

| Smech records how energy is mechanically transported from one region to another        |
|----------------------------------------------------------------------------------------|
| Transported from one region to another                                                 |
| We will show:                                                                          |
| of (umech + Uem) + d; (S'mech + Sen) = 0                                               |
| Where $u_{em} = \frac{1}{2} \vec{E} \cdot \vec{D} + \frac{1}{2} \vec{B} \cdot \vec{H}$ |
| and $\vec{S} = c(\vec{E} \times \vec{H})$                                              |
| energy flux in electromagnetism                                                        |
| In integral Sorm:                                                                      |
| d (Umecht Uen) = -   Šem da -   Šmech                                                  |
| 0 for a mechanically                                                                   |
| Then isolated system                                                                   |
| [S] = energy · m = energy  vol S area s                                                |
|                                                                                        |
|                                                                                        |

## Momentum Conservation 2 93 + 2-Tij = 0 grot is the total momentum per volume · Tis is the force in the 1th derector per area in j-th · This guarantees that the total momentum is conserved $\frac{dP_{rot}}{dt} = \int dV \, \partial_t g^{tot} = \int dV \, \left[ -2, T^{ij} \right]$ =- STiving dS = 0 for an isolated system Will show that $\partial_{+} O_{mech}^{3} + \partial_{-} T_{ig}^{ig} = \rho \vec{E} + \vec{j} \times \vec{B}$ $= -\partial_{+} (\vec{g}_{em}^{3}) - \partial_{-} T_{em}^{ig}$ Same gen Lig = - E E'E' + LE E'Sig Where + -BB + LB Sig & magnetic

| So that the full result:                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------|
| 2 (gmecht gem) + 2 (Tig + Tig) = 0                                                                                                |
| $\frac{Prf}{\partial_t g_{mech}} + \frac{\partial T_{nech}}{\partial x_i} = \frac{f}{\partial x_i} \frac{\partial}{\partial x_i}$ |
| Now write                                                                                                                         |
| $f_{em} = \rho E^{g} + (\vec{g} \times \vec{B})^{g}$                                                                              |
| Then use $\nabla \cdot D = \rho$ $\frac{1}{2} = \nabla \times H - i \partial_t D$                                                 |
| Find                                                                                                                              |
| $f_{em} = (\triangle \cdot D) E_{a} + [(\triangle \times H) \times B]_{a} - T(B^{f} \nabla \times B)_{a}$                         |
| <u>()</u> <u>(2)</u> <u>(3)</u>                                                                                                   |
| The rest is labor wich I will not go through (see Jackson)                                                                        |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |
|                                                                                                                                   |

---





