

Himax HM01B0 UPduino Shield

User Guide

FPGA-UG-02081 Version 1.0

Contents

Acronyms in This Document 1. Introduction 1.1. Further Information. 2. Power Supply 3. Board Overview	4 4 5
 4. iCE40 UltraPlus Pin Summary 5. Software Requirements 6. Board Configuration and Programming 	9
6.1. Board Configuration	9
6.3. Programming the CRAM Directly7. Storage and Handling	13
8. Ordering Information	14
Appendix A. Himax HM01B0 UPduino Shield Board Schematics	15
Figures Figure 1.1. Himax HM01B0 UPduino Shield	4
Figure 3.1. UPduino v2.0 – Front View	
Figure 3.2. UPduino v2.0 – Back View	5
Figure 3.3. Himax HM01B0 Adapter Board – Front View	6
Figure 3.4. Himax HM01B0 Adapter Board – Back View	6
Figure 6.1. Programming Settings	
Figure 6.2. Device Family and Device Setting	
Figure 6.3. Onboard SPI Flash Device Properties Settings	
Figure 6.4. Device Family and Device Settings	
Figure 6.5. Device Properties for iCE40 Device Configuration Memory	
Figure A.2. UPduino 2.0 FPGA Schematic	
Figure A.2. UPduino 2.0 SPI Flash/I/O Pins/Regulator Connections	
Figure A.3. UPduino 2.0 FTDI Chip Connection	
Tigure A.4. Filmax Tilvio160 Adapter Board Schematic	10
Tables	
Table 4.1. Upstream Connector Mapping	
Table 8.1. Reference Part Number	13

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition			
FPGA	Field-Programmable Gate Array			
FTDI	Future Technology Devices International			
I ² S	Inter-IC Sound			
LED	Light-Emitting Diode			
SOIC	Small Outline Integrated Circuit			
SPI	Serial Peripheral Interface			
USB	Universal Serial Bus			

1. Introduction

The Himax HM01B0 UPduino Shield is an evaluation and development platform based on the iCE40™ UltraPlus FPGA (Field-Programmable Gate Array). It consists of two boards – the UPduino v2.0 and the Himax HM01B0 Aapter Board. The UPduino v2.0 is an efficient, low-cost base platform designed by Gnarly Grey, including the iCE40UP5K FPGA, and basic power and programming control. The Himax HM01B0 Adapter Board adds a camera with a low-power Himax image sensor, two microphones, and multiple LEDs for quick visual feedback.

This flexible and powerful platform enables designers to investigate and experiment with key features of the iCE40 UltraPlus FPGA and assists with rapid prototyping and testing of specific designs.

Key features of the Himax HM01B0 UPduino Shield include:

- UPduino v2.0
 - iCE40 FPGA iCE40UP5K-SG48I (5K LUTs, 39 I/Os, 120 Kbits Embedded Block RAM, 1 PLL and more in a 7 mm x 7 mm 48-pin QFN package.)
 - USB connection for UART and device programming
 - On-board Boot Flash
 - RGB LED
- Himax HM01B0 Adapter Board
 - Camera module with Himax HM01B0 image sensor
 - Two I²S microphones
 - Six green LEDs
- Also included with the kit
 - 3 ft Micro USB cable for programming and power
 - QuickStart Guide

Figure 1.1. Himax HM01B0 UPduino Shield

1.1. Further Information

This board features an iCE40UP5K-SG48I FPGA. More information about this FPGA can be found on the Lattice web site at: www.latticesemi.com/iCE40UltraPlus. A complete description of this device can be found in iCE40 UltraPlus Family Data Sheet (FPGA-DS-02008).

2. Power Supply

External 5 V Power from the USB Connector (J7) provides power to the entire two board set.

Alternately, power can be applied to headers on the UPduino v2.0 board:

- J6 5.0 V
- J9 Ground

3. Board Overview

The following diagrams show key features of the Himax HM01B0 Adapter and UPduino v2.0 boards.

Figure 3.1. UPduino v2.0 - Front View

Figure 3.2. UPduino v2.0 – Back View

© 2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure 3.3. Himax HM01B0 Adapter Board – Front View

Figure 3.4. Himax HM01B0 Adapter Board – Back View

4. iCE40 UltraPlus Pin Summary

The following is a reference to indicate the connection of the iCE40 UltraPlus FPGA I/O pins on each board.

