Chapter 1 - The Real and Complex Number Systems

Problem 1. If r is rational $(r \neq 0)$ and x is irrational, prove that r+x and rx are irrational.

Proof. Write $r = \frac{m}{n}$, where m and n are nonzero integers. Suppose r+x were rational. Then there exists integers p and q, with $q \neq 0$ such that

$$r + x = \frac{p}{q} \tag{1}$$

Then x can be expressed as

$$x = \frac{p}{q} - \frac{m}{n} = \frac{pn - mq}{qn} \in \mathbb{Q}$$
 (2)

contradicting our assumption about x. So r + x must be irrational.

Now, suppose rx were rational. Then there exists integers p and q, with $q \neq 0$ such that

$$x = \frac{p}{q} \cdot \frac{n}{m} \tag{3}$$

since $m \neq 0$. Then x can be written as

$$x = \frac{pn}{am} \in \mathbb{Q} \tag{4}$$

contradicting our assumption about x. So rx must be irrational.

Problem 2. Prove that there is no rational number whose square is 12.

Proof. Suppose there exists a rational number $r \in \mathbb{Q}$ such that $r^2 = 12$. We can write $r = \frac{m}{n}$ where m and n share no common factors. Then

$$\frac{m^2}{n^2} = 3 \cdot 4 \implies m^2 = 3 \cdot 4n^2 \tag{5}$$

Thus m^2 is divisible by 3. This implies m is divisible by 3 (otherwise m^2 would not be). Hence, m^2 is divisible by 9, and so is the right hand side of (5). This implies that $4n^2$ is divisible by 3. Since 4 is not divisible by 3, it follows that n^2 , and thus n is divisible by 3. This contradicts the fact that m and n share no common factors. Thus, there can be no rational number that satisfies $r^2 = 12$.

Problem 3. Prove Proposition 1.15: The axioms for multiplication in a field imply the following statements.

- (a) If $x \neq 0$ and xy = xz then y = z
- (b) If $x \neq 0$ and xy = x then y = 1
- (c) If $x \neq 0$ and xy = 1 then y = 1/x
- (d) If $x \neq 0$ then 1/(1/x) = x.

Proof. (a)

$$y = (1/x)xy = (1/x)xz = 1z = z \tag{6}$$

- (b) Take z = 1 in (a)
- (c) Take z = 1/x in (a)
- (d) This follows from (c) if we replace x with 1/x and y with x

Problem 4. Let E be a nonempty subset of an ordered set; suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.

Proof. Suppose $\alpha > \beta$. Let $x \in E$; since α is a lower bound of E, we must have $\alpha \leq x$. Since $\alpha > \beta$ and > is transitive, it then follows that $\beta < x$. But this contradicts the fact that β is an upper bound of E. So $\alpha > \beta$ must be false, i.e. $\alpha \leq \beta$.

Problem 5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A) \tag{7}$$

Proof. Since A is bounded below, $\gamma = \inf A$ exists in \mathbb{R} , and $\gamma \leq x$ for all $x \in A$. This implies $-\gamma \geq -x$ for all $x \in A$, or $-\gamma \geq y$ for all $y \in -A$. So $-\gamma$ is an upper bound of -A. Let $\kappa < -\gamma$, then $-\kappa > \gamma$, so that $-\kappa$ is not a lower bound of A. Hence, there exists $x \in A$ such that $-\kappa > x$ or $\kappa < -x \in -A$. Hence κ is not an upper bound of -A. Then by definition, $-\gamma$ is the supremum of -A, i.e

$$-\inf A = \sup(-A) \tag{8}$$

which is equivalent to (7)

Problem 6.

Problem 7.

Problem 8. Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: -1 is a square.

Proof. Let > be an order on \mathbb{C} . Assume this turns \mathbb{C} into an ordered field. Since $i \neq 0$, we must either have i > 0 or i < 0. First, assume i > 0. Then $-1 = i^2 > 0$. Add 1 to both sides to obtain 0 > 1. But 1 = (-1)(-1) > 0 since -1 is positive, resulting in a contradiction. Now assume i < 0. Add -i to both sides to obtain 0 < -i. Hence $-1 = (-i)^2 > 0$. Again, we have 0 > 1, but 1 = (-1)(-1) > 0 resulting in another contradiction. So \mathbb{C} cannot be an ordered field under this order.

T)	1 1	1	\mathbf{a}
Pro	D	lem	9.

Problem 10.

Problem 11.

Problem 12.

Problem 13.

Problem 14.

Problem 15.

Problem 16.

Problem 17.

Problem 18. If $k \geq 2$ and $\mathbf{x} \in \mathbb{R}^k$, prove that there exists $\mathbf{y} \in \mathbb{R}^k$ such that $\mathbf{y} \neq \mathbf{0}$ but $\mathbf{x} \cdot \mathbf{y} = 0$. Is this also true if k = 1?

Proof. If $\mathbf{x} = \mathbf{0}$, then take \mathbf{y} to be any nonzero vector in \mathbb{R}^k . Otherwise, if $\mathbf{x} \neq \mathbf{0}$ there is an integer ℓ satisfying $1 \leq \ell \leq k$ such that $x_{\ell} \neq 0$. Choose an integer $j \neq \ell$ that satisfies $1 \leq j \leq k$ (this is possible, since $k \geq 2$). Then let \mathbf{y} be the vector defined as

$$y_j = x_\ell, \quad y_\ell = -x_j, \quad y_i = 0 \text{ for } i \neq \ell, j$$
 (9)

 $y_j = x_\ell \neq 0$ implies that $\mathbf{y} \neq \mathbf{0}$ and the inner product $\mathbf{x} \cdot \mathbf{y}$ satisfies:

$$\sum_{i=1}^{k} y_i x_i = y_j x_j + y_\ell x_\ell = x_\ell x_j - x_j x_\ell = 0$$
(10)

When k = 1, the inner product corresponds to standard scalar multiplication. The result fails for x = 1, because if xy = 0, we have:

$$0 = xy = 1y = y \tag{11}$$

by the multiplication axioms for a field. Thus the result does not hold in \mathbb{R}^1 .

Problem 19.

Problem 20.