UNIDAD 2: ANÁLISIS DE VÍNCULOS

ASIGNACIÓN DE RELEVANCIA (PAGERANK)

Blanca Vázquez y Gibran Fuentes-Pineda Noviembre 2020

ALGORITMO PAGERANK

- Desarrollado por Larry Page, cofundador de Google, para asignar relevancia a páginas Web en motores de búsqueda
- Cuenta el número y calidad de los vínculos a una página para estimar su relevancia
- Páginas más relevantes tienen mayor probabilidad de recibir vínculos de más páginas
- · Toma en cuenta Hubs y autoridades

EJEMPLO

VÍNCULOS COMO VOTOS

- Vínculos como votos: una página es más importante si tiene más vínculos
 - · Vínculos entrantes: los que vienen de otras páginas
 - · Vínculos salientes: los que van a otras páginas
- · Encontrar la relevancia es un problema recursivo
 - Cada voto de un vínculo entrante es proporcional a la relevancia de la página de la que viene
 - Si la página j con relevancia r_j tiene n nodos salientes, cada vínculo obtiene r_j/n votos
 - La relevancia de la página *j* es la suma de los votos de los vínculos entrantes

FORMULACIÓN DE FLUJO

· La relevancia r_i para una página j está dada por

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

- Genera un sistema de *n* ecuaciones con *n* variables
 - · No hay solución única
 - Restricción adicional: $\sum_i r_i = 1$

$$r_a = r_a/2 + r_b/2$$

$$r_b = r_a/2 + r_c$$

$$r_c = r_b/2$$

FORMA MATRICIAL

- Matriz de adyacencia estocástica M
 - · La i-ésima página tiene d_i vínculos a otras páginas
 - Si $i \to j$ entonces $\mathbf{M}_{j,i} = \frac{1}{d_i}$, en caso contrario $\mathbf{M}_{j,i} = 0$
 - M es una matriz columna estocástica: cada columna suma a 1
- · Vector de relevancia r
 - · r_i es la relevancia de la *i*-ésima página
 - $\sum_{i=1}^{n} r_i = 1$
- · Ecuaciones de flujo

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

PAGERANK Y EIGENVECTORES

· Forma matricial de ecuaciones de flujo

$$r = M \cdot r$$

- \cdot El vector de relevancia ${\bf r}$ es un eigenvector de la matriz de adyacencia ${\bf M}$
 - Debido a que M es una matriz estocástica, su primer eigenvector tiene un eigenvalor asociado de $\lambda=1$
 - · r es un vector estocástico y las columnas de M suman, por lo que $M \cdot r \leq 1$
- Podemos calcular las relevancias de las páginas si encontramos el primer eigenvector de la matriz M

MÉTODO DE LAS POTENCIAS

- · Esquema iterativo
 - 1. $\mathbf{r}^{(0)} = [1/n, 1/n, \dots, 1/n]$
 - 2. $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - 3. Repite 2 hasta que $\|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}\|_1 < \epsilon$

EJEMPLO DEL MÉTODO DE LAS POTENCIAS

$$\mathbf{M} = \begin{bmatrix} 0 & \frac{1}{2} & 1 & 0 \\ \frac{1}{3} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} r_A \\ r_B \\ r_C \\ r_D \end{bmatrix} = \begin{bmatrix} 1/4 & 9/24 & 15/48 & 11/32 & \cdots & 3/9 \\ 1/4 & 5/24 & 11/48 & 7/32 & \cdots & 2/9 \\ 1/4 & 5/24 & 11/48 & 7/32 & \cdots & 2/9 \\ 1/4 & 5/24 & 11/48 & 7/32 & \cdots & 2/9 \end{bmatrix}$$

INTERPRETACIÓN BASADO EN CAMINATAS ALEATORIAS

- Considera un navegador que visita vínculos aleatoriamente
 - · En el paso t se encuentra en la página i
 - En el paso t + 1 elige de forma aleatorio uniforme uno de los vínculos salientes de la página i
 - · Visita la página j correspondiente al vínculo elegido
 - · El proceso se repite indefinidamente
- $\mathbf{p}^{(t)}$ es un vector cuyos elementos representan la probabilidad de que el navegador se encuentre en la página i en el paso t
 - Es una distribución de probabilidad sobre todas las páginas

