Amortizing Intractable Inference in Large Language Models

Edward J. Hu*, Moksh Jain*, Eric Elmoznino
Mila – Quebec AI Institute, Université de Montréal
{edward.hu, moksh.jain, eric.elmoznino, ...

Younesse Kaddar[∞]
University of Oxford
younesse.kaddar@chch.ox.ac.uk

Guillaume Lajoie[†], Yoshua Bengio^o, Nikolay Malkin Mila – Quebec AI Institute, Université de Montréal ..., guillaume.lajoie, yoshua.bengio, nikolay.malkin}@mila.quebec

Posterior

翻译任务

$$q(Z \mid X) \propto p_{\rm LM}(XZ)^{1/T}$$

特有段落生成

$$q(Z \mid X) \propto p_{LM}(XZ)^{\alpha} p_{LM}(Z)^{\beta}$$
 with $\beta < 0$ and $\alpha > 0$,

受限生成

$$q(Z) \propto p_{\mathrm{LM}}(Z)c(Z)$$

Posterior

Object	Meaning	Example 1 (infilling)	Example 2 (subjectivity classification)	
X	cause / condition / question	The cat was hungry.	A deeply moving storyline.	
Z	mechanism / reasoning chain	She ate a mouse.	This review expresses personal feelings.	
Y	effect / answer	Now the cat is sleepy, not hungry.	Answer: Subjective	
$p(Z \mid X)$	conditional prior	$p_{\mathrm{LM}}(Z \mid X)$		
$p(Y \mid X, Z)$	likelihood of effect given cause and mechanism	$p_{\mathrm{LM}}(Y\mid XZ)$		
$p(Z, Y \mid X)$	conditional joint, reward for Z	$p_{\mathrm{LM}}(ZY \mid X)$		
$ \frac{p(Z \mid X, Y)}{q(Y \mid X)} $	posterior (intractable!) posterior predictive / Bayesian model average	approximated and amortized by GFlowNet $q_{\text{GFN}}(Z \mid X[,Y])$ approximated as $\sum_{Z} q_{\text{GFN}}(Z \mid X) p_{\text{LM}}(Y \mid XZ)$, sampled as $Z \sim q_{\text{GFN}}(Z \mid X)$, $Y \sim p_{\text{LM}}(Y \mid XZ)$		

Model

Prompt: The following is a random integer drawn uniformly between 0 and 100

Model

R: Reward

q_GFN: 策略网络(由LLM的权重初始化)

T: 序列终止符

Z 1:n: 1到n的序列

$$\mathcal{L}(Z;\theta) = \sum_{0 \le i < j \le n} \left(\log \frac{R(z_{1:i} \top) \prod_{k=i+1}^{j} q_{GFN}(z_k \mid z_{1:k-1}) q_{GFN}(\top \mid z_{1:j})}{R(z_{1:j} \top) q_{GFN}(\top \mid z_{1:i})} \right)^2,$$

最终优化目标: $q_{\text{GFN}}^{\top}(Z) \propto R(Z)$,

LLM:环境

R:奖励

GFN:策略

Experiment

Sentence Continuation

$$R(Z) = p_{\rm LM}(Z|X)^{\frac{1}{T}}$$

Figure 3: Maximum log-likelihood and diversity of continuations sampled for fixed prompts. GFlowNet fine-tuning (\star) samples higher log-likelihood sentences while maintaining more sample diversity than the baselines (\bullet and ---), even when they are given $5\times$ the compute.

Experiment

$$q_{GFN}(Z|X,Y)$$

Table 4: Test accuracy (%) on an integer arithmetic task with addition and subtraction using a GPT-J 6B model. Training data only include samples with 3 or 4 operands.

		Number of Operands			
		In-distri	In-distribution		
Method		3	4	5	
k-shot CoT	k = 0	10.2	6.4	3.2	
	k = 3	15.8 ± 3.1	11 ± 1.7	5.4 ± 0.2	
	k = 5	20.4 ± 10.4	17.6 ± 0.6	6.6 ± 1.1	
	k = 10	26.5 ± 1.4	15.2 ± 1.7	8.9 ± 1.9	
	k = 20	35.5 ± 1.9	21 ± 1.4	10.5 ± 0.9	
Supervised fine-tuning		72.1 ± 1.3	19.6 ± 2.2	12.8 ± 5.7	
PPO		30.6 ± 4.1	13.7 ± 4.1	5.6 ± 3.1	
GFlowNet fine-tuning		95.2 ± 1.3	75.4 ± 2.9	40.7 ± 9.1	

Table 2: Evaluation of the generated infills.

Method	BERTScore	BLEU-4	GLEU-4	GPT4Eval
Prompting Supervised fine-tuning GFlowNet fine-tuning	0.081 ± 0.009	1.3 ± 0.5	3.2 ± 0.1	2.4
	0.094 ± 0.007	1.6 ± 0.8	3.7 ± 0.4	2.7
	0.184 ± 0.004	2.1 ± 0.2	4.2 ± 0.7	3.4

Example

Table E.4: Samples generated by PPO fine-tuned and GFlowNet fine-tuned models.

Question (X)	Generated rationale (Z)	$\log R$
Question: $1 - 9 + 8 = ?$ Answer:	1 - 9 - 8	-13.17
	1 - 9 = -8, -8 + 8 = 0	-27.75
Question: $8 + 7 + 2 + 7 = ?$ Answer:	8 + 7 + 2 + 7	-2.39
	8 + 7 = 15, $15 + 2 = 17$, $17 + 7 = 24$	-11.72
Question: $7 - 5 + 8 - 0 - 6 = ?$ Answer:	7 - 5 +	-1.22
	7 - 5 = 2, $2 + 8 = 10$, $10 - 0 = 10$, $10 - 6 = 4$	-7.99

