Представления, дифференцирования, касательная алгебра

- 1. Представление группы это вложение в группу автоморфизмов линейного пространства. Автоморфизмы \mathbb{K}^n образуют полную линейную группу $\mathrm{GL}_n(\mathbb{K})$. Для действия группы G на многообразии X с помощью двойственного гомоморфизма алгебр найдите представление G на $\mathbb{K}[X]$. Докажите, что любой набор функций лежит в G-инвариантном конечномерном подпространстве. Представление с таким свойством называется рациональным или локально конечным.
- 2. Рассмотрев действие на себе левыми сдвигами, с помощью предыдущей задачи докажите, что любая аффинная группа вкладывается в полную линейную группу.
- **3.** Проверьте, что якобиан отображения задаёт гомоморфизм касательных пространств. Выведите "наивное" определение касательного пространства к алгебраическому подмножеству $\{x \in \mathbb{A}^n \mid P_1(x) = \ldots = P_k(x) = 0\}.$
- **4.** Дифференцирование алгебры A это линейное отображение $\partial \colon A \to A$, удовлетворяющее правилу Лейбница $\partial(ab) = \partial(a)b + a\partial(b)$.
 - (а) Докажите, что множество дифференцирований Der(A) образуют антикоммутативную алгебру относительно скобки Ли $[\partial_1, \partial_2] = \partial_1 \partial_2 \partial_2 \partial_1$.
 - (b) Докажите тождество Якоби

$$[[a,b],c] + [[b,c],a] + [[c,a],b] = 0.$$

Антикоммутативная алгебра, удовлетворяющая тождеству Якоби, называется *алгеброй* $\mathcal{I}u$.

- **5.** Дифференцирование $\partial \in \text{Der}(A)$ называется *локально конечным*, если каждая функция лежит в ∂ -инвариантном конечномерном подпространстве, и *локально нильпотентным*, если $\forall f \in A \ \exists n : \ \partial^n f = 0$.
- 6. Что такое векторное поле на многообразиями? Наивно: в каждой точке взяли касательный вектор так, чтобы координаты выражались регулярными функциями на каждой карте. Правильно: сечение касательного расслоения. Найдите соответствие между векторными полями на многообразии и дифференцированиями на его алгебре функций. Какому векторному полю соответствует дифференцирование $\frac{\partial}{\partial x}$ на плоскости? Какому дифференцированию соответствует векторное поле (x, x)?
- 7. Для каждого касательного вектора в единице $v \in T_eG$ образуем векторное поле, разнеся его левым умножением (точнее, дифференциалами умножений на элементы группы). Проверьте, что
 - таким образом получаются все векторные поля, инвариантные относительно левых действий;
 - ullet они образуют алгебру Ли, называемую касательной алгеброй Lie G группы G.
- **8.** Проверьте, что для вектора $v \in \text{Lie } G$ существует не более одной однопараметрической группы $\gamma \colon \mathbb{K} \to G$ с касательным вектором в единице v. Определим экспоненту $\exp(v) = \gamma 1$; для $v \in \text{Lie } GL(V)$ верно $\exp(v) = \sum_{k=0}^{\infty} \frac{v^k}{k!}$.
- **9.** Пусть

Продолжение следует: разложение Жордана, порождение группы однопараметрическими подгруппами, sl_2 -тройки.