

ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

ENGENHARIA DA COMPUTAÇÃO - UFC/SOBRAL

Prof. Wendley S. Silva

MEMÓRIA PRIMÁRIA

QUAIS SÃO AS MEMÓRIAS PRIMÁRIAS (REAIS)? COMO É CONTIDO AS INFORMAÇÕES NA MEMÓRIA?

MEMÓRIA PRIMÁRIA

- A memória é a parte do computador onde são armazenados programas e dados.
- Memória primária (ou memória principal) armazena programas de forma temporária, quando referidos pelo sistema operacional como processos.
- As memórias primárias são aquelas em que o processador endereça diretamente, como: RAM, ROM, Registradores e o CACHE.

- A unidade básica de memória é o dígito binário, denominado bit (binary digit), que pode armazenar o valor 0 ou o valor 1
 - Um dispositivo capaz de armazenar somente zeros dificilmente poderia formar a base de um sistema de memória; são necessários pelo menos dois valores.

BIT

- Computadores usam aritmética binária porque é "eficiente".
 - As informações digitais podem ser armazenadas distinguindo entre valores diferentes de alguma quantidade física contínua.
 - Quanto maior for o número de valores que precisam ser distinguidos, menores serão as separações entre valores adjacentes, e menos confiável será a memória.
 - O sistema numérico binário requer a distinção entre apenas dois valores.

Decir

BIT

Decimal	Binario	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	3	3
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
20	10100	24	14
30	11110	36	1E
40	101000	50	28
50	110010	62	32
60	111100	74	3C
70	1000110	106	46
80	1010000	120	50
90	1011010	132	5A
100	11001000	144	64
1000	1111101000	1750	3E8
2989	101110101101	5655	BAD

BIT

- Computadores IBM e seus grandes mainframes possuem aritmética decimal, bem como binária
 - BCD (Binary Coded Decimal decimal codificado em binário)

Quatro bits oferecem 16 combinações, usadas para os 10 dígitos de 0 a 9, mas seis

combinações não são usa becin	nal Binário	BCD
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001
10	1010	0001 0000
11	1011	0001 0001
12	1100	0001 0010

- O método mais confiável para codificar informações digitais.
- Memórias consistem em uma quantidade de células (ou locais), cada uma das quais podendo armazenar uma informação.
- A célula é a menor unidade endereçável.

- Cada célula tem um número (endereço), pelo qual os programas podem se referir a ela
 - Se a memória possui n células, seus endereços serão [0, n-1]
 - Cada célula possui o mesmo número de bits (6, 8, 10, 12, 16, ...)
 - Uma célula com k bits pode armazenar 2^k combinações diferentes de bits

4 bits

- Computadores expressam endereços de memória como números binári
- Se um endereço tiver *m* bits, o número máximo de células endereçávei:
- Para a memória da figura precisa de no mínimo 3 e 4 bits

- O número de bits no endereço determina o número máximo de células diretamente endereçáveis na memória e é independente do número de bits por célula
 - Uma memória de 2¹² células de 8 bits e uma memória com 2¹² células de 64 bits cada precisam de endereços de 12 bits
- A célula é a menor unidade endereçável

Número de bits por célula para alguns computadores comerciais historicamente interessantes.

 Há poucos anos, praticamente todos os fabricantes de computadores padronizaram células de 8 bits, que é denominada um byte (octeto).

Computador	Bits/célula
Burroughs B1700	1
IBM PC	8
DEC PDP-8	12
IBM 1130	16
DEC PDP-15	18
XDS 940	24
Electrologica X8	27
XDS Sigma 9	32
Honeywell 6180	36
CDC 3600	48
CDC Cyber	60

- Bytes são agrupados em palavras (sequência de bits)
 - Um computador com uma palavra de 32 bits possui 4 bytes/palavra
 - Um computador com uma palavra de 64 bits possui 8 bytes/palavra
- A significância de uma palavra é que grande parte das instruções efetua operações com palavras inteiras
 - Máquina de 32 bits terá registradores de 32 bits e instruções para manipular palavras de 32 bits
 - Máquina de 64 bits terá registradores de 64 bits e instruções para manipular palavras de 64 bits
 - Movimentar, somar, subtrair, etc.

