Date: Jan 24, 2008 Page: 1 of 120

SAR TEST REPORT

Equipment Under Test:	GSM 850/PCS 1900 Dual-band mobile phone
Model No.:	V100
FCC ID	VZN-V100
Applicant :	EMPORIA TELECOM Prod u. VertriebsgmbH & Co.KG
Address of Applicant :	Industriezeile 36 - 4020 Linz - Austria
Date of Receipt :	2008.01.08
Date of Test :	2008.01.11 – 2008.01.23
Date of Issue :	2008.01.24

Standards:

FCC OET Bulletin 65 supplement C, ANSI/IEEE C95.1, C95.3, IEEE 1528-2003

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS-CSTC Shanghai GSM Lab or testing done by SGS-CSTC Shanghai GSM Lab must approve SGS Shanghai GSM Lab in connection with distribution or use of the product described in this report in writing.

Tested by :	Eenger Thang	Date :	2008.01.24
Approved by :	Thiang Year	Date :	2008.01.24

Date: Jan 24, 2008 Page: 2 of 120

Contents

1. General Information	6
1.1 Test Laboratory	6
1.2 Details of Applicant	6
1.3 Description of EUT(s)	6
1.4 Test Environment	7
1.5 Operation Configuration	7
1.6 The SAR Measurement System	7
1.7 SAR System Verification	9
1.8 Tissue Simulant Fluid for the Frequency Band 850MHz/ 1900MHz	10
1.9 Test Standards and Limits	10
2. Summary of Results	12
3. Instruments List	14
4. Measurements	15
4.1 LeftHandSide-Cheek-GSM850-Middle-Slide Up	15
GSM850-LeftHandSide-Cheek-Mid(Slide Up)	15
4.2 LeftHandSide-Tilt-GSM850-Middle-Slide Up	16
GSM850-LeftHandSide-Tilt-Mid(Slide Up)	16
4.3 LeftHandSide-Cheek-GSM850-Low-Slide Up	18
GSM850-LeftHandSide-Cheek-Low(Slide Up)	18
4.4 LeftHandSide-Cheek-GSM850-High-Slide Up	19
GSM850-LeftHandSide-Cheek-High(Slide Up)	19
4.5 LeftHandSide-Cheek-GSM850-Middle-No Slide	21
GSM850-LeftHandSide-Cheek-Mid(No Slide)	21
4.6 LeftHandSide-Tilt-GSM850-Middle-No Slide	22
GSM850-LeftHandSide-Tilt-Mid(No Slide)	22
4.7 LeftHandSide-Cheek-GSM850-Low-No Slide	24
GSM850-LeftHandSide-Cheek-Low(No Slide)	24
4.8 LeftHandSide-Cheek-GSM850-High-No Slide	25
GSM850-LeftHandSide-Cheek-High(No Slide)	25
4.9 RightHandSide-Cheek-GSM850-Middle-Slide Up	27
GSM850-RightHandSide-Cheek-Mid(Slide Up)	27
4.10 RightHandSide-Tilt-GSM850-Middle-Slide Up	29
GSM850-RightHandSide-Tilt-Mid(Slide Up)	29

Date: Jan 24, 2008

Page:	3	of	120

4.11 RightHandSide-Cheek-GSM850-Low-Slide Up	31
GSM850-RightHandSide-Cheek-Low(Slide Up)	31
4.12 RightHandSide-Cheek-GSM850-High-Slide Up	32
GSM850-RightHandSide-Cheek-High(Slide Up)	32
4.13 RightHandSide-Cheek-GSM850-Middle-No Slide	34
GSM850-RightHandSide-Cheek-Mid(No Slide)	34
4.14 RightHandSide-Tilt-GSM850-Middle-No Slide	35
GSM850-RightHandSide-Tilt-Mid(No Slide)	35
4.15 RightHandSide-Cheek-GSM850-Low-No Slide	36
GSM850-RightHandSide-Cheek-Low(No Slide)	37
4.16 RightHandSide-Cheek-GSM850-High-No Slide	38
GSM850-RightHandSide-Cheek-High(No Slide)	38
4.17 Body-Worn-GSM850-Low-Slide Up	40
GSM850-Body-Worn-Low-Slide Up	40
4.18 Body-Worn-GSM850-Middle-Slide Up	41
GSM850-Body-Worn-Mid-Slide Up	41
4.19 Body-Worn-GSM850-High-Slide Up	43
GSM850-Body-Worn-High-Slide Up	43
4.20 Body-Worn-GSM850-Low-No Slide	45
GSM850-Body-Worn-Low-No Slide	45
4.21 Body-Worn-GSM850-Middle-No Slide	47
GSM850-Body-Worn-Mid-No Slide	47
4.22 Body-Worn-GSM850-High-No Slide	49
GSM850-Body-Worn-High-No Slide	49
4.23 LeftHandSide-Cheek-PCS1900-Middle-Slide Up	51
PCS1900-LeftHandSide-Cheek-Middle-Slide Up	51
4.24 LeftHandSide-Tilt-PCS1900-Middle-Slide Up	53
PCS1900-LeftHandSide-Tilt-Middle-Slide Up	53
4.25 LeftHandSide-Tilt-PCS1900-Low-Slide Up	54
PCS1900-LeftHandSide-Tilt-Low-Slide Up	54
4.26 LeftHandSide-Tilt-PCS1900-High-SlideUp	55
PCS1900-LeftHandSide-Tilt-High-Slide Up	56
4.27 LeftHandSide-Cheek-PCS1900-Middle-No Slide	57
PCS1900-LeftHandSide-Cheek-Middle-No Slide	57
4.28 LeftHandSide-Tilt-PCS1900-Middle-No Slide	58

Date: Jan 24, 2008

Page: 4 of	120
------------	-----

PCS1900-LeftHandSide-Tilt-Middle-No Slide	59
4.29 LeftHandSide-Tilt-PCS1900-Low-No Slide	60
PCS1900-LeftHandSide-Tilt-Low-No Slide	60
4.30 LeftHandSide-Tilt-PCS1900-High-No Slide	61
PCS1900-LeftHandSide-Tilt-High-No Slide	62
4.31 RightHandSide-Cheek-PCS1900-Middle-Slide Up	63
PCS1900-RightHandSide-Cheek-Middle-Slide Up	63
4.32 RightHandSide-Tilt-PCS1900-Middle-Slide Up	64
PCS1900-RightHandSide-Tilt-Middle-Slide Up	65
4.33 RightHandSide-Cheek-PCS1900-Low-Slide Up	66
PCS1900-RightHandSide-Cheek-Low-Slide Up	66
4.34 RightHandSide-Cheek-PCS1900-High-Slide Up	67
PCS1900-RightHandSide-Cheek-High-Slide Up	68
4.35 RightHandSide-Cheek-PCS1900-Middle-No Slide	69
PCS1900-RightHandSide-Cheek-Middle-No Slide	69
4.36 RightHandSide-Tilt-PCS1900-Middle-No Slide	70
PCS1900-RightHandSide-Tilt-Middle-No Slide	71
4.37 RightHandSide-Cheek-PCS1900-Low-No Slide	72
PCS1900-RightHandSide-Cheek-Low-No Slide	72
4.38 RightHandSide-Cheek-PCS1900-High-No Slide	73
PCS1900-RightHandSide-Cheek-High-No Slide	74
4.39 Body-Worn-PCS1900-Low-Slide Up	75
GSM1900-Body-Worn-Low-Slide Up	75
4.40 Body-Worn-PCS1900-Middle-Slide Up	77
GSM1900-Body-Worn-Mid-Slide Up	77
4.41 Body-Worn-PCS1900-High-Slide Up	78
GSM1900-Body-Worn-High-Slide Up	78
4.42 Body-Worn-PCS1900-Low-No Slide	80
GSM1900-Body-Worn-Low-No Slide	80
4.43 Body-Worn-PCS1900-Middle-No Slide	81
GSM1900-Body-Worn-Mid-No Slide	81
4.44 Body-Worn-PCS1900-High-No Slide	83
GSM1900-Body-Worn-High-No Slide	83
Appendix	85
1. Photographs of Test Setup	85

