Lec 21	-1-1
Thin	Let {x, x22 x } be a set of R
GRAM -	linearly independent vectors in Rn.
SCHNIDT.	Let $\{x_1, x_2, \dots, x_k\}$ be a set of k linearly independent vectors in \mathbb{R}^n . Then $\{v_1, v_2, \dots, v_k\}$ defined by:
	$V_1 = X_1$
	$V_2 = \times_2 - \frac{\sqrt{\chi_2}}{\sqrt{V_1}}$
	· · ·
	$V_3 = X_3 - \frac{\sqrt{1}X_3}{\sqrt{1}V_1} - \frac{\sqrt{2}X_3}{\sqrt{2}V_2} \sqrt{2}$
	VIV, VZVZ
	K-1 T
	$V_{K} = X_{K} - \frac{\sum_{i=1}^{K-1} \sqrt{i} X_{K}}{\sqrt{i} V_{i}}$
	is a set of K orthogonal vectors
	in R.
•	

 $V_1^T V_2 = V_1 \left[\times_2 - \frac{V_1' \times_2}{V_1^T V_1} \right]$ $= V_1^{\dagger} \times 2 - V_1^{\dagger} \cdot \frac{V_1^{\dagger} \times 2}{V_1^{\dagger} V_1} V_1$ $\sqrt{1}\sqrt{3} = \sqrt{1}\left[\times_3 - \frac{\sqrt{1}\times_3}{\sqrt{1}\sqrt{1}}\sqrt{1 - \frac{\sqrt{2}\times3}{\sqrt{2}}\sqrt{2}}\right]$ $= V_{1}^{T} \times_{3}^{3} - V_{1} \cdot \frac{V_{1}^{T} \times_{3}^{3}}{V_{1}^{T} V_{1}} - V_{1}^{T} \cdot \frac{V_{2}^{T} \times_{3}^{3}}{V_{2}^{T} V_{2}}$ $= V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_1} - \frac{V_2 \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T \times_3}{V_1^T V_1} \circ \frac{V_1^T \times_3}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T V_1}{V_1^T V_2} = V_1^T \times_3 - \frac{V_1^T V_1}$ (See above) $= V_1^T \times_3 - V_1^T \times_3$ By widuction, V, I V: i=2, ,K

	Similarly.
	$ \frac{1}{\sqrt{2}} \sqrt{3} = \sqrt{2} \left[\times_3 - \frac{\sqrt{1} \times 3}{\sqrt{1} \times 1} \sqrt{1 - \frac{\sqrt{2} \times 2}{\sqrt{1} \times 2}} \cdot \sqrt{2} \right] $
	$= v_{2}^{T} \times_{3} - 0 - v_{2}^{T} \times_{3} = 0$
	$\frac{1}{\sqrt{2}} v_{4} = \sqrt{2} \left[x_{4} - \frac{\sqrt{2}x_{4}}{\sqrt{1}v_{1}} - \frac{\sqrt{2}x_{4}}{\sqrt{2}v_{2}} - \frac{\sqrt{2}x_{4}}{\sqrt{2}v_{3}} \right]$
	$= V_{2}^{T} \times_{4} - O - V_{2}^{T} \times_{4} - O$
	= 0
	Again, by viduction, v2 1 vi i=3 le.
	Similarly: vi + Vj j = i+1,, K.
RTHO-	In particular, when the original set
DRMAL	of vectors forms a basis for Rn,
BASIS	ie when k=n, then the constructed
	Vectors form an orthogonal.
	basis for R". From this we can
	form an orthonormal basis:
	$u_i = \frac{v_i}{v_i v_i}$
	ַט _ו 'ָּט; .

1

Example	$x_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} x_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$
	12
	$V_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$
	$v_2 = \binom{2}{2} - \frac{v_1^T \times 2}{v_1^T v_2} \binom{3}{1}$
	(3) 27, (1)
	where $v_1^T x_2 = (31)(2) = 8$
	(2)
	$V_1V_1 = (3 \ 1)(3) = 10.$
	Trus
	$V_2 = \binom{2}{2} - \frac{8}{13} \binom{3}{1} = \binom{2}{2} - \frac{4}{5} \binom{3}{1}$
,	(2) 13(1) (2) 8(1)
	= 12/- (12/5) = 1-2/6)
	$= \binom{2}{2} - \binom{12/5}{4/5} = \binom{-2/5}{6/5}$
CHK:	$v^{T}v = (3)(-25)$
	$v_1^T v_2 = (31)(-2/5)$ $b/5$
	$=\frac{1}{5}(31)(-2)=\frac{1}{5}(-6+6)=0.$
	(6)

PROJECTION	Define the projection operator by Projev = utv . u.
	$=(\hat{\alpha}Tv)\hat{\alpha}$
	where û = Ytutu = unit vector in direction of u.
,	proju(v).
	a Muso
	In this rulation, Gram-Schmidt says:
	$V_1 = X_1$ $V_2 = X_2 - Proj_{V_1}(X_2)$
	$V_8 = X_3 - proj_{V_1}(X_3) - proj_{V_2}(X_3)$

the page, then us to lessentially because the projections of x3 do not change This leads to a method to compute the duniension of a space spanned by meanly dependent vectors: use Gram-Schmidt to produce v, v2 Vy where notables the first is that is zero. Then n-1 is the required dimension.