(12)

EUROPÄISCHE PATENTANMELDUNG

- (21) Anmeldenummer: 95101136.0
- 2 Anmeldetag: 27.01.95

(5) Int. Cl.6: C07D 207/38, C07D 209/54, C07F 9/572, C07D 491/10, C07D 495/10, C07D 401/12, C07D 409/12, C07D 407/12, A01N 43/36, A01N 43/38

- Priorität: 09.02.94 DE 4404001 06.09.94 DE 4431730
- Veröffentlichungstag der Anmeldung: 23.08.95 Patentblatt 95/34
- (84) Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL
- (7) Anmelder: BAYER AG

D-51368 Leverkusen (DE)

2 Erfinder: Fischer, Dr. Reiner **Nelly Sachs Strasse 23** D-40789 Monheim (DE)

Erfinder: Bretschneider, Dr. Thomas

Talstrasse 29b D-53797 Lohmar (DE) Erfinder: Krüger, Dr. Bernd-Wieland

Am Vorend 52

D-51467 Bergisch Gladbach (DE)

Erfinder: Ruther, Dr. Michael

Grabenstrasse 23 D-40789 Monheim (DE)

Erfinder: Erdelen, Dr. Christoph

Unterbüscherhof 15 D-42799 Leichlingen (DE)

Erfinder: Wachendorff-Neumann, Dr. Ulrike

Krischerstrasse 81 D-40789 Monheim (DE)

Erfinder: Santel, Dr. Hans-Joachim

Grünstrasse 9A

D-51371 Leverkusen (DE) Erfinder: Dollinger, Dr. Markus **Burscheider Strasse 154b** D-51381 Leverkusen (DE)

(I)

- (Substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate.
- Die Erfindung betrifft neue 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

in welcher

die in der Beschreibung angegebene Bedeutung haben, A. B. X. Y und G mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als Schädlingsbekämpfungsmittel.

Die Erfindung betrifft neue 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, insbesondere als Insektizide, Akarizide und Herbizide.

Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbeschrieben (S. Suzuki et al. Chem. Pharm. Bull. 15 1120 (1967)). Weiterhin wurden N-Phenylpyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger (Liebigs Ann. Chem. 1985 1095) synthetisiert. Eine biologische Wirksamkeit dieser Verbindungen wurde nicht beschrieben.

In EP-A-0 262 399 und GB-2 266 888-A werden ähnlich strukturierte Verbindungen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, insektizide oder akarizide Wirkung bekannt geworden ist. Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-355 599 und EP-415 211) sowie substituierte mono-cyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-377 893 und EP-442 077).

Weiterhin bekannt sind polycyclische 3-Arylpyrrolidin-2,4-dion-Derivate (EP-442 073) sowie 1H-3-Arylpyrrolidin-dion-Derivate (EP-456 063 und EP-521 334).

Es wurden nun neue substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

30 gefunden, in welcher

15

20

25

35

40

50

Α

für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteroatom unterbrochenes, gegebenenfalls substituiertes Cycloalkyl oder jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht.

В

für Wasserstoff Alkyl oder Alkoxyalkyl steht, oder

A und B

gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten gegebenenfalls durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten Cyclus stehen,

Х

für Halogen oder Alkyl steht,

Υ

für Halogen oder Alkyl steht,

G

für Wasserstoff (a) oder für eine der Gruppen

45

$$P_{R^{1}}$$
 (b), $P_{R^{5}}$ (c), $P_{R^{5}}$ (e),

E (f) oder

$$\sum_{L} N \stackrel{R^{6}}{\underset{R^{7}}{\longrightarrow}} (g)$$

steht, für ein Metallionäquivalent oder ein Ammoniumion steht, E jeweils für Sauerstoff oder Schwefel stehen, L und M für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, R١ Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substitu-5 iertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Hetaryloxyalkyl steht, für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, \mathbb{R}^2 Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder 10 Benzyl steht, unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, R3, R4 und R5 Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen, unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen sub-R6 und R7 15 stituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen, mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen. 20 Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächlichen Strukturen (la) bis (lg): 25 30 35 40 45 50

worin

A, B, E, L, M, X, Y, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.

Aufgrund eines oder mehrerer Chiralitätszentren fallen die Verbindungen der Formel (la) - (lg) im allgemeinen als Stereoisomerengemisch an, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sie können sowohl in Form ihrer Diastereomerengemische als auch als reine Diastereomere oder Enantiomere verwendet werden. Im folgenden wird der Einfachheit halber stets von Verbindungen der Formel (la) bis (lg) gesprochen, obwohl sowohl die reinen Verbindungen, als auch die Gemische mit unterschiedlichen Anteilen an isomeren, enantiomeren und stereomeren Verbindungen gemeint sind.

Weiterhin wurde gefunden, daß man die neuen substituierten 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält.

(A) Man erhält 1H-3-Aryl-pyrrolidin-2,4-dione bzw. deren Enole der Formel (la)

$$\begin{array}{c} A & H \\ B \longrightarrow N \\ O \\ X \longrightarrow N \end{array}$$

$$(Ia)$$

in welcher

5

10

15

A, B, X und Y die oben angegebene Bedeutung haben, wenn man

N-Acylaminosäureester der Formel (II)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

und

30

35

40

45

R8 für Alkyl, inbesondere C₁-C₁₀-Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert; oder

(B) man erhält Verbindungen der Formel (lb)

50 in welcher

A, B, X, Y und R¹ die oben angegebene Bedeutung haben, wenn man Verbindungen der Formel (la),

in welcher

5

10

15

20

25

30

35

45

50

55

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

in welcher

R1 die oben angegebene Bedeutung hat und

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

ode

β) mit Carbonsäureanhydriden der Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

40 (C) man erhält Verbindungen der Formel (Ic-a)

in welcher

A, B, X, Y und R² die oben angegebene Bedeutung haben,

und

M für Sauerstoff oder Schwefel steht, wenn man Verbindungen der Formel (la)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V)

R²-M-CO-Cl (V)

20

30

35

5

10

15

in welcher

R² und M die oben angegebene Bedeutung haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

25 ode

(D) man erhält Verbindungen der Formel (Ic-b)

40

in welcher

A, B, R^2 , X und Y die oben angegebene Bedeutung haben und

M für Sauerstoff oder Schwefel steht, wenn man Verbindungen der Formel (la)

50

45

 $\begin{array}{c} A & H \\ B & N \\ HO \\ X & \end{array}$ (Ia)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

a) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

5

$$CI \underset{S}{\bigvee} M - R^2$$
 (VI)

10

15

in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

ode

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R2-Hal (VII)

20

in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder lod steht,

umsetzt;

oder

(E) man erhält Verbindungen der Formel (Id)

30

35

25

40

in welcher

A, B, X, Y und R³ die oben angegebene Bedeutung haben,

wenn man Verbindungen der Formel (la)

50

45

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der Formel (VIII)

R3-SO₂-CI (VIII)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

(F) man erhält 3-Aryl-pyrrolidin-2,4-dione der Formel (le)

15

20

5

10

25

in welcher

A, B, L, X, Y, R⁴ und R⁵ die oben angegebene Bedeutung haben,

wenn man

1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (la) bzw. deren Enole

35

40

30

45

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Phosphorverbindungen der Formel (IX)

50

$$Hal - P \stackrel{R^4}{\underset{L}{||}} (IX)$$

in welcher

L, \mathbb{R}^4 und \mathbb{R}^5 die oben angegebene Bedeutung haben und

Hal für Halogen, insbesondere Chlor oder Brom steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels

umsetzt;

oder

(G) man erhält Verbindungen der Formel (If)

10

15

20

5

 $\begin{array}{c|c}
A & H \\
E - O & \\
X - V - \\
Y & \\
\end{array}$ (I-f)

in welcher

25 A, B, X und Y die oben angegebene Bedeutung haben, und

E für ein Metallionäquivalent oder für ein Ammoniumion steht, wenn man Verbindungen der Formel (la)

30

35

40

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

 $Me(OR^{10})_t$ (X)

50

45

in welchen

Me für ein ein- oder zweiwertiges Metall wie beispielsweise Lithium, Kalium, Natrium,

Calcium oder Magnesium,

für die Zahl 1 oder 2 und

R¹⁰, R¹¹ und R¹² unabhängig voneinander für Wasserstoff und/oder Alkyl

stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

(H) Ferner wurde gefunden, daß man Verbindungen der Formel (I-g)

10

15

5

20

in welcher

A, B, L, X, Y, R⁶ und R⁷ die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (la)

25

30

35

40

45

50

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

 $R^6 - N = C = L$ (XII)

in welcher

L und R⁶ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

$$\begin{array}{c|c}
R^{6} & \downarrow \\
N & CI \\
R^{7} & CI
\end{array}$$
(XIII)

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

5

10

20

25

30

35

40

45

50

55

Weiterhin wurde gefunden, daß sich die neuen 1-H-3-Arylpyrrolidin-2,4-dion-Derivate der Formel (I) durch hervorragende insektizide, akarizide und herbizide Wirkungen auszeichnen.

Für die allgemeinen Formeln der vorliegenden Anmeldung gilt:

A steht bevorzugt für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₁-C₈-alkyl, C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy und/oder Nitro substituiertes Aryl, 5- bis 6-gliedriges Hetaryl oder Aryl-C₁-C₆-alkyl.

B steht bevorzugt für Wasserstoff, C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxyalkyl oder

A, B und das Kohlenstoffatom an das sie gebunden sind, stehen bevorzugt für einen gesättigten oder ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₁₀-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C₁-C₁₀-Alkyl, C₃-C₁₀-Cycloalkyl, C₁-C₆-Halogenalkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkylthio, Halogen oder Phenyl substituiert ist oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>bevorzugt</u> für einen C₃-C₆-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- und/oder Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithio-yl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünfbis achtgliedrigen Spirocyclus bildet oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen bevorzugt für einen C₃-C₈-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituierten gesättigten oder ungesättigten 3- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.

A steht besonders bevorzugt für Wasserstoff jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₁-C₆-alkyl, C₁-C₈-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Fluor, Chlor, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C₁-C₄-alkyl.

B steht besonders bevorzugt für Wasserstoff, C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxyalkyl oder

A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders bevorzugt für einen gesättigten oder ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₉-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Haloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert ist oder

A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>besonders bevorzugt</u> für einen C₃-C₆-Spirocyclus, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder Schwefelatome unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl oder durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder

A,B und das Kohlenstoffatom, an das sie gebunden sind, stehen <u>besonders bevorzugt</u> für einen C₃-C₆-Spirocyclus, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Fluor, Chlor oder Brom substituierten gesättigten oder ungesättigten 5- bis

- 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.
- A steht ganz besonders bevorzugt für Wasserstoff, gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, C₁-C₆-Alkylthio-C₁-C₄-alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff-und/oder Schwefelatomen unterbrochen sein kann oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Pyrazolyl, Triazolyl, Indolyl, Thiazolyl, Thienyl oder Benzyl.
- B steht ganz besonders bevorzugt für Wasserstoff, C₁-C₈-Alkyl oder C₁-C₄-Alkoxyalkyl oder
 - A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₈-Spirocyclus, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder
 - A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für einen C₃-C₆-Spirocyclus, der durch eine gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder
 - A,B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für einen C₃-C₆-Spirocyclus, bei dem zwei Substituenten gemeinsam, für einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann.
 - X steht bevorzugt für Halogen oder C₁-C₆-Alkyl.
 - X steht besonders bevorzugt für Fluor, Chlor, Brom oder C₁-C₄-Alkyl.
 - X steht ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl.
 - Y steht bevorzugt für Halogen oder C₁-C₆-Alkyl.
- Y steht besonders bevorzugt für Fluor, Chlor, Brom oder C₁-C₄-Alkyl.
 - Y steht ganz besonders bevorzugt für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl.

Dabei gilt, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

G steht bevorzugt für Wasserstoff (a) oder für eine der Gruppen

E (f) oder

5

10

15

20

25

30

35

40

45

50

55

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht und L und M jeweils für Sauerstoff oder Schwefel stehen.

R¹ steht bevorzugt jeweils für gegebenenfalls durch Halogen s

steht bevorzugt jeweils für gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_2 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkyl oder gegebenenfalls durch Halogen oder C_1 - C_6 -Alkyl substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff- und/oder Schwefelatom unterbrochen sein kann.

für gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Alkylthio oder C_1 - C_6 -Alkylsulfonyl substituiertes Phe-

nyl,

5

10

15

20

25

30

35

40

45

50

55

R²

R3, R4 und R5

R6 und R7

G

für gegebenenfalls durch Halogen, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Halogenalkyl, C_1 - C_6 -Halogenalkoxy substituiertes Phenyl- C_1 - C_6 -alkyl,

für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes 5- oder 6gliedriges Hetaryl.

für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Phenoxy-C₁-C₆-alkyl oder

für gegebenenfalls durch Halogen, Amino und/oder C_1 - C_6 -Alkyl substituiertes 5- oder 6-gliedriges Hetaryloxy- C_1 - C_6 -alkyl.

steht bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_{20} -Alkyl, C_3 - C_{20} -Alkenyl, C_1 - C_8 -Alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_1 - C_8 -alkyl,

für gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl und/oder C_1 - C_4 -Alkoxy substituiertes C_3 - C_8 -Cycloalkyl, oder

für jeweils gegebenenfalls durch Halogen, Nitro, C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy und/oder C_1 - C_6 -Halogenalkyl substituiertes Phenyl oder Benzyl.

stehen unabhängig voneinander bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_8 -Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylamino, Di-(C_1 - C_8)-alkylamino, C_1 - C_8 -Alkylthio, C_2 - C_8 -Alkenylthio, C_3 - C_7 -Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkylthio, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.

stehen unabhängig voneinander bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₈-Halogenalkyl, C₁-C₈-Alkyl und/oder C₁-C₈-Alkoxy substituiertes Phenyl, gegebenenfalls durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl und/oder C₁-C₈-Alkoxy substituiertes Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochen C₃-C₆-Alkylenring.

steht besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen

 R^{1} (b), R^{2} (c), SO_{2} R^{3} R^{5} (e),

E (f) oder

 $N \stackrel{R^6}{\longrightarrow} N \stackrel{R^7}{\nearrow} (g),$

in welchen

E für ein Metallionäquivalent oder ein Ammoniumion steht, L und M jeweils für Sauerstoff oder Schwefel stehen.

steht besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1 - C_{16} -Alkyl, C_2 - C_{16} -Alkenyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 -Alkylthio- C_1 - C_6 -alkyl, C_1 - C_6 -Polyalkoxy- C_1 - C_6 -alkyl oder gegebenenfalls durch Halogen oder C_1 - C_5 -Alkyl substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls durch Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkyl, C_1 - C_3 -Halogenalkoxy substituiertes Phenyl- C_1 - C_4 -alkyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Pyra-

zolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl, für gegebenenfalls durch Fluor, Chlor, Brom und/oder C1-C4-Alkyl substituiertes Phenoxy-C1-C5-alkyl oder für gegebenenfalls durch Fluor, Chlor, Brom, Amino und/oder C1-C4-Alkyl substituiertes Pyridyloxy- C_1 - C_5 -alkyl, Pyrimidyloxy- C_1 - C_5 -alkyl oder Thiazolyloxy- C_1 - C_5 -alkyl. 5 R² steht besonders bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C1- C_{16} -Alkyl, C_{3} - C_{16} -Alkenyl, C_{1} - C_{6} -Alkoxy- C_{1} - C_{6} -alkyl, C_{1} - C_{6} -Polyalkoxy- C_{1} - C_{6} -alkyl, für gegebenenfalls durch Halogen, C1-C3-Alkyl und/oder C1-C3-Alkoxy substituiertes C3-C7-Cycloalkyl oder für jeweils gegebenenfalls durch Halogen, Nitro, C1-C4-Alkyl, C1-C3-Alkoxy und/oder 10 C₁-C₃-Halogenalkyl substituiertes Phenyl oder Benzyl. stehen unabhängig voneinander besonders bevorzugt für jeweils gegebenenfalls durch R3, R4 und R5 Halogen substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆)-alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C1-C3-Alkoxy, C1-C3-Halogenalkoxy, C1-15 C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio. stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, für jeweils R6 und R7 gegebenenfalls durch Halogen substituiertes C1-C6-Alkyl, C3-C6-Cycloalkyl, C1-C6-Alkoxy, C₃-C₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, für gegebenenfalls durch Halogen, 20 C1-C5-Halogenalkyl, C1-C5-Alkyl und/oder C1-C5-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C1-C5-Alkyl, C1-C5-Halogenalkyl und/oder C1-C5-Alkoxy substituiertes Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₃-C₆-Alkylenring. steht ganz besonders bevorzugt für Wasserstoff (a) oder für eine der Gruppen G 25 $SO_{\overline{2}}R^3$ P R^5 30 E (f) oder 35 40 in welcher Ε für ein Metallionäquivalent oder ein Ammoniumion steht und L und M jeweils für Sauerstoff oder Schwefel stehen. steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor R1 substituiertes C1-C14-Alkyl, C2-C14-Alkenyl, C1-C4-Alkoxy-C1-C6-alkyl, C1-C4-Alkylthio-45 C1-C6-alkyl, C1-C4-Polyalkoxy-C1-C4-alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder tert.-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Propyl, i-Propyl, 50 Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethylsulfonyl substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C1-C3-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, 55 Thienyl, Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl,

C1-C4-alkyl, oder

für gegebenenfalls durch Fluor, Chlor, Methyl und/oder Ethyl substituiertes Phenoxy-

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl oder Thiazolyloxy-C₁-C₄-alkyl. R^2 steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₁₄-Alkyl, C₃-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Polyal-5 koxy-C1-C6-alkyl. für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, oder für jeweils gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl. R3, R4 und R5 stehen unabhängig voneinander ganz besonders bevorzugt für jeweils gegebenenfalls 10 durch Fluor und/oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-alkylamino, C₁-C₄-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C1-C2-Alkoxy, C1-C2-Fluoralkoxy, C1-C2-Alkylthio, C1-C2-Fluoralkylthio, C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio. R6 und R7 15 stehen unabhängig voneinander ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und/oder C₁-C₄-Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenen-20 falls durch Sauerstoff oder Schwefel unterbrochenen C4-C6-Alkylenring. In den angegebenen Definitionen können gesättigte oder ungesättigte Alkylreste, auch in Verbindung

In den angegebenen Definitionen können gesättigte oder ungesättigte Alkylreste, auch in Verbindung mit Heteroatomen, wie z.B. Alkoxy oder Alkylthio, soweit möglich jeweils geradkettig oder verzweigt sein.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

25

30

35

40

45

50

55

Erfindungsgemäß bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der allgemeinen Formel (I), in welchen eine Kombination dieser vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Im einzelnen seien außer bei den bei Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (la) genannt:

Tabelle 1:

 $\begin{array}{c} A & H \\ B & N \\ HO & \\ X & \\ \end{array}$

Х	Y	A	В
Cl	CH ₃	CH ₃	Н
Cl	CH ₃	C ₂ H ₅	Н
Cl	CH ₃	C ₃ H ₇	Н
Cl	CH ₃	i-C ₃ H ₇	Н
Cl	CH ₃	C ₄ H ₉	Н
Cl	CH ₃	i-C ₄ H ₉	Н
Cl	CH ₃	s-C ₄ H ₉	Н
Cl	CH ₃	t-C ₄ H ₉	Н

Fortsetzung Tabelle 1:

5	Х	Y	A	В
	Cl	CH ₃	CH ₃	CH ₃
10	Cl	CH ₃	C ₂ H ₅	CH ₃
	Cl	CH ₃	C ₃ H ₇	CH ₃
15	Cl	CH ₃	i-C ₃ H ₇	CH ₃
	Cl	CH ₃	C ₄ H ₉	CH ₃
20	Cl	CH ₃	i-C ₄ H ₉	CH ₃
20	Cl	CH ₃	s-C ₄ H ₉	CH ₃
	Cl	CH ₃	t-C ₄ H ₉	CH ₃
25	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅
	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇
30	Cl	CH ₃		CH ₃
35	Cl	CH ₃		CH ₃
40	Cl	CH ₃		CH ₃

EP 0 668 267 A1

Fortsetzung Tabelle 1:

4	=	
٠	,	

Х	Y	A	В
CH ₃	Cl	CH ₃	Н
CH ₃	Cl	C ₂ H ₅	Н
CH ₃	Cl	C ₃ H ₇	Н
CH ₃	Cl	i-C ₃ H ₇	Н
CH₃	Cl	C ₄ H ₉	Н
CH ₃	Cl	i-C ₄ H ₉	Н
CH₃	Cl	s-C ₄ H ₉	Н
CH ₃	Cl	t-C ₄ H ₉	Н
CH ₃	Cl	CH ₃	CH ₃
CH ₃	Cl	C ₂ H ₅	CH ₃
CH ₃	Cl	C ₃ H ₇	CH ₃
CH ₃	Cl	i-C ₃ H ₇	CH ₃
CH ₃	Cl	C ₄ H ₉	CH ₃
CH ₃	Cl	i-C ₄ H ₉	CH ₃
CH ₃	Cl	s-C ₄ H ₉	CH ₃
CH ₃	Cl	t-C ₄ H ₉	CH ₃
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇

Fortsetzung Tabelle 1:

5	X	Y	A	В
10	CH ₃	Cl	_	CH ₃
	CH ₃	CI	\Box	CH ₃
15	CH ₃	CI	\bigcirc	CH ₃
20	Cl	CH ₃	-(CH ₂) ₂ -	
25	Cl	CH ₃	-(CH ₂) ₄ -	
	Cl	CH ₃	-(CH	l ₂) ₅ -
	Cl	CH ₃	-(CH ₂) ₆ -	
30	Cl	CH ₃	-(CH ₂) ₇ -	
	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
35	Cl	CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
	Cl	CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
40	Cl	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -

Fortsetzung Tabelle 1:

•	5	

X	Y	A	В
Cl	CH ₃	-(CH ₂) ₂ -CHi-C	₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -CHOC	₂ H ₅ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -CHi-O	C ₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
Cl	CH ₃	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -
Cl	CH₃	-сн ₂ сн	(CH ₂) ₂ —CH— —CH ₂
Cl	CH ₃	−CH ₂ —CH— (CH	CH-CH ₂
CI	CH ₃	-СН ₂ СН	-CH-(CH ₂) ₂ -

Fortsetzung Tabelle 1:

5	

Х	Y	A	В
CH ₃	Cl	-(CH	I ₂) ₂ -
CH ₃	Cl	-(CH	I ₂) ₄ -
CH ₃	CI	-(CH	I ₂) ₅ -
CH ₃	Cl	-(CH	I ₂) ₆ -
CH ₃	Cl	-(CH	I ₂) ₇ -
CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOC	₃ H ₇ -(CH ₂) ₂ -
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	

Fortsetzung Tabelle 1:

