Multilevel Inverter Based on Switched-Capacitance Structure

INTERIM PROJECT REPORT Submitted by

ABHILASH M M (TCR15EE002) ALIN ANTO (TCR15EE016) DEVIKA SAJEEV (TCR15EE042) DON DEV (TCR15EE046)

to

The APJ Abdul Kalam Technological University in partial fulfillment of the requirements for the award of the degree

of Bachelor of Technology

Department of Electrical Engineering Government Engineering College

FEBRUARY - 2019

Abstract

Multilevel inverter is a power electronic device capable of providing desired output using multiple lower level DC voltages as an input. Multilevel inverters are gaining popularity over conventional two level inverters because it can produce a smoother stepped output waveform. Moreover, the output obtained from multilevel inverters has lower d_v/d_t and lower harmonic distortions. Multilevel inverters usually make use of diode clamped, flying capacitor or cascaded H-bridge topologies. These topologies suffer from disadvantages such as multitude of components, large size and cost as well as complex control. This project aims to use a switched-capacitance (SC) structure to overcome the disadvantages of the existing topologies. It involves adding an SC structure to the H-bridge inverter using capacitors, switches and diodes to create a multilevel DC voltage at the DC bus of the H-bridge circuit. The proposed technology will improve upon the existing technology by having boost operation without magnetic elements, fewer components, less complex control and using only one power DC source. This project work involves the simulation and hardware implementation of Switched Capacitance Multilevel Inverter

Introduction

Recently, multilevel inverters (MIs) are getting more attention from researchers because of advantages like better waveform quality, lower EM noise, and lower device stress. MIs are used to couple a DC source to an AC bus for applications like electric motor drivers, uninterruptible power supplies, and distributed generation systems. The following topologies are now used in practice:-

- 1) Neutral-point clamped (Diode clamped).
- 2) Flying capacitor.
- 3)Cascaded H-bridge (CHB).

For low-power applications, the system size and cost are the main concerns. Problems in multilevel inverters (MIs) employing current topologies are the following:-

- 1) Large number of components (switches, power supplies, capacitors, and diodes).
- 2)Large size and high cost.
- 3) Complex control.

Solution to the problem is a new MI topology that uses a Switched Capacitor(SC) structure in cascade with an H-bridge. The objective of this new system is to achieve the following characteristics for a SC-MI:-

- 1) Fewer components (switches, sources and capacitors).
- 2)Smaller and less expensive.
- 3)Less complex control.
- 4) Requires only one power DC source.
- 5)Boost operation without magnetic elements.

Hardware Requirements	Software Requirements
DSO (Analysis)	Matlab (Simulation)
DSP (controller)	Proteus (Design)
Function generator (Analysis and reference)	Latex (Documentation)

Methodology

The proposed inverter consists of a single DC source, two SC cells connected in parallel with the H-bridge circuit and a load. The first SC cell is a combination of one capacitor, one diode, and two switches $(C_1 - D - S_{11} - S_{12})$, and the second SC cell includes one capacitor, and three switches $(C_2 - S_{21} - S_{22} - S_{23})$.

Working

Capacitor C_1 is charged while connected in parallel with the input source through S_{12} . It is discharged in series with the input source through S_{11} . Capacitor C_2 is charged in parallel from the input source and capacitor C_1 through S_{22} and S_{23} . It is discharged in series with capacitor C_1 and the input source through S_{21} . C_1 is thus charged to V_{in} and C_2 is charged to $2V_{in}$. Four Levels of voltage (in addition to a zero level) are therefore obtained by the following combinations:-

MODE	OUTPUT VOLTAGE	STATE
1	V_{in}	Source and C_1 in parallel.
2	$2V_{in}$	Source and C_1 in series which is then parallel with C_2 .
3	$3V_{in}$	Source and C_1 in parallel which is then series with C_2 .
4	$4V_{in}$	Source, C_1 and C_2 all in series.

These four levels of voltage can be reversed in polarity at the output by the H-Bridge. Therefore there are 9 different voltage levels (4 * 2 + 1) available at the output of the inverter. The switching states are controlled by Phase disposition PWM (PD-PWM).

Modes of Operation

MODE	OUTPUT VOLTAGE	D	S_{11}	S_{12}	S_{23}	S_{22}	S_{21}
1	V_{in}	ON	OFF	ON	ON	ON	OFF
2	$2V_{in}$	OFF	ON	OFF	ON	ON	OFF
3	$3V_{in}$	ON	OFF	ON	OFF	OFF	ON
4	$4V_{in}$	OFF	ON	OFF	OFF	OFF	ON

MODE	OUTPUT VOLTAGE	STATE
1	V_{in}	Source and C_1 in parallel.
2	$2V_{in}$	Source and C_1 in series which is then parallel with C_2 .
3	$3V_{in}$	Source and C_1 in parallel which is then series with C_2 .
4	$4V_{in}$	Source, C_1 and C_2 all in series.

In the positive half cycle T_1 and T_4 are fully turned on whereas T_2 and T_3 are fully turned OFF. Similarly, in the negative period, T_2 and T_3 are fully turned on whereas T_1 and T_4 are fully turned OFF and the components of the SC cells are similar to those in the positive period. To acheive zero voltage output T_1 and T_3 are turned on simultaneously.

Simulation

The simulation of the NINE-LEVEL INVERTER was done using the simulink tool in matlab. Operation of the inverter was verified with R and R-L load. Gating pulses are derived using PD-PWM technique. The switching delay and gate delay are neglected. The design consideration are given in the table below.

PARAMETER	VALUE
V_{in}	36V
C_1 , C_2	$2000\mu F$
$R+jX_l$	$80 \Omega + j60\Omega$
Diode Forward Drop	0.7V
Mosfet On Resistance	0.1Ω
Modulating Frequency	$50H_z$
Carrier Frequency	$5000H_{z}$
Modulating index	100%

Result

The Total Harmonic Distortion in Current was found to be 0.3358%. Efficiency of the inverter is 95.27%.

References

- [1] Bac-Bien Ngo, Minh-Khai Nguyen , Jae-Hong Kim2 and Firuz Zare, Single-phase multilevel inverter based on switched-capacitor structure, IET Power Electron, June 2018, ISSN 1755-4535
- [2] Barry W Williams, Principles and Elements of Power Electronics Devices, Drivers, Applications, and Passive Components, 2006, ISBN 978-0-9553384-0-3
- [3] Yuanmao Ye, K. W. E. Cheng, Junfeng Liu and Kai Ding, A Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage Balancing, IEEE Trans. Ind. Electron, Vol. 61, No. 12, December 2014
- [4] Bhagyalakshmi P S, Beena M Varghese and Dr. Bos Mathew Jos, Switched Capacitor Multilevel Inverter With Different Modulation Techniques, International Conference on Innovations in information Embedded and Communication Systems, 2017