Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Test 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3(2-\sqrt{20})+\sqrt{180}=3(2-2\sqrt{5})+6\sqrt{5}=$	3p
	$=6-6\sqrt{5}+6\sqrt{5}=6$	2p
2.	$f(1) = 3 \cdot 1 - 1 = 2$	2p
	$(f \circ f)(1) = f(2) = 3 \cdot 2 - 1 = 5$	3 p
3.	$\lg(5x-1) = \lg 14 \Rightarrow 5x-1 = 14$	3p
	x = 3, care convine	2p
4.	$x + \frac{30}{100} \cdot x = 5200$, unde x este prețul inițial al obiectului	3р
	x = 4000 de lei	2p
5.	$\mathcal{A}_{\Delta ABC} = \frac{d(A,BC) \cdot BC}{2} = \frac{4 \cdot 8}{2} = 16$	2p
	$AC = 5$ și, cum $\mathcal{A}_{\Delta ABC} = \frac{d(B,AC) \cdot AC}{2}$, obținem $d(B,AC) = \frac{32}{5}$	3p
6.	$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\tan 45^{\circ} = 1$, $\tan 30^{\circ} = \frac{\sqrt{3}}{3}$	3p
	$\frac{2\cos 30^{\circ}}{2\lg 45^{\circ} + 1} = \frac{2 \cdot \frac{\sqrt{3}}{2}}{2 \cdot 1 + 1} = \frac{\sqrt{3}}{3} = \lg 30^{\circ}$	2p

SUBIECTUL al II-lea

(30 de puncte)

БСВП	(30 the punc	
1.a)	$\det(A(10)) = \begin{vmatrix} 11 & 21 \\ 10 & 20 \end{vmatrix} = 11 \cdot 20 - 21 \cdot 10 =$	3p
	=220-210=10	2 p
b)	$A(a)-A(b) = \begin{pmatrix} a-b & 2(a-b) \\ a-b & 2(a-b) \end{pmatrix} = (a-b)\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \text{ pentru orice numere reale } a \text{ și } b$	2p
	$(A(a)-A(b))(A(a)-A(b))=(a-b)^2\begin{pmatrix}3&6\\3&6\end{pmatrix}=3(a-b)^2\begin{pmatrix}1&2\\1&2\end{pmatrix}=3(a-b)(A(a)-A(b)),$	3 p
	pentru orice numere reale a și b	
c)	Pentru orice număr natural n , $\det(A(n)) = n$, $\det(A(2)) + \det(A(3)) + \cdots + \det(A(n)) = 2 + 3 + \cdots + n = \frac{n(n+1)}{2} - 1$	3 p
	$\frac{n(n+1)}{2} - 1 = 35$, deci $n(n+1) = 72$ și, cum n este număr natural, obținem $n = 8$	2p

2.a)	$4*\sqrt{3} = \sqrt{(4^2 - 2)(3 - 2) + 2} = \sqrt{4^2 - 2 + 2} =$	3p
	$=\sqrt{16}=4$	2 p
b)	$x*\sqrt{3} = \sqrt{3}*x = x$, pentru orice $x \in M$, deci $e = \sqrt{3}$ este elementul neutru al legii de compoziție ,,*"	2p
	$t*\sqrt{6} = \sqrt{6}*t = \sqrt{3}$, unde t este simetricul lui $x = \sqrt{6}$, deci $\sqrt{4(t^2 - 2) + 2} = \sqrt{3}$, de unde $t^2 = \frac{9}{4}$ și, cum $t \in M$, obținem $t = \frac{3}{2}$, care convine	3 p
c)	$\sqrt{2} * x = \sqrt{(2-2)(x^2-2) + 2} = \sqrt{2}$, unde $x \in M$	2p
	$\sqrt{2} * \sqrt{3} * \sqrt{4} * \dots * \sqrt{2020} = \sqrt{2} * (\sqrt{3} * \sqrt{4} * \dots * \sqrt{2020}) = \sqrt{2}$	3 p

SUBIECTUL al III-lea (30 de puncte)

SUBI	ECTUL al III-lea (30 de pui	icte)
1.a)	$f'(x) = \frac{2}{2\sqrt{x}}(\ln x - 1) + 2\sqrt{x} \cdot \frac{1}{x} =$	3 p
	$= \frac{\sqrt{x} \ln x - \sqrt{x} + 2\sqrt{x}}{x} = \frac{\sqrt{x} \left(\ln x + 1\right)}{x}, \ x \in (0, +\infty)$	2p
b)	$f'\left(\frac{1}{e}\right) = 0, \ f\left(\frac{1}{e}\right) = -\frac{4}{\sqrt{e}}$	2p
	Ecuația tangentei este $y - f\left(\frac{1}{e}\right) = f'\left(\frac{1}{e}\right)\left(x - \frac{1}{e}\right)$, deci $y = -\frac{4}{\sqrt{e}}$	3p
c)	$f'(x) \le 0$, pentru orice $x \in \left(0, \frac{1}{e}\right] \Rightarrow f$ este descrescătoare pe $\left(0, \frac{1}{e}\right]$ și $f'(x) \ge 0$, pentru orice $x \in \left[\frac{1}{e}, +\infty\right) \Rightarrow f$ este crescătoare pe $\left[\frac{1}{e}, +\infty\right)$	3р
	Pentru orice $x \in (0, +\infty)$, $f(x) \ge f\left(\frac{1}{e}\right)$, deci $f(x) \ge -\frac{4}{\sqrt{e}}$, de unde obținem $\sqrt{e}f(x) + 4 \ge 0$, pentru orice $x \in (0, +\infty)$	2 p
2.a)	$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = -1 = f(0) \Rightarrow \text{ funcția } f \text{ este continuă în } x = 0$	3p
	f este continuă pe $(-\infty,0)$ și pe $(0,+\infty)$ \Rightarrow f este continuă pe $\mathbb R$, deci funcția f admite primitive pe $\mathbb R$	2p
b)	$\left \int_{1}^{2} f(x) dx = \int_{1}^{2} \frac{3x - 1}{x + 1} dx = \int_{1}^{2} \frac{3x + 3 - 4}{x + 1} dx = \int_{1}^{2} \left(3 - \frac{4}{x + 1} \right) dx = \left(3x - 4 \ln(x + 1) \right) \right _{1}^{2} =$	3p
	$= 6 - 4\ln 3 - 3 + 4\ln 2 = 3 + 4\ln \frac{2}{3}$	2p
c)	$\int_{-1}^{0} e^{x} f(x) dx = \int_{-1}^{0} e^{x} (2x-1) dx = e^{x} (2x-3) \Big _{-1}^{0} =$	3р
	$=e^{0}\cdot(-3)-e^{-1}\cdot(-5)=\frac{5-3e}{e}$	2p