What Is Claimed:

5

10

15

1. A compound selected from Formulas I and II:

or a pharmaceutically acceptable salt thereof, and including all enol, tautomeric, and resonance isomers, enantiomers, diastereomers, and racemic mixtures thereof; wherein:

R¹ is selected from H, F, Cl, Br, I, OH, OR, amino (-NH₂), ammonium (-NH₃⁺), alkylamino (-NHR), dialkylamino (-NR₂), trialkylammonium (-NR₃⁺), carboxyl (-CO₂H), sulfate, sulfamate, sulfonate, 5-7 membered ring sultam, 4-dialkylaminopyridinium, alkylsulfone (-SO₂R), arylsulfone (-SO₂Ar), arylsulfoxide (-SOAr), arylthio (-SAr), sulfonamide (-SO₂NR₂), alkylsulfoxide (-SOR), formyl (-CHO), ester (-CO₂R), amido (-C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (-CN), azido (-N₃), nitro (-NO₂), C₁-C₁₈ alkyl, C₁-C₁₈ substituted alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ substituted alkenyl, C₂-C₁₈ alkynyl, C₂-C₁₈ substituted alkynyl, C₆-C₂₀ aryl, C₆-C₂₀ substituted aryl, C₂-C₂₀ heterocycle, and C₂-C₂₀

substituted heterocycle, phosphonate, phosphate, polyethyleneoxy, a protecting group, L-A³, and a prodrug moiety;

R^{2a} and R⁵ are each independently selected from H, carboxyl (-CO₂H), sulfate, sulfamate, sulfonate, 5-7 membered ring sultam, 4-dialkylaminopyridinium, alkylsulfone (-SO₂R), arylsulfone (-SO₂Ar), arylsulfoxide (-SOAr), arylthio (-SAr), sulfonamide (-SO₂NR₂), alkylsulfoxide (-SOR), formyl (-CHO), ester (-CO₂R), amido (-C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (-CN), azido (-N₃), nitro (-NO₂), C₁-C₁₈ alkyl, C₁-C₁₈ substituted alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ substituted alkynyl, C₆-C₂₀ aryl, C₆-C₂₀ substituted aryl, C₂-C₂₀ heterocycle, and C₂-C₂₀ substituted heterocycle, phosphonate, phosphate, polyethyleneoxy, a protecting group, L-A³, and a prodrug moiety;

5

10

20

25

30

R^{2b}, R³, and R⁴ are each independently selected from H, OH, OR, amino (-NH₂), ammonium (-NH₃⁺), alkylamino (-NHR), dialkylamino (-NR₂), trialkylammonium (-NR₃⁺), carboxyl (-CO₂H), sulfate, sulfamate, sulfonate, 5-7 membered ring sultam, 4-dialkylaminopyridinium, alkylsulfone (-SO₂R), arylsulfone (-SO₂Ar), arylsulfoxide (-SOAr), arylthio (-SAr), sulfonamide (-SO₂NR₂), alkylsulfoxide (-SOR), formyl (-CHO), ester (-CO₂R), amido (-C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (-CN), azido (-N₃), nitro (-NO₂), C₁-C₁₈ alkyl, C₁-C₁₈ substituted alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ substituted alkenyl, C₂-C₁₈ alkynyl, C₂-C₁₈ substituted alkynyl, C₆-C₂₀ aryl, C₆-C₂₀ substituted aryl, C₂-C₂₀ heterocycle, and C₂-C₂₀ substituted heterocycle, phosphonate, phosphate, polyethyleneoxy, a protecting group, L-A³, and a prodrug moiety;

R is independently selected from H, C_1 – C_{18} alkyl, C_1 – C_{18} substituted alkyl, C_2 – C_{18} alkenyl, C_2 – C_{18} substituted alkenyl, C_2 – C_{18} alkynyl, C_2 – C_{18} substituted alkynyl, C_6 – C_{20} aryl, C_6 – C_{20} substituted aryl, C_2 – C_{20} heterocycle, C_2 – C_{20} substituted heterocycle, phosphonate, phosphate, polyethyleneoxy, a protecting group, and a prodrug moiety;

