Durée: 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

— Les questions peuvent présenter une ou plusieurs réponses valide
--

- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.
- N'oubliez pas vos nom, prénom et login (p62xxx). Par exemple, p62375 s'encode ainsi :

Bon courage!

* * * * * * * * * * * * * * * * * *

1. On considère l'application $f: [-1.5, 1.5] \to \mathbb{R}$ dont la représentation graphique est donnée ci-dessous.

- $\begin{array}{lll} \text{(1)} \square & \text{L'image de 1 par } f \text{ est \'egale \`a -1} \\ \text{(2)} \square & \text{Si } 0 < y < 1.5, \text{ alors } y \text{ poss\`ede trois ant\'ec\'edents} \\ \text{(3)} \square & f \text{ est injective} \\ \text{(4)} \square & f \text{ est surjective} \\ \text{(5)} \square & \text{aucune des r\'eponses pr\'ec\'edentes n'est correcte.} \end{array}$

2. On considère $\binom{n}{3}$ avec $n \in \mathbb{N}$. Peut-on écrire :

$${}_{(1)}\square \quad \frac{n!}{6(n-3)!} \qquad {}_{(2)}\square \quad \frac{3!}{6n!} \qquad {}_{(3)}\square \quad \frac{3!}{(6n)!} \qquad {}_{(4)}\square \quad \frac{n(n-1)(n-2)(n-3)}{6} \qquad {}_{(5)}\square \quad \frac{n(n-1)(n-2)(n-3)}{6}$$

3. Il y a 120 élèves en CIR1-CNB1. Si on veut former des groupes de projets de 4 élèves, combien y a-t-il de possibilités?

- (2) $\binom{120}{4}$ $_{(1)}\Box$ 30 (4) $\Box \frac{120!}{4!}$ $_{(3)}\Box$ 120!
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

4.	Soit $z_1 = 1 + i$ et $z_2 = 2 + i$.
	Les écritures trigonométrique et exponentielle de $\overline{z_1}$ sont

5. Le produit z_1z_2 (pour z_1 et z_2 définis à la question précédente) a pour écriture algébrique :

$$(1)$$
 \square $2+2i$ (2) \square $1+3i$ (3) \square $2+2i$ (4) \square $1+2i$ (5) \square aucune des réponses précédentes n'est correcte.

6. Soit $f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}$ telle que $f(x) = \frac{x+1}{x-2}$

7. Simplifier la somme suivante : $\sum_{k=0}^{n} \binom{n}{k} 3^k$

$$(1)$$
 \square 3^n (2) \square 4^n (3) \square 3^n-1 (4) \square 4^n-3 (5) \square aucune des réponses précédentes n'est correcte.

8. Quelle est la partie réelle de $(1-2\mathrm{i})^2 e^{\mathrm{i}2\pi}$?

$$_{(1)}\square$$
 3 $_{(2)}\square$ -3 $_{(3)}\square$ 5 $_{(4)}\square$ -5 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

9. D'après Euler, $2\cos\theta$ est égal à

10. Soit
$$S = \sum_{k=1}^{n} 3$$
 et $T = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \ldots + n^2$.

Combien S et T valent?

$$(1)\square$$
 $S=3$ $(2)\square$ $S=3n$ $(3)\square$ $T=\frac{n(n+1)(2n+1)}{6}$ $(4)\square$ $T=\frac{n(n+1)}{2}$ $(5)\square$ aucune des réponses précédentes n'est correcte.

11. Soient $\vec{u} = (-4, 2)$ et $\vec{v} = (-2, -4)$ deux vecteurs et θ l'angle compris entre ces deux vecteurs. Cochez les affirmations correctes.

$$\vec{u} \cdot \vec{v} = (0,0)$$
 $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (3) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (4) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{v}$ sont colinéaires.

12. Le produit $\prod_{i=1}^{n} (5a_i)$ est égal à

$$(1)^{\square}$$
 $5\prod_{i=1}^{n} a_i$ $(2)^{\square}$ $5^n\prod_{i=1}^{n} a_i$ $(3)^{\square}$ $5^{n-1}\prod_{i=1}^{n} a_i$

 $_{(4)}\square$ $5n\prod_{i=1}^n a_i$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

13. On choisit $a \in \mathbb{R}$, tel que $a \neq 1$. Simplifier la somme suivante : $\sum_{k=1}^n a^k$

$${}_{(1)}\Box \quad a^{n} \qquad {}_{(2)}\Box \quad na^{k} \qquad {}_{(3)}\Box \quad \frac{a-a^{n+1}}{1-a} \qquad {}_{(4)}\Box \quad a\frac{1-a^{n+1}}{1-a}$$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

14. En se basant sur le repère suivant d'origine O, cocher les affirmations correctes :

$$(1)$$
 $\overrightarrow{AC} = -5 - \frac{1}{2}i$

- (2) $||\overrightarrow{OA}|| = 5$
- (3) L'affixe de E est réelle
- (4) La partie imaginaire des affixes de B et D est négative
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 15. On considère $\sum_{k=5}^{1006} n!$

Combien de termes comporte cette somme?

$$_{(1)}\square$$
 1000 $_{(2)}\square$ 1001 $_{(3)}\square$ 1002 $_{(4)}\square$ 1001!

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

16. Soient $\vec{u} = (1, 1, 0)$ et $\vec{v} = (1, -1, 0)$ deux vecteurs.

Cochez les affirmations correctes.

$$\vec{u} \wedge \vec{v} = \vec{0}$$
 $\vec{u} \wedge \vec{v} = \vec{v} \wedge \vec{u}$ $\vec{u} \wedge \vec{v} = (0, 0, -2)$ $\vec{u} \wedge \vec{v} = \vec{v} \wedge \vec{u}$ of $\vec{v} = \vec{v} \wedge \vec{v} = (0, 0, -2)$ aucune des réponses précédentes n'est correcte.

17. Pour les 4 questions qui suivent, on considère $z_1=1+\mathrm{i}$ et $z_2=\sqrt{3}+\mathrm{i}$. Le module de z_1 vaut :

$${}_{(1)}\Box \quad 2 \qquad {}_{(2)}\Box \quad \sqrt{2} \qquad {}_{(3)}\Box \quad (1+\mathrm{i})^2 \qquad {}_{(4)}\Box \quad \sqrt{1+i^2}$$

 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

18. Le module de z_2 vaut :

- $_{(1)}\Box$ 2 $_{(2)}\Box$ $\sqrt{2}$ $_{(3)}\Box$ 4 $_{(4)}\Box$ $\sqrt{3+i^2}$
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

19. Le produit z_1z_2 a pour module :

- $|z_1| \square |z_1| |z_2| = |z_1| |z_2| = |z_1| \square |z_1| = |z_1| \square |z_2| = |z_1| \square |z_2| = |z_1| \square |z_1| = |z_1| \square |z_2| = |z_1| \square |z_1| = |z_1| \square |z_2| = |z_1| \square |z_1| = |z_1| =$
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

20. La somme z_1+z_2 a pour module :

$$|z_1 + z_2| \le |z_1| + |z_2|$$
 $|z_1| + |z_2| \le |z_1 + z_2|$ $|z_1| + |z_2| \le |z_1 + z_2|$ $|z_1| + |z_2| \le |z_1 + z_2|$ (3) $|z_1| + |z_2| \le |z_1 + z_2|$ (4) $|z_1| + |z_2| \le |z_1 + z_2|$ aucune des réponses précédentes n'est correcte.