Optimization HW 4

er2978

October 13, 2022

1 Question 1

Proof. Choose $f(x,y) =: x^5 + y^5$, Then

$$\nabla f = \begin{bmatrix} 5x^4 \\ 5y^4 \end{bmatrix}$$

and

$$\nabla^2 f = \begin{bmatrix} 20x^3 & 0\\ 0 & 20y^3 \end{bmatrix}.$$

Consider also the point $(x^*, y^*) = (0, 0)$. The value of f at this point is 0. As we see, both second order necessary conditions are fulfilled since both

$$\nabla f = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ and }$$

$$\nabla^2 f = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ is positive semidefinite.}$$

But (x^*, y^*) is not an optimum on the function.

Proof. Suppose FTSOC that the statement is not true: $\Longrightarrow \exists x^* \in \mathbb{R}^n$ s.t. $f(x^*) \leq y$ but $\rho = (1-\alpha)x^* + \alpha x \not\in L(y)$. Note that $(1-\alpha)x^* \leq x^*$ and $\alpha x \leq x$. In particular if $(1-\alpha)x^* = x^*$ then $\alpha x = 0$, and vice versa. $\Longrightarrow \min(x^*,x) \leq \rho \leq \max(x^*,x)$ given α 's range. $f(x) \leq f(x) \leq f(x)$ on a convex curve. $f(x) \leq f(x) \leq f(x)$ on a convex curve.

 $\Rightarrow \leftarrow f(\rho) \notin L \implies$ f is not convex is a contradiction. So L(y) is a convex set.

 $^{^{1}}$ WLOG we assign $1 - \alpha$ to x^{*} .

²min and max refer to the position on the surface described by f: in particular x and x^* 's closeness to y.

 $^{^3\}mathrm{WLOG}$ we can say this.

Proof. WTS: $\forall x' \in L(y), x' \in H(x)$; i.e. every $x' \in L(y)$ satisfies: $\nabla f(x)^T (x' - x) \leq 0$.

Take $x^* \in L(f(x))$. Then $f(x^*) \le f(x)$ for some fixed $x. \implies f(x^*) - f(x) \le 0$.

Let's Taylor expand: $f(x^*) \approx g(x^*) = f(x) + \nabla f(x)^T (x^* - x) + O(||x^* - x||_2^2)$. We drop the $O(||x^* - x||_2^2)$ for a second order Taylor approximation of $f(x^*)$. Note that f is convex, so the Taylor approximation is an underestimate. $\implies g(x^*) = f(x) + \nabla f(x)^T (x^* - x) \le f(x^*) \implies \nabla f(x)^T (x^* - x) \le f(x^*) - f(x) \le 0$.

Therefore we have that if $x^* \in L(f(x))$ then $\nabla f(x)^T(x^*-x) \leq 0 \implies x^* \in H(x')$.

Proof. Take $x' \in L(f(x)) \cap \{x' \in \mathbb{R}^n : \nabla f(x)^T (x' - x) = 0\}$ for some fixed x.

x' satisfies: $f(x') \leq f(x)$ and $\nabla f(x)^T (x'-x) = 0$

Suppose FTSOC $x' \neq x$. Then $x' - x \neq 0$ meaning that in order for $\nabla f(x)^T (x' - x) = 0$ to be satisfied, we need $\nabla f(x)^T = 0 \implies f(x)$ is a unique global minimum on the surface of f (given that it is strictly convex). Therefore $f(x') \neq f(x) \implies f(x') \geq f(x)$ which directly contradicts $f(x') \leq f(x)$.

Ehhh

Proof. Let's Taylor Expand: $f(x+\alpha p)\approx f(x)+\nabla f(x)^T(\alpha p)+\frac{1}{2}(\alpha p)^T\nabla^2 f(x)(\alpha p)+O(||\alpha p||_2^3)$ We know that $\nabla f(x)^T(\alpha p)<0$ since p points away from $\nabla f(x)$. We also know that $(\alpha p)^T\nabla^2 f(x)(\alpha p)>0$ since $\nabla^2 f$ is positive definite.

 \Rightarrow We need α such that $\frac{1}{2}(\alpha p)^T \nabla^2 f(x)(\alpha p) + O(||\alpha p||_2^3) < |\nabla f(x)^T (\alpha p)|$ in order for $f(x + \alpha p) < f(x)$.

$$\frac{1}{2}(\alpha p)^T \nabla^2 f(x)(\alpha p) + O(||\alpha p||_2^3) < |\nabla f(x)^T (\alpha p)|$$

$$\Rightarrow \frac{1}{2}\alpha p^T \nabla^2 f(x) p + O(||p||_2^3) < |\nabla f(x)^T p|$$

$$\Rightarrow \frac{1}{2}\alpha p^T \nabla^2 f(x) p < |\nabla f(x)^T p| + O(||p||_2^3)$$

$$\Rightarrow \alpha p^T \nabla^2 f(x) p < 2[|\nabla f(x)^T p| + O(||p||_2^3)]$$

$$\Rightarrow \alpha < \frac{2[|\nabla f(x)^T p| + O(||p||_2^3)]}{p^T \nabla^2 f(x) p}.$$

pick α such that this is satisfied.

