

Mathematics Specialist Test 4 2017

## Integration Techniques & Applications of Integral Calculus

| NAME:       | TEACHER: |
|-------------|----------|
| Mrs Da Cruz |          |

Resource Free Section

33 marks 35 minutes (a) Express  $\frac{2}{x^2 - 1}$  as partial fractions.

(b) Hence determine  $\int_{2}^{8} \frac{2}{x^2 - 1} dx$ . Give your answer in the form  $\ln \frac{p}{q}$ .

Determine the following indefinite integrals:

(a) 
$$\int 1 - \cos^2(5x) dx$$

\_

(b) 
$$\int \frac{1}{2} (2x-4) (x^2-4x+1)^6 dx$$

(c) 
$$\int \sin^3(2x)\cos(2x)dx$$

Question 3 [5 marks]

Use the substitution  $u=4+\sqrt{x}$  to evaluate  $\int \sqrt{4+\sqrt{x}} dx$ .

Do not factorize or simplify your answer.

 ${\bf Question}~4$ 

[1 mark]

The area under the curve y = k(x) can be described by:



$$\int_{-4}^{3} k(x) dx$$

**B** 
$$\int_{-4}^{-1} k(x) dx + \int_{-1}^{3} k(x) dx$$

c 
$$\left| \int_{-1}^{3} k(x) dx \right| + \int_{-4}^{-1} k(x) dx$$

$$\int_{1}^{3} k(x) dx$$

$$\mathbf{D} \begin{vmatrix} \int_{1}^{3} k(x) dx \\ 1 - \int_{1}^{3} k(x) dx \end{vmatrix}$$



(a) Find the area under the curve, in square units, for the function  $f(x) = \frac{1}{2x+1}$  from x=0 to x=1.

(b) Find the area enclosed by the curves, in square units, of the graphs  $f(x) = \frac{1}{2x+1}$ ,  $g(x) = \frac{1}{\sqrt{2x+1}}$  and the line x=1.

Question 6 [2 marks]

Find  $\frac{d}{dx}(x^2e^x)$  and use your answer to evaluate  $\int 4x e^x(x+2) dx$ .

Question 7 [5 marks]

The region bounded by the lines x=k and x=1 and the curve  $y^2=4x^3-4x$  is rotated about the x-axis 180°. The volume formed is  $9\pi$ . Determine the value of k where k is a positive integer.





## Mathematics Specialist Test 4 2017

## Integration Techniques & Applications of Integral Calculus

| NAME:       | TEACHER: |
|-------------|----------|
| Mrs Da Cruz |          |

Resource Rich Section

11 marks 15 minutes Question 8







The upper component of an archway is designed to bear the load of the wall above and around it. For this, the best shape is a catenary. A catenary is the name given to the curve formed by two simple exponential terms added together. The equation of the upper arch is  $f(x) = -e^{\frac{x}{2}} - e^{\frac{x}{2}} + c$ . The x-intercepts of the catenary are (-4, 0) and (4, 0).

**a** Use this information to determine the exact value of c.

Paint has to be applied to the area under the catenary curve.

**b** State a definite integral that will find the area of paint required.

c Calculate the exact area to be painted, giving your answer with positive indices.



Use a suitable definite integral to find the **exact** volume, in cubic units, that is formed by rotating about the *x*-axis the following curves between the limits shown.

$$y = x^3$$
, from  $x = 1$  and  $x = 3$ .

Question 10 [3 marks]

Use a suitable definite integral to find the exact volume, in cubic units, that is formed by rotating about the *y*-axis the following curves between the limits shown.

$$y = \frac{1}{5}\log_{x}(2x - 1)$$
, from  $y = 0$  and  $y = 1$ .

Question 10 [2 marks]

Use a suitable definite integral to find the exact volume, in cubic units, that is formed by rotating the shaded area about the y-axis.

