Material: BCC structural alloys

Property: Yield Strength vs. Temperature

Condition: Radiation Hardening

Data: Experimental

Source:

Fusion Materials Sciences Peer Review, University of California Santa Barbara (August 27-28, 2001)

Title of paper (or report) this figure appeared in:

Overview of Current BCC Structural Alloys

Author of paper or graph:

A.F. Rowcliffe

Caption:

Radiation Hardening in TMS (sigma_Y = $531.37 - 0.38794*T + 0.001482*T^2 - 2.3965e-06*T^3 - 1.4506e-10T^4; T irr = T test$

Title Page 1 of 2

Radiation Hardening in TMS (sigma_Y = 531.37 - 0.38794*T + 0.001482*T^2 - 2.3965e-06*T^3 - 1.4506e-10*T^4; T_irr = T_test)

Reference:

Author: A.F. Rowcliffe

Title: Overview of Current BCC Structural Alloys

Source: Fusion Materials Sciences Peer Review, University of California Santa Barbara

(August 27-28, 2001), [PDF]

View Data
Author Comments

Plot Format:

Y-Scale: ● linear ○ log ○ ln X-Scale: ● linear ○ log ○ ln

Overview of Current BCC Structural Alloys

Presented by
A.F. Rowcliffe
Oak Ridge National Laboratory

Contributors:

N. Hashimoto, D.T. Hoelzer, R.L. Klueh, S.J. Zinkle (ORNL)

G.R. Odette (UCSB)

R.J. Kurtz (PNNL)

D.L. Smith (ANL)

Fusion Materials Sciences Peer Review

August 27th-28th, 2001 University of California Santa Barbara

Development of Current BCC Alloy Compositions

- Current alloy compositions evolved from strong U.S. leadership in the development of reduced activation options for Tempered Martensitic Steels (TMS) and Vanadium alloys
- Empirically-based development programs in the U.S., EU and Japan have addressed wide range of issues
 - reduced activation (safety, waste disposal)
 - fabrication/joining
 - mechanical behavior and thermophysical properties
 - radiation damage and helium effects
 - chemical compatibility and corrosion

Composition of Tempered Martensitic Steels (TMS)

 Current primary compositions have evolved empirically from studies on a wide range of compositions

USA	EU	Japan
2-9Cr-V	9Cr-W-V-Ta-N	2-15Cr-W
2-9Cr-W	12Cr-W-V-Ta-N	2-3Cr-W-V-Ta
2-12Cr-W-V	9-10Cr-W-V-Ta-Ti-Ce	7-9Cr-W-V-Ta
9Cr-W-Mn	9Cr-W-V-Mn-Ti	11Cr-W-V-Ta
9Cr-V-Mn		
12Cr-W-Mn		
12Cr-V-Mn		

Current Composition of US Program Model TMS

- Current compositions are all variants of the US-developed alloy
- 5000kg Heat of F82H is source of U.S. program model TMS

	Designation	Cr	W	V	Ta	Si	Mn	C	N
USA	9C-2WVTa	9.0	2.0	0.25	0.07	0.03	0.60	0.1	0.01
Japan	F82H	8.0	2.0	0.20	0.04	0.20	.050	0.1	< 0.01
	JLF-1	9.0	2.0	0.20	0.07	0.08	0.65	0.1	0.05
EU	EUROFER	8.5	1.1	0.25	0.08	0.05	0.50	0.15	0.03

Composition of US Program Model Vanadium Alloy

 Model V-4Cr-4Ti, composition evolved empirically from US-led studies covering a wide range of compositions

```
      Substitutional:
      Cr(O-20);
      Ti (1-15);
      Si(0-1)

      (wt%)

      Interstitial:
      C(50-100);
      O(100-500);
      N(50-100)

      (wt.ppm)
```

Composition of U.S. 500kg heat

<u>Cr</u>	<u>Ti</u>	<u>C</u>	<u>O</u>	$\underline{\mathbf{N}}$
(\mathbf{w})	t%)	(1)	wt.ppm)	
3.8	3.9	80	310	85

TMS and V alloys are the Focus of International Programs Co-ordinated through IEA Working Groups

• EU

- Large program on TMS
- Materials engineering data base for 2010 DEMO breeding blanket, Pb-Li and water-cooled options
- No technological interest in V

Japan

- Program on TMS led by JAERI
- Materials engineering data base for 2015 DEMO,
 Water-cooled blanket (SSTR)
- Program on V Alloys led by MONBUSHO
- Materials development phase for a Li-cooled blanket (ARIES-RS)

• US

 Advancement of materials science base for BCC model structural alloys; integrated theory/modeling/experimental approach to resolve feasibility issues; development of innovative materials

Operating Temperature Windows for Structural Alloys in Fusion Reactors

- Lower temperature limit of alloys based on radiation hardening/ fracture toughness embrittlement (K_{1C} < ~30 MPa-m^{1/2})—large uncertainty for W, Mo due to lack of data
- Upper temperature limit based on 150 MPa creep strength (1% in 1000 h); chemical compatibility considerations may cause further decreases in the max operating temp.

Critical Performance-Limiting Phenomena in BCC Alloys

Low Temperature Regime:

- Radiation hardening and flow localization
- Hardening-induced shifts in fracture toughness transition temperature
- Effects of helium and hydrogen generation on fracture properties

High Temperature Regime:

- Loss of creep strength in TMS due to recovery of martensite structure
- Loss of creep strength in V-4CrO4Ti; low barrier density
- Helium-induced swelling and grain-boundary embrittlement

Processing and Start-of-Life Microstructure for F82H

Processing

- Hot rolling in the austenite range at 1200°C-1050°C
- Normalizing at 1040°C (fully austenitic); martensitic transformation on cooling; tempering at 740°C (below Ac).

Microstructure

- Prior austenite grain size
 ~100μ; lath packets/partially
 recovered dislocation structure;
 precipitation of M₂₃C₆;
- − Dislocation density ~5x10¹⁴m⁻²
- $M_{23}C_6$ number density ~ $1x10^{20}$ m⁻³

Processing and Start-of-Life Microstructures for V-4Cr-4Ti

Processing

- 500kg ingot hot extruded at 1100°C
- Cold rolling and recrystallization in the range 950°C-1050°C
- Primary globular Ti(OCN) phase solvus temperature >1150°C

• Microstructure

- Ti segregation during ingot solidification results in formation of bands of Ti(OCN) during extrusion
- Recrystallized grain size
 20-30µm; low sink strength
 microstructure

Formation of Banded Microstructures in V-4Cr-4Ti

GTA Weld

Recrystallized at 1000°C

- Evidence for Ti segregation during solidification in GTA weld zones and also from microprobe analysis of ingots prepared in RF
- Globular Ti(OCN) develops in Ti-rich regions; bands of particles form during hot extrusion

Sensitivity of Fracture Properties to SOL Microstructures

- Fracture properties of V-4Cr-4Ti strongly dependent on final heat treatment conditions
 - DBTT variations >200°C due to change in grain size and interstitial content
- Fracture properties of TMS much less sensitive to SOL microstructure
 - DBTT variations 10°-50℃ produced by variations in prior austenite grain size and final tempering conditions.

 Optimal impact properties are produced at annealing temperature of 950-1000°C for a wide range of V-Cr-Ti solid solution alloys

Mechanical Behavior of BCC Structural Alloys

Microstructural Stability in F82H

Thermal

- Tempered martensite structure relatively stable up to 550°C (5000h)
- Intermetallic Laves phase develops > 600°C after 10⁴ hours

Irradiation

- Lath, dislocation and precipitate structure relatively stable during neutron irradiation up to 500°C
- Populations of a_0 <100> and $(a_0/2)$ <111> loops are the principal source of hardening 100°C 400°C

Helium Generation

 Doping with Ni or B produces fairly uniform distributions of helium bubbles via (n,α) reactions between ⁵⁸Ni, ¹⁰B and thermal neutrons

Microstructure of F82H Irradiated to 5 dpa and Tensile Tested at R.T.

Microstructure of F82H Irradiated at 400°C to 52 dpa in HFIR

• Doping with B produces fairly uniform bubble distributions and provides an important means of investigating the effect of helium on fracture behavior.

