Chapter 1

Functional Analysis

1.1 Metric Space

Definition 1.1.1 (Metrix Spaces). Define set X. Define a metric: $d: X \times X \to [0, \infty)$

- $d(x,y) = 0 \iff x = y$
- d(x,y) = d(y,x)
- $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality)

Summary: $X \text{ set } + d: X \times X \to [0, \infty) \text{ metric} = \text{metric space } (X, d).$

Example 1.1.1. • $X = \mathbb{C}, d(x, y) = |x - y|$

- $X = \mathbb{R}^n, d(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2 + \dots + (x_n y_n)^2}$ (Euclidean metric)
- $X = \mathbb{R}^n, d(x, y) = \max\{|x_1 y_1|, ..., |x_n y_n|\}$. It is possible that d(x, y) = d(x, z).
- X any set $(\neq \emptyset)$, we define

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases} \tag{1.1}$$

Now, let's check whether this is a metrix space. Conditions (1) and (2) are verified easily. We focus on the verification of (3): choose $x, y, z \in X$.

For the first case: x = y: $d(x, y) = 0 \le d(x, z) + d(z, y)$.

For the second case: $x \neq y$: $d(x,y) = 1 \leq \{d(x,z) \text{ or } d(z,y)\} = d(x,z) + d(z,y)$.

This is called discrete matric.

1.2 Open and Closed Sets

Definition 1.2.1 (Open Ball). (X, d) a metrix space. Define

$$B_{\epsilon}(x) := \{ y \in X | d(x, y) < \epsilon \}, \tag{1.2}$$

while is called the open ball of radiue $\epsilon > 0$ centered at x.

Definition 1.2.2 (Open Sets). $A \subseteq X$ is called open is for each $x \in A$ there is an open ball with $B_{\epsilon}(x) \subseteq A$.

We have nice pic for this.

Definition 1.2.3 (Boundary Points). $A \subseteq X$, $x \in X$ is called a boundary point for A if for all $\epsilon > 0$: $B_{\epsilon}(x) \cap A = \emptyset$ and $B_{\epsilon}(x) \cap A^{c} = \emptyset$. $[A^{c} := X \setminus A]$

Notation: $\partial A : \{x \in X | x \text{ is boundary point for } A\}$

We have nice pic for this.

Remember: A open \iff $A \cap \partial A = \emptyset$.

Definition 1.2.4 (Closed Sets). $A \subseteq X$ is called closed if $A^c := X \setminus A$ is open.

Definition 1.2.5 (Closure). $\overline{A} := A \cup \partial A$ (always closed!)

Example 1.2.1. $X := (1,3] \cup (4,\infty), d(x,y) := |x-y|, (X,d)$ is a metrix space.

- $A := (1,3] \subseteq X$ open? For $x \in A, x \neq 3$, define $\epsilon := \frac{1}{2} \min(|1-x|, |3-x|)$. Then $B_{\epsilon}(x) \subseteq A$. For x = 3: $B_1(x) = \{y \in X | d(x,y) < 1\} = (2,3] \subseteq A$.
- A is also closed!
- $C := (1, 2], \ \partial C = \{2\}, \ \overline{C} = C.$

1.3 Sequence, Limits and Closed Sets

Definition 1.3.1 (Sequence). Sequence in $X: x_1, x_2, \ldots$ or $(x_n)_{n \in \mathbb{N}}$ or map $x: \mathbb{N} \to X$ / $n \mapsto x_n$.

Definition 1.3.2 (Convergence). A sequence $(x_n)_{n\in\mathbb{N}}$ in a metrix space (X,d) is called convergence if there is $\tilde{x}\in X$ with $\forall \varepsilon\geq 0, \exists N\in\mathbb{N}, \forall n\geq N: d(x_n,\tilde{x})<\varepsilon$. We write: $X_n\stackrel{n\to\infty}{\longrightarrow} \tilde{x}$ or $\lim_{n\to \infty} x_n=\tilde{x}$.

Proposition 1.3.1 (Closed Sets). $A \subseteq X$ is closed \iff For every convergent sequence $(a_n)_{n \in \mathbb{N}} \subseteq A$, one has $\lim_{n \to \infty} a_n \in A$.

