

5632. Checking Existence of Edge Length Limited Paths

My Submissions (/contest/weekly-contest-220/problems/checking-existence-of-edge-length-limited-paths/submissions/)

Back to Contest (/contest/weekly-contest-220/)

An undirected graph of n nodes is defined by edgeList, where edgeList[i] = $[u_i, v_i, dis_i]$ denotes an edge between nodes u_i and v_j with distance dis_j . Note that there may be **multiple** edges between two nodes.

Given an array queries, where queries $[j] = [p_j, q_j, limit_j]$, your task is to determine for each queries [j]whether there is a path between p_i and q_i such that each edge on the path has a distance **strictly less than** limit_i.

Return a boolean array answer, where answer.length == queries.length and the jth value of answer is true if there is a path for queries[j] is true, and false otherwise.

User Accepted:	0
User Tried:	0
Total Accepted:	0
Total Submissions:	0
Difficulty:	Hard

Example 1:

Input: n = 3, edgeList = [[0,1,2],[1,2,4],[2,0,8],[1,0,16]], queries = [[0,1,2],[0,2,5]]

Output: [false,true]

Explanation: The above figure shows the given graph. Note that there are two overlapping edges between 0 and 1 with distances 2 For the first query, between 0 and 1 there is no path where each distance is less than 2, thus we return false for this query. For the second query, there is a path $(0 \rightarrow 1 \rightarrow 2)$ of two edges with distances less than 5, thus we return true for this query

Example 2:

Input: n = 5, edgeList = [[0,1,10],[1,2,5],[2,3,9],[3,4,13]], queries = [[0,4,14],[1,4,13]]

Output: [true,false]

Exaplanation: The above figure shows the given graph.

Constraints:

- $2 \le n \le 10^5$
- 1 <= edgeList.length, queries.length <= 10⁵
- edgeList[i].length == 3
- queries[j].length == 3

- 0 <= u_i, v_i, p_j, q_j <= n 1
 u_i != v_i
 - p_j != q_j
 - 1 <= dis_i , $limit_j <= 10^9$
 - There may be **multiple** edges between two nodes.

