Lecture notes from Models and Numerical Methods

https://github.com/Grufoony/Physics_Unibo

Contents

1	Resume of measure theory	1
2	Stochastic Processes	2
	2.1 Markov's Models	2
	2.2 Hidden Markov's Models	2

1 Resume of measure theory

We need to define a mathematical model that generates sequences from an alphabet \mathcal{A} , which can be any finite set. We will denote both set of finite and infinite sequences as $\mathcal{A}^* = \bigcup_{n \in \mathbb{N}} \mathcal{A}^n$ and $\mathcal{A}^{\mathbb{N}}$. Now we can define a sequence, or a word, $\omega \in \mathcal{A}^n$ and denote with $|\omega| = n$ its length. In particular, we will use the notation $\omega_i^j = (\omega_i, \ldots, \omega_j)$. We can also take $\mathcal{A}^{\mathbb{Z}}$ as two-sided alphabet.

Definition 1. A measurable space (Ω, \mathcal{F}) is (usually) defined by a compact metric space Ω and a σ -algebra \mathcal{F} .

We will denote the canonical cylinder on Ω as $[a_1^n] = \{y \in \Omega \mid y_1 = x_1, \dots, y_n = x_n\}$. To figure out that this is actually a cylinder, let's pretend to take (r, ϕ, h) cylindrical coordinates, fixing the radius $r = r_0$, letting the angle and the heigh free.

Our space has a topology, so we can take $\mu \approx m$ (metric) absolutely continuous w.r.t. the Lebesgue measure on $\Omega = \mathbb{R}^n$. So it exists $\varphi \in \mathbb{L}^1(m)$ such that $\mu(f) = \int dm f(m) \varphi(m)$. Consider now the function

$$g_{\mathcal{A}}(z, z') = \begin{cases} 1 & z = z' \\ 0 & z \neq z' \end{cases} \quad \forall z, z' \in \mathcal{A}$$

Taking $x, y \in \Omega$ infinite sequences it is possible to prove that

$$\widetilde{d}(x,y) = \sum_{n=1}^{\infty} 2^{-n} g_{\mathcal{A}}(x_n, y_n)$$

is a metric over Ω . Taking $x^{(n)} \in \Omega$ sequence of infinite sequences, given $0 < \lambda = \frac{1}{|A|} < 1$, we have that $d(x,y) = \lambda^{n(x,y)} \quad \forall x,y \in \Omega$ is also a metric over Ω , with $n(x,y) = \min\{k|x_k \neq y_k\}$. Moreover, d and \widetilde{d} define the same topology. The open balls are, $\forall x \in \Omega, \quad r > 0$

$$\mathcal{B}(x,r) = \{ y \in \Omega \mid d(x,y) \le r \} = \left\{ y \in \Omega \mid x_k = y_k \ \forall \ 1 \le k \le \frac{\ln r}{\ln \lambda} \right\}$$

Definition 2. \mathcal{F} is a Borel σ -algebra if is a set of subsets of Ω such that $\Omega \in \mathcal{F}$

So a σ -algebra is actually a collection of all measurable sets.

2 Stochastic Processes

Definition 3. A stochastic process is an infinite sequence of random variables X_n with values in \mathcal{A} defined by the k^{th} order joint distribution:

$$\mu_k\left(a_1^k\right) = \mathbb{P}\left(X_1^k = a_1^k\right) \quad a_1^k \in \mathcal{A}$$

We need also a consistency condition:

$$\mu_t (a_1^t) = \sum_{a_0 \in \mathcal{A}} \mu_{t+1} (a_0^t) = \sum_{a_{t+1} \in \mathcal{A}} \mu_{t+1} (a_1^{t+1})$$

Equivalently, we can define a stochastic process through the conditional probability

$$\mu\left(a_{t}|a_{1}^{t-1}\right) = \frac{\mu_{t}\left(a_{1}^{t}\right)}{\mu_{t-1}\left(a_{1}^{t-1}\right)}$$

The μ_k are called **marginals** and, in order to be a probability, they must satisfy the normalization condition

$$\sum_{a_1^k \in \mathcal{A}} \mu_k \left(a_1^k \right) = 1$$

We notice that this sum is exponentially growing in k, so it's impossible to approximate the measure.

Definition 4. A stochastic process is **stationary** if

$$\mu\left(a_{1}^{k}\right) = \mu\left(a_{t+1}^{t+k}\right) \quad \forall a_{1}^{\infty} \in \mathcal{A}^{\mathbb{N}}$$

Definition 5. An information source is a stationary, ergodic, stochastic process.

Definition 6. A process or a source is a **shift-invariant Borel probability measure** μ on the topological space $\mathcal{A}^{\mathbb{Z}}$ of doubly-infinite sequences $x = \{x_n\}_{n \in \mathbb{Z}}$, drawn from a finite (i.e. countable) alphabet \mathcal{A}

Furthermore, it is trivial that we can write any standard cylinder as

$$\begin{bmatrix} x_1^t \end{bmatrix} = \sqcup_{a \in \mathcal{A}} [x_1, \dots, x_t, a]$$

It's easy to check that

$$\mu \in \mathcal{P}_I \Omega \mid \mu \circ \sigma^{-1} = \mu \Leftrightarrow \sum_{a \in \mathcal{A}} \mu_{t+1} \left(a, x_1, \dots, x_t \right) = \mu_t \left(x_1^t \right)$$

Neural networks are heuristically approximating μ .

Theorem 1 (Kolmogorov representation theorem). If $\{\mu_n\}$ is a sequence of measure defining a process then there is a unique Borel probability measure μ on \mathcal{A}^{∞} such that, $\forall k \geq 1$ and $\forall [a_1^k]$ cylinder

$$\mu\left(\left[a_1^k\right]\right) = \mu_k\left(a_1^k\right)$$

2.1 Markov's Models

2.2 Hidden Markov's Models