47.8 Интегралы, не зависящие от пути интегрирования

139

отображение F мы наложили несколько более сильные условия, потребовав непрерывности смешанных производных $\frac{d^2y}{du\;dv}$ и $\frac{d^2y}{dv\;du}$ и возможности применения формулы Грина для области Γ^*). Нетрудно убедиться и в том, что стремление к пределу в формуле (47.27) происходит равномерно в смысле, указанном в теореме 1 п. 46.1

Несмотря на простоту вывода формулы (47.27), следует отметить, что доказательство теоремы 1, приведенное в п. 46.1, идейно предпочтительнее, так как оно лучше раскрывает сущность вопроса, связанную с тем, что дифференцируемое отображение в малом достаточно хорошо аппроксимируется линейным отображением.

47.8. Криволинейные интегралы, не зависящие от пути интегрирования

Все кривые (контуры), рассматриваемые в этом пункте, будут всегда предполагаться кусочно-гладкими; для краткости это не будет каждый раз специально оговариваться.

Рассмотрим вопрос о том, когда криволинейным интеграл $\int\limits_{\widehat{AB}} Pdx + Qdy$ зависит только от точек A и B и не зависит от выбора

кривой \widehat{AB} , их соединяющей.

Теорема 3. Пусть функции P(x, y) и Q(x, y) непрерывны в плоской области G, тогда эквивалентны следующие три условия.

1. Для любого замкнутого контура γ , лежащего в G,

$$\int_{\gamma} Pdx + Qdy = 0.$$

2. Для любых двух точек $A \in G$ и $B \in G$ значение интеграла

$$\int_{\widehat{AB}} Pdx + Qdy$$

не зависит от кривой $\widehat{AB}\subset G$, соединяющей точки A и B.

3. Выражение P dx + Q dy является в G полным дифференциалом, m. e. существует функция $u(M) = u(x, y), \ M = (x, y),$ определенная в G u такая, что

$$du = Pdx + Qdy. (47.28)$$

B этом случае если $A \in G$ и $B \in G$, то

$$\int_{\widehat{AB}} Pdx + Qdy = u(B) - u(A)$$
(47.29)

для любой кривой \widehat{AB} , соединяющей в G эти точки.

Таким образом, выполнение каждого из условий 1, 2 и 3 необходимо и достаточно для выполнения каждого из двух остальных.

Доказательство. Покажем, что из первого условия следует второе, из второго - третье, а из третьего - первое, т.е. проведем доказательство по схеме

Этим будет, очевидно, доказано, что из любого условия $1,\,2$ и 3 следует любое другое из них.

Но

$$\int_{(\widehat{AB})_{1}} Pdx + Qdy = \int_{(\widehat{AB})_{1}} Pdx + Qdy + \int_{(\widehat{BA})_{2}} Pdx + Qdy =$$

$$\int_{(\widehat{AB})_{1}} Pdx + Qdy - \int_{(\widehat{AB})_{2}} Pdx + Qdy. \tag{47.31}$$

т.е. свойство 2 выполняется.

Второй шаг: $2\to 3$. Пусть $M_0\in G,\ M=(x,\ y)\in G$ и $\widehat{M_0M}-$ некоторая кривая, соединяющая в G точки M_0 и M. Положим

$$u(M) = \int_{\widehat{M_0M}} Pdx + Qdy.$$

В силу условия 2 при фиксированной точке M_0 функция u(x, y) является однозначной функцией, так как значение u(M) = u(x, y) не