Advanced Analytical Electron Microscopy Techniques are being used to Examine Precipitates in V alloys

Experimental investigation of stacking fault energies of BCC metals

Microstructural Stability in V-4Cr-4Ti

Thermal

- Segregation of interstitials to dislocations beginning at ~200°C (static and dynamic strain aging)
- Precipitation of a range of plate shaped Ti(OCN) phase 700°-950°C

Irradiation

- <110> faulted and <111> perfect interstitial loops primarily responsible for radiation hardening 60°-350°C
- Ti-enriched <001> defects develop 300°-400°C; Ti-rich oxycarbonitride plates develop 400°-550°C

Electrical Resistivity and Hardness in V-4Cr-4Ti as a Function of Temperature

• Variations in electrical resistivity and hardness reflect mobility of interstitials and interactions with Ti and provide information relevant to DSA, recovery and recrystallization processes and precipitation reactions

Plate Formation on {001} Habit in V-4Cr-4Ti

GTA Weld

 $- Ti_{16}(O_3N_3C_2)$

Oxidized

- $Ti_{58.2}(O_{12.8}C_{24.1}N_{4.9})$

Neutron Irradiated

 $-Ti_{>90}(O,N)_{<10}$ [No C]

Dynamic Strain Aging in V-4Cr-4Ti

 Maximum in strain-rate sensitivity occurs at 600°C in V-4Cr-4Ti

Magnified View of Serrated and Jerky Flow Behavior in Vanadium

- Estimate time for diffusion of interstitials
 - segregate to immobile and mobile dislocations
 - identify elements responsible for DSA
- Calculate average time between minima (t)
 - 300°C and 10⁻⁵/s τ = ~37.5s
 - 200°C and 10⁻⁵/s

 τ = ~129s

- Diffusivity calculations show:
 - Carbon and oxygen are primarily responsible for DSA effect below 300°C
 - Nitrogen has similar mobility at a higher temperature of 400°C

Strain Rate Sensitivity for V and V-4Cr-4Ti

- Alloying with Ti shifts the maximum negative SRS by ~300°C
- Calculations based on stereology measurements indicate that ~50% of the interstitials are retained in the globular Ti(OCN)
 - mobility of the remaining interstitial content is reduced by interactions with Ti
- Possible benefits of lowering Ti concentration are being investigated

Temperature Dependence of σ_{Y} and σ_{f} at $10^{\text{-}3}~\text{s}^{\text{-}1}$

Yield Strength and Uniform Strain in Neutron-Irradiated V-4Cr-4Ti

Relationship Between Radiation Hardening and DBTT Shift for V-4Cr-4Ti Irradiated in Various Reactors

Radiation Hardening in TMS

Stress - Strain Curves for Neutron Irradiated F82H

Radiation Hardening-DBTT Shifts Relationship for TMS Including Helium Effects

Future Work

- Investigation of performance limiting, radiation-induced phenomena in model alloys
 - Broad portfolio of miniaturized property measurements and characterization methods
 - Fully integrated with theory/modeling activities
- Fundamental issues of flow and fracture in TMS and V-4Cr-4Ti model alloys including helium effects at 300°-400°C
- Fundamental issues related to helium migration, trapping and bubble formation in TMS and V-4Cr-4Ti model alloys at 400°-650°C
- Initial studies of dispersoid and nanocluster stability, helium trapping in advanced alloys at 300°-800°C

Future Work

- Irradiation program to be carried out under a 5-year shared-cost program with JAERI/MONBUSHO
 - 5 Li-bonded small volume HFIR experiments
 (25cm³ specimens/capsule)
 - Temperature monitored and controlled; neutron doses (1-10 dpa)
 - Spectrally tailored and isotopically- doped to vary helium production
- Continuing investigation of substitutional solute-interstitial interactions in V-4Cr-4Ti model alloy
 - Immobilization of interstitials in uniformly-dispersed oxycarbonitride phases
 - Improved creep strength and helium management
- Expanding upper temperature operating limits of TMS through nano-phase engineering