પ્રશ્ન 1(અ) [03 ગુણ]

ઇકોલોજીકલ ફૂટપ્રિન્ટ સમજાવો.

જવાબ:

ઇકોલોજીકલ ફૂટપ્રિન્ટ એ વ્યક્તિઓ, સમુદાયો અથવા દેશો દ્વારા પ્રકૃતિ પરની માંગને જૈવિક રીતે ઉત્પાદક જમીન અને પાણીના વિસ્તારના સંદર્ભમાં માપે છે.

કોષ્ટક: ઇકોલોજીકલ ફૂટપ્રિન્ટના ઘટકો

ยวร	વર્ણન
કાર્બન ફૂટપ્રિન્ટ	CO ₂ ઉત્સર્જન શોષવા માટે જરૂરી જમીન
કૃષિ જમીન	ખોરાક ઉત્પાદન માટે વિસ્તાર
ચરાઈ જમીન	પશુધન માટે વિસ્તાર
વન ઉત્પાદનો	લાકડા અને કાગળ માટે વિસ્તાર
નિર્મિત જમીન	આધારભૂત સુવિધાઓ અને શહેરી વિસ્તારો

• વૈશ્વિક હેક્ટર: માપન માટે માનક એકમ

• ઓવરશૂટ: જ્યારે ફૂટપ્રિન્ટ બાયોકેપેસિટી કરતાં વધે

• ટકાઉપણું: વપરાશ અને પુનઃઉત્પાદન વચ્ચે સંતુલન

મેમરી ટ્રીક: "CGFBB" - Carbon, Cropland, Grazing, Forest, Built-up

પ્રશ્ન 1(બ) [04 ગુણ]

એલ્ટોનિયન પિરામિડ સમજાવો.

જવાબ:

એલ્ટોનિયન પિરામિડ (સંખ્યાનો પિરામિડ) ઇકોસિસ્ટમમાં દરેક પોષક સ્તરે જીવોની સંખ્યા દર્શાવે છે, જે ચાર્લ્સ એલ્ટન દ્વારા પ્રસ્તાવિત કરવામાં આવ્યો હતો.

આકૃતિ:

```
Tertiary Consumers
(थोडा - 10)

Secondary Consumers
(भध्यम - 100)

Primary Consumers
(ਬਦਾ - 1000)

Producers
(संधी पद्य - 10000)
```

કોષ્ટક: પિરામિડના પ્રકારો

уѕіг	આધાર	આકાર
સંખ્યા	વ્યક્તિગત ગણતરી	સામાન્ય રીતે સીધો
બાયોમાસ	કુલ વજન	ઊંધો પણ હોઈ શકે
এ প্ৰ	ઊર્જા પ્રવાહ	હંમેશા સીધો

• પોષક સ્તરો: ખોરાક શૃંખલામાં ખોરાકની સ્થિતિ

• 10% નિયમ: માત્ર 10% ઊર્જા આગલા સ્તરે સ્થાનાંતરિત થાય

• અપવાદો: વૃક્ષ ઇકોસિસ્ટમ ઊંઘો સંખ્યા પિરામિડ દર્શાવે

મેમરી ટ્રીક: "ELTON" - Energy Loss Through Organism Numbers

પ્રશ્ન 1(ક) [07 ગુણ]

ઇકો-સિસ્ટમ તેના વર્ગીકરણ અને ઘટક સાથે સમજાવો.

જવાબ:

ઇકોસિસ્ટમ એ પ્રકૃતિની એક કાર્યાત્મક એકમ છે જ્યાં જીવંત સજીવો એકબીજા સાથે અને તેમના ભૌતિક વાતાવરણ સાથે ક્રિયાપ્રતિક્રિયા કરે છે, જેમાં ઊર્જા પ્રવાહ અને પોષક ચક્રણ સામેલ છે.

કોષ્ટક: ઇકોસિસ્ટમના ઘટકો

ยรร	SISK	ઉદાહરણો
અજૈવિક	નિર્જીવ	હવા, પાણી, માટી, આબોહવા
ช้ในร	સજીવ	છોડ, પ્રાણીઓ, સૂક્ષ્મજીવો
ઉત્પાદકો	સ્વપોષક	લીલા છોડ, શેવાળ
ઉપલોક્તાઓ	પરપોષક	શાકાહારી, માંસાહારી, સર્વાહારી
વિઘટનકર્તા	પુનર્યક્રીકરણકર્તા	બેક્ટેરિયા, ફૂગ

ઇકોસિસ્ટમનું વર્ગીકરણ:

કુદરતી ઇકોસિસ્ટમ:

• સ્થલીય: જંગલ, ઘાસના મેદાનો, રણ

• જળીય: તાજા પાણી (તળાવ, નદી), દરિયાઈ (મહાસાગર, સમુદ્ર)

કૃત્રિમ ઇકોસિસ્ટમ:

• કૃષિ: પાકના ખેતરો, બગીચાઓ

• શહેરી: ઉદ્યાનો, કૃત્રિમ તળાવો

આકૃતિ: ઊર્જા પ્રવાહ

• **ઊર્જા પ્રવાહ**: સૂર્યથી વિઘટનકર્તા સુધી એક દિશામાં

• પોષક ચક્રણ: તત્વોની ચક્રીય હિલચાલ

• ખોરાક શૃંખલા: રેખીય ઊર્જા સ્થાનાંતરણ

• ખોરાક જાળ: પરસ્પર જોડાયેલી ખોરાક શૃંખલાઓ

મેમરી ટ્રીક: "PEACE" - Producers, Energy, Animals, Cycles, Environment

પ્રશ્ન 1(ક અથવા) [07 ગુણ]

નાઈટોજન ચક્ર સમજાવો.

જવાબ:

નાઈટ્રોજન ચક્ર એ બાયોજિયોકેમિકલ ચક્ર છે જે વાતાવરણ, સ્થલીય અને જળીય પ્રણાલીઓમાં ફરતા વખતે નાઈટ્રોજન સંયોજનોને વિવિધ રાસાયણિક સ્વરૂપોમાં રૂપાંતરિત કરે છે.

આકૃતિ: નાઈટ્રોજન ચક્ર

કોષ્ટક: નાઈટ્રોજન ચક્રની પ્રક્રિયાઓ

પ્રક્રિયા	રૂપાંતરણ	સજીવો
સ્થિરીકરણ	$N_2 \rightarrow NH_3$	રાઈઝોબિયમ, એઝોટોબેક્ટર
નાઈટ્રિફિકેશન	$NH_3 \rightarrow NO_2^- \rightarrow NO_3^-$	નાઈટ્રોસોમોનાસ, નાઈટ્રોબેક્ટર
આત્મસાત્કરણ	NO ₃ ⁻ → ਮ਼ìਂਟੀਜ	છોડવા
વિઘટન	પ્રોટીન → NH₃	બેક્ટેરિયા, ફૂગ
ડી-નાઈટ્રિફિકેશન	$NO_3^- \rightarrow N_2$	એનેરોબિક બેક્ટેરિયા

• જૈવિક સ્થિરીકરણ: કુલ સ્થિરીકરણનો 80%

• ઔદ્યોગિક સ્થિરીકરણ: ખાતર માટે હેબર પ્રક્રિયા

• વીજળી: કુદરતી વાતાવરણીય સ્થિરીકરણ

• પ્રદૂષણ: વધારાના નાઈટ્રેટ યુટ્રોફિકેશન કારણે

મેમરી ટ્રીક: "FNADD" - Fixation, Nitrification, Assimilation, Decomposition, Denitrification

પ્રશ્ન 2(અ) [03 ગુણ]

વેસ્ટ વોટર ક્વોલિટી પેરામીટરની યાદી બનાવો.

જવાબ:

કોષ્ટક: વેસ્ટ વોટર ક્વોલિટી પેરામીટર

e พำใตร	રાસાયણિક	જૈવિક
ટર્બિડિટી	BOD	કોલિફોર્મ ગણતરી
ફંગ	COD	પેથોજેનિક બેક્ટેરિયા
ગંધ	рН	શેવાળ
તાપમાન	DO	વાયરસ
કુલ ઘન પદાર્થો	અમોનિયા	પ્રોટોઝોઆ

• પ્રાથમિક પેરામીટર: BOD, COD, pH, સસ્પેન્ડેડ સોલિડ્સ

• **ગોંણ પેરામીટર**: ભારે ધાતુઓ, પોષક તત્વો

• **સૂચક સજીવો**: મળના દૂષણ માટે E.coli

મેમરી ટ્રીક: "PCB" - Physical, Chemical, Biological parameters

પ્રશ્ન 2(બ) [04 ગુણ]

ઈ-કથરાનું વર્ગીકરણ અને અસરો સમજાવો.

જવાબ:

ઈલેક્ટ્રોનિક કચરો (ઈ-વેસ્ટ) એ હાનિકારક સામગ્રી ધરાવતા છોડી દેવાયેલા વિદ્યુત અને ઈલેક્ટ્રોનિક સાધનોનો સંદર્ભ આપે છે.

