Study guide: Computing with variational forms

Hans Petter Langtangen^{1,2}

¹Center for Biomedical Computing, Simula Research Laboratory ²Department of Informatics, University of Oslo

Apr 22, 2015

Basic principles for approximating differential equations

We shall apply least squares, Galerkin/projection, and collocation to differential equation models

Our aim is to extend the ideas for approximating f by u, or solving

$$u = f$$

to real, spatial differential equations like

$$-u'' + bu = f$$
, $u(0) = C$, $u'(L) = D$

Emphasis will be on the Galerkin/projection method

Abstract differential equation

$$\mathcal{L}(u) = 0, \quad x \in \Omega$$

Examples (1D problems):

$$\mathcal{L}(u) = \frac{d^2 u}{dx^2} - f(x),$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) + f(x),$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) - au + f(x),$$

$$\mathcal{L}(u) = \frac{d}{dx} \left(\alpha(u) \frac{du}{dx} \right) + f(u, x)$$

Abstract boundary conditions

$$\mathcal{B}_0(u) = 0, \ x = 0, \quad \mathcal{B}_1(u) = 0, \ x = L$$

Examples:

$$\mathcal{B}_i(u) = u - g,$$
 Dirichlet condition
$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - g,$$
 Neumann condition
$$\mathcal{B}_i(u) = -\alpha \frac{du}{dx} - h(u - g),$$
 Robin condition

Reminder about notation

- $u_e(x)$ is the symbol for the exact solution of $\mathcal{L}(u_e) = 0 + \mathcal{B}_i = 0$
- u(x) denotes an approximate solution
- $V = \operatorname{span}\{\psi_0(x), \dots, \psi_N(x)\}, V \text{ has basis } \{\psi_i\}_{i \in \mathcal{I}_n}$
- We seek $u \in V$
- $\mathcal{I}_s = \{0, \dots, N\}$ is an index set
- $u(x) = \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$
- Inner product: $(u, v) = \int_{\Omega} uv \, dx$
- Norm: $||u|| = \sqrt{(u,u)}$

New topics: variational formulation and boundary conditions

Much is similar to approximating a function (solving u = f), but two new topics are needed:

- Variational formulation of the differential equation problem (including integration by parts)
- Handling of boundary conditions

Residual-minimizing principles

- When solving u = f we knew the error e = f u and could use principles for minimizing the error
- When solving $\mathcal{L}(u_{\rm e})=0$ we do not know $u_{\rm e}$ and cannot work with the error $e=u_{\rm e}-u$
- \bullet We can only know the error in the equation: the residual R

Inserting $u = \sum_{j} c_{j} \psi_{j}$ in $\mathcal{L} = 0$ gives a residual R

$$\mathcal{L}(u) = \mathcal{L}(\sum_{j} c_{j} \psi_{j}) = R \neq 0$$

Goal: minimize R with respect to $\{c_i\}_{i\in\mathcal{I}_s}$ (and hope it makes a small e too)

$$R = R(c_0, \dots, c_N; x)$$

The least squares method

Idea: minimize

$$E = ||R||^2 = (R, R) = \int_{\Omega} R^2 dx$$

Minimization wrt $\{c_i\}_{i\in\mathcal{I}_s}$ implies

$$\frac{\partial E}{\partial c_i} = \int_{\Omega} 2R \frac{\partial R}{\partial c_i} dx = 0 \quad \Leftrightarrow \quad (R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$

N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_s}$

The Galerkin method

Idea: make R orthogonal to V,

$$(R, v) = 0, \quad \forall v \in V$$

This implies

$$(R, \psi_i) = 0, \quad i \in \mathcal{I}_s$$

N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_s}$

The Method of Weighted Residuals

Generalization of the Galerkin method: demand R orthogonal to some space W, possibly $W \neq V$:

$$(R, v) = 0, \quad \forall v \in W$$

If $\{w_0, \ldots, w_N\}$ is a basis for W:

$$(R, w_i) = 0, \quad i \in \mathcal{I}_s$$

- N+1 equations for N+1 unknowns $\{c_i\}_{i\in\mathcal{I}_n}$
- Weighted residual with $w_i = \partial R/\partial c_i$ gives least squares

New terminology: test and trial functions

- ψ_j used in $\sum_j c_j \psi_j$ is called *trial function*
- ψ_i or w_i used as weight in Galerkin's method is called test function

The collocation method

Idea: demand R = 0 at N + 1 points in space

$$R(x_i; c_0, \dots, c_N) = 0, \quad i \in \mathcal{I}_s$$

The collocation method is a weighted residual method with delta functions as weights

$$0 = \int_{\Omega} R(x; c_0, \dots, c_N) \delta(x - x_i) dx = R(x_i; c_0, \dots, c_N)$$

property of
$$\delta(x)$$
: $\int_{\Omega} f(x)\delta(x-x_i)dx = f(x_i), \quad x_i \in \Omega$

Examples on using the principles

Goal. Exemplify the least squares, Galerkin, and collocation methods in a simple 1D problem with global basis functions.

The first model problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, L], \quad u(0) = 0, \ u(L) = 0$$

Basis functions:

$$\psi_i(x) = \sin\left((i+1)\pi\frac{x}{L}\right), \quad i \in \mathcal{I}_s$$

Residual:

$$R(x; c_0, \dots, c_N) = u''(x) + f(x),$$

$$= \frac{d^2}{dx^2} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j(x) \right) + f(x),$$

$$= -\sum_{j \in \mathcal{I}_s} c_j \psi_j''(x) + f(x)$$

Boundary conditions

Since u(0) = u(L) = 0 we must ensure that all $\psi_i(0) = \psi_i(L) = 0$, because then

$$u(0) = \sum_{j} c_{j} \psi_{j}(0) = 0, \quad u(L) = \sum_{j} c_{j} \psi_{j}(L) = 0$$

- \bullet u known: Dirichlet boundary condition
- u' known: Neumann boundary condition
- Must have $\psi_i = 0$ where Dirichlet conditions apply

The least squares method; principle

$$(R, \frac{\partial R}{\partial c_i}) = 0, \quad i \in \mathcal{I}_s$$

$$\frac{\partial R}{\partial c_i} = \frac{\partial}{\partial c_i} \left(\sum_{j \in \mathcal{I}_s} c_j \psi_j''(x) + f(x) \right) = \psi_i''(x)$$

Because:

$$\frac{\partial}{\partial c_i} \left(c_0 \psi_0'' + c_1 \psi_1'' + \dots + c_{i-1} \psi_{i-1}'' + c_i \psi_i'' + c_{i+1} \psi_{i+1}'' + \dots + c_N \psi_N'' \right) = \psi_i''$$

The least squares method; equation system

$$\left(\sum_{j} c_j \psi_j'' + f, \psi_i''\right) = 0, \quad i \in \mathcal{I}_s$$

