STA2001 Probability and Statistics (I)

Lecture 2

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

- Random experiment, Sample space, Event and An event has occurred
- Set Theory
- $P(A) = \lim_{n \to \infty} \frac{\mathcal{N}(A)}{n}$
- ▶ Probability function is a function that assigns P(A) to an event A, $A \subseteq S$
 - 1. $P(A) \ge 0$
 - 2. P(S) = 1
 - 3. A_1, A_2, \cdots are countable and mutually exclusive events

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

Review

For random experiments that satisfy

Assumption 1: S contains m possible outcomes

$$e_k$$
, $k = 1, 2, \dots, m$, i.e., $S = \{e_1, e_2, \dots, e_m\}$.

Assumption 2: The *m* outcomes are "equally likely"

$$P(\lbrace e_k\rbrace) = \frac{1}{m}, \quad k = 1, \cdots, m.$$

$$P(A) = \frac{N(A)}{N(S)},$$

where N(X) is the number of outcomes in $X \subseteq S$.

Ordered Sample and Sampling n

nPr

objects n!
- Busitions (n-r)

Definition[Ordered sample of size r]

If r objects are selected from a set of n objects and if the order of selection is noted, then the selected set of r objects is called **ordered sample of size** r. In objects r objects

Definition[Sampling with replacement]

Occurs when an object is selected and then replaced before the next object is selected (n^r) .

Definition[Sampling without replacement]

Occurs when an object is not replaced after it has been selected $\binom{n}{r}$.

Example 2 (Revisited)

The number of 4-letter words with different letters

 $_{26}P_4 \longrightarrow$ sampling without replacement

The number of 4-letter words which can have the same letters

 $26^4 \longrightarrow sampling with replacement$

Combination of n objects taken r at a time

Motivation

Sometimes, the order of selection is not important and we are only interested in the number of subsets of size r, i.e., unordered sample of size r, taken from a set of n different objects.

Instead to solve the problem in a direct way, we solve the problem in an indirect way and we consider permutation of n objects taken r at a time by multiplication principle.

Combination of n objects taken r at a time

$$1. \ \rightarrow \boxed{\mathsf{pos}.1} \rightarrow \boxed{\mathsf{pos}.2} \rightarrow \cdots \rightarrow \boxed{\mathsf{pos}.r} \rightarrow_n P_r$$

$$\Rightarrow X \times r! =_{n} P_{r} \Rightarrow X = \frac{{}_{n}P_{r}}{r!} = \frac{n!}{r!(n-r)!} \stackrel{\triangle}{=}_{n}C_{r}$$
$$= \binom{n}{r} = \binom{n}{n-r} =_{n}C_{n-r}$$

Definition: Each of the ${}_{n}C_{r}$ unordered subsets is called a combination of n objects taken r at a time.

$$_{5}P_{2}=5\times 4.$$

Alternatively,

$$\binom{5}{2} \times 2! = \frac{5!}{3!2!} \times 2! = 5 \times 4$$

The number of possible 5-card hands drawn from a deck of 52 playing cards is

$$_{52}C_5=\binom{52}{5}$$

The number $\binom{n}{r}$ is often called binomial coefficients, because in binomial expansion

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^r b^{n-r} = (a+b)(a+b)\cdots(a+b)$$

Distinguishable Permutation of objects of two types

Motivation

Consider permutation of n objects of two types: r of one type and (n-r) of the other type.

Instead to solve the problem in a direct way, we solve the problem in an indirect way and we consider permutation of *n* different objects by multiplication principle.

Distinguishable Permutation

$$1. \ \rightarrow \boxed{\mathsf{pos.1}} \rightarrow \boxed{\mathsf{pos.2}} \rightarrow \cdots \rightarrow \boxed{\mathsf{pos.n}} \rightarrow \qquad \mathsf{n!}$$

Definition: Each of the ${}_{n}C_{r}$ permutations of n objects of two types

with r of one type and (n-r) of the other type.

Question

Flip a coin 10 times and the sequence of heads and tails is observed. What is the number of possible 10 tuples with 4 heads and 6 tails?

Question

Flip a coin 10 times and the sequence of heads and tails is observed. What is the number of possible 10 tuples with 4 heads and 6 tails?

The number of possible 10 tuples with 4 heads and 6 tails is $\binom{10}{4}$

because it is a distinguishable permutation of 10 objects of two

types: 4 of one type and 6 of the other type.

$$\binom{6}{4}$$

Distinguishable permutation of objects of *m* types

Consider a set of n objects of m types:

 n_1 of one type, n_2 of one type, \cdots , n_m of one type, where

$$n_1 + n_2 + \cdots + n_m = n$$

What's the number of distinguishable permutation of these n objects?

