Лекция 3. Условные математические ожидания. Первые примеры моделирования.

Литература

• А.Н. Ширяев. Вероятность. Изд-во «Наука», 1980.

Условное математическое ожидание относительно σ - алгебры.

Определение 3.1. Пусть X - случайная величина на (Ω, \mathcal{F}, P) . $\mathcal{G} - \sigma$ -алгебра подмножеств \mathcal{F} и $E[|X|] < \infty$. Мы скажем, что Y является условным математическим ожиданием (у.м.о.) с.в. X относительно σ - алгебры \mathcal{G} , обзначается

$$Y = E[X|\mathcal{G}],$$

если выполнены два свойства:

- 1. Y является \mathcal{G} измеримой
- 2. $E[I(A) \cdot Y] = E[I(A) \cdot X]$ для всех $A \in \mathcal{G}$.

Существование и единственность (почти наверное) условного математического ожидания интегрируемой с.в. *X* являются прямым следствием теоремы Радона-Никодима (см. А.Н. Ширяев, стр. 213).

Свойства условных математических ожиданий.

1)
$$Y = E[X|\mathcal{G}] \Rightarrow E[X] = E[Y]$$
.

Для доказательства достаточно в п. 2 Определения 3.1 взять $A = \Omega$.

2)
$$X = C \Rightarrow E[C|G] = C$$
.

Если положить E[C|G] = C, то свойства 1 и 2 Определения 3.1 легко проверяются. Далее надо воспользоваться единственностью у.м.о.

3)
$$X_1 \le X_2$$
 п. н. $\Rightarrow E[X_1|\mathcal{G}] \le E[X_2|\mathcal{G}]$ п. н. Пример: $X \ge 0 \Rightarrow E[X|\mathcal{G}] \ge E[0|\mathcal{G}] = 0$.

Для доказательства обозгачим $Y_i = E[X_i | \mathcal{G}], i = 1,2$. Пусть $A = \{\omega \in \Omega: Y_1(\omega) - Y_2(\omega) > 0\} \in \mathcal{G}$. Тогда

$$0 \le E[(Y_1 - Y_2) \cdot I(A)] = E[(X_1 - X_2) \cdot I(A)] \le 0.$$

Отсюда $E[(Y_1 - Y_2) \cdot I(A)] = 0$, $(Y_1 - Y_2) \cdot I(A) \ge 0$, и, по доказанному в Лекции 1, $(Y_1 - Y_2) \cdot I(A) = 0$ п. н. Таким образом I(A) = 0 п. н. $\Rightarrow P(A) = 0$.

4) Для с.в. X_1, X_2 и $a, b \in R$

$$E[(aX_1 + bX_2)|\mathcal{G}] = aE[X_1|\mathcal{G}] + bE[X_2|\mathcal{G}]$$

Следует из линейности математического ожидания и почти наверное единственности у.м.о.

5)
$$G = \{\emptyset, \Omega\} \Rightarrow E[X|G] = E[X].$$

Доказывается прямой проверкой свойств 1 и 2 Определения 3.1

6)
$$G = \mathcal{F} \Rightarrow E[X|G] = X$$
.

Следует из определения и единственности у.м.о.

7) Пусть случайные величины X и $X \cdot Y$ интегрируемы и Y является \mathcal{G} - измеримой. Тогда

$$E[X \cdot Y|\mathcal{G}] = Y \cdot E[X|\mathcal{G}]$$
 почти наверное.

Доказательство достаточно длинное (см. А.Н. Ширяев 1980, стр.233). Мы дадим набросок доказательства. Покажем справедливость свойства 7) в простейшем случае: $Y = 1_A$,

 $A \in \mathcal{G}$. В этом случае $\forall B \in \mathcal{G}$, пользуясь свойством 2) Определения 3.1, получим

$$E[1_B \cdot E[X \cdot 1_A | \mathcal{G}]] = E[1_B \cdot 1_A X] = E[1_{A \cap B} \cdot X] =$$

$$E[1_{A \cap B} \cdot E[X | \mathcal{G}]] = E[1_B \cdot (1_A \cdot E[X | \mathcal{G}])],$$

Откуда следует, что $E[X \cdot 1_A | \mathcal{G}] = 1_A \cdot E[X | \mathcal{G}]$ почти наверное. Таким образом, свойство 7) доказано для индикаторов событий $Y = 1_A$, $A \in \mathcal{G}$. По линейности свойство 7) распространяется на простые случайные величины. Для неотрицательных с.в. следует воспользоваться тем, что они являются монотонными пределами простых случайных величин (см. Лекция 1) и применить теорему Леви о монотонной сходимости (см. Лекция 2). Наконец, для перехода к произвольной интегрируемой случайной величине Y следует воспользоваться представлением $Y = Y^+ - Y^-$.

