Model populacji

Adela Żelachowska, Marta Korpacz

WPROWADZENIE

Zmieniające się środowisko, ograniczoność zasobów, katastrofy czy losowe mutacje nieustannie wpływają na losy populacji. Wypadkowo liczebność osobników oraz ich fenotyp zmieniają się w czasie, a badanie ich dynamiki stanowi jedno z często poruszanych przez biologów zagadnień. W naturze prowadzenie tego typu badań jest trudne ze względu na długi czas trwania (należy przebadać wiele pokoleń), ilość zmiennych środowiskowych (zarówno biotycznych jak i abiotycznych) wpływających na organizmy czy trudności w opisie i śledzeniu zmian fenotypu. Wygodnym rozwiązaniem jest zatem symulowanie losów populacji przy pomocy modeli komputerowych, pozwalających na szybką i efektywną analizę dynamiki przy zadanych parametrach.

ZAŁOŻENIA NASZEGO MODELU

Zdecydowałyśmy się na analizę dynamiki populacji haploidalnej żyjącej w zmieniającym się środowisku, a co za tym idzie zmuszonej do ciągłej adaptacji do otaczających jej warunków. Jak wiemy, ewolucja nie jest procesem kierunkowym – osobniki nie wiedzą, jakie zmiany będą optymalne, a mutacje zachodzą losowo. Im lepsze dostosowanie, tym większa jednak szansa na przetrwanie i wydanie potomstwa, a co za tym idzie utrwalenie się w populacji korzystnych zmian. Z tego względu parametry takie jak szansa na zajście mutacji, jej siła, tempo i siła zmian optymalnego fenotypu oraz wzory opisujące zależności śmiertelności czy rozrodczości od miary dostosowania będą miały olbrzymi wpływ na badaną dynamikę.

PRZYJĘTE MECHANIZMY RZĄDZĄCE POPULACJĄ

Miara dostosowania (fitness):

 $\phi = exp(-\frac{||o-\alpha||}{2\sigma^2})$, gdzie o – fenotyp osobnika, α – fenotyp optymalny w danym środowisko, σ – odchylenie standardowe odzwierciedlające selekcję.

Rozrodczość:

Osobnik, który przeżył, wydaje k osobników potomnych, których genotyp jest kopią genotypu rodzica. Wartości k pochodzą z rozkładu Poissona o $\lambda=1.5$, a największą ilość potomstwa wydają osobniki o najwyższym dostosowaniu.

Selekcja:

Miara dostosowania bezpośrednio przekłada się na szansę przeżycia. Dodatkowo środowisko ma ograniczoną pojemność (dwukrotność liczby początkowej), a jej przekroczenie skutkuje śmiercią losowych nadmiarowych osobników.

Mutacja:

W każdym kroku symulacji dla każdego osobnika z prawdopodobieństwem μ może dojść do mutacji genotypu. W danym kroku czasowym zmienia się tylko jedna cecha osobnika, a siła mutacji losowana jest z rozkładu $N(0, \xi^2)$. μ , ξ^2 są wartościami stałymi dla całej populacji.

Nie zachodzą insercje i delecje (wielkość genotypu jest stała).

Zmiana środowiska:

W każdym kroku czasowym zachodzi zmiana jednej z cech optymalnego fenotypu. Siła mutacji losowana jest z rozkładu $N(0, r^2)$, gdzie r jest parametrem stałym dla wszystkich kroków symulacji.

W niektórych symulacjach model rozbudowany jest o katastrofę, czyli wydarzenie nagle zmieniające środowisko w sposób drastyczny. W naszym modelu katastrofa zmiana wartości każdej z cech o pięciokrotność r^2 i może zajść w 50 pokoleniu. Większość prezentowanych wyników oparta jest jednak o model bez tego mechanizmu.

BUDOWA MODELU

Model opisuje dynamikę populacji złożonej początkowo z N osobników (każdy ma n cech genotypowych). Zdefiniowane są parametry μ , ξ^2 , r^2 , σ^2 , których znaczenie wytłumaczyłyśmy w poprzednim paragrafie.

W każdym kroku ewolucyjnym zachodzą następujące procesy w określonej kolejności:

1. potencjalne mutowanie osobników

- 2. selekcja osobników zgodnie z miarą dostosowania
- 3. reprodukcja
- 4. wymieranie osobników w przypadku przekroczenia pojemności środowiska
- 5. zmiana środowiska, a więc optymalnego genotypu

WYNIKI

WPŁYW WSPÓŁCZYNNIKA SELEKCJI NA TEMPO WYMIERANIA

Współczynnik selekcji ściśle związany jest z szansą na przetrwanie osobnika – im mniejszy, tym mniejsza szansa na dotrwanie jednostki do czasu rozrodu, a co za tym idzie na przetrwanie populacji. Gdy dąży do nieskończoności, dostosowanie każdej jednostki dąży do 1, a co za tym idzie jedynym ograniczeniem wzrostu populacji jest pojemność środowiska. Z tego też względu w większości symulacji stosujemy $\sigma^2 \in \{0.5, 0.75\}$, co skutkuje powolnym wymieraniem populacji, a więc pozwala wygodnie obserwować zmiany dynamiki w zależności od innych parametrów.

TEMPO ZMIAN ŚRODOWISKA A LOSY POPULACJI

Analizie poddałyśmy także losy populacji ($N=100,\ l=2,\ \mu=0.075,\xi^2=0.01$) żyjących w środowiskach różniących się różnym tempem zmian optymalnego fenotypu. Zgodnie z intuicją ze względu na niezbyt dużą szansę zmutowania osobnika, populacje najlepiej radzą sobie w środowisku o optymalnym genotypie zmieniającym się o wartości losowane z rozkładu $N(0,\ r^2)$, gdzie $r^2<\xi^2$, zaś prawie natychmiastowo wymierają gdy $r^2>\xi^2$, ponieważ nie mają wtedy czasu nadążyć za tempem zmian.

Influence of variable rate describing strenght of environment changings on dynamic of population Average population dynamic after 100 simulations for each value

WPŁYW KATASTROFY NA LOSY POPULACJI

W zależności od różnorodności fenotypowej populacji oraz stopnia ich dostosowania do obecnie panujących warunków, katastrofa może przyspieszyć wymieranie lub też wprost przeciwnie – przedłużyć czas jej trwania.

Doskonale obrazują to otrzymane przez nas wyniki. Pomiędzy poniższymi symulacjami niezmienione zostały żadna parametry, jednak doskonale widać olbrzymie różnice między wpływem katastrofy na populację. Jeśli osobniki w momencie drastycznego zdarzenia były dobrze dostosowane do poprzednich warunków,

$$r^2 = 0.00001$$

$$r^2 = 0.001$$

Catastrophe and its influence on population size Avarage dynamic of populations - 50 iterations

r2=0.01

Catastrophe and its influence on population size Avarage dynamic of populations - 50 iterations

DZIEDZICZENIE KORZYSTNYCH MUTACJI

Animacje załączone zostały w repozytorium na githubie.