Trigonométrie

1 Mesure en radians d'un angle orienté

1.1 Cercle trigonométrique

C'est le cercle de centre O, de rayon 1 et orienté dans le sens direct.

1.2 Mesure d'un arc orienté

la mesure de l'arc=|mesure de l'arc orienté|

2 Section 2

2 Cosinus et sinus d'un angle orienté

2.1 Défnitions

 $\left(O;\overrightarrow{\mathrm{OI}};\overrightarrow{\mathrm{OJ}}\right)\!\mathrm{est}$ un repère orthonormé.

 ${\mathcal C}$ est le cercle trigonométrique.

x est la mesure de l'angle orienté $\left(\overrightarrow{\text{OI}};\overrightarrow{\text{OJ}}\right)$

 \boldsymbol{x} est la mesure de l'arc IM

x est la mesure du segment (orienté) [Ia]

Exemple:
$$x = \frac{\pi}{3}$$

M est l'image de $\frac{\pi}{3}$ sur le cercle trigonométrique.

Les coordonnées de M dans le repère $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ sont :

$$\begin{cases} x_M = \cos x = \cos\frac{\pi}{3} \\ y_M = \cos x = \cos\frac{\pi}{3} \end{cases}$$

2.2 Valeurs remarquables		
$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	$\cos\frac{\pi}{3} = \frac{1}{2}$	$\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$
$\sin\frac{\pi}{6} = \frac{1}{2}$	$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$	$\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$

2.3 Savoir faire

Déterminer les valeurs des lignes trigonométriques suivantes :

$$\cos\frac{2\pi}{3} = \cos\frac{3\pi}{2} = \cos\left(-\frac{2\pi}{3}\right) = \sin\frac{5\pi}{6} = \cos\left(-\frac{5\pi}{6}\right) = \sin\left(-\frac{2\pi}{3}\right) = \cos\left(-\frac{2\pi}{3}\right) = \cos\left$$

Déterminer x réel tel que