NATÜRLICHE SPRACHEN

Natürliche Sprachen legen ihre Struktur durch

- → die Regeln einer **Grammatik**

fest.

Allerdings müssen syntaktisch korrekte Sätze einer natürlichen Sprache keinen Sinn tragen:

- → Wiesbaden wohnt weiterhin weich
- → Der bissige Student jagt die verschlafene Mensa
- \Rightarrow syntakisch korrekte Sätze müssen keinen Sinn (\triangleq Semantik) tragen.

Wie kann man diese Beobachtungen in der Informatik ausnutzen?

FORMALE REGELN ZUR ERZEUGUNG EINER SPRACHE

Der Linguist Noam Chomsky hatte folgende Idee:

Korrekte Sätze einer (natürlichen) Sprache sollen durch ein (endliches System) von formalen Regeln erzeugt werden.

Bis heute ist diese Idee

- → in der Linguistik umstritten, aber
- → extrem bedeutsam in der Informatik.

Basis für z.B. alle Programmiersprachen / Compilerbau, Auszeichnungssprachen (SGML, XML, HTML, . . .).

Ähnlich sind die sogenannten **(Semi) Thue Systeme**, die heute z.B. in Spezialformen in der Computergraphik Bedeutung erlangt haben.

EINIGE GRUNDLEGENDE BEGRIFFE

Eine endliche Menge Σ heißt **Alphabet**. Die **Elemente** von Σ werden **Buchstaben** genannt. Eine Folge von Buchstaben nennt man **Wort** (über Σ). Eine beliebige Menge von Worten über Σ nennt man dann eine **(formale) Sprache**.

Beispiel (arithmetische Ausdrücke)

Sei $\Sigma = \{), (, +, -, *, /, x\}$ und EXPR die Menge aller korrekten arithmetischen Ausdrücke. Damit gilt

- $\rightarrow (x x) \in \mathsf{EXPR}$
- $\rightarrow ((x+x)*x)/x \in \mathsf{EXPR}$
- \rightarrow))(x-) * $x \notin \mathsf{EXPR}$

EXPR ist eine Menge von Worten über Σ , also kann man EXPR als **formale Sprache** (über $\{), (,+,-,*,/,x\}$) bezeichnen.

WEITERE BEISPIELE FÜR FORMALE SPRACHEN (II))

Beispiel (Wortmengen über $\{a, b\}$)

Sei $\Sigma = \{a,b\}$, dann sind die folgenden Mengen auch formale Sprachen über Σ :

- \rightarrow BRACKET = {ab, aabb, aaabbb, aaaabbb, ...}
- \rightarrow UODD = $\{a, aaa, aaaaa, aaaaaaaa, aaaaaaaaa, ...\}$
- $\Rightarrow \ \Sigma^* = \mathsf{ALL} = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, \ldots\}$

GRAMMATIKEN UND AUTOMATEN

(Formale) Sprachen enthalten meist unendlich viele Wörter

- → Wir brauchen endlich viele Erzeugungsregeln, um (algorithmisch) mit formalen Sprachen umgehen zu können. Die Rolle der Regeln übernehmen Grammatiken.
- → Weiterhin werden Erkenner benötigt, die entscheiden, ob ein Wort zu einer Sprache gehört. Die Rolle der Erkenner spielen die Automaten, die wir in dieser Vorlesung studieren.

TEIL EINER NATÜRLICHEN SPRACHE

Beispiel (Eine Grammatik)

Das Symbol "|" markiert eine Alternative, d.h. ${f A} o {f B} \mid {f C}$ ist Abkürzung für die beiden Regeln ${f A} o {f B}$ und ${f A} o {f C}$

TEIL EINER NATÜRLICHEN SPRACHE (II)

Durch Anwendung der Regeln und Ersetzung der fett gedruckten Wörter können z.B. die folgenden Sätze gebildet werden:

- → Der kleine bissige Student betritt die verschlafene Mensa
- → Der verschlafene Student jagt die kleine Katze

Mit **Syntaxbäumen** man man die **Ableitungschritte graphisch** verdeutlichen:

L-SYSTEME

- → Die L-Systeme wurden 1968 durch Aristid Lindenmeyer als mathematisches Modell des Pflanzenwachstums eingeführt.
- → L-Systeme werden heute in der Computergraphik benutzt, um natürlich wirkende Pflanzen schnell generieren zu können.
- → Hier betrachten wir die einfachste Klasse von L-Systemen, die so genannten DOL-System.
 - → Die Regeln sind deterministisch, d.h. für jeden Buchstaben gibt es genau eine Regel.
 - → Die Regeln sind kontextfrei, d.h. Ersetzungen h\u00e4ngen nicht von den umgebenden Buchstaben (\u00e5 Kontext) ab.