Distinguishable permutation of objects of *m* types

1. permutation of n different objects n!

2.

$$\rightarrow \boxed{\mathsf{pos.1}} \rightarrow \boxed{\mathsf{pos.2}} \rightarrow \cdots \rightarrow \boxed{\mathsf{pos.n}} \rightarrow \qquad \mathsf{n!}$$

Section 1.3 Conditional Probability

Consider a number of tulip bulbs

	Early(E)	Late(L)	Totals
Red(R)	5	8	13
Yellow(Y)	3	4	7
Totals	8	12	20

Experiment 1: Select one bulb randomly.

- ▶ Sample space $S = \{all bulbs\}.$
- Assumption: all bulbs are "equally likely".

Consider the event $R = \{\text{the selected bulb is red}\}$, what is P(R)?

Consider a number of tulip bulbs

	Early(E)	Late(L)	Totals
Red(R)	5	8	13
Yellow(Y)	3	4	7
Totals	8	12	20

Experiment 1: Select one bulb randomly.

- ▶ Sample space $S = \{all bulbs\}.$
- Assumption: all bulbs are "equally likely".

Consider the event $R = \{\text{the selected bulb is red}\}$, what is P(R)?

$$P(R) = \frac{N(R)}{N(S)} = \frac{13}{20}$$

Consider a number of tulip bulbs

	Early(E)	Late(L)	Totals
Red(R)	5	8	13
Yellow(Y)	3	4	7
Totals	8	12	20

Experiment 2: Select one bulb from the ones that bloom early.

- ▶ Sample space reduces to $E = \{all \text{ bulbs that bloom early}\}.$
- Assumption: all bulbs are "equally likely".

Consider the event $R = \{\text{the selected bulb is red}\}$, what is the probability of the event R, denoted by P(R|E)?

Consider a number of tulip bulbs

	Early(E)	Late(L)	Totals
Red(R)	5	8	13
Yellow(Y)	3	4	7
Totals	8	12	20

Experiment 2: Select one bulb from the ones that bloom early.

- ▶ Sample space reduces to $E = \{all \text{ bulbs that bloom early}\}.$
- Assumption: all bulbs are "equally likely".

Consider the event $R = \{\text{the selected bulb is red}\}$, what is the probability of the event R, denoted by P(R|E)?

$$P(R|E) = \frac{N(R \cap E)}{N(E)} = \frac{5}{8}$$

We have defined a new probability function associated with the reduced sample space E.

We study the problem of how to define a new probability function associated with a reduced sample space $E \subseteq S$, where S is the original sample space.

- 1. We have defined the probability function associated with the reduced sample space *E* directly.
- 2. We can also define it by linking to the probability function associated with the original sample space S.

Under the assumptions that

- 1. S is finite
- 2. All outcomes are "equally likely"

the above example give us the idea

$$P(R|E) = \frac{N(R \cap E)}{N(E)} = \frac{N(R \cap E)/N(S)}{N(E)/N(S)} = \frac{P(R \cap E)}{P(E)}$$

leading to the next definition

Conditional Probability

Definition

The conditional probability of an event A, given that the event B has occurred, is defined by

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided that P(B) > 0.

- \triangleright B is the sample space for P(A|B)
- Independent of Assumptions 1 & 2 on the previous slide.

Conditional Probability

Conditional probability satisfies the probability axioms

- 1. $P(A|B) \geq 0$.
- 2. P(B|B) = 1.
- 3. If A_1, A_2, A_3, \cdots are countable and mutually exclusive events, then

$$P(A_1 \cup A_2 \cup \cdots | B) = P(A_1 | B) + P(A_2 | B) + \cdots$$

$$P(A) = 0.4, \quad P(B) = 0.5, \quad P(A \cap B) = 0.3,$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.5} = 0.6$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.3}{0.4} = 0.75$$
 Can $P(A|B) > 1$ or $P(A|B) < 0$?

$$P(A) = 0.4, P(B) = 0.5, P(A \cap B) = 0.3,$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.3}{0.5} = 0.6$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.3}{0.4} = 0.75$$

Can
$$P(A|B) > 1$$
 or $P(A|B) < 0$?

No, P(A|B) is a probability function.

Example 3 (Shooting Game)

Question

25 balloons of which, 10 are yellow, 8 red, 7 green.

