Probabilità Condizionata

Lorenzo Vaccarecci

8 Marzo 2024

1 Esercizio

Date due monete A (70% testa) e B (40% testa), con quale probabilità prendi la moneta A ed esce testa?

Soluzione: $P(AT) = P(T|A)P(A) = 0.7 \cdot \frac{1}{2} = 0.35$

2 Esercizio

Dato un mazzo da 52 carte, calcolare la probabilità di fare 4 mazzi da 13 carte con un asso

- E_1 : picche 1 mazzo
- E_2 : E_1 e cuori in un altro
- E_3 : E_1 e E_2 e quadro in un altro
- E_4 : E_1 e E_2 e E_3 e fiori in un altro

Soluzione: $P(E_1E_2E_3E_4) = P(E_1)P(E_2|E_1)P(E_3|E_2E_1)P(E_4|E_3E_2E_1) = 1 \cdot \frac{39}{51} \cdot \frac{26}{50} \cdot \frac{13}{49}$

3 Esercizio

Con 8 palline Rosse e 4 Bianche, qual è la probabilità di avere estratto due palline Rosse (R_1R_2) ?

Soluzione: $P(R_1R_2) = P(R_2|R_1)P(R_1) = \frac{7}{11} \cdot \frac{8}{12} = \frac{14}{33} = \frac{\binom{8}{2}}{\binom{12}{2}}$

4 Esercizio

Calcolare la probabilità con cui una persona potrebbe essere positiva a una patologia se: la sensibilità del test è del 95% (probabilità di dire Positivo se Malato), specificità del 99% (probabilità di dire Negativo se Sano) e che l'incidenza della malattia è del 0.2%

1

Negativo se Sano) e che l'incidenza della malattia è del 0.2% Soluzione: $P(M|P) = \frac{P(P|M)P(M)}{P(P|M)P(M) + P(P|S)P(S)} = \frac{0.95 \cdot 0.02}{0.95 \cdot 0.02 + 0.01 \cdot 0.998} = 0.016$

5 Esercizio

Abbiamo 3 carte A(RR), B(RB), C(BB). Butto una carta e esce R, qual è la probabilità che anche l'altra faccia sia R? (oppure qual è la probabilità che la cartia buttata sia la A)

$$P(A|R_1) = \frac{P(R_1|A)P(A)}{P(R_1|A)P(A) + P(R_1|B)P(B) + P(R_1|C)P(C)} = \frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3}} = \frac{2}{3}$$

*Ci sono due facce rosse

*C'è una faccia rossa

*Non ci sono facce rosse

Esercizio 6

Scelgo A. Qual è la probabilità che dietro alla porta A ci sia la macchina se so che nella porta C c'è la capra (R_c) ?

$$P(A|R_c) = \frac{P(R_c|A)P(A)}{P(R_c|A)P(A) + P(R_c|B)P(B) + P(R_c|C)P(C)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3}} = \frac{1}{3}$$

*Se apro la porta A il gioco finisce perchè è quella che ha scelto il concorrente

*Se il concorrente sceglie A, io presentatore apro la porta dove non c'è la macchina quindi apro C

Quindi qual è la probabilità che la macchina sia dietro alla porta B?
$$P(A|R_c) = \frac{P(R_c|B)P(B)}{P(R_c|A)P(A) + P(R_c|B)P(B) + P(R_c|C)P(C)} = \frac{1 \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3}} = \frac{2}{3}$$