Algorithm 小考(一) 詳解與配分

Question 1 - (1)

```
1: n \leftarrow \text{length}[p] - 1
                  2: for i \leftarrow 1 to n do
▶ 詳解 3: m[i,i] \leftarrow 0
                                                                          m[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] & \text{if } i < j \\ +p_{i-1} \cdot p_k \cdot p_j \} \end{array} \right.
                  4: end for
                  5: for \ell \leftarrow 2 to n do
                          for i \leftarrow 1 to n - \ell + 1 do
                        i \leftarrow i + \ell - 1
                        m[i,j] \leftarrow \infty
                        for k \leftarrow i to j-1 do
                         q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} \cdot p_k \cdot p_j
                10:
                         if q < m[i,j] then
                11:
                             m[i,j] \leftarrow q
                12:
                               s[i,j] \leftarrow k
                13:
                                  end if
                14:
                              end for
                15:
                          end for
                16:
                17: end for
```

- ▶ 配分(10%)
 - ► Algorithm(or Pseudocode) 8分
 - ► Time complexity 2分

We have three nested loops:

- 1. ℓ , length, O(n) iterations
- 2. i, start, O(n) iterations
- 3. k, split point, O(n) iterations

Body of loops: constant complexity.

Total complexity: $O(n^3)$

Question 1 - (2)

M[i][j]

| 詳解

	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

S[i][j]

	2	3	4	5	6
1	1	1	3	3	3
2		2	3	3	3
3			3	3	3
4				4	5
5					5

- So, ANS= $((A_1(A_2A_3))((A_4A_5)A_6))$ minimum number of scalar multiplications = 15125
- ▶ 配分(10%)
 - ► Tables 5分 Ansers 5分

- ▶ 詳解
 - Overlapping subproblem
 - ► A recursive algorithm revisits the same subproblem over and over again.
 - Optimal substructure
 - ► An optimal solution to the problem contains optimal solutions to subproblems.
- ▶ 配分(10%)
 - ▶ 答案錯全錯 扣十分
 - ▶ 只寫出答案,未描述 扣四分

- ▶ 詳解
 - ▶ Unweighted longest simple path problem does not satisfy the optimal substructure.

► 從圖可得知 q到t的最長path是q-r-t q-r並不是q到r的最長path (應該是q-s-t-r) 而r-t也不是 r到t的最長path (應該是r-q-s-t) 所以不具有optimal substructure

- ▶ 配分(20%)
 - ▶ 答案錯全錯
 - ▶ 例子敘述不完整,扣部分分數

▶ 解答

(--)

step1. 將 A[1..n] 的資料排序存到 B[1..n]

step2. A 與 B 的 longest common subsequence (LCS)

step1. O(n lg n) step2.O(n^2)

 \rightarrow O (n^2)

```
解答
Sequence : {A[1],A[2],.... A[n]}
L[i]: {A[1],A[2],.... A[i]}之Longest monotonically increasing subsequence的長度
P[i]:上一個字母位置
For(i=1; i<=n; i++)
 L[i] = Max\{ L[k] : 1 <= k <= i-1, A[k] <= A[i] \} + 1
  P[i] = k;
最後再找L[1...n]最大值 配合P列陣找回subsequence →O (nlogn)
```

▶ 配分(20%)

假如自己方法是對的且為 $O(n^2)$,助教沒看出來可以找助教討論。

Question 5-(a)

- ▶詳解
 - ▶0-1 knapsack cannot be solved using the greedy strategy
- ▶配分(10%)
 - ▶答錯全錯 無部份給分

Question 5-(b)

- ▶詳解
 - Greedy: $\frac{8}{5} > \frac{5}{4} > \frac{4}{4}$
 - ► Choose item1 , Value = 8
 - ► If choose item2 & item3, Value = 9

item	value	weight			
1	8	5			
2	4	4			
3	5	4			

Capacity = 8

- ▶配分(10%)
 - ▶範例不符合 斟酌給分
 - ▶未給範例 扣十分

▶ 詳解

	yi	0	1	0	1	1	0	1	1	0
xi	0	0	0	0	0	0	0	0	0	0
1	0	0 ↑	15	1←	15	15	1←	1	15	1←
0	0	15	1 ↑	25	2←	2←	2 5	2←	2←	2↖
0	0	1 、	1 ↑	2 ↖	2 ↑	2 ↑	35	3←	3←	3 ↖
1	0	1 ↑	2 ↖	2 ↑	3 ↖	3 ↖	3↑	45	4×	4←
0	0	1 5	2 ↑	3 ↖	3 ↑	3 ↑	4 ^	4 ↑	4 ↑	5 ↖
1	0	1 ↑	2 ↖	3 ↑	4×	4×	4 ↑	5 ↖	5	5↑
0	0	1	2 ↑	3 ↖	4 ↑	4 ↑	5 ↖	5↑	5↑	65
1	0	1 ↑	2 ↖	3 ↑	4۲	5 ↖	5↑	6×	6↖	6↑

▶ 注意:

在c[i - 1, j] =c[i, j - 1]case中,課本程式碼箭頭為:b[i, j] \leftarrow "↑",有些人箭頭標" \leftarrow "會算對,但希望還是依照課本為主。 但若沒統一一些標"↑"一些標" \leftarrow "則會算錯。

- ▶ 詳解
 - ► LCS長度 = 6 <1,0,0,1,1,0> or <1,0,1,1,0,1> or <1,0,1,0,1,1>
 - ▶ 若兩序列擺相反則答案為 <0,1,0,1,0,1>
- ▶ 配分(10%)
 - ▶ 箭號沒畫、共同字沒有圈、只寫長度為6沒有寫答案扣部分分數
 - ▶ 有畫圖但整個圖畫錯,扣6~8分