

Task 1. TF-IDF is the product of two statistics, term frequency and inverse document frequency, to measure **the weight of a term's appearance in a document**. Various ways for determining the exact values of both statistics exist.

Discuss the following recommended tf*idf weighting schemes and the one we discussed in lecture notes.

weighting scheme	document term weight	query term weight		
1	$f_{t,d} \cdot \log rac{N}{n_t}$	$\left(0.5 + 0.5 rac{f_{t,q}}{\max_t f_{t,q}} ight) \cdot \log rac{N}{n_t}$		
2	$1 + \log f_{t,d}$	$\log \left(1 + rac{N}{n_t} ight)$		
3	$\left(1 + \log f_{t,d}\right) \cdot \log \frac{N}{n_t}$	$(1 + \log f_{t,q}) \cdot \log \frac{N}{n_t}$		

Task 2. Manually calculate the df value for each term in the following table.

Document	term1	term2	term3	term4	term5
D1	3	0	0	5	7
D2	5	3	4	6	0
D3	0	0	5	4	6
D4	9	0	0	1	2
D5	0	1	0	3	2
D6	3	0	2	4	4
df	ſ				

Task 3. Design a python function $c_df(docs)$ to calculate df value for each term in docs to verify if you can get the same result as you did in Task 2. The function returns a $\{term:df, ...\}$ dictionary. In your program, you can represent the above table as follows when you use it to test your python function.

```
docs = {'D1':{'term1':3, 'term4':5, 'term5':7},'D2':{'term1':5,
'term2':3, 'term3':4, 'term4':6}, 'D3':{'term3':5, 'term4':4,
'term5':6}, 'D4':{'term1':9, 'term4':1, 'term5':2}, 'D5':{'term2':1,
'term4':3, 'term5':2},'D6':{'term1':3, 'term3':2, 'term4':4,
'term5':4}}
```

Task 4. Let $Q = \{US, ECONOM, ESPIONAG\}$ be a query, and

 $C = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7\}$ be a collection of documents, where

 $D_1 = \{GERMAN, VW\}$

 $D_2 = \{US, US, ECONOM, SPY\}$

 $D_3 = \{US, BILL, ECONOM, ESPIONAG\}$

 $D_4 = \{US, ECONOM, ESPIONAG, BILL\}$

 $D_5 = \{GERMAN, MAN, VW, ESPIONAG\}$

 $D_6 = \{GERMAN, GERMAN, MAN, VW, SPY\}$

 $D_7 = \{US, MAN, VW\}$

Assume relevant and non-relevant documents (user feedback) are labeled as follows:

Document ID	Terms: d _{ij}	Relevance to Q
D_1	GERMAN, VW	0 no
D_2	US, US, ECONOM, SPY	1 yes
D_3	US, BILL, ECONOM, ESPIONAG	1 yes
D_4	US, ECONOM, ESPIONAG, BILL	1 yes
D_5	GERMAN, MAN, VW, ESPIONAG	0 no
D_6	GERMAN, GERMAN, MAN, VW, SPY	0 no
D_7	US, MAN, VW	0 no

For a given incoming document D = {US, VW, ESPIONAG}, let term 1 = 'US', term 2 = 'VW' and term 3 = 'ESPIONAG'. Based on binary independence model, work out the missing values for the following contingency tables, where $d_i = 1$ if term i is present in the document, and 0 otherwise.

	Relevant	Non-relevant		Total
$d_1 = 1$	$r_i = 3$	n_i - r_i =	1	$n_i = 4$
$d_1 = 0$	$R-r_i=0$	$(N-R)-(n_i-r_i)=N-n_i-R+r_i=$	3	N - $n_i = 3$
Total	R = 3	<i>N-R</i> =	4	N = 7

	Relevant	Non-relevant	Total
$d_2 = 1$	$r_i =$	$n_i - r_i =$	$n_i =$
$d_2 = 0$	R - $r_i =$	N - $n_i - R + r_i =$	N - n_i =
Total	R =	N- R =	N =

	Relevant	Non-relevant	Total
$d_3 = 1$	$r_i =$	$n_i - r_i =$	$n_i =$
$d_3 = 0$	$R-r_i =$	$N-n_i-R+r_i=$	N - n_i =
Total	R =	N-R =	N =