## Homotopy of Character Varieties, Part III

...or any moduli space homotopic to one.

#### Sean Lawton

George Mason University

Korean Institute for Advanced Study October 23, 2015



Theorem (Florentino & L-, 2009, 2014; A. C. Casimiro, C. Florentino, L-, A. G. Oliveira, 2015)

Let G be a real reductive algebraic group, K a maximal compact subgroup, and  $\Gamma$  a (finitely generated) free group or Abelian group. Then  $\mathfrak{X}_{\Gamma}(G)$  strongly deformation retracts onto  $\mathfrak{X}_{\Gamma}(K)$ . In particular, they have the same homotopy type.

Theorem (Florentino & L-, 2009, 2014; A. C. Casimiro, C. Florentino, L-, A. G. Oliveira, 2015)

Let G be a real reductive algebraic group, K a maximal compact subgroup, and  $\Gamma$  a (finitely generated) free group or Abelian group. Then  $\mathfrak{X}_{\Gamma}(G)$  strongly deformation retracts onto  $\mathfrak{X}_{\Gamma}(K)$ . In particular, they have the same homotopy type.

• One naturally wonders if this situation generalizes to arbitrary finitely generated groups  $\Gamma$ .

## Theorem (Florentino & L-, 2009, 2014; A. C. Casimiro, C. Florentino, L-, A. G. Oliveira, 2015)

Let G be a real reductive algebraic group, K a maximal compact subgroup, and  $\Gamma$  a (finitely generated) free group or Abelian group. Then  $\mathfrak{X}_{\Gamma}(G)$  strongly deformation retracts onto  $\mathfrak{X}_{\Gamma}(K)$ . In particular, they have the same homotopy type.

- One naturally wonders if this situation generalizes to arbitrary finitely generated groups  $\Gamma$ .
- Although particular counter-examples were known much earlier (via Atiyah-Bott 1983 and Hitchin 1987), Biswas-Florentino showed using Higgs bundle theory (2011) that for a closed surface of genus  $g \geq 2$  the moduli spaces  $\mathfrak{X}_{\Gamma}(G)$  and  $\mathfrak{X}_{\Gamma}(K)$  are *never* homotopic.

#### Sketch of Proof

Go to board.

• 
$$P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$$

- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$ 
  - $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{GL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2))) = (1+t)^r P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$

- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{GL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2))) = (1+t)^r P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$
- $\bullet \ P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SL}(3,\mathbb{R}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SO}(3))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2))).$

- $P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2)))$
- $\bullet \ P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{GL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{U}(2))) = (1+t)^r P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2)))$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SL}(3,\mathbb{R}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SO}(3))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2))).$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2,2))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2)))^2$

- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$
- $\bullet \ P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{GL}(2,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{U}(2))) = (1+t)^r P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2)))$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SL}(3,\mathbb{R}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SO}(3))) = P_t(\mathfrak{X}_{\mathbb{Z}^{\star r}}(\mathsf{SU}(2))).$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2,2))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{U}(2)))^2$
- $P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{O}(3,\mathbb{C}))) = P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{O}(3))) = 2^r P_t(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(2)))$

#### **Euler Characteristic**

#### Theorem (S. Cavazos, L-, 2014)

Let q=xy. Then the E-polynomial for  $\mathfrak{X}_r:=\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}_2(\mathbb{C}))$  is

$$E_{\mathbb{Z}^{\star r}}(q) = (q-1)^{r-1} \left( (q+1)^{r-1} - 1 \right) q^{r-1} + \frac{1}{2} q \left( (q-1)^{r-1} + (q+1)^{r-1} \right),$$

and the E-polynomial of  $\mathfrak{X}_r(\mathsf{SL}_2(\mathbb{C}))^{sing}\cong\mathfrak{X}_{\mathbb{Z}^r}(\mathsf{SL}_2(\mathbb{C}))$  is given by

$$E_{\mathbb{Z}^r}(q) = \frac{1}{2} \left( (q-1)^r + (q+1)^r \right).$$

Consequently, the difference of these is the E-polynomial of  $\mathfrak{X}_r(SL_2(\mathbb{C}))^{sm}$ .

