

FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

BOOT E SHUTDOWN

ADMINISTRAÇÃO DE SISTEMAS
2020/2021
ROLANDO MARTINS
(ADAPTADOS DE PEDRO BRANDÃO)

Referências dos slides

- O conteúdo destes slides é baseado no livro da disciplina: "Unix and Linux System Administration Handbook (4ªEd)" por Evi Nemeth, Garth Snyder, Trent R. Hein e Ben Whaley, Prentice Hall, ISBN: 0-13-148005-7
- As imagens usadas têm a atribuição aos autores ou são de uso livre.

Bootstrapping (Boot)

• Carregar sistema sem ter as funcionalidades de um SO.

• "Pull itself by its own bootstraps".

• "Booting" é uma abreviatura de "Bootstrapping".

BOOT - Fases

Inicializar máquina por fases. Providenciando serviços cada vez mais complexos às fases seguintes:

- Leitura do boot loader do MBR (Master Boot Record); o Lilo ou grub em Linux
- Carregar e inicializar o Kernel
- Deteção de dispositivos e sua configuração
- Criação dos processos de kernel
- Intervenção do Administrador (quando em modo single-user)
- Execução dos scripts de arranque

BOOT – Fases (pré boot-loader)

• Arranque da BIOS:

- Deteção de Hardware
- Execução do firmware de inicialização para cada um dos componentes e periféricos da máquina.
- o Localização do programa de boot inicial (lilo; grub; bootmgr).

[dcc]

GRUB

grub

- Grub: bootloader mais sofisticado que lilo.
 - o GRand Unified Bootloader
- Versão legacy e Grub 2
- Ambas permitem multi-booting
 - o Arranque de mais do que 1 sistema

/boot/grub2/grub.cfg

```
menuentry 'Fedora (5.3.5-200.fc30.x86_64) 30 (Thirty)'{
        load video
        set gfxpayload=keep
        insmod gzio
        insmod part_msdos
        insmod ext2
        set root='hd0,msdos1'
        linux /vmlinuz-5.3.5-200.fc30.x86_64 root=UUID=d667244d-
afaa-4e45-8ce7-7eb7312756a6 ro resume=UUID=4c460e4f-6d1b-492e-
b822-d22654ba0af3 rhgb quiet
        initrd /initramfs-5.3.5-200.fc30.x86 64.img
```

BootLoaderSpec

- Fedora assumiu o <u>BootLoaderSpec (BLS)</u>
 - o permite que diferentes booloaders usem as mesmas configurações
 - o Parte do <u>Systemd BLS</u>
- Ver no /boot/grub2/grub.cfg
 - oblscfg
- Ver /boot/loader/
- Ver no /etc/default/grub
 GRUB_ENABLE_BSLCFG

Nota:

The Boot Loader Specification (BLS) defines a scheme and file format to manage boot loader configuration for each boot option in a drop-in directory, without the need to manipulate bootloader configuration files. Directories of individual drop-in configuration files are standard for many purposes on Linux nowadays, so the goal is to also extend this concept for boot menu entries...

Grub: single user

• Em modo interativo, para entrar em single-user:

```
grub> set root=(hd0,msdos1)
grub> linux /vmlinuz-5.3.5-200.fc30.x86_64 ro \
root=/dev/sda1 rhgb selinux=0 single
grub> initrd /initramfs-5.3.5-200.fc30.x86_64.img
grub> boot
```

Para uma partição com sistema de ficheiros (não tem LVM). Pode-se ver os discos e conteúdos com: grub> 1s

Se for indicado com o UUID (como slide atrás) é menos suscetível a mudanças no /dev

Grub (legacy): single user

• Em modo interativo, para entrar em single-user:

```
grub> root (hd0,0)
grub> kernel /boot/vmlinuz ro root=/dev/sda1 single
grub> initrd /boot/initrd.img
grub> boot
```

 Argumento single é passado ao init → entra em single-user mode.

grub

- Ficheiro criado automaticamente em:
 - o /boot/grub2/grub.cfg
- Configurações:
 - o /etc/default/grub
 - o /etc/grub.d/
 - · Diretórios com os sistemas
- Comandos
 - o grub-install: instalar o grub num dispositivo
 - Apenas 1 vez, e quando o grub mudar
 - o grub2-install (fedora)
 - Que chama grub2-mkimage, grub2-bios-setup, etc.
 - o grub2-mkconfig/grub-mkconfig
 - Criar a configuração que o grub acede quando arranca

[dcc]

FICHEIROS DE ARRANQUE

PARA SISTEMAS COM SYSTEMV E SYSTEMD

Ficheiros e pastas - SystemV

• Scripts: /etc/rc* (rc.sysinit; rc.local; etc.)

- Pastas: /etc/rc*.d (rc0.d; etc.)
 - Associados ao nível de execução (run level)
 - Contêm links para scripts em /etc/init.d/
- Comando para gerir: chkconfig
- /etc/inittab
 - Diz ao init o que correr em cada nível
- Ficheiros de configuração específica no dir: /etc/sysconfig/.

Níveis de execução.

When **init** transitions from a lower run level to a higher one, it runs all the scripts that start with **S** in **ascending** numerical order with the argument **start**.

When **init** transitions from a higher run level to a lower one, it runs all the scripts that start with **K** (for "kill") in **descending** numerical order with the argument **stop**.

In -s /etc/init.d/cups /etc/rc2.d/S80cups
In -s /etc/init.d/cups /etc/rc0.d/K80cups

Although the network and sshd are both configured to start at run level 3 in Red Hat, the **network** script has sequence number 10 and the **sshd** script has sequence number 55, so **network** is certain to be run first. Be sure to consider this type of dependency when you add a new service.

Exemplo Script de arranque SSHD

```
#!/bin/sh
test -f /usr/bin/sshd || exit 0
case "$1" in
start)
                     echo -n "Starting sshd: sshd"
                     /usr/sbin/sshd
                     echo "."
stop)
                     echo -n "Stopping sshd: sshd"
                     kill `cat /var/run/sshd.pid`
                     echo "."
restart)
                     echo -n "Stopping sshd: sshd"
                     kill `cat /var/run/sshd.pid`
                     echo "."
                     echo -n "Starting sshd: sshd"
                     /usr/sbin/sshd
                     echo"."
                    echo "Usage: /etc/init.d/sshd start|stop|restart"
                     exit 1
```


systemd

Imagens <u>Wikipedia</u> Shmuel Csaba Otto Traian

• Sistema criado pela RedHat e seguido por outros

Systemd (cont)

- Gere o sistema e os seus serviços
 - ojournald, logind, networkd
- Usa sockets e o D-Bus (comunicação de daemons)
- Suporta paralelização (inicialização de serviços)
- Suporta o SystemV (init) (ver incompatibilidades)

 Críticos dizem que tem muita complexidade, monolítico, o que, dizem, vai contra a filosofia Unix

Systemd (cont)

```
    Ficheiros dos serviços:

/etc/systemd/system/

    Vários comandos (systemd-*)

• Exemplos de controlo:
# systemctl list-unit-files
  systemctl status firewalld.service
# service firewall status #usando o service System V
# systemctl status sshd
# systemctl cat sshd.service
```

Systemd (unidades)

Tipo unidade	Extensão Ficheiro	Descrição	
Service	.service	A system service.	
Target	.target	A group of systemd units.	
Automount	<pre>.automount</pre>	A file system automount point.	
Device	.device	A device file recognized by the kernel.	
Mount	.mount	A file system mount point.	
Path	.path	A file or directory in a file system.	
Scope	.scope	An externally created process.	
Slice	.slice	A group of hierarchically organized units that manage system processes.	
Snapshot	<pre>.snapshot</pre>	A saved state of the systemd manager.	
Socket	.socket	An inter-process communication socket.	
Swap	.swap	A swap device or a swap file.	
Timer	.timer	A systemd timer.	

De Managing Services with systemd

Systemd (cont)

test_service.sh

```
DATE=`date '+%Y-%m-%d %H:%M:%S'`
   echo "Example service started at ${DATE}" | systemd-cat -p info
   while:
   do echo "Looping...";
   sleep 30;
   Done
                                       /lib/systemd/system/myservice.service
1 [Unit]
  Description=Example systemd service.
3
  [Service]
  Type=simple
  ExecStart=/bin/bash /usr/bin/test_service.sh
  [Install]
  WantedBy=multi-user.target
```

[dcc]

Systemd (yet another exemple for mount)

\$ cat /etc/systemd/system/mnt-scratch.automount

[Unit]

