UNCLASSIFIED

AD NUMBER AD891376 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; DEC 1971. Other requests shall be referred to Air Force Flight Dynamics Lab., Wright-Patterson AFB, OH 45433. AUTHORITY AFFDL ltr 10 May 1976

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DCD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

SUPERSONIC INLET INVESTIGATION

VOLUME III. WIND TUNNEL DATA REPORT

T.W. Tsukahira W.F. Wong B.G. Franco

Northrop Corporation Aircraft Division

TECHNICAL REPORT AFFDL-TR-71-121, Volume III
September 1971

Distribution limited to U.S. Government agencies only; this report contains information on test and evaluation of military hardware September 1971; other request for this document must be referred to Air Force Flight Dynamics Laboratory (FXM), Wright-Patterson AFB, Ohio 45433.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

SUPERSONIC INLET INVESTIGATION

Volume III. Wind Tunnel Data Report

T.W. Tsukahira W.F. Wong B.G. Franco

Distribution limited to U.S. Government agencies only; this report contains information on test end evaluation of military hardware September 1971; other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FXM), Wright-Patterson AFB, Ohio 45433.

FOREWORD

This document was prepared by the Northrop Corporation, Aircraft Division, Hawthorne, California under USAF Contract No. F33615-69-C-1699, "Supersonic Inlet Investigation," Project No. 1476 "Airframe Propulsion Compatibility for Advanced Tactical and Strategic Aircraft." The report covers work performed from 1 May 1969 to 1 May 1971.

The program was administered by the Air Force Flight Dynamics Laboratory, Internal Aerodynamics Branch under the technical cognizance of Donald J. Stava, Project Monitor.

The contract effort conducted at Northrop Corporation, Aircraft Division was under the direction of G. R. Hall, Program Manager, and T. W. Tsukahira, Principal Investigator. Major contributions to this program were made by Messrs. N. F. Amin, B. G. Franco, P. M. Parmar, W. F. Wong, and M. Yamada.

Special acknowledgement is given to F. K. Hube, L. M. Jenke of the Von Karman Gas Dynamics Facility; R. W. Butler of the Propulsion Wind Tunnel; and others on the staff of ARO, Inc. and AEDC, Tullahoma, Tennessee.

The final report prepared under the contract consists of three volumes. The title of each volume is shown below.

Volume I. Supersonic Inlet Investigation - Summary Report

Volume II. Supersonic Iniet Investigation - Air Induction System Dynamic Simulation Model

Volume III. Supersonic Inlet Investigation - Wind Tunnel Data Report

This technical report has been reviewed and is approved.

PHILIP P. ANTONATOS

Chief, Flight Mechanics Division Air Force Flight Dynamics Laboratory

ABSTRACT

Presented herein are wind tunnel data from an investigation whose primary objective was to develop design criteria and performance tradeoffs for supersonic inlets applicable to advanced tactical aircraft. The objective was accomplished by conducting analysis and wind tunnel tests using approximately .125 scale model air induction systems. The baseline models included a two-dimensional external compression inlet, a half-axisymmetric external compression inlet, and a two-dimensional mixed compression inlet. Alternate configurations for the external compression baseline inlets were also investigated. Tests were conducted at transonic and supersonic Mach numbers in the AEDC PWT-4T and VKF-A wind tunnels, respectively. The inlets were tested both isolated and in a well defined nonuniform flow field, the latter representing partial simulation of a vehicle flow field. Steady state performance data (i.e., pressure recovery, pressure distortion, and turbulence levels) are provided at a simulated compressor face and immediately downstream of the inlet throat for the various inlet configurations tested. Additional diagnostic data are provided in the way of surface pressures and boundary layer pressures on the inlet compression surfaces and in the subsonic diffusers.

PRECEDING PAGE BLANK-NOT FILMED

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
П	MODEL INFORMATION	3
	Model Description	3
	Two-Dimensional External Compression Inlet (2DE) Half-Axisymmetric External Compression Inlet (AX) Two-Dimensional Mixed Compression Inlet (2DM) Metering Section	4 5 6 6 7 8
	Instrumentation	8
	Steady State Pressures	9 10 11
	Calibrations	12
	Metering Section	12 13 13 13 13
Ш	TEST INFORMATION	5 3
	Test Conditions	5 3
	PWT-4T Transonic Wind Tunnel	53 54
	Test Procedure	54
	Uniform Flow Field Tests	54 55
	Data Precision	5 6
	Steady State Pressure Measurements	56 57 57
	Summarized Run Log	58
IV	TEST DATA	83
	Data Presentation	83 84
REFERE	NCES	143
APPEND	IX — Supersonic Inlet Investigation — Tabulated Data	145

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Two-Dimensional External-Compression Inlet (2DE) - M _{design} = 2.5.	24
2	Half-Axisymmetric External-Compression Inlet (AX) - M design = 2.5.	29
3	Two-Dimensional Mixed-Compression Inlet (2DM) - M _{design} = 3.0	33
4	Metering Section Details	35
5	Subsonic Diffuser Area Distribution at Design Mach Number	36
6	Flow Field Generator Wedge	37
7	Two-Dimensional External Compression Inlet and Metering Section — Pressure Instrumentation Detail	39
8	Half-Axisymmetric Inlet and Metering Section — Pressure Instrumentation Detail	41
9	Two-Dimensional Mixed Compression Inlet — Pressure Instrumentation Detail	43
10	Metering Section Instrumentation Details	45
11	Movable Rake and Boundary Layer Rake Details	46
12	Typical Dynamic Total Pressure Probe Installation	48
13	Nonuniform Flow Field Pressure Instrumentation Details	49
14	Two-Dimensional External-Compression Inlet (2DE) Installed in PWT-4T Transonic Wind Tunnel	78
15	Two-Dimensional External-Compression Inlet (2DE) Installed in VKF-A Supersonic Wind Tunnel	79
16	Model Arrangement for Nonuniform Flow Field Tests	80
17	Two-Dimensional External-Compression Inlet (2DE) and Flow Field Wedge Installed in VKF-A Supersonic Wind Tunnel	81
18	Half-Axisymmetric External-Compression Inlet (AX) and Flow Field Wedge Installed in VKF-A Supersonic Wind Tunnel	82
19	Sample Tabulated Data Format — Uniform Flow Field, VKF-A Tunnel, 2DE Inlet	131
20	Sample Tabulated Data Format — Uniform Flow Field, PWT-4T Tunnel, 2DE Inlet	135
21	Sample Tabulated Data Format — Uniform/Nonuniform Flow Field, VKF-A Tunnel, 2DE Inlet	139
22	Sample Tabulated Data Format — Flow Field Calibration	142

LIST OF TABLES

TABLE		PAGE
I	VKF-A Tunnel Turbulence	14
II	2DE Inlet — Steady State Pressure Instrumentation	15
Ш	AX Inlet — Steady State Pressure Instrumentation	17
IV	2DM Inlet — Steady State Pressure Instrumentation	19
V	Compressor Face and Metering Station — Steady State Pressure Instrumentation	21
VI	Dynamic Pressure Instrumentation	23
VII	PWT-4T Test Conditions	53
VIII	VKF-A Tunnel Operating Conditions	54
IX	Inlet Parameter Uncertainties	57
X	Wedge — Inlet Position, 2DE Inlet Upright	59
XI	Wedge - Inlet Position, 2DE Inlet Inverted	60
ХII	Wedge - Inlet Position, AX Inlet	61
XIII	Wedge - Inlet Position, 2DE Inlet Rotated 90 Degrees	62
XIV	Summarized Run Log — Transonic Uniform Flow Field (PWT-4T)	63
xv	Summarized Run Log — Supersonic Uniform Flow Field (VKF-A)	67
XVI	Summarized Run Log - Supersonic Nonuniform Flow Field (VKF-A)	74
XVII	Microfilm Data Summary	85
XVIII	Tabulated Data Format Nomenclature — VKF-A Tunnel	86
XIX	Tabulated Data Format Nomenclature — PWT-4T Tunnel	88
XX	Data Errors and Bad Coded Pressures — Supersonic Uniform Flow Field (VKF-A)	90
XXI	Data Errors and Bad Coded Pressures — Transonic Uniform Flow Field (PWT-4T)	93
XXII	Data Errors and Bad Coded Pressures — Supersonic Nonuniform Flow Field (VKF-A)	94
XXIII	Configuration Run Summary — Supersonic Uniform Flow Field (VKF-A)	97
XXIV	Configuration Run Summary — Transonic Uniform Flow Field (PWT-4T)	112
XXV	Configuration Run Summary — Supersonic Nonuniform Flow Field (VKF-A)	121

SYMBOLS AND ABBREVIATIONS

The symbols and abbreviations listed below apply to Sections I through III of this report. It is noted that Section IV includes additional/alternate symbols and abbreviations which are defined separately within Section IV.

SI
, PSI
, inches

SYMBOLS AND ABBREVIATIONS (Continued)

- α Model angle of attack, degrees
- β Model angle of sideslip, degrees
- AX movable rake circumferential location measured from 12-o'clock position, degrees

Abbreviations

2DE Two-dimensional external compression inlet
AX Half-axisymmetric external compression inlet
2DM Two-dimensional mixed compression inlet

SECTION I

INTRODUCTION

As a part of Contract F33615-69-C-1699, "Supersonic Inlet Investigation," shall scale inlet models were tested in the VKF-A Supersonic Wind Tunnel and the PWT-4T Transonic Wind Tunnel at the Arnold Engineering Development Center, Arnold Air Force Station, Tennessee. These tests were conducted in two test series, the first in April-June 1970 and the second in October-November 1970. A description of the test models, information relative to the test operation, and the resultant test data are presented in this report.

The objective of the test program was to obtain air induction system performance data applicable to the development of air induction systems for advanced tactical aircraft. In compliance with this objective, performance data were obtained for various small-scale air induction system models (approximately .125 scale) over a wide range of Mach numbers and angles of attack in both uniform and nonuniform approaching flow field.

The baseline models investigated included a two-dimensional external compression inlet (2DE), a half-axisymmetric external compression inlet (AX), and a two-dimensional mixed compression inlet (2DM). The design Mach number for the external compression inlets was $M_{_{\rm O}}=2.5$ and the design Mach number for the mixed compression inlet was $M_{_{\rm O}}=3.0$. Alternate configurations for the external compression inlets were also investigated.

The inlets were tested both isolated and in a well defined nonuniform flow field, the latter representing partial simulation of a vehicle flow field. Additional details of these tests are provided below:

Induction System Tests in Uniform Flow Field — Isolated inlet models were tested both transonically and supersonically. Nominal transonic Mach numbers were 0.6, 0.8 and 1.2, with angle of attack variations from -5 to 28 degrees. Transonic testing was limited to the external compression models.

Nominal supersonic Mach numbers were 1.5, 1.75, 2.0, 2.25, and 2.5 for the external compression models, and 1.5, 2.25, 2.5, and 3.0 for the mixed compression model. Angle of attack variations from -5 to 20 degrees were investigated at the supersonic Mach numbers.

2. Induction System Tests in Nonuniform Flow Field — Tests were conducted at supersonic Mach numbers with the inlet models in the expansion fan generated by a two-dimensional shock-expansion surface. Tests were limited to the baseline external compression models. Nominal Mach numbers were 1.75, 2.0, 2.25 and 2.50, with angle of attack variations to 15 degrees. Flow nonuniformities up to 20 percent variation in Mach number, and 12 degrees in flow angularity, were imposed across the projected face of the inlets.

SECTION II

MODEL INFORMATION

Model Description

The complete inlet test models consisted of a supersonic inlet section, subsonic diffuser section, flow control and metering section, and support mechanism. Auxiliary hardware included a flow field generator as a vehicle to test the inlet models in a non-uniform flow field.

Figures 1, 2, and 3 show details of the two-dimensional external compression inlet model (2DE), half-axisymmetric inlet model (AX), and two-dimensional mixed compression inlet model (2DM), respectively. Details of the metering section, which were common to each of the inlet/diffuser models, are shown in Figure 4. Figure 5 shows the subsonic diffuser area distributions for each of the baseline inlet models. Details of the flow field generator wedge are shown in Figure 6.

All of the inlet models were equipped for remote actuation of variable compression surfaces, inlet throat bleed flow and inlet mass flow. Each inlet model was also equipped with a remotely actuated total pressure rake located just downstream of the inlet throat section. These rakes were designed to survey the flow in the inlet throat region. During measurements of pressure profiles at the compressor face, the upstream rakes were stowed in a recess in the duct wall.

The model support mechanism consisted of a rectangular sting common to all of the inlet models and two separate adapter sections designed, respectively, to fit the support system of PWT-4T and VKF-A tunnels. The adapter section for each tunnel was designed to use the tunnel pitch mechanism for remote changes of angle of attack. In addition, the VKF adapter was provided with an initial 4-degree pitch offset to extend the model angle of attack range in the VKF tunnel to plus 20 degrees. Since neither of the tunnels had provisions for remote variation of sideslip angle, each adapter section was designed to allow the model to be rigged at sideslip angles of 0 and 4 degrees.

Two-Dimensional External Compression Inlet (2DE). Figure 1 shows details of the baseline 2DE inlet model and associated alternate configurations. The model is shown installed in the VKF-A tunnel in Figures 1a and 1b. The photographs were taken with the model in the airlock (which is part of the VKF-A automatic model injection system) beneath the tunnel.

Details of the 2DE baseline configuration (design $M_0=2.5$) are shown in Figure 1c. The first compression ramp angle was fixed at 10 degrees. The position of the second ramp, remotely variable from -4 to 18 degrees (relative to the first ramp), was scheduled as a function of Mach number. The third ramp, which formed a part of the subsonic diffuser, was directly coupled to the motion of the second ramp.

A throat bleed slot was located between the second and third ramps, the width of the slot varying with ramp angle setting. The throat bleed flow could be regulated remotely and independently of slot width by adjustment of the bleed port area which was vented to the tunnel airstream. Boundary layer bleeds were provided on the second ramp and on an alternate side plate configuration by a series of 0.0625 inch diameter holes. The ramp bleed was metered by fixed area orifices located between the bleed chamber and the tunnel airstream. Sideplate bleeds were vented directly to the tunnel airstream.

The model was equipped with a remotely driven total pressure rake downstream of the throat. This rake, consisting of five steady state total pressure probes and two Kulite dynamic pressure transducers, was designed to survey the flow near the inlet throat. During measurements of pressure profiles at the compressor face, the upstream rake was stowed in a recess in the duct sidewall.

Several alternate cowls were provided to determine the effects of leading edge contour and cowl angle. These cowl configurations, along with the baseline cowl, are identified in Figure 1d. Cowl C5 was the baseline cowl. Cowl C7 was a blunted cowl and cowl C8, while maintaining the same lip contour as cowl C5, was reduced in angle from 20 degrees to 12 degrees. Cowl C10 represented the variable cowl inlet design of the baseline inlet which could be drooped for low speed high mass flow operation. This configuration was tested only in the transonic Mach number range.

As alternate configurations, two sets of vortex generators were provided to improve the performance characteristics of the subsonic diffuser. Details of these vortex generators are shown in Figure 1e.

Half-Axisymmetric External Compression Inlet (AX). Figure 2 shows details of the baseline AX inlet model and associated alternate configurations. The AX baseline configuration (design $M_0=2.5$) was a half-axisymmetric inlet with a translating centerbody. The model with the splitter plate centerbody configuration is shown installed in the VKF-A tunnel in Figure 2a.

Details of the AX baseline configuration are shown in Figure 2b. The translating centerbody was a double cone configuration with an 18 degree half-angle on the initial compression surface and a 30 degree half-angle on the second compression surface. A fixed bleed slot, extending over the circumference of the centerbody, was located at the inlet throat. The throat bleed flow could be regulated remotely by adjustment of the bleed port area, which was vented to the tunnel airstream.

The model was equipped with a remotely driven total pressure rake downstream of the throat in the annular diffuser section. This rake, consisting of five steady state total pressure probes and two Kulite dynamic pressure transducers, was designed to survey the flow by circumferential rotation about the centerbody. During measurements of pressure profiles at the compressor face, the upstream rake was stowed in a recess in the duct sidewall.

Details of an alternate half-axisymmetric inlet design, designated AX7, are also shown in Figure 2b. This model was designed for Mach 2.2 and featured a single fixed cone centerbody with a 25 degree half-angle compression surface and a 14-degree cowl angle.

Both the double cone baseline model and single cone alternate model were tested with a full 360 degree centerbody as the baseline centerbody. The half cone centerbody configurations, with and without splitter plates, were tested as alternate configurations. Details of the various centerbodies are shown in Figure 2c for the double cone configuration.

the effects of leading edge contour and cowl angle. These cowl configurations, along with the baseline cowl, are identified in Figure 2d. Cowl C1 (the baseline cowl) had a constant lip bluntness around the circumference. Cowl C2 was similar to Cowl C1, except for increased lip bluntness. Cowl C3 was designed with variable lip bluntness, with bluntness increasing around the circumference from top to bottom. The increased bluntness at the bottom was provided to minimize internal flow separation tendencies at angle of attack. Cowl C4, while maintaining the same lip contour as C1, was

reduced in angle from 20 degrees to 14 degrees. Cowl C4, in addition to serving as an alternate cowl for the double cone baseline model, served as the baseline cowl for the single cone compression surface model.

Two-Dimensional Mixed-Compression Inlet (2DM). Figure 3 shows details of the baseline 2DM inlet model. For this model, no alternate configurations were provided. Model variations were limited to investigation of alternate second ramp schedules and variation in throat bleed flow.

The 2DM model utilized many components in common with the 2DE inlet model. Changeover from the 2DE model to the 2DM model was accomplished by replacement of the two forward compression ramps (including the second ramp bleed system) and the forward cowl section, resulting in a configuration with partial internal compression. The 2DM model (design $M_0 = 3.0$) was designed for mixed compression operation down to $M_0 = 2.2$.

The 2DM model was designed with two external compression ramps and one internal compression ramp (Figure 3b). The first compression ramp was fixed at 10 degrees, with the second ramp remotely variable from 0 to 12 degrees (with respect to the first ramp) and scheduled with Mach number. The third compression surface (internal compression) was \Rightarrow internal surface of the cowl, fixed at 7 degrees with respect to the inlet horizontal reference plane. The inlet had boundary layer bleed from the second ramp, sideplates and cowl surfaces. A throat bleed slot, similar to that of the 2DE inlet, was located at the junction of the second compression ramp and diffuser ramp. All other model components were identical to the 2DE inlet model.

Metering Section. The metering section (Figure 4), common to each of the inlet diffuser models of Figures 1, 2, and 3, consisted of a simulated compressor face with instrumentation and a flow control and flow metering section. The simulated compressor face included a centerbody total pressure probe and six total pressure rakes, each rake containing five steady state pressure probes and one Kulite dynamic pressure transducer concentric to the middle steady state pressure probe between the centerbody and the duct wall. In addition, two steady state and two dynamic static pressure taps were located on the duct wall in the plane of the total pressure probes. A honeycomb section was located downstream of the simulated compressor face to represent acoustic blockage of the engine.

The inlet mass flow rate was controlled by a translating plug which formed an annular converging-diverging area designed for flow choking at low pressure ratios. The plug, which was designed to slide on a fixed shaft and positioned by a linear DC actuator, could be translated to vary and flow control area from approximately 4 to 14 in². A precision linear potentiometer was mounted on the plug actuator to indicate the plug position.

The flow rate through the metering section was determined from pretest calibrations (to be discussed later). These calibrations provided flow rate as a function of plug position and static pressure measured upstream of the plug. Although the metering section was calibrated for both choked and unchoked flow, the control area operated choked for practically all test conditions due to the convergent-divergent annular flow area.

Subsonic Diffuser. The subsonic diffuser area distributions for the baseline 2DE, AX and 2DM inlet models at the design Mach number are shown in Figure 5. The diffusers were designed to approximately maintain the scaled area and length relationships of the full scale diffusers, but did not include the offset contours required for integration into the full scale aircraft. Minor deviations in the scaled area and length relationships were required to maintain a degree of commonality of model components between the baseline inlet models.

The overall diffuser area ratio for the 2DE and AX inlet models was the same as a result of the common design Mach number of 2.5. However, the area distributions for these two inlet models are significantly different due to provision for the variable geometry requirements of the supersonic portion of the inlet. The diffuser of the 2DE inlet has a variable ramp with a pivot point at about half the length of the diffuser. This configuration results in a gradually increasing area distribution. On the other hand, the translating centerbody configuration of the AX inlet requires a relatively large increase in cowl area over a short linear distance to maintain the required inlet throat area as the centerbody is translated aft to the larger throat area positions. As a result, a rapid increase in diffuser area occurs when the centerbody is in the design Mach number position.

The 2DM inlet model utilized the same diffuser hardware as the 2DE inlet model. As a result, the area distribution is qualitatively like that of the 2DE, but with a higher overall area ratio due to the increase in design Mach number to 3.0.

All the diffusers were the same length. This length, in terms of compressor face diameters, was 6.5.

Flow Field Generator Wedge. A flow field generator, designed to generate an approximately linear two-dimensional flow field gradient, was used as a vehicle to test the inlet models in a nonuniform flow field. Figure 6 shows details of the flow field wedge. The wedge is shown installed in the VKF-A tunnel with the flow field calibration rake in Figure 6a.

The geometry of the wedge is shown in Figure 6b. The wedge consisted of an 8 degree compression surface at the leading edge, followed by a centered expansion Prandtl-Meyer contour ($M_0 = 2.0$ design), and finally, a -8 degree straight trailing edge surface. The chord of the wedge was approximately 24 inches.

The wedge spanned the full width of the tunnel and was supported at the ends by a structure recessed into a steel window blank, the window blank forming a portion of the tunnel side wall. Vertical positioning of the wedge (up to 14 inches above the tunnel centerline) with respect to the inlet models was achieved by adjustment of lead screws (which restrain the wedge in the vertical plane) mounted in the window blanks at each end of the wedge. The wedge assembly was fixed in the horizontal plane. Horizontal positioning of the wedge with respect to the inlet models (up to 43 inches separation between the leading edge of the wedge and the leading edge of the inlet models) was achieved by fore-aft translation of the inlet models. Thus, by vertical adjustment of the wedge, along with horizontal translation of the model, preselected coordinates of the wedge with respect to the model to obtain given values of flow field nonuniformity were achieved.

Instrumentation

Each of the inlet models was instrumented for both steady state and fluctuating pressure measurements. This instrumentation included the various total pressure rakes shown in Figures 1 through 4, in addition to static pressure measurements made at various locations throughout the models. Additional pitot rakes were used to measure the nonuniform flow field generated by the flow field wedge.

The steady state and dynamic pressure instrumentation for the 2DE, AX and 2DM inlet models and compressor face-metering section is depicted in Figures 7, 8, and 9. Each steady state pressure orifice and dynamic pressure transducer is located

and numbered in these drawings. Tables II through VI supplement Figures 7 through 9 in providing additional instrumentation detail. The steady state pressures for the 2DE, AX, and 2DM models are identified in Tables II, III, and IV, respectively. The compressor face and metering section steady state pressures are identified in Table V, and the dynamic pressure instrumentation is identified in Table VI.

Steady State Pressures. Steady state pressure instrumentation for the inlet models included compression surface pressures, diffuser wall pressures, internal and external cowl pressures, translating rake pitot pressures, boundary layer rake pressures, compressor face pitot and static pressures, flow rate metering pressures, and throat and ramp bleed plenum pressures.

The compression surface pressures, diffuser wall pressures and internal and external cowl pressures were measured with flush static orifices mounted in line along the inlet vertical center plane for the 2DE and 2DM inlets (Figures 7 and 9), and in line along the inlet horizontal center plane for the AX inlet (Figure 8).

Details of the compressor face instrumentation are shown in Figure 10. The six rakes were spaced 60 degrees apart, with each probe positioned to measure the total pressure at the centroid of equal areas. Note that the middle probe of each rake is a dynamic pitot.

Static pressure orifices 134, 135, 136, and 137 (Figure 7), located 90 degrees apart in the flow metering section upstream of the mass flow plug, were calibrated as a function of the mass flow plug position to determine the inlet mass flow. The metering section was calibrated for both choked and unchoked flow. Pressure orifices 139, 140, and 143 were monitored to determine whether or not the metering section was choked.

Mass flow through the throat bleed system was determined with pressure measurements from orifice 200 located in the bleed plenum chamber of all the models. This pressure was calibrated as a function of throat bleed exit area in pretest calibrations. Likewise, mass flow through the ramp bleed system (2DE and 2DM inlets) was determined with pressure measurements from orifice 201.

Details of the total pressure rakes used in each of the models are shown in Figure 11. The individual probes of the movable rakes used in each of the models were located such that the rakes could be programmed to measure the total pressures at the centroid of equal areas as the rake was moved to survey the diffuser duct. That is, for the 2DE and 2DM inlets, the outside probes were located 1/10 of the duct width

or 0.275 inches from the diffuser side walls and the distance between probes was 0.55 inches. The AX movable rake probes, because of the three-dimensional effect, are closer together as the radial position is increased.

Steady state pressures (excluding the movable rakes) were measured in the VKF-A tunnel with 25-psid strain gage transducers mounted in three 48-port Scanivalves. The transducer-valve units were mounted outside the wind tunnel and connected to the model with 0.040 inch ID steel tubes. Pitot pressure measurements from the movable rakes were obtained with 15-psid transducers.

In the PWT-4T tunnel, all steady state pressures were measured with individual 15-psid transducers.

Dynamic Pressure Measurements. Locations of the dynamic pressure sensors are shown in Figures 7 through 11 along with the steady state instrumentation. This instrumentation consisted of six (6) total head dynamic probes and two (2) surface mounted static dynamic probes at the simulated compressor face station, one (1) total head probe at the compressor bullet nose, and two (2) total head dynamic probes and one (1) surface mounted static dynamic probe at the movable rake station within the diffuser.

Additional dynamic instrumentation included two reference sensors to measure the tunnel and instrumentation noise floor. A dynamic transducer was buried in the compressor face bullet nose section to measure the transducer response to mechanical vibrations as well as the electrical noise floor of the data acquisition system. A second dynamic transducer was mounted in the tunnel freestream to measure the tunnel noise floor. The higher of the two readings was considered as the noise floor of the inlet dynamic data.

All fluctuating pressure measurements were obtained with 0.08 inch diameter Kulite semiconductor transducers. Figure 12 shows the transducer installation for the model total pressure measurements. The transducers were mounted in pitot tubes with a slotted plate placed in front of the transducer face to protect it from particles. The corresponding local steady state total pressures were measured through a tube concentric to the transducer.

