

Transformadas de Lagrange

Camargo Badillo Luis Mauricio

11 de febrero de 2024

Ecuaciones Diferenciales II
Oscar Gabriel Caballero Martínez
Grupo 2602
Matemáticas Aplicadas y Computación

8.
$$f(t) = \cos(t)$$

Calculamos la transformada de Lagrange de $f(t) = \cos(t)$:

$$\mathcal{L}\{\cos(t)\} = \int_0^\infty e^{-st} \cos(t) dt$$
$$= \lim_{b \to \infty} \int_0^b e^{-st} \cos(t) dt$$

Integrando por partes, utilizando $u=\cos(t) \implies du=-\sin(t)\ dt$ y $dv=e^{-st}\ dt \implies v=-\frac{1}{s}e^{-st}$, obtenemos:

$$\begin{split} &=\lim_{b\to\infty}\left[\frac{-\cos(t)e^{-st}}{s}\bigg|_0^b - \frac{1}{s}\int_0^b e^{-st}\sin(t)\ dt\right]\\ &=\lim_{b\to\infty}\left[-\frac{\cos(b)e^{-sb}}{s} + \frac{\cos(0)e^0}{s}\right] - \lim_{b\to\infty}\left[\frac{1}{s}\int_0^b e^{-st}\sin(t)\ dt\right]\\ &=\frac{1}{s} - \lim_{b\to\infty}\left[\frac{1}{s}\int_0^b e^{-st}\sin(t)\ dt\right]\\ &=\frac{1}{s} - \frac{1}{s}\lim_{b\to\infty}\int_0^b e^{-st}\sin(t)\ dt \end{split}$$

Una vez más, integrando por partes con $u=\sin(t) \implies du=\cos(t)\ dt$ y $dv=e^{-st}\ dt \implies v=-\frac{1}{s}e^{-st}$, tenemos:

$$\begin{split} &= \frac{1}{s} - \frac{1}{s} \lim_{b \to \infty} \left[\frac{-\sin(t)e^{-st}}{s} \Big|_0^b + \frac{1}{s} \int_0^b e^{-st} \cos(t) \ dt \right] \\ &= \frac{1}{s} - \frac{1}{s} \lim_{b \to \infty} \left[-\frac{\sin(b)e^{-sb}}{s} + \frac{\sin(0)e^0}{s} \right] + \lim_{b \to \infty} \left[\frac{1}{s} \int_0^b e^{-st} \cos(t) \ dt \right] \\ &= \frac{1}{s} - \frac{1}{s} \lim_{b \to \infty} \left[\frac{1}{s} \int_0^b e^{-st} \cos(t) \ dt \right] \\ &= \frac{1}{s} - \frac{1}{s^2} \lim_{b \to \infty} \int_0^b e^{-st} \cos(t) \ dt \end{split}$$

Observemos que:

$$\lim_{b \to \infty} \int_0^b e^{-st} \cos(t) \ dt = \frac{1}{s} - \frac{1}{s^2} \lim_{b \to \infty} \int_0^b e^{-st} \cos(t) \ dt$$

Estableciendo $a = \lim_{b\to\infty} \int_0^b e^{-st} \cos(t) \ dt$, tenemos:

$$a = \frac{1}{s} - \frac{1}{s^2}a$$

$$\Rightarrow a + \frac{1}{s^2}a = \frac{1}{s}$$

$$\Rightarrow a\left(\frac{1}{s^2} + 1\right) = \frac{1}{s}$$

$$\Rightarrow a\left(\frac{1+s^2}{s^2}\right) = \frac{1}{s}$$

$$\Rightarrow a = \frac{s^2}{s(1+s^2)}$$

$$\Rightarrow a = \frac{s}{s^2+1}$$

$$\Rightarrow \lim_{b \to \infty} \int_0^b e^{-st} \cos(t) dt = \frac{s}{s^2+1}$$

$$\Rightarrow \int_0^\infty e^{-st} \cos(t) dt = \frac{s}{s^2+1}$$

Por lo tanto, finalmente:

$$\mathcal{L}\{\cos(t)\} = \frac{s}{s^2 + 1}$$

11.
$$f(t) = e^{4t}$$

Calculamos la transformada de Lagrange de $f(t)=e^{4t}$:

$$\mathcal{L}\lbrace e^{4t}\rbrace = \int_0^\infty e^{-st} e^{4t} dt$$
$$= \int_0^\infty e^{(4-s)t} dt$$
$$= \lim_{b \to \infty} \int_0^b e^{(4-s)t} dt$$

Sustituyamos con $u = (4-s)t \implies du = 4-s \ dt$:

$$= \frac{1}{4-s} \lim_{b \to \infty} \int_0^{(4-s)b} e^u du$$

$$= \frac{1}{4-s} \lim_{b \to \infty} (e^u)|_0^{(4-s)b}$$

$$= \frac{1}{4-s} \lim_{b \to \infty} (e^{(4-s)b} - e^0)$$

$$= \frac{1}{4-s} \left[\lim_{b \to \infty} e^{(4-s)b} - 1 \right]$$

Cuando $s>4 \implies (4-s)<0$, por lo que podemos escribir:

$$= \frac{1}{4-s} \left[\lim_{b \to -\infty} e^b - 1 \right]$$
$$= \frac{1}{4-s} (0-1)$$
$$= \frac{1}{s-4}$$

Así, finalmente obtenemos que:

$$\mathcal{L}\lbrace e^{4t}\rbrace = \frac{1}{s-4} \qquad s > 4$$

12.
$$f(t) = e^{-2t}$$

Calculamos la transformada de Lagrange de $f(t) = e^{-2t}$:

$$\mathcal{L}\lbrace e^{-2t}\rbrace = \int_0^\infty e^{-st} e^{-2t} dt$$
$$= \int_0^\infty e^{(-2-s)t} dt$$
$$= \lim_{b \to \infty} \int_0^b e^{(-2-s)t} dt$$

Sustituyamos con $u=(-2-s)t \implies du=-2-s\ dt$:

$$= \frac{1}{-2 - s} \lim_{b \to \infty} \int_0^{(-2-s)b} e^u du$$

$$= \frac{1}{-2 - s} \lim_{b \to \infty} (e^u) \Big|_0^{(-2-s)b}$$

$$= \frac{1}{-2 - s} \lim_{b \to \infty} \left(e^{(-2-s)b} - e^0 \right)$$

$$= \frac{1}{-2 - s} \left[\lim_{b \to \infty} e^{(-2-s)b} - 1 \right]$$

Cuando $s>-2 \implies (-2-s)<0$, por lo que podemos escribir:

$$= \frac{1}{-2-s} \left[\lim_{b \to -\infty} e^b - 1 \right]$$
$$= \frac{1}{-2-s} (0-1)$$
$$= \frac{1}{s+2}$$

Así, finalmente obtenemos que:

$$\mathcal{L}\lbrace e^{-2t}\rbrace = \frac{1}{s+2} \qquad s > -2$$

14. $f(t) = \sinh(3t)$

Calculamos la transformada de Lagrange de $f(t) = \sinh(3t)$:

$$\mathcal{L}\{\sinh(3t)\} = \int_0^\infty e^{-st} \sinh(3t) dt$$

Recordemos que $\sinh(u)=\frac{1}{2}(e^u-e^{-u})$, así que:

$$\begin{split} &= \frac{1}{2} \int_0^\infty e^{-st} (e^{3t} - e^{-3t}) \ dt \\ &= \frac{1}{2} \left[\int_0^\infty e^{(3-s)t} - e^{(-3-s)t} \ dt \right] \\ &= \frac{1}{2} \left[\int_0^\infty e^{(3-s)t} \ dt - \int_0^\infty e^{(-3-s)t} \ dt \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\int_0^b e^{(3-s)t} \ dt - \int_0^b e^{(-3-s)t} \ dt \right] \end{split}$$

