Index

A	Antenna patterns: Sec also Radiation pat-
Absolute-gain measurements, 867-869	terns
Active driving impedance, 424	plotter for, 2-D, 113-114
Amateur band radio frequency spectrum,	Antenna ranges: See Antenna measurements
928	Antennas
Amplitude Modulation (AM) radio frequency	analysis methods, 23, 726
spectrum, 928	aperture: See Aperture antennas
Amplitude patterns	circular: See Loop antennas
antenna measurements, 864	defined, 1–2
long wire antennas, 494–495	as directional device, 3
3-D, thin dipoles, 155	elements for, 21-22
Analysis methods, for antennas, 23, 116–126	frequency independent: See Frequency in-
microstrip antennas, 726	dependent antennas
vector analysis: See Vector analysis	future direction of, 23-24
Anechoic chambers, 843–844	gain and: See Gain
Antenna impedance, 73–77, 424	historical advancement of, 19-24
Antenna measurements, 839–883	linear: See Linear wire antennas
antenna ranges and, 840–858	loop: See Loop antennas
compact ranges, 844-851	for mobile communications systems, 175
free-space ranges, 841–844	radiation efficiency of, 60-62, 78-79,
near-field/far-field methods, 852-858	872-873
reflection ranges, 841	thin wire: See Thin wire antennas
current, 874–875	as transitions device, 1–2
directivity, 871–872	traveling wave: See Traveling wave anten-
gain, 865–871	nas
absolute-gain, 867–869	types of, 3–7
gain-transfer (gain-comparison), 869-	Antenna synthesis, 339–378
871	continuous sources and, 340-342
impedance, 873–874	apertures, 373–375
polarization, 875–880	discretization of, 341–342
radiation efficiency, 872–873	line source distributions, 340–341
radiation patterns, 858–865	cosine distributions, 368–371
amplitude pattern, 864	cosine-squared distributions, 368-371
instrumentation and, 860-864	Fourier transform method, 346–352
phase measurements, 864–865	line-source distribution, 347–349
scale models and, 880-881	N-element linear arrays, 349–352
Antenna mode scattering, 92–93	line-source phase distributions, 371–373
Q	31

Antenna synthesis (Continued)	dipole, log-periodic antennas, 553-566
Schelkunoff polynomial method, 342-346	and feed networks, microstrip antennas,
Taylor line-source, 358–368	772–775
triangular distributions, 368–371	infinite regular. 426–429
Woodward-Lawson method, 352–358	mutual coupling in: See Mutual coupling
linear arrays and, 357-358	in arrays
line-source distribution, 353–356	N-element: See N-element arrays
Aperture admittance, 631–638	performance of, mutual coupling and, 425
Aperture antennas, 4, 575–650	planar, 309–321
Babinet's principle, 616-620	array factor, 309-314
circular, 603–611	beam width and, 314-318
beam efficiency, 611	computer programs for, 338
design considerations, 614–616	directivity, 318–321
TE ₁₁ -mode distribution, 610–611	rectangular-to-polar graphical solution,
uniform distribution, 605–610	287–288
design considerations, 611–616	superdirectivity, 306–309
directivity, 584	designs with constraints, 307–309
field equivalence principle, 575-581	efficiency and, 306–307
Fourier transforms and, 620-638	two-element, 250–257
aperture admittance, 631-638	Asymptotic evaluation of radiated field, ap-
asymptotic evaluation of radiated field.	erture antennas, 625-630
625-630	Attractive mechanisms, 736–737
dielectric covered apertures, 630-631	_
radiated fields, 622-630	В
spectral domain, 621-622	Babinet's principle, 616–620
geometrical theory of diffraction, 638–643	Back lobes, 32
ground plane edge effects, 638–643	Backscattering radar cross section (RCS), 90
Huygens' principle, 575–581	Baluns and transformers, 480–483
radiation equations, 582–584	Bandwidth, 63–64, 449, 760–762
rectangular, 584–603	Basis functions, 387, 396–400
beam efficiency, 601–603	Bazooka balun, 480
design considerations, 613–614	Beam efficiency, 63, 601–603, 611
TE ₁₀ -mode distribution, 599–601	Beamwidths
