Список вопросов и ответов к коллоквиуму

1. Закон композиции: определение, примеры:

Внутренний закон композиции

Внутренним законом композиции на множестве M называется отображение $M \times M \to M$ декартова произведения $M \times M$ в M. Значение

$$(x,y) \mapsto z \in M$$

называется композицией элементов x и y относительно этого закона.

Пример 1.1. Пусть $\wp(M)$ - семейство всех подмножеств множества M. Тогда операции объединения и пересечения

$$(X,Y) \to X \cup Y$$
, $(X,Y) \to X \cap Y$,

являются законами композиции на $\wp(M)$.

Простейшими примерами внутренних законов композиции на множестве **R** являются арифметические операции сложения, вычитания и умножения действительных чисел, которые паре действительных чисел (α , β) ставят в соответствие их сумму, разность и произведение,

$$(\alpha, \beta) \mapsto \alpha + \beta$$
, $(\alpha, \beta) \mapsto \alpha - \beta$, $(\alpha, \beta) \mapsto \alpha \cdot \beta$

Внешний закон композиции

Пусть $M_1 \neq \varnothing$, $M_2 \neq \varnothing$. Внешним законом композиции на множестве M_2 над множеством M_1 называется произвольное отображение множества $M_1 \times M_2$ во множество M_2 . Примером внешнего закона композиции на множестве матрищ $M_{mon}(\mathbf{R})$ над множеством действительных чисел \mathbf{R} является операция умножения матрищы на число, $(\lambda,A) \mapsto \lambda \cdot A, \ \lambda \in \mathbf{R}, \ A \in M_{mon}(\mathbf{R})$

2. <u>Закон композиции : ассоциативность и</u> коммутативность

Ассоциативность

Закон композиции элементов множества M называется **ассоциативным**, если для любых элементов $x, y, z \in M$ выполняется равенство:

$$(x \circ y) \circ z = x \circ (y \circ z)$$

Коммутативность

Элементы $x, y \in M$ называются **перестановочными** относительно заданного закона композиции, если имеет место равенство:

$$x \circ y = y \circ x$$
.

Если перестановочна любая пара элементов $x,y\in M$, тогда внутренний закон \circ называется коммутативным.

3. Основные структуры с одним законом композиции

Магма

Множество, наделенное внутренним законом композиции, называется магмой.

Пример 1.7. Пусть множество M содержит только три элемента $\{-1,0,1\}$. Алгебраическую структуру магмы на S задает следующий закон композиции:

$$x \circ y = x <=> y = \begin{cases} 1, & x < y, \\ 0, & x = y, \\ -1, & x > y. \end{cases}$$

Полугруппа

Множество M, наделенное **ассоциативным** всюду определенным законом композиции называется **полугруппой**.

Пример 1.8. Множество натуральных чисел \mathbb{N} с операцией операцией $\circ = " + "$ является полугруппой $(\mathbb{N}, " + ")$.

Моноид

 $\|$ Полугруппа S, содержащая **нейтральный элемент**, называется **моноидом**.

Пример 1.9. Множество натуральных чисел $\mathbb N$ с операцией операцией $\circ = "\cdot"$ является моноидом $(\mathbb N,1,"\cdot")$.

4. Группа: определение, примеры

Говорят, что на множестве M определена структура **группы**, если закон композиции, заданный на M удовлетворяет следующим требованиям (аксиомам):

- 1. ассоциативность закона;
- 2. существование нейтрального элемента;
- 3. для каждого элемента существует обратный.

Пример 1.10. Множество целых чисел \mathbb{Z} , снабженное операцией сложения является коммутативной группой $(\mathbb{Z},"+")$.

5. Гомоморфизмы групп: определение, свойства

Гомоморфизмом групп G и G' называется отображение $\sigma: G \to G'$, обладающее следующими свойствами:

$$\forall x, y \in G \quad \sigma(xy) = \sigma(x)\sigma(y), \quad \sigma(e) = e'.$$

Свойства:

- 1. Ядро гомоморфизма является нормальной подгруппой
- 2. Сохранение операций: Гомоморфизм сохраняет операции, определенные на двух алгебраических структурах. Для групп это означает, что гомоморфизм сохраняет групповую операцию (обычно обозначается как *). Другими словами, если у нас есть группы (G, *) и (H, •), и f: G -> H гомоморфизм групп, то f(a * b) = f(a) f(b) для любых а и b в G.
- 3. Сохранение идентичности: Гомоморфизм сохраняет идентичные элементы. Это означает, что если e_G единичный элемент (или ноль, если мы говорим о кольцах или поле) в группе G, и f: G -> H гомоморфизм групп, то f(e G) = e H.

