Acid-Base Equilibria

| Fundamentals

Description	Equations
Autoionization of water	$2\mathrm{H}_2\mathrm{O} \mathop{\Longrightarrow}\limits_{\mathop{\longleftarrow}\limits_{}} \mathrm{H}_3\mathrm{O}^+ + \mathrm{OH}^- \ K_w = [\mathrm{H}_3\mathrm{O}^+][\mathrm{OH}^-] = 10^{-14}$
pH function	$\mathrm{pH} = -\log{[\mathrm{H_3O^+}]}$
Acid dissociation constant	$egin{aligned} \mathbf{H}\mathbf{A} + \mathbf{H}_2\mathbf{O} & \Longrightarrow \mathbf{H}_3\mathbf{O}^+ + \mathbf{A}^- \ K_a &= rac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{A}^-]}{\mathbf{H}\mathbf{A}} \end{aligned}$
Base dissociation constant	$egin{aligned} \mathbf{B} + \mathbf{H}_2 \mathbf{O} & \Longrightarrow \mathbf{H} \mathbf{B}^+ + \mathbf{O} \mathbf{H}^- \ K_b &= rac{[\mathbf{H} \mathbf{B}^+][\mathbf{O} \mathbf{H}^-]}{[\mathbf{B}]} \end{aligned}$
Relationship between dissociation constants	$K_w = K_a K_b \ \mathrm{p} K_a + \mathrm{p} K_b = \mathrm{p} K_w = 14$
Indicators	$rac{ ext{HIn} + ext{H}_2 ext{O} \Longrightarrow ext{H}_3 ext{O}^+ + ext{In}^-}{rac{ ext{[H}_3 ext{O}^+]}{K_a} = rac{ ext{[HIn]}}{ ext{[In}^-]}$

Buffer and titration

Equations
$\mathrm{pH} = \mathrm{p}K_a + \lograc{[\mathrm{A}^-]_0}{[\mathrm{H}\mathrm{A}]_0}$
$\mathrm{pH} = \mathrm{p}K_a$ (where $\mathrm{[HA]} = \mathrm{[A}^-\mathrm{]}$)
(1) Stoichiometric calculation of neutralization gives new acid/base concentration. (2) calculate pH using buffer (H-H equation).
$\mathrm{mol}\ \mathrm{acid} = \mathrm{mol}\ \mathrm{base}$ $c_0 V_0 = c_e V_e$
Calculate pH using excess base that wasn't consumed in the neutralization reaction.

| Polyprotic acid

Description	Equations
Polyprotic acid reactions	$egin{aligned} \mathrm{H}_2\mathrm{A} + \mathrm{H}_2\mathrm{O} & \Longrightarrow \mathrm{HA}^- + \mathrm{H}_3\mathrm{O}^+(K_{a1}) \ \mathrm{HA}^- + \mathrm{H}_2\mathrm{O} & \Longrightarrow \mathrm{A}^{2-} + \mathrm{H}_3\mathrm{O}^+(K_{a2}) \ \mathrm{A}^{2-} + \mathrm{H}_2\mathrm{O} & \Longrightarrow \mathrm{HA}^- + \mathrm{OH}^-(K_{b1}) \ \mathrm{HA}^- + \mathrm{H}_2\mathrm{O} & \Longrightarrow \mathrm{H}_2\mathrm{A} + \mathrm{OH}^-(K_{b2}) \end{aligned}$

Description	Equations
Relationship between dissociation constants	$K_{b1} = rac{K_w}{K_{a2}} \ K_{b2} = rac{K_w}{K_{a1}}$
Effect of pH on solution composition	$\begin{split} \frac{[\mathrm{HA}^-]}{[\mathrm{H}_2\mathrm{A}]} &= \frac{K_{a1}}{[\mathrm{H}_3\mathrm{O}^+]} \\ \frac{[\mathrm{A}^{2-}]}{[\mathrm{HA}^-]} &= \frac{K_{a2}}{[\mathrm{H}_3\mathrm{O}^+]} \\ \mathrm{p}K_{a1} \text{ and } \mathrm{p}K_{a2} \text{ are located at the intersections of titration} \\ \mathrm{curve} \text{ (half equivalence point)}. \end{split}$

| Exact treatment of acid-base equilibria

Description	Equations
pH of dilute weak acid $x \equiv [{ m H_3O}^+]$	$x^3 + (c_b + K_a)x^2 - (K_w + c_a K_a)x - K_a K_w = 0$
Amphoteric equilibria $ ext{for } [ext{amph}] \gg K_{a1} \ [ext{amph}] K_{a2} \gg K_w$	$egin{aligned} ext{pH} &pprox rac{1}{2} (ext{p} K_{a1} + ext{p} K_{a2}) \ [ext{H}_3 ext{O}^+] &pprox \sqrt{K_{a1}K_{a2}} \end{aligned}$

Solution Equilibria

Description	Equations
Solubility product	$egin{aligned} &\operatorname{M}_a \operatorname{X}_b & \Longrightarrow a \operatorname{M}^{b+} + b \operatorname{X}^{a-} \ &K_{sp} = [\operatorname{M}^{b+}]^a [\operatorname{X}^{a-}]^b \end{aligned}$
Complex ion equilibria Formation constant	$egin{aligned} & \operatorname{M}^{a+} + \operatorname{X} & \Longrightarrow \operatorname{MX}^{a+}(K_1) \ & \operatorname{MX}^{a+} + \operatorname{X} & \Longrightarrow \operatorname{MX_2}^{a+}(K_2) \ & \operatorname{M}^{a+} + 2\operatorname{X} & \Longrightarrow \operatorname{MX_2}^{a+}(\operatorname{K}_f) \ & K_f = K_1K_2 \end{aligned}$
Selective precipitation of ions	$egin{align*} \mathbf{M}_a \mathbf{X}_b & \Longrightarrow a \mathbf{M}^{b+} + b \mathbf{X}^{a-} \ [\mathbf{M}^{b+}]^a &= rac{K_{sp}}{[\mathbf{X}^{a-}]^b} \ a \log \left[\mathbf{M}^{b+} ight] &= -b \log \left[\mathbf{X}^{a-} ight] + \log K_{sp} \ \end{aligned}$ The linear equation can be plotted on a log-log M vs X graph.
Metal sulfides	$H_2S + H_2O \Longrightarrow H_3O^+ + HS^-$ $MS + H_2O \Longrightarrow M^{2+} + HS^- + OH^-$

Electrochemistry

| Fundamentals

Equations
spontaneous, produce electricity to do work
nonspontaneous, use electricity supply to do work
reduction, gain electron

Description	Equations
anode	oxidation, lose electron
Electrostatic potential	$E=rac{U_e}{q}$
Change in electrostatic potential energy	$\Delta U_e = q \Delta E$
Total charge passed in current in given time	Q=it
Moles of electrons transferred in current in given time	$n=rac{it}{F}$
pH meter reaction at cathode	$2\mathrm{H_3O^+} + 2\mathrm{e^-} \longrightarrow \mathrm{H_2} + 2\mathrm{H_2O}$
pH meter reaction at anode	$ m H_2 + 2H_2O \longrightarrow 2H_3O^+ + 2e^-$

| Cell potentials and Gibbs free energy

Description	Equations
Electrical work $(\Delta P=0;\Delta T=0)$	$egin{aligned} w &= \Delta U_e = -QE_{ m cell} = -itE_{ m cell} \ w_{ m rev} &= \Delta G \end{aligned}$
Standard cell potential	$E_{ m cell}^\circ = E_{ m red}^\circ({ m cathode}) - E_{ m red}^\circ({ m anode})$
Change in Gibbs free energy at standard conditions and standard cell potential	$\Delta G^{\circ} = -nFE_{ m cell}^{\circ}$
Change in Gibbs free energy at standard conditions and equilibrium constant	$\Delta G^\circ = -RT \ln K$
Cell potential at standard conditions	$E_{ ext{cell}}^{\circ} = rac{RT}{nF} \ln K = rac{0.0257 ext{V}}{n} \ln K$
Change in Gibbs free energy at nonstandard conditions	$\Delta G = \Delta G^{\circ} + RT \ln Q$

