MATH 318, Assignment 4

Kyle Rubenok, 260667187

October 2019

1. 1) The atoms of B are as follows:

$p \wedge q \wedge r$	$p \wedge q \wedge \neg r$
$\neg p \land \neg q \land r$	$\neg p \land \neg q \land \neg r$
$p \wedge \neg q \wedge r$	$p \wedge \neg q \wedge \neg r$
$\neg p \land q \land r$	$\neg p \land q \land \neg r$

- 2) From the 8 atoms above, we have that there are 2^8 elements in B.
- 2. 1) Take $B = \mathcal{P}$. Each of the atoms in B makeup the singleton set with every non-empty set in B containing a singleton. This means that for every nonzero $b \in B$, there is an atom $a \in B$ with $a \leq b$.
 - 2) Yes, take B as any boolean algebra without atoms. Additionally let B' be the algebra 2. From this, $B \times B'$ has exactly one atom, (0,1).

3. Question 3

- 4. 1) To show that | is a partial order on \mathbb{N} we must show that it is transitive. We know that it is reflexive since $n=1\cdot n$ so n|n. Next, suppose that n|m and m|n. For some i and j, we can then see that m=in and n=jm giving that m=in=ijm. If m=0, $n=j\cdot 0=0$ and n=m. Alternatively, ij=1 and i=j=1 giving that $n=1\cdot m=m$ showing it is antisymmetric. Now, if n|m and m|k then m=in and k=jm for some i j therefore k=jm=ijn. Giving that n|p is transitive and a partial order.
 - 2) We have that $n = n \cdot 1$ for any n, therefore 1|n and 1 a least element.
 - 3) We have that $0 = 0 \cdot n$ for any n, therefore n|0 and 0 a greatest element.
- 5. We need two chains to cover P since P is not itself a chain $(2 \nmid 3 \text{ and } 3 \nmid 2)$. Allow $C_1 = \{1,3\}$ and $C_2 = \{2,4\}$. Both C_1 and C_2 are chains and $P = C_1 \cup C_2$. This means the smallest number of chains that covers P is 2.