

ChE 4C03 Spring 2008

Design of Experiments

John MacGregor

Design of Experiments

Two aspects of statistics

1. Analysis of Data

 How to extract the most information out of given set of data

2. Design of Experiments (DOE)

How to ensure that data contains information

DOE is the most important:

- If there is little information in the data, then no amount of analysis will help
- If there is a lot of information in the data, then even simple analysis will reveal it

Design of Experiments

Iterative Nature of Experimentation

Why Design?

- 1. Reduces amount of experimentation needed.
- 2. Ensures adequate range of variation in all x's
- 3. Minimizes confounding of effects

Design of Experiments

Why Design?

4. Ensures that one finds causal relationships rather than just correlations. Examples.

Example: Chemical Process (BH², pg. 487)

Observed that undesirable frothing in reactor could be reduced by increasing

Pressure (X_1)

Operating Procedure:

Increase X_1 when frothing

Truth (unknown):

- i. High impurity (X₂) causes frothing
- ii. High X_2 lowers yield (y)
- iii. Press (X_1) has no effect on Y

Get non-causal model between x1 and y

Randomization + Blocking

Simple Comparative Experiment:

• Effect of two treatments on strength of rubber

(i)

$$H_0: E(y_A) = E(y_B)$$

$$H_1: E(y_A) \neq E(y_B)$$

$$\frac{A}{y_{A_1}} \qquad \frac{B}{y_{B_1}} \\
\vdots \\
\frac{y_{A_{n_A}}}{\bar{y}_A} \qquad \frac{y_{B_{n_B}}}{\bar{y}_B}$$

t-Test:
$$\frac{\bar{y}_A - \bar{y}_B}{s_p^2 \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}} \sim t_{n_A + n_B - 2}$$

Problems with this?

Randomization + Blocking

What if strip of rubber had variations (eg. thickness) along its length?

Then $\bar{y}_A - \bar{y}_B$ might just be reflecting this difference ie. thickness = lurking variable

One solution — Randomize allocation of rubber pieces to treatments (A +B) eg. Flipping a coin

- Randomly allocates any lurking variable effect to A and B
 Ensures validity of hypothesis test
 Randomized design

Randomization + Blocking

Suppose we expect variation in rubber to be progressive along length of the strip!

Then two adjacent pieces will be much more similar than two distant ones

- Block into pairs of adjacent pieces
 Assign treatments (A,B) RANDOMLY within blocks
 Randomized block design

Randomization + Blocking

(iii)

Only compare within blocks ———

			difference
Block	A	B	$d = y_A - y_B$
Bl_1	y_{A_1}	y_{B_1}	$ d_1 = y_{A_1} - y_{B_1} d_1 = y_{A_2} - y_{B_2} $
Bl_2	y_{A_2}	y_{B_2}	$d_1 = y_{A_2} - y_{B_2}$
:	•	•	:
$_{-}$ Bl $_{n}$	y_{A_n}	y_{B_n}	$d_1 = y_{A_n} - y_{B_n}$
			_

d

Blocking removes effect of possible uncontrolled variations along length of strip

 \bar{d} better measure of $\mu_A - \mu_B$ than $\bar{y}_A - \bar{y}_B$

$$H_0$$
: $E(d) = 0$

Paired
$$t ext{-Test:} \frac{ar{d}-0}{s_{ar{d}}} \sim t_{n-1}$$
 $s_{ar{d}}^2 = \frac{s_d^2}{n}$

Designs for Empirical Studies

- 1. Screening Studies: Discovering which of a large number of variables affect response.
- 2. Empirical model building studies

$$y = f(x_1, x_2 \dots x_k)$$

True model unknown. Use approximate models.

- Region 1: Linear model OK
- Region 2: Need model quadratic in X's

range of interest

- Want estimate of linear effect of X on y.
- Best 2 experiments?

