

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 2 - Matrizes Operações, Tipos Especiais e Traço

Professora: Isamara Alves,

04/03/2021

Transposta - Definição

Sejam
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
 e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$.

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Transposta - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$. Dizemos que a matriz C é a TRANSPOSTA da matriz A se, e somente se,

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação: $C = A^t$

Transposta - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$. Dizemos que a matriz C é a TRANSPOSTA da matriz A se, e somente se,

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação: $C = A^t$

Transposta - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$. Dizemos que a matriz C é a TRANSPOSTA da matriz A se, e somente se,

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação: $C = A^t$

$$C_{n\times m} = A_{m\times n}^t =$$

Transposta - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$. Dizemos que a matriz C é a TRANSPOSTA da matriz A se, e somente se,

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} =$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots \\ & & \\ & & \end{bmatrix}$$

Transposta - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$. Dizemos que a matriz C é a TRANSPOSTA da matriz A se, e somente se,

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & a_{i1} \\ & & & \\ & & & \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & a_{m1} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & &$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1j} & & & & \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

```
Notação: C = A^t
C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & \vdots & \vdots & \vdots \end{bmatrix}
```

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & a_{ij} \end{bmatrix}$$

Transposta - Definição

$$c_{ji}=a_{ij}; \quad \forall i=1,\ldots,m; \forall j=1,\ldots,n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & a_{mj} \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nn} & \vdots & \vdots & \vdots \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & a_{in} \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{nj} & \cdots & a_{mn} \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots & c_{nm} \end{bmatrix}$$

Transposta - Definição

$$c_{ji} = a_{ij}; \quad \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^t$$

$$C_{n \times m} = A^t_{m \times n} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots & c_{nm} \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3}=A^t$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3}=A^t=\begin{bmatrix} 2 & -1 & 0 \\ & & \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times 3} = A^t = \begin{bmatrix} 2 & -1 & 0 \\ 1+2i & 5 & i \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3} = A^{t} = \begin{bmatrix} 2 & -1 & 0\\ 1+2i & 5 & i\\ -3i & -3 & 2 \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3} = A^t = \begin{bmatrix} 2 & -1 & 0 \\ 1+2i & 5 & i \\ -3i & -3 & 2 \\ -1 & -1+i & 3 \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3} = A^t = \begin{bmatrix} 2 & -1 & 0 \\ 1+2i & 5 & i \\ -3i & -3 & 2 \\ -1 & -1+i & 3 \end{bmatrix}$$

Transposta - Exemplo

EXEMPLO:

$$A_{3\times4} = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C_{4\times3} = A^t = \begin{bmatrix} 2 & -1 & 0 \\ 1+2i & 5 & i \\ -3i & -3 & 2 \\ -1 & -1+i & 3 \end{bmatrix}$$

Transposta - Propriedades

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

1.
$$(A^t)^t =$$

Transposta - Propriedades

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

1.
$$(A^t)^t =$$

Transposta - Propriedades

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A+D)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A+D)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A+D)^t = A^t + D^t$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t =$

Transposta - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha A^t$

Transposta - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha A^t$
- 4. PRODUTO $(AB)^t =$

Transposta - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha A^t$
- 4. PRODUTO $(AB)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha A^t$
- 4. PRODUTO $(AB)^t = B^t A^t$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^t)^t = A$
- 2. Soma $(A + D)^t = A^t + D^t$
- 3. Multiplicação por escalar $(\alpha A)^t = \alpha A^t$
- 4. PRODUTO $(AB)^t = B^t A^t$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$.

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z\in\mathbb{C}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
;

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} =$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação: $C = \overline{A}$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} \overline{a_{11}} \\ \vdots \\ \vdots \\ a_{11} \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = \overline{A}$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots \\ & & \\ & & \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = \overline{A}$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & \overline{a_{1j}} \\ & & & \\ & & & \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & \overline{a_{1n}} \\ & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & & & & \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & \overline{a_{ij}} \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi$$
; $a, b, \in \mathbb{R}$; $i^2 = -1 \Rightarrow \overline{z} = a - bi$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & \overline{a_{in}} \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & \overline{a_{mj}} \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mi} & \cdots \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & \overline{a_{mn}} \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação: $C = \overline{A}$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mi} & \cdots & c_{mn} \end{bmatrix}$$

Conjugada - Definição

Sejam $A, C \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que a matriz C é a CONJUGADA da matriz A se, e somente se,

$$c_{ij} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação: $C = \overline{A}$

$$z \in \mathbb{C} \Rightarrow z = a + bi; a, b, \in \mathbb{R}; i^2 = -1 \Rightarrow \overline{z} = a - bi$$

$$C = \overline{A_{m \times n}} = \begin{bmatrix} c_{11} & \cdots & c_{1j} & \cdots & c_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{i1} & \cdots & c_{ij} & \cdots & c_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{m1} & \cdots & c_{mj} & \cdots & c_{mn} \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} =$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} =$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} \overline{1} \\ \overline{1} \\$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & \overline{2+3} \\ 1 & \overline{2+3$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & \overline{-i} \\ & & & & \\ & & & & \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ 8i & 1 & 2-3i & 1 & 4 \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i \\ -8i & -2 & 0 & -2 \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i \\ -8i & -2 & \overline{0} \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & \overline{-4+7i} \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ \hline -i & \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & \overline{-2} & 0 & -4-7i \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & \overline{1-i} & -4 \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & \overline{-4} \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & -4 \end{bmatrix}$$

