

PRINCIPAL COMPONENT ANALYSIS

PRINCIPAL COMPONENT ANALYSIS

Benefit of PCA

What is PCA?

Principal component analysis (PCA) is a dimensionality reduction and machine learning method used to simplify a large data set into a smaller set while still maintaining significant information.

Benefit of PCA

IMPROVED VISUALIZATION

COMPUTATIONAL EFFICIENCY

FEATURE ENGINEERING

Calculation step

- Standardization
- Compute covariance matrix
- Compute the eigenvalues and eigenvectors
- Consider the eigenvalues
- Map data to new space

Calculation concept

https://numxl.com/blogs/principal-component-analysis-pca-101/

1,000 What is the motivation of PCA? **Discussion** Why PCA axes are orthogonal to each other about PCA Why summation of variance before PCA and after PCA is still the same? Why size of eigenvalue represent size of variance? Why Proportion of variance in PCA can be calculated by proportion of eigenvalue?

Code: PCA.ipynb

Singular Value Decomposition (SVD) **Further reading** • t-Distributed Stochastic Neighbor **Embedding (t-SNE)** Linear Discriminant Analysis (LDA) Isomap Locally Linear Embedding (LLE)

Reference

- https://builtin.com/data-science/step-step-explanation-principal-component-analysis
- https://numxl.com/blogs/principal-component-analysis-pca-101/

