PROJECT

FAKE SPEECH DETECTION
(CONFORMER)

DATASET

- <u>ASVspoof 2019 Dataset</u>:- The 3rd Automatic Speaker Verification Spoofing and Countermeasures Challenge database.
 - It Contains a 363k files of .flac files
- ASVspoof 2019 tfrecord Dataset:- It is simple Subset of the dataset.
 - It contains a 30 files of .tfrec format.
 - (http://www.asvspoof.org)

DATA AUGMENTATION

- Two types of Augmentations are used here
 - AudioAug
 - SpecAug

FEATURE EXTRACTION

- We'll feed Mel-Spectrogram feature to our model as input.
- Spectrogram feature is extracted from audio sample using Short Time Fourier Transform (STFT).
- The fast Fourier transform is a powerful tool
 that allows us to analyze the frequency
 content of a signal.

DATA PIPELINE

- We can build complex input pipelines from simple, reusable pieces using tf.data API.
- https://www.tensorflow.org/guide/data

VISUALIZATION

- spectrogram and its associate label.
 - Without Augmentation

With Augmentation

MODEL (CONFORMER)

- A Neural net for speech recognition that was published by Google Brain in 2020.
- I used as a transfer learning concept to train on the data.
- Here is the Model Summary as well as Number of trainable parameters

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 256, 128, 1)]	0
<pre>conformer_encoder (Conform erEncoder)</pre>	(None, None, 144)	8959680
<pre>global_average_pooling1d (GlobalAveragePooling1D)</pre>	(None, 144)	0
dense (Dense)	(None, 1)	145
Total params: 8959825 (34.18	MR)	

Trainable params: 8955217 (34.16 MB) Non-trainable params: 4608 (18.00 KB)

TRANING AND MATRIX

Here is the training Status and Confusion Matrix.

We used Wandb for the looking of current Status.

CONCLUSION AND FUTURE SCOPE

- In the battle against audio manipulation, Conformers have become heroes.
- Studies on datasets like ASVspoof showcase their impressive accuracy.
- They can be used as a Ensumble Learning as well as other techniques for the Betterment of result.
- Currenlty, It is in research field and widely used in Domestic Stations.

REFERENCES

- View Project at https://wandb.ai/anony-moose-214705333058967856/fake-speech-detection?apiKey=55191f42f262408d6d22cec5d9c08fc9e9af0fd4
- View Run at https://wandb.ai/anony-moose-214705333058967856/fake-speech-detection/runs/u5htw2se?apiKey=55191f42f262408d6d22cec5d9c08fc9e9af0fd4
- Dataset at http://www.asvspoof.org
- Papers:
 - Conformer: Convolution-augmented Transformer for Speech Recognition https://arxiv.org/abs/2005.08100
 - Synthetic Voice Detection and Audio Splicing Detection using SE-Res2Net-Conformer Architecture https://ieeexplore.ieee.org/abstract/document/10037999
 - SpecRNet: Towards Faster and More Accessible Audio DeepFake Detection https://ieeexplore.ieee.org/abstract/document/10063734