検定

データ・マイニング!

母集団と標本集団

- 母集団とは、対象となるすべてのデータ
 - 母集団が日本に住んでいる人であれば、文字通り日本に住んでいる人すべて
- 標本とは、母集団から選択されたデータ
 - 母集団が日本に住んでいる人として、標本はそれから選択された人
 - 統計的にすべてのデータを集めて計算し、検証することはできないので、標本を 使って母集団について分析する

母集団と標本集団

- 母集団から標本を選択する場合、ランダムに選択することが望ましい
 - 偏りをなくし、より客観的な分析を行うため
 - 標本のデータ個数をサイズという

母集団と標本集団

- 標本のデータを使って、母集団の特徴を分析する
 - 母集団が多すぎると使いづらいので、ちょうどよいデータ数の標本を使う
 - 例えば、母集団の平均はどうだろうか?
 - ▶ 標本平均を使えばよい!

標本の抽出

- 母集団から標本を抽出する
 - 日本人を分析したいが、APUの日本人学生のみを抽出すると、日本人全体の特徴を捉えることはできない!
 - 標本に偏りをなくすため、ランダムに抽出する
 - ▶ 母集団に番号つけて、乱数を発生させて、乱数と同じ番号のデータを抽出すればよい。

YOUR TURN

標本平均と標本のサイズ

• *X_i*をある分布に従う乱数として、その標本平均

$$\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$$

標本サイズnを大きくすると、その分布は正規分布に近づく

標本平均の特徴:中心極限定理

- {X₁, X₂, …, X_n}の独立同分布の確率変数
- 各{X_i}の期待値はμ、標準偏差はσ
- 標本サイズnが大きくなるにつれて、 $\sqrt{n}(\bar{X}_n-\mu)$ は正規分布 $N(0,\sigma^2)$ に分布収束する

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\rightarrow} N(0, \sigma^2)$$

中心極限定理

- {X₁, X₂, …, X_n}の独立同分布の確率変数
- 各 $\{X_i\}$ の期待値は μ 、標準偏差は σ
- 標本サイズnが大きくなるにつれて、 $\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}$ は正規分布N(0,1)に分布収束する

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \quad \stackrel{d}{\to} \quad N(0,1)$$

• 大量の乱数を発生させて、その平均を計算し、正規化すると、正規分布に限りなく近づく

標本平均の分布の平均

- 標本平均Xの分布の平均X
 - データから計算されたものを \bar{X}
 - 理論的に計算されたものを $\mu_{\bar{x}}$
 - $> \mu_{\bar{X}}$ は母集団の平均 μ に等しい $\mu_{\bar{X}} = \mu$
- 標本平均 \bar{X} の分布の標準偏差 $s_{\bar{X}}$
 - データから計算されたものをs_{x̄}
 - 理論的に計算されたものを $\sigma_{\bar{x}}$
 - ightharpoonup 母集団のデータ数が無限ならば $\sigma_{ar{X}}=rac{\sigma}{\sqrt{n}}$
 - ightarrow 母集団のデータ数が有限ならば $\sigma_{ar{X}}=rac{\sqrt{N-n}}{\sqrt{N-1}}rac{\sigma}{\sqrt{n}}$
 - ▶ nは標本サイズ、Nは有限母集団のサイズ

YOUR TURN

推定一区間推定一

"What! You have solved it already?"

"Well, that would be too much to say. I have discovered a suggestive fact, that is all."

「え!もう分かったのか?」

「まあ、そこまでとはいわない。示唆に富む事実を発見しただけだよ。」

Dr. Watson and Sherlock Homes
The Sign of Four

パラメータとは

- パラメータ(母数)とは、以下の2つの意味を持つ
 - 1. 母集団の特徴を表す指標:以下に例
 - ▶ 母平均:母集団の平均、
 - ▶ 母分散:母集団の分散、
 - ▶ 母標準偏差:母集団の標準偏差
 - 2. 確率分布を特徴付ける指標:以下に例
 - ightharpoonup 一様分布における $a \geq b$: 1/(b-a)の確率密度で $a \geq b$ の間の数の値を取る
 - ightharpoons 正規分布の平均 μ と分散 $\sigma^2:N(\mu,\sigma^2)$
- ここでは、前者の意味で、特に母平均の推定を行う

パラメータの推定

- 母集団の分布の未知パラメータに対して、標本からその値を推定する
- 点推定量とは、標本に関する関数のこと
 - 推定量とは標本に関する関数であり、
 - $> \frac{X_1 + X_2 + X_3}{3}$ は推定量
 - 推定値とは推定量が取る実際の値である
 - $\geq \frac{4+2+6}{3} = 4$ は推定値。ここで、 $X_1 = 4, X_2 = 2, X_3 = 6$ の値を取ったとしている
- 母平均μの推定を行う
 - 東証第1部上場している株式の収益率の平均
 - 全世界の学生のTOEFLの平均、全世界のTOEFLの平均
 - ある国に住んでいるの人全員の身長、体重の平均

パラメータの推定

- 母平均µの推定
 - 母標準偏差σが既知の場合
 - 母標準偏差σが未知の場合
 - ▶ 小標本の場合
 - ▶ 大標本の場合
- 母標準偏差σの推定

母平均μの推定 考え方

- 標本データから計算した標本平均 \bar{X} は、中心極限定理によるとN(0,1)の正規分布に近づく
 - 母集団がどのような分布でも
- この性質を利用して、母平均µを区間推定する
 - $-rac{ar{X}_n-\mu}{\sigma/\sqrt{n}}$ を用いる

母平均μの推定:分散が既知の場合

標本平均Xの標準化

$$z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}}$$

-
$$z = \frac{X-\mu}{\sigma}$$
と $z = \frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}$ は異なる

- ightharpoonup 左辺は元のデータXを標準化したもの(Xの分布の平均は μ 、標準偏差は σ)
- ightharpoons 右辺は標本平均 $ar{X}$ を標準化したもの($ar{X}$ の分布の平均は $\mu_{ar{X}}$ 、標準偏差は $\sigma_{ar{X}}$)

$$z = rac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{X}}} = rac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$

 $-\mu_{ar{X}}=\mu$ 、 $\sigma_{ar{X}}=rac{\sigma}{\sqrt{n}}$ を最初の式に代入

$$F(\bar{X}) = E\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n}E(\sum_{i=1}^{n} X_i) = \frac{1}{n}nE(X_i) = \mu$$

$$Var(\bar{X}) = Var(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n^2} Var(\sum_{i=1}^{n} X_i) = \frac{1}{n^2} nVar(X_i) = \frac{\sigma^2}{n}$$

$$> \sqrt{Var(\bar{X})} = \frac{\sigma}{\sqrt{n}}$$

母平均μの区間推定のイメージ

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| \le z\right\} = P\left\{\overline{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \overline{X} + \frac{z\sigma}{\sqrt{n}}\right\}$$
$$\left|\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right| \le z \quad \Leftrightarrow \quad -z \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z \quad \Leftrightarrow \quad \overline{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \overline{X} + \frac{z\sigma}{\sqrt{n}}$$

 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ の分布(標準正規分布)

信頼区間

$$P\left\{ \bar{X} - \frac{z_{\alpha}\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z_{\alpha}\sigma}{\sqrt{n}} \right\} = 1 - \alpha$$

- $\overline{X} \frac{z_{\alpha}\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{z_{\alpha}\sigma}{\sqrt{n}}$ を信頼係数 1α の信頼区間という
 - $\overline{X}+rac{z_{lpha}\sigma}{\sqrt{n}}$ を上方信頼限界
 - $ar{X} rac{z_lpha\sigma}{\sqrt{n}}$ を下方信頼限界という
- 信頼係数1 αというのは、ある確率変数がある範囲内に収まる確率を意味 する
 - 1 αとして99%、95%や90%などの確率を取る
- 例:
 - $\bar{X} \frac{1.96\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{1.96\sigma}{\sqrt{n}}$ は信頼係数95%の信頼区間
 - ここで、標準正規分布において信頼係数95%のz_{0.05}は1.96である

