### Mixture of Gaussian distribution

Simulating D.I. values

## Objectives

- Understanding and unveiling the biological mechanism of oral squamous cell carcinoma
- Leveraging nuclei stain imaging technology (Feulgen staining)
- Extracting the determining digitized information
- Developing data processing protocol
- Building predicting model for detecting abnormal cell dividing cancer diagnosis
- Establishing the standard for oral cancer early diagnosis

Photomicrograph of moderately well differentiated OSCC showing large tumor nucleus with multiple prominent nucleoli (blue arrow) and abnormal mitotic figure (black arrow)



DB Nandini and RV Subramanyam, 2011, Nuclear features in oral squamous cell carcinoma: A computer-assisted microscopic study, V.15:2, 177-181, JOMFP





### Abnormal nucleus image (D.I. value)



Papanicolaou (Pap) smears and nucleus was stained with Feulgan stain

# Cell population distribution



# **Summary statistics**

| Group   | Mean1 | SD1   | Mean2 | SD2   | Mean3 | SD3   |
|---------|-------|-------|-------|-------|-------|-------|
| normal1 | 0.96  | 0.155 | 1.961 | 0.22  | 2.321 | NA    |
| normal2 | 0.878 | 0.178 | 1.675 | 0.361 | 2.355 | NA    |
| normal3 | 0.925 | 0.153 | 1.642 | 0.349 | NA    | NA    |
| normal4 | 1.001 | 0.088 | 1.878 | 0.237 | NA    | NA    |
| normal5 | 0.96  | 0.133 | 1.778 | 0.267 | 2.307 | 0.009 |
| normal6 | 0.974 | 0.1   | 1.588 | 0.32  | NA    | NA    |
| normal7 | 0.888 | 0.182 | 1.407 | 0.278 | 2.391 | 0.046 |
| normal8 | 0.963 | 0.155 | 1.71  | 0.256 | NA    | NA    |
| normal9 | 0.995 | 0.085 | 1.434 | 0.294 | NA    | NA    |
| OLK1    | 0.751 | 0.137 | 1.578 | 0.172 | 3.675 | NA    |
| OLK2    | 0.959 | 0.117 | 1.718 | 0.368 | NA    | NA    |
| OLK3    | 0.94  | 0.14  | 1.938 | 0.19  | NA    | NA    |
| OLK4    | 0.992 | 0.074 | 1.66  | 0.172 | 3.2   | 0.261 |
| OLK5    | 0.912 | 0.155 | 1.818 | 0.272 | 3.366 | 0.808 |
| OLK6    | 0.949 | 0.138 | 1.798 | 0.315 | 2.332 | NA    |
| OLK7    | 0.95  | 0.129 | 1.771 | 0.27  | NA    | NA    |
| OLK8    | 0.925 | 0.15  | 1.696 | 0.358 | 2.42  | 0.057 |
| OLK9    | 0.898 | 0.172 | 1.54  | 0.391 | 2.483 | NA    |
| OSCC1   | 0.979 | 0.096 | 1.959 | 0.278 | 2.41  | 0.289 |
| OSCC2   | 0.911 | 0.128 | 1.604 | 0.193 | 3.185 | 0.734 |
| OSCC3   | 0.88  | 0.14  | 1.564 | 0.327 | 2.393 | 0.127 |
| OSCC4   | 0.989 | 0.147 | 1.848 | 0.179 | 2.613 | 0.442 |
| OSCC5   | 0.991 | 0.091 | 1.596 | 0.123 | 2.772 | 0.396 |
| OSCC6   | 0.955 | 0.955 | 1.855 | 0.299 | 2.441 | 0.233 |
| OSCC7   | 0.983 | 0.099 | 1.579 | 0.148 | 3.2   | 0.265 |
| OSCC8   | 0.871 | 0.211 | 1.402 | 0.121 | 2.743 | 0.263 |
| OSCC9   | 0.884 | 0.104 | 1.694 | 0.225 | 2.605 | 0.238 |

### Box plot on pilot data



## Two prediction model fitting

- Data was randomly separated to training and testing (7:2)
- Two models were tested
  - NaïveBayes
  - SVM
- Prediction was applied on the testing data
- And, the results

```
> table(predNB2, ans)
       ans
predNB2 norm olk oscc
   norm
   olk:
   OSCC.
> table(predSVM, ans)
       ans
predSVM norm olk oscc
   norm
   olk
   oscc
```

# Mixture of five group data





Normal Mixture

#### Original mixture data









# One sample data

#### Sample data on D.I. values



## Our first trial – step one

- Three basic clusters of cell populations
  - D.I. value: 0.9 1.249
  - D.I. value: 1.250 2.299
  - D.I. value: > 2.300
- Assuming equal C.V. across three populations, and estimated from "normal sample":
- Three means: 1.001, 2.002, 3.003

### Simulated D.I. values: three-category groups



Simulated D.I. values: three-category groups



#### 1st Derivative



#### 2nd Derivative



### Our hurdle

- Too much information from "normal" cluster
- Possible to detect the "mitotic" stage
- Impossible to detect "aneuploidy" stage
- Need to strip out the "normal" information first, but how?
  - Don't know
  - Don't know
  - Don't know

# On-going effort and future goal

- Get sufficient summary statistics from ten of thousands cells (i.e. D.I. values)
- Evaluating the summary statistics
  - Reflect the mixture of distribution
  - Robust enough (enough information) to differentiation cell population
  - Capture cell population characteristics
- Building the prediction model
  - Assess model performance
  - Provide accurate diagnosis guidance
  - Constantly improve the model

