Policy-Gradient-Like Derivation for Shared-Parameter Agents

Setting Two agents A and B interact synchronously with a shared data stream D. At each step t (Moore timing), each agent emits a message based on its internal state, then observes (D_t , partner's message at t) to update its state. Each agent $X \in \{A, B\}$ has parameters θ_X , shared between its policy and predictor: the policy π_{θ_X} samples messages and the predictor P_{θ_X} assigns likelihoods to D given the partner's message. Let $\theta = (\theta_A, \theta_B)$.

Objective (infinite horizon) Define the per-step cooperative reward

$$r_t = \ln P_{\theta_B}(D_t \mid m_{A \to B}^t) + \ln P_{\theta_A}(D_t \mid m_{B \to A}^t), \qquad t = 1, 2, \dots$$

Two standard infinite-horizon objectives are

$$J_{\text{avg}}(\theta) := \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} r_t \right],$$
$$J_{\gamma}(\theta) := \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t \right], \qquad \gamma \in (0, 1).$$

When r_t is bounded and suitable ergodicity holds, $(1 - \gamma) J_{\gamma}(\theta) \to J_{\text{avg}}(\theta)$ as $\gamma \uparrow 1$.

Equivalently, maximizing J_{γ} is maximizing a discounted product of the data likelihoods assigned by the predictors across time (the exogenous $P(D_t)$ drops out since it is θ -independent):

$$J_{\gamma}(\theta) = \mathbb{E}\left[\sum_{t\geq 1} \gamma^{t-1} \ln P_{\theta_B}(D_t \mid m_{A\to B}^t) + \gamma^{t-1} \ln P_{\theta_A}(D_t \mid m_{B\to A}^t)\right]$$
(1)

$$\iff$$
 maximize $\mathbb{E}\Big[\prod_{t\geq 1} \left(P_{\theta_B}(D_t \mid m_{A\to B}^t) P_{\theta_A}(D_t \mid m_{B\to A}^t)\right)^{\gamma^{t-1}}\Big].$ (2)

Trajectory distribution Under Moore timing and deterministic state updates, an infinite trajectory $\tau = (D_t, m_{A \to B}^t, m_{B \to A}^t)_{t \ge 1}$ has likelihood

$$P_{\theta}(\tau) = \prod_{t \ge 1} P(D_t) \, \pi_{\theta_A^t}(m_{A \to B}^t) \, \pi_{\theta_B^t}(m_{B \to A}^t),$$

where $P(D_t)$ is exogenous and θ_X^t denotes the (possibly updated) parameters of agent X at time t.

Gradient decomposition (discounted infinite horizon) Let the discounted return-from-time-t be $G_t = \sum_{k=t}^{\infty} \gamma^{k-t} r_k$. Using the likelihood-ratio identity and exchanging sums (justified by bounded r_t), the per-agent gradients are

$$\nabla_{\theta_A} J_{\gamma}(\theta) = \mathbb{E}\left[\sum_{t \geq 1} \nabla_{\theta_A} \ln \pi_{\theta_A}(m_{A \to B}^t) G_t\right] + \mathbb{E}\left[\sum_{t \geq 1} \gamma^{t-1} \nabla_{\theta_A} \ln P_{\theta_A}(D_t \mid m_{B \to A}^t)\right],$$

$$\nabla_{\theta_B} J_{\gamma}(\theta) = \mathbb{E}\left[\sum_{t \geq 1} \nabla_{\theta_B} \ln \pi_{\theta_B}(m_{B \to A}^t) G_t\right] + \mathbb{E}\left[\sum_{t \geq 1} \gamma^{t-1} \nabla_{\theta_B} \ln P_{\theta_B}(D_t \mid m_{A \to B}^t)\right].$$

The first term is the usual REINFORCE policy gradient with return G_t ; the second arises because r_t depends on θ through the predictors.

