

Sun-Yuan Hsieh 謝孫源 教授 成功大學資訊工程學系

Overview

影成功大學

- ▶ Given a directed graph G=(V,E), weight function $w:E\to\Re, |V|=n$.
- ▶ Goal: create an $n \times n$ matrix of shortest-path distances $\delta(u, v)$.
- ► Could run BELLMAN-FORD once from each vertex: $O(V^2E)$ which is $O(V^4)$ if the graph is **dense** $(E=\theta(V^2))$.
- ▶ If no negative-weight edges, could run Dijkstra's algorithm once from each vertex:
 - $O(VE \lg V)$ with binary heap— $O(V^3 \lg V)$ if dense. $O(V^2 \lg V + VE)$ with Fibonacci heap $O(V^3)$ if dense.
- ▶ We'll see how to do in $O(V^3)$ in all cases, with no fancy data structure.

Shortest paths and matrix multiplication

- ▶ Output is matrix $D = (d_{ij})$, where $d_{ij} = \delta(i,j)$. Won't worry about predecessor—see book.
- Will use dynamic programmingat first.
- ▶ *Optimal substructure*: Recall: subpaths of shortest paths are shortest paths.
- ▶ **Recursive solution:** Let $l_{ij}^{(m)}$ = weight of shortest path $i \cap j$ that contains $\leq m$ edges.

► m = 0there is a shortest path i = j with $\leq m$ edges if and only if i=j

$$\Rightarrow l_{ij}^{(0)} = \begin{bmatrix} 0 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{bmatrix}$$

▶ *m*≥1

$$\Rightarrow l_{ij}^{(m)} = \min \left\{ l_{ij}^{(m-1)}, \min_{1 \le k \le n} \left[l_{ik}^{(m-1)} + w_{kj} \right] \right\}$$
 (k is all possible predecessors of j)
$$= \min_{1 \le k \le n} \left[l_{ik}^{(m-1)} + w_{kj} \right]$$
 since $w_{jj} = 0$ for all j

Observer that when m=1, must have $l_{ij}^{(1)} = w_{ij}$. Conceptually, when the path is restricted to at most 1 edge, the weight of the shortest path i j must be w_{ij} . And the math works out, too:

$$l_{ij}^{(1)} = \min_{1 \le k \le n} \left[l_{ik}^{(0)} + w_{kj} \right]$$

$$= l_{ii}^{(0)} + w_{ij} \qquad (l_{ii}^{(0)} \text{ is the only non -} \infty \text{ among } l_{ik}^{(0)})$$

$$= w_{ij}.$$

All simple shortest paths contain $\leq n-1$ edges

$$\Rightarrow \delta(i,j) = l_{ij}^{(n-1)} = l_{ij}^{(n)} = l_{ij}^{(n+1)} = \dots$$

Compute a solution bottom-up: Compute $L^{(1)}, L^{(2)}, ..., L^{(n-1)}$.

Start with $L^{(1)} = W$, since $l_{ij}^{(1)} = w_{ij}$.

Go from $L^{(m-1)}$ to $L^{(m)}$:


```
EXTEND(L, W, n) create L', an n \times n matrix
```

```
for i \leftarrow 1 to n
do for j \leftarrow 1 to n
do l_{ij}^{'} \leftarrow \infty
for k \leftarrow 1 to n
do l_{ij}^{'} \leftarrow \min(l_{ij}^{'}, l_{ik} + w_{kj})
```

return L'

Compute each $L^{(m)}$:

SLOW-APSP(
$$W$$
, n)
 $L^{(1)} \leftarrow W$
for $m \leftarrow 2$ to n -1
do $L^{(m)} \leftarrow \text{EXTEND}(L^{(m-1)}, W, n)$
return $L^{(n-1)}$

Time:

- **EXTEND**: $\Theta(n^3)$.
- ▶ SLOW-APSP: $\Theta(n^4)$.

Observation: EXTEND is like matrix multiplication:

$$L \rightarrow A$$

$$W \rightarrow B$$

$$L' \rightarrow C$$

$$min \rightarrow +$$

$$\infty \rightarrow 0$$


```
create C, an n \times n matrix
```

$$\begin{array}{c} \textbf{for } i \leftarrow 1 \textbf{ to } n \\ & \textbf{do for } j \leftarrow 1 \textbf{ to } n \\ & \textbf{do } c_{ij} \leftarrow 0 \\ & \textbf{for } k \leftarrow 1 \textbf{ to } n \\ & \textbf{do } c_{ij} \leftarrow a_{ik} \boldsymbol{.} \quad b_{kj} \end{array}$$

So, we can view EXTEND as just like matrix multiplication!

