Matematyka obliczeniowa – rozwiązywanie układów równań liniowych

Zadanie 1

Rozwiąż podany układ równań liniowych wskazanymi metodami. Wyniki obliczeń wpisz w tabelę.
 Ustaw dokładność wyświetlania liczb na format long e.

$$A \cdot X = b;$$
 $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 + \varepsilon \end{pmatrix}, \qquad b = \begin{pmatrix} 4 \\ 4 + \varepsilon \end{pmatrix}$

Metoda	arepsilon=0.01	arepsilon=0.0001
analityczna	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} =$
wzory Cramera	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\binom{x_1}{x_2} =$
odwracanie macierzy	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\binom{x_1}{x_2} =$
eliminacji Gaussa	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} =$
rozkład LU wersja 1	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} =$
rozkład LU wersja 2	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} =$
rozkład QR wersja 1	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$	$\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} =$
rozkład QR wersja 2	$\binom{x_1}{x_2} =$	$\binom{x_1}{x_2} =$
rozkład SVD	$\binom{x_1}{x_2} =$	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =$

- 2) Oblicz błąd bezwzględny dla otrzymanych rozwiązań przyjmując za rozwiązanie dokładne wynik uzyskany metodą analityczną. Która z metod okazała się najlepsza?
- 3) Oblicz wskaźnik uwarunkowania dla macierzy A dla $\varepsilon = 0.01$ oraz $\varepsilon = 0.0001$.

Wykorzystanie rozkładu LU macierzy A do rozwiązywania układu równań liniowych

wersja 1		wersja 2		
$A \cdot x = b$ $L \cdot U \cdot x = b$ $x = U^{-1} \cdot L^{-1}$	$^{-1} \cdot b$		$A \cdot x = b$ $L \cdot U \cdot x = b$ $U \cdot x = y$ $L \cdot y = b$	

Zadanie 2. Podaj przykład macierzy dobrze uwarunkowanej i mającej bardzo mały wyznacznik.

Zadanie 3. dodatkowe: Znajdź wskaźnik uwarunkowania cond wykorzystując normę 'nieskończoność' macierzy stopnia *n* trójkątnej dolnej, mającej na głównej przekątnej elementy 1, a pod nią -1. Sprawdź wynik dla różnych n (przynajmniej 5 różnych wartości). Postaraj się dobrać n z możliwie szerokiego zakresu.

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$