NOAA Weather Data

Obtaining the Data

Data Understanding

Data was obtained from the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) using the Climate Data Online (CDO) database. The CDO provides free access to NCDC's archive of global historical weather and climate data in addition to station history information. These data include quality controlled daily, monthly, seasonal, and yearly measurements of temperature, precipitation, wind, and degree days as well as radar data and 30-year Climate Normals.

Data from NOAA was selected because it provides daily summaries for average wind speed and fastest 2 minute wind gust for the five hurricanes we wanted to examine.

For the purpose of this project we will be looking at six hurricanes:

- Charley
- Dennis
- Matthew
- Irma
- Michael
- lan

We will be using information from hurricane Charley, Dennis, Matthew, Irma, Michael to create our models and validating our model with recent data from Hurricane Ian.

NOAA Data Column Descriptions

Description	Column Name
is the name of the station (usually city/airport name)	NAME
latitude (decimated degrees w/northern hemisphere values > 0, southern hemisphere values < 0	LATITUDE

Name Description	Column Name
ITUDE longitude (decimated degrees w/western hemisphere values < 0, eastern hemisphere values >	LONGITUDE
DATE is the year of the record (4 digits) followed by month (2 digits) and day (2 digits)	DATE
AWND Average daily wind speed (meters per secon	AWND
WSF2 Fastest 2-minute wind speed (in meters per secon	WSF2
Name Numerical label given to each hurricane. 1 = Charley, 2 = Dennis, 3 = Matthew, 4 = Irm 5= Micha	HurricaneName
Engineered column representing coordinates created by combining LATITUDE a LONGITE	COORD
City Engineered column representing cities created by running coordinates through geo reverse geolocate	City

Citations:

Centers N. Select a Location | Data Tools | Climate Data Online (CDO) | National Climatic Data Center (NCDC). Noaa.gov. Published 2019. https://www.ncdc.noaa.gov/cdo-web/datatools/selectlocation)

Hurricanes. coast.noaa.gov. https://coast.noaa.gov/hurricanes/ (https://coast.noaa.gov/hurricanes/)

National Centers for Environmental Information (NCEI. Climate Data Online (CDO) - The National Climatic Data Center's (NCDC) Climate Data Online (CDO) provides free access to

Data Cleaning

Let's remove duplicate values and keep only the value with the highest wind speed.

Data Engineering

We want to be able to compare data from all five hurricanes against home value. So we are

Concating the Hurricane Dataframes

```
In [4]:
                 #creating a column with a label for each hurricane
              1
              2
                 #this way we can still know which hurricane we are referencing
              3
              4
                #charley
              5
                 charley['HurricaneName'] = 'charley'
              7
                #dennis
                dennis['HurricaneName'] = 'dennis'
              8
             10
                #matthew
                matthew['HurricaneName'] = 'matthew'
             11
             12
             13
                #irma
                irma['HurricaneName'] = 'irma'
             14
             15
             16
                #michael
                michael['HurricaneName'] = 'michael'
             17
             18
             19
                #ian
             20
                ian['HurricaneName'] = 'ian'
```

```
In [5]: ► #making sure it Looks good
2 charley.head()
```

Out[5]:

	NAME	LATITUDE	LONGITUDE	DATE	AWND	WSF2	HurricaneName
0	FORT PIERCE, FL US	27.4419	-80.3508	8/13/2004	NaN	NaN	charley
2	FORT PIERCE ARC, FL US	27.4272	-80.4053	8/13/2004	NaN	NaN	charley
4	BIG CYPRESS, FL US	26.3283	-80.9958	8/13/2004	NaN	NaN	charley
6	HOMESTEAD GEN AVIATION AIRPORT, FL US	25.5011	-80.5500	8/13/2004	NaN	NaN	charley
8	LOXAHATCHEE NWR, FL US	26.4985	-80.2160	8/13/2004	NaN	NaN	charley

In [6]:

- #concating the six dataframes into one
- hurricane = pd.concat([charley, dennis, matthew, irma, michael, ian],
- 3 hurricane.head()

Out[6]:

	NAME	LATITUDE	LONGITUDE	DATE	AWND	WSF2	HurricaneName
0	FORT PIERCE, FL US	27.4419	-80.3508	8/13/2004	NaN	NaN	charley
1	FORT PIERCE ARC, FL US	27.4272	-80.4053	8/13/2004	NaN	NaN	charley
2	BIG CYPRESS, FL US	26.3283	-80.9958	8/13/2004	NaN	NaN	charley
3	HOMESTEAD GEN AVIATION AIRPORT, FL US	25.5011	-80.5500	8/13/2004	NaN	NaN	charley
4	LOXAHATCHEE NWR, FL US	26.4985	-80.2160	8/13/2004	NaN	NaN	charley

In [7]: ▶

1 hurricane.describe()

Out[7]:

	LATITUDE	LONGITUDE	AWND	WSF2
count	2494.000000	2494.000000	266.000000	264.000000
mean	28.311389	-82.073998	17.902218	33.542045
std	1.600142	1.672985	7.781214	13.890268
min	24.550659	-87.467244	2.910000	0.000000
25%	27.150977	-82.514912	12.805000	23.900000
50%	28.298745	-81.757617	15.660000	30.000000
75%	29.729953	-80.906335	21.920000	42.900000
max	30.964030	-80.034979	40.710000	87.000000

In [8]:

- #data types are object and float
- 2 #currently have 5571 entries
- #AWND is missing a lot of values
- 4 hurricane.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2494 entries, 0 to 2493 Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	NAME	2494 non-null	object
1	LATITUDE	2494 non-null	float64
2	LONGITUDE	2494 non-null	float64
3	DATE	2494 non-null	object
4	AWND	266 non-null	float64
5	WSF2	264 non-null	float64
6	HurricaneName	2494 non-null	ohiect

dtypes: float64(4), object(3)

memory usage: 136.5+ KB

Scrubbing the Data

```
In [9]:
                  #AWND is missing 5070
                  #We are going to drop any rows where wind speed is missing
               2
                 #Dropping is the best solution here because wind speed
                  #Will not be accurately reflected by the mean in cities hit by the hur
               5 hurricane.isnull().sum()
    Out[9]: NAME
             LATITUDE
                                  0
             LONGITUDE
                                  0
             DATE
                                  0
             AWND
                               2228
             WSF2
                               2230
             HurricaneName
                                  0
             dtype: int64
                  #dropping all rows with missing values
In [10]:
               2 hurricane.dropna(inplace= True)
In [11]:
                  #checking that dataframe is clean
               2
                 hurricane.isnull().sum()
    Out[11]: NAME
                               0
             LATITUDE
                               0
             LONGITUDE
                               0
             DATE
                               0
             AWND
                               0
             WSF2
                               0
             HurricaneName
                               0
             dtype: int64
In [12]:
                  #currently AWND and WSF2 are in meter per second
               2
                 #let's change that to miles per hour for user understanding
                  #meter per second * 2.2369 = miles per hour
                 hurricane['AWND'] = (hurricane['AWND']*2.2369)
                  hurricane['WSF2'] = (hurricane['WSF2']*2.2369)
```

Data Exploration

Exploring all hurricanes

The fastest average wind speed accross all hurricanes was 91 mph and fastest two minute wind gust was 194 mph.

In [13]: ▶

- #Looking at stats for all hurricanes
- 2 hurricane.describe()

Out[13]:

	LATITUDE	LONGITUDE	AWND	WSF2
count	260.000000	260.00000	260.000000	260.000000
mean	28.178982	-82.31930	40.430763	74.971424
std	1.886234	2.03567	17.180567	31.242263
min	24.557060	-87.31667	9.998943	0.000000
25%	26.538050	-82.68555	29.012593	53.461910
50%	28.061370	-81.75684	35.029854	66.100395
75%	30.233330	-80.63560	49.161470	95.963010
max	30.843150	-80.09918	91.064199	194.610300

