LES FONDAMENTAUX EN TELECOMMUNICATIONS Corrigé - Série de TD N° 2

Corrigé de l'exercice 1 :

La modulation considérée ici est définie par la constellation suivante où le déphasage est $\frac{k\pi}{4}$:

Figure 1: Constellation d'une modulation 8PSK

1. Type de modulation considéré :

D'après la forme circulaire de la constellation de la figure 2 ci-dessus, il s'agit d'une modulation PSK. Nous avons 8 états de phases donc la valence M = 8 avec n = 3 bits par symbole. Donc **c'est une 8PSK.**

Rappel: la valence: $M = 2^3$; le nombre de bits par symbole: $n = \log_2 M$

2. Type de codage utilisé et sa particularité :

On utilise ici le Code Gray, c'est un codage pour lequel un seul bit change entre deux symboles adjacents ou successifs au niveau de la constellation.

3. Tracé de l'allure du signal s(t) modulé correspondant à la suite binaire 000001101 :

On Prendre T (durée d'un symbole) = T_P (période de la porteuse) dans l'objectif pédagogique unique de comprendre et de faciliter le tracé : $u_p(t) = \sin(\omega_p t)$.

• D'après la figure 1 ci-dessus, on établit le tableau suivant présentant toutes les possibilités que peut prendre la phase du signal modulé s(t) en utilisant cette constellation 8PSK :

Symbole	000	001	101	100	110	111	011	010
k	0	1	2	3	4	5	6	7
Phase : $\frac{k\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$

• On commence par tracer le signal porteur sur une période et on y porte les 8 phases en question (points en rouge sur la figure 2) :

à savoir:

$$0 \ , \ \frac{\pi}{4} \ , \ \frac{\pi}{2} \ , \ \frac{3\pi}{4} \ , \ \pi \ , \ \frac{5\pi}{4} \ , \ \frac{3\pi}{2} \ \ \text{et} \ \frac{7\pi}{4}$$

Figure 2 : Présentation du signal porteur sur une période

• On trace ensuite le signal modulé 8PSK noté s(t) correspondant à la suite binaire 000001101 à transmettre, qu'on découpe d'abord en bloc de 3 bits chacun (n=3):

Figure 3: Constellation d'une modulation 8PSK

Après avoir tracé les signaux élémentaires correspondant aux symboles (blocs de la suite binaire) à transmettre, on les relit par un trait vertical pour assurer la continuité du signal s(t) comme indiqué en rouge sur la figure 3 ci-dessus.

Corrigé de l'exercice 2 :

Soit une modulation 8ASK symétrique :

1. Construction de la constellation correspondante :

Avec une modulation 8ASK symétrique, nous avons une valence M=8 qui correspond à 8 états d'amplitudes possibles donnés par la relation :

$$A_i = (2i - M + 1)a_0$$
 avec $a_0 > 0$; i varie de 0 à (M-1) = 7, on obtient :

$$A_0 = -7a_0$$
; $A_1 = -5a_0$; $A_2 = -3a_0$; $A_3 = -a_0$; $A_4 = a_0$; $A_5 = 3a_0$; $A_6 = 5a_0$; $A_7 = 7a_0$
Chacune de ces amplitudes va représenter un symbole contenant 3 bits : $M = 8 = 2^3$ donc $n = 3$.

Figure 4 : Construction de base d'une constellation d'une modulation 8ASK symétrique

2. A chaque point de la constellation, on associe un ensemble de bits obéissant au Code Gray et les points de la constellation dont l'abscisse est négative auront un poids fort à 1, soit la proposition suivante qui répond aux exigences de l'énoncé :

Symbole	111	110	100	101	001	000	010	011
Amplitude A_i	$-7a_{0}$	$-5a_{0}$	$-3a_{0}$	$-a_0$	a_0	$3a_0$	$5a_0$	$7a_0$

où un seul bit change lorsqu'on passe d'un symbole au suivant et où on affecte les amplitudes négatives aux symboles ayant le poids fort à 1 :

Figure 5 : Exemple de constellation d'une modulation 8ASK symétrique répondant aux exigences de l'énoncé de l'exercice

3. On considère ici, les mêmes conditions de l'exercice I c'est-à-dire on prend $T=T_{symbole}=T_{Porteuse}$ dans l'objectif pédagogique unique de comprendre et de faciliter les tracés des courbes demandés. On utilise aussi une porteuse sinusoïdale : $u_p(t)=\sin{(\omega_p t)}$ avec une impulsion rectangulaire g(t) d'amplitude 1 dans l'intervalle [0,T[.

