The Rising Sea: Vakil

Jad Damaj

Contents

Ι	Notes	3
ΙΙ	Exercises	4
1	Just Enough Category Theory to be Dangerous	5
	1.1 Motivation	5
	1.2 Categories and Functors	5
	1.3 Universal Properties Determine an Object up to Isomorphism	5
	1.4 Limits and Colimits	5
	1.5 Adjoints	5
	1.6 An Introduction to Abelian Categories	5

Part I

Notes

Part II Exercises

Chapter 1

Just Enough Category Theory to be Dangerous

1.1 Motivation

1.2 Categories and Functors

Exercise 1.2.1. A category in which each morphism is an isomorphism is called a groupoid.

- (a) A perverse definition of a group is: is a groupoid with one object. Make sense of this.
- (b) Describe a groupoid that is not a group.

Exercise 1.2.2. If A is an object in the category C, show that the invertible elements of Mor(A, A) from a group. What are the automorphism groups of a set X and a vector space V.

Exercise 1.2.3. Let $(\cdot)^{\vee\vee}: f.d.Vec_k \to f.d.Vec_k$ be the double dual functor from the category of finite dimensional vector spaces over k to itself. Show that $(\cdot)^{\vee\vee}$ is naturally isomorphic to the identity functor on $f.d.Vec_k$.

Exercise 1.2.4. Let \mathcal{V} be the category whose objects are the k-vector spaces k^n for $n \ge 0$ and whose morphisms are linear transformations. Show that $\mathcal{V} \to f.d.Vec_k$ gives an equivalence of categories by describing an "inverse" functor.

1.3 Universal Properties Determine an Object up to Isomorphism

- 1.4 Limits and Colimits
- 1.5 Adjoints
- 1.6 An Introduction to Abelian Categories