The transducer installation for measuring the freestream noise level was similar to that used to measure fluctuations in total pressure within the models (i.e., Figure 12), except that a cylindrical sleeve was added to the freestream probe to increase its

frontal area, thus insuring a clean, normal shock in front of the sensing area. The final outer diameter of the resulting freestream probe was 0.25 inch compared to an outer diameter of 0.125 inch for the compressor face probes.

Transducers for measurement of static pressures were mounted with the diaphragm flush to the diffuser duct surface without a protective plate. The corresponding steady state pressure was obtained from an adjacent orifice.

The output from the dynamic transducers was recorded on magnetic tape through a 14-channel frequency-modulated tape system. The root-mean-square (RMS) pressure level was measured at the same time and recorded with the steady state pressure data.

Flow Field Wedge. Auxiliary instrumentation associated with generation of the nonuniform flow field is shown in Figure 13. Figure 13a shows the flow field calibration rake. This rake was attached to the trailing edge of the wedge during flow field calibration tests performed prior to tests with inlet models in the wedge flow field. Since the flow field generated by the wedge is readily predictable, only one survey location was used. This survey was made to serve as a check of the analytically predicted flow fields by providing measured data on the distribution of Mach number across the expansion fans and data on the uniformity of the flow across the span of the wedge in the region of the inlet models.

The probes of the flow field calibration rakes are designed to measure total pressure (behind the locally normal shock immediately ahead of the probe tips). The relation of the probe O.D. (.125 inch) to I.D. (.069 inch) was such as to assure a normal shock upstream of the probe orifice for flow angles with respect to the probes within the range anticipated. Based on the measured freestream total pressure ahead of the wedge, the total pressure loss of the flow in passing through the wedge leading edge shock, and the measured total pressure by the flow field calibration rake probes, the local Mach number of the flow approaching the probes was readily obtained.

In addition to the flow field calibration rake, the wedge compression surface was instrumented with five static pressures as indicated in Figure 13a. These static pressures provided a check of the wedge alignment as well as the effect of any boundary layer buildup along the wedge which might change the effective angle of the wedge by displacing the external flow by the boundary layer displacement thickness (this effect was anticipated to be of the order of 0.1 degree). These static pressures were

monitored during the tests to assure proper alignment of the wedge throughout the test program.

Flow field rakes for the 2DE and AX inlet models are shown in Figures 13b and 13c, respectively. These rakes are shown attached to the inlet models with the probe tips aligned with the forward tip of the inlet compression surfaces, and with the rakes displaced 7.5 inches from the inlet centerlines. As such, they are designed to measure the flow field nonuniformity across the projected inlet face reference plane. The probe design and data evaluation techniques were similar to those for the flow field calibration rake discussed above. Note that the rake for the two-dimensional inlet has probes located along the spanwise direction as well as across the vertical reference plane.

Calibrations

Pretest calibrations of the model metering section, throat bleed systems, ramp bleed systems, and remotely actuated components were performed at Northrop Aerosciences Laboratory prior to shipment of the models to the AEDC Wind Tunnels. In addition, inlet model static tests were performed with each of the three baseline inlets to determine static performance of the models, provide pretest checkout of instrumentation, and determine the effects of compressor face pressure distortion, if any, on the metering section calibration. Dynamic pressure instrumentation was calibrated at both the VKF-A and PWT-4T wind tunnel facilities prior to and after testing.

Metering Section. With the entrance to the metering section (Figure 4) Fitted with a bellmouth inlet and the exit connected to a suction system, the flow rate through the metering section was measured with a standard ASME orifice. Flow rate calibrations were performed with the bellmouth inlet exposed both to ambient pressure and to a 30 psia high pressure air source.

Measurements of compressor face pressures, metering section reference pressures, and flow rate were made over a range of pressure ratios across the metering section for various settings of the mass flow plug. The range of pressure ratios tested provided calibration at both choked and unchoked conditions (note that as a result of the converging-diverging area design of the mass flow plug, flow choking was achieved at pressure ratios across the metering section of less than 1.2).

Static testing with the inlet models coupled to the metering section provided calibration data on the effect of compressor face pressure distortion on the basic

metering section calibration. Based on these pretest calibrations, flow metering accuracy was determined to be ± 2 percent, including the effects of compressor face pressure distortion.

Throat and Ramp Bleed Systems. Suction lines, containing flow metering instrumentation, were connected to the throat bleed outlets to calibrate the bleed flows as a function of bleed port area and pressure ratio across the bleed port area. Similar calibrations were made for the fixed area ramp bleed outlets.

Remotely Actuated Components. Voltage versus position calibrations were performed for each of the model position indicator potentiometers. Potentiometer range and limit switch location were checked, and adjusted as required, as a part of these calibrations. Included in these calibrations were: (1) compression ramp (cone) actuation system; (2) throat bleed port area; (3) translating throat rake; and (4) mass flow control plug.

Inlet Model Static Tests. Inlet model static tests were performed with each of the three baseline inlets to determine their static performance, provide pretest checkout of instrumentation, and determine the effects of compressor face pressure distortion, if any, on the metering section calibration. For these tests, the inlets were coupled to the metering section, with the exit of the metering section connected to a suction system. All internal steady state pressures were recorded during these tests to determine the diffuser pressure distribution and compressor face total pressure recovery and pressure distortion.

Tests were conducted both with and without a bellmouth entry to the inlets, the data with the bellmouth providing information on the performance of the subsonic diffuser and the data without the bellmouth providing information on the overall inlet performance at static conditions.

Dynamic Pressure Probes. The dynamic pressure instrumentation was calibrated for frequency response at both the VKF-A and PWT-4T wind tunnel facilities. Both calibration setups were similar in that the Kulite pressure probe assembly was exposed to discrete frequency sound waves of 140 db (reference .0002 microbar) amplitude. Each probe used in the test was calibrated over the frequency range 20-5000 Hz prior to installation in the model. All the dynamic probes used in the test showed less than a ±2 db variation over the calibrated frequency range.

Freestream noise levels were measured at $M_0 = 1.5$, 2.0, 2.25, 2.5, and 3.0 in the VKF-A tunnel. The data were recorded with the model out of the stream since the sidewall mounted probe was located in an area aft of the model shock system with the model injected into the stream. The freestream RMS turbulence level normalized to the tunnel stagnation pressure is presented below for five Mack numbers.

TABLE I. VKF-A TUNNEL TURBULENCE

M _o	Re _o x 10 ⁻⁶	RMS/PTO x 10 ²
1.5	5.8	0.46
2.0	5.8	0.08
2.25	5.2	0.14
2.50	5.8	0.12
3.0	4.4	0.10

Due to mechanical problems with the probe designed for measuring the free-stream turbulence in the PWT-4T tunnel, it was not possible to record this data directly. However, analysis of the turbulence data measured by the transducer buried in the model bullet nose, and an inspection of the trends of the turbulence data measured by all transducers, indicated the tunnel freestream noise level to be well below one percent of the tunnel total pressure.

TABLE II. 2DE INLET - STEADY STATE PRESSURE INSTRUMENTATION

Pressure				
Orifice	Model		_	70
Number	Station	Description	P static	Ptotal
,			Х	
1	63.0	lst ramp surface pressure	î	
2	66.2	2 1	ļ	
3	68.5	2nd ramp surface pressure		
4	70.0			
5	70.4		[
6 7	70.8		[
	71.2		1 1	
8 9	71.5	•	! Y	
) 9	72.0		·	
20	70.6	Diffuser lower wall pressure	Х	
21	71.0			
22	71.6			
23	72.1			
24	72.6			
25	73.1			
26	74.1			
27	76.0			
28	78.8	<u></u>	1	ł
29	83.6		T	
40	72.6	Diffuser upper wall pressure	x	
41	73.1	l l	l î	
42	73.6			
43	74.1		1	1
44	77.0			i
45	79.8			1
46	84.6			ł
47	92.6			
48	98.0	V	₹	
1		Translating rake, .28 in		x
50	80.0	, ,		î
51		(measured from left, looking aft) .83 in		
52		1.38 II 1.93 ir		
53	₩	2.48 ir		1
54	1	'		
60	71.0	Lip external surface pressure	X	
61	71.2			
62	71.4			
63	71.7			
64	72.3			
65	72.8			
66	74.3	1	7	

TABLE II. Concluded

Pressure Orifice Number	Model Station	Description		P _{static}	P total
70 71 72 73 74 75	68•5	Fwd. B.L. rake, second ramp (measured from ramp)	.02 in .05 in .10 in .15 in .25 in .40 in		X
80 81 82 83 84 85	71.5	Aft BL rake, second ramp (measured from ramp)	.02 in05 in .10 in15 in25 in40 in.		X
90 91 92 93 94 95	85.0	BL rake, diffuser (measured from ramp)	.05 in15 in30 in45 in65 in.		X
200 201	74.0 70.0	Throat bleed plenum pressure Ramp bleed plenum pressure			x x

TABLE III. AX INLET - STEADY STATE PRESSURE INSTRUMENTATION

Pressure				
Orifice	Model		_	_
Number	Station	Description	P static	Ptotal

1	68.2	1st cone surface pressure	Х	
2	69.4			
3	70.4	2nd cone surface pressure		
4	70 .7			
1 2 3 4 5	71.1		1	
6	71.4			
7	71.8		1 1	
8	72.0		Y	
20	71.7	Diffuser outboard wall pressure	Х	
21	72.2			
22	72.7			
23	73.2			
24	73.7		1	
25	74.8		1	
26	75.4			
27	76.6		i l	
28	78.1		1 1	1
29	80.4			
30	85.7	<u> </u>	!	1
31	92.8		7	}
32	71.7	Diffuser lower wall pressure	Х	
33	72.2			
34	72.7] }	
35	73.2	l l	1 1	
36	73.7	•	T	
40	73.1	Diffuser inboard wall pressure	X	
41	73.6			
42	74.1			
43	75.0			
44	81.1			
45	83.0			
46	88.7			
48	98.0		1	
5 0	78.1	Sweep rake (closest to centerbody), r/R=.681		X
51		.770		
52		.848		
53	1 1	.915		+
54		.976		'

TABLE III. Concluded

Pressure Orifice Number	Model Station	Description	· · · · · · · · · · · · · · · · · · ·	Pstatic	Ptotal
60 61 62 63 64 65 66	71.8 72.0 72.2 72.5 73.1 73.7 74.7	Lip external surface pressure		X V	
70 71 72 73 74	70.0	Upper BL rake (measured from centerbody)	.02 in .05 in. .10 in. .15 in. .25 in.		X
80 81 82 83 84	70.0	Lower BL rake (measured from centerbody)	.02 in03 in10 in15 in25 in.		X
200	78.0	Throat bleed plenum pressure			х

TABLE IV. 2DM INLET - STEADY STATE PRESSURE INSTRUMENTATION

Pressure			T	
Orifice	Model		D	p
Number	Station	Description	Pstatic	Ptotal
				
1	58.9	lst ramp surface pressure	X	
2	62.8	†	1 1	
3	65.9	2nd ramp surface pressure	1 1	
4	68.0			
5	68.5]	 	
3 4 5 6 7	69.0			
L	69.4			
8 9	69.8		1 1	
10	70.25 70.55			
11	71.0	₩	Y	
		Different learn wall management	x	
20 21	68.55 69.55	Diffuser lower wall pressure	Î	
22	70.45		1	
-				
24	72.2			
25 26	73.2 74.4			
27	75.5			
28	79.4			
29	84.4		T	
40	73.3	Diffuser upper wall pressure	х	
41	73.8			
42	74.3			
43	74.8		1 1	
44	76.8		1 1	
45	79.8			
46 47	84.5 92.4		1 1	
48	98.0		\ \	
		mlastna naka		x
50	80.0	Translating rake (measured from left, looking aft)		^
51 52		.03 1		
53		1.38 in		
54		1.43 in 2.48 in		
60	71.0	Lip external surface pressure	x	
61	71.2	bip excernal surface pressure	î	
62	71.4			
63	71.7			
64	72.3			
65	72.8		1	

TABLE IV. Concluded

Pressure Orifice Number	Model Station	Descript i on		Pstatic	Ptotal
70 71 72 73 74 75 80 81 83 83 84 85	65.0 71.5	Fwd BL rake, second ramp (measured from ramp) Aft B.L. rake, second ramp (measured from ramp)	.02 in05 in10 in15 in25 in40 in02 in05 in10 in15 in25 in.		X
90 91 92 93 94 95 200 201	74.0 70.0	B.L. rake, diffuser (measured from ramp) Throat bleed plenum pressure Ramp bleed plenum pressure	.02 in05 in10 in15 in25 in40 in.		X X X

TABLE V. COMPRESSOR FACE AND METERING STATION - STEADY STATE PRESSURE INSTRUMENTATION

Pressure			<u> </u>	
Orifice	Mode1		D	D
Number	Station	Description	Pstatic	P total
100	98.9	Bullet nose total		Х
101 102 103 104 105	100.0	Compressor face total, 0° rake, r/R = .9549		×
106 107 108 109 110	100.0	Compressor face total, 60° rake,r/R = .9549 .8581 .7488 .6205 .4577		x
111 112 113 114 115	100.0	Compressor face total, 120° rake,r/R = .9549		×
116 117 118 119 120	100.0	Compressor face total, 180° rake,r/R = .9549 .8581 .7488 .6205 .4577		×
121 122 123 124 125	100.0	Compressor face total, 240° rake,r/R = .9549 .8581 .7488 .6205 .4577		×
126 127 128 129 130	100.0	Compressor face total, 300° rake,r/R = .9549		×
131 132	100.0	Compressor face static, 0°, upper wall Compressor face static, 180°, lower wall	×	

TABLE V. Concluded

Pressure Orifice Number	Model Station	Description	P static	P total
135 136 137 138	105.2	Metering section pressure, (top), 0° 90° 180° 270°	X	
139 140 141 142 143	108.3 108.5 108.8 109.1 115.2	Metering section throat pressure, upper wall Metering section exit pressure	x V x	

TABLE VI. DYNAMIC PRESSURE INSTRUMENTATION

Dynamic Pressure PD	Model Station	Description	Pressure Orifice Number (Steady State)
1	98.9	Bullet nose total pressure	100
2	100.0	Compressor face total, 0° rake	103
3		60° rake	108
4		120° rake	113
5		180° rake	118
6		240° rake	123
7		300° rake	128
8		Compressor face static, 0° top	131
9		180° bottom	132
10	 	Buried Transducer, bullet nose	
11	79.8	2-D inlet diffuser static	
11	76.6	AX inlet diffuser static	27
12	80.0	2-D inlet translating rake, left, looking aft	50
12	78.1	AX inlet translating rake, center	52
13	80.0	2-D inlet translating rake, center	52
13	78.1	AX inlet translating rake, outboard	54
14	-	Tunnel total pressure	

a. Installation Photograph, Side View Figure 1. Two-Dimensional External-Compression Inlet (2DE) - $M_{\rm design}$ = 2.5

24

b. Installation Photograph, Front View

Figure 1 Continued

25

c. Inlet Details and Diffuser Details

Figure 1 Continued

Cowl	θ c' deg	Inside Contour	A, in.	B, in.	Outside Contour	C, in.	D, in.	A _C .
CS	20	Circular	0.016	0.016	Elliptical	0.031	0.063	15.02
C2	20	Elliptical	0.250	0, 125	Elliptical	0.063	0.125	15.02
C8	14	Circular	0.016	0.016	Elliptical	0.031	0.063	15.02
C10*	5	Circular	0.016	0.016	Elliptical	0.031	0.063	16.05

*Represents baseline variable cowl inlet, C5, in "drooped" position for low speed operation.

d. Cowl Details

Figure 1 Continued

Vortex Generator Location - M.S. 75.5

Vortex Generator Details

Vortex Generator Configuration	Description
v	4 Pairs as shown
V1	1 Pair on Diffuser Ramp Only

e. Vortex Generator Details

Figure 1 Concluded

a. Installation Photograph

Half-Axisymmetric External-Compression Inlet (AX) - M_{design} = 2.5 Figure 2.

b. Inlet Details and Diffuser Details

Figure 2 Continued

Full Cone Configuration (AXF)

Half Cone Configurations:
(AXS) with Splitter Plate
(AXH) without Splitter Plate

c. Centerbody Configurations for Double Cone Compression Surface

Figure 2 Continued

Outside

Cowl	θ _c ,	Section	Inside Contour	A, in	B, in	Outside Contour	C, in	D , in	A_{c} , in^2
C1 C2 C3*	20 20 20 20 20	A-A to C-C A-A to C-C A-A B-B C-C	Circular Circular Circular Elliptical	0.016 0.031 0.031 0.125 0.250	0.016 0.031 0.031 0.070 0.115	Elliptical Elliptical Elliptical Elliptical Elliptical	0.031 0.063 0.063 0.063	3.063 0.125 0.125 0.125 0.125	14.68 14.68 14.68 14.68
C4	14	A-A to C-C	Circular	0.016	0.016	Elliptical	0.031	0.063	14.08

* Outside contour varies between sections A-A and C-C

d. Cowl Details

Figure 2 Concluded

a. Installation Photograph

Figure 3. Two-Dimensional Mixed-Compression Inlet (2DM) - Mdesign 3.0

,

b. Inlet Details

Figure 3 Concluded

Figure 4. Metering Section Details

Figure 5. Subsonic Diffuser Area Distribution at Design Mach Number

a. Wedge and Calibration Rake Installed in VKF-A Supersonic Wind Tunnel

Figure 6. Flow Field Generator Wedge

Wedge Surface	X, in.	Y, in.
8° Compression Surface	0.0	1.405
Prandtl-Meyer Contour (M _O =2.0)	10.428 10.685 10.960 11.253 11.565 11.894 12.244 12.619 13.014 13.787	1. 456 1. 476 1. 492 1. 501 1. 504 1. 498 1. 460 1. 425 1. 332
-8° Trailing Surface	13.787 23.265	1.332

b. Wedge Coordinates

Figure 6 Concluded

- O Steady State Pressure Instrumentation (See Tables II and V)
- Δ Dynamic Pressure Instrumentation (See Table VI)

SECTION C-C

INLLI REF LINE

Figure 7. Two-Dimensional External Compression Inlet and Metering Section - Pressure Instrumentation Detail

FUN STA BOURD RIALL MODELS

WETERING SECTION

- O Steady State Pressure Instrumentation (See Tables III and V)
- △ Dynamic Pressure Instrumentation (See Table VI)

8 8 8 8 8 8

HALF AXISYMMET

Figure 8. Half-Axisymmetric Inlet and Metering Section Pressure Instrumentation Detail

PROCEDING PAGE BLANK-NOT FILMED

PROCEDING PAGE MANK-NOT FILMED

PROCEDING PACK BLANK-NOT FILMER

- VODEL ST

NUET HER LINE & LUMPHEHOUR FALE .

Figure 9. Two-Dimensional Mixed Compression Inlet Pressure Instrumentation Detail

COMPRESSION INLET

The second secon

Figure 10. Metering Section Instrumentation Details

Diffuser Boundary Layer Rake

Movable Rake

a. 2DE and 2DM Inlets

Figure 11. Movable Rake and Boundary Layer Rake Details

Centerbody Boundary Layer Rake

All Dimensions in Inches

Movable Rake

b. AX Inlet Rake Details

Figure 11 Concluded

All Dimensions in Inches

Figure 12. Typical Dynamic Total Pressure Probe Installation

a. Flow Field Calibration Rake

Figure 13. Nonuniform Flow Field Pressure Instrumentation Details

b. 2DE Inlet Flow Field Rake

Figure 13 Continued

c. AX Inlet Flow Field Rake

Figure 13 Concluded

SECTION III

TEST INFORMATION

Test Conditions

The inlet models described in Section II were tested over a wide range of transonic and supersonic Mach numbers and angles of attack.

The tests were conducted in the VKF-A Supersonic Tunnel and the PWT-4T Transonic Tunnel at the Arnold Engineering Development Center, Arnold Air Force Station, Tennessee. The 2DE inlet model is shown mounted in the PWT-4T and VKF-A tunnel test sections in Figures 14 and 15, respectively. Tunnel operating conditions at which data were obtained in each of the tunnels are discussed below. For identification of specific model configurations associated with each tunnel operating condition, the reader is referred to the run log summary presented in Tables XIV, XV and XVI.

<u>PWT-4T Transonic Wind Tunnel</u>. Data were obtained at the test conditions indicated in Table VII.

TABLE VII. PWT-4T TEST CONDITIONS

M _o	$Re_0 \times 10^{-6}/ft$	PTO, psia	T _o , °R
0.6	5.0	22.5	565
0.6	5.5	23.6	565
0.8	2.5	9.7	365
0.8	4.5	17.0	565
0.8	5.5	20.8	565
1.2	2.5	8.7	565
1.2	4.5	15.3	565
1.2	5.5	18.8	565

The tests were generally conducted at a Reynolds number of 5.5×10^6 per foot over the range of Mach numbers indicated. However, some tests were conducted at the lower Reynolds number due to tunnel power limitations during periods of simultaneous operation of more than one tunnel using the common power supply.

VKF-A Supersonic Wind Tunnel. Data were obtained at the tunnel operating conditions indicated in Table VIII.

TABLE VIII. VKF-A TUNNEL OPERATING CONDITIONS

M _o	$Re_0 \times 10^{-6}/ft$	PTO, psia	T _o , °R
1.51	5.8	20.4	565
2.00	1.9	8.0	565
2.00	5.7	23.8	565
2.00	7.3	30.5	565
2.18	5.4	24.5	565
2.25	5.6	25.5	565
2.50	5.7	30.5	565
3.00	4.4	30.0	565

The tests were generally conducted at the highest Reynolds number per foot attainable, while maintaining approximately the same Reynolds number per foot at all Mach numbers. This resulted in Reynolds number of nominally 5.5×10^6 per foot over the range of Mach numbers from 1.5 through 2.50, except at Mach 2.0 where the effect of Reynolds number was a specific variable to be investigated. At Mach 3.0, testing was limited to a test Reynolds number of 4.4×10^6 per foot due to tunnel limitations.

Test Procedure

The test procedure established for testing the inlet models in the uniform tunnel flow field of the PWT-4T and VKF-A tunnels and for testing in the nonuniform flow field generated by the flow field wedge in the VKF-A tunnel follow.

Uniform Flow Field Tests. The test procedures followed in the VKF-A and PWT-4T tunnels were essentially the same except for the tunnel starting and shutdown procedures. The VKF-A tunnel was equipped with a model injection system which allowed the model to be injected into the tunnel for a test run or retracted from the tunnel for a model change without interrupting the tunnel flow. Thus, the starting and shutdown procedures at the VKF-A tunnel were accomplished with the model removed from the tunnel.

At the VKF-A tunnel, the model was injected into the tunnel after the desired Mach number and pressure conditions were established. Inlet parameters, such as compression ramp angle or centerbody position and throat bleed, were set at the

desired positions prior to model injection. During injection, the model was positioned at zero angle of attack and sideslip, with the inlet mass flow metering plug opened to a position where supercritical inlet operation was assured.

At the PWT-4T tunnel, the model was positioned in the tunnel at zero angle of attack and sideslip during tunnel starting, shutdown and Mach number changes. The flow metering plug was set at an open position during tunnel starts and shutdowns to reduce the aerodynamic loads on the model.

Once the model was positioned in the tunnel with the tunnel conditions established, the subsequent procedures were nearly identical for both tunnels. With the model positioned in the tunnel, the desired inlet parameters, compression ramp or centerbody position and throat bleed were set for the case of PWT-4T operation, and checked for the case of VKF-A operation. The model was then positioned at the desired angle of attack. Next, the inlet mass flow metering plug was positioned and data were then ready to be recorded.

The data recording was done in two modes. First, all the data except the movable rake data were recorded, and secondly, the movable rake was stepped sequentially to five positions, with the rake data recorded at each position. This procedure was repeated for approximately five flow metering plus settings for each test condition. Steady state and dynamic data were recorded simultaneously at each data point.

For supersonic test conditions, the range of mass flow ratios investigated extended from supercritical to incipient buzz. Within this range, compressor face data were obtained at supercritical, near critical, predicted operational, subcritical, and incipient buzz conditions for each supersonic test condition. At subsonic test conditions, compressor face data were obtained at similar values of mass flow conditions, except that the lowest mass flow was selected to cover the probable range of operation of the engine. Because of the time associated with sweeping the movable rake to survey the diffuser, data at this station were generally limited to three mass flow points: supercritical, operational and subcritical. It is noted that the movable rake was stowed in the duct wall during measurements of compressor face data.

Nonuniform Flow Field Tests. For the inlet tests in the nonuniform flow field, the inlet was placed in the expansion fan of the flow field generator wedge such that the desired Mach number variation, ΔM , was realized across the inlet reference plane ab (Figure 16). The inlet reference plane ab was defined as the projection of the inlet

capture area normal to the model axis on a plane passing through the forward tip of the inlet compression surface. The magnitude of the Mach number variation, ΔM , was controlled by the relative position of the wedge with respect to the inlet models. Thus, in moving the inlet model toward the wedge, the value of ΔM was increased, and conversely, moving the model away from the wedge, the value of ΔM was decreased. Figures 17 and 18 show the 2DE and AX inlet models mounted in the VKF-A tunnel downstream of the flow field generator wedge.

In addition to the procedures outlined for testing in the uniform flow, testing in the wedge flow field required positioning of the wedge and inlet model for each test condition. Tables X through XIII show the position of each of the inlets with respect to the wedge as a function of Mach number, angle of attack, and the flow field gradient, $\Delta M/M_0$. Changes in wedge position and model position were both accomplished with the tunnel operating. The wedge position (YM) was adjusted by cranking lead screws on each end of the wedge. The wedge alignment was maintained by sighting through a transit. The inlet model position (XM) was adjusted through the use of the model injection system mechanism.

Data Precision

The precision of the basic tunnel parameters (total pressure, total temperature and test section Mach number) for each of the PWT-4T and VKF-A tunnels are presented in References 1 and 2, respectively. A discussion of the precision of the model, instrumentation, and resulting data follows.

Steady State Pressure Measurements. All of the steady state pressure measurements in the PWT-4T were made with individual (15 psid) transducers. The estimated uncertainties in the pressure recovery resulting from the tunnel pressure transducer system were estimated to be no greater than ± 0.15 percent. The uncertainty of the model angle of attack was no greater than ± 0.1 degree.

At the VKF-A tunnel, pitot pressure measurements for the movable rakes were obtained with individual 15 psid transducers with variable reference and having full scale calibrated ranges of 5 to 15 psid. All other steady state pressures were measured with 25 psid strain gage transducers mounted in three 48 port Scanivalves. The uncertainty of the movable rake pressure measurements was estimated to be ± 0.3 percent. The other steady state pressure measurements were estimated to have an uncertainty of ± 1.0 percent. The precision of the model angle of attack was estimated to be ± 0.1 degree.

