STAT 4352 - Mathematical Statistics Notes

 ${\rm JaimeGoB}$

February 28, 2021

1 Chapter 11 - Interval Estimation

Point Estimators

 θ is a unknown parameter (feature of a population)

- Ex: population mean μ
- Fixed.

 $\hat{\theta}$ is a point estimator of θ (it is a numerical value)

- Ex: sample mean \bar{x}
- Varies from sample to sample.
- No guarantee of accuracy
- Must be supplemented by $Var(\theta)$

Standard Error $SE(\hat{\theta})$ measures how much $\hat{\theta}$ varies from sample to sample. small $SE \implies$ low variance thus a more reliable estimate of θ

Interval Estimators

Interval Estimate

Provides a range of values that best describe the population.

Let L = L(x) be the Lower Limit

U = U(x) be the Upper Limit

Both L,U are Random Variables because they are functions of sample data.

Confidence Level / Confidence Coefficient

Is the probability that the **interval estimate** will include population parameter θ .

- Sample means will follow the <u>normal probability distribution</u> for large sample sizes $(n \ge 30)$
- For small sample forces us to use the <u>t-distribution</u> probability distribution (n < 30)
- A confidence level of 95% implies that 95% of all samples would give an interval that includes θ , and only 5% of all samples would yield an erroneous interval.
- The most frequently used confidence levels are 90%, 95%, and 99% with corresponding Z-scores 1.645, 1.96, 2.576.
- The higher the confidence level, the more strongly we believe that the value of the parameter lies within the interval.

Confidence Interval

Gives plausible values for the parameter θ being estimated where degree of plausibility specified by a confidence level.

To const

 $\mathbf{2}$