Notes for Math Equation

Synferlo

August 28, 2020

1 Basic Math Structure

1.1 Inline math

Given production function $f(L,K) = L^{\alpha}K^{\beta}$, which is a function of input labor and capital.

1.2 Newline math

Given production function

$$f(L, K) = L^{\alpha} K^{\beta},$$

which is a function of input labor and capital.

1.3 Equation Environment

Given production function

$$f(L, K) = L^{\alpha} K^{\beta},$$

which is a function of input labor and capital.

1.4 Alignment

Consider the Euler equation and capital accumulation as the following:

$$U(C_t) = \beta \times U(C_{t+1}) \times [1 + f(k_t) - \delta] \tag{1}$$

$$K_{t+1} = (1 - \delta)K_t + I_t \tag{2}$$

2 Basic Math Notation

2.1 Fraction

Define function f(x) as following:

$$f(x) = \frac{1}{x}$$

$$\varepsilon_{ii} = \frac{\frac{\partial X_i}{X_i}}{\frac{\partial P_i}{P_i}}$$
$$f(x) = \frac{1}{2}$$
$$f(x) = \frac{1}{x}$$

2.2 Square Root

$$x = \sqrt{3}$$

$$x = \sqrt[2]{3}$$

$$x = \frac{1}{\sqrt{3}}$$

$$x = \sqrt{a+b+y^2}$$

2.3 Power and Integral

Define a quadratic function f(x) as following:

$$f(x) = x^2$$

Given the expectation E(x),

$$E(X) = \int_{-\infty}^{\infty} X f_x(x) dx$$

Given interval [a, b],

$$E(X) = \iiint_b^a X f_x(x) dx$$

2.4 Summation

For discrete RVs, the expectation is defined as,

$$E(X) = n^{-1} \times \sum_{i=1}^{N} X_i.$$

Or

$$E(X) = \frac{1}{n} \times \sum_{i=1}^{N} X_i.$$

$$E(X) = n^{-1} \times \sum_{i=1}^{N} X_i.$$

The utility maximization problem becomes

$$\max_{\substack{c_s,k_s\\l_s}} \sum_{s=0}^{\infty} \beta^{s-t} U(C_s)$$

Or you can use this way:

$$\max_{\substack{c_s,k_s\\I_-}} \sum_{s=0}^{\infty} \beta^{s-t} U(C_s)$$

2.5 Production

The generalized form for Cobb-Douglas utility function is

$$U(X_1, ..., X_n) = \prod_{i=1}^{n} X_i^{\alpha_i}$$

For dot production(matrix)

$$X_1 \cdot Y_1$$

2.6 Limitation

The Variance of E(x) is defined by

$$Var(E(X)) = Var(n^{-1} \times \sum_{i=1}^{N} X_i)$$
$$= \frac{1}{n^2} \times \sum_{i=1}^{N} Var(X_i)$$
$$= \frac{\sigma^2}{n}$$

When n goes to infinity,

$$\lim_{n \to \infty} Var(E(X)) = \lim_{n \to \infty} \frac{\sigma^2}{n}$$
$$= 0$$

2.7 Differentiation

The own price elasticity for good i is defined by

$$\epsilon_{ii} = \frac{\partial X_i}{\partial P_i} \frac{P_i}{X_i}$$

$$\epsilon_{ii} = \frac{\partial X_i}{\partial P_i} \frac{P_i}{X_i}$$

$$= \frac{\frac{\partial X_i}{\partial P_i}}{\frac{P_i}{P_i}}$$

$$= \frac{\ln X_i}{\ln P_i}$$

$$= \frac{\Delta X_i}{\Delta P_i}$$

2.8 Binomial Operation

Binomial distribution with density function

$$f(x;\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

where
$$\binom{n}{x} = \frac{n!}{(n-x)!x!}$$

Or you can right in this method,

$$\binom{n}{x}$$

2.9 Convergence

Denote μ'_r converge to standard normal distribution in distribution as the following:

$$\mu_r' \xrightarrow{d} N(0,1)$$

2.10 Head-Notation

$$y = x\hat{\beta} + \varepsilon$$

Average of x is \bar{x}

2.11 Density Function

$$f(x;\theta) = \begin{cases} \frac{1}{b-a} & if x \in [a,b] \\ \emptyset & O.W \end{cases}$$

2.12 Matrix

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 5 & 1 & 1 \end{bmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 5 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & x_{11} & x_{12} \cdots x_{1k} \\ 1 & x_{21} & x_{22} \cdots x_{2k} \\ \vdots & \vdots & \ddots \vdots \\ 1 & x_{n1} & x_{n2} \cdots x_{nk} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.13 Bracket

$$\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}$$

This is a **fantastic** way to formalized the bracket in your equation.

3 Insert Materials

3.1 Graphics

Name	Display	Name	Display	Name	Display	Name	Display
\times	×	\div	÷	\pm	±	\mp	Ŧ
\otimes	8	\ominus	Θ	\oplus	0	\odot	0
\oslash	0	\triangleq	≙	\ne	≠	\equiv	-
\lt	<	\gt	>	\le	≤	/ge	≥
\cup	U	\cap	n	\Cup	w	\Cap	n
\bigcup	U	\bigcap	Π	\ast	*	\star	*
\bigotimes	8	\bigoplus	0	\circ	0	\bullet	
\bigcirc	0	\amalg	П	\to	-	\infty	∞
\vee	V	\wedge	Λ	\1hd	⊲	\rhd	⊳
\bigvee	V	\bigwedge	Λ	\unlhd	⊴	\unrhd	⊵
\sqcap	п	\sqcup	ш	\prec	~	\succ	-
\subset	C	\supset	Э	\sim	~	\approx	*
\subseteq	⊆	\supseteq	⊇	\cong	≅	\doteq	÷
\setminus	\	\mid	1	VII	«	\gg	>>
\parallel	II	\Join	M	\in	€	\notin	∉
\propto	×	\neg	-	\ldots		\cdots	
\forall	٧	\exists	3	\vdots	1	\ddots	
\aleph	88	\nabla	∇	\imath	1	\jmath	3
\e11	l	\partial	д	\int	ſ	\oint	ý
\uplus	⊎	\biguplus	+				