II AVALIAÇÃO PARCIAL - IA - 25.0

May 4, 2023

0.0.1 DOM HELDER ESCOLA SUPERIOR - CIÊNCIA DA COMPUTAÇÃO II AVALIAÇÃO PARCIAL - 25

Introdução à Inteligência Artificial - PROF. FISCHER STEFAN [1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline [2]: disease = pd.read_csv('diabetes.csv') []: [3]: <class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns): Column Non-Null Count Dtype _____ 0 Pregnancies 768 non-null int64 int64 1 Glucose 768 non-null 2 BloodPressure 768 non-null int64 3 SkinThickness 768 non-null int64 4 Insulin int64 768 non-null 5 BMI 768 non-null float64 DiabetesPedigreeFunction 768 non-null float64 Age 768 non-null int64 Outcome 768 non-null int64 dtypes: float64(2), int64(7) memory usage: 54.1 KB []:

[4]:

```
[4]:
        Pregnancies
                     Glucose
                             BloodPressure
                                             SkinThickness
                                                             Insulin
                                                                       BMI
                                                                      33.6
     0
                  6
                         148
                                          72
                                                         35
                                                                   0
     1
                  1
                          85
                                          66
                                                         29
                                                                   0
                                                                      26.6
     2
                  8
                         183
                                          64
                                                          0
                                                                   0
                                                                      23.3
     3
                  1
                          89
                                          66
                                                         23
                                                                  94
                                                                      28.1
     4
                  0
                                          40
                                                         35
                                                                      43.1
                         137
                                                                 168
        DiabetesPedigreeFunction
                                  Age
                                       Outcome
     0
                           0.627
                                   50
                                              1
                           0.351
     1
                                   31
                                              0
     2
                           0.672
                                              1
                                   32
     3
                           0.167
                                              0
                                   21
     4
                           2.288
                                   33
                                              1
[5]: from sklearn.preprocessing import StandardScaler
     scaler = StandardScaler()
[6]: | scaler.fit(disease.drop('Outcome',axis=1))
[6]: StandardScaler()
     scaled_features = scaler.transform(disease.drop('Outcome',axis=1))
[8]: disease_feat = pd.DataFrame(scaled_features,columns=disease.columns[:-1])
     disease_feat.head()
[8]:
                      Glucose BloodPressure SkinThickness
                                                               Insulin
                                                                             BMI
        Pregnancies
                     0.848324
                                    0.149641
                                                    0.907270 -0.692891 0.204013
           0.639947
     0
     1
          -0.844885 -1.123396
                                   -0.160546
                                                    0.530902 -0.692891 -0.684422
     2
           1.233880
                    1.943724
                                   -0.263941
                                                   -1.288212 -0.692891 -1.103255
     3
          -0.844885 -0.998208
                                   -0.160546
                                                    -1.141852 0.504055
                                   -1.504687
                                                    0.907270 0.765836 1.409746
        DiabetesPedigreeFunction
                                        Age
     0
                        0.468492 1.425995
     1
                       -0.365061 -0.190672
     2
                        0.604397 -0.105584
     3
                       -0.920763 -1.041549
                        5.484909 -0.020496
    0.0.2 Train Test Split
    Use train_test_split to split your data into a training set and a testing set.
[9]: from sklearn.model_selection import train_test_split
```

[]:

[10]:

0.0.3 Apply Logistic Regression

```
[11]: from sklearn.linear_model import LogisticRegression
    # instantiate the model (using the default parameters)
    logreg = LogisticRegression()

# fit the model with data
    logreg.fit(X_train, y_train)
```

[11]: LogisticRegression()

```
[12]: y_pred = logreg.predict(X_test)
```

0.0.4 Creating Metrics

```
[13]: from sklearn.metrics import classification_report,confusion_matrix
```

```
[14]: print(confusion_matrix(y_test,y_pred))
```

[[133 17] [32 49]]

```
[15]: target_names = ['without disease', 'with disease']
print(classification_report(y_test, y_pred, target_names=target_names))
```

	precision	recall	II-score	support
without disease	0.81	0.89	0.84	150
with disease	0.74	0.60	0.67	81
accuracy			0.79	231
macro avg	0.77	0.75	0.76	231
weighted avg	0.78	0.79	0.78	231

0.0.5 Question 1

- 1) Qual e é a precisão deste modelo e como você a interpreta?
- 2) Qual a diferença entre precisão e acurácia (precision and accuracy)?
- 3) Porque foi necessário usar a função StandardScaler()?
- 5) Forque loi necessario usar a lunção standardscaler():