- 8) Если X не зависит от \mathcal{G} , то $E[X|\mathcal{G}] = E[X]$. **Замечание.** X называется не зависящей от \mathcal{G} если $\sigma(X)$ и \mathcal{G} независимы. Независимость σ алгебр $\sigma(X)$ и \mathcal{G} может быть выражена тремя эквивалентными способами, а именно, $\sigma(X)$ и \mathcal{G} независимы если:
 - a) $P(A \cap B) = P(A)P(B), \forall A \in \sigma(X), \forall B \in \mathcal{G}$
 - b) X и Y независимы, где Y произвольная \mathcal{G} измеримая случайная величина.
 - с) E[g(X)h(Y)] = E[g(X)]E[h(Y)] для любых g,h борелевских, ограниченных, Y произвольная \mathcal{G} -измеримая случайная величина.

Свойство 8) следует теперь из единственности у.м.о., Определения 3.1 и независимости X и I(B), $B \in \mathcal{G}$.

9) Неравенство Йенсена для у.м.о.: Пусть $g: R \to R$ выпуклая (вниз) функция, X - случайная величина на (Ω, \mathcal{F}, P) с $E[|g(X)|] < \infty$ и $E[|X|] < \infty$. Пусть $G \subset \mathcal{F}$. Тогда

$$g(E[X|\mathcal{G}]) \le E[g(X)|\mathcal{G}]$$
 п. н.

Заметим, что g - непрерывная функция. Это следут из свойства выпуклых функций, которое мы приведем здесь без доказательства.

Первое свойство выпуклых функций. Выпуклая (вниз)

функция непрерывна в любой точке x, в которой $g(x) > -\infty$. Напомним, что выпуклость означает, что $g(\lambda x + (1-\lambda)y) \le \lambda g(x) + (1-\lambda)g(y)$ для всех $0 \le \lambda \le 1$.

Второе свойство выпуклых функций. Для выпуклой функции g(x) найдутся последовательности вещественных чисел $\{a_n\}$ и $\{b_n\}$ такие, что $g(x) = \sup_n \{a_nx + b_n\}$ для всех $x \in R$.

Отсюда следует, что

$$g(X) \ge a_n X + b_n$$

для всех n, поэтому

$$E[g(X)|\mathcal{G}] \ge a_n E[X|\mathcal{G}] + b_n$$

для всех n. Таким образом,

$$E[g(X)|\mathcal{G}] \ge \sup_n \{a_n E[X|\mathcal{G}] + b_n\} = g(E[X|\mathcal{G}]).$$

Пример: $g(x) = x^2$, $(E[X|G])^2 \le E[X^2|G]$ п.н.

10) Пусть X - случайная величина на (Ω, \mathcal{F}, P) , E[|X|] < ∞.

Пусть \mathcal{H} , $\mathcal{G} - \sigma$ - алгебры с $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$. Тогда

$$E[X|\mathcal{H}] = E[E[X|\mathcal{G}]|\mathcal{H}]. \tag{1}$$

И

$$E[X|\mathcal{H}] = E[E[X|\mathcal{H}]|\mathcal{G}]. \tag{2}$$

Равенство (2) следует из свойств 2) и7). Докажем (1). Пусть $H \in \mathcal{H}$. Тогда $H \in \mathcal{G}$ и

$$E[1_H \cdot E[E[X|\mathcal{G}]|\mathcal{H}]] = E[1_H \cdot E[X|\mathcal{G}]] =$$

$$E[E[1_H \cdot X|\mathcal{G}]] = E[1_H \cdot X] = E[1_H \cdot E[X|\mathcal{H}]],$$

В силу произвольности $H \in \mathcal{H}$, отсюда следует равенство (1).