GRUNDLEGENDE BEGRIFFE UND EIGENSCHAFTEN

Definition (OL-Systeme)

- \rightarrow Mit Σ^* bezeichnen wir die Menge **aller Wörter** über Σ .
- \rightarrow Ein **OL-System** G ist ein Tripel $G = (\Sigma, \omega, P)$, wobei
 - $\rightarrow \Sigma$ das **Alphabet**, ω das **Axiom** und
 - $\rightarrow P \subset \Sigma \times \Sigma^*$ die Menge der **Produktionen**.
- \rightarrow Eine Produktion $(a, \chi) \in P$ wird als $a \rightarrow \chi$ geschrieben. Der Buchstabe a heißt Vorgänger und χ Nachfolger dieser Produktion.
- \rightarrow Für jeden Buchstaben $a \in \Sigma$ existiert eine Produktion $(a,\chi)\in P$.
- \rightarrow Ein 0L-System heißt **deterministisch**, wenn es für jeden Buchstaben $a \in \Sigma$ nur **genau eine** Produktion $(a, \chi) \in P$ gibt.

DOL-SYSTEME (II)

Definition

Deterministische OL-Systeme heißen **DOL**-Systeme.

Definition (Ableitung)

Sei $\mu = a_1 \dots a_m$ ein beliebiges Wort über Σ , dann kann $\nu =$ $\chi_1 \dots \chi_m$ aus μ abgeleitet werden, wenn

- **für alle** $i = 1, ..., m (a_i, \chi_i) \in P$ gilt, wobei
- man $\mu \vdash \nu$ schreibt.
- \rightarrow Ein Wort ν heißt von G generiert, wenn es in endlich vielen Schritten aus dem Axiom abgeleitet werden kann.

DOL-SYSTEME (III)

Geben wir aus **Bequemlichkeitsgründen** für einen Buchstaben a keine Produktion an, dann gilt **implizit** $(a, a) \in P$.

Achtung: Alle Regeln aus P werden **gleichzeitig** angewendet.

Wird ein Wort ν von $G=(\Sigma,\omega,P)$ generiert, dann können wir also

$$\omega \vdash \mu_1 \vdash \mu_2 \vdash \ldots \vdash \mu_n = \nu$$

schreiben (kurz: $\omega \stackrel{\star}{\vdash} \nu$).

EIN BEISPIEL

Sei $G = (\Sigma, \omega, P)$, wobei

$$\rightarrow \Sigma = \{a, b, c\},\$$

$$\rightarrow \omega = abc \text{ und}$$

$$\Rightarrow P = \{a \rightarrow aa, b \rightarrow bb, c \rightarrow cc\}.$$

Mit Hilfe dieses DOL-Systems können Worte der Form

$$a^{2^n}b^{2^n}c^{2^n}$$

für $n \ge 0$ abgeleitet werden.

Bemerkung: a^n ist die Abkürzung für $\underbrace{aaa \dots a}_{n-\mathrm{mal}}$

TURTLE-GRAPHIK

Sei δ ein beliebiger Winkel, dann werden die Buchstaben F, f, + und - wie folgt interpretiert:

F	Bewege den Stift um die Länge d und zeichne eine Linie
f	Bewege den Stift um die Länge d und zeichne keine Linie
_	drehe um δ Grad nach rechts
$\overline{}$	drehe um δ Grad nach links

Mit $\delta=90^\circ$ wird FFF - FF - F - F + F + FF - F - FFF in die Graphik

umgesetzt.

EIN BEISPIEL

Beispiel (Kochsche Schneeflocke)

Gegeben sei $G=(\Sigma,\omega,P)$ mit Alphabet $\Sigma=\{{\tt F},+,-\}$, Axiom $\omega={\tt F}$ und der Menge der Produktionen $\{{\tt F}\to{\tt F}+{\tt F}--{\tt F}+{\tt F}\}$ Wir legen $\delta=45^\circ$ fest. Für die Anzahl der Schritte n ergibt sich:

EIN ZWEITES BEISPIEL

Beispiel (Drachenkurve)

Sei $\delta=90^\circ$ und das L-System $G=(\{F_r,F_1,+,-\},F_1,\{F_1\to F_1+F_r+,F_r\to -F_1-F_r\})$, dann ergibt sich

Sowohl F_1 als auch F_r werden als "Bewege den Stift einen Schritt der Länge d und zeichne eine Linie" interpretiert.