

Comparison of classifier Algorithms on bank marketing Dataset

Presented by:

Arwa AlBassam & Nouf Alsaeed

OUTLINES

01	Introduction	02	Workflow
03	Dataset Description	04	EDA
05	Baseline Model	06	Pre-processing
07	M. I II.	0.0	D. V
07	Modelling	08	Results
09	Conclusion	10	Future work

Introduction

The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y).

Workflow

Dataset Description

From UCI 45211 Rows X 17 Columns

Feature	Description
Age	Age of clints
Job	Type of job
Marital	Marital status
Education	(Categorical: "unknown", "secondary", "primary", "tertiary")
Balance	Average yearly balance, in euros (numeric)
Housing	Has housing loan? (Binary: "yes", "no")
Loan	Has personal loan? (Binary: "yes", "no")
Poutcome	Outcome of the previous marketing campaign
Y	Has the client subscribed to a term deposit? (Binary: "yes", "no")

EDAVisualizations

EDA (Cont.)

Dataset statistics

17
45211
0
0.0%
0
0.0%
29.2 MiB
677.2 B

EDA (Cont.) Visualizations

Heatmap for correlation matrix

Base Model (Random Forest)

Data Preprocessing

Creating Dummy Variables.

Balance Data.

Feature Scaling.

Data Preprocessing (cont.)

Balancing the Model

Distinct count	2
Unique (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Memory size	353.3 KiB

 Value
 Count Frequency (%)

 no
 39922
 88.3%

 yes
 5289
 11.7%

Data Preprocessing (cont.)

Balancing the Model

```
    5289
    5289
```

Name: y, dtype: int64

Modelling

Models Evaluation

Accuracy After Balancing The Data

Models Evaluation

Recall Before Balancing The Data

Recall After Balancing The Data

Models Evaluation

Model Comparison

Ensemble Methods

Stacking Ensemble Family

Ensemble Methods Evaluation

Ensamble Methods Evaluation

Ensemble Methods Evaluation

Model Comparison

Best model for our project (Random Forest)

ACCURACY: 86.8% RECALL: 90.23%

Final results (Model Optimization)

Model Comparison

Conclusion

The result is not that much different after optimizing the model using GridSearchCV which can mean that we hit our limit with this model.

Future Work

Try to use other balancing techniques.

Try to work with Deep Learning models.

Increase number of observations.

Feature engineering.

Thank you!