- Para simplificar, podemos fazer uma analogia: na arquitetura de 32 bits, enquanto um processador precisa realizar duas "viagens" (uma a cada ciclo de clock) para interpretar determinadas informações, na de 64 bits, ele realizaria apenas uma
- Dessa forma, a capacidade de um hardware do gênero poder trabalhar com uma quantidade maior de bits, não influenciará diretamente em sua velocidade de operação, mas em um melhor desempenho geral da plataforma
 - A velocidade eventualmente será menor, mas a quantidade de instruções por ciclo será maior

- Os bytes em uma palavra podem ser numerados da esquerda para a direita ou da direita para a esquerda
- Memória big endian e memória little endian

- Suponha que tenhamos o valor hexadecimal de 32 bits 12345678 e que ele seja armazenado em uma palavra de 32 bits na memória endereçável por byte, no local de byte 184
- O valor consiste em 4 bytes, com o byte menos significativo contendo o valor 12345678 e o byte mais significativo contendo o valor 12345678

Endereço	Valor
184	12
185	34
186	56
187	78

Endereço	Valor
184	78
185	56
186	34
187	12

Big endian

Little endian

- Muitas aplicações requerem uma mistura de inteiros, cadeias de caracteres e outros tipos de dados
- Exemplo: um simples registro de pessoal composto de uma cadeia (nome do empregado) e dois inteiros (idade e número do departamento)

0

12

16

"Jim Smith, idade 21, departamento 260 (1 × 256 + 4 = 260)"

Transferência de

Iransterencia				
e troca				
J I M				0
S	М	Ι	Т	4
Н	0	0	0	8
0	0	0	21	12
0	0	1	4	16

Transforância

- Não há uma solução simples
- Um modo que funciona, mas ineficiente é incluir um cabeçalho
- A falta de um padrão para a ordenação de bytes é um grande aborrecimento quando há troca de dados entre máquinas diferentes.

- Memórias de computador podem cometer erros de vez em quando devido a picos de tensão na linha elétrica, por exemplo
- É preciso empregar métodos de detecção e até mesmo de correção de erros
 - Nesse caso, bits extras são adicionados às palavras de modo especial, para a validação
 - Ex.: A uma palavra de m bits de dados são adicionados r bits redundantes (n = m + r)
 - Palavra de código

- A partir de duas palavras, é possível determinar quantos bits são diferentes
 - Ex.: 10001001 e 10110001 → Há três bits diferentes
- O número de posições cujos bits são diferentes em duas palavras é a distância de Hamming
 - As propriedades de detecção de erro e correção de erro de um código dependem de sua distância de Hamming

Número de bits de verificação para um código que pode corrigir um erro único

Tamanho da palavra	Bits de verificação	Tamanho total	Acréscimo percentual
8	4	12	50
16	5	21	31
32	6	38	19
64	7	71	11
128	8	136	6
256	9	265	4
512	10	522	2

■ Codificar a palavra de 4 bits $1100 \rightarrow AB = 1$; ABC = 1; AC = 0; BC = 0

- A, B e C armazenam bits de paridade par (ou ímpar)
 - A soma dos bits em cada círculo é par (ou ímpar)

 Se um bit da sequência 1100 for trocado para 1110, através dos bits de paridade é possível identificar que há um bit errado e qual o bit foi trocado, podendo ser feita sua correção

- A figura a seguir mostra a construção de um código de Hamming para a palavra de memória de 16 bits 1111000010101110
- Todo bit potência de 2 é paridade
- A palavra de código de (16+5) 21 bits é 001011100000101101110
- Um bit b é verificado pelos bits de paridade (b1, b2, b3, ...) de forma que b1 + b2 + ... = b

Palavra de memória 1111000010101110

- Bit 1 verifica bits 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21.
- Bit 2 verifica bits 2, 3, 6, 7, 10, 11, 14, 15, 18, 19.
- Bit 4 verifica bits 4, 5, 6, 7, 12, 13, 14, 15, 20, 21.
- Bit 8 verifica bits 8, 9, 10, 11, 12, 13, 14, 15.
- Bit 16 verifica bits 16, 17, 18, 19, 20, 21.