Rearrangement:

$$\sum_{j \in \mathcal{I}_s} (\psi_i'', \psi_j'') c_j = -(f, \psi_i''), \quad i \in \mathcal{I}_s$$

This is a linear system

$$\sum_{j \in \mathcal{I}_s} A_{i,j} c_j = b_i, \quad i \in \mathcal{I}_s$$

The least squares method; matrix and right-hand side expressions

$$A_{i,j} = (\psi_i'', \psi_j'')$$

$$= \pi^4 (i+1)^2 (j+1)^2 L^{-4} \int_0^L \sin\left((i+1)\pi \frac{x}{L}\right) \sin\left((j+1)\pi \frac{x}{L}\right) dx$$

$$= \begin{cases} \frac{1}{2} L^{-3} \pi^4 (i+1)^4 & i=j\\ 0, & i \neq j \end{cases}$$

$$b_i = -(f, \psi_i'') = (i+1)^2 \pi^2 L^{-2} \int_0^L f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$

Orthogonality of the basis functions gives diagonal matrix

Useful property of the chosen basis functions:

$$\int_{0}^{L} \sin\left((i+1)\pi\frac{x}{L}\right) \sin\left((j+1)\pi\frac{x}{L}\right) dx = \delta_{ij}, \qquad \delta_{ij} = \begin{cases} \frac{1}{2}L & i=j\\ 0, & i\neq j \end{cases}$$

 \Rightarrow $(\psi_i'', \psi_j'') = \delta_{ij}$, i.e., diagonal $A_{i,j}$, and we can easily solve for c_i :

$$c_i = \frac{2L}{\pi^2(i+1)^2} \int_0^L f(x) \sin\left((i+1)\pi \frac{x}{L}\right) dx$$

Least squares method; solution

Let sympy do the work (f(x) = 2):

```
from sympy import *
import sys
i, j = symbols('i j', integer=True)
```

```
x, L = symbols('x L')
f = 2
a = 2*L/(pi**2*(i+1)**2)
c_i = a*integrate(f*sin((i+1)*pi*x/L), (x, 0, L))
c_i = simplify(c_i)
print c_i
```

$$c_i = 4 \frac{L^2((-1)^i + 1)}{\pi^3(i^3 + 3i^2 + 3i + 1)}, \quad u(x) = \sum_{k=0}^{N/2} \frac{8L^2}{\pi^3(2k+1)^3} \sin((2k+1)\pi \frac{x}{L})$$

Fast decay: $c_2 = c_0/27$, $c_4 = c_0/125$ - only one term might be good enough:

$$u(x) \approx \frac{8L^2}{\pi^3} \sin\left(\pi \frac{x}{L}\right)$$

The Galerkin method; principle

R = u'' + f:

$$(u'' + f, v) = 0, \quad \forall v \in V,$$

or rearranged.

$$(u'', v) = -(f, v), \quad \forall v \in V$$

This is a variational formulation of the differential equation problem. $\forall v \in V$ is equivalent with $\forall v \in \psi_i, i \in \mathcal{I}_s$, resulting in

$$\left(\sum_{j\in\mathcal{I}_s} c_j \psi_j'', \psi_i\right) = -(f, \psi_i), \quad i\in\mathcal{I}_s$$

$$\sum_{j \in \mathcal{I}_s} (\psi_j'', \psi_i) c_j = -(f, \psi_i), \quad i \in \mathcal{I}_s$$

The Galerkin method; solution

Since $\psi_i'' \propto -\psi_i$, Galerkin's method gives the same linear system and the same solution as the least squares method (in this particular example).

The collocation method

R=0 (i.e.,the differential equation) must be satisfied at N+1 points:

$$-\sum_{i\in\mathcal{I}_s} c_j \psi_j''(x_i) = f(x_i), \quad i\in\mathcal{I}_s$$

This is a linear system $\sum_{i} A_{i,j} = b_i$ with entries

$$A_{i,j} = -\psi_j''(x_i) = (j+1)^2 \pi^2 L^{-2} \sin\left((j+1)\pi \frac{x_i}{L}\right), \quad b_i = 2$$
 Choose: $N = 0, x_0 = L/2$
$$c_0 = 2L^2/\pi^2$$

Comparison of the methods

- Exact solution: u(x) = x(L-x)
- Galerkin or least squares (N=0): $u(x) = 8L^2\pi^{-3}\sin(\pi x/L)$
- Collocation method (N=0): $u(x) = 2L^2\pi^{-2}\sin(\pi x/L)$.

```
"> import sympy as sp
"> # Computing with Dirichlet conditions: -u''=2 and sines
"> x, L = sp.symbols('x L')
"> e_Galerkin = x*(L-x) - 8*L**2*sp.pi**(-3)*sp.sin(sp.pi*x/L)
"> e_colloc = x*(L-x) - 2*L**2*sp.pi**(-2)*sp.sin(sp.pi*x/L)
"> # Verify max error for x=L/2
"> dedx_Galerkin = sp.diff(e_Galerkin, x)
"> dedx_Galerkin.subs(x, L/2)
"> dedx_colloc = sp.diff(e_colloc, x)
"> dedx_colloc = sp.diff(e_colloc, x)
"> sp.simplify(e_colloc.subs(x, L/2)
"> sp.simplify(e_Galerkin.subs(x, L/2).evalf(n=3))
-0.00812*L**2
"> sp.simplify(e_colloc.subs(x, L/2).evalf(n=3))
0.0473*L**2
```

Useful techniques

Integration by parts has many advantages

Second-order derivatives will hereafter be integrated by parts

$$\int_0^L u''(x)v(x)dx = -\int_0^L u'(x)v'(x)dx + [vu']_0^L$$
$$= -\int_0^L u'(x)v'(x)dx + u'(L)v(L) - u'(0)v(0)$$

Motivation:

• Lowers the order of derivatives

- Gives more symmetric forms (incl. matrices)
- Enables easy handling of Neumann boundary conditions
- Finite element basis functions φ_i have discontinuous derivatives (at cell boundaries) and are not suited for terms with φ_i''

We use a boundary function to deal with non-zero Dirichlet boundary conditions

- What about nonzero Dirichlet conditions? Say u(L) = D
- We always require $\psi_i(L)=0$ (i.e., $\psi_i=0$ where Dirichlet conditions applies)
- Problem: $u(L) = \sum_{j} c_j \psi_j(L) = \sum_{j} c_j \cdot 0 = 0 \neq D$ always!
- Solution: $u(x) = B(x) + \sum_{j} c_{j} \psi_{j}(x)$
- B(x): user-constructed boundary function that fulfills the Dirichlet conditions
- If u(L) = D, make sure B(L) = D
- No restrictions of how B(x) varies in the interior of Ω

Example on constructing a boundary function for two Dirichlet conditions

Dirichlet conditions: u(0) = C and u(L) = D. Choose for example

$$B(x) = \frac{1}{L}(C(L-x) + Dx): \qquad B(0) = C, \ B(L) = D$$

$$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x),$$

$$u(0) = B(0) = C, \quad u(L) = B(L) = D$$

Example on constructing a boundary function for one Dirichlet conditions

Dirichlet condition: u(L) = D. Choose for example

$$B(x) = D$$
: $B(L) = D$
 $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x),$
 $u(L) = B(L) = D$

With a B(x), $u \notin V$, but $\sum_{j} c_{j} \psi_{j} \in V$

- $\{\psi_i\}_{i\in\mathcal{I}_s}$ is a basis for V
- $\sum_{j \in \mathcal{I}_s} c_j \psi_j(x) \in V$
- But $u \notin V!$
- Reason: say u(0) = C and $u \in V$; any $v \in V$ has v(0) = C, then $2u \notin V$ because 2u(0) = 2C (wrong value)
- When $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(x)$, $B \notin V$ (in general) and $u \notin V$, but $(u B) \in V$ since $\sum_j c_j \psi_j \in V$

Abstract notation for variational formulations

The finite element literature (and much FEniCS documentation) applies an abstract notation for the variational formulation:

Find $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

Example on abstract notation

$$-u'' = f$$
, $u'(0) = C$, $u(L) = D$, $u = D + \sum_{j} c_j \psi_j$

Variational formulation:

$$\int_{\Omega} u'v'dx = \int_{\Omega} fvdx - v(0)C \quad \text{or} \quad (u',v') = (f,v) - v(0)C \quad \forall v \in V$$

Abstract formulation: find $(u - B) \in V$ such that

$$a(u, v) = L(v) \quad \forall v \in V$$

We identify

$$a(u, v) = (u', v'), L(v) = (f, v) - v(0)C$$

Bilinear and linear forms

- a(u, v) is a bilinear form
- L(v) is a linear form

Linear form means

$$L(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 L(v_1) + \alpha_2 L(v_2),$$

Bilinear form means

$$a(\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 a(u_1, v) + \alpha_2 a(u_2, v),$$

$$a(u, \alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 a(u, v_1) + \alpha_2 a(u, v_2)$$

In nonlinear problems: Find $(u - B) \in V$ such that $F(u; v) = 0 \ \forall v \in V$

The linear system associated with the abstract form

$$a(u,v) = L(v) \quad \forall v \in V \quad \Leftrightarrow \quad a(u,\psi_i) = L(\psi_i) \quad i \in \mathcal{I}_s$$

We can now derive the corresponding linear system once and for all by inserting $u = B + \sum_j c_j \psi_j$:

$$a(B + \sum_{j \in \mathcal{I}_s} c_j \psi_j, \psi_i) c_j = L(\psi_i) \quad i \in \mathcal{I}_s$$

Because of linearity,

$$\sum_{j \in \mathcal{I}_s} \underbrace{a(\psi_j, \psi_i)}_{A_{i,i}} c_j = \underbrace{L(\psi_i) - a(B, \psi_i)}_{b_i} \quad i \in \mathcal{I}_s$$

Equivalence with minimization problem

If a is symmetric: a(u, v) = a(v, u),

$$a(u, v) = L(v) \quad \forall v \in V$$

is equivalent to minimizing the functional

$$F(v) = \frac{1}{2}a(v,v) - L(v)$$

over all functions $v \in V$. That is,

$$F(u) \le F(v) \quad \forall v \in V$$

- Much used in the early days of finite elements
- Still much used in structural analysis and elasticity
- Not as general as Galerkin's method (since we require a(u, v) = a(v, u))

Examples on variational formulations

Goal. Derive variational formulations for some prototype differential equations in 1D that include

- variable coefficients
- mixed Dirichlet and Neumann conditions
- nonlinear coefficients

Variable coefficient; problem

$$-\frac{d}{dx}\left(\alpha(x)\frac{du}{dx}\right) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u(L) = D$$

- Variable coefficient $\alpha(x)$
- $V = \operatorname{span}\{\psi_0, \dots, \psi_N\}$
- Nonzero Dirichlet conditions at x = 0 and x = L
- Must have $\psi_i(0) = \psi_i(L) = 0$
- Any $v \in V$ has then v(0) = v(L) = 0
- $B(x) = C + \frac{1}{L}(D C)x$

$$u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \psi_i(x),$$

Variable coefficient; Galerkin principle

$$R = -\frac{d}{dx} \left(a \frac{du}{dx} \right) - f$$

Galerkin's method:

$$(R, v) = 0, \quad \forall v \in V$$

or with integrals:

$$\int_{\Omega} \left(-\frac{d}{dx} \left(\alpha \frac{du}{dx} \right) - f \right) v \, \mathrm{d}x = 0, \quad \forall v \in V$$

Variable coefficient; integration by parts

$$-\int_{\Omega} \frac{d}{dx} \left(\alpha(x) \frac{du}{dx} \right) v \, dx = \int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} \, dx - \left[\alpha \frac{du}{dx} v \right]_{0}^{L}$$

Boundary terms vanish since v(0) = v(L) = 0

Variable coefficient; variational formulation

Variational formulation. Find $(u - B) \in V$ such that

$$\int_{\Omega} \alpha(x) \frac{du}{dx} \frac{dv}{dx} dx = \int_{\Omega} f(x)v dx, \quad \forall v \in V$$

Compact notation:

$$\underbrace{(\alpha u', v')}_{a(u,v)} = \underbrace{(f, v)}_{L(v)}, \quad \forall v \in V$$

Variable coefficient; linear system (the easy way)

With

$$a(u, v) = (\alpha u', v'), \quad L(v) = (f, v)$$

we can just use the formula for the linear system:

$$A_{i,j} = a(\psi_j, \psi_i) = (\alpha \psi_j', \psi_i') = \int_{\Omega} \alpha \psi_j' \psi_i' \, \mathrm{d}x = \int_{\Omega} \psi_i' \alpha \psi_j' \, \mathrm{d}x \quad (= a(\psi_i, \psi_j) = A_{j,i}$$
$$b_i = (f, \psi_i) - (\alpha B', \psi_i) = \int_{\Omega} (f \psi_i - \alpha L^{-1}(D - C)\psi_i') \, \mathrm{d}x$$

Variable coefficient; linear system (full derivation)

 $v = \psi_i$ and $u = B + \sum_j c_j \psi_j$:

$$(\alpha B' + \alpha \sum_{j \in \mathcal{I}_s} c_j \psi'_j, \psi'_i) = (f, \psi_i), \quad i \in \mathcal{I}_s$$

Reorder to form linear system:

$$\sum_{i \in \mathcal{I}} (\alpha \psi_j', \psi_i') c_j = (f, \psi_i) + (aL^{-1}(D - C), \psi_i'), \quad i \in \mathcal{I}_s$$

