ELECTROTECNIA TEÓRICA

MEEC IST

2° Semestre 2017/18

4º TRABALHO LABORATORIAL

REGIMES TRANSITÓRIOS

Prof. V. Maló Machado

Prof. M. Guerreiro das Neves

Prof.^a M^a Eduarda Pedro

ELECTROTECNIA TEÓRICA

CIRCUITOS RL E RLC-SÉRIE REGIMES TRANSITÓRIOS

1. OBJECTIVO

Neste trabalho realiza-se o estudo de regimes transitórios decorrentes do fecho e abertura de interruptores.

Efectua-se o estudo da ligação de um circuito RL-série a um gerador de tensão alternada sinusoidal.

Efectua-se igualmente o estudo do regime livre do circuito RLC-série.

2. <u>DIMENSIONAMENTO</u>

O dimensionamento deve ser entregue na aula de laboratório, antes da realização do trabalho, sem o que o mesmo não poderá ser realizado!

2.1 Circuito RL Série

Considere o circuito RL série representado na Fig. 1. O gerador impõe uma tensão alternada sinusoidal de frequência $f=5\,\mathrm{kHz}$ e valor eficaz $U_{ef}=2\,\mathrm{V}$.

$$u_{g}(t) = \begin{cases} 0 & , t < 0 \\ \sqrt{2} U_{ef} \cos(\omega t + \alpha), t \ge 0 \end{cases}$$

$$\omega = 2 \pi f, T = 1/f$$

$$L = 0,200 \text{ H}$$

$$R = 700 \Omega$$

$$U_{g}(t) \qquad U_{R} \downarrow R$$

$$- \text{Fig. } 1 -$$

- a) Obtenha o regime transitório relativo à corrente i para t ≥ 0 (Fig. 1).
 Para o efeito determine quer a solução do regime forçado (indique o valor da desfasagem φ entre u_g e i) quer a solução do regime livre (indique o seu valor inicial para α = -π/2, bem como a constante de tempo τ do circuito).
- b) Determine a expressão que permite calcular aproximadamente os instantes em que a corrente i tem extremos, supondo que estes extremos se dão quando $\cos(\omega t + \alpha \varphi) = \pm 1$, e determine também a expressão que permite determinar o valor desses extremos para $\alpha = -\pi/2$.
- c) Utilizando a expressão da alínea anterior determine os cinco primeiros extremos, no caso de

 $\alpha = -\pi/2$. Para o primeiro extremo determine a solução exacta, através de um processo numérico ⁽¹⁾. Verifique que a raiz exacta é, neste caso, bastante próxima do valor aproximado.

- d) Considere agora que se desliga o gerador quando a tensão vai a passar por zero de valores negativos para positivos, supondo que o circuito está em regime forçado. Determine a solução para i(t), calculando o valor inicial da corrente I_0 e a constante de tempo τ .
- e) Verifique que para $t = \tau$ se tem:

$$i(\tau) = \frac{I_0}{e}$$

2.2 Circuito RLC-SÉRIE

É dado o circuito representado na Fig. 2 em que o interruptor S é comutado no instante t=0, após ter-se atingido o regime forçado correspondente ao estabelecimento da tensão estacionária no condensador. O circuito representado dentro do rectângulo a tracejado descreve o comportamento do Gerador de Funções que irá ser usado no laboratório (Fig. 5).

- Fig. 2-

a) Estabeleça a equação para a corrente i em valores instantâneos para $t \ge 0$ em função do coeficiente de amortecimento, β , e da frequência angular das oscilações não amortecidas, ω_0 . Calcule ω_0 .

⁽¹⁾ Sendo a equação f(x) = 0 e x_n uma aproximação duma raiz, uma solução melhor x_{n+1} obtém-se através do processo iterativo $x_{n+1} = x_n - f(x_n)/f'(x_n)$ (método de *Newton-Raphson*). Pode-se considerar que o processo termina quando $|x_{n+1} - x_n| \le \varepsilon$, tome $\varepsilon = 10^{-6}$.

