Integer Programming

Renda Nyamande 30 August 2022

Abstract
We shall conquer at all costs!

What is it?

Def LP problems with at least one variable that has to be an integer.

Types

- Pure All decision vars have to be integers. $X \in int$
- Mixed Some ints and some not (Even int + binary).
- Binary Decision vars can only take on the values 0 or 1. $X \in \{0, 1\}$

Characteristics

• The change from a normal LP to an integer one changes the problem drastically; Making it more complex (Might not even have a solution).

Example 1

Figure 1: Example 1

$$\begin{aligned} & \text{Max } X_1 + 3X_2 \\ & S.t: \\ & 2X_1 + 8X_2 \leq 9 \\ & 4X_1 + X_2 \leq 15.5 \\ & 8X_1 - 4X_2 \geq -5 \\ & X_1, X_2 \geq 0 \text{ and Integer} \end{aligned}$$

- Point A would be the optimal solution point if this was a normal LP problem.
- Trying to use the same point rounded up would result in one using a point that's actually not in the feasible region.
- If you round down, the solution would be feasible but not optimal.
- Adding an int constraint can only restrict the solution.
- Therefore A is the best solution we could ever hope to achieve having restricted things.
- So shifting the isocost line down from A (Restricting solution), the first int point it touches will be the optimal point.
- Theres an algorithm we'll use to find these solutions.

Example 2

Suppose we have identified four investment opportunities and we have R14000 to invest. Project 1 requires an investment of R5,000 and has a present value (a time-discounted value) of R8,000; Project 2 requires R7,000 and has a value of R11,000; Project 3 requires R4,000 and has a value of R6,000; and Project 4 requires R3,000 and has a value of R4,000. The question is: into which projects should we place our money in order to maximize our total present value?

Figure 2: Example 2

$$Let X_j = \begin{cases} 1 & \text{if project } j \text{ is selected; } j = 1,2,3,4 \\ 0 & \text{Otherwise} \end{cases}$$
 (1)

 $\begin{aligned} & \text{Max } 8000X_1 + 11000X_2 + 6000X_3 + 4000X4 \text{ St: } 5000X_1 + 7000X_2 + 4000X_3 + \\ & 3000X_4 \leq 14000 \\ & X_1, X_2, X_3, X_4 \in \{0, 1\} \end{aligned}$

- Using simplex, $Z = R22000 \ (X_1 = X_2 = 1, X_3 = 0.5, X_4 = 0)$
- This obviously doesn't satisfy the last constraint.
- If you round down, Z = R19000
- Better solution $X_1 = 0, X_2 = X_3 = X_4 = 1$
- This is found using the algorithm we'll learn later.