Chapitre 1

Calcul trigonométrique

S	omm	aire

1	Notation	1
2	Cercle trigonométrique – Radian 2.1 Cercle trigonométrique	2
3	Rapports trigonométriques d'un réel3.1 Repère direct3.2 Sinus et cosinus d'un réel3.3 Tangente d'un réel3.4 Mesures et valeurs remarquables	4 5
4	Relations trigonométriques	6
5	Équations et inéquations trigonométriques 5.1 Équation de type $\cos(X) = a$ 5.2 Équation de type $\sin(X) = a$ 5.3 Équation de type $\tan(X) = a$ 5.4 Inéquations trigonométriques	7

1 Notation

Activité 1

ABC est un triangle équilatéral de côté 1, avec I milieu de [AB], et EFGH est un carré de côté 1.

- 1. Calculer les longueurs *CI* et *EG*.
- 2. En déduire les valeurs exactes de $cos(60^\circ)$, $sin(60^\circ)$, $cos(30^\circ)$, $sin(30^\circ)$, $cos(45^\circ)$ et $sin(45^\circ)$.

Activité 1

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

Soient (C) le cercle de centre O et de rayon 1, et A, A', B et B' sont ses points d'intersection respectifs avec les deux axes du repère.

On considère le point M situé au tiers de l'arc $\widehat{AA'}$ à partir de A, et le point N placé au milieu de l'arc $\widehat{BA'}$.

- 1. Quel est le périmètre du cercle (C)? Quelle est la longueur du demi-cercle $\widehat{AA'}$? du petit arc \widehat{AB} ? du grand arc \widehat{AB} ?
- 2. Quelle est la longueur du petit arc \widehat{AM} ? du petit arc \widehat{AN} ?
- 3. Compléter le tableau suivant :

Point	В	A'	M	N
Mesure de l'angle au centre associé	$\widehat{AOB} = \dots$	$\widehat{AOA'} = \dots$	$\widehat{AOM} = \dots$	$\widehat{AON} = \dots$
Longueur de l'arc	$\widehat{AB} = \dots$	$\widehat{AA'} = \dots$	$\widehat{AM} = \dots$	$\widehat{AN} = \dots$

- 4. Vérifier que ce tableau représente une situation de proportionnalité, et donner son coefficient.
- 5. Quelle est la longueur d'un arc correspondant à un angle de 30° ? de 45° ? de α° ?

2 Cercle trigonométrique - Radian

2.1 Cercle trigonométrique

Définitions

Le plan est muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$.

- On appelle «**cercle trigonométrique**» tout cercle (*C*) de centre *O*, de rayon 1, muni d'un point *A*, dit «**origine du cercle trigonométrique**, et orienté de la manière suivante :
 - Le sens «**positif**» ou «**directe**» est celui de la rotation autour du cercle, à partir de *A*, contrairement au sens des aiguilles d'une montre.
 - Le sens «**négatif**» ou «**indirecte**» est celui de la rotation autour du cercle, à partir de *A*, suivant le sens des aiguilles d'une montre.
- Pour tout point M du cercle trigonométrique, l'arc \widehat{AM} est dit «orienté», et est noté \widehat{AM} . On peut l'apercevoir de deux manière différentes :
 - \circ L'arc orienté $\stackrel{\curvearrowright}{AM}$ en vert est dit «**positif**» ou «**directe**».
 - \circ L'arc orienté $\stackrel{\frown}{AM}$ en rouge est dit «**négatif**» ou «**indirecte**».
- Pour tout point M du cercle trigonométrique, l'angle \widehat{AOM} est dit «orienté», et est noté $(\overrightarrow{OA}; \overrightarrow{OM})$. On peut l'apercevoir de deux manière différentes :
 - L'angle orienté $(\overrightarrow{OA}; \overrightarrow{OM})$, correspondant à l'arc orienté positif \overrightarrow{AM} , est dit «**positif**» ou «**directe**».

• L'angle orienté $(\overrightarrow{OA}; \overrightarrow{OM})$, correspondant à l'arc orienté négatif \overrightarrow{AM} , est dit «**négatif**» ou «**indirecte**».

Exemples

En utilisant la figure ci-dessous, déterminer les mesures des arcs orientés $\stackrel{\frown}{AA}$, $\stackrel{\frown}{AB'}$, $\stackrel{\frown}{AB'}$ et $\stackrel{\frown}{AB'}$.

Nombre de tours	0	1	2	k
Mesures de $\stackrel{\frown}{AA}$				
Mesures de $\stackrel{\frown}{AA'}$				
Mesures de $\stackrel{\frown}{AB}$				
Mesures de $\stackrel{\frown}{AB}'$				

2.2 Abscisse curviligne d'un point

Propriété

Soit M un point du cercle trigonométrique, d'origine A.

- Si x est une mesure de l'arc orienté $\stackrel{\frown}{AM}$, alors, toutes les mesures de cet arc sont de la forme $x + 2k\pi$, où k est un entier relatif.
- Les nombres de la forme $x + 2k\pi$, avec $k \in \mathbb{Z}$, y compris x, sont appelés «abscisses curvilignes» du point M. On écrit M(x) ou $M(x + 2k\pi)$.
- Un abscisse curviligne est dit «**principale**», s'il appartient à l'intervalle $]-\pi;\pi]$.

Exem	nles

Représenter sur le cercle trigonométrique les points $E\left(-\frac{\pi}{2}\right)$, $F\left(\frac{\pi}{6}\right)$, $G\left(-\frac{\pi}{4}\right)$, $H\left(\frac{7\pi}{2}\right)$ et $K\left(\frac{7\pi}{4}\right)$. Que remarque-t-on?

••••••	

Exercice

Déterminer l'abscisse curviligne principale des points d'abscisses $\frac{-3\pi}{2}$, $\frac{-17\pi}{4}$, $\frac{23\pi}{4}$, $\frac{-5\pi}{2}$, $\frac{-4\pi}{3}$, $\frac{27\pi}{3}$ et $\frac{2005\pi}{3}$.

2.3 Mesure d'un angle orienté - Radian

Propriété

Soit *M* un point du cercle trigonométrique, d'origine *A*.

- Si x est une mesure de l'arc orienté \overrightarrow{AM} , alors, la mesure de l'angle orienté $(\overrightarrow{OA}; \overrightarrow{OM})$ est dite x «**radian**». On écrit $(\overrightarrow{OA}; \overrightarrow{OM}) = x \ rad$.
- Si x est une mesure en radian de l'angle orienté $(\overrightarrow{OA}; \overrightarrow{OM})$, alors, toutes les mesures en radian de cet angle sont de la forme $x + 2k\pi$, où k est un entier relatif. On écrit $(\overrightarrow{OA}; \overrightarrow{OM}) = x + 2k\pi$ avec $k \in \mathbb{Z}$, ou simplement $(\overrightarrow{OA}; \overrightarrow{OM}) \equiv x[2\pi]$ (lue $(\overrightarrow{OA}; \overrightarrow{OM})$ est congrue à x modulo 2π).
- Les nombres de la forme $x + 2k\pi$, avec $k \in \mathbb{Z}$, y compris x, sont appelés «**abscisses curvilignes**» du point M. On écrit M(x) ou $M(x + 2k\pi)$.
- Une mesure en radian d'un angle orienté est dite «**principale**», s'il appartient à l'intervalle $]-\pi;\pi]$.

Remarques

- Généralement, la mesure d'un angle peut être exprimée en degré (°), en radian (rad) ou en grade (gr).
- La mesure d'un angle plat vaut en degré 180° , en radian $\pi \, rad$, en grade $200 \, gr$. On a $180^\circ = \pi \, rad = 200 \, gr$.
- Si a, b et c sont respectivement des mesures du même angle, en degré, radian et grade, alors $\frac{a}{180} = \frac{b}{\pi} = \frac{c}{200}$.

Exemples

• Completer à partir de la figure ce qui suit :

L'abscisse curviligne de A	La mesure de l'arc oriente	
est	$\stackrel{\sim}{AA}$ est	orienté $(\overrightarrow{OA}; \overrightarrow{OA})$ est
L'abscisse curviligne de <i>B</i>	La mesure de l'arc orienté	La mesure de l'angle
est	\overrightarrow{AB} est	orienté $(\overrightarrow{\overrightarrow{OA}}; \overrightarrow{\overrightarrow{OB}})$ est
L'abscisse curviligne de A'	La mesure de l'arc orienté	La mesure de l'angle
est	<i>AA'</i> est	orienté $(\overrightarrow{OA}; \overrightarrow{OA'})$ est
L'abscisse curviligne de B'	La mesure de l'arc orienté	La mesure de l'angle
est	$\overrightarrow{AB'}$ est	orienté $(\overrightarrow{OA}; \overrightarrow{OB'})$ est