į	¢	ī	
•	ų	,	

X	Y	A	В
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
CH ₃	Cl	-CH ₂ -(CHCH ₃)	₂ -(CH ₂) ₂ -
CH₃	Cl	-сн ₂ сн	(CH ₂) ₂ —CH— -CH ₂ —
CH ₃	Cl	-CH₂CH -(CH	CH-CH ₂
CH ₃	Cl	-CH ₂ -CH(CH ₂)	-CH(CH ₂) ₂ -

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ib) genannt:

Tabelle 2:

EP 0 668 267 A1

Fortsetzung:	

		400110 2			
	X	Y	A	В	\mathbb{R}^1
5	CI	CH₃	CH ₃	Н	CH ₃
	CI	CH ₃	C ₂ H ₅	Н	CH ₃
10	Cl	CH₃	C ₃ H ₇	Н	CH ₃
	Cl	CH ₃	i-C ₃ H ₇	Н	CH ₃
	CI	CH ₃	C ₄ H ₉	Н	CH ₃
15	Cl	СН3	i-C ₄ H ₉	Н	CH ₃
	Cl	CH ₃	s-C ₄ H ₉	Н	CH ₃
20	Cl	CH ₃	t-C ₄ H ₉	Н	CH ₃
	Cl	CH ₃	CH ₃	CH ₃	CH ₃
	Cl	CH ₃	C ₂ H ₅	CH ₃	CH ₃
25	Cl	CH ₃	C ₃ H ₇	CH ₃	CH ₃
	Cl	CH ₃	i-C ₃ H ₇	CH ₃	CH ₃
30	Cl	CH ₃	C ₄ H ₉	CH ₃	CH ₃
	Cl	CH ₃	i-C ₄ H ₉	CH ₃	CH ₃
	Cl	CH ₃	s-C ₄ H ₉	CH ₃	CH ₃
35	Cl	CH ₃	t-C ₄ H ₉	CH ₃	СН3
	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	CH ₃
40	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	CH ₃
	Cl	CH ₃	\triangle	CH ₃	CH ₃
45	Cl	CH ₃		CH ₃ .	CH ₃
	Cl	CH ₃	<u></u>	CH ₃	CH ₃
50	L		<u> </u>		

Fortsetzung: Tabelle 2

Fortsetzung: Tabelle 2					
х	Y	A	В	R ¹	
CH ₃	Cl	CH ₃	Н	CH ₃	
CH ₃	Cl	C ₂ H ₅	Н	CH ₃	
CH ₃	Cl	C ₃ H ₇	Н	CH ₃	
CH ₃	Cl	i-C ₃ H ₇	Н	CH ₃	
CH ₃	Cl	C ₄ H ₉	Н	CH ₃	
CH ₃	Cl	i-C ₄ H ₉	Н	CH ₃	
CH ₃	Cl	s-C₄H ₉	Н	CH ₃	
CH ₃	Cl	t-C ₄ H ₉	Н	CH ₃	
CH ₃	Cl	CH ₃	CH ₃	CH ₃	
CH ₃	Cl	C ₂ H ₅	CH ₃	CH ₃	
CH ₃	Cl	C ₃ H ₇	CH ₃	CH ₃	
CH ₃	Cl	i-C ₃ H ₇	CH ₃	CH ₃	
CH ₃	Cl	C ₄ H ₉	CH ₃	CH ₃	
CH ₃	Cl	i-C ₄ H ₉	CH ₃	CH ₃	
CH ₃	CI	s-C ₄ H ₉	CH ₃	CH ₃	
CH ₃	CI	t-C ₄ H ₉	CH ₃	CH ₃	
CH ₃	Cl ·	C ₂ H ₅	C ₂ H ₅	CH ₃	
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	CH ₃	
CH ₃	CI		CH ₃	CH ₃	
CH ₃	Cl		CH ₃	CH ₃	
CH ₃	Cl		CH ₃	CH ₃	

EP 0 668 267 A1

Fortsetzung: Tabelle 2

	X	Y	A	В	\mathbb{R}^1
5	Cl	CH ₃	-(CH ₂) ₂ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₄ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₅ -		CH ₃
10	Cl	CH ₃	-(CH ₂) ₆ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₇ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -O-(Cl	H ₂) ₂ -	CH ₃
15	Cl	CH ₃	-(CH ₂) ₂ -S-(Cl	H ₂) ₂ -	CH ₃
	Cl	CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHCH ₃ -	(CH ₂) ₂ -	CH ₃
20	Cl	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅	-(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		CH ₃
25	Cl	CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHOC ₂ H	₅ -(CH ₂) ₂ -	CH ₃
30	Cl	CH ₃	-(CH ₂) ₂ -CHOC ₃ H	₇ -(CH ₂) ₂ -	CH ₃
30	Cl	CH ₃	-(CH ₂) ₂ -CHi-OC ₃ F	H ₇ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -		CH ₃
35	Cl	CH ₃	-СН ₂ -(СНСН ₃) ₂ -	-(CH ₂) ₂ -	CH ₃
33	Cl	CH ₃	$-CH_2-CH-(CH_2)$	ŢĊH—	CH ₃
			CH ₂		
40	Cl	CH ₃	—СН ₂ —СН——СН	-CH ₂	CH ₃
			(CH ₂) ₄		
45	Cl	CH ₃	-CH ₂ -CHCH	(CH ₂) ₂	CH ₃
	H		(CH ₂) ₃	•	· ·

50

EP 0 668 267 A1

Fortsetzung: Tabelle 2

,					
	X	Y	A	В	R ¹
5	CH ₃	Cl_	-(C	H ₂) ₂ -	CH ₃
	CH ₃	Cl	-(C	H ₂) ₄ -	CH ₃
	CH ₃	Cl	-(C	H ₂) ₅ -	CH ₃
10	CH ₃	Cl	-(C	H ₂) ₆ -	CH ₃
	CH ₃	Cl	-(C	H ₂) ₇ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -	O-(CH ₂) ₂ -	CH ₃
15	CH ₃	Cl	-(CH ₂) ₂ -	-S-(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-CH ₂ -CH(CH ₃ -(CH ₂) ₃ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -CH	ICH ₃ -(CH ₂) ₂ -	CH ₃
20	CH ₃	Cl	-(СН ₂) ₂ -СН	C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -CH	(C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -CHi	-C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
25	CH ₃	Cl	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -CH(OC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
30	CH ₃	Cl	-(CH ₂) ₂ -CH(OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	CH ₃	Cl	-(CH ₂) ₂ -C(0	CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
35	CH ₃	Cl	-CH ₂ -(CHC	CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
30	CH ₃	Cl	—СН ₂ —СН	·(CH ₂) ₂ ÇH	CH ₃
				-CH ₂	
40	CH ₃	Cl	-CH ₂ -CH-		CH ₃
45	CH ₃	Cl			CH ₃

50

Fortsetzung: Tabelle 2

٠	d	,		

Х	Y	A	В	R ¹
Cl	CH ₃	CH ₃	Н	i-C ₃ H ₇
Cl	CH ₃	C ₂ H ₅	Н	i-C ₃ H ₇
Cl	CH ₃	C ₃ H ₇	Н	i-C ₃ H ₇
Cl	CH ₃	i-C ₃ H ₇	Н	i-C ₃ H ₇
Cl	CH ₃	C ₄ H ₉	Н	i-C ₃ H ₇
Cl	CH ₃	i-C ₄ H ₉	Н	i-C ₃ H ₇
Cl	CH ₃	s-C ₄ H ₉	Н	i-C ₃ H ₇
Cl	CH ₃	t-C ₄ H ₉	Н	i-C ₃ H ₇
Cl	CH ₃	CH ₃	CH ₃	i-C ₃ H ₇
Cl	CH ₃	C ₂ H ₅	CH ₃	i-C ₃ H ₇
Cl	CH ₃	C ₃ H ₇	CH ₃	i-C ₃ H ₇
Cl	CH ₃	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇
Cl	CH ₃	C ₄ H ₉	CH ₃	i-C ₃ H ₇
Cl	CH ₃	i-C ₄ H ₉	CH ₃	i-C ₃ H ₇
Cl	CH ₃	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CI	CH ₃	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇
Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
Cl	CH ₃	Δ_	CH ₃	i-C ₃ H ₇
Cl	CH ₃		CH ₃	i-C ₃ H ₇
Cl	CH ₃	<u> </u>	CH ₃	i-C ₃ H ₇

EP 0 668 267 A1

Fortsetzung:	Tahelle	2
I UI ISCIZUIIE.	Lauciic	_

ortoctzang.	1 40 6176 2			
X	Y	A	В	\mathbb{R}^1
CH ₃	Cl	CH ₃	Н	i-C ₃ H ₇
CH ₃	Cl	C ₂ H ₅	Н	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	Cl	i-C ₃ H ₇	Н	i-C ₃ H ₇
CH ₃	Cl	C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	Cl	i-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	Cl	s-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	Cl	t-C ₄ H ₉	Н	i-C ₃ H ₇
CH ₃	Cl	CH ₃	CH ₃	i-C ₃ H ₇
CH ₃	Cl	C ₂ H ₅	CH ₃	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	Cl	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇
CH ₃	Cl	C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	Cl	i-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	Cl	s-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	Cl	t-C ₄ H ₉	CH ₃	i-C ₃ H ₇
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	i-C ₃ H ₇
CH ₃	Cl		CH ₃	i-C ₃ H ₇
CH ₃	Cl		CH ₃	i-C ₃ H ₇
CH ₃	Cl	\bigcirc	CH ₃	i-C ₃ H ₇

EP 0 668 267 A1

Fortsetzung: Tabelle 2

5	X	Y	A	В	R ¹
	CI	CH ₃	-(CF	·I ₂) ₂ -	i-C ₃ H ₇
:	Cl	CH ₃	-(CI	H ₂) ₄ -	i-C ₃ H ₇
10	Cl	CH ₃	-(CF	H ₂) ₅ -	i-C ₃ H ₇
	Cl	CH ₃	-(CI	H ₂) ₆ -	i-C ₃ H ₇
	Cl	CH ₃	-(CI	H ₂) ₇ -	i-C ₃ H ₇
15	Cl	CH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -S	S-(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
20	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
30	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
35	C1	CH ₃	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
	C1	CH ₃	CH₂CH(C	CH ₂) ₂ —CH—	i-C ₃ H ₇
				CH ₂	
40	Cl	CH ₃	-СН ₂ ÇН		i-C ₃ H ₇
			(CH ₂)		
45	Cl	CH ₃	-СH ₂ -СН		i-C ₃ H ₇

50

EP 0 668 267 A1

Fortsetzung: Tabelle 2

	X	Y	A	В	R ¹
5	CH ₃	Cl	-(C	H ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(C	H ₂) ₄ -	i-C ₃ H ₇
	CH ₃	Cl	-(C	H ₂) ₅ -	i-C ₃ H ₇
10	CH ₃	Cl	-(C	H ₂) ₆ -	i-C ₃ H ₇
	CH ₃	Cl	-(C	H ₂) ₇ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -	O-(CH ₂) ₂ -	i-C ₃ H ₇
15	CH ₃	Cl	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-CH ₂ -CHC	CH ₃ -(CH ₂) ₃ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CH	ICH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
20	CH ₃	Cl	-(CH ₂) ₂ -CH	C ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CH	C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHi	-C ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
25	CH ₃	Cl	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CH(OC ₂ H ₅ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CH(OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
30	CH ₃	Cl	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -C(0	CH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
	CH ₃	Cl	-CH ₂ -(CHC	CH ₃) ₂ -(CH ₂) ₂ -	i-C ₃ H ₇
35	CH ₃	Cl	—СН ₂ —СН—	(CH ₂) ₂ -CH-	i-C ₃ H ₇
				-CH ₂	
40	CH ₃	Cl	−CH ₂ −CH−	—ÇH−CH ₂ —	i-C ₃ H ₇
			L _{(CH}	2)4	
45	CH ₃	Cl	-СН ₂ -СН-		i-C ₃ H ₇
			(CH	2)3	

50

Fortsetzung:	Tabel	le.	2
i di wellenie.	1 400		~

	Ortsetzung. 1	aborre 2			
	X	Y	A	В	R ¹
5	Cl	CH ₃	CH ₃	Н	t-C ₄ H ₉
	Cl	CH ₃	C ₂ H ₅	Н	t-C ₄ H ₉
10	Cl	CH ₃	C ₃ H ₇	Н	t-C ₄ H ₉
	Cl	CH ₃	i-C ₃ H ₇	Н	t-C ₄ H ₉
15	Cl	CH ₃	C₄H ₉	Н	t-C ₄ H ₉
	Cl	CH ₃	i-C₄H ₉	Н	t-C ₄ H ₉
	Cl	CH ₃	s-C ₄ H ₉	Н	t-C ₄ H ₉
20	Cl	CH ₃	t-C ₄ H ₉	Н	t-C ₄ H ₉
	Cl	CH ₃	CH ₃	CH ₃	t-C ₄ H ₉
25	CI	CH ₃	C ₂ H ₅	CH ₃	t-C ₄ H ₉
	Cl	CH ₃	C ₃ H ₇	CH ₃	t-C ₄ H ₉
i.	Cl	CH ₃	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉
30	CI	CH₃	C ₄ H ₉	CH ₃	t-C ₄ H ₉
	Cl	CH ₃	i-C ₄ H ₉	CH ₃	t-C ₄ H ₉
35	Cl	CH ₃	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉
	Cl	CH ₃	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉
40	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉
40	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	t-C ₄ H ₉
	Cl	CH ₃	\triangle	CH ₃	t-C ₄ H ₉
45	Cl	CH ₃		CH ₃	t-C ₄ H ₉
50	Cl	CH ₃	<u> </u>	CH ₃	t-C₄H ₉

Fortsetzung:	Tahall	a 1)
TORISCIZIUM.	i auen	C 4	۷.

X	Y	Α	В	R ^I
CH ₃	Cl	CH ₃	Н	t-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	Н	t-C ₄ H ₉
CH ₃	Cl	C ₃ H ₇	Н	t-C ₄ H ₉
CH ₃	Cl	i-C ₃ H ₇	Н	t-C ₄ H ₉
CH ₃	Cl	C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	Cl	i-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	Cl	s-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	Cl	t-C ₄ H ₉	Н	t-C ₄ H ₉
CH ₃	Cl	CH ₃	CH ₃	t-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	CH ₃	t-C ₄ H ₉
CH ₃	Cl	C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	Cl	i-C ₃ H ₇	CH ₃	t-C ₄ H ₉
CH ₃	Cl	C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	Cl	i-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	CI	s-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	Cl	t-C ₄ H ₉	CH ₃	t-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	t-C ₄ H ₉
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	t-C ₄ H ₉
CH ₃	Cl	- Δ_	CH ₃	t-C ₄ H ₉
CH ₃	Cl		CH ₃	t-C ₄ H ₉
CH ₃	Cl	<u> </u>	CH ₃	t-C ₄ H ₉
			<u> </u>	

EP 0 668 267 A1

Fortsetzung: Tabelle 2

5	X	Y	A	В	R ¹
	Cl	CH ₃	-(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₄ - -(CH ₂) ₅ - -(CH ₂) ₆ -		t-C ₄ H ₉
10	Cl	CH ₃			t-C ₄ H ₉
	Cl	CH ₃			t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₇ -		t-C ₄ H ₉
15	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -		t-C ₄ H ₉
20	Cl	CH ₃	-(CH ₂) ₂ -CH	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
	Cl	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		t-C ₄ H ₉
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		t-C ₄ H ₉
30	Cl	CH ₃	-(CH ₂) ₂ -CHO	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
	Cl	CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -		t-C ₄ H ₉
35	Cl	CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -		t-C ₄ H ₉
	Cl	CH ₃	—СН ₂ —СН—(С	CH ₂) ₂ —CH—	t-C ₄ H ₉
40			(CH ₂	
40	Cl	CH ₃	-CH₂-CH-	-CH-CH ₂ -	t-C ₄ H ₉
			(CH ₂)	4	
45	Cl	CH ₃	-CH ₂ CH	-CH-(CH ₂) ₂ -	t-C ₄ H ₉
		·	(CH ₂)3		

50

Fortsetzung: Tabelle 2

				· ·
5	X	Y	A B	R ¹
	CH ₃	Cl	-(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₄ -	t-C ₄ H ₉
10	CH ₃	Cl	-(CH ₂) ₅ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₆ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₇ -	t-C ₄ H ₉
15	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	t-C₄H ₉
	CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	t-C₄H ₉
20	CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	t-C₄H ₉
25	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	t-C ₄ H ₉
30	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
35	CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	t-C ₄ H ₉
	CH ₃	Cl	-СН ₂ ÇН(СН ₂) ₂ ÇН	t-C ₄ H ₉
			CH ₂	
40				
	CH ₃	Cl	-CH ₂ -CH-CH ₂	t-C ₄ H ₉
			(CH ₂) ₄	
45	CH ₃	Cl	-CH ₂ -CH-CH-(CH ₂) ₂ -	t-C ₄ H ₉
	,			
	<u> </u>	<u> </u>	└ (CH ₂) ₃ ─┘	<u> </u>

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ic) genannt:

55

Tabelle 3:

	Ą H	
5	B N N	
	$R^2 \longrightarrow M$	(Ic)
10	r /=/	
	Y	

х	Y	Α	В	L	М	R ²
Cl	CH ₃	CH ₃	Н	0	0	C ₂ H ₅
Cl	CH ₃	C ₂ H ₅	Н	0	0	C ₂ H ₅
Cl	СН₃	C ₃ H ₇	Н	0	0	C ₂ H ₅
Cl	CH ₃	i-C ₃ H ₇	Н	0	0	C ₂ H ₅
Cl	CH ₃	C₄H ₉	Н	0	0	C ₂ H ₅
Cl	CH ₃	i-C ₄ H ₉	Н	0	0	C ₂ H ₅
Cl	CH ₃	s-C ₄ H ₉	Н	0	0	C ₂ H ₅ .
Cl	CH ₃	t-C ₄ H ₉	Н	0	0	C ₂ H ₅
Cl	CH ₃	CH ₃	CH ₃	0	0	C ₂ H ₅
Cl	CH ₃	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅
Cl	CH ₃	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
Cl	CH ₃	C₄H ₉	CH ₃	0	o	C ₂ H ₅
CI	CH ₃	i-C ₄ H ₉	CH ₃	0	o	C ₂ H ₅
CI	CH ₃	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
·Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	.0	0	C ₂ H ₅
Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅
CI	CH ₃		CH ₃	0	0	C ₂ H ₅
CI	CH ₃		CH ₃	0	0	C ₂ H ₅
Cl	СН3	<u></u>	CH ₃	0	0	C₂H₅

Fortsetzung: Tabelle 3

1	fortsetzung: 1	abelle 3					
	х	Y	A	В	L	М	R ²
5	CH ₃	Cl	CH ₃	Н	0	0	C ₂ H ₅
	CH ₃	CI	C ₂ H ₅	Н	0	0	C ₂ H ₅
10	CH ₃	Cl	C ₃ H ₇	Н	0	0	C ₂ H ₅
	CH ₃	Cl	i-C ₃ H ₇	Н	0	0	C ₂ H ₅
15	CH ₃	Cl	C ₄ H ₉	Н	0	0	C ₂ H ₅
,0	CH ₃	Cl	i-C ₄ H ₉	Н	0	0	C ₂ H ₅
	CH ₃	Cl	s-C ₄ H ₉	Н	0	0	C ₂ H ₅
20	CH ₃	Cl	t-C ₄ H ₉	Н	0	0	C ₂ H ₅
	CH ₃	Cl	CH ₃	CH ₃	0	0	C ₂ H ₅
25	CH ₃	Cl	C ₂ H ₅	CH ₃	0	0	C ₂ H ₅
	CH ₃	Cl	C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
	CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	0	C ₂ H ₅
30	CH ₃	Cl	C₄H ₉	CH ₃	0	0	C ₂ H ₅
•	CH ₃	Cl	i-C₄H ₉	CH ₃	0	0	C ₂ H ₅
35	CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
	CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	0	C ₂ H ₅
·	CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	σ	0	C ₂ H ₅
40	CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	0	0	C ₂ H ₅
•	CH ₃	Cl	Δ_	CH ₃	0	0	C ₂ H ₅
45	CH ₃	Cl		CH ₃	О	0	C ₂ H ₅
	CH ₃	Cl		CH ₃	0	0	C ₂ H ₅

55

EP 0 668 267 A1

-							
	х	Y	A	В	L	М	R ²
5	Cl	CH ₃	-((CH ₂) ₂ -	0	0	C ₂ H ₅
	Cl	CH ₃	-((CH ₂) ₄ -	0	0	C ₂ H ₅
10	Cl	CH ₃	-((CH ₂) ₅ -	0_	0	C_2H_5
70	Cl	CH ₃	-(0	CH ₂) ₆ -	0	0	C ₂ H ₅
	Cl	CH ₃	-(CH ₂) ₇ -		0	0	C_2H_5
15	Cl	CH ₃	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	0	C_2H_5
75	Cl	CH ₃	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	0	C_2H_5
	Cl	CH ₃	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	0	C ₂ H ₅
20	Cl	CH ₃	-(CH ₂) ₂ -Cl	HCH ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
20	Cl	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		0	0	C_2H_5
	Cl	CH ₃	-(CH ₂) ₂ -CH	HC ₃ H ₇ -(CH ₂) ₂ -	0	0	C_2H_5
25	Cl	CH ₃	-(CH ₂) ₂ -CH	i-C ₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
20	Cl	CH ₃	-(CH ₂) ₂ -CH	ЮСН ₃ -(СН ₂) ₂ -	0	0	C ₂ H ₅
	Cl	CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		0	0	C_2H_5
30	Cl	CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -		0	0	C_2H_5
	Cl	CH ₃	-(CH ₂) ₂ -CHi	-OC ₃ H ₇ -(CH ₂) ₂ -	0	0	C_2H_5
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
35	Cl	CH ₃	-CH ₂ -(CH	CH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
	Cl	CH ₃	-CH₂ÇH-	-(CH₂)₂ÇH	0	0	C ₂ H ₅
				—сн _э —			
40 .	CI	CH ₃	_	$CH-CH_2$	0	O	C ₂ H ₅
45	Cl	CH ₃	-сн ₂ -сн-	CH(CH ₂) ₂	0	0	C ₂ H ₅

50

EP 0 668 267 A1

X	Y	A	В	L	M	R ²
CH ₃	Cl	-(CH ₂)	2-	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂)	4	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂)	5-	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂)	6-	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂)	7	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -O-((CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	C1	-CH ₂ -CHCH ₃	-(CH ₂) ₃ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHCF	I ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ I	H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ I	H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃	H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	0	0	C ₂ H ₅
СН₃	Cl	-(CH ₂) ₂ -CHOC ₂	H ₅ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃	H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC	₃ H ₇ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₂) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	C ₂ H ₅
CH ₃	Cl	-CH ₂ -CH(CH ₂) ₂ -CH-		0	0	C ₂ H ₅
CH ₃	Cl	-CH ₂ -CH		O	0	C ₂ H ₅
CH ₃	Cl	$-CH_{\overline{2}}-CH-$ $CH_{\overline{2}})_{\overline{3}}$	CH-(CH ₂) ₂ -	0	0	C ₂ H ₅

