Introduction

Particle Chain

Project Exten

Approach Network

selectio Hardwa

Evolutio

resures

Future Wor

Daisy Chain Protocol Development in Force-Guiding Particle Chains for Shape-Shifting Displays Development Board Implementation

Raoul Rubien rubienr@sbox.tugraz.at

Institute for Technical Informatics Graz University of Technology

5th August 2016

Particle Chain

Project Exten

Network MCU selection

Future Wor

What this session covers

physical network structure MCU selection development board

Introduction

Particle Chain Limitations

Project Exte

Approac Network MCU

Hardwa Evolutio

Result

Future Work

Underlying work

Force-Guiding particle Chains for Shape-Shifting Displays[1]

Figure 1: particle chain

Figure 2: folding a shape

chain is stretched in natural state shape Memory Alloy used as actuator (3) joints unlocked by actuators (2) force F_s folds chain

Approach & limitation

current particle implements 1-Wire via power supply wires energy must be buffered before communication starts power must be switched off/on automatic chain position detection is costly

Idea

decouple communication from power supply (4) using a daisy-chain protocol, and actuator wires (3)

Figure 3: particle PCB

Figure 4: particle chain

Project Extent

Approach
Network
MCU
selection
Hardware

Result

Future Wor

Project extent

particle board development easy accessible test points and transmission wires flexible and fast network assembly

Project constraints

reasonable low level MCU minimize number of components on particle PCB communication:

exploit SMA wires
decouple from power supply
small MCU package in final productive particle
single communication entry point to the network

Project Exten

Approac

Network

selection

Evoluti

Result

Future Work

Network approach - I

exploit actuator wires also for communication

Figure 5: transmission and reception wiring

Project Exter

Approach
Network
MCU

Hardwai Evolutio

Results

Future Wor

Network approach - II

linear network daisy chained participants

Advantages

- + simple to implement
- + no media access control
- + no loops
- + no dynamic routes

Disadvantages

- error detaches segment
- no recovery for segment

Project Exter

MCU selection Hardward

Results

Future Wo

MCU requirements - capabilities

three separate external interrupts
self programmable EEPROM
for firmware replication (future work)
package size
small package for productive particle
bigger package for development board

MCU selection

MCU memory requirements - upper bound estimation

Flash

 $\sim 4k$ SLOC expected max. firmware size: $\sim 4.0B$ estimated object code bytes per SLOC [2] flash usage estimation:

4k * 4B = \sim 16kB

SRAM

tx/rx buffers: 3 ports, 8byte 3 * 8B * 2 =16*B*

Manchester code decoding buffer with 2 flank time stamps per bit

 $3 * 8 * 2 * sizeof(uint16_t)B * 0.75 =$ 576*B* other global variables 200B

stack: max. 50 nested void function

calls with $\sim (1 * uint8_t)$ argument 50 * (1 + 2)B =

150*B* SRAM estimation: \sim 950B

Project Exten

Approac Network

selection Hardware

Results

Future Work

Candidates

candidates are all ATTiny20 family MCUs having

- $\geq 16kB$ flash and
- $\geq 1kB$ SRAM

Comparison of used MCUs

	ATTiny20 (proof of concept)	ATTiny1634
# pin change int.	sufficient	sufficient
EEPROM	no	yes
flash	2kB	16 <i>kB</i>
SRAM	128 <i>B</i>	1kB
small package	$3mm \times 3mm$	$4mm \times 4mm$
alternative pkg.	no	yes, SOIC

Project Exter

Approach Network MCU selection

Hardware Evolution

Results

Future Worl

The prototype

- not satisfying new requirements
- too small/unhandy for development

Figure 7: prototype

Version 1.0

linear chain of development particles

- + not mounted in chain mechanics
- but still time consuming assembly

Figure 8: Version 1.0

Particle Cha

Project Exten

Approach Network

Hardware

Evolution

Result

Future Wor

Version 1.1

Advantages

- + repetitive design
- + configurable network shape

Disadvantages

- costly soldering
- expensive connectors
- one faulty particle breaks whole PCB

Figure 9: Version 1.1 - particle array PCB

Hardware **Evolution**

Version 1.21

configurable network dimension easy extensible network faulty particles can be replaced cheaper higher particle density

Figure 10: pluggable particle

Figure 11: grid board

Project Exten

Approach Network MCU selection

Results

Future Work

Results

Figure 12: network structure

Figure 13: pluggable particle module

Limitations

Project Exten

Approach Network MCU

Hardwa Evoluti

Results

Future Wor

Project Exter

Approach Network MCU

Hardwar

Result

Future Work

Future work

hardware

simplify development board enhance grid board

communication protocol

Physical Layer: implement coding

Data Layer: fault detection

Network Layer: self enumeration, addressing,

synchronization, clock compensation

task scheduling (TDM of communication and tasks)

runtime compensation of RC-oscillator discrepancy

firmware replication: customize boot loader

Project Exten

Network
MCU
selection
Hardware

Result

Future Work

2014.

Amsterdam Boston: Elsevier/Newnes, 2008.