1 杨梅二出口段

该段隧道定位在 SZK3-1、SZK3-2 地质钻孔处,主要岩层为风化灰岩,上覆粉质粘土。

(1)初始模型

图 1 初始模型

图 2 测量点分布

根据工程地质横断面图在 CAD 中等比例绘制隧道断面图,根据断面图等比例生成的杨梅一隧道出口段离散元模型如图 1 所示, 地层从上到下主要为粉质黏土、全风化灰岩、强风化灰岩、中风化灰岩。图 2 给出了相关量测点位置信息,测量点顺序按照顺时针标记。

(2)力链分布及调整

隧道围岩强度普遍偏低,因此整体力链数值都是偏小,分布差异受重力影响 较大,方向以竖直为主。左右两隧道皆位于风化程度较高岩体内,右侧隧道开挖 后调整不明显,左侧隧道开挖后力链调整有冒落拱形自平衡。

图 3 初始力链

图 4 力链调整

(3)开挖过程应力调整及位移场

表 1 初始地应力

- 1/4/VII/20//4		
量测点	水平应力/MPa	垂直应力/MPa
1	0.21	0.34
2	0.047	0.14
3	0.19	0.26
4	0.15	0.38
5	0.1	0.23
6		
7	0.048	0.1
8	0.13	0.28

图 5 和图 6 给出了开挖过程中应力调整的具体信息,1 号测量点水平应力在波动中先卸载后加载,竖直应力先加载后卸载。2 号测量点水平应力一直处于波动状态,没有明显升降规律,竖直应力发生急剧卸载。3 号测量点水平应力卸载,竖直应力先加载后卸载。4 号测量点水平应力变化不明显,竖直应力先卸载后加载。5 号测量点水平应力卸载,竖向应力加载。7 号测量点水平应力卸载,竖向缓慢加载。8 号测量点水平应力变化不明显,竖向应力急剧卸载。

从图7中可以看出,由于埋深较浅,岩层风化严重,因此扰动过程中容易发生

坍塌,位移量较大,左侧隧道围岩发生大面积塌陷,裂纹扩展严重。

图 5 右侧隧道应力调整

图 6 左侧隧道应力调整

图 7 位移及裂纹扩展