UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso **2021-2022**

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

ModeloOrientativo
Provisional

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder razonadamente a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico. **CALIFICACIÓN:** Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera la matriz $A=\left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & a & 2 \\ 0 & 1 & 1 \end{array} \right)$.

- a) Determine los valores del parámetro real a para los cuales la matriz A es invertible.
- b) Calcule, para a=0, la matriz inversa A^{-1} .

Ejercicio 2. (Calificación máxima: 2 puntos)

Sea S la región del plano definida por:

$$x + y \ge 3$$
, $2x + y \le 8$, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$

- a) Represente gráficamente la región S y calcule las coordenadas de sus vértices.
- b) Obtenga el valor máximo de la función f(x,y) = 2x + 3y en S, indicando el punto de la región en el cual se alcanza el máximo y el valor máximo alcanzado.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real $f(x) = \sqrt{1+x^2}$.

- a) Calcule la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=0.
- b) Calcule

$$\int_0^1 2x f(x) \, dx$$

Ejercicio 4. (Calificación máxima: 2 puntos)

Una empresa de reparto de comida a domicilio reparte platos de dos restaurantes. El 60 % de los platos que reparte proceden del primer restaurante y el 40 % restante del segundo. El 50 % de los platos que reparte del primer restaurante están cocinados con productos ecológicos, siendo este porcentaje de un 80 % para el segundo restaurante. Elegido un plato al azar:

- a) Calcule la probabilidad de que esté cocinado con productos ecológicos.
- b) Si el plato seleccionado no está cocinado con productos ecológicos, obtenga la probabilidad de que proceda del segundo restaurante.

Ejercicio 5. (Calificación máxima: 2 puntos)

El tiempo diario de juego con videoconsolas de un estudiante de secundaria sigue una distribución normal de media μ y desviación típica 0'25 horas.

- a) Se toma una muestra aleatoria simple de tamaño 25. Calcule la probabilidad de que la media muestral \overline{X} no supere las 2'9 horas si μ =2'75 horas.
- b) Sabiendo que para una muestra aleatoria simple de 64 personas se ha obtenido un intervalo de confianza (2'9388, 3'0613) para μ , determine el nivel de confianza con el que se obtuvo dicho intervalo.

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases}
 x - y + z &= 2 \\
 x - y + az &= -1 \\
 2x + y + z &= 6
 \end{cases}$$

- a) Discuta el sistema en función de los valores del parámetro real a.
- b) Resuelva el sistema para a = -2.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real definida por

$$f(x) = \frac{10}{x^2 + 2x - 3}$$

- a) Determine el dominio de f(x) y calcule sus asíntotas.
- b) Obtenga los intervalos de crecimiento y decrecimiento de f(x) y determine los extremos relativos indicando si corresponden a máximos o mínimos.

Ejercicio 3. (Calificación máxima: 2 puntos)

Considere la función real de variable real definida por:

$$f(x) = \begin{cases} ax^2 - 2x & \text{si } x \le 2\\ \ln(x-1) & \text{si } x > 2 \end{cases}$$

- a) Determine para qué valores de $a \in \mathbb{R}$ la función f(x) es continua en su dominio.
- b) Para a=1, halle el área de la región acotada delimitada por la función f(x), el eje de abscisas y las rectas x=-1, x=0.

Ejercicio 4. (Calificación máxima: 2 puntos)

Entre los deportistas profesionales, el 50 % disfrutan de una beca de alto rendimiento y el 30 % está cursando estudios superiores. Se sabe también que el 10 % de los deportistas profesionales disfrutan de una beca de alto rendimiento y además están cursando estudios superiores. Seleccionado un deportista profesional al azar, calcule la probabilidad de que:

- a) Disfrute de una beca de alto rendimiento o esté cursando estudios superiores.
- b) No disfrute de una beca de alto rendimiento, sabiendo que no está cursando estudios superiores.

Ejercicio 5. (Calificación máxima: 2 puntos)

Una empresa que gestiona una aplicación de movilidad sostenible sabe que el tiempo que tardan en llegar a la universidad en coche los estudiantes se puede aproximar por una variable aleatoria normal de media μ minutos y desviación típica $\sigma=6$ minutos.

- a) Una muestra aleatoria simple de 81 universitarios proporciona un tiempo medio de traslado hasta la universidad de 44 minutos. Calcule el intervalo de confianza al 90 % para estimar μ .
- b) Determine el tamaño mínimo de una muestra aleatoria simple para obtener un intervalo de confianza para μ de amplitud a lo sumo de 3 minutos, con un nivel de confianza del 95 %.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Expresión correcta de la condición de existencia de la inversa0,25 puntos.
Cálculo correcto del parámetro
Apartado (b): 1 punto.
Planteamiento correcto
Cálculo correcto de la inversa
Ejercicio 2. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Representación correcta de la región factible
Obtención correcta de los vértices
Apartado (b): 1 punto.
Determinar máximo de la función
Encontrar el punto de valor máximo (abscisa y ordenada)
Ejercicio 3. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Expresión correcta de la ecuación de la recta tangente
Cálculo correcto de la pendiente de la tangente
Ecuación correcta de la recta tangente
Apartado (b): 1 punto.
Determinación correcta de la primitiva de la función0,75 puntos
Cálculo correcto de la integral definida
Ejercicio 4. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Apartado (b): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Ejercicio 5. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Expresión de la distribución de la media muestral
Tipificación correcta de la variable
Obtención correcta de la probabilidad
Apartado (b): 1 punto.
Expresión correcta de la fórmula del error
Cálculo correcto de $z_{\alpha/2}$
Obtención correcta del nivel de confianza0,50 puntos.

