Homework 2

Jia Guo, Georgios Kontoudis ME5774 Nonlinear Systems Theory Professor Cornel Sultan

Fall 2017

Problem 1. Determine if the equilibrium $x_1 = x_2 = 0$ is unstable, stable, asymptotically stable, exponentially stable for

$$\dot{x_1} = x_2 - x_1^3 + x_1^5$$
$$\dot{x_2} = -x_1,$$

where $\mathbf{x} = [x_1 \ x_2]^{\top} \in \mathbb{R}^2$. State the strongest claim you can make and provide support for the conclusion. You can consider only local properties.

Solution. Let us consider a candidate Lyapunov function

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2,$$

that is positive definite V > 0 for all $x_1, x_2 \in \mathbb{R}^2 - \{0\}$ and V(0,0) = 0. The rate of change in V yields

$$\dot{V} = x_1 \dot{x}_1 + x_2 \dot{x}_2
= x_1 (x_2 - x_1^3 + x_1^5) + x_2 (-x_1)
= x_1^2 (x_1^4 - x_1^2).$$

The x_1, x_2 have to be confined in $D = \{ \mathbf{x} \in \mathbb{R}^2 : -1 < x_1 < 1 \}$ that includes the origin, so the function is locally Lipschitz. Then, $x_1^4 - x_1^2 < 0$ for all $x_1, x_2 \in D - \{0\}$ and $\dot{V} < 0$ results a valid Lyapunov function. The origin is an asymptotically stable equilibrium, yet V is radially unbounded,

$$V(x_1, x_2) \to \infty$$
 as $\|\mathbf{x}\| \to \infty$.

Thus the origin is a global asymptotically stable equilibrium.

Problem 2. Jia Guo

Problem 3. Jia Guo

Problem 4. For

$$\dot{x_1} = x_1 + x_2 - x_1(x_1^2 + x_2^2)$$

$$\dot{x_2} = -x_1 + x_2 - x_2(x_1^2 + x_2^2),$$

where $\mathbf{x} = [x_1 \ x_2]^{\top} \in \mathbb{R}^2$. Show that the equilibrium $x_1 = x_2 = 0$ is unstable using Chetaev's theorem.

Solution. For the given system we choose a Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2,$$

which is positive definite V > 0 for all $x_1, x_2 \in \mathbb{R} - \{0\}$ and V(0,0) = 0. The rate of change in V yields

$$\dot{V} = x_1 \dot{x_1} + x_2 \dot{x_2}
= x_1 (x_1 + x_2 - x_1 (x_1^2 + x_2^2)) + x_2 (-x_1 + x_2 - x_2 (x_1^2 + x_2^2))
= (x_1^2 + x_2^2) (1 - x_1^2 - x_2^2).$$

Since $x_1^2 + x_2^2 > 0$ for all $\mathbf{x} \in \mathbb{R}^2$, then in order to satisfy $\dot{V} > 0$ we need $1 - x_1^2 - x_2^2 > 0$ to hold. This means that $\|\mathbf{x}\| < 1$. Then, we define the set $B_r = \{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\| \le 0.9\} \subset U$, where $U = \{\mathbf{x} \in B_r : V(\mathbf{x}) > 0\}$. Therefore, by employing Chetaev's theroem we conclode that $\mathbf{x} = 0$ is an unstable equilibrium.