Proof. (\Leftarrow): Show it by contraposition! Assume A is not closed.

$$\implies A^c := X \setminus A \text{ is not open.}$$
 (1.3)

$$\implies$$
 There is an $\tilde{x} \in A^c$ with $B_{\varepsilon}(\tilde{x}) \cap A \neq \emptyset, \forall \varepsilon > 0.$ (1.4)

$$\Longrightarrow$$
 There is a sequence $(a_n)_{n\in\mathbb{N}}$ with $a_n\in B_{1/n}(\tilde{x})\cap A$ (1.5)

$$\Longrightarrow \lim_{n \to \infty} a_n = \tilde{x} \neq A. \tag{1.6}$$

 (\Longrightarrow) : Show it by contraposition! Assume there is $(a_n)_{n\in\mathbb{N}}\subseteq A$ with $\tilde{x}:=\lim_{n\to\infty}\notin A$.

$$\Longrightarrow B_{\varepsilon}(\tilde{x}) \neq \emptyset, \forall \varepsilon > 0$$
 (1.7)

$$\implies A^c \text{ is not open}$$
 (1.8)

$$\implies$$
 A is not closed. (1.9)

[SZQ: This proof use many contrapositions. It is nice to get familiar with how to use contrapositions to prove. It also needs to know the inverse of \forall .]

1.4 Cauchy Sequence and complete metric spaces

Example 1.4.1. X = (0,3) with d(x,y) = |x - y|. (0,3) is closed:

- $complement \emptyset is open$
- each convergent sequence $(x_n)_{n\in\mathbb{N}}\subseteq (0,3)$ (with limit $\tilde{x}\in X$) satisfies $\tilde{x}\in (0,3)$ What is about the sequence $(\frac{1}{n})_{n\in\mathbb{N}}$?
- sequence in X
- $d(x_n, x_m) \stackrel{n, m \to \infty}{\longrightarrow} 0$
- it does not converge $\Longrightarrow (X,d)$ is not complete

Definition 1.4.1 (Cauchy Sequence and Complete). Let (X, d) be a metrix space. A sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ is called Cauchy sequence if $\forall \varepsilon 0, \exists N\in\mathbb{N}, \forall n,m\geq N: d(x_n,x_m)<\varepsilon$. (X,d) is called complete if all Cauchy sequences converge.

Example 1.4.2. • X = [0,3] with d(x,y) = |x-y| is complete.

• X = (0,3) with

$$\begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases} \tag{1.10}$$

is complete.

Proof. Let $(x_n)_{n\in\mathbb{N}}\subseteq X$ be a Cauchy sequence. Take $\varepsilon=1/2$. Then there is an $N\in\mathbb{N}$ such that for all $n,m\geq N$, we have $d(x_n,x_m)<\frac{1}{2}$. By definition, $d(x_n,x_m)=0$. Hence, $x_n=x_m$.

1.5 Norms and Banach Spaces

Definition 1.5.1 (Norm). $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let X be a \mathbb{F} -vector space. A map $||\cdot||: X \to [0, \infty)$ is called norm if

- $||x|| = 0 \iff x = 0$ (postitive definite)
- $||\lambda \cdot x|| = |\lambda||x||$ for all $\lambda \in \mathbb{F}$, $x \in X$ (absolutely homogeneous)
- $||x|| \le ||x|| + ||y||$ for all $x, y \in X$ (triangle inequality)

Definition 1.5.2 (Normed Space). $(X, ||\cdot||)$ is then called a normed space.

Normed space is a special case of metric space!

Lemma 1.5.1 (Relationship between normed space and metric space). If $||\cdot||$ is a norm for the \mathbb{F} -vector space X, then $d_{||\cdot||}(x,y) := ||x-y||$ defines a metric for the set X.

Proof. This can be proved by the defnition of norm.

Definition 1.5.3 (Banach space). If $(X, d_{||\cdot||})$ is a complete metric space, then the normed space $(X, ||\cdot||)$ is called a Banach space.

The figure is very impressive and informative!

1.6 Examples of Banach Spaces

1.7 Part 12: Continuity

Definition 1.7.1 (Continuity for metric spaces). (X, d_Y) , (Y, d_Y) are two metric spaces. A map $f: X \to Y$ is called:

- continuous if $f^{-1}[B]$ is open in X for all open sets $B \subseteq Y$.
- sequentially continuous if for all $\tilde{x} \in X$ and $(x_n)_{n \in \mathbb{N}} \subseteq X$ with $x_n \xrightarrow{n \to \infty} \tilde{x}$ holds $f(x_n) \xrightarrow{n \to \infty} f(\tilde{x})$.

