中药复方乌梅丸网络药理学分析

2024-04-18

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要	î \$	1				
	1.1	需求	1				
	1.2	结果	1				
	1.3	· 补充的内容	2				
	1.4	再次修改的内容	2				
	ر د باد						
2	前言	î	2				
3	材料	朴和方法	2				
	3.1	材料	2				
	3.2	方法	2				
4	分析	行结果	3				
5	结论		3				
c	PZL.	A HONGILI	3				
6	ру · 6.1	分析流程 网络药理学	3				
	0.1	6.1.1 成分	3				
		6.1.2 成分靶点					
		6.1.3 疾病靶点	6				
		6.1.4 疾病-成分-靶点	7				
		6.1.5 富集分析	9				
			10				
		6.1.6.1 CTD 数据库记录与肠炎 (Colitis) 相关的化合物					
	6.2	分子对接前的网络图					
	6.3	分子对接					
		6.3.1 Top docking	12				
		6.3.2 对接可视化	14				
		6.3.3 局部对接细节	14				
		6.3.4 对接能量 < -1.2 的成分与靶点分析	14				
		6.3.4.1 对应靶点的富集分析	14				
		6.3.4.2 中药-成分-靶点-通路	15				
Re	efere	ence	16				
_							
L	ist	of Figures					
	1	Intersection of all compounds	5				
	2	Overall targets number of datasets	6				
	3	Network pharmacology with disease					

4	Targets intersect with targets of diseases	8
5	HERBS KEGG enrichment	9
6	HERBS GO enrichment	10
7	Intersection of CTD records with herbs of hsa05321 related	10
8	CTD filtered Compounds Network pharmacology with disease	12
9	Overall combining Affinity	13
10	AFF KEGG enrichment	15
11	Network pharmacology Affinity filtered	15
	of Tables	9
1	Herbs information	
	Herbs information	4
1	Herbs information	4
1 2	Herbs information	4 5
1 2 3	Herbs information	4 5 7
1 2 3 4	Herbs information	4 5 7 11

1 摘要

1.1 需求

中药复方乌梅丸: 乌梅, 花椒, 细辛, 黄连, 黄柏, 干姜, 附子, 桂枝, 人参, 当归

疾病:慢性结肠炎,炎性肠病,肠纤维化,可以都包含,也可以单独一种疾病(如果单独疾病可以做出来,优先级按照语序来)

目标:筛出有效成分 XX,及其作用靶点蛋白 YY, YY 需满足: 1、与 XX 能对接 2、富集分析显示 YY 与疾病相关的机制相关(比如炎症,纤维化,再放宽可以免疫细胞调控)

其它:

- 1、选取中药复方(乌梅丸)中和调控纤维化相关的单体成分,结合 pubchem、chemical book、scifinder 等数据库分析排名靠前的化合物的活性信息,并通过中医网络药理学方法(如 TCMSP 平台和 BATMAN-TCM 数据库),分析有效成分 XXX 的对应靶点 YYY,功能富集分析显示 YYY 调控肠道纤维化。
- 2、、通过 PubChem 数据库获取中药单体主要活性成分的 2D 化学结构,在 PDB 数据库中查找相关核心靶点蛋白 3D 结构,通过 Autodock 软件进行分子对接,获取结合能最高的位点,最后通过 Pymol 软件进行可视化处理。

化合物 3081405

交付:

- 1. 疾病-复方-成分-靶点网络图
- 2. 成分 XX-靶点网络图
- 3. XX 与 YY 分子对接 pymol 可视化图, 注意细节标注
- 4. 成分 XX 靶点功能富集分析
- 5. 总的复方靶点的功能富集分析
- 6. YY 可能参与的环节需要标注在 4 上或者单独注释分

