Adding point-like sinks and sources

$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + K_{out} \sum_{p=1}^{N} \delta(r_p - r) - K_{in} \sum_{c=1}^{N} \delta(r_c - r)$$

Adding point-like sinks and sources

$$\frac{\partial u}{\partial t} = D\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + K_{out} \sum_{p=1}^{N} \delta(r_p - r) - K_{in} \sum_{c=1}^{N} \delta(r_c - r)$$

We can discretize the first half-step (x implicit, y explicit) using the following scheme:

$$\frac{u_{i,j}^{k+\frac{1}{2}} - u_{i,j}^{k}}{\Delta t/2} = D\left(\frac{u_{i+1,j}^{k+\frac{1}{2}} - 2u_{i,j}^{k+\frac{1}{2}} + u_{i-1,j}^{k+\frac{1}{2}}}{\Delta x^{2}} + \frac{u_{i,j+1}^{k} - 2u_{i,j}^{k} + u_{i,j-1}^{k}}{\Delta y^{2}}\right) + (S_{out} - S_{in})$$

Where S_{out} and S_{in} are the source and sink terms, respectively:

$$S_{out} = K_{out} \sum_{p=1}^{N} \delta_{\varepsilon}(r_p - r_{i,j})$$
 and $S_{in} = \frac{K_{in}u_{i,j}^k}{m + u_{i,j}^k} \sum_{c=1}^{N} \delta_{\varepsilon}(r_c - r_{i,j})$

We can define $\alpha = \frac{D\Delta t}{2\Delta x^2} = \frac{D\Delta t}{2\Delta y^2}$ to get

$$\frac{-\alpha u_{i-1,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{i,j}^{k+\frac{1}{2}} - \alpha u_{i+1,j}^{k+\frac{1}{2}}}{\alpha u_{i,j-1}^{k} + (1-2\alpha)u_{i,j}^{k} + \alpha u_{i,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in}\right)}$$

We know all the terms in right-hand side of the equation (blue), but we need to compute the left-hand side (red).

Let's fix
$$j=1$$
 and write the equations for $i=1,2,3,4$:
$$-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha)u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(\mathcal{S}_{out} - \mathcal{S}_{in} \right)$$

$$-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha)u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in}\right)$$

$$-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha)u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in}\right)$$

$$\begin{split} &-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha) u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha) u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{2,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{3,j}^{k+\frac{1}{2}} - \alpha u_{4,j}^{k+\frac{1}{2}} = \alpha u_{3,j-1}^{k} + (1-2\alpha) u_{3,j}^{k} + \alpha u_{3,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \end{split}$$

$$\begin{split} &-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha) u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha) u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{2,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{3,j}^{k+\frac{1}{2}} - \alpha u_{4,j}^{k+\frac{1}{2}} = \alpha u_{3,j-1}^{k} + (1-2\alpha) u_{3,j}^{k} + \alpha u_{3,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{3,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{4,j}^{k+\frac{1}{2}} - \alpha u_{5,j}^{k+\frac{1}{2}} = \alpha u_{4,j-1}^{k} + (1-2\alpha) u_{4,j}^{k} + \alpha u_{4,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \end{split}$$

Let's fix j = 1 and write the equations for i = 1, 2, 3, 4:

$$\begin{split} &-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha) u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha) u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{2,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{3,j}^{k+\frac{1}{2}} - \alpha u_{4,j}^{k+\frac{1}{2}} = \alpha u_{3,j-1}^{k} + (1-2\alpha) u_{3,j}^{k} + \alpha u_{3,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{3,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{4,j}^{k+\frac{1}{2}} - \alpha u_{5,j}^{k+\frac{1}{2}} = \alpha u_{4,j-1}^{k} + (1-2\alpha) u_{4,j}^{k} + \alpha u_{4,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \end{split}$$

Which can be written as a matrix:

Let's fix j = 1 and write the equations for i = 1, 2, 3, 4:

$$\begin{split} &-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha) u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha) u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{2,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{3,j}^{k+\frac{1}{2}} - \alpha u_{4,j}^{k+\frac{1}{2}} = \alpha u_{3,j-1}^{k} + (1-2\alpha) u_{3,j}^{k} + \alpha u_{3,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{3,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{4,j}^{k+\frac{1}{2}} - \alpha u_{5,j}^{k+\frac{1}{2}} = \alpha u_{4,j-1}^{k} + (1-2\alpha) u_{4,j}^{k} + \alpha u_{4,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \end{split}$$

$$\begin{array}{c} y_2 \\ y_1 \\ y_2 \\ y_3 \\ y_2 \\ y_4 \\ y_3 \\ y_2 \\ y_4 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_4 \\ y_5 \\ y_6 \\ y_1 \\ y_2 \\ y_4 \\ y_5 \\ y_6 \\ y_6$$

$$\begin{bmatrix} u_{0,j}^{k+\frac{1}{2}} \\ u_{0,j}^{k+\frac{1}{2}} \\ u_{1,j}^{k+\frac{1}{2}} \\ u_{2,j}^{k+\frac{1}{2}} \\ u_{3,j}^{k+\frac{1}{2}} \\ u_{4,j}^{k+\frac{1}{2}} \\ u_{\epsilon} : \end{bmatrix} = \begin{bmatrix} b_{1,j} \\ b_{2,j} \\ b_{3,j} \\ b_{4,j} \end{bmatrix}$$

Where $b_{i,j}$ is the right hand side of the equation, which is already known.

Let's fix j = 1 and write the equations for i = 1, 2, 3, 4:

$$\begin{split} &-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \alpha u_{1,j-1}^{k} + (1-2\alpha) u_{1,j}^{k} + \alpha u_{1,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{2,j}^{k+\frac{1}{2}} - \alpha u_{3,j}^{k+\frac{1}{2}} = \alpha u_{2,j-1}^{k} + (1-2\alpha) u_{2,j}^{k} + \alpha u_{2,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{2,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{3,j}^{k+\frac{1}{2}} - \alpha u_{4,j}^{k+\frac{1}{2}} = \alpha u_{3,j-1}^{k} + (1-2\alpha) u_{3,j}^{k} + \alpha u_{3,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \\ &-\alpha u_{3,j}^{k+\frac{1}{2}} + (1+2\alpha) u_{4,j}^{k+\frac{1}{2}} - \alpha u_{5,j}^{k+\frac{1}{2}} = \alpha u_{4,j-1}^{k} + (1-2\alpha) u_{4,j}^{k} + \alpha u_{4,j+1}^{k} + \frac{\Delta t}{2} \left(S_{out} - S_{in} \right) \end{split}$$

$$\begin{array}{c} y_{3} \\ y_{2} \\ y_{3} \\ y_{3} \\ y_{3} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{2} \\ y_{1} \\ y_{6} \\ y_{1} \\ y_{2} \\ y_{2} \\ y_{3} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{5}$$

$$\begin{bmatrix} u_{0,j}^{k+\frac{1}{2}} \\ u_{0,j}^{k+\frac{1}{2}} \\ u_{1,j}^{k+\frac{1}{2}} \\ u_{2,j}^{k+\frac{1}{2}} \\ u_{3,j}^{k+\frac{1}{2}} \\ u_{4,j}^{k+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} b_{1,j} \\ b_{2,j} \\ b_{3,j} \\ b_{4,j} \end{bmatrix}$$

Where $b_{i,j}$ is the right hand side of the equation, which is already known.

Because of the boundary conditions, we can simplify the matrix to a tridiagonal matrix.

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} k+\frac{1}{2} \\ u_{1,1} \\ k+\frac{1}{2} \\ u_{2,1} \\ k+\frac{1}{2} \\ u_{3,1} \\ k+\frac{1}{2} \\ u_{4,1} \end{bmatrix} = \begin{bmatrix} b_{1,1} \\ b_{2,1} \\ b_{3,1} \\ b_{4,1} \end{bmatrix}$$

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} u_{1,1}^{k+\frac{1}{2}} \\ u_{1,1}^{k+\frac{1}{2}} \\ u_{2,1}^{k+\frac{1}{2}} \\ u_{3,1}^{k+\frac{1}{2}} \\ u_{4,1}^{k} \end{bmatrix} = \begin{bmatrix} b_{1,1} \\ b_{2,1} \\ b_{3,1} \\ b_{4,1} \end{bmatrix}$$

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} \frac{k+\frac{1}{2}}{u_{1,2}} \\ \frac{k+\frac{1}{2}}{k+\frac{1}{2}} \\ \frac{u_{2,2}}{u_{3,2}} \\ \frac{k+\frac{1}{2}}{u_{3,2}} \end{bmatrix} = \begin{bmatrix} b_{1,2} \\ b_{2,2} \\ b_{3,2} \\ b_{4,2} \end{bmatrix}$$

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} u_{1,1}^{k+\frac{1}{2}} \\ u_{2,1}^{k+\frac{1}{2}} \\ u_{2,1}^{k+\frac{1}{2}} \\ u_{3,1}^{k+\frac{1}{2}} \end{bmatrix} = \begin{bmatrix} b_{1,1} \\ b_{2,1} \\ b_{3,1} \\ b_{4,1} \end{bmatrix}$$

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} \frac{k+\frac{1}{2}}{u_{1,2}} \\ \frac{k+\frac{1}{2}}{u_{2,2}} \\ \frac{k+\frac{1}{2}}{u_{2,2}} \\ \frac{k+\frac{1}{2}}{u_{3,2}} \\ \end{bmatrix} = \begin{bmatrix} b_{1,2} \\ b_{2,2} \\ b_{3,2} \\ b_{4,2} \end{bmatrix}$$

$$\begin{bmatrix} 1+\alpha & -\alpha & 0 & 0 \\ -\alpha & 1+2\alpha & -\alpha & 0 \\ 0 & -\alpha & 1+2\alpha & -\alpha \\ 0 & 0 & -\alpha & 1+\alpha \end{bmatrix} \begin{bmatrix} k+\frac{1}{2} \\ u_{1,\frac{1}{2}} \\ k+\frac{1}{2} \\ u_{2,3} \\ k+\frac{1}{2} \\ u_{3,\frac{1}{2}} \\ k+\frac{1}{2} \\ u_{3,\frac{1}{2}} \\ k+\frac{1}{2} \\ u_{4,\frac{1}{3}} \end{bmatrix} = \begin{bmatrix} b_{1,3} \\ b_{2,3} \\ b_{4,3} \end{bmatrix}$$

We get one system of equations for each j value.

Now we can use the Thomas algorithm for solving each tridiagonal system.

Implementing Neumann Boundary Conditions

Neumann boundary conditions specify that the derivative of the concentration at the boundary is zero:

$$\frac{\partial u}{\partial x}\Big|_{x=0} = 0$$
 and $\frac{\partial u}{\partial x}\Big|_{x=L} = 0$

In the discretized form, this means:

$$\frac{u_{1,j} - u_{0,j}}{\Delta x} = 0 \quad \Rightarrow \quad u_{0,j} = u_{1,j}$$

$$\frac{u_{N,j} - u_{N-1,j}}{\Delta x} = 0 \quad \Rightarrow \quad u_{N,j} = u_{N-1,j}$$

These conditions state that the ghost points $(u_{0,j} \text{ and } u_{N,j})$ have the same value as their adjacent interior points.