4.

Пусть
$$\sigma \in \text{Hom}(G, G')$$
, тогда

$$\forall x \in G \quad \sigma(x^{-1}) = \sigma(x)^{-1}.$$

(есть еще, но я думаю, что хватит)

б. Подгруппы: определение, примеры

Подгруппа

Подгруппой H группы G называется подмножество G, имеющее структуру группы, индуцированной групповым законом G.

Пример 3.1. Пусть $\sigma \in \text{hom}(G, G')$, тогда $\ker \sigma \leq G$ и $\text{Im } \sigma \leq G'$.

Вообще можно любой другой более простой пример, строятся довольно банально)

7. Нормальная подгруппа, фактор-группа

Нормальная подгруппа

Подгруппа H группы G называется **нормальной**, если

$$\forall x \in G \quad xH = Hx.$$

Nota bene Если H - нормальная подгруппа в G, то обычно пишут $H \triangleleft G$.

 $Nota\ bene$ Нормальной является любая подгруппа абелевой группы.

Nota bene В случае нормальной подгруппы имеем

$$\forall x \in G \quad [x]_R = [x]_L = \bar{x}.$$

Фактор-группа

Пусть G — группа, H — ее нормальная подгруппа, $G/H = \{xH = Hx \mid x \in G\}$ — множество смежных классов по подгруппе H. Определим на множестве G/H операцию умножения, полагая $xH \cdot yH = xyH$.

Примеры

ullet Рассмотрим $G=\mathbb{Z}$ и её нормальную подгруппу $H=n\mathbb{Z}$, тогда $G/H=\mathbb{Z}/n\mathbb{Z}$ (группы вычетов по модулю n) будет являться факторгруппой G по H.

8. Понятие канонического гомоморфизма

Лемма 3.5. Пусть $H \triangleleft G$, тогда существует такой гомоморфизм φ (называемый каноническим), что $\ker \varphi = H$.

Рассмотрим отображение

$$\varphi: G \to G/H, \quad \varphi(x) = xH,$$

и прямой проверкой убеждаемся, что

$$\varphi \in \text{hom}(G, G/H), \quad \ker \varphi = H.$$

9. Теорема об изоморфизме для групп

Теорема 3.1. (Об изоморфизме) Пусть $\sigma: G \to G'$ - гомоморфизм групп, тогда

$$G/\ker\sigma\simeq\operatorname{Im}\sigma.$$

Зададим отображение $\bar{\sigma}: G/\ker \sigma \to \operatorname{Im} \sigma$

$$\bar{\sigma}(\bar{x}) = \sigma(x),$$

и покажем, что оно определено корректно. Именно, пусть $\bar{x} = \bar{y}$, тогда

$$\bar{\sigma}(\bar{y}) = \sigma(y) = \sigma(xx^{-1}y) = \sigma(x)\sigma(x^{-1}y) = \sigma(x)e = \sigma(x) = \bar{\sigma}(\bar{x}).$$

Далее, $\bar{\sigma}$ - гомоморфизм:

$$\bar{\sigma}(\bar{x}\bar{y}) = \sigma(xy) = \sigma(x)\sigma(y) = \bar{\sigma}(\bar{x})\bar{\sigma}(\bar{y}).$$

Тривиально проверяется, что ${\rm Im}\,\bar{\sigma}={\rm Im}\,\sigma,$ и остается прямой проверкой убедиться, что ядро $\bar{\sigma}$ тривиально:

$$\bar{z} \in \ker \bar{\sigma} \quad \Rightarrow \quad \sigma(z) = \bar{\sigma}(\bar{z}) = e \quad \Rightarrow \quad z \in \ker \sigma \quad \Rightarrow \quad \bar{z} = \bar{e}.$$

Таким образом, мы показали, что $\bar{\sigma}$ - изоморфизм.

