Lecture 7 (part 2): Logistic Regression

COMP90049 Introduction to Machine Learning Semester 1, 2020

Lea Frermann, CIS

Roadmap

Sofar...

- Naive Bayes
- Optimization (closed-form and iterative)
- Evaluation

Today: more classification!

• Logistic Regression

Logistic Regression

Quick Refresher

Recall Naive Bayes

$$P(x,y) = P(y)P(x|y) = \prod_{i=1}^{N} P(y^{i}) \prod_{m=1}^{M} P(x_{m}^{i}|y^{i})$$

- a **probabilistic generative model** of the joint probability P(x, y)
- · optimized to maximize the likelihood of the observed data
- naive due to unrealistic feature independence assumptions

Quick Refresher

Recall Naive Bayes

$$P(x,y) = P(y)P(x|y) = \prod_{i=1}^{N} P(y^{i}) \prod_{m=1}^{M} P(x_{m}^{i}|y^{i})$$

- a **probabilistic generative model** of the joint probability P(x, y)
- · optimized to maximize the likelihood of the observed data
- naive due to unrealistic feature independence assumptions

For prediction, we apply Bayes Rule to obtain the conditional distribution

$$P(x, y) = P(y)P(x|y) = P(y|x)P(x)$$

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(y|x) \approx P(y)P(x|y)$$

THE UNIVERSITY OF MELBOURNE

How about we model P(y|x) directly? \rightarrow Logistic Regression

Introduction to Logistic Regression

Logistic Regression on a high level

- Is a binary classification model
- Is a probabilistic discriminative model because it optimizes P(y|x) directly
- Learns to optimally discriminate between inputs which belong to different classes
- No model of $P(x|y) \rightarrow$ no conditional feature independence assumption

Aside: Linear Regression

• Regression: predict a real-valued quantity *y* given features *x*, e.g.,

```
housing price given {location, size, age, ...}
success of movie($) given {cast, genre, budget, ...}
air quality given {temperature, timeOfDay, CO2, ...}
```


Aside: Linear Regression

Regression: predict a real-valued quantity y given features x, e.g.,

```
housing price given {location, size, age, ...}
success of movie($) given {cast, genre, budget, ...}
air quality given {temperature, timeOfDay, CO2, ...}
```

- linear regression is the simples regression model
- a real-valued \hat{y} is predicted as a linear combination of weighted feature values

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots$$
$$= \theta_0 + \sum_i \theta_i x_i$$

- The weights $\theta_0, \theta_1, \ldots$ are model parameters, and need to be optimized during training
- Loss (error) is the sum of squared errors (SSE): $L = \sum_{i=1}^{N} (\hat{y}^i y^i)^2$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.

$$p(x) = \theta_0 + \theta_1 x_1 + ... \theta_F x_F$$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.

$$\log p(x) = \theta_0 + \theta_1 x_1 + ... \theta_F x_F$$

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.

- Let's assume a **binary** classification task, y is true (1) or false (0).
- We model probabilites P(y = 1|x; θ) = p(x) as a function of observations x under parameters θ. [What about P(y = 0|x; θ)?]
- We want to use a regression approach
- How about: p(x) as a linear function of x. Problem: probabilities are bounded in 0 and 1, linear functions are not.
- How about: log p(x) as a linear function of x. Problem: log is bounded in one direction, linear functions are not.
- How about: minimally modifying log p(x) such that is is unbounded, by applying the logistic transformation

$$log \frac{p(x)}{1 - p(x)} = \theta_0 + \theta_1 x_1 + \dots \theta_F x_F$$

$$log \frac{p(x)}{1 - p(x)} = \theta_0 + \theta_1 x_1 + \dots \theta_F x_F$$

- also called the log odds
- the odds are defined as the fraction of success over the fraction of failures

$$odds = \frac{P(success)}{P(failures)} = \frac{P(success)}{1 - P(success)}$$

• e.g., the odds of rolling a 6 with a fair dice are:

$$\frac{1/6}{1 - (1/6)} = \frac{0.17}{0.83} = 0.2$$

$$log \frac{P(x)}{1 - P(x)} = \theta_0 + \theta_1 x_1 + ... \theta_F x_F$$

If we rearrange and solve for P(x), we get

$$P(x) = \frac{exp(\theta_0 + \theta_1 x_1 + ...\theta_F x_F)}{1 + exp(\theta_0 + \theta_1 x_1 + ...\theta_F x_F)} = \frac{exp(\theta_0 + \sum_{f=1}^F \theta_f x_f)}{1 + exp(\theta_0 + \sum_{f=1}^F \theta_f x_f)}$$
$$= \frac{1}{1 + exp(-(\theta_0 + \theta_1 x_1 + ...\theta_F x_F))} = \frac{1}{1 + exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))}$$

- where the RHS is the inverse logit (or logistic function)
- we pass a regression model through the logistic function to obtain a valid probability predicton

Logistic Regression: Interpretation

$$P(y|x;\theta) = \frac{1}{1 + exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))}$$

A closer look at the logistic function

Most inputs lead to P(y|x)=0 or P(y|x)=1. That is intended, because all true labels are either 0 or 1.

- $(\theta_0 \sum_{f=1}^F \theta_f x_f) > 0$ means y = 1
- $(\theta_0 \sum_{f=1}^F \theta_f x_f) \approx 0$ means most uncertainty
- $(\theta_0 \sum_{f=1}^F \theta_f x_f) < 0$ means y = 0

Logistic Regression: Prediction

• The logistic function returns the probability of P(y = 1) given an in put x

$$P(y = 1 | X_1, X_2, ..., X_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f X_f))} = \sigma(X; \theta)$$

• We define a **decision boundary**, e.g., predict y = 1 if $P(y = 1 | x_1, x_2, ..., x_F; \theta) > 0.5$ and y = 0 otherwise

Example!

$$P(y = 1 | x_1, x_2, ..., x_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))} = \frac{1}{1 + \exp(-(\theta^T x))} = \sigma(\theta^T x)$$

Model parameters

$$\theta = [0.1, -3.5, 0.7, 2.1]$$

(Small) Test Data set

•	Outlook	Temp	Humidity	Class
	rainy	cool	normal	0
	sunny	hot	high	1

Feature Function

$$x_0 = \begin{cases} 1 \text{ (bias term)} \\ 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 & \text{if humidity=normal} \\ 2 & \text{if humidity=high} \end{cases}$$

Example!

$$P(y = 1 | x_1, x_2, ..., x_F; \theta) = \frac{1}{1 + \exp(-(\theta_0 + \sum_{f=1}^F \theta_f x_f))} = \frac{1}{1 + \exp(-(\theta^T x))} = \sigma(\theta^T x)$$

Model parameters

$$\theta = [0.1, -3.5, 0.7, 2.1]$$

(Small) Test Data set

•	Outlook	Temp	Humidity	Class
Ī	rainy	cool	normal	0
	sunny	hot	high	1

Feature Function

$$x_0 = \begin{cases} 1 \text{ (bias term)} \\ 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 & \text{if humidity=normal} \\ 2 & \text{if humidity=high} \end{cases}$$

Parameter Estimation

What are the four steps we would follow in finding the optimal parameters?

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x)$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x)$$

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x)$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x)$$

SO

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$
$$= -\prod_{i=1}^{N} (\sigma(\theta^{T}x^{i}))^{y^{i}} * (1 - \sigma(\theta^{T}x^{i}))^{1-y^{i}}$$

Objective Function

Mimimize the Negative conditional log likelihood

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$

note that

$$P(y = 1|X; \theta) = \sigma(\theta' X)$$

$$P(y = 0|X; \theta) = 1 - \sigma(\theta^{T} X)$$

SO

$$\mathcal{L}(\theta) = -P(Y|X;\theta) = -\prod_{i=1}^{N} P(y^{i}|x^{i};\theta)$$
$$= -\prod_{i=1}^{N} (\sigma(\theta^{T}x^{i}))^{y^{i}} * (1 - \sigma(\theta^{T}x^{i}))^{1-y^{i}}$$

take the log of this function

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

Also

- Derivative of sum = sum of derivatives → focus on 1 training input
- Compute $\frac{\partial \mathcal{L}}{\partial \theta_i}$ for each θ_j individually, so focus on 1 θ_j

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{ where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial p} = -\left(\frac{y}{p} - \frac{1-y}{1-p}\right)$$

$$(\text{because } \mathcal{L}(\theta) = -[ylogp + (1-y)log(1-p)]$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\frac{\partial p}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 - \sigma(z)]$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial z}{\partial \theta_{j}} = \frac{\partial \theta^{T} x}{\partial z} = x_{j}$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$= -\frac{y}{p} - \frac{1 - y}{1 - p} \times \sigma(z)[1 - \sigma(z)] \times x_{j}$$

