```
import numpy as np
import os
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
%matplotlib inline
from __future__ import print_function
from scipy.spatial.distance import cdist
np.random.seed(11)
```

Sử dụng thuật toán

```
In [24]:
    means = [[2,2],[8,3],[3,6]]
    cov = [[1,0],[0,1]]
    N = 500
    X0 = np.random.multivariate_normal(means[0], cov, N)
    X1 = np.random.multivariate_normal(means[1], cov, N)
    X2 = np.random.multivariate_normal(means[2], cov, N)

    X = np.concatenate((X0,X1,X2), axis=0)
    K=3
    original_label = np.asarray([0]*N+[1]*N+[2]*N).T
```

```
In [25]:

def kmeans_display(X,label):
    K = np.amax(label)+1
    X0=X[label==0,:]
    X1=X[label==1,:]
    X2=X[label==2,:]

plt.plot(X0[:,0],X0[:,1],'b^',markersize=4,alpha=.8)
    plt.plot(X1[:,0],X1[:,1],'go',markersize=4,alpha=.8)
    plt.plot(X2[:,0],X1[:,1],'rs',markersize=4,alpha=.8)

plt.axis('equal')
    plt.plot()
    plt.show()
```

```
kmeans_display(X, original_label)
```

```
6 - 5 - 4 - 3 - 2 - 4 - 6 - 8 - 10
```

Sử dụng thư viện

```
In [2]:
    path = '25_Nguyen Van Linh_Ch3_K-means.csv'
    df = pd.read_csv(path)
    df.head(10)
```

 $\hbox{Out[2]:} \qquad \hbox{\bf CustomerID} \quad \hbox{\bf Gender} \quad \hbox{\bf Age} \quad \hbox{\bf Income} \quad \hbox{\bf Spending_Score}$

	CustomerID	Gender	Age	Income	Spending_Score
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40
5	6	Female	22	17	76
6	7	Female	35	18	6
7	8	Female	23	18	94
8	9	Male	64	19	3
9	10	Female	30	19	72

Out[5]:		Income	Spending_Score
	0	15	39
	1	15	81
	2	16	6
	3	16	77
	4	17	40
	•••		
	195	120	79
	196	126	28
	197	126	74
	198	137	18
	199	137	83

200 rows × 2 columns

```
df.corr()
In [6]:
                        Income Spending_Score
Out[6]:
                Income 1.000000
                                      0.009903
         Spending_Score 0.009903
                                      1.000000
In [ ]:
          customcmap = ListedColormap(["crimson", "mediumblue", "darkmagenta"])
          fig, ax = plt.subplots(figsize=(8, 6))
          plt.scatter(x=blobs['x'], y=blobs['y'], s=150,
                      c=blobs['cluster'].astype('category'),
                      cmap = customcmap)
          ax.set xlabel(r'x', fontsize=14)
          ax.set ylabel(r'y', fontsize=14)
          plt.xticks(fontsize=12)
          plt.yticks(fontsize=12)
          plt.show()
In [6]:
          sc = StandardScaler()
         data stand = sc.fit transform(df)
          data stand
         array([[-1.73899919, -0.43480148],
Out[6]:
                [-1.73899919, 1.19570407],
                [-1.70082976, -1.71591298],
                [-1.70082976, 1.04041783],
                [-1.66266033, -0.39597992],
                [-1.66266033, 1.00159627],
                [-1.62449091, -1.71591298],
                [-1.62449091, 1.70038436],
                [-1.58632148, -1.83237767],
                [-1.58632148, 0.84631002],
                [-1.58632148, -1.4053405],
                [-1.58632148, 1.89449216],
                [-1.54815205, -1.36651894],
                [-1.54815205, 1.04041783],
                [-1.54815205, -1.44416206],
                [-1.54815205, 1.11806095],
                [-1.50998262, -0.59008772],
                [-1.50998262, 0.61338066],
```

```
[-1.43364376, -0.82301709],
[-1.43364376, 1.8556706],
[-1.39547433, -0.59008772],
[-1.39547433, 0.88513158],
[-1.3573049, -1.75473454],
[-1.3573049, 0.88513158],
[-1.24279661, -1.4053405],
[-1.24279661, 1.23452563],
[-1.24279661, -0.7065524],
[-1.24279661, 0.41927286],
[-1.20462718, -0.74537397],
[-1.20462718, 1.42863343],
[-1.16645776, -1.7935561],
[-1.16645776, 0.88513158],
[-1.05194947, -1.7935561],
[-1.05194947, 1.62274124],
[-1.05194947, -1.4053405],
[-1.05194947, 1.19570407],
[-1.01378004, -1.28887582],
[-1.01378004, 0.88513158],
[-0.89927175, -0.93948177],
[-0.89927175, 0.96277471],
[-0.86110232, -0.59008772],
[-0.86110232, 1.62274124],
[-0.82293289, -0.55126616],
[-0.82293289, 0.41927286],
[-0.82293289, -0.86183865],
[-0.82293289, 0.5745591],
[-0.78476346, 0.18634349],
[-0.78476346, -0.12422899],
[-0.78476346, -0.3183368],
[-0.78476346, -0.3183368],
[-0.70842461, 0.06987881],
[-0.70842461, 0.38045129],
[-0.67025518, 0.14752193],
[-0.67025518, 0.38045129],
[-0.67025518, -0.20187212],
[-0.67025518, -0.35715836],
[-0.63208575, -0.00776431],
[-0.63208575, -0.16305055],
[-0.55574689, 0.03105725],
[-0.55574689, -0.16305055],
[-0.55574689, 0.22516505],
[-0.55574689, 0.18634349],
[-0.51757746, 0.06987881],
```

```
[-0.51757746, 0.34162973],
[-0.47940803, 0.03105725],
[-0.47940803, 0.34162973],
[-0.47940803, -0.00776431],
[-0.47940803, -0.08540743],
[-0.47940803, 0.34162973],
[-0.47940803, -0.12422899],
[-0.4412386, 0.18634349],
[-0.4412386, -0.3183368],
[-0.40306917, -0.04658587],
[-0.40306917, 0.22516505],
[-0.25039146, -0.12422899],
[-0.25039146, 0.14752193],
[-0.25039146, 0.10870037],
[-0.25039146, -0.08540743],
