MEAM 211

Lecture 2: Kinematics of Particles

- □ Straight-Line motion [2.1]
- Analytical solutions for position/velocity [2.1]
- Solving equations of motion
 - Analytical solutions (1 D review) [2.1]
 - Numerical solutions [2.1]
- □ Numerical integration [Appendix A, 2.1]
- □ Position vectors [2.2]
- □ Cartesian coordinate system [2.2]
- □ Velocity/Acceleration vectors [2.2]
- □ State vector, state space: Extensions to 2 and 3 dimensions

Rectilinear motion 1-dimensional motion • Position, x(t)• Velocity, v(t)• Acceleration, a(t)

• Jerk, *j*(*t*)

• Snap, *s*(*t*)

Two types of problems

- □ Given forces, find motion
- □ Given motion, find forces

2. Acceleration is a given function of position, a(x) = f(x)
3. Acceleration is a given function of velocity, a(v) = f(v)

MEAM 211

Many "passive" systems

- □ Simple pendulum
- Spring-mass system

Control systems for positioning

- Guidance systems for missiles
- Car
 - Imagine a car being accelerated (or decelerated) toward an intersection

In steps of δt seconds, $x_{new} = x_{old} + v(t_{old})\delta t$ x_{new} x_{old} x_{new} x_{old} x_{old} x_{old} x_{new} x_{old} x_{new}

MEAM 211

Euler's method

- □ Explicit: evaluate derivative using values at the beginning of the time step
 - Not very accurate, requires small time steps for stability

$$y_{i+1} = y_i + h \cdot f(x_i, y_i) + O(h^2)$$

- Global accuracy O(h)
- □ **Implicit:** Evaluate derivative using values at the end of the time step

$$y_{i+1} = y_i + h \cdot f(x_{i+1}, y_{i+1}) + O(h^2)$$

- May require iteration since the answer depends upon what is calculated at the end.
- Still not very accurate (global accuracy O(h)).
- Unconditionally stable for all time step sizes.

Stability A numerical method is *stable* if errors occurring at one stage of the process do not tend to be magnified at later stages. A numerical method is *unstable* if errors occurring at one stage of the process tend to be magnified at later stages. In general, the stability of a numerical scheme depends on the step size. Usually, large step sizes lead to unstable solutions. Implicit methods are in general more stable than explicit methods.

MEAM 211

Transformations between unit vectors

- Understanding the relationship between sets of unit vectors is very important
 - Visualize
 - Write down the dot products

	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3
i	i.e ₁	i.e ₂	i.e ₃
j	j.e ₁	j.e ₂	j.e ₃
k	k.e ₁	k.e ₂	k.e ₃

Dot product of unit vectors = Cosine of angle between vectors

