Algoritmos de vizinhos mais próximos aproximados

Disciplina: TCC00288

Professora: Luiz André Portes Paes Leme

Barbara Keren Nascimento C. Guarino Bruna de Assunção Santos Gabriel Gavazzi Felix Gabriel Ramalho Braga Tatiana Machado Brito dos Santos Vitor Balestro Dias da Silva

1. Descrição do problema

Informalmente, o problema dos k vizinhos mais próximos consiste em encontrar os k vetores de um dado conjunto S que estão mais próximos de um dado vetor v. Formalmente, sejam $k, n \in \mathbb{N}, S \subseteq \mathbb{R}^n$ e $v \in \mathbb{R}^n$. Assuma que S é um conjunto finito com m elementos, onde $m \geq k$, e seja d uma distância em \mathbb{R}^n . Considere a ordenação

$$S = \{v_1, \dots, v_m\}$$

onde $d(v_j, v) \ge d(v_i, v)$ sempre que j > i (isto é, S está ordenado pela distâncias a v). Desejamos encontrar o conjunto

$$NN_k(v, S, d) := \{v_1, \dots, v_k\}.$$

Não é difícil implementar um algoritmo computacional que forneça uma solução exata para este problema. Entretanto, a depender do tamanho de S, tal solução seria computacionalmente cara. De fato, é preciso calcular as distâncias dos elementos de S a v e, em seguida, ordená-las.

Desta forma, o desafio é desenvolver e implementar algoritmos que encontrem aproximadamente os k vizinhos mais próximos. Em linhas gerais, o objetivo é obter boas aproximações com baixo custo de execução. Note que os adjetivos em itálico referem-se a propriedades que são, ao menos em alguma medida, subjetivas.

Em uma descrição de alto nível, um algoritmo de vizinhos mais próximos aproximados (vamos chamá-lo de π) consiste me duas etapas:

- (i) uma fase de *pré-processamento*, em que são construídas estruturas de dados para S;
- (ii) a fase de processamento em que, dados um número $k \in \mathbb{N}$ e um vetor v, é retornado um conjunto $\text{ANN}_k(v, S, d) = \{w_1, \dots, w_{k^*}\} \subseteq S \text{ (com } k \leq k^*)$ de vizinhos mais próximos aproximados de v.

Em linhas gerais, a qualidade da aproximação obtida é mensurada comparando o conjunto aproximado obtido $\text{ANN}_k(\pi, v, S, d)$ com a solução exata (ordenada) $\text{NN}(v, S, d) = \{v_1, \dots, v_k\}$. Formalmente, definimos o recall da solução aproximada como

$$\operatorname{recall}(\pi) = \frac{\left| \left\{ w \in \operatorname{ANN}_k(\pi, v, S, d) \colon d(w, v) \le d(w, v_k) \right\} \right|}{k},$$

onde denotamos por |A| a quantidade de elementos do conjunto A. Nesta definição, estamos contando quantos vetores da solução aproximada têm distância para v mais próxima do que v_k , que é o último vetor da solução exata ordenada.

Note que para calcular o recall, precisamos apenas de $d(w, v_k)$. Assim, esta distância será chamada distância de referência a partir de agora.

2. Tabelas

Consideramos o problema sobre um conjunto S de 1000000 de vetores em \mathbb{R}^{128} com k=100. No banco de dados, temos as seguintes tabelas:

(i) object: contém os vetores do conjunto S. Portanto, é uma tabela com 1000000 de linhas, em que cada linha é um vetor de 128 coordenadas;

- (ii) tquery: contém um conjunto de 10000 casos de teste, para os quais a solução exata é conhecida;
- (iii) neighbor: contém as soluções exatas para os vetores da tabela tquery. Assim, é uma tabela de 10000 linhas em que cada linha é um vetor de 100 coordenadas.

