Metode iterative pentru rezolvarea sistemelor de ecuații liniare: Jacobi, Gauss-Siedel, Suprarelaxare

Colaboratori: Andrei STAN, Bogdan Ţigănoaia

February 17, 2025

Cuprins

1	Obi	ective laborator	1				
2	Noț	Noțiuni teoretice					
	2.1	Metoda Jacobi	1				
	2.2	Metoda Gauss-Seidel	2				
	2.3	Metoda suprarelaxării	2				
3	Pro	bleme rezolvate	3				
	3.1	Problema 1	3				
	3.2	Problema 2	3				
	3.3	Problema 3	4				
	3.4	Problema 4	4				
4	Pro	bleme propuse	5				
	4.1	Problema 1	5				
	4.2	Problema 2	5				
	4.3	Problema 3	5				
	4 4	Problema 4	6				

1 Objective laborator

În urma parcurgerii acestui laborator, studentul va fi capabil să rezolve sisteme de ecuații liniare utilizând metode iterative.

2 Noțiuni teoretice

Metodele exacte de rezolvare a sistemelor de ecuații liniare, având complexitate $O(n^3)$, au aplicabilitate limitată la ordine de sisteme ce nu depășesc 1000. Pentru sisteme de dimensiuni mai mari se utilizează metode cu complexitate $O(n^2)$ într-un singur pas de iterație. Acestea utilizează relații de recurență, care prin aplicare repetată furnizează aproximații, cu precizie controlată, a soluției sistemului.

Metodele iterative transformă sistemul Ax = b în x = Gx + c. Pornindu-se cu o aproximație inițială $x^{(0)}$ a soluției, relația de recurență folosită are forma:

$$x^{(p+1)} = Gx^{(p)} + c$$

unde:

- $x^{(0)}, x^{(1)}, ..., x^{(p)}, ...$ sunt aproximările soluției;
- G reprezintă matricea de iterație;
- c reprezintă vectorul de iterație.

O metodă este convergentă dacă este stabilă și consistentă. Condiția necesară și suficientă de convergență este:

$$\rho(G) < 1$$

unde $\rho(G) = \max(|\lambda_1|, |\lambda_2|, ..., |\lambda_n|)$ reprezintă raza spectrală a matricei de iterație G și $\lambda_i, i = 1 : n$ reprezintă valorile proprii ale matricei.

Metodele iterative se bazează pe descompunerea matricei A sub forma A = N - P. Atunci sistemul devine:

$$(N-P)x = b$$
, adică $x = N^{-1}Px + N^{-1}b$.

Astfel, rezultă relația de recurență:

$$x^{(p+1)} = N^{-1}Px^{(p)} + N^{-1}b$$

de unde putem identifica $G = N^{-1}P$ și $c = N^{-1}b$.

Se partiționează matricea A punând în evidență o matrice diagonală D, o matrice strict triunghiular inferioară L și o matrice strict triunghiular superioară U:

$$A = D - L - U$$
.

2.1 Metoda Jacobi

În metoda Jacobi se aleg:

$$N = D$$

$$P = L + U$$

$$G_J = D^{-1}(L+U)$$

Soluţia sistemului este:

$$x_i^{(p+1)} = \frac{b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(p)}}{a_{ii}}$$

2.2 Metoda Gauss-Seidel

La această metodă se aleg:

$$N = D - L$$

$$P = U$$

$$G_{GS} = (D - L)^{-1}U$$

Soluția sistemului este:

$$x_i^{(p+1)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}}$$

Observații:

- 1. Dacă matricea sistemului este diagonal dominantă pe linii, metoda Gauss Seidel este convergentă. Reciproca nu este adevarată.
- 2. O matrice A este diagonal dominantă pe linii dacă și numai dacă are următoarea proprietate: pentru fiecare linie i, modulul elementului de pe diagonala principală, A(i,i) este strict mai mare decât suma modulelor elementelor de pe aceeași linie i.

