MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Exercise Type (Cost):	
J#:		In-Class (1AP)	
Date: 2017 June 19			
Standard: This student is able to C04: IntParts. Use integration by parts.		Mark:	
3/4	\star reattempt due on:		

Find $\int x \sin(2x) dx$.

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type (Cost):
J#:	In-Class (1AP)
Date: 2017 June 19	

Standard: This stude:	nt is able to	Mark:
C05: IntTech.	Identify appropriate integration techniques.	
2/4	★ reattempt due on:	

Draw lines matching each of the five integrals on the left with the most appropriate integration technique listed on the right. Multiple techniques may be technically possible, but choose the technique most useful to begin integration. Every integral and technique is used exactly once in the correct answer.

$$\int \frac{x^3}{\sqrt{4 - x^2}} dx$$

$$\int x^2 \cos(x) dx$$

$$\int \cos^2(x) dx$$

$$\int \frac{x + 4}{x^2 + 3x + 2} dx$$

$$\int x \cos(x^2) dx$$

- Integration by Substituion
- $\bullet\,$ Method of Partial Fractions
- Trigonometric Identities
- Trigonometric Substitution
- Integration by Parts

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 19		
Standard: This student is able to		Mark:
C06: AreaBtCurv. Express an area between curves as a definite integral.		Mark.
$1/4$ \star reat	tempt due on:	

Find a definite integral equal to the area bounded by $y = 2x^2 + x$ and $y = x^2 - x + 3$.