 $A = \{$ the first balloon shot is yellow $\}$

 $B = \{ \text{the second balloon shot is yellow} \}$

What is the probability that the first two balloons shot are all yellow?

Example 3 (Shooting Game)

Question

25 balloons of which, 10 are yellow, 8 red, 7 green.

$$A = \{$$
the first balloon shot is yellow $\}$

$$B = \{$$
the second balloon shot is yellow $\}$

What is the probability that the first two balloons shot are all yellow?

$$P(A) = \frac{10}{25}, \quad P(B|A) = \frac{9}{24}$$

$$\Rightarrow P(A \cap B) = P(A)P(B|A) = \frac{10}{25} \cdot \frac{9}{24}$$

Multiplication Rule

Definition

The probability that two events, \boldsymbol{A} and \boldsymbol{B} both occur is given by the multiplication rule

$$P(A \cap B) = P(A)P(B|A)$$
, provided $P(A) > 0$

or by

$$P(A \cap B) = P(B)P(A|B)$$
, provided $P(B) > 0$

Question

A bowl contains 10 chips in total, 7 blue and 3 red. Drawn 2 chips successively at random and without replacement. What is the probability that the 1st draw is red and the 2nd draw is blue?

$$B = \{2nd draw is blue\}$$

$$P(A) = \frac{3}{10}, \quad P(B|A) = \frac{7}{9}$$

$$P(A \cap B) = P(B|A) \cdot P(A) = \frac{3}{10} \cdot \frac{7}{9} = \frac{7}{30}$$

Multiplication Rule for Three Events

Definition

The probability that three events, A, B and C all occur is given by the multiplication rule

$$P(A \cap B \cap C) = P((A \cap B) \cap C) = P(A \cap B)P(C|A \cap B)$$

where
$$P(A \cap B) = P(A)P(B|A)$$

$$\Rightarrow P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)$$

Induction principle can be used to derive the cases for more than three events.

Question

Roll a pair of 4-sided dice and observe the sum of the dice

$$A = \{a \text{ sum of 3 is rolled}\}$$
 $p(A|B) = P(C)$

 $B = \{a \text{ sum of 3 or a sum of 5 is rolled}\}$

 $C = \{a \text{ sum of } 3 \text{ is rolled before a sum of } 5 \text{ is rolled} \}$

What are P(A), P(B), P(C)?

Consider
$$P(A)$$
 and $P(B)$:

the sample space $S = \{(1, 1), (1, 2), \dots, (4, 4)\}$

$$P(A) = \frac{N(A)}{N(S)} = \frac{2}{16}, \quad P(B) = \frac{N(B)}{N(S)} = \frac{6}{16}$$

Consider P(C):

- Method 1 [by definition]:
 - A. Figure out the simplified random experiment
 - B. Figure out the corresponding sample space and the event

For A, repeat the experiment of rolling a pair of 4-sided dice and record the sum of dice. For each repetition, we keep rolling the dice till we see either a sum of 3 or a sum of 5. Then we stop because we have an answer to the problem whether a sum of 3 is rolled before a sum of 5 is rolled.

For instance

Repetition 1:2,4,6,3.

Repetition 2:8,6,7,4,5

Repetition 3 : 6, 5.

The sums other than 3 and 5 do not matter and we can remove them.

Repetition 1: a sum of 3 first

Repetition 2: a sum of 5 first

Repetition 3: a sum of 5 first

The problem reduces to roll the pair of dice (that gives the sum either 3 or 5) once and compute the probability that the sum is a 3.

For B, the reduced sample space

$$S_r = \begin{cases} (1,2), (2,1) \\ (2,3), (3,2) \\ (1,4), (4,1) \end{cases}$$
 give a sum of 3 or 5

$$P(C) = P(\{\text{roll the pair of dice once and the sum is a 3}\})$$

$$= \frac{N(\{\text{roll the pair of dice once and the sum is 3}\})}{N(S_r)}$$

$$= \frac{2}{6}$$

Method 2 [by conditional probability]: $P(A|B) = \frac{1}{3}$

$$P(C) = P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/16}{6/16} = \frac{2}{6}$$

Note that the event "A|B" is the same as event "C".

This is because

- A. Event C is concerned with the cases where the sum is either a 3 or a 5. 'B happened" means that the sum is either a 3 or a 5.
- B. If B happened then A|B is nothing but the event "roll the pair of dice (that gives the sum either 3 or 5) once, and the sum is 3".