Min-Max Tours for Task Allocation to Heterogeneous Agents

Aditya Mishra; Vishal Bharti & Nayana Barai

Applied Optimization (DSE-311) Course Project Review

Introduction

The paper tackles task allocation in heterogeneous multiagent systems, aiming to minimize the maximum tour cost for any agent returning to the depot. Framed as the NP-hard Heterogeneous Task Allocation Problem (HTAP), the authors propose a three-phase approximation algorithm that delivers a constant-factor solution.

Problem Statement

HTAP involves assigning tasks to a set of agents that belong to different types, where each type has a specific capability to execute certain tasks. The objective is to partition the tasks among the agents while ensuring:

- Type-specific tasks are performed by compatible agents.
- Generic tasks can be performed by any agent.
- The maximum tour cost (i.e., the longest route among all agents) is minimized.

The problem is modeled using a complete graph where nodes represent tasks and the depot, and edges represent travel costs that satisfy the triangle inequality.

Proposed Solution

The authors introduce a three-phase algorithm to approximate the optimal task allocation:

- 1. CycleSplit Algorithm: A heuristic-based allocation that first partitions tasks into tours using a Christofides' algorithm-based approach and then splits them among agents.
- HeteroMinMaxSplit Algorithm: An improved algorithm that considers the workload imbalance among agents, aiming for a more balanced task allocation while minimizing the worst-case tour cost.
- 3. Rebalancing Phase: A final adjustment step to ensure better load balancing among agents of the same type.

The proposed algorithms provide a 5-factor approximation guarantee, which is reduced to 4 in special cases where each agent is unique in its type.

Implementation Details

To implement the methods described in the paper, our approach will include the following steps:

- 1. Graph Representation: We will represent the task environment as a weighted graph where nodes correspond to tasks and edges represent the travel cost between tasks, ensuring that the weights satisfy the triangle inequality.
- 2. Christofides' Algorithm Implementation: Since the proposed algorithms use Christofides' heuristic for tour construction, we will implement this algorithm to generate initial tours efficiently.
- CycleSplit Algorithm Development: We will develop the CycleSplit algorithm by partitioning task tours and assigning them to agents while maintaining a balanced workload distribution.
- 4. HeteroMinMaxSplit Algorithm Development: To improve upon the CycleSplit method, we will implement HeteroMinMaxSplit, incorporating a load-balancing mechanism to optimize task assignment.
- 5. Optimization and Fine-tuning: We will experiment with different heuristics for task splitting and rebalancing to achieve better performance.
- 6. Testing and Validation: We will create synthetic datasets and real-world scenarios to evaluate the performance of our implementation, comparing results with the theoretical guarantees provided in the paper.
- 7. Scalability Analysis: We will assess how the implemented algorithms perform with increasing numbers of agents and tasks to ensure practical applicability.

Conclusion

The Min-Max Tours for Task Allocation to Heterogeneous Agents problem presents a significant challenge in optimizing task distribution among multi-agent systems. The proposed CycleSplit and HeteroMinMaxSplit algorithms offer efficient approximations with bounded performance guarantees. Our implementation will use *Python* and *NetworkX* to develop and evaluate these algorithms, ensuring practical applicability and scalability in real-world task allocation scenarios.