[CSED233-01] Data Structure Binary Search Tree

Jaesik Park

Binary Search Tree (BST)

- A binary tree
 - Each node has a (key, value) pair, where key is unique
 - BST property
 - Every node is ordered by key which belongs to a total order
 - For any two non-equal keys X & Y, either X < Y or X > Y
 - The key of any node is greater than all keys stored in its left subtree & less than all keys in its right subtree

Also known as ordered/sorted binary tree

Binary Search Tree (BST): Example

- Only keys (not priority values) are shown
- *Search*(8, *D*)

BST: Search(x, D)

- After Search(8, D)
- Time complexity = O(*height*)
 - O(log n) if BST is balanced
 - O(n) if BST is a linear list (worst case)

BST: Sort(D) in Ascending Order

- How to sort the keys in an ascending order?
 - Do an *in-order* traversal
- Time complexity = O(n)

Review: Tree Traversal

Types of traversals

- Preorder(T) = < n, Preorder(T_1), ..., Preorder(T_k)>
- Postorder(T_1) = < Postorder(T_1), ..., Postorder(T_k), $n > \infty$
- Inorder(T_1) = < Inorder(T_1), n, Inorder(T_2), ..., Inorder(T_k)>
 - No natural definition of *Inorder* (except for binary tree)

Tree Traversals: Examples

```
• Preorder(T) = ?
```

1, 2, 4, 5, 3, 6, 8, 7

• *Postorder(T)* = ?

4, 5, 2, 8, 6, 7, 3, 1

• *Inorder(T)* = ?

4, 2, 5, 1, 8, 6, 3, 7

Inorder Tree Traversal: Binary Search Tree

• *Inorder(T)* = 1, 2, 3, 4, 5, 6, 7, 8

BST: Insert(x, D)

• *Insert*(13, *D*)

BST: Insert(x, D)

- After *Insert*(13, *D*)
- *Insert*(18, *D*)

BST: Insert(x, D)

- After *Insert*(13, *D*), *Insert*(18, *D*)
- Time complexity =?

BST: Delete(x, D) – From a Leaf Node

• *Delete*(6, *D*)

BST: Delete(x, D) – From a Leaf Node

BST: Delete(x, D) – From a Leaf Node

BST: Delete(x, D) – From a Degree 1 Node

BST: Delete(x, D) – From a Degree 1 Node

- *Delete*(20, *D*)
 - Find the location of the node whose key = 20
- Almost as easy as the leaf case: only one child

BST: Delete(x, D) – From a Degree 1 Node

• *Delete*(12, *D*)

- *Delete*(12, *D*)
 - Identify the location of the node whose key = 12
- Hard case: two children

- *Delete*(12, *D*)
 - Identify the location of the node whose key = 12
 - Replace it with the smallest key in its right subtree (or the largest key in its left subtree)

- Note:
 - The smallest key in the right subtree must be in a leaf (like in this example) or degree 1 node (like in the next example)

- After Insert(14, D) & Insert(15, D)
- Then *Delete*(13, *D*)

- *Delete*(13, *D*)
 - Here, the smallest key is in a degree 1 node

- After *Delete*(13, *D*)
- Time complexity = ? O(height)

Convert a Binary Tree into a Binary Search Tree?

Keep the structure same, but change the values only

Convert a Binary Tree into a Binary Search Tree?

Keep the structure same, but change the values only

- 1. Inorder traversal
- 2. Sort the traversal list
- 3. Copy the sorted list during another traversal Time complexity?

BST: SearchMinimum(*D*)

• Find the node with minimum value

BST: SearchMinimum(*D*)

- Find the node with minimum value
 - Traverse the node from root to left

References

- Further reading list and references
 - https://www.geeksforgeeks.org/binary-search-tree-data-structure/

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee