). (a) ntiz
(b) 成立
(C) 成立
(d)不成立,考虑下面两个关系。
R: Chr Int S: Chr Int
a / a /
c 3 1 6 2
波 0: Chr = a ,知 [G(R) X S]= 1
$ R \times \mathcal{F}(S) = $
所以命是民民成立。
(e) 成立
(f)不成立,考虑(d)中提及的R、S和日、则
$ \sigma_{\theta}(R) - S = 0$, $ R - \sigma_{\theta}(S) = $
所以命题不成立。
(9) 若上三上,则成立,否则考虑(d)中的尺,上:(Chr),上:(Int)则
$ \Pi_{L_1}(\Pi_{L_2}(R)) = \emptyset, \ \Pi_{L_1}(R) = \{\alpha, c\} $
(从) 成立
(1)不成立,考虑下面两个关系
R: Chr Int S: Chr Int
α α
$a \rightarrow i \qquad b \rightarrow$
设上: Int, 则 口1(R-S) = {1,2}
$\pi_1(R) - \pi_1(S) = \emptyset$

所以命题不成立。 (1) 不成立考虑下面3个关系

2. 美达式: $\Pi_{K}(\sigma_{amt-1}(\Gamma_{K}; count(*) \rightarrow amt(R)))U\Pi_{K}(\sigma_{K=null}(R))$ 若衷此式为空.则关系R上属性 K 满足实体完整性。上式左边检查是否有空的主键。

3. 表达式: $\Pi_F(写_{null} S) - \Pi_K(R)$

若走达式为空,则R和S的实例满足多婴完整性。该式看走选出非空外键, 成后若非空则存在不在R中的外键。

- 牛证明:沒R(A, A, …;An), S(A, Az, …, An),我们常证明 RMS⊆RNS里 RMS⊇RNS.
 - (1) 证明RMS SRAS.

对 $\forall t \in R$ MS, 沒 $t = (t_1, t_2, \dots, t_n)$, 例 $\exists r = (r_1, r_2, \dots r_n) \in R$, $S = (S_1, S_2, \dots S_n) \in S$, $S : t_i \neq t_i = r_i = s_i$, 故 t = r = S, $t \in R \cap S$, 所从 $R \mapsto S \subseteq R \cap S$

(2)证明 RMS 2 RMS

对 Vt ERAS, 设 t=(t,, t,..., tn),则

5. (a)

(b)

Product.maker
'D'
'E'

- 6. (a) {t[model] | te Laptop A Vu & Laptop(t[price] < u[price])}
- (b) { $t[screen][t \in Laptop \land \exists u \in Laptop(t[model] \neq u[model] \land t[screen] = u[screen])$ }
- (C) {t[maker] | t ∈ Product A t[type] = "printer" A Jue Printer (t [model] = u[model] A u[type] = "ink-jet") A Jue Printer (t[model] = u[model] A u[type] = "laser")}
- 7. (a) $\{(\alpha) \mid \exists b, c, d, e, f((\alpha, b, c, d, e, f) \in Laptop \land \forall \alpha', b', c', d'e', f'((\alpha', b', c', d'e', f')) \in Laptop \land f \nmid f')\}$

(b) $\{(e) \mid \exists \alpha, b, c, d, f(\alpha, b, c, d, e, f) \in Laptop \land \exists \alpha', b', c', d', e', f'(\alpha', b', c', d', e', f') \in Laptop \land \alpha \neq \alpha' \land e = e')\}$

(C) {(a) | ∃ b,d,f ((a,b,"printer") ∈ Product x (b,d, "ink-jet" f) ∈ Printer)

∩ ∃b,d,f'((a,b,"printer") ∈ Product x (b,d,"laser",f') ∈ Printer)
}