Banco de Dados

Laboratório 01

Prof^a Cristina Verçosa Pérez Barrios de Souza cristina.souza@pucpr.br

Tópicos

- > SGBD
- > SQL
- > MySQL
- > Laboratório Prática Formativa
- > Laboratório Prática Somativa 1 (entrega em equipe)

SGBD

Sistema de Gerenciamento de Banco de Dados

SGBD vs. Sistema de Arquivos

O acesso/gerenciamento aos/dos dados é feito diretamente pelos aplicativos e/ou usuários

O acesso/gerenciamento aos/dos dados é feito pelo SGBD.

O SGBD faz a intermediação entre dados e usuários/aplicativos.

SGBD – Configuração Simplificada

* Programas em um SGBD podem ser: Procedimentos Armazenados (Stored Procedures) ou Funções (Functions)

SGBD – Modelo de Dados

- > Conjunto de ferramentas conceituais usadas para
 - descrição de dados
 - relacionamento de dados
 - semânticas
 - regras de consistência

- Dentre os diferentes modelos de dados, destaca-se o Banco de Dados Relacional
 - Baseado em registros (linhas ou tuplas)
 - Usado para especificar a estrutura lógica do BD e sua implementação

SGBD – Modelo Relacional

- Representação dos dados em formas de tabelas, como conjunto de linhas e colunas:
 - Tuplas = linhas ou registros
 - Atributos = colunas ou campos
 - Domínios = conjunto de valores válidos para um atributo

Número_Conta Nome_Cliente Seguro Social Cidade_Cliente Rua_Cliente 192-83-7465 Johnson Alma Palo Alto A-101 Tupla Smith 019-28-3746 North A-125 Rye 182-173-6091 Stamford Turner Putnam A-305

Domínio

Atributo

SCRIPT SQL

Structured Query Language

SQL – Structured Query Language

- > Linguagem comercial mais utilizada para Banco de Dados
 - Faz consulta, definição, modificação de dados e restrições de segurança
 - Desenvolvida pela IBM
 - Em 1986, torna-se padrão pela ANSI (American National Standards Institute) e ISSO (International Organization for Standardization)
 - Versão em uso ANSI/ISO é a SQL-2016
 - Última versão ANSI/ISO é a SQL-2016
- > Todo produto **SGDB** implementa a **SQL**

SQL – Linguagem de Banco de Dados

- > **DQL** Data Query Language
 - Comando para consulta de dados: SELECT
- > **DDL** Data Definition Language
 - Comandos da SQL para criar (CREATE), alterar (ALTER) e eliminar (DROP) a estrutura de dados
- > **DML** Data Manipulation Language
 - Comandos SQL para realizar inserção (INSERT), remoção (DELETE) e modificação (UPDATE) de dados
- > Referência: https://www.w3schools.com/mysql/mysql drop db.asp

Criação de base de dados (DDL)
 CREATE DATABASE nome_database;

 > Eliminação da estrutura completa da base de dados (DDL)

DROP DATABASE nome_database;

DDL = Data Definition Language

TIPO_DADO,

Criação de tabela(DDL)
CREATE TABLE nome_tabela (
col1 TIPO_DADO,
col2 TIPO_DADO,

col3

Eliminação da estrutura completa da base de dados (DDL)
 DROP TABLE nome_tabela;

DDL = Data Definition Language

> Seleção de Dados (DML - Data Manipulation Language)

-- Retorna todas as linhas e colunas da tabela **SELECT * FROM** *tabela* ;

- -- Retorna todas as linhas das colunas col1 e col2 que atendem à condição1
- -- da tabela, ordenadas alfabeticamente, de acordo com a col1.

