Pre-Lab:

- A short video (Lab1_Prelab_Video1) (24 min) is available on LMS Week-5. Please watch it as it includes:
 - o How to load Control Expert, create variables, and create a LAD file
 - o How to use the animation table and the simulator
 - o How to export your code and submit on LMS
- A short video (Lab1 Prelab Video2) (3mins)
 - Usage of Comparator (used in Part 3 of Lab)
 - Usage of Counter (used in Part 5 of Lab)
- A short video (Lab1_Outcomes) (5 mins)
 - Shows working versions of LAD codes for Part 3 & 4 & 5. This should give you a good idea as to what is expected from the Lab.

Lab. Work:

Part 1:

- Create a new project
 - Pick the following
 - Modicon M580 BME P58 3020
 - BME XBP 0800
 - For Password just hit "Cancel"
 - Attach the following modules (Make sure you select "I/O data type: Topological")
 - Discrete BMX DAI 1602 in Slot 2
 - Discrete BMX DAI 1602 in Slot 3
 - Discrete BMX DAI 1602 in Slot 4
 - Discrete BMX DDO 1602 in Slot 5
 - Discrete BMX DDO 1602 in Slot 6
 - Discrete BMX DDO 1602 in Slot 7

Submit answers to the following questions for Part1:

- 1.1 Right click on your power supply to see the "Power Supply and I/O Budget". How much power is your system using?
- 1.2 Double click on your CPU, in the opened window go to "Overview" tab. And answer the following
 - 1.2.1 How many discrete I/O ports does your CPU have?
 - 1.2.2 How many Analog I/O ports does your CPU have?
 - 1.2.3 How much is the data memory?
 - 1.2.4 How much is the application memory?
 - 1.2.5 What is the file size of a picture in your cellphone (give an estimate)?
 - 1.2.6 If RUN LED is flashing, what does this mean for your CPU?
 - 1.2.7 What color is the I/O LED and what does it mean if it is On?
- 1.3 Delete you power supply module and replace it with BMX CPS 2000

1.3.1 Check your "Power Supply and I/O Budget". How much power is CPS 2000 able to deliver in Watts? How much of it is not being used (still available) in Watts?

Part 2:

- Double click "Variables & FB Instances" in project browser and create the following variables
 - O X (EBOOL), Y (EBOOL), Z (EBOOL), U (EBOOL), V (EBOOL), W (EBOOL), OUT1 (EBOOL), OUT2(EBOOL), OUT3(EBOOL), OUT4 (EBOOL), OUT5 (EBOOL)
- Create a LAD code named (lad_part2) under Tasks/MAST/Logic and code the following
 - (X OR Y) OR Z = OUT1
 - \circ (X NOR Y) **AND** Z = OUT2
 - \circ (X **NAND** W) AND (V OR U) AND (Y OR X) = OUT3
 - O (W XOR V) AND (U AND V) AND X = OUT4
 - O (OUT4) OR (OUT3) OR (OUT1 AND OUT2) = OUT5
- Create an Animation Table called "Part2_test" and add all your variables to this table. Use it to simulate your code

Part 3:

- Create the following variables by using the I/O objects tab for each module and also the "Variables & FB Instances" table
 - SW_1 (EBOOL @ %I0.3.0), SW_0 (EBOOL @ %I0.4.0), PB_Store (EBOOL), PB_Reset (EBOOL), int FirstDigit (INT)
- Create a LAD code named (lad_part3) under Tasks/MAST/Logic and code the following functionality
 - If PB_Reset is pressed momentarily:
 - int FirstDigit is set to "-1" (Use MOVE)
 - If PB_Store is pressed momentarily:
 - If int_FirstDigit has no value (i.e. it is -1) then
 - o int FirstDigit becomes **B**inary**2D**ecimal(SW 1SW 0) (Use MOVE)
 - ex: SW_1=1 SW_0=0 then int_FirstDigit = 2 (b/c 10=2)
 - ex: SW_1=1 SW_0=1 then int_FirstDigit = 3 (b/c 11=3)
 - etc.
 - If int_FirstDigit has a real value, then pressing PB_Store does not do anything
 - Design your code such that it is PB_Reset dominant
- Create an Animation Table called "Part3_test" and add all your variables to this table. Use it to simulate your code

Part 4:

- Create the following variables in "Variables & FB Instances" table
 - C1 (EBOOL), C0 (EBOOL), str_Output0 (String)
- Create a LAD code named (lad_part4) under Tasks/MAST/Logic and code the following functionality
 - If C1=0 & C0=0 then str_Output0 is " " (Use MOVE)
 - If C1=0 & C0=1 then str Output0 is "Your Name + Middle Name" (Use MOVE)
 - If C1=1 & C0=0 then str_Output0 is "Your Last Name" (Use MOVE)
 - If C1=1 & C0=1 then str_Output0 is "Your Department and Year" (Use MOVE)
- Create an Animation Table called "Part4_test" and add all your variables to this table. Use it to simulate your code

Part 5: (Garage Door Opener)

- Create the following variables in "Variables & FB Instances" table
 - PB_Open (EBOOL), PB_Close (EBOOL), Limit_Switch_Up (EBOOL), Limit_Switch_Down (EBOOL – initial value 1), Motor_UP (EBOOL @ %Q0.5.0), Motor_DOWN (EBOOL @ %Q0.6.0), int_DoorOpenCount (INT)
- Create a LAD code named (lad_part5) under Tasks/MAST/Logic and code the following functionality
 - o If Door is fully closed (i.e. Limit_Switch_Down = 1) then
 - Pressing PB_Open momentarily will
 - Start opening the door (Motor_UP = True)
 - Make Limit_Switch_Down = False
 - Door will open until fully open (fully open when Limit_Switch_Up = TRUE)
 - When door is fully open, motor will stop (Motor UP = False)
 - When door is fully open, increment int DoorOpenCount by 1 (Use CTU)
 - If Door is fully opened (Limit_Switch_Up = 1) then
 - Pressing PB_Close momentarily will
 - Start closing the door (Motor_DOWN = True)
 - Make Limit Switch Up = False
 - Door will close until fully closed (fully closed when Limit_Switch_Down = TRUE)
 - When door is fully closed, motor will stop (Motor_DOWN = False)
 - If both PB_Open and PB_Close are pressed at the same time, then int_DoorOpenCount is set to "0" (Reset CTU)
- Create an Animation Table called "Part5_test" and add all your variables to this table. Use it to simulate your code

Your Submission should include the following:

- 1- A .pdf document with your answers to Part 1
 - a. Please include your name, student number on this document
- 2- Submission of your project file
 - a. Make sure .sta and .stu files are included
 - b. Create a .rar or .zip of your project file (otherwise LMS will not accept the filetype)

Rules:

- Submissions for Lab 1 are done on LMS.
- Lab 1 Submission deadline is 25 October 2024, 23:59.
- For early submission bonus (+2%), submit everything by 24 October 2024, 23:59.
- No late submissions will be accepted.
- No make-ups are allowed for Lab work unless for medical reasons with valid proofs.