测试计划

第 25 组 2022 年 3 月 22 日

1 测试需求

本次作业要求使用黑盒测试,使用边界值、等价类、决策表的方法设计 测试用例,根据结果定位软件缺陷。

我们小组选择的测试对象是在线进制转换工具(https://www.sojson.com/hexconvert.html),该webapp有七个功能,分别是二进制转化、四进制转换、八进制转换、十进制转换、十六进制转换、三十二进制转换、六十四进制转换。我们决定对除十进制转换外的六个功能进行测试。

2 任务分配

本小组为四人小组,任务分配为: 谭博仁负责测试十六进制转换、结果分析和报告撰写,周峰负责测试二进制转换和四进制转换和八进制转换,张怡天负责测试三十二进制转换和六十四进制转换。

3 对十六进制转换功能的测试

3.1 测试策略分析

在该功能中,输入为一个独立的、位于 [0,0x40000000000000000] 的十六进制整数。因此,采用边界值分析和等价类测试是较好的方法。

3.2 测试用例

3.2.1 边界值分析

边界值分析采用健壮性测试,即考虑无效值的情况。测试用例设计如下 (下面所有输入输出均为正则表达式): 其中 UB 表示 undefined behaviour,

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
1	-1	UB	UB	UB	UB	UB
2	0	0	0	0	0	0
3	1	1	1	1	1	1
4	233	1000110011	20303	1063	563	233
5	3f{15}	1{62}	3{31}	37{20}	4611686018427388063	3f{15}
6	40{15}	10{62}	10{31}	40{20}	4611686018427388064	40{15}
7	40{14}1	UB	UB	UB	UB	UB
8	1.1	UB	UB	UB	UB	UB
9	fg	UB	UB	UB	UB	UB

出现 UB 时输出可以为任意值,但是整个网页不能出现崩溃、卡死等情况。

上述用例的说明如下:

用例编号	说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值
8	输入为小数
9	输入不是十六进制

3.2.2 等价类分析

参考我们一般情况下做进制转换的算法,可以将输入按照模 16 的余数(也就是输入的最后一位)进行分类,因为**进制转换时对每一位进行的计算过程应当是一致的**。据此可以设计如下测试用例:

其中,用例 10 和 11 分别对应于高于最大值和低于最小值的输入。用例 12 17 对应于按照模 16 的余数划分的 16 个不同等价类的输入。

4 对三十二进制转换功能的测试

4.1 测试用例

4.1.1 边界值分析

边界值分析采用健壮性测试,即考虑无效值的情况。测试用例设计如下 (下面所有输入输出均为正则表达式): 其中 UB 表示 undefined behaviour, 出现 UB 时输出可以为任意值,但是整个网页不能出现崩溃、卡死等情况。

上述用例的说明如下:

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
10	40123456789abcdef	UB	UB	UB	UB	UB
11	-5	UB	UB	UB	UB	UB
12	510	10100010000	110100	2420	1296	510
13	f1	11110001	3301	361	241	f1
14	a2	10100010	2202	242	162	a2
15	903	100100000011	210003	4403	2307	903
16	5b4	10110110100	112310	2664	1460	5b4
17	2a5	1010100101	22211	1245	677	2a5
18	446	10001000110	101012	2106	1094	446
19	877	100001110111	201313	4167	2167	877
20	658	11001011000	121120	3130	1624	658
21	aa9	101010101001	222221	5251	2729	aa9
22	7da	11111011010	133122	3732	2010	7da
23	4fb	10011111011	103323	2373	1275	4fb
24	9fc	100111111100	213330	4774	2556	9fc
25	a3d	101000111101	220331	5075	2621	a3d
26	41e	10000011110	100132	2036	1054	41e
27	6af	11010101111	122233	3257	1711	6af

用例编号	输入	二进制	四进制	八进制	十进制	三十二进制
1	-1	UB	UB	UB	UB	UB
2	0	0	0	0	0	0
3	1	1	1	1	1	1
4	114	10000100100	100210	2044	1060	114
5	3Z{12}	10{62}	10{31}	40{20}	4611686018427388064	3Z{12}
6	40{12}	10{62}	10{31}	40{20}	4611686018427388064	40{12}
7	40{11}1	UB	UB	UB	UB	UB
8	1.1	UB	UB	UB	UB	UB
9	c++	UB	UB	UB	UB	UB