母平均μの推定:分散が既知の場合

$$\bar{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z\sigma}{\sqrt{n}}$$

- 未知数はμのみでその他は分かっている
 - 母標準偏差σは既知
- μの上方信頼限界(これより上は確率として2.5%の領域に入る)

$$- \mu_U = \bar{X} + \frac{z\sigma}{\sqrt{n}}$$
:

• μの下方信頼限界(これより下は確率として2.5%の領域に入る)

$$- \mu_L = \bar{X} - \frac{z\sigma}{\sqrt{n}}$$

母平均μの区間推定値

$$\bar{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z\sigma}{\sqrt{n}}$$

母平均μの推定:分散が既知の場合

$$\bar{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z\sigma}{\sqrt{n}}$$

- 未知数はμのみでその他は分かっている
 - \bar{X} :TOEFLの平均スコアは50
 - σ: TOEFLのスコアのばらつきは10(とする)
 - n: TOEFLを受けた人の数は5
 - z:正規分布に対するしきい値
 - ▶ 上側2.5%ならば1.96、下側2.5%ならば-1.96
- μの上方信頼限界

$$- \mu_U = \bar{X} + \frac{z\sigma}{\sqrt{n}} = 50 + (1.96) \times 10/\sqrt{5}$$

μの下方信頼限界

$$-\mu_L = \bar{X} - \frac{z\sigma}{\sqrt{n}} = 50 - (1.96) \times 10/\sqrt{5}$$

YOUR TURN

母平均μの推定:分散が未知の場合

- 分散(母標準偏差)が既知の場合、母平均µの推定には正規分布を使って推 定する
- しかし、分散が未知の場合、<u>t分布</u>を使って推定する

t分布

t分布とは、

$$f_t(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{(\nu\pi)\Gamma\left(\frac{\nu}{2}\right)}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

が確率密度分布である分布

- Γはガンマ関数
- νは自由度を表すパラメータ
- 正規分布と同じbell shape
- ν → ∞となると、正規分布に収束する

t分布の性質

- t分布の分散は $\sigma^2 = \nu/(\nu-2)$
- t分布の標準偏差は $\sigma = \sqrt{\nu/(\nu-2)}$
 - 自由度νが変わると、分散と標準偏差も変わる
- t分布の自由度 ν は標本サイズnから1を引いたもの: $\nu = n-1$

t分布に従う変数

• 標準化した標本平均は、t分布に従う変数

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}}$$

- ここで \bar{X} は標本平均
- μは母平均
- sは標本標準偏差
- nは標本サイズ
- 標準化した $z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ との違いは母標準偏差 σ と標本標準偏差sだけ!!
 - > 母標準偏差σは未知のため、既知の標本標準偏差sを使う

$$t=rac{ar{X}-\mu}{s/\sqrt{n}}$$
の応用方法

1. 母標準偏差 σ が未知のとき、母平均 μ の推定ができる

- 母標準偏差 σ が既知のとき、 $z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ を利用した
- 母標準偏差 σ がの未知のときは、 $z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ の代わりに $\mathrm{t}=rac{ar{X}-\mu}{s/\sqrt{n}}$

σをsに置き換えて利用する

2. 統計量の有意性の検定に使うことができる

t分布の有意水準

• t分布の有意水準はExcelのT.DIST関数を用いて計算できる

母平均μの推定のイメージ

$$P\left\{\left|\frac{\overline{X} - \mu}{s/\sqrt{n}}\right| \le t\right\} = P\left\{\overline{X} - \frac{ts}{\sqrt{n}} \le \mu \le \overline{X} + \frac{ts}{\sqrt{n}}\right\}$$
$$\left|\frac{\overline{X} - \mu}{s/\sqrt{n}}\right| \le t \quad \Leftrightarrow \quad -t \le \frac{\overline{X} - \mu}{s/\sqrt{n}} \le t \quad \Leftrightarrow \quad \overline{X} - \frac{ts}{\sqrt{n}} \le \mu \le \overline{X} + \frac{ts}{\sqrt{n}}$$

母平均 μ の推定 母標準偏差 σ が未知、小標本(データが少ない)

•
$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$
を用いる

- μ の上方信頼限界 $\mu_U = \bar{X} + t \frac{s}{\sqrt{n}}$
- μ の下方信頼限界 $\mu_L = \bar{X} t \frac{s}{\sqrt{n}}$