HATTCATTING	IABAI	10 4
Fortsetzung:	LAUCI	16 7

	Х	Y	A	В	L	M	R ²
5	Cl	CH ₃	CH ₃	Н	0	0	i-C ₃ H ₇
	Cl	CH ₃	C ₂ H ₅	Н	0	0	i-C ₃ H ₇
10	Cl	CH ₃	C ₃ H ₇	Н	0	O	i-C ₃ H ₇
	Cl	CH ₃	i-C ₃ H ₇	Н	0	0	i-C ₃ H ₇
15	Cl	CH ₃	C₄H ₉	Н	0	0	i-C ₃ H ₇
	Cl	CH ₃	i-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
	Cl	CH ₃	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
20	Cl	CH₃	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
	Cl	CH ₃	CH ₃	CH ₃	0	0	i-C ₃ H ₇
25	Cl	CH ₃	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
	Cl	CH ₃	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
	Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
30	Cl	CH ₃	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
	Cl	CH ₃	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
35	Cl	CH ₃	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
	Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
40	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	0	0	i-C ₃ H ₇
40	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
	Cl	CH ₃	Δ_	CH ₃	0	0	i-C ₃ H ₇
45	Cl	CH ₃		CH ₃	Ο.	0	i-C ₃ H ₇
50	Cl	CH ₃	<u></u>	CH ₃	0	О	i-C ₃ H ₇

Fortsetzung: Tabelle 3

	orworzang. I	400110 3					
_	X	Y	A	В	L	М	R ²
5	CH ₃	Cl	CH ₃	Н	0	0	i-C ₃ H ₇
	CH ₃	Cl	C ₂ H ₅	Н	0	0	i-C ₃ H ₇
10	CH ₃	Cl	C ₃ H ₇	Н	0	0	i-C ₃ H ₇
	CH ₃	Cl	i-C ₃ H ₇	Н	0	0	i-C ₃ H ₇
15	CH ₃	Cl	C ₄ H ₉	Н	0	0	i-C ₃ H ₇
	CH ₃	Cl	i-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
	CH ₃	Cl	s-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
20	CH ₃	Ci	t-C ₄ H ₉	Н	0	0	i-C ₃ H ₇
	CH ₃	Cl	CH ₃	CH ₃	0	0	i-C ₃ H ₇
25	CH ₃	Cl	C ₂ H ₅	CH ₃	0	0	i-C ₃ H ₇
:	CH ₃	Cl	C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
	CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	0	i-C ₃ H ₇
30	CH ₃	Cl	C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
	CH ₃	Cl	i-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
35	CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
	CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	0	i-C ₃ H ₇
	CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	0	Ö	i-C ₃ H ₇
40	CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	0	0	i-C ₃ H ₇
	CH ₃	Cl	Δ_	CH ₃	0	0	i-C ₃ H ₇
45	CH ₃	Cl		CH ₃	0	0	i-C ₃ H ₇
	CH ₃	Cl		CH ₃	0	0	i-C ₃ H ₇

55

EP 0 668 267 A1

5	X	Y	A	В	L	M	R ²
	CI	CH ₃	-((CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-((CH ₂) ₄ -	0	0	i-C ₃ H ₇
10	Cl	CH ₃	-((CH ₂) ₅ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-((CH ₂) ₆ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-((CH ₂) ₇ -	0	0	i-C ₃ H ₇
15	Cl	CH ₃	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	0	i-C ₃ H ₇
20	Cl	CH ₃	-(CH ₂) ₂ -C	HCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CF	HC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	HC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
25	Cl	CH ₃	-(CH ₂) ₂ -CH	i-C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	IOCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	OC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
30	Cl	CH ₃	-(CH ₂) ₂ -CH	OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CHi	-OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
35	Cl	CH ₃	-CH ₂ -(CH	CH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
	Cl	CH ₃	-CH₂-ÇH-	—(СН ₂) ₂ —СН—	0	0	i-C ₃ H ₇
				—CH ₂ —			
40	Cl ·	CH ₃	_	CH-CH ₂ -	O	0	i-C ₃ H ₇
45	Cl	CH ₃	-		0	0	i-C ₃ H ₇

50

EP 0 668 267 A1

Х	Y	A B	L	M	R ²
CH ₃	Cl	-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₄ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₅ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₆ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₇ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	o	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	o	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C ₃ H ₇
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	i-C₃H ₇
CH ₃	Cl	-CH ₂ -CH-(CH ₂) ₂ -CH-	0	0	i-C ₃ H ₇
CH ₃	Cl	$-CH_2$ — CH — CH — CH_2 — $(CH_2)_4$	0	. O	i-C ₃ H ₇
CH ₃	Cl	-CH ₂ -CHCH(CH ₂) ₂ -	0	0	i-C ₃ H ₇

Fortsetzung: Tabelle 3

]	Fortsetzung: T	abelle 3					
	х	Y	A	В	L	M	R ²
5	Cl	CH ₃	CH ₃	Н	0	S	i-C ₃ H ₇
	Cl	CH ₃	C ₂ H ₅	Н	0	S	i-C ₃ H ₇
10	Cl	CH ₃	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
	CI	CH ₃	i-C ₃ H ₇	Н	0	S	i-C ₃ H ₇
45	Cl	CH ₃	C ₄ H ₉	Н	0	S	i-C ₃ H ₇
15	Cl	CH ₃	i-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
	Cl	CH ₃	s-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
20	Cl	CH ₃	t-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
	Cl	CH ₃	CH ₃	CH ₃	0	S	i-C ₃ H ₇
25	Cl	CH ₃	C ₂ H ₅	CH ₃	0	S	i-C ₃ H ₇
	Cl	CH ₃	C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
	Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
30	Cl	CH ₃	C ₄ H ₉	CH ₃	O	S	i-C ₃ H ₇
	Cl	CH ₃	i-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
35	Cl	CH ₃	s-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
	Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	0	S	i-C ₃ H ₇
40	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
	Cl	CH ₃		CH₃	0	S	i-C ₃ H ₇
4 5	Cl	CH ₃		CH ₃	0	S _.	i-C ₃ H ₇
	Cl	CH ₃	\bigcirc	CH ₃	0	S	i-C ₃ H ₇

55

Fortsetzung: Tabelle 3

ronseizung. 1	. 400 0110 -					
х	Y	A	В	L	М	R ²
CH ₃	Cl	CH ₃	Н	0	S	i-C ₃ H ₇
CH ₃	Cl	C ₂ H ₅	Н	0	S	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	Н	0	S	i-C ₃ H ₇
CH ₃	Cl	i-C ₃ H ₇	Н	О	S	i-C ₃ H ₇
CH ₃	Cl	C ₄ H ₉	Н	O	s	i-C ₃ H ₇
CH ₃	Cl	i-C₄H ₉	Н	O	s	i-C ₃ H ₇
CH ₃	Cl	s-C ₄ H ₉	Н	0	s	i-C ₃ H ₇
CH ₃	Cl	t-C ₄ H ₉	Н	0	S	i-C ₃ H ₇
CH ₃	Cl	CH ₃	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	C ₂ H ₅	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	C₄H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	i-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl .	C ₂ H ₅	C ₂ H ₅	O	S	i-C ₃ H ₇
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	0	S	i-C ₃ H ₇
CH ₃	Cl		CH ₃	0	S	i-C ₃ H ₇
CH ₃	Cl		.CH ₃	.0,	S	i-C ₃ H ₇
CH ₃	Cl	<u></u>	CH ₃	0	S	i-C ₃ H ₇

EP 0 668 267 A1

,	I OI tota	ung. rabe					
5	х	Y	A	В	L	М	R ²
Ů	Cl	CH ₃	-((CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(0	CH ₂) ₄ -	0	S	i-C ₃ H ₇
10	Cl	CH ₃	-(0	CH ₂) ₅ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-((CH ₂) ₆ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-((CH ₂) ₇ -	0	s	i-C ₃ H ₇
15	Cl	CH₃	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH₃	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	S	i-C ₃ H ₇
20	Cl	CH ₃	-(CH ₂) ₂ -Cl	HCH ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	HC ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	HC ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
25	Cl	CH ₃	-(CH ₂) ₂ -CH	i-C ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	IOCH ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CH	OC ₂ H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
30	Cl	CH ₃	-(CH ₂) ₂ -CH	OC ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -CHi	-OC ₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
35	Cl	CH ₃	-CH ₂ -(CH	CH ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	Cl	CH ₃	−CH ₂ −CH−	—(СН ₂) ₂ —СН—	0	S	i-C ₃ H ₇
				—СН ₂ ——			
40	Cl	CH ₃	_	CH-CH ₂	Ö	S.	i-C ₃ H ₇
45	Cl	CH ₃	_	CH-(CH ₂) ₂ -	0	S	i-C ₃ H ₇

50

EP 0 668 267 A1

	X	Y	A	В	L	М	R ²
5	CH ₃	Cl	-(CH ₂)	2-	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂)	4	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂)	5	0	S	i-C ₃ H ₇
10	CH ₃	Cl	-(CH ₂)	6-	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂)	7	0	S	i-C ₃ H ₇
·	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
15	CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-CH ₂ -CHCH ₃	-(CH ₂) ₃ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHCH	I ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
20	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H	H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ F	H ₇ -(CH ₂) ₂ -	0	S.	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃	H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
25	CH ₃	Cl	-(CH ₂) ₂ -CHOCl	H ₃ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂	H ₅ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃	H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
30	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC	₃ H ₇ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
35	CH ₃	Cl	-CH ₂ -(CHCH ₃)) ₂ -(CH ₂) ₂ -	0	S	i-C ₃ H ₇
35	CH ₃	Cl	СН ₂ ÇН(С	CH ₂) ₂ —CH—	0	S	i-C ₃ H ₇
			L(CH ₂			
40	CH ₃	,Cl	-CH ₂ -CH	-CHCH ₂	.0	S	i-C ₃ H ₇
			(CH ₂)				
45	CH ₃	Cl	-CH ₂ -CH(CH-(CH ₂) ₂ -	0	S	i-C ₃ H ₇
			(CH ₂) ₃ -	J		<u> </u>	

50

Fortsetzung: Tabelle 3

Ortocalang	5. Tubbilo 3					
X	Y	A	В	L	М	R ²
Cl	CH ₃	CH ₃	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₂ H ₅	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₃ H ₇	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	i-C ₃ H ₇	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₄ H ₉	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	i-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	s-C ₄ H ₉	H_	0	0	s-C ₄ H ₉
Cl	CH ₃	t-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
Cl	CH ₃	CH ₃	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₂ H ₅	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CI	CH ₃	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	i-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
·Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H ₉
Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H ₉
Cl	CH ₃	Δ_	CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃		CH ₃	0	0	s-C ₄ H ₉
Cl	CH ₃	<u> </u>	CH ₃	0	0	s-C ₄ H ₉
						•

Fortsetzung: Tabelle 3

X	Y	A	В	L	М	R ²
CH ₃	Cl	CH ₃	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₃ H ₇	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	i-C ₃ H ₇	Н	0	o	s-C ₄ H ₉
CH ₃	Cl	C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	i-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	s-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	t-C ₄ H ₉	Н	0	0	s-C ₄ H ₉
CH ₃	Cl	CH ₃	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	C₃H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	i-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	0	0	s-C ₄ H ₉
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	0	0	s-C ₄ H ₉
CH ₃	Cl	_	CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl		CH ₃	0	0	s-C ₄ H ₉
CH ₃	Cl	<u></u>	CH ₃	0	0	s-C ₄ H ₉

EP 0 668 267 A1

_	Х	Y	A	В	L	М	R ²
5	Cl	CH ₃	-((CH ₂) ₂ -	0	0	s-C ₄ H ₉
	Cl	CH ₃	-((CH ₂) ₄ -	0	0	s-C ₄ H ₉
10	Cl	CH ₃	-((CH ₂) ₅ -	0	O	s-C ₄ H ₉
70	Cl	CH ₃	-((CH ₂) ₆ -	0	O	s-C ₄ H ₉
	Cl	CH ₃	-(0	CH ₂) ₇ -	0	O	s-C ₄ H ₉
15	Cl	CH ₃	-(CH ₂) ₂	-O-(CH ₂) ₂ -	0	O	s-C ₄ H ₉
,,	Cl	CH ₃	-(CH ₂) ₂	-S-(CH ₂) ₂ -	0	О	s-C ₄ H ₉
	Cl	CH ₃	-CH ₂ -CH	CH ₃ -(CH ₂) ₃ -	0	O	s-C ₄ H ₉
20	Cl	CH ₃	-(CH ₂) ₂ -Cl	HCH ₃ -(CH ₂) ₂ -	0	O	s-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CH	IC ₂ H ₅ -(CH ₂) ₂ -	0	O	s-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CH	HC ₃ H ₇ -(CH ₂) ₂ -	0	o	s-C ₄ H ₉
25	Cl	CH ₃	-(CH ₂) ₂ -CH	i-C ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CH	IOCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	CI	CH ₃	-(CH ₂) ₂ -CH	OC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
30	Cl	CH ₃	-(CH ₂) ₂ -CH	OC ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -CHi	-OC ₃ H ₇ -(CH ₂) ₂ -	0	o	s-C ₄ H ₉
	Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	o	s-C ₄ H ₉
35	Cl	CH ₃	-CH ₂ -(CH	CH ₃) ₂ -(CH ₂) ₂ -	0	o	s-C ₄ H ₉
	Cl	CH ₃	-СН ₂ ÇН-	-(СН ₂) ₂ СН	0	0	s-C ₄ H ₉
				—CH ₂ —			
40 -	Cl	CH ₃	-CH₂-CH-	——ÇH−CH ₂ —	О.	Ó	s-C ₄ H ₉
				H ₂)4			
45	Cl	CH ₃	-	$CH - (CH_2)_2^-$	0	0	s-C ₄ H ₉

50

EP 0 668 267 A1

	X	Y	A B	L	М	R ²
5	CH ₃	Cl	-(CH ₂) ₂ -	0	0	s-C₄H ₉
	CH ₃	Cl	-(CH ₂) ₄ -	0	O	s-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₅ -	0	0	s-C ₄ H ₉
10	CH ₃	Cl	-(CH ₂) ₆ -	0	0	s-C ₄ H ₉
:	CH ₃	Cl	-(CH ₂) ₇ -	0	0	s-C ₄ H ₉
45	CH ₃	CI	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
15	CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	0	0	s-C ₄ H ₉
20	CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
20	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	0_	0	s-C ₄ H ₉
05	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
25	CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
30	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	0_	0	s-C ₄ H ₉
30	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂	- 0	0	s-C ₄ H ₉
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
35	CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	0	s-C ₄ H ₉
33	CH ₃	Cl	CH ₂ ÇH(CH ₂) ₂ ÇH-	- o	0	s-C ₄ H ₉
			CH ₂			
40	CH ₃	Cl	-CH ₂ -CH	- 0	,O	s-C ₄ H ₉
45	CH ₃	Cl	-CH ₂ -CH-(CH ₂) ₂	- 0	0	s-C ₄ H ₉

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 50 Verbindungen der Formel (Id) genannt:

Tabelle 4:

> R^3 Х Υ Α В CH₃ CH₃ Cl Н CH₃ Cl CH₃ C₂H₅ Н CH₃ CH₃ Cl C_3H_7 Н CH₃ CH₃ CH₃ Cl i-C₃H₇ Н Н CH₃ Cl CH₃ C_4H_9 Cl CH₃ i-C₄H₉ Н CH₃ Cl CH₃ s-C₄H₉ Н CH₃ Cl Н CH₃ t-C₄H₉ CH₃ Cl CH_3 CH₃ CH₃ CH₃ Cl CH₃ C₂H₅ CH₃ CH₃ CH₃ Cl CH₃ C_3H_7 CH₃ Cl CH₃ i-C₃H₇ CH₃ CH₃ CH₃ CH₃ CH₃ Cl C_4H_9 Cl CH_3 CH₃ CH₃ i-C₄H₉ Cl CH₃ s-C₄H₉ CH₃ CH₃ Cl CH₃ t-C₄H₉ CH₃ CH₃ Cl CH₃ CH₃ C₂H₅ .C2H5 CH₃ C_3H_7 C_3H_7 CH₃ Cl CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ Cl CH₃ CH₃

55

50

15

20

25

30

35

40

Fortsetzung: Tabelle 4

	Fortsetzung: 7	Tabelle 4			
	х	Y	A	В	R ³
5	CH ₃	Cl	CH ₃	Н	CH ₃
	CH ₃	Cl	C ₂ H ₅	Н	CH ₃
10	CH ₃	Cl	C ₃ H ₇	Н	CH ₃
	CH ₃	Cl	i-C ₃ H ₇	Н	CH ₃
15 ·	CH ₃	Cl	C ₄ H ₉	Н	CH ₃
	CH ₃	Cl	i-C ₄ H ₉	Н	CH ₃
	CH ₃	Cl	s-C ₄ H ₉	Н	CH ₃
20	CH ₃	Cl	t-C ₄ H ₉	Н	CH ₃
	CH ₃	Cl	CH ₃	CH₃	CH ₃
25	CH ₃	Cl	C ₂ H ₅	CH ₃	CH ₃
	CH ₃	Cl	C ₃ H ₇	CH₃	CH ₃
	CH ₃	Cl	i-C ₃ H ₇	CH ₃	CH ₃
30	CH ₃	Cl	C ₄ H ₉	CH ₃	CH ₃
	CH ₃	Cl	i-C ₄ H ₉	CH ₃	CH ₃
35	CH ₃	Cl	s-C ₄ H ₉	CH₃	CH ₃
	CH ₃	Cl	t-C ₄ H ₉	CH ₃	CH ₃
:	CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	CH ₃
40	CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	CH ₃
	CH ₃	Cl	Δ_	СН3	CH ₃
45	CH ₃	CI .		CH ₃	CH ₃
	CH ₃	Cl		CH ₃	CH ₃

55

EP 0 668 267 A1

5	X	Y	A	В	R ³
3	Cl	CH ₃	-(CI	· I ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CF	H ₂) ₄ -	CH ₃
10	Cl	CH ₃	-(CF	-(CH ₂) ₅ -	
	Cl	CH ₃	-(CF	I ₂) ₆ -	CH ₃
	Cl	CH ₃	-(CF	·I ₂) ₇ -	CH ₃
15	Cl	CH ₃	-(CH ₂) ₂ -0	O-(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -S	S-(CH ₂) ₂ -	CH ₃
	Cl	СН₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	CH ₃
20	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	CH ₃
30	Cl	CH ₃		C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	CH ₃
35	Cl	CH ₃	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	CH ₃
	Cl	CH ₃	-СH ₂ ÇH(С	H ₂) ₂ —ÇH <i>—</i>	CH ₃
40			c		077
	Cl	CH ₃	−CH ₂ −CH−−−	-CHCH ₂	CH ₃
			(CH ₂) ₄		
45	Cl	CH ₃	CH₂ÇH	-ÇH(CH ₂) ₂	CH ₃
			(CH ₂) ₃		
	II	i	1 (3, 12/3		1

50

Fortsetzung: Tabelle 4

Х	Y	A B	R ³
CH ₃	Cl	-(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₄ -	CH ₃
CH₃	C1	-(CH ₂) ₅ -	CH ₃
CH ₃	Cl	-(CH ₂) ₆ -	CH ₃
CH ₃	Cl	-(CH ₂) ₇ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	CH ₃
CH ₃	Cl	-CH ₂ -CH-(CH ₂) ₂ -CH-	CH ₃
		CH ₂	
CH ₃	Cl	-CH ₂ -CHCH-CH ₂	CH ₃
		(CH ₂)4	
CH ₃	Cl	-CH ₂ -CHCH(CH ₂) ₂ -	CH ₃
		(CH ₂) ₃	

⁵⁰ Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ie) genannt:

Tabelle 5:

> Y R^4 R⁵ В L Х Α Cl CH₃ CH₃ Н S CH₃ i-C₃H₇-S-Н S CH₃ Cl CH₃ C₂H₅ i-C₃H_T-S-CI C_3H_7 Н S i-C₃H_T-S-CH₃ CH₃ Н Cl CH₃ i-C₃H₇ S i-C₃H₇-S-CH₃ Cl CH₃ C₄H₉ Н S CH₃ i-C₃H₇-S-Cl i-C₄H₉ Н S i-C₃H₇-S-CH₃ CH₃ Cl CH₃ s-C₄H₉ Н S i-C₃H₇-S-CH₃ t-C4H9 Н S Cl CH₃ CH₃ i-C₃H₇-S-ClCH₃ CH₃ CH₃ S i-C₃H₇-S-CH₃ S CI CH₃ C₂H₅ CH₃ i-C₃H₇-S-CH₃ S CI CH₃ C₃H₂ CH₃ i-C₃H₇-S-CH₃ CH₃ i-C₃H₇ CH₃ S CH₃ i-C₃H₇-S-S i-C₃H₇-S-CI CH₃ C_4H_Q CH₃ S CH₃ i-C₄H₉ CH₃ CH₃ i-C₃H₇-S-S i-C₃H₇-S-CI CH₃ s-C₄H₉ CH₃ CH₂ t-C4H9 Cl CH₃ CH₃ CH₃ i-C3H7-S-Ci CH₃ C₂H₅ C₂H₅ S CH₃ i-C₃H₇-S-Cl CH₃ C₃H₇ C_3H_7 CH₃ i-C₃H₇-S-Cl CH₃ CH₃ CH₃ $i-C_3H_7-S-$ CH₃ Cl CH₃ S CH₃ i-C₃H₇-S-CH₃ CH₃ Cl CH₃ i-C₃H₇-S-

55

15

20

25

30

35

40

45

Fortsetzung: Tabelle 5

orworking. I	400110					
х	Y	A	В	L	R ⁴	R ⁵
CH ₃	Cl	CH ₃	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	Н	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	CH ₃	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	CH ₃	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	CH ₃	s	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C₄H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	Δ	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl		CH ₃	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	<u></u>	CH ₃	S	CH ₃	i-C ₃ H ₇ -S-

EP 0 668 267 A1

5	Х	Y	A	В	L	R ⁴	R ⁵
Ū	Cl	CH ₃	-(CI	H ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃ .	-(CI	H ₂) ₄ -	S	CH ₃	i-C ₃ H ₇ -S-
10	Cl	CH ₃	-(CI	H ₂) ₅ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	H ₂) ₆ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	H ₂) ₇ -	S	CH ₃	i-C ₃ H ₇ -S-
15	Cl	CH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	S	CH ₃	i-C ₃ H ₇ -S-
20	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH₃	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₂ H ₅ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
30	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -C(C	(H ₃) ₂ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
35	Cl	CH ₃	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	CH ₂ ÇH	-(CH ₂) ₂ ÇH	S	CH ₃	i-C ₃ H ₇ -S-
				-CH ₂			
40	Cl	CH ₃	-сн₂-сн _ _ _{(С}		S	CH ₃	i-C ₃ H ₇ -S-
<i>4</i> 5	Cl	CH₃			S	CH ₃	i-C ₃ H ₇ -S-