Conclusion: $(\overrightarrow{OA}; \overrightarrow{OA}) \equiv \dots, (\overrightarrow{OA}; \overrightarrow{OB}) \equiv \dots, (\overrightarrow{OA}; \overrightarrow{OA'}) \equiv \dots$ et $(\overrightarrow{OA}; \overrightarrow{OB'}) \equiv \dots$

• Déterminer, en radian, la mesure d'un angle valant en degré 150° .

Déterminer, en degré, la mesure d'un angle valant en radian $\frac{3\pi}{10}$ rad.

Déterminer, en grade, la mesure d'un angle valant en degré 45° .

Déterminer, en radian, la mesure d'un angle valant en grade 160 gr.

Propriétés

Soient M, N et P des points du cercle trigonométrique, d'origine A.

$$(\overrightarrow{OM}; \overrightarrow{OM}) \equiv 0[2\pi], \quad (\overrightarrow{OM}; \overrightarrow{ON}) \equiv -(\overrightarrow{ON}; \overrightarrow{OM})[2\pi] \quad \text{et} \quad (\overrightarrow{OM}; \overrightarrow{OP}) + (\overrightarrow{OP}; \overrightarrow{ON}) \equiv (\overrightarrow{OM}; \overrightarrow{ON})[2\pi].$$

Remarque

Soient \vec{u} et \vec{v} deux vecteurs du plan, tels que $\|\vec{u}\| = a$ et $\|\vec{v}\| = b$.

Alors, il existe deux points M et N du cercle trigonométrique, tels que $\overrightarrow{OM} = \frac{1}{a} \vec{u}$ et $\overrightarrow{ON} = \frac{1}{h} \vec{v}$.

Corollaires

• $(\overline{\vec{u};\vec{w}}) + (\overline{\vec{w};\vec{v}}) \equiv (\overline{\vec{u};\vec{v}})[2\pi]$

Soient \vec{u} , \vec{v} et \vec{w} des vecteurs du plan.

• $(\vec{u}; \vec{u}) \equiv 0[2\pi]$

- $\bullet \; (\vec{u}; -\vec{u}) \equiv \pi[2\pi]$
- $(-\vec{u}; \vec{v}) \equiv (\vec{u}; -\vec{v})[2\pi]$
- $\bullet \ (\vec{u}; \vec{v}) \equiv -(\vec{v}; \vec{u})[2\pi]$

Remarque

On définit de même l'angle orienté déterminé par deux droites (ou demi-droites), à partir de leurs vecteurs directeurs, en gardant les mêmes propriétés.

Si (D) et (D') sont deux droites du plan, de vecteurs directeurs respectifs \vec{u} et \vec{v} , alors $(\overline{(D)}; (D')) \equiv (\overline{\vec{u}}; \overline{\vec{v}})[\pi]$.

Exercice

- 1. Représenter, sur le cercle trigonométrique, les points d'abscisses curvilignes $\frac{\pi}{3}$, $\frac{\pi}{6}$, $-\frac{\pi}{6}$, $-\frac{\pi}{4}$, $\frac{5\pi}{6}$ et $-\frac{\pi}{4}$.
- Déterminer, dans chacun des cas suivants, si les deux abscisses curvilignes a et b représentent le même points: (i) a = 50π/3 et b = 32π/3 (ii) a = 5π/8 et b = -3π/8 (iii) a = -5π/12 et b = 43π/12.
 Convertir en radian 20°, 140°, 135° et 125°. Convertir en degré 5π/6 rad, 2π/9 rad, π/10 rad, 3π/5 rad.
- 4. ABCD est un carré de centre O, tel que $(\overrightarrow{AB}; \overrightarrow{AD}) \equiv \frac{\pi}{2}[2\pi]$. Donner les mesures des angles suivants : (a) $(\overrightarrow{BA}; \overrightarrow{BC})$ (b) $(\overrightarrow{DA}; \overrightarrow{DC})$ (c) $(\overrightarrow{AB}; \overrightarrow{AC})$ (d) $(\overrightarrow{BD}; \overrightarrow{BC})$ (e) $(\overrightarrow{OA}; \overrightarrow{OD})$ (f) $(\overrightarrow{AB}; \overrightarrow{DC})$ (g) $(\overrightarrow{BC}; \overrightarrow{DA})$ (h) $(\overrightarrow{OA}; \overrightarrow{OC})$.

