512K x 32Bit CMOS Quad CAS DRAM with EDO

DESCRIPTION

This is a 524,288 x 32 bit Extended Data Out CMOS DRAM. Extended Data Out Mode offers high speed random access of memory cells within the same row, so called Hyper Page Mode. Power supply voltage (+5.0V or +3.3V), refresh cycle 1K, access time (-50 or -60), power consumption(Normal or Low power) and SOJ package type are optional features of this family. All of this family have $\overline{\text{CAS}}$ -before-RAS refresh, $\overline{\text{RAS}}$ -only refresh and Hidden refresh capabilities. Furthermore, Self-refresh operation is available in L-version. This 512Kx32 EDO Mode Quad $\overline{\text{CAS}}$ DRAM is fabricated using Samsung's advanced CMOS process to realize high band-width, low power consumption and high reliability.

FEATURES

Part Identification

- K4Q153211M-JC (5.0V, 1K Ref.)
- K4Q153211M-JL (5.0V, 1K Ref. LP)
- K4Q153212M-JC (3.3V, 1K Ref.)
- K4Q153212M-JL (3.3V, 1K Ref. LP)

Active Power Dissipation

Unit: mW

		•
Speed	3.3V	5.0V
-50	-	880
-60	540	825

- Extended Data Out Mode operation (Fast Page Mode with Extended Data Out)
- Four separate CAS pins provide for separate I/O operation
- CAS-before-RAS refresh capability
- RAS-only and Hidden refresh capability
- Self-refresh capability (L-ver only)
- TTL(5V)/LVTTL(3.3V) compatible inputs and outputs
- · Early Write or output enable controlled write
- · JEDEC Standard pinout
- Plastic SOJ 400mil x 1125mil package
- Single +5.0V±0.5V power supply(5V product)
- Single +3.3V±0.3V power supply(3.3V product)

FUNCTIONAL BLOCK DIAGRAM

Refresh Cycles

l	Part	Vcc	Refresh	Refresh period		
	NO.	NO. VCC		Normal	L-ver	
	153211M-J	5.0V	1K	16ms	128ms	
	153212M-J	3.3V	1K	16ms	128ms	

• Performance Range

Speed	trac	tcac	trc	thpc	Remark
-50	50ns	15ns	84ns	20ns	5.0V only
-60	60ns	17ns	104ns	27ns	5V/3.3V

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

Pin Function

Address Inputs

Row Address Strobe

Read/Write Input

Data Output Enable

Column Address Strobe

Data In/Out

Ground

Power(+5V)

Power(+3.3V)

No Connection

K4Q153211M, K4Q153212M

PIN CONFIGURATION (Top Views)

* Pin23 : must be	e NC or Vss
1 11120 : 111401 51	0 110 01 100

Pin Name

A0 - A9

DQ0 - 31

RAS

CAS0 - 3

 $\overline{\mathsf{W}}$

OE

Vss

Vcc

N.C

K4Q153211(2)M-J

J: 400mil 70pin SOJ

CMOS DRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Symbol		Units
raiametei	Symbol	3.3V	5V	Offics
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to +4.6	-1.0 to +7.0	V
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to +4.6	-1.0 to +7.0	V
Storage Temperature	Tstg	-55 to +150	-55 to +150	°C
Power Dissipation	PD	1	1	W
Short Circuit Output Current	los Address	50	50	mA

^{*} Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Voltage referenced to Vss, TA= 0 to 70°C)

Parameter	Symbol		3.3V			5V			
Parameter		Min	Тур	Max	Min	Тур	Max	Units	
Supply Voltage	Vcc	3.0	3.3	3.6	4.5	5.0	5.5	V	
Ground	Vss	0	0	0	0	0	0	V	
Input High Voltage	Vih	2.2	-	Vcc+0.3*1	2.4	-	Vcc+1.0*1	V	
Input Low Voltage	VIL	-0.3 ^{*2}	-	0.8	-1.0 ^{*2}	-	0.8	V	

^{*1 :} Vcc+1.3V/15ns(3.3V), Vcc+2.0V/15ns(5V), Pulse width is measured at Vcc

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions unless otherwise noted.)

Max	Parameter	Symbol	Min	Max	Units
	Input Leakage Current (Any input 0≤VIN≤VIN+0.3V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
3.3V	Output Leakage Current (Data out is disabled, 0V≤Vo∪т≤Vcc)	IO(L)	-5	5	uA
	Output High Voltage Level(IOH=-2mA)	Voн	2.4	-	V
	Output Low Voltage Level(IoL=2mA)	Vol	-	0.4	V
	Input Leakage Current (Any input 0≤VIN≤VIN+0.5V, all other input pins not under test=0 Volt)	lı(L)	-5	5	uA
5V	Output Leakage Current (Data out is disabled, 0V≤Vo∪т≤Vcc)	IO(L)	-5	5	uA
	Output High Voltage Level(Iон=-5mA)	Voн	2.4	-	V
	Output Low Voltage Level(IoL=4.2mA)	Vol	-	0.4	V

^{*2: -1.3}V/15ns(3.3V), -2.0V/20ns(5V), Pulse width is measured at Vss

CMOS DRAM

DC AND OPERATING CHARACTERISTICS (Continued)

Comple ed	Dawer	Cunnel	М	ax	Heite
Symbol	Power	Speed -	K4Q153212M-J	K4Q153211M-J	Units
ICC1	Don't care	-50 -60	- 150	160 150	mA mA
ICC2	Normal L-ver	Don't care	- 1	2 1	mA mA
ICC3	Don't care	-50 -60	- 150	160 150	mA mA
ICC4	Don't care	-50 -60	- 100	110 100	mA mA
ICC5	Normal L-ver	Don't care	500 300	1000 500	uA uA
ICC6	Don't care	-50 -60	- 150	160 150	mA mA
ICC7	L-ver	Don't care	300	500	uA
Iccs	L-ver	Don't care	200	300	uA

Icc1*: Operating Current (RAS and CAS cycling @trc=min.)

ICC2 : Standby Current ($\overline{RAS} = \overline{CAS} = \overline{W} = VIH$)

Icc3*: RAS-only Refresh Current (CAS = VIH, RAS, Address cycling @trc=min.)

Icc4*: Hyper Page Mode Current (RAS = VIL, CAS, Address cycling @thpc=min.)

Iccs : Standby Current ($\overline{RAS} = \overline{CAS} = \overline{W} = Vcc-0.2V$)

Icc6*: CAS-Before-RAS Refresh Current (RAS, CAS cycling @trc=min.)

ICC7 : Battery back-up current, Average power supply current, Battery back-up mode

Input high voltage(VIH) = Vcc-0.2V, Input low voltage(VIL) = 0.2V, \overline{CAS} = 0.2V,

Din = Don't care, tRC = 125us(1K/L-ver)

tras = trasmin~300ns

Iccs: Self Refresh Current

 $\overline{RAS} = \overline{CAS}0 \sim 3 = VIL$, $\overline{W} = \overline{OE} = A0 \sim A9 = VCC - 0.2V$ or 0.2V,

DQ0 ~ DQ31 = Vcc-0.2V, 0.2V or Open

*Note: Icc1, Icc3, Icc4 and Icc6 are dependent on output loading and cycle rates. Specified values are obtained with the output open. Icc is specified as an average current. In Icc1, Icc3 and Icc6, address can be changed maximum once while RAS=VIL. In Icc4, address can be changed maximum once within one Hyper page mode cycle time, tHPC.

CMOS DRAM

CAPACITANCE (TA=25°C, VCC=5V or 3.3V, f=1MHz)

Parameter	Symbol	Min	Max	Units
Input capacitance [A0 ~ A9]	CIN1	-	5	pF
Input capacitance [RAS, CASx, W, OE]	CIN2	-	7	pF
Output capacitance [DQ0 - DQ31]	CDQ	-	7	pF

AC CHARACTERISTICS (0°C≤TA≤70°C, See note 1,2)

Test condition (5V device) : $Vcc=5.0V\pm0.5V$, Vih/Vil=2.4/0.8V, Voh/Vol=2.0/0.8V Test condition (3.3V device) : $Vcc=3.3V\pm0.3V$, Vih/Vil=2.2/0.8V, Voh/Vol=2.0/0.8V

Parameter	Symbol	-5	i0*1	-	60	Units	Notes
Farameter	Symbol	Min	Max	Min	Max	Units	Notes
Random read or write cycle time	trc	84		104		ns	
Read-modify-write cycle time	trwc	115		140		ns	
Access time from RAS	trac		50		60	ns	3,4,10
Access time from CAS	tcac		15		17	ns	3,4,5,18
Access time from column address	taa		25		30	ns	3,10
CAS to output in Low-Z	tclz	3		3		ns	3,18
Output buffer turn-off delay from CAS	tcez	3	13	3	15	ns	6,11,18
OE to output in Low-Z	tolz	3		3		ns	3
Transition time (rise and fall)	tτ	2	50	2	50	ns	2
RAS precharge time	trp	30		40		ns	
RAS pulse width	tras	50	10K	60	10K	ns	
RAS hold time	trsh	13		17		ns	14
CAS hold time	tсsн	40		48		ns	17
CAS pulse width	tcas	8	10K	12	10K	ns	23
RAS to CAS delay time	trcd	20	35	20	43	ns	4,16
RAS to column address delay time	trad	15	25	15	30	ns	10
CAS to RAS precharge time	tcrp	5		5		ns	15
Row address set-up time	tasr	0		0		ns	
Row address hold time	trah	10		10		ns	
Column address set-up time	tasc	0		0		ns	16
Column address hold time	t CAH	8		10		ns	16
Column address to RAS lead time	tral	25		30		ns	
Read command set-up time	trcs	0		0		ns	
Read command hold time referenced to $\overline{\text{CAS}}$	trch	0		0		ns	8,15
Read command hold time referenced to RAS	trrh	0		0		ns	8
Write command hold time	twch	10		10		ns	14
Write command pulse width	twp	10		10		ns	
Write command to RAS lead time	trwL	13		15		ns	
Write command to CAS lead time	tcwL	8		10		ns	17

Note) *1 : 5V only

CMOS DRAM

AC CHARACTERISTICS (Continued)

Parameter	Symbol	-5	0 ^{*1}	-(60	Units	Notes
Farameter	Symbol	Min	Max	Min	Max	Ullits	
Data set-up time	tos	0		0		ns	9
Data hold time	tон	8		10		ns	9
Refresh period (1K, Normal)	tref		16		16	ms	
Refresh period (L-ver)	tref		128		128	ms	
Write command set-up time	twcs	0		0		ns	7,16
CAS to W delay time	tcwd	32		36		ns	7,14
RAS to W delay time	trwd	67		79		ns	7
Column address W delay time	tawd	42		49		ns	7
CAS precharge to W delay time	tcpwd	47		54		ns	7
CAS set-up time (CAS -before-RAS refresh)	tcsr	5		5		ns	16
CAS hold time (CAS -before-RAS refresh)	tchr	10		10		ns	15
RAS to CAS precharge time	trpc	5		5		ns	16
Access time from CAS precharge	t CPA		28		35	ns	3,15
Hyper Page mode cycle time	tHPC	20		27		ns	12,19
Hyper Page read-modify-write cycle time	thprwc	47		56		ns	12,19
CAS precharge time (Hyper Page cycle)	tcp	7		7		ns	20
RAS pulse width (Hyper Page cycle)	trasp	50	200K	60	200K	ns	
RAS hold time from CAS precharge	trhcp	30		35		ns	
OE access time	toea		13		15	ns	21
OE to data delay	toed	13		15		ns	22
Output buffer turn off delay time from OE	toez	3	13	3	15	ns	6
OE command hold time	toeh	13		15		ns	
Output data hold time	tрон	5		5		ns	
Output buffer turn off delay from RAS	trez	3	13	3	15	ns	6,11
Output buffer turn off delay from W	twez	3	13	3	15	ns	6
W to data delay	twed	15		15		ns	
OE to CAS hold time	tосн	5		5		ns	
CAS hold time to OE	tсно	5		5		ns	
OE precharge time	toep	5		5		ns	
W pulse width (Hyper Page Cycle)	twpe	5		5		ns	
RAS pulse width (C-B-R self refresh)	trass	100		100		us	25,26,27
RAS precharge time (C-B-R self refresh)	trps	90		110		ns	25,26,27
CAS hold time (C-B-R self refresh)	tchs	-50		-50		ns	25,26,27
Hold time CAS low to CAS high	tclch	5		5		ns	13,24

Note) *1 : 5V only

CMOS DRAM

NOTES

- 1. An initial pause of 200us is required after power-up followed by any 8 RAS-only refresh or CAS-before-RAS refresh cycles before proper device operation is achieved.
- 2. VIH(min) and VIL(max) are reference levels for measuring timing of input signals.

 Transition times are measured between VIH(min) and VIL(max) and are assumed to be 2ns for all inputs.
- 3. Measured with a load equivalent to 1 TTL load and 50pF.
- 4. Operation within the tRCD(max) limit insures that tRAC(max) can be met. tRCD(max) is specified as a reference point only.

 If tRCD is greater than the specified tRCD(max) limit, then access time is controlled exclusively by tCAC.
- 5. Assumes that tRCD≥tRCD(max).
- 6. This parameter defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 7. twcs, trwd, tcwd, tawd and tcpwd are non restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs\geqtextwcs(min), the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If tcwd\geqtextcwd(min), trwd\geqtextracetrical tcwd(min), trwd\geqtextracetrical tcycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 8. Either trch or trrh must be satisfied for a read cycle.
- 9. These parameters are referenced to the first $\overline{\sf CAS}$ falling edge in early write cycles and to $\overline{\sf W}$ falling edge in $\overline{\sf OE}$ controlled write cycle and read-modify-write cycles.
- 10. Operation within the trad(max) limit insures that trac(max) can be met. trad(max) is specified as a reference point only.

 If trad is greater than the specified trad(max) limit, then access time is controlled by trad.
- 11. If RAS goes high before CAS high going, the open circuit condition of the output is achieved by CAS high going.

 If CAS goes high before RAS high going, the open circuit condition of the output is achieved by RAS high going.
- 12. tasc≥6ns, Assume tT = 2.0ns.
- 13. In order to hold the address latched by the first CAS going low, the parameter tclch must be met.
- 14. The last $\overline{CAS}x$ edge to go low.
- 15. The last $\overline{CAS}x$ edge to go high.
- 16. The first $\overline{CAS}x$ edge to go low.
- 17. The first $\overline{CAS}x$ edge to go high.
- 18. Output parameter is refrenced to corresponding CASx input.
- 19. The last rising CASx edge to next cycle's last rising CASx edge.
- 20. The last rising CASx edge to first falling CASx edge.
- 21. The first DQx controlled by the first CASx to go low.
- 22. The last DQx controlled by the last $\overline{CAS}x$ to go high.
- 23. Each CASx must meet minimum pulse width.
- 24. The last falling $\overline{\text{CAS}}x$ edge to the first rising $\overline{\text{CAS}}x$ edge.
- 25. If tRASS≥100us, then RAS precharge time must use tRPs instead of tRP.
- 26. For RAS-only refresh and burst CAS-before-RAS refresh mode, 1024(1K) cycles of burst refresh must be executed within 16ms before and after self refresh, in order to meet refresh specification.
- 27. For distributed CAS-before-RAS with 15.6us interval, CAS-before-RAS refresh should be executed with in 15.6us immediately before and after self refresh in order to meet refresh specification.

2 WORDS READ CYCLE

BYTE WIDE READ CYCLE

2 WORDS WRITE CYCLE (EARLY WRITE)

BYTE WIDE WRITE CYCLE (EARLY WRITE)

2 WORDS WRITE CYCLE (OE CONTROLLED WRITE)

2 WORDS READ - MODIFY - WRITE CYCLE

HYPER PAGE MODE READ CYCLE

HYPER PAGE MODE WRITE CYCLE (EARLY WRITE)

2 WORDS HYPER PAGE READ - MODIFY - WRITE CYCLE

RAS - ONLY REFRESH CYCLE

NOTE : \overline{W} , \overline{OE} , DIN = Don't care

DOUT = OPEN

CAS - BEFORE - RAS REFRESH CYCLE

NOTE: \overline{W} , \overline{OE} , A = Don't care

HIDDEN REFRESH CYCLE (READ)

HIDDEN REFRESH CYCLE (WRITE)

CAS - BEFORE - RAS SELF REFRESH CYCLE

NOTE : \overline{OE} , A = Don't care

Don't care

Undefined

PACKAGE DIMENSIONS

Units: Inches (millimeters)

