VLSI Lab Tutorial

Instructor: Prof. Herming Chiueh

Design Flow of Full-Custom Chip

^{*} You may do these steps recursively.

Design Flow of Full-Custom Chip

^{*} You may do these steps recursively.

Setting Environment

- 要連上工作站需要準備MobaXterm。
- 首先需要安裝MobaXterm , 設定session on MobaXterm。

UNREGISTERED VERSION - Please support MobaXterm by subscribing to the professional edition here: http://mobaxterm.mobatek.net

MobaXterm 下載網址: https://mobaxterm.mobatek.net/download-home-edition.html

Your Default Account and Password

- Account: u+[YOUR STUDENT ID NUMBER]
 e.g.: u0250718
- Remember to change password by <u>System Password</u> <u>Change Utility</u>

System Password Change Utility

Change your Account Password

D	lasca	road	the	following	instructions	hofore edit	VOUR Dacewo	rd
~	iease	reau	uie	TOHOWING	i instructions	before earc	VOUL PASSWO	лu

- ⇒ The password is letter-case sensitive, meaning an 'A' is not the same as an 'a'.
- You may use letters, numbers, and other special characters on your keyboard.
- ⇒ The new password must be 6 to 8 characters long.
- ⇒ The new password must contain at least three (3) letters (a-z) and two (2) digits (0-9).

Your Account Name	
Your Current Password	
New Password	
Retype New Password	

Frequently Used Command in Unix

- Print working directory
- <terminal>pwd
- List the folders and files
- <terminal>ls
- Change a directory
- <terminal>cd ~; cd ..
- Make a directory
- <terminal>mkdir
- Remove a file
- <terminal>rm
- Remove a directory
- <terminal>rm -r

Before Designing a Circuit (1/2)

- Environment setup(first time you log in only)
 - <terminal>source ~u0850754/00_FirstTimeLogin
- Untar file
 - <terminal>tar -xvf ~u0850754/VLSI_LAB.tar
- Check successful untar file
 - <terminal>cd vlsilab
 - <terminal>ls -al

```
[ce26]/usr3/ce21/student/u0650722/% cd vlsilab/

[ce26]/usr3/ce21/student/u0650722/vlsilab/% ls -al

total 28

drwxr-xr-x 5 u0650722 student 4096 Sep 10 13:54 .

drwx----- 6 u0650722 student 4096 Sep 10 13:59 .

-rw-r--r-- 1 u0650722 student 254 Sep 10 13:53 .cdsinit

-rw-r--r-- 1 u0650722 student 1465 Sep 10 13:53 .tcshrc

drwxr-xr-x 5 u0650722 student 4096 Sep 25 2013 calibre

drwxr-xr-x 2 u0650722 student 4096 Sep 25 2013 drwxr-xr-x 2 u0650722 student 4096 Sep 25 2013 virtuoso

[ce26]/usr3/ce21/student/u0650722/vlsilab/%
```

Before Designing a Circuit (2/2)

- Folder "model"
 - cic018.l: Library file for Hspice simulation
- Folder "virtuoso"
 - Technology file
 - Display file
- Folder "calibre"
 - Files for DRC \ LVS and PEX

Launch Cadence Virtuoso

-[~/vlsilab]\$ icfb &

Close it

Succeed to Launch

Load Display Resource File (1/2)

- Load the layer information into virtuoso (color, layer number)
- Just do it at the first time

Load Display Resource File (2/2)

Create a New Library (1/3)

Create a New Library (2/3)

Create a New Library (3/3)

Create a New Cell – Schematic (1/6)

Create a New Cell – Schematic (2/6)

Create a New Cell – Schematic (3/6)

Press "Browse" button

- 1. select analogLib
- 2. instance (pmos4, nmos4, vdd, gnd, ...)

Create a New Cell – Schematic (4/6)

"Hide " to close this window

Create a New Cell – Schematic (5/6)

Create a New Cell – Schematic (6/6)

Press hotkey "w" or press this icon to make a connection

Export Spice Netlist (1/3)

- Back to icfb command window
- Export schematic to spice file

Export Spice Netlist (2/3)

Export Spice Netlist (3/3)

Use gedit to revise inv.sp in server

```
auCdl htlist:
                   Star symbol - "*" means start of comment
* Library Name:
* Top Cell Name: inv
* View Name:
             schematic
* Netlisted on: Sp 10 12:15:10 2018
*.BIPOLAR
                   Hspice will not execute the first line.
*.RESI = 2000
*.RESVAL
                   Please don't write comment in the first line.
*.CAPVAL
*.DIOPERI
*.DIOAREA
*.EQUATION
*.SCALE METER
                                1. Comment ".PARAM"
*.PIN gnd!
```

By default, the case of *.GLOBAL gnd! vdd! letters are insensitive *.PIN gnd! *+ vdd! in spice.

Design Flow of Full-Custom Chip

Create Spice Netlist for simulation(1/2)

Create Spice Netlist for simulation(2/2)

- DC signal: V<name> V+ V- DC
 - Ex: vdd vdd gnd 1.8
- Pulse signal: pulse (V0 V1 < Tdelay Trise Tfall Twidth Tperiod >)
 - Ex: Vin in gnd pulse(0v 1.8v 5ns 1ns 1ns 9ns 20ns)
- Piecewise linear signal: pwl (t1 v1, t2 v2, ...)
 - Ex: Vin in gnd pwl (25n 0v, 25.1n 1.8v)
- Others:
 - op (post the operation point)
 - tran 10ns 1000ns
 (transient analysis, sample in period of 10ns and 1000ns of the total run time)
 - end (Must add at the end of file)
 - * (comment)

Hspice Simulation

- <terminal> hspice sim_xxx.sp | tee xxx.log

[ce24]/usr3/ce21/student/u99/u9923508/1108/wim/% hspice sim_inv.sp xterm - - X Runtime Statistics (seconds) analysis # points tot. iter conv.iter time op point 0.00 5001 429 transient 0.00 166 rev= 1 readin 0.01 0.01 ennchk. setup 0.00 output 0.00 total memory used 193 kbutes 0.02 seconds total cpu time total elapsed time 0.16 seconds 19:35:07 11/09/2012 job started at job ended at 19:35:07 11/09/2012 Simulate successfully ***** hspice job concluded >info: lic: Release hspice token(s) real 0.17 Otherwise, it shows: "hspice job aborted" user 0.02 sys 0.01 [ce24]/usr3/ce21/student/u99/u9923508/1108/sim/%

CosmosScope (1/5)

- <terminal>cscope &

CosmosScope (2/5)

CosmosScope (3/5)

CosmosScope (4/5)

Tools → Measurement Tool

CosmosScope (5/5)

Measurement Options

Probe Signal

Fixed Value

Design Flow of Full-Custom Chip

^{*} You may do these steps recursively.

Layout

- When the behavior of circuit is verified, then you can draw the layout.
- Add layout cell view in library manager

Create a Layout Cell View

Settings for Layout Environment

Set display options as you launch Virtuoso

Y Snap Spacing

0.01

□ Dot Pins

Net Expressions

■ Use True BBox

Cross Cursor

2. Snap Spacing: 0.01

Layout : Device

Layout: Add Label

2. Select "Label" Button (hotkey –

Cadence Virtuoso – Hot Keys for Layout

- m:move
- c:copy
- s:stretch/shrink
- k:ruler
- Shift + k: clear ruler
- Ctrl + z : zoom in
- Shift + z : zoom out
- f: fit the layout size
- Esc: cancel command

Layout : Circuits

- Hint: Do DRC when you finish some part of your circuits.
- Connect m1 to m2
 - Stack layers
 - Metal1(bottom) → via1 → Metal2

Design Flow of Full-Custom Chip

^{*} You may do these steps recursively.

Calibre DRC (1/5)

In the Rules tab

- Calibre-DRC Rules File field
 - Press the bottom "..."
 - Select rule.drc in the
 - ../calibre/Calibre_DRC/ directory
- Calibre-DRC Run Directory field
 - Select your work directory

Calibre DRC (2/5)

Calibre DRC (3/5)

Use default setting

Calibre DRC (4/5)

Collect all the design rule violation!

Calibre DRC (5/5)

DRC Violations

Calibre LVS (1/7)

Calibre LVS (2/7)

- In the Rules tab
 - Calibre-LVS Rules File field
 - Press the bottom "..."
 - Select Rule lys in the
 - ../calibre/Calibre_LVS/ directory
 - Calibre-LVS Run Directory field
 - Select your work directory

Calibre LVS (3/7)

- In the Inputs tab
 - Hierarchical: on
 - Layout VS Netlist : on
 - In the layout tab
 - Files: gds file name XXX.calibre.db
 - Export from layout viewer: on
 - Primary Cell: XXX
 - Layout Netlist: XXX.lay.net
 - In the Netlist tab
 - Files: inv.sp
 - Export from schematic viewer: off
 - Primary Cell: XXX

Calibre LVS (4/7)

Calibre LVS (5/7)

Calibre LVS (6/7)

The smile indicate comparison is correct

Calibre LVS (7/7)

Incorrect results

Calibre PEX (1/8)

Calibre PEX (2/8)

- In the Rules tab
 - Calibre-PEX Rules File field
 - Press the bottom "..."
 - Select Rule, rce in the
 - ../calibre/Calibre_PEX/ directory
 - Calibre-PEX Run Directory field
 - Select YOUR ACCOUNT /.../calibre/Calibre_PEX/ as your directory
 - Please check that your Run Directory includes "Rule.rce" \ " Rule_08KA.rc", and "Rule_20KA.rc"
 - 注意: 這裡和DRC、LVS不同,不是選擇工作資料夾,而是選擇包含Rule.rce,Rule_08KA.rc,Rule_20KA.rc三個檔案的資料夾。在這裡是Calibre_PEX,不過萃取出的spice file就會擺在Calibre_PEX裡面,如果你覺得不方便,可以把上述三個檔案複製到你的工作資料夾。

Calibre PEX (3/8)

Calibre PEX (4/8)

- In the Inputs tab
 - In the layout tab
 - Files: gds file name XXX.calibre.db
 - Export from layout viewer: on
 - Primary Cell: XXX
 - In the Netlist tab
 - Files: inv.sp
 - Export from schematic viewer: off
 - Primary Cell: XXX

Calibre PEX (5/8)

Calibre PEX (6/8)

Calibre PEX (7/8)

- In the output tab
 - Extraction Type:
 - RC Distributed RC
 - In the PEX Netlist field
 - Format : hspice on
 - Name: layout on
 - File: default file name+.sp
 - View Netlist after PEX finishes: on

Calibre PEX (8/8)

按下Run PEX,可能會有很多warning,多半可以不用在意。 輸出的新的檔案inverter.pex.netlist擺在你之前選的PEX Run Directory下

Design Flow of Full-Custom Chip

^{*} You may do these steps recursively.

Post-Layout Simulation

- After PEX, inverter.pex.netlist.sp will be obtained
- Use inverter.pex.netlist.sp in Hspice perform postlayout simulation and get more realistic results
- Remember to check the order of subckt name between simulation file and inverter.pex.netlist.sp.
- 提醒:只要layout電路有做更動,一定要照 DRC→LVS→PEX 步驟 重做。

Create Spice Netlist for post simulation

54@ce38 Calibre_PEX]\$ gedit sim_inv.sp &

```
sim_inv.sp x
                      **sim_inv
                      .protect
                Title
                      .lib 'cic018.l' tt
                      .unprotect
       include library (.include 'inv.pex.netlist.sp'
                     vvdd vdd! 0 1.8
       Define voltage |vgnd gnd! 0 0
      Call subcircuits | xinv GND! VDD! OUT IN inv
Define input waveform |vvin in 0 pulse (0 1.8v 0 1n 1n 49n 100n)
                      .option post
                      .op
                      .tran 0.1n 500n
                      .end
```

Demo steps

- 1. Check Schematic
- 2. Check Layout
- 3. Run DRC
- 4. Run LVS
- 5. Measure area of layout
- 6. Check post-sim waveform