# Discriminant Analysis

Classification with Statistical Foundations

MA2003B - Multivariate Methods in Data Science

Dr. Juliho Castillo

Tecnologico de Monterrey

2025-10-17

### The Classification Problem

**Scenario:** E-commerce company with thousands of customers

**Question:** Which segment does each customer belong to?

| <b>High-Value</b> | Loyal               | Occasional         |
|-------------------|---------------------|--------------------|
| Premium customers | Regular customers   | Infrequent buyers  |
| High spending     | Moderate spending   | Low engagement     |
| Max engagement    | Consistent activity | Need re-engagement |

## **Real-World Applications**

### **Business & Marketing**

- Customer segmentation
- Credit risk assessment
- Churn prediction

#### Healthcare

- Disease diagnosis
- Treatment prediction
- Medical imaging

### Manufacturing

- Quality control
- Defect classification
- Fault detection

### **Sports Analytics**

- Athlete classification
- Talent identification
- Performance assessment

### The Core Idea

### Discriminant Analysis finds discriminant functions

Linear or quadratic combinations of predictors that **best separate groups** 

Think of it as finding the "best viewing angle" to distinguish groups in multidimensional space

### **Mathematical Framework**

### Setup:

- g distinct groups or populations
- *p* predictor variables per observation
- Training data with known group memberships

### **Key Notation:**

- $x = (x_1, ..., x_p)^{\top}$  predictor vector
- $\pi_k$  prior probability of group k
- $\mu_k$  mean vector for group k
- $\Sigma_k$  covariance matrix for group k
- $f_k(x)$  probability density for group k

## **Bayes Theorem Foundation**

**Goal:** Classify observation with features x into one of g groups

### Bayes Theorem gives posterior probability:

$$P(G = k \mid \boldsymbol{x}) = \frac{f_k(\boldsymbol{x})\pi_k}{\sum_{j=1}^g f_j(\boldsymbol{x})\pi_j}$$

#### where:

- $\pi_k$  = prior probability of group k
- $f_k(x)$  = probability density of x in group k

### **Bayes Optimal Classification:**

$$k^* = \arg\max_k P(G = k \mid \boldsymbol{x}) = \arg\max_k f_k(\boldsymbol{x}) \pi_k$$

Denominator is same for all groups, so we can ignore it

### **Example: Credit Risk - Setup**

#### **Business Context:**

Bank evaluating loan application. Two possible outcomes:

- Group 0: Customer will **not default** (repay loan)
- Group 1: Customer will **default** (fail to repay)

### **Applicant Profile:**

- Annual income: 50,000 USD
- Debt-to-income ratio: 0.4 (40%)
- Credit score: 650

### **Historical Data (Prior Probabilities):**

•  $\pi_0 = 0.95$  (95% of past customers did not default)

•  $\pi_1 = 0.05$  (5% of past customers defaulted)

## **Example: Credit Risk - Likelihood**

### **Probability Densities:**

How likely is this profile in each group?

### No Default Group (k = 0):

$$f_0(x) = 0.0008$$

This profile is **uncommon** among non-defaulters (lower income, higher debt)

### Default Group (k = 1):

$$f_1(\mathbf{x}) = 0.0030$$

This profile is **more typical** among defaulters (3.75 times more likely)

## **Example: Credit Risk - Calculation**

### Step 1: Calculate numerators (prior times likelihood)

- No default:  $f_0(x) \times \pi_0 = 0.0008 \times 0.95 = 0.00076$
- Default:  $f_1(x) \times \pi_1 = 0.0030 \times 0.05 = 0.00015$

### **Step 2: Calculate denominator (sum of numerators)**

$$Total = 0.00076 + 0.00015 = 0.00091$$

### **Step 3: Calculate posterior probabilities**

- $P(\text{no default}|\boldsymbol{x}) = \frac{0.00076}{0.00091} = 0.835 \text{ (83.5\%)}$
- $P(\text{default}|\boldsymbol{x}) = \frac{0.00015}{0.00091} = 0.165 (16.5\%)$

## **Example: Credit Risk - Interpretation**

### **Key Insight:**

Even though this profile is **3.75x more common** among defaulters...

The **prior probability** (95% vs 5%) is so strong that we still classify as **no default** 

#### **Decision Rule:**

Classify as **no default** (83.5% > 16.5%)

### **Business Implications:**

- Approve loan, but consider higher interest rate
- Monitor account more closely
- May require additional collateral

• 16.5% risk is still significant for portfolio management

## From Bayes to Discriminant Analysis

### The Challenge:

We need to specify  $f_k(x)$  for each group

### The Assumption:

Assume each group follows **multivariate normal distribution**:

$$f_k(\boldsymbol{x}) = \frac{1}{(2\pi)^{p/2}} \frac{1}{|\boldsymbol{\Sigma}_k|^{1/2}} \exp \left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k)\right)$$

#### **Key Parameters:**

- $\mu_k$  = mean vector for group k
- $\Sigma_k$  = covariance matrix for group k

## Simplifying the Math

**Recall:** We want to maximize  $f_k(\boldsymbol{x})\pi_k$ 

**Trick:** Maximize  $\log(f_k(\boldsymbol{x})\pi_k)$  instead (same result, easier math)

### Taking the logarithm:

$$\log(f_k(\boldsymbol{x})\pi_k) = -\frac{p}{2}\log(2\pi) - \frac{1}{2}\log|\boldsymbol{\Sigma}_k|$$

$$-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu}_k)^{ op}oldsymbol{\Sigma}_k^{-1}(oldsymbol{x}-oldsymbol{\mu}_k) + \log(\pi_k)$$

Drop constant terms (same for all groups), define discriminant score  $\delta_k({m x})$ 

## Two Scenarios: LDA vs QDA

Scenario 1: Equal Covariances (LDA assumption)

If 
$$\Sigma_1 = \Sigma_2 = ... = \Sigma_g = \Sigma$$

Then  $\log |\mathbf{\Sigma}_k|$  is constant across groups

The quadratic term  $(m{x}-m{\mu}_k)^{ op}m{\Sigma}^{-1}(m{x}-m{\mu}_k)$  expands to terms linear in  $m{x}$ 

Result: Linear discriminant function

### Scenario 2: Different Covariances (QDA assumption)

Each group has  $\Sigma_k$ 

Keep all terms including  $\log \lvert \mathbf{\Sigma}_k 
vert$ 

Result: Quadratic discriminant function

## **Summary: Bayes to LDA/QDA**

### **The Complete Connection**

**Step 1:** Bayes optimal rule requires maximizing  $f_k(\boldsymbol{x})\pi_k$ 

**Step 2:** Assume multivariate normal:  $f_k(\boldsymbol{x}) \sim N(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ 

**Step 3:** Take logarithm for computational convenience

**Step 4:** Simplify based on covariance assumption:

- **Equal covariances** → LDA (linear boundaries)
- Different covariances → QDA (quadratic boundaries)

Both methods are **Bayesian classifiers** under normality assumption

## Linear Discriminant Analysis (LDA)

**Two Critical Assumptions:** 

### 1. Multivariate Normality

