Soluções: Formulação de IPs

Questão 1 (Investimentos)

Sejam $x_i \in \mathbb{B}$, $i \in P = [7]$ variáveis booleanas, que determinem em quais projetos a empresa vai investir. Seja l_i o lucro do projeto i.

$$\begin{array}{ll} \mathbf{maximiza} & \sum_{i \in P} l_i x_i \\ \mathbf{sujeito} \ \mathbf{a} & \sum_{i \in P} x_i \leq 6, \\ & \sum_{i \in P} x_i \geq 1, \\ & \sum_{i \in$$

Questão 2 (Formulação de Programas Inteiros)

Cobertura por arcos

$$\begin{array}{ll} \mathbf{minimiza} & \sum_{e \in E} c_e x_e \\ \mathbf{sujeito} \ \mathbf{a} & \sum_{u \in N(v)} x_{uv} \geq 1, \\ & x_e \in \mathbb{B}. \end{array} \qquad \forall v \in V,$$

Conjunto dominante de arcos

Coloração de grafos Seja n = |V|; uma coloração nunca precisa mais que n cores.

- Restrição (1) garante que todo vértice recebe exatamente uma cor.
- Restrição (2) garante que vértices adjacentes recebem cores diferentes.
- Restrição (3) garante que $c_j = 1$ caso cor j for usada.

Clique mínimo ponderado

minimiza
$$\sum_{v \in V} c_v x_v$$
sujeito a $x_u + x_v \le 1$, $\forall \{u, v\} \not\in E$, (4) $x_v \in \mathbb{B}$.

Restrição 4 garante que não existe um par de vértices selecionados que não são vizinhos.

Subgrafo cúbico x_e indica a seleção da aresta $e \in E$, e y_v indica se o vértice $v \in V$ ele possui grau 0 (caso contrário grau 3).

$$\begin{aligned} & \mathbf{minimiza} & & \sum_{e \in E} x_e \\ & \mathbf{sujeito} \ \mathbf{a} & & \sum_{e \in N(v)} x_e = 3y_v, & & \forall v \in V, \\ & & & x_e \in \mathbb{B}, & & \forall e \in E, \\ & & & y_v \in \mathbb{B}, & & \forall v \in V. \end{aligned}$$

Questão 3 (Formulação Matemática)

Seja $x_{ijk} \in \mathbb{B}$ um indicador que na casa da linha i e coluna j temos o número k, $i, j, k \in [5]$. Ainda vamos introduzir uma variável auxiliar $y_{ij} \in \mathbb{Z}$ para o valor na célula (i, j). Com isso temos

maximiza	y_{11}		
sujeito a	$y_{ij} = \sum_{k \in [5]} k x_{ijk},$	$\forall i, j \in [5],$	
	$\sum_{k \in [5]} x_{ijk} = 1,$	$\forall i, j \in [5],$	Único número em cada casa
	$\sum_{j \in [5]} x_{ijk} = 1,$	$\forall i,k \in [5],$	Digito k uma vez na linha i
	$\sum_{i \in [5]} x_{ijk} = 1,$	$\forall j,k \in [5],$	Digito k uma vez na coluna j
	$y_{11} \ge y_{12} + 1,$		Relação entre $(1,1)$ e $(1,2)$
	$y_{13} \ge y_{14} + 1,$		Relação entre $(1,3)$ e $(1,4)$
	$y_{33} \le y_{34} - 1,$		Relação entre $(3,3)$ e $(3,4)$
	$y_{51} \le y_{52} - 1,$		Relação entre $(5,1)$ e $(5,2)$
	$y_{54} \le y_{55} - 1,$		Relação entre $(5,4)$ e $(5,5)$
	$x_{ijk} \in \mathbb{B}, y_{ij} \in \mathbb{Z},$	$\forall i, j, k \in [5]$	