

STP80NE06-10

N - CHANNEL ENHANCEMENT MODE "SINGLE FEATURE SIZETM" POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP80NE06-10	60 V	<0.01 Ω	80 A

- TYPICAL $R_{DS(on)} = 0.0085 \Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- APPLICATION ORIENTED CHARACTERIZATION

DESCRIPTION

This Power MOSFET is the latest development of SGS-THOMSON unique "Single Feature SizeTM" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- SOLENOID AND RELAY DRIVERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- DC-DC CONVERTERS
- AUTOMOTIVE ENVIRONMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage (V _{GS} = 0)	60	V
V_{DGR}	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60	V
V_{GS}	Gate-source Voltage	± 20	V
I _D	Drain Current (continuous) at T _c = 25 °C	80	Α
I _D	Drain Current (continuous) at T _c = 100 °C	57	Α
I _{DM} (•)	Drain Current (pulsed)	320	Α
P _{tot}	Total Dissipation at T _c = 25 °C	150	W
	Derating Factor	1	W/°C
dv/dt	Peak Diode Recovery voltage slope	7	V/ns
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	O°

^(•) Pulse width limited by safe operating area

February 1998 1/8

⁽¹⁾ $I_{SD} \le 80$ Å, $di/dt \le 300$ Å/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	1	°C/W	
Rthj-amb	Thermal Resistance Junction-ambient	Max	62.5	oC/W	
R _{thc-sink}	Thermal Resistance Case-sink	Тур	0.5	°C/W	
T_I	Maximum Lead Temperature For Soldering F	Purpose	300	°C	

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	80	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 30$ V)	250	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating$ $T_c = 125$ C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V I _D = 40 A		8.5	10	$m\Omega$
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	80			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 40 \text{ A}$	19	38		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$ f = 1 MHz $V_{GS} = 0$		7600 890 150	10000 1100 200	pF pF pF

2/8

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$\begin{aligned} V_{DD} &= 30 \text{ V} & I_D &= 40 \text{ A} \\ R_G &= 4.7 \Omega & V_{GS} &= 10 \text{ V} \\ \text{(see test circuit, figure 3)} \end{aligned}$		50 150	65 200	ns ns
$\begin{array}{c} Q_g \\ Q_{gs} \\ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 48 \text{ V}$ $I_D = 80 \text{ A}$ $V_{GS} = 10 \text{ V}$		140 20 50		nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 48 \text{ V}$ $I_{D} = 40 \text{ A}$		45	60	ns
t _f	Fall Time	$R_G = 4.7 \Omega$ $V_{GS} = 10 V$		75	100	ns
tc	Cross-over Time	(see test circuit, figure 5)		130	170	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				80 320	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 80 A V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 80 \text{ A}$		100		ns
Q_{rr}	Reverse Recovery Charge	(see test circuit, figure 5)		0.4		μС
I_{RRM}	Reverse Recovery Current			8		А

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area for

Thermal Impedance

^(•) Pulse width limited by safe operating area

Output Characteristics

Transconductance

Gate Charge vs Gate-source Voltage

Transfer Characteristics

Static Drain-source On Resistance

Capacitance Variations

Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

4

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

8/8

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.