(Simple) Linear regression

Statistical Reasoning and Quantitative Methods

François Briatte & Ivaylo Petev

Session 9

Outline

Graphical approach

Regression output

Assignment No. 2

Presidential approval and economic performance

- Presidential approval: "Always/Somewhat trustworthy" single measurement (ANES).
- Economic performance: change in disposable income per capita.
- To what extent can presidential approval be predicted from variations in disposable income?

Example provided by John Sides, using data by Douglas Hibbs.

Fitting a regression model

The model fits a linear function to the data, of the form:

$$Y = \alpha + \beta X + \epsilon$$
 or identically $\hat{Y} = \alpha + \beta X$

where:

- Y is the dependent variable (response)
- *X* is the **independent variable** (predictor)
- α is the **constant** (intercept)
- lacksquare eta is the **regression coefficient** (slope)
- ϵ is the **error term** (residuals)

Note: the model assumes that the relationship is linear.

Fitting the regression line

The **regression coefficient** b is calculated as to **minimize** the **residual sum of squares** (RSS): $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$, where Y_i is a data point and \hat{Y}_i is the corresponding point on the regression line.

$$\beta = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

and

$$\alpha = \bar{Y} - \beta \bar{X}$$

Reminders:

- \bar{X}_i is the **mean** of X, $\sum_{i=1}^n (X_i \bar{X}_i)^2$ the **variance** of X.
- $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{Y})$ is the **covariance** of XY.

Goodness of fit

The goodness of fit of the model is provided by its coefficient of determination, R^2 , which is the ratio between

- the variance predicted by the model, $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y}_i)^2$, and
- the residuals, or unpredicted variance, $\sum_{i=1}^{n} (Y_i \bar{Y}_i)^2$.

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{\mathbf{Y}}_{i} - \bar{Y}_{i})^{2}}{\sum_{i=1}^{n} (\mathbf{Y}_{i} - \bar{Y}_{i})^{2}}$$

- As the residual sum of squares (RSS) $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 \to 0$, the coefficient of determination $R^2 \to 1$ towards higher goodness of fit.
- Goodness of fit is a theoretical notion that eventually relies on substantive explanation. No theory, no model.

Model fit

Remember that your model needs to be **theoretically and empirically supported**:

- Theoretically, past economic performance relates to presidential approval by virtue of retrospective voting theory.
- Empirically, economic performance is a better predictor of presidential approval at lower values.

Always, always run a full intellectual check of your model after marvelling (or weeping) at your regression output:

- The direction of the causal link from *X* to *Y* should be deduceable through logical implication.
- The extent to which *X* influences *Y* must be interpreted and exemplified through data inspection.

Regression output

. regress trust income

_cons

Source	55	αŤ		MS		Number of obs $=$ 12
 						F(1, 10) = 29.64
Model	1908.80221	1	1908	80221		Prob > F = 0.0003
Residual	643.906248	10	64.39	906248		R-squared = 0.7478
 						Adj R-squared = 0.7225
Total	2552.70846	11	232.0	064405		Root MSE = 8.0244
	•					
 	· · · · · · · · · · · · · · · · · · ·					
trust	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
income	8.639373	1.586	767	5.44	0.000	5.103836 12.17491
	l					

6.87

0.000

18.03197

35.35805

Reading guide (requires practice): top: ANOVA table (left) and model fit (right: p-value, R^2); bottom: regression coefficients.

3.888016

26.69501

Overall model fit

Model fit is provided by the R^2 , calculated on N observations. Model significance tests the model against the null hypothesis.

- The number of observations determines your ability to generalize the model to the full sample or population.
- The *F*-**statistic** Its probability level tests the null hypothesis for your model, according to which all model coefficients are equal to 0.

```
Number of obs = 12

F( 1, 10) = 29.64

Prob > F = 0.0003

R-squared = 0.7478
```

Adj R-squared = 0.7225Root MSE = 8.0244

Regression coefficients

Regression coefficients are unit-less variations of Y predicted by a change in one unit of X, as in Y = aX + b.

Source	55	at	PS.		Number of abs		å
Madel Residual	1988.88221 643.986248		1988.88221 64.3986268		Prob > P R-squared Adj R-squared	: :	rer
Tutal	2552,788.06	11	232,064005		Ract Mill	: :	
	Coef.	104.	B//- 1	Pr[1]	(95% Cost.	Inter	(a)
toet							

trust	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
income	8.639373	1.586767	5.44	0.000	5.103836	12.17491
_cons	26.69501	3.888016	6.87	0.000	18.03197	35.35805

- The **coefficient** a is the slope of the regression line and its **constant** b the coordinate of origin (or intercept), i.e. $b = \hat{Y}_{X=0}$.
- The **standard error**, *t*-**value** and *p*-**value** tests whether the coefficient is significantly different from 0.

Assignment No. 2

Univariate statistics

- Introduction
- Datasets
- Distributions
- Estimation

Assignment No. 1

corrected revised appended

Bivariate statistics

- Significance
- Crosstabulation
- Correlation
- Linear regression

Assignment No. 2

Statistical modelling

- Basics
- Extensions
- Diagnostics
- Conclusion

Final paper

How to proceed

Revise Assignment No. 1 using instructor feedback:
 Read all corrected material. Proceed to required adjustments. Append new research to the text.
Explore associations using crosstabulations and comparisons:
 □ Find and/or recode variables to crosstabulate their categories. □ Find and/or recode variables to compare means and proportions. □ Keep working with continuous and interval variables.
Model relationships using correlations and linear regression:
 Produce a correlation matrix. Regress independent variables on the dependent variable. Regress collinear independent variables.

Step 1: Revision

- Adjust your research design:
 - Select variables with a sufficient number of observations.
 - □ **Devise clear hypotheses** $H_1, H_2, ...$ to prepare for modelling.
 - □ **Reformulate all text** to fit scientific presentation.
- Adjust your do-file:
 - □ **Use comments** to structure and explain your methods.
 - □ **Clean up** unnecessary code like lookfor and codebook commands.
 - □ **Replicate** your edited do-file to update the log file, graphs and tables.
- Chill out for a minute.

Step 2: Association

Associations look at contingency tables:

- tab with the chi2 option performs a Chi-squared test on variables coded into categories with at least 5 cell counts.
- tab with the exact option performs **Fisher's exact test** on small crosstabulations (2 × 2 contigency tables or cell counts < 5).
- ttest and prtest compares means (Fisher's t-test) and proportions in two independent groups.

Associations depend on variable types:

- Crosstabulations use two categorical variables.
- **Comparisons** use one continuous and one categorical variable.
- Correlations use two continuous variables.

Correlation and simple linear regression are treated as preliminary steps to writing a **multiple regression model**.

Step 3: Model

Visually explore relationships using scatterplots:

```
□ sc (scatter) draws scatterplots.
```

- gr mat draws a scatterplot matrix.
- □ tw (twoway) combines scatterplots.
- Formally explore relationships using correlations:
 - pwcorr (pairwise correlation) works with any number of variables.
 - □ Use the obs (observations) and sig (significance) options.
 - □ Reproduce the correlation matrix as a table in your work.
- Model relationships using simple linear regression:
 - □ reg (regress) does all the work.
 - predict r, r stores the model residuals.
 - rvfplot plots the residuals against fitted values.

Regress the **dependent variable** on the main independent variable, and also regress **collinear independent variables** on each other.

Further help

- Course-specific help:
 - □ Stata Guide
 - □ Session do-files
 - Course slides
- General help:
 - □ Handbook chapters
 - Stata documentation (help command)
 - Online tutorials

Handbook chapters and course emails are available from the ENTG. Everything else is systematically archived on the course website:

http://f.briatte.org/teaching/quanti/

Happy coding!