Sequence Models & Attention Mechanism

LATEST SUBMISSION GRADE

100%

1.

Question 1

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence xx.

1 / 1 point

(*)

False

 \circ

True

Correct

2.

Question 2

In beam search, if you increase the beam width BB, which of the following would you expect to be true? Check all that apply.

1 / 1 point

V

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x) P(y \mid x)$)

Correct

굣

Beam search will use up more memory.

Correct

Beam search will converge after fewer steps.

 $\overline{\mathbf{v}}$

Beam search will run more slowly.

Correct

3.

Question 3

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 / 1 point

0

False

(•)

True

Correct

4.

Question 4

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip xx to a text transcript yy. Your algorithm uses beam search to try to find the value of yy that maximizes $P(y \mid x)P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=y^*$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^* = y =$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09*10^{-7}P(y^{|x})=1.09*10^{-7}$$

$$P(y^* \mid x) = 7.21*10^-8P(y*\mid x) = 7.21*10-8$$

Would you expect increasing the beam width B to help correct this example?

0

No, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

0

Yes, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

 \bigcirc

Yes, because $P(y^* \mid x) \mid P(\mid x) \mid x) P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

③

No, because $P(y^* \mid x) \leq P(y^* \mid x) \leq P(y^* \mid x) \leq P(y^* \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

5.

Question 5

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x) > P(\hat{y} \mid x) > P(\hat{y} \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search algorithm.

1 / 1 point

0

False.

(•)

True.

Correct

6.

Question 6

Consider the attention model for machine translation.

Further, here is the formula for $\alpha = \alpha \cdot (t,t') \alpha \cdot (t,t')$.

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Which of the following statements about $\alpha = a \cosh \alpha$ are true? Check all that apply.

1 / 1 point

 $\overline{\mathbf{v}}$

We expect $\alpha^{<}(<t,t'>)a< t,t'>$ to be generally larger for values of $a^{<}(<t'>)a< t'>$ that are highly relevant to the value the network should output for $y^{<}(<t>)y< t>$. (Note the indices in the superscripts.)

Correct

We expect $\apha^{<}\{<t,t'>\}\alpha< t,t'>\$ to be generally larger for values of $a^{<}\{<t>\}\alpha< t>$ that are highly relevant to the value the network should output for $y^{<}\{<t'>\}y< t'>$. (Note the indices in the superscripts.)

✓

\sum $\{t'\} \alpha^{<}\{<t,t'>\} = 1\sum t'\alpha < t,t'>=1$ (Note the summation is over t't'.)

Correct

 $\sum_{t,t'} 1 \left(\int_{t'} alpha^{< t,t'} \right) = 1 \sum_{t'} t \alpha < t,t' > 1$ (Note the summation is over tt.)

7.

Question 7

The network learns where to "pay attention" by learning the values $e^{\{< t, t'>\}}e_{< t, t'>}$, which are computed using a small neural network:

We can't replace $s^{<t-1>} s_{<t-1>}$ with $s^{<t>} s_{<t>}$ as an input to this neural network. This is because $s^{<t>} s_{<t>}$ depends on $alpha^{<t}, t'> \alpha_{<t}$, which in turn depends on $e^{<t}, t'> e_{<t}$; so at the time we need to evaluate this network, we haven't computed $s^{<t>} s_{<t>}$ yet.

1 / 1 point

◉

True

 \bigcirc

False

Correct

8.

Question 8

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

1 / 1 point

0

The input sequence length $T_x T_x$ is small.

(•)

The input sequence length $T_x T_x$ is large.

Correct

9.

Question 9

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

1 / 1 point

Ċ

coookkbooooookkk
•
cookbook
0
cokbok
c
cook book
Correct
10. Question 10 In trigger word detection, $x^{<}\{< t>\}x<_t>$ is:
1 / 1 point
Whether someone has just finished saying the trigger word at time tt .
0
The tt-th input word, represented as either a one-hot vector or a word embedding.
0
Whether the trigger word is being said at time tt.
•
Features of the audio (such as spectrogram features) at time tt.
Correct