Machine Learning Self-Study Worksheet

Worksheet: 2025002

Level: Easy

Topics Covered: Supervised Learning

Part 1: Conceptual Questions

Q. No.	Question				Points		
1.	 Classification vs. Regression You are building a machine learning model that estimates the selling price of a house using features like square footage, location, number of bedrooms, and age of the 						
	property. → Is this a classification or regression problem? Explain why. • You are designing an email filter that identifies whether a message is "spam" or "not spam" based on the words used, sender address, and frequency of certain phrases. → Is this a classification or regression problem? Justify your answer.						
2.	Define supervised classification and complete the following table about the phases of a classification algorithm:						
	Phase	Input	Process	Output			
	Training Phase						
	Testing Phase						
	Prediction Phase						

Part 2: Numerical Questions

Q. No.	Question	Points
3.	You are given the multiple linear regression equation: $Y=2X_1+4X_2+3$ Find the value of Y for: • $X_1=1, \ X_2=2$ • $X_1=3, \ X_2=1$	5
4.	Given data points: • Class A: (1, 1), (2, 1), (2, 2) • Class B: (6, 6), (7, 7), (8, 6) Use Euclidean distance and determine the class of (4, 3) using the 3-nearest neighbors.	5

Part 3: Coding Exercise

Q. No.	Complete & Run the Code (Use your own Python IDE or Google Colab.) Complete the KNN classification code for $k=3$ and predict the class of a new point:	Points
5.	from sklearn.linear_model import from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score	5
	# Dataset X = [[2], [4], [6], [8], [10], [12]] y = [0, 0, 0, 1, 1, 1]	
	# Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)	
	# Model model = LogisticRegression() model(X_train, y_train)	
	# Predict y_pred = model(X_test) print("Accuracy:", accuracy_score(y_test, y_pred))	

Notes & Disclaimer

• For quick notes or queries, visit: https://www.youtube.com/channel/UCGuhk1P1OAOX_7Ar2-xadEw.

Related Resources:

- o Google Colab to run Python code online without installing anything
- o StatQuest: https://www.youtube.com/@statquest/playlists
- o 3Blue1Brown: https://www.youtube.com/@3blue1brown/playlists
- o Numerical: https://www.youtube.com/@MaheshHuddar/playlists

• Want more worksheets like this?

Try using **AI prompt** like:

"Create a beginner-level machine learning worksheet with 2 conceptual questions(with sub-questions), 2 numerical, and 1 code-completion exercise on [topic(s)]"

• How to Use This Worksheet:

- o These worksheets are designed for **self-study and concept reinforcement**.
- o Try to solve without looking up the answers first.
- o Use a notebook or Python IDE to experiment code is the best teacher!
- o Feel free to modify or extend questions as your understanding grows.

• Disclaimer:

This worksheet is for self study & **educational purposes only**. Accuracy of content may vary depending on updates to libraries or definitions. Always refer to official documentation or textbooks for exam-level prep.