Problem:

- (a) Show that the power series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges for all $z \in \mathbb{C}$, in which it defines an analytic function, which we denote e^z .
- (b) With this as the definition of e^z , prove that $e^z e^w = e^{z+w}$.
- (c) Show that for $\theta \in \mathbb{R}$, we have that $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, where $\cos(\theta)$ and $\sin(\theta)$ are defined via their usual power series representations.

Solution:

(a) To compute

$$\rho = \limsup_{n \to \infty} \left(\frac{1}{n!} \right)^{1/n},$$

we take ordinary natural logarithms and use the fact that logarithms are increasing functions to find that

$$\ln(\rho) = \limsup_{n \to \infty} \left(-n \sum_{k=1}^{n} \ln(k) \right)$$
$$= -\infty,$$

meaning that $\rho = 0$, or that $R = \frac{1}{\rho}$ is infinite.

(b) Computing $e^z e^w$, we get

$$\left(\sum_{k=0}^{\infty} \frac{z^{k}}{k!}\right) \left(\sum_{\ell=0}^{\infty} \frac{w^{k}}{k!}\right) = \sum_{k=0}^{\infty} \sum_{\ell=k}^{\infty} \frac{1}{(\ell-k)!} \frac{1}{k!} w^{k} z^{\ell-k}$$

$$= \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \sum_{k=0}^{\ell} \frac{1}{k!(\ell-k)!} w^{k} z^{\ell-k}$$

$$= \sum_{\ell=0}^{\infty} \frac{1}{\ell!} (z+w)^{\ell}$$

$$= e^{z+w}.$$

(c) Computing $e^{i\theta}$ by direct substitution, we find that

$$\begin{split} e^{i\theta} &= \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} \\ &= \sum_{k \text{ even}} \frac{(-1)^k \theta^k}{k!} + i \sum_{k \text{ odd}} \frac{(-1)^{(k-1)/2} \theta^k}{k!} \\ &= \cos(\theta) + i \sin(\theta). \end{split}$$

Problem: Let $U \subseteq \mathbb{C}$ be an open set, $f: U \to \mathbb{C}$ an analytic function. Since f is analytic, given $z_0 \in U$, there is r > 0 and a sequence $(a_n)_n$ such that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z \in U(z_0, r)$.

Suppose there exists R > r such that $U(z_0, R) \subseteq U$ and $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ has radius of convergence at least R. Show that $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ for all $z \in U(z_0, R)$.

Solution: On the connected open set $V = U(z_0, R)$, define

$$g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Observe that $f|_V$ and g agree on the open subset $U(z_0, r) \subseteq U(z_0, R)$. By the identity theorem, this means that f = g on $U(z_0, R)$.

Problem: Let $U \subseteq \mathbb{C}$ be a region, and let $f: U \to \mathbb{C}$ be an analytic function.

(a) Suppose f is nonconstant, $z_0 \in U$. Show that there exists some r > 0 for which $U(z_0, r) \subseteq U$, a positive integer $k \in \mathbb{N}$, an analytic function $g: U(z_0, r) \to \mathbb{C}$, and a nonconstant $\lambda \in \mathbb{C} \setminus \{0\}$ such that for $z \in U(z_0, r)$,

$$f(z) = f(z_0) + \lambda(z - z_0)^k + (z - z_0)^{k+1}g(z).$$

- (b) Suppose that f is nonconstant, and $z_0 \in U$ is such that $f(z_0) \neq 0$. Show that there exists some s > 0 such that $U(z_0, s) \subseteq U$, and $w_1, w_2 \in U(z_0, s)$ such that $|f(w_1)| > |f(z_0)| > |f(w_2)|$.
- (c) Show that if |f| is constant, then f is constant.

Solution:

(a) Since f is analytic, we may find r > 0 and a sequence $(a_n)_n$ such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

Observe that $f(z_0) = a_0$, so

$$= f(z_0) + \sum_{n=1}^{\infty} a_n (z - z_0)^n.$$

Next, we find the minimum value of n such that $a_n \neq 0$, which we define to be k. Such a value must exist since f is a nonconstant function. This gives

=
$$f(z_0) + a_k(z - z_0)^k + \sum_{n=k+1}^{\infty} a_n(z - z_0)^n$$
.

Finally, by reindexing the sum and factoring out $(z - z_0)^{k+1}$, we get

$$= f(z_0) + a_k(z - z_0)^k + (z - z_0)^{k+1} \sum_{n=0}^{\infty} a_{n+k+1}(z - z_0)^n.$$

Define g(z) to be equal to the sum, and define $\lambda = a_k$. Notice that since the radius of convergence of a power series is a limiting case, g and g have the same radius of convergence. This gives

$$= f(z_0) + \lambda(z - z_0)^k + (z - z_0)^{k+1}g(z).$$

(b) Let f be a nonconstant analytic function with $f(z_0) \neq 0$. Since f is nonconstant, we see that λ in the previous problem is nonzero, meaning that $|\lambda|$ is nonzero, in addition to $|f(z_0)|$.