Para o que segue, denote por tabela[j] a j-ésima linha de uma tabela, e por vetor[j] a j-ésima coordenada de um vetor. Para cada $1 \le j \le 10000$, o vetor neighbor[j] contém os *índices* dos 100 vetores da tabela object que estão (ordenadamente) mais próximos o vetor tquery[j]. Estes índices se referem à tabela object. Por exemplo, se

$$neighbor[10] = (20, 12, 14, ...),$$

então os vetores de object mais próximos do vetor tquery[10] são

$$object[20], object[12], object[14], \dots$$

3. Pré-processamento

Na fase de pré-processamento, primeiro executamos um algoritmo de clusterização de S. Para este fim, usamos o algoritmo KMeans da biblioteca scikit da linguagem Python. Informalmente, este algoritmo agrupa os vetores de S em k conjuntos de vetores proximos entre si, e retorna os centróides destes conjuntos (pense no centróide como um vetor que é, de alguma forma, central dentro do conjunto). Consideramos k = 128, e isso significa que o algoritmo retornará uma tabela com 128 vetores de S (os centróides). Estes vetores estão armazenados na tabela sight. Esta tabela tem duas colunas: id, que é a chave primária (inteiros sequenciais) e centroid, que armazena o centróide correspondente (vetor de inteiros).

O próximo passo é criar uma tabela que informe o centróide mais próximo de cada vetor da tabela **object** (e a distância do vetor ao seu centróide mais próximo). Assim, dado um vetor **query**, podemos, por exemplo, restringir a busca aos vetores cujo centróide mais próximo é o centróide mais próximo de **query**. A tabela que guarda estas informações é chamada **closer_centroids**, e o código para gerá-la é exibido abaixo. Vale notar que esta etapa é custosa. Note que a chamada da função recebe como parâmetros a quantidade de vetores de **object** para os quais o centróide mais próximo será calculado e um valor de *offset*. Para evitar esgotamento de memória principal, dividimos a tabela rodando a função para cada uma de suas partes. Em um notebook de categoria intermediária, cada execução para 100000 vetores levou em torno de 4 minutos.

```
1 CREATE TYPE tuple AS (ind int, dist double precision);
3 CREATE OR REPLACE FUNCTION get_closer_centroids(qtd int,offs int) RETURNS void AS
4 DECLARE
5
     object_line record;
6
     sight_line record;
7
     distances_vector tuple[];
8
     current_tuple tuple;
9
     dist double precision;
10
     min_dist double precision;
11
     i int;
12
     ind int;
13 BEGIN
     FOR object_line IN SELECT * FROM object ORDER BY id LIMIT qtd OFFSET offs LOOP
14
```

```
15
         FOR sight_line IN SELECT * FROM sight_ LOOP
16
            dist = euclidean_distance(object_line.features, sight_line.centroid);
17
            current_tuple = (sight_line.id,dist);
18
            distances_vector[sight_line.id] = current_tuple;
19
         END LOOP;
20
         min_dist = distances_vector[1].dist;
21
         ind = 1;
22
         FOR i in 1..128 LOOP
23
            IF (distances_vector[i].dist < min_dist) THEN</pre>
24
               min_dist = distances_vector[i].dist;
25
               ind = distances_vector[i].ind;
26
            END IF:
27
         END LOOP;
28
         INSERT INTO closer_centroids VALUES (object_line.id,ind, min_dist);
29
30 \text{ END};
31 $$ LANGUAGE plpgsql;
32
```

Listing 1: Obtendo a tabela de centróides mais próximos

O esquema lógico das tabelas criadas na etapa de pré-processamento está no Appêndice A.1

4. Método 1: busca por regiões parametrizadas

Este método de busca dos 100 vetores mais próximos de um vetor q é como segue:

- Passo 1: encontramos o centróide c mais próximo de q;
- Passo 2: computamos a distância d de q para c;
- Passo 3: escolhemos parâmetros $0 < \alpha < 1$, $\beta > 1$ e $0 < \gamma < 1$ e, dentre os vetores $v \in S$ (tabela **object**) cujo centróide mais próximo é **c**, encontramos aqueles que satisfazem:
- (i) $\alpha d < d(v, \mathbf{c}) < \beta d$, e

(ii)
$$\gamma < \cos(v - \mathbf{c}, \mathbf{q} - \mathbf{c}) < 1$$
.

Isto é, consideramos a interseção entre a coroa circular com centro em \mathbf{c} e raios αd e βd (interno e externo, respectivamente) com o cone de vetores w tais que o cosseno do ângulo entre $w - \mathbf{c}$ e $\mathbf{q} - \mathbf{c}$ é menor do que γ . Veja a Figura 4.1 para uma ilustração da região considerada.

Para fins de simplicar a notação, a partir de agora vamos denotar por $S_{\mathbf{c}}$ o subconjunto dos vetores de S que têm \mathbf{c} como centróide mais próximo.