1.2 结果

注:以下"??"引用为修改后暂保留内容。

- 1. 利用 BATMAN-TCM 数据库作为成分靶点数据库,并结合 Fig. 2 所示的疾病靶点数据获得的疾病-复方-成分-靶点网络图见 Fig. 3
- 2. 筛选的成分的靶点关系图见 Fig. ??。这里的成分是后续的分析和分子对接筛选的 TOP 1,其名称等相关信息 (TOP 1-3) 可参考 Tab. ??
- 3. Pymol 可视化见 Fig. **??** (局部放大加注释), Fig. **??** (全局图)。此外, 对接 TOP 2 和 TOP 3 的可视化也附在随后。
- 4. TOP 1 成分的富集分析见 Fig. ?? 和 Fig. ??
- 5. 总的复方靶点的富集分析见 Fig. 5 和 Fig. 6
- 6. YY (TOP 1 对应的结合靶点为 IL1B) 参与的环节见 Fig. ??

补充说明:

- TCMSP 网站最近几日都无法打开, 所以草药数据来源只选用 BATMAN (这个数据库比 TCMSP 全面)。
- 关于"结合 pubchem、chemical book、scifinder 等数据库分析排名靠前的化合物的活性信息", chemical book 和 scifinder 为商业工具,预计是无法获取权限的,这里没有使用;而 PubChem,我这里的分析中获取了成分的文献记录,即 LiteratureCount,具体可见 Tab. ??, Tab. ??。此外,还根据 CTD 对疾病相关的成分做了筛选,Fig. 7
- 其它候选成分靶点 Tab. 5
- 分子对接良好的结果汇总表格 Tab. 6

1.3 补充的内容

- 分子对接前的网络图 Fig. 8, 仅根据 Fig. 2 过滤靶点, 和 Fig. 7 过滤成分。
- 随后分子对接已全部重做。
- 分子对接后,筛选 Affinity < -1.2, 网络图 Fig. 11 (唯独 Fig. 11 中化合物采用了最简洁的同义名,其他图没有修改;此外, Tab. 6 有化合物名称和来源药物)
- 关于化合物 3081405, 存在于收集的复方成分中,可在 Tab. 3 中找到;但不在 Tab. 5 中,是 CTD 的步骤过滤除外的 (Fig. 7)。

1.4 再次修改的内容

- 数据库已换成 TCMSP, 根据 DL 和 OB 过滤成分, Tab. 2 (修改数据库来源后,全部内容已重做)
- 疾病靶点与成分靶点做交后,不再与 IBD 通路做交
- 成分-靶点通过批量分子对接滤过能量 >-1.2kcal/mol 的靶点, 随后创建网络药理图 (对接能量为负值的结果见 Tab. 6)
- 中药-成分-靶点基因-相关通路, 见 Fig. 11, 对应数据表格见 Tab. 7

2 前言

3 材料和方法

3.1 材料

3.2 方法

Mainly used method:

- Database BATMAN-TCM was used as source data of TCM ingredients and target proteins¹.
- The Comparative Toxicogenomics Database (CTD) used for finding relationship between chemicals and disease².
- R package ClusterProfiler used for gene enrichment analysis³.
- Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets⁴⁻⁶.
- The API of UniProtKB (https://www.uniprot.org/help/api_queries) used for mapping of names or IDs of proteins.
- Website TCMSP https://tcmsp-e.com/ used for data source⁷.

- The CLI tools of AutoDock vina and ADFR software used for auto molecular docking⁸⁻¹².
- R package pathview used for KEGG pathways visualization 13.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

- 5 结论
- 6 附:分析流程

6.1 网络药理学

6.1.1 成分

Table 1 (下方表格) 为表格 Herbs information 概览。

(对应文件为 Figure+Table/Herbs-information.csv)

注: 表格共有 10 行 2 列,以下预览的表格可能省略部分数据;含有 10 个唯一'Herb_pinyin_name'。

Table 1: Herbs information

Herb_pinyin_name	Herb_cn_name
Wumei	乌梅
Huajiao	花椒
Xixin	细辛
Huanglian	黄连
Huangbo	黄柏
Ganjiang	干姜
Fuzi	附子
Guizhi	桂枝
Renshen	人参
Danggui	当归

