AQA HW #2 Workbook

Tyler Maule

```
Homework #2 Part (A) S_R^2 = \frac{(Y_1 + Y_2 - (2n/3))^2}{2n/9} S_U^2 = \sum_{i=1}^3 \frac{(Y_i - n\hat{\pi}_{0,i})^2}{n\hat{\pi}_{0,i}}
```

Homework #2 Part (B) Note that due to my poor choice of variable names, y_i refer to probability values associated with the i_{th} outcome, and not the counts of those outcomes.

```
import scipy.stats as sps
import numpy as np

def get_probs(n, y1, y2, y3):

IR = n * ((6 * (((y1 + y2)/(2)) - (1/3))**2) + (3 * ((y3)-(1/3))**2))
```

```
1R = n * ((6 * (((y1 + y2)/(2)) - (1/3))**2) + (3 * ((y3)-(1/3))**2))
1U = 3 * n * (((y1)-(1/3))**2 + ((y2)-(1/3))**2 + ((y3)-(1/3))**2)
aPR = sps.ncx2.sf(x=3.8415, df=1, nc=1R)
aPU = sps.ncx2.sf(x=5.9915, df=2, nc=1U)
Ry1 = np.empty(1)
Ry2 = np.empty(1)
runs = 10000
for i in range(runs):
  simY = sps.multinomial.rvs(n, np.array([y1, y2, y3]), size=1)
  Ry1 = np.append(Ry1,simY[0][0])
  Ry2 = np.append(Ry2, simY[0][1])
SR = ((Ry1 + Ry2 - (2 * n/3))**2)/((2/9)*n)
SU = (((Ry1 - (y1 * n))**2)/(n * ((y1)/(1)))) + (((Ry2 - (y2 * n)))**2)/(n * ((y2)/(1)))
PR = np.mean(np.where(SR >= 3.8415,1,0))
PU = np.mean(np.where(SU >= 5.9915,1,0))
print(n, y1, y2, y3)
print("PR: ", PR)
print("1R: ", 1R, " aPR: ", aPR)
print("PU: ", PU)
print("lU: ", lU, " aPU: ", aPU)
return
```

```
get_probs(250, (0.22), (0.40), (0.38))

## 250 0.22 0.4 0.38

## PR: 0.3785621437856214

## 1R: 2.44999999999997 aPR: 0.34673378605875427

## PU: 0.020897910208979104

## 1U: 14.6 aPU: 0.9380512934174401
```

Sample size n	True probability p_T	P_R	aP_R	P_U	aP_U	
75	(1/3), (1/3), (1/3)	0.03759	96240 3.70¾9\$2	8 85 79.8259 €	981601.8399199 1	16985488:
75	(1/4), (1/4), (2/4)	0.82491	17508 0248954775 1	.5005 0.702629 6	94 760 2.2393798 3	£3 875954;
75	(1/6), (3/6), (2/6)	0.03569	96430 3.5⁄4999	%17720.7)112929	9279 00.9999299G	43 1510478
75	(0.2), (0.3), (0.5)	0.81907	18098 0.966487 4′	.5005 0.702619 6	94 7860 2.8391996 07.	<i>[</i> 37184822]:
250	(1/3), (1/3), (1/3)	0.05049	94950 5.04949	9 058 4421473 ?	982 60 1.739929 3	300916674
250	0.22,0.4667,0.3333	0.09719	90280 9.701697012 8	<u> </u>	937 070 0.9293623 0)1641859:
250	0.25,0.3,0.45	0.97110	J2889 7.191701289 F	\$762 78127 019	99 7980 2.9597498 95	596511949
250	0.22,0.40,0.38	0.36796	3320 36.7396372 0	37 86 05873 4	927 60 0.81398015 0.2	293417440

I observe generally that power values are lowest when the null hypothesis is true. Unrestricted power values increase as the probabilities become more dissimilar. In the case of restricted power values, however, the values are still lower if the true parameters don't align with the restricted alternative hypothesis. But in the case that true parameters do align with the alternative hypothesis, restricted power values will be higher than unrestricted power values. Oddly restricted exact probabilities are roughly similar to restricted approximate probabilities, but in the unrestricted cases there is far less agreement.

```
n = 128

y1 = 0.25
y2 = .3
y3 = 0.45

lR = n * ((6 * (((y1 + y2)/2) - (1/3))**2) + (3 * ((y3)-(1/3))**2))
lU = 3 * n * (((y1)-(1/3))**2 + ((y2)-(1/3))**2 + ((y3)-(1/3))**2)

print(sps.ncx2.sf(x=3.8415, df=1, nc=lR, loc=0, scale=1))
```

Homework #2 Part (C)

```
## 0.7995539264244444
```

```
print(sps.ncx2.sf(x=5.9915, df=2, nc=1U, loc=0, scale=1))
```

0.7355154291587768

True probability p_T	n_R	n_U
(1/3), (1/3), (1/3)	784900000	963500000
(1/4), (1/4), (2/4)	63	78
(1/6), (3/6), (2/6)	> 1e300	58
(0.2), (0.3), (0.5)	63	69
(0.3), (0.3), (0.4)	393	482
0.22, 0.4667, 0.3333	13040	105
0.25, 0.3, 0.45	129	149

True probability p_T	n_R	n_U
0.22, 0.40, 0.38	801	164

Unsurprisingly, the highest sample size required for unrestricted alternative hypotheses is for the case when the null hypothesis is true. With restricted alternative hypothesis, however, we see an even higher sample size required when probability values are (1/6, 3/6, 2/6). Sample sizes needed are lowest when true probabilities are (0.2, 0.3, 0.5).