Rapports trigonométriques d'un réel

Repère direct 3.1

Définition

Un repère $(O; \vec{u}, \vec{v})$ est dit «**direct**», si l'angle orienté $(\vec{u}; \vec{v})$ est direct.

3.2 Sinus et cosinus d'un réel

Définition

(C) est le cercle triangulaire de centre O et d'origine A, et B est un de points tel que $(O; \overrightarrow{OA}, \overrightarrow{OB})$ est un repère orthonormé direct.

Soit x un nombre réel. Il existe un seul et unique point M de (C) tel que $(\overrightarrow{OA}; \overrightarrow{OM}) \equiv x[2\pi]$.

- L'abscisse du point M dans le repère (O; OA, OB) est appelé «**cosinus de** x», et est noté $\cos(x)$.
- L'ordonnée du point M dans le repère (O; OA, OB) est appelé «sinus de x», et est noté $\sin(x)$.

Remarque

Si x est l'abscisse curviligne du point M du cercle trigonométrique, alors ses coordonnées sont $M(\cos(x);\sin(x))$.

Exemple

On a
$$A(\ldots)$$
 et $A(\ldots)$.
Donc $\cos(\ldots) = \ldots$ et $\sin(\ldots) = \ldots$

On a
$$A'(\ldots)$$
 et $A'(\ldots)$.
Donc $\cos(\ldots) = \ldots$ et $\sin(\ldots) = \ldots$

On a
$$B(\ldots)$$
 et $B(\ldots)$.
Donc $\cos(\ldots) = \ldots$ et $\sin(\ldots) = \ldots$

On a
$$B'(\ldots)$$
 et $B'(\ldots)$.
Donc $\cos(\ldots) = \ldots$ et $\sin(\ldots) = \ldots$

Propriétés

Soit *x* un nombre réel.

- $-1 \le \cos x \le 1$ et $-1 \le \sin x \le 1$.
- $(\cos x)^2 + (\sin x)^2 = 1$ écrite également $\cos^2(x) + \sin^2(x) = 1$.
- Pour tout $k \operatorname{de} \mathbb{Z}$, on a $\cos(x+2k\pi) = \cos(x) \operatorname{et} \sin(x+2k\pi) = \sin(x)$.
- Le tableau de signe de cos(x), sur $]-\pi;\pi]$ est comme suit :

x	$-\pi$		$-\frac{\pi}{2}$		0		$\frac{\pi}{2}$		π
$\cos(x)$	-1	-	Ó	+	1	+	Ó	-	-11

• Le tableau de signe de sin(x), sur $]-\pi;\pi]$ est comme suit :

x	$-\pi$		$-\frac{\pi}{2}$		0		$\frac{\pi}{2}$		π
$\sin(x)$	o	_	¬ 1	_	Ó	+	1	+	0

Tangente d'un réel 3.3

Définition

(C) est le cercle triangulaire de centre O et d'origine A, et B est un de points tel que (O; OA, OB) est un repère orthonormé direct.

Soit *x* un nombre réel tel que $cos(x) \neq 0$. Il existe un seul et unique point M de (C), d'abscisse curviligne x.

Le coefficient directeur de la droite (OM) est appelé «tangente de x», et est noté tan(x).

Pour tout réel x, tel que $\cos(x) \neq 0$, On a $\tan(x) = \frac{\sin(x)}{\cos(x)}$

Propriété

Soit *x* un nombre réel.

- $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$ et $1 + \frac{1}{\tan^2(x)} = \frac{1}{\sin^2(x)}$. Pour tout k de \mathbb{Z} , on a $\tan(x + 2k\pi) = \tan(x)$
- Le tableau de signe de tan(x), sur $]-\pi;\pi]$, tel que $cos(x) \neq 0$, est comme suit :

x	$-\pi$		$-\frac{\pi}{2}$		0		$\frac{\pi}{2}$		π
tan(x)	Ó	+		_	Ó	+		_	0

Calcul trigonométrique Mathématiques

3.4 Mesures et valeurs remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan(x)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

- 1. Calculer les valeurs exacte de $\cos\left(\frac{7\pi}{3}\right)$, $\sin\left(\frac{17\pi}{4}\right)$, $\cos\left(-\frac{3\pi}{2}\right)$ et $\sin\left(-\frac{11\pi}{6}\right)$.
- Déterminer la valeur de cos(α), sachant que sin(α) = ³/₅ et que -^π/₂ < α < 0.
 Déterminer la valeur de sin(β), sachant que cos(β) = ⁴/₅ et que ^π/₂ < β < π.