4

10. Два закона композиции на множестве

4.1 Согласование внутренних законов

Пусть на множестве M задано два всюду определенных закона композиции, обозначаемых через \circ и *. Закон композиции \circ называется дистрибутивным слева относительно закона *, если для любых элементов $x,y,z\in M$ имеет место равенство

$$x \circ (y * z) = (x \circ y) * (x \circ z).$$

Соответственно, дистрибутивность справа означает выполнение следующего равенства:

$$\forall x, y, z \in M \quad (y * z) \circ x = (y \circ x) * (z \circ x).$$

Закон, дистрибутивный и справа и слева называется двояко дистрибутивным.

Пример 4.1. Пусть на множестве M задано два всюду определенных закона композиции, обозначаемых через \circ и *, причем \circ наделяет M структурой группы. Если в M существует нейтральный элемент e относительно * и \circ двояко дистрибутивен относительно *, тогда элемент e является поглощающим относительно закона \circ . Действительно, пусть $x, y \in M$, рассмотрим композицию

$$x \circ y = x \circ (e * y) = (x \circ e) * (x \circ y) = e * (x \circ y).$$

Вообще говоря, из выведенного равенства не следует, что $(x \circ e) = e$, так как не доказано свойство всеобщности - мы показали лишь, что это верно для подмножества M_z композиций вида $z = x \circ y$. Чтобы $M_z = M$ достаточно потребовать существования групповой структуры на M относительно закона \circ .

определение, примеры

Кольцом R называется множество замкнутое относительно двух согласованно заданных на нем бинарных операций, удовлетворяющих следующим аксиомам:

А1. Ассоциативность сложения:

$$\forall x, y, z \in R \quad (x+y) + z = x + (y+z);$$

А2. Существование нуля:

$$\exists \ 0 \in R: \quad x+0=x=0+x \quad \forall x \in R$$

А3. Существование противоположного:

$$\forall x \in R \quad \exists (-x): \quad x + (-1) = 0 = (-x) + x.$$

М1. Асоциативность умножения:

$$\forall x, y, z \in R \quad (xy)z = x(yz);$$

М2. Существование единицы:

$$\exists 1 \in R: 1 \cdot x = x = x \cdot 1, \forall x \in R:$$

М3. Коммутативность:

$$\forall x, y \in R \quad x \cdot y = y \cdot x;$$

D1. Дистрибутивность слева:

$$\forall x, y, z \in R \quad x \cdot (y+z) = xy + xz;$$

D2. Дистрибутивность справа:

$$\forall x, y, z \in R \quad (x+y) \cdot z = xz + yz;$$

Пример 4.2. Примеры колец:

1. Нулевое кольцо:

$$R: 0=1 \Rightarrow \forall x \in R \quad x=1 \cdot x=0 \cdot x=0;$$

2. Целые числа:

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm m, \dots\};$$

12. <u>Гомоморфизмы колец: определения,</u> свойства

Пусть R и R' - кольца. Гомоморфизмом колец называется отображение $f: R \to R'$, со следующими свойствами:

• сохранение сложения:

$$\forall x, y \in R \quad f(x+y) = f(x) + f(y);$$

• сохранение умножения:

$$\forall x, y \in R \quad f(xy) = f(x) \cdot f(y);$$

• сохранение единицы:

$$f(1_R) = 1_{R'}.$$

Nota bene Таким образом, гомоморфизм колец является гомоморфизмом абелевых групп (R, +) и (R', +), а также мультипликативных моноидов (R, \cdot) и (R', \cdot) .

Подмножество $S \subset R$ называется **подкольцом** кольца R, если оно является абелевой подгруппой R и содержит единицу R.

Nota bene Тот факт, что S является подкольцом в R обозначают $S \leq R$.

Лемма 4.1. Образ Im f гомоморфизма $f \in \text{Hom}(R, R')$ является подкольцом в R':

$$\operatorname{Im} f \leqslant R'$$
.

Лемма 4.2. Ядро ker f гомоморфизма $f \in \text{Hom}(R, R')$ имеет следующие свойства:

- 1. является нормальной подгруппой: $\ker f \leq (R, +)$;
- 2. обладает поглощением: $\forall x \in R, \forall y \in \ker f \ x \cdot y \in \ker f$.

13. Подкольцо: определение, примеры

Подмножество $S \subset R$ называется **подкольцом** кольца R, если оно является абелевой подгруппой R и содержит единицу R.

