boxplot

连续+分类

比直方图数据更多(?

Boxplot (箱线图)

箱线图可以分类来做

boxplot(mpg ~ cyl, data=mtcars,
 main="Car Mileage Data",
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon")

清华大学统计学研究中心

可看出每个组的平均 (用中位表示(?

- 没有outlier
 - 数据量太小
 - 数据比较集中

中位数以上的数据都一样

spineplot

分类+分类 (两个, 都用频数表示) 一种特殊的条形图 (堆叠)

Spineplot (棘状图)

Survived Class No Yes 1st 122 203 2nd 167 118 3rd 528 178 Crew 673 212

spineplot(dat)

spineplot(t(dat))

清华大学统计学研究中心

高度相同,通过宽度表示

左图中Yes/No(响应变量)所占比例一目了然

dot plot

连续型

scatter plot

两个连续变量之间的关系,可能线性可能非线性 每一个点都是单独个体的数据

scatter matrix

Scatter matrix (散点图矩阵)

- 散点图的高维扩展
- 基本构成是多个变量的两两散点图以矩阵的形式排列起来
- p个变量通常有pxp个窗格 ,便于查看 变量间两两的关系

pairs(iris[,1:4], pch = 19)

清华大学统计学研究中心

有对称性↑ 可以只保留上半

Scatter matrix (散点图矩阵)

42

library(psych)

pairs.panels(iris[,-5], method = "pearson", # correlation method hist.col = "#00AFBB", density = TRUE, # show density plots ellipses = TRUE # show correlation ellipses)

清华大学统计学研究中心

具体数据 (调用分析包)

how to use graphs 相关性

用圈的大小表示数量多少

相关图 数据为零表示没有相关性没有线性相关性

偏差

清华大学统计学研究中心

条的长度不代表数值大小

分布

密度图 箱线图 小提琴图

组成

饼图 太细的不方便看 条形图 优选

时间序列

清华大学统计学研究中心

3D图有很多冗余的数据,高度也不方便看 (角度) 纵坐标一定要从零开始,避免夸大效果

2.6 你被图形骗到了吗

52

纵坐标一定要从零开始

清华大学统计学研究中心

2.6 你被图形骗到了吗

53

横坐标不要随便压缩

清华大学统计学研究中心

变化其实是稳定的 (横坐标只能 等比例压缩)

probabilities and distribution

basic definition

- **outcome** 1,2,3,4,5,6
- event set of outcomes eg 2 or 4 or 6
- probability无穷多次试验下的相对频数

$$P(E) = \frac{m}{N}$$

rules

1.2 Rules of Probability

▶ Basic:

- (1) $P(E) \geq 0$
- (2) $P(\Omega) = P(\omega_1 \cup \omega_2 \cup \cdots \cup \omega_n) = 1$
- (3) $P(E \cup F) = P(E) + P(F)$ if E and F are mutually exclusive

▶ Useful:

Inclusion-Exclusion: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

清华大学统计学研究中心

☆条件概率

全概率

检验报告P(Test+ | Diease+) →计算→P (D+|T+)

independence独立 & mutually exclusive 互斥

抛两次硬币,这两次硬币的结果是相互独立,互不影响 "结果为正面"与"结果为反面"是相互排斥的

贝叶斯定律


```
col=c('blue','gold'),
       legend=rownames(counts))
hist(dat$X12.身高.单位为m.)
hist(dat$X13.体重.单位为kg.)
hist(dat$X13.体重.单位为kg.,breaks=6,main='break6')
hist(dat$X13.体重.单位为kg.,breaks=20,main='break6')
stem(dat$X12.身高.单位为m.)
stem(dat$X13.体重.单位为kg.)
boxplot(dat$X5.本学期选的学分总数,main='本学期选的学分总数')
boxplot(dat$X13.体重.单位为kg.,main='体重')
boxplot(dat$X12.身高.单位为m.~dat$X1.性别)
boxplot(dat$X13.体重.单位为kg.~dat$X1.性别)
head(dat) #仅前几行
counts2=table(dat$X6.最喜欢的食堂)
pie(counts2,main='test')
barplot(counts2,col="purple",border='green')
barplot(counts2,col="pink",horiz=T)
boxplot(dat$X12.身高.单位为m.~dat$X1.性别)
cols=c("red","blue","pink","purple","yellow","green","gray","black")
head(mtcars)
c=table(mtcars$cyl,mtcars$vs)
barplot(c,
       main='test1',
       xlab='x',
       ylab='y',
       col=cols,
       legend=rownames(c),
       beside=F)
barplot(c,
       main='test1',
       xlab='x',
       ylab='y',
       col=cols,
       legend=rownames(c),
       beside=T)
boxplot(mtcars$mpg~mtcars$cyl,main="boxplot",ylab="y",xlab="x",col=cols)
mtcars$cyl.f =factor(mtcars$cyl,levels=c(4,6,8),labels=c("4","6","8"))
mtcars$am.f=factor(mtcars$am,levels=c(0,1),labels=c("auto","standard"))
boxplot(mpg~am.f*cyl.f,data=mtcars,varwidth=TRUE,col=cols,main="test",xlab="x",ylab="y")
spineplot(counts,col=cols)
plot(mtcars$wt,mtcars$mpg,main="test",pch=19,frame=F,col=cols)
abline(lm(mtcars$mpg~mtcars$wt),col="blue")
```

```
library(scatterplot3d)

x=iris$Sepal.Length
y=iris$Sepal.Width
z=iris$Petal.Length
grps=as.factor(iris$Species)
scatterplot3d(x,y,z,pch=16,,grid=T,box=F)

pairs(iris[,1:4],pch=19,lower.panel= NULL)
# cex 直径
library(psych)
pairs.panels(iris[,-5],method="pearson",density=T,ellipses=T)
```