2.3 Metoda suprarelaxării

Pentru găsirea unei descompuneri cât mai rapid convergente, se introduce parametrul de relaxare ω :

$$A = N - P = N - \omega N - P + \omega N = (1 - \omega)N - (P - \omega N) = N(\omega) - P(\omega)$$

de unde obţinem:

$$N(\omega) = (1 - \omega)N$$

$$P(\omega) = P - \omega N$$

$$G(\omega) = N^{-1}(\omega)P(\omega) = \frac{N^{-1}}{1-\omega}(P-\omega N) = \frac{N^{-1}P-\omega I_n}{1-\omega}$$

Condiția de stabilitate impune $\omega \in (0,2)$. În practică se face o altă alegere, astfel:

$$N(\omega) = \frac{1}{\omega}D - L$$
, $P(\omega) = (\frac{1}{\omega} - 1)D + U$, $G_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$

Soluția sistemului se poate scrie sub forma:

$$x_i^{(p+1)} = \omega \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(p+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(p)}}{a_{ii}} + (1 - \omega) x_i^{(p)}$$

Dacă se alege $\omega = 1 \Rightarrow$ metoda Gauss-Seidel.

3 Probleme rezolvate

3.1 Problema 1

Să se rezolve sistemul folosind metoda Gauss-Seidel:

$$\begin{cases} 7x_1 + 2x_2 - 4x_3 = 7 \\ 3x_1 + 6x_2 + 2x_3 = 15 \\ 2x_1 - 5x_2 + 8x_3 = 28 \end{cases}$$

Solutie:

Scriem formulele de recurență

$$\begin{cases} x_1^{(k+1)} &= -2/7x_2^{(k)} + 4/7x_3^{(k)} + 7/7 \\ x_2^{(k+1)} &= -3/6x_1^{(k)} - 2/6x_3^{(k)} + 15/6 \\ x_3^{(k+1)} &= -2/8x_1^{(k)} + 5/8x_2^{(k)} + 28/8 \end{cases}$$

Dacă alegem $x_1^{(0)}=x_2^{(0)}=x_3^{(0)}=0$ obținem următoarele rezultate:

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	0	0	0
1	1	2	4.5
2	3.00	-0.5	2.43
3	2.53	0.41	3.12
4	2.66	0.12	2.91
5	2.62	0.21	2.97

Soluţia exactă este: $x_1 = 2.63$, $x_2 = 0.19$ $x_3 = 2.96$.

3.2 Problema 2

Folosiţi metoda Jacobi pentru a aproxima soluţia sistemului:

$$\begin{cases} 10x_1 - 5x_2 + x_3 = 1 \\ x_1 + 4x_2 + 3x_3 = 4 \\ 4x_1 - 3x_2 - 9x_3 = 6 \end{cases}$$

Solutie:

Scriem formulele de recurență

$$\left\{ \begin{array}{llll} x_1^{(k+1)} & = & 5/10x_2^{(k)} & - & 1/10x_3^{(k)} & + & 1/10 \\ x_2^{(k+1)} & = & -1/4x_1^{(k)} & - & 3/4x_3^{(k)} & + & 4/4 \\ x_3^{(k+1)} & = & 4/9x_1^{(k)} & - & 3/9x_2^{(k)} & - & 6/9 \end{array} \right.$$

Alegând
$$x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0 \Rightarrow$$

Soluția exactă este: $x_1 = 0.84, x_2 = 1.34, x_3 = -0.73.$

3.3 Problema 3

Fie sistemul $Ax = b, A \in R^{2 \times 2}, x, b \in R^2, A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$. Matricea A nu este diagonal dominantă pe linii. În aceste condiții este convergentă metoda Gauss-Seidel?

