Aufgaben zur Veranstaltung Lineare Algebra 2, SS 2021

Matthias Grajewski, Andreas Kleefeld, Benno Wienke

Köln, Jülich, Aachen

Übungsblatt 5

26.04.2021

Selbstlernaufgaben

Aufgabe 1

Gegeben sind die Matrizen

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 5 & 6 \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 0 & -2 \\ 1 & 4 \end{pmatrix}.$$

Bestimmen Sie die Matrixprodukte $AB, BA, A^{\top}B, B^{\top}A, A^{\top}A, AA^{\top}$, falls sie existieren. Welche der Matrixprodukte existieren auf jeden Fall, unabhängig von der Zeilen- und Spaltenzahl von A? Begründen Sie Ihre Aussagen.

Aufgabe 2

Gegeben ist die Matrix

$$A = \begin{pmatrix} 1 & -i \\ i & -1 \end{pmatrix}$$

wobei i die imaginäre Einheit ist. Stellen Sie eine Behauptung für A^n auf und beweisen Sie diese mit vollständiger Induktion.

Aufgabe 3

Es sei A eine 2×2 -Matrix mit

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Zeigen Sie, dass dann gilt:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Benutzen Sie dazu zwei Rechenwege:

- (a) Überprüfen Sie, dass das Produkt von A und A^{-1} die Einheitsmatrix gibt.
- (b) Berechnen Sie die Inverse von A nach dem Gauß-Verfahren.

Aufgabe 4

Berechnen Sie jeweils die Inverse folgender Matrizen, falls diese existiert:

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 2 & 2 \end{pmatrix}$$
 (b) $B = \begin{pmatrix} 2 & -1 & 1 \\ 1 & -2 & 0 \\ 0 & 3 & 1 \end{pmatrix}$

Hausaufgaben

Aufgabe 5

Gegeben sind die Matrizen

$$A = \begin{pmatrix} 10 & 2 & 3 \\ 8 & 5 & 3 \\ 2 & 3 & 2 \end{pmatrix} \quad , \quad B = \begin{pmatrix} 7 & 3 \\ 1 & 5 \end{pmatrix} \quad \text{und} \quad C = \begin{pmatrix} 4 & 5 \\ 2 & 7 \\ 3 & 6 \end{pmatrix}.$$

Welche der folgenden Matrixprodukte sind wohldefiniert?

- (a) $A \cdot B$ (b) $C \cdot B$ (c) $A \cdot C$ (d) $A \cdot B \cdot C$ (e) $A \cdot C \cdot B$

Begründen Sie Ihre Aussagen und bestimmen Sie gegebenenfalls das Produkt der Matrizen.

Aufgabe 6

Es sind folgende Abbildungsmatrizen gegeben:

$$A_{\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \quad \text{und} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Durch Matrix A_ϕ wird ein Vektor im \mathbb{R}^2 um den Winkel ϕ gedreht, die Matrix B spiegelt selbigen an der x-Achse.

- (a) Veranschaulichen Sie die Behauptungen am Beispiel des Vektors $x_0=\begin{pmatrix}2\\1\end{pmatrix}$ und $\phi=\frac{\pi}{2}$, wobei $A=A_{\frac{\pi}{2}}$, indem Sie den Vektor selber und dessen Abbildungen $f_A(x_0)=A\cdot x_0$ und $f_B(x_0) = B \cdot x_0$ in ein Koordinatensystem einzeichnen.
- (b) Zeichnen Sie auch die hintereinander geschalteten Abbildungen $f_{AB}(x_0) = A \cdot B \cdot x_0$ und $f_{BA}(x_0) = B \cdot A \cdot x_0$ von x_0 .
- (c) Wie sehen die Umkehrabbildungen zu $f_A(x)$ und $f_B(x)$ aus? Stellen Sie dazu die Abbildungsmatrizen A^{-1} und B^{-1} auf.
- (d) Bestimmen Sie die zugehörigen Abbildungsmatrizen zu den Umkehrabbildungen f_{AB}^{-1} und f_{BA}^{-1} .
- (e) Verifizieren Sie die Ergebnisse aus b) und d), indem Sie die Vektoren $f_{AB}(x_0)$ und $f_{BA}(x_0)$, die Sie zeichnerisch bei b) erhalten haben mit den Matrizen aus d) multiplizie-

Aufgabe 7

Berechnen Sie mit Hilfe des Gauß-Algorithmus die Inverse zu folgenden Matrizen:

(a)
$$\begin{pmatrix} 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & -1 & -3 & 0 \\ 2 & 1 & 5 & 3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} a & 1 & 0 \\ 1 & b & 1 \\ 0 & 1 & c \end{pmatrix}$$

2

Aufgabe 8

Die Spur einer quadratischen Matrix $M=(m_{ij})$ ist definiert durch

$$\mathsf{Spur}(M) = \sum_{i=1}^n m_{ii}.$$

- (a) Zeigen Sie, dass die Spur eine lineare Abbildung darstellt.
- (b) Sei $\widehat{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{pmatrix}$ und $\widehat{B} = \widehat{A}^{\top}$.
 - (i) Verifizieren Sie $\operatorname{Spur}(\widehat{A}\widehat{B}) = \operatorname{Spur}(\widehat{B}\widehat{A}).$
 - (ii) Zeigen Sie, dass $\operatorname{Spur}(AB) = \operatorname{Spur}(BA)$, wobei $A \in \mathbb{R}^{m \times n}$ und $B \in \mathbb{R}^{n \times m}$.
 - (iii) Zeigen Sie, dass $\operatorname{Spur}(A^{\top}A) = 0$ genau dann, wenn A = (0).
 - (iv) Man zeige weiter: Spur(ABC) = Spur(BCA), aber i.a. $Spur(ABC) \neq Spur(BAC)$.