衍射光栅实验报告

姓名: 张丛 学号: 2113662 课号: 0982 大物实验 M 组

一、实验目的:

了解光栅的分光特性;

测量光栅常量。

二、实验原理:

二元光栅是平行等宽、等间距的多狭缝,它的分光原理如图 4-4-1 所示。铁锋 S处于透镜 L, 的焦平面上, 并认为它是无限细的; G 是衍射光栅, 它有 N 个宽度为 a 的狭缝,相邻狭缝间不透明部分的宽度为 b。如果自透镜 L,出射的平行光垂直照 射在光栅上,透镜 L。将与光栅法线成 θ 角的光会聚在焦平面上的 P 点。光栅在 θ 方向上有主干涉极大的条件为 $(a+b)\sin\theta = k\lambda$ 图 4-4-1 先槽的分光原理 这就是垂直人射条件下的光栅方程,式中,4 为光谱的级次、λ 是波长、θ 是衍射角。 (a+b)是光栅常量。光栅常量通常用 d 表示, d=a+b。 当人射光不是垂直照射在光栅上,而是与光栅的法线成φ角时,光栅方程变为 $d(\sin \varphi \pm \sin \theta) = k\lambda$ 式中"+"代表人射光和衍射光在法线同侧,"-"代表在法线两侧。光栅的衍射角母 仍定义为与光栅表面法线的夹角。 在复色光以相同的人射角照射到光栅,不同波长的光对应有不同的 θ 角,也就 是说在经过光栅后,不同波长的光在空间角方向上被分开了,并按一定的顺序排 实验使用的低压汞灯,彼长见表 4-4-1。

三、实验器材:

分光仪、平面透射光栅、半透半反镜、汞灯。

四、实验步骤:

- 1、调节分光仪. 使其处于可以测量的状态;
- 2、调节光栅使光栅满足以下条件:
 - (1) 平行光垂直照射在光栅表面;

- (2) 光栅的刻痕垂直于刻度盘平面;
- (3) 狭缝与光栅刻痕平行;
- 3、利用汞绿线测定光栅常量;
- 2、测定汞光谱中两条黄线的波长, 计算角色散。

五、数据处理:

·测定光栅常量:

·测定光谱中两条黄线的波长:

	级数k	衍射角位置读数			角度2φ	无偏心差角度数2φ	衍射角の	波长)/nm
	NX XX	读数窗	正k级	负k级	州汉24	ル Mi O 在 用 及 数 2 Ψ	MALIERIA	//X (X/V IIII)
黄1	2	1	214°6'	174°75'	43°15'	42°4'	20°18'	573.6
		2	32°4'	-9°35'	41°39'			
黄2	2	1	212°8'	171°25'	40°43'	41°33'	20°47'	581.4
		2	32°48'	-9°25'	42°23'			

波长λ/nm	级数	衍射角位置读数			色座200	无偏心差角度数2φ	公計名。	小加亭百
		读数窗	正k级	负k级	用反2Ψ	九闸心左用及奴2Ψ	1/1別用甲	九伽市里
546.1	2	1	211°56'	172°35'	38°21'	36°56'	18°47'	3219
		2	30°56'	2°35'	36°34'			

定值误差: 黄1: |\lambda_m-\lambda_a|/\lambda_a*100%=|573.6-581.4|/577.0*100%=0.8562%;

黄 2: $|\lambda_{M} - \lambda_{A}|/\lambda_{A} * 100\% = |581.4 - 579.1|/579.1 * 100\% = 0.3441\%$ 。

角色散 $D=|\Phi \phi|/2.1$ nm= $|\phi_{\pm 1}-\phi_{\pm 2}|/2.1$ nm= $|20^{\circ}32'-20^{\circ}47'|/2.1$ nm=0.0327 rad/nm;

六、思考题(P.130):

实验中若没按要求将光栅放在仪器转轴位置,即仪器的转轴未通过光栅平面,对测量衍射角有影响吗?若有影响怎么解决?

答: 无影响。只需保证光栅和三角螺钉其中两个平行。

调节半透半反镜两面叉丝像与叉丝准线重合,可保证之后放上的光栅平面与入射光垂直。

七、总结与思考

掌握分光仪的调节与使用是实验基础,需要对上一个实验进行复习。 实验中找到 2 级黄光是难点,需要一步步调节,调节要细微精准。