Q1 LC-3 Reference Sheet 0 Points

Boolean Signals						
LD.MAR	GateMARMUX					
LD.MDR	GateMDR					
LD.REG	GatePC					
LD.CC	GateALU					
LD.PC	LD.IR					
MEM.EN	MEM.WE					

MUX Name	Possible Values
ALUK	ADD, AND, NOT, PASSA
ADDR1MUX	PC, BaseR
ADDR2MUX	ZERO, offset6, PCoffset9, PCoffset11
PCMUX	PC+1, BUS, ADDER
MARMUX	ZEXT, ADDER
SR2MUX	SR2, SEXT

CS2110 REFERENCE SHEET

				<u>C</u>	5211	U KEFEF
ADD	0001	DR	SR1	0	00	SR2
ADD	0001	DR	SR1	1	ir	nm5
AND	0101	DR	SR1	0	00	SR2
AND	0101	DR	SR1	1	ir	nm5
BR	0000	n z p		C	offsets	
JMP	1100	000	BaseR		000	000
JSR	0100	1	PCc	offse	et11	
JSRR	0100	0 00	BaseR		000	000
LD	0010	DR		c	offsets	
LDI	1010	DR		C	offsets	
LDR	0110	DR	BaseR		offs	et6
LEA	1110	DR		C	offsets	9
NOT	1001	DR	SR		111	111
ST	0011	SR		C	offsets	
STI	1011	SR		C	offsets	
				_		

Trap Vector	Assembler Name
x20	GETC
x21	OUT
x22	PUTS
x23	IN
x25	HALT

Device Register	Address
Keybd Status Reg	xFE00
Keybd Data Reg	xFE02
Display Status Reg	xFE04
Display Data Reg	xFE06

Q2 Circuit Tracing

0111

1111

SR

0000

BaseR

offset6

trapvect8

4 Points

TRAP

Based on the circuit below, fill in the **OUT** column of the truth table. For example, if the cell with a (2) should be filled in with a 0, then type 0 in a corresponding box for (2).

А	В	С	OUT
0	0	0	(1)
0	0	1	(2)
0	1	0	(3)
0	1	1	(4)
1	0	0	(5)
1	0	1	(6)
1	1	0	(7)
1	1	1	(8)

0

1

1

(4)

1	 	 	 	 	 	
(5)						
1						
(6)						
1	 	 		 	 	
(7)						
0	 	 	 	 	 	
(8)						
0						

Q3 Sum of products

4 Points

Fill the Truth table below based on the provided sum-of-products expression. For example, if the cell with a (2) should be filled in with a 0, then put 0 in a corresponding box for (2).

A'BC + ABC' + A'BC' + A'B'C':

А	В	С	OUT
0	0	0	(1)
0	0	1	(2)
0	1	0	(3)
0	1	1	(4)
1	0	0	(5)
1	0	1	(6)
1	1	0	(7)
1	1	1	(8)

(1)
1
·
(2)
0
(3)
1
(4)
1
1
(5)
0
(6)
0
(7)
1
(8)
0
·
Q4 Gates

6 Points

What type of gate is the circuit below?

OR

XOR

NOR

AND

NAND

What type of gate can we replace **Mystery** with in the image below to create a **NOR** gate?

NAND
AND
OR
XOR
NOR

Q5 Plexers

6 Points

Fill in the blanks:

If the multiplexer has 8 inputs, then its selector has **Blank A** bits. If the decoder has 32 inputs, then it can set **Blank B** output(s) based on the input value.

Blank A

2

1

3

8

Blank B

1

2

5

32

Q6 Explanation

3 Points

Please explain how you solved the previous problem (Q5 Plexers) in 1-3 sentences or bullet points. Make sure to address both parts

of the previous problem.

A: To select any of the 8 bits for the multiplexer, you must have a binary representation of 0-7, which is possible with a minimum of 3 bits.

B: The decoder always entails 1 output value, regardless of the number of inputs.

Q7 Circuit Analysis

Which of the following **cannot** be output by the circuit above?

00

11

10

01

Q8 Explanation

4 Points

Explain how you solved the previous problem (Q7 Circuit Analysis) with 1-3 sentences.

I noticed that the selector bits for the demux can only allow three values to reach the selector bits for the mux. These values are 00, 10, and 01, and therefore, only allow those respective inputs to pass through the mux. Thus, the value at 11 (which is 01), cannot be outputted by the mux.

Q9 Categorizing Logic Types 9 Points

Categorize the following circuits. If a circuit's implementation requires only combinational logic, classify it as combinational. If a

circuits implementation requires any sequential logic, classify it as sequential.

Q9.1 3 Points

Which of the of the following circuits only implement **combinational logic**?

☐ The Microcontroller (FSM in LC-3)
Deceder:
Decoder
☐ Instruction Register (in LC-3)
Instruction Register (in Le 3)
☐ Circuit B
✓ NAND Gate
☐ Circuit D
☐ RS-Latch
✓ Circuit E
☐ Circuit A

Q9.2 6 Points

Which of the of the following circuits necessarily implement **sequential logic**?

✓ Circuit D
 Decoder
 ✓ RS-Latch
 ✓ Circuit B
 ✓ Instruction Register (in LC-3)
 ✓ Circuit A
 NAND Gate
 Circuit E
 ✓ The Microcontroller (FSM in LC-3)

Q10 Level/Edge Triggered-Logic 5 Points

Assume there is a circuit that connects input to output and depends on the clock. The diagram above shows all three of these signals. Based on this diagram, what type of logic is this circuit using?

Neither

Level-Triggered

Edge-Triggered

Q11 Explanation

5 Points

Please explain your reasoning for the previous question (Q10 Level/Edge Triggered-Logic) in 1-3 sentences and/or bullet points. Specifically reference edge and level triggered logic in your explanation, and what differences between them and what properties each has led to your answer.

I noticed that the output only changed when the clock fell on the second cycle. If changes are made on a falling edge clock cycle, then this is a type of edge-triggered logic. Edgetriggered logic constantly changes the values of the output when the clock is rising or falling, while level-triggered only changes the values of the output when the clock is static.

Q12 State machines

7 Points

The circuit below implements a one-hot state machine. Your task is to fill in the blanks to recreate the state diagram of the state machine.

Utilizing the circuit below, fill in the blanks with you think would go in that position in the state diagram (also shown below).

For each node in the state diagram, fill in the values that would be outputted in that state. For each arrow, fill in the input that would cause that state transition, or "None" if the arrow should not be present in the state diagram.

Please only use G, G', A, B, C, AB, AC, BC, or None when inputting your answers.

1 = None

2 = G'

G'

G

4 = G'

5 = G'

3 =

None	
7 =	
None	
8 =	
G'	
9 =	
G	
10 =	
G	
11 =	
AC	
12 =	
С	
13 =	
Α	
14 =	
AB	

Q13 K-maps #1

4 Points

Given the truth table below, which of the following K-maps is filled out correctly AND has optimal groupings? Green cells denote the overlap between the yellow-colored grouping and the cyancolored grouping.

A	В	С	OUT
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	X
1	1	0	0
1	1	1	1

	AB	AB'	A'B'	A'B
С	1	X	1	1
C'	0	1	0	0
	AB	AB'	A'B	A'B'
С	1	X	1	1
C'	0	1	0	0
	AB	AB'	A'B'	A'B
			/\D	~ ~ •
С	1	X	1	1
C'				
	1	X	1	1
	1 0	X 1	1 0	1 0

Q14 K-maps #2 4 Points

From the K-map below, give the minimally reduced Boolean expression in sum-of-products form. Don't add any spaces in your answer and follow the S1/S0/G order of the headers for each term, e.g. "S1S0G+S1'G'" instead of "GS0S1+G'S1'".

	S1S0	S1S0'	S1'S0'	S1'S0
G	1	1	0	1
G'	X	0	0	1

S1G+S0

Q15 LC-3 #1

4 Points

Please explain the difference between the MAR and MDR. How can we use these registers to access memory? (2-3 sentences)

MAR can store an incoming address while MDR can store incoming data. Once you store these respective items in either the MAR or MDR, you can enable memory through MEM.EN and access the memory from MAR or MDR.

Q16 LC-3 #2

5 Points

Which of the following LC-3 components contain registers? Select all that apply.

✓ MAR
✓ MDR
Bus
✓ IR
□ PC

Q17 LC-3 #3

5 Points

In the LC-3, what is stored inside of the IR? What is stored inside of the PC? (1-2 sentences)

PC holds the address of the next instruction, and IR holds the value of the current instruction.

Q18 LC-3 #4

4 Points

Which of the following control signals are needed to load a value into the MAR?

MARMUX

GateMARMUX

LD.MAR

GateMAR

Q19 LC-3 #5

4 Points

Which of the following operations modify NZP?

✓ LD
✓ NOT
☐ JMP
✓ STR

Q20 Address Space and Addressability 6 Points

You are given a system with 10-bit addressability which uses 8 bits to represent its memory addresses.

How much memory is this system able to address, in bits?

2560

Q21 Assumptions

0 Points

If you have to make any unstated assumptions while answering any of the questions on the quiz, let us know the question numbers and assumptions you made here.

None

Quiz 2C • Graded

Student

Vidit Dharmendra Pokharna

Total Points

86 / 93 pts

Question 1

LC-3 Reference Sheet 0 / 0 pts

Question 2

Circuit Tracing R 3 / 4 pts

Question 3

Sum of products 4 / 4 pts

Question 4

Gates 3 / 6 pts

Question 5

View Submission I	Gradescope
Plexers	6 / 6 pts
Question 6	
Explanation	3 / 3 pts
Question 7	
Circuit Analysis	4 / 4 pts
Question 8	
Explanation	4 / 4 pts
Question 9	
Categorizing Logic Types	9 / 9 pts
9.1 (no title)	3 / 3 pts
9.2 (no title)	6 / 6 pts
Question 10	
Level/Edge Triggered-Logic	5 / 5 pts
Question 11	
Explanation	5 / 5 pts
Question 12	
State machines	7 / 7 pts
Question 13	
K-maps #1	4 / 4 pts
Question 14	
K-maps #2	R 4/4 pts
Question 15	
LC-3 #1	4 / 4 pts
Question 16	
LC-3 #2	R 4/5 pts
Question 17	
LC-3 #3	5 / 5 pts
Question 18	
LC-3 #4	4 / 4 pts
Question 19	
LC-3 #5	R 2/4 pts

Question 20

Address Space and Addressability 6 / 6 pts

Question 21

Assumptions **0** / 0 pts