电路与电子技术基础

第四章 半导体基础

宋雪萌

songxuemeng@sdu.edu.cn

目录

- 4.1 半导体的导电特性
- 4.2 半导体二极管
- 4.3 二极管电路的分析计算
- 4.4 半导体三极管
- 4.5 晶体管三极管的工作状态分析

半导体三极管 (Bipolar Junction Transistor)

半导体三极管也叫"晶体三极管",简称"晶体管",是一种具有电流放大作用的半导体器件。

晶体三极管是由三层半导体构成的,其结构主要有平面型和 合金型两类。硅管主要是平面型,锗管主要是合金型。

晶体管的三层半导体是在同一块单晶硅或单晶锗基片上,通过扩散工艺生成的三层不同类型的半导体,如N型-P型-N型 (NPN型),或P型-N型-P型(PNP型)。

- · 无论是NPN还是PNP型,内部均含有:发射区、基区、集电区。
- 各引出一个金属电极:发射极(e)、基极(b)和集电极(c)。
- 三区的两个交界处形成两个PN结,发射区与基区之间形成发射结, 集电区与基区之间形成集电结。

即:三层半导体,两个PN结,3个电极。

三极管的电路符号如图所示,符号中的箭头方向表示发射结正向偏置时的电流方向。

(*b*)

低频大功率三极管

基区薄,低掺杂;集电结大

- (1) 基区很薄且掺杂浓度低;
- (2) 发射区掺杂浓度高;
- (3) 集电结面积远大于发射结。

三极管实现放大作用的外部条件是发射结正向偏置,集电结反向偏置。

下图为NPN管的偏置电路(共发射极接法):

基极(输入)回路,集电极(输出)回路,发射极是公共端。

NPN管的偏置电路

图中所加电压应使e结正偏,c结反偏(放大的外部必要条件)。

改变基极电源 E_B ,则基极电流 I_B 、集电极电流 I_C 和发射极电流 I_E 都会发生变化。按图示参考方向,测量各电极电流的数值,结果如下表。

表4-1晶体管电流测量数据

I_{B} (mA)	0	0.02	0.04	0.06	0.08	0.1
$I_{C}(mA)$	< 0.001	0.70	1.5	2.30	3.10	3.95
$I_{E}(mA)$	< 0.001	0.72	1.54	2.36	3.18	4.05

由此实验及测量结果可得出如下结论:

- (1) 观察实验数据中的每一列,可得 $I_E=I_C+I_B$ 。这是基尔霍夫电流定律的体现。
- (2) $I_C 及 I_E$ 都比 I_B 大得多。从第三列和第四列的数据可知, I_C 与 I_B 的比值分别为

$$\frac{I_C}{I_B} = \frac{1.5}{0.04} = 37.5$$
, $\frac{I_C}{I_B} = \frac{2.3}{0.06} = 38.3$

这就是晶体管的电流放大作用。常用一个系数 $\bar{\beta}$ 表示晶体管集电极电流和基极电流的比值,即 $I_{C}=\bar{\beta}I_{B}$ 。 $\bar{\beta}$ 表示了晶体管的电流放大能力,称为"电流放大系数"。晶体管的电流放大作用还体现在基极电流的少量变化 ΔI_{B} 可以引起集电极电流较大的变化 ΔI_{C} 。还是比较第三列和第四列的数据可得出

$$\frac{\Delta I_C}{\Delta I_R} = \frac{2.3 - 1.5}{0.06 - 0.04} = \frac{0.8}{0.02} = 40$$

表4-1晶体管电流测量数据

$I_{B}(mA)$	0	0.02	0.04	0.06	0.08	0.1
$I_{C}(mA)$	< 0.001	0.70	1.5	2.30	3.10	3.95
$I_{E}(mA)$	< 0.001	0.72	1.54	2.36	3.18	4.05

由此实验及测量结果可得出如下结论:

(3) 当 $I_B=0$ (将基极开路)时,集电极电流很小。表 4-1 所示小于 0.001mA=1 μ A。这时的集电极电流称为"穿透电流",用符号 I_{CEO} 表示。