કોષ્ટક: ઈ-વેસ્ટ વર્ગીકરણ

કેટેગરી	ઉદાહરણો	હાનિકારક સામગ્રી
મોટા ઉપકરણો	રેફ્રિજરેટર, વોશિંગ મશીન	CFCs, ભારે ધાતુઓ
નાના ઉપકરણો	માઈક્રોવેવ, ટોસ્ટર	લીડ, મર્ક્યુંરી
IT સાધનો	કમ્પ્યુટર, પ્રિન્ટર	કેડમિયમ, ક્રોમિયમ
ટેલિકોમ સાધનો	મોબાઈલ ફોન, કેબલ	બેરિલિયમ, ફ્લેમ રિટાર્ડન્ટ
કન્ઝ્યુમર ઈલેક્ટ્રોનિક્સ	ટીવી, રેડિયો	પોલિવિનાઈલ ક્લોરાઈડ (PVC)

ઈ-વેસ્ટની અસરો:

• પર્યાવરણીય: માટી અને પાણીનું પ્રદૂષણ, હવાનું દૂષણ

• આરોગ્ય: કેન્સર, ન્યુરોલોજિકલ વિકાર, શ્વસન સમસ્યાઓ

• સંસાધન ક્ષય: સોના, ચાંદી જેવી મૂલ્યવાન ધાતુઓનું નુકસાન

• ઇકોસિસ્ટમ નુકસાન: ખોરાક શૃંખલામાં બાયોએક્યુમ્યુલેશન

મેમરી ટ્રીક: "LSITC" - Large, Small, IT, Telecom, Consumer electronics

પ્રશ્ન 2(ક) [07 ગુણ]

ઈલેક્ટ્રોસ્ટેટિક પ્રીસીપીટેટર સમજાવો.

જવાબ:

ઈલેક્ટ્રોસ્ટેટિક પ્રીસીપીટેટર (ESP) એ હવા પ્રદૂષણ નિયંત્રણ ઉપકરણ છે જે વિદ્યુત ચાર્જનો ઉપયોગ કરીને ઔદ્યોગિક ગેસ પ્રવાહમાંથી કણોનો દ્રવ્ય દૂર કરે છે.

આકૃતિ: ESP કામગીરી

કોષ્ટક: ESP ઘટકો અને કાર્યો

ยรร	รเช้	સામગ્રી
ડિસચાર્જ ઈલેક્ટ્રોડ	કોરોના ડિસચાર્જ બનાવે	ટંગસ્ટન વાયર
કલેક્શન પ્લેટ	ચાર્જ કરેલા કણોને આકર્ષે	સ્ટીલ પ્લેટ્સ
હાઈ વોલ્ટેજ સપ્લાઈ	30-100 kV DC પ્રદાન કરે	ટ્રાન્સફોર્મર-રેક્ટિફાયર
રેપર સિસ્ટમ	એકત્રિત ધૂળ દૂર કરે	યાંત્રિક વાઈબ્રેટર
હોપર	પડેલા કણો એકત્રિત કરે	સ્ટીલ કન્ટેનર

કામકાજનો સિદ્ધાંત:

1. **આયનીકરણ**: હાઈ વોલ્ટેજ કોરોના ડિસચાર્જ બનાવે

2. **ચાર્જિંગ**: કણો નકારાત્મક ચાર્જ મેળવે

3. **કલેક્શન**: ચાર્જ કરેલા કણો સકારાત્મક પ્લેટ્સ તરફ જાય

4. દૂર કરવું: રેપિંગ એકત્રિત ધૂળને છૂટી કરે

ઉપયોગો:

• **પાવર પ્લાન્ટ્સ**: કોલસાથી ચાલતા બોઈલર

• **સિમેન્ટ ઉદ્યોગ**: ભઠ્ઠાના ગેસ સફાઈ

• સ્ટીલ ઉદ્યોગ: બ્લાસ્ટ ફર્નેસ ગેસ

• કેમિકલ પ્લાન્ટ્સ: પ્રોસેસ ગેસ ટ્રીટમેન્ટ

ફાયદાઓ:

• ઉચ્ચ કાર્યક્ષમતા: બારીક કણો માટે 99%+ દૂર કરવું

• ઓછું પ્રેશર ડ્રોપ: ઊર્જા કાર્યક્ષમ કામગીરી

• ઉચ્ચ તાપમાન સંભાળે: 400°C સુધી

મેમરી ટ્રીક: "CHARGE" - Corona, High-voltage, Attract, Rapper, Gas, Efficiency

પ્રશ્ન 2(અ અથવા) [03 ગુણ]

સમજાવો (1) BOD (2) COD

જવાબ:

કોષ્ટક: BOD vs COD

પેરામીટર	BOD	COD
પૂરું નામ	બાયોકેમિકલ ઓક્સિજન ડિમાન્ડ	કેમિકલ ઓક્સિજન ડિમાન્ડ
પદ્ધતિ	જૈવિક ઓક્સિડેશન	રાસાયણિક ઓક્સિડેશન
સમય	20°C પર 5 દિવસ	2-3 รดเร
ઓક્સિડાઈઝિંગ એજન્ટ	સૂક્ષ્મજીવો	પોટેશિયમ ડાઈક્રોમેટ

(1) BOD (બાયોકેમિકલ ઓક્સિજન ડિમાન્ડ):

• વ્યાખ્યા: કાર્બનિક પદાર્થને વિઘટન કરવા માટે સૂક્ષ્મજીવો દ્વારા જરૂરી ઓક્સિજન

• પ્રમાણભૂત પરિસ્થિતિઓ: 5 દિવસ, 20°C, અંધકારની સ્થિતિ

• **એકમો**: mg/L અથવા ppm

(2) COD (કેમિકલ ઓક્સિજન ડિમાન્ડ):

• વ્યાખ્યા: કાર્બનિક પદાર્થને રાસાયણિક રીતે ઓક્સિડાઈઝ કરવા માટે ઓક્સિજન સમકક્ષ

• **ઓક્સિડાઈઝિંગ એજન્ટ**: અમ્લીય માધ્યમમાં K₂Cr₂O₇

• BOD કરતાં ઊંચું: બિન-બાયોડિગ્રેડેબલ સંયોજનો સામેલ

મેમરી ટ્રીક: "BTCO" - Biological Time, Chemical Oxidation

પ્રશ્ન 2(બ અથવા) [04 ગુણ]

ઇ-કચરાનું રિસાયકલ સમજાવો.

જવાબ:

ઇ-વેસ્ટ રિસાયક્લિંગ એ હાનિકારક પદાર્થોના સુરક્ષિત નિકાલ સાથે ઇલેક્ટ્રોનિક કચરામાંથી મૂલ્યવાન સામગ્રી પુનઃપ્રાપ્ત કરવાની પ્રક્રિયા છે.

કોષ્ટક: ઇ-વેસ્ટ રિસાયક્લિંગ પ્રક્રિયા

તબક્કો	પ્રક્રિયા	પુનઃપ્રાપ્તિ
કલેક્શન	ઘરો, ઓફિસોમાંથી એકત્રીકરણ	સંપૂર્ણ ઉપકરણો
ડિસમેન્ટલિંગ	ઘટકોનું મેન્યુઅલ વિભાજન	પ્લાસ્ટિક, ધાતુઓ, સર્કિટ બોર્ડ
શ્રેડિંગ	યાંત્રિક કદ ઘટાડો	મિશ્ર સામગ્રી પ્રવાહ
વિભાજન	ચુંબકીય, ઘનતા, ઓપ્ટિકલ સોર્ટિંગ	ફેરસ, નોન-ફેરસ ધાતુઓ
શુદ્ધિકરણ	રાસાયણિક પ્રક્રિયા	શુદ્ધ ધાતુઓ (Au, Ag, Cu, Pd)

રિસાયક્લિંગ પદ્ધતિઓ:

• યાંત્રિક: ભૌતિક વિભાજન અને કદ ઘટાડો

• પાયરોમેટલર્જી: ઉચ્ચ તાપમાન ધાતુ પુનઃપ્રાપ્તિ

• હાઇડ્રોમેટલર્જી: રાસાયણિક લીચિંગ પ્રક્રિયાઓ

• **બાયોટેકનોલોજી**: સૂક્ષ્મજીવીય ધાતુ નિષ્કર્ષણ

ફાયદાઓ:

• સંસાધન સંરક્ષણ: કિંમતી ધાતુઓની પુનઃપ્રાપ્તિ

• પર્યાવરણ સંરક્ષણ: માટી અને પાણીનું દૂષણ અટકાવે

• આર્થિક મૂલ્ય: નોકરીઓ સર્જન અને આવક ઉત્પાદન

• ઊર્જા બચત: પ્રાથમિક ઉત્પાદન કરતાં ઓછી ઊર્જા

મેમરી ટ્રીક: "CDSPR" - Collection, Dismantling, Shredding, Separation, Refining

પ્રશ્ન 2(ક અથવા) [07 ગુણ]

પ્રદૂષણ અને તેના સ્ત્રોતને વ્યાખ્યાયિત કરો. પ્રદૂષકોનું વર્ગીકરણ સમજાવો.

જવાબ:

વ્યાખ્યા: પ્રદૂષણ એ પર્યાવરણમાં હાનિકારક પદાર્થો અથવા ઊર્જાનો પ્રવેશ છે, જે હવા, પાણી, માટી અથવા સજીવોમાં પ્રતિકૂળ ફેરફારોનું કારણ બને છે.