Page: 5 of 120

		. ago. o oo
2.	Photographs of the EUT	89
3.	Photographs of the battery and Charger	90
4.	Probe Calibration certificate	91
5.	Dipole Calibration certification	101
6.	Uncertainty analysis	119
7.	Phantom description	120

Date: Jan 24, 2008 Page: 6 of 120

1. General Information

1.1 Test Laboratory

GSM Lab

SGS-CSTC Standards Technical Services Co., Ltd Shanghai Branch 9F,the 3rd Building, No.889, Yishan Rd, Xuhui District, Shanghai, China

Zip code: 200233

Telephone: +86 (0) 21 6495 1616 Fax: +86 (0) 21 6495 3679 Internet: http://www.cn.sqs.com

1.2 Details of Applicant

Name: EMPORIA TELECOM Prod.- u. VertriebsgmbH & Co.KG

Address: Industriezeile 36 - 4020 Linz - Austria

1.3 Description of EUT(s)

cocription of Lor(3)			
Brand name	emporia		
Model No.	V100		
Serial No.	IMEI: 35	1558012258515	
Hardware Version		V7.1	
Software Version	,	V90.3.49j	
Sample Status	Production		
Battery Type	Lithium-Ion		
Antenna Type	Inner Antenna		
Operation Mode	GSM		
Modulation Mode	GMSK		
	GSM850	Tx: 824~849 MHz	
Frequency range		Rx: 869~894 MHz	
r requeitcy range	PCS1900	Tx: 1850~1910 MHz	
	Rx: 1930~1990 MH:		
Maximum RF Conducted Power	GSM850: 33.0dBm,		
	PCS1900: 30.0dBm		

Date: Jan 24, 2008 Page: 7 of 120

1.4 Test Environment

Ambient temperature: 22.0° C

Tissue Simulating Liquid: 22° C

Relative Humidity: 35%~45%

1.5 Operation Configuration

Configuration 1: GSM 850, LeftHandSide Cheek & 15° Tilt Position

Configuration 2: GSM 850, RightHandSide Cheek & 15° Tilt Position

Configuration 3: GSM 850, BodyWorn (1.5 cm between EUT and phantom)

Configuration 4: PCS 1900, LeftHandSide Cheek & 15° Tilt Position

Configuration 5: PCS 1900, RightHandSide Cheek & 15° Tilt Position

Configuration 6: PCS 1900, BodyWorn (1.5 cm between EUT and phantom)

1.6 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a.

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model EX3DV4 3578 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ ($|E|^2$)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant.

The DASY4 system for performing compliance tests consists of the following items:

- Ÿ A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).
- Y A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- Y A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection,

Date: Jan 24, 2008

Page: 8 of 120

collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

Fig. a SAR System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000. Ϋ
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and body-worn usage.

Date: Jan 24, 2008

Page: 9 of 120

- Ϋ The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes. Ϋ
- Ϋ Validation dipole kits allowing to validating the proper functioning of the system.

1.7 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 900&1800MHz. The tests were conducted on the same days as the measurement of the DUT. The obtained results from the system accuracy verification are displayed in the table 1 (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 22°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Fig. b the microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4438C Signal Generator
- B. Mini-Circuit Model ZHL-42 Preamplifier
- C. Agilent Model E4416A Power Meter
- D. Agilent Model 8481H Power Sensor

Date: Jan 24, 2008 Page: 10 of 120

E. HT CP6100 20N Dual directional coupler

F. Reference dipole antenna

Validation Kit	Frequency MHz	Target SAR 1g (250mW)	Target SAR 10g (250mW)	Measured SAR 1g	Measured SAR 10g	Measured Date
D900V2	900	0.50	4.00	2.52	1.61	2008-01-11
SN168	Head	2.59	1.66	2.61	1.70	2008-01-14
D900V2	900	2.58	1.71	2.59	1.74	2008-01-14
SN168	Body	2.00	2.00		1.7	2000 01 11
D1800V2	1800	0.46	4.00	9.17	4.84	2008-01-22
SN2d052	Head	9.16	4.89	9.11	4.87	2008-01-23
D1800V2	1800	9.61	5.28	9.57	5.21	2008-01-18
SN2d052	Body	9.01	5.20			2000-01-16

Table 1. Result System Validation

1.8 Tissue Simulant Fluid for the Frequency Band 850MHz/ 1900MHz

The dielectric properties for this body-simulant fluid were measured by using the HP Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5071B Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Fluid was 22°C.

Frequency (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Simulated Tissue Temp (°C)
		Recommended Limit	42.0±5%	0.99±5%	20-24
	Head	Measured, 2008-01-11	41.15	0.968	22.5
850		Measured, 2008-01-14	41.18	0.969	22.1
	Body	Recommended Limit	55.0±5%	1.05±5%	20-24
	Войу	Measured, 2008-01-14	54.92	1.022	22.7
	Head	Recommended Limit	40.0±5%	1.40±5%	20-24
1900	Heau	Measured, 2008-01-22	39.15	1.445	22.3
1900	Body	Recommended Limit	53.3±5%	1.52±5%	20-24
	Body	Measured, 2008-01-18	51.74	1.566	22.6

Table 2. Dielectric parameters for the Frequency Band 850&1900MHZ

1.9 Test Standards and Limits

According to FCC 47 CFR §2.1093(d) the limits to be used for evaluation are based

Date: Jan 24, 2008

Page: 11 of 120

generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3KHz to 300GHz," ANSI/IEEE C95.1-1992, Copyright 1992 by the Institute of Electrical & Electronics Engineers, Inc., New York, New York 10071.