If fit LS model:
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

$$\hat{\beta}_1 = \text{Effect of changing } \mathbf{X} \text{ by one unit}$$

Effect on y of changing x from x- to x+ is $(y_2 - y_1)$ Main effect of x

Linear effect only (two level experiment)

2² Factorial Design

•	2 independent variables:	Range
	Temperature (T)	<u>160°C - 180°C</u>
	Concentration (C)	<u>20% - 40%</u>

Study effect of T + C on yield ytwo variables

Design: 2^2 Factorial in $2^2 = 4$ runs

two levels

all possible combination
of 2 levels of 2 variables

Main Effects of T + C

Two measures of effect of C

$$54 - 60 = -6$$
 $68 - 72 = -4$
Avg. = -5

Main effect of C

Two measures of main effect of T

$$68 - 54 = 14$$

 $72 - 60 = 12$
Avg. = 13 % / 20°C change in T

Main effect of T

<u>Interaction between *T* + *C*</u>

- ▶ Do variables T + C act independently on **Y**?
- ► Is effect of *T* same at both levels of *C*?
- ▶ Is effect of *C* same at both levels of *T*?

If effect is different $T \times C$ interaction Above example very little interaction

But change $68 \longrightarrow 85$

T effect at high
$$C$$

 $85 - 54 = 31$

T effect at low C72 - 60 = 12

C effect at low T
$$T$$
 C effect at high T $54-60=-6$ $85-72=+13$

Large T x C interaction

Design matrix becomes

$$\begin{array}{c|cccc}
X_1 & X_2 \\
\hline
-1 & -1 \\
+1 & -1 \\
-1 & +1 \\
+1 & +1
\end{array}$$

Fit model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$ Use least squares regression to estimate parameters (effects)

95% Confidence intervals on β_i 's

$$\hat{\beta}_i \pm t_{\nu,0.025} \sqrt{\frac{s^2}{\sum x_i^2}}$$

Note: I will denote $\hat{\beta}_i = \text{effect of variable } \mathbf{X}_i$ $(\hat{\beta}_i = \text{effect on } \mathbf{Y} \text{ of changing } \mathbf{X}_i \text{ from } 0 \longrightarrow +1)$ Most texts denote "effect of \mathbf{X}_i " = change in \mathbf{Y} due to changing \mathbf{X}_i from -1 to $+1 \longrightarrow ie = 2\hat{\beta}_i$

Does the interval include "zero"? Not significant

2³ Factorial Design

Variables: T, C, Catalyst type (eg. A, B)

L qualitative variable

Denote:

$$X_3 = -1$$
 for catalyst A

$$X_3 = +1$$
 for catalyst B

2³ factorial = All combinations of the 2 levels of the 3 variables

2³ Factorial Design

Run order	x_0	\mathbf{x}_1	\mathbf{X}_2		$\mathbf{x}_1\mathbf{x}_2$	x_1x_3	$\mathbf{x}_2\mathbf{x}_3$	$\mathbf{x}_1\mathbf{x}_2\mathbf{x}_3$
6	+1	_	-1	-1	+1	+1	+1	-1
3	+1	+13	-1	-1	-1	-1	+1	+1
1	+1	-1	+1	-1	-1	+1	-1	+1
7	+1	+1	+1	-1	+1	-1	-1	-1
2	+1	-1	-1	+1	+1	-1	-1	+1
8	+1	+1	-1	+1	-1	+1	-1	-1
5	+1	-1	+1	+1	-1	-1	+1	-1
4	+1	+1	+1	+1	+1	+1	+1	+1
L Randomize	ed	De	sign Mat	trix				

X (indep. var. matrix)

2³ Factorial Design

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon$$

Again fit by Least Squares Regression
$$\widehat{\beta}_i = \frac{\sum x_i y}{\sum x_i^2}$$

Note that all columns of X are orthogonal

• Implies that can estimate all effects independent of the others

► 2^k Factorial in **k** variables can easily be written down in standard form

<u>Desirable Features of Factorial Designs</u>

- i. Orthogonal _____ easy calculations uncorrelated estimates
- ii. Good variation in all variables
- iii. Efficient use of all data points
- iv. Well patterned design Good visual appreciation
- v. Allows experiments to be performed in blocks (Fractional Factorials)
- vi. Allows designs of increasing order to be built up sequentially

Blocking of a 2³ Factorial

Want to examine 3 factors in a $2^3 = 8$ run design. But material to be used in experiment comes in batches sufficient for only 4 runs, and differences may exist between batches of material.

Can we split the design so that differences in the material will not affect the results?