用例编号	说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值
8	输入为小数
9	输入不是三十二进制

4.1.2 等价类分析

针对常见有符号数的不同长度(1 byte, 2 bytes, 4 bytes, 8 bytes)所对 应的最大和最小值进行了测试,因为在有效范围内,一定大小范围内的输 入应当有相同的处理模式。据此可以设计如下测试用例:

用例编号	输入	二进制	四进制	八进制	十进制	三十二进制
10	1	1	1	1	1	1
11	3Z	1111111	1333	177	127	3Z
12	40	10000000	2000	200	128	80
13	1ZZZ	1{15}	33333333	177777	65535	1ZZZ
14	2000	10{15}	100000000	200000	65536	2000
15	1ZZZZZZ	1{31}	13{15}	17{10}	2147483647	1ZZZZZZ
16	2000000	10{31}	20{15}	20{10}	2147483648	2000000
17	3Z{12}	10{62}	10{31}	40{20}	4611686018427388064	3Z{12}

选取了每一类的最大最小值作为用例进行测试。

其中,用例 10 和 11 分别对应于大小在 $1 \sim 2^8 - 1$ 的输入,用例 12 和 13 分别对应于大小在 $2^8 \sim 2^{16} - 1$ 的输入,用例 14 和 15 分别对应于大小在 $2^{16} \sim 2^{32} - 1$ 的输入,用例 16 和 17 分别对应于大小在 $2^{32} \sim 2^{62} - 1$ 的输入。

5 对六十四进制转换功能的测试

5.1 测试用例

5.1.1 边界值分析

边界值分析采用健壮性测试,即考虑无效值的情况。测试用例设计如下 (下面所有输入输出均为正则表达式):其中 UB 表示 undefined behaviour,

用例编号	输入	二进制	四进制	八进制	十进制	六十四进制
1	-B	UB	UB	UB	UB	UB
2	A	0	0	0	0	0
3	В	1	1	1	1	В
4	C++	10111110111110	2332332	27676	12222	C++
5	D/{10}	10{62}	10{31}	40{20}	4611686018427388064	D/{10}
6	EA{10}	10{62}	10{31}	40{20}	4611686018427388064	EA{10}
7	EA{9}B	UB	UB	UB	UB	UB
8	1.1	UB	UB	UB	UB	UB
9	-\	UB	UB	UB	UB	UB

出现 UB 时输出可以为任意值,但是整个网页不能出现崩溃、卡死等情况。 上述用例的说明如下:

用例编号	说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值
8	输入为小数
9	输入不是六十四进制

5.1.2 等价类分析

针对常见有符号数的不同长度(1 byte, 2 bytes, 4 bytes, 8 bytes)所对应的最大和最小值进行了测试,因为在有效范围内,一定大小范围内的输入应当有相同的处理模式。据此可以设计如下测试用例:

用例编号	输入	二进制	四进制	八进制	十进制	六十四进制
10	В	1	1	1	1	В
11	В/	1111111	1333	177	127	В/
12	CA	10000000	2000	200	128	CA
13	P//	1{15}	33333333	177777	65535	P//
14	QAA	10{15}	100000000	200000	65536	QAA
15	B/////	1{31}	13{15}	17{10}	2147483647	B/////
16	CAAAAA	10{31}	20{15}	20{10}	2147483648	CAAAAA
17	D/{10}	10{62}	10{31}	40{20}	4611686018427388064	D/{10}

选取了每一类的最大最小值作为用例进行测试。

其中,用例 10 和 11 分别对应于大小在 $1\sim 2^8-1$ 的输入,用例 12 和 13 分别对应于大小在 $2^8\sim 2^{16}-1$ 的输入,用例 14 和 15 分别对应于大小在 $2^{16}\sim 2^{32}-1$ 的输入,用例 16 和 17 分别对应于大小在 $2^{32}\sim 2^{62}-1$ 的输入。

6 对二进制转换功能的测试

6.1 测试用例

6.1.1 边界值分析

边界值分析我们采用健壮性测试,考虑无效的勤快,测试用例如下(所有输入输出均为正则表达式)其中 UB 表示 undefined behaviour, 出现 UB

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
1	-1	UB	UB	UB	UB	UB
2	0	0	0	0	0	0
3	1	1	1	1	1	1
4	111	111	13	7	7	7
5	1{52}0	1{52}0	13{25}2	37{16}6	9007199254740990	1ffffffffe
6	1{53}	1{53}	13{26}	37{17}	9007199254740991	1fffffffff
7	10{53}	10{53}	20{26}	40{17}	9007199254740992	200000000000000
8	0.1	UB	UB	UB	UB	UB
9	34	UB	UB	UB	UB	UB