Conjugada - Exemplos

EXEMPLO:

1. MATRIZ COMPLEXA

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & -4 \end{bmatrix}$$

2. MATRIZ REAL

$$A_4 = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix} \Rightarrow C = \overline{A_4} =$$

Conjugada - Exemplos

EXEMPLO:

1. MATRIZ COMPLEXA

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & -4 \end{bmatrix}$$

2. MATRIZ REAL

$$A_4 = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix} \Rightarrow C = \overline{A_4} =$$

Conjugada - Exemplos

EXEMPLO:

1. MATRIZ COMPLEXA

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & -4 \end{bmatrix}$$

2. MATRIZ REAL

$$A_{4} = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix} \Rightarrow C = \overline{A_{4}} = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Conjugada - Exemplos

EXEMPLO:

1. MATRIZ COMPLEXA

$$A_{3\times 4} = \begin{bmatrix} 1 & 2+3i & -i & 4 \\ 8i & -2 & 0 & -4+7i \\ -i & -2 & 1-i & -4 \end{bmatrix} \Rightarrow C = \overline{A_{3\times 4}} = \begin{bmatrix} 1 & 2-3i & i & 4 \\ -8i & -2 & 0 & -4-7i \\ i & -2 & 1+i & -4 \end{bmatrix}$$

2. MATRIZ REAL

$$A_{4} = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix} \Rightarrow C = \overline{A_{4}} = \begin{bmatrix} 1 & 2 & -7 & 4 \\ 8 & -1 & \frac{2}{3} & -4 \\ -9 & 0 & 1 & -3 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

1.
$$\overline{(\overline{A})} =$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

1.
$$\overline{(\overline{A})} =$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

1.
$$\overline{(\overline{A})} = A$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- $\frac{\text{Soma}}{(A+D)} =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- $\frac{\text{Soma}}{(A+D)} =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} =$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha}}{\alpha}$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} =$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} =$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} = (\overline{A})(\overline{B})$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} = (\overline{A})(\overline{B})$
- 5. Transposta $\overline{A^t} =$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} = (\overline{A})(\overline{B})$
- 5. Transposta $\overline{A^t} =$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} = (\overline{A})(\overline{B})$
- 5. Transposta $\overline{A^t} = (\overline{A})^t$

Conjugada - Propriedades

Sejam $A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $\overline{(\overline{A})} = A$
- 2. $\frac{\text{SOMA}}{(A+D)} = \overline{A} + \overline{D}$
- 3. $\frac{\text{Multiplicação por escalar}}{(\alpha A)} = \frac{\overline{\alpha} \overline{A}}{\overline{A}}$
- 4. $\frac{\text{Produto}}{(AB)} = (\overline{A})(\overline{B})$
- 5. Transposta $\overline{A^t} = (\overline{A})^t$

Transconjugada - Definição

Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ e $C \in \mathcal{M}_{n \times m}(\mathbb{K})$.

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* =$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} =$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} \overline{a_{11}} \\ \end{array}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & \overline{a_{i1}} \\ & & & \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline a_{1j} & & & & \\ \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & \overline{a_{jj}} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{ji} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & \overline{a_{mj}} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \dots, m; \forall j = 1, \dots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & \overline{a_{in}} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots & \overline{a_{mn}} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots & c_{nm} \end{bmatrix}$$

Transconjugada - Definição

$$c_{ji} = \overline{a_{ij}}; \ \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$C = A^*$$
; onde $A^* = \overline{(A)^t}$

$$C = A^* = \overline{(A_{m \times n})^t} = \begin{bmatrix} c_{11} & \cdots & c_{1i} & \cdots & c_{1m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{j1} & \cdots & c_{ji} & \cdots & c_{jm} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{n1} & \cdots & c_{ni} & \cdots & c_{nm} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times4}=$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* =$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} =$$

TransConjugada - Exemplos

EXEMPLO: MATRIZ REAL

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} \overline{2} \\ \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

TransConjugada - Exemplos

$$A_{3\times4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & \overline{-1} \\ & & \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \begin{bmatrix} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & \overline{0} \\ & & \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ \overline{1} & & \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{cccc} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & \overline{5} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 5 & \overline{0} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{cccc} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0\\ 1 & 5 & 0\\ \hline -5 & & \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0\\ 1 & 5 & 0\\ -5 & \overline{-3} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0\\ 1 & 5 & 0\\ -5 & -3 & \overline{2} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \\ -1 & \overline{-1} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \\ -1 & -1 & \overline{3} \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \\ -1 & -1 & 3 \end{bmatrix}$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \\ -1 & -1 & 3 \end{vmatrix} = A_{3\times 4}^t$$

TransConjugada - Exemplos

$$A_{3\times 4} = \left[\begin{array}{rrrr} 2 & 1 & -5 & -1 \\ -1 & 5 & -3 & -1 \\ 0 & 0 & 2 & 3 \end{array} \right]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{vmatrix} 2 & -1 & 0 \\ 1 & 5 & 0 \\ -5 & -3 & 2 \\ -1 & -1 & 3 \end{vmatrix} = A_{3\times 4}^t$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times4} =$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* =$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} =$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2+i \\ 2+i \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & \overline{-2i} & \overline{-2i}$$

TransConjugada - Exemplos

EXEMPLO:

TransConjugada - Exemplos

EXEMPLO:

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & \overline{5} & 0 \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & 5 & \overline{i} \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ \frac{1}{-i} & 5 & -i \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & \frac{5}{7i} & -i \\ i & \frac{7i}{7i} & -i \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$-i & 2i & 0$$

$$1 & 5 & -i$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0\\ 1 & 5 & -i\\ i & -7i & \overline{2} \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & 5 & -i \\ i & -7i & 2 \\ \hline -1-3i \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & 5 & -i \\ i & -7i & 2 \\ -1+3i & 1-2i \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times4})^t} = \begin{vmatrix} 2-i & 2i & 0\\ 1 & 5 & -i\\ i & -7i & 2\\ -1+3i & 1+2i & \overline{3} \end{vmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$-i \qquad 2i \qquad 0 \quad]$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0\\ 1 & 5 & -i\\ i & -7i & 2\\ -1+3i & 1+2i & 3 \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0\\ 1 & 5 & -i\\ i & -7i & 2\\ -1+3i & 1+2i & 3 \end{bmatrix}$$

TransConjugada - Exemplos

EXEMPLO:

$$A_{3\times 4} = \begin{bmatrix} 2+i & 1 & -i & -1-3i \\ -2i & 5 & 7i & 1-2i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$C = A^* = \overline{(A_{3\times 4})^t} = \begin{bmatrix} 2-i & 2i & 0 \\ 1 & 5 & -i \\ i & -7i & 2 \\ -1+3i & 1+2i & 3 \end{bmatrix}$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

1.
$$(A^*)^* =$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

1.
$$(A^*)^* =$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

1.
$$(A^*)^* = A$$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A + D)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A + D)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A + D)^* = A^* + D^*$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha}$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K})$$
, $B \in \mathcal{M}_{n \times p}(\mathbb{K})$ e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* = B^*A^*$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* = B^*A^*$
- 5. Transposta $(A^*)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* = B^*A^*$
- 5. Transposta $(A^*)^t =$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* = B^*A^*$
- 5. Transposta $(A^*)^t = \overline{A}$

Sejam
$$A, D \in \mathcal{M}_{m \times n}(\mathbb{K}), B \in \mathcal{M}_{n \times p}(\mathbb{K})$$
 e, $\alpha \in \mathbb{K}$.

- 1. $(A^*)^* = A$
- 2. Soma $(A+D)^* = A^* + D^*$
- 3. Multiplicação por escalar $(\alpha A)^* = \overline{\alpha} A^*$
- 4. Produto $(AB)^* = B^*A^*$
- 5. Transposta $(A^*)^t = \overline{A}$

Matriz Simétrica - Definição

Matriz Simétrica - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Simétrica - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Simétrica - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ SIMÉTRICA se. e somente se.

Matriz Simétrica - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = a_{12} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = a_{1i} & a_{i2} = a_{2i} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = a_{1n} & a_{n2} = a_{2n} & \cdots & a_{ni} = a_{in} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ SIMÉTRICA se, e somente se,

$$a_{ij} = a_{ji}$$
 para $\forall i, j = 1, \ldots, n$;

Matriz Simétrica - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = a_{12} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = a_{1i} & a_{i2} = a_{2i} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} = a_{1n} & a_{n2} = a_{2n} & \cdots & a_{ni} = a_{in} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ SIMÉTRICA se, e somente se,

$$a_{ij} = a_{ji}$$
 para $\forall i, j = 1, \ldots, n$;

ou seja, $A = A^t$.

Matriz Simétrica - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = a_{12} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = a_{1i} & a_{i2} = a_{2i} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = a_{1n} & a_{n2} = a_{2n} & \cdots & a_{ni} = a_{in} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ SIMÉTRICA se, e somente se,

$$a_{ij} = a_{ji}$$
 para $\forall i, j = 1, \ldots, n$;

ou seja, $A = A^t$.

Matriz Simétrica

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right]$$

Matriz Simétrica

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right]$$

Matriz Simétrica

EXEMPLOS:

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right]$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

Matriz Simétrica

EXEMPLOS:

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right]$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

Matriz Simétrica

EXEMPLOS:

$$\bullet \ A_3 = \left[\begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right]$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

$$A_{n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Simétrica

EXEMPLOS:

$$\bullet \ A_3 = \left| \begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right|$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

$$A_{n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• A MATRIZ DE ADJACÊNCIA do problema.2;

$$\mathbf{A_5} = egin{bmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}$$

Matriz Simétrica

EXEMPLOS:

$$\bullet \ A_3 = \left| \begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right|$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

$$A_{n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• A MATRIZ DE ADJACÊNCIA do problema.2;

$$\mathbf{A_5} = egin{bmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}$$

Matriz Simétrica

EXEMPLOS:

$$\bullet \ A_3 = \left| \begin{array}{ccc} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 7-i & 3 & 1 \end{array} \right|$$

• MATRIZES DIAGONAIS incluindo O_n e I_n .

$$A_{n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• A MATRIZ DE ADJACÊNCIA do problema.2;

$$\mathbf{A_5} = egin{bmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}$$

Matriz Anti-Simétrica

Matriz Anti-Simétrica

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Anti-Simétrica

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Anti-Simétrica

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ ANTI-SIMÉTRICA se, e somente se.

