Matrix Vector Multiplication With Block-Checkerboard Partitioning

- n x n matrix A mapped onto a √p x √p mesh of p
 n² processors
- matrix A decomposed onto square blocks of size $(n/\sqrt{p}) \times (n/\sqrt{p})$
- each block assigned to an individual processor
 - $-\alpha = 0, 1, \dots \sqrt{p-1}$ index rows
 - $-\beta = 0, 1, \dots, \sqrt{p-1}$ index columns
- $A_{\alpha\beta} = (\alpha, \beta)$ is a subblock of A of size $(n/\sqrt{p})X$ (n/\sqrt{p})

C Algorithm

- X and Y are also conceptually divided into pieces, each of size;
 - $-X_{\beta}$: β^{th} slice of the X vector
 - $-Y_{\alpha}$: α^{th} slice of the Y vector

 \overline{Y}

CS 426

Cevdet Aykanat Bilkent

- \overline{Y}_{α} and \overline{X}_{β} subvectors are also divided into pieces, each of size n / p
 - $-\overline{Y}_{\alpha\beta}$: β^{th} subvector of the \overline{Y}_{α} subvector for $\beta=0,1,\ldots,\sqrt{p}-1$
 - $-\overline{X}_{\beta\alpha}$: α^{th} subvector of the \overline{X}_{β} subvector for $\alpha=0,1,\ldots\sqrt{p}$ –1
- processor $\mathsf{P}_{\alpha\beta}$ initially stores $A_{\alpha\beta}$ and $\overline{X}_{\beta\alpha}$
- processor $P_{\alpha\beta}$ must know $\overline{Y}_{\beta\alpha}$ at the end of the operation

Communication Primitives

FOLD operation (Multinode Accumulation)

- each processor q has a local vector \overline{X}_q of size n
- addition $\overline{S} = \sum_{q=0}^{p-1} \overline{X}_q$ of these P vectors so that:
 - processor P_i gets only the q-th slice of S_q of the resultant vector \mathbf{S}

$$-\overline{S}_{i} = \left[S_{(n/p)i}, S_{(n/p)i+1}, ..., S_{(n/p)(i-1)-1}\right]^{+}$$

Communication Primitives

• processor $P_{\alpha\beta}$ must know \overline{X}_{β} to compute its contribution to \overline{Y}_{α}

$$\begin{split} -\text{ i.e., } & \bar{Y}_{\alpha} \leftarrow \sum_{\beta=0}^{\sqrt{p}-1} \bar{Y}_{\alpha}^{\beta} \\ & -\bar{Y}_{\alpha}^{\beta} = A_{\alpha\beta} \bar{X}_{\beta}^{\gamma} \text{ where } \bar{Y}_{\alpha}^{\beta} \text{ is a vector of size} \\ & n/\sqrt{p} \text{ thus, } \bar{Y}_{\alpha} = \sum_{\beta=0}^{\sqrt{p}-1} \bar{Y}_{\alpha}^{\beta} \end{split}$$

vector summation over all processors sharing row α

4-Phase Parallel Algorithm

- 1. Perform \sqrt{p} concurrent **AABC** operations among \sqrt{p} processors sharing each column
 - each processor $P_{\alpha\beta}$ on column β for $\alpha = 0, 1, ..., \sqrt{p} 1$

$$\overline{X}_{\beta} \leftarrow AABC(\overline{X}_{\beta\alpha})$$

2. Each processor $P_{\alpha\beta}$ computes: $\overline{Y}_{\alpha}^{\ \beta} \leftarrow A_{\alpha\beta} \overline{X}_{\beta}$

4-Phase Parallel Algorithm

- 3. Perform \sqrt{p} concurrent FOLD operations among \sqrt{p} processors sharing each row
 - fold on row α : $\bar{Y}_{\alpha} \leftarrow \sum_{\beta=0}^{\sqrt{p-1}} \bar{Y}_{\alpha}^{\ \beta}$ is computed such that
 - ightharpoonup each processor $P_{\alpha\beta}$ of row α gets $\overline{Y}_{\alpha\beta}$ at the end for $\beta = 0, 1, \ldots, \sqrt{p}-1$
- 4. transpose $\overline{Y}_{\alpha\beta}$'s with $\overline{Y}_{\beta\alpha}$'s
 - processor $P_{\alpha\beta}$: SENDS $Y_{\alpha\beta}$ to processor $P_{\beta\alpha}$ RECEIVES $\overline{Y}_{\beta\alpha}$ from processor $P_{\beta\alpha}$