Fundamentals of Information & Network Security ECE 471/571

Lecture #6: Early Ciphers and Cryptanalysis Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Vigenere Cipher

Best known polyalphabetic cipher. Key is m-length vector.
 Use different monoalphabetic substitutions as one proceeds through the plaintext message

$$y = e_K(x_1, x_2, ..., x_m) = (x_1 + K_1, x_2 + K_2, ..., x_m + K_m) \bmod 26,$$

$$d_K(y_1, y_2, ..., y_m) = (y_1 - K_1, y_2 - K_2, ..., y_m - K_m) \bmod 26.$$

Example: key: "deceptive"; plaintext: "we are discovered save yourself", obtain the ciphertext:

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Hill Cipher

- Takes m successive plaintext letters and substitutes for them m ciphertext letters
- The substitution is determined by *m* linear equations in which each character is assigned a numerical value

$$\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$$

K must be invertible

$$e_K(x) = \underline{\mathbf{x}}K,$$

 $d_K(y) = \underline{\mathbf{y}}K^{-1}.$

For example:

$$K = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$$

•Question: Is the Hill cipher encryption an injective function?

Stream Ciphers

• Generate a keystream $z = z_1 z_2 \cdot \cdot \cdot \cdot$ and encrypt each character x_i of the plaintext with a different key z_i .

$$y = y_1 y_2 \cdots = e_{z_1}(x_1) e_{z_2}(x_2) \cdots$$

Shift and Vigenere ciphers can be viewed as special cases of stream

Key stream

cipher

Vernam Cipher

Cryptographic bit stream (k_i) Plaintext (p_i)

- One-Time Pad
 - Key is as long as the message

Figure 3.7 Vernam Cipher

Permutation Ciphers

- Permutation (transposition)
 - Rearranging of the symbols, a.k.a Permutation
 - Diffusion: widely spreading the information from the message or the key across the ciphertext
 - Break the establish pattern
- Formal definition: $\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^m$ $y = e_{\pi}(x)$

$$y = e_{\pi}(x_1, ..., x_m) = (x_{\pi(1)}, ..., x_{\pi(m)})$$

$$x = d_{\pi}(y_1, ..., y_m) = (y_{\pi^{-1}(1)}, ..., y_{\pi^{-1}(m)}).$$

Example: plaintext is: followashore

Permutation (cont'd)

- Rail Fence Cipher
 - Plaintext is written down as a sequence of diagonals and then read off as a sequence of rows

```
Plaintext: mematrhtgpry etefeteoaat
```

Ciphertext: MEMATRHTGPRYETEFETEOAAT

- Columnar Transpositions
 - A rearrangement of the characters of the plain text into columns
- Example

Plaintext: We are discovered. Flee at once.

Ciphertext: WIREESEAACDTROFOEVLNDEEC

WEARED ISCOVE REDFLE EATONC

Cryptanalysis

The goal of cryptanalysis?

The Enigma machine

Question: should the crypto algorithms be published or not?

Kerckhoffs' principle

Auguste Kerckhoffs (1883):

The enemy knows the system

The cipher should remain secure even if the adversary knows the specification of the cipher.

The only thing that is secret is a

short key k

that is usually chosen uniformly at random

Kerckhoffs' Principle – the Motivation

- In commercial products it is unrealistic to assume that the design details remain secret (reverse-engineering!)
- Short keys are easier to protect, generate and replaced.
- 3. The design details can be discussed and analyzed in public.