

万向电动汽车有限公司 CAN 网络通讯协议 BMS 内网协议分册

Version 2.02

	文件编号:	
文件状态:	作 者:	
[]草稿	校 对:	
[√] 正式发布	审核:	
[]正在升级	批 准:	
	完成日期:	

版本历史

序号	版本/状态	文件编码	作者	出版日期	备注
1	V2.01			2010-6-9	升级 ID0x100 内容
2	V2.02			2010-9-15	针对国家电网快换业务, 修改 0x114,添加 0x101,0x200
3					

编制说明

- 1、为了规范万向电动汽车有限公司电池管理系统内网通信协议,使内网协议内容 更加合理,满足电池管理系统内网通信的需要,特制定此协议
- 2、该协议为电池管理系统内网进行通信的规范
- 3、本文一经发布,在新版本发布之前持续有有效
- 4、本文经由设计开发部发布,如有问题请及时反馈

目 录

编制说		
1.	通信协议制定遵循	盾的标准1
2.	CAN 总线连接的	设备简介1
3.	网络中的 ECU 拓	扑结构1
4.	通讯协议制定的原	系则
5.	BMU 和 LECU 参	数组定义2
5.1	BMU 和 LECU 通信	盲 ID 分配2
	5.1.1 LECU 节点	瓦通讯信息 ID 定义3
	5.1.2 LECU 请:	求配置地址帧 CAN0X101 3
	5.1.3 BMU 节点	点发送的请求控制帧 ID4
	5.1.4 BMU 配:	置 LECU 地址信息帧 CAN0X200 4
5.2	BMU 和 LECU 的最	是终实现的 CAN 协议 4
	5.2.1 模块电池	信息 1 CAN0X1104
	5.2.2 模块电池	信息 2 CAN0X1115
	5.2.3 模块电池	电压信息 CAN0X1126
	5.2.4 模块电池	温度信息 CAN0X1136
	5.2.5 LECU版 2	本号和编号信息 CAN0X1147
	5.2.6 模块温度	采样点信息 1 CAN0X115 8
	5.2.7 模块温度	采样点信息 2 CAN0X116 8
		电压信息 CAN0X1179
	5.2.9 模块单体	电压信息 CAN0X1189
		电压信息 CAN0X11910
		电压信息 CAN0X11A10
		电压信息 CAN0X11BCAN0X11E11
		电压信息 CAN0X11F
		刮请求信息帧 CAN0X100 12
		求配置地址帧 CAN0X101
		置 LECU 地址信息帧 CAN0X20016
6.	BMU、LECU和1	BMSBP 参数组定义1
6.1	BMU、LECU 和 BM	MSBP 通信 ID 分配 1
	6.1.1 BMSBP 节	点信息 ID 分配 1
	6.1.1 BMU和L	ECU 节点返回配置参数 ID 分配1
6.2	BMU、LECU 和 BM	MSBP 最终实现的 CAN 协议1
	6.2.1 LECU 地	址和串数配置命令 CAN 020H2
	6.2.2 LECU 其'	它配置命令 CAN 021H2

	6.2.3	LECU 配置参数返回命令 CAN 023H	3
	6.2.4	LECU 返回参数信息 CAN 024H	3
	6.2.5	BMU 编号、LECU 模块数配置命令 CAN 030H	3
	6.2.6	BMU 其它信息配置命令 1 CAN 031H	4
	6.2.7	BMU 其它信息配置命令 2 CAN 031H	5
	6.2.8	BMU 配置参数返回命令 CAN 033H	6
	6.2.9	BMU 返回参数信息 1 CAN 034H	6
	6.2.10	BMU 返回参数信息 2 CAN 034H	7
附录 A:	评审报	生	9

1. 通信协议制定遵循的标准

万向电动汽车内网通信协议遵循 BOSCHCAN2.0B 规范中有关标准帧的定义

2. CAN 总线连接的设备简介

缩写、术语	缩写原文	解释		
LECU	Local Electronic Controller Unit	内网电控单元		
BMU	Battery Management System	电池管理系统		
BMSBP	BMS Bootload Programmer	BMS 在线编程系统		

内网电控单元 LECU:

LECU 负责模块内电池各种信息的采集,如单体电压、模块内部温度、LECU 自身温度、模块内的故障信息等,并将这些信息上报给 BMU。同时 LECU 还接受 BMU 的控制对电池的均衡进行控制

电池管理系统BMU:

BMU 接收各 LECU 发送的信息并和外网进行通信,对电池的各状态进行判断和控制。同时通过内部 CAN 网络对 LECU 进行控制

BMS 在线编程系统

BMSBT 由 PC 机通过周立功 CAN 接口卡组成。通过 CAN 总线对 BMU、LECU 进行程序的烧写和参数的配置

3. 网络中的 ECU 拓扑结构

万向电动汽车电池管理系统内网主要由 BMU、BMSBP 和各模块的 LECU 组成,BMU 通过内网和 LECU 进行通信,同时通过外网和外部 CAN 总线上的设备进行通信。BMSBP 通过内网对 BMU 和 LECU 进行程序升级和参数配置。程序升级协议详见《万向电动汽车 BMS Bootload CAN 总线通信协议》,该协议主要定义 BMU、LECU 和

BMSBP之间的协议。

4. 通讯协议制定的原则

- 1、 电池协议遵循 CAN2.0B 标准帧格式制定
- 2、 总线上的传输速率为 250 kbit/s
- 3、 协议当中有多字节表示的数据,约定高字节在前;低字节在后
- 4、 采用屏蔽双绞线通信, 节点不能在网络上等间距接入, 接入线也不能等长, 且接入线的最大长度应小于 1m;
- 5、 通信电缆应尽量离开动力线(0.5m以上)、离开 24V 控制线(0.1m以上);
- 6、 采用 CAN 总线进行通讯,各节点之间的接口采用标准 CAN2.0B 接口
- 7、 协议制定应考虑到其指导性、兼容性、可扩展性
- 8、 本规定中故障信息位定义: 正常状态为 0; 故障状态为 1。对于使能信息 0 表示使能禁止, 1 表示功能使能
- 9、 每帧数据均为 8 字节, 无效或预留的字节以 FFH 填充, 无效或预留的位均置为 1

5. BMU 和 LECU 参数组定义

5.1 BMU 和 LECU 通信 ID 分配

Local CAN 目前定义了 31 个 LECU 模块和 BMU 共 32 个节点, 每个 LECU 包

括 16 帧信息。

5.1.1 LECU 节点通讯信息 ID 定义

模块编号	通讯信息 ID 定义
LECU1	0X110、0X111、0X112、0X113、0X114、0X115、0X116、0X117、0X118、 0X119、0X11A、0X11B、0X11C、0X11D、0X11E、0X11F
LECU2	0X120、0X121、0X122、0X123、0X124、0X125、0X126、0X127、0X128、 0X129、0X12A、0X12B、0X12C、0X12D、0X12E、0X12F
LECU3	0X130、0X131、0X132、0X133、0X134、0X135、0X136、0X137、0X138、 0X139、0X13A、0X13B、0X13C、0X13D、0X13E、0X13F
LECU14	0X1E0、0X1E1、0X1E2、0X1E3、0X1E4、0X1E5、0X1E6、0X1E7、0X1E8、0X1E9、0X1EA、0X1EB、0X1EC、0X1ED、0X1EE、0X1EF
LECU15	0X1F0、0X1F1、0X1F2、0X1F3、0X1F4、0X1F5、0X1F6、0X1F7、0X1F8、 0X1F9、0X1FA、0X1FB、0X1FC、0X1FD、0X1FE、0X1FF
LECU16	0X200、0X201、0X202、0X203、0X204、0X205、0X206、0X207、0X208、 0X209、0X20A、0X20B、0X20C、0X20D、0X20E、0X20F
LECU17	0X210、0X211、0X212、0X213、0X214、0X215、0X216、0X217、0X218、 0X219、0X21A、0X21B、0X21C、0X21D、0X21E、0X21F
LECU30	0X2E0、0X2E1、0X2E2、0X2E3、0X2E4、0X2E5、0X2E6、0X2E7、0X2E8、0X2E9、0X2EA、0X2EB、0X2EC、0X2ED、0X2EE、0X2EF
LECU31	0X2F0、0X2F1、0X2F2、0X2F3、0X2F4、0X2F5、0X2F6、0X2F7、0X2F8、 0X2F9、0X2FA、0X2FB、0X2FC、0X2FD、0X2FE、0X2FF

5.1.2 LECU 请求配置地址帧 CAN0X101

LECU	0X101

5.1.3 BMU 节点发送的请求控制帧 ID

вми	0X100

5.1.4 BMU 配置 LECU 地址信息帧 CAN0X200

вми	0X200	

5.2 BMU 和 LECU 的最终实现的 CAN 协议

本小节仅定义 BMU 和 LECU 之间的通讯协议, 其规则说明如下:

- 1)、每个 LECU 模块的发送信息除 ID 号有差异,发送信息内容和格式相同,下面以 LECU 模块 1 为例,定义各帧具体发送的信息
- 2)、LECU1 共有 16 帧信息发送给 BMU,其中 0X110、0X111、0X112、0X113 为 200ms 周期性发送,0X114、0X115、X116、0X117、0X118、0X119、0X11A、0X11B、0X11C、0X11D、0X11E、0X11F 为收到 BMU 请求发送命令后 100 ms 周期性发送。
- 3)、BMU 通过 0X100 帧发送请求命令; 为 100 ms 周期性发送。
- 4)、本规定中一个电池模块定义了最多 48 单体电池的信息,传输中根据实际单体电池数量只需传送和接收相应的单体电池信息。例如,某模块中有 8 个单体电池,则单体电压信息只传输标识符为 0X117、0X118 的两帧信息
- 5)、只有被请求发送数据的 LECU 模块才按规定的发送周期发送所有的 LECU 信息, 否则只发送除掉 LECU 版本号和编号、单体电压和所有温度采样点信息的数据,即: 0X110、0X111、0X112、0X113 四帧信息。

5.2.1 模块电池信息 1 CAN0X110

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
1	8	模块单体个数有效位	1	1	0		0 无效 1 有效
	71	模块内单体个数	7	1	0	个	

4

2	8	温度采样点个数有效位	1	1	0		0 无效 1 有效
_	71	模块内温度采样点个数	7	1	0	个	
3.4	16	模块总电压有效位	1	1	0		0 无效 1 有效
3.4	151	模块总电压	15	0.01	0	V	
56	16	模块 SOC 有效位	1	1	0		0 无效 1 有效
20	151	模块 SOC	15	0.1	0	%	
78	16	模块 SOH 有效位	1	1	0		0 无效 1 有效
,	151	模块 SOH	15	0.1	0	%	

5.2.2 模块电池信息 2 CAN0X111

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
1.2	16	LECU 内部温度有效位	1	1	0		0 无效 1 有效
12	151	LECU 内部温度	15	0.1	-40	\mathbb{C}	
	8	模块均衡状态	1	1	0		0 无均衡 1 均衡
3	7	模块内风扇开关状态	1	1	0		0 关1 开
	61	保留					
	8	内部通信故障	1	1	0		0 正常 1 有效
	7	均衡故障	1	1	0		0 正常 1 有效
4	6	线束故障	1	1	0		0 正常 1 有效
4	5	温度传感器故障	1	1	0		0 正常 1 有效
	4	内部风扇故障	1	1	0		0 正常 1 有效
	31	保留					

58		保留					
----	--	----	--	--	--	--	--

5.2.3 模块电池电压信息 CAN0X112

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	电池电压最大值有效位	1	1	0		0 无效 1 有效
12	151	电池单体电压最大值	15	0.001	0	V	
3	8	最大单体电压号有效位	1	1	0		0 无效 1 有效
	71	最大单体电压编号	7	1	0		
45	16	单体电压最小值有效位	1	1	0		0 无效 1 有效
	151	电池单体电压最小值	15	0.001	0	V	
6	8	最小单体电压号有效位	1	1	0		0 无效 1 有效
	71	最小单体电压编号	7	1	0		
78	16	电池电压平均值有效位	1	1	0		0 无效 1 有效
,	151	电池单体电压平均值	15	0.001	0	V	

5.2.4 模块电池温度信息 CAN0X113

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	电池温度最大值有效位	1	1	0		0 无效 1 有效
12	151	电池温度最大值	15	0.1	-40	${\mathbb C}$	
3	8	最大温度采样点编号有 效位	1	1	0		0 无效 1 有效
	71	最大温度采样点编号	7	1	0		
45	16	电池温度最小值有效位	1	1	0		0 无效 1 有效

	151	电池温度最小值	15	0.1	-40	${\mathbb C}$	
6	8	最小温度采样点编号有 效位	1	1	0		0 无效 1 有效
	71	最小温度采样点编号	7	1	0		
78	16	电池温度平均值有效位	1	1	0		0 无效 1 有效
,0	151	电池温度平均值	15	0.1	-40	$^{\circ}$	

5.2.5 LECU 版本号和编号信息 CAN0X114

Byte	Bit	数	据名	分辨率	偏移量
12	16	软件版本	信息有效位	1	1
12	151	LECU 软件	+版本号信息	15	0.01
34	16	硬件版本	信息有效位	1	1
34	151	LECU 硬作	井版本号信息	15	0.01
	85	电池模块唯	生产厂家		
•	41	一编号信息 产品类型			
68			LECU 唯一编号		

LECU 软件版本信息:代表 LECU 程序的版本信息,数据范围: $0\sim$ FFFF。版本表示方式如数据 0×0352 表示的版本信息为 $0\times0352\times0.01=8.5$ 。即版本为 V8.5

LECU 硬件版本信息:代表 LECU 硬件版本的信息,数据范围: $0\sim$ FFFF。版本表示方式如数据 0×0352 表示的版本信息为 $0\times0352\times0.01=8.5$ 。即版本为 V8.5

