Logarithms and Exponentials 15

- Express the following in terms of $\ln 2$ and $\ln 3$. 15.1
 - (a) ln 16
- (b) ln 12
- (c) $\ln 36$
- (d) $\ln 2\sqrt{2}$
- (e) $\ln \frac{9}{8}$ (f) $\ln \sqrt{13.5}$.
- Find the derivatives of the following functions.
- (a) $f(x) = \ln(x^2 + 2x)$ (b) $f(x) = -\ln(\cos x)$ (c) $f(x) = x [\sin(\ln x) + \cos(\ln x)]$
- (d) $f(x) = x \ln x$ (e) $f(x) = \ln x \ln \sqrt{1 + x^2} \frac{1}{x} \arctan x$ (f) $f(x) = \ln(\tan x)$.
- 15.3 Use the properties of logarithms to expand each of the following expressions, and hence determine their derivatives with respect to x.
 - (a) $\ln[(5x+1)^3]$
- (b) $\ln[(3x^3+1)^{1/3}]$

- (d) $\ln\left(\frac{x+4}{x^2-7}\right)$ (e) $\ln\left(\frac{(2x+1)^{1/3}}{(3x-2)^{1/4}}\right)$ (f) $\ln\left(\frac{x\sqrt{2x^2+3}}{(x-1)\sqrt{1-3x^2}}\right)$.
- 15.4 Use logarithmic differentiation to find the derivatives of the following functions.
 - (a) $f(x) = \frac{(x-1)^3(x+2)^2}{x+1}$ (b) $g(x) = \frac{(3x-2)^{\frac{1}{2}}(x+1)^3}{1+2x}$ (c) $h(x) = \frac{(x+2)^{\frac{1}{2}}}{(3x^2+1)^{\frac{3}{2}}}$

- 15.5 Find the following derivatives.
- (a) $\frac{\mathrm{d}}{\mathrm{d}x}x^x$ (b) $\frac{\mathrm{d}}{\mathrm{d}x}x^{x^x}$ (c) $\frac{\mathrm{d}}{\mathrm{d}x}(x^x)^x$ (d) $\frac{\mathrm{d}^2}{\mathrm{d}x^2}x^x$.
- 15.6 Simplify the following expressions.

 - (a) $\ln(e^{3x})$ (b) $\ln\left(\frac{1}{e^x}\right)$ (c) $e^{\ln x + \ln y}$ (d) $\ln(x^2 e^{2x})$ (e) $\ln(e^{\ln(e^x)})$.

- 15.7 Find the derivatives of the following functions.
- (a) $f(x) = x^2 e^x$ (b) $g(x) = e^{\sin x}$ (c) $h(x) = e^{1+\tan(2x)}$ (d) $i(x) = \arctan(e^x)$ (e) $j(x) = e^{x \sin x}$ (f) $k(x) = e^{e^x}$ (g) $l(x) = e^{e^x}$.

- Find the derivatives of the following functions.

- (a) $f(x) = x^2 a^x$ (b) $g(x) = 10^{\cos x}$ (c) $h(x) = 2^{1 + \ln(2x)}$ (d) $i(x) = \arctan(a^x)$ (e) $j(x) = 3^{x \cos x}$ (f) $k(x) = a^{a^x}$ (g) $l(a) = a^{a^x}$ (h) $m(x) = (\ln x)^{\ln x}$.

- 15.9 Compute $e^{x^2} \frac{\mathrm{d}}{\mathrm{d}x} (e^{-x^2})$, $e^{x^2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} (e^{-x^2})$, and $e^{x^2} \frac{\mathrm{d}^3}{\mathrm{d}x^3} (e^{-x^2})$.
- 15.10 Find all continuous functions f that satisfy

$$(a) \int_0^x f = e^x,$$

(b)
$$\int_0^{x^2} f = 1 - e^{2x^2}$$
.

- 15.11 Let $F_{A,B}(x) = Ae^x \cos x + Be^x \sin x$. Show that $\frac{\mathrm{d}}{\mathrm{d}x} F_{A,B}(x) = F_{A+B,B-A}(x)$ and use this result to find $\frac{\mathrm{d}^2}{\mathrm{d}x^2}F_{A,B}(x)$.
- 15.12 Find the derivatives of the following functions.
 - (a) $f(x) = \log_{10}(\sin x)$
- (b) $g(x) = \log_2(\exp(x))$ (c) $h(x) = \sin(\log_a x)$
- (d) $i(x) = \log_{(e^x)} \sin x$ (e) $j(x) = \log_x a$ (f) $k(a) = \log_x a$.

- 15.13 Find $\lim_{x\to\infty} a^x$ for 0 < a < 1.
- 15.14 Prove the following.
 - (a) $\log_3 2$ is irrational. [Hint: assume that $\log_3 2 = \frac{r}{s}$ with integers r and s, and use the definition of the logarithm.
 - (b) If p and q are two distinct primes, then $\log_p q$ is irrational.
- 15.15 Verify the following identities by using the definitions of sinh and cosh.
 - (a) $\sinh x \cosh y + \cosh x \sinh y = \sinh(x+y)$;
 - (b) $\cosh x \cosh y + \sinh x \sinh y = \cosh(x+y)$.

Deduce similar results for $\sinh(x-y)$, $\cosh(x-y)$, $\sinh(2x)$ and $\cosh(2x)$.

- 15.16 Differentiate the following expressions with respect to x.
 - (a) $\cosh \sqrt{1-x^2}$
- (b) $x^2 \sinh(3x^5)$
- (c) $\ln(\tanh x)$
- (d) $\ln[\sinh(x^3 + 3x)]$.
- 15.17 (a) What are the natural domain and range of the function cosh? Sketch its graph.
 - (b) Explain why the function cosh with its natural domain does not have an inverse, but the function $z = \cosh x$ defined on the restricted domain $0 \le x < \infty$ does.
 - (c) Express $\cosh x$ in terms of e^x and show that $\cosh^{-1}(z) = \ln \left[z + \sqrt{z^2 1} \right]$. Find the derivative of \cosh^{-1} .
- 15.18 (a) What are the natural domain and range of the function tanh? Sketch its graph.
 - (b) Express $\tanh x$ in terms of e^x and show that $\tanh^{-1}(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right)$

for -1 < y < 1. Find the derivative of \tanh^{-1} .

15.19 Differentiate the following expressions with respect to x.

- (a) $\cosh^{-1}(2x)$
- (b) $\tanh^{-1}(\sin x)$ (c) $\sinh^{-1}\sqrt{x}$ (d) $\tanh^{-1}(e^{5x^2})$

15.20 Show that $\frac{\mathrm{d}}{\mathrm{d}x} \left\{ \tanh^{-1} \left[\tan \left(\frac{x}{2} \right) \right] \right\} = \frac{1}{2} \sec x.$

15.21 If $f(x) = (\sinh^{-1} x)^2$, verify that $(1+x^2)f''(x) + xf'(x) = 2$.