| Concentration effect and Nerst Equation

Description	Equations
Nerst Equation	$E=E^{\circ}-rac{RT}{nF}\ln Q$
cell potential at nonstandard conditions	$E=E^{\circ}-rac{0.0592\mathrm{V}}{n}\log Q \ (\mathrm{at}\ 25^{\circ}\mathrm{C})$
Measuring equilibrium constant from standard cell potential	$egin{aligned} \ln K &= rac{nF}{RT} E_{ ext{cell}}^{\circ} \; (ext{at 25}^{\circ} ext{C}) \ \log K &= rac{n}{0.0592 ext{V}} E_{ ext{cell}}^{\circ} \; (ext{at 25}^{\circ} ext{C}) \end{aligned}$

Kinetics

| Rate laws

Description	Equations
Rate of reaction	$rac{a\mathrm{A} + b\mathrm{B} \longrightarrow c\mathrm{C} + d\mathrm{D}}{\mathrm{rate}} = -rac{1}{a}rac{d[\mathrm{A}]}{dt} = -rac{1}{b}rac{d[\mathrm{B}]}{dt}$

Description	Equations
	$\mathrm{rate} = rac{1}{c}rac{d[\mathrm{C}]}{dt} = rac{1}{d}rac{d[\mathrm{D}]}{dt}$
First order rate law Negative line in ln[A] vs t graph.	$egin{aligned} ext{rate} &= -rac{1}{a}rac{d[ext{A}]}{dt} = k[ext{A}] \ &\ln \left[ext{A} ight]_t = -akt + \ln \left[ext{A} ight]_0 \ &[ext{A}]_t = \left[ext{A} ight]_0 e^{-akt} \end{aligned}$
Second order rate law Positive line in 1/[A] vs t graph.	$egin{aligned} ext{rate} &= -rac{1}{a}rac{d[ext{A}]}{dt} = k[ext{A}]^2 \ & rac{1}{\left[ext{A} ight]_t} = rac{1}{\left[ext{A} ight]_0} + akt \end{aligned}$
Zeroth order rate law Negative line in [A] vs t graph.	$egin{aligned} ext{rate} &= -rac{1}{a}rac{d[ext{A}]}{dt} = k \ [ext{A}]_t &= -akt + [ext{A}]_0 \end{aligned}$

| Kinetics and chemical equilibrium

Description	Equations
Principle of detailed balance equilibrium rate of elementary reaction is balanced by (equal to) the rate of reverse reaction	$egin{aligned} a\mathbf{A} + b\mathbf{B} & \stackrel{k_1}{\overleftarrow{\stackrel{k_{-1}}{\overleftarrow{k_{-1}}}}} c\mathbf{C} + d\mathbf{D} \ k_1[\mathbf{A}]^a[\mathbf{B}]^b &= k_{-1}[\mathbf{C}]^c[\mathbf{D}]^d \ K_1 &= rac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b} \ K_1 &= rac{k_1}{k_{-1}} \end{aligned}$
Overall relationship between equilibrium constant and rate constant	$K = \prod_i K_i = rac{\prod_i k_i}{\prod_i k_{-i}}$

| Steady-state approximation

Description	Equations
Steady-state approximation no single step in the reaction is much slower than the others; assume concentration of intermediates remain constant throughout reaction (B is neighboring molecule) (Specific reaction may differ)	$egin{aligned} { m A} &\longrightarrow { m C} \; { m (overall)} \ { m A} + { m B} &\stackrel{k_1}{\longleftrightarrow} { m I} + { m B} \ { m I} &\stackrel{k_2}{\longrightarrow} { m C} \ &rac{d[{ m I}]}{dt} = 0 = k_1[{ m A}][{ m B}] - k_{-1}[{ m I}][{ m B}] - k_2[{ m I}] \ [I] &= rac{k_1[{ m A}][{ m B}]}{k_{-1}[{ m B}] + k_2} \ { m rate} &= rac{d[{ m C}]}{dt} = k_2[{ m I}] = rac{k_1k_2[{ m A}][{ m B}]}{k_{-1}[{ m B}] + k_2} \end{aligned}$
$\label{eq:Enzyme Kinetics (Michaelis-Menten)} Enzyme Kinetics (Michaelis-Menten) \\ follows analysis from steady-state approximation: intermediate [ES] remains constant; total enzyme [E_T] \\ remains constant$	$egin{aligned} \mathbf{E} + \mathbf{S} &\longrightarrow \mathbf{P} ext{ (overall)} \ \mathbf{E} + \mathbf{S} & & & \\ & & & \\ & & & \\ \mathbf{ES} & & & \\ & & \\ \mathbf{ES} & & \\ & $

