COMPSCI 4CR3 - Applied Cryptography

Jake Doliskani
McMaster
University

Digital Signatures

This lecture

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Elgamal digital signature scheme

Digital signature

A digital signature scheme consists of three algorithms:

- Gen: generates a key pair (k_{pr}, k_{pub}) .
- Sig: takes a private key k_{pr} and a message x. Outputs a signature s.
- Ver: takes a public key k_{pub} , a signature s and a message x. Outputs a bit $b \in \{0,1\}$.

For a signature scheme to be practical, all these algorithms must be efficient.

Digital signature

generate keys: $(k_{pr}, k_{pub}) \leftarrow \text{Gen}$ publish the public key k_{pub}

 $\text{sign message: } s = \operatorname{Sig}(k_{pr}, x)$

verify signature: $b = \mathsf{Ver}(x, s, k_{pub})$ accept if b = 1; reject if b = 0

Security Services (core)

1. Confidentiality

Information is kept secret from all but authorized parties.

2. Integrity

Messages have not been modified in transit.

3. Message Authentication

▶ The sender of a message is authentic. An alternative term is data origin authentication.

4. Nonrepudiation

▶ The sender of a message can not deny the creation of the message.

Security Services (other)

5. Identification

Establish and verify the identity of an entity, e.g., a person, a computer or a credit card.

6. Access control

Restrict access to the resources to privileged entities.

7. Availability

Assures that the electronic system is reliably available.

8. Auditing

 Provide evidence about security-relevant activities, e.g., by keeping logs about certain events.

The RSA signature scheme

generate d,(n,e) publish the public key (n,e)

 $\text{sign message: } s = x^d \bmod n$

verify signature:

$$y = s^e \mod n$$
$$b = (y \stackrel{?}{=} x)$$

accept if b=1; reject if b=0

Proof of correctness:

$$s^e = (x^d)^e = x^{de} = x \bmod n$$

The RSA signature scheme (example)

choose p = 5, q = 17, n = pq = 85compute $\phi(n) = (5-1)(17-1) = 64$ choose e=9compute $d=e^{-1}=57 \bmod 64$ x = 6

sign: $s = 6^{57} = 11 \mod 85$

verify signature: $y = 11^9 = 6 \mod 85$ $b = (6 \stackrel{?}{=} 6) = 1$ accept.

- Algorithmic attacks
 - ightharpoonup attack the underlying RSA scheme by computing the private key d
- Existential Forgery
 - lacktriangle generate a valid signature for some message x

Existential Forgery: work backwards to generate a valid signature!

- 1. Choose a signature $s \in \mathbb{Z}_n$
- 2. Compute the message $x = s^e \mod n$
- 3. The signature is (x, s)
- 4. The signature is valid since $x = s^e \mod n$

RSA padding: The Probabilistic Signature Standard

- Pad the plain RSA to prevent the the existential forgery attack
- The padding method is in fact an encoding method called Encoding Method for Signature with Appendix (EMSA)
- EMSA is probabilistic!
- In practice, we sign the hash of the message instead of the message itself

The signature: $s = EM^d \mod n$

The Elgamal signature scheme

Key generation:

- 1. Choose a large prime p
- 2. Choose a generator $\alpha \in \mathbb{Z}_p^{\times}$
 - We can also use a generator $\alpha \in G$ for some subgroup $G \leq \mathbb{Z}_p^{\times}$
- 3. Choose a random integer $d \in \{2, 3, \dots, p-2\}$
- 4. Compute $\beta = \alpha^d \mod p$
 - Public parameters: (p, α)
 - Public key: β
 - Private key: d

The Elgamal signature scheme

Signature generation:

Input: x, d

- 1. Choose a random ephemeral key $k_E \in \{0,1,\cdots,p-2\}$ such that $\gcd(k_E,p-1)=1$
- 2. Compute $r = \alpha^{k_E} \mod p$ and $s = (x d \cdot r)k_E^{-1} \mod p 1$
- 3. Return (r, s)

Signature verification:

Input: x, (r, s)

- 1. Compute $t = \beta^r \cdot r^s \mod p$
- 2. Return "invalid" if $t \neq \alpha^x \mod p$; otherwise return "valid"

Correctness

If we rewrite $s = (x - d \cdot r)k_E^{-1} \mod p - 1$, we get $x = d \cdot r + k_E s \mod p - 1$

So, by Fermat's little theorem

$$\alpha^x = \alpha^{d \cdot r + k_E s} \bmod p.$$

On the other hand

$$\beta^r r^s = (\alpha^d)^r (\alpha^{k_E})^s \mod p$$
$$= \alpha^{d \cdot r + k_E s} \mod p.$$

Therefore, if (r,s) is a valid signature,

$$\alpha^x = \beta^r r^s \bmod p.$$

The Elgamal signature scheme (example)

Public parameters:

- prime p = 53
- generator $27 \in \mathbb{Z}_{53}^{\times}$

choose
$$d=25$$
 compute $\beta=\alpha^d=51 \bmod 53$
$$\max sage: \ x=41$$
 choose $k_E=19$ compute $r=\alpha^{k_E}=31 \bmod 53$
$$(41,(31,38))$$
 compute $s=(x-d\cdot r)k_E^{-1}=38 \bmod 52$

verify signature: $t=\beta^r r^s=34 \bmod 53$ $\alpha^x=34 \bmod 53$ $t=\alpha^x \Longrightarrow \text{valid signature}.$

- Computing Discrete Logarithms
- Reuse of the Ephemeral Key
- Existential Forgery Attack

Computing DLP:

- \bullet Trudy can obtain d,k_E from $\beta=\alpha^d$ and $r=\alpha^{k_E} \bmod p$
- He can sign arbitrary messages

Reuse of the Ephemeral Key:

May have multiple solutions, Trudy has to find the correct one.

