Algèbre linéaire 3 (L2 - 2023/2024) Feuille de TD n° 4 — Formes bilinéaires.

Cette feuille est tirée en partie des feuilles de TD proposées par Guillaume Legendre (2020 à 2022), disponibles ici : https://www.ceremade.dauphine.fr/~legendre/enseignement/alglin3/

Exercice 1. Soit $M_2(\mathbb{R})$ l'espace vectoriel des matrices à coefficients réels d'ordre 2. On considère l'application b de $M_2(\mathbb{R}) \times M_2(\mathbb{R})$ dans \mathbb{R} définie par

$$\forall (A, B) \in M_2(\mathbb{R}) \times M_2(\mathbb{R}), \ b(A, B) = \operatorname{tr}(A^{\top}B).$$

- 1. Vérifier que b est une forme bilinéaire symétrique sur E.
- 2. Montrer que pour tout A de E, $b(A, A) \ge 0$ avec égalité si et seulement si $A = 0_{M_2(\mathbb{R})}$.
- 3. Déterminer la matrice de b relativement à la base canonique de $M_2(\mathbb{R})$.

Exercice 2. Donner l'expression de la forme bilinéaire associée à chacune des matrices suivantes relativement à la base canonique.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 4 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 2 & 4 & 0 & 1 \\ 4 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Exercice 3. Dans $E = \mathbb{R}_2[X]$, on considère l'application b de $E \times E$ dans \mathbb{R} définie par

$$\forall (P,Q) \in E^2, \ b(P,Q) = \int_0^1 P(t)Q'(t) \,dt.$$

- 1. Justifier que b est une forme bilinéaire sur E.
- 2. Déterminer la matrice de b relativement à la base canonique $\mathcal{B} = \{1, X, X^2\}$ de E.
- 3. Quel est le rang de *b*?
- 4. La forme b est-elle symétrique? Antisymétrique? Déterminer sa partie symétrique et sa partie antisymétrique.
- 5. A-t-on $b(P,P) \ge 0$ pour tout polynôme P de E? À quelle condition sur P a-t-on b(P,P) = 0? Répondre aux mêmes questions avec $b(P,Q) = \int_0^1 P(t)Q(1-t) dt$ et $b_k(P,Q) = \sum_{i=1}^k P(i)Q(i)$ avec $k \in \mathbb{N}^*$.

Exercice 4. Soit E un espace vectoriel sur \mathbb{C} , $\mathcal{B} = \{e_1, e_2\}$ une base de E et b une forme sesquilinéaire à gauche sur E dont la matrice relativement à la base \mathcal{B} est

$$M = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}.$$

- 1. Calculer b(x,y), b(x,x) et b(y,y) dans les deux cas suivants :
 - (a) $x = e_1 + i e_2$ et $y = e_1 i e_2$,
 - (b) $x = e_1 + 2e_2$ et $y = ie_2$.
- 2. En déduire qu'il existe une base de E relativement à laquelle la forme b a pour matrice $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, c'est-à-dire qu'il existe une matrice inversible P telle que $\overline{P}^{\top}MP = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Exercice 5. Déterminer lesquelles des applications suivantes définissent une forme quadratique et, le cas échéant, donner leur forme polaire.

- (a) $\forall P \in \mathbb{R}[X], q(P) = P(0)P(1)P(2).$
- (b) $\forall P \in \mathbb{R}[X], q(P) = 2P(1)P'(1).$
- (c) $\forall P \in \mathbb{R}[X], q(P) = |P(0)P(1)|.$

Exercice 6. Soit E un espace vectoriel sur \mathbb{R} et b une forme bilinéaire sur E. On note q la forme quadratique associée à b. Établir que

- 1. $\forall (x, y, z) \in E^3$, q(x+y) + q(y+z) + q(x+z) q(x+y+z) = q(x) + q(y) + q(z).
- 2. $\forall (x,y) \in E^2$, q(x+y) + q(x-y) = 2q(x) + 2q(y) et q(x+y) q(x-y) = 2(b(x,y) + b(y,x)).

Exercice 7. On considère la forme quadratique définie par

$$\forall x \in \mathbb{R}^2, \ q(x) = x_1^2 + 4x_2^2 - 3x_1x_2.$$

- 1. Déterminer la matrice de q relativement à la base canonique de \mathbb{R}^2 .
- 2. Donner la forme polaire de q.
- 3. Réduire q sous la forme d'une combinaison linéaire de carrés de formes linéaires indépendantes.

Exercice 8. Soit une forme quadratique sur un espace vectoriel réel, que l'on suppose définie. Montrer qu'elle garde un signe constant.

Exercices supplémentaires

Exercice 9. \diamond Soit E un \mathbb{K} -espace vectoriel et b une forme bilinéaire sur $E \times E$ telle que

$$\forall (x,y) \in E \times E, \ b(x,y) = 0 \Leftrightarrow b(y,x) = 0.$$

Montrer que b est symétrique ou antisymétrique.

Exercice 10. Soit n un entier naturel non nul, q_1 et q_2 deux applications respectivement définies par

$$\forall A \in M_n(\mathbb{R}), \ q_1(A) = (\operatorname{tr}(A))^2 \text{ et } q_2(A) = \operatorname{tr}(A^{\top}A).$$

Montrer que q_1 et q_2 sont des formes quadratiques. Sont-elles positives? Définies positives?

Exercice 11. Soit E un \mathbb{R} -espace vectoriel et q une forme quadratique sur E. On dit qu'un vecteur x de E est isotrope pour q si q(x) = 0 et qu'un couple de vecteurs (x, y) de E sont orthogonaux pour q si b(x, y) = 0, où b est la forme polaire de q.

1. Soit x un vecteur de E. Montrer que

$$x$$
 est isotrope pour $q \implies \forall \lambda \in \mathbb{R}, \ \lambda x$ est isotrope pour q .

2. Soit x et y deux vecteurs de E qu'on suppose isotropes pour q. Montrer que

x + y est isotrope pour $q \implies x$ et y sont orthogonaux pour q.

Exercice 12.
$$\diamond$$
 Soit n un entier naturel non nul. La matrice d'ordre n
$$\begin{pmatrix}
n-1 & -1 & \dots & -1 \\
-1 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
-1 & \dots & -1 & n-1
\end{pmatrix}$$
 est-elle positive? Si oui, est-elle définie?