#### Corollary

$$\begin{array}{l} \chi(\mathfrak{X}_r) = 2^{r-2}, \ \chi(\mathfrak{X}_r^{sim}) = -2^{r-2}, \ \chi(\mathfrak{X}_r^{sing}) = 2^{r-1}, \\ \chi((\mathfrak{X}_r^{sing})^{sm}) = -2^{r-1}, \ \text{and} \ \chi((\mathfrak{X}_r^{sing})^{sing}) = 2^r. \end{array}$$

#### Corollary

$$\chi(\mathfrak{X}_r) = 2^{r-2}$$
,  $\chi(\mathfrak{X}_r^{sim}) = -2^{r-2}$ ,  $\chi(\mathfrak{X}_r^{sing}) = 2^{r-1}$ ,  $\chi((\mathfrak{X}_r^{sing})^{sim}) = -2^{r-1}$ , and  $\chi((\mathfrak{X}_r^{sing})^{sing}) = 2^r$ .

Vicente Mũnoz and I have recently generalized these results to  $SL(3,\mathbb{C})$ .

#### Corollary

$$\chi(\mathfrak{X}_r) = 2^{r-2}$$
,  $\chi(\mathfrak{X}_r^{sing}) = -2^{r-2}$ ,  $\chi(\mathfrak{X}_r^{sing}) = 2^{r-1}$ ,  $\chi((\mathfrak{X}_r^{sing})^{sin}) = -2^{r-1}$ , and  $\chi((\mathfrak{X}_r^{sing})^{sing}) = 2^r$ .

Vicente Mũnoz and I have recently generalized these results to  $SL(3,\mathbb{C})$ . Consequently, for  $r \geq 2$ ,

$$\chi(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SL}(3,\mathbb{C}))) = \chi(\mathfrak{X}_{\mathbb{Z}^{*r}}(\mathsf{SU}(3))) = 2(3)^{r-2}.$$

## **Covering Spaces**

#### Theorem (D. Ramras, L-, 2014)

Let G be either a connected reductive algebraic group over  $\mathbb{C}$ , or a compact connected Lie group, and assume that  $\pi_1(G)$  is torsion-free. Let  $\Gamma$  be exponent-canceling of rank r. Let  $q:H\to G$  be a covering homomorphism, and identify  $\pi_1(H)$  with its image under the injective homomorphism  $q_\#:\pi_1(H)\to\pi_1(G)$  induced by q. Then the induced map  $q_*:\mathfrak{X}_{\Gamma}(H)\to\mathfrak{X}_{\Gamma}(G)$  is a surjective, normal covering map with structure group  $(\pi_1(G)/\pi_1(H))^r$ .

## **Covering Spaces**

#### Theorem (D. Ramras, L-, 2014)

Let G be either a connected reductive algebraic group over  $\mathbb{C}$ , or a compact connected Lie group, and assume that  $\pi_1(G)$  is torsion-free. Let  $\Gamma$  be exponent-canceling of rank r. Let  $q:H\to G$  be a covering homomorphism, and identify  $\pi_1(H)$  with its image under the injective homomorphism  $q_\#:\pi_1(H)\to\pi_1(G)$  induced by q. Then the induced map  $q_*:\mathfrak{X}_{\Gamma}(H)\to\mathfrak{X}_{\Gamma}(G)$  is a surjective, normal covering map with structure group  $(\pi_1(G)/\pi_1(H))^r$ .

• In particular,  $\mathfrak{X}_{\Gamma}(\tilde{G}) = \widetilde{\mathfrak{X}_{\Gamma}(G)}$  in many cases.

## **Covering Spaces**

#### Theorem (D. Ramras, L-, 2014)

Let G be either a connected reductive algebraic group over  $\mathbb{C}$ , or a compact connected Lie group, and assume that  $\pi_1(G)$  is torsion-free. Let  $\Gamma$  be exponent-canceling of rank r. Let  $q:H\to G$  be a covering homomorphism, and identify  $\pi_1(H)$  with its image under the injective homomorphism  $q_\#:\pi_1(H)\to\pi_1(G)$  induced by q. Then the induced map  $q_*:\mathfrak{X}_{\Gamma}(H)\to\mathfrak{X}_{\Gamma}(G)$  is a surjective, normal covering map with structure group  $(\pi_1(G)/\pi_1(H))^r$ .

- In particular,  $\mathfrak{X}_{\Gamma}(\tilde{G}) = \widehat{\mathfrak{X}}_{\Gamma}(G)$  in many cases.
- For instance, if  $\mathfrak{X}_{\Gamma}([G,G])$  is simply connected.



•  $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .

- $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .
- However, if  $\mathfrak{X}_{\mathbb{Z}^2}(SU(2)) \to \mathfrak{X}_{\mathbb{Z}^2}(PSU(2))$  is a covering with structure group  $\operatorname{Hom}(\mathbb{Z}^2,\mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^2$ ,

- $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .
- However, if  $\mathfrak{X}_{\mathbb{Z}^2}(\mathsf{SU}(2)) \to \mathfrak{X}_{\mathbb{Z}^2}(\mathsf{PSU}(2))$  is a covering with structure group  $\mathrm{Hom}(\mathbb{Z}^2,\mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^2$ ,
- there would be a free action of  $(\mathbb{Z}/2\mathbb{Z})^2$  on  $S^2$ ; but there is no closed surface with fundamental group  $(\mathbb{Z}/2\mathbb{Z})^2$ .

- $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .
- However, if  $\mathfrak{X}_{\mathbb{Z}^2}(\mathsf{SU}(2)) \to \mathfrak{X}_{\mathbb{Z}^2}(\mathsf{PSU}(2))$  is a covering with structure group  $\mathrm{Hom}(\mathbb{Z}^2,\mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^2$ ,
- there would be a free action of  $(\mathbb{Z}/2\mathbb{Z})^2$  on  $S^2$ ; but there is no closed surface with fundamental group  $(\mathbb{Z}/2\mathbb{Z})^2$ .
- Moreover,  $\mathfrak{X}_{\mathbb{Z}^2}(\mathrm{PSU}(2)) \cong S^2$ ; checked by direct computation.

- $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .
- However, if  $\mathfrak{X}_{\mathbb{Z}^2}(SU(2)) \to \mathfrak{X}_{\mathbb{Z}^2}(PSU(2))$  is a covering with structure group  $\operatorname{Hom}(\mathbb{Z}^2,\mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^2$ ,
- there would be a free action of  $(\mathbb{Z}/2\mathbb{Z})^2$  on  $S^2$ ; but there is no closed surface with fundamental group  $(\mathbb{Z}/2\mathbb{Z})^2$ .
- Moreover,  $\mathfrak{X}_{\mathbb{Z}^2}(\mathrm{PSU}(2)) \cong S^2$ ; checked by direct computation.

As a corollary, we can reduce the study of higher homotopy groups.

- $SU(2) \rightarrow SU(2)/\{\pm I\} = PSU(2)$  is a covering with structure group  $\mathbb{Z}/2\mathbb{Z}$ .
- However, if  $\mathfrak{X}_{\mathbb{Z}^2}(\mathsf{SU}(2)) \to \mathfrak{X}_{\mathbb{Z}^2}(\mathsf{PSU}(2))$  is a covering with structure group  $\mathrm{Hom}(\mathbb{Z}^2,\mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^2$ ,
- there would be a free action of  $(\mathbb{Z}/2\mathbb{Z})^2$  on  $S^2$ ; but there is no closed surface with fundamental group  $(\mathbb{Z}/2\mathbb{Z})^2$ .
- Moreover,  $\mathfrak{X}_{\mathbb{Z}^2}(\mathrm{PSU}(2))\cong S^2$ ; checked by direct computation.

As a corollary, we can reduce the study of higher homotopy groups.

#### Corollary

 $\mathfrak{X}_{\Gamma}(H) \to \mathfrak{X}_{\Gamma}(G)$  induce isomorphisms on homotopy groups  $\pi_k$  for all  $k \geq 2$  (and all compatible basepoints).