કોષ્ટક: પ્રદૂષણના સ્ત્રોતો

સ્ત્રોત પ્રકાર	ઉદાહરણો	બહાર પાડવામાં આવતા પ્રદૂષકો
પોઈન્ટ સોર્સ	ઔદ્યોગિક ચીમની, ગટર આઉટફ્રોલ	યોક્કસ સ્થાન ડિસયાર્જ
નોન-પોઈન્ટ સોર્સ	કૃષિ રનઓફ, શહેરી વરસાદી પાણી	ફેલાયેલા વિસ્તારનું પ્રદૂષણ
મોબાઈલ સોર્સ	વાહનો, જહાજો, વિમાનો	એક્ઝોસ્ટ એમિશન
સ્ટેશનરી સોર્સ	પાવર પ્લાન્ટ, ફેક્ટરીઓ	સ્ટેક એમિશન

પ્રદૂષકોનું વર્ગીકરણ:

1. પ્રકૃતિ અનુસાર:

કોષ્ટક: પ્રકૃતિ અનુસાર પ્રદૂષક વર્ગીકરણ

язіг	લાક્ષણિકતાઓ	ઉદાહરણો
બાયોડિગ્રેડેબલ	કુદરતી રીતે વિઘટિત થાય	કાર્બનિક કચરો, ગટરનું પાણી
નોન-બાયોડિગ્રેડેબલ	પર્યાવરણમાં ટકી રહે	પ્લાસ્ટિક, ભારે ધાતુઓ
દ્યીમે વિઘટિત થતા	વર્ષો સુધી વિઘટિત થાય	જંતુનાશકો, કિરણોત્સર્ગી સામગ્રી

2. સ્વરૂપ અનુસાર:

• પ્રાથમિક: સીધા ઉત્સર્જિત (SO₂, CO, કણો)

• **ગોંણ**: પ્રતિક્રિયાઓ દ્વારા રચાય (O₃, અમ્લ વરસાદ, ધુમ્મસ)

3. સ્ત્રોત અનુસાર:

• કુદરતી: જ્વાળામુખી વિસ્ફોટ, જંગલની આગ

• માનવજન્ય: માનવ પ્રવૃત્તિઓ, ઔદ્યોગિક પ્રક્રિયાઓ

આકૃતિ: પ્રદૂષણ વર્ગીકરણ

પ્રદૂષણની અસરો:

• પર્યાવરણીય: ઇકોસિસ્ટમ વિક્ષેપ, પ્રજાતિઓનું લુપ્ત થવું

• આરોગ્ય: શ્વસન રોગો, કેન્સર, આનુવંશિક વિકાર

• **આર્થિક**: આરોગ્ય સંભાળના ખર્ચ, ઘટતી ઉત્પાદકતા

સામાજિક: જીવનની ગુણવત્તામાં ઘટાડો

મેમરી ટ્રીક: "BNS-PFC" - Biodegradable, Non-biodegradable, Slowly degradable - Primary, Form, Classification

પ્રશ્ન 3(અ) [03 ગુણ]

સૌર કોષની કામગીરી જણાવો.

જવાબ:

સૌર કોષ અર્ધવાહક સામગ્રીનો ઉપયોગ કરીને ફોટોવોલ્ટેઇક અસર દ્વારા પ્રકાશ ઊર્જાને સીધી વિદ્યુત ઊર્જામાં રૂપાંતરિત કરે છે.

કોષ્ટક: સૌર કોષની કામગીરી પ્રક્રિયા

પગલું	પ્રક્રિયા	પરિણામ
ફોટોન શોષણ	પ્રકાશ અર્ધવાહક પર પડે	ઇલેક્ટ્રોન ઉત્તેજના
ઇલેક્ટ્રોન-હોલ ઉત્પાદન	ઊર્જા બોન્ડ તોડે	મુક્ત ચાર્જ વાહકો
ચાર્જ વિભાજન	આંતરિક વિદ્યુત ક્ષેત્ર	ઇલેક્ટ્રોન n-બાજુ, હોલ p-બાજુ
કરંટ કલેક્શન	બાહ્ય સર્કિટ જોડાણ	વિદ્યુત પ્રવાહ

• p-n જંક્શન: આંતરિક વિદ્યુત ક્ષેત્ર બનાવે

• **ડિપ્લેશન રીજન**: ચાર્જ વિભાજન સાથેનો વિસ્તાર

• **બાહ્ય લોડ**: વિદ્યુત સર્કિટ પૂર્ણ કરે

મેમરી ટ્રીક: "PECS" - Photon, Electron, Charge, Separation

પ્રશ્ન 3(બ) [04 ગુણ]

આડી ધરી અને ઉભી ધરી વિન્ડ મિલ્સ વચ્ચેની સરખામણી આપો.

જવાબ:

કોષ્ટક: HAWT vs VAWT સરખામણી

પેરામીટર	આડી ધરી (HAWT)	ઉભી ધરી (VAWT)
બ્લેડ અભિગમ	આડા ભ્રમણ	ઉભા ભ્રમણ
પવનની દિશા	પવનનો સામનો કરવો જોઈએ	કોઈપણ દિશાથી સ્વીકારે
કાર્યક્ષમતા	ઊંચી (35-45%)	નીચી (20-35%)
ઊંચાઈ	ટાવર પર માઉન્ટ, ઊંચું	જમીન સ્તરે સ્થાપના
જાળવણી	મુશ્કેલ, ઊંચી ઊંચાઈ	સરળ, જમીન સુલભ
અવાજ	મધ્યમ	ઓછો
કિંમત	પ્રારંભિક ઊંચી	ઓછી સ્થાપના
પાવર આઉટપુટ	મોટા પાયે ઊંચું	નાના પાચે યોગ્ય

ફાયદાઓ:

HAWT: ઊંચી કાર્યક્ષમતા, સાબિત ટેકનોલોજી, બહેતર પાવર-ટુ-વેઈટ રેશિયો

VAWT: સર્વદિશીય, સરળ જાળવણી, શાંત કામગીરી, શહેરી મિત્ર

ઉપયોગો:

HAWT: મોટા વિન્ડ ફાર્મ, યુટિલિટી-સ્કેલ પાવર જનરેશન

VAWT: શહેરી વિસ્તારો, નાના પાયાના ઉપયોગો, વિતરિત જનરેશન

મેમરી ટ્રીક: "HEAVEN" - Height, Efficiency, Accessibility, Versatility, Economics, Noise

પ્રશ્ન 3(ક) [07 ગુણ]

બાયોગેસ પ્લાન્ટનું બાંધકામ અને કાર્ય આકૃતી સાથે સમજાવો.

જવાબ:

બાયોગેસ પ્લાન્ટ મેથેનોજેનિક બેક્ટેરિયા દ્વારા કાર્બનિક કચરા સામગ્રીના એનેરોબિક પાયન દ્વારા મેથેન-સમૃદ્ધ ગેસ ઉત્પન્ન કરે છે.

આકૃતિ: બાયોગેસ પ્લાન્ટ

કોષ્ટક: બાયોગેસ પ્લાન્ટના ઘટકો

ยะร	รเช้	સામગ્રી
ડાયજેસ્ટર	એનેરોબિક ફર્મેન્ટેશન ચેમ્બર	કોંક્રીટ/સ્ટીલ
ગેસ હોલ્કર	ગેસ સ્ટોરેજ અને પ્રેશર રેગ્યુલેશન	સ્ટીલ/પ્લાસ્ટિક
ઇનલેટ ચેમ્બર	ફીડ સામગ્રી પ્રવેશ	ચણતર
આઉટલેટ ચેમ્બર	સ્લરી ડિસચાર્જ	ચણતર
મિક્સિંગ ટેન્ક	કાચી સામગ્રી તૈયારી	કોંક્રીટ

બાંધકામની વિગતો:

ભૂગર્ભ ડાયજેસ્ટર:

• આકાર: બેલનાકાર અથવા ગુંબજ આકાર

• **ક્ષમતા**: ઘરેલુ પ્લાન્ટ માટે 10-100 m³

• **દિવાલની જાડાઈ**: 10-15 સેમી કોંક્રીટ

• **ઇન્સ્યુલેશન**: ગરમીનું નુકસાન અટકાવે

કામકાજની પ્રક્રિયા:

કોષ્ટક: બાયોગેસ ઉત્પાદનના તબક્કાઓ

તબક્કો	પ્રક્રિયા	અવધિ	ઉત્પાદનો
હાઇડ્રોલિસિસ	મોટા અણુઓનું વિભાજન	1-3 દિવસ	સાદી શર્કરા, એમિનો એસિડ
એસિડોજેનેસિસ	એસિડ રચના	3-7 દિવસ	કાર્બનિક એસિડ, આલ્કોહોલ
મેથેનોજેનેસિસ	મેથેન ઉત્પાદન	15-30 દિવસ	CH ₄ (60%), CO ₂ (40%)

ઓપરેટિંગ પરિસ્થિતિઓ:

• **તાપમાન**: 30-40°C (મેસોફિલિક)

• **pH**: 6.8-7.2 (તટસ્થ)

• **C:N રેશિયો**: 25-30:1 શ્રેષ્ઠ

• **રિટેન્શન ટાઈમ**: 20-30 દિવસ

ઉપયોગો:

• રસોઈ: સ્વચ્છ બર્નિંગ ઇંધન

• લાઈટિંગ: ગેસ લેમ્પ

• હીટિંગ: સ્પેસ અને વોટર હીટિંગ

• વિજળી: જનરેટર સેટ

ફાયદાઓ:

• નવીકરણીય ઊર્જા: ટકાઉ ઇંધન સ્ત્રોત

કચરા વ્યવસ્થાપન: કાર્બનિક કચરાનો નિકાલ
ખાતર ઉત્પાદન: પોષક તત્વોથી ભરપૂર સ્લરી
પર્યાવરણીય ફાયદાઓ: ગ્રીનહાઉસ ગેસ ઘટાડે

મેમરી ટ્રીક: "BIGHM" - Biological, Input, Gas, Holder, Methane

પ્રશ્ન 3(અ અથવા) [03 ગુણ]

ફલેટ પ્લેટ કલેક્ટરના ફાયદાઓની યાદી બનાવો.

