Глубинное обучение

Лекция 1

Введение в глубинное обучение

Евгений Соколов

esokolov@hse.ru

Чем будем заниматься?

Dogs vs. Cats

Create an algorithm to distinguish dogs from cats

Kaggle · 213 teams · 7 years ago

Overview

Data

Notebooks Discussion Leaderboard

Rules

Overview

Description

Prizes

Evaluation

Winners

In this competition, you'll write an algorithm to classify whether images contain either a dog or a cat. This is easy for humans, dogs, and cats. Your computer will find it a bit more difficult.

Классическое компьютерное зрение

- 1. Считаем признаки (есть ли усы, какой формы уши, какой длины хвост, ...)
- 2. Обучаем на них градиентный бустинг

• Посчитать признаки — целая история

Современное компьютерное зрение

Классическое NLP

- 1. Подсчитываем статистику, как часто то или иное слово встречается после данного
- 2. Генерируем следующее слово из этого распределения

"Manure, almond gelato and frozen pies, you are also had it was in one but it will post office buildings s ucks). their chinese food. comfort food while they liked their lids ripped off. it an early morning of jon still a spade so maybe too much. the same. but, at the baked rigatoni, and not in other options and it see ms odd taste). our visit). i go to nfl kickoff arrived with \$. that's about when you come down hoyt street is actually higher than impressed with a regular theater! so at it, halfway through their pork and though i've"

Современное NLP

Успехи в глубинном обучении

- Изображения и видео
- Трёхмерное компьютерное зрение
- Тексты
- Звук
- Генерация данных

Организационное

Про оценку

- 70% HW
- 30% final exam

Примерный план курса

- Метод обратного распространения ошибки
- Полносвязные сети
- Свёрточные сети
- Методы оптимизации для глубинного обучения
- Немного о компьютерном зрении
- Работа с последовательностями
- Генеративные сети

Зачем нужны нейронные сети?

Предсказание стоимости квартиры

• Линейная модель:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж) + w_3 * (расстояние до метро) + \cdots$$

• Вряд ли признаки не связаны между собой

Предсказание стоимости квартиры

• Линейная модель с полиномиальными признаками:

$$a(x) = w_0 + w_1 * (площадь) + w_2 * (этаж)$$
 $+w_3 * (расстояние до метро) + w_4 * (площадь)^2$
 $+w_5 * (этаж)^2 + w_6 * (расстояние до метро)^2$
 $+w_7 * (площадь) * (этаж) + \cdots$

- Может быть сложно интерпретировать модель
- Что такое (расстояние до метро) * (этаж)²?

Градиентный бустинг

$$a_N(x) = \sum_{n=1}^N b_n(x)$$

• Обучение N-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a_{N-1}(x_i) + b_N(x_i)) \to \min_{b_N(x)}$$

Градиентный бустинг

• Обучение *N*-й модели:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left(b_N(x_i) - s_i^{(N)} \right)^2 \to \min_{b_N(x)}$$

$$\left. s_i^{(N)} = -rac{\partial}{\partial z} L(y_i,z)
ight|_{z=a_{N-1}(x_i)}$$
— сдвиги

Кратко о предыдущем курсе

- Линейные модели обучаются градиентным спуском, но плохо подходят для поиска сложных закономерностей
- Решающие деревья и их композиции дают отличные результаты, но обучать их трудно

Нейрон

Нейрон

- x⁽⁰⁾ признаки объекта
- $h_1(x)$ преобразование («слой»)
- $x^{(1)}$ результат

Полносвязные слои

Полносвязный слой (fully connected, FC)

- На входе n чисел, на выходе m чисел
- *x*₁, ..., *x*_n входы
- $z_1, ..., z_m$ выходы
- Каждый выход линейная модель над входами

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

Полносвязный слой (fully connected, FC)

hidden layer 1 hidden layer 2

Полносвязный слой (fully connected, FC)

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

- m линейных моделей, в каждой (n+1) параметров
- Всего примерно mn параметров в полносвязном слое

Полносвязный слой (fully connected, FC)

$$z_j = \sum_{i=1}^n w_{ji} x_i + b_j$$

- m линейных моделей, в каждой (n+1) параметров
- Всего примерно mn параметров в полносвязном слое
- Это очень много: если у нас 1.000.000 входных признаков и 1000 выходов, то это 1.000.000.000 параметров
- Надо много данных для обучения

Важный вопрос в DL

Как объединить слои в мощную модель?

