Bijlage 5: Bels, decibels en dB

Doorheen de cursus vindt u af en toe de eenheden bel en decibel (dB). De eenheid bel laat toe om twee vermogens of twee spanningen te vergelijken.

Beschouw bijvoorbeeld een versterker die bij een bepaald ingangsvermogen P_{in} een uitgangsvermogen P_{uit} levert.

Figuur B5.1: Vermogenversterker

De vermogenversterking $A_P = P_{uit} / P_{in}$. Zoals uit deze formule blijkt, is de vermogenversterking A_P een dimensieloze grootheid.

Vaak gebruikt men de Briggse logaritme van P_{uit} / P_{in} . De uitdrukking log_{10} (P_{uit} / P_{in}) wordt uitgedrukt in <u>bel</u>.

In plaats van de bel, maakt men vaak gebruik van <u>de decibel</u>. De vermogenversterker van Figuur B5.1 heeft een versterkingsfactor gelijk aan $10 \log_{10} (P_{uit} / P_{in})$ decibel.

Indien bijvoorbeeld $P_{in} = 1$ mW en $P_{uit} = 1$ W, dan is $A_P = 1000$. Dit betekent dat een vermogenversterking van 3 bel = 30 decibel = 30 dB bekomen wordt.

Het is perfect mogelijk om de versterking uit te drukken met behulp van de ingangsspanning en de uitgangsspanning. Indien de ingangsweerstand R en de uitgangsweerstand R van de versterker gelijk zijn, dan geldt dat $P_{uit} = U^2_{uit} / R$ en dat $P_{in} = U^2_{in} / R$. Dit impliceert dat $10 \log_{10} (P_{uit} / P_{in}) = 20 \log_{10} (U_{uit} / U_{in})$.

In het algemeen zijn de ingangsweerstand en de uitgangsweerstand van de versterker niet gelijk. Toch wordt de bovenstaande formule $20 \log_{10} \left(U_{uit} \, / \, U_{in} \right)$ algemeen aanvaard voor het aantal dB spanningsversterking.

We kunnen concluderen dat het aantal dB vermogenversterking gelijk is aan $10 \log_{10} (P_{uit} / P_{in})$. Het aantal dB spanningsversterking is gelijk aan $20 \log_{10} (U_{uit} / U_{in})$. In het algemeen is het aantal dB vermogenversterking en het aantal dB spanningsversterking niet gelijk.

Het is best mogelijk een schakeling te beschouwen waarbij $P_{uit} < P_{in}$. In dit geval is $10 \log_{10} (P_{uit} / P_{in})$ negatief. Het is best mogelijk een schakeling te beschouwen waarbij $U_{uit} < U_{in}$. In dit geval is $20 \log_{10} (U_{uit} / U_{in})$ negatief.