Based on the laboratory calibrations, and on the precision of the potentiometers used, the estimated uncertainty in the position of the translating model components (centerbodies, mass flow plug, throat bleed orifice plate and 2D model movable rake) was ± 0.10 inches. The precision of the rotating components, 2DE and 2DM compression ramp angles and AX model movable rake was estimated to be ± 0.1 degree and ± 1.0 degree, respectively. Calibration of the flow field wedge indicated that the effective angle of the wedge at all Mach numbers was 0.5 to 1.0 degrees greater than the nominal 8 degree angle (Figure 6).

Calibrations of the mass flow system conducted at the Northrop Aerosciences Laboratory indicated uncertainties of ± 2 percent in the inlet mass flow metering throat bleed and ramp bleed systems.

Dynamic Pressure Measurements. The dynamic pressure probes were calibrated at each of the wind tunnels to determine the transducer response to known levels of excitation. Based on these calibrations the uncertainty of the dynamic pressure measurements was estimated to be ±1.4 percent. In addition to the uncertainties noted above, the presence of oil in tunnel air resulted in the contamination of the compressor face dynamic probes during tests in the PWT-4T tunnel. Since the accumulation of oil on the probes would be a function of exposure time, a chronological inspection of the data was conducted. Based on this study (see Volume I for details), it was concluded that the dynamic data measured at the compressor face was questionable after part number 300. The dynamic data from the probes on the movable rake and the wall mounted statics were unaffected by the oil contamination.

<u>Inlet Parameters</u>. Assuming a combination of maximum freestream and pressure measurement uncertainties, the precision of the derived inlet parameters was computed to be as shown in Table IX.

TABLE IX. INLET PARAMETER UNCERTAINTIES

Inlet Parameter	Uncertaintie	es, Percent
muet Parameter	VKF-A	PWT-4T
PTCF/PTO PTR/PTO RMSCF/PTCF RMSR/PTR WCF/WC WBR/WC WBT/WC	1.1 .6 1.7 1.4 2.5 2.5 2.5	.4 1.3 1.3 2.2 2.2 2.2

Estimated uncertainties in the distortion indices for each of the tunnels based on the precision of individual pressure measurements were:

DICF = ± 0.014 and DIR = ± 0.003 at the VKF-A tunnel and DICF and DIR = ± 0.003 at the PWT-4T tunnel.

Summarized Run Log

A complete summary of the tests conducted during the course of this study are presented in Tables XIV through XVI. The transonic tests conducted at the PWT-4T tunnel are summarized in Table XIV. Supersonic tests concluded at the VKF-A tunnel are summarized for uniform and nonuniform flow field tests in Tables XV and XVI, respectively. The test points (part number at PWT-4T and group number at VKF-A) are grouped together for each primary variable tested. The primary variable in each series is indicated by an arrow.

TABLE X. WEDGE - INLET POSITION, 2DE INLET UPRIGHT

Mo	∆ M/M _o	lpha, deg.	XM, in.	YM, in.
1.75	.15	0	23.7	7.6
<u> </u>	.20	0	19.3	8.6
	.20	5	20.1	5.0
	.20	15	21.8	5.8
2.0	.15	0	25.7	7.2
l i	.15	0 5	26.6	7.6
	.15	10	27.7	8.1
	.20		21.0	4.7
	.20	0 5	21.9	4.9
	.20	10	22.7	5.3
	.20	15	23.3	5 . 5
2.25	.15	0	27.6	6.9
1 1	.20	0	22.3	4.4
	.20	5	23.2	4.7
	.20	10	24.0	4.9
	.20	15	24.5	5.1
2.5	.10	0	39.7	10.7
	.15	0	29.5	6.5
	.20	Ö	23.9	4.4
	.20	5	24.9	4.5
	.20	10	25.4	4.7
1	.20	15	25.9	4.8

TABLE XI. WEDGE - INLET POSITION, 2DE INLET INVERTED

Mo	∆ M/M _o	α, deg.	XM, in.	YM, in.
1.75	.15	0	23.7	13.1
1.75	.20	0	19.3	10.1
2.0	.15	-4	26.2	13.2
	.15 .15 .15 .15	0 5 10 15 0	25.7 24.9 24.0 22.9 21.0	12.7 12.2 11.5 10.7 10.2
2.25	.15	0	27.6	12.4
	.20	0	22.3	7.9
2.50	.10	0	39.7	16.2
	.15	0	29.5	12.0
	.20	0	23.9	9.9
2.50 *	.15	0	26.3	13.2
	.15	5	25.3	12.6
	.15	10	24.6	11.9
	.15	15	23.2	11.3

*For this series of runs
$$\Delta M/M_o = \frac{M_o - (M_o - \Delta M)}{M_o}$$
rather than the usual $\Delta M/M_o = \frac{(M_o + \Delta M/_2) - (M_o - \Delta M/_2)}{M_o}$

TABLE XII. WEDGE - INLET POSITION, AX INLET

M _o	∆ M/M _o	lpha, deg.	XM, in.	YM, in.
1.75	.15	0	25.3	11.5
1	.20	- 5	19.8	7.8
]	.20	0	20.6	8.3
1 1	.20	5	21.3	8.8
	.20	10	22.0	9.2
1	.20	15	22.6	9.5
2.0	.15	0	27.2	10.9
1	.20	0	22.2	8.2
	.20	5	23.2	8.6
1 1	.20	10	23.9	8.9
1	.20	15	24.4	9.2
2.25	.20	0	23.9	8.0
	.20	5	24.5	8.3
	.20	10	25.1	8.6
1	.20	15	25.5	8.7
2.50	.10	О	43.0	14.8
	.15	Ö	31.3	10.2
	.20	ő	25.4	7.8
	.20	5	26.2	8.0
1	.20	- 5	24.9	7.5

TABLE XIII. WEDGE — INLET POSITION, 2DE INLET ROTATED 90°

M _o	ΔM/M _o	α , deg.	XM, in.	YM, in.
1.75	.10	0	19.5	7.1
	.15	0	15.9	4.7
2.0	.10	0	21.7	7.5
	.10	5	22.4	7.9
	.15	0	16.7	4.7
2.25	.15	0	17.9	4.7
2.50	.10	0	23.9	6.7
	.15	0	18.6	4.6

Table XIV. Summarized run log — transonic uniform flow field 1 (PWT-4T)

COMMENTS	Performance survey at $M_o = 0.6, 0.8$, and 1.2.	Angle of attack study.	Effect of ramp angle/angle of attack study (Part No. 85-102 recorded at R = 4.9 x 106).	Angle of attack study (tunnel reference dynamic probe in tunnel for Part No.106-121).	Effect of ramp angle/angle of attack study.	Angle of attack study.	ded	Angle of attack study (R = 4.5×10^6).	Low Reynolds number effect ($R = 2.5 \times 10^6$).	Angle of attack study (R = 4.5×10^6).	Low Reynolds number effect ($R = 2.5 \times 10^6$).	Effect of sideslip on angle of attack; data recorded at $R = 4.5 \times 10^6$ (Part No. 309 void).	Effect of sideslip on angle of attack.
					Effect o	Angle of	Data voided	Angle of	Low Reynon 106).	Angle of	Low Reyno 106).	Effect of side data recorded No. 309 void).	Effect o
TBX, in.	.377	.377	.414	.377									-
DEL2, deg.	0	0	7-	0	7-	0 -							-
eta	0											7-	7-
α deg.	0	1	\	\	1	١	1	1	0	1	0	\	\
Σ°	1	9.0	9.0	8.0	8.0	1.2	8.0			1.2	1.2	8.0	1.2
COML	C5 —					-	C7				-	C8	-
MODEL	2DE												-
PART NO.	13-44	45-76	77-102	106-145	146160	161-190	197-225	229-257	258-266	268-299	300-306	309-331	332-353
DATE	28 Apr. 1970			29 Apr. 1970			30 Apr. 1970	-				1 May 1970	

 1 All data recorded at a nominal Reynolds number perfoot of 5.5 x 10^{6} except where noted.

TABLE XIV Continued

DATE	PART NO.	MODEL COWL	COML	М	α deg.	β deg.	DEL2, TBX, deg. in.	TBX, in.	COMMENTS
1 May 1970	356-380	2DE	89 —	1.2	1	0	0	.377	Angle of attack study (Part No. 363 voided.
	381-395			1.2	0		\		Effect of ramp angle.
	396-420		-	8.0	١		0		Angle of attack study.
	423-447		C10	9.0	\				Angle of attack study.
	746-475			8.0	1			-	Angle of attack study.
	473-479	-	-	8.0	0	-	-	0	Throat bleed effect.

TABLE XIV Continued

A STATE OF THE PARTY OF THE PAR

TABLE XIV Concluded

DATE	PART NO.	MODEL	CONE-	Σ	Q deg.	β deg.	CPX,	TBX,	COMMENTS
				,	G				
4 May 1970	923-947	AX7	HC4	8.0	\	0	Fixed	.380	Effect of half-cone/angle of attack.
•	948-975	-	HC4	1.2	١	0	Fixed	.380	Effect of half-cone/angle of attack.
	978-1008	¥	FC4	0.8	1		4.37	.320	Angle of attack study (Repeat of
									668-696); Tunnel dynamic pressure recorded in Part No. 978 and 995.
	1009-1041			1.2	\				Angle of attack study (Repeat of 697-725); Tunnel dynamic pressure recorded in Part No. 1009 and 1027.
	1042-1050			9.0	0				Tunnel dynamic pressure recorded in Part No. 1042; (R = 5.0×10^6).
	1053-1078	-	-	1	0	-	-	\	Effect of maximum and zero throat bleed at $M_{\odot} = 0.8$ and 1.2.
									ס פר ער ניי –

TABLE XV. SUMMARIZED RUN LOG - SUPERSONIC UNIFORM FLOW FIELD¹ (VKF-A)

3 Apr. 1970 1-4 2DE C5 2.5 0 0 5-23 5-23 6 Apr. 1970 24-121 5 4 2.0 0 8 Apr. 1970 122-154 5 5 (187) 9 Apr. 1970 176-196 197-201 0	2.0	0	17.2	.320	Scanivalve scan rate study (Group 3 voided). Effect of sidebleed @ $\alpha = 0^\circ$ and selected angles of attack (Groups 7, 9, and 13 voided). Throat bleed study @ $\alpha = 0$, 5, and 10° (Group 45, 56, 79, 98, 99, and 106 voided).
6 Apr. 1970 24-121 8 Apr. 1970 122-154 9 Apr. 1970 176-196 9 Apr. 1970 176-196 197-201 0			11.4	.320	Effect of sidebleed @ $\alpha = 0$ ° and selected angles of attack (Groups 7, 9, and 13 voided). Throat bleed study @ $\alpha = 0$, 5, and 10° (Group 45, 56, 79, 98, 99, and 10° voided).
6 Apr. 1970 24-121 2.0 0 8 Apr. 1970 122-154 2.0 0 155-175 5 (187) 9 Apr. 1970 176-196 197-201 0	· · · · · · · · · · · · · · · · · · ·		11.4	\	Throat bleed study @ \alpha = 0, 5, and 10° (Group 45, 56, 79, 98, 99, and 106 voided).
8 Apr. 1970 122-154 2.0 0			11.4	\	
9 Apr. 1970 176-196 197-201				\	Throat bleed study (Groups 134 and 150 voided).
176-196 (except 187) 197-201	<u> </u>			\	Throat bleed study (Groups 166, 172, 173, and 175 voided).
				\	Throat bleed study.
			-	.350	Low Reynolds Number Study (RE/FT = 1.9 x 106).
202-236	1.5		0	.181	Angle of attack study.
237-242 1.5 0 2.0	1.5 0	-	2.0	.181	Effect of ramp angle.
243-249			8.0	907*	Effect of ramp angle (RE/FT = 7.3 x 106).

 $^{
m l}$ All data recorded at a nominal Reynolds number per foot of 5.8 x $^{
m l0}^{
m 6}$ except where noted.

TABLE XV Continued

MODEL
• 955
2DE C5 2.0
C5 2.5
C7 2.5
2.0
1.5
C8 2.0
C8 2.0

TABLE XV Continued

COMMENTS	Throat bleed study.	Effect of splitter plate.	Throat bleed study.	Angle of attack study.	Centerbody position study.	Low Reynolds Number Study (RE/FT = 1.9 x 10 ⁶).	Effect of splitter plate.	Effect of half-cone.	Throat bleed study.	Angle of attack effect.	Without boundary layer trip on centerbody; 498-499 correspond to 479-480, respectively.	Repeatability check; 500-501 correspond to 479-480, respectively.	Repeatability check; 502-503 correspond to 495-49¢, respectively.	Angle of attack study.	Centerbody position study.	Effect of splitter plate.
TBX, in.	*	.270	•	.285	·	· · · · ·	***	-	¥	.320			·			-
CPX, in.	5,39	5,39	06.4	06.4	1	06.4		-	4.57					-	+	4.57
$^{eta}_{ m deg.}$	0												·			-
α deg.	0		-	1	0	\	1	1	0	ى	0	0	'n	1	0	0
Σ°	2.5	2.5	2.0					-	1.5			· · · · ·				-
CONE- COWL	FC1	SC1	FC1			-	sc1	HC1	FC1						-	sc1
MODEL	AX															-
GROUP NO.	381-392	393-398	399-418	419-432	433-440	441-451	453-461	462-478	767-627	495-497	667-867	500-501	502-503	504-524	525-534	535-543
DATE	13 Apr. 1970										14 Apr. 1970					

TABLE XV Continued

COMMENTS	Angle of attack study.	Exploratory study with $CPX = 5.17$	Throat bleed effect at $\alpha = 0$ and angles of attack.	Throat bleed effect with splitter plate (Group 592 voided).	Effect of half-cone.	Angle of attack study.	Half-cone centerbody/angle of attack study.	Splitter plate/angle of attack study.	Centerbody position study.	Angle of attack study.	Angle of attack study.	Centerbody position study.		Angle of attack study.	Angle of attack study.	Angle of attack study.	Splitter plate/angle of attack study.
TBX, in.	.285	.260	1	\	007.			-	.285	.285	.320	067.	067.	005.	.285	.320	.320
CPX, in.	5.00	5.17	5.27					-	\	5.00	4.57	1	5,39	5.27	2,00	4.57	4.57
$_{ m deg.}^{eta}$	0																
														-			
$a_{ m eg}^{lpha}$	1	0	X	0	0	•	¥	1	0	1	1	0	0	1	•	1	\
M _o deg.	2.0	2,25 0	_	0	0	<u>\</u>	\	<u>\</u>	2.0 0	2.0	1.5	2,5 0	2.5 0	2.25	2.0	1.5	1.5
	FC1 2.0		\	SC1 0	HC1 0	FC4	HC4	SC4		2.0	1.5			2.25	2.0		sc3 1.5
ω Σ						FC4	HC4	\$00°	2.0	2.0	1.5		2.5	2.25	2.0		_
CONE- MO	FC1		558-583			599-621 FC4	622-632 HC4	633-642 SC4	2.0	658-672	673-708		2.5	735-756	757-794		_

TABLE XV Continued

DATE	GROUP NO.	MODEL	COME	Σ°	α deg.	β deg.	DEL2, deg.	TBX, in.	COMMENTS
25 May 1970	921-938	2 DM	!-	:	:			- - - -	All groups voided.
26 May 1970	939-962			7.5	0	0	8.7	\	Throat bleed study (Groups 957-962 voided).
	963-996	-	-	1 1	1	ŀ	1 1	:	All groups voided.
27 May 1970	997-1032	2DE	C5	7.5	1	0	17.2	.340	Angle of attack study; $\alpha = 0$, 5, and 10° data are repeat of earlier test points (Groups 24-121).
	1033-1067			2.5	1		16.5	.340	Effect of ramp angle on angle of attack.
	1068-1075			2.0	0		11.4	.350	Repeat of earlier test series (Groups 122-154).
	1076-1115				1		13.4		Effect of ramp angle on angle of attack.
	1116-1153			-	\		8.0	-	Effect of ramp angle on angle of attack; Group 1116 @ $\alpha = 4^{\circ}$ instead of 0°.
	1154-1161			1.5	0		0	181	Repeat of earlier test series (Groups 202-211).
	1162-1188				1	-	2°		Effect of ramp angle on angle of attack.
	1189-1203			>	1	7-	0	-	Angle of attack study at fixed sideslip.
	1204-1218			2.0	1		11.4	.350	Angle of attack study at fixed sideslip.
	1219-1233			2.5	1	-	17.2	.340	Angle of attack study at fixed sideslip.

TABLE XV Concluded

DATE	GROUP NO.	MODEL	COML	Σ°	α deg.	eta	DEL2, deg.	TBX, in.	COMMENTS
29 May 1970	1234-1259	2 DE	85.	2.5	١	0	17.2	.340	Angle of attack study.
	1260-1282			1.5	1		0	.181	Angle of attack study.
	1283-1288	-	-	1.5	0		0	.181	Effect at zero ramp bleed.
1 Jun. 1970	1289-1312	2DM	;	3.0	0		12	1	Throat bleed study.
	1313-1335				١		12	.410	Angle of attack study.
	1336-1340			-	0		10	.410	Effect of ramp angle.
	1341-1359			2.25			1	.527	Effect at ramp angle (Groups 1358 and 1359 tested with TBX = .577).
	1360-1372				-		2.4	1	Throat bleed study.
	1373-1394			-	\		2.4	.353	Angle of attack study (Group 1388 voided).
	1395-1428			2.5	\		8.7	.410	Angle of attack study.
2 Jun. 1970	1429-1438			2.5	0		\	.410	Effect of ramp angle.
	1439-1451			1.5	0		0	1	Throat bleed study.
	1452-1471	•		1.5	\		0	.368	Angle of attack study.

TABLE XVI. SUMMARIZED RUN LOG — SUPERSONIC NONUNIFORM FLOW FIELD¹ (VKF-A)

DATE 15 Oct. 1970 16 Oct. 21 Oct.	GROUP NO. 3-14 15-53 54-65 66-71 72-98 110-117 118-144 145-155	2 DE V 3	Mo 2.5 2.25 2.25 2.0 2.0 2.0		deg.	DEL2, deg. 17.2 14.6 11.4 0 0 0	.350 .350 .350		Data repeatability check with previous test series. Angle of attack study (Group 45 voided). Effect of ramp angle. Data repeatability check with previous test series (Group 66 voided). Effect of vortex generator configuration with angle of attack. Flexible curtain separating throat and ramp bleed plenums separated during this test series. Repeat of 72-83 ($\alpha = 0$). Alternate vortex generator configuration Data repeatability check with previous test series. Data repeatability check with previous test series.
28 Oct.	169-179		\ ;	, 0	1 0	, ;	- 250	1	survey with wedge it Mach numbers.
	180-183	-	2.0	0	0	11.4	.350	\	Flow field survey with model installed.

 1 All data recorded at a nominal Reynolds number per foot of 5.8 \times 10 6

TABLE XVI Continued

		•	, ,	t.			eq	eq	Ð			t.			t.						t.
	stalled.	gradient.	gradient.	gradient.	talled.		= 10° with fixed	with fixed	with fixed		talled.	gradient.	talled		gradient.					gradient.	l gradient
S	survey with model installed.	h fixed	attack study with fixed	attack study with fixed	survey with model installed.	adient.	$\alpha = 10^{\circ}$	$\alpha = 15^{\circ}$	$\alpha = 5^{\circ}$		survey with model installed.	th fixed	odel ins	gradient.	attack study with fixed	gradient.	gradient.		gradient.	h fixed	attack study with fixed
COMMENTS	, with m	gle wit	tudy wi	tudy wi	with m	Mach number gradient.	angle at	angle at (at		with m	tudy wi	with m		tudy wi			angle.		gle wit	tudy wi
	d survey	ramp ar	attack s	attack s	d survey		гатр	ramp	ramp angle			attack s	survey	Mach nu	attack s	Mach number	of Mach number	ramp	Mach number	ramp an	attack s
	Flow field	Effect of ramp angle with fixed	Angle of	Angle of	Flow field	Effect of	Effect of gradient.	Effect of gradient.	Effect of gradient.		Flow field	Angle of attack study with fixed	Flow field survey with model installed	Effect of Mach number	Angle of	Effect of	Effect of	Effect of	Effect of	Effect of ramp angle with fixed	Angle of
ΔM/M _o	<u> </u>	.20 E	.20 Ar	.15 Ar	<u>F</u>	Ei	.20 E	E 20	<u> </u>	.15	<u>[H</u>	.20 AI	<u>[z.</u>	E \	.20 Ar	E E	Ä	.20 E	E	.20 E	.15 At
TBX in.	.350			-	340				-	.350		-	.270		-	.350	.340	.340	.350	.350	.340
DEL2, deg.	11.4			-	17.2	17.2	· ·	\	\	14.6		**	7.2		-	11.4	17.2	16.5	14.6	1	17.2
eta deg.	0-																				-
α deg.	0-	-	\	1	0	0	10	15	5	0	0	ķ	0	0	1	0					Y
M	2.0			-	2.5				-	2.25		2.25	1.75		-	2.0	2.5	2.5	2,25	2.25	2.5
MODEL	2DE		-													-	2 DE I		· · · · · ·		-
GROUP NO.	184-203	204-216	217-241	242-254	255-257	258-287	288-305 316-319)	306-315 320-324)	325-340	341-349	350-352	353-391	392-395	396-415	416-429	430-443	897-777	824-695	867-627	499-518	095-615
GRC		707	21	24.	25.	258	288	306	32	34]	350	35.	392	39(716	73(777	947	7.4	567	516
DATE	Oct. 1970				Oct.				Nov.				Nov.				Nov.			Nov.	
	29				30				2				~				4			5	

TABLE XVI Continued

DATE	GROUP NO.	MODEL	Σ	α deg.	β deg.	DEL2, deg.	TBX in.	M/M	COMMENTS
6 Nov. 1970	561-281	2DE I	2.0	c.	0.	11.4	.350	1	Effect of Mach number gradient.
	582-591			-		8.0		.20	Effect of ramp angle at fixed gradient.
. ••	592-627			١	·	11.4		.15	Angle of attack study at fixed gradient.
	628-632		-	0		13.4		.20	Effect of ramp angle at fixed gradient.
	633-651	-	1.75			7.2	.270	1	Effect of Mach number gradient.
9 Nov.	652-668	2 DEN	2.5			17.2	.340	*	Effect of Mach number gradient.
	669-672		2.25			14.6		.15	
	673-684		2.0	-		11.4		1	Effect of Mach number gradient.
	682-689		2.0	2		11.4		.10	Effect of sideslip*
	690-701	_	1.75	0.		7.2	-	\	Effect of Mach number gradient.
10 Nov.	702-712	¥¥	2.5			5.39	067.	\	Flow field survey with model installed. (Groups 702-706 voided)
	713-736			>				1	Effect of Mach number gradient
	737-752			1		-		•20	Angle of attack study with fixed gradient.
12 Nov.	753-769		-	0		\	-	.20	Effect of centerbody position with fixed gradient.
	770-775		2.25	0		5.27	007.	1	Flow field survey with model installed.
	776-808			1		5.27		.20	Angle of attack study with fixed gradient
	809-828		-	o -		\	~	.20	Effect of centerbody position with fixed gradient.
	829-835		2.0			5.00	.360	\	Flow field survey with model installed.
	836-867	-	-		-	`		.20	Effect of centerbody position with fixed gradient. (Group 857 voided)

For the 2DEN configuration (model rolled + 90° from upright), α and β are relative to the tunnel support system. For all other configurations, lpha and eta are identified with the upright model attitude convention.

2 For the AX inlet the column refers to centerbody position (CPX) in inches.

TABLE XVI Concluded

DATE	GROUP NO.	MCDEL	Σ ^C	a deg.	β deg.	CPX in.	TBS in.	.M/M.	COMMENTS
	868-867	۶.	2.0	0	0 -	2.00	.360	.15	Mach number gradient.
	878-902		2.0	1		4.85	.360	.20	Angle of attack study with fixed gradient.
14 Nov.	903-908		1.75	0		4.80	.320	\	Flow field survey with model installed.
	909-929					\	.320	.20	Effect of centerbody position with fixed gradient.
	930-938			>		4.80		>.15	Effect of Mach number gradient.
	939-975			\				.20	Angle of attack study with fixed gradient (Group 957 voided).
	976-983			0	-	<u> ,</u>		.15	Effect of Mach number gradient.
	966-786		>	\	4 -	-	>	.20	Effect of sideslip on angle of attack with fixed gradient.
	997-1002		2.0	0		5.00	3.60	.20	Effect of sideslip with fixed gradient.
	1003-1012		2.0	1	-	4.85	3.60	.20	Effect of sideslip on angle of attack with fixed gradient.
16 Nov.	1013-1020		2.5	0	0	5.39	067.	,	
	1021-1028		2.5	2		5.24	067.		
	1029-1038		2.25	0		5.27	007.		
	1039-1044		2.25	10	<u>-</u>	5.12	007.		
	1045-1082		1.75	\		4.80	.320		Angle of attack study.
7 Nov.	1083-1091		2.0	0		2.00	.360		
	1092-1099		2.0	10		4.85	.360		
	1100-1108		1.5	0.	-	4.80	.320		
	1109-1118		1.5		-4	4.80	.320		Effect of sideslip.
	1119-1129		2.5			4.39	067.		Effect of sideslip.
	1130-1140		2.25	_		5.27	007.		Effect of sideslip (Group 1134 veided)
	1141-1148		2.25	10		5.12	007.		Effect of sideslip at $\alpha=10^{\circ}$.
	1149 1158		2.00	0		5.00	.360		Effect of sideslip
	1159-1173	-	2.0	\	-	4.85	.360	•	Effect of sideslip on angle of attack.

Figure 14. Two-Dimensional External-Compression Inlet (2DE) Installed in PWT-4T Transonic Wind Tunnel

Figure 15. Two-Dimensional External-Compression Inlet (2DE) Installed in VKF-A Supersonic Wind Tunnel

Figure 16. Model Arrangement for Nonuniform Flow Field Tests

Two-Dimensional External-Compression Inlet (2DE) and Flow Field Wedge Installed in VKF-A Supersonic Wind Tunnel Figure 17.

Half-Axisymmetric External-Compression Inlet (AX) and Flow Field Wedge Installed in VKF-A Supersonic Wind Tunnel Figure 18.

SECTION IV

TEST DATA

Data Presentation

The tabulated data are documented on seven rolls of microfilm and are included in the Appendix of this report. Identification of the individual rolls is presented in Table XVII. There are three basic formats of data presentation corresponding to the uniform approaching supersonic flow field tests at the VKF-A facility (roll numbers 1, 2 and 3), uniform approaching transonic flow field tests at the PWT-4T facility (roll numbers 4 and 5), and the nonuniform approaching supersonic flow field tests at the VKF-A facility (roll numbers 6 and 7). Samples of the various tabulated data formats appearing in the seven rolls are presented in Figures 19 through 21 and discussed below. Nomenclature used in the data formats shown for the VKF-A tunnel in Figures 19 and 21 are presented in Table XVIII. Nomenclature for PWT-4T tunnel tabulated data formats shown in Figure 20 are presented in Table XIX.

In roll numbers 1-3, there are two basic types of runs (group number). The first consists of all pressure measurements (excluding the movable rake) and the primary performance parameters derived from these pressure measurements. These data are presented on three tabbed sheets as shown in Figures 19a, 19b and 19c for the 2DE inlet. The second type of data consists of pressure measurements made by the movable rake at the various traversed positions and the local performance parameters derived from these pressure measurements. These data are presented on one tabbed sheet as shown in Figure 19d for the 2DE inlet. The data for the AX and 2DM inlets appearing in roll numbers 2 and 3, respectively, are similar in format to the sample data illustrated for the 2DE inlet, except that the movable rake data for the AX inlet are presented for different rake sweep angles rather than the traversed distances as for the 2D inlets.

The transonic data presented in roll numbers 4 and 5 also consist of two basic types of run (part number) as above. The primary pressure measurements and performance parameters are presented on two tabbed sheets as shown on Figures 20a and 20b for the 2DE inlet. The movable rake data and rake station performance parameters are presented on one tabbed sheet as shown in Figure 20c for the 2DE inlet. The

AX data on roll number 5 have a similar format. Note that no transonic data were obtained with the 2DM inlet.

The nonuniform approaching supersonic flow field inlet data presented on roll numbers 6 and 7 follow a similar format as that used on rolls 1, 2 and 3 except for the addition of the flow survey rake data which measures the local Mach number gradient. The primary pressure data and performance parameters are presented on three tabbed sheets as shown in Figures 21a, 21b, and 21c for the 2DE inlet. The Mach number gradient data are presented on the third page. The movable rake data are presented on Figure 21d. The AX data follow a similar format. In addition to the inlet data, detailed mapping of the nonuniform flow field with the wedge mounted rakes (Figure 13a) are presented on a single tabbed sheet for each Mach number. An example of this format is presented in Figure 22.

It should be noted that some of the tabbed sheets also include data related to the operation of the tunnel which are not identified in the nomenclature section. All data which have a direct effect on the calculation of tunnel parameters, such as Mach number, Reynolds number, etc., are included in the nomenclature section.

Tables XX through XXII present summaries of data errors and bad coded pressures in the tabulated data. The bad coded pressures refer to erroneous pressures removed from the calculation of performance parameters. The more detailed summaries for the supersonic data (Tables XX and XXII) were provided by the AEDC-VKF Tunnel A Facility. The condensed summary for the transonic data (Table XXI) presents only the data errors which directly influence the derived inlet performance parameters or the dynamic RMS pressures.

Configuration Run Summary

A summary of the configurations tested and the corresponding run numbers is presented in Tables XXIII through XXV to aid the reader in isolating the data of interest from the microfilms. Table XXIII presents a summary of the configurations tested for data appearing in microfilm roll numbers 1, 2 and 3; i.e., for the uniform approaching supersonic flow field. Similarly, Tables XXIV and XXV correspond to the transonic data (microfilm roll numbers 4 and 5) and uniform/nonuniform supersonic data (microfilm roll numbers 6 and 7), respectively. The tables are arranged such that for a given configuration, model attitude, and freestream conditions, the run numbers for the range of mass flow ratio tested are presented. In addition, the run numbers are divided into two groups corresponding to the primary performance data (at the compressor face) and the movable rake data.

TABLE XVII. MICROFILM DATA SUMMARY

Roll Number	Type of Data	Data Group or Part Numbers	AEDC Project Number
1	2DE uniform supersonic	1-380 997-1288	VKF-VA0926
2	AX uniform supersonic	381-920	VKF-VA0926
ż	2DM uniform supersonic	921-996 1289-1471	VKF-VA0926
4	2DE uniform transonic	13-479	PWT-PC-0029
5	AX uniform transonic	483-1078	PWT-PC-0029
6	2DE uniform/nonuniform supersonic	1-701	VKF-VA0154
7	AX uniform/nonuniform supersonic	702-1173	VKF-VA0154

TABLE XVIII. TABULATED DATA FORMAT NOMENCLATURE - VKF-A TUNNEL

Run Identification

CONFIG Configuration number

1 - 2DE 2 - 2DM 3 - AX

WEDGE - Wedge flow field

GRP, GROUP Group Number
PROJ, PROJECT ARO project number

Tunnel Conditions

MACH NO, MACH
Tunnel freestream Mach number
Freestream viscosity, 1b-sec/ft
Freestream static pressure, psia

PO AVG Average tunnel stagnation pressure, psia (for data loops taken from taps 101 - 130)

PREF, PSREF Reference pressure, psia

QINF Freestream dynamic pressure, psi
RE/FT Freestream Reynolds number X10⁻⁶
RHOINF Freestream density, slugs/ft³
TINF Freestream static temperature, °R
TO Tunnel total temperature, °R
VINF Freestream velocity, ft/sec

Model Components and Model Position

AC Model capture area, in²

ALPHA-S Sector angle of attack, deg. (ALPHA-S = -4.0)

deg. when ALPHA-M1 = 0).

ALPM-ALPHA-M Model angle of attack (based on sector angle), deg.
ALP2, ALPHA-M1 Model angle of attack (based on angle indicator), deg.
ALPM(CORR), ALPHA-M2 Model angle of attack corrected for side slip angle, deg.

ALP2(CORR)

BETA, BETA-M1 Model sideslip angle, deg.

BETA-M2 Model sideslip angle corrected for angle of

attack, deg.

CPX Distance from AX centerbody tip to cowl lip, in.

CR Sector center of rotation, in.

DEL2 Second ramp angle relative to first ramp. deg.

L Reference length, 28 in.

MBX Mass flow plug position, in.

TBX Throat bleed plate, position, in.

THETA AX movable rake circumferential location measured

from 12 o'clock position, deg.

TABLE XVIII. (Concluded)

x	Axial distance from throat to pressure orifice, in.
XM	Axial distance between wedge and inlet based on
	ALPM, in.
XM2	Axial distance between wedge and inlet based on
	ALP2, in.
XS	Sector axial position, in.
YM	Vertical distance between wedge and inlet based
	on ALPM, in.
YM2	Vertical distance between wedge and inlet based on
	ALP2, in.
YW	Vertical distance between wedge and tunnel center
	line, in.
Z	Movable rake position measured from diffuser ramp, in.

Inlet Performance

CFR	Compressor face pressure recovery
CP	Pressure coefficient
DICF	Compressor face pressure distortion
DIT	Movable rake station pressure distortion
MI	Local Mach number
MINF	Tunnel freestream Mach number
P	Measured pressure, psia
PTCF	Compressor face average pressure, psia
RMS	Root mean square of pressure fluctuation, psi
	(see Table 2-5 for instrumentation definition)
(RMSCF)AVG	Compressor face average turbulence
(RMST)OAVG/TRR.PO	Movable rake station average turbulence
TAP	Pressure orifice number (see Tables 2-1 through 2-4)
TRR	Movable rake station pressure recovery
WBC	Cowl bleed mass flow, lbs/sec
WBR	Ramp bleed mass flow, 1bs/sec
WBT	Throat bleed mass flow, 1bs/sec
WBS1	Forward side plate bleed mass flow, lbs./sec.
WBS 2	Aft side plate bleed mass flow, lbs/sec.
WC .	Capture area mass flow, 1bs/sec.
WCF	Compressor face mass flow, lbs/sec.
(WCF)CORR	Corrected compressor face mass flow, lbs/sec.
WO	Total inlet mass flow, lbs/sec

TABLE XIX. TABULATED DATA FORMAT NOMENCLATURE - PWT-4T TUNNEL

Run Identification

INLET Inlet configuration, AX or 2DE.

PART Part number.

POINT Data Point, each time transducers are read for

given part number.

TEST PWT-4T project number.
TIME Hour, minute, second.

Tunnel Conditions

M1 Tunnel freestream Mach number.
P1 Freestream static pressure, psfa.
PTA-1 Freestream total pressure, psfa.
Q1 Freestream dynamic pressure, psf.
RX10-6 Freestream Reynolds number, 1/ft.

Model Components and Model Position

ALF-D Model angle of attack, deg.

ALF-M Model angle of attack corrected for sideslip, deg.
AXR AX movable rake circumferential location measured

from 12 o'clock position, deg.

BET-M Model angle of sideslip, deg.

CPX Distance from AX centerbody tip to cowl lip, in.

CPX-RC CPX referred to cowl radius.

DEL-2 Second ramp angle relative to first ramp, deg.

MBX Mass flow plug position, in.

MODEL STA. Model station.

TBX Throat bleed plate position, in.

2DR Movable rake position measured from diffuser

ramp, in.

Inlet Performance

CF-AVE Compressor face pressure recovery.

CP Pressure coefficient.

DICF Compressor face pressure distortion.

DIT Movable rake station pressure distortion.

MFR-BR Ramp bleed mass flow ratio.

MFR-BS1 Side plate bleed mass flow ratio.
MFR-BT Throat bleed mass flow ratio.
MFR-CF Compressor face mass flow ratio

MFR-O Inlet mass flow ratio.

TABLE XIX. (Concluded)

NRMS PRMS referred to compressor face pressure (see table 2-5 for instrumentation definition) Measured pressure, psfa. P/PTA Measured pressure referred to tunnel total pressure. P-REF Flow metering reference pressure **PRMS** Root-mean-square of pressure fluctuation, psi (see Table 2-5 for instrumentation definition) RK Movable rake average pressure ratio at a given location Average pressure of 2 or more rake locations; average RK-AVE pressure at movable rake station when 5 rake locations are averaged. **RMST** Movable rake average turbulence, at a given location. TAP Pressure orifice number (see Tables 2-1 through 2-4) Average turbulence of 2 or more rake locations; T-AVE average turbulence at movable rake station when 5 rake locations are averaged. Ramp bleed mass flow, 1bs/sec. **WBR** Side plate bleed mass flow, 1bs/sec. WBS1 Throat bleed mass flow, lbs/sec. WBT Capture area mass flow, lbs/sec. WC WOAX Total inlet flow, AX inlet Total inlet flow, 2DE inlet

WO2DE

TABLE XX. DATA ERRORS AND BAD CODED PRESSURES — SUPERSONIC UNIFORM FLOW FIELD (VKF-A)

2DE INLET

Group Number	Remarks
1 920	Taps 85 and 135 are wrong.
1 91	Taps 80, 81, 82 and 84 are wrong.
3	Omitted - Gp 15 was a repeat.
9	Tap 124 bad coded.
11	Tap 73 and 83 are wrong.
17	Has two loops at the same Z location.
32	Omitted
56	Taps 94 and 95 are wrong.
79	Omitted - Gp 80 was a repeat.
98	Omitted - Cp 101 was a repeat.
99	Omitted
106	Omitted - Gp 121 was a repeat.
113	Taps 48 and 143 are wrong.
150	Omitted - Gp 152 was a repeat.
173	Taps 27 and 45 are wrong.
175	Taps 7 and 8 are wrong.
197 200	Tap 100 is wrong.
224-230	Tap 100 is wrong.
231	Has two loops at the same Z location and tap 100 is wrong.
232 249	Tap 100 is wrong.
250 → 263	Tap 119 bad coded. Tap 100 is wrong.
264—279	Tap 125 bad coded.
280 282	Taps 115 and 125 bad coded. Taps 26 and 66 are wrong.
283 284 287	Omitted
288	Taps 115 and 125 bad coded. Taps 26 and 66 are wrong.
289 	Taps 115, 124 and 125 bad coded. Taps 26 and 66 are wrong.
312 → 328	Taps 115 and 125 bad coded. Taps 26 and 66 are wrong.
329	Tap 115 bad coded. Taps 26 and 66 are wrong. Taps 114, 115 and 125 bad coded. Taps 26 and 66 are wrong.
330-344	Tap 115 bad coded. Taps 26 and 66 are wrong.
345	Taps 115 and 123 bad coded. Taps 26 and 66 are wrong.
346354	Tap 115 bad coded. Taps 26 and 66 are wrong.
355 → 365	Tap 115 bad coded. Taps 20 and 00 are wrong.
366	Omitted - bad paper tape.
367380	Tap 115 bad coded.
997-1288	Dynamic transducers Nos. 5 and 12 and Tap 108 bad coded.
997-1233	Tap 100 was leaking.
1157	Tap 74 is wrong.
1234-1288	Tap 102 bad coded.
1244	Tap 113 is one psi low.
1154-1198	Dynamic transducer No. 1 not working.

NOTE: Bad coded pressures not used in calculation of performance parameters.

TABLE XX. (Continued)
AX INLET

Group No.	Remarks
351 - 920	Taps 115, 125 and 135 bad coded.
3×1 → 854	Taps 35 and 36 are reversed.
3×2 → 393	Tap 30 is wrong.
452	Omitted
459	Omitted
468 49"	Tap 54 is wrong and is replaced with Tap 53 in the calculations.
592	Omitted - out of sequence.
643 854	Tap 53 is wrong and is replaced with Tap 52 in the calculations.
733	Tap 105 bad coded.
764 → 828	Tap 100 is wrong.
829-854	Taps 65 and 100 are wrong.
855 920	Taps 21, 23, 40, 41 and 42 are wrong. Tap 116 bad coded.
858	Omitted
861	Omitted

NOTE: Bad coded-pressures not used in calculation of performance parameters.

TABLE XX. (Concluded)
2DM INLET

Group No.	Remarks
921 1471	Dynamic Transducers Nos. 5 and 12 and Tap 108 bad coded.
921 996	Tap 100 is wrong.
1289-1471	Tap 102 bad coded. Tap 7 was leaking.
13341471	Tap 44 was leaking.
1388	Omitted
1458	Omitted
1439—1471	Dynamic Transducer No. 1 not working.

NOTE: Bad coded-pressures not used in calculation of performance parameters.

TABLE XXI. DATA ERRORS AND BAD CODED PRESSURES — TRANSONIC UNIFORM FLOW FIELD (PWT-4T)

Part Number	Remarks
13-1078	Dynamic Transducer No. 8 inoperative for entire test
13-1078	Tap 118 bad coded
25	Tap 116 leaking - error included in calculation of PTCF/PTO
28-121	Tap 116 bad coded
28-1078	Dynamic Transducer No. 9 inoperative
229-1078	Dynamic Transducer No. 5 bad coded
326	Tap 103 leaking - error included in calculation of PTCF/PTO
328-477	Tap 103 bad coded
697-1078	Dynamic Transducer No. 11 inoperative
1053-1078	Tap 130 bad coded

NOTE: Bad coded-pressures not used in calculation of performance parameters.

TABLE XXII. DATA ERRORS AND BAD CODED PRESSURES — SUPERSONIC NONUNIFORM FLOW FIELD (VKF-A)

2DE INLET WITHOUT WEDGE

Group No.	Remarks (Numbers refer to pressure taps)
1 and 2*	Wrong - tanks leaked
1 98	72, 74, 81 and 82 leaked
1 19	52, 110 and 119 bad coded
20 33	52 bad coded and 82, 131 and 110 leaked
34 71	110 bad coded
39 99	4, 5, 6 and 7 leaked
57 60	106, 111, 121, 135 and 136 were bad coded. However, they are correct.
66 71*	All data on valve #2 is bad.
98 168	l and 81 leaked
106	101 bad coded
112—168	RMS 5 bad coded
121	23, 27, 136 and 138 bad and 117 bad coded
123	103 bad coded
129—168	RMS 8 is bad

^{*}Performance parameters are incorrect.

NOTE: Bad coded-pressures not used in calculation of performance parameters.

TABLE XXII. (Continued)

2DE INLET WITH WEDGE

Group No.	Remarks (Numbers refer to pressure taps)
180 701	81 and 85 leaked
180 2 54	48 leaked
183*	Reflected wedge bow shock forward of inlet
183 and 184	RMS 8 is wrong
185-192	RMS 5 is bad coded
236*	Pressures are approximately 4 psi low
230	113 bad coded
233 254	RMS 4 bad coded
255 306	28 leaking
266	94 bad point
302	124 bad coded
322 351	122 bad coded
389	45 bad point
392-443	48 bad point 45 and 132 leaked
400 - 443	RMS 2 bad coded
419	94 bad point
432	137 bad coded
444701	1 leaking: On board α indicator failed, α_2 , x_{m2} and
144 701	y _{m2} wrong
455	53 (loop 5) bad coded
472	48 bad point
492	53 (loop 2) bad coded
494	53 (loops 4 and 5) bad coded
499 502	53 (all loops) bad coded
514	101 bad coded
525	111 bad coded
541	94 bad point
548	104 bad coded
561 701	105 bad coded (tube broken)
575	RMS 8 bad point
624*	Has only four loops
631	131 bad point
652 701 659	RMS 4 bad coded
701	7 bad point
	52 (loop 6) bad coded

^{*}Performance parameters are incorrect.

NOTE: Bad coded-pressures not used in calculation of performance parameters.

TABLE XXII. (Continued)

AX INLET WITH WEDGE

Group No.	Remarks (Numbers refer to pressure taps)
702 — 1012 702 — 902 702 — 706 710 768 775 777 788 792 794 815 847, 857, 867 872 943 962 968 — 1012 984 — 1012 975	8 was not measured and 105 bad coded Onboard α indicator failed: α ₂ , x _{m2} , and y _{m2} - wrong 210—216 were plugged 111 bad coded 137 bad coded 104 and 123 bad coded 131 bad point 43 bad point 124 bad coded 114 bad coded 125 bad coded Scanner problem - these groups were lost 44 bad point 115 bad coded 51 (loops 1 and 4) bad coded RMS 13 bad coded 210—216 were not measured 51 (loop 2) bad coded
943 962 968—1012 984—1012	115 bad coded 51 (loops 1 and 4) bad coded RMS 13 bad coded 210 216 were not measured

NOTE: Bad coded-pressures not used in calculation of performance parameters

TABLE XXII. (Concluded)

AX INLET WITHOUT WEDGE

Group No.	Remarks (Numbers refer to pressure taps)
1013-1173	8 was not measured, 105 was bad coded and RMS 13 was bad coded
1013 - 1044	216 may be wrong (instr. problems)
1045 → 1173	210216 were not measured
1047	125 bad coded
1056	51 (loop 1) bad coded
1094	137 bad coded
1100	114 bad coded
1130	43 bad point
1134	Instr. zero shift - group lost

NOTE: Bad coded-pressures not used in calculation of performance parameters

TABLE XXIII. CONFIGURATION RUN SUMMARY - SUPERSONIC UNIFORM FLOW FIELD¹ (VKF-A)

			-		·											
	COMMENTS	Effect of side bleed										$Re/ft = 7.3 \times 10^6$	$Re/ft = 7.3 \times 10^6$	Repeat of Item 2	Repeat of Item 6	Repeat of Item 9
NUMBERS	MOVABLE RAKE	4, 17, 19, 22	26, 32, 38, 44, 53, 94	28, 34, 40, 46, 57, 95	36, 42, 48, 51, 61, 93	73, 82	64, 69, 74, 78, 84	71	108	91, 105, 110, 115, 119	112	265, 268, 278	270, 273, 276	999, 1002, 1005		1020, 1024, 1026
GROUP	COMPRESSOR FACE	2, 5, 15, 16, 18, 20, 21	25, 31, 37, 43, 52, 87	27, 33, 39, 58, 59, 86	35, 41, 49, 50, 60, 88, 92	62, 66, 77, 80, 81, 98	63, 67, 68, 77, 83, 97	65, 70, 75, 76, 85, 96	89, 100, 107, 116, 117	90, 102, 104, 109, 114, 118	103, 111, 113, 120, 121	264, 266, 267, 277, 279	269, 271, 272, 274, 275	998, 1000, 1001, 1003, 1004, 1006	1013, 1014, 1015, 1016, 1017, 1018	1019, 1021, 1022, 1023, 1025,
TBX	in.	.320	.340	.171	.577	.577	.340	.171	.577	.340	.171	.340				-
DEL2	deg.	17.2														-
α/β	deg./deg.	0/0	-		-	5/0		-	10/0		-	15/0	20/0	0/0	5/0	10/0
Σ	c	2.5											-			_
CONFIG-	URATION	2DEC5														-
i	ITEM		2	٣	4	2	9	7	œ	6	10	11	12	13	14	15

l - All data recorded at a nominal Reynolds number per ft. of 5.8 imes 10 6 except where noted.

TABLE XXIII. (Continued)

α/β deg./deg.
17,2 .340 1027,
1007,
16.5 1033,
1047,
1052,
1060,
1041, 1043, 1044, 1045
17.2 1219,
1224,
1229,
11.4 .577 122, 128,
.350 124, 130, 132
.150 126, 132,
.577 155,

TABLE XXIII. (Continued)

	COMMENTS					$Re/ft = 7.3 \times 10^6$	$Re/ft = 7.3 \times 10^6$	$Re/ft = 1.9 \times 10^6$	$Re/ft = 7.3 \times 10^6$	Repeat of Item 27	·				
MBERS	MOVABLF. RAKE	157, 161, 165, 169, 174		178, 182, 186, 191, 195		260	253		244, 246, 248	1069, 1073, 1075	1077, 1081, 1084		1099, 1103, 1106	1108, 1112, 1115	1086, 1090, 1092
GROUP NUMBERS	COMPRESSOR FACE	156, 160, 164, 168, 173, 187	176, 183, 184, 193, 196	177, 181, 185, 190, 194	179, 186, 186, 188, 189	257, 258, 259, 261, 262, 263	250, 251, 252, 254, 255, 256	197, 198, 199, 200, 201	243, 245, 247, 249	1068, 1070, 1071, 1072, 1074	1076, 1078, 1079, 1080, 1082, 1083	1093, 1094, 1095, 1096, 1097	1098, 1100, 1101, 1102, 1104, 1105	1107, 1109, 1110, 1111, 1113, 1114	1085, 1087, 1088, 1089, 1091
TBX	in.	.350	.577	.350	.150	.350	.350	.350	907.	.350					-
DEL2	deg.	11.4						-	8.0	11.4	13.4				-
9/18	deg./üeg.	2/0	10/0	_	-	15/0	20/0	0/0	0/0	0/0	0/0	2/0	10/0	15/0	-5/0
>	.0	2.0													-
CONF IG-		2DEC5													-
	ITEM	30	31	32	33	34	35	30	37	38	39	70	41	42	43

TABLE XXIII. (Continued)

	COMMENTS	,													
NUMBERS	MOVABLE RAKE	1118, 1121, 1124		1139, 1142, 1145	1147, 1150, 1153	1126, 1129, 1132				203, 205, 207, 209, 211	213, 215, 217, 219	221, 223, 225, 227	235	231	240
GROUP NU	COMPRESSOR FACE	1117, 1119, 1120, 1122, 1123	1133, 1134, 1135, 1136, 11137	1138, 1140, 1141, 1143, 1144	1146, 1148, 1149, 1151, 1152	1125, 1127, 1128, 1136, 1131	1204, 1205, 1206, 1207, 1208	1209, 1210, 1211, 1212, 1213,	1214, 1215, 1216, 1217, 1218	202, 204, 206, 208, 210	212, 214, 216, 218	220, 222, 224, 226	232, 233, 234, 236	228, 229, 230	237, 238, 239, 241, 242
твх	in.	.350							-	181					•
OFT 2		8.0					11.4		·	- 0				-	2.0
0.78	deg./deg.	0/0	2/0	10/0	15/0	-5/0	7-/0	7-/01	15/-4	0/0	9/0	10/0	20/0	-5/0	0/0
2	0	2.0							-	1.5					-
CONBICE	URATION	2DEC5					J25.5 A								-
	ITEM	77	45	97	47	89	64	50	51	52	53	54	55	95	57

TABLE XXIII. (Continued)

	COMMENTS	Repeat of Item 52	Repeat of Item 57												
NUMBERS	MOVABLE RAKE	1155, 1158, 1161	1163, 1166								281, 284, 287	289, 292, 295	297, 300, 303	305, 308, 311	313, 316, 318
GROUP NUN	COMPRESSOR FACE	1154, 1156, 1157, 1159, 1160	1162, 1164, 1165, 1167, 1168	1174, 1175, 1176, 1177, 1178	1179, 1180, 1181, 1182, 1183	1184, 1185, 1186, 1187, 1188	1169, 1170, 1171, 1172, 1173	1189, 1190, 1191, 1192, 1193	1194, 1195, 1196, 1197, 1198	1199, 1200, 1201, 1202, 1203	280, 282, 285, 286	288, 290, 291, 293, 294	296, 298, 299, 301, 302	304, 306, 307, 309, 310	312, 314, 315, 317
TBX	in.	.181	,							-	.340			-	.350
DEL2	-gəp	0	2.0				-	o –			17.2			-	11.4
9/10	deg./deg.	0/0	0/0	9/9	10/0	17.8/0	-5/0	7-/0	10/-4	17.8/-4	0/0	9/0	10/0	20/0	0/0
2	0	1.5								-	2.5			-	2.0
CONFIG-	URATION	2DEC5									2DE07				-
	ITEM	άς	59	09	61	62	43	79	65	99	67	89	69	20	71

TABLE XXIII. (Continued)

	CONFIG-	2	9/8	DEL2	7.B.X	GROUP NUMBERS	MBERS	
ITEM	URATION	0	deg./deg.		fn.	COMPRESSOR FACE	MOVABLE RAKE	COMMENTS
7.2	2DEC7	2.0	9/9	11.4	.350	319, 321, 322, 324, 325	320, 323, 326	
73			10/0			327, 329, 330, 332, 333	328, 331	
74			20/0	-	-	334, 335, 336, 338, 339	337	
75		1.5	0/0	0	.181	340, 341, 343	342	
9/	· · · · · · · · · · · · · · · · · · ·		10/0			344, 345, 347, 348	346	
77	-	-	20/0	-	-	349, 350, 352, 353	351	
78	2DEC8	2.5	0/0	17.2	.340	1234, 1236, 1237, 1238, 1240	1235, 1239, 1241	
79			9/0			1242, 1243, 1244, 1245, 1246		
80			10/0			1247, 1248, 1249, 1250, 1251		
81		-	15/0	-		1252, 1254, 1255, 1256, 1258	1253, 1257, 1259	
82		2.0	0/0	11.4	.350	354, 355, 356, 358, 359	357	
83			5/0			360, 361, 362, 364, 365	363	
84			10/0			366, 367, 368, 370, 371	369	
85			20/0	-	-	372, 373, 374, 376, 377	375	
98			0/0	13.4	300	378, 379, 380		
87	-	1.5	0/0	0	.181	1260, 1262, 1263, 1265, 1266	1261, 1264, 1267	

