PCPP Assignment 3

Group name: Thread Heresy Real names : Nedas Surkus, Niclas Abelsen, Github username: nesu, niab

October 2022

Contents

5.1																					9
1																					į
	Nedas' Result																				į
	Niclas' Result																				Ę
0	Conclusion .																				(
2																					(
	Nedas' Result																				6
	Niclas' Result																				- 1
	Conclusion .	 	 	٠			•		 •	 •		•	 •		•	•		•	•		7
5.2																					7
1		 	 							 											7
2		 	 							 											7
	Nedas Results	 	 							 											7
	Niclas' Result	 	 																		7
5.3																					5
																					8
1	Nedas Results																				8
	Niclas' Results																				8
2	·····																				(
																					ç
3	Nedas Results																				9
	Niclas' Results																				10
																					11
	Conclusion .	 	 • •	•	• •	• •	•	• •	 •	 •		•	 •	• •	•	•		•	•	• •	11
5.4																					11
	Nedas Results																				
	Niclas' Result	 	 	-			-		 			-	-		-	-		-	-		
	Conclusion .	 	 				•											•			11
5.5																					11
1		 	 							 											11
																					12
																					12
																					12
_		 	 	-									-		-	-		-	•	-	12
,	Conclusion										•	•	•	•	٠	•	•	•	•		19

6.1																									
	1										 														
-	2										 														
4	4										 														
6.2																									
	1										 														
4	2										 														
6.3																									
4	2										 														
;	3										 														
_	4																								

5.1

1

Nedas' Result

OS: Linux; 5.15.0-47-generic; amd64

JVM: Ubuntu; 11.0.16
CPU: null; 8 "cores"

Date: 2022-09-30T10:22:14+0200

Mark 1

0.005 s 0.2ns

Mark 2

24.5 ns

Mark 3

24.4 ns

24.4 ns

24.0 ns

23.9 ns

23.8 ns

 $24.0 \, \text{ns}$

24.0 ns

24.4 ns

25.4 ns 25.4 ns

Mark 4

24.9 ns +/- 0.569

520.0 ns +/-	1205.59	2
115.0 ns +/-	41.16	4
100.0 ns +/-	27.00	8
114.4 ns +/-	99.31	16
32.2 ns +/-	5.32	32
30.5 ns +/-	3.85	64
53.3 ns +/-	73.82	128
30.0 ns +/-	2.25	256
28.7 ns +/-	0.46	512
27.2 ns +/-	0.29	1024
44.6 ns +/-	6.81	2048
49.0 ns +/-	6.11	4096
27.5 ns +/-	2.43	8192
26.1 ns +/-	0.10	16384

26.0 ns	+/-	1.27	32768
26.8 ns	+/-	1.78	65536
25.5 ns	+/-	0.88	131072
25.9 ns	+/-	1.10	262144
25.6 ns	+/-	0.62	524288
25.6 ns	+/-	1.82	1048576
24.0 ns	+/-	0.36	2097152
23.9 ns	+/-	0.41	4194304
24.7 ns	+/-	0.51	8388608
24.3 ns	+/-	0.62	16777216

multiply	655.0 r	ns 1439.42	2
multiply	165.0 r	ns 127.04	4
multiply	132.5 r	ns 61.01	8
multiply	576.9 r	as 480.44	16
multiply	162.8 r	ns 126.40	32
multiply	39.1 r	ns 6.21	64
multiply	64.9 r	ns 85.40	128
multiply	62.8 r	as 22.76	256
multiply	72.1 r	as 40.16	512
multiply	33.4 r	ns 0.45	1024
multiply	34.8 r	as 3.92	2048
multiply	36.7 r	as 4.30	4096
multiply	26.7 r	ns 1.41	8192
multiply	34.3 r	ns 12.64	16384
multiply	28.5 r	ns 3.15	32768
multiply	28.4 r	as 3.73	65536
multiply	25.5 r	ns 1.07	131072
multiply	25.4 r	ns 0.44	262144
multiply	25.4 r	ns 0.45	524288
multiply	26.2 r	ns 0.96	1048576
multiply	24.8 r	ns 0.44	2097152
multiply	24.2 r	ns 0.64	4194304
multiply	24.0 r	ns 0.30	8388608
multiply	24.2 r	ns 0.33	16777216

Niclas' Result

The system info:

```
# OS: Linux; 5.15.0-47-generic; amd64
```

JVM: Ubuntu; 11.0.16
CPU: null; 8 "cores"

Date: 2022-09-30T10:22:14+0200

Mark 1

0.006 s 0.3ns

Mark 2

31.7 ns

Mark 3

31.4 ns

28.9 ns

29.0 ns

 $28.5 \, \text{ns}$

28.7 ns

28.7 ns

29.3 ns

28.9 ns

28.7 ns

29.0 ns

Mark 4

29.2 ns +/- 1.119

892.27	2
104.16	4
86.66	8
108.03	16
8.87	32
14.00	64
116.34	128
1.85	256
9.77	512
12.88	1024
11.17	2048
0.43	4096
1.00	8192
0.54	16384
1.41	32768
0.80	65536
0.18	131072
1.08	262144
0.85	524288
0.59	1048576
	104.16 86.66 108.03 8.87 14.00 116.34 1.85 9.77 12.88 11.17 0.43 1.00 0.54 1.41 0.80 0.18 1.08

