Mobile Communication DSSS and FHSS intermediate presentation

Group 6

October 30, 2014

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

Spread Spectrum

- Transmitting finite sequences requires a frequency band
- Spreading this band makes transmission more robust
- Use spreading schemes, that allows using the frequency band for concurrent transmission

- Let the data $d_t \in \{-1, 1\}^n$ be $d_t = [1, -1]$
- Signal bandwidth R_s

- Let the data $d_t \in \{-1, 1\}^n$ be $d_t = [1, -1]$
- Signal bandwidth R_s

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,1,1,1,1,1,-1,1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

- Define chip sequence. Let the sequence $p_n \in \{-1,1\}^n$ be $d_t = [1,1,1,-1,1,-1,-1,1,1,1,-1,1,-1]$
- Signal bandwidth R_c with $R_c > R_s$.
- p_n is known to sender and receiver only
- Sender and receiver are synchronized

Direct Sequence Spread Spectrum Spreading

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is R_c , the chip sequence's bandwidth.
- For transmission apply some phase modulation

Direct Sequence Spread Spectrum Spreading

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is *R_c*, the chip sequence's bandwidth.
- For transmission apply some phase modulation

Spreading

- Point-wise multiply the data with chip sequence. $t_x = d_t p_n$
- Bandwidth of transmitted signal is *R_c*, the chip sequence's bandwidth.
- For transmission apply some phase modulation

Direct Sequence Spread Spectrum Spreading

• Point-wise multiply the signal with chip sequence.

$$d_r = t_x p_n = d_t p_n p_n = d_t$$

• This returns the original data since $p_n p_n = [1, 1, ...]$

Direct Sequence Spread Spectrum Spreading

• Point-wise multiply the signal with chip sequence. $d_r = t_x p_n = d_t p_n p_n = d_t$

• This returns the original data since $p_n p_n = [1, 1, ...]$

Narrow-band Interference

- Narrowband interference is spread in the despreading part
- Remember: spreading and despreading is the same operation
- Does not lower the SNR too much

Narrow-band Interference

- Narrowband interference is spread in the despreading part
- Remember: spreading and despreading is the same operation
- Does not lower the SNR too much

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR.
- Transmissions of other users are received as broadband noise

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR.
- Transmissions of other users are received as broadband noise

Broad-band Interference

- Despreading does not change the broad-band noise, it is uncorrelated with p_n . It's bandwidth remains the same.
- Can affect the SNR.
- Transmissions of other users are received as broadband noise

FHSS

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{i_j} according to chip pattern and hop to next frequency $f_{i_{i+1}}$ after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

FHSS

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{i_j} according to chip pattern and hop to next frequency $f_{i_{j+1}}$ after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

FHSS

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current. frequency f_{i_i} according to chip pattern and hop to next frequency $f_{i_{i+1}}$ after some time
- Apply frequency modulation
- Sender and receiver know p_n and

Frequency Hopping Spread Spectrum

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{ij} according to chip pattern and hop to next frequency f_{ij+1} after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

Frequency Hopping Spread Spectrum

- Divide frequency band into N sub-bands
- Define a chip sequence $p_n \in [f_1, f_N]^n$. Let $p_n = [f_2, f_4, ...]$
- Transmit data on current frequency f_{ij} according to chip pattern and hop to next frequency f_{ij+1} after some time
- Apply frequency modulation
- Sender and receiver know p_n and are synchronized

FHSS Example

Figure: Frequency = , value =

FHSS Example

Figure: Frequency = f1, value = 0

FHSS Example

Figure: Frequency = f1, value = 1

FHSS Example

Figure: Frequency = f2, value = 1

FHSS Example

Figure: Frequency = f2, value = 0

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on a frequency
- Problems with *broad-band* interference remain
- Other users will be perceived as narrow-band interference

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on a frequency
- Problems with *broad-band* interference remain
- Other users will be perceived as narrow-band interference

- Robust with *narrow-band* interference, since transmission remains only for a few symbols on a frequency
- Problems with *broad-band* interference remain
- Other users will be perceived as narrow-band interference

Architecture

- Object-oriented Matlab
- Modulation using Communications System Toolbox

Architecture

- Object-oriented Matlab
- Modulation using Communications System Toolbox

Architecture

- Object-oriented Matlab
- Modulation using Communications System Toolbox

4 D > 4 P > 4 E > 4 E >

UML

- DSSS:
 - Phase modulation BPSK modulation scheme
- FHSS:
 - Frequency modulation FSK modulation scheme
- Add interferences and noise on the medium
 - Gaussian noise
 - Broadband noise
 - Narrow band noise
- Different chip rates in FHSS Fast & slow hopping
- Different chip sequence length

- DSSS:
 - Phase modulation BPSK modulation scheme
- FHSS:
 - Frequency modulation FSK modulation scheme
- Add interferences and noise on the medium
 - Gaussian noise
 - Broadband noise
 - Narrow band noise
- Different chip rates in FHSS Fast & slow hopping
- Different chip sequence length

- DSSS:
 - Phase modulation BPSK modulation scheme
- FHSS:
 - Frequency modulation FSK modulation scheme
- Add interferences and noise on the medium
 - Gaussian noise
 - · Broadband noise
 - Narrow band noise
- Different chip rates in FHSS Fast & slow hopping
- Different chip sequence length

- DSSS:
 - Phase modulation BPSK modulation scheme
- FHSS:
 - Frequency modulation FSK modulation scheme
- Add interferences and noise on the medium
 - Gaussian noise
 - Broadband noise
 - Narrow band noise
- Different chip rates in FHSS Fast & slow hopping

- DSSS:
 - Phase modulation BPSK modulation scheme
- FHSS:
 - Frequency modulation FSK modulation scheme
- Add interferences and noise on the medium
 - Gaussian noise
 - · Broadband noise
 - Narrow band noise
- Different chip rates in FHSS Fast & slow hopping
- Different chip sequence length

Metrics

- Bit-error rate
- Packet-error rate

Metrics

- Bit-error rate
- Packet-error rate

- Basic structure is done
- Next steps:
 - Implement spreading & despreading
 - Add noise and inteferences
 - Collect & analyze results

- Basic structure is done
- Next steps:
 - Implement spreading & despreading
 - Add noise and inteferences
 - Collect & analyze results

- Basic structure is done
- Next steps:
 - Implement spreading & despreading
 - Add noise and inteferences
 - Collect & analyze results

- Basic structure is done
- Next steps:
 - Implement spreading & despreading
 - Add noise and inteferences
 - Collect & analyze results