Sustituyendo con $u=(3-s)t \implies du=3-s\ dt$ y $v=(-3-s)t \implies dv=-3-s\ dt$, obtenemos:

$$\begin{split} &=\frac{1}{2}\lim_{b\to\infty}\left[\frac{1}{3-s}\int_0^{(3-s)b}e^u\;du-\frac{1}{-3-s}\int_0^{(-3-s)b}e^u\;du\right]\\ &=\frac{1}{2}\lim_{b\to\infty}\left[\frac{1}{3-s}\left(e^u\right)\big|_0^{(3-s)b}+\frac{1}{3+s}\left(e^u\right)\big|_0^{(-3-s)b}\right]\\ &=\frac{1}{2}\lim_{b\to\infty}\left[\frac{e^{(3-s)b}-1}{3-s}+\frac{e^{(-3-s)b}-1}{3+s}\right]\\ &=\frac{1}{2}\lim_{b\to\infty}\left[\frac{(3+s)e^{(3-s)b}-3-s+(3-s)e^{(-3-s)b}-3+s}{9-s^2}\right]\\ &=\frac{1}{2}\lim_{b\to\infty}\left[\frac{(3+s)e^{(3-s)b}-6+(3-s)e^{(-3-s)b}}{9-s^2}\right]\\ &=\frac{1}{2(9-s^2)}\left[(3+s)\lim_{b\to\infty}e^{(3-s)b}+(3-s)\lim_{b\to\infty}e^{(-3-s)b}-6\right] \end{split}$$

Cuando $s>3 \implies (3-s)<0 \land (-3-s)<0$, por lo que podemos escribir:

$$= \frac{1}{2(9-s^2)} \left[(3+s) \lim_{b \to -\infty} e^b + (3-s) \lim_{b \to -\infty} e^b - 6 \right]$$

$$= \frac{1}{2(9-s^2)} \left[(3+s)0 + (3-s)0 - 6 \right]$$

$$= \frac{1}{2(9-s^2)} (-6)$$

$$= \frac{3}{s^2 - 9}$$

Así, finalmente:

$$\mathcal{L}\{\sinh(3t)\} = \frac{3}{s^2 - 9}$$

15. $f(t) = \cosh(6t)$

Calculamos la transformada de Lagrange de $f(t) = \cosh(6t)$:

$$\mathcal{L}\{\cosh(6t)\} = \int_0^\infty e^{-st} \cosh(6t) dt$$

Recordemos que $\cosh(u)=\frac{1}{2}\left(e^{u}+e^{-u}\right)$, así que:

$$\begin{split} &= \frac{1}{2} \int_0^\infty e^{-st} \left(e^{6t} + e^{-6t} \right) dt \\ &= \frac{1}{2} \left[\int_0^\infty e^{(6-s)t} + e^{(-6-s)t} dt \right] \\ &= \frac{1}{2} \left[\int_0^\infty e^{(6-s)t} dt + \int_0^\infty e^{(-6-s)t} dt \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\int_0^b e^{(6-s)t} dt + \int_0^b e^{(-6-s)t} dt \right] \end{split}$$

Sustituyendo con $u=(6-s)t \implies du=6-s\ dt$ y $v=(-6-s)t \implies dv=-6-s\ dt$, obtenemos:

$$\begin{split} &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{1}{6 - s} \int_0^{(6 - s)b} e^u \, du + \frac{1}{-6 - s} \int_0^{(-6 - s)b} e^u \, du \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{1}{6 - s} \left(e^u \right) \Big|_0^{(6 - s)b} - \frac{1}{6 + s} \left(e^u \right) \Big|_0^{(-6 - s)b} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{e^{(6 - s)b} - 1}{6 - s} - \frac{e^{(-6 - s)b} - 1}{6 + s} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{(6 + s)e^{(6 - s)b} - 6 - s - (6 - s)e^{(-6 - s)b} + 6 - s}{36 - s^2} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{(6 + s)e^{(6 - s)b} - 2s - (6 - s)e^{(-6 - s)b}}{36 - s^2} \right] \\ &= \frac{1}{2(36 - s^2)} \left[(6 + s) \lim_{b \to \infty} e^{(6 - s)b} + (6 - s) \lim_{b \to \infty} e^{(-6 - s)b} - 2s \right] \end{split}$$

