Rozpoznávání řeči pomocí Kaldi

Diplomová práce o implementaci Kaldi rozpoznávače řeči pro Alex SDS

Ondřej Plátek

Matematicko-fyzikální fakulta Univerzity Karlovy

27.5.2014

Cíle práce

Zlepšit rozpoznávání řeči pro Alex Spoken Dialogue Systems Obzvlášt aplikaci poskytujcí informace o veřejné dopravě (800 899 998).

Zadané cíle práce:

- o přípravit akustické modely pomocí Kaldi toolkitu,
- vyvinout nový real-time rozpoznávač řeči, který podporuje inkrementální rozpoznávání řeči,
- integrovat rozpoznávač řeči do Alex SDS.

Kontinuální rozpoznávání řeči

Pattern matching

HMM — modelování časové řady řeči (monofóny/triphóny pro slova)

Natrénovali a porovnali jsme několik HMM akustických modelů.

Prohledávání grafu - dekódování

Viterbi algoritmus — dynamické programování

- Změna rozhraní.
- Normalizace výstupu rozpoznávače.
- Nalézt optimální parametry (beam, lattice-beam, max-active-states).

Akustické modelování

ASR trénování, výsledky

Czech	bigram
tri $\Delta + \Delta \Delta$	нтк (60.4) 56.6
tri LDA+MLLT	53.9
$tri\;LDA + MLLT + MMI$	49.5
$tri\;LDA + MLLT + bMMI$	49.3
$tri\ LDA+MLLT+MPE$	49.2

English	bigram
tri $\Delta + \Delta \Delta$	нтк (17.5) 16.2
$tri\;LDA + MLLT$	15.8
$tri\;LDA + MLLT + MMI$	10.4
$tri\;LDA + MLLT + bMMI$	10.2
tri LDA+MLLT+MPE	11.1

(Py)OnlineLatgenRecogniser rozhraní

- Audioln zařazení audio do fronty k předzpracování
- Decode dekódování určitý počet audio rámců (frame)
- PruneFinal příprava datových struktur pro extrakci lattice (svazu)
- GetLattice extrakce slovní posteriorní lattice
- GetBestPath extrakce nejpravděpodobnější slovní hypotézy
- Reset příprava rozpoznávače na novou promluvu

Komponenty on-line dekódování

Evaluace, metriky

- Real Time Factor (RTF) dekódování poměr času dekódování a délky promluvy,
- Latence zpozdění mezi koncem promluvy a dostupností výsledků rozpoznávání,
- Word Error Rate (WER) chyba nejlepší slovní transkripce.

On-line vs dávkové dekódování

Pokles WER 45 % \longrightarrow 22% pro náš dialogový systém Alex

Public Transport Information doména - rychlost a přesnost

Dostatečně rychlé – pod 200 ms – pro 95 % promluv.

Shrnutí

Výsledky

- V dialogovém systému WER 22, latence pod 200 ms.
 Dříve 1900 ms a 48 WER.
- WER pro Vystadial skripty: angličtina 12, čeština mix domén 50

Závěry

- Testovaný real-time on-line rozpoznávač řeči
- Trénovací skripty pro češtinu a angličtinu (Vystadial) přijmuto do Kaldi
- Integrace rozpoznávače řeči do dialogového systému, v reálném provozu na lince 800 899 998 (PTI doména)
- Spoluautor akceptovaných článků na konference Sigdial, Lrec a TSD (Viz reference)

Přesnost akustických modelů dle velikosti dat

Přesnost akustických modelů dle velikosti trénovací dat LM

Vystadial dataset

Posbíráno skupinou UFAL Dialogovým systémů.

)	
dataset	audio[h]	# vět	# slov	
English				
training	41:30	47,463	178,110	
development	01:45	2,000	7,376	
test	01:46	2,000	7,772	
Czech				
training	15:25	22,567	126,333	
development	01:23	2,000	11,478	
test	01:22	2,000	11,204	

Acoustic features, features preprocessing

Výstupní formáty

- 0.5 hi how are you
- 0.2 hi where are you
- 0.1 bey how are you

Funkční (Py)OnlineLatgenRecogniser demo

```
d = PyOnlineLatgenRecogniser()
d.setup(argv)
while audio_to_process():
    d.audio_in(get_raw_pcm_audio())
    dec_t = d.decode(max_frames=10)
    while dec_t > 0:
        decoded_frames += dec_t
        dec_t = d.decode(max_frames=10)
d.prune_final()
lik, lat = d.get_lattice()
```

4

6

Problém

Dialogové systémy potřebují rozpoznávání řeči OpenJulius — padá, RWTH decoder — licence Cloudové služby Google a Nuance — žádná adaptace + problémy s licencemi

Semiring

Name	\mathcal{K}	\oplus	\otimes	Ō	1
Real	$[0,\infty)$	+	*	0	1
Log	$(-\infty,\infty)$	$-log(e^{-x}+e^{-y})$	+	∞	0
Tropical	$(-\infty,\infty)$	min	+	∞	0

Odkazy a reference

Děkuji za pozornost!

Související odkazy

- Diplomová práce https://github.com/oplatek/kaldi-thesis
- OnlineLatgenRecogniser implementace a AM trénovací skripty https://github.com/UFAL-DSG/pykaldi
- Alex implementace https://github.com/UFAL-DSG/alex

Reference

- Vystadial dataset Matěj Korvas, Ondřej Plátek, Ondřej Dušek, Lukáš Žilka, and Filip Jurčíček, Free English and Czech
 telephone speech corpus shared under the CC-BY-SA 3.0 license, Proceedings of the Eight International Conference on
 Language Resources and Evaluation (LREC 2014), 2014.
- Free on-line speech recogniser based on Kaldi ASR toolkit producing word posterior lattices Ondřej Plátek and Filip Jurčíček, Proceedings of the Sigdial 2014 conference.
- Integration of an online Kaldi speech recogniser to Alex Dialogue Systems Framework Ondřej Plátek and Filip Jurčíček, TSD conference 2014.