[-0.25039146, 0.06987881],
[-0.25039146, -0.3183368],
[-0.25039146, 0.03105725],
[-0.25039146, 0.18634349],
[-0.25039146, -0.35715836],
[-0.25039146, -0.24069368],
[-0.25039146, 0.26398661],
[-0.25039146, -0.16305055],
[-0.13588317, 0.30280817],
[-0.13588317, 0.18634349],
[-0.09771374, 0.38045129],
[-0.09771374, -0.16305055],
[-0.05954431, 0.18634349],
[-0.05954431, -0.35715836],
[-0.02137488, -0.04658587],
[-0.02137488, -0.39597992],
[-0.02137488, -0.3183368],
[-0.02137488, 0.06987881],
[-0.02137488, -0.12422899],
[-0.02137488, -0.00776431],
[ 0.01679455, -0.3183368 ],
[ 0.01679455, -0.04658587],
[ 0.05496398, -0.35715836],
[ 0.05496398, -0.08540743],
[ 0.05496398, 0.34162973],
[ 0.05496398, 0.18634349],
[ 0.05496398, 0.22516505],
[ 0.05496398, -0.3183368 ],
[ 0.09313341, -0.00776431],
[0.09313341, -0.16305055],
```

```
[0.09313341, -0.27951524],
[0.09313341, -0.08540743],
[ 0.09313341, 0.06987881],
[0.09313341, 0.14752193],
[ 0.13130284, -0.3183368 ],
[0.13130284, -0.16305055],
[ 0.16947227, -0.08540743],
[ 0.16947227, -0.00776431],
[0.16947227, -0.27951524],
[ 0.16947227, 0.34162973],
[0.24581112, -0.27951524],
[ 0.24581112, 0.26398661],
[0.24581112, 0.22516505],
[0.24581112, -0.39597992],
[ 0.32214998, 0.30280817],
[ 0.32214998, 1.58391968],
[0.36031941, -0.82301709],
[ 0.36031941, 1.04041783],
[ 0.39848884, -0.59008772],
[ 0.39848884, 1.73920592],
[0.39848884, -1.52180518],
[0.39848884, 0.96277471],
[0.39848884, -1.5994483],
[0.39848884, 0.96277471],
[ 0.43665827, -0.62890928],
[ 0.43665827, 0.80748846],
[ 0.4748277 , -1.75473454],
[ 0.4748277 , 1.46745499],
[0.4748277, -1.67709142],
[0.4748277, 0.88513158],
[ 0.51299713, -1.56062674],
[ 0.51299713, 0.84631002],
[0.55116656, -1.75473454],
[ 0.55116656, 1.6615628 ],
[ 0.58933599, -0.39597992],
[ 0.58933599, 1.42863343],
[0.62750542, -1.48298362],
[ 0.62750542, 1.81684904],
[ 0.62750542, -0.55126616],
[ 0.62750542, 0.92395314],
[ 0.66567484, -1.09476801],
[ 0.66567484, 1.54509812],
[ 0.66567484, -1.28887582],
[ 0.66567484, 1.46745499],
[ 0.66567484, -1.17241113],
```

```
[ 0.66567484, 1.00159627],
[0.66567484, -1.32769738],
[ 0.66567484, 1.50627656],
[ 0.66567484, -1.91002079],
[ 0.66567484, 1.07923939],
[0.66567484, -1.91002079],
[ 0.66567484, 0.88513158],
[0.70384427, -0.59008772],
[0.70384427, 1.27334719],
[0.78018313, -1.75473454],
[ 0.78018313, 1.6615628 ],
[0.93286085, -0.93948177],
[0.93286085, 0.96277471],
[0.97103028, -1.17241113],
[0.97103028, 1.73920592],
[ 1.00919971, -0.90066021],
[ 1.00919971, 0.49691598],
[ 1.00919971, -1.44416206],
[ 1.00919971, 0.96277471],
[ 1.00919971, -1.56062674],
[ 1.00919971, 1.62274124],
[ 1.04736914, -1.44416206],
[ 1.04736914, 1.38981187],
[ 1.04736914, -1.36651894],
[ 1.04736914, 0.72984534],
[ 1.23821628, -1.4053405 ],
[ 1.23821628, 1.54509812],
[ 1.390894 , -0.7065524 ],
[ 1.390894 , 1.38981187],
[ 1.42906343, -1.36651894],
[ 1.42906343, 1.46745499],
[ 1.46723286, -0.43480148],
[ 1.46723286, 1.81684904],
[1.54357172, -1.01712489],
[ 1.54357172, 0.69102378],
[ 1.61991057, -1.28887582],
[ 1.61991057, 1.35099031],
[ 1.61991057, -1.05594645],
[ 1.61991057, 0.72984534],
[ 2.00160487, -1.63826986],
[ 2.00160487, 1.58391968],
[ 2.26879087, -1.32769738],
[ 2.26879087, 1.11806095],
[ 2.49780745, -0.86183865],
[ 2.49780745, 0.92395314],
```

Out[7]:		Spending_Score	Income
	0	-1.738999	-0.434801
	1	-1.738999	1.195704
	2	-1.700830	-1.715913
	3	-1.700830	1.040418
	4	-1.662660	-0.395980
	•••		
	195	2.268791	1.118061
	196	2.497807	-0.861839
	197	2.497807	0.923953
	198	2.917671	-1.250054
	199	2.917671	1.273347

[2.91767117, -1.25005425],

200 rows × 2 columns

```
In [8]:
    data_stand.plot(kind='scatter', x='Spending_Score', y='Income')
    plt.show()
```



```
In [67]:
    Sum_of_squared_distances = []
    K = range(1,15)
    for k in K:
        km=KMeans(n_clusters=k)
        km=km.fit(data_stand)
        Sum_of_squared_distances.append(km.inertia_)
```

C:\Users\fna\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:881: UserWarning: KMeans is known to have a memory le ak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the environment va riable OMP_NUM_THREADS=1.

warnings.warn(

```
plt.plot(K, Sum_of_squared_distances, 'bx-')
plt.xlabel('k')
plt.xlabel('Sum_of_squared_distances')
plt.xlabel('Elbow Method For Optimal K')
plt.show()
```


K=5

41

23

38

25

92

73

0

0

```
In [11]:
                                            km5 = KMeans(n_clusters = 5)
                                            km5 = km5.fit(df)
                                            print(km5.labels )
                                        1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 
                                            2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ]
In [62]:
                                           labels 1 = km5.labels
                                            labels_1 = pd.DataFrame(labels_1, columns=['Cluster'])
                                            df clustered 1 = pd.concat([df,labels 1], axis=1)
In [63]:
                                           df_clustered_1.sort_values('Cluster', ascending=True)
Out[63]:
                                                            Income Spending_Score Cluster
```

	Income	Spending_Score	Cluster
29	29	87	0
21	24	73	0
39	37	75	0
•••			
126	71	35	4
92	60	49	4
93	60	40	4
85	54	46	4
99	61	49	4

200 rows × 3 columns

In [64]: df_clustered_1[df_clustered_1['Cluster']==0]

Out[64]:		Income	Spending_Score	Cluster
	1	15	81	0
	3	16	77	0
	5	17	76	0
	7	18	94	0
	9	19	72	0
1	11	19	99	0
1	13	20	77	0
1	15	20	79	0
1	17	21	66	0
1	19	23	98	0
2	21	24	73	0

	Income	Spending_Score	Cluster
23	25	73	0
25	28	82	0
27	28	61	0
29	29	87	0
31	30	73	0
33	33	92	0
35	33	81	0
37	34	73	0
39	37	75	0
41	38	92	0
45	39	65	0

```
centroids_1 = km5.cluster_centers_
centroids_1 = pd.DataFrame(centroids_1, columns=['Centroid_SpendingScore', 'Centroid_Income'])
centroids_1
```

```
      Out[65]:
      Centroid_SpendingScore
      Centroid_Income

      0
      25.727273
      79.363636

      1
      88.200000
      17.114286

      2
      86.538462
      82.128205

      3
      26.304348
      20.913043

      4
      55.296296
      49.518519
```

```
s1 = sns.scatterplot(data=df_clustered_1, x='Spending_Score', y='Income', hue='Cluster')
centroids.plot(ax=s1, kind='scatter', x='Centroid_SpendingScore', y='Centroid_Income', color='red')
```

Out[66]: <AxesSubplot:xlabel='Centroid_SpendingScore', ylabel='Centroid_Income'>

K=3

15

59

90

39

55

0

0

```
In [56]:
                                                 km3 = KMeans(n_clusters = 3)
                                                 km3 = km3.fit(df)
                                                 print(km3.labels_)
                                                  1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 2 \; 1 \; 
                                                 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ]
In [57]:
                                                labels 2 = km3.labels
                                                 labels 2 = pd.DataFrame(labels, columns=['Cluster'])
                                                 df_clustered_2 = pd.concat([df,labels_2], axis=1)
In [58]:
                                                df clustered 2.sort values('Cluster', ascending=True)
Out[58]:
                                                                   Income Spending_Score Cluster
```

	Income	Spending_Score	Cluster
89	58	46	0
88	58	60	0
87	57	55	0
•••			
135	73	88	2
173	87	92	2
147	77	74	2
133	72	71	2
199	137	83	2

200 rows × 3 columns

```
centroids_2 = km3.cluster_centers_
centroids_2 = pd.DataFrame(centroids_2, columns=['Centroid_SpendingScore', 'Centroid_Income'])
centroids_2
```

```
      Out[59]:
      Centroid_SpendingScore
      Centroid_Income

      0
      44.154472
      49.829268

      1
      87.000000
      18.631579

      2
      86.538462
      82.128205
```

```
s2 = sns.scatterplot(data=df_clustered_2, x='Spending_Score', y='Income', hue='Cluster')
centroids_2.plot(ax=s2, kind='scatter', x='Centroid_SpendingScore', y='Centroid_Income', color='red')
```

Out[61]: <AxesSubplot:xlabel='Centroid_SpendingScore', ylabel='Centroid_Income'>