જવાબ:

કોષ્ટક: ફ્લેટ પ્લેટ કલેક્ટરના ફાયદાઓ

કેટેગરી	ફાયદાઓ
તકનીકી	સાદી ડિઝાઈન, કોઈ હિલતા ભાગો નથી, ઓછી જાળવણી
આર્થિક	ઓછી કિંમત, મોટા પાયે ઉત્પાદન શક્ય
ઓપરેશનલ	વેરવિખેર પ્રકાશ સાથે કામ કરે, સીધા અને પરોક્ષ બંને રેડિએશન સંભાળે
ટકાઉપણું	લાંબું જીવન (15-20 વર્ષ), હવામાન પ્રતિરોધક
વર્સેટિલિટી	બહુવિધ ઉપયોગો, મોક્યુલર ઇન્સ્ટોલેશન

મુખ્ય ફાયદાઓ:

• વિશ્વસનીયતા: જટિલ મિકેનિઝમ અથવા નિયંત્રણોની જરૂર નથી

• કાર્યક્ષમતા: શ્રેષ્ઠ પરિસ્થિતિઓમાં 40-60% થર્મલ કાર્યક્ષમતા

• ઇન્સ્ટોલેશન: છત અથવા જમીન પર સરળ માઉન્ટિંગ

મેમરી ટ્રીક: "TEODV" - Technical, Economic, Operational, Durability, Versatility

પ્રશ્ન 3(બ અથવા) [04 ગુણ]

પવન ચક્કી ક્ષેત્ર શું છે? તેના ફાયદાઓની યાદી આપો.

જવાબ:

વ્યાખ્યા: વિન્ડ ફાર્મ એ વ્યાવસાયિક વિજળી ઉત્પાદન માટે એક જ સ્થાને સ્થાપિત વિન્ડ ટર્બાઇનનું જૂથ છે, જે ટ્રાન્સમિશન લાઇન દ્વારા વિદ્યુત ગ્રિડ સાથે જોડાયેલ હોય છે.

કોષ્ટક: વિન્ડ ફાર્મના ફાયદાઓ

કેટેગરી	ફાયદાઓ
પર્યાવરણીય	સ્વચ્છ ઊર્જા, શૂન્ય ઉત્સર્જન, કાર્બન ફૂટપ્રિન્ટ ઘટાડે
આર્થિક	નોકરીઓ સર્જન, ઓછા ઓપરેટિંગ ખર્ચ, જમીન માલિકો માટે આવક
તકનીકી	સ્કેલેબલ ક્ષમતા, ગ્રિડ સ્થિરતા, ઊર્જા સ્વતંત્રતા
સામાજિક	ગ્રામીણ વિકાસ, સમુદાયિક ફાયદાઓ, શૈક્ષણિક તકો

વિશિષ્ટ કાયદાઓ:

• જમીનના ઉપયોગની કાર્યક્ષમતા: ટર્બાઇન વચ્ચે ખેતી ચાલુ રાખી શકાય

• ઝડપી ઇન્સ્ટોલેશન: પરંપરાગત પાવર પ્લાન્ટ કરતાં ઝડપી

• અનુમાનિત કિંમતો: નિશ્ચિત ઇંધન કિંમત (પવન મફત છે)

• મોક્યુલર વિસ્તરણ: ક્ષમતા ક્રમશઃ વધારી શકાય

ઉપયોગો:

• ઓનશોર: જમીન આધારિત ઇન્સ્ટોલેશન

• ઓફશોર: વધુ પવનની ઝડપ માટે સમુદ્ર આધારિત

• વિતરિત: નાના પાયાના સમુદાયિક પ્રોજેક્ટ્સ

મેમરી ટ્રીક: "ECTS" - Environmental, Economic, Technical, Social benefits

પ્રશ્ન 3(ક અથવા) [07 ગુણ]

ટૂંકમાં સમજાવો (1) ભૂઉષ્મીય ઊર્જા (2) ભરતી ઊર્જા

જવાબ:

(1) ભૂઉષ્મીય ઊર્જા:

ભૂઉષ્મીય ઊર્જા વિજળી ઉત્પાદન અને સીધા હીટિંગ ઉપયોગો માટે પૃથ્વીના આંતરિક ગરમીનો ઉપયોગ કરે છે.

કોષ્ટક: ભૂઉષ્મીય ઊર્જા સિસ્ટમ

SISK	તાપમાન	ઉપયોગો
ઉચ્ચ તાપમાન	>150°C	વિજળી ઉત્પાદન
મધ્યમ તાપમાન	90-150°C	સીધું હીટિંગ, ફૂલિંગ
નીચા તાપમાન	<90°C	હીટ પંપ, કૃષિ

કાર્યસિદ્ધાંત:

• ગરમીનો સ્ત્રોત: પૃથ્વીના કોરમાં કિરણોત્સર્ગી ક્ષય

• નિષ્કર્ષણ: ગરમ પાણી/વરાળ મેળવવા માટે કૂવા ખોદવા

• રૂપાંતરણ: વરાળ વિજળી માટે ટર્બાઇન ચલાવે

• રી-ઇન્જેક્શન: પાણી રિઝર્વોયરમાં પાછું મોકલવું

(2) ભરતી ઊર્જા:

ભરતી ઊર્જા અનુમાનિત ભરતીની હિલચાલનો ઉપયોગ કરીને સમુદ્રી ભરતીની ગતિશીલ અને સ્થિતિશીલ ઊર્જાને વિજળીમાં રૂપાંતરિત કરે છે.

કોષ્ટક: ભરતી ઊર્જા તકનીકો

તકનીક	સિદ્ધાંત	ઇન્સ્ટોલેશન
ટાઇડલ બેરેજ	ભરતીની શ્રેણીની સ્થિતિશીલ ઊર્જા	નદીમુખ પર ડેમ
ટાઇડલ સ્ટ્રીમ	ભરતીના પ્રવાહની ગતિશીલ ઊર્જા	પાણીની અંદર ટર્બાઇન
ટાઇડલ લેગૂન	કૃત્રિમ બંધ વિસ્તાર	બ્રેકવોટર બાંધકામ

ફાયદાઓ:

લૂઉષ્મીય: બેઝલોડ પાવર, ઓછા ઉત્સર્જન, નાનું ફૂટપ્રિન્ટ, વિશ્વસનીય **લરતી**: અનુમાનિત, ઉચ્ચ ઊર્જા ઘનતા, લાંબું જીવનકાળ, ઇંધન ખર્ચ નહીં

પડકારો:

લૂઉષ્મીય: સ્થાન વિશિષ્ટ, ઉચ્ચ પ્રારંભિક કિંમત, પ્રેરિત ભૂકંપ **લરતી**: ઉચ્ચ મૂડી ખર્ચ, પર્યાવરણીય અસર, મર્યાદિત સ્થાનો

મેમરી ટ્રીક: "GT-POWER" - Geothermal Temperature, Tidal Predictable Ocean Water Energy Resource

પ્રશ્ન 4(અ) [03 ગુણ]

નવીનીકરણીય ઊર્જાની જરૂરિયાત વ્યાખ્યાયિત કરો

જવાબ:

કોષ્ટક: નવીનીકરણીય ઊર્જાની જરૂરિયાત

ચાલક	કારણો
પર્યાવરણીય	આબોહવા પરિવર્તન ઘટાડો, પ્રદૂષણ ઘટાડો
આર્થિક	ઊર્જા સુરક્ષા, કિંમત સ્થિરતા, નોકરીઓ સર્જન
สระใรใ	અવશેષ ઇંધણોનો ક્ષય, તકનીકી પ્રગતિ
સામાજિક	ગ્રામીણ વિકાસ, આરોગ્યને ફાયદાઓ, ઊર્જા પહોંચ

મુખ્ય જરૂરિયાતો:

• આબોહવા પ્રતિબદ્ધતાઓ: પેરિસ એગ્રીમેન્ટ લક્ષ્યો પૂરા કરવા

• **ઊર્જા સ્વતંત્રતા**: આયાત નિર્ભરતા ઘટાડવી

• ટકાઉ વિકાસ: લાંબાગાળાની ઊર્જા સુરક્ષા

મેમરી ટ્રીક: "EETS" - Environmental, Economic, Technical, Social needs

પ્રશ્ન 4(બ) [04 ગુણ]

ઓઝોન સ્તરના અવક્ષયને સમજાવો.

જવાબ:

ઓઝોન સ્તરનો અવક્ષય માનવ નિર્મિત રસાયણો, ખાસ કરીને ક્લોરોફ્લોરોકાર્બન (CFCs) ને કારણે સ્ટ્રેટોસ્ફિયરમાં ઓઝોન સાંદ્રતાનો ઘટાડો છે.

