Chapter 3 Relational Data Model

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Content

- 1. Introduction
- 2. Relational Model Concepts
- 3. Keys
- 4. Characteristics of relation
- 5. ER-to-Relational Mapping

1. Introduction

Was introduced by E. F. Codd "A Relation Model for Large Shared Data Banks", Communications of ACM, 6/1970 Allows a simple and unified representation of data structure Concept "Relation" Has a Strong theoretical background Set theory of mathematical logic Is used in many DBMS Commercial: Oracle, SQL Server, DB2 ... pen source: MySQL, PostgreSQL, ...

1. Introduction

	The relational Model of Data is based on the concept
(of a Relation.
	A Relation is a mathematical concept based on the
i	deas of sets.

The strength of the relational approach to data management comes from the formal foundation provided by the theory of relations.

2. Concepts - Relation (Quan hệ)

- **Informal Definition**: A table of values
 - A relation may be thought of as a **set of rows**.
 - A relation may alternately be though of as a **set of columns**.
 - Each row represents a fact that corresponds to a real-world entity or relationship.
- A schema of relation presents the DB as a collection of relations

Example: a relation "FACULTY"

KHOA

MÄKHOA	TĒNKHOA	NÁMTL	PHÓNG	ĐIỆNTHOAI	TRƯỚNGKHOA	NGÁYNHẬNCHỬC
CNTT	Công nghệ thông tin	1995	B11	838123456	2	20/02/2005
VL	VậtIý	1976	B21	838223223	5	18/09/2003
SH	Sinh học	1980	B31	838454545	4	11/10/2000
НН	Hóa học	1980	B41	838456456	7	15/10/2001

2. Concepts - Relation

- Concepts:
 - Relation = Table
 - Attribute = Column
 - Tuple = Row (A tuple is an ordered set of values)
 - Domain = set of attribute values
- Example: Relation "FACULTY" has 4 tuples, 7

KHOA

MÄKHOA	TĒNKHOA	NÁMTL	PHÓNG	ĐIỆNTHOAI	TRƯỚNGKHOA	NGÁYNHẬNCHỰC
CNTT	Công nghệ thông tin	1995	B11	838123456	2	20/02/2005
VL	VậtIý	1976	B21	838223223	5	18/09/2003
SH	Sinh học	1980	B31	838454545	4	11/10/2000
НН	Hóa học	1980	B41	838456456	7	15/10/2001

2. Concepts - Relation

Formal definition

- A relation r(R) of a **schema** R(A1, A2, ..., An) is:
 - A set of tuples r = {t1, t2, ..., tm}, each tuple t is an ordered list of n values t = {v1, v2, ..., vn}
 - Each vi, 1≤ i ≤n, ∈ dom(Ai) or null. Null indicates "unknown" or "not exist".

MÃKHOA	TÊNKHOA	NĂMTL	PHÒNG	ÐIỆNTHOAI	TRƯỞNGKHOA	NGÀYNHẬNCHỨC
CNTT	Công nghệ thông tin	1995	B11	0838123456	002	20/02/2005
VL	Vật lý	1976	B21	0838223223	005	18/09/2003
SH	Sinh học	1980	B31	0838454545	004	11/10/2000
НН	Hóa học	1980	B41	NULL	007	15/10/2001

Remark:

 $r(R) \subseteq (dom(A1) \times dom(A2) \times ... dom(An))$

The ith-value of t is represented by t.Ai or t[i].

2. Concepts - Schema of a Relation (Lược đồ Quan hệ)

- A schema of a Relation R, is represented by R(A₁, A₂, ..., A_n),
 - R is the name of schema
 - \mathbb{P} A₁, A₂, ..., A_n are the attributes
- A_i receives the values that belongs to value domain, note dom(A_i).
 - Degree of schema represents the number of attributes Example: KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆNTHOAI, TRƯỞNGKHOA, NGÀYNHẬNCHỨC).
 - Property of the schema KHOA is 7
 - Domain of the attribute MÃKHOA is "String".
 - Pomain of the attribute NĂMTL is "Integer".

fit@hcmus

2. Concepts – Relational Database schema

A Relational database schema consists of schemas.