SELECT *col1*, *col2*

FROM tabela

WHERE condição1

ORDER BY col1;

> Inserção de Dados (DML)

INSERT INTO tabela (col1, col2)
VALUES (valor_col1, valor_col2);

DML - Data Manipulation Language

> Remoção de Dados (DML)

DELETE FROM tabela **WHERE** condição;

> Modificação de Dados (DML)

UPDATE tabela
SET col1 = novo_valor
WHERE condição;

> Resumo SQL DML :

− Criação = INSERT → Create

- Consulta = **SELECT** \rightarrow *Read*

– Atualização = UPDATE → Update

− Destruição = DELETE → Delete

SERVIDOR MYSQL

Sistema de gerenciamento de banco de dados

MySQL

- > SGBD Relacional
- Criado na Suécia pelos suecos David Axmark e Allan Larsson, e pelo finlandês Michael "Monty" Widenius para a MySQL AB
- > Em 2008, a **Sun Microsystems** comprou a **MySQL AB**
- > Em 2009, a **Oracle Corporation** comprou a **Sun Microsystems**, após autorização da Comissão Europeia sobre a suspeita de formação de monopólios no mercado de SGBDs
- > O sucesso do MySQL deve-se em grande parte à fácil integração com o PHP, incluído, quase que obrigatoriamente, nos pacotes de hospedagem de sites da Internet oferecidos atualmente.
 - Empresas como Yahoo! Finance, MP3.com, Motorola, NASA, Silicon Graphics e Texas Instruments usam o MySQL em aplicações de missão crítica.
 - A Wikipédia é um exemplo de utilização do MySQL em sites de grande audiência.

MySQL: Declarações SQL

> Referência:

https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html

- Declaração para Definição de Dados (DDL)
- Declaração para Manipulação de Dados (DML)
- > Referência:

https://www.w3schools.com/mysql/mysql drop db.asp

MySQL Storage Engine Architecture

- Arquitetura do mecanismo de armazenamento
- Ref.:
 https://dev.mysql.co
 m/doc/refman/8.0/en
 /pluggable-storage-
 overview.html

Nível Conceitual / Externo:
Usuários / aplicações

Nível Interno: armazenamento

Prática FORMATIVA

Trabalho INDIVIDUAL: realize os exercícios indicados.

- O MySQL Workbench é uma aplicação parte do banco de dados MySQL; é uma interface administrativa completa para executar consultas SQL e gerenciamento do MySQL.
- > Uma alternativa é o **phpMyAdmin**, também é uma **ferramenta administrativa** do MySQL, que é baseada na Web (executa em um navegador / browser).

Formativa: Criação de Database

- > CRIAÇÃO DE DATABASE
 - A criação de uma base de dados e suas tabelas é, muitas vezes, um dos primeiros passos da parte prática do desenvolvimento de um novo projeto de software
- > UTILIZANDO O SQL
 - Com o MySQL Workbench aberto, clique no botão Nova Consulta (Create new SQL ...):

Formativa: Criação de Database

CRIAÇÃO DE DATABASE

- Em seguida, na parte central da interface aparecerá uma tela em branco, na qual você poderá digitar os códigos para criar a base de dados, tabelas, efetuar consultas, etc.
- > Use o código abaixo:

CREATE DATABASE LAB_01;

EXECUTE O CÓDIGO

> Clique em Execute ..., como mostra a Figura:

Formativa: Criação de Tabela

MUDANDO O CONTEXTO

- Com a base de dados criada, precisamos entrar no contexto da nova base para poder executar novos scripts nela.
- Para isso, execute o seguinte comando:

USE LAB_01;

VERIFICAÇÃO DE NOVO CONTEXTO

 Verifique a utilização da base de dados escolhida no MySQL Workbench:

Formativa: Criação de Tabela

SCRIPT PARA CRIAR TABELA

- > O próximo passo é criar a tabela.
- > Para isso, execute o seguinte comando:

```
CREATE TABLE CLIENTE (
ID INT PRIMARY KEY NOT NULL,
NOME VARCHAR (50),
SOBRENOME VARCHAR (50)
);
```

VERIFICAÇÃO DE NOVA TABELA

Formativa: Inserção e Seleção de dados em Tabela

SCRIPT

> Comando para Inserção de dados:

```
INSERT INTO CLIENTE (ID, NOME, SOBRENOME)
VALUES (1, 'José', 'Silva');
```

> Comando para Seleção de dados:

```
SELECT * FROM CLIENTE;
```

VERIFICAÇÃO

```
SQL File 3* ×

Image: SQL File 3* ×

Image:
```


Formativa: Múltipla Inserção de dados em Tabela

SCRIPT VERIFICAÇÃO

> Comando para Múltipla Inserção:

```
INSERT INTO CLIENTE (ID, NOME,
SOBRENOME)
    VALUES
     (2, 'Maria', 'Alves'),
     (3, 'Cláudia', 'Soares'),
     (4, 'Pedro', 'Tomé'),
     (5, 'Lucas', 'Antunes')
;

SELECT * FROM CLIENTE
```