Matriz Anti-Simétrica

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = -a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = -a_{12} & a_{22} = -a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = -a_{1i} & a_{i2} = -a_{2i} & \cdots & a_{ii} = -a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = -a_{1n} & a_{n2} = -a_{2n} & \cdots & a_{ni} = -a_{in} & \cdots & a_{nn} = -a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ ANTI-SIMÉTRICA se, e somente se,

$$a_{ij} = -a_{ji}$$
 para $\forall i, j = 1, \ldots, n$;

Matriz Anti-Simétrica

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = -a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = -a_{12} & a_{22} = -a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = -a_{1i} & a_{i2} = -a_{2i} & \cdots & a_{ii} = -a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = -a_{1n} & a_{n2} = -a_{2n} & \cdots & a_{ni} = -a_{in} & \cdots & a_{nn} = -a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ ANTI-SIMÉTRICA se, e somente se,

$$a_{ij} = -a_{ji}$$
 para $\forall i, j = 1, \ldots, n$;

ou seja, $A = -A^t$.

Matriz Anti-Simétrica

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = -a_{12} & 0 & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = -a_{1i} & a_{i2} = -a_{2i} & \cdots & 0 & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = -a_{1n} & a_{n2} = -a_{2n} & \cdots & a_{ni} = -a_{in} & \cdots & 0 \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ ANTI-SIMÉTRICA se, e somente se,

$$a_{ij} = -a_{ji}$$
 para $\forall i, j = 1, \dots, n$;

ou seja, $A = -A^t$.

Observe que $a_{ii} = 0$ para i = j.

Matriz Anti-Simétrica

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & 7 \\ 0 & 0 & 3 \\ -7 & -3 & 0 \end{array} \right]$$

Matriz Anti-Simétrica

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & 7 \\ 0 & 0 & 3 \\ -7 & -3 & 0 \end{array} \right]$$

Matriz Anti-Simétrica

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & 7 \\ 0 & 0 & 3 \\ -7 & -3 & 0 \end{array} \right]$$

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & -i & 7-2i \\ i & 0 & 3 \\ -7+2i & -3 & 0 \end{array} \right]$$

Matriz Anti-Simétrica

•
$$A_3 = \begin{bmatrix} 0 & -i & 7-2i \\ i & 0 & 3 \\ -7+2i & -3 & 0 \end{bmatrix}$$

Matriz Anti-Simétrica

EXEMPLOS:

•
$$A_3 = \begin{bmatrix} 0 & -i & 7-2i \\ i & 0 & 3 \\ -7+2i & -3 & 0 \end{bmatrix}$$

 \circ O_n

Matriz Hermitiana - Definição

Matriz Hermitiana - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Hermitiana - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Hermitiana - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ HERMITIANA se, e somente se,

Matriz Hermitiana - Definição

Seia $A \in \mathcal{M}_n(\mathbb{K})$:

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{a_{12}} & a_{22} = \overline{a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{a_{1i}} & a_{i2} = \overline{a_{2i}} & \cdots & a_{ii} = \overline{a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{a_{1n}} & a_{n2} = \overline{a_{2n}} & \cdots & a_{ni} = \overline{a_{in}} & \cdots & a_{nn} = \overline{a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA $\mathbf{A}_{\mathbf{n}}$ é uma MATRIZ HERMITIANA se, e somente se,

$$a_{ij} = \overline{a_{ji}}$$
 para $\forall i, j = 1, \ldots, n$;

Matriz Hermitiana - Definição

Seia $A \in \mathcal{M}_n(\mathbb{K})$:

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{a_{12}} & a_{22} = \overline{a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{a_{1i}} & a_{i2} = \overline{a_{2i}} & \cdots & a_{ii} = \overline{a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{a_{1n}} & a_{n2} = \overline{a_{2n}} & \cdots & a_{ni} = \overline{a_{in}} & \cdots & a_{nn} = \overline{a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA $\mathbf{A_n}$ é uma MATRIZ HERMITIANA se, e somente se,

$$a_{ij} = \overline{a_{ji}}$$
 para $\forall i, j = 1, \ldots, n$;

ou seja,
$$A = A^* = \overline{(A)^t}$$
.

Matriz Hermitiana - Definição

Seia $A \in \mathcal{M}_n(\mathbb{K})$:

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{a_{12}} & a_{22} = \overline{a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{a_{1i}} & a_{i2} = \overline{a_{2i}} & \cdots & a_{ii} = \overline{a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{a_{1n}} & a_{n2} = \overline{a_{2n}} & \cdots & a_{ni} = \overline{a_{in}} & \cdots & a_{nn} = \overline{a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ HERMITIANA se, e somente se,

$$a_{ij} = \overline{a_{ji}}$$
 para $\forall i, j = 1, \ldots, n$;

ou seia. $A = A^* = (A)^t$. Observe que $a_{ii} \in \mathbb{R}$ para i = j.

Matriz Hermitiana - Exemplos

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{array} \right]$$

Matriz Hermitiana - Exemplos

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{array} \right]$$

Matriz Hermitiana - Exemplos

$$\bullet \ A_3 = \left[\begin{array}{ccc} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{array} \right]$$

Matriz Hermitiana - Exemplos

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$

Matriz Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{bmatrix}$$

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$
 $a_{22} = \overline{a_{22}}$: $-5 = \overline{-5} = -5$

Matriz Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & \end{bmatrix}$$

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$
 $a_{22} = \overline{a_{22}}$: $-5 = \overline{-5} = -5$
 $a_{33} = \overline{a_{33}}$: $0 = \overline{0} = 0$

Matriz Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{bmatrix}$$

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$

$$a_{22} = \overline{a_{22}}$$
: $-5 = \overline{-5} = -5$

$$a_{33}=\overline{a_{33}}: 0=\overline{0}=0$$

$$a_{12} = \overline{a_{21}}: \quad 0 = \overline{0} = 0$$

Matriz Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3 & 0 & 7 - i \\ 0 & -5 & -3i \\ 7 + i & 3i & 0 \end{bmatrix}$$

$$a_{11} = \overline{a_{11}}: \quad 3 = \overline{3} = 3$$

$$a_{22} = \overline{a_{22}}: \quad -5 = \overline{-5} = -5$$

$$a_{33} = \overline{a_{33}}: \quad 0 = \overline{0} = 0$$

$$a_{12} = \overline{a_{21}}: \quad 0 = \overline{0} = 0$$

$$a_{13} = \overline{a_{31}}: \quad 7 + i = \overline{7 - i} = 7 + i$$

Matriz Hermitiana - Exemplos

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$
 $a_{22} = \overline{a_{22}}$: $-5 = \overline{-5} = -5$
 $a_{33} = \overline{a_{33}}$: $0 = \overline{0} = 0$
 $a_{12} = \overline{a_{21}}$: $0 = \overline{0} = 0$
 $a_{13} = \overline{a_{31}}$: $7 + i = \overline{7 - i} = 7 + i$

$$a_{32} = \overline{a_{23}}$$
: $3i = \overline{-3i} = 3i$

Matriz Hermitiana - Exemplos

Analisando os elementos desta matriz:

$$\begin{array}{lll}
a_{11} &= \overline{a_{11}} : & 3 &= \overline{3} &= 3 \\
a_{22} &= \overline{a_{22}} : & -5 &= \overline{-5} &= -5 \\
a_{33} &= \overline{a_{33}} : & 0 &= \overline{0} &= 0 \\
a_{12} &= \overline{a_{21}} : & 0 &= \overline{0} &= 0 \\
a_{13} &= \overline{a_{31}} : & 7 + i &= \overline{7 - i} &= 7 + i \\
a_{22} &= \overline{a_{23}} : & 3i &= \overline{-3i} &= 3i
\end{array}$$

Note que na diagonal principal, os elementos não possuem a parte imaginária (b=0) porque para $a + bi \in \mathbb{C} \Rightarrow \overline{a + bi} = a - bi \neq a + bi$.

Matriz Hermitiana - Exemplos

Analisando os elementos desta matriz:

$$a_{11} = \overline{a_{11}}$$
: $3 = \overline{3} = 3$

$$a_{22} = \overline{a_{22}}$$
: $-5 = \overline{-5} = -5$
 $a_{33} = \overline{a_{33}}$: $0 = \overline{0} = 0$

$$a_{33} = a_{33}$$
: $0 = 0 = 0$

$$a_{12}=\overline{a_{21}}: \quad 0=\overline{0}=0$$

$$a_{13} = \overline{a_{31}}$$
: $7 + i = \overline{7 - i} = 7 + i$

$$a_{32}=\overline{a_{23}}: \quad 3i=\overline{-3i}=3i$$

Note que na diagonal principal, os elementos não possuem a parte imaginária (b=0) porque para $a + bi \in \mathbb{C} \Rightarrow \overline{a + bi} = a - bi \neq a + bi$.

Enquanto que para os demais elementos, $i \neq j \Rightarrow \text{ se } a_{ij} = a + bi \text{ então } a_{ii} = a - bi$

Matriz Hermitiana - Exemplos

$$\bullet \ A_3 = \left[\begin{array}{ccc} 3 & 0 & 7-i \\ 0 & -5 & -3i \\ 7+i & 3i & 0 \end{array} \right]$$

Analisando os elementos desta matriz:

$$\begin{array}{ll} a_{11} = \overline{a_{11}} : & 3 = \overline{3} = 3 \\ a_{22} = \overline{a_{22}} : & -5 = \overline{-5} = -5 \\ a_{33} = \overline{a_{33}} : & 0 = \overline{0} = 0 \\ a_{12} = \overline{a_{21}} : & 0 = \overline{0} = 0 \\ a_{13} = \overline{a_{31}} : & 7 + i = \overline{7 - i} = 7 + i \\ a_{22} = \overline{a_{23}} : & 3i = \overline{-3i} = 3i \end{array}$$

Note que na diagonal principal, os elementos não possuem a parte imaginária (b=0) porque para $a + bi \in \mathbb{C} \Rightarrow \overline{a + bi} = a - bi \neq a + bi$. Enquanto que para os demais elementos, $i \neq j \Rightarrow \text{ se } a_{ij} = a + bi$ então $a_{ji} = a - bi$:

Matrizes Reais Diagonais, incluindo O_n e I_n .

Matriz Anti-Hermitiana - Definição

Matriz Anti-Hermitiana - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Anti-Hermitiana - Definição

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Anti-Hermitiana - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \mathbf{A}_n é uma MATRIZ ANTI-HERMITIANA se, e somente se,

Matriz Anti-Hermitiana - Definição

Seia $A \in \mathcal{M}_n(\mathbb{K})$:

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{-a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{-a_{12}} & a_{22} = \overline{-a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{-a_{1i}} & a_{i2} = \overline{-a_{2i}} & \cdots & a_{ii} = \overline{-a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{-a_{1n}} & a_{n2} = \overline{-a_{2n}} & \cdots & a_{ni} = \overline{-a_{in}} & \cdots & a_{nn} = \overline{-a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \mathbf{A}_n é uma MATRIZ ANTI-HERMITIANA se, e somente se,

$$a_{ij} = -\overline{a_{ji}}$$
 para $\forall i, j = 1, \dots, n$;

Matriz Anti-Hermitiana - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{-a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{-a_{12}} & a_{22} = \overline{-a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{-a_{1i}} & a_{i2} = \overline{-a_{2i}} & \cdots & a_{ii} = \overline{-a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{-a_{1n}} & a_{n2} = \overline{-a_{2n}} & \cdots & a_{ni} = \overline{-a_{in}} & \cdots & a_{nn} = \overline{-a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ ANTI-HERMITIANA se, e somente se,

$$a_{ij} = -\overline{a_{ji}}$$
 para $\forall i, j = 1, \dots, n$;

ou seja,
$$A = -A^* = -\overline{(A)^t}$$

Matriz Anti-Hermitiana - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} = \overline{-a_{11}} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} = \overline{-a_{12}} & a_{22} = \overline{-a_{22}} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} = \overline{-a_{1i}} & a_{i2} = \overline{-a_{2i}} & \cdots & a_{ii} = \overline{-a_{ii}} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} = \overline{-a_{1n}} & a_{n2} = \overline{-a_{2n}} & \cdots & a_{ni} = \overline{-a_{in}} & \cdots & a_{nn} = \overline{-a_{nn}} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA ${f A}_n$ é uma MATRIZ ANTI-HERMITIANA se, e somente se,

$$a_{ij} = -\overline{a_{ji}}$$
 para $\forall i, j = 1, \ldots, n$;

ou seja,
$$A = -A^* = -\overline{(A)^t}$$
.
Observe que $a_{ij} = a + bi$; $a = 0$; $b \in \mathbb{R}$ para $i = j$.

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$a_{11} = -(\overline{a_{11}}): \quad 3i = -(\overline{3i}) = -(-3i) = 3i$$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$a_{11} = -(\overline{a_{11}}): \quad 3i = -(\overline{3i}) = -(-3i) = 3i$$

 $a_{22} = -(\overline{a_{22}}): \quad -5i = -(\overline{-5i}) = -(5i) = -5i$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$a_{11} = -(\overline{a_{11}}):$$
 $3i = -(\overline{3i}) = -(-3i) = 3i$
 $a_{22} = -(\overline{a_{22}}):$ $-5i = -(\overline{-5i}) = -(5i) = -5i$
 $a_{33} = -(\overline{a_{33}}):$ $0 = -(\overline{0}) = 0$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$\begin{array}{ll}
a_{11} = -(\overline{a_{11}}) : & 3i = -(\overline{3i}) = -(-3i) = 3i \\
a_{22} = -(\overline{a_{22}}) : & -5i = -(\overline{-5i}) = -(5i) = -5i \\
a_{33} = -(\overline{a_{33}}) : & 0 = -(\overline{0}) = 0 \\
a_{12} = -(\overline{a_{21}}) : & -2 = -(\overline{2}) = -2
\end{array}$$

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$\begin{array}{ll}
a_{11} = -(\overline{a_{11}}): & 3i = -(\overline{3i}) = -(-3i) = 3i \\
a_{22} = -(\overline{a_{22}}): & -5i = -(\overline{-5i}) = -(5i) = -5i \\
a_{33} = -(\overline{a_{33}}): & 0 = -(\overline{0}) = 0 \\
a_{12} = -(\overline{a_{21}}): & -2 = -(\overline{2}) = -2 \\
a_{13} = -(\overline{a_{31}}): & 4i = -(\overline{4i}) = -(-4i) = 4i
\end{array}$$

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

$$\begin{array}{ll}
a_{11} = -(\overline{a_{11}}): & 3i = -(\overline{3i}) = -(-3i) = 3i \\
a_{22} = -(\overline{a_{22}}): & -5i = -(\overline{-5i}) = -(5i) = -5i \\
a_{33} = -(\overline{a_{33}}): & 0 = -(\overline{0}) = 0 \\
a_{12} = -(\overline{a_{21}}): & -2 = -(\overline{2}) = -2 \\
a_{13} = -(\overline{a_{31}}): & 4i = -(\overline{4i}) = -(-4i) = 4i \\
a_{32} = -(\overline{a_{23}}): & 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i
\end{array}$$

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Analisando os elementos da matriz:

$$\begin{array}{ll}
a_{11} = -(\overline{a_{11}}) : & 3i = -(\overline{3}i) = -(-3i) = 3i \\
a_{22} = -(\overline{a_{22}}) : & -5i = -(\overline{-5}i) = -(5i) = -5i \\
a_{33} = -(\overline{a_{33}}) : & 0 = -(\overline{0}) = 0 \\
a_{12} = -(\overline{a_{21}}) : & -2 = -(\overline{2}) = -2 \\
a_{13} = -(\overline{a_{31}}) : & 4i = -(\overline{4}i) = -(-4i) = 4i \\
a_{32} = -(\overline{a_{23}}) : & 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i
\end{array}$$

Note que na diagonal principal, os elementos não possuem a parte real (a = 0) porque para $a + bi \in \mathbb{C} \Rightarrow -(\overline{a + bi}) = -(a - bi) = -a + bi \neq a + bi$.

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Analisando os elementos da matriz:

$$\begin{array}{ll}
a_{11} = -(\overline{a_{11}}): & 3i = -(\overline{3i}) = -(-3i) = 3i \\
a_{22} = -(\overline{a_{22}}): & -5i = -(\overline{-5i}) = -(5i) = -5i \\
a_{33} = -(\overline{a_{33}}): & 0 = -(\overline{0}) = 0 \\
a_{12} = -(\overline{a_{21}}): & -2 = -(\overline{2}) = -2 \\
a_{13} = -(\overline{a_{31}}): & 4i = -(\overline{4i}) = -(-4i) = 4i \\
a_{32} = -(\overline{a_{23}}): & 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i
\end{array}$$

Note que na diagonal principal, os elementos não possuem a parte real (a = 0) porque para $a + bi \in \mathbb{C} \Rightarrow -(\overline{a + bi}) = -(a - bi) = -a + bi \neq a + bi$. Enquanto que para os demais elementos, $i \neq j \Rightarrow \text{ se } a_{ii} = a + bi \text{ então } a_{ii} = -a + bi.$

Matriz Anti-Hermitiana - Exemplos

$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Analisando os elementos da matriz:

$$a_{11} = -(\overline{a_{11}}): \quad 3i = -(\overline{3}i) = -(-3i) = 3i$$

$$a_{22} = -(\overline{a_{22}}): \quad -5i = -(\overline{-5}i) = -(5i) = -5i$$

$$a_{33} = -(\overline{a_{33}}): \quad 0 = -(\overline{0}) = 0$$

$$a_{12} = -(\overline{a_{21}}): \quad -2 = -(\overline{2}) = -2$$

$$a_{13} = -(\overline{a_{31}}): \quad 4i = -(\overline{4}i) = -(-4i) = 4i$$

$$a_{32} = -(\overline{a_{23}}): \quad 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i$$

Note que na diagonal principal, os elementos não possuem a parte real (a=0) porque para $a+bi\in\mathbb{C}\Rightarrow -(\overline{a+bi})=-(a-bi)=-a+bi\neq a+bi$. Enquanto que para os demais elementos, $i\neq j\Rightarrow$ se $a_{ij}=a+bi$ então $a_{ji}=-a+bi$.

O_n

Matrizes Revisão - Tipos Especiais

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Analisando os elementos da matriz:

Anisando de elementos da inatriz.

$$a_{11} = -(\overline{a_{11}}): \quad 3i = -(\overline{3}i) = -(-3i) = 3i$$

$$a_{22} = -(\overline{a_{22}}): \quad -5i = -(\overline{-5}i) = -(5i) = -5i$$

$$a_{33} = -(\overline{a_{33}}): \quad 0 = -(\overline{0}) = 0$$

$$a_{12} = -(\overline{a_{21}}): \quad -2 = -(\overline{2}) = -2$$

$$a_{13} = -(\overline{a_{31}}): \quad 4i = -(\overline{4}i) = -(-4i) = 4i$$

$$a_{32} = -(\overline{a_{23}}): \quad 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i$$

Note que na diagonal principal, os elementos não possuem a parte real (a=0) porque para $a+bi\in\mathbb{C}\Rightarrow -(\overline{a+bi})=-(a-bi)=-a+bi\neq a+bi$. Enquanto que para os demais elementos, $i\neq j\Rightarrow$ se $a_{ij}=a+bi$ então $a_{ji}=-a+bi$.

O_n

Matrizes Revisão - Tipos Especiais

Matriz Anti-Hermitiana - Exemplos

•
$$A_3 = \begin{bmatrix} 3i & -2 & 4i \\ 2 & -5i & -7+3i \\ 4i & 7+3i & 0 \end{bmatrix}$$

Analisando os elementos da matriz:

$$a_{11} = -(\overline{a_{11}}): \quad 3i = -(\overline{3i}) = -(-3i) = 3i$$

$$a_{22} = -(\overline{a_{22}}): \quad -5i = -(\overline{-5i}) = -(5i) = -5i$$

$$a_{33} = -(\overline{a_{33}}): \quad 0 = -(\overline{0}) = 0$$

$$a_{12} = -(\overline{a_{21}}): \quad -2 = -(\overline{2}) = -2$$

$$a_{13} = -(\overline{a_{31}}): \quad 4i = -(\overline{4i}) = -(-4i) = 4i$$

$$a_{32} = -(\overline{a_{23}}): \quad 7 + 3i = -(\overline{-7} + 3i) = -(-7 - 3i) = 7 + 3i$$

Note que na diagonal principal, os elementos não possuem a parte real (a=0) porque para $a+bi\in\mathbb{C}\Rightarrow -(\overline{a+bi})=-(a-bi)=-a+bi\neq a+bi$. Enquanto que para os demais elementos, $i\neq j\Rightarrow$ se $a_{ij}=a+bi$ então $a_{ji}=-a+bi$.

