CHURN PREDICTION PARA PLATAFORMA MUSICAL

PRESENTACIÓN ENTREGAS 01 Y 02

AGUSTINA QUIRÓS NATALIA GRASSELLI NATALIA TASSIN RODRIGO PIZARRO

OBJETIVO DEL PROYECTO

DESARROLLAR UN MODELO DE APRENDIZAJE AUTOMÁTICO PARA PREDECIR AQUELLOS CLIENTES QUE CANCELARÁN LA SUSCRIPCIÓN A UNA PLATAFORMA DE STREAMING DE MÚSICA

LOS DATOS

SPARKIFY ES UN FALSO SERVICIO DE STREAMING DE MÚSICA INVENTADO POR UDACITY. EL CONJUNTO DE DATOS REGISTRA LA INFORMACIÓN DEMOGRÁFICA DE LOS USUARIOS Y LA ACTIVIDAD CON LA PLATAFORMA EN MARCAS DE TIEMPO INDIVIDUALES.

MINI_SPARKIFY_EVENT_DATA.ZIP

TAMAÑO

El dataset cuenta con 543.705 registros y 18 columnas. Cada fila representa una interacción entre algun usuario y la aplicación. Las interacciones que se muestran son entre el 01/10/18 y el 01/12/18

TIPOS DE DATOS

La mayoría de las variables del dataset, como page, method, level, gender, etc son categóricas. Las variables numéricas identificadas fueron usserld, ts, sessionld, lenght, etc.

LAS VARIABLES

Al estudiar el df notamos que las columnas poseen información que puede clasificarse en tres categorías diferentes: a nivel usuario, a nivel actividad y a nivel canción.


```
] #Observamos de qué tipo es la información que contiene el df
   clients activity.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 543705 entries, 0 to 543704
   Data columns (total 18 columns):
       userId
                      543705 non-null object
       sessionId
                      543705 non-null int64
       page
                      543705 non-null object
       auth
                      543705 non-null object
       method
                      543705 non-null object
       status
                      543705 non-null int64
       level
                      543705 non-null object
```

Variables a nivel usuario

9 UserId

2 Location

FirstName

2 UserAgent

LastName

Registration

Gender

2 Level

[] #UsersId únicos clients_activity.userId.nunique()

449

449 USUARIOS ÚNICOS

Variables a nivel interacción

Auth

itemInSession

Page

Session Id

Status

Variables a nivel canción

Song

Length

Artist

¿QUE ES CHURN?

CHURN HACE REFERENCIA A LA TASA DE ABANDONO DE LOS CLIENTES DE LA PLATAFORMA DURANTE UN PERIODO DE TIEMPO ESPECÍFICO.

EN ESTE TRABAJO, DECIMOS QUE UN USUARIO HACE CHURN SI EL MISMO CANCELA SU SUSCRIPCIÓN A LA PLATAFORMA.

EN EL DATASET ESTO ESTÁ INDICADO POR LA ACCIÓN "CANCELLATION CONFIRMATION"

Columna Target

CHURN_USER

Indica con un 1 a los usuarios que alguna vez realizaron churn y con un 0 a los que nunca realizaron churn

- [] # Agregamos la nueva columna churn_user
 clients_activity_churn['churn_user'] = np.where(clients_activity_churn['userId
- [] #El usuario tendrá ahora en todas sus filas la marca de churn_user = 1, porque
 clients_activity_churn[clients_activity_churn['userId']=='208'][['userId','dat

	userId		date	level	churn_action	churn_user
2540	208	2018-10-01	13:25:50	free	False	1
2549	208	2018-10-01	13:29:10	free	False	1
2553	208	2018-10-01	13:30:08	free	False	1
2554	208	2018-10-01	13:30:09	free	False	1
2555	208	2018-10-01	13:30:16	free	True	1

Balance de Clases

Usuarios <u>Churn</u> vs Usuarios <u>No Churn</u>

ANÁLISIS DEL COMPORTAMIENTO DE ESTAS CLASES

Features NO relevantes

DISTRIBUCIONES Y/O COMPORTAMIENTOS ANÁLOGOS EN AMBAS CLASES

Uso a diferentes	Uso en diferentes	Ubicación del
horas del día	días de la semana	usuario
Dispositivo utilizado	Distribución por género	Página más visitada
Artistas más	Canciones más	Interacciones con
populares	populares	la página "Help"

O bien, las diferencias encontradas no aportan información significativa para poder predecir la acción "churn" en los usuarios.

Features interesantes

TIPOS DE EVENTOS

En los eventos "Roll Advert",
"Thumbs Down" y en "Error"
 (en menor medida) se
observa un MAYOR conteo
en la clase Churn versus
clase No Churn

Features interesantes

¿QUE CLASE DE USUARIOS ESCUCHAN MÁS CANCIONES?

[] #medidas estadisticas para esas cantidades churn_song_count_df.describe()

CC)U	ní	-
	/u		

count 99.000

mean 852.111

std 1054.788

min 7.000

25% 164.500

50% 439.000

75% 1243.500

max 6233.000

[]	#medidas	estadisticas	para	esas	cantidades
		not_chur	n song count	df.des	cribe	e()

counts

count	349.000
mean	998.619
std	1176.055
min	1.000
25%	196.000
50%	601.000
75%	1316.000
max	8177.000

"La clase No Churn hace un uso más intensivo de esta plataforma para escuchar canciones en comparación con la clase Churn"

Features interesantes

¿CUÁNTOS ARTISTAS Y CANCIONES <u>ÚNICOS</u> TIENE EL CONJUNTO DE DATOS?

```
#canciones unicas en total
print('para el total usuarios', clients_activity_churn.artist.nunique())

#canciones unicas para el conjunto no churn
print('para el usuarios no churn', not_churn_df.artist.nunique())

#canciones unicas para el conjunto churn
print('para el usuarios churn', churn_df.artist.nunique())

total de artistas únicas:
    para el total usuarios 21247
    para el usuarios no churn 19992
    para el usuarios churn 12151
[] print(
```

"La clase no churn escucha una mayor variedad de artistas y canciones en la plataforma"

```
#canciones unicas en total
print('para el total usuarios', clients_activity_churn.song.nunique())

#canciones unicas para el conjunto no churn
print('para el usuarios no churn', not_churn_df.song.nunique())

#canciones unicas para el conjunto churn
print('para el usuarios churn', churn_df.song.nunique())

total de canciones únicas:
para el total usuarios 80292
para el usuarios no churn 72419
para el usuarios churn 33143
```

USER ID

PAGE

SONG & ARTIST

LEVEL

SESSIONID

TS & DATE

REGISTRATION & REG_DATE

COLUMNA TARGET: CHURN_USER

Columnas interesantes

Definidas en función de todo el análisis realizado a lo largo del TP1

Visualización Datos Nulos

Cantidad total en Df

[7] df_churn.isna().sum().sum()
253056

song y artist 20% userId y registration 2%

Visualización Datos Nulos

Valores nulos referidos a las canciones

Valores nulos referidos a la identificación de usuario

clients_activity_format[clients_activity_format["userAgent"].isnull()][["location", "userAgent", "lastName", "firstName", "registration", "gender"]]

C →		location	userAgent	lastName	firstName	registration	gender
	6	NaN	NaN	NaN	NaN	NaN	NaN
	7	NaN	NaN	NaN	NaN	NaN	NaN
	8	NaN	NaN	NaN	NaN	NaN	NaN
	9	NaN	NaN	NaN	NaN	NaN	NaN
	70	NaN	NaN	NaN	NaN	NaN	NaN
	543561	NaN	NaN	NaN	NaN	NaN	NaN
	543625	NaN	NaN	NaN	NaN	NaN	NaN
	543626	NaN	NaN	NaN	NaN	NaN	NaN
	543655	NaN	NaN	NaN	NaN	NaN	NaN
	543656	NaN	NaN	NaN	NaN	NaN	NaN
	15700 rov	vs × 6 colum	ins				

Posibles valores erróneos

Userlds o Sessiolds negativos o nulos

Registration dates posteriores a la fecha de la acción:

Tratamiento de Dato Faltante

Tipos de Datos Faltantes

Eliminación de variables

- userId -> filas
- song -> columna
- artist -> columna

df_clean.dropna(subset=['userId'],how='any',inplace=True)
df_clean['userId'].isnull().sum()

0

Valores Duplicados

[] #eliminamos valores duplicados
 df_clean.drop_duplicates(inplace=True)

[] #Ya no hay registros duplicados
 df_clean.duplicated().sum()

Dataframe luego de limpieza

```
droped_rows = df_churn.shape[0] - df_clean.shape[0]
print('N° filas eliminadas:', droped_rows)
print('Porcentaje de filas eliminadas:', round(100*droped_rows/df_churn.shape[0],2),'%')
N° filas eliminadas: 15739
Porcentaje de filas eliminadas: 2.89 %
```

Validación que no haya NaNs antes de PCA

Nuevas features

- Cantidad de canciones únicas escuchadas por usuario
- Cantidad de anuncios

Cantidad de canciones escuchadas por sesión

- + Cantidad de errores
- Número de amígos agregados
- Cantidad de interacciones por usuario

COLUMNAS IRRELEVANTES

- Nombre de la canción
- Duración de la canción

Nombre del artista

One Hot Encodig

COLUMNAS CATEGORICAS

```
categorical_cols = ['page', 'level']
```

Page: 19 grados de libertad

Level: 2 grados de libertad

ESTADO DEL DATA FRAME

matrix <527966x35 sparse matrix of type '<class 'numpy.float64'>' with 7925315 stored elements in COOrdinate format>

Ejemplo valores categóricos

	page	level
0	NextSong	free
1	NextSong	free
2	NextSong	paid

Estandarización

Ejemplo sin estandarizar

Ejemplo estandarizado

POR QUE NO NORMALIZAR?

- Se pierde la proporcionalidad
- Para PCA conviene tener estandarización

VARIABLES NUMÉRICAS NO ESTANDARIZADAS

user_cols = ['userId','churn_user','sessionId','ts','registration']

PCA

APLICACIÓN

RESULTADO

PC 1	PC 2	PC 3	PC 4
2.921311	3.118063	-1.445328	-0.175674
0.444724	2.190267	-1.259644	0.623613
-0.330131	-1.035579	-0.392073	0.140676
-0.402951	-0.039177	2.906686	0.585034
1.127700	-0.600384	-0.445908	-0.528950

Correlaciones

MATRIZ DE CORRELACIONES

RESULTADO FINAL

Como data frame final, quedó una tabla con 38 columnas, entre las que se encuentra:

- La variable target.
- Los 4 componentes principales de PCA.
- El resultado del OneHot Encoding de .las variables categóricas (21 columnas)
- 8 columnas numéricas estandarizadas.
- 4 columnas con valores relativos al usuario.

FEATURES ELIMINADAS

Las variables por encima de este valor son: uniqueSongsListenedByUser (0.99), artistsListenedByUser (0.98), MeanSongCountByArtist (0.98), FriendsCountByUser (0.95), LikesCountByUser (0.91).

i Gracias!