المهورية الزية الديمقراطة الشعية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: العلوم التجريبية

المُدة: 3 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (03.5 نقطة)

$$u_0=1$$
 و $u_1=2$ و $u_{n+2}=\frac{4}{3}u_{n+1}-\frac{1}{3}u_n$ و $u_0=1$ و $u_1=2$ و $u_{n+2}=\frac{4}{3}u_{n+1}-\frac{1}{3}u_n$ و $u_0=1$

$$v_n = u_{n+1} - u_n$$
 :المنتالية (v_n) معرفة على \mathbb{N} كما يلي

- v_1 اُحسب v_0 و v_1
- 2) برهن أن (v_n) منتالية هندسية يطلب تعيين أساسها.

$$S_n = v_0 + v_1 + \dots + v_{n-1} : S_n$$
 large n (1) (3)

$$u_n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1 : n$$
 يرهن أنه من أجل كل عدد طبيعي $n = \frac{3}{2} \left(1 - \left(\frac{1}{3} \right)^n \right) + 1 : n$

بين أن (u_n) متقاربة.

التمرين الثاني: (05 نقاط)

و
$$\mathbf{Z}$$
 عدد مرکب $P(Z) = (Z-1-i)(Z^2-2Z+4)$ و $P(Z)$

P(Z)=0 المعائلة \mathbb{C} المجموعة (1

$$Z_2 = 1 - \sqrt{3}i + Z_1 = 1 + i$$
 نضع: (2

أ) أكتب Z_1 و Z_2 على الشكل الأسي.

ب) أكتب $\frac{Z_1}{Z_2}$ على الشكل الجبري ثم الشكل الأسي.

$$\sin\left(\frac{7\pi}{12}\right) \cos\left(\frac{7\pi}{12}\right)$$
 or $\cos\left(\frac{7\pi}{12}\right)$

اً) عدد طبیعی، عیّن قیم
$$n$$
 بحیث یکون العدد $\left(\frac{Z_1}{Z_2}\right)^n$ عدد طبیعی، عیّن قیم n (أ (3

$$\left(\frac{Z_1}{Z_2}\right)^{456}$$
 ب لحسب قيمة العدد

التعرين الثالث: (04 نقاط)

 $.\left(o\,;ec{i}\;;ec{j}\;;ec{k}
ight)$ الفضاء مزود بمعلم متعامد و متجانس

C(2;1;3) ، B(0;2;1) ، A(1;0;2) : نعتبر النقط:

$$X-Z+1=0$$
 مستو معادلة له من الشكل (P) مستو

اً) بيّن أن المستوي
$$(P)$$
 هو المستوي أن المستوي المستوي المستوي المستوي

ب) ما طبيعة المثلث ABC.

$$D(2;3;4)$$
 اً) تحقّق من أن النقطة $D(2;3;4)$ لا تنتمي إلى (2).

ب) ما طبيعة ABCD.

$$(ABC)$$
 أ) أحسب المسافة بين D و المستوي (3

ب) أحسب حجم ABCD)

التمرين الرابع: (07.5 نقطة)

$$f(x) = -x + \frac{4}{x+1}$$
: بــ $I =]-\infty; -1[\cup]-1;0]$ دالة معرفة على $f(x) = -x + \frac{4}{x+1}$ دالة معرفة على المعرفة على المعرفة

- تمثیلها البیانی فی مستویِ منسوب إلی معلم متعامد ومتجانس $(c_{\,
 m r})$ كما هو مبين في الشكل.
 - I عند الحدود المفتوحة لـ f أكسب نهايات f عند الحدود المفتوحة الـ f
- ب) بقراءة بيانية و دون دراسة اتجاه تغيرات م شكّل جدول تغيراتها.

$$g(x)=x+rac{4}{x+1}$$
 كما يلي: $g(x)=x+rac{4}{x+1}$ كما يلي: $g(x)=x+rac{4}{x+1}$

- تمثیلها البیانی فی مستوی منسوب إلی معلم متعامد تجانس. (c_{σ})
 - أحسب نهاية g عند ∞+ .
 - (Δ) بعنی مستقیما مقاربا مائلاً (c_{g}) بقبل مستقیما مقاربا مائلاً عند ∞+ يطلب تعيين معادلة له.

$$k(x) = |x| + \frac{4}{x+1}$$
 کما یلی: $\mathbb{R} - \{-1\}$ کا دالة معرفة علی k (II

$$\frac{1}{h} = \lim_{h \to 0} \frac{k(h) - k(0)}{h}$$
 ، $\lim_{h \to 0} \frac{k(h) - k(0)}{h}$ ماذا تستنج $\frac{h}{h}$

ب) أعط تفسيرا هندسيا لهذه النتيجة.

$$\mathbf{x}_{0}$$
) عند النقطة التي فاصلتها \mathbf{x}_{0} (2 أكتب معادلتي المماسين \mathbf{x}_{0} و

$$.(C_k)$$
 و $(_2\Delta)$ ، $(_1\Delta)$ (3

4) أحسب مساحة الحيز المستوي المحدد بالمنحنى
$$(C_k)$$
 و المستقيمات التي معاد لاتها:

$$x = -\frac{1}{2}$$
, $x = \frac{1}{2}$, $y = 0$

NAB Time SOFT

التعرين الأول: (04) نقاط)