例: 母平均 μ の推定 母標準偏差 σ が未知、小標本(データが少ない)

- 10人の学生がTOEFLを受けた
- TOEFLの点数の平均(標本平均)は $\bar{X}=53.45$ 、標本標準偏差は14.52
- 母平均μを95%信頼係数のもとで推定
- 信頼係数95%として、両側有意水準0.05のtの値を計算する

$$t_{0.05} = 2.26$$

μの上方信頼限界

$$- \mu_U = \bar{X} + t_{0.05} \frac{s}{\sqrt{n}} = 53.45 + 2.26 \times \frac{14.52}{\sqrt{10}} = 63.83$$

μの下方信頼限界

$$- \mu_L = \bar{X} - t_{0.05} \frac{s}{\sqrt{n}} = 53.45 - 2.26 \times \frac{14.52}{\sqrt{10}} = 43.07$$

信頼係数95%の母平均μの区間推定は

$$43.07 \le \mu \le 63.83$$

$$P(43.07 \le \mu \le 63.83) = 95\%$$

母平均 μ の推定 母標準偏差 σ が未知、大標本(データが多い)

- 標本サイズが大きい場合は、t分布の代わりに、正規分布を用いる
 - 標本サイズが大きいと、t分布は標準正規分布に収束する
 - ▶ どのくらいの有意水準かにもよるが、具体的には、概ね標本サイズが600以上

•
$$z = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$
を用いる

μの上方信頼限界

$$- \mu_U = \bar{X} + z \frac{s}{\sqrt{n}}$$

μの下方信頼限界

$$- \mu_L = \bar{X} - z \frac{s}{\sqrt{n}}$$

例: 母平均 μ の推定 母標準偏差 σ が未知、大標本(データが多い)

- 600人の学生がTOEFLを受けた
- TOEFLの点数の平均(標本平均)は $\bar{X}=53.45$ 、標本標準偏差は14.52
- 母平均μを95%信頼係数のもとで推定
- 信頼係数95%として、両側有意水準0.05のzの値を計算する

$$z_{0.05} = 1.96$$

μの上方信頼限界

$$- \mu_U = \bar{X} + t_{0.05} \frac{s}{\sqrt{n}} = 53.45 + 1.96 \times \frac{14.52}{\sqrt{10}} = 62.45$$

μの下方信頼限界

$$- \mu_L = \bar{X} - t_{0.05} \frac{s}{\sqrt{n}} = 53.45 - 1.96 \times \frac{14.52}{\sqrt{10}} = 44.45$$

信頼係数95%の母平均μの区間推定は

$$44.45 \le \mu \le 62.45$$

$$P(44.45 \le \mu \le 62.45) = 95\%$$

まとめ: 母平均μの区間推定

- 1. 母標準偏差が既知の場合は、正規分布を使って
 - $\bar{X} + \frac{z\sigma}{\sqrt{n}}$:上方信頼限界
 - $\bar{X} \frac{z\sigma}{\sqrt{n}}$:下方信頼限界
 - z_{0.05} = 1.96つまり、zとして信頼係数95%であれば1.96を使う
- 2. 母標準偏差が未知で小標本(データが少ない)の場合は、t分布を使って
 - $\bar{X} + \frac{ts}{\sqrt{n}}$:上方信頼限界
 - $\bar{X} \frac{ts}{\sqrt{n}}$:下方信頼限界
 - $t_{0.05} = 2.26$ つまり、tとして信頼係数95%であれば2.26を使う
- 3. 母標準偏差が未知で大標本(データが多い)の場合は、t分布を使って
 - $\bar{X} + \frac{z\sigma}{\sqrt{n}}$:上方信頼限界
 - $\bar{X} \frac{z\sigma}{\sqrt{n}}$:下方信頼限界

