Machine Learning for Data-Driven Discovery

Thoughts on the Past, Present and Future

Sreenivas Rangan Sukumar, PhD

Data Scientist and R&D Staff Computational Data Analytics Group Computational Sciences and Engineering Division Oak Ridge National Laboratory

Email: sukumarsr@ornl.gov Phone: 865-241-6641

Tomorrow: Experience with Data Parallel Frameworks

Food-for-thought towards the exascale data analysis supercomputer

ORNL is managed by UT-Battelle for the US Department of Energy

Today's Outline

- Scalable Machine Learning
 - Recent Advances and Trends
- State of the Practice
 - Philosophy, Engineering, Process, Paradigms
- Are we there yet?
 - If yes, how so ?
 - If not, why not ?
- Concluding Future Thoughts
- Offline Debate and Discussion

Machine Learning

Given examples of a function (x, f(x)), **Predict** function f(x) for new examples x

Machine Learning in the Big Data Era

Just in case you missed....

	1990 – 2000s	2010-Present	Insight
Assumption	A model exists. Better data will reveal the beautiful model. (Knowing "why" is important)	A model may not exist, but find a model anyway. ("Why" is not as important)	Dilemma: Better data or better algorithms.
Complexity of data	N ~ $\mathbf{O}(10^2)$, $d \sim \mathbf{O}(10^1)$ (e.g. IRIS data) $k \sim \mathbf{O}(1)$	N ~ $\mathbf{O}(10^6)$ d ~ $\mathbf{O}(10^4)$ (e.g. ImageNet) $k \sim \mathbf{O}(10^4)$	Volume, Velocity, Variety and Veracity have all increased several orders of magnitude.
Data – Model Relationship	Model abstracts data $\hat{P}(X_{j} \mid C = c_{i}) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_{j} - \mu_{ji})^{2}}{2\sigma_{ji}^{2}}\right)$	Data is the model $f(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h_i} G(\frac{x - x_i}{h_i})$	Models aggregated data. It is not anymore about the average. It is about every individual data point.
Model Parameter Complexity (e.g. Size of Neural Network)	$O(10^3)$	O (10 ¹⁰) O (10 ¹⁰) in months.	10-billion parameter network learned to recognize cats from videos.
Accuracy, Precision, Recall e.g. Face Recognition Visual Scene Recognition	~ 70% was accepted Not possible	~95% is the norm ~10% is the best result to date.	Big Data also means Big Expectations.
Computing Capability Personal Computing High Performance Computing	1 core, 256MB RAM, 8GB disk 1000 cores, 1 teraflops	16 cores,64 GB RAM,2TB disk 3 million cores, 34 petaflops	Commercial tools are keeping pace with the PC market and not HPC market.
Number of Dwarves!	7	13	Big Data Magic: Dwarves are doubling.

Today's Talk

'Compute' is scaling up commensurate the 'data'. Is machine learning keeping pace with the data and compute scale-up?

- If Yes: How so?
- If Not: Why not?

Scalable Machine Learning: Philosophy

The Lifecycle of Data-Intensive Discovery

Querying and Retrieval e.g. Google, Databases Interrogation Better Data Collection Data-fusion **Association** e.g. Robotic Vision Modeling, Simulation, & Validation Predictive Modeling e.g. Climate Change Prediction

Off-the-shelf Parallel Hardware

- Custom ICs
 - e.g. FPGAs, Adapteva, Rasberry Pi)
- Customized Processing
 - E.g. Nvidia GPGPUs, YarcData Urika
- Multi-core HPC
 - e.g. (Cray XK, Cray XC, IBM Blue Gene)
- Virtual clusters / Cloud computing
 - e.g. Amazon AWS, SAS (PaaS, + SaaS)

Scalable Machine Learning: Philosophy

The Lifecycle of Data-Intensive Discovery

Scalable Machine Learning: Discovery Process

The Lifecycle of Data-Intensive Discovery

Data-Driven Discovery Process

What happened?

Hindsight

Why did it happen?

Insight

What will happen?

Foresight

How can we make it happen?

Concept adapted from Gartner's Webinar on Big Data

Scalable Machine Learning: System Engineering

Data-Driven Discovery Process

Concept adapted from Gartner's Webinar on Big Data

Staging for Predictive Modeling

- Extract, Transform, Load
- Data Pre-processing
- Feature Engineering

Predictive Modeling

- Rule-base extraction
- Pairwise-similarity (Distance Computation)
- Model-parameter estimation
- Cross validation

Inference/ Model Deployment

- Data is model? Model is data?
- Adaptive model ? Reinforcement ?

Scalable Machine Learning: Production

Staging for Predictive Modeling

- Extract, Transform, Load
- Data Pre-processing
- Feature Engineering

Predictive Modeling

- Rule-base extraction
- Pairwise-similarity (Distance Computation)
- Model-parameter estimation

Inference/ Model Deployment

- Cross-validation
- Data is model? Model is data?
- Adaptive model ? Reinforcement ?

Disk Intensive

Disk, Memory and Compute
Intensive

Typically computing an aggregate measure, vector product, a kernel function etc.

Memory + Compute Intensive

Real-time requirements

Scalable Machine Learning: Bleeding Edge

BlinkDB The Berkeley Data Analysis Stack SQL w/ bounded errors/response times database MLbase Shark Stre**priocessing** Storm User-friendly machine Hive MPI SOL API Stream processing learning In-disk processing Spark Hadoop MR OFO @ SSS In a red execution engine (Python/Java/Scala APIs) Tachyon (alpha) in-memory file system Storage scale-up Hadoop Distributed File System (HDFS) Mesos Cluster resource manager, multi-tenancy Supported Release In Development Related External Project This is tremendous progress....

But...

Is machine learning keeping pace with the data and compute scale-up?

- If Yes: How so?
- If Not: Why not?

The 5 Challenges of Scalable Machine Learning

Given examples of a function (x, f(x)), **Predict** function f(x) for new examples x

Data Science (Infrastructure, Hardware, Software, Algorithms)

Challenge #1: Data Science

Systems

Infrastructure

Design **Operations** Management

Architecture

Design **Operations**

Databases

SQL NoSQL Graph

Data

Management

- Quality
- Privacy
- Provenance
- Governance
- Graphs Sequences
 - Spatiotemporal

Structure

Matrix/ Table

Text, Image,

Video

Schema

Compute

HPC

- TITAN
- CADES
- Cloud
- Urika
- Hadoop

Programming

- OpenMP/MPI
- CUDA/ OpenML
- RDF/SPARQL
- SQL
- Map-Reduce

Analysis

Algorithms

- In-database
- In-memory
- In-situ
- HCI
- Interfaces

Viz

Viz-Analytics

Theory

- Design
- Scalability
- V&V

Performance of "algorithm" dependent on architecture.

- Most data scientists/algorithm specialists are used to in-memory tools such as R, MATLAB etc.
- Existing cloud-based solutions are designed for high performance storage and not high-performance compute or in-memory operations.
- Steep learning curve towards programming "new" innovative algorithms. Too many options without guiding benchmarks.

Challenge #2: Science of Data

- Data-science is not the same as "science of data"
 - Is the process of understanding characteristics of data before applying/designing a machine-learning algorithm.

- Data characterization (Avoid using machine learning as a black box)
 - Signal-noise-ratio, bound on noise
 - i.i.d sampling assumptions
 - stationarity, randomness, ergodicity, periodicity
 - · Generating models behind data

Challenge #3: The N-d-k problem

- The Big Data Problem
 - The future is unstructured.
 - Text, images, videos, sequences
- Algorithms and infrastructure expected to handle Big Data –
 i.e., increasing N, d and k.
 - Feature engineering and requires automation.
 - Self-feature extracting methodologies encouraged.
 - Traditional (pain staking) pipeline of SMEs creating features from the data will fail or transform into a collaborative-parallel effort.
 - Increasing N does not imply increasing information content. (Samples can still be good if not better than all of the data statistically.)
 - There can be hierarchies within the N-d-k dimensions.

Challenge #4: The N-d-k problem (d)

- Traditional algorithms assume N >> d and d > k
 - Most tools available today scale well for increasing N.

	single	multi	
LWLR	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^2}{P'} + n^2 \log(P))$	
LR	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^2}{P'} + n^2 \log(P))$	
NB	O(mn + nc)	$O(\frac{mn}{P} + nc \log(P))$	
NN	O(mn + nc)	$O(\frac{mn}{P} + nc \log(P))$	
GDA	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^3}{P'} + n^2 \log(P))$	
PCA	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^3}{P'} + n^2 \log(P))$	
ICA	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^3}{P'} + n^2 \log(P))$	
k-means	O(mnc)	$O(\frac{mnc}{P} + mn \log(P))$	
EM	$O(mn^2 + n^3)$	$O(\frac{mn^2}{P} + \frac{n^2}{P'} + n^2 \log(P))$	
SVM	$O(m^2n)$	$O(\frac{m^2n}{P} + n \log(P))$	

Time-complexity analysis

Data Sets	samples (m)	features (n)
Adult	30162	14
Helicopter Control	44170	21
Corel Image Features	68040	32
IPUMS Census	88443	61
Synthetic Time Series	100001	10
Census Income	199523	40
ACIP Sensor	229564	8
KDD Cup 99	494021	41
Forest Cover Type	581012	55
1990 US Census	2458285	68

Data characteristics

[Chu et al., NIPS 2007]

- Not so much for increasing d or k
 - [Donoho, 2000] The curse and blessings of dimensionality
 - Methods are emerging: Multi-task learning, Spectral Hashing etc.

Challenge #5: The N-d-k problem (k)

Hays et al., "SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes", CVPR 2012.

Hasegawa et al., "Online Incremental Attribute-based Zeroshot Learning", CVPR 2012

Berg et al., "What Does Classifying More Than 10,000 Image categories Tell Us?", ECCV 2010.

- What happens when K= K + 1 ? (adding a new class)
 - Engineered features may not be good enough.
 - Trained model has to relearn from the entire feature set without guarantees on accuracy.

Concluding Thoughts

What aspect of data that needs scale up?

NoSQL

Dimensions of Big Data Software What can be scaled up? Volume Compute Hadoop, MPP, Spider Archival Reports Discovery Storage **Memory Velocity Cores** Streaming Batch **I/O**? **Variety Network?**

SQL

What aspect of algorithm that needs scale up?

Analytical Requirements Algorithms

Future

We need benchmarks before me make big investments. (Fox et al., 2014)

Graph

Concluding Thoughts

- Storage/Memory and Memory/Compute Ratios that are critical for machine learning are smaller than Storage/Compute Ratio.
- Associative memory and cognitively-inspired architectures may prove better than the Von-Neuman "store-fetch-execute paradigm".
 - May be time to redesign from scratch.
- The machine learning algorithms that scale all use either data-parallelism or the "dwarves of parallel computing in some form".
 - Encouraging because gives us an intuition to build custom "hardware" for learning algorithms.
- We have done well so far by treating "Analysis as a retrieval problem" – We can do better.

Thank You

Questions ?

