西岛财行大学

《数据库系统概论》课程设计报告

排课管理系统

班级: ____计本 1801_____

学号: ___1831050010 _____

姓名: ___陈伯硕_____

目录

1	系统	统需求分析	4
	1.1	需求概述	4
		1.1.1 课程设计要求	4
		1.1.2 实体集	4
	1.2	组织结构分析	4
	1.3	管理功能分析	4
	1.4	业务流分析	5
		1.4.1 管理员业务	5
		1.4.2 教师查询	6
	1.5	数据流分析	7
	1.6	数据字典	8
		1.6.1 数据字典	8
		1.6.2 数据结构	9
		1.6.3 数据流描述	10
	1.7	实体分析	11
	1.8	属性分析	11
	1.9	联系分析	11
	1.10) 概念模型设计	11
2	数	据库概念结构设计	11
	2.1	概念模型转化为逻辑模型	11
		2.1.1 一对一关系的转化	11
		2.1.2 一对多关系的转化	11
		2.1.3 多对多关系的转化	11
	2.2	逻辑模型设计	11
3	数	据库逻辑结构设计	11
	3.1	概念模型转化为逻辑模型	11
	3.2	逻辑模型设计	11
4	数	据库的物理实现	11
	4.1	表设计	11
	4.2	创建表和完整性约束代码设计	12

	4.3	创建视图、	索引、	存储	过程	和触	发器		 						 14
5	数扎	居库功能调证	式					 	 	 	 •			•	 14
6	应月	用程序设计						 	 	 	 •			•	 15
7	设记	十总结						 	 						 15
参	考文	献							 		 _				 15

1 系统需求分析

1.1 需求概述

1.1.1 课程设计要求

对于排课管理系统,课程设计的要求如下:

- 实现班级,课程等基本信息的管理;
- 实现学生, 教师信息的管理;
- 实现班级课程及课程的任课教师和排课管理:
- 创建存储过程检测指定教师, 指定节次是否有课;
- 创建存储过程生成指定班级的课程表;
- 创建存储过程生成指定老师的课程表;
- 建立数据库相关表之间的参照完整性约束.

1.1.2 实体集

即通过数据库自动排课并提供给学生查询,让学生和老师可以查询具体时间安排. 该系统可以通过以下实体集实现

- 教学楼实体集,包含楼号和楼名;
- 教室实体集,包含楼号,教室号和容量;
- 院系实体集,包含院系编号和院系名;
- 课程实体集, 包含课程号, 课程名, 课程类型, 开课学院;
- 教师实体集, 包含教师的编号, 姓名, 院系, 职称, 研究方向1;
- 班级实体集, 班级 ID, 班级名, 人数, 所属院系;

1.2 组织结构分析

本系统适用于教师与学生对课程的管理,提供给学生,教师所有表的查看权限,数据库管理员拥有其他权限.

1.3 管理功能分析

排课是个综合系统,需要从教务系统中导入数据(或者由数据库管理员人工导入),实现课程安排,即课程管理,同时将课程的信息分别存储汇总,部分实现教师管理,时间管理,教室管理,班级管理(如图1).

¹可能是老师工作的具体院系,如"计算机系",也可能是其他研究所,如"基础数学研究所"

图 1 排课系统的管理功能

1.4 业务流分析

1.4.1 管理员业务

管理员业务如图图2

图 2 管理员的业务流

1.4.2 教师查询

教师的业务如图3

图 3 教师业务流程

1.5 数据流分析

系统外部环境图如图4

图 4 系统外部环境图

接下来将模型细化,图 5 描绘了系统的主要功能

图 5 排课系统功能的第一层数据流图

1.6 数据字典

1.6.1 数据字典

根据数据流图中所涉及的信息,并对信息进行相应的分析,确定出所有数据项的描述内容,其主要分为数据项名称、类型、长度和取值范围,如表 1所示

表 1	数据字典	(具体的数据的大小	〉参考	[4])
-----	------	-----------	-----	------

名称	含义	类型	大小	取值范围	备注
楼号	教学楼的编号	tinyint	1 B	0-255	
楼名	教学楼的名称	char(5)	15 B	长度≤5	
容量	教学楼的容量	tinyint	1 B	0-255	
院系编号	院系的编号	tinyint	1 B	0-255	
院系名	院系名	char(8)	$\leqslant 24\mathrm{B}$	0-255	
课程号	课程编号	char(20)	20 B	20 位	
课程名	课程名	char(10)	$\leqslant 30\mathrm{B}$	10 位	
类型名	课程的类型	char(10)	$\leqslant 30\mathrm{B}$		
教师号	教师编号	char(20)	20 B	20 位	
教师名	教师的姓名	char(10)	$\leqslant 30\mathrm{B}$		
职称	教师的职称	char(3)	9 B	助教, 讲师,	
				副教授,教	
				授	
班号	班级编号	char(20)	20 B	20 位	
班名	班级的全名	char(10)	$\leq 30\mathrm{B}$		

表 1 数据字典 (具体的数据的大小参考 [4])

名称	含义	类型	大小	取值范围	备注
 人数	班级人数	tinyint	1 B	0-255	
时间号	上课时间的标识	char(20)	20 B	20 位	
日	星期几	tinyint	1 B	0-255	星期用 1-5
开始时间	上课时间	tinyint	1 B	0-255	代替 假设上课时 间都是整点,
结束时间	下课时间	tinyint	1 B	0-255	24 小时制 假设下课时 间都是整点,
					24 小时制
开始周	第几周开始	tinyint	1 B	0-255	
结束周	第几周结束	tinyint	1 B	0-255	
is_odd	单周上课	bit	1 B	0,1	默认为1
is_even	双周上课	bit	1 B	0,1	默认为1
节号	上课节的标识	char(20)	20 B	20 位	
学期	在上学期或下学期	bit	1 B	0,1	每年第一学
					期为0,第二
					学期为1
年	年份	smallint	2 B	-32,768-	
				32,767	

1.6.2 数据结构

根据数据流图中的信息的分析,在数据项描述的基础上确定所有数据结构的描述, 主要有数据结构名称、含义和组成说明。本题数据结构如表 2.

表 2 数据结构说明

	含义	组成
build	教学楼信息	
classroom	教室信息	楼号, 教室号, 容量
department	院系	院系号, 院系名
course	课程信息	课程号,课程名,课程类型,开课院
		系编号
instructor	老师信息	编号,姓名,职称,院系编号,研究
		方向
class	班级	班号,班级名,人数,院系号
$time_slot$	上课时间信息	时间标识符,上课日,上课时间,下
		课时间,开始周,结束周,单周上课,
		双周上课
section	每节课的信息	课程编码,时间标识,课程号,学期,
		开课年,楼号,教室号.

1.6.3 数据流描述

根据数据流图的数据流向的分析,确定所有数据流的描述,如表3

表 3 数据流描述

数据流名	数据流来源	数据流去向	说明
课程信息	管理员导入	学生, 教师查询	记录每门课的信息
教师信息	管理员导入	学生, 教师查询	记录教师的信息
教室信息	管理员导入	学生, 教师查询	记录教室的信息
教学楼信息	管理员导入	学生, 教师查询	记录教学楼的信息
调课申请	教师申请	管理员处理	调整上课信息
调课通知	管理员处理	学生, 教师通知	调整上课信息
关注课程	学生, 教师设置	用户自己查询	学生教师关注上课信息
个人课表	数据库	用户查询	可以设置显示关注课程

- 1.7 实体分析
- 1.8 属性分析
- 1.9 联系分析
- 1.10 概念模型设计
- 2 数据库概念结构设计
- 2.1 概念模型转化为逻辑模型
- 2.1.1 一对一关系的转化
- 2.1.2 一对多关系的转化
- 2.1.3 多对多关系的转化
- 2.2 逻辑模型设计
- 3 数据库逻辑结构设计
- 3.1 概念模型转化为逻辑模型
- 3.2 逻辑模型设计
- 4 数据库的物理实现
- 4.1 表设计

数据库中各表如图 6

图 6 SQL sever 中各表设计 [1]

4.2 创建表和完整性约束代码设计

教学楼表定义:

```
create table build(
  build_id tinyint,
  name char(5) not null,
  primary key (build_id),
);
```

教室表定义:

```
create table classroom(
  build_id tinyint,
  room_number smallint not null,
  capacity smallint,
  primary key (build_id, room_number),
  foreign key (build_id) references build,
);
```

院系表定义:

```
create table department(
  dept_id tinyint,
  dept_name char(8) not null,
  primary key (dept_id),
);
```

课程表

```
create table course(
  course_id char(19),
  title char(10) not null,
  type char(10),
  depart_id tinyint not null,

primary key (course_id),
  foreign key (depart_id) references department,
);
```

教师表

```
create table instructor(
    ID char(20),
    name varchar(10) not null,
    title char(3), /* 职称*/
    depart_id tinyint not null,
    direction varchar(10), /* 研究所或者所属系 */

    primary key (ID),
    foreign key (depart_id) references department,
);
```

班级表

```
create table class(
  class_id char(20),
  class_name char(10) not null,
```

```
population tinyint,
  depart_id tinyint,

primary key (class_id),
  foreign key (depart_id) references department,
);
```

时间表

```
create table time_slot(
   time_slot_id char(20),
   day tinyint not null,
   begin_time tinyint not null,
   end_time tinyint not null,
   begin_week tinyint default 1,
   end_week tinyint,

is_in_odd bit default 1, /* 单周是否上课 */
   is_in_even bit default 1, /* 双周是否上课 */

primary key (time_slot_id),
);
```

上课表

```
create table section(
sect_id char(20),
course_id char(20),
semester bit, /* 上半年或下半年 */
year int, /* 开课年份 */
building_id tinyint not null,
room_number smallint not null,
time_slot_id char(19),

primary key (sect_id),
foreign key (course_id) references course,
foreign key (building_id,room_number) references classroom,
foreign key (time_slot_id) references time_slot,
);
```

4.3 创建视图、索引、存储过程和触发器

5 数据库功能调试

(包括视图、索引等内容的测试)

6 应用程序设计

7 设计总结

参考文献

- [1] Adam Adamowicz. How to create er diagram for existing sql server database with ssms. https://dataedo.com/kb/tools/ssms/create-database-diagram.
- [2] Riverbank Computing. Pyqt5 reference guide. https://www.riverbankcomputing.com/static/Docs/PyQt5/.
- [3] drawioapp. draw.io. https://www.draw.io/.
- [4] Microsoft. int,bigint,smallint,and tinyint (transact-sql). https://docs.microsoft.com/en-us/sql/t-sql/data-types/int-bigint-smallint-and-tinyint-transact-sql.
- [5] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. *Database system concepts*, volume 4. McGraw-Hill New York, 1997.
- [6] LLC "We Comes Before Me". Sql database modeler. https://sqldbm.com.