- A figura a seguir mostra a construção de um código de Hamming para a palavra de memória de 16 bits 1111000010101110
- A palavra de código de (16+5) 21 bits é 001011100000101101110
- Para ver como funciona a correção de erros, considere o que aconteceria se o bit 5
 fosse invertido por uma sobrecarga elétrica na linha de força
- A nova palavra de código seria 001001100000101101110

Os bits são numerados começando de 1 (em vez de zero)

 0
 0
 1
 0
 0
 0
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 1
 1
 0
 1
 0
 1
 0
 1
 0

Bits cujas posições corresponderem à potência de 2 são de paridades

```
0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 1 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
```

- A palavra sem os códigos de paridade: 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 0
- Em seguida, fazemos as somas para cada bit de paridade

- Os 5 bits de paridade serão verificados com os seguintes resultados:
 - Bit de paridade 1 incorreto (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 contêm cinco 1s)
 - Bit de paridade 2 correto (2, 3, 6, 7, 10, 11, 14, 15, 18, 19 contêm seis 1s)
 - Bit de paridade 4 incorreto (4, 5, 6, 7, 12, 13, 14, 15, 20, 21 contêm cinco 1s)
 - Bit de paridade 8 correto (8, 9, 10, 11, 12, 13, 14, 15 contêm dois 1s)
 - Bit de paridade 16 correto (16, 17, 18, 19, 20, 21 contêm quatro 1s)

- O bit incorreto deve ser um dos bits verificados pelo bit de paridade 1
 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 ou 21
- juntamente com um dos bits verificados pelo bit de paridade 4
 4, 5, 6, 7, 12, 13, 14, 15, 20 ou 21
- Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

1 3 5 7 9 11 13 15 17 19 21 4 5 6 7 12 13 14 15 20 21

- Contudo, o bit 2 está correto
 - 2, 3, 6, 7, 10, 11, 14, 15, 18, 19
- Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

```
1 3 5 7 9 11 13 15 17 19 21
4 5 6 3 12 13 14 6 20 21
```


- Da mesma forma, o bit 8 está correto
 - 8, 9, 10, 11, 12, 13, 14, 15
- Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

1 3 5 7 9 11 13 15 17 19 21 4 5 6 8 12 8 14 8 20 21

- Por fim, o bit 16 está correto
 16, 17, 18, 19, 20, 21
- Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

1 3 5 7 9 11 13 15 17 19 21 4 5 6 🔇 12 🚫 14 🚫 20 🚫

UNIVERSIDADE FEDERAL DO CEARÁ

CÓDIGOS DE CORREÇÃO DE ERRO

Restando apenas o bit 5. O que é necessário para corrigi-lo?

<u>0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 1 1 0</u>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

1 3 5 N 9 11 N 17 19 N 17 19 N 12 N 14 N 20 N

UNIVERSIDADE FEDERAL DO CEARÁ

CÓDIGOS DE CORREÇÃO DE ERRO

Restando apenas o bit 5.

 Como os bits de paridade inválidos são o 1 e o 4, o bit incorreto é verificado por ambos

1 3 5 N 9 11 N 17 19 N 17 19 N 12 N 14 N 20 N

CÓDIGOS DE CORREÇÃO DE ERRO

Como são definidos os bits de paridade?

- Bit de paridade 1 somam-se os bits 1 em (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21) 6%2 = 0
- Bit de paridade 2 somam-se os bits 1 em (2, 3, 6, 7, 10, 11, 14, 15, 18, 19) 6%2 = 0
- Bit de paridade 4 somam-se os bits 1 em (4, 5, 6, 7, 12, 13, 14, 15, 20, 21) 6%2 = 0
- Bit de paridade 8 somam-se os bits 1 em (8, 9, 10, 11, 12, 13, 14, 15)
 2%2 = 0
- Bit de paridade 16 somam-se os bits 1 em (16, 17, 18, 19, 20, 21)
 3%2 = 1

CÓDIGOS DE CORREÇÃO DE ERRO -ATIVIDADE

Determine os bits de paridade

Verificar se a palavra foi alterada

MEMÓRIA PRIMÁRIA

- A memória principal é um circuito eletrônico integrado do tipo "DRAM" (Dynamic Randon Access Memory) e é designada de "banco de memória" (memory board).
 - É uma memória de rápido acesso e que armazena os dados /informações (programas, objetos, dados de entrada e saída, dados do sistema operacional, etc.).
- Apesar de ter acesso extremamente rápido, permitir ser gravada, desgravada e lida, a memória principal, apresenta um grande inconveniente: ela é volátil.
 - Ser volátil significa dizer que se gravamos uma série de informações e o computador for desligado por qualquer motivo, ela "esquece" todo o seu conteúdo.

MEMÓRIA PRIMÁRIA

- A grande velocidade da memória RAM deve-se a três registros que permitem um acesso aos dados necessários de forma direta.
 - 1° registro Memory Address Register
 - Guarda o endereço onde se encontra ou será colocado um dado/informação.
 - 2º registro Memory Buffer register
 - Se a operação desejada for de leitura, ele recebe a informação localizada pelo registro de endereço e a envia ao processador;
 - 2. Se a operação desejada for uma saída(gravação), ele transfere o dado para a posição de memória indicada pelo registro de endereço.
 - 3º registro Conector de Ligação
 - Conecta o buffer (armazenador de dados utilizado para compensar a difierença de velocidade entre dois dispositivos), após cada operação (leitura/gravação), à posição de memória indicada pelo registro de memória, permitindo assim a comunicação (transferência) de dados em ambos os sentidos.

MEMÓRIA DE LEITURA

- Outro tipo de circuito integrado de memória é a não-volátil.
 - Estes circuitos conservam os dados que estavam sob sua custódia mesmo que a máquina esteja desligada.
 - Em compensação o microcomputador em operação normal não consegue escrever nenhuma informação neles, apenas a leitura é possível.
- É o circuito do tipo "ROM" (Read Only Memory ou Memória Apenas para Leitura).
- Este tipo de memória já vem instalada de fábrica na placa-mãe e traz gravadas em seus circuitos as informações básicas para o funcionamento da máquina, ativando os dispositivos necessários para a inicialização das tarefas.

MEMÓRIA DE LEITURA

- Há várias espécies de memória do tipo ROM:
 - 1. PROM (*Programmable Read Only Memory* ou Memória Programável Exclusiva para Leitura) = pode ser programada através de um equipamento específico e gravada uma única vez;
 - 2. EPROM (Electrically Programmable Read Only Memory ou Memória Exclusiva para Leitura Programável Eletricamente) ou (Eraseble Programmable Read Only Memory ou Memória Exclusiva para Leitura, Programável e Apagável) = pode ser gravada, apagada e regravada, por equipamento espacífico;
 - 3. EAROM (Electrically Alterable Read Only Memory ou Memória Alterável Eletricamente) = seus dados podem ser alterados;
 - 4. EEROM (Electrical Eraseble Programmable Read Only Memory ou Memória Programável Apagável) = seu conteúdo pode ser apagado através de processos elétricos.
- Os componentes de hardware que vem gravados de fábrica ou que possibilite gravação permanente (que não pode ser mudada) é considerado como uma fusão de hardware e software.

PROBLEMAS DE DESEMPENHO

- Historicamente, as CPUs sempre foram mais rápidas do que a memória
 - A medida que a memória melhora, a CPU também é aperfeiçoada, contribuindo para o desequilíbrio entre CPU e memória
 - Projetistas de memória costumam usar nova tecnologia para aumentar a capacidade
- Qual o significado desse desequilíbrio?
 - CPUs gastam muitos ciclos ociosas aguardando informações (instruções, dados) serem lidos/escritos da/na memória – quanto mais lenta a memória, mais ciclos a CPU terá de aguardar

PROBLEMAS DE DESEMPENHO

- É possível criar memórias que trabalhem tão rápidas quanto a CPU, mas para executarem, precisam se localizar dentro do chip da CPU – o uso dos barramentos contribui para a lentidão do acesso à memória
- Por que isso não é feito?
 - Por fatores econômicos
 - Adicionar uma memória na CPU deixaria esta muito maior e mais cara
 - Ou se tem uma memória pequena e rápida ou uma memória grande e lenta
 - O que na prática precisamos é de muita memória a um preço baixo

MEMÓRIA CACHE

- A ideia básica de uma cache é simples: as palavras de memória usadas com mais frequência são mantidas na cache
- Quando a CPU precisa de uma palavra, ela examina em primeiro lugar a cache.
- Somente se a palavra n\u00e3o estiver ali \u00e9 que ela recorre \u00e0 mem\u00f3ria principal
- Se uma fração substancial das palavras estiver na cache, o tempo médio de acesso pode ser muito reduzido

MEMÓRIA CACHE

- A localização lógica da cache é entre a CPU e a memória principal.
- Em termos físicos, há diversos lugares em que ela poderia estar localizada

MEMÓRIA CACHE

- k : qtde vezes palavra foi lida em um curto intervalo de tempo
- h: taxa de acerto
- c : tempo de acesso à cache
- m: tempo de acesso à memória
- h = (k 1)/k
- tempo de acesso médio = c + (1 h) m

EMPACOTAMENTO E TIPOS DE MEMÓRIA

- Desde o início da década de 1990, usa-se um grupo de chips, em geral 8 ou 16, montado em uma minúscula placa de circuito impresso e vendido como uma unidade.
- Essa unidade é denominada de SIMM (Single Inline Memory Module módulo único de memória em linha) ou DIMM (Dual Inline Memory Module – módulo duplo de memória em linha).
- Os SIMMs têm um conector de borda com 72 contatos e transferem 32 bits por ciclo de clock.
- Os DIMMs em geral têm conectores de borda com 120 contatos em cada lado da placa, perfazendo um total de 240 contatos e transferem 64 bits por ciclo de clock.

