TEORIA DE CUES

INTRODUCCIÓ i PROPIETATS BÀSIQUES

- 1. OBJECTIU i MOTIVACIÓ dels SISTEMES d'ESPERA. Exemples.
- 2. ESTRUCTURA DELS S.E.

Característiques de les components. Procés d'arribades i de servei. Notació de KENDALL-LEE

- 3. MAGNITUTS FONAMENTALS dels S.E. Temps d'espera per client. Comportament d'un S.E.
- 4. FÒRMULA de LITTLE. Resultat de Little i ocupació mitjana del S.E.
- 5. ESTAT ESTACIONARI. Valors mitjos a llarg termini.

OBJECTIU i MOTIVACIÓ dels SISTEMES d'ESPERA

Sovint es presenta la situació en que els elements d'una població sol·licitan, en instants de temps diferents, un servei el qual es ofert por un sistema S que tan sols pot atendre simultàniament a un número limitat de peticions.

Habitualment es dona la circumstància de què, estant el sistema S totalment ocupat, es produeixen noves peticions de servei, les quals no poden ser ateses immediatament i per tant, aquestes han d'esperar a ser ateses.

<u>CONFLICTE</u>: ¿ quina de les peticions que resten a l'espera passarà a ser atesa en 1^{er} lloc ?

S'estableix una regla per a decidir la primera petició que passarà a ser atesa entre les que esperen servei.

Típicament: per antiguitat de la petició.

ES FORMA AIXÍ UN SISTEMA D'ESPERA

EXEMPLES QUOTIDIANS

- PERSONES QUE ENTREN A UNA BOTIGA PER COMPRAR UN PRODUCTE; HI HA UN NÚMERO LIMITAT DE EMPLEATS QUE ATENEN ALS COMPRADORS.
- AUTOMÒBILS QUE ENTREN EN UNA ESTACIÓ DE PEATGE D'UNA AUTOPISTA.
- SISTEMA INFORMÀTIC AMB UNA IMPRESSORA EN UN CENTRE DE TREBALL ON HA D'IMPRIMIR-SE DOCUMENTACIÓ.
- OFICINA BANCÀRIA AMB UN NÚMERO LIMITAT DE FINESTRETES PER ATENDRE ALS CLIENTS DEL BANC.

ESTRUCTURA GENERAL DELS SISTEMES D'ESPERA (S.E.)

COMPONENTS:

POBLACIÓ de CLIENTS: GENERA CLIENTS/PETICIONS DE SERVEI

CONTROL d'ENTRADA: CRITERI QUE PERMET O DENEGA L'ENTRADA DELS CLIENTS

SISTEMA d'ESPERA: CUA: Lloc físic on s'espera servei.

SISTEMA DE SERVEI: Lloc on es rep el servei.

POLÍTICA DE SERVEI: REGLA QUE DETERMINA QUIN DELS CLIENTES EN ESPERA

("FENT CUA") PASSARÀ A SER ATÈS PRIMER.

CARACTERÍSTIQUES dels COMPONENTS dels S.E.

POBLACIÓ de CLIENTS: Finita o Infinita.

FINITA. Corresponents a S.E. tancats: Hi ha sempre N clients (població+S.E.)

Desprès de sortir del S.E. el client es reintegra a la Població

INFINITA: Corresponent a <u>S.E. oberts.</u>

Desprès de sortir del S.E. el client surt a l'exterior (es perd)

CARACTERÍSTIQUES dels COMPONENTS dels S.E.

CAPACITAT del S.E.: Finita o Infinita

INFINITA: No hi ha limitació per al número de clients N(t) que en un moment donat t pot contenir el S.E.

FINITA (K): El <u>número màxim</u> de clients N(t) presents en el S.E. ha de ser \leq K

Si el S.E. està ple, en arribar un client, aquest es perd:

La capacitat del S.E. és una forma natural de control d'entrada.

CARACTERÍSTIQUES dels COMPONENTS dels S.E.

SISTEMA DE SERVEI:

- Integrat per una o més unitats de servei (servidors) en número s.
- Generalment els servidors es suposen idèntics entre sí.
- Cadascun dels servidors només pot atendre un client a la vegada.
- Al finalitzar un servei el servidor queda lliure i selecciona, d'acord amb la "POLÍTICA de SERVEI", un client dels qui esperen a la CUA.

