

Predictive Maintenance with MATLAB

Why perform predictive maintenance?

- Increase "up time"
- Minimize maintenance cost
- Optimize supply chain

- Reliability
- Reputation
- Cost of Ownership

What is predictive maintenance?

- Predict and fix failures before they arise
 - Import and analyze historical sensor data
 - Train model to predict when failures will occur
 - Deploy model to run on live sensor data
 - Identify failures in real time
- Snecma: <u>Presentation of a</u>
 <u>Platform for the Development</u>
 <u>of Aircraft Engine Monitoring</u>
 Algorithms: SAMANTA

CFM56-5B

Nearly 105 millions of cumulative flight hours More than 5 895 engines in service at 198 operators

Thrust range: 21 600 to 32 000 lb

Applications: Airbus Family A318, A319, A320, A321

CFM56-7E

More than 195 millions of cumulative flight hours 9 801 engines in service at 265 operators

Thrust range: 19 500 to 27 300 lb

Applications: Boeing Family 737-600, 737-700, 737-800, 737-

900

Predictive maintenance of turbofan engine

- Sensor data from 100 different engines of the same model
- Goal: predict when failures will occur on engines based on their live sensor data

Data provided by NASA PCoE http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Use historical data to predict when failures will occur

Data analytics workflow

Access and Explore Data

Preprocess Data

Develop Predictive Models

Integrate Analytics with Systems

Machine Learning

Characteristics and Examples

- Characteristics
 - Too many variables
 - System too complex to know the governing equation (e.g., black-box modeling)

- Examples
 - Pattern recognition (speech, images)
 - Financial algorithms (credit scoring, algo trading)
 - Energy forecasting (load, price)
 - Biology (tumor detection, drug discovery)

Challenges – Machine Learning

- Significant technical expertise required
- No "one size fits all" solution
- Locked into Black Box solutions
- Time required to conduct the analysis

Overview – Machine Learning

Supervised Learning

Overview – Machine Learning

Unsupervised Learning

Sharing MATLAB Applications

- Share applications with those who do not need MATLAB
- Royalty free
- MATLAB Production Server provides most efficient path for secure and scalable enterprise applications

Deploying Applications with MATLAB

Integration with IT systems

Questions?