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Determinación correcta del valor crítico	0,50 puntos.
Discusión correcta	0,50 puntos.
Apartado (b): 1 punto.	
Solución correcta del sistema	1,00 punto.
Ejercicio 2. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Estudio correcto del dominio	-
Determinación correcta de las asíntotas verticales	
Determinación correcta de la asíntota horizontal	0,25 puntos.
Apartado (b): 1 punto.	
Determinación correcta de la derivada	0,25 puntos.
Determinación correcta de los intervalos	0,50 puntos.
Cálculo correcto de los extremos	0,25 puntos.
Ejercicio 3. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Estudio de la continuidad si x no es 2	0,25 puntos.
Planteamiento correcto de la condición de continuidad en x=2	-
Obtención correcta del valor del parámetro	0,50 puntos.
Apartado (b): 1 punto.	
Planteamiento correcto de la integral y los límites de integración	0,25 puntos.
Cálculo correcto de la primitiva	0,50 puntos.
Cálculo correcto del área	0,25 puntos.
Ejercicio 4. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Planteamiento correcto de la probabilidad	0,50 puntos.
Cálculo correcto de la probabilidad	0,50 puntos.
Apartado (b): 1 punto.	
Planteamiento correcto de la probabilidad	0,50 puntos.
Cálculo correcto de la probabilidad	0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Cálculo correcto de $z_{\alpha/2}$	0,25 puntos.
Expresión correcta de la fórmula del intervalo de confianza	0,25 puntos.
Determinación correcta del intervalo	
Apartado (b): 1 punto.	•
Cálculo correcto de $z_{\alpha/2}$	0,25 puntos.
Expresión correcta de la fórmula del error	
Determinación correcta del tamaño de la muestra	=
Determination correcta del tamano de la muestra	0,50 puntos.

SOLUCIONES OPCIÓN A. Modelo 21/22

Ejercicio 1.

a) La matriz es invertible para $a \neq$

2. b) Si
$$a = 0$$
, $A^{-1} = \begin{pmatrix} 0.5 & 0 & -0.5 \\ 0.25 & -0.5 & 0.75 \\ -0.25 & 0.5 & 0.25 \end{pmatrix}$

Ejercicio 2.

a) La región S es:

Vértices: A=(2,4), B=(4,0), C=(3,0), D=(0,3) y E=(0,5).

b) Se alcanza el máximo es A. 16 es el valor máximo alcanzado.

Ejercicio 3.

a)
$$y = 1$$
.

b)
$$\int_0^1 2x f(x) dx = 1'22$$
.

Ejercicio 4.

a) La probabilidad pedida es 0'62.

b) La probabilidad pedida es 0'2105.

Ejercicio 5.

a) La probabilidad pedida es 0,9987.

b) El nivel de confianza es del 95%.

SOLUCIÓN OPCIÓN B.

Ejercicio 1.

a) Es compatible determinado si $a \neq 1$.

Incompatible si a = 1.

b) Si a = -2, x = 2, y = 1 y z = 1.

Ejercicio 2.

a) $Dom f(x) = \mathbb{R} - \{1, -3\}.$

Asíntota horizontal cuando x tiende a $-\infty$ en y = 0 y cuando x tiende a ∞ en y = 0.

Asíntotas verticales: x=1 y x=-3.

Asíntotas oblicuas: no tiene.

b) La función es creciente si $x \in (-\infty, -3) \cup (-3, -1)$.

La función es decreciente si $x \in (-1,1) \cup (1,\infty)$.

x = -1 es un punto crítico, máximo.

Ejercicio 3.

a) La función es continua si a = 1.

b)
$$\int_{-1}^{0} (x^2 - 2x) dx = \frac{4}{3}$$

Ejercicio 4.

a) La probabilidad pedida es 0'7.

b) La probabilidad pedida es 0'4286.

Ejercicio 5.

a) $I = (42^{'}9, 45^{'}1)$

b) b) El tamaño muestral mínimo debe ser de 62 estudiantes.

CURSO 2021-2022

ORIENTACIONES PARA LA EVALUACIÓN DEL ACCESO A LA UNIVERSIDAD DE LA ASIGNATURA MATEMÁTICAS ACS II.

Para la elaboración de las pruebas se seguirán las características, el diseño y el contenido establecido en el currículo básico de las enseñanzas del segundo curso de bachillerato LOMCE que está publicado en el Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato, así como por la normativa correspondiente que se promulgue y que afecte a las características, el diseño y el contenido de la evaluación de Bachillerato para el acceso a la Universidad, y las fechas máximas de realización y de resolución de los procedimientos de revisión de las calificaciones obtenidas en el curso 2021/2022.