Started on	Sunday, 7 April 2024, 12:10 AM			
State	Finished			
Completed on	Sunday, 7 April 2024, 12:38 AM			
Time taken	27 mins 18 secs			
Grade	8.00 out of 10.00 (80%)			
Question 1				
Complete				
Mark1.00 out of 1.00				

Suppose we would like to perform clustering on the geometrical locations of houses. To produce clusters of many different sizes and shapes, which of the following methods is the most appropriate?

- a. Decision Trees
- b. K-means clustering
- c. Model-based clustering
- od. Density-based clustering

The correct answer is: Density-based clustering

7:59 AM	M CS564 : Foundation of	Machine Learning-Quiz-1: Attempt review CET			
Question 2	n 2				
Complete	te				
Mark 1.00 ou	00 out of 1.00				
K-medoi	edoids clustering for K=2?	tial medoids, which point would be selected as the initial medoid in			
	Data Points: A, B, C, D Distances to Potential Medoids:				
	A to B: 5				
	A to C: 8				
	A to D: 6				
	B to C: 4				
	B to D: 7				
• C	C to D: 3				
a.					
O b.	b. D				
O c.	c. A				
○ d.	d. B				
The corn	correct answer is: C				
Question 3	n3				
Complete	te				
Mark 0.00 o	00 out of 1.00				
	clustering algorithm, you have used the k-means algorithm to clus ering results,and it is 0.65,what does this score suggest about the	ter data into 4 clusters. if you calculate the silhouette score for your quality of clusters?			
○ a.	a. Poor clustering				
O b.	b. Fair clustering				
O c.	c. Excellent clustering				
d.	d. Good clustering				

The correct answer is: Excellent clustering

Question 4	
Complete	
Mark 0.00 o	ut of 1.00
	AN clustering, if there exists a chain of objects p1, p2, p3,, pn, with p1 as q and pn as p, and each consecutive object pi+1 is directly reachable from pi, how many of these objects in the chain are core objects when the value of MinPts is configured as 4?
○ a.	3 core objects
O b.	1 core object
O c.	2 core objects
d.	4 core objects
The corn	ect answer is: 2 core objects
Question 5 Complete	
Mark 1.00 ou	tori.oo
a.	ratement is false for defining the characters of DBSCAN Find mutually exclusive clusters of spherical shape Clusters are dense regions of objects in space that are separated by low-density regions
○ c.	Cluster density: Each point must have a minimum number of points within its "neighborhood."
O d.	May filter out outliers
The corn	ect answer is: Find mutually exclusive clusters of spherical shape
Question 6 Complete	
Mark 1.00 ou	tof1.00
1.00 00	
A datase	t with n points and m class labels can have a minimum (x) and maximum number
○ a.	x = m, y= n
O b.	x = 0, y = n
○ c.	x = n, y = m
d.	x=1,y=n

The correct answer is: x = 1, y = n

7:59 AM	CS564 : Foundation of Machine Learning-Quiz-1: Attempt review CET				
Question 7					
Complete					
	ark1.00 out of 1.00				
When allocating ATMs in a region with constraints such as obstacle objects and user-specified requirements, how can the k-means					
	ng algorithm be modified to achieve quality clustering under both constraints?				
a. Disregard user-specified constraints to maintain the simplicity of the k-means algorithm.					
b.	 b. Incorporate obstacle objects into the distance metric used by k-means for cluster assignment. 				
O c.	Use a larger value of k to ensure more ATMs are allocated, thus satisfying constraints.				
O d.	Apply the k-means algorithm as-is, as it naturally handles both obstacle objects and user-specified constraints.				
The correct answer is: Incorporate obstacle objects into the distance metric used by k-means for cluster assignment.					
Question 8					
Complete					
Mark1.00 out of 1.00					
Which clustering algorithm is capable of handling noise and outliers effectively?					
a.	DBSCAN				
O b.	Mean-Shift				
O c.	K-Medoids				
O d.	K-Means				
The correct answer is: DRSCAN					

Question 9 Complete Mark 1.00 out of 1.00

A good clustering method should have

a.	high intra-class similarity and low inter-class similarity
O b.	low intra-class similarity and low inter-class similarity
O c.	high intra-class similarity and high inter-class similarity
O d.	low intra-class similarity and high inter-class similarity

The correct answer is:

high intra-class similarity and low inter-class similarity

Question 10	
Complete	
Mark1.00 out of 1.00	

What is the primary assumption made by the K-means clustering algorithm?

- a. Clusters have similar sizes
- b. Clusters have similar densities
- o. Clusters are linearly separable
- od. Clusters have a spherical shape

The correct answer is: Clusters have a spherical shape