1 SI Units						
Monday, January 7, 201	9 3:04 PM					
 EE deals with system 	ns sheet produce	, transmit, o	and measure			
electronic signals.						
O Two motor categor	j es					
		Daner.	acta, lan	ol 2) 200 - 20		
Computer System	, whole syn	ro, rond s	system, signi	ic spricessing sy	e e e e e e e e e e e e e e e e e e e	
SI Units (The Internal		Units)				
Quantity	Basic Unit	Symbol				
Mass	kitogram	kg				
Time	second	S				
Length	meter	m)				
Temperature	Kelvin	K				
Luminous intensity	Cardela	cd				
Electric current	ampere	Α				
Amount of substance	mole	mol				
There're also der	ived units in SI					

- Electric charge, unit: Coulomb C
- Current I = charge/s

Charge of an electron: 1.6*10^-19

- Ideal circuit component
 - o Def: a mathematical model of an actual electrical component
- Physical prototype
 - An actual electric system
- Electric Charge
 - Electric Charge is discrete, quantized
 - Smallest unit of electric charge = 1.6*10^-19 C
 - o Consequence of charges in motion: Electric fluid(current) -> Magnetic field
 - Bipolar "+" or "-"
 - o To separate charges Electric force(voltage)
- Electric Current
 - Def: the time rate of transfer of electric charges across a specific boundary
 - \circ I(t) = dq/dt
 - Unit: Ampere(A) or Coulomb(C)/Second(s)
 - o Direct current(DC): current flow in one direction Alternating current(AC)

- · Voltage: the energy per unit charge created by the separation
 - \$v_{12} = v_{1} v_{2}\$

Voltage: Energy needed to move one unit of positive charge from the negative

terminal to the positive terminal

 \circ V = dW/dq

W: joules(J)

q: Coulombs(C)

 E.g. An energy source forces a constant current of 2A for 10 s to flow through a light bulb, resulting in 2.3 kJ that is given off in the form of light and heat energy. Calculate the voltage drop across the light bulb.

$$Q = it = 2A \cdot 10s = 20As$$

$$V = \frac{2.3 \times 10^3 \text{ J}}{20As} = 115V$$

- · Ideal Basic circuit element
 - o Def:
 - Has only two terminals, which are points of connection to other circuit components
 - Cannot be subdivided into other elements
 - Can be described mathematically in terms of current &/| voltage
 - Five ideal basic circuit elements
 - Ideal voltage source
 - Ideal current source
 - Resistor
 - Capacitor
 - Inductor
- Passive Sign Convention
 - Whenever the reference direction for the current in an element is in the direction of the reference voltage drop across the element, use a '+' in any expression that relates the voltage to the current. Use '-' otherwise.

2 10 0111	.late		
3. pow			
Thursday, Jar	nuary 10, 2019 7:49 PM		
dw	- /Ow da		
$\bullet P = \frac{dw}{dt} =$			
 Owhen usi 	ing passive sign convention, P=Vi		
When cu	ment reference is in the clirection of a	reference voltage rise, P=-vi	L
a lularando			
cuttospi ang	o, power is delivered to the circuit ele		
P<0	power is being estract from the cir	cuit element,	
	- Generating Prover		
+ -	t		
	$+ \frac{1}{\sqrt{1-\tau}}$ $- \frac{1}{\sqrt{1-\tau}}$ $- \frac{1}{\sqrt{1-\tau}}$ $- \frac{1}{\sqrt{1-\tau}}$		
p=vī	P = -Vi = V. (-i)		
• e.g.	Δ.		
17V = Vn +	A Power goes fram A to B. Pa= 3DA * 12V		
	Pa= 3DA * 12V		
	1A 2014 # 120		

HW1

Wednesday, January 16, 2019 12:58 PM

Review | Constants

The <u>numerical values for the currents and voltages</u> in the circuit in (Figure 1) are given in the table below.

Element	Voltage (V)	Current (mA)		
a	-18	-86		
b	-18	45		
c	2	-41		
d	20	-55		
e	16	-14		
f	36	31		

Review | Constants

The numerical values for the currents and voltages in the circuit in (Figure 1) are given in the table below.

Element	Voltage (V)	Current (mA)		
a	-18	-86		

Figure

< 1 of 1 (>

▼ Part A

Find the total power developed in the circuit.

Express your answer to three significant figures and include the appropriate units.

View Available Hint(s)

p = 2440 mW

Previous Answers

Rem: add up the values with the same sign.

✓ Correct

Here we learn how to determine the total power developed in the circuit using the power equationvention.

Review | Constants The voltage and current at the terminals of the circuit element in (Figure 1) are zero for t<0. $v=(1500t+1)e^{-750t} \text{ V}, \qquad t\geq 0;$ $i=50e^{-750t} \text{ mA}, \qquad t\geq 0.$

▼ Part C

Find the total energy delivered to the circuit element in microjoules.

Express your answer using three significant figures.

