

Department of Electronics & Telecommunication Engineering

INDEX Subject: VLSI DEVICES & TECHNOLOGY (404181)

ROLL NO.: 42247 DIV. 6 YEAR: 2021-2022 SEMESTER: 7

List of Laboratory Experiments

S.	Title of Experiment	Performance	Submission	Sign
No.		Date	Date	
	<u>PART-A</u>			
	To write VHDL code, simulate with test bench, synthesis,			
	implement on PLD			
A.1	4 bit ALU for add, subtract, AND, NAND, XOR, XNOR, OR, & ALU pass.	14/09/2021	21/09/2021	
A.2	Universal Shift register with mode selection input for SISO, SIPO, PISO, & PIPO modes	21/09/2021	28/09/2021	
A.3	FIFO memory (4 X 8)	05/10/2021	12/10/2021	
A.4	LCD interface	12/10/2021	19/10/2021	
	<u>PART-B</u>			
	To prepare CMOS layout in selected technology, simulate			
	with and without capacitive load, comment on rise, and fall			
	times.			
B.1.a	INVERTER & Analyses	09/11/2021	16/11/2021	
B.1.b	NAND - AND, NOR - OR Logic Gates	09/11/2021	16/11/2021	
B.1.c	TRANSMISSION GATE (TG)	16/11/2021	23/11/2021	
B.2	2:1 MUX Using TG	16/11/2021	23/11/2021	
B.1.d	HALF-ADDER (Using MUX , MUX Using TG)	16/11/2021	23/11/2021	
B.3.a	1-bit SRAM Cell Using NMOS Switch	23/11/2021	30/11/2021	
B.3.b	1-bit SRAM Cell Using TG Switch	23/11/2021	30/11/2021	

This is to certify that Shri/Kum Makarand Milind Pundlik has carried out the above mentioned 11 experiments in VLSI Devices & Technology laboratory of the institute.

For PUNE INSTITUTE OF COMPUTER TECHNOLOGY,

Pune: 43

Date: 16/12/2021 PRIINCIPAL

Class	:	BE-6
Roll. No	:	42247
Assignment No.	:	A.1
Assignment Name	:	4-Bit ALU
Date Of Performance	:	18/08/2021

EUNCTION TADI E	
FUNCTION TABLE	

F			Υ	C_B	
F(2)	F(1)	F(0)			
0	0	0	A.B	x	
0	0	1	A.B	×	
0	1	0	A+B	х	
0	1	1	A⊕B	х	
1	0	0	A⊙B	х	
1	0	1	A+B	х	
1	1	0	A + B	CARRY	
1	1	1	A - B	BORROW	

MAIN VHDL MODEL (MVM)

```
library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.NUMERIC_STD.ALL;
entity ALU_4bit is

Port ( A : in STD_LOGIC_VECTOR (3 downto 0);

B : in STD_LOGIC_VECTOR (3 downto 0);

F : in STD_LOGIC_VECTOR (2 downto 0);

Y : out STD_LOGIC_VECTOR (3 downto 0);

C_B : out STD_LOGIC

);
end ALU_4bit;

architecture ALU_4bit_arch of ALU_4bit is
```


begin			
process(A,B,F)			

begin	

CASE F IS

```
when "000" =>
       result <= '0' & (A AND B);
    when "001" =>
                            result <= '0' & (A NAND B);
    when "010" =>
                            result <= '0' & (A OR B);
    when "011" =>
                            result <= '0' & (A XOR B);
    when "100" =>
                            result <= '0' & (A XNOR B);
    when "101" =>
                            result <= '0' & (A NOR B);
    when "110" =>
                            result <= ('0' & A)+('0' & B);
    when others =>
                            if A < B then
                                                 result <= '0' & (NOT B);
                                                                                  result <= result+1;
result <= ('0' & A) + result;
                                   result <= (NOT result) +1;
        result \leq (NOT(('0' & A) + ('0' &(NOT B)) + 1))+1;
                                                               else
        result <=('0' & A)-('0' & B);
      end if;
  end CASE;
end process;
Y <= result(3 downto 0);
C_B <= result(4);</pre>
```

end ALU_4bit_arch;	

TECHNOLOGY SCHEMATIC

SYNTHESIS REPORT

<u>a) Device Utilization Summary:</u>

* Final Report

Final Results

RTL Top Level Output File Name : ALU_4bit.ngr

Top Level Output File Name : ALU_4bit

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 16

Cell Usage:

