Projekt 2 - Eliminacja Gaussa i LU faktoryzacja

- Temat Zaimplementować dla macierzy o rozmiarze = (miesiąc urodzenia + dzień urodzenia)
- 1) Algorytm eliminacji Gaussa bez pivotingu generujący jedynki na przekątnej (slajd 14)
- 2) Algorytm eliminacji Gaussa z pivotingiem (slajd 26)
- 3) Algorytm LU faktoryzacji bez pivotingu (slajd 33)
- 4) Algorytm LU faktoryzacji z pivotingiem (slajd 36)

Bartłomiej Jamiołkowski

W projekcie macierz ma rozmiar N=15, ponieważ jest to suma mojego dnia i miesiąca urodzenia, czyli 10.05.

- 1 Algorytm eliminacji Gaussa bez pivotingu generujący jedynki na przekątnej
- 1.1 Pseudokod

Algorithm 1 Gaussian Elimination without Pivoting

```
Require: A - a square matrix n \times n
Require: b - a column vector n \times 1
Ensure: x - a column vector n \times 1 representing the solution to the system of equations Ax = b
 1: for i = 0 to n - 1 do
        for j = 0 to n - 1 do
 3:
            if j == i then
 4:
                b[i] \leftarrow b[i]/A[i,i]
                A[i,:] \leftarrow A[i,:]/A[i,i]
 5:
            else if j > i then
 6:
                b[j] \leftarrow b[j] - b[i] \times A[j,i]
 7:
                A[j,:] \leftarrow A[j,:] - A[i,:] \times A[j,i]
 8:
 9:
10:
        end for
11: end for
12: x \leftarrow \text{SolveUpperTriangular}(A, b) \triangleright \text{Solve system of equations with upper triangular matrix } A
13: return x
```

Działanie programu można wyjaśnić następująco:

- 1. Funkcja przyjmuje dwie argumenty: macierz kwadratową A oraz wektor kolumnowy b.
- 2. Pętla zewnętrzna for i in range(A.shape[0]) iteruje po wierszach macierzy A.
- 3. Wewnętrzna pętla for j in range(A.shape[1]) iteruje po kolumnach macierzy A.
- 4. Warunek if j == i sprawdza, czy aktualna kolumna odpowiada obecnie przetwarzanemu wierszowi. Innymi słowy sprawdza czy element macierzy jest na jej przekątnej. Jeśli tak, to wykonują się następujące czynności:
 - Element b[i] dzielony jest przez odpowiadający element na przekątnej macierzy A (element diagonalny).
 - Cały wiersz A[j,:] dzielony jest przez element przekątnej A[i,i]. Dzięki temu element na przekatnej staje się równy 1.
- 5. Warunek elif j > i odnosi się do kolumn poza główną przekątną macierzy A. Dla tych kolumn wykonują się następujące czynności:
 - Elementy wektora b są aktualizowane przez odjęcie iloczynu b[i] i elementu A[j,i].
 - Wiersze macierzy A są aktualizowane poprzez odjęcie iloczynu wiersza A[i,:] i elementu A[j,i]. Dzieje się to w celu wyeliminowania niezerowych wartości pod główną przekątną macierzy.
- 6. Proces ten kontynuuje się dla kolejnych wierszy i kolumn, aż do zakończenia przetwarzania całej macierzy A.
- 7. Na koniec działania funkcji zwracana jest przekształcona macierz A oraz zaktualizowany wektor b, które zawierają rozwiązania układu równań po eliminacji Gaussa w x.

1.2 Kod algorytmu w języku Python

Rysunek 1: Kod algorytmu eliminacji Gaussa generujący 1 na przekątnej

1.3 Test dla macierzy gęstej o losowych wartościach (porównanie z MATLAB)

Sprawdzenie czy algorytm generuje jedynki na przekątnej.

Rysunek 2: Przekształcona macierz górna trójkątna A z 1 na przekątnej

Losowanie macierzy gęstej A z wartościami losowymi.

Rysunek 3: Macierz gęsta A

Losowanie wektora b prawej strony z wartościami losowymi.

```
Vector b:
[[2]
[5]
[1]
[6]
[8]
[7]
[5]
[6]
[8]
[6]
[8]
[1]
[7]
[2]]
```

Rysunek 4: Wektor prawej strony b

Rozwiązanie układu równań moim programem.

```
Result x:
[[ 0.1095]
[ 1.5512]
[-1.2596]
[ 0.0176]
[ 1.9039]
[ 3.7982]
[-0.3328]
[ 1.5609]
[ 0.3064]
[-1.3155]
[-2.3532]
[-2.0441]
[-1.3114]
[-1.6014]
[ 0.9425]]
```

Rysunek 5: Rozwiązanie układu równań x

Rozwiązanie układu równań programem MATLAB.

Rysunek 6: Rozwiązanie układu równań x w MATLAB

Porównanie wyników mojego programu i MATLAB norm(x1-x2,2).

```
>> n = norm(x-x2,2)
n =
9.7250e-05
```

Rysunek 7: Wynik rnorm(x1 - x2, 2) x w MATLAB

Na podstawie wydrukowanych przez programy wyników można zauważyć, że w tym przypadku są one takie same. Potwierdza to wynik 9.7250e-05 w MATLAB, który wskazuje, że różnice między poszczególnymi wynikami w wektorach x1 i x2 są bardzo małe.

2 Algorytm eliminacji Gaussa z pivotingiem

2.1 Pseudokod

Algorithm 2 Gaussian Elimination with Pivoting

```
Require: A is a square matrix
Require: b is a vector
Ensure: Solution vector x of the linear system Ax = b
 1: for i \leftarrow 0 to A.\text{shape}[0] - 1 do
          A[\{i, -1\}] \leftarrow A[\{-1, i\}]
 3:
          b[i], b[-1] \leftarrow b[-1], b[i]
          for j \leftarrow 0 to A.\text{shape}[1] - 1 do
 4:
               if j > i then
 5:
                   b[j] \leftarrow b[j] - \frac{b[i] \times A[j,i]}{A[i,i]}
A[j,:] \leftarrow A[j,:] - \frac{A[i,:] \times A[j,i]}{A[i,i]}
 6:
 7:
 8:
          end for
 9:
10: end for
11: return solve linear equations (A, b)
```

Działanie programu można wyjaśnić następująco:

- 1. Funkcja gaussian_elimination_with_pivoting wykonuje eliminację Gaussa z częściowym wyborem elementu podstawowego w celu rozwiązania układu równań liniowych.
- 2. Przyjmuje dwa argumenty: A, tablicę numpy reprezentującą macierz współczynników równań liniowych, oraz b, tablicę numpy reprezentującą wektor stałych.
- 3. Funkcja najpierw iteruje po wierszach macierzy współczynników A.
- 4. W każdej iteracji zamienia bieżący wiersz z ostatnim wierszem w celu przeprowadzenia częściowego wyboru elementu podstawowego. Pomaga to uniknąć dzielenia przez zero i problemów z niestabilnością numeryczną.
- 5. Zmienia również odpowiednie elementy wektora stałego b zgodnie z zamianą.
- 6. Następnie przechodzi do eliminacji współczynników poniżej diagonalnej dla każdej kolumny, zapewniając, że macierz staje się górnotrójkątna.
- 7. Podczas eliminacji aktualizuje zarówno macierz współczynników A, jak i wektor stały b.
- 8. Po zakończeniu procesu eliminacji funkcja używa funkcji linalg.solve z biblioteki numpy do rozwiązania układu równań reprezentowanego przez zmodyfikowane A i b.
- 9. Na koniec zwraca wektor rozwiązania \boldsymbol{x} uzyskany z procesu rozwiązywania.

2.2 Kod algorytmu w języku Python

```
def gaussian_elimination_with_pivoting(A: np.ndarray, b: np.ndarray) -> np.ndarray:
    for i in range(A.shape[0]):
        A[[i, -1]] = A[[-1, i]]
        b[i], b[-1] = b[-1], b[i]

    for j in range(A.shape[1]):
        if j > i:
            b[j] -= b[i] * A[j, i] / A[i, i]
            A[j, :] -= A[i, :] * A[j, i] / A[i, i]
    return np.linalg.solve(A, b)
```

Rysunek 8: Kod algorytmu eliminacji Gaussa z pivotingiem

2.3 Test dla macierzy gęstej o losowych wartościach (porównanie z MATLAB)

Sprawdzenie czy algorytm generuje rózne wartości na przekątnej.

Rysunek 9: Przekształcona macierz górna trójkątna A

Losowanie macierzy gęstej A z wartościami losowymi.

```
Matrix A:

[[5 6 6 6 3 2 3 2 4 3 3 8 4 6 2 4]

[4 1 3 5 3 8 8 1 8 1 5 6 7 3 5]

[4 7 4 5 4 1 3 3 8 8 4 6 6 3 5 4]

[7 5 8 3 6 8 6 5 7 2 7 1 1 4 6]

[8 6 2 3 5 3 4 6 7 8 3 1 8 6 7]

[8 4 8 3 8 8 1 8 1 8 5 1 2 5 4 2]

[8 4 6 3 3 8 8 1 8 6 8 7 8 7 8 7 5 4 1]

[1 8 4 6 3 3 4 4 3 5 8 6 8 7 8 7 8 7 5 4 1]

[1 8 4 6 8 8 1 7 8 4 3 1 5 8 6 8 7 8 7 5 4 1]

[1 8 4 6 8 8 7 1 2 8 6 8 8 8]

[2 8 4 4 2 6 2 5 4 2 4 6 8 8 8]

[3 5 6 8 8 7 1 2 8 6 6 6 5 7 6 8]

[3 3 8 8 8 3 2 2 1 1 5 5 2 6 3 3 8]

[4 3 3 3 3 7 8 3 4 3 7 5 3 5 4 2]]
```