Table 2 (下方表格) 为表格 Compounds filtered by OB and DL 概览。

(对应文件为 Figure+Table/Compounds-filtered-by-OB-and-DL.xlsx)

注: 表格共有 129 行 15 列,以下预览的表格可能省略部分数据;含有 102 个唯一'Mol

ID; 含有 10 个唯一'Herb_pinyin_name'。

Table 2: Compounds filtered by OB and DL $\,$

Mol ID	Molecu	MW	AlogP	Hdon	Hacc	OB (%)	Caco-2	BBB	DL
MOL001040	(2R)-5	272.270	2.298	3	5	42.363	0.37818	-0.47578	0.21141
MOL000358	beta-s	414.790	8.084	1	1	36.913	1.32463	0.98588	0.75123
MOL000422	kaempf	286.250	1.771	4	6	41.882	0.26096	-0.55335	0.24066
MOL000449	Stigma	412.770	7.640	1	1	43.829	1.44458	1.00045	0.75665
MOL005043	campes	400.760	7.628	1	1	37.576	1.31892	0.93697	0.71481
MOL008601	Methyl	318.550	6.665	0	2	46.899	1.48280	0.92545	0.23381
MOL000953	CLR	386.730	7.376	1	1	37.873	1.43101	1.12678	0.67677
MOL000098	quercetin	302.250	1.504	5	7	46.433	0.04842	-0.76890	0.27525
MOL013271	Kokusa	259.280	2.330	0	5	66.676	0.94967	0.66840	0.19584
MOL002663	Skimmi	259.280	2.330	0	5	40.136	1.26344	1.09995	0.19638
MOL002881	Diosmetin	300.280	2.318	3	6	31.137	0.46152	-0.66187	0.27442
MOL000358	beta-s	414.790	8.084	1	1	36.913	1.32463	0.98588	0.75123
MOL000098	quercetin	302.250	1.504	5	7	46.433	0.04842	-0.76890	0.27525
MOL012140	4,9-di	254.310	3.375	0	3	65.301	1.21324	0.72110	0.19237
MOL012141	Caribine	326.430	1.220	2	5	37.064	0.33508	-0.14706	0.82656

Figure 1 (下方图) 为图 intersection of all compounds 概览。

(对应文件为 Figure+Table/intersection-of-all-compounds.pdf)

Figure 1: Intersection of all compounds

All_intersection:

(上述信息框内容已保存至 Figure+Table/intersection-of-all-compounds-content)

6.1.2 成分靶点

Table 3 (下方表格) 为表格 tables of Herbs compounds and targets 概览。

(对应文件为 Figure+Table/tables-of-Herbs-compounds-and-targets.xlsx)

注: 表格共有 3763 行 4 列,以下预览的表格可能省略部分数据;含有 10 个唯一'Herb_pinyin_name'。

Table 3: Tables of Herbs compounds and targets

Herb_pinyin_name	Molecule name	symbols	protein.names
Guizhi	ent-Epicatechin	MBLAC1	Metallo-beta-lact
Guizhi	ent-Epicatechin	NCOA7	Nuclear receptor
Guizhi	ent-Epicatechin	ERAP140	Nuclear receptor
Guizhi	ent-Epicatechin	ESNA1	Nuclear receptor
Guizhi	ent-Epicatechin	Nbla00052	Nuclear receptor

Herb_pinyin_name	Molecule name	symbols	protein.names
Guizhi	ent-Epicatechin	Nbla10993	Nuclear receptor
Guizhi	ent-Epicatechin	HSP90AA2P	Heat shock protei
Guizhi	ent-Epicatechin	HSP90AA2	Heat shock protei
Guizhi	ent-Epicatechin	HSPCAL3	Heat shock protei
Guizhi	ent-Epicatechin	PTGS1	Prostaglandin G/H
Guizhi	ent-Epicatechin	COX1	Prostaglandin G/H
Guizhi	ent-Epicatechin	PTGS2	Prostaglandin G/H
Guizhi	ent-Epicatechin	COX2	Prostaglandin G/H
Guizhi	ent-Epicatechin	PRKACA	cAMP-dependent pr
Guizhi	ent-Epicatechin	PKACA	cAMP-dependent pr