POLÍTICA DE SERVEI:

• FIFO (First In First Out) →

LIFO (Last In First Out)

A l'atzar

CARACTERÍSTIQUES COMUNES EN ELS S.E.

Temps de permanència en el S.E. = temps d'espera (en cua) + temps de servei

Procés d'arribades:

Els instants en els que es produeixen les peticions són aleatoris: (P.ex. els instants d'arribada dels clients a una botiga)

Modelització:

Interval τ entre arribades:

Procés de renovació

Procés de servei:

Els temps de servei són també aleatoris: (v.a. contínua)

NOTACIÓ de KENDALL-LEE

X/Y/s/[K]/[N]

Sigla que especifica el procés d'arribades

Sigla que especifica la v.a. temps de servei d'un servidor

Número de servidors. Idèntics entre sí, amb temps de servei Y Capacitat del S.E. (Opcional).

Si no apareix s'entén K=∞

X, Y

- M v.a. exponencial.
- D v.a. degenerada $E[\tau]=T$, $Var[\tau]=0$.
- E_n v.a. n-Erlang.
- G v.a. qualsevol (temps correlacionats entre sí o no)
- GI v.a. qualsevol. Temps mútuament independents.

Població. (Opcional).

Si no apareix s'entén N=∞

EXEMPLES

- M/M/2 Procés d'arribades: temps entre llegadas = procés de renovació amb variable τ exponencial, Procés de servei: temps de servei iguals en cada servidor aleatoris i exponencials, s=2 servidors, K=∞, N=∞.
- M/M/2/8 Igual que l'anterior però com máxim 8 clients en el S.E.
- M/M/1/./4 Procés d'arribades: temps entre arribades = procés de renovació amb variable τ exponencial, Procés de servei: temps de servei v.a. exponencial, s=1 servidor, K=∞, N=4.
- M/D/1 Procés d'arribades: temps entre arribades = procés de renovació amb variable τ exponencial, Procés de servei: temps de servei constants, s=1 servidors, K=∞, N=∞.
- GI/M/1 Procés d'arribades: temps entre arribades = procés de renovació amb variable τ qualsevol, Procés de servei: temps de servei v.a. exponencial, s=1 servidor, K=∞, N=∞.

 τ_n - Temps entre arribades del client n i n+1.

 w_n - Temps de permanència al S.E. del client n.

 $w_{\mathbf{q} \mathbf{n}}$ - Temps de permanència en cua. del client n.

 x_n - Temps de servei del client n.

N (t) - Número de clients en l'instant t en el S.E.

 $N_{q}(t)$ - Número de clients en l'instant t en cua.

$$P_n(t) = P(N(t) = n)$$

B Universitat de Barcelona

COMPORTAMENT: Poden presentar-se dues situacions:

1. En promig l'afluència de clients al S.E. ultrapassa la capacitat de treball del Sistema de Servei:

N(*t*) PRESENTA UNA TENDÈNCIA CREIXENT

 El Sistema de Servei té suficient capacitat de treball davant la afluència de clients:

N(t) pot créixer ocasionalment, però el S.E. sempre retorna a l'estat 0 (buit)

Temps mig d'espera per client en el S.E.

$$\bar{w}_n = \frac{1}{n} \sum_{\ell=1}^n w_\ell, \quad W = \ell i m_{n \to \infty} \mathrm{E}[\bar{w}_n]$$

Temps mig d'espera per client en Cua.

$$\bar{w}_{q,n} = \frac{1}{n} \sum_{\ell=1}^{n} w_{q,\ell}, \quad W_q = \ell i m_{n \to \infty} \mathrm{E}[\bar{w}_{q,n}]$$

Número d'arribades en [0,t]: e(t)

Taxa mitjana d'arribades en [0,t], Taxa mitjana d'arribades a llarg termini:

$$\frac{1}{t} E[e(t)]$$

$$\bar{\lambda} = \ell im_{t \to \infty} \ \frac{1}{t} \ \mathrm{E}[e(t)] = \ \frac{1}{\mathrm{E}[\tau]}$$
 Teorema de renovació

Resultat de Little. Per a qualsevol N(t) possible es verifica:

$$\lim_{t \to \infty} \left(\frac{1}{t} \int_0^t N(z) dz \right) = L$$

Ocupació mitjana (nº mig de clientes) del S.E. al llarg del temps.

