计算方法第一次程序作业报告

PB19071405 王昊元

2022年04月06日

1 问题描述

 $I(\ln x) = \int_1^2 \ln x \, dx$,取 $\epsilon = 10^{-4}, \, h = 1$,试用 Romberg 公式计算积分直到

$$|R_{k,k} - R_{k-1,k-1}| < \epsilon$$

时停止,并做出 Romberg 积分数值表。

2 数值计算方法

Romberg 积分公式主要使用了外推算法,外推算法在不增加计算量的前提下提高了误差的精度。

算法中 j=1 时, $R_{k,j}$ 即表示梯形积分,从梯形积分利用外推算法得到 Simpson 积分公式,

$$I(f) \approx T_{2n}(f) + \frac{1}{3}(T_{2n}(f) - T_n(f)) = \frac{4}{3}T_{2n} - \frac{1}{3}T_n = S_n$$

也就是算法中 j=2 的情形,截断误差也从梯形积分的 $O(h^2)$ 提高到了 $O(h^4)$ 。对 $S_{2n}(f)$, $S_n(f)$ 再作一次线性组合则可以得到

$$I(f) \approx S_{2n}(f) + \frac{1}{15}(S_{2n}(f) - S_n(f)) = C_n(f)$$

我们利用外推算法通过 Simpson 积分得到了 Cotes 积分,对应算法 j=3 的情况,截断误差也提高到了 $O(h^6)$ 。

根据上述推导过程及经验,我们可以得到 Romberg 计算公式:

$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}, \quad k = 2, 3, \dots$$

3 结果

实验结果截图如下:

图 1: 程序运行结果

实验结果具体如下:

Romberg积分结果: 0.38629431。

表 1: Romberg 积分表

21. 100mborg ///// 2							
0.34657359							
0.37601935	0.3858346						
0.38369951	0.38625956	0.38628789					
0.38564391	0.38629204	0.38629421	0.38629431				

表 2: 复化梯形积分误差精度表

<u> </u>						
N	1	2	4	8		
error	0.039720771	0.010275012	0.0025948517	0.00065045117		
order		1.9508	1.9854	1.9961		

表 3: 复化 Simpson 积分误差精度表

N	1	2	4	8
error		0.00045975895	3.4798305e-05	2.3176536e-06
order			3.7238	3.9083

4 结论

比较积分的准确结果和 Romberg 积分的结果,可以发现误差提高到了 $O(10^{-8})$,而结束时 k 的值为 4,这也验证了 Romberg 积分公式的正确性。

而从误差精度表中也可以发现,复化梯形积分和复化 Simpson 积分的误差分别为 $O(10^{-2})$ 和 $O(10^{-4})$,符合我们的预期。

对于积分结果的每一列(即复化梯形积分、复化 Simpson 积分),可以看到随着 N 的逐渐增大,误差逐渐减小,order 也逐渐减小,也不断接近于 -2 与 -4。这也意味着在进行复化梯形积分和复化 Simpson 积分时,所取分点逐渐增多时,积分产生的截断误差也就越小。