List of atmospheric and oceanic indices calculated by Canadian Seasonal to Interannual Prediction System (CanSIPS).

Monsoon Indices	CMC var	Variable (cmc name); Level	Calculation method; equation	Reference
Western North Pacific Monsoon Index	WNPM	Wind (U); 850hpa	Difference between spatial averages of the two regions; U850 (5°N -15°N, 90°E-130°E) – U850 (22.5°N - 32.5°N, 110°E-140°E)	Wang and Fan, 1999
Australian Summer Monsoon Index	AUSM	Wind (U); 850hPa	Spatial average; U850 (5°S-15°S, 110°E-130°E)	Kajikawa et al. 2010
South Asia Monsoon Index	SAM	Wind (V); 850hpa and 200hpa	Difference between spatial averages over two vertical levels; V850-V200 averaged over 10°N - 30°N, 70°E-110°E	Goswami et al. 1999
East Asian Summer Monsoon index	EASM	Wind (U); 850hPa	Difference between spatial averages of the two regions; U850 (22.5°-32.5°N, 110°-140°E) – U850 (5°-15°N, 90°-130°E)	Wang et al. 2008
Indian Monsoon index	IM	Wind (U); 850hPa	Difference between spatial averages of the two regions; U850(5°N -15°N, 40°E-80°E) – U850(20°N -30°N, 70°E-90°E)	Wang et al. 2001
Webster- Yang Monsoon Index	WYM	Wind (U); 850hPa and 200hPa	Difference between spatial averages over two vertical levels; U850-U200 averaged over 0-20°N, 40°E-110°E	Webster and Yang, 1992

Indices based on Sea	CMC var	Region	Calculation method; equation	Reference
Surface Temperature Anomalies (SSTA)	, 		oquus on	
El Nino Index, Region 1+2	Nino1+2	Pacific	Spatial mean of SSTA over the region; SSTA (90°W - 80°W, 10°S - 0°)	Trenberth and Stepaniak, 2001
El Nino Index, Region 3	Nino3	Pacific	Spatial mean of SSTA over the region; SSTA (150°W - 90°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
El Nino Index, Region 4	Nino4	Pacific	Spatial mean of SSTA over the region; SSTA (160°E - 150°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
El Nino Index, Region 3.4	Nino3.4	Pacific	Spatial mean of SSTA over the region; SSTA (170°W - 120°W, 5°S - 5°N)	Trenberth and Stepaniak, 2001
El Nino Modoki Index	ЕМІ	Pacific	Difference in SSTA spatial means between the three regions; SSTA (165E-140W, 10S-10N) - 0.5*SSTA (110W-70W, 15S-5N) - 0.5*SSTA (125E-145E, 10S-20N)	Ashok et al. 2007
North Atlantic Tropical SST Index	NAT	Atlantic	Spatial mean of SSTA over the region; SSTA (40°W - 20°W, 5°N - 20°N)	Chang et al. 1997
South Atlantic Tropical SST Index	SAT	Atlantic	Spatial mean of SSTA over the region; SSTA (15°W - 5°E, 5°S - 5°N)	Chang et al. 1997
Tropical Atlantic SST Index	TASI	Atlantic	Difference between spatial averages of the two regions; NAT-SAT	Chang et al. 1997
Tropical Northern Atlantic Index	TNA	Atlantic	Spatial mean of SSTA over the region; SSTA (55°W - 15°W, 5°N -25°N)	Enfield et al, 1999
Tropical South Atlantic Index	TSA	Atlantic	Spatial mean of SSTA over the region; SSTA (30°W - 10°E, 20°S - EQ)	Enfield et al, 1999
Western Tropical Indian Ocean SST Index	WTIO	Indian Ocean	Spatial mean of SSTA over the region; SSTA (50°E - 70°E, 10°S - 10°N)	Lizuka and Matsuura, 2000
South Eastern Tropical Indian Ocean SST Index	SETIO	Indian Ocean	Spatial mean of SSTA over the region; SSTA (90°E - 110°E, 10°S - 0°)	Lizuka and Matsuura, 2000
South Western	SWIO	Indian	Spatial mean of SSTA over the region;	http://stateofth

Indian Ocean SST Index		Ocean	SSTA (31°E - 45°E, 32°S - 25°S)	eocean.osmc.n oaa.gov/sur/in
				d/swio.php
Indian Ocean	IOD	Indian	Difference between spatial averages of	Saji et al. 1999
Dipole Mode		Ocean	the two regions;	
Index			WTIO-SETIO	
Tripole Index	TPI	Pacific	Difference in SSTA spatial means	Henley et al.
for the			between the three regions;	2015
Iterdecadal			SSTA (10°S–10°N, 170°E–90°W) –	
Pacific			SSTA (25°N–45°N, 140°E–145°W) –	
Oscillation			SSTA (50°S–15°S, 150°E–160°W)	
Pacific	PDO	Pacific	Calculate the first EOF of North	Mantua et al.
Decadal			Pacific(20-60N) SSTA from OISST	1997
Oscillation			for the 1981-2010 period.	
			Predicted SSTA are projected onto this	
			EOF pattern to obtain predicted PDO	
			index.	
			Standardized using mean and sd of	
			OISST PDO index for 1981-2010	

Indices based on Sea-Level Pressure (SLP) South	CMC var	Calculation method; equation Standardized Tahiti — Standardized Darwin	Reference
Oscillation Index	SOI	$SOI = \frac{Standardized Tahitt Standardized But with MSD}{MSD}$ $MSD = Monthly Stand. Dev = \\ = \sqrt{\sum \frac{(Standardized Tahiti SLP - Standardized Darwin SLP)^2}{N}}$ $N - number of months$ $Standardised "Station" = \frac{Actual "Station" SLP - Mean "Station" SLP}{Standard Deviation "Station"}$ $Standard Deviation "Station" = \\ = \sum \frac{(actual "Station" SLP - mean "Station" SLP)^2}{N}$	http://ww w.ncdc.no aa.gov/tele connection s/enso/indi cators/soi/ #soi- calculation
North Pacific Index	NPI	Spatial mean of <i>area-weighted</i> SLP over the region; SLP (30°S–65°N, 160°E–140°W)	Trenberth and Hurrell, 1994
North Atlantic Oscillations (Azores- Island)	NAO	Not currently available for operational purposes	
North Atlantic Oscillations (35N-65N)	NAO	Not currently available for operational purposes	

References:

Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

Kajikawa, Y., B. Wang and J. Yang, 2010: A multi-time scale Australian monsoon index, Int. J. Climatol, 30, 1114-1120.

Goswami, B. N., B. Krishnamurthy, and H. Annama lai, 1999: A broad-scale circulation index for interannual variability of the Indian summer monsoon. Quart. J. Roy.. Meteorol. Soc., 125, 611-633.

Wang, Bin, Zhiwei Wu, Jianping Li, Jian Liu, Chih-Pei Chang, Yihui Ding, Guoxiong Wu, 2008: How to Measure the Strength of the East Asian Summer Monsoon. J. Climate, 21, 4449–4463.

Wang B., R. Wu, and K-M., and Lau, 2001: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090.

Webster, P. J. and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926.

Trenberth, K. E and D. P. Stepaniak, 2001: Indices of El Niño Evolution. *J. Climate*, **14**, 1697–1701.

Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T, 2007: El Niño Modoki and its possible teleconnection. *Journal of Geophysical Research: Oceans* (1978–2012), 112(C11).

Chang, P., L. Ji and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385, 516-518.

Enfield, D. B., A. M. Mestas-Nuñez, D. A. Mayer, and L. Cid-Serrano, 1999: How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperature? J. Geophys. Res., 104, 7841–7848.

Iizuka, S., Matsuura, T., & Yamagata, T., 2000: The Indian Ocean SST dipole simulated in a coupled general circulation model. *Geophys. Res. Lett*, 27(20), 3369-3372.

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T., 1999: A dipole mode in the tropical Indian Ocean. *Nature*, 401(6751), 360-363.

http://stateoftheocean.osmc.noaa.gov/sur/ind/swio.php (Accessed 22nd December 2015)

Henley B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., & Folland, C. K., 2015: A Tripole Index for the Interdecadal Pacific Oscillation. *Climate Dynamics*, 1-14.

Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080.

http://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/#soi-calculation (Accessed 22nd December 2015)

Trenberth K. E., and J. W. Hurrell, 1994: Decadal atmosphere-ocean variations in the Pacific Climate Dynamics, 1994, Volume 9, Number 6, Page 303