第八章:聚类

原文: http://guidetodatamining.com/chapter-8/

前几章我们学习了如何构建分类系统,使用的是已经标记好类别的数据集进行训练:

K		
sport	Height	Weight
basketball	72	162
gymnastics	54	66
track	63	106
basketball	78	204

		\	
plasma glucose	diastolic BP	BMI	diabetes?
99	52	24.6	0
83	58	34.4	0
139	80	31.6	1

训练完成后我们就可以用来预测了:这个人看起来像是篮球运动员,那个人可能是练体操的;这个人三年内不会患有糖尿病。

可以看到,分类器在训练阶段就已经知道各个类别的名称了。那如果我们不知道呢?如何构建一个能够自动对数据进行分组的系统?比如有1000人,每人有20个特征,我想把这些人分为若干个组。

这个过程叫做聚类:通过物品特征来计算距离,并自动分类到不同的群集或组中。有两种聚类算法比较常用:

k-means聚类算法

我们会事先告诉这个算法要将数据分成几个组,比如"请把这1000个人分成5个组","将这些网页分成15个组"。这种方法就叫k-means,我们会在后面的章节讨论。

层次聚类法

对于层次聚类法,我们不需要预先指定分类的数量,这个算方法会将每条数据都当作是一个分类,每次迭代的时候合并距离最近的两个分类,直到剩下一个分类为止。因此聚类的结果是:顶层有一个大分类,这个分类下有两个子分类,每个子分类下又有两个子分类,依此类推,层次聚类也因此得命。

在合并的时候我们会计算两个分类之间的距离,可以采用不同的方法。如下图中的 A、B、C三个分类,我们应该将哪两个分类合并起来呢?

单链聚类

在单链聚类中,分类之间的距离由两个分类相距最近的两个元素决定。如上图中分类A和分类B的距离由A1和B1的距离决定,因为这个距离小于A1到B2、A2到B1的距离。这样一来我们会将A和B进行合并。

全链聚类

在全链聚类中,分类之间的距离由两个分类相距最远的两个元素决定。因此上图中分类 A和B的距离是A2到B2的距离,最后会将分类B和C进行合并。

平均链接聚类

在这种聚类方法中,我们通过计算分类之间两两元素的平均距离来判断分类之间的距离,因此上图中会将分类B和C进行合并。

下面让我们用单链聚类法举个例子吧!

我们来用狗的高度和重量来进行聚类:

breed	height (inches)	weight (pounds)
Border Collie	20	45
Boston Terrier	16	20
Brittany Spaniel	18	35
Bullmastiff	27	120
Chihuahua	8	8
German Shepherd	25	78
Golden Retriever	23	70
Great Dane	32	160
Portuguese Water Dog	21	50
Standard Poodle	19	65
Yorkshire Terrier	6	7

在计算距离前我们是不是忘了做件事?

标准化!我们先将这些数据转换为修正的标准分。

breed	height	weight
Border Collie	0	-0.1455
Boston Terrier	-0.7213	-0.873
Brittany Spaniel	-0.3607	-0.4365
Bullmastiff	1,2623	2,03704
Chihuahua	-2.1639	-1.2222
German Shepherd	0,9016	0.81481
Golden Retriever	0.541	0,58201
Great Dane	2.16393	3,20106
Portuguese Water Dog	01803	0
Standard Poodle	-0.1803	0.43651
Yorkshire Terrier	-2,525	-1.25132

然后我们计算欧几里德距离,图中高亮了一些最短距离:

	BT	BS	В	С	GS	GR	GD	PWD	SP
Border Collie	1.024	0.463	2.521	2.417	1.317	0.907	3.985	0.232	0.609
Boston Terrier		0.566	3.522	1.484	2.342	1.926	4.992	1.255	1.417
Brittany Spaniel			2.959	1.967	1.777	1.360	4.428	0.695	0.891
Bullmastiff				4.729	1.274	1.624	1.472	2.307	2.155
Chi huahua					3.681	3.251	6.188	2.644	2.586
German Shphrd						0.429	2.700	1.088	1.146
Golden Retriever							3.081	0.685	0.736
Great Dane								3.766	3.625
Portuguese WD									0.566
Standard Poodle									

根据下面的图表,你能看出哪两个品种的距离最近吗?

如果你看出是Border Collie和Portuguese Water Dog最近,那就对了!

计算过程

第一步:我们找到距离最近的两个元素,对他们进行聚类:

这叫树状图,可以用来表示聚类。

动手实践

你能在下图的基础上继续完成聚类吗?

Yorkshire T.

German Shphrd

Golden Retriever

Border Collie

Portuguese WD

Brittany Spaniel

Boston Terrier

解答

编写层次聚类算法

我们可以使用优先队列来实现这个聚类算法。

什么是优先队列呢?