These are shown by figs.

Lemma 1.7.1. For metre spaces, continuous and sequentially continuous are equivalent. But for topological spaces, they are different.

Example 1.7.1. • (X, d_X) discrete metric space, (Y, d_Y) any metrix space \Longrightarrow all $f: X \to Y$ are continuous.

- $(X, d_X), (Y, d_Y)$ metric spaces, $Y_0 \in Y$ fixed. $\Longrightarrow f: X \to Y, x \mapsto y_0$ is always continuous.
- $(X, \|\cdot\|)$ normed space, $Y = \mathbb{R}$ with standard metric. $\Longrightarrow f: X \to \mathbb{R}, x \mapsto \|x\|$ is continuous.

Proof. Let $(x_n)_{n\in\mathbb{N}}\subseteq X$ sequence with limit $\tilde{x}\in X$. Then:

$$f(x_n) = ||x_n|| \tag{1.11}$$

$$= \|x_n - \tilde{x} + \tilde{x}\| \tag{1.12}$$

By triangle inequality 1.5.1

$$\leq \|x_n - \tilde{x}\| + \|\tilde{x}\| \tag{1.13}$$

$$= d(x_n, \tilde{x}) + f(\tilde{x}) \tag{1.14}$$

$$\implies \lim n \to \infty f(x_n) \le f(\tilde{x}).$$
 (1.15)

We also hold:

$$f(\tilde{x}) = \|\tilde{x}\| \tag{1.16}$$

$$= \|\tilde{x} - x_n + x_n\| \tag{1.17}$$

By triangle inequality 1.5.1

$$\|\tilde{x} - x_n\| + \|x_n\| \tag{1.18}$$

$$= d(\tilde{x}, x_n) + f(x_n) \tag{1.19}$$

$$\Longrightarrow f(\tilde{x}) \le \lim_{n \to \infty} f(x_n).$$
 (1.20)

• $(X, \langle \cdot, \cdot \rangle)$ inner product space, $Y \in \mathbb{C}$ with the standard metric, $x_0 \in X$ fixed. \Longrightarrow $f: X \to \mathbb{C}$, $x \mapsto \langle x_0, x \rangle$ is continuous.

Proof. Let $(x_n)_{n\in\mathbb{N}}\subseteq X$ sequence with limit $\tilde{x}\in X$. Then:

$$|f(x_n) - f(\tilde{x})| = |\langle x_0, x_n \rangle - \langle x_0, \tilde{x} \rangle| \tag{1.21}$$

$$= |\langle x_0, x_n - \tilde{x} \rangle \tag{1.22}$$

By Cauthy Schiwz inequality

$$\leq \|x_0\| \cdot \|x_n - \tilde{x}\| \stackrel{n \to \infty}{\longrightarrow} 0. \tag{1.23}$$

Analogously, $g: X \to \mathbb{C}, x \mapsto \langle x, x_0 \rangle$ is continuous.

Lemma 1.7.2 (Orthogonal complement is closed). $(X, \langle \cdot, \cdot \rangle)$ inner product space, $U \subseteq X$. Then U^{\perp} is closed.

Proof. Let $(x_n)_{n\in\mathbb{N}}\subseteq U^{\perp}$ with limit $\tilde{x}\in X$.

$$\Longrightarrow \langle x_n, u \rangle = 0, \forall u \in U \tag{1.24}$$

$$\Longrightarrow \lim_{n \to \infty} \langle x_n, u \rangle = 0, \forall u \in U$$
 (1.25)

$$\Longrightarrow \langle \tilde{x}, u \rangle = 0, \forall u \in U. \tag{1.26}$$

$$\implies \tilde{x} \in U^{\perp}.$$
 (1.27)

1.8 Part 13: Bounded Operators

Y, which satisfies

- linear (conserves the algebraic structure)
- continuous (bounded) (conserves the topological structure)

Definition 1.8.1 (Operator norm and bounded). $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|)$ two normed spaces, $T: X \to Y$ linear, which means

$$T(x+\tilde{x}) = Tx + T\tilde{x} \tag{1.28}$$

$$T(\lambda x) = \lambda T x \tag{1.29}$$

for all $x, \tilde{x} \in X$, $\lambda \in \mathbb{F}$. Then

$$||T|| = ||T||_{X \to Y} \tag{1.30}$$

$$:= \sup \left\{ \frac{\|Tx\|_Y}{\|x\|_X} | x \in X, x \neq 0 \right\}$$
 (1.31)

is called the operator norm of T. If $||T|| < \infty$, T is called bounded.