34.5 ns +/-	0.93	2097152
31.2 ns +/-	0.81	4194304
29.5 ns +/-	0.55	8388608
29.0 ns +/-	0.30	16777216

Mark 6

multiply	1198.4 ns	2208.24	2
multiply	501.9 ns	211.89	4
multiply	453.3 ns	121.27	8
multiply	595.2 ns	303.63	16
multiply	281.2 ns	237.51	32
multiply	73.5 ns	24.62	64
multiply	95.8 ns	106.58	128
multiply	62.8 ns	9.16	256
multiply	60.2 ns	4.13	512
multiply	98.0 ns	127.65	1024
multiply	57.0 ns	2.42	2048
multiply	63.0 ns	17.86	4096
multiply	43.9 ns	3.01	8192
multiply	43.1 ns	1.07	16384
multiply	41.7 ns	2.52	32768
multiply	39.3 ns	1.62	65536
multiply	37.8 ns	0.83	131072
multiply	37.7 ns	0.76	262144
multiply	36.6 ns	1.74	524288
multiply	34.9 ns	0.21	1048576
multiply	34.8 ns	0.96	2097152
multiply	32.6 ns	0.86	4194304
multiply	31.2 ns	0.83	8388608

Conclusion

On the most tests the results were quite similar to the benchmark notes. In Mark 5, our first values are quite higher. However, they drop to a smaller amount than the benchmark notes.

$\mathbf{2}$

Nedas' Result

```
# OS:
        Windows 10; 10.0; amd64
# JVM: Eclipse Foundation; 16.0.2
# CPU: Intel64 Family 6 Model 158 Stepping 9, GenuineIntel; 8 "cores"
# Date: 2022-09-30T10:37:46+0200
                                       19.9 ns
                                                     0.50
                                                            16777216
pow
                                       21.6 ns
                                                     0.48
                                                            16777216
exp
                                       11.6 ns
                                                     0.23
                                                            33554432
log
sin
                                       14.3 ns
                                                     0.16
                                                             33554432
                                       14.2 ns
                                                     0.18
                                                             33554432
cos
                                       19.7 ns
                                                     0.38
                                                             16777216
tan
                                     214.0 \text{ ns}
asin
                                                     3.40
                                                             2097152
acos
                                      219.6 ns
                                                    24.59
                                                              1048576
                                       46.0 ns
                                                     1.53
                                                              8388608
atan
```

Niclas' Result

Mark 7

multiply	28.6 ns	0.47	16777216
pow	26.4 ns	0.28	16777216
exp	12.6 ns	0.11	33554432
log	13.8 ns	0.20	33554432
sin	17.4 ns	0.12	16777216
cos	17.5 ns	0.04	16777216
tan	24.0 ns	0.06	16777216
asin	89.0 ns	0.50	4194304
acos	90.1 ns	0.64	4194304
atan	33.3 ns	0.14	8388608

Conclusion

Nedas tests were quite similar to the benchmark notes, however Niclas results were significantly different with regards to asin and acos. This can happen due to internal hardware optimisations of Linux.

5.2

1

For thread create start we see that standard deviation is not consistent making it hard to conclude whether a certain data is plausible, however we see that most is below 3700. The execution time of this is increasing past 128 iterations. This due to the computer running out of cores to execute the threads on. This includes the physical cores and 'pseudo-cores'.

$\mathbf{2}$

OS:

Nedas Results

Windows 10; 10.0; amd64

```
Eclipse Foundation; 16.0.2
# CPU: Intel64 Family 6 Model 158 Stepping 9, GenuineIntel; 8 "cores"
# Date: 2022-09-30T11:16:20+0200
Mark 7 measurements
hashCode()
                                      2.7 ns
                                                   0.06
                                                         134217728
Point creation
                                     50.2 ns
                                                   0.99
                                                            8388608
Thread's work
                                   5091.9 ns
                                                  62.81
                                                              65536
Thread create
                                    790.1 ns
                                                  16.21
                                                             524288
                                               13110.29
                                 103687.1 ns
Thread create start
                                                               4096
                                 197514.8 ns
Thread create start join
                                                4553.02
                                                               2048
ai value = 1433540000
Uncontended lock
                                     18.9 ns
                                                   0.23
                                                           16777216
```

Niclas' Result

# OS: Linux; 5.15.0-47-generi	c; amd64		
# JVM: Ubuntu; 11.0.16			
# CPU: null; 8 "cores"			
# Date: 2022-09-30T11:31:45+020	0		
Mark 7 measurements			
hashCode()	3.1 ns	0.02	134217728
Point creation	72.0 ns	1.58	4194304

Thread's work	6304.5 ns	34.29	65536
Thread create	955.0 ns	6.62	524288
Thread create start	89439.2 ns	815.44	4096
Thread create start join	132167.1 ns	2357.65	2048
ai value = 1433540000			
Uncontended lock	5.7 ns	0.06	67108864

5.3

1

Nedas Results

# OS: Windows	10; 10.0; am	d64	
# JVM: Eclipse	Foundation;	16.0.2	
# CPU: Intel64	Family 6 Mod	el 158 Stepping 9, Gen	uineIntel; 8 "cores"
# Date: 2022-09	-30T11:23:54+	0200	
countSequential		10445217.5 ns 4851	15.53 32
countParallelN	1	8934301.3 ns 3559	45.78 32
${\tt countParallelN}$	2	6096533.1 ns 1024	81.30 64
${\tt countParallelN}$	3	5324375.0 ns 2587	69.50 64
${\tt countParallelN}$	4	5148182.5 ns 1173	90.96 64
${\tt countParallelN}$	5	4098550.9 ns 1319	92.36 64
countParallelN	6	3633265.2 ns 276	35.13 128
countParallelN	7	3408648.4 ns 373	97.88 128
countParallelN	8		07.12 128
countParallelN	9	3396380.5 ns 2176	39.89 128
countParallelN	10		35.95 128
countParallelN	11	3452120.1 ns 237	33.63 128
countParallelN	12	3435350.3 ns 221	11.31 128
countParallelN	13		82.99 128
countParallelN	14	3509044.0 ns 981	77.59 128
countParallelN	15		84.72 128
countParallelN	16		55.29 128
countParallelN	17		44.46 128
countParallelN	18		85.32 128
countParallelN	19		85.46 128
countParallelN	20		19.22 128
countParallelN	21		28.87 128
countParallelN	22		01.32 128
countParallelN	23		85.62 128
countParallelN	24		46.93 64
countParallelN	25		12.39 128
countParallelN	26		02.94 64
countParallelN	27		36.56 64
countParallelN	28		47.27 64
countParallelN	29		28.51 64
countParallelN	30		40.73 64
countParallelN	31		22.37 64
countParallelN	32	4365744.4 ns 964	36.70 64

Niclas' Results

OS: Linux; 5.15.0-47-generic; amd64

JVM: Ubuntu; 11.0.16 # CPU: null; 8 "cores"

# Date: 2022-09-	30T11:37:48	8+0200		
countSequential		11720842.2 ns	165694.20	32
countParallelN	1	12317291.9 ns	98958.45	32
countParallelN	2	9366203.1 ns	665463.55	32
countParallelN	3	6798552.9 ns	171655.01	64
countParallelN	4	7149450.7 ns	71656.80	64
countParallelN	5	7440323.1 ns	116307.14	64
countParallelN	6	6922672.4 ns	33737.23	64
countParallelN	7	6252830.3 ns	22664.21	64
countParallelN	8	5812157.7 ns	51457.44	64
countParallelN	9	7369465.1 ns	64036.53	64
countParallelN	10	7101862.8 ns	60501.21	64
countParallelN	11	6919608.0 ns	90131.15	64
countParallelN	12	6745338.7 ns	85471.35	64
countParallelN	13	6923346.1 ns	53071.51	64
countParallelN	14	6713524.8 ns	45841.82	64
${\tt countParallelN}$	15	6552076.1 ns	82788.91	64
${\tt countParallelN}$	16	6621117.1 ns	189373.83	64
countParallelN	17	6951551.2 ns	54939.62	64
countParallelN	18	7045760.6 ns	50708.56	64
countParallelN	19	7056414.9 ns	195615.44	64
countParallelN	20	6923915.9 ns	71080.09	64
countParallelN	21	6922783.7 ns	57518.47	64
countParallelN	22	6908597.1 ns	93571.09	64
countParallelN	23	6916986.5 ns	56295.86	64
countParallelN	24	6934396.4 ns	90237.41	64
countParallelN	25	7044857.7 ns	53227.48	64
countParallelN	26	7185908.0 ns	30953.56	64
countParallelN	27	7206009.2 ns	26654.53	64
countParallelN	28	7225140.4 ns	60889.78	64
countParallelN	29	7323265.9 ns	266897.09	64
countParallelN	30	7267021.1 ns	103142.11	64
${\tt countParallelN}$	31	7243383.2 ns	71325.43	64
${\tt countParallelN}$	32	7242442.7 ns	61527.66	64

2

Yes. Its is plausible. After running the tests we can see that in Niclas tests he has 8 cores and his performance decreases until a certain point (15 threads) and afterwards the execution time increases. For Nedas tests, he has 8 cores as well and his maximum performance is achieved with 8 threads. After 16 threads the performance becomes significantly worse.

Thus we can conclude that there is an optimal ratio between number of cores and how many threads are executed.

3

Nedas Results

```
# OS:
       Windows 10; 10.0; amd64
# JVM:
       Eclipse Foundation; 16.0.2
       Intel64 Family 6 Model 158 Stepping 9, GenuineIntel; 8 "cores"
# Date: 2022-09-30T11:32:03+0200
                                                                 32
countSequential
                               10271621.9 ns 180650.86
                                                                 32
countParallelN
                     1
                               10770782.8 ns
                                               96607.50
countParallelN
                     2
                                7249893.3 ns
                                               57625.74
                                                                 64
                     3
countParallelN
                                5317360.6 ns 133359.36
                                                                 64
```

countParallelN	4	5081381.6 ns	197343.90	64
countParallelN	5	4013043.6 ns	68376.04	64
countParallelN	6	3549691.4 ns	29059.67	128
countParallelN	7	3327590.9 ns	27990.49	128
countParallelN	8	3294472.4 ns	46571.90	128
countParallelN	9	3266313.0 ns	32285.10	128
countParallelN	10	3252411.4 ns	28922.20	128
countParallelN	11	3435788.8 ns	48965.19	128
countParallelN	12	3362911.3 ns	12224.58	128
countParallelN	13	3385419.1 ns	34021.54	128
countParallelN	14	3324222.1 ns	24870.22	128
countParallelN	15	3379133.4 ns	21923.52	128
countParallelN	16	3460743.7 ns	29467.61	128
countParallelN	17	3481112.9 ns	16919.50	128
countParallelN	18	3520023.4 ns	17132.59	128
countParallelN	19	3563441.3 ns	22870.49	128
countParallelN	20	3616000.7 ns	43552.61	128
countParallelN	21	3650285.3 ns	26480.86	128
countParallelN	22	3691244.2 ns	15241.96	128
countParallelN	23	3742509.0 ns	23067.23	128
countParallelN	24	3800786.3 ns	33043.39	128
countParallelN	25	3848313.8 ns	15660.81	128
countParallelN	26	3899354.5 ns	38018.48	64
countParallelN	27	3965658.0 ns	63848.34	64
countParallelN	28	4000662.7 ns	36396.40	64
countParallelN	29	4073441.1 ns	28543.13	64
${\tt countParallelN}$	30	4192110.0 ns	118508.21	64
countParallelN	31	4190104.5 ns	46898.58	64
${\tt countParallelN}$	32	4303714.5 ns	50060.18	64

Niclas' Results

OS: Linux; 5.15.0-47-generic; amd64 # JVM: Ubuntu; 11.0.16 # CPU: null; 8 "cores"

Date: 2022-09-30T11:37:48+0200

${\tt countSequential}$		11720842.2 ns	165694.20	32
countParallelN	1	12317291.9 ns	98958.45	32
countParallelN	2	9366203.1 ns	665463.55	32
countParallelN	3	6798552.9 ns	171655.01	64
countParallelN	4	7149450.7 ns	71656.80	64
countParallelN	5	7440323.1 ns	116307.14	64
countParallelN	6	6922672.4 ns	33737.23	64
${\tt countParallelN}$	7	6252830.3 ns	22664.21	64
${\tt countParallelN}$	8	5812157.7 ns	51457.44	64
${\tt countParallelN}$	9	7369465.1 ns	64036.53	64
${\tt countParallelN}$	10	7101862.8 ns	60501.21	64
countParallelN	11	6919608.0 ns	90131.15	64
countParallelN	12	6745338.7 ns	85471.35	64
countParallelN	13	6923346.1 ns	53071.51	64
countParallelN	14	6713524.8 ns	45841.82	64
countParallelN	15	6552076.1 ns	82788.91	64
${\tt countParallelN}$	16	6621117.1 ns	189373.83	64
countParallelN	17	6951551.2 ns	54939.62	64
${\tt countParallelN}$	18	7045760.6 ns	50708.56	64
${\tt countParallelN}$	19	7056414.9 ns	195615.44	64

countParallelN	20	6923915.9 ns	71080.09	64
countParallelN	21	6922783.7 ns	57518.47	64
countParallelN	22	6908597.1 ns	93571.09	64
countParallelN	23	6916986.5 ns	56295.86	64
countParallelN	24	6934396.4 ns	90237.41	64
countParallelN	25	7044857.7 ns	53227.48	64
countParallelN	26	7185908.0 ns	30953.56	64
countParallelN	27	7206009.2 ns	26654.53	64
countParallelN	28	7225140.4 ns	60889.78	64
countParallelN	29	7323265.9 ns	266897.09	64
countParallelN	30	7267021.1 ns	103142.11	64
countParallelN	31	7243383.2 ns	71325.43	64
countParallelN	32	7242442.7 ns	61527.66	64

Conclusion

There is not much significant difference between LongCounter and Atomic Long. Thus we can conclude that it is no difference between using inbuilt classes and methods and using user built classes and methods as long as they are implemented similarly.

5.4

Nedas Results

Niclas' Result

vlnc	8.8 ns	0.12	33554432
inc	1.4 ns	0.01	268435456

Conclusion

There is no significant surprises. volatile gives us a weaker form of synchronisation, thus a small time increase from normal int is expected.

5.5

1

```
public synchronized void add(long c) {
   count += c;
}
public synchronized void reset() {
   count = 0;
}
```

```
Array Size: 5697
# Occurences of ipsum :1430
3
Test time search
                               16416151.0 ns 194706.64
4
Implementation
  private static long countParallelN(String target, String[] lineArray, int N, LongCounter lc){
    Thread[] threads = new Thread[N+1];
    final int arrayLength = lineArray.length;
    final int dividedWork = Math.round(arrayLength/N);
    for (int t = 0; t \le N; t++) {
      final int start = dividedWork *t;
      final int finish;
      // Creates aditional thread if work is missing
      if(arrayLength < dividedWork*(t+1)){</pre>
         finish = arrayLength;
      }else
         finish = dividedWork*(t+1);
      threads[t] = new Thread ( () -> search(target, lineArray, start, finish, lc));
    }
    for (int t=0; t<= N; t++)
      threads[t].start();
    try {
      for (int t=0; t<= N; t++)</pre>
        threads[t].join();
    } catch (InterruptedException exn) { }
    return lc.get();
  }
# Occurences of ipsum :1430
# Occurences of ipsum :1430
# Occurences of ipsum :1430
5
Test time search
                                 9082334.3 ns 112568.39
                                                                  32
```

Conclusion

 $\mathbf{2}$

By dividing work between threads, we can easily achieve quicker times than running the code sequentially. This result is not very surprising even if we do take some time to initialise and join the threads.

6.1

1

The code:

```
Benchmark.SystemInfo();
for (int i = 1; i <= 10; i++) {
   final int noOfTrans = i;
   Benchmark.Mark7(String.format("AccountExperiment"), a -> doNTransactions(noOfTrans));
}
```

Doing 10 account experiments where the number of accounts is from 1 until 10. The first column of the result denotes the number of transactions.

```
> Task :app:run
       Linux; 5.15.0-48-generic; amd64
# OS:
# JVM: Ubuntu; 11.0.16
# CPU: null; 8 "cores"
# Date: 2022-10-07T11:32:17+0200
1, AccountExperiment
                                  50177848.1 ns
                                                  31696.65
                                                                    8
                                 100379420.4 ns
                                                  90301.29
2, AccountExperiment
                                                                    4
3, AccountExperiment
                                 150650349.2 ns 103807.82
4, AccountExperiment
                                 200792439.2 ns 111328.03
5, AccountExperiment
                                 251121671.3 ns 550444.31
                                                                    2
6, AccountExperiment
                                 301087890.2 ns 134894.52
                                                                    2
   AccountExperiment
                                 351475909.6 ns
                                                 312421.28
                                                                    2
   AccountExperiment
                                 401951523.2 ns
                                                 283822.65
                                                                    2
9, AccountExperiment
                                 452170148.6 ns 337461.49
                                                                    2
10, AccountExperiment
                                 502803181.1 ns 193612.69
```

We see that each execution time is approximately proportional to the transaction time. The reason why it is not exact is due to overheads. E.g. the time it takes to create the threads.

2

With min and max

```
Transfer 4593 from 4 to 8
                           Transfer 385 from 1 to 4
                                                       Transfer 1590 from 2 to 4
Transfer 4458 from 8 to 9
                           Transfer 1347 from 7 to 0
                                                       Transfer 1984 from 4 to 5
Transfer 1962 from 3 to 5
                           Transfer 2596 from 8 to 5
                                                      Transfer 4157 from 5 to 9
Transfer 4810 from 5 to 1
                           Transfer 2522 from 3 to 9
                                                       Transfer 1590 from 2 to 4
Transfer 2748 from 2 to 9
                           Transfer 3028 from 8 to 1
                                                       Transfer 215 from 5 to 0
                           Transfer 3025 from 0 to 7
Transfer 1095 from 7 to 0
                                                       Transfer 4479 from 2 to 3
Transfer 3810 from 9 to 4
                           Transfer 3279 from 8 to 6
                                                       Transfer 906 from 3 to 8
Transfer 1538 from 2 to 0
                           Transfer 2983 from 2 to 0
                                                       Transfer 1754 from 0 to 3
Transfer 4658 from 9 to 0
                           Transfer 218 from 9 to 5
                                                       Transfer 323 from 3 to 0
Transfer 2516 from 6 to 7
                           Transfer 3668 from 9 to 1
                                                       Transfer 4852 from 6 to 7
Transfer 4075 from 8 to 3
                           Transfer 1161 from 6 to 3
                                                       Transfer 2800 from 5 to 1
Transfer 886 from 7 to 9
                           Transfer 2687 from 3 to 6
                                                       Transfer 4064 from 8 to 0
Transfer 3076 from 0 to 4
                           Transfer 950 from 1 to 5
                                                       Transfer 278 from 0 to 3
Transfer 1960 from 6 to 0
                           Transfer 3687 from 4 to 5
                                                       Transfer 4514 from 1 to 6
                                                       Transfer 2874 from 9 to 0
Transfer 644 from 6 to 0
                           Transfer 2647 from 1 to 3
Transfer 953 from 3 to 6
                           Transfer 273 from 2 to 0
                                                       Transfer 380 from 1 to 3
Transfer 2105 from 7 to 8
                           Transfer 3541 from 3 to 7
```