uniform distribution, 586–599	broadside arrays, 265
Aperture distribution method, 801–806	circular aperture antennas, 607–609
Aperture efficiency, 599–601, 811–818	Dolph-Tschebyscheff arrays, 302–304
Aperture fields	half-power, 62
E-plane sectoral horns, 652–655	N-element binomial arrays, 302–304
H-plane sectoral horns, 668–669	ordinary end-fire arrays, 268
pyramidal horns, 682–686	planar arrays, 314–318
Aperture-matched horns, 705–707	rectangular aperture antennas, 589–592, 595–598, 599
Array antennas, 56, 249–329	Bessel functions, 899–910
Array factor, 169, 250, 258–260	Biconical antennas, 442–447
circular arrays, 324–328 Dolph-Tschebyscheff arrays, 294–296	Binomial arrays. N-element, 290–294
·	Binomial matching transformers, 469–471
N-element arrays, 289–290	Bistatic radar cross section (RCS), 90
planar arrays, 309–314	Bow-tie simulation, 447–449
Arrays, 249–338 broadside, 316	Broadband antennas, 505~534
circular, 324–328	electric-magnetic dipoles, 512–513
and circular loop antennas, 229	helical antennas, 505–512
computer programs for, 337–338	Yagi-Uda arrays, 513–534
design considerations, 282–283, 321–324	Broadband dipoles, 441–487
STATE OF STREET STREET, STREET STREET	with the common majority of the total

biconical antennas, 442-447	Conductance, 731–732, 757–759
conical skirt monopoles, 462-464	Conduction-dielectric efficiency, 78-79
cylindrical dipoles, 449–457	Conical horns, 695–696
bandwidth, 449	Conical skirt monopoles, 462-464
dielectric coating, 454-457	Conical spiral antennas, 549-550
equivalent radii, 454	Conjugate matching, I
input impedance, 449-451	Continuous sources, 340–342, 373–375
radiation patterns, 453	Co-polarization, 66
resonance and ground plane simulation.	Cordless cellular telephones, 928
451–453	Corner reflector antennas, 786–793
discone monopoles, 462–464	Corporate-feed network, 773
folded dipoles, 458-462	Corrugated horns, 696–704
matching techniques: See Matching tech-	Cosine distributions, 368–371
niques	Cosine integrals, 889–893
sleeve dipoles, 464-466	Cosine-squared distributions, 368-371
triangular sheet, bow-tie, and wire simula-	Counterclockwise polarization, 66
tion, 447–449	Coupling
Broadside arrays, 316	microstrip antennas, 764–767
computer programs for, 337–338	mutual, in arrays: See Mutual coupling in
N-element linear, 262–264, 276–279	arrays
	Cross field, 140
C	Cross-polarization, 66, 806–807
Cassegrain parabolic reflectors: See Reflector	Cubic phase distributions, 371–373
antennas, parabolic	Current, measurement of, 874–875
Cavity model, 736-749	Current distribution
Cellular telephone frequency spectrums,	finite length dipoles, 151
928–929	front-fed parabolic reflectors, 807-811
Circular aperture antennas: See Aperture an-	linear wire antennas, 151, 156
tennas	thin wire antenna, 17–19
Circular aperture sources, 373-375	Cylindrical coordinates, vector analysis and
Circular arrays, 324–328	919
Circular loop antennas: See Loop antennas	Cylindrical dipoles: See Broadband dipoles
Circular patch microstrip antennas: See Mi-	Cylindrical-to-rectangular vector analysis,
crostrip antennas	914-917
Circular polarization, 66-69, 767-772	Cylindrical-to-spherical vector analysis,
Clockwise polarization, 66	917–918
Compact antenna test range (CATR), 844	
851	D
Composing function, 353	Density, radiation power, 35–37
Computer programs	Design procedures
arrays, 337–338, 573–574	aperture antennas, 611–616
2-D antenna pattern plotters, 113-114	аггауѕ, 282–283, 321–324
dipole arrays, 573–574	circular loop antennas, 229–230
directivity, 57–58, 115	circular patch microstrip antennas, 755-
linear dipoles, 202	756
maximum directivity, 115	with constraints, 307-309
microstrip antennas, 784	Dolph-Tschebyscheff arrays, 296–302,
Moment Method (MM), 438	305–306
mutual impedance, 439–440	N-element binomial arrays, 292-294,
pyramidal horns, 720–721	296–306
radiated power, 115	pyramidal horns, 693–695
self-impedance, 439–440	rectangular patch microstrip antennas,
Yagi-Uda array, 521–525	730–731

Design procedures (Continued)	rectangular aperture antennas, 593-594,
Taylor line-source (Tschebyscheff error),	598–601
360–362	rectangular patch microstrip antennas,
Dielectric coating, 454–457, 630–631	749–752
Dielectric-loaded horns, 712	small circular loop antennas, 213-214
Differentiation, vector identities and, 921	superdirectivity, 306–309
Dipole arrays, 553–566	Discone monopoles, 462–464
computer programs for, 573-574	Dolph-Tschebyscheff arrays, 294-306
Dipole radiation mechanism, 14–16	Driving-point impedance, 412
Dipoles	Duality theorem, 126-127
broadband: See Broadband dipoles	Dual parabolic-cylinder reflector, 848-850
electric-magnetic, 512-513	·
folded, 458-462	E
ground effects, 182-188	Earth curvature effects, 188-194, 230-233
half-wavelength, 42–44	Effective area, maximum, 84-86
horizontal electric, 185–188	Effective length, 79-81, 728-730
infinitesimal: See Linear wire antennas	Effective width, 728–730
near-field of, 405-408	Efficiency
sleeve, 464–466	antenna radiation, 60-62, 78-79
small, 143–145	microstrip antennas, 760–762
thin, 154, 155	polarization, 70–73
vertical electric, 182–185	superdirectivity, 306–307
Directional device, antennas as, 3	Electric and magnetic fields-TM' _{mmp.} 753~
	754
Directional radiation patterns, 29, 45–49	
Directive gain, 39	Electric current sources, 117–119, 120–121
Directivity, 39-53: See also Radiation pat-	Electric field integral equation (EFIE), 387
terns	Electric field lines, 12–15
aperture antennas, 584	Electric fields, 120–121
circular, 607–609	Electrostatic charge distribution, 381–387
computer programs for, 57-58, 115, 202.	Element factor, 151–153
248	Elements, used in antennas, 21–22
directional radiation patterns and, 45–49	Elevated ranges, 841–843
E-plane sectoral horns, 663–668	Elliptical polarization, 66–69
front-fed parabolic reflectors, 811-818	EMF method, induced: See Induced EMF
of half-wavelength dipoles, 42-44	method
H-plane sectoral horns, 676–682	End-fire arrays
isotropic, 42–44	Hansen-Woodyard, N-element linear,
linear dipoles, 202	271–276, 281–282
linear wire antennas, 142-143	ordinary, N-element linear, 264-266, 268
finite length dipoles, 157–159	279–280
loop antennas, circular, 219–224, 248	Entire domain functions, 399–400
maximum, 39-41, 49, 84-86	E-plane radiation patterns, 17, 27, 29, 30
computer programs for, 202, 248	E-plane sectoral horns: See Horns
numerical techniques for, 53-58	Equiangular spiral antennas, 545-550
measurement of, 871-872	Equivalent areas, 81-84
N-element arrays, 276-282, 302-304	Equivalent circuits, 214–217
omnidirectional radiation patterns and,	Equivalent current densities, 741-744, 756-
49–53	757
partial, 40	Equivalent magnetic ring current, 392
patch microstrip antennas, circular, 757-	Equivalent radii, cylindrical dipoles, 454
759	Equivalents
planar arrays, 318-321	antennas, 73-77
pyramidal horns, 686–693	circular aperture antennas, 605-607
· · · · · · · · · · · · · · · · · · ·	•

pyramidal horns, 682–686	log-periodic antennas, 551–566
rectangular aperture antennas, 587, 595,	dipole arrays, 553–566
599	planar and wire surfaces, 551-553
Excitation coefficients, 290-292	planar spiral antennas, 545-549
Expansion functions, 387	theory. 543-544
Extrapolation method, 868	Frequency Modulation (FM) radio frequency spectrum, 928
F	Fresnel integrals, 893–898
	Fresnel region, 32–33
Far-field method, antenna ranges and, 852-	Friis transmission equation, 86–88
858 For field notion. Vani IIda amay 520, 521	•
Far-field pattern, Yagi-Uda array, 520–521	Fringing effects, 727–728 Front-fed parabolic reflector antennas: See
Far-field radiation, 125–126	
Far-field region, 33–34	Reflector antennas, parabolic
linear wire antennas, 138, 141–142	C