O_n

Tipos Especiais - Matriz Normal

Tipos Especiais - Matriz Normal

Tipos Especiais - Matriz Normal

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right];$$

Tipos Especiais - Matriz Normal

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right];$$

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$,

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 0 & 0 & \mathrm{i} \\ 0 & \mathrm{i} & 0 \\ \mathrm{i} & 0 & 0 \end{array} \right];$$

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$

•
$$A_3 = \begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \\ i & 0 & 0 \end{bmatrix}$$
;

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$
• $A_3 = \begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \\ i & 0 & 0 \end{bmatrix}$; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & -i \\ 0 & -i & 0 \\ -i & 0 & 0 \end{bmatrix} \neq A_3^t$,

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$
• $A_3 = \begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \\ i & 0 & 0 \end{bmatrix}$; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & -i \\ 0 & -i & 0 \\ -i & 0 & 0 \end{bmatrix} \neq A_3^t$, mas; $A_3.A_3^* = A_3^*.A_3$

Tipos Especiais - Matriz Normal

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que a matriz quadrada A é uma MATRIZ NORMAL se, e somente se, as matrizes A e A^* comutam, ou seja, $A.A^* = A^*.A$. EXEMPLOS:

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$

•
$$A_3 = \begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \\ i & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & -i \\ 0 & -i & 0 \\ -i & 0 & 0 \end{bmatrix} \neq A_3^t$, mas; $A_3.A_3^* = A_3^*.A_3$

Todas as Matrizes Diagonais.

Tipos Especiais - Matriz Normal

•
$$A_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = A_3^t$, e; $A_3.A_3^* = A_3^*.A_3$

•
$$A_3 = \begin{bmatrix} 0 & 0 & i \\ 0 & i & 0 \\ i & 0 & 0 \end{bmatrix}$$
; $A^* = \overline{A_3}^t = \begin{bmatrix} 0 & 0 & -i \\ 0 & -i & 0 \\ -i & 0 & 0 \end{bmatrix} \neq A_3^t$, mas; $A_3.A_3^* = A_3^*.A_3$

- Todas as Matrizes Diagonais.
- Matrizes Reais Simétricas.

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$.

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

Notação: tr(A)

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

Notação: tr(A)

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = egin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} & \cdots & \mathsf{a}_{1i} & \cdots & \mathsf{a}_{1i} \end{bmatrix}$$

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \ \end{pmatrix}$$

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \end{bmatrix}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \end{bmatrix}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Traço - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + \dots$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + \ldots + a_{ii}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + \ldots + a_{ii} + \ldots$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + \ldots + a_{ii} + \ldots + a_{nn}$$

Traco - Definição

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que o TRAÇO da matriz quadrada A é o escalar resultante da soma dos elementos da diagonal principal.

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + \ldots + a_{ii} + \ldots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$

Traço - Exemplos

Traço - Exemplos

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Traço - Exemplos

$$\bullet \ \ A_3 = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2-1$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $tr(A) = 2-1+1=2$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

$$tr(A) = 2$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

$$tr(A) = 2 - 5i$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

$$tr(A) = 2 - 5i + 1$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

$$tr(A) = 2 - 5i + 1 + 3 + i$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2 - 1 + 1 = 2$$
• $A_4 = \begin{bmatrix} 2 & 1 + 2i & -3i & -1 \\ -1 & -5i & -3 & -1 + i \\ 0 & i & 1 & 3 \\ -1 & -1 + i & 3 & 3 + i \end{bmatrix}$

$$tr(A) = 2 - 5i + 1 + 3 + i = 6 - 4i$$

Traço - Exemplos

•
$$A_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$tr(A) = 2-1+1=2$$
• $A_4 = \begin{bmatrix} 2 & 1+2i & -3i & -1 \\ -1 & -5i & -3 & -1+i \\ 0 & i & 1 & 3 \\ -1 & -1+i & 3 & 3+i \end{bmatrix}$

$$tr(A) = 2-5i+1+3+i=6-4i$$
• $tr(I_n) = \underbrace{1+\ldots+1}_{n \text{ termos}} = n$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

1. Soma
$$tr(A+B) =$$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

1. Soma
$$tr(A+B) =$$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

1. Soma
$$tr(A+B) = tr(A) + tr(B)$$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) =$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) =$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) =

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) =

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) =$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) =$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) = tr(A)$

Traço - Propriedades

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) = tr(A)$
- 5. Conjugado $tr(\overline{A}) =$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) = tr(A)$
- 5. Conjugado $tr(\overline{A}) =$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) = tr(A)$
- 5. Conjugado $tr(\overline{A}) = \overline{tr(A)}$

Sejam
$$A, B \in \mathcal{M}_n(\mathbb{K})$$
, e, $\alpha \in \mathbb{K}$.

- 1. Soma tr(A+B) = tr(A) + tr(B)
- 2. Multiplicação por escalar $tr(\alpha A) = \alpha tr(A)$
- 3. PRODUTO tr(AB) = tr(BA)
- 4. Transposta $tr(A^t) = tr(A)$
- 5. Conjugado $tr(\overline{A}) = \overline{tr(A)}$