正規分布における信頼係数に対するZの値

	信頼係数	z値
10%	90%	1.64
5%	95%	1.96
1%	99%	2.58

t分布における信頼係数に対するtの値

• 自由度によって、*t*分布の信頼係数に対する*t*の値が変わる

YOUR TURN

検定

"It is a mistake to confound strangeness with mystery." 「奇異と謎を混同するのは誤りである」

Sherlock Homes A Study in Scarlet

統計的有意性

この節では、統計的有意性とは何であるかについて説明する

有意であること・有意でないこと

- <u>ある仮説に対応する確率がある有意水準(α)以下であるときに、その仮説</u> は統計的に有意であるという
 - 仮説が起こる確率を計算した結果、稀にしか起こらない水準であったようなときに用いる
 - 有意水準としては、10%、5%、1%を用いることが多い
 - 例:P({日本人のTOEFLのスコアが110以上}) ≤ 5%だったとすると、 「日本人のTOEFLのスコアが110以上」という仮説は、5%水準で統計的に有意と いえる

有意であること・有意でないことのイメージ

 ある仮説に対応する確率がある有意水準(α)以下であるときに、その仮説 は統計的に有意であるという

有意であること・有意でないことのイメージ

• <u>ある仮説に対応する確率がある有意水準(α)以下であるときに、その仮説</u> は統計的に有意であるという

棄却域と呼ぶ 面積を足すとα(%)

統計的仮説検定

- 仮説とは、母集団のパラメータに関する主張
 - 例えば、TOEFLを受けたすべての人の平均は50点
 - 全世界の人の身長の平均は165cm

統計的仮説検定の考え方

• 2つの仮説

− 帰無仮説: H₀と表す

- 対立仮説:*H*₁と表す

• 統計的仮説検定とは

- 標本から計算された結果により、帰無仮説 H_0 が正しいとして採択する
- 標本から計算された結果により、帰無仮説 H_0 が棄却され、対立仮説 H_1 が正しいと採択する

のいずれかを決めるルール

- H₀が棄却されるような標本空間の部分集合を棄却域、
- その補集合(棄却域以外の区間)を採択域という

統計的仮説検定の具体的なステップ

- 1. 仮説を設定する
 - 帰無仮説と対立仮説
- 2. 仮説を検定するための検定統計量を決める
 - データがどのような分布に従い、それによって検定統計量がどのような分布に 従うかについても気を付ける
- 3. 検定統計量の棄却域を決める
 - 有意水準を設定する
- 4. 検定統計量の値を計算して、棄却域に入るか否かを調べる
 - 棄却域に入れば、帰無仮説が棄却される
 - > 対立仮説は採択される
 - 棄却域に入らなければ、帰無仮説は棄却されない
 - > 対立仮説は採択されない

仮説の設定:帰無仮説と対立仮説

- 帰無仮説H₀と対立仮説H₁
 - 帰無仮説があり、その仮説を補完する仮説を対立仮説
- 「工場で作ったLED電球の寿命の平均は1万時間より長い」という仮説を検証 する
 - 帰無仮説 H_0 : $\mu = 10,000$ (平均は1万時間である)
 - 対立仮説 $H_1: \mu > 10,000$ (平均は1万時間より長い)
- 帰無仮説を棄却(否定)されれば、対立仮説は採択される

なぜ帰無仮説なのか

なぜ帰無仮説を棄却するような検定をするのか?

- 1. 仮説が正しくないことを検証するのは比較的簡単
 - 仮説が正しいことを検証するの難しい

なぜ帰無仮説なのか

- 2. 統計的仮説検定の2種類の過誤が存在する
 - 第1種の過誤:帰無仮説は正しいのに棄却する誤り
 - ▶ 正しくない対立仮説を採択する誤り
 - 第2種の過誤:対立仮説が正しいのに、帰無仮説を棄却しない誤り
 - ▶ 正しいはずの対立仮説を採択しないという誤り

		本当の状態	
		帰無仮説は正しい	帰無仮説は正しくない
帰無仮説の棄却の結果	帰無仮説を棄却	第1種の過誤	0
	帰無仮説を棄却せず	0	第2種の過誤

- 第1種の過誤を起こる確率が有意水準α
 - よって有意水準をコントロールすれば、第1種の過誤をコントロールできる
 - 第2種の過誤が起こる確率は β と呼び、 $1-\beta$ を検出力と呼ぶ
 - ▶ ここでは第2種の過誤と検出力などについて省略する

検定統計量

- 標本の関数を検定統計量という
 - 標本から計算された値
 - 例えば、APUの学生をランダムにピックアップして、TOEFLの点数の平均
 - 検定の手がかりとなる統計量

- 「工場で作ったLED電球の寿命の平均は1万時間より長い」という仮説を検証する場合、
 - 母平均 μ に関する仮説検定は標本平均 $ar{X}$ を使う

検定統計量の分布の計算

• 帰無仮説が正しいという前提で、検定統計量の分布を計算する

検定統計量の分布の計算棄却域

- 検定統計量を計算して、それが棄却域に入れば、帰無仮説は棄却される
 - 棄却域とは、帰無仮説が棄却される検定統計量が取りうる区間
 - 採択域とは、帰無仮説が棄却されない検定統計量が取りうる区間
 - 臨界値とは、棄却域と採択域を区切る値

臨界値の求め方

- あるデータが正規分布 $N(\mu, \sigma^2)$ に従うとする
- 1. 有意水準5%を設定する
 - 1%、5%、10%などがよく用いられている
- 2. 確率5%に対応する分布から求められる臨界値を計算する
- 3. データの水準とばらつきを戻す

$$- Z = \frac{X - \mu}{\sigma} \Rightarrow X = \sigma Z + \mu$$

臨界値の求め方:例

- TOEFLのテストの結果の分布が正規分布N(50,100)に従うとする
 - 標準偏差は10
- 1. 有意水準5%を設定する
- 2. 確率5%に対応する標準正規分布の臨界値は1.64
 - ExcelでNORM.INV(0.95,0,1)と入力(この場合、上側5%なので、95%と入力)
- 3. $X = 10 \times 1.64 + 50 = 66.4$
 - 66.4点が臨界値

母平均に関する仮説検定

- 1. 母標準偏差が既知:標本平均をz変換したものは標準正規分布に従う
- 2. 母標準偏差が未知
 - i. 小標本(データが600より少ない場合):標本平均をt変換したものはt分布に従う

 ▶ 正確には自由度が600より少ない場合
 - ii. 大標本(データが600以上の場合):標本平均をz変換したものは標準正規分布に従う
 - ▶ 正確には自由度が600以上の場合

母平均に関する仮説検定:母標準偏差が既知の場合

母平均μの推定は下方限界を利用

$$\mu = \bar{X} - \frac{z\sigma}{\sqrt{n}} \quad \Leftrightarrow \quad \bar{X} = \mu + \frac{z\sigma}{\sqrt{n}} \quad \Leftrightarrow \quad z = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}$$

- σは母標準偏差
- 臨界値を代入すると、

$$C_{\bar{X}} = \mu + \frac{C_z \sigma}{\sqrt{n}}$$

- \bar{X} の臨界値 $C_{\bar{X}}$
- -zの臨界値 C_z : 例えば、5%有意水準のzの値 $\rightarrow z$ は標準正規分布に従う

- 対立仮説は採択される
- $\bar{X} \leq C_{\bar{X}}$ ならば、帰無仮説は棄却されない
 - 対立仮説は採択されない

母平均に関する仮説検定:母標準偏差が既知の場合

- 100人の学生がTOEFLを受けた結果、点数の平均(標本平均)は53.45点
- 仮説として、
 - H_0 : $\mu = 50$ 帰無仮説
 - $H_1: \mu > 50$ 対立仮説
- 母標準偏差は12.03
- 有意水準5%と設定
- zの5%有意水準の臨界値は $C_z = 1.645$

$$C_{\bar{X}} = \mu + \frac{C_z \sigma}{\sqrt{n}} = 50 + \frac{1.645 \times 12.03}{\sqrt{100}} = 51.978935$$

• $53.45 > 51.978935(\bar{X} > C_{\bar{X}})$ であるため、帰無仮説($\mu = 50$)は棄却

母平均に関する仮説検定: 母標準偏差が未知かつ小標本(データ少ない)の場合

母平均μの推定は下方限界を利用

$$\mu = \bar{X} - \frac{ts}{\sqrt{n}} \quad \Leftrightarrow \quad \bar{X} = \mu + \frac{ts}{\sqrt{n}} \quad \Leftrightarrow \quad t = \frac{\sqrt{n}(\bar{X} - \mu)}{s}$$