Proof.
$$\bullet$$
 $Aq_i = \lambda_i q_i \Longrightarrow$

When
$$i = 1, i \rightarrow n$$
:
$$Aq_i = \begin{bmatrix} \lambda_1 q_{11} & \lambda_2 q_{21} & \cdots & \lambda_n q_{n1} \\ \lambda_1 q_{12} & \lambda_2 q_{22} & \cdots & \lambda_n q_{n2} \\ \vdots & & & \\ \lambda_1 q_{1n} & \lambda_2 q_{2n} & \cdots & \lambda_n q_{nn} \end{bmatrix}$$

We can pull out:

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

S.t.
$$AQ = \Lambda Q$$
.

(Note that since Λ is a matrix of unique scalars per each q_i it can be multiplied on either side of Q.)

$$\begin{array}{ll} AQ = Q\Lambda & \Longrightarrow (AQ)Q^T = \Lambda QQ^T & \Longrightarrow \ (A)^{-1} = A = (QQ^T\Lambda)^{-1} = \Lambda QQ^{-1} = Q\Lambda Q^T. \end{array}$$

- Take the *i*th entry in each matrix from $Q\Lambda Q^T$. the product we get is $q_i\lambda_iq_i^T$ and since λ_i is a scalar we can rearrange as follows: $\lambda_iq_iq_i^T$. As $i\to n$ beginning at i=1, we get $\sum_{i=1}^n\lambda_iq_iq_i^T$. Both the matrix product and the sum count the same information, so they are equivalent statements.
- 1. \rightarrow If $\forall \lambda \in \Lambda$, we have $\lambda > 0$, then A is positive definite. We need $\forall q_i \in Q, \quad q_i A q_i^T > 0$.

By (1) we know that $A = Q\Lambda Q^T$. We know $\forall \lambda \in \Lambda$, we have $\lambda > 0$, so let's test if A is positive definite.

Take arbitrary vector
$$x$$
: $x^TAx = x^T(Q^T\Lambda Q)x = (x^TQ^T)\Lambda(Qx) = (Qx)^T\Lambda(Qx)$. Let $Qx = v$. Then we have $\sum_{i=1}^n \lambda_i(v)^2$ where $v^2 > 0$.

Therefore $\forall \lambda_i, \quad \lambda_i > 0$.

2. \leftarrow If A is positive definite then $\lambda_i > 0$.

For A to be positive definite: $x^TAx > 0$ for any x. Let x be an eigenvector. Then $x^TAx = x^T\lambda x = \lambda x^Tx = \lambda > 0$. Therefore $\forall \lambda \in \Lambda, \quad \lambda > 0$.

Proof. Let $l = x^* + th$ where t = [0, 1] be a parameterization between 2 x's in S, where x^* is a global minimum. Then we have:

- $F(t) = f(l) = f(x^* + th)$
- $F'(t) = \nabla f(x^* + th)^T h$
- $F''(t) = h^T \nabla^2 f(x^* + th)h$

$$F'(1) = F'(0) + \int_0^1 F''(t)dt = \nabla f(x^*)^T h + \int_0^1 h^T \nabla^2 f(x^* + th)h dt = 0 + \int_0^1 h^T \nabla^2 f(x^* + th)h dt > 0$$

Since the Hessian is positive definite by assumption, then $h^T \nabla^2 f(x^* + th)h > 0$ so the integral is positive. \implies the gradients of all points emanating from x^* in the set S will be positive.

$$F(1) = F(0) + \int_0^1 F'(t)dt = f(x^*) + \int_0^1 \nabla f(x^* + th)^T h dt = f(x^*) + C$$

where C > 0. $\Longrightarrow F(1) > F(0)$ i.e. every point in S generates a value through f that is larger than $f(x^*)$.

Therefore, $f(x^*)$ is a global minimum on a convex set S when $\nabla^2 f$ is positive definite.

Proof. We have $\nabla g(x) = \nabla f(Ax+b) = A\nabla f(Ax+b)$ and $\nabla^2(g) = A^T\nabla^2 f(Ax+b)A$.

Newton:

$$x_{n+1} = x_n - (\nabla^2 (g(x_n))^{-1} \nabla g(x_n))$$

$$= x_n - (A^T \nabla^2 f(Ax + b)A)^{-1} A \nabla f(Ax + b)$$

$$= x_n - A^{-1} \nabla^2 f(Ax + b)^{-1} [(A^T)^{-1} A] \nabla f(Ax + b)$$

Multiply both sides by A on the left, then add b:

$$Ax_{n+1} = Ax_n - \nabla^2 f(Ax+b)^{-1} \nabla f(Ax+b)$$

$$Ax_{n+1} + b = Ax_n + b - \nabla^2 f(Ax + b)^{-1} \nabla f(Ax + b)$$

Set $Ax_n + b = y \implies y_{n+1} = y_n - \nabla^2 f(y_n)^{-1} \nabla f(y_n)$ is the same as the Newton Step for f.