Implementing Neumann Boundary Conditions in the Tridiagonal System

For the first half-step (x-direction), we need to modify the tridiagonal system to incorporate the boundary conditions. For the left boundary (i = 1), the For the right boundary (i = N - 1), the

original equation is: original equation is:
$$cu^{k+\frac{1}{2}} + (1+2\alpha)u^{k+\frac{1}{2}} = cu^{k+\frac{1}{2}} - PHS = -\alpha u^{k+\frac{1}{2}} + (1+2\alpha)u^{k+\frac{1}{2}} = -\alpha u^{k+\frac{1}{2}} = -\alpha u^{k+\frac{1}{2}}$$

 $-\alpha u_{0,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \mathsf{RHS}_{1,j} - \alpha u_{N-2,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{N-1,j}^{k+\frac{1}{2}} - \alpha u_{N,j}^{k+\frac{1}{2}} = \mathsf{RHS}_{1,j}$ With the Neumann condition $u_{0,j} = u_{1,j}$,

we substitute: $u_{N,j} = u_{N-1,j}$, we substitute:

$$-\alpha u_{1,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \mathsf{RHS}_{1,j} - \alpha u_{N-2,j}^{k+\frac{1}{2}} + (1+2\alpha)u_{N-1,j}^{k+\frac{1}{2}} - \alpha u_{N-1,j}^{k+\frac{1}{2}} = \mathsf{FS}_{1,j}$$
 Simplifying: Simplifying:

 $(1+\alpha)u_{1,j}^{k+\frac{1}{2}} - \alpha u_{2,j}^{k+\frac{1}{2}} = \mathsf{RHS}_{1,j} \qquad -\alpha u_{N-2,j}^{k+\frac{1}{2}} : + (1+\alpha)u_{N-1,j}^{k+\frac{1}{2}} := \mathsf{RHS}_{N-1,j}$

Implementation in the Code

In the JavaScript implementation, the boundary conditions are applied as follows:

```
mainDiagonal[0]?

1 // Apply boundary conditions for the x-direction The key insight is that the 2 // Left boundary (reflective) The key insight is that the 2 mainDiagonal [1] += lowerDiagonal domain is indexed from 1 to WIDTH-2, with indices 0 and WIDTH-1 being ghost points.

5 // Right boundary (reflective host Ghost The mainDiagonal [WIDTH-2] += upperDiagonal [WIDTH 2];
```

This code modifies the tridiagonal system to incorporate the Neumann boundary conditions.

s upperDiagonal[WIDTH-2] = 0;

The tridiagonal system is set up for the interior points (1 to WIDTH-2), so the first equation corresponds to index 1, not 0.

Why mainDiagonal[1] and not

Detailed Explanation of Boundary Condition

Implementation the original tridiagonal system has:

lowerDiagonal[1] =
$$-\alpha$$

mainDiagonal[1] = $1 + 2\alpha$ upperDiagonal[1] = $-\alpha$

The code modifies this to:
$${\sf mainDiagonal[1]} + = {\sf lowerDiagonal[1]}$$

$$= (1 + 2\alpha) + (-\alpha)$$
$$= 1 + \alpha$$

between ghost points and their adjacent interior points.

And sets lowerDiagonal[1] = 0, effectively removing the dependency on

$$= (1 + 2\alpha) + (-\alpha)$$
$$= 1 + \alpha$$

Similarly, for the right boundary: lowerDiagonal[WIDTH-2] = $-\alpha$ mainDiagonal[WIDTH-2] = $1 + 2\alpha$

upperDiagonal[WIDTH-2] =
$$-\alpha$$

The code modifies this to:

mainDiagonal[WIDTH-2]+ = upperDiagonal[VIDTH-2]

$$= (1 + 2\alpha) + (-\alpha)$$

$$= 1 + \alpha$$

And sets upperDiagonal[WIDTH-2] = 0, removing the dependency on the ghost point.

the ghost point. This implementation correctly enforces the Neumann boundary conditions by modifying the tridiagonal system coefficients to account for the equality