BELS : 57

LUT1 : 4

LUT3 : 18

LUT4 : 13

MUXCY : 4

MUXF5 : 9

MUXF6 : 4

XORCY :5

# IO Buffers	: 16 #	IBUF	: 11 #	OBUF	:
I					

Davida
utilization summary:
Selected Device : 3s250epq208-5
Number of Slices: 19 out of 2448 0%
Number of 4 input LUTs: 35 out of 4896 0%
Number of IOs: 16
Number of bonded IOBs: 16 out of 158 10%
b) <u>TIMING REPORT:</u> NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE- and-ROUTE.
Clock Information:
No clock signals found in this design Asynchronous Control Signals Information:
No asynchronous control signals found in this design Timing Summary:
Speed Grade: -5
Minimum period: No path found
Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 13.714ns
Timing Detail:
All values displayed in nanoseconds (ns)

TESTBENCH VHDL MODEL (TVM)

IRDARY issue.	
LIBRARY ieee;	
	_

```
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;
ENTITY ALU_4bit_tb IS
END ALU_4bit_tb;
ARCHITECTURE behavior OF ALU_4bit_tb IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT ALU_4bit
  PORT(
A: IN std_logic_vector(3 downto 0);
B: IN std_logic_vector(3 downto 0);
    F: IN std_logic_vector(2 downto 0);
    Y: OUT std_logic_vector(3 downto 0);
                       C_B:OUT std_logic
    );
  END COMPONENT;
 --Inputs
 signal A: std_logic_vector(3 downto 0) := "0010"; signal B: std_logic_vector(3 downto 0) :=
"1111"; signal F: std_logic_vector(2 downto 0) := (others => '1');
       --Outputs
 signal Y : std_logic_vector(3 downto 0);
 signal C_B : std_logic;
 -- No clocks detected in port list. Replace <clock> below with
 -- appropriate port name
```

BEGIN


```
uut: ALU_4bit PORT MAP (
A=> A,
B=> B,
    F => F,
    Y => Y,
    C_B => C_B
    );
-- Stimulus process    stim_proc_F: process
begin
```

F <= F + 1;	

wait for 25 ns;			
end process;			
END;			

PIN-LOCKING REPORT

PlanAhead Generated physical constraints

- NET "A[3]" LOC = P205;
- NET "A[2]" LOC = P206;
- NET "A[1]" LOC = P203;
- NET "A[0]" LOC = P200;
- NET "B[3]" LOC = P192;
- NET "B[2]" LOC = P193;
- NET "B[1]" LOC = P189;
- NET "B[0]" LOC = P190;
- NET "F[2]" LOC = P179;
- NET "F[1]" LOC = P180;
- NET "F[0]" LOC = P177;
- NET "Y[3]" LOC = P165;
- NET "Y[2]" LOC = P167;
- NET "Y[1]" LOC = P163; NET "Y[0]" LOC = P164;
- NET "C_B" LOC = P153;

CONCLUSION

Thus, we have:

- 1) Modeled a 4-Bit ALU using <u>Behavioral Modeling Style</u>.
- 2) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 3) Interpreted <u>Device Utilization Summary</u> in terms of <u>LUTs</u>, <u>SLICES</u>, <u>IOBs</u>, <u>Multiplexers</u> & D FFs used out of the available device resources.
- 4) Interpreted the <u>TIMING Report</u> in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency, setup time, hold time.
- 5) Written a <u>TESTBENCH</u> to verify the functionality of 4-Bit ALU & verified the functionality as per the FUNCTION-TABLE, by observing <u>ISIM Waveforms</u>.
- 6) Used PlanAhead Editor for pin-locking.
- 7) <u>Prototyped</u> the FPGA <u>XC3S250EPQ208-5</u> to realize 4-Bit ALU & verified its operation by giving suitable input combinations.

Class	:	BE-6
Roll. No	:	42247
Assignment No.	:	A.2
Assignment Name	:	Universal Shift Register
Date Of Performance	:	08/09/2021

EUNCTION TADI E	
FUNCTION TABLE	

rst	clk	mo	de	Outputs
		mode(1)	mode(0)	
1	Х	х	х	Sout = 0 , Pout = "0000"
0	\downarrow	0	0	Serial In Serial Out (SISO)
0	\downarrow	0	1	Serial In Parallel Out (SIPO)
0	\downarrow	1	0	Parallel In Serial Out (PISO)
0	\downarrow	1	1	Parallel In Parallel Out (PIPO)

MAIN VHDL PROGRAM (MVM)

lownto 0):="0000";		

ĺ	ı .				
	b	egin			

```
PROCESS(rst, clk, mode, Sin, Pin)

BEGIN

IF rst = '1' THEN

Pout <= "0000";

Sout <= '0';

ELSIF FALLING_EDGE(clk) THEN

CASE mode IS

WHEN "00" =>
```

```
temp(0) <= Sin;
                                          Sout <= temp(3);
                                          Pout <= "0000";
                                   WHEN "01" =>
                                          temp(3 downto 1) <= temp(2 downto 0);
                                   temp(0) \le Sin;
    Pout <= temp;
                                          Sout <= '0';
                                   WHEN "10" =>
    temp <= Pin;
                                                         Sout <= temp(3);
temp(3 downto 1) <= temp(2 downto 0);
                                          Pout <= "0000";
                                  WHEN OTHERS =>
                                          Pout <= Pin;
                                          Sout <= '0';
                           END CASE;
                   END IF;
            END PROCESS;
```

end UNI_Shift_Register_arch;