Rysunek 10: Macierz gęsta A

Losowanie wektora b prawej strony z wartościami losowymi.

```
Vector b:
[[6]
[4]
[2]
[1]
[3]
[2]
[6]
[7]
[2]
[3]
[4]
[7]
[6]
[6]
[6]
```

Rysunek 11: Wektor prawej strony b

Rozwiązanie układu równań moim programem.

```
Result x:
[[-0.5959]
[-0.0755]
[ 0.9576]
[-0.4452]
[-0.0339]
[ 0.2256]
[-0.6851]
[-0.1346]
[ 0.7566]
[ 0.239 ]
[-0.0865]
[ 0.8089]
[ 0.1552]
[-0.2545]]
```

Rysunek 12: Rozwiązanie układu równań x

Rozwiązanie układu równań programem MATLAB.

Rysunek 13: Rozwiązanie układu równań x w MATLAB

Porównanie wyników mojego programu i MATLAB norm(x1-x2,2).

```
Did you mean:

>> n = norm(x - x2, 2)

n =

1.1421e-04
```

Rysunek 14: Wynik norm(x1 - x2, 2) x w MATLAB

Na podstawie wydrukowanych przez programy wyników można zauważyć, że w tym przypadku są one takie same. Potwierdza to wynik 1.1421e-04 w MATLAB, który wskazuje, że różnice między poszczególnymi wynikami w wektorach x1 i x2 sa bardzo małe.

3 Algorytm LU faktoryzacji bez pivotingu

3.1 Pseudokod

```
Algorithm 3 LU factorization without pivoting
Require: A is a square matrix
Require: b is a vector
Ensure: Solution vector x of the linear system Ax = b
 1: L \leftarrow \text{identity } \text{matrix}(A.\text{shape}[0])
 2: for i in range(A.shape[0]) do
        for j in range(A.shape[1]) do
 3:
            if j > i then
 4:
                L[j,i] \leftarrow A[j,i]/A[i,i]
 5:
                B[j] \leftarrow B[j] - B[i] \times A[j,i]/A[i,i]
 6:
                A[j,:] \leftarrow A[j,:] - A[i,:] \times A[j,i]/A[i,i]
 7:
 8:
        end for
 9:
10: end for
11: U \leftarrow A.\text{copy}()
12: return L, U
```

Działanie programu można wyjaśnić następująco:

- 1. Funkcja lu_factorization_without_pivoting przeprowadza faktoryzację LU bez wyboru elementu podstawowego dla danej macierzy kwadratowej A.
- 2. Przyjmuje dwa argumenty: A, tablicę numpy reprezentującą macierz współczynników, oraz B, tablicę numpy reprezentującą wektor stałych.
- 3. Inicjuje dolnotrójkatna macierz L jako macierz identycznościowa tej samej wielkości co A.
- 4. Funkcja iteruje po wierszach i kolumnach macierzy A.

- 5. Dla każdego elementu A[j, i] w A, gdzie j jest większe niż i, oblicza odpowiednią wartość w dolnotrójkątnej macierzy L używając wzoru L[j, i] = A[j, i] / A[i, i].
- 6. Aktualizuje elementy wektora stałych B, odejmując B[i] * A[j, i] / A[i, i] od B[j].
- 7. Przeprowadza eliminację Gaussa na wierszach A poniżej diagonali, aktualizując odpowiednio A i B.
- 8. Po zakończeniu procesu eliminacji funkcja tworzy górnotrójkątną macierz $\tt U$ poprzez skopiowanie $\tt A.$
- 9. Na koniec zwraca krotkę (L, U) zawierającą dolnotrójkątną macierz L i górnotrójkątną macierz U.

3.2 Kod algorytmu w języku Python

Rysunek 15: Kod algorytmu LU faktoryzacji bez pivotingu

3.3 Test dla macierzy gęstej o losowych wartościach (porównanie z MATLAB)

Losowanie macierzy gęstej A z wartościami losowymi.

```
Matrix A:

[[2 1 1 1 8 5 6 6 5 7 7 7 6 7 3 5 2]

[7 6 5 4 7 3 4 1 6 7 8 5 7 7 6 7 6 7 5 4]

[3 8 4 7 4 3 5 4 6 7 4 6 7 4 6 7 2 7]

[4 3 7 3 1 2 2 4 6 7 4 6 2 7 8]

[1 4 6 2 6 7 6 6 4 3 5 8 2 7 4 4 3]

[1 4 6 2 6 7 7 5 5 8 7 4 6 7 7 1]

[1 4 5 5 1 3 6 6 1 5 6 7 8 6 6 4 7 7 7 1]

[1 5 2 2 8 6 7 6 6 6 6 7 6 6 7 7 7 8 7 8 7 7 7 1]

[1 7 1 8 8 8 8 8 8 8 8 5 4 3 5 1 4 3 5 6]

[8 7 3 4 3 7 3 6 6 7 6 6 8 3 3 3 3 4 7 1]

[8 1 2 7 1 2 6 1 5 2 8 6 7 7 1]

[8 1 2 7 1 2 6 1 5 2 8 6 7 7 8 3]

[8 1 1 6 7 4 3 5 5 1 4 4 8 6 3 3]
```

Rysunek 16: Macierz gęsta A

Losowanie wektora b prawej strony z wartościami losowymi.

