Notes for Classic IP & CO Paper List

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

February 5, 2021

February 5, 2021

To My Beloved Motherland China

Contents

1	Par	titioning Procedures for Solving Mixed-Variables Programming Problems	7
	1.1	Introduction & Preliminaries	7
		A partitioning theorem	
2	The	e Traveling-Salesman Problem and Minimum Spanning Tree	9
	2.1	The Traveling-Salesman Problem and a Related Spanning-Tree Problem	Ć
	2.2	Relation to a Linear Program	10
	2.3	A Column-Generation Technique	11
	2.4	An Ascent Method	11
	2.5	A Branch-and-Bound Method	11
	2.6	Minimal 1-Trees and Matroids	11
	2.7	Other Applications	11

6 CONTENTS

Chapter 1

Partitioning Procedures for Solving Mixed-Variables Programming Problems

J. F. Benders

Numerische Mathematik, 1962

1.1 Introduction & Preliminaries

The mixed-variables programming problems considered is the following

(P)
$$\max \mathbf{c}^{\top} \mathbf{x} + f(\mathbf{y})$$

s.t. $\mathbf{A}\mathbf{x} + F(\mathbf{y}) \leq \mathbf{b}$
 $\mathbf{x} \in \mathbb{R}^p$
 $\mathbf{y} \in S$

in which

- S is an arbitrary subset of \mathbb{R}^q
- A is an $m \times p$ matrix
- $f(\mathbf{y})$ is a scalar function defined on S
- F(y) is an m-component vector function defined on S
- **b** RHS, $\mathbf{b} \in \mathbb{R}^m$
- \mathbf{c} Cost coefficient, $\mathbf{c} \in \mathbb{R}^p$

Example. MIP, LP

The basic idea is to partition a given problem into two sub problems, a programming problem $(F(\mathbf{y}))$ and a LP $(\mathbf{A}\mathbf{x})$. This happens when the problem indicates a natural partition of the variables.

Denote $\mathbf{u}, \mathbf{v}, \mathbf{z}$ as vectors in \mathbb{R}^m , and u_0, x_0 , and z_0 as scalars.

For $\bf A$ and $\bf c$ defined previously, we define

• the convex polyhedral cone C in \mathbb{R}^{m+1} by

$$C = \left\{ \begin{pmatrix} u_0 \\ \mathbf{u} \end{pmatrix} | \mathbf{A}^\top \mathbf{u} - \mathbf{c} u_0 \ge \mathbf{0}, \ \mathbf{u} \ge \mathbf{0}, \ u_0 \ge 0 \right\}$$
 (1.1)

• the convex polyhedral cone C_0 in \mathbb{R}^m by

$$C_0 = \{ \mathbf{u} | \mathbf{A}^\top \mathbf{u} \ge \mathbf{0}, \ \mathbf{u} \ge \mathbf{0} \}$$
 (1.2)

• the convex polyhedral P in \mathbb{R}^m by

$$P = \{ \mathbf{u} | \mathbf{A}^{\top} \mathbf{u} \ge \mathbf{c}, \ \mathbf{u} \ge \mathbf{0} \}$$
 (1.3)

1.2 A partitioning theorem

Rewrite (P) into an equivalent form as following

$$(P') \quad \max \quad x_0$$
s.t.
$$x_0 - \mathbf{c}^\top \mathbf{x} - f(\mathbf{y}) \le 0$$

$$\mathbf{A}\mathbf{x} + F(\mathbf{y}) \le \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0}$$

$$\mathbf{y} \in S$$

Clearly, $(x_0^*, \mathbf{x}^*, \mathbf{y}^*)$ is optimal for (P') iff $x_0^* = \mathbf{c}^\top \mathbf{x}^* + f(\mathbf{y}^*)$ and $(\mathbf{x}^*, \mathbf{y}^*)$ is optimal for (P). For one of the subproblem of (P), the LP, we have

$$(subLP) \quad \max \quad \mathbf{c}^{\top}\mathbf{x}$$
 s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}'$$

$$\mathbf{x} \geq \mathbf{0}$$

$$\mathbf{x} \in \mathbb{R}^p$$

take the dual of (subLP), we have

(dualLP) min
$$\mathbf{u}^{\top}\mathbf{b}'$$

s.t. $\mathbf{u}^{\top}\mathbf{A} \ge \mathbf{c}$
 $\mathbf{u} \ge \mathbf{0}$
 $\mathbf{u} \in \mathbb{R}^m$

Chapter 2

The Traveling-Salesman Problem and Minimum Spanning Tree

Michael Held and Richard M. Karp

Operations Research, 1969

2.1 The Traveling-Salesman Problem and a Related Spanning-Tree Problem

Definition 2.1.1 (1-tree). In graph G = (V, E), where $V = \{1, 2, \dots, n\}$, a 1-tree consists of a tree on the vertex set $\{2, 3, \dots, n\}$, together with two distinct edges at vertex 1.

Thus, a 1-tree has a single cycle, this cycle contains vertex 1 and vertex 1 always has degree 2. A minimal weighted 1-tree can be found by constructing a minimum spanning tree on the vertex set $\{2, 3, \dots, n\}$, and then adjoining two edges of lowest weight at vertex 1.

Also notice that every tour is a 1-tree, and a 1-tree is a tour iff each of its vertices has degree 2. If a minimum-weight 1-tree is a tour, it is the solution of the TSP.

Example. An example of 1-tree can be found in figure 2.1, solid arcs are minimum spanning tree of $\{2, 3, \dots, n\}$ and two dashed arcs links the MST to vertex 1 with minimal cost.

Figure 2.1: 1-tree

Lemma 2.1. Let $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ be a real n-vector. If C^* is a minimum-weight tour with respect to the edge weights c_{ij} , then it is also a minimum-weight tour C' with respect to the edge weight $c_{ij} + \pi_i + \pi_j$.

Proof. For tour C, the weight is $C = \sum_{(i,j) \in C} c_{ij}$. Therefore $C' - C^* = 2 \sum_{i=1}^n \pi_i$, which is a constant.

Change the costs from c_{ij} to $c_{ij} + \pi_i + \pi_j$ only changes its minimum spanning 1-tree. Introduce a gap function $f(\pi)$, which is the cost of a minimum-weight tour minus the cost of a minimum-weighted 1-tree both with respect

to the weights $c_{ij} + \pi_i + \pi_j$. Notice that if $f(\pi) = 0$ then we found optimal tour for TSP, thus, we consider the problem of finding $\min_{\pi} f(\pi)$, where

$$f(\pi) = W + 2\sum_{i=1}^{n} \pi_i - \min_k (c_k + \sum_{i=1}^{n} \pi_i d_{ik})$$
$$= W - \min_k [c_k + \sum_{i=1}^{n} (d_{ik} - 2)]$$

in which

- W is the weight of a minimum tour with respect to the weights c_{ij}
- c_k is the weight of the kth 1-tree with respect to the weight c_{ij} . Notice that the 1-trees of the graph are indexed by $1, 2, \ldots, q$ with k as a generic index.
- d_{ik} is the degree of vertex i in the kth 1-tree.

The goal is to minimize $f(\pi)$ over π , which is equivalent to

$$\max \quad w$$
s.t.
$$w \le c_k + \sum_{i=1}^n (d_{ik} - 2) \quad \forall k$$

Dualizing, we obtain

min
$$\sum_{k} c_k y_k$$
s.t.
$$\sum_{k} y_k = 1$$

$$y_k \ge 0 \quad \forall k$$

$$\sum_{k} (2 - d_{ik}) y_k = 0 \quad i = 2, 3, \dots, n - 1$$

Notice that this LP model seeks a minimum-weight "convex combination of 1-trees" such that each vertex has, on average, degree two.

2.2 Relation to a Linear Program

The following is DFJ formulation for TSP

min
$$\sum_{1 \le i < j \le n} c_{ij} x_{ij}$$
s.t.
$$\sum_{i < j} x_{ij} + \sum_{i > j} x_{ji} = 2, \quad i \in \{1, 2, \dots, n\}$$

$$\sum_{\substack{i \in S \\ j \notin S \\ i < j}} x_{ij} \le |S| - 1, \quad S \subset \{2, 3, \dots, n\}$$

$$x_{ij} \in \{0, 1\}$$

Equivalently, we can transform it into

min
$$\sum_{1 \le i < j \le n} c_{ij} x_{ij}$$
 (2.1)
s.t. $\sum_{i < j} x_{ij} + \sum_{i > j} x_{ji} = 2, \quad i \in \{2, 3, \dots, n - 1\}$

s.t.
$$\sum_{i < j} x_{ij} + \sum_{i > j} x_{ji} = 2, \quad i \in \{2, 3, \dots, n - 1\}$$
 (2.2)

$$\sum_{j} x_{1j} = 2 \tag{2.3}$$

$$\sum_{1 \le i < j \le n} x_{ij} = n \tag{2.4}$$

$$\sum_{\substack{i \in S \\ j \notin S \\ i < j}} x_{ij} \le |S| - 1, \quad S \subset \{2, 3, \cdots, n\}$$

$$(2.5)$$

$$x_{ij} \le 1 \tag{2.6}$$

$$x_{ij} \ge 0 \tag{2.7}$$

$$x_{ij} \in \{0, 1\} \tag{2.8}$$

Denote constraints (2.2) by $\mathbf{A}\mathbf{x} = \mathbf{b}$, and the constraints (2.3), (2.4), (2.5) and (2.6) by $\mathbf{A}'\mathbf{x} = \mathbf{b}'$.

2.3 A Column-Generation Technique

- An Ascent Method 2.4
- 2.5 A Branch-and-Bound Method
- 2.6 Minimal 1-Trees and Matroids
- Other Applications 2.7