Run all experiments with + sign in $x_1x_2x_3$ column in one block and all – signs in other ! (Randomize within blocks)

Blocking of a 2³ Factorial

- Any block effect (ie. differences in material) will be CONFOUNDED with 3-factor interaction term $X_1X_2X_3$.
- .. Can't tell whether $\hat{\beta}_{123}$ is due to a real $X_1X_2X_3$ interaction or a block effect (material)

(ie.
$$\hat{\beta}_{123} = x_1 x_2 x_3$$
 effect + block effect expected to be small anyway

Since $X_1X_2X_3$ column is orthogonal to all other columns, any block effect will have no influence on them !

Designs for 2nd Order Models

First order + interaction model may exhibit Lack of Fit or

Prior knowledge may tell us we need second order terms

$$x_1^2, x_2^2, \dots$$

Need more than 2 levels designs

Central Composite Designs

- 1. Start with 2^k or 2^{k-p} design with centre points
- 2. Add vertices of star

For 2 variable design

$$\alpha = \sqrt{2} = 1.414$$
 is good choice

Central Composite Designs

3 variables:
$$2^3 + cp + star$$

Central Composite Designs

For
$$k = 4$$
: $2^4 + cp + star$

For
$$k > 4$$
: $2^{k-p} + cp + star$

<u>k</u>	<u>Design</u>	<u>α (for rotatability)</u>
2	<u>2</u> ²	<u>1.414</u>
<u>3</u>	<u>2</u> ³	<u>1.68</u>
<u>4</u>	<u>2</u> ⁴	<u>2.0</u>
<u>5</u>	<u>2⁵⁻¹</u>	2.0
<u>6</u>	<u>2⁶⁻¹</u>	2.38

3 – Level Factorials

3² design: 2 variables at all combinations of 3 levels

3³ design:

27 runs

<u>3 – Level Factorials</u>

Fit full quadratic model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$
$$+ \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3$$
$$+ \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \epsilon$$

(10 parameters)

Allows for approximation of many responses

Most statistical software provides 2-D and 3-D plotting to examine response surface.

Response Surface Methods (RSM)

Empirical (data – driven) approach to process optimization

- 1. Design experiment in region of interest
- 2. Build model: $\hat{y} = f(x_1, x_2 \dots x_k)$
- 3. Use model to find new conditions $x_1, x_2 \dots x_k$ that will improve a single response \hat{y}_i or give good region for several responses
- 4. Repeat steps 1, 2 and 3 until attain optimal conditions

Response Surface Methods (RSM)

Problem with COST approach

Ex. Maximize yield of a reaction by choice of:

- reaction time (**t**)
- reaction temperature

(**T**)

Fix

t = 130 min

Possible true response surface representing yield versus reaction time and temperature, with points shown for one-variable-at-a-time approach

- 6 If curvature and/or interaction large relative to main effects then add star points ———— 2nd order central composite design.
- 7 Plot response contours.

RSM - Experimental Approach to Process Optimization

significant

- Perform factorial (or fractional factorial) design about current operating conditions Fit linear model : $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_{12} x_1 x_2$
- Calculate direction of Steepest Ascent + perform experiments along this direction until response doesn't improve.

Path of SA:

$$\frac{\partial \hat{y}}{\partial x_1} = \hat{\beta}_1$$

$$\frac{\partial \hat{y}}{\partial x_2} = \hat{\beta}_2$$

(If $\hat{\beta}_{12}$ term is small ie model is linear)

Move
$$\mathbf{X}_1$$
 $\hat{\beta}_1$ units in direction of \mathbf{X}_1 for every $\hat{\beta}_2$ units in direction of \mathbf{X}_2 eg. $\hat{y} = 3.5 + 1.5x_1 - 3.0x_2$

Points along path of SA:

\mathbf{X}_1	X_2
0	0
1.0	-2.0
1.5	-3.0
3.0	-6.0

RSM - Experimental Approach to Process Optimization

(3) Lay down a new Factorial design:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_{12} x_1 x_2$$

- 4 If linear terms still large + $\hat{\beta}_{12}$ small again calculate direction of SA + perform experiments along it.
- (5) 3rd Factorial design
 - —— Clear lack of Fit of Linear Model
 - Linear effects $\hat{\beta}_1$, $\hat{\beta}_2$ small
 - Interaction term $\hat{\beta}_{12}$ large

RSM - Experimental Approach to Process Optimization

• Check on curvature or quadratic effect $(\beta_{11}x_1^2 + \beta_{22}x_2^2 \text{ terms})$? Can if have center points !