生产厂家:暂时定义 0x01 万向

产品类型: 暂时定义 0x01 24 串 60Ab

LECU 唯一编号: 给定每个模块唯一的电池编号,也即指电池模块控制模块 LECU 的

唯一编号,数据范围: 0~FFFFFF,有效值: 0~16777215

5.2.6 模块温度采样点信息 1 CAN0X115

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块温度采样点1温度 有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点1温度	15	0.1	-40	${\mathbb C}$	
34	16	模块温度采样点2温度有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点 2 温度	15	0.1	-40	${\mathbb C}$	
56	16	模块温度采样点3温度有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点3温度	15	0.1	-40	${\mathbb C}$	
78	16	模块温度采样点 4 温度有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点 4 温度	15	0.1	-40	${\mathbb C}$	

5.2.7 模块温度采样点信息 2 CAN0X116

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块温度采样点 5 温度 有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点5温度	15	0.1	-40	\mathbb{C}	
34	16	模块温度采样点 6 温度 有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点 6 温度	15	0.1	-40	\mathbb{C}	

56	16	模块温度采样点7温度 有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点7温度	15	0.1	-40	${\mathbb C}$	
78	16	模块温度采样点 8 温度 有效位	1	1	0		0 无效 1 有效
	151	模块温度采样点8温度	15	0.1	-40	$^{\circ}$	

5.2.8 模块单体电压信息 CAN0X117

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块单体 1 电压有效位	1	1	0		0 无效 1 有效
12	151	模块单体1电压	15	0.001	0	V	
34	16	模块单体2电压有效位	1	1	0		0 无效 1 有效
	151	模块单体2电压	15	0.001	0	V	
56	16	模块单体电压3有效位	1	1	0		0 无效 1 有效
	151	模块单体3电压	15	0.001	0	V	
78	16	模块单体 4 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 4 电压	15	0.001	0	V	

5.2.9 模块单体电压信息 CAN0X118

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块单体 5 电压有效位	1	1	0		0 无效 1 有效
12	151	模块单体 5 电压	15	0.001	0	V	
34	16	模块单体 6 电压有效位	1	1	0		0 无效 1 有效

	151	模块单体 6 电压	15	0.001	0	V	
56	16	模块单体7电压有效位	1	1	0		0 无效 1 有效
30	151	模块单体7电压	15	0.001	0	V	
78	16	模块单体8电压有效位	1	1	0		0 无效 1 有效
,	151	模块单体 8 电压	15	0.001	0	V	

5.2.10 模块单体电压信息 CAN0X119

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块单体9电压有效位	1	1	0		0 无效 1 有效
12	151	模块单体9电压	15	0.001	0	V	
34	16	单体 10 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 10 电压	15	0.001	0	V	
56	16	单体 11 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 11 电压	15	0.001	0	V	
78	16	单体 12 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 12 电压	15	0.001	0	V	

5.2.11 模块单体电压信息 CAN0X11A

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	模块单体 13 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 13 电压	15	0.001	0	V	
34	16	模块单体 14 电压有效	1	1	0		0 无效 1 有效

		位					
	151	模块单体 14 电压	15	0.001	0	V	
56	16	模块单体 15 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 15 电压	15	0.001	0	V	
78	16	模块单体 16 电压有效位	1	1	0		0 无效 1 有效
	151	模块单 16 体电压	15	0.001	0	V	

5.2.12 模块单体电压信息 CAN0X11B......CAN0X11E

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
12	16	单体 17 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 17 电压	15	0.001	0	V	
34	16	单体 18 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 18 电压	15	0.001	0	V	
56	16	单体 19 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 19 电压	15	0.001	0	V	
78	16	单体 20 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 20 电压	15	0.001	0	V	

.

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table

12	16	单体 29 电压有效位	1	1	0		0 无效 1 有效
12	151	模块单体 29 电压	15	0.001	0	V	
34	16	单体 30 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 30 电压	15	0.001	0	V	
56	16	单体 31 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 31 电压	15	0.001	0	V	
78	16	单体 32 电压有效位	1	1	0		0 无效 1 有效
70	151	模块单体 32 电压	15	0.001	0	V	

5.2.13 模块单体电压信息 CAN0X11F

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
1.2	16	单体 33 电压有效位	1	1	0		0 无效 1 有效
12	151	模块单体 33 电压	15	0.001	0	V	
34	16	单体 34 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 34 电压	15	0.001	0	V	
56	16	单体 35 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 35 电压	15	0.001	0	V	
78	16	单体 36 电压有效位	1	1	0		0 无效 1 有效
	151	模块单体 36 电压	15	0.001	0	V	

5.2.14 BMU 控制请求信息帧 CAN0X100

Byte	Bit	Data	Length	Factor	Offset	Unit	Value Table
------	-----	------	--------	--------	--------	------	-------------

