

دورة: 2019

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 04 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

دان صحیحان. (x; y) حیث x و y عددان صحیحان. (x; y) خات المجهول (x; y) دات المعادلة

$$(2020 = 4 \times 505)$$
 و $2019 = 3 \times 673$

بيّن أنّه من أجل كلّ ثنائية (x;y) حل للمعادلة (E) فإنّ: x و y من نفس الإشارة.

$$\begin{cases} v_0 = 4 \\ v_{n+1} = v_n + 673 \end{cases}$$
 و
$$\begin{cases} u_0 = 3 \\ u_{n+1} = u_n + 505 \end{cases}$$
 بعتبر المتتاليتين (u_n) و (u_n) المعرفتين على (u_n) بعتبر المتتاليتين (3)

. اكتب α عددان طبيعيان α عددان طبيعيان u_{lpha} اكتب u_{lpha} عددان طبيعيان

 (w_n) عين الحدود المشتركة للمتتاليتين (u_n) و (u_n) ثم بيّن أنّ هذه الحدود المشتركة تشكّل متتالية حسابية ولا عين المسلم عين أساسها وحدها الأول.

$$X_n = \frac{1}{505}(w_n - 2023) : n$$
 ينضع من أجل كلّ عدد طبيعي (ب

 $p = X_1.X_2....X_n$ الجداء الجداء الجداء

التمرين الثاني: (04 نقاط)

C(1;2;3) و B(1;-2;0) ، A(1;0;-1) الفضاء منسوب إلى المعلم المتعامد والمتجانس $(O;\vec{i},\vec{j},\vec{k})$ ، نعتبر

- $\cdot A$ قائم في ABC بيّن أنّ المثلث (1
- كا اكتب معادلة للمستوى (Q) الذي يشمل A و \overrightarrow{AC} شعاع ناظمي له.
- ه وسيط حقيقي و (P_m) مستو حيث: m-1)x+2y-z-m=0 معادلة له. (3
- أ) أثبت أنّه عندما يتغير m في \mathbb{R} فإنّ المستوي (P_m) يحوي مستقيما ثابتا (Δ) يطلب تعيين تمثيل وسيطي له. تحقّق أنّ A و C نقطتان من المستقيم (Δ) .
 - (Q) يعامد المستوي (P_m) فإنّ المستوي فإنّ المستوي المستوي المستوي بتحقّق أنّه مهما كان

اختبار في مادة: الرياضيات// الشعبة: الرياضيات// بكالوريا 2019

d(m) لتكن (d(m) المسافة بين النقطة (d(m) لتكن (4

أ) أثبت أنّ:
$$d(m) = \frac{5}{\sqrt{m^2 - 2m + 6}}$$
 ثم عيّن قيمة m التي تكون من أجلها أي أثبت أنّ

 (P_m) على (B_m) استنتج أنّه إذا كانت (B_m) أعظمية فإن النقطة (B_m) النقطة (B_m) استنتج أنّه إذا كانت (D_m)

التمرين الثالث: (05 نقاط)

$$D$$
 و C ، B ، A في المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{u},\vec{v})$ نعتبر النقط $z_{B}=1$ و $z_{D}=\overline{z_{B}}$ ، $z_{C}=\overline{z_{A}}$ ، $z_{B}=i$ ، $z_{A}=1+i\sqrt{2}$ حيث:

 $(z^2+1)(z^2-2z+3)=0$: z المعادلة ذات المجهول (1 المعادلة أدات المجموعة (1 المعادلة أدات المجموعة (1 المعادلة أدات المعادلة

و C ، B ، A نتمي الدائرة التي يطلب تعيين مركزها و طول نصف قطرها. $|z_C-z_E|$ و $|z_B-1|$ ، $|z_A-1|$ و $|z_A-1|$ المن نفس الدائرة التي يطلب تعيين مركزها و طول نصف قطرها.

بين أنّ:
$$z_B - z_E = \frac{\sqrt{2}}{2}(1+i)(z_A - z_E)$$
 ثم استنتج أنّ $z_B - z_E = \frac{\sqrt{2}}{2}$ ثم استنج أنّ عيين عناصره المميزة.

