- [[Shortest Path Algorithms]] for all vertex pairs
- · distance matrix is calculated directly
- [[Dynamische Programmierung]]
- compute a sequence of distance matrices $w_1, ..., w_n$
 - initial weight matrix w as input

weight matrix
$$w(i,j)$$
, $1 \leq i,j \leq n$, defined by
$$w(i,j) = \begin{cases} w(v_i,v_j) & \text{if } (v_i,v_j) \in E \\ 0 & \text{if } i=j \\ \infty & \text{otherwise} \end{cases}$$

$$w_k(i,j) = \min\{w_{k-1}(i,j), w_{k-1}(i,k) + w_{k-1}(k,j)\}$$

- . $w_n(i,j)$ is the distance from v_i to v_j in G.
- proof by induction

Proof. We show by induction on k that $w_k(i,j)$ is the length of the shortest path from v_i to v_j via $\{v_1,...,v_k\}$.

Induction base: For k = 0 the statement is true:

- if $i \neq j$ and $v_i v_j \in E$ then $w_0(i,j) = w(v_i,v_j)$;
- if $i \neq j$ and $v_i v_j \not\in E$ then $w_0(i,j) = \infty$;
- $w_0(i,i) = 0$.

In all cases, $w_0(i,j)$ is the shortest path from v_i to v_j without intermediate vertices.

Induction step: Assume the statement is correct up to k-1 and consider w_k .

– w_{k-1} may use v_k as start or end point but not as intermediate

Observation: The shortest path π from v_i to v_j via vertices from $\{v_1, ..., v_k\}$ may or may not contain v_k .

- If π contains v_k , then the parts of π from v_i to v_k and from v_k to v_j go only via $\{v_1, ..., v_{k-1}\}$.
- \Rightarrow By induction, the lengths of those parts are stored in $w_{k-1}(i,k)$ and $w_{k-1}(k,j)$.
- \Rightarrow Hence the length of π is $w_{k-1}(i,k)+w_{k-1}(k,j)$.

- If π does not contain v_k then π goes via $\{v_1, ..., v_{k-1}\}$.
- \Rightarrow By induction, the length of π is stored in $w_{k-1}(i,j)$.
- The algorithm takes the minimum of the two considered possibilities $\Rightarrow w_k(i,j)$ is the length of π in both cases.
- $\Rightarrow w_n(i,j)$ is the length of the shortest path from v_i to v_j that can go via all vertices of V and hence $w_n(i,j) = d(v_i,v_j)$.

· pseudo code

$$\begin{aligned} w_0 &= w \\ \underline{\textbf{for}} \ k &= 1 \ \underline{\textbf{to}} \ n \ \underline{\textbf{do}} \\ \underline{\textbf{for}} \ i &= 1 \ \underline{\textbf{to}} \ n \ \underline{\textbf{do}} \\ \underline{\textbf{for}} \ j &= 1 \ \underline{\textbf{to}} \ n \ \underline{\textbf{do}} \\ w_k(i,j) &= \min\{w_{k-1}(i,j), w_{k-1}(i,k) + w_{k-1}(k,j)\} \end{aligned}$$

Requirements for G with n vertices and m edges:

- Runtime: $\Theta(n^3)$
- Memory: $\Theta(n^2)$

- The Floyd-Warshall algorithm also works if the graph is disconnected (if not every vertex can be reached from every other vertex). The distance between such vertices is set to ∞ in the matrix w_n .
- With a small adaption, the Floyd-Warshall algorithm
 can also be used for graphs with negative edge weights:
 Then an additional check for the existence of (possibly
 trivial) cycles with negative length is needed. A graph
 has a (possibly trivial) cycle with negative length if and
 only if the matrix w_n contains negative entries in its
 diagonal.