Human Exposure	Uncontrolled Environment General Population
Spatial Peak SAR	1.60 mW/g
(Brain)	(averaged over a mass of 1g)

Table 3. RF Exposure Limits

Notes:

1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Date: Jan 24, 2008 Page: 12 of 120

2. Summary of Results

SAR GSM850

	WALL COMPANY							
	Test Configuration			SAR, A	veraged over 1	g(W/kg)	Temperature	Verdict
Mode	Channel/Power(dBm)			Low/33.0	Middle/32.9	High/32.7	(℃)	
		Slide	Cheek	0.108	0.099	0.046	22	Pass
		Up	Tilt	-	0.040	-	22	Pass
	Left	No	Cheek	0.200	0.258	0.264	22	Pass
		Slide	Tilt	-	0.150	-	22	Pass
	Right	Slide	Cheek	0.091	0.094	0.059	22	Pass
GSM850		Up	Tilt	-	0.042	-	22	Pass
		No	Cheek	0.146	0.190	0.197	22	Pass
		Slide	Tilt	-	0.101	-	22	Pass
		Slide Up		0.685	0.719	0.612	22	Pass
	Body	No Slide		0.723	0.738	0.610	22	Pass

SAR PCS1900

	Test Configuration		SAR, A	veraged over 1	Temperature	Verdict		
Mode	Channel/Power(dBm)			Low/28.4	Middle/27.9	High/28.0	(℃)	
PCS1900		Slide	Cheek	-	0.061	-	22	Pass
		Up	Tilt	0.037	0.124	0.059	22	Pass
	Left	No	Cheek	-	0.353	-	22	Pass
		Slide	Tilt	0.255	0.374	0.325	22	Pass
	Right	Slide	Cheek	0.080	0.134	0.109	22	Pass
	i i i giii	Up	Tilt	-	0.071	-	22	Pass
		No	Cheek	0.239	0.341	0.276	22	Pass

Date: Jan 24, 2008

|--|

	Slide	Tilt	-	0.269	-	22	Pass
	Slide	e Up	0.137	0.239	0.228	22	Pass
Body	No S	Slide	0.228	0.312	0.266	22	Pass

Maximum values

Frequency Band (MHz)	EUT position	Conducted Output Power (dBm)	1g Average (W/kg)	Power Drift(dB)	Amb. Temp (°C)	Verdict
	LeftHandSide, Cheek, High Channel No Slide	32.7	0.264	-0.049	22	PASS
850	RightHandSide, Cheek, High Channel	32.7	0.197	-0.119	22	PASS
	BodyWorn, Middle Channel	32.9	0.738	-0.165	22	PASS
	LeftHandSide, Tilt, Middle Channel No Slide	27.9	0.374	-0.084	22	PASS
1900	RightHandSide, Cheek, Middle Channel No Slide	27.9	0.341	0.266	22	PASS
	BodyWorn, Middle Channel No Slide	27.9	0.312	-0.054	22	PASS

Note:

- 1. In GSM850 band, the low, middle and high channels are CH128/824.2MHz, CH189/836.4MHz and CH251/848.8MHz separately.
- 2. In PCS1900 band, the low, middle and high channels are CH512/1805.2MHz, CH661/1880.0MHz and CH810/1909.8MHz separately.
- 3. For the Bodyworn measurements the sample was only placed with the antenna toward the phantom since this position delivers the highest SAR values. The distance from the sample to the phantom is 1.5 cm.
- 4. For all the tests, EUT is working with the max transmission power and the maximum absolute value of the power drift is 0.302dB which is under the LeftHandSide-Tilt-GSM850-Middle-Slide Up configuration.

Date: Jan 24, 2008 Page: 14 of 120

3. Instruments List

Instrument	Model	Serial number	NO.	Date of last Calibration	
Desktop PC	COMPAQ EVO	N/A	GSM-SAR-025	N/A	
Dasy 4 software	V 4.7 build 44	N/A	GSM-SAR-001	N/A	
Probe	Ex3DV4	3578	-	2007.04.24	
DAE	DAE3	569	GSM-SAR-023	2007.11.19	
900MHz system validation dipole	D900V2	168	-	2007.04.25	
1800MHz system validation dipole	D1800V2	2d052	-	2007.04.25	
Phantom	SAM 12	TP-1283	GSM-SAR-005	N/A	
Robot	RX90L	F03/5V32A1/A01	GSM-SAR-006	N/A	
Dielectric probe kit	85070D	US01440168	GSM-SAR-016	2007.12.18	
Agilent network analyzer	E5071B	MY42100549	GSM-SAR-007	2007.12.18	
Agilent signal generator	E4438	14438CATO-19719	GSM-SAR-008	2007.12.18	
Mini-Circuits preamplifier	ZHL-42	D041905	GSM-SAR-033	2007.12.18	
Agilent power meter	E4416A	GB41292095	GSM-SAR-010	2007.12.18	
Agilent power sensor	8481H	MY41091234	GSM-SAR-011	2007.12.18	
HT CP6100 20N Coupling	6100	SCP301480120	GSM-SAR-012	2007.12.18	
R&S Universal radio communication tester	CMU200	103633	GSM-AUD-002	2007.12.18	

Date: Jan 24, 2008 Page: 15 of 120

4. Measurements

4.1 LeftHandSide-Cheek-GSM850-Middle-Slide Up

Date/Time: 2008-1-11 15:56:59

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Mid(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850 Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 0.87 \text{ mho/m}$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn569; Calibrated: 2007-11-19
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.106 mW/g

Cheek position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.19 V/m; Power Drift = 0.223 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.107 mW/g

Page: 16 of 120

4.2 LeftHandSide-Tilt-GSM850-Middle-Slide Up

Date/Time: 2008-1-11 14:21:25

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Tilt-Mid(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

Page: 17 of 120

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Mid/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.044 mW/g

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.58 V/m; Power Drift = -0.302 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.040 mW/g; SAR(10 g) = 0.030 mW/g

Maximum value of SAR (measured) = 0.042 mW/g

0 dB = 0.042 mW/g

Date: Jan 24, 2008 Page: 18 of 120

4.3 LeftHandSide-Cheek-GSM850-Low-Slide Up

Date/Time: 2008-1-14 8:32:20

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Low(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.858$ mho/m; $\varepsilon_r = 41.4$; $\rho =$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.122 mW/g

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.16 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.115 mW/g

Page: 19 of 120

4.4 LeftHandSide-Cheek-GSM850-High-Slide Up

Date/Time: 2008-1-14 9:29:14

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.882 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho =$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

Page: 20 of 120

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High 2/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.050 mW/g

Cheek position - High 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.96 V/m; Power Drift = -0.108 dB

Peak SAR (extrapolated) = 0.060 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.049 mW/g

0 dB = 0.049 mW/g

Date: Jan 24, 2008 Page: 21 of 120

4.5 LeftHandSide-Cheek-GSM850-Middle-No Slide

Date/Time: 2008-1-11 12:18:21

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Mid(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Mid/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.283 mW/g

Cheek position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = -0.184 dB

Peak SAR (extrapolated) = 0.321 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.276 mW/g

Page: 22 of 120

4.6 LeftHandSide-Tilt-GSM850-Middle-No Slide

Date/Time: 2008-1-11 13:53:36

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Tilt-Mid(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

Page: 23 of 120

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Mid/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.160 mW/g

Tilt position - Mid/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.113 mW/g

Maximum value of SAR (measured) = 0.159 mW/g

0 dB = 0.159 mW/g

Date: Jan 24, 2008 Page: 24 of 120

4.7 LeftHandSide-Cheek-GSM850-Low-No Slide

Date/Time: 2008-1-11 13:02:44

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-Low(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 824.2 MHz; σ = 0.858 mho/m; ε = 41.4; ρ =

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.214 mW/g

Cheek position - Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.7 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.250 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.144 mW/g

Maximum value of SAR (measured) = 0.214 mW/g

Page: 25 of 120

0 dB 0.21 lill \(\(\) \(\) \(\)

4.8 LeftHandSide-Cheek-GSM850-High-No Slide

Date/Time: 2008-1-11 13:27:35

Test Laboratory: SGS-GSM

GSM850-LeftHandSide-Cheek-High(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Date: Jan 24, 2008

Page: 26 of 120

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.882 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn569; Calibrated: 2007-11-19
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.281 mW/g

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.336 W/kg

SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.191 mW/g

Maximum value of SAR (measured) = 0.282 mW/g

Page: 27 of 120

4.9 RightHandSide-Cheek-GSM850-Middle-Slide Up

Date/Time: 2008-1-11 10:25:25

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Mid(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Date: Jan 24, 2008

Page: 28 of 120

- Probe: EX3DV4 SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn569; Calibrated: 2007-11-19
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle-Slide Up/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.099 mW/g

Cheek position - Middle-Slide Up/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.89 V/m; Power Drift = -0.079 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.094 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.100 mW/g

Page: 29 of 120

4.10 RightHandSide-Tilt-GSM850-Middle-Slide Up

Date/Time: 2008-1-11 10:00:29

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Tilt-Mid(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Right Section

Page: 30 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle-Slide Up/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.045 mW/g

Tilt position - Middle-Slide Up/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.28 V/m; Power Drift = -0.115 dB

Peak SAR (extrapolated) = 0.053 W/kg

SAR(1 g) = 0.042 mW/g; SAR(10 g) = 0.031 mW/g

Maximum value of SAR (measured) = 0.044 mW/g

Date: Jan 24, 2008 Page: 31 of 120

0 dB = 0.044 mW/g

4.11 RightHandSide-Cheek-GSM850-Low-Slide Up

Date/Time: 2008-1-11 10:50:34

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Low(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.858 \text{ mho/m}$; $\varepsilon_r = 41.4$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low-Slide Up/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.096 mW/g

Cheek position - Low-Slide Up/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.84 V/m; Power Drift = -0.154 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.096 mW/g

Page: 32 of 120

4.12 RightHandSide-Cheek-GSM850-High-Slide Up

Date/Time: 2008-1-11 11:29:07

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High(Slide Up)

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.882$ mho/m; $\varepsilon_r = 41.1$; $\rho =$

 1000 kg/m^3

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

Page: 33 of 120

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High-Slide Up/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.063 mW/g

Cheek position - High-Slide Up/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.95 V/m; Power Drift = -0.007 dB

Peak SAR (extrapolated) = 0.078 W/kg

SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.042 mW/g

Maximum value of SAR (measured) = 0.062 mW/g

0 dB = 0.062 mW/g

Date: Jan 24, 2008 Page: 34 of 120

4.13 RightHandSide-Cheek-GSM850-Middle-No Slide

Date/Time: 2008-1-11 8:17:55

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Mid(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850 Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87 \text{ mho/m}$; $\varepsilon_r = 41.2$; $\rho = 0.87 \text{ mho/m}$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle-No Slide/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.204 mW/g

Cheek position - Middle-No Slide/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.192 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.141 mW/g

Maximum value of SAR (measured) = 0.201 mW/g

Page: 35 of 120

4.14 RightHandSide-Tilt-GSM850-Middle-No Slide

Date/Time: 2008-1-11 9:34:59

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Tilt-Mid(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 836.4 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 41.2$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 36 of 120

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle-No Slide/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.110 mW/g

Tilt position - Middle-No Slide/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = -0.132 dB

Peak SAR (extrapolated) = 0.128 W/kg

SAR(1 g) = 0.101 mW/g; SAR(10 g) = 0.077 mW/g

Maximum value of SAR (measured) = 0.107 mW/g

0 dB = 0.107 mW/g

4.15 RightHandSide-Cheek-GSM850-Low-No Slide

Date/Time: 2008-1-11 8:44:07

Date: Jan 24, 2008 Page: 37 of 120

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-Low(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 824.2 MHz; $\sigma = 0.858$ mho/m; $\varepsilon_r = 41.4$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low-No Slide/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.152 mW/g

Cheek position - Low-No Slide/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.184 W/kg

SAR(1 g) = 0.146 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.155 mW/g

Page: 38 of 120

4.16 RightHandSide-Cheek-GSM850-High-No Slide

Date/Time: 2008-1-11 9:10:50

Test Laboratory: SGS-GSM

GSM850-RightHandSide-Cheek-High(No Slide)

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850_Head Medium parameters used: f = 848.8 MHz; $\sigma = 0.882 \text{ mho/m}$; $\varepsilon_r = 41.1$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Page: 39 of 120

Probe: EX3DV4 - SN3578; ConvF(6.96, 6.96, 6.96); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High-No Slide/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.208 mW/g

Cheek position - High-No Slide/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.4 V/m; Power Drift = -0.119 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.197 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.208 mW/g

0 dB = 0.208 mW/g

Date: Jan 24, 2008

Page: 40 of 120

4.17 Body-Worn-GSM850-Low-Slide Up

Date/Time: 2008-1-14 15:46:49

Test Laboratory: SGS-GSM

GSM850-Body-Worn-Low-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 824.2 MHz; $\sigma = 0.974 \text{ mho/m}$; $\varepsilon_r = 54.6$; $\rho = 0.974 \text{ mho/m}$

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Low 2/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.759 mW/g

Body Worn - Low 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.13 V/m: Power Drift = -0.155 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.436 mW/g

Maximum value of SAR (measured) = 0.755 mW/g

Page: 41 of 120

4.18 Body-Worn-GSM850-Middle-Slide Up

Date/Time: 2008-1-14 15:23:48

Test Laboratory: SGS-GSM

GSM850-Body-Worn-Mid-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 836.4 MHz; $\sigma = 0.991$ mho/m; $\varepsilon_r = 54.7$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Date: Jan 24, 2008 Page: 42 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Middle 2/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.792 mW/g

Body Worn - Middle 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.44 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.455 mW/g