## Homotopy Groups

• Ho and Liu recently proved  $\pi_0(\mathfrak{X}_{\Gamma}(G)) \cong \pi_1([G,G])$ ;  $\Gamma$  the fundamental group of a genus g>1 surface, G complex reductive or compact.

### Homotopy Groups

- Ho and Liu recently proved  $\pi_0(\mathfrak{X}_{\Gamma}(G)) \cong \pi_1([G,G])$ ;  $\Gamma$  the fundamental group of a genus g>1 surface, G complex reductive or compact.
- $\mathfrak{D}_{0}(\mathfrak{X}_{\Gamma}(G))=0$  if the surface is open.

### Homotopy Groups

- Ho and Liu recently proved  $\pi_0(\mathfrak{X}_{\Gamma}(G)) \cong \pi_1([G,G])$ ;  $\Gamma$  the fundamental group of a genus g>1 surface, G complex reductive or compact.
- $2 \pi_0(\mathfrak{X}_{\Gamma}(G)) = 0$  if the surface is open.
- 3 Assume Γ is Abelian and G is semisimple. Then,  $\pi_0(\mathfrak{X}_{\Gamma}(G))) = 0$  iff Γ does not have torsion, and one of the following is true: (a)  $r := \operatorname{Rank}(\Gamma) = 1$ , (b) r = 2 and G is simply connected, or (c) r > 2 and G is a product of simply connected groups of type  $A_n$  or  $C_n$ .

Let  $\mathfrak{X}^0_{\Gamma}(G)$  denote the connected component of the trivial representation in  $\mathfrak{X}_{\Gamma}(G)$ .

Let  $\mathfrak{X}^0_{\Gamma}(G)$  denote the connected component of the trivial representation in  $\mathfrak{X}_{\Gamma}(G)$ .

#### Theorem (Biswas, L-, Ramras, 2014)

Let G be either a connected reductive  $\mathbb{C}$ -group, or a connected compact Lie group, and let  $\Gamma$  be one the following:

- a free group,
- 2 a free Abelian group, or
- 3 the fundamental group of a closed orientable surface.

Then  $\pi_1(\mathfrak{X}^0_{\Gamma}(G)) = \pi_1(G/[G,G])^r$ , where  $r = \operatorname{Rank}(\Gamma/[\Gamma,\Gamma])$ .

#### Theorem (Florentino, L-, Ramras, 2014)

Let  $G_n$  be any of  $GL(n, \mathbb{C})$ ,  $SL(n, \mathbb{C})$ , SU(n) or U(n). Then

$$\pi_2(\mathfrak{X}_r(G_n))=0.$$

#### Theorem (Florentino, L-, Ramras, 2014)

Let  $G_n$  be any of  $GL(n, \mathbb{C})$ ,  $SL(n, \mathbb{C})$ , SU(n) or U(n). Then

$$\pi_2(\mathfrak{X}_r(G_n))=0.$$

#### Theorem (Florentino, L-, Ramras, 2014)

Assume  $(r-1)(n-1) \ge 2$  and 1 < k < 2(r-1)(n-1) - 1. Then

$$\pi_{k}(\mathfrak{X}_{r}(G_{n})^{irr}) = \begin{cases} \mathbb{Z}/n\mathbb{Z}, & \text{if } k = 2\\ \mathbb{Z}^{r}, & \text{if } k \text{ is odd and } k < 2n\\ \mathbb{Z}, & \text{if } k \text{ is even and } 2 < k < 2n\\ (\mathbb{Z}/n!\mathbb{Z})^{r} \oplus \mathbb{Z}, & \text{if } k = 2n \end{cases}$$

Moreover,  $\pi_k(\mathfrak{X}_r(G_n)^{irr})$  is finite for k > 2n.



#### Sketch of Proof of $\pi_2$ -triviality

Go to board.

## Related Topic: Singularities

• Florentino and L- showed for  $G = \mathsf{SL}(n,\mathbb{C})$  or  $\mathsf{GL}(n,\mathbb{C})$  that

$$\mathfrak{X}_r(G)^{sm} = \mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{irr}$$

if 
$$(r-1)(n-1) \ge 2$$
.

## Related Topic: Singularities

ullet Florentino and L- showed for  $G=\mathsf{SL}(n,\mathbb{C})$  or  $\mathsf{GL}(n,\mathbb{C})$  that

$$\mathfrak{X}_r(G)^{sm} = \mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{irr}$$

if 
$$(r-1)(n-1) \ge 2$$
.

• This result does not even generalize to  $G = PSL(2, \mathbb{C})$  by Heusner and Porti.

# Related Topic: Singularities

• Florentino and L- showed for  $G = \mathsf{SL}(n,\mathbb{C})$  or  $\mathsf{GL}(n,\mathbb{C})$  that

$$\mathfrak{X}_r(G)^{sm} = \mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{irr}$$

if 
$$(r-1)(n-1) \ge 2$$
.

- This result does not even generalize to  $G = PSL(2, \mathbb{C})$  by Heusner and Porti.
- Florentino and L- conjectured: If  $r \ge 3$ , or  $r \ge 2$  and the Rank(G) is sufficiently large, then

$$\mathfrak{X}_r(G)^{red} \subset \mathfrak{X}_r(G)^{sing}$$
.

# Related Topic: Singularities

• Florentino and L- showed for  $G = \mathsf{SL}(n,\mathbb{C})$  or  $\mathsf{GL}(n,\mathbb{C})$  that

$$\mathfrak{X}_r(G)^{sm} = \mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{irr}$$

if 
$$(r-1)(n-1) \ge 2$$
.

- This result does not even generalize to  $G = PSL(2, \mathbb{C})$  by Heusner and Porti.
- Florentino and L- conjectured: If  $r \ge 3$ , or  $r \ge 2$  and the Rank(G) is sufficiently large, then

$$\mathfrak{X}_r(G)^{red} \subset \mathfrak{X}_r(G)^{sing}$$
.

• Note that  $\mathfrak{X}_2(PSL(2,\mathbb{C}))$  has smooth points which are reducible and singular points which are irreducible; so a condition on the rank of G when r=2 is necessary.

• Example: Let G be any connected reductive  $\mathbb{C}$ -group, then there exists a reducible smooth point and a irreducible singular point in  $\mathfrak{X}_2(G \times PSL(2,\mathbb{C}))$ .

- Example: Let G be any connected reductive  $\mathbb{C}$ -group, then there exists a reducible smooth point and a irreducible singular point in  $\mathfrak{X}_2(G \times PSL(2,\mathbb{C}))$ .
- Let  $[\rho] \in \mathfrak{X}_2(G)^{good}$  and let  $[\psi_1] \in \mathfrak{X}_2(P\mathsf{SL}(2,\mathbb{C}))^{red} \cap \mathfrak{X}_2(P\mathsf{SL}(2,\mathbb{C}))^{sm}$  and  $[\psi_2] \in \mathfrak{X}_2(P\mathsf{SL}(2,\mathbb{C}))^{irr} \cap \mathfrak{X}_2(P\mathsf{SL}(2,\mathbb{C}))^{sing}$ .

- Example: Let G be any connected reductive  $\mathbb{C}$ -group, then there exists a reducible smooth point and a irreducible singular point in  $\mathfrak{X}_2(G \times PSL(2,\mathbb{C}))$ .
- Let  $[
  ho] \in \mathfrak{X}_2(G)^{good}$  and let  $[\psi_1] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{red} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sm}$  and  $[\psi_2] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{irr} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sing}$ .
- Then clearly,  $[\rho \oplus \psi_1]$  has positive dimensional stabilizer and so is reducible, but yet it is in  $\mathfrak{X}_2(G)^{sm} \times \mathfrak{X}_2(PSL(2,\mathbb{C}))^{sm}$  and so is a smooth point.