TABLE XXIII. (Continued)

	COMMENTS				Zero ramp bleed	
MBERS	MOVABLE RAKE				1285	
GROUP NUMBERS	COMPRESSOR FACE	1268, 1269, 1270, 1271. 1272	1273, 1274, 1275, 1276,	1276, 1279, 1280, 1281, 1282	1283, 1284, 1285, 1286, 1287	
TBX	in.	181			-	ه هنده و در به این به وی در ب در در در به وی در به
DEL2	deg.	0-			-	
α/β	deg./deg.	0/5	0/01	17.8/0	0/0	
7	O.	1.5			-	
CONFIG-	URATION	2P.C8			-	
	ITEM	χ. J	G 1.	06	5	

TABLE XXIII. (Continued)

	COMMENTS		-																,
NUMBERS	MOVABLE RAKE	383, 385	389, 391	394, 397	555	559, 562, 565	570, 573, 576	578, 581	583	585, 588	590, 593	595, 598	400, 403	406, 409, 411	413, 416, 418	420, 423, 425	429	431	
GROUP NU	COMPRESSOR FACE	381, 382, 384, 386	387, 388, 390, 392	393, 395, 396, 398	554, 556, 557	558, 560, 561, 563, 564	569, 571, 572, 574, 575	577, 579, 580	582	584, 586, 587	589, 591, 592	594, 596, 597	399, 401, 402, 404	405, 407, 408, 410	412, 414, 415, 417	419, 421, 422, 424	426, 427, 428	430, 432	433, 434, 435, 436
TRX	in.	.270	067.	.270	.260	.260	.400			-	067.	007.	.285	.492	.145	.285			-
χαJ	in.	5,39		-	5.17	5.27			-			-	7.90					-	5.00
0.13	deg./deg.	0/0					-	2/0	10/0	0/0		-	0/0		-	9/0	10/0	15/0	0/0
	Σ°	2.5		-	2.25							->-	2.0						•
-01 and 0	URATION	AXFC1	AXFC1	AXSC1	AXFC1				-	AXSC1	AXSC1	AXHC1	AXFC1			-			-
	ITEM	92	93	76	95	96	6	86	66	100	101	102	103	104	105	106	107	108	109

TABLE XXIII. (Continued)

	COMMENTS		$Pe/\ell t = 1.4 \times 10^{6}$																
NUMBERE	MOVABLE RAKE		442, 445, 447	453, 456, 455	463, 466, 468	480, 483, 486	488, 491, 494	496, 505, 508	510, 513, 516	518, 521, 524			536, 539, 541, 543	717, 720, 722	710, 713, 715	726	600, 603, 606	608, 611, 614	616, 619, 621
CROUP NO	COMPRESSOR FACE	437, 438, 439, 440	441, 443, 444, 446	452, 454, 455, 457, 459	462, 464, 405, 467	479, 481, 482, 484, 485	487, 489, 490, 493, 496	495, 497, 504, 506, 507	509, 511, 512, 514, 515	517, 519, 520, 522, 523	525, 526, 527, 528, 529	530, 531, 532, 533, 534	535, 537, 538, 540, 542	716, 718, 719, 721	709, 711, 712, 714	723, 724, 725, 727	599, 601, 602, 604, 605	607, 608, 610, 612, 613	615, 617, 618, 620
1.B.X	in.	.285	.285		-	.320	.145	.320					-	067.			005.		-
Xd.	in.	08.4	06.4		-	4.57				-	4.80	5.10	4.57	5.39	5.49	5.29	5.27		-
9/3	deg./deg.	0/0	0/0		-	0/0	0/0	2/0	10/0	15/0	0/0		-	0/0			-	5/0	10/0
	, C	2.0	2.0		-	1.5							-	2.5		-	2.25		
CONF 16-	NOTLEGI	AXFc 1	AXF- 1	4XSC1	AXIIC 1	AXFC1						-	AXSC1	AXFC4					-
	ITEM	110		11.2	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

TABLE XXIII. (Continued)

	CONFIG-	;	α/β	CPX	TBX	GROUP NUM	1	O LINGUE PONO O
	URATION	Σ	deg./deg.	in.	in.	COMPRESSOR FACE MO	MOVABLE RAKE	COMMENTS
128	AXHC4	2.25	0/0	5.27	007.	622, 624, 625, 627	623, 626, 628	
129	AXSC4	2.25		5.27	007.	633, 635, 636, 638, 639 63	634, 637, 640	
130	AXFC4	2.0		06.4	.285	651, 653, 654, 656, 657 65	652, 655	
131				5,00		643, 645, 646, 648, 649 64	644, 647, 650	
132			5/0			658, 660, 662, 663	659, 661	
133			10/0			664, 666, 668, 669	665, 667, 670	
134			15/0		-	671, 672		
135		1.5	0/0	4.57	.320	673, 675, 676, 678, 679 6	674, 677, 680	
136			9/9			681, 683, 684, 686, 687 68	682, 685, 688	
137	· <u> </u>		10/0			689, 691, 692, 694, 695 69	690, 693, 696	
138			15/0			697, 699, 700, 702, 703 69	698, 701, 704	
139	•	-	20/0			705, 706, 708	707	
140	AXFC3	2.5	0/0	5.39	067.	728, 730, 731, 733, 734 73	729, 732	
141		2.25	0/0	5.27	.400	735, 737, 738, 740, 741 73	736, 739, 742	
142	-		2/0			743, 745, 746, 748, 749	744, 747, 750	
143		-	10/0	-		751, 753, 755	752, 754, 756	
144		2.00	0/0	5.00	.285	765, 767, 768, 770, 771, 76	766, 769, 773	
145	•	2.00	2/0	5.00	.285	774, 776, 777, 779	775, 778, 780	

TABLE XXIII. (Continued)

	- Oragoon		6.78	300	ТВХ	GROUP NUMBERS	
Käll	UKATION	Σ°	deg./deg.	in.	in.	COMPRESSOR FACE MOVABLE RAKE	COMBINES
146	AXFC3	2.00	10/0	5.00	.285	781, 783, 784, 786, 787 782, 785, 785	V.
[: : <u>†</u>			12/0			789, 790, 792, 794	
871		->	-5/0	-	-	757, 759, 760, 762, 763 758, 761, 764	
071		1.5	0/0	4.57	.320	803, 805, 806, 808, 809 804, 807, 810	
150			2/0			811, 813, 814, 816, 817 812, 815, 418	oc.
151			0/01			819, 821, 822, 825	
152	<u> </u>		15/0			827, 829, 831 828, 830, 832	6
153			20/0			833, 835, 837 834, 836, 838	· · · · · · · · · · · · · · · · · · ·
154	-		-5/0			795, 797, 798, 800, 801 796, 799, 802	
155	AXS0.3	-	0/0	-	-	839, 841, 842, 844, 845 840, 843, 846	
156	AX7FC4	2.2	0/0	! -	007.	855, 856, 857, 861	
157	AX7FC4		2/0			863, 865, 866	
158	AX7HC4	-	0/0		-	867, 868, 859	
159	AX7FC4	2.0			.430	870, 871, 872, 873, 874, 875	
160			-		.280	876, 878, 879, 880, 882 877, 881, 883	
191	-		10/0			884, 886, 887, 888	
162	AX_HC4		0/0			890, 891, 892, 893, 894	
163	AX7HC4	-	10/0	-	-	895, 896, 897, 898	

TABLE XXIII. (Continued)

Colonia de la companya de la colonia de la c

COMPENTS 909, 912, 915 899, 901, 902, 903, 905, 900, 904, 907 906 MOVABLE RAKE GROUP NUMBERS 908, 910, 911, 913, 914 916, 917, 918, 919, 920 COMPRESSOR FACE .380 TBX in. α/β CPX deg. in. 15/0 0/0 0/0 Σ° CONFIG-URATION AX7FC4 AX7HC4 AX7FC4 165 ITEM 166 164

TABLE XXIII. (Continued)

	COMMENTS	$ke/ft = 4.4 \times 10^6$											Repeat of Item 177 with different acoustic honey-	comb porosity	
MBERS	MOVABLE RAKE	1290, 1293, 1296	1299, 1302, 1305	1307, 1310	1322, 1325, 1328	1314, 1316, 1320	1330, 1333, 1335		940, 943, 946	948, 951, 954	1396, 1399, 1401			1403, 1405, 1409	1423, 1426, 1428
GROUP NUMBERS	COMPRESSOR FACE	1289, 1291, 1292, 1294, 1295, 1297	1298, 1300, 1301, 1303, 1304	1306, 1308, 1309, 1311, 1312	1321, 1323, 1324, 1326, 1327	1313, 1315, 1317, 1318, 1319	1329, 1331, 1332, 1334	1336, 1337, 1338, 1339, 1340	939, 941, 942, 944, 945	947, 949, 950, 952, 953	1395, 1397, 1398, 1400	1410, 1411, 1412, 1413	1414, 1416, 1417, 1419, 1420	1402, 1404, 1406, 1407, 1408	1422, 1424, 1425, 1427
TBX		.577	.249	.410					.577	.220	.410				-
DET 2		12.0					-	10.0	8.7				-	<u>~</u>	-
0 / 8	deg./deg.	0/0		-	3/0	0/9	-3/0	0/0			-	3.5/0	3.5/0	0/2	-3/0
	М	3.0						-	2.5						-
-00-88-13-	TRATION	ZDM													-
	ITEM	167	ري د	169	170	-	7_1	173	174	175	. 9_1	177	<u>د ۱</u>	6.1	180

TABLE XXIII. (Continued)

CONFIG-		α/β	DEL2	TBX	GROUP NUMBERS	BERS	
	M _o	deg./ceg. deg.	deg.	in.	COMPRESSOR FACE	MOVABLE RAKE	COMMENTS
	2.5	0/0	10.7	.410	1429, 1430, 1431, 1432, 1433, 1434		
	2.5		6.7	.410	1435, 1436, 1437, 1438		
	2.25		2.4	.527	1341, 1343, 1345, 1346, 1	1342, 1344, 1348	
			3.4		1349, 1350, 1351, 1352, 1353		
			7.7	-	1354, 1355, 1356, 1357		
	·		7.7	.577	1358, 1359		
			2.4	.175	1360, 1361, 1362, 1363, 1364		
				.353	1365, 1367, 1368, 1370, 1 1372	1366, 1369, 1371	
		2/0			1381, 1383, 1384, 1386	1382, 1385, 1387	
		10/0			1373, 1375, 1376, 1378, 1. 1380	1374, 1377, 1379	
	~	-3/0		-	1388, 1390, 1391, 1393	1389, 1392, 1394	
	1.5	0/0	o _	.547	1439, 1440, 1441, 1442, 1443		
		0/0		.368	1444, 1446, 1447, 1449, 1450	1445, 1448, 1451	
		5/0	-	.368	1452, 1453, 1454, 1455, 1456		

TABLE XXIII. (Concluded)

	COMMENTS									
MBERS	MOVABLE KAKE									
SREMUN GROUP RUMBERS	COMPRESSOR FACE	1457, 1458, 1459, 1460, 1461	1462, 1463, 1464, 1465, 1466	1467, 1468, 1469, 1470, 1471						
TBX	in.	.368					******			
DEL 2		0 —		-				 · · · · · · · · · · · · · · · · · · ·		
α/β	deg./dεg.	0/01	15/0	-5/0						
	M _O	1.5		-						
CONFIG-	URATION	2 DM								
	ITEM	195	196	197						

TABLE XXIV. CONFIGURATION RUN SUMMARY—TRANSONIC UNIFORM FLOW FIELD¹ (PWT-4T)

	COMMENTS												
MBERS	MOVABLE RAKE	14, 17, 21	171, 174, 177	180, 183, 186	162, 165, 169	26, 30,33	117, 120, 127	131, 134, 137	139, 142, 145	108, 112, 115			
PART NIMBERS	COMPRESSOR FACE	13, 15, 16, 18, 19	170, 172, 173, 175, 176, 178	179, 181, 182, 184, 185	161, 163, 164, 166, 167, 168	25, 28, 29, 31, 32	116, 118, 119, 121, 125, 126	128, 132, 133, 135, 136	138, 140, 141, 143, 144	106, 109, 110, 113, 114	146, 147, 148, 149, 150	151, 152, 153, 154, 155	156, 157, 158, 159, 160
TBX ²	in.	.377											-
DEL2		0								-	7-		•
α / β	g.	0/0	10/0	20/0	-5/0	0/0	10/0	20/0	28/0	-5/0	0/0	10/0	20/0
Σ	0	1,2				8.0							-
CONFIC-	URATION	2DEC5											-
	ITEM	1	2	σ.	7	5	9	7	∞	σ	10	11	12

All runs conducted at a nominal Reynolds number per ft of 5.5 imes 10^6 unless otherwise noted. 1**.**

in Tables XXIII and XXV (VKF tests), increasing TBX corresponds to increasing throat bleed. For the PWT-4T test series, increasing TBX corresponds to decreasing throat bleed whereas 2.

A dashed number following a part number implies the test point number; eg, 293-1 refers to part number 293, test point 1. Part numbers without a dashed number automatically refer to test point 1. . 3

TABLE XXIV. (Continued)

	-Dienos	Σ	9/0	DEI 2	TßX	PART NU	NUMBERS	
LTEM	URATION	. 0	deg./deg.	deg.	in.	COMPRESSOR FACE	MOVABLE RAKE	COMMENTS
13	2DEC5	9.0	0/0	0 -	.377	35, 36, 38, 39, 42, 43	37, 41, 44	
14			10/0			53, 55, 56, 58, 59	54, 57, 60	
15			20/0			61, 63, 64, 66, 67	62, 65, 68	
16			23/0			69, 71, 72, 74, 75	70, 73, 76	
17			-5/0	-	-	45, 47, 48, 50	46, 49, 52	
18			0/0	7 -	.414	77, 79, 80, 82, 83	78, 81, 84	
19			10/0			85, 87, 88, 90, 91	86, 89, 94	$Re/ft = 4.9 \times 10^6$
20		-	20/0	-	-	95, 97, 98, 100,101	96, 99, 102	$Re/ft = 4.9 \times 10^6$
21	2DEC7	1.2	0/0	0	.377	268, 270, 271, 273, 274, 276	269, 272, 275	Re/ft = 4.5×10^6
22			10/0			277, 280, 281, 284, 285	279, 282, 286	
23			20/0			287, 289, 291, 293-1, 293-2	288, 292, 294	
24			25/0			295, 296, 297, 298, 299		-
25		-	0/0	-	-	300, 302, 303, 305, 306	301, 304	$Re/ft = 2.5 \times 10^6$
26		0.8	0/0	0	.377	229, 231, 232, 234, 235	230, 233, 236	$Re/ft = 4.5 \times 10^6$
27	·		10/0			237, 239, 241, 243, 244	238, 242, 245	
28			20/0			246, 248, 249, 251, 252	247, 250, 253	
29	-	-	28/0	-	-	254-1, 254-2, 255, 256, 257		

TABLE XXIV. (Continued)

	COMMENTS	$Re/ft = 2.5 \times 10^6$															$Re/ft = 4.5 \times 10^6$	
NUMBERS	MOVABLE RAKE	260, 263, 266	357, 360, 363		371, 373		382, 385			334, 337, 340		348, 351	397, 401		409, 412		310, 313, 316	318, 321
PART NU	COMPRESSOR FACE	258, 261, 262, 264, 265	356, 358, 359, 361, 362, 364	365, 366, 367, 368, 369	370, 372-1, 372-2, 374, 375	376, 377, 378, 379, 380	381, 383, 384, 386, 390	387, 388, 389	391, 392, 393, 394, 395	332, 335, 336, 338, 339	341, 342, 343, 344, 345	346, 349, 350, 352, 353	396, 399, 400, 402-1, 402-2	403, 404, 405, 406, 407	408, 410, 411, 414, 415	416, 417, 418, 419, 420	309, 311, 312, 314, 315	317, 319, 320-2, 322, 323
TBX	in.	.377					-	.250	.250	.377								•
DEL2	deg.	0				-	14	14	7	0 -								•
α/β	deg./deg.deg.	0/0	0/0	10/0	20/0	25/0	0/0	0/0	0/0	7-/0	10/-4	20/-4	0/0	10/0	20/0	28/0	7-/0	10/-4
Σ	. •	0.8	1.2						-	1.2		-	0.8					-
CONFIG-	URATION	2DEC7	2DEC8															•
	ITEM	30	31	32	33	34	35	36	37	38	39	07	41	42	43	77	45	97

TABLE XXIV. (Continued)

	COMMENTS						Bleed effect									
MBERS	MOVABLE RAKE	325, 329	450, 453		462, 465		478, 479	424, 427		436, 439						
PART NUMBERS	COMPRESSOR FACE	324, 326, 328, 330, 331	449, 451, 452, 454, 455	456, 457, 458, 459, 460	461, 463, 464, 466, 467	468, 469, 470, 471, 472	473, 474, 475, 476, 477	423, 425, 426, 428, 429	430, 431, 432, 433, 434	435, 437, 438, 440, 441	442, 444, 445, 446, 447	-				
TBX	fn.	.377					. 0	.377			-					
DET.2		0									-					
0.18	deg./deg.	20/-4	0/0	10/0	20/0	28/0	0/0	0/0	10/0	20/0	28/0					
Σ	•	8.0					-	9.0			-					
CONFTG.	URATION	2DEC8	2DEC10								-					
	MELI	47	87	67	50	51	52	53	54	55	56					

TABLE XXIV. (Continued)

	CONFIG-	Σ	α/β	CPX	TBX	PART NON	Nombers	
ттем	URATION	. 0	deg./deg.		in,	COMPRESSOR FACE	MOVABLE RAKE	COMMENTS
57	AXFC3	1.2	0/0	4.37	.320	570, 572, 573, 575, 576	571, 574, 577	
58	· · · · · · · · · · · · · · · · · · ·		10/0			578, 580, 581, 583, 584	579, 582, 585	
59			15/0			586, 588, 589, 591, 592	587, 590, 593	
09		-	20/0			594, 595, 596, 597, 598		
61		0.8	0/0			541, 542, 544, 545, 547, 548	542, 546, 649	
62			0/01			550, 552, 553, 555, 556	551, 554	
63			15/0			557, 559, 560, 562, 563	558, 561, 564	
79			20/0	-		565, 566, 567, 568, 569		
65			0/0	4.57		483, 485, 486, 488, 489	484, 487, 490	$Re/ft = 5 \times 10^6$
99			10/0			501, 503, 504, 506, 507	502, 505, 508	
67			20/0			509, 511, 512, 514, 515	510, 513, 516	
89		-	-5/0	-		493, 495, 496, 498, 499	494, 497, 500	
69		9.0	0/0	4.37		519, 521, 522, 524, 525	520, 523, 526	
70			15/0			534, 536, 537, 539, 540		
7.1	-	-	28/0			527, 530, 531, 532, 533		-
72	AXFC1	1.2	0/0			630, 632, 633, 636, 637, 660, 662	631, 634, 638, 661, 663	
73	-	-	10/0	-	-	639, 641, 642, 644, 645	640, 643, 646	

TABLE XX^rV. (Continued)

	CONFIG.	≥	0.18	X D X	YRY	PART NUM	NUMBERS	
ITEM	URATION	. 0	50	in.	in.	COMPRESSOR FACE	MOVABLE RAKE	COMMENTS
74	AXFC1	1,2	15/0	4.37	.320	647, 649, 650, 652, 653	648, 651, 654	
7.5		1.2	20/0			655, 656, 657, 658, 659		
92		8.0	0/0			601, 603, 604, 607, 664	602, 605, 608, 665	
77			10/0			609, 611, 612, 614, 615	610, 613, 616	
78			15/0			617, 619, 620, 622, 623	618, 621, 624	
42		-	20/0			625, 626, 627, 628, 0_9		
80	AXFC4	1.2	0/0			697, 699, 700, 702, 703	698, 701, 704	
81			10/0			705, 707, 708, 710, 711	706, 709, 712	
82			15/0			713, 715, 716, 718, 719	714, 717, 720	
83			20/0			721, 722, 723, 724, 725		
84			0/0			1010, 1013, 1014, 1016, 1017	1012, 1015, 1018	Repeat of Item 80
85			10/0			1019, 1021, 1022, 1024, 1025	1020, 1023, 1026	Repeat of Item 81
86			15/0			1028, 1030, 1031, 1033, 1034	1029, 1032, 1035	Repeat of Item 82
87			20/0			1036, 1038, 1039, 1040, 1041		Repeat of Item 83
80			0/0		.577	1063, 1065, 1066, 1067, 1068	1064	Bleed effect
89	-	-	0/0	_	0	1071, 1072, 1073,1074-1		Bleed effect

TABLE XXIV. (Continued)

						PART NII	NIRRERS	
ITEM	CONFIG- URATION	Σ°	α/β deg./deg.	CPX in.	TBX fn.	ł	MOVABLE RAKE	COMMENTS
06	AXFC4	1.2	0/-4	4.37	.320	747, 748, 749, 750, 751		
91		1.2	10/-4			752, 753, 754, 755, 756		
92		0.8	0/0			668, 670, 671, 673, 674	669, 672, 675	
93			0/01			676, 678, 679, 681, 682	677, 680, 683	
94			15/0			684, 686, 687, 689, 690	685, 688, 691	
95	·		20/0			692, 693, 694, 695, 696		
96			0/0			979, 981, 982, 984, 985	980, 983, 986	Repeat of Item 92
26			0/01			987, 989, 990, 992, 993	988, 991, 994	Repeat of Item 93
86			15/0			996, 998, 999, 1001,1002	997, 1000, 1003	Repeat of Item 94
66			20/0			1004, 1005, 1006, 1007, 1008		Repeat of Item 95
100			0/0		.577	1053, 1054, 1057, 1058, 1060, 1061	1056, 1059, 1062	Bleed effect
101			0/0		0	1074-2, 1075, 1076, 1077, 1078		Bleed effect
102			7-/0		.320	728, 730, 731, 733, 734	729, 732	
103			10/-4			735, 737, 738, 740, 741	736, 739	
104			15/-4			742, 743, 744, 745, 746		
105	-	9.0	0/0	-	-	1043, 1045, 1046, 1048, 1049	1044, 1047, 1050	$Re/ft = 5 \times 10^6$

TABLE XXIV. (Continued)

	CONFIG.	,	9/10	CPX TBX	PART NUMBERS	
ІТЕМ	URATION	<u>ه</u>	deg./deg.	in.	. COMPRESSOR FACE MOVABLE RAKE	COMMENTS
106	AX7FC4 I	1.2	0/0	4,37,380	0 833, 835, 836, 838, 839 834, 837, 840	
107			5/0		841-2, 843, 844, 845, 846 842	-
108			0/01		847, 349, 850, 352, 853 848, 851, 854	
109			15/0		855, 357, 858, 360, 861 856, 859, 863	
110	-		20/0		864, 365, 866, 367, 868	
111	AX7SC4		0/c		896, 393, 899-2, 301,402-2 897, 900, 963	
.13			10/0		904, 306, 907, 309, 913	
£3.3	-		15/6	-	913, 225, 916, 312, 313	
, †	40HCW		9/6		948, 350, 951, 333, 354, 943, 952, 956, 958 957	
1.15			2/01		959, 301, 962, 304, 965 360, 963, 966	
9::	- #==	-	25.75		967, 373, 971, 973, 374 969, 972, 975	-
113	AX7FC4	9.8	0/0		796, 798, 799, 801, 892	udadi v suma
118			5/0		804, 305, 806, 307, 308	
611			10/0		809, 811, 812, 814, 815 810, 813, 816	
120			15/0		818, 820, 821, 823, 824 819, 822, 825	
121			20/0		826, 827, 828, 829, 830	#
122	AX7SC4	-	0/0	-	871, 873, 874, 877, 878 872, 876, 879	

TABLE XXIV. (Concluded)

	COMMENTS											
BERS	MOVABLE RAKE	881, 884, 887	889, 892, 895	924, 927, 930	932, 935, 938	940, 943, 947	751, 764, 767		774, 777, 780	783, 786, 789		
PART NUMBERS	COMPRESSOR FACE	880, 882, 883, 885, 886	888, 890-2, 891, 893, 894-2	923, 925, 926, 928, 929	931, 933, 934, 936, 937	939, 941, 942, 944, 945	760, 762, 763, 765, 766	768, 769, 770, 771, 772	773, 775, 776, 778, 779	782, 784, 785, 787, 788	790, 791, 792, 793, 794	
	TBX fn.	380									-	
	CPX in.	4.37									-	
,	α/β deg./deg.	10/0	15/0	0/0	0/01	15/0	0/0	2/0	10/0	15/0	20/0	
	.¥ O	8.0				-	9.0				-	
	CONFIG- URATION	AX7SC4	AX7 SC4	AX7HC4			AX7FC4				-	
	ITEM	123	124	125	126	127	128	129	130	131	132	

COMMENTS TABLE XXV. CONFIGURATION RUN SUMMARY - SUPERSONIC NONUNIFORM FLOW FIELD (VKF-A) 277 287 259, 261, 263, 265, 267 275, 279, 281, 283, 285, 297, 299, 301, 303, 305, 317, 319 2.5 30, 32, 34, 36, 38 MOVABLE RAKE 24, 16, 18, 21, 23, 271, 273, 326, 228, 330 289, 291, 293 311 334, 336, 338 307, 309, 315, 320, 322, 324 321, 323 GROUP NUMBERS 369, 497 2, 1, 3, 5, 7, 9, 12, 13, 14 39 264, 274, 331, 312, 17, 19, 20, 22, 27, 28 29, 31, 33, 35, 37, 296, 298, 300, 302, 304, 316, 318 280, 282, 284, 290, 292, 294, 333, 335, 337, 339, 340 47, 48, 50, 51, 53 41, 42, 43, 44 COMPRESSOR PACE 260, 262, 327, 329, 270, 272, 308, 310, 268**,** 276 278**,** 286 288**,** 295 15, 26, 45, 52, .340 TBX in. 14.6 DEL2 deg. 16.5 0.9 11,0 α/ρ Deg./Deg. 5/0 0/01 15/0 **2/**0 15/0 15/0 0/0 5/0 10/0 15/0 $\Delta M/M_{\odot}$ ·10 . 15 • 20 2,25 $M_{\rm O}$ CONFIG-URATION 2 DE TTEM (• • 7 7 S 9 œ 6 01 13 14 12

	COMMENTS												Full vortex generator configuration.			Repeat of Item 25
	NUMBERS	MOVABLE RAKE	56	62	342, 344, 346, 349	354, 356, 358, 361	364, 366, 368, 372	374, 376, 378	384, 386, 388, 391	120, 122, 124, 127	131	136, 138, 140, 142, 144	73, 75, 77, 79, 31	85, 87, 89	96 , 96	101, 103, 105, 108
TABLE XXV. (Continued)	GROUP	COMPRESSOR FACE	54, 55, 57, 58, 59	60, 61, 63, 64, 65	341, 343, 345, 347, 348	353, 355, 357, 359, 360, 362	363, 365, 367, 369, 370, 371	373, 375, 377, 379, 380, 381	382, 383, 385, 387, 389, 390	118, 119, 121, 123, 125, 126, 128	129, 130, 132, 133, 134	135, 137, 139, 141, 143	72, 74, 75, 78, 80, 82, 83	84, 86, 88, 90, 91	92, 93, 95, 97, 98	99, 100, 102, 104, 106 107, 109
TABLE	TBX	in.	.350													
		deg.	16.6	12.6	14.6					11.4					-	
	α/β	Deg./Deg.	0/0		······································		5/0	0/01	15/0	0/0	9/9	10/0	0/0	2/0	2/0	0/0
	OM/WO	0	ı	ı	•15	.20			-						-	_
	>		2,25							2.0						
	CONFIG-	URATION	2 DE										2 DEV			-
	ITEN		15	16	17	18	19	20	21	22	23	54	25	56	27	28

TABLE XXV. (Continued)

COMMENTS	Contracts	Partial vortex generator configuration.				Repeat of Item 30									
VUMBERS	MOVABLE RAKE	111, 113, 115	186, 188, 190, 192		243, 245, 247	440	433	195, 197, 199, 201, 203	219, 221	225, 227, 229, 231	234, 236, 238, 240	206, 208	212, 214	157, 159, 161, 163	
GROUP	COMPRESSOR FACE	110, 112, 114, 116, 117	184, 185, 187, 189, 191, 193	250, 251, 252, 253, 254	242, 244, 246, 248, 249	437, 438, 439, 441, 442, 443	430, 431, 432, 434, 435, 436	194, 196, 198, 200, 202	217, 218, 220, 222, 223	224, 226, 228, 230,	232, 235, 237, 239, 241	204, 205, 207, 209	210, 211, 213, 215, 216	156, 158, 160, 162,	165, 166, 167, 168
YRY	in.	.350												.270	.270
DEL2	deg.	11.4										8.0	13.4	7.2	7.2
	2g.	0/0	0/0	2/0	0/01	0/0			9/9	10/0	15/0	0/0		-	15/0
AM/K	0	1	.15				<. 15	.20					-	ı	•
Σ.	o.	2.0											-	1.75	1.75
CONFIG-	URATION	2 DEV	2 DE												-
WILL.		29	30	31	32	£ 12	34	35	36	37	38	39	40	14	42

TABLE XXV. (Continued)

	COMMENIS															
NUMBERS	MOVABLE RAKE	397, 399, 401, 403, 405	407, 409, 411, 413, 415		422, 424, 426, 429		150, 152, 155	445, 447, 449, 451	453, 455	460, 462, 464, 466, 468	473, 475, 477	521, 523, 526	528, 530, 532, 535	537, 539, 543	545, 547, 549, 552	
GROUP		396, 398, 400, 402, 404	406,.408, 410, 412, 414	416, 417, 418, 419, 420	421, 423, 425, 427, 428	145, 146, 147, 148	149, 151, 153, 154	444, 446, 448, 450	452, 454, 456, 457, 458	459, 461, 453, 465, 467	469, 47 0 , 472, 474, 476, 478	519, 520, 522, 524, 525	527; 529, 531, 533, 534	536, 538, 540, 541, 542	544, 546, 548, 55 0 , 551	
	IBX	.270				.180	.180	.340							-	
DEL2	deg.	7.2			-	0		17.2		->	16.5	17.2			-	
8/8	Deg./Deg.	0/0	0/0	5/0	15/0	0/0	15/0	0/0					9/0	10/0	15/0	
	$\Delta M/M_{\odot}$	•15	. 20		-	•	•	•10	•15	• 20	.20	.15			-	
<u> </u>	_د ه	1.75			-	1.5	1.5	2.5							-	
CONFIG	URATION	2 DE					-	2DEI							-	
	17EM	43	7 7	45	94	47	84	67	20	51	52	53	54	55	56	

TABLE XXV. (Continued)

COMMENTS																	
NUMBERS	MOVABLE RAKE	556, 558	480, 482, 484, 486, 488	490, 492, 494, 496, 498	500, 502, 505, 507, 509	511, 513, 515, 518	562, 564, 566, 568, 570	572, 574, 577, 579, 581	584, 586, 588, 591		593, 595, 597, 600	602, 604, 606, 609	620, 622, 624, 627	611, 613, 615, 618	634, 636, 638, 641	643, 645, 647, 650	
GROUP	COMPRESSOR FACE	553, 555, 557, 559 560	479, 481, 483, 485, 487	489, 491, 493, 495, 497	499, 501, 503, 504, 506 508	510, 512, 514, 516, 517	561, 563, 565, 567, 569	571, 573, 575, 576, 578, 580	582, 583, 585, 587, 589 590	628, 629, 630, 631, 632	592, 594, 596, 598, 599	601, 603, 605, 607, 608	619, 621, 623, 625, 626	610, 612, 614, 616, 617	633, 635, 637, 639, 640	642, 644, 646, 648, 649 651	
TE 2	In.	.340	.350											-	.270	.270	
DEL2	Deg.	17.2	14.6	14.6	12.6	16.6	11.4	11.4	8.0	13.4	11.4			-	7.2	7.2	
α/β	Deg./Deg.	-5/0	0/0					· •			2/0	10/0	15/0	0/4-	0/0	0/0	
W/ W/	O., /., 1	.15	. 15	.20		-	•15	.20		-	.15				-	.20	
2		2.5	2.25			-	2.0							-	1.75	1.75	
CONFIG-	IIKATION	2DE1														-	
NGCA		57	58	59	09	19	62	63	, , 9	65	99	67	89	69	70	7.1	

TABLE XXV. (Continued)

	COMMENTS														
	GROUP NUMBERS	MOVABLE RAKE	653, 655, 657, 660	662, 664, 666, 668			678, 680, 684			002					eta are relative to the
Table aav. (Commuca)	GROUP	COMPRESSOR FACE	652, 654, 656, 658, 659	661, 663, 665, 667	569, 670, 671, 672	573, 674, 675, 676	577, 679, 681, 682, 683	85, 686, 687, 688, 689	690, 691, 692, 693, 694	695, 696, 697, 698, 699 701					rolled +90° from upright), α and β are relative to the
מחמעניו	TBX	In.	.340	.340	.350				.270	.270			_		11ed +9
	DEL 2			17.2	14.6	11.4		-	7.2	7.2					(model ro
	α/β	ă١	0/0				-	2/0	0/0	0/6					
	OM/MO		•10	.15		-	.10			•15					2DEN configurations
	Σ		2.5	2.5	2.25	2.0		-	1.75	1.75					
	CONFIG-	URATION	2DEN ¹							-					For all
	LTEM		7.2	73	74	7.5	9/	77	78	79					
										• • • •	 				

tunnel support system. For all other configurations, α and β are identified with the upright model attitude convention.

TABLE XXV. (Continued)

COMMENTS																		
NUMBERS	MOVABLE RAKE	1014, 1016, 1018, 1020	1022, 1024, 1026, 1028	714, 716, 718, 720	722, 724, 726, 728	730, 732, 734, 736	738, 740, 742, 744	746, 748, 750, 752	754, 760, 762	765, 767	1120, 1122, 1124, 1126, 1128	1030, 1032, 1034, 1036, 1038	1040, 1042, 1044	778, 779, 781, 783, 785	787, 789, 791, 793	795, 797, 799, 801	804, 806, 808	810, 812, 814, 816, 818
GROUP	COMPRESSOR FACE	1013, 1015, 1017, 1019	1021, 1023, 1025, 1027	713, 715, 717, 719	721, 723, 725, 727	729, 731, 733, 735	737, 739, 741, 743	745, 747, 749, 751	753, 755, 756, 757, 758, 759, 761, 763	764, 766, 768, 769	1119, 1121, 1123, 1125, 1127, 1129	1029, 1031, 1033, 1035	1039, 1041, 1043	776, 777, 780, 782, 784	786, 788, 790, 792	794, 796, 798, 800	802, 803, 805, 807	809, 811, 813, 815, 817
TRX	In.	067*										700						
CPX	In.	5, 39	5.24	5,39					5.24	5.54	5.39	5.27	5.12	5.27			-	5.12
AM/Ma	Deg./Deg.	0/0	5/0	0/0			9/0	-5/0	0/0	0/0	7-/0	0/0	10/0	0/0	5/0	10/0	15/0	0/0
AM/M		,	•	.10	•15	• 20					ı			• 20				. .>
×	1	2.5									-	2.25						
CONFIG-	EKATTON	AXFC2								-	AXSC2	AXFC2						-
1.06%		80	$\overline{\mathbf{x}}$	82	83	84	85	98	[∞] 127	88	89	06	91	92	93	76	95	96

TABLE XXV. (Continued)

COMMENTS																	
NUMBERS	MOVABLE RAKE	820, 822, 524, 826, 828	1131, 1133, 1135, 1137 1139	1142, 1144, 1146	1084, 1086, 1088, 1091	1093, 1095, 1097, 1099	869, 871, 873, 876	837, 839	842, 844, 846, 848, 850	852, 854, 856, 858, 860	862, 864, 866	879, 881, 883, 886	888, 890, 892	894, 896, 898, 901	1150, 1152, 1154, 1156, 1158	1164, 1167, 1169, 1171	1172, 1173
GROUP	CCMPRESSOR FACE	819, 821, 823, 825,	1130, 1132, 1134, 1136 1138, 1140	1141, 1143, 1145, 1147 1148	1083, 1085, 1087, 1089 1090	1092, 1094, 1096, 1098	868, 870, 872, 874, 875, 877	836, 838, 840	841, 843, 845, 847, 849	851, 853, 855, 857, 859	861, 863, 865, 867	878, 880, 882, 884, 885	887, 889, 891	893, 895, 897, 899, 900	1149, 1151, 1153, 1155, 1157	1163, 1165, 1166, 1168, 1170	1159, 1160, 1161, 1162
YRY	In.	005*			.360								·	·			
CPX	In.	76.97	5.27	5.12	2.00	4.85	5.00	5.20	5.00	4.85	4.75	4.85	· · · · · · · · · · · · · · · · · · ·		2.00	4.85	4.85
α/β	Deg./Deg.	0/0	7- /0	70/-4	0/0	0/01	0/0			C .370. 17-1		5/0	10/0	15/0	0/-4	5/-4	10/-4
F./M V	01:1/1:1	. 20	•	-			•15	• 20	ه د سوسی								 .
	0,.	2,25		-	2.0			2.0									-
CONFIG.	ERATION	AXFC2	AXSC2	AXSC2	AXFC2			AXFC2						-	AXSC2		-
N.d.L.1		47	2.	66	100	101	² 12	103	104	105	106	107	108	109	110	111	112

TABLE XXV. (Continued)

COMMENTS																	
NUMBERS	MOVABLE RAKE	866			1046, 1048, 1050, 1052	1056, 1058, 1060, 1062, 1064	1066, 1068, 1070, 1072	1076, 1078, 1080	977, 979, 081	931, 933, 938	910, 913	916, 918, 920, 923	925, 928	940, 942, 944, 947	949, 951, 953, 956	958, 962, 964, 966	
GROUP	COMPRESSON FACE	997, 999, 1000, 1001, 1002	1008, 1009, 1010, 1011 1012	1003, 1004, 1005, 1006	1045, 1047, 1049, 1051, 1053	1055, 1057, 1059, 1061, 1063	1065, 1067, 1069, 1071	1075, 1077, 1079, 1081, 1082	976, 978, 980, 982, 983	930, 932, 934, 936, 937	909, 911, 912, 914	915, 917, 919, 921, 922	924, 926, 927, 929	939, 941, 943, 945, 946	948, 950, 952, 954, 955	957, 959, 960, 961, 963 965	
> at	In.	.360			.320 i												
CPX	In.	5.00	4.85	4.85	4.80					-	5.00	4.80	4.57	4.80			
α/β	2	7- /0	5/-4	10/-4	0/0	2/0	10/0	15/0	0/0					5/0	10/0	15/0	
N/ N/	Δει/ ει _ο	.20			,			-	•15	>.15	• 20						
,	O E	2.0		**	1.75												
CONFIG-	URATION	AXSC2		-	AXFC2											-	
7.3	Σ. 	113	711	115	116	117	118	6 12	1 50 1 20	121	122	123	124	125	126	127	

COMMENTS							
NUMBERS	MOVABLE RAKE	968, 970, 972, 975	985, 988	766	1101, 1103, 1105, 1108	1110, 1112, 1114, 1116, 1118	
GROUP	COMPRESSOR FACE	967, 969, 971, 973, 974	984, 986, 967, 989, 990	991, 992, 993, 995, 996	1100, 1102, 1104, 1106, 1107	1109, 1111, 1113, 1115, 1117	
XAT	In.	. 320					
CPX	In.	4.80					
α/β α/β	Deg./Deg.	-5/0	0/-4	10/-4	0/0	0/-4	
AM/M		.20			1		
Σ.	ľ	1.75		-	1.50	1.50	
CONFIG-		AXFC2	AXSC2	AXSC2	AXFC2	AXSC2	
LTEM		128	129	<u>و</u>	131	132	130

_		
-		
_		
_		
¥ì.		
-		
•		
7		
3		
•		

AEDCIARD.INC.) AMMOLU AFS. TENNESSEE VON KAMMAN GAS DYNAMICS FACILITY GAS DYNAMIC AIND TUNNEL, SUPENSONIC (A)

1001	01 JOO	VADV26		ALPHA-#	ALF.	ALPHA-M1	-	ALPHA-P2	٠.	9ETA-41	Ŧ.	AE T.	RETA-H2	•	0EL 2		*8 ×	10,	_ ;
AC.	1146	4	P= [+4	4140	4		Velas	đ	DEC-TAE		717		. 37 30			5		٠	•
15.02	2.5026 02	1.7	1.76.t 00	7.716	6E 00		.939E 03		5-9136-04		2-002E-07		5.725	00	2.50	100	.630E	20	
CFR 8.043E-01	01Cf 50.473E-02	-	#Cr (COAR)	11.1	HSCF1 AVG 75E-02		PREF 3.937£ 0		4		÷.		. :	_ 1) į	
53	144		888		1564		0		4		17/1/1		1	•	2			1	
3.073E 00	2.31et-31		7.1386-02				3.37eE	90	3.64BE	00	7.985E-01		6-018E-02	-05	1.8556-02	E-02		- Nec	8.772E-01
RMSI		KMS3		RHSA	EQ.	RMSS	,	RMS6	بين	RMS7		RHSB		RMS9		RMSIA		T C	Duck
3.0516-01	2.3676-01	2.798E-31		2.988E-0	_	5.2036-01		3-2166-01		2.874E-01	-	.0546-01		1-1876-61		-956		1-910-1	3.0516-02
ANS1 JETER		MNS3/PICF	1	JI dy vSWH-	4	AMSS/PICS		MNS6/PICE		HMS 7.4PTCF	-	HNSB/PTCF		KMSQ/PICE	i	RMS 10/PICF		PRS11/01CF	
1.2596-02	9.76-6-03	1.154E-02		1.233E-0	2	2-147E-02		1.3276-02		1-186E-02		4.3496-03		4.897E-03		8.071E-04		7-4836-03	i
VALUE	PCHT	TAP	X		a		79	P/PINE	4	P/P0	Ü	a.		0	,,,	D 1 M		7	
	33	-	-3-1755-01	-0	3.3196		1.887	7E 00	1.10	.105E-01	2.02	9£ -6 }	3.0	3.005F 01	-	7695	•	3 4 5	•
-	,	~ 1	-2.096F	70	3.309E		1.885E	5E 00	1:1	1036-01	2.05	2.024E-01	2.9	2.998E 01	-		•	7.67AE	22
- 0		,	10-64191	5	# - 354E	1	7.7.5		2.1	2.1756-01	9,55	8.552E-01	3.0	3.0106	+	1		7. 700E	
-	•	•		20-	8.32dE	0 6	4.727E	76.00	2.7	2.7676-01	8.51	8.5196-01	9.0		:	.762E 0	~	7.708E	
n :	•		-3.009E-02	-05	7.077F		0275		20.36	35.75		4 030E-01	•		•.	.757£ 0	-	7.699€	•
-	2		-c. 294-02	-05	8.419E		4.777E		2.79	2.796F-01	8.63	8.6346-01	-	3-00cc 01	:-	157E 0		7-68@E	= :
~	2:		-1-2145-02	-05	1.116E	0	6.331E		3.76	.705E-01	1.2196	9E 00	3.0		: :	762E 0		7.7.06	29
•			TETROE - 03	0	9.9.2E	1	5.005	T.	3.35	10-353E-01	+++++	=======================================	946	T		-756E +		3604	
V 4	- :	3	-3.357E-02	20-	1.850E		1.354	1E 01	6.1	6-1705-01	2.19	16 00	5.9	2.998E 01	-	.755E 0	-	7-67BE	9
~	2		70-19#/•I-	20-	1.934	5 6	1.0436	_	9	6-105E-01	2.156E	9	3.0		-	.759E 0		7.690E	
2	=	2	1-4705-02	3	2 44 65					0-4006-01	77.7	4c 00	3.0	3.000E 01	-	.756E 0	<u>.</u>	3289	•
~		3 %	4.393F = 0.2	200	200000	5 6	10100	90	0.0	0.073E-01	2.37	ě (9				•	7.704E	1
	2		4 706 -		3.646.6		1000		0.0	10-300		100		2.999E 01	-	.755E 0	•	7.680E	•
~	92	2	0.750F-02	-05	2.1136	5 6	1.2036	36 01	7.04	7.0425-01	2.5226	26 90	1	301010	-	T		1.720E	1
~	27	27	1.6071-01	10-	2.1366		1.21.26		7.00	10056-01	36436	34	•		•	0 2007	•	7.684E	•
~	92	28	4.6795-01	10-	2.175E		1.2366		1.23	2336-01	2.5966	A 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		3.0076 01	• -	· rece o	-	7.710E	•
~	23	Z	4.464E-01	10-	2.246E		1.2735		7.45	452F-01		34		10 36 10 5	:.	7007	•	7.700E	•
-	35	?	**107E-02	-05	2.210E	10	1.259		7.36	.367E-01	2.6496	96 90	3.0		:-	7566	•	3017-1	
-	-		30-36-8-6	30.	20205	4	1.1526	10 31	4.5	37+1e-01	2000-2	2	3		1	7616			
	20	7	1.679E-02	-05	2.01BE	7	1.1495	96 01	6.73	6.728E-01	2.3996	96 90	2.9		::	9 3		9000	22
	62	M .	V-500E-02	-05	2.039E	5	1.1556	5£ 01	6.76	6.762E-01	2.4126	2E 00	3.0	3-015E 01	-	.765E 0		7.720E	2
			1.679E-01	0	Z.088E	5	1.1896		96.9	.9596-01	2.489E	9E 0	3.0	3.001E 01	-	.756E			
-									1				1					3000	

a. Primary Performance Data, Sheet 1
 Sample Tabulated Data Format - Uniform Flow Field,
 VKF-A Tunnel, 2DE Inlet

Figure 19.

	26 25	0.7	Þ	-2.250E	1		-7.483E=	0 3469	3.007£ 01	1.76	00	.700E 00	1
	Ş		•	200				9246	2/00.	1.700		700E	1
			9				1007					716E	
	-		9				1.05CE-	. 148£ 0	• 0 I 3E	1.7			_
, - u - u - u -	• :		-				7.680E-	.771E 0	• 0 1 3E	1.7		116	_
- ~ ~ ~ ~ ~ ~	1 0	,	ç	• 1 1 5			1.372E-	.072E-0	.000E	1.75		S.B.S.E.	_
v-0-0-	*	-	ø	.361			1.1276-	. 11 dE -0	.981E	1.745		3 4	
- ~ ~ ~ ~	3.0	~	. 429E	6 855			_	.856£-0		1.7		1 × 1	
N N	0	í	P	.03	00		1.678E*	-268E-0	- 9000°		1		1
- 6 -	•		.6435-0	.13	00		1.9116-	177F-0	1000	1 754		3000	
~-	7	65	393E-0		00		1.80 35-0	75.56	1			2000	
-	•	9	0-30%C						1004	001		246E	
•				•	3 6		0-17176	-450E-0	• 486E	1.748		946E	_
	, ,		> (Ç	5		- 3684E-	.679E 0	.004E	1.75		892E	_
74	5.	11	•	•	5		5.82	.044E 0	.995E	1.75		66.AF	
		21	Α	3	10		8.450E	.0756-0	. 3000 ·	1.79	}	2	L
 ,	40	7	7	.70	5		9.00 BE	.289E 0	-000F	1.75		308	
	•	*	•	•65	5		8.859E	.231E 0	9000	1.75			
_	11	7.5	•	.51	5		8.38	045E 0	9005			1000	
~	. 24	0	•	90.	0		6-875F	456F 0	9400		2 6	1000	
~	* 3	91	•	2.281E	0	1.302E 0	7.619F=	74.76	יי דע			97269	
- 2	**	78	6	Y	-		1		3044	-	9	- 663E	
~	\$	9	• •		5 6		B 10.0E	3000	3000	•	00	22.9	1
~	•		•	5	: :			2020	-000		9	.682E	_
	7	u di	•	ָ פּ	5 6		0.11CE-	17/4	346F		00	.666E	_
	2	9	•	ם י	5 ?	1000	0.48	-040E	999€	_	00	.668€	_
۰ ۸	2	6	> 3	1000	3 3	200	1.590E-	. / 38E	-006E	_	00	.698E	0
	-		> 5	2006.2	> ‡	3015	1.001	177	•006E	_	00	3869€	6
. ^	, e	0	•	2 2105	9	3000	1.635E=	1325	-010E		00	-708E	4
	. 40	40	• (3	20100	3	3116	7.673E-	- 769E	•010E	_	00	.708E	0
~		95	•	2.324F	9		7 7 3 A E	100L	•005E	_	0	-694E	
1		300	46.		•	3000		1 7 C E	-005E	_	00	3469·	0
-	~	101	0000	۸ د		1 2 244	0.00	0 / 10L	• 013E	1.76	0	·716E	
	2	201	0000		c	N. C.	31100	3930	0135	-	0	.714E	•
-	*	103	. L	2		3446	7.8675	3440	• 000E	5.0		-682E	۱.
1	•	104	000E	2.3	0	W.	7.9186-	3665		0,-1		- 708E	
-	9	105	9000	2.3	0	3476	_	A OF	30.0	n ,	·	1000	
~	~	100	1.000E 00	2.393E	0	357	7	67	35.10	35975 10	~ *	7146	
~	m	101		2.4	0	.378E	æ	.921E	0000	7.		3617	
2		801		2.0	1	. 183E	•	- 15th	0105	4		1200	J
~ (Δ,	103	• 000E	2.4	0	366E	~		.001E	10.75		400	
٧.	•	CI.	3000·	2		369€	60	.901E	. 01 3F	1.763		311	
	* 1		• 000E	7.7	0	79E	æ	.923E	998E	1,755		307	
٠,	e v	211	•000L	7		398E	ø)	367E	996E	1.754		17.0	5
-	30	113		Z.	0		80	.965€	.006E			A 9 A F	
	36	211	Γ.,	2.	P	3665	9	9476	3100	1.750		- 488	J.
- (9	611		7.	0		1 8.13	.948E	999E	1.753		4666	
V (7.	0		1 8.123E	.944E	966	1.755		3029	
N (50	117		×.	0		1 8.2516-	994E	996E	1 1.754		30.0	
>	96	2		2.4		0	1 8.199E-	.973E	-006F	1.759		3007	
2	37	5		2.4	0	400E 0	.0	.971E		1.7566		3040	
•		021	1.0000 00		5	1.3986	-3061°	- 1006				2000	

b. Primary Performance Data, Sheet 2

Figure 19 Continued

	\$	8			3		3	\$;	3	3	3				3	3	3	3	3	3	3	
₩10	7.704	7.6706	7.49.6	10000	7.0705	107101	7.7045	7.6705	7.6985	7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	7.4.046	7.4946	30.0		3011	2000	7007	7.4.706	40.00	100		
	0.0			3		3	9		9 6		3 6	000			3	3	3					
MId	1.761E	1.755E	1.7596	1 75.05	7666	20.00	10/01	7000	7606	1656	1 . 74.06	1.759E	The safe	1 14.26	74.06	1.7606	1.7646	1.755	7	1.7626	1.7556	1.7616
	10	10	6	5	5		5 6	5 6	5 6	5	6	6		-	5	5	0	6		6	0	6
9	3.009E	4.99 UE	3.006	3000	3.015	1000	3000	3-00-6	3.005	3.015	3.005	3.005	3.014	3-01	3.007F	3.007	3.0136	2.99BE	40.00	3.0116	2.998E	3-0096
	- 00	00	00	00	0			3 6	0	0	00	0	00	00	0	0	00	-01		0	5	10-
ზ	2.915E	2.9476	2.967E	2.946F	2.9236	2 B 5 F F	9.00	2.8576	2.6816	2.886E	2.769E	2.759E	2.75bE	2.750F	2.781E	2.783E	1.731E	5.971E		1.0332	4.804E-0	2.793E-0
04/4	- 0.049E-01-	8-132E-01	8-182E-01	8-128E-01	8.0695-01	7.849F=01	1.4215	7.9006-01	7-962E-01	7.975E-01	7.675E-01	7.6516-01	7:0425-01	7-627E-01	7.706E-01	7.7126-01	5-0186-01	2-114E-01	101396-01	3.231E-01	1.6155-01	1.300E-01
L	10	5	5	5	6	ā		5	10	10	5	5	5	5	5	5	00	0	00	00	00	00
JN1d/d	375	1.389E	1,398€	1.3496	1.379E	1,3506	1.3	1.350E	1.360€	1.363£	1.3116	1.3076	1.3006	1.303E	1.317E	1.318E	8.574E	3.613E	1000	5.521E	3.102E	2.22E
;	5	5	5	5	5	10	1	6	5	10	5	5	5	10	5	5	5	00	80	00	00	00
a	226.2	Z.438E	2.460E	2.443E	2.433E	2.376E	2.3756	2.375E	2.393E	2.404E	2.307E	2.299E	203036	2.296E	2.317E	2.319E	1.5126	6.340E	3.4316	9.729E	5.443E	3.912E
	20	3	0	00	0	00	- 00-	0	00	9	00	9	-	0	0	0	0	0		6	•	0
								1.000E													}	
TAP	121	221	123	124	125	126	121	126	159	: : ::	131	136	5	136	137	136	201	0		000	201	-
FCRT	<u> </u>	2 :	•	2	•	12	13	*1	51	9	2	1.6		•	:	61	.	92	7		2	7
,																						

c. Primary Performance Data, Sheet 3

133

)		
•		
•		

	,
	4 130
	•
1	ž
AEDCIARO-INC.) AHNOLD AFS. TENNESSEE. YON KAMMAN GAS DYNAMICS FACILITY GAS DYNAMIC AIND TUNNEL. SUPEMSONIC (A)	HF TA-MO
AEDC(ARO.INC.)AHNOLD AFS. TENNESSEE. VON KAHMAN GAS DYNAMICS FACILITY GAS DYNAMIC AIND TUNNEL. SUPERSONIC (A)	8E [A-H]
AEDCIARO-INC.) AHNOLD AFS. TENNESSEE. VON KAHHAN GAS DYNAMICS FACILITY GAS DYNAMIC AIND TUNNEL. SUPENSONIC	ALPHA-#2
AEDCIARO.IN VON KAMMAN GAS DYNAMIC	ALPHA-# ALPHA-#1 ALPHA-#2
	ALPHA-#
PAGE NUMBER ONE	CONFIG PROJECT
PAGE N	COLF 16

