Problem 1

For this problem your task is to design and implement a 3 bit synchronous Gray code counter that goes through the following sequence: 0, 1, 3, 2, 6, 7, 5, 4 and back to 0.

- 1. Draw the state diagram of this counter.
- 2. Draw the timing diagram of this counter showing at least 8 clocks.
- 3. Find the state table using D Flip flops.
- 4. Simplify the input equations for all the different Flip flops.
- 5. Draw the hardware as neatly as possible.
- 6. Can you guess what the special thing about this counter is?

Problem 2

The following Linear Feedback Shift Register (LFSR) is created out of 4 D-Flip Flops that are sensitive to a positive clock edge and a Xor gate

- 1. Find the state table of this LFSR assuming it was initialized to 1 0 0 0 using asynchronous inputs
- 2. What will happen if the LFSR was initialized to 0 0 0 0 instead of 1 0 0 0.

Note: made using WaveDrom.com editor

1.3:

Present State	!	Synch	Next State				
$Q_3Q_2Q_1$	D_3		D_2		D_1		$Q_3Q_2Q_1$
000	0	(R)	0	(R)	1	(S)	001
001	0	(R)	1	(S)	1	(S)	011
011	0	(R)	1	(S)	0	(R)	010
010	1	(S)	1	(S)	0	(R)	110
110	1	(S)	1	(S)	1	(S)	111
111	1	(S)	0	(R)	1	(S)	101
101	1	(S)	0	(R)	0	(R)	100
100	0	(R)	0	(R)	0	(R)	000

1.4:
$$D_3 = Q_2\overline{Q_1} + Q_3Q_1$$

$$D_2 = \overline{Q_3}Q_1 + Q_2\overline{Q_1}$$

$$D_1 = Q_3Q_2 + \overline{Q_3} \cdot \overline{Q_2}$$

1.6: This clock is special because from each current state to the next state, only 1 bit changes. This makes finding the D inputs for each flip-flop easier and faster.

2.1:	Present State	!	Synch	Next State						
	$Q_4Q_3Q_2Q_1$	D_4		D_3		D_2		D_1		$Q_3Q_2Q_1$
	1000	0	(R)	1	(S)	0	(R)	0	(R)	0100
	0100	0	(R)	0	(R)	1	(S)	0	(R)	0010
	0010	0	(R)	0	(R)	0	(R)	1	(S)	0001
	0001	1	(S)	1	(S)	0	(R)	0	(R)	1100
	1100	0	(R)	1	(S)	1	(S)	0	(R)	0110
	0110	0	(R)	0	(R)	1	(S)	1	(S)	0011
	0011	1	(S)	1	(S)	0	(R)	1	(S)	1101
	1101	1	(S)	0	(R)	1	(S)	0	(R)	1010
	1010	0	(R)	1	(S)	0	(R)	1	(S)	0101
	0101	1	(S)	1	(S)	1	(S)	0	(R)	1110
	1110	0	(R)	1	(S)	1	(S)	1	(S)	0111
	0111	1	(S)	1	(S)	1	(S)	1	(S)	1111
	1111	1	(S)	0	(R)	1	(S)	1	(S)	1011
	1011	1	(S)	0	(R)	0	(R)	1	(S)	1001
	1001	1	(S)	0	(R)	0	(R)	0	(R)	1000
		I	I	ı	I	i		l	I	

2.2: All 0s (0 0 0 0) would be 0 in all positions continuously with zero change.