数字集成电路静态时序分析基础

邸志雄 博士, zxdi@home.swjtu.edu.cn

西南交通大学信息科学与技术学院

概述

01

02

03

数字芯片与FPGA设计流程

静态时序分析概述

课程内容规划

.... 000 ********

1 数字芯片与FPGA设计流程

引用自Prof. Jens Vygen @University of Bonn的《Combinatorial Optimization and Applications in VLSI Design》课程。

引用自Prof. Jens Vygen @University of Bonn的《Combinatorial Optimization and Applications in VLSI Design》课程。

引用自Prof. Jens Vygen @University of Bonn的《Combinatorial Optimization and Applications in VLSI Design》课程。

引用自Prof. Jens Vygen @University of Bonn的《Combinatorial Optimization and Applications in VLSI Design》课程。

FPGA设计流程

Setup Time - The length of time that data must stabilize before the clock transition.

Hold Time - The length of time that data must remain stable at the input pin after the active clock transition.

静态时序分析,英文全称: Static Timing Analysis,简称为STA

	Event Driven Timing simulation	STA
Vector Generation	Required	Not Required
Design Coverage	Vector dependent(limited) coverage	Vector independent exhaustive coverage
Runtime	Takes several days/weeks of CPU time	Analyzes multimillion gate design in hours
Capacity	Can run out of memory for multimillion designs	Can easily handle multimillion designs
Analysis/Debug features	No special features for timing analysis	Features such as min/mux analysis, on chip variation, dynamic loop breaking case efforts for timing analysis
Design style support	No Restrictions	Limited support for asynchronous design styles

3 课程内容规划

课程主要内容

- ①TCL语言入门、Synopsys TCL语言入门。
- ②静态时序分析基础,包括工艺库、STA环境、时序检查方法、多时钟等特殊时序分析等。
- ③SDC与习题。

TCL 全称「Tool Command Language」,从这个表格中,我们可以看到TCL语言在集成电路EDA tool控制上基本处于霸主地位。

功能	工具	语言
数字综合	DC/Genus	TCL
DFT	Tessent/Dftmax	TCL
布局布线	Innovus/ICC2	TCL
静态时序仿真	PT/Tempus	TCL
功耗分析	Redhawk/Voltus	TCL
版图工具	Calibredry	TCL
物理验证	Calibre/PVS	SVRF/TCL
形式验证	LEC/Formality	TCL

参考书目

- ① Static Timing Analysis for Nanometer Designs: A Practical Approach. J. Bhasker, Rakesh Chadha. Springer Science Business Media, LLC 2009.
- ②集成电路静态时序分析与建模. 刘峰, 机械工业出版社. 出版时间: 2016-07-01.
- ③ Using Tcl with Synopsys Tools. Version B-2008.09, March 2011. Synopsys.

谢谢聆听!

个人教学工作主页https://customizablecomputinglab.github.io/