	8	LECU 休眠控制	1	1	0	0 停止 1 执行
	7	LECU 唤醒控制	1	1	0	0 停止 1 执行
	6	LECU 同步信号	1	1	0	0 停止 1 执行
1	5	BMU 请求发送指令	1	1	0	0 停止 1 执行
1	4	模块内部均衡控制	1	1	0	0 停止 1 执行
	3	模块间均衡控制	1	1	0	0 停止 1 执行
	2.	风扇控制命令	1	1	0	0 停止 1 执行
	1	保留				
2		LECU 模块号	8 1 0		0	1~255
2	0	模块内第8节单体电池	1	1	0	0 停止均衡 1 开
3	8	均衡控制	1	1	0	始均衡
	7	模块内第7节单体电池	1	1	0	0 停止均衡 1 开
	7	均衡控制	1	1	0	始均衡
		模块内第6节单体电池	1	1		0 停止均衡 1 开
	6	均衡控制	1	1	0	始均衡
	5	模块内第5节单体电池	1	1	0	0 停止均衡 1 开
	3	均衡控制	1	1	0	始均衡
	4	模块内第4节单体电池	1	1	0	0 停止均衡 1 开
	4	均衡控制	1	1	0	始均衡
	3	模块内第3节单体电池	1	1	0	0 停止均衡 1 开
	3	均衡控制	1	1	0	始均衡
	2	模块内第2节单体电池	1	_1_	0	0 停止均衡 1 开

		均衡控制				始均衡
	1	模块内第1节单体电池 均衡控制	1	1	0	0 停止均衡 1 开始均衡
	8	模块内第 16 节单体电池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	7	模块内第 15 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	6	模块内第 14 节单体电池均衡控制	1	1	0	0 停止均衡 1 开始均衡
4	5	模块内第 13 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开始均衡
•	4	模块内第 12 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	3	模块内第 11 节单体电池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	2	模块内第 10 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	1	模块内第9节单体电池 均衡控制	1	1	0	0 停止均衡 1 开始均衡
5	8	模块内第 24 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	7	模块内第 23 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开 始均衡

	6	模块内第 22 节单体电池均衡控制	1	1	0	0 停止均衡 1 开始均衡
	5	模块内第 21 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开 始均衡
	4	模块内第 20 节单体电池均衡控制	1	1	0	0 停止均衡 1 开 始均衡
	3	模块内第 19 节单体电池均衡控制	1	1	0	0 停止均衡 1 开 始均衡
	2	模块内第 18 节单体电池均衡控制	1	1	0	0 停止均衡 1 开 始均衡
	1	模块内第 17 节单体电 池均衡控制	1	1	0	0 停止均衡 1 开 始均衡
6	保留					
7	保留					
8	保留					

5.2.15 LECU 请求配置地址帧 CAN0X101

当 LECU 重新上电时发送请求配置地址帧

Byte	Bit	数	据名	分辨率	偏移量
	85	电池模块唯	生产厂家		
•	41	一编号信息	产品类型		
24			LECU 唯一编号		
5…8		保留			

生产厂家:暂时定义 0x01 万向

产品类型: 暂时定义 0x01 24 串 60Ah

LECU 唯一编号: 给定每个模块唯一的电池编号,也即指电池模块控制模块 LECU 的唯一编号,数据范围: 0~FFFFFF,有效值: 0~16777215

5.2.16 BMU 配置 LECU 地址信息帧 CAN0X200

Byte	Bit	数	据名	分辨率	偏移量
	85	电池模块唯	生产厂家		
•	41	一编号信息	产品类型		
24			LECU 唯一编号		
5		LECU 地址			
6… 8		保留			6···8

生产厂家:暂时定义 0x01 万向

产品类型: 暂时定义 0x01 24 串 60Ah

LECU 唯一编号: 给定每个模块唯一的电池编号,也即指电池模块控制模块 LECU 的唯一编号,数据范围: 0~FFFFFF,有效值: 0~16777215

6. BMU、LECU和BMSBP参数组定义

6.1 BMU、LECU 和 BMSBP 通信 ID 分配

BMSBP 发送的信息包括参数配置信息以及要求 BMU、LECU 返回配置参数的命令; BMU、LECU 根据 BMSBP 的要求返回相应的已配置参数

6.1.1 BMSBP 节点信息 ID 分配

ID 分类	通讯信息 ID 定义
BMSBP 对 LECU 的配置 ID	020Н、021Н
BMSBP 要求 LECU 返回参数命令	023Н
BMSBP 对 BMU 的配置 ID	030H、031H
BMSBP 要求 BMU 返回参数命令	033Н

6.1.1 BMU 和 LECU 节点返回配置参数 ID 分配

ID 分类	通讯信息 ID 定义
LECU 返回参数 ID	024Н
BMU 返回参数 ID	034Н

6.2 BMU、LECU 和 BMSBP 最终实现的 CAN 协议

本小节仅定义 BMU、LECU 和 BMSBP 之间的通讯协议,其规则说明如下:

- 1)、BMU 和 LECU 的参数配置均通过 CAN 通信接口发送固定的 CAN 命令来实现。
- 2)、根据每一帧里 LECU 的地址却似那个需要配置的 LECU
- 3)、只有被请求发送数据的 LECU 模块才按规定的发送周期发送已配置的参数信息,
- 4)、该小节定义的信息发送周期均为 200 ms

1

6.2.1 LECU 地址和串数配置命令 CAN 020H

ID	数据				
	位置	数据定义			
	1Byte	LECU 地址			
	2Byte	低端采集 IC 串数			
	3Byte	高端采集 IC 串数			
020Н	4Byte	0xAA(结束标志)			
	5Byte	保留			
	6Byte	保留			
	7Byte	保留			
	8Byte	保留			

6.2.2 LECU 其它配置命令 CAN 021H

	021H 数据定义						
位置	单个单体电 压校正	所有单体电 压校正	所有单体电 压校正值恢 复	在线更改 LECU配置 的串数值	在线更改 LECU 配置 的地址	在线配置 LECU 中的 电池模块唯 一编号	
1Byte	0x04(参数 类型)	0x05(参数 类型)	0x06(参数 类型)	0x07(参数 类型)	0x08(参数 类型)	0x09(参数 类型)	
2Byte	电压校正电 池单体号	保留	0x00	LECU 地址	LECU 目前 地址	LECU 地址	
3Byte	电池单体电 压校正值	单体电压校 正值	0x00	新配置低端 采集 IC 串数	LECU 目标 地址	模块唯一编 号字节1	
4Byte			0xAA(结束 标志)	新配置高端 采集 IC 串数	OXAA	模块唯一编 号字节 2	
5Byte	0xAA(结束 标志)	0xAA(结束 标志)	保留	OxAA	保留	电池模块唯 一编号字节 3	
6Byte	保留	保留	保留	保留	保留	电池模块唯 一编号字节 4	
7Byte	保留	保留	保留	保留	保留	0xAA	
8Byte	保留	保留	保留	保留	保留	保留	

说明:

- 1)、单体电压校正值分辨率: 1mV, 偏移量: 40, 校正范围: -40mV~+40mV
- 2)、电池模块唯一编号信息:字节1~4按从高字节到低字节得顺序排列。对于地址还

没分配的 LECU 将第二字节 LECU 地址设置为 00H

6.2.3 LECU 配置参数返回命令 CAN 023H

ID	数据				
	位置	数据定义			
	1Byte	LECU 地址			
	2Byte	参数类别 0x01			
	3Byte	0xAA(结束标志)			
023Н	4Byte	保留			
	5Byte	保留			
	6Byte	保留			
	7Byte	保留			
	8Byte	保留			

参数类别分别有: 0x00 返回所有参数; 0x01:对应返回采集 IC 串数

6.2.4 LECU 返回参数信息 CAN 024H

ID	数据				
	位置	数据定义			
	1Byte	LECU 地址			
	2Byte	0x01			
	3Byte	低端采集 IC 串数			
024H	4Byte	高端采集 IC 串数			
	5Byte	0xAA(结束标志)			
	6Byte	保留			
	7Byte	保留			
	8Byte	保留			

6.2.5 BMU 编号、LECU 模块数配置命令 CAN 030H

ID	数据				
	位置	数据定义			
	1Byte	BMU 编号(0x01)			
	2Byte	LECU 模块数			
	3Byte	0xAA(结束标志)			
030Н	4Byte	保留			
	5Byte	保留			
	6Byte	保留			
	7Byte	保留			
	8Byte	保留			