EMPACOTAMENTO E TIPOS DE MEMÓRIA

- Uma configuração típica de DIMM poderia ter oito chips de dados com 256 MB cada. O módulo inteiro conteria 2 GB (ou 16 chips, totalizando 4GB)
- Muitos computadores têm espaço para quatro módulos, o que dá uma capacidade total de 8 GB se forem usados módulos de 2 GB, ou mais se forem usados módulos maiores

MEMÓRIA EXTERNA OU MEMÓRIA AUXILIARES

- Seja qual for o tamanho da memória principal, ela sempre será muito pequena.
- A solução tradicional para armazenar grandes quantidades de dados é uma hierarquia de memória:

- Um disco magnético é composto de um ou mais pratos de alumínio com um revestimento magnetizável
 - No início, esses pratos tinham até 50 cm de diâmetro, mas agora têm normalmente de 3 a 9 cm, e discos para notebooks já estão com menos de 3 cm e continuam encolhendo.
- Um cabeçote de disco que contém uma bobina de indução flutua logo acima da superfície.
- Quando o cabeçote passa sobre uma área magnetizada, uma corrente positiva ou negativa é induzida nele, o que possibilita a leitura dos bits armazenados antes.
- Assim, à medida que o prato gira sob o cabeçote, uma corrente de bits pode ser escrita e mais tarde lida.

Porção de uma trilha de disco. Dois setores são ilustrados.

- Duas tecnologias definem o número de bits por trilhas
- 1. O número de bits por trilha é constante
 - Trilhas mais internas possuem uma densidade maior bits/pc
 - Discos com tecnologia CAV (Constant Angular Velocity)

W. Stallings. Operating Systems (4th Ed.), Prentice Hall, 2001.

- Duas tecnologias definem o número de bits por trilhas
- 2. O número de bits por trilha depende se ela é mais interna ou mais externa
 - Discos com tecnologia CLV (Constant Linear Velocity)
 - CDROM

W. Stallings. Operating Systems (4th Ed.), Prentice Hall, 2001.

- Para atingir densidades ainda mais altas, os fabricantes de discos estão desenvolvendo tecnologias nas quais a dimensão "longa" dos bits não está ao longo da circunferência do disco, mas na direção vertical, dentro do óxido de ferro.
 - Essa técnica é denominada gravação perpendicular e demonstrou-se que pode oferecer densidades de dados de até 100 gigabits/cm. É provável que essa se torne a tecnologia dominante nos próximos anos.

- Múltiplos pratos (disk pack)
 - Vários pratos empilhados e centrados
 - Para cada prato, um cabeçote de leitura/escrita (braço móvel)
 - Cilindro: conjunto de trilhas de mesmo número em pratos diferentes

- A maioria dos discos é composta de vários pratos empilhados na vertical. Cada superfície tem seu próprio braço e cabeçote.
- Os braços são agrupados de modo que todos se movimentem para diferentes posições radiais ao mesmo tempo. O conjunto de trilhas em uma dada posição radial é denominado cilindro.

A maioria dos discos é composta de vários pratos empilhados na vertical:

DESEMPENHO DO DISCO

- Para ler/escrever dados é necessário que o cabeçote de leitura e escrita esteja posicionada na trilha e no início do setor desejados.
- O desempenho do disco depende de vários fatores. Para ler ou escrever um setor, primeiro o braço deve se deslocar até a posição radial correta.

DESEMPENHO DO DISCO

- Essa ação é denominada busca (seek). Tempos médios de busca (entre trilhas aleatórias) estão na faixa de 5 a 10 ms.
- Logo que o cabeçote estiver posicionado radialmente, há um atraso, denominado latência rotacional.
- O tempo de transferência depende da densidade linear e da velocidade de rotação.

