Robot Simulation

CHUI Chee Kong, PhD
Control & Mechatronics Group
Mechanical Engineering, NUS

Perspective

- A robotics simulator help creates application for a physical robot without depending on actual machine.
- 1990s: Robot models were not precise; cycle times and robot paths did not match the real world; significant rework to create the actual system
- Need to enhance robot simulation accuracy, robot offline programming methodology
- Replication of physical environments virtually, digital twins

Robotic System

Robot-assisted Cable Binding

Forward Kinematics (Right Arm)

DH parameters

		θ	r	d	α
	Link 1	180°	r_6	0	90°
	Link 2	90°	\mathbf{r}_7	0	90°
	Link 3	0	r ₈	0	0°

Link transformation matrix

$$T_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & d_i \cos\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & d_i \sin\theta_i \\ 0 & 0 & \cos\alpha_i & r_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics (Left Arm)

DH parameters

	θ	r	d	α
Link 1	180°	r ₁₁	0	90°
Link 2	-90°	r ₁₂	0	-90°
Link 3	0	r ₁₃	0	0°

$$^{i-1}T_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i & d_i\cos\theta_i \\ \sin\theta_i & \cos\alpha_i\cos\theta_i & -\sin\alpha_i\cos\theta_i & d_i\sin\theta_i \\ 0 & 0 & \cos\alpha_i & r_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics (Tail Arm)

DH parameters

	θ	r	d	α
Link 1	0°	$\mathbf{r_1}$	0	0°
Link 2	θ_2	0	0	90°
Link 3	0°	r_3	0	90°
Link 4	θ_4	86	0	-90°

Link transformation matrix

$$^{i-1}T_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i & d_i\cos\theta_i \\ \sin\theta_i & \cos\alpha_i\cos\theta_i & -\sin\alpha_i\cos\theta_i & d_i\sin\theta_i \\ 0 & 0 & \cos\alpha_i & r_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

MATLAB Simulation

MATLAB Simulation

C. Chui, Chin-Boon Chng and D. P. Lau, "Parallel processing for object oriented robotic simulation of tracheal-oesophageal puncture," 2011 IEEE/SICE International Symposium on System Integration (SII), Kyoto, 2011, pp. 144-149, doi: 10.1109/SII.2011.6147435.

CA for Part 1: Robot Simulation and Analysis

A group of 2 – 3 students Due on Week 13: <u>13 April 2021 (Wednesday) 2359 Hours</u>

Grading: 25% of the course grade Correctness, quality of solutions and effort

Should not use Matlab Robotic Toolbox You may want to use Matlab Symbolic Math Toolbox (when appropriate)