Многоуровневый анализ альтернатив в процессе принятия решений

Лозицкий Иван Павлович, гр. 422

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор Сушков Ю.А. Рецензент: Тамазян Г.С.

Санкт-Петербург 2015г

Иерархия

Рис.: Представление в виде иерархии.

Основные понятия

Пусть $\Lambda = \{\lambda_{ij}\}$ - множество чисел, задающих качественные оценки попарных сравнений объектов, где $\lambda_{ij} \in \Lambda$ соответствует паре объектов с номерами i и j.

Определение (Шкала и функция шкалы)

Назовем функцией шкалы функцию φ , отображающую множество Λ в множество положительных вещественных чисел: $\varphi:\Lambda o \mathbf{R}_+$, а множество значений φ назовем шкалой.

Определение (Матрица сравнений)

Под матрицей сравнений для объектов $x_1, ..., x_n$ будем понимать матрицу вида:

$$A=\{a_{ij}\}_{ij=1}^n=\{arphi(\lambda_{ij})\}_{ij=1}^n$$
, где $\lambda_{ij}\in\Lambda$.

Формализация МАИ

Пусть $S=\{s_{ij}\}_{i,j\in 1:n}$ — множество альтернатив, $\Lambda=\{\lambda_{ij}\}_{i,j\in 1:m}$ — множество чисел, задающих оценки, $R=\{R_k\}_{k\in 1:r}$ — множество критериев, $\varphi:\Lambda\to {\bf R}_+$ — функция шкалы.

 $f_k:S imes S o \Lambda$ — функция сравнения относительно $R_k.$ $A_k=\{arphi(f_k(s_i,s_j))\}_{ij=1}^n$ — матрица парных сравнений относительно $R_k.$

Вектор приоритетов относительно критерия R_k — вектор $(p_k(s_1), \cdots, p_k(s_n))$, который является главным собственным вектором матрицы A_k .

Интегральным приоритетом назовем величину $m{h}(s_i) = m{w_1} m{p_1}(s_i) + \ldots + m{w_r} m{p_r}(s_i)$, где w_i приоритет критерия R_i , p_j – приоритет варианта s_i относительно критерия R_j .

Переход к иерархии шкал

Рис.: Многоуровневая иерархия

Постановка задачи

Задача:

 Провести сравнительную оценку шкал при конкретных условиях и ограничениях;

 Определить методику построения критерия для сравнения шкал.

Основные шкалы

Шкала Саати

$$\varphi(\lambda) = (1 + |\lambda| x_s)^{sign\lambda},$$

где x_s -параметр масштаба, $\lambda \in \Lambda$.

Шкала Брука

$$\varphi(\lambda) = c_s + \lambda \cdot x_s,$$

где x_s -параметр масштаба, c_s - центральное значение, $\lambda \in \Lambda.$

Логистическая шкала

$$arphi_{log}(\lambda) = rac{2}{1 + e^{-\mu\lambda}},$$

где $\lambda \in \Lambda$, μ - параметр крутизны.

Статистическое исследование шкал

Начальное ранжирование объектов: $x_1 \succ ... \succ x_n$. $\Lambda = -10: 10$, элементы $\lambda_{ij} \in \Lambda$, где i, j = 1: n.

Пусть λ_{ij} - независимы реализации случайной величины, имеющей равномерное распределение на $\Lambda.$

Ошибка оценки: ε_{ij} , имеет равномерное распределение на $[\varphi_{min}(\lambda_{ij}); \varphi_{max}(\lambda_{ij})]$, где φ_{min} и φ_{max} – некоторые функции, значение которых зависит от λ_{ij} ;

Шкала: логистическая.

Число альтернатив: n=5; Количество итераций: 10000.

Устойчивость компонент ранжирования

 $\begin{array}{c} Q \\ Q \\ Q \\ Q \\ Q \\ Q \\ \end{array}$

Рис.: Логистическая шкала с параметром $\mu = 0.3$.

Рис.: Логистическая шкала с параметром $\mu = 1.5$.

Устойчивость компонент ранжирования. Результаты

Таблица: Вероятности появления ранжирований при наличии ошибок в выборе оценок.

Логистическая шкала, $\mu=0.3$				
Ранжирование	Вероятность			
$x_1 \succ x_2 \succ x_3 \succ x_4 \succ x_5$	0.9			
$x_1 \succ x_2 \succ x_3 \succ x_5 \succ x_4$	0.1			

Логистическая шкала, $\mu=1.5$			
Упорядочивание	Вероятность		
$x_1 \succ x_2 \succ x_3 \succ x_4 \succ x_5$	0.3		
$x_1 \succ x_2 \succ x_3 \succ x_5 \succ x_4$	0.1		
$x_2 \succ x_1 \succ x_3 \succ x_5 \succ x_4$	0.25		
$x_2 \succ x_1 \succ x_3 \succ x_4 \succ x_5$	0.35		

Методика построение критерия выбора шкалы

Правила построения критерия:

- 1) должен быть выбран на начальном этапе;
- 2) необходимо строить, используя лишь качественные и количественные оценки;
- 3) построение критерия не должно быть трудоемким;
- 4) при заданных условиях и ограничениях необходимо получать один и тот же результат.

Начальные данные и условия

```
Начальное ранжирование объектов: x_1 \succ ... \succ x_n, \Lambda = -10: 10, \Lambda_+ = 1: 10; Шкалы: логистическая, Саати; \Delta = \{ \ \text{«Все сочетания элементов из } \Lambda_+ \ \text{длины от 1 до 5» } \}; \overline{\Delta} = -\Delta; \Theta = \Delta \cup \overline{\Delta}; \Gamma = \Lambda \setminus \Theta — множество используемых качественных оценок;
```

Количество итераций: 10000;

Цель: провести анализ дисперсии веса первого элемента в итоговом ранжировании и оценить вероятность совпадения ранжирований исходя из множества Γ .

Вероятность совпадения ранжирований

Рис.: Значения вероятности совпадения для логистической шкалы и Δ из I элемента.

Рис.: Значения вероятности совпадения для шкалы Саати и Δ из I элемента.

Вероятность совпадения ранжирований

Рис.: Значения вероятности совпадения для логистической шкалы и Δ из V элементов.

Рис.: Значения вероятности совпадения для шкалы Саати и Δ из V элементов.

Оценка вероятности совпадения ранжирований

Таблица: Оценки вероятности совпадения и соответствующий вариант множества Δ для группы «1».

Δ	min(1)	Pmin(1)	max(1)	Pmax(1)
a_1	1	0.97	1	0.97
$a_1 - a_2$	1-4	0.9584	1-2	1.00
$a_1 - a_2 - a_3$	1-4 -6	0.9482	1-2-i	1.00
$a_1-\ldots-a_4$	1-4-5-7	0.9386	1-2-i-j	1.00
$a_1-\ldots-a_5$	1 -3- 4 - 5 -6	0.9207	1-2 -i-j-k	1.00

Оценка вероятности совпадения ранжирований

Таблица: Оценки вероятности совпадения и соответствующий вариант множества Δ для группы «2».

Δ	min(2)	Pmin(2)	max(2)	Pmax(2)
a_1	3	0.7929	2	0.8221
$a_1 - a_2$	3-4	0.7695	2-10	0.8101
$a_1 - a_2 - a_3$	3-4-7	0.745	6-8 -10	0.7955
$a_1-\ldots-a_4$	3-4-5 -8	0.7216	6-7-8 -9	0.786
$a_1-\ldots-a_5$	2- 3-4-5 -6	0.6895	6-7-8 -9-10	0.7897

Дисперсия веса первого элемента в ранжировании

Уборов в том образор об том об том

Рис.: Логистической шкала с множеством Δ из I элемента.

Рис.: Шкала Саати с множеством Δ из I элемента.

Дисперсия веса первого элемента в ранжировании

Рис.: Логистическая шкала с множеством Δ из V элементов.

Рис.: Шкала Саати с множеством Δ из V элементов.

Результаты

- 1) Изучены свойства шкал в зависимости от параметров;
- Проведено сравнение свойств шкал по нескольким признакам;
- Выявлены закономерности, зависящие от формирования множества начальных оценок;
- Полученные статистические данные позволяют строить критерии выбора шкал на основе только лишь множества оценок.