Práctica 04 Producto Punto

Sea $u \cdot v$ el producto punto entre dos vectores y θ el ángulo entre elllos

$$\begin{split} u \cdot v &= \sum_{n} u_i * v_i & u \cdot v = \|u\| \|v\| \cos(\theta) \\ \sin(u \cdot v) &= s \\ u \cdot v &= 0, entonces \ \theta = 90^\circ \ \therefore son \ ortogonales \\ u \cdot v &< 0 \ , entonces \ \theta &> 90^\circ \\ u \cdot v &> 0 \ , entonces \ \theta &< 90^\circ \end{split}$$

Materia: Tópico II. (Procesamiento Paralelo con CUDA) **Dra. Sandra Luz Canchola Magdaleno**

U.A.Q. Fac. de Informática

Correo: sandra.canchola@uaq.mx

Sea $u \cdot v$ el producto punto entre dos vectores y θ el ángulo entre elllos

$$\begin{aligned} u \cdot v &= \sum_{n} u_i * v_i \\ si &(u \cdot v) \quad es \\ u \cdot v &= 0, entonces \ \theta = 90^\circ \quad \because son \ ortogonales \\ u \cdot v &< 0 \quad , entonces \ \theta > 90^\circ \\ u \cdot v &> 0 \quad , entonces \ \theta &< 90^\circ \end{aligned} \qquad \qquad \begin{aligned} u \cdot v &= \|u\| \|v\| \cos(\theta) \\ \cos(\theta) &= \frac{u \cdot v}{\|u\| \|v\|} \end{aligned}$$

$$\vec{u} = (1,5,-3) \quad ||\vec{u}|| = \sqrt{1^2 + 5^2 + (-3)^2} = \sqrt{1 + 25 + 9} = \sqrt{35}$$

$$\vec{v} = (5,10,8) \quad ||\vec{v}|| = \sqrt{5^2 + 10^2 + 8^2} = \sqrt{25 + 100 + 64} = \sqrt{189} = 3\sqrt{21}$$

$$\vec{u} \cdot \vec{v} = (1*5) + (5*10) + (-3*8) = 5 + 50 - 24 = 31 \qquad \therefore \theta < 90^\circ$$

$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} = \frac{31}{\sqrt{35} * 3\sqrt{21}} = \frac{31}{21\sqrt{15}} = 0.381150$$

$$\theta = 67.595019^{\circ}$$

Producto punto de vectores n-Dimensionales

 $\vec{a} \cdot \vec{b} = \sum_{n} a_i * b_i$

Sincronización de hilos

numBloques=3 numHilosxBloque=3

Memoria

CPU (Host)

A01	length	50								J01		
A05	hilosxBloque	1024								J05		
A10	a	α	ф	η	λ	τ	κ	π	3		ω	J10
A15	b	χ	γ	φ	θ	ι	σ	υ	β		δ	J45
A20	gpu_axb	α *	ф *	η	λ	τ *	к *	π	£ *		ω *	Ј90
		χ	γ	φ	θ	î	ច	υ	β		δ	
В01	cpu_axb	α *	ф *	η *	λ *	τ *	к *	π *	£ *		ω *	K01
		χ	γ	φ	θ	ι	σ	υ	β		δ	К05
B10	gpu_axb_parcial	Σ0 Σ1			Σ2			Σk		K10		
В31	cpu_axb_parcial	Σ0		Σ1	Σ1		Σ2					K15
B45	dev_a	J10							K20			
B80	dev_b	J45									К30	
C30	dev_axb	Ј90									ь07	
E07	dev_axb_parcial	K01									L10	
E10	dev_suma1	К05										
F20	dev_suma2	K10										
G05	sumaCPU	Σcpu										
Н16	sumaGPU1	Σ 1										
Н20	sumaGPU2	Σ 2 sandra.canchola@uaq.									ola@uaq.mx	

GPU (Device)

α	ф	η	λ	τ	κ	π	3		ω
χ	γ	φ	θ	ι	យ	υ	β		δ
α *	ф *	η *	λ *	τ *	κ *	π *	3 *		ω *
χ	γ	φ	θ	ι	ω	υ	β		δ
Σο		Σ1		Σ2				Σ k	
Σ1									
Σ2									

Memoria reservada

Ejemplo:

HilosporBloque=3 NumBloques=4 a -1 b -1 -3 c=a*b -1 -7 suma_parcial -1

suma

Caso 1a. X bloques con numHilos c/u

blockIdx.x	threadIdx.x	tid		
0	0	0		
0	1	1		
0	2	2		
0	3	3		
0	4	4		
1	0	5		
1	1	6		
1	2	7		
1	3	8		
1	4	9		
2	0	10		
2	1	11		
2	2	12		
2	3	13		
2	4	14		
3	0	15		
3	1	16		
3	2	17		
3	3	18		
3	4	19		

tid= (blockIdx.x*blockDim.x)+threadIdx.x

Caso 1b. Hilo único

Caso 2a. X bloques con numHilos c/u

Caso 2b. Hilo único

