Group Assignment 4

Kevin Stine

Description of Linear Program:

To find the daily average temperature at any location, we can use a linear function plus two sinusoidal functions. The first sinusoidal function models the temperature with the season and has a period of one year. The second sinusoidal function is modelled after the solar cycle and has a period of 10.7 years. Using T for temperature and d for days, we get the following function:

$$T(d) = x_0 + x_1 * d + x_2 * cos(\frac{2\Pi d}{365.25}) + x_3 * sin(\frac{2\Pi d}{365.25}) + x_4 * cos(\frac{2\Pi d}{365.25*10.7}) + x_5 * sin(\frac{2\Pi d}{365.25*10.7})$$

 $x_0 + x_1 * d$ represents the linear trend for the function.

 $x_2 * cos(\frac{2\Pi d}{365.25}) + x_3 * sin(\frac{2\Pi d}{365.25})$ represents the sinusoidal function for the seasonal pattern.

 $x_4 * cos(\frac{2\Pi d}{365.25*10.7}) + x_5 * sin(\frac{2\Pi d}{365.25*10.7})$ represents the sinusoidal function for the solar cycle.

The values for x_0 , x_1 , x_2 , x_3 , x_4 , x_5 all vary based on location. Using a linear programming solver, we will solve the function above and plot the best fit curve of the temperature data on a graph.

Values of All Variables:

Objective = 14.870473

 $x_0 = 6.221111$

 $x_1 = 0.00025167514$

 $x_2 = 0.009784343$

 $x_3 = 8.9282845$

 $x_4 = 0.0$

 $x_5 = 0.054530602$

Plot:

Change:

Corvallis is changing about 1°C per century. As you can see in the graph above, the average temperature is slowly increasing. The initial average temperature is about 10.86°C and the final average temperature is around 11.76°C for about 2/3rds of a century. This is a warming trend, and while pretty small over the course of a century, over the course of many centuries the effects might become noticeable.