Canonical Correlation Analysis

Backgroun

Canonical Variates & Canonical Correlations

Sales Data Example

Lecture 11

Canonical Correlation Analysis

Reading: Johnson & Wichern 2007, Chapter 10; Zelterman Chapter 13.2; Izenman Chapter 7.3

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

Background

Canonical Variates & Canonical Correlations

Sales Data Example

Background

2 Canonical Variates & Canonical Correlations

Overview

Canonical correlation analysis (CCA, Hotelling, 1936) is a method for exploring the relationships between two sets of multivariate variables $\mathbf{X} = (X_1, X_2, \dots, X_p)^T$ and $\mathbf{Y} = (Y_1, Y_2, \dots, Y_q)^T$

RELATIONS BETWEEN TWO SETS OF VARIATES*.

By HAROLD HOTELLING, Columbia University.

	CONTENTS.		
SECT.			PAGE
1.	The Correlation of Vectors. The Most Predictable Criterion and th	е	
	Tetrad Difference		321
2.	Theorems on Determinants and Matrices		325
3.	Canonical Variates and Canonical Correlations. Applications to Algebra	а	
	and Geometry		326
4.	Vector Correlation and Alienation Coefficients		332
5.	Standard Errors		336
6.	Examples, and an Iterative Method of Solution		342
7.	The Vector Correlation as a Product of Correlations or of Cosines		349
8.	An Exact Sampling Distribution of q		352
9.	Moments of q. The Distribution for Large Samples		354
10.	The Distribution for Small Samples. Form of the Frequency Curve		359
11.	Tests for Complete Independence		362
12.	Alternants of a Plane and of a Sample		365
13.	The Bivariate Distribution for Complete Independence $(s=t=2, n=4)$		369
	Theorem on Circularly Distributed Variates		371
15.	Generalization of Section 13 for Samples of Any Size		372
30	Posth or Postdone		222

 The Correlation of Vectors. The Most Predictable Criterion and the Tetrad Difference. Concepts of correlation and regression may be applied not only to ordinary one-dimensional variates but also to variates of two or more dimensions.

Dackground

Canonical Variates & Canonical Correlations

Jaioo Bata Enampii

Relating Two Random Vectors

Correlation Analysis

Background

Canonical Variates & Canonical Correlations

Examples:

- $X = (X_1, X_2)$ represents two **reading** test scores, and $Y = (Y_1, Y_2)$ represents two **arithmetic** test scores
- X is a vector of variables associated with environmental health: species diversity, total biomass, and environmental productivity, while Y represents concentrations of heavy metals, pesticides, and dioxin, which measure environmental toxins

Goal: CCA relates two sets of variables X and Y by finding linear combinations of variables that maximally correlated

Motivation: relates \boldsymbol{X} and \boldsymbol{Y} using a small number of linear combinations for ease of interpretation

Correlation Analysis

CLEMS N UNIVERSITY

Backgroun

Canonical Variates & Canonical Correlations

ales Data Example

Recall we have $\boldsymbol{X} = (X_1, X_2, \cdots, X_p)^T$ and $\boldsymbol{Y} = (Y_1, Y_2, \cdots, Y_q)^T$. Without loss of generality, let's assume $p \leq q$.

Similar to PCA, we define a set of linear combinations

$$U_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$U_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

$$\vdots = \dots$$

$$U_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

and

$$V_1 = b_{11}Y_1 + b_{12}Y_2 + \dots + b_{1q}Y_q$$

$$V_2 = b_{21}Y_1 + b_{22}Y_2 + \dots + b_{2q}Y_q$$

$$\vdots = \dots$$

$$V_p = b_{p1}Y_1 + b_{p2}Y_2 + \dots + b_{pq}Y_q$$

We want to find linear combinations that maximize the correlation of (U_i, V_i) , $i = 1, \dots, p$

Defining Canonical Variates

We call (U_i, V_i) be the i^{th} canonical variate pair. One can compute the variance of U_i with the following expression:

$$\operatorname{Var}(U_i) = \sum_{k=1}^{p} \sum_{\ell=1}^{p} a_{ik} a_{i\ell} \operatorname{Cov}(X_k, X_\ell), \quad i = 1, \dots, p.$$

Similarly, we compute the variance of V_j with the following expression:

$$\operatorname{Var}(V_j) = \sum_{k=1}^q \sum_{\ell=1}^q b_{jk} b_{j\ell} \operatorname{Cov}(Y_k, Y_\ell), j = 1, \dots, p.$$

The covariance between U_i and V_j is:

$$Cov(U_i, V_j) = \sum_{k=1}^p \sum_{\ell=1}^q a_{ik} b_{j\ell} Cov(X_k, Y_\ell).$$

The canonical correlation for the i^{th} canonical variate pair is simply the correlation between U_i and V_i :

$$\rho_i^* = \frac{\operatorname{Cov}(U_i, V_i)}{\sqrt{\operatorname{Var}(U_i)\operatorname{Var}(V_i)}}$$

Background

Canonical Variates & Canonical Correlations

Finding Canonical Variates

Let us look at each of the p canonical variates pair one by one.

First canonical variable pair (U_1,V_1) : The coefficients $a_{11},a_{12},\cdots,a_{1p}$ and $b_{11},b_{12},\cdots,b_{1q}$ are chosen to maximize the canonical correlation ρ_1^* . As in PCA, this is subject to the constraint that $\mathrm{Var}(U_1) = \mathrm{Var}(V_1) = 1$

Second canonical variable pair (U_2,V_2) : Similarly we want to find $a_{21},a_{22},\cdots,a_{2p}$ and $b_{21},b_{22},\cdots,b_{2q}$ that maximize ρ_2^* under the following constraints:

$$Var(U_2) = Var(V_2) = 1,$$

 $Cov(U_1, U_2) = Cov(V_1, V_2) = 0,$
 $Cov(U_1, V_2) = Cov(U_2, V_1) = 0.$

This procedure is repeated for each pair of canonical variates

Background

Canonical Variates & Canonical Correlations

Finding Canonical Variates Cont'd

Let $Var(X) = \Sigma_X$ and $Var(Y) = \Sigma_Y$ and let $Z^T = (X^T, Y^T)$. Then the covariance matrix of Z is

Backgroul

Canonical Variates & Canonical Correlations

ales Data Example

$$\begin{bmatrix} \operatorname{Var}(\boldsymbol{X}) & \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y}) \\ \operatorname{Cov}(\boldsymbol{Y}, \boldsymbol{X}) & \operatorname{Var}(\boldsymbol{Y}) \end{bmatrix} = \begin{bmatrix} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}}}_{p \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}}}_{p \times q} \\ \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}}}_{q \times p} & \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{Y}}}_{q \times q} \end{bmatrix}$$

The i^{th} pair of canonical variates is given by

$$U_i = \underbrace{\boldsymbol{u}_i^T \boldsymbol{\Sigma}_X^{-1/2}}_{\boldsymbol{a}_i^T} \boldsymbol{X} \text{ and } V_i = \underbrace{\boldsymbol{v}_i^T \boldsymbol{\Sigma}_Y^{-1/2}}_{\boldsymbol{b}_i^T} \boldsymbol{Y},$$

where

- ullet u_i is the i^{th} eigenvector of $oldsymbol{\Sigma_X^{-1/2}}oldsymbol{\Sigma_{XY}}oldsymbol{\Sigma_Y^{-1}}oldsymbol{\Sigma_{YX}}oldsymbol{\Sigma_X^{-1/2}}$
- ullet v_i is the i^{th} eigenvector of $oldsymbol{\Sigma_Y}^{-1/2}oldsymbol{\Sigma_{YX}}oldsymbol{\Sigma_X}^{-1}oldsymbol{\Sigma_{XY}}oldsymbol{\Sigma_Y}^{-1/2}$
- The i^{th} canonical correlation is given by, $\operatorname{Cor}(U_i,V_i)=\rho_i^*$, where ρ_i^{*2} is the i^{th} eigenvalue of $\Sigma_{\boldsymbol{X}}^{-1/2}\Sigma_{\boldsymbol{X}\boldsymbol{Y}}\Sigma_{\boldsymbol{Y}}^{-1}\Sigma_{\boldsymbol{Y}\boldsymbol{X}}\Sigma_{\boldsymbol{X}}^{-1/2}$

Likelihood Ratio Test: Is CCA Worthwhile?

Note that if $\Sigma_{XY} = 0$, then $Cov(U, V) = a^T \Sigma_{XY} b = 0$ for all a and $b \Rightarrow$ all canonical correlations must be zero and there is no point in pursuing CCA.

For large n, we reject $H_0: \Sigma_{XY} = 0$ in favor of $H_1: \Sigma_{XY} \neq 0$ if

$$-2\log(\Lambda) = n\log\left(\frac{|\hat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}||\hat{\boldsymbol{\Sigma}}_{\boldsymbol{Y}}|}{|\hat{\boldsymbol{\Sigma}}|}\right) = -n\sum_{j=1}^p\log(1-\hat{\rho}_j^{*2})$$

is larger than $\chi^2_{pg}(\alpha)$

For an improvement to the χ^2 approximation, Bartlett suggested using the following test statistic:

$$-2\log(\Lambda) = -[n-1-\frac{1}{2}(p+q+1)]\sum_{j=1}^{p}\log(1-\hat{\rho}_{j}^{*2})$$

Background

Canonical Variates & Canonical Correlations

Correlation Analysis

Background

Canonical Variates & Canonical Correlations

The example data comes from a firm that surveyed a random sample of n=50 of its employees in an attempt to determine which factors influence sales performance. Two collections of variables were measured:

- Sales Performance: Sales Growth, Sales Profitability, New Account Sales ⇒ p = 3
- Intelligence Test Scores: Creativity, Mechanical Reasoning, Abstract Reasoning, Mathematics $\Rightarrow q = 4$

We are going to carry out a canonical correlation analysis using $\ensuremath{\mathbb{R}}$

Let's first determine if there is any relationship between the two sets of variables at all.

```
rho <- cc(sales, intelligence)$cor
n <- dim(sales)[1]
p <- length(sales); q <- length(intelligence)
## Calculate p-values using the F-approximations
library(CCP)
p.asym(rho, n, p, q, tstat = "Wilks")</pre>
```

H_0	Approximate F value	p-value
$\rho_1^* = \rho_2^* = \rho_3^* = 0$	87.39	~ 0
$\rho_2^* = \rho_3^* = 0$	18.53	8.25×10^{-14}
$ \rho_3^* = 0 $	3.88	0.028

All three canonical variate pairs are significantly correlated and dependent on one another. This suggests that we may summarize all three pairs.

Estimates of Canonical Correlation

Since we rejected the hypotheses of independence, the next step is to obtain estimates of canonical correlation

i	Canonical Correlation (ρ_i^*)	$ ho_i^{*2}$
1	0.9945	0.9890
2	0.8781	0.7711
3	0.3836	0.1472

98.9% of the variation in U_1 is explained by the variation in V_1 , 77.11% of the variation in U_2 is explained by V_2 , only 14.72% of the variation in U_3 is explained by V_3

Background

Canonical Variates & Canonical Correlations

Obtain the Canonical Coefficients

	U_1	U_2	U_3
Growth	0.0624	-0.1741	-0.3772
Profit	0.0209	0.2422	0.1035
New	0.0783	-0.2383	0.3834

The first canonical variable for sales is

$$U_1 = 0.0624X_{growth} + 0.0209X_{profit} + 0.0783X_{new}$$

	V_1	V_2	V_3
Creativity	0.0697	-0.1924	0.2466
Mechanical	0.0307	0.2016	-0.1419
Abstract	0.08956	-0.4958	-0.2802
Math	0.0628	0.0683	-0.0113

The first canonical variable for test scores is

$$V_1 = 0.0697Y_{create} + 0.0307Y_{mech} + 0.0896Y_{abstract} + 0.0628Y_{math}$$

Background

Canonical Variates & Canonical Correlations

Daics Data Example

Correlations Between Each Variable and The Corresponding Canonical Variate

CORRELATION Analysis

Background

Canonical Variates & Canonical Correlations

Sales Data Example

Correlations Between X's and U's

	U_1	U_2	U_3
Growth	0.9799	0.0006	-0.1996
Profit	0.9464	0.3229	0.0075
New	0.9519	-0.1863	0.2434

Correlations Between Y's and V's

V_1	V_2	V_3
0.6383	-0.2157	0.6514
0.7212	0.2376	-0.0677
0.6472	-0.5013	-0.5742
0.9441	0.1975	-0.0942
	0.6383 0.7212 0.6472	0.6383 -0.2157 0.7212 0.2376 0.6472 -0.5013

Correlations Between Each Set of Variables and The Opposite Group of Canonical Variates

Correlations Between X's and V's

	V_1	V_2	V_3
Growth	0.9745	0.0006	-0.0766
Profit	0.9412	0.2835	0.0029
New	0.9466	-0.1636	0.0934

Correlations Between Y's and U's

U_1	U_2	U_3
0.6348	-0.1894	0.2499
0.7172	0.2086	-0.0260
0.6437	-0.4402	-0.2203
0.9389	0.1735	-0.0361
	0.6348 0.7172 0.6437	0.6348 -0.1894 0.7172 0.2086 0.6437 -0.4402

Background

Canonical Variates & Canonical Correlations

Summary

Concepts to know:

- The main idea of canonical correlation analysis (CCA)
- How to compute the canonical variates from the data
- How to determine the number of significant canonical variate pairs
- How to use the results of CCA to describe the relationships between two sets of variables

R functions to know

- cc from the CCA library
- p.asym from the CCP library

In the next lecture, we will learn about Classification

Background

Canonical Variates & Canonical Correlations