Devoir surveillé n°3

Barème

Calculs : 20 questions sur 2 points, total sur 40 , ramené sur 5 points Problème : 28 questions sur 4 points, total sur 112, ramené sur 15 points

Soit p = 30, $\varphi : x \mapsto \frac{1}{10} \left[10x \left(1 + \frac{1-x}{20} \cdot \frac{p}{100} \right) \right]$, c le nombre de points obtenus sur la fiche de calculs et p le nombre

de points obtenus sur les exercices, la note sur 20 est le réel $n = \min \left\{ \varphi \left(\frac{5c}{25} + \frac{15p}{\alpha} \right), 20 \right\}$ avec $\alpha = 70$

Statistiques

	Calculs	Problème	Précision
Minimum	5	7	14%
Q1	10	18	29%
Médiane	12	26	39%
Q3	15	33	51%
Maximum	20	73	95%
Moyenne	12.6	26.9	41.0%

Répartition des notes

Remarques générales

- Vous devez définir et quantifier toutes les variables que vous utilisez.
- Certains peinent encore à distinguer f et f(x), et plus globalement à identifier la nature des objets. Prenez l'habitude de vous interroger sur ce point, cela vous permettra d'éviter des erreurs grossières par la suite.

Exercice 1

- J'ai souvent trouvé l'écriture « $f \leftarrow f(f(A))$. Cette écriture n'a aucun sens, et la notation correcte se trouvait dans l'énoncé.
- Question 1. Question élémentaire déjà traitée en classe. Il suffisait de connaître les définitions et d'utiliser les méthodes de rédaction que nous avions vues et revues.

 J'ai parfois lu : « Soit $x \in A$ alors $f(x) \in f(f(A))$ ». f(x) n'a aucun sens, f(x) est un élément de F, pas une partie de F.
- Question 2. Il n'était pas raisonnable de vouloir démontrer que pour toute partie A de E, $f^{\leftarrow}(f(A)) = \mathbb{X}$... Si c'était le cas, l'ensemble S aurait contenu toutes les parties de E, et l'introduire n'aurait aucun intérêt. Prenons par exemple une application $f \in \mathbb{R}^{\mathbb{R}}$ constante égale à 1, alors $f([0,1]) = \{1\}$, et $f^{\leftarrow}(f([0,1])) = f^{\leftrightarrow}(\{1\}) = \mathbb{R}$.

- Question 3. Il est inutile de traiter des cas très particuliers si vous ne traitez pas le cas général. Par exemple, vous devez montrer ici que si $X, Y \in \mathcal{S}$ alors $X \cap Y \in \mathcal{S}$; si vous ne traitez que les cas $X \subset Y$ et $Y \subset X$, cela ne vous rapportera aucun point.
- Question 5. Erreur fréquente : « $Y \setminus X \subset Y$ et $Y \in \mathcal{S}$ donc $Y \setminus X \in \mathcal{S}$ ». Par exemple, si $E = F = \mathbb{R}$ et si $f : x \mapsto x^2$, alors $f^{\leftarrow}(f([-1,1])) = f^{\leftarrow}([0,1]) = [-1,1]$ donc $[-1,1] \in \mathcal{S}$, et $[0,1] \subset [-1,1]$ mais $f^{\leftarrow}(f([0,1])) = f^{\leftarrow}([0,1]) = [-1,1]$ donc $[0,1] \notin \mathcal{S}$.

Exercice 2

- Question 2. Il ne suffit pas d'expliquer que th(0) = 0, vous devez dire que $th(x) = 0 \Leftrightarrow x = 0$. Par ailleurs, le fait que th soit impaire ne suffit pas à justifier qu'elle ne s'annule qu'en 0: la fonction sin est impaire, et pourtant, elle s'annule en une infinité de points.
- Question 3a. N'oubliez pas de justifier la dérivabilité de z avant de calculer sa dérivée.
- Question 3b. Toute considération calculatoire ou technique mise à part, il faut répondre à la question qui est posée! Si vous traitez cette question, la réponse doit s'achever par une **phrase**, par exemple « l'ensemble des solutions de (\mathcal{F}) sur \mathbb{R}_+^* est ... », ou « Les solutions de (\mathcal{F}) sur \mathbb{R}_+^* sont les fonctions de la forme ... », ou « y est solution de (\mathcal{F}) sur \mathbb{R}_+^* si et seulement s'il existe $\lambda \in \mathbb{R}$ tel que ... ».
- Question 3e. Question très calculatoire mais abordable. On commence bien sûr par introduire a, b, a', b' et y (très rarement fait), et ensuite on dérive deux fois, on calcule le membre de gauche de l'équation différentielle, on trouve 0 et on obtient les points de la question. Les calculs doivent bien évidemment être explicités sur la copie, et les dérivées doivent être correctes : entraînez vous à calculer des dérivées, et présentez vos calculs de manière propre et aérée pour éviter les erreurs.

Exercice 2

- Question 1. « f est définie ssi $\overline{z} + 2 \neq 0$ » est doublement affreux : premièrement, « f est définie » n'a aucun sens. Et ensuite, une proposition ne dépendant pas de z ne peut pas être équivalente à une proposition dépendant de z.
 - De plus, pour déterminer un domaine de définition, il faut déterminer une condition nécessaire **et suffisante**. Ici, dire que f n'est pas définie en -2 ne répond pas à la question : est-elle définie ailleurs ? Cela ne permetpas d'affirmer que f est définie sur $\mathbb{C} \setminus \{-2\}$.
 - Enfin, il est dommage que certains continuent à passer par la forme algébrique de z pour résoudre $\overline{z} + 2 = 0...$
- Question 2a. Là encore, passer par l'écriture algébrique pour montrer que $|\bar{z}+2|=|z+2|$ est inutile. Par ailleurs, écrire « $|\bar{z}|=|z|$ donc $|\bar{z}+2|=|z+2|$ »est très maladroit et révèle un manque de compréhension de l'usage des quantificateurs et des variables. Il faudrait rédiger ainsi : « Pour tout $u\in\mathbb{C}$, $|\bar{u}|=|u|$, donc $|\bar{z}+2|=|z+2|$ ».
- Question 2b. On vous demande une expression explicite, écrire $\{z \in \mathbb{C} \mid |z+1| = |z+2|\}$ ne suffit pas.
- Question 5. Il n'est pas utile d'écrire z sous forme algébrique pour résoudre l'équation. En revanche, il n'est pas *interdit* d'utiliser la forme algébrique pour résoudre l'équation. Le plus important, c'est de réussir à répondre à la question d'une manière mathématiquement correcte. Si votre réponse est peu efficace, mais correcte, je bougonnerai un peu en corrigeant votre copie, mais le pire que vous ayez à craindre, c'est une petite remarque dans la marge.
- Question 9b. Avant de dériver φ , on justifie qu'elle est dérivable.