ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Журнал практики

Студента _	Махмудова Орхана Сакит	овича_ (ф. и. о.)
Факультет Ј	№8 «Информационные тех	нологии и прикладная математика»
Кафедра	№805 «Математичесь	сая кибернетика»
Учебная гру Направление	е подготовки (специальност	ы) _ <u>01.03.04</u> (шифр) тматематика
	(наз	ввание направления, специальности)
Вид практик		преддипломной или другой вид практики)
Руководите	ель практики от МАИ	
Kyð	рявцева Ирина Анатольеві	ıa
(фa	милия, имя, отчество)	(подпись)
	/ (подпись студента	/ "12" июля 2019 г.

Character and and arms an arms	
Сроки проведения практики:	
-дата начала практики	29.06.19
-дата окончания практики	12.07.19
Наименование предприятия	МАИ
Название структурного подра	зделения (отдел, лаборатория)
	каф. 805
2. Инструктаж по технике б	безопасности
/	/ 29.06 2019 <i>z</i> .
(подпись пр	роводившего) (дата проведения)

1.Место и сроки проведения практики

3. Индивидуальное задание студенту

Вариант №13

I. Пусть
$$A = \begin{pmatrix} 1 & 0 & 2 & m & 1 \\ 0 & 1 & 3 & m+1 & 0 \\ m+1 & 0 & 1 & m & 1 \\ 2 & 0 & 3 & 1 & m \\ 1 & 3 & 4 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & t & 0 & 0 & 0 \\ 1 & 1 & t & 0 & 0 \\ 0 & 2 & 1 & t & 0 \\ 0 & 0 & 3 & 1 & t \\ 0 & 0 & 0 & 4 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix},$$
 где m - последняя

цифра номера группы, $t = \left\lceil \frac{m}{n} \right\rceil + 1$

Требуется:

- 1. Задать матрицы A с помощью вкладки Matrix панели математических объектов; B с помощью вкладки Programming панели математических объектов; C с помощью встроенных функций.
- 2. Вычислить A + B C, $A^{-1}B$, $A^{T}B C$, |A|, rang(B), tr(C).
- 3. Выделить из матрицы $\,C\,$ подматрицу $\,D\,$, состоящую из элементов, стоящих на пересечении 2,3 строк и 2,3 столбцов.
- 4. В полученной в п.3 матрицы вычислить $\|D\|$
- II. Доказать, что система линейных алгебраических уравнений совместна. Решить СЛАУ методом исключения Гаусса, используя встроенные средства системы компьютерной математики.

$$\begin{cases} 2x_1 - x_3 = 1, \\ x_1 - 4x_2 + 2x_3 = -5, \\ x_1 + x_2 + 3x_3 = 6. \end{cases}$$

III. Найти собственные значения и собственные векторы матрицы A, используя встроенные средства системы компьютерной математики. Выделить собственный вектор, соответствующий максимальному собственному значению с помощью вкладки Programming панели математических объектов.

значению с помощью вкладки Programming панели математическ
$$A = \begin{pmatrix} 1 & m & 0 & 2 \\ 0 & 2 & m & 1 \\ 0 & -1 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \text{ где } \boldsymbol{M} \text{ - последняя цифра номера группы.}$$

IV. Решить уравнение f(x) = 0 встроенными средствами, если $f(x) = x^3 + x^2 - 17x + 15$. Изобразить график f(x), обозначив оси, выбрав масштаб, а также толщину и цвет линий. По графику указать

изооразить график *J* (*A*), ооозначив оси, выорав масштао, а также толщину и цвет линии. По графику указать интервал принадлежности корней уравнения. Обозначить на графике приближенное решение, используя опции редактора графиков системы.

