Comparing Critics to the General Public: Who is a better predictor of a movie's success?

Jacob Inwald and Ollie Jones

1 Overview

This report analyzes the relationship between different aspects of a movie and its gross income. These aspects include director list, actor list, runtime and so on. To investigate these relationships, we looked at a comprehensive dataset compiled by the movie ranking website IMDB.com. This dataset includes information about a movie like the director, the actors, the genre.

We found ..

2 Introduction

Context and motivation We explore this dataset using data analytics,

Previous work Brief description of any previous work in this area (e.g., in the media, or scientific literature or blogs).

E.g. Recent surveys show that most students prefer final projects to final exams [6].

Objectives What questions are you setting out to answer? We set out to investigate the relationship between various factors and the rating or gross revenue of a movie. There are are various factors that can come into play affecting the rating a movie gets or the success of that movie at box office. As such, we will only focus on a few of these factors, looking specifically at: Director, Actors, Genre and Runtime. We will investigate the effect these factors have on movie reception, and attempt to determine which are most impactful to the success of a movie.

3 Data

Data provenance We utilized two movie datasets: an IMDb dataset[5] and TMD[2] (The Movie Dataset). The IMDb dataset contains data about movies made from 2006-2016, while the TMD dataset contains data about movies released on or before July 2017. Both datasets were obtained from kaggle.com and are shared under the CC0 1.0 Universal Public Domain Dedication. TMD is merged data from TMDb (The Movie DataBase) and grouplens.org, a movie ranking site. However, we only used the part that was obtained from TMDb. It is worth noting that the provenance of the IMDb dataset has been subject to controversy as it was scraped from IMDb.com. However, for this investigation, we used only a sample of this dataset which is publicly available on kaggle.com.

Data description The IMDb movie dataset contains 12 columns consisting of string or floating point values. One unique column is the Genre, which lists the arbitrary genres assigned to each movie in the dataset such as Action, Adventure, Sci-Fi, Mystery, Horror, Thriller, Animation, Comedy, Family, Fantasy, Drama, Music, Biography, Romance, History, Crime, Western, War, Musical and Sport. The column summary is shown in Figure 1.

Column Name	me Description			
Rank	The rank the movie has in the IMDb database	Integer		
Title	The name of the movie	String		
Genre	The genres that apply to the movie, there can be anywhere from	Genre		
	1-3 genres. A genre can be any from: Action, Adventure, Sci-Fi,	Category		
	Thriller, Animation, Comedy, Family, Fantasy, Drama, Music,			
	Romance, History, Crime, Western, War, Musical, Sport, Horror			
	Mystery, Biography			
Description	The description of the movie	String		
Director	The person who directed the movie	String		
Actors	The lead roles in the movie	String		
Year	The year the movie was released	Integer		
Runtime (Minutes)	The runtime in minutes of the movie	Integer		
Rating	The mean rating of the movie, taken from IMDb.com	Float		
Votes	The amount of users that voted on a movie to give it that rating	Integer		
Revenue (Millions)	The gross income the movie made at the US box office	Float		
Metascore	The rating of movie, determined using aggregated weighted Critics scores	Integer		

Figure 1: The different columns in the IMDb-Movie-Data.csv file

We only worked with the crew table in TMD, which is a small part of the whole database. This table has three columns - cast, crew, and id. However, the cast and crew columns are not composed of discrete datapoints, instead being json files representing the entire cast or crew list. As such, when working with it, we had to extract the data using string parsing methods. The column summary is shown in Figure 2.

Column Name	Description	Data Type
cast crew id	The cast list of the movie, including all actors who appeared in it. The entire crew list of the movie, including all the people who made it. The movie id. This is used in the larger dataset to connect tables together	.json file .json file Integer

Figure 2: The different columns in the credits.csv file

Data processing To assist in parsing the TMD dataset, we used a Python script to count the amount of movies each individual director or actor has helped make. The resulting datasets were saved as CSV files named actor_counts.csv and director_counts.csv respectively. This newly acquired data was then merged with the original IMDb dataset, which involved dropping the Description column while replacing the Director and Actor columns with Director Exp. and Mean Lead Roles Exp. This resulted in a merged data set with structure shown in Figure 3.

Column Name	Description	Data Type
Rank	See fig 1	Integer
Title	See fig 1	String
Genre	See fig 1	Genre
Director Exp.	The number of movies that the director of the movie has made	Float
Mean Lead Roles Exp.	The mean number of movies that the lead actors have been in	Float
Year	See fig 1	Integer
Runtime (Minutes)	See fig 1	Integer
Rating	See fig 1	Float
Votes	See fig 1	Integer
Revenue (Millions)	See fig 1	Float
Metascore	See fig 1	Integer

Figure 3: The different columns in the merged data set

To check this data was properly normalised we made a histogram plot of all the numeric variables, shown in Figure 4. As expected, a few variables did not appear to be normally distributed, namely: Revenue (Millions), Votes, Runtime (Minutes), Director Exp., and Rating.

Figure 4: The distributions of the numeric variables in the merged dataset

As shown in the plot, Revenue (Millions) and Votes are severly right skewed, implying an exponential distribution; Runtime (Minutes) and Director Exp. appear to be less severly right-skewed, implying a lognormal distribution; Rating seems to be left-skewed. The transformations for these variables that gave the best approximations to a normal distribution were:

• Revenue (Millions) : Cube Root transform • Director Exp. : Log transform

• Votes: Cube Root transform

• Runtime (Minutes) : Log transform • Rating : Square transform

Figure 5 shows the transformed and normalised numeric variables. The label has the p-values from testing whether the transformed distribution is normal, using the Kolmogorov-Smirnov test[3] for goodness of fit. One interesting note is that altough the Director Exp. column fails the Kolmogorov-Smirnov test, there is clearly missing data; around 3 columns are missing from the histogram shown. With this in mind, and as the histogram does follow the normal distribution curve, there is sufficient evidence to assume ln(Director Exp.) has a normal distribution.

Figure 5: The distributions of the standardised and normalised numeric variables in the merged dataset

This normalised data was used for the rest of our investigations later on.

Figure 6: Demonstration figure. This caption explains more about the figure. Note that the font size of the labels in the plot is 9pt, which is obtained by the settings as shown in the Jupyter notebook.

4 Exploration and Analysis

A data science analysis of the paper, including:

- Visualisations (for example Figure 6) and tables (for example Table 1). Please make sure that all figures and tables are referred to in the text, as demonstrated in this bullet point.
- Interpretation of the results
- Description of how you have applied one ore more of the statistical and ML methods learned in the FDS to the data
- Interpretation of the findings

You can use equations like this:

$$\bar{x} = \sum_{i=1}^{n} x_i \tag{1}$$

or maths inline: $E = mc^2$. However, you do not need to reexplain techniques that you have learned in the course – assume the reader understands linear regression, logistic regression K-nearest neighbours etc. Remember to explain any symbols use, e.g. "n is the number of data points and x_i is the value of the ith data point.".

5 Discussion and Conclusions

Summary of findings

Evaluation of own work: strengths and limitations

Comparison with any other related work E.g. "Anscombe has also demonstrated that many patterns of data can have the same correlation coefficient" [1].

Wikipedia can also be cited but it is better if you find the original reference it for a particular claim in the list of references on the Wikipedia page, read it, and cite it.

The golden rule is always to cite information that has come from other sources, to avoid plagiarism [4].

Improvements and extensions

References

- [1] Francis J Anscombe. "Graphs in statistical analysis". In: *The American Statistician* 27.1 (1973), pp. 17–21.
- [2] Rounak Banik. *The Movies Dataset*. 2018. URL: https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset?resource=download.
- [3] Laha Chakravarti and Roy. *Handbook of Methods of Applied Statistics*. Vol. 1. John Wiley and Sons, 1967, pp. 392–394.
- [4] GONZÁLEZ. *Plagiarism Wikipedia, The Free Encyclopedia*. Last accessed 22 July 2004. 2004. URL: https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350.
- [5] Ivan Gonzalez. 1000 IMDB movies (2006-2016). Scraped from https://IMDB.com. 2023. URL: https://www.kaggle.com/datasets/gan2gan/1000-imdb-movies-20062016.
- [6] Phil Space. "Why oh why must I do this project?" In: *The Daily Post* (2021). Retrieved on 28 February 2021. URL: https://www.dailypost.com.

Table 1: Excerpt from Scottish Index of Multiple Deprivation, 2016 edition. https://simd.scot. You may put more information in the caption.

Location	Employ-	Illness	Attain-	Drive	Drive	Crime	
	ment		ment	Primary	Secondary		
Macduff	10	95	5.3	1.5	6.6	249	
Kemnay	3	40	5.3	2.4	2.4	168	
Hilton	0	10	6.3	2.2	3.0	144	
Ruchill	8	130	4.9	1.7	5.6	318	
Belmont	2	50	6.1	3.1	3.2	129	
• • •							