

KARADENİZ TEKNİK ÜNİVERSİTESİ ELEKTİRİK-ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS İLERİ GÖRÜNTÜ İŞLEME

Ders Sorumlusu	Dr.Öğr.Üyesi Mehmet ÖZTÜRK
Öğrenci	Murat Can VARER
Öğrenci No	379438
Proje Konusu	Kontrast germe uygulaması için parçalı fonksiyonlara dayalı (interpolasyon kullanmadan) MATLAB programı yazılacaktır.

1. Görüntü işleme nedir?

Görüntü işleme, dijital ortamda bulunan (jpeg,png,tif) pixellerle ifade edilmiş matrislerin gerekli algoritmalardan geçirilerek bilgi çıkartma işlemine denir.

2. Kontrast germe nedir?

Kontrast germe, monitörün tüm giri noktalarının kullanılmasını sağlanmasıdır.

- Örneğin, pixel değerlerimizin 35-180 arasında değer aldığını düşünelim.
- Bu görüntü ekranda gösterildiği zaman ekranın gri tonlarını gösterebilme yeteğenin sadece belli bir kısımlarını kullanmış olur.
- 0-34 ve 181-255 arasındaki değerleri kullanmamış olur.
- Bu yüzden görüntü nispeten karanlık ve düşük kontrastlıdır.
- Kontrast iyleştirme monitörün tüm gri noktalarının kullanılması için görüntünün gri tonlarının 0-255 arasına dağıtılmasıdır.

3. Ödevin Kodları

```
Editor - C:\Users\mcanv\Desktop\Advance_Image_Process\Hm1\Hm1.m*
       clear, clc% degiskenler sifirlama ve bellegi temizleme
       pathName = 'C:\Users\mcanv\Desktop\Advance_Image_Process\Hm1\';%dosyanin path'i
       fileName = 'Fig0316(2)(2nd from top).tif';%dosyanin adi
       I = imread([pathName fileName]);%dosyayı okuyoruz.
5 -
       figure(1);
6 -
       imshow(I)
7 –
8 –
9 –
       if size(I,3)>1 %görüntü renkli mi değil mi kontrol etmek için.
           I=rgb2gray(I);
10 -
       im = im2double(I);%değerleri virgüllü sayılara çeviriyoruz.
11 -
       im = log(1+im);
12 -
       im min = min(im(:));
13 -
       im_max = max(im(:));
14 -
       im = (im-im_min)*(255/(im_max-im_min));
15
       % im = im - min(im(:)); % en küçük değer 0
16
       % im = im/(max(im(:))); % en büyük değer 1
17
       % im = 255*im; % 0-255 arasına dönüştürme işlemi
18 -
19 -
       im = uint8(im); %unsigned integer 8 bite dönüştürme işlemi
       figure(2);
20 -
       imshow(im);
```

I	görüntü
Imax	Görüntüdeki en büyük pixel değeri
Imin	Görüntüdeki en küçük pixel değeri
qk	Kuanlama sayısı, örn=8bit için, 255 olur.

$$I' = (\frac{I - Imin}{Imin - Imax}) * qk$$

4. Görüntüler

Girdi Görüntü

Çıktı Görüntüsü

5. Sonuç

Bu ödevde kontrast iyleştirilmesi çalışması yapıldı ve monitördeki tüm pixel değerlerinin kullanılması sağlandı.