Maximum value of SAR (measured) = 0.783 mW/g

Page: 43 of 120

4.19 Body-Worn-GSM850-High-Slide Up

Date/Time: 2008-1-14 14:49:27

Test Laboratory: SGS-GSM

 $GSM850\text{-}Body\text{-}Worn\text{-}High\text{-}Slide\ Up$

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 848.8 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.8$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Date: Jan 24, 2008 Page: 44 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.678 mW/g

Body Worn - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.96 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.888 W/kg

SAR(1 g) = 0.612 mW/g; SAR(10 g) = 0.389 mW/g

Maximum value of SAR (measured) = 0.671 mW/g

Page: 45 of 120

4.20 Body-Worn-GSM850-Low-No Slide

Date/Time: 2008-1-14 12:48:40

Test Laboratory: SGS-GSM

GSM850-Body-Worn-Low-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 824.2 MHz; $\sigma = 0.974$ mho/m; $\varepsilon_r = 54.6$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Date: Jan 24, 2008 Page: 46 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.774 mW/g

Body Worn - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.97 V/m; Power Drift = -0.124 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.723 mW/g; SAR(10 g) = 0.452 mW/g

Maximum value of SAR (measured) = 0.790 mW/g

Page: 47 of 120

4.21 Body-Worn-GSM850-Middle-No Slide

Date/Time: 2008-1-14 11:07:23

Test Laboratory: SGS-GSM

GSM850-Body-Worn-Mid-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 836.4 MHz; $\sigma = 0.991$ mho/m; $\varepsilon_r = 54.7$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Date: Jan 24, 2008 Page: 48 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Middle 2/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.786 mW/g

Body Worn - Middle 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.94 V/m; Power Drift = -0.165 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.738 mW/g; SAR(10 g) = 0.451 mW/g

Maximum value of SAR (measured) = 0.808 mW/g

Page: 49 of 120

4.22 Body-Worn-GSM850-High-No Slide

Date/Time: 2008-1-14 13:15:34

Test Laboratory: SGS-GSM

GSM850-Body-Worn-High-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: GSM850-GSM Mode; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: HSL850-Body Medium parameters used: f = 848.8 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.8$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

Date: Jan 24, 2008 Page: 50 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(6.65, 6.65, 6.65); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.659 mW/g

Body Worn - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.98 V/m; Power Drift = -0.073 dB

Peak SAR (extrapolated) = 0.935 W/kg

SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.384 mW/g

Maximum value of SAR (measured) = 0.670 mW/g

Page: 51 of 120

4.23 LeftHandSide-Cheek-PCS1900-Middle-Slide Up

Date/Time: 2008-1-23 8:36:39

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Middle-Slide Up

DUT: GSM10724307-Slide up; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε r = 39; ρ = 1000

kg/m³

Phantom section: Left Section

Page: 52 of 120

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.067 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.83 V/m; Power Drift = -0.117 dB

Peak SAR (extrapolated) = 0.090 W/kg

SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.066 mW/g

0 dB = 0.066 mW/g

Date: Jan 24, 2008 Page: 53 of 120

4.24 LeftHandSide-Tilt-PCS1900-Middle-Slide Up

Date/Time: 2008-1-22 16:39:01

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-Middle-Slide Up

DUT: GSM10724307-Slide up; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε r = 39; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.150 mW/g

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.85 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.124 mW/g; SAR(10 g) = 0.075 mW/g

Maximum value of SAR (measured) = 0.135 mW/g

Page: 54 of 120

4.25 LeftHandSide-Tilt-PCS1900-Low-Slide Up

Date/Time: 2008-1-23 9:05:06

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-Low-Slide Up

DUT: GSM10724307-Slide up; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ε = 39.1; ρ =

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 55 of 120

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.043 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.15 V/m; Power Drift = -0.087 dB

Peak SAR (extrapolated) = 0.055 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.022 mW/g

Maximum value of SAR (measured) = 0.040 mW/g

 $0\ dB=0.040mW/g$

4.26 LeftHandSide-Tilt-PCS1900-High-SlideUp

Date/Time: 2008-1-23 9:39:17

Date: Jan 24, 2008 Page: 56 of 120

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-High-Slide Up

DUT: GSM10724307-Slide up; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ε $_{\rm r}$ = 38.9; ρ =

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.069 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.39 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 0.090 W/kg

SAR(1 g) = 0.059 mW/g; SAR(10 g) = 0.036 mW/g

Maximum value of SAR (measured) = 0.065 mW/g

Page: 57 of 120

4.27 LeftHandSide-Cheek-PCS1900-Middle-No Slide

Date/Time: 2008-1-22 13:27:35

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Cheek-Middle-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε r = 39; ρ = 1000

kg/m³

Phantom section: Left Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 58 of 120

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.389 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.301 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.216 mW/g

Maximum value of SAR (measured) = 0.385 mW/g

0 dB = 0.385 mW/g

4.28 LeftHandSide-Tilt-PCS1900-Middle-No Slide

Date/Time: 2008-1-22 15:08:08

Date: Jan 24, 2008

Page: 59 of 120

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-Middle-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$

kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.427 mW/g

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = -0.084 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.221 mW/g

Maximum value of SAR (measured) = 0.415 mW/g

Page: 60 of 120

4.29 LeftHandSide-Tilt-PCS1900-Low-No Slide

Date/Time: 2008-1-22 15:33:19

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-Low-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ε = 39.1; ρ =

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 61 of 120

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.292 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.378 W/kg

SAR(1 g) = 0.255 mW/g; SAR(10 g) = 0.152 mW/g

Maximum value of SAR (measured) = 0.281 mW/g

0 dB = 0.281 mW/g

4.30 LeftHandSide-Tilt-PCS1900-High-No Slide

Date/Time: 2008-1-22 16:11:02

Date: Jan 24, 2008 Page: 62 of 120

Test Laboratory: SGS-GSM

PCS1900-LeftHandSide-Tilt-High-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ε $_{\rm r}$ = 38.9; ρ =

1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: EX3DV4 SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn569; Calibrated: 2007-11-19
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.371 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.190 mW/g

Maximum value of SAR (measured) = 0.358 mW/g

Page: 63 of 120

4.31 RightHandSide-Cheek-PCS1900-Middle-Slide Up

Date/Time: 2008-1-22 10:42:50

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Middle-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε r = 39; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 64 of 120

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.149 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.67 V/m; Power Drift = -0.061 dB

Peak SAR (extrapolated) = 0.208 W/kg

SAR(1 g) = 0.134 mW/g; SAR(10 g) = 0.080 mW/g

Maximum value of SAR (measured) = 0.144 mW/g

 $0\ dB=0.144mW/g$

4.32 RightHandSide-Tilt-PCS1900-Middle-Slide Up

Date/Time: 2008-1-22 10:13:46

Date: Jan 24, 2008 Page: 65 of 120

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Tilt-Middle-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.081 mW/g

Tilt position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.45 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.071 mW/g; SAR(10 g) = 0.044 mW/g

