EventID	Location	Sub_LocatiSampleTy	/pMatrix	Samp_No Sam	npleDate
2009_AUG_EPA_8909027	A68	A-03	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	A72	A-01	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC01C	CC01C	Water	8908019-2	8/19/2009
2009_AUG_EPA_8909027	CC01C	CC01C	Water	8908019-2	8/19/2009
2009_AUG_EPA_8909027	CC01F	C-21	Water	8908019-2	8/19/2009
2009_AUG_EPA_8909027	CC01H	A-19	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC01S	A-17	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC01S	CC01S_DUP	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC01T	A-16	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC02A	A-15	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC02D	A-13	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC02D	CC02D	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC02i	A-14	Water	8908019-1	8/19/2009
2009_AUG_EPA_8909027	CC03D	A-12	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC03D	CC03D	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC04	A-11	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC04	CC04	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC06	A-10	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC06	CC06	Water	8908019-1	8/18/2009
2009_AUG_EPA_8909027	CC07	A-09	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC07	CC07	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC18	A-06	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC18	CC18	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC18B	A-08	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC18B	CC18B	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC19	A-07	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC19	CC19	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC48	A-04	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC48	CC48	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC48	CC48_DUP	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	CC48	CC48_DUP	Water	8908019-0	8/18/2009
2009_AUG_EPA_8909027	M34	A-02	Water	8908019-0	8/18/2009
2009_JUL_EPA_8907022	A68	A-03	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	A72	A-01	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC01C	CC-01C	Water	8907022-2	7/15/2009
2009_JUL_EPA_8907022	CC01C	CC-01C	Water	8907022-2	7/15/2009
2009_JUL_EPA_8907022	CC01F	CCOPP-08	Water	8907022-2	7/15/2009
2009_JUL_EPA_8907022	CC01H	CCOPP-07	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC01S	QA-0	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC01S	QA-0	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC01T	CCOPP-06	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC02A	CCOPP-03	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC02D	A-13	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC02D	CC02D	Water	8907022-1	7/15/2009

2009_JUL_EPA_8907022	CC02i	CCOPP-03A	Water	8907022-1	7/15/2009
2009_JUL_EPA_8907022	CC03D	CC-03D	Water	8907022-1	7/14/2009
2009_JUL_EPA_8907022	CC04	CCOPP-02	Water	8907022-1	7/14/2009
2009_JUL_EPA_8907022	CC06	CC06	Water	8907022-1	7/14/2009
2009 JUL EPA 8907022	CC06	CC06	Water	8907022-1	7/14/2009
2009_JUL_EPA_8907022	CC07	CC07	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC07	CC07	Water	8907022-0	7/14/2009
2009 JUL EPA 8907022	CC18	CCOPP-01	Water	8907022-0	7/14/2009
2009 JUL EPA 8907022	CC18	CCOPP-01	Water	8907022-0	7/14/2009
2009 JUL EPA 8907022	CC18	CCOPP-01_DUP	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC18	CCOPP-01_DUP	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC18B	A-08	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC18B	CC18B	Water	8907022-0	7/14/2009
2009 JUL EPA 8907022	CC19	A-07	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC19	CC19	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	CC48	A-04	Water	8907022-0	7/14/2009
2009 JUL EPA 8907022	CC48	CC48	Water	8907022-0	7/14/2009
2009_JUL_EPA_8907022	M34	C-02	Water	8907022-0	7/14/2009
2009_JUN_EPA_8906009	A68	A-10	Water	8906009-1	6/16/2009
2009_JUN_EPA_8906009	A72	A-12	Water	8906009-1	6/16/2009
2009_JUN_EPA_8906009	CC01C	C-05	Water	8906009-0	6/17/2009
2009 JUN EPA 8906009	CC01C	CC01C	Water	8906009-0	6/17/2009
2009_JUN_EPA_8906009	CC01C1	CCOPP-05	Water	8906009-0	6/17/2009
2009 JUN EPA 8906009	CC02A	CCOPP-03	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC02D	A-14	Water	8906009-0	6/17/2009
2009 JUN EPA 8906009	CC02D	CC02D_DUP	Water	8906009-0	6/17/2009
2009_JUN_EPA_8906009	CC02H	CCOPP-04	Water	8906009-1	6/17/2009
2009 JUN EPA 8906009	CC03D	A-11	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC03D	CC03D	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC04	CCOPP-02	Water	8906009-0	6/17/2009
2009_JUN_EPA_8906009	CC06	A-06	Water	8906009-1	6/17/2009
2009 JUN EPA 8906009	CC06	CC06	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC06	CC06	Water	8906009-1	6/17/2009
2009 JUN EPA 8906009	CC07	A-23	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC07	CC07	Water	8906009-1	6/17/2009
2009_JUN_EPA_8906009	CC18	CCOPP-01	Water	8906009-0	6/16/2009
2009_JUN_EPA_8906009	CC18	CCOPP-01	Water	8906009-0	6/16/2009
2009_JUN_EPA_8906009	CC18B	A-22	Water	8906009-1	6/16/2009
2009_JUN_EPA_8906009	CC18B	CC18B	Water	8906009-1	6/16/2009
2009_JUN_EPA_8906009	CC19	A-20	Water	8906009-0	6/16/2009
2009_JUN_EPA_8906009	CC19	CC19	Water	8906009-0	6/16/2009
2009_JUN_EPA_8906009	CC48	A-21	Water	8906009-0	6/16/2009
2009_JUN_EPA_8906009	M34	C-17	Water	8906009-1	6/16/2009
2009_MAY_EPA_8905016	A68	A-14	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	A08 A72	C-09	Water	8905016-0	5/18/2009
2005_MA1_ELA_0505010	N/ L		vvatel	2202010-0	5/ 10/ 2003

2009_MAY_EPA_8905016	CC02D	A-15	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC02D	CC02D	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC03D	A-05	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC03D	CC03D	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC04	CCOPP-02	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC06	CC06	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC06	CC06	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC06	D-16	Water	8905016-1	5/20/2009
2009_MAY_EPA_8905016	CC07	A-10	Water	8905016-1	5/19/2009
2009_MAY_EPA_8905016	CC07	B-08	Water	8905016-1	5/19/2009
2009_MAY_EPA_8905016	CC07	CC07	Water	8905016-1	5/19/2009
2009_MAY_EPA_8905016	CC07	CC07	Water	8905016-1	5/19/2009
2009_MAY_EPA_8905016	CC18	CCOPP-01	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC18B	C-07	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC19	A-11	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC19	CC19	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	CC48	A-03	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	M34	C-02	Water	8905016-0	5/19/2009
2009_MAY_EPA_8905016	M34	M34_DUP	Water	8905016-0	5/19/2009
2009 NOV EPA 8911012	A68	A-03	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	A68	A68_DUP	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	A72	A72	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	CC01C	A-18	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC01C	CC01C	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC01T	A-17	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC01U	A-15	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC02D	A-14	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC02D	CC02D	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC02E	A-13	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC02E	CC02E	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC02i	A-16	Water	8911012-1	11/18/2009
2009 NOV EPA 8911012	CC02K	A-12	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC03D	A-11	Water	8911012-1	11/18/2009
2009 NOV EPA 8911012	CC03D	CC03D	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC07	A-10	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC07	CC07	Water	8911012-1	11/18/2009
2009_NOV_EPA_8911012	CC18	A-06	Water	8911012-0	11/17/2009
2009 NOV EPA 8911012	CC18	CC18	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	CC18B	A-08	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	CC18B	CC18B	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	CC19	A-07	Water	8911012-0	11/17/2009
2009 NOV EPA 8911012	CC19	CC19	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	CC48	A-05	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	M34	A-02	Water	8911012-0	11/17/2009
2009_NOV_EPA_8911012	M34	M34	Water	8911012-0	11/17/2009
				0011012	11, 11, 2005

2009_SEP_EPA_8909027	A68	A-03	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	A72	A-01	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC01C	CC01C	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01C	CC01C	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01C	DOC E-23	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01F	C-24	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01H	A-22	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01S	A-20	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01S	CC01S	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01S	CC01S_DUP	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01S	CC01S_DUP	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC01T	A-19	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC01U	A-25	Water	8909027-2	9/23/2009
2009_SEP_EPA_8909027	CC02A	A-17	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02D	A-16	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02D	CC02D	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02E	A-14	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02E	CC02E	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02i	A-18	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC02K	A-15	Water	8909027-1	9/23/2009
2009_SEP_EPA_8909027	CC03D	A-12	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC03D	CC03D	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC04	C-11	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC04	CC04	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC06	CC06	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC06	CC06	Water	8909027-1	9/22/2009
2009_SEP_EPA_8909027	CC07	B-09	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC07	CC07	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC07	CC07	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC07	CC07_DUP	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC07	CC07_DUP	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC07	CC07_DUP	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC18	A-05	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC18	CC18	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC18B	A-07	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC18B	CC18B	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC19	A-06	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC19	CC19	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC48	C-04	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	CC48	CC48	Water	8909027-0	9/22/2009
2009_SEP_EPA_8909027	M34	B-02	Water	8909027-0	9/22/2009
2010_APR_EPA_1004007	A68	A-04	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	A72	A-01	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	A72	A72_DUP	Water	1004007-2	4/13/2010
2010_APR_EPA_1004007	CC01T	A-15	Water	1004007-0	4/14/2010

2010_APR_EPA_1004007	CC01U	A-11	Water	1004007-0	4/14/2010
2010_APR_EPA_1004007	CC02D	A-18	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC02D	CC02D	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC03D	A-12	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC03D	CC03D	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC06	A-13	Water	1004007-2	4/14/2010
2010_APR_EPA_1004007	CC06	CC06	Water	1004007-2	4/14/2010
2010_APR_EPA_1004007	CC07	A-17	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC07	CC07	Water	1004007-1	4/14/2010
2010_APR_EPA_1004007	CC18	A-07	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	CC18	CC18	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	CC18B	A-09	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	CC18B	CC18B	Water	1004007-0	4/13/2010
2010_APR_EPA_1004007	CC19	A-08	Water	1004007-1	4/13/2010
2010_APR_EPA_1004007	CC19	CC19	Water	1004007-1	4/13/2010
2010_APR_EPA_1004007	CC48	A-06	Water	1004007-1	4/13/2010
2010_APR_EPA_1004007	CC48	CC48_DUP	Water	1004007-2	4/13/2010
2010_APR_EPA_1004007	M34	A-03	Water	1004007-0	4/13/2010
2010_FEB_EPA_1002004	A68	A-03	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	A72	A-01	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	A72	A72	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	CC02D	A-12	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC02D	CC02D	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC03D	C-15	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC03D	CC03D	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC07	A-11	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC07	CC07	Water	1002004-1	2/18/2010
2010_FEB_EPA_1002004	CC18	A-06	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	CC18	CC18	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	CC18B	A-08	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	CC18B	CC18B	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	CC19	A-07	Water	1002004-1	2/17/2010
2010_FEB_EPA_1002004	CC19	CC19	Water	1002004-1	2/17/2010
2010_FEB_EPA_1002004	CC48	A-04	Water	1002004-1	2/17/2010
2010_FEB_EPA_1002004	CC48	CC48	Water	1002004-1	2/17/2010
2010_FEB_EPA_1002004	CC48	CC48_DUP	Water	1002004-2	2/17/2010
2010_FEB_EPA_1002004	CC48	CC48_DUP	Water	1002004-2	2/17/2010
2010_FEB_EPA_1002004	M34	A-02	Water	1002004-0	2/17/2010
2010_FEB_EPA_1002004	M34	M34	Water	1002004-0	2/17/2010
2010_JUL_EPA_1007017	A68	A68	Water	1007017-0	7/13/2010
2010_JUL_EPA_1007017	A72	A72	Water	1007017-0	7/13/2010
2010_JUL_EPA_1007017	CC01C	CC01C	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC01C	CC01C	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC01F	CC01F	Water	1007017-0	7/14/2010
2010_JUL_EPA_1007017	CC01H	CC01H	Water	1007017-0	7/14/2010

2010_JUL_EPA_1007017	CC01S	CC01S	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC01T	CC01T	Water	1007017-0	7/14/2010
2010_JUL_EPA_1007017	CC01U	CC01U	Water	1007017-0	7/14/2010
2010_JUL_EPA_1007017	CC01U	CC01U_DUP	Water	1007017-3	7/14/2010
2010_JUL_EPA_1007017	CC02D	CC02D	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC02D	CC02D	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC02E	CC02E	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC02E	CC02E	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC02i	CC02i	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC02J	CC02J	Water	1007017-2	7/14/2010
2010_JUL_EPA_1007017	CC02K	CC02K	Water	1007017-1	7/14/2010
2010_JUL_EPA_1007017	CC03	CCOPP-11	Water	1007017-0	7/13/2010
2010_JUL_EPA_1007017	CC03	CCOPP-11	Water	1007017-0	7/13/2010
2010 JUL EPA 1007017	CC03B	CCOPP-12	Water	1007017-0	7/13/2010
2010_JUL_EPA_1007017	CC03D	CC03D	Water	1007017-2	7/13/2010
2010 JUL EPA 1007017	CC03D	CC03D	Water	1007017-2	7/13/2010
2010 JUL EPA 1007017	CC03D	CC03D DUP	Water	1007017-2	7/13/2010
2010_JUL_EPA_1007017	CC03D	CC03D_DUP	Water	1007017-2	7/13/2010
 2010_JUL_EPA_1007017	CC04	CC04	Water	1007017-2	7/14/2010
2010_JUL_EPA_1007017	CC06	CC06	Water	1007017-2	7/14/2010
 2010_JUL_EPA_1007017	CC06	CC06	Water	1007017-2	7/14/2010
 2010_JUL_EPA_1007017	CC07	CC07	Water	1007017-2	7/13/2010
2010_JUL_EPA_1007017	CC07	CC07	Water	1007017-2	7/13/2010
2010_JUL_EPA_1007017	CC18	CC18	Water	1007017-1	7/13/2010
2010_JUL_EPA_1007017	CC18	CC18	Water	1007017-1	7/13/2010
2010_JUL_EPA_1007017	CC18B	CC18B	Water	1007017-1	7/13/2010
2010_JUL_EPA_1007017	CC18B	CC18B	Water	1007017-1	7/13/2010
2010_JUL_EPA_1007017	CC19	CC19	Water	1007017-2	7/13/2010
2010_JUL_EPA_1007017	CC19	CC19	Water	1007017-2	7/13/2010
2010 JUL EPA 1007017	CC48	CC48	Water	1007017-1	7/13/2010
2010_JUL_EPA_1007017		CCOPP13	Water	1007017-3	7/13/2010
2010_JUL_EPA_1007017		CCOPP13	Water	1007017-3	7/14/2010
2010_JUL_EPA_1007017	Field Dupl			1007017-3	7/15/2010
2010_JUL_EPA_1007017	M34	M34	Water	1007017-0	7/13/2010
2010_JUL_EPA_1007017	M34	M34_DUP	Water	1007017-2	7/13/2010
2010 JUL EPA 1007017	MTD-1	MTD-1	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-1	MTD-1	Water	1007017-3	7/15/2010
2010 JUL EPA 1007017	MTD-2	MTD-2	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-2	MTD-2	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-2B	MTD-2C	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-2B	MTD-2C	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017 2010_JUL_EPA_1007017	MTD-2B	MTD-2C	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017 2010_JUL_EPA_1007017	MTD-26	MTD-2C	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017 2010_JUL_EPA_1007017	MTD-2C	MTD-2C	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017 2010_JUL_EPA_1007017	MTD-2C	MTD-2C	Water	1007017-3	7/15/2010
2010_30L_LFA_100/01/	IVII D-ZC	IVIT D-ZC	vvalei	100/01/-3	1/13/2010

2010_JUL_EPA_1007017	MTD-3	MTD-3	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-3	MTD-3	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	MTD-4	MTD-4	Water	1007017-1	7/15/2010
2010_JUL_EPA_1007017	MTD-4	MTD-4	Water	1007017-1	7/15/2010
2010_JUL_EPA_1007017	QA Adit	QA Adit	Water	1007017-3	7/15/2010
2010_JUL_EPA_1007017	QA-3	QA-3	Water	1007017-3	7/15/2010
2010_JUN_EPA_1006002	A68	A68	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	A72	A72	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	CC01C	CC01C	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC01C	CC01C	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC01F	CC01F	Water	1006002-0	6/3/2010
2010_JUN_EPA_1006002	CC01H	CC01H	Water	1006002-0	6/3/2010
2010_JUN_EPA_1006002	CC01S	CC01S	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC01T	CC01T	Water	1006002-0	6/3/2010
2010_JUN_EPA_1006002	CC01U	CC-01U	Water	1006002-0	6/3/2010
2010_JUN_EPA_1006002	CC02D	CC02D	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC02D	CC02D	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC02E	CC02E	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC02E	CC02E	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC02i	CC02i	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC02K	CCO2K	Water	1006002-1	6/3/2010
2010_JUN_EPA_1006002	CC03	CCOPP-11	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC03B	CCOPP-12	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC03D	CC03D	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC03D	CC03D	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC03D	CC03D_DUP	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC03D	CC03D_DUP	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC04	CC04	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC06	CC06	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC06	CC06	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC06	CC06	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	CC07	CC07	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC07	CC07	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC18	CC18	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	CC18B	CC18B	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	CC18B	CC18B	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	CC19	CC19	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC19	CC19	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC48	CC48	Water	1006002-1	6/2/2010
2010_JUN_EPA_1006002	CC48	CC48_DUP	Water	1006002-2	6/2/2010
2010_JUN_EPA_1006002	M34	M34	Water	1006002-0	6/2/2010
2010_JUN_EPA_1006002	MTD-1	MTD-1	Water	1006002-2	6/3/2010
2010_JUN_EPA_1006002	MTD-2	MTD-2	Water	1006002-2	6/3/2010
2010_JUN_EPA_1006002	MTD-2	MTD-2	Water	1006002-2	6/3/2010
2010_JUN_EPA_1006002	MTD-3	MTD-3	Water	1006002-3	6/3/2010

2010 HIN EDA 1000003	NATE 2	NATE 2	\A/=+=	1000003	C/2/2010
2010_JUN_EPA_1006002	MTD-3 A68	MTD-3 A-17	Water	1006002-3	6/3/2010 3/17/2010
2010_MAR_EPA_1003013 2010_MAR_EPA_1003013	A00 A72	A-17 A-14	Water Water	1003013-0 1003013-0	3/17/2010
	A72 A72	A-14 A72		1003013-0	
2010_MAR_EPA_1003013			Water		3/17/2010
2010_MAR_EPA_1003013	A72	A72 DUD	Water	1003013-1	3/17/2010
2010_MAR_EPA_1003013	A72	A72_DUP	Water	1003013-1	3/17/2010
2010_MAR_EPA_1003013	CC01T	A-28	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC01U	A-30	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC02D	A-29	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC02D	CC02D	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC03D	B-27	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC03D	CC03D	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC06	A-26	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC06	CC06	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC06	CC06_DUF		1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC06	CC06_DUF	P Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC07	A-18	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC07	CC07	Water	1003013-0	3/18/2010
2010_MAR_EPA_1003013	CC18	B-22	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	CC18	CC18	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	CC18B	A-23	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	CC18B	CC18B	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	CC19	A-19	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC19	CC19	Water	1003013-1	3/18/2010
2010_MAR_EPA_1003013	CC48	A-21	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	CC48	CC48	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	M34	A-20	Water	1003013-0	3/17/2010
2010_MAR_EPA_1003013	M34	M34	Water	1003013-0	3/17/2010
2010_NOV_EPA_1011008	A68	A68	Field SampWater	1011008-0	11/2/2010
2010_NOV_EPA_1011008	A72	A-02	Field SampWater	1011008-3	11/2/2010
2010_NOV_EPA_1011008	A72	A72	Field SampWater	1011008-0	11/2/2010
2010_NOV_EPA_1011008	CC01C	CC01C	Field SampWater	1011008-1	11/3/2010
2010_NOV_EPA_1011008	CC01F	CC01F	Field SampWater	1011008-0	11/3/2010
2010_NOV_EPA_1011008	CC01H	CC01H	Field SampWater	1011008-0	11/3/2010
2010_NOV_EPA_1011008	CC01S	CC01S	Field SampWater	1011008-1	11/3/2010
2010_NOV_EPA_1011008	CC01T	CC01T	Field SampWater	1011008-0	11/3/2010
2010_NOV_EPA_1011008	CC01U	CC01U	Field SampWater	1011008-0	11/3/2010
2010_NOV_EPA_1011008	CC02D	CC02D	Field SampWater	1011008-1	11/4/2010
 2010_NOV_EPA_1011008	CC02E	CC02E	Field SampWater	1011008-1	11/4/2010
 2010_NOV_EPA_1011008	CC02i	CC02i	Field SampWater	1011008-1	11/3/2010
 2010_NOV_EPA_1011008	CC02K	CC02K	Field SampWater	1011008-1	11/4/2010
2010_NOV_EPA_1011008	CC03	CC03	Field SampWater	1011008-0	11/2/2010
2010_NOV_EPA_1011008	CC03B	CC03B	Field SampWater	1011008-0	11/2/2010
2010_NOV_EPA_1011008	CC03C	CC03C	Field SampWater	1011008-2	11/2/2010
2010_NOV_EPA_1011008	CC03D	CC03D	Field SampWater	1011008-2	11/2/2010
<u>-</u> <u>-</u>					, _,

2010_NOV_EPA_1011008	CC04	CC04	Field SampWater	1011008-2	11/3/2010
 2010_NOV_EPA_1011008	CC06	CC06	Field SampWater	1011008-2	11/3/2010
 2010_NOV_EPA_1011008	CC07	CC07	Field SampWater	1011008-2	11/2/2010
 2010_NOV_EPA_1011008	CC18	CC18	Field SampWater	1011008-1	11/2/2010
 2010_NOV_EPA_1011008	CC18B	CC18B	Field SampWater	1011008-1	11/2/2010
 2010_NOV_EPA_1011008	CC19	CC19	Field SampWater	1011008-2	11/2/2010
 2010_NOV_EPA_1011008	CC48	CC48	Field SampWater	1011008-1	11/2/2010
 2010_NOV_EPA_1011008	CC48		PField Dupli Water	1011008-3	11/2/2010
 2010_NOV_EPA_1011008		_	Field SampWater	1011008-3	11/3/2010
2010 NOV EPA 1011008			Field SampWater	1011008-3	11/4/2010
 2010_NOV_EPA_1011008	Field Dupl		Field Dupli Water	1011008-2	11/4/2010
2010 NOV EPA 1011008	M34	M34	Field SampWater	1011008-0	11/2/2010
2010_NOV_EPA_1011008	M34		Field Dupli Water	1011008-3	11/2/2010
2010 NOV EPA 1011008	MTD-4	MTD-4	Field SampWater	1011008-1	11/4/2010
2010_SEP_EPA_1009024	A68	A68	Water	1009024-0	9/14/2010
2010 SEP EPA 1009024	A72	A72	Water	1009024-0	9/14/2010
2010_SEP_EPA_1009024	A72	A72_DUP	Water	1009024-3	9/14/2010
2010 SEP EPA 1009024	ATS-1	ATS-1	Water	1009024-3	9/15/2010
2010 SEP_EPA_1009024	CC01C	CC01C	Water	1009024-1	9/15/2010
2010 SEP EPA 1009024	CC01F	CC01F	Water	1009024-0	9/15/2010
2010_SEP_EPA_1009024	CC01H	CC01H	Water	1009024-0	9/15/2010
2010_SEP_EPA_1009024	CC01S	CC01S	Water	1009024-1	9/15/2010
2010_SEP_EPA_1009024	CC01T	CC01T	Water	1009024-0	9/15/2010
2010_SEP_EPA_1009024	CC01U	CC01U	Water	1009024-0	9/15/2010
 2010_SEP_EPA_1009024	CC02D	CC02D	Water	1009024-1	9/15/2010
2010_SEP_EPA_1009024	CC02D	CC02D DU		1009024-3	9/15/2010
 2010_SEP_EPA_1009024	CC02E	CC02E	Water	1009024-1	9/15/2010
2010 SEP EPA 1009024	CC02i	CC02i	Water	1009024-1	9/15/2010
 2010_SEP_EPA_1009024	CC02K	CC02K	Water	1009024-1	9/15/2010
2010 SEP EPA 1009024	CC03	CCOPP-11	Water	1009024-0	9/14/2010
2010_SEP_EPA_1009024	CC03B	CCOPP-12	Water	1009024-0	9/14/2010
2010 SEP EPA 1009024	CC03C	CC03C	Water	1009024-2	9/14/2010
2010_SEP_EPA_1009024	CC03D	CC03D	Water	1009024-2	9/14/2010
2010_SEP_EPA_1009024	CC04	CC04	Water	1009024-2	9/14/2010
2010_SEP_EPA_1009024	CC06	CC06	Water	1009024-2	9/14/2010
2010 SEP EPA 1009024	CC07	CC07	Water	1009024-2	9/14/2010
2010_SEP_EPA_1009024	CC18	CC18	Water	1009024-1	9/14/2010
2010_SEP_EPA_1009024	CC18B	CC18B	Water	1009024-1	9/14/2010
2010_SEP_EPA_1009024	CC19	CC19	Water	1009024-2	9/14/2010
2010_SEP_EPA_1009024	CC48	CC48	Water	1009024-1	9/14/2010
 2010_SEP_EPA_1009024	CC48	CC48_DUF		1009024-3	9/14/2010
2010_SEP_EPA_1009024	Field Dupl	_	Field Dupli Water	1009024-2	9/15/2010
 2010_SEP_EPA_1009024	M34	M34	Water	1009024-0	9/14/2010
 2010_SEP_EPA_1009024	MTD-4	MTD-4	Water	1009024-1	9/15/2010
2011_AUG_EPA_1108015	A68	A68	Field SampSurface W	/;1108015-0	8/16/2011
_ _ _			•		-

2011_AUG_EPA_1108015	A72	A72	Field SampSurface	W:1108015-0	8/16/2011
2011_AUG_EPA_1108015	A72	A72	Field SampSurface		8/16/2011
 2011_AUG_EPA_1108015	CC01C	CC01C	Field SampSurface		8/17/2011
2011_AUG_EPA_1108015	CC01C1	CC01C1	Field SampSurface		8/17/2011
2011_AUG_EPA_1108015	CC01F	CC01F	Field SampSurface	W:1108015-0	8/17/2011
2011_AUG_EPA_1108015	CC01H	CC01H	Field SampSurface		8/17/2011
 2011_AUG_EPA_1108015	CC01S	CC01S	Field SampSurface		8/17/2011
2011_AUG_EPA_1108015	CC01T	CC01T	Field SampSurface		8/17/2011
2011_AUG_EPA_1108015	CC01U	CC01U	Field SampSurface		8/17/2011
2011 AUG EPA 1108015	CC01U	CC01U DU	Field DupliSurface		8/17/2011
2011_AUG_EPA_1108015	CC02D	CC02D	Field SampSurface	W:1108015-1	8/17/2011
2011_AUG_EPA_1108015	CC02E	CC02E	Field SampSurface		8/16/2011
2011_AUG_EPA_1108015	CC02i	CC02i	Field SampSurface		8/17/2011
2011_AUG_EPA_1108015	CC02J	CC02J	Field SampSurface		8/17/2011
2011 AUG EPA 1108015	CC02K	CC02K	Field SampSurface		8/16/2011
2011_AUG_EPA_1108015	CC03	CC03	Field SampSurface		8/16/2011
2011_AUG_EPA_1108015	CC03B	CC03B	Field SampSurface		8/16/2011
2011 AUG EPA 1108015	CC03C	CC03C	Field SampSurface		8/16/2011
2011 AUG EPA 1108015	CC03D	CC03D	Field SampSurface		8/16/2011
2011 AUG EPA 1108015	CC04	CC04	Field SampSurface		8/16/2011
2011_AUG_EPA_1108015	CC06	CC06	Field SampSurface	W:1108015-2	8/16/2011
2011_AUG_EPA_1108015	CC06B	CC06-B	Field SampSurface	W:1108015-4	8/16/2011
2011_AUG_EPA_1108015	CC07	CC07	Field SampSurface	W:1108015-2	8/16/2011
2011_AUG_EPA_1108015	CC18	CC18	Field SampSurface	W:1108015-1	8/16/2011
2011_AUG_EPA_1108015	CC18B	CC18B	Field SampSurface	W:1108015-1	8/16/2011
2011_AUG_EPA_1108015	CC19	CC19	Field SampSurface	W:1108015-2	8/16/2011
2011_AUG_EPA_1108015	CC19	CC19_DUP	Field Dupli Surface	W:1108015-3	8/16/2011
2011_AUG_EPA_1108015	CC48	CC48	Field SampSurface	W:1108015-1	8/16/2011
2011_AUG_EPA_1108015	CC48	CC48	Field SampSurface	W:1108015-3	8/16/2011
2011_AUG_EPA_1108015	CCOPP-13	CCOPP-13	Field SampSurface	W:1108015-1	8/17/2011
2011_AUG_EPA_1108015	CCOPP-14	CCOPP-14	Field SampSurface	W:1108015-2	8/17/2011
2011_AUG_EPA_1108015	CCOPP-15	CCOPP-15	Field SampSurface	Wi1108015-4	8/17/2011
2011_AUG_EPA_1108015	Field Dupli	FD-1	Field Dupli Surface	W:1108015-2	8/17/2011
2011_AUG_EPA_1108015	M34	M34	Field SampSurface	W:1108015-0	8/16/2011
2011_AUG_EPA_1108015	M34	M34	Field SampSurface	W:1108015-3	8/16/2011
2011_AUG_EPA_1108015	M34	M34_DUP	Field Dupli Surface	W:1108015-3	8/16/2011
2011_AUG_EPA_1108015	M34	M34_DUP	Field Dupli Surface	W:1108015-3	8/16/2011
2011_AUG_EPA_1108015	MTD-4	MTD-4	Field SampSurface	W:1108015-2	8/17/2011
2011_JUL_EPA_1107016	A68	A68	Field SampSurface	W:1107016-0	7/19/2011
2011_JUL_EPA_1107016	A72	A72	Field SampSurface	W:1107016-0	7/19/2011
2011_JUL_EPA_1107016	A72	A72_DUP	Field DupliSurface	Wi1107016-3	7/19/2011
2011_JUL_EPA_1107016	CC01C	CC01C	Field SampSurface	Wi1107016-1	7/20/2011
2011_JUL_EPA_1107016	CC01C1	CC01C1	Field SampSurface	W:1107016-3	7/20/2011
2011_JUL_EPA_1107016	CC01F	CC01F	Field SampSurface	Wi1107016-0	7/20/2011
2011_JUL_EPA_1107016	CC01H	CC01H	Field SampSurface	W:1107016-0	7/20/2011

2011 JUL EPA 1107016	CC01S	CC01S	Field SampSurface	W:1107016-1	7/20/2011
2011_JUL_EPA_1107016	CC01T	CC01T	Field SampSurface		7/20/2011
2011_JUL_EPA_1107016	CC01U	CC01U	Field SampSurface		7/20/2011
2011 JUL EPA 1107016	CC02D	CC02D	Field SampSurface		7/20/2011
2011_JUL_EPA_1107016	CC02E	CC02E	Field SampSurface		7/20/2011
2011 JUL EPA 1107016	CC02i	CC02i	Field SampSurface		7/20/2011
 2011_JUL_EPA_1107016	CC02J	CC02J	Field SampSurface		7/20/2011
 2011_JUL_EPA_1107016	CC02K	CC02K	Field SampSurface		7/20/2011
 2011_JUL_EPA_1107016	CC03	CC03	Field SampSurface		7/19/2011
2011 JUL EPA 1107016	CC03B	CC03B	Field SampSurface		7/19/2011
 2011_JUL_EPA_1107016	CC03C	CC03C	Field SampSurface		7/19/2011
2011 JUL EPA 1107016	CC03D	CC03D	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC04	CC04	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC06	CC06	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC07	CC07	Field SampSurface		7/19/2011
2011 JUL EPA 1107016	CC18	CC18	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC18B	CC18B	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC19	CC19	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC19		Field DupliSurface		7/19/2011
2011 JUL EPA 1107016	CC48	CC48	Field SampSurface		7/19/2011
2011_JUL_EPA_1107016	CC48		Field DupliSurface		7/19/2011
2011_JUL_EPA_1107016		_	Field SampSurface		7/20/2011
 2011_JUL_EPA_1107016			Field SampSurface		7/20/2011
2011 JUL EPA 1107016			Field SampSurface		7/20/2011
 2011_JUL_EPA_1107016	Field Dupli		Field DupliSurface		7/20/2011
 2011_JUL_EPA_1107016	M34	M34	Field SampSurface		7/19/2011
 2011_JUL_EPA_1107016	MTD-3	MTD-3	Field SampSurface		7/20/2011
2011 JUN EPA 1106010	A68	A68	Field SampSurface		6/14/2011
 2011_JUN_EPA_1106010	A68	A68_DUP	Field DupliSurface		6/14/2011
2011 JUN EPA 1106010	A72	A72	Field SampSurface		6/14/2011
 2011_JUN_EPA_1106010	CC01C	CC01C	Field SampSurface	W:1106010-1	6/15/2011
 2011_JUN_EPA_1106010	CC01H	CC01H	Field SampSurface		6/15/2011
 2011_JUN_EPA_1106010	CC01S	CC01S	Field SampSurface		6/15/2011
 2011_JUN_EPA_1106010	CC01T	CC01T	Field SampSurface		6/15/2011
 2011_JUN_EPA_1106010	CC01U	CC01U	Field SampSurface	W:1106010-0	6/15/2011
 2011_JUN_EPA_1106010	CC02D	CC02D	Field SampSurface		6/15/2011
 2011_JUN_EPA_1106010	CC02i	CC02i	Field SampSurface		6/15/2011
 2011_JUN_EPA_1106010	CC03	CC03	Field SampSurface	W:1106010-0	6/14/2011
2011_JUN_EPA_1106010	CC03B	CC03B	Field SampSurface	W:1106010-0	6/14/2011
2011_JUN_EPA_1106010	CC03D	CC03D	Field SampSurface	W:1106010-2	6/14/2011
 2011_JUN_EPA_1106010	CC04	CC04	Field SampSurface		6/14/2011
 2011_JUN_EPA_1106010	CC06	CC06	Field SampSurface		6/14/2011
 2011_JUN_EPA_1106010	CC06	CC06_DUP	Field Dupli Surface		6/14/2011
 2011_JUN_EPA_1106010	CC07	CC07	Field SampSurface		6/14/2011
 2011_JUN_EPA_1106010	CC18	CC18	Field SampSurface		6/14/2011
_			•		

2011_JUN_EPA_1106010	CC18B	CC18B	Field SampSurface Wi1106010-1	6/14/2011
2011_JUN_EPA_1106010	CC19	CC19	Field SampSurface Wi1106010-2	6/14/2011
2011_JUN_EPA_1106010	CC48	CC48	Field SampSurface Wi1106010-1	6/14/2011
2011_JUN_EPA_1106010	CC48	CC48_DUF	PField Dupli Surface W:1106010-3	6/14/2011
2011_JUN_EPA_1106010	CCOPP-13	CCOPP-13	Field SampSurface W:1106010-1	6/15/2011
2011_JUN_EPA_1106010	Field Dupl	iFD-1	Field Dupli Surface W:1106010-2	6/15/2011
2011_JUN_EPA_1106010	M34	M34	Field SampSurface W:1106010-0	6/14/2011
2011_JUN_EPA_1106010	MTD-4	MTD-4	Field SampSurface W:1106010-2	6/15/2011
2011_MAR_EPA_1103001	A68	A68	Field SampSurface W:1103001-0	3/15/2011
2011_MAR_EPA_1103001	A72	A72	Field SampSurface W:1103001-0	3/15/2011
2011_MAR_EPA_1103001	CC01U	CC01U	Field SampSurface W:1103001-0	3/16/2011
2011_MAR_EPA_1103001	CC03	CC03	Field SampSurface W:1103001-0	3/15/2011
2011_MAR_EPA_1103001	CC03B	CC03B	Field SampSurface W:1103001-0	3/16/2011
2011_MAR_EPA_1103001	CC03D	CC03D	Field SampSurface W:1103001-2	3/16/2011
2011_MAR_EPA_1103001	CC07	CC07	Field SampSurface W:1103001-2	3/15/2011
2011_MAR_EPA_1103001	CC18	CC18	Field SampSurface W:1103001-1	3/15/2011
2011_MAR_EPA_1103001	CC18	CC18_DUF	PField DupliSurface W:1103001-3	3/15/2011
2011_MAR_EPA_1103001	CC18B	CC18B	Field SampSurface W:1103001-1	3/15/2011
2011_MAR_EPA_1103001	CC19	CC19	Field SampSurface W:1103001-2	3/15/2011
2011_MAR_EPA_1103001	CC48	CC48	Field SampSurface W:1103001-1	3/15/2011
2011_MAR_EPA_1103001	M34	M34	Field SampSurface Wi1103001-0	3/15/2011
2011_MAR_EPA_1103001	M34	M-34_DUI	FField DupliSurface W:1103001-2	3/15/2011
2011_OCT_EPA_1110009	A68	A68	Field SampSurface W;1110009-0	10/18/2011
2011_OCT_EPA_1110009	A68	A68_DUP	Field DupliSurface W:1110009-3	10/18/2011
2011_OCT_EPA_1110009	A72	A72	Field SampSurface W;1110009-0	10/18/2011
2011_OCT_EPA_1110009	A72	A72_DUP	Field Dupli Water 1110009-3	10/18/2011
2011_OCT_EPA_1110009	CC01C	CC01C	Field SampSurface W;1110009-1	10/19/2011
2011_OCT_EPA_1110009	CC01C1	CC01C1	Field SampSurface W;1110009-3	10/19/2011
2011_OCT_EPA_1110009	CC01F	CC01F	Field SampSurface Wi1110009-0	10/19/2011
2011_OCT_EPA_1110009	CC01H	CC01H	Field SampSurface W;1110009-0	10/19/2011
2011_OCT_EPA_1110009	CC01S	CC01S	Field SampSurface W;1110009-1	10/19/2011
2011_OCT_EPA_1110009	CC01T	CC01T	Field SampSurface W;1110009-0	10/19/2011
2011_OCT_EPA_1110009	CC01U	CC01U	Field SampSurface Wi1110009-0	10/19/2011
2011_OCT_EPA_1110009	CC02D	CC02D	Field SampSurface W;1110009-1	10/19/2011
2011_OCT_EPA_1110009	CC02E	CC02E	Field SampSurface Wi1110009-1	10/19/2011
2011_OCT_EPA_1110009	CC02i	CC02i	Field SampSurface W;1110009-1	10/19/2011
2011_OCT_EPA_1110009	CC02K	CC02K	Field SampSurface Wi1110009-2	10/19/2011
2011_OCT_EPA_1110009	CC03	CC03	Field SampSurface Wi1110009-0	10/18/2011
2011_OCT_EPA_1110009	CC03B	CC03B	Field SampSurface Wi1110009-0	10/18/2011
2011_OCT_EPA_1110009	CC03C	CC03C	Field SampSurface Wi1110009-2	10/18/2011
2011_OCT_EPA_1110009	CC03D	CC03D	Field SampSurface Wi1110009-2	10/18/2011
2011_OCT_EPA_1110009	CC04	CC04	Field SampSurface Wi1110009-2	10/18/2011
2011_OCT_EPA_1110009	CC06	CC06	Field SampSurface Wi1110009-2	10/18/2011
2011_OCT_EPA_1110009	CC06B	CC06B	Field SampSurface Wi1110009-3	10/18/2011
2011_OCT_EPA_1110009	CC07	CC07	Field SampSurface Wi1110009-2	10/18/2011