Rysunek 17: Wektor prawej strony b

Wyznaczenie macierzy L moim programem.

wer tr	iangular	matrix L												
3.5														
	2.6													
	0.4	-3.1429												
	1.6	-1.8571	0.8136											
0.5		-2.4286	0.9661	1.6577										
	1.2	-0.8571	0.3559	0.2148	1.8449									
0.5		1.1429	-0.1695	0.1711	1.5069	1.1208								
0.5	1.8	0.8571	-0.0452	1.4183	0.8608	0.7486	3.6278							
	1.6	1.7143	-0.5028	-0.9508	1.4834	1.7251	3.3156	0.746						
3.5		-4.2857	1.1412	0.4183	-0.1182	0.0366	-0.1606	0.9532	3.2698					
			-0.6441	-1.3691	2.4826	2.4955	2.6079	0.0541	-1.5554	-0.7344				
		0.1429	-0.3503	-2.0749	-0.085	0.1395	-2.4005	-0.7363	-0.3641	-0.0361	-0.0091			
		0.8571	-0.5876	-0.9642	-0.1494	0.3543	1.9415	1.9033	5.8562	1.8281	-2.3144	1.9187		
0.5		1.4286	-0.0508	0.9027	1.3055	1.0245	1.2261	-0.1018	-0.2622	-0.1789	-0.5492	-0.908	0.9559	

Rysunek 18: Wyznaczona macierz L

Wyznaczenie macierzy U moim programem.

Uppe	Upper triangular matrix U														
11															2.]
[2.5			-10.5		-17.	-16.5	-18.5	-17.5		-19.5	-3.5	-12.5	-3.]
1					23.8	40.8	40.2	39.4			28.8		11.6		11.8]
[177.		125.4286	123.1429	124.4286	133.2857	132.	87.7143	138.7143	33.8571	86.8571	42.2857]
[5.0508	2.5278	-0.3269	-3.6586	-1.7215	-0.3898	-1.0751	0.4334	0.5981		-6.6877]
[2.9185	7.0019		4.9434	4.1208	9.1841	3.4123	5.8706	1.1793	4.0911]
[-7.8213	-9.1038	-10.477	-10.502	-14.6478		-7.8673	2.3784	-10.4481]
[4.8935	7.001	4.9149		0.7506	-2.3183	8.5717]
1									-7.4132	-16.5646	-7.5671	12.4998	-2.3479	14.5542	-14.1142]
[3.1513	-7.4943	2.8907	-1.5667	-8.0813	-8.4605]
[24.9035	-30.2454	7.2877	3.4564	41.4712]
[-9.4932	1.7686	-11.7754	2.7025]
[3.6215	-4.592	1.0786]
[-6.8751	-4.8649]
[8.0641]]

Rysunek 19: Wyznaczona macierz U

Wyznaczenie macierzy L, U i P programem MATLAB.