Solutie:

Se determină matricea de iterație a sistemului pentru metoda Gauss-Seidel, G_{GS} .

$$A = D - L - U \Rightarrow \quad D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \quad L = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}, \quad U = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix}$$

Atunci:

$$G_{GS} = (D - L)^{-1}U = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 0 & \frac{1}{3} \end{bmatrix}.$$

$$\det(\lambda I - G_{GS}) = \begin{vmatrix} \lambda & 1 \\ 0 & \lambda - \frac{1}{3} \end{vmatrix} = 0 \Rightarrow \lambda(G_{GS}) = \{0, \frac{1}{3}\} \text{ si } \rho(G_{GS}) = \frac{1}{3} < 1.$$

⇒ metoda Gauss-Seidel este convergentă.

3.4 Problema 4

Să se implementeze o funcție OCTAVE care rezolvă un sistem de ecuații liniare folosind metoda iterativă Gauss-Seidel. Date de intrare: A - matricea sistemului; b - vectorul termenilor liberi; x0 - aproximația inițială a soluției; tol - precizia determinării soluției; maxiter - numărul maxim de iterații. Date de ieșire: x - soluția sistemului; succes - variabilă care indică convergența metodei.

Soluție:

```
function [x succes] = GaussSeidel(A, b, x0, tol, maxiter)
  [m n] = size(A);
  x = x0;
  succes = 0;

while maxiter > 0
  maxiter--;
  xp = zeros(1, n);

for i = 1 : m
  suma1 = 0;
  suma2 = 0;

for j = 1 : i - 1
```

```
suma1 += A(i, j)*xp(j);
endfor

for j = i + 1 : n
    suma1 += A(i, j)*x(j);
endfor

    xp(i) = (b(i)-suma1-suma2)/A(i, i);
endfor

    x = xp;
    if norm(xp-x, 2) < tol
        succes = 1;
        break;
endif
endwhile
endfunction</pre>
```

Date de intrare: Date de ieşire:
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, x0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, tol = 0.0001, maxiter = 100$$
 $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

4 Probleme propuse

4.1 Problema 1

Fie sistemul $Ax = b, A \in \mathbb{R}^{2\times 2}, b \in \mathbb{R}^2$, cu $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Determinați raza spectrală a matricei de iterație Jacobi. Stabiliți convergența metodei Jacobi.

4.2 Problema 2

Fie sistemul liniar:

$$\begin{cases} 2x + y + z = 4 \\ x + 2y + z = 4 \\ x + y + 2z = 4 \end{cases}$$

Stabiliţi:

- a) dacă matricea sistemului este diagonal dominantă pe linii;
- b) convergența metodei Jacobi;
- c) convergența metodei Gauss-Seidel.

În caz de convergență, calculați soluția iterativă după trei pași. Alegeți voi aproximația inițială.

4.3 Problema 3

Fie o matrice $A \in \mathbb{R}^{n \times n}$ tridiagonală ¹ şi sistemul de ecuații Ax = b, cu $b, x \in \mathbb{R}^n$. Scrieți o funcție OCTAVE care rezolvă sistemul de ecuații prin metoda iterativă Jacobi.

¹http://mathworld.wolfram.com/TridiagonalMatrix.html

Listing 1: Algoritmul Jacobi

4.4 Problema 4

Să se implementeze o funcție OCTAVE care rezolvă un sistem liniar de ecuații folosind metoda suprarelaxării.

```
function [x, flag] = sor(A, x, b, w, max_it, tol)

%    Metoda Suprarelaxarii

%    Functia rezolva sisteme liniare Ax=b folosind metoda suprarelaxarii

%    Input:

%    A - matricea sistemului

%    x - aproximarea intiala a sistemului

%    b - vectorul termenilor liberi

%    w - factorul de relaxare

%    max_it - numarul maxim de iteratii

%    tol - toleranta

% Output:

%    x - solutia sistemului

%    flag - 0 = a fost gasita o solutie / 1 = metoda nu converge pentru max_it
```

Listing 2: Suprarelaxare

Să se testeze funcția folosind diferite valori pentru ω .