Arquitetura e Organização de Computadores II

Topologias de rede

Prof. Nilton Luiz Queiroz Jr.

- Quando diversos dispositivos estão interconectados suas conexões, geralmente, não podem ser criadas entre links dedicados;
- Dessa maneira, as redes geralmente tem caminhos "compartilhados" entre diferentes pares de dispositivos;
- A maneira que esses caminhos s\u00e3o estruturados \u00e9 determinado pela estrutura da rede;
- Tal estrutura é comumente chamada de Topologia da rede;
- Existem diversas topologias propostas na literatura, porém usadas comercialmente a quantidade é por volta de dúzias;

- Podem ser de duas maneiras:
 - Switches centralizados;
 - Todos elementos ligados "diretamente" a um ponto de interconexão
 - Switches distribuídos;
 - Elementos organizados em diferentes pontos de conexão, onde tais pontos são interconectados (direta ou indiretamente);

- As topologias de switches centralizado são usadas quando a quantidade portas de switch é maior ou igual a quantidade de dispositivos;
 - Todos os dispositivos se comunicam com o dispositivo responsável por fazer switch, e ele repassa a informação para o destino;
- Em geral são implementadas como:
 - Crossbar;
 - Rede Omega;

Crossbar

- No esquema de crossbar os dispositivos, ou nós, são interligados diretamente entre si;
- A complexidade do switch aumenta quadraticamente;
 - Para conectar n nós precisa-se de n² switches de pontos de "cruzamento";

Redes de conexão multi estágio

- Redes de conexão multi estágio (MIN);
 - Uma topologia conhecida dentre as MINs é a rede Omega;
 - Redes omega usam a permutação de shuffle perfeito;
 - Para N nós redes MIN usam tem uma complexidade N log N;
 - As redes Omega precisam
 de N/2 log₂ N switches;

Redes de conexão multi estágio

- Redes de conexão multi estágio (MIN);
 - Redes MIN usam switches k x k;
 - O tamanho de k interfere na quantidade de switches usados na rede;
 - Exemplo de um switch 2x2

- Desse modo tanto a entrada A quanto a entrada B podem "sair" por qualquer uma das duas saídas;
- Em redes MIN kxk o custo de cada switch é proporcional a k²
- Porém existem N/k log_k N switches;

- Uma alternativa aos switches centralizados é distribuir os switches;
- Cada switch terá um ou mais dispositivos diretamente conectados;
- Cada um desses switches será um nó da rede;
- Algumas maneiras desses nós se conectarem são:
 - Conexão completa;
 - Conexão em anel;
 - Malha ou grade;
 - Toro ou toroide;
 - Hipercubo;

Conexão completa

- A conexão completa é o caso em que todos os nós são ligados aos demais de maneira direta;
 - Canal exclusivo de comunicação;
- Várias transações podem ser realizadas ao mesmo tempo;
- O número de links é de: n x (n-1) para uma rede com n nós;
- Tem alto custo;
- A maior distância entre dois nós é de 1;

Conexão completa

Conexão em anel

- Na conexão em anel os nós são conectados em formato de um anel;
 - Todos nós da rede são conectados ao nó seguinte;
- Permite diversas transmissões simultâneas:
 - O primeiro nó pode transmitir para o segundo, enquanto o segundo transmite para o terceiro, e assim por diante, até o último nó que pode receber transmissão do penúltimo e transmitir para o primeiro;
- O número de links é de n, em uma rede com n nós;
- A maior distância entre dois nós é de n/2;
- Tem baixo custo;

Conexão em anel

- A topologia de conexão completa é a mais custosa e também a mais eficiente;
- A topologia de anel é a mais barata e também a com pior desempenho;
- Topologias ideais devem ter um custo próximo da topologia em anel e desempenho próximo a topologia de conexão completa;

- Existem outras topologias que tem balanço entre custo e benefício;
 - Malha ou grade;
 - Toro ou toróide;
 - Hipercubo;
- Elas arranjam os nós em múltiplas dimensões com padrões regulares de interconexões entre os nós que podem ser descritos matematicamente;

Malha

- Em uma malha todos os nós em cada dimensão formam um array linear;
- Tenta reduzir a quantidade de saltos de um pacote se comparado com a topologia em anel;
- Nem todos os nós são conectados ao mesmo número de vizinhos;
 - Se torna interessante quando alguns nós tem menor capacidade de processamento, podendo assim serem colocados nas extremidades;
- O número de links não é aproximadamente n x 4 em uma rede com n nós;

A distância máxima entre dois nós é de (√n - 1) x 2;

Malha

Toro

- Em um toro todos os nós são conectados de maneira que formam anéis em todas dimensões;
 - Todos os nós são ligados a exatamente 4 vizinhos
- A quantidade de links em um esquema de toro com n nós é dado pela equação n x 4
 2
- A distância máxima entre dois nós é de √n

Topologia em Toro

Hipercubo

- Um hipercubo é uma malha com múltiplas dimensões com exatamente 2 nós em cada dimensão;
- Um hipercubo com dimensão d possui exatamente 2^d nós;
 - Um hipercubo com dimensão 0 é um único nó;
 - Um hipercubo com dimensão 1 é composto por dois nós conectados por um link;
 - Um hipercubo com dimensão d+1 consiste de dois hipercubos com dimensão D;
- A quantidade de links pode ser expressa de duas maneiras:

$$\frac{n \times \log_2 n}{2} \quad \text{ou} \quad \frac{2^d \times d}{2}$$

Onde n é a quantidade de nós, e d = log₂ n

A distância máxima entre dois nós é de d = log₂ n;

Hipercubo

Hipercubo com grau 3

Hipercubo

Hipercubo com grau 4

- Em topologias de rede, além do número de links, outros detalhes de implementação podem limitar como a topologia escala;
 - Pin-out disponível;
 - Bissecção de largura de banda;

Pin out disponível

- Pin out (ou pin count) é uma restrição local na largura de banda do chip;
- Em redes que integram núcleos de processadores e switches em um único chip, ou num módulo multichip, a largura de banda de pinos é usada para:
 - Interface com memória principal;
 - o Implementação de link dos nós;
- Podem reduzir o número de portas no switch ou o número de bits por linha;

- A bissecção da largura de banda se refere a densidade da interconexão que pode ser alcançada por uma dada tecnologia de implementação;
- Para uma dada topologia a bissecção de largura de banda é calculada da seguinte maneira:
 - O Divide-se a rede em dois grupos iguais de nós;
 - Soma-se a quantidade de links que cruzam a linha imaginária que divide;

Obs: a quantidade de links deve ser a menor possivel;

- Cada topologia tem uma bissecção de largura de banda;
 - Completamente conexa;
 - Bissecção = $n^2 / 4$, em uma rede com n nós;
 - o Anel:
 - Bissecção = 2;
 - o Malha:
 - Bissecção = √n, em uma rede com n nós;
 - o Toro:
 - Bissecção = $2x\sqrt{n}$, em uma rede com n nós;
 - Hipercubo:
 - Bissecção = n/2. em uma rede com n nós;

Referências

HENNESSY, John L.; PATTERSON, David A. Computer architecture: a quantitative approach. Elsevier, 2011.