Sistemas Complexos

Luiz Renato Fontes

Processo de contato

Sistema de partículas: inicialmente, $\eta_0 \in \Omega = \{0,1\}^{\mathbb{Z}^d}$: estado de saúde de indivíduos postados em \mathbb{Z}^d (0 = saudável; 1 = infectado).

Cada indivíduo é equipado de um alarme. No desenrolar do tempo (contínuo) a partir do instante inicial (t=0), cada alarme de cada indivíduo soa, independentemente dos demais, a taxa 1 (i.e., a intervalos iid com distribuição exponencial para cada indivíduo).

 $T_{x,i} \sim \operatorname{Exp}(1)$ iid, $x \in \mathbb{Z}^d$, $i = 1, 2, \ldots$ (como no modelo do votante)

Cada vez que o alarme toca para o indivíduo em $x \in \mathbb{Z}^d$, se ele estiver saudável imediatamente antes daquele momento, então assim ele continua; se, ao contrário, ele estiver infectado imediatamente antes do toque, então ele se torna saudável a partir daquele momento (até eventual e possivelmente ser reinfectado, pelo mecanismo de infecção a ser descrito a seguir). Este é o mecanismo de cura.

Há um mecanismo de infecção. Cada elo *orientado* de

$$\vec{\mathcal{E}}^d = \{ \vec{e} = \langle x, y \rangle : x, y \in \mathbb{Z}^d \text{ e } \|x - y\|_1 = 1 \}$$

tem igualmente um alarme que toca, neste caso a taxa $\lambda>0$, independentemente dos outros alarmes de elos ou sítios.

A cada toque do alarme do elo $\langle x,y\rangle$, digamos no tempo t^* , diremos que $\langle x,y\rangle(t^*)$ é um elo de infecção, e, se, imediatamente antes de t^* , x estiver infectado e y estiver saudável, então a infecção será transmitida em t^* de x para y, que se torna infectado a partir de t^* (até eventualmente se curar, pelo mecanismo de cura); do contrário, nada ocorre.

Elos de infecção; $T_{\vec{e},i}$; $\vec{e} \in \vec{\mathcal{E}}^d$, $i \geq 1$, iid $\operatorname{Exp}(\lambda)$

Dada uma configuração inicial $\eta_0 \in \Omega$, seja η_t a configuração do processo no tempo $t \geq 0$.

Como obter η_t a partir de η_0 ?

Dados $x,y \in \mathbb{Z}^d$ e $0 \le s < t$, um caminho (de infecção) ligando (x,s) a (y,t) é qualquer sequência $(x_0,r_0),(x_0,r_1),(x_1,r_1),\ldots,(x_{n-1},r_{n-1}),(x_n,r_{n-1}),(x_n,r_n),$ onde $n \ge 1$, $x_0 = x,x_n = y$, e $\langle x_{i-1},x_i \rangle \in \mathcal{E}^d$, $i=1,\ldots,n$; $s=r_0 \le r_1 < \cdots < r_{n-1} \le r_n = t$, com a propriedade de que $\langle x_{i-1},x_i \rangle (r_i)$ é um elo (de infecção) para $i=1,\ldots,n$ e nenhum intervalo $[r_{i-1},r_i],\ i=1,\ldots,n$, contém qualquer marca de cura.

Note que se (x, s) a (y, t) estiverem ligados por um caminho e $\eta_s(x) = 1$, então $\eta_t(y) = 1$.

Logo, dado $\eta_0\in\Omega$, seja $A=\{x\in\mathbb{Z}^d:\,\eta_0(x)=1\}$, e dado $y\in\mathbb{Z}^d$, temos que

 $\eta_t(y) = \mathbb{1}\{\text{existe um caminho entre } (x,0) \text{ a } (y,t) \text{ para algum } x \in A\}.$

- **Obs.** 1) Note que podemos ver os caminhos evoluindo no sentido temporal positivo ou negativo (do tempo s ao tempo t, ou reversamente; no caso reverso, as setas são seguidas no sentido reverso).
- 2) Em ambos sentidos, podemos comparar o conjunto de caminhos a partir do ponto espaço-temporal (z,r) com o cj de caminhos de um processo de ramificação auxiliar, descrito a seguir no sentido temporal positivo (o caso negativo é similar):

O processo de ramificação se inicia com um indivíduo (recém nascido) em (z,r); este indivíduo sobrevive até o primeiro toque do alarme de z após r, digamos no tempo $r^* > r$; seus (eventuais) descendentes (imediatos) são as extremidades (z',r'), $r < r' < r^*$, correspondentes a elos (de infecção) $\langle z,z'\rangle(r')$ ocorrendo entre os tempos r e r^* ; r' é o instante de nascimento do descendente em (z',r').

Obs. 2 (cont)

Para darmos continuidade à descrição da família iniciada em (z,r), de forma a termos o quadro do processo de ramificação, estipulamos uma linha de tempo própria para cada (eventual) descendente (z',r') a partir do tempo r', com marcas de cura e elos de infecção acedentes * próprios, com a mesma distribuição do que para o processo de contato, mas, diferentemente daquele processo, *independentes* das marcas e elos das demais linhas de tempo dos outros membros da família. (Veja a construção do processo auxiliar para o modelo SIR no próximo tópico do curso, com descrição com sorte mais detalhada.)

Podemos acoplar o processo de contato e o processo auxiliar de forma que todos os caminhos do processo de contato a partir de (z,r) estejam contidos no conjunto de caminhos a partir de (z,r) do processo auxiliar.

^{*}Um elo de infecção $\langle x,y\rangle(\cdot)$ é dito acedente à linha de tempo de x, e incidente à linha de tempo de y.

Acoplamento

Caminhos do processo de ramificação a partir de (0,0), acoplados aos do processo de contato.

Processo auxiliar

Notemos agora que o número de caminhos distintos do processo auxiliar começando em (x,s) e chegando até o tempo t[†], digamos N_t é um processo de nascimento e morte em $\mathbb N$, com taxa de nascimento em n igual a $2d\lambda n$ e taxa de morte igual a n.

Este processo é não explosivo (basta comparar com o caso igualmente não explosivo do mesmo processo sem mortes), logo temos para cada $y \in \mathbb{Z}^d$, $t \ge 0$, apenas um número finito de caminhos de cada (y,t) chegando até o tempo 0 (em sentido temporal reverso), e logo o mesmo vale para o processo de contato.

Usando o acoplamento, temos que N_t domina $N_t' = \sum_{y \in \mathbb{Z}^d} \eta_t(y) \ \forall \ t > s$ (sob a cond $\eta_s(y) = \delta_{xy}$). A não explosividade de $(N_t)_{t>s}$ implica então na não explosividade de $(N_t)_{t>s}$.

Segue que $(\eta_t,\,t\geq 0)$, da mesma forma que para o modelo do votante, está bem definido quase certamente, e é um processo de Markov em Ω . Às vezes escreveremos $\eta_t^{\eta_0}$ para enfatizar a dependência na condição inicial.

[†]Digamos no sentido temporal positivo, em que s < t; mas argumento similar funciona em sentido negativo/reverso.

Dualidade

Como a distribuição das marcas de cura e setas é invariante por reversão no tempo (acompanhada de reversão no sentido das setas, como indicado na Obs 1, Slide 6), temos a seguinte *relação de dualidade*: vamos denotar por Ψ_t o conjunto de sítios infectados no tempo t, ie, $\Psi_t^A = \{x \in \mathbb{Z}^d : \eta_t(x) = 1\}$, onde A indica o cj de sítios infectados no tempo inicial; do ponto acima e e da Obs 1, Slide 6, segue que

$$\mathbb{P}(\Psi_t^A \cap B \neq \emptyset) = \mathbb{P}(\Psi_t^B \cap A \neq \emptyset) \tag{*},$$

 $A, B \subset \mathbb{Z}^d$.

Monotonicidade

Há três tipos de monotonicidade no processo de contato a serem observadas neste ponto.

