Joan Pau Condal Marco Homework 17/04

Definicions:

Recordem les definicions de les aplicacions γ i γ_u :

$$\gamma: E \longrightarrow E^* \qquad \gamma_u: E \longrightarrow \mathbb{R}
u \mapsto \gamma_u \qquad v \mapsto \gamma_u(v) = u \cdot v$$

1 $\gamma_{\rm u}$ és lineal:

Siguin $v, w \in E$, $\alpha, \beta \in \mathbb{R}$, aleshores:

$$\gamma_u(\alpha v + \beta w) = u \cdot (\alpha v + \beta w) = u \cdot \alpha v + u \cdot \beta w$$
$$= \alpha(u \cdot v) + \beta(u \cdot w) = \alpha \gamma_u(v) + \beta \gamma_u(w) \square$$

2 γ és lineal:

Siguin $u, v \in E$, $\alpha, \beta \in \mathbb{R}$, aleshores:

$$\gamma(\alpha u + \beta v) = \gamma_{\alpha u + \beta v} = \gamma_{\alpha u} + \gamma_{\beta v} = \alpha \gamma_u + \beta \gamma_v = \alpha \gamma(u) + \beta \gamma(v) \square$$

3 γ és isomorfisme:

Per demostrar que γ és un isomorfisme hem de demostrar que és injectiva i exhaustiva. Per demostrar que és injectiva poodem demostrar que $Ker(\gamma) = \{0\}$; i per demostrar que es exhaustiva podem demostrar que $Im(\gamma) = E^*$.

1. γ és injectiva:

Sigui $u \in Ker(\gamma)$, aleshores $\gamma(u) = 0 \implies \gamma_u = 0$. Si avaluem γ_u en u, obtenim $\gamma_u(u) = u \cdot u = 0$; i com que · és definida positiva, aleshores $u = 0 \implies Ker(\gamma) = \{0\}$

2. γ és exhaustiva:

Sabem per la seva definició que $Im(\gamma) \subset E^*$; i del fet que γ és injectiva, podem calcular la dimensió de la seva imatge: $dim(E) = dim(Im) + dim(Ker) = dim(Im) = dim(E^*)$. Per tant, com que Im i E^* tenen la mateixa dimensió i $Im(\gamma) \subset E^*$, sabem que $Im(\gamma) = E^*$

De les dues demostracions anteriors, queda demostrar que γ és un isomorfisme.