Aqui, vale um comentário sobre a eficiência deste algoritmo. A tabela **closer_centroids** já fornece a distância entre cada vetor $v \in S_{\mathbf{c}}$ cujo centróide \mathbf{c} . Assim, nenhuma distância será calculada no passo 3. Mais ainda, lembre-se de que o valor do cosseno entre $v - \mathbf{c}$ e $\mathbf{q} - \mathbf{c}$ é computado pela fórmula

$$\cos(v - \mathbf{c}, \mathbf{q} - \mathbf{c}) = \frac{\langle v - \mathbf{c}, \mathbf{q} - \mathbf{c} \rangle}{||v - \mathbf{c}|| \, ||\mathbf{q} - \mathbf{c}||} = \frac{\langle v - \mathbf{c}, \mathbf{q} - \mathbf{c} \rangle}{d(v, c) \cdot d}$$

Figura 4.1: Ilustração em duas dimensões do método 1.

A norma de $v - \mathbf{c}$ é igual à distância entre v e \mathbf{c} e, portanto, não precisará ser calculada. A norma de $\mathbf{q} - \mathbf{c}$ é igual à d, que foi calculado no passo 1. Daí, apenas o produto interno deverá ser computado. Ou seja, para cada $v \in S_{\mathbf{c}}$, o produto interno $\langle v - \mathbf{c}, \mathbf{q} - \mathbf{c} \rangle$ será calculado. Para calcular cada um destes produtos internos, são realizadas 128 multiplicações dentro de um loop que atualiza uma soma.

Observação 4.1. Note que para encontrar o conjunto $S_{\mathbf{c}}$, teremos que executar a seguinte consulta:

```
1 2 SELECT * FROM closer_centroids WHERE closer_centroid_ind = id(c); 3
```

Listing 2: Encontrando $S_{\mathbf{c}}$

onde id(c) é a chave do centróide c (na tabela **sight**₋, é claro). Para otimizar estas consultas, criamos um índice na tabela **closer_centróides**:

```
1 \ 2 CREATE INDEX closer_centroid_idx ON closer_centroids (closer_centroid_ind); 3
```

Listing 3: Índice na chave do centróide mais próximo

Esta consulta, que é feita originalmente sobre uma tabela com 1000000 de entradas, leva 60 milisegundos, em média (novamente, em um notebook pessoal de nível intermediário).

Vamos agora à implementação do método. Primeiro, notamos que o método depende de três parâmetros. Ao início da execução, esta tripla de parâmetros será armazenada em uma tabela (method1_parameters_key). Desta forma, cada tripla de parâmetros pode ser referênciada por uma chave primária. Se a tripla de parâmetros já estiver cadastrada, então ela não será recadastrada.

Os resultados encontrados (isto é, os 100 vetores mais próximos aproximados) serão armazenados na tabela **result_table_method1**). Cada linha desta tabela armazenará a chave da tripla de parâmetros considerada, o índice do vetor **query**, o vetor resultado e a distância do vetor resultado para o vetor **query** (esta distância será usada para computar o *recall* mais tarde). Se a tabela já

contiver resultados para a chave (tripla de parâmetros, vetor query) considerados, a execução será abortada (para evitar duplicidade).

O código segue abaixo:

```
1 \ {\tt CREATE \ OR \ REPLACE \ FUNCTION \ ann\_method1(query\_vector\_id \ int, \ alpha \ double}
      precision, beta double precision, gamma double precision)
 2 RETURNS void AS $$
 3 DECLARE
 4
      query_vector int[]; -- q
 5
      closer_centroid int[]; -- c
 6
      diff_centroid_query int[]; -- q - c
      diff_candidate_centroid int[]; -- v - c
 7
 8
      closer_centroid_index int;
9
      candidate_vector int[]; -- v
10
     dist_query_centroid double precision; -- ||q-c|| = d
11
     dist_candidate_centroid double precision; -- ||v-c||;
12
     dist_candidate_query double precision; -- ||v-q||;
13
     inner_product double precision;
14
     cosine double precision;
15
     counter int;
16
     n int;
17
     parameters_key_value int;
18
     reference_dist double precision;
19
     line_ record;
20
     i int;
21 BEGIN
22
     n = (SELECT COUNT(*) FROM method1_parameters_key AS par WHERE par.alpha_ =
      alpha AND par.beta_ = beta AND par.gamma_ = gamma);
23
      IF (n = 0) THEN
24
         INSERT INTO method1_parameters_key (alpha_,beta_,gamma_) VALUES (alpha,beta
      ,gamma);
25
         parameters_key_value = (SELECT par.id FROM method1_parameters_key AS par
      WHERE par.alpha_ = alpha AND par.beta_ = beta AND par.gamma_ = gamma);
26
        n = (SELECT COUNT(*) FROM result_table_method1 WHERE parameter_key_value =
      parameters_key_value AND query_vector_id_ = query_vector_id);
27
         IF (n != 0) THEN
28
            RAISE EXCEPTION 'The function was already computed for this query vector
       and these parameter values';
29
        END IF;
30
     END IF;
31
32
      SELECT query INTO query_vector FROM tquery WHERE id = query_vector_id;
33
      closer_centroid_index = get_closer_centroid_tquery(query_vector_id);
34
      SELECT centroid INTO closer_centroid FROM sight_ WHERE id =
      closer_centroid_index;
35
      dist_query_centroid = euclidean_distance(closer_centroid, query_vector);
36
      FOR i IN 1..128 LOOP
37
         diff_centroid_query[i] = query_vector[i] - closer_centroid[i];
38
     END LOOP;
39
      counter = 0;
40
      FOR line_ IN SELECT * FROM closer_centroids WHERE closer_centroid_ind =
      closer_centroid_index LOOP
41
         SELECT features INTO candidate_vector FROM object WHERE id = line_.id;
42
         dist_candidate_centroid = euclidean_distance(candidate_vector,
      closer_centroid);
43
         dist_candidate_query = euclidean_distance(candidate_vector, query_vector);
44
         FOR i IN 1..128 LOOP
```

```
45
         diff_candidate_centroid[i] = candidate_vector[i] - closer_centroid[i];
46
         END LOOP;
47
         IF (dist_candidate_centroid > alpha * dist_query_centroid AND
      dist_candidate_centroid < beta * dist_query_centroid) THEN
48
            inner_product = get_inner_product(diff_centroid_query,
      diff_candidate_centroid) :: double precision;
49
            cosine = inner_product/(dist_candidate_centroid * dist_query_centroid);
50
            IF (cosine > gamma AND cosine < 1) THEN
51
               INSERT INTO result_table_method1(parameter_key_value,query_vector_id_
      , vector, distance) VALUES
52
                  (parameters_key_value, query_vector_id, candidate_vector,
      dist_candidate_query);
53
               counter = counter + 1;
54
            END IF;
55
         END IF;
56
      END LOOP;
57
      IF counter > 100 THEN
58
         reference_dist = (SELECT distance FROM result_table_method1 AS r
59
         WHERE r.parameter_key_value = parameters_key_value AND
60
              r.query_vector_id_ = query_vector_id
         ORDER BY distance
61
62
         LIMIT 1
63
         OFFSET 99);
64
         DELETE FROM result_table_method1 AS r
65
66
         WHERE r.parameter_key_value = parameters_key_value AND
67
              r.query_vector_id_ = query_vector_id AND
68
              distance > reference_dist;
69
      END IF;
70
71 END;
72 $$ LANGUAGE plpgsql;
73
```

Listing 4: O algoritmo do Método 1.

5. Calculando o recall

Para calcular o *recall* de uma determinada execução, primeiro obtemos a distância referência correspondente (através da tabela **neighbor**). Usamos a função explicitada abaixo para calcular a distância de referência do *j*-ésimo vetor da tabela **object** (isto é, o vetor cujo id é *j*).

```
1 CREATE OR REPLACE FUNCTION get_reference_distance(j int) RETURNS double precision
      AS
2 $$
3 DECLARE
4
     query_vector int[];
5
     neighbors_vector int[];
6
     index_ int;
7
     reference_vector double precision [];
8
9 BEGIN
10
     query_vector := (SELECT query FROM tquery WHERE id = j);
     neighbors_vector := (SELECT neighbors FROM neighbors WHERE id = j);
```

```
index_ := neighbors_vector[100];
reference_vector := (SELECT features FROM object WHERE id = index_);

RETURN euclidean_distance(query_vector,reference_vector);

END;

LANGUAGE plpgsql;
```

Listing 5: Calculando a distância de referência.

O algoritmo exato para computar o *recall* depende do método adotado. Para o Método 1, a tabela de resultados (**result_table_method1** já fornece a distância de cada vetor da solução ao vetor **query**. Assim, usamos a seguinte função:

```
1 CREATE OR REPLACE FUNCTION get_recall_method1(query_vector_index int,
      parameters_key int) RETURNS double precision AS
 2 $$
 3 DECLARE
 4
      i int;
 5
      query_vector int[];
 6
      result_vector double precision[];
 7
      reference_distance double precision;
 8
      hit_count int;
9
      dist double precision;
10
      line_ record;
      recall_ double precision;
11
12 \text{ BEGIN}
13
      hit_count = 0;
14
      reference_distance = get_reference_distance(query_vector_index);
15
      FOR line_ IN (SELECT * FROM result_table_method1 WHERE parameter_key_value =
      parameters_key AND query_vector_id_ = query_vector_index) LOOP
16
         IF(line_.distance <= reference_distance) THEN</pre>
17
            hit_count = hit_count + 1;
18
         END IF;
19
      END LOOP;
20
      recall_ = hit_count :: double precision / 100;
21
      INSERT INTO recall_table_method1(query_vector_id,parameters_key_,recall)
22
         (query_vector_index,parameters_key,recall_);
23
      RETURN recall_;
24 \text{ END};
25 $$ LANGUAGE plpgsql;
26
```

Listing 6: Calculando o recall no Método 1.

Observe que esta função calcula o recall obtido para determinado vetor (da tabela **tquery**) com um determinado conjunto de parâmetros (α , β e γ). Assim, podemos rodar o algoritmo do Método 1 para diversos vetores de **tquery** e diversas combinações de parâmetros antes de computar o recall de cada combinação. Isto torna mais conveniente obter estatísticas de eficiência do método, como ficará claro mais tarde.

Para computar e armazenar o *recall* de todos os vetores de **tquery** para determinado conjunto de parâmetros, executamos a função:

```
1 CREATE OR REPLACE FUNCTION get_recall_for_all(parameters_key int) RETURNS void AS
 2 $$
 3 DECLARE
 4
     alpha double precision;
 5
     beta double precision;
 6
      gamma double precision;
 7 BEGIN
     alpha = (SELECT alpha_ FROM method1_parameters_key WHERE id = parameters_key);
 8
9
     beta = (SELECT beta_ FROM method1_parameters_key WHERE id = parameters_key);
10
      gamma = (SELECT gamma FROM method1_parameters_key WHERE id = parameters_key);
11
     FOR i IN 1..10000 LOOP
12
         PERFORM ann_method1(i,alpha,beta,gamma);
13
         PERFORM get_recall_method1(i,parameters_key);
14
     END LOOP;
15 \text{ END};
16 $$ LANGUAGE plpgsql;
17
```

Listing 7: Computando o recall para todos os vetores de tquery.

Diversas tabelas foram criadas para armazenar os resultados das consultas e os *recalls* obtidos. Para fins de conveniência do leitor, adicionamos o esquema lógico das tabelas do Método 1 no Appêndice A.2.

6. Referências

[1] M. Aumüller, E. Bernhardsson, A. Faithfull: ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms. Disponível em: https://arxiv.org/pdf/1807.05614.pdf

A. Appêndice

A.1. Esquema das estruturas de dados do pré-processamento

```
1 CREATE TABLE sight_
2
      (id INT NOT NULL PRIMARY KEY,
3
       centroid int[],
4
     );
5
6 CREATE TABLE closer_centroids
7
      (id INT NOT NULL,
8
       closer_centroid_ind INT,
9
       dist double precision
10
     );
```

Listing 8: O esquema do pré-processamento

A.2. O esquema do Método 1

```
1 CREATE TABLE method1_parameters_key
2 (id SERIAL PRIMARY KEY,
3 alpha_ double precision,
```

```
4
       beta_ double precision,
5
       gamma_ double precision
6
7
8 \ \mathtt{CREATE} \ \mathtt{TABLE} \ \mathtt{result\_table\_method1}
9
     (id SERIAL PRIMARY KEY,
10
      parameter_key_value int,
11
      query_vector_id_ int,
12
      vector int[],
13
      distance double precision,
      FOREIGN KEY (parameter_key_value) REFERENCES method1_parameters_key(id)
14
15
      );
16
17 CREATE TABLE recall_table_method1
      (id SERIAL PRIMARY KEY,
19
       query_vector_id int,
20
       parameters_key_ int,
21
       recall double precision,
22
      FOREIGN KEY (query_vector_id) REFERENCES tquery(id),
23
      FOREIGN KEY (parameters_key) REFERENCES method1_parameters_key(id)
24
      );
25
```

Listing 9: O esquema do Método 1