કોષ્ટક: ઓઝોન અવક્ષય પ્રક્રિયા

તબક્કો	પ્રક્રિયા	રાસાયણિક પ્રતિક્રિયા
CFC भुड़ित	ઔદ્યોગિક ઉત્સર્જન	CFCs સ્ટ્રેટોસ્ફિયરમાં ઉગે
UV વિભાજન	ફોટોડિસોસિએશન	CFC + UV → Cl + અન્ય ઉત્પાદનો
ઓઝોન વિનાશ	કેટેલિટિક યક	$CI + O_3 \rightarrow CIO + O_2$
શૃંખલા પ્રતિક્રિયા	સતત પ્રક્રિય।	$CIO + O \rightarrow CI + O_2$

કારણો:

• પ્રાથમિક: CFCs, હેલોન્સ, મેથાઈલ બ્રોમાઈડ

• ગોંણ: HCFCs, નાઈટ્સ ઓક્સાઈS, કાર્બન ટેટ્રાક્લોરાઈS

અસરો:

• **વધેલ UV-B રેડિએશન**: ત્વચા કેન્સર, મોતિયો

• પર્યાવરણીય અસર: પાકની ઉપજ ઘટાડો, દરિયાઈ ઇકોસિસ્ટમ નુકસાન

• આબોહવા અસરો: બદલાચેલ વાતાવરાગીય પરિભ્રમાગ

ઉકેલો:

• મોન્ટ્રીલ પ્રોટોકોલ: આંતરરાષ્ટ્રીય એગ્રીમેન્ટ (1987)

• CFC ફેઝ-આઉટ: ઓઝોન-ફ્રેન્ડલી વિકલ્પો સાથે બદલવું

• **HCFC સંક્રમણ**: અસ્થાયી વિકલ્પો તબક્કાવાર બંધ

ਮੇਮਰੀ ਟ੍ਰੀs: "CURE" - CFCs, UV, Reactions, Effects

પ્રશ્ન 4(ક) [07 ગુણ]

સમજાવો: (1) ગ્રીનહાઉસ અસર (2) આબોહવા પરિવર્તન વ્યવસ્થાપન

જવાબ:

(1) ગ્રીનહાઉસ અસર:

કુદરતી પ્રક્રિયા જ્યાં ચોક્કસ વાતાવરણીય ગેસો સૂર્યથી ગરમીને ફસાવે છે, જીવન માટે યોગ્ય પૃથ્વીનું તાપમાન જાળવે છે.

આકૃતિ: ગ્રીનહાઉસ અસર

કોષ્ટક: ગ્રીનહાઉસ ગેસો

ગેસ	સ્ત્રોતો	યોગદાન	ฐนารเท
CO ₂	અવશેષ ઇંધણ, વનનાશ	76%	300-1000
CH₄	કૃષિ, લેન્ડફિલ	16%	12
N ₂ O	ખાતર, દહન	6%	120
F-ગેસો	ઔદ્યોગિક પ્રક્રિયાઓ	2%	વિવિધ

વધેલી ગ્રીનહાઉસ અસર:

• **કારણ**: માનવ પ્રવૃત્તિઓથી વધેલ GHG સાંદ્રતા

• પરિણામ: વૈશ્વિક તાપમાન વધારો, આબોહવા પરિવર્તન

• ફીડબેક લૂપ્સ: ગરમ થવાની અસરોને વધારે

(2) આબોહવા પરિવર્તન વ્યવસ્થાપન:

શમન અને અનુકૂલન વ્યૂહરચના દ્વારા આબોહવા પરિવર્તનને સંબોધવા માટે વ્યાપક અભિગમ.

કોષ્ટક: આબોહવા પરિવર્તન વ્યવસ્થાપન વ્યૂહરચનાઓ

વ્યૂહરચના	અભિગમ	ઉદાહરણો
શમન	GHG ઉત્સર્જન ઘટાડો	નવીકરણીય ઊર્જા, ઊર્જા કાર્યક્ષમતા
અનુકૂલન	આબોહવા અસરોને સમાયોજન	સીવોલ, દુષ્કાળ પ્રતિરોધી પાકો
ટેકનોલોજી	નવાચાર ઉકેલો	કાર્બન કેપ્યર, સ્માર્ટ ગ્રિડ
નીતિ	નિયમનકારી ફ્રેમવર્ક	કાર્બન પ્રાઈસિંગ, ઉત્સર્જન ધોરણો
આંતરરાષ્ટ્રીય	વૈશ્વિક સહયોગ	પેરિસ એગ્રીમેન્ટ, આબોહવા ફાઈનાન્સ

શમન પગલાં:

• **ઊર્જા ક્ષેત્ર**: નવીકરણીય ઊર્જા જમાવટ, કાર્યક્ષમતા સુધારા

• પરિવહન: ઇલેક્ટ્રિક વાહનો, સાર્વજનિક પરિવહન, બાયોફ્યુઅલ

• ઉદ્યોગ: પ્રક્રિયા ઓપ્ટિમાઇઝેશન, લો-કાર્બન ટેકનોલોજી

• **ઇમારતો**: ગ્રીન કન્સ્ટ્રક્શન, સ્માર્ટ સિસ્ટમ • **કૃષિ**: ટકાઉ પ્રથાઓ, ઘટાડેલ ઉત્સર્જન

અનુકૂલન પગલાં:

• ઇન્ફ્રાસ્ટ્રક્ચર: આબોહવા-પ્રત્યાસ્થ ડિઝાઇન, પૂર સંરક્ષણ

• ઇકોસિસ્ટમ: સંરક્ષણ, પુનઃસ્થાપન, કોરિડોર

• પાણીના સંસાધનો: કાર્યક્ષમ ઉપયોગ, સંગ્રહ, ગુણવત્તા વ્યવસ્થાપન

• આરોગ્ય: રોગ સર્વેલન્સ, ગરમીની લહેર તૈયારી

વ્યવસ્થાપન ફ્રેમવર્ક:

1. **મૂલ્યાંકન**: આબોહવા જોખમ અને નબળાઈ વિશ્લેષણ

2. **આયોજન**: એકીકૃત વ્યૂહરચના અને કાર્ય યોજનાઓ

3. અમલીકરણ: પ્રોજેક્ટ અમલ અને મોનિટરિંગ

4. **મૂલ્યાંકન**: પ્રદર્શન મૂલ્યાંકન અને ગોઠવણ

મેમરી ટ્રીક: "GEMMA" - Gases, Enhanced, Mitigation, Management, Adaptation

પ્રશ્ન 4(અ અથવા) [03 ગુણ]

આબોહવા પરિવર્તનને અસર કરતા પરિબળોની ચર્ચા કરો.

જવાબ:

કોષ્ટક: આબોહવા પરિવર્તન પરિબળો

પરિબળ પ્રકાર	ઉદાહરણો	અસર
કુદરતી	સૌર વેરિએશન, જ્વાળામુખી વિસ્ફોટ	નજીવો પ્રભાવ
માનવજન્ચ	GHG ઉત્સર્જન, જમીન ઉપયોગ પરિવર્તન	મુખ્ય ચાલક
ફીડબેક	બરફ-એલ્બેડો, પાણીની વરાળ	વિસ્તૃતીકરણ

મુખ્ય પરિબળો:

• ગ્રીનહાઉસ ગેસ સાંદ્રતા: ગરમ થવાનો પ્રાથમિક ચાલક

• એરોસોલ્સ: ઠંડક અસર, કેટલાક ગરમ થવાને છુપાવે

• જમીન ઉપયોગ પરિવર્તન: વનનાશ, શહેરીકરણ અસરો

મેમરી ટ્રીક: "NAF" - Natural, Anthropogenic, Feedback factors

પ્રશ્ન 4(બ અથવા) [04 ગુણ]

ક્લાઈમેટ ચેન્જ સમજાવો

જવાબ:

આબોહવા પરિવર્તન 20મી સદીના મધ્યથી મુખ્યત્વે માનવ પ્રવૃત્તિઓને કારણે વૈશ્વિક તાપમાન અને હવામાન પેટર્નમાં લાંબાગાળાના ફેરફારોનો સંદર્ભ આપે છે.

કોષ્ટક: આબોહવા પરિવર્તન સૂચકાંકો

સૂચકાંક	અવલોકિત ફેરફારો	વલણ
તાપમાન	1880 થી +1.1°C	વધતું
સમુદ્ર સ્તર	1880 થી 21-24 સેમી	વધતું
આર્કટિક બરફ	દર દાયકાએ 13% નુકસાન	ઘટતું
વરસાદ	પ્રાદેશિક વિવિધતાઓ	બદલાતા પેટર્ન

કારણો:

• પ્રાથમિક: અવશેષ ઇંધણોથી ગ્રીનહાઉસ ગેસ ઉત્સર્જન

• ગોંણ: વનનાશ, ઔદ્યોગિક પ્રક્રિયાઓ, કૃષિ

અસરો:

• લોતિક: આત્યંતિક હવામાન, સમુદ્ર સ્તર વધારો, બરફ નુકસાન

• જૈવિક: પ્રજાતિઓનું સ્થળાંતર, ઇકોસિસ્ટમ વિક્ષેપ

• માનવ: ખોરાક સુરક્ષા, પાણીના સંસાધનો, આરોગ્ય

પુરાવા:

• તાપમાન રેકોર્ડ: વૈશ્વિક ગરમ થવાનો વલણ

• **બરફના કોર ડેટા**: ઐતિહાસિક CO₂ સ્તર

• સેટેલાઇટ અવલોકનો: બરફની ચાદરમાં ફેરફાર

મેમરી ટ્રીક: "CHIP" - Causes, Human impacts, Indicators, Physical evidence

પ્રશ્ન 4(ક અથવા) [07 ગુણ]

ગ્લોબલ વોર્મિંગ પર ટૂંકી નોંધ લખો.

જવાબ:

ગ્લોબલ વોર્મિંગ એ માનવ પ્રવૃત્તિઓથી વદ્યેલી ગ્રીનહાઉસ અસરને કારણે પૃથ્વીના સરેરાશ સપાટીના તાપમાનમાં લાંબાગાળાનો વધારો છે.

કોષ્ટક: ગ્લોબલ વોર્મિંગના ઘટકો

પાસું	વિગતો	અસર	
વ્યાખ્યા	વૈશ્વિક સરેરાશ તાપમાનમાં વધારો	પૂર્વ-ઔદ્યોગિક કાળથી +1.1°C	
પ્રાથમિક કારણ અવશેષ ઇંધણોથી CO ₂ ઉત્સર્જન		410+ ppm વાતાવરણીય CO₂	
સમયરેખા	1950 ના દાયકાથી ઝડપી	10,000 વર્ષમાં સૌથી ઝડપી ગરમ થવું	
પ્રાદેશિક વિવિદ્યતા	આર્કટિક ગરમ થવું વૈશ્વિક સરેરાશ કરતાં 2x	ધ્રુવીય વિસ્તૃતીકરણ	

ગ્લોબલ વોર્મિંગના કારણો:

કોષ્ટક: ઉત્સર્જન સ્ત્રોતો

क्षेत्र	યોગદાન	મુખ્ય પ્રવૃત્તિઓ
ଉର୍ଖ	73%	વિજળી, ગરમી, પરિવહન
કૃષિ	18%	પશુધન, ચોખાની ખેતી
ઔદ્યોગિક	5%	સિમેન્ટ, સ્ટીલ, રસાયણો
કચરો	3%	લેન્ડફિલ, ગંદા પાણી
જમીન ઉપયોગ	1%	વનનાશ, વિકાસ

પરિણામો:

- ભૌતિક અસરો: સમુદ્ર સ્તર વધારો, ગ્લેશિયર પીછેહઠ, પર્માફ્રોસ્ટ પીગળવું
- હવામાન પેટર્ન: વધુ વારંવાર ગરમીની લહેરો, બદલાયેલ વરસાદ
- ઇકોસિસ્ટમ અસરો: પ્રજાતિઓનું લુપ્ત થવું, વસવાટ નુકસાન, કોરલ બ્લીચિંગ
- માનવ અસરો: કૃષિ વિક્ષેપ, પાણીની અછત, આરોગ્ય જોખમો

ફીડબેક મિકેનિઝમ:

- **બરફ-એલ્બેડો ફીડબેક**: ઓછું બરફ o વધુ ગરમી શોષણ
- પાણીની વરાળ ફીડબેક: ગરમ હવા વધુ ભેજ ધરાવે
- **પર્માફોસ્ટ ફીડબેક**: પીગળવાથી સંગ્રહિત કાર્બન મુક્ત થાય

ઉકેલો:

- શમન: ગ્રીનહાઉસ ગેસ ઉત્સર્જન ઘટાડવું
- નવીકરણીય ઊર્જા: સૌર, પવન, હાઇડ્રોઇલેક્ટ્રિક પાવર
- ઊર્જા કાર્યક્ષમતા: ઇમારતો, પરિવહન, ઉદ્યોગ
- કાર્બન સીકવેસ્ટ્રેશન: જંગલો, માટી, તકનીકી કેપ્યર
- નીતિ પગલાં: કાર્બન પ્રાઇસિંગ, નિયમો, પ્રોત્સાહનો

આંતરરાષ્ટ્રીય પ્રતિસાદ:

• **UNFCCC**: આબોહવા પરિવર્તન પર ફ્રેમવર્ક કન્વેન્શન

• ક્યોટો પ્રોટોકોલ: પ્રથમ બંધનકર્તા ઉત્સર્જન ઘટાડા કરાર

• પેરિસ એગ્રીમેન્ટ: વર્તમાન વૈશ્વિક આબોહવા સમજૂતી (2015)

• IPCC રિપોર્ટ્સ: વૈજ્ઞાનિક મૂલ્યાંકન અને માર્ગદર્શન

ભાવિ અનુમાનો:

• **તાપમાન વધારો**: ઉત્સર્જનના આધારે 2100 સુધીમાં 1.5-4.5°C

• **સમુદ્ર સ્તર વધારો**: 2100 સુધીમાં 0.43-2.84 મીટર

• ટિપિંગ પોઇન્ટ્સ: આબોહવા પ્રણાલીમાં અપરિવર્તનીય ફેરફારો

મેમરી ટ્રીક: "GWCF" - Global Warming Causes Consequences Feedback

પ્રશ્ન 5(અ) [03 ગુણ]

"ઇકો ટુરીઝમ" ની વિભાવના સમજાવો

જવાબ:

ઇકો-ટુરીઝમ એ કુદરતી વિસ્તારોમાં જવાબદાર મુસાફરી છે જે પર્યાવરણનું સંરક્ષણ કરે છે, સ્થાનિક લોકોના કલ્યાણને ટકાવી રાખે છે, અને અર્થઘટન અને શિક્ષણ સામેલ કરે છે.

કોષ્ટક: ઇકો-ટુરીઝમના સિદ્ધાંતો

સિદ્ધાંત	વર્ણન
સંરક્ષણ	કુદરતી વસવાટ અને વન્યજીવનનું સંરક્ષણ
સમુદાય	સ્થાનિક સમુદાયોને આર્થિક ફાયદો
શિક્ષણ	પર્યાવરણીય જાગૃતિ અને શિક્ષણ
ટકાઉપણું	લાંબાગાળાનું પર્યાવરણ સંરક્ષણ
જવાબદારી	નકારાત્મક અસરો ઘટાડવી

• પ્રકૃતિ આધારિત: કુદરતી વાતાવરણ પર ધ્યાન

• ઓછી અસર: ન્યૂનતમ પર્યાવરણીય વિક્ષેપ

• સાંસ્કૃતિક આદર: સ્થાનિક પરંપરાઓ અને રિવાજોનું મૂલ્ય

મેમરી ટ્રીક: "ECERS" - Environment, Community, Education, Responsibility, Sustainability

પ્રશ્ન 5(બ) [04 ગુણ]

પરંપરાગત અને બિનપરંપરાગત ઉર્જા સ્ત્રોતની સરખામણી.

જવાબ:

કોષ્ટક: પરંપરાગત વિ બિનપરંપરાગત ઉર્જા સ્ત્રોતો

પેરામીટર	પરંપરાગત	બિનપરંપરાગત	
ઉદાહરણો	કોલસો, તેલ, કુદરતી ગેસ, ન્યુક્લિયર	સૌર, પવન, હાઇડ્રો, બાયોમાસ	
ઉપલબ્ધતા	મર્યાંદિત ભંડાર	વિપુલ અને નવીકરણીય	
પર્યાવરણીય અસર	ઉચ્ચ પ્રદૂષણ, CO ₂ ઉત્સર્જન	સ્વચ્છ, ન્યૂનતમ ઉત્સર્જન	
કિંમત	શરૂઆતમાં ઓછી, વધતી કિંમતો	ઉચ્ચ પ્રારંભિક, ઘટતી કિંમતો	
ટેકનોલોજી	પરિપક્વ, સ્થાપિત	વિકસતી, સુધરતી	
વિશ્વસનીયતા	સતત પુરવઠો	હવામાન આદ્યારિત	
ઇન્ફ્રાસ્ટ્રક્ચર	સુસ્થાપિત	વિકાસ જરૂરી	
क्षय	ખતમ થતા સંસાધનો	અખૂટ સ્ત્રોતો	

ફાયદાઓ:

પરંપરાગત: વિશ્વસનીય પુરવઠો, સ્થાપિત ઇન્ફ્રાસ્ટ્રક્ચર, ઉચ્ચ ઊર્જા ઘનતા

બિનપરંપરાગત: ટકાઉ, સ્વચ્છ, નોકરીઓ સર્જન, ઊર્જા સ્વતંત્રતા

પડકારો:

પરંપરાગત: પર્યાવરણ નુકસાન, કિંમત અસ્થિરતા, મર્યાદિત સંસાધનો **બિનપરંપરાગત**: તૂટક તૂટક, સંગ્રહની જરૂર, પ્રારંભિક રોકાણ

મેમરી ટ્રીક: "CATERED" - Conventional Available Technology Established Reliable Environmental Depletion

પ્રશ્ન 5(ક) [07 ગુણ]

સમજાવો (1) પાણી અધિનિયમ, 1974 (2) પર્યાવરણ અધિનિયમ, 1986

જવાબ:

(1) પાણી (પ્રદૂષણ નિવારણ અને નિયંત્રણ) અધિનિયમ, 1974:

ભારતમાં પાણીના પ્રદૂષણને અટકાવવા અને નિયંત્રિત કરવા અને પાણીની સ્વચ્છતા જાળવવા/પુનઃસ્થાપિત કરવા માટે વ્યાપક કાયદો.

