2.2 Smoothing

Images can exhibit different levels of noise: a random variation of brightness or color information created by a random process, that is, artifacts that don't appear in the original scene!. It is mainly produced by factors like the sensor response (more in CMOS technology), analog-to-digital conversion, dead sensor pixels, or bit errors in transmission, among others.

There are two typical types of noise:

- Salt & pepper noise (black and white pixels in random locations of the image) or impulse noise (only white pixels)
- Gaussian noise (intensities are affected by an additive zero-mean Gaussian error).

Original

Salt and pepper noise

Impulse noise

Gaussian noise

In this section, we are going to learn about some smoothing techniques aiming to eliminate or reduce such noise, including:

- Convolution-based methods
 - Neighborhood averaging
 - Gaussian filter
- · Median filter
- · Image average

Problem context - Number-plate recognition

Returning to the parking access problem proposed by UMA, they were grateful with your previous work. However, after some testing of your code, there were some complaints about binarization because it is not working as well as they expected. It is suspected that the found difficulties are caused by image noise. The camera that is being used in the system is having some problems (e.g. challenging lighting conditions), so different types of noise are appearing in its captured images.

```
In [1]: import numpy as np
    from scipy import signal
    import cv2
    import matplotlib.pyplot as plt
    import matplotlib
    from ipywidgets import interactive, fixed, widgets
    matplotlib.rcParams['figure.figsize'] = (15.0, 15.0)
    import random

images_path = './images/'
```

ASSIGNMENT 1: Taking a look at images

First, **display the images** noisy_1.jpg and noisy_2.jpg and try to detect why binarization is in trouble when processing them.

```
In [2]: # ASSIGNMENT 1
    # Read 'noisy_1.jpg' and 'noisy_2.jpg' images and display them in a 1x2 plot
    # Write your code here!

# Read images
noisy_1 = cv2.imread(images_path + 'noisy_1.jpg',cv2.IMREAD_GRAYSCALE)
noisy_2 = cv2.imread(images_path + 'noisy_2.jpg',cv2.IMREAD_GRAYSCALE)

# Display first one
plt.subplot(121)
plt.imshow(noisy_1, cmap='gray')
plt.title('Noisy 1')

# Display second one
plt.subplot(122)
plt.imshow(noisy_2, cmap='gray')
plt.title('Noisy 2')

plt.show()
```


Thinking about it (1)

Once you displayed both images, answer the following questions:

What is the difference between them?

La primera imagen tiene ruido gaussiano mientras que la segunda tiene ruido de sal y pimienta.

Why can this happen (the noise)?
 El ruido gaussiano puede ocurrir debido a malas condiciones de iluminación. El ruido de sal y pimienta es causado por problemas en el hardware (cámara defectuosa, fallos de transmisión de datos, etc.)

What could we do to face this issue?
 Podemos usar técnicas de suavizado.

2.2.1 Convolution-based methods

There are some interesting smoothing techniques based on the convolution, a mathematical operation that can help you to alleviate problems caused by image noise. Two good examples are **neighborhood averaging** and **Gaussian filter**.

a) Neighborhood averaging

Convolving an image with a *small* kernel is similar to apply a function over all the image. For example, by using convolution it is possible to apply the first smoothing operator that you are going to try, **neighborhood averaging**. This operator averages the intensity values of pixels surrounding a given one, efficiently removing noise. Formally:

$$S(i,j) = \frac{1}{p} \sum_{(m,n) \in s} I(m,n)$$

with s being the set of p pixels in the neighborhood (mxn) of (i, j). Convolution permits us to implement it using a kernel, resulting in a linear operation! For example, a kernel for a 3x3 neighborhood would be:

1/9	1/9	1/9		
1/9	1/9	1/9		
1/9	1/9	1/9		

You can think that the kernel is like a weight matrix for neighbor pixels, and convolution like a double for loop that applies the kernel pixel by pixel over the image. An important parameter when defining a kernel is its **aperture**, that is, how many row/columns it has in addition to the one in the middle in both sides. For example, the previous kernel has an aperture of 1, while a 5x5 kernel would have an aperture of 2, a 7x7 kernel of 3, and so on.

Not everything will be perfect, and the **main drawback** of neighborhood averaging is the blurring of the edges appearing in the image.