L is selected from a bond, O, S, NR, N-OR, C_1 - C_{12} alkylene, C_1 - C_{12} substituted alkylene, C_2 - C_{12} alkenylene, C_2 - C_{12} substituted alkenylene, C_2 - C_{12} alkynylene, C_2 - C_{12} substituted alkynylene, C_6 - C_{20} arylene, C_6 - C_{20} substituted arylene, C(=O)NH, C(=O), $S(=O)_2$, C(=O)NH(CH₂)_n, and (CH₂CH₂O)_n, where n may be 1, 2, 3, 4, 5, or 6;

A³ has the structure:

where:

 Y^1 is independently O, S, NR^x , $N(O)(R^x)$, $N(OR^x)$, $N(O)(OR^x)$, or $N(N(R^x)_2)$;

 Y^2 is independently a bond, O, NR^x, N(O)(R^x), N(OR^x), N(O)(OR^x), N(N(R^x)₂), -S(O)- (sulfoxide), -S(O)₂- (sulfone), -S- (sulfide), or -S-S- (disulfide);

M2 is 0, 1 or 2;

M12a is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12;

M12b is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12;

 R^y is independently H, C_1-C_{18} alkyl, C_1-C_{18} substituted alkyl, C_6-C_{20} aryl, C_6-C_{20} substituted aryl, or a protecting group, or where taken together at a carbon atom, two vicinal R^y groups form a carbocycle or a heterocycle; and

 R^{x} is independently H, C_1-C_{18} alkyl, C_1-C_{18} substituted alkyl, C_6-C_{20} aryl, C_6-C_{20} substituted aryl, or a protecting group, or the formula:

15

5

10

where M1a, M1c, and M1d are independently 0 or 1, and M12c is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; and

wherein at least one of R, R¹, R^{2a}, R^{2b}, R³, R⁴, and R⁵ comprises a phosphonate group.

20 2. A compound according to claim 1 having the structure:

$$A^3$$
 A^3
 A^3

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

3. A compound according to claim 1 having the structure:

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

4. A compound according to claim 1 having the structure:

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

5. A compound according to claim 1 having the structure:

$$R^1$$
 OR^2
 OR^5
 R^3
 A^3

- or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.
 - 6. A compound according to claim 1 having the structure:

$$R^2$$
 N
 OR^5
 R^3
 N
 R^4

or a pharmaceutically acceptable salt thereof, and including all enol, tautomeric, and resonance isomers, enantiomers, diastereomers, and racemic mixtures thereof.

7. A compound according to claim 1 having the structure:

- 157-

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

8. A compound according to claim 1 having the structure:

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

9. A compound according to claim 1 having the structure:

$$R^2$$
 R^1
 N
 N
 R^4

or a pharmaceutically acceptable salt thereof, and including enol and tautomeric resonance isomers.

5

10

15

- 10. The compound of claim 1 wherein substituted alkyl, substituted alkenyl, substituted alkynyl, substituted aryl, and substituted heterocycle are independently substituted with one or more substituents selected from F, Cl, Br, I, OH, amino (-NH₂), ammonium (-NH₃⁺), alkylamino (-NHR), dialkylamino (-NR₂), trialkylammonium (-NR₃⁺), C₁-C₈ alkyl, C₁-C₈ alkylhalide, carboxylate, thiol (-SH), sulfate (-OSO₃R), sulfamate, sulfonate (-SO₃R), 5-7 membered ring sultam, C₁-C₈ alkylsulfonate, C₁-C₈ alkylamino, 4-dialkylaminopyridinium, C₁-C₈ alkylhydroxyl, C₁-C₈ alkylthiol, alkylsulfone (-SO₂R), arylsulfone (-SO₂Ar), arylsulfoxide (-SOAr), arylthio (-SAr), sulfonamide (-SO₂NR₂), alkylsulfoxide (-SOR), ester (-C(=O)OR), amido (-C(=O)NR₂), 5-7 membered ring lactam, 5-7 membered ring lactone, nitrile (-CN), azido (-N₃), nitro (-NO₂), C₁-C₈ alkoxy (-OR), C₁-C₈ alkyl, C₁-C₈ substituted alkyl, C₆-C₂₀ aryl, C₆-C₂₀ substituted aryl, C₂-C₂₀ heterocycle, and C₂-C₂₀ substituted heterocycle, phosphonate, phosphate, polyethyleneoxy, and a prodrug moiety.
 - 11. A compound of claim 1 wherein R^{2a} and R^{2b} are selected from H, C(=O)OR, C(=O)NR₂, C(=O)R, SO₂NR₂ (sulfamate), and a prodrug moiety.
 - 12. The compound of claim 1 where R³ or R⁴ is 4-fluorobenzyl.
- 13. The compound of claim 1 wherein at least one of R¹, R^{2a}, R^{2b}, R³, R⁴, and 20 R⁵ comprise a prodrug moiety selected from the structures:

wherein R⁸ is comprised of an ester, an amide, or a carbamate.

14. The compound of claim 1 wherein phosphonate group has the structure:

$$\begin{bmatrix}
Y^2 & & & & & \\
R^y & R^y & & & \\
M12a & & & & \\
M12b & & & & \\
\end{bmatrix}_{2}$$

15. The compound of claim 14 wherein phosphonate group has the structure:

$$\begin{array}{c|c}
O & P & P \\
\hline
 & P & P & P \\$$

where Y^{2b} is O or $N(R^x)$.

5

16. The compound of claim 14 wherein phosphonate group has the structure:

where W^5 is a carbocycle, and Y^{2c} is O, $N(R^y)$ or S.

17. The compound of claim 16 wherein W⁵ is selected from the structures:

18. The compound of claim 14 wherein phosphonate group has the structure:

19. The compound of claim 18 wherein phosphonate group has the structure:

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

wherein Y^{2b} is O or N(R^x); M12d is 1, 2, 3, 4, 5, 6, 7 or 8; R¹ is H or C₁–C₆ alkyl; and the phenyl carbocycle is substituted with 0 to 3 R² groups where R² is C₁–C₆ alkyl or substituted alkyl.

20. The compound of claim 19 wherein phosphonate group has the structure:

21. The compound of claim 14 wherein R^x is selected from the structures:

22. The compound of claim 21 wherein R¹ is selected from the structures:

5

23. The compound of claim 21 wherein R^1 is selected from the structures:

PCT/US2005/000815

- 24. A compound of claim 1 wherein R¹ comprises a phosphonate prodrug moiety.
- 25. The compound of claim 1 wherein R³ or R⁴ is selected from the

5 structures:

- 26. The compound of claim 6 wherein L is arylene.
- 27. The compound of claim 6 wherein L is C_1 - C_{12} alkylene.

- 29. The compound of claim 27 wherein L is C_2 alkylene.
- 30. The compound of claim 6 wherein A³ has the structure:

5

31. The compound of claim 6 wherein A³ has the structure:

32. The compound of claim 6 wherein A³ has the structure:

33. The compound of claim 6 wherein A³ has the structure:

5

34. The compound of claim 6 wherein A³ has the structure:

35. The compound of claim 30 wherein A³ has the structure,

36. The compound of claim 30 wherein A³ has the structure,

5

37. A compound of claim 1 having the structure:

38. A compound of claim 1 having the structure:

39. A compound of claim 1 having the structure:

40. A compound of claim 1 having the structure:

- 41. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
- 42. A pharmaceutical composition comprising a therapeutically effective

 5 amount of a compound of claim 1 in combination with a therapeutically effective amount

 of an AIDS treatment agent selected from:
 - (1) an AIDS antiviral agent,
 - (2) an anti-infective agent, and
 - (3) an immunomodulator.
- 10 43. The composition of claim 42 wherein the antiviral agent is an HIV protease inhibitor.
 - 44. A process for making a pharmaceutical composition comprising combining a compound of claim 1 and a pharmaceutically acceptable carrier.
- 45. A method of inhibiting HIV integrase, comprising the administration to a mammal in need of such treatment of a therapeutically effective amount of a compound of claim 1.
 - 46. A method of treating infection by HIV, or of treating AIDS or ARC, comprising administration to a mammal in need of such treatment of a therapeutically effective amount of a compound of claim 1.