Laboratiorium 6

Mateusz Cyganek

Algorytm przejścia do postaci macierzy górnej trójkątnej

Algroytm wykonuje 3 operacje:

A

Operacja uzyskania mnożnika dla wiersza komórki 1, do odejmowania od wiersza komórki 2.

```
protected void A(Production production)
{
    Multipliers[production.Pass] =
         Matrix[production.Cell1] / Matrix[production.Cell2];
}
```

В

Operacja mnożenia komórki przez podaną wartość, do odejmowania w operacji C.

```
protected void B(Production production)
{ Matrix[production.Cell1] *= Multipliers[production.Pass]; }
```

 \mathbf{C}

Operacja odjęcia wartości komórki 2 od komórki 1.

```
protected void C(Production production)
{ Matrix[production.Cell1] -= Matrix[production.Cell2]; }
```

Dzięki operacji A uzyskujemy mnożnik, na całym rzędzie wykonujemy operacje B i C, gdzie B mnoży komórkę przez wartość zwróconą przez operacje A, a operacja C odejmuje wartość od komórki w zerwowanym rzędzie. Ponieważ Matrix[production.Cell1] * (Matrix[production.Cell1] / Matrix[production.Cell2]) = Matrix[production.Cell2], mamy gwarancje, że wyzerujemy odpowiednią komórkę. Algorytm wywołuje te operacje w odpowiedniej kolejności, zerując komórki pod przekątną.

Realizacja zadania

Program zrealizowano w .NET 6.0 i Python 3.10.

Część .NET dla podanego pliku z danymi wejściowymi tworzy plik z rezultatami w którym znajduje się:

- Alfabet A
- Słowo w
- Relacja zależności D
- Relacja niezależności I
- Postać normalna Foaty
- Rozwiązanie macierzy w postaci górnej trójkątnej i jednostkowej

Część Python generuje obrazek grafu zależności.

Projekt .NET

Projekt .NET zawiera wszystkie klasy. Większość klas i metod zawiera opisy i komentarze.

Program

Zawiera metodę main.

Wywołuje wszystkie inne metody i zapisuje wyświetlane informacje do pliku który zostanie utworzony w podanej ścieżce, oraz generuje obrazek grafu zależności.

Interfejsy

Projekt zawiera dwa interfejsy

IPartialSolver

Rozwiązuje macierz do postaci górnej trójkątnej.

IFullSolver

Rozwiązuje macierz postaci górnej trójkątnej do postaci jednostkowej.

Solvers

Folder zawiera klasy rozwiązujące macierze do postaci zależnych od implementowanych interfejsów.

MatrixSolver

Podstawowy solver.

Rozwiązuje synchronicznie macierz do postaci górnej trójkątnej. Zawiera metody A, B i C, które wykonują operacje na macierzach.

MatrixSolverFull

Rozszerzenie podstawowego solver'a.

Rozwiązuje synchronicznie macierz postaci górnej trójkątnej do postaci jednostkowej.

MatrixSolverProductions

Rozszerzenie podstawowego solver'a.

Tworzy słowo – listę produkcji potrzebną do przekształcenia macierzy do postaci górnej trójkątnej.

```
public new void SolvePartially()
{
    var pass = 0;
    for (var i = 0; i < Matrix.Size - 1; i++)
        for (var k = i + 1; k < Matrix.Size; k++, pass++)
    }

    Productions.Add(new (EOperation.A, new (i, i), new (k, i), pass));

    for (var j = 0; j < Matrix.Size + 1; j++)
    {
        Productions.Add(new (EOperation.B, new (k, j), Cell.Empty, pass));
        Productions.Add(new (EOperation.C, new (k, j), new (i,j), pass));
    }
}</pre>
```

MatrixSolverAsync

Rozszerzenie pełnego solver'a.

Rozwiązuje macierz do postaci górnej trójkątnej wielowątkowo na podstawie postaci normalnej Foaty.

Wszystkie operacje danego poziomu wykonywane są współbieżnie.

Task tworzony i uruchamiany jest w przeciążeniu metody Invoke()

```
private new async Task Invoke(Production production)
{ await Task.Run(() => base.Invoke(production)); }
```

Models

Folder zawiera klasy opisujące obiekty i metody którymi posługuje się algorytm

- Cell rekord opakowujący informacje o rzędzie i kolumnie macierzy
- Matrix2D reprezentacja macierzy, zawiera metody do wypisywania i implementuje interfejs umożliwiający tworzenie kopi macierzy
- Producion rekord w którym zawarte są wszystkie przydatne informacje o produkcji, zawiera metodę IsDependentOn() zwracająca wartość bool informującą o tym czy dana produkcja jest zależna a od innej

Logic

Folder zawiera klasy pomocnicze.

NormalForm

Klasa ta generuje postać normalną Foaty na podstawie słowa, które reprezentowane jest jako lista produkcji

```
// po każdej produkcji
for (var i = 0; i < word.Count; i++)</pre>
    // pomiń jeżeli już została wykorzystana
    if (elements[i].Used)
        continue;
   // wstawiamy element do poziomu FNF
   MarkUsed(elements, i, layer, passesA, passesB);
    // dla wszystkich kolejnych produkcji
   for (var j = i + 1; j < word.Count; j++)</pre>
        // jeżeli można wykonać produkcje j współbieżnie z i
        if (IsConcurrent(elements, j, layer, passesA, passesB))
            // dodajemy produkcje j do poziomu FNF
            MarkUsed(elements, j, layer, passesA, passesB);
    // wstawiamy wygenerowany poziom do FNF
   Fnf.Add(layer.Select(x => x.Production).ToList());
    // czyścimy warstwę roboczą
   layer.Clear();
```

Productions

Klasa jedynie wypisuje alfabet i słowo w odpowiednim formacie.