ASSIGNMENT 2: Applying average filtering

Complete the method average_filter() that convolves an input image using a kernel which values depend on its size (e.g. for a size 3x3 size its values are 1/9, for a 5x5 size 1/25 and so on). Then display the differences between the original image and the resultant one if verbose is True. It takes the image and kernel aperture size as input and returns the smoothed image.

Tip: OpenCV defines the 2D-convolution <u>cv2.filter2D(src, ddepth, kernel) (https://docs.opencv.org/master/d4/d86/group_imgproc_filter.html#ga27c049795ce870216ddfb366086b5a04)</u> method, where:

• the ddepth parameter means desired depth of the destination image.

- Input images (src) use to be 8-bit unsigned integer (ddepth =cv2.CV_8U).
- However, output sometimes is required to be 16-bit signed (ddepth =cv2.CV 16S)

```
In [3]: # ASSIGNMENT 2
        # Implement a function that applies an 'average filter' to an input image. The kernel size
        # Show the input image and the resulting one in a 1x2 plot.
        def average filter(image, w kernel, verbose=False):
            """ Applies neighborhood averaging to an image and display the result.
                Args:
                    image: Input image
                    w_kernel: Kernel aperture size (1 for a 3x3 kernel, 2 for a 5x5, etc.)
                    verbose: Only show images if this is True
                Returns:
                    smoothed_img: smoothed image
            # Write your code here!
            # Create the kernel
            height = 1+2*w_kernel # or number of rows
            width = 1+2*w_kernel # or number of columns
            kernel = np.ones((height, width), np.float32)/(height*width)
            # Convolve image and kernel
            smoothed_img = cv2.filter2D(image, cv2.CV_8U, kernel)
            if verbose:
                # Show the initial image
                plt.subplot(121)
                plt.title('Noisy')
                plt.imshow(image, cmap='gray')
                # Show the resultant one
                plt.subplot(122)
                plt.title('Average filter')
                plt.imshow(smoothed_img, cmap='gray')
                plt.show()
            return smoothed_img
```

You can use the next snippet of code to **test if your results are correct**:

```
In [4]: # Try this code
image = np.array([[1,6,2,5],[22,6,22,7],[7,7,13,0],[0,2,8,4]], dtype=np.uint8)
w_kernel = 1
print(average_filter(image, w_kernel))

[[ 9 12     9 12]
     [ 8 10     8 10]
     [ 7 10     8 11]
     [ 5     7     6     8]]
```

Expected output:

Thinking about it (2)

You are asked to use the code cell below (the interactive one) and try average_filter using both noisy images noisy_1.jpg and noisy_2.jpg. Then, answer the following questions:

- Is the noise removed from the first image?

 Con valores de `w_kernel` iguales o superiores a 1 obtenemos una reducción visible del ruido.
- Is the noise removed from the second image?
 No, para el ruido de sal y pimienta lo único que conseguimos "manchar" la imagen.
- Which value is a good choice for w_kernel ? Why?
 Creo que el punto justo está en `w_kernel=2`, donde la imagen, especialmente la matrícula, puede verse con claridad y tenemos una reducción de ruido significativa.

```
In [5]: # Interact with the kernel size
    noisy_img = cv2.imread(images_path + 'noisy_1.jpg', 0)
    #noisy_img = cv2.imread(images_path + 'noisy_2.jpg', 0)
    interactive(average_filter, image=fixed(noisy_img), w_kernel=(0,5,1), verbose=fixed(True))
```

Out[5]:

w_kernel 2

b) Gaussian filtering

An alternative to neighborhood averaging is **Gaussian filtering**. This technique applies the same tool as averaging (a convolution operation) but with a more complex kernel.

The idea is to take advantage of the normal distribution for creating a kernel that keeps borders in the image while smoothing. This is done by giving more relevance to the pixels that are closer to the kernel center, creating a **neighborhood weighted averaging**. For example, considering a kernel with an aperture of 2 $(5 \times 5 \text{ size})$, its values would be:

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013

0.003 | 0.013 | 0.022 | 0.013 | 0.003

For defining such a kernel it is used the Gaussian bell:

In 1-D:

$$g_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{x^2}{2\sigma^2}\right)$$

In 2-D, we can make use of the *separability property* to separate rows and columns, resulting in convolutions of two 1D kernels:

$$g_{\sigma}(x,y) = \underbrace{\frac{1}{2\pi\sigma^{2}}exp\left(-\frac{x^{2}+y^{2}}{2\sigma^{2}}\right)}_{g} = \underbrace{\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{x^{2}}{2\sigma^{2}}\right)}_{g_{x}} * \underbrace{\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{y^{2}}{2\sigma^{2}}\right)}_{g_{y}}$$

For example:

And because of the associative property:

$$\underbrace{f \otimes g}_{\text{2D convolution}} = f \otimes (g_x \otimes g_y) = \underbrace{(f \otimes g_x) \otimes g_y}_{\text{Two 1D convolutions}}$$

In this way, we do 2n operations instead of n^2 , being n the kernel size. This is relevant in kernels with a big size!