11) Пусть событие $B \in \mathcal{F}, P(B) > 0$. Тогда $\sigma(B)$ - наименьшая сигма-алгебра, содержащая B, состоит из четырёх подмножеств $\sigma(B) = \{\emptyset, \Omega, B, B^c\}$ (докажите). Пусть X – интегрируемая случайная величина. Тогда $E[X|\sigma(B)](\omega)$ - ступенчатая функция, принимающая два значения:

$$E[X|\sigma(B)](\omega) = \begin{cases} \frac{1}{P(B)} \cdot E[1_B \cdot X], \text{ если } \omega \in B\\ \frac{1}{P(B^c)} \cdot E[1_{B^c} \cdot X], \text{ если } \omega \in B^c \end{cases}$$
(3)

Равенства (3) проверяются непосредственно, исходя из определния у.м.о. и п.н. единственности у.м.о. Если с.в. X в (3) принимает конечное или счётное число значений

$$X = \sum_{k=1}^{\infty} a_k 1_{A_k},$$

то $1_B \cdot X = \sum_{k=1}^{\infty} a_k 1_{B \cap A_k}$, $E[1_B \cdot X] = \sum_{k=1}^{\infty} a_k P(B \cap A_k)$, и

$$\frac{1}{P(B)} \cdot E[1_B \cdot X] = \sum_{k=1}^{\infty} a_k \frac{P(B \cap A_k)}{P(B)} = \sum_{k=1}^{\infty} a_k P(A_k | B). \tag{4}$$

Аналогично

$$\frac{1}{P(B^c)} \cdot E[1_{B^c} \cdot X] = \sum_{k=1}^{\infty} a_k P(A_k | B^c)$$
 (5)

Сумму (4) иногда обозначают E[X|B] и называют условным математическим ожиданием с.в. X при условии, что произошло событие B

$$E[X|B] = \sum_{k=1}^{\infty} a_k P(X = a_k|B),$$

а набор условных вероятностей $P(X = a_k | B)$, k = 1, 2, ..., $\sum_{k=1}^{\infty} P(X = a_k | B) = 1$, называют условным законом распределения X при условии, что произошло событие B. Обобщение на случай конечного или счётного разбиения

$$B_1, B_2, ..., B_r, ...$$
 пространства $\Omega, P(B_i) > 0, i = 1, 2, ..., \cup_i B_i = \Omega, B_i \cap$

 $B_j = \emptyset$, $i \neq j$, очевидно. Рассмотрим наименьшую σ — алгебру \mathcal{F} , содержащую множества $B_1, B_2, ...$. Её обычно обозначают $\sigma(B_1, ..., B_r, ...)$.

Задача 1. Доказать, что $\mathcal{F} = \sigma(B_1, ... B_r, ...)$ является множеством всевозможных объединений элементов разбиения B_i , то есть

$$\mathcal{F} = \{ \bigcup_{i \in J} B_i : J \subseteq \{1, \dots, r, \dots \} \}.$$

Пусть $X: \Omega \to R$ случайная величина. Определим условное математическое ожидание $X, E|X| < \infty$, относительно сигмаалгебры \mathcal{F} как случайную величину $E(X|\mathcal{F}), \Omega \to R$, принимающую значение $E(X|B_k)$ на множестве B_k :

$$E(X|\mathcal{F}) = \sum_{k=1}^{\infty} E(X|B_k) \cdot 1_{B_k}.$$

Таким образом, $E(X|\mathcal{F})$ является ступенчатой функцией на Ω , на множестве B_k она принимает постоянное значение $E(X|B_k) = \frac{1}{P(B_k)} \cdot E\big[1_{B_k} \cdot X\big].$

12) Рассматривают также математическое ожидание *одной случайной величины относительно другой случайной величины.* По определению

$$E[X|Y] = E[X|\sigma(Y)]$$

По лемме Дуба-Дынкина

$$E[X|\sigma(Y)](\omega) = h(Y(\omega)).$$

для некоторой борелевской функции $h: R \to R$. Если Y принимает конечное или счётное число значений

$$Y = \sum_{k=1}^{\infty} b_k 1_{B_k},$$

то, как мы видели,

$$E[X|\sigma(Y)] = \sum_{k=1}^{\infty} E(X|Y = b_k) \cdot 1_{B_k}.$$
 (6)

Задача 2. Найти борелевскую функцию $h(x), x \in R$, в представлении Дуба-Дынкина, соответствующую у.м.о. в левой части (6).