If model were linear (ie $\hat{\beta}_{11}=\hat{\beta}_{22}=0$) then $\hat{\beta}_0=\bar{y}_f$ would be estimate of response at centre of design $(\hat{y}(x=0))$

$$\bar{y}_f - \bar{y}_{cp}$$
 — Estimate of $(\hat{\beta}_{11} + \hat{\beta}_{22})$ (curvature)

RSM - Experimental Approach to Process Optimization

6 If curvature and/or interaction large relative to main effects then add star points ———— 2nd order central composite design.

Fit full second order model:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_{12} x_1 x_2 + \hat{\beta}_{11} x_1^2 + \hat{\beta}_{22} x_2^2$$

- Plot response contours. 2-D or 3-D plot routines in all statistical design software (MINITAB, MODDE)
 - Examine response surface and move towards best conditions

For k > 3 variables, use fractional factorials

Fractional Factorial Designs

- With many variables (k > 4) factorial designs need many runs
- High order interaction terms (eg. $X_1X_2X_3X_4$) are not of interest
- Perform a fraction of the full design
 - fewer runs
 - but enable estimates of terms of interest

Half Fractions – 2^{k-1} Designs

Example:
$$\longrightarrow \frac{1}{2}$$
 Fraction of a full 2^3 factorial $\longrightarrow 2^{3-1} = 2^2 = 4$ runs (but which 4 ?)

—— Full 2³ factorial (8 runs) ——

Run#	\mathbf{X}_1	\mathbf{X}_2		$\mathbf{X}_1\mathbf{X}_2$	$\mathbf{X}_1\mathbf{X}_3$	X_2X_3	$\mathbf{X}_1\mathbf{X}_2\mathbf{X}_3$
1 2	$\sqrt{1}$	-1	-1	+1	+1	+1	-1
2	$+1^3$	-1	-1	-1	-1	+1	+1
3	-1	+1	-1	-1	+1	-1	+1
4	+1	+1	-1	+1	-1	-1	-1
5	-1	-1	+1	+1	-1	-1	+1
6	+1	-1	+1	-1	+1	-1	-1
7	-1	+1	+1	-1	-1	+1	-1
8	+1	+1	+1	+1	+1	+1	+1

As with blocking the 2^3 factorial into 2 blocks choose 4 runs with $X_1X_2X_3 = +1$ (-1 gives other half fraction)

Half Fractions – 2^{k-1} Designs

$$2^{3-1}$$
 fraction with $X_1X_2X_3 = +1$

Run#	\mathbf{X}_1	\mathbf{X}_2		$\mathbf{X}_1\mathbf{X}_2$	$\mathbf{X}_1\mathbf{X}_3$	$\mathbf{X}_2\mathbf{X}_3$	$X_1X_2X_3$
5	$\sqrt{1}$	-1	+1	+1 -1	-1	-1	+1
2	$+1^3$	-1	-1	-1	-1	+1	+1
3	-1	+1	-1	-1	+1	-1	+1
8	+1	+1	+1	+1	+1	+1	+1

But! have only 4 runs can't estimate all 8 terms in the model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon$$

Half Fractions – 2^{k–1} Designs

Note:

$$X_1$$
 column = X_2X_3 column
 X_2 column = X_1X_3 column These effects are
 X_3 column = X_1X_3 column = X_1X_3 column

 X_1X_2 column

$$X_1X_2X_3$$
 column = I column
Can only fit the 4 parameter model :

$$y = l_0 + l_1 x_1 + l_2 x_2 + l_3 x_3 + \epsilon$$

where
$$I_1$$
 = estimate of $(\beta_1 + \beta_{23})$
 I_2 = estimate of $(\beta_2 + \beta_{13})$
 I_3 =
estimate of $(\beta_3 + \beta_{12})$
 I_0 = estimate of $(\beta_0 + \beta_{122})$

How to determine what Effects are Confounded?