Time-varying parameters without meta-parameters Treat the per-time parameters θ_X^t as the variables we update online. Consider the discounted data log-likelihood along the trajectory

$$\mathcal{L}_{\gamma}^{\text{data}}(\tau; \theta^{1:\infty}) = \sum_{t>1} \gamma^{t-1} \Big(\ln P_{\theta_B^t}(D_t \mid m_{A \to B}^t) + \ln P_{\theta_A^t}(D_t \mid m_{B \to A}^t) \Big),$$

where $\ln P(D_t)$ is omitted as θ -independent. Maximizing $\mathbb{E}[\mathcal{L}_{\gamma}^{\text{data}}]$ by steepest ascent with respect to each θ_X^t yields the online MLE-style updates

$$\theta_X^{t+1} = \theta_X^t + \eta_t \bigg(\underbrace{\nabla_{\theta_X^t} \ln \pi_{\theta_X^t}(m_X^t) \, G_t}_{\text{policy (REINFORCE) term}} + \underbrace{\gamma^{t-1} \nabla_{\theta_X^t} \ln P_{\theta_X^t}(D_t \mid m_{\bar{X} \to X}^t)}_{\text{predictor (supervised) term}} \bigg),$$

which are exactly the gradients of $\mathbb{E}[\mathcal{L}_{\gamma}^{\text{data}}]$ w.r.t. θ_X^t . A baseline b_t can be subtracted from G_t without bias. This ties the update rule directly to maximizing the likelihood of the entire (discounted) data sequence, accounting for the exogenous D_t that θ cannot influence.

Single-step Monte Carlo and online updates At time t, let \widehat{G}_t be any causal estimator with $\mathbb{E}[\widehat{G}_t \mid \mathcal{F}_t] = G_t$ (e.g., sampled discounted return from t onward, or a bootstrapped critic). With any baseline b_t independent of m_X^t given \mathcal{F}_t , the ascent-style online updates for time-varying parameters are

$$\begin{split} &\theta_{A} \leftarrow \theta_{A} \; + \; \eta_{t} \left[(\widehat{G}_{t} - b_{t}) \, \nabla_{\theta_{A}} \ln \pi_{\theta_{A}}(m_{A \rightarrow B}^{t}) \; + \; \gamma^{t-1} \, \nabla_{\theta_{A}} \ln P_{\theta_{A}}(D_{t} \mid m_{B \rightarrow A}^{t}) \right], \\ &\theta_{B} \leftarrow \theta_{B} \; + \; \eta_{t} \left[(\widehat{G}_{t} - b_{t}) \, \nabla_{\theta_{B}} \ln \pi_{\theta_{B}}(m_{B \rightarrow A}^{t}) \; + \; \gamma^{t-1} \, \nabla_{\theta_{B}} \ln P_{\theta_{B}}(D_{t} \mid m_{A \rightarrow B}^{t}) \right]. \end{split}$$

Why unbiased? Conditioning on the filtration \mathcal{F}_t up to emission and treating θ^t as fixed at time t (since emission precedes the update),

$$\mathbb{E}\left[\left(\widehat{G}_t - b_t\right) \nabla \ln \pi_{\theta_X}(m_X^t) \mid \mathcal{F}_t\right] = \left(G_t - b_t\right) \mathbb{E}\left[\nabla \ln \pi_{\theta_X}(m_X^t) \mid \mathcal{F}_t\right] = G_t \nabla \ln \pi_{\theta_X}(m_X^t),$$

since $\mathbb{E}[\nabla \ln \pi_{\theta_X^t}(m_X^t) \mid \mathcal{F}_t] = 0$ and $\mathbb{E}[b_t \nabla \ln \pi_{\theta_X^t}(m_X^t) \mid \mathcal{F}_t] = 0$. Taking full expectations and summing over t recovers the policy-gradient terms in ∇J_{γ} evaluated at θ^t . The supervised terms are already unbiased for the predictor gradients. Thus $\mathbb{E}[\Delta \theta_X^t] \propto \nabla_{\theta_X} J_{\gamma}(\theta^t)$.

With diminishing step sizes $\sum_t \eta_t^2 = \infty$, $\sum_t \eta_t^2 < \infty$ (Robbins-Monro), the iterates converge to stationary points under standard regularity assumptions. With small constant η_t , the updates ascend J_{γ} in expectation.

Average-reward variant Under ergodicity and bounded rewards, replacing G_t with differential returns and taking $\gamma \uparrow 1$ yields estimators for $\nabla J_{\text{avg}}(\theta)$. In practice one uses large γ (e.g., 0.99–0.999) as a low-variance surrogate for average reward.