## Отчет по части I

# Отчет Аскара

# Часть 1. Зависимость от параметров распределений

Значения на графиках — это среднее по M=100 независимым реализациям для каждого набора параметров. Число вершин графа n=100, параметр k=5 для kNN-графа и порог d=1 для DIST-графа.

- 1. **kNN-граф:** Среднее число компонент связности практически не зависит от параметра  $\alpha$  SkewNormal (почти горизонтальная кривая около 6–6.5). Для Student-t с ростом  $\nu$  число компонент убывает, то есть при «тяжёлых хвостах» ( $\nu$  меньше) граф рассоединён сильнее.
- 2. **DIST-граф:** Среднее кликовое число минимально при  $\alpha=0$  и симметрично растёт при удалении от нуля (от  $\sim 40$  до  $\sim 70$ ). Для Student-t кликовое число увеличивается с  $\nu$  (от  $\sim 30$  при  $\nu\approx 1$  до  $\sim 40$ –45 при  $\nu\approx 10$ ).





# Часть 2. Зависимость от n, k и d

Значения на графиках — это среднее по M = 100 независимым реализациям для каждого набора параметров.

### • kNN-граф:

- При увеличении числа вершин n (при  $\alpha = \alpha_0, \nu = \nu_0, k = 5$ ) среднее число компонент связности возрастает.
- При увеличении числа соседей k (при  $\alpha=\alpha_0, \nu=\nu_0, n=100$ ) число компонент резко убывает.

#### • DIST-граф:

- При увеличении числа вершин n (при  $\alpha = \alpha_0$ ,  $\nu = \nu_0$ , d = 1) среднее кликовое число растёт, причём скорость роста выше для SkewNormal-графов.
- При увеличении d (при  $\alpha=\alpha_0,\ \nu=\nu_0,\ n=100$ ) кликовое число также увеличивается, и для SkewNormal-графов этот рост быстрее. Рост вызван тем, что точки чаще попадают в радиус d.



# Часть 3. Разделяющая способность статистик

Построено по  $M_{\rm large}=5000$  реализаций каждого распределения.



- **kNN-граф:** Распределения числа компонент при  $H_0$  и  $H_1$  сильно перекрываются низкая разделяющая способность, мощность маленькая.
- **DIST-граф:** Распределения кликового числа сдвинуты друг от друга: для SkewNormal значения пик около 50, для Student-t около 39. Красная зона область принятия  $H_1$ : мощность выше.

# Отчет Ярослава

## Часть 1. Влияние параметров распределений

Среднее по M=100 реализациям,  $n=100,\,k=5$  (kNN) / d=1 (DIST).

- 1. **kNN-граф:** Число треугольников почти не меняется при изменении  $\lambda$  Weibull (около 150–151); при увеличении дисперсии  $\sigma$  у Lognormal падает с 151 до 91.
- 2. **DIST-граф:** Кликовое число уменьшилось с 62 до 27 при росте  $\lambda$  (Weibull) и с 55 до 50 при росте  $\sigma$  (Lognormal).



Часть 2. Зависимость от n, k и d



## Выводы

- 1. Для метрики «треугольники» оба распределения ведут себя почти одинаково выбор распределения практически не влияет на итог.
- 2. Для «кликового числа» Weibull формирует более плотные графы: прирост относительно Lognormal усиливается с ростом n и d.
- 3. Чувствительность метрик:
  - «Треугольники» сильнее реагируют на увеличение k (приблизительно  $\propto k^3$ ), чем на n (приблизительно  $\propto n$ ).
  - $\bullet$  «Клики» линейны по n, но по d быстро достигают плато.

Часть 3. Проверка статистических гипотез





- Мощность теста по треугольникам (kNN) составляет 0.1 при ошибке I рода 0.05.
- $\bullet$  Мощность теста по кликовому числу (DIST) 0.78 при ошибке 0.03.