કોષ્ટક: પાણી અધિનિયમ 1974 - મુખ્ય જોગવાઈઓ

પાસું	વિગતો
ઉદ્દેશ્ય	પાણીના પ્રદૂષણને અટકાવવું અને નિયંત્રિત કરવું
सत्ता	કેન્દ્રીય અને રાજ્ય પ્રદૂષણ નિયંત્રણ બોર્ડ
કવરેજ	તમામ જળ સ્ત્રોતો - નદીઓ, પ્રવાહો, કૂવા, ભૂગર્ભજળ
ĖS	ઉલ્લંઘન માટે દંડ અને કેદ

મુખ્ય વિશેષતાઓ:

• **પ્રદૂષણ નિયંત્રણ બોર્ડ**: કેન્દ્રીય અને રાજ્ય સ્તરે સ્થાપના

• સંમતિ મિકેનિઝમ: ઉદ્યોગો માટે નો-ઓબ્જેક્શન સર્ટિફિકેટ

• ધોરણો: પાણીની ગુણવત્તા ધોરણો અને વહેતા પાણીની મર્યાદાઓ

• મોનિટરિંગ: જળ સ્ત્રોતોની નિયમિત તપાસ અને નમૂના લેવું

• **કટોકટીની જોગવાઈઓ**: પ્રદૂષણની કટોકટીઓ સંભાળવાની સત્તા

બોર્ડની સત્તાઓ:

• આયોજન: પ્રદૂષણ નિવારણ અને નિયંત્રણ કાર્યક્રમો

• **ધોરણ સેટિંગ**: પાણીની ગુણવત્તા અને ડિસચાર્જ ધોરણો

• સંમતિ આપવી: કચરો છોડવાની પરવાનગી

• મોનિટરિંગ: પાણીની ગુણવત્તા દેખરેખ

• અમલીકરણ: ઉલ્લંઘનકર્તાઓ સામે કાનૂની કાર્યવાહી

(2) પર્યાવરણ (સંરક્ષણ) અધિનિયમ, 1986:

ભારતમાં પર્યાવરણ સંરક્ષણ અને સુધારા માટે ફ્રેમવર્ક પૂરો પાડતો છત્ર કાયદો, ભોપાલ જેસ દુર્ઘટના પછી ઘડવામાં આવ્યો.

કોષ્ટક: પર્યાવરણ અધિનિયમ 1986 - મુખ્ય જોગવાઈઓ

પાસું	વિગતો
ઉદ્દેશ્ય	વ્યાપક પર્યાવરણ સંરક્ષણ
વ્યાપ્તિ	હવા, પાણી, જમીન પ્રદૂષણ અને જોખમી પદાર્થો
सता	કેન્દ્ર સરકાર અને નિયુક્ત એજન્સીઓ
ές	5 વર્ષ સુધીની કેદ અને/અથવા ₹1 લાખ સુધીનો દંડ

મુખ્ય વિશેષતાઓ:

• **સામાન્ય સત્તાઓ**: પર્યાવરણ સંરક્ષણ માટે કેન્દ્ર સરકારની સત્તા

• ધોરણો: હવા, પાણી, માટી માટે પર્યાવરણીય ગુણવત્તા ધોરણો

• અસર મૂલ્યાંકન: પ્રોજેક્ટ્સ માટે પર્યાવરણીય મંજૂરી

• જોખમી પદાર્થો: હેન્ડલિંગ અને નિકાલનું નિયમન

• જનભાગીદારી: માહિતી અને ભાગીદારીનો અધિકાર

મહત્વના નિયમો:

• EIA નોટિફિકેશન 2006: પર્યાવરણીય અસર મૂલ્યાંકન

• હેજાર્ડસ વેસ્ટ રૂલ્સ: વ્યવસ્થાપન અને હેન્ડલિંગ

• અવાજ પ્રદૂષણ નિયમો: આસપાસના અવાજના ધોરણો

• કોસ્ટલ રેગ્યુલેશન ઝોન: દરિયાકાંઠાના વિસ્તારનું સંરક્ષણ

સરખામણી:

કોષ્ટક: પાણી અદ્યનિયમ વિ પર્યાવરણ અદ્યનિયમ

પાસું	પાણી અધિનિયમ 1974	પર્યાવરણ અધિનિયમ 1986
વ્યાપ્તિ	માત્ર પાણી પ્રદૂષણ	તમામ પર્યાવરણીય માધ્યમો
અભિગમ	ક્ષેત્રીય	વ્યાપક
અમલીકરણ	PCBs	કેન્દ્ર સરકાર
ĖS	મધ્યમ	SSS

અમલીકરણ મિકેનિઝમ:

• મોનિટરિંગ: નિયમિત તપાસ અને અનુપાલન તપાસ

• કાનૂની કાર્યવાહી: ઉલ્લંઘનકર્તાઓની કાર્યવાહી

• બંધ કરવાના આદેશો: પ્રદૂષક એકમો બંધ કરવા

• વળતર: પર્યાવરણીય નુકસાનનું મૂલ્યાંકન

મેમરી ટ્રીક: "WEPCA" - Water Environmental Protection Comprehensive Act

પ્રશ્ન 5(અ અથવા) [03 ગુણ]

"કાર્બન કેડિટ" ખ્યાલ સમજાવો

જવાબ:

કાર્બન ક્રેડિટ એ ઉત્સર્જન ઘટાડા અથવા કાર્બન સીક્વેસ્ટ્રેશન પ્રોજેક્ટ્સ દ્વારા વાતાવરણમાંથી એક ટન CO₂ સમકક્ષ ઘટાડેલ અથવા દૂર કરેલનું પ્રતિનિધિત્વ કરતું વેપારીલાયક પ્રમાણપત્ર છે.

કોષ્ટક: કાર્બન ક્રેડિટ મિકેનિઝમ

ยรร	વર્ણન	
એકમ	1 ક્રેડિટ = 1 ટન CO ₂ સમકક્ષ	
ઉત્પાદન	ઉત્સર્જન ઘટાડા/દૂર કરવાના પ્રોજેક્ટ્સ	
વેપાર	કાર્બન બજારોમાં ખરીદી/વેચાણ	
ચકાસણી	તૃતીય-પક્ષ માન્યતા જરૂરી	

• CDM: ક્યોટો પ્રોટોકોલ હેઠળ ક્લીન ડેવલપમેન્ટ મિકેનિઝમ

• સ્વેચ્છિક બજારો: ખાનગી ક્ષેત્રની પહેલ

• અનુપાલન બજારો: નિયમનકારી જરૂરિયાતો

મેમરી ટ્રીક: "CUTV" - Credit Unit Trading Verification

પ્રશ્ન 5(બ અથવા) [04 ગુણ]

"સોલિડ વેસ્ટ મેનેજમેન્ટ" ટૂંકમાં સમજાવો

જવાબ:

ઘન કચરા વ્યવસ્થાપન એ માનવ પ્રવૃત્તિઓ દ્વારા છોડી દેવાયેલી ઘન સામગ્રીનું વ્યવસ્થિત એકત્રીકરણ, પરિવહન, પ્રક્રિયા, રિસાયક્લિંગ અને નિકાલ છે.

કોષ્ટક: ઘન કચરા વ્યવસ્થાપન હાયરાર્કી

પ્રાથમિકતા	પદ્ધતિ	นต์ฯ
1ม์ใ	ઘટાડવું	કચરાનું ઉત્પાદન ઘટાડવું
2%	પુનઃઉપયોગ	વસ્તુઓનો બહુવિદ્ય વાર ઉપયોગ
3%	રિસાયકલ	કચરાને નવા ઉત્પાદનોમાં રૂપાંતરિત કરવું
4થી	પુનઃપ્રાપ્તિ	કચરામાંથી ઊર્જા પુનઃપ્રાપ્તિ
5મી	નિકાલ	સુરક્ષિત લેન્ડફિલિંગ

વ્યવસ્થાપન પ્રક્રિયા:

• એકત્રીકરણ: ઘરે-ઘરે પિકઅપ, સ્ત્રોતે વિભાજન

• પરિવહન: ટ્રાન્સફર સ્ટેશન, બલ્ક ટ્રાન્સપોર્ટ

• ટ્રીટમેન્ટ: કમ્પોસ્ટિંગ, રિસાયક્લિંગ, ઇન્સિનરેશન

• નિકાલ: સેનિટરી લેન્ડફિલ, વેસ્ટ-ટુ-એનર્જી

ટેકનોલોજીઓ:

• કમ્પોસ્ટિંગ: કાર્બનિક કચરાનું વિઘટન

• ઇન્સિનરેશન: ઊર્જા પુનઃપ્રાપ્તિ સાથે ઉચ્ચ તાપમાન બર્નિંગ

• એનેરોબિક પાચન: કાર્બનિક કચરામાંથી બાયોગેસ ઉત્પાદન

• મટેરિયલ રિકવરી: સામગ્રીનું વિભાજન અને રિસાયક્લિંગ

પડકારો:

• વધતી માત્રા: વસ્તી અને વપરાશ વૃદ્ધિ

• મિશ્ર કચરો: સ્ત્રોતે વિભાજનનો અભાવ

• ઇન્ફ્રાસ્ટ્રક્ચર: અપૂરતી એકત્રીકરણ અને ટ્રીટમેન્ટ સુવિધાઓ

• ફાઇનાન્સિંગ: ઉચ્ચ મૂડી અને ઓપરેશનલ ખર્ચ

મેમરી ટ્રીક: "CTTD" - Collection, Transportation, Treatment, Disposal

પ્રશ્ન 5(ક અથવા) [07 ગુણ]

"5R" ની વિભાવના સમજાવો.

જવાબ:

5R વિભાવના એ વ્યાપક કચરા વ્યવસ્થાપન હાયરાર્કી છે જે પાંચ પરસ્પર જોડાયેલ વ્યૂહરચનાઓ દ્વારા ટકાઉ વપરાશ અને કચરા ઘટાડાને પ્રોત્સાહન આપે છે.