6.2.6 BMU 其它信息配置命令 1 CAN 031H

	031H 数据定义						
位置	配置 SOC 初 始值	配置 soc 值 对应的开路 单体电压值	配置均衡相 关参数	配置风扇控 制相关参数	配置电池组 标定容量	继电器充放 电保护单体 电压点	
1Byte	0x01	0x02	0x03	0x04	0x05	0x06	
2Byte	Soc 设定值 (分辨率 0.4%)	0%soc 值对 应的单体电 压值(分辨 率 0.02V)	均衡使能控制(1:均衡使能; 0:均衡禁止)	风扇控制开 始温度(分 辨率 1℃, 偏移量-40 ℃)	标定容量低 字节	过充保护单体 电压点(分辨率0.02V)	
3Byte	0xAA(结束 标志)	100%soc 值 对应的单体 电压值(分 辨 率 0.02V)	均衡开启单 体电压(分 辨 率 0.02V)	风扇开启时 温度高于平 均 温 度 值 (分辨率 1 ℃,偏移量 0℃)	标定容量高 字节	过充保护释 放单体电压 点(分辨率 0.02V)	
4Byte	保留	0xAA(结束 标志)	均衡差异电 压(分辨率 0.001V)	风扇开启时 温度差异值 (分辨率 1 ℃,偏移量 0℃)	0xAA(结束 标志)	过放保护单体 电压点(分辨率0.02V)	
5Byte	保留	保留	均衡停止温 度 (分辨率 1℃,偏移量 -40℃)	0xAA(结束 标志)	保留	过放保护释 放单体电压 点(分辨率 0.02V)	
6Byte	保留	保留	0xAA(结束 标志)	保留	保留	0xAA(结束 标志)	
7Byte	保留	保留	保留	保留	保留	保留	
8Byte	保留	保留	保留	保留	保留	保留	

说明:

- 1)、SOC 设定值:分辨率: 0.4%, 若设定 100% soc 值,则数据应为 0xFA
- 2) 单体电压:分辨率: 0.02V,偏移量0V,例: 3.2V表示为3.2V/0.02V-0V=160V.转化为十六进制为0xA0
- 3)、均衡停止温度: 若设置均衡停止温度为 55℃,则填入数据为 55+40=95 (0x5f)

6.2.7 BMU 其它信息配置命令 2 CAN 031H

		0311	H数据定义	
位置	充放电保护电流 点、温度点	配置电池种类	配置总电压、总 电流相关参数	总电压数据选择方式
1Byte	0x07	0x08	0x09	0x0B
	充电过流低字节	电池种类, 0x00 磷酸铁锂, 0x01	MCU2 累加总电压 倍数, 0x00 倍数	0x00选用单体电压累加 方式 0x01 选用绝缘电
2Byte		锰酸锂	为 1, 0x01 倍数 为 0.5	阻检测模块采集总电压 0x02 选用电压传感器 采集总电压
3Byte	充电过流高字节	0xAA(结束标志)	电流传感器类型	0xAA (结束标志)
4Byte	放电过流低字节	保留	传感器总电压校 正值(MCU1)	保留
5Byte	放电过流高字节	保留	累加总电压校正 值(MCU2)	保留
6Byte	充放电保护过温 点(分辨率1℃, 偏移量-40℃)	保留	总电流校正值	保留
7Byte	充电保护欠温点 (分辨率 1℃, 偏移量-40℃)	保留	0xAA(结束标志)	保留
8Byte	0xAA(结束标志)	保留	保留	保留

说明:

- !)、充放电电流:电流分辨率为 0.1A,偏移量为-3200A。放电电流为正,充电电流为负。如要设置-150A 电流,则电流数据为: 32000+(-150/0.1)=0x7724。
- 2)、从放电保护温度设置: 若设置温度为 55℃,则填入数据为 55+40=95 (0x5f)。
- 3)、电流传感器类型: 0x00 DHAB_S14; 0x01 DHAB_S24; 0x05 HAH1BV_200-S; 0x06 南车时代; 0x0B 菊花
- 4)、传感器总电压校正值:单位 0.1V,偏移量 12.7V,设置值即参与运算的校正值。如要在当前总电压值减 2.1V,则配置数据为:(12.7-2.1)/0.1=0x6A。在电池组标称电压值附近校正。
- 5)、累加总电压校正值:单位 0.1V,偏移量 12.7V,设置值即参与运算的校正值。如要在当前总电压值减 2.1V,则配置数据为:(12.7-2.1)/0.1=0x6A。在电池组标

称电压值附近校正。

6)、总电流校正值:单位 0.1A,偏移量 12.7A,设置值即参与运算的校正值。如要在当前总电流值减 2.1A,则配置数据为:(12.7-2.1)/0.1=0x6A。在零电流点校正。

6.2.8 BMU 配置参数返回命令 CAN 033H

ID	数据				
	位置	数据定义			
	1Byte	参数类别			
	2Byte	0xAA(结束标志)			
	3Byte	保留			
033Н	4Byte	保留			
	5Byte	保留			
	6Byte	保留			
	7Byte	保留			
	8Byte	保留			

参数类别分别有:

0x00 返回所有参数, 0x01 返回 LECU 个数, 0x02~0x07 返回指令 1C1H 对应设置值

6.2.9 BMU 返回参数信息 1 CAN 034H

			034Н	数据定义		
位置	返回软 件版本 号	soc 值对应的 开路单体电 压值	返回均衡相 关参数	返回风扇控制相 关参数	返回电 池组标 定容量	返回继电器充 放电保护单体 电压点
1Byte	0x01	0x01	0x01	0x01	0x01	0x01
2Byte	0x01(参 数类型)	0x02(参数类型)	0x03(参数类型)	0x04(参数类型)	0x05(参 数类型)	0x06(参数类型)
3Byte	LECU 个 数	0%soc 值对应 的单体电压 值 (分辨率 0.02V)	均衡使能控制(1:均衡使能;0:均衡禁止)	风扇控制开始温 度(分辨率1℃, 偏移量-40℃)	标 定 容 量 低 字 节	过充保护电压 点 (分辨率 0.02V)
4Byte	保留	100%soc 值对 应的单体电 压值(分辨率 0.02V)	均衡开启电 压(分辨率 0.02V)	风扇开启温度高 于平均温度值 (分辨率1℃,偏 移量0℃)	标 定 容 量 高 字 节	过充保护释放 电压点(分辨 率 0.02V)
5Byte	保留	保留	均衡差异电 压 (分辨率	风扇开启温度差 异值(分辨率 1	保留	过放保护电压 点 (分辨率

			0.001V)	℃,偏移量 0℃)		0.02V)
	保留	保留	均衡停止温	保留	保留	过放保护释放
GD+-			度(分辨率1			电压点(分辨
6Byte			℃,偏移量			率 0.02V)
			-40℃)			
7Byte	保留	保留	保留	保留	保留	保留
8Byte	保留	保留	保留	保留	保留	保留

说明:

- 1)、SOC 设定值:分辨率: 0.4%, 若设定 100% soc 值,则数据应为 0xFA
- 2) 单体电压:分辨率: 0.02V,偏移量0V,例: 3.2V表示为3.2V/0.02V-0V=160V.转化为十六进制为0xA0
- 3)、均衡停止温度: 若设置均衡停止温度为 55℃,则填入数据为 55+40=95 (0x5f)

6.2.10 BMU 返回参数信息 2 CAN 034H

	034H 数据定义				
位置	返回充放电保护 电流点、温度点	返回电池 种类	返回配置总电压、 总电流相关参数	返回电压选择方式参数	
1Byte	0x01	0x01	0x01	0x01	
2Byte	0x07(参数类型)	0x08(参数 类型)	0x09(参数类型)	0x0B(参数类型)	
3Byte	充电过流低字节	电池种类, 0x00 磷酸 铁锂,0x01 锰酸锂	MCU2 累加总电压 倍数,0x00倍数为 1,0x01倍数为0.5	0x00 选用单体电压累加 方式; 0x01 用绝缘电阻 检测模块采集总电压; 0x02 选用电压传感器采 集总电压	
4Byte	充电过流高字节	保留	电流传感器类型:	保留	
5Byte	放电过流低字节	保留	传感器总电压校 正值(MCU1)	保留	
6Byte	放电过流高字节	保留	累加总电压校正 值 (MCU2)	保留	
7Byte	充放电保护过温 点(分辨率1℃, 偏移量-40℃)	保留	总电流校正值	保留	
8Byte	充电保护欠温点 (分辨率1℃,偏 移量-40℃)	保留	保留	保留	

说明:

- !)、充放电电流:电流分辨率为 0.1A,偏移量为-3200A。放电电流为正,充电电流为 负。如要设置-150A 电流,则电流数据为: 32000+(-150/0.1)=0x7724。
- 2)、从放电保护温度设置: 若设置温度为 55℃,则填入数据为 55+40=95 (0x5f)。
- 3)、电流传感器类型: 0x00 DHAB_S14; 0x01 DHAB_S24; 0x05 HAH1BV_200-S; 0x06 南车时代; 0x0B 菊花
- 4)、传感器总电压校正值:单位 0.1V,偏移量 12.7V,设置值即参与运算的校正值。如要在当前总电压值减 2.1V,则配置数据为:(12.7-2.1)/0.1=0x6A。在电池组标称电压值附近校正。
- 5)、累加总电压校正值:单位 0.1V,偏移量 12.7V,设置值即参与运算的校正值。如要在当前总电压值减 2.1V,则配置数据为:(12.7-2.1)/0.1=0x6A。在电池组标称电压值附近校正。
- 6)、总电流校正值:单位 0.1A,偏移量 12.7A,设置值即参与运算的校正值。如要在当前总电流值减 2.1A,则配置数据为:(12.7-2.1)/0.1=0x6A。在零电流点校正。

附录 A: 评审报告

评审报告						
	[√] 工作成果合格,"无需	言修改"或者"言	需要轻微修改但不必再审核"。			
评审结论	[]工作成果基本合格,	需要作少量的作	修改,之后通过审核即可。			
评审意见						
评审小组成员						
评审责任人签字						
项目责任人签字		评审日期				