Visualizing Wind Speed

As we can see from the box and whisker plot below the largest hurricane was Irma and Ian. The variable of average wind speed is a recording of the average wind speed for the whole day. While other hurricanes may have had significant wind gusts and max speeds, what made hurricanes like Irma and Ian unique devastating was that they were extremely slow moving and stagnant. We can also see from the scatterplots below that each hurricane has a unique path. While coastal cities do tend to take more damage, at times inland regions can also experience severe damage.

```
In [14]:
                 #Generate a box and whiskers plot for all six hurricanes
                 #creating a dataframe that has just HurricaneName and AWND
               3
                 hurricane_bw = hurricane[['HurricaneName', 'AWND']]
                 #pivoting the values
                 hurricane bw = hurricane bw.pivot(columns='HurricaneName', values='AWN
                 #plotting
               7
                 box = hurricane bw.boxplot(figsize = (12,7,));
                 box.plot()
               9
                 #adding title
                 plt.title('Average Wind Speed for Duration of Hurricane in Florida')
              10
                 #adding xlabel
              11
                 plt.xlabel('Hurricane')
              12
              13
                 #adding ylabel
                 plt.ylabel('Average Daily Wind Speed (Miles Per Hour)');
```



```
#creating a scatterplot function
In [15]:
               1
               2
                  def scatterplot(df):
                      #importing image for background
               3
               4
                      img = plt.imread(r"data\images\floridamap.jpg")
                      fig, ax = plt.subplots()
               5
               6
                      ax.imshow(img, extent=[-87, -80, 25, 31])
               7
                      #plotting scatter plot
                      plt.scatter(x=df['LONGITUDE'], y=df['LATITUDE'], s=50, c=df['WSF2'
               8
               9
                      plt.title('Fastest 2 Minute Wind Gust')
              10
              11
                      #xlabel
                      plt.xlabel('Longitude')
              12
              13
                      #y Label
              14
                      plt.ylabel('Latitude')
                      #Legend
              15
                      ax.legend(df['HurricaneName'])
              16
              17
                      return plt.show()
```


Data Engingeering

Using Geopy to Get Cities

In order to join the hurricane dataframe to the housing dataframe we will need to know the city names. Using the coordinates provided by the NOAA dataset we can use geopy to reverse geolocate the city names.

Due to this being an API not all request could be completed and some city names had to be annoitated in excel.

Citation:

kumar_satyam. Get the city, state, and country names from latitude and longitude using Python. GeeksforGeeks. Published October 15, 2020. https://www.geeksforgeeks.org/get-the-city-state-and-country-names-from-latitude-and-longitude-using-python/)

Getting Coordinates

Out[18]:

	NAME	LATITUDE	LONGITUDE	DATE	AWND	WSF2	HurricaneName
5	JACKSONVILLE INTERNATIONAL AIRPORT, FL US	30.49529	-81.69374	8/14/2004	14.517481	44.51431	charley
9	CRESTVIEW FAA AP, FL US	30.77715	-86.51938	8/13/2004	16.016204	29.07970	charley
15	MARIANNA MUNICIPAL AIRPORT, FL US	30.83696	-85.18352	8/13/2004	15.501717	29.07970	charley
16	PENSACOLA REGIONAL AIRPORT, FL US	30.47612	-87.18575	8/13/2004	22.011096	36.01409	charley
25	NAPLES MUNICIPAL AIRPORT, FL US	26.15498	-81.77514	8/13/2004	20.512373	78.06781	charley

In [19]:

```
#creating a function
   def get_city(coords):
2
       #instantiate the Nominatim API
3
4
       geolocator = Nominatim(user_agent="MyApp")
       #get the city from the coordinates
5
       location = geolocator.reverse(coords)
6
7
       address = location.raw['address']
       city = address.get('city', '')
8
       #return the city
9
10
       return city
```

```
#applying function to dataframe
In [20]:
                 hurricane['City'] = hurricane['COORD'].apply(get_city)
          H
                  #Looks good
In [21]:
               1
                  hurricane.isnull().sum()
   Out[21]: NAME
             LATITUDE
                               0
             LONGITUDE
                               0
             DATE
                               0
             AWND
                               0
             WSF2
                               0
             HurricaneName
                               0
             COORD
                               0
             City
                               0
             dtype: int64
```

Saving the Dataframe

```
In [22]: | #saving the dataframe
2 hurricane.to_csv(r'data\hurricane.csv', index=False)
```