Análise de séries temporais da taxa de ocupação hospitalar de leitos no Hospital Santa Rosa — Cuiabá/MT

Ediney Magalhães Júnior¹

Introdução

As organizações hospitalares assumem um papel fundamental na sociedade no intuito de cuidar de vidas. Entretanto, sem a busca de informações que possam medir e avaliar todos os processos do hospital, esse papel acaba sendo um fracasso. Tendo em vista o cenário do setor de saúde no Brasil, seja privado ou público, as instituições de saúde necessitam de todo apoio possível para desenvolver estratégias que irão colaborar para que a Segurança e Qualidade no serviço prestado seja uma de suas razões de existência. Sendo assim esse estudo proposto tem a responsabilidade de fornecer informações que permitirão obter uma visão ampla do negócio, apoiar a instituição nas tomadas de decisões e auxilia – lá na redução de custos. Um dos indicadores importantes para avaliação da efetividade de uma instituição hospitalar é a taxa de ocupação de leitos, é a relação percentual do número de pacientes/dia e o número de leitos operacionais/dia. Uma taxa de ocupação diária que não passa dos 60% pode indicar, por exemplo, que o hospital conta com uma estrutura além da necessidade para aquele local. Já uma taxa diária que costuma ultrapassar os 100% indica que o hospital está sempre dependendo de leitos extras, devendo então expandir o número de leitos disponíveis no hospital.

¹ Graduando do curso de Estatística na Universidade Federal de Mata Grosso - UFMT. email: edy.estatistica@gmail.com

Método e material

Os dados utilizados no presente trabalho são de um estudo tipo transversal, realizado no Hospital Santa Rosa em Cuiabá, Mato Grosso. Trata – se de dados diários da taxa de ocupação coletados no período de 01/01/2015 a 31/12/2016. O método descreve a série temporal por meio de medidas ou gráficos. A saber com:

- Análise exploratória de séries temporais:
 - Caracterização da série por meio de identificação de padrões não aleatórios na série temporal;
 - Verificação de correlação entre as observações;
 - Verificação da estabilidade da variância.
- Representação gráfica:
 - o Identificação de componentes, aleatórios ou determinísticos, da série temporal.
- Utilizar as observações para prever os valores futuros de uma série temporal:
 - o Identificação dos melhores modelos autoregressivos integrados de médias móveis;
 - o Estimação dos parâmetros significativos do modelo escolhido;
 - Verificação através de diagnóstico do modelo, no intuito de verificar se o modelo identificado e estimado é adequado;
- Utilizar as estatísticas AIC, EQMP e MAPE para escolher o melhor modelo de previsões.

Resultados

Gráfico 1. Taxa de ocupação hospitalar diária do Hospital Santa Rosa, Cuiabá (MT), nos anos de 2015 a 2016.

Gráfico 2. Gráfico das amplitudes x médias.

Verificamos que não há correlação entre a Amplitude diária da taxa de ocupação e suas médias, pois, o coeficiente de correlação é igual a – 0.2365 com valor-p de 0.0156. Assim sendo não há necessidade de transformação dos dados.

Gráfico 3. Função de autocorrelação e Função de autocorrelação parcial

A função de autocorrelação e autocorrelação parcial demonstra que a série apresenta tendência e sazonalidade. Para podermos realizar projeções sobre a série é necessário que a mesma seja estacionária. Assim sendo removeremos a tendência e sazonalidade utilizando o método da diferença.

Gráfico 4. Função de autocorrelação e autocorrelação parcial – série estacionária

Analisando a FAC e FACP, ajustamos alguns modelos SARIMA para realizar as previsões.

Tabela 1. Estimativas dos parâmetros para o modelo da série temporal da taxa de ocupação no Hospital Santa Rosa de janeiro de 2015 a dezembro de 2016 (erro padrão entre parênteses).

			(F	· · · · · · · · · · · · · · · · · · ·		
Modelo	φ1	φ2	θ_1	θ_2	φ1	φ2
CADIMAA(2.1.1)(4.1.0)	0,6434	0,1370	-1,0000	-	-0,7780	-0,5899
SARIMA(2,1,1)(4,1,0) ₇	(0,0361)	(0,0368)	(0,0048)	-	(0,0379)	(0,0459)
CADDAA(2.1.1)(2.1.0)	0,6452	0,1293	-1,0000	-	-0,7358	-0,5097
SARIMA(2,1,1)(3,1,0) ₇	(0,0372)	(0,0372)	(0,0045)	-	(0,0373)	(0,0428)
CADD (A/O 1 1)/O 1 1)	0,5991	0,1224	-0,9445	-	-	-
SARIMA(2,1,1)(0,1,1) ₇	(0,0428)	(0,0403)	(0,0210)	-	-	-
CARRAA(2.1.0)(0.1.1)	-0,2882	-0,1230	-	-	-	-
SARIMA(2,1,0)(0,1,1) ₇	(0,0370)	(0,0372)	-	-	-	-
CADDAA(1 1 1)(0 1 1)	0,6064	-	-0,8940	-	-	-
SARIMA(1,1,1)(0,1,1) ₇	(0,0755)	-	(0,0516)	-	-	-
CADD (A (1.1.0) (0.1.1)	-0,2565	-	-	-	-	-
SARIMA(1,1,0)(0,1,1) ₇	(0,0360)	-	-	-	-	-
CADDAA(0.1.2)(0.1.1)	-	-	-0,3326	-0,1246	-	-
SARIMA $(0,1,2)(0,1,1)_7$	-	-	(0,0370)	(0,0402)	-	-
	0,7892	-	-1,1392	0,1801	-	-
SARIMA(1,1,2)(0,1,1) ₇	(0,0496)	-	(0,0660)	(0,0551)	-	-

Dentre os modelos apresentados na tabela 1 escolhemos $SARIMA(2,1,1)(4,1,0)_7$ utilizando o teste de autocorrelação e Box-Pierce.

Gráfico 5. FAC dos resíduos dos modelos identificados e estimados para a série temporal da taxa de ocupação hospitalar no Hospital Santa Rosa **SARIMA(2,1,1)(4,1,0)**7.

Tabela 2. Estatísticas AIC, EQMP, MAPE e teste de Ljung-Box para o modelo SARIMA(2,1,1)(4,1,0)₇ da série taxa de ocupação hospitalar.

Modelo	AIC	EQMP	MAPE(%)	Q(28)	Valor - p
SARIMA(1,1,2)(0,1,1)7	2585,1	0,001526	0,041011	12,944	0,9670

Tabela 3. Previsões da taxa de ocupação hospitalar no Hospital Santa Rosa para os 14 primeiros dias de 2017, considerando o modelo SARIMA(2,1,1)(4,1,0)₇ e seus respectivos intervalos de confiança a nível de 95% de confiança.

h	2017	\widehat{Y} (h)	IC95%[Ŷ (h)]	h	2017	Ŷ (h)	IC95%[Ŷ (h)]	
1	01/jan	68,2%	(60,4% 75,	9%) 8	08/jan	69,0%	(56,7%	81,2%)
2	02/jan	74,5%	(65,2% 83,	7%) 9	09/jan	75,1%	(62,7%	87,5%)
3	03/jan	76,5%	(66,3% 86,	7%) 10	10/jan	77,0%	(64,4%	89,6%)
4	04/jan	76,6%	(65,8% 87,	5%) 11	11/jan	77,0%	(64,2%	89,7%)
5	05/jan	76,7%	(65,4% 88,	0%) 12	12/jan	77,0%	(64,1%	89,9%)
6	06/jan	73,6%	(61,9% 85,	3%) 13	13/jan	73,8%	(60,8%	86,9%)
7	07/jan	70,8%	(58,8% 82,	8%) 14	14/jan	71,0%	(57,8%	84,1%)

Com o resultado apresentado é possível auxiliar na gestão da instituição para que a preparação e organização das equipes seja aprimorada, assim como o próprio modelo, ao ser atualizado seja aprimorado.

Referencias Bibliográficas

BOX, G.; JENKINS, G.; REINSEL, G. Time Series Analysis: Forecasting and Control. [S.l.]: Wiley, 2008. (Wiley Series in Probability and Statistics).

CHATFIELD, C. The Analysis of Time Series: An Introduction, Sixth Edition. [S.l.]: CRC Press, 2013. (Chapman & Hall/CRC Texts in Statistical Science).

CRYER, J.; CHAN, K. Time Series Analysis: With Applications in R. [S.l.]: Springer New York, 2008. (Springer Texts in Statistics).

GUJARATI, D. Econometria Basica. [S.l.]: CAMPUS - RJ, 2006.

MORETTIN, P.; TOLOI, C. de C. Análise de séries temporais. [S.l.]: Edgard Blucher, 2006. (ABE - Projeto Fisher).

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-900051-07-0, URL http://www.R-project.org/.