Laborator-Seminar IV

Calcul Numeric

UTCN

2020

Interpolare Polinomială

Fie n+1 perechi de puncte (x_i, y_i) , $i=0,1,\ldots,n$, unde x_i sunt distincte și se numesc *noduri*. Problema *interpolării polinomiale* constă în a determina un polinom de grad n, notat Π_n , care verifică:

$$\Pi_n(x_i)=y_i, \quad i=0,1,\ldots,n.$$

În cazul în care avem o funcție f pentru care cunoaștem doar valorile $(x_i, f(x_i))$, $i = 0, 1, \ldots, n$, problema interpolării constă în a determina un polinom de grad, n notat cu $\Pi_n f$, care verifică:

$$\Pi_n f(x_i) = f(x_i), \quad i = 0, 1, \dots, n.$$

Interpolare Polinomială

Polinomul Π_n este definit prin

$$\Pi_n(x) = \sum_{k=0}^n \varphi_k(x) y_k$$

unde φ_k se numesc polinoame fundamentale Lagrange

$$\varphi_k(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j}, \quad k = 0, 1, \dots, n$$

Polinomul Π_n se numește polinomul de interpolare Lagrange

$$\varphi_k(x_i) = \delta_{ik}$$

Interpolare Polinomială

Introducând notația:

$$w_{n+1}(x) = \prod_{k=0}^{n} (x - x_k)$$

deducem că

$$\varphi_k(x) = \frac{w_{n+1}(x)}{(x - x_k)w'_{n+1}(x_k)}$$

iar polinomul de interpolare se poate scrie sub forma

$$\Pi_n(x) = \sum_{k=0}^n \frac{w_{n+1}(x)}{(x - x_k)w'_{n+1}(x_k)} y_k$$

 w_{n+1} se numește polinomul nodal de grad n+1

Efortul computațional

Pentru calculul lui $\varphi_k(x)$ avem

- ▶ 2*n* scăderi
- \triangleright 2(n-1) înmulțiri
- ▶ 1 împărțire

În total vor fi 4n-1 operații. Având n+1 polinoame fundamentale, vor fi $4n^2+3n-1$ operații. Pentru calculul lui Π_n se adaugă n adunări și n+1 înmulțiri și vom avea $4n^2+5n$ operații, i.e. $O(4n^2)$. Depind de punctul x!. La adăugarea unui nod: pentru modificarea fiecărui polinom φ_k avem nevoie de 4 operații (2 scăderi, o împărțire și o înmulțire), plus calculul lui φ_{n+1} (4n+3 operații) și adăugarea termenului $\varphi_{n+1}(x)y_{n+1}$. În total vom avea nevoie de încă 8n+9 operații.

Eroarea de interpolare

Fie I un interval mărginit care conține cele n+1 noduri de interpolare $\{x_i|i=0,1,\ldots,n\}$. De asemenea, fie f o funție derivabilă până la ordinul n+1 cu derivatele continue în I. Atunci $\forall \, x\in I \, \exists \, \xi_x\in I \,$ a.î.

$$E_n f(x) = f(x) - \Pi_n f(x) = \frac{f^{n+1}(\xi_x)}{(n+1)!} w_{n+1}(x)$$

Mai mult,

$$E_n f(x_i) = 0, \quad i = 0, 1, \dots, n$$

Dezavantaje pentru noduri echidistante

Dacă avem o distribuție uniformă a nodurilor, *i.e.* $x_i = x_{i-1} + h$, i = 1, 2, ..., n atunci

$$|w_{n+1}(x)| = \Big|\prod_{i=0}^{n} (x-x_i)\Big| \le n! \frac{h^{n+1}}{4}$$

$$\max_{x \in I} |E_n f(x)| \le \frac{\max_{x \in I} |f^{(n+1)}(x)|}{4(n+1)} h^{n+1}$$

Nu se poate deduce că eroarea tinde la 0 când $n \to \infty$, în ciuda faptului că $\frac{h^{n+1}}{4(n+1)}$ tinde la 0.

Efectul Runge

Există funcții f pentru care avem

$$\lim_{n\to\infty}\max_{x\in I}|E_nf(x)|=\infty$$

$$f: [-5,5] \to \mathbb{R}, \quad f(x) = \frac{1}{1+x^2}$$

Pentru derivată avem:

$$\max_{x \in I} |f'(x) - (\Pi_n f)'(x)| \le Ch^n \max_{x \in I} |f^{(n+1)}(x)|$$

Stabilitatea polinomului de interpolare

Se consideră valorile exacte $f(x_i)$ și valorile perturbate $\hat{f}(x_i)$. Notăm cu $\Pi_n f$ și $\Pi_n \hat{f}$ cele două polinoame de interpolare. Avem

$$\max_{x \in I} |\Pi_n f(x) - \Pi_n \hat{f}(x)| = \max_{x \in I} |\sum_{i=0}^n (f(x_i) - \hat{f}(x_i))\varphi_i(x)|$$

$$\leq \Lambda_n(x) \max_{0 \leq i \leq n} |f(x_i) - \hat{f}(x_i)|$$

unde

$$\Lambda_n(x) = \max_{x \in I} \sum_{i=0}^n |\varphi_i(x)|$$

se numește *constanta Lebesgue* (depinde de nodurile de interpolare)

Stabilitatea polinoamelor de interpolare

Pentru noduri echidistante

$$\Lambda_n(x) \approx \frac{2^{n+1}}{en(\ln n + \gamma)}$$

$$e = 2.71834, \ \gamma = 0.547721$$

$$f(x) = \sin(2\pi x), \quad f: [-1, 1] \to \mathbb{R}$$

$$\Lambda_{21}(x) \approx 20454$$

$$\max_{i=0,\dots,22} |f(x_i) - \hat{f}(x_i)| \approx 9.5 \cdot 10^{-4}$$

$$\max_{i \in I} |\Pi_{21}f(x) - \Pi_{21}\hat{f}(x)| \approx 3.1342$$

Noduri Cebîşev

În intervalul [a, b] definim nodurile $x_k, k = 0, ..., n$ Noduri *Cebîşev-Gauss-Lobatto*

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{k\pi}{n})$$

$$\Lambda_n(x) < \frac{2}{\pi}(\ln n + \gamma + \ln\frac{8}{\pi}) + \frac{\pi}{72n^2}$$

$$\Lambda_{21}(x) \approx 2.9008$$

$$\max_{i \in I} |\Pi_{21}f(x) - \Pi_{21}\hat{f}(x)| \approx 1.0977 \cdot 10^{-3}$$

Noduri Cebîşev

Noduri Cebîşev-Gauss

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos(\frac{2k+1}{n+1}\frac{\pi}{2})$$

$$\Lambda_n(x) < \frac{2}{\pi} (\ln(n+1) + \gamma + \ln\frac{8}{\pi}) + \frac{\pi}{72(n+1)^2}$$

$$\Lambda_{21}(x) \approx 2.9304$$

$$\max_{i \in I} |\Pi_{21} f(x) - \Pi_{21} \hat{f}(x)| \approx 1.1052 \cdot 10^{-3}$$

Scrierea Baricentrică

$$\sum_{k=0}^{n} \varphi_k(x) = 1, \quad \forall x$$

Se consideră *ponderile* pentru k = 0, 1, ..., n:

$$w_k = \left(\prod_{j=0, j \neq k}^n (x_k - x_j)\right)^{-1} = \frac{1}{\prod_{j=0, j \neq k}^n (x_k - x_j)}$$

Polinoamele fundamentale se vor scrie sub forma

$$\varphi_k(x) = w_{n+1}(x) \frac{w_k}{x - x_k}$$

Forma îmbunătățită a polinomului Lagrange

$$\Pi_n(x) = w_{n+1}(x) \sum_{k=0}^n \frac{w_k}{x - x_k} y_k$$

Scrierea Baricentrică

Efortul computațional pentru calculul fiecărei valori w_k

- n scăderi
- ightharpoonup (n-1) înmulțiri
- ▶ 1 împărțire

În total, vom aveam 2n operații. Fiind n+1 valori vom obține $2n^2+2n$ operații. Aceste cantități nu depind de x! (se pot calcula o singură dată-analog factorizării LU). Pentru calculul lui w_{n+1} este nevoie de n scăderi și n-1 înmulțiri, $i.e\ 2n-1$ operații. În final, se vor adăuga n+2 înmulțiri și n+1 împărțiri. TOTAL: $2n^2+6n+3$, $i.e.\ O(2n^2)$.