Anàlogament, per a qualsevol $N_q(t)$ possible es verifica:

$$\lim_{t \to \infty} \left(\frac{1}{t} \int_0^t N_q(z) dz \right) = L_q$$

FORMULA DE LITTLE

Situació 2.

sempre existeix un número il·limitat d'intervals $I_0 = [t', t'']$ con N(t) = 0, $t \in I_0$.

$$\int_0^t N(z)dz = \sum_{i=1}^{e(t)} w_i, \ t \in I_0$$

$$E\left[\int_0^t N(z)dz\right] = E[w] \cdot E[e(t)]$$

$$\lim_{t \to \infty} \left(\frac{1}{t} \int_0^t N(z) dz \right) = \left(\lim_{t \to \infty} \frac{\mathrm{E}[e(t)]}{t} \right) \mathrm{E}[w]$$

$$L = \frac{\mathrm{E}[w]}{\mathrm{E}[\tau]} = \bar{\lambda}W$$

FÒRMULA DE LITTLE

$$L = \bar{\lambda}W$$

$$L_q = \bar{\lambda}W_q$$

$$L_s = \bar{\lambda}W_s = \bar{\lambda}E[x]$$

$$W = W_q + W_s$$

- W_s = Temps de permanència mig en el S.S.
- L_s = Longitud mitjana de clients en el S.S.

5 equacions, 6 incògnites: L, L_q, L_s, W, W_q, W_s ($\overline{\lambda}$ es suposa coneguda)

ESTAT ESTACIONARI (E.E.)

Definició: Existeix e.e. quan:

$$\lim_{t\to\infty} P(N(t)=n) = P_n, \quad n=0,1,2,...K (\leq \infty)$$

 P_n : Interpretació: fracció del temps que el sistema està a l'estado n.

Si es coneixen P_n , n=0,1, ... K ($\leq \infty$) es poden calcular L, L_q

• Mitjançant les fòrmules de Little es poden determinar la resta de magnituds.

$$\begin{split} L &= \mathbf{E}[L] = \lim_{t \to \infty} \mathbf{E}\left[\frac{1}{t} \int_0^t N(z)dz\right] = \lim_{t \to \infty} \left(\frac{1}{t} \int_0^t \mathbf{E}[N(z)]dz\right) = \\ &= \lim_{t \to \infty} \left(\frac{1}{t} \int_0^t \left(\sum_{n=0}^K n \cdot P(N(z) = n)\right)dz\right) = \lim_{t \to \infty} \sum_{n=0}^K n \cdot P(N(t) = n) = \\ &= \sum_{t=0}^K n \cdot P_t \end{split}$$

TCiS. Grau-IU UB-UPC

n=0

TEORIA DE CUES. Introducció i propietats bàsiques

Per a L_q :

$$L_q = \sum_{n=s}^{K} (n-s) \cdot P_n$$

(Sistema de Servei: s servidors)

Taxa mitjana $\overline{\lambda}$ d'arribades al S.E. : Pot ocórrer que el temps entre arribades τ sigui v.a. amb distribució dependent de l'estat N del sistema.

Exemple: els clients d'una botiga arriben amb menys frequència si observen que la botiga està molt plena (N alt)

Pràctica 3. Comportament de la cua M/M/1. Estimació dels paràmetres d'entrada

Objectiu: Es disposa d'una mostra dels temps entre arribades a un S.E. i dels temps de servei del servidor d'aquest S.E. En ambdós casos la grandària de la mostra és de 1000 observacions. Se sap que corresponen a distribucions exponencials de temps. Es pretén:

- a) Verificar mitjançant el test de χ^2 què, efectivament, corresponen a una distribució exponencial.
- b)Obtenir els intervals de confiança per a la taxa d'arribades per unitat de temps (paràmetre λ de la distribució exponencial del procés d'arribades) i per al factor de càrrega ρ del S.E.
- c) Simular mitjançant el programa CUA. exe el comportament del S.E. comparant les magnituds L, W, Wq obtingudes mitjançant la simulació amb aquells valors que proporciona la teoria de cues.

3. Simulació del S.E. M/M/1.

La simulació pot efectuar-se mitjançant la macro mm1.mtb.

