Measure Theory

Alec Zabel-Mena

December 29, 2023

Contents

1	Measure and	Measure and Measure Spaces					
	1.1 σ -Algebra	as					5
	1.2 Measures						8

4 CONTENTS

Chapter 1

Measure and Measure Spaces

1.1 σ -Algebras

Definition. Let X be a nonempty set. An **algebra** of sets on X is a nonempty collection \mathcal{A} of subsets of X which are closed under finite unions and complements in X. We call \mathcal{A} a σ -algebra if it is closed under countable unions.

Lemma 1.1.1. Let X be a set and A an algebra on X. Then A is closed under finite intersections.

Proof. Let $\{E_{\lambda}\}$ be a collection of sets of \mathcal{A} . Then by finite union $E = \bigcup E_{\lambda} \in \mathcal{A}$. Then by complements, $X \setminus E = \bigcap X \setminus E_{\lambda} \in \mathcal{A}$.

Corollary. σ -algebras are closed under countable disjoint unions.

Proof. Let \mathcal{A} a σ -algebra, and let $\{E_n\}$ a collection of (not necessarily disjoint) sets in \mathcal{A} . Then take

$$F_n = E_n \setminus \left(\bigcup_{k=1}^{n-1} E_k\right) \tag{1.1}$$

Then each F_n is a set in \mathcal{A} , and are pairwise disjoint. Moreover, $\bigcup E_n = \bigcup F_n$.

Lemma 1.1.2. Let X be a set, and A an algebra on X. Then $\emptyset \in A$ and $X \in A$.

Proof. By closure of finite unions, notice that if $E \in \mathcal{A}$, then $E \cup X \setminus E = X \in \mathcal{A}$ lemma ?? gives us that $E \cap X \setminus E = \emptyset \in \mathcal{A}$.

Example 1.1. (1) The collections $\{\emptyset, X\}$ and 2^X are σ -algebras on any set X.

(2) Let X be an uncountable set. Then the collection

$$C = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable}\}\$$

defines a σ -algebra of sets on X, since countable unions of countable sets are countable, and \mathcal{C} is closed under complements. We call \mathcal{C} the σ -algebra of countable or co-countable sets.

Lemma 1.1.3. Let $\{A_{\lambda}\}$ be a collection of σ -algebras on a set X. Then the intersection

$$\mathcal{A} = \bigcap \mathcal{A}_{\lambda}$$

is a σ -algebra on X. Moreover, if $F \subseteq X$, then there exists a unique smallest σ -algebra containing F; in particular, it is the intersection of all σ -algebras containing F.

Proof. Notice that since each \mathcal{A}_{λ} is a σ -algebra, they are closed under countable unions and complements. Hence by definition, \mathcal{A} must also be closed under countable unions and complements.

Now, let $F \subseteq X$ and let $\{A_{\lambda}\}$ be the collection of all σ -algebras containing F. Then the intersection $\mathcal{A} = \bigcap \mathcal{A}_{\lambda}$ is also a σ -algebra containing F; by above. Now, suppose that there is a smallest σ -algebra \mathcal{B} containing F. Then we have that $\mathcal{B} \subseteq \mathcal{A}$. Now, by definition of \mathcal{A} as the intersection of all σ -algebras containing F, we get that $\mathcal{A} \subseteq \mathcal{B}$; so that $\mathcal{B} = \mathcal{A}$.

Definition. Let X be a nonempty set and $F \subseteq X$. We define the σ -algebra **generated** by F to be the smallest such σ -algebra $\mathcal{M}(F)$ containing F.

Lemma 1.1.4. Let X be a set and let E, $F \subseteq X$. Then if $E \subseteq \mathcal{M}(F)$, then $\mathcal{M}(E) \subseteq \mathcal{M}(F)$.

Proof. We have that since $E \subseteq \mathcal{M}(F)$, and $\mathcal{M}(E)$ is the intersection of all σ -algebras containing E, then $\mathcal{M}(E) \subseteq \mathcal{M}(F)$.

Definition. Let X be a topological space. We define the **Borel** σ -algebra on X to be the σ -algebra $\mathcal{B}(X)$ generated by all open sets of X; that is

$$\mathcal{B}(X) = \mathcal{M}(\mathcal{T})$$

where \mathcal{T} is the topology on X. We call the elements of $\mathcal{B}(X)$ Borel-sets

Definition. Let X be a topological space. We call a countable intersection of open sets of X a G_{δ} -set of X. We call a countable union of closed sets of X an F_{σ} -set of X.

Theorem 1.1.5. The Borel σ -algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, is generated by the following.

- (1) All open intervals of \mathbb{R} .
- (2) All closed intervals of \mathbb{R} .
- (3) All half-open intervals of \mathbb{R} .
- (4) All open rays of \mathbb{R} .
- (5) All closed rays of \mathbb{R} .

Definition. Let X_{α} be a collection of non-empty sets, and let $X = \prod X_{\alpha}$. If \mathcal{M}_{α} is a σ -algebra on X_{α} , then we define the **product** σ -algebra on X to be the smallest σ -algebra generated by all $\pi_{\alpha}^{-1}(E_{\alpha})$, where $E_{\alpha} \in \mathcal{M}_{\alpha}$, and $\pi_{\alpha} : X \to X_{\alpha}$ is the projection map onto the α -th coordinate. We denote the product σ -algebra by $\bigotimes \mathcal{M}_{\alpha}$.

