

- Exemplos de fluxo:
 - informação
 - corrente elétrica
 - líquido, mercadoria, etc

- Dados
 - G ponderado (peso = capacidade)
 - fonte s e sumidouro t
- Problema: Qual é o fluxo máximo de s a t?

Fluxo máximo

- Dados
 - G ponderado (peso = capacidade)
 - fonte s e sumidouro t

(a)

Problema: Qual é o fluxo máximo de s a t?

(fonte) (sumidouro) (fluxo/capacidade) (sumidouro) (s

(b)

Propriedade: Conservação do fluxo

Corte (S,T)

Propriedade: Conservação do fluxo

Corte (S,T)

Rede residual

("capacidades residuais de ida" + "fluxo de volta")

Fluxo / Capacidade

s v_1 v_2 v_3 v_3 v_4 v_4

Rede residual

Rede residual

- Um caminho é aumentante
 - se é um caminho de s a t na rede residual.
 (será usado para aumentar o fluxo)

Fluxo / Capacidade

Rede residual

(Capacidade do caminho aumentante)

Fluxo máximo

Ford-Fulkerson-Method(G, s, t):

- 1 Inicialmente, fluxo f = 0
- 2 Enquanto existir um caminho aumentante P, faça
- 3 Incremente o fluxo f (usando P)
- 4 Devolva f

Rede residual

(Capacidade do caminho aumentante)

Exercício: Calcular o fluxo máximo de s a t

```
Ford-Fulkerson-Method(G, s, t):
```

- 1 Inicialmente, fluxo f = 0
- 2 Enquanto existir um caminho aumentante P, faça
- 3 Incremente o fluxo f (usando P)
- 4 Devolva f

Fluxo máximo

Tarefa

- Exercícios:
 - Lista 5

(f=19+4)

Teoria dos Grafos

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

- 1 para cada aresta uv em G.E
- 2 uv.f = 0
- 3 enqto existir caminho aumentante P de s a t, faça
- 4 para cada uv em P, faça
- 5 se uv em G.E
- então **uv.f** = **uv.f** + **cf(P)** (ida)
- $7 mtext{senão } \mathbf{vu.f} = \mathbf{vu.f} \mathbf{cf(P)}$ (volta)

(a)

(Capacidade do caminho aumentante)

Atributo

uv.f: fluxo

Ontoersidade Federal do ABC

Teoria dos Grafos

Fluxo máximo

Ford-Fulkerson(G, s, t):

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (1)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):

1 para cada aresta uv em G.E
2    uv.f = 0

3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Rede residual (1)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (2)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Rede residual (2)

6

7

Teoria dos Grafos

Fluxo máximo

```
Ford-Fulkerson(G, s, t):

1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
```

então uv.f = uv.f + cf(P)

senão vu.f = vu.f - cf(P)

Rede residual (2)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (3)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Rede residual (3)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):

1 para cada aresta uv em G.E
2    uv.f = 0

3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Rede residual (3)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (4)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Rede residual (4)

7

Teoria dos Grafos

Fluxo máximo

```
Ford-Fulkerson(G, s, t):

1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
```

senão vu.f = vu.f - cf(P)

Rede residual (4)

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (5)


```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Ontoersidade Federal do ABC

Teoria dos Grafos

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Universidade Federal do ABC

Teoria dos Grafos

Fluxo máximo

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5        se uv em G.E
6        então uv.f = uv.f + cf(P)
7        senão vu.f = vu.f - cf(P)
```


Rede residual (6)

Universidade Federal do ABC

Teoria dos Grafos

```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```



```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5         se uv em G.E
6         então uv.f = uv.f + cf(P)
7         senão vu.f = vu.f - cf(P)
```



```
Ford-Fulkerson(G, s, t):
```

```
1 para cada aresta uv em G.E
2    uv.f = 0
3 enqto existir caminho aumentante P de s a t, faça
4    para cada uv em P, faça
5    se uv em G.E
6    então uv.f = uv.f + cf(P)
7    senão vu.f = vu.f - cf(P)
```


Fluxo máximo

Tarefa

Seminário

- Escolher um artigo para ser apresentado e entregar uma cópia impressa para o professor na próxima aula.
- O tema é livre e pode ser relacionado com a sua pesquisa, mas seria interessante escolher um artigo envolvendo algum tópico de Teoria dos Grafos.

Fluxo máximo

Tarefa

• EP 5

- Página da disciplina:
 - https://sites.google.com/site/alexnoma/home/grafos

Caminho aumentante?

Dica: Voce pode usar **BFS** para obter um caminho aumentante com a menor quantidade de arcos.