K1 = N, número de clients.

 $K2 = 1/\lambda$, temps mig entre arribades.

 $K3 = 1/\mu$ temps mig de servei.

MTB> let K1= 300

MTB > let K2 = 10

MTB> let K3= 11

MTB> let K4 = 0.9

MTB> exec "mm1.mtb"

4. Presentació de resultats de la macro "mm1.mtb".

5. Intervals de confiança per a las taxes λ y μ y per al factor de càrrega $\rho = \lambda/\mu$.

Es disposa de dues mostres t_1 , t_2 , ..., t_n i s_1 , s_2 , ..., s_m per als processos d'arribada i de servei (temps distribuïts exponencialment). Es vol trobar un interval de confiança de probabilitat 1- α per a les taxes de arribada λ i de servei μ a partir de les dues mostres.

El estimador màxim versemblant per a λ y μ és:

$$\hat{\lambda} = \frac{n}{\sum\limits_{i=1}^{n} t_i} = \frac{n}{T_n}, \quad \hat{\mu} = \frac{m}{\sum\limits_{i=1}^{m} s_i} = \frac{m}{S_m}$$

Donat que T_n es distribueix segons una llei n-Erlang de paràmetre $\theta = \lambda / k$ (o també una Gamma(λ , n),

$$E\left[2\lambda\sum_{i=1}^{n} t_{i}\right] = E\left[2\lambda T_{n}\right] = 2n \implies 2\lambda T_{n} \sim Gamma\left(\frac{1}{2}, n\right) = \chi_{2n}^{2}$$

$$2n\frac{\lambda}{\hat{\lambda}} \sim \chi_{2n}^{2}, \quad 2m\frac{\mu}{\hat{\mu}} \sim \chi_{2m}^{2} \implies \frac{\lambda}{\mu/\hat{\mu}} = \frac{\rho}{\hat{\rho}} \sim F_{2n,2m}$$

Intervalo de confiança a 1- α per a λ : $\left[\frac{\hat{\lambda}}{2n}x_{-}, \frac{\hat{\lambda}}{2n}x_{+}\right]$

Intervalo de confiança a 1- α per a ρ : $[\hat{\rho}_{f_-}, \hat{\rho}_{f_+}]$

La següent taula il·lustra les grandàries de mostra necessaris per a obtenir intervals de confiança del 95% i la amplitud dels mateixos.

n=m	f-	f+	$e_f(\%)$	x-/2n	$x_{\downarrow}/2n$	$e_x(\%)$.
10	0,405	2,461	143	0,479	1,708	112
100	0,757	1,321	54	0,813	1,205	38
1000	0,916	1,091	17	0,939	1,062	12
10000	0,972	1,028	5	0,980	1,019	3

6. Test de bonança d'ajustament de χ^2

Utilitzeu la macro "x2.mtb" per a efectuar un test de bonança d'ajustament de χ^2 a una distribució k-Erlang a partir d'una mostra de temps per als processos d'arribades i/o de serveis a un S.E.

Calcula una mesura global de la discrepància entre n_i y n_e :

$$X^{2} = \sum_{i=1}^{N} \frac{(n_{i} - n_{e})^{2}}{n_{e}}$$

La variable X^2 se distribueix segons una llei χ^2_{N-m-1} , Es rebutjarà la distribució proposada si $P(x \ge X^2) = p\text{-}valor < \alpha$

7. Procediment per a usar la macro "x2.mtb":

Suposem, per exemple, que hom disposa d'una mostra per a la que les estadístiques bàsiques són:

Variable sample	N 500	Mean 19,914	Median 19,607	TrMean 19,702	StDev 5,990	SE Mean 0,268
Variable	Minimum	Maximum	Q1	Q3	3,330	0,200
sample	6,607	41,172	15,660	23,373		

- 1) Feu una estimació dels paràmetres de la distribució de la que presumiblement prové la mostra.
- 2) Establiu els valors de les constants k100, k101, k102, k103.

MTB> let
$$k100=9,95$$

Proporciona:

- El p-valor en la constant k105 i la resta de constants k100-k104 amb les que ha executat.
- El valor de X^2
- Gràfics con l'histograma de la mostra, la funció de densitat de probabilitat per a la distribució i el diagrama de barres per a les freqüències n_i .

