Abstract Hilbert Spaces (lecture 13, 22. Feb)

Morten Tryti Berg and Isak Cecil Onsager Rukan.

March 22, 2024

Assume \mathcal{H} is a vector space over \mathbb{C} .

Definition 26.27. A pre-inner product on \mathcal{H} is a map $(\cdot, \cdot) : H \times H \to \mathbb{C}$ which is

(i) Sesquilinear: linear in the first variable and antilinear in the second:

$$(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w),$$

$$(w, \alpha u + \beta v) = \bar{\alpha}(u, w) + \bar{\beta}(v, w), \ u, v, w \in H \text{ and } \alpha, \beta \in \mathbb{C}.$$

- (ii) Hermitian: $(u, v) = \overline{(u, v)}$.
- (iii) Positive semidefinite: $(u, v) \ge 0$.

It is called an **inner product**, or a scalar product, if instead of (iii) the map is positive definite; (u, v) > 0. This definition also works for \mathbb{R} instead of \mathbb{C} .

Cauchy-Schwartz inequality If (\cdot, \cdot) is a pre-inner product, then $|(u, v)| \le (u, u)^{1/2} (v, v)^{1/2}$.

Corollary 26.28. Assume we have a seminorm $||u|| := (u, u)^{1/2}$. It is a norm iff (\cdot, \cdot) is an inner product.

Definition 26.29 (Hilbert space). A Hilbert space is a complex vector space \mathcal{H} with an inner product (\cdot, \cdot) s.t. \mathcal{H} is complete with respect to the norm $||u|| = (u, u)^{1/2}$.

- 1. The norm on a Hilbert space is determined by the inner product, but the inner product can also be recovered by the norm by the polarization identity: $(u,v) = \frac{||u+v||^2 ||u-v||^2}{4} + i \frac{||u+iv||^2 ||u-iv||^2}{4}$.
- $2. \ \ Parallelogram \ \ law: \ ||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$
- 3. A norm on a vector space is given by an inner product iff it satisfies the parallelogram law, and then the scalar product is uniquely determined by the polarization identity.

Example 26.30. Assume (X, \mathcal{B}, μ) is a measure space. Then $\mathcal{L}^2(X, d\mu)$ is a Hilbert space with inner product

$$(f,g) = \int_X f\bar{g}d\mu.$$

This is well-defined, as $|f\bar{g}| \leq \frac{1}{2}(|f|^2 + |g|^2)$.

In particular, if $\mathscr{B} = \mathcal{P}(X)$ and μ is the counting measure, then $L^2(X, d\mu)$ is denoted by $l^2(X)$; for $X = \mathbb{N}$ we write simply l^2 . Note that in this case for $f: X \to [0, +\infty]$ we have

$$\int_X f d\mu = \sum_{x \in X} f(x) := \sup_{\substack{F \subset X \\ F \text{ is finite}}} \sum_{x \in F} f(x),$$

and if $\sum_{x \in X} f(x) < \infty$, then $\{x : f(x) > 0\}$ is at most countable, so $\sum_{x \in X} f(x) = \sum_{x : f(x) > 0} f(x)$ is the usual sum of a series.

Recall that a subset C of a vector space is called *convex* if

$$u, w \in \mathcal{C} \to tu + (1-t)w \in \mathcal{C} \ \forall t \in (0,1).$$

The following is one of the key properties of the Hilbert space

Theorem 26.31 (projection theorem). Assume \mathcal{H} is a Hilbert space and $\mathcal{C} \subset H$ is a closed convex subset. Then for every $u \in H$ there is a unique $u_0 \in \mathcal{C}$ (minimizer) s.t.

$$||u - u_0|| = d(u, C) (= \inf_{v \in C} ||u - x||).$$

Proof. Let $d=d(u,\mathcal{C})$. Choose $u_n\in\mathcal{C}$ s.t. $||u-u_n||\to d$. We claim that $(u_n)_{n=1}^\infty$ is a Cauchy sequence. As $\frac{u_n+u_2}{2}\in\mathcal{C}$, we have

$$d^{2} \leq ||u - \frac{u_{n} + u_{m}}{2}||^{2} = \frac{1}{4}||(u - u_{m}) + (u - u_{m})||^{2}$$

$$= \sup_{\text{parallelogram law}} = \frac{1}{4} \left(2||u - u_{n}||^{2} + 2||u - u_{m}||^{2} - ||u_{n} - u_{m}||^{2}\right),$$

so

$$||u_n - u_m||^2 \le 2(||u - u_n||^2 - d^2) + 2(||u - u_m||^2 - d^2).$$

Thus, $(u_n)_{n\in\mathbb{N}}$ is indeed Cauchy, hence $u_n\to u_0\in\mathcal{C}$ for some u_0 and

$$||u - u_0|| = \lim_{n \to \infty} ||u - u_m|| = d = d(u, \mathcal{C}).$$

If u_0' is another such point, we can take $u_{2n}=u_0, u_{2n+1}=u_0'$ and conclude that $u_0=u_0'$.

Orthogonal Projections (lecture 14, 26. Feb.)

For a Hilbert space \mathcal{H} and a subset $A \subset H$, let

$$A^{\perp} := \{ x \in H : x \perp y \ \forall y \in A \} \,,$$

where $x \perp y$ means that (x, y) = 0. A^{\perp} is a closed subspace of \mathcal{H} .

Proposition 26.32. Assume \mathcal{H}_0 is a closed subspace of a Hilbert space \mathcal{H} . Then every $u \in H$ uniquely decomposes as

$$u = u_0 + u_1$$
, with $u_0 \in H$ and $u_1 \in \mathcal{H}_0^{\perp}$.

Moreover,
$$||u - u_0|| = d(u, \mathcal{H}_0)$$
 and $||u||^2 = ||u_0||^2 + ||u_1||^2$.

For a closed subspace $\mathcal{H}_0 \subset \mathcal{H}$, consider the map $P: H \to \mathcal{H}_0$ s.t. $Pu \in \mathcal{H}_0$ is the unique element satisfying $u - Pu = H_0^{\perp}$. The operator P is linear. It is also contractive, meaning that $||Pu|| \leq ||u||$, since $||u||^2 = ||Pu||^2 + ||u - Pu||^2$. It is called the orthogonal projection onto \mathcal{H}_0 .

If \mathcal{H}_0 is finite dimensional with an orthonormal basis $u_1, ..., u_n$ then

$$Pu = \sum_{k=1}^{n} (u, u_k) u_k.$$

Orthonormal bases can be defined for arbitrary Hilbert spaces.

Definition 26.33 (orthonormal system). An orthonormal system in \mathcal{H} is a collection of vectors $h_i \in H$ $(i \in I)$ s.t.

$$(u_i, u_j) = \delta_{ij} \ \forall i, j \in I.$$

It is called an *orthonormal basis* if span $\{u_i\}_{i\in I}$ denotes the linear span of $\{u_i\}_{i\in I}$, the space of finite linear combinations of the vectors u_i .

Definition 26.34. A Hilbert space \mathcal{H} is said to be *separable* if \mathcal{H} contains a countable dense subset $G \subset \mathcal{H}$.

Theorem 26.35. Every Hilbert space \mathcal{H} has an orthonormal basis. If \mathcal{H} is separable, then there is a countable orthonormal basis.

Proposition 26.36. Assume $\{u_i\}_{i\in I}$ is an orthonormal system in a Hilbert space H. Take $u\mathcal{H}$. Then

- (i) Bessel's inequality: $\sum_{i \in I} |(u, u_i)|^2 \le ||u||^2$, in particular, $\{i : (u, u_i) \ne 0\}$ is countable.
- (ii) Parseval's identity: If $\{u_i\}_{i\in I}$ is an orthonormal basis, then $\sum_{i\in I} |(u,u_i)|^2 = ||u||^2$.

If $(u_i)_{i\in I}$ is an orthonormal basis, then the numbers (u, u_i) are called the **Fourier coefficients** of u with respect to $(u_i)_{i\in I}$. The Parseval identity then suggests that u is determined by its Fourier coefficients. This is true, and even more, we have:

Proposition 26.37. Assume $(u_i)_{i\in I}$ is an orthonormal basis in a Hilbert space \mathcal{H} . Then for every vector $(c_i)_{i\in I} \in l^2(I)$ there is a unique vector $u \in \mathcal{H}$ with Fourier coefficients c_i , and we write

$$u = \sum_{i \in I} c_i u_i.$$

Remark. Equivalently, the element $u = \sum_{i \in I} c_i u_i$ can be described as the unique element in \mathcal{H} s.t. $\forall \epsilon > 0$ there is a finite $F_0 \subset I$ s.t. $||u - \sum_{i \in F} c_i u_i|| < \epsilon \ \forall$ finite $F \supset F_0$.

Corollary 26.38. We have a linear isomorphism $U: l^2(I) \xrightarrow{\sim} \mathcal{H}$, $U((c_i)_{i \in I}) = \sum_{i \in I} c_i u_i$. By Parseval's identity this isomorphism is isometric, that is, $||Ux|| = ||x|| \ \forall x \in l^2(I)$. By the polarization identity this is equivalent to

$$(Ux, Uy) = (x, y) \ \forall x, y \in l^2(I).$$

Therefor U is unitary.

Corollary 26.39. Up to a unitary isomorphism, there is only one infinite dimensional separable Hilbert space, namely, l^2 .

Dual spaces (lecture 15, 29. Feb.)

Given two orthonormal bases $(u_i)_{i\in I}$ and $(v_i)_{i\in I}$ in a Hilbert space \mathcal{H} , we can decompose

$$u_i = \sum_{j \in I} (u_i, v_j) v_j$$

and using that the sets $\{j: (u_i, v_j) \neq 0\}$ are countable proove the following: Claim: Any two orthonormal bases in a Hilbert space have the same cardinality.

Example 26.40 (classical Fourier series). Consider $\mathcal{H} = L^2(0, 2\bar{\mu}) = L^2((0, 2\bar{\mu}), d\lambda)$. For $n \in \mathbb{Z}$, define $e_n(t) = \frac{1}{\sqrt{2}\bar{\mu}}e^{int}$. By a version of Weierstrass' theorem it is known that span $\{e_n\}_{n\in\mathbb{Z}}$ is dense in the supremum-norm in

$$\{f \in C[0, 2\bar{\mu}] : f(0) = f(2\bar{\mu})\}.$$

As $C[0, 2\bar{\mu}]$ is dense in $L^2(0, 2\bar{\mu})$, from this one can deduce that span $\{e_n\}_{n\in\mathbb{Z}}$ is dense in $L^2(0, 2\bar{\mu})$. We then see that $(e_n)_{n\in\mathbb{Z}}$ is an orthonormal basis in $L^2(0, 2\bar{\mu})$. We therefor have a unitary isomorphism

$$l^2(\mathbb{Z}) \xrightarrow{\sim} L^2(0,2\bar{\mu}), (c_n)_{n\in\mathbb{Z}} \mapsto \sum_{n\in\mathbb{Z}} c_n e_n.$$

The Fourier coefficients at $f \in L^2(0, 2\bar{\mu})$ are denoted by $\hat{f}(n)$, so

$$\hat{f}(n) = \frac{1}{\sqrt{2\bar{\mu}}} \int_0^{2\bar{\mu}} f(t)e^{-int}dt,$$

more practically

$$\hat{f}(n) = \frac{1}{\sqrt{2\bar{\mu}}} \int_{[0,2\bar{\mu})} f(t)e^{-int} d\lambda(t).$$

Therefor we have $f = \sum_{n \in \mathbb{Z}} \hat{f}(n)e_n$ in $L^2(0, 2\bar{\mu})$. Fact: For every $f \in L^2(0, 2\bar{\mu})$, we have $\frac{1}{\sqrt{2\bar{\mu}}} \sum_{n=-N}^N \hat{f}(n)e^{int} \xrightarrow[N \to \infty]{} f(t)$ for a.e. t.

Lemma 26.41. Assume V is a normed space over $K = \mathbb{R}$ or $K = \mathbb{C}$. Consider a linear functional $f: V \to K$. The following are equivalent (TFAE):

- (i) f is continuous;
- (ii) f is continuous at θ ;
- (iii) There is a $c \ge 0$ s.t. $|f(x)| \le c||x|| \ \forall x \in V$.

If (i)-(iii) are satisfied, then f is called a bounded linear functional. The constant c in (iii) is denoted by ||f||. We have $||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \sup_{||x|| = 1} |f(x)| =$ $\sup_{||x||<1} |f(x)|.$

Proposition 26.42. For every normed vector space V over $K = \mathbb{R}$ or $K = \mathbb{C}$, the bounded linear functionals on V form a Banach space V^* .

Remark. The sequence $\{||f_n - f_m||\}_{m=1}^{\infty}$ actually converges, since

$$\left| ||f_n - f_m|| \right| \le ||f_m - f_n||.$$

When we study/use normed spaces, it is often important to understand the dual spaces. For Hilbert spaces this is particularly easy:

Theorem 26.43 (Riesz). Assume \mathcal{H} is a Hilbert space. Then every $f \in \mathcal{H}^*$ has the form

$$f(x) = (x, y),$$

for a uniquely defined $u \in \mathcal{H}$. Moreover, we have ||f|| = ||y||.

For every Hilbert space \mathcal{H} we can define the *conjugate Hilbert space* $\bar{\mathcal{H}}$, which has its elements as the symbols \bar{x} for $x \in \mathcal{H}$, with the linear structure and inner product defined by

$$\bar{x} + \bar{y} = \overline{x + y}, c \cdot \bar{x} = \overline{c}x, (\bar{x}, \bar{y}) = \overline{(x, y)} = (y, x).$$

Corollary 26.44. For every Hilbert space \mathcal{H} , we have an isometric isomorphism $\bar{\mathcal{H}} \xrightarrow{\sim} \mathcal{H}^*, \ \bar{x} \mapsto (\cdot, x).$