OTIMIZAÇÃO MULTI-OBJETIVO E NSGA-II

DCE770 - Heurísticas e Metaheurísticas

Atualizado em: 17 de janeiro de 2023

Departamento de Ciência da Computação

OTIMIZAÇÃO MULTI-OBJETIVO

Quando temos dois ou mais diferentes objetivos a serem otimizados

ÁRVORE GERADORA MÍNIMA

Seja G = (V, E) um grafo

○ Toda aresta $e \in E$ possui um peso $w_e > 0$

Uma arvore geradora de G é um subgrafo acíclico que alcança todos os vértices em V

A Árvore Geradora Mínima (AGM) é a árvore geradora de G de peso mínimo

Algoritmos polinomiais

ÁRVORES GERADORAS COM RESTRIÇÕES ADICIONAIS

Variantes do problema da AGM que possuem características (ou restrições) adicionais

Saltos

Grau

Delay

Folhas

Ângulo

O ...

Estas variantes são problemas de otimização NP-Difíceis

- Algoritmos sofisticados
 - Programação por restrições
 - Branch-and-cut
 - o Geração de colunas
 - Heurísticas e meta-heurísticas

OTIMIZAÇÃO MULTI-OBJETIVO

$$\min_{\phi \in \Phi} \quad [f^1(\phi), f^2(\phi), \dots, f^m(\phi)]^T \tag{1}$$

s.t.

$$q_j(\phi) \leqslant 0, \ j = 1, \dots, J \tag{2}$$

DOMINAÇÃO

Uma solução $\phi_1 \in \Phi$ domina outra solução $\phi_2 \in \Phi$ se e somente se $f^i(\phi_1) \leqslant f^i(\phi_2)$ para todas as funções objetivo $\{f^1, f^2, \dots, f^m\}$ e $f^i(\phi_1) < f^i(\phi_2)$ para ao menos uma função objetivo f^i .

NÃO-DOMINAÇÃO

Uma solução $\phi' \in \Phi$ é dita ser *não-dominada* se e somente se não existe nenhuma outra solução $\phi \in \Phi$ such that ϕ que domina ϕ' .

ESPAÇO DE SOLUÇÕES

Seja $f: \mathbb{R}^n \to \mathbb{R}^m$ uma função que mapeia as soluções de Φ no espaço m-dimensional de imagens de soluções Ψ , tal que

$$\Psi = \{ \psi \in \mathbb{R}^m : \psi = f(\phi), \phi \in \Phi \}.$$

Portanto, a i-ésima posição do vetor ψ corresponde ao valor da função objetivo f^i para a solução ϕ , , $\psi_i=f^i(\phi)$

8

PONTO PARETO-ÓTIMO

Um ponto $\psi^* \in \Psi$ é dito ser *Pareto-ótimo* se e somente se não existe nenhum ponto $\psi \in \Psi$ tal que $\psi_i \leqslant \psi_i^*$, para $i \in \{1, \ldots, m\}$, e que $\psi_i < \psi_i^*$, para ao menos um $i \in \{1, \ldots, m\}$.

FRONTEIRA DE PARETO

É o conjunto de todos os pontos pareto-ótimos

A fronteira de pareto é a solução de um problema multi-objetivo

NSGA-II

Non-dominated Sorting Genetic Algorithm II

 A heurística mais utilizada e conhecida para resolver problemas de otimização multi-objetivo

Framework extremamente semelhante aos algoritmos genéticos visto em aula

ALGORITMO GENÉTICO

NSGA-II

NON-DOMINATED SORTING

NON-DOMINATED SORTING

CROWDING DISTANCE SORTING

Tem como objetivo obter soluções espaçadas dentro de uma fronteira de pareto

 Teoricamente, quanto mais espaçadas as soluções, mais ampla é a varredura do espaço de buscas

O *crowding distance* tem como objetivo estimar a densidade de soluções em uma determinada área

O valor de *crowding distance* de uma solução é igual a média da distância de uma solução para suas vizinhas

CROWDING DISTANCE SORTING

CROWDING DISTANCE SORTING

O *crowding distance sorting* equivale a fazer uma ordenação das soluções de acordo com seu valor de *crowding distance*

Quanto maior, melhor

OUTROS ALGORITMOS PARA MULTI-OBJETIVO

O NSGA-II é o mais conhecido e mais utilizado deles

Entretanto, diversos outros existem, sendo que a maioria deles é baseada em algoritmos evolucionários

- \bigcirc NSGA-III Muitos (\ge 5) objetivos
- Otimização por Enxame de Partículas Multi-objetivo
- $\circ \dots$

Entretanto, alguns poucos ainda trablham com busca local

GRASP multi-objetivo, por exemplo