Formativa: Alteração de dados em Tabela

SCRIPT

> Comando para Alteração de dados:

```
UPDATE CLIENTE
   SET NOME = 'Selma',
        SOBRENOME = 'Silva'
   WHERE ID = 3;

SELECT * FROM CLIENTE
```

VERIFICAÇÃO

Formativa: Exclusão de dados em Tabela

SCRIPT VERIFICAÇÃO

> Comando para Exclusão de dados:

RESUMO:

- > No MySQL Workbench, primeiro, aprendemos a
 - Criar Base de Dados e
 - Criar Tabela
- > Após, realizamos as 4 operações do CRUD:
 - − Criação = INSERT → Create
 - Consulta = SELECT \rightarrow Read
 - Atualização = UPDATE → Update
 - Destruição = DELETE → Delete

Prática SOMATIVA

Trabalho EM EQUIPE:

- Realize os exercícios indicados.
- 2. Salve **o número** do exercício e seu **resultado** (imagens da prática realizada) em um arquivo **Word**.
- 3. Após todos os exercícios, salve os exercícios em arquivo PDF.
- 4. Entregue o PDF.

- a) Na ferramenta **brModelo**, construa o seguinte modelo entidade-relacionamento (MER), para armazenar um conjunto de **carros** em uma loja de carros usados.
- b) Apresente a imagem do seu modelo.

Diagrama Conceitual = MER

- a) Ainda na ferramenta **brModelo**, transforme o modelo entidade-relacionamento (MER) para seu respectivo modelo relacional.
- b) Apresente a imagem do seu modelo.

Diagrama Lógico = Modelo Relacional

- a) Defina os tipos de dados para cada atributo da entidade Carro.
- b) Apresente a imagem do seu modelo.

Diagrama Lógico = Modelo Relacional

- a) Converta o modelo relacional no seu correspondente modelo físico (escreva os comandos SQL DDL).
- b) Apresente o código SQL de criação do seu modelo.

Modelo Físico = Comandos SQL DDL

```
CREATE TABLE .... (

CAMPO 1 TIPO DADO PRIMARY KEY,

CAMPO 1 TIPO DADO,

CAMPO 1 TIPO DADO,

....
);
```


- a) Utilize o database LAB_01.
- b) Crie a tabela do **Carro**, com o comando **SQL DDL** obtido no brModelo.
- c) Crie um único comando para realizar a INSERÇÃO de 5 carros.
- d) Execute o comando para a INSERÇÃO e exiba em uma imagem os registros (linhas) inseridos na tabela Carro com um comando SQL SELECT.

- a) Crie um comando para realizar a ALTERAÇÃO da cor de um dos seus carros.
- b) Crie outro comando para realizar a ALTERAÇÃO do ano de fabricação de um outro carro.
- c) Execute os comandos para as ALTERAÇÕES e exiba em uma imagem os registros (linhas) alterados na tabela Carro com um comando SQL SELECT.

- a) Crie um comando para realizar a EXCLUSÃO de um dos seus carros.
- b) Execute o comando para a EXCLUSÃO e exiba em uma imagem a tabela Carro após a EXCLUSÃO, com um comando SQL SELECT.

RESUMO:

- > No MySQL Workbench, primeiro, aprendemos a
 - Criar Base de Dados e
 - Criar Tabela
- > Após, realizamos as 4 operações do CRUD:
 - − Criação = INSERT → Create
 - Consulta = SELECT \rightarrow Read
 - Atualização = UPDATE → Update
 - Destruição = DELETE → Delete

Referência Bibliográfica

- > Sistema de Banco de Dados
 - Abraham Silberschatz, Henry F. Korth, S. Sudaarshan
- > Referência do SQL
 - Chapter 13 SQL Statements: https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html
 - W3Schools: https://www.w3schools.com/mysql/mysql drop db.asp
- > Documentação Técnica do MySQL
 - MySQL 8.0 Reference Manual
 - https://docs.microsoft.com/pt-br/sql/sql-server/?view=sql-server-ver16