ЛАБОРАТОРНАЯ РАБОТА № 10 ИССЛЕДОВАНИЕ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Операционный усилитель ($\mathbf{O}\mathbf{Y}$) представляет собой усилитель постоянного тока с большим коэффициентом усиления. На входе $\mathbf{O}\mathbf{Y}$ установлен дифференциальный усилительный каскад.

- 1 инвертирующий вход
- 2 неинвертирующий вход
- 3 выхол

ОУ имеет два симметричных входа и один несимметричный выход. Входные сигналы подаются относительно одной общей шины, относительно которой снимается выходной сигнал. Источник входного сигнала и нагрузку можно подключать непосредственно к выводам ОУ. Инвертирующий вход сдвигает фазу выходного сигнала на 180° относительно входного, а неинвертирующий не сдвигает. Если к входам приложены различные по величине и фазе напряжения (дифференциальный сигнал), то на выходе появляется сигнал пропорциональный разности уровней входных напряжений. Если к входам приложены одинаковые по величине и фазе напряжения (синфазный сигнал), то сигнала на выходе не будет.

Параметры и характеристики ОУ

- **1. Коэффициент усиления по напряжению** $K_{\rm u}$ определяет коэффициент усиления **ОУ** без использования обратной связи. Для реальных **ОУ** равен нескольким тысячам.
- **2. Амплитудно частотная характеристика** определяет зависимость модуля коэффициента усиления **ОУ** от частоты.

- **3. Полоса пропускания** это полоса частот, в диапазоне которой K_u уменьшается не более чем в $\sqrt{2}$ раз от своего максимального значения, при неизменной амплитуде на входе (если K_u выражается в дБ, то не более чем на **3** дБ). Наименьшая и наибольшая частота полосы пропускания называется соответственно **низшей** и **высшей** граничной частотой. У **ОУ** низшая граничная частота полосы пропускания равна нулю, а высшая граничная частота полосы пропускания $f_{\rm B \, rp}$ составляет 1-10 МГц.
- **4.** Частота единичного усиления f_1 это частота, на которой модуль коэффициента усиления **ОУ** равен единице ($K_{\rm u}$ [д**Б**] = **20 lg 1** = **0** д**Б**).
- **5. Время установления выходного напряжения** $t_{\text{уст}}$ это промежуток времени прошедший с момента достижения уровня **0,1** до момента достижения уровня **0,9** установившегося значения выходного напряжения при подаче на вход **ОУ** импульса напряжения прямоугольной формы.

1. Инвертирующий усилитель

ОУ охвачен цепью параллельной отрицательной **ОС** по напряжению. Входной сигнал подается на инвертирующий вход.

Коэффициент усиления по напряжению инвертирующего усилителя

$$K_{\text{u oc}} = \frac{U_{\text{вых}}}{U_{\text{вх}}} = -\frac{R_{\text{oc}}}{R_{\text{l}}}.$$

Знак "-" показывает, что выходной сигнал сдвинут по фазе относительно входного сигнала на 180° .

Неинвертирующий вход соединен с общим проводом через резистор R_2

$$\mathbf{R}_2 = \mathbf{R}_1 \parallel \mathbf{R}_{\text{oc}} = \frac{\mathbf{R}_1 \, \mathbf{R}_{\text{oc}}}{\mathbf{R}_1 + \mathbf{R}_{\text{oc}}}.$$

Исследование инвертирующего усилителя

1.1. Соберите схему инвертирующего усилителя. При построении схемы используйте **ОУ LM107 (Models/Library/lm1xx/Model)**.

1.2. Рассчитайте \mathbfilde{R}_{oc} и \mathbfilde{R}_2 (при расчетах $\mathbfilde{K}_{u oc}$ и \mathbfilde{R}_1 должны соответствовать варианту задания, а знак "—" не учитывается).

Формулы для расчетов:

$$K_{\text{u oc}} = -\frac{R_{\text{oc}}}{R_{\text{l}}};$$
 $R_2 = \frac{R_{\text{l}} R_{\text{oc}}}{R_{\text{l}} + R_{\text{oc}}}.$

1.3. Установите R_1 , R_2 и R_{oc} в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{Bx} = 1$ В и частотой 1 к Γ ц. С помощью маркера Oscilloscope измерьте амплитуду входного U_{Bx} и выходного U_{Bbx} сигналов и рассчитайте коэффициент усиления:

$$K_{\text{u oc}} = U_{\text{вых}} / U_{\text{вх}};$$
 $K_{\text{u oc}} [\text{дБ}] = 20 \text{ lg } | K_{\text{u oc}} | .$

- 1.4. Сравните рассчитанный коэффициент усиления с заданным в варианте. Сделайте выводы.
- 1.5. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 д**Б** (I = 0 d**B**) до 20 д**Б** (F = 20 d**B**) и частоты от 1 Гц (I = 1 Hz) до 10 МГц (F = 10 MHz).
 - 1.6. С помощью **Bode Plotter** измерьте:
 - а) максимальный коэффициент усиления по напряжению $K_{u \text{ oc}}$ [д**Б**];
 - б) высшую граничную частоту полосы пропускания $f_{\text{в гр}}$;
 - в) частоту единичного усиления f_1 .
- 1.7. Сравните коэффициент усиления измеренный с помощью **Bode Plotter** с рассчитанным по формуле в пункте 1.3. Сделайте выводы.
- 1.8. Подайте с **Function Generator** на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 1$ В и частотой 1 к Γ ц. Изменяя $U_{\text{вх}}$, добейтесь, чтобы выходной сигнал $U_{\text{вых}}$ имел максимальную амплитуду при минимальных искажениях. С помощью маркера **Oscilloscope** измерьте амплитуду входного $U_{\text{вх}}$ и выходного $U_{\text{вых}}$ сигналов.
- 1.9. Подайте с **Function Generator** на вход схемы прямоугольный сигнал с амплитудой $U_{\rm Bx} = 1$ В и частотой 5 к Γ ц. С помощью маркеров **Oscilloscope** измерьте время установления выходного напряжения $t_{\rm ycr}$.

2. Неинвертирующий усилитель

ОУ охвачен цепью последовательной отрицательной **ОС** по напряжению. Входной сигнал подается на неинвертирующий вход.

Коэффициент усиления по напряжению неинвертирующего усилителя

$$K_{\text{u oc}} = \frac{U_{\text{вых}}}{U_{\text{вх}}} = \frac{R_{\text{oc}}}{R_{\text{l}}} + 1.$$

Исследование неинвертирующего усилителя

2.1. Соберите схему неинвертирующего усилителя. При построении схемы используйте **ОУ LM108 (Models/Library/lm1xx/Model)**.

2.2. Рассчитайте $\mathbfilde{R}_{\mathrm{oc}}$ (при расчете $\mathbfilde{K}_{\mathrm{u}\,\mathrm{oc}}$ и $\mathbfilde{R}_{\mathrm{1}}$ должны соответствовать варианту задания).

Формула для расчета:

$$K_{\rm u oc} = \frac{R_{\rm oc}}{R_{\rm l}} + 1.$$

2.3. Установите R_1 и R_{oc} в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{Bx} = 1$ В и частотой 1 к Γ ц. С помощью маркера Oscilloscope измерьте амплитуду входного U_{Bx} и выходного U_{Bhx} сигналов и рассчитайте коэффициент усиления:

$$K_{\text{u oc}} = U_{\text{вых}} / U_{\text{вх}};$$
 $K_{\text{u oc}} \left[\text{дБ} \right] = 20 \text{ lg } \left| K_{\text{u oc}} \right|.$

- 2.4. Сравните рассчитанный коэффициент усиления с заданным в варианте. Сделайте выволы.
- 2.5. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 дБ (I=0 dB) до 20 дБ (F=20 dB) и частоты от 1 Γ ц (I=1 Hz) до 10 М Γ ц (F=10 MHz).
 - 2.6. С помощью **Bode Plotter** измерьте:
 - а) максимальный коэффициент усиления по напряжению $K_{\rm u \, oc}$ [дБ];
 - б) высшую граничную частоту полосы пропускания $f_{\text{в гр}}$;
 - в) частоту единичного усиления f_1 .
- 2.7. Сравните коэффициент усиления измеренный с помощью **Bode Plotter** с рассчитанным по формуле в пункте 2.3. Сделайте выводы.
- 2.8. Подайте с **Function Generator** на вход схемы синусоидальный сигнал с амплитудой $U_{\rm Bx} = 1$ В и частотой 1 кГц. Изменяя $U_{\rm Bx}$, добейтесь, чтобы выходной сигнал $U_{\rm Bbx}$ имел максимальную амплитуду при минимальных искажениях. С помощью маркера **Oscilloscope** измерьте амплитуду входного $U_{\rm Bx}$ и выходного $U_{\rm Bbx}$ сигналов.
- 2.9. Подайте с Function Generator на вход схемы прямоугольный сигнал с амплитудой $U_{\text{вх}} = 1$ В и частотой 5 к Γ ц. С помощью маркеров Oscilloscope измерьте время установления выходного напряжения $t_{\text{уст}}$.

3. Компаратор

Компаратор — устройство, предназначенное для сравнения двух напряжений и определения знака разности между ними. Схема компаратора представляет собой инвертирующий $\mathbf{O}\mathbf{Y}$ с большим коэффициентом усиления по напряжению. Сопротивления резисторов R_1 и $R_{\text{эт}}$ должны быть равными. Если на $\mathbf{B}\mathbf{x}$. 1 подать синусоидальный сигнал, а на $\mathbf{B}\mathbf{x}$. 2 отрицательное эталонное напряжение, то на $\mathbf{B}\mathbf{b}\mathbf{x}$. появится прямоугольный сигнал с периодом соответствующим периоду синусоидального сигнала. Выходной сигнал будет отрицательным, когда напряжение на $\mathbf{B}\mathbf{x}$. 1 будет больше по абсолютной величине напряжения на $\mathbf{B}\mathbf{x}$. 2, и положительным, когда меньше. Амплитуда выходного сигнала определяется уровнем напряжения источника питания $\mathbf{O}\mathbf{Y}$, а ширина импульсов величиной эталонного напряжения.