في الفضاء المنسوب إلى معلم متعامد و متجانس $\left(o;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}
ight)$ نعتبر النقط:

.
$$D(1;-1;-2) + C(3;0;-2) + B(1;-2;4) + A(2;3;-1)$$

. 2x - y + 2z + 1 = 0: المستوى المعرف بمعادلته الديكارتية المستوى المعرف بمعادلته الديكارتية

المطلوب: أجب بصحيح أو خطأ مع تبرير الإجابة في كل حالة من الحالات التالية:

- 1. النقط C ، B ، A في استقامية.
- . $25 \times -6 y z 33 = 0$: مستوي معادلة ديكارنية له (ABD) مستوي معادلة ديكارنية
 - (π) عمودي على المستقيم (CD) عمودي على المستوي (π).
 - +4. المسقط العمودي للنقطة +3 على +3 هو النقطة +3 المسقط العمودي النقطة +3

التمرين الثاني: (04 نقاط)

 $\left(0;\overrightarrow{i};\overrightarrow{j}\right)$ المستوي منسوب إلى معلم متعامد و متجانس

 $z^2 - 2z + 4 = 0$ lasel C lack lasel las

2. نسمى Z2 ؛ Z1 حلى هذه المعادلة.

- أ) أكتب العددين z₁ و z₂ على الشكل الأسى.
- ب) C ، B، A هي النقط من المستوي التي لواحقها على الترتيب:

$$z_{\rm C} = \frac{1}{2} \left(5 + i\sqrt{3} \right)$$
 $z_{\rm B} = 1 + i\sqrt{3}$ $z_{\rm A} = 1 - i\sqrt{3}$

($i^2 = -1$ يرمز إلى العدد المركب الذي يحقق ($i^2 = -1$

أحسب الأطوال BC، AC ، AB ثم استنتج طبيعة المثلث ABC

$$Z = \frac{Z_C - Z_B}{Z_A - Z_B}$$
 : حيث $Z_A - Z_B$

د) أحسب Z^3 و Z^6 ثم استنتج أن Z^{3k} عدد حقيقي من أجل كل عدد طبيعي Z^3

التمرين االثالث: (05 نقاط)

$$egin{cases} u_1 + 2u_2 + u_3 = 32 \ u_1 \end{cases}$$
متتالية هندسية منزايدة تماما حدها الأول u_1 و أساسها $u_1 \times u_2 \times u_3 = 216$

- 1. أ) أحسب u_2 و الأساس q لهذه المتتالية و استنتج الحد الأول u_1
 - . n بدلالة u_n بدلالة u_n
- جــ) أحسب $S_n = u_1 + u_2 + ... + u_n$ بدلالة n ثم عين العدد الطبيعي n بحيث يكون: $S_n = 0$

2. (v_n) منتالية عددية معرفة من اجل كل عدد طبيعي عير معدوم الكما يلي:

$$v_{n+1} = \frac{3}{2}v_n + u_n$$
 $v_1 = 2$

أ) أحسب v₂ و v₃.

$$\cdot_{\mathbf{W}_n} = \frac{\mathbf{V}_n}{\mathbf{u}_n} - \frac{2}{3}$$
: معدوم غير معدوم غير عدد طبيعي n با عدد طبيعي

 $\frac{1}{2}$ بین أن (\mathbf{w}_n) متتالیة هندسیة أساسها

. n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ v_n بدلالهٔ

التمرين االرابع: (07 نقاط)

الجزء الأول:

 $h(x) = x^2 + 2x + \ln(x+1)$ دالة عددية معرفة على -1; + $+\infty$ كما يلي: h

 $\lim_{x\to +\infty} h(x) = \lim_{x\to -1} h(x) \cdot 1$

$$h'(x) = \frac{1+2(x+1)^2}{x+1}$$
 :] -1; + ∞[من المجال x من المجال عدد حقیقی x من المجال عدد حقیقی x من المجال x من المجا

 $. \, x$ مسب فيم h(x) مسب فيم h(0) مسب فيم 3

$$f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$$
 : كما يلي: $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$ كما يلي: انكن $f(x) = x - 1 - \frac{\ln(x+1)}{x+1}$

 $(C_i;\vec{i};\vec{j})$ المنحنى الممثل للدالة f في مستوي منسوب إلى معلم متعامد و متجانس

$$-\lim_{u\to+\infty}\frac{\ln u}{u}=0$$
 ، برهن أن $\lim_{t\to+\infty}\frac{e^t}{t}=+\infty$ باستخدام النتيجة ب

 $\lim_{x\to +\infty} f(x)$

د) أحسب
$$\lim_{x \to +\infty} [f(x) - (x-1)]$$
 و استنج وجود مستقيم مقارب مائل للمنحنى

هـ) أدرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم المقارب المائل.

f غيرات الدالة
$$f'(x) = \frac{h(x)}{(x+1)^2} + \int [1, +\infty[$$
 من المجال $f(x) = \frac{h(x)}{(x+1)^2}$

x=34 عند نقطة فاصلتها محصورة بين 3,3 و المعادلة x=2 عند نقطة فاصلتها محصورة بين 3,3 وx=34.

4. أرسم (C_f).

5. أحسب مساحة الحيز المستوي المحدود بالمنحنى (C_f) و المستقيمات التي معادلاتلها :

$$x = 1$$
 $x = 0$ $y = x-1$