Proposition 1.8.1 (Continuous equivalent to bounded). Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ two normed spaces, $T: X \to Y$ linear. Then the following claims are equivalent:

- T is continuous.
- T is continuous at x = 0.
- T is bounded.

Proof. (a) \Longrightarrow (b) is easily seen.

(b) \Longrightarrow (c): proposition (*): For all sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ with $x_n\stackrel{n\to\infty}{\longrightarrow} 0$, we have $Tx_n\stackrel{n\to\infty}{\longrightarrow} 0$ due the properties of linear map.

Claim: proposition (*) \Longrightarrow proposition (+): there is a $\delta > 0$ such that $||Tx||_Y < 1$ for all $x \in X$ with $||x||_X < \delta$.

proof of this claim: we prove its contraposition such that $\neg(*) \Longrightarrow$ For all $n \in \mathbb{N}$, we find $x_n \in X$ with $\|x_n\|_X < \frac{1}{n}$ and $\|Tx_n\|_Y \ge 1 \Longrightarrow \neg(*)$.

$$\frac{\|Tx\|_{Y}}{\|x\|_{X}} = \frac{\|Tx\|_{Y} \cdot \frac{\delta}{2} \cdot \frac{1}{\|x\|_{X}}}{\|x\|_{X} \cdot \frac{\delta}{2} \cdot \frac{1}{\|x\|_{Y}}}$$
(1.32)

$$= \frac{\|T(\frac{\delta}{2} \frac{x}{\|x\|_X})\|_Y}{\|\frac{\delta}{2} \frac{x}{\|x\|_X}\|_X}$$
(1.33)

$$\leq \frac{2}{\delta} \tag{1.34}$$

$$\Longrightarrow ||T|| = \sup \left\{ \frac{||Tx||_Y}{||x||_X} | x \in X, x \neq 0 \right\} \le \frac{2}{\delta} < \infty.$$
 (1.35)

(c)
$$\Longrightarrow$$
 (a): Let $(x_n)_{n\in\mathbb{N}}\subseteq X$ be convergent with limit $\tilde{x}\in X$. Then $||Tx_n-T\tilde{x}||_Y=$ $||T(x_n-\tilde{x})||_Y\leq ||T||\cdot ||x_n-\tilde{x}||_X\stackrel{n\to\infty}{\longrightarrow} 0$.

[SZQ: 2023.04.02: This proof needs to be understood later.]

[SZQ: 2023.04.02: Is should be proved that ||T|| defined above is indeed a norm.]

1.9 Part 14: Example Operator Norm

Example 1.9.1. $X = (C[0,1), \mathbb{F}, \|\cdot\|_{\infty}), Y = (\mathbb{F}, |\cdot|).$ For $g \in X$ with $g(t) \neq 0$ for all $t \in [0,1]$, define $T_g: X \to Y$ by $T_g(f) := \int_0^1 g(t) \cdot f(t) dt$. So what is $\|T_g\|$?

Proof. Recall that

$$||F_g|| = \sup \left\{ \frac{|T_g(f)|}{||f||_{\infty}} | f \in X, f \neq 0 \right\}$$
 (1.36)

This trick has been used before.

$$= \sup \left\{ \frac{|T_g(f)|}{\|f\|_{\infty}} | f \in X, f \neq 0 \right\}$$

$$\tag{1.37}$$

$$= \sup \{ |T_g(f)| | f \in X, ||f||_{\infty} = 1 \}$$
 (1.38)

$$= \sup \left\{ |\int_0^1 g(t) \cdot f(t) dt| |f \in X, ||f||_{\infty} = 1 \right\}$$
 (1.39)

Since
$$|\int_0^1 g(t)\cdot f(t)\mathrm{d}t| \leq \int_0^1 |g(t)|\cdot |f(t)|\mathrm{d}t$$
 and $|f(t)| \leq \|f\|_\infty = 1$

$$\leq \int_0^1 |g(t)| \mathrm{d}t \tag{1.40}$$

$$<\infty.$$
 (1.41)