Если X также принимает конечное или счётное число значений:

$$X = \sum_{l=1}^{\infty} a_l 1_{A_l},$$

TO

$$E(X|Y = b_k) = \sum_{l=1}^{\infty} a_l E[1_{A_l}|Y = b_k] = \sum_{l=1}^{\infty} a_l P(X = a_l|Y = b_k),$$

и, подставляя в (6), получим

$$E[X|\sigma(Y)](\omega) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} a_l P(X = a_l | Y = b_k) \cdot 1_{B_k}(\omega).$$
 (7)

Условные вероятности в (7) иногда обозначают $p_{X|Y}(a_l|b_k)$.

Задача 3. Доказать, что если X и Y – случайные величины, принимающие конечное число значений: $X = a_1, \dots, a_r, Y = b_1, \dots, b_m$, а функция f(x, y) такова, что $f(x, b_i) \neq f(x, b_j)$ если $b_i \neq b_i$, то

$$E(f(X,Y)|X)(\omega) = h(X(\omega)),$$

где

$$h(x) = \begin{cases} E(f(X,Y)|X = a_k) = \sum_{l=1}^{m} f(a_k, b_l) p_{Y|X}(b_l|a_k), & x = a_k \\ 0, & x \neq a_1, \dots, a_r \end{cases}$$

$$k = 1, ..., r$$
.

Замечание. Функция h(x) является функцией в представлении Дуба-Дынкина для E(f(X,Y)|X).

Решение. Случайная величина Z = f(X,Y) принимает конечное число значений $z_{kl} = f(a_k,b_l)$, $k=1,\ldots,r,l=1,\ldots,m$. Согласно (7)

$$E(f(X,Y)|X)(\omega) = h(a_k)1_{\{X=a_k\}}(\omega),$$

где

$$h(a_k) = E(Z|X = a_k) = \sum_{l=1}^m z_{kl} P(Z = z_{kl}|X = a_k) = \sum_{l=1}^m f(a_{kl}, b_l) \cdot p_{Y|X}(b_l|a_k).$$

Последнее равенство следует из того, что

$$P(Z = z_{kl}|X = a_k) = \frac{P(Z = z_{kl}, X = a_k)}{P(X = a_k)} = \frac{P(f(X, Y) = f(a_k, b_l), X = a_k)}{P(X = a_k)} = \frac{P(f(a_k, Y) = f(a_k, b_l), X = a_k)}{P(X = a_k)} = \frac{P(f(a_k, Y) = f(a_k, b_l), X = a_k)}{P(X = a_k)} = \frac{P(f(a_k, Y) = f(a_k, b_l), X = a_k)}{P(X = a_k)} = \frac{P(f(a_k, Y) = f(a_k, b_l), X = a_k)}{P(X = a_k)} = \frac{P(X = a_k)}{P(X = a_k)}$$

$$\frac{P(Y=b_l,X=a_k)}{P(X=x_k)}=p_{Y|X}(b_l|a_k).$$

Проведенные рассуждения легко обобщается на случай счетного числа значений a_1, \dots, a_r, \dots и b_1, \dots, b_m, \dots

Задача 4. Пусть X и Y – две независимые с.в., имеющие распределение Пуассона с параметрами λ и μ . Пусть S = X + Y.

1. Найти закон распределения *S*. Из независимости *X* и *Y* получим

$$P(S=k) =$$

$$\sum_{l=0}^{k} P(X=l, Y=k-l) = \sum_{l=0}^{k} P(X=l) \cdot P(Y=k-l) =$$

$$\sum_{l=0}^{k} \frac{\lambda^{l} e^{-\lambda}}{l!} \cdot \frac{\mu^{k-l} e^{-\mu}}{(k-l)!} = \frac{e^{-(\lambda+\mu)}}{k!} \sum_{l=0}^{k} C_{k}^{l} \lambda^{l} \mu^{k-l} = \frac{e^{-(\lambda+\mu)}}{k!} (\lambda+\mu)^{k}.$$

Таким образом, S распределена по закону Пуассона с параметром $\lambda + \mu$.