Description=Automount Scratch

[Automount]

Where=/mnt/scratch

[Install]

WantedBy=multi-user.target

\$ cat /etc/systemd/system/mnt-scratch.mount

[Unit]

Description=Scratch

[Mount]

What=nfs.example.com:/export/scratch

Where=/mnt/scratch Type=nfs

[Install]

WantedBy=multi-user.target

Systemd (yet another exemple for socket)

```
/root/remote-commands.sh:
#!/bin/bash
read MESSAGE
while [ "$MESSAGE" != "Q" ]
$MESSAGE
echo
read MESSAGE
done
echo "Byeeee"
/etc/systemd/system/rcmd@.service:
[Unit]
Description=Remote-command Per-Connection Server
[Service]
ExecStart=-/root/remote-commands.sh
StandardInput=socket
# systemctl enable rcmd.socket
# systemctl start rcmd.socket
# systemctl status rcmd.socket
```

```
/etc/systemd/system/rcmd.socket:

[Unit]
Description=Remote command for Per-Connection Servers

[Socket]
ListenStream=5900
Accept=yes

[Install]
```

Running the example: # nc <server> 5900 pwd ls Q Ctrl-D

WantedBy=sockets.target

Reiniciar

- \$ sudo shutdown -h +15 "Vamos desligar..."
- \$ sudo halt
 - Faz o sync dos discos
- \$ sudo reboot
 - o Semelhante a halt, mas reinicia sistema
- \$ sudo shutdown -r

[dcc]

INIT E "PROCESSOS" DE KERNEL

init (PID 1)

- Antepassado de todos os processos
- Responsável pelas seguintes atividades no arranque:
 - Verificar integridade dos sistemas de ficheiros.
 - Montar discos locais (/etc/fstab).
 - o Iniciar áreas de swap.
 - o Limpar e verificar sistemas de ficheiros.
 - Quotas, remoção de ficheiros temporários.
 - Arrancar rede e montar discos remotos.
 - o Arrancar serviços (daemons) para:
 - Impressão, email, logging, cron, etc. (alguns como de log podem ser lançados antes)
 - Ativar mecanismos de login:
 - Getty
 - X11 (gdm, kdm, xdm).

init

- Em Linux o init é configurado de modo a proceder a um arranque ao estilo "System V".
- Num "System V" existem uma série de estados de execução (run levels) designados por um caracter, geralmente um número.
- Um sistema encontra-se num destes estados.
- O sistema muda de estado através de comandos administrativos.

Níveis de execução.

System V	Description	systemd
0	Halt the system.	poweroff.target
1	Single-user mode (for special administration).	rescue.target
2	Local Multiuser with Networking but without network service (like NFS)	multi-user.target
3	Full Multiuser with Networking	multi-user.target
4	Not Used	multi-user.target
5	Full Multiuser with Networking and X Windows(GUI)	graphical.target
6	Reboot.	reboot.target

Ver:

ls -1 /lib/systemd/system/runlevel[0-9].target

E Working with systemd Targets

Targets

De TLDP Run Levels

"Processos" de kernel

• São partes do kernel que podem ser geridos como processos

Thread	O que faz		
kswapd	Trata do swap dos processos quando a		
	memória física está "cheia"		
ksoftirqd	Trata de soft interrupts se não poderem ser		
	tratados na mudança de contexto		
System V			
kjournald	Faz o "commit" das atualizações ao sistema		
	de "jornal" dos sist. de ficheiros		
khubd	Configura dispositivos USB		
Systemd			
kthreadd	Pai/mãe de todas as kernel threads. Gere os		
	pedidos pelo userspace (modprobe, etc.)		
ksmd	Daemon para detetar de-duplicação da		
	memória de userspace		

Modo single-user

- modo de manutenção
 - o init coloca neste modo a pedido
- Para tarefas administrativas críticas necessitando uso exclusivo da máquina.
 - Ex.: Problemas com sistemas de ficheiros que não podem ser solucionados de forma automática.
- Como acionar:
 - o passagem de um parâmetro especial de arranque ao kernel.
 - boot: linux single
 - A qualquer momento com:
 - tolinit 1
 - systemctl rescue

Resumo

- Fases do boot
- grub
- Arranque: SystemV e systemd
- Reiniciar
- init
- single-user

[dcc]

QUESTÕES/ COMENTÁRIOS