1.1. σ -ALGEBRAS

Lemma 1.1.6. Let $\{X_n\}$ be a countable collection of sets, each with a σ -algebra \mathcal{M}_n , and let $X = \prod X_n$. Then the product σ -algebra $\bigotimes \mathcal{M}_n$ on X is generated by all $\prod E_n$, where $E_n \in \mathcal{M}_n$.

Proof. Let $E_n \in \mathcal{M}_n$, then by definition of the projection map, $\pi_n^{-1}(E_n) = \prod E_k$ where $E_k = X_k$ for all $k \neq n$. On the otherhand, we can see that $\prod E_n = \bigcap \pi_n^{-1}(E_n)$.

Lemma 1.1.7. Let $\{X_{\alpha}\}$ be a collection of sets, each together with a σ -algebra \mathcal{M}_{α} . If each \mathcal{M}_{α} is generated by some \mathcal{E}_{α} , then $\otimes \mathcal{M}_{\alpha}$ is generated by all $\pi_{\alpha}^{-1}(E_{\alpha})$, where $E_{\alpha} \in \mathcal{E}_{\alpha}$.

Proof. Let $\mathcal{F} = \{\pi_{\alpha}^{-1}(E_{\alpha}) : E_{\alpha} \in \mathcal{E}_{\alpha}\}$. Then by lemma 1.1.4, $\mathcal{M}(\mathcal{F}) \subseteq \bigotimes \mathcal{M}_{\alpha}$. On the otherhand, for any α , the collection of all $\pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F})$ is a σ -algebra on X_{α} , containing \mathcal{E}_{α} ; and hence, \mathcal{M}_{α} . That is, $\pi_{\alpha}^{-1}(E) \in \mathcal{M}(\mathcal{F})$ for all $E \in \mathcal{M}_{\alpha}$, which gives us the reverse inclusion.

Corollary. If $\{X_{\alpha}\}$ is a countable collection, theb $\bigotimes \mathcal{M}_{\alpha}$ is generated by all $\prod E_{\alpha}$, where $E_{\alpha} \in \mathcal{E}_{\alpha}$.

Lemma 1.1.8. Let X_1, \ldots, X_n be metric spaces, and $X = \prod_{i=1}^n X_i$ on the product topology. Then

$$\bigotimes (\mathcal{B}(X_i)) \subseteq \mathcal{B}(X)$$

Moreover, if each X_i is separable, then equality is established.

Proof. We have that $\bigotimes \mathcal{B}(X_i)$ is generated by each $\pi_i^{-1}(U_i)$, where U_i is an open set in X_i . Since these sets are open, again by lemma 1.1.4, $\bigotimes \mathcal{B}(X_i) \subseteq \mathcal{B}(X)$.

Now, suppose that each X_i is seperable, and let C_i a countable dense set in X_i , and let \mathcal{E}_i be the collection of all open balls in X_i with rational radius r, and center in C_i . Then every open set in X_i is a countable union of members of \mathcal{E}_i . Moreover, the set of points in X whose i-th coordinate is in C_i , for all i, is countable dense in X_i . Hence, $\mathcal{B}(X_i)$ is generated by \mathcal{E}_i , and since (X) is generated by all $\prod_{i=1}^n E_i$, where $E_i \in \mathcal{E}_i$, we get $\mathcal{B}(X) \subseteq \mathcal{B}(X_i)$, and equality is established.

Corollary. $\mathcal{B}(\mathbb{R}^n) = \bigotimes_{i=1}^n \mathcal{B}(\mathbb{R})$.

Definition. We define an **elementary family** on a set X to be a collection \mathcal{E} of subsets of X such that:

- $(1) \emptyset \in \mathcal{E}.$
- (2) If $E, F \in \mathcal{E}$, then $E \cap F \in \mathcal{E}$.
- (3) If $E \in \mathcal{E}$, then $X \setminus E$ is a finite disjoint union of members of \mathcal{E} .

Lemma 1.1.9. Let X be a set and \mathcal{E} an elementary family on X. Let \mathcal{A} be the collection of all finite disjoint unions of members of \mathcal{E} . Then \mathcal{A} is an algebra on X.

Proof. Let $A, B \in \mathcal{E}$, and let $X \setminus B = \bigcup_{i=1}^n C_i$, where each $C_i \in \mathcal{E}$ for all $1 \leq i \leq n$, and are disjoint. Then we have

$$A \cup B = (A \setminus V) \cup B$$
 and $A \setminus B = \bigcup_{i=1}^{n} (A \cap C_i)$

so that $A \cup B \in \mathcal{A}$, and $A \setminus B \in \mathcal{A}$. Now, by induction on n, suppose that $A_1, \ldots, A_n \in \mathcal{A}$ are disjoint, then

$$\bigcup_{i=1}^{n+1} A_i = A_{n+1} \cup \bigcup_{i=1}^{n} A_i \setminus A_{n+1}$$

is also a disjoint union. Moreover, we have that if $X \setminus A_n = \bigcup_{i=1}^{N_m} B_m^i$, where the union is disjoint, then

$$X \setminus \left(\bigcup_{m=1}^{n} A_{m}\right) = \bigcap_{m=1}^{n} \left(\bigcup_{i=1}^{N_{m}} B_{m}^{i}\right)$$

is also a disjoint union. This makes A an algebra on X.

1.2 Measures

Bibliography

- [1] G. B. Folland, Real Analysis: Modern Techniques and Their Applications. Hoboken, NJ: John Wiley & Sons, Inc, 1999.
- [2] H. L. Royden and P. Fitzpatrick, Real Analysis. Saddle River, NJ: Pearson, 2010.