3. Spatial Analysis (raster)

Raster Data Analysis

- Raster data has relatively simple structure that provides many types of data analysis
- Structure similar to a matrix -> linear algebra
- Rasters should be similar (i.e. "fit")
- Often implementation in GIS software as "Map Calculator"; can use arithmetic, logic, etc. operators.

Raster data analysis

- Single layer operations
 - → conversion of values in a single layer (usually saved into one new layer)
- Multiple layer operations
 - → calculating new values from multiple layers (usually saved into one new layer)

Some analysis can be applied both multi and single

Reclassify

- 1 industrial
- 2 residential
- 3 farmland
- 4 moorland
- 5 water
- 1 urban
- 2 rural

Reclassify

Resample

 With resample the cell size (resolution) of the raster can be changed

Math Functions

- ABS Calculates the absolute value of cells in a raster
- Round up Returns the next higher whole number for each cell in a raster
- Round down Returns the next lower whole number for each cell in a raster
- Int Converts each cell value of a raster to an integer by truncation
- Float Converts each cell value of a raster into a floatingpoint representation
- Etc.

Map Algebra

1	2	1	1	
1	2	1	2	
1	1	1	3	
1	1 1		4 °	

	1	1	1	1
	1	1	1	1
)	1	1	1	1
	1	1	1	4

1	3	1	1
1	3	1	3
1	1	1	4
1	1	1	8

$$C_{x,y} = \max\left((C_{x,y} - C_{xl,yl})/10, (C_{x,y} - C_{xl,yl})/10, (C_{x,y} - C_{xl,yl})/10, (C_{x,y} - C_{xl,yl})/10\right)$$

1.0	1.0	1.0	1.0	1.0
1.0	1.0	2.0	3.0	2.0
1.0	2.0	2.0	5.0	2.0
1.0	2.0	2.0	4.0	2.0
1.0	1.0	1.0	3.0	1.0
1.0	1.0	1.0	1.0	1.0

0.0	0.0	0.1	0.2	0.1
0.0	0.1	0.1	0.2	0.1
0.1	0.0	0.3	-0.1	0.3
0.1	0.0	0.2	0.1	0.2
0.0	0.1	0.2	0.1	0.2
0.0	0.0	0.0	0.2	0.0

elevation (m), 10 m grid cells

"slope"

Other common analysis

- Neighbourhood functions can be used for averaging, smoothening or error correction
- Data tabulation calculate (spatial) cell statistics, i.e. calculate areas by type of attribute

More advanced analysis

- Slope
- Aspect
- Hillshade
- Line-of-view

Specialised & Advanced Spatial Analysis

- Hydrology (sub)toolbox: flow direction, basin, watershed, etc.
- Groundwater (sub)toolbox
- Spatial regression analysis
- Spatial autocorrelation
- Etc.