2. Вычислить условное математическое ожидание E(X|S). Воспользуемся результатом Задачи 3. Имеем:

$$E(X|S)(\omega) = \sum_{k=0}^{\infty} h(k) \cdot 1_{\{S=k\}}(\omega),$$

где

$$h(k) = E(X|S = k) = \sum_{l=0}^{k} l \cdot P(X = l|S = k) = \sum_{l=0}^{k} l \cdot \frac{P(X = l) \cdot P(Y = k - l)}{P(S = k)} = \sum_{l=0}^{k} l \cdot \frac{\lambda^{l} e^{-\lambda}}{l!} \cdot \frac{\mu^{k-l} e^{-\mu}}{(k-l)!} \cdot \frac{k!}{(\lambda + \mu)^{k} e^{-(\lambda + \mu)}} = \frac{\lambda k}{(\lambda + \mu)^{k}} \cdot \sum_{l=1}^{k} \frac{\lambda^{l-1} \mu^{((k-1)-(l-1))}(k-1)!}{(l-1)! ((k-1)-(l-1))!} = \sum_{l=1}^{k} \frac{\lambda^{m} \mu^{((k-1)-m)}(k-1)!}{m! ((k-1)-m)!} = \frac{\lambda k}{(\lambda + \mu)^{k}} \cdot (\lambda + \mu)^{k-1} = \frac{\lambda}{\lambda + \mu} \cdot k.$$

Таким образом, $h(k) = \frac{\lambda}{\lambda + \mu} \cdot k$ и, в соответствии с задачей 3, $h(S) = \frac{\lambda}{\lambda + \mu} \cdot S$. Функция Дуба-Дынкина оказывается линейной по S.

13) Пусть заданы две с.в. X и Y такие, что пара (X,Y) имеет совместную плотность $f_{X,Y}(x,y)$. Тогда маргинальные плотности X и Y равны соответственно

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy, \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx.$$

В дальнейшем мы будем предполагать, что плотность $f_X(x) > 0$ при $x \in R$. Следующие определения являются непрерывными аналогами рассмотренных выше условных распределений для дискретных случайных величин.

Определение 3.2. Условной плотностью распределения Y при условии X = x назовём функцию $f_{Y|X}(y|x)$, определённую формулой

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

Определение 3.3. Условным математическим ожиданием с.в. Y при условии X = x называется следующая функция $x \in R$

$$E(Y|X=x) = \int_{R} y \cdot f_{Y|X}(y|x)dy.$$

Определение 3.4. Условным математическим ожиданием E(Y|X) называется с.в. h(X), где

$$h(x) = E(Y|X=x).$$

Задача 5. Пусть X, Y две с.в. такие, что пара (X, Y) имеет плотность распределения, равную

$$f_{X,Y}(x,y) = \frac{1}{x} \cdot 1_T(x,y),$$

где T – треугольник, $T = \{0 < y < x < 1\}$. Найти E(Y|X).

Peшение. Интегрируя по $y \in R$, получим маргинальную плотность X

$$f_X(x) = \int_0^x \frac{1}{x} dy = 1_{]0,1[}(x),$$

и, следовательно, поскольку $1_T(x,y)=1_{[0,x]}(y)\cdot 1_{]0,1[}(x)$, получим при $x\in]0,1[$

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{1}{x} \cdot 1_{]0,x[}(y).$$

Отсюда находим

$$h(x) = E(Y|X = x) = \int_0^1 y f_{Y|X}(y|x) dy = \int_0^1 \frac{y}{x} \cdot 1_{]0,x[}(y) dy = \frac{1}{x} \int_0^x y dy = \frac{x}{2}.$$

Отсюда, пользуясь леммой Дуба-Дынкина, получим

$$E(Y|X) = h(X) = X/2.$$

На практике часто приходится вычислять математические ожидания случайных величин вида Z = f(X, Y), где X и Y – независимые случайные величины. Удобно проводить это вычисление в два этапа:

- i) Сначала рассматривают с.в. E(Z|X) = E(f(X,Y)|X);
- іі) Затем используют тождество EZ = E(E(Z|X)).

На этапе і) используют следующее предложение:

Предложение 3.1. Пусть X и Y две **независимые** c.в. Для $x \in R$ обозначим через Y_x случайную величину $Y_x = f(x,Y)$ (то есть измеримое отображение $\Omega \to R$ такое, что $Y_x(\omega) = f(x,Y(\omega))$), и пусть $h: R \to R$ функция, определённая формулой

$$h(x) = E(f(x, Y)) = EY_x(\omega).$$

Тогда

$$E(f(X,Y)|X)(\omega) = h(X(\omega)).$$

Замечание. Функция h(x), выписываемая здесь явно, является функцией, о которой говорится в представлении Дуба-Дынкина.

Доказательство. Мы проведём доказательство в непрерывном случае, доказательство в дискретном случае аналогично. Обозначим Z = f(X,Y). В силу независимости X и Y, $f_{Y|X}(y|x) = f_Y(y)$, откуда

$$E(Z|X=x) = \int_{R} f(x,y)f_{Y|X}(y|x)dy = \int_{R} f(x,y)f_{Y}(y)dy =$$
$$E(Y_{x}) = h(x).$$

Теорема доказана.

Пример. Пусть \mathcal{N} , X_1 , ..., X_n , ... последовательность *независимых* одинаково распределённых с.в., интегрируемых, со значениями в $\mathbb{N} = 1, 2, \ldots$. Пусть S — случайная величина

$$S = \sum_{1 \le i \le \mathcal{N}} X_i,$$

т.е. сумма содержит *случайное число слагаемых* \mathcal{N} . Вычислить E(S).

Peшение. Найдём сначала $E(S|\mathcal{N})$, для этого вычислим $h(n)=E(S|\mathcal{N}=n)$. Пользуясь независимостью X_i и \mathcal{N} , получим

$$E(S|\mathcal{N}=n) = \sum_{1 \le i \le n} E(X_i|\mathcal{N}=n) = \sum_{1 \le i \le n} E(X_i) = n \cdot E(X_1).$$

Таким образом, в силу Предложения 3.1 (можно сослаться также на лемму Дуба-Дынкина)

$$E(S|\mathcal{N}) = \mathcal{N} \cdot E(X_1).$$

Используя соотношение $E(S) = E(E(S|\mathcal{N}))$, получим

$$E(S) = E(\mathcal{N} \cdot E(X_1)) = E(X_1) \cdot E(\mathcal{N}).$$

Первые примеры моделирования.

Исходное предположение: имеется последовательность независимых одинаково распределённых случайных величин, каждая из которых имеет равномерное распределение на отрезке [0,1].

Начнём с простейших примеров.

1. Моделирование дискретной с.в. X, принимающей два значения: +1 и -1 с равными вероятностями.

Ключевое наблюдение состоит в том, что если с.в. U равномерно распределена на отрезке [0,1], то $P\left(U \le \frac{1}{2}\right) = \frac{1}{2}$. Определим с.в. X равенством: X = +1, если $U \le 1/2$ и X = -1, если U > 1/2. Тогда $P(X = +1) = P\left(U \le \frac{1}{2}\right) = 1/2$ и $P(X = -1) = P\left(U > \frac{1}{2}\right) = 1/2$.

2. Моделирование дискретной с.в. X, имеющей распределение Бернулли с заданным параметром р.

Простой способ моделирования такой с.в. состоит в следующем. Разделим интервал [0,1] на два интервала I_0 и I_1 , длины которых соответственно равны 1-p и p. Например, можно положить $I_0=[0,1-p]$ и $I_1=\{1-p,1\}$, но можно также положить $I_0=[p,1]$ и $I_1=[0,p]$. Поскольку с.в. U_1 равномерно распределена на [0,1] (напомним, что исходным «материалом» для нас является последовательность независимых случайных величин U_1, \dots, U_n, \dots , равномерно распределённых на [0,1]), имеем

$$P(U_1 \in I_0) = 1 - p, \qquad P(U_1 \in I_1) = p.$$

Если определить с.в. $X_1(\omega)$ равенствами

$$X_1(\omega) = 1$$
, если $U_1 \in I_1$ и $X_1(\omega) = 0$, если $U_1 \in I_0$,

то легко видеть, что X_1 имеет распределение Бернулли с заданным параметром p. Итак, $X_1 = 1_{I_1} \circ U_1$ имеет распределение Бернулли с параметром p. Для генерирования последовательности одинаково распределённых независимых с.в., имеющих распределение Бернулли с параметром p, достаточно взять $X_k = 1_{I_1} \circ U_k$.

3. Моделирование непрерывной с.в. X, имеющей равномерное распределение на отрезке [0,a], 0 < a < 1.

1-ый метод. По определению равномерного распределения на отрезке [0,a], для любого интервала I имеет место равенство: $P(X \in I) = \frac{|I \cap [0,a]|}{a}$. Здесь |I| означает длину интервала I. Легко проверить, что с.в. $X = a \cdot U$ имеет равномерное распределение на отрезке [0,a] (проверьте!) и, следовательно, $X_k = aU_k$, k = 1,2,... - последовательность независимых одинаково распределённых с.в., каждая из которых имеет равномерное распределение на отрезке [0,a].

