

Навчальна програма

Інформація про курс

Обговорення

Прогрес

Конспект лекцій

Будь ласка, зверніть увагу! Це завдання на оцінку, яка буде враховуватися для отримання сертифікату.

Для виконання кожного завдання у вас є 2-3 спроби (залежно від завдання)! Зарахована буде оцінка за останню спробу.

ТЕСТОВЕ ЗАВДАННЯ №1 (2/2 балів)

Чому дорівнює час роботи алгоритму швидкого сортування у випадку, коли всі елементи вхідного масиву однакові за величиною?

 $\bigcirc \Theta(n)$

 $\Theta(n^2)$

 $\bigcirc \Theta(\log n)$

 $\bigcirc \Theta(n \log n)$

Вкажіть об'єм додаткової пам'яті, яка використовується для роботи процедури Partition для вхідного масиву довжиною n. У відповідь не враховуються витрати на допоміжні змінні (зокрема лічильники циклів) та витрати на сам вхідний масив A.

 $\bigcirc n$

 $\bigcirc 2n$

Вкажіть правило, за яким відбувається розбиття вхідного масиву A (довжина масиву - n) на підмасиви під час роботи методу швидкого сортування.

○ Масив А розбивається на два підмасиви однакової розмірності n/2
○ Масив А розбивається на два підмасиви довільної розмірності
\bigcirc Масив А розбивається на два підмасиви однакової розмірності $n/2$ так, щоб усі елементи лівого
підмасиву були меншими за всі елементи правого підмасиву
ullet Для розбиття обирається довільний елемент x з вхідного масиву A і утворюється два підмасиви:
один містить всі елементи менші за x . а другий - всі елементи більші за x

Показати відповідь

Ви використали 2 з 2 можливостей надіслати свої матеріали на розгляд.

ТЕСТОВЕ ЗАВДАННЯ №2 (2.6666666667/4 балів)

Розгляньте глибину рекурсії алгоритму швидкого сортування як максимальне число рекурсивних викликів перед тим як буде досягнуто випадок масиву з одним елементом (тобто номер останнього рівня у відповідному рекурсивному дереві). Зверніть увагу, що глибина рекурсії залежить від вибору опорного елементу.

Які мінімальні та максимальні можливі значення для глибини рекурсії?

 \bigcirc Мінімум: $\Theta(1)$; максимум: $\Theta(n)$ \bigcirc Мінімум: $\Theta(\log(n))$; максимум: $\Theta(n)$ \bigcirc Мінімум: $\Theta(\log(n))$; максимум: $\Theta(n\log(n))$

Припустимо, що в ході швидкого сортування на кожному рівні рекурсії відбувається розбиття в пропорції $1-\alpha$ до α , де $0<\alpha\leq 0.5$ - константа. Яка мінімальна та максимальна глибина рекурсивного дерева, на якому вперше зустрінеться листок дерева? Іншими словами, яка мінімальна та максимальна кількість dрекурсивних викликів поки не зустрінеться базовий випадок - довжина поточного масиву дорівнює 1? (Мінімальна кількість буде виникати тоді, коли ви завжди під час рекурсії будете переходити до меншого підмасиву; найбільша - коли переходити до більшого підмасиву).

$$-\frac{\log(n)}{\log(1-\alpha)} \le d \le -\frac{\log(n)}{\log(\alpha)}$$

$$-\frac{\log(n)}{\log(1-2\alpha)} \le d \le -\frac{\log(n)}{\log(1-\alpha)}$$

$$-\frac{\log(n)}{\log(\alpha)} \le d \le -\frac{\log(n)}{\log(1-\alpha)}$$

$$0 \le d \le -\frac{\log(n)}{\log(\alpha)}$$

Розглянемо деяку константу $0 < \alpha < 0.5$ та процедуру розбиття в методі швидкого сортування. Яка ймовірність того, що при випадковому обранні опорного елементу масив буде розбито на дві частини такі, що менша з двох частин буде мати довжину $\geq \alpha$ від довжини оригінального масиву?

- $\bigcirc 1 2\alpha$

Про нас Преса FAQ Контакти

© 2015 Prometheus, some rights reserved

- Умови надання послуг та Кодекс Честі