This is $\sum_{j} A_{i,j} c_j = b_i$ with

$$A_{i,j} = (a\psi'_j, \psi'_i) = \int_{\Omega} \alpha(x)\psi'_j(x)\psi'_i(x) dx$$
$$b_i = (f, \psi_i) + (aL^{-1}(D - C), \psi'_i) = \int_{\Omega} \left(f\psi_i + \alpha \frac{D - C}{L} \psi'_i \right) dx$$

First-order derivative in the equation and boundary condition; problem

$$-u''(x) + bu'(x) = f(x), \quad x \in \Omega = [0, L], \ u(0) = C, \ u'(L) = E$$

New features:

- first-order derivative u' in the equation
- boundary condition with u': u'(L) = E

Initial steps:

- Must force $\psi_i(0) = 0$ because of Dirichlet condition at x = 0
- Boundary function: B(x) = C(L x) or just B(x) = C
- No requirements on $\psi_i(L)$ (no Dirichlet condition at x=L)

First-order derivative in the equation and boundary condition; details

$$u = C + \sum_{j \in \mathcal{I}_s} c_j \psi_i(x)$$

Galerkin's method: multiply by v, integrate over Ω , integrate by parts.

$$(-u'' + bu' - f, v) = 0, \quad \forall v \in V$$

$$(u',v') + (bu',v) = (f,v) + [u'v]_0^L, \quad \forall v \in V$$
$$[u'v]_0^L = u'(L)v(L) - u'(0)v(0) = Ev(L) \text{ since } v(0) = 0 \text{ and } u'(L) = E$$
$$(u',v') + (bu',v) = (f,v) + Ev(L), \quad \forall v \in V$$

First-order derivative in the equation and boundary condition; observations

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V$$

Important observations:

- The boundary term can be used to implement Neumann conditions
- Forgetting the boundary term implies the condition u' = 0 (!)
- Such conditions are called *natural boundary conditions*

First-order derivative in the equation and boundary condition; abstract notation (optional)

Abstract notation:

$$a(u, v) = L(v) \quad \forall v \in V$$

With

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V$$

we have

$$a(u, v) = (u', v') + (bu', v)$$

 $L(v) = (f, v) + Ev(L)$

First-order derivative in the equation and boundary condition; linear system

Insert $u = C + \sum_{j} c_{j} \psi_{j}$ and $v = \psi_{i}$ in

$$(u'v') + (bu', v) = (f, v) + Ev(L), \quad \forall v \in V$$

and manipulate to get

$$\sum_{j \in \mathcal{I}_s} \underbrace{((\psi'_j, \psi'_i) + (b\psi'_j, \psi_i))}_{A_{s-1}} c_j = \underbrace{(f, \psi_i) + E\psi_i(L)}_{b_i}, \quad i \in \mathcal{I}_s$$

Observation: $A_{i,j}$ is not symmetric because of the term

$$(b\psi_j', \psi_i) = \int_{\Omega} b\psi_j' \psi_i dx \neq \int_{\Omega} b\psi_i' \psi_j dx = (\psi_i', b\psi_j)$$

Terminology: natural and essential boundary conditions

$$(u', v') + (bu', v) = (f, v) + u'(L)v(L) - u'(0)v(0)$$

- Note: forgetting the boundary terms implies u'(L) = u'(0) = 0 (unless prescribe a Dirichlet condition)
- ullet Conditions on u' are simply inserted in the variational form and called natural conditions
- Conditions on u at x = 0 requires modifying V (through $\psi_i(0) = 0$) and are known as essential conditions

Lesson learned. It is easy to forget the boundary term when integrating by parts. That mistake may prescribe a condition on u'!

Nonlinear coefficient; problem

Problem:

$$-(\alpha(u)u')' = f(u), \quad x \in [0, L], \ u(0) = 0, \ u'(L) = E$$

- V: basis $\{\psi_i\}_{i\in\mathcal{I}_s}$ with $\psi_i(0)=0$ because of u(0)=0
- How does the nonlinear coefficients $\alpha(u)$ and f(u) impact the variational formulation? (Not much!)

Nonlinear coefficient; variational formulation

Galerkin: multiply by v, integrate, integrate by parts

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} dx = \int_0^L f(u)v dx + [\alpha(u)vu']_0^L \quad \forall v \in V$$

- $\alpha(u(0))v(0)u'(0) = 0$ since v(0)
- $\alpha(u(L))v(L)u'(L) = \alpha(u(L))v(L)E$ since u'(L) = E

$$\int_0^L \alpha(u) \frac{du}{dx} \frac{dv}{dx} v \, dx = \int_0^L f(u)v \, dx + \alpha(u(L))v(L)E \quad \forall v \in V$$

or

$$(\alpha(u)u',v') = (f(u),v) + \alpha(u(L))v(L)E \quad \forall v \in V$$

Nonlinear coefficient; where does the nonlinearity cause challenges?

- Abstract notation: no a(u, v) and L(v) because a and L get nonlinear
- Abstract notation for nonlinear problems: $F(u; v) = 0 \ \forall v \in V$
- What about forming a linear system? We get a *nonlinear* system of algebraic equations
- Must use methods like Picard iteration or Newton's method to solve nonlinear algebraic equations
- But: the variational formulation was not much affected by nonlinearities

Examples on detailed computations by hand

Dirichlet and Neumann conditions; problem

$$-u''(x) = f(x), \quad x \in \Omega = [0, 1], \quad u'(0) = C, \ u(1) = D$$

- Use a global polynomial basis $\psi_i \sim x^i$ on [0,1]
- Because of u(1) = D: $\psi_i(1) = 0$
- Basis: $\psi_i(x) = (1-x)^{i+1}, \quad i \in \mathcal{I}_s$
- Boundary function: B(x) = Dx
- $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \varphi_j = Dx + \sum_{j \in \mathcal{I}_s} c_j (1-x)^{i+1}$

Variational formulation: find $(u - B) \in V$ such that

$$(u, \psi_i') = (f, \psi_i) - (B', \psi_i) - C\psi_i(0), i \in \mathcal{I}_s$$

Dirichlet and Neumann conditions; linear system

Insert $u(x) = B(x) + \sum_{j \in \mathcal{I}_s} c_j \varphi_j$ and derive

$$\sum_{j \in \mathcal{I}_s} A_{i,j} c_j = b_i, \quad i \in \mathcal{I}_s$$

with

$$A_{i,j} = (\psi'_j, \psi'_i)$$
$$b_i = (f, \psi_i) - (D, \psi'_i) - C\psi_i(0)$$

Dirichlet and Neumann conditions; integration

$$A_{i,j} = (\psi'_j, \psi'_i) = \int_0^1 \psi'_i(x)\psi'_j(x)dx = \int_0^1 (i+1)(j+1)(1-x)^{i+j}dx$$

Choose f(x) = 2:

$$b_i = (2, \psi_i) - (D, \psi_i') - C\psi_i(0)$$

=
$$\int_0^1 (2(1-x)^{i+1} - D(i+1)(1-x)^i) dx - C\psi_i(0)$$

Dirichlet and Neumann conditions; 2×2 system

Can easily do the integrals with sympy. N = 1 and $\mathcal{I}_s = \{0, 1\}$:

$$\begin{pmatrix} 1 & 1 \\ 1 & 4/3 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} -C+D+1 \\ 2/3-C+D \end{pmatrix}$$
$$c_0 = -C+D+2, \quad c_1 = -1,$$

$$u(x) = 1 - x^2 + D + C(x - 1)$$
 (exact solution)

When is the numerical method is exact?

Assume that apart from boundary conditions, u_e lies in the same space V as where we seek u:

$$\begin{aligned} u &= B + \textbf{\textit{F}}, \quad F \in V \\ a(B + F, v) &= L(v), \quad \forall v \in V \\ u_{e} &= B + \textbf{\textit{E}}, \quad E \in V \\ a(B + E, v) &= L(v), \quad \forall v \in V \end{aligned}$$

Subtract: $a(F - E, v) = 0 \implies E = F \text{ and } u = u_e$

Computing with finite elements

Tasks:

- Address the model problem -u''(x) = 2, u(0) = u(L) = 0
- Uniform finite element mesh with P1 elements
- Show all finite element computations in detail

Variational formulation

$$-u''(x) = 2$$
, $x \in (0, L)$, $u(0) = u(L) = 0$,

Variational formulation:

$$(u', v') = (2, v) \quad \forall v \in V$$

How to deal with the boundary conditions?

Since u(0) = 0 and u(L) = 0, we must force

$$v(0) = v(L) = 0, \quad \psi_i(0) = \psi_i(L) = 0$$

Let's choose the obvious finite element basis: $\psi_i = \varphi_i, i = 0, \dots, N_n - 1$

Problem: $\varphi_0(0) \neq 0$ and $\varphi_{N_n-1}(L) \neq 0$

Solution: we just exclude φ_0 and φ_{N_n-1} from the basis and work with

$$\psi_i = \varphi_{i+1}, \quad i = 0, \dots, N = N_n - 3$$

Introduce index mapping $\nu(i)$: $\psi_i = \varphi_{\nu(i)}$

$$u = \sum_{j \in \mathcal{I}_s} c_j \varphi_{\nu(j)}, \quad i = 0, \dots, N, \quad \nu(j) = j + 1$$

Irregular numbering: more complicated $\nu(j)$ table

Computation in the global physical domain; formulas

$$A_{i,j} = \int_0^L \varphi'_{i+1}(x)\varphi'_{j+1}(x)dx, \quad b_i = \int_0^L 2\varphi_{i+1}(x)dx$$

Many will prefer to change indices to obtain a $\varphi_i'\varphi_j'$ product: $i+1\to i,$ $j+1\to j$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) dx, \quad b_{i-1} = \int_0^L 2\varphi_i(x) dx$$

Computation in the global physical domain; details

$$A_{i-1,i-1} = h^{-2}2h = 2h^{-1}, \quad A_{i-1,i-2} = h^{-1}(-h^{-1})h = -h^{-1}$$

and $A_{i-1,i} = A_{i-1,i-2}$

$$b_{i-1} = 2(\frac{1}{2}h + \frac{1}{2}h) = 2h$$

Computation in the global physical domain; linear system

Write out the corresponding difference equation

General equation at node i:

$$-\frac{1}{h}c_{i-1} + \frac{2}{h}c_i - \frac{1}{h}c_{i+1} = 2h$$

Now, $c_i = u(x_{i+1}) \equiv u_{i+1}$. Writing out the equation at node i-1,

$$-\frac{1}{h}c_{i-2} + \frac{2}{h}c_{i-1} - \frac{1}{h}c_i = 2h$$

translates directly to

$$-\frac{1}{h}u_{i-1} + \frac{2}{h}u_i - \frac{1}{h}u_{i+1} = 2h$$

Comparison with a finite difference discretization

The standard finite difference method for -u'' = 2 is

$$-\frac{1}{h^2}u_{i-1} + \frac{2}{h^2}u_i - \frac{1}{h^2}u_{i+1} = 2$$

Multiply by h!

The finite element method and the finite difference method are identical in this example.

(Remains to study the equations at the end points, which involve boundary values - but these are also the same for the two methods)

Cellwise computations; formulas

- Repeat the previous example, but apply the cellwise algorithm
- Work with one cell at a time
- Transform physical cell to reference cell $X \in [-1, 1]$

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{d}{dx} \tilde{\varphi}_r(X) \frac{d}{dx} \tilde{\varphi}_s(X) \frac{h}{2} \, \mathrm{d}X,$$
$$\tilde{\varphi}_0(X) = \frac{1}{2} (1 - X), \quad \tilde{\varphi}_1(X) = \frac{1}{2} (1 + X)$$
$$\frac{d\tilde{\varphi}_0}{dX} = -\frac{1}{2}, \quad \frac{d\tilde{\varphi}_1}{dX} = \frac{1}{2}$$

From the chain rule

$$\frac{d\tilde{\varphi}_r}{dx} = \frac{d\tilde{\varphi}_r}{dX}\frac{dX}{dx} = \frac{2}{h}\frac{d\tilde{\varphi}_r}{dX}$$

Cellwise computations; details

$$A_{i-1,j-1}^{(e)} = \int_{\Omega^{(e)}} \varphi_i'(x) \varphi_j'(x) \, \mathrm{d}x = \int_{-1}^1 \frac{2}{h} \frac{d\tilde{\varphi}_r}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_s}{dX} \frac{h}{2} \, \mathrm{d}X = \tilde{A}_{r,s}^{(e)}$$

$$b_{i-1}^{(e)} = \int_{\Omega(e)} 2\varphi_i(x) \, \mathrm{d}x = \int_{-1}^1 2\tilde{\varphi}_r(X) \frac{h}{2} \, \mathrm{d}X = \tilde{b}_r^{(e)}, \quad i = q(e, r), \ r = 0, 1$$

Must run through all r, s = 0, 1 and r = 0, 1 and compute each entry in the element matrix and vector:

$$\tilde{A}^{(e)} = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(e)} = h \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Example:

$$\tilde{A}_{0,1}^{(e)} = \int_{-1}^{1} \frac{2}{h} \frac{d\tilde{\varphi}_0}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_1}{dX} \frac{h}{2} dX = \frac{2}{h} (-\frac{1}{2}) \frac{2}{h} \frac{1}{2} \frac{h}{2} \int_{-1}^{1} dX = -\frac{1}{h}$$

Cellwise computations; details of boundary cells

- The boundary cells involve only one unknown
- $\Omega^{(0)}$: left node value known, only a contribution from right node
- $\Omega^{(N_e)}$: right node value known, only a contribution from left node

For e = 0 and $= N_e$:

$$\tilde{A}^{(e)} = \frac{1}{h} \left(1 \right), \quad \tilde{b}^{(e)} = h \left(1 \right)$$

Only one degree of freedom ("node") in these cells (r = 0 counts the only dof)

Cellwise computations; assembly

4 P1 elements:

```
vertices = [0, 0.5, 1, 1.5, 2]
cells = [[0, 1], [1, 2], [2, 3], [3, 4]]
dof_map = [[0], [0, 1], [1, 2], [2]]  # only 1 dof in elm
    0, 3
```

Python code for the assembly algorithm:

Result: same linear system as arose from computations in the physical domain

General construction of a boundary function

- Now we address nonzero Dirichlet conditions
- B(x) is not always easy to construct (i.e., extend to the interior of Ω), especially not in 2D and 3D
- With finite element basis functions, φ_i , B(x) can be constructed in a completely general way (!)

Define

- I_b : set of indices with nodes where u is known
- U_i : Dirichlet value of u at node $i, i \in I_b$

The general formula for B is now

$$B(x) = \sum_{j \in I_b} U_j \varphi_j(x)$$

Explanation

Suppose we have a Dirichlet condition $u(x_k) = U_k$, $k \in I_b$:

$$u(x_k) = \sum_{j \in I_b} U_j \underbrace{\varphi_j(x)}_{\neq 0 \text{ only for } j=k} + \sum_{j \in \mathcal{I}_s} c_j \underbrace{\varphi_{\nu(j)}(x_k)}_{=0, \ k \notin \mathcal{I}_s} = U_k$$

Example with two *nonzero* Dirichlet values; variational formulation

$$-u'' = 2$$
, $u(0) = C$, $u(L) = D$

$$\int_0^L u'v' \, \mathrm{d}x = \int_0^L 2v \, \mathrm{d}x \quad \forall v \in V$$

$$(u', v') = (2, v) \quad \forall v \in V$$

Example with two Dirichlet values; boundary function

$$B(x) = \sum_{j \in I_b} U_j \varphi_j(x)$$

Here $I_b = \{0, N_n - 1\}, \, U_0 = C, \, U_{N_n - 1} = D; \, \psi_i$ are the internal φ_i functions:

$$\psi_i = \varphi_{\nu(i)}, \quad \nu(i) = i + 1, \quad i \in \mathcal{I}_s = \{0, \dots, N = N_n - 3\}$$

$$u(x) = \underbrace{C \cdot \varphi_0 + D\varphi_{N_n - 1}}_{B(x)} + \sum_{j \in \mathcal{I}_s} c_j \varphi_{j+1}$$
$$= C \cdot \varphi_0 + D\varphi_{N_n - 1} + c_0 \varphi_1 + c_1 \varphi_2 + \dots + c_N \varphi_{N_n - 2}$$

Example with two Dirichlet values; details

Insert $u = B + \sum_{j} c_{j} \psi_{j}$ in variational formulation:

$$(u',v')=(2,v)$$
 \Rightarrow $(\sum_{j}c_{j}\psi'_{j},\psi'_{i})=(2-B',\psi_{i})$ $\forall v \in V$

$$A_{i-1,j-1} = \int_0^L \varphi_i'(x)\varphi_j'(x) dx$$

$$b_{i-1} = \int_0^L (f(x)\varphi_i(x) - B'(x)\varphi_i'(x)) dx, \quad B'(x) = C\varphi_0'(x) + D\varphi_{N_n-1}'(x)$$

for $i, j = 1, \dots, N + 1 = N_n - 1$.

New boundary terms from $-\int B'\varphi_i' dx$: C/2 for i=1 and -D/2 for $i=N_n-2$

Example with two Dirichlet values; cellwise computations

- All element matrices are as in the previous example
- New element vector in the first and last cell

From the last cell:

$$\tilde{b}_0^{(N_e)} = \int_{-1}^1 \left(f \tilde{\varphi}_0 - D \frac{2}{h} \frac{d\tilde{\varphi}_1}{dX} \frac{2}{h} \frac{d\tilde{\varphi}_0}{dX} \right) \frac{h}{2} dX = h + \frac{D}{h}$$

From the first cell:

$$\tilde{b}_0^{(0)} = \int_{-1}^1 \left(f \tilde{\varphi}_1 - C \frac{2}{h} \frac{d\tilde{\varphi}_0}{dX} \frac{2}{h} \frac{\tilde{\varphi}_1}{dX} \right) \frac{h}{2} dX = h + \frac{C}{h}$$

hpl 1: These calculations had some errors - redo them in detail!

Modification of the linear system; ideas

- Method 1: incorporate Dirichlet values through a B(x) function and demand $\psi_i = 0$ where Dirichlet values apply
- Method 2: drop B(x), drop demands to ψ_i , just assemble as if there were no Dirichlet conditions, and modify the linear system instead

Method 2: always choose $\psi_i = \varphi_i$ for all $i \in \mathcal{I}_s$ and set

$$u(x) = \sum_{j \in \mathcal{I}_s} c_j \varphi_j(x), \quad \mathcal{I}_s = \{0, \dots, N = N_n - 1\}$$

Attractive way of incorporating Dirichlet conditions. u is treated as unknown at all boundaries when computing entries in the linear system

Modification of the linear system; original system

$$-u'' = 2$$
, $u(0) = 0$, $u(L) = D$

Assemble as if there were no Dirichlet conditions:

Modification of the linear system; row replacement

- Dirichlet condition $u(x_k) = U_k$ means $c_k = U_k$ (since $c_k = u(x_k)$)
- Replace first row by $c_0 = 0$
- Replace last row by $c_N = D$

$$\frac{1}{h} \begin{pmatrix}
h & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & & & & \vdots \\
0 & -1 & 2 & -1 & \ddots & & & & \vdots \\
\vdots & \ddots & & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & -1 & 2 & -1 & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & & & \ddots & \ddots & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 & h
\end{pmatrix}
\begin{pmatrix}
c_0 \\ \vdots \\ c_N
\end{pmatrix}$$

Modification of the linear system; element matrix/vector

In cell 0 we know u for local node (degree of freedom) r=0. Replace the first cell equation by $\tilde{c}_0=0$:

$$\tilde{A}^{(0)} = A = \frac{1}{h} \left(\begin{array}{cc} h & 0 \\ -1 & 1 \end{array} \right), \quad \tilde{b}^{(0)} = \left(\begin{array}{c} 0 \\ h \end{array} \right)$$

In cell N_e we know u for local node r=1. Replace the last equation in the cell system by $\tilde{c}_1=D$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & -1 \\ 0 & h \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h \\ D \end{pmatrix}$$

Symmetric modification of the linear system; algorithm

- The modification above destroys symmetry of the matrix: e.g., $A_{0,1} \neq A_{1,0}$
- Symmetry is often important in 2D and 3D (faster computations, less storage)
- A more complex modification can preserve symmetry!

