

Softwaretechnik 1 (ST1) im SoSe 2022 Objektorientierte Modellierung und Entwicklung

Kapitel 4a: UML – Verhaltensmodellierung: Interaktionsdiagramme

Prof. Dr. Mario Winter TH Köln

Lernziele: Nach dieser Vorlesung sollten Sie ...

- Wissen, was man unter Verhaltensmodellierung versteht, und die Verhaltensmodellierung von der Strukturmodellierung und der Funktionsmodellierung unterscheiden und abgrenzen können
- Ablauforientiertes Verhalten als Interaktionen zwischen Objekten mehrerer Klassen mit Sequenzdiagrammen und Kommunikationsdiagrammen modellieren können
- Kombinierte Fragmente und die Operatoren opt, alt und loop in Interaktionsdiagrammen kennen und anwenden können
- Verstehen, in wie weit Sequenzdiagramme und Kommunikationsdiagramme äquivalent sind und sie ineinander überführen können

@ 2022

Inhaltsüberblick

- Verhaltensmodellierung
- Sequenzdiagramm
- Kommunikationsdiagramm

Technology Arts Sciences TH Köln

© 2022

Welche Modellierungssichten kennen wir?

Strukturmodellierung

- Fokussiert auf die Struktur des zu modellierenden Sachverhalts
- Sachverhalte/Informationen/Daten, die sich in der Anwendung widerspiegeln müssen
- OO: Objekte und Verbindungen bzw. Klassen und Assoziationen
- UML: Objektdiagramm und Klassendiagramm

Funktionsmodellierung

- Fokussiert auf die zu unterstützenden Aufgaben des zu modellierenden Sachverhalts
- Ziele (Goals) und Geschäftsprozesse, die sich in der Funktionalität der Anwendung widerspiegeln müssen
- OO: Akteure und Anwendungsfälle
- UML: Anwendungsfalldiagramm

· Was fehlt?

- Wie werden die Funktionen von den Objekten erbracht?
- Wie interagieren Objekte?
- Wie und unter welchen Umständen ändern Objekte ihren Zustand?
- Welche Daten/Informationen werden von welchen Funktionen wie verarbeitet?
- Kurz: Wie verhalten sich das System und seine Komponenten?
- Noch kürzer: Verhaltensmodellierung

@ 2022

Objekte im Laufe der Zeit ...

- Zur Erinnerung: Objektdiagramm ist Schnappschuss zu einem bestimmten Zeitpunkt
 - Feste Anzahl dargestellter Objekte
 - Zustand der Objekte (Attributwerte, Verbindungen) ist statisch
- Aber: Objekte senden Nachrichten und ändern ihren Zustand im Laufe der Zeit!

© 2022

Zur Erinnerung: Objektverhalten

- Objekte reagieren auf Nachrichten (z.B. Operationsaufrufe), indem sie z.B.
 - ihren Zustand wechseln, d.H. Attributwerte ändern oder Verbindungen lösen oder neu eingehen
 - selbst Nachrichten an (andere) Objekte senden
- Eine Nachricht besteht aus Name und Parametern

Arten von Verhalten in der Objektorientierung

Interaktives Verhalten (Ablauforientiertes Verhalten)

- Inter-Objektverhalten ("System-Intern" beobachtbares Verhalten)
 - Abläufe von Operationen
 - Objekte i.d.R. <u>mehrerer</u> Klassen arbeiten bei der Ausführung einer im Klassenmodell definierten Operation durch den Austausch von Nachrichten zusammen
 - Determiniert durch den Zustand der Objekte zu Beginn der Operationsausführung und die aktuellen Parameter des Operationsaufrufs
- Systemverhalten ("System-Extern" beobachtbares Verhalten)
 - Abläufe von Anwendungsfällen
 - Akteure interagieren in einem Szenario eines Anwendungsfalls mit dem Anwendungssystem
 - Determiniert durch den Zustand des Anwendungssystems zu Beginn des Anwendungsfalls und die aktuellen Interaktionsparameter

Reaktives Verhalten (Zustandsorientiertes Verhalten)

- Mögliche/erlaubte Reaktionen eines Systems (oder einer Komponente oder der Instanzen einer Klasse) über den gesamten "Lebenszyklus" hinweg
- Ereignisse / Reaktionen / Zustandsänderungen

Vgl. auch Aktivitätsmodellierung (Kap. 2)

@ 2022

Verhaltensorientierte Diagramme in der UML

Interaktionsdiagramme: Interaktives Verhalten

- Interaktionsdiagramme stellen dar, wie Objekte bei bestimmten Abläufen (z.B. von Anwendungsfällen oder Operationen) durch den Austausch von Nachrichten interagieren
 - Aufrufe von Operationen (Aufruf-Nachrichten)
 - Setzen von "Variablen" (Rückgabe-Nachrichten)
 - Erzeugen und Zerstören von Objekten
- Eine Interaktion ist die Folge (*trace*) der dabei auftretenden Vorkommen (occurrences) von Ereignissen (events)
 - Senden einer Nachricht (Sende-Ereignis)
 - Empfangen einer Nachricht (Empfangs-Ereignis)
 - Ändern eines Wertes (Änderungs-Ereignis)
 - Erzeugungs- und Zerstörungs-Ereignis
- Das Sequenzdiagramm fokussiert auf die zeitliche Reihenfolge der zwischen den Objekten gesendeten Nachrichten
- Das Kommunikationsdiagramm fokussiert zusätzlich auch auf die Verbindungen, über welche Nachrichten zwischen den Objekten gesendet werden

4: verbindeBezug() 6: preis()

«self»

: Nachbestellposten {new}

ST1-4a

Wo sind wir?

- Verhaltensmodellierung
- Sequenzdiagramm
- Kommunikationsdiagramm

Technology **Arts Sciences** TH Köln

Raum und Zeit: Sequenzdiagramm

- Man braucht zur Darstellung einer Interaktion (mindestens) zwei Dimensionen
 - Die Struktur (welche Objekte in welchem Zustand interagieren)
 - Die Zeit (wann welche Nachricht gesendet/empfangen wird)

ST1-4a

Verhalten in der Raumzeit

- Verhaltensaktivierung durch Operationsaufrufe (Nachrichten)
- Synchrone Nachrichten: Pfeile mit ausgefüllter Spitze

Der Objekt-Lebenszyklus

- Ein Objekt wird irgendwann erzeugt (instanziiert) ...
- ... ändert durch Aufrufe der (in seiner Klasse definierten) Operationen seinen Zustand ...
- ... und wird irgendwann zerstört

TH Köln

- Kombinierte Fragmente sind zusammenhängende Teile einer Interaktion
 - Kombinierte Fragmente laufen nach bestimmten Bedingungen bzw. Regeln ab
 - Werden im Sequenzdiagramm eingerahmt (ähnlich den UML-Diagrammrahmen)
- Interaktionsoperatoren steuern den Interaktionsfluss
 - Interaktionsoperatoren steuern, wann bzw. wie kombinierte Fragmente ablaufen sollen
 - In der oberen linken Ecke des betroffenen kombinierten Fragments stehen die Art des Operators und ggf. weitere Angaben
 - Hierarchische Schachtelung kombinierter Fragmenten / Interaktionsoperatoren erlaubt
- Bedingungen in Interaktionsoperatoren
 - Boolesche Ausdrücke
 - In eckigen Klammern angegeben, z. B. [prüfen == true]
 - Zur Formulierung der Bedingungen verwendet man meistens Attribute des dienstnutzenden Objekts oder "Variablen"
- Iterationsausdrücke in Interaktionsoperatoren
 - Kombinierte Fragmente werden manchmal wiederholt aufgerufen, z. B. wenn innerhalb einer Operationsausführung alle Objekte angesprochen werden sollen, die mit dem die Iteration ausführenden Objekt bez. einer mehrwertigen Assoziation verbunden sind
 - Dafür Iterationsausdruck angegeben, z. B. konkrete Werte (1,10), Ausdrücke (a, a+b)
 oder allgemeine Bedingungen z.B. [für alle verbundenen Instanzen]
 - Iterationsausdruck ist optional fehlt er, ist die Anzahl der Iterationen unbestimmt

