Защита информации

Павел Юдаев

МГТУ им. Баумана, Кафедра ИУ-9

Москва, 2014

Раздел 4 - Одноразовый ключ и многоразовый ключ

Лемма о переключении

Одноразовый ключ

Многоразовый ключ

Псевдослучайная функция и псевдослучайная перестановка

Опр.

Perms(X) - множество всех обратимых функций (перестановок) X o X

Опр.

Функция $f: K \times X \to X$ - это псевдослучайная перестановка, если

$$\forall k \ f(k,\cdot) \in Perms(X), \ f \in PT, \ f^{-1}(k,\cdot) \in PT$$

 \forall оракула $A \in \operatorname{PPT}$ при $k \xleftarrow{R} K$, $r \xleftarrow{R} Perms(X)$

величина

$$Adv(A, F) = |P[A(f(k, \cdot)) = 1] - P[A(r(\cdot)) = 1]| < \varepsilon(n),$$

ПСП всегда "эффективно" обратима, ПСФ - не обязательно обратима.

Для маленького множества X ПСФ просто отличить от ПСП, пример:

$$X \to X$$
, $X = \{0, 1\}$.

Если множество X большое, нельзя эффективно отличить ПСП от ПСФ.

Лемма (О переключении)

Пусть f - ПСП на $K \times X \to X$. Тогда \forall алгоритма $A \in \mathrm{PPT}$, который вычисляет функцию в q точках, верно

$$|Adv_{PRF}(A, f) - Adv_{PRP}(A, f)| < q^2/(2|X|)$$

Док-во: рассказать по [1]. (Чуть проще, чем там.)

$$q = poly(n), |X| = 2^n = exp(n).$$

Зачем это все нужно?

Если блочный шифр - ПСП, тогда можно формально обосновать криптостойкость блочного шифра.

Если шифр - ПСП, по лемме он - ПСФ.

На основе ПСФ можно строить криптостойкий ГПСЧ. (Один из способов.)

Раздел 4 - Одноразовый ключ и многоразовый ключ

Лемма о переключении

Одноразовый ключ

Многоразовый ключ

До сих пор шифровали один блок длины n бит. Перейдем к сообщению произвольной длины.

Модель:

- одноразовый ключ
- сообщение длиной более одного блока
- злоум-к может: видит только шифротекст
- цель злоум-ка: по шифротексту получить информацию о сообщении

Режим электронной кодовой книги - ЕСВ

Опр.

Режим работы блочного шифра, когда к каждому блоку применяется одна и та же детерминированная перестановка $E(k,\cdot)$, называется Электронная кодовая книга - Electronic codebook, ECB.

Эксперимент SS для одноразового ключа (повтор):

- 1. Система выбирает случайное значение бита $b \xleftarrow{R} \{0,1\}$. Оно секретное.
- 2. Злоумышленник выбирает длину n и отправляет два сообщения $m_0 \neq m_1$ длины n.
- 3. Система вычисляет $c = E(k, m_b)$ и отправляет его злоум-ку.
- 4. Злоум-к $A \in \operatorname{PPT}$ анализирует c и выдает результат бит b'.
- 5. Если b' = b, A достиг успеха.

Один запрос, ответ.

Опр.

Шифр наз. ceмантически стойким для одноразового ключа, если в этом эксперименте вероятность успеха A не более $\frac{1}{2}+\varepsilon(n)$,

где $\varepsilon(n)$ - пренебр. малая, вероятность вычисляется по случайным выборам: $k,\ b,$ алгоритма A и шифрования E.

Эквивалентно:

$$Adv_{SS}(A, E_{OTK}) = \left| P(b'=1|b=1) - P(b'=1|b=0) \right| < \varepsilon(n).$$

Задача

Доказать, что режим ECB не семантически стойкий. Использовать сообщение длиной два блока, эти блоки - одинаковые.

Режим счетчика без сцепления блоков - DetCTR Deterministic counter mode.

Опр.

Пусть
$$f: K imes \{0,1\}^n o \{0,1\}^n$$
 - ПСФ. Тогда i -й блок: $E_{DetCtr}(k,m)[i] = m[i] \oplus f(k,i)$

Когда блочный шифр исп. как поточный, это наз. режимом гаммирования.

Утверждение

Пусть $f: K \times \{0,1\}^n \to \{0,1\}^n$ - ПСФ. Тогда $\forall L>0$ при одноразовом ключе E_{DetCtr} - семант. стойкий шифр: $K \times \{0,1\}^{nL} \to \{0,1\}^{nL}$.

В частности, \forall алгоритма $A \in \mathrm{PPT}$, реализ. атаку на E_{DetCtr} , сущ. алгоритм $B \in \mathrm{PPT}$, осущ. атаку на ПСФ F:

 $Adv_{SS}[A, E_{DetCtr}] \leq 2 \cdot Adv_{SS}[B, F]$

Док-во

Аналогично теореме 2 о семантической стойкости поточного шифра.

