Online Summer School Macro, Money, and Finance Problem Set 2

June 15, 2025

Please submit your solutions to the dropbox link by 6/15/2025 23:59 pm (EDT).

1 Introducing Physical Investment

In class, we consider a deterministic two sector model with fixed aggregate capital \bar{K} . Now we add investment to it. We introduce a concave capital conversion function $\Phi(\iota)$ with assumption $\Phi'(\cdot) > 0$, $\Phi''(\cdot) < 0$ for investment rate ι and capital depreciation rate δ . For example, consider an agent with capital k_t at time t with investment rate ι_t . His real investment is $\iota_t k_t$, and the capital accumulation is $(\Phi(\iota_t) - \delta)k_t$. This is equivalent to a convex adjustment cost assumption.

- 1. Optimal Investment Decision. Consider the following time line of operating the capitals:
 - At t, agent i purchases capital k_t^i at price q_t .
 - He/she makes the (optimal) investment decision ι_t^i within period [t, t+dt).
 - The capital generates output $a^i(k_t^i)$ at time t+dt
 - Finally agent i sells the capital k_{t+dt}^i at market price q_{t+dt} .

The total gains are:

$$\pi_t dt = \underbrace{q_{t+dt} k_{t+dt}^i - q_t k_t^i}_{\textcircled{1}} + \underbrace{(\underline{a}^i (k_t^i)}_{\textcircled{2}} - \underbrace{\iota_t^i k_t^i}_{\textcircled{3}}) dt$$

where ① represents the gain from holding and reselling, ② represents the dividend (output) flow, and ③ represents the investment cost.

(a) Derive the expression for the return rate, $\frac{\pi_t}{q_t k_t}$. Do the decomposition for ①②③ for π_t .

Solution:

$$\begin{split} \frac{\pi_t}{q_t k_t^i} &= \frac{1}{q_t k_t^i} \frac{q_{t+dt} k_{t+dt}^i - q_t k_t^i}{dt} + \frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i k_t^i}{q_t k_t^i} \\ &= \frac{1}{q_t k_t^i} \frac{d (q_t k_t^i)}{dt} + \frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t} \\ &= \frac{1}{q_t k_t^i} \left(\frac{d q_t}{dt} k_t^i + \frac{d k_t^i}{dt} q_t \right) + \frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t} \\ &= \frac{1}{q_t} \frac{d q_t}{dt} + \frac{1}{k_t^i} \frac{\left(\Phi(\iota_t^i) - \delta\right) k_t^i dt}{dt} + \frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i} - \frac{\iota_t^i}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} - \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} - \underbrace{\frac{a^i (k_t^i)}{q_t k_t^i}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{1}{q_t} \frac{d q_t}{dt}}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{1}{q_t} \frac{d q_t}{dt}}_{\text{$\ensuremath{$\downarrow$}}} \\ &= \underbrace{\frac{1}{q_t} \frac{d q_t}{dt} + \Phi(\iota_t^i) - \delta}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{1}{q_t} \frac{d q_t}{dt}}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{1}{q_t} \frac{d q_t}{dt}}_{\text{$\ensuremath{$\downarrow$}}} + \underbrace{\frac{1}{q_t} \frac{d q_t}{dt}}_{\text{$\ensuremath{$\downarrow$}}} +$$

(b) Show that optimal investment ι_t^i is the same for $i \in \{e, h\}$, and is determined by:

$$\frac{1}{a_t} = \Phi'(\iota_t^i).$$

This is the Tobin's Q condition.

Solution: Maximizing the return on capital $(\frac{\pi_t}{q_t k_t})$ with respect to ι_t^i yields:

$$\Phi'(\iota_t^i) - \frac{1}{q_t} = 0$$

(c) For conversion function $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1)$, what is the optimal investment ι_t given price q_t ? Solution:

$$\Phi'(\iota_t^i) = \frac{1}{\phi \iota_t^i + 1} \to \iota_t^i = \frac{q_t - 1}{\phi}$$

2 The Basak-Cuoco Model with Heterogeneous Discount Rates

Consider the Basak-Cuoco Model of the slides. Now we introduce the investment conversion function $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1)$. Assume that households are more patient than experts, i.e. they have a discount rate $\rho^h < \rho^e$. This is the simplest way to generate both a nondegenerate stationary distribution and some endogenous capital price dynamics.

- 1. Derive closed-form expressions for ι , q, σ^q , μ^η and σ^η as functions of η and model parameters:
 - (a) Start with goods market clearing condition and use $\hat{\rho}(\eta) = \rho^e \eta + \rho^h (1 \eta)$ to ease notation. Derive $q(\eta)$ and $\iota(\eta)$.

Solution:

Goods market clearing:

$$C = C^e + C^h = \underbrace{(\rho^e \eta + \rho^h (1 - \eta))}_{\hat{\rho}(\eta)} qK = (a - \iota)K$$

Optimal investment choice: $q = 1 + \phi \iota$. Combine with market clearing:

$$q(\eta) = \frac{1 + \phi a}{1 + \phi \hat{\rho}(\eta)}$$
$$\iota(\eta) = \frac{a - \hat{\rho}(\eta)}{1 + \phi \hat{\rho}(\eta)}$$

(b) Use $q(\eta)$ and the law of motion for η to find $\sigma^q(\eta)$ and $\sigma^{\eta}(\eta)$.

Solution:

Law of Motion for η from LOMs of N^e and qK:

$$\frac{d\eta}{\eta} = \left(\frac{a - \iota^e}{q} - \rho^e + \theta^e(\sigma + \sigma^q - \varsigma^e)(\sigma + \sigma^q)\right) dt - \theta^e(\sigma + \sigma^q) dZ$$

Capital market clearing: $\theta^e = -\frac{1-\eta}{\eta}$, log-utility: $\varsigma^e = \sigma^{n^e} = (1-\theta^e)(\sigma+\sigma^q)$, and $(a-\iota^e) = \hat{\rho}(\eta)q$:

$$\frac{d\eta}{\eta} = \underbrace{\left((1 - \eta)(\rho^h - \rho^e) + \left(\frac{1 - \eta}{\eta} \right)^2 (\sigma + \sigma^q(\eta))^2 \right)}_{\mu^{\eta}(\eta)} dt + \underbrace{\frac{1 - \eta}{\eta} (\sigma + \sigma^q(\eta))}_{\sigma^{\eta}(\eta)} dZ$$

Apply Ito's formula to $q(\eta)$:

$$dq(\eta) = \underbrace{\left(q'(\eta)\mu^{\eta}(\eta)\eta + \frac{(\sigma^{\eta}(\eta)\eta)^{2}}{2}q''(\eta)\right)}_{\mu^{q}(\eta)q(\eta)} dt + \underbrace{q'(\eta)\sigma^{\eta}(\eta)\eta}_{\sigma^{q}(\eta)q(\eta)} dZ$$

Combine three equations:

$$q(\eta) = \frac{1 + \phi a}{1 + \phi \hat{\rho}(\eta)}, \qquad \sigma^{q}(\eta)q(\eta) = q'(\eta)\sigma^{\eta}(\eta)\eta, \qquad \sigma^{\eta}(\eta) = \frac{1 - \eta}{\eta}(\sigma + \sigma^{q}(\eta))$$

Obtain:

$$\sigma^{q}(\eta) = -\frac{\phi(\rho^{e} - \rho^{h})(1 - \eta)}{1 + \phi\rho^{e}}\sigma, \qquad \sigma^{\eta}(\eta) = \frac{1 - \eta}{\eta} \frac{1 + \phi\hat{\rho}(\eta)}{1 + \phi\rho^{e}}\sigma$$

(c) Derive $\mu^{\eta}(\eta)$.

Solution: already obtained in (b).

2. Replicate the figures from slide 26, setting $\phi=10$ and $\delta=0.035$, then add to each plot the corresponding line for the model with $\rho^e=5\%$ and $\rho^h=2\%$ (and all other parameters as before). Solution:

See Figure 1. Risk-free rate can be obtained from experts portfolio choice:

$$r(\eta) = \frac{a - \iota(\eta)}{q(\eta)} + \Phi(\iota(\eta)) - \delta + \underbrace{\mu^q(\eta)}_{\neq 0} + \sigma \underbrace{\sigma^q(\eta)}_{\neq 0} - \varsigma^e(\eta)(\sigma + \underbrace{\sigma^q(\eta)}_{\neq 0})$$

3. Assume $\phi > 0$. Show that in this model asset price movements mitigate exogenous risk (i.e. $\sigma^q + \sigma < \sigma$). Explain economically why this happens and why the effect disappears if $\phi = 0$. Solution:

Total risk:

$$\sigma + \sigma^q(\eta) = \frac{\sigma}{1 - \frac{1 - \eta}{\eta} \frac{q'(\eta)}{q/\eta}} = \left(1 - \frac{\phi(\rho^e - \rho^h)(1 - \eta)}{1 + \phi\rho^e}\right)\sigma < \sigma \text{ if } \phi > 0$$

Goods market clearing condition:

$$\underbrace{\hat{\rho}(\eta)}_{C/N} \underbrace{q(\eta)K}_{N} + \iota(\eta)K = aK$$

Suppose $K\downarrow \Longrightarrow \eta \downarrow \Longrightarrow C/N \downarrow \Longrightarrow q(\eta)$ and/or $\iota(\eta)$ must go up. Since $\phi>0$, investment adjustment is costly and the higher demand for capital can not be fully satisfied, which results in an increase of capital price. As a result, a drop in K is compensated by an increase in q, which stabilizes qK and reduces its volatility. If $\phi=0$, then $\iota(\eta)$ adjusts alone and there is no price effect.

4. Argue that the model must have a nondegenerate stationary distribution (just give some intuition, not a formal proof).

Solution:

Unlike in the model with homogeneous discount rates, the drift of η crosses zero at an interior point:

$$\mu^{\eta}(\eta) = (1 - \eta) \left[\underbrace{(\rho^{h} - \rho^{e})}_{<0} + \underbrace{\frac{1 - \eta}{\eta^{2}} (\sigma + \sigma^{q}(\eta))^{2}}_{>0} \right] \xrightarrow{\eta \to 1} (1 - \eta)(\rho^{h} - \rho^{e}) + o(1 - \eta) < 0$$

Together with vanishing volatility $(\sigma^{\eta}(\eta) \xrightarrow[\eta \to 1]{} 0)$ this ensures that η is pushed back as it approaches $\eta = 1$ and there exists a non-degenerate distribution.