Deadlock occurs when no using min and max. The reason for this is that source and target are gotten from the same pool of accounts. If we do not very out the result with min and max, we can

find ourselves in a situation where source is equal to the previous target but target has not been released yet. Thus causing a deadlock.

3

 ${\bf See}\ Threads Account Experiments Many. java.$

4

 $See \ \textit{ThreadsAccountExperimentsMany.java}.$

6.2

1

countSequential		11681169.7	ns	16770.25	32
countParallelN 1		12166437.8	ns	54743.18	32
${\tt countParallelNLocal}$	1	12121803.8	ns	10328.95	32
countParallelN 2		7790367.2	ns	61969.29	32
${\tt countParallelNLocal}$	2	7750045.9	ns	35847.20	64
countParallelN 3		5503221.7	ns	36152.79	64
${\tt countParallelNLocal}$	3	5471959.1	ns	19177.78	64
countParallelN 4		4411101.4	ns	56647.09	64
${\tt countParallelNLocal}$	4	4405430.8	ns	47695.06	64
countParallelN 5		3722571.0	ns	38131.11	128
${\tt countParallelNLocal}$	5	3711116.6	ns	44411.56	128
countParallelN 6		3614989.1	ns	55830.18	128
${\tt countParallelNLocal}$	6	3622389.8	ns	55612.99	128
countParallelN 7		3854786.0	ns	37892.37	128
${\tt countParallelNLocal}$	7	3826365.1	ns	57804.53	128
countParallelN 8		3635597.3	ns	27010.67	128
${\tt countParallelNLocal}$	8	3630729.1	ns	39380.11	128
countParallelN 9		3432523.4	ns	16330.91	128
${\tt countParallelNLocal}$	9	3429267.5	ns	30769.53	128
countParallelN 10		3286280.0	ns	20346.43	128
${\tt countParallelNLocal}$	10	3259313.8	ns	21112.53	128
countParallelN 11		3141682.8	ns	46584.23	128
${\tt countParallelNLocal}$	11	3105103.0	ns	21039.27	128
countParallelN 12		2998523.3	ns	18381.57	128
${\tt countParallelNLocal}$	12	3005737.0	ns	10981.22	128
countParallelN 13		2982450.1	ns	28281.28	128
${\tt countParallelNLocal}$	13	2926079.0	ns	28500.33	128
countParallelN 14		2973336.8	ns	23048.85	128
${\tt countParallelNLocal}$	14	2971098.1	ns	34155.05	128
countParallelN 15		2982479.8	ns	39957.84	128
${\tt countParallelNLocal}$	15	3121819.8	ns	143729.76	128
countParallelN 16		3003946.6	ns	15828.26	128
${\tt countParallelNLocal}$	16	2978713.0	ns	29362.97	128
countParallelN 17		3024240.3	ns	14437.57	128
${\tt countParallelNLocal}$	17	3000780.8	ns	13670.26	128
countParallelN 18		3022010.5	ns	16405.99	128
${\tt countParallelNLocal}$	18	3016594.1	ns	21094.20	128
countParallelN 19		3007139.8	ns	15286.69	128
${\tt countParallelNLocal}$	19	3028311.6	ns	56759.50	128
countParallelN 20		2993044.0	ns	17148.56	128
${\tt countParallelNLocal}$	20	2980746.7	ns	11629.59	128

	2992654.4	ns	11502.34	128
21	2978242.2	ns	15980.00	128
	2994358.8	ns	15940.86	128
22	3006561.1	ns	40009.54	128
	3035536.6	ns	43123.52	128
23	2986116.3	ns	15168.21	128
	3005190.8	ns	10789.82	128
24	2996930.9	ns	17425.24	128
	3027909.6	ns	14938.77	128
25	3008194.6	ns	10949.75	128
	3041418.7	ns	8665.96	128
26	3036958.9	ns	18802.13	128
	3066564.0	ns	12244.18	128
27	3064485.8	ns	20624.29	128
	3106867.7	ns	15038.45	128
28	3100620.8	ns	10087.87	128
	3140785.9	ns	14470.74	128
29	3136006.0	ns	15872.83	128
	3193558.0	ns	10662.66	128
30	3181362.4	ns	9108.27	128
	3240491.7	ns	8547.12	128
31	3237648.7	ns	11895.09	128
	3287461.6	ns	14005.81	128
32	3344364.3	ns	90453.98	128
	21 22 23 24 25 26 27 28 29 30 31	21 2978242.2 2994358.8 22 3006561.1 3035536.6 23 2986116.3 3005190.8 24 2996930.9 3027909.6 25 3008194.6 3041418.7 26 3036958.9 3066564.0 27 3064485.8 3106867.7 28 3100620.8 3140785.9 29 3136006.0 3193558.0 30 3181362.4 3240491.7 31 3237648.7 3287461.6	2994358.8 ns 2994358.8 ns 3006561.1 ns 3035536.6 ns 23 2986116.3 ns 3005190.8 ns 24 2996930.9 ns 3027909.6 ns 3027909.6 ns 3041418.7 ns 26 3036958.9 ns 3066564.0 ns 27 3064485.8 ns 3106867.7 ns 28 3100620.8 ns 3140785.9 ns 29 3136006.0 ns 3193558.0 ns 30 3181362.4 ns 3240491.7 ns 31 3237648.7 ns	21 2978242.2 ns 15980.00 2994358.8 ns 15940.86 22 3006561.1 ns 40009.54 3035536.6 ns 43123.52 23 2986116.3 ns 15168.21 3005190.8 ns 10789.82 24 2996930.9 ns 17425.24 3027909.6 ns 14938.77 25 3008194.6 ns 10949.75 3041418.7 ns 8665.96 26 3036958.9 ns 18802.13 3066564.0 ns 12244.18 27 3064485.8 ns 20624.29 3106867.7 ns 15038.45 28 3100620.8 ns 10087.87 3140785.9 ns 14470.74 29 3136006.0 ns 15872.83 3193558.0 ns 10662.66 30 3181362.4 ns 9108.27 3240491.7 ns 8547.12 31 3237648.7 ns 11895.09 3287461.6 ns 14005.81

The results are expected. local performs similarly to non local version. As thread count increases. So does the processing speed.

countSequential		11703886.3	ns	57343.70	32
countParallelN 1		12100872.8	ns	19933.32	32
${\tt countParallelNLocal}$	1	12086893.4	ns	28708.33	32
countParallelN 2		7959489.4	ns	143266.73	32
${\tt countParallelNLocal}$	2	7898216.6	ns	101455.89	32
countParallelN 3		5643043.1	ns	88690.94	64
${\tt countParallelNLocal}$	3	5845986.4	ns	77859.81	64
countParallelN 4		4356121.3	ns	30577.17	64
${\tt countParallelNLocal}$	4	4607973.0	ns	79186.38	64
countParallelN 5		3727472.6	ns	48816.47	128
${\tt countParallelNLocal}$	5	4149992.0	ns	68915.79	64
countParallelN 6		3602013.3	ns	64637.03	128
${\tt countParallelNLocal}$	6	4235735.2	ns	114634.56	64
countParallelN 7		3731275.0	ns	42040.70	128
${\tt countParallelNLocal}$	7	4019863.4	ns	31631.51	64
countParallelN 8		3565424.9	ns	34966.73	128
${\tt countParallelNLocal}$	8	3846094.7	ns	37755.66	128
countParallelN 9		3493096.1	ns	23805.28	128
${\tt countParallelNLocal}$	9	3665514.1	ns	29062.45	128
countParallelN 10		3203062.7	ns	25826.80	128
${\tt countParallelNLocal}$	10	3563074.3	ns	21620.77	128
countParallelN 11		3046929.8	ns	14238.58	128
${\tt countParallelNLocal}$	11	3410708.1	ns	21623.13	128
countParallelN 12		2945262.1	ns	17530.46	128
${\tt countParallelNLocal}$	12	3334143.7	ns	12406.27	128
countParallelN 13		2878275.2	ns	27167.13	128
${\tt countParallelNLocal}$	13	3281218.9	ns	12647.10	128