2011 OCT EPA 1110009	CC18	CC18	Field SampSurface W:1110009-1	10/18/2011
2011_OCT_EPA_1110009	CC18B	CC18B	Field SampSurface W:1110009-1	10/18/2011
2011_OCT_EPA_1110009	CC19	CC19	Field SampSurface W:1110009-2	10/18/2011
2011_OCT_EPA_1110009	CC48	CC48	Field SampSurface W:1110009-1	10/18/2011
2011_OCT_EPA_1110009	CC48		Field DupliSurface W:1110009-3	10/18/2011
2011_OCT_EPA_1110009		_	Field SampSurface W:1110009-1	10/19/2011
2011_OCT_EPA_1110009			Field SampSurface W:1110009-2	10/19/2011
2011_OCT_EPA_1110009	Field Dupli		Field Dupli Surface W:1110009-2	10/19/2011
2011_OCT_EPA_1110009	M34	M34	Field SampSurface W:1110009-0	10/18/2011
2011_OCT_EPA_1110009	MTD-4	MTD-4	Field SampSurface W:1110009-2	10/19/2011
2011_SEP_EPA_1109011		A68	Field SampSurface W:1109011-0	9/13/2011
2011_SEP_EPA_1109011		A72	Field SampSurface W:1109011-0	9/13/2011
2011_SEP_EPA_1109011		A72_DUP	Field Dupli Surface W:1109011-3	9/13/2011
2011 SEP EPA 1109011	CC01C	CC01C	Field SampSurface W:1109011-1	9/14/2011
2011_SEP_EPA_1109011	CC01C1	CC01C1	Field SampSurface W:1109011-3	9/14/2011
2011 SEP_EPA_1109011	CC01F	CC01F	Field SampSurface W:1109011-0	9/14/2011
2011 SEP EPA 1109011	CC01H	CC01H	Field SampSurface W:1109011-0	9/14/2011
2011_SEP_EPA_1109011	CC01S	CC01S	Field SampSurface W:1109011-1	9/14/2011
2011_SEP_EPA_1109011	CC01T	CC01T	Field SampSurface W:1109011-0	9/14/2011
2011 SEP EPA 1109011	CC01U	CC01U	Field SampSurface W:1109011-0	9/14/2011
2011_SEP_EPA_1109011	CC02D	CC02D	Field SampSurface W:1109011-1	9/14/2011
2011_SEP_EPA_1109011	CC02E	CC02E	Field SampSurface W:1109011-1	9/14/2011
2011_SEP_EPA_1109011	CC02i	CC02i	Field SampSurface W:1109011-1	9/14/2011
2011_SEP_EPA_1109011	CC02K	CC02K	Field SampSurface W:1109011-2	9/14/2011
2011_SEP_EPA_1109011	CC03	CC03	Field SampSurface W:1109011-0	9/13/2011
2011_SEP_EPA_1109011	CC03B	CC03B	Field SampSurface W:1109011-0	9/13/2011
2011_SEP_EPA_1109011	CC03C	CC03C	Field SampSurface W:1109011-2	9/13/2011
2011_SEP_EPA_1109011	CC03D	CC03D	Field SampSurface W:1109011-2	9/13/2011
 2011_SEP_EPA_1109011	CC03D	CC03D_DU	Field DupliSurface W:1109011-3	9/13/2011
2011 SEP EPA 1109011	CC04	CC04	Field SampSurface W:1109011-2	9/13/2011
2011_SEP_EPA_1109011	CC06	CC06	Field SampSurface W:1109011-2	9/13/2011
2011_SEP_EPA_1109011	CC06B	CC06B	Field SampSurface W:1109011-3	9/13/2011
2011_SEP_EPA_1109011	CC07	CC07	Field SampSurface W:1109011-2	9/13/2011
2011_SEP_EPA_1109011	CC18	CC18	Field SampSurface W:1109011-1	9/13/2011
2011_SEP_EPA_1109011	CC18B	CC18B	Field SampSurface W:1109011-1	9/13/2011
2011_SEP_EPA_1109011	CC19	CC19	Field SampSurface W:1109011-2	9/13/2011
2011_SEP_EPA_1109011	CC48	CC48	Field SampSurface W:1109011-1	9/13/2011
2011_SEP_EPA_1109011	CC48	CC48_DUP	Field Dupli Surface W:1109011-3	9/13/2011
2011_SEP_EPA_1109011	CCOPP-13	CCOPP-13	Field SampSurface W:1109011-1	9/13/2011
2011_SEP_EPA_1109011	CCOPP-14	CCOPP-14	Field SampSurface Wi1109011-2	9/14/2011
2011_SEP_EPA_1109011	Field Dupli		Field Dupli Surface W:1109011-2	9/14/2011
2011_SEP_EPA_1109011	M34	M34	Field SampSurface W:1109011-0	9/13/2011
2011_SEP_EPA_1109011	MTD-4	MTD-4	Field SampSurface W:1109011-2	9/14/2011
2012_May_Surface Water_0	CemerCC01C	CC01C	Field SampSurface W:A830-0068	5/16/2012
2012_May_Surface Water_0	Ceme(CC01C	CC01C	Field SampSurface W:A830-0079	5/16/2012

2012_May_Surface Water_CemeiCC01C1	CC01C1	Field SampSurface W:A830-0067	5/16/2012
2012_May_Surface Water_CemeiCC01C1	CC01C1	Field SampSurface W:A830-0078	5/16/2012
2012_May_Surface Water_CemeiCC01H	CC01H	Field SampSurface WaA830-0063	5/16/2012
2012_May_Surface Water_CemeiCC01H	CC01H	Field SampSurface W:A830-0074	5/16/2012
2012_May_Surface Water_CemeiCC02B	CC02B	Field SampSurface WaA830-0064	5/16/2012
2012_May_Surface Water_CemeiCC02B	CC02B	Field SampSurface W:A830-0075	5/16/2012
2012_May_Surface Water_CemeiCC02D	CC02D	Field SampSurface W:A830-0069	5/16/2012
2012_May_Surface Water_CemeiCC02D	CC02D	Field SampSurface W:A830-0080	5/16/2012
2012_May_Surface Water_CemeiCC02D	CC02D_DI	UField DupliSurface W:A830-0066	5/16/2012
2012_May_Surface Water_CemeiCC02D	CC02D_DI	UField DupliSurface W:A830-0077	5/16/2012
2012_May_Surface Water_CemeiCC03C	CC03C	Field SampSurface WaA830-0070	5/15/2012
2012_May_Surface Water_CemeiCC03C	CC03C	Field SampSurface W:A830-0081	5/15/2012
2012_May_Surface Water_CemeiCC04	CC04	Field SampSurface W:A830-0061	5/16/2012
2012_May_Surface Water_CemeiCC04	CC04	Field SampSurface W:A830-0072	5/16/2012
2012_May_Surface Water_CemeiCC06	CC06	Field SampSurface W:A830-0062	5/16/2012
2012_May_Surface Water_CemeiCC06	CC06	Field SampSurface W:A830-0073	5/16/2012
2012_May_Surface Water_CemeiCC06	CC06 DUI	PField DupliSurface W:A830-0065	5/16/2012
2012_May_Surface Water_CemeiCC06	_	PField DupliSurface W:A830-0076	5/16/2012
2012_May_Surface Water_CemeiCC19	CC19	Field SampSurface W:A830-0071	5/15/2012
2012_May_Surface Water_CemeiCC19	CC19	Field SampSurface W;A830-0082	5/15/2012
2012_MAY_Water and Sediment_A68	A68	Field SampSediment A830-0056	5/15/2012
2012_MAY_Water and Sediment_A68	A68	Field SampSurface W;A830-0001	5/15/2012
2012_MAY_Water and Sediment_A72	A72	Field SampSediment A830-0057	5/15/2012
2012_MAY_Water and Sediment_A72	A72	Field SampSurface W:A830-0002	5/15/2012
2012_MAY_Water and Sediment_A72	A72_DUP	Field Dupli Sediment A830-006C	5/15/2012
2012_MAY_Water and Sediment_A72	A72_DUP	Field Dupli Surface W:A830-0050	5/15/2002
2012_MAY_Water and Sediment_CC01C	CC01C	Field SampSurface W:A830-0015	5/16/2012
2012_MAY_Water and Sediment_CC01C1	CC01C1	Field SampSurface W:A830-0014	5/16/2012
2012_MAY_Water and Sediment_CC01C2	CC01C2	Field SampSurface W:A830-0016	5/16/2012
2012_MAY_Water and Sediment_CC01H	CC01H	Field SampSurface WiA830-0037	5/16/2012
2012_MAY_Water and Sediment_CC01U	CC01U	Field SampSurface W:A830-0005	5/16/2012
2012 MAY Water and Sediment CC02B	CC02B	Field SampSurface W:A830-0038	5/16/2012
2012_MAY_Water and Sediment_CC02D	CC02D	Field SampSurface W:A830-0004	5/16/2012
2012_MAY_Water and Sediment_CC02D	CC02D	Field SampSurface W:A830-0017	5/16/2012
2012_MAY_Water and Sediment_CC02D	CC02D_DI	UField DupliSurface W:A830-0052	5/16/2012
2012_MAY_Water and Sediment_CC02E	CC02E	Field SampSurface W:A830-0018	5/16/2012
2012_MAY_Water and Sediment_CC02K	CC02K	Field SampSurface W:A830-0019	5/16/2012
2012_MAY_Water and Sediment_CC03	CC03	Field SampSurface W:A830-0007	5/15/2012
2012_MAY_Water and Sediment_CC03B	CC03B	Field SampSurface W:A830-0006	5/15/2012
2012_MAY_Water and Sediment_CC03C	CC03C	Field SampSurface W:A830-0023	5/15/2012
2012_MAY_Water and Sediment_CC03D	CC03D	Field SampSurface W:A830-0022	5/15/2012
2012_MAY_Water and Sediment_CC04	CC04	Field SampSurface W:A830-0033	5/16/2012
2012_MAY_Water and Sediment_CC06	CC06	Field SampSurface WiA830-0035	5/16/2012
2012_MAY_Water and Sediment_CC06	CC06_DU	PField Dupli Surface W: A830-0051	5/16/2012
2012_MAY_Water and Sediment_CC07	CC07	Field SampSurface W:A830-0024	5/15/2012
· –		-	-

2012_MAY_Water and Sediment_CC14	CC14	Field SampSurface W:A830-0026	5/16/2012
2012_MAY_Water and Sediment_CC15	CC15	Field SampSurface W:A830-0027	5/16/2012
2012_MAY_Water and Sediment_CC16B	CC16B	Field SampSurface WiA830-0028	5/16/2012
2012_MAY_Water and Sediment_CC17	CC17	Field SampSurface W:A830-0029	5/15/2012
2012_MAY_Water and Sediment_CC17	CC17_DU	PField DupliSurface W:A830-0049	5/15/2012
2012_MAY_Water and Sediment_CC18	CC18	Field SampSurface WiA830-0009	5/15/2012
2012_MAY_Water and Sediment_CC18B	CC18B	Field SampSurface W;A830-0008	5/15/2012
2012_MAY_Water and Sediment_CC19	CC19	Field SampSurface W;A830-0025	5/15/2012
2012_MAY_Water and Sediment_CC21	CC21	Field SampSurface W;A830-001C	5/15/2012
2012_MAY_Water and Sediment_CC21B	CC21B	Field SampSurface W;A830-0011	5/15/2012
2012_MAY_Water and Sediment_CC26	CC26	Field SampSurface W;A830-003C	5/15/2012
2012_MAY_Water and Sediment_CC40	CC40	Field SampSurface W;A830-0031	5/15/2012
2012_MAY_Water and Sediment_CC41	CC41	Field SampSurface W;A830-0012	5/15/2012
2012_MAY_Water and Sediment_CC42	CC42	Field SampSurface W:A830-0032	5/15/2012
2012_MAY_Water and Sediment_CC48	CC48	Field SampSurface W:A830-0013	5/15/2012
2012 MAY Water and Sediment Field Dupl		Field DupliSurface W:A830-0021	5/16/2012
2012_MAY_Water and Sediment_M34	M34	Field SampSurface W:A830-0003	5/15/2012
2012 MAY Water and Sediment MTD-4	MTD-4	Field SampSurface W:A830-002C	5/16/2012
2012_MAY_Water and Sediment_Opp samp		•	5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp		·	5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp		·	5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp		·	5/15/2012
2012_MAY_Water and Sediment_Opp samp		•	5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp			5/15/2012
2012_MAY_Water and Sediment_Opp samp		·	5/15/2012
2013_MAY_SW & Soils_Upper Ce A56		Frield SampSurface W:A830-0437	5/13/2013
2013_MAY_SW & Soils_Upper Ce A58		8Field SampSurface W:A830-0438	5/13/2013
2013_MAY_SW & Soils_Upper Ce A60		SField SampSurface W:A830-0439	5/13/2013
2013_MAY_SW & Soils_Upper Ce A61		CField SampSurface W:A830-044C	5/13/2013
2013_MAY_SW & Soils_Upper Ce A64		Field SampSurface W:A830-0441	5/14/2013
2013_MAY_SW & Soils_Upper Ce A65		2Field SampSurface W:A830-0442	5/14/2013
2013_MAY_SW & Soils_Upper Ce A66		3Field SampSurface W:A830-0443	5/14/2013
2013 MAY SW & Soils Upper Ce A67		4Field SampSurface W:\A830-0444	5/14/2013
2013_MAY_SW & Soils_Upper Ce A68		5Field SampSurface W:A830-0445	5/14/2013
2013_MAY_SW & Soils_Upper Ce A72		EField SampSurface WiA830-0446	5/14/2013
2013_MAY_SW & Soils_Upper Ce A73		7Field SampSurface W:A830-0447	5/15/2013
2013_MAY_SW & Soils_Upper Ce A73B		EField SampSurface WiA830-0448	5/15/2013
2013_MAY_SW & Soils_Upper Ce A73EC	A73EC	Field SampSurface W:A830-0449	5/15/2013
2013_MAY_SW & Soils_Upper CeA73MC		CField SampSurface W:A830-0450	5/15/2013
2013_MAY_SW & Soils_Upper Ce A75B		Field SampSurface W;A830-0451	5/15/2013
2010_MM_000 & 00110_0pper 007/00	, 1050 045	21 Total Juliipodi lace Windoo 0451	5/ 15/ 2015

2013_MAY_SW & Soils_Upper Ce A75CC	A830-045	2Field SampSurface W:A830-0452	5/15/2013
2013_MAY_SW & Soils_Upper CeA75D		3Field SampSurface W:A830-0453	5/15/2013
2013_MAY_SW & Soils_Upper CeBbridge		4Field SampSurface W:A830-0454	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC02B		5Field SampSurface W:A830-0455	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC02D		66Field SampSurface W:A830-0456	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC02H		7Field SampSurface W:A830-0457	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC03		Sefield SampSurface W:A830-0458	5/13/2013
		SField SampSurface W(A830-0459	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC03B		· ·	
2013_MAY_SW & Soils_Upper Ce CC03C		CField SampSurface W:A830-0460	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC03D		1Field SampSurface WiA830-0461	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC07		S2Field SampSurface W:A830-0462	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC14		3Field SampSurface W:A830-0463	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC15		4Field SampSurface W:A830-0464	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC16B		55Field SampSurface W;A830-0465	5/15/2013
2013_MAY_SW & Soils_Upper Ce CC17		66Field SampSurface WaA830-0466	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC18		7Field SampSurface W:A830-0467	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC18B		88Field SampSurface WaA830-0468	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC19	A830-046	SField SampSurface WaA830-0469	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC21		CField SampSurface W:A830-047C	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC21B	A830-047	1Field SampSurface W:A830-0471	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC26	A830-047	'2Field SampSurface W:A830-0472	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC40	A830-047	'3Field SampSurface W:A830-0473	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC41	A830-047	'4Field SampSurface W:A830-0474	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC42	A830-047	'5Field SampSurface W:A830-0475	5/14/2013
2013_MAY_SW & Soils_Upper Ce CC48	A830-047	'éField SampSurface W:A830-0476	5/14/2013
2013_MAY_SW & Soils_Upper Ce Field Dup	li A830-048	SField DupliSurface W:A830-0485	5/15/2013
2013_MAY_SW & Soils_Upper Ce M34	A830-048	&Field SampSurface W:A830-0486	5/14/2013
2013_MAY_SW & Soils_Upper CeMTD-4	A830-048	7Field SampSurface W:A830-0487	5/15/2013
2014_APR_Water & Sediment_U¡A55	A55	Field SampSurface W:A830-0742	4/16/2014
2014_APR_Water & Sediment_U¡A56	A56	Field SampSurface WaA830-0743	4/16/2014
2014_APR_Water & Sediment_U¡A68	A68	Field SampSurface WaA830-0744	4/16/2014
2014_APR_Water & Sediment_U¡A73	A73	Field SampSurface WaA830-0745	4/15/2014
2014_APR_Water & Sediment_U¡A75D	A75D	Field SampSurface WaA830-0746	4/15/2014
2014_APR_Water & Sediment_U¡Bbridge	Bbridge	Field SampSurface WaA830-0747	4/15/2014
2014_APR_Water & Sediment_UiField Blan	kFB-01	Field BlankWater A830-0748	4/15/2014
2014_APR_Water & Sediment_UiField Blan		Field BlankWater A830-0749	4/16/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface WiA830-0793	5/13/2014
2014_JUL_Surface Water_Upper A68	A68	Field SampSurface WiA830-0794	5/21/2014
2014_JUL_Surface Water_Upper A68	A68	Field SampSurface W:A830-0795	5/28/2014
2014_JUL_Surface Water_Upper A68	A68	Field SampSurface W:A830-0796	6/6/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface W:A830-0797	6/13/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface W:A830-0798	6/23/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface W:A830-0799	7/2/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface W:A830-080C	7/25/2014
2014_JUL_Surface Water_Upper .A68	A68	Field SampSurface W;A830-0801	7/12/2014
	-	,	, ==, === .

2014_JUL_Surface Water_Upper A68	A68	Field SampSurface W;A830-0802	7/20/2014
2014_JUL_Surface Water_Upper .A72	A72	Field SampSurface W;A830-0803	5/13/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0804	5/21/2014
2014_JUL_Surface Water_Upper .A72	A72	Field SampSurface W:A830-0805	5/27/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0806	6/6/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0807	6/13/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0808	6/23/2014
2014_JUL_Surface Water_Upper .A72	A72	Field SampSurface W:A830-0809	7/2/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0810	7/26/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0811	7/30/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0812	7/11/2014
2014_JUL_Surface Water_Upper A72	A72	Field SampSurface W:A830-0813	7/20/2014
2014_JUL_Surface Water_Upper A73	A73	Field SampSurface W:A830-0815	7/29/2014
2014_JUL_Surface Water_Upper A73	ElkPark	Field SampSurface W:A830-0814	7/9/2014
2014_JUL_Surface Water_Upper A75	A75	Field SampSurface W:A830-0816	7/29/2014
2014_JUL_Surface Water_Upper Bbridge	Bbridge	Field SampSurface W:A830-0817	7/29/2014
2014_JUL_Surface Water_Upper Field Blan	kFB	Field BlankSurface W:A830-0818	7/30/2014
2014_MAY_Surface Waters_UppeA55	A55	Field SampSurface W:A830-0750	5/6/2014
2014_MAY_Surface Waters_UppeA56	A56	Field SampSurface W:A830-0751	5/6/2014
2014_MAY_Surface Waters_UppeA58	A58	Field SampSurface W:A830-0752	5/6/2014
2014_MAY_Surface Waters_UppeA60	A60	Field SampSurface W:A830-0753	5/6/2014
2014_MAY_Surface Waters_Upp«A61	A61	Field SampSurface W:A830-0754	5/6/2014
2014_MAY_Surface Waters_Upp«A64	A64	Field SampSurface W;A830-0755	5/6/2014
2014_MAY_Surface Waters_Upp«A65	A65	Field SampSurface W:A830-0756	5/6/2014
2014_MAY_Surface Waters_Upp«A66	A66	Field SampSurface W;A830-0757	5/6/2014
2014_MAY_Surface Waters_Upp«A67	A67	Field SampSurface W;A830-0758	5/6/2014
2014_MAY_Surface Waters_Upp«A68	A68	Field SampSurface W;A830-0759	5/5/2014
2014_MAY_Surface Waters_Upp(A72	A72	Field SampSurface W;A830-076C	5/5/2014
2014_MAY_Surface Waters_Upp(A73	A73	Field SampSurface W;A830-0761	5/7/2014
2014_MAY_Surface Waters_Upp(A73B	A73B	Field SampSurface W;A830-0762	5/7/2014
2014_MAY_Surface Waters_UppeA75B	A75B	Field SampSurface W;A830-0763	5/7/2014
2014_MAY_Surface Waters_Upp(A75CC	A75CC	Field SampSurface W;A830-0764	5/7/2014
2014_MAY_Surface Waters_Upp@Bbridge	Bbridge	Field SampSurface WaA830-0766	5/7/2014
2014_MAY_Surface Waters_Upp(CB-Opp3	CB-Opp3	Field SampSurface W;A830-0767	5/7/2014
2014_MAY_Surface Waters_UppeCB-Opp4	CB-Opp4	Field SampSurface WaA830-0768	5/7/2014
2014_MAY_Surface Waters_Upp(CC03	CC03	Field SampSurface W;A830-0769	5/7/2014
2014_MAY_Surface Waters_UppeCC03B	CC03B	Field SampSurface WaA830-077C	5/7/2014
2014_MAY_Surface Waters_Upp(CC03C	CC03C	Field SampSurface WaA830-0771	5/7/2014
2014_MAY_Surface Waters_Upp(CC07	CC07	Field SampSurface WaA830-0772	5/7/2014
2014_MAY_Surface Waters_Upp(CC14	CC14	Field SampSurface WaA830-0773	5/7/2014
2014_MAY_Surface Waters_Upp(CC16B	CC16B	Field SampSurface WaA830-0774	5/7/2014
2014_MAY_Surface Waters_UppeCC17	CC17	Field SampSurface W:A830-0775	5/6/2014
2014_MAY_Surface Waters_Upp(CC18	CC18	Field SampSurface W:A830-0776	5/6/2014
2014_MAY_Surface Waters_Upp(CC19	CC19	Field SampSurface W;A830-0777	5/6/2014
2014_MAY_Surface Waters_Upp(CC21	CC21	Field SampSurface W:A830-0778	5/6/2014

2014_MAY_Surface Waters_Upp(CC21B	CC21B	Field SampSurface W:A830-0779	5/6/2014
2014_MAY_Surface Waters_UppeCC26	CC26	Field SampSurface W:A830-0780	5/6/2014
2014_MAY_Surface Waters_UppeCC41	CC41	Field SampSurface W:A830-0781	5/6/2014
2014_MAY_Surface Waters_UppeCC48	CC48	Field SampSurface W:A830-0782	5/6/2014
2014 MAY Surface Waters UppeM34	M34	Field SampSurface W:A830-0788	5/5/2014
2014_SEP_Waters & Seds_Upper A39	A39	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A41	A41	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A43	A43	Field SampSurface W(085M-000)	9/25/2014
2014_SEP_Waters & Seds_Upper A45	A45	Field SampSurface Wi085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A47	A47	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A49	A49	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A51	A51	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A53AC	A53AC	Field SampSurface W:085M-000	9/25/2014
2014_SEP_Waters & Seds_Upper A55	A55	Field SampSurface W:085M-000	9/23/2014
2014_SEP_Waters & Seds_Upper A56	A56	Field SampSurface W:085M-001	9/23/2014
2014_SEP_Waters & Seds_Upper A58	A58	Field SampSurface W:085M-001	9/23/2014
2014_SEP_Waters & Seds_Upper A60	A60	Field SampSurface Wi085M-001	9/23/2014
2014_SEP_Waters & Seds_Upper A61	A61	Field SampSurface W:085M-001	9/23/2014
2014_SEP_Waters & Seds_Upper A64	A64	Field SampSurface W:085M-001	9/23/2014
2014_SEP_Waters & Seds_Upper A65	A65	Field SampSurface W:085M-001	9/25/2014
2014_SEP_Waters & Seds_Upper A66	A66	Field SampSurface W:085M-001	9/25/2014
2014_SEP_Waters & Seds_Upper A67	A67	Field SampSurface W:085M-001	9/25/2014
2014_SEP_Waters & Seds_Upper A68	A68	Field SampSurface Wi085M-001	9/24/2014
2014_SEP_Waters & Seds_Upper A72	A72	Field SampSurface Wi085M-001	9/24/2014
2014_SEP_Waters & Seds_Upper A73	A73	Field SampSurface Wi085M-002	9/25/2014
2014_SEP_Waters & Seds_Upper A73B	A73B	Field SampSurface Wi085M-002	9/25/2014
2014_SEP_Waters & Seds_Upper A73EC	A73EC	Field SampSurface Wi085M-002	9/25/2014
2014_SEP_Waters & Seds_Upper A75B	A75B	Field SampSurface Wi085M-002	9/24/2014
2014_SEP_Waters & Seds_Upper A75CC	A75CC	Field SampSurface Wi085M-002	9/24/2014
2014_SEP_Waters & Seds_Upper A75D	A75D	Field SampSurface Wi085M-002	9/24/2014
2014_SEP_Waters & Seds_Upper Animas @	:Animas @	Field SampSurface Wi085M-002	9/25/2014
2014_SEP_Waters & Seds_Upper Animas @	IAnimas @	OlField SampSurface Wi085M-002	9/24/2014
2014_SEP_Waters & Seds_Upper Animas @	IAnimas @	OlField SampSurface Wi085M-002	9/24/2014
2014_SEP_Waters & Seds_Upper Bbridge	Bbridge	Field SampSurface Wi085M-002	9/25/2014
2014_SEP_Waters & Seds_Upper CC01C2	CC01C2	Field SampSurface Wi085M-003	9/24/2014
2014_SEP_Waters & Seds_Upper CC01T	CC01T	Field SampSurface W:085M-003	9/24/2014
2014_SEP_Waters & Seds_Upper CC01U	CC01U	Field SampSurface Wi085M-003	9/24/2014
2014_SEP_Waters & Seds_Upper CC02B	CC02B	Field SampSurface Wi085M-003	9/23/2014
2014_SEP_Waters & Seds_Upper CC02D	CC02D	Field SampSurface Wi085M-003	9/23/2014
2014_SEP_Waters & Seds_Upper CC02E	CC02E	Field SampSurface Wi085M-003:	9/23/2014
2014_SEP_Waters & Seds_Upper CC02i	CC02i	Field SampSurface W:085M-003	9/24/2014
2014_SEP_Waters & Seds_Upper CC02K	CC02K	Field SampSurface W:085M-003	9/23/2014
2014_SEP_Waters & Seds_Upper CC03	CC03	Field SampSurface W:085M-003	9/23/2014
2014_SEP_Waters & Seds_Upper CC03B	CC03B	Field SampSurface W:085M-003	9/23/2014
2014_SEP_Waters & Seds_Upper CC03C	CC03C	Field SampSurface W:085M-004	9/23/2014

2014_SEP_Waters & Seds_Upper CC03D	CC03D	Field SampSurface W:085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC04	CC04	Field SampSurface W:085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC06	CC06	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC06B	CC06B	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC07	CC07	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC14	CC14	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC15	CC15	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC16B	CC16B	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC17	CC17	Field SampSurface Wi085M-004	9/23/2014
2014_SEP_Waters & Seds_Upper CC18	CC18	Field SampSurface W:085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC18B	CC18B	Field SampSurface Wi085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC19	CC19	Field SampSurface Wi085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC21	CC21	Field SampSurface Wi085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC21B	CC21B	Field SampSurface W:085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC26	CC26	Field SampSurface Wi085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC41	CC41	Field SampSurface W:085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper CC48	CC48	Field SampSurface Wi085M-005	9/23/2014
2014_SEP_Waters & Seds_Upper Field Dup	oli FD-1	Field Dupli Surface W:085M-006	9/23/2014
2014_SEP_Waters & Seds_Upper JamesRa	ncJamesRa	ncField SampSurface W:085M-006	9/24/2014
2014_SEP_Waters & Seds_Upper M34	M34	Field SampSurface W:085M-006	9/24/2014
2014_SEP_Waters & Seds_Upper MTD-4	MTD-4	Field SampSurface Wi085M-006	9/23/2014
2014_SEP_Waters & Seds_Upper PG-01	PG-01	Field SampSurface Wi085M-006	9/25/2014
2015_JUN_Water_Upper Animas A02	A02	Field SampSurface Wi085M-139	6/10/2015
2015_JUN_Water_Upper Animas A05	A05	Field SampSurface W:085M-139	6/10/2015
2015_JUN_Water_Upper Animas A08	A08	Field SampSurface W:085M-140	6/10/2015
2015_JUN_Water_Upper Animas A09	A09	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas A10	A10	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas_A11	A11	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas A11A	A11A	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas_A12	A12	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas A13	A13	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas A14	A14	Field SampSurface W:085M-140	6/9/2015
2015_JUN_Water_Upper Animas A15	A15	Field SampSurface W:085M-140	6/10/2015
2015_JUN_Water_Upper Animas_A20	A20	Field SampSurface Wi085M-140	6/10/2015
2015_JUN_Water_Upper Animas_A24	A24	Field SampSurface W:085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A25	A25	Field SampSurface W:085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A26	A26	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A27	A27	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas A28	A28	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A29	A29	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A29A	A29A	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A30	A30	Field SampSurface W ₁ 085M-141	6/9/2015
2015_JUN_Water_Upper Animas A31	A31	Field SampSurface W:085M-141	6/9/2015
2015_JUN_Water_Upper Animas_A32	A32	Field SampSurface Wi085M-141	6/9/2015
2015_JUN_Water_Upper Animas _. A34	A34	Field SampSurface W:085M-142	6/9/2015

2015_JUN_Water_Upper Animas_A35	A35	Field SampSurface Wi085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A36	A36	Field SampSurface W:085M-142	6/10/2015
2015_JUN_Water_Upper Animas_A37	A37	Field SampSurface Wi085M-142	6/10/2015
2015_JUN_Water_Upper Animas A40	A40	Field SampSurface W:085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A40A	A40A	Field SampSurface Wi085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A41A	A41A	Field SampSurface Wi085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A41C	A41C	Field SampSurface W:085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A42	A42	Field SampSurface Wi085M-142	6/9/2015
2015_JUN_Water_Upper Animas A43	A43	Field SampSurface Wi085M-142	6/9/2015
2015_JUN_Water_Upper Animas_A45	A45	Field SampSurface W:085M-143	6/9/2015
2015_JUN_Water_Upper Animas_A47	A47	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas A48	A48	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas_A54	A54	Field SampSurface Wi085M-143	6/10/2015
2015_JUN_Water_Upper Animas A55	A55	Field SampSurface W:085M-143	6/9/2015
2015_JUN_Water_Upper Animas A55	A55	Field SampSurface Wi085M-143	6/10/2015
2015_JUN_Water_Upper Animas A56	A56	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas A58	A58	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas A60	A60	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas A61	A61	Field SampSurface Wi085M-143	6/9/2015
2015_JUN_Water_Upper Animas A64	A64	Field SampSurface W:085M-144	6/9/2015
2015_JUN_Water_Upper Animas A65	A65	Field SampSurface W:085M-144	6/9/2015
2015_JUN_Water_Upper Animas A66	A66	Field SampSurface Wi085M-144	6/9/2015
2015_JUN_Water_Upper Animas A68	A68	Field SampSurface Wi085M-144	6/9/2015
2015_JUN_Water_Upper Animas A68	A68	Field SampSurface W:085M-144	6/10/2015
2015_JUN_Water_Upper Animas.A72	A72	Field SampSurface Wi085M-144	6/9/2015
2015_JUN_Water_Upper Animas A72 Sto	orm A72 Stori	m Field SampSurface W:085M-144	6/10/2015
2015_JUN_Water_Upper Animas Bbridge	e Bbridge	Field BlankSurface W:085M-144	6/10/2015
2015_JUN_Water_Upper Animas_CC03	CC03	Field SampSurface Wi085M-144	6/10/2015
2015_JUN_Water_Upper Animas CC03B	CC03B	Field SampSurface W:085M-144	6/10/2015
2015_JUN_Water_Upper Animas_CC03D	CC03D	Field SampSurface W:085M-145	6/10/2015
2015_JUN_Water_Upper Animas.CC07	CC07	Field SampSurface W:085M-145	6/10/2015
2015_JUN_Water_Upper Animas_CC14	CC14	Field SampSurface Wi085M-145	6/10/2015
2015_JUN_Water_Upper Animas _. CC17	CC17	Field SampSurface Wi085M-145	6/10/2015
2015_JUN_Water_Upper Animas_CC-18	CC-18	Field SampSurface Wi085M-145	6/10/2015
2015_JUN_Water_Upper Animas.CC-18B	CC-18B	Field SampSurface Wi085M-145	6/10/2015
2015_JUN_Water_Upper Animas_CC19	CC19	Field SampSurface W:085M-145	6/10/2015
2015_JUN_Water_Upper Animas.CC21	CC21	Field SampSurface W:085M-145	6/10/2015
2015_JUN_Water_Upper Animas_CC-48	CC-48	Field SampSurface Wi085M-145	6/10/2015
2015_JUN_Water_Upper Animas _. CG11	CG11	Field SampSurface Wi085M-145	6/9/2015
2015_JUN_Water_Upper Animas.CG12A	CG12A	Field SampSurface Wi085M-146	6/9/2015
2015_JUN_Water_Upper Animas _. CG9	CG9	Field SampSurface W:085M-146	6/9/2015
2015_JUN_Water_Upper Animas_EG6	EG6	Field SampSurface W:085M-146	6/10/2015
2015_JUN_Water_Upper Animas _. EG9	EG9	Field SampSurface W:085M-147	6/9/2015
2015_JUN_Water_Upper Animas_LA3	LA3	Field SampSurface W:085M-147	6/9/2015
2015_JUN_Water_Upper Animas _. M34	M34	Field SampSurface W ₂ 085M-147	6/9/2015

StormM34 Stor	nField SampSurface W:085M-147	6/10/2015
TM1	Field SampSurface W:085M-147	6/9/2015
UA5	Field SampSurface Wi085M-147	6/10/2015
UA8	Field SampSurface W:085M-148	6/9/2015
A55	Field SampSurface Wi085M-061	1/9/2015
A55	Field SampSurface W:085M-062	12/15/2014
A55	Field SampSurface W:085M-062	2/6/2015
A55	Field SampSurface Wi085M-062	3/9/2015
A56	Field SampSurface Wi085M-062	3/9/2015
A66	Field SampSurface W:085M-062	3/9/2015
A68	Field SampSurface Wi085M-062	1/19/2015
A68	Field SampSurface W:085M-062	2/18/2015
A68	Field SampSurface W ₁ 085M-062	3/9/2015
A68	Field SampSurface W:085M-062	2/6/2015
A68	Field SampSurface Wi085M-062	12/5/2014
A72	Field SampSurface W:085M-063	7/29/2014
A72	Field SampSurface W ₁ 085M-063	1/26/2015
A72	Field SampSurface Wi085M-063	1/9/2015
A72	Field SampSurface Wi085M-063	2/18/2015
T4	Field SampSurface W ₁ 085M-063	3/9/2015
	TM1 UA5 UA8 A55 A55 A55 A55 A56 A66 A68 A68 A68 A68 A68 A68 A68 A72 A72 A72	UAS Field SampSurface W:085M-147 UA8 Field SampSurface W:085M-148 A55 Field SampSurface W:085M-061 A55 Field SampSurface W:085M-062 A55 Field SampSurface W:085M-062 A56 Field SampSurface W:085M-062 A56 Field SampSurface W:085M-062 A68 Field SampSurface W:085M-062 A72 Field SampSurface W:085M-063

Temp pH	Dis	s_O2 Diss02Uni	tConductiviConductUrFlov	v FlowUnits	Flow GPM
8.79	7.18	- 8 mg/L	292μS/cm	43 cfs	19299.69
6.62	6.4	8.2 mg/L	443 µS/cm	104 cfs	46678.32
17.89	2.89	6.4 mg/L	955μS/cm		0
17.89	2.89	6.4 mg/L	955μS/cm		0
14.2	7.02	6.4 mg/L	365µS/cm	0.101 cfs	45.33183
9.87	6.11	7 mg/L	259μS/cm	0.24 cfs	107.7192
14.12	5.12	6.5 mg/L	389µS/cm	0.141 cfs	63.28503
14.12	5.12	6.5 mg/L	389µS/cm	0.141 cfs	63.28503
9.8	5.94	7 mg/L	313 µS/cm	0.202 cfs	90.66366
6.81	5.23	7.8 mg/L	336µS/cm		0
5.23	3.5	5.1 mg/L	1344μS/cm	0.109 cfs	48.92247
5.23	3.5	5.1 mg/L	1344μS/cm	0.109 cfs	48.92247
7.5	4.73	7.7 mg/L	334µS/cm	0.014 cfs	6.28362
6.08	6.22	7.8 mg/L	2098μS/cm	0.676 cfs	303.40908
6.08	6.22	7.8 mg/L	2098μS/cm	0.676 cfs	303.40908
12.88	3.99	6.8 mg/L	331µS/cm		0
12.88	3.99	6.8 mg/L	331µS/cm		0
8.11	3.31	3.9 mg/L	2381µS/cm	0.358 cfs	160.68114
8.11	3.31	3.9 mg/L	2381µS/cm	0.358 cfs	160.68114
9.67	3.11	6.5 mg/L	2245 μS/cm	0.629 cfs	282.31407
9.67	3.11	6.5 mg/L	2245 μS/cm	0.629 cfs	282.31407
10.65	3.45	7.3 mg/L	1555μS/cm	2.29 cfs	1027.8207
10.65	3.45	7.3 mg/L	1555μS/cm	2.29 cfs	1027.8207
10.69	3.48	6.4 mg/L	1500μS/cm	1.67 cfs	749.5461
10.69	3.48	6.4 mg/L	1500μS/cm	1.67 cfs	749.5461
7.7	5.04	5.1 mg/L	2425 μS/cm	0.212 cfs	95.15196
7.7	5.04	5.1 mg/L	2425 μS/cm	0.212 cfs	95.15196
8.46	3.51	7.9 mg/L	1050μS/cm	18 cfs	8078.94
8.46	3.51	7.9 mg/L	1050μS/cm	18 cfs	8078.94
8.46	3.51	7.9 mg/L	1050μS/cm	18 cfs	8078.94
8.46	3.51	7.9 mg/L	1050μS/cm	18 cfs	8078.94
7.43	6.73	8.2 mg/L	399µS/cm	41 cfs	18402.03
9.43	7.61	8.5 mg/L	189μS/cm		0
7.88	6.88	8.7 mg/L	246µS/cm	407 cfs	182673.81
6.15	3.02	8 mg/L	562μS/cm	0.014 cfs	6.28362
6.15	3.02	8 mg/L	562μS/cm	0.014 cfs	6.28362
12.7	7.49	7 mg/L	257μS/cm	1.11 cfs	498.2013
13.86	7.01	6.9 mg/L	236µS/cm	1.36 cfs	610.4088
11.51	5.04	7.3 mg/L	570μS/cm	1.04 cfs	466.7832
11.51	5.04	7.3 mg/L	570μS/cm	1.04 cfs	466.7832
12.13	5.94	7 mg/L	290μS/cm	2.7 cfs	1211.841
5.52	4.98	8.4 mg/L	246μS/cm		0
5.31	3.52	5.1 mg/L	1296μS/cm	0.178 cfs	79.89174
5.31	3.52	5.1 mg/L	1296μS/cm	0.178 cfs	79.89174

9.59	4.71	7.9 mg/L	248μS/cm	0.022 cfs	9.87426
8.15	6.5	8.1 mg/L	2090μS/cm	0.664 cfs	298.02312
12.96	5.2	7.2 mg/L	266μS/cm	0.141 cfs	63.28503
8.2	3.19	5.5 mg/L	2476μS/cm	0.436 cfs	195.68988
8.2	3.19	5.5 mg/L	2476μS/cm	0.436 cfs	195.68988
14.37	3.18	$7.1\mathrm{mg/L}$	1930μS/cm	0.843 cfs	378.36369
14.37	3.18	$7.1\mathrm{mg/L}$	1930μS/cm	0.843 cfs	378.36369
12.35	3.73	$7.5\mathrm{mg/L}$	908μS/cm	5.94 cfs	2666.0502
12.35	3.73	$7.5\mathrm{mg/L}$	908μS/cm	5.94 cfs	2666.0502
12.35	3.73	$7.5\mathrm{mg/L}$	908μS/cm	5.94 cfs	2666.0502
12.35	3.73	$7.5\mathrm{mg/L}$	908μS/cm	5.94 cfs	2666.0502
12.85	3.81	7.4 mg/L	828µS/cm	4.99 cfs	2239.6617
12.85	3.81	7.4 mg/L	828µS/cm	4.99 cfs	2239.6617
7.71	5.11	5.7 mg/L	2445 μS/cm	0.231cfs	103.67973
7.71	5.11	5.7 mg/L	2445 μS/cm	0.231cfs	103.67973
10.01	3.95	8.3 mg/L	678µS/cm	28 cfs	12567.24
10.01	3.95	8.3 mg/L	678µS/cm	28 cfs	12567.24
8.6	7.19	8.6 mg/L	211μS/cm	119 cfs	53410.77
7.21	7.51	8.8 mg/L	157μS/cm	272 cfs	122081.76
4.95	7.09	9.3 mg/L	195 μS/cm	615 cfs	276030.45
2.31	3.41	8.9 mg/L	228μS/cm	0.157 cfs	70.46631
2.31	3.41	8.9 mg/L	228μS/cm	0.157 cfs	70.46631
2.3	3.16	7.4 mg/L	393 μS/cm		0
2.56	5.11	8.9 mg/L	230μS/cm	0.026 cfs	11.66958
4.92	3.63	5 mg/L	1254μS/cm	0.108 cfs	48.47364
4.92	3.63	5 mg/L	1254μS/cm	0.108 cfs	48.47364
9.5	4.74	7.4 mg/L	249μS/cm		0
8.28	6.4	7.6 mg/L	2051μS/cm	0.699 cfs	313.73217
8.28	6.4	7.6 mg/L	2051μS/cm	0.699 cfs	313.73217
4.82	5.06	7.9 mg/L	144μS/cm	1.03 cfs	462.2949
8.24	3.15	5.6 mg/L	2481μS/cm	0.498 cfs	223.51734
8.24	3.15	5.6 mg/L	2481μS/cm	0.498 cfs	223.51734
8.24	3.15	5.6 mg/L	2481μS/cm	0.498 cfs	223.51734
5.33	3.2	8.3 mg/L	1230μS/cm	1.42 cfs	637.3386
5.33	3.2	8.3 mg/L	1230μS/cm	1.42 cfs	637.3386
7.38	3.83	8.4 mg/L	569μS/cm	12.3 cfs	5520.609
7.38	3.83	8.4 mg/L	569μS/cm	12.3 cfs	5520.609
7.15	3.94	8.4 mg/L	465 μS/cm	12.8 cfs	5745.024
7.15	3.94	8.4 mg/L	465 μS/cm	12.8 cfs	5745.024
7.66	5.17	5.7 mg/L	2426μS/cm	0.309 cfs	138.68847
7.66	5.17	5.7 mg/L	2426μS/cm	0.309 cfs	138.68847
9.01	4.29	8.4 mg/L	467μS/cm	58 cfs	26032.14
6.12	7.3	9.1 mg/L	175 μS/cm	212 cfs	95151.96
5.08	7.15	8.2 mg/L	113 μS/cm	508 cfs	228005.64
4.71	7.08	8.9 mg/L	103 μS/cm	1710 cfs	767499.3

5.19	3.11	$4.9\mathrm{mg/L}$	1274μS/cm	0.259 cfs	116.24697
5.19	3.11	4.9 mg/L	1274μS/cm	0.259 cfs	116.24697
9.17	5.86	7.1 mg/L	2074μS/cm	0.749 cfs	336.17367
9.17	5.86	7.1 mg/L	2074μS/cm	0.749 cfs	336.17367
1.49	4.37	9.2 mg/L	96μS/cm	2.44 cfs	1095.1452
8.76	2.25	6 mg/L	3076µS/cm	0.423 cfs	189.85509
8.76	2.25	6 mg/L	3076µS/cm	0.423 cfs	189.85509
8.76	2.25	6 mg/L	3076 μS/cm	0.423 cfs	189.85509
6.01	3.14	7.4 mg/L	750μS/cm	5.04 cfs	2262.1032
4.01	3.01	8.2 mg/L	585 μS/cm		0
6.01	3.14	7.4 mg/L	750μS/cm	5.04 cfs	2262.1032
4.01	3.01	8.2 mg/L	585 μS/cm		0
5.95	3.86	7.9 mg/L	261μS/cm	48.8 cfs	21902.904
4.74	4.04	8.2 mg/L	212μS/cm		0
7.56	4.91	4.6 mg/L	2338μS/cm	0.318 cfs	142.72794
7.56	4.91	4.6 mg/L	2338μS/cm	0.318 cfs	142.72794
5.24	5.4	8.5 mg/L	203 μS/cm	227 cfs	101884.41
3.85	6.49	8.7 mg/L	115 μS/cm	416 cfs	186713.28
3.85	6.49	8.7 mg/L	115 μS/cm	416 cfs	186713.28
0.05	6.52	10.2 mg/L	370μS/cm	28.3 cfs	12701.889
0.05	6.52	$10.2\mathrm{mg/L}$	370μS/cm	28.3 cfs	12701.889
0.13	5.93	9.6 mg/L	620µS/cm	68 cfs	30520.44
0.11	3.63	9.1 mg/L	423 μS/cm		0
0.11	3.63	9.1 mg/L	423 μS/cm		0
1.46	5.07	9.1 mg/L	330μS/cm		0
0.98	5.04	9.2 mg/L	340μS/cm		0
4.86	3.5	5.7 mg/L	1365 μS/cm	0.123 cfs	55.20609
4.86	3.5	5.7 mg/L	1365 μS/cm	0.123 cfs	55.20609
3.63	6.27	6.1 mg/L	800 μS/cm		0
3.63	6.27	6.1 mg/L	800μS/cm		0
1.89	4.82	9 mg/L	404μS/cm		0
2.36	5.01	2.6 mg/L	302 μS/cm		0
2.09	5.95	$9.1\mathrm{mg/L}$	2169μS/cm		0
2.09	5.95	9.1 mg/L	2169μS/cm		0
0.99	3.08	9.4 mg/L	2098μS/cm		0
0.99	3.08	9.4 mg/L	2098μS/cm		0
2.19	3.62	9.2 mg/L	1580μS/cm	2.67 cfs	1198.3761
2.19	3.62	9.2 mg/L	1580μS/cm	2.67 cfs	1198.3761
0.95	3.53	9.4 mg/L	1510μS/cm	2.06 cfs	924.5898
0.95	3.53	9.4 mg/L	1510μS/cm	2.06 cfs	924.5898
7.65	5.14	4.9 mg/L	2511μS/cm	0.278 cfs	124.77474
7.65	5.14	4.9 mg/L	2511μS/cm	0.278 cfs	124.77474
2.43	3.5	9.6 mg/L	1143 μS/cm	15.3 cfs	6867.099
0.05	5.62	$10.2\mathrm{mg/L}$	517μS/cm		0
0.05	5.62	$10.2\mathrm{mg/L}$	517μS/cm		0

5.26	7.21	10 mg/L	307μS/cm	42 cfs	18850.86
3.22	6.46	10.3 mg/L	433 μS/cm	123 cfs	55206.09
5.83	3.04	8.1 mg/L	1110μS/cm	0.004 cfs	1.79532
5.83	3.04	8.1 mg/L	1110μS/cm	0.004 cfs	1.79532
5.83	3.04	8.1 mg/L	1110μS/cm	0.004 cfs	1.79532
6.19	7.24	8 mg/L	327μS/cm	0.2 cfs	89.766
5.76	6.14	8 mg/L	283 µS/cm	0.367 cfs	164.72061
8.89	5.17	7.6 mg/L	543μS/cm	0.367 cfs	164.72061
8.89	5.17	7.6 mg/L	543μS/cm	0.367 cfs	164.72061
8.89	5.17	7.6 mg/L	543μS/cm	0.367 cfs	164.72061
8.89	5.17	7.6 mg/L	543μS/cm	0.367 cfs	164.72061
6.91	5.68	7.7 mg/L	403μS/cm	0.799 cfs	358.61517
6.42	5.7	8 mg/L	402 μS/cm	0.719 cfs	322.70877
7.32	5.21	8 mg/L	370μS/cm		0
4.95	3.72	5.6 mg/L	1347μS/cm	0.109 cfs	48.92247
4.95	3.72	5.6 mg/L	1347μS/cm	0.109 cfs	48.92247
3.65	6.69	5.1 mg/L	752μS/cm	0.047 cfs	21.09501
3.65	6.69	5.1 mg/L	752μS/cm	0.047 cfs	21.09501
7.52	4.96	8.3 mg/L	367μS/cm	0.018cfs	8.07894
2.9	6.07	5.1 mg/L	312 µS/cm	0.001cfs	0.44883
3.89	6.35	9.5 mg/L	2114µS/cm	0.749 cfs	336.17367
3.89	6.35	9.5 mg/L	2114µS/cm	0.749 cfs	336.17367
4.95	4.11	9.2 mg/L	338µS/cm		0
4.95	4.11	9.2 mg/L	338µS/cm		0
8.04	3.86	5.6 mg/L	2175μS/cm	0.562 cfs	252.24246
8.04	3.86	5.6 mg/L	2175 μS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
6.09	3.41	9 mg/L	2126µS/cm	0.562 cfs	252.24246
5.54	3.72	9.2 mg/L	1356μS/cm	3.66 cfs	1642.7178
5.54	3.72	9.2 mg/L	1356μS/cm	3.66 cfs	1642.7178
6.4	3.8	9 mg/L	1272μS/cm	3.03 cfs	1359.9549
6.4	3.8	9 mg/L	1272μS/cm	3.03 cfs	1359.9549
7.69	5.16	5.4 mg/L	2409μS/cm	0.221 cfs	99.19143
7.69	5.16	5.4 mg/L	2409μS/cm	0.221cfs	99.19143
5.44	3.65	9.8 mg/L	1045 μS/cm	18 cfs	8078.94
5.44	3.65	9.8 mg/L	1045 μS/cm	18 cfs	8078.94
4.44	6.7	$10.1\mathrm{mg/L}$	369µS/cm	53 cfs	23787.99
2.08	6.85	9.6 mg/L	335μS/cm	50 cfs	22441.5
0.21	6.09	9.8 mg/L	396µS/cm	138 cfs	61938.54
0.21	6.09	9.8 mg/L	396µS/cm	138 cfs	61938.54
0.95	5.1	8.8 mg/L	267μS/cm		0

0.64	5.2	9.2 mg/L	287μS/cm		0
5.08	3.38	6.2 mg/L	1322 μS/cm		0
5.08	3.38	6.2 mg/L	1322 μS/cm		0
9.4	5.94	7.5 mg/L	2288μS/cm	0.403 cfs	180.87849
9.4	5.94	7.5 mg/L	2288μS/cm	0.403 cfs	180.87849
7.98	5.13	3.3 mg/L	1955 μS/cm	0.333 cfs	149.46039
7.98	5.13	3.3 mg/L	1955μS/cm	0.333 cfs	149.46039
4.62	3.27	8.5 mg/L	1924μS/cm		0
4.62	3.27	8.5 mg/L	1924μS/cm		0
2.1	3.68	9 mg/L	1212μS/cm	3.76 cfs	1687.6008
2.1	3.68	9 mg/L	1212μS/cm	3.76 cfs	1687.6008
1.46	3.67	9.2 mg/L	1155 μS/cm	2.59 cfs	1162.4697
1.46	3.67	9.2 mg/L	1155 μS/cm	2.59 cfs	1162.4697
7.61	5.38	$2.1\mathrm{mg/L}$	2450μS/cm	0.204 cfs	91.56132
7.61	5.38	$2.1\mathrm{mg/L}$	2450μS/cm	0.204 cfs	91.56132
3.62	3.93	9.2 mg/L	690µS/cm	26.4 cfs	11849.112
3.62	3.93	9.2 mg/L	690µS/cm	26.4 cfs	11849.112
0.64	6.22	10 mg/L	340µS/cm	72.8 cfs	32674.824
-0.05	6.74	$10.2\mathrm{mg/L}$	411µS/cm		0
0.04	5.07	9.9 mg/L	698µS/cm		0
0.04	5.07	9.9 mg/L	698µS/cm		0
4.76	3.54	5.6 mg/L	1345 μS/cm	0.154 cfs	69.11982
4.76	3.54	5.6 mg/L	1345 μS/cm	0.154 cfs	69.11982
3.22	5.44	8.7 mg/L	2181μS/cm		0
3.22	5.44	8.7 mg/L	2181μS/cm		0
2.88	3.24	8.9 mg/L	1999μS/cm		0
2.88	3.24	8.9 mg/L	1999μS/cm		0
2.9	3.51	8.9 mg/L	1752μS/cm	1.77 cfs	794.4291
2.9	3.51	8.9 mg/L	1752μS/cm	1.77 cfs	794.4291
1.82	3.52	$9.1\mathrm{mg/L}$	1675 μS/cm		0
1.82	3.52	$9.1\mathrm{mg/L}$	1675 μS/cm		0
7.63	5.19	4.4 mg/L	1957μS/cm	0.178 cfs	79.89174
7.63	5.19	4.4 mg/L	1957μS/cm	0.178 cfs	79.89174
1.01	3.5	9.7 mg/L	1157μS/cm		0
1.01	3.5	9.7 mg/L	1157μS/cm		0
1.01	3.5	9.7 mg/L	1157μS/cm		0
1.01	3.5	9.7 mg/L	1157μS/cm		0
-0.05	4.97	10.2 mg/L	626µS/cm		0
-0.05	4.97	10.2 mg/L	626µS/cm		0
8.61	6.92	8.5 mg/L	222μS/cm	81 cfs	36355.23
7.37	6.41	8.6 mg/L	310µS/cm	205 cfs	92010.15
5.44	3.47	7.2 mg/L	302 μS/cm		0
5.44	3.47	7.2 mg/L	302 μS/cm		0
12.45	6.59	6.8 mg/L	282μS/cm	0.389 cfs	174.59487
9.67	5.86	7.2 mg/L	215μS/cm	0.899 cfs	403.49817
-		- Ji	1 ,	-	

12.07	5.27	6.9 mg/L	332µS/cm	0.805 cfs	361.30815
11.36	5.5	6.9 mg/L	280μS/cm	1.69 cfs	758.5227
9.57	5.75	7.3 mg/L	273 µS/cm	2.13 cfs	956.0079
9.57	5.75	7.3 mg/L	273μS/cm	2.13 cfs	956.0079
5.33	3.48	5.7 mg/L	1315μS/cm	0.095 cfs	42.63885
5.33	3.48	5.7 mg/L	1315μS/cm	0.095 cfs	42.63885
4.23	6.33	4.9 mg/L	682 µS/cm	0.067 cfs	30.07161
4.23	6.33	4.9 mg/L	682 µS/cm	0.067 cfs	30.07161
9.16	5.16	7.6 mg/L	252μS/cm	0.022 cfs	9.87426
4.06	4.22	7 mg/L	437μS/cm	0.022 cfs	9.87426
3.75	4.97	4.4 mg/L	390μS/cm	0.002 cfs	0.89766
13	4.69	7.3 mg/L	690µS/cm	3.45 cfs	1548.4635
13	4.69	7.3 mg/L	690µS/cm	3.45 cfs	1548.4635
11.81	5.33	7.4 mg/L	304μS/cm	2.81 cfs	1261.2123
16.78	5.89	6.6 mg/L	2173 μS/cm	0.517 cfs	232.04511
16.78	5.89	6.6 mg/L	2173μS/cm	0.517 cfs	232.04511
16.78	5.89	6.6 mg/L	2173μS/cm	0.517 cfs	232.04511
16.78	5.89	6.6 mg/L	2173μS/cm	0.517 cfs	232.04511
8.58	4.33	7.7 mg/L	264μS/cm	0.051cfs	22.89033
8.19	3.03	4.3 mg/L	2443 μS/cm	0.485 cfs	217.68255
8.19	3.03	4.3 mg/L	2443 μS/cm	0.485 cfs	217.68255
13.91	2.99	7 mg/L	1910μS/cm	0.348 cfs	156.19284
13.91	2.99	7 mg/L	1910μS/cm	0.348 cfs	156.19284
9.79	3.59	7.8 mg/L	971μS/cm	3.59 cfs	1611.2997
9.79	3.59	7.8 mg/L	971μS/cm	3.59 cfs	1611.2997
12.08	3.61	7.4 mg/L	910µS/cm	3.47 cfs	1557.4401
12.08	3.61	7.4 mg/L	910µS/cm	3.47 cfs	1557.4401
7.78	5.26	2.6 mg/L	2352μS/cm	0.24 cfs	107.7192
7.78	5.26	2.6 mg/L	2352μS/cm	0.24 cfs	107.7192
8.97	3.57	8.3 mg/L	814µS/cm	21 cfs	9425.43
11.69	3.54	6.9 mg/L	364µS/cm	0.152 cfs	68.22216
11.69	3.54	6.9 mg/L	364µS/cm	0.152 cfs	68.22216
11.19	3.98	6.8 mg/L	658µS/cm	0.075 cfs	33.66225
8.03	6.77	8.6 mg/L	262μS/cm	85 cfs	38150.55
8.03	6.77	8.6 mg/L	262μS/cm	85 cfs	38150.55
9.45	3.36	8.1 mg/L	1027μS/cm		0
9.45	3.36	8.1 mg/L	1027μS/cm		0
15.23	3.1	6.9 mg/L	1474μS/cm		0
15.23	3.1	6.9 mg/L	1474μS/cm		0
18.15	2.82	6.8 mg/L	1680μS/cm		0
18.15	2.82	6.8 mg/L	1680μS/cm		0
18.15	2.82	6.8 mg/L	1680μS/cm		0
19.56	2.72	4 mg/L	. , 1975 μS/cm		0
19.56	2.72	4 mg/L	1975μS/cm		0
19.56	2.72	4 mg/L	1975 μS/cm		0
	<i>-</i>		L/		J

13.17	3.24	$7.1\mathrm{mg/L}$	1136μS/cm	0.084 cfs	37.70172
13.17	3.24	$7.1\mathrm{mg/L}$	1136μS/cm	0.084 cfs	37.70172
8.81	3.49	$7.3\mathrm{mg/L}$	628µS/cm	0.152 cfs	68.22216
8.81	3.49	$7.3\mathrm{mg/L}$	628µS/cm	0.152 cfs	68.22216
2.53	6.42	8.9 mg/L	472μS/cm		0
13.69	6.55	8 mg/L	266 μS/cm		0
4.06	6.98	9.2 mg/L	124μS/cm	517 cfs	232045.11
3.1	6.51	9.3 mg/L	138μS/cm	1580 cfs	709151.4
1.63	3.45	9 mg/L	208μS/cm		0
1.63	3.45	9 mg/L	208μS/cm		0
0.31	5.72	9.1 mg/L	129μS/cm	4.61 cfs	2069.1063
0.93	5.53	9.2 mg/L	134μS/cm	5.58 cfs	2504.4714
1.34	5.13	$9.1\mathrm{mg/L}$	205 μS/cm	2.51 cfs	1126.5633
1.11	5.27	9.2 mg/L	167μS/cm	8.26 cfs	3707.3358
1.43	5.57	9.2 mg/L	147μS/cm	9.09 cfs	4079.8647
4.38	3.58	7.2 mg/L	785 μS/cm	0.138 cfs	61.93854
4.38	3.58	$7.2\mathrm{mg/L}$	785 μS/cm	0.138 cfs	61.93854
4.03	6.08	6.8 mg/L	688µS/cm		0
4.03	6.08	6.8 mg/L	688µS/cm		0
2.08	3.92	8.8 mg/L	191μS/cm		0
4.13	6.07	4.3 mg/L	312μS/cm		0
3.43	4.74	8.9 mg/L	198μS/cm	26.4 cfs	11849.112
2.18	5.07	$9.1\mathrm{mg/L}$	110μS/cm	24.5 cfs	10996.335
6.83	5.94	7.9 mg/L	2207μS/cm	0.488 cfs	219.02904
6.83	5.94	7.9 mg/L	2207μS/cm	0.488 cfs	219.02904
6.83	5.94	7.9 mg/L	2207μS/cm	0.488 cfs	219.02904
6.83	5.94	7.9 mg/L	2207μS/cm	0.488 cfs	219.02904
1.56	4.21	9.1 mg/L	113 μS/cm	2.29 cfs	1027.8207
8.5	2.82	5.1 mg/L	3084μS/cm	0.558 cfs	250.44714
8.5	2.82	5.1 mg/L	3084µS/cm	0.558 cfs	250.44714
8.5	2.82	5.1 mg/L	3084μS/cm	0.558 cfs	250.44714
4.72	3.17	8.5 mg/L	835 μS/cm	3.15 cfs	1413.8145
4.72	3.17	8.5 mg/L	835 μS/cm	3.15 cfs	1413.8145
5.45	3.83	8.7 mg/L	328µS/cm	29.4 cfs	13195.602
4.46	3.84	8.7 mg/L	293 μS/cm	30.8 cfs	13823.964
4.46	3.84	8.7 mg/L	293 μS/cm	30.8 cfs	13823.964
7.52	5.29	2.9 mg/L	1430μS/cm	0.24 cfs	107.7192
7.52	5.29	2.9 mg/L	1430μS/cm	0.24 cfs	107.7192
4.78	5.34	9 mg/L	238μS/cm	137 cfs	61489.71
4.78	5.34	9 mg/L	238μS/cm	137 cfs	61489.71
3.39	7	9.3 mg/L	123 μS/cm	576 cfs	258526.08
2.38	3.6	9 mg/L	248μS/cm		0
5.81	3.02	8.2 mg/L	928μS/cm		0
5.81	3.02	8.2 mg/L	928μS/cm		0
7.53	3.15	7.8 mg/L	604μS/cm	0.394 cfs	176.83902

7.53	3.15	7.8 mg/L	604µS/cm	0.394 cfs	176.83902
2.13	6.82	9.5 mg/L	388 µS/cm	18.9 cfs	8482.887
-0.02	5.04	9.8 mg/L	687µS/cm	51.6 cfs	23159.628
-0.02	5.04	9.8 mg/L	687µS/cm	51.6 cfs	23159.628
-0.02	5.04	9.8 mg/L	687µS/cm	51.6 cfs	23159.628
-0.02	5.04	9.8 mg/L	687µS/cm	51.6 cfs	23159.628
1.3	5.06	8.5 mg/L	160μS/cm		0
0.45	5.52	9.1 mg/L	340μS/cm		0
5.13	3.36	6 mg/L	1327μS/cm		0
5.13	3.36	6 mg/L	1327μS/cm		0
6.85	5.76	7.9 mg/L	2207μS/cm		0
6.85	5.76	7.9 mg/L	2207μS/cm		0
7.96	4.96	$3.7\mathrm{mg/L}$	1953 μS/cm		0
7.96	4.96	3.7 mg/L	1953 μS/cm		0
7.96	4.96	3.7 mg/L	1953 μS/cm		0
7.96	4.96	3.7 mg/L	1953 μS/cm		0
4.09	3.16	8.5 mg/L	1961μS/cm		0
4.09	3.16	8.5 mg/L	1961μS/cm		0
2.92	3.48	8.7 mg/L	1717μS/cm	1.99 cfs	893.1717
2.92	3.48	8.7 mg/L	1717μS/cm	1.99 cfs	893.1717
2.13	3.54	8.9 mg/L	1634μS/cm		0
2.13	3.54	8.9 mg/L	1634μS/cm		0
7.62	4.46	3.4 mg/L	2428μS/cm	0.204 cfs	91.56132
7.62	4.46	3.4 mg/L	2428μS/cm	0.204 cfs	91.56132
6.62	3.42	8.3 mg/L	1179μS/cm	13.7 cfs	6148.971
6.62	3.42	8.3 mg/L	1179μS/cm	13.7 cfs	6148.971
2.03	5.02	9.6 mg/L	647μS/cm	17.9 cfs	8034.057
2.03	5.02	9.6 mg/L	647μS/cm	17.9 cfs	8034.057
0.8	7.26		306 μS/cm	36 cfs	16157.88
0.5	6.25		468µS/cm	99 cfs	44434.17
0.5	6.25		468µS/cm	99 cfs	44434.17
1.7	2.61		1041μS/cm		0
1.1	6.24		276μS/cm		0
5.4	4.27		273 μS/cm	0.124 cfs	55.65492
6.2	5.11		466 μS/cm	0.074 cfs	33.21342
4.6	4.73		365 μS/cm	0.29 cfs	130.1607
1.3	4.82		361μS/cm	0.226 cfs	101.43558
5.1	3.38		1364μS/cm	0.102 cfs	45.78066
3.8	6.39		802 μS/cm		0
3.8	4.44		408μS/cm		0
1.9	5.48		285 μS/cm		0
6.6	4.98		1130μS/cm	1.5 cfs	673.245
3.7	4.82		487μS/cm	1.11 cfs	498.2013
5.9	5.86		1578μS/cm		0
6.4	6.46		2164μS/cm	0.46 cfs	206.4618

0.8	4.13		378µS/cm		0
8	4.13		2064μS/cm	0.473 cfs	212.29659
3.3	3.05		2015 μS/cm	0.204 cfs	91.56132
3.8	3.72		1439μS/cm	2.42 cfs	1086.1686
6.3	3.64		1334μS/cm	1.92 cfs	861.7536
7.7	5.17		2386 µS/cm	0.24 cfs	107.7192
3	3.51		1058μS/cm	15 cfs	6732.45
3	3.51		1058μS/cm	15 cfs	6732.45
3.6	2.8		485 μS/cm		0
1.8	4.6		301μS/cm		0
0.8	4		555 μS/cm	0.067 cfs	30.07161
0.3	6.4		417μS/cm	33 cfs	14811.39
0.3	6.4		417μS/cm	33 cfs	14811.39
2.2	3.82		732μS/cm	0.175 cfs	78.54525
6.7	7.52	8.9 mg/L	302 μS/cm	44 cfs	19748.52
5.3	6.48	8.9 mg/L	453μS/cm	96 cfs	43087.68
5.3	6.48	8.9 mg/L	453 μS/cm	96 cfs	43087.68
11	3.02	5.9 mg/L	2401μS/cm		0
13.9	3.01	6.9 mg/L	1074μS/cm		0
12.3	7.13	6.8 mg/L	332μS/cm	0.075 cfs	33.66225
8.7	5.77	$7.2\mathrm{mg/L}$	243 μS/cm	0.175 cfs	78.54525
13.4	5.08	6.7 mg/L	423 μS/cm	0.069 cfs	30.96927
10.6	5.6	$7.2\mathrm{mg/L}$	310μS/cm	0.295 cfs	132.40485
9.2	5.46	7.4 mg/L	313 μS/cm	0.347 cfs	155.74401
5.3	3.48	5.5 mg/L	1357μS/cm	0.109 cfs	48.92247
5.3	3.48	5.5 mg/L	1357μS/cm	0.109 cfs	48.92247
3.8	6.33	5.1 mg/L	751μS/cm	0.06 cfs	26.9298
8.9	4.49	7.8 mg/L	387μS/cm	0.018cfs	8.07894
4	4.79	3.7 mg/L	313 μS/cm	0.001 cfs	0.44883
13.3	4.35	7.2 mg/L	1232μS/cm	1.32 cfs	592.4556
13.2	5.03	7.1 mg/L	505 μS/cm	0.627 cfs	281.41641
6.2	5.97	6.9 mg/L	2201μS/cm		0
14.2	6.14	6.9 mg/L	2188μS/cm	0.541 cfs	242.81703
8	3.87	7.5 mg/L	401μS/cm	0.002 cfs	0.89766
8	3.52	4 mg/L	2250μS/cm	0.449 cfs	201.52467
12.1	2.97	7.3 mg/L	2195 μS/cm	0.295 cfs	132.40485
7.8	3.58	8.1 mg/L	1527μS/cm	2.31 cfs	1036.7973
10.8	3.44	7.6 mg/L	1440μS/cm	1.89 cfs	848.2887
7.8	4.47	2.7 mg/L	2451μS/cm	0.268 cfs	120.28644
7.3	3.45	8.6 mg/L	1064μS/cm	15 cfs	6732.45
7.3	3.45	8.6 mg/L	1064μS/cm	15 cfs	6732.45
5.9	4.37	7.6 mg/L	681μS/cm	0.067 cfs	30.07161
6.1	6.73	9 mg/L	417μS/cm	38 cfs	17055.54
7.1	3.43	7.3 mg/L	889μS/cm	0.11 cfs	49.3713
8.87	7.2	8.4 mg/L	252μS/cm	67 cfs	30071.61

7.21	6.51	8.6 mg/L	350μS/cm	158cfs	70915.14
7.21	6.51	8.6 mg/L	350μS/cm	158cfs	70915.14
5.11	2.85	8.0 mg/L	505μS/cm	0.005 cfs	2.24415
8.4	2.63	8 mg/L	1101μS/cm	cfs	0
13.58	6.89	6.9 mg/L	362μS/cm	0.384cfs	172.35072
9.99	5.97	7.4 mg/L	264μS/cm	0.567cfs	254.48661
11.94	4.84	7.4 mg/L 7.1 mg/L	381μS/cm	0.419 cfs	188.05977
10.68	5.48	7.1 mg/L 7.3 mg/L	315 µS/cm	0.419cfs 0.894cfs	401.25402
8.51	5.48 5.83	7.3 mg/L 7.8 mg/L	313μ3/cm 308μS/cm	0.694cis 1cfs	448.83
8.51	5.83	7.8 mg/L 7.8 mg/L		1cfs	448.83
5.3		=	308μS/cm		
	3.39	5.8 mg/L	1338μS/cm	0.13 cfs	58.3479
3.89	6.28	5.3 mg/L	658μS/cm	0.092 cfs	41.29236
9.28	4.29	8 mg/L	263μS/cm	0.016 cfs	7.18128
3.96	3.71	7.4 mg/L	400 μS/cm	cfs	0
4.2	4.38	4.8 mg/L	417μS/cm	0.001 cfs	0.44883
12.02	4.86	7.4 mg/L	907μS/cm	2.43 cfs	1090.6569
11.31	5.26	7.5 mg/L	367μS/cm	2.08 cfs	933.5664
6.15	5.99	7 mg/L	2083 μS/cm	cfs	0
8.26	6.05	8 mg/L	2076μS/cm	0.7 cfs	314.181
11.11	3.8	7.3 mg/L	261μS/cm	0.045 cfs	20.19735
8.13	2.84	3.9 mg/L	2546μS/cm	0.308 cfs	138.23964
10.86	2.74	$2.1\mathrm{mg/L}$	2777μS/cm	0.005 cfs	2.24415
12.21	2.87	7.4 mg/L	1933 μS/cm	0.607 cfs	272.43981
13.78	3.24	7.1 mg/L	1217μS/cm	3.52 cfs	1579.8816
13.63	3.4	7.2 mg/L	1140μS/cm	3.17 cfs	1422.7911
7.68	4.95	5.4 mg/L	2409μS/cm	0.221 cfs	99.19143
7.68	4.95	5.4 mg/L	2409μS/cm	cfs	0
9.16	3.45	8.4 mg/L	914μS/cm	20 cfs	8976.6
9.16	3.45	8.4 mg/L	914μS/cm	20 cfs	8976.6
12.86	3.02	7.3 mg/L	496μS/cm	0.02 cfs	8.9766
8.3	4.38	7.3 mg/L	291μS/cm	cfs	0
11.9	6.03	6.8 mg/L	41μS/cm	cfs	0
17.4	4.13	ر. 4.9 mg/L	645 μS/cm	0.076 cfs	34.11108
7.86	6.82	8.7 mg/L	316µS/cm	66 cfs	29622.78
7.86	6.82	8.7 mg/L	316µS/cm	66 cfs	29622.78
7.86	6.82	8.7 mg/L	316µS/cm	66 cfs	29622.78
7.86	6.82	8.7 mg/L	316µS/cm	66 cfs	29622.78
10.82	3.28	6.9 mg/L	757μS/cm	0.141cfs	63.28503
8.48	7.42	8.6 mg/L	144μS/cm	339cfs	152153.37
7.7	7.42	8.7 mg/L	171μS/cm	730cfs	327645.9
7.7 7.7	7.08	8.7 mg/L	171μ5/cm 171μS/cm	730cfs	327645.9
			· ·		68.22216
3.32	3.52	8.7 mg/L	230μS/cm	0.152cfs cfs	
2.94	3.19	8.7 mg/L	433μS/cm		1615 700
10.51	6.48	7.3 mg/L	221µS/cm	3.6 cfs	1615.788
10.23	6.47	7.3 mg/L	203μS/cm	3.88 cfs	1741.4604

8.09	5.52	7.7 mg/L	272 μS/cm	3.23 cfs	1449.7209
7.14	6.08	7.8 mg/L	238µS/cm	8.11 cfs	3640.0113
5.83	6.35	8.2 mg/L	224µS/cm	7.78 cfs	3491.8974
5.42	3.48	5.6 mg/L	1255 μS/cm	0.088 cfs	39.49704
4.09	6.19	5 mg/L	589μS/cm	0.141 cfs	63.28503
6.08	4.47	8.3 mg/L	204μS/cm	0.031 cfs	13.91373
4.13	3.82	7.1 mg/L	311 µS/cm	cfs	0
5.23	4.49	5.3 mg/L	435 μS/cm	0.003 cfs	1.34649
12.16	5.73	7.4 mg/L	347µS/cm	13.8 cfs	6193.854
9.32	5.99	7.9 mg/L	197μS/cm	13.8 cfs	6193.854
6.05	6.06	7 mg/L	2069μS/cm	cfs	0
9.59	6.28	7.6 mg/L	2028μS/cm	0.676 cfs	303.40908
4.96	4.56	8.6 mg/L	173 μS/cm	0.852 cfs	382.40316
8.42	2.79	4.5 mg/L	2835 μS/cm	0.298 cfs	133.75134
13.76	3.02	7.1 mg/L	1206μS/cm	1.06 cfs	475.7598
9.93	3.82	7.8 mg/L	503 μS/cm	14.3 cfs	6418.269
11.11	3.85	7.6 mg/L	466µS/cm	17.9 cfs	8034.057
7.65	5.04	5.3 mg/L	2389μS/cm	0.212 cfs	95.15196
7.65	5.04	5.3 mg/L	2389 µS/cm	0.212 cfs	95.15196
8.41	4.54	8.5 mg/L	436µS/cm	65 cfs	29173.95
8.41	4.54	8.5 mg/L	436µS/cm	65 cfs	29173.95
15.74	3.6	7.1 mg/L	313 µS/cm	0.3 cfs	134.649
6.23	4.72	7.5 mg/L	196μS/cm	cfs	0
7.27	6.1	7.8 mg/L	41μS/cm	cfs	0
18.33	4.15	4.9 mg/L	549μS/cm	cfs	0
7.87	7.28	8.7 mg/L	147μS/cm	266 cfs	119388.78
9.98	3.11	7.3 mg/L	874µS/cm	0.152 cfs	68.22216
8.6	7.28	8 mg/L	119μS/cm	666 cfs	298920.78
8.6	7.28	8 mg/L	119μS/cm	666 cfs	298920.78
6.96	6.5	8.3 mg/L	127μS/cm	1620 cfs	727104.6
1.69	3.13	mg/L	437μS/cm	cfs	0
0.55	5.16	mg/L	123 μS/cm	cfs	0
2.46	5.43	$9.1\mathrm{mg/L}$	161μS/cm	cfs	0
0.76	5.28	mg/L	165 μS/cm	13.9 cfs	6238.737
0.52	5.55	mg/L	142μS/cm	17.3 cfs	7764.759
4.99	3.58	mg/L	1172μS/cm	0.212 cfs	95.15196
1.15	4.08	mg/L	168μS/cm	cfs	0
3.55	4.42	8.6 mg/L	153 μS/cm	48.2 cfs	21633.606
2.14	4.6	8.9 mg/L	94μS/cm	43.9 cfs	19703.637
8.06	6.17	7.4 mg/L	2026μS/cm	0.724 cfs	324.95292
1.23	3.91	8.9 mg/L	119μS/cm	cfs	0
8.56	2.55	5.3 mg/L	3060 µS/cm	0.328 cfs	147.21624
8.56	2.55	5.3 mg/L	3060μS/cm	0.328 cfs	147.21624
4.67	3.1	8.3 mg/L	535 μS/cm	5.32 cfs	2387.7756
5.89	3.72	$8.1\mathrm{mg/L}$	242 μS/cm	46.2 cfs	20735.946

				_	_
4.39	3.7	8.4 mg/L	213μS/cm	cfs	0
7.48	4.86	5.3 mg/L	2308μS/cm	0.24 cfs	107.7192
7.99	5.24	8.1 mg/L	188μS/cm	216 cfs	96947.28
7.99	5.24	8.1 mg/L	188μS/cm	216 cfs	96947.28
0.91	3.67	mg/L	264μS/cm	cfs	0
10.53	4.28	mg/L	281μS/cm	cfs	0
7.12	7.19	8.2 mg/L	119μS/cm	515 cfs	231147.45
8.51	3.1	mg/L	792μS/cm	cfs	0
2.33	7.18	9.7 mg/L	367μS/cm	23 cfs	10323.09
0.47	5.3	9.9 mg/L	576μS/cm	81 cfs	36355.23
0.83	4.4	9.2 mg/L	367μS/cm	cfs	0
2.43	5.3	9 mg/L	1561μS/cm	1.03 cfs	462.2949
0.91	4.71	9.3 mg/L	715 μS/cm	cfs	0
8.94	6.07	6.1 mg/L	2244μS/cm	cfs	0
3.28	3.24	8.8 mg/L	1932μS/cm	cfs	0
3.74	3.61	8.6 mg/L	1694μS/cm	1.63 cfs	731.5929
3.74	3.61	8.6 mg/L	1694μS/cm	1.63 cfs	731.5929
2.96	3.69	8.9 mg/L	1614μS/cm	cfs	0
7.63	5.18	4.2 mg/L	2395 μS/cm	0.212 cfs	95.15196
6.36	3.54	8.6 mg/L	1093 μS/cm	14.9 cfs	6687.567
1.49	5.12	9.9 mg/L	551μS/cm		0
1.49	5.12	9.9 mg/L	551μS/cm		0
1.69	6.87	9.9 mg/L	289.3 μS/cm	46 cfs	20646.18
1.69	6.87	9.9 mg/L	289.3 μS/cm	46 cfs	20646.18
1.36	6.23	9.8 mg/L	398.7μS/cm	125 cfs	56103.75
1.36	6.23	9.8 mg/L	398.7μS/cm	125 cfs	56103.75
3.69	3.1	8.4 mg/L	665.9µS/cm	0.012 cfs	5.38596
3.71	2.8	8.7 mg/L	988μS/cm	cfs	0
1.62	5.6	9 mg/L	293.2μS/cm	0.101 cfs	45.33183
5.31	4.3	8.2 mg/L	297.7μS/cm	0.3 cfs	134.649
6.29	5.16	8 mg/L	417μS/cm	0.187 cfs	83.93121
5.3	4.3	8.3 mg/L	344.6μS/cm	0.421cfs	188.95743
3.05	4.69	8.8 mg/L	340μS/cm	0.456 cfs	204.66648
5.11	3.42	5.7 mg/L	1388μS/cm	0.095 cfs	42.63885
3.87	6.4	4.8 mg/L	792.2μS/cm	0.053 cfs	23.78799
4.45	4.56	8.6 mg/L	364.2μS/cm	0.022 cfs	9.87426
3.27	4.55	4.3 mg/L	322.9μS/cm	0.004 cfs	1.79532
6.53	4.68	8.2 mg/L	1032μS/cm	2.21 cfs	991.9143
4.05	4.8	8.7 mg/L	410.4μS/cm	1.29 cfs	578.9907
6.05	5.65	6.9 mg/L	2104μS/cm	cfs	0
6.71	5.79	8 mg/L	2101μS/cm	0.709 cfs	318.22047
0.58	4.12	9.4 mg/L	329μS/cm	0.02 cfs	8.9766
7.95	3.59	$3.3\mathrm{mg/L}$	2147μS/cm	0.313 cfs	140.48379
7.6	3.14	2 mg/L	2269μS/cm	0.008 cfs	3.59064
3.15	2.97	9 mg/L	1951μS/cm	0.299 cfs	134.20017

6.03	3.57	8.3 mg/L	1260μS/cm	3.59 cfs	1611.2997
6.9	3.44	8.2 mg/L	1186μS/cm	3.34 cfs	1499.0922
7.69	5.08	5.1 mg/L	2385 μS/cm	0.24 cfs	107.7192
3.09	3.24	9.5 mg/L	992.4μS/cm	18 cfs	8078.94
3.09	3.24	9.5 mg/L	992.4μS/cm	18 cfs	8078.94
4.75	3.26	8.6 mg/L	508.4μS/cm	0.051cfs	22.89033
2.78	4.38	8.8 mg/L	315 μS/cm	cfs	0
10.18	4.22	6.8 mg/L	650μS/cm	0.067 cfs	30.07161
0.88	5.9	$10.1\mathrm{mg/L}$	339μS/cm	50 cfs	22441.5
6	3.31	8 mg/L	918μS/cm	0.141 cfs	63.28503
7.79	7.39	8.4 mg/L	300μS/cm	40 cfs	17953.2
7.05	6.38	8.4 mg/L	442.1μS/cm	102 cfs	45780.66
7.05	6.38	8.4 mg/L	442.1μS/cm	102 cfs	45780.66
3.06	3.21	7.6 mg/L	586.4μS/cm	0.002 cfs	0.89766
3.99	3.01	$8.1\mathrm{mg/L}$	915 μS/cm	cfs	0
2.8	6.94	8.4 mg/L	365 μS/cm	0.11 cfs	49.3713
6.63	5.72	7.4 mg/L	287μS/cm	0.27 cfs	121.1841
4.72	5.24	8.1 mg/L	405.1μS/cm	0.227 cfs	101.88441
6.11	5.67	7.6 mg/L	343.9μS/cm	0.317 cfs	142.27911
5.68	5.69	7.9 mg/L	338.9μS/cm	0.401 cfs	179.98083
5.26	3.53	5.3 mg/L	1419μS/cm	0.095 cfs	42.63885
3.91	6.75	4.8 mg/L	774μS/cm	0.06 cfs	26.9298
6.22	4.78	8 mg/L	331μS/cm	0.014 cfs	6.28362
3.99	4.56	4.5 mg/L	375.5 μS/cm	0.002 cfs	0.89766
9.68	3.83	7.6 mg/L	1289μS/cm	1.92 cfs	861.7536
8.77	5.16	7.7 mg/L	478μS/cm	0.862 cfs	386.89146
6.12	5.73	$3.7\mathrm{mg/L}$	2088μS/cm	cfs	0
6.21	5.96	$8.1\mathrm{mg/L}$	2069μS/cm	0.744 cfs	333.92952
6.21	5.96	8.1 mg/L	2069μS/cm	0.744 cfs	333.92952
6.73	4.09	7 mg/L	310.4µS/cm	cfs	0
8.02	3.27	3.6 mg/L	2326μS/cm	0.318 cfs	142.72794
7.8	2.9	1 mg/L	2578μS/cm	0.014 cfs	6.28362
7.96	3.06	7.9 mg/L	2150μS/cm	0.44 cfs	197.4852
8.54	3.49	7.7 mg/L	1533 μS/cm	2.68 cfs	1202.8644
9.36	3.48	7.6 mg/L	1411μS/cm	1.94 cfs	870.7302
7.68	5.13	5 mg/L	2379μS/cm	0.221cfs	99.19143
7.92	3.51	8.4 mg/L	1044μS/cm	17 cfs	7630.11
7.92	3.51	8.4 mg/L	1044μS/cm	17 cfs	7630.11
6.09	3.22	$8.1\mathrm{mg/L}$	600.4µS/cm	0.005 cfs	2.24415
6.91	4.73	$7.4\mathrm{mg/L}$	330.5 μS/cm	cfs	0
6.75	4.5	7.3 mg/L	588.9μS/cm	0.141 cfs	63.28503
7.05	6.68	8.6 mg/L	400 μS/cm	37 cfs	16606.71
6.5	3.48	7.6 mg/L	929.9μS/cm	0.11 cfs	49.3713
2.4	3.59	$9.02\mathrm{mg/L}$	202 μS/cm	cfs	0
2.4	3.59	$9.02\mathrm{mg/L}$	202 μS/cm	cfs	0

3.25	3.43	9 mg/L	243 μS/cm	cfs	0
3.25	3.43	9 mg/L	243 μS/cm	cfs	0
1.28	5.16	9.28 mg/L	124μS/cm	4.24 cfs	1903.0392
1.28	5.16	9.28 mg/L	124μS/cm	4.24 cfs	1903.0392
2.47	4.46	8.77 mg/L	155.9μS/cm	8.78 cfs	3940.7274
2.47	4.46	8.77 mg/L	155.9μS/cm	8.78 cfs	3940.7274
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
6.08	5.68	$6.61\mathrm{mg/L}$	2235 μS/cm	0.699 cfs	313.73217
6.08	5.68	6.61 mg/L	2235 μS/cm	0.699 cfs	313.73217
1.15	4.19	8.99 mg/L	105.3 μS/cm	cfs	0
1.15	4.19	8.99 mg/L	105.3 μS/cm	cfs	0
7.96	3.25	$4.76\mathrm{mg/L}$	2116μS/cm	0.279 cfs	125.22357
7.96	3.25	4.76 mg/L	2116μS/cm	0.279 cfs	125.22357
7.96	3.25	$4.76\mathrm{mg/L}$	2116μS/cm	0.279 cfs	125.22357
7.96	3.25	4.76 mg/L	2116μS/cm	0.279 cfs	125.22357
8.86	5.01	6.77 mg/L	2399μS/cm	0.231cfs	103.67973
8.86	5.01	6.77 mg/L	2399μS/cm	0.231cfs	103.67973
7.47	7.37	97.1% Sat	161.6μS/cm	cfs	0
7.47	7.37	97.1% Sat	161.6μS/cm	cfs	0
2.62	6.59	9.4 mg/L	194μS/cm	cfs	0
2.62	6.59	9.4 mg/L	194μS/cm	cfs	0
2.62	6.59	9.4 mg/L	194μS/cm	cfs	0
2.62	6.59	9.4 mg/L	194μS/cm	cfs	0
2.4	3.59	$9.02\mathrm{mg/L}$	202 μS/cm	cfs	0
3.25	3.43	9 mg/L	243 μS/cm	cfs	0
7.74	3.36	7.88 mg/L	259μS/cm	0.545 cfs	244.61235
1.28	5.16	9.28 mg/L	124μS/cm	4.24 cfs	1903.0392
2.34	5.28	$9.1\mathrm{mg/L}$	161μS/cm	7.19 cfs	3227.0877
2.47	4.46	8.77 mg/L	155.9μS/cm	8.78 cfs	3940.7274
4.58	3.53	6.46 mg/L	1113 μS/cm	0.123 cfs	55.20609
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
3.05	3.64	6.56 mg/L	1126μS/cm	0.319 cfs	143.17677
3.87	6.37	6 mg/L	683 μS/cm	cfs	0
2.58	4.38	6.04 mg/L	308.3 μS/cm	0.00281 cfs	1.26121
7.76	4.95	$8.12\mathrm{mg/L}$	419µS/cm	8.51 cfs	3819.5433
7.76	4.61	$8.03\mathrm{mg/L}$	170μS/cm	11.77 cfs	5282.7291
6.08	5.68	6.61 mg/L	2235 μS/cm	0.699 cfs	313.73217
8.4	6.23	7.86 mg/L	2220μS/cm	0.675 cfs	302.96025
1.15	4.19	8.99 mg/L	105.3 μS/cm	cfs	0
7.96	3.25	4.76 mg/L	2116μS/cm	0.279 cfs	125.22357
7.96	3.25	4.76 mg/L	2116μS/cm	0.279 cfs	125.22357
7.46	3.26	$8.19\mathrm{mg/L}$	777μS/cm	0.893 cfs	400.80519

445.68819	0.993 cfs	980.5μS/cm	3.94 mg/L	6.13	5.63
2262.1032	5.04 cfs	116.5μS/cm	8.34 mg/L	6.05	3.69
2657.0736	5.92 cfs	301.1μS/cm	8.33 mg/L	6.41	4.75
8653.4424	19.28 cfs	311μS/cm	8.6 mg/L	6.51	5.78
8653.4424	19.28 cfs	311μS/cm	8.6 mg/L	6.51	5.78
5134.6152	11.44 cfs	538μS/cm	9.75 mg/L	3.94	1.07
7158.8385	15.95 cfs	477μS/cm	8.89 mg/L	3.98	4.7
103.67973	0.231cfs	2399μS/cm	6.77 mg/L	5.01	8.86
15341.0094	34.18 cfs	352.7μS/cm	8.14 mg/L	4.5	6.18
14609.4165	32.55 cfs	368μS/cm	7.59 mg/L	4.36	8.72
2823.1407	6.29 cfs	200.6μS/cm	8.39 mg/L	3.52	5.53
870.7302	1.94 cfs	316µS/cm	7.8 mg/L	3.35	9.08
22742.2161	50.67 cfs	404.7μS/cm	94.3 % Sat	4.06	8.83
552.0609	1.23 cfs	993.1μS/cm	94.1% Sat	7.31	11.56
0	cfs	427μS/cm	8 mg/L	4.43	9.39
91.56132	0.204 cfs	560μS/cm	8.06 mg/L	3.78	5.05
0	cfs	176.4μS/cm	96.5% Sat	7.07	6.38
170.5554	0.38 cfs	621µS/cm	8.95 mg/L	3.28	2.77
0	cfs	198μS/cm	8.9 mg/L	6.8	5.43
0	cfs	198μS/cm	8.9 mg/L	6.8	5.43
0	cfs	197μS/cm	9.1 mg/L	6.81	4.19
0	cfs	198μS/cm	8.8 mg/L	6.86	5.52
0	cfs	198μS/cm	8.8 mg/L	6.89	5.62
0	cfs	199μS/cm	8.8 mg/L	6.89	5.71
0	cfs	199μS/cm	8.8 mg/L	6.89	5.83
0	cfs	197μS/cm	9.2 mg/L	6.84	3.65
0	cfs	197μS/cm	9.2 mg/L	6.84	3.65
0	cfs	197μS/cm	9.2 mg/L	6.85	3.74
0	cfs	197μS/cm	9.2 mg/L	6.85	3.83
0	cfs	197μS/cm	9.1 mg/L	6.75	3.95
0		141.2μS/cm	8.74 mg/L	7.61	7.01
2289.48183	5.101 cfs	140.7μS/cm	9.41 mg/L	7.8	4.2
0		158.9μS/cm	8.31 mg/L	7.66	8.76
0		174.7μS/cm	8.08 mg/L	7.38	9.1
0		139.1μS/cm	8.57 mg/L	7.54	8.09
0		142.6μS/cm	8.6 mg/L	7.47	7.75
0		142.2μS/cm	8.95 mg/L	7.45	6.94
327.6459	0.73 cfs	96.13μS/cm	9.57 mg/L	7.45	3.75
138688.47	309 cfs	150.3μS/cm	9.67 mg/L	7.39	4.24
178634.34	398 cfs	188.2μS/cm	9.93 mg/L	6.87	2.52
0		159μS/cm	9.49 mg/L	7.25	4.91
0		84.76μS/cm	9.63 mg/L	7.26	4.15
0		50.34μS/cm	9.79 mg/L	7.38	3.75
8439.35049	18.803 cfs	108.9μS/cm	9.6 mg/L	7.98	3.9
0		134.5μS/cm	9.67 mg/L	7.42	5.82

