Linear Invariant Generation Using Non-Linear Constraint Solving

Sriram Sankaranarayanan et. al CAV'03 and SAS'04

Report date: March 23, 2021

Problem and Contribution

- Problem: Generation of linear invariant for linear transition system.
- Contribution: An exact method for finding the invariant which avoid the widening operator in the classical abstract interpretation.

Transition System and Invariant

Definition 1 (Transition System) A transition system $P: \langle V, L, l_0, \Theta, T \rangle$ consists of a set of variables V, a set of locations L, an initial location l_0 , an initial assertion Θ over the variables V, and a set of transitions T. Each transition $\tau \in T$ is a tuple $\langle l, l', \rho_{\tau} \rangle$, where $l, l' \in L$ are the pre and post locations, and ρ_{τ} is the transition relation, an assertion over $V \cup V'$, where V represents current-state variables and its primed version V' represents the next-state variables.

Definition 2 (Inductive Assertion Map) Given a program P with a cutset C and an assertion $\eta_c(l)$, for each cutpoint l, we say that η_c is an *inductive assertion map* for C if it satisfies the following conditions for all cutpoints l, l':

Initiation For each basic path π from l_0 to l, $\Theta \wedge \rho_{\pi} \models \eta_c(l)'$. **Consecution** For each basic path π from l to l', $\eta_c(l) \wedge \rho_{\pi} \models \eta_c(l')'$.

Linear Constraint

Farkas' Lemma

Theorem 2.5 (Farkas' lemma). The system Ax = b has a nonnegative solution if and only if there is no vector y satisfying $y^T A \ge 0$ and $y^T b < 0$.

Intuitive understanding of farkas lemma.

Corollary 2.5b. Suppose that the system $Ax \leq b$ has at least one solution. Then for every solution x of $Ax \leq b$ one has $c^Tx \leq \delta$ if and only if there exists a vector $y \geq 0$ such that $y^TA = c^T$ and $y^Tb \leq \delta$.

Farkas' Lemma

A better demonstration of the Corrollary.

Theorem 1 (Farkas' Lemma). Consider the following system of linear inequalities over real-valued variables x_1, \ldots, x_n ,

$$S: \begin{bmatrix} a_{11}x_1 + \dots + a_{1n}x_n + b_1 \leq 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n + b_m \leq 0 \end{bmatrix}$$

When S is satisfiable, it entails a given linear inequality

$$\psi: c_1 x_1 + \dots + c_n x_n + d \le 0$$

if and only if there exist non-negative real numbers $\lambda_0, \lambda_1, \dots, \lambda_m$, such that

$$c_1 = \sum_{i=1}^{m} \lambda_i a_{i1}, \quad \dots \quad , c_n = \sum_{i=1}^{m} \lambda_i a_{in}, \ d = (\sum_{i=1}^{m} \lambda_i b_i) - \lambda_0$$

Furthermore, S is unsatisfiable if and only if the inequality $1 \leq 0$ can be derived as shown above.

Solving the Invariant of Transition System

Quantifier Elimination

- Exact quantifier elimination.
- ► Under-approximate elimination approach