55

EP 0 668 267 A1

X	Y	A	В	L	R ⁴	R ⁵
CH ₃	Cl	-(CH ₂))2-	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂))4-	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂)) ₅ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂)) ₆	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂)) ₇ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -O-((CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -S-((CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -CHCH	₃ -(CH ₂) ₃ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(СН ₂) ₂ -СНС	H ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ l	H ₅ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ l	H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃	H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₅ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC	3H ₇ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₂	₃) ₂ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -CH-(0	CH ₂) ₂ —CH—	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-СН ₂ СН	'	S	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -CH (CH ₂) ₃ -		S	CH ₃	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

	X	Y	Α	В	L	R ⁴	R ⁵
	Cl	CH ₃	CH ₃	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₂ H ₅	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₃ H ₇	н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	i-C ₃ H ₇	н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	i-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	s-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	t-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	CH ₃	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₂ H ₅	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	i-C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	i-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	s-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	t-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	S	C ₂ H ₅	i-C ₃ H ₇ -S-
/	Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	<u></u>	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

X	Y	A	В	L	R ⁴	R ⁵
CH ₃	Cl	CH ₃	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	Н	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	CH ₃	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	CH ₃	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	CH ₃	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	·S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl		CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CI	<u> </u>	CH ₃	S	C ₂ H ₅	i-C ₃ H ₇ -S-

EP 0 668 267 A1

5	X	Y	A	В	L	R ⁴	R ⁵
	Cl	CH ₃	-(CI	· I ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	·I ₂) ₄ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
10	Cl	CH ₃	-(CI	·I ₂) ₅ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	·I ₂) ₆ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	I ₂) ₇ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
15	Cl	CH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
i	Cl	CH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
20	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₂ H ₅ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-	C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
30	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -C(C	H ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
35 ·	Cl	CH ₃	-CH ₂ -(CHC	H ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	—СН ₂ —СН—	-(CH₂)₂—ÇH <i>—</i>	S	C ₂ H ₅	i-C ₃ H ₇ -S-
				-CH ₂	i		
40	Cl	CH ₃	−CH ₂ −-CH−-	CH-CH ₂	S	C ₂ H ₅	i-C ₃ H ₇ -S-
		·	L _{(C}	l ₂) ₄			
45	Cl	CH ₃	-СН ₂ СН (СН ₂	-CH-(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
	L	<u> </u>	1 (0112	/3	<u> </u>	L	

50

T	70 1 1		_
Fortsetzung:	Lanei	10	`
I UI ISULZUIIE.	I auci		_

X	Y	A B	L	R ⁴	R ⁵
CH ₃	Cl	-(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₄ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₅ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₆ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₇ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	S	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CI	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	s	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	s	C_2H_5	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	s	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	-CH ₂ ÇH(CH ₂) ₂ ÇH	S	C ₂ H ₅	i-C ₃ H ₇ -S-
		CH ₂			
CH ₃	Cl	-CH ₂ -CHCH-CH ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-
•		(CH ₂)4	·		
CH ₃	Cl	-CH ₂ -CHCH(CH ₂) ₂ -	S	C ₂ H ₅	i-C ₃ H ₇ -S-

EP 0 668 267 A1

OTTOOLEG	ing. raceries					
Х	Y	A	В	L	R ⁴	R ⁵
Cl	CH ₃	CH ₃	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	C ₂ H ₅	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	i-C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	i-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	s-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	t-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	CH ₃	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
Cl	CH ₃	C ₂ H ₅	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	i-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	s-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	C ₂ H ₅	C ₂ H ₅	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	C ₃ H ₇	C ₃ H ₇	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃		CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃		CH ₃	0	CH ₃	i-C ₃ H ₇ -S
Cl	CH ₃	\frown	CH ₃	0	CH ₃	i-C ₃ H ₇ -S
	1		<u> </u>	<u></u>	<u></u>	1

Fortsetzung: Tabel	lle	5
--------------------	-----	---

Х	Y	A	В	L	R ⁴	R ⁵
CH ₃	Cl	CH ₃	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	Н	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	H	O	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	CH ₃	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	C₃H₁	C ₃ H ₇	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	CI	Δ_	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl ·		CH ₃	0	CH ₃	i-C ₃ H ₇ -S-
CH ₃	Cl	<u> </u>	CH ₃	0	CH ₃	i-C ₃ H ₇ -S-

EP 0 668 267 A1

5	х	Y	A	В	L	R ⁴	R ⁵
,	Cl	CH ₃	-(CH ₂) ₂ -		0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	H ₂) ₄ -	0	CH ₃	i-C ₃ H ₇ -S-
10	Cl	CH ₃	-(CI	H ₂) ₅ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₆ -		O	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CI	-(CH ₂) ₇ -		CH ₃	i-C ₃ H ₇ -S-
15	Cl	CH ₃	-(CH ₂) ₂ -(O-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -	S-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-CH ₂ -CHC	H ₃ -(CH ₂) ₃ -	0	CH ₃	i-C ₃ H ₇ -S-
20	Cl	CH ₃	-(СН ₂) ₂ -СН	CH ₃ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CI	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH(C ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
25	Cl	CH ₃	-(CH ₂) ₂ -CHi-	-C ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	O	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHO	C ₂ H ₅ -(CH ₂) ₂ -	O	CH ₃	i-C ₃ H ₇ -S-
30	Cl	CH ₃	-(CH ₂) ₂ -CHC	OC ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHi-(OC ₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -C(C	CH ₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
35	Cl	CH ₃	-СН ₂ -(СНС	H ₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	Cl	CH ₃	−CH ₂ −CH−	-(CH ₂) ₂ CH	0	CH ₃	i-C ₃ H ₇ -S-
				-CH ₂			-
40	Cl	CH ₃	-СН ₂ СН-	СН — СН ₂	0	CH ₃	i-C ₃ H ₇ -S-
			_(C+	H ₂)4			
45	Cl	CH₃	-сн ₂ -сн - (сн ₂	CH-(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-

55

EP 0 668 267 A1

	X	Y	A	В	L	R ⁴	R ⁵
5	CH ₃	Cl	-(CH ₂))2-	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂))4-	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂))5-	0	CH ₃	i-C ₃ H ₇ -S-
10	CH ₃	Cl	-(CH ₂)	6-	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂)	7-	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -O-	(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
15	CH ₃	Cl	-(CH ₂) ₂ -S-((CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-CH ₂ -CHCH	₃ -(CH ₂) ₃ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHCF	I ₃ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
20	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ l	H ₅ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ l	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
25	CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₅ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHOC	H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
30	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC	₃ H ₇ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₂	₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
	CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	CH ₃	i-C ₃ H ₇ -S-
35	CH ₃	Cl	-СН <u>-</u> -СН(С	CH ₂) ₂ —ÇH—	0	CH ₃	i-C ₃ H ₇ -S-
			<u> </u>	CH ₂			
	CH ₃	Cl	-CH₂ÇH	-ÇН−СН₂	0	CH ₃	i-C ₃ H ₇ -S-
40			(CH ₂)			-	
	CH ₃	Cl	-CH ₂ CH	CH—(CH ₂) ₂ —	0	CH ₃	i-C ₃ H ₇ -S-
45			(CH ₂) ₃ -	<u> </u>			

50

Fortsetzung: Tabelle 5

CI CH ₃ C ₂ H ₅ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₃ H ₇ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₃ H ₇ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ s-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ s-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ CH ₃ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₂ H ₅ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₃ H ₇ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI	OI WOLLD	8					
CI CH ₃ C ₂ H ₅ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₃ H ₇ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₃ H ₇ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ t-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₂ H ₅ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ C ₂ H ₅ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ CI	X	Y	A	В	L	R ⁴	R ⁵
CI	Cl	CH ₃	CH ₃	Н	О	C ₂ H ₅	i-C ₃ H ₇ -S-
CI	Cl	CH ₃	C ₂ H ₅	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI	Cl	CH ₃	C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH ₃ i-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ s-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ t-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ CH ₃ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₃ H ₇ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ i-C ₃ H ₇ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ i-C ₃ H ₇ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ s-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ s-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ cC ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ cC ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ cC ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₉ CH ₃ O C ₄ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ CH ₃ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ CH ₃ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ CH ₃ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₉ CH ₃ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ - CI CH ₃ C ₄ H ₇ C ₄ H ₇ O C ₄ H ₅ i-C ₄ H ₇ -	Cl	CH ₃	i-C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH ₃ s-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ t-C ₄ H ₉ H O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ CH ₃ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₂ H ₅ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ i-C ₃ H ₇ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ i-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ s-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ t-C ₄ H ₉ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₂ H ₅ C ₂ H ₅ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₃ H ₇ C ₃ H ₇ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₃ H ₇ C ₄ H ₃ O C ₂ H ₅ i-C ₃ H ₇ - CI CH ₃ C ₃ H ₇ C ₄ H ₃ O C ₂ H ₅	Cl	CH ₃	C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 $t-C_4H_9$ H O C_2H_5 $i-C_3H_7$ - CI CH_3 CH_3 CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 C_2H_5 CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 $i-C_3H_7$ CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 $i-C_3H_7$ CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 $i-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 $t-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ - CI CH_3 C_2H_5 C_2H_5 C_3H_7 -	Cl	CH ₃	i-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cl	CH ₃	s-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 C_2H_5 CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 C_3H_7 CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 $i-C_3H_7$ CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 $i-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 $s-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 $t-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ CI CH_3 C_2H_5 C_2H_5 $i-C_3H_7$ CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7$ CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7$ CI CH_3 C_3H_7 C_3H	Cl	CH ₃	t-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 C_3H_7 CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 $i-C_3H_7$ CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 C_4H_9 CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 $i-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 $s-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 $s-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 $t-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7-$ CI CH_3 C_2H_5 C_2H_5 O C_2H_5 $i-C_3H_7-$ CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7-$ CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7-$ CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7-$ CI CH_3 O C_2H_5 $i-C_3H_7-$	Cl	CH ₃	CH ₃	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl	CH ₃	C ₂ H ₅	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 C_4H_9 CH_3 O C_2H_5 $i-C_3H_7$	Cl	CH ₃	C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
Cl CH_3 $i-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 $s-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 C_2H_5 C_2H_5 O C_2H_5 $i-C_3H_7$ Cl CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$	Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 $s-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7-CI$ CH_3 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3H_7-CI CH_3 C_3H_7 CI CH_3 C_3H_7 CI CH_3 C_3H_7 CI CH_3 CI CH_3 CI CH_3 CI CI CI CI CI CI CI CI	Cl	CH ₃	C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
Cl CH_3 $t-C_4H_9$ CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 C_2H_5 C_2H_5 O C_2H_5 $i-C_3H_7$ Cl CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$	Cl	CH ₃	i-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
Cl CH_3 C_2H_5 C_2H_5 O C_2H_5 $i-C_3H_7$ Cl CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$ Cl CH_3 CH_3 O C_2H_5 $i-C_3H_7$	Cl	CH ₃	s-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 C_3H_7 C_3H_7 O C_2H_5 $i-C_3H_7-C_3H$	Cl	CH ₃	t-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 CH_3 CH_3 O C_2H_5 $i-C_3H_7 CH_3$ O C_2H_5 $i-C_3H_7-$	<u> </u>	CH ₃	C ₂ H ₅	C ₂ H ₅	0	C ₂ H ₅	i-C ₃ H ₇ -S-
Cl CH ₃ CH ₃ O C ₂ H ₅ i-C ₃ H ₇ -	Cl	CH ₃	C ₃ H ₇	C₃H ₇	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CI CH_3 CH_3 O C_2H_5 $i-C_3H_7-$	Cl	CH ₃		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	<u> </u>	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-

Fortsetzung: Tabelle 5

ortscang. 1	accirc 3					
X	Y	A	В	L	R ⁴	R ⁵
CH ₃	Cl	CH ₃	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C₃H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C₄H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	Н	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	CH ₃	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C ₃ H ₇	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	i-C₄H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	s-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	t-C ₄ H ₉	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl		CH ₃	О	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	Cl		CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
CH ₃	CI	<u> </u>	CH ₃	0	C ₂ H ₅	i-C ₃ H ₇ -S-
L	<u> </u>		<u> </u>	1	L	<u> </u>

EP 0 668 267 A1

5	X	Y	A	В	L	R ⁴	R ⁵
	Cl	CH ₃	-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
10	Cl	CH ₃	-(CH ₂) ₄ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₅ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₆ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₇ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
15	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
20	Cl	CH ₃	-CH ₂ -CHC	CH ₃ -(CH ₂) ₃ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH	C ₂ H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
25	Cl	CH ₃	-(CH ₂) ₂ -CH	C ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHi-	-C ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CH(OCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
30	Cl	CH ₃	-(CH ₂) ₂ -CHC	OC ₂ H ₅ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHC	C ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-(CH ₂) ₂ -CHi-	OC ₃ H ₇ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
•	Cl	CH ₃	-(CH ₂) ₂ -C(C	CH ₃) ₂ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
35	Cl	CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	Cl	CH ₃	-CH₂-CH-	-(CH ₂) ₂ CH	0	C ₂ H ₅	i-C ₃ H ₇ -S-
40				-CH ₂			
	Cl	CH ₃	-CH₂-CH-	—ÇH−CH ₂	0	C ₂ H ₅	i-C ₃ H ₇ -S-
			[(CF	12)4			
45	Cl	CH ₃	-сн ₂ -сн-	-CH-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-

50

EP 0 668 267 A1

Ī							
5	Х	Y	A B		L	R ⁴	R ⁵
	CH ₃	Cl	-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₄ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
10	CH ₃	Cl	-(CH ₂) ₅ -		0	C_2H_5	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₆ -		0	C_2H_5	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₇ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
15	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -		0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -		0	C_2H_5	i-C ₃ H ₇ -S-
20	CH₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -	(CH ₂) ₂ -	0	C_2H_5	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -((CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
25 30 35	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -	-(CH ₂) ₂ -	0	C_2H_5	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -	(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -	-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇	-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H-	,-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -	(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	CH ₃	Cl	-CH₂CH(CH₂)₂ÇH	0	C ₂ H ₅	i-C ₃ H ₇ -S-
40	:		Сн,				
	CH ₃	Cl	СН ₂ СН	H−CH ₂ −−	0	C ₂ H ₅	i-C ₃ H ₇ -S-
	:		(CH ₂)		-		
45	CH ₃	Cl	−CH₂−CH−−−CH	-(CH ₂) ₂ -	0	C ₂ H ₅	i-C ₃ H ₇ -S-
			(CH ₂)3				
	<u> </u>	<u> </u>	<u>' '' '' '' '' '' '' '' '' '' '' '' '' '</u>				

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 50 Verbindungen der Formel (If-a) genannt:

(If-a)

Tabelle 6a:

> Y В Х Α Н Cl CH₃ CH₃ CI CH₃ C₂H₅ Н C_3H_7 Н CH₃ Cl Cl CH₃ Н i-C₃H₇ Н Cl CH₃ C₄H₉ Н Cl i-C₄H₉ CH₃ Н Cl CH₃ s-C₄H₉ Н Cl CH₃ t-C₄H₉ CH₃ Cl CH₃ CH₃ CH₃ CI CH₃ C₂H₅ CH₃ Cl CH₃ C_3H_7 Cl CH₃ i-C₃H₇ CH₃ C₄H₉ CH₃ Cl CH₃ i-C₄H₉ CH₃ CH₃ Cl s-C₄H₉ CH₃ CH₃ t-C₄H₉ CH₃ Cl CH₃ Cl CH₃ C_2H_5 C₂H₅ Cl CH₃ C_3H_7 C_3H_7 Cl CH₃ CH₃ Cl CH_3 CH₃ CH₃ CICH₃

55

15

20

25

30

35

40

45

Fortsetzung: Tabelle 6a

rortsetzung.		I .	
Х	Y	Α	В
CH ₃	Cl	CH ₃	Н
CH ₃	Cl	C ₂ H ₅	Н
CH ₃	Cl	C ₃ H ₇	Н
CH ₃	Cl	i-C ₃ H ₇	Н
CH ₃	Cl	C ₄ H ₉	Н
CH ₃	Cl	i-C ₄ H ₉	Н
CH ₃	Cl	s-C ₄ H ₉	Н
CH ₃	Cl	t-C ₄ H ₉	Н
CH ₃	Cl	CH ₃	CH ₃
CH ₃	Cl	C ₂ H ₅	CH ₃
CH ₃	Cl	C ₃ H ₇	CH ₃
CH ₃	Cl	i-C ₃ H ₇	CH ₃
CH ₃	Cl	C ₄ H ₉	CH ₃
CH ₃	Cl	i-C ₄ H ₉	CH ₃
CH ₃	Cl	s-C ₄ H ₉	CH ₃
CH ₃	Cl	t-C ₄ H ₉	CH ₃
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇
CH ₃	Cl	_	CH ₃
CH ₃	Cl		CH ₃
CH ₃	Cl	<u> </u>	CH ₃

EP 0 668 267 A1

Fortsetzung: Tabelle 6a

5	
10	
15	
20	
25	
30	
35	
40	

х	Y	A B	
CI	CH ₃	-(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₄ -	
Cl	CH ₃	-(CH ₂) ₅ -	
Cl	CH ₃	-(CH ₂) ₆ -	
Cl	CH ₃	-(CH ₂) ₇ -	
Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
Cl	CH ₃	-CH ₂ -CH-CH ₃ -(CH ₂) ₃ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-CH ₃ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-C ₂ H ₅ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-C ₃ H ₇ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-i-C ₃ H ₇ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-OCH ₃ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-OC ₂ H ₅ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-OC ₃ H ₇ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -CH-i-OC ₃ H ₇ -(CH ₂) ₂ -	
Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
Cl	CH ₃	-CH ₂ -(CH-CH ₃) ₂ -(CH ₂) ₂ -	
Cl	CH ₃	-CH ₂ -CH-(CH ₂) ₂ -CH-	
		CH ₂	
Cl	CH ₃	-CH ₂ -CHCH-CH ₂ -	
		(CH ₂) ₄	
Cl	CH ₃	-CH ₂ -CHCH(CH ₂) ₂ -	
		(CH ₂) ₃	

Fortsetzung: Tabelle 6a

X	Y	A B	
CH ₃	Cl	-(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₄ -	
CH ₃	Cl	-(CH ₂) ₅ -	
CH ₃	Cl	-(CH ₂) ₆ -	
CH ₃	Cl	-(CH ₂) ₇ -	
CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	C1	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
CH ₃	Cl	-CH ₂ -CH-(CH ₂) ₂ -CH-	
		CH ₂	
CH ₃	Cl	-СH₂-СHСH₂-	
		(CH ₂) ₄	
CH ₃	Cl	-CH ₂ -CHCH-(CH ₂) ₂ -	
		(CH ₂) ₃	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (If-b) genannt:

Tabelle 6b:

i- C_3H_7 NH₃ $|O|_{(i)}$ $|O|_{(i)}$ $|O|_{(i)}$

Х	Y	Α	В
Cl	CH ₃	CH ₃	Н
Cl	CH ₃	C₂H₅	Н
Cl	CH ₃	C ₃ H ₇	Н
Cl	CH ₃	i-C ₃ H ₇	Н
Cl	CH ₃	C ₄ H ₉	Н
Cl	CH ₃	i-C ₄ H ₉	н
Cl	CH ₃	s-C ₄ H ₉	Н
Cl	CH ₃	t-C ₄ H ₉	н
Cl	CH ₃	CH ₃	CH ₃
Cl	CH ₃	C ₂ H ₅	CH ₃
Cl	CH ₃	C ₃ H ₇	CH ₃
Cl	CH ₃	i-C ₃ H ₇	CH ₃
Cl	CH ₃	C ₄ H ₉	CH ₃
CI	CH ₃	i-C₄H ₉	CH ₃
CI	CH ₃	s-C ₄ H ₉	CH ₃
Cl	CH ₃	t-C ₄ H ₉	CH ₃
Cl	CH ₃	C ₂ H ₄	C ₂ H ₅
CI	CH ₃	C ₃ H ₇	C ₃ H ₇
Cl	CH ₃	_	CH ₃
CI	CH ₃		CH₃
Cl	СН3	<u></u>	CH ₃

Fortsetzung: Tabelle 6b

ortsetzung.			
х	Y	A	В
CH ₃	CI	CH ₃	Н
CH ₃	CI	C ₂ H ₅	Н
CH ₃	Cl	C ₃ H ₇	Н
CH ₃	Cl	i-C ₃ H ₇	Н
CH ₃	Cl	C ₄ H ₉	Н
CH ₃	CI	i-C ₄ H ₉	Н
CH ₃	Cl	s-C ₄ H ₉	Н
CH ₃	Cl	t-C ₄ H ₉	н
CH ₃	Cl	CH ₃	CH ₃
CH ₃	Cl	C ₂ H ₅	CH ₃
CH ₃	Cl	C ₃ H ₇	CH ₃
CH ₃	Cl	i-C ₃ H ₇	CH ₃
CH ₃	Cl	C ₄ H ₉	CH ₃
CH ₃	Cl	i-C ₄ H ₉	CH ₃
CH ₃	Cl	s-C ₄ H ₉	CH ₃
CH ₃	Cl	t-C ₄ H ₉	CH ₃
CH ₃	Cl.	C ₂ H ₅	C ₂ H ₅
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇
CH ₃	Cl	Δ_	CH ₃
CH ₃	Cl		CH ₃
CH ₃	Cl	<u> </u>	CH ₃

EP 0 668 267 A1

Fortsetzung: Tabelle 6b

5	

50	

Х	Y	A	В
Cl	CH ₃	-((CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₄ -
Cl	CH ₃	-((CH ₂) ₅ -
Cl	CH ₃	-((CH ₂) ₆ -
Cl	CH ₃	-((CH ₂) ₇ -
Cl	CH ₃	-(CH ₂)	₂ -O-(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂)) ₂ -S-(CH ₂) ₂ -
Cl	CH ₃	-CH ₂ -CI	HCH ₃ -(CH ₂) ₃ -
Cl	CH ₃	-(CH ₂) ₂ -(CHCH ₃ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -C	HC ₂ H ₅ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -C	CHC ₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -Cl	Hi-C ₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -C	HOCH ₃ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -Cl	HOC ₂ H ₅ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -Cl	HOC ₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -CH	Ii-OC ₃ H ₇ -(CH ₂) ₂ -
Cl	CH ₃	-(CH ₂) ₂ -C	C(CH ₃) ₂ -(CH ₂) ₂ -
Cl	CH ₃	-CH ₂ -(CH	НСН ₃) ₂ -(СН ₂) ₂ -
Cl	CH ₃	-CH ₂ -CH-	-(CH ₂) ₂ CH
		CH ₂	
Cl	CH ₃	-CH ₂ -CH-	CH-CH ₂
		L(C	CH ₂)4
Cl	CH ₃	-CH ₂ -CH-	
		L(c	H ₂) ₃

Fortsetzung: Tabelle 6b

	X	Y	A B	
	CH ₃	Cl	-(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₄ -	
	CH ₃	Cl	-(CH ₂) ₅ -	
	CH ₃	Cl	-(CH ₂) ₆ -	
	CH ₃	Cl	-(CH ₂) ₇ -	
	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -	
	CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -	
	CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -	
	CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -	
	CH ₃	Cl	CH ₂ CH (CH ₂) ₂ CH	
			CH ₂	
:	CH ₃	Cl	-CH ₂ -CHCH-CH ₂ -	
			(CH ₂)4	
	CH ₃	Cl	-CH2-CHCH-(CH2)2-	
			(CH ₂)3	

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ig-a) genannt:

Tabelle 7a:

5

10

15

20

25

30

35

40

45

50

 H_3C N O X O (Ig-a)

X Y Α В Cl CH₃ CH₃ Н Cl CH₃ C_2H_5 Н CH₃ Cl C_3H_7 Н CH₃ Cl i-C₃H₇ Н Cl CH₃ Н C₄H₀ Cl CH₃ i-C₄H₉ Н Н Cl CH₃ s-C₄H₉ Cl t-C₄H₉ Н CH₃ CH₃ Cl CH₃ CH₃ Cl CH₃ C₂H₅ CH₃ CH₃ Cl C_3H_7 CH₃ Cl CH₃ i-C₃H₇ CH₃ CH₃ Cl C₄H₉ CH₃ Cl CH₃ i-C₄H₉ CH₃ Cl CH₃ s-C₄H₉ CH₃ CH₃ Cl t-C₄H₉ CH₃ CI CH₃ C_2H_5 C2H5 CI CH₃ C_3H_7 C_3H_7 Cì CH₃ CH₃ CI CH₃ CH₃ Cl CH₃ CH₃

Fortsetzung: Tabelle 7a

X	Y	A	В
CH ₃	Cl	CH ₃	н
CH ₃	Cl	C ₂ H ₅	н
CH ₃	Cl	C ₃ H ₇	Н
CH ₃	Cl	i-C ₃ H ₇	Н
CH ₃	Cl	C ₄ H ₉	Н
CH ₃	Cl	i-C ₄ H ₉	Н
CH ₃	Cl	s-C ₄ H ₉	Н
CH ₃	Cl	t-C ₄ H ₉	Н
CH ₃	Cl	CH ₃	CH ₃
CH ₃	Cl	C ₂ H ₅	CH ₃
CH ₃	Cl	C ₃ H ₇	CH ₃
CH ₃	Cl	i-C ₃ H ₇	CH ₃
CH ₃	Cl	C ₄ H ₉	CH ₃
CH ₃	Cl	i-C₄H ₉	CH ₃
CH ₃	Cl	s-C₄H ₉	CH ₃
CH ₃	Cl	t-C ₄ H ₉	CH ₃
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇
CH ₃	Cl	Δ_	CH ₃
CH ₃	Cl		CH ₃
CH ₃	Cl	<u> </u>	CH ₃

Fortsetzung: Tabelle 7a

5	

х	Y	A B				
Cl	CH ₃	(0	CH ₂) ₂ -			
Cl	CH ₃	-(1	CH ₂) ₄ -			
Cl	CH ₃	-((CH ₂) ₅ -			
Cl	CH ₃	-(1	CH ₂) ₆ -			
Cl	CH ₃	-(1	CH ₂) ₇ -			
Cl	CH ₃	-(CH ₂).	₂ -O-(CH ₂) ₂ -			
Cl	CH ₃	-(CH ₂)	₂ -S-(CH ₂) ₂ -			
Cl	CH ₃	-CH ₂ -CH	ICH ₃ -(CH ₂) ₃ -			
Cl	CH ₃	-(CH ₂) ₂ -C	HCH ₃ -(CH ₂) ₂ -			
Cl	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -				
Cl	CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -				
Cl	CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -				
Cl	CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -				
Cl	CH ₃	-(CH ₂) ₂ -CH	HOC ₂ H ₅ -(CH ₂) ₂ -			
Cl	CH ₃	-(CH ₂) ₂ -CH	HOC ₃ H ₇ -(CH ₂) ₂ -			
Cl	CH ₃	-(CH ₂) ₂ -CH	i-OC ₃ H ₇ -(CH ₂) ₂ -			
Cl	CH ₃	-(CH ₂) ₂ -C	(CH ₃) ₂ -(CH ₂) ₂ -			
Cl	CH ₃	-CH ₂ -(CH	ICH ₃) ₂ -(CH ₂) ₂ -			
CI	CH ₃	-CH₂-CH-	-(CH ₂) ₂ ÇН			
			—CH₂—			
Cl .	CH ₃	-СH ₂ -СН-	CH-CH ₂			
,		(CH ₂) ₄				
Cl	CH ₃	1	——ÇH—(СН ₂) ₂ —			
			H ₂) ₃			

Fortsetzung: Tabelle 7a

X	Y	A B			
CH ₃	Cl	-(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₄ -			
CH ₃	Cl	-(CH ₂) ₅ -			
CH ₃	Cl	-(CH ₂) ₆ -			
CH ₃	Cl	-(CH ₂) ₇ -			
CH ₃	CI	-(CH ₂) ₂ -O-(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -			
CH ₃	Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -			
CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -			
CH ₃	Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -			
CH ₃	Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -			
CH ₃	Cl	-СH ₂ -СH-(СН ₂) ₂ -СH-			
		CH ₂			
CH ₃	Cl	—СН₂—СН——СН—СН₂—			
	,	(CH ₂)4			
CH ₃	Cl	-CH ₂ -CHCH(CH ₂) ₂ -			
	<u> </u>	(CH ₂) ₃ ¹			

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (Ig-b) genannt:

Tabelle 7b:

(Ig-b)

X	Y	A	В
Cl	CH ₃	CH ₃	Н
Cl	CH ₃	C ₂ H ₅	H
Cl	CH ₃	C ₃ H ₇	Н
Cl	CH ₃	i-C ₃ H ₇	Н
Cl	CH ₃	C₄H ₉	H
Cl	CH ₃	i-C₄H ₉	Н
Cl	CH ₃	s-C ₄ H ₉	Н
Cl	CH ₃	t-C ₄ H ₉	Н
Cl	CH ₃	CH ₃	CH ₃
Cl	CH ₃	C ₂ H ₅	CH ₃
Cl	CH ₃	C ₃ H ₇	CH ₃
Cl	CH ₃	i-C ₃ H ₇	CH ₃
Cl	CH ₃	C ₄ H ₉	CH ₃
Cl	CH ₃	i-C ₄ H ₉	CH ₃
Cl	CH ₃	s-C ₄ H ₉	CH ₃
Cl	CH ₃	t-C ₄ H ₉	CH ₃
Cl	CH ₃	C ₂ H ₅	C ₂ H ₅
Cl	CH ₃	C ₃ H ₇	C ₃ H ₇
Cl	CH ₃		CH ₃
Cl	CH ₃		CH ₃
Cl	CH ₃	\frown	CH ₃

Fortsetzung: Tabelle 7b

- 3			
Х	Y	A	В
CH ₃	Cl	CH ₃	Н
CH ₃	Cl	C ₂ H ₅	Н
CH ₃	Cl	C ₃ H ₇	Н
CH ₃	Cl	i-C ₃ H ₇	Н
CH ₃	Cl	C₄H ₉	H
CH ₃	Cl	i-C ₄ H ₉	н
CH ₃	Cl	s-C ₄ H ₉	Н
CH ₃	Cl	t-C ₄ H ₉	Н
CH ₃	Cl	CH ₃	CH ₃
CH ₃	Cl	C ₂ H ₅	CH ₃
CH ₃	Cl	C ₃ H ₇	CH ₃
CH ₃	Cl	i-C ₃ H ₇	CH ₃
CH ₃	Cl	C ₄ H ₉	CH ₃
CH ₃	Cl	i-C ₄ H ₉	CH ₃
CH ₃	Cl	s-C ₄ H ₉	CH ₃
CH ₃	Cl	t-C ₄ H ₉	CH ₃
CH ₃	Cl	C ₂ H ₅	C ₂ H ₅
CH ₃	Cl	C ₃ H ₇	C ₃ H ₇
CH ₃	Cl		CH ₃
CH ₃	Cl	\Box	CH ₃
CH ₃	Cl	\bigcirc	CH ₃

EP 0 668 267 A1

Fortsetzung: Tabelle 7b

5	

Χ	Y	A B		
Cl	CH ₃	-(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₄ -		
Cl	CH ₃	-(CH ₂) ₅ -		
Cl	CH ₃	-(CH ₂) ₆ -		
Cl	CH ₃	-(CH ₂) ₇ -		
Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -S-(CH ₂) ₂ -		
Cl	CH ₃	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -		
Cl	CH ₃	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -		
Cl	CH ₃	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -		
Cl	CH ₃	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -		
Cl	CH ₃	-CH ₂ CH(CH ₂) ₂ CH		
Cl	CH ₃	-CH ₂ -CH-CH ₂ -		
Cl	CH ₃	-CH ₂ -CH-(CH ₂) ₂ -		

Fortsetzung: Tabelle 7b

	1
Y	A B
Cl	-(CH ₂) ₂ -
Cl	-(CH ₂) ₄ -
Cl	-(CH ₂) ₅ -
Cl	-(CH ₂) ₆ -
Cl	-(CH ₂) ₇ -
Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -S-(CH ₂) ₂ -
Cl	-CH ₂ -CHCH ₃ -(CH ₂) ₃ -
Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHC ₂ H ₅ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHC ₃ H ₇ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHi-C ₃ H ₇ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHOC ₂ H ₅ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -CHOC ₃ H ₇ -(CH ₂) ₂ -
CI	-(CH ₂) ₂ -CHi-OC ₃ H ₇ -(CH ₂) ₂ -
Cl	-(CH ₂) ₂ -C(CH ₃) ₂ -(CH ₂) ₂ -
Cl	-CH ₂ -(CHCH ₃) ₂ -(CH ₂) ₂ -
Cl	CH ₂ ÇH(CH ₂) ₂ ÇH
	CH ₂
Cl	CH ₂ CH
<u>.</u>	(CH ₂)4
Cl	-CH ₂ -CHCH-(CH ₂) ₂ -
<u> </u>	(CH ₂) ₃
	CI

Verwendet man gemäß Verfahren (A) N-(2-Chlor-4-methylphenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäureethylester als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B_e) 3-(2-Methyl-4-chlorphenyl)-5,5-dimethylpyrrolidin-2,4-dion und Piva-10 loylchlorid als Ausgangsstoffe, 50 kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (B_B) 3-(2-Brom-4-ethylphenyl)-5-isopropyl-5-methyl-pyrrolidin-2,4-dion und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (C) 3-(2-Methyl-4-chlorphenyl)-5,5-diethylpyrrolidin-2,4-dion und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (D_{α}) 3-(2-Chlor-4-methylphenyl)-5.5-pentamethylen-pyrrolidin-2,4-dion und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

10

Verwendet man gemäß Verfahren (D_{β}) 3-(2-Brom-4-ethylphenyl)-5,5-ethylmercaptoethyl-pyrrolidin-2,4-dion, Schwefelkohlenstoff und Methyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

Verwendet man gemäß Verfahren (E) 3-(2-Chlor-4-isopropylphenyl)-5.5-(2-methyl)-pentamethylen-pyrrolidin-2,4-dion und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (F) 3-(2-Methyl-4-chlorphenyl)-5-isobutyl-5-methyl-pyrrolidin-2,4-dion und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (G) 3-(2-Fluor-4-methylphenyl)-5-cyclopropyl-5-methyl-pyrrolidin-2,4-dion und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

Na(+)

Verwendet man gemäß Verfahren (H_a) 3-(2-Chlor-4-ethylphenyl)-5,5-hexamethylen-pyrrolidin-2,4-dion und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

OH CI
$$C_2H_5$$

$$C_2H_5$$

$$C_2H_5-N=C=O$$

$$C_2H_5$$

Verwendet man gemäß Verfahren (H_B) 3-(2-Methyl-4-chlorphenyl)-5-methyl-pyrrolidin-2,4-dion und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

Die bei den erfindungsgemäßen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher

30

45

50

55

A, B, X, Y und ${\bf R}^8$ die oben angegebene Bedeutung haben, sind neu.

Man erhält z.B. Acyl-aminosäureester der Formel (II), wenn man Aminosäurederivate der Formel (XIV),

5 A CO₂R⁹
NH₂ (XIV)

10 in welcher

15

20

25

30

35

 R^9 für Wasserstoff (XIVa) oder Alkyl, bevorzugt $C_1\text{-}C_6\text{-}Alkyl$ (XIVb) steht und

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

Y—COHal (XV)

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert (Chem. Reviews <u>52</u>, 237-416 (1953); Bhattacharya, Indian J. Chem. <u>6</u>, 341-5, 1968) und die dabei für R⁹ = Wasserstoff erhaltenen Acylaminosäuren der Formel (IIa),

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, verestert (Chem. Ind. (London) 1568 (1968)).

Die substituierten cyclischen Aminocarbonsäuren der Formel (XIVa) sind im allgemeinen nach der Bucherer-Bergs-Synthese oder nach der Strecker-Synthese erhältlich und fallen dabei jeweils in unterschiedlichen Isomerenformen an. So erhält man nach den Bedingungen der Bucherer-Bergs-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als β bezeichnet), in welchen die Reste R und die Carboxylgruppe äquatorial stehen, während nach den Bedingungen der Strecker-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als α bezeichnet) anfallen, bei denen die Aminogruppe und die Reste R äquatorial stehen.

50

Bucherer-Bergs-Synthese (β-Isomeres)

Strecker-Synthese (α-Isomeres)

(L. Munday, J. Chem. Soc. 4372 (1961); J.T. Eward, C. Jitrangeri, Can. J. Chem. <u>53</u>, 3339 (1975). Weiterhin lassen sich die bei den obigen Verfahren (A) verwendeten Ausgangsstoffe der Formel (II)

25

5

10

15

20

in welcher

A, B, X, Y und R⁸ die oben angegebene Bedeutung haben,

herstellen, wenn man Aminonitrile der Formel (XVI)

30

$$\begin{array}{c}
A \\
H_2N \\
C \equiv N
\end{array}$$
(XVI)

35

in welcher

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

40

45

50

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

zu Verbindungen der Formel (XVII)

in welcher

5

10

15

A, B, X und Y die oben angegebene Bedeutung haben,

umsetzt, und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

Die Verbindungen der Formel (XVII) sind ebenfalls neu.

Beispielhaft aber nicht begrenzend seien außer den bei den Herstellungsbeispielen genannten Zwischenprodukten die folgenden Verbindungen der Formel (II) genannt:

N-(2-Chlor-4-methylphenylacetyl)-alanin-methylester

N-(2-Chlor-4-methylphenylacetyl)-leucin-methylester

20 N-(2-Chlor-4-methylphenylacetyl)-isoleucin-methylester

N-(2-Chlor-4-methylphenylacetyl)-valin-methylester

N-(2-Chlor-4-methylphenylacetyl)-aminoisobuttersäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclopentancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester

N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclooktancarbonsäure-methylester

30 N-(4-Chlor-2-methylphenylacetyl)-alanin-methylester

N-(4-Chlor-2-methylphenylacetyl)-leucin-methylester

N-(4-Chlor-2-methylphenylacetyl)-isoleucin-methylester

N-(4-Chlor-2-methylphenylacetyl)-valin-methylester

N-(4-Chlor-2-methylphenylacetyl)-aminoisobuttersäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-2-ethyl-2-aminobuttersäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-2-methyl-2-aminovaleriansäure-methylester

 $N\hbox{-} (4\hbox{-}Chlor\hbox{-}2\hbox{-}methylphenylacetyI)\hbox{-}2,3\hbox{-}dimethyl\hbox{-}2\hbox{-}aminovalerians\"{a}ure\hbox{-}methylester$

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclopentancarbonsäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclohexancarbonsäure-methylester

N-(4-Chlor-2-methylphenylacetyl)-1-amino-cycloheptancarbonsäure-methylester

 $\textbf{N-} (4\text{-}Chlor\text{-}2\text{-}methylphenylacety} \textbf{I}) \textbf{-}1\textbf{-}amino\text{-}cyclook tancarbons\"{a}ure\text{-}methylester$

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure-methylester,

45 N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure-methylester,

N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure-methylester, N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure-methylester,

N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure-methylester,

Beispielhaft, aber nicht begrenzend, seien außer den bei den Herstellungsbeispielen genannten Zwischen-

```
produkten die folgenden Verbindungen der Formel (IIa) genannt:
    N-(2-Chlor-4-methylphenylacetyl)-alanin
    N-(2-Chlor-4-methylphenylacetyl)-leucin
    N-(2-Chlor-4-methylphenylacetyl)-isoleucin
   N-(2-Chlor-4-methylphenylacetyl)-valin
    N-(2-Chlor-4-methylphenylacetyl)-aminoisobuttersäure
    N-(2-Chlor-4-methylphenylacetyl)-2-ethyl-2-aminobuttersäure
    N-(2-Chlor-4-methylphenylacetyl)-2-methyl-2-aminovaleriansäure
    N-(2-Chlor-4-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
   N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclopentancarbonsäure
10
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclohexancarbonsäure
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cycloheptancarbonsäure
    N-(2-Chlor-4-methylphenylacetyl)-1-amino-cyclooktancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-alanin
   N-(4-Chlor-2-methylphenylacetyl)-leucin
    N-(4-Chlor-2-methylphenylacetyl)-isoleucin
    N-(4-Chlor-2-methylphenylacetyl)-valin
    N-(4-Chlor-2-methylphenylacetyl)-aminoisobuttersäure
    N-(4-Chlor-2-methylphenylacetyl)-2-ethyl-2-aminobuttersäure
   N-(4-Chlor-2-methylphenylacetyl)-2-methyl-2-aminovaleriansäure
    N-(4-Chlor-2-methylphenylacetyl)-2,3-dimethyl-2-aminovaleriansäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclopentancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclohexancarbonsäure
    N-(4-Chlor-2-methylphenylacetyl)-1-amino-cycloheptancarbonsäure
   N-(4-Chlor-2-methylphenylacetyl)-1-amino-cyclooktancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure
   N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure
    N-(2-Chlor-4-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-2-methyl-cyclohexancarbonsäure
   N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3-methyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-3,4-dimethyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-ethyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-isopropyl-cyclohexancarbonsäure
   N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-tert.-butyl-cyclohexancarbonsäure
    N-(4-Chlor-2-methyl-phenylacetyl)-1-amino-4-methoxy-cyclohexancarbonsäure
    Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylessigsäurehalogeniden der Formel (XV)
    und Aminosäuren der Formel (XIVa) nach Schotten-Baumann (Organikum, 9. Auflage, 446 (1970) VEB
    Deutscher Verlag der Wissenschaften, Berlin) erhältlich.
45
        Die Phenylessigsäurehalogenide der Formel (XV) sind allgemein bekannte Verbindungen der organi-
    schen Chemie oder lassen sich nach bekannten Verfahren herstellen.
        Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) als
    Ausgangsstoffe benötigten Verbindungen der Formel (Ia) sind durch das erfindungsgemäße Verfahren (A)
    erhältlich.
```

allgemein bekannte Verbindungen der organischen bzw. anorganischen Chemie.

Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II) in welcher A, B, X, Y und R⁸ die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen

Die zur Durchführung der erfindungsgemäßen Verfahren (B), (C), (D), (E), (F), (G) und (H) außerdem als

Ausgangsstoffe benötigten Säurehalogenide der Formel (III), Carbonsäureanhydride der Formel (IV), Chlorameisensäureester oder Chlorameisensäureester der Formel (V), Chlormonothioameisensäureester oder Chlordithioameisensäureester der Formel (VII), Alkylhalogenide der Formel (VIII), Sulfonsäurechloride der Formel (VIII), Phosphorverbindungen der Formel (IX), Metallhydroxide, Metallalkoxide oder Amine der Formel (X) und (XI) und Isocyanate der Formel (XIII) oder Carbamidsäurechlorid der Formel (XIII) sind

Kondensation unterwirft.

20

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Methanol, Ethanol, Propanol, Isopropanol, Butanol, iso-Butanol und tert.-Butanol.

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetall-oxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetz-

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa doppeltäquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Das Verfahren (Bα) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren ($B\alpha$) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Bα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkaliund Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Ba) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (B\$) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Carbonsäureanhydriden der Formel (IV) umsetzt.

Als Verdünnungsmittel können vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (Bβ) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (Bß) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5

Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V) umsetzt.

Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetallcarbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüber hinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren ($D\alpha$) setzt man pro Mol Ausgangsverbindung der Formel (la) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VI) bei 0 bis 120 °C, vorzugsweise bei 20 bis 60 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Sulfone, Sulfoxide, aber auch Halogenalkane.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B. Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (D_B) setzt man pro Mol Ausgangsverbindung der Formel (la) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50 °C und insbesondere bei 20 bis 30 °C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (la) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (la) solange mit Schwefelkohlenstoff um, bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VII) erfolgt vorzugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

35

55

Beim Herstellungsverfahren (E) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Sulfonsäurechlorid (VIII) bei -20 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe wie Methylenchlorid.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren (F) setzt man zum Erhalt von Verbindungen der Struktur (le) auf 1 Mol der Verbindung (la), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen -40 °C und 150 °C, vorzugsweise zwischen -10 und 110 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel in Frage wie Halogenalkane, Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate oder Amine. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

Das Verfahren (G) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (la) mit Metallhydroxiden bzw. Metallalkoxiden der Formel (X) oder Aminen der Formel (XI) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (G) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20 °C und 100 °C, vorzugsweise zwischen 0 °C und 50 °C.

Bei Herstellungsverfahren (H_{α}) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Isocyanat der Formel (XII) bei 0 bis 100 °C, vorzugsweise bei 20 bis 50 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

Beim Herstellungsverfahren (H_B) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid der Formel (XIII) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung (la) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werdern, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und

Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.

Aus der Ordnung der Dermaptera z.B. Foificula auricularia.

Aus der Ordnung der Isoptera z.B. Reticulitermes spp...

10

55

Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci. Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhiopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hyppoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.

Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzenschädigenden Insekten einsetzen, wie beispielsweise gegen die Larven des Meerrettichblattkäfers (Phaedon cochleariae) oder

gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) und gegen die Raupen der Kohlschabe (Plutella maculipennis).

Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

<u>Dikotyle Unkräter der Gattungen:</u> Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotola, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

<u>Dikotyle Kulturen der Gattungen:</u> Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cycnodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Sachharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindunngen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

Die erfindungsgemäßen Wirkstoffe eignen sich sehr gut zur selektiven Bekämpfung monokotyler Unkräuter in dikotylen Kulturen im Vor- und Nachlaufverfahren. Sie können beispielsweise in Baumwolle oder Zuckerrüben mit sehr gutem Erfolg zur Bekämpfung von Schadgräser eingesetzt werden.

Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoffimprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

Als feste Trägerstoffe kommen in Frage:

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide,

de. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Besonders günstige Mischpartner sind z.B. die folgenden:

Fungizide:

15

2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2',6'-Dibromo-2-methyl-4'-trifluoromethoxy-4'-trifluoro-methyl-1,3-thiazol-5-carboxanilid; 2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyimino-N-methyl-2-(2 phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyanophenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino-[alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,

Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,

Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,

Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomprph, Diniconazol, Dinocap, Diphenylamin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon, Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,

Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyclox, Guazatine,

Hexachlorobenzol, Hexaconazol, Hymexazol,

Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan, Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung.

Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,

Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin, Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Quintozen (PCNB),

Schwefel und Schwefel-Zubereitungen.

Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,

Validamycin A, Vinclozolin,

Zineb, Ziram

Bakterizide:

50

35

Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbon-säure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide / Akarizide / Nematizide:

Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,

Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifenthrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin, Butylpyridaben,

Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 419, CGA 184699, Chlorethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, M,

- Cis-Resmethrin, Clocythrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
 - Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton, Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Ethoprophos, Etrimphos,
- Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluvalinate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb, HCH, Heptenophos, Hexaflumuron, Hexythiazox,
- Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivermectin, Lambda-cyhalothrin, Lufenuron,
 - Malathion, Mecarbam, Mevinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methocarb, Metolcarb, Milbemectin, Monocrotophos, Moxidectin, Naled, NC 184, NI 25, Nitenpyram
 - Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,
- Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen, Quinalphos,

RH 5992.

- 25 Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
 - Tebufenozid, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thiomethon, Thionazin, Thuringiensin, Tralomethrin, Triarrathen, Triazophos, Triazuron, Trichlorfon, Triflumuron, Trimethacarb,
 - Vamidothion, XMC, Xylylcarb, YI 5301 / 5302, Zetamethrin.

30

Herbizide:

beispielsweise Anilide, wie z.B. Diflufenican und Propanil; Arylcarbonsäuren, wie z.B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z.B. 2,4-D, 2,4-DB, 2,4-DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxyphenoxy-alkansäureester, wie z.B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifopbutyl, Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z.B. Chloridazon und Norflurazon; Carbamate, wie z.B. Chlorpropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z.B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z.B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z.B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z.B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxylamine, wie z.B. Alloxydim, Clethodim, Cycloxydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z.B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z.B. Bromoxynil, Dichlobenil und loxynil; Oxyacetamide, wie z.B. Mefenacet; Sulfonylharnstoffe, wie z.B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuronethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z.B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z.B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z.B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z.B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.

Der erfindungsgemäße Wirkstoff kann ferner in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

Herstellungsbeispiele:

Beispiel (la-1):

10

30

45

50

55

12,42 g Kalium-t-butylat werden in 35 ml trockenem Tetrahydrofuran vorgelegt und unter Rückfluß mit einer Lösung von 16 g N-(4-Chlor-2-methylphenyl)-acetyl-1-amino-cyclohexan-carbonsäure-methylester in 100 ml trockenem Toluol versetzt und 90 Minuten am Rückfluß gekocht. Nach Abkühlen wird die Reaktionslösung mit 150 ml Wasser versetzt, die wäßrige Phase abgetrennt. Die organische Phase wird erneut mit 75 ml Wasser gewaschen. Die wäßrigen Phasen werden vereinigt, mit 16 ml konzentrierter Salzsäure angesäuert und der Niederschlag abgesaugt und getrocknet. Es werden erhalten 11,7 g (81 % der Theorie), Fp.162 ° C.

Analog werden die folgenden Verbindungen erhalten:

Tabelle 8

Fp.°C 92 > 220 230 188 > 220
> 220 230 188 > 220
230 188 > 220
188
> 220
> 230
153
> 220
167
203
146
196
142
187
189
202
169

Beispiel (lb-1)

55

4,38 g der Verbindung des Beispiels la-1 werden in 70 ml trockenem Methylenchlorid mit 2,1 ml Triethylamin versetzt und bei 0 bis 10 °C 1,58 ml Isobuttersäurechlorid in 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiums-

ulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 2,6 g (47 % der Theorie), Fp. 186 °C.

Analog und gemäß den allgemeinen Angaben zur Herstellung werden die folgenden Verbindungen erhalten:

Tabelle 9

Ib-2 Cl CH ₃ (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - CH ₃ B 2: Ib-3 Cl CH ₃ (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 18 Ib-4 Cl CH ₃ (CH ₂) ₃ -CHCH ₃ -CH ₂ - CH ₃ B 2: Ib-5 Cl CH ₃ (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ B 1: Ib-6 Cl CH ₃ (CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ - CH ₃ B 1: Ib-7 Cl CH ₃ (CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 1: Ib-8 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - CH ₃ B 2: Ib-9 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 2: Ib-10 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - CH ₃ B 2: Ib-11 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ B 1: Ib-12 Cl CH ₃ -(CH ₂) ₅ - i-C ₃ H ₇ CH ₃ - 1: Ib-13 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 2: Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 1: Ib-15 Cl CH ₃ CH ₃ CH ₃ CH ₃ - 1: Ib-16 Cl CH ₃ -CH ₂ CH ₃ i-C ₃ H ₇ - 2: Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₃ - 2: Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₃ - 2: Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₃ - - 2: Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-17 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-18 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-19 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - Ib-19 Cl CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃ - - - - Ib-19 Cl CH ₃ -CH ₂ CH ₂ CH ₃ - -		Bsp Nr.	X	Y	A	В	R ¹	Iso- mer	Fp. °C
Ib-4	5	Ib-2	Cl	CH ₃	(CH ₂) ₂ -CHCH	(₃ -(CH ₂) ₂ -	CH ₃	ß	217
Ib-5		Ib-3	Cl	CH ₃	(CH ₂) ₂ -CHCH	₃ -(CH ₂) ₂ -	i-C ₃ H ₇	ß	183
Ib-6	10	Ib-4	Cl	· CH ₃	(CH ₂) ₃ -CHCH	₃ -CH ₂ -	CH ₃	ß	211
Ib-7 Cl CH ₃ (CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 14 Ib-8 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - CH ₃ B 20 Ib-9 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 21 Ib-10 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - CH ₃ B 22 Ib-11 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ B 16 Ib-12 Cl CH ₃ -(CH ₂) ₅ - i-C ₃ H ₇ - 17 Ib-13 Cl CH ₃ -(CH ₂) ₂ -O-(CH ₂) ₂ - CH ₃ - 21 Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 18 Ib-15 Cl CH ₃ CH ₃ CH ₃ - 22 Ib-16 Cl CH ₃ CH ₃ CH ₃ - 22 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-18 CH ₃ -CH ₂ - CH ₃ - 2 Ib-19 CH ₃ -CH ₂ - CH ₃ - 2 Ib-19 CH ₃ -CH ₂ - CH ₃ - 2 Ib-19 CH ₃ -CH ₂ - CH ₃ - 2 Ib-19 CH ₃ -CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₃ - 2 Ib-10 CH ₃ -CH ₂ - CH ₃ - 2 Ib-10 CH ₃ CH ₃ -CH ₂ - CH ₃ - 2 Ib-10 CH ₃ CH ₃ -CH ₂ - CH ₃ - 2 Ib-10 CH ₃		Ib-5	Cl	CH ₃	(CH ₂) ₃ -CHCH	₃ -CH ₂ -	i-C ₃ H ₇	ß	138
Ib-8 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - CH ₃ B 20 Ib-9 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ B 21 Ib-10 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - CH ₃ B 22 Ib-11 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ B 10 Ib-12 Cl CH ₃ -(CH ₂) ₅ - i-C ₃ H ₇ - 17 Ib-13 Cl CH ₃ -(CH ₂) ₂ -O-(CH ₂) ₂ - CH ₃ - 21 Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 18 Ib-15 Cl CH ₃ CH ₃ CH ₃ - 21 Ib-16 Cl CH ₃ CH ₃ i-C ₃ H ₇ - 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ CH ₂ - CH ₃ - >	15	Ib-6	Cl	CH ₃	(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	CH ₃	ß	198
Ib-9 CH ₃ Cl (CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ - i-C ₃ H ₇ ß 21 Ib-10 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - CH ₃ ß 22 Ib-11 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ ß 16 Ib-12 Cl CH ₃ -(CH ₂) ₅ - i-C ₃ H ₇ - 17 Ib-13 Cl CH ₃ -(CH ₂) ₂ -O-(CH ₂) ₂ - CH ₃ - 21 Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 18 Ib-15 Cl CH ₃ CH ₃ i-C ₃ H ₇ - 21 Ib-16 Cl CH ₃ - CH ₃ i-C ₃ H ₇ - 21 Ib-17 Cl CH ₃ - CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ - - 21 Ib-17 Cl CH ₃ - - 21 Ib-17 Cl CH ₃ - - - 21 Ib-17 Cl CH ₃ - - - - - - - Ib-17 Cl CH ₃ - - - - - Ib-17 Cl CH ₃ - - - - - Ib-18 CH ₃ - - - - - Ib-19 CH ₃ - - - - - Ib-19 CH ₃		Ib-7	Cl	CH ₃	(CH ₂) ₂ -CHOC	H ₃ -(CH ₂) ₂ -	i-C ₃ H ₇	ß	141
Ib-9	20	Ib-8	CH ₃	Cl	(CH ₂) ₂ -CHCH	(3-(CH ₂) ₂ -	CH ₃	В	208
Ib-11 CH ₃ Cl (CH ₂) ₃ -CHCH ₃ -CH ₂ - i-C ₃ H ₇ B 10 Ib-12 Cl CH ₃ -(CH ₂) ₅ - i-C ₃ H7 - 17 Ib-13 Cl CH ₃ -(CH ₂) ₂ -O-(CH ₂) ₂ - CH ₃ - 21 Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 18 Ib-15 Cl CH ₃ CH ₃ CH ₃ i-C ₃ H ₇ - 21 Ib-16 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - > 21 Ib-17 Cl CH ₃ -CH ₂ - CH ₂ - CH ₃ - > Ib-18 CH ₃ -CH ₃ -	20	Ib-9	CH ₃	Cl	(CH ₂) ₂ -CHCH	(CH ₂) ₂ -	i-C ₃ H ₇	ß	218
Ib-11		Ib-10	CH ₃	Cl	(CH ₂) ₃ -CHCH	(CH ₂) ₃ -CHCH ₃ -CH ₂ -		ß	230
Ib-13 Cl CH ₃ -(CH ₂) ₂ -O-(CH ₂) ₂ - CH ₃ - 21 Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 19 Ib-15 Cl CH ₃ CH ₃ CH ₃ - 18 Ib-16 Cl CH ₃ CH ₃ i-C ₃ H ₇ - 21 Ib-17 Cl CH ₃ -cH ₂ CH ₂ - CH ₃ - > 21 CH ₃ CH ₃ - 21 CH ₃ CH ₃ CH ₃ CH ₃ - 21 CH ₃ CH ₃ CH ₃ CH ₃ - 21 CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ - 21 CH ₃ CH ₃	25	Ib-11	CH ₃	Cl	(CH ₂) ₃ -CHCH ₃ -CH ₂ -		i-C ₃ H ₇	ß	163
Ib-14 Cl CH ₃ i-C ₃ H ₇ CH ₃ CH ₃ - 19 Ib-15 Cl CH ₃ CH ₃ CH ₃ - 18 Ib-16 Cl CH ₃ CH ₃ i-C ₃ H ₇ - 21 Ib-17 Cl CH ₃ -cH ₂ CH ₂ - CH ₃ - > 21		Ib-12	Cl	CH ₃	-(CH ₂) ₅ -	-(CH ₂) ₅ -		-	174
Ib-15 Cl CH ₃ CH ₃ CH ₃ - 18 Ib-16 Cl CH ₃ CH ₃ i-C ₃ H ₇ - 2 Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - >	30	Ib-13	C1	CH ₃	-(CH ₂) ₂ -O-(CI	$H_2)_2$ -	CH ₃	•	217
Ib-16 Cl CH ₃ CH ₂ CH ₂ CH ₃ - >		Ib-14	Cl	CH ₃	i-C ₃ H ₇	CH ₃	CH ₃	1	191
Ib-17 Cl CH ₃ -CH ₂ CH ₂ - CH ₃ - >	35	Ib-15	Cl	CH ₃	\triangle	CH ₃	CH ₃	-	188
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40	Тb-16	Cl	CH ₃	\rightarrow	CH ₃	i-C ₃ H ₇	-	211
50		Ib-17	Cl	СН3	-CH ₂	CH ₂ -	CH ₃	-	> 220

5	Bsp Nr.	Х	Y	A	В	R ¹	Iso- mer	Fp. °C
10	Ib-18	Cl	CH ₃	-CH ₂	CH ₂ -	i-C ₃ H ₇	-	189
,					y			
15	Ib-19	CH ₃	Cl	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	CH ₃	B	218
	Ib-20	CH ₃	Cl	-(CH ₂) ₂ -CHO	CH ₃ -(CH ₂) ₂ -	i-C ₃ H ₇	ß	176
20	Ib-21	CH ₃	Cl	-(CH ₂) ₂ -O-(CH	H ₂) ₂ -	CH ₃	-	209
	Ib-22	CH ₃	Cl	-(CH ₂) ₂ -O-(CH	H ₂) ₂ -	i-C ₃ H ₇	-	192
25	Ib-23	CH ₃	Cl	-CH ₂	CH ₂ -	CH ₃	-	215
30 35	Ib-24	CH ₃	Cl	-CH₂	CH ₂ -	i-C ₃ H ₇	-	209
	Ib-25	CH ₃	Cl	i-C ₃ H ₇	CH ₃	CH ₃	-	161
40	Ib-26	CH ₃	Cl	i-C ₃ H ₇	CH ₃	i-C ₃ H ₇	-	152
	Ib-27	CH ₃	·Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		i-C ₄ H ₉	ß	201
45	Ib-28	CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		H ₅ C ₂ O-CH ₂	В	178
	Ib-29	CH ₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		CI—	В	>220
50								

EP 0 668 267 A1

	Bsp Nr.	х	Y	A	В	R ¹	Iso- mer	Fp. °C
5	Ib-30	CH ₃	Cl	-(CH ₂) ₂ -CHCI	H ₃ -(CH ₂) ₂ -	CI-(N=)	ß	>220
10	Ib-31	CH ₃	Cl	-(CH ₂) ₂ -CHCI	H ₃ -(CH ₂) ₂ -	CI	В	220
15	Ib-32	CH ₃	Cl	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	<u>></u>	ß	196
20	Ib-33	CH ₃	Cl	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	i-C ₄ H ₉	ß	172
	Ib-34	CH ₃	Cl	-(CH ₂) ₃ -CHCI	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		ß	143
25	Ib-35	CH ₃	Cl	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	H ₃ C	ß	189
<i>30</i>	Ib-36	CH ₃	Cl	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	ci-(ß	>220
35	Ib-37	CH ₃	C1	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	CI-N=	В	220
40	Ib-38	CH ₃	CI	-(CH ₂) ₃ -CHCI	H ₃ -CH ₂ -	\(\sigma_s\)	В	218
45	Ib-39	CH ₃	Cl	-(CH ₂) ₃ -CHCl	H ₃ -CH ₂ -	(°)	ß	218
50	Ib-40	Cl	CH ₃	-(CH ₂) ₂ -O-(C	H ₂) ₂ -	H ₅ C ₂ -O-CH ₂	-	168

	Bsp Nr.	х	Y	A	В	R ¹	Iso- mer	Fp. °C
5	Ib-41	Cl	СН3	-(CH ₂) ₂ -O-(CH	H ₂) ₂ -	CI-CI-	•	>220
10	Ib-42	Cl	CH ₃	-(CH ₂) ₂ -O-(CI	H ₂) ₂ -	ci—N=	-	>220
15	Ib-43	Cl	CH ₃	-(CH ₂) ₂ -O-(Cl	H ₂) ₂ -	n-C ₁₅ H ₃₁	-	99
20	Ib-44	CH ₃	Cl	-(CH ₂) ₂ -0-(CI	H ₂) ₂ -	ci-()	-	198
25	Ib-45	CH ₃	Cl	-(CH ₂) ₂ -O-(CI	H ₂) ₂ -	ci — N=	-	206
	Ib-46	CH ₃	Cl	-(CH ₂) ₂ -O-(Cl	H ₂) ₂ -	n-C ₁₅ H ₃₁	-	136
30	Ib-47	Cl	CH ₃	-(CH ₂) ₂ -CHCl	H ₃ -(CH ₂) ₂ -	H ₅ C ₂ -O-CH ₂	В	175
	Ib-48	Cl	CH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	n-C ₁₅ H ₃₁	ß	96
35	Ib-49	Cl	CH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	cı—()	В	218
40	Ib-50	Cl	CH ₃	-(CH ₂) ₂ -CHC	H ₃ -(CH ₂) ₂ -	CI-N=	ß	209
	Ib-51	CH ₃	Cl	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		n-C ₁₅ H ₃₁	ß	84
45	Ib-52	Ci	CH ₃	-(CH ₂) ₃ -CHC	H ₃ -CH ₂ -	n-H ₉ C ₄ -CH- C ₂ H ₅	ß	120
50	Ib-53	CI	CH ₃	-(CH ₂) ₃ -CHC	H ₃ -CH ₂ -	i-C ₄ H ₉	ß	154

Bsp Nr.	X	Y	A	В	R ¹	Iso- mer	Fp. °C
Ib-54	Cl	CH ₃	-(CH ₂) ₃ -CHCl	H ₃ -CH ₂ -	H ₅ C ₂ -O-CH ₂	ß	166
Ib-55	Cl	CH ₃	-(CH ₂) ₃ -CHCl	H ₃ -CH ₂ -	CI-	ß	214
Ib-56	Cl	CH ₃	-(CH ₂) ₃ -CHCl	H ₃ -CH ₂ -		ß	212
Ib-57	Cl	CH ₃	-(CH ₂) ₃ -CHC	H ₃ -CH ₂ -	n-C ₁₅ H ₃₁	ß	78
Ib-58	CH ₃	Cl	-(CH ₂) ₂ -O-(Cl	H ₂) ₂ -	H ₅ C ₂ -O-CH ₂	-	182

Beispiel (Ic-1)

4,36 g der Verbindung des Beispiels la-1 werden in 70 ml trockenem Methylenchlorid mit 2,1 ml Triethylamin versetzt und bei 0 bis 10 °C 1,5 ml Chlorameisensäure-ethylester in 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 4,1 g (75 % der Theorie), Fp. 184 °C.

H₅C₂O
$$CH_3$$
 Ic-1

Analog und gemäß den allgemeinen Angaben zur Herstellung werden folgende Verbindungen erhalten:

Tabelle 10

 R^2 M O X O X O Y O Y

5	0	

Bsp Nr.	Х	Y	A	В	М	R ²	Iso- mer	Fp. ℃
Ic-2	Cl	CH ₃	(CH ₂) ₂ -CHC	CH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	В	218
Ic-3	Cl	CH ₃	(CH ₂) ₂ -CHC	CH ₃ -(CH ₂) ₂ -	0	i-C ₃ H ₇	ß	215
Ic-4	Cl	CH ₃	(CH ₂) ₃ -CHC	CH ₃ -CH ₂ -	0	C ₂ H ₅	В	173
Ic-5	Cl	CH ₃	(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	В	163
Ic-6	Cl	CH ₃	(CH ₂) ₂ -CHC	OCH ₃ -(CH ₂₎₂ -	0	s-C ₄ H ₉	ß	124
Ic-7	CH ₃	CI	(CH ₂) ₂ -CHC	CH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	ß	188
Ic-8	CH ₃	CI	(CH ₂) ₃ -CHC	(CH ₂) ₃ -CHCH ₃ -CH ₂ -		C ₂ H ₅	ß	168
Ic-9	Cl	CH₃	-(CH ₂) ₅ -		0	C ₂ H ₅	-	168
Ic-10	CI	CH ₃	CH ₃	CH ₃	0	C ₂ H ₅	-	162
Ic-11	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	C ₂ H ₅	•	> 220
Ic-12	.Cl	CH ₃ .	-(CH ₂) ₂ -O-(CH ₂)₂-	0.	s-C ₄ H ₉	-	169
Ic-13	Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	C ₂ H ₅	-	192
Ic-14	Cl	CH ₃	i-C ₃ H ₇	CH ₃	0	s-C ₄ H ₉	-	173
Ic-15	Cl	CH ₃	>	CH ₃	0	C ₂ H ₅	-	179
lc-16	CI	СН3	<u></u>	CH ₃	0	s-C ₄ H ₉		174

	Bsp Nr.	х	Υ	A	В	М	R ²	lso- mer	Fp. °C
5	Ic-17	CI	CH ₃	-CH ₂	CH ₂ -	0	C ₂ H ₅	-	174
10									
	Ic-18	СН₃	Cl	-(CH ₂) ₃ -CH	CH ₃ -CH ₂ -	S	i-C ₃ H ₇	•	205- 207
15	Ic-19	CH ₃	Cl	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	0	C ₂ H ₅	ß	141
	Ic-20	CH ₃	Cl	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	0	s-C ₄ H ₉	ß	154
20	Ic-21	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	C₂H₅	-	> 220
25	Ic-22	CH ₃	CI	-CH ₂ CH ₂ -		0	C₂H₅		206
	Ic-23	CH ₃	Cl	i-C ₃ H ₇	СН3	o	C ₂ H ₅	-	159
30	Ic-24	CH ₃	Cl	i-C ₃ H ₇	CH₃	0	s-C ₄ H ₉	-	172
	Ic-25	CH ₃	Cl	CH ₃	CH₃	0	C ₂ H ₅	-	172
35	Ic-26	CH ₃	Cl	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0	CH ₃	ß	178
	Ic-27	CH ₃	Cl	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0	i-C ₄ H ₉	ß	194
•	Ic-28	CH ₃ .	Cl	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0	i-C ₃ H ₇	ß	184
40	Ic-29	CH ₃	CI	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0	s-C ₄ H ₉	В	211
45	Ic-30	CH₃	Cl	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		0		В	200
50	Ic-31	CH ₃	CI	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0		В	219

		Ti-							
	Bsp Nr.	Х	Y	A	В	М	R ²	Iso- mer	Fp. °C
5	Ic-32	CH ₃	Cl	-(СН ₂) ₃ -СН	CH ₃ -CH ₂ -	0	CH ₃	ß	217
	Ic-33	CH ₃	CI	-(СН ₂) ₃ -СН	CH ₃ -CH ₂ -	0	i-C ₃ H ₇	ß	186
	Ic-34	CH ₃	Cl	-(CH ₂) ₃ -CH	CH ₃ -CH ₂ -	0	s-C ₄ H ₉	ß	185
10	Ic-35	CH ₃	Cl	-(CH ₂) ₃ -CH	CH ₃ -CH ₂ -	0	i-C ₄ H ₉	ß	191
15	Ic-36	CH ₃	Cl	-(CH ₂)₃-CH	CH ₃ -CH ₂ -	0	CH ₂	В	196
20	Ic-37	Cl	CH ₃	-CH ₂ CI	H ₂ -	0	i-C ₃ H ₇	•	205
25 30	Ic-38	Cl	СН3	-CH ₂ CI	H ₂ -	0	i-C ₄ H ₉	-	135
	Ic-39	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	CH ₃	-	209
	Ic-40	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	i-C ₃ H ₇	•	208
35	Ic-41	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	i-C ₄ H ₉	-	202
40	Ic-42	Cl	CH ₃	-(CH ₂) ₂ -O-(СН ₂) ₂ -	O		•	209
	Ic-43	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	0	СН3	-	218
-	Ic-44	CH ₃	Cl	-(CH ₂) ₂ -O-((CH ₂) ₂ -	0	i-C ₃ H ₇	-	207
45	Ic-45	CH ₃	Cl	-(CH ₂) ₂ -O-((CH ₂) ₂ -	0	i-C ₄ H ₉	-	211
50	Ic-46	СН₃	CI	-(СН ₂) ₂ -О-((CH ₂) ₂ -	О	сн,	•	174

Bsp Nr.	х	Y	A	В	М	R ²	Iso- mer	Fp. °C
Ic-47	CI	CH ₃	-(СН ₂) ₂ -СН	CH ₃ -(CH ₂) ₂ -	0	t-C ₄ H ₉ -CH ₂	ß	213
Ic-48	CI	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	0	s-C ₄ H ₉	ß	164
Ic-49	Cl	CH ₃	-(CH ₂) ₂ -CH	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		i-C ₄ H ₉	ß	167
Ic-50	CI	CH ₃	-(CH ₂) ₂ -CH	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		<u></u>	В	220
Ic-51	CI	CH ₃	-(CH ₂) ₃ -CH	CH ₃ -CH ₂ -	0	i-C₃H₁	ß	203
Ic-52	Cl	CH ₃	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		0	i-C ₄ H ₉	В	179
Ic-53	Cl	CH ₃	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		0	s-C ₄ H ₉	ß	158

5 Beispiel Id-1

3,05 g der Verbindung des Beispiels la-8 werden in 70 ml trockenem Methylenchlorid mit 1,4 ml Triethylamin versetzt und bei 0 bis 10 °C 1,15 ml Methansulfonsäurechloridin 5 ml trockenem Methylenchlorid zugegeben. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 3 g (78 % der Theorie), Fp. 198 °C.

