Intelligence Artificielle – TD 9

Inférence en logique du premier ordre

CORRECTION

Exercice 1

Pour chacune de ces paires d'énoncés, donnez s'il existe l'unificateur le plus général.

- 1. p(A,B,B), p(x,y,z)
- 2. p(A,B,B), p(x,x,y)
- 3. q(y, g(A,B)), q(g(x,x),y)
- 4. plusVieux(pere(y),y), plusVieux(pere(x), Jean)
- 5. connait(pere(y),y), connait(x,x)

Solution: Il s'agit donc de trouver une substitution, la plus générale possible, permettant d'unifier les deux formules (*les rendre identiques*).

On rappelle qu'il est possible de substituer une variable par une autre variable ou une constante, mais qu'il n'est pas posible de substituer une constante par une autre.

- 1. p(A,B,B), p(x,y,z) $\{x/A, y/B, z/B\}$
- 2. p(A,B,B), p(x,x,y)

Pas d'unificateur : x ne peut être substitué à la fois à A et à B.

3. q(y, g(A,B)), q(g(x,x),y)

Pas d'unificateur : x ne peut être substitué à la fois à A et à B.

OK si on normalise y.

- 4. plusVieux(pere(y),y), plusVieux(pere(x), Jean) $\{x/Jean, y/Jean\}$
- 5. connait(pere(y),y), connait(x,x)

Pas d'unificateur : x ne peut pas être unifié à y et pere(y)

Soit le langage \mathcal{L} , dont la signature $\langle \mathcal{F}, \mathcal{R} \rangle$ est la suivante :

•
$$\mathcal{F} = \{\}$$

•
$$\mathcal{R} = \{p/1, q/2, r/1, s/1\}$$

Soit la base de connaissances suivante construite sur le langage \mathcal{L} :

1.
$$\forall x \ p(x) \Rightarrow \exists y \ q(y,x)$$

2.
$$\forall y \ (\exists x \ p(x) \land q(y,x)) \Rightarrow r(y)$$

3.
$$\forall x, y \ r(y) \land s(y) \land p(x) \Rightarrow \neg q(y,x)$$

4.
$$\forall x \ s(x) \Rightarrow r(x)$$

5.
$$\exists x \ p(x)$$

Prouvez par résolution que $\exists x \ r(x) \land \neg s(x)$

Solution: On commence par transformer la base de connaissances en FNC.

- 1. Ajouter la négation de la conclusion dans la base de connaissances : $\neg(\exists x \ r(x) \land \neg s(x))$
- 2. Supprimer les implications

(a)
$$\forall x \neg p(x) \lor (\exists y \ q(y,x))$$

(b)
$$\forall y \ \neg(\exists x \ p(x) \land q(y,x)) \lor r(y)$$

(c)
$$\forall x,y \ \neg (r(y) \land s(y) \land p(x)) \lor \neg q(y,x)$$

(d)
$$\forall x \ \neg s(x) \lor r(x)$$

(e)
$$\exists x \ p(x)$$

(f)
$$\neg(\exists x \ r(x) \land \neg s(x))$$

3. Déplacer les \neg à l'intérieur des parenthèses

(b)
$$\forall y \ (\forall x \ \neg p(x) \lor \neg q(y,x)) \lor r(y)$$

(c)
$$\forall x,y \ (\neg r(y) \lor \neg s(y) \lor \neg p(x)) \lor \neg q(y,x)$$

(f)
$$\forall x \ \neg r(x) \lor s(x)$$

4. Normaliser les variables :

(a)
$$\forall x_1 \neg p(x_1) \lor (\exists y_1 \ q(y_1, x_1))$$

(b)
$$\forall y_2 (\forall x_2 \neg p(x_2) \lor \neg q(y_2, x_2)) \lor r(y_2)$$

(c)
$$\forall x_3, y_3 (\neg r(y_3) \lor \neg s(y_3) \lor \neg p(x_3)) \lor \neg q(y_3, x_3)$$

(d)
$$\forall x_4 \neg s(x_4) \lor r(x_4)$$

(e)
$$\exists x_5 \ p(x_5)$$

(f)
$$\forall x_6 \ \neg r(x_6) \lor s(x_6)$$

5. Skolémiser

(a)
$$\neg p(x_1) \lor q(f(x_1), x_1)$$

(b)
$$\neg p(x_2) \lor \neg q(y_2, x_2) \lor r(y_2)$$

```
(c) \neg r(y_3) \lor \neg s(y_3) \lor \neg p(x_3) \lor \neg q(y_3, x_3)
```

(d)
$$\neg s(x_4) \lor r(x_4)$$

(e)
$$p(A)$$

(f)
$$\neg r(x_6) \lor s(x_6)$$

6. Distribuer les \vee sur les \wedge pour obtenir des clauses séparées par des conjonctions : non applicable

On applique à présent la résolution :

1.
$$\neg p(x_1) \lor q(f(x_1), x_1)$$

2.
$$\neg p(x_2) \lor \neg q(y_2, x_2) \lor r(y_2)$$

3.
$$\neg r(y_3) \lor \neg s(y_3) \lor \neg p(x_3) \lor \neg q(y_3,x_3)$$

4.
$$\neg s(x_4) \lor r(x_4)$$

5.
$$p(A)$$

6.
$$\neg r(x_6) \lor s(x_6)$$

7.
$$q(f(A),A)$$
 (5.+1. $\{x_1/A\}$)

8.
$$\neg p(A) \lor r(f(A)) \ (7.+2. \{x_2/A, y_2/f(A)\})$$

9.
$$r(f(A))$$
 (8.+5. {})

10.
$$s(f(A))$$
 (9.+6. $\{x_6/f(A)\}$)

11.
$$\neg s(f(A)) \lor \neg p(x_3) \lor \neg q(f(A), x_3) \ (9.+3. \{y_3/f(A)\})$$

12.
$$\neg p(x_3) \lor \neg q(f(A),x_3)$$
 (11.+10. {})

13.
$$\neg p(A)$$
 (7.+12. $\{x_3/A\}$)

14.
$$\perp$$
 (13.+5. {})

Soit le langage \mathcal{L} , dont la signature $\langle \mathcal{F}, \mathcal{R} \rangle$ est la suivante :

•
$$\mathcal{F} = \{A/0, f/1\}$$

•
$$\mathcal{R} = \{p/1, q/3, r/2, s/1, w/1, d/1, e/2\}$$

Soit la base de connaissances suivante construit sur le langage \mathcal{L} :

1.
$$\exists x \forall y \exists z, p(A) \land q(x, y, z)$$

2.
$$\forall x, (p(x) \land w(x)) \Rightarrow s(x)$$

3.
$$\forall x, d(x) \Rightarrow (w(x) \land \neg p(x))$$

4.
$$\forall x \forall y, (d(x) \land e(x,y)) \Rightarrow w(y)$$

5.
$$\forall x \forall y, \ r(f(x), f(y)) \Rightarrow e(x,y)$$

6.
$$\exists x, d(x) \land r(f(x), f(A))$$

Prouvez par résolution que s(A)

Solution:

On commence par transformer la base de connaissances en FNC.

- 1. Ajouter la négation de la conclusion dans la base de connaissances : $\neg s(A)$
- 2. Supprimer les implications

(a)
$$\exists x \forall y \exists z, p(A) \land q(x, y, z)$$

(b)
$$\forall x, \neg (p(x) \land w(x)) \lor s(x)$$

(c)
$$\forall x, \neg d(x) \lor (w(x) \land \neg p(x))$$

(d)
$$\forall x \forall y, \neg (d(x) \land e(x,y)) \lor w(y)$$

(e)
$$\forall x \forall y, \neg r(f(x), f(y)) \lor e(x,y)$$

(f)
$$\exists x, \ d(x) \land r(f(x), f(A))$$

(g)
$$\neg s(A)$$

3. Déplacer les ¬ à l'intérieur des parenthèses

(b)
$$\forall x, \neg p(x) \lor \neg w(x) \lor s(x)$$

(d)
$$\forall x \forall y, \neg d(x) \lor \neg e(x,y) \lor w(y)$$

4. Normaliser les variables :

(a)
$$\exists x_1 \forall y_1 \exists z_1, \ p(A) \land q(x_1, y_1, z_1)$$

(b)
$$\forall x_2, \neg p(x_2) \vee \neg w(x_2) \vee s(x_2)$$

(c)
$$\forall x_3, \neg d(x_3) \lor (w(x_3) \land \neg p(x_3))$$

(d)
$$\forall x_4 \forall y_4, \neg d(x_4) \lor \neg e(x_4, y_4) \lor w(y_4)$$

(e)
$$\forall x_5 \forall y_5, \ \neg r(f(x_5), f(y_5)) \lor e(x_5, y_5)$$

(f)
$$\exists x_6, \ d(x_6) \land r(f(x_6), f(A))$$

(g)
$$\neg s(A)$$

5. Skolémiser

```
(a) p(A) \wedge q(B, y_1, g(y_1)) (attention : nouvelle variable, nouvelle fonction)
```

(b)
$$\neg p(x_2) \lor \neg w(x_2) \lor s(x_2)$$

(c)
$$\neg d(x_3) \lor (w(x_3) \land \neg p(x_3))$$

(d)
$$\neg d(x_4) \lor \neg e(x_4, y_4) \lor w(y_4)$$

(e)
$$\neg r(f(x_5), f(y_5)) \lor e(x_5, y_5)$$

(f)
$$d(C) \wedge r(f(C), f(A))$$

(g)
$$\neg s(A)$$

6. Distribuer les \vee sur les \wedge pour obtenir des clauses séparées par des conjonctions :

(a)
$$p(A)$$

(b)
$$q(B, y_1, g(y_1))$$

(c)
$$\neg p(x_2) \lor \neg w(x_2) \lor s(x_2)$$

(d)
$$\neg d(x_3) \lor w(x_3)$$

(e)
$$\neg d(x_3) \lor \neg p(x_3)$$
)

(f)
$$\neg d(x_4) \lor \neg e(x_4, y_4) \lor w(y_4)$$

(g)
$$\neg r(f(x_5), f(y_5)) \lor e(x_5, y_5)$$

(h)
$$d(C)$$

(i)
$$r(f(C), f(A))$$

(j)
$$\neg s(A)$$

On applique à présent la résolution :

1.
$$p(A)$$

2.
$$q(B, y_1, g(y_1))$$

3.
$$\neg p(x_2) \lor \neg w(x_2) \lor s(x_2)$$

4.
$$\neg d(x_3) \lor w(x_3)$$

5.
$$\neg d(x_3) \lor \neg p(x_3)$$

6.
$$\neg d(x_4) \lor \neg e(x_4, y_4) \lor w(y_4)$$

7.
$$\neg r(f(x_5), f(y_5)) \lor e(x_5, y_5)$$

8.
$$d(C)$$

9.
$$r(f(C), f(A))$$

10.
$$\neg s(A)$$

11.
$$\neg p(A) \lor \neg w(A) (10.+3. \{x_3/A\})$$

12.
$$\neg p(A) \lor \neg d(x_4) \lor \neg e(x_4, A) \ (11.+6. \{y_4/A\})$$

13.
$$\neg d(x_4) \lor \neg e(x_4, A) \ (12.+1. \{\})$$

14.
$$\neg e(C,A)$$
 (13.+8. $\{x_4/C\}$)

15.
$$\neg r(f(C), f(A))$$
 (14.+7. $\{x_5/C, y_5/A\}$)

16.
$$\perp$$
 (15.+9. {})

Peut-on déduire que "Certains êtres intelligents ne savent pas lire" à partir des faits suivants :

- 1. Quiconque sait lire est instruit
- 2. Les dauphins ne sont pas instruits
- 3. Certains dauphins sont intelligents

Solution: Commençons par traduire les phrases en logique des prédicats : Vocabulaire :

- Prédicats :
 - \diamond lire(x): x sait lire
 - \diamond instruit(x): x est instruit
 - \diamond intelligent(x): x est intelligent
 - \diamond dauphin(x): x est un dauphin
- Ni constante, ni fonction
- 1. Quiconque sait lire est instruit
 - $\forall x \ lire(x) \Rightarrow instruit(x)$
- 2. Les dauphins ne sont pas instruits
 - $\forall y \ dauphin(y) \Rightarrow \neg instruit(y)$
- 3. Certains dauphins sont intelligents $\exists t \ dauphin(t) \land intelligent(t)$
- 4. Certains êtres intelligents ne savent pas lire

 $\exists u \ intelligent(u) \land \neg lire(u)$

Base de connaissances sous FNC et skolémisée, et appliquons la résolution :

- 1. $\neg lire(x) \lor instruit(x)$
- 2. $\neg dauphin(y) \lor \neg instruit(y)$
- 3. dauphin(M)
- 4. intelligent(M)
- 5. $\neg intelligent(u) \lor lire(u)$
- 6. $\neg instruit(M) \ (2.+3., \{y/M\})$
- 7. lire(M) (4.+5., $\{u/M\}$)
- 8. instruit(M) (1.+7., $\{x/M\}$)
- 9. \perp (6.+8., {})

Peut-on déduire que "Harry est plus rapide que Ralph" à partir des faits suivants :

- 1. Les chevaux sont plus rapides que les chiens
- 2. Il existe un levrier plus rapide que tous les lapins
- 3. Les levriers sont des chiens
- 4. Harry est un cheval
- 5. Ralph est un lapin
- 6. La relation "plus rapide que" est transitive

Solution: Commençons par traduire les phrases en logique des prédicats : <u>Vocabulaire</u> :

- Prédicats :
 - \diamond cheval(x): x est un cheval
 - \diamond chien(x): x est un chien
 - plusrapide(x,y) : x est plus rapide que y
 - \diamond levrier(x): x est un levrier
 - \diamond lapin(x) : x est un lapin
- Constantes: Ralph, Harry
- Pas de fonction
- 1. Les chevaux sont plus rapides que les chiens $\forall x, \forall y \ cheval(x) \land chien(y) \Rightarrow plusrapide(x,y)$
- 2. Il existe un levrier plus rapide que tous les lapins $\exists t \ levrier(t) \land (\forall z \ lapin(z) \Rightarrow plus rapide(t,z))$
- 3. Les levriers sont des chiens $\forall u \ levrier(u) \Rightarrow chien(u)$
- 4. Harry est un cheval cheval(Harry)
- 5. Ralph est un lapin lapin(Ralph)
- 6. La relation "plus rapide que" est transitive $\forall a,b,c \ plus rapide(a,b) \land plus rapide(b,c) \Rightarrow plus rapide(a,c)$
- 7. Non (Harry est plus rapide que Ralph) $\neg plusrapide(Harry,Ralph)$

Base de connaissances sous FNC et skolémisée, et appliquons la résolution :

- 1. $\neg cheval(x) \lor \neg chien(y) \lor plusrapide(x,y)$
- 2. levrier(N)
- 3. $\neg lapin(z) \lor plusrapide(N,z)$

```
4. \neg levrier(u) \lor chien(u)
5. cheval(Harry)
6. lapin(Ralph)
7. \neg plusrapide(a,b) \lor \neg plusrapide(b,c) \lor plusrapide(a,c)
8. \neg plusrapide(Harry,Ralph)
9. \neg chien(y) \lor plusrapide(Harry,y) \ (1.+5., \{x/Harry\})
10. plusrapide(N,Ralph) \ (3.+6., \{z/Ralph\})
11. chien(N) \ (2.+4., \{u/N\})
12. plusrapide(Harry,N) \ (9.+11., \{y/N\})
13. \neg plusrapide(Harry,b) \lor \neg plusrapide(b,Ralph) \ (7.+8., \{a/Harry,c/Ralph\})
14. \neg plusrapide(Harry,N) \ (13.+10., \{b/N\})
15. \bot \ (14.+12. \{\})
```