- ما طبيعة المثلّث ABE؟

- \overrightarrow{ABDE} عيّن لاحقتي الشّعاعين \overrightarrow{BD} و \overrightarrow{AE} محدّدا طبيعة الرباعي (3
 - . z_2 و $\overline{w_2}$ شعاعان من المستوي لاحقتاهما على الترتيب $\overline{w_2}$ و $\overline{w_1}$ (4 . ($z_1.\overline{z_2}+\overline{z_1}.z_2=0$) يكافئ ($\overline{w_2}$ متعامدان) يكافئ (أ

 $(z-z_A)(z-z_D) + (z-z_B)(z-z_C) = 0$ عيّن مجموعة النقط M من المستوي ذات اللاحقة z حيث:

التمرين الرابع: (07 نقاط)

.
$$\begin{cases} f(x) = x - x^2 \ln x \ , x > 0 \\ f(0) = 0 \end{cases}$$
: $= [0; +\infty[$

3~cm الوحدة $.(O; \vec{i}, \vec{j})$ منحناها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس البياني في المستوي

1) برهن أنّ:

$$1 - x - 2x \ln x < 0$$
: فإن $x > 1$

$$1 - x - 2x \ln x > 0$$
 فإن: $0 < x < 1$

- (C_f) للمنحنى (Δ) للمنحنى (أن الدالة f قابلة للاشتقاق عند f من اليمين ثم اكتب معادلة لنصف المماس (Δ) للمنحنى أن الدالة f عند مبدأ المعلم.
 - $\cdot(C_f)$ و $(\Delta): L$ ادرس الوضع النسبي ال
 - $\lim_{x\to +\infty} f(x)$ احسب (أ (3)
 - . f ادرس اتجاه تغیر الداله f ثمّ شکّل جدول تغیرات الداله f

اختبار في مادة: الرياضيات// الشعبة: الرياضيات// بكالوريا 2019

. (Δ) الموازي لـ (C_f) المنحنى (T) الموازي لـ (4

- $.1,76 < \alpha < 1,77$ ثم تحقّق أن: (x) = 0 ثم تحقّق أن: (x) = 0 ثم تحقّق أن: (x) = 0 ثم تحقّق أن: (x) = 0
 - $(\alpha;0)$ الذي يوازي (Δ) ويشمل النقطة ذات الإحداثيين (d) الذي يوازي (Δ) الذي يوازي
 - . [0;lpha] على المجال (C_f) و (Δ) و (Δ) ، (T) على المجال –
- . $[0; \alpha]$ في المجال $x^2 \ln x + m = 0$ عدد حلول المعادلة: m في المجال حقيقي، ناقش بيانيا حسب قيم m (5
 - $A(\lambda) = \int_{\lambda}^{1} -x^2 \ln x dx$: نعتبر: $0 < \lambda < 1$ عدد حقیقي حیث λ (6
 - λ باستعمال المكاملة بالتجزئة احسب $A(\lambda)$ بدلالة λ
 - ب) احسب $A(\lambda)$ ثم فسّر النتيجة هندسيا. $\lim_{\lambda \to 0} A(\lambda)$

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع على صفحتين (02) (من الصفحة 4 من 5 إلى الصفحة 5 من 5)

التمرين الأول: (04 نقاط)

صندوقان غير شفافين U_1 و U_2 ، يحتوي الصندوق U_1 على 4 كريات حمراء و 3 كريات سوداء ويحتوي الصندوق U_1 على 5 كريات حمراء و كريتين سوداوين (الكريات كلها متشابهة لا نفرق بينها عند اللمس) نرمى نردا غير مزيف ذا ستة أوجه مرقمة من 1 إلى 6 .

 $U_1 = \begin{bmatrix} \frac{2}{7} & -A \\ \frac{1}{7} & -B \\ & \ddots & \\ C \end{bmatrix}$

 U_1 إذا ظهر الرقمان 2 أو 4 نسحب عشوائيا كريتين في آن واحد من الصندوق U_1 . وفي باقى الحالات نسحب عشوائيا كريتين في آن واحد من الصندوق

نعتبر الأحداث A:B و C المعرفة بـ: A:"سحب كريتين حمراوين"

"سحب کریتین سوداوین" و C:"سحب کریتین من لونین مختلفین: B

1) أنقل، وأكمل شجرة الاحتمالات.

 $\cdot C$ و B ، A أحسب احتمالات الأحداث B

نعتبر X المتغير العشوائي الذي يرفق بكل سحب عدد الكريات الحمراء المسحوبة.

- X عين قيم المتغير العشوائي X
- ب) عين قانون الاحتمال للمتغير العشوائي X.
 - $\cdot E(X)$ أحسب الأمل الرياضياتي (4

التمرين الثاني: (04 نقاط)

 $u_1=0$ متتالية عددية حدودها موجبة معرفة بحدها الأول $u_1=0$ حيث $u_1=0$ متتالية عددية حدودها موجبة معرفة بحدها الأول $u_n=0$ متتالية عددية حدودها موجبة معرفة بحدها الأول $u_n=0$

