NÁSKOK DÍKY ZNALOSTEM

PROFINIT

B0M33BDT Stream processing

Milan Kratochvíl 12. prosinec 2018

Stream processing

Průběžné zpracování trvalého toku zpráv

Stream processing

- Hlavní komponenty
 - Message processor vstup dat do streamového zpracování
 - Stream processor jádro zpracování údajů
 - Úložiště výstupů persistentní úložitě zpracovaných dat
- Životní cyklus zpráv
 - 1. Příjem zpráv
 - 2. Rozdělení zpráv do partitions
 - 3. Zpracování zpráv (logika aplikace)
 - 4. Uložení, notifikace výsledků atd.

Stream processing vs batch processing

Batch processing

- Zpracování velkého množství dat najednou
- Pořadí nutno vyčíst z dat
- Zpracování s velkým zpožděním (denní, hodinové...)
- Výsledky z principu nelze poskytovat "online"
- Efektivní využití zdrojů (paměť, CPU)
- Zpracuje enormní množství libovolných dat (petabajty)
- Hadoop založen na batch zpracování

Stream processing

- Zpracování záznam za záznamem
- Zaručené pořadí
- Zpracování ihned po příchodu zprávy nebo s malým zpožděním
- Výsledky jsou často dostupné "online"
- Náročnější na zdroje (paměť, CPU)
- Zpracování složitých dotazů na velkém množství dat nemusí být efektivní
- Pro Hadoop relativně nové

Messaging processor

Apache Kafka

- › Distribuovaný systém pro zpracování datových streamů
- > Typicky se používá jako messaging systém
- Transakční log
- Základní vlastnosti
 - vysoce výkonný (zpracuje i miliony zpráv za sekundu)
 - distribuovaný
 - zajišťuje replikaci dat
 - nevyžívá HDFS, má vlastní způsob ukládání dat
 - schopnost řešit výpadky v clusteru
 - škálovatelný
 - Ize snadno přidat nový node pro zvýšení propustnosti

- Topic
 - pojmenovaná "fronta zpráv"
- Partition
 - dělení topiku na menší části
- Offset
 - aktuální pozice v topiku/paritition (orientace, kde se v topiku nacházíme)
- Consumer
 - odběratel dat
- Consumer Group
 - skupina odběratelů dat
- > Producer
 - tvůrce dat

Anatomy of a Topic

Zápis a čtení

P1 leader

P2 follower

Mathias Verraes @mathiasverraes

There are only two hard problems in distributed systems: 2. Exactly-once delivery 1. Guaranteed order of messages 2. Exactly-once delivery

RETWEETS

LIKES

6,775

4,727

10:40 AM - 14 Aug 2015

4 69

4.7K

Pořadí zpráv v Kafce

- Pořadí zpráv
 - garance doručení zpráv v pořadí, v jakém byly zapsány per partition
 - ale ne v rámci všech zpráv daného topiku!
- Standardně se zprávy rozdělují rovnoměrně mezi jednotlivé partitions (náhodně)
- > Typicky ale potřebují zajistit pořadí zpráv jen např. pro klienta, zařízení... → možnost definovat vlastní pravidla partitioningu

Další možnosti Kafky

- Komprese zpráv
- › Automatická retence zpráv
 - staré zprávy automaticky maže po uplynutí definovaného období
- Obsahuje vlastní systém pro zpracování streamů Kafka Streams
- KSQL
 - SQL-like jazyk pro přístup k datům Kafky
- Základní transakční zpracování
 - consumer commituje poslední zpracovaný offset

Použití Kafky

- Všude tam, kde se komunikuje prostřednictvím zpráv, tj. skoro všude
 - senzorická data
 - finanční transakce
 - burzovní informace
 - logy
- Xappa architektura
- Lambda architektura
- Xafka nabízí velkou propustnost a robustnost, ale někdy za cenu vyšších latencí
 - obecně je třeba počítat s desítkami ms latencí jako minimum
 - Ize optimalizovat na úkor propustnosti a bezpečnosti (konzistence) dat

Stream processor

Charakteristiky streamového zpracování

- Stream je analogie ("nekonečné") tabulky
- Streamy Ize partitionovat
 - paralelizace
- Streamy je možné
 - číst
 - zapisovat
 - joinovat
- Často je potřeba udržovat stav (typicky agreace)
 - např. suma obratů na účtu, průměrná hodnota konkrétního senzoru...
- Práce s časovými okny
 - vyhodnocování úseků dat

Časová okna

- Délka okna
- Interval posunu
 - jak často se okno posouvá
- Mohou se překrývat!
- > Příklad
 - délka okna 3s
 - interval posunu 2s

Časová okna

 Většina transformací probíhá právě s oknem (typicky nás nezajímají libovolně stará data)

Příklady

- akciové/bitcoinové trhy výpočty klouzavého průměru, např.
 - délka okna 5min
 - posun intervalu 1min
- detekce událostí zjišťuji, zda v intervalu nenastaly události společně, např.
 zjišťujeme, zda se průměr a medián liší v daném okně o více než 10%
 - délka okna 5min
 - posun intervalu 5min

Druhy streamového zpracování

- > Podle doby zpracování
 - Real time
 - reakce na vstupní zprávu je typicky dokončena v řádu jednotek až stovek milisekund
 - Near-real time
 - reakce na vstupní zprávu je typicky dokončena v řádu jednotek až desítek sekund
- Podle technologie zpracování zpráv
 - Real time streaming
 - skutečné zpracování jednotlivých zpráv, jak přicházejí jedna za druhou
 - Micro-batches
 - sekvenční spouštění malých dávek,
 - tj. nezpracovávají se zprávy ihned po příchodu, ale nejprve se nahromadí malá množina dat a ta se zpracuje jako celek