Nota bene Тот факт, что S является подкольцом в R обозначают $S \leqslant R$.

Подкольцо

- Т. Непустое подмножество Н кольца К является подкольцом тогда и только тогда, когда
- 1) $\forall a, b \in H, a+b \in H;$
- 2) $\forall a \in H, -a \in H;$
- 3) $\forall a, b \in H, a \cdot b \in H$

Доказательство:

а) Необходимость. Пусть Н – подкольцо кольца
 К. Тогда оно само является кольцом и в нем выполняются требования 1), 2), 3) по определению кольца.

Пример 2.19. Кольцо целых чисел $(\mathbb{Z},+,\cdot,0,1)$ есть подкольцо кольца действительных чисел $(\mathbb{R},+,\cdot,0,1)$. При этом, несмотря на то что кольцо действительных чисел есть поле, кольцо целых чисел не является его подполем, поскольку в последнем для любого целого числа отсутствует обратный к нему по умножению элемент.

14. Идеал кольца, фактор-кольцо

Иделалом J в кольце R называется аддитивная подгруппа со свойством

$$RJ \subset J \quad (\forall x \in R, \quad \forall y \in J \quad xy \in J).$$

Пример 5.1. Найдем идеалы в кольце \mathbb{Z} . Пусть m - наименьшее положительное число, лежащее в идеале $J \triangleleft \mathbb{Z}$. Тогда $(m) = m \cdot \mathbb{Z}$. Других идеалов в кольце \mathbb{Z} содержащих элемент m нет. Действительно, пусть

$$z \in J = m \cdot \mathbb{Z} \quad \Rightarrow \quad z = m \cdot u + r, \quad r \in J, \quad r < m \quad \Rightarrow \quad r = \min(J).$$

Множество R/J называется фактор-кольцом кольца R по идеалу J. Отображение $\varphi:R\to R/J$, действующее как

$$x \mapsto \bar{x} = x + J$$

является гомоморфизмом, который называется каноническим.

15. Теорема об изоморфизме колец

Теорема 2.20. Пусть \mathcal{R}_1 и \mathcal{R}_2 — произвольные кольца. Если $f{:}\,\mathcal{R}_1 o\mathcal{R}_2$ — гомоморфизм, то

- 1) образ нуля кольца \mathcal{R}_1 при отображении f есть нуль кольца \mathcal{R}_2 , то есть f(0)=0;
- 2) образ единицы кольца \mathcal{R}_1 при отображении f есть единица кольца \mathcal{R}_2 , то есть f(1)=1 ;
- 3) для всякого элемента x кольца \mathcal{R}_1 образ элемента, противоположного элементу x, равен элементу, противоположному образу элемента x, то есть f(-x) = -f(x);
- 4) если кольца \mathcal{R}_1 и \mathcal{R}_2 являются полями, то для всякого элемента x кольца \mathcal{R}_1 образ элемента, обратного к элементу x по умножению, равен элементу, обратному к образу элемента x, то есть $f(x^{-1}) = [f(x)]^{-1}$.
- **Теорема 2.21.** Если f гомоморфизм кольца $\mathcal R$ в кольцо $\mathcal K$, а g гомоморфизм кольца $\mathcal K$ в кольцо $\mathcal L$, то композиция отображений $f\circ g$ есть гомоморфизм кольца $\mathcal R$ в кольцо $\mathcal L$.

Теорема 2.22. Если $f:\mathcal{R}_1 o\mathcal{R}_2$ — изоморфизм кольца \mathcal{R}_1 на кольцо \mathcal{R}_2 , то отображение f^{-1} есть изоморфизм кольца \mathcal{R}_2 на кольцо \mathcal{R}_1 .

<u>16. Нильпотенты и обратимые элементы кольца</u>

Элемент $z \neq 0$ называется **нильпотентом**, если

$$\exists n \in \mathbb{N} : \quad z^n = 0.$$

Nota bene Всякий нильпотент является делителем нуля. Обратное верно не всегда.

Обратимым элементом кольца называется всякий элемент $u \in R$ такой что

$$\exists\,v\in R\quad u\cdot v=1$$

 $Nota\ bene$ В паре u, v оба элемента являются обратимыми.

Лемма 5.4. Множество обратимых элементов кольца R образует мультипликативную группу, обозначаемую R^* .

17. Область целостности. Поле

| Областью целостности называется кольцо, в котором нет делителей нуля.

Полем называется ненулевое кольцо, в котором каждый ненулевой элемент обратим.

Если раскрыть определение, то множество F с введёнными на нём алгебраическими операциями сложения + и умножения * (+: $F \times F \to F$, $-*: F \times F \to F$, то есть $\forall a,b \in F \quad (a+b) \in F, \ a*b \in F$) называется **полем** $\langle F,+,* \rangle$, если выполнены следующие аксиомы:

- 1. Коммутативность сложения: $\forall a,b \in F \quad a+b=b+a$.
- 2. Ассоциативность сложения: $\forall a,b,c \in F \quad (a+b)+c=a+(b+c)$.
- 3. Существование нулевого элемента: $\exists \mathbf{0} \in F \colon \forall a \in F \quad a+\mathbf{0} = a.$
- 4. Существование противоположного элемента: $\forall a \in F \ \exists (-a) \in F : a + (-a) = \mathbf{0}$.
- 5. Коммутативность умножения: $\forall a, b \in F \quad a*b = b*a$.
- 6. Ассоциативность умножения: $\forall a, b, c \in F \quad (a * b) * c = a * (b * c)$.
- 7. Существование единичного элемента: $\exists e \in F \setminus \{\mathbf{0}\}: \forall a \in F \quad a*e=a.$
- 8. Существование обратного элемента для ненулевых элементов: $(\forall a \in F: a \neq \mathbf{0}) \; \exists a^{-1} \in F: a*a^{-1} = e.$
- 9. Дистрибутивность умножения относительно сложения: $\forall a,b,c \in F \quad (a+b)*c = (a*c) + (b*c).$

18. Важный пример: поле комплексных чисел

Теорема 6.1. Множество \mathbb{C} имеет алгебраическую структуру поля.

Сначала проверим свойства операции +:

- 1. ассоциативность очевидна в силу ассоциативности + на множестве \mathbb{R} ;
- 2. нейтральный элемент $0_{\mathbb{C}} = (0,0)$, действительно:

$$\forall z \in \mathbb{C} \quad z + 0_{\mathbb{C}} = z = 0_{\mathbb{C}} + z;$$

3. обратным элементом для z = (a, b) является (-z) = (-a, -b);

Далее, проверим свойства операции ::

1. ассоциативность проверяется непостредственно:

$$((a_1, b_1) \cdot (a_2, b_2)) \cdot (a_3, c_3) = (a_1, b_1) \cdot ((a_2, b_2) \cdot (a_3, c_3)).$$

2. нейтральный элемент $1_{\mathbb{C}} = (1,0)$:

$$1_{\mathbb{C}} \cdot z = (1,0) \cdot (a,b) = (a,b).$$

3. обратным элементом для $z = (a, b) \neq (0, 0) = 0_{\mathbb{C}}$ является

$$z^{-1} = \left(\frac{a}{N(z)}, -\frac{b}{N(z)}\right), \quad N(z) = a^2 + b^2.$$

Осталось проверить дистрибутивность введенных операций слева и справа, что проводится 119:118 живый прочимер: кольцо миюточленов;

$$z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$$
.

19. Важный пример: кольцо многочленов

Теорема 6.1. Множество k[x], наделенное операциями сложения и умножения является коммутативным ассоциативным кольцом.

Проверим аксиомы кольца:

• (k[x], +) - абелева группа, в которой

$$0(x) = 0, \quad (-p)(x) = -p(x).$$

- ($\mathbb{k}[x]$, ·) коммутативный моноид, в котором 1(x) = 1.
- Пусть $p,q,r \in \mathbb{k}[x]$, проверим дистрибутивность:

$$(p+q)\cdot r = \sum_{k=0} d_k x^k, \quad p\cdot r = \sum_{n=0} \alpha_n x^n, \quad q\cdot r = \sum_{m=0} \beta_m x^m.$$

тогда имеет место

$$d_k = \sum_{i=0}^k (a_i + b_i)c_{k-i} = \sum_{i=0}^k (a_i c_{k-i}) + \sum_{i=0}^k (b_i c_{k-i}) = \alpha_k + \beta_k,$$

20. Важный пример: алгебра матриц

Матрицы довольно простые (сложение, умножение, определитель), поэтому ничего добавлять не буду