Description	Equations
	$0 = k_1[{ m E_T}][{ m S}] - k_1[{ m ES}][{ m S}] - k_{-1}[{ m ES}] - k_2[{ m ES}]$
	$[ext{ES}] = rac{k_1[ext{E}_{ ext{T}}][ext{S}]}{k_1[ext{S}] + k_{-1} + k_2} = rac{[ext{E}_{ ext{T}}][ext{S}]}{[ext{S}] + K_m}$
Michaelis-Menten equation rate of enzyme catalysis	$ ext{rate} = rac{d[ext{P}]}{dt} = k_2[ext{ES}] = rac{k_2[ext{E}_{ ext{T}}][ext{S}]}{[ext{S}] + K_m}$
Michaelis-Menten constant	$K_m=rac{k_{-1}+k_2}{k_1}$
Maximum rate of enzyme catalysis $([\mathrm{S}]\gg K_m)$	$egin{aligned} rac{d[ext{P}]}{dt} &= rac{k_2[ext{E}_{ ext{T}}][ext{S}]}{[ext{S}] + K_m} &= rac{V_{ ext{max}}[ext{S}]}{[ext{S}] + K_m} \ V_{ ext{max}} &= k_2[ext{E}_{ ext{T}}] \end{aligned}$
Experimental determination of Michaelis-Menten constant	$K_m = [\mathrm{S}] \left(\left(rac{V_{\mathrm{max}}}{dP/dt} ight) - 1 ight)$
Observation from dP/dt vs. [S] graph	When $[{ m S}]=K_m$, $rac{d[{ m P}]}{dt}=rac{1}{2}V_{ m max}$ When $[{ m S}] o\infty$, $rac{d[{ m P}]}{dt} o V_{ m max}$
Turnover number of enzyme (when saturated, $[E_{\mathrm{T}}] = [ES]$)	$k_{ m cat} \equiv k_2 = rac{V_{ m max}}{{ m [E_T]}}$
Linearization of Michaelis-Menten equation	$rac{1}{dP/dt} = \left(rac{K_m}{V_{ m max}} ight)rac{1}{[{ m S}]} + rac{1}{V_{ m max}}$

| Effect of temperature on reaction rates

Description	Equations
Arrhenius equation temperature dependence of reaction rate	$k=Ae^{-E_a/RT}$
Linearization of Arrhenius equation experimental determination of activation energy	$egin{aligned} \ln k &= \ln A - rac{E_a}{RT} \ \ln rac{k_2}{k_1} &= -rac{E_a}{R} \left(rac{1}{T_2} - rac{1}{T_1} ight) \end{aligned}$

Nuclear Chemistry

| Baryons and leptons

Baryon number is conserved.

Types of Baryon	Symbol	Baryon Number	Charge
Proton	p^+	+1	+1
Antiproton	$ar{\mathrm{p}}$	-1	-1
Neutron	n	+1	0
Antineutron	ñ	-1	0

Lepton number is conserved.

