Quantitative Research Notes

A short complation of knowledge

Pratim Chowdhary

Last updated: February 11, 2025

Contents

Introdu	uction	1
Decisio	Decision Theory	
2.1	Framework	2
2.2	Data Reduction	2
Linear	Algebra	3
Eigenv	ralues and Eigenvectors	3
(Semi)	Positive Definite Matrices	3
5.1	Covariance Matrix	3
Idemp	dempotent Matrices	
6.1	Pseudo Inverse	4
Optim	ization	4
Probab	pility and Statistics	4
Tradin	g (Game Theory)	4
Practic	al Statistical Learning	4
Pandas		4
11.1	DataFrames	4
11.2	2 Summary Statistics	5
11.3	B Data Cleaning	6

X Introduction

This is a short compilation of notes on various topics in quantitative research. The notes are based on various sources and are intended to be a quick reference guide for students as well as for myself to brush up on concepts.

X Decision Theory

2.1 Framework

1. A **statistical model** is a framily of distributions, formally defined as:

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \} \tag{1}$$

where Θ is the parameter space and P_{θ} is the distribution of the data given θ . The parameter space Θ is the set of all possible values of θ .

2. A **decision procedure** is a function $\delta : \mathcal{X} \to \Theta$ that maps the data space \mathcal{X} to the parameter space Θ . For example if we take the example of a weighted coin flips, we have:

$$X = \{0, 1\}^n \text{ and } \Theta = [0, 1]$$
 (2)

If we are interested in estimating the parameter θ of the coin, we can define a decision space as $\Theta = [0,1]$ and a decision procedure as,

$$\delta(x) = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3}$$

where $x \in X$ is the data and $\delta(x)$ is the estimate of the parameter θ .

3. A **loss function** is a function $L: \Theta \times \Theta \to \mathbb{R}$ that measures the loss incurred by choosing θ when the true parameter is θ' . For example in many situtations we use the squared loss function:

$$L(\theta, \theta') = (\theta - \theta')^2 \tag{4}$$

4. The **risk** of a decision procedure δ is the expected loss incurred by the decision procedure:

$$R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta(X))] \tag{5}$$

where \mathbb{E}_{θ} denotes the expectation with respect to the distribution P_{θ} .

2.2 Data Reduction

The idea is that not all data is relevant for making decisions. We can hence reduce the data to a smaller set of and not lose any information.

- 1. A **statistic** is a function $T: X \to \mathcal{T}$ that maps the data space X to a smaller space \mathcal{T} .
- 2. A statistic T is **sufficient** for a parameter θ if the distribution of the data given the statistic T does not depend on θ . Formally if for all t,

$$P_{\theta}(X|T=t) = P_{\theta'}(X|T=t) \quad \forall \theta, \theta' \tag{6}$$

3. For any matrix $X \in \mathbb{R}^{n \times p}$, $X^T X$ must be at least positive semi-definite, this is because:

$$v^{T}X^{T}Xv = (Xv)^{T}Xv = ||Xv||^{2} \ge 0$$
(7)

where $v \in \mathbb{R}^p$.

X Linear Algebra

X Eigenvalues and Eigenvectors

1. The eigenvalues of a matrix $A \in \mathbb{R}^{n \times n}$ are the roots of the characteristic polynomial:

$$\det(A - \lambda I) = 0 \tag{8}$$

where λ is the eigenvalue and I is the identity matrix. The eigenvectors are the vectors v such that:

$$Av = \lambda v \tag{9}$$

- 2. The trace of a matrix is the sum of its eigenvalues and the determinant is the product of its eigenvalues.
- 3. The eigenvectors of a matrix are orthogonal if the matrix is symmetric.
- 4. The eigenvectors of a matrix are linearly independent if the matrix is diagonalizable.

% (Semi) Positive Definite Matrices

1. A matrix $A \in \mathbb{R}^{n \times n}$ is **positive semi-definite** if for all $x \in \mathbb{R}^n$:

$$x^T A x \ge 0 \tag{10}$$

Positive definite matrices are defined similarly with the inequality replaced by a strict inequality.

2. If a matrix is positive semi-definite, then all its eigenvalues are non-negative and if it is positive definite, then all its eigenvalues are positive.

5.1 Covariance Matrix

1. The covariance matrix of a random vector $X \in \mathbb{R}^n$ is defined as:

$$\Sigma = \mathbb{E}[(X - \mu)(X - \mu)^T]$$
(11)

where $\mu = \mathbb{E}[X]$ is the mean of the random vector X. The covariance matrix is a symmetric positive semi-definite matrix. With a real set of data $X \in \mathbb{R}^{n \times p}$, the empircal covariance matrix is defined as:

$$\hat{\Sigma} = \frac{1}{n-1} X^T X \in R^{p \times p} \tag{12}$$

where X is the data matrix with n samples and p features.

2. Note the covariance matrix can only be full rank if $N \ge p$ and none of the features are linearly dependent, this is because:

$$rank(\Sigma) \le \min(n, p) \tag{13}$$

and since $n \ge p$, the rank of the covariance matrix is at most p. Some of the useful properties of the covariance matrix are:

- The covariance matrix is symmetric and positive semi-definite.
- The covariance matrix is diagonal \iff the features are uncorrelated.
- It is related to the correlation matrix by:

$$Corr(X) = D^{-1}\Sigma D^{-1} \quad \text{where} \quad D = diag(\Sigma)^{1/2}$$
(14)

• The covariance matrix is positive definite \iff the features are linearly independent.