6.1.3 疾病靶点

Figure 2 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 2: Overall targets number of datasets

Table 4 (下方表格) 为表格 GeneCards used data 概览。

(对应文件为 Figure+Table/GeneCards-used-data.xlsx)

注:表格共有 172 行 7 列,以下预览的表格可能省略部分数据;含有 172 个唯一'Symbol'。

The GeneCards data was obtained by querying :

chronic colitis

Restrict (with quotes):

TRUE

Filtering by Score: :

Score > 0

Table 4: GeneCards used data

Symbol	Description	Category	UniProt_ID	GIFtS	GC_id	Score
CARMIL2	Capping Pr	Protein Co	Q6F5E8	43	GC16P067644	3
WAS	WASP Actin	Protein Co	P42768	56	GC0XP048676	2.13
IL37	Interleuki	Protein Co	Q9NZH6	48	GC02P141239	2.04
LINC02605	Long Inter	RNA Gene		19	GC08P078838	2.04
TNFSF15	TNF Superf	Protein Co	O95150	52	GC09M114784	1.96
LINC01672	Long Inter	RNA Gene		18	GC01P011469	1.96
STAT3	Signal Tra	Protein Co	P40763	62	GC17M042313	1.91
BDNF-AS	BDNF Antis	RNA Gene		28	GC11P027466	1.91
CERNA3	Competing	RNA Gene		19	GC08P056101	1.8
NOS2	Nitric Oxi	Protein Co	P35228	58	GC17M027756	1.73
IL17A	Interleuki	Protein Co	Q16552	52	GC06P052186	1.69
IFNG	Interferon	Protein Co	P01579	59	GC12M068154	1.49
IL23A	Interleuki	Protein Co	Q9NPF7	48	GC12P059649	1.44
MPO	Myeloperox	Protein Co	P05164	61	GC17M058269	1.38
IL7R	Interleuki	Protein Co	P16871	55	GC05P035852	1.38

6.1.4 疾病-成分-靶点

Figure 3 (下方图) 为图 Network pharmacology with disease 概览。

(对应文件为 Figure+Table/Network-pharmacology-with-disease.pdf)

Figure 3: Network pharmacology with disease

Figure 4 (下方图) 为图 Targets intersect with targets of diseases 概览。

(对应文件为 Figure+Table/Targets-intersect-with-targets-of-diseases.pdf)

Figure 4: Targets intersect with targets of diseases

Intersection:

IL10, TNF, IL1B, TP53, ESR2, NFE2L2, MMP9, NOS2, IFNG, MPO, EGF, VCAM1, MAP3K7, ERBB2, MMP1, PTGS2, RAF1, HMOX1, CDKN2A, GJA1, CD40LG, ALOX5, NCF2, IL4, VEGFC

(上述信息框内容已保存至 Figure+Table/Targets-intersect-with-targets-of-diseases-content)

6.1.5 富集分析

Figure 5 (下方图) 为图 HERBS KEGG enrichment 概览。

(对应文件为 Figure+Table/HERBS-KEGG-enrichment.pdf)

Figure 5: HERBS KEGG enrichment

Figure 6 (下方图) 为图 HERBS GO enrichment 概览。

(对应文件为 Figure+Table/HERBS-GO-enrichment.pdf)

Figure 6: HERBS GO enrichment

6.1.6 与疾病相关的活性成分筛选

6.1.6.1 CTD 数据库记录与肠炎 (Colitis) 相关的化合物

Figure 7 (下方图) 为图 Intersection of CTD records with herbs of hsa05321 related 概览。

(对应文件为 Figure+Table/Intersection-of-CTD-records-with-herbs-of-hsa05321-related.pdf)

Figure 7: Intersection of CTD records with herbs of hsa05321 related

Intersection:

 $11066,\,444899,\,2353,\,9064,\,193148,\,2703,\,5281612,\,119307,\,5280863,\,19009,\,5280343,\,65752,\\72307,\,5280794,\,439533$

(上述信息框内容已保存至 Figure+Table/Intersection-of-CTD-records-with-herbs-of-hsa05321-related-content)

Table 5 (下方表格) 为表格 Intersection Herbs compounds and targets 概览。

(对应文件为 Figure+Table/Intersection-Herbs-compounds-and-targets.csv)

注:表格共有 141 行 4 列,以下预览的表格可能省略部分数据;含有 8 个唯一'Herb_pinyin_name;含有 15 个唯一'Ingredient.name;含有 24 个唯一'Target.name'。

Table 5: Intersection Herbs compounds and targets

Herb_pinyin_name	Ingredient.name	Target.name	CID
Wumei	quercetin	ALOX5	5280343
Wumei	quercetin	CD40LG	5280343
Wumei	quercetin	TP53	5280343
Wumei	quercetin	CDKN2A	5280343
Wumei	quercetin	EGF	5280343
Wumei	quercetin	GJA1	5280343
Wumei	quercetin	HMOX1	5280343
Wumei	quercetin	IFNG	5280343
Wumei	quercetin	IL1B	5280343
Wumei	quercetin	IL10	5280343
Wumei	quercetin	MMP1	5280343
Wumei	quercetin	MMP9	5280343
Wumei	quercetin	MAP3K7	5280343
Wumei	quercetin	MPO	5280343
Wumei	quercetin	NCF2	5280343
		•••	

6.2 分子对接前的网络图

Figure 8 (下方图) 为图 CTD filtered Compounds Network pharmacology with disease 概览。

(对应文件为 Figure+Table/CTD-filtered-Compounds-Network-pharmacology-with-disease.pdf)

Figure 8: CTD filtered Compounds Network pharmacology with disease

6.3 分子对接

6.3.1 Top docking

取 Fig. 8 成分与靶点,进行批量分子对接。

以下展示了各个靶点结合度 Top 的成分

Figure 9 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 9: Overall combining Affinity

Table 6 (下方表格) 为表格 Combining Affinity 概览。

(对应文件为 Figure+Table/Combining-Affinity.csv)

注: 表格共有 31 行 7 列, 以下预览的表格可能省略部分数据; 含有 15 个唯一 'hgnc_symbol; 含有 8 个唯一 'Herb_pinyin_name'。

1. hgnc_symbol: 基因名 (Human)

Table 6: Combining Affinity

hgnc_symbol	Ingredient	Affinity	PubChem_id	PDB_ID	Combn	Herb_pinyi
TP53	berberine	-5.465	2353	8dc8	2353_into	Huanglian;
IL1B	quercetin	-4.52	5280343	9ilb	5280343_in	Wumei; Hua
IL1B	ginsenosid	-4.4	119307	9ilb	119307_int	Renshen
TP53	quercetin	-4.325	5280343	8dc8	5280343_in	Wumei; Hua
ESR2	palmatine	-4.267	19009	7xwr	19009_into	Huanglian;
NFE2L2	sesamin	-4.113	72307	7o7b	72307_into	Xixin
NFE2L2	Chelerythrine	-4.061	2703	7o7b	2703_into	Huangbo
NFE2L2	quercetin	-3.555	5280343	7o7b	5280343_in	Wumei; Hua
EGF	quercetin	-2.956	5280343	2kv4	5280343_in	Wumei; Hua
HMOX1	quercetin	-2.428	5280343	6eha	5280343_in	Wumei; Hua
HMOX1	kaempferol	-2.141	5280863	6eha	5280863_in	Wumei; Xix
IL1B	Chelerythrine	-2.079	2703	9ilb	$2703_{\rm into}\$	Huangbo
RAF1	quercetin	-0.797	5280343	7jhp	5280343_in	Wumei; Hua
NOS2	palmatine	-0.521	19009	4nos	$19009_{\rm into}$	Huanglian;
NOS2	berberine	-0.315	2353	4nos	$2353_{\rm into}\$	Huanglian;

