

SEQUENCE LISTING

	· · · · · · · · · · · · · · · · · · ·	
<110>	JULIUS, Michael H. FILIPP, Dominik	
<120>	THE INDUCTION OF ANTIBIOTIC PROTEINS AND PEPTIDES BY LAIT/sCD14-PROTEIN	
<130>	47841/00063	
<140> <141>	US 09/721,904 2000-11-27	
<150> <151>	PCT/CA99/00482 1999-05-27	
<150> <151>	US 60/086,884 1998-05-27	
<160>	8	
<170>	Wordperfect 9.0	
<210><211><211><212><213>	1 1122 DNA bovine	
<400> atggtgtgcg	1 gccctacct gctgctgctg ctgctgccgt cactgctgcg tgtgtctgcg 60	
gacacaacag	accetgega getggaegae gaegatttee gttgtgtetg caactteaeg 120	
gatccgaagc	tgactggtc tagcgccgtt cagtgtatgg ttgccgtcga ggtggagatc 180	
agtgccggcg	ccgcagcct ggaacagttt ctcaagggag ccgacaccaa cccgaagcag 240	
tatgctgaca .	aatcaaggc tctgcgcgtt cggcgactca agctgggcgc tgcacaggtt 300	
cctgctcagc	tetggtege egttetgege gegetegggt actetegtet caaggaactg 360	
acgcttgagg	cctggaggt aaccggccca acgcccccga cgcctctgga agccgctggg 420	
cctgcgctca	cacceteag tetgegtaac gtategtgga caacaggagg tgeetggete 480	
ggcgaactgc	gcagtggct caagcctggg ctcagggtgc tgaacattgc ccaagcacac 540	
tcgcttgcct	teegtgege agggetetee acettegagg egeteaceae cetagacetg 600	
tctgacaatc	cagtctcgg cgacacgggg ctgatggcag ctctctgtcc gaacaagttc 660	
ccggccctcc	atatctage getacgeaac geggggatgg agacgeegag eggegtgtge 720	
gcggcgctgg	ggcagegag ggtgcageee caaageetgg aceteageea caaetegetg 780	
cgcgtcaccg	eccgggtge tacccgatgt gtctggccca gtgcactaag gtctctcaat 840	
ttgtcgttcg	tgggctgga gcaagtgcct aagggactgc cccctaagct cagcgtgctt 900	
gatctcagct	caacaagct aagcagggag ccgcggcgag acgagctgcc cgaggtaaat 960	
gacctgactc	ggacggaaa tccctttctg gaccctggag ccctccagca ccaaaatgac 1020	

•						
ccgatgatct	ccggcgtggt	cccagcctgt	gcgcgttctg	ccttgaccat	gggggtgtca	1080
ggagccctgg	cgctgcttca	aggagcccga	ggcttcgcgt	aa		1122
<210> <211> <212> <213>	2 1128 DNA human					
<400> atggagcgcg	2 cgtcctgctt	gttgctgctg	ctgctgccgc	tggtgcacgt	ctctgcgacc	60
acgccagaac	cttgtgagct	ggacgatgaa	gatttccgct	gcgtctgcaa	cttctccgaa	120
cctcagcccg	actggtccga	agccttccag	tgtgtgtctg	cagtagaggt	ggagatccat	180
gccggcggtc	tcaacctaga	gccgtttcta	aagcgcgtcg	atgcggacgc	cgacccgcgg	240
cagtatgctg	acacggtcaa	ggeteteege	gtgcggcggc	tcacagtggg	agccgcacag	300
gttcctgctc	agctactggt	aggcgccctg	cgtgtgctag	cgtactcccg	cctcaaggaa	360
ctgacgctcg	aggacctaaa	gataaccggc	accatgcctc	cgctgcctct	ggaagccaca	420
ggacttgcac	tttccagctt	gcgcctacgc	aacgtgtcgt	gggcgacagg	gcgttcttgg	480
ctcgccgagc	tgcagcagtg	gctcaagcca	ggcctcaagg	tactgagcat	tgcccaagca	540
cactcgcctg	ccttttcctg	cgaacaggtt	cgcgccttcc	cggcccttac	cagcctagac	600
ctgtctgaca	atcctggact	gggcgaacgc	ggactgatgg	cggctctctg	tccccacaag	660
ttcccggcca	tccagaatct	agcgctgcgc	aacacaggaa	tggagacgcc	cacaggcgtg	720
tgcgccgcac	tggcggcggc	aggtgtgcag	ccccacagcc	tagacctcag	ccacaactcg	780
ctgcgcgcca	ccgtaaaccc	tagcgctccg	agatgcatgt	ggtccagcgc	cctgaactcc	840
ctcaatctgt	cgttcgctgg	gctggaacag	gtgcctaaag	gactgccagc	caagctcaga	900
gtgctcgatc	tcagctgcaa	cagactgaac	agggcgccgc	agcctgacga	gctgcccgag	960
gtggataacc	tgacactgga	cgggaatccc	ttcctggtcc	ctggaactgc	cctccccac	1020
gagggctcaa	tgaactccgg	cgtggtccca	gcctgtgcac	gttcgaccct	gtcggtgggg	1080
gtgtcgggaa	ccctggtgct	gctccaaggg	gcccggggct	ttgcctaa		1128
<210> <211> <212> <213>	3 1101 DNA murine					
<400> ATGGAGCGTG	3 TGCTTGGCTT	GTTGCTGTTG	CTTCTGGTGC	ACGCCTCTCC	CGCCCCACCA	60
			TCCTGCAACT			120
			GCAGATGTGG			180
			ACGGAAGCAG			240
 	 	-				

ATTATCAAGT	CTCTGTCCTT	AAAGCGGCTT	ACGGTGCGGG	CCGCGCGGAT	TCCTAGTCGG	300
ATTCTATTCG	GAGCCCTGCG	TGTGCTCGGG	ATTTCCGGCC	TCCAGGAACT	GACTCTTGAA	360
AATCTCGAGG	TAACCGGCAC	CGCGCCGCCA	CCGCTTCTGG	AAGCCACCGG	ACCCGATCTC	420
AACATCTTGA	ACCTCCGCAA	CGTGTCGTGG	GCAACAAGGG	ATGCCTGGCT	CGCAGAACTG	480
CAGCAGTGGC	TAAAGCCTGG	ACTCAAGGTA	CTGAGTATTG	CCCAAGCACA	CTCACTCAAC	540
TTTTCCTGCG	AACAGGTCCG	CGTCTTCCCT	GCCCTCTCCA	CCTTAGACCT	GTCTGACAAT	600
CCTGAATTGG	GCGAGAGAGG	ACTGATCTCA	GCCCTCTGTC	CCCTCAAGTT	CCCGACCCTC	660
CAAGTTTTAG	CGCTGCGTAA	CGCGGGGATG	GAGACGCCCA	GCGGCGTGTG	CTCTGCGCTG	720
GCCGCAGCAA	GGGTACAGCT	GCAAGGACTA	GACCTTAGTC	ACAATTCACT	GCGGGATGCT	780
GCAGGCGCTC	CGAGTTGTGA	CTGGCCCAGT	CAGCTAAACT	CGCTCAATCT	GTCTTTCACT	840
GGGCTGAAGC	AGGTACCTAA	AGGGCTGCCA	GCCAAGCTCA	GCGTGCTGGA	TCTCAGTTAC	900
AACAGGCTGG	ATAGGAACCC	TAGCCCAGAT	GAGCTGCCCC	AAGTGGGGAA	CCTGTCACTT	960
AAAGGAAATC	CCTTTTTGGA	CTCTGAATCC	CACTCGGAGA	AGTTTAACTC	TGGCGTAGTC	1020
ACCGCCGGAG	CTCCATCATC	CCAAGCAGTG	GCCTTGTCAG	GAACTCTGGC	TTTGCTCCTA	1080
GGAGATCGCC	TCTTTGTTTA	A				1101
-210s	4					

<210> 4 <211> 373 <212> PRT <213> bovine

<400> 4

Met Val Cys Val Pro Tyr Leu Leu Leu Leu Leu Pro Ser Leu Leu 1 5 10 15

Arg Val Ser Ala Asp Thr Thr Glu Pro Cys Glu Leu Asp Asp Asp Asp 20 25 30

Phe Arg Cys Val Cys Asn Phe Thr Asp Pro Lys Pro Asp Trp Ser Ser 35 40 45

Ala Val Gln Cys Met Val Ala Val Glu Val Glu Ile Ser Ala Gly Gly 50 55 60

Arg Ser Leu Glu Gln Phe Leu Lys Gly Ala Asp Thr Asn Pro Lys Gln 65 70 75 80

Tyr Ala Asp Thr Ile Lys Ala Leu Arg Val Arg Arg Leu Lys Leu Gly 85 90 95

Ala Ala Gln Val Pro Ala Gln Leu Leu Val Ala Val Leu Arg Ala Leu 100 105 110

Gly Tyr Ser Arg Leu Lys Glu Leu Thr Leu Glu Asp Leu Glu Val Thr 115 120 125 .

Gly Pro Thr Pro Pro Thr Pro Leu Glu Ala Ala Gly Pro Ala Leu Thr 130 135 140

	•													
Thr Leu 145	Ser	Leu	Arg	Asn 150	Val	Ser	Trp	Thr	Thr 155	Gly	Gly	Ala	Trp	Leu 160
Gly Glu	Leu	Gln	Gln 165	Trp	Leu	Lys	Pro	Gly 170	Leu	Arg	Val	Leu	Asn 175	Ile
Ala Gln	Ala	His 180	Ser	Leu	Ala	Phe	Pro 185	Cys	Ala	Gly	Leu	Ser 190	Thr	Phe
Glu Ala	Leu 195	Thr	Thr	Leu	Asp	Leu 200	Ser	Asp	Asn	Pro	Ser 205	Leu	Gly	Asp
Thr Gly 210	Leu	Met	Ala	Ala	Leu 215	Cys	Pro	Asn	Lys	Phe 220	Pro	Ala	Leu	Gln
Tyr Leu 225	'Ala	Leu	Arg	Asn 230	Ala	Gly	Met	Glu	Thr 235	Pro	Ser	Gly	Val	Cys 240
Ala Ala	Leu	Ala	Ala 245	Ala	Arg	Val	Gln	Pro 250	Gln	Ser	Leu	Asp	Leu 255	Ser
His Asn	Ser	Leu 260	Arg	Val	Thr	Ala	Pro 265	Gly	Ala	Thr	Arg	Cys 270	Val	Trp
Pro Ser	Ala 275	Leu	Arg	Ser	Leu	Asn 280	Leu	Ser	Phe	Ala	Gly 285	Leu	Glu	Gln
Val Pro 290	Lys	Gly	Leu	Pro	Pro 295	Lys	Leu	Ser	Val	Leu 300	Asp	Leu	Ser	Cys
Asn Lys 305	Leu	Ser	Arg	Glu 310	Pro	Arg	Arg	Asp	Glu 315	Leu	Pro	Glu	Val	Asn 320
Asp Leu	Thr	Leu	Asp 325	Gly	Asn	Pro	Phe	Leu 330	Asp	Pro	Gly	Ala	Leu 335	
His Gln	Asn	Asp 340	Pro	Met	Ile	Ser	Gly 345	Val	Val	Pro	Ala	Суs 350	Ala	Arg
Ser Ala	Leu 355	Thr	Met	Gly	Val	Ser 360	Gly	Ala	Leu	Ala	Leu 365	Leu	Gln	Gly
Ala Arg 370	Gly	Phe	Ala											
<210><211><212><213>		5 375 PR1 hur												
<400> Met Glu 1	Arg	5 Ala	Ser 5	Cys	Leu	Leu	Leu	Leu 10	Leu	Leu	Pro	Leu	Val 15	His
Val Ser	Ala	Thr 20	Thr	Pro	Glu	Pro	Cys 25	Glu	Leu	Asp	Asp	Glu 30	Asp	Phe
Arg Cys	Val 35	Cys	Asn	Phe	Ser	Glu 40	Pro	Gln	Pro	Asp	Trp 45	Ser	Glu	Ala
Phe Gln 50	Cys	Val	Ser	Ala	Val 55	Glu	Val	Glu	Ile	His 60	Ala	Gly	Gly	Leu

Asn Leu Glu Pro Phe Leu Lys Arg Val Asp Ala Asp Ala Asp Pro Arg Gln Tyr Ala Asp Thr Val Lys Ala Leu Arg Val Arg Arg Leu Thr Val Gly Ala Ala Gln Val Pro Ala Gln Leu Leu Val Gly Ala Leu Arg Val Leu Ala Tyr Ser Arg Leu Lys Glu Leu Thr Leu Glu Asp Leu Lys Ile Thr Gly Thr Met Pro Pro Leu Pro Leu Glu Ala Thr Gly Leu Ala Leu Ser Ser Leu Arg Leu Arg Asn Val Ser Trp Ala Thr Gly Arg Ser Trp Leu Ala Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Lys Val Leu Ser Ile Ala Gln Ala His Ser Pro Ala Phe Ser Tyr Glu Gln Val Arg Ala 185 Phe Pro Ala Leu Thr Ser Leu Asp Leu Ser Asp Asn Pro Gly Leu Gly 200 Glu Arg Gly Leu Met Ala Ala Leu Cys Pro His Lys Phe Pro Ala Ile Gln Asn Leu Ala Leu Arg Asn Thr Gly Met Glu Thr Pro Thr Gly Val Cys Ala Ala Leu Ala Ala Gly Val Gln Pro His Ser Leu Asp Leu 250 Ser His Asn Ser Leu Arg Ala Thr Val Asn Pro Ser Ala Pro Arg Cys Met Trp Ser Ser Ala Leu Asn Ser Leu Asn Leu Ser Phe Ala Gly Leu Glu Gln Val Pro Lys Gly Leu Pro Ala Lys Leu Arg Val Leu Asp Leu Ser Cys Asn Arg Leu Asn Arg Ala Pro Gln Pro Asp Glu Leu Pro Glu Val Asp Asn Leu Thr Leu Asp Gly Asn Pro Phe Leu Val Pro Gly Thr 330 Ala Leu Pro His Glu Gly Ser Met Asn Ser Gly Val Val Pro Ala Cys 345 Ala Arg Ser Thr Leu Ser Val Gly Val Ser Gly Thr Leu Val Leu Leu 360 Gln Gly Ala Arg Gly Phe Ala

<210><211><212><213>	6 36 PR' mu:											
<400> Met Glu 1	6 Arg Val	Leu Gly 5	Leu	Leu	Leu	Leu 10	Leu	Leu	Val	His	Ala 15	Ser
Pro Ala	Pro Pro 20	Glu Pro	Cys	Glu	Leu 25	Asp	Glu	Glu	Ser	Cys 30	Ser	Cys
Asn Phe	Ser Asp 35	Pro Lys	Pro	Asp 40	Trp	Ser	Ser	Ala	Phe 45	Asn	Cys	Leu
Gly Ala 50	Ala Asp	Val Glu	Leu 55	Tyr	Gly	Gly	Gly	Arg 60	Ser	Leu	Glu	Tyr
Leu Leu 65	Lys Arg	Val Asp 70	Thr	Glu	Ala	Asp	Leu 75	Gly	Gln	Phe	Thr	Asp 80
Ile Ile	Lys Ser	Leu Ser 85	Leu	Lys	Arg	Leu 90	Thr	Val	Arg	Ala	Ala 95	Arg
Ile Pro	Ser Arg 100		Phe	Gly	Ala 105	Leu	Arg	Val	Leu	Gly 110	Ile	Ser
Gly Leu	Gln Glu 115	Leu Thr	Leu	Glu 120	Asn	Leu	Glu	Val	Thr 125	Gly	Thr	Ala
Pro Pro 130	Pro Leu	Leu Glu	Ala 135	Thr	Gly	Pro	Asp	Leu 140	Asn	Ile	Leu	Asn
Leu Arg 145	Asn Val	Ser Trp 150		Thr	Arg	Asp	Ala 155	Trp	Leu	Ala	Glu	Leu 160
Gln Gln	Trp Leu	Lys Pro	Gly	Leu	Lys	Val 170	Leu	Ser	Ile	Ala	Gln 175	Ala
His Ser	Leu Asn 180		Cys	Glu	Gln 185	Val	Arg	Val	Phe	Pro 190	Ala	Leu
Ser Thr	Leu Asp 195	Leu Sei	Asp	Asn 200	Pro	Glu	Leu	Gly	Glu 205	Arg	Gly	Leu
Ile Ser 210	Ala Leu	Cys Pro	Leu 215	Lys	Phe	Pro	Thr	Leu 220	Gln	Val	Leu	Ala
Leu Arg 225	Asn Ala	Gly Met		Thr	Pro	Ser	Gly 235	Val	Cys	Ser	Ala	Leu 240
Ala Ala	Ala Arg	Val Glr 245	Leu	Gln	Gly	Leu 250	Asp	Leu	Ser	His	Asn 255	Ser
Leu Arg	Asp Ala 260		/ Ala	Pro	Ser 265	Cys	Asp	Trp	Pro	Ser 270	Gln	Leu
Asn Ser	Leu Asn 275	Leu Sei	Phe	Thr 280	Gly	Leu	Lys	Gln	Val 285	Pro	Lys	Gly
Leu Pro 290	Ala Lys	Leu Sei	7 Val 295		Asp	Leu	Ser	Tyr 300	Asn	Arg	Leu	Asp

Arg Asn Pro Ser Pro Asp Glu Leu Pro Gln Val Gly Asn Leu Ser Leu 305 Lys Gly Asn Pro Phe Leu Asp Ser Glu Ser His Ser Glu Lys Phe Asn Ser Gly Val Val Thr Ala Gly Ala Pro Ser Ser Gln Ala Val Ala Leu 345 Ser Gly Thr Leu Ala Leu Leu Leu Gly Asp Arg Leu Phe Val 360 <210> 377 <211> PRT <212> rabbit <213> <220> unsure <221> (14)<222> <223> Xaa = unknown<220> unsure <221> (265)...(267) <222> Xaa = unknown <223> <220> unsure <221> (269) <222> <223> Xaa = unknown <400> Met Glu Pro Val Pro Cys Leu Leu Leu Leu Leu Pro Xaa Leu Leu 10 Arg Ala Ser Thr Asp Thr Pro Glu Pro Cys Glu Leu Asp Asp Asp Asp Ile Arg Cys Val Cys Asn Phe Ser Asp Pro Gln Pro Asp Trp Ser Ser 40 Ala Leu Gln Cys Met Pro Ala Val Gln Val Glu Met Trp Gly Gly His Ser Leu Glu Gln Phe Leu Arg Gln Ala Asp Leu Tyr Thr Asp Gln Arg Arg Tyr Ala Asp Val Val Lys Ala Leu Arg Val Arg Arg Leu Thr Val Gly Ala Val Gln Val Pro Ala Pro Leu Leu Gly Val Leu Arg Val Leu Gly Tyr Ser Arg Leu Lys Glu Leu Ala Leu Glu Asp Ile Glu 120 Val Thr Gly Thr Ala Pro Pro Pro Pro Leu Glu Ala Thr Gly Pro Ala Leu Ser Thr Leu Ser Leu Arg Asn Val Ser Trp Pro Lys Gly Gly

155

6/9	
Ala Trp Leu Ser Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Gln Val 165 170 175	
Leu Asn Ile Ala Gln Ala His Thr Leu Ala Phe Ser Cys Glu Gln Val 180 185 190	
Arg Thr Phe Ser Ala Leu Thr Thr Leu Asp Leu Ser Glu Asn Pro Gly 195 200 205	
Leu Gly Glu Arg Gly Leu Val Ala Ala Leu Cys Pro His Lys Glu Pro 210 215 220	
Ala Leu Gln Asp Leu Ala Leu Arg Asn Ala Gly Met Lys Ile Leu Gln 225 230 235 240	
Gly Val Cys Ala Ala Leu Ala Glu Ala Gly Val Gln Pro His His Leu 245 250 255	
Asp Leu Ser His Asn Ser Leu Arg Xaa Xaa Xaa Ala Xaa Asp Thr Gln 260 265 270	
Arg Cys Ile Trp Pro Ser Ala Leu Asn Ser Leu Asn Leu Ser Phe Thr 275 280 285	
Gly Leu Gln Gln Val Pro Lys Gly Leu Pro Ala Lys Leu Asn Val Leu 290 295 300	
Asp Leu Ser Cys Asn Lys Leu Asn Arg Ala Pro Gln Pro Gly Glu Leu 305 310 315 320	
Pro Lys Val Val Asn Leu Ser Leu Asp Gly Asn Pro Phe Leu Val Pro 325 330 335	
Gly Ala Ser Lys Leu Gln Glu Asp Leu Thr Asn Ser Gly Val Phe Pro 340 345 350	
Ala Cys Pro Pro Ser Pro Leu Ala Met Gly Met Ser Gly Thr Leu Ala 355 360 365	
Leu Leu Gln Gly Ala Arg Gly Phe Ile 370 375	
<210> 8 <211> 1405 <212> DNA <213> bovine	
<400> 8 gcgtgacgca ctgtaaagga aagaatccac agtccagccc gacaaccaga gagagaggca	60
caggctctga gaatctactg actatgttct tggggccgaa gcgtgggcta tttggggact	120
taggaacagg cttgggccgc cctgacctcc gctgtcgggc caggtgtgcg tgccctacct	180
gctgctgctg ctgctgccgt cactgctgcg tgtgtctgcg gacacaacag aaccctgcga	240
gctggacgac cacgatttcc gttgtgtctg caacttcacg gatccgaagc ctgactggtc	300
tagcgccgtt cagtgtatgg ttgccgtcga ggtggagatc agtgccggcg gccgcagcct	360
ggaacagttt ctcaagggag ccgacaccaa cccgaagcag tatgctgaca caatcaaggc	420

tctgcgcgtt	cggcgactca	agctgggcgc	tgcacaggtt	cctgctcagc	ttctggtcgc	480
cgttctgcgc	gcgctcgggt	actctcgtct	caaggaactg	acgcttgagg	acctggaggt	540
aaccggccca	acgcccccga	cgcctctgga	agccgctggg	cctgcgctca	ccaccctcag	600
tctgcgtaac	gtatcgtgga	caacaggagg	tgcctggctc	ggcgaactgc	agcagtgcct	660
caagcctggg	ctcagggtgc	tgaacattgc	ccaagcacac	tcgcttgcct	ttccgtgcgc	720
agggctctcc	accttcgagg	cgctcaccac	cctagacctg	tctgacaatc	ccagtctcgg	780
cgacagcggg	ctgatggcag	ctctctgtcc	gaacaagttc	ccggccctcc	aatatctagc	840
gctacgcaac	gcggggatgg	agacgccgag	cggcgtgtgc	gcggcgctgg	cggcagcgag	900
ggtgcagccc	caaagcctgg	acctcagcca	caactcgctg	cgcgtcaccg	ccccgggtgc	960
tacccgatgt	gtctggccca	gtgcactaag	gtctctcaat	ttgtcgttcg	ctgggctgga	1020
gcaagtgcct	aagggactgc	cccctaagct	cagcgtgctt	gatctcagct	gcaacaagct	1080
aagcagggag	ccgcggcgag	acgagctgcc	cgaggtaaat	gacctgactc	tggacggaaa	1140
tccctttctg	gaccctggag	ccctccagca	ccaaaatgac	ccgatgatct	ccggcgtggt	1200
cccagcctgt	gcgcgttctg	ccttgaccat	gggggtgtca	ggagccctgg	cgctgcttca	1260
aggagcccga	ggcttcgcgt	aaggccaggg	gaagagaggg	aagaggaatg	aattggctca	1320
gattgccctg	gctccgggag	accctcgcca	ggacatctca	accaaccagc	cttctgcccc	1380
atccttatta	aaatcttaaa	cagca				1405