PHILOSOPHY, PSYCHOLOGY AND LANGUAGE SCIENCES LOGIC, COMPUTABILITY AND INCOMPLETENESS

PHIL10133

Exam Date: **Tuesday 15th** From and To: **09:30** – Exam Diet:

May 2018 11:30 April/May

Please read full instructions before commencing writing

Exam paper information

- Answer ALL questions from part A, exactly TWO questions from part B, and exactly TWO questions from part C; NINE questions in total.
- Part A is worth 40%, and all questions from parts B and C are equally weighted (i.e. 15% for each one selected).

Special instructions

- Answer questions in the exam booklet.
- Make sure you write the numbers of the questions answered on the FRONT of the booklet.

Special items

None

Convenor of the Board of Examiners: Dr David Levy

Course Organiser: Dr Paul Schweizer

External: Dr Davide Rizza, University of East Anglia

This examination will be marked anonymously

[BLANK PAGE]

Part A

1. Answer all parts of (i), (ii) and (iii) below.

(i) Consider a 1-place predicate P^1 . Construct a sentence in first-order logic with identity which asserts that the predicate is true of *exactly one* object in the domain.

(ii) Consider an interpretation \Im with the 3-element domain $D=\{1,3,7\}$ and the interpreted 2-place relation symbol R^2 such that

$$\mathfrak{I}(\mathbb{R}^2) = \{ <7,1>, <7,7>, <3,7>, <3,3>, <1,7>, <7,3> \}.$$

Please state whether or not R^2 is irreflexive, asymmetric, and serial, and in each case explain why or why not.

(iii) What are the structural properties that define an equivalence relation?

2. Consider the propositional language L with denumerably many sentence letters P_1 , P_2 , ... and the connectives \neg , \lor , \land , \rightarrow . Prove by induction on structural complexity that all formulas of L must have finite length.

3. Establish that the language \boldsymbol{L} as described above has enumerably many compound formulas.

4. The function min(x,y) on the natural numbers is defined by cases as follows:

$$\min(x,y) = \{x, \text{ if } x \le y \\ = \{y, \text{ if } x > y \}$$

Using the primitive recursive functions $\mathbf{diff}(x,y)$, $\mathbf{sg}(y)$ and $\mathbf{\underline{sg}}(y)$, along with the appropriate base functions, provide a specification of $\mathbf{min}(x,y)$ in the standard primitive recursive format for definition by cases, using + and \cdot , as described in the text and lecture slides.

5. Using the derivation system developed in the text and lecture slides, give a proof of the following. Be sure to specify the relevant set Δ , include annotations, and establish that your derivation is a refutation.

$$\exists x \forall y (x = y), Pb \vdash \neg \exists y \neg Py$$

[Paper continues on next page]

Part B:

- 1. Suppose $c_1(x,y)$ is the primitive recursive characteristic function of condition C_1 on x and y, and that $c_2(x,y)$ is the primitive recursive characteristic function of condition C_2 . Give the primitive recursive characteristic function for each of the following: the negation of C_1 , the conjunction of C_1 and C_2 , the disjunction of C_1 and C_2 , the conditional if C_1 then C_2 .
- 2. Prove *via* diagonalization that the set of 1-place functions from positive integers to positive integers is uncountable. Why does this show that not all such functions are Turing computable?
- 3. Explain what completeness means in the context of first-order logic. The formal theory of arithmetic Q is closed under first-order logical consequence, yet Gödel's theorems show that Q is incomplete. Explain why these two theoretical facts are not incompatible.
- 4. Explain what decidability means in the context of first-order logic, and how the halting problem for Turing machines leads to the result that first-order logic is undecidable. How do the completeness and undecidability of first-order logic relate?

Part C:

- 1. Answer all of parts (i) and (ii) below.
 - (i) Consider the Turing machine quadruple $q_2S_1Rq_1$. Adopting the conventions used in the text and lecture slides, including the restriction that the Turing machine in question can read/write only the symbols S_0 and S_1 , construct a sentence in first-order logic that formalizes this quadruple.
 - (ii) Assuming the same conventions as above, give the quadruple instructions for a Turing machine that computes the function f(x) = x + 2 on the positive integers. Exhibit the sequence of configurations for computing the value f(2).
- 2. What does it mean for a set to be *effectively enumerable*? Give an example of a set that is enumerable but not effectively enumerable, and explain why it has these properties. What does it mean for a formal theory to be *axiomatizable*? Is every decidable theory axiomatizable? Explain why or why not.
- 3. Let Φ be the formula $\exists y R(x, y)$. What is the diagonalization of Φ ? As defined in the text and lecture slides, what is the value of the 1-place recursive function $\mathbf{diag}(n)$? State the diagonal lemma and give an outline of the strategy whereby the lemma is proved.
- 4. State Löb's Theorem, and explain its conceptual significance and motivation. Give the formalized version of Löb's Theorem in the language of first-order arithmetic. How does this translate into the axiom G characterizing the modal logic of provability? What is the Henkin Sentence, and what does Löb's Theorem reveal about this sentence?

[END OF PAPER]