Relations trigonométriques

Propriétés

Soit x un nombre réel (pour les relations tan, x doit être différent de $\frac{\pi}{2} + k\pi$ tel que $k \in \mathbb{Z}$, on écrit $x \not\equiv \frac{\pi}{2}[\pi]$).

- $\sin(-x) = -\sin(x)$
- tan(-x) = -tan(x)

- $\bullet \cos(\pi x) = -\cos(x)$
- $\bullet \sin(\pi x) = \sin(x)$
- $\bullet \tan(\pi x) = -\tan(x)$

- $\bullet \cos(\pi + x) = -\cos(x)$
- $\bullet \sin(\pi + x) = -\sin(x)$
- $tan(\pi + x) = tan(x)$

- $\cos\left(\frac{\pi}{2} x\right) = \sin(x)$
 $\sin\left(\frac{\pi}{2} x\right) = \cos(x)$
 $\tan\left(\frac{\pi}{2} x\right) = \tan(x)$
 $\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$
 $\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$
 $\tan\left(\frac{\pi}{2} + x\right) = -\tan(x)$

- Déterminer le sinus, le cosinus et la tangente des réels ^{2π}/₃, ^{7π}/₆, ^{14π}/₃ et ^{19π}/₄.
 Montrer que, pour tout k de ℤ, on a cos (^π/₂ + kπ) = 0 et sin (^π/₂ + kπ) = (-1)^k.
- 3. On donne $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{2}$.
 - (a) Déterminer la valeur exacte du sinus du réel $\frac{\pi}{5}$.
- (b) En déduire les cosinus et sinus des réels $\frac{4\pi}{5}$, $\frac{9\pi}{5}$, $\frac{3\pi}{10}$ et $\frac{7\pi}{10}$. 4. Si x est un réel tel que $\tan(x) \neq 0$, l'inverse de $\tan(x)$ est appelé «cotangente de x», et est noté $\cot(x)$ ou
- $\cot(x)$. Montrer que $1 + \cot^2(x) = \frac{1}{\sin^2(x)}$. 5. (a) Sachant que $\tan(x) = 2$ et que $\frac{\pi}{2} < x < \pi$, déterminer $\cos(x)$ et $\sin(x)$.
 - (b) Sachant que $\cos(x) = \frac{1}{3}$ et que $-\frac{\pi}{2} < x < 0$, déterminer $\tan(x)$ et $\sin(x)$.
- 6. Simplifier les expressions suivantes :
 - (a) $\cos(\pi + x) \cos(\pi x) + \cos\left(\frac{\pi}{2} x\right)$
 - (b) $\cos(5\pi + x) + \sin(11\pi x) \sin(\frac{9\pi}{2} x) + \cos(2\pi x)$
 - (c) $\tan(-x) + \tan(x + \pi) + \tan(x 3\pi)$
- 7. Donner la valeur exacte des additions suivantes :
 - (a) $\cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$ (b) $\sin\left(\frac{2\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right) + \sin\left(\frac{6\pi}{3}\right) + \sin\left(\frac{8\pi}{3}\right)$

Calcul trigonométrique Mathématiques

Équations et inéquations trigonométriques

Dans toute la suite, et pour éviter toute confusion, l'abscisse curviligne d'un point quelconque M du cercle trigonométrique, sera noté X, et ses coordonnées cartésiennes seront notées (x; y). Ce qui se traduit par les relations $\cos(X) = x$, $\sin(X) = y$ et $\tan(X) = \frac{y}{x}$, si $x \neq 0$. De plus, la droite (OM) aura pour équation cartésienne $x \tan(X) - y = 0$, si $X \not\equiv \frac{\pi}{2} [\pi]$.

Équation de type cos(X) = a

Propriété

Les solutions de l'équation cos(X) = a, s'elles existent, sont les points d'intersection de la droite d'équation x = a avec le cercle trigonométrique.

