

equations

- Clearance for low Extraction Ratio(ER) drugs:

$$Cl = F_u * Cl_{int}$$

$F_u \uparrow$ (fraction unbound to plasma proteins) is affected by drug displacement \uparrow .

Cl_{int} is decreased by enzyme inhibition & increased by enzyme induction

- Clearance for high Extraction Ratio(ER) drugs:

$$Cl = Q_H \text{ (hepatic blood flow)}$$

- Another general equations (تجميعة لlaw equations used):

$$Cl = K * V$$

$$K = 0.693 / t_{1/2}$$

$$V = V_p + V_T * (F_u / F_{uT})$$

$$\frac{\text{dose}}{t} = Cl * CP^{ss} \rightarrow t \text{ (tau) dose interval}$$

$$f_{(\text{bio availability})} * \frac{\text{dose}}{t} = Cl * CP^{ss} \quad (\text{for a drug administered orally})$$

$$CP^{ss} = Cu^{ss} / f_u$$

Q 1 (page 13) :

Predict the changes in the elimination halflives for drugs characterized by low & high extraction ratios as a result of an increase in the fraction unbound to plasma proteins(f_u) & tissue proteins (f_{ut}).

(الحل هيئى متقسم على أربع مراحل .. مرحلة لكل حالة)

1) for LOW Extraction Ratio(ER) drugs & increase in (F_u):

$$Cl = KV \quad , \quad K = 0.693/t_{1/2}$$

So:

$$F_u * Cl_{int} = 0.693/t_{1/2} * V \quad -----> (1)$$

This is a relationship between $t_{1/2}$ & F_u , But we should know first whether (V) value will be affected by increase in (F_u) or not ... to know that we should apply an equation in which (V) & (F_u) values are involved .

This is the equation:

$$V = V_p + V_T * F_u / F_{uT} \longrightarrow (2)$$

from (2)

when (F_u) \uparrow (V) will \uparrow

So:

$$F_u \uparrow * Cl_{int} = 0.693/t_{1/2} * V \uparrow$$

i.e $t_{1/2}$ won't be changed (\leftrightarrow) (because both V & F_u increased & each of them will counter the effect of other)

2) For LOW Extraction Ratio(ER) drugs & increase in (F_{uT}):

$$Cl = K V \quad , \quad K = 0.693/t_{1/2}$$

So:

$$F_u * Cl_{int} = 0.693/t_{1/2} * V \longrightarrow (1)$$

$$V = V_p + V_T * F_u / F_{uT} \longrightarrow (2)$$

when (F_{uT}) \uparrow (V) will \downarrow

so

$$F_u * Cl_{int} = 0.693/t_{1/2} * V \longrightarrow (1)$$

when (V) \downarrow ($t_{1/2}$) will \downarrow

i.e $t_{1/2}$ will decrease \downarrow

3) For HIGH Extraction Ratio(ER) drugs & increase in (F_u):

$$Cl = KV \quad , \quad K = 0.693/t_{1/2}$$

So:

$$Q_H = 0.693/t_{1/2} * V \quad \longrightarrow \quad (1)$$

$$V = V_p + V_T * F_u/F_{uT} \quad \longrightarrow \quad (2)$$

from (2)

when (F_u) \uparrow (V) will \uparrow

From equation (1) , when (V) \uparrow , what will happen to ($t_{1/2}$)
???

(N.B hepatic blood flow Q_H is const.)

Right.. ($t_{1/2}$) will increase :D

4) For HIGH Extraction Ratio(ER) drugs & increase in (F_{uT}):

$$Cl = KV \quad , \quad K = 0.693/t_{1/2}$$

So:

$$Q_H = 0.693/t_{1/2} * V \quad \longrightarrow \quad (1)$$

$$V = V_p + V_T * F_u/F_{uT} \longrightarrow (2)$$

from (2)

when (F_{uT}) \uparrow (V) will \downarrow

from equation (1) , when (V) \downarrow , what will happen to ($t_{1/2}$) ???

(N.B hepatic blood flow Q_H is const.)

($t_{1/2}$) will decrease.

Q 2 (page 15)

Question:

Explain (using equations) the above mechanism of the effect of valproic acid (displacement from protein binding sites and inhibition of metabolism) on phenytoin plasma levels (total and free concentrations).

Displacement $\rightarrow F_u \uparrow$

Inhibition of metabolism $\rightarrow Cl_{int} \downarrow$

We should know (from lec.) that Phenyltoin is low ER drug.

(dr.yousry said that u should memorize these examples & mechanisms of action (Page.14,15) from the drug-drug interaction lecture)

$$1 - \frac{dose}{t} = Cl * CP^{ss}$$

(CP^{ss} is the total conc. Of phenyltoin in plasma)

$$\frac{dose}{t} = F_u \uparrow * Cl_{int} \downarrow * CP^{ss}$$

So CP^{ss} won't change \leftrightarrow

$$2-f_u = Cu^{ss}/cp^{ss} \rightarrow \rightarrow \rightarrow cp^{ss} = Cu^{ss}/f_u$$

$$\frac{dose}{t} = F_u * Cl_{int} * Cu^{ss}/f_u$$

$$\frac{dose}{t} = -Cl_{int} \downarrow * Cu^{ss} \uparrow$$

So Cu^{ss} will increase.