The degree of smoothing of this filter can be controlled by the σ parameter, that is, the **standard deviation** of the Gaussian distribution used to build the kernel. The bigger the σ , the more smoothing, but it could result in a blurrier image!

The σ parameter also influences the **kernel aperture** value to use, since it must be proportional. It has to be big enough to account for non-negligible values in the kernel! For example, in the kernel below, it doesn't make sense to increase its aperture (currently 1) since new rows/columns would have very small values:

1	15	1
15	100	15
4	4 -	4

ASSIGNMENT 3: Implementing the famous gaussian filter

Complete the gaussian_filter() method in a similar way to the previous one, but including a new input: sigma, representing the standard deviation of the Gaussian distribution used for building the kernel.

As an illustrative example of separability, we will obtain the kernel by performing the convolution of a 1D vertical_kernel with a 1D horizontal_kernel, resulting in the 2D gaussian kernel!

Tip: Note that NumPy defines mathematical functions that operate over arrays like exponential
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.reference/generated/numpy.exp.html) or square-root (https://docs.scipy.org/doc/numpy/reference/generated/numpy.sqrt.html), as well as mathematical constants (https://docs.scipy.org/doc/numpy/reference/constants.html) like np.pi. Remember the associative property of convolution.

Tip 2: The code below uses List Comprehension for creating a list of numbers by evaluating an expression

within a for loop. Its syntax is: [expression for item in List]. You can find multiple examples of how to create lists using this technique on the internet (http://www.google.com
/search?q=python+list+comprehension).

```
In [6]: # ASSIGNMENT 3
        # Implement a function that:
        # -- creates a 2D Gaussian filter (tip: it can be done by implementing a 1D Gaussian filter
        # -- convolves the input image with the kernel
        # -- displays the input image and the filtered one in a 1x2 plot (if verbose=True)
        # -- returns the smoothed image
        def gauss(x, mu, sigma):
            return np.exp(- np.power(x - mu, 2.) / (2. * np.power(sigma, 2.))) / (sigma * np.sqrt(1)
        def gaussian_filter(image, w_kernel, sigma, verbose=False):
            """ Applies Gaussian filter to an image and display it.
                Args:
                    image: Input image
                    w kernel: Kernel aperture size
                    sigma: standard deviation of Gaussian distribution
                    verbose: Only show images if this is True
                Returns:
                    smoothed_img: smoothed image
            # Write your code here!
            # Create kernel using associative property
            s = sigma
            w = w_kernel
            kernel_1D = np.float32([gauss(z, 0, s) for z in range(-w,w+1)]) # Evaluate the gaussian
            vertical_kernel = kernel_1D.reshape(2*w+1,1) # Reshape it as a matrix with just one col
            horizontal_kernel = kernel_1D.reshape(1,2*w+1) # Reshape it as a matrix with just one r
            kernel = signal.convolve2d(vertical_kernel, horizontal_kernel) # Get the 2D kernel
            # print(kernel) # <--- para comprobar si nos cargamos valores significativos</pre>
            # Convolve image and kernel
            smoothed img = cv2.filter2D(image, cv2.CV 8U, kernel)
            if verbose:
                # Show the initial image
                plt.subplot(121)
                plt.imshow(image, cmap='gray')
                plt.title('Noisy')
                # Show the resultant one
                plt.subplot(122)
                plt.imshow(smoothed_img, cmap='gray')
                plt.title('Gaussian filter')
                plt.show()
            return smoothed_img
```

```
In [7]: image = np.array([[1,6,2,5],[10,6,22,7],[7,7,13,0],[0,2,8,4]], dtype=np.uint8)
w_kernel = 1
sigma = 1
print(gaussian_filter(image, w_kernel,sigma))
```

```
[[5 6 7 8]
[5 7 7 8]
[4 6 7 7]
[3 5 5 5]]
```

Expected output:

```
[[5 6 7 8]
[5 7 7 8]
[4 6 7 7]
[3 5 5 5]]
```

Thinking about it (3)

You are asked to try gaussian_filter using both noisy images noisy_1.jpg and noisy_2.jpg (see the cell below). Then, answer following questions:

- Is the noise removed from the first image?