 $\sqrt{u_{n+1}} - \sqrt{u_n} = 1$ ، n معدوم غير معدوم عدد طبيعي غير أ(1

- n بدلالة u_n بدلالة الحد العام بدلالة
- $u_n = n(n-2)+1$ ، n نحقق أنّه: من أجل كل عدد طبيعي غير معدوم (2
 - n-5 عيّن قيم العدد الطبيعي n التي من أجلها: n-2 يقسم (3
- $\cdot PGCD(n-2; u_n) = 1$ ننّ أنّ: $n \ge 2$ حيث $n \ge 2$ عدد طبيعي n حيث $n \ge 2$
 - $(n-5)u_n$ يقسم $(n-2)(n^2+1)$ يقسم n التي من أجلها $(n-5)u_n$ يقسم $(n-5)u_n$

التمرين الثالث: (05 نقاط)

 $P(z) = z^4 - 6z^3 + 29z^2 - 24z + 100$ ، z عدد مركب (1)

P(z)=0 المعادلة z كان z حلا للمعادلة $\overline{P(z)}=P(\overline{z})$ ، ثم استنتج أنّه إذا كان z حلا للمعادلة أ) بيّن أنّه من أجل كل عدد مركب $\overline{P(z)}=P(\overline{z})$ ثم استنتج أنّه إذا كان z حل لها.

ب) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة P(z)=0 علما أنّها تقبل حلا تخيليا صرفا.

$$M'$$
 و M' ه N ، N النقط N ، N النقط N ، N النقط N ، N و N النقط N ، N و N النقط N ، N النقط N ، N النقط N ، N و N النقط N ، N

 $\cdot |z'| = 2$ التي يكون من أجلها M(z) التي يكون من أجلها (E) لتكن

بيّن أن (النقطة M من M عيّن M عيّن M بيّن أن (النقطة M من بيّن أن (النقطة M بيّن أن (النقطة M من M

ج) لتكن (Γ) مجموعة النقط (z) التي يكون من أجلها (Γ) عدد صحيح (Γ) عدد صحيح (Γ) التي النقطة (Γ) نقم عيّن وأنشئ (Γ) .

. (Γ) و (E) عين الشكل الجبري للِلحقة النقطة G تقاطع المجموعتين الشكل الجبري عين النقطة و G

التمرين الرابع: (07 نقاط)

- وسيط حقيقي. $f_k(x) = (x+1)^2 e^{-kx}$ بي: \mathbb{R} وسيط حقيقي. $f_k(x) = (x+1)^2 e^{-kx}$ التمثيل البياني للدالة $f_k(x) = (x+1)^2 e^{-kx}$ ليكن (\mathcal{C}_k) التمثيل البياني للدالة $f_k(x) = (x+1)^2 e^{-kx}$ التمثيل البياني للدالة $f_k(x) = (x+1)^2 e^{-kx}$
 - . بيّن أنّ كل المنحنيات $\left(\mathcal{C}_{k}
 ight)$ تمر من نقطتين ثابتتين يطلب تعيينهما (1
 - . (k وعند $-\infty$ عند $+\infty$ عند $+\infty$
 - f_k الحسب $f_k'(x)$ ، ثم حدّد حسب قيم الوسيط الحقيقي $f_k'(x)$ اتجاه تغير الدالة f_k من أجل f_k عدد حقيقي موجب تماما.
 - (\mathcal{C}_{k+1}) و (\mathcal{C}_k) ناقش حسب قيم الوسيط الحقيقي k الأوضاع النسبية للمنحنيين (4
 - $f\left(x
 ight)=\left(x+1
 ight)^{2}e^{-2x}$ بـ \mathbb{R} بـ \mathbb{R} الدالة المعرفة على $f\left(H\right)$ نسمي $\left(\mathcal{C}_{f}\right)$ تمثيلها البياني في المعلم المتعامد والمتجانس $\left(\mathcal{C}_{f}\right)$
 - . $\left[-\frac{3}{2} ; +\infty\right[$ المجال على المجال المنحنى (\mathcal{C}_f) على المجال الدالة f ، ثم أرسم المنحنى (1
- -1,28 < α حيث: α حيث: α تقبل حلّين في α أحدهما α أحدهما β تقبل عبين أنّ المعادلة α
 - ب) عيّن قيّم العدد الحقيقي m التي من أجلها تقبل المعادلة $\left| \frac{x+1}{e^x} \right| = \left| \frac{m+1}{e^m} \right|$ حلا وحيدا.
 - . $g(x) = (x+1)e^{-2x}$:ب \mathbb{R} بدالة المعرّفة على g

أ) بيّن أنّه من أجل كل عدد حقيقي x فإنّ: $g'(x) + 2g(x) - e^{-2x} = 0$ ثمّ استنتج دالة أصلية له $g'(x) + 2g(x) - e^{-2x} = 0$ على $g'(x) + 2g(x) - e^{-2x} = 0$ باستعمال المكاملة بالتجزئة، احسب A مساحة الحيز المستوي المحدّد بالمنحنى (\mathcal{C}_f) ومحور الفواصل والمستقيمين اللّذين معادلتا هما x = 0 و x = 0.