- 1) Dadas $\eta, \zeta \in \Omega$ tais que $\eta \leq \zeta$ (na ordem parcial já apresentada), então segue da construção do processo de contato acima que $\eta_t \leq \zeta_t$ para cada $t \geq 0$.
- 2) Podemos acoplar processos de contato, digamos η e η' , com taxas de infecção diferentes, digamos $\lambda < \lambda'$, respectivamente, começando da mesma configuração inicial i.e., $\eta_0 = \eta_0'$ —, de tal forma que as marcas de cura de η e η' são as mesmas, e o cj de elos de infecção de η está contido no de η' ; de forma que, finalmente, $\eta_t \leq \eta_t'$ para todo $t \geq 0$.
- 3) Como no caso do modelo de percolação podemos acoplar processos de contato, digamos η e η' , com a mesma taxa de infecção, mas em dimensões diferentes, digamos d < d', respectivamente, com a mesma conf inicial nas primeiras d coordenadas, tq $\eta_t(x) \leq \eta'(x') \ \forall \ x' \in \mathbb{Z}^{d'}$ e $t \geq 0$, onde $x = (x'_1, \ldots, x'_d)$.

Sobrevivência da infecção

Uma questão básica sobre o comportamento assintótico no tempo do processo de contato é sobre a sobrevivência indefinida de infecção inicial.

Obs. 1) Note que, claramente, se $\eta_0 \equiv 0$, então $\eta_t \equiv 0 \ \forall \ t \geq 0$.

2) Se
$$\sum_{x\in\mathbb{Z}^d}\eta_0(x)=\infty$$
, então qc $\sum_{x\in\mathbb{Z}^d}\eta_t(x)=\infty\ orall\ t\geq 0$.

Logo a questão da sobrevivência (indefinida) de infecção inicial só é não trivial se $0 < \sum_{x \in \mathbb{Z}^d} \eta_0(x) < \infty$.

Vamos a seguir tomar $\eta_0 = \delta_0$ (i.e., inicialmente a origem e somente a origem está infectada).

Seja
$$\vec{\theta} = \vec{\theta}(\lambda) = \vec{\theta}(\lambda, d) = \mathbb{P}\big(\sum_{x \in \mathbb{Z}^d} \eta_t(x) > 0 \, \forall \, t \geq 0 \big| \eta_0 = \delta_{\mathbf{0}}\big).$$

Das ppddes de monotonicidade 2 e 3 apresentadas no slide anterior segue que $\vec{\theta}$ é não decrescente em λ e d.

Transição de fase

Seja
$$\lambda_c = \lambda_c(d) = \sup\{\lambda \geq 0 : \vec{\theta} = 0\}.$$

Teorema 1

Para todo $d \ge 1$, temos que $\lambda_c \in (0, \infty)$.

O Teo 1 segue imediatamente das seguintes proposições.

Proposição 1

Se $\lambda \leq \frac{1}{2d}$, então $\vec{\theta} = 0$.

Proposição 2

Existe $\lambda_0 < \infty$ tal que, se $\lambda > \lambda_0$, então $\vec{\theta}(\lambda, 1) > 0$.

Dem. Prop 1

Basta argumentar, por comparação com o processo auxiliar, como já fizemos acima, que se $\lambda \leq \frac{1}{2d}$, então o processo de nascimento e morte N_t , com $N_0=1$, visita a origem qc.

Como vimos acima (no Slide 9), N_t é um PNM, e podemos verificar que cadeia de saltos é um passeio aleatório simples em $\mathbb N$ com absorção na origem e prob de transição de n a n+1 igual a $\frac{2d\lambda}{1+2d\lambda}$.

Segue que qdo $\lambda \leq \frac{1}{2d}$, a prob de absorção na origem de N_t , e logo do correspodente N_t' , é 1.

Percolação orientada 1-dependente em 2 dimensões

O argumento para a Proposição 2 consistirá numa comparação com um modelo de percolação de elos como se segue.

Para
$$n \geq 0$$
, sejam $W_n = \{(\ell, n) \in \mathbb{Z}^2 : \ell + n = \text{par e} -n \leq \ell \leq n\}$, $\mathbb{W} = \bigcup_{n \geq 0} W_n$, e $\mathbb{L} = (\mathbb{W}, \vec{\mathcal{E}})$ o grafo com cj de sítios \mathbb{W} e cj de elos $\vec{\mathcal{E}} = \{\langle x, y \rangle : x = (\ell, n) \in W_n \text{ para algum } n \geq 0 \text{ e } y = (\ell \pm 1, n + 1)\}$, onde $\langle x, y \rangle$ é um elo orientado (de x a y).

