Trabalho 1

LEIA ATENTAMENTE AS REGRAS E OS ENUNCIADOS

REGRAS

- O trabalho deverá ser realizado individualmente.
- O trabalho deverá ser enviado para o Google classroom até o dia 16/04/2021 (sextafeira).
- A data de entrega <u>não</u> será adiada.
- Os 3 programas solicitados (arquivos .CPP) deverão ser <u>compactados</u> em <u>um único arquivo</u> (ZIP ou RAR) com o <u>nome e sobrenome do aluno</u>.
- Os programas (arquivos .CPP) deverão ter os <u>nomes</u> conforme definido nos enunciados.
- <u>Não</u> serão aceitos trabalhos enviados por email.
- Trabalhos com estruturas e/ou organizações semelhantes (<u>plágio</u>) serão penalizados com a nota zero.
- O programa que não obedecer às restrições estabelecidas receberá zero.

ENUNCIADOS

1) Programa: pi.cpp (3,0 pontos)

O valor de π pode ser calculado pela seguinte série:

$$\pi = \sqrt{12} \left(1 - \frac{1}{3 \times 3} + \frac{1}{5 \times 3^2} - \frac{1}{7 \times 3^3} + \frac{1}{9 \times 3^4} - \frac{1}{11 \times 3^5} + \frac{1}{13 \times 3^6} - \frac{1}{15 \times 3^7} + \cdots \right)$$

Crie um programa em C que lê um valor \mathbf{n} (n > 0) onde \mathbf{n} é o número de parcelas entre parênteses e imprime o valor de π , calculado de acordo com a fórmula acima.

$$1 = 1 / (1 \times 3^0)$$

Restrições:

- a) Não poderá ser usada <u>nenhuma</u> função matemática implementada na biblioteca do C/C++ nem em nenhuma outra biblioteca. Adote: $\sqrt{12} = 3.4641016151377$
- b) Todo o código deverá estar implementado na função <u>main</u>, sem o uso de funções auxiliares.

1

2) Programa: <u>salario.cpp</u> (4,0 pontos)

Uma empresa de TI paga seus funcionários por hora trabalhada, de acordo com a função e a experiência, com base na tabela abaixo:

Experiência	Função					
	Programador	Analista	Gerente			
Até 2 anos	25,00	45,00	85,00			
De 3 a 5 anos	30,00	55,00	102,00			
Mais de 5 anos	38,00	70,00	130,00			

Além disso, cada funcionário tem em seu contrato de trabalho o valor total de horas contratadas no mês. Por exemplo, um programador pode ser contratado para trabalhar 80 horas/mês e um gerente pode ser contratado para trabalhar 120 horas/mês. Se o total de horas trabalhadas em um mês for maior que a quantidade de horas contratadas, o valor excedente deve ser pago como horas extras, de acordo com a seguinte tabela:

Horas excedentes	Percentual
Até 13 horas	23%
Mais de 13 horas até 22 horas	37%
Acima de 22 horas	56%

Por outro lado, se o total de horas trabalhadas em um mês for menor que a quantidade de horas contratadas, ele só receberá as horas trabalhadas.

Sobre o salário bruto incidem 2 descontos: INSS e IR. O desconto do INSS incide sobre o salário bruto e é de 11% para todos os funcionários. O desconto do IR incide sobre salário bruto – INSS e é calculado de acordo com o gráfico abaixo:

Salário Bruto

Crie um programa C para ler a quantidade de funcionários e, para cada funcionário, ler os dados necessários para o cálculo do salário e imprimir: o salário bruto, as horas excedentes (se houver), os descontos do INSS e IR e o salário líquido.

Restrições:

- a) Não poderão ser usados agregados de dados (vetores ou matrizes), somente variáveis simples.
- b) Todo o código deverá estar implementado na função <u>main</u>, sem o uso de funções auxiliares.

3) Programa: <u>criptografia.cpp</u> (3,0 pontos)

Uma empresa armazena o CPF dos clientes em seu cadastro. Por uma questão de segurança a empresa resolveu armazenar esse CPF criptografado. Assumindo que um CPF é um número de 11 dígitos, o algoritmo de criptografia gera um novo número de 12 dígitos usando os seguintes passos:

- a) O 1º dígito se torna o dígito central do novo número.
- b) Os últimos 5 dígitos são invertidos e se tornam os 5 primeiros dígitos do novo número.
- c) Os dígitos 2 a 6 são invertidos e se tornam os 5 últimos dígitos do novo número.
- d) É gerado um dígito aleatório **k** com valor de 1 a 9.
- e) O número obtido nas letras a, b e c é "girado" k vezes no sentido anti-horário.
- f) Por fim, **k** é acrescentado como último dígito do número.

<u>Importante</u>: girar um número no sentido anti-horário significa remover o último dígito e transformá-lo no primeiro dígito, empurrando os demais uma casa para a direita.

```
Exemplo: CPF = 84563764392 e k = 4
```

8	4	5	6	3	7	6	4	3	9	2	ightarrow CPF original
					8						ightarrow aplicando letra a
2	9	3	4	6	8						ightarrow aplicando letra b
2	9	3	4	6	8	7	3	6	5	4	ightarrow aplicando letra c
4	2	9	3	4	6	8	7	3	6	5	ightarrow 1° giro
5	4	2	9	3	4	6	8	7	3	6	ightarrow 2° giro
6	5	4	2	9	3	4	6	8	7	3	\rightarrow 3° giro
3	6	5	4	2	9	3	4	6	8	7	ightarrow 4° giro
3	6	5	4	2	9	3	4	6	8	7	$4 \rightarrow \text{letra e}$

Assim, o CPF = 84563764392 criptografado se torna 365429346874.

Crie um programa C/C++ que lê um CPF com 11 dígitos e imprime esse CPF criptografado segundo o algoritmo descrito acima.

Restrições:

- a) Não poderão ser usados agregados de dados (vetores ou matrizes), somente variáveis simples.
- b) Todo o código deverá estar implementado na função <u>main</u>, sem o uso de funções auxiliares.
- c) Use o tipo **long long** para armazenar o CPF e o resultado da criptografia.
- d) Para gerar um dígito aleatório k de 1 a 9 use o seguinte trecho de código:

```
#include <time.h>
#include <stdlib.h>

int main() {
    srand(time(NULL));
    int k = rand() % 9 + 1;
}
```