Table 4.1. Upstream Connector Mapping

SG48	Function	Pin Type	Bank	Differential Pair	UPduino v2.0	Himax HM01B0 Adapter
1	VCCIO_2	VCCIO	2	-	_	_
2	IO B_6a	PIO	2	_	JP6-16	I2S data
3	IO B_9b	DPIO	2	COMP_of_IOB_8a	JP6-11	Molex1 – 8: SDA
4	IO B_8a	DPIO	2	TRUE_of_IOB_9b	JP6-10	Molex1 – 7: SCL
5	VCC	VCC	VCC	_	_	_
6	IO B_13b	DPIO	1	COMP_of_IOB_12a	JP6-8	Molex1 – 5: FVLD
7	CDONE	CONFIG	1	_	LED – D2	_
8	creset_b	CONFIG	1	_	_	_
9	IO B_16a	PIO	1	_	JP6-7	Molex1 – 4: TRIG
10	IO B_18a	PIO	1	_	TP3	_
11	IO B_20a	PIO	1	_	JP6-6	MCLK
12	IO B_22a	DPIO	1	TRUE_of_IOB_23b	JP6-1	Molex1 – 18: D1
13	IO B_24a	DPIO	1	TRUE_of_IOB_25b	JP6-3	RESET_CAM (NC)
14	IO B_32a_SPI_SO	DPIO/CONFIG_SPI	1	_	SPI Flash – SDO	_
15	IO B_34a_SPI_SCK	DPIO/CONFIG_SPI	1	_	SPI Flash – SCK	_
16	IO B_35b_SPI_SS	DPIO/CONFIG_SPI	1	_	SPI Flash – CS	_
17	IO B_33b_SPI_SI	DPIO/CONFIG_SPI	1	_	SPI Flash – SDI	_
18	IO B_31b	PIO	1	_	JP6- 5	PWDN (NC)
19	IO B_29b	PIO	1	_	JP6- 4	Molex1 – 16: PCLK
20	IO B_25b_G3	DPIO/GBIN	1	COMP_of_IOB_24a	TP4	_
21	IO B_23b	DPIO	1	COMP_of_IOB_22a	JP6- 2	Molex1 – 17: D0
22	SPI_V _{CCIO1}	VCCIO	1	_	_	_
23	IOT_37a	DPIO/I3C	0	TRUE_of_IOT_36b	JP5- 3	D9
24	VPP_2V5	VPP	VPP	_	_	_
25	IOT_36b	DPIO/I3C	0	COMP_of_IOT_37a	JP5- 4	D8
26	IOT_39a	DPIO	0	TRUE_of_IOT_38b	JP5- 5	Molex1 – 24: D7
27	IOT_38b	DPIO	0	COMP_of_IOT_39a	JP5- 6	Molex1 – 23: D6
28	IOT_41a	PIO	0	_	JP5- 16	LED5
29	VCCPLL	VCCPLL		_	_	_
30	VCC	VCC	VCC	_	_	_
31	IOT_42b	DPIO	0	COMP_of_IOT_43a	JP5- 9	Molex1 – 20: D3
32	IOT_43a	DPIO	0	TRUE_of_IOT_42b	JP5- 7	Molex1 – 22: D5
33	VCCIO_0	VCCIO	0	_	_	_
34	IOT_44b	DPIO	0	COMP_of_IOT_45a	JP5- 11	LEDO
35	IOT_46b_G0	DPIO/GBIN	0	_	JP5- 8	Mole x1 – 21: D4
36	IOT_48b	DPIO	0	COMP_of_IOT_49a	JP5- 13	LED2
37	IOT_45a_G1	DPIO/GBIN	0	TRUE_of_IOT_44b	JP5- 10	Molex1 – 19: D2
38	IOT_50b	DPIO	0	COMP_of_IOT_51a	JP5- 15	LED4
39	RGB0	LED	0	_	RGB LED – Red	_
40	RGB1	LED	0	_	RGB LED – Green	-
41	RGB2	LED	0	_	RGB LED – Blue	_
42	IOT_51a	DPIO	0	TRUE_of_IOT_50b	JP5- 14	LED3
43	IOT_49a	DPIO	0	TRUE_of_IOT_48b	JP5- 12	LED1

SG48	Function	Pin Type	Bank	Differential Pair	UPduino v2.0	Himax HM01B0 Adapter
44	IO B_3b_G6	DPIO/GBIN	2	COMP_of_IOB_2a	JP6- 9	Molex1 – 6: LVLD
45	IO B_5b	DPIO	2	COMP_of_IOB_4a	JP6- 13	U2 – 2: STBY
46	IO B_0a	PIO	2	-	JP6- 15	I25 Clk
47	IO B_2a	DPIO	2	TRUE_of_IOB_3b	JP6- 14	125 WS
48	IO B_4a	DPIO	2	TRUE_of_IOB_5b	JP6- 12	_
Paddle	GND	GND	GND	-	-	Molex1 – 9: INT

5. Software Requirements

Install the following software before you begin developing designs for the board:

- Lattice Radiant 1.0 (or higher)
 - Used for developing your own custom designs for the iCE40 UltraPlus FPGA
 - Download at: www.latticesemi.com/radiant
- Radiant Programmer 1.0 (or higher)
 - Used to program the iCE40 UltraPlus FPGA
 - This is included with Radiant software installation, or as a stand-alone tool.
 - Download at: www.latticesemi.com/radiant

Board Configuration and Programming

6.1. Board Configuration

The iCE40 UltraPlus on Himax HM01B0 UPduino Shield can be programmed via the included micro-USB cable using a PC running Lattice Radiant Programmer software. After the software is installed and launched, and the USB cable is connected to the board, see below for programming procedures.

