Com. Elec. Formula Sheet

Decibel Formulas

Relative Power Gain

$$A_P = \frac{P_O}{P_I}$$

where P_O and P_I are defined as the following:

$$P_I = \frac{V_I^2}{R_I}$$

$$P_O = \frac{V_O^2}{R_O}$$

Relative Voltage Gain

$$A_V = \frac{V_O}{V_I}$$

Relative Power Gain in dB

$$A_P(db) = 10\log_{10} A_P$$

Given that
$$R_O = R_I$$

If $R_O \neq R_I$ then the general form is given by the following:

$$A_P(db) = 10 \log_{10} \left(\frac{\frac{V_O^2}{R_O}}{\frac{V_I^2}{R_I}} \right)$$

Relative Voltage Gain in dB

$$A_V(db) = 20 \log_{10} \left(\frac{V_O}{V_I} \right) = 20 \log_{10} A_V$$

If $R_O \neq R_I$ then the general form is given by the following:

$$A_{V}(db) = 20 \log_{10} \left(\frac{V_{O}}{V_{I}}\right) - 10 \log_{10} \left(\frac{R_{O}}{R_{I}}\right)$$

Special Case

If $R_O \neq R_I$ then the general form is given by the following:

$$A_V(db) = 10 \log_{10} \left(\frac{V_O^2}{V_I^2}\right) - 10 \log_{10} \left(\frac{R_O}{R_I}\right)$$
$$= 20 \log_{10} \left(\frac{V_O}{V_I}\right) - 10 \log_{10} \left(\frac{R_O}{R_I}\right)$$

Absolute Power Gain dBm

$$A_{P(dBm)} = 10 \log_{10} \left(\frac{P}{1 \text{ mW}} \right), \text{ dBm}$$

Absolute Power Gain dBw

$$A_{P(dBw)} = 10 \log_{10} \left(\frac{P}{1 \text{ W}}\right), \text{ dBw}$$

Signal-to-Noise Ratio

$$\begin{split} \text{SNR} &= 10 \log_{10} \left(\frac{\text{Signal Power}}{\text{Noise Power}} \right) \\ \text{And given that } R_O &= R_I, \\ \text{SNR} &= 10 \log_{10} \left(\frac{V_S^2}{V_N^2} \right) \\ \text{SNR} &= 20 \log_{10} \left(\frac{V_S}{V} \right) \text{dB} \end{split}$$

Impulse Noise

$$dB_S = 20 \log_{10} \left(\frac{P}{0.0002\bar{\mu}} \right)$$
, where P is sound pressure in $\bar{\mu}$

$$\bar{\mu}=1\frac{\mathrm{dyne}}{\mathrm{cm}^2}=10^{-6}$$
 of atmospheric pressure at sea level

Gaussian (White) Noise

$$P_n = kT\Delta f$$

$$k=\,$$
 Boltzmann's Constant (1.38 * $10^{-23})$ J/K

T =resistor temperature in Kelvin (K)

 $\Delta f = \text{system bandwidth.}$

Gaussian (White) Noise Formulas

Using the above proportionality we can relate bandwidth to noise, shown below: Given the noise can be represented as e_n then we can say the following:

$$P_n = \frac{V_n^2}{R} = kT\Delta f$$
, where $V_n = \frac{e_n}{2}$

This is true by Ohm's law. By solving in terms of e_n we get the following:

$$\frac{V_n^2}{R} = kT\Delta f \text{ where } V_n = \frac{e_n}{2}$$
$$\frac{\left(\frac{e_n}{2}\right)^2}{R} = \frac{\left(\frac{e_n^2}{4}\right)}{R} = kT\Delta f$$
$$\left(\frac{e_n^2}{4}\right) = kT\Delta f R$$
$$e_n = \sqrt{4kT\Delta f R}$$

Noise Ratio

$$NF = 10 \log_{10} \frac{\frac{S_i}{N_i}}{\frac{S_o}{N_o}} = 10 \log_{10} NR$$

$$NR = \frac{\frac{S_i}{N_i}}{\frac{S_o}{N_o}} \text{ is the Noise Ratio}$$

$$\frac{S_i}{N_i} = \text{ input SNR}$$

$$\frac{S_o}{N_o} = \text{ output SNR}$$

Reactance Noise Effects

$$\Delta f_{eq} = \frac{\pi}{2}BW$$

BW = 3 dB; bandwidth for RC, LC, or RLC circuits.

Noise Created by Amplifiers in Cascade

$$NR = NR_1 + \frac{NR_2 - 1}{P_{G_1}} + \dots + \frac{NR_n - 1}{P_{G_1} * P_{G_2} * P_{G_{(n-1)}}}$$

NR = overall noise ratio of n stages.

 P_G = power gain ratio

Equivalent Noise Temperature

$$T_{eq} = T_0(NR - 1)$$

where $T_0 = 290$ K, a reference temperature in Kelvin.

Equivalent Noise Resistance

Sometimes used by Manufacturers to represent the noise generated by a device with a fictitious resistance. The following represents this:

$$R_{eq} = \sqrt{4kT\Delta fR}$$

Modulation Index

$$m = \frac{E_i}{E_c}$$

$$\%m = \frac{E_i}{E_c} * 100\%$$

$$\%m = \frac{B-A}{B+A} * 100\%$$

$$B = \text{ AM Waveform}$$

A = The Minimum Peak-to-Peak value

Overmodulation

$$\%m = \frac{B - O}{B + O} * 100\%$$

$$B = \text{AM Waveform}$$

O = The Minimum Peak-to-Peak value ≤ 0

Amplitude Modulation/Mixing in Frequency Domain

Carrier Signal

$$e_c = E_C \sin \omega_c t$$

where $e_i=$ is the instantaneous value of the carrier $E_C=$ is the maximum peak value of the carrier when unmodulated

$$\omega = 2\pi f$$
 ("f" is the carrier frequency)

t =is a unit of measure

Information Signal

$$e_i = E_I \sin \omega_i t$$

where $e_i =$ is the instantaneous value of the information

 E_i = is the maximum peak value of the intelligence

when unmodulated

 $\omega = 2\pi f$ ("f" is the carrier frequency)

t =is a unit of measure

AM Modulated Waveform

$$e = E_c \sin \omega_c t + \frac{mE_c}{2} \cos(\omega_c - \omega_i)t - \frac{mE_c}{2} \cos(\omega_c + \omega_i)t$$

 $1.E_c \sin \omega_c t$ relates to the carrier (1)

 $2.\frac{mE_c}{2}\cos(\omega_c-\omega_i)t$ relates to the the

lower sideband at $f_c - f_i(2)$

 $3.\frac{mE_c}{2}\cos(\omega_c+\omega_i)t$ relates to the the upper sideband at $f_c+f_i(3)$

Power Distribution in Carriers and Sidebands

$$E_{SF} = \frac{mE_C}{2}$$

 $E_{SF} = \text{ side frequency amplitude}$

m = modulation index

 $E_C = \text{carrier amplitude}$

Total Transmitted Power

$$P_t = P_c \left(1 + \frac{m^2}{2} \right)$$

 $P_t = \text{Total Transmitted Power (sidebands and carrier)}$

m = modulation index

 $P_c = \text{carrier power}$

Total Transmitted Current

 $I_t = \text{Total Transmitted Current (sidebands and carrier)}$

I = modulation index

 $I_c = \text{carrier current}$

Frequency Modulation

How FM Generator Works? "The Concept of Deviation"

$$f_{OUT} = f_C + ke_i$$

 $f_{OUT} =$ instantaneous output frequency

 f_C = output carrier frequency

k = deviation constant [kHz/V]

 $e_i = \text{modulating (intelligence) input}$

Quick Facts

- 1. Deviation constant defines how much carrier frequency will deviate for input voltage level.
- 2. Deviation constant dependent on system design.
- 3. Knowing deviation on either side of carrier is essential for determining occupied bandwidth of modulated signal.

Direct FM

Direct FM involves messing w/ the frequency component of a sinusoidal wave:

$$f \text{ in } \omega(A_P \sin(\omega t + \theta)) = A_P \sin(2\pi f t + \theta)$$

Indirect FM

Indirect FM involves messing w/ the phase angle component of a sinusoidal wave:

$$\theta$$
 in the sinusoid $(A_P \sin(\omega t + \theta) = A_P \sin(2\pi f t + \theta))$

FM IN THE FREQUENCY DOMAIN

 $e = A\sin(\omega_c t + m_f \sin \omega_i t)$

e =instantaneous voltage

A =peak value of original carrier wave

 $\omega_c = \text{carrier carrier angular velocity } (2\pi f_c)$

 $\omega_i = \text{modulating intelligence signal angular velocity } (2\pi f_i)$

Modulation Index

$$m_f = \text{FM Modulation Index} = \frac{\delta}{f_i}$$

 $\delta =$ maximum frequency shift caused by the intelligence signal (deviation) either above or below the carrier; therefore, deviation

written as 3 kHz, for example, has $\delta = 3$ kHz (not 6 kHz) in the above.

 $f_i =$ of the intelligence (modulating) signal

FM Spectrum Analyzer

Remember that each Bessel table entry represents the ratio $\frac{V_2}{V_1}$ for its respective carrier J_0 or sideband J_1 and above signal component, for a given modulation index.

$$P_{dB} = 20\log_{10}\frac{V_2}{V_1}$$

Power Distribution

Carson's Rule Approximation

$$BW \cong 2(\delta_{max} + f_{i_{max}})$$

Percent of Modulation and Deviation Ratio

$$DR = \frac{\text{max possible freq deviation}}{\text{max input freq}} = \frac{f_{dev(max)}}{f_{i(max)}}$$

Fourier Series

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) dx$$

 $\mathbf{A0}$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} 0dx + \frac{1}{2\pi} \int_{0}^{\pi} 0dx$$

$$= 0 + \frac{1}{2\pi} = \frac{1}{2}$$

 $\mathbf{A}\mathbf{n}$

For
$$n \ge 1$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 dx + \frac{1}{\pi} \int_{0}^{\pi} \cos(nx) dx$$

$$= 0 + \frac{1}{\pi} \frac{\sin(nx)}{n} \int_{0}^{\pi} = \frac{1}{n\pi} (\sin(n\pi) - \sin(0)) = 0$$

 \mathbf{Bn}

For
$$n \ge 1$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} 0 dx + \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= -\frac{1}{\pi} \frac{\cos(nx)}{n} \int_{0}^{\pi} = -\frac{1}{n\pi} (\cos(n\pi) - \cos(0)) = 0$$
0 if n is even; $\frac{2}{n\pi}$ if n is odd