A production problem and the Primal Simplex method

Sample and exercises

Gyorgy Dosa

February 17, 2022

Given the next table with the data of a production problem.

	P_1	P_2	P_3	P_4	Cap
Res_1	1	2	1	2	40
Res_2	1	0	1	1	38
Res_3	1	1	3	2	26
Profit	11	15	14	18	

We solve it by the studied method. We do it step by step.

Step 1: we write up the model.

$$\begin{aligned} x_1 + 2x_2 + x_3 + 2x_4 &\leq 40 \\ x_1 + & + x_3 + x_4 &\leq 38 \\ x_1 + x_2 + 3x_3 + 2x_4 &\leq 26 \\ x_j &\geq 0, \quad (1 \leq j \leq 4) \\ 11x_1 + 15x_2 + 14x_3 + 18x_4 &= z \rightarrow \max \end{aligned}$$

Step 2: all constraints are formed to = (by introducing slack variables):

$$\begin{array}{ll} x_1 + 2x_2 + x_3 + 2x_4 + s_1 & \leq 40 \\ x_1 + & + x_3 + x_4 & + s_2 & \leq 38 \\ x_1 + x_2 + 3x_3 + 2x_4 & + s_3 \leq 26 \\ & \mathbf{x} \geq \mathbf{0}, \mathbf{s} \geq \mathbf{0} \\ 11x_1 + 15x_2 + 14x_3 + 18x_4 = z \rightarrow \max \end{array}$$

Step 3: We build the first simplex tableau.

(In fact this is the fist simplex tableau of the second phase. First Phase: creating a feasible basic solution. Phase 2: Beginning from the result of the

first phase, step by step we reach an optimal basic solution. But, as initially all constraints are \leq , we can just start with the second phase. During this course we will not deal with the first phase. It can be performed "similarly" to the second phase.)

B	x_B	a_1	a_2	a_3	a_4	u_1	u_2	u_3
u_1	40	1	2	1	2	1	0	0
u_2	38	1	0	1	1	0	1	0
u_3	26	1	1	3	2	0	0	1
\overline{z}	0	-11	-15	-14	-18	0	0	0

Step 4: We perform basis transformations. Recall:

• B: basis

• last row: reduced cost

- we can choose freely from the last row, where the component of the reduced cost is negative.
- But, let us perform this smart greedy choice as follows. (It makes possible –not always, but many times that we need to perform only a few number of transformations.)
- Let us make a **preprocessing** (generally, a very typical way of solving a problem that we start with some kind of preprocessing):
- if we choose column of a_1 , who will be the pivot, and what will be the amount of the increment: The minimum is taken in row of u_3 , the increment is $\frac{26\cdot11}{1}=286$.
- if we choose column of a_2 , the minimum is taken in row of u_1 , the increment is $\frac{40\cdot15}{2} = 300$.
- if we choose column of a_3 , the minimum is taken in row of u_3 , the increment is $\frac{26\cdot14}{3}\approx121.33$.
- if we choose column of a_4 , the minimum is taken in row of u_3 , the increment is $\frac{26\cdot18}{2}=234$.
- So, the increment of the objective is the biggest, if we choose column of a_2 . Let us choose this column.
- The transformation:

From this tableau:

B	x_B	a_1	a_2	a_3	a_4	u_1	u_2	u_3
u_1	40	1	2	1	2	1	0	0
u_2	38	1	0	1	1	0	1	0
u_3	26	1	1	3	2	0	0	1
\overline{z}	0	-11	-15	-14	-18	0	0	0

We get this one:

B	x_B	a_1	a_2	a_3	a_4	u_1	u_2	u_3
a_2	20	1/2	1	1/2	1	1/2	0	0
u_2	38	1	0	1	1	0	1	0
$\overline{u_3}$	6	1/2	0	5/2	1	-1/2	0	1
\overline{z}	300	-7/2	0	-13/2	-3	15/2	0	0

Again comes the preprocessing.

- if we choose column of a_1 , the minimum is taken in row of u_3 , the increment is $\frac{6 \cdot (7/2)}{1/2} = 42$.
- if we choose column of a_3 , the minimum is taken in row of u_3 , the increment is $\frac{6\cdot(13/2)}{5/2}\approx 15.6$.
- if we choose column of a_4 , the minimum is taken in row of u_3 , the increment is $\frac{6\cdot 3}{1} = 18$.
- So, the increment of the objective is the biggest, if we choose column of a_1 . Let us choose this column.
- The transformation:

From this tableau:

B	x_B	a_1	a_2	a_3	a_4	u_1	u_2	u_3
$\overline{a_2}$	20	1/2	1	1/2	1	1/2	0	0
u_2	38	1	0	1	1	0	1	0
u_3	6	1/2	0	5/2	1	-1/2	0	1
\overline{z}	300	-7/2	0	-13/2	-3	15/2	0	0

We get this one:

B	x_B	a_1	a_2	a_3	a_4	u_1	u_2	u_3
a_2	14	0	1	-2	0	1	0	-1
u_2	26	0	0	-4	-1	1	1	-2
$\overline{a_1}$	12	1	0	5	2	-1	0	2
\overline{z}	342	0	0	11	4	4	0	7

Since all values in the row of reduced cost are non-negative: Optimal solution! Thus we stop.

Step 5: Evaluation

 $x_{OPT} = \left(12, 14, 0, 0 \left| 0, 26, 0 \right.\right)$ while $z_{OPT} = 342$ which means that:

- we produce 12 and 14 units from the 1th and 2nd products, resp. (and nothing from the others)
- remain 26 units from the 2nd resource (and nothing from the others, the other two are consumed)
- the value of the objective function is 342

Exercises for practice:

1

	P_1	P_2	P_3	P_4	Cap
Res_1	1	2	1	2	40
Res_2	1	0	1	1	10
Res_3	1	1	3	2	26
Profit	11	15	28	18	

The optimal solution is: $x_{OPT} = (0, \frac{94}{5}, \frac{12}{5}, 0 | 0, \frac{38}{5}, 0)$ while $z_{OPT} = 349, 2$.

2.

	P_1	P_2	P_3	P_4	Cap
Res_1	1	2	1	2	40
Res_2	1	0	1	1	10
Res_3	1	1	3	2	15
Profit	11	5	28	18	

The optimal solution is: $x_{OPT} = (\frac{15}{2}, 0, \frac{5}{2}, 0 | 30, 0, 0)$ while $z_{OPT} = 152.5$.

3.

	P_1	P_2	P_3	P_4	P_5	Cap
Res_1	1	1	2	1	1	25
Res_2	0	1	0	1	2	42
Res_3	1	0	1	3	1	50
Profit	12	8	15	17	22	

The optimal solution is:

$$x_{OPT_1} = (4, 0, 0, 0, 21 | 0, 0, 25)$$
 and $x_{OPT_2} = (0, 0, 0, 8, 17 | 0, 0, 9)$, $x_{OPT} = \lambda \cdot x_{OPT_1} + (1 - \lambda) \cdot x_{OPT_2}$, where $0 \le \lambda \le 1$, while $z_{OPT} = 510$.