X Idempotent Matrices

- 1. A matrix $A \in \mathbb{R}^{n \times n}$ is idempotent if $A^2 = A$. The following are some properties of idempotent matrices:
 - The eigenvalues of an idempotent matrix are either 0 or 1, this can be seen by:

$$Av = \lambda v \implies A^2 v = \lambda^2 v \implies \lambda^2 v = \lambda v \implies \lambda = 0, 1$$
 (15)

- The rank of an idempotent matrix is equal to its trace this is because: since the trace is the sum of the eigenvalues, the rank is the number of non-zero eigenvalues.
- The eigenvectors of an idempotent matrix are orthogonal.
- The matrix I A is also idempotent.
- 6.1 Pseudo Inverse
- **X** Optimization
- ***** Probability and Statistics

Most of the topics of basic probability and statistics are too well known

- X Trading (Game Theory)
- ***** Practical Statistical Learning
- **%** Pandas

11.1 DataFrames

- 1. A DataFrame is a 2-dimensional labeled data structure with columns of potentially different types, some common operations on DataFrames are:
 - **Selecting columns:** Columns can be selected using the column name as an attribute or as a key.
 - **Selecting rows:** Rows can be selected using the loc and iloc methods.
 - Filtering rows: Rows can be filtered using boolean indexing.

- **Applying functions:** Functions can be applied to columns using the apply method.
- **Grouping data:** Data can be grouped using the groupby method.
- **Merging data:** Data can be merged using the merge method.

Some examples of these operations are:

```
import pandas as pd
# Create a sample DataFrame
data = {
    'name': ['Alice', 'Bob', 'Charlie', 'Dave', 'Eve'],
    'age': [24, 42, 18, 68, 32],
    'city': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix'],
    'salary': [50000, 60000, 45000, 70000, 65000]
}
df = pd.DataFrame(data)
# 1. Selecting columns
# Using the column name as a key
names = df['name']
# Using the column name as an attribute (if it doesn't conflict with method names)
ages = df.age
# 2. Selecting rows
# Using label-based indexing (loc)
first_row_loc = df.loc[0] # Select row with label 0
subset_loc = df.loc[1:3]  # Select rows with labels 1 through 3
# Using integer-based indexing (iloc)
first_row_iloc = df.iloc[0] # Select the first row
subset_iloc = df.iloc[1:3] # Select the 2nd and 3rd rows
# 3. Filtering rows (boolean indexing)
older_than_30 = df[df['age'] > 30]
# 4. Applying functions
# Apply a lambda function to increase salary by 10%
df['salary_with_bonus'] = df['salary'].apply(lambda x: x * 1.1)
# 5. Grouping data
# Calculate the mean salary for each city
mean_salary_by_city = df.groupby('city')['salary'].mean()
# 6. Merging data
# Suppose we have another DataFrame df2 that shares a common key 'name'
df2 = pd.DataFrame({
    'name': ['Alice', 'Bob', 'Eve'],
    'bonus': [5000, 7000, 4000]
})
merged_df = pd.merge(df, df2, on='name', how='left')
```

11.2 Summary Statistics

1. Some common summary statistics for a DataFrame df are:

- **Descriptive statistics:** The describe method provides summary statistics for numerical columns.
- **Correlation matrix:** The corr method provides the correlation matrix for numerical columns.
- Unique values: The nunique method provides the number of unique values for each column.
- **Value counts:** The value_counts method provides the frequency of each unique value in a column.
- Missing values: The isnull method provides a DataFrame of missing values.

Some examples of these operations are:

```
# 1. Descriptive statistics
summary_stats = df.describe()
# 2. Correlation matrix
correlation_matrix = df.corr()
# 3. Unique values
unique_values = df.nunique()
# 4. Value counts
value_counts = df['city'].value_counts()
# 5. Missing values
missing_values = df.isnull()
```

11.3 Data Cleaning

- 1. A lot of the time data is not clean and therefore needs preprocessing before it can be used for analysis. Some of the basic operations for data cleaning are:
 - **Removing duplicates:** Duplicates can be removed using the drop_duplicates method.
 - Filling missing values: Missing values can be filled using the fillna method.
 - **Replacing values:** Values can be replaced using the replace method.
 - Changing data types: Data types can be changed using the astype method.

Some examples of these operations are:

```
# 1. Removing duplicates
df_no_duplicates = df.drop_duplicates()
# 2. Filling missing values as 0
df_filled = df.fillna(0)
# 3. Replacing values
df_replaced = df.replace('New York', 'NY')
# 4. Changing data types
df['age'] = df['age'].astype(float)
```

2. For data given in a categorical form, it is often useful to convert it to a numerical form. This can be done using the get_dummies method.

```
# Convert the 'city' column to dummy variables
df_with_dummies = pd.get_dummies(df, columns=['city'])
```

This will create a new column for each unique value in the 'city' column with a 1 if the value is present and a 0 otherwise (one-hot encoding).

References

[1] Williams, David. Probability with Martingales. Cambridge University Press, 1991. Print.