5 Key Insights

- Light Rail and Rapid Route show consistent daily usage.
- School and Peak Service often show 0 values (likely non-operational on weekends).
- Missing values are only in the 'Other' column (~1%) and were filled.
- Local Route shows the highest variance in daily counts.
- No strong seasonal trend observed; short-term fluctuations are visible.

Why I Chose Random Forest Regressor for Forecasting:

Effectively Handles Non-Linearity

Random Forest can model complex, non-linear relationships, which are common in real-world transport data.

Robust to Outliers and Noise

As an ensemble method, it reduces the impact of anomalies, ensuring more stable and reliable predictions.

• Minimal Preprocessing Required

It performs well without the need for feature scaling or extensive data transformation, simplifying the pipeline.

Captures Complex Feature Interactions

Random Forests naturally handle feature interactions, which is valuable in uncovering patterns in time-based passenger data.

Resilient to Missing Data

The model works well even when missing values are imputed with basic strategies like median filling.

Good Predictive Performance with Default Parameters

It provides strong baseline results without heavy hyperparameter tuning, which is ideal for initial modeling phases.

• Suitable for Framed Supervised Forecasting

Although not a traditional time series model, Random Forest performs well when forecasting is treated as a regression problem using lagged features.

• Scalable and Easy to Implement

It integrates easily with Python libraries like Scikit-learn and scales efficiently for moderate-sized datasets.