- b) Estabeleça as condições iniciais para o regime que se obtém para $t \ge 0$. Caracterize o regime forçado para t > 0.
- c) Discuta os tipos de solução que pode obter para o regime livre com R variável.
- d) Para $R = 200 \,\Omega$, calcule o coeficiente de amortecimento β e verifique que a solução é do tipo oscilatório amortecido (Fig. 3). Calcule $\omega = 2\pi/T$ sendo T o período de isocronismo (T/2 é o intervalo de tempo entre dois extremos consecutivos ou entre dois zeros consecutivos). Verifique que:

$$A_1 / A_2 = A_2 / A_3 = \dots = (A_1 / A_n)^{1/(n-1)} = e^{\lambda}$$

com λ , o decremento logarítmico, dado por $\lambda = \beta T/2$, e onde $A_1, A_2, A_3, ..., A_n$ são os valores absolutos dos extremos de ordem 1, 2, ..., n de i(t) – Fig. 3). Determine λ . Determine i(t) e $u_c(t)$ tendo em conta as condições iniciai estabelecidas em b).

e) Calcule $R_0 = R$ de modo que a solução do regime livre seja do tipo aperiódico limite (equação característica com uma raiz dupla). Determine i(t). Determine igualmente o valor mínimo de $i(i_{min})$ e o instante em que ocorre (t_{min}) .

3. LISTA DE MATERIAL (por bancada)

GF: Gerador de funções Agilent 33210A.

Gerador de resistência interna, $R_i = 50 \Omega$.

OSC: Osciloscópio digital 'TEKTRONIX TDS 220', 2 canais, 100 MHz.

IMP: Impressora

L': Caixa de indutâncias calibrada GR - 0 a 0,1 H, com incremento de 10 mH.

C: Caixa de capacidades calibradas de 0 a 0,1 µF com incremento de 100 pF.

L: Caixa de indutâncias calibradas 'Lionmount' de 0 a 0,01 H com incremento de 1 mH.

R': Caixa de resistências calibradas 'Lloyd' de 0 a 1000 Ω com incremento de 0,1 Ω .

S: Interruptor

Observação: A lista de material acima descrita poderá não ser comum a todas as bancadas.

4. CIRCUITO RL

4.1 Ligação a um Gerador Alternado Sinusoidal

4.1.1 Esquema de Ligações

4.1.2 Condução do Trabalho

Monte o circuito da Fig. 4 de acordo com a lista de material do ponto **4**. Regule o osciloscópio do seguinte modo:

Canal 1: Escala – 2 V/div

Trigger:

Canal 2: Escala – 0,5 V/div

Origem - Externo

Tempo: Escala – 100 μs/div

Inclinação – Subida

Modo de disparo: normal

Regule o gerador do seguinte modo:

Sine: Freq.: 5 kHz

Ampl.: 2 V RMS

Offset: 0

a) Registe os valores eficazes de u_g e u_R . Recorrendo aos cursores do osciloscópio em modo

tempo determine a diferença temporal, Δt , entre as passagens por zero das tensões u_g e

 u_R . Registe os valores obtidos na tabela **R 4.1.2** a).

b) Prima o botão "burst" do gerador.

Faça as seguintes regulações:

Burst: Cycles: 100

Osciloscópio: Trigger:

Inclinação: Descida

Burst period: 40 ms

Start phase: 0

b.1) Determine o valor u_R no instante t = 0 em que a tensão do gerador se anula. Calcule o

valor de u_R para $t = \tau$. Com o auxílio dos cursores em modo tempo, determine o intervalo

de tempo (τ_{exp}) necessário para que a tensão u_R atinja esse valor. Registe esse valor na tabela

R 4.1.2 b.1).

Faça a seguinte regulação:

Osciloscópio: Trigger:

Inclinação: Subida

b.2) Com o auxílio dos cursores do osciloscópio em modo tempo determine os instantes

em que a tensão u_R tem os cinco primeiros extremos. Com o auxílio dos cursores do osci-

loscópio em modo tensão obtenha as amplitudes desses extremos. Registe os valores obti-

dos na tabela **R 4.1.2 b.2**).

- 6 -

5. <u>CIRCUITO RLC-SÉRIE</u>

5.1 Esquema de Ligações

- Fig. 5 -

5.2 Condução do Trabalho

Monte o circuito da Fig. 5 de acordo com a lista de material do ponto 3. Escolha para o gerador a função de "onda quadrada" com período $T_0 = 20/\beta$, onde β tem o valor calculado em 2.2 d). Ligue a saída do gerador ao canal 1 do osciloscópio com o circuito desligado. Ligue o gerador. Ajuste a amplitude de saída de modo a obter a forma indicada na Fig. 6. Desligue o gerador.

a) Seleccione os valores de $R' = 150 \,\Omega$, $L = 8 \,\text{mH}$ e $C = 50 \,\text{nF}$. Ligue os pontos A e B, respectivamente ao canal 1 e canal 2 do osciloscópio de modo a visualizar u(t) e $u_R(t)$. Ligue o gerador. Obtenha cópia em papel das curvas obtidas.

Para o semi-período em que a tensão aplicada é nula ($t_0 + T_0 / 2 < t < t_0 + T_0$, Fig. 6) obtenha os valores dos quatro primeiros extremos de $u_R(t)$ com a ajuda do cursor de tensão do osciloscópio. Determine o período de isocronismo, T, com a ajuda do cursor de tempo do osciloscópio. Registe os valores obtidos na tabela $\bf R$ 5.2 $\bf a$).

b) Seleccione o valor de R' de modo a que R'+R_G = R₀ obtido em 2.2 e). Com o auxílio dos cursores determine o instante t_{min} em que i é mínimo. Registe os valores obtidos na tabela R 5.2 b). Varie o valor de R' de modo a visualizar os tipos de solução que pode obter para o regime livre.

6. RELATÓRIO

- a) Com base nos resultados obtidos em **4.1.2 a**) determine o valor eficaz da corrente, I_{ef} , o ângulo φ de desfasagem entre a tensão e a corrente e o módulo da impedância, $|\overline{Z}|$. Supondo que a resistência total do circuito é $R_T = 700 \Omega$ (R' = 650 Ω , $R_i = 50 \Omega$), determine o valor experimental de $L'(L'_{exp})$ a partir do módulo da impedância total do circuito e do valor R_T dado. Com base nos valores de L' experimental e R_T determine o argumento da impedância, φ '. Registe os valores na tabela **R 6. a**).
- b) Com base nos resultados obtidos em **4.1.2 b.2**) determine as amplitudes dos cinco primeiros extremos da corrente *i*. Com o auxílio da expressão determinada no dimensionamento, alínea **2.1 b**) calcule os instantes em que se dão os cinco primeiros extremos da corrente, bem como as suas amplitudes. Registe os resultados na tabela **R 6. b**).
- c) Compare o valor experimental da constante de tempo τ_{exp} , obtido em **4.1.2 b.1**) com o valor teórico $\tau = L'_{exp}/R_T$. Registe os resultados na tabela **R 6. c**).
- d) Com base nos resultados obtidos em **5.2 a**), calcule: o decremento logarítmico, λ ; o coeficiente de amortecimento, β e a frequência angular das oscilações não amortecidas ω_0 . Registe os resultados na tabela **R 6. d**). Compare com os valores obtidos no dimensionamento em **2.2 d**). Comente as diferenças.
- e) Compare o resultado experimental obtido para t_{min} (em **5.2 b**)), com o previsto no dimensionamento em **2.2 e**).

O relatório tem que ser entregue no final da aula de laboratório e consiste no preenchimento da ficha apresentada em Anexo, à qual devem juntar as curvas impressas.

REFERÊNCIAS

J. A. Brandão Faria, 'Electromagnetic Foundations of Electrical Engineering', Wiley, 2008. Cap. 7. Secção 7.4.

Fevereiro 2018

ANEXO

RELATÓRIO DO 4º TRABALHO LABORATORIAL

R 4.1.2 a) e 6. a):

Valores medidos em 4.1.2 a)

$U_{g_{e\!f}}\left[V ight]$	$U_{R_{ef}}$ [V]	Δt [ms]

Cálculo de $I_{ef}, \, arphi, \, \left| \overline{Z} \right|, L'_{exp}$ e arphi'

I _{ef} [mA]	φ [°]	$\left \overline{Z}\right $ $\left[\Omega ight]$	L'exp [H]	φ' [°]

R 4.1.2 b.1) e 6. c):

Valor medido em 4.1.2 b.1) e cálculo de au

τ _{exp} [ms]	τ [ms]

R 4.1.2 b.2) e 6. b):

Valores medidos em 4.1.2 b.2)

	1° Extremo	2° Extremo	3° Extremo	4º Extremo	5° Extremo
u_R [V]					
t [ms]					

Cálculo de *i*₁, *i*₂, *i*₃, *i*₄, *i*₅

<i>i</i> ₁ [mA]	<i>i</i> ₂ [mA]	<i>i</i> ₃ [mA]	<i>i</i> ₄ [mA]	<i>i</i> ₅ [mA]

Cálculo dos instantes de tempo e das amplitudes dos cinco primeiros extremos da corrente, utilizando a expressão obtida na alínea 2.1 b)

	t [ms]	i [mA]
1° Extremo		
2º Extremo		
3° Extremo		
4º Extremo		
5° Extremo		

R 5.2 a) e 6. d):

Valores medidos em 6.2 a)

u_{R_1} [V]	u_{R_2} [V]	u_{R_3} [V]	u_{R_4} [V]	T [ms]

Cálculo de λ , β e ω_0

λ	β [s ⁻¹]	ω_0 [rads ⁻¹]

Comentários:	 	 	
R 5.2 b):			

Valores medidos em 5.2 b)

t_{min} [ms]

Número	Nome	Auto-Aval. [%]