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial D} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C} imes \frac{\partial C}{\partial D}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$= -\frac{y}{p} - \frac{1 - y}{1 - p} \times \sigma(z)[1 - \sigma(z)] \times x_{j}$$

$$= \left[\sigma(\theta^{T} x) - y\right] \times x_{j}$$

Logistic Regression: Parameter Estimation III

The derivative of the log likelihood wrt. a single parameter θ_j for **all** training examples

$$\frac{\log \mathcal{L}(\theta)}{\partial \theta_j} = \sum_{i=1}^{N} \left(\sigma(\theta^T x^i) - y^i \right) x_j^i$$

- Now, we would set derivatives to zero (Step 3) and solve for θ (Step 4)
- Unfortunately, that's not straightforward here (as for Naive Bayes)
- Instead, we will use an iterative method: Gradient Descent

Logistic Regression: Parameter Estimation III

The derivative of the log likelihood wrt. a single parameter θ_j for **all** training examples

$$\frac{\log \mathcal{L}(\theta)}{\partial \theta_j} = \sum_{i=1}^{N} \left(\sigma(\theta^T x^i) - y^i \right) x_j^i$$

- Now, we would set derivatives to zero (Step 3) and solve for θ (Step 4)
- Unfortunately, that's not straightforward here (as for Naive Bayes)
- Instead, we will use an iterative method: Gradient Descent

$$\begin{aligned} & \theta_{j}^{(\textit{new})} \leftarrow \theta_{j}^{(\textit{old})} - \eta \frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} \\ & \theta_{j}^{(\textit{new})} \leftarrow \theta_{j}^{(\textit{old})} - \eta \sum_{i=1}^{N} \left(\sigma(\theta^{T} x^{i}) - y^{i} \right) x_{j}^{i} \end{aligned}$$

Multinomial Logistic Regression

 So far we looked at problems where either y = 0 or y = 1 (e.g., spam classification: y ∈ {play, not_play})

$$P(y = 1|x; \theta) = \sigma(\theta^T x) = \frac{exp(\theta^T x)}{1 + exp(\theta^T x)}$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^T x) = 1 - \frac{exp(\theta^T x)}{1 + exp(\theta^T x)}$$

Multinomial Logistic Regression

 So far we looked at problems where either y = 0 or y = 1 (e.g., spam classification: y ∈ {play, not_play})

$$P(y = 1|x; \theta) = \sigma(\theta^{T}x) = \frac{exp(\theta^{T}x)}{1 + exp(\theta^{T}x)}$$

$$P(y = 0|x; \theta) = 1 - \sigma(\theta^{T}x) = 1 - \frac{exp(\theta^{T}x)}{1 + exp(\theta^{T}x)}$$

- But what if we have more than 2 classes, e.g., $y \in \{\text{positive}, \text{negative}, \text{neutral}\}$
- we predict the probability of each class c by passing the input representation through the softmax function, a generalization of the sigmoid

$$p(y = c|x; \theta) = \frac{exp(\theta_c x)}{\sum_k exp(\theta_k x)}$$

• we learn a parameter vector θ_c for each class c

Example!

$$p(y = c|x; \theta) = \frac{exp(\theta_c x)}{\sum_k exp(\theta_k x)}$$

Model parameters

$$\theta_{c0} = [0.1, -3.5, 0.7, 2.1]$$

 $\theta_{c1} = [0.6, 2.5, 2.7, -2.1]$
 $\theta_{c2} = [3.1, 1.5, 0.07, 3.6]$

Feature Function $x_0 = 1$ (bias term)

$$x_1 = \begin{cases} 1 \text{ if outlook=sunny} \\ 2 \text{ if outlook=overcast} \\ 3 \text{ if outlook=rainy} \end{cases}$$

$$x_2 = \begin{cases} 1 \text{ if temp=hot} \\ 2 \text{ if temp=mild} \\ 3 \text{ if temp=cool} \end{cases}$$

$$x_3 = \begin{cases} 1 \text{ if humidity=normal} \\ 2 \text{ if humidity=high} \end{cases}$$

(Small) Test Data set

٠,	(5111611) 1555 = 51151 551				
	Outlook	Temp	Humidity	Class	
	rainy	cool	normal	0 (don't play)	
	sunny	cool	normal	1 (maybe play)	
	sunny	hot	high	2 (play)	

Logistic Regression: Final Thoughts

Pros

- Probabilistic interpretation
- No restrictive assumptions on features
- · Often outperforms Naive Bayes
- Particularly suited to frequency-based features (so, popular in NLP)

Cons

- Can only learn linear feature-data relationships
- Some feature scaling issues
- Often needs a lot of data to work well
- Regularisation a nuisance, but important since overfitting can be a big problem

Summary

- Derivation of logistic regression
- Prediction
- Derivation of maximum likelihood

References

Cosma Shalizi. *Advanced Data Analysis from an Elementary Point of View.* Chapters 11.1 and 11.2. Online Draft.

https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf

Dan Jurafsky and James H. Martin. *Speech and Language Processing*. Chapter 5. Online Draft V3.0.

https://web.stanford.edu/~jurafsky/slp3/

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C}$

Also

- Derivative of sum = sum of derivatives → focus on 1 training input
- Compute $\frac{\partial \mathcal{L}}{\partial \theta_j}$ for each θ_j individually, so focus on 1 θ_j

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} imes \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{ where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_j} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_j} \quad \text{where } p = \sigma(\theta^T x) \text{ and } z = \theta^T x$$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial p} = -\left(\frac{y}{p} - \frac{1-y}{1-p}\right)$$
(because $\mathcal{L}(\theta) = -[ylogp + (1-y)log(1-p)]$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial p}{\partial z} = \frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 - \sigma(z)]$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T} x) \text{ and } z = \theta^{T} x$$

$$\frac{\partial z}{\partial \theta_{j}} = \frac{\partial \theta^{T} x}{\partial z} = x_{j}$$

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

Preliminaries

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

 $= - \left[y(1-p) - p(1-y) \right] \times x_i$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T}x) \text{ and } z = \theta^{T}x$$

$$= -\left[\frac{y}{p} - \frac{1 - y}{1 - p}\right] \times \sigma(z)[1 - \sigma(z)] \times x_{j} \quad \text{[[combine 3 derivatives]]}$$

$$= -\left[\frac{y}{p} - \frac{1 - y}{1 - p}\right] \times p[1 - p] \times x_{j} \quad \text{[[} \sigma(z) = p]\text{]}$$

$$= -\left[\frac{y(1 - p)}{p(1 - p)} - \frac{p(1 - y)}{p(1 - p)}\right] \times p[1 - p] \times x_{j} \quad \text{[[} x \times \frac{1 - p}{1 - p} \text{ and } \frac{p}{p} \text{]]}$$

[[cancel terms]]

Step 2 Differentiate the loglikelihood wrt. the parameters

$$\log \mathcal{L}(\theta) = -\sum_{i=1}^{N} y^{i} \log \sigma(\theta^{T} x^{i}) + (1 - y^{i}) \log(1 - \sigma(\theta^{T} x^{i}))$$

- The derivative of the logistic (sigmoid) function is $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)[1 \sigma(z)]$
- The chain rule tells us that $\frac{\partial A}{\partial C} = \frac{\partial A}{\partial B} \times \frac{\partial B}{\partial C}$

$$\frac{\partial \log \mathcal{L}(\theta)}{\partial \theta_{j}} = \frac{\partial \log \mathcal{L}(\theta)}{\partial p} \times \frac{\partial p}{\partial z} \times \frac{\partial z}{\partial \theta_{j}} \quad \text{where } p = \sigma(\theta^{T}x) \text{ and } z = \theta^{T}x$$

$$= -\left[y(1-p) - p(1-y)\right] \times x_{j} \quad \text{[[copy from last slide]]}$$

$$= -\left[y - yp - p + yp\right] \times x_{j} \quad \text{[[multiply out]]}$$

$$= -\left[y - p\right] \times x_{j} \quad \text{[[-yp+yp=0]]}$$

$$= \left[p - y\right] \times x_{j} \quad \text{[[-[y-p] = -y+p = p-y]]}$$

$$= \left[\sigma(\theta^{T}x) - y\right] \times x_{j} \quad \text{[[p = \sigma(z), z = \theta^{T}x]]}$$