Beispiel le-1

10 H₃C CI (+) (+) H₃NCH(CH₃)₂

3,06 g (10 mmol) der Verbindung la-8 werden in 50 ml wasserfreiem Methylenchlorid suspendiert und mit 1,02 ml (12 mmol) wasserfreiem Isopropylamin versetzt. Nach 15 Min. wird das Lösungsmittel im Vakuum abgedampft. Man erhält 3,6 g (△ 98 % der Theorie) der Verbindung le-1 vom Schmp. 152 °C.

Beispiel Ig-1

15

20

45

55

25 H₃C CI

4,59 g der Verbindung des Beispiels la-8 werden in 50 ml trockenem Tetrahydrofuran mit 2,28 g Diazabicycloundecen versetzt und bei 0 bis 10 °C 1,76 ml Morpholincarbamidsäurechlorid in 5 ml trockenem Tetrahydrofuran zugegeben und anschließend 3 h unter Rückfluß erwärmt. Die Reaktionslösung wird zweimal mit 50 ml 0,5 N Natronlauge gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Es bleiben 2,6 g (47 % der Theorie), Fp. 182 °C.

115

Herstellung der Ausgangsverbindungen:

Beispiel (II-1)

5

10

15

14,5 g (75 mmol) 1-Amino-cyclohexancarbonsäure-methylester-hydrochlorid werden in 180 ml absolutem Tetrahydrofuran vorgelegt, mit 21 ml Triethylamin versetzt, bei 0 bis 10 °C 15,2 g (75 mmol) 4-Chlor-2methyl-phenylessigsäurechlorid in 20 ml absolutem Tetrahydrofuran zugetropft und 1 Stunde bei Raumtemperatur nachgerührt. Man gießt das Reaktionsgemisch in 500 ml Eiswasser + 200 ml HCl, saugt das ausgefallene Produkt ab und trocknet es. Nach Umkristallisieren aus Methyl-tert.-butylether/n-Hexan erhält man 16 g (a 65 % der Theorie) des oben gezeigten Produkts vom Schmelzpunkt 151 °C.

Beispiel (II-2)

25

30

35

Zu 124,4 g (1,27 Mol) konzentrierter Schwefelsäure tropft man 70,4 g (0,253 Mol) N-(2-Chlor-4-methylphenylacetyl)-2-amino-2,3-dimethylbuttersäurenitril in 500 ml Methylenchlorid, so daß die Lösung mäßig siedet. Nach zwei Stunden werden 176 ml absolutes Methanol zugetropft und 6 h unter Rückfluß erwärmt. Die Reaktionsmischung wird auf 1,25 kg Eis gegossen und mit Methylenchlorid extrahiert. Die vereinigten Methylenchloridphasen werden mit gesättigter Natriumhydrogencarbonatlösung gewaschen, getrocknet, das Lösungsmittel im Vakuum abgedampft und der Rückstand aus Methyl-tert.-butylether/n-Hexan umkristallisiert.

Auf diese Weise erhält man 69,6 g (a 88 % der Theorie) der Verbindung II-2 vom Schmp. 96°C. Analog den Beispielen (II-1) und (II-2) erhält man die in Tabelle 11 gezeigten Beispiele.

50

Tabelle 11

Bsp Nr.	х	Y	A	В	R ⁸	Isomer	Fp.°C
II-3	Cl	CH ₃	-(CH ₂) ₅ -		CH ₃	-	102
II-4	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -(CH ₂) ₂ -	CH ₃	ß	124
II-5	Cl	CH ₃	-(CH ₂) ₃ -CH	-(CH ₂) ₃ -CHCH ₃ -CH ₂ -		ß	127
II-6	Cl	CH ₃	-(CH ₂) ₂ -CHOCH ₃ -(CH ₂) ₂ -		CH ₃	В	106
II-7	CH ₃	Cl	-(CH ₂) ₂ -CH	-(CH ₂) ₂ -CHCH ₃ -(CH ₂) ₂ -		ß	161
II-8	CH ₃	Cl	-(СН ₂) ₃ -СН	CH ₃ -CH ₂ -	CH ₃	ß	136
II-9	CH ₃	·Cl	-(CH ₂) ₂ -CH	OCH ₃ -(CH ₂) ₂ -	CH ₃	ß	124
II-10	CH ₃	Cl	CH ₃	CH ₃	CH ₃	-	169
II-11	CH ₃	Cl	i-C ₃ H ₇	CH ₃	CH₃	-	126
II-12	CH ₃	Cl	-(CH ₂) ₂ -O-(-(CH ₂) ₂ -O-(CH ₂) ₂ -		-	117

EP 0 668 267 A1

_	Bsp Nr.	х	Y	A	В	R ⁸	Isomer	Fp.°C
5	II-13	CH ₃	Cl	-CH	CH ₂ -	CH ₃	-	169
10				\				
15	II-14	CH ₃	Cl	-(CH ₂) ₂ -C-(CH ₂) ₂ -) O	CH₃	-	115
20	II-15	Cl	CH ₃	CH ₃	CH ₃	CH ₃	-	101
25	II-16	Cl	CH ₃	\triangleright	CH₃	CH ₃	-	118
	II-17	CI	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -	CH ₃	•	137
30	II-18	CI	CH ₃	-CH ₂ CH ₂ -		СН₃	-	168
35	II-19	Cl	CH ₃	-(CH ₂) ₂ -CH	CH ₃ -CHCH ₃ -CH ₂ -	CH ₃	В	143
40	II-20	Cl	CH ₃	-(CH ₂) ₂ -CHCH ₃ -CHCH ₃ -CH ₂ (CH ₂) ₂ -C-(CH ₂) ₂ - O O		CH ₃	-	115
40			<u> </u>			CH ₃	<u> </u>	H

Beispiel (XVII-1)

5

H₃C

CN

H₃C

N

CH

33,6 g (0,3 Mol) 2-Amino-2,3-dimethyl-buttersäurenitril werden in 450 ml absolutem Tetrahydrofuran vorgelegt, mit 42 ml Triethylamin versetzt und bei 0 bis 10 °C 60,9 g 2-Chlor-4-methyl-phenylessigsäure-chlorid zugetropft. Man rührt eine Stunde bei Raumtemperatur nach, rührt den Ansatz in 1,3 l Eiswasser und 200 ml 1 N HCl ein, saugt den Niederschlag ab, trocknet und kristallisiert aus Methyltert.-butylether/n-Hexan um. Auf diese Weise erhält man 70,4 g (△ 84 % der Theorie) des oben gezeigten Produktes vom Schmp. 112 °C.

Analog erhält man die in Tabelle 12 aufgeführten Verbindungen der Formel (XVII).

Tabelle 12

15

20

25

30

35

40

5	B CN O	(10.00)
10	A N X	(XVII)

Bsp-Nr.	x	Y	A	В	Fp.
XVII-2	Cl	CH ₃	-(CH ₂) ₂ -O-(CH ₂) ₂ -		156
XVII-3	CI	CH ₃	\rightarrow	CH ₃	169
XVII-4	Cl	CH ₃	-CH ₂	CH₂- //	121
XVII-5	CH ₃	Cl	-(CH ₂) ₂ -O-(CH ₂) ₂ -	112
XVII-6	CH ₃	Cl	i-C ₃ H ₇	CH ₃	136
XVII-7	CH ₃	CI	-CH ₂	CH ₂ -	112

Anwendungsbeispiele

Beispiel A

Phaedon-Larven-Test

1	ewichtsteile Dimethylformamid ewichtsteil Alkylarylpolyglykolether
---	---

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das

Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica olearacea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4 und la-5 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 7 Tagen.

10 Beispiel B

Plutella-Test

15

25

Lösungsmittel:	7 Gewichtsteile Dimethylformamid
Emulgator:	1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit o der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica olearacea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella maculipennis) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Raupen abgetötet wurden; 0 % bedeutet, daß keine Raupen abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4 und la-7 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 7 Tagen.

Bei einer beispielhaften Wirkstoffkonzentration von 0,01 % bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ib-9 und Ib-11 eine Abtötung von 100 % nach 3 Tagen.

Die Verbindungen gemäß den Herstellungsbeispielen la-7 (0,01 %, 7 Tage), lb-8 (0,01 %, 3 Tage) und lc-7 (0,01 %, 3 Tage) bewirkten bei den in Klammern angegebenen Wirkstoftkonzentrationen und Zeiten eine Abtötung von 100 %.

35 Beispiel C

Nephotettix-Test

40

Lösungsmittel:	7 Gewichtsteile Dimethylformamid
Emulgator:	1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test bewirkten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4, la-5, lb-8, lb-9 und lb-11 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % eine Abtötung von 100 % nach 6 Tagen.

55

Beispiel D

Myzus-Test

5

Lösungsmittel:	7 Gewichtsteile Dimethylformamid
Emulgator:	1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea), die stark von der Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Blattläuse abgetötet wurden; 0 % bedeutet, daß keine Blattläuse abgetötet wurden.

Bei diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen la-4, la-7 und la-8 bei einer beispielhaften Wirkstoffkonzentration von 0,01 % einen Abtötungsgrad von mindestens 70 % nach 6 Tagen.

Bei einer beispielhaften Wirkstoffkonzentration von 0,1 % bewirkte z.B. die Verbindung gemäß dem Herstellungsbeispiel lb-11 eine Abtötung von 90 % nach 6 Tagen.

Beispiel E

5 Panonychus-Test

Lösungsmittel:	3 Gewichtsteile Dimethylformamid
Emulgator:	1 Gewichtsteil Alkylarylpolyglykolether

30

20

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Ca. 30 cm hohe Pflaumenbäumchen (Prunus domestica), die stark von allen Entwicklungsstadien der Obstbaumspinnmilbe (Panonychus ulmi) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigten z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-8, Ib-9, Ic-7, Ib-10, Ib-11, Ic-8, Ia-4 und Ia-5 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % einen Abtötungsgrad von mindestens 95 % nach 7 Tagen.

Beispiel F

45

Tetranychus-Test (OP-resistent/Spritzbehandlung)

50

Lösungsmittel:	3 Gewichtsteile Dimethylformamid
Emulgator:	Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschten Konzentrationen.

Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe (Tetranychus urticae) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration gespritzt.

Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen z.B. die Verbindungen gemäß den Herstellungsbeispielen Ia-7, Ia-8, Ib-9, Ic-7, Ib-10, Ib-11, Ic-8, Ia-4 und Ia-5 bei einer beispielhaften Wirkstoffkonzentration von 0,02 % eine Abtötung von mindestens 95 % nach 7 Tagen.

Beispiel G

Pre-emergence-Test

10

Lösungsmittel:	5 Gewichtsteile	Aceton
Emulgator:	1 Gewichtsteil	Alkylarylpolyglykolether

15

25

30

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant.
Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge
des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %
Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

O % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

In diesem Test zeigen beispielsweise die Verbindungen gemäß Herstellungsbeispiel (Ic-14) bei einer beispielhaften Aufwandmenge von 250 g/ha und einer sehr guten Verträglichkeit durch Beta vulgaris eine Wirkung von mindestens 95 % gegenüber folgenden Testpflanzen: Alopecurus myosuroides, Digitaria sanguinalis, Echinocloa colonum, Lolium perenne und Setaria viridis.

Patentansprüche

1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I)

40

35

45

50

55

in welcher

Α

für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch mindestens ein Heteroatom unterbrochenes, gegebenenfalls substituiertes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,

В

für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder

A und B

gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten gegebenenfalls durch mindestens ein Heteroatom unterbrochenen unsubstituierten oder substituierten Cyclus stehen,

Х

für Halogen oder Alkyl steht,

Υ für Halogen oder Alkyl steht, G für Wasserstoff (a) oder für eine der Gruppen $^{SO_{2}-R^{3}}$ (c), $^{SO_{2}-R^{3}}$ (d), $^{R^{*}}$ $^{R^{5}}$ 5 E (f) oder 10 $N_{R^7}^{R^6}$ (g), 15 steht. Ε für ein Metallionäquivalent oder ein Ammoniumion steht, L und M 20 jeweils für Sauerstoff oder Schwefel stehen, R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder gegebenenfalls durch Halogen oder Alkyl substituiertes Cycloalkyl, das durch mindestens ein Heteroatom unterbrochen sein kann, jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxy-25 alkyl oder Hetaryloxyalkyl steht, R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder für jeweils gegebenenfalls substituiertes Cycloalkyl, Phenyl oder Benzyl steht. R3, R4 und R5 unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Cycloalkylthio oder 30 für jeweils gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen R6 und R7 unabhängig voneinander für Wasserstoff, jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phenyl oder Benzyl stehen, oder gemeinsam mit dem N-35 Atom, an das sie gebunden sind, für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen Cyclus stehen, deren Diastereomerengemische, reinen Diastereomeren und Enantiomeren, mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen. 40 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um eine der folgenden Strukturen (la) bis (lg) handelt: 45

124

50

worin

15

20

25

30

35

40

45

- A, B, E, L, M, X, Y, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die in Anspruch 1 angegebenen Bedeutungen besitzen.
 - 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, in welcher

55 A für Wasserstoff oder gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₁-C₈-alkyl, C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder

	В	Schwefel unterbrochen sein kann oder für jeweils gegebenenfalls durch Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Halogenalkyl, C ₁ -C ₆ -Alkoxy und/oder Nitro substituiertes Aryl, 5- oder 6-gliedriges Hetaryl oder Aryl-C ₁ -C ₆ -alkyl steht,
5	A, B	für Wasserstoff, C ₁ -C ₁₂ -Alkyl oder C ₁ -C ₈ -Alkoxyalkyl steht, oder und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C ₃ -C ₁₀ -Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C ₁ -C ₁₀ -Alkyl, C ₃ -C ₁₀ -Cycloalkyl, C ₁ -C ₆ -Halogenalkyl, C ₁ -C ₁₀ -Alkoxy, C ₁ -C ₁₀ -Alkylthio, Halogen oder Phenyl substituiert ist oder
10	A, B	und das Kohlenstoffatom, an das sie gebunden sind, für einen C ₃ -C ₆ -Spirocyclus stehen, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- und/oder Schwefelatome unterbrochene Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Spirocyclus bildet
15	A, B	oder und das Kohlenstoffatom, an das sie gebunden sind, für einen C ₃ -C ₈ -Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy oder Halogen substituierten gesättigten oder ungesättigten 3- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel
20	X Y G	unterbrochen sein kann, für Halogen oder C ₁ -C ₆ -Alkyl steht, für Halogen oder C ₁ -C ₆ -Alkyl steht, für Wasserstoff (a) oder für eine der Gruppen
25		R^{1} (b), R^{2} (c), $SO_{2}-R^{3}$ (d), R^{5} (e),
30		E (f) oder
35		$ \begin{array}{c} $
40	E L und M R¹	steht, in welchen für ein Metallionäquivalent oder ein Ammoniumion steht und jeweils für Sauerstoff oder Schwefel stehen, für jeweils gegebenenfalls durch Halogen substituiertes C ₁ -C ₂₀ -Alkyl, C ₂ -C ₂₀ -
45	t .	Alkenyl, C ₁ -C ₈ -Alkoxy-C ₁ -C ₈ -alkyl, C ₁ -C ₈ -Alkylthio-C ₁ -C ₈ -alkyl, C ₁ -C ₈ -Polyalkoxy-C ₁ -C ₈ -alkyl oder gegebenenfalls durch Halogen oder C ₁ -C ₆ -Alkyl substituiertes Cycloalkyl mit 3 bis 8 Ringatomen, das durch mindestens ein Sauerstoff-und/oder Schwefelatom unterbrochen sein kann, für gegebenenfalls durch Halogen, Nitro, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Alkyl,
50		Halogenalkyl, C ₁ -C ₆ -Halogenalkoxy, C ₁ -C ₆ -Alkylthio oder C ₁ -C ₆ -Alkylsulfonyl substituiertes Phenyl, für gegebenenfalls durch Halogen, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Halogenalkyl, C ₁ -C ₆ -Halogenalkoxy substituiertes Phenyl-C ₁ -C ₆ -alkyl, für gegebenenfalls durch Halogen und/oder C ₁ -C ₆ -Alkyl substituiertes 5- oder 6-gliedriges Hetaryl,
55		für gegebenenfalls durch Halogen und/oder C ₁ -C ₆ -Alkyl substituiertes Phenoxy-C ₁ -C ₆ -alkyl, oder

oder 6-gliedriges Hetaryloxy-C1-C6-alkyl steht,

für gegebenenfalls durch Halogen, Amino und/oder C₁-C₆-Alkyl substituiertes 5-

	R ²	für jeweils gegebenenfalls durch Halogen substituiertes C ₁ -C ₂₀ -Alkyl, C ₃ -C ₂₀ -
		Alkenyl, C_1 - C_8 -Alkoxy- C_1 - C_8 -alkyl, C_1 - C_8 -Polyalkoxy- C_1 - C_8 -alkyl,
		für gegebenenfalls durch Halogen, C ₁ -C ₄ -Alkyl und/oder C ₁ -C ₄ -Alkoxy substituier-
		tes C ₃ -C ₈ -Cycloalkyl, oder
5		für jeweils gegebenenfalls durch Halogen, Nitro, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy-
		und/oder C₁-C₅-Halogenalkyl substituiertes Phenyl oder Benzyl steht,
	R^3 , R^4 und R^5	unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes
		C_1 - C_8 -Alkyl, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkylamino, Di- $(C_1$ - C_8)-alkylamino, C_1 - C_8 -Alkylt-
		hio, C ₂ -C ₈ -Alkenylthio, C ₃ -C ₇ -Cycloalkylthio, für jeweils gegebenenfalls durch
10		Halogen, Nitro, Cyano, C ₁ -C ₄ -Alkoxy, C ₁ -C ₄ -Halogenalkoxy, C ₁ -C ₄ -Alkylthio, C ₁ -
		C ₄ -Halogenalkylthio, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl substituiertes Phenyl, Phe-
		noxy oder Phenylthio stehen und
	R⁵ und R ⁷	unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halo-
		gen substituiertes C ₁ -C ₈ -Alkyl, C ₃ -C ₈ -Cycloalkyl, C ₁ -C ₈ -Alkoxy, C ₃ -C ₈ -Alkenyl,
15		C ₁ -C ₈ -Alkoxy-C ₂ -C ₈ -alkyl, für gegebenenfalls durch Halogen, C ₁ -C ₈ -Halogenalkyl,
		C ₁ -C ₈ -Alkyl und/oder C ₁ -C ₈ -Alkoxy substituiertes Phenyl, gegebenenfalls durch
		Halogen, C ₁ -C ₈ -Alkyl, C ₁ -C ₈ -Halogenalkyl und/oder C ₁ -C ₈ -Alkoxy substituiertes
		Benzyl oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel
	and the state of the contract of	unterbrochen C ₃ -C ₆ -Alkylenring stehen,
20	mit der Mangabe, e	daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.
	4. 1H-Aryl-pyrrolidin-	2,4-dion-Derivate der Formel (I) gemäß Anspruch 1,
	in welcher	(, games , , , , , , , , , , , , , , , , , , ,
	Α	für Wasserstoff, jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes
25		C_1-C_{10} -Alkyl, C_3-C_6 -Alkenyl, C_1-C_8 -Alkoxy- C_1-C_6 -alkyl, C_1-C_6 -Polyalkoxy- C_1-C_6 -
		alkyl, C₁-C ₈ -Alkylthio-C₁-C ₆ -alkyl, gegebenenfalls durch Fluor, Chlor, C₁-C₃-Alkyl,
		C ₁ -C ₃ -Alkoxy substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1 bis 2
		Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder jeweils gegebe-
		nenfalls durch Fluor, Chlor, Brom, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Halogenalkyl, C ₁ -C ₄ -Alkoxy
30		und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyra-
		zolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C ₁ -C ₄ -alkyl steht,
	В	für Wasserstoff, C ₁ -C ₁₀ -Alkyl oder C ₁ -C ₆ -Alkoxyalkyl steht oder
	A, B	und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder
		ungesättigten gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C ₃ -
35		C ₉ -Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch C ₁ -C ₆ -
		Alkyl, C ₃ -C ₈ -Cycloalkyl, C ₁ -C ₃ -Haloalkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Alkylthio, Fluor,
	A D	Chlor oder Phenyl substituiert ist oder
	A, B	und das Kohlenstoffatom, an das sie gebunden sind, für einen C ₃ -C ₆ -Spirocyclus
40		stehen, der durch eine gegebenenfalls durch ein oder zwei Sauerstoff- oder Schwefelatome unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl- oder
40		durch eine Alkylendithiol-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an
		das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet
		oder
	A,B	und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₆-Spirocyclus
45	71,5	stehen, bei dem zwei Substituenten gemeinsam für einen gegebenenfalls durch
,		C ₁ -C ₃ -Alkyl, C ₁ -C ₃ -Alkoxy, Fluor, Chlor oder Brom substituierten gesättigten oder
		ungesättigten 5- bis 8-gliedrigen Cyclus stehen, der durch Sauerstoff oder Schwe-
		fel unterbrochen sein kann,
	X	für Fluor, Chlor, Brom oder C ₁ -C ₄ -Alkyl steht,
50	Υ	für Fluor, Chlor, Brom oder oder C ₁ -C ₄ -Alkyl steht,
	G	für Wasserstoff (a) oder für eine der Gruppen
		$\frac{O}{II}$ $\frac{L}{II}$ $\frac{C}{II}$
55		R^{1} (b), R^{2} (c), SO_{2} R^{3} R^{5} (e),

