Syllabus
Basics
Alphabets, Strings, Languages and Classes
Regular Languages
Definition and Models
Closure Properties
Regular Expressions
Equivalence of Finite Automata and Regular Expressions
Pumping Lemma
Context-Free Languages
Definitions
Normal Forms
Pushdown Automata
Equivalence of CFLs and PDAs
CFL Pumping Lemma
Deterministic CFLs
Turing Machines
Multiple Tapes and RAMs
Nondeterministic
Church-Turing Thesis
Computability Theory
Decision Problems
Decidable and Recognizable Sets
Universal Turing Machines
Undecidability
Halting Problem
Rice's Theorem

Recursion Theorem **Complexity Theory** Time and Space (memory) Multiple Tapes and RAMs Nondeterministic Computation DTIME, DSPACE, NTIME, NSPACE Basic relationships Savitch's Theorem Nondeterministic Space closed under complement Time and Space Hierarchies The P versus NP problem Definitions of P and NP Robustness of definitions NP-completeness of Satisfiability and other problem Implications of NP-completeness and how to handle it **Beyond NP PSPACE** Exponential-Time Provably Intractable Problems Other Models of Efficient Computation Brief discussion of probabilistic, parallel and quantum computation