0.0.6 Question 2

- 1) Construa KNN para o mesmo conjunto de dados #### (lembre-se de que os dados estão normalizados) #### (lembre-se de construir o gráfico para avaliar o passo k)
- 2) Qual dos dois modelos prediz melhor o resultado (Explique seu raciocínio)

[]:

0.0.7 Question 3

Reproduza os resultados abaixo e responda às perguntas

```
[16]: bank = pd.read_csv('bank_test.csv')
```

```
[17]: bank.head()
```

```
[17]:
         id
             age
                            job
                                  marital
                                                       education default housing loan
      0
          0
               26
                    technician
                                   single
                                           professional.course
                                                                       no
                                                                                no
                                                                                     no
          1
                    management
                                              university.degree
      1
               48
                                  married
                                                                               no
                                                                       no
                                                                                     no
      2
          2
               33
                   blue-collar
                                   single
                                                     high.school
                                                                       no
                                                                                no
      3
          3
               69
                       retired
                                 divorced
                                                        basic.4y
                                                                       no
                                                                                no
                                                                                     no
      4
          4
               43
                        admin.
                                  married
                                                    high.school
                                                                       no
                                                                                no
                                                                                     no
           contact month day_of_week
                                         campaign
                                                   pdays
                                                           previous
                                                                         poutcome
        telephone
                      oct
                                                1
                                                       16
                                   mon
                                                                   1
                                                                          success
        telephone
                                                3
                                                      999
                                                                   0
      1
                      jun
                                   fri
                                                                      nonexistent
      2 telephone
                                                3
                                                      999
                                                                   0
                                                                      nonexistent
                      may
                                   wed
      3
          cellular
                      apr
                                                1
                                                      999
                                                                      nonexistent
                                   mon
        telephone
                                                1
                      may
                                   thu
                                                      999
                                                                      nonexistent
         emp.var.rate cons.price.idx
                                         cons.conf.idx
                                                          euribor3m
                                                                      nr.employed
                                 94.601
                                                  -49.5
                                                                           4963.6
      0
                  -1.1
                                                              0.977
      1
                   1.4
                                 94.465
                                                  -41.8
                                                              4.959
                                                                           5228.1
                                                              4.859
      2
                   1.1
                                 93.994
                                                  -36.4
                                                                           5191.0
      3
                  -1.8
                                                  -47.1
                                                                           5099.1
                                 93.075
                                                              1.405
```

[18]: bank.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14416 entries, 0 to 14415
Data columns (total 20 columns):
```

1.1

Column Non-Null Count Dtype

93.994

-36.4

4.855

5191.0

```
0
           id
                            14416 non-null
                                             int64
                                             int64
      1
           age
                            14416 non-null
      2
           job
                            14416 non-null
                                             object
      3
           marital
                            14416 non-null
                                             object
      4
           education
                            14416 non-null
                                             object
      5
           default
                            14416 non-null
                                             object
      6
           housing
                            14416 non-null
                                             object
      7
           loan
                            14416 non-null
                                             object
           contact
                            14416 non-null
                                             object
      9
           month
                            14416 non-null
                                             object
      10
           day_of_week
                            14416 non-null
                                             object
           campaign
                            14416 non-null
                                             int64
      11
                                             int64
      12
           pdays
                            14416 non-null
           previous
                            14416 non-null
                                             int64
      13
      14
           poutcome
                            14416 non-null
                                             object
           emp.var.rate
                            14416 non-null
                                             float64
      15
      16
           cons.price.idx
                            14416 non-null
                                             float64
      17
           cons.conf.idx
                            14416 non-null
                                             float64
      18
           euribor3m
                            14416 non-null
                                             float64
          nr.employed
                            14416 non-null
                                             float64
     dtypes: float64(5), int64(5), object(10)
     memory usage: 2.2+ MB
[19]: bank.drop(bank.columns[[0]], axis=1, inplace=True)
[20]: bank.head()
         age
                       job
                             marital
      0
          26
               technician
                              single
                                       professional.course
                                                                          no
                                                                 no
      1
          48
                                         university.degree
               management
                             married
                                                                  no
                                                                          no
      2
              blue-collar
                                               high.school
          33
                               single
                                                                  no
                                                                          no
      3
          69
                   retired
                            divorced
                                                   basic.4y
                                                                  no
                                                                          no
```

[20]: education default housing loan no no no no 43 admin. married high.school no no no contact month day_of_week campaign pdays previous poutcome 0 telephone 1 16 1 success oct mon telephone fri 3 999 0 nonexistent 1 jun 2 telephone may wed 3 999 nonexistent cellular 1 999 nonexistent apr mon nonexistent telephone may thu 999 cons.conf.idx emp.var.rate cons.price.idx euribor3m nr.employed 0 -1.1 94.601 -49.50.977 4963.6 1 1.4 94.465 -41.8 4.959 5228.1 2 -36.4 1.1 93.994 4.859 5191.0 3 -1.8 93.075 -47.11.405 5099.1 1.1 93.994 -36.44.855 5191.0