时输出可以为任意值,但是整个网页不能出现崩溃、卡死等情况。

用例编号	用例说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值

6.1.2 等价类分析

由于整个进制转换上限是 53 位,按照位数划分,每相邻四位为一个等价类,最后 53 位单独为一个等价类,然后与几个类位数相同的无效输入。

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
10	11	11	3	3	3	3
11	1{5}	1{5}	133	37	31	1f
12	1{9}	1{9}	13333	777	511	1ff
13	1{13}	1{13}	1333333	17777	8191	1fff
14	1{17}	1{17}	13{8}	37777	131071	1ffff
15	1{21}	1{21}	13{10}	7{7}	2097151	1f{5}
16	1{25}	1{25}	13{12}	17{8}	33554431	1f{6}
17	1{29}	1{29}	13{14}	37{9}	536870911	1f{17}
18	1{33}	1{33}	13{16}	7{11}	8389914591	1f{8}
19	1{37}	1{37}	13{18}	17{12}	137438953471	1f{9}
20	1{41}	1{41}	13{20}	7{14}	36321726838276	1f{10}
21	1{45}	1{45}	13{22}	17{15}	562948853728311	1f{11}
22	1{49}	1{49}	13{24}	37{16}	9001839243740991	1f{12}
23	1{53}	1{53}	13{26}	17{17}	210183324923641521	1f{13}
24	1{54}	10{53}	10{27}	10{13}	18014398509381827	40{14}
25	3{10}	UB	UB	UB	UB	UB

选取了每一类中的具有代表性的作为用例进行测试。例 10 对应 0 \sim 2^4-1 的输入,例 11 对应 $2^4\sim 2^8-1$ 的输入,例 12 对应 $2^8\sim 2^{12}-1$ 的输入,例 13 对应 $2^{12}\sim 2^{16}-1$ 的输入,例 14 对应 $2^{16}\sim 2^{20}-1$ 的输入,例 15 对应 $2^{20}\sim 2^{24}-1$ 的输入,例 16 对应 $2^{24}\sim 2^{28}-1$ 的输入,例 17 对应 $2^{28}\sim 2^{32}-1$ 的输入,例 18 对应 $2^{32}\sim 2^{36}-1$ 的输入,例 19 对应 $2^{36}\sim 2^{40}-1$ 的输入,例 20 对应 $2^{40}\sim 2^{44}-1$ 的输入,例 21 对应 $2^{44}\sim 2^{48}-1$ 的输入,例 22 对应 $2^{48}\sim 2^{52}-1$ 的输入,例 23 对应 $2^{52}\sim 2^{53}-1$ 的输入,例 24 对应 $2^{53}\sim 0$ 的输入,例 25 对应无规则的输入.

用例编号 用例说明 10 1~4 11 5~8 12 9~12 13 13~16 14 17~20 15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限 25 输入不符合要求		
11 5~8 12 9~12 13 13~16 14 17~20 15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	用例编号	用例说明
12 9~12 13 13~16 14 17~20 15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	10	1~4
13 13~16 14 17~20 15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	11	5~8
14 17~20 15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	12	9~12
15 21~24 16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	13	13 ~ 16
16 25~28 17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	14	17~20
17 29~32 18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	15	21 ~ 24
18 33~36 19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	16	25 ~ 28
19 37~40 20 41~44 21 45~48 22 49~52 23 53 24 范围上限	17	29~32
20 41~44 21 45~48 22 49~52 23 53 24 范围上限	18	33~36
21 45~48 22 49~52 23 53 24 范围上限	19	37~40
22 49~52 23 53 24 范围上限	20	41 ~ 44
23 53 24 范围上限	21	45 ~ 48
24 范围上限	22	49 ~ 52
,	23	53
25 输入不符合要求	24	范围上限
1114 4 1 1 1 1 1 1 1 1 1	25	输入不符合要求

7 对四进制转换功能的测试

7.1 用例分析

7.1.1 边界值分析

边界值分析我们采用健壮性测试,考虑无效的勤快,测试用例如下(所有输入输出均为正则表达式)