Trudy can compute d, k_E , and sign arbitrary messages.

Existential Forgery Attack:

- 1. Select integers i, j such that gcd(j, p 1) = 1
- 2. Compute $r = \alpha^i \beta^j \mod p$ and $s = -rj^{-1} \mod p 1$
- 3. Compute $x = si \mod p 1$
- 4. The message and signature are x,(r,s)

Countermeasure: hash the message:

$$s = (h(x) - d \cdot r)k_E^{-1} \bmod p - 1$$

Verification:

$$t = \beta^r r^s \mod p$$

$$= \alpha^{dr} \alpha^{(i+jd)s} \mod p$$

$$= \alpha^{dr} \alpha^{(i+jd)(-rj^{-1})} \mod p$$

$$= \alpha^{dr-dr} \alpha^{-rij^{-1}} \mod p$$

$$= \alpha^{si} \mod p$$

$$= \alpha^x \mod p$$

The Digital Signature Algorithm (DSA)

Key Generation:

- 1. Generate a prime 2^{1023}
- 2. Find a prime divisor q of p-1 such that $2^{159} < q < 2^{160}\,$
- 3. Find an element $\alpha \in \mathbb{Z}_p^{\times}$ of order q
- 4. Choose a random integer 0 < d < q
- 5. Compute $\beta = \alpha^d \mod p$

Other options:

p	q	signature
1024	160	320
2048	224	448
3072	256	512

- Public parameters: (p, q, α)
- Public key: β
- Private key: d

The DSA

Signature generation:

Input: x, d

- 1. Choose a random ephemeral key $k_E \in \{0, 1, \cdots, q-1\}$
- 2. Compute $r = (\alpha^{k_E} \mod p) \mod q$ and $s = (h(x) d \cdot r)k_E^{-1} \mod q$
- 3. Return (r, s)

Signature verification:

Input: x, (r, s)

- 1. Compute $w = s^{-1} \mod q$ and $u_1 = wh(x) \mod q$ and $u_2 = wr \mod q$
- 2. Compute $t = (\alpha^{u_1} \beta^{u_2} \mod p) \mod q$
- 3. Return "valid" if v=r; otherwise return "invalid"

Correctness

$$s = (h(x) - d \cdot r)k_E^{-1} \bmod q \implies k_E = s^{-1}h(x) + s^{-1}rd \bmod q$$

$$\implies k_E = u_1 + u_2d \bmod q$$

$$\implies \alpha^{k_E} = \alpha^{u_1 + u_2 d} \bmod p$$

$$\implies \alpha^{k_E} = \alpha^{u_1 + u_2 d} \bmod p \qquad (\text{since } \alpha^d = \beta)$$

$$(\text{reduce both sides mod } q) \implies (\alpha^{k_E} \bmod p) \bmod q = (\alpha^{u_1}\beta^{u_2} \bmod p) \bmod q$$

$$\implies r = v \bmod q \qquad \square$$

The DSA (example)

Public parameters:

- primes p = 53, q = 13
- generator $\alpha = 10$

24

(41,(2,1))

choose d=8compute $\beta = \alpha^d = 24 \mod 53$

message: x = 41, h(x) = 6choose $k_E = 9$

compute $r = (\alpha^{k_E} \mod p) \mod q = 2$

compute $s = (h(x) - d \cdot r)k_E^{-1} = 1 \mod 13$

verify signature:

we show signature.
$$w = s^{-1} = 1 \mod 13$$

$$(u_1, u_2) = (w \cdot h(x), wr) = (6, 2) \mod 13$$

$$v = (\alpha^{u_1} \beta^{u_2} \mod p) \mod q = 2$$

$$v = r \Longrightarrow \text{valid signature}$$

Prime generation for DSA

Generate primes p, q such that

- $2^{1023} and <math>2^{159} < q < 2^{160}$
- q | p 1
- 1. Find a prime $2^{159} < q < 2^{160}$ using the Miller-Rabin algorithm
- 2. For i = 1 to 4096
 - 2.1 Generate a random integer $2^{1023} < M < 2^{1024}$
 - 2.2 Compute $M_r = M \mod 2q$
 - 2.3 Let $p = M M_r + 1$
 - 2.4 If p is prime, then return (p,q)
- 3. Go to Step 1

- Each iteration of the For-loop selects a random number of the form p=2qk+1 in the range $(2^{2023},2^{1024})$ and tests whether it is a prime.
- Does not take too many trials