

Çok Değişkenli Lineer Regresyon

1. Çok Değişkenler (Multiple Features)

Çok Değişkenler

	x_1	x_2	x_3	x_4	x_5
	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

$x_3 = \begin{bmatrix} New York \\ California \\ Florida \\ New York \\ Florida \end{bmatrix}$

n = 5

$x_1^0 = 165349.20$

Notasyon

 $n: kolon \sim \ddot{o}zellik sayısı$

 $x^{(i)}: girdi \ matrisinin \ i. \ \"{o}rne \ \breve{g}i$

 $x_i^{(i)}$: girdi matrisinin j kolonunun i. örneği

$$h_w(x) = w_0 x w_1$$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$h_w(x) = 50 + 0.5x_1 + 0.05x_2 + 7x_3 - 6x_4$$

$$h_w(x) = \sum_{i=1}^n w_i x_i + w_0$$

$$h_w(x) = w_0 \overrightarrow{x_0} + w_1 \overrightarrow{x_1} + w_2 \overrightarrow{x_2} + w_3 \overrightarrow{x_3} + \dots + w_n \overrightarrow{x_n}$$

$$h_{w}(x) = w_{0} \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}_{m \times 1} + w_{1} \begin{bmatrix} 1\\x_{1}\\\vdots\\1 \end{bmatrix}_{m \times 1} + w_{2} \begin{bmatrix} 1\\x_{2}\\\vdots\\1 \end{bmatrix}_{m \times 1} + \dots + w_{n} \begin{bmatrix} 1\\x_{n}\\\vdots\\1 \end{bmatrix}_{m \times 2}$$

Matris

$$X = \begin{bmatrix} \overrightarrow{x_0} & \overrightarrow{x_1} & \overrightarrow{x_2} & \cdots & \overrightarrow{x_n} \end{bmatrix}_{m \times (n+1)} \qquad \overrightarrow{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}_{(n+1) \times 1}$$

$$Vekt\"{or} \qquad Skaler$$

Yaş

1 vektörü

 $x_0^{(i)} = 1$

Çok Değişkenli Lineer Regresyon

2. Gradyenik Alçalma (Gradient Descent)

Hipotez

$$h_w(x) = X\vec{w} = \sum_{i=1}^n w_i x_i + w_0$$

Parametreler: $w_0, w_1, w_2, \cdots w_n$

Maliyet Fonksiyonu :
$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - h_w(x^{(i)}))^2$$

Gradyenik Alçalma Yaklaşımı (Gradient Based Approach)

iterasyon {
$$w_{j} := w_{j} - \alpha \frac{\partial J(w_{j})}{\partial w_{j}}$$
}

Gradyenik Alçalma Yaklaşımı (Gradient Based Approach)

$$\frac{\partial J(w_j)}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2m} \sum_{i=1}^m \left(y^{(i)} - h_w(x^{(i)}) \right)^2$$

$$\frac{\partial J(w_j)}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} - (w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n))^2$$

$$\begin{split} &\text{İterasyon} \, \{ \\ &w_j := w_j + \alpha \frac{1}{m} \sum_{i=1}^m (y^{(i)} - h_w(x^{(i)})) x_j^{(i)} \\ &\} \end{split}$$

Bazı kaynaklarda ağırlık bileşenleri aşağıdaki şekilde formulize edilmektedir.

$$w_j := w_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradyenik alçalma algoritması

iterasyon {
$$w_{j} := w_{j} + \alpha \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - h_{w}(x^{(i)})) x_{j}^{(i)}$$
}

Vektörsel Yaklaşım

$$w_j := w_j + \alpha \frac{1}{m} \sum_{i=1}^m x_j^{(i)} (y^{(i)} - h_w(x^{(i)}))$$

$$w := w + \alpha \frac{1}{m} X^T (y - Xw)$$

Çok Değişkenli Lineer Regresyon

3. Normalizasyon (Normalization)

Girdinin bütün kolonları aynı ölçekte olursa daha iyi olur.

Age	Salary
44	72000
27	48000
30	54000
38	61000
40	63777.77778
35	58000
38.77777778	52000
48	79000
50	83000
37	67000

Girdinin bütün kolonları aynı ölçekte olursa daha iyi olur.

Age	Salary
44	72000
27	48000
30	54000
38	61000
40	63777.77778
35	58000
38.77777778	52000
48	79000
50	83000
37	67000

Girdinin bütün kolonları aynı ölçekte olursa daha iyi olur.

$$\begin{array}{c} -1 \leq x_1 \leq 1 \\ -1 \leq x_2 \leq 1 \end{array} \longrightarrow \ddot{o}rnek\ olabilir.$$

Ortalama Normalizasyonu (Mean Normalization) — StandardScaler

Min Max Normalizasyonu – MinMaxScaler

$$x_{mean} = \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$x_{std} = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - x_{mean})^2}$$

$$x_{scaler} = \frac{x - x_{mean}}{x_{std}}$$

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Çok Değişkenli Lineer Regresyon

4. Öğrenme Oranı (Learning Rate)

J(w) her epoch'ta azalmalı

- α çok küçük olursa gradyenik alçalma minimuma çok yavaş bir şekilde yakınsar.
- α çok büyük olursa gradyenik alçalma minimum noktasını aşırabilir.

 $ideal \ \alpha = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3$

Çok Değişkenli Lineer Regresyon

5. Kukla Değişkenler (Dummy Variables)

New York = 0

California = 1

Florida = 2

	R&D Spend	Administration	Marketing Spend	State	Profit		
0	165349.20	136897.80	471784.10	New York	192261.83	0	0
1	162597.70	151377.59	443898.53	California	191792.06	0	1
2	153441.51	101145.55	407934.54	Florida	191050.39	1	0
3	144372.41	118671.85	383199.62	New York	182901.99	0	0
4	142107.34	91391.77	366168.42	Florida	166187.94	1	0

New York		California		Florida			
0	0	0	1	1	0		

Kukla Değişkenler (Dummy Variables)

Çok Değişkenli Lineer Regresyon

6. Polinomik Regression (Polynomial Regression)

Polinomik Regresyon

Ev fiyat tahmini

$$h_w(x) = w_0 \overrightarrow{x_0} + w_1 \overrightarrow{x_1} + w_2 \overrightarrow{x_2}$$

$$h_w(x) = w_0 + w_1 \cdot \ddot{o}n \ cephe + w_2 \cdot derinlik$$

 $alan : x = \ddot{o}n \ cephe \cdot derinlik$

$$h_w(x) = w_0 + w_2 x$$

$$h_w(x) = w_0 + w_2 \cdot alan$$

Çok Değişkenli Lineer Regresyon

7. Normal Denklem