SYNTHESIS REPORT

<u>a) Device Utilization Summary:</u>

* Final Report *

Final Results

RTL Top Level Output File Name : UNI_Shift_Register.ngr

Top Level Output File Name : UNI_Shift_Register

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 14

Cell Usage:

BELS : 12

INV :1

LUT3 :1

LUT4 : 10

FlipFlops/Latches : 9

FDC_1 :5

FDE 1 :4

Clock Buffers : 1

BUFGP :1

IO Buffers : 13

: 8 **IBUF**

OBUF :5

 Device	

utilization summary:		
Selected Device : 3s250epq	₁ 208-5	
Number of Slices:	6 out of 2448 0%	
Number of Slice Flip Flops:	9 out of 4896 0%	
Number of 4 input LUTs:	12 out of 4896 0%	
Number of IOs:	14	
Number of bonded IOBs: 24 4%	14 out of 158 8% Number of GCLKs:	1 out of
	IBERS ARE ONLY A SYNTHESIS ESTIMATE. I INFORMATION PLEASE REFER TO THE TRACE REPORT GE	NERATED
Clock Information:		
Clock Signal C	++ Clock buffer(FF name) Load +- BUFGP 9 ++	
Asynchronous Control Signa	als Information:	
·	++ Buffer(FF name)	
Timing Summary:		

Speed Grade: -5				
Minimum period: 1.923ns (Maximum Frequency: 520.034MHz)				
Minimum input arrival time before clock: 4.009ns				
Maximum output required time after clock: 4.040ns				
Maximum combinational path delay: No path found				
Timing Detail:				

All values displayed in nanoseconds (ns)

TESTBENCH PROGRAM (TVM)

UDDARV in an	
LIBRARY ieee;	

```
USE ieee.std_logic_1164.ALL;
ENTITY UNI_Shift_Register_tb IS
END UNI_Shift_Register_tb;
ARCHITECTURE behavior OF UNI_Shift_Register_tb IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT UNI_Shift_Register
  PORT(
             rst : IN std_logic;
                                    clk: IN std_logic;
    mode : IN std_logic_vector(1 downto 0);
    Sin: IN std_logic;
    Pin: IN std_logic_vector(3 downto 0);
    Sout : OUT std_logic;
    Pout: OUT std_logic_vector(3 downto 0)
    );
  END COMPONENT;
 --Inputs signal rst : std_logic := '0'; signal clk : std_logic := '1';
 signal mode : std_logic_vector(1 downto 0) := (others => '0');
 signal Sin: std_logic:= '0';
 signal Pin: std_logic_vector(3 downto 0) := "1010";
       --Outputs
 signal Sout : std_logic;
 signal Pout : std_logic_vector(3 downto 0);
 -- Clock period definitions constant clk_period : time := 10 ns;
```

BEGIN

Instantiate the Unit Under Test (UUT)	uut: UNI_Shift_Register PORT MAP (

Pout => Pout

);		

```
-- Clock process definitions clk_process :process begin
               clk<=NOT(clk);
               wait for clk_period/2;
 end process;
 -- Stimulus process stim_proc_mode: process begin
                                                                 mode<="00";
        wait for 80 ns;
        mode<="01";
        wait for 50 ns;
        mode<="10";
        wait for 50 ns;
        mode<="11";
        wait for 20 ns; end process;
stim_proc_Sin:process
       begin
       wait for 10 ns;
       Sin<='1';
                      wait for 10 ns;
       Sin<='0';
                      wait for 10 ns;
       Sin<='1';
                      wait for 10 ns;
       Sin<='0';
                      wait for 10 ns;
```

Sin<= '0'; wait for 40 ns;

Sin<='1'	; wait for 10 ns	s;		

```
Sin<='0'; wait for 10 ns;

Sin<='1'; wait for 10 ns;

Sin<='0'; wait for 10 ns;

Sin<= '0'; wait;

end process;

stim_proc_rst:process begin
rst<='0';
wait for 300 ns;

rst<='1'; wait for 10 ns; end process;

END;
```


PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "clk" LOC = P132;
NET "rst" LOC = P204;
NET "mode[1]" LOC = P205;
NET "mode[0]" LOC = P206;
NET "Sin" LOC = P203;
NET "Pin[3]" LOC = P202; NET "Pin[2]" LOC = P197;
NET "Pin[1]" LOC = P199;
NET "Pin[0]" LOC = P196;
NET "Sout" LOC = P193;
NET "Pout[3]" LOC = P186;
NET "Pout[2]" LOC = P187;
NET "Pout[1]" LOC = P185;
NET "Pout[0]" LOC = P181;
```

CONCLUSION

Thus, we have:

- 8) Modeled a Universal Shift Register using Behavioral Modeling Style.
- 9) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 10) Interpreted <u>Device Utilization Summary</u> in terms of <u>LUTs</u>, <u>SLICES</u>, <u>IOBs</u>, <u>Multiplexers</u> & D FFs used out of the available device resources.
- 11) Interpreted the <u>TIMING Report</u> in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency.
- 12) Written a <u>TESTBENCH</u> to verify the functionality of Universal Shift Register & verified the functionality as per the FUNCTION-TABLE, by observing <u>ISIM Waveforms</u>.
- 13) Used PlanAhead Editor for pin-locking.
- 14) <u>Prototyped</u> the FPGA <u>XC3S250EPQ208-5</u> to realize Universal Shift Register & verified its operation by giving suitable input combinations.

Class	:	BE-6
Roll. No	:	42247
Assignment No.	:	A.4
Assignment Name	:	FPGA-LCD Interfacing
Date Of Performance	:	22/09/2021

IN EGGS		Q
CLK_12 MHz	→	Lod-data
	LCD_FSM	
rst —		
		> lcd-rs

FUNCTIO	ON TABLE		

rst	clk	lcd_data	lcd_rs	lcd_en
1	X	38h	0	х
0	↑	06h	0	↑
0	↑	0Ch	0	1
0	1	01h	0	1
0	↑	50h (P)	1	1
0	1	49h (I)	1	1
0	↑	43h (C)	1	1
0	<u> </u>	54h (T)	1	1
0	<u></u>	20h ()	1	↑

MAIN VHDL PROGRAM: (MVM)

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity LCD_FSM is

Port (rst : in std_logic; -- reset

clk_12Mhz : in std_logic; -- high freq.

clock

lcd_rs : out std_logic; -- LCD RS control
lcd_en : out std_logic; -- LCD Enable

lcd_data : out std_logic_vector(7 downto 0)); -- LCD Data port end LCD_FSM;

architecture Behavioral of LCD_FSM is

 $signal\ div: std_logic_vector (15\ downto\ 0);\ ---\ delay\ timer\ 1\ signal\ clk_fsm,lcd_rs_s:\ std_logic;\ --\ LCD$

controller FSM states

type state is (reset,func,mode,cur,clear,d0,d1,d2,d3,d4,hold); signal ps1,nx : state;

signal dataout_s: std_logic_vector(7 downto 0); internal data command multiplexer	

begin	

when reset =>

```
lcd_rs_s <= '0';
                  dataout_s <= "00111000";
                                                  -- 38h
      when func
                  =>
                  nx <= mode;
                             <= '0';
                  lcd_rs_s
                  dataout_s <= "00111000";
                                                  -- 38h
      when mode
                 =>
                  nx <= cur;
                  lcd rs s
                             <= '0';
                  dataout_s <= "00000110";
                                                  -- 06h
      when cur
                  =>
                  nx <= clear;
                  lcd_rs_s
                              <= '0';
                  dataout_s <= "00001100"; -- OCh curser at starting point of
line1
      when clear=>
                  nx <= d0;
                  lcd_rs_s <= '0';
                  dataout_s <= "00000001";
                                                 -- 01h
      when d0
                  =>
                  lcd_rs_s
                              <= '1';
                              <= "01010000";
                                                  -- P ( Decimal = 80 , HEX =
                  dataout_s
                  50)
                     <= d1;
                  nx
      when d1
                  =>
                  lcd_rs_s <= '1';
                  dataout_s <= "01001001";
                                                 -- I ( Decimal = 73 , HEX = 49
                  )
                     <= d2;
                  nx
      when d2
                  =>
                  lcd_rs_s <= '1';
                  dataout_s <= "01000011"; -- C ( Decimal = 67 , HEX =
                  43)
                  nx
                        <= d3;
```

nx <= func;

