Graph How

Using Spark and Shark SparkSQL to Power a Real-time Recommendation and Customer Intelligence Platform

About

- @MLnick
- Co-founder @graphflow big data & machine learning applied to recommendations, consumer behaviour & insights
- Apache Spark committer
- Author of "Machine Learning with Spark"
 - Packt RAW: http://www.packtpub.com/machine-learning-with-spark/book

Agenda

- A bit about Graphflow
- Architecture overview:
 - Graphflow Platform
 - Why Spark?
 - Evolution of our architecture
- Future

Graph How

Graphflow's platform captures interactions between users and items:

Items can be almost anything, from products to movies to music to apps.

Interactions can include *view*, *purchase*, *click*, *like* and anything in between.

We use state-of-the art machine learning and large-scale analytics techniques to analyse this behaviour and generate recommendations for users and items.

Our flexible integration layer can deliver real-time, personalised recommendations across any channel, including online, mobile, email and SMS.

Our analytics portal provides **deep insight** into customer behaviour and product performance

Omni-channel Recommendations

Customer Insight

The Graphflow Platform

Why Spark?

- In-memory caching + broadcast variables == machine learning
- Scala + Python APIs + SQL (Shark)
- Spark Streaming
- (more recently)
 - MLlib
 - SparkSQL

Architecture, Take One

Titan - Spark Integration

• Faunus: Gremlin DSL on Hadoop (in Groovy)

```
g = FaunusFactory.open(conf)
g.E.has("label", "purchase").transform(...)
```

Spark

Spark Challenges, mid-2013

- Spark 0.7.x
- No MLIib ...
 - ... so we wrote our own
 - Port of Mahout's Alternating Least Squares using Spark + Breeze
- No JobServer ...
 - ... so we wrote our own
 - Scalatra REST API + Akka Actors
 - Simpler version of Ooyala's JobServer

Spark ALS

- Spark 0.8.0-SNAPSHOT
- MovieLens 1m dataset
- Implicit prefs, 10 iterations, 10 factors

Model	Mahout 0.8 ALS	Spark Custom ALS
Runtime	6m39s	58s
Lines of Code	1374 + 137 + 121 + 116 = ~1750	~425

private final double alpha; private final double lambda; private final OpenIntObjectHashMap<Vector> Y; private final Matrix YtransposeY; public ImplicitFeedbackAlternatingLeastSquaresSolver(int numFeatures, double lambda, double alpha, this.alpha = alpha; YtransposeY = getYtransposeY(Y); public Vector solve(Vector ratings) { return solve(YtransposeY.plus(getYtransponseCuMinusIYPlusLambdaI(ratings)), getYtransponseCuPu(ratings)); private static Vector solve(Matrix A, Matrix y) { return new QRDecomposition(A).solve(y).viewColumn(0); return 1 + alpha * rating; private Matrix getYtransposeY(OpenIntObjectHashMap<Vector> Y) { IntArrayList indexes = Y.keys(); double[][] YtY = new double[numFeatures][numFeatures]; // Compute Y'Y by dot products between the 'columns' of Y OpenIntObjectHashMap<Vector> CuMinusIY = new OpenIntObjectHashMap<Vector>(userRatings.getNumNondefaultElements()); for (Element e : userRatings.nonZeroes()) { CuMinusIY.put(e.index(), Y.get(e.index()).times(confidence(e.get()) - 1)); Matrix YtransponseCuMinusIY = new DenseMatrix(numFeatures, numFeatures); /* Y' (Cu -I) Y by outer products */ return new DenseMatrix(matrix, true);

public class ImplicitFeedbackAlternatingLeastSquaresSolver {

Spark ALS

VS

```
def updateFactorsImplicit(
 UorI: mutable.Map[Int, DenseVector[Double]],
 ratings: Vector[Double],
 YtY: DenseMatrix[Double]) = {
 // set up required intermediate data structures
 val nui = ratings.activeSize
 val UorIMat = DenseMatrix.zeros[Double](nui, numF)
 val CuMinusIY = DenseMatrix.zeros[Double](nui, numF)
 val Cup = DenseVector.zeros[Double](nui)
 var j = 0
 ratings.activeIterator.foreach{ case(i, v) => {
   CuMinusIY(j, ::) := UorI(i) :* alpha :* v
   Cup(j) = alpha * v + 1
   UorIMat(j, ::) := UorI(i)
     += 1
 val YtCuY =
     YtY + UorIMat.t * CuMinusIY + (DenseMatrix.eye[Double](numF) :* lambda)
 val YtCup = UorIMat.t * Cup
 YtCuY \ YtCup
 Matrix / vector multiplication
 Element-wise operations
```

Architecture Issues

- Ended up not using Titan's powerful features
- Search, filtering, aggregation more important
- Titan/HBase + ElasticSearch
 - Complexity
 - Data duplication
- Always aimed for real-time model serving + incremental updates

Architecture, Take Two

ElasticSearch - Spark Integration

• Faunus / Spark

• ElasticSearch / Spark

SparkSQL

• ElasticSearch / SparkSQL

```
val events = esRdd.map { case (_, m) =>
  Event(m("timestamp").toLong, m("event").toString, ...)
// complex join and filter in Spark
events.registerAsTable("events")
val aggs = hql(
             "select
               from_unixtime(cast(time/1000.0 as bigint), 'yyyy-MM-dd HH:00:00') hour,
               event,
               count(1)
              from events ...
// save results to S3, ElasticSearch, MySQL, etc...
```

Spark ALS, Take Two

- Spark MLlib
- MovieLens 1m dataset
- Implicit prefs, 10 iterations, 10 factors

Model	Mahout 0.8 ALS	Spark Custom ALS	MLIib ALS
Runtime	6m39s	58s	24.8s
Lines of Code	1374 + 137 + 121 + 116 = ~1750	~425	~880

Model Server

- Requirements:
 - Serve 100s 1000s concurrent models
 - Fast & horizontally scalable
 - Many small models (10s 100s thousands users/items)
 - Some very large models (millions of users/items)
 - Fault tolerant
- Available alternatives didn't fit: Oryx, Prediction.io

Model Server

Model Server

- Scalatra
- Akka Cluster
- Breeze
- Periodic model refresh
- Incremental updates

Spark Challenges, mid-2014

- Spark 1.0.0!
 - MLlib
 - JobServer
 - Spark Submit
- Main challenges now:
 - DevOps
 - Deployment
 - Automation & scheduling

Future

- Near future:
 - More complex recommendation models in Spark
 - Different types of predictive models
 - More complex and compute-intensive aggregations for reporting & insights
- Farther future:
 - Spark Streaming for online model updates and aggregations