 $S = \{R_1, R_2, ..., R_n\}$

Example:

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, GVQLCM, MÃBM)

GV_ĐT (MÃGV, ĐIỆNTHOẠI)

BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, TRƯỞNGBM, MÃKHOA, NGÀYNHẬNCHỨC)

KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆNTHOAI, TRƯỞNGKHOA, NGÀYNHẬNCHỨC)

ĐỀTÀI (MÃĐT, TÊNĐT, KINHPHÍ, CẤPQL, NGÀYBĐ, NGÀYKT, MÃCĐ, GVCNĐT)

CHỦĐỀ (MÃCĐ, TÊNCĐ)

CÔNGVIỆC (MÃĐT, STT, TÊNCV, NGÀYBĐ, NGÀYKT)

THAMGIAÐT(MÃGV, MÃÐT, STT, PHỤCẤP, KẾTQUẢ)

2. Concepts - Notes

- The relation schema R of the degree n
 - $R(A_1, A_2, ..., A_n)$
- Relations
 - ? r, q, s
- Tuples
 - ? t, u, v
- Domain of the attribute A
 - Pom(A)
- The value at the attribute A of the tth tuple
 - t.A hay t[A]

Content

- 1. Introduction
- 2. Concepts
- 3. Keys
- 4. Characteristics of relation
- 5. ER-to-Relational Mapping

Super key (siêu khóa)

Note:

- The tuples of a relation must be different
- **Definition** Super key
 - Given SK is a subset of attributes of R, SK is not empty
 - SK is super key if

$$\forall r, \forall t1, t2 \in r, t1 \neq t2 \Rightarrow t1[SK] \neq t2[SK]$$

- Super Key is used to identify uniquely each tuple in a relation
- Every relation has at least one super key

Example:

KHOA(MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆNTHOẠI, NGÀYNHẬN CHỨC)

- [] {MÃKHOA, TÊNKHOA} is super key.
- All attributes of a relation constitute a super key

Key (Khóa)

- **Definition** Key
 - Given K is a subset of attributes of R, K is not empty
 - K is a key if
 - 1. K is a super key of R
 - **2. AND** \forall K' \subset K, K' \neq K, K' is not the super key of R.
- Remark
 - Rey is super key with the least number of attributes
 - Rey is used to identify uniquely each tuple in a relation
 - A key is a property of the relation schema
 - The key doesn't depend on the instance of a relation
 - ? A key is determined from the meaning of attributes
 - A relation can have more than one key

Primary Key (Khóa Chính)

- For the implementation:
 - Only one key is selected as the primary key to identify uniquely the tuples in relation
 - Should choose the key with few attributes
 - The attributes of primary key are not null
- A relation has only one primary key.
- The <u>primary key</u> is underlined

KHOA(MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆNTHOẠI, NGÀYNHẬN CHỨC)

Reference (Tham chiếu)

- An attribute A of a tuple in relation R receives a value from an attribute B of relation S:
 - R is called referencing relation
 - S is called referenced relation

			TÊNKHOA	MÃKHOA	_		
		S		5 ←			
		J	VL TOÁN	1			
	MÃBM	TÊNBM		PHÒNG	ĐiỆNTHOẠI	MÃKHOA	
	нттт	Hệ thống thông	tin	I84	838125125	5	
R	CNPM	Công nghệ phầ	n mềm	I82	838126126	4	
	VLDT	Vật lý điện tử		F203	838127127	4	
	VLUD	Vật lý ứng dụng		F205	838128128	5	

Foreign Key

Definition

2 relation schemas :

$$R_1(A_1, A_2, ..., A_n)$$
 và
 $R_2(B_1, B_2, ..., B_m)$

 $PK \subset \{A_1, ..., A_n\}$ is the primary key of R_1 , $FK \subseteq \{B_1, ..., B_n\}$ FK is a foreign key of R_2 if:

- 1. Attributes in FK have the same domains as the primary key attributes PK.
- 2. $\forall t_2 \text{ of } R_2, \exists t_1 \in R_1, t_2[FK] = t_1[PK].$ Foreign key

BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, TRƯỞNGBM, MÃKHOA, NGÀYNHẬNCHỨC)

KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆN THOẠI, TRƯỞNGKHOA, NGÀYNHẬNCHỨC)

Primary key

Foreign Key

Remark:

- An attribute can be part of a primary key and foreign key at the same time
- A foreign key can refer to the primary key of the same relation
- Many foreign keys can refer to the same primary key
- Referential integrity constraint = foreign key constraint

Foreign Key

Content

- 1. Introduction
- 2. Concepts
- 3. Keys
- 4. Characteristics of relation
- 5. ER-to-Relational Mapping

4. Characteristics of relation

The order of tuples in a relation is not important

MãBM	Henby	Phòng	Điện thoại	rưởng BM	Mã khoa	Ngày NC
нттт	Hệ thống thông tin	B13	0838125125	002	CNTT	20/09/2004
CNTT	Công nghệ thông tin	B15	0838126126	Null	CNTT	Null
MMT	Mạng máy tính	B16	0838676767	001	CNTT	15/05/2005
VLĐC	Vật lý đại cương	B23	0838234234	Null	VL	Null

Bộ The program alues in a tuple is important

khác

Bộ <HTTT, Hệ thống thông tin, B13, 0838125125, CNTT, 002, 20/09/2004>

4. Characteristics of relation

- The values in a tuple
 - Either atomic
 - Or null
- No tuples overlap

Update Operations on Relations

Update Operations: INSERT a tuple, DELETE
a tuple, MODIFY a tuple.
Integrity constraints should not be violated by
the update operations.
Several update operations may have to be
grouped together.
Updates may propagate to cause other
updates automatically. This may be necessary
to maintain integrity constraints.

Update Operations on Relations

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Exercise #1

- Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:
 - STUDENT(SSN, Name, Major, Bdate)
 - COURSE(Course#, Cname, Dept)
 - Property ENROLL(SSN, Course#, Quarter, Grade)
 - BOOK_ADOPTION(Course#, Quarter, Book_ISBN)
 - TEXT(Book_ISBN, Book_Title, Publisher, Author)
- Draw a relational schema diagram specifying the foreign keys for this schema.

Content

- Introduction
- Concepts
- Keys
- Characteristics of relation
- ER-to-Relational Mapping

5.1. Regular Entity set

- For each Entity set (except weak entity set), create a corresponding relation:
 - Same name
 - Same set of attribute (except composite and multi valued attribute)

5.2. Composite attribute

We have 2 case:

Case 1: a composite attribute is transformed into a single-valued attribute

GIÁOVIÊN (<u>MÃGV</u>, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, *ĐỊA CHỈ*)

5.2. Composite attribute (cont.)

Case 2: a composite attribute is transformed into a set of single valued attributes

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, *SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ*)

5.3. Multi-valued attribute

- For each multi-valued attribute A of relation R, create a relation S with the following attribute:
 - primary key of R
 - attribute A (as a single-valued attribute)
- Primary key of new relation S:
 - either A
 - or A + primary key of R

ĐIỆNTHOẠI (SốĐT, MÃGV)

hoăc

ĐIỆNTHOẠI (SốĐT, MÃGV)

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ)

5.4. Weak Entity Set

- For each entity set, create a corresponding relation:
 - Same name
 - Same set of attribute (except composite and multi valued attribute)
 - Adding the key attributes of the entity sets which the weak entity set depends on
 - The key of relation consists of
 - weak key attributes
 - key attributes of the entity sets which the weak entity set depends on

ĐẾTÀI (MÃĐT, TÊNĐT, KINHPHÍ, CẤPQL, NGÀYBĐ, NGÀYKT) **CÔNGVIỆC (MÃĐT, STT**, TÊNCV, NGÀYBĐ, NGÀYKT)

5.5. Relationship set:1-n

Adding the key of the many-relation to the one-relation

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, *MÃBM*) BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI)

5.6. Relationship set: 1-1

- Either adding the key of a relation to another relation + the attributes on the relationship
- Or adding the key to both relations + the attributes on the relationship

T GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, MÃBM)
S BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, NGAYNHANCHUC, *TRƯỞNGBM*)

5.7. Relationship: n-n

- Create a new relation
 - Relation name is the name of the relationship
 - Set of attribute consists of
 - the key attributes of connected entity sets
 - The attributes on the relationship
 - Primary key consists of
 - the key attributes of connected entity sets

Exercise #2

Exercise #3