countParallelN 14		2916695.3 n	s 35479.97	128
${\tt countParallelNLocal}$	14	3265353.1 n	ıs 13798.08	128
countParallelN 15		2916283.8 n	s 43304.92	128
${\tt countParallelNLocal}$	15	3241645.9 n	ıs 17594.84	128
countParallelN 16		2938420.6 n	s 22740.48	128
${\tt countParallelNLocal}$	16	3319951.4 n	s 26361.08	128
countParallelN 17		2984937.7 n	s 21154.31	. 128
${\tt countParallelNLocal}$	17	3361832.3 n	s 25361.83	128
countParallelN 18		3005573.0 n	ıs 75792.27	128
${\tt countParallelNLocal}$	18	3412850.3 n	ıs 15950.94	128
countParallelN 19		2988674.1 n	ıs 43624.01	. 128
${\tt countParallelNLocal}$	19	3472205.9 n	ıs 12672.34	128
countParallelN 20		2957489.9 n	ıs 14573.33	128
${\tt countParallelNLocal}$	20	3496729.8 n	ıs 16070.63	128
countParallelN 21		2982809.0 n	ıs 19988.25	128
${\tt countParallelNLocal}$	21	3549494.2 n	ıs 16644.19	128
countParallelN 22		2978384.3 n	ıs 11167.81	. 128
${\tt countParallelNLocal}$	22	3558898.8 n	ıs 17252.63	128
countParallelN 23		2968538.0 n	ıs 14089.87	128
${\tt countParallelNLocal}$	23	3571487.0 n	ıs 15119.27	128
countParallelN 24		2990088.2 n	s 21096.87	128
${\tt countParallelNLocal}$	24	3613582.2 n	s 8845.62	2 128
countParallelN 25		2996263.3 n	ıs 13426.63	128
${\tt countParallelNLocal}$	25	3654489.4 n	ıs 11760.10	128
countParallelN 26		3012673.8 n	ıs 16671.81	. 128
${\tt countParallelNLocal}$	26	3676822.1 n	ıs 14854.22	2 128
countParallelN 27		3043794.0 n	s 21279.20	128
${\tt countParallelNLocal}$	27	3714385.9 n	ıs 21381.94	128
countParallelN 28		3068495.9 n	s 22246.37	128
${\tt countParallelNLocal}$	28	3738555.2 n	ıs 15053.48	128
countParallelN 29		3112514.3 n	ıs 13019.32	2 128
${\tt countParallelNLocal}$	29	3769508.9 n	ıs 12382.42	2 128
countParallelN 30		3168635.0 n	s 22397.47	128
${\tt countParallelNLocal}$	30	3825757.6 n	ıs 7793.18	128
countParallelN 31		3221237.7 n	ıs 13632.07	128
${\tt countParallelNLocal}$	31	3858665.4 n	ıs 14360.88	128
countParallelN 32		3259932.1 n	ıs 19068.94	128
${\tt countParallelNLocal}$	32	3891021.9 n	ıs 17891.31	. 64

After rewriting the classes to use executors. There is no noticeable difference in terms of speed. But variance seems to be slightly more stable. This is strange and a bit unexpected as logic dictates that by utilising Executors, the execution speed should be increasing.

6.3

1

See Histogram2.java for the actual implemenation.

Total and the count need to be made final and private so they have no chance to escape. Total could be switched from int to Atomic int to avoid race conditions but is not needed. Get total should utilise a read lock to avoid stale data. Increment should have a write lock implemented to execute the critical section of adding to total and count. Get count should have a read lock implemented so values are not accessed when being written to. Get percentage should also have a read lock to not get stale data from either of the methods its accessing. Only method that does not need a synchronisation is getSpan as the size of count has no chance of increasing. However,

it has to be noted that there could be a wrong data when accessing this method before count is fully initialised.

$\mathbf{2}$

See Histogram3.java

3

See HistogramPrimeThreads.java

4

Histogram2		3288550500.0	ns	406554238.21	2
Histogram3	1	2140301245.0	ns	72288735.52	2
Histogram3	2	1622910770.0	ns	21403862.67	2
Histogram3	3	1597729520.0	ns	11342022.08	2
Histogram3	4	1566118895.0	ns	22459939.49	2
Histogram3	5	1547482995.0	ns	5399088.49	2
Histogram3	6	1556947505.0	ns	15460783.83	2
Histogram3	7	1547371640.0	ns	10973632.85	2
Histogram3	8	1551295330.0	ns	22065662.29	2
Histogram3	9	1573640115.0	ns	15060293.60	2
Histogram3	10	1559738100.0	ns	31545280.47	2
Histogram3	11	1584976185.0	ns	34390176.58	2
Histogram3	12	1556109705.0	ns	32122596.86	2
Histogram3	13	1557255360.0	ns	11153815.06	2
Histogram3	14	1573382615.0	ns	40911443.66	2
Histogram3	15	1584244000.0	ns	42605485.21	2
Histogram3	16	1581638505.0	ns	41767737.05	2
${\tt Histogram3}$	17	1590000425.0	ns	32653825.66	2
${\tt Histogram3}$	18	1588993485.0	ns	30703854.60	2
${\tt Histogram3}$	19	1572040715.0	ns	21103488.32	2
${\tt Histogram3}$	20	1579909875.0	ns	12310053.02	2
${\tt Histogram3}$	21	1587189160.0	ns	25681333.18	2
${\tt Histogram3}$	22	1562478140.0	ns	33150232.57	2
${\tt Histogram3}$	23	1627102715.0	ns	62493697.85	2
${\tt Histogram3}$	24	1588442185.0	ns	35742298.14	2

Histogram 3 is a significant improvement over Histogram 2. As it takes less time for each thread to get control of the array lock. However, there is barely any increase in speed when increasing the lock count on Histogram 2. This is due to the fact that it is very unlikely that 2 threads would get the same prime factor when calculating the result. Even if they would, the wait time for the lock to be released is very small. Thus, there is minimal speed gain. However, it has to be noted that there is some speed gain from 1-3 locks. Due to them locking up the increase execution more often.