9.1

Premières expressions du produit scalaire

SPÉ MATHS 1ÈRE - JB DUTHOIT

Histoire

La notion de produit scalaire est apparue pour les besoins de la physique.

Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809; 1877).

Il fut baptisé produit scalaire par William Hamilton en 1853.

9.1.1 Définition

Définition 9.20

Le **produit scalaire d'un vecteur** \vec{u} **par un vecteur** \vec{v} est le nombre réel noté $\vec{u}.\vec{v}$, défini par :

- $\vec{u} \cdot \vec{v} = 0$ si $\vec{u} = \vec{0}$ ou si $\vec{v} = \vec{0}$.
- $\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$, en posant $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

Remarque

Le produit scalaire $\vec{u}.\vec{v}$ est indépendant des représentants des vecteurs \vec{u} et \vec{v} . On peut donc choisir des vecteurs de même origine.

Exercice 9.14

Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en sachant que AB = AC = BC = 1.

• Exercice 9.15

Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en utilisant les données de la figure suivante :

9.1.2 Cas particulier de vecteurs colinéaires

Propriété 9. 23

- si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de même sens, alors $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC$.
- si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de sens opposés, alors $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AC$.

Exercice 9.16

Soient A,B et C trois points alignés tels que $B \in [AC]$ et AB = 4 et BC = 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{AB}.\overrightarrow{AB}$ et $\overrightarrow{BC}.\overrightarrow{BA}$.

9.1.3 Expression du produit scalaire avec le projeté orthogonal

Propriété 9. 24

Pour tous vecteurs non nuls $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, on considère le point C' projeté orthogonal de C sur la droite (AB).

On a alors $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AC'}$

Exercice 9.17

Soit ABC un triangle et soit H le pied de la hauteur issue de C. On sait également que AH=5, AB=3 et B appartient au segment [AH].

ightharpoonup Calculer $\overrightarrow{AB}.\overrightarrow{AC}$

Savoir-Faire 9.28

SAVOIR CHOISIR LA FORME ADAPTÉE POUR CALCULER UN PRODUIT SCALAIRE Quand cela est possible, calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ dans chacune des situations ci-dessous.

Pas d'inquiétude! Il sera possible de calculer tous ces produits scalaires...un peu de patience!

Exercice 9.18

On considère le carré ABCD de coté a.

On note O le point d'intersection de ses diagonales.

Calculer, en fonction de a, les produits scalaires suivants :

- AB.AO
- $\overrightarrow{AB}.\overrightarrow{CD}$
- $\overrightarrow{AC}.\overrightarrow{AD}$
- $\overrightarrow{AB}.\overrightarrow{OD}$

Savoir-Faire 9.29

Savoir utiliser le produit scalaire pour calculer un angle ou une distance ABC est le triangle ci-dessous avec AB=3 et AC=4. H est le pied de la hauteur issue de C, et AH=2.5

- 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$
- 2. En déduire la mesure de α , mesure de l'angle \widehat{BAC} arrondie au degré près.

