Análise em Regime Estacionário Senoidal

Os circuitos acionados por fontes de tensão ou de corrente senoidais são chamados circuitos de corrente alternada (CA). Uma corrente/tensão senoidal é normalmente conhecida como corrente/tensão alternada (CA).

Estamos interessados em senoides por uma série de razões. Primeiramente, um sinal senoidal é fácil de ser gerado e transmitido, pois é a forma de tensão gerada ao redor do mundo e fornecida às residências, às fábricas, aos laboratórios e assim por diante, como também é a forma dominante do sinal nos segmentos de energia elétrica e comunicação. Além disso, por meio da análise de Fourier, qualquer sinal periódico prático pode ser representado por uma soma de senoides. Finalmente, uma senoide é fácil de ser tratada matematicamente. Por estas e outras razões, ela é uma função extremamente importante na análise de circuitos.

Uma função de alimentação senoidal produz tanto uma resposta transiente como uma resposta em regime estacionário. A resposta transiente se extingue com o tempo de modo a permanecer apenas a parcela correspondente à resposta em regime estacionário. Quando a resposta transiente se torna desprezível em relação à resposta em regime estacionário, dizemos que o circuito está operando em regime estacionário senoidal.

Senoides

Consideremos a tensão senoidal

$$v(t) = V_m sen(\omega t + \emptyset)$$

em que V_m é a amplitude, ω é a frequência angular em radianos por segundo, \emptyset é a fase da e $\omega t + \emptyset$ é o argumento da senoide. Na figura a seguir, podemos ver a senoide de função de t e ωt . Fica evidente que a senoide se repete a cada T segundos; portanto, T é chamado período da senoide

$$T = \frac{2\pi}{\omega}$$

O inverso desse valor $\acute{\rm e}$ o número de ciclos por segundo, conhecido como frequência cíclica f da senoide

$$f = \frac{1}{T}$$

Examinemos as duas senoides a seguir

$$v_1(t) = V_m sen(\omega t)$$
 e $v_2(t) = V_m sen(\omega t + \emptyset)$

O ponto de partida de v_2 nessa figura ocorre primeiro no tempo. Consequentemente, dizemos que v_2 está avançada em relação a v_1 em f, ou que v_1 está atrasada em relação a v_2 em \emptyset . Se $\emptyset \neq 0$, também podemos dizer que v_1 e v_2 estão fora de fase. Se $\emptyset = 0$, então v_1 e v_2 estão em fase; elas atingem seus mínimos e máximos exatamente ao mesmo tempo.

Exemplo 01

Determine a amplitude, a fase, o período e a frequência da senoide

$$v(t) = 12\cos(50t + 10^{\circ})$$

Solução: Amplitude igual a 12, fase igual a $10^{\rm o}$, $\omega=50$ rad/s, $T=\frac{2\pi}{\omega}=\frac{2\pi}{50}=0$,1257 s e $f=\frac{1}{T}=7$,958 Hz.

Exemplo 02

Determine a amplitude, a fase, o período e a frequência da senoide

$$v(t) = 30sen (4\pi t - 75^{\circ})$$

Solução: Amplitude igual a 30, fase igual a -75°, $\omega=12,57$ rad/s, $T=\frac{2\pi}{12,57}=0,5$ s e f=2 Hz.

Calcule o ângulo de fase entre $v_1(t)=-10\cos(\omega t+50^\circ)$ e $v_2(t)=12sen(\omega t-10^\circ)$. Indique qual senoide está avançada.

Solução:
$$v_1(t) = -10\cos(\omega t + 50^\circ) = 10\cos(\omega t + 50^\circ)\cos(-180^\circ) = 10\cos(\omega t + 50^\circ - 180^\circ) = 10\cos(\omega t - 130^\circ)$$
 $v_2(t) = 12\sin(\omega t - 10^\circ) = 12\cos(\omega t - 10^\circ - 90^\circ) = 12\cos(\omega t - 100^\circ)$

A diferença de fase entre $v_1(t)$ e $v_2(t)$ de $30^{\rm o}$ e $v_2(t)$ está avançada em relação a $v_1(t)$ em $30^{\rm o}$.

Exemplo 04

Determine o ângulo de fase entre $i_1(t) = -4 \operatorname{sen}(377t + 55^{\circ})$ e $i_2(t) = 5 \cos(377t - 65^{\circ})$. A corrente $i_1(t)$ está adiantada ou atrasada em relação a $i_2(t)$?.

Solução:
$$i_1(t) = -4 \operatorname{sen}(377t + 55^{\circ}) = 4 \operatorname{sen}(377t + 55^{\circ}) \operatorname{cos}(180^{\circ}) = 4 \operatorname{sen}(377t + 55^{\circ} + 180^{\circ}) = 4 \operatorname{sen}(377t + 235^{\circ})$$

 $i_2(t) = 5 \operatorname{cos}(377t - 65^{\circ}) = 5 \operatorname{sen}(377t - 65^{\circ} + 90^{\circ}) = 5 \operatorname{sen}(377t + 25^{\circ})$

A diferença de fase entre $i_1(t)$ e $i_2(t)$ de 210° e $i_1(t)$ está avançada em relação a $i_2(t)$.

Fasores

Fasor é um número complexo que representa a amplitude e a fase de uma senoide.

Um número complexo z pode ser escrito na forma retangular como

$$z = x + jy$$

onde $j=\sqrt{-1}; x$ é a parte real de z; y é a parte imaginária de z. O número complexo ztambém pode ser escrito na forma polar ou exponencial, como segue

$$z = r \angle \phi = re^{j\emptyset}$$

onde r é a magnitude de z e ϕ é a fase de z. Nota-se que z pode ser representado de três maneiras:

Forma retangular z = x + jx

Forma polar $z = r \angle \phi$

Forma exponencial $z = re^{j\emptyset}$

A relação entre a forma retangular e a forma polar é mostrada na Figura a seguir, onde o eixo x representa a parte real e o eixo y, a parte imaginária de um número complexo.

Dados x e y, podemos obter r e ϕ como segue

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{x^2 + y^2}$$
$$\emptyset = tg^{-1} \left(\frac{y}{x}\right)$$

Por outro lado, se conhecermos $r \in \phi$, podemos obter $x \in y$ como

$$x = r \cos \emptyset$$

$$y = r \operatorname{sen} \emptyset$$

Portanto, z poderia ser escrito como indicado a seguir

$$z = x + jy = r \angle \phi = r \cos \emptyset + jr \sin \emptyset = re^{j\emptyset}$$

A adição e a subtração de números complexos são mais bem realizadas na forma retangular; a multiplicação e a divisão são mais bem efetuadas na forma polar. Dados os números complexos

$$z = x + jy = r \angle \phi$$

$$z_1 = x_1 + jy_1 = r_1 \angle \phi_1$$

$$z_2 = x_2 + jy_2 = r_2 \angle \phi_2$$

As seguintes operações são importantes:

Adição:
$$z_1 + z_2 = x_1 + x_2 + j(y_1 + y_2)$$

Subtração: $z_1 - z_2 = x_1 - x_2 + j(y_1 - y_2)$
Multiplicação: $z_1 z_2 = r_1 r_2 \angle (\phi_1 + \phi_2)$
Divisão: $z_1/z_2 = r_1/r_2 \angle (\phi_1 - \phi_2)$
Inverso: $1/z = 1/r \angle (-\phi)$
Raiz quadrada: $\sqrt{z} = \sqrt{r} \angle (\phi/2)$

Dada a senoide $v(t) = V_m \cos(\omega t + \emptyset)$. Essa senoide também pode ser expressa como:

$$v(t) = \Re e \big(V e^{j\omega t} \big)$$

Onde $V=V_me^{j\emptyset}$ é a representação fasorial da senoide v(t). Uma maneira de examinar essa senoide é considerar o gráfico do seno $Ve^{j\omega}=V_me^{j\emptyset}e^{j\omega t}$ no plano complexo. medida que o tempo cresce, esse seno gira em um círculo de raio Vm em uma velocidade angular ω no sentido anti-horário, como mostrado na Figura a seguir. Podemos considerar v(t) como a projeção do seno fasorial $Ve^{j\omega t}$ no eixo real.

Representação do domínio do tempo	Representação no domínio dos fasores
$V_m \cos(\omega t + \phi)$	$V_m \underline{/\phi}$
$V_m \operatorname{sen}(\omega t + \phi)$	$V_m / \phi - 90^{\circ}$
$I_m \cos(\omega t + \theta)$	$I_m \underline{/ heta}$
$I_m \operatorname{sen}(\omega t + \theta)$	$I_m/\theta-90^{\circ}$

A derivada de $v(t)=\Re eig(Ve^{j\omega}ig)$ é

$$\frac{dv(t)}{dt} = \frac{d\Re e(\mathbf{V}e^{j\omega t})}{dt} = \frac{d(V_m\cos(\omega t + \emptyset))}{dt} = -\omega V_m \operatorname{sen}(\omega t + \emptyset)$$
$$= -\omega V_m \operatorname{sen}(\omega t + \emptyset) = \omega V_m \operatorname{sen}(\omega t + \emptyset) \operatorname{sen}(-90^\circ)$$
$$= \omega V_m \cos(\omega t + \emptyset + 90^\circ)$$

A derivada de v(t) é transformada para o domínio dos fasores como

$$\omega V_m e^{j(\emptyset+90^{\rm o})} = j\omega V$$

Ou seja,

$$rac{dv(t)}{dt} \iff j\omega V$$
 (domínio do tempo) (domínio dos fasores)

De forma similar, a integral de v(t) é transformada para o domínio dos fasores como $V/j\omega$

$$\int v(t)dt \qquad \Leftrightarrow \qquad V/j\omega$$
 (domínio do tempo) (domínio dos fasores)

Além da diferenciação e integração do tempo, outro importante emprego dos fasores é na adição de senoides de mesma frequência.

As diferenças entre v(t) e devem ser enfatizadas.

- 1. v(t) é a representação instantânea ou no domínio do tempo, enquanto V é a representação em termos de frequência ou no domínio dos fasores.
- 2. v(t) é dependente do tempo, enquanto V não é.
- 3. v(t) é sempre real sem nenhum termo complexo, enquanto V geralmente é complexo.

Finalmente, devemos ter em mente que a análise de fasores se aplica apenas quando a frequência é constante; e também na manipulação de dois ou mais sinais senoidais apenas se eles tiverem a mesma frequência.

Exemplo 05

Calcule os números complexos a seguir:

a)
$$(40 \angle 50^{\circ} + 20 \angle -30^{\circ})^{1/2}$$

b)
$$\frac{10\angle -30^{\circ} + (3-4j)}{(2+4j)(3-5j)^*}$$

a)
$$40 \angle 50^{\circ} = 40 \cos 50^{\circ} + j40 \sin 50^{\circ} = 25,71 + j30,64$$

 $20 \angle -30^{\circ} = 20 \cos(-30^{\circ}) + j20 \sin(-30^{\circ}) = 17,32 - j10$
 $40 \angle 50^{\circ} + 20 \angle -30^{\circ} = 43,03 + j20,64 = 47,72 \angle 25,63^{\circ}$
 $(40 \angle 50^{\circ} + 20 \angle -30^{\circ})^{1/2} = 6,91 \angle 12,81^{\circ}$

b)
$$10\angle -30^{\circ} = 8,66 - j5$$

$$(3 - 5j)^{*} = 3 + j5 = 5,83\angle 59,04^{\circ}$$

$$(2+4j) = 4,47\angle 63,43^{\circ}$$

$$8,66-j5+(3-4j) = 11,66-9j = 14,73\angle -37,66^{\circ}$$

$$(2+4j)(3-5j)^{*} = (4,47\angle -63,43^{\circ})(5,83\angle 59,04^{\circ}) = 26,06\angle 122,47^{\circ}$$

$$\frac{10\angle -30^{\circ} + (3-4j)}{(2+4j)(3-5j)^{*}} = \frac{8,66-j5+(3-4j)}{(4,47\angle 63,43^{\circ})(5,83\angle 59,04^{\circ})}$$

$$= \frac{11,66-9j}{(4,47\angle 63,43^{\circ})(5,83\angle 59,04^{\circ})} = \frac{14,73\angle -37,66^{\circ}}{26,06\angle 122,47^{\circ}}$$

$$= 0,565\angle -160,13^{\circ}$$

Calcule os números complexos a seguir:

a)
$$[(5+j2)(-1+j4)-5\angle 60^{\circ}]^*$$

b)
$$\frac{10+j5+3\angle 40^{\circ}}{-3+j4} + 10\angle 30^{\circ} + j5$$

Solução:

a)
$$[(5+j2)(-1+j4) - 5\angle 60^{\circ}]^{*} = [(5,39\angle 21,80^{\circ})(4,12\angle 104,04^{\circ}) - 5\angle 60^{\circ}]^{*} = [(22,21\angle 125,84^{\circ}) - 5\angle 60^{\circ}]^{*} = [-13+j18-2,5-j4,33]^{*} = [-15,5+j13,67]^{*} = -15,5-j13,67$$

b)
$$\frac{10+j5+3\angle 40^{\circ}}{-3+j4} + 10\angle 30^{\circ} + j5 = \frac{10+j5+2,3+j1,93}{-3+j4} + 8,66 + j5 + j5 = \frac{12,3+j6,93}{-3+j4} + 8,66 + j10 = \frac{14,12\angle 29,4^{\circ}}{5\angle 126,87^{\circ}} + 8,66 + j10 = 2,8\angle -97,47^{\circ} + 8,66 + j10 = -0,36 - j2,78 + 8,66 + j10 = 8,3 + j7,22$$

Exemplo 07

Transforme as senoides seguintes em fasores:

a)
$$i = 6\cos(50t - 40^{\circ})$$
 A

b)
$$v = -4 \sin(30t + 50^{\circ}) \text{ V}$$

a)
$$I = 6 \angle -40^{\circ} A$$

b)
$$v = -4 \operatorname{sen}(30t + 50^{\circ}) = 4 \operatorname{sen}(30t + 50^{\circ}) \operatorname{sen}(-90^{\circ}) = 4 \cos(30t + 50^{\circ} + 90^{\circ}) = 4 \cos(30t + 140^{\circ})$$

$$V = 4 \angle 140^{\circ} V$$

Transforme as senoides seguintes em fasores:

a)
$$v = 7\cos(2t + 40^{\circ}) \text{ V}$$

b)
$$i = -4 \operatorname{sen}(10t + 10^{\circ}) A$$

Solução:

c)
$$V = 7 \angle 40^{\circ} V$$

d)
$$i = -4 \operatorname{sen}(10t + 10^{\circ}) = 4 \operatorname{sen}(10t + 10^{\circ}) \operatorname{sen}(-90^{\circ}) = 4 \operatorname{cos}(10t + 10^{\circ} + 90^{\circ}) = 4 \operatorname{cos}(10t + 100^{\circ})$$

 $I = 4 \angle 100^{\circ} \text{ A}$

Exemplo 09

Determine as senoides representadas pelos fasores seguintes:

a)
$$I = -3 + j4$$
 A

b)
$$V = j8e^{-j20^{\circ}} V$$

a)
$$I = -3 + i4 = 5 \angle 126.87^{\circ}$$

$$i(t) = 5\cos(\omega t + 126,87^{\circ}) A$$

b)
$$\mathbf{V} = j8e^{-j20^{\circ}} = e^{j90^{\circ}}8e^{-j20^{\circ}} = 8e^{j70^{\circ}}$$

$$v(t) = 8\cos(\omega t + 70^{\circ}) A$$

Determine as senoides representadas pelos fasores seguintes:

a)
$$V = -25 \angle 40^{\circ} V$$

b)
$$I = j(12 - j5) A$$

Solução:

a)
$$V = -25\angle 40^{\circ} = 25\angle (40^{\circ} \pm 180^{\circ}) = 25\angle (220^{\circ}) = 25\angle (-140^{\circ})$$

 $v(t) = 25\cos(\omega t + 220^{\circ}) = 25\cos(\omega t + 140^{\circ}) \text{ V}$

b)
$$\mathbf{I} = j(12 - j5) = e^{j90^{\circ}} 13e^{-j22,62^{\circ}} = e^{j90^{\circ}} 8e^{-j22^{\circ}} = 13e^{j67,38^{\circ}}$$

$$i(t) = 13\cos(\omega t + 67,38^{\circ}) A$$

Exemplo 11

Dados $i_1(t) = 4\cos(\omega t + 30^\circ)$ A e $i_2(t) = 5\sin(\omega t + 20^\circ)$ A, determine sua soma.

Solução:

$$i_2(t) = 5\cos(\omega t + 20^\circ - 90^\circ) = 5\cos(\omega t - 70^\circ)$$

$$I_1 = 4 \angle 30^{\circ} \text{ e } I_2 = 5 \angle -70^{\circ}$$

$$\mathbf{I}_1 + \mathbf{I}_2 = 4 \angle 30^{\circ} + 5 \angle -70^{\circ} = (3,464 + j2) + (1,71 - j4,698) = 5,174 - j2,698$$

= $5.835 \angle -27,54^{\circ}$

$$i(t) = 5.835 \cos(\omega t - 27.54^{\circ}) A$$

Exemplo 12

Dados $v_1(t)=-10\,{\rm sen}(\omega t-30^{\rm o})$ V e $v_2(t)=20\,{\rm cos}(\omega t+45^{\rm o})$ V, determine sua soma.

$$v_1(t) = 10 \operatorname{sen}(\omega t - 30^{\circ}) \operatorname{sen}(-90^{\circ}) = 10 \cos(\omega t - 30^{\circ} + 90^{\circ})$$

= $10 \cos(\omega t + 60^{\circ})$

$$V_1 = 10 \angle 60^{\circ} \text{ e } V_2 = 20 \angle 45^{\circ}$$

$$\mathbf{V}_1 + \mathbf{V}_2 = 10 \angle 60^{\circ} + 20 \angle 45^{\circ} = (5 + j8,66) + (14,14 + 14,14j) = 19,14 + j22,8$$

= 29,77\times 49,98\cdot\$

$$v(t) = 29,77\cos(\omega t + 49,98^{\circ}) \text{ V}$$

Usando o método de fasores, determine a corrente i(t) em um circuito descrito pela equação diferencial

$$4i + 8 \int idt - 3\frac{di}{dt} = 50\cos(2t + 75^{\circ})$$

Solução:

$$4\mathbf{I} + 8\frac{\mathbf{I}}{i\omega} - 3j\omega\mathbf{I} = 50 \angle 75^{\circ}$$

$$\mathbf{I}\left(4 + \frac{8}{j\omega} - 3j\omega\right) = 50 \angle 75^{\circ}$$

Nesse caso $\omega = 2$

$$4 + \frac{4}{j} - 6j = 4 - j4 - 6j = 4 - j10 = 10,77 \angle -68,2^{\circ}$$

$$I(10,77\angle -68,2^{\circ}) = 50\angle 75^{\circ}$$

$$\mathbf{I} = \frac{50 \angle 75^{\circ}}{10,77 \angle -68,2^{\circ}} = 4,64 \angle 143,2^{\circ}$$

$$i(t) = 4.64\cos(\omega t + 143.2^{\circ}) A$$

Determine a tensão v(t) em um circuito descrito pela equação integro-diferencial a seguir

$$2\frac{dv}{dt} + 5v + 10 \int vdt = 50\cos(5t - 30^{\circ})$$

Solução:

$$2j\omega \mathbf{V} + 5\mathbf{V} + 10\frac{\mathbf{V}}{j\omega} = 50 \angle -30^{\circ}$$

$$\mathbf{V}\left(2j\omega + 5 + \frac{10}{j\omega}\right) = 50 \angle -30^{\circ}$$

Nesse caso $\omega = 5$

$$10j + 5 + \frac{2}{j} = 10j + 5 - j2 = 5 + j8 = 9,43 \angle 58^{\circ}$$

$$V(9,43\angle 58^{\circ}) = 50\angle -30^{\circ}$$

$$\mathbf{V} = \frac{50 \angle -30^{\circ}}{9.43 \angle 58^{\circ}} = 5.3 \angle 88^{\circ}$$

$$v(t) = 5.3\cos(\omega t - 88^{\circ}) \text{ V}$$