E (f) oder

 $\sum_{L} N \frac{R^6}{R^7} \quad (g),$

steht, in welchen

5

10

15

20

25

30

35

40

45

50

55

R۱

 \mathbb{R}^2

R3, R4 und R5

R6 und R7

Α

E für ein Metallionäquivalent oder ein Ammoniumion steht und

L und M jeweils für Sauerstoff oder Schwefel stehen,

für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₁₆-Alkylthio-C₁-C₆-alkyl, C₁-C₆-Polyalkoxy-C₁-C₆-alkyl oder gegebenenfalls durch Halogen oder C₁-C₅-Alkyl substituiertes Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann,

für gegebenenfalls durch Halogen, Nitro, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_4 -Alkylthio oder C_1 - C_4 -Alkylsulfonyl substituiertes Phenyl

für gegebenenfalls durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_3 -Halogenal-kyl, C_1 - C_3 -Halogenalkoxy substituiertes Phenyl- C_1 - C_4 -alkyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,

für gegebenenfalls durch Fluor, Chlor, Brom und/oder C_1 - C_4 -Alkyl substituiertes Phenoxy- C_1 - C_5 -alkyl oder

für gegebenenfalls durch Fluor, Chlor, Brom, Amino und/oder C_1 - C_4 -Alkyl substituiertes Pyridyloxy- C_1 - C_5 -alkyl, Pyrimidyloxy- C_1 - C_5 -alkyl steht.

für jeweils gegebenenfalls durch Halogen substituiertes C_1-C_{16} -Alkyl, C_3-C_{16} -Alkenyl, C_1-C_6 -Alkoxy- C_1-C_6 -alkyl, C_1-C_6 -Polyalkoxy- C_1-C_6 -alkyl,

für gegebenenfalls durch Halogen, C₁-C₃-Alkyl und/oder C₁-C₃-Alkoxy substituiertes C₃-C₇-Cycloalkyl oder

für jeweils gegebenenfalls durch Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy und/oder C₁-C₃-Halogenalkyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_6 -Alkyl, C_1 - C_6 -Alkoxy, C_1 - C_6 -Alkylamino, Di- $(C_1$ - C_6)-alkylamino, C_1 - C_6 -Alkylthio, C_3 - C_4 -Alkenylthio, C_3 - C_6 -Cycloalkylthio, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_3 -Alkoxy, C_1 - C_3 -Halogenalkoxy, C_1 - C_3 -Alkylthio, C_1 - C_3 -Halogenalkylthio, C_1 - C_3 -Alkyl, C_1 - C_3 -Halogenalkyl substituiertes

Phenyl, Phenoxy oder Phenylthio stehen und

unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C_1 - C_6 -Alkyl, C_3 - C_6 -Cycloalkyl, C_1 - C_6 -Alkoxy, C_3 - C_6 -Alkenyl, C_1 - C_6 -Alkoxy- C_1 - C_6 -Alkyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Halogenalkyl, C_1 - C_5 -Alkyl und/oder C_1 - C_5 -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C_1 - C_5 -Alkyl, C_1 - C_5 -Halogenalkyl und/oder C_1 - C_5 -Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C_3 - C_6 -Alkylenring stehen,

mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

 1H-3-Aryl-pyrrolidin-2,4-dion Derivate der Formel (I) gemäß Anspruch 1, in welcher

für Wasserstoff, gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1 - C_8 -Alkyl, C_3 - C_4 -Alkenyl, C_1 - C_6 -Alkoxy- C_1 - C_4 -alkyl, C_1 - C_6 -Alkylthio- C_1 - C_4 -alkyl, gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Methoxy oder Ethoxy substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatomen unterbrochen sein kann oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl,

Methoxy, Ethoxy, Trifluormethyl und/oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Pyrazolyl, Triazolyl, Indolyl, Thiazolyl, Thienyl oder Benzyl steht,

B A, B für Wasserstoff, C1-C8-Alkyl oder C1-C4-Alkoxyalkyl steht oder

5 A,

und das Kohlenstoffatom an das sie gebunden sind, für einen gesättigten oder ungesättigten gegebenenfals durch Sauerstoff oder Schwefel unterbrochenen C₃-C₈-Spirocyclus stehen, der gegebenenfalls einfach oder mehrfach durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, sec.-Butyl, tert,-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert ist oder

10

15

od

A, B

A,B

und das Kohlenstoffatom, an das sie gebunden sind, für einen C_3 - C_6 -Spirocyclus stehen, der durch eine gegebenenfalls durch ein Sauerstoff- oder Schwefelatom unterbrochene Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Spirocyclus bildet oder

und das Kohlenstoffatom, an das sie gebunden sind, für einen C₃-C₆-Spirocyclus stehen, bei dem zwei Substituenten gemeinsam für einen gesättigten oder ungesättigten fünf- oder sechsgliedrigen Cyclus stehen, der durch Sauerstoff oder Schwefel unterbrochen sein kann,

20

für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl steht,

X Y

für Chlor, Brom, Methyl, Ethyl, Propyl oder iso-Propyl steht,

G

für Wasserstoff (a) oder für eine der Gruppen

25

$$R^{1}$$
 (b), R^{2} (c), $SO_{2} R^{3}$ (d), R^{5} (e)

30

E (f) oder

35

$$N \stackrel{R^6}{\longrightarrow} N g^7$$
 (g),

40

45

50

55

steht,

in welchen

E L und M

R1

für ein Metallionäquivalent oder ein Ammoniumion steht,

jeweils für Sauerstoff oder Schwefel stehen,

für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1 - C_{14} -Alkyl, C_2 - C_{14} -Alkenyl, C_1 - C_4 -Alkoxy- C_1 - C_6 -alkyl, C_1 - C_4 -Alkylthio- C_1 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_1 - C_4 -alkyl oder gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl oder t-Butyl substituiertes Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1 bis 2 Sauerstoff- und/oder Schwefelatome unterbrochen

sein ki

für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl, Ethylsulfonyl substituiertes Phenyl,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanoyl, Thienyl, Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl,

für gegebenenfalls durch Fluor, Chlor, Methyl und/oder Ethyl substituiertes Phe-

noxy-C₁-C₄-alkyl, oder

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl, Ethyl, substituiertes Pyridyloxy- C_1 - C_4 -alkyl, Pyrimidyloxy- C_1 - C_4 -alkyl oder Thiazolyloxy- C_1 - C_4 -alkyl steht, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1 - C_1 -Alkyl, C_3 - C_1 -Alkenyl, C_1 - C_4 -Alkoxy- C_1 - C_6 -alkyl, C_1 - C_4 -Polyalkoxy- C_1 - C_6 -alkyl,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl,

oder für jeweils gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,

unabhängig voneinander für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylamino, Di- $(C_1$ - C_4)-alkylamino, C_1 - C_4 -Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C_1 - C_2 -Alkoxy, C_1 - C_4 -Fluoralkoxy, C_1 - C_2 -Alkylthio, C_1 - C_2 -Fluoralkylthio, C_1 - C_3 -Al-

kyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen und

unabhängig voneinander für Wasserstoff, für jeweils gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-Alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkyl und/oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl und/oder C₁-C₄-Alkoxy substituiertes Benzyl, oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen C₄-C₆-Alkylenring ste-

mit der Maßgabe, daß X und Y nicht gleichzeitig für Alkyl und nicht gleichzeitig für Halogen stehen.

- 25 6. Verfahren zur Herstellung von substituierten 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß man
 - (A) zum Erhalt von 1H-3-Aryl-pyrrolidin-2,4-dionen bzw. deren Enolen der Formel (la)

in welcher

 R^2

R3, R4 und R5

R6 und R7

5

10

15

20

45

50

55

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben, N-Acylaminosäureester der Formel (II)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

und

R8 für Alkyl steht,

in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert; oder

(B) zum Erhalt von Verbindungen der Formel (lb)

20

5

10

15

in welcher

A, B, X, Y und R¹ die in Anspruch 1 angegebene Bedeutung haben, Verbindungen der Formel (la),

25

30

$$\begin{array}{c} A & H \\ B \longrightarrow N \\ HO \\ X \longrightarrow \end{array}$$
 (Ia)

35

40

45

55

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der Formel (III)

Hal R¹ (III)

50

in welcher

R1 die oben angegebene Bedeutung hat und

Hal für Halogen steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

β) mit Carbonsäureanhydriden der Formel (IV)

R1-CO-O-CO-R1 (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

(Ic-a)

umsetzt;

oder

(C) zum Erhalt von Verbindungen der Formel (Ic-a)

10

5

20

25

15

in welcher

A, B, X, Y und R² die in Anspruch 1 angegebene Bedeutung haben,

und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

30

35

40

45

50

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Chlorameisensäureestern oder Chlorameisensäurethiolestern der Formel (V)

R²-M-CO-CI (V)

in welcher

R² und M die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

oder

(D) zum Erhalt von Verbindungen der Formel (Ic-b)

in welcher

A, B, R^2 , X und Y die oben angegebene Bedeutung haben und

M für Sauerstoff oder Schwefel steht,

Verbindungen der Formel (la)

20

15

30

35

40

55

25

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

a) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (VI)

$$\begin{array}{c}
\text{CI} \quad M - R^2 \\
S
\end{array} (VI)$$

45 in welcher

M und R² die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,

ode

50 β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der Formel (VII)

R²-Hal (VII)

in welcher

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom oder lod steht,

umsetzt;

oder

(E) zum Erhalt von Verbindungen der Formel (Id)

B A H $R^3 - SO_2 O$ (Id)

in welcher

A, B, X, Y und R³ die in Anspruch 1 angegebene Bedeutung haben,

Verbindungen der Formel (la)

35

20

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Sulfonsäurechloriden der Formel (VIII)

40 R3-SO₂-CI (VIII)

in welcher

R³ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt;

oder

(F) zum Erhalt von 3-Aryl-pyrrolidin-2,4-dionen der Formel (le)

50

45

in welcher

15

20

25

30

35

45

50

A, B, L, X, Y, R⁴ und R⁵ die in Anspruch 1 angegebene Bedeutung haben, 1-H-3-Aryl-pyrrolidin-2,4-dione der Formel (Ia) bzw. deren Enole

 $\begin{array}{c} A & H \\ B \longrightarrow N \\ O \\ X \longrightarrow N \end{array}$ (Ia)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Phosphorverbindungen der Formel (IX)

 $Hal - P \stackrel{R^4}{\parallel} R^5$ (IX)

in welcher

L, R⁴ und R⁵ die oben angegebene Bedeutung haben und

Hal für Halogen steht, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;

(G) zum Erhalt von Verbindungen der Formel (If)

in welcher

5

10

15

20

35

40

50

55

A, B, X und Y die oben angegebene Bedeutung haben, und

E für ein Metallionäquivalent oder für ein Ammoniumion steht, Verbindungen der Formel (la)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, mit Metallhydroxiden, Metallalkoxiden oder Aminen der Formeln (X) und (XI)

 $Me(OR^{10})_t$ (X)

R¹² R¹⁰
N (XI)

in welchen

Me für ein- oder zweiwertige Metallionen,

t für die Zahl 1 oder 2 und

R¹⁰, R¹¹ und R¹² unabhängig voneinander für Wasserstoff und/oder Alkyl stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt, oder daß man (H) zum Erhalt von Verbindungen der Formel (g)

10

5

in welcher

A, B, L, X, Y, ${\rm R}^6$ und ${\rm R}^7$ die in Anspruch 1 angegebene Bedeutung haben, Verbindungen der Formel (Ia)

15

20

$$\begin{array}{c} A & H \\ B & N \\ O \\ HO \\ X & \end{array}$$
 (Ia)

25

30

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, α) mit Isocyanaten oder Isothiocyanaten der Formel (XII)

 $R^6 - N = C = L$ (XII)

35

in welcher

L und R⁶ die oben angegebene Bedeutung haben gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XIII)

45

40

$$\begin{array}{c|c}
R^6 & \downarrow \\
N & CI \\
R^7 & CI
\end{array}$$

50

55

in welcher

L, R⁶ und R⁷ die oben angegebene Bedeutung haben gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.

7. Verbindungen der Formel (II)

10

5

in welcher

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben und

R⁸ für Alkyl steht.

15 8. Verfahren zur Herstellung der Acyl-aminosäureester der Formel (II), gemäß Anspruch 7, dadurch gekennzeichnet, daß man Aminosäurederivate der Formel (XIV),

25 in welcher

R⁹ für Wasserstoff (XIVa) oder Alkyl (XIVb) steht

und

A und B die in Anspruch 1 angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

30

35

40

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

acyliert und die dabei für R9 = Wasserstoff erhaltenen Acylaminosäuren der Formel (IIa),

in welcher

A, B, X und Y die oben angegebene Bedeutung haben,

55 verestert,

oder daß man Aminonitile der Formel (XVI)

in welcher

10

25

35

40

55

A und B die oben angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

in welcher

X und Y die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,

zu Verbindungen der Formel (XVII)

in welcher

A, B, X und Y die oben angegebene Bedeutung haben, umsetzt, und diese anschließend einer schwefelsauren Alkoholyse unterwirft.

9. Verbindungen der Formel (XVII)

Y
$$\longrightarrow$$
 O
 NH
 $C \equiv N$
 A
 B
 $(XVII)$

in welcher

A, B, X und Y die in Anspruch 1 angegebene Bedeutung haben.

10. Verfahren zur Herstellung von Verbindungen der Formel (XVII) gemäß Anspruch 10, dadurch gekennzeichnet, daß man Aminonitrile der Formel (XVI)

in welcher

A und B die in Anspruch 1 angegebene Bedeutung haben, mit Phenylessigsäurehalogeniden der Formel (XV)

$$Y \xrightarrow{} X$$

$$COHal$$
(XV)

20

25

10

X und Y die in Anspruch 1 angegebene Bedeutung haben

und

Hal für Chlor oder Brom steht,

umsetzt.

in welcher

11. Schädlingsbekämpfungsmittel und Herbizide, gekennzeichnet durch einen Gehalt an mindestens einem 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivat der Formel (I) gemäß Anspruch 1.

30

- 12. Verwendung von 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivaten der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen und unerwünschtem Pflanzenbewuchs.
- 13. Verfahren zur Bekämpfung von Schädlingen, dadurch gekennzeichnet, daß man 1-H-3-Aryl-pyrrolidin 2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 auf Schädlinge, unerwünschten Pflanzenbewuchs und/oder ihren Lebensraum einwirken läßt.
 - 14. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln und Herbiziden, dadurch gekennzeichnet, daß man 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

45

40

50

A-0 613 885 (BA abelle 1-10; Be eite 117, Zeile te 120; Beispie erbindungen XVI A-0 613 884 (BA abelle 1-10; Be l, Ia-2, Ib-1, Ic- erbindungen II erbindungen XVI be 95, Zeile 9 A-0 596 298 (BA abelle 1-7; Verl Beispiele Ib-2 erbindungen II Se oindungen II Se oindungen II Se oindungen XVI A-0 595 130 (BA abelle Seite 26 abelle Seite 14	yER A.G.) ispiele Ia-1 40; Verbind le II-1,II-2 I, Seite 122 YER A.G.) ispiele 1,Ie-1,Ie-2, Seite 94, Ze I Seite 94, * YER A.G.) bindung Seit ,Ic-2,Ie-1 49, Zeile 4 ite 52; Seit eile 1-11,36 I Seite 55; YER A.G.) ,32-36,38-41	, Ib-1, Ic-1 * ungen II, * Ig-1, Ig-2 * ile 33-54 * Zeile 57 - e 51, Zeile 5; e 55, Zeile -43; Tabelle Tabelle 9 *	7 9 1,7,9 1 7 9 1,7,9 1 7	KLASSIFIKATION DER ANMELDUNG (IntCl.6) CO7D207/38 CO7D209/54 CO7F9/572 CO7D491/10 CO7D495/10 CO7D401/12 CO7D409/12 CO7D407/12 A01N43/36 A01N43/38
abelle 1-10; Be eite 117, Zeile te 120; Beispie erbindungen XVI A-0 613 884 (BA abelle 1-10; Be 1, Ia-2, Ib-1, Ic-erbindungen II erbindungen XVI te 95, Zeile 9 A-0 596 298 (BA abelle 1-7; Verlagen Beispiele Ib-2 erbindungen II Se 58, Seite 56, Zerbindungen XVI A-0 595 130 (BA abelle Seite 26 abelle Se	ispiele Ia-1 40; Verbind le II-1, II-2 I, Seite 122 YER A.G.) ispiele 1, Ie-1, Ie-2, Seite 94, Ze I Seite 94, * YER A.G.) bindung Seit, Ic-2, Ie-1 49, Zeile 4 ite 52; Seit eile 1-11, 36 I Seite 55; YER A.G.) ,32-36,38-41	ungen II, * Ig-1, Ig-2 * ile 33-54 * Zeile 57 - e 51, Zeile 5; e 55, Zeile -43; Tabelle Tabelle 9 *	1,7,9 1,7,9 1,7,9 1,7,9 7	C07D209/54 C07F9/572 C07D491/10 C07D495/10 C07D401/12 C07D409/12 C07D407/12 A01N43/36 A01N43/38
A-0 613 884 (BA abelle 1-10; Be 1,Ia-2,Ib-1,Ic- erbindungen II erbindungen XVI te 95, Zeile 9 A-0 596 298 (BA abelle 1-7; Verl Beispiele Ib-2 erbindungen II Se 58, Seite 56, Zo erbindungen XVI A-0 595 130 (BA abelle Seite 26	YER A.G.) ispiele 1, Ie-1, Ie-2, Seite 94, Ze I Seite 94, * YER A.G.) bindung Seit, Ic-2, Ie-1 * 49, Zeile 4 ite 52; Seit eile 1-11,36 I Seite 55; YER A.G.) ,32-36,38-41	Ig-1, Ig-2 * ile 33-54 * Zeile 57 - e 51, Zeile 5; e 55, Zeile -43; Tabelle Tabelle 9 *	1 7 9 1,7,9 1 7	CO7D409/12 CO7D407/12 A01N43/36 A01N43/38 RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
abelle 1-7; Ver Beispiele Ib-2 erbindung Seite Dindungen II Se 58, Seite 56, Z erbindungen XVI A-0 595 130 (BA abelle Seite 26	bindung Seit ,Ic-2,Ie-1 * 49, Zeile 4 ite 52; Seit eile 1-11,36 I Seite 55; YER A.G.) ,32-36,38-41	5; e 55, Zeile ~43; Tabelle Tabelle 9 *	9	SACHGEBIETE (Int.Cl.6)
A-0 595 130 (BA abelle Seite 26	YER A.G.) ,32-36,38-41		7,9	SACHGEBIETE (Int.Cl.6)
abelle Seite 26	, 32-36, 38-41	*		C07D
	, 15, 19, 20, 22		7 9	C07F A01N C07C
	ndungen Seit		11-14 1 6 7 8	3373
abelle 1,2,3 * eite 9-10 * erbindungen II :	-		11-14 1 6 7 8	
		-/		
de Recherchenbericht wur	de für alle Patentans	prüche erstellt		
		·		Prefer
.IN	28.	Juni 1995	Fre	elon, D
	erbindungen IX, eite 45-46 * A-0 456 063 (BA abelle 1,2,3 * eite 9-10 * erbindungen II : eite 10 * A-0 456 063 (BA abelle 1,2,3 * eite 9-10 * erbindungen II : eite 10 * A-0 456 063 (BA abelle 1,2,3 * eite 9-10 * erbindungen II : eite 9-10 * A-0 456 063 (BA abelle 1,2,3 * erbindungen II : erbindungen IX, erbindungen II : er	erbindungen IX, II, Seite 4 eite 45-46 * A-0 456 063 (BAYER A.G.) abelle 1,2,3 * eite 9-10 * erbindungen II Seite 11 * eite 10 * de Recherchenbericht wurde für alle Patentans themet Abechiebe LIN 28.	erbindungen IX, II, Seite 45-46 * eite 45-46 * A-O 456 063 (BAYER A.G.) abelle 1,2,3 * eite 9-10 * erbindungen II Seite 11 * eite 10 * -/ de Recherchenbericht wurde für alle Patentansprüche erstellt -/ Me Recherchenbericht wurde für alle Patentansprüche erstellt -/ T: der Erfindung zu E: Elteres Patention nach dem Anmeldung mach dem Anmeldung nach dem Anmeldung n	erbindungen IX, II, Seite 45-46 * eite 45-46 * A-0 456 063 (BAYER A.G.) abelle 1,2,3 * eite 9-10 * erbindungen II Seite 11 * eite 10 * mide Recherchenbericht wurde für alle Patentansprüche erstellt mide Recherchenbericht wurde für alle Patentansprüche erstellt T: der Erfindung zugrunde liegende E: Elteres Patentdokument, das jedo nach dem Anmeldedatum veröffer erer Bedeutung allein betrachtet erer Bedeutung allein der Anmeldedatum veröffer D: in der Anmeldedatum veröffer

å : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

EPO PORM 1503 03.82 (POICU)

X: von bezonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer
anderen Veröffentlichung derseiben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 95 10 1136

	EINSCHLÄGI(GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile		h, Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL6)
A,D	EP-A-O 377 893 (BA * das ganze Dokume	YER A.G.) nt *	1-14	
A	WO-A-94 01401 (BAY * das ganze Dokume	ER A.G.) nt *	1-14	
				RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
Der vo	diegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
	Rechardement BERLIN	Abschlichtunger Recherche 28. Juni 1995	Ema	Pr efer lon, D
X: von besonderer Bedeutung allein betrachtet Y: von besonderer Bedeutung in Verbindung mit einer miteren Veröffentlichung derseiben Kategorie A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischmitteratur		DOKUMENTE T: der Erfind E: ülteres Pat nach dem nath einer D: in der Ann gorle L: aus andern	ung zugrunde liegende I entdokument, das jedoc Anmeldedatum veröffen seldung angeführtes Do Gründen angeführtes I er gleichen Patentfamili	Theorien oder Grundsätze h erst am oder tlicht worden ist kunsent Ookument

EPO PORM 1503 03.82 (POICOS)