Cuando $s>6 \implies (6-s)<0 \land (-6-s)<0$, por lo que podemos escribir:

$$\begin{split} &= \frac{1}{2(36-s^2)} \left[(6+s) \lim_{b \to -\infty} e^b + (6-s) \lim_{b \to -\infty} e^b - 2s \right] \\ &= \frac{1}{2(36-s^2)} \left[(6+s)0 + (6-s)0 - 2s \right] \\ &= \frac{1}{2(36-s^2)} (-2s) \\ &= \frac{s}{s^2-36} \end{split}$$

Así, finalmente:

$$\mathcal{L}\{\cosh(6t)\} = \frac{s}{s^2 - 9}$$

17. $f(t) = \cosh(at)$

Calculamos la transformada de Lagrange de $f(t) = \cosh(at)$:

$$\mathcal{L}\{\cosh(6t)\} = \int_0^\infty e^{-st} \cosh(at) dt$$

Recordemos que $\cosh(u)=\frac{1}{2}\left(e^{u}+e^{-u}\right)$, así que:

$$\begin{split} &= \frac{1}{2} \int_0^\infty e^{-st} \left(e^{at} + e^{-at} \right) \ dt \\ &= \frac{1}{2} \left[\int_0^\infty e^{(a-s)t} + e^{(-a-s)t} \ dt \right] \\ &= \frac{1}{2} \left[\int_0^\infty e^{(a-s)t} \ dt + \int_0^\infty e^{(-a-s)t} \ dt \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\int_0^b e^{(a-s)t} \ dt + \int_0^b e^{(-a-s)t} \ dt \right] \end{split}$$

Sustituyendo con $u=(a-s)t \implies du=a-s\ dt$ y $v=(-a-s)t \implies dv=-a-s\ dt$, obtenemos:

$$\begin{split} &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{1}{a - s} \int_0^{(a - s)b} e^u \ du + \frac{1}{-a - s} \int_0^{(-a - s)b} e^u \ du \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{1}{a - s} \left(e^u \right) \Big|_0^{(a - s)b} - \frac{1}{a + s} \left(e^u \right) \Big|_0^{(-a - s)b} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{e^{(a - s)b} - 1}{a - s} - \frac{e^{(-a - s)b} - 1}{a + s} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{(a + s)e^{(a - s)b} - a - s - (a - s)e^{(-a - s)b} + a - s}{a^2 - s^2} \right] \\ &= \frac{1}{2} \lim_{b \to \infty} \left[\frac{(a + s)e^{(a - s)b} - 2s - (a - s)e^{(-a - s)b}}{a^2 - s^2} \right] \\ &= \frac{1}{2(a^2 - s^2)} \left[(a + s) \lim_{b \to \infty} e^{(a - s)b} + (a - s) \lim_{b \to \infty} e^{(-a - s)b} - 2s \right] \end{split}$$

Cuando $s>a \implies (a-s)<0 \land (-a-s)<0$, por lo que podemos escribir:

$$\begin{split} &= \frac{1}{2(a^2 - s^2)} \left[(a + s) \lim_{b \to -\infty} e^b + (a - s) \lim_{b \to -\infty} e^b - 2s \right] \\ &= \frac{1}{2(a^2 - s^2)} \left[(a + s)0 + (a - s)0 - 2s \right] \\ &= \frac{1}{2(a^2 - s^2)} (-2s) \\ &= \frac{s}{s^2 - a^2} \end{split}$$

Así, finalmente:

$$\mathcal{L}\{\cosh(at)\} = \frac{s}{s^2 - a^2}$$