

planetmath.org

Math for the people, by the people.

matroid independence axioms

 ${\bf Canonical\ name} \quad {\bf MatroidIndependence Axioms}$

Date of creation 2013-03-22 14:44:05 Last modified on 2013-03-22 14:44:05

Owner sgraves (6614) Last modified by sgraves (6614)

Numerical id 6

Author sgraves (6614)

Entry type Proof Classification msc 05B35

Synonym matroid independent sets

Hassler Whitney's definition of a matroid was based upon the idea of independent sets and was given in terms of the following three axioms:

A finite set E along with a collection \mathcal{I} of subsets of E is a matroid if $M = (E, \mathcal{I})$ meets the following criteria:

- (I1) $\emptyset \in \mathcal{I}$;
- (I2) If $I_1 \in \mathcal{I}$ and $I_2 \subseteq I_1$, then $I_2 \in \mathcal{I}$;
- (I3) If $I_1, I_2 \in \mathcal{I}$ with $|I_1| < |I_2|$, then there is some $e \in I_2$ such that $I_1 \cup \{e\} \in \mathcal{I}$.

The third axiom, (I3), is equivalent to the following alternative axiom: (I3*) If $S, T \in \mathcal{I}$ and $S, T \subset U \subset E$ and S and T are both maximal subsets of U with the property that they are in \mathcal{I} , then |S| = |T|.

Proof. Suppose (I3) holds, and that S and T are maximal independent subsets of $A \subseteq E$. Also assume, without loss of generality, that |S| < |T|. Then there is some $e \in T$ such that $S \cup \{e\} \in \mathcal{I}$, but $S \subset S \cup \{e\} \subseteq A$, contradicting maximality of S.

Now suppose that (I3*) holds, and assume that $S, T \in \mathcal{I}$ with |S| < |T|. Let $A = S \cup T$. Then S cannot be maximal in A by (I3*), so there must be elements $e_i \in A$ such that $S \cup \{e_i\} \in \mathcal{I}$ is maximal, and by construction these $e_i \in T$. So (I3) holds.