Осциллограмма сигнала на выходе компаратора

Исследование компаратора

3.1. Соберите схему компаратора. При построении схемы используйте идеальный **ОУ** (Models/Library/default/Model/ideal).

3.2. Рассчитайте \mathbf{R}_1 и \mathbf{R}_2 (при расчетах $\mathbf{R}_{\text{эт}}$ должно соответствовать варианту задания). Формулы для расчетов:

$$\mathbf{R}_1 = \mathbf{R}_{\text{\tiny 9T}}; \qquad \mathbf{R}_2 = \frac{\mathbf{R}_1 \, \mathbf{R}_{\text{\tiny 9T}}}{\mathbf{R}_1 + \mathbf{R}_{\text{\tiny 9T}}}.$$

- 3.3. Установите R_1 , R_2 и $R_{\text{эт}}$ в схему. Подайте на Bx. 1 с Function Generator синусоидальный входной сигнал $U_{\text{вх}}$ частотой 50 Γ ц, а на Bx. 2 с батареи $E_{\text{эт}}$ эталонное напряжение $U_{\text{эт}}$ ($U_{\text{вх}}$ и $U_{\text{эт}}$ должны соответствовать варианту задания).
- 3.4. С помощью маркеров **Oscilloscope** измерьте длительность отрицательного полупериода $T_{\text{оп}}$, длительность положительного полупериода $T_{\text{пп}}$ и весь период $T_{\text{вых}}$.
- 3.5. Изменяя $E_{\text{эт}}$, получите на выходе компаратора прямоугольный сигнал, у которого длительность отрицательного полупериода в два раза меньше длительности положительного полупериода. Измерьте длительность отрицательного полупериода $T_{\text{пп}}$ выходного сигнала $U_{\text{вых}}$ и эталонное напряжение $U_{\text{эт}}$.
- 3.6. Изменяя $E_{\text{эт}}$, получите на выходе компаратора прямоугольный сигнал, у которого длительность отрицательного полупериода в три раза меньше длительности положительного полупериода. Измерьте длительность отрицательного полупериода $T_{\text{пп}}$ выходного сигнала $U_{\text{вых}}$ и эталонное напряжение $U_{\text{эт}}$.

Варианты заданий

Вариант	Инверт. ОУ		Неинверт. ОУ		Компаратор		
	K _{u oc}	<i>R</i> ₁ , кОм	K _{u oc}	R_1 , κ OM	$R_{\text{эт}}$, кОм	U_{BX} , B	$U_{\scriptscriptstyle \mathrm{9T}},\mathrm{B}$
1	1,9	202	9,8	67	52	2	1,1
2	2,7	182	9,0	87	62	3	1,9
3	3,5	162	8,2	107	72	4	2,7
4	4,3	142	7,4	127	82	5	3,5
5	5,1	122	6,6	147	92	6	4,3
6	5,9	102	5,8	167	102	7	5,1
7	6,7	82	5,0	187	112	8	5,9
8	7,5	62	4,2	207	122	9	6,7
9	8,3	42	3,4	227	132	10	7,5
10	9,1	22	2,6	247	142	11	8,3
11	2,3	212	9,4	57	152	2	1,5
12	3,1	192	8,6	77	162	3	2,3
13	3,9	172	7,8	97	172	4	3,1
14	4,7	152	7,0	117	182	5	3,9
15	5,5	132	6,2	137	192	6	4,7
16	6,3	112	5,4	157	202	7	5,5
17	7,1	92	4,6	177	212	8	6,3
18	7,9	72	3,8	197	222	9	7,1
19	8,7	52	3,0	217	232	10	7,9
20	9,5	32	2,2	237	242	11	8,7
21	2,0	204	9,7	65	54	2	1,2
22	2,8	184	8,9	85	64	3	2,0
23	3,6	164	8,1	105	74	4	2,8
24	4,4	144	7,3	125	84	5	3,6
25	5,2	124	6,5	145	94	6	4,4
26	6,0	104	5,7	165	104	7	5,2
27	6,8	84	4,9	185	114	8	6,0
28	7,6	64	4,1	205	124	9	6,8
29	8,4	44	3,3	225	134	10	7,6
30	9,2	24	2,5	245	144	11	8,4
31	2,4	214	9,3	55	154	2	1,6
32	3,2	194	8,5	75	164	3	2,4
33	4,0	174	7,7	95	174	4	3,2
34	4,8	154	6,9	115	184	5	4,0
35	5,6	134	6,1	135	194	6	4,8
36	6,4	114	5,3	155	204	7	5,6
37	7,2	94	4,5	175	214	8	6,4
38	8,0	74	3,7	195	224	9	7,2
39	8,8	54	2,9	215	234	10	8,0
40	9,6	34	2,1	235	244	11	8,8
41	2,1	206	9,6	63	56	2	1,3
				1	1		

2.0 106 0.0