

Дискретная математика

Лекция 4

Множества и отношения

<u>Функции</u>

Отношение f между множествами A и B называется Функцией (отображением), если $\forall x \in A \exists ! y \in B, xfy.$

функция

не функция

тоже не функция

<u>Функции</u>

Если f – функция, то вместо xfy обычно пишут y = f(x).

Здесь $x - apsyment{m}$, он принимает значения из множества A.

y -*значение* функции, это тот (*единственный*) элемент из множества B, для которого выполняется xfy.

Говорят, что f есть функция из $A \in B$ и пишут $f: A \to B$.

$$f: A \to B$$

A — область определения функции f.

B — область допустимых значений функции f.

Если
$$X \subseteq A$$
, то $f[X] = \{y \in B : \exists x \in X, y = f(x)\}$ — образ множества X .

 $f[A] - {\it oбласть значений функции.}$

Кардинальная степень

Пусть A и B — множества.

Кардинальная степень B^A – операция, результатом которой является множество всех функций $f: A \to B$.

$$B^A = \{ f \mid f \colon A \to B \}$$

Записи $f \in B^A$ и $f: A \to B$ эквивалентны

Свойства функций

1. Инъективность

Функция $f: A \to B$ называется *инъективной* (*инъекцией*), если

$$\forall x_1, x_2 \in A: x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$

наоборот:

$$\forall x_1, x_2 \in A: f(x_1) = f(x_2) \to x_1 = x_2$$

2. Сюръективность

Функция $f: A \to B$ сюръективна (сюръекция), если $\forall y \in B \; \exists x \in A : f(x) = y$

Иными словами, f – сюръекция, если B = f[A]

не сюръекция

3. Биективность

Функция $f: A \to B$ называется биективной (биекцией), если она инъективна и сюръективна.

биекция

Биекцию называют также *взаимно однозначным соответствием* или 1-1-соответствием.

Если $f: A \to B$ — биекция, то обратное отношение f^{-1} также является функцией

$$f^{-1}$$
: $B \to A$, $\forall x \in A$: $f^{-1}(f(x)) = x$.

Равномощность множеств

Будем говорить, что множества A и B равномощны, $A \sim B$, если существует биекция $f: A \to B$.

Свойства:

1.
$$A \sim A$$

2.
$$A \sim B \rightarrow B \sim A$$

3.
$$A \sim B \wedge B \sim C \rightarrow A \sim C$$

$$A \stackrel{id_A}{\sim} A$$

$$A \stackrel{f}{\sim} B \to B \stackrel{f^{-1}}{\sim} A$$

$$A \stackrel{f}{\sim} B \wedge B \stackrel{g}{\sim} C \rightarrow A \stackrel{g \circ f}{\sim} C$$

Ещё свойства:

- $A \sim B \rightarrow A \times C \sim B \times C, A^C \sim B^C, C^A \sim C^B$
 - \circ Пусть $A \stackrel{f}{\sim} B$ тогда $A \times C \stackrel{g}{\sim} B \times C$, где g(x,y) = (f(x),y)
 - \circ Пусть $A \overset{\varphi}{\sim} B$, $f \in A^{\mathcal{C}}$ (то есть $f : \mathcal{C} \to A$), тогда $A^{\mathcal{C}} \overset{\psi}{\sim} B^{\mathcal{C}}$, где $\psi(f) = \varphi \circ f$.
 - \circ Пусть $A \stackrel{\varphi}{\sim} B, f \in C^A$ (то есть $f: A \to C$), тогда $C^A \stackrel{\psi}{\sim} C^B$, где $\psi(f) = f \circ \varphi^{-1}$.
- $A \times B \sim B \times A$
 - $A \times B \stackrel{f}{\sim} B \times A$, где f(x,y) = (y,x)
- $(A \times B) \times C \sim A \times (B \times C)$
- $(A \times B)^C \sim A^C \times B^C$
- $(C^B)^A \sim C^{A \times B}$

Пример

$$\mathbb{N} \sim \mathbb{Z}$$

Доказательство:

Рассмотрим функцию $f: \mathbb{N} \to \mathbb{Z}$

$$f(x) = \begin{cases} \frac{x}{2}, & \text{если } x \text{ чётно} \\ \frac{1-x}{2}, & \text{если } x \text{ нечётно} \end{cases}$$

Поскольку для функции f существует обратная функция $f^{-1}(y) = \begin{cases} 2y, \text{если } y > 0 \\ 1 - 2y, \text{если } y < 0 \end{cases}$, то она является биекцией.

Таким образом, $\mathbb{N} \stackrel{f}{\sim} \mathbb{Z}$.

Пример

$$\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$$

Доказательство:

Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $f(x,y) = 2^{x-1}(2y-1)$

Покажем, что f – инъекция:

Пусть $f(x_1, y_1) = 2^{x_1-1}(2y_1 - 1) = 2^{x_2-1}(2y_2 - 1) = f(x_2, y_2)$ Предположим, что $x_1 \neq x_2$. Без ограничения общности, будем считать, что $x_1 > x_2$. Разделим равенство на 2^{x_2-1} $2^{x_1-x_2}(2y_1-1) = 2y_2-1$

Левая часть равенства чётна, а правая нечётна.

Значит $x_1 = x_2$, но тогда $2y_1 - 1 = 2y_2 - 1 \rightarrow y_1 = y_2 \rightarrow (x_1, y_1) = (x_2, y_2).$

Пример

$$\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$$

Доказательство:

Рассмотрим функцию $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $f(x,y) = 2^{x-1}(2y-1)$

Покажем, что f – сюръекция:

Пусть $n \in \mathbb{N}$. Докажем, что $\exists (x,y) : f(x,y) = n$

- n нечётное $\to 2^{x-1} = 1 \to x = 1, y = \frac{n+1}{2}$.
- n чётное, тогда выберем наибольшее k такое, что $2^k \mid n$. Тогда $n=2^k s$, причём $s \in \mathbb{N}$ нечётно, иначе k не наибольшее $\to x=k+1, y=\frac{s+1}{2}$

Вложенность множеств

Будем говорить, что множество A вкладывается в множество B, $A \lesssim B$, если существует инъекция $f: A \to B$.

Свойства:

$$0. \quad A \subseteq B \to A \lesssim B$$

1.
$$A \lesssim B \rightarrow \exists C \subseteq B: A \sim C$$

2.
$$A \lesssim A$$

3.
$$A \lesssim B \land B \lesssim C \leftrightarrow A \lesssim C$$

4.
$$A \sim B \rightarrow A \lesssim B \land B \lesssim A$$

$$A \stackrel{id_A}{\lesssim} B$$

$$A \lesssim^f B \to C = f[A]$$

$$A \stackrel{id_A}{\lesssim} A$$

$$A \stackrel{f}{\lesssim} B \wedge B \stackrel{g}{\lesssim} C \rightarrow A \stackrel{g \circ f}{\lesssim} C$$

$$A \stackrel{f}{\sim} B \to A \stackrel{f}{\lesssim} B \wedge B \stackrel{f^{-1}}{\lesssim} A$$

5. Теорема Кантора-Бернштейна-Шрёдера (К.Б.Ш.) $A \lesssim B \land B \lesssim A \to A \sim B$

Пример: $\mathbb{N} \sim \mathbb{Q}$

Доказательство:

$$\mathbb{N}\subseteq\mathbb{Q}\to\mathbb{N}\lesssim\mathbb{Q}$$

 $x \in \mathbb{Q} \leftrightarrow x$ единственным образом представляется в виде несократимой дроби $\frac{m}{n}$, где $m \in \mathbb{Z}$, $n \in \mathbb{N}$.

Рассмотрим функцию $f: \mathbb{Q} \to \mathbb{N}^3$

$$f(x) = (|m| + 1, n, s(m))$$
, где $s(m) = \begin{cases} 1, \text{ если } m > 0 \\ 2, \text{ если } m < 0 \end{cases}$

f – инъекция, то есть $\mathbb{Q} \lesssim \mathbb{N}^3$.

Из свойств равномощности и предыдущего примера:

$$\mathbb{N}^3 = (\mathbb{N} \times \mathbb{N}) \times \mathbb{N} \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}.$$

Таким образом, $\mathbb{N}^3 \stackrel{g}{\sim} \mathbb{N}$

Итак,
$$\mathbb{Q} \stackrel{f}{\lesssim} \mathbb{N}^3 \stackrel{g}{\lesssim} \mathbb{N} \to \mathbb{Q} \stackrel{g \circ f}{\lesssim} \mathbb{N} \Rightarrow \mathbb{N} \sim \mathbb{Q}$$

Кардинальные числа

Кардинальное число (мощность) множества |A| — характеристика множеств, обобщающая понятие количества элементов множества.

$$|A| = |B| \Leftrightarrow A \sim B.$$

$$|A| \le |B| \Leftrightarrow A \le B.$$

$$|A| < |B| \Leftrightarrow A \le B \Leftrightarrow A \le B \land A \not\sim B.$$

Обозначим $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Множество A конечно, если $\exists n \in \mathbb{N}_0, A \sim \{0, 1, ..., n-1\}$. В этом случае считаем, что |A| = n.

Множество A бесконечно, если $\exists B: B \subsetneq A \land B \sim A$

Теорема. Если A и B конечные множества, |A| = |B|, то любая инъекция $f: A \to B$ является биекцией.

Доказательство.

Пусть $f: A \to B$ — инъекция, но не сюръекция. Тогда $f[A] \subsetneq B$ и, поскольку A и B конечны, |f[A]| < |B|.

Но $f: A \to f[A]$ — биекция, то есть $A \stackrel{f}{\sim} f[A] \nsim B$, что противоречит утверждению |A| = |B|.

Таким образом, f – сюръекция, а значит биекция.

Счётные множества

Множество A называется счётным, если $A \sim \mathbb{N}$ (то есть $|A| = |\mathbb{N}|$), в противном случае оно несчётное.

Если $A \stackrel{f}{\sim} \mathbb{N}$, то элементы множества A можно расположить в бесконечную последовательность $f(1), f(2), f(3), \dots$

Обратно: если существует такая последовательность, содержащая каждый элемент множества A один раз, то A счётно.

Примеры

- $\mathbb{N} \times \mathbb{N}$ счётно.
- \mathbb{Q} счётно.
- \mathbb{N}_0 счётно. $\mathbb{N}_0 \stackrel{f}{\sim} \mathbb{N}$, где f(x) = x + 1.
- \mathbb{Z} счётно.

Все целые числа можно расположить в последовательность:

• A – множество *алгебраических* чисел – счётно.

Теорема. Если A счётно u $A \lesssim B$, то B бесконечно.

Доказательство

Пусть B конечно, тогда $\exists n \in \mathbb{N}_0 : B \sim \underline{n}$. Тогда: $\underline{n+1} \lesssim \mathbb{N} \sim A \lesssim B \sim \underline{n} \Rightarrow \underline{n+1} \lesssim \underline{n}$. Но $\underline{n} \subsetneq \underline{n+1} \to \underline{n} \lesssim \underline{n+1}$. Противоречие.

Теорема. Если A счётно $u B \lesssim A$, то B конечно или счётно.

| \mathbb{N} | обозначается символом \aleph_0 («алеф-нуль»). То есть \aleph_0 – это кардинальное число любого счётного множества.

Мощность любого бесконечного множества $\geq \aleph_0$

Свойства счётных множеств

• Объединения конечного или счётного числа счётных множеств счётны;

$$|A_1| = \dots = |A_n| = \aleph_0 \quad \Rightarrow \quad \left| \bigcup_{i=1}^n A_i \right| = \aleph_0$$

• Прямые произведения конечного числа счётных множеств счётны;

$$|A_1| = \dots = |A_n| = \aleph_0 \quad \Rightarrow \quad |A_1 \times \dots \times A_n| = \aleph_0$$

• Множество всех конечных подмножеств счётного множества счётно.

Теорема. Множество ℝ несчётно.

Докажем, что подмножество множества \mathbb{R} , интервал [0,1], несчетно.

Предположим, что $\mathbb{N} \stackrel{f}{\sim} [0,1]$. Каждое вещественное число из [0,1] можно представить бесконечной десятичной дробью. Пусть $f(n) = 0. \, x_1^n x_2^n x_3^n \dots$

Выберем для каждого n = 1, 2, ..., десятичную цифру $y_n \neq x_n^n$.

Тогда $0. y_1 y_2 y_3 \dots$ есть вещественное число, отличное от всех элементов последовательности $f(1), f(2), \dots$

Континуум

Континуум — мощность (кардинальное число) множества всех вещественных чисел. $\mathfrak{c} = |\mathbb{R}|$

Множество называется *континуальным*, если его мощность равна ϵ .

Свойства:

- $c > \aleph_0$
- $\mathbb{R} \sim 2^{\mathbb{N}}$, то есть если $|A| = \aleph_0$, то $|2^A| = \mathfrak{c}$.
- $\mathbb{R} \sim \mathbb{R} \times \mathbb{R} \sim \mathbb{N}^{\mathbb{N}} \sim \mathbb{R}^{\mathbb{N}}$

Континуум-гипотеза

Известна также как первая проблема Гильберта.

Любое бесконечное подмножество континуального множества является либо счётным, либо континуальным. (Г. Кантор, 1877)

Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет.

Теорема Кантора

Теорема Кантора. $|A| < |2^A|$ для любого множества A.

Доказательство.

Отображение $f: A \to 2^A$, ставящее в соответствие каждому $x \in A$ множество $f(x) = \{x\}$, является инъекцией.

Значит, $|A| \leq |2^A|$.

Докажем, что не существует биекции из A в 2^A .

Пусть существует $f: A \to 2^A$ – биекция.

Рассмотрим множество $M = \{x \in A : x \notin f(x)\}$

Так как f – биекция, то существует такой элемент $m \in A$, что f(m) = M.

$$m \in M$$
 или $m \notin M$?

 $m \notin M \Rightarrow m \notin f(m) \Rightarrow m \in \{x \in A : x \notin f(x)\} \Rightarrow m \in M$ Аналогично, $m \in M \Rightarrow \cdots \Rightarrow m \notin M$.

Противоречие.

Отношения общего вида

Помимо *бинарных* отношений, определяют также отношения общего вида – когда рассматриваются связи между несколькими (более чем двумя) объектами.

Пусть $A_1, A_2, ..., A_n$ – множества. n-арное (n-местное) отношение между этими множествами – это любое подмножество множества $A_1 \times A_2 \times \cdots \times A_n$.

Пример.

Пусть A — множество городов, B — множество видов транспорта.

Можно определить следующее отношение $R \subseteq A \times A \times B$:

 $(x, y, z) \in R \Leftrightarrow$ из x в y можно попасть посредством z.

 $(Москва, H. Новгород, самолет) \in R$

 $(H.\ Hовгород,\ Puo-де-Жанейро,\ самокат) \not\in R$

Пример.

Пусть M – множество всех точек плоскости. Можно определить следующее отношение R на M^4 :

 $(x,y,z,u) \in R \Leftrightarrow$ точка x расположена внутри треугольника yzu.

$$(a,b,c,d) \notin R$$

 $(b, a, c, d) \in R$

$$(b,c,d,a) \in R$$

a

b •

 \bigcirc C