Лабораторная работа №2. Программирование разветвленных алгоритмов

Содержание отчета:

- 1. Задание
- 2. Блок-схема
- 3. Текст программы
- 4. Ручной расчет контрольного примера
- 5. Машинный расчет контрольного примера

Задание 2

Написать программу для вычисления выражения

l l

	T		
15	$y = \frac{2a^3 - 3b}{\sqrt{ab} + 5a}$	где	$a = \max(x1, x2 + x3, x4 + x5)$
			$b = \min(\max(x1, x2+1), x3+x4, x5)$
16	$y = \frac{b\sqrt{3a} + 4}{3ab - 5}$	где	$a = \max(\min(x1 + x4, x2 + x3), x4 + 2)$
	y = 3ab - 5	тдс	$b = \min(x1, x2 + x3, x4)$
17	$y = \frac{a+7}{b\sqrt{2}-5}$	где	$a = \max(x1, x1 - x3, x2 - x4)$
	$b\sqrt{2}-5$	1дС	$b = \min(x1 - x2, x3, x4)$
18	$y = \frac{a^2 + b - 20}{a + \sqrt{b}}$	где	$a = \max(x1, x2 + x3, x4 + x5)$
	$a+\sqrt{b}$	1д0	$b = \min(x1 + x2, x2 - x3, x4 - 1)$
19	$y = \frac{3a + 4b - \sqrt[3]{ab}}{ 2b - 1 }$ где	ГПА	$a = \max(\min(x1, x2, x3 - 4), \min(x3, x4))$
		тдс	$b = \min(x1, x2, x3, x4, x5)$
20	$y = \frac{7a - b}{\sqrt{b} + 5a}$	EHO	$a = \max(x1 + x2, x3, x2 + x4)$
	$y - \frac{1}{\sqrt{b} + 5a}$	где	$b = \min(x1 + x2, x3 + x4, x4 + 5)$
21	$\sqrt{ 3a } + 5b$	где	$a = \max(x1 + x2, x3 - x4, x4)$
	$y = \frac{\sqrt{ 3a } + 5b}{\left(b + 2\right)^2}$		$b = \min(x1 + x2, x2, x3, x4)$
22	$y = \frac{a^2 + \sqrt{2b - 1}}{a + 3b}$		$a = \max(x1 + x2, x2 + x3, x4 + x5)$
		где	$b = \min(\max(x1, x2), x3 + x4, x5)$
23	$y = \frac{a^2 + b}{5a - \sqrt{b}}$	ГПА	$a = \min(x1 - x2, x3 + x4, x5)$
	$y = \frac{1}{5a - \sqrt{b}}$	где	$b = \max(x1 + x2, x3, x4, x5)$
24	$y = \frac{4a+4b}{a+1}$	где	$a = \max(x1, x2 + x3, x4)$
	$y - {a-1}$		$b = \min(x1 + x2, x3, x4)$
25	$y = \frac{a - b + ab}{b\sqrt{a - 1}}$	где	$a = \max(x1 + x2, x2 + x3, x3 + x4)$
	, T	тде	$b = \min(x1, x2 + 1, \max(x3, x4))$
26	$y = \frac{2\sqrt{a} - 5}{ a + 2b }$	где	$a = \max(x1, x2 - x3, x3 + x4)$
	$\int_{a}^{b} - \left a + 2\overline{b} \right $	тдс	$b = \min(x1 + x2, x3, x4 + 2)$
$\frac{27}{v-a+3b}$	$y = \frac{a+3b-2}{5ab+1}$	гле	$a = \max(x1 - 2, x2 + 1, \min(x3, x4))$
		где	$b = \min(x1, \max(x2, x3, x4))$
28	$y = \frac{4 a-3 }{a}$	ГПО	$a = \max(x1 + x2, x3, x4)$
	a+b	где	$b = \min(x1, x2, x3, x4)$