F - стойкая ПСФ, не отличима от случайно выбранной функции f

Одноразовый блокнот - абсолютно стойкий шифр

F - стойкая ПСФ, не отличима от случайно выбранной функции f

Для первого перехода вероятность отличить "верх" от "низа": $\left|P(b'=1|b=0,\ E)-P(b'=1|b=0,\ OTP)\right|=Adv_{SS}[B,F]<arepsilon(n)$

Для второго - отличить нельзя.

Для третьего:
$$\left|P(b'=1|b=1,\ E)-P(b'=1|b=1,\ OTP)\right|=Adv_{SS}[B,F]$$

Поэтому
$$Adv_{SS}[A, E_{DetCtr}] \leq Adv_{SS}[B, F] + 0 + Adv_{SS}[B, F] = 2 \cdot Adv_{SS}[B, F].$$

Ч.т.д.

Раздел 4 - Одноразовый ключ и многоразовый ключ

Лемма о переключении

Одноразовый ключ

Многоразовый ключ

Режимы использования, стойкие при многократном использовании ключа.

Злоум-к видит много шифротекстов, зашифрованных одним и тем же ключом.

Модель:

- Возможности злоум-ка: может получать шифротексты для любых сообщений, при этом ключ шифра один и тот же. Т.е. атака с выбором открытого текста, chosen plaintext attack.
- Цель злоум-ка: нарушить семантическую стойкость.

Далее всегда подразумевается, что ключ многоразовый.

Эксперимент "атака с выбором открытого текста" при многоразовом ключе:

Пусть (E, D) - шифр.

- 1. Система выбирает ключ k и значение бита b, секр., фикс.
- 2. $q \in \mathbb{N}$ число запросов злоумышленника.

$$q = poly(log(|\{m\}|)).$$

Каждый раз он отправляет $m_{i,0}, m_{i,1}$: $len(m_{i,0}) = len(m_{i,1})$.

- 3. Система вычисляет $c_i = E(k, m_{i,b})$, отправляет злоум-ку.
- 4. После q запросов злоум-к выдает b' гипотезу о b.

Сообщения могут повторяться.

Опр.

шифр C=(E,D) наз. семантически стойким к атаке с выбранным открытым текстом при многоразовом ключе, если в этом эксперименте $\forall A \in \operatorname{PPT}$

$$Adv_{CPA}(A, C) := |P(b' = 1|b = 0) - P(b' = 1|b = 1)| < \varepsilon(n)$$

Решения:

1. Рандомизированный алгоритм шифрования:

 $E_r(k,m)=c_1$, повторно $E_r(k,m)=c_2$, с высокой вероятностью $c_1 \neq c_2$.

D - детерминированный алгоритм!

Длина шифротекста больше длины сообщения.

(Рисунок:
$$m \rightarrow \{c_1,...,c_t\} \rightarrow m$$
)

Пример реализации:

Пусть $f: K \times R \to M$ - ПСФ.

R - конечное множество чисел или других параметров.

Пусть $E(k,m) = [r \xleftarrow{R} R$, вернуть $(r, f(k,r) \oplus m)]$

Задача

В каком случае этот шифр семант. стойкий относительно атаки с выбранным открытым текстом?

Подсказка: $f(k,\cdot) \approx$ случайная $g(\cdot)$.

2. Использование nonce

nonce - уникальное значение, "n used once". Пара (n, m) никогда не повторится.

nonce:

- случайное число, выбир. из большого множества, так что оно никогда не повторится с большой вероятностью.
- счетчик (энегронезавис. память, можно не передавать nonce)

Многоразовый ключ

Эксперимент nCPA:

Bce nonce n_i попарно различны, хоть их и выбирает злоум-к.

Опр.

шифр C=(E,D), исп. nonce, семантически стойкий к атаке с выбранным открытым текстом, если $\forall A\in \mathrm{PPT}$ $Adv_{nCPA}[A,C]=\left|P(b'=1|b=0)-P(b'=1|b=1)\right|<\varepsilon(n).$

Пример реализации:

Пусть $f: K \times R \to M$ - ПСФ. R - конечное множество чисел. Пусть $E(k,m) = [++r, \ вернуть \ (r,f(k,r) \oplus m)]$

Задача

В каком случае этот шифр семант. стойкий относительно атаки с выбранным открытым текстом?

Некоторые итоги:

- А. Стойкость шифров с одноразовым ключом:
- А.1. Абсолютная стойкость к атаке с известным шифротекстом.
- А.2. Семант. стойкость к атаке с известным шифротекстом.
- В. Стойкость шифров с многоразовым ключом:
- В.1. Семант. стойкость к атаке с выбором открытого текста.
- С. Шифры:
- С.1. Алфавитные.
- С.2. Одноразовый блокнот.
- С.3. Поточные шифры, ГПСЧ.
- С.4. Блочные шифры. Шифр DES и его анализ.

- D. Режимы использования блочных шифров:
- D.1. ECB.
- D.2. DetCTR.
- D.3. Начали рассматривать использование многоразового ключа.

Литература к лекции:

1. D.Chang, M.Nandi, A short proof of the PRP/PRF Switching Lemma, https://eprint.iacr.org/2008/078.ps