Check the other inequality: $h(t) := \frac{\overline{g(t)}}{|g(t)|}$ with $||h||_{\infty=1}$. We then have

$$||T_g|| \ge |T_g(h)| \tag{1.42}$$

$$= \left| \int_0^1 g(t) \frac{\overline{g(t)}}{|g(t)|} dt \right| \tag{1.43}$$

$$= \int_0^1 \frac{|g(t)|^2}{|g(t)|} dt \tag{1.44}$$

$$= \int_0^1 |g(t)| \mathrm{d}t. \tag{1.45}$$

1.10 Part 16: Compact Sets

Example 1.10.1. Compactness $A \subseteq \mathbb{R}^n$. A is compact such that

- A is closed.
- A is bounded.

This is only true in \mathbb{R}^n or \mathbb{C}^n .

Definition 1.10.1 (Sequentially compact). Let (X,d) be a metric space. $A \subseteq X$ is called (sequentially) compact if for each sequence $(x_n)_{n\in\mathbb{N}}\subseteq A$, one finds a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with $\tilde{x}:=\lim_{k\to\infty}x_{n_k}\in A$.

Example 1.10.2. • $(\mathbb{R}, d_{eucl.}), A = [0, 1]$ compact by Bolzano-Weierstrass theorem.

• $(\mathbb{R}, d_{discr}), A = [0, 1]$ not compact because: The sequence $(x_n)_{n \in \mathbb{N}} \subseteq A$ with $x_n = \frac{1}{n}$ satisfies $d_{discr.}(x_n, x_m) = 1$ for all $n, m \in \mathbb{N}$ with $n \neq m$. \Longrightarrow no convergent subsequence.

$$\frac{\textit{Proposition:}}{\textit{Then A is closed}} \ \ \, \text{Let} \ \, (X,d) \ \, \text{be a metric space and } \ \, A \subseteq X \ \, \text{compact.} \\ \text{Then A is closed and bounded.} \ \, \text{There is an } x \in X \\ \text{and on } \epsilon > 0 \text{ such} \\ \text{that } \ \, \mathcal{B}_{\epsilon}(x) \supseteq A$$

Definition 1.10.2 (Bounded). Let (X, d) be a metrix space and $A \subseteq X$ compact. A is bounded means that there is an $x \in X$ and an $\varepsilon > 0$ such that $A \subseteq B_{\varepsilon}(x)$.

Proposition 1.10.1 (Compact implies closed and bounded). Let (X,d) be a metrix space and $A \subseteq X$ compact. Then A is closed and bounded.

Proof. Let $A \subseteq X$ be compact.

(1) Let $(x_n)_{n\in\mathbb{N}}\subseteq A$ be convergent with limit $\tilde{x}\in X$.

$$\Longrightarrow$$
 There is an convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$ with limit $\tilde{\tilde{x}} \in A$ (1.46)

$$\Longrightarrow \tilde{x} = \tilde{\tilde{x}} \in A \tag{1.47}$$

$$\implies$$
 A is closed! (1.48)

- (2) contraposition: A is not bounded.
- \implies For given $a \in A$, there are $x_n \in A$ with $d(a, x_n) > n$.
- \Longrightarrow For any subsequence $(x_{n_k})_{k\in\mathbb{N}}$ and any point $b\in A$:

$$n_K < d(a, x_{n_k}) \tag{1.49}$$

$$\leq d(a,b) + d(b,x_{n_k}) \tag{1.50}$$

$$\implies n_k - d(a, b) \le d(b, x_{n_k}).$$

$$\implies d(b, x_{n_k}) \stackrel{k \to \infty}{\longrightarrow} 0 \text{ for all } b \in A$$

$$\implies$$
 A not compact!

1.11 Part 18: Compact operators

Definition 1.11.1 (Compact operators). Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ be two normed spaces. A bounded linear operator $T: X \to Y$ is called compact if $\overline{T[B_1(0)]} \subseteq Y$ is a compact set.

[SZQ: 2023.04.02: the defintion of $\overline{T[B_1(0)]} \subseteq Y$ should be learned first.]

1.12 Part 19: Holder's inequality

Lemma 1.12.1 (Young's inequality). For all a, b > 0, we have $a, b \leq \frac{a^p}{p} + \frac{b^{p'}}{p'}$.