其中 UB 表示 undefined behaviour, 出现 UB 时输出可以为任意值, 但是整个网页不能出现崩溃、卡死等情况。

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
1	-1	UB	UB	UB	UB	UB
2	0	0	0	0	0	0
3	1	1	1	1	1	1
4	111	10101	111	25	21	15
5	13{25}2	1{52}0	13{25}2	37{16}6	9007199436876719	1f{12}e
6	13{26}	1{53}	13{26}	37{17}	9007199234740991	1f{13}
7	20{26}	10{53}	10{26}	20{17}	4503599627370496	10{14}
8	0.1	UB	UB	UB	UB	UB
9	fd	UB	UB	UB	UB	UB

用例编号	说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值
8	输入为小数
9	输入不是四进制

7.2 等价类划分

选取了每一类中的具有代表性的作为用例进行测试。例 10 对应 0 \sim 2^8-1 的输入,例 11 对应 $2^8\sim 2^{16}-1$ 的输入,例 12 对应 $2^{16}\sim 2^{24}-1$ 的输入,例 13 对应 $2^{24}\sim 2^{32}-1$ 的输入,例 14 对应 $2^{32}\sim 2^{40}-1$ 的输入,例 15 对应 $2^{40}\sim 2^{48}-1$ 的输入,例 16 对应 $2^{48}\sim 2^{53}-1$ 的输入,例 17 代表小数点输入,例 18 对应无规则输入。

用例编号	输入	二进制	四进制	八进制	十进制	十六进制
10	3	11	3	3	3	3
11	3{5}	1{10}	33333	1777	1023	3ff
12	3{9}	1{18}	3{9}	777777	262143	3ffff
13	3{13}	1{26}	3{13}	3777777	67108856	3ffffff
14	3{17}	1{34}	3{17}	37777777	17179869183	3fffffff
15	3{21}	1{42}	3{21}	7{11}	4398672611186	3f{10}
16	13{26}	1{52}	3{26}	17{16}	4572567782638127	f{13}
17	0.1	UB	UB	UB	UB	UB
18	fd	UB	UB	UB	UB	UB

用例编号	输入	二进制	四进制	十进制	十六进制
1	-1	UB	UB	UB	UB
2	0	0	0	0	0
3	1	1	1	1	1
4	666	110110110	12312	436	1b6
5	37{16}6	1{52}0	13{25}2	9007199243730990	1f{12}e
6	37{17}	1{53}	13{26}}	9007199243730991	1f{13}
7	40{17}	10{26}	20{17}	90073218797134974	20{13}
8	0.1	UB	UB	UB	UB
9	fd	UB	UB	UB	UB

8 对八进制转换功能的测试

8.1 测试用例

8.1.1 边界值分析

边界值分析我们采用健壮性测试,考虑无效的勤快,测试用例如下(所有输入输出均为正则表达式)

其中 UB 表示 undefined behaviour, 出现 UB 时输出可以为任意值, 但是整个网页不能出现崩溃、卡死等情况。

用例编号	说明
1	输入略低于最小值
2	输入等于最小值
3	输入略高于最小值
4	输入为正常值
5	输入略低于最大值
6	输入等于最大值
7	输入略高于最大值
8	输入为小数
9	输入不是八进制

8.1.2 等价类划分

用例编号	输入	二进制	四进制	十进制	十六进制
10	7	111	13	7	7
11	7{5}	1{15}	13{7}	32767	7fff
12	7{9}	1{27}	13{13}	134217727	7f{6}
13	7{13}	1{39}	13{19}	549822743887	7f{9}
14	7{17}	1{51}	13{25}	2251677641676347	7f{12}
15	37{17}	1{53}	13{26}	144115188978622772	1f{13}
16	0.1	UB	UB	UB	UB
17	c++	UB	UB	UB	UB

选取了每一类中的具有代表性的作为用例进行测试。例 10 对应 0 \sim $2^{12}-1$ 的输入,例 11 对应 $2^{12}\sim 2^{24}-1$ 的输入,例 12 对应 $2^{24}\sim 2^{32}-1$ 的输入,例 13 对应 $2^{32}\sim 2^{48}-1$ 的输入,例 14 对应 $2^{48}\sim 2^{53}-1$ 的输入,例 15 对应 $2^{53}\sim\infty$ 的输入,例 16 对应小数的输入,例 17 代表无规则输入,例 18 对应无规则输入。