 Sí. El filtro gaussiano es especialmente efectivo para el ruido gaussiano.
- Is the noise removed from the second image?

 Al igual que en el ejemplo anterior, solo conseguimos manchar la imagen con el ruido de sal y pimienta (extendemos los puntos blancos y negros).
- Which value is a good choice for w_kernel and sigma? Why?

 Usar un kernel grande no es mala idea, ya que si aumentamos sigma deberíamos también aumentar el tamaño del kernel (si no, perderíamos valores significativos de la matriz). Para esta imagen, un sigma entre 1.6 obtenemos buenos resultados de reducción de ruido, sin enturbiar demasiado la imagen.

2.2.2 Median filter

There are other smoothing techniques besides those relying on convolution. One of them is **median filtering**, which operates by replacing each pixel in the image with the median of its neighborhood. For example, considering a 3×3 neighborhood:

Median filtering is quite good preserving borders (it doesn't produce image blurring), and is very effective to remove salt&pepper noise.

An **important drawback** of this technique is that it is not a linear operation, so it exhibits a high computational cost. Nevertheless there are efficient implementations like pseudomedian, sliding median, etc.

ASSIGNMENT 4: Playing with the median filter

Let's see if this filter could be useful for our plate number recognition system. For that, complete the median_filter() method in a similar way to the previous techniques. This method takes as inputs:

- the initial image, and
- the window aperture size (w_window), that is, the size of the neighborhood.

/aroun imanroc filter html#a=564860==33e58760h4460101==c458f0)

```
In [9]: | # ASSIGNMENT 4
        # Implement a function that:
        # -- applies a median filter to the input image
        # -- displays the input image and the filtered one in a 1x2 plot if verbose = True
        # -- returns the smoothed image
        def median_filter(image, w_window, verbose=False):
            """ Applies median filter to an image and display it.
                Args:
                    image: Input image
                    w_window: window aperture size
                    verbose: Only show images if this is True
                Returns:
                    smoothed img: smoothed image
            .....
            #Apply median filter
            smoothed_img = image.copy() # We copy the original image
            padded_img = cv2.copyMakeBorder(image, w_window, w_window, w_window, w_window, cv2.BORD
            for x in range(0, smoothed_img.shape[0]):
                for y in range(0, smoothed_img.shape[1]):
                    neighborhood = [padded_img[w_window+x+i][w_window+y+j] for i in range(-w_window
                    smoothed_img[x][y] = np.median(neighborhood)
            smoothed_img = cv2.medianBlur(image, 2*w_window+1)
            if verbose:
                # Show the initial image
                plt.subplot(121)
                plt.imshow(image, cmap='gray')
                plt.title('Noisy')
                # Show the resultant one
                plt.subplot(122)
                plt.imshow(smoothed_img, cmap='gray')
                plt.title('Median filter')
                plt.show()
            return smoothed img
```

You can use the next code to **test if your results are correct**:

```
In [10]: image = np.array([[1,6,2,5],[10,6,22,7],[7,7,13,0],[0,2,8,4]], dtype=np.uint8)
         w window = 2
         print("Our implementation:")
         print(median_filter(image, w_window))
         print("\nOpenCV implementation:")
         print(cv2.medianBlur(image, 2*w_window + 1))
```

```
Our implementation:
```

[[6 5 5 5]

[6 5 5 5]

[6 5 5 5]

[6 4 4 4]]

OpenCV implementation:

[[6 5 5 5]

[6 5 5 5]

[6 5 5 5]

[6 4 4 4]]

Expected output:

[[6 5 5 5]

[6 5 5 5]

[6 5 5 5]

[6 4 4 4]]

w window

Now play a bit with the parameters of the algorithm!

```
In [11]: # Interact with the window size
         #noisy_img = cv2.imread(images_path + 'noisy_1.jpg', 0)
         noisy_img = cv2.imread(images_path + 'noisy_2.jpg', 0)
         interactive(median_filter, image=fixed(noisy_img), w_window=(1,5,1), verbose=fixed(True))
```

3

Out[11]:

Noisy

Thinking about it (4)

You are asked to try median_filter using both noisy images noisy 1.jpg and noisy 2.jpg. Then, answer following questions:

Is the noise removed from the first image?