Proof. Note that function $f: x \mapsto e^x$ is convex, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{1.51}$$

Let $\lambda = \frac{1}{p}$, $x = \ln a^p$, $1 - \lambda = \frac{1}{p'}$, and $y = \ln b^{p'}$. We have

$$a \cdot b = f(\frac{1}{p} \ln a^p + \frac{1}{p'} \ln b^{p'}) = f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 (1.52)

$$= \frac{1}{p} f(\ln a^p) + \frac{1}{p'} f(\ln b^{p'}) \qquad (1.53)$$

$$=\frac{a^p}{p} + \frac{b'}{p'}. (1.54)$$

Theorem 1 (Holder's inequality). For all $x, y \in \mathbb{F}^n$, we have

$$||xy||_1 \le ||x||_p \cdot ||y||_{p'},\tag{1.55}$$

where $x \in \mathbb{F}^n$ and the p-norm of x is

$$||x||_q := \left(\sum_{j=1}^n |x_j|^q\right)^{\frac{1}{q}},$$
 (1.56)

 $q\in [1,\infty), \; \frac{1}{p}+\frac{1}{p'}=1, \; and \; for \; x,y\in \mathbb{F}^n, \; we \; write$

$$xy := \begin{pmatrix} x_1 y_1 \\ x_2 y_2 \\ \dots \\ x_n y_n \end{pmatrix}. \tag{1.57}$$

Proof. Case 1: x = 0 or y = 0.

Case 2: We have

$$\frac{1}{\|x\|_p \|y\|_{p'}} \|xy\|_1 = \frac{1}{\|x\|_p \|y\|_{p'}} \sum_{j=1}^n |x_j y_j|$$
(1.58)

$$= \sum_{j=1}^{n} \frac{|x_j|}{\|x\|_p} \frac{|y_j|}{\|y\|_{p'}}$$
 (1.59)

By Young's lemma (1.12.1)

$$\leq \sum_{j=1}^{n} \frac{1}{p} \cdot \frac{|x_j|^p}{\|x\|_p^p} + \sum_{j=1}^{n} \frac{1}{p'} \cdot \frac{|y_j|^{p'}}{\|x\|_{p'}^{p'}}$$

$$\tag{1.60}$$

$$= \frac{1}{p} + \frac{1}{p'} \tag{1.61}$$

$$=1. (1.62)$$

1.13 Part 21: Isomorphism?

Definition 1.13.1 (Homomorphism). What is Homomorphism: map that preserves structures.

[SZQ: When we talk about homophism, we must know the underlying structures!]

Example 1.13.1. • Let X, Y be vector spaces and $f: X \to Y$ be a map. We want

$$f(\lambda \cdot x) = \lambda \cdot f(x) \tag{1.63}$$

$$f(x+x') = f(x) + f(x'), (1.64)$$

which is called linear. Thus homomorphism = linear map!

• Let $(X, d_X), (Y, d_Y)$ be two metric spaces and $f: X \to Y$ be a map. We want

$$d_Y(f(x), f(x')) \le d_X(x, x').$$
 (1.65)

homomorphism = map that satisfies (1.65)

Definition 1.13.2 (Isomorphism). Isomorphism = homomorphism + bijective + inverse map is also homomorphism

Definition 1.13.3 (Isomorphism for Banach spaces). Isomorphism for banach spaces $X, Y: f: X \to Y$ with: linear + bijective + $||f(x)||_Y = ||x||_X$ (oftern called isometric isomorphism).

Example 1.13.2. •
$$S_R: l^p(\mathbb{N}) \to l^p(\mathbb{N}), (x_1, x_2, x_3, \dots) \mapsto (0, x_1, x_2, \dots)$$

$$\implies linear, ||S_R x||_p = ||x||_p \text{ not surjective}$$

$$\implies not \text{ an isomorphism}$$
(1.66)

•
$$S: l^p(\mathbb{Z}) \to l^p(\mathbb{Z}), (\dots, x_{-1}, x_0, x_1, \dots) \mapsto (\dots, x_{-2}, x_{-1}, x_0, \dots)$$

$$\implies linear, ||Sx||_p = ||x||_p \text{ and bijective}$$

$$\implies isomorphism \tag{1.68}$$

1.14 Part 22: Dual spaces

Proposition 1.14.1. Let X be a normed space. Then $(X', \|\cdot\|_{X\to\mathbb{F}})$ is a Banach space.