@ 2022

Prof. Dr. Mario Winter

Beispiel: Bestellwesen

Sequenzdiagramm mit optionalem kombinierten Fragment

TH Köln

Sequenzdiagramm mit Iteration (Schleife)

Weitere Interaktionsoperatoren (kombinierte Fragmente)

Interaktionsreferenz, "Aufruf" eines anderen Interaktionsdiagramms

Alternative, if-then-else

Negativ; Ungültige Interaktion

Parallele Abläufe, Nebenläufigkeit, Threads

Abbruchfragment

Atomare, nicht-unterbrechbare Interaktion

Interaktionsoperatoren: Zusammenfassung

Deutsch	Englisch	Kürzel	Bedeutung
Optionales Fragment	option	opt	Optionale Interaktionsteile
			(if then)
Alternative Fragmente	alternative	alt	Alternative Interaktionsteile (if then else if)
Schleife	loop	loop	Iterative Interaktionsteile
Interaktionsreferenz	reference	ref	"Einsetzen" einer anderen Interaktion
Abbruchfragment	break	break	Ausnahmefälle
Negation	negative	neg	Ungültige Interaktionsteile
Parallele Fragmente	parallel	par	Nebenläufige Interaktionsteile
Lose Ordnung	weak sequencing	seq	Von Lebenslinie und Operanden abhängige zeitliche Reihenfolge
Strenge Ordnung	strict sequencing	strict	Von Lebenslinie und Operanden unabhängige zeitliche Reihenfolge
Kritischer Bereich	critical region	critical	Atomare Interaktionen
Relevante Nachrichten	consider	Consider	Zu behandelnde Nachrichten
Irrelevante Nachrichten	ignore	ignore	Nicht zu behandelnde Nachrichten
Zusicherung	assertion	assert	Unabdingbare Interaktion

Synchrone Nachrichten und Ausführungsspezifikationen

- Aufruf einer Operation entspricht Senden einer Nachricht (message)
 - Jede Nachricht gibt dabei das dienstleistende und das dienstnutzende Objekt sowie den Namen und die Parameter der Operation an
 - Das Ereignis "Empfang der (Aufruf-)Nachricht" bewirkt beim dienstleistenden Objekt die Ausführung der entsprechenden Operation
- Im Fall einer synchronen Nachricht (synchronous message) wartet der Aufrufer untätig, bis das Ergebnis der Operation zurückgeliefert wird, und fährt erst dann mit seiner Beschäftigung fort
- Frage: Führt ein Objekt zu einem bestimmten Zeitpunkt gerade eine Operation bzw. eine Selbstdelegation aus oder wartet auf die Rückmeldung eines Operationsaufrufs, der an ein anderes Objekt gerichtet ist?
- Zeitintervalle, in denen dies gilt, werden im Sequenzdiagramm durch <u>Ausführungsspezifikationen</u> (execution specification) als schmale Rechtecke auf der Lebenslinie dargestellt (UML1.x: Aktivierungsbalken)
- Rückgabe-Nachrichten als Antwort bzw. Rückkehr des "Kontrollflusses" zum "Aufrufer" (Rücksprung) können durch gestrichelte Pfeile dargestellt werden, auf denen der Name der (Aufruf-)Nachricht ohne Parameter wiederholt wird

TH Köln

Sequenzdiagramm mit Ausführungsspezifikationen

Max. 10 Minuten!

Aufgabe 1: Interaktionsmodellierung - Sequenzdiagramm

 Modellieren Sie für das Löschen eines Moduls eine Interaktion zwischen Instanzen der dargestellten Klassen

 Verwenden Sie ein Sequenzdiagramm mit Ausführungsspezifikationen

© 2022

Lösungsidee Aufgabe 1: Sequenzdiagramm

TH Köln

- Bisher: Zu jedem Zeitpunkt hat höchstens ein Objekt die Ablaufkontrolle (d.h. führt eine Operation aus) → single thread
- Nun: Mehrere Objekte gleichzeitig aktiviert → multiple thread, Nebenläufigkeit
- Nachricht entspricht Brief, nach dessen Absenden der Schreiber fortfährt und erst dann warten muss, wenn er die Antwort auf seinen Brief benötigt
- Explizit modellieren, dass der "Sender" nach dem Senden einer Nachricht weiter aktiv ist, also beide Objekte die Ablaufkontrolle innehaben
- Asynchrone Nachrichten und aktive Objekte
- Aktive Objekte: Rechtecke mit doppelten Seitenlinien (ebenso die entsprechenden aktiven Klassen im Klassendiagramm)
 - Bis UML 1.5: Fett gezeichnete Rechtecke
- Asynchrone Nachrichten: Pfeile mit offener Spitze

Beispiel: Asynchrone Nachrichten und aktive Objekte

Wo sind wir?

- Verhaltensmodellierung
- Sequenzdiagramm
- Kommunikationsdiagramm

Technology Arts Sciences TH Köln

Raum (und Reihenfolge): Kommunikationsdiagramm

- Das Kommunikationsdiagramm kann als Objektdiagramm betrachtet werden, in dem zusätzlich ablauforientiertes Verhalten modelliert ist
- Nachrichtenaustausch an den Objektverbindungen notiert
- Nachricht-Richtung und Art (Synchron, Asynchron, Erzeugung, Rückgabewert) wie im Sequenzdiagramm durch Pfeile visualisiert
- Nachrichten-Bezeichner ggf. durch Kontrollinformation angereichert
- Da Objekte (wie im Objektdiagramm) beliebig angeordnet werden können und keine Zeitachse existiert, muss die Abfolge der Nachrichten durch eine geeignete Nummerierung verdeutlicht werden
- Objekte, die während des dargestellten Ablaufs erzeugt oder zerstört werden, erhalten die Kennung {new} bzw. {destroyed}
- Wird ein Objekt während des Ablaufs erzeugt und zerstört, erhält es die Kennung {transient}

ST1-4a

Nummerierung in Kommunikationsdiagrammen

- Nummerierung mit Ordinalzahlen
 - Nummerierung der Nachrichten von 1, ..., n
 - Beschreibt nur die Reihenfolge der Nachrichten
 - Nebenläufige Nachrichten (par-Operator) mit 1a, 1b, ... nummerieren
 - Problem: Ausführungsspezifikationen <u>nicht</u> modellierbar! Daher:

Hierarchische Dezimalnotation

- Nummerierung für jede Ausführungsspezifikation um einen Dezimalpunkt erweitern
- Erste Ebene: 1, .., n
- Zweite Ebene: 1.1, ..., 1.m
- k-te Ebene: 1.1...1, 1.1...2, 1.1....pk Stellen
- Alle aus einer Ausführungsspezifikation (also während ein- und derselben Operationsausführung) gesendeten Nachrichten werden auf einer Hierarchie-Ebene durchnummeriert
- Hierarchische Dezimalnotation ist ausdrucksstärker. Sie zeigt, welche Operation welche andere Operation aufruft, und ist daher vorzuziehen
- Antwortnachrichten
 - UML schweigt sich aus ... Vorschlag: Wie Aufrufnachricht nummerieren

ST1-4a

@ 2022

Beispiel: Hierarchische Nummerierung

© 2022

Prof. Dr. Mario Winter

Max. 10 Minuten!

Aufgabe 2: Interaktionsmodellierung - Kommunikationsdiagramm

 Erweitern Sie Ihr Sequenzdiagramm für das Löschen eines Moduls um Ausführungssequenzen und wandeln Sie es in ein Kommunikationsdiagramm mit hierarchischer Dezimalnummerierung der Nachrichten um!

