CS 425 MP2 Report

GA10 - Sunveg Nalwar (snalwar2) and Sudarshan Shinde (sshinde5)

Design:

We implement a full-membership protocol with two variants that share a common SuspicionManager. Gossip sends periodic UPDATE_BATCH heartbeats to k random peers and, with suspicion enabled, promotes ALIVE->SUSPECT after Tfail of silence and SUSPECT->DEAD after Tcleanup, disseminating updates via gossip and piggyback. PingAck actively probes one peer per period (PING/ACK) and piggybacks membership updates; with suspicion on, missed ACKs create SUSPECT and later DEAD; with suspicion off, we use per-target no-ACK timers to mark DEAD. Joins disseminate via an introducer JOIN_ACK snapshot plus a one-shot push; leaves are explicit LEFT with higher incarnation and immediate fanout. To prevent cold-start storms when turning suspicion on, we initialize last-heard for unseen peers and apply a brief grace window. DEAD entries are Garbage collected after a timeout. Bandwidth is minimized by compact protobuf batches and piggyback in PingAck. We tune Tfail/Tcleanup and tick periods to satisfy the 3s/6s completeness bound while keeping background bytes/sec low.

Protocol period calculation:

Settings we use in experiments: period=300 ms (PING and gossip tick), Tfail=1 s, Tcleanup=1 s, FanoutK=3, GC TTL=5 s, suspicion grace=2 s only at switch-time.

<u>PingAck+Suspicion</u>: A failure is detected when a probed node misses an ACK and remains silent for Tcleanup. Worst-case time to first SUSPECT is \leq one probe cycle to pick the failed node (\leq period) plus up to Tfail of not hearing (in practice, we probe before Tfail, but bound with period+Tfail), and promotion to DEAD after Tcleanup. So first confirmed failure (DEAD) \leq period + Tfail + Tcleanup \approx 0.3 + 1 + 1 = 2.3 s. This meets the 3 s bound.

Gossip+Suspicion: Detection is silence-based. First SUSPECT ≤ Tfail (since we check every period), then DEAD after Tcleanup. So first confirmed failure (DEAD) ≤ Tfail + Tcleanup ≈ 2 s. Dissemination bound: With FanoutK=1 (or piggyback-only in ping), worst-case spread is O(N) periods in adversarial order. Using N=10 and period=0.3 s gives ≤ 3 s to touch all nodes once. In practice we have both piggyback and (optionally) one-shot fanout on joins/DEAD, so observed convergence is typically ≤ 2–3 s. Overall worst-case from failure to all tables updated: ≤ (first DEAD) + (spread) ≈ 2.3 + 3.0 ≈ 5.3 s (ping+suspect), and ≈ 2.0 + 3.0 ≈ 5.0 s (gossip+suspect), satisfying the 6 s completeness requirement. If you run FanoutK=2–3, convergence is faster and less bursty.

False positives introduction and calculation:

We drop any inbound UDP (including UPDATE_BATCH and ACK) before the handler, simulating loss/delay as required. This is done via a command on CLI - drop [0,1] A false positive is any SUSPECT that is later refuted locally without becoming DEAD. Our code logs "SUSPECT <node> ..." and "REFUTE <node> (heard again)"; we count a FP when a SUSPECT is followed by REFUTE for the same node and incarnation without an intervening DEAD. Rate reported as FPs/minute over a run (recommended 5–10 minutes per point)

2d) PingAck benefits more. Suspicion converts a missed ACK into immediate SUSPECT (then DEAD after Tcleanup), avoiding waiting for long silence on a peer that might otherwise not be probed again quickly. Gossip already checks silence periodically for every peer; suspicion mainly shortens the confirmation window, so the marginal gain is smaller than in PingAck.

2e) Gossip—Sus generally detects and converges faster than Ping—Sus because periodic heartbeats/gossip give consistent anti-entropy to all peers, while Ping—Sus relies on piggyback and chance probe paths, making it more sensitive to loss and target selection.