```
when d3
                                 =>
                                 lcd_rs_s
                                                 <= '1';
                                 dataout_s
                                                <= "01010100"; -- T ( Decimal = 84 , HEX = 54
                                 )
                                         <= d4;
                                 nx
                 when d4
                                 =>
                                 lcd_rs_s
                                                 <= '1';
                                 dataout_s <= "00100000";
                                                                   -- space ( Decimal = 32 , HEX = 20 )
                                         <= hold;
                                 nx
                when hold
                                 =>
                                 lcd_rs_s
                                                  <= '0';
                                 dataout_s <= "00000000";
                                                                   -- hold ( Decimal = 32 , HEX = 00 ) ,
          NULL
                                         <= hold;
                                 nx
          when others=>
                                 nx
                                          <= reset;
                                 lcd_rs_s
                                                  <= '0';
                                 dataout\_s <= "00000001"; \; -- \; CLEAR \; ( \; Decimal = 1 \; , \; HEX = 01 \; )
end case; end process;
lcd_en <= clk_fsm; lcd_rs <= lcd_rs_s;</pre>
lcd_data <= dataout_s;</pre>
```

end Behavioral;	

SYNTHESIS REPORT

<u>a) Device Utilization Summary:</u>

* Final Report *

Final Results

RTL Top Level Output File Name : LCD_FSM.ngr

Top Level Output File Name : LCD_FSM

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 12

Cell Usage:

BELS : 58

GND :1

INV :1

LUT1 : 15

LUT2 :1

LUT3 : 3 # LUT4 : 4

MUXCY : 15

MUXF5 :1

VCC : 1

XORCY : 16

FlipFlops/Latches : 26

FDC : 25

FDP :1

Clock Buffers : 1

BUFGP :1

IO Buffers : 11

IBUF :1

OBUF :10

Device utilization summary:		
Selected Device : 3s250epq2	08-5	
Number of Slices:	15 out of 2448 0%	
Number of Slice Flip Flops:	26 out of 4896 0%	
Number of 4 input LUTs:	24 out of 4896 0%	
Number of IOs:	12	
Number of bonded IOBs: 24 4%	12 out of 158 7% Number of GCLKs:	1 out of
b) <u>TIMING REPORT:</u> NOTE: THESE TIMING NUMB	ERS ARE ONLY A SYNTHESIS ESTIMATE.	
FOR ACCURATE TIMING II AFTER PLACE-and-ROUTE.	NFORMATION PLEASE REFER TO THE TRACE REPORT	GENERATED
Clock Information:		
Clock Signal		
++ clk_12Mhz NONE(ps1_FSM_FFd11) 1	ock buffer(FF name) Load BUFGP 16 div_15 .0	
+	+	

INFO:Xst:2169 - HDL ADVISOR - Some clock signals were not automatically buffered by XST with	

Asynchronous Control Signals Information:			
Control Signal	 +		
	+	++	

BUFG/BUFR resources. Please use the buffer_type constraint in order to insert these buffers to the

Timing Summary:

clock signals to help prevent skew problems.

Speed Grade: -5			
Minimum period: 3.676ns (Maximum Frequency: 272.072MHz) Minimum input arrival time before clock: No path found			
Maximum output required time after clock: 5.537ns			
Maximum combinational path delay: No path found			
Maximum combinational path delay. No path found			
Timing Detail:			
All values displayed in nanoseconds (ns)			
<u>TESTBENCH PROGRAM</u> (TVM)			
LIBRARY ieee;			
USE ieee.std_logic_1164.ALL;			
ENTITY LCD_Test IS			
END LCD_Test;			
ARCHITECTURE behavior OF LCD_Test IS			

-- Component Declaration for the Unit Under Test (UUT)

COMPONENT LCD_FSM

PORT(rst: IN std_logic; clk_12Mhz: IN std_logic; lcd_rs: OUT std_logic;

lcd_en : OUT std_logic;

);		

```
END COMPONENT;
 --Inputs signal rst : std_logic := '0';
 signal clk_12Mhz : std_logic := '0';
       --Outputs
 signal lcd_rs : std_logic; signal lcd_en : std_logic;
 signal lcd_data : std_logic_vector(7 downto 0);
 -- Clock period definitions
 constant clk_12Mhz_period : time := 10 ns;
BEGIN
        -- Instantiate the Unit Under Test (UUT)
 uut: LCD_FSM PORT MAP (
     rst => rst,
     clk_12Mhz => clk_12Mhz,
                                    lcd_rs => lcd_rs,
                                                          lcd_en => lcd_en,
     lcd_data => lcd_data
    );
 -- Clock process definitions clk_12Mhz_process :process
 begin
                                                                                       clk\_12Mhz
               clk_12Mhz <= '0';
                                               wait for clk_12Mhz_period/2;
<= '1';
wait for clk_12Mhz_period/2;
 end process;
 -- Stimulus process stim_proc: process
 begin
   rst <= '1';
```

rst <= '0';			

wait;			
end process;			
, and process,			

END;

PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "clk_12Mhz" LOC = P80;

NET "rst" LOC = P204;

NET "lcd_rs" LOC = P48;

NET "lcd_en" LOC = P49;

NET "lcd_data[0]" LOC = P47;

NET "lcd_data[1]" LOC = P41;

NET "lcd_data[2]" LOC = P39;

NET "lcd_data[3]" LOC = P35;

NET "lcd_data[4]" LOC = P33;

NET "lcd_data[5]" LOC = P31;

NET "lcd_data[6]" LOC = P29;

NET "lcd_data[7]" LOC = P24;
```

CONCLUSION

Thus, we have:

- 15) Modeled a FPGA-LCD Interfacing using Behavioral Modeling Style.
- 16) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 17) Interpreted <u>Device Utilization Summary</u> in terms of <u>LUTs</u>, <u>SLICES</u>, <u>IOBs</u>, <u>Multiplexers</u> & D FFs used out of the available device resources.
- 18) Interpreted the <u>TIMING Report</u> in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency.
- 19) Written a <u>TESTBENCH</u> to verify the functionality of FPGA-LCD Interfacing & verified the functionality as per the FUNCTION-TABLE, by observing <u>ISIM Waveforms</u>.
- 20) Used PlanAhead Editor for pin-locking.
- 21) $\underline{\text{Prototyped}}$ the FPGA $\underline{\text{XC3S250EPQ208-5}}$ to realize FPGA-LCD Interfacing & verified its operation by giving suitable input combinations.

Class	:	BE-6
Roll. No		42247
Assignment No.	:	A.3
Assignment Name		FIFO
Date Of Performance	:	15/09/2021

EUNCTION TADI E	
FUNCTION TABLE	

rst	clk	addr		rd_wr	d_out	empty	full
		addr(1)	addr(0)				
1	х	х	х	х	(00)16	1	0
0	\downarrow	0	0	0	mem ₀	0	1
0	\	0	1	0	mem ₁	0	1
0	\	1	0	0	mem ₂	0	1
0	\	1	1	0	mem ₃	0	1
0	↓	0	0	1	mem ₀	0	0
0	\downarrow	0	1	1	mem ₁	0	0
0	\	1	0	1	mem ₂	0	0
0	\downarrow	1	1	1	mem ₃	0	1

MAIN VHDL PROGRAM (MVM)

TYPE mem IS ARRAY(3 DOWNTO 0) OF STD_LOGIC_VECTOR (7 DOWNTO 0);	

begin

```
PROCESS(rst, clk, addr, d_in, rd_wr)
      begin
        if rst = '1' then
                 d_out <= "00000000";
                              empty <= '1';
                              full <= '0';
                              memory <= (others=>'0'));
  elsif falling_edge(clk) then
    case rd_wr is
                                 when '0' =>
                                          d_out <= memory(conv_integer(addr));</pre>
                                empty <= '0';
                                                                            full <= '1';
                                 when others =>
                                          memory(conv_integer(addr)) <= d_in;</pre>
                                                empty <= '0';
      if addr = "11" then
                                     full <= '1';
                                                else
                                     full <= '0';
  end if;
               end case;
  end if;
end process;
```

end FIFO_4x8_arch;

SYNTHESIS REPORT

a) Device Utilization Summary:

Final Report

Final Results

RTL Top Level Output File Name : FIFO_4x8.ngr

Top Level Output File Name : FIFO_4x8

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : No

Design Statistics

IOs : 23

Cell Usage:

BELS : 32

GND :1

INV : 2

LUT3 : 21

MUXF5 : 8

FlipFlops/Latches : 42

FDC_1 :1

FDCE_1 : 40

FDP_1 :1

Clock Buffers : 1

BUFGP :1

IO Buffers : 22

IBUF : 12

OBUF : 10

Device utilization summary:
Selected Device : 3s250epq208-5
Number of Slices: 26 out of 2448 1%
Number of Slice Flip Flops: 40 out of 4896 0%
Number of 4 input LUTs: 23 out of 4896 0%
Number of IOs: 23
Number of bonded IOBs: 23 out of 158 14%
IOB Flip Flops: 2
Number of GCLKs: 1 out of 24 4%
b) <u>TIMING REPORT:</u> NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE.
Clock Information:
+
Clock Signal Clock buffer(FF name) Load +++++
Asynchronous Control Signals Information:
+

Control Signal	Buffer(FF name)	Load	+
++ rst_inv(rst_inv	1_INV_0:0) NOI	NE(d_out_0) 42	
	++-	+	
Timing Cummany			
Timing Summary:			
Speed Grade: -5			

Minir	mum period: 2.	098ns (Maxim	um Frequenc	y: 476.644MH	łz)	

Minimum input arrival time before clock: 3.955ns Maximum output required time after clock: 4.040ns Maximum combinational path delay: No path found Timing Detail:

All values displayed in nanoseconds (ns)

TESTBENCH PROGRAM (TVM)

 $full: OUT\ std_logic$

);		

