INTERRUPTS & INTERRUPT SERVICE ROUTINE(ISR)

Session Objectives

 Study the concept and importance of procedure, stack, and Interrupts

Session Outcomes

- At the end of the session, students will be able to
 - Understand the concept of Interrupts.

Outline

- To discuss the
 - the concept of Interrupts.

INTERRUPT & ISR?

- · Interrupts' is to break the sequence of operation.
- While the CPU is executing a program, on 'interrupt' breaks the normal sequence of execution of instructions, diverts its execution to some other program called Interrupt Service Routine (ISR)

Hardware Interrupts

Used to handle external hardware peripherals, such as keyboards, mouse, hard disks, floppy disks, DVD drives, and printers

- Maskable Interrupt: An Interrupt that can be disabled or ignored by the instructions of CPU are called as Maskable Interrupt.
- Non- Maskable Interrupt: An interrupt that cannot be disabled or ignored by the instructions of CPU are called as Non- Maskable Interrupt.
- **Software interrupts** are machine instructions that amount to a call to the designated interrupt subroutine, usually identified by interrupt number.

Ex: INT0 - INT255

INTERRUPT VECTOR TABLE

256 INTERRUPTS OF 8086 ARE DIVIDED IN TO 3 GROUPS

1.TYPE 0 TO TYPE 4 INTERRUPTS-

These are used for fixed operations and hence are called dedicated interrupts

2.TYPE 5 TO TYPE 31 INTERRUPTS

Not Used By 8086,reserved For Higher Processors Like 80286 80386 Etc

3.TYPE 32 TO 255 INTERRUPTS

Available For User, called User Defined Interrupts These Can Be H/W Interrupts And Activated Through Intr Line Or S/WalntBerupts.

> Type − 0 Divide Error Interrupt

Quotient is too large cant be fit in AL/AX or Divide By Zero $\{AX/0=\infty\}$

>Type −1 Single Step Interrupt

used for executing the program in **single step** mode by setting **Trap** Flag

PUSHF MOV BP,SP OR [BP+0],0100H; SET BIT8 POPF

≻Type – 2 Non Maskable Interrupt

This Interrupt is used for executing **ISR** of **NMI** Pin (Positive Egde Signal). NMI cant be masked by **S/W**

≻Type – 3 Break Point Interrupt

used for providing BREAK POINTS in the program

≻Type – 4 Over Flow Interrupt

used to handle any Overflow Error after signed arithmetic

PRIORITY OF INTERRUPTS

Interrupt Type	Priority
INTO, INT3-INT 255,	Highest
NMI(INT2)	ţ
INTR	ţ
SINGLE STEP	Lowest

Summary

• The basic operations of interrupt is studied.

Test Your Undestand

- What is the difference between CALL and Jump instruction?
- The instructions that are used to call a subroutine from the main program and return to the main program after execution of called function are
 - a) CALL, JMP
 - b) JMP, IRET
 - c) CALL, RET
 - d) JMP, RET

References

Walter A Triebel and Avatar Singh, The 8088 and 8086
 Microprocessors – Programming, Interfacing, Software,
 Hardware and Applications, Pearson, Fourth Edition, 2002.

Thank you