CAMINATA ALEATORIA: DISTRIBUCIÓN ESTACIONARIO

• En t+1 se elige un vínculo de forma aleatoria uniforme

$$\mathbf{p}^{(t+1)} = \mathbf{M} \cdot \mathbf{p}^{(t)}$$

• **p**^(t) es la distribución estacionaria si

$$\mathbf{p}^{(t+1)} = \mathbf{M} \cdot \mathbf{p}^{(t)} = \mathbf{p}^{(t)}$$

- El vector r corresponde a la distribución estacionaria p de la caminata aleatoria
 - Esta distribución es única sin importar qué probabilidad inicial $\mathbf{p}^{(0)}$ se elija

PROBLEMAS CON FORMULACIÓN DE PAGERANK: TRAMPA DE ARAÑA

- · Todos los vínculos salientes están dentro del grupo
 - · Eventualmente absorben toda la relevancia

EJEMPLO DE PAGERANK CON UNA TRAMPA DE ARAÑA

EJEMPLO DE PAGERANK CON UNA TRAMPA DE ARAÑA

PROBLEMAS CON FORMULACIÓN DE PAGERANK: CALLEJÓN SIN SALIDA

- · Callejones sin salida: páginas sin vínculos salientes
 - · Causa fuga en la relevancia

$$r_{j}^{(t+1)} = \sum_{i \to j} \frac{r_{i}^{(t)}}{d_{i}}$$

$$t = 0 \quad t = 1 \quad t = 2 \quad t = 3 \quad \cdots$$

$$\begin{bmatrix} r_{a} \\ r_{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \end{bmatrix}$$

EJEMPLO DE PAGERANK CON UN CALLEJÓN SIN SALIDA

EJEMPLO DE PAGERANK CON UN CALLEJÓN SIN SALIDA

TELETRANSPORTACIÓN ALEATORIA

• Elige un vínculo de forma aleatoria con probabilidad β o salta a una página aleatoria con probabilidad 1 – β^1

· En callejones sin salida: se salta a una página aleatoria

 $^{^{1}}$ En la práctica es común que β sea un valor entre 0.8 y 0.9

MÉTODO DE POTENCIAS PARA TELETRANSPORTACIONES

PageRank con teletransportaciones

$$r_j^{(t+1)} = \sum_{i \to j} \beta \cdot \frac{r_i^{(t)}}{d_i} + (1 - \beta) \cdot \frac{1}{n}$$

· La matriz de Google

$$\mathbf{A} = \beta \cdot \mathbf{M} + (1 - \beta) \cdot \frac{1}{n} \mathbf{e} \cdot \mathbf{e}^{\top}$$

donde **e** es un vector de tamaño *n* cuyos elementos son 1

· A es estocástica, aperiodica e irreducible, por lo que

$$\mathbf{r}^{(t+1)} = \mathbf{A} \cdot \mathbf{r}^{(t)}$$

EJEMPLO DE TELETRANSPORTACIÓN

CÓMPUTO DE PAGERANK PARA DATOS MASIVOS (1)

- M es una matriz usualmente dispersa: solo se requiere almacenar en memoria una fracción de elementos
- A es una matriz densa: se requiere almacenar en memoria n² elementos
 - Si tuviéramos 100 millones de páginas y usáramos 4 bytes por cada elemento, necesitaríamos $40^{16} \approx 40$ petabytes
- Reorganizando la expresión $\mathbf{r}^{(t+1)} = \mathbf{A} \cdot \mathbf{r}^{(t)}$

$$\mathbf{r}^{(t+1)} = \left[\beta \cdot \mathbf{M} + \frac{1-\beta}{n} \cdot \mathbf{e} \cdot \mathbf{e}^{\top} \right] \cdot \mathbf{r}^{(t)}$$
$$= \beta \cdot \mathbf{M} \cdot \mathbf{r}^{(t)} + \frac{1-\beta}{n} \cdot \mathbf{e} \cdot \mathbf{e}^{\top} \cdot \mathbf{r}^{(t)}$$
$$= \beta \cdot \mathbf{M} \cdot \mathbf{r}^{(t)} + \frac{1-\beta}{n}$$

CÓMPUTO DE PAGERANK PARA DATOS MASIVOS (2)

- · Sin callejones sin salida
 - 1. Calcula $\hat{\mathbf{r}}^{(t+1)} = \beta \cdot \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - 2. Agrega $(1-\beta)/n$ a los elementos de $\hat{\mathbf{r}}^{(t+1)}$
- · Con callejones sin salida
 - 1. Calcula $\hat{\mathbf{r}}^{(t+1)} = \beta \cdot \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - 2. Agrega $\left(1-\sum_{j}\hat{r}_{j}^{(t+1)}\right)/n$ a los elementos de $\hat{\mathbf{r}}^{(t+1)}$