END COMPONENT;	
Inputs signal rst : std_logic :=	'0'; signal clk : std_logic := '1';

się	gnal addr :	: std_logic	_vector(1	downto (0) := (oth	ers => '0');	signa	l d_in : sto	d_logic_v	ector(7	

```
downto 0) := (others => '0');
 signal rd_wr : std_logic := '0';
        --Outputs
 signal d_out : std_logic_vector(7 downto 0);
 signal empty : std_logic;
 signal full : std_logic;
 -- Clock period definitions
 constant clk_period : time := 10 ns;
BEGIN
        -- Instantiate the Unit Under Test (UUT)
 uut: FIFO_4x8 PORT MAP (
     rst => rst,
                     clk => clk,
                                     addr => addr,
                                                         d_in => d_in,
                                                                            rd_wr => rd_wr,
d_out => d_out,
     empty => empty,
     full => full
    );
 -- Clock process definitions clk_process :process
 begin
                clk <= not(clk);
 wait for clk_period/2; end process;
 -- Stimulus process stim_proc: process
 begin
   rst <= '0';
                wait for clk_period;
```


	rd_wr <= '1';

for address in 0 to 3 loop addr <= std_logic_vector(to_unsigned(address, 2));

<pre>d_in <= std_logic_vector(to_unsigned(63*(address + 1), 8));</pre>

END;

PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "d_in[7]" LOC = P165;
                                     #sw4-0
         NET "d_in[6]" LOC = P167;
                                     #sw4-1
         NET "d_in[5]" LOC = P163;
                                     #sw4-2
         NET "d_in[4]" LOC = P164;
         NET "d_in[3]" LOC = P161;
         NET "d_in[2]" LOC = P162;
         NET "d_in[1]" LOC = P160;
         NET "d_in[0]" LOC = P153;
                                     #sw4-7
         NET "d_out[7]" LOC = P179; #sw3-0
         NET "d_out[6]" LOC = P180;
                                     #sw3-1
         NET "d_out[5]" LOC = P177;
         NET "d_out[4]" LOC = P178;
         NET "d_out[3]" LOC = P152;
         NET "d_out[2]" LOC = P168;
         NET "d_out[1]" LOC = P171;
         NET "d_out[0]" LOC = P172; #sw3-7
         NET "clk" LOC = P132;
         NET "rst" LOC = P204;
                                     #k0
         NET "rd_wr" LOC = P184;
                                      #sw2-6
NET "empty" LOC = P199;#sw1-6
```

NET "full" LOC = P196; #sv	v1-7		

CONCLUSION

Thus, we have:

- 22) Modeled a 4x8 FIFO using Behavioral Modeling Style.
- 23) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 24) Interpreted <u>Device Utilization Summary</u> in terms of <u>LUTs</u>, <u>SLICES</u>, <u>IOBs</u>, <u>Multiplexers</u> & D FFs used out of the available device resources.
- 25) Interpreted the <u>TIMING Report</u> in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency.
- 26) Written a <u>TESTBENCH</u> to verify the functionality of 4x8 FIFO & verified the functionality as per the FUNCTION-TABLE, by observing <u>ISIM Waveforms</u>.
- 27) Used <u>PlanAhead Editor</u> for pin-locking.
- 28) <u>Prototyped</u> the FPGA <u>XC3S250EPQ208-5</u> to realize 4x8 FIFO & verified its operation by giving suitable input combinations.

Class	BE-6
Roll Number	42247
Assignment Number	B.1.a
Assignment Name	CMOS Inverter
Date of performance	29/09/2021

MOSFET-LEVEL SCHEMATIC:

Truth Table:-

Vin	Vout
0	Strong-1
1	Strong-0

Layout:

Waveforms:

1:CL=0.001pF and F=5GHz

2:CL=0.002pF and F=5GHz

4:CL=0.001pF and F=10Ghz

5:CL=0.001pF and F=2.5Ghz

P _{dynamic} ANALYSIS

SR.NO	C _{load} (pF)	Value (uW)
1)	0.001	12.488
2)	0.002	18.627
3)	0.0005	9.485

_

SR.NO	f _{clk} (GHz)	Value (
•		uW)
1)	5	12.488
2)	2.5	6.712
3)	10	23.834

Pdynamic Analy	<u>ynamic Analysis:</u> V _{dd} = 2 V			
Sr.No	Goad (pF)	felk (GHz)	Pdynamic	
1	0.001	5 GHz	40.32 uW	

Conclusion:-

Thus we have:

- 1) Drawn the LAYOUT for CMOS Inverter using 90 nm & 180 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Noted the values of Pdynamic for floating Load.
- 4) Appreciated the validity of the mathematical model : $P_{dynamic} = C_L * (Vdd)^2*f_{clk}$ by Doubling & Halving the values of & f_clk
- 5) Found a reduction in $\mbox{\sc R}_{\mbox{\scriptsize Jynamic}}$ by using a better Foundry i.e., $90~\mbox{nm}$ instead of $180~\mbox{nm}$

Class	BE-6
Roll Number	42247
Assignment Number	B.1.b
Assignment Name	NAND-AND , NOR-OR Gates
Date of performance	06/10/2021

\$YMBOLS:-

2 iyp or gate

$$A \longrightarrow Y_{OY}$$

$$Y_{OY} = A + B$$

MOSFET-LEVEL SCHEMATICS:

NAND- AND Gate

NOR-OR Gate

Truth Table:-

1. Nand Gate

A	В	Ynand
0	0	1
0	1	1
1	0	1
1	1	0

2.And Gate

A	В	Yand
0	0	0
0	1	0
1	0	0
1	1	1

(3.Nor Gate	

A	В	Ynor
0	0	1
0	1	0
1	0	0
1	1	0

4. Or Gate

A	В	Yor
0	0	0
0	1	1
1	0	1
1	1	1

<u>Layouts:</u> 1.NAND Gate ಸ್**g** 10001pF

CMOS 90mm, 6 Metal Copper - strained SiGe - LowK (1,20V,2,50V)

NOR Gate

4.

OR Gate

Waveforms:

1. NAND Gate

2. AND Gate

4. OR Gate

Conclusion:-			

is we have :			

Dra	Drawn the LAYOUT for CMOS NAND-AND , NOR-OR Gates using 90 nm Foundry.							

2)	Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-

TABLE.

Class	BE-6
Roll Number	42247
Assignment Number	B.1.c
Assignment Name	Transmission Gate
Date of performance	27/10/2021

Block Diagram: T/p → TG → 0/p

MOSFET-LEVEL SCHEMATIC:

Truth Table:-

C	Y_{tg}
1	Input= $1/0$, Strong- $1/S$ trong- 0
0	I/P = Don't Care

<u>Layout:</u>

1. TG layout:

 $Y_{\!tg}$ follows I/P , $Y_{\!tg} = Strong\text{-}1$ / Strong-0 for I/P = 1 / 0

2: TG with C=0

Ytg does not follows I/P

Conclusion:-			

we have:			
	s we have :		

11	Drown the LAVOUT for TRANSMISSION CATE with On the form
1)	Drawn the LAYOUT for TRANSMISSION GATE using 90 nm Foundry.
2)	Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.

3)	TG gives STRONG-1 ,STRONG-0 for I/P = 1 / 0 Respectively.	

Class	BE-6
Roll Number	42247
Assignment Number	B.1.d
Assignment Name	Half-Adder Using MUX Using TG
Date of performance	27/10/2021

Block Diagrams:-

Gate-Level Schematic:-

BLOCK-LEVEL SCHEMATIC:

Truth Table:-

Ai	Bi	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Conclusion:-

Thus, we have:

- 1) Drawn the LAYOUT for HALF-ADDER using 90 nm Foundry.
- 2) HALF-ADDER is implemented as a combination of EX-OR Gate & AND Gate.
- 3) EX_OR Gate & AND Gate are Implemented as a Modification of TWO 2:1 MUX's.
- 4) Each MUX is implemented as a combination of 2 TG's.

5)	Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-

TABLE.

Class	BE-6
Roll Number	42247
Assignment Number	B.2
Assignment Name	2:1 Mux using Transmission Gate
Date of performance	13/10/2021

Block Diagram:-

Truth Table:-

S	Ymux
0	10
1	I1

MOSFET-LEVEL SCHEMATIC :-

Conclusion:-

Thus we have:

- 1) Drawn the LAYOUT for 2:1 MUX using 90 nm Foundry.
- 2) MUX is implemented as a combination of 2 Transmission Gates.
- 3) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.

Class	BE-6
Roll Number	42247
Assignment Number	B.3.a
Assignment Name	1-bit SRAM cell using NMOS Switches
Date of performance	10/11/2021

MOSFET-LEVEL SCHEMATIC:-

Truth Table:-

С	WR	RD
1	0	Weak-1
1	<u> </u>	Strong-0
0	X	0/Hold

Layout:

Waveform:

1: C=1, WR=0, RD =Weak-1:

2: C=1, WR=1, RD = Strong-0:-

Conclusion:-

Thus we have:

- 1) Drawn the LAYOUT for I-bit SRAM Cell Using NMOS Switches using 90 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Logic-0 gets written as WEAK-1 (Unacceptable)
- 4) Logic-1 gets written as STRONG-0 (Acceptable)

Class	BE-6
Roll Number	42247
Assignment Number	B.3.b
Assignment Name	1-bit SRAM cell using Transmission Gate
	Switches
Date of performance	10/11/2021

MOSFET-LEVEL SCHEMATIC :-

Truth Table:-

С	WR	RD
1	0	Strong-1
1	1	Strong-0
0	X	0/Hold

Waveforms:

 $\overline{1: C=1,WR} = 0$, RD = Strong-1:

2: C=1,WR=1,RD = Strong-9

3: C=0,WR=0,RD=0

Conclusion:-

Thus we have:

- 1) Drawn the LAYOUT for I-bit SRAM Cell Using TG Switches using 90 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Logic-0 gets written as STRONG-1 (Acceptable)
- 4) Logic-1 gets written as STRONG-0 (Acceptable)