16. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

- A. $a \in [-0.9, 1.6], b \in [-7, -3], \text{ and } c \in [1, 5]$
- B. $a \in [-1.9, -0.7], b \in [-7, -3], \text{ and } c \in [-11, -2]$
- C. $a \in [-0.9, 1.6], b \in [3, 7], \text{ and } c \in [1, 5]$
- D. $a \in [-1.9, -0.7], b \in [3, 7], \text{ and } c \in [-11, -2]$
- E. $a \in [-0.9, 1.6], \quad b \in [-7, -3], \text{ and } \quad c \in [4, 10]$
- 17. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$12x^2 - 13x - 2 = 0$$

- A. $x_1 \in [-0.6, -0.11]$ and $x_2 \in [0.87, 1.44]$
- B. $x_1 \in [-1.75, -1.63]$ and $x_2 \in [14.31, 15.58]$
- C. $x_1 \in [-1.52, -0.87]$ and $x_2 \in [0.06, 0.27]$
- D. $x_1 \in [-16.4, -15.14]$ and $x_2 \in [16.49, 16.87]$
- E. There are no Real solutions.
- 18. Graph the equation below.

$$f(x) = (x-2)^2 + 11$$

В.

C.

E. None of the above.

19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $x_1 \leq x_2$.

$$25x^2 - 60x + 36 = 0$$

A. $x_1 \in [1.07, 1.22]$ and $x_2 \in [1.03, 1.33]$

B. $x_1 \in [29.98, 30.04]$ and $x_2 \in [29.83, 30.98]$

C. $x_1 \in [0.19, 0.25]$ and $x_2 \in [5.28, 7.62]$

D. $x_1 \in [0.34, 0.59]$ and $x_2 \in [3.31, 4.17]$

E. $x_1 \in [0.57, 0.6]$ and $x_2 \in [1.27, 2.75]$

20. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

$$54x^2 + 33x - 10$$

A. $a \in [-6, 2], \quad b \in [-16, -8], \quad c \in [-0.28, 1.79], \text{ and } \quad d \in [39, 46]$

B. $a \in [3,7], b \in [-4,5], c \in [11.33,13.17], and <math>d \in [-2,9]$

C. $a \in [8, 18], b \in [-4, 5], c \in [5.92, 7.92], and <math>d \in [-2, 9]$

D. $a \in [23, 28], b \in [-4, 5], c \in [1.94, 2.21], and <math>d \in [-2, 9]$

E. None of the above.