Why do we care?

Because our goal is to compute $L^{(n-1)}$ as fast as we can. Don't need to Compute *all* the intermediate $L^{(1)}$, $L^{(2)}$, $L^{(3)}$,..., $L^{(n-2)}$.

Suppose we had a matrix A and we wanted to compute A^{n-1} (like calling EXTEND n-1 times).

Could compute A, A^2 , A^4 , A^8 ,...

If we knew $A^m = A^{n-1}$ for all $m \ge n-1$, could just finish with A^r , where r is the smallest power of 2 that's $\ge n-1$. ($r = 2^{\lceil \lg(n-1) \rceil}$)

FASTER-APSP(W, n)

$$L^{(1)} \leftarrow W$$
 $m \leftarrow 1$
while $m < n-1$

$$do L^{(2m)} \leftarrow \text{EXTEND}(L^{(m)}, L^{(m)}, n)$$
 $m \leftarrow 2m$

OK to overshoot, since products don't change after $L^{(n-1)}$.

Time: $\Theta(n^3 \lg n)$

return $L^{(m)}$

Floyd-Warshall algorithm

For path $p = \langle v_1, v_2, ..., v_l \rangle$, an *intermediate vertex* is any vertex of p other than v_1 or v_l .

Let $d_{ij}^{(k)}$ = shortest-path weight of any path i j with all intermediate vertices in $\{1, 2, ..., k\}$.

Consider a shortest path $i \stackrel{p}{\searrow} j$ with all intermediate vertices in $\{1,2,...,k\}$:

- ▶ If k is not an intermediate vertex, then all intermediate vertices of p are in $\{1, 2, ..., k-1\}$.
- ▶ If *k* is an intermediate vertex:

all intermediate vertices in $\{1, 2, ..., k-1\}$

Recursive formulation

$$d_{ij}^{(k)} = \lim_{k \to \infty} w_{ij} & \text{if } k = 0, \\ \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}) & \text{if } k \ge 1.$$

(Have $d_{ij}^{(0)} = w_{ij}$ because can't have intermediate vertices $\Rightarrow \leq 1$ edges.) Want $D^{(n)} = (d_{ij}^{(n)})$, since all vertices numbered $\leq n$.

Compute bottom-up

Compute in increasing order of *k*:

Floyd-Warshall(W, n)

$$D^{(0)} \leftarrow W$$

for
$$k \leftarrow 1$$
 to n

do for
$$i \leftarrow 1$$
 to n

$$\frac{\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n}{\mathbf{do} \ d_{ij}^{(k)}} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$$

return $D^{(n)}$

Can drop superscripts. (See Exercise 25.2-4 in text.)

Time: $\Theta(n^3)$.

Transitive closure

Given G(V,E), directed.

Compute $G^* = (V, E^*)$.

 \blacktriangleright $E^*=\{(i,j): \text{ there is a path } i \nearrow j \text{ in } G\}.$

Could assign weight of 1 to each edge, then run FLOYD-WARSHALL.

- ▶ If $d_{ij} < n$, then there is a path $i \nearrow j$.
- ▶ Otherwise, d_{ii} =∞ and there is no path.

Simpler way: Substitute other values and operators in FLOYD-WARSHALL.

- Use unweighted adjacency matrix

- $\Box 1$ if there is path $i \nearrow j$ with all intermediate vertices $t_{ii}^{(k)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in $\{1, 2, ..., k\},$ 0 otherwise.
- $t_{ij}^{(0)} = \begin{bmatrix} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i, j) \in E. \end{bmatrix}$
- $t_{ii}^{(k)} = t_{ii}^{(k-1)} (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)}).$


```
TRANSITIVE-CLOSURE(E, n)
for i \leftarrow 1 to n
       do for j \leftarrow 1 to n
                    do if i=j or (i,j) \in E[G]
                               then \hat{t}_{ij}^{(0)} \leftarrow 1
                               else t_{ij}^{(0)} \leftarrow 0
for k \leftarrow 1 to n
        do for i \leftarrow 1 to n
                     \frac{\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \mathbf{to} \ n}{\mathbf{do}} \leftarrow t_{ij}^{(k)} \leftarrow t_{ij}^{(k-1)} \ (t_{ik}^{(k-1)} \ ^{\wedge} \ t_{kj}^{(k-1)})
```

return $T^{(n)}$

Time: $\Theta(n^3)$, but simpler operations than FLOYD-WARSHALL.