Algorithm for incorporating $c_i = U_i$ in a symmetric way:

- 1. Subtract column i times U_i from the right-hand side
- 2. Zero out column and row no i
- 3. Place 1 on the diagonal
- 4. Set $b_i = U_i$

Symmetric modification of the linear system; example

Symmetric modification of the linear system; element level Symmetric modification applied to $\tilde{A}^{(N_e)}$:

$$\tilde{A}^{(N_e)} = A = \frac{1}{h} \begin{pmatrix} 1 & 0 \\ 0 & h \end{pmatrix}, \quad \tilde{b}^{(N_e)} = \begin{pmatrix} h + D/h \\ D \end{pmatrix}$$

Boundary conditions: specified derivative

Neumann conditions. How can we incorporate u'(0) = C with finite elements?

$$-u'' = f$$
, $u'(0) = C$, $u(L) = D$

- $\psi_i(L) = 0$ because of Dirichlet condition u(L) = D (or no demand and modify linear system)
- No demand to $\psi_i(0)$
- The condition u'(0) = C will be handled (as usual) through a boundary term arising from integration by parts

The variational formulation

Galerkin's method:

$$\int_0^L (u''(x) + f(x))\psi_i(x)dx = 0, \quad i \in \mathcal{I}_s$$

Integration of $u''\psi_i$ by parts:

$$\int_0^L u'(x)\psi_i'(x) dx - (u'(L)\psi_i(L) - u'(0)\psi_i(0)) - \int_0^L f(x)\psi_i(x) dx = 0$$

- $u'(L)\psi_i(L) = 0$ since $\psi_i(L) = 0$
- $u'(0)\psi_i(0) = C\psi_i(0)$ since u'(0) = C

Method 1: Boundary function and exclusion of Dirichlet degrees of freedom

- $\psi_i = \varphi_i, i \in \mathcal{I}_s = \{0, \dots, N = N_n 2\}$
- $B(x) = D\varphi_{N_n-1}(x), u = B + \sum_{j=0}^{N} c_j \varphi_j$

$$\int_0^L u'(x)\varphi_i'(x)dx = \int_0^L f(x)\varphi_i(x)dx - C\varphi_i(0), \quad i \in \mathcal{I}_s$$

$$\sum_{i=0}^{N} \left(\int_{0}^{L} \varphi_{i}' \varphi_{j}' dx \right) c_{j} = \int_{0}^{L} \left(f \varphi_{i} - D \varphi_{N}' \varphi_{i} \right) dx - C \varphi_{i}(0)$$

for $i = 0, ..., N = N_n - 2$.

Method 2: Use all φ_i and insert the Dirichlet condition in the linear system

- Now $\psi_i = \varphi_i$, $i = 0, \dots, N = N_n 1$ (all nodes)
- $\varphi_N(L) \neq 0$, so $u'(L)\varphi_N(L) \neq 0$
- However, the term $u'(L)\varphi_N(L)$ in b_N will be erased when we insert the Dirichlet value in $b_N=D$

We can therefore forget about the term $u'(L)\varphi_i(L)!$

Boundary terms $u'\varphi_i$ at points x_i where Dirichlet values apply can always be forgotten.

$$u(x) = \sum_{j=0}^{N=N_n-1} c_j \varphi_j(x)$$
$$\sum_{i=0}^{N=N_n-1} \left(\int_0^L \varphi_i'(x) \varphi_j'(x) dx \right) c_j = \int_0^L f(x) \varphi_i(x) dx - C \varphi_i(0)$$

Assemble entries for $i=0,\ldots,N=N_n-1$ and then modify the last equation to $c_N=D$

How the Neumann condition impacts the element matrix and vector

The extra term $C\varphi_0(0)$ affects only the element vector from the first cell since $\varphi_0 = 0$ on all other cells.

$$\tilde{A}^{(0)} = A = \frac{1}{h} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad \tilde{b}^{(0)} = \begin{pmatrix} h - C \\ h \end{pmatrix}$$

The finite element algorithm

The differential equation problem defines the integrals in the variational formulation.

Request these functions from the user:

```
integrand_lhs(phi, r, s, x)
boundary_lhs(phi, r, s, x)
integrand_rhs(phi, r, x)
boundary_rhs(phi, r, x)
```

Must also have a mesh with vertices, cells, and dof_map

Python pseudo code; the element matrix and vector

```
<Declare global matrix, global rhs: A, b>
# Loop over all cells
for e in range(len(cells)):
    # Compute element matrix and vector
   n = len(dof_map[e]) # no of dofs in this element
   h = vertices[cells[e][1]] - vertices[cells[e][0]]
   <Declare element matrix, element vector: A_e, b_e>
   # Integrate over the reference cell
   points, weights = <numerical integration rule>
    for X, w in zip(points, weights):
       phi = <basis functions + derivatives at X>
       detJ = h/2
       x = <affine mapping from X>
       for r in range(n):
            for s in range(n):
                A_e[r,s] += integrand_lhs(phi, r, s, x)*detJ*w
            b_e[r] += integrand_rhs(phi, r, x)*detJ*w
    # Add boundary terms
   for r in range(n):
       for s in range(n):
            A_e[r,s] += boundary_lhs(phi, r, s, x)*detJ*w
       b_e[r] += boundary_rhs(phi, r, x)*detJ*w
```

Python pseudo code; boundary conditions and assembly

```
for e in range(len(cells)):
    # Incorporate essential boundary conditions
    for r in range(n):
        global_dof = dof_map[e][r]
        if global_dof in essbc_dofs:
            \# dof r is subject to an essential condition
            value = essbc_docs[global_dof]
            # Symmetric modification
            b_e -= value * A_e[:,r]
            A_e[r,:] = 0
            A_e[:,r] = 0
            A_e[r,r] = 1
            b_e[r] = value
    # Assemble
    for r in range(n):
        for s in range(n):
            A[dof_map[e][r], dof_map[e][r]] += A_e[r,s]
        b[dof_map[e][r] += b_e[r]
<solve linear system>
```

Variational formulations in 2D and 3D

How to do integration by parts is the major difference when moving to 2D and 3D.

