#### **Data Communication**

Data Communication is the exchange of information from one entity to the other using a Transmission Medium.

#### **Data Communication**

- 1883: Samuel Morse & Alfred Veil invent Morse Code Telegraph System
- **□** 1876: Alexander Graham Bell invented Telephone
- **□** 1930: Development of ASCII Transmission Code
- **□** 1950: IBM releases its first computer IBM 710
- **□** 1960: IBM releases the First Commercial Computer IBM 360

Data Communication Definition (Modified)

Data Communication is the exchange of data (in the form of 0's and 1's) between two devices (computers) via some form of the transmission medium.

#### **DATA COMMUNICATIONS**

The term telecommunication means communication at a distance. The word data refers to information presented in whatever form is agreed upon by the parties creating and using the data. Data communications are the exchange of data between two devices via some form of transmission medium such as a wire cable.

## **Elements of Communication**



### **Elements of Communication**



What are the elements?

## Elements of Communication over Networks

### Devices (Sender/Receiver)

These are used to communicate with one another

#### **Medium**

This is how the devices are connected together

#### **Messages**

Information that travels over the medium

#### •Rules/Protocols

Governs how messages flow across network

#### Five elements/components of data communication



#### Data flow (simplex, half-duplex, and full-duplex)



#### **NETWORKS**

A network is a set of devices (often referred to as nodes) connected by communication links. A node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network.

Topics discussed in this section:

Distributed Processing

Physical Structures

Categories of Networks

Interconnection of Networks: Internetwork

# Networks supporting the way we learn.



## Networks supporting the way we learn.

A text message is sent from an instructor telling students that the next class is in the lab.





A student enrolls in classes from home.

An administrator publishes the course catalog to a web site.



In addition to supporting courseware, data networks support administration, enrollment, and teacher-student communication.

# Networks supporting the way we work.



# Networks supporting the way we play.







### Online Interest Groups





The onboard data network provides a range of services to airline personal seatback video systems.



Instant Messaging

## Networks- Purpose???



#### Communication.

#### Figure 1.3 Types of connections: point-to-point and multipoint



a. Point-to-point



b. Multipoint

#### Figure 1.4 Categories of topology



#### Figure 1.5 A fully connected mesh topology (five devices)



#### Figure 1.6 A star topology connecting four stations



#### Figure 1.7 A bus topology connecting three stations



#### Figure 1.8 A ring topology connecting six stations



Figure 1.9 A hybrid topology: a star backbone with three bus networks



## Elements of Communication over Networks



## Network Elements/Components

- Network Devices
  - Hardware (Devices and Media)
  - Software (Services and Processes)



#### Devices



- Two Types:
  - End Devices
  - Intermediary Devices

#### End Devices and their Role

 End devices form interface with human network & communications network



## Intermediary devices

- Provides connectivity between end devices.
- Manages data as it flows through the network.
- Examples?



## Intermediary devices











Router



**Wireless Router** 



### Software

#### Services :

- provides information in response to a request.
- For example e-mail hosting services and web hosting services.

#### Processes :

- Provide the functionality that directs and moves the messages through the network.
- Processes are less obvious to us but are critical to the operation of networks.

### **Processes and Services**

#### Networks use devices, media and services.



## Media



## **Network Media**







## Messages- Data Representation

- Information today comes in different forms such as
  - text, numbers, images, audio, and video.

| Type of Data           | Standards                                                                       |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Alphanumeric           | ASCII, Unicode  JPEG, GIF, PCX, TIFF, BMP, etc  MPEG-2, Quick Time, MPEG-4, etc |  |  |  |  |
| Image                  |                                                                                 |  |  |  |  |
| Motion picture         |                                                                                 |  |  |  |  |
| Sound                  | Sound Blaster, WAV, AU, MP3, etc                                                |  |  |  |  |
| Outline graphics/fonts | PostScript, TrueType, PDF                                                       |  |  |  |  |

## Data Representation-Text

Text: Different sets of bit patterns are designed to represent text symbols. Each set is called a code.

#### ASCII

- American Standard Code for Information
   Interchange: 7-bit code/char, 1 bit for parity.
- Unicode 16 bit codes to represent a symbol.

## Data Representation-Text



## Text- Data Representation

#### **ASCII Reference Table**

|      | 000  | 001 | 010 | 011 | 100          | 101 | 110 | 111 |
|------|------|-----|-----|-----|--------------|-----|-----|-----|
| 0000 | NULL | DLE |     | 0   | @            | P   |     | р   |
| 0001 | SOH  | DC1 | !   | 1   | Ā            | Q   | а   | q   |
| 0010 | STX  | DC2 | "   | 2   | В            | R   | b   | r   |
| 0011 | ETX  | DC3 | #   | 3   | C            | S   | C   | S   |
| 0100 | EDT  | DC4 | \$  | 4   | D            | T   | d   | t   |
| 0101 | ENQ  | NAK | %   | 5   | E            | U   | e   | u   |
| 0110 | ACK  | SYN | &   | 6   | F            | V   | f   | v   |
| 0111 | BEL  | ETB | 1   | 7   | G            | W   | g   | w   |
| 1000 | BS   | CAN | (   | 8   | H            | X   | h   | X   |
| 1001 | HT   | EM  | )   | 9   | I            | Y   | i   | у   |
| 1010 | LF   | SUB | *   |     | J            | Z   | j   | Z   |
| 1011 | VT   | ESC | +   | ;   | K            | 1   | k   | {   |
| 1100 | FF   | FS  | ,   | <   | L            | 1   | 1   | ĺ   |
| 1101 | CR   | GS  | 2   | =   | $\mathbf{M}$ | 1   | m   | }   |
| 1110 | so   | RS  | 8.2 | >   | N            | ^   | n   | ~   |
| 1111 | SI   | US  | 1   | ?   | 0            |     | 0   | DEI |

### Data Representation

#### Images –

- Also represented by bit patterns.
- Mechanism different. Matrix of Pixels used. Each pixel is assigned to a bit pattern.
- Color images uses RGB or YCM methods.

|        | Colour    | RGB Value |     |     |
|--------|-----------|-----------|-----|-----|
|        | Blue      | Green     | Red |     |
|        | black     | 0         | 0   | 0   |
| 3-valu | white RGI | 255       | 255 | 255 |
|        | yellow    | 0         | 255 | 255 |
|        | Pink      | 255       | 130 | 255 |
|        | brown     | 0         | 81  | 146 |
|        | purple    | 82        | 95  | 157 |
|        | maroon    | 0         | 0   | 140 |

### Data Representation

**-Audio**- Continuous, not discrete. Converted to digital or analog signal.



#### Rules - Protocols

- A set of predetermined rules that govern communication.
- Defines:
  - What is communicated??
  - How it is communicated??
  - When it is communicated??



# Network Types

- PAN
- LAN
- MAN
- WAN

### Personal Area Networks (PAN)

 A network that connects computers, peripherals and other devices within a personal operating space.

Eg. Bluetooth



# Local Area Networks (LAN)

- Connects computers, peripherals and other devices within a building (e.g. office, home) or in a limited area.
- Typical coverage 50 to 300 meters.
- Ex. Ethernet, Wireless LANs



# Metropolitan Area Network (MAN)

- Is a city wide network.
- The coverage limitation is not strict, but real implementation may have range of up to 50 km in urban, suburban, or rural area.
- Ex. WiMax



### Wide Area Networks (WANs)

- A network that spans larger geographical area.
- LANs separated by geographic distance are connected by a Wide Area Network (WAN)
- PSTN, Cellular Networks (GSM etc)





### Internet

 The internet is defined as a global mesh of interconnected networks.



### Internet



#### Effectiveness of a system depends upon:

- Delivery
- Accuracy
- Timeliness
- Jitter



