Agent-based modelling of complex systems

Assignment 4

Janusz Szwabiński

Consider a version of the Schelling's segregation model implemented in the following way:

- 1. N agents ($\{n_1, n_2, \dots, n_N\}$) are generated (N^b blue, $N^r = N N^b$ red).
- 2. Each individual is initially placed (uniformly) at random on a 1000×1000 square lattice.
- 3. Start with individual n_1 (who has type $t \in (b, r)$) the proceed with the algorithm.
 - (a) Take individual n_i who has type t. It at least j_t of its m_t closest neighbors are of the same type, move on to next individual.
 - (b) If fewer neighbors than j_t are of the type, move the individual to a randomly selected new empty location. Then move on to next individual.
 - (c) Continue this process until no individuals remain who wish to move.

Implement the above model. Your program should:

- Take the sizes of each population as well as j_t and m_t for each type as command line options.
- Plot both the initial and final distributions of agents, as well as some intermediate configurations of the lattice.
- Return data for the final allocations of agents.
- Return a segregation index of the configuration. You may use the *similar neighbor index* as the measure of segregation: for each individual calculate the proportion of the nearest neighbors that are of his type and take the average over this number across individuals.
- Return the number of cycles the algorithm takes.

To do:

- 1. Run a baseline model with two populations of size 250 each. For each group assume $m_t = 8$ and $j_t = 0.5$ (work with periodic boundary conditions to treat the agents on the edges on the same footing).
- 2. Plot the initial and final distributions (for single runs). Run your program several times to see how stable the results are.
- 3. Plot the number of iterations as a function of population size (changing from 250 to 4000).
- 4. Plot the execution time as a function of group size.
- 5. Plot the segregation index as a function of j_t (changing from 0.1 to 0.9).

- 6. Plot the segregation index as a function of m_t (changing from 8 to 128).
- 7. Comming back to the baseline simulation, see what happens if $j_r=6/8$ and $j_b=3/8?$