tipo de (inRList . f), onde inRList é uma função que conhece do módulo RList.hs? Desenhe os diagramas justificativos da sua resposta.
- (c) Desenhe o diagrama do catamorfismo cataNRList (inRList . f) e calcule a função recursiva definida por este catamorfismo ao nível da variável, explicando o que a função obtida faz.
- (d) Defina como catamorfismos as funções maxim e minim que calculam, respectivamente, o maior e o menor elemento de uma lista não vazia.

- (e) Defina como um catamorfismo a função maxmin :: NRList a -> (a,a) que calcula o maior e o menor elementos de uma lista não vazia.
- (f) Defina como um anamorfismo de NRList a função

que calcula os segmentos iniciais de uma lista.

37. Considere as seguintes definições em Haskell:

data Nat = Zero | Suc Nat data 
$$F x = P x | C (F x)$$

Para mostrar que (Nat  $\times$  A)  $\cong$  F A devemos definir os isomorfismos

- (a) Desenhe os diagramas dos catamorfismos e anamorfismos do tipo F a.
- (b) Conjecture nat2F como um anamorfismo.
- (c) Conjecture f2Nat como um catamorfismo.
- (d) Mostre que a composição f2Nat.nat2F é na realidade a função identidade.
- 38. Considere o seguinte algoritmo *standard* para conversão de um número inteiro (não negativo) para base 2, expresso sob a forma de uma *lista de zeros ou uns*:

Por exemplo, base211 = 1011 e de facto, se se avaliar base2 11 em Haskell, obterse-á a lista [1,0,1,1].

(a) É possível definir base2 com base num anamorfismo:

$$base2 = reverse \cdot [g]$$

Identifique o gene g desse anamorfismo.

(b) Seja agora base10 a inversa de base2, a função tal que

$$base2 \cdot base10 = id$$
  
 $base10 \cdot base2 = id$ 

se verificam. Construa base10 com base num catamorfismo, i.e., identifique hem

$$base10 = (|h|).reverse$$

Sugestão: atente no exemplo seguinte:

$$base10[1,0,1,1] = (((1 \times 2) + 0) \times 2) + 1) \times 2 + 1$$

39. Considere o tipo de dados

- (a) Defina as operações cata e ana para esse tipo de dados. Acompanhe essas definições com os diagramas respectivos.
- (b) O tipo apresentado é isomorfo ao tipo primitivo do Haskell (a, [b]). Defina as funções que testemunham esse isomorfismo respectivamente como um catamorfismo e um anamorfismo do tipo FList.
- 40. Considere as definições seguintes de um tipo de árvores binárias cujos nodos são etiquetados com números inteiros, e de uma função sobre essas árvores.

$$\begin{aligned} \mathsf{data} \ \mathsf{IntBTree} &= \mathsf{Empty} \mid \mathsf{Node} \ (\mathsf{Int}, (\mathsf{IntBTree}, \mathsf{IntBTree})) \\ \mathsf{heap2list} &= \big(\!\big[ \big[ \big], \mathsf{cons} \cdot (\mathsf{id} \times \mathsf{merge}) \big]\!\big)_{\mathsf{IntBTree}} \end{aligned}$$

em que cons = uncurry (:) e merge :  $[Int] \times [Int] \rightarrow [Int]$  é a função usual de fusão de listas ordenadas crescentemente.

- (a) Escreva uma definição *pointwise* de heap2list, justificando todos os passos para a sua obtenção.
- (b) A ideia subjacente à função heap2list é que quando aplicada a determinadas árvores, ela permite obter listas ordenadas de forma crescente. As árvores em questão (usualmente designadas por heaps) caracterizam-se pelo facto de o conteúdo de cada nó ser inferior ou igual aos conteúdos de todos os nós seus descendentes.

Tendo isto em conta, é possível escrever a função heap2list como um anamorfismo de listas. Escreva essa definição.

Sugestão: comece por definir uma função que permita combinar duas heaps.

### IV – Hilomorfismos

- 41. Uma das formas de calcular  $n^2$ , o quadrado de um número natural n, é somar os n primeiros ímpares. De facto,  $1^2 = 1$ ,  $2^2 = 1 + 3$ ,  $3^2 = 1 + 3 + 5$ , etc. Em geral,  $n^2 = (2n 1) + (n 1)^2$ . De acordo com esta sugestão, exprima a função sq  $n = n^2$  sob a forma de um hilomorfismo de listas.
- 42. Relembre a questão 38. Uma outra forma de definir a função base2 é

Esta definição é um hilomorfismo. Sobre que estrutura? Qual das duas definições considera ser mais eficiente?

43. A seguinte função calcula a (n+1)-ésima linha do triângulo de Pascal

em que soma é a função definida no exercício 27. Por exemplo, pascal 0 é a lista [1], pascal 2 é a lista [1, 2, 1], etc, como se ilustra em baixo:

Uma outra forma de definir a função pascal seria:

```
pascal 0 = [1]
pascal (n+1) = 1:(soma ((pascal n),(tail(pascal n))))
```

Estas duas soluções correspondem a usar dois hilomorfismos sobre estruturas de dados diferentes. Quais são estas estruturas?

44. (a) Considere a seguinte definição duma função que testa se uma lista contém elementos repetidos:

```
dups :: (Eq a) => [a] -> Bool
dups [] = False
dups (h:t) = (elem h t) || (dups t)
```

Explique por palavras suas porque é que esta função não pode ser expressa como um catamorfismo sobre listas. Defina-a como um hilomorfismo.

- (b) Na sequência da alínea anterior, defina em Haskell o tipo de dados intermédio usado na definição do hilomorfismo. Mostre qual o termo desse tipo que é usado no cálculo de dups [1,2,3,1,2,3].
- 45. Considere a função

Mostre como se pode definir span como um hilomorfismo do tipo FList (cfr. Ex. 39).

- 46. Escreva a função fpc do Ex. 11 como um hilomorfismo.
- 47. Assumindo as definições

$$in = [\underline{0}, succ]$$
 $out = in^{-1}$ 
 $g = [\underline{1}, mul \cdot (succ \times id)]$ 

o functor "números naturais"

$$\left\{ \begin{array}{l} id + id \times map \ X = 1 + X \\ id + id \times map \ f = id + f \end{array} \right.$$

e o functor "listas de naturais"

$$\left\{ \begin{array}{l} \mathsf{G} \; X = 1 + \mathbf{N} \times X = id + id \times map \left(\mathbf{N} \times X\right) \\ \mathsf{G} \; f = id + id \times f = id + id \times map \left(id \times f\right) \end{array} \right.$$

complete as reticências no seguinte processo de transformação da definição *pointfree* de factorial do exercício 31 do Cap. 1 num hilomorfismo de listas:

```
 fac \cdot in = g \cdot id + id \times map \langle id, fac \rangle 
 = \{ \dots \dots \} 
 fac = g \cdot id + id \times map \langle id, fac \rangle \cdot out 
 = \{ \dots \dots \} 
 fac = g \cdot id + id \times map ((id \times fac) \cdot \langle id, id \rangle) \cdot out 
 = \{ \dots \dots \} 
 fac = g \cdot id + id \times map (id \times fac) \cdot id + id \times map \langle id, id \rangle \cdot out 
 = \{ \dots \dots \} 
 fac = g \cdot (G \ fac) \cdot id + id \times map \langle id, id \rangle \cdot out 
 = \{ \dots \dots \} 
 fac = [g, id + id \times map \langle id, id \rangle \cdot out ] 
 = \{ \dots \dots \} 
 fac = (g) \cdot [id + id \times map \langle id, id \rangle \cdot out ]
```

48. Considere a seguinte definição de uma função em Haskell:

Defina a função parte como um hilomorfismo, tornando explícito o tipo da estrutura de dados virtual.

49. Considere a definição da função sq do exercício 32 do Capítulo 1. Complete as justificações do seguinte processo de cálculo que converte sq num hilomorfismo de

listas.

$$\begin{array}{l} sq \cdot in = [\underline{0}, add \cdot \langle odd, sq \rangle] \\ \equiv \{\ldots \ldots\} \\ sq \cdot in = [\underline{0}, add] \cdot (id + \langle odd, sq \rangle) \\ \equiv \{\ldots \ldots\} \\ sq \cdot in = [\underline{0}, add] \cdot (id + odd \times sq) \cdot (id + \langle id, id \rangle) \\ \equiv \{\ldots \ldots\} \\ sq \cdot in = [\underline{0}, add] \cdot (id + id \times sq) \cdot (id + odd \times id) \cdot (id + \langle id, id \rangle) \\ \equiv \{\ldots \ldots\} \\ sq = [\underline{0}, add] \cdot (id + id \times sq) \cdot (id + \langle odd, id \rangle) \cdot out \\ \equiv \{\ldots \ldots\} \\ sq = [[\underline{0}, add], (id + \langle odd, id \rangle) \cdot out] \\ \equiv \{\ldots \ldots\} \\ sq = ([\underline{0}, add]) \cdot [(id + \langle odd, id \rangle) \cdot out] \end{array}$$

- 50. Apresente uma possível definição da função cref do exercício 30 escrita como um hilomorfismo.
- 51. Defina a função resposta = uncurry resp (cfr. exercício 18) como um hilomorfismo.
- 52. A seguir apresenta-se uma versão do famoso algoritmo de Euclides para calcular o máximo divisor comum entre dois números inteiros positivos:

mdc 
$$(x,y) = if (x == y)$$
 then  $x$   
else mdc  $(x',y')$   
where  $x' = (max x y) - y'$   
 $y' = min x y$ 

- (a) Exprima esta função como um hilomorfismo, acompanhando a resposta de um diagrama elucidativo.
- (b) Defina em Haskell o tipo de dados intermédio que obteve na alínea anterior e apresente o elemento desse tipo que é calculado no cálculo de mdc (12,18)
- 53. No contexto do exercício 31, pretende-se escrever um hilomorfismo

```
alternPrint :: (Int, Bool) -> IO()
```

que imprima a sequência de caracteres gerada por altern. Para isso escreva um catamorfismo c tal que alternPrint = c.altern seja uma definição válida da função desejada.

54. Mostre que a versão *uncurried* da função de concatenação de listas que consta do Prelude do Haskell,

pode ser convertida num hilomorfismo (cujos genes não recorrem, obviamente, à função (++)).

55. Considere a seguinte função que testa se uma árvore binária está equilibrada

```
equi Empty = True equi (Node (x,(e,d))) = equi e && equi d && abs (alt e - alt d) <= 1
```

Defina equi como um hilomorfismo.

56. Considere a seguinte função bubble:

- (a) Escreva bubble como um *hilomorfismo*. Defina em Haskell e em C o respectivo tipo de dados intermédio.
- (b) O tipo de dados intermédio obtido deve ser isomorfo a (Maybe a, [(Bool,a)]). Diga qual seria, neste tipo, a estrutura intermédia correspondente ao cálculo de

57. Seja

```
factores :: Integral a => a -> [(a,Int)]
```

a combinação das funções dos exercícios 32 e 22 num hilomorfismo (i.e., a função que calcula a decomposição em factores primos de um dado número inteiro maior do que 1). Calcule a versão *pointwise* dessa função, i.e., mostre que

```
factores n = if m == n then [(n,1)]
else if m == a then (a,b+1):ab
else (m,1):(a,b):ab
where m = minDiv n
((a,b):ab) = factores n 'div' m
```

58. Sejam

$$g_a = (\underline{()} + \langle \mathsf{pred}, \mathsf{pred2} \rangle) \cdot \mathsf{zeroOrOne}?$$
 $g_c = [succ \cdot \underline{0}, \mathsf{plus}]$ 
 $h = (|g_c|) \cdot |[g_a]|$ 

- (a) Desenhe o diagrama correspondente ao hilomorfismo h e declare em Haskell o seu tipo intermédio. Qual o valor deste tipo correspondente ao cálculo de h 4?
- (b) Considere a seguinte definição recursiva point-free:

$$f = [\operatorname{succ} \cdot \underline{0}, \operatorname{plus} \cdot \langle f \cdot \operatorname{pred}, f \cdot \operatorname{pred2} \rangle] \cdot \operatorname{zeroOrOne}?$$

em que

zeroOrOne 
$$x=(x==0) \mid\mid (x==1)$$
 plus = uncurry  $(+)$  pred2 = pred  $\cdot$  pred

Prove a equivalência h = f, justificando todos os passos.

59. A seguinte função em Haskell

```
sqrt' p x = loop p x 1 
 where loop p x r = let r'= (r + x / r) / 2
 in if abs(r - r') < p
 then r' else loop p x r'
```

calcula a raíz quadrada de um número x com erro p. Por exemplo,

```
> sqrt' 0.01 2
1.41422 :: Double
```

- (a) Represente loop p x como um hilomorfismo e faça um diagrama explicativo.
- (b) Defina em Haskell o tipo de dados indutivo intermédio deste hilomorfismo (aquele que é saída do anamorfismo e entrada do catamorfismo) e represente o valor dessa estrutura para a situação em que *loop* é invocado de *sqrt'* 12.
- 60. A seguinte função codifica um algoritmo de ordenação clássico, normalmente conhecido pelo nome de *heapsort*.

```
\mathsf{hsort} = [\mathsf{id}, \mathsf{cons} \cdot (\mathsf{id} \times (\mathsf{merge} \cdot (\mathsf{hsort} \times \mathsf{hsort})))) \cdot \mathsf{aux} \cdot \mathsf{cons}] \cdot \mathsf{out}_{\mathsf{RList}}
```

em que merge é a usual função de fusão de listas ordenadas; e aux é definida como se segue:

- (a) Defina hsort como um hilomorfismo e desenhe o diagrama correspondente.
- (b) Declare em Haskell o tipo intermédio deste hilomorfismo e calcule o valor deste tipo que corresponde ao cálculo de hsort[10, 5, 9, 1, 8, 2, 4, 6, 7]?

### V– Hilomorfismos e Classes Algorítmicas Standard

61. O fragmento de código Haskell que se segue define parcialmente um componente de programação (módulo) Haskell que estudou:

```
inX = either Leaf Split

outX (Leaf a) = i1 a
outX (Split (t1,t2)) = i2 (t1,t2)

cataX a = a . (recX (cataX a)) . outX

hyloX a c = cataX a . anaX c
```

- (a) Identifique, definindo-o, o tipo de dados paramétrico X, e acrescente ao fragmento dado as definições, que faltam, de recX e anaX.
- (b) Complete a definição do operador functorial map associado ao tipo de dados X:

```
instance Functor X where map f = \dots
```

(c) Identifique quais dos seguintes algoritmos se definem nesse módulo como hilomorfismos do tipo X, identificando, quanto aos outros, os módulos a que pertencem:

| Função | Algoritmo                      | Módulo (*.hs) |
|--------|--------------------------------|---------------|
| mSort  | Merge sort                     | LTree.hs      |
| hanoi  | Torres de Hanoi                |               |
| dfac   | Duplo factorial                |               |
| qSort  | Quick sort                     |               |
| fac    | Factorial                      |               |
| fib    | Série de Fibonacci             |               |
| iSort  | Odernação por inserção simples |               |

(d) Uma das vantagens de organizar o conhecimento algorítmico segundo o método estudado nesta disciplina é que se podem obter, dentro da mesma classe algorítmica, novos algoritmos pela simples combinação ou substituição de genes. Que função se obtém de mSort substituindo-lhe um dos genes (qual?) pela função catalTree g, onde g = (either id (uncurry max))? Faça um diagrama explicativo e converta-a, por cálculo, para Haskell com variáveis.

62. O seguinte desenho pretende descrever graficamente um algoritmo  $\alpha$  de ordenação de listas bem conhecido:



- (a) Identifique  $\alpha$ , bem como as suas fases A, B e C e a função f. Codifique esta última em Haskell.
- (b) Descreva o mesmo algoritmo sob a forma de um hilomorfismo de um particular tipo indutivo estudado nas aulas desta disciplina.
- 63. Pretende-se obter uma função que some os elementos de uma lista com eficiência semelhante à do algoritmo *quicksort*, i.e. do hilomorfismo

```
qSort = hyloBTree inord qsep
-- = (cataBTree inord) . (anaBTree qsep)
```

da biblioteca BTree.hs.

Qual a componente do hilomorfismo a modificar por forma a converter qSort na função pretendida? Justifique a sua resposta explicitando essa modificação.

64. (Resolva depois do Ex. 34 do Cap.1) Na biblioteca RList.hs a função factorial é apresentada como o hilomorfismo

```
fac = hyloRList (either (const 1) mul) obsNat
    where mul(x,y) = x*y
    obsNat 0 = Left ()
    obsNat (n+1) = Right (n+1,n)
```

Será a seguinte definição alternativa

```
fac' = hyloRList (either (const 1) g) obsNat'
where g(n,m) = (n+1) * m
   obsNat' 0 = Left ()
   obsNat' (n+1) = Right (n,n)
```

equivalente a fac? Prove que o é, de facto, seguindo e justificando o raciocínio que se segue:

$$fac' = \llbracket [\underline{1}, mul \cdot (succ \times id)], (id + \langle id, id \rangle) \cdot out_{\mathbf{N}_0} \rrbracket$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [\underline{1}, mul \cdot (succ \times id)] \cdot (id + id \times fac') \cdot (id + \langle id, id \rangle) \cdot out_{\mathbf{N}_0}$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [\underline{1}, mul] \cdot (id + succ \times id) \cdot (id + id \times fac') \cdot (id + \langle id, id \rangle) \cdot out_{\mathbf{N}_0}$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [\underline{1}, mul] \cdot (id + id \times fac') \cdot (id + succ \times id) \cdot (id + \langle id, id \rangle) \cdot out_{\mathbf{N}_0}$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [\underline{1}, mul] \cdot (id + id \times fac') \cdot (id + \langle succ, id \rangle) \cdot out_{\mathbf{N}_0}$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [\underline{1}, mul] \cdot (id + id \times fac') \cdot obsNat$$

$$\equiv \{ \dots \dots \}$$

$$fac' = [[\underline{1}, mul], obsNat]$$

$$\equiv \{ \dots \dots \}$$

$$fac' = fac$$

65. Considere o algoritmo *mergesort*. Neste contexto, indique o resultado de se aplicar ao resultado de anaLTree lsplit [1,2,3,4] a seguinte função:

```
f = cataLTree (inLTree . (id -|- swap))
```

66. Recorde a formulação como um hilomorfismo do algoritmo quicksort

```
qSort = hyloBTree inord qsep
-- = (cataBTree inord) . (anaBTree qsep)
```

que conhece da biblioteca BTree.hs, onde ocorrem os "genes"

```
inord = either (const []) join

qsep [] = Left ()
qsep (h:t) = Right (h,(s,l)) where (s,l) = part (<h) t</pre>
```

e as funções auxiliares

Pretende-se uma nova versão qSort' deste algoritmo que, para além de ordenar a lista argumento, lhe remove os elementos repetidos.

- (a) Defina qSort' a partir do hilomorfismo hyloBTree inord qsep, alterando apenas o gene qsep.
- (b) Repita a alínea anterior mudando agora apenas o gene inord.
- (c) Comente a eficiência das duas versões alternativas das alíneas anteriores, sem se esquecer de abordar a situação seguinte: qSort' 1, para 1 tal que nub 1 = [1] e length 1 = 100.

### VI – Cálculo com Funções Recursivas

67. A igualdade que se segue é conhecida pelo nome de banana-split e traduz uma permutatividade célebre entre splits e catamorfismos.

$$\langle (|g|), (|k|) \rangle = (|\langle g \cdot \mathsf{F} \pi_1, k \cdot \mathsf{F} \pi_2 \rangle)|$$

- (a) Verifique que ambos os membros da igualdade exibem o mesmo tipo.
- (b) Mostre ainda que a lei se pode escrever da forma alternativa seguinte:

$$\langle (g), (k) \rangle = ((g \times k) \cdot \langle \mathsf{F} \pi_1, \mathsf{F} \pi_2 \rangle)$$

(c) A função que calcula a média dos elementos de listas de números naturais

$$media = div \cdot \langle soma, comp \rangle$$

combina dois catamorfismos: soma = ([0, add]) e  $comp = ([0, succ \cdot \pi_2])$ . Aplique à função media a lei anterior e traduza a função resultado para a notação com variáveis. Qual é a vantagem desta última em termos de eficiência?

68. Use a lei de fusão-cata



para provar a validade do seguinte facto, em Haskell:

$$\text{texttt} \{ x + \text{foldr} (+) y = \text{foldr} (+) (x+y) \}.$$

Sugestão: interprete foldr como um catamorfismo de listas e faça f = (x+).

69. Uma das operações conhecidas sobre listas é a da inversão:

(a) Calcule a definição de *invl*, dada acima em Haskell, a partir do seguinte catamorfismo:

$$invl = (\underbrace{[nil, uconc \cdot swap \cdot (singl \times id)]}_{q})$$

onde nil = [] e uconc = uncurry(++), apoiando a sua resposta por um diagrama explicativo.

(b) Converta para notação com variáveis a propriedade

$$invl \cdot uconc = uconc \cdot (invl \times invl) \cdot swap$$

e complete as igualdades seguintes por forma a exprimirem também propriedades válidas:

$$invl \cdot singl = \dots$$
 $uconc \cdot (\dots ) = cons$ 

em que cons(a, l) = a : l.

(c) Complete as justificações da seguinte prova da propriedade involutiva de *invl*:

$$invl \cdot invl = id$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$invl \cdot \langle |g| \rangle = \langle |in| \rangle$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$invl \cdot g = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$invl \cdot [nil, uconc \cdot swap \cdot (singl \times id)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[invl \cdot nil, invl \cdot uconc \cdot swap \cdot (singl \times id)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, uconc \cdot (invl \times invl) \cdot swap \cdot swap \cdot (singl \times id)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, uconc \cdot (invl \cdot singl \times invl)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, uconc \cdot (singl \times invl)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, cons \cdot (id \times invl)] = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, cons] \cdot (id + id \times invl) = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, cons] \cdot (id + id \times invl) = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, cons] \cdot (id + id \times invl) = in \cdot (id + id \times invl)$$

$$\Leftrightarrow \qquad \{ \dots \dots \}$$

$$[nil, cons] \cdot (id + id \times invl) = in \cdot (id + id \times invl)$$

70. No contexto do exercício 40, seja countNodes a função assim definida:

```
countNodes Empty = 0
countNodes (Node(x,(e,d)) = succ ((countNodes e) + (countNodes d))
```

Prove, justificando todos os passos, a igualdade

$$countNodes = length \cdot heap2list$$

- N.B. Deverá aplicar a lei de fusão dos catamorfismos. Assuma como válida a equivalência  $length \cdot merge = (uncurry(+)) \cdot (length \times length)$ .
- 71. Considere a função que realiza a partição de uma lista s em duas outras listas que recolhem, respectivamente, os elementos de s que verificam ou falham um determinado predicado p:

partition 
$$s = \langle filter p, filter \neg p \rangle$$

Exprima esta função como um catamorfismo, por aplicação da respectiva lei de fusão.

### VII – Outros Tópicos

- 72. Podemos representar os números interios (não negativos) como listas do tipo singular (i.e. o tipo [()] do Haskell).
  - (a) Defina em Haskell as funções de representação e abstracção

repres :: Int -> [()] abstr :: [()] -> Int

- (b) Codifique funções que calculem a soma e multiplicação de inteiros na representação sugerida.
- 73. Uma árvore de pedigree (Pa) descreve um animal (a) por exemplo, um canídeo e indica quais os seus ascendentes conhecidos (o pai e/ou a mãe), o seu pedigree, e assim sucessivamente:

$$Pa \cong a \times (1 + Pa) \times (1 + Pa)$$

- (a) Codifique o tipo Pa em Haskell.
- (b) Uma possível alternativa para a codificação da informação requerida na questão anterior seria:

Codifique em Halkell as funções que estabelecem o isomorfismo entre ambos os tipos de dados.

74. A habitual definição da função factorial

$$\begin{array}{rcl} \mathit{fac} & 0 & = & 1 \\ \mathit{fac} & (n+1) & = & (n+1) \times (\mathit{fac} \; n) \end{array}$$

pode ser calculada a partir do diagrama que se segue

$$\begin{array}{c|c}
\mathbf{N} & \stackrel{in}{\longleftarrow} 1 + \mathbf{N} \\
fac \downarrow & \downarrow id + \langle id, fac \rangle \\
\mathbf{N} & \stackrel{g}{\longleftarrow} 1 + (\mathbf{N} \times \mathbf{N})
\end{array}$$

onde  $in = [\underline{0}, succ]$  e  $g = [\underline{1}, mul \cdot (succ \times id)]$ .

Repare que o diagrama é um tudo nada mais elaborado do que o habitual catamorfismo sobre **Nat**. De facto, é um caso particular de *paramorfismo*. No caso geral, dado um tipo indutivo  $T \cong \mathsf{F}\ T$ , o paramorfismo de g relativamente ao functor  $\mathsf{F}$ , designado por  $\langle g \rangle_{\mathsf{F}}$  é tal que

$$T \xleftarrow{in} F T$$

$$\langle g \rangle \downarrow \qquad \qquad \downarrow F \langle id, \langle g \rangle \rangle$$

$$C \xleftarrow{g} F (T \times C)$$

que traduz a seguinte propriedade universal:

$$h = \langle g \rangle \iff h \cdot in = g \cdot \mathsf{F} \langle id, h \rangle$$

- (a) Escreva a definição de fac como um paramorfismo.
- (b) A partir da propriedade universal deduza a regra de **reflexão-para**:

$$id = \langle in \cdot \pi_1 \rangle$$

- (c) Sabendo que uma das formas de calcular  $n^2$ , o quadrado de um número natural n, é somar os n primeiros ímpares  $1^2=1$ ,  $2^2=1+3$ ,  $3^2=1+3+5$ , etc,  $n^2=(2n-1)+(n-1)^2$  exprima a função sq  $n=n^2$  sob a forma de um paramorfismo em  ${\bf Nat}$ .
- 75. Considere a seguinte função que utiliza um parâmetro de acumulação para calcular a média de uma lista de inteiros:

Note que a média de uma lista l é calculada como media l (0,0). Defina esta função media como um catamorfismo (de ordem superior).

# Capítulo 3

## Monads

1. Na programação funcional é vulgar a ocorrência de funções parciais, i.e., funções indefinidas para algum dos seus argumentos. Por exemplo, a divisão é parcial pois n/0 é um valor indefinido, ou excepção. As excepções são vulgarmente assinaladas através de mensagens de erro, estendendo-se o codomínio da função por forma a fornecer strings explicativos. Em Haskell, por exemplo,

```
(/) :: Double -> Double

pode ser estendida a

dv :: (Double,Double) -> Error Double
dv(n,0) = Err "Nem pense em dividir por 0!"
dv(n,m) = Ok (n / m)

onde

data Error a = Err String | Ok a deriving Show

Outro exemplo ocorre no processamento de listas

hd [] = Err "Lista vazia!"
hd (a:_) = Ok a
```

Para evitar a proliferação arbitrária de condições de teste de excepções e seu processamento pode definir-se um combinador de composição de funções parciais da forma seguinte:

```
(.!) :: (a -> Error b) -> (c -> Error a) -> c -> Error b g .! f = errh . (fmap g) . f
```

assumindo um combinador de excepções errh (=error handler)

е

(a) Qual o tipo de *errh*? Escreva a mesma função em notação sem variáveis, acompanhada de um diagrama explicativo, com base no isomorfismo

$$\texttt{Error}\, a \cong \texttt{String} + a$$

testemunhado pela função in = [Err, Ok].

(b) Calcule a definição em Haskell de *fmap* a partir da interpretação do diagrama que se segue:

$$\begin{array}{ll} a & \operatorname{Error} a \overset{in}{\longleftarrow} \operatorname{String} + a \\ \downarrow^f & f^{map} f \middle\downarrow & \downarrow^{id+f} \\ b & \operatorname{Error} b \overset{\longleftarrow}{\longleftarrow} \operatorname{String} + b \end{array}$$

(c) Preencha as reticências ...A... a ...F... na seguinte prova de functorialidade de fmap:

$$\begin{array}{l} \mathit{fmap}\,(f \cdot g) = (\mathit{fmap}\,f) \cdot (\mathit{fmap}\,g) \\ & \equiv \dots A \dots \\ (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} = (\mathit{fmap}\,f) \cdot (\mathit{fmap}\,g) \cdot \mathit{in} \\ & \equiv \dots B \dots \\ (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} = (\mathit{fmap}\,f) \cdot \mathit{in} \cdot (\mathit{id} + g) \\ & \equiv \dots C \dots \\ (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} = \mathit{in} \cdot (\mathit{id} + f) \cdot (\mathit{id} + g) \\ & \equiv \dots D \dots \\ (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} = \mathit{in} \cdot (\mathit{id} + f \cdot g) \\ & \equiv \dots E \dots \\ (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} = (\mathit{fmap}\,(f \cdot g)) \cdot \mathit{in} \\ & \equiv \dots F \dots \end{array}$$

(d) Defina Error como instância da classe Monad, isto é, preencha as reticências em

|    |                                   | return                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |                                   | >>=                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 2. | "ver                              | nterpretação de comandos é vulgar disponibilizar-se um modo de execução dito<br>bose" sempre que uma função ou comando, ao executar, "explica" o que está a<br>c. A opção "-v" é muitas vezes usada para esse efeito.                                                                                                                                                                                                                               |  |  |  |  |
|    | gran<br>exen<br>prin<br>pode      | secução "verbose" é também muito utilizada em "debug", permitindo ao pronador acompanhar o trajecto de uma execução até à ocorrência de um erro, por aplo. Em programação imperativa (eg. C), a adição de instruções de saída tipo atf é uma forma primitiva de introduzir verbosidade. Em Haskell, esse processo e ser sistematizado através do recurso a uma mónada particular que prevê "logs" tos explicativos) anexos ao resultado de funções: |  |  |  |  |
|    | data                              | a Verbose a = Verb (a, Text)                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|    | <pre>type Text = [ String ]</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|    | -                                 | :: Text -> (a -> b) -> a -> Verbose b verbose apply t f a = Verb(f a,t)                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|    | (a)                               | Com base no seguinte exemplo de composição (monádica) entre duas funções "verbose",                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                                   | <pre>Verbose&gt; ((vap ["First succ: ok!"] succ) .!</pre>                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|    |                                   | complete a seguinte definição da mónada subjacente:                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                                   | instance Monad Verbose where                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|    |                                   | return                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|    |                                   | >>=                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |

instance Monad Error where

- (b) Defina Verbose como instância da classe Functor.
- 3. Dê definições para as funções  $f_1$  a  $f_9$  da seguinte tabela, onde se apresentam três tipos paramétricos de dados em Haskell que são instâncias da classe Monad:

| F a   |   | return | (>>=) | $\mu$ |
|-------|---|--------|-------|-------|
| Maybe | a | $f_1$  | $f_2$ | $f_3$ |
| [a]   |   | $f_4$  | $f_5$ | $f_6$ |
| Error | a | $f_7$  | $f_8$ | $f_9$ |

onde data Error a = Err String | Ok a.

4. Considere a seguinte definição de funções de transformação de estado.

```
data ST estado valor = ST estado -> (estado, valor)
```

(a) Complete a seguinte definição:

```
instance Monad (ST estado) where
  return a = ST (\s -> ...)
  (ST g) >>= f = ST (\s -> ...)
```

- (b) Para esta instância de Monad, defina a multiplicação  $\mu$ .
- (c) Defina ST s como uma instância da classe Functor.
- 5. Considere o problema de se construir, a partir de uma lista arbitrária de tipo a, uma lista com o mesmo comprimento de tipo [(a,Bool,Int)] em que o booleano corresponde à verificação (ou não) de um predicado, e o inteiro corresponde a uma contagem dos elementos que verificaram (ou não) o predicado, do fim para o início da lista.

Por exemplo:

```
> ocorrencias (<5) [1,3,5,7,2,5,8,9,4]
[(1,True,4),(3,True,3),(5,False,5),(7,False,4),(2,True,2),
  (5,False,3),(8,False,2),(9,False,1),(4,True,1)]</pre>
```

O problema pode ser resolvido com o auxílio de um par auxiliar (Int,Int) em que se vai contando o número de elementos que verificaram ou não o predicado:

Uma solução alternativa para este problema recorre a uma mónade de estado:

```
data Trans a = Trans ((Int,Int) -> ((Int,Int) , a))
instance Monad Trans where ... -- [assuma definicao habitual]
```

(a) Complete a definição da versão monádica das funções ocorr e ocorrencias:

- (b) Resolva uma variante deste problema em que a contabilização dos elementos que verificam / não verificam o predicado é feita do início para o fim da lista.
- 6. Para captar o tipo das funções que transformam estado definiu-se o seguinte tipo de dados

```
data ST s a = ST \{ st :: s \rightarrow (a,s) \}
```

- (a) Defina (ST s) como uma instância da classe Monad.
- (b) Usando o monade de transformação de estados construa uma função para etiquetar uma árvore binária, marcando cada nodo com um número correspondente à ordem pela qual o nodo é visitado numa travessia *inorder*.
- 7. Mostre que, para toda a mónade F, se tem

$$(\mathsf{F}\ f)\ x = do\ \{\ a\ \leftarrow x\ ;\ return(f\ a)\ \}$$

8. Recorde o tipo de dados

que consta de uma biblioteca que estudou nesta disciplina.

(a) Defina como um catamorfismo deste tipo a função de multiplicação

$$\mu : LTree(LTree\ a) \rightarrow LTree\ a$$

que permita encarar LTree como uma mónade.

NB: acompanhe a sua resposta com um diagrama explicativo.

(b) Qual a correspondente unidade (função return em Haskell)? Mostre que

$$\mu \cdot return = id$$

9. Complete a demonstração que se segue do facto

$$(\mathsf{F} f) \ x = do \{ a \leftarrow x ; \ return(f \ a) \}$$

válido para toda a mónade F:

$$do \{ a \leftarrow x ; return(f a) \}$$

$$= \{ \dots (justifique) \dots \}$$

$$x >>= \lambda a . return(f a)$$

$$= \{ \dots (justifique) \dots \}$$

$$x >>= (return \cdot f)$$

$$= \{ \dots (justifique) \dots \}$$

$$(\mu \cdot \mathsf{F} (return \cdot f)) x$$

$$= \{ \dots (justifique) \dots \}$$

$$(\mu \cdot (\mathsf{F} return) \cdot (\mathsf{F} f)) x$$

$$= \{ \dots (justifique) \dots \}$$

$$(id \cdot (\mathsf{F} f)) x$$

$$= \{ \dots (justifique) \dots \}$$

$$(if f) x$$

10. O seguinte código diz respeito a uma função label que a partir de uma árvore de folhas de inteiros, produz uma outra árvore com a mesma forma, em que o conteúdo de cada folha é substituído pela sua soma com os conteúdos de todos as folhas à sua esquerda. Por exemplo, label (Node (Leaf 1) (Node (Leaf 2) (Leaf 3))) resulta em Node (Leaf 1) (Node (Leaf 3) (Leaf 6)). Assumindo que o tipo Estado foi já apropriadamente declarado como instância da classe Monad, complete o código em A e B.

11. Se pedir ao GHC informações sobre a class Monad,

```
Prelude> :i Monad
```

obterá

```
-- Monad is a class
class Monad m :: (* -> *) where {
    (>>=) :: forall a b. m a -> (a -> m b) -> m b;
    (>>) :: forall a b. m a -> m b -> m b {- has default method -};
    return :: forall a. a -> m a;
    fail :: forall a. String -> m a {- has default method -};
}
```

Idenfifique qual das funções disponibilizadas por esta classe corresponde à seguinte função f, em Haskell

$$f x y = (x >>= return) >>= (const y)$$

Sugestão: Poderá ser-lhe útil recordar das aulas teóricas, o diagrama



#### 12. A definição em Haskell que se segue

```
mfold k f [] = k
mfold k f (h:t) = do { b <- mfold k f t ; f h b }</pre>
```

estende o combinador  $\mathtt{foldr}$  no contexto de uma mónade arbitrária. Qual o tipo mais geral de  $\mathit{mfold}$ ? Complemente a sua resposta indicando instâncias da sua aplicação a habitantes dos tipos monádicos [a] e  $\mathit{Maybe}\ a$ .