- 1) Can always examine columns of all effects and look for identical columns tedious for k > 3
- 2) Systematic method
 - Chose runs because $X_1X_2X_3 = +1$
 - Defining relation : $I = X_1X_2X_3$ (columns of +1's)
 - Note the following:
 - Any column multiplied by identity column (I) is equal to itself $\mathbf{x}_1 \cdot I = \mathbf{x}_1$
 - Any column multiplied by itself produces the identity column (I) $x_1 \cdot x_1 = I$
 - Use defining relation to unravel confounding pattern $I = X_1 X_2 X_3$

$$\mathbf{X}_1 \cdot \mathbf{I} = \mathbf{X}_1 \cdot \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 = \mathbf{X}_2 \mathbf{X}_3$$

$$\mathbf{X}_2 \cdot \mathbf{I} = \mathbf{X}_1 \mathbf{X}_2 \cdot \mathbf{X}_2 \mathbf{X}_3 = \mathbf{X}_1 \mathbf{X}_3$$

•

Construction of 2^{3-1} Fractional Factorial ($I = x_1 x_2 x_3$)

Write down full 2^2 design in $X_1 X_2$

Note that $X_3 = X_1 X_2$.

Therefore assign variable X_3 to X_1X_2 column:

X_1	X_2	$\mathbf{x}_3 = \mathbf{x}_1 \mathbf{x}_2$
-1	-1	+1
+1	-1	-1
-1	+1	-1
+1	+1	+1

Other half fraction of 2^3 design given by defining relation $I = -x_1x_2x_3$

Assign X_3 with $-X_1X_2$ column

			$\chi_3 =$
	\mathbf{x}_1	x_2	$-\mathbf{X}_1\mathbf{X}_2$
•	-1	-1	+1
	+1	-1	-1
	-1	+1	-1
	+1	+1	+1

Combining these two fractions gives full 2³ factorial in 2 blocks

24-1 Fraction Factorial Design

Write down full 2^3 factorial (3 variables, 8 runs) Associate variable X_4 with the $X_1X_2X_3$ column

Run#	\mathbf{x}_1	x_2		$\mathbf{x}_1\mathbf{x}_2$	$\mathbf{x}_1\mathbf{x}_3$	X_2X_3	$\mathbf{X}_4 = \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$
1	$\sqrt{1}$	-1	-1	+1	+1	+1	-1
2	$+1^3$	-1	-1	-1	-1	+1	+1
3	-1	+1	-1	-1	+1	-1	+1
4	+1	+1	-1	+1	-1	-1	-1
5	-1	-1	+1	+1	-1	-1	+1
6	+1	-1	+1	-1	+1	-1	-1
7	-1	+1	+1	-1	-1	+1	-1
8	+1	+1	+1	+1	+1	+1	+1

24-1 Fraction Factorial Design

Confounding of effects?

Defining relation
$$I = X_1X_2X_3X_4$$

$$X_{1} \cdot I = (X_{1} \cdot X_{1}) X_{2} X_{3} X_{4} = X_{2} X_{3} X_{4}$$
 $X_{2} \cdot I = X_{1} (X_{2} \cdot X_{2}) X_{3} X_{4} = X_{1} X_{3} X_{4}$
 $X_{3} \cdot I = X_{1} X_{2} (X_{3} \cdot X_{3}) X_{4} = X_{1} X_{2} X_{4}$
 $X_{4} \cdot I = X_{1} X_{2} X_{3} (X_{4} \cdot X_{4}) = X_{1} X_{2} X_{3}$
 $X_{1} X_{2} \cdot I = (X_{1} \cdot X_{1}) (X_{2} \cdot X_{2}) X_{3} X_{4} = X_{3} X_{4}$
 $X_{1} X_{3} \cdot I = (X_{1} \cdot X_{1}) X_{2} (X_{3} \cdot X_{3}) X_{4} = X_{2} X_{4}$
 $X_{2} X_{3} \cdot I = X_{1} (X_{2} \cdot X_{2}) (X_{3} \cdot X_{3}) X_{4} = X_{1} X_{4}$