>>	[L, U, P] =lu(A)													
L =															
	1.0000	0	9	0	0	0	ø	0	0	0	0	0	0	0	0
	1.0000	1.0000	0	0	0	0	9	0	0	9	0	0	0	0	9
	0.8750	0.8571	1.0000	0	0	0	9	0	0	0	0	0	0	0	0
	0.1250	-1.0000	0.0805	1.0000	0	0	0	0	0	0	0	0	0	0	0
	1.0000	1.0000	-0.1609	-0.0811	1.0000	0	0	0	0	0	0	0	0	0	0
	0.3750	-0.7143	0.1724	0.9915	-0.3807	1.0000	0	0	0	0	0	0	0	0	0
	0.1250	-0.4286	0.7471	0.2226	-0.2055	-0.2142	1.0000	0	0	0	0	0	0	0	0
	0.8750	0.1429	0.2874	0.0288	0.2524	0.7983 -0.1898	0.6203	1.0000	1.0000	0	9	0	9	0	0
	1.0000	0.1429	-0.1149	0.7781	0.3566	-0.1898	-0.2085	-0.6843	0.0036	1.0000	0	0	9	0	9
	0.5000	0.1429	0.8506	-0.0859	-0.8802	0.4676	0.0537	-0.4451	0.1449	-0.5839	1.0000	0	0	0	9
	0.1250	-0.4286	-0.0575	0.8799	0.1263	-0.8270	-0.1150	-0.8935	0.3456	0.2615	0.3564	1.0000	0	0	9
	0.2500	-0.4286	0.6667	0.7872	-0.3455	0.5406	-0.1571	-0.0286	0.3406	-0.2234	0.3741	-0.1246	1.0000	0	9
	0.5000	-0.1429	0.4368	-0.0920	-0.3207	-0.6578	0.8472	0.0065	-0.8663	0.7537	-0.1354	-0.0873	-0.9084	1.0000	9
Ĺ	0.1250	-0.5714	0.0575	0.4486	0.6187	-0.0402	0.1760	0.0362	0.7027	0.6761	0.6975	0.5071	0.4028	0.0244	1.0000
U =															
	8.0000	8.0000	4,0000	3,0000	4.0000	4,0000	1.0000	6.0000	6.0000	8.0000	1.0000	4,0000	3,0000	5.0000	6.0000
ĺ	0	-7.0000	-2,0000	4.0000	-3.0000	-2.0000	5.0000	-5.0000	-1.0000	-6.0000	7,0000	0	4.0000	0	-3.0000
	0	0	6.2143	1.9464	7.0714	6.2143	-0.1607	3.0357	-1.3929	3.1429	-5.8750	0.5000	-4.0536	-0.3750	0.3214
	0	0	0	8.4684	1.9310	4.0000	8.8879	-2.9943	1.3621	0.7471	8.3477	6.4598	5.9511	2.4052	-0.7759
	0	0	0	0	7.2945	3.3244	-2.3051	4.2457	-4.1137	2.5663	-4.2684	4.6043	-1.1697	-1.8653	2.9888
	0	0	0	0	0	-3.7006	-1.4658	2.2402	-0.6406	-0.5915	-0.2638	-2.2385	3.0851	-2.9051	4.4587
	0	0	0	0	0	0	6.3719	1.8578	3.5764	2.3148	11.4726	5.1551	11.4636	0.1142	1.4660
	0	0	0	0	0	0	0	-8.3339	0.5849	-1.6788	1.7437	-1.4026	-4.4819	3.3825	-6.1146
	0	0	0	0	0	0	0	0	7.1383	3.4378	3.5825	-1.0006	-2.4396	4.3482	-2.5807
	0	9	9	9	0	0	9	9	0	-4.9083 0	1.7368	-3.6496 6.7193	1.5827	0.4282 4.9508	-2.6234 3.3228
	0	9	0	0	0	0	9	0	0	9	4.7659	-9.3433	0.6169	-2.2736	2.0741
	9	9	0	9	9	9	9	0	0	9	9	-5.5455	3,3639	-1.3732	-1.4028
	0	9	0	0	0	0	0	0	0	9	0	0	0.5055	4.9254	-0.8530
	e	0	0	ø	0	0	ø	0	0	ø	0	0	9	0	3.9627
P =															
		0 0	0 0	0 0		0 1		0 0	0 0						
		0 0	0 0	0 0		0 0		0 1	0 0						
		0 0	0 0	0 0		0 0		9 9	0 0						
		0 0	0 0	0 0		0 0		9 9	0 1						
		0 0 1	0 0	0 0		0 0		9 9 9 9	1 0						
		0 0	0 0	1 0		0 0		8 8	0 0						
		1 0	0 0	0 0		0 0		8 8	0 0						
		0 0	0 0	0 0		0 0		0 0	0 0						
		0 0	0 0	0 0		0 0		1 0	0 0						
	100	0 0	1 0	0 0		0 0		0 0	0 0						
	0	0 0	0 0	0 0	1	0 0	0 (0 0	0 0						
	0	0 0	0 1	0 0	0	0 0	0 (0 0	0 0						
		0 0	0 0	0 1		0 0		9 9	0 0						
	0	0 0	0 0	0 0	0	1 0	0 (9 9	0 0						

Rysunek 20: Wyznaczone macierze L, U i P programem MATLAB

Porównanie otrzymanych macierzy L i U mojego programu i MATLAB.

```
>> n = norm(L - L2, 2)
n =
11.6661
```

Rysunek 21: Wynik norm(L1 - L2, 2) w MATLAB

```
>> n2 = norm(U - U2, 2)
n2 =
405.4887
```

Rysunek 22: Wynik norm(U1 - U2, 2) w MATLAB

Porównywane są tylko macierze L i U, ponieważ w części prezentacji o tej wersji algorytmu tylko te macierze były prezentowane.

Norma macierzowa 2-norm (lub norma spektralna) macierzy jest największą wartością osobliwą (wartością własną) macierzy. Wartość 11.6661 oznacza, że odchylenie (różnica) między macierzami L i L2 jest dość znaczące.

Wartość 405.4887 oznacza, że odchylenie (różnica) między macierzami U i U2 jest znaczące, mierząc je w kontekście tej konkretnej normy. Im większa wartość, tym większa różnica między macierzami. Można zatem powiedzieć, że większe różnice występują w macierzach U niż L.

4 Algorytm LU faktoryzacji z pivotingiem

4.1 Pseudokod

Algorithm 4 LU factorization with pivoting

```
1: P \leftarrow \text{identity matrix of size } A.\text{shape}[0]
 2: L \leftarrow \text{identity matrix of size } A.\text{shape}[0]
 3: U \leftarrow \text{copy of matrix } A
 4: for i \leftarrow 0 to A.\text{shape}[0] - 1 do
        max element row index \leftarrow index of maximum element in [i, A.\text{shape}[0]) using [U[k, i]]
 5:
        if i \neq \max element row index then
 6:
            Swap rows i and max element row index in P
 7:
            Swap rows i and max element row index in the first i columns of L
 8:
            Swap rows i and max element row index in U
 9:
10:
        end if
        for j \leftarrow i + 1 to A.\text{shape}[0] - 1 do
11:
            L[j,i] \leftarrow U[j,i]/U[i,i]
12:
            U[j,i:] \leftarrow U[j,i:] - (U[j,i]/U[i,i]) \times U[i,i:]
13:
        end for
14:
15: end for
16: return L, U, P
```

Działanie programu można wyjaśnić następująco:

- 1. Definicja funkcji: lu_factorization_with_pivoting(A: np.ndarray) -> tuple. Funkcja przyjmuje macierz numpy A i zwraca trójkę zawierającą macierze L, U i P.
- 2. Inicjalizacja macierzy pomocniczych:
 - P = np.eye(A.shape[0]): Inicjalizuje macierz permutacji jako jednostkową macierz o rozmiarze odpowiadającym liczbie wierszy macierzy A.
 - L = np.eye(A.shape[0]): Inicjalizuje dolną trójkątną macierz L jako jednostkową macierz o rozmiarze odpowiadającym liczbie wierszy macierzy A.
 - U = A.copy(): Tworzy kopię macierzy A, która będzie górnotrójkątną macierzą U.

3. Pętla główna:

- Iteruje przez wiersze macierzy A używając zmiennej i w zakresie od 0 do liczby wierszy minus 1.
- Znajduje wiersz z maksymalną wartością bezwzględną w kolumnie i od i do ostatniego wiersza.
- Jeśli wiersz z maksymalną wartością bezwzględną nie jest aktualnie badanym wierszem i, dokonuje zamiany wierszy w macierzach P, L i U.
- Wewnętrzna pętla:
 - Iteruje przez wiersze poniżej i (oznaczane przez j od i+1 do końca).
 - Oblicza wartości współczynników do aktualizacji macierzy L i U.
 - Aktualizuje wartości w macierzy L i U.

4. Zwrócenie wyników:

• Zwraca trójkę zawierającą macierze L, U i P.

4.2 Kod algorytmu w języku Python

Rysunek 23: Kod algorytmu LU faktoryzacji z pivotingiem

4.3 Test dla macierzy gęstej o losowych wartościach (porównanie z MATLAB)

Losowanie macierzy gęstej A z wartościami losowymi.

```
Matrix A:
[[7 6 6 5 1 8 8 5 7 6 4 5 1 8 6]
 [1 4 2 6 4 7 2 4 1 7 4 7 5 4 5]
 [372475181818181]
 [6 4 1 8 5 3 8 7 1 5 3 4 1 2 4]
 [6 5 1 4 6 7 2 6 4 7 7 2 8 8 2]
 [8 8 8 7 8 1 6 6 7 6 4 2 4 3 3]
 [8 7 8 4 2 3 4 5 7 1 4 3 5 2 1]
 [5 5 4 6 4 1 3 3 7 3 4 5 2 1 5]
 [7 5 1 6 4 1 8 5 2 4 5 7 5 4 5]
 [3 3 1 5 7 3 5 8 2 8 1 1 1 5 2]
 [8 1 1 6 7 4 1 2 5 5 3 5 2 8 1]
 [3 4 4 2 1 3 1 2 4 6 7 7 4 4 5]
 [3 5 8 3 5 1 8 8 7 7 3 6 1 6 1]
 [2 3 5 6 7 6 7 3 6 7 8 7 1 6 2]
 [3 5 5 6 4 8 5 2 7 8 6 4 6 4 2]]
```

Rysunek 24: Macierz gęsta A

Wyznaczenie macierzy L moim programem.

Rysunek 25: Wyznaczona macierz L

Wyznaczenie macierzy U moim programem.

Rysunek 26: Wyznaczona macierz U

Wyznaczenie macierzy P moim programem.

```
[[ 0.
                                                        0.
                                                             0.
                                                                             0.]
        0.
              0.
                                                  0.
                                                        1.
                                                                  0.
        0.
              0.
                   0.
                        0.
                              0.
                                   0.
                                             0.
                                                             0.
                                                                             0.]
                   0.
                                                                             0.]
                                                                            0.]
                   0.
                        0.
                              0.
        0.
              0.
                   1.
                        0.
                             0.
                                        0.
                                             0.
                                                                  0.
                                                                       0.
                                                                             0.]
              0.
                        0.
                                                  0.
                                                        0.
 [ 1.
                   0.
                             0.
                                   0.
                                        0.
                                                                             0.]
                                                                            0.]
   0.
              0.
                        Θ.
                              Θ.
                                   0.
                                        0.
                                             0.
                                                  0.
                                                        0.
                                                             0.
                                                                  0.
                                                                       0.
        1.
                   0.
                                                                             0.]
 [ 0.
        0.
                   0.
                        0.
                                                                             0.]
                   0.
                        0.
                                                                             0.]
                        0.
                                   0.
                                        0.
                                             0.
                                                  0.
                                                        0.
                                                                  0.
                                                                             0.]
        0.
              0.
                   0.
                        1.
                             0.
                                   0.
                                        0.
                                             0.
                                                  0.
                                                        0.
                                                             0.
                                                                  0.
                                                                       0.
                                                                             0.]
   0.
                                                                             0.]
   0.
              0.
                              0.
                                        0.
                                             0.
                                                                  0.
                                                                             1.]
              0.
                   0.
                        0.
                                        0.
                                             0.
                                                  1.
                                                                             0.]]
```

Rysunek 27: Wyznaczona macierz P

Wyznaczenie macierzy L, U i P programem MATLAB.

>>	[L, U, P]	=lu(A)													
L =															
	1.0000	0	0	0	0	0	a	0	0	а	0	0	0	0	0
	1.0000	1.0000	9	0	9	9	0	0	9	9	0	9	9	0	9
	0.3750	-0.5714	1.0000	0	0	9	0	0	0	0	0	0	0	0	9
	0.2500	-0.1429	-0.4000	1.0000	0	0	0	0	0	0	0	0	0	0	0
	0.7500	0.2857	0.6000	0.5766	1.0000	0	0	0	0	0	0	0	0	0	0
	0.8750	0.1429	0	-0.2218	0.7034	1.0000	0	0	0	0	0	0	0	0	0
	0.1250	-0.4286	0.4000	0.9879	0.7785	0.2023	1.0000	0	0	0	0	0	0	0	0
	0.3750	-0.2857	-0.6000	0.1290	-0.4664	0.0500	-0.5992	1.0000	0	0	0	0	0	0	0
	0.6250	9	0.2000	0.3306	0.5886	0.0435	0.6318	-0.1650	1.0000	0	0	0	0	0	0
	1.0000	0.1429	-0.2000	-0.6089	0.2167	0.7040	0.2326	0.3445	-0.1238	1.0000	0	0	0	0	0
	0.3750	-0.1429	0	-0.1734	0.1670	0.4190	0.3632	0.0300	0.1246	-0.7045	1.0000	0	0	0	0
	0.7500	0.1429	0.8000	-0.3952	0.0218	0.3143	-0.3774	-0.1857	0.1855	0.0013	0.6353	1.0000	0	0	0
	0.8750	0.2857	0.8000	-0.1089	0.7511	0.0527	-0.5340	-0.6298	0.2168	-0.5908	0.5379	-0.4104	1.0000	0	0
		-0.2857	0	0.6976	0.5706	0.4795	0.6178	-0.3900	0.4353	-0.4624	0.0024	0.2464	0.1694	1.0000	0
	0.3750	0	0.4000	0.4637	0.0408	-0.2632	-0.4105	0.4913	0.1079	-0.2126	-0.0902	0.6473	-0.3694	0.1729	1.0000
U =															
-															
	8.0000	8.0000	8.0000	7,0000	8.0000	1.0000	6.0000	6.0000	7,0000	6.0000	4,0000	2.0000	4,0000	3.0000	3.0000
	0	-7.0000	-7.0000	-1.0000	-1.0000	3.0000	-5.0000	-4.0000	-2,0000	-1.0000	-1.0000	3.0000	-2,0000	5.0000	-2.0000
	0	0	-5.0000	0.8036	3.4286	6.3393	-4.1071	3.4643	-2.7679	5.1786	-1.0714	8.9643	-1.6429	9.7321	-1.2679
	0	0	0	4.4286	6.2286	8.7143	3,1429	2.3143	2.8571	7,4286	6.4286	10.5143	-0.9429	9.8571	0.4571
	0	0	e	0	-6.3629	-7.4355	5.5806	0.2298	-3.6653	-6.6048	-2.7782	-9.7984		-13.2016	2.8185
	0	0	0	0	0	13.8593	0.2357	0.6730	4.3726	7.1863	4.0228	12.0456	-2,4943	16.1331	1.7795
	0	0	0	0	0	0	-6.7468	-2.4514	-0.4791	0.0988	-1.5021	-0.7468	5.6577	-0.8504	1.2692
	0	0	0	0	0	0	0	4.9918	-0.4411	3.2320	-2.6551	4.5089	1,6264	3.3970	0.4700
	0	0	0	0	0	0	0	0	4,4311	-0.1957	1.5600	4.9404	-3.1168	2.0866	0.7668
	0	0	0	0	0	0	0	0	0	-4.0867	3.0702	1.6418	-0.1449	-2.9765	-3.9152
	0	0	9	0	0	9	0	0	0	0	7.8443	5.7686	1.2617	-1.4057	-0.8768
	0	0	0	0	0	0	0	0	0	0	0	-10.5449	9.2232	-2.8176	1.5960
	0	0	0	0	0	0	0	0	0	0	0	0	11.0810	1.3735	1.4207
	0	0	0	0	0	0	0	0	0	0	0	0	0	-2.7454	-5.8537
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.3235
P =															
	0 0	0	0 0	1	a 0	0 0	0	9 9	0 0						
	0 0		0 0		9 9	0 0		0 0	0 0						
	0 0		0 0	100	9 9	0 0		0 0	0 0						
	0 0		0 0		9 9	0 0		0 0	1 0						
	0 0		1 0		3 0	0 0		0 0	0 0						
	1 6		0 0		a a	0 0		a a	0 0						
	0 1		0 0		a a	0 0		a a	0 0						
	0 0		0 0		9 0	0 0		0 1	0 0						
	0 0		0 0		0 1	0 0		0 0	0 0						
	0 0		0 0		1 0	0 0		9 9	0 0						
	0 0		0 0		3 0	0 0		1 0	0 0						
	0 0		0 1		3 0	0 0		9 9	0 0						
	0 0		0 0		9 9	1 0		0 0	0 0						
	0 0		0 0		a a	0 0		a a	0 1						
	0 0		0 0		9 0	0 1		9 0	0 0						
		X (i)	5667	10 M	90 G		SEM N	10 E	2000						