Maximum value of SAR (measured) = 0.078 mW/g

Page: 66 of 120

0 dB = 0.078 mW/g

4.33 RightHandSide-Cheek-PCS1900-Low-Slide Up

Date/Time: 2008-1-22 11:21:41

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Low-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ε = 39.1; ρ =

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 67 of 120

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.090 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.48 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.048 mW/g

Maximum value of SAR (measured) = 0.088 mW/g

0 dB = 0.088 mW/g

4.34 RightHandSide-Cheek-PCS1900-High-Slide Up

Date/Time: 2008-1-22 12:10:05

Date: Jan 24, 2008 Page: 68 of 120

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-High-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; σ = 1.43 mho/m; ε $_{\rm r}$ = 38.9; ρ =

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High/Area Scan (61x111x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.122 mW/g

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.07 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.172 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.119 mW/g

Page: 69 of 120

4.35 RightHandSide-Cheek-PCS1900-Middle-No Slide

Date/Time: 2008-1-22 8:27:58

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Middle-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ε r = 39; ρ = 1000

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 70 of 120

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Middle/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.365 mW/g

Cheek position - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.266 dB

Peak SAR (extrapolated) = 0.493 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.210 mW/g

Maximum value of SAR (measured) = 0.373 mW/g

0 dB = 0.373 mW/g

4.36 RightHandSide-Tilt-PCS1900-Middle-No Slide

Date/Time: 2008-1-22 12:49:26

Date: Jan 24, 2008 Page: 71 of 120

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Tilt-Middle-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1880 MHz; $\sigma = 1.4$ mho/m; $\varepsilon_r = 39$; $\rho = 1000$

kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Tilt position - Middle/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.348 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.6 V/m; Power Drift = -0.151 dB

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.158 mW/g

Maximum value of SAR (measured) = 0.298 mW/g

Page: 72 of 120

0 dB = 0.298 mW/g

4.37 RightHandSide-Cheek-PCS1900-Low-No Slide

Date/Time: 2008-1-22 8:57:51

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-Low-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1850.2 MHz; σ = 1.37 mho/m; ε = 39.1; ρ =

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 73 of 120

Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - Low/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.284 mW/g

Cheek position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.345 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.149 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

0 dB = 0.261 mW/g

4.38 RightHandSide-Cheek-PCS1900-High-No Slide

Date/Time: 2008-1-22 9:21:21

Date: Jan 24, 2008 Page: 74 of 120

Test Laboratory: SGS-GSM

PCS1900-RightHandSide-Cheek-High-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Head Medium parameters used: f = 1909.8 MHz; $\sigma = 1.43$ mho/m; $\varepsilon_r = 38.9$; $\rho =$

1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

Probe: EX3DV4 - SN3578; ConvF(5.25, 5.25, 5.25); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Cheek position - High/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.321 mW/g

Cheek position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.399 W/kg

SAR(1 g) = 0.276 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.302 mW/g

Page: 75 of 120

0 dB = 0.302 mW/g

4.39 Body-Worn-PCS1900-Low-Slide Up

Date/Time: 2008-1-18 15:38:03

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-Low-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1850.2 MHz; σ = 1.51 mho/m; ε = 51.9; ρ =

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Page: 76 of 120

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Low 2/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.151 mW/g

Body Worn - Low 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.25 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.235 W/kg

SAR(1 g) = 0.137 mW/g; SAR(10 g) = 0.078 mW/g

Maximum value of SAR (measured) = 0.150 mW/g

0 dB = 0.150 mW/g

Date: Jan 24, 2008

Page: 77 of 120

4.40 Body-Worn-PCS1900-Middle-Slide Up

Date/Time: 2008-1-18 14:58:01

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-Mid-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 51.7$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.263 mW/g

Body Worn - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.79 V/m; Power Drift = -0.136 dB

Peak SAR (extrapolated) = 0.416 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.136 mW/g

Maximum value of SAR (measured) = 0.264 mW/g

Page: 78 of 120

4.41 Body-Worn-PCS1900-High-Slide Up

Date/Time: 2008-1-18 14:32:39

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-High-Slide Up

DUT: GSM10724307-SlideUp; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1909.8 MHz; σ = 1.57 mho/m; ε $_{\rm r}$ = 51.6; ρ =

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

Page: 79 of 120

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.253 mW/g

Body Worn - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.45 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.228 mW/g; SAR(10 g) = 0.129 mW/g

Maximum value of SAR (measured) = 0.248 mW/g

0 dB = 0.248 mW/g

Date: Jan 24, 2008 Page: 80 of 120

4.42 Body-Worn-PCS1900-Low-No Slide

Date/Time: 2008-1-18 13:43:31

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-Low-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1850.2 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 51.9$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.239 mW/g

Body Worn - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.53 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.373 W/kg

SAR(1 g) = 0.228 mW/g; SAR(10 g) = 0.134 mW/g

Maximum value of SAR (measured) = 0.246 mW/g

Page: 81 of 120

4.43 Body-Worn-PCS1900-Middle-No Slide

Date/Time: 2008-1-18 13:19:48

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-Mid-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\varepsilon_r = 51.7$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

Page: 82 of 120

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.338 mW/g

Body Worn - Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.32 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.525 W/kg

SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.342 mW/g

0 dB = 0.342 mW/g

Date: Jan 24, 2008 Page: 83 of 120

o o

4.44 Body-Worn-PCS1900-High-No Slide

Date/Time: 2008-1-18 12:57:45

Test Laboratory: SGS-GSM

GSM1900-Body-Worn-High-No Slide

DUT: GSM10724307-No Slide; Type: Head; Serial: 351558012258515

Communication System: PCS1900-GSM Mode; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL1900_Body Medium parameters used: f = 1909.8 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 51.6$; $\rho =$

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: EX3DV4 - SN3578; ConvF(4.66, 4.66, 4.66); Calibrated: 2007-4-24

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn569; Calibrated: 2007-11-19

• Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1283

• Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body Worn - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.290 mW/g

Body Worn - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.58 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.441 W/kg

SAR(1 g) = 0.266 mW/g; SAR(10 g) = 0.159 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

Page: 84 of 120

 $0\ dB = 0.286 mW/g$

Page: 85 of 120

Appendix

1. Photographs of Test Setup

Fig.1 Photograph of the SAR measurement System

Fig.2 Photograph of the Tissue Simulant Fluid Liquid depth 15cm for Left-Head Side

Fig.3 Photograph of the Tissue Simulant Liquid depth 15cm for Body-Worn

Page: 86 of 120

Fig.4 Photograph of the Tissue Simulant Fluid Liquid depth 15cm for Right-Head Side

Fig.5 Photograph of the Tissue Simulant Liquid depth 15cm for Body-Worn

Fig.6 Photograph of the Left Hand Side Cheek status (Slide Up)

Fig.7 Photograph of the Left Hand Side Cheek status (No Slide)

Page: 87 of 120

Fig.8 Photograph of the Left Hand Side Tilt status (Slide Up)

Fig.9 Photograph of the Left Hand Side Tilt status (No Slide)

Fig.10 Photograph of the Right Hand Side Cheek status (Slide Up)

Page: 88 of 120

Fig.11 Photograph of the Right Hand Side Cheek status (No Slide)

Fig.12 Photograph of the Right Hand Side Tilt status (Slide Up)

Fig.13 Photograph of the Right Hand Side Tilt status (No Slide)

Page: 89 of 120

Fig.14 Photograph of the BodyWorn (Slide Up)

Fig.15 Photograph of the BodyWorn (No Slide)

2. Photographs of the EUT

Fig.16 Front View

Page: 90 of 120

Fig.17 Back View

3. Photographs of the battery and Charger

Fig.18 Battery

Fig.19 Charger

Date: Jan 24, 2008 Page: 91 of 120

4. Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalennage
S ervizie svizzero di taratura
S swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation.

The Swiss Accreditation Service is one of the signatories to the EA.

Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICAT	E	15 3 4
Object	EX3DV4 - SN 3	578	第二条 表 。
Calibration procedure(s)	QA CAL-01.v5 and QA CAL14.v3 Calibration procedure for dosimetric E-field probes		
Calibration date:	April 24, 2007		
Condition of the calib ated item	In Tolerance	ASSESSMENT OF THE PROPERTY.	
Calibration Equipment used (M&T Primary Standards Power meter E4419B	ID ∌ GB41293974	Cal Date (Calibrated by, Certificate Nc.) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-30670)	Mar-08
Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	MY41498067 SN: 55054 (3c)	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592)	Mar-06 Mar-06 Aug-07
Power sensor F4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	MY41498087 SN: 55054 (3d) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00693) 4-Jen-07 (SPEAC, No. E83-3013_Jan07)	Mar-06 Mar-06
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ATY41498067 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00693) 4-Jen-07 (SPEAC, No. ES3-3013_Jan07) 2" ~un-06 (SPEAG, No. DAE4-654_Jun08)	Mar-06 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08
Power sensor F4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ATY41498067 SN: 55054 (3d) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00692) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00693) 4-Jen-07 (SPEAC, No. E83-3013_Jan07)	Mar-06 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08 Jun-07
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C Network Analyzer HP 8753E	AY41498067 SN: S5054 (3d) SN: S5088 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00682) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00693) 4-Jen-07 (SPEAG, No. E83-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun/06) Check Cate (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-06 Mar-08 Aug-07 Mar-08 Aug-07 Jun-07 Scheduled Check In house check: Nov-07
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe E53DV2 DAE4 Secondary Standards J RF generator HP 9548C	AY41498067 SN: 55054 (3d) SN: 55086 (20b) SN: 55129 (30b) SN: 651 SN: 654 ID # US3842U01780 US37380586	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00672) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00671) 4-Jen-07 (SPEAG, No. E83-9013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-06 Mar-08 Aug-07 Mar-08 Aug-07 Jan-06 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07
Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8548C Network Analyzer HP 8753E	AY41498067 SN: S5054 (3d) SN: S5088 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00682) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00693) 4-Jen-07 (SPEAG, No. E83-3013, Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun/06) Check Cate (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Mar-06 Mar-08 Aug-07 Mar-08 Aug-07 Jon-06 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07

Certificate No: EX3-3578_Apr07

Page 1 of 9

Date: Jan 24, 2008 Page: 92 of 120

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point o rotation around probe axis

Polarization φ Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Date: Jan 24, 2008 Page: 93 of 120

EX3DV4 SN:3578

April 24, 2007

Probe EX3DV4

SN:3578

Manufactured: Last calibrated:

Recalibrated:

November 4, 2005

March 20, 2006 April 24, 2007

April 24, 200

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Date: Jan 24, 2008 Page: 94 of 120

EX3DV4 SN:3578

April 24, 2007

DASY - Parameters of Probe: EX3DV4 SN:3578

Sensitivity in Fre	Sensitivity in Free Space ^A		Diode Compress		
NormX	0.540 ± 10.1%	$\mu V/(V/m)^2$	DCP X	80 mV	
NormY	0.490 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	86 mV	
NormZ	0.570 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL		

Typical SAR gradient: 5 % per mm 900 MHz

Sensor Cente	r to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	4.3	1.6
SAR _{be} [%]	With Correction Algorithm	0.0	0.1

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	2.5	1.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.3

Sensor Offset

Probe Tip to Sensor Center

1.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter; uncertainty not required.

Date: Jan 24, 2008 Page: 95 of 120

EX3DV4 SN:3578

April 24, 2007

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page: 96 of 120

EX3DV4 SN:3578

April 24, 2007

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Date: Jan 24, 2008 Page: 97 of 120

EX3DV4 SN:3578

April 24, 2007

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Date: Jan 24, 2008 Page: 98 of 120

EX3DV4 SN:3578

April 24, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.60	0.90	8.12 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.24	1.00	6.90 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.40	1.00	6.52 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.45	1.00	6.35 ± 11.8% (k=2)
5200	± 50 / ± 100	Head	36.0 ± 5%	4.66 ± 5%	0.43	1.70	4.61 ± 13.1% (k=2)
5800	± 50 / ± 100	Head	$35.3\pm5\%$	5.27 ± 5%	0.43	1.70	4.10 ± 13.1% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.60	0.80	8.02 ± 11.0% (k=2)
1810	± 50 / ± 100°	Body	53.3 ± 5%	1.52 ± 5%	0.22	1.00	6.97 ± 11.0% (k=2)
2000	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.45	1.00	6.56 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.50	1.00	6.38 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.48	1.75	3.88 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.47	1.75	3.76 ± 13.1% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Date: Jan 24, 2008 Page: 99 of 120

EX3DV4 SN:3578

April 24, 2007

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Date: Jan 24, 2008 Page: 100 of 120

Date: Jan 24, 2008 Page: 101 of 120

5. Dipole Calibration certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Accreditation No.: SCS 108

Certificate No: D900V2-168_Apr07

CALIBRATION CERTIFICATE D900V2 - SN: 168 QA CAL-05.v6 Calbration procedure(s) Calibration procedure for dipole validation kits Calibration date: April 17, 2007 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (91). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Dø Primary Standards Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 03-Oct-06 (METAS, No. 217-00608) Oct-07 Power sensor HP 8481A H\$37292783 03-Oct-06 (METAS, No. 217-00808) Oct-07 Reference 20 dB Attenuator SN: 5086 (20g) 10-Aug-06 (METAS, No 217-00591) Aug-07 Reference 10 dB Attenuator SN: 5047.2 (10r) 10-Aug-00 (METAS, No 217-00591) Aug-07 Reference Probe ET3DV6 (HF) SN 1507 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) Oct-07 DAE4 SN 601 30-Jan-07 (SPEAG, No. DAE4-801_Jan07) Jan-08 Secondary Standards Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (SPEAG, in house check Oct-05) In house check: Oct-07 RF generator Agilent E4421B MY41000675 11-May-05 (SPEAG, in house check Nov-05) In house check: Nov-07 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (SPEAG, in house check Oct-06) In house check: Oct-07 Function Calibrated by: Claudio Loubler Laboratory Technician Approved by: Katja Pokovic Technical Manager issued: April 25, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-168_Apr07

Page 1 of 9

Date: Jan 24, 2008 Page: 102 of 120

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S. Schweizerischer Kalibrierdienst
C. Service suisse d'étalonnage
Servizio svizzero di taratura
S. Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", Exhaust 2005.

