<u>Theorem</u> 3.3. Let E be a Grothendieck space. If $T = (T(t))_{t \ge 0}$ is a strongly continuous semigroup in E , then $T'' = (T(t)'')_{t \ge 0}$ is strongly continuous in E".

<u>Proof.</u> Suppose that (x_n') is a bounded sequence in E' and that $t_n \ge 0$ with $\lim_n t_n = 0$. Put $V_n = T(t_n) - Id$. Then $\lim_n V_n x_n' = 0$ and therefore $\lim_n \langle x, V_n' x_n' \rangle = 0$ for every $x \in E$. Hence $(V_n' x_n') \times V_n' x_n' = 0$ converges to zero. Since E is a Grothendieck space $(V_n' x_n') \times V_n' x_n' = 0$ converges weakly to zero. Now Lemma 3.2 implies that (T(t)) is strongly continuous.

Recall now that a Banach space E is said to have the <u>Dunford-Pettis</u> property if $\lim_{n \to \infty} \langle x_n, x_n' \rangle = 0$ whenever (x_n) in E and (x_n') in E' converge weakly to zero.

Theorem 3.4. Let E be a Banach space with the Dunford-Pettis property and let $T = (T(t))_{t \ge 0}$ be a one-parameter semigroup of operators on E . If $T'' = (T(t)'')_{t \ge 0}$ is strongly continuous in E', then T is uniformly continuous.

<u>Proof.</u> Suppose that T'' is a strongly continuous semigroup. Then Lemma 3.2 implies that T' and T are strongly continuous. Hence by the uniform boundedness principle, $\lim_{t\to 0} \| (T(t) - Id) \|$ is finite. By Lemma 3.1 it suffices to show that $\lim_{t\to 0} \| (T(t) - Id)^2 \| = 0$. Let $t_n \ge 0$ with $\lim_{t\to 0} \| (T(t) - Id)^2 \| = 0$. Let $t_n \ge 0$ with $\lim_{t\to 0} \| (T(t) - Id)^2 \| = 0$ be given. Then there exists a bounded sequence (x_n) in E and a bounded sequence (x_n') in E' such that $\| (T(t_n) - Id)^2 \| = \langle (T(t_n) - Id) x_n, (T(t_n) - Id) x_n' \rangle$. Since T' and T'' are strongly continuous, Lemma 3.2 implies that $((T(t_n) - Id)x_n)$ and $((T(t_n) - Id)^2 x_n')$ converge weakly to zero. Since E has the Dunford-Pettis property, $\lim_{t\to 0} \| (T(t_n) - Id)^2 \| = 0$. Consequently, $\lim_{t\to 0} \| (T(t) - Id)^2 \| = 0$.

An immediate consequence of Theorem 3.3 and Thoerem 3.4 is the following.

Theorem 3.5. Let E be a Grothendieck space with the Dunford-Pettis property. Then every strongly continuous semigroup of operators on E is uniformly continuous.