普通的队列有"先进先出"的规则,比如向队列先后添加Moa、Suzuka、Yui,取出时得到的也是Moa、Suzuka、Yui:

而对于优先队列,每个元素都可以附加一个优先级,从队列中取出时会得到优先级最高的元素。比如说,我们定义年龄越小优先级越高,以下是插入过程:

取出的第一个元素是Yui,因为她的年龄最小:

我们看看Python中如何使用优先队列:

```
# 加载优先队列类
>>> from Queue import PriorityQueue
                                             # 创建对象
>>> singersQueue = PriorityQueue()
>>> singersQueue.put((16, 'Suzuka Nakamoto')) # 插入元素
>>> singersQueue.put((15, 'Moa Kikuchi'))
>>> singersQueue.put((14, 'Yui Mizuno'))
>>> singersQueue.put((17, 'Ayaka Sasaki'))
>>> singersQueue.get() # 获取第一个元素,即最年轻的歌手Yui。
(14, 'Yui Mizuno')
>>> singersQueue.get()
(15, 'Moa Kikuchi')
>>> singersQueue.get()
(16, 'Suzuka Nakamoto')
>>> singersQueue.get()
(17, 'Ayaka Sasaki')
```

在进行聚类时,我们将分类、离它最近的分类、以及距离插入到优先队列中,距离作为优先级。比如上面的犬种示例,Border Collie最近的分类是Portuguese WD,距离是0.232:

我们将优先队列中距离最小的两个分类取出来,合并成一个分类,并重新插入到优先队列中。比如下图是将Border Collie和Portuguese WD合并后的结果:

重复这个过程,直到队列中只有一个元素为止。当然,我们插入的数据会复杂一些,请 看下面的讲解。

从文件中读取数据

数据文件是CSV格式的(以逗号分隔),第一行是列名,第一列是犬种,第二列之后是特征值:

```
breed, height (inches), weight (pounds)
Border Collie, 20, 45
Boston Terrier, 16, 20
Brittany Spaniel, 18, 35
Bullmastiff, 27, 120
Chihuahua, 8, 8
German Shepherd, 25, 78
Golden Retriever, 23, 70
Great Dane, 32, 160
Portuguese Water Dog, 21, 50
Standard Poodle, 19, 65
Yorkshire Terrier, 6, 7
```

我们用Python的列表结构来存储这些数据,data[0]用来存放所有记录的分类,如 data[0][0]是Border Collie,data[0][1]是Boston Terrier。data[1]则是所有记录的高度,data[2]是重量。特征列的数据都会转换成浮点类型,如data[1][0]是20.0,data[2][0]是45.0等。在读取数据时就需要对其进行标准化。此外,我们接下来会使用"下标"这个术语,如第一条记录Border Collie的下标是0,第二条记录Boston Terrier下标是1等。

初始化优先队列

以Border Collie为例,我们需要计算它和其它犬种的距离,保存在Python字典里:

```
{1: ((0, 1), 1.0244), # Border Collie(下标为0)和Boston Terrier(2: ((0, 2), 0.463), # Border Collie和Brittany Spaniel(下标为2)...
10: ((0, 10), 2.756)} # Border Collie和Yorkshire Terrier的距离为2
```

此外,我们会记录Border Collie最近的分类及距离:这对犬种是(0, 8),即下标为0的Border Collie和下标为8的Portuguese WD,距离是0.232。

距离相等的问题以及为何要使用元组

你也许注意到了,Portuguese WD和Standard Poodle的距离是0.566,Boston Terrier和Brittany Spaniel的距离也是0.566,如果我们通过最短距离来取,很可能会取出Standard Poodle和Boston Terrier进行组合,这显然是错误的,所以我们才会使用元组来存放这对犬种的下标,以作判断。比如说,Portuguese WD的记录是:

```
['Portuguese Water Dog', 0.566, (8, 9)]
```

它的近邻Standard Poodle的记录是:

```
['Standard Poodle', 0.566, (8, 9)]
```

我们可以通过这个元组来判断这两条记录是否是一对。

距离相等的另一个问题

在介绍优先队列时,我用了歌手的年龄举例,如果他们的年龄相等,取出的顺序又是怎样的呢?

```
>>> singersQueue.put((15, 'Suzuka Nakamoto'))
>>> singersQueue.put((15,'Moa Kikuchi'))
>>> singersQueue.put((15, 'Yui Mizuno'))
>>> singersQueue.put((15, 'Avaka Sasaki'))
>>> singersQueue.put((12, 'Megumi Okada'))
>>> singersQueue.get()
(12, 'Megumi Okada')
>>> singersQueue.get()
(15, 'Avaka Sasaki')
>>> singersQueue.get()
(15, 'Moa Kikuchi')
>>> singersQueue.get()
(15, 'Suzuka Nakamoto')
>>> singersQueue.get()
(15, 'Yui Mizuno')
>>>
```

可以看到,如果年龄相等,优先队列会根据记录中的第二个元素进行判断,即歌手的姓名,并按字母顺序返回,如Avaka会比Moa优先返回。

在犬种示例中,我们让距离成为第一优先级,下标成为第二优先级。因此,我们插入到优先队列的一条完整记录是这样的:

重复下述步骤,直到仅剩一个分类

我们从优先队列中取出两个元素,对它们进行合并。如合并Border Collie和Portuguese WD后,会形成一个新的分类:

```
['Border Collie', 'Portuguese WD']
```

