```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
df = pd.read_csv("diamonds.csv")
print(df.head())
X = df.drop(['carat'], axis=1)
numeric_features = X.select_dtypes(include=['float64', 'int64']).columns
numeric_transformer = StandardScaler()
categorical_features = ['cut', 'color', 'clarity']
categorical_transformer = OneHotEncoder()
preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)])
X_processed = preprocessor.fit_transform(X)
n clusters = 3
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
kmeans.fit(X_processed)
df['cluster'] = kmeans.labels_
plt.figure(figsize=(10, 6))
for cluster in range(n_clusters):
    cluster_data = df[df['cluster'] == cluster]
    plt.scatter(cluster_data['carat'], cluster_data['price'], label=f'Cluster {cluster}')
plt.title('Clusters de Dados de Diamantes')
plt.xlabel('Carat')
plt.ylabel('Price')
plt.legend()
plt.show()
```

	carat	cut	color	clarity	depth	table	price	X	У	Z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr warnings.warn(

Clusters de Dados de Diamantes