There are two modes to program the iCE40 UltraPlus FPGA on the UPduino v2.0 board.

- SPI Flash Programming (default): In this mode, the on-board SPI Flash is programmed, which in-turn programs the iCE40 UltraPlus FPGA at power-up or reset. This allows the user program to be stored in non-volatile memory when the board is powered-off or reset. This is the default programming mode.
- **Direct CRAM Programming:** In this mode, the iCE40 UltraPlus FPGA CRAM memory is programmed directly. This may allow for more rapid reconfiguration (if you need to regularly re-program the iCE40 UltraPlus while debugging), but the program is not be retained when the board is powered-off. To use this mode, a modification to the board is required.

The default programming mode is SPI Flash programming. To change the programming mode, resistor R4 and R3 must be removed and replaced in the orientation shown in Figure 6.1.

Figure 6.1. Programming Settings

6.2. Programming the SPI Flash

To program the SPI Flash:

- 1. Set board resistors to horizontal for SPI Flash programming.
 - Note: This is the default mode.
- 2. Connect the Himax HM01B0 UPduino Shield via USB cable to PC with Radiant Programmer installed.
- 3. Start Radiant Programmer.
- 4. Set Device Family to iCE40 UltraPlus and Device to iCE40UP5K as shown in Figure 6.2.

Figure 6.2. Device Family and Device Setting

- 5. Click the iCE40 UltraPlus row, and select **Edit > Device Properties**.
- 6. In the **Device Properties** dialog box, apply the settings below that are common to the three files to program (see Figure 6.3).
 - a. Under **Device Operation**, select the options below:
 - Target Memory External SPI Flash Memory (SPI FLASH)
 - Port Interface SPI
 - Access Mode Direct Programming
 - Operation Erase, Program, Verify
 - b. Under Programming Options, select the option below:
 - Programming File <Select desired file to program>
 - c. Under SPI Flash Options, select the options below:
 - Family SPI Serial Flash
 - Vendor Winbond
 - Device W25P32
 - Package —16-pin SOIC

Figure 6.3. Onboard SPI Flash Device Properties Settings

- 7. Click **OK** to close the Device Properties window.
- 8. Click the **Program** button in Radiant Programmer to program the Onboard SPI Flash.

6.3. Programming the CRAM Directly

To program the CRAM directly:

- 1. Set board resistors to vertical for CRAM Programming.
- 2. Connect the Himax HM01B0 UPduino Shield via USB cable to PC with Radiant Programmer installed.
- 3. Start Radiant Programmer.
- 4. Set Device Family to iCE40 UltraPlus and Device to iCE40UP5K as shown in Figure 6.4.
- 5. Click the iCE40 UltraPlus row, and select Edit > Device Properties.

Figure 6.4. Device Family and Device Settings

- 6. In the **Device Properties** dialog box, apply the as shown in Figure 6.5.
 - Target Memory Compressed Random Access Memory (CRAM)
 - Port Interface Slave SPI
 - Access Mode Direct Programming
 - Operation Fast Configuration
- 7. Click **OK** to close the **Device Properties** window.
- 8. Click the **Program** button in Radiant Programmer to begin programming.

Figure 6.5. Device Properties for iCE40 Device Configuration Memory

7. Storage and Handling

Static electricity can shorten the life span of electronic components. Observe these tips to prevent damage that can occur from electrostatic discharge:

- Use antistatic precautions such as operating on an antistatic mat and wearing an antistatic wristband.
- Store the development board in the provided packaging.
- Touch a metal USB housing to equalize voltage potential between you and the board.

8. Ordering Information

Table 8.1. Reference Part Number

Description	Ordering Part Number	China RoHS Environment-Friendly Use Period (EFUP)
Himax HM01B0 UPduino Shield	HM01B0-UPD-EVN	©

References

For more information, refer to

- iCE40 Ultra Plus Family Data Sheet (FPGA-DS-02008)
- www.latticesemi.com/iCE40UltraPlus

Technical Support Assistance

 $Submit\,a\,technical\,support\,case\,through\,www.latticesemi.com/techsupport.$

Appendix A. Himax HM01B0 UPduino Shield Board Schematics

Figure A.1. UPduino 2.0 FPGA Schematic

Figure A.2. UPduino 2.0 SPI Flash/I/O Pins/Regulator Connections

© 2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Figure A.3. UPduino 2.0 FTDI Chip Connection

Figure A.4. Himax HM01B0 Adapter Board Schematic

© 2018 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Revision History

Revision 1.0, November 2018

Section	Change Summary		
All	Initial release.		

7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com