Percolação orientada (cont)

Seja $\Omega'=\{0,1\}^{\vec{\mathcal{E}}}$. Dada $\mathcal{W}\in\Omega'$, diremos que o elo \vec{e} está aberto (em ω), se $\omega_{\vec{e}}=1$, e \vec{e} está fechado, se $\omega_{\vec{e}}=0$.

Para $x,y\in\mathbb{W}$, dizemos que x e y estão conectados (em $\omega\in\Omega'$) se x=y ou se houver um caminho orientado de elos abertos ligando x a y: isto é, supondo que $y_2>x_2$, existe $n\geq 1$ e $x=z_0,z_1,\ldots,z_n=y$ tq $\langle z_{i-1},z_i\rangle\in\vec{\mathcal{E}}$ está aberto, $i=1,\ldots,n$.

Seja $\vec{\mathcal{C}} = \vec{\mathcal{C}}(\omega) = \{ y \in \mathbb{W} : y \text{ está conectado a } \mathbf{0} \}.$

Seja agora $\mathbb P$ uma probabilidade em Ω' com a ppdde de que para cada $\vec e=\langle x,y\rangle\in \vec{\mathcal E}$, temos que $\mathbb P(\omega_{\vec e}=1)=p$, e, sob $\mathbb P$, $\omega_{\vec e}$ é indep de $\{\omega_{\langle x',y'\rangle}: x\neq x' \text{ e } y\neq y'\}$, onde $\omega_{\vec e}$ é o valor em $\vec e$ de $\omega\in\Omega'$.

Tal modelo probabilístico será dito um modelo de percolação orientada 1-dependente. Seja $\hat{\theta} = \mathbb{P}(|\vec{\mathcal{C}}| = \infty)$.

Lema 1

Para $\mathbb P$ como acima, existe $p_0 < 1$ tq, se $p > p_0$, então $\hat{\theta} > 0$.

Dualidade

O argumento para provar o Lema 1 é semelhante àquele para o Lema 2 dos slides sobre o modelo de percolação de elos independentes em \mathbb{Z}^d (que trata do caso bidimensional, como agora). Começamos com considerações geométricas.

Seja \mathbb{L}^* o grafo dual de \mathbb{L}^* , formado pelos elos secantes a elos de $\vec{\mathcal{E}}$: para cada $\vec{e} \in \vec{\mathcal{E}}$, seja e^* o elo (não orientado) ortogonal e secante a \vec{e} no ponto médio de \vec{e} e de mesmo comprimento de \vec{e} , e facamos $\mathcal{E}^* = \{e^* : \vec{e} \in \vec{\mathcal{E}}\}$; e seja \mathbb{W}^* o cj de extremidades de elos de \mathcal{E}^* . $\mathbb{L}^* = (\mathbb{W}^*, \mathcal{E}^*).$

Fato geométrico

Se, para dada $\omega \in \Omega'$, $|\vec{\mathcal{C}}(\omega)| < \infty$, então existe um caminho *auto* evitante em \mathbb{L}^* a partir de um ponto do lado esquerdo de \mathbb{W}^* até um ponto do lado direito, como ilustrado a seguir.

Os elos pretos (abertos) e ausentes (fechados) determinam $\vec{\mathcal{C}}$; os elos azuis são irrelevantes nesta determinação.

Para prosseguir, é conveniente girar o espaço por -45° :

Fato geométrico (cont)

Vamos a seguir argumentar a validade do fato geométrico.

Fato geométrico (dem.)

Voltando ao espaço original (desfazendo a rotação), vamos argumentar o fato geométrico por indução sobre a *altura* de \vec{C} , i.e.,

$$\mathcal{H} := \max\{x_2 \geq 0 : x = (x_1, x_2) \in \vec{\mathcal{C}}\}.$$

O fato é óbvio para $\mathcal{H}=0$. Supondo que seja válido para $\mathcal{H}=n\geq 0$ e tomemos $\omega\in\Omega'$ tq $\mathcal{H}=n+1$. Vamos supor que ambos os elos primais a partir de (0,0) estejam abertos, do contrário o argumento é similar, e deixado como exercício para o leitor.

Sejam $\vec{\mathcal{C}}_1$ e $\vec{\mathcal{C}}_2$ os aglomerados de (-1,1) e (1,1) respectivamente. Então, temos que \mathcal{H}_1 e \mathcal{H}_2 , as alturas respectivas, são ambas $\leq n$ e logo a hipótese de indução vale para $\vec{\mathcal{C}}_1$ e $\vec{\mathcal{C}}_2$. Há cruzamentos esquerda-direita dos respectivos \mathbb{W}_1^* e \mathbb{W}_2^* , digamos γ_1 e γ_2 , resp.

Se γ_1 e γ_2 se cruzarem, então a caminho γ_3 igual a γ_1 até o (primeiro) ponto de cruzamento, e depois igual a γ_2 tem as ppddes procuradas.

Dem. do fato geométrico (cont)

Se γ_1 e γ_2 não se cruzarem, então um fica por cima do outro; digamos que γ_1 fica por cima; o outro caso é semelhante.

Note então que do ponto de saída à direita de γ_1 até a primeira extremidade do último elo de γ_2 (na ordem com que o caminho é percorrido, da esquerda para a direita), há um caminho, digamos γ' , da direita para a esquerda na figura girada. Neste caso, γ_3 igual a γ_1 até o encontro com γ' , depois igual a γ' até o encontro com o último elo de γ_2 , e depois igual a este elo, tem as ppddes procuradas.

Ilustração do argumento acima

Dem. do Lema 1

Cada caminho auto evitante como acima (na figura girada), tem ao menos tantos elos percorridos para baixo quanto elos percorridos para cima, e ao menos tantos elos percorridos da esquerda para a direita quanto elos percorridos da direita para esquerda. Então num tal caminho, γ , com com n elos, temos ao menos $\frac{n}{2}$ percorridos para baixo ou da esquerda para a direita; vamos enumerar estes elos de γ e_1, \ldots, e_k , na ordem que são percorridos, começando à esquerda de $\widehat{\mathbb{W}}^*$, $k \geq \frac{n}{2}$.

Agora notemos que os elos primais correspondentes a e_1, e_2, \ldots, e_k , a saber, $\vec{e_1}, \ldots, \vec{e_k}$, resp., estão todos fechados. Além disto, de $\vec{e_1}, \vec{e_3}, \vec{e_5}, \ldots, \vec{e_\ell}$, nenhum par de elos têm qualquer extremidade em comum, onde ℓ é o maior ímpar menos ou igual a k. Logo $\omega_{\vec{e_1}}, \ldots, \omega_{\vec{e_\ell}}$ são independentes sob \mathbb{P} .

Logo a probabilidade de γ circunscrever a origem é cotada por cima por $(1-p)^\ell \leq (1-p)^{\frac{n}{4}}$.

Dem. do Lema 1 (cont.)

Seja Λ_n^* o conjunto de caminhos de \mathbb{L}^* com n elos que circunscrevem a origem. Temos que

$$\begin{split} \mathbb{P}(|\vec{\mathcal{C}}|<\infty) &\leq \textstyle \sum_{n\geq 2} \textstyle \sum_{\gamma\in\Lambda_n^*} \mathbb{P}(\gamma \text{ circunscreve a origem}) \\ &\leq \textstyle \sum_{n\geq 2} (1-p)^{\frac{n}{4}} |\Lambda_n^*|. \end{split}$$

Como $\gamma \in \Lambda_n^*$ precisam no lado esquerdo de \mathbb{W}^* e terminar do lado direito, e ter comprimento n, então há no máximo n-1 possibilidades para o ponto inicial de γ , e subsequentemente no máximo 3 possibidades para cada passo de γ . Logo, $|\Lambda_n^*| \leq (n-1)3^{n-1}$, e concluímos que

$$\mathbb{P}(|\vec{\mathcal{C}}|<\infty) \leq q \sum_{n\geq 1} n(3q)^n =: \phi(p)$$
, onde $q=(1-p)^{\frac{1}{4}}$.

Como ϕ é contínua, decrescente em $(\frac{2}{3},1]$, e $\phi(1)=0$, temos que existe $p_0<1$ tq, se $p>p_0$, então $\mathbb{P}(|\vec{\mathcal{C}}|<\infty)<1$, e logo $\vec{\theta}>0$.