Integration by parts

Rule for multi-dimensional integration by parts.

$$-\int_{\Omega} \nabla \cdot (a(\boldsymbol{x})\nabla u)v \, d\boldsymbol{x} = \int_{\Omega} a(\boldsymbol{x})\nabla u \cdot \nabla v \, d\boldsymbol{x} - \int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, d\boldsymbol{s}$$

- \int_{Ω} () dx: area (2D) or volume (3D) integral
- $\int_{\partial\Omega}$ () ds: line(2D) or surface (3D) integral
- $\partial \Omega_N$: Neumann conditions $-a \frac{\partial u}{\partial n} = g$
- $\partial \Omega_D$: Dirichlet conditions $u = u_0$
- $v \in V$ must vanish on $\partial \Omega_D$ (in method 1)

Example on integration by parts; problem

$$egin{aligned} oldsymbol{v} \cdot
abla u + lpha u &=
abla \cdot (a
abla u) + f, & oldsymbol{x} \in \Omega \ u &= u_0, & oldsymbol{x} \in \partial \Omega_D \ -a rac{\partial u}{\partial n} &= g, & oldsymbol{x} \in \partial \Omega_N \end{aligned}$$

- Known: a, α , f, u_0 , and g.
- \bullet Second-order PDE: must have exactly one boundary condition at each point of the boundary

Method 1 with boundary function and $\psi_i = 0$ on $\partial \Omega_D$:

$$u(\mathbf{x}) = B(\mathbf{x}) + \sum_{j \in \mathcal{I}_s} c_j \psi_j(\mathbf{x}), \quad B(\mathbf{x}) = u_0(\mathbf{x})$$

Example on integration by parts in 1D/2D/3D

Galerkin's method: multiply by $v \in V$ and integrate over Ω ,

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, dx = \int_{\Omega} \nabla \cdot (a \nabla u) v \, dx + \int_{\Omega} f v \, dx$$

Integrate the second-order term by parts:

$$\int_{\Omega} \nabla \cdot (a \nabla u) v \, \mathrm{d}x = -\int_{\Omega} a \nabla u \cdot \nabla v \, \mathrm{d}x + \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s,$$

Result:

$$\int_{\Omega} (\mathbf{v} \cdot \nabla u + \alpha u) v \, dx = -\int_{\Omega} a \nabla u \cdot \nabla v \, dx + \int_{\partial \Omega} a \frac{\partial u}{\partial n} v \, ds + \int_{\Omega} f v \, dx$$

Incorporation of the Neumann condition in the variational formulation

Note: $v \neq 0$ only on $\partial \Omega_N$ (since v = 0 on $\partial \Omega_D$):

$$\int_{\partial\Omega} a \frac{\partial u}{\partial n} v \, \mathrm{d}s = \int_{\partial\Omega_N} \underbrace{a \frac{\partial u}{\partial n}}_{-a} v \, \mathrm{d}s = -\int_{\partial\Omega_N} g v \, \mathrm{d}s$$

The final variational form:

$$\int_{\Omega} (\boldsymbol{v} \cdot \nabla u + \alpha u) v \, \mathrm{d}x = -\int_{\Omega} a \nabla u \cdot \nabla v \, \mathrm{d}x - \int_{\partial \Omega_N} g v \, \mathrm{d}s + \int_{\Omega} f v \, \mathrm{d}x$$

Or with inner product notation:

$$(\boldsymbol{v} \cdot \nabla u, v) + (\alpha u, v) = -(a\nabla u, \nabla v) - (q, v)_N + (f, v)$$

 $(g,v)_N$: line or surface integral over $\partial\Omega_N$.

Derivation of the linear system

- $\forall v \in V$ is replaced by for all ψ_i , $i \in \mathcal{I}_s$
- Insert $u = B + \sum_{j \in \mathcal{I}_s} c_j \psi_j$, $B = u_0$, in the variational form
- Identify i, j terms (matrix) and i terms (right-hand side)
- Write on form $\sum_{i \in \mathcal{I}_s} A_{i,j} c_j = b_i, i \in \mathcal{I}_s$

$$A_{i,j} = (\boldsymbol{v} \cdot \nabla \psi_j, \psi_i) + (\alpha \psi_j, \psi_i) + (a \nabla \psi_j, \nabla \psi_i)$$

$$b_i = (g, \psi_i)_N + (f, \psi_i) - (\boldsymbol{v} \cdot \nabla u_0, \psi_i) + (\alpha u_0, \psi_i) + (a \nabla u_0, \nabla \psi_i)$$

Transformation to a reference cell in 2D/3D (1)

We want to compute an integral in the physical domain by integrating over the reference cell.

$$\int_{\Omega^{(e)}} a(\boldsymbol{x}) \nabla \varphi_i \cdot \nabla \varphi_j \, \mathrm{d} x$$

Mapping from reference to physical coordinates:

with Jacobian J,

$$J_{i,j} = \frac{\partial x_j}{\partial X_i}$$

Transformation to a reference cell in 2D/3D (2)

- $dx \to \det J dX$.
- Must express $\nabla \varphi_i$ by an expression with $\tilde{\varphi}_r$, i = q(e, r): $\nabla \tilde{\varphi}_r(\boldsymbol{X})$
- We want $\nabla_{\boldsymbol{x}} \tilde{\varphi}_r(\boldsymbol{X})$ (derivatives wrt \boldsymbol{x})
- What we readily have is $\nabla_{\boldsymbol{X}}\tilde{\varphi}_r(\boldsymbol{X})$ (derivative wrt \boldsymbol{X})
- Need to transform $\nabla_{\boldsymbol{X}} \tilde{\varphi}_r(\boldsymbol{X})$ to $\nabla_{\boldsymbol{x}} \tilde{\varphi}_r(\boldsymbol{X})$

Transformation to a reference cell in 2D/3D (3)

Can derive

$$\nabla_{\boldsymbol{X}} \tilde{\varphi}_r = J \cdot \nabla_{\boldsymbol{x}} \varphi_i$$
$$\nabla_{\boldsymbol{x}} \varphi_i = \nabla_{\boldsymbol{x}} \tilde{\varphi}_r(\boldsymbol{X}) = J^{-1} \cdot \nabla_{\boldsymbol{X}} \tilde{\varphi}_r(\boldsymbol{X})$$

Integral transformation from physical to reference coordinates:

$$\int_{\Omega^{(e)}} a(\boldsymbol{x}) \nabla_{\boldsymbol{x}} \varphi_i \cdot \nabla_{\boldsymbol{x}} \varphi_j \, \mathrm{d}\boldsymbol{x} = \int_{\tilde{\Omega}^r} a(\boldsymbol{x}(\boldsymbol{X})) (J^{-1} \cdot \nabla_{\boldsymbol{X}} \tilde{\varphi}_r) \cdot (J^{-1} \cdot \nabla \tilde{\varphi}_s) \, \mathrm{det} \, J \, \mathrm{d}\boldsymbol{X}$$

Numerical integration

Numerical integration over reference cell triangles and tetrahedra:

$$\int_{\tilde{\Omega}^r} g \, \mathrm{d}X = \sum_{j=0}^{n-1} w_j g(\bar{\boldsymbol{X}}_j)$$

Module numint.py contains different rules:

- Triangle: rules with n = 1, 3, 4, 7 integrate exactly polynomials of degree 1, 2, 3, 4, resp.
- Tetrahedron: rules with n=1,4,5,11 integrate exactly polynomials of degree 1,2,3,4, resp.