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Date: Jan 24, 2008 Page: 103 of 120

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

West of the second seco	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.97 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.59 mW / g
SAR normalized	normalized to 1W	10.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	10.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.66 mW / g
SAR normalized	normalized to 1W	6.64 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.67 mW/g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Date: Jan 24, 2008 Page: 104 of 120

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	250 mW input power	2.58 mW / g
SAR normalized	normalized to 1W	10.3 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	10.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.71 mW / g
SAR normalized	normalized to 1W	6.84 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.84 mW/g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Date: Jan 24, 2008 Page: 105 of 120

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 7.9 jΩ	
Return Loss	- 21.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.5 Ω - 9.6 jΩ	
Return Loss	- 18.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.407 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2002

Page: 106 of 120

DASY4 Validation Report for Head TSL

Date/Time: 17.04,2007 14:47:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:168

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL U10BB;

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.01, 6.01, 6.01); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01,2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.4 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 3.80 W/kg

SAR(1 g) = 2.59 mW/g; SAR(10 g) = 1.66 mW/g

Maximum value of SAR (measured) = 2.79 mW/g

0~dB=2.79 mW/g

Date: Jan 24, 2008 Page: 107 of 120

Impedance Measurement Plot for Head TSL

Page: 108 of 120

DASY4 Validation Report for Body TSL

Date/Time: 17.04.2007 16:56:18

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:168

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL U10BB;

Medium parameters used: f = 900 MHz; $\sigma = 1.01 \text{ mho/m}$; $\varepsilon_r = 53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(5.8, 5.8, 5.8); Calibrated: 19.10.2006

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.01.2007

Phantom: Flat Phantom 4.9L; Type: QD000P49AA

Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.58 mW/g; SAR(10 g) = 1.71 mW/g

Maximum value of SAR (measured) = 2.77 mW/g

0 dB 2.77mW/g

Date: Jan 24, 2008 Page: 109 of 120

Impedance Measurement Plot for Body TSL

Order No: GSM10724307-1 Date: Jan 24, 2008

Page: 110 of 120

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Accreditation No.: SCS 108

Certificate No: D1800V2-2d052_Apr07

CALIBRATION CERTIFICATE

Object

D1800V2 - SN: 2d052

Calibration procedure(s)

QA CAL-05.v6

Calibration procedure for dipole validation kits

Calibration date:

April 23, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6	SN: 1507	19-Oct-08 (SPEAG, No. ET3-1507_Oct06)	Oct-07
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Name

Function

Calibrated by:

Claudio Leubler

Laboratory Technician

Issued: April 25, 2007

Approved by:

Katja Pokovic

Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d052_Apr07

Page 1 of 9

Date: Jan 24, 2008 Page: 111 of 120

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C

Servizio svizzero di taratura

Swiss Calibration Service Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSI ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Date: Jan 24, 2008 Page: 112 of 120

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.16 mW /g
SAR normalized	normalized to 1W	36.6 mW /g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.89 mW /g
SAR normalized	normalized to 1W	19.6 mW /g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.6 mW / g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Date: Jan 24, 2008 Page: 113 of 120

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.9 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.61 mW /g
SAR normalized	normalized to 1W	38.4 mW /g
SAR for nominal Body TSL parameters 2	normalized to 1W	37.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.28 mW /g
SAR normalized	normalized to 1W	21.1 mW /g
SAR for nominal Body TSL parameters 2	normalized to 1W	20.8 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Date: Jan 24, 2008 Page: 114 of 120

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.1 Ω - 4.2 jΩ
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	41.7 Ω - 4.4 jΩ	
Return Loss	- 19.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.216 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 5, 2002	

Page: 115 of 120

DASY4 Validation Report for Head TSL

Date/Time: 23.04.2007 12:54:23

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d052

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1800 MHz; $\sigma = 1.4 \text{ mho/m}$; $\epsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(5.03, 5.03, 5.03); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.3 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 9.16 mW/g; SAR(10 g) = 4.89 mW/gMaximum value of SAR (measured) = 10.2 mW/g

Page: 116 of 120

Impedance Measurement Plot for Head TSL

Page: 117 of 120

DASY4 Validation Report for Body TSL

Date/Time: 23.04.2007 17:18:36

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d052

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

Medium parameters used: f = 1800 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (HF); ConvF(4.47, 4.47, 4.47); Calibrated: 19.10.2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.5 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 9.61 mW/g; SAR(10 g) = 5.28 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

0 dB = 10.7 mW/g

Page: 118 of 120

Impedance Measurement Plot for Body TSL

Date: Jan 24, 2008 Page: 119 of 120

6. Uncertainty analysis

	Tol.	Prob.	Div.	(c_i)	(c_i)	Std. u	nc. (± %)	(v_i)
Error Description	(± %)	dist.		(1g)	(10g)	(1g)	(10g)	. ,
Measurement System								
Probe Calibration	4.8	N	1	1	1	4.8	4.8	$-\infty$
Axial Isotropy	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Hemispherical Isotropy	0	R	$\sqrt{3}$	1	1	0	0	$-\infty$
Boundary Effects	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
System Detection Limit	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	1.0	N	1	1	1	1.0	1.0	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	0	R	$\sqrt{3}$	1	1	0	0	∞
RF Ambient Conditions	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Algorithms for Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Dipole	•							
Dipole Axis to Liquid Distance	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
Input power and SAR drift meas.	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Phantom and Tissue Param.	•							
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R.	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined Stdandard Uncertainty						8.4	8.1	∞
Coverage Factor for 95%		kp=2						
Expanded Uncertainty						16.8	16.2	

Dasy4 Uncertainty Budget

Date: Jan 24, 2008 Page: 120 of 120

7. Phantom description

Schmid & Part Engineering AG

Zeughausstrasie 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fex +41 1 245 97 79

Certificate of conformity / First Article Inspection

SAM Twin Phantom V4.0	
QD 000 P40 CA	
TP-1150 and higher	3
Hauptstr. 69 CH-8559 Fruthwilen	
	SAM Twin Phantom V4.0 QO 000 P40 CA TP-1150 and higher Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

		Details	Units tested
Test Shape	Requirement Compliance with the geometry	IT'IS CAD File (*)	First article, Samples
Material thickness	according to the CAD model.	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	according to the standards Dielectric parameters for required frequencies	200 MHz - 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800	Pre-series, First article

Standards

[1] CENELEC EN 50361

IEEE P1528-200x draft 6.5 The IT'S CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

gineering AG

Dod No 841 - QO 000 P40 GA - 8

F. Rombult

End of Report