5.6	7.96	9.73 mg/L	112.7μS/cm		0
5.58	7.49	9.71 mg/L	133.9μS/cm		0
6.44	7.64	10.28 mg/L	129.1μS/cm		0
2.2	4.5	9.08 mg/L	133.5μS/cm		0
3.03	3.75	7.38 mg/L	768.1μS/cm		0
1.83	4.49	9.13 mg/L	139.6μS/cm		0
3.16	4.42	9.4 mg/L	229.9μS/cm	31.286 cfs	14042.09538
2.17	4.33	9.25 mg/L	129.9μS/cm	30.092 cfs	13506.19236
6.15	5.57	6.29 mg/L	2162μS/cm	0.44 cfs	197.4852
6.24	5.84	8.61 mg/L	2011μS/cm	0.652 cfs	292.63716
3.52	3.37	9.06 mg/L	572.1μS/cm	3.237 cfs	1452.86271
5.36	6.22	4.63 mg/L	959μS/cm		0
1.1	3.77	9.27 mg/L	190.6μS/cm	7.498 cfs	3365.32734
1.85	3.97	9.2 mg/L	207.1μS/cm	10.292 cfs	4619.35836
4.89	4.58	8.88 mg/L	317.9μS/cm	17.775 cfs	7977.95325
4.18	4.09	9.14 mg/L	324.9μS/cm	32.272 cfs	14484.64176
3.98	3.99	9.11 mg/L	292.2μS/cm		0
10.43	5.46	$6.09\mathrm{mg/L}$	2268μS/cm	0.259 cfs	116.24697
6.42	4.06	8.62 mg/L	377.5μS/cm	44.934 cfs	20167.72722
5.45	4.23	8.92 mg/L	360.8µS/cm	41.241 cfs	18510.19803
4.39	3.78	$9.1\mathrm{mg/L}$	177.8μS/cm	11.394 cfs	5113.96902
7.71	3.65	$8.61\mathrm{mg/L}$	355.6μS/cm	2.084 cfs	935.36172
3.02	4.36	$9.73\mathrm{mg/L}$	343.4μS/cm		0
12.16	7.47	$7.71\mathrm{mg/L}$	1034μS/cm	1.251 cfs	561.48633
2.48	4.43	$10.07\mathrm{mg/L}$	351μS/cm	91 cfs	40843.53
3.09	4.9	$8.71\mathrm{mg/L}$	399.1μS/cm		0
3.23	7.23	9.78 mg/L	187.4μS/cm	185 cfs	83033.55
1.03	4.79	8.97 mg/L	160.4μS/cm		0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0

0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0			100.01		0
4.9			196μS/cm		0
0			264 64		0
13.28			264μS/cm		0
0					0
0	7.26	0.06 //	1027.6/		0
6.35	7.36	8.86 mg/L	182.7μS/cm		0
5.48	7.44	9.01 mg/L	181.2μS/cm		0
3.2	7.53	9.66 mg/L	142.9μS/cm		0
3.38	7.44	9.55 mg/L	178.7μS/cm		0
2.89	7.36	9.71 mg/L	183.2μS/cm		0
2.6	7.35	9.79 mg/L	178μS/cm		0
2.32 1.96	7.24	9.84 mg/L 9.94 mg/L	183 μS/cm		0
3.85	7.15 7.46	9.94 mg/L 9.44 mg/L	183.2μS/cm 115μS/cm		0
8.53	7.4 0 7.09	9.44 mg/L 8.24 mg/L	203.4μS/cm		0
9.51	6.33	8.04 mg/L	240.4μS/cm		0
2.95	7.19	9.92 mg/L	240.4μ3/cm 207.6μS/cm		0
3.25	7.19	9.88 mg/L	207.0μ3/cm 134.6μS/cm		0
3.02	7.24	9.88 mg/L 10.29 mg/L	165.1μS/cm		0
5.36	7.29	9.73 mg/L	136μS/cm		0
5.72	7.63	9.73 mg/L 10.48 mg/L	161μS/cm		0
4.07	7.38	10.40111g/ L	177.5μS/cm		0
4.5	7.39	9.79 mg/L	177.5μ5/cm		0
1.82	4.97	9.67 mg/L	423.5 μS/cm	10.402 cfs	4668.72966
1.93	4.94	9.5 mg/L	175.7μS/cm	9.537 cfs	4280.49171
6.26	5.78	3.96 mg/L	2219μS/cm	3.337 0.3	0
1.18	3.99	9.8 mg/L	1142μS/cm	1.089 cfs	488.77587
5.14	6.46	5.37 mg/L	989.9μS/cm		0
3.18	6.08	9.1 mg/L	604.6µS/cm	1.639 cfs	735.63237
3.85	5.76	8.96 mg/L	472.9μS/cm	8.703 cfs	3906.16749
3.11	4.44	9.22 mg/L	525.4μS/cm	18.87 cfs	8469.4221
7.44	5.35	2.8 mg/L	2153 µS/cm	0.333cfs	149.46039
3.4	4.25	9.11 mg/L	600.7μS/cm	20.408 cfs	9159.72264
		· · · O / _	· · · · · · · · · · · · · · · ·		

2.79	4.39	9.2 mg/L	471.9μS/cm	31.124 cfs	13969.38492
1.42	4.54	9.75 mg/L	161μS/cm	6.477 cfs	2907.07191
2.23	4.59	9.81 mg/L	384.5μS/cm		0
2.18	4.6	10.06 mg/L	343.9μS/cm		0
7.64	6.83	8.41 mg/L	217.3μS/cm		0
15.36	5.15	6.64 mg/L	185 μS/cm	2.2748 cfs	1020.99848
13.3	5.4	7.06 mg/L	307μS/cm	7.2721 cfs	3263.93664
12.31	6.9	7.78 mg/L	262μS/cm	17.567 cfs	7884.59661
11.33	6.91	$8.15\mathrm{mg/L}$	272μS/cm	23.273 cfs	10445.62059
11.27	6.93	8.06 mg/L	266μS/cm	26.5031 cfs	11895.38637
10.78	6.8	8.37 mg/L	267μS/cm	24.7996 cfs	11130.80447
7.69	6.81	9.19 mg/L	266μS/cm	44.5354 cfs	19988.82358
5.83	6.66	9.7 mg/L	277μS/cm	52.8361 cfs	23714.42676
5.08	6.71	16.12 mg/L	251μS/cm	89.1352 cfs	40006.55182
12.9	6.64	4.22 mg/L	250μS/cm	93.7173 cfs	42063.13576
7.73	7.71	7.78 mg/L	166μS/cm	17.9388 cfs	8051.47160
7.42	6.48	7 mg/L	240μS/cm	128.5292 cfs	57687.76084
11.94	7.37	3.2 mg/L	243μS/cm	101.8065 cfs	45693.81140
11.52	6.26	6.94 mg/L	239μS/cm	109.5282 cfs	49159.54201
8.9	7.01	8.17 mg/L	266μS/cm		0
6.15	6.99	$8.71\mathrm{mg/L}$	267.5μS/cm	41.5218 cfs	18636.22949
4.21	6.98	9.23 mg/L	133.6μS/cm		0
13.32	7.71	7.39 mg/L	256.3 μS/cm	108 cfs	48473.64
12.24	7	7.5 mg/L	326μS/cm	257 cfs	115349.31
7.9	7.24	8.61 mg/L	317.9μS/cm		0
6.27	7.24	8.97 mg/L	129μS/cm		0
6.4	7.25	8.95 mg/L	62.62μS/cm		0
9.41	6.89	9.3 mg/L	199μS/cm		0
10.05	7.28	9.18 mg/L	171μS/cm		0
10.07	6.93	9.66 mg/L	200μS/cm		0
14.68	7.15	7.96 mg/L	333.1µS/cm		0
12.59	7.67	8.74 mg/L	282.2μS/cm		0
12.09	7.76	7.76 mg/L	278.6μS/cm		0
12.33	7.58	8.31 mg/L	215.5 µS/cm		0
11.48	3.47	7.19 mg/L	572.5μS/cm	0.0751 cfs	33.70713
5.71	5.61	8.14 mg/L	430.6µS/cm	1.6347 cfs	733.70240
3.17	5.75	8.78 mg/L	403.3 μS/cm	1.6511 cfs	741.06321
11.82	4.33	4.67 mg/L	338µS/cm	2.6098 cfs	1171.35653
5.33	3.39	5.64 mg/L	1372μS/cm	0.1535 cfs	68.89541
9.18	6.84	7.43 mg/L	810.4µS/cm		0
5.82	4.89	7.97 mg/L	430.6µS/cm		0
18.68	4.1	5.99 mg/L	373μS/cm		0
7.79	5.24	6.6 mg/L	839µS/cm	3.4723 cfs	1558.47241
11.92	5.32	7.4 mg/L	411.1μS/cm	3.3964 cfs	1524.40621
6.21	5.86	6.81 mg/L	2135µS/cm	1.4648 cfs	657.44618
0.21	5.00	0.011116/ L	2100 μ0/ 0111	1.1010013	037.44010

7.04	6.47	8.3 mg/L	2126μS/cm	0.901 cfs	404.39583
8.27	3.62	6.34 mg/L	334µS/cm	0.141 cfs	63.28503
7.99	2.98	3.67 mg/L	2450μS/cm	0.0695 cfs	31.19369
9.06	3.02	$6.09\mathrm{mg/L}$	2357μS/cm	0.0113 cfs	5.07178
6.47	2.94	6.62 mg/L	1544μS/cm	0.3846 cfs	172.62002
5.66	6.47	3.8 mg/L	655.8μS/cm		0
9.21	6.54	7.83 mg/L	213.8µS/cm	0.9347 cfs	419.52140
7.23	6.7	8.22 mg/L	621.4µS/cm	1.6912 cfs	759.06130
4.96	6.48	8.89 mg/L	601.7μS/cm	8.1045 cfs	3637.54274
4.36	3.63	6.53 mg/L	960μS/cm	4.6595 cfs	2091.32339
6.69	3.61	$6.72\mathrm{mg/L}$	947μS/cm	4.8091 cfs	2158.46835
8.21	5.12	5.45 mg/L	2305 μS/cm	0.2586 cfs	116.06744
4.3	4.07	7.94 mg/L	807μS/cm	10.9888 cfs	4932.10310
4.21	4.44	8.67 mg/L	793 μS/cm	13.1408 cfs	5897.98526
4.38	4.03	$9.03\mathrm{mg/L}$	462.6μS/cm	1.0212 cfs	458.34520
4.82	3.5	8.28 mg/L	810μS/cm	24.1786 cfs	10852.08104
5.28	4	$9.15\mathrm{mg/L}$	825.4μS/cm	28 cfs	12567.24
11.28	4.03	4.85 mg/L	722μS/cm	0.0338 cfs	15.17045
12.07	7.65	8.48 mg/L	212.9µS/cm		0
10.47	7.05	7.85 mg/L	273.3 μS/cm	163 cfs	73159.29
11.63	3.24	5.01 mg/L	1040μS/cm	0.0365 cfs	16.38230
14.36	5.97	6.42 mg/L	203μS/cm	2.291 cfs	1028.26953
0.3	5.29	9.89 mg/L	141.3μS/cm		0
0.7	6.6	9.3 mg/L	69.6 µS/cm		0
0.6	4.8	9.3 mg/L	74.6μS/cm	29.6938 cfs	13327.46825
2.1	7.19	9.25 mg/L	68.6 µS/cm		0
3.2	6.18	$9.01\mathrm{mg/L}$	98.8µS/cm		0
2.4	6.33	9.19 mg/L	91.7μS/cm	56.1382 cfs	25196.50831
4.3	3.05	8.06 mg/L	647.2μS/cm	0.0832 cfs	37.34266
10.8	7.14	5.89 mg/L	466.6μS/cm	0.186 cfs	83.48238
1.3	6.2	8.7 mg/L	87.6 µS/cm	56.1279 cfs	25191.88536
3.5	6.67	9.02 mg/L	88.6 µS/cm		0
1	5.33	9.91 mg/L	130.8μS/cm	22.8279 cfs	10245.84636
0.7	6.38	8.22 mg/L	93.5 μS/cm	24.7921 cfs	11127.43824
2.3	7.68	9.26 mg/L	96.2μS/cm		0
4	7.8	8.9 mg/L	127.4μS/cm		0
3.2	7.75	9.05 mg/L	92.6μS/cm	14.8171 cfs	6650.35899
3.2	7.52	9.34 mg/L	25.8μS/cm		0
4	7.57	9.07 mg/L	93.1μS/cm		0
11	6.42	6.55 mg/L	679.5μS/cm		0
14.4	6.96	5.86 mg/L	671μS/cm		0
4.1	7.52	9.17 mg/L	96.2μS/cm		0
2.9	7.43	8.55 mg/L	94.6μS/cm	135.0608 cfs	60619.33886
1.7	7.59	9.38 mg/L	96.9μS/cm	4.7423 cfs	2128.48651
4.41	7.48	8.87 mg/L	131.4μS/cm		0

5.23	7.57	$8.76\mathrm{mg/L}$	101.2μS/cm		0
2.41	7.56	9.43 mg/L	123.6μS/cm		0
2.54	7.41	9.07 mg/L	126μS/cm		0
7.11	7.27	8.37 mg/L	126.8μS/cm		0
6.26	7.29	8.56 mg/L	113.2μS/cm		0
6.64	7.58	8.38 mg/L	119.2μS/cm		0
7.7	7.43	8.88 mg/L	206.1μS/cm	10.7771 cfs	4837.08579
5.15	7.71	8.83 mg/L	109.9μS/cm	53.3402 cfs	23940.68197
5.19	7.79	9.06 mg/L	97.51μS/cm	75.1806 cfs	33743.30870
7.58	7.27	8.4 mg/L	134.6μS/cm		0
5.58	7.56	8.71 mg/L	119.4μS/cm	9.1237 cfs	4094.99027
5.69	7.57	8.75 mg/L	117.8μS/cm		0
5.37	6.85	$8.92\mathrm{mg/L}$	531.5 μS/cm		0
5.99	7.22	8.59 mg/L	134.8μS/cm		0
4.77	7.24	9.15 mg/L	98.7μS/cm		0
5.5	7.45	8.76 mg/L	132μS/cm		0
4.47	7.33	9.09 mg/L	119.5 μS/cm		0
4.26	7.17	9.21 mg/L	132.1μS/cm		0
4.92	7.29	8.82 mg/L	137.8μS/cm		0
3.71	7.1	9.35 mg/L	131.2μS/cm		0
3.83	7.15	8.97 mg/L	132.6μS/cm		0
3.07	6.99	9.5 mg/L	132.4μS/cm		0
3.3	7.07	9.67 mg/L	133.2μS/cm	730 cfs	327645.9
5.45	7.31	9.07 mg/L	108.8μS/cm	995 cfs	446585.85
2.74	6.82	9.72 mg/L	145.9μS/cm	1390 cfs	623873.7
5.1	6.59	9.19 mg/L	118.2μS/cm	2510 cfs	1126563.3
7.13	7.47	10.54 mg/L	111.6μS/cm		0
2.75	4.46	9.37 mg/L	186.1μS/cm		0
2.54	4.46	9.27 mg/L	121.2μS/cm		0
8	5.52	7.7 mg/L	19.24μS/cm	0.3 cfs	134.649
1.7	2.02	9.4 mg/L	402.8μS/cm		0
5.1	6.09	5.23 mg/L	871μS/cm		0
2.5	5.57	9.56 mg/L	189.6μS/cm		0
3.2	3.5	9.01 mg/L	248.6µS/cm		0
3.2	3.68	8.98 mg/L	236.8µS/cm		0
7.5	5.1	4.9 mg/L	2208µS/cm	0.2977 cfs	133.61669
3.5	3.83	9.38 mg/L	265.8μS/cm		0
5.1	4.73	8.84 mg/L	190.8μS/cm	283 cfs	127018.89
3	6.26	8.41 mg/L	93.9μS/cm	48.5692 cfs	21799.31404
8.6	7.13	7.55 mg/L	88.9µS/cm	0.0832 cfs	37.34266
2.1	6.28	9.02 mg/L	88.9 µS/cm	53.2909 cfs	23918.55465
0.97	7.36	9.29 mg/L	130.7μS/cm		0
2.86	7.77	8.88 mg/L	121.1μS/cm		0
6.7	7.48	8.54 mg/L	118.7μS/cm		0
2.49	7.21	9.44 mg/L	140.1μS/cm	517 cfs	232045.11
		-	•		

5	6.72	9.36 mg/L	111.6μS/cm	582 cfs	261219.06
7.1	7.35	$3.19\mathrm{mg/L}$	707.6μS/cm	0.331cfs	148.56273
1	6.18	9.87 mg/L	69.4μS/cm		0
4.1	7.6	$8.79\mathrm{mg/L}$	90.7μS/cm		0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0
0					0

Remarks
Formula is CFS * 448.83 = GPM

Location changed from CCOPP-08 to CC01F per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-07 to CC01H per B.Schroeder by S. Dellamia on 03/13/11 Location changed from QA-0 to CC01S per B.Schroeder by S. Dellamia on 03/13/11 Location changed from QA-0 to CC01S per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-06 to CC01T per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-03 to CC02A per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-03A to CC02i per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-02 to CC04 per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CC18 to CC18B per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CC18 to CC18B per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-05 to CC01C1 per B. Schroeder by A. Christensen 3/16/11 Location changed from CCOPP-03 to CC02A per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-04 to CC02H per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-02 to CC04 per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CCOPP-01 to CC18 per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CC18 to CC18B per B.Schroeder by S. Dellamia on 03/13/11 Location changed from CC18 to CC18B per B.Schroeder by S. Dellamia on 03/13/11

Location changed from CCOPP-10 to CC01U per B. Schroeder by A. Christensen on 3/16/11

Location changed from CCOPP-11 to CC03 per B. Schroeder by A. Christensen on 3/16/11 Location changed from CCOPP-11 to CC03 per B. Schroeder by A. Christensen on 3/16/11 Location changed from CCOPP-12 to CC03B per B. Schroeder by A. Christensen on 3/16/11

Location changed from CCOPP-11 to CC03 per B. Schroeder by A. Christensen on 3/16/11 Location changed from CCOPP-12 to CC03B per B. Schroeder by A. Christensen on 3/16/11	

Location changed from CCOPP-10 to CC01U per B. Schroeder by A. Christensen on 3/16/11

- 3 ppb RL for Cu
- 3 ppb RL for Cu
- 3 ppb RL for Cu
- 3 ppb RL for Cu
- 3 ppb RL for Cu
- 3 ppb RL for Cu $\,$
- 3 ppb RL for Cu

```
3 ppb RL for Cu
3 ppb RL for Cu; Location changed from CCOPP-11 to CCO3 per B. Schroeder by A. Christensen 3/16/11
3 ppb RL for Cu; Location changed from CCOPP-12 to CCO3B per B. Schroeder by A. Christensen on 3/16/11
3 ppb RL for Cu
```


pH, DO, Temp, Conductivity data not available pH , DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available

pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available pH and DO Data not available pH, DO, Temp, Conductivity data not available pH and DO Data not available pH, DO, Temp, Conductivity data not available pH, DO, Temp, Conductivity data not available

No Field Data

No Field Data