CSC373S: Algorithm Design, Analysis & Complexity

Lecture 20

Monday February 27, 2017

based on notes by Denis Pankratov

Linear Programming (LP)

<u>Definition</u>: $f: \mathbb{R}^n \to \mathbb{R}$ is linear if $\exists a_1, ..., a_n \in \mathbb{R}$ so that $f(x_1, ..., x_n) = a_2x_2 + \cdots + a_nx_n$

Linear constraints; assume f is linear:

1. $f(x_1,..,x_n) = b$ equality constraint

2.

inequality constraint
$$\begin{cases} f(x_1, ..., x_n) \leq b \\ f(x_1, ..., x_n) \geq b \end{cases}$$

LP Problem:

Maximize/minimize a given linear function subject to given linear constraints

Example

 x_1 units of product 1 per day

 x_2 units of product 2 per day

1 -per unit revenue for product 1

\$6 -per unit revenue for product 2

 $200~\mathrm{units}$ - demand for product 1

300 units - demand for product 2

 $400~\mathrm{units}$ - overall capacity of the factory

Maximize revenue $\max x_1 + 6x + 2$ is the objective function Subject to:

constraints
$$\begin{cases} x_1 \le 200 \\ x_2 \le 300 \\ x_1 + x_2 \le 400 \\ x_1, x_2 \ge 0 \end{cases}$$

 $\max c^T x$ is subject to $Ax \leq b, x \geq 0$

<u>Definition:</u> Let $(\bar{x}_1, \bar{x}_2, .., \bar{x}_n \in \mathbb{R}^n$

If it satisfies all constraints, it is called a feasible solution.

Set of all feasible solutions is called a feasible region.

Figure 1: Visualization

In general, a single inequality constraint defines a half-space. Feasible region = intersection of all such half-spaces.

Use matrix notation.

Example:

$$C = \begin{bmatrix} 1 \\ 6 \end{bmatrix} x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} b = \begin{bmatrix} 200 \\ 300 \\ 400 \end{bmatrix}$$

Feasible region (see Figure 1, above) $F \subseteq \mathbb{R}^n$

$$F = \{\bar{x} \in \mathbb{R}^n | A\bar{x} \le b\}$$

This is called a polyhedron.

If F is bounded, it is called a polytope.

Fact: A polytrope $F = \{\bar{x} \in \mathbb{R}^n | A\bar{x} \leq b\}$ is convex, meaning $\forall \bar{x}, \bar{y} \in F, \forall \alpha \in [0, 1], \alpha \bar{x} + (1 - \alpha)\bar{y} \in F$ Example: objective $x_1 + 6x_2$.

Fix value $v \in \mathbb{R}$

$$x_1 + 6x_2 = v$$
 - line with slope $-1/6$

$$x_2 = -1/6x_1 + 1/6v$$

 $c^T x = v$

Figure 2: Updated Figure 1

Generally, $c^T x = v$ defines a hyperplane. v is achievable if and only if that hyperplane intersects the feasible region.

<u>Definition</u>: $\bar{x} \in \mathbb{R}^n$ is optimal if it is feasible & optimizes the objective function. <u>Theorem</u>: Every linear program satisfies exactly one of the following:

- 1. LP is infeasible (e.g. $x_1 \ge 3, x_1 \le 2$)
- 2. LP is unbounded (e.g. $\max x_1 + x_2$ so that $x_1, x_2 \ge 0$)
- 3. There is a vertex of the feasible region that gives an optimal solution

Complexity of LP

LP is solvable in *polytime* (interior-point method, ellipsoid). Simplex - **worst-case exponential time** but works extremely well in practice.

Powerful Tool

- Given problem, try to express it as an LP
- Use off-the-shelf solvers

Examples

Shortests s to t path. Input: G=(V,E) diagraph $w:E\to\mathbb{R}_{\geq 0}$ $s,t\in V$

Output: Length of shortest s to t path

Reduction: Introduce variables d_v for $v \in V$ number of variables = |V| number of constraints $= |E| + 1 \max d_t$ so that $\forall (u, v) d_v \leq d_u + w(u, v) d_s = 0$

Consider $d(s, v) = \min_{(u,v) \in E} \{d(s, u) + w(u, v)\}$

 $\Rightarrow d(s,v)$ is the largest real number so that $\forall (u,v) \in E, d(s,v) \leq d(s,u) + w(u,v)$

Examples: Max-Flow

Input: G = (V, E), s, t, c - flow network

Output: Max-flow

Reduction: Introduce variables $f_{u,v}$ for $(u,v) \in E$ number of variables = |E| number of constraints = 2|E| + |V| - 2 $\max \sum_{(s,u)\in E} f_{s,u}$ so that $\forall (u,v)\in E, f_{u,v} \leq C(u,v)$ $\forall v \in V$ $\{s,t\}, \sum_{(u,v)\in E} f_{u,v} = \sum_{(v,u)\in E} f_{v,u}$ $\forall (u,v)\in E, f_{u,v}\geq 0$