下面用载流子在晶体管内部的运动规律来解释上述结论。

半导体二极管

三极管内部载流子运动

- 1) 发射区向基区发射电子 e结正偏,发射区向基区 注入电子,形成 $I_{\rm E}$
- 2) 电子一小部分在基区与 空穴复合形成 I_{R}
- 3) 电子被集电区收集 c结反偏,对进入b区的电 子有强吸引作用,使大部 分进入c区,形成 I_c

- (1) 基区很薄且掺杂浓度低;
- (2) 发射区掺杂浓度高;
- (3) 集电结面积远大于发射结。

三极管内部载流子的运动情况14

三极管内部载流子的运动

集电结反偏,有少子形成的反向电流 I_{CBO} 。

由图不难得出:

$$I_{C} = I_{CE} + I_{CBO}$$

$$I_{B} = I_{BE} - I_{CBO}$$

$$I_{E} = I_{CE} + I_{BE} = I_{C} + I_{B}$$

NPN和PNP内部电流相反。

三极管内部载流子的运动情况

电流分配关系

发射区注入到基区的电子 (I^E)

少部分在基区复合(I_R)

大部分被C区收集(Ic)

为了反映扩散到集电区的电流IcE与基区复合电流IBE之间的比

$$I_{C} = I_{CE} + I_{CBO},$$
 $I_{B} = I_{BE} - I_{CBO}$

$$I_{C} = \overline{\beta} I_{B} + (1 + \overline{\beta}) I_{CBO} = \overline{\beta} I_{B} + I_{CEO}$$

电流分配关系

发射区注入到基区的电子 (I_E)

少部分在基区复合(I_R)

大部分被C区收集(Ic)

为了反映扩散到集电区的电流IcE与基区复合电流IBE之间的比例关系,定义共发射极直流电流放大系数为

$$\overline{\beta} = \frac{I_{CE}}{I_{BE}}$$
 内部结构决定!
$$I_{C} = I_{CE} + I_{CBO}, \qquad I_{B} = I_{BE} - I_{CBO}$$

$$I_{C} = \overline{\beta} I_{B} + (1 + \overline{\beta}) I_{CBO} = \overline{\beta} I_{B} + I_{CEO}$$

基区每复合一个电子,则有 $\overline{\beta}$ 个电子扩散到集电区去,其值一般在20~200之间。

 $I_{CEO} = (1 + \overline{\beta})I_{CBO}$,称为穿透电流。表示 $I_{B}=0$ 时, I_{C} 仍有电流为 I_{CEO} .

电流分配关系

发射区注入到基区的电子 (I_E)

少部分在基区复合(I_R)

大部分被C区收集(Ic)

为了反映扩散到集电区的电流IcE与基区复合电流IBE之间的比例关系,定义共发射极直流电流放大系数为

当 I_{CBO} 可以忽略时,

$$\bar{\beta} = \frac{I_C}{I_B}$$

$$I_C = \bar{\beta} I_B$$

$$I_E = (1 + \bar{\beta}) I_B$$

三极管的电流分配关系

三极管的主要参数

1) 直流 (静态) 电流放大系数 $\bar{\beta} = \frac{I_C}{I_B}$ 交流 (动态) 电流放大系数 β (一般为几十至几百) $\beta = \frac{\Delta I_C}{\Delta I_R}$

表4-1晶体管电流测量数据

$I_{B}(mA)$	0	0.02	0.04	0.06	0.08	0.1
$I_{C}(mA)$	< 0.001	0.70	1.5	2.30	3.10	3.95
$I_{E}(mA)$	< 0.001	0.72	1.54	2.36	3.18	4.05

由此实验及测量结果可得出如下结论:

- (1) 观察实验数据中的每一列,可得 $I_E=I_C+I_B$ 。这是基尔霍夫电流定律的体现。
- (2) $I_C 及 I_E$ 都比 I_B 大得多。从第三列和第四列的数据可知, I_C 与 I_B 的比值分别为

$$\frac{I_C}{I_B} = \frac{1.5}{0.04} = 37.5$$
, $\frac{I_C}{I_B} = \frac{2.3}{0.06} = 38.3$