Scrierea Baricentrică

Actualizarea cu o nouă pereche (x_{n+1}, y_{n+1}) .

- ightharpoonup Împărțirea fiecărei valori w_k , $k=0,1,\ldots,n$, cu x_k-x_{n+1} $(2n+2 ext{ operații})$
- ► Calcularea lui w_{n+1} (2n+2 operații)
- ▶ Plus încă 5 operații. În total: 4n + 9 operații, *i.e.* O(4n)

$$\sum_{k=0}^{n} \varphi_k(x) = 1 \Rightarrow w_{n+1}(x) \sum_{k=0}^{n} \frac{w_k}{x - x_k} = 1$$

$$\Pi_n(x) = \frac{w_{n+1}(x) \sum_{k=0}^{n} \frac{w_k}{x - x_k} y_k}{w_{n+1}(x) \sum_{k=0}^{n} \frac{w_k}{x - x_k}}$$

$$\Pi_n(x) = \frac{\sum_{k=0}^{n} \frac{w_k}{x - x_k} y_k}{\sum_{k=0}^{n} \frac{w_k}{x - x_k}}$$

Efortul computațional

- Pentru calcularea cantităților $\frac{w_k}{x-x_k}$ este nevoie de $2n^2 + 3n + 1$ operații
- Se adaugă n+1 înmulțiri, 2n adunări și o împărțire. TOTAL: $2n^2+6n+2$, *i.e.* $O(2n^2)$

Fiecare factor comun pentru ponderile w_k va fi simplificat.

Pentru intervalul [-1,1] considerăm noduri echidistante, *i.e.* $x_{k+1}-x_k=\frac{2}{h}$. Atunci

$$w_k = (-1)^{n-k} \frac{C_n^k}{h^n n!}$$

În calcularea polinomului factorii independenți de k se vor simplifica și obținem

$$w_k = (-1)^k C_n^k$$

Pentru intervalul [a, b] va trebui înmulțit cu $\frac{2^n}{(b-a)^n}$, dar acest factor se va simplifica

Pentru noduri Cebîşev -Gauus avem

$$w_k = (-1)^k \sin(\frac{(2k+1)\pi}{2n+2})$$

Pentru noduri Cebîşev-Gauss-Lobatto acvem

$$w_k = (-1)^k \begin{cases} \frac{1}{2}, & k \in \{0, n\} \\ 1, & k \notin \{0, 1\} \end{cases}$$

Forma Newton a polinomului de interpolare Lagrange

$$\Pi_n: (x_i, y_i), \ i = 0, 1, \dots, n$$
 $\Pi_{n-1}: (x_i, y_i), \ i = 0, 1, \dots, n-1$
 $\Pi_n(x) = \Pi_{n-1}(x) + q_n(x)$
unde $q_n \in \mathbb{P}_n$.
 $q_n(x_i) = \Pi_n(x_i) - \Pi_{n-1}(x_i) = 0, \quad i = 0, 1, \dots, n-1$
 $q_n(x) = a_n w_n(x)$

Forma Newton a polinomului de interpolare Lagrange

Diferența divizată Newton de ordin n

$$a_n = \frac{f(x_n) - \prod_{n-1} f(x_n)}{w_n(x_n)} = f[x_0, x_1, \dots, x_n]$$

$$\Pi_n(x) = \Pi_{n-1}(x) + w_n(x) f[x_0, x_1, \dots, x_n],$$
unde $f[x_0] = y_0 = f(x_0)$ și $w_0 = 1$.
$$\Pi_n(x) = \sum_{k=0}^n w_k(x) f[x_0, x_1, \dots, x_k]$$