21. Понятие системы линейных алгебраических

уравнений

Системой линейных алгебраических уравнений с m уравнениями и n неизвестными называется система вида

$$\begin{cases}
a_{1,1}x_1 + a_{1,2}x_2 + \dots a_{1,n}x_n = b_1, \\
a_{2,1}x_1 + a_{2,2}x_2 + \dots a_{2,n}x_n = b_2, \\
\dots \dots \dots \dots \dots \dots \\
a_{m,1}x_1 + a_{m,2}x_2 + \dots a_{m,n}x_n = b_m.
\end{cases}$$
(9.2)

Решением системы линейных алгебраических уравнений (9.2) называется упорядоченный набор чисел z_1, z_2, \ldots, z_n , который является решением кажедого линейного алгебраического уравнения системы

Nota bene Далее для удобства и общности линейные уравнения также будем считать системами, состоящими из одного уравнения.

Система (9.2) называется **совместной**, если она имеет хотя бы одно решение и **несовместной** в противном случае.

 $Nota\ bene$ Будем обозначать через \mathcal{S}_n^m множество всех систем линейных алгебраических уравнений, содержащих m уравнений и n неизвестных.

Nota bene Пусть $S_1, S_2 \in \mathcal{S}_n^m$ - две системы, будем писать $S_1 \sim S_2$ если множества решений этих систем совпадают.

Элементарными преобразованиями системы линейных алгебраических уравнений называются преобразования следующих трех типов:

- Прибавление к одному уравнению другого, умноженного на число;
- L2. Перестановка двух уравнений;
- L3. Умножение одного уравнения на число, отличное от нуля.

Лемма 9.2. В результате элементарных преобразований любая система S переходит в эквивалентную ей систему S'.

Матрицей системы алгебраических уравнений называется матрица S системы (9.2), соствленная из коэффициентов этой системы. **Расширенной матрицей** матрицей называется матрица \tilde{S} системы, полученная приписыванием к матрице системы S столбца свободных членов:

$$S = \begin{pmatrix} a_{1,1} & a_{1,1} & \dots & a_{1,n} \\ a_{2,1} & a_{2,1} & \dots & a_{2,n} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,1} & \dots & a_{m,n} \end{pmatrix}, \quad \tilde{S} = \begin{pmatrix} a_{1,1} & a_{1,1} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,1} & \dots & a_{2,n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,1} & \dots & a_{m,n} & b_m \end{pmatrix}.$$

22. Внешний закон композиции: определение,

примеры

Его я расписал в пункте 1

<u>23. Понятие согласованно действующей</u> структуры

Nota bene Напомним, что внешний закон композиции называется согласованным с внутренним законом, если

$$\forall x, y \in M, \quad \alpha \in \Omega, \quad \alpha(x \circ y) = \alpha(x) \circ \alpha(y).$$

Говорят, что алгебраическая структура Ω действует на алгебраической структуре M, если каждый элемент $\alpha \in \Omega$ является оператором внешнего закона на M и для любой пары элементов из $\alpha, \beta \in \Omega$ имеет место согласованное действие:

$$(\alpha * \beta)(x) = \alpha(\beta(x)), \quad \forall x \in M.$$

Говорят, что имеет место согласованное действие Ω на M, если

$$(\alpha * \beta)(x \circ y) = \alpha(\beta(x \circ y)) = \alpha(\beta x \circ \beta y) = \alpha(\beta x) \circ \alpha(\beta y).$$

24. Структура модуля над кольцом: определение, примеры

Левым R-модулем (или левым модулем над кольцом R) называется абелева группа (G,+) с заданной бинарной операцией $R \times G \to G$, записываемой как $(\alpha,x) \to \alpha x$ и согласованной действующей на групповой структуре на G:

L1. Действие кольца группе:

$$\forall \alpha, \beta \in R, \quad \forall x \in G$$
$$(\alpha + \beta)x = \alpha x + \beta x, \quad (\alpha \beta)x = \alpha(\beta x).$$

L2. Согласованное действие:

$$\forall \alpha \in R, \quad \forall x_1, x_2 \in G \quad \alpha(x_1 + x_2) = \alpha x_1 + \alpha x_2$$

 $Nota\ bene$ Аналогично можно определить структуру **правого** R-модуля, если определена бинарная операция

$$G \times R \to G$$
, $(x, \alpha) \mapsto x\alpha$.

