

Devoir maison n°9

à rendre le 29/01

Exercice 1

On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=7$ et la formule de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 + u_n}.$$

1. Démontrer par récurrence que pour tout $n \in \mathbb{N}$:

$$2 \le u_{n+1} \le u_n$$
.

2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 2

Prouver que la suite de terme général $u_n = \lfloor \cos \left(\frac{n\pi}{3} \right) \rfloor$ est divergente.

On rappelle que [·] désigne la partie entière.

Exercice 3

Pour tout entier naturel non nul n, on pose

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$$
 et $v_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$.

1. Démontrer que pour tout entier naturel non nul n:

$$2\sqrt{n}\sqrt{n+1} \leq 2n+1.$$

2. Prouver que $(u_n)_{n\in\mathbb{N}^*}$ est décroissante.

On admettra (la preuve est similaire) que $(v_n)_{n\in\mathbb{N}^*}$ est croissante.

- 3. Prouver que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 4. En déduire la limite : $\lim_{k=1}^{n} \frac{1}{\sqrt{k}}$.
- 5. Déterminer un équivalent simple de $\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$ lorsque n tend vers $+\infty$.