2-ой метод. Этот метод сложнее, но он интересен тем, что связан с методом выборки с отклонением, который мы будем рассматривать позже. Определим случайную величину $Y(\omega)$ как значение первой U_k из нашей последовательности $U_1, U_2, ...,$ которая попадает в $[0,a] \subset [0,1]$. А именно, пусть $Y(\omega) =$ $\nu(\omega) = \inf \{k \ge 1: U_k(\omega) \in [0, a]\}.$ Нетрудно $U_{\nu(\omega)}$ где доказать, что случайная величина $Y(\omega)$ имеет равномерное распределение на отрезке [0,a] (позднее мы докажем более утверждение). общее Для чтобы ΤΟΓΟ, получить последовательность независимых И одинаково

распределённых C.B., имеющих равномерное [0,a] распределение, поступают следующим образом. Как и ранее, находят $v_1(\omega) = \inf \{k \ge 1 : U_k(\omega) \in [0, a]\}$ и далее $v_r(\omega) = \inf \{k > v_{r-1}(\omega) : U_k(\omega) \in [0, a] \}.$ полагают $Y_i(\omega) = U_{\nu_i}(\omega)$. Последовательность $Y_i(\omega)$ полагают искомой последовательностью независимых является И одинаково распределённых с.в., каждая из которых имеет равномерное распределение на [0,a] (докажем позже при изучении метода выборки с отклонением).

Моделирование с помощью функции распределения.

Дискретные распределения. Пусть с.в. $X: \Omega \to \{a_1, \dots, a_r\}$ принимает конечное число r возможных значений. Закон распределения X определяется заданием вероятностей $p_i = P(X=a_i)$. Заметим, что $p_i \in [0,1]$ и $p_1 + \dots + p_r = 1$. Пусть I_1, \dots, I_r разбиение интервала [0,1] на интервалы длины p_1, \dots, p_r соответственно. Можно, например, положить

$$\begin{split} I_1 &= [0, p_1[, \ I_2 = [p_1, p_1 + p_2[, ..., \\ I_S &= [p_1 + \cdots + p_{S-1}, p_1 + \cdots + \ p_S[\ (3 \leq s < r), \\ I_r &= [p_1 + \cdots + p_{r-1}, 1]. \end{split}$$

Определим с.в. X равенством $X(\omega)=a_i$, если $U_1\in I_i$, иначе говоря

$$X(\omega) = \sum_{i=1}^{r} a_i \cdot \left(1_{I_i} \circ U_1\right)$$

Легко видеть, что $P(X=a_i)=P(U_1\in I_i)=p_i$. Чтобы генерировать *последовательность* независимых с.в. X_k , имеющих такое же распределение, как X, достаточно положить

$$X_k(\omega) = \sum_{i=1}^r a_i \cdot (1_{I_i} \circ U_k)$$

Очевидно, что X_k независимы (поскольку U_k независимы) и $P(X_k=a_i)=P(U_k\in I_i)=p_i.$

Задача 6. Обобщите предыдущий результат на случай, когда X принимает *счётное* число значений $X: \Omega \to \{a_1, ..., a_r, ...\}$.

Применение: моделирование биномиальных законов.

По определению, с.в. X имеет биномиальное распределение с параметрами (n,p), если она принимает значения в множестве $\{0,1,...n\}$ и $P(X=k)=C_n^kp^k(1-p)^{n-k}, 0 \le k \le n$. Простой способ моделирования биномиального распределения основан на следующем утверждении:

Если $Z_1, ..., Z_n$ последовательность независимых одинаково распределённых с.в., имеющих распределение Бернулли с параметром p (то есть $P(Z_k=1)=p$, $P(Z_k=0)=1-p$), то с.в. $X=Z_1+\cdots+Z_n$ имеет биномиальное распределение с параметрами (n,p).

Задача 7. Доказать предыдущее утверждение.

Чтобы получить *последовательность* $X_1, X_2, ...$ независимых с.в., имеющих одно и то же биномиальное распределение с параметрами (n, p), достаточно положить

$$X_k(\omega) = \sum_{i=(k-1)n+1}^{(k-1)n+n} 1_{[0,p]} {}^{\circ}U_i(\omega).$$

Задача 8. Докажите, что так построенная последовательность $X_1, X_2, ...$ является последовательностью независимых с.в., имеющих одно и то же биномиальное распределение с параметрами (n, p).