IP-Adressen IPv4 und Netzwerkklassen

IP Adresse: 192.168.10.1

Netzwerkadresse: 192.168.10.0

Host- ID: 1

Damit die Wegewahl im Internet zur Übermittlung von Datenpaketen vom Sender zum Empfänger funktioniert wird © IP-Adresse automatisch beziehen
© Folgende IP-Adresse verwenden:

IP-Adresse:

IP-Adresse:

Subnetzmaske:

Standardgateway:

DNS-Serveradresse automatisch beziehen
© Folgende DNS-Serveradressen verwenden:

Bevorzugter DNS-Server:

Alternativer DNS-Server:

OK Abbrechen

Eigenschaften von Internetprotokoll Version 4 (TCP/IPv4)

IP-Einstellungen können automatisch zugewiesen werden, wenn das Netzwerk diese Funktion unterstützt. Wenden Sie sich andernfalls an

den Netzwerkadministrator, um die geeigneten IP-Einstellungen zu

jedem Rechner im Internet eine weltweit eindeutige (und einmalige) Internetadresse (IP-Adresse) zugeordnet. Jede Adressierung eines Rechners im Internet erfolgt ausschließlich über seine IP-Adresse. Nach dem im Moment noch gültigen IP-Protokollstandard (IPv4, IP-Version 4) haben diese IP-Adressen eine einheitliche Länge von 32 Bit (4 Byte).

Die gebräuchlichste Schreibweise ist die dezimale Schreibweise, in der jedes Byte als Dezimalzahl dargestellt wird. Dabei werden die einzelnen Byte, um Missverständnisse zu vermeiden, durch einen Punkt voneinander getrennt (wie 192.168.128.17).

Dezimale Darstellung	192.	168.	128.	17
Bit-Darstellung	1100 0000	1010 1000	1000 0000	0001 0001

Um die einzelnen Rechner im Internet unterschiedlichen Netzwerken zuordnen zu können, besteht jede IP-Adresse aus einem Netzwerkanteil (net-id), der die Netzwerkadresse festlegt, und einem Hostanteil (host-id), der einen einzelnen Rechner innerhalb eines Netzwerks eindeutig kennzeichnet.

Es wurden fünf verschiedene Netzwerkklassen festgelegt (Class A, B, C, D und E). Die Klassen A, B und C werden für die allgemeine Hostadressierung verwendet. Die Netzwerkklasse D ist für Multicastanwendungen und die Klasse E ist für Testzwecke reserviert worden.

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255. <mark>0</mark>	2,097,150 nets (2^21) 254 hosts per net (2^8-2)

Zusammenfassung:

	Class	Länge Netzwerk-	Anzahl	Länge	Anzahl Hosts pro
		anteil	mögliche	Hostanteil	Netzwerk
			r Netze		
Α	1.0.0.0 bis 127.0.0.0	0	128	24 Bit	16777214
		1 Bit (fix) + 7 Bit			
В	128.0.0.0 bis 191.255.0.0	10	16384	16 Bit	65534
		2 Bit (fix) + 14 Bit			
С	192.0.0.0 bis 223.255.255.0	110	2097152	8 Bit	255
		3 Bit (fix) + 21 Bit			
D	224.0.0.0 – 239.255.255.255	1110	Identifikator für Multicast-Gruppe		
		4 Bit (fix)+28 Bit			
Ε	240.0.0.0 – 255.255.255.255	11110	Reserviert für Forschung und Entwicklung		
		5 Bit (fix) + 27 Bit			

Mögliche Anzahl von Hosts pro Netzwerk

Es stehen nach dem IPv4-Standard insgesamt weltweit rein rechnerisch

Netzwerkadressen zur Verfügung.

Diese Zahl erscheint auf den ersten Blick vielleicht sehr groß. Tatsache ist jedoch, dass es praktisch keine freien Netzwerkadressen mehr gibt, da die Größe des Internet sich seit 1989 pro Jahr nahezu verdoppelt hat.

Aus diesem Grund wurde ein neuer Standard für das IP-Protokoll entwickelt der 1995 nach vier Jahren Diskussion in den entsprechenden Gremien und Arbeitsgruppen verabschiedet wurde. Dieser neue IP-Standard wird als IPv6 (IP Version 6) bezeichnet. Diese neuen IP-Adressen bestehen aus 16 Byte (= 128 Bit). Damit wird ein Adressraum von 2 ¹²⁸ Adressen erschlossen, der die akute Adressenknappheit im Internet für die nächste Zeit beseitigen wird.

Bei der Festlegung des IPv6-Standards wurde die Kompatibilität zu der älteren IP-Version (IPv4) gewahrt. Derzeit haben große Provider und Netzwerkbetreiber auf IPv6 umgestellt. Im Privaten Bereich wird sich das noch hinauszögern. Die Knappheit von IPv4-Adressen wurde mit

NAT (Network-Address-Translation), PAT (Port-Address-Translation) und private IP-Adressbereiche bewältigt.

Besondere IP-Adressen

Die in der Tabelle aufgeführten Werte für die Anzahl möglicher Netze und die Anzahl von Hosts innerhalb der einzelnen Netzwerkklassen sind theoretische Werte, die rein rechnerisch ermittelt wurden.

Der Grund dafür liegt darin, dass nicht alle möglichen Werte für jedes Byte des Hostanteils in der Praxis auch verwendet werden dürfen.

Hostanteile, bei denen alle Bitstellen gleich 0 sind, oder Hostanteile, bei denen alle Bitstellen gleich 1 sind, sind für spezielle Zwecke reserviert und dürfen nicht als IP-Adressen für die Adressierung einzelner Rechner verwendet werden.

Private Adressen

Private Adressen werden nicht geroutet, d.h. sie werden im Internet nicht geroutet (weitergeleitet). Sie können von jedem für **private Netze** wie etwa LANs verwendet werden. (Wiederverwendung)

10.0.0.0 bis 10.255.255.255

172.16.0.0 bis 172.31.255.255

192.168.0.0 bis 192.168.255.255

Netzwerkmasken (Subnetzmaken)

Die einzelnen Netzwerkklassen unterscheiden sich in der Länge des Netzwerk und Hostanteils. Für jede der Netzwerkklassen (Class A, Class B und Class C) wurde jeweils eine "Standardnetzwerkmaske" festgelegt, bei der alle Bitstellen des Netzwerkanteils auf 1 und alle Bitstellen teils auf 0 gesetzt sind.

	1. Byte	2. Byte	3. Byte	4. Byte
Class A	255	0	0	0
Class B	255	255	0	0
Class C	255	255	255	0

Aus der IP-Adresse und der Subnetzmaske wird mittels einer logischen UND – Verknüpfung die Netzwerkadresse ermittelt.

	IP-Adresse	192 . 168 . 1 . 129 11000000 10101000 00000001 10000001
UND	Subnetzmaske	255 . 255 . 255 . 0 11111111 11111111 11111111 00000000
=	Netzwerkadresse	192 . 168 . 1 . 0 11000000 10101000 00000001 00000000

Kurzschreibweise der Subnetzmaske in Verbindung mit der IP-Adresse: $192.168.1.129 / 8 \rightarrow d.h.$ 8 Hostbits

Hinweis: Ein Router leitet Pakete nur aufgrund der Netzadresse und nicht der IP-Adresse weiter.