- Si $a \notin [-1;1]$, alors cette équation n'admet pas de solutions. L'ensemble des solutions est $S = \emptyset$.
- Si a = 1, alors, $\cos(X) = \cos(0)$ et $X = 0 + 2k\pi = 2k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{2k\pi / k \in \mathbb{Z}\}.$
- Si a = -1, alors, $\cos(X) = \cos(\pi)$ et $X = \pi + 2k\pi = (2k+1)\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{(2k+1)\pi \mid k \in \mathbb{Z}\}.$
- Si $a \in]-1;1[$, alors, $\cos(X) = \cos(\alpha)$ et $X = \alpha + 2k\pi$ ou $X = -\alpha + 2k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{\alpha + 2k\pi, -\alpha + 2k\pi \mid k \in \mathbb{Z}\}.$

Équation de type sin(X) = a

Propriété

Les solutions de l'équation sin(X) = a, s'elles existent, sont les points d'intersection de la droite d'équation y = a avec le cercle trigonométrique.

- Si $a \notin [-1; 1]$, alors cette équation n'admet pas de solutions. L'ensemble des solutions est $S = \emptyset$.
- Si a = 1, alors, $\sin(X) = \sin(\frac{\pi}{2})$ et $X = \frac{\pi}{2} + 2k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \left\{ \frac{\pi}{2} + 2k\pi / k \in \mathbb{Z} \right\}$.
- Si a = -1, alors, $\sin(X) = \sin\left(-\frac{\pi}{2}\right)$ et $X = -\frac{\pi}{2} + 2k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{-\frac{\pi}{2} + 2k\pi / k \in \mathbb{Z}\}.$
- Si $a \in]-1;1[$, alors, $\sin(X)=\sin(\alpha)$ et $X=\alpha+2k\pi$ ou $X=\pi-\alpha+2k\pi$ tel que $k\in\mathbb{Z}$. L'ensemble des solutions est $S = \{\alpha + 2k\pi, \pi - \alpha + 2k\pi / k \in \mathbb{Z}\}.$

Équation de type tan(X) = a

Propriété

Les solutions de l'équation tan(X) = a, s'elles existent, sont les points d'intersection de la droite d'équation y = ax avec le cercle trigonométrique.

- Si a = 0, alors, tan(X) = tan(0) et $X = 0 + k\pi = k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{k\pi \mid k \in \mathbb{Z}\}.$
- Si $a \neq 0$, alors, $tan(X) = tan(\alpha)$ et $X = \alpha + k\pi$ tel que $k \in \mathbb{Z}$. L'ensemble des solutions est $S = \{\alpha + k\pi / k \in \mathbb{Z}\}.$

- 1. Résoudre dans \mathbb{R} les équations $\cos(x) = \frac{-\sqrt{2}}{2}$, $2\sin(x) + \sqrt{3} = 0$ et $\tan(x) = \tan\left(\frac{\pi}{11}\right)$. 2. Résoudre dans $[0; 2\pi[$ les équations $2\cos\left(3x + \frac{\pi}{4}\right) = 1$, $\sin\left(\frac{\pi}{3} 2x\right) = 0$ et $\sqrt{3}\tan\left(4\left(x + \frac{\pi}{3}\right)\right) = 3$.

Calcul trigonométrique Mathématiques

Inéquations trigonométriques

- 1. On considère dans $[-\pi;\pi[$ l'inéquation (I) : $\cos(x) \le \frac{\sqrt{2}}{2}$.

 - (a) Résoudre dans $[-\pi;\pi[$ l'équation (E) : $\cos(x)=\frac{\sqrt{2}}{2}$. (b) Représenter les solutions de l'équation (E) sur le cercle trigonométrique.
 - (c) En déduire les solutions de l'inéquation (I).
- 2. Résoudre dans $\left[\frac{\pi}{2}; 2\pi\right]$ l'inéquation $\sin x > \frac{\sqrt{2}}{2}$, et dans $\left]-\frac{\pi}{2}; \frac{\pi}{2}\right[$ l'inéquation $-\sqrt{3} \le \tan x < 1$. 3. Résoudre dans $\left]-\frac{\pi}{2}; \pi\right]$ les inéquations $2\cos(x) + 1 > 0$, $-1 < 2\sin(x) < \sqrt{3}$, $\sin(x)\cos(x) < 0$ et $\tan(x) \ge 0$.