这就是晶体管的电流放大作用。常用一个系数 $\bar{\beta}$ 表示晶体管集电极电流和基极电流的比值,即 $I_{C}=\bar{\beta}I_{B}$ 。 $\bar{\beta}$ 表示了晶体管的电流放大能力,称为"电流放大系数"。晶体管的电流放大作用还体现在基极电流的少量变化 ΔI_{B} 可以引起集电极电流较大的变化 ΔI_{C} 。还是比较第三列和第四列的数据可得出

$$\frac{\Delta I_C}{\Delta I_B} = \frac{2.3 - 1.5}{0.06 - 0.04} = \frac{0.8}{0.02} = 40$$

三极管的主要参数

- 1) 直流(静态) 电流放大系数 $\bar{\beta} = \frac{I_C}{I_B}$ 交流(动态) 电流放大系数 β (一般为几十至几百) $\beta = \frac{\Delta I_C}{\Delta I_B}$
- 2) 发射级开路时,集基极反向饱和(漏)电流 I_{CBO}
- 3) 基极开路时,集射极穿透(反向饱和)电流 I_{CEO} 通常 $I_{\text{CEO}} > I_{\text{CBO}}$

$$\overline{\beta} = \frac{I_{CE}}{I_{BE}}$$

$$I_{C} = I_{CE} + I_{CBO}, \qquad I_{B} = I_{BE} - I_{CBO}$$

$$I_{C} = \overline{\beta} I_{B} + (1 + \overline{\beta}) I_{CBO}$$

$$I_{CEO} = (1 + \beta) I_{CBO}$$

三极管的主要参数

4) 集电极最大允许电流 I_{CM} (几十~数百毫安)

当集电极电流 I_c 过大时,三极管的 β 值下降(放大性能下降),当下降到正常值的2/3时的集电极电流,称为集电极最大允许电流。

- 5)集电极—发射极间的击穿电压 $U_{(BR) CEO}$ (几十~数百伏)基极开路时,加在集电极和发射极之间的最大允许电压。
- 6) 集电极最大耗散功率 P_{CM} (数百毫瓦)

三极管工作时,集电极损耗的功率为 $P_{C}=I_{C}U_{CE}$ 。 P_{C} 转化为热能。 P_{C} 太大,温度过高,使管子特性变坏,甚至烧坏。 P_{CM} 是保证三极管正常工作允许集电极所消耗的最大功率。

三极管是非线性器件,各电极电流和电压之间的关系常用特性曲线来表示。

晶体管的特性曲线能反映出晶体管的性能,是分析放大电路的重要依据。

在低频电压放大电路中以共发射极的使用居多,故以共射接法来分析BJT的

特性曲线。

三极管特性曲线的测试电路

1. 输入特性曲线(B, E回路)如图(a)所示。

$$I_B = f(U_{BE})|U_{CE} = 常数$$

输入特性就是PN结的特性。IB主要由UBE决定,也受UCE影响。

1)当 $U_{CE}=0V$ 时

从输入端看,相当于两个PN结并联 且正向偏置,此时的特性曲线类似 于二极管的正向伏安特性曲线。

2) 当 $U_{CE} > 0V$ 时,C结开始吸引基区电子,使 I_R 变小。

(a)

1. 输入特性曲线(B, E回路)如图(a)所示。

$$I_B = f(U_{BE})|U_{CE} = 常数$$

输入特性就是PN结的特性。IB主要由UBE决定,也受UCE影响。

- 当 $U_{CE} \ge 1V$ 时,集电结反偏,对基区电子的吸引作用足够大。这时 I_B 基本不再随 U_{CE} 变化,曲线基本重合。
- 输入特性有一段死区,只有 $U_{BE} \ge V_{\gamma}$ 时,晶体管才会有基极电流 $I_{B_{0}}$
 - 小功率硅管的死区电压V_γ约为0.5伏, 锗管的死区电压约为0.2V。
 - 小功率NPN型硅管的发射结导通压降 约为0.6~0.8V。