- ▶ *Idea*: If the graph is sparse, it pays to run Dijkstra's algorithm once from each vertex.
- If we use a Fibonacci heap for the priority queue, the running time is down to $O(V^2 \lg V + VE)$, which is better than FLOYD-WARSHALL's $\theta(V^3)$ time if $E=o(V^2)$.
- But Dijkstra's algorithm requires that all edge weights be nonnegative.
- Donald Johnson figured out how to make an equivalent graph that *does* have all edge weights≥0.

Reweighting

Compute a new weight function $\overset{\sqcup}{w}$ such that

- 1. For all $u, v \in V$, p is a shortest path $u \nearrow v$ using w if and only if p is a shortest path $u \nearrow v$ using $\overset{\sqcup}{w}$.
- 2. For all $(u, v) \in E$, $\overset{\sqcup}{w}(u, v) \ge 0$.
- Property(1) says that it suffices to find shortest paths with \ddot{W} .
- Property(2) says we can do so by running Dijkstra's algorithm from each vertex.
- How to come up with $\overset{\sqcup}{W}$?
- Lemma shows it's easy to get property(1):

Lemma (Rewighting doesn't change shortest paths)

- ▶ Given a directed, weighted graph G=(V,E), $w: E \to \mathbb{R}$. Let h be any function such that $h: V \to \mathbb{R}$. For all $(u, v) \subseteq E$, define $\overset{\sqcup}{w}(u, v) = w(u, v) + h(u) - h(v)$. Let $p=\langle v_0, v_1, ..., v_k \rangle$ be any path $v_0 \nearrow v_k$.
- ▶ Then, p is a shortest path $v_0
 ightharpoonup v_k$ with w if and only if p is a shortest path $v_0
 ightharpoonup v_k$ with $\stackrel{\sqcup}{w}$. Also, G has a negative-weight weight cycle with weight w iff G has a negative-weight cycle with weight $\stackrel{\sqcup}{w}$.

Proof

First, we'll show that $\overset{\sqcup}{w}(p) = w(p) + h(v_0) - h(v_k)$:

- Therefore, any path $v_0 \not p v_k$ has $w(p) = w(p) + h(v_0) h(v_k)$. Since $h(v_0)$ and $h(v_k)$ don't depend on the path from v_0 to v_k , if one path $v_0 \not v_k$ is shorter than another with v_0 , it's also shorter with v_0 .
- Now show there exists a negative-weight cycle with w if and only if there exists a negative-weight cycle with $\overset{W}{}$:

- Let cycle $C = \langle v_0, v_1, ..., v_k \rangle$, where $v_0 = v_k$. Then $w(C) = w(C) + h(v_0) - h(v_k)$
- Then $\bar{w}(C) = w(C) + h(v_0) h(v_k)$ = w(C) (since $v_0 = v_k$).

Therefore, C has a negative-weight cycle with w if and only if it has a negative-weight cycle with $\overset{\sqcup}{W}$. \blacksquare (lemma)

So, now to get property(2), we just need to come up with a function $h: V \to \mathbf{R}$ such that when we compute $\stackrel{\sqcup}{w}(u,v) = w(u,v) + h(u) - h(v)$, it's ≥ 0 .

Do what we did for difference constraints:

- \triangleright G'=(V', E')
- $V'=V\cup\{s\}$, where s is a new vertex.
- \blacktriangleright $E'=E\cup\{(s,v):v\ \bullet V\}.$
- \blacktriangleright w(s, v) = 0 for all $v \in V$.

Figure 25.6 Johnson's all-pairs shortest-paths algorithm

(a) The graph G' with the original weight function w. The new vertex s is black.

▶ Since no edges enter *s*, *G* ' has the same set of cycles as *G*. In particular, *G* 'has a negative-weight cycle if and only if *G* does.

Define $h(v) = \delta(s, v)$ for all $v \in V$.

Claim

$$\overset{\sqcup}{w}(u,v) = w(u,v) + h(u) - h(v) \ge 0.$$

Proof By the triangle inequality,

$$\delta(s, v) \le \delta(s, u) + w(u, v)$$
$$h(v) \le h(u) + w(u, v).$$

Therefore,
$$w(u, v) + h(u) - h(v) \ge 0$$
.

■(claim)

Johnson's algorithm

Time:

- $lacktriangledown\Theta(V+E)$ to compute G'.
- ightharpoonup O(VE) to run BELLMAN-FORD.
- \triangleright $\Theta(E)$ to compute $\stackrel{\sqcup}{W}$
- ► $O(V^2 \lg V + VE)$ to run Dijkstra's algorithm |V| times (using Fibonacci heap).
- $lackbox{ }\Theta(V^2)$ to compute D matrix.

Total: $O(V^2 \lg V + VE)$.