	THE MONTER ONE	CR UNE										
1002	CONFIG PHOJECT	MUJECT VADY26	ALPHA-#		ALPHA-M1	ALPHA-F2		8E1A-M1 8	BETA-M2 .	DEL 2	#6x .791	78.K
15.62	2-5026 03		ĺ,	757-I	- A I Mc		849-14F	HU-14F	- AE/61	**C* **0		
		10, 366, 01		1.000E 00	1.939E 03		5.8856-04	2-002E-07	5.698E 00	2-50		
7	P50	150	-	P52	653	6	750	11 340	900			
-4.F70E-01	2.360E UI	1 7.342E 01		2.326F 01	2. TIEF AL		23066	TT CEE	21 CM	MMS 13	RMS 14	
-1.115E 00	20442E UI			2.430F 01	2000		10 3055 0	10-3428-1	1.5/65-02	9-2735-01	2-1926-02	2 9.2736-01
-1.704E DD	2020202		Ĺ	44 44 44	10 7-60-7		20145	1.864E-01	1-4746-02	1.095E 00	3.000E-02	
-2.441E 00	2.561E U	1 2.45.4F 0		2.4566 01	36.14.6		10 350	-1.874E-01-	1.677E-02-	- P.406E-01	3.349E-02	ł
-3-126E 00	2-641E 01			2.46SF 01	0 3164-2		Z-510E 01	1.855E-01	1.3465-02	3.861E-01	2-741E-02	
					36649		10 3404.2	1.859E-01	1.6016-02	1.866E-01	2.678E-02	
~	P50/FC	P>1/P0	2	P52/P0	DG/ESQ		064.490	000				
-4-870E-01	7-868E-01	1 7.8u7E-01		7. 14RF-01	7		01/06/6	04/9A4/	#CF0EL	2	:	
1:1156 00	F-112E*01			R.072F+01			10-360/0/	1. 782E-01	1-000E 00	2.999E 01		
-1.764E 00	4.3136-01			SHAFE OF	0.3005.0		10-2910-0	8-039E-01	1.000E 00	3.0116 #1		
-2.441E 00	8.467E-01			1000 - 0 - W	160200		0-1436-01	8.284E-01	1.08%E 00	3.009		
-3.12eE 00	6-702F-ul			•	10-1061-0		8.299E-01	8.234E-01	1.001E 00	3.024E .	. !	
	,		;	10-31-11	0-2022-0		4 • 5 7 9E = 0 1	8.377E-01	1.042E 00	3.035E 01		
188	110	CHHST10AVG/TRR*PU	VG/TRR.	PUANG								
BoleStell trebetest 9. Fratean	1.2000	T. P. France										

d. Movable Rake Data
 Figure 19 Concluded

GHOUP 3 ARC.INC. ANACLD AIR FORCE STATION, TEAN
TC+ 60 293 2 1248 5-14-70 2
1.2018 2166.2 901.0 851.2 4.402 2166.2 2163.1 900.9 899.6 1653.4 111.6 112.4 0.02 4.79 4.79 4.82 4.90 4.83
1-1935 1-3101 19-56 0-06 27-3 2057-4 0-311
ALF-D ALF-M EET-P CEL-2 16x PBX CF-AVE DICF MCF HCF-C32 RMSCF HFR-CF P-REF 2DR 20.079 20.079 0.000 C.000 C.006 C.37P C.101 0.9869 0.02279 1.495 1.554 0.0030 0.3067 14.415 -0.031
487 1887 MES1 MO2DE HC PFR-ET PFR-BR MFR-8S1 MFR-0.1569 9.7000 0.0000 1.654 4.676 C.CTZ6 0.0040 0.0000 0.3393
PFMS1 PRMS2 PRMS3 PRMS4 PRMS6 FRMS6 PRMS7 PRMS6 PPWS9 PAMS10 ERUS11 PRMS14 PRMS18 0.0000 0.0000 0.0000 0.0000
NPPS1 NPMS2 NEMS3 WEMS4 NEMS5 NRPS6 NRMS7 NRMS9 NPMS9 NRPS10 WRFS11 NRMS14 NRPS15 C-60205 0-60372 0-00287 6-00287 0-60600 0-60177 0-00304 0-60600 0-00600 0-00600

a. Primary Performance Data, Sheet 1

Figure 20. Sample Tabulated Data Format - Uniform Flow Field, PWT-4T Tunnel, 2DE Inlet

######################################	L L	1								
10 10 10 10 10 10 10 10	10-063	20.	~	1242 5/14	7.0 2	121				
Color		Ga.	•	4	d2			5	4	PIPTA
Color	+4		753	eòs	5.5		06	10	1031.5	.476
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	~	66.1	727	Ent.	60%5-3		91	3	2112.0	.975
70.0	-) 4	£6.7	0 H	4	2.05.2		6		2125-5	.981
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		70.9	1 0	U	P. 4		63	0	2145.0	000
71.5 3 1000 0 10000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1	•		_	· U	· "		, u	, K	2446.5	000
71.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^			·			100		2146 %	4
2	•			S			101	6	2106.1	971
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	•		-n	•	G		102	c	2109-6	974
72. 72. 72. 72. 72. 72. 72. 72. 72. 72.	92	!	2-59-5	5	"		113		2117.6	f-9777
24 72.5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21		3	O.	145		104	6	2124.9	0.9810
25 73.0 2760-4	25		3	5	221		105	0	2146.6	986
26 73.5 2776.3 C.964.9 1.3379 10.0 10.0 224.0 22 7.5 2.7 2.5 2776.3 C.964.9 1.3379 10.0 10.0 224.0 22 7.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	3 6		4-0000	3	,,,		100	ė,	2115.7	97E
27 76.5 70.6 6.0 70.6 70.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	,	t	**3402		,		107		2132.9	7
26 27<	2 %		0 - AUG 0				101	6	2140.0	-987
26	27		0 0 0 0 0 0 0	, v			100	ė.	2140.9	0.9883
25			9.000		. 41				2145.0	2066-0
42 73.7 275.7 6.55.4 1.3319 1.3319 113 100.0 2157.6 42 74.7 2757.7 6.55.7 1.3519 1.351	3	(8)	7544.5	. 5			111	٠,	215	
41 73.7 2.155.7 6.5450 1.2924 115 100.0 2150.6 45 74.7 2.156.2 6.5455 1.2764 115 100.0 2150.2 6.5455 1.2764 115 100.0 2150.2 6.5455 1.2764 115 100.0 2150.0 2150.2 6.575.4 6.5			2:61-2	. 5			7 -	; ;	2162 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
74.2 2.150.2 0.5465 1.2764 1.15 100.0 2149.3 74.7 2.551.1 0.5464 1.2762 1.2762 1.15 100.0 2149.3 74.7 2.551.1 0.5464 1.2762 1.2762 1.17 100.0 2153.3 7.564 1.2762 1.2762 1.17 100.0 2153.3 7.564 1.2763 1.17 100.0 2153.3 7.564 1.2763 1.18 100.0 2153.3 7.564 1.2763 1.2763 1.18 100.0 2153.3 7.565 1.2763 1.2		l	2:55.7	3	262		114	6	2156.6	0.0028
74.7 2.550.1 C.5464 1.2862 1.2873 116 100.0 2123.1 7 70.6 7 7.766 1.3773 100.0 7.145.9	42		2-05-2	44	286		115		2149.3	0-9922
70.7 2151.1 C.5669 1.2773 117 100.0 2145.9 16.6 2.65.4 C.5549 1.2773 100.0 2150.8 16.6 2.65.5 C.554.4 C.5559 1.2753 118 100.0 2150.8 16.6 2.65.4 C.555.4 C.555	2		2250-1	975	1.2A62		116		2123.1	0.9861
64.6 2.054.4 1.300.7 110.0 2.054.4 1.300.7 110.0 2.054.4 1.300.7 110.0 2.054.4 1.300.7 110.0 2.054.4 1.300.7 110.0 2.056.4 1.300.7 110.0 2.056.4 1.300.7 110.0 2.056.4 1.000.7 110.0 2.056.4 1.000.7 110.0 2.056.4 1.000.7 110.0 2.056.4 1.000.7 110.0 2.056.4 1.000.7 110.0 2.056.4 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7 110.0 2.056.7 1.000.7			2751-1	57550	1.2873		117	:	2145.9	0.9905
\$2.5 2.65.5 4 0.45.5 1.2004 71.0 555.4 0.45.5 1.2003 71.1 1344.2 0.66.7 1.2003 71.2 144.7 0.66.7 0.66.7 1.2003 71.4 144.2 0.66.7 0.61.2 1.2003 71.5 144.7 0.66.7 0.61.2 1.2003 72.1 174.2 1.00.0 2.140.0 2.140.0 2.150.0 2.140.0 2.150.0 2.140.0 2.150.0 2.140.0 2.140.0 2.150.0 2.140.0 2.150.0 2.140.0	n 4	0 4	9-3367		1002.1		120	ċ	0	0-000
71.0 555.4 C.5062 1.2743 121 100.0 2131.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			* 4	0.64.8	2007		119		2153.8	0-9943
71.0 565.4 0.0047 122 100.0 2150.6 7.1 1341.9 C.6166 7 C.6137 122 100.0 2150.6 71.5 1444.2 0.666 7 C.6137 122 100.0 2150.6 72.1 1417.7 0.6567 0.6796 122 100.0 2149.8 72.1 1417.7 0.6567 0.4270 122 100.0 2140.0 72.1 1417.7 0.6567 0.4270 1225 100.0 2140.0 74.0 2166.2 1.0000 1.4751 1229 100.0 2140.0 74.0 2169.4 0.6726 1.2959 100.0 2140.0 74.0 2151.7 0.6527 1.2959 132 100.0 2147.4 70.0 2146.8 0.6627 1.2959 132 100.0 100.0 2147.4 70.0 2151.7 0.6922 1.2959 132 105.2 2075.1 70.0 2151.5 0.6922 1.2958 135 105.2 2075.1 70.0 2151.5 0.6922 1.2958 135 105.2 2075.1 70.0 2151.5 0.6922 1.2958 135 105.2 2075.1 70.0 2151.5 0.6922 1.2958 135 106.0 558.7 70.0 2151.5 0.6922 1.2958 135 106.2 568.7 70.0 2151.5 0.6922 1.2968 144 108.4 568.7	46		7.44.6	F 1 5 5 1 5			2		2120-0	4264-0
7: 1 1341.9 C.6165 C.6137	99		555.4	0.4124	0.0047		122		2150.6	4000
71.3 1444.2 0.6667 0.6196 1224 100.0 2149.8 72.1 1449.5 0.6667 0.6196 122.0 122.1 122.1 100.0 2149.8 72.1 1449.5 0.6667 0.6196 122.0 122.1 122.1 100.0 2140.9 122.1 142.7 0.020.0 122.0 0.4270 122.7 100.0 2120.0 0.4270 122.7 100.0 2120.0 0.4270 122.0 122	61		1341.9	C. 615¢			123		2155	0.000
71.6 1449.5 C.eeec. 0.e196 72.1 1417.7 C.eeec. 0.e196 72.1 1746.7 C.eeec. 0.e196 72.1 1746.9 C.eeec. 0	. 29	71.3	1444.2	-66	۳		124		2149.8	
72.1 1417.7 C.6545 0.5644 126 100.0 2120.0 72.7 126.6 100.0 2120.0 72.7 127.7 100.0 2120.0 72.7 127.7 100.0 2120.0 72.7 100.0 2120.0 72.7 100.0 2120.0 72.7 100.0 2120.0 72.7 100.0 2120.0 72.7 100.0 2120.0 72.7 120.0	63	71.6	1449.5				125	d	2148.9	2000
72.7 1776.9 C.5659 0.4270 127 100.9 2126.6 n 74.0 2166.2 1.00.9 2126.6 n 74.0 2166.4 n 72.0 2126.6 n	7	72.1	1417.7	•	3	-	126	6	2120.0	0-9767
74.0 2166.2 1.000 1.4151 128 100.0 2185.5 0.000 1972.5 1.1999 1.2991 1.2	65	72.7	1276.9	•	-427		127	d	2128.8	1.9827
68.0 1972.3 6.51C5 1.1999 12297 129 100.0 2147.4 66.0 1969.1 6.522 1.2297 130 130 100.0 2147.4 66.0 2167.4 66.0 2151.9 6.0 6.0 2151.3 100.0 2147.4 66.0 2151.3 100.0 2147.4 66.0 2151.3 100.0 2151.3 100.0 2151.3 100.0 2151.3 100.0 2151.3 100.0 2151.3 100.0 135 105.2 2075.7 8.0 66.0 2156.8 10.0 135 105.2 2075.7 8.0 10.0 2148.8 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	:	74.0	2166.2	•	•		128	6	2135.5	
68.0 1999.1 C.9229 1.22977 130 100.0 2147.4 0.200.0 2169.4 C.9220 1.22977 1.200.0 2169.4 C.9220 1.200.0 2169.4 C.9220 1.200.0 2169.2 1.200.0 200	70	6.0.0	1972-3		1.1999		129		2140.0	0.9679
CG-0 2109-4 0.572e 1.2950 100.0 2075.3 0.0 CG-0 2148-9 0.662e 1.2959 135 100.0 100.0 100.0 0.0 CG-0 2151.3 0.663.1 1.2959 135 105.2 2075.7 0.0 70.0 2159.2 0.9875 1.2651 1.2651 0.0 70.0 2146.8 0.693.1 1.2683 1.2683 0.0 70.0 2151.5 0.693.2 1.2982 1.2982 1.2982 70.0 2151.5 0.693.2 1.2982 1.2982 1.46.106.4 566.7 70.0 2151.5 0.693.2 1.2982 1.2982 1.45.106.4 566.7 0.0	51	0.89	1000-1	•	1.2257		130		2147.4	8-0013
60.0 2151.3 C.5621 1.2959 152 100.0 1600.2 0. 60.0 2151.7 C.5621 1.2950 156 156 105.2 2075.7 0. 70.0 2150.2 0.9875 1.2950 156 105.2 2075.1 0. 70.0 2150.5 C.5921 1.2956 156 156 105.2 2075.3 0. 70.0 2151.5 0.5921 1.2986 146 106.2 1572.4 0. 70.0 2151.5 0.5922 1.2966 146 106.4 566.7 0.	2	0.00	2109-4	•	Ps (131		2075.3	- 958
60.0 2151.7 C.963% 1.3960 136 105.2 2075.7 9. 70.0 2151.7 C.963% 1.3960 136 105.2 2075.7 9. 70.0 2150.2 C.9975.3 1.3986 136 105.2 2075.3 9. 70.0 2151.5 0.693% 1.3986 139 108.2 2075.3 9. 70.0 2151.5 0.693% 1.3986 146 108.2 1372.4 9. 70.0 2151.5 0.693% 1.3986 146 108.4 566.7 9. 70.0 2151.5 C.993% 1.3986 146 108.4 566.7 9. 70.0 2151.5 C.993% 1.3986 148 149.7 654.3 0.	2 4	0.00	Z140-Y	•			132		1640-2	-831
70.0 2129.2 0.9875 1.2651 130 105.2 2075.7 9. 70.0 2129.2 0.9875 1.2651 1.2651 130 105.2 2075.7 9. 70.0 2151.3 0.6922 1.2685 1.2	75		2121	• ;	., .		139		0	9-1000
70.0 2146.6 0.9912 1.2039 1.2039 1.0039 1.0039 1.0039 1.20) e	70.0	21111	•			130	1	2075.7	8-9562
70.9 2151.5 0.5922 1.2982 1.4982 108.2 2075.3 8. 70.9 2151.5 0.5922 1.2982 1.3982 14: 108.4 568.7 8. 70.9 2151.5 0.9922 1.3982 1.3982 14: 108.4 568.7 8.			2.6217	•	1-2521		137	•	2076-1	
70.9 2151.5 0.5922 1.2988 144 108.4 568.7 8. 70.9 2151.5 0.9922 1.2988 1.40 144.7 654.3 0.	# C	0-0/			1000 T		138		2075.3	,
70.9 2121.5 C.9972 1.1988 143 114.7 654.3 0.3	70	D-8/	٠.	200	0		139		1372.4	0.6335
70.0 1 0.0 1	3 3	70.0	١.		000		4.		566.7	ç
		70.7	•		۳,		7 7 7			

b. Primary Performance Data, Sheet 2

Figure 20 Continued

1.2005 2166.2 900.7 0.9745 1.3530 0.90.7 0.9745 1.3530 0.90.9 0.9716 1.3578 0.90.9 0.9722 1.3598 0.9922 1.3595 0.9524 1.3598 0.9922 1.3595 0.9524 1.3598 0.9922 1.3593 0.9922 1.3595 0.9522 1.3596		TRANSLATING	RAKE						
TAP P P/PTA CF 20R RK 50 2110.9 0.9745 1.353C C.527 0.9537 5120.9 0.9725 1.353C C.527 0.9537 52 2140.6 0.9716 1.354C C.527 0.9537 52 2140.5 0.9726 1.3576 53 2149.5 0.9726 1.3576 54 2138.6 0.9726 1.3576 55 2140.5 0.9726 1.3576 55 2140.5 0.9726 1.3576 56 2138.6 0.9726 1.3576 57 2146.6 0.9726 1.3576 58 2146.6 0.9726 1.3576 59 2146.6 0.9726 1.3576 59 2146.6 0.9726 1.3576 59 2146.6 0.9726 1.3576 59 2146.6 0.9726 1.3576 59 2146.6 0.9726 1.3576 59 2154.5 0.9726 1.3576 59 2154.5 0.9726 1.3576 59 2154.5 0.9726 1.3576 59 2154.5 0.9726 1.3576 59 2154.5 0.9726 1.3776 59 21560.6 0.9745 1.4006 59 2160.6 0.9745 1.4006	F71 F 2166.2 90	P1 892.3	ALFM 20.073	8ETM 0.000					
51 2144.F	25R 1.353C 0.527	RK RK-AVE 0.5637 0.9838	0.0219	PFHS12 0.0750	PRMS13	NRMS12 0.0051	0.0020	RHST 0.0035	1-AVE
52 2150.E 0.9929 1.3972 54 2104.6 0.9916 1.3461 50 2133.E 0.9926 1.3974 1.331 C.9900 51 2151.1 0.9926 1.3976 52 2149.5 0.9922 1.3966 54 2139.4 0.9926 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2146.1 0.9922 1.3956 55 2154.2 0.9922 1.3956 55 2154.2 0.9922 1.3956 55 2154.2 0.9922 1.3976 55 2154.3 0.9922 1.3976 56 2150.8 0.9924 1.3978 57 2154.3 0.9925 1.4010 3.758 0.9945 57 2160.3 0.9944 1.4008	1.350¢								
TAP P P/PTA CF 20R FK 50 2104.6 0.9916 1.346f 5.20R FK 50 2133.6 0.9926 1.3576 1.331 C.5900 5.2 2149.5 0.9526 1.3576 5.33 C.5900 5.2 2149.5 C.9526 1.3546 0.9934 5.2 2146.6 0.9928 1.3555 5.134 0.9934 5.3 2146.6 0.9928 1.3555 5.134 0.9934 5.3 2146.6 0.9928 1.3555 5.3 2146.6 0.9928 1.3555 5.3 2144.6 0.9932 1.3576 2.3 6 0.9931 5.3 2154.5 0.9532 1.3576 2.3 6 0.9931 5.3 2154.5 0.9532 1.3576 2.3 6 0.9931 5.3 2154.5 0.9532 1.3 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3									ŀ
TAP P P/PTA CF 2018 FK FK 51 2151.1 0.9656 1.378 1.331 0.990 51 2151.1 0.9626 1.378 1.331 0.990 52 2149.5 0.9622 1.3656 53 2149.5 0.9622 1.3656 54 2208 FK 5139.4 0.9624 1.3646 51 2146.6 0.9624 1.3656 5.134 0.9914 55 2146.1 0.9922 1.3656 5.134 0.9914 55 2146.1 0.9922 1.3656 5.134 0.9914 55 2146.1 0.9922 1.3956 5.134 0.9914 55 2154.3 0.9922 1.3976 5.996 0.9931 55 2154.3 0.9932 1.3976 5.996 0.9931 55 2154.3 0.9932 1.3976 5.996 0.9931 5.9965 5.996 0.9931 5.9965 5.996 0.9931 5.9965 5.996 0.9931 5.9965 5.996 0.9945 5.9965 5.9960 0.9945 5.9965 5.9960 0.9945 5.9965 5.9960 0.9945 5.9965 5.9960 0.9945 5.9965 5.9960 0.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.9960 5.9945 5.994									
50 2133.6 0.9656 1.3784 1.331 C.9900 55 2140.5 7.9636 1.3578 54 2139.4 0.9622 1.3558 54 2139.4 0.9622 1.3558 54 2139.4 0.9622 1.3568 54 2139.4 0.9622 1.3568 5.134 0.9914 55 2146.6 0.9624 1.3559 5.134 0.9914 55 2146.1 0.9622 1.3554 5.134 0.9914 55 2144.6 0.9622 1.3554 5.354 0.9931 5.3578 54 2144.6 0.9922 1.3576 2.536 0.9931 55 2154.2 0.9532 1.3585 54 2154.2 0.9532 1.3585 55 2154.2 0.9532 1.3585 55 2154.2 0.9532 1.3585 55 2154.2 0.9532 1.3585 55 2154.2 0.9532 1.3585 55 2156.3 0.9532 1.3585 55 2156.3 0.9532 1.4005 55 2156.3 0.9544 1.4005		## ## ## ## ## ## ## ## ## ## ## ## ##	D11	PRMS12	PP#S13	NRMS12	NPHS13	RHST	T-AVE
51 2151.1 0.0530 1.3578 52 2140.3 0.0522 1.3558 54 2139.4 0.0922 1.3558 55 2139.4 0.0976 1.3848 56 2139.6 0.0976 1.3875 51 2146.6 0.9524 1.3559 52 2146.1 0.9922 1.3554 53 2144.6 0.9922 1.3554 54 2144.6 0.9922 1.3576 2.58 0.9931 52 2154.2 0.9922 1.3576 53 2154.3 0.9922 1.3585 54 2154.3 0.9922 1.3585 55 2154.3 0.9922 1.3585 55 2154.3 0.9932 1.3585 56 21560.8 0.9945 1.4008 57 2160.8 0.9945 1.4008	1.3784 1.331	C.5900 0.9858	0.0218	0.0676	0.0273	0.0046	0.0018	0.0032	0.0034
52 2149.3	- 1								
TAP P P/PTA CP 2CR FK 539.4 0.9924 1.3946 0.9914 55 2139.4 0.9924 1.3959 5.134 0.9914 5.20 2146.1 0.9922 1.3959 5.134 0.9914 5.20 2146.1 0.9922 1.3959 5.134 0.9914 5.20 2144.6 0.9922 1.3959 5.20 2153.5 0.9922 1.3976 5.20 0.9931 5.20 2154.5 0.9922 1.3976 5.20 0.9931 5.20 2154.5 0.9922 1.3976 5.20 0.9931 5.20 5.20 0.9931 5.20 5.20 0.9931 5.20 5.20 0.9931 5.20 5.20 0.9931 5.20 5.20 5.20 0.9932 1.3976 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20									
TAP P P/PTA CP 2CR FK 53.2 2134 0.9914 51 2146.1 0.9922 1.3959 53.2146.1 0.9922 1.3959 53.2146.1 0.9922 1.3959 53.2146.1 0.9922 1.3959 53.2144.6 0.9922 1.3959 53.2144.6 0.9922 1.3979 5.20R RK 52 2154.2 0.9932 1.3978 52 2154.2 0.9932 1.3978 CP 20R RK 50 2150.8 0.9929 1.3978 CP 2150.8 0.9929 1.3978 52 2154.3 0.9924 1.3978 53.2160.3 0.9945 1.4008	-			The state of the s				And in sufficiency or sufficiency	
TAP P P/PTA CF 2CR FK 50 2136.6 0.9624 1.3673 2.134 0.9914 51 2146.6 0.9924 1.3955 53 2146.1 0.9922 1.3954 54 2144.6 0.9922 1.3954 54 2144.6 0.9915 1.3976 2.08 RK 50 2154.2 0.9922 1.3976 2.908 0.9931 52 2154.3 0.9932 1.3985 53 2154.5 0.9932 1.3978 TAP P/PTA CP 2DR RK 50 2150.8 0.9945 1.4008 52 2150.5 0.9944 1.4008	٠ !								
50 2130.6 0.9680 1.3872 2.134 0.9914 51 2146.6 0.9924 1.3959 52 2146.1 0.9922 1.3959 54 2144.6 0.9922 1.3959 50 2153.5 0.9926 1.3976 2.996 0.9931 51 2154.5 0.9926 1.3976 2.996 0.9931 52 2154.5 0.9926 1.3998 52 2154.5 0.9932 1.3988 53 2154.5 0.9924 1.3989 54 2153.7 0.9924 1.4010 3.758 0.9945 55 2160.5 0.9945 1.4005	5		110	PRMS12	PRPS13	NRHS12	NRMS13	RMST	T-AVE
51 2146.6 0.9524 1.3555 52 2146.1 0.9922 1.35554 53 2146.1 0.9922 1.35554 54 2144.6 0.9922 1.3557 50 2153.5 0.9526 1.3576 2.936 0.9931 51 2154.7 0.9532 1.3585 52 2154.7 0.9532 1.3585 53 2154.7 0.9532 1.3585 54 2154.7 0.9932 1.3586 55 2156.8 0.9934 1.4000 51 2160.8 0.9945 1.4000	1.3873 2	0.9914 0.9872	0.0218	0.0561	0.0291	0.0038	0.0020	0.0029	0.0033
52 2146.1 0.9922 1.3954 53 2146.1 0.9922 1.3954 54 2144.6 0.9912 1.3951 50 2153.5 0.9926 1.3976 2.976 0.9931 51 2154.2 0.9932 1.3985 53 2154.5 0.9932 1.3985 54 2153.7 0.9929 1.3985 54 2150.8 0.9935 1.4000 50 2160.8 0.9945 1.4000 52 2160.5 0.9945 1.4000	7								
TAP P P/PTA CP 2008 0.9931 552 1.3922 5.526 0.9931 552 2154.5 0.9532 1.3926 5.526 0.9931 5254.5 0.9532 1.3926 5.526 0.9931 552 2154.5 0.9532 1.3926 5.526 0.9931 552 2154.5 0.9532 1.3926 5.520	~								
TAP P P/PTA CP 2DR RK 50 2153.5 0.9926 1.3976 2.536 0.9931 52 2154.2 0.9926 1.3976 2.536 0.9931 52 2154.2 0.9932 1.3985 54 2154.5 0.9925 1.3987 54 2153.7 0.9925 1.3978 CP 2DR RK 50 2160.8 0.9945 1.4008 52 2160.5 0.9942 1.4008	1								
TAP P P/PTA CP 2TR RK 51 2154.2 0.9921 1.3576 2.936 0.9931 52 2154.2 0.9532 1.3585 53 2154.3 0.9532 1.3585 53 2154.3 0.9532 1.3580 54 2153.7 0.9545 1.4000 3.750 0.5945 52 2160.3 0.9545 1.4000	1.								
50 2153.5 0.9926 1.3976 2.936 0.9931 51 2154.3 0.9932 1.3985 53 2154.5 0.9933 1.3985 54 2154.5 0.9933 1.3987 54 2153.7 0.9929 1.3978 Tap P P/PTA CP 20R RK 50 2160.8 0.9945 1.4010 3.758 0.9945 51 2160.5 0.9942 1.4008	8 D	A.	110	PRMS12	PRMS13	WRHS12	NRHS13	RMST	T-AVE
51 2154.3 n.0532 1.3985 52 2154.3 n.9932 1.3985 54 2153.7 n.9925 1.3576 TAP P P/PTA CP 2DR RK 50 2160.8 n.9545 1.4010 3.758 0.5945 51 2160.5 n.9544 1.4008	1.3576 - 2.	0.9931 0.9884	0.0220	0.0437	0.6285	0.0030	0.0010		0.0031
52 2154.3 0.9532 1.3585 53 2154.5 0.9533 1.3587 54 2153.7 0.9925 1.3578 TAP P/PTA CP 20R RK 50 2160.8 0.9545 1.4000 51 2160.5 0.9544 1.4000	1.3985								
73 2154.5 0.9933 1.3567 54 2153.7 0.9925 1.3576 TAP P PPTA CP 2DR RK 50 2160.8 0.9545 1.4000 51 2160.3 0.9542 1.4000				i					
TAP P P/PTA CP 2DR RK 50 2160.8 0.9945 1.4000 3.756 0.9945 51 2160.5 0.9942 1.4008 52 2160.3 0.9942 1.4005	٦								
50 2160.8 0.9545 1.4010 3.758 0.5945 51 2160.5 0.9544 1.4008 52 2160.3 0.9542 1.4005	•								
50 2160.8 0.9945 1.4010 3.758 0.9945 51 2160.5 0.9944 1.4008 52 2160.3 0.9942 1.4005	CP 2DR	RK RK-AVE	110	PRMS12	PRPS13	MRHS12	NRMS13	RAST	T-AVE
2 2160.5 0.9542	1.4010 3.758	0.5945 0.9894	0.0233	0.0479	0.0320	0.0032	0.0022	0.0027	0.0031
2 2160.3 0.9543	٦								

2 2160-6	- 1							1	

c. Movable Rake Data Figure 20 Concluded

AGDC(AND:INC.)AWNOLD AFS. TENNESSEE VUR KANWAN GAS UTNAMICS FACILITY GAS DYNAMIC AING TUNNEL. SUPENSONIC (A)

	•	AC AC			511 AMS14 5-01 5-244E 00	AMS14/6	1			:							•					:				
	10				-	ã •				2	2 9		2	•	= =	•			2				•	•		•
!	PO AV6		**************************************	1594	RMS10	HMS10/PTCF		3.0405	~	~ ′	3.00.5	-	-		3.0375		m 1	3.0536	•		-	'n.	'n,	3.0406	•	1000
	dETA 2		V# V#	#BR/#C	RMS0	F AMS9/PTCF 3 3-3916-03	9	2.394E 01	.344E	-400E	20 3M16 0	381E	3636		2.377F 01	379E	- 390E	2,175F 01	3866	4016	300+·	3746	391E		1	2 389F B
	BETA M	RE/FT 5.7662 00	(*CF) CURK 2.377E 00	#81/#C	HF58	HMSH/PTC	a.	٠.	•	7.06% -01		.256	4∠E	1.146£ 00		5636	1.5896 00			706E			1886			
	ALF2 (COHH)	#UIMF	RPSCF) AVG 2-263E-02	*CF/#C	RMS7	2-3176-02	04/4	2-3+0E-01	2.220E-01	3-6065-01	4 - 323E - 01	5.774E-01	5.544E-01	3.378F-01	6-856E-01	6.872E-01	6-963E-01	7.404E-01	7-448E-01	7.362E-01	7.358E-01	7 - 4 30E - 01	7.792F-01	7-000F-01	4.9715-01	10-11-101
	ALPH(CORR)	AMCINE MelelE=04 2.	UICF (AP	#C 0 4.746E 00	2456 5.263E-01	#M56/P1CF	D/0146		0 0	2 4 3 4 E 00	0		396	2.605F 00			5.448t 00			•	5.757E 00	00 341000				
	ALP2 .	VINF 6,	VIE-01 1.	#0 3.464E B(AMS5	HMSS/PICF	٥	-603E 00	-316£ 60	•		5	321E 01		3 5	5		:5	5	5	.766E 01	3 6	5 6	5	4455 01	-
	ALVA	1.7	2) 0 1	1540	2454 4.444E-0]	3-61-6E-02	גע	•	an ø	. 20	_		-	•	~		1.679F-02 1.	•	-	-	1.50/f-01 1.	-	• ~	_	1-6795-02	•
340 A	PHLJ 740154	UINF 10 8-305E 00	16K 00 3.440t=61	8-63-6-32	F#53	HMS3/PICF 1-624E-92	TAP K.	1 -3-17EF-01	3 -10176-61	-4-1075-02	\$ -0.6071-02	-2.000f-u2	20-3524-7- 1	52-1	•	21 -1.786F-02		-	25 5-17					•	1.67	
PAGE NUMBER ONE	CONF.16	P1MF 3.037£ 30	1.170E	1.4116-01	Ar 52 2-+3ct-01	MMS2/FICF 1.3856-02	PLAT	~ •	•	•	> (•	2	•	•	۲. د د	7.2	28	58	9.	7 26		.52	56	22	
	160	11hf 3.1226 02	CEL 2 1-1386 01	#CF J.165£ 00		H451/FTCF 2.5616-02	VALUE	- A	,	~	(∾ -		•	• (~	~	N 1	~	,	~	-		_	•

Figure 21. Sample Tabulated Data Format - Uniform/Nonuniform Flow Field, VKF-A Tunnel, 2DE Inlet

a. Primary Performance Data, Sheet 1

Sheet 2
Data,
Performance
Primary
b .

Figure 21 Continued

M1/11100								•						:						day of the last															* * .				:		:				!			
¥14	9476	d	37.50	727	5	3000	7 4 4 5	92.50	3.0426	100	3370	1000	2000	36.00	366	3.00 5	36.00	э с		э с	3000		356	1000		052E	046E	035E	3650	9190	052E	046£	0	36	300	3000	Э 0	3540	0436	3++0	0436	DSIE	•	042E	39+0	•	•	•
0	9	379F 0	3776	9000	3755	3756	300E	3495 01	3406 01		10 2500	3765 03	10 70 70 6	100	1000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10000	3666	199F 01	3425 01	3426 01	345F 01	375F 01	3945 01	3456	.344E	.384E	.375E 0	394E	. 395E 0	.388E .	.384E .	.395E 0	2.383E 01	3100	3016	395F 6	383E 0	.361E o	.382E 0	.361E 0	.387E 0	.388E .	.308E	.384E 0	. 394E .	387E 0	-385E 0
3	1.764E 00	.871E 0	298E-0	1005	3446	0 106 0	206E 0	212F 0	-207E 0	1706	54 UF -0	1116	1556	1616	7006	3515	4306	9166	0 4476	BACE	670E 0	0166 0	0 7/ 66	. ¥30£ 0	.930E 0	. 435E 0	. Trate o	9406	. 424E 0	.93YE 0	. 464E 0	.003E 0	0 3/66	2.051E 00	1000	1146 0	0136 0	. 1016 0	.164E 0	.203E 0	.145E 0	.043E 0	.1796 0	.200E 0	.162E 0	· lole o	.997E	.016E 0
P/P0	.592E-0	-3616·	-532E-0	-502E-	-265E-	-5436-	•171E	-193F-	• 1 76E=	-715F-	-403F-	- 90 BF -	196000	-010F-	-5716-	146E-	-1866-	•133F-	- 90 00	-0135-	-3016-	-4936-	1.5.	•185E=	• 185E-	-3007·	•378E•	ů	ů	•21dE-	-305E	465E-	-4236-	0.618E-01	11111	.841F-	-482E-	L	•023E-	÷:	-3>¢.	- 768E-	-976E-	-179E-	•015E-	• 797E-	-445E-	8.493E-01
PIPINE	5.440£ 00	.240£ 0	7636 0	. 305E 0	402E 0	685E 0	.176E 0	.193E 0	1746 0	0376 0	.271E 0	D JOSE C	.038E 0	0 30 CO.	884E 0	.374E	.405E 0	. 364E 0	0	.270E U	.236£ 0	.645k 0	453c 0	.405E 0	4E 0	9E 0	.555E 0	.433E 0	.402£ 0	0 3054.	0 385¢	.623E 0	2371E 0		896E 0	. 418E 0	.636E 0	. 883E 0	.060E 0	1676 0	.000E	SPOE O	- TOTE O	.182E 0	.054E 0	6003E 0	. 376E 0	0
a .	0	. 847E 0	.344E .	225 0	BHHE C	.024E	.192E U	.196£ 0	2.184E 01	.854E U	. B94E 3	.11 .E U	0 30	.152E 0	. 790E U	3446	2	951E 0	¥	360	BOME	34C 0	5 yr C	5 3 AS	P0E 0	3	976 0	.453E 0	.959E 0	. 46HE 0	• 9 P 3 E 0	99	00116	2.096F 01	.094E	.105£ 0	.032E 0	• 046E	.149E 0	· IMZE O	•134t 0	0936 0	1001	•185E 5	-1475	0 2001	2110	.0.2020.
7	.5095-0	216-0	-2465-	0	•	0	0	•	•	•	0	9	0	•		•	•	9	•	•	0	0-14	0 .0	0	3,0	0	0 .	0	9	0 10	9 1	2 6) (0 0 E	0360	0 300	1.000F 00	000		000			9 0				
447	9	;	ţ	2	7.1	76	7.	:	Ç	3	ē	96	93	•	Ç	3	76	96	6	\$	Ð	201	101	104	103	104	101	100	200	0 0) : 	3 -	:	=	11.	115	116	11	u (122	121	107	70.	126	127	
PCHI	31	~	-	24	7	*	45	•	~	42	7	÷	S,	•		25	25	e d	53	\$2	₹	=	N I	M .	•	'n.	•	V r	า •	• •	n 4	<u>`</u>	-	<u>:</u>	15	91	<u> </u>	2 :	•	h 4	9 4	· ·	3 6) r		2	, ,	1
VAL UE	→ .	-	-		- •	-		-	(~	~	~	~	~	~	-	~	(₩.	- (~	٧.	-		-		→ •	u 6	u ^	u	, n	4		-	-	- (N f	u r	u n	v n		-		•		~	۸ ا	:

,	į														;						9			£-0	Ä	- W	يوا إ		1	14		j L	i
									:												A. 95.05.		50	9.75	1.020E	1.040							1
_		:	:	:							3			3		3			3			0	00	60	00	00		5		9 6			•
10 20 70		3.042	3.046	3.05%	3.016	1.0346	1.0565	10646	3000	2000	300356	3000	3.0376	3000	3,0376	3.0366		3.0415	3.0526	3.0466	3.017E	3.037E	3.037E	3.037E	3.062t	3.0628	3.060£				•		3.0516
DATE 10		5	5	5	10	-	;	; ;	;	;	; ;	;	;	;	5 6	; a	: 6		;	10	ã	10	5	0	5	5	5	5	6	5	6	6	3
6		2.380E	•	2.34E	2.374E	•	•	•	•	7. 39.0F	2. 4. A. A. B. F.	3966	2.3776	2.3776	2.3776	•	•	2.345F	2.388E	2.384E	2.377E	2.377€	2.377E	2.377E	2.340E	₹.396€	6.34.E	2.400E	2.381E	2.383E	2.395E	•	2.387E
9			0135	- 005E	1.4586 00	1.8636 00	617E	537	836E	HISE O	0536 0	OE - O	1.4436-02	•	•	2.327E-01	-241E		.25ut	2.345E-01	1.900E 00										1.330c 00	1.3066 00	•
00/4			10-100-0	8.454E-01	7. 326E-01	7.9456-01	1.1795-01	7.858£-01	7.0076-01	7.7065-01	5.0486-01	2-155F-01	1.3305-01	3.2565-01	2.832F-01	2-1116-01	2-0205-01	2.1186-01	2.0436-01	2-1175-01	#-076E-01	7-0346-01	7.579E-01	7.358E-01	6.910E-01	0.2036-01	6.070E-01	6.042E-01	6-11-8-01	5-80×E-01	6.0638-01	5.4538-01	1.6776-01
9/P 1 MF		9 6	1	00 3010-0	- CO+C		6.086F UO			6.075E 00	. 450£	1.656 00	1.0.0t 00	2.556t 00	2.216E 00				1.530€ 00			6.130E 00	1076	. /3/t	404	1900	• 750E	0				_	1.3125 00
۵		200316 01	1460	•		1 • GHOT 0.				1.754£ 01	. 20 JE		3.1e0E 30						• + 75E			_			_	_	_	_	_		-	10 14 6	**00*E 00
ر		000				9	c	0	•	•	0	•	•	0	0	0	0	0	•	•	0	0 (-	> •	-	> <	> •	> (-	•	0 (> •	•
ž	000	1000 T	0000		000	300-1																											
4	176	124	130	7 7 7		7 7	135	9	137	76	7	3	7.	206	707		345	7	*		110	117	212	110	1 2	: -	110			100		> <	> (
PCAT	۰	~	30	. ~	. •	- (29		0 .	2	9	.	→ :	3	•	•	P) (• .	Α,	• •	, ;	, ,	•	; 7	; 7	•	٠.	• •	. 5) <i>-</i>	::	4 -	7.
14L VE	~	~	~	-	٠,	y -	- (٠.	→ (V (N ·	- (٧.	→ (V	۹ 4	۹,	•	۰,	٦-	• 6		• •	,	• ^	•	•	•	•	, r	۱,	٠.	- A

c. Primary Performance Data, Sheet 3 Figure 21 Continued

AFDC(ARO.INC.)ARNOLD AFS. TENNESSEE YON KAMMAN GAS DYNAMICS FACILITY GAS DYNAMIC SUPEMSONIC (A)

PAUL NUMPER CRE

	150 150	440154		ALPH		4L92	ALPM (CORN)	11 ALP2(COMR)	R) BETA M	SETA 2	PO AVE	10 5.6205 02	
11NF 3-122E 02	₽1.05 VC 00		4135€ 00		#1NF 1+732E 03		RH01NF 8-220E-04	MUINF 2-452E-07	RE/FT 5.608E 00	PACH NO	6.000E 01		1.5025
UEL 2 1-136t 01	#ER TOA YE LOTTE 00 0.690E	184 3-475-0	•	4. 690E		AM 2.561E	VM 01 -7-202E	MM AM2 VM AM2 VM2 00 -2.561E 01 -7.202E 00 -2.561E 01 -7.202E	VM2 01 -7-146E	:			
~	250	1	151		659		653	450	21 210	2			
-4-94CE-01	1. sebe CI	_	£ 01	-	1.0586 01		1.8846 01	1.508E @1	8-14-5-01	S. Install	A DESTINATION A STANKING A STANKI	,	٠
-1-17/E 00	20.762E 0	1.93.6	10 3	-	31 44	0	1.5.4.C 01	1.5506 01	8. 1656-01	A. Molf and	10-36000 W		
-1.40vc 60	€ +179€ €	3-51376	ا د 0 ا	2	1266	5 16	70	2.127E 01	5-4666-01	7 - 54 46 - 7	10-160-6		
-2.61r£ 00	2.23z 0	1 6.210	E 01	4.	1896	_	-	2.773F 01	3.3366-01	20-75-00-5	16-3626-6		
E 00	2.551E 0	1 4.2.26	10	2	2.422E	=	2-2025 01	2.226E 01	2.3816-01	1.7726-01	2.167E-01		
7	F53/P0		04/154	_	152/80	-	04/150	00/ 750	2000			•	
-4.94LE-01	6.c906-01	1 7.87-1	£-01	-	1-10-F-01		7.8730-01	7 072F-01	2000	2			
E 00	6. /11t-31		F = 0.1	T	1046-01			10-37/66	10-2006 ·	20 3000			
-1.90cE 00	V-176-01		F=01	1	65 46-01			10-313C-01	F. C. C. C. D.	20 3065 01			
-2.61tE 00	4-334E-01		E-01	•	1656-01			6.3306-03	10-37.76.0	10 36 F 2	,		
-3.33e£ 00	V-474E-31		E-01	*	4.3536-01			9-3716-01	9.381E-01	2-3766 01			
188 0.768E-01	110	CHMST3::AVG/THR*PUAVG	AV6/1	TER.	9440			:					

=

d. Movable Rake DataFigure 21 Concluded

Charles and a second

1,74	CONF 16	PHOJ	1	HUVI	REIFT	141	10		×					
	-EL OF	44015	• 2•	2.000	5.80	.801E 0	9.6	70	5.000E					
IINF	PINE		₩ [5		4146		K+01MF	ī	PU NG					
J- 122E -2	3.056	00	9.5576	00	1.7326 0	Ee	8-2115-04	2.4	4526-07					
VALUE	PCAT	TAP	•		.d/d	u	04/4		9		3		3010710	í
~	•	340	P.3	0	1.5490		0305-0		3 A 3 F			•	12/12/1	î
~	~	341	•	_	3	ى	0706-		3466	: 6				
^	~	346	·	9	v	9	. UZ3E-0		1006					
~	•	343	•	0	1.66045	0	. 026E		34.46		9			
~	•	344	·	0	•	0	376-	•	37.7		3	3		
~	~	300	-	•					1117					•
~	7	361	-	0	2	9			A		3	•	9	• 1
~	•	306	-	0	5.4434	0			32.00		•	3 6	0-200	•
.~	ŞĪ	303	-	0	9		•	1 14	70.4		9 3	3		•
~	•	*05	-	0	. 32	0		•	44		֓֞֜֜֜֜֓֓֓֓֓֜֓֓֓֓֜֓֜֓֓֓֓֜֓֓֓֡֓֜֡֓֓֡֓֜֓֓֡֓֡֓֡֓֡֓֡֡֡֓֡֓֡֡֡֓֡֡֡֡	3 6		•
~	11	302	-	0	4-7-0	0	2 2 2	10	3756		2000	9 6	0426	9
~	2	306	1 . 3	9		•		. ^	37.76		•	3 6	0.455.0	7
~	2	301	7	0		9	1 4 4				•	3	1402 0	'n
~	20	30¢	1	•	•	0	4926	٨	3675		9	200	0 - 500E - 0	7007
~	5.1	3	3	Э	•	0	-647E-		3756		•	200	0 - 30C I •	•
~	22	304	-	10 4	6.0026	0	6716	~	374F	•	3.036	9 0	4505-0	•
-	č 3	310	1 - 7	0	•	0	-215E-0		3476				91300	
n	* ·	715	7	0	•	•		~	392E		3	0	100000000000000000000000000000000000000	2000
~	S	316	-	0	•	0	.212E	~	. 372E		9	0	900	
~	90	717	1.3	0	4.5556	9	. 421E	~	- 306E		9	0	1 V V	2006
~	~	31.	_	0	•	0	. 226E	~	37.36		9	9	200	7
~	92	315	4	0	•	0		~	3866			0	2000	: 4
~	52	316	7	0	•	0	.627E		35.55		•	9 6	01200	•
~	30	117	4.736E	0	•	0	-292E	. ~	3405		•	200	700	3060
~	7	316	•	0	~	Ů	- 704E-	^	3965		9		2000	3000
~	35	316	_	0		0	.251E-	~	3356			3	2000	3
m (93	350	* -	0	ŝ	0	. 362E-	~	347E		9	0	356	2 2 2 0 6
m (* ,	321	-	0	6.422E	0	-208E-	~	3906			0	ROBELB	7406
-	32	322	÷	0	7	0	. 884E-0	~	• 346E	5	9	0	2006-0	•
-	9 '	323	1.8196	0	7.	0	.55yE-	~	-406F	50	•	0	2006-0	1000
-	37	324	-	3	•	0	.324E-0	~	. 403E	5	9	0	15.05-0	
7	96	325	;	0	?	0	-30//·	~	-404E	-	•	0	3356	2.0766
7	P , '	326	64.1	10	٠	0	3295e	2	.383€	0	•	0	•	100
-	0	321	04.7	0	•	0	.880E-0	~	-343E	0.1	9	0	935	2206
~	7	350	95.7	0	۳,	0	- 1446-	~	.412F	-	9	0	BOOF -	,
m	4	358	7	0	?	0	.9536-0	~	399F		0	0	95050	
~	P	330	7	0	•	0	.571E-0	~	3666		900	0	5005	3000
_	;	331	1.734F	0	ø	0	1956	~	-410F	6	040	0	1000	9
~	\$	335	7.0		•35	0	-847E-0	~	3916		2	9	2000	
~	9.	333	1.5	0	.81	0	-233F-0	~	-407F		3.075	9	•	
-		•												

Figure 22. Sample Tabulated Data Format - Flow Field Calibration

REFERENCES

- 1. Butler, R.W., "Transonic Performance of Supersonic Two-Dimensional External-Compression and Half-Axisymmetric Inlets," AEDC-TR-70-186, July 1970.
- 2. Hube, F.K., Jenke, L.M., "Wind Tunnel Tests of Two-Dimensional and Half-Axisymmetric Inlet Models at Mach Numbers 1.5 through 3.0," AEDC-TR-70-280, December 1970.
- 3. Hube, F.K., Jenke, L.M., "Wind Tunnel Tests of Supersonic Two-Dimensional and Half-Axisymmetric Inlet Models in a Nonuniform Flow Field at Mach Numbers from 1.5 through 2.5," AEDC-TR-71-107, May 1971.

PRECEDING PAGE BLANK-NOT FILMED

APPENDIX: SUPERSONIC INLET INVESTIGATION TABULATED DATA

APPENDIX

SUPERSONIC INLET INVESTIGATION TABULATED DATA

The microfilm tabulated data may be obtained from the Air Force Flight Dynamics Laboratory upon request. The microfilm data is classified CONFIDENTIAL, Group 4.

Address all requests as follows:

Air Force Flight Dynamics Laboratory

Attn: FXM Donald J. Stava Contract: F33615-69-C-1699

Wright-Patterson Air Force Base, Ohio 45433

	Security Classification	
	DOCUMENT CONTROL D	
	(Security classification of title, body of abstract and indexing annotation.) 1. Originating activity (Corporate author)	on must be entered when the overell report is clessified)
	NORTHROP CORPORATION, Aircraft Division	Unclassified
	3901 West Broadway	zb. GROUP
	Hawthorne, California 90250	
7	A REPORT TITLE	
Ka	Supersonic Inlet Investigation	
1	Volume Wind Tunnel Data Report	
	The second secon	
	4. DESE TOTAL HO TES (Pype of separt and designates destro)	
	Final Report, 1 May 369 1 May 371	
,	8. AUTHORIST Con no state to the same	
14	Tatsuo W. Tsukahira, Wilford W. Wong Ben G. Fi	ranco /
	- CONTRACTOR - CON	on make in the property of the state of the
, ,	6) 450444 TO	TAL NO. OF PAGES 7b. NO. OF REFS
1	Sept. 71 (12) I5(10.)	155 3
,ee		IGINATOR'S REPORT NUMBER(S)
	F33615-69-C-1699	R-71-120-Vol-3
	8. PROJECT NO.	lame III
AI,	1476	HER REPORT Nate May effor markers that gray be seeigned
1		report) (14)
		FDL TR-71-121 Vol. III
	10. DISTRIBUTION STATEMENT Distribution limit	ed to U. S. Government agencies only;
	this report contains information on test and evaluat	
	other requests for this document must be referred to	
	(FXM), Wright-Patterson AFB, Ohio 45433.	
		ONSORING MILITARY ACTIVITY
		r Force Flight Dynamics Laboratory
	1	right-Patterson AFB, Ohio 45433
	MANAGET	
	Presented herein are wind tunnel data from an investigation design entropies and performance tradeoffs f	
	develop design criteria and performance tradeoffs f tactical aircraft. The objective was accomplished by	
	using approximately .125 scale model air induction	
	two-dimensional external compression inlet, a half-	
	and a two-dimensional mixed compression inlet. Al	
	compression baseline inlets were also investigated.	
	supersonic Mach numbers in the AEDC PWT-4T and	
	inlets were tested both isolated and in a well define	
	senting partial simulation of a vehicle flow field. S	•
	sure recovery, pressure distortion, and turbulence compressor face and immediately downstream of the	
	rations tested. Additional diagnostic data are provi	
	boundary layer pressures on the inlet compression	
		<u>\</u>
		1
		1
		* *

DD . FORM .. 1473

Unclassified
Security Classification

405 228/

Unclassified
Security Classification

Security Classification	_					-
14. KEY WORDS	LIN		LIN		LINI	
	ROLE	WT	ROLE	WT	ROLE	WT
Company to Index Wind Towns of Date /						
Supersonic Inlet Wind Tunnel Data/			:			
Supersonic I det Performance/		,				
Inlet Model Testing/						
Supersonic Inlet Design	ļ.					
	1					
	-					
	1					
	1	<u> </u>				
	1					
			'			
	i					
				Ì		
						,
	ļ	l				
	1					
				i		
			1			
				i		
				İ		
]		

Unclassified
Security Classification