Types of Lepton	Symbol	Lepton Number	Charge
Electron	e^- , eta^-	+1	-1
Positron	e^+ , $oldsymbol{eta}^+$	-1	+1
Neutrino	$ u_e$	+1	0
Antineutrino	$ar{ u}_e$	-1	0

| Nuclear decay process

Decay Type	Emitted Particle	ΔZ Atomic Number	ΔN Neutron Number	ΔA Mass Number	Example
lpha decay	${}^4_2{ m He}$	-2	-2	-4	$^{238}\mathrm{U} \longrightarrow ^{234}\mathrm{Th} + {}_{2}^{4}\mathrm{He}$
eta^- decay	energetic ${ m e}^-,ar u_e$	+1	-1	0	$^{14}{ m C} \longrightarrow ^{14}{ m N} + eta^- + ar u_e$
eta^+ emission	energetic e^+, u_e	-1	+1	0	$^{22}{ m Na} \longrightarrow ^{22}{ m Ne} + eta^+ + u_e$
Electron capture	$ u_e$	-1	+1	0	$^{207}{ m Bi} + { m e}^- \longrightarrow ^{207}{ m Pb} + u_e$
γ -ray emission	photon $h u$	0	0	0	$^{60}\mathrm{Ni}^*$ \longrightarrow $^{60}\mathrm{Ni}$ + γ
Internal conversion	e^-	0	0	0	$^{125}{ m Sb}^m \longrightarrow ^{125}{ m Sb} + { m e}^-$

Description	Equations
Proton-neutron conversion	${}^1_1 { m p}^+ \longrightarrow {}^1_0 { m n} + {}^0_1 { m e}^+ + u_e \ {}^1_0 { m n} \longrightarrow {}^1_1 { m p}^+ + {}^0_{-1} { m e}^- + ar{ u}_e$

| Mass-energy relationship

Description	Equations
Mass-energy equivalence	$E^2 = m_0^2 c^4 + p^2 c^2 \ \Delta E = c^2 \Delta m \ \ (p=0)$
Spontaneity of nuclear reactions	$\Delta E < 0 \implies \Delta m < 0$
Energy equivalent conversion	$rac{1\mathrm{u}}{931.494\mathrm{MeV}}=1$

| Kinetics of radioactive decay

Description	Equations
Activity	$A=-rac{dN}{dt}=kN$
Activity and number of nuclei over time	$egin{aligned} A_t &= A_0 e^{-kt} \ N_t &= N_0 e^{-kt} \end{aligned}$

Description	Equations
Decay constant and half life	$k=rac{\ln 2}{t_{1/2}}$

Introduction to Quantum Mechanics

| Waves and energy quantization

Description	Equations
Wavelength and frequency of electromagnetic waves	$c=\lambda u$
Quantization of energy	$arepsilon = nh u \ n = 1, 2, 3, \ldots$
Atomic spectra of H atom	$ u = \left(rac{1}{4} - rac{1}{n^2} ight) imes 3.29 imes 10^{15} ext{ s}^{-1} onumber \ n = 3, 4, 5, \ldots$
Energy quantization of photon	$\Delta E = h u$
Frank-Hertz experiment verifies Bohr's model	$ u = rac{\Delta E}{h} = rac{eV_{ m thr}}{h}$

| Bohr's model

Description	Equations
Total mechanical energy of H atom	$E=rac{1}{2}m_ev^2-rac{Ze^2}{4\pi\epsilon_0r}$
Uniform circular motion of electron	$rac{Ze^2}{4\pi\epsilon_0 r}=m_erac{v^2}{r}$
a classical description	$4\pi\epsilon_0 r$ r
Quantized angular momentum of electron	$egin{aligned} L &= m_e v r = n rac{h}{2\pi} \ n &= 1, 2, 3, \dots \end{aligned}$
Allowed radius of H atom	$r_e=rac{\epsilon_0 n^2 h^2}{\pi Z e^2 m_e}=rac{n^2}{Z}a_0$
Allowed velocity of H atom	$v_n = rac{nh}{n\pi m_e r_n} = rac{Ze^2}{2\epsilon_0 nh}$
Allowed energy of H atom	$egin{aligned} E_n &= -rac{Z^2 e^4 m_e}{8 \epsilon_0^2 n^2 h^2} \ &= -(2.18 imes 10^{-18} ext{J}) rac{Z^2}{n^2} \ &= -(13.60 ext{eV}) rac{Z^2}{n^2} \ n &= 1, 2, 3, \dots \end{aligned}$
Emission atomic spectra of H atom	$ u = (3.29 imes 10^{15} \mathrm{s}^{-1}) Z^2 \left(rac{1}{n_f^2} - rac{1}{n_i^2} ight) onumber \ n_i > n_f = 1, 2, 3, \dots$
Absorption atomic spectra of H atom	$egin{align} u &= (3.29 imes 10^{15} \mathrm{s}^{-1}) Z^2 \left(rac{1}{n_i^2} - rac{1}{n_f^2} ight) \ n_f &> n_i = 1, 2, 3, \dots \end{array}$