- V. Вычислить $d\frac{y}{dx}$, $\frac{d^2y}{dx^2}$, $y = \ln{(e^2 + \sqrt{e^{2x} 1} + arcsine^{-x})}$ дифференцирование.
- VI. Решить задачу Коши $y^{''}=2-x^4$, y(0)=1 аналитически и с использованием встроенных функций компьютерной системы. Изобразить точное решение, приближенное решение. Найти невязку.
- VII. Изобразить график функции z=z(x,y), заданной уравнением $x^2-(y-3)^2=z-1$, и карту линий уровня.
- VIII. Исследовать f(x) на экстремум, если $f(x) = x^3 + 3x^2 x 3$

4.План выполнения индивидуального задания

- 1.Ознакомиться с основными принципами работы в выбранной системе компьютерной математики
- 2. Изучить теоретические аспекты предлагаемых к выполнению заданий
- 3.Выполнить задания. Используя встроенные функции выбранной системы и/или базовые навыки программирования
- 4. Составить отчет по результатам выполнения практики

Руководитель практики от МАИ:	Кудрявцева И.А/	/	
Руководитель от предприятия	Кудрявцева И.А/	/	
//	/ " 29 — "_июня_ 2019 г. (дата)		

5.Отзыв руководителя практики от предприятия

В процессе выполнения практики студентом Махмудовым Орханом освоены базовые принципы работы с системами компьютерной математики Mathcad. Рассмотрены задачи линейной алгебры и математического анализа. Получено решение систем линейных алгебраических уравнений. Решена задача оптимизации для функций одной переменной. Получено решение задачи Коши для обыкновенного дифференциального уравнения первого порядка. Изучены принципы символьных вычислений в выбранной системе компьютерной математики. Работа выполнена в полном объеме.

соответствуют индивидуальног	му заданию		
Руководитель от предприятия:	Кудрявцева И.А	/	/
	(фамилия, имя, отчество)	(подпись)	
«12» июля 2019г			

Материалы, изложенные в отчёте студента, полностью (или не полностью)

М.П. (печать)

6.Отчет студента о практике

№2

$$A := \begin{pmatrix} 2 & 0 & -1 \\ 1 & -4 & 2 \\ 1 & 1 & 3 \end{pmatrix} \qquad A1 := \begin{pmatrix} 1 \\ -5 \\ 6 \end{pmatrix}$$

$$B := \begin{pmatrix} 2 & 0 & -1 & 1 \\ 1 & -4 & 2 & -5 \\ 1 & 1 & 3 & 6 \end{pmatrix} \qquad I := lsolve(A, A1)$$

$$rank(A) = 3$$

$$rank(B) = 3$$

$$I = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

f = 1

ORIGIN:= 1

M:= 5

$$A := \begin{pmatrix} 1 & m & 0 & 2 \\ 0 & 2 & m & 1 \\ 0 & -1 & -3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
eigenvals(A) =
$$\begin{pmatrix} 1 \\ 0.618 \\ -1.618 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -0.997 & 0.84 & 0.98 \\ 0 & 0.076 & -0.44 & 0.14 \end{pmatrix}$$

eigenvecs(A) =
$$\begin{pmatrix} 1 & -0.997 & 0.84 & 0.98 \\ 0 & 0.076 & -0.44 & 0.14 \\ 0 & -0.021 & 0.318 & -0.028 \\ 0 & 0 & 0 & 0.14 \end{pmatrix}$$
 t := eigenvals(A)

$$\begin{split} \mathbf{f} &:= \begin{bmatrix} \mathbf{t}_1 & \text{if } \left(\mathbf{t}_1 > \mathbf{t}_2 \right) \wedge \left(\mathbf{t}_1 > \mathbf{t}_3 \right) \wedge \left(\mathbf{t}_1 > \mathbf{t}_4 \right) & \mathbf{f} = 2 \\ \mathbf{t}_2 & \text{if } \left(\mathbf{t}_2 > \mathbf{t}_1 \right) \wedge \left(\mathbf{t}_2 > \mathbf{t}_3 \right) \wedge \left(\mathbf{t}_2 > \mathbf{t}_4 \right) \\ \mathbf{t}_3 & \text{if } \left(\mathbf{t}_3 > \mathbf{t}_1 \right) \wedge \left(\mathbf{t}_3 > \mathbf{t}_2 \right) \wedge \left(\mathbf{t}_3 > \mathbf{t}_4 \right) \\ \mathbf{t}_4 & \text{if } \left(\mathbf{t}_4 > \mathbf{t}_1 \right) \wedge \left(\mathbf{t}_4 > \mathbf{t}_2 \right) \wedge \left(\mathbf{t}_4 > \mathbf{t}_3 \right) \\ \end{split}$$

