HW #3

CS410/510: Introduction to Performance Measurement, Modeling and Analysis

Due February 6, 2019

Jason Graalum

February 4, 20190

Part A: Hands-on Experience with pthreads(Class Partner: AJ Wood)

- (1) Compare the performance of the sequential version to the performance of the pthreads version. What can you conclude about whether or not one is faster? [hint: use confidence intervals]
- (2) How many runs do you need to measure to be able to specify a reasonable confidence interval at 90% confidence? At 95% confidence?

Part B: Using python for statistics Write python code to solve the following problems.

(1) Comparing 3 servers

Program	S1 exec time (sec)	S2 exec time (sec)	S3 exec time (sec)	# Instructions
1	33.4	28.8	28.3	$1.45x10^{10}$
2	19.9	22.1	25.3	$7.97x10^9$
3	6.5	5.3	4.7	$3.11x10^9$
4	84.3	75.8	80.1	$3.77x10^{10}$
5	101.1	99.4	7.2	$4.56x10^{10}$

a Calculate the mean for the 3 different Systems S1, S2, S3

```
Mean for the 3 different systems S1, S2, S3
S1 Mean = 49.040000
S2 Mean = 46.280000
S3 Mean = 29.120000
```

b Calculate the average across the 3 systems of the MIPS rate for each of Programs 1-5

```
Average across the 3 systems of the MIPS rate for each of Program Progam 1 | RunTime Mean: 30.166667(sec) MIPS Mean: 480.662983(MIPS) Progam 2 | RunTime Mean: 22.433333(sec) MIPS Mean: 355.274889(MIPS) Progam 3 | RunTime Mean: 5.500000(sec) MIPS Mean: 565.454545(MIPS) Progam 4 | RunTime Mean: 80.066667(sec) MIPS Mean: 470.857619(MIPS) Progam 5 | RunTime Mean: 69.233333(sec) MIPS Mean: 658.642273(MIPS)
```

c Using S3 as the basis system, calculate the average speedup for S1 and S2

```
Average speedup for S1 and S2 with S3 as baseline S1 Average Speed up = -68.406593% S2 Average Speed up = -58.928571%
```

d Determine the coefficient of variation of the execution times for each of the 3 systems

```
Coefficient of variation of the execution times
S1 Coef. of Variation = 0.844275
S2 Coef. of Variation = 0.854986
S3 Coef. of Variation = 1.043166
```

(2) Reporting Meaningful Results

We want to determine, on average, how long it takes to write a file of a particular size to a disk drive.

We take 8 measurements: 8.0 7.0 5.0 9.0 9.5 11.3 5.2 8.5

a Calculate a 90% confidence interval for the mean time.

```
8 sample t-score = 1.895 (from df = 7 and A = 0.05) 90% confidence interval for mean time(c1, c2) = (6.500573, 9.374427)
```

b How many measurements would be required to be 90% confident that the mean value is within 7% of the actual value?

Measurements for 90% confidence with 7% error n = 15