```
[21]: bank.drop(bank.columns[[1,2,3,5,7,8,9,10,11,12,13,14,17,18]], axis=1,__
       →inplace=True)
[22]: bank.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 14416 entries, 0 to 14415
     Data columns (total 5 columns):
          Column
                           Non-Null Count Dtype
      0
          age
                           14416 non-null
                                            int64
      1
          default
                           14416 non-null object
      2
          loan
                           14416 non-null
                                            object
      3
          cons.price.idx 14416 non-null float64
          cons.conf.idx
                           14416 non-null float64
     dtypes: float64(2), int64(1), object(2)
     memory usage: 563.2+ KB
[23]: bank.head()
[23]:
         age default loan
                            cons.price.idx cons.conf.idx
                                    94.601
                                                     -49.5
      0
          26
                  no
                       no
          48
                                    94.465
      1
                                                     -41.8
                  no
                       no
      2
          33
                                    93.994
                                                     -36.4
                  no
                       no
                                    93.075
                                                     -47.1
      3
          69
                  no
                       no
                                                     -36.4
      4
          43
                  no
                                    93.994
[24]: bank['default'] = bank['default'].map({'no':0,'yes':1,'unknown':0})
      bank['loan'] = bank['loan'].map({'no':0,'yes':1,'unknown':0})
 []:
[26]: bank.head()
[26]:
              default
                       loan
                              cons.price.idx cons.conf.idx
         age
      0
          26
                    0
                           0
                                      94.601
                                                       -49.5
      1
          48
                    0
                           0
                                      94.465
                                                       -41.8
      2
          33
                    0
                           0
                                      93.994
                                                       -36.4
      3
          69
                    0
                           0
                                      93.075
                                                       -47.1
          43
                    0
                                      93.994
                                                       -36.4
     0.0.8 Train Test Split
     Use train_test_split to split your data into a training set and a testing set.
     O alvo é a coluna 'loan' (empréstimo): queremos saber se empresta ou não.
[27]:
```

0.0.9 Apply Random Forest

```
[28]: from sklearn.ensemble import RandomForestClassifier
      from sklearn.metrics import accuracy_score, confusion_matrix, precision_score,
       →recall_score, ConfusionMatrixDisplay
[29]:
[29]: RandomForestClassifier()
[30]:
 []:
[31]: accuracy = accuracy_score(y_test, y_pred)
      print("Accuracy:", accuracy)
     Accuracy: 0.8367630057803468
 []: pip install graphviz
     0.0.10 Vizualization
[32]: from sklearn.tree import export_graphviz
      from IPython.display import Image
      import graphviz
[33]: # Export the first three decision trees from the forest
      for i in range(3):
          tree = randfor.estimators_[i]
          dot_data = export_graphviz(tree,
                                     feature_names=X_train.columns,
                                     filled=True,
                                     max_depth=2,
                                     impurity=False,
                                     proportion=True)
          graph = graphviz.Source(dot_data)
          display(graph)
```


0.0.11 Results

[34]:

```
precision
                            recall f1-score
                                                 support
           0
                    0.84
                              0.99
                                         0.91
                                                    3654
           1
                    0.13
                              0.01
                                         0.02
                                                     671
                                         0.84
                                                    4325
    accuracy
   macro avg
                    0.49
                              0.50
                                         0.46
                                                    4325
weighted avg
                    0.73
                              0.84
                                         0.77
                                                    4325
```

```
[35]: Predicted
                              All
                     0
                         1
      True
      0
                  3613
                        41
                             3654
                         6
      1
                   665
                              671
      All
                  4278 47
                             4325
```

0.0.12 Como você usa estes resultados para predizer uma aplicação para empréstimo? Dê um exemplo.

0.0.13 Question 4

Você aplicaria SVM para resolver este problema? Justifique, fundamentando sua resposta,

com base na literatura..

[]: