

Proposta de teste de avaliação Matemática A 11.º ANO DE ESCOLARIDADE Duração: 90 minutos | Data:

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

Na figura está representada uma circunferência de centro O e raio 1. 1.

Sabe-se que:

- Mostre que o comprimento da corda $\lceil BC \rceil$ é igual a $2\sin \alpha$.
- Sabendo que $\alpha = \frac{\pi}{6}$, determine a área do triângulo [ABC].
- 2. Qual das seguintes afirmações é verdadeira, relativamente a uma função f de domínio \mathbb{R} ?
 - Se f é uma função periódica então tem uma infinidade de zeros.
 - Se f é uma função periódica então f pode ter um único zero.
 - (C) Se $f(0) = f(2\pi)$ então f é periódica de período 2π .
 - Se f é uma função periódica de periodo 2 então f(3) = f(7).
- Sabe-se que $\alpha \in \left[0, \frac{\pi}{2}\right]$ e $\cos \alpha = \sqrt{a}$. 3.

Então, $\tan^2 \alpha$ é igual a:

- **(A)** $\frac{1}{a} 1$ **(B)** $\frac{1-a}{a}$ **(C)** $\sqrt{\frac{1-a}{a}}$ **(D)** $\frac{\sqrt{a} a}{a}$

- **4.** Para determinado valor real positivo de a, considere a função f, de domínio \mathbb{R} , definida por $f(x) = 3 a \sin\left(\frac{2x + \pi}{3}\right).$
 - **4.1.** Se o máximo absoluto de f for 5, o valor de a é:
 - **(A)** 2
- **(B)** 3
- **(C)** 5
- **(D)** 8
- **4.2.** Justifique que se a < 3, a função f não tem zeros.
- **4.3.** Mostre que $f(x) + f(x + \frac{3\pi}{2}) = 6$, qualquer que seja o número real x.
- 5. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = x 2\cos(2x)$.
 - **5.1.** Existe uma infinidade de pontos de interseção do gráfico de f com a reta de equação y = x.

Quantos desses pontos têm abcissa no intervalo $[0, 100\pi]$?

- **(A)** 100
- **(B)** 199
- **(C)** 200
- **(D)** 201
- **5.2.** Determine os valores de x, pertencentes ao intervalo $[-\pi, \pi]$, tais que $f(x) = x 4\cos^2(2x)$.
- 5.3. Considere o gráfico de f representado num referencial Oxy, no intervalo $[0, \pi]$. Considere ainda o triângulo [OAP] em que:
 - o ponto A pertence ao eixo Ox e tem abcissa igual a π ;
 - o ponto P pertence ao gráfico de f e tem ordenada positiva;

Recorrendo às capacidades gráficas da calculadora, determine a abcissa do ponto P sabendo que o triângulo [OAP] tem área igual a 1.

Na sua resposta:

- apresente a(s) equação(ões) que lhe permite(m) obter a solução do problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permitem resolver a(s) equação(ões).

Apresente a abcissa de P arredondada às centésimas.

6. Na figura, está representada a circunferência trigonométrica e o segmento de reta [PQ].

Sabe-se que:

• o ponto P pertence à circunferência trigonométrica e tem ordenada $\frac{1}{2}$;

- o ponto Q abcissa -1;
- o ponto O, origem do referencial pertence ao segmento de reta [PQ].

Qual é a ordenada do ponto Q?

- **(A)** $-\frac{1}{2}$ **(B)** $-\frac{\sqrt{3}}{3}$
- (C) $-\frac{\sqrt{3}}{2}$
- 7. Num terreno triangular efetuaram-se as medições que se apresentam no seguinte esquema:

- 7.1. Determine a área do terreno. Apresente o resultado em metros quadrados arredondado às unidades.
- Determine o perímetro do terreno. Apresente o resultado em metros arredondado às décimas. Se nos cálculos intermédios proceder a arredondamentos, conserve pelo menos três casas decimais

FIM

COTAÇÕES

T4													
Item													
Cotação (em pontos)													
1.1.	1.2.	2.	3.	4.1.	2.2.	4.3.	5.1.	5.2.	5.3.	6.	7.1	7.2.	
15	15	15	15	15	15	15	15	15	15	15	15	20	200

Proposta de resolução

1.

1.1. Como os ângulos inscritos no mesmo arco de circunferência têm a mesma amplitude, temos que $\widehat{BAC} = \widehat{BDC} = \alpha$. Por outro lado, dado que um ângulo inscrito numa semicircunferência é um ângulo reto, o triângulo $\begin{bmatrix} ABC \end{bmatrix}$ é retângulo em C.

Logo,
$$\frac{\overline{BC}}{\overline{AB}} = \sin \alpha \Leftrightarrow \frac{\overline{BC}}{2} = \sin \alpha \Leftrightarrow \overline{BC} = 2\sin \alpha$$

1.2.
$$A_{[ABC]} = \frac{\overline{AC} \times \overline{BC}}{2}$$

$$\overline{BC} = 2\sin\alpha = 2\sin\frac{\pi}{6} = 2 \times \frac{1}{2} = 1 \text{ e } \overline{AB} = 2$$

Determinemos \overline{AC} utilizando o Teorema de Pitágoras:

$$\overline{AB}^2 = \overline{AC}^2 + \overline{BC}^2$$

$$2^2 = \overline{AC}^2 + 1^2$$

$$\overline{AC} = \sqrt{4 - 1} = \sqrt{3}$$

$$A_{[ABC]} = \frac{\sqrt{3} \times 1}{2} = \frac{\sqrt{3}}{2}$$

- 2. (A) é falsa. Por exemplo, se $f(x) = 2 + \cos x$, f é uma função periódica e não tem zeros.
 - (B) é falsa. Se f é uma função periódica de período p e se a é um zero de f então a+p também é um zero.
 - (C) é falsa. Por exemplo, se $f(x) = x \sin x$ vem $f(0) = f(2\pi) = 0$ e f não é uma função periódica.
 - (D) é verdadeira. Se f é uma função periódica de período 2 então:

$$f(3) = f(3+2) = f(5) = f(5+2) = f(7)$$

Resposta: (D)

3.
$$\alpha \in \left]0, \frac{\pi}{2}\right[e \cos \alpha = \sqrt{a}$$

$$\cos^2 \alpha = \left(\sqrt{a}\right)^2 = a$$

$$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - a$$

$$\tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} = \frac{1-a}{a} = \frac{1}{a} - 1$$

Resposta: (A)

4.
$$f(x) = 3 - a \sin\left(\frac{2x + \pi}{3}\right)$$

Contradomínio de f:

Se $x \in \mathbb{R}$, $\frac{2x+\pi}{3} = \frac{2}{3}x + \frac{\pi}{3}$ toma todos os valores reais. Então:

$$-1 \le \sin\left(\frac{2x+\pi}{3}\right) \le 1 \Leftrightarrow$$

$$\Leftrightarrow -1 \le -\sin\left(\frac{2x+\pi}{3}\right) \le 1 \Leftrightarrow$$

$$\Leftrightarrow -a \le a\sin\left(\frac{2x+\pi}{3}\right) \le a \Leftrightarrow$$

$$\Leftrightarrow 3-a \le 3-a\sin\left(\frac{2x+\pi}{3}\right) \le 3+a$$

$$D'_{f} = [3-a, 3+a]$$

4.1. Se o máximo absoluto de f é 5, então $3 + a = 5 \Leftrightarrow a = 2$.

Resposta: (A)

4.2. O mínimo absoluto de $f \in 3-a$.

$$3 - a > 0 \Leftrightarrow a < 3$$

Portanto, se a < 3, o mínimo absoluto de f é maior do que zero.

Logo, neste caso, f não tem zeros.

4.3.
$$f(x) = 3 - a \sin\left(\frac{2x + \pi}{3}\right) = 3 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right)$$

$$f(x) + f\left(x + \frac{3\pi}{2}\right) =$$

$$= 3 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) + 3 - a \sin\left(\frac{2}{3}\left(x + \frac{3\pi}{2}\right) + \frac{\pi}{3}\right) =$$

$$= 6 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) - a \sin\left(\frac{2}{3}x + \pi + \frac{\pi}{3}\right) =$$

$$= 6 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) =$$

$$= 6 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) - a \left[-\sin\left(\frac{2}{3}x + \frac{\pi}{3}\right)\right] =$$

$$= 6 - a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) + a \sin\left(\frac{2}{3}x + \frac{\pi}{3}\right) = 6$$

5.
$$f(x) = x - 2\cos(2x)$$

5.1.
$$f(x) = x \Leftrightarrow x - 2\cos(2x) = x \Leftrightarrow -2\cos(2x) = 0 \Leftrightarrow$$

$$\Leftrightarrow \cos(2x) = 0 \Leftrightarrow 2x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z}$$

$$x = \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{Z} \land x \in [0, 100\pi]$$

$$0 \le \frac{\pi}{4} + \frac{k\pi}{2} \le 100\pi \land k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow 0 \le \pi + 2k\pi \le 400\pi \land k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow 0 \le 1 + 2k \le 400 \land k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow -1 \le 2k \le 399 \land k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow -1 \le 2k \le 399 \land k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow 0 \le k \le 199 \land k \in \mathbb{Z}$$

Logo, há 200 pontos com abcissa no intervalo $[0, 100\pi]$.

Resposta: (C)

5.2.
$$f(x) = x - 4\cos^{2}(2x) \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow x - 2\cos(2x) = x - 4\cos^{2}(2x) \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow -2\cos(2x) = -4\cos^{2}(2x) \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow 4\cos^{2}(2x) - 2\cos(2x) = 0 \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow 2\cos(2x) \left[2\cos(2x) - 1 \right] = 0 \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow \left[2\cos(2x) = 0 \lor 2\cos(2x) - 1 = 0 \right] \land x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \Leftrightarrow$$

$$\Leftrightarrow \left[\cos(2x) = 0 \lor \cos(2x) - 1 = 0 \right] \land x \in \left[-\pi, \pi \right] \Leftrightarrow$$

$$\Leftrightarrow \left[\cos(2x) = 0 \lor \cos(2x) = \frac{1}{2} \right] \land 2x \in \left[-\pi, \pi \right] \Leftrightarrow$$

$$\Leftrightarrow 2x = -\frac{\pi}{2} \lor 2x = -\frac{\pi}{3} \lor 2x = \frac{\pi}{3} \lor 2x = \frac{\pi}{2} \Leftrightarrow$$

$$\Leftrightarrow x = -\frac{\pi}{4} \lor x = -\frac{\pi}{6} \lor x = \frac{\pi}{6} \lor x = \frac{\pi}{4}$$

$$S = \left\{ -\frac{\pi}{4}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{4} \right\}$$

5.3. Tomando o lado [OA] para base, a altura, h, do triângulo [OAP] é a ordenada do ponto P.

Como
$$\overline{OA} = \pi$$
, a área do triângulo $[OAP]$ é $A_{[OAP]} = \frac{\pi \times h}{2}$.

$$A_{[OAP]} = 1 \Leftrightarrow \frac{\pi \times h}{2} = 1 \Leftrightarrow \pi \times h = 2 \Leftrightarrow h = \frac{2}{\pi}$$

Assim, pretendemos determinar, no intervalo $[0,\pi]$, a abcissa do ponto do gráfico de f cuja ordenada é $\frac{2}{\pi}$, ou seja, pretendemos resolver, naquele intervalo, a equação $f(x) = \frac{2}{\pi}$.

Recorrendo à calculadora gráfica, definiram-se $y_1 = f(x) = x - 2\cos(2x)$ e $y_2 = \frac{2}{\pi}$.

De seguida, determinou-se a abcissa do ponto de interseção dos gráficos de y_1 e y_2 .

Obteve-se o seguinte resultado:

Portanto, a abcissa de P é, aproximadamente, igual 0,76.

6. Se a ordenada de $P \notin \frac{1}{2}$, então $\sin \alpha = \frac{1}{2}$ pelo que $\alpha = \frac{\pi}{6}$.

Assim, a ordenada de Q' é $\tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$.

Como Q é a imagem de Q' na reflexão central de centro O , a ordenada de Q é $-\frac{\sqrt{3}}{3}$.

Resposta: (B)

Máximo Matemática A

7.

7.1.
$$\frac{h}{40} = \sin 50^{\circ} \Leftrightarrow h = 40 \sin 50^{\circ}$$
$$h \approx 30,642 \text{ m}$$
$$A_{\text{terreno}} = \frac{60 \times 40 \sin 50^{\circ}}{2} \approx$$
$$\approx 919,25 \text{ m}^2 \approx 919 \text{ m}^2$$

A área do terreno é 919 m², aproximadamente.

7.2.
$$\frac{h}{a} = \tan 50^{\circ} \Leftrightarrow \frac{40 \sin 50^{\circ}}{a} = \tan 50^{\circ} \Leftrightarrow$$

$$\Leftrightarrow a = \frac{40 \sin 50^{\circ}}{\tan 50^{\circ}}$$

$$a \approx 25,712 \text{ m}$$

$$b = 60 - a \approx 60 - 25,712 \approx 34,288$$

$$b \approx 34,288 \text{ m}$$

$$c^{2} = h^{2} + b^{2}$$

$$c \approx \sqrt{30,642^{2} + 34,288^{2}} \approx 45,985$$

$$c \approx 45,985 \text{ m}$$

$$P_{\text{terreno}} \approx 40 \text{ m} + 60 \text{ m} + 45,985 \text{ m} \approx 145,985 \text{ m}$$

O perímetro do terreno é 146,0 m, aproximadamente.