6.3.2 对接可视化

6.3.3 局部对接细节

6.3.4 对接能量 < -1.2 的成分与靶点分析

6.3.4.1 对应靶点的富集分析

Figure 10 (下方图) 为图 AFF KEGG enrichment 概览。

(对应文件为 Figure+Table/AFF-KEGG-enrichment.pdf)

Figure 10: AFF KEGG enrichment

6.3.4.2 中药-成分-靶点-通路

Figure 11 (下方图) 为图 Network pharmacology Affinity filtered 概览。

(对应文件为 Figure+Table/Network-pharmacology-Affinity-filtered.pdf)

Figure 11: Network pharmacology Affinity filtered

Table 7 (下方表格) 为表格 Network pharmacology Affinity filtered data 概览。

(对应文件为 Figure+Table/Network-pharmacology-Affinity-filtered-data.csv)

注: 表格共有 26 行 5 列,以下预览的表格可能省略部分数据;含有 6 个唯一'Herb_pinyin_name;含有 4 个唯一'Ingredient.name;含有 6 个唯一'Target.name'。

Table 7: Network pharmacology Affinity filtered data

Herb_pinyin_name	e Ingredient.name	Target.name	Hit_pathway_number	er Enriched_pathways
Huajiao	quercetin	TP53	9	Bladder cancer; B
Huangbo	quercetin	TP53	9	Bladder cancer; B
Huanglian	quercetin	TP53	9	Bladder cancer; B
Wumei	quercetin	TP53	9	Bladder cancer; B
Huajiao	quercetin	EGF	6	Bladder cancer; B
Huangbo	quercetin	EGF	6	Bladder cancer; B
Huanglian	quercetin	EGF	6	Bladder cancer; B
Wumei	quercetin	EGF	6	Bladder cancer; B
Huajiao	quercetin	HMOX1	4	Chemical carcinog
Huajiao	quercetin	NFE2L2	4	Chemical carcinog
Huangbo	quercetin	HMOX1	4	Chemical carcinog
Huangbo	quercetin	NFE2L2	4	Chemical carcinog
Huanglian	quercetin	HMOX1	4	Chemical carcinog
Huanglian	quercetin	NFE2L2	4	Chemical carcinog
Renshen	kaempferol	HMOX1	4	Chemical carcinog

Reference

- 1. Kong, X. et al. BATMAN-tcm 2.0: An enhanced integrative database for known and predicted interactions between traditional chinese medicine ingredients and target proteins. Nucleic acids research 52, D1110–D1120 (2024).
- 2. Davis, A. P. et al. Comparative toxicogenomics database (ctd): Update 2023. Nucleic acids research 51, D1257–D1262 (2023).
- 3. Wu, T. et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 4. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.

- 5. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 6. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 7. Ru, J. et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 6, (2014).
- 8. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).
- 9. Zhang, Y., Forli, S., Omelchenko, A. & Sanner, M. F. AutoGridFR: Improvements on autodock affinity maps and associated software tools. *Journal of computational chemistry* **40**, 2882–2886 (2019).
- 10. Zhang, Y. & Sanner, M. F. AutoDock crankpep: Combining folding and docking to predict protein-peptide complexes. *Bioinformatics (Oxford, England)* **35**, 5121–5127 (2019).
- 11. Ravindranath, P. A. & Sanner, M. F. AutoSite: An automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms. *Bioinformatics (Oxford, England)* 32, 3142–3149 (2016).
- 12. Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J. & Sanner, M. F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. *PLoS computational biology* **11**, (2015).
- 13. Luo, W. & Brouwer, C. Pathview: An r/bioconductor package for pathway-based data integration and visualization. *Bioinformatics (Oxford, England)* **29**, 1830–1831 (2013).