Rysunek 28: Wyznaczone macierze L, U i P programem MATLAB

Porównanie otrzymanych macierzy L, U i Pmojego programu oraz MATLAB.

```
>> n1 = norm(L - L2, 2)
n1 =
1.4566e-04
```

Rysunek 29: Wynik norm(L1 - L2, 2) w MATLAB

```
>> n1 = norm(U - U2, 2)
n1 =
1.7845e-04
```

Rysunek 30: Wynik norm(U1 - U2, 2) w MATLAB

```
>> n3 = norm(P - P2, 2)
n3 =
```

Rysunek 31: Wynik norm(P1 - P2, 2) w MATLAB

Norma macierzowa 2-norm (lub norma spektralna) macierzy jest największą wartością osobliwą (wartością własną) macierzy. Wartość 1.4566e-04 oznacza, że odchylenie (różnica) między macierzami L i L2 jest bardzo mała.

Wartość 1.7845e-04 oznacza, że odchylenie (różnica) między macierzami U i U2 jest bardzo mała.

Wartość 0 oznacza, że nia ma odchylenia (różnica) między macierzami P i P2.

5 Dlaczego niektóre wyniki się zgadzają z MATLABem a niektóre nie?

Jedyne otrzymane wyniki, które zauważalnie nie zgadzały się z wynikami MATLAB były dla algorytmu LU faktoryzacji bez pivotingu. Uważam, że przyczyny wspominanych różnic wynikaja z:

- mogą występować różnice w implementacji operacji arytmetycznych, co może prowadzić do różnic w precyzji obliczeń;
- mimo, że algorytmy są podobne, drobne różnice w implementacji mogą prowadzić do różnic w wynikach. To może wynikać z różnic w implementacji operacji arytmetycznych czy optymalizacji kodu:
- różnice w wynikach mogą się również pojawić ze względu na różnice w sposobie zaokrąglania liczb i obsługi punktów stałoprzecinkowych. W MATLAB zauważyłem, że liczby były zaokrąglane do 4 miejsc po przecinku, a w Python poza zaokrągleniem wyniku nie miało to miejsca,
- sposób wczytywania i przetwarzania danych może się różnić między Python a MATLAB, co może wpływać na wyniki.

6 Czy da się wylosować taką macierz żeby wszystkie wyniki się zgadzały?

Uważam, że przy stworzeniu odpowiednich warunków jest możliwe uzyskanie zgodnych wyników. Przykładowo można:

- wygenerować macierz i wektor tak, aby spełniały określone warunki, które sprawią, że wyniki działania algorytmów będą takie same.
- z ustawić konkretne wartości macierzy i wektora prawych stron w taki sposób, aby były one identyczne dla obu algorytmów.
- $\boldsymbol{\cdot}$ wybrać proste dane testowe, dla których wyniki algorytmów są dobrze znane i można je łatwo zweryfikować.