- Example: Let G be any connected reductive  $\mathbb{C}$ -group, then there exists a reducible smooth point and a irreducible singular point in  $\mathfrak{X}_2(G \times PSL(2,\mathbb{C}))$ .
- Let  $[
  ho] \in \mathfrak{X}_2(G)^{good}$  and let  $[\psi_1] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{red} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sm}$  and  $[\psi_2] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{irr} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sing}$ .
- Then clearly,  $[\rho \oplus \psi_1]$  has positive dimensional stabilizer and so is reducible, but yet it is in  $\mathfrak{X}_2(G)^{sm} \times \mathfrak{X}_2(PSL(2,\mathbb{C}))^{sm}$  and so is a smooth point.
- On the other hand,  $[\rho \oplus \psi_2]$  has a finite stabilizer and so is irreducible (but not good), but is in  $\mathfrak{X}_2(G)^{sm} \times \mathfrak{X}_2(PSL(2,\mathbb{C}))^{sing}$  and so is a singular point.

- Example: Let G be any connected reductive  $\mathbb{C}$ -group, then there exists a reducible smooth point and a irreducible singular point in  $\mathfrak{X}_2(G \times PSL(2,\mathbb{C}))$ .
- Let  $[
  ho] \in \mathfrak{X}_2(G)^{good}$  and let  $[\psi_1] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{red} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sm}$  and  $[\psi_2] \in \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{irr} \cap \mathfrak{X}_2(\mathsf{PSL}(2,\mathbb{C}))^{sing}$ .
- Then clearly,  $[\rho \oplus \psi_1]$  has positive dimensional stabilizer and so is reducible, but yet it is in  $\mathfrak{X}_2(G)^{sm} \times \mathfrak{X}_2(PSL(2,\mathbb{C}))^{sm}$  and so is a smooth point.
- On the other hand,  $[\rho \oplus \psi_2]$  has a finite stabilizer and so is irreducible (but not good), but is in  $\mathfrak{X}_2(G)^{sm} \times \mathfrak{X}_2(P\mathrm{SL}(2,\mathbb{C}))^{sing}$  and so is a singular point.
- This shows that there are Lie groups H of arbitrarily large rank with the property that  $\mathfrak{X}_2(H)$  has smooth reducibles and singular irreducibles.



#### Deformation Retraction Homotopy Groups Singularities

We now give an example to show that the groups H in the above example do not only arise as products with rank 1 Lie groups.

We now give an example to show that the groups H in the above example do not only arise as products with rank 1 Lie groups.

• Sikora explicitly describes  $\mathfrak{X}_2(SO_4(\mathbb{C}))$ .

We now give an example to show that the groups H in the above example do not only arise as products with rank 1 Lie groups.

- Sikora explicitly describes  $\mathfrak{X}_2(SO_4(\mathbb{C}))$ .
- Consider  $\rho$  with coordinate matrices:

$$\frac{1}{12} \left( \begin{array}{cccc}
37 & 35i & 0 & 0 \\
-35i & 37 & 0 & 0 \\
0 & 0 & 13 & 5i \\
0 & 0 & -5i & 13
\end{array} \right),$$

and

$$\frac{1}{40} \left( \begin{array}{cccc} 401 & 399i & 0 & 0 \\ -399i & 401 & 0 & 0 \\ 0 & 0 & 41 & 9i \\ 0 & 0 & -9i & 41 \end{array} \right).$$

We now give an example to show that the groups H in the above example do not only arise as products with rank 1 Lie groups.

- Sikora explicitly describes  $\mathfrak{X}_2(SO_4(\mathbb{C}))$ .
- Consider  $\rho$  with coordinate matrices:

$$\frac{1}{12} \left( \begin{array}{cccc}
37 & 35i & 0 & 0 \\
-35i & 37 & 0 & 0 \\
0 & 0 & 13 & 5i \\
0 & 0 & -5i & 13
\end{array} \right),$$

and

$$\frac{1}{40} \left( \begin{array}{cccc}
401 & 399i & 0 & 0 \\
-399i & 401 & 0 & 0 \\
0 & 0 & 41 & 9i \\
0 & 0 & -9i & 41
\end{array} \right).$$

It is clearly reducible and completely reducible.



• However, as the relations and generators are explicitly computed by Sikora for this variety, in *Mathematica* we can compute the rank of the Jacobian matrix at  $\rho$ , finding it to be 11.