# Отчет по части II

## Шаяхметов Аскар

#### Гипотезы:

- $H_0$ : данные из распределения skewnorm с параметром  $\alpha=1$
- $H_1$ : данные из распределения student\_t с параметром  $\nu=3$

#### Параметры исследования:

- Тип графа: dist-граф с параметром d = 0.5
- Размеры выборок: n = 25, 100, 500
- Количество выборок на класс: 500

#### Исследуемые характеристики графов:

- $\Delta(G)$  максимальная степень вершины
- $\delta(G)$  минимальная степень вершины
- ullet c(G) количество компонент связности
- t(G) количество треугольников
- $\bullet$  diam(G) диаметр графа
- $\lambda(G)$  рёберная связность
- $\omega(G)$  кликовое число

# 1 Результаты

## 1.1 Анализ важности характеристик

Анализ важности характеристик с использованием Random Forest показал следующие результаты:



## Основные наблюдения:

- Для малых выборок (n=25) наиболее важной характеристикой является количество треугольников t(G) (42.5% важности)
- С ростом размера выборки важность максимальной степени  $\Delta(G)$  увеличивается: от 17% при n=25 до 29.6% при n=500
- Минимальная степень  $\delta(G)$  практически теряет значение с ростом n

## 1.2 Сравнение классификаторов

Для оценки качества классификации использовались следующие алгоритмы: Random Forest, Logistic Regression и Neural Network. Результаты представлены на графике:



#### Основные выводы по классификации:

- Для малых выборок (n=25) все классификаторы показывают умеренное ( $\approx 0.83$ ) качество с высокой ошибкой первого рода ( $\alpha > 0.14$ )
- При n=100 качество классификации резко улучшается, ошибка первого рода снижается до уровня ( $\alpha\approx0.01$ )
- Для больших выборок (n=500) все классификаторы показывают практически идеальное качество

# 1.3 Анализ распределений характеристик



Гистограммы распределений характеристик графов показывают четкое разделение между гипотезами  $H_0$  и  $H_1$  для нектороых характеристик.

- ullet Максимальной степени  $\Delta(G)$  разделение улучшается при увеличении n
- Количества треугольников t(G) четкое разделение для n=500
- Диаметра графа  $\operatorname{diam}(G)$  приемлемое разделение
- Кликового числа  $\omega(G)$  для n=500 хорошее разделение

С увеличением размера выборки разделение между распределениями становится более выраженным, что объясняет улучшение качества классификации.

# 2 Выводы

Анализ результатов показал следующее:

- Для n=25: ни один классификатор не удовлетворяет условию  $\alpha \leq 0.05$
- Для n=100: лучший классификатор Random Forest с ошибкой первого рода  $\alpha=0.008$  и мощностью 0.991
- Для n=500: лучший классификатор Neural Network (два скрытых слоя размерами 50 и 30) с ошибкой первого рода  $\alpha=0.000$  и мощностью 0.999

# Отчет по части II

## Богданов Ярослав

#### Гипотезы:

- $H_0$ : данные из распределения weibull с параметром  $\lambda=1$
- $H_1$ : данные из распределения lognormal с параметром  $\sigma = log(5)$

#### Параметры исследования:

- Тип графа: dist-граф с параметром d = 0.5
- Размеры выборок: n = 25, 100, 500
- Количество выборок на класс: 100

#### Исследуемые характеристики графов:

- $\Delta(G)$  максимальная степень вершины
- $\delta(G)$  минимальная степень вершины
- ullet c(G) количество компонент связности
- t(G) количество треугольников
- $\bullet$  diam(G) диаметр графа
- $\lambda(G)$  рёберная связность
- $\omega(G)$  кликовое число

# 1 Результаты

## 1.1 Анализ важности характеристик

Анализ важности характеристик с использованием Random Forest показал следующие результаты:



#### Основные наблюдения:

- При n=25 наибольший вклад дают число треугольников  $t(G)\approx 29\%$  и кликовое число  $\omega(G)\approx 27\%$ , за ними следуют максимальная степень  $\Delta(G)\approx 17\%$  и диаметр  $\mathrm{diam}(G)\approx 13\%$ .
- При n=100 доминирует  $\omega(G)\approx 46\%$ , тогда как важность диаметра  $\mathrm{diam}(G)$  падает до  $\approx 4\%$ , а  $\delta(G)$  и  $\lambda(G)$  практически сходят на нет (<1%).
- При увеличении до n=500 максимальная степень  $\Delta(G)$  растёт до  $\approx 32\%$  и выравнивается с  $\omega(G)\approx 32\%$ , число треугольников t(G) остаётся стабильным ( $\approx 29\%$ ).
- Диаметр  $\operatorname{diam}(G)$  продолжает снижаться (до  $\approx 1.3\%$ ), а минимальная степень  $\delta(G)$  и реберная связность  $\lambda(G)$  практически теряют

значение.

• Число компонент связности c(G) демонстрирует U-образную динамику:  $\approx 7\% \to 2\% \to 6.5\%$  при росте n.

## 1.2 Сравнение классификаторов

Для оценки качества классификации использовались следующие алгоритмы: Random Forest, Logistic Regression и Neural Network. Результаты представлены на графике:



#### Основные выводы по классификаторам:

- Для малых выборок (n=25) все модели демонстрируют среднюю точность ( $\approx 0.75$ –0.77) и аналогичный F1-Score, при этом ошибка I рода значительно превышает уровень значимости ( $\alpha=0.05$ ), достигая 20%–24%, а мощность критерия находится на уровне 0.72–0.74.
- При увеличении выборки до n=100 точность и F1-Score резко возрастают до 0.95–0.97, ошибка I рода падает ниже 5% (до  $\approx 2\%$ –3%), а мощность критерия достигает 0.94–0.97.

- Для больших выборок (n=500) все три алгоритма достигают практически идеальных показателей: точность и F1-Score близки к 1.00, ошибка I рода стремится к нулю, мощность критерия приближается к единице.
- Различия между алгоритмами минимальны: Logistic Regression чуть опережает Random Forest на средних выборках, Neural Network демонстрирует чуть больший разброс оценок.

## 1.3 Анализ распределений характеристик



Гистограммы распределений характеристик графов показывают, как изменяется разделимость между гипотезами  $H_0$  и  $H_1$  с ростом размера выборки:

- $\Delta(G)$  (максимальная степень) при n=25 видна лишь слабая тенденция к сдвигу, при n=100 распределения уже хорошо разделяются, а при n=500 их разделение становится почти полным.
- t(G) (число треугольников) умеренное разделение для n=25 и n=100, для n=500 гистограммы практически не перекрываются.
- $\operatorname{diam}(G)$  (диаметр) заметное, но неполное разделение; с ростом n средние значения расходятся, но хвосты всё ещё пересекаются.
- $\omega(G)$  (кликовое число) при n=100 уже явное разделение, при n=500 гистограммы хорошо разделены.
- c(G) (число компонент связности) небольшое смещение средних при  $n \geq 100$ , сильнее выраженное при n = 500, но перекрытие сохраняется.
- $\delta(G)$  (минимальная степень) и  $\lambda(G)$  (рёберная связность) при любых n распределения почти совпадают, разделения не наблюдается.

С увеличением размера выборки разделение между распределениями становится более выраженным, что объясняет улучшение качества классификации на больших n.

# 2 Выводы

Анализ итоговых показателей классификации даёт следующие выводы:

- Для n=25: ни один классификатор не удовлетворяет условию  $\alpha \leq 0.05$ .
- Для n=100: лучший классификатор Random Forest с ошибкой I рода  $\alpha=0.0344$  и мощностью 0.9722.
- Для n=500: лучший классификатор Random Forest с ошибкой I рода  $\alpha=0.0011$  и мощностью 1.0000.