Enoncé

EXERCICE N° 1 (5 points)

Dans le plan P orienté, on considère un rectangle ABCD tel que $(AB, AD) \equiv \frac{\pi}{2} [2\pi]$

et AB = 2 AD. On désigne par I le milieu de [AB] , O le milieu de [BD] et par (C) le cercle circonscrit au rectangle ABCD .

Soit f la similitude directe qui transforme B en I et I en D.

- 1) Montrer que le rapport de f est $\sqrt{2}$ et que $-\frac{\pi}{4}$ est une mesure de son angle .
- 2) Soit s la similitude directe de centre C de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$.
 - a) Montrer que s (B) = I.
 - b) Montrer que f o $s^{-1} = id_P$, où id_P est l'application identique du plan.
 - c) En déduire que f = s.
- 3) Soit A' = f(A). Montrer que D est le milieu de [A'I]. Construire alors le point A'.
- 4) La demi-droite [CA') recoupe (C) en O'.
 - a) Calculer CO' et CA' en fonction de CA .
 - b) En déduire que O' est le milieu de [CA'].
 - c) Prouver alors que O' = f(O).

EXERCICE N° 2 (5 points)

Un sac contient deux boîtes B_1 et B_2 indiscernables au toucher.

La boîte B₁ contient deux boules rouges et une boule noire.

La boîte B_2 contient deux boules rouges et deux boules noires . Toutes les boules sont indiscernables au toucher .

Une épreuve consiste à tirer du sac, au hasard, l'une des deux boîtes puis de tirer, au hasard et simultanément, deux boules de cette boîte.

Soit A, l'évènement : « obtenir deux boules de même couleur » et E, l'évènement :

- « les deux boules tirées sont de B₁ » .
- 1) a) Montrer que la probabilité de l'événement A est égale à $\frac{1}{3}$.
 - b) Sachant que les deux boules tirées sont de même couleur, quelle est la probabilité pour qu'elles aient été tirées de B_1 ?
- 2) On répète l'épreuve n fois, en remettant chaque fois, les deux boules tirées dans leur boîte et la boîte tirée dans le sac. n désigne un entier naturel supérieur ou égal à 2. Soit X l'aléa numérique qui prend pour valeur le nombre de fois où on obtient deux boules de même couleur.
 - a) k étant un entier naturel inférieur ou égal à n, calculer P(X = k).
 - b) Calculer l'espérance mathématique et la variance de X.
 - c) On désigne par p_n la probabilité d'obtenir, au bout des n tirages, au mois une fois deux boules de même couleur . Calculer p_n en fonction n . Quelle est la limite de p_n lorsque $n \longrightarrow + \infty$?

PROBLEME (10 points)

Dans tout le problème la lettre P désigne un plan rapporté à un repère orthonormé (O, i, j).

- I-1) On considère la fonction g définie sur $[1, +\infty[$ par g(x) = x Log x x + 1.
 - a) Etudier les variations de g
 - b) En déduire le signe de g(x) pour $x \in [1, +\infty[$.
 - 2) Soit f la fonction définie sur [1, $+\infty$ [par

$$\begin{cases} f(x) = \frac{x-1}{\log x} & \text{si } x \in]1, +\infty[\\ f(1) = 1 & \end{cases}$$

Montrer que f est continue en 1.

3) a) Montrer que pour tout réel t de $[1, +\infty)$ on a :

$$t-1-(t-1)^2 \le 1-\frac{1}{t} \le t-1$$

b) En déduire que pour tout x de $[1, +\infty [$ on a:

$$\frac{(x-1)^2}{2} - \frac{(x-1)^3}{3} \le x - 1 - \text{Log } x \le \frac{(x-1)^2}{2}$$

- $\lim_{x \to 1^{+}} \frac{x 1 \log x}{(x 1)^{2}}$ c) Déterminer alors
- d) En déduire que f est dérivable à droite en 1 et que f'(1) = $\frac{1}{2}$.
- 4) a) Dresser le tableau de variation de la fonction f
 - b) Tracer la courbe représentative C de f dans le repère (O, \vec{i}, \vec{j}) . (On précisera la nature de la branche infinie de C.)
- II On considère la fonction F définie sur [1 , $+\infty$ [par

$$\begin{cases} F(x) = \int_{X}^{X^{2}} \frac{1}{\log t} dt & \text{si } x \in]1, +\infty[\\ F(1) = \log 2 \end{cases}$$

On désigne par C' la courbe représentative de la fonction F dans le plan P.

- 1) a) Montrer que pour tout x de] 1, + ∞ [on a $\frac{x^2 x}{\log x^2} \le F(x) \le \frac{x^2 x}{\log x}$ b) En déduire : $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \frac{F(x)}{x}$
- Montrer que pour tout x de] 1, $+\infty$ [et pour tout t de [x, x^2] on a: 2) a)

$$\frac{x}{t \log t} \le \frac{1}{\log t} \le \frac{x^2}{t \log t}$$

- b) En déduire que pour tout x de] 1 , + ∞ [on a : x Log 2 \le F(x) \le x^2 Log 2
- c) Montrer alors que F est continue en 1.
- 3) a) Montrer que pour tout x de] 1, + ∞ [, F est dérivable et que F'(x) = f(x).
 - b) Soit x un réel de] 1 , + ∞ [. Montrer qu'il existe un réel c de] 1 , x [tel que : F(x) - F(1) = (x-1) F'(c)
 - c) En déduire que F est dérivable à droite en 1 et que F'(1) = 1
- 4) Dresser le tableau de variation de F et tracer la courbe représentative C' de F. (On précisera la nature de la branche infinie de C.)
- III Soit \square un réel de $]1, +\infty[$ et $A(\square)$ l'aire de la région du plan P délimitée par la courbeC et les droites d'équations respectives : y = 0 , x = 1 et $x = \square$
 - 1) Montrer que pour tout x de] 1, $+\infty$ [on a:

$$F(x) = \int_{1}^{x} f(t) dt + \text{Log } 2$$

2) En déduire :
$$\lim_{\alpha \to +\infty} \frac{\mathscr{A}(\alpha)}{\alpha} \text{ et } \lim_{\alpha \to +\infty} \frac{\mathscr{A}(\alpha)}{\alpha^{2}}$$