On désire transmettre le train de bits suivant : 100110001010011101

■ Tracé du signal a(t) correspondant à cette suite binaire à transmettre :

 $5a_0$

 $7a_0$

 $-a_0$

 $-5a_{0}$

 a_0

Amplitudes:

 $-3a_{0}$

Corrigé de l'exercice 3 :

La norme V23 est utilisée dans le minitel. Elle est caractérisée par les valeurs suivantes :

• Canal Descendant (ou direct):

Modulation FSK $F_1 = 1300 \text{ Hz}$

 $F_0 = 2100 \text{ Hz}$

Débit : $D_D = 1200 \text{ bits/s}$

• Canal Montant (ou retour):

Modulation FSK

 $F_1 = 390 \text{ Hz}$

 $F_0 = 450 \text{ Hz}$

Débit : $D_M = 75$ bits/s

1. Calcul des valeurs des 2 porteuses F_D et F_M :

Pour chaque canal, nous avons 2 fréquences donc il s'agit de la modulation 2FSK, la valence M = 2, le nombre de bits par symbole n = 1.

La fréquence porteuse s'écrit : $F = \frac{f_0 + f_1}{2}$

2. Calcul des valeurs des deux indices de modulation μ_D et μ_M :

L'indice de modulation est donné par la relation : $\mu = \frac{\mathcal{D}f}{R} = \frac{2\Delta f}{R}$

L'excursion de fréquence est : $\Delta f = \frac{f_0 - f_1}{2}$

Or, le nombre de bits par symbole n = 1 par conséquent : D = n R = R

D'où l'indice de modulation μ devient : $\mu = \frac{f_0 - f_1}{p}$

3. Calcul de l'encombrement spectral (bande passante) correspondant aux deux modulations : B_D et B_M

La bande passante est donnée par : $B = f_0 - f_1 + \frac{2}{T} = f_0 - f_1 + 2R$ avec n = 1

D'où la bande passante : ${\pmb B} = {\pmb f}_0 - {\pmb f}_1 + {\pmb 2}{\pmb D}$

Application numérique :

	Canal Descendant (ou direct)	Canal Montant (ou retour)		
	$F_1 = 1300 \text{ Hz}$	$F_1 = 390 \text{ Hz}$		
	$F_0 = 2100 \text{ Hz}$ $D_D = 1200 \text{ bits/s}$	$F_0 = 450 \text{ Hz}$ $D_M = 75 \text{ bits/s}$		
$F = \frac{f_0 + f_1}{2}$	$F_D = 1700 \text{ Hz}$	$F_M = 420 Hz$		
$\mu = \frac{f_0 - f_1}{D}$	$\mu_{\mathrm{D}}=0,\!67$	$\mu_{ m M}$ $=$ 0,8		
$B = f_0 - f_1 + 2D$	$B_D = 3200 \text{ Hz}$	B_{M} = 210 Hz		

Corrigé de l'exercice 4:

On demande de proposer les modulations convenables, parmi celles étudiées dans le cours, pour transmettre la suite binaire suivante :

001011010010

sachant que la rapidité de modulation est de 1200 bauds, et ce pour divers débits binaires.

D'une part, étant donné que le **message à transmettre** correspond à des donnés **numérique** : 0 0 1 0 1 0 0 1 0, alors parmi les modulations convenables étudiées dans le cours **on peut citer : ASK, FSK et PSK.** Il faut maintenant déterminer leurs valences.

D'autre part et par définition : D = n R.

On calcule alors le nombre de bits à transmettre par symbole : $n = \frac{D}{R}$ avec R = 1200 Bauds

Et on en déduit la valence : $M = 2^n$ et ce pour chacun des trois débits suivants :

1. Pour un débit D = 1200 bits/s

On a dans ce cas : n = 1 donc M = 2

On peut faire appel à l'une des trois modulations suivantes pour transmettre la suite binaire en question : **2ASK**, **2FSK ou 2PSK**.

2. Pour un débit D = 2400 bits/s

On a dans ce cas : n = 2 donc M = 4

On peut faire appel à l'une des deux modulations suivantes pour transmettre la suite binaire en question : **4FSK ou 4PSK** car pour M > 2 l'ASK est peu employé vu que ses performances sont moins bonnes que celles des autres modulations, notamment pour sa résistance au bruit.

3. Pour un débit D = 4800 bits/s

On a dans ce cas : n = 4 donc M = 16

On peut faire appel à l'une des deux modulations suivantes pour transmettre la suite binaire en question : **16FSK ou 16PSK.**