Exos AN7 - Intégrales dépendant d'un paramètre

Dans plusieurs exercices, on utilisera le résultat suivant (que l'on démontrera dans le dernier):

$$\forall a > 0, \int_{-\infty}^{+\infty} e^{-at^2} dt = \sqrt{\frac{\pi}{a}}$$

Exercice 1

Exercice 1
Soit
$$f: x \mapsto \int_0^{\frac{\pi}{2}} \frac{\sin(xt)}{\sin t} dt$$
.

- **1.** Montrer que f est continue sur \mathbb{R} .
- **2.** Montrer que f est de classe C^1 sur \mathbb{R} .

Exercice 2

Déterminer

$$\lim_{x \to 0^+} \int_0^1 \frac{1 - t^x}{1 - t} \mathrm{d}t$$

Exercice 3

Soit
$$f: x \mapsto \int_0^{\frac{\pi}{2}} t^x \cos t \, dt$$
.

Montrer qu'il existe un réel $c \in]0; +\infty[$ tel que $f(c) = \frac{3}{4}$.

Exercice 4
Soit
$$f: x \mapsto \int_0^{+\infty} \frac{\sin(xt)}{t} e^{-t} dt$$
.

- **1.** Montrer que f est continue sur \mathbb{R} .
- **2.** Montrer que f est de classe C^1 sur \mathbb{R} .
- 3. Exprimer f' à l'aide des fonctions usuelles.
- **4.** En déduire f(x) pour tout $x \in \mathbb{R}$.

Exercice 5

Soit
$$a > 0$$
. On considère $f: x \mapsto \int_{-\infty}^{+\infty} e^{-at^2} e^{-2i\pi xt} dt$.

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- 2. Montrer que

$$\forall x \in \mathbb{R}, f'(x) = -\frac{2\pi^2}{a}xf(x).$$

3. En déduire une expression simplifiée de f(x) pour tout x.

Exercice 6

Soit
$$f: x \mapsto \int_0^{+\infty} \operatorname{ch}(xt) e^{-t^2} dt$$
.

- 1. Montrer que f est de classe C^1 sur \mathbb{R} .
- **2.** Déterminer une équation différentielle vérifiée par f.
- 3. Donner une expression simplifiée de f(x) pour tout x.

Exercice 7 Soit
$$f: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{1+tx} dt$$
.

- **1.** Montrer que f est définie sur $[0; +\infty[$.
- **2.** Montrer que f est de classe C^{∞} sur $[0; +\infty[$.
- **3.** Calculer $f^{(n)}(0)$ pour tout $n \in \mathbb{N}$.

Exercice 8

Soit
$$F: (x,y) \mapsto \int_0^{+\infty} \frac{e^{-xt} - e^{-yt}}{t} dt$$
.

- 1. Montrer que pour y > 0, $x \mapsto F(x,y)$ est de classe C^1 sur $]0; +\infty[$.
- **2.** Pour $(x,y) \in]0; +\infty[^2, \text{ calculer } \frac{\partial F}{\partial x}(x,y).$
- **3.** En déduire l'expression de F(x,y) pour $(x,y) \in]0; +\infty[^2]$.

$\mathbf{Exercice}\, 9$

Soit
$$f: x \mapsto \int_0^{+\infty} \frac{\operatorname{Arctan}(xt)}{t(1+t^2)} dt$$
.

- 1. Déterminer le domaine de définition D de f.
- 2. Etudier la dérivabilité de f sur D, et donner une expression de f'(x).
- 3. En déduire une expression simplifiée de f(x) pour tout $x \in D$.
- 4. Calculer

$$\int_0^{+\infty} \frac{\operatorname{Arctan}^2 t}{t^2} \mathrm{d}t$$

Exercice 10

On définit :

$$f: x \mapsto \int_0^1 \frac{\mathrm{e}^{-x(1+t^2)}}{1+t^2} \mathrm{d}t$$
 et $g: x \mapsto f(x^2)$.

- 1. Montrer que f et g sont définies et dérivables sur \mathbb{R} .
- **2.** Calculer f(0) et $\lim_{x \to +\infty} f(x)$.
- **3.** Montrer qu'il existe $C \in \mathbb{R}$ (à déterminer), tel que :

$$\forall x \in \mathbb{R}, \left(\int_0^x e^{-t^2} dt\right)^2 + g(x) = C.$$

4. En déduire la valeur de l'intégrale de Gauss :

$$\int_{-\infty}^{+\infty} e^{-t^2} dt$$

5. Démontrer le résultat énoncé en préambule des exercices de cette feuille.