Q 3 (page 20)

Question

Predict the effect of enzyme induction or inhibition on the average total and free steady-state plasma concentrations for orally administered high extraction ratio drugs.

20

the drug is administered orally so equation used will be :

$$f_{(\text{bio availability})} * \frac{\text{dose}}{t} = Cl * CP^{ss}$$

for high ER drugs

$$f = Q_H / (f_u \cdot Cl_{int})$$

$$Cl = Q_H$$

$$Q_H / (f_u \cdot Cl_{int}) * \frac{\text{dose}}{t} = Q_H * CP^{ss}$$

$$1 / (f_u \cdot Cl_{int}) * \frac{\text{dose}}{t} = CP^{ss}$$

First in case of enzyme inhibition :

$$1 / (f_u \cdot cl_{int} \downarrow) * \frac{dose}{t} = CP^{ss} \uparrow$$

i.e total Steady State plasma conc. \uparrow

$$f_u = Cu^{ss} / CP^{ss} \rightarrow CP^{ss} = Cu^{ss} / f_u$$

$$1 / (f_u \cdot cl_{int}) * \frac{dose}{t} = Cu^{ss} / f_u$$

$$1 / (cl_{int} \downarrow) * \frac{dose}{t} = Cu^{ss} \uparrow$$

i.e Free SS plasma conc. \uparrow

second in case of enzyme induction :

$$1 / (f_u \cdot cl_{int} \uparrow) * \frac{dose}{t} = CP^{ss} \downarrow$$

i.e total Steady State plasma conc. \downarrow

$$f_u = Cu^{ss} / CP^{ss} \rightarrow CP^{ss} = Cu^{ss} / f_u$$

$$1 / (f_u \cdot cl_{int}) * \frac{dose}{t} = Cu^{ss} / f_u$$

$$1 / (cl_{int} \uparrow) * \frac{dose}{t} = Cu^{ss} \downarrow$$

i.e Free SS plasma conc. \downarrow

Q 4 (page 21)

Question:

Predict the changes in the elimination half lives for drugs characterized by low and high extraction ratios as a result of enzyme induction or inhibition.

1- In case of (Low ER ratio drugs & enzyme Inhibition)

$$Cl = KV \quad , \quad K = 0.693/t_{1/2}$$

i.e $F_u * Cl_{int} = 0.693/t_{1/2} * V$

فاكرين في المسئلة الأولى عملنا إيه بعد كدة ؟
استخدمنا القانون ده

$$V = V_p + V_T * F_u / F_{uT}$$

علشان نعرف الـ V نظامها إيه .. هتزيد ولا هتنقل ..

بس في المسئلة اللي في ايدينادي مش هنستخدم هذا القانون ... ليه ؟

علشان أصلا هو ماقلش في البروبلم حاجة عن الـ F_u وبالتالي هي مش هتأثر على الـ V وبالتالي هي ثابتة

يبقى نعمل الأسئلة بتاعتتنا ونحدد الإجابة على طول

i.e $F_u * Cl_{int} \downarrow = 0.693/t_{1/2} \uparrow * V$

i.e $t_{1/2} \uparrow$

2- In case of (Low ER ratio drugs & enzyme Induction)

$$Cl = K V \quad , \quad K = 0.693/t_{1/2}$$

$$\text{i.e } F_u * Cl_{int} \uparrow = 0.693/t_{1/2} \downarrow * V$$

i.e $t_{1/2} \downarrow$

3- In case of (High ER ratio drugs & enzyme inhibition)

$$Cl = Q_H$$

$$Q_H = (0.693/t_{1/2}) . V$$

Is there a relationship between $t_{1/2}$ & Cl_{int} ?

in this case; of course not ☺

so $t_{1/2}$ will be \leftrightarrow

4- In case of (High ER ratio drugs & enzyme induction)

زي اللي فاتت بالظبط ...

Question no. 5

سؤال آخر الدكتور ملاه في المحاضرة بتاعة الـ drug drug interactions وهو :

الـ digoxin بيزود الـ F_{UT} بتاعة الـ quindine

وكمان بيقل الا active secretion يعني $(Cl_{int} \downarrow)$

السؤال .. ليه الـ $t_{1/2}$ لـ quinidine مش بتتأثر ؟؟؟

الحل :

- 1st effect of $F_{UT} \uparrow$ on (V)

$$V_{\downarrow} = V_p + V_T * F_u / F_{UT} \uparrow$$

- Active secretion ↓ i.e → i.e $\text{Cl}_{\text{int}} \downarrow$

$$Cl = KV \quad , \quad K = 0.693/t_{1/2}$$

From the eq. $F_u * Cl_{int} \downarrow = 0.693/t_{1/2} * V \downarrow$

So $t_{1/2}$ remains without change .. \leftrightarrow