© 2022

Lösungsansatz Aufgabe 2: hierarch. Dezimalnotation

Lösungsidee Aufgabe 2: Kommunikationsdiagramm

: Produkt

Sequenzdiagramm vs. Kommunikationsdiagramm

- Sequenzdiagramm und Kommunikationsdiagramm sind bis auf wenige Eigenschaften äquivalent und können ineinander überführt werden
- Trotz der Durchnummerierung ist die Abfolge der Nachrichten im Kommunikationsdiagramm nicht so leicht zu erkennen wie im Sequenzdiagramm
 - pres()
 p:= gibVerkaufspreis()
- Kombinierte Fragmente im Kommunikationsdiagramm schlecht darstellbar
- Aber: Die Möglichkeit, Objekte im Kommunikationsdiagramm beliebig anzuordnen sowie Verbindungen zu zeichnen, bietet mehr Freiheiten
 - Im Kommunikationsdiagramm k\u00f6nnen Nachrichten bestimmten Verbindungen zugeordnet werden
 - Zur Verbesserung der Lesbarkeit k\u00f6nnen Objekte mit intensiven Verbindungen nahe beieinander platziert werden.
 - Andere Möglichkeit: Objekte so anordnen wie ihre zugehörigen Klassen im Klassendiagramm, um den Wiedererkennungswert auszunutzen

© 2022

Diskussion: Interaktionsdiagramme

- Ablauforientiertes Verhalten von Operationen oder Anwendungsfällen
- Stärke: Einfachheit in Relation zur Ausdrucksmächtigkeit
- Sequenzdiagramm
 - Zeitliche Abläufe auf einen Blick deutlich, wenn auch zu Lasten struktureller Aussagekraft
 - Bei vielen Objekten zudem viele Kreuzungen von Lebenslinien und Pfeilen, so dass die Übersichtlichkeit leiden kann
- Kommunikationsdiagramm
 - Obiger Nachteil durch die freie Anordnung von Objekten verringert
 - Strukturkonforme Erweiterungen von Objektdiagrammen, kein neue Diagrammart
 - Hoher Wiedererkennungswert in Bezug auf Objektdiagramm und Klassendiagramm
 - Nachteil: zeitliche Abläufe und kombinierte Fragmente nicht unmittelbar erfassbar, sondern müssen mit gewissem Aufwand "heraus destilliert" werden
- Einfachheit und Klarheit von Interaktionsdiagrammen gehen rasch verloren, sobald sie viele Operatoren wie z.B. Schleifen oder Fallunterscheidungen enthalten
 - Ausweg: Verwendung eines gesonderten Diagramms für jeden konkreten Ablauf
 - Ergeben sich zu viele Diagramme bzw. Szenarien, kann man komplexe Abläufe durch Aktivitätsdiagramme beschreiben

@ 2022

Prof. Dr. Mario Winter

Zusammenfassung

- Verhaltensmodellierung
 - Interaktives Verhalten = Ein Ablauf für viele Instanzen (i.d.R. mehrerer Klassen)
 - Reaktives Verhalten = Alle Abläufe für die Instanzen einer Klasse
- Interaktionsmodellierung
 - Zusammenspiel vieler Objekte (Objekt-Rollen)
 - Nachrichten und Verhaltens-Aktivierungen (Operationsausführungen)
- Sequenzdiagramm
 - Objektanordnung semantisch bedeutsam (Instanziierung!)
 - Zeitlicher Ablauf direkt erkennbar
 - Kombinierte Fragmente und Operatoren im Diagramm
 - Verschachtelte Abläufe durch Ausführungsspezifikation darstellbar
- Kommunikationsdiagramm
 - Objektanordnung semantisch <u>nicht</u> bedeutsam
 - Zeitlicher Ablauf nur in Nummerierung, schlecht erkennbar
 - Operatoren nur textuell darstellbar
 - Verschachtelte Abläufe nur mit hierarchischer Dezimalnotation darstellbar

6: preis()

Einzelposter

Produkt

Nachbestellposte

2 *[für alle zu bestellenden Produkte

3 *[für alle zu bestellenden Produkte]:

9: MengeOK=prüfeLagerBestand(-)

erzeuge()

1: erzeuge()

verbindeBezug(this
 gibVerkaufspreis()

8: prüfeLagerBestand(n)

11: <u>erzeuge()</u>