Proprietăți ale diferențelor divizate

$$f[x_0, x_1, \dots, x_n] = \sum_{k=0}^n \frac{f(x_k)}{w'_{n+1}(x)}$$

- sunt invariante față de permutarea nodurilor
- ▶ Dacă $f = \alpha g + \beta h$ atunci

$$f[x_0, x_1, \ldots, x_n] = \alpha g[x_0, x_1, \ldots] + \beta g[x_0, x_1, \ldots, x_n]$$

Avem formula de recurență

$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots, x_{n-1}]}{x_n - x_0}, \quad n \ge 1$$

Tabelul diferențelor divizate

Efortul computațional pentru forma Newton

Efortul computațional pentru calcularea matricei constă în n(n+1) scăderi și $\frac{n(n+1)}{2}$ împărțiri, în total fiind $\frac{3}{2}n^2+\frac{3}{2}n$, i.e. $O(\frac{3}{2}n^2)$. Pentru calcularea cantităților $w_k(x)$ avem nevoie de n scăderi și n-1 înmulțiri, i.e. 2n-1 operații. În final, pentru calcularea lui Π_n se mai adaugă n înmulțiri și n adunări. În total, pentru forma Newton a polinomului Lagrange vom avea nevoie de $\frac{3}{2}n^2+\frac{11}{2}n-1$ operații, i.e. $O(\frac{3}{2}n^2)$ Elementele din matrice depind de funcția f, dar nu depind de punctul x! (comparăm cu metoda baricentrică!)

Adăugarea unui nod nou în forma Newton

Se calculează în matrice $f[x_n,x_{n+1}],\ldots,f[x_0,x_1,\ldots,x_{n+1}]$ și se aduaugă la polinomul Π_n termenul $w_{n+1}(x)f[x_0,x_1,\ldots,x_{n+1}]$. Este nevoie de n+1 împărțiri și 2(n+1) scăderi. Plus încă 3 operații (2 înmulțiri și o adunare). În total 3n+6 operații, *i.e.* O(3n). Forma Newton conduce la metode *elegante* de *încorporare* a informațiilor despre derivatele $f^{(p)}(x_j)$ (în cazul interpolării Hermite)

Interpolare liniară pe porțiuni

Pentru distribuția neuniformă de noduri $x_0 < x_1 < \ldots < x_n$ notăm cu I_k intervalul $[x_k, x_{k+1}]$. $H = \max\{|I_k|, k = 0, 1, \ldots, n\}$ Se aproximează funcția f printr-o funcție continuă, care pe fiecare interval I_k este definită de segementul determinat de punctele $(x_k, f(x_k))$ și $(x_{k+1}, f(x_{k+1}))$.

$$\Pi_1^H f(x) = f(x_i) + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} (x - x_i) \quad x \in I_i.$$

$$\max_{x \in [x_0, x_n]} |f(x) - \Pi_1^H f(x)| \le \frac{H^2}{8} \max_{x \in [x_0, x_n]} |f''(x)|$$

Probleme cu valori inițiale (IVP, Probleme Cauchy)

$$\begin{cases} y'(x) = f(x, y(x)), & x \in [x_0, x_0 + T], \quad T > 0 \\ y(x_0) = Y_0 \end{cases}$$
Ex. 1
$$y' = -\lambda y$$

$$\frac{y'}{y} = -\lambda y \Leftrightarrow \ln y = -\lambda x + \mathcal{C} \Leftrightarrow y(x) = \mathcal{C}e^{-\lambda x}$$
Ex. 2
$$y' = 2 - e^{-4x} - 2y$$