然后我们需要计算新的分类和其它分类之间的距离,方法是对取出的两个分类的距离字

典进行合并。如第一个分类的距离字段是distanceDict1,第二个分类的是distanceDict2,新的距离字段是newDistanceDict:

初始化newDistanceDict

对于distanceDict1的每一个键值对:

如果这个键在distanceDict2中存在:

如果这个键在distanceDict1中的距离要比在distanceDict2中的距离小 将distanceDict1中的距离存入newDistanceDict

否则:

将distanceDict2中的距离存入newDistanceDict

key	value in the Border Collie Distance List	value in the Portuguese Water Dog Distance List	value in the Distance List for the new cluster
0	-	((0, 8), 0.2317092146055)	-
1	((0, 1), 1.02448315787260)	((1, 8), 1.25503395239308)	((0, 1), 1.02448315787260)
2	((0, 2), 0.46341842921117)	((2, 8), 0.69512764381676)	(0, 2), 0.46341842921117)
3	((0, 3), 2.52128307411504)	((3, 8), 2.3065500082408)	((3, 8), 2.3065500082408)
4	((0, 4), 2.41700998092941)	((4, 8), 2.643745991701)	((0, 4), 2.41700998092941)
5	((0, 5), 1.31725590972761)	((5, 8), 1.088215707936)	((5, 8), 1.088215707936)
6	((0, 6), 0.90660838225252)	((6, 8), 0.684696194462)	((6, 8), 0.684696194462)
7	((0, 7), 3.98523295438990)	((7, 8), 3.765829069545)	((7, 8), 3.765829069545)
8	((0, 8), 0.23170921460558)	-	-
9	((0, 9), 0.60930653849861)	((8, 9), 0.566225873458)	((8, 9), 0.566225873458)
10	((0, 10), 2.7561555838287)	((8, 10), 2.980333906137)	((0, 10), 2.7561555838287)

经过计算后,插入到优先队列中的新分类的完整记录是:

```
(0.4634184292111748, 11, [('Border Collie', 'Portuguese Water Dog'), [2, 0.4634184292111748, (0, 2)], {1: ((0, 1), 1.0244831578726061), 2: ((0, 2), 0.4634184292111748), 3: ((3, 8), 2.306550008240866), 4: ((0, 4), 2.4170099809294157), 5: ((5, 8), 1.0882157079364436), 6: ((6, 8), 0.6846961944627522), 7: ((7, 8), 3.7658290695451373), 9: ((8, 9), 0.5662258734585477), 10: ((0, 10), 2.756155583828758)}])
```

代码实践

你能将上面的算法用Python实现吗?你可以从<u>hierarchicalClustererTemplate.py</u>这个文件开始,完成以下步骤:

- 1. 编写init方法,对于每条记录:
 - 1. 计算该分类和其它分类之间的欧几里得距离;
 - 2. 找出该分类的近邻:

- 3. 将这些信息放到优先队列的中。
- 2. 编写cluster方法,重复以下步骤,直至剩下一个分类:
 - 1. 从优先队列中获取两个元素;
 - 2. 合并;
 - 3. 将合并后的分类放回优先队列中。

解答

注意,我的实现并不一定是最好的,你可以写出更好的!

from queue import PriorityQueue
import math

11 11 11

层次聚类示例代码

11 11 11

```
def getMedian(alist):
    """计算中位数"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2

def normalizeColumn(column):
    """计算修正的标准分"""
    median = getMedian(column)
    asd = sum([abs(x - median) for x in column]) / len(column)
    result = [(x - median) / asd for x in column]
    return result
```

"""该聚类器默认数据的第一列是标签,其它列是数值型的特征。"""

```
def __init__(self, filename):
    file = open(filename)
    self.data = {}
    self.counter = 0
    self.queue = PriorityQueue()
    lines = file.readlines()
    file.close()
   header = lines[0].split(',')
   self.cols = len(header)
    self.data = [[] for i in range(len(header))]
    for line in lines[1:]:
       cells = line.split(',')
       toggle = 0
       for cell in range(self.cols):
           if toggle == 0:
              self.data[cell].append(cells[cell])
              toggle = 1
           else:
               self.data[cell].append(float(cells[cell]))
    # 标准化特征列(即跳过第一列)
    for i in range(1, self.cols):
           self.data[i] = normalizeColumn(self.data[i])
    ###
        数据已经读入内存并做了标准化,对于每一条记录,将执行以下步骤:
    ###
           1. 计算该分类和其他分类的距离,如当前分类的下标是1,
    ###
              它和下标为2及下标为3的分类之间的距离用以下形式表示:
    ###
    ###
              \{2: ((1, 2), 1.23), 3: ((1, 3), 2.3)...\}
           2. 找出距离最近的分类;
    ###
           3. 将该分类插入到优先队列中。
    ###
    ###
   # 插入队列
    rows = len(self.data[0])
    for i in range (rows):
       minDistance = 99999
       nearestNeighbor = 0
       neighbors = {}
       for j in range(rows):
           if i != j:
               dist = self.distance(i, j)
               if i < j:
                   pair = (i,j)
               else:
                   pair = (j,i)
               neighbors[j] = (pair, dist)
```

```
if dist < minDistance:
                   minDistance = dist
                   nearestNeighbor = j
                   nearestNum = j
       # 记录这两个分类的配对信息
       if i < nearestNeighbor:</pre>
           nearestPair = (i, nearestNeighbor)
       else:
           nearestPair = (nearestNeighbor, i)
       # 插入优先队列
       self.queue.put((minDistance, self.counter,
                       [[self.data[0][i]], nearestPair, nei
       self.counter += 1
def distance(self, i, j):
    sumSquares = 0
    for k in range(1, self.cols):
       sumSquares += (self.data[k][i] - self.data[k][j])**2
    return math.sqrt(sumSquares)
def cluster(self):
    done = False
    while not done:
        topOne = self.queue.get()
        nearestPair = topOne[2][1]
        if not self.queue.empty():
            nextOne = self.queue.get()
            nearPair = nextOne[2][1]
            tmp = []
                我从队列中取出了两个元素:topOne和nextOne,
               检查这两个分类是否是一对,如果不是就继续从优先队列中
            ## 直至找到topOne的配对分类为止。
            while nearPair != nearestPair:
                tmp.append((nextOne[0], self.counter, nextO
                self.counter += 1
                nextOne = self.queue.get()
                nearPair = nextOne[2][1]
            ## 将不处理的元素退回给优先队列
            for item in tmp:
                self.queue.put(item)
            if len(topOne[2][0]) == 1:
                item1 = topOne[2][0][0]
            else:
                item1 = topOne[2][0]
            if len(nextOne[2][0]) == 1:
                item2 = nextOne[2][0][0]
```

```
else:
                    item2 = nextOne[2][0]
                    curCluster即合并后的分类
                curCluster = (item1, item2)
                ## 对于这个新的分类需要做两件事情:首先找到离它最近的分类
                ## 如果item1和元素23的距离是2 , item2和元素23的距离是4
                minDistance = 99999
                nearestPair = ()
                nearestNeighbor = ''
                merged = {}
                nNeighbors = nextOne[2][2]
                for (key, value) in topOne[2][2].items():
                   if key in nNeighbors:
                       if nNeighbors[key][1] < value[1]:</pre>
                            dist = nNeighbors[key]
                       else:
                           dist = value
                       if dist[1] < minDistance:</pre>
                            minDistance = dist[1]
                            nearestPair = dist[0]
                            nearestNeighbor = key
                       merged[key] = dist
                if merged == {}:
                   return curCluster
                else:
                   self.queue.put( (minDistance, self.counter,
                                    [curCluster, nearestPair, m
                   self.counter += 1
def printDendrogram(T, sep=3):
    """打印二叉树状图。树的每个节点是一个二元组。这个方法摘自:
   http://code.activestate.com/recipes/139422-dendrogram-drawin-
   def isPair(T):
       return type(T) == tuple and len(T) == 2
   def maxHeight(T):
       if isPair(T):
           h = max(maxHeight(T[0]), maxHeight(T[1]))
       else:
           h = len(str(T))
       return h + sep
   activeLevels = {}
   def traverse(T, h, isFirst):
       if isPair(T):
           traverse(T[0], h-sep, 1)
           s = [' ']*(h-sep)
```

```
s.append('|')
        else:
            s = list(str(T))
            s.append(' ')
        while len(s) < h:
            s.append('-')
        if (isFirst \geq = 0):
            s.append('+')
            if isFirst:
                activeLevels[h] = 1
            else:
                del activeLevels[h]
        A = list(activeLevels)
        A.sort()
        for L in A:
            if len(s) < L:
                while len(s) < L:
                     s.append(' ')
                s.append('|')
        print (''.join(s))
        if isPair(T):
            traverse(T[1], h-sep, 0)
    traverse(T, maxHeight(T), -1)
filename = '/Users/raz/Dropbox/guide/data/dogs.csv'
hg = hClusterer(filename)
cluster = hg.cluster()
printDendrogram(cluster)
```

运行结果和我们手算的一致:

动手实践

这里提供了77种早餐麦片的营养信息,包括以下几项:

- ●麦片名称
- ●热量
- ●蛋白质
- ●脂肪
- ●纳
- ●纤维
- ●碳水化合物
- ●糖
- ●钾
- ●维生素

请对这个数据集进行层次聚类:

- ●哪种麦片和Trix最相近?
- ●与Muesli Raisins & Almonds最相近的是?

数据集来自: http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

结果

我们只需将代码中的文件名替换掉就可以了,结果如下:

因此Trix和Fruity Pebbles最相似(你可以去买这两种麦片尝尝)。Muesli Raisins & Almonds和Muesli Peaches & Pecans最相似。

好了,这就是层次聚类算法,很简单吧!

k-means聚类算法

使用k-means算法时需要指定分类的数量,这也是算法名称中"k"的由来。

k-means是Lloyd博士在1957年提出的,虽然这个算法已有50年的历史,但却是当前最流行的聚类算法!

下面让我们来了解一下k-means聚类过程:

- 1. 我们想将图中的记录分成三个分类(即k=3),比如上文提到的犬种数据,坐标轴分别是身高和体重。
- 2. 由于k=3,我们随机选取三个点来作为聚类的起始点(分类的中心点),并用红黄蓝三种颜色标识。
- 3. 然后,我们根据其它点到中心点的距离来进行分配,这样就能将这些点分成三类了。
- 4. 计算这些分类的中心点,以此作为下一次计算的起始点。重复这个过程,直到中心点不再变动,或迭代次数超过某个阈值为止。

所以k-means算法可概括为:

- 1. 随机选取k个元素作为中心点;
- 2. 根据距离将各个点分配给中心点;
- 3. 计算新的中心点;
- 4. 重复2、3, 直至满足条件。

我们来看一个示例,将以下点分成两个分类:

第一步 随机选取中心点

我们选取(1,4)作为分类1的中心点,(4,2)作为分类2的中心点;

第二步 将各点分配给中心点

可以用各类距离计算公式,为简单起见,这里我们使用曼哈顿距离:

point	distance from centroid 1 (1, 4)	distance from centroid 2 (4, 2)
(1, 2)	2	3
(1,4)	0	5
(2, 2)	3	2
(2, 3)	2	3
(4, 2)	5	0
(4, 4)	3	2
(5, 1)	7	2
(5, 3)	5	2

聚类结果如下:

	STER	1
(1, (1,	2)	
(2,	3)	

第三步 更新中心点

通过计算平均值来更新中心点,如x轴的均值是:

$$(1+1+2)/3=4/3=1.33$$

y轴是:

$$(2+4+3)/3=9/3=3$$

因此分类1的中心点是(1.33,3)。计算得到分类2的中心点是(4,2.4)。

第四步 重复前面两步

两个分类的中心点由(1, 4)、(4, 2)变为了(1.33, 3)、(4, 2.4), 我们使用新的中心点重新计算。

重复第二步 将各点分配给中心点

同样是计算曼哈顿距离:

point	distance from centroid 1 (1.33, 3)	distance from centroid 2 (4, 2.4)
(1, 2)	1.33	3.4
(1, 4)	1.33	4.6
(2, 2)	1.67	2.4
(2, 3)	0.67	2.6
(4, 2)	3.67	0.4
(4, 4)	3.67	1.6
(5, 1)	5.67	2.4
(5, 3)	3.67	1.6

新的聚类结果是:

CLUS	STER	1
(1,		
(1,		
,	2)	
(2,	3)	

CLU	STER	2
(4,		
(4,		
(5,	1)	
(5,	3)	

重复第三步 更新中心点

◆分类1:(1.5, 2.75) ◆分类2:(4.5, 2.5)

重复第二步 将各点分配给中心点

point	distance from centroid 1 (1.5, 2.75)	distance from centroid 2 (4.5, 2.5)		
(1, 2)	1.25	4.0		
(1, 4)	1.75	5.0		
(2, 2)	1.25	3.0		
(2, 3)	0.75	3.0		
(4, 2)	3.25	1.0		
(4, 4)	3-75	2.0		
(5, 1)	5.25	2.0		
(5, 3)	3-75	1.0		

CLUSTER 1 (1, 2) (1, 4) (2, 2) (2, 3) CLUSTER 2 (4, 2) (4, 4) (5, 1) (5, 3)

重复第三步 更新中心点

●分类1:(1.5, 2.75) ●分类2:(4.5, 2.5)

可以看到中心点并没有改变,所以计算也就结束了。

当中心点不再变化时,或者说不再有某个点从一个分类转移到另一个分类时,我们就会停止计算。这个时候我们称该算法已经收敛。算法运行过程中,中心点的大幅转移是在前几次迭代中产生的,后面的迭代中变动的幅度就会减小。也就是说,k-means算法的重点是在前期迭代,而后期的迭代只是细微的调整。

基于k-means的这种特点,我们可以将"没有点发生转移"弱化成"少于1%的点发生转移"来作为计算停止条件,这也是最普遍的做法。

k-means好简单呀!

扩展阅读

k-means是一种最大期望算法,这类算法会在"期望"和"最大化"两个阶段不断迭代。比如k-means的期望阶段是将各个点分配到它们所"期望"的分类中,然后在最大化阶段重新计算中心点的位置。如果你对此感兴趣,可以前去阅读维基百科上的词条。

登山式算法

再继续讨论k-means算法之前,我想先介绍一下登山式算法。

假设我们想要登上一座山的顶峰,可以通过以下步骤实现:

- 1. 在山上随机选取一个点作为开始;
- 2. 向高处爬一点;
- 3. 重复第2步,直到没有更高的点。

这种做法看起来很合理,比如对于下图所示的山峰:

无论我们从哪个点开始攀登,最终都可以达到顶峰。

但对于下面这张图:

所以说,这种简单的登山式算法并不一定能得到最优解。

k-means就是这样一种算法,它不能保证最终结果是最优的,因为我们一开始选择的中心点是随机的,很有可能就会选到上面的A点,最终获得局部最优解B点。因此,最终的聚类结果和起始点的选择有很大关系。但尽管如此,k-means通常还是能够获得良好的结果的。

那我们如何比较不同的聚类结果呢?

误差平方和(SSE)

我们可以使用误差平方和(或称离散程度)来评判聚类结果的好坏,它的计算方法是: 计算每个点到中心点的距离平方和。

$$SSE = \sum_{i=1}^{k} \sum_{x \in C_i} dist(c_i, x)^2$$

上面的公式中,第一个求和符号是遍历所有的分类,比如i=1时计算第一个分类,i=2时计算第二个分类,直到计算第k个分类;第二个求和符号是遍历分类中所有的点;Dist指代距离计算公式(如曼哈顿距离、欧几里得距离);计算数据点x和中心点c_i之间的距离,平方后相加。

假设我们对同一数据集使用了两次k-means聚类,每次选取的起始点不一样,想知道最后得到的聚类结果哪个更优,就可以计算和比较SSE,结果小的效果好。

下面让我们开始编程吧!

import math
import random

11 11 11

K-means**算法**

```
def getMedian(alist):
    """计算中位数"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2
```

def normalizeColumn(column):

```
"""计算修正的标准分"""
```

```
median = getMedian(column)
asd = sum([abs(x - median) for x in column]) / len(column)
result = [(x - median) / asd for x in column]
return result
```

class kClusterer:

"""kMeans聚类算法,第一列是分类,其余列是数值型特征"""

```
def init (self, filename, k):
   """ k是分类的数量,该函数完成以下功能:
      1. 读取filename的文件内容
      2. 按列存储到self.data变量中
      3. 计算修正的标准分
      4. 随机选取起始点
      5. 将各个点分配给中心点
   file = open(filename)
   self.data = {}
   self.k = k
   self.counter = 0
   self.iterationNumber = 0
   # 用于跟踪本次迭代有多少点的分类发生了变动
   self.pointsChanged = 0
   # 误差平方和
   self.sse = 0
   # 读取文件
   lines = file.readlines()
   file.close()
   header = lines[0].split(',')
   self.cols = len(header)
   self.data = [[] for i in range(len(header))]
   # 按列存储数据,如self.data[0]是第一列的数据,
   # self.data[0][10]是第一列第十行的数据。
   for line in lines[1:]:
       cells = line.split(',')
       toggle = 0
       for cell in range(self.cols):
           if toggle == 0:
              self.data[cell].append(cells[cell])
              toggle = 1
           else:
               self.data[cell].append(float(cells[cell]))
   self.datasize = len(self.data[1])
   self.memberOf = [-1 for x in range(len(self.data[1]))]
   # 标准化
   for i in range(1, self.cols):
           self.data[i] = normalizeColumn(self.data[i])
   # 随机选取起始点
   random.seed()
   self.centroids = [[self.data[i][r] for i in range(1, le
                      for r in random.sample(range(len(self
```

```
self.k)]
```

self.assignPointsToCluster()

```
def updateCentroids(self):
    """根据分配结果重新确定聚类中心点"""
   members = [self.memberOf.count(i) for i in range(len(sel
    self.centroids = [[sum([self.data[k][i]
                           for i in range(len(self.data[0])
                           if self.memberOf[i] == centroid]
                      for k in range(1, len(self.data))]
                     for centroid in range (len (self.centroi
def assignPointToCluster(self, i):
    """根据距离计算所属中心点"""
   min = 999999
    clusterNum = -1
    for centroid in range(self.k):
       dist = self.euclideanDistance(i, centroid)
       if dist < min:
           min = dist
           clusterNum = centroid
    # 跟踪变动的点
    if clusterNum != self.memberOf[i]:
       self.pointsChanged += 1
    # 计算距离平方和
    self.sse += min**2
    return clusterNum
def assignPointsToCluster(self):
    """分配所有的点"""
    self.pointsChanged = 0
    self.sse = 0
    self.memberOf = [self.assignPointToCluster(i)
                    for i in range(len(self.data[1]))]
def euclideanDistance(self, i, j):
    """计算欧几里得距离"""
    sumSquares = 0
    for k in range(1, self.cols):
       sumSquares += (self.data[k][i] - self.centroids[j][k
    return math.sqrt(sumSquares)
def kCluster(self):
    """开始进行聚类,重复以下步骤:
```

31

```
1. 更新中心点
       2. 重新分配
       直至变动的点少于1%。
       done = False
       while not done:
           self.iterationNumber += 1
           self.updateCentroids()
           self.assignPointsToCluster()
           # 如果变动的点少于1%则停止迭代
           if float(self.pointsChanged) / len(self.memberOf) <</pre>
               done = True
       print("Final SSE: %f" % self.sse)
   def showMembers(self):
       """输出结果"""
       for centroid in range(len(self.centroids)):
            print ("\n\nClass %i\n======" % centroid)
            for name in [self.data[0][i] for i in range(len(se
                         if self.memberOf[i] == centroid]:
                print (name)
##
## 对犬种数据进行聚类,令k=3
###
# 请自行修改文件路径
km = kClusterer('../../data/dogs.csv', 3)
km.kCluster()
km.showMembers()
```


我们来分析一下这段代码。

犬种数据用表格来展示是这样的,身高和体重都做了标准化:

breed	height	weight
Border Collie	0	-0.1455
Boston Terrier	-0.7213	-0.873
Brittany Spaniel	-0.3607	-0.4365
Bullmastiff	1,2623	2.03704
German Shepherd	0.9016	0.81481

因为需要按列存储,转化后的Python格式是这样的:

我们在层次聚类中用的也是此法,这样做的好处是能够方便地应用不同的数学函数。比如计算中位数和计算标准分的函数,都是以列表作为参数的:

```
>>> normalizeColumn([8, 6, 4, 2]) [1.5, 0.5, -0.5, -1.5]
```

__init__函数首先将文件读入进来,按列存储,并进行标准化。随后,它会选取k个起始点,并将记录中的点分配给这些中心点。kCluster函数则开始迭代计算中心点的新位置,直到少于1%的点发生变动为止。

程序的运行结果如下:

```
Final SSE: 5.243159

Class 0
======

Bullmastiff
Great Dane

Class 1
======

Boston Terrier
Chihuahua
Yorkshire Terrier

Class 2
======

Border Collie
Brittany Spaniel
```

German Shepherd Golden Retriever Portuguese Water Dog Standard Poodle

聚类结果非常棒!

动手实践

用上面的聚类程序来对麦片数据集进行聚类,令k=4,并回答以下问题:

- 1. 甜味麦片都被聚类到一起了吗,如Cap'n'Crunch, Cocoa Puffs, Froot Loops, Lucky Charms?
- 2. 麸类麦片聚到一起了吗,如100% Bran, All-Bran, All-Bran with Extra Fiber, Bran Chex?
- 3. Cheerios被分到了哪个类别,是不是一直和Special K一起?

再来对加仑公里数的数据进行聚类,令k=8。运行结果大致令人满意,但有时候会出现记录数为空的分类。

我要求聚类成8个分类,但其中一个是空的,肯定代码有问题!

我们用示例来看这个问题,假设需要将以下8个点分成3个类别:

5 | 6 | 0 1 3 | 4 08

我们选取1、7、8作为起始点,因此第一次聚类的结果是:

1 2

随后,我们重新计算中心点,即下图中的加号:

这时,6离蓝色中心点较近,7离绿色中心点较近,因此粉色的分类就为空了。

所以说,虽然我们指定了k的值,但不代表最终结果就会有k个分类。这通常是好事,比如上面的例子中,看起来就应该要分成两类。如果有1000条数据,我们指定k=10,但结果有两个为空,那很有可能这个数据集本来就该分成8个类别,因此可以尝试用k=8来重新计算。

另一方面,如果你要求分类都不为空,那就需要改变一下算法:当发现空的分类时,就 重新指定这个分类的中心点。一种做法是选取离这个中心点最远的点,比如上面的例子 中,发现粉色分类为空,就将中心点变为点1,因为它离粉色中心点最远。

(叹气) 如果k-means算法能够更快更

准确就好了。

k-means++

前面我们提到k-means是50年代发明的算法,它的实现并不复杂,但仍是现今最流行的聚类算法。不过它也有一个明显的缺点。在算法一开始需要**随机**选取k个起始点,正是这个随机会有问题。有时选取的点能产生最佳结果,而有时会让结果变得很差。k-means++则改进了起始点的选取过程,其余的和k-means一致。

以下是k-means++选取起始点的过程:

1. 随机选取一个点:

2. 重复以下步骤,直到选完k个点:

- 1. 计算每个数据点(dp)到各个中心点的距离(D),选取最小的值,记为D(dp);
- 2. 根据D(dp)的概率来随机选取一个点作为中心点。

我们来讲解一下何为"根据D(dp)的概率来随机选取"。假设选取过程进行到一半,已经选出了两个点,现在需要选第三个。假设还有五个点可供选择,它们离已有的两个中心点的距离是:

	Dc1	Dc2
dp1	5	7
dp2	9	8
dp3	2	5
dp4	3	7
dp5	5	2

Dc1表示到中心点1的距离, Dc2表示到中心点2的距离。

我们选取最小的距离:

	closest
dp1	5
dp2	8
dp3	2
dp4	3
dp5	2

然后将这些数值转化成总和为1的权重值,做法就是将每个距离除以距离的和(20), 得到:

	weight
dp1	0.25
dp2	0.40
dp3	0.10
dp4	0.15
dp5	0.10
sum	1.00

我们可以通过转盘游戏来理解:

比如我们扔个球到这个转盘里,它停在哪个颜色就选取这个点作为新的中心点。这就叫做"根据D(dp)的概率来随机选取"。

比如我们有以下Python数据:

```
data = [('dp1', 0.25), ('dp2', 0.4), ('dp3', 0.1), ('dp4', 0.15), ('dp5', 0.1)]
```

然后来编写一个函数来完成选取过程:

```
import random
random.seed()

def roulette(datalist):
    i = 0
    soFar = datalist[0][1]
    ball = random.random()
    while soFar < ball:
        i += 1
        soFar += datalist[i][1]
    return datalist[i][0]</pre>
```

如果这个函数运行正确,我们选取100次的话,其中25次应该是dp1,40次是dp2,10

次是dp3,15次是dp4,10次是dp5。让我们来测试一下:

```
import collections
results = collections.defaultdict(int)
for i in range(100):
    results[roulette(data)] += 1
print results
{'dp5': 11, 'dp4': 15, 'dp3': 10, 'dp2': 38, 'dp1': 26}
```

结果是符合预期的!

k-means++选取起始点的方法总结下来就是:第一个点还是随机的,但后续的点就会尽量选择离现有中心点更远的点。

好了,下面让我们开始写代码吧!

代码实践

你能用Python实现k-means++算法吗?k-means++和k-means的唯一区别就是起始点的选取过程,你需要做的是将下面的代码:

替换为:

self.selectInitialCentroids()

你的任务就是编写这个函数!

这本书的作者经常会把我这样的人当作插 图放在这里,为的就是鼓励读者放下书本 尝试编码。

解答

```
def distanceToClosestCentroid(self, point, centroidList):
    result = self.eDistance(point, centroidList[0])
    for centroid in centroidList[1:]:
       distance = self.eDistance(point, centroid)
       if distance < result:</pre>
           result = distance
   return result
def selectInitialCentroids(self):
    """实现k-means++算法中的起始点选取过程"""
   centroids = []
   total = 0
    # 首先随机选取一个点
   current = random.choice(range(len(self.data[0])))
   centroids.append(current)
   # 开始选取剩余的点
   for i in range (0, self.k - 1):
        # 计算每个点到最近的中心点的距离
       weights = [self.distanceToClosestCentroid(x, centroids)
                  for x in range(len(self.data[0]))]
       total = sum(weights)
       # 转换为权重
       weights = [x / total for x in weights]
       # 开始随机选取
       num = random.random()
       total = 0
       x = -1
```

模拟轮盘游戏

```
while total < num:
    x += 1
    total += weights[x]
    entroids.append(x)
self.centroids = [[self.data[i][r] for i in range(1, len(se for r in centroids]</pre>
```

安然事件

你应该还对这件事有些印象吧?安然公司曾是一家超大型企业,有着千亿元的收入和两万名员工(微软只有220亿收入)。由于管理体制的破败和受贿,包括人为制造能源危机致使加州大停电,安然公司最终面临破产,大批人员被判入狱。有一部名为"The Smartest Guys in the Room"的纪录片,读者可以到Netflix或亚马逊上观看。

安然事件的确挺有趣的,不过这和数据挖掘有什么关系呢?

在调查过程中,美国联邦能源管理委员会收获了60万封公司内部邮件。这些邮件可以 从网络上下载:

http://en.wikipedia.org/wiki/Enron_Corpus

https://www.cs.cmu.edu/~./enron/

我们来用其中的一小部分数据来举例,下表整理了一些公司人员互通邮件的次数:

	Kay	Chris	Sara	Tana	Steven	Mark
Kay	0	53	37	6	0	12
Chris	53	0	1	0	2	0
Sara	37	1	0	1144	0	962
Tana	6	0	1144	0	0	1201
Steven	0	0	2	0	0	0
Mark	12	0	962	1201	0	0

可以在<u>这里</u>下载缩减后的数据集。完整的数据在<u>这里</u>,超过300MB。

动手实践

你能使用层次聚类算法将这些人分成若干类别吗?

解答

我们会通过两个人收发邮件的对象来计算相似度。比如我经常和Ann、Ben、Clara等人通信,你也一样,那么我俩就是相似的:

between ->	Ann	Ben	Clara	Dongmei	Emily	Frank
my emails	127	25	119	5	1	6
your emails	172	35	123	7	3	5

但如果将你我之间的通信也计算进去:

between ->	me	you	Ann	Ben	Clara	Dongmei	Emily	Frank
my emails	2	190	127	25	119	5	1	6
your emails	190	3	172	35	123	7	3	5

可以看到,你向我发送了190次邮件,而我只向自己发送了2封邮件。用欧几里得距离来计算的话,在不包含me和you这两列时,我们的距离是46,包含后距离是269!因此在计算两人的距离时需要排除这个因素:

```
def distance(self, i, j):
    # 针对安然数据进行的修正
    sumSquares = 0
    for i in range(1, self.cols):
        if k != i and k != j:
            sumSquares += (self.data[k][i] - self.data[k][j]) **
    return math.sqrt(sumSquares)
```

得到的层次聚类结果是:

我还用k-means++算法进行了聚类,结果是:

这些结果很有趣,比如分类5中大都是贸易人员,分类7中则多是管理层。

安然数据中还能挖掘出很多有趣的模式,去下载完整的数据集进行尝试吧!你也可以对其它数据集进行聚类,看看是否有新的发现。 最后,恭喜完成第八章的学习!