(a)

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

通常把晶体管的输出特性曲线分成 三个工作区,分别对应于晶体管的 三种工作状态,

- · **放大区**: 输出特性中,曲线近于 水平的区域。
- **截止区**: $I_B = 0$ 的曲线以下的区域。
 - **饱和区**:各条平行线重和的斜线的左边区域。

27

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

(1) 放大区

条件: e结正偏, c结反偏

 $(I_B>0, U_{CE}\geq U_{BE})$

特点: $I_C = \bar{\beta}I_B$

 I_B 对 I_C 有很强的控制作用,即 I_B 有很小的变化量 Δ I_B 时, I_C 就会有很大的变化量 Δ I_C 。几乎与 U_{CE} 无关。(线性区)

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

(1) 放大区

条件: e结正偏, c结反偏(I_B>0,U_{CE}≥U_{BE})

特点:交流电流放大系数 β ,其 表达式为

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

从下图所给出的晶体管的输出特性曲线上, (1) 计算 Q_1 点处的 $\overline{\beta}$; (2) 由 Q_1 和 Q_2 两点,计算 β

(1) 在 Q₁ 点处

$$\bar{\beta} = \frac{I_C}{I_B} = \frac{3.8}{0.04} = 95$$

(2)由Q₁和Q₂两点,

$$\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{5.8 - 3.8}{0.06 - 0.04} = \frac{2}{0.02} = 100$$

虽然 $\bar{\beta}$ 和 β 含义不同,但是输出特性 曲线近于平行等距,二者数值较为 接近。今后估算是,常用 $\bar{\beta} \approx \beta$.

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

2. 输出特性曲线(C, E回路)如图(b)所示。

该曲线是指当基极电流 I_B 为常数时,输出回路中的 I_C 与 U_{CE} 之间的关系曲线,用函数式可表示为 $I_C = f(U_{CE})|I_B = 常数$

综上所述,晶体管是一种非线性导电器件,有三个工作区,对应三种不同的工作状态:

- (1). 放大状态(i_B>0,u_{CE}≥u_{BE},即e结正偏,c 结反偏)特点: ①.i_C受i_B控制,即I_C=β I_B或△I_C=β△ I_B
 ②. I_B一定时,i_C具有恒流特性。
- (2). 饱和状态(i_B>0, u_{CE} < u_{BE}, 即e结、c结均正偏) 特点: ①. i_C不受i_B控制;
 - ②. 三个电极间的电压很小,相当短路,各极电流主要由外电路决定。
- (3). 截止状态 (u_{BE} ≤ V_γ, u_{CE} ≥ u_{BE} 即e结、c 结均反偏)
 特点: ①. i_C≈i_B≈i_E≈0。
 - ②. 三个电极间相当开路,各极电位主要由外电路决定。

综上所述,晶体管是一种非线性导电器件,有三个工作区,对应三种不同的工作状态:

- (1). 放大状态(i_B>0,u_{CE}≥u_{BE},即e结正偏,c 结反偏)特点: ①.i_C受i_B控制,即I_C=β I_B或△I_C=β△ I_B
 ②. I_B一定时,i_C具有恒流特性。
- (2). 饱和状态(i_B>0, u_{CE} < u_{BE}, 即e结、c结均正偏) 特点: ①. i_C不受i_B控制;
 - ②. 三个电极间的电压很小,相当短路,各极电流主要由外电路决定。
- (3). 截止状态 $(u_{BE} \leq V_{\gamma}, u_{CE} \geq u_{BE}$ 即e结、c 结均反偏)
 - 特点: ①. i_C≈i_B≈i_E≈0。
 - ②. 三个电极间相当开路,各极电位主要由外电路决定。

模拟电路中,一 般要求晶体管工 作在放大状态, 数字电路中,一 般要求晶体管工 作在开关状态。

开关状态

晶体管的工作状态及电路模型

晶体管应用电路

晶体管的工作状态及电路模型

- 截止(发射结与集电结均处于反偏)
 - 条件 U_{BE} < V_γ
 - 其中 U_{BE} 是发射结截止时基极和发射极之间的电压, V_{γ} 是发射结的阈值电压,常记作 V_{BES} 。
 - 特点: I_B=0, I_C=0
 - 电路模型:各电极之间断开
 - 输出电压: U₀=U_{CE}=V_{CC}

晶体管的工作状态及电路模型

- 放大(发射结正偏,集电结反偏)
 - 条件 $U_{BE} \ge V_{\gamma}$, $U_{CE} > U_{BE}$
 - 特点 I_C=β I_B
 - 电路模型

发射结恒压(导通),

集电结恒流(受控)

• 输出电压

$$U_0 = U_{CE} = V_{CC} - R_C I_C$$
$$= V_{CC} - \beta R_C I_B$$

晶体管的工作状态及电路模型

• 饱和(发射结与集电结均处于正偏)

$$U_{CE} = V_{CC} - \beta I_B R_C$$

• 条件 $U_{BE} > V_{\gamma}$, $U_{CE} \leq U_{BE}$ (常用条件 $I_{B} \geq I_{BS} \approx V_{CC}/\beta R_{C}$)

(I_{BS}为临界饱和基极电流)

- 特点 $I_c=I_{cs} \approx V_{cc}/R_c$ $(I_{cs}$ 为集电极饱和电流)
- 电路模型

发射结恒压($U_{BE}=V_{\gamma}$),

集电结恒压(U_{CE}≈0)。

• 输出电压 $U_0=U_{CES}\approx 0$.

目录

- 4.1 半导体的导电特性
- 4.2 半导体二极管
- 4.3 二极管电路的分析计算
- 4.4 半导体三极管
- 4.5 晶体管三极管的工作状态分析

晶体管的工作状态分析

- 晶体三极管是一种非线性器件。在对晶体管电路进行分析 计算时,要先确定晶体管的工作状态,再进行分析计算。
- 晶体管是一种受电流控制的器件。在集电极电源足够大的 条件下,晶体管的工作状态主要取决于基极电流I_B。

三极管工作状态判定

- 判定方法: 先设截止, 再查饱和, 否则放大
 - 先由基极回路判定是否截止
 - · 先假定e结截止,计算电路加在e结上的电压URE'
 - 若 $U_{BE}' < V_{\gamma}$,则e结截止,(I_{b} =0, $U_{BE} = U_{BE}'$)
 - 若 $U_{BE}' > V_{\gamma}$,则e结导通, $U_{BE} = V_{\gamma}$ 由下图所示等效电路计算 I_{B} .

三极管工作状态判定

- 若导通, 检查是否饱和:
 - 集电极饱和电流

$$I_{CS} = \frac{V_{CC} - V_{CES}}{R_C} \approx \frac{V_{CC}}{R_C}$$

• 临界饱和基极电流
$$I_{BS} = \frac{I_{CS}}{\beta} = \frac{V_{CC}}{\beta R_C}$$

- 若 $I_R \ge I_{RS}$ 则T饱和: $I_C = I_{CS}$, $U_O = U_{CES}$
- 若 $I_B < I_{BS}$ 则T放大: $I_C = \beta I_B$, $U_o = V_{CC} R_C I_C$

例 4.5-1 已知图 4-28 所示电路中, $R_B=20k\,\Omega$, $R_C=3k\,\Omega$, $E_C=12V$,晶体管的 $\beta=40$, $V_\gamma=0.7V$ 。分别计算 $E_B=0.3V$ 、 $E_B=1.7V$ 和 $E_B=3.6V$ 时晶体管的工作状态及输出电压 U_O 。

图 4-28 晶体管应用电路

例 4.5-1 已知图 4-28 所示电路中, $R_B=20k\,\Omega$, $R_C=3k\,\Omega$, $E_C=12V$,晶体管的 $\beta=40$, $V_\gamma=0.7V$ 。分别计算 $E_B=0.3V$ 、 $E_B=1.7V$ 和 $E_B=3.6V$ 时晶体管的工作状态及输出电压 U_O 。

- 解: (1) 当 E_B =0.3V 时 设 e 结截止,显然有 U_{BE}' = E_B =0.3V<V $_{\gamma}$ =0.7V, I_B =0; 所以晶体管处于截止 状态,有 I_B =0, I_C =0, U_O = E_C =12V 。
 - (2) 当 E_B =1.7V 时 设 e 结截止,则有 $U_{BE}{}'$ = E_B =1.7V> V_{γ} =0.7V,所以 e 结应导通,按恒压模型,有 I_B =(E_B - V_{γ})/ R_B =(1.7-0.7)/20=1/20=0.05 (mA) 晶体管的临界饱和基极电流为 I_{BS} = E_C /(βR_C)=12/(40×3)=0.1 (mA) 由于 I_B < I_{BS} 所以晶体管处于放大状态,有 I_B =0.05(mA), I_C = βI_B =40×0.05=2(mA), I_C = E_C - I_C =12-2×3=6 (V)。
 - (3) 当 E_B =3.6V 时 设 e 结截止,则有 $U_{BE}{}'=E_B$ =3.6V> V_{γ} =0.7V,所以 e 结应导通,按恒压模型,有 I_B = $(E_B-V_{\gamma})/R_B$ =(3.6-0.7)/20=2.9/20=0.145 (mA) 由于 I_B > I_{BS} =0.1(mA) 所以晶体管处于饱和状态,有 I_B =0.145(mA), I_C = I_{CS} = $(E_C-U_{CES})/R_C$ ≈ E_C/R_C =12/3=4(mA), U_O = U_{CES} ≈0 (V)。

例 4.5-2 图 4-31 所示电路中,设晶体管的 β = 50,V_{BES} = 0.7V。计算晶体管的工作状态。

图 4-31 晶体管电路

解: 设e结截止,则由基极回路可得

$$U_{BE}'=V_{CC}R_{B2}/(R_{B1}+R_{B2})=5\times30/(80+30)=1.36 (V)$$

$$I_B = I_1 - I_2 = (V_{CC} - V_{BES})/R_{B1} - V_{BES}/R_{B2}$$

= $(5-0.7)/80 - 0.7/30 = 0.030 \text{ (mA)}$

而
$$I_{BS}$$
= $E_C/(\beta R_C)$ = $5/(50\times 2)$ = 0.05 (mA)
由于 $I_B < I_{BS}$ 所以晶体管处于放大状态,有 I_B = 0.030 (mA) I_C = βI_B = 50×0.030 = 1.5 (mA) U_{CE} = V_{CC} - I_C R_C = $5-1.5\times 2$ = 2 (V)

例:如图所示,晶体管各极电位如图中标注,试判断晶体管处于何种工作状态(饱和、放大、截止或已损坏),若处于放大或饱和状态,请判断是硅管还是锗管。

解:判断晶体管的工作状态主要是分析其两个PN结的偏置状态;而判断锗管或硅管主要是看其导通时发射结的压降,若 $|U_{BE}|$ =0.7V左右则为硅管, $|U_{BE}|$ =0.2V左右则为锗管。

- (a) NPN型管, U_{BE} =0.1-(-0.2)=0.3V,锗管,发射结正偏; U_{BC} =0.1-6=-5.9V,集电结反偏;故该管在放大状态。
- (b) PNP型管, U_{EB} =1-0.3=0.7V,硅管,发射结正偏; U_{CB} =-2-0.3=-2.3V,集电结反偏;故该管在放大状态。

- (c) NPN型管, U_{BE} =-3-(-2) =-1V,发射结反偏; U_{BC} =-3-0=-3V,集电结反偏; 故该管工作在截止状态。
- (d) PNP型管, U_{EB} =6-5. 3=0. 7V,硅管,发射结正偏; U_{CB} =5. 5-5. 3=0. 2V,集电结正偏;故该管工作在饱和状态。
 - (e) NPN型管, U_{RE}=4-4=0V, 发射结压降为0;

U_{BC}=4-4=0V,集电结压降也为0;则该管可能因被击穿而损坏;也可能因电路连线问题而使之截止。

作业

• 计算题1, 2, 3, 4, 10, 12, 15, 16。