- sは標本標準偏差
- 臨界値を代入すると、

$$C_{\bar{X}} = \mu + \frac{C_t \sigma}{\sqrt{n}}$$

- tの臨界値C_t:例えば、5%有意水準のtの値
 tはt分布に従う
- $\bar{X} > C_{\bar{X}}$ ならば、帰無仮説は棄却される
 - 対立仮説は採択される
- $\bar{X} \leq C_{\bar{X}}$ ならば、帰無仮説は棄却されない
 - 対立仮説は採択されない

母平均に関する仮説検定: 母標準偏差が未知かつ小標本(データ少ない)の場合

- 100人の学生がTOEFLを受けた結果、点数の平均(標本平均)は53.45点
- 仮説として、
 - H_0 : $\mu = 50$ 帰無仮説
 - $H_1: \mu > 50$ 対立仮説
- 標本標準偏差は14.52
- 有意水準5%と設定
- tの5%有意水準の臨界値は $C_t = 1.66$

$$C_{\bar{X}} = \mu + \frac{C_t s}{\sqrt{n}} = 50 + \frac{1.66 \times 14.52}{\sqrt{100}} = 52.41032$$

• $53.45 > 52.41032(\bar{X} > C_{\bar{X}})$ であるため、帰無仮説($\mu = 50$)は棄却

母平均に関する仮説検定: 母標準偏差が未知かつ大標本(データ多い)の場合

母平均μの推定は下方限界を利用

$$\mu = \bar{X} - \frac{zs}{\sqrt{n}} \quad \Leftrightarrow \quad \bar{X} = \mu + \frac{zs}{\sqrt{n}} \quad \Leftrightarrow \quad z = \frac{\sqrt{n}(\bar{X} - \mu)}{s}$$

- sは標本標準偏差
- 臨界値を代入すると、

$$C_{\bar{X}} = \mu + \frac{C_z s}{\sqrt{n}}$$

- -zの臨界値 C_z : 例えば、5%有意水準のtの値 $\rightarrow z$ は標準正規分布に従う
- $\bar{X} > C_{\bar{X}}$ ならば、帰無仮説は棄却される
 - 対立仮説は採択される
- $\bar{X} > C_{\bar{x}}$ ならば、帰無仮説は棄却されない
 - 対立仮説は採択されない

母平均に関する仮説検定: 母標準偏差が未知かつ大標本(データ多い)の場合

- 600人の学生がTOEFLを受けた結果、点数の平均(標本平均)は53.45点
- 仮説として、
 - H_0 : $\mu = 50$ 帰無仮説
 - $H_1: \mu > 50$ 対立仮説
- 標本標準偏差は14.52
- 有意水準5%と設定
- zの5%有意水準の臨界値は $C_z = 1.645$

$$C_{\bar{X}} = \mu + \frac{C_z \sigma}{\sqrt{n}} = 50 + \frac{1.645 \times 14.52}{\sqrt{600}} = 50.9752$$

• 53.45 > 50.9752 ($\bar{X} > C_{\bar{X}}$)であるため、帰無仮説($\mu = 50$)は棄却

正規分布における信頼係数に対する zの値:右側検定

	信頼係数	z値
10%	90%	1.28
5%	95%	1.64
1%	99%	2.33

t分布における信頼係数に対するtの値:右側検定

• 自由度によって、*t*分布の信頼係数に対する*t*の値が変わる

正規分布における信頼係数に対する zの値: 左側検定

	信頼係数	z値
10%	90%	-1.28
5%	95%	-1.64
1%	99%	-2.33

= -1.64

t分布における信頼係数に対するtの値:左側検定

• 自由度によって、*t*分布の信頼係数に対する*t*の値が変わる

正規分布における信頼係数に対するzの値:両側検定

	信頼係数	z値
10%	90%	1.64
5%	95%	1.96
1%	99%	2.58

t分布における信頼係数に対するtの値:両側検定

• 自由度によって、*t*分布の信頼係数に対する*t*の値が変わる

YOUR TURN