Dem. da Proposição 2

Vamos considerar o modelo de percolação orientada em \mathbb{W} em que o elo $\langle (\ell,n); (\ell+1,n+1) \rangle$ está aberto se e somente se não houver marcas de cura nos intervalos de tempo $\{\ell\} \times (\varepsilon n, \varepsilon (n+1))$ e $\{\ell+1\} \times (\varepsilon n, \varepsilon (n+1))$, e, além disto, houver um elo de infecção $\langle \ell; \ell+1 \rangle (s)$ para algum $s \in (\varepsilon n, \varepsilon (n+1))$, onde $\varepsilon > 0$, a ser escolhido.

Similarmente, elo $\langle (\ell,n); (\ell-1,n+1) \rangle$ está aberto se e somente se não houver marcas de cura nos intervalos de tempo $\{\ell\} \times (\varepsilon n, \varepsilon (n+1))$ e $\{\ell-1\} \times (\varepsilon n, \varepsilon (n+1))$, e, além disto, houver um elo de infecção $\langle \ell; \ell-1 \rangle (s)$ para algum $s \in (\varepsilon n, \varepsilon (n+1))$.

Podemos verificar prontamente que se trata de um modelo de percolação orientada 1-dependente, e podemos escolher eps>0 e $\lambda>0$ tal que $p=p(\varepsilon,\lambda)>p_0$, o limiar estipulado no enunciado do Lema 1.

Como $|\vec{C}| = \infty \Rightarrow |$ sobrevivência da infecção inicialmente na origem no processo de contato, o resultado segue do Lema 1.

Medidas invariantes

A medida δ_0 , probabilidade 1 na configuração $\eta=\mathbf{0}\equiv 0$, é obviamente invariante para o processo de contato (a dinâmica ela própria não altera esta configuração).

Se $\nu_0=\delta_{\bf 0}$, então $\nu_t=\delta_{\bf 0}~\forall~t\geq 0$, onde ν_t é a distribuição de η_t , $t\geq 0$.

No outro extremo, o que acontece com ν_t se $\nu_0=\delta_1$, que atribui probabilidade 1 na configuração $\eta=1$ $\equiv 1$?

Seja ν_t^1 a distribuição de η_t^1 , $t \ge 0$.

Pelas ppddes de Markov, homogeneidade temporal, e monotonicidade de (η_t) (vide ponto 1 no Slide 10), temos que

$$\eta_{t+s}^{\mathbf{1}} \sim \eta_t^{\eta_s^{\mathbf{1}}} \leq \eta_t^{\mathbf{1}}, \ s, t \geq 0.$$

Logo, $\bar{\nu} = \lim_{t \to \infty} \nu_t^1$ existe (por monotonicidade).

Não trivialidade de $\bar{\nu}$

Teorema 2

 $ar{
u}$ é invariante por translações e $ar{
u}(\eta(0)=1)=ec{ heta}.$

Em particular,

- 1. se $\vec{\theta} = 0$, então $\bar{\nu} = \delta_0$;
- 2. se $\vec{\theta} > 0$, então $\bar{\nu} \neq \delta_{\mathbf{0}}$.

Dem. A primeira afirmação é clara. Para a verificar a segunda, vamos usar a *relação de dualidade* (*) — vide Slide 10.

$$ar{
u}(\eta(0)=1)=\lim_{t o\infty}
u_t^{oldsymbol{1}}(\eta(0)=1) \ \stackrel{(*)}{=}\lim_{t o\infty}
u_t^{oldsymbol{\delta_0}}(\sum_{\mathbf{x}\in\mathbb{Z}^d}\eta(\mathbf{x})>0)=ar{ heta}.$$

Obs.

Vale o seguinte resultado.

Teorema da convergência completa

Dada uma conf $\zeta \in \Omega$, temos que

$$\nu_t^{\zeta} \Rightarrow \alpha_{\zeta} \, \bar{\nu} + (1 - \alpha_{\zeta}) \, \delta_{\mathbf{0}}$$

quando $t \to \infty$, onde

$$\alpha_{\zeta} = \mathbb{P}\big(\sum_{x \in \mathbb{Z}^d} \eta_t(x) > 0 \,\forall \, t \geq 0 \, \big| \, \eta_0 = \zeta\big).$$

Dem. Liggett (1999)