24-1 Fraction Factorial Design

Fit 8 parameter model:

$$y = l_0 + l_1 x_1 + l_2 x_2 + l_3 x_3 + l_4 x_4 + l_{12} x_1 x_2 + l_{13} x_1 x_3 + l_{23} x_2 x_3 + \epsilon$$

$$\begin{array}{c} I_0 \longrightarrow \text{estimate of } (\beta_0 + \beta_{1234}) \\ I_1 \longrightarrow \text{estimate of } (\beta_1 + \beta_{234}) \\ \vdots \\ I_{12} \longrightarrow \text{estimate of } (\beta_{12} + \beta_{34}) \\ I_{13} \longrightarrow \text{estimate of } (\beta_{13} + \beta_{24}) \\ \vdots \\ \vdots \end{array}$$

- Often 3 factor interactions are small
- If we ignore 3 factor interactions then 2^{4–1} fractional factorial will give estimates of
 - All main effects β_1 , β_2 , β_3 , β_4
 - ▶ 3 combinations of 2 factor interactions $(\beta_{12}+\beta_{34})$, $(\beta_{13}+\beta_{24})$, $(\beta_{14}+\beta_{23})$

Saturated Fractional Factorial Designs

- Useful for screening studies
- Study N variables in N-1 runs

Consider 2^{7-4} design for 7 variables in 8 runs (a $2^{-4} = 1/16$ fraction of a full 2^7 design)

- Write down full 2³ design (3 variables in 8 runs)
- Associate additional variables with all the interaction columns

\mathbf{x}_1	\mathbf{X}_2		$\mathbf{x}_4 = \mathbf{x}_1 \mathbf{x}_2$	$\mathbf{X}_{5} = \mathbf{X}_{1}\mathbf{X}_{3}$	$\mathbf{X}_{6} = \mathbf{X}_{2} \mathbf{X}_{3}$	$\mathbf{x}_{1}^{7} = \mathbf{x}_{1}^{7} \mathbf{x}_{2}^{7} \mathbf{x}_{3}$
X ¹ ₃	-1	-1	+1	+1	+1	-1
$+1^3$	-1	-1	-1	-1	+1	+1
-1	+1	-1	-1	+1	-1	+1
+1	+1	-1	+1	-1	-1	-1
-1	-1	+1	+1	-1	-1	+1
+1	-1	+1	-1	+1	-1	-1
-1	+1	+1	-1	-1	+1	-1
+1	+1	+1	+1	+1	+1	+1

Saturated Fractional Factorial Designs

- Many effects are now confounded
- Fit model:

$$y = l_0 + l_1 x_1 + l_2 x_2 + l_3 x_3 + \dots + l_7 x_7 + \epsilon$$

```
estimate of (\beta_1 + \beta_{24} + \beta_{35} + \beta_{67} + \text{higher order interaction})

estimate of (\beta_2 + \beta_{14} + \beta_{36} + \beta_{57} + \text{higher order interaction})
```

Resolve Confounding by Addition of other Fractions

- Many confounded effects after running first 2^{7–4} design
- Run another fraction to resolve conflicts Switch signs of all variables in first design (fold over)
- Adding these two 8 runs 1/16 fractions together gives a 16 run 1/8 fraction of the full 2³ design
 - Can estimate the following effects: $\begin{cases} I_1 = \beta_1 \\ I_2 = \beta_2 \\ I_3 = \beta_3 \\ I_4 = \beta_4 \\ I_5 = \beta_5 \\ I_6 = \beta_6 \\ I_7 = \beta_7 \end{cases}$

Optimal Designs

"Optimal Designs" are designs which optimize some objective function via the choice of design conditions (\underline{X})

Consider a chosen model form:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \epsilon$$

$$Var(\hat{\beta}) = (X^T X) \sigma_e^2$$

Where X = matrix of settings for the independent variables $(x_1, x_2 \cdots x_1^2)$ for N experiments

D-Optimal Design

$$\max_{x_{1i}, x_{2i}(i=1, 2 \cdots N)} |X^T X|$$

 \longrightarrow N experiments yielding the smallest uncertainty for $\hat{\beta}$'s

Important Areas for Optimal Designs

(1) Constrained Design Regions

Want to fit model $\eta = x\beta$ in a constrained experimental region

Important Areas for Optimal Designs

(2) Sequential Designs

- Have already run **n** experiments
- Find another **m** experiments which, when add to the first
 n will give the most information on parameters
- Allows sequential experimentation
 - Perform some runsAnalyze dataPlan new runs
- Fix up a set of existing, poorly designed experiments
 - ► Places a XXX new experiments in important regions overlooked in existing data