Если определены оба отображения, то говорят о двустороннем *R*-модуле.

Пример 10.3. Примеры R-модулей:

- Всякий $J \triangleleft R$ идеал кольца R есть R-модуль.
- Любая абелева группа (G, +) представляет собой \mathbb{Z} модуль, ибо

$$\forall x \in G \quad x + x + x + \dots + x = zx, \quad z \in \mathbb{Z}.$$

 \bullet Пусть k-поле, тогда структру модуля имеет k^n - множество столбиков вида

$$\xi = (\xi^1, \xi^2, \dots, \xi^n)', \quad \xi^i \in \mathbb{k}.$$

<u>25. Линейное отображение: определение, примеры </u>

Гомоморфизмом R**-модулей** X и Y (или R-линейным отображением) называется отображение $\sigma: X \to Y$, такое что:

$$\forall x, x_1, x_2 \in X, \quad \forall \alpha \in R$$

$$\sigma(x_1 + x_2) = \sigma(x_1) + \sigma(x_2), \quad \sigma(\alpha x) = \sigma(x)\alpha.$$

 $Nota\ bene$ Для множества R-линейных отображений между X и Y используют следующее обозначение $\operatorname{Hom}_R(X,Y)$.

Пример 6. Предыдущим примерам можно дать и геометрическую интерпретацию. Так, линейное отображение $\mathbb{R}^3 \longmapsto \mathbb{R}^3$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

задает ортогональную проекцию вектора X=(x,y,z) на плоскость z=0. Можно рассматривать его и как отображение $\mathbb{R}^3\longmapsto\mathbb{R}^2$. Проецирование же на произвольное подпространство может быть задано с помощью матрицы. Так, например, отображение

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

задает ортогональную проекцию вектора X на многообразие x+y+z=0.

26. Подмодуль: определение, примеры

- (1) Подмножество $L\subseteq X$ называется **подмодулем** R-модуля X, если L замкнуто относительно операций, индуцированных из X.
 - (2) Подмножество $L \subseteq X$ называется **подмодулем** R-модуля X, если L само является R-модулем относительно операций, индуцированных из X.

Лемма 10.3. Определения (1) и (2) равносильны.

Пример 10.4. Примеры подмодулей:

- Ядро линейного отображения $\sigma \in \text{Hom}_R(X,Y)$ является подмодулем в X;
- Образ линейного отображения $\sigma \in \text{Hom}_R(X,Y)$ является подмодулем в Y;
- Идеал $J \leq R$ явлеяется подмодулем R-модуля R;
- Подмножество k^n столбиков ξ , у которых первый элемент $\xi^1 = 0$.

27. Фактор-модуль, теорема об изоморфизме

модулей.

Nota bene На фактор группу X/L переносится структура R-модуля, если умножение определить формулой:

$$\alpha(x+L) = \alpha x + L, \quad \forall x \in X.$$

R-модуль X/L называется фактор-модулем X по L.

Коядром гомоморфизма $\sigma \in \operatorname{Hom}_R(X,Y)$ называется множество

$$\operatorname{Coker} \sigma = Y / \operatorname{Im} \sigma.$$

Лемма 10.4. Коядро является фактор-модулем Ү.

Теорема 10.1. *Имеет место изоморфизм R-модулей:*

$$X/\ker\sigma\simeq\operatorname{Im}\sigma.$$

Первая теорема [править | править код]

Пусть $\varphi \colon M \to N$ — гомоморфизм модулей, тогда:

- 1. Ядро φ подмодуль в M;
- 2. Образ φ подмодуль в N:
- 3. Образ φ изоморфен фактормодулю $M/\ker \varphi$.

Вторая теорема [править | править код]

Пусть M — модуль, S и T — подмодули в M, тогда:

- 1. Сумма S + T подмодуль в M;
- 2. Пересечение $S \cap T$ подмодуль в M;
- 3. Фактормодуль (S+T)/T изоморфен фактормодулю $S/(S\cap T)$.

Третья теорема [править | править код]

Пусть M — модуль, S и T — подмодули в M такие, что $T\subseteq S$, тогда:

- 1. S/T подмодуль в M/T;
- 2. Фактормножество фактормодулей (M/T)/(S/T) изоморфно фактормодулю M/S.