[SZQ: 2023.04.02: I need to learn Riesz representation theorem!]

1.15 Part 28: Spectrum for bounded linear operators

Recall: $A \in \mathbb{C}^{n \times n}$ matrix with n rows and n columns. $\lambda \in \mathbb{C}$ is called an eigenvalue of A if:

$$\exists x \in \mathbb{C}^n \setminus \{0\} : Ax = \lambda x \tag{1.70}$$

$$\iff \exists x \in \mathbb{C}^n \setminus \{0\} : (A - \lambda I)x = 0 \tag{1.71}$$

$$\iff \operatorname{Ker}(A - \lambda I) \neq \{0\}$$
 (1.72)

$$\iff map \ x \mapsto (A - \lambda I)x \ not \ injective.$$
 (1.73)

Theorem 2 (Rank-nullity theorem). For any matrix $M \in \mathbb{C}^{m \times n}$:

$$dim(Ran(M)) + dim(Ker(M)) = n. (1.74)$$

Definition 1.15.1 (Spectrum and resolvent). Let X be a complex Banach space and $T: X \to X$ be a bounded linear operator. Then the spectrum of T is defined by:

$$\sigma(T) := \{ \lambda \in \mathbb{C} | (T - \lambda I) \text{not bijective} \}. \tag{1.75}$$

The resolvent of T is defined by:

$$\rho(T) := \left\{ \lambda \in \mathbb{C} | (T - \lambda I) \text{ bijective and } (T - \lambda I)^{-1} \text{ bounded} \right\}. \tag{1.76}$$

Corollary 1.15.1. By bounded inverse theorem, we have

$$\sigma(T) = \mathbb{C} \backslash \rho(T). \tag{1.77}$$

Definition 1.15.2 (Point/continuous/residual spectrum). We have the disjoint union: $\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$. We have

Point spectrum:
$$\sigma_p := \{ \lambda \in \mathbb{C} | (T - \lambda I) \text{ not injective} \},$$
 (1.78)

Continuous spectrum : $\sigma_c := \{\lambda \in \mathbb{C} |$

(1.79)

$$(T - \lambda I)$$
 injective but not surjective with $\overline{Ran(T - \lambda I)} = X$, (1.80)

Residual spectrum: $\sigma_r := \{ \lambda \in \mathbb{C} |$ (1.81)

$$(T - \lambda I)$$
 injective but not surjective with $\overline{Ran(T - \lambda I)} \neq X$. (1.82)

(1.83)

[SZQ: 2023.04.02: I need to learn injective, surjective, bijective first!]

1.16 Part 31: Spectral Radius

Definition 1.16.1 (Spectral radius). X complex Banach space. $T: X \to X$ bounded linear operator. We define the spectral radius as

$$r(T) := \sup\left\{ |\lambda| \right\},\tag{1.84}$$

where $\lambda \in \sigma(T)$.

Here, we have a fig to show this def.

Theorem 3. X complex Banach space, $T: X \to X$ bounded linear operator. Then

- $\sigma(T) \subseteq \mathbb{C}$ is compact
- $X \neq \{0\} \Longrightarrow \sigma(T) \neq \emptyset$
- $r(T) := \sup |\lambda| = \lim_{k \to \infty} ||T^k||^{\frac{1}{k}} = \inf_{k \to \mathbb{N}} ||T^k||^{\frac{1}{k}} \le ||T|| < \infty,$

where $\lambda \in \sigma(T)$

 \square

[SZQ: 2023.04.02: I need to learn the properties of sepctrum, dual spaces, Vom-Neuman series, Liouville's theorem, Hahn-Banach Theorem!]

1.17 Part 32: Normal and Self-Adjoint Operators

Definition 1.17.1 (Adjoint operator). Let X be a Hilbert space and $T: X \to X$ a bounded linear operator. The bounded linear operator $T^*: X \to X$ defined by

$$\langle y, Tx \rangle = \langle T^*y, x \rangle, \forall x, y \in X$$
 (1.85)

is called the adjoint operator of T.

Definition 1.17.2 (Self Adjoint operator). Let X be a Hilbert space and $T: X \to X$ a bounded lineaar operator. T is called

- self-adjoint if $T^* = T$
- skew-adjoint if $T^* = -T$
- $normal\ if\ T^*T = TT^*$

Proposition 1.17.1. *T is normal* \Longrightarrow r(T) = ||T||.