| Wave-particle duality

Description	Equations
Planck's constant lazy physicist/chemist	$\hbar=rac{h}{2\pi}$
Conservation of energy in photoelectric effect	$h u = E_{lost} + K + \Phi$
Work function of metal	$\Phi = h \nu_0$
Maximum kinetic energy of photoelectrons $(E_{lost}=0)$	$E_{ m max}=K=rac{1}{2}mv_e^2=rac{p^2}{2m}=h u-\Phi$
de Broglie wavelength	$\lambda = rac{h}{p} = rac{h}{mv}$
Heisenberg uncertainty principle	$(\Delta x)(\Delta p) \geq rac{h}{4\pi} = rac{\hbar}{2}$
1D standing wave	$f(x,t) = A\sin(kt)\sin(\omega t)$
Wave traveling to the right	$f(x,t) = A \sin(\omega t - kx)$

| The Schrodinger equation

Description	Equations
Time independent Schrodinger equation	$egin{split} -rac{h^2}{8\pi^2m}rac{d^2\psi(x)}{dx^2} + V(x)\psi(x) &= E\psi(x) \ \hat{H}\Psi &= E\Psi \ \hat{H} &= -rac{h^2}{8\pi^2m}rac{d^2}{dx^2} + V(x) \end{split}$
Time dependent Schrodinger equation	$\hat{H}\Psi=i\hbarrac{\partial\Psi}{\partial t}$
Normalization of wave function	$\int_{-\infty}^{\infty} \psi^* \psi \; dx = 1$
Boundary conditions of wave functions	$\lim_{x o\pm\infty}\psi(x)=0$

| Particle in a box

Description	Equations
Wave function of 1D particles in a box	$\psi_n(x) = \sqrt{rac{2}{L}} \sin\left(rac{n\pi x}{L} ight) n \ n = 1, 2, 3, \ldots$
Allowed energy of 1D particles in a box	$E_n = rac{n^2 h^2}{8mL^2} \ n = 1, 2, 3, \dots$
Allowed energy of 3D particles in cubic boxes	$egin{aligned} E_{n_x n_y n_z} &= rac{h^2}{8mL^2} [n_x^2 + n_y^2 + n_z^2] \ n_x &= 1, 2, 3, \dots \ n_y &= 1, 2, 3, \dots \ n_z &= 1, 2, 3, \dots \end{aligned}$

Description	Equations
Wave function of 2D particles in square boxes	$egin{aligned} \Psi_{n_x n_y}(x,y) \ =& \psi_{n_x}(x)\psi_{n_y}(y) \ =& rac{2}{L}\sin\left(rac{n_x\pi x}{L} ight)\sin\left(rac{n_y\pi y}{L} ight) \end{aligned}$
Wave function of 3D particles in cubic boxes	$egin{aligned} &\Psi_{n_x n_y n_z}(x,y,z) \ =& \psi_{n_x}(x) \psi_{n_y}(y) \psi_{n_z}(z) \ =& \left(rac{2}{L} ight)^{3/2} \sin\left(rac{n_x \pi x}{L} ight) \sin\left(rac{n_y \pi y}{L} ight) \sin\left(rac{n_z \pi z}{L} ight) \end{aligned}$