No conseguimos nada al aplicar el filtro de la mediana con ruido gaussiano, ya que los valores

- Is the noise removed from the second image?

 El filtro de la mediana es muy efectivo para eliminar el ruido de sal y pimienta.
- Which value is a good choice for w_window? Why?
 Para quitar el ruido de sal y pimienta es suficiente con usar un kernel de 3x3 (los valores extremos desaparecen). Si usamos valores de `w_window` superiores a 1, no solo es innecesario, sino que hacemos que la imagen sea mucho más borrosa.

2.2.3 Image average

Next, we asked UMA for the possibility to change their camera from a single shot mode to a multi-shot sequence of images. This is a continuous shooting mode also called *burst mode*. They were very kind and provided us with the sequences <code>burst1_(0:9).jpg</code> and <code>burst2_(0:9).jpg</code> for testing.

Image sequences allow the usage of **image averaging** for noise removal, the last technique we are going to try. In this technique the content of each pixel in the final image is the result of averaging the value of that pixel in the whole sequence. Remark that, in the context of our application, this technique will work only if the car is fully stopped!

The idea behind image averaging is that using a high number of noisy images from a still camera in a static scene, the resultant image would be noise-free. This is supposed because some types of noise usually has zero mean. Mathematically:

$$\underline{g(x,y)} = \frac{1}{M} \sum_{i=1}^{M} f_i(x,y) = \frac{1}{M} \sum_{i=1}^{M} \left[f_{\text{noise_free}}(x,y) + \underbrace{\eta_i(x,y)}_{\text{noise_free}}(x,y) + \frac{1}{M} \sum_{i=1}^{M} \eta_i(x,y) \right]$$

$$\underline{Average image}$$
Noise Image

$$g(x, y) = \frac{1}{M} \sum_{i=1}^{M} f_i(x, y) = \frac{1}{M} \sum_{i=1}^{M} [f_{\text{noise_free}}(x, y) + n_i(x, y)] =$$

$$= f_{\text{noise_free}}(x, y) + \frac{1}{M} \sum_{i=1}^{M} n_i(x, y)$$

This method:

- · is very effective with gaussian noise, and
- it also preserves edges.

On the contrary:

- it doesn't work well with salt&pepper noise, and
- it is only applicable for sequences of images from a still scene.

ASSIGNMENT 5: And last but not least, image averaging

We want to analyze the suitability of this method for our application, so you have to complete the image_averaging() method. It takes:

- a sequence of images structured as an array with dimensions [sequence length × height × width], and
- the number of images that are going to be used.

Tip: Get inspiration from here: average of an array along a specified axis (https://docs.scipy.org/doc/numpy-

```
In [12]: # ASSIGNMENT 5
         # Implement a function that:
         # -- takes a number of images of the sequence (burst_length)
         # -- averages the vale of each pixel in the selected part of the sequence
         # -- displays the first image in the sequence and the final, filtered one in a 1x2 plot if
         # -- returns the average image
         def image_averaging(burst, burst_length, verbose=False):
             """ Applies image averaging to a sequence of images and display it.
                 Args:
                     burst: 3D array containing the fully image sequence.
                     burst_length: Natural number indicating how many images are
                                   going to be used.
                     verbose: Only show images if this is True
                 Returns:
                     average_img: smoothed image
             #Take only `burst_length` images
             tmp_burst = burst[0:burst_length]/burst_length
             # Apply image averaging
             average_img = 0*tmp_burst[0]
             for img in tmp_burst:
                 average_img += img
             # Change data type to 8-bit unsigned, as expected by plt.imshow()
             average_img = average_img.astype(np.uint8)
             if verbose:
                 # Show the initial image
                 plt.subplot(121)
                 plt.imshow(burst[0], cmap='gray')
                 plt.title('Noisy')
                 # Show the resultant one
                 plt.subplot(122)
                 plt.imshow(average_img, cmap='gray')
                 plt.title('Image averaging')
             return average_img
```

You can use the next code to **test if your results are correct**:

```
[[ 4 6 7 2]
[ 5 4 15 5]
[ 4 6 7 2]
[ 5 4 15 5]]
```

Expected output:

```
[[ 4 6 7 2]
[ 5 4 15 5]
[ 4 6 7 2]
[ 5 4 15 5]]
```

Now check how the number of images used affect the noise removal (play with both sequences):

Out[14]: burst_length

5

Thinking about it (5)

You are asked to try image_averaging with burst1_XX.jpg and burst2_XX.jpg sequences. Then, answer these questions:

• Is the noise removed in both sequences?

Podemos, teóricamente, eliminar el ruido para ambos conjuntos de imágenes. Sin embargo es más efectivo para el primer conjunto (ruido gaussiano).

What number of photos should the camera take in each image sequence?
 Para la primera ráfaga, obtenemos muy buenos resultados con tan solo 3 imágenes; más que eso sería añadir coste de procesado innecesario. Por otro lado, para la ráfaga con ruido de sal y pimienta,

necesitaríamos 10 o más imágenes para obtener una imagen clara sin demasiado ruido (lo cual es muy

2.2.4 Choosing a smoothing technique

costoso).

The next code cell runs the explored smoothing techniques and shows the results provided by each one while processing two different car license plates, with two different types of noise. Check them!

```
In [15]: #Read first noisy image
         im1 = cv2.imread('./images/burst1_0.jpg', 0)
         im1 = im1[290:340,280:460]
         # Read second noisy image
         im2 = cv2.imread('./images/burst2_0.jpg', 0)
         im2 = im2[290:340,280:460]
         # Apply neighborhood averaging
         neighbor1 = average_filter(im1, 1)
         neighbor2 = average_filter(im2, 1)
         # Apply Gaussian filter
         gaussian1 = gaussian_filter(im1, 2,1)
         gaussian2 = gaussian_filter(im2, 2,1)
         # Apply median filter
         median1 = median_filter(im1, 1)
         median2 = median_filter(im2, 1)
         # Apply image averaging
         burst1 = []
         burst2 = []
         for i in range(10):
             burst1.append(cv2.imread('./images/burst1_' + str(i) + '.jpg', 0))
             burst2.append(cv2.imread('./images/burst2_' + str(i) + '.jpg', 0))
         burst1 = np.asarray(burst1)
         burst2 = np.asarray(burst2)
         burst1 = burst1[:,290:340,280:460]
         burst2 = burst2[:,290:340,280:460]
         average1 = image_averaging(burst1, 10)
         average2 = image_averaging(burst2, 10)
         # Plot results
         plt.subplot(521)
         plt.imshow(im1, cmap='gray')
         plt.title('Noisy 1')
         plt.subplot(522)
         plt.imshow(im2, cmap='gray')
         plt.title('Noisy 2')
         plt.subplot(523)
         plt.imshow(neighbor1, cmap='gray')
         plt.title('Neighborhood averaging')
         plt.subplot(524)
         plt.imshow(neighbor2, cmap='gray')
         plt.title('Neighborhood averaging')
         plt.subplot(525)
         plt.imshow(gaussian1, cmap='gray')
         plt.title('Gaussian filter')
         plt.subplot(526)
         plt.imshow(gaussian2, cmap='gray')
         plt.title('Gaussian filter')
```

```
plt.subplot(527)
plt.imshow(median1, cmap='gray')
plt.title('Median filter')

plt.subplot(528)
plt.imshow(median2, cmap='gray')
plt.title('Median filter')

plt.subplot(529)
plt.imshow(average1, cmap='gray')
plt.title('Image averaging')

plt.subplot(5,2,10)
plt.subplot(5,2,10)
plt.imshow(average2, cmap='gray')
plt.title('Image averaging')
```

Out[15]: Text(0.5, 1.0, 'Image averaging')

Thinking about it (6)

And the final question is:

• What method would you choose for a final implementation in the system? Why?

Hemos visto que el método de la media de una ráfaga es efectivo para ambos casos, pero además de ser muy costoso, necesitaríamos imágenes estáticas (no siempre es posible para fotografías de matrículas). La mejor opción que se me ocurre es: primero eliminar todo el ruido de sal y pimienta con un filtro de mediana (kernel de 3x3) y luego aplicar un filtro gaussiano, que es el más efectivo para eliminar el ruido gaussiano.

Conclusion

That was a complete and awesome job! Congratulations, you learned:

- how to reduce noise in images, for both salt & pepper and Gaussian noise,
- · which methods are useful for each type of noise and which not, and
- to apply convolution and efficient implementations of some kernels.

If you want to improve your knowledge about noise in digital images, you can surf the internet for *speckle noise* and *Poisson noise*.