DESEMPENHO DO DISCO

- Três tempos envolvidos:
 - Tempo de posicionamento (seek time)
 - Tempo necessário para posicionar o cabeçote de leitura/escrita na trilha desejada
 - Tempo de latência rotacional
 - Tempo necessário para atingir o início do setor a ser lido/escrito
 - Tempo de transferência
 - Tempo para escrita/leitura efetiva dos dados

TEMPORIZAÇÃO DO ACESSO AO DISCO

$$t_{acesso} = t_{seek} + t_{latência} + t_{trasnf}$$

TEMPO DE POSICIONAMENTO (SEEK)

- Possui duas componentes:
 - Tempo de acionamento e aceleração do braço do cabeçote
 - Tempo de deslocamento até a trilha desejada
- Tempo médio de seek
 - Dado fornecido pelo fabricante
 - 5 a 10 ms (tecnologia anos 2000-2010)

TEMPO DE LATÊNCIA ROTACIONAL

- Definido pela velocidade de rotação do motor
- Considera-se o tempo médio
 - Metade do tempo de uma rotação
 - A maioria dos discos gira a 5.400 RPM, 7.200 RPM, 10.800 RPM ou 15.000 RPM, portanto, o atraso médio (meia rotação) é de 3 a 6 ms.

TEMPO DE TRANSFERÊNCIA

 Tempo de transferência de dados de/para disco depende da velocidade de rotação

$$T = \frac{b}{rN}$$

- T = tempo de transferência
- b = número de bytes a serem transferidos
- N = número de bytes em uma trilha
- r = velocidade de rotação, numero de rotações por segundo

TEMPO MÉDIO DE ACESSO

Tempo médio de acesso é dado por:

$$T_{acesso} = t_{seek_m\acute{e}dio} + \frac{1}{2r} + \frac{b}{rN}$$

- Discos feitos de memória flash não volátil, geralmente denominados discos em estado sólido (SSDs – Solid-State Disks).
 - Os discos flash são compostos de muitas células de memória flash em estado sólido

- Vantagens do SSD em relação ao HD
 - O drive é 3 vezes menor, ou seja, ocupa pouco espaço
 - É totalmente silencioso e mais rápido (chega a ser 5 vezes mais veloz que um HDD)
 - É ideal para quem necessita de velocidade, pois carrega programas e arquivos rapidamente e melhora a performance do sistema
 - Não possui uma grande estrutura de discos mecânicos
 - É mais resistente em caso de queda, mas isso não quer dizer que seja indestrutível
 - Utiliza menor temperatura e menos consumo de eletricidade

- Desvantagens do SSD em relação ao HD
 - Preço alto, armazenamento baixo
 - Vida útil: toda vez que a memória recebe uma nova gravação (uma nova tensão elétrica), a célula vai perdendo um pouco a capacidade de segurar a carga elétrica.
 Depois de uma quantidade de vezes que isso ocorre, a memória "morre".
 - Por ser uma tecnologia recente, é difícil de saber como será seu comportamento por um longo tempo

 O formato básico de um CD-ROM consiste em codificar cada byte em um símbolo de 14 bits

 Nos CD-Rs são graváveis e as diferentes refletividades das depressões e dos planos têm de ser simuladas. Isso é feito com a adição de uma camada de corante entre o policarbonate o a superfício refletiva

- Uma tecnologia disponível agora é o CD-RW (CDs regraváveis), que usa um meio do mesmo tamanho do CD-R
- Contudo, o CD-RW usa uma liga de prata, índio, antimônio e telúrio para a camada de gravação
- Essa liga tem dois estados estáveis: cristalino e amorfo, com diferentes refletividades

- Lasers com três potências diferentes:
 - Alta potência: o laser funde a liga fazendo-a passar do estado cristalino para o estado amorfo;
 - Potência média: a liga se funde e volta a seu estado natural cristalino para se tornar novamente um plano;
 - Baixa potência: o estado do material é sondado (para leitura), mas não ocorre qualquer transição de fase;
- Uma combinação de tecnologia e demanda por três indústrias imensamente ricas e poderosas resultou no DVD

MEMÓRIA SECUNDÁRIA: DVD

Disco de DVD de dupla face, dupla camada

- O DVD mai acapara ae ser iançaao e seu sucessor ja ameaçava torna-io obsoleto
- O Blu-ray (raio azul), assim chamado porque usa um laser azul, em vez do vermelho usado por DVDs

REFERÊNCIAS

- TANENBAUM, A. S. Organização Estruturada de Computadores. Editora LTC, 5 ed, Rio de Janeiro, 2007.
- STALLINGS, W. Arquitetura e Organização de Computadores. Editora Prentice Hall, 5 edição, 2002.