Exercises

- 1. a. What is the equation of a circle with center (6, 0) and radius 5?
 - **b.** Is the point Q(2, 3) on the circle?
 - c. Plot P(12, 8). Is \overline{PQ} tangent to the circle?

In Exercises 2-4, (a) verify that points \underline{A} and \underline{B} lie on circle O, (b) make a sketch and find M, the midpoint of \overline{AB} , and (c) use slopes to verify that $\overline{OM} \perp \overline{AB}$.

- 2. Circle O has radius 5. The points are A(0, 5) and B(4, 3).
- 3. Circle O has radius 10. The points are A(6, 8) and B(-8, 6).
- **4.** Circle O has radius $5\sqrt{2}$. The points are A(5, 5) and B(-7, 1).
- 5. Sketch the circles $x^2 + y^2 = 225$ and $(x 6)^2 + (y 8)^2 = 25$ and explain why the circles must be internally tangent. (*Hint:* Find the two radii and the distance between the centers of the circles.)
- **6. a.** Sketch the circle $x^2 + y^2 = 25$ and the line y = 2x 5.
 - **b.** Solve the two equations simultaneously by substituting 2x 5 for y in the equation $x^2 + y^2 = 25$. Solve the resulting quadratic equation by factoring. For each value of x, find the corresponding value of y by substituting into the equation y = 2x 5.
 - **c.** Your two solutions in part (b) correspond to two points on the circle. Show them on your sketch.
- 7. \overrightarrow{PA} is tangent to circle O at A.
 - a. If the figure shown is reflected in \overrightarrow{PO} , what is the image of circle O? of \overline{PA} ?
 - **b.** Since a reflection is an isometry, what do you know about \overline{PA} and its image?
 - c. State the corollary that part (b) proves.
- **8.** Circles P and Q intersect at A and B.
 - **a.** What is the image of A when reflected in \overrightarrow{PQ} ?
 - **b.** What does part (a) tell you about \overline{AB} and \overline{PQ} ?
 - c. Sketch the image of \overline{XY} when reflected in \overrightarrow{PQ} .
 - **d.** What can you deduce from part (c) about the common external tangents of two circles?
- **★ 9.** Find an equilateral triangle ABC with vertex B on $\bigcirc P$ and vertex C on $\bigcirc Q$. (Hint: Rotate $\bigcirc P$ 60° about A. Its image will intersect $\bigcirc Q$ in two points. Either of these points can be the desired vertex C. How do you find B?)