Real time streaming vs micro batches

Real time streaming

 každá zpráva je zpracována nezávisle

Micro batches

 zprávy jsou zpracovány v (malých) dávkách najednou

Real time streaming vs micro batches

- Zpracování záznamu po záznamu
- Minimální latence
- Menší prostupnost (průměrný počet zpráv za sekundu)
 - → neustále se zlepšuje
- Vyžaduje pro realtime zpracování a batch zpracování samostatný kód

- Zpracování množství záznamů najednou
- Latence nejméně délka batch
- Typicky vyšší prostupnost

Lze použít stejný kód pro streamové zpracování micro batches i pro "velké" batches

Streamové zpracování - architektura

Obohacovací data (externí zdroj)

Streamové zpracování - architektura

Obohacovací data (externí zdroj)

Sémantiky streamového zpracování

Exactly once

- za každých okolností zajistíme, že zpráva bude doručena
- vyžaduje nějaký způsob checkpointování, aby se dalo zjistit, jaké zprávy byly zpracování, v případě, že dojde k havárii procesu

At least once

- zpráva se může doručit více než jednou
- velmi častý kompromis

At most once

- zprávu nikdy nedoručíme opakovaně, může také nastat, že zpráva bude zcela ztracena
- pouze pro nedůležitá data/data, která brzy ztrácejí cenu

Idempotence

- Nástroje pro stream zpracování obsahují možnosti, jak zajistit exactly once sémantiku v rámci jednoho procesu
- Ale je velmi složité zajistit toto v rámci více návazných procesů!
- Idempotence je takové chování, kdy opětovné doručení totožné zprávy nezmění stav systému
- Jak to řešit?
 - Např. pokud jediný výstup je databáze (HBase)
 - Doručení již existující zprávy způsobí uložení identických dat pod stejným klíčem (tj. systém není dotknut)

Používané nástroj

- Apache Spark Streaming
 - pouze microbatche a velké batche
- Apache Flink
 - real time streaming,
 - podporuje i čistě batchové zpracování
- Apache Storm
 - real time streaming
- Kafka Streams

Korektní průběh zpracování

Kumulace zpoždění

Úložiště - HBase

HBase

- https://hbase.apache.org/
- NoSQL "databáze"
 - dotazování de facto programaticky (Java), žádný vhodný "SQL" jazyk nemá
- Key/value storage
 - vhodná konstrukce klíče je základ pro použití HBase!
- Ukládá data na HDFS
- Velmi rychlý přístup k datům podle klíče
 - na rozdíl Impala a Hive random access!
- Velmi pomalý full scan
- Velmi dobrá horizontální škálovatelnost
 - cca 4000-5000 dotazů za sekundu per node
- Je třeba detailní znalost, při velkém množství dat je třeba správně nakonfigurovat
- Zajímavost: Využívá Facebook pro messaging

HBase data model

- Table
- Row
 - pro každý jednoznačný klíč
- Column Family
 - sloupce v jedné Column Family jsou vždy ukládány společně
 - naopak, velká data (např. obrázky), která se načítají zřídka, lze dát do jiné
 Column Family a omezit tím množství čtených dat
- Column
- Version
- > HBase neobsahuje datové typy!

Operace

- Get
 - načtení záznamu podle klíče
- > Put
 - uložení záznamu
- Scan
 - sekvenční načítání dat daného rozsahu klíčů nebo všech dat

HBase – architektura

https://www.mapr.com/blog/in-depth-look-hbase-architecture

HBase – použití

- Vhodné použití
 - jednoduché dotazy, hodně jednoduchých dotazů
 - více se čte, než zapisuje
 - odpověď je třeba velmi rychle (stovky ms)
 - k datům se přistupuje jen podle klíče, příp. počáteční části klíče
 - není třeba načítat velké množství dat sekvenčně
- Nevhodné
 - analytické dotazy
 - průchod daty/scan
 - pouze zápisy (nebo nepoměrně mnoho zápisů vůči čtení)
- Základem je konstrukce klíče, podle kterého se dotazuje
- Lze použít tam, kde je jasně definovaný use-case
 - na HBase nelze snadno stavět obecná/flexibilní řešení

HBase – příklad

Column family

- skupina sloupců, které spolu souvisí často se načítají společně
- zajištěno, že v HDFS jsou uloženy společně

HBase – příklad

```
public class RetriveData{
   public static void main(String[] args) throws IOException,
Exception{
      // Instantiating Configuration class
      Configuration config = HBaseConfiguration.create();
      // Instantiating HTable class
      HTable table = new HTable(config, "cli");
      // Instantiating Get class
      Get g = new Get(Bytes.toBytes("stack@apache.org"));
      // Reading the data
      Result result = table.get(g);
      // Reading values from Result class object
      byte [] value =
result.getValue(Bytes.toBytes("user_data"),Bytes.toBytes("lname"));
```

Diskuze

milan.kratochvil@profinit.eu

Díky za pozornost

PROFINIT NÁSKOK DÍKY ZNALOSTEM

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6 | Telefon + 420 224 316 016

Twitter
twitter.com/Profinit_EU

Facebook facebook.com/Profinit.EU

Youtube Profinit EU