• Рассмотрим два полносвязных слоя

• Рассмотрим два полносвязных слоя

$$S_k = \sum_{j=1}^m v_{kj} z_j + c_k = \sum_{j=1}^m v_{kj} \sum_{i=1}^n w_{ji} x_i + \sum_{j=1}^m v_{kj} b_j + c_k =$$

$$= \sum_{j=1}^m \left(\sum_{i=1}^n v_{kj} w_{ji} x_i + v_{kj} b_j + \frac{1}{m} c_k \right)$$

• То есть это ничем не лучше одного полносвязного слоя

• Нужно добавлять нелинейную функцию после полносвязного слоя

$$z_j = f\left(\sum_{i=1}^n w_{ji}x_i + b_j\right)$$

$$z_j = f\left(\sum_{i=1}^n w_{ji} x_i + b_j\right)$$

Вариант 1: $f(x) = \frac{1}{1 + \exp(-x)}$

(сигмоида)

$$z_j = f\left(\sum_{i=1}^n w_{ji} x_i + b_j\right)$$

Вариант 2: $f(x) = \max(0, x)$

(ReLU, REctified Linear Unit)

Rectified linear unit (ReLU) ^[9]		$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & ext{max}\{0,x\} = x 1_{x > 0} \end{cases}$
Gaussian Error Linear Unit (GELU) ^[4]	3 2 4 1 1 2 3	$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[10]		$\ln(1+e^x)$
Exponential linear unit (ELU) ^[11]		$\left\{egin{array}{ll} lpha \left(e^x-1 ight) & ext{if } x \leq 0 \ x & ext{if } x>0 \ \end{array} ight.$ with parameter $lpha$
Scaled exponential linear unit (SELU) ^[12]		$\lambdaigg\{egin{array}{ll} lpha(e^x-1) & ext{if } x<0 \ x & ext{if } x\geq0 \ \end{array}$ with parameters $\lambda=1.0507$ and $lpha=1.67326$
Leaky rectified linear unit (Leaky ReLU) ^[13]		$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$
Parameteric rectified linear unit (PReLU) ^[14]		$\left\{egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$
Sigmoid linear unit (SiLU, ^[4] Sigmoid shrinkage, ^[15] SiL, ^[16] or Swish-1 ^[17])		$\frac{x}{1+e^{-x}}$

Типичная полносвязная сеть

Типичная полносвязная сеть

- На входе признаки
- В последнем слое выходов столько, сколько целевых переменных мы предсказываем

Теорема Цыбенко

Вольное изложение:

- Пусть g(x) непрерывная функция
- Тогда можно построить двуслойную нейронную сеть, приближающую g(x) с любой заранее заданной точностью

То есть двуслойные нейронные сети ОЧЕНЬ мощные!

Теорема Цыбенко

Вольное изложение:

- Пусть g(x) непрерывная функция
- Тогда можно построить двуслойную нейронную сеть, приближающую g(x) с любой заранее заданной точностью

То есть двуслойные нейронные сети ОЧЕНЬ мощные! Но очень много параметров и очень сложно обучать

Опрос

Что из этого — формула для шага в градиентном спуске?

- 1. $w^t = w^{t-1} + \eta \nabla Q(w^t)$
- 2. $w^t = w^{t-1} \eta \nabla Q(w^{t-1})$
- 3. $w^t = w^{t-1} \eta \nabla Q(w^t)$
- 4. $w^t = w^{t-1} + \eta \nabla Q(w^0)$

Градиентный спуск

• Повторять до сходимости:

Сходимость

• Останавливаем процесс, если

$$||w^t - w^{t-1}|| < \varepsilon$$

• Другой вариант:

$$\|\nabla Q(w^t)\| < \varepsilon$$

• Обычно в глубинном обучении: останавливаемся, когда ошибка на тестовой выборке перестаёт убывать

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

$$x \longrightarrow FC_1 \longrightarrow f \longrightarrow FC_2 \longrightarrow a(x) \longrightarrow L(y, a(x))$$

$$\bullet a(x) = FC_2 \left(f(FC_1(x)) \right)$$

• Где здесь параметры?

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

• Где здесь параметры?

• Все слои обычно дифференцируемы, поэтому можно посчитать производные по всем параметрам

$$\frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, a(x_i)) \to \min_{a}$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_i} L(y_i, a(x_i, w))$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_i}(a(x_i, w) - y_i)^2$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_j}(a(x_i, w) - y_i)^2 = 2(a(x_i, w) - y_i)\frac{\partial}{\partial w_j}a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить $a(x_i, w)$, если $a(x_i, w)$?

как сильно изменится пошевелить w_i ?

$$\frac{\partial}{\partial w_j}(a(x_i, w) - y_i)^2 = 2(a(x_i, w) - y_i)\frac{\partial}{\partial w_j}a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить

как сильно изменится $a(x_i, w)$, если $a(x_i, w)$? пошевелить w_i ?

•
$$a(x_i, w) = 10, y_i = 9.99$$
:

$$2 * 0.01 * \frac{\partial}{\partial w_j} a(x_i, w)$$

•
$$a(x_i, w) = 10, y_i = 1$$
:

$$2*9*\frac{\partial}{\partial w_j}a(x_i,w)$$

• Для градиентного спуска нужны производные ошибки по параметрам:

$$\frac{\partial}{\partial w_j} L(y_i, a(x_i, w)) = \frac{\partial}{\partial z} L(y_i, z) \bigg|_{z = a(x_i, w)} \frac{\partial}{\partial w_j} a(x_i, w)$$

как сильно изменится ошибка, если пошевелить w_i ?

как сильно изменится ошибка, если пошевелить $a(x_i, w)$?

как сильно изменится $a(x_i, w)$, если пошевелить w_i ?

• Следующая задача — научиться вычислять $\frac{\partial}{\partial w_j} a(x_i, w)$

$$a(x) = p_{11}h_1(x) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial p_{11}} = ?$$

$$a(x) = p_{11}h_1(x) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial p_{11}} = h_1(x)$$

• Чем больше $h_1(x)$, тем сильнее p_{11} влияет на a

$$a(x) = p_{11}f(v_{11}z_1(x) + v_{21}z_2(x)) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial v_{11}} = 2$$

$$a(x) = p_{11}f(v_{11}z_1(x) + v_{21}z_2(x)) + p_{21}h_2(x)$$

$$\frac{\partial a}{\partial v_{11}} = \frac{\partial a}{\partial h_1} \frac{\partial h_1}{\partial v_{11}}$$

$$\frac{\partial a}{\partial w_{11}} = ?$$

• Показывает, как сильно изменится a при изменении w_{11}

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{11} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{12} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это p_{11} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это w_{22} ?

- Как сильно изменится a при изменении w_{11} ?
- Влияет ли на это v_{22} ?

$$\frac{\partial a}{\partial w_{11}} = \frac{\partial a}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial w_{11}} + \frac{\partial a}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial w_{11}}$$

- Мы как бы идём в обратную сторону по графу и считаем производные
- Метод обратного распространения ошибки (backpropagation)

3:
$$\frac{\partial p}{\partial h_1}$$
 $\frac{\partial p}{\partial h_2}$

2:
$$\frac{\partial p}{\partial z_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \qquad \qquad \frac{\partial p}{\partial z_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2}$$

$$\frac{\partial p}{\partial x_1} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_1} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_1} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_1}$$

1:
$$\frac{\partial p}{\partial x_2} = \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_1} \frac{\partial z_1}{\partial x_2} + \frac{\partial p}{\partial h_1} \frac{\partial h_1}{\partial z_2} \frac{\partial z_2}{\partial x_2} + \frac{\partial p}{\partial h_2} \frac{\partial h_2}{\partial z_2} \frac{\partial z_2}{\partial x_2}$$

Backprop

- Во многие формулы входят одни и те же производные
- В backprop каждая частная производная вычисляется один раз вычисление производных по слою N сводится к перемножению матрицы производных по слою N+1 и некоторых векторов