Quantum Mechanics and Atomic Structure

| The hydrogen atom

Description	Equations
	$egin{aligned} E_n &= -rac{Z^2 e^4 m_e}{8 \epsilon_0^2 n^2 h^2} \ &= -(2.18 imes 10^{-18} ext{J}) rac{Z^2}{n^2} \ &= -(13.60 ext{eV}) rac{Z^2}{n^2} \ n &= 1, 2, 3, \dots \end{aligned}$
	$egin{aligned} L^2 &= l(l+1)rac{h^2}{4\pi^2} \ l &= 0, 1, \dots, n-1 \end{aligned}$
$\label{eq:magnetic quantum number} \ensuremath{m}$ determines z-component of angular momentum of electron	$egin{aligned} L_z &= mrac{h}{2\pi} \ m &= -l, -l+1, \ldots, 0, \ldots, l-1, l \end{aligned}$
Spin	$m_s=-rac{1}{2},rac{1}{2}$
Wave function of electron in quantum state (n,l,m) have radial part and angular part	$\psi_{nlm}(r, heta,\phi)=R_{nl}(r)Y_{lm}(heta,\phi)$
Wave function as probability density	$egin{aligned} (\psi_{nlm})^2 dV &= [R_{nl}(r)]^2 [Y_{lm}]^2 dV \ dV &= r^2 \sin heta \; dr \; d heta \; d\phi \end{aligned}$
Radial probability density (s orbital)	$r^2[R_{nl}(r)]^2\ dr$
Average value of distance of electron from nucleus in an orbital	$ar{r}_{nl}=rac{n^2a_0}{Z}\left[1+rac{1}{2}\left[1-rac{l(l+1)}{n^2} ight] ight]$

| Hartree orbital model for many-electron atoms

Description	Equations
Orbital approximation for atoms	$\psi_{ ext{atom}} = \prod_i arphi_i(r_i)$
Coulomb potential of electron moving in shell n and effective nuclear charge	$V_n^{ m eff}(r) pprox -rac{Z_{ m eff}(n)e^2}{r}$

Quantum Mechanics and Molecular Structure

| Exact molecular model for ${\rm H_2}^+$

Description	Equations
Born-Oppenheimer approximation	$\psipprox\psi_{e^-}+\psi_{ m nuclei}$
light slow nuclei; heavy fast electron	$E_{ m total} = E_{e^-} + E_{ m nuclei}$

| Molecular Orbital (MO) and Linear Combination of Atomic Orbitals (LCAO) Approximation

Description	Equations
MO-LCAO approximation for bonding orbital of ${ m H_2}^+$	$1\sigma_gpprox\sigma_{g1s}=C_g[arphi_{1s}^A+arphi_{1s}^B]$
MO-LCAO approximation for antibonding orbital of ${\rm H_2}^+$	$1\sigma_u^*pprox\sigma_{u1s}^*=C_u[arphi_{1s}^A-arphi_{1s}^B]$
Bond order	$\mathrm{B.O.} = rac{1}{2} (\mathrm{bonding} \ e^ \mathrm{antibonding} \ e^-)$

Spectroscopy

| Electronic spectroscopy

Ultraviolet-Visible (UV-Vis) Spectroscopy

Description	Equations
Transmittance $(I_0$ is incident light; I is transmitted light)	$T=rac{I}{I_0}$
Absorbance	$egin{aligned} A &= \log rac{I_0}{I} \ A &= -\log T \end{aligned}$
Beer's Law absorbance depends on molar absorption coefficient, concentration, and path legth	$egin{aligned} I &= I_0 10^{-arepsilon cl} \ A &= arepsilon cl \end{aligned}$

| Vibrational spectroscopy - harmonic oscillator model

Infrared (IR) Spectroscopy

Description	Equations
Reduced mass of system	$\mu=rac{m_1m_2}{m_1+m_2}$
Frequency	$\omega = \sqrt{rac{k}{\mu}}$
Characteristic frequency	$ u=rac{\omega}{2\pi}=rac{1}{2\pi}\sqrt{rac{k}{\mu}}$
Vibrational energy	$egin{aligned} E_n &= (n+rac{1}{2})\hbar\omega = (n+rac{1}{2})h onumber \ n=1,2,3,\ldots \end{aligned}$