કોષ્ટક: 5R કચરા વ્યવસ્થાપન હાયરાર્કી

R	વ્યૂહરચના	વ્યાખ્યા	ઉદાહરણો
1. નકારવું	બિનજરૂરી વસ્તુઓ નકારવી	કચરો બનાવતા ઉત્પાદનોથી બચવું	પ્લાસ્ટિક બેગ, ડિસ્પોઝેબલ વસ્તુઓને ના કહેવું
2. ઘટાડવું	વપરાશ ઘટાડવો	સંસાધનોનો ઓછો ઉપયોગ	માત્ર જરૂરી વસ્તુઓ ખરીદવી, ટકાઉ ઉત્પાદનો પસંદ કરવા
3.	વસ્તુઓનો બહુવિદ્ય વાર	ઉત્પાદનનું જીવનકાળ વધારવું	કન્ટેનરનો પુનઃઉપયોગ, જૂના કપડા દાન
પુનઃઉપયોગ	ઉપયોગ		કરવા
4.	સર્જનાત્મક વૈકલ્પિક	કચરાને ઉપયોગી વસ્તુઓમાં	બોટલને પ્લાન્ટર બનાવવા, ટાયરને ઝૂલા
પુનર્નિર્દેશન	ઉપયોગો	રૂપાંતરિત કરવું	બનાવવા
5.	કચરાને નવા ઉત્પાદનોમાં	સામગ્રી પુનઃપ્રાપ્તિ અને	કાગળ, પ્લાસ્ટિક, ધાતુ રિસાયક્લિંગ
રિસાયકલ	પ્રક્રિયા કરવી	પુનઃપ્રક્રિયા	

વિગતવાર સમજૂતી:

1. નકારવું:

• વિભાવના: કચરા સામે પ્રથમ સંરક્ષણ રેખા

• અમલીકરણ: ઉપભોક્તાની પસંદગી અને જાગૃતિ

• અસર: સ્ત્રોતે કચરાનું ઉત્પાદન અટકાવે

• ઉદાહરણો: સિંગલ-યુઝ પ્લાસ્ટિક નકારવા, બિનજરૂરી પેકેજિંગ

2. ยะเร่ฐ:

• વિભાવના: સંસાધન વપરાશ અને કચરા ઉત્પાદન ઘટાડવું

• વ્યૂહરચના: કાર્યક્ષમ ઉપયોગ, ટકાઉપણાં પર ધ્યાન, શેરિંગ ઇકોનોમી

• ફાયદાઓ: ઓછું પર્યાવરણીય ફૂટપ્રિન્ટ, ખર્ચ બચત

• **ઉપયોગો**: ઊર્જા કાર્યક્ષમતા, પાણી સંરક્ષણ, ન્યૂનતમ પેકેજિંગ

3. પુનઃઉપયોગ:

• વિભાવના: પુનઃપ્રક્રિયા વિના ઉત્પાદનનું જીવન વધારવું

• પદ્ધતિઓ: સીધો પુનઃઉપયોગ, સમારકામ અને જાળવણી, પુનર્વિતરણ

• ફાયદાઓ: ઊર્જા બચત, આર્થિક ફાયદાઓ, સર્જનાત્મકતા

• ઉદાહરણો: સંગ્રહ માટે કાચના જાર, ફર્નિચર પુનઃસ્થાપન

4. પુનર્નિર્દેશન:

• વિભાવના: વિવિધ કાર્યો માટે સર્જનાત્મક રૂપાંતરણ

• નવાચાર: ડિઝાઇન વિચારસરણી અને સર્જનાત્મકતા

• **સમુદાચિક પાસું**: મેકર સ્પેસ, DIY સંસ્કૃતિ

• પર્યાવરણીય ફાયદો: લેન્ડફિલમાંથી કચરો વાળવું

5. રિસાયકલ:

• વિભાવના: સામગ્રી પુનઃપ્રાપ્તિ અને પુનઃપ્રક્રિયા

• પ્રકારો: યાંત્રિક, રાસાયણિક, જૈવિક રિસાયક્લિંગ

• ઇન્ફ્રાસ્ટ્રક્ચર: એકત્રીકરણ, સોર્ટિંગ, પ્રક્રિયા સુવિધાઓ

• બજારો: રિસાયકલ કરેલી સામગ્રી માટે અંત-ઉપયોગ ઉપયોગો

અમલીકરણ ફ્રેમવર્ક:

કોષ્ટક: 5R અમલીકરણ સ્તરો

ક્તર	હિસ્સેદારો	ક્રિયાઓ	પરિણામો
વ્યક્તિગત	ઉપભોક્તાઓ, પરિવારો	સભાન પસંદગીઓ, જીવનશૈલી ફેરફારો	ઘટાડેલ વ્યક્તિગત ફૂટપ્રિન્ટ
સમુદાય	પડોશીઓ, શાળાઓ	સ્થાનિક કાર્યક્રમો, જાગૃતિ અભિયાન	સમુદાયિક જોડાણ
વ્યવસાય	કંપનીઓ, ઉદ્યોગો	સર્ક્યુલર ઇકોનોમી, ટકાઉ ડિઝાઇન	સંસાધન કાર્યક્ષમતા
સરકાર	નીતિ ઘડવૈયાઓ, નિયમનકારો	નિયમો, પ્રોત્સાહનો, ઇન્ફ્રાસ્ટ્રક્ચર	સિસ્ટમ-વ્યાપી ફેરફાર

5R અભિગમના કાયદાઓ:

• **પર્યાવરણીય**: ઘટાડેલ પ્રદૂષણ, સંસાધન સંરક્ષણ, આબોહવા સંરક્ષણ

• **આર્થિક**: ખર્ચ બચત, નોકરીઓ સર્જન, નવી વ્યવસાયિક તકો

• સામાજિક: સમુદાયિક જોડાણ, શિક્ષણ, વર્તન પરિવર્તન

• સંસાધન સુરક્ષા: કુમારી સામગ્રી પર ઘટાડેલ નિર્ભરતા

પડકારો:

• ઉપલોક્તા વર્તન: સ્થાપિત આદતો અને પસંદગીઓ બદલવી

• ઇન્ફ્રાસ્ટ્રક્ચર: પૂરતી એકત્રીકરણ અને પ્રક્રિયા સુવિધાઓ

• અર્થશાસ્ત્ર: રિસાયકલ કરેલા ઉત્પાદનોની બજાર વ્યવહાર્યતા

• નીતિ સમર્થન: સહાયક નિયમો અને આર્થિક સાધનો

સફળતાના પરિબળો:

• શિક્ષણ: જાગૃતિ અને ક્ષમતા નિર્માણ કાર્યક્રમો

• ઇન્ફ્રાસ્ટ્રકચર: પુરતી કચરા વ્યવસ્થાપન પ્રણાલી

• નીતિ: સહાયક નિયમો અને આર્થિક સાધનો

• ટેકનોલોજી: કચરા પ્રક્રિયા અને ઉત્પાદન ડિઝાઇનમાં નવાચાર

• સહયોગ: બહુ-હિસ્સેદાર ભાગીદારી

સર્ક્યુલર ઇકોનોમી કનેક્શન:

5R વિભાવના સર્ક્યુલર ઇકોનોમી સિદ્ધાંતોનો પાયો બનાવે છે, જ્યાં કચરો નવા ઉત્પાદન ચક્ર માટે ઇનપુટ બને છે, સંસાધન નિષ્કર્ષણ અને પર્યાવરણીય અસર ઘટાડે છે.

માપ અને મોનિટરિંગ:

- કચરા ઘટાડાના મેટ્રિક્સ: નિકાલમાંથી વાળેલી માત્રા
- સામગ્રી પુનઃપ્રાપ્તિ દરો: રિસાયકલ/પુનઃઉપયોગ કરેલા કચરાની ટકાવારી
- પર્યાવરણીય સૂચકાંકો: કાર્બન ફૂટપ્રિન્ટ, સંસાધન વપરાશ
- આર્થિક મેટ્રિક્સ: ખર્ચ બચત, નોકરીઓ સર્જન, આવક ઉત્પાદન

વૈશ્વિક ઉદાહરણો:

- ઝીરો વેસ્ટ શહેરો: સાન ફ્રાન્સિસ્કો, લજુબલજાના, કામીકાત્સુ
- વિસ્તૃત ઉત્પાદક જવાબદારી: EU પેકેજિંગ નિયમો
- ડિપોઝિટ સિસ્ટમ: જર્મની, કેનાડામાં બોટલ રિટર્ન કાર્યક્રમો
- શેરિંગ ઇકોનોમી: ટૂલ લાઇબ્રેરી, કપડા સ્વેપ, રિપેર કેફે

ભાવિ દિશાઓ:

- ડિજિટલ પ્લેટફોર્મ: કચરા ઘટાડા અને શેરિંગ માટે એપ્સ
- એડવાન્સ્ડ રિસાયક્લિંગ: કેમિકલ રિસાયક્લિંગ, Al-પાવર્ડ સોર્ટિંગ
- **બાયોપ્લાસ્ટિક્સ**: પરંપરાગત પ્લાસ્ટિકના બાયોડિગ્રેડેબલ વિકલ્પો
- નીતિ ઉત્ક્રાંતિ: સમારકામનો અધિકાર, વિસ્તૃત ઉત્પાદક જવાબદારી

ਮੇਮਣੀ ਟ੍ਰੀਡ: "R5-POWER" - Refuse, Reduce, Reuse, Repurpose, Recycle - Protect Our World's Environmental Resources