CS 228 : Logic in Computer Science

S. Krishna

▶ We focus on FO over words: the signature has <, S, Q_a, Q_b, Remember you always have = with you. Recall the terms structure, universe, and assignment.

- ▶ We focus on FO over words: the signature has <, S, Q_a , Q_b , Remember you always have = with you. Recall the terms structure, universe, and assignment.
- ▶ Consider the formula $\varphi(y) = Q_b(y) \land \forall x(x < y \to Q_a(x))$, and the word W = aabacabacaa. Does $W \models_{\alpha} \varphi(y)$ for some assignment α ?
- Let ψ be the formula $\exists y \exists w \{ Q_a(w) \land Q_b(y) \land \forall x (Q_a(x) \rightarrow x > y) \land \exists z [Q_b(z) \land \forall t (z \geqslant t)] \}$. What is $L(\psi)$?

- ▶ We focus on FO over words: the signature has <, S, Q_a, Q_b, Remember you always have = with you. Recall the terms structure, universe, and assignment.
- ▶ Consider the formula $\varphi(y) = Q_b(y) \land \forall x(x < y \to Q_a(x))$, and the word W = aabacabacaa. Does $W \models_{\alpha} \varphi(y)$ for some assignment α ?
- Let ψ be the formula $\exists y \exists w \{Q_a(w) \land Q_b(y) \land \forall x (Q_a(x) \rightarrow x > y) \land \exists z [Q_b(z) \land \forall t (z \geqslant t)] \}$. What is $L(\psi)$?
- ▶ Formula φ is satisfiable iff $L(\varphi) \neq \emptyset$.
- ▶ Formula φ is valid iff $L(\varphi) = \Sigma^*$.

- ▶ We focus on FO over words: the signature has <, S, Q_a , Q_b , Remember you always have = with you. Recall the terms structure, universe, and assignment.
- ▶ Consider the formula $\varphi(y) = Q_b(y) \land \forall x(x < y \to Q_a(x))$, and the word W = aabacabacaa. Does $W \models_{\alpha} \varphi(y)$ for some assignment α ?
- Let ψ be the formula $\exists y \exists w \{Q_a(w) \land Q_b(y) \land \forall x (Q_a(x) \rightarrow x > y) \land \exists z [Q_b(z) \land \forall t (z \geqslant t)] \}$. What is $L(\psi)$?
- ▶ Formula φ is satisfiable iff $L(\varphi) \neq \emptyset$.
- Formula φ is valid iff $L(\varphi) = \Sigma^*$.
- Question: How to check satisfiability of FO over words?

Given FO formula φ over an alphabet Σ, construct an edge labeled graph G_φ: a graph whose edges are labeled by Σ.

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- **Each** path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - There are some vertices called good vertices (magenta vertex)

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- Each path in the graph gives rise to a word over Σ, obtained by reading off the labels on the edges
- G_{ω} has some special kinds of vertices
 - There is a unique vertex called the start vertex (blue vertex)
 - There are some vertices called good vertices (magenta vertex)
- ▶ Read off words on paths from the start vertex to any final vertex and call this set of words $L(G_{\varphi})$
- ▶ Ensure that G_{φ} is constructed such that $L(\varphi) = L(G_{\varphi})$.

▶ Why does this help?

- Why does this help?
- ► We know how to check the existence of a path between 2 vertices in a graph easily (how?)

- Why does this help?
- ▶ We know how to check the existence of a path between 2 vertices in a graph easily (how?)
- If somehow we manage to construct G_{φ} correctly, then checking satisfiability of φ is same as checking the reachability of some good vertex from the start vertex of G_{φ} .

- Why does this help?
- We know how to check the existence of a path between 2 vertices in a graph easily (how?)
- If somehow we manage to construct G_{φ} correctly, then checking satisfiability of φ is same as checking the reachability of some good vertex from the start vertex of G_{φ} .
- ▶ How to construct G_{ω} ?

▶ Let us call the vertices of the graph states

- ▶ Let us call the vertices of the graph states
- ▶ A path from one state to another gives a word over $\Sigma = \{a, b\}$

S. Krishna CS 228 : Logic for CS IIT Bombay

- Let us call the vertices of the graph states
- ▶ A path from one state to another gives a word over $\Sigma = \{a, b\}$
- ► The graph accepts words along paths from an initial state to a good state

- Let us call the vertices of the graph states
- ▶ A path from one state to another gives a word over $\Sigma = \{a, b\}$
- The graph accepts words along paths from an initial state to a good state
- ► The set of words accepted by the graph is called the language of the graph

▶ What is the language L accepted by this graph, L(A)?

- ▶ What is the language L accepted by this graph, L(A)?
- Write an FO formula φ such that $L(\varphi) = L(A)$

A Second and a Third Graph B, C

A Second and a Third Graph B, C

▶ What are L(B), L(C)?

A Second and a Third Graph B, C

- ▶ What are *L*(*B*), *L*(*C*)?
- ▶ Give an FO formula φ such that $L(\varphi) = L(B) \cup L(C)$

$$\neg \exists x (x = x) \lor \exists x (Q_a(x) \land first(x)) \land \exists y (Q_b(y) \land last(y)) \land \\ \forall x \forall y [(S(x,y) \land Q_a(x) \rightarrow Q_b(y)) \land (S(x,y) \land Q_b(x) \rightarrow Q_a(y))]$$

\

$$\forall x(Q_a(x))$$

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q is a finite set of states

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states
- Σ is a finite alphabet

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- ▶ $F \subseteq Q$ is the set of final states

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states.
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- ▶ $F \subseteq Q$ is the set of final states
- ▶ L(A)=all words leading from q_0 to some $f \in F$

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Even length words

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Even length words

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Contains abb

$$\exists x \exists y \exists z (Q_a(x) \land Q_b(y) \land Q_b(z) \land S(x,y) \land S(y,z))$$

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Right before the last position is an a:

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

▶ Right before the last position is an a:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

Right before the last position is an a:
Examples: ab, babbaa, bbab
Non examples: ba, bb, aba

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Right before the last position is an *a*:

Examples : *ab*, *babbaa*, *bbab*Non examples : *ba*, *bb*, *aba*

$$\exists x [Q_a(x) \land \exists y (S(x,y) \land \forall z (z \leqslant y))]$$