## **SBML Model Report**

# Model name: "Smith1980\_HypothalamicRegulation"



May 6, 2016

#### 1 General Overview

This is a document in SBML Level 2 Version 3 format. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 0        |
| events            | 0        | constraints          | 0        |
| reactions         | 0        | function definitions | 0        |
| global parameters | 12       | unit definitions     | 6        |
| rules             | 5        | initial assignments  | 0        |

#### **Model Notes**

This a model from the article:

Hypothalamic regulation of pituitary secretion of luteinizing hormone.II. Feedback control of gonadotropin secretion.

Smith WR Bull Math Biol. (1980) 42(1): 57-78 6986927,

Abstract:

No Abstract Available

This model was taken from the CellML repository and automatically converted to SBML. The original model was: <a href="mailto:smith,1980,version02">smith,1980,version02</a>

The original CellML model was created by: Lloyd, Catherine, May c.lloyd@auckland.ac.nz
The University of Auckland
Auckland Bioengineering Institute

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

#### 2 Unit Definitions

This is an overview of ten unit definitions of which four are predefined by SBML and not mentioned in the model.

#### 2.1 Unit hour

Name hour

**Definition** 3600 s

#### 2.2 Unit pg\_ml

Name pg\_ml

**Definition**  $pg \cdot ml^{-1}$ 

#### 2.3 Unit ng\_ml

Name ng\_ml

**Definition** ng⋅ml<sup>-1</sup>

## 2.4 Unit pg\_ml\_hr

Name pg\_ml\_hr

**Definition**  $pg \cdot ml^{-1} \cdot (3600 s)^{-1}$ 

#### 2.5 Unit first\_order\_rate\_constant

Name first\_order\_rate\_constant

**Definition**  $(3600 \text{ s})^{-1}$ 

#### 2.6 Unit time

Name time

**Definition** 3600 s

#### 2.7 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

#### 2.8 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.9 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.10 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

 $\textbf{Definition} \ m$ 

## 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

|             |      |     | *          |      |      |          |         |
|-------------|------|-----|------------|------|------|----------|---------|
| Id          | Name | SBO | Spatial    | Size | Unit | Constant | Outside |
|             |      |     | Dimensions |      |      |          |         |
| Compartment |      |     | 3          | 1    |      | Z        |         |

# 3.1 Compartment Compartment

This is a three dimensional compartment with a constant size of one litre.

## **4 Parameters**

This model contains twelve global parameters.

Table 3: Properties of each parameter.

| Id | Name | SBO | Value  | Unit                           | Constant                    |
|----|------|-----|--------|--------------------------------|-----------------------------|
| R  | R    |     | 0.50   | $ng \cdot ml^{-1}$             | $\Box$                      |
| h  | h    |     | 12.00  | $(3600 \text{ s})^{-1}$        |                             |
| С  | С    |     | 100.00 | $pg 	 ml^{-1}$ $(3600 s)^{-1}$ | · 🗹                         |
| b1 | b1   |     | 1.29   | $(3600 \text{ s})^{-1}$        |                             |
| H  | Н    |     | 0.00   | dimensionless                  |                             |
| X  | X    |     | 0.00   | $pg \cdot ml^{-1}$             | $\blacksquare$              |
| L  | L    |     | 22.00  | $ng \cdot ml^{-1}$             | $\blacksquare$              |
| g1 | g1   |     | 10.00  | $(3600 \text{ s})^{-1}$        | $   \overline{\mathbf{Z}} $ |
| b2 | b2   |     | 0.97   | $(3600 \text{ s})^{-1}$        |                             |
| T  | T    |     | 15.00  | $pg \cdot ml^{-1}$             |                             |
| g2 | g2   |     | 0.70   | $(3600 \text{ s})^{-1}$        |                             |
| b3 | b3   |     | 1.39   |                                | $\overline{\mathbf{Z}}$     |

# 5 Rules

This is an overview of five rules.

### **5.1 Rule** R

Rule R is a rate rule for parameter R:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R} = (\mathbf{c} - \mathbf{h} \cdot \mathbf{T}) \cdot (\mathbf{1} - \mathbf{H}) - \mathbf{b}\mathbf{1} \cdot \mathbf{R} \tag{1}$$

#### **5.2 Rule** L

Rule L is a rate rule for parameter L:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{L} = \mathbf{g}\mathbf{1} \cdot \mathbf{R} - \mathbf{b}\mathbf{2} \cdot \mathbf{L} \tag{2}$$

**Derived unit**  $(3600 \text{ s})^{-1} \cdot \text{ng} \cdot \text{ml}^{-1}$ 

#### 5.3 Rule T

Rule T is a rate rule for parameter T:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{T} = \mathbf{g}\mathbf{2}\cdot\mathbf{L} - \mathbf{b}\mathbf{3}\cdot\mathbf{T} \tag{3}$$

#### **5.4 Rule** x

Rule x is an assignment rule for parameter x:

$$x = T - \frac{c}{h} \tag{4}$$

**Derived unit**  $pg \cdot ml^{-1}$ 

#### **5.5 Rule H**

Rule H is an assignment rule for parameter H:

$$H = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (5)

SHALZATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany