Week4: Deployment on Flask

Chaithanya S.I

Data Analytics Batch

LISUM02

Predicting Fuel Efficiency of Vehicles

1. Selecting dataset (simple data) – http://archive.ics.uci.edu/ml/datasets/Auto+MPG

Attribute Information: Auto MPG Data Set

- 1. mpg: continuous
- 2. cylinders: multi-valued discrete
- 3. displacement: continuous
- 4. horsepower: continuous
- 5. weight: continuous
- 6. acceleration: continuous
- 7. model year: multi-valued discrete
- 8. origin: multi-valued discrete
- 9. car name: string (unique for each instance)

2. Data Preparation

```
##importing a few general use case libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import StratifiedShuffleSplit
import warnings
warnings.filterwarnings('ignore')
```

Segregating Target and Feature variables

```
data = strat_train_set.drop("MPG", axis=1)
data_labels = strat_train_set["MPG"].copy()
data
```

	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
145	4	83.0	61.0	2003.0	19.0	74	3
151	4	79.0	67.0	2000.0	16.0	74	2
388	4	156.0	92.0	2585.0	14.5	82	1
48	6	250.0	88.0	3139.0	14.5	71	1
114	4	98.0	90.0	2265.0	15.5	73	2
147	4	90.0	75.0	2108.0	15.5	74	2
156	8	400.0	170.0	4668.0	11.5	75	1
395	4	135.0	84.0	2295.0	11.6	82	1
14	4	113.0	95.0	2372.0	15.0	70	3
362	6	146.0	120.0	2930.0	13.8	81	3

318 rows × 7 columns

Preprocessing the Origin Column

```
def preprocess_origin_cols(df):
    df["Origin"] = df["Origin"].map({1: "India", 2: "USA", 3: "Germany"})
    return df
data_tr = preprocess_origin_cols(data)
data_tr.head()
```

	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year	Origin
145	4	83.0	61.0	2003.0	19.0	74	Germany
151	4	79.0	67.0	2000.0	16.0	74	USA
388	4	156.0	92.0	2585.0	14.5	82	India
48	6	250.0	88.0	3139.0	14.5	71	India
114	4	98.0	90.0	2265.0	15.5	73	USA

•

num_data.head()

	Cylinders	Displacement	Horsepower	Weight	Acceleration	Model Year
145	4	83.0	61.0	2003.0	19.0	74
151	4	79.0	67.0	2000.0	16.0	74
388	4	156.0	92.0	2585.0	14.5	82
48	6	250.0	88.0	3139.0	14.5	71
114	4	98.0	90.0	2265.0	15.5	73

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(prepared_data, data_labels)

##testing the predictions with the
sample_data = data.iloc[:5]
sample_labels = data_labels.iloc[:5]
sample_data_prepared = pipeline_transformer(sample_data)
print("Prediction of samples: ", lin_reg.predict(sample_data_prepared))

print("Actual Labels of samples: ", list(sample_labels))
```

Transforming Numerical and Categorical Attributes

```
##Transform different columns or subsets using ColumnTransformer
from sklearn.compose import ColumnTransformer
num attrs = list(num data)
cat_attrs = ["Origin"]
##complete pipeline to transform
##both numerical and cat. attributes
full pipeline = ColumnTransformer([
        ("num", num_pipeline, num_attrs),
        ("cat", OneHotEncoder(), cat_attrs),
    1)
prepared_data = full_pipeline.fit_transform(data)
prepared_data[0]
array([-0.85657842, -1.07804475, -1.15192977, -1.17220298, 1.21586943,
       -0.54436373, 1.70952741, 1.29565517, 1.
        0.
                  1)
```

FLASK

```
main.py > __
1    from flask import Flask
2
3
4    app = Flask("mpg_prediction")
5
6    @app.route('/', methods=['GET'])
7    def ping():
8        return "Pinging Model Application!!"
9
10
```

```
== '__main__':
     name
    app.run(debug=True, host='0.0.0.0', port=9696)
import pickle
from flask import Flask, request, jsonify
from model_files.ml_model import predict_mpg
app = Flask("mpg_prediction")
@app.route('/', methods=['POST'])
def predict():
    vehicle_config = request.get_json()
    with open('./model_files/model.bin', 'rb') as f_in:
         model = pickle.load(f_in)
        f_in.close()
predictions = predict_mpg(vehicle_config, model)
response = {
    'mpg_predictions': list(predictions)
return jsonify(response)
```

Output:

Output.		
Fuel Efficiency Prediction		
Enter no. of cylinders	A	
Enter Total Displacement	ñ	
Horsepower	130	
Total Weight	1111	
Acceleration	12	
Enter the Model Year	70.	
Enter the Origin no.	1	
	Submit	

Prediction is 41.