- However, as the relations and generators are explicitly computed by Sikora for this variety, in *Mathematica* we can compute the rank of the Jacobian matrix at  $\rho$ , finding it to be 11.
- There are 17 generators in the presentation for the coordinate ring and the variety has dimension 6.

- However, as the relations and generators are explicitly computed by Sikora for this variety, in *Mathematica* we can compute the rank of the Jacobian matrix at  $\rho$ , finding it to be 11.
- There are 17 generators in the presentation for the coordinate ring and the variety has dimension 6.
- Thus,  $\rho$  is a smooth point if and only if the rank is 11.

- However, as the relations and generators are explicitly computed by Sikora for this variety, in *Mathematica* we can compute the rank of the Jacobian matrix at  $\rho$ , finding it to be 11.
- There are 17 generators in the presentation for the coordinate ring and the variety has dimension 6.
- Thus,  $\rho$  is a smooth point if and only if the rank is 11.
- Therefore, we have a smooth point in  $\mathfrak{X}_2(\mathsf{SO}_4(\mathbb{C}))$  that is not in  $\mathfrak{X}_2(\mathsf{SO}_4(\mathbb{C}))^{irr}$  arising from a reductive group of semisimple rank 2 that is not a product with a rank 1 group.

- However, as the relations and generators are explicitly computed by Sikora for this variety, in *Mathematica* we can compute the rank of the Jacobian matrix at  $\rho$ , finding it to be 11.
- There are 17 generators in the presentation for the coordinate ring and the variety has dimension 6.
- Thus,  $\rho$  is a smooth point if and only if the rank is 11.
- Therefore, we have a smooth point in  $\mathfrak{X}_2(\mathsf{SO}_4(\mathbb{C}))$  that is not in  $\mathfrak{X}_2(\mathsf{SO}_4(\mathbb{C}))^{irr}$  arising from a reductive group of semisimple rank 2 that is not a product with a rank 1 group.
- However, note that the simple factors are each of rank 1.

Richardson essentially proved the following theorem in the semisimple case, which we generalize (answering most of the conjecture of Florentino-L-):

### **Theorem**

Let  $r \geq 2$ . If G is a connected reductive  $\mathbb{C}$ -group such that the Lie algebra of DG has simple factors of rank 2 or more, then:

- (1)  $\mathfrak{X}_r(G)^{red} \subset \mathfrak{X}_r(G)^{sing}$ ,
- (2)  $\mathfrak{X}_r(G)^{irr} \mathfrak{X}_r(G)^{good} \subset \mathfrak{X}_r(G)^{sing}$ , and all points in  $\mathfrak{X}_r(G)^{irr} \mathfrak{X}_r(G)^{good}$  are orbifold singularities,
- (3)  $\mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{sm}$ .

Richardson essentially proved the following theorem in the semisimple case, which we generalize (answering most of the conjecture of Florentino-L-):

### **Theorem**

Let  $r \geq 2$ . If G is a connected reductive  $\mathbb{C}$ -group such that the Lie algebra of DG has simple factors of rank 2 or more, then:

- (1)  $\mathfrak{X}_r(G)^{red} \subset \mathfrak{X}_r(G)^{sing}$ ,
- (2)  $\mathfrak{X}_r(G)^{irr} \mathfrak{X}_r(G)^{good} \subset \mathfrak{X}_r(G)^{sing}$ , and all points in  $\mathfrak{X}_r(G)^{irr} \mathfrak{X}_r(G)^{good}$  are orbifold singularities,
- (3)  $\mathfrak{X}_r(G)^{good} = \mathfrak{X}_r(G)^{sm}$ .

The previous examples/theorems show that if the semisimple factors are rank 1, there are examples where the theorem holds and examples where it is false.



## Thank you!

References are at

http://arxiv.org/a/lawton\_s\_1.

• I gratefully acknowledge that today's theorems are brought to you with the help of:





SIMONS FOUNDATION

### Advertisement

### Character Varieties: Experiments and New Frontiers



June 5-11, 2016

Organizers: Sean Lawton, Christopher Manon, Adam Sikora www.ams.org/programs/research-communities/mrc-16