Исследование резонансного поглощения γ квантов

Шмаков Владимир Евгеньевич - ФФКЭ гр. Б04-105 $3~{\rm мартa}~2024~{\rm r}.$

Цель работы

Теоретические сведения

Смещение линий вследствие эффекта Мессбауэра

В работе рассматривается процесс резонансного поглощения γ квантов. Кванты, испущенные возбуждённым ядром налетают на поглотитель, содержащий те же ядра в невозбуждённом состоянии. Вследствие отдачи(эффекта Мессбауэра), ядро, испускающее γ квант, приобретает импульс равный по абсолютной величине импульсу γ кванта. Вследствие этого эффекта линии поглощения и испускания смещаются на величину R - энергию отдачи:

$$R = \frac{p^2}{M_{\rm s}} = \frac{E_{\gamma}^2}{2M_{\rm s}c^2} \tag{1}$$

Методика

Оборудование

Экспериментальная установка

Рис. 1: Схема экспериментальной установки.

Схема экспериментальной установки изображена на рисунке 1. Для детектирования γ - квантов используется ФЭУ. Пересчетное устройство позволяет устанавливать верхний и нижний пороги срабатывания. Таким образом, налетающие γ - кванты могут быть отсортированы по энергии(проанализирован спектр источника).

Поглотитель γ - излучения приводится в движение посредством механизма преобразования вращательного движения в поступательное. «Источником» вращательного движения является электронный двигатель РД-09.

Обработка экспериментальных данных

Рис. 2: Экспериментальные точки, приближенные контуром Воигта (смотрите формулу 2)

Для предварительных выводов приблизим данные контуром Воигта, часто используемом в спектроскопии.

$$f(x) = O - A \cdot V(x + B, \sigma, \gamma) ,$$
 где $V(x, \sigma, \gamma) = \int_{-\infty}^{\infty} G(x', \sigma) L(x - x', \gamma) dx'$ (2)

Функция $V(x, \sigma, \gamma)$ - свёртка плотностей «центрированных» нормального распределения и распределения Коши. Параметр σ - дисперсия нормального распределения, γ - коэффициент масштаба распределения Коши. Другими словами, величины σ и γ показывают степень родства искомого профиля с естественным и Лоренцевским профилем. Как видно на рисунке 2, параметр γ всегда больше параметра σ . ДОБАВИТЬ ВЫВОД ИЗ ЭТОГО

Найдём параметры контура точнее:

- 1. Переведём результаты измерений в диапазон (0, 1)
 - Вычтем из каждого экспериментального значения I_i максимально достигнутое значение счета $\max_i I_i$. Отнормируем выборку I_i
- 2. Рассмотрим полученные данные с точки зрения таблично заданной плотности вероятности. Пользуясь генератором случайных чисел построим выборку с заданной плотностью. Пользуюсь статистическими методами оценим характерные параметры полученной выборки.
- 3. Методом максимального правдоподобия найдем параметры исходного распределения. Оценим качество приближения пользуясь критерием χ^2 .

Рис. 3: Нахождение параметров распределений методом максимального правдоподобия

Вывод