region separation and, 145, 146–149	G
and small circular loop antennas, 213	Gain, 58–60
Feed design, 821–823	measurements, 865–871
Feeding methods, 724–726	Galerkin's method, 401–402
Feed networks, 772–775	Gamma match, 475–480
Ferrite loop antennas, 240–241	Geometrical theory of diffraction, 638–643
Field configurations (modes)-TM ^x , 738-741	Grating lobes, 311–314, 429–434
Field equivalence principle, aperture anten-	Gregorian reflectors, 828–830
nas, 575–581	Ground effects
Field regions, in radiation patterns, 32–34	circular loop antennas, 230-233
Fields radiated	linear wire antennas: See Linear wire an-
circular patch microstrip antennas, 756-	tennas
757	Ground plane and resonance simulation,
-TM * ₀₁₀ mode, 744–749	451–453
Finite cones, 447	Ground plane edge effects, 638-643
Finite diameter wires, 388–395	Ground-reflection method, 868-869
Hallén's integral equation, 392	
Pocklington's integral equation, 388-391	Н
source modeling, 392-395	Half-power beamwidth, 62
Finite-Difference Time-Domain (FD-TD)	Half-wavelength dipoles, 42-44, 162-164
method, 16-17, 23	Hallén's integral equation, 392
Finite feed gap, 161–162	Hansen-Woodyard end-fire arrays, 271-276,
Finite length dipoles: See Linear wire anten-	281–282
nas	Helical antennas, 505-512
Finite straight wire, 381–385	Hertz, Heinrich Rudolph, 19
Folded dipoles, 458–462	Historical advancement, of antennas, 19-24
Formulas, linear wire antennas, 173–174	Horizontal electric dipoles, 175-181, 185-
Fourier transforms	188
antenna synthesis, 346-352	Horns, 651–721
aperture antennas and: See Aperture an-	aperture-matched, 705-707
tennas	conical, 695–696
Fraunhofer region, 33–34	corrugated, 696-704
Free-space ranges, 841–844	dielectric-loaded, 712
Frequency independent antennas, 64, 542-	E-plane sectoral, 651–668
574	aperture fields, 652–655
conical spiral antennas, 549-550	directivity, 663–668
equiangular spiral antennas, 545–550	radiated fields, 655-663
limits of electrically small antennas, 566–	H-plane sectoral, 668-682
570	aperture fields, 668–669
570	apartare research and and

Horns (Continued)	bent wire, 385-387
directivity, 676-682	finite straight wire, 381-385
radiated fields, 669-676	integral equation, 387–388
monopulse, 711	mutual impedance, between linear ele-
multimode, 707-712	ments. 414–416
phase center, 712-714	Pocklington's, 388–391
pyramidal, 682–695	self-impedance, 403–405
aperture fields, 682-686	Yagi-Uda array, 516-520
computer programs for. 720-721	Integration, vector identities and, 921
design procedure, 693-695	Intensity, radiation, 38–39
directivity, 686-693	Intermediate-field region, 138, 140
equivalents, 682–686	Intermediate loop approximation, 222
radiated fields, 682-686	Invisible region, 343–344
H-plane radiation patterns, 29, 30	Isotropic radiation patterns, 29, 42-44
H-plane sectoral horns: See Horns	
Huygens' principle, 575-581	
Hyperbolic identities, 912	L
I	Land mobile cellular telephones, frequency spectrum, 928
Identities, 911–913	Large loop approximation, 221–222
Image theory, 164–165	Lens antennas, 7, 9
Impedance	Linear arrays: See N-element arrays
active driving, 424	Linear dipoles, 202
antenna, 424	Linear elements
bandwidth of, 63-64	near or on infinite perfect conductors: See
driving-point, 412	Linear wire antennas
input: See Input impedance	Yagi-Uda array of, 513-532
measurement of, 873-874	Linear phase distributions, 371–373
mutual: See Mutual impedance	Linear polarization, 66-69
passive driving, 424	Linear wire antennas, 133-202
self-impedance: See Self-impedance	current distributions, 156
Incident electric field - E'(r), 388-391	finite length dipoles, 151-162
Induced current density, 800-801	current distribution, 151
Induced EMF method, 405-412, 416-422	directivity, 157-159
Infinite cones, 445–447	element factor, 151-153
Infinite line source radiation problem, 16-17	finite feed gap, 161-162
Infinite regular arrays, 426–429	input resistance and, 159-161
Infinitesimal dipoles: See also Linear wire	pattern multiplication, 151-153
antennas	power density, 153-157
small circular loop antennas, 208	radiated fields, 151-153
Input impedance, 73–77	radiation intensity, 153-157
biconical antennas, 445-447	radiation resistance, 153-157
cylindrical dipoles, 449-451	space factor, 151-153
long wire antennas, 495-496	ground effects, 181–194
microstrip antennas, 762-764	earth curvature, 188-194
Yagi-Uda array, 528-529	horizontal electric dipoles, 185-188
Input resistance, 159-161, 202	vertical electric dipoles, 182-185
Instrumentation, radiation patterns and, 860–864	half-wavelength dipoles, 162–164 infinitesimal dipoles, 133–143
Integral equation method, 380-388: See also	directivity, 142–143
Moment Method (MM)	far-field region, 138, 141–142
electrostatic charge distribution and, 381-	intermediate-field region, 138, 140
387	near-field region, 138-140

power density and radiation resistance,	square 100p. 255–250
136–138	triangular, 236–239
radian distance and radian sphere, 138-	small circular, 204–217
139	directivity, 213-214
radiated fields and, 133-136	equivalent circuits for, 214-217
linear elements near or on infinite perfect	far-field region, 213
conductors, 164–181	infinitesimal magnetic dipoles and, 208
antennas for mobile communications	near-field region, 212
systems, 175	power density and radiation resistance
formulas, rapid calculation and design,	in, 208–212
173–174	radiated fields and, 204-208
horizontal electric dipoles, 175-181	radiation intensity, 213–214
image theory, 164–165	Yagi-Uda array of, 533-534
vertical electrical dipoles, 165-173	Lorentz Reciprocity Theorem, 127-128
region separation and, 145-151	Loss factor, polarization (PLF), 69–73
far-field (Fraunhofer) region, 145, 146-	
149	
radiating near-field region (Fresnel),	M
145, 149–150	Magnetic and electric current sources, 119-
reactive near-field region, 145, 150-151	121
small dipole, 143–145	Magnetic and electric fieldsTM' _{mnp.} 753-
Line-source distributions	754
antenna synthesis, Woodward-Lawson	Magnetic field integral equation (MFIE), 387
method, 353-356	Magnetic frill generator, 392-395
continuous sources and, 340-341	Major lobes, 32
Fourier transform method, 347-349	Marconi, Guglielmo, 19-20
Line-source-Gaussian pulse radiation prob-	Matching techniques, 466–483
lem, 27	baluns and transformers, 480-483
Line-source phase distributions, 371–373	binomial, 469–471
Lobes, of radiation patterns, 31–32	gamma match, 475–480
Logarithmic identities, 913	omega match, 480
Log-periodic antennas: See Frequency inde-	quarter-wavelength transformers, 468–472
pendent antennas	stub-matching, 466–468
Long wire antennas, 490–498	T-match, 472-475
Loop antennas, 203-248	Tschebyscheff, 471–472
circular	Yagi-Uda array, 528-529
computer programs for, 248	MATLAB computer program, 16, 17
with constant current, 217–224	Maxima, long wire antennas, 494–495
directivity, 219-224	Maximum directivity, 3941, 49, 84–86
earth curvature effects, 230–233	computer programs for, 115, 202, 248
ground effects, 230-233	numerical techniques for, 53-58
with nonuniform current, 224-230	Maximum effective area, 84–86
power density, 219-224	Maxwell, James Clerk, 19
radiated fields, 217-219	Maxwell's Equations, 19
radiation intensity, 219-224	Method of stationary phase, 922-926
radiation resistance, 219224	Microstrip antennas, 45, 722-784
ferrite, 240-241	analysis methods, 726
ferrite loaded receiving loops, 241	arrays and feed networks, 772–775
radiation resistance, 240–241	bandwidth, 760–762
mobile communications applications, 242	circular patch, 752–760
polygonal, 233–239	conductance, 757–759
rectangular, 236–239	design, 755–756
rhombic, 236–239	directivity, 757–759

Microstrip antennas (Continued) electric and magnetic fields-TM ² _{mnp.} 753–754 equivalent current densities, 756–757 fields radiated, 756–757 resonant frequencies, 754–755 resonant input resistance, 759–760 circular polarization, 767–772 computer programs for, 784 coupling, 764–767 efficiency, 760–762 feeding methods, 724–726 feed networks, arrays and, 772–775 input impedance, 762–764	Mutual coupling in arrays, 422–434 array performance, 425 grating lobes considerations, 429–434 infinite regular arrays, 426–429 in receiving mode, 425 in transmitting mode, 423–425 Mutual impedance computer programs for, 439–440 between linear elements, 412–422 induced EMF method, 416–422 integral equation-moment method, 414– 416 Mini-Numerical Electromagnetics Code (MININEC), 415
quality factor, 760–762	Numerical Electromagnetics Code (NEC), 415
rectangular patch, 727–752 cavity model, 736–749	(NEC), 413
conductance, 731–732	N
design procedure, 730-731	Near-field/far-field methods, 852-858
directivity, 749–752	Near-field of dipole, 405-408
effective length, 728–730	Near-field region
effective width, 728–730	linear wire antennas, 138-140
equivalent current densities, 741-744	small circular loop antennas, 212
field configurations (modes)-TM ^x , 738-	N-element arrays
741	linear
fields radiated-TM* ₀₁₀ mode, 744–749	broadside arrays, 262–264, 276–279 computer programs for, 337
fringing effects, 727–728 resonant frequency, 728–730	directivity, 276–282
resonant input resistance, 732–736	Fourier transform method, 349–352
transmission line model, 727–736	Hansen-Woodyard end-fire arrays. 271-
Miniaturization, 566–574	276, 281–282
Mini-Numerical Electromagnetics Code	ordinary end-fire arrays, 264-266, 279-
(MININEC), 415	280
Minor lobes, 32	phased (scanning) arrays, 266-271
Mobile communications systems, 175, 242,	3-D characteristics. 283–286
928-929	uniform amplitude and spacing, 257-
Modal expansion method, 855–856	276
Moment Method (MM): See also Integral equation method	broadside arrays, 262–264 ordinary end-fire arrays, 264–266
computer programs for, 438	Woodward-Lawson method, 357–358
Galerkin's method, 401–402	X- or Y-axis, 284–286
solution for, 395–403	Z-axis, 283–284
basis functions, 396–400	uniform spacing, nonuniform amplitude,
entire domain functions, 399–400	288-306
subdomain functions, 397-399	array factor, 289-290
weighting (testing) functions, 400-403	binomial arrays, 290-294
Monopoles, 462–464	Dolph-Tschebyscheff arrays, 294–306
Monopulse horns, 710–711	90° corner reflector antennas, 789–790
E-plane, 710	Nonradiating slots, rectangular patch anten-
H-plane. 711	nas, 748–749
sum, 710	Nulls, long wire antennas, 494–495
Monostatic radar cross section (RCS), 90 Multimode horns, 707–712	Numerical Electromagnetics Code (NEC), 415

Numerical techniques: See also Computer	Q
programs	Quadratic phase distributions, 371–373
for radiation patterns, 53-58	Quality factor, 760-762
•	Quarter-wavelength transformers, 468–472
0	Quasistationary fields, 212
Omega match, 480	•
Omnidirectional radiation patterns, 29, 30,	R
49–53	Radar cross section (RCS), 90-98, 91
One-parameter Taylor line-source antenna	RADAR IEEE band designations, 929
synthesis, 362-368	Radar range equation, 88–90
Optimization, Yagi-Uda array, 525-528	Radian, 34–35, 138–139
Ordinary end-fire arrays, 264–266, 279–280	Radiated fields
	aperture antennas, 622-630
P	biconical antennas, 442-445
Parabolic reflector antennas: See Reflector	circular loop antennas, 204-208, 217-219
antennas	E-plane sectoral horns, 655-663
Partial directivity, 40	H-plane sectoral horns, 669-676
Passive driving impedance, 424	linear wire antennas, 133–136
Patch antennas: See Microstrip antennas	finite length dipoles, 151–153
Pattern bandwidth, 63–64	pyramidal horns, 682–686
Pattern multiplication, 151–153, 169	rectangular aperture antennas, 587–589.
PEC square cylinder, 17, 27	595, 599
Phase center horns, 712–714	Radiated power, 115
Phase errors	Radiated (transmitted) wave polarization,
line sources, 371–373	64–65
reflectors, 818–821	Radiating near-field (Fresnel) region, 32–33.
Phase measurements, 864–865	145, 149–150
Piecewise constant function, 397–398	Radiating slots, rectangular patch microstrip
Piecewise linear function, 398	antennas, 744–748
Piecewise sinusoid function, 399	Radiation efficiency, 872–873
Planar and wire surfaces, 551–553	Radiation equations, 582–584
Planar arrays: See Arrays	Radiation fields, 605–607
Planar spiral antennas, 545–549	Radiation integrals and auxiliary potential
Plane reflector antennas, 785–786	functions, 116–132
Pocklington's integral equation, 388–391	duality theorem, 126–127
Poincaré sphere, 65-68, 878	electric and magnetic fields, 120–121
Polarization, 64–73	far-field radiation, 125–126
circular, microstrip antennas, 767–772	reciprocity and reaction theorems, 127–
long wire antennas, 496–497	132
measurement of, 875–880	for radiation patterns, 130–132
Poincaré sphere, 65–68, 878	for two antennas, 129–130
Polarization efficiency, 70–73	vector potentials, 116
Polarization loss factor (PLF), 69–73	for electric current source, 117–119
Polygonal loop antennas: See Loop antennas	for magnetic current source, 117–119
Power density, 35–36	wave equation, 121–125
circular loop antennas, 208–212, 219–224	Radiation intensity, 38–39
linear wire antennas, 136–138, 153–157	circular loop antennas, 219–224
radiation, 35–37	linear wire antennas, 153–157
and radiation resistance, 136–138, 208–	small circular loop antennas, 213–214
212 Power puttern: 28, 353	Radiation mechanism, 717
Power patterns, 28, 353	Radiation patterns, 28–35: See also Directiv
Principal radiation patterns, 29–31	ity
Pyramidal horns: See Horns	antenna measurements and, 858–865

Radiation patterns (Continued)	feed design, 821–823
cylindrical dipoles, 453	induced current density, 800-801
directional, 29	phase errors, 818–821
field regions, 32–34	surface geometry, 798-800
isotropic, 29	plane, 785–786
lobes of, 31–32	spherical, 830–833
numerical techniques for, 53-58	Region separation, 145–151
omnidirectional, 29	Repulsive mechanism, for microstrip
principal, 29-31	patches, 736–737
radian and steradian, 34-35	Resonance and ground plane simulation, cy-
Radiation power density, 35-37	lindrical dipoles, 451–453
Radiation resistance, 1	Resonant frequencies, 728-730, 754-755
circular loop antennas, 219-224, 248	Resonant input resistance, 732–736, 759–
computer programs for, 202, 248	760
and ferrite loop antennas, 240-241	Resonant wires,
linear wire antennas, finite length dipoles,	Rhombic antennas, 236-239, 502-505
153–157	Root-matching, for continuous source dis-
power density and, 136-138, 208-212	cretization, 341
Radio frequency spectrums, 927–928	
Reactive near-field region, 32, 145, 150-151	S
Received wave polarization, 64-65	Scale models, 880–881
Receiving mode	Scattered electric field - E'(r), 388-391
antenna equivalent, 76–77	Schelkunoff polynomial method, 342-346
circular loop, 216–217	Self-impedance, 379, 403-412
coupling, 425	computer programs for, 439-440
Reciprocity and reaction theorems, 127–132	induced EMF method, 405-412
Rectangular aperture antennas: See Aperture	integral equation-moment method, 403-
antennas	405
Rectangular aperture sources, 373	Series-feed network, 773
Rectangular coordinates, vector analysis and,	Side lobe levels, 592-599, 607-609
919	Sine function tables, 885–889
Rectangular loop antennas, 236-239	Sine integrals, 889–893
Rectangular patch microstrip antennas: See	Single paraboloidal reflector, 848–850
Microstrip antennas	Single-plane collimating range (SPCR), 850-
Rectangular-to-cylindrical vector analysis,	851
914–917	Single wire radiation mechanism, 711
Rectangular-to-polar graphical solution,	Slant ranges, 843
287–288	Sleeve dipoles, 464–466
Rectangular-to-spherical vector analysis, 918	Small circular loop antennas: See Loop an-
Reflection ranges, 841	tennas
Reflector antennas, 6, 785–838	Small dipoles, 143-145
corner, 786-793	Small loop approximation, 222–223
parabolic, 794–830	Source modeling, 392–395
Cassegrain, 823–830	delta gap, 393
classical form, 826–828	magnetic frill generator, 393-394
Gregorian form, 828-830	Space factor, 151–153
front-fed, 797-823	Spectral domain, 621-622
aperture distribution method, 801-	Spherical coordinates, 920
806	Spherical reflectors, 830–833
aperture efficiency, 811–818	Spherical-to-cylindrical vector analysis, 917-
cross-polarization, 806–807	918
current distribution method, 807-811	Spherical-to-rectangular vector analysis, 918
directivity, 811–818	Square loop antennas, 233–236

Standing waves, 2	Tschebyscheff matching transformers, 471-
Stationary phase, method of, 922–926	472
Steradian, 34–35	Two-antenna method, gain measurements,
Structural scattering, 93	867
Stub-matching, 466–468	Two-element arrays, 250-257
Subdomain functions, 397–399	Two wire radiation mechanism, 1114
Superdirectivity, 306–309	
Supergain, 306	77
Surface geometry, front-fed parabolic reflec-	U
tors, 798–800	Ultra High Frequency (UHF) channels, 927-
Synthesis: See Antenna synthesis	928
	Uniform distribution on an infinite ground
T	plane, 586–594, 605–610
Taylor line-source, 321–322, 358–368	Unipoles, 447
Television frequency spectrums. 927–928	
TE ₁₁ -mode distribution, circular aperture,	V
610-611	V antennas, -502
TE ₁₀ -mode distribution, rectangular aperture,	Vector analysis, 914–921
599–601	Vector effective length, 79–81
Temperature, of antennas, 98–100	Vector potentials: see also Radiation inte-
Thin dipoles, 154	grals and auxiliary potential func-
Thin wire antennas	tions
on current distribution, 17–19	wave equations and, 121–125
linear: See Linear wire antennas	Vertical electric dipoles, 165–173, 182–185
	Very High Frequency (VHF) channels, 927–
Three-antenna method, gain measurements, 867–868	928
Three-dimensional amplitude patterns, 155	Virtual feed, 826
Three-dimensional characteristics, 283–286	Visible region, 343–344
T-match, 472–475	
Total electric field - E'(r), 388-391	W
Transformers, baluns and, 480–483	Weighted residuals, 401
Transmission line model, rectangular micros-	Weighting (testing) functions, 400-403
trip antennas, 727–736	Wire antennas, 4
Transmitting mode, 74–76, 215–216, 423–	linear: See Linear wire antennas
425	thin wire: See Thin wire antennas
Traveling wave antennas, 488-505	Wireless communication antennas, 175, 242,
long wire, 490–	928–929
rhombic antennas. 502–505	Wire simulation, 447–449
V antennas, -502	Woodward-Lawson method, 352–358
Triangular distributions, 368–371	Wood was and with motion by
Triangular loop antennas, 236–239	
Triangular sheet simulation, 447–449	Y
Trigonometric identities, 911-912	Yagi-Uda arrays
Truncated cosine function, 399	computer programs for, 521-525, 541
Tschebyscheff error, Taylor line-source,	of linear elements, 513–532
321–322, 358–362	of loops, 533-534