Relations

Klasa sprawdza zależności produkcji i przypisuje je do odpowiedniej listy którą zwraca w odpowiednim formacie.

Inne

- GraphHelper wywołuje skrypt Python który tworzy obrazek grafu zależności
- OutputHelper metody pomocnicze do wypisywania i zapisywania informacji
- Serializer wczytuje macierz z podanego pliku

Python

Skrypt pythona'a, wywoływany przez program z ścieżką do pliku z .tmp generuje obrazek z grafem zależności. Plik zawiera komentarze.

Zależności skryptu:

- Os
- Sys
- Matplotlib.pyplot
- Networkx

Wywołanie programu

Program należy wywołać uruchamiając w terminalu program z ścieżką pliku zwierającego dane wejściowe.

```
C:\lab6> .\Lab6_NET_Relase\Lab6_NET.exe "C:\lab6\input.txt"
```

Rezultaty

Jeżeli dane podane w pliku były poprawne program zwróci następujące informacje:

```
Wczytana macierz:
        2.0 1.0
4.0 3.0
6.0 5.0
                              3.0 |
                                            6.0]
[
[
                              8.0
                                           15.0]
                             16.0
                                           27.0]
Alfabet produkcji:
A = {
A([0, 0], [1, 0]),
B([1, 0]),
C([1, 0], [0, 0]),
C([2, 2], [1, 2]),
B([2, 3]),
C([2, 3], [1, 3])
Slowo:
w =
A([0, 0], [1, 0])
B([1, 0])
C([1, 0], [0, 0])
C([2, 2], [1, 2])
B([2, 3])
C([2, 3], [1, 3])
```

```
Relacje zaleznosci:
D = sym{}
[A([0, 0], [1, 0]), A([0, 0], [1, 0])]
[B([1, 0]), A([0, 0], [1, 0])]
[C([1, 0], [0, 0]), A([0, 0], [1, 0])]
[B([2, 1]), A([0, 0], [2, 0])]
[C([2, 1], [0, 1]), A([0, 0], [1, 0])]
[C([2, 1], [0, 1]), B([1, 0])]
[C([2, 3], [1, 3]), B([2, 1])]
[C([2, 3], [1, 3]), B([2, 2])]
[C([2, 3], [1, 3]), B([2, 3])]
Relacje niezaleznosci:
I = sym{
[A([0, 0], [1, 0]), B([1, 0])]
[A([0, 0], [1, 0]), C([1, 0], [0, 0])]
[A([0, 0], [1, 0]), B([1, 1])]
[C([2, 3], [0, 3]), B([2, 3])]
[C([2, 3], [0, 3]), C([2, 3], [1, 3])]
[A([1, 1], [2, 1]), A([0, 0], [1, 0])]
[C([2, 3], [1, 3]), C([2, 1], [1, 1])]
[C([2, 3], [1, 3]), C([2, 2], [1, 2])]
[C([2, 3], [1, 3]), C([2, 3], [1, 3])]
Postac normalna Foaty:
FNF([w]) =
[A([0, 0], [1, 0]) A([0, 0], [2, 0])]
[B([1, 0]) \ B([1, 1]) \ B([1, 2]) \ B([1, 3]) \ B([2, 0]) \ B([2, 1]) \ B([2, 2]) \ B([2, 3])]
 \begin{bmatrix} \mathsf{C}([1,\,0],\,[0,\,0]) \ \mathsf{C}([1,\,1],\,[0,\,1]) \ \mathsf{C}([1,\,2],\,[0,\,2]) \ \mathsf{C}([1,\,3],\,[0,\,3]) \ \mathsf{C}([2,\,0],\,[0,\,0]) \ \mathsf{C}([2,\,1],\,[0,\,1]) \ \mathsf{C}([2,\,2],\,[0,\,2]) \ \mathsf{C}([2,\,0],\,[0,\,2]) \ \mathsf{C}([2,\,0],\,[0,\,
  [0, 2]) C([2, 3], [0, 3])]
[A([1, 1], [2, 1])]
[B([2, 0]) B([2, 1]) B([2, 2]) B([2, 3])]
[C([2, 0], [1, 0]) C([2, 1], [1, 1]) C([2, 2], [1, 2]) C([2, 3], [1, 3])]
Oczekiwany wynik:
                              2.0
                                                                1.0
                                                                                                                                              6.0]
                                                                                                  3.0
                                                                                                                                             1.5]
                                  . 0
                                                                   . 5
                                                                                                  1.0
.75 ]
                                  .0
                                                                    . 0
                                                                                                  .75
                                                                   .0
                              1.0
                                                                                                      .0
                                                                                                                                              1.0]
                                                                                                                                             1.0]
                                  . 0
                                                                1.0
                                                                                                      . 0
Е
                                  .0
                                                                   .0
                                                                                                  1.0 |
                                                                                                                                              1.0]
```

```
Otrzymany (współbieżnie) wynik:
[ 2.0 1.0 3.6
                             3.0 |
                                           6.0]
[
[
         . 0
                   .5
                             1.0
                                           1.5]
         .0
                   . 0
                             .75
                                           .75 ]
         1.0
                   . 0
                              .0
                                           1.0]
                   1.0
          . 0
                              .0
                                           1.0]
                             1.0 |
          . 0
                    . 0
                                           1.0]
Wynik zapisano do: ' C:\lab6\input_results.txt'
Graf zapisano do: 'C:\lab6\input_graph.png'
```


Graf macierzy 6x6

