Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Stefan Geschke, Mathias Schacht, Fabian Schulenburg

Sommersemester 2014 Blatt 5

A: Präsenzaufgaben am 8. Mai 2014

- 1. Finden Sie jeweils eine Stammfunktion F(x) von f(x) und machen Sie die Probe, d.h., überprüfen Sie, ob F'(x) = f(x) gilt.
- (i) $f(x) = 4x^2$ (ii) $f(x) = \sqrt{x}$ (iii) $f(x) = e^{3x+1}$
- **2.** Berechnen Sie $\int \frac{1}{\sqrt{x}} dx$ sowie $\int \sin(3x+1) dx$.

Vergessen Sie nicht, die Probe zu machen!

- **3.** Berechnen Sie $\int x \cdot \sin x \, dx$ und machen Sie die Probe.
- 4. a) Berechnen Sie $\int_{-\infty}^{3} \sqrt{x} \ dx$. Skizzieren Sie den Graphen der Funktion $f(x) = \sqrt{x}$ und erläutern Sie die anschauliche Bedeutung Ihres Ergebnisses auf zwei Arten: erstens unter Verwendung des Begriffs "Flächeninhalt", zweitens unter Verwendung des Begriffs "Durchschnittswert".
 - b) Berechnen Sie $\int \cos x \ dx$. Skizzieren Sie den Graphen der Funktion $f(x) = \cos x$ und erläutern Sie den Zusammenhang zu den Begriffen "Flächeninhalt" und "Durchschnittswert".

B: Hausaufgaben zum 15. Mai 2014

1. Das Integral lässt sich – wie Sie wissen – zur Bestimmung von Flächeninhalten verwenden. In praktischen Anwendungen kommt es aber auch sehr häufig vor, dass das Integral der Berechnung von Durchschnittswerten dient. Hier eine Aufgabe, die dies illustriert: Die Funktion $f:[0,3]\to\mathbb{R}$ sei gegeben durch

$$f(x) = 7x^3 - 42x^2 + 63x - 2.$$

Wir stellen uns vor, dass f auf dem Intervall [0,3] die Lufttemperatur in ${}^{\circ}C$ an einem festen Ort und im Laufe eines Tages angibt. (1 Einheit auf der x-Achse entspricht also 8 Stunden.) Bestimmen Sie

- (i) die Tageshöchsttemperatur;
- (ii) die Tagestiefsttemperatur;
- (iii) die Durchschnittstemperatur dieses Tages.
- 2. Berechnen Sie $\int f(x) dx$, skizzieren Sie den Graphen von f(x) und verdeutlichen Sie anhand der Skizze, um welchen Flächeninhalt es geht.

(i)
$$f(x) = x^2 - x - 6$$

(iv)
$$f(x) = \ln x$$

(ii)
$$f(x) = \sqrt[3]{x}$$

(v)
$$f(x) = e^{-x}$$

en Flacheninhalt es geht.
(i)
$$f(x) = x^2 - x - 6$$
 (iv) $f(x) = \ln x$ (ii) $f(x) = \sqrt[3]{x}$ (v) $f(x) = e^{-x}$ (iii) $f(x) = \frac{1}{1+x^2}$

3. Berechnen Sie die folgenden Integrale und machen Sie für (iii)-(v) die Probe.

(i)
$$\int (x^4 + 2x^3 - x + 5) dx$$
 (iv)
$$\int x^3 \cdot \ln x dx$$

(ii)
$$\int \frac{1}{\sqrt{x^3}} dx \text{ (für } x > 0)$$
 (v)
$$\int x^2 e^x dx$$

(iv)
$$\int x^3 \cdot \ln x \ dx$$

(ii)
$$\int \frac{1}{\sqrt{x^3}} dx \text{ (für } x > 0)$$

(v)
$$\int x^2 e^x \ dx$$

(iii)
$$\int x \cdot \sin(3x) \ dx$$

4. Es sei $f(x) = x^3 + 2x^2 + 10x - 20$. Zeigen Sie, dass f im Intervall [1,2] eine Nullstelle besitzt, und berechnen Sie diese näherungsweise mit dem Newton-Verfahren, wobei der Startwert $x_0 = 1$ sein soll. Führen Sie einige Iterationsschritte aus: Berechnen Sie zumindest x_1, x_2, x_3 und x_4 . Besser ist es jedoch, wenn Sie noch ein paar Schritte mehr durchführen, bis sich der erhaltene Wert "nicht mehr ändert".