eigenvec(A,f) =
$$\begin{pmatrix} 0.98 \\ 0.14 \\ -0.028 \\ 0.14 \end{pmatrix}$$
 +

№4

$$f(x) := x^3 + x^2 - 17x + 15$$

$$polyroots(v) = \begin{pmatrix} -5\\1\\3 \end{pmatrix}$$

$$\mathbf{v} \coloneqq \begin{pmatrix} 15 \\ -17 \\ 1 \\ 1 \end{pmatrix}$$

$$i(h) := h + 5$$

$$g(m) := m - 1$$

$$t(r) := r - 3$$

$$h := -5$$

$$y(x) := \ln\left(e^x + \sqrt{e^{2-x} - 1}\right) + a\sin\left(e^{-x}\right)$$

$$\frac{d}{dx}y(x) \to \frac{\frac{e^{2 \cdot x}}{\sqrt{e^{2 \cdot x} - 1}} + e^{x}}{e^{x} + \sqrt{e^{2 \cdot x} - 1}} - \frac{e^{-x}}{\sqrt{1 - e^{-2 \cdot x}}}$$

$$\frac{d^{2}}{dx^{2}}y(x) \rightarrow \frac{e^{-x}}{\sqrt{1-e^{-2\cdot x}}} + \frac{e^{-3\cdot x}}{\left(e^{-3\cdot x}\right)^{2}} + \frac{\frac{2\cdot e^{2\cdot x}}{\sqrt{e^{2\cdot x}-1}} + e^{x} - \frac{e^{4\cdot x}}{\sqrt{e^{2\cdot x}-1}}}{\left(e^{2\cdot x}-1\right)^{2}} - \frac{\left(e^{2\cdot x}-1\right)^{2}}{\left(e^{x}+\sqrt{e^{2\cdot x}-1}\right)^{2}} - \frac{\left(e^{2\cdot x}-1\right)^{2}}{\left(e^{x}+\sqrt{e^{2\cdot x}-1}\right)^{2}}$$

$$y''(x) := 2 - x^{4} \qquad \int y''(x) dx \to 2 \cdot x - \frac{x^{5}}{5}$$

$$y'(x) := 2x - \frac{x^{5}}{5} \qquad \int y'(x) dx \to x^{2} - \frac{x^{6}}{30}$$

$$y(x) := x^{2} - \frac{x^{6}}{30} \qquad D(x, y) := 2x - \frac{x^{5}}{5} \qquad y^{0} := 1$$

$$res := Adams(y0,0,1,10^3,D)$$

т		19	20	21	22	23	24	25	26
res =	0	0.019	0.02	0.021	0.022	0.023	0.024	0.025	0.026
	1	1	1	1	1	1.001	1.001	1.001	

$$z(x,y) := x^2 + (y-3)^2 + 1$$

Список литературы

- 1. Рыбин В.В. Компьютерный практикум по алгебре и математическому анализу в среде MathCad. Изд-во МАИ, 2002.
- 2. Алексеев Е.Р., Чеснокова О.В. Решение задач вычислительной математики в пакетах MathCAD 12, MATLAB 7, Maple 9.-М.:НТ Пресс, 2006.
- 3. Пантелеев А.В., Кудрявцева И.А. Численные методы. Практикум: учебное пособие.- М.: ИНФРА-М,2017.
- 4. Дьяков В.П. MathCAD 12/12/13 в математике. Справочник.- М.: Горячая линия. Телеком,2007.
- 5. Интернет ресурсы: www.old.exponenta.ru, www.mathworks.com