$$y(x) = 1 + \frac{1}{2}e^{-4x} - \frac{1}{2}e^{-2x} + \mathcal{C}$$

Probleme Cauchy

Se consideră următoarea discretizare a intervalului $[x_0, X_0 + T]$

$$a = x_0 < x_1 < \ldots < x_{N-1} < x_N = x_0 + T$$

Notăm cu y_i , i = 0, ..., N aproximațiile pentru valorile $y(x_i)$, *i.e.*

$$y(x_i) \approx y_i$$

Evident $y_0 = y(x_0) = Y_0$ și derivata va fi aproximată prin

$$y'(x_i) \approx f(x_i, y_i)$$

Presupunem că nodurile sunt echidistante, i.e. $x_{i+1} - x_i = h$

Metoda Euler explicită

$$y'(x_{n+1}) \approx \frac{y(x_{n+1}) - y(x_n)}{x_{n+1} - x_n}$$

$$y(x_n) \approx y_n$$

 $y'(x_{n+1}) = f(x_{n+1}, y(x_{n+1})) \approx f(x_n, y_n)$

Metoda Euler explicită (progresivă): $y_{n+1} = y_n + hf(x_n, y_n)$

Metoda Euler modificată (metoda Runge)

Aproximarea derivatei în x_n și a funcției în $x_n + \frac{h}{2}$

$$y'(x_n) \approx k_1 = f(x_n, y_n)$$

$$y(x_n + \frac{h}{2}) \approx y_n + \frac{h}{2}k_1$$
 (Euler explicit)

Aproximarea derivatei în $x_n + \frac{h}{2}$

$$y'(x_n + \frac{h}{2}) \approx k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$$

Metoda Euler modificată (se folosește panta tangentei din $x_n + \frac{h}{2}$)

$$y_{n+1} = y_n + hk_2$$

$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}f(x_n, y_n))$$

Metoda Euler îmbunătățită (Heun)

Aproximarea derivatei în x_n și a funcției în x_{n+1}

$$y'(x_n) \approx k_1 = f(x_n, y_n)$$

$$y(x_{n+1}) \approx y_n + hk_1$$
 (Euler explicit)

Aproximarea derivatei în x_{n+1}

$$y'(x_{n+1}) \approx k_2 = f(x_n + h, y_n + hk_1)$$

Metoda Euler îmbunătățită (se folosește media aritmetică a pantelor din x_n și x_{n+1})

$$y_{n+1} = y_n + h \frac{k_1 + k_2}{2}$$

Metode Runge-Kutta explicite

$$\begin{cases} k_1 = f(x_n, y_n) = f(x_n + c_1 h, y_n), & c_1 = 0 \\ k_2 = f(x_n + c_2 h, y_n + h a_{21} k_1) \\ k_3 = f(x_n + c_3 h, y_n + h (a_{31} k_1 + a_{32} k_2)) \\ \dots & \dots \\ k_s = f(x_n + c_s h, y_n + h (a_{s1} k_1 + a_{s2} k_2 + \dots + a_{ss-1} k_{s-1})) \end{cases}$$

$$y_{n+1} = y_n + h(b_1 k_1 + b_2 k_2 + \dots + b_s k_s)$$

$$c = [c_1, c_2, \dots, c_s]^T, b = [b_1, b_2, \dots, b_s]^T, A = (a_{ij})$$

$$\frac{c}{h^T}$$

Matricea A este o matrice strict triunghiulară inferior $a_{ij}=0,\,j\geq i$. În cazul când matricea nu este triunghiulară inferior avem metode Runge-Kutta implicite.

Cazuri particulare de metode Runge-Kutta explicite

Metoda Euler

$$\begin{array}{c|c} 0 & 0 \\ \hline & 1 \end{array} \quad \begin{cases} k_1 = f(x_n, y_n) \\ y_{n+1} = y_n + hk_1 \end{cases}$$

► Metoda Euler modificată

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\hline
& 0 & 1
\end{array}
\begin{cases}
k_1 = f(x_n, y_n) \\
k_2 = f(x_n + \frac{1}{2}h, y_n + \frac{1}{2}hk_1) \\
y_{n+1} = y_n + hk_2
\end{cases}$$

Metoda Euler îmbunătățită

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& \frac{1}{2} & \frac{1}{2}
\end{array}$$

$$\begin{cases}
k_1 = f(x_n, y_n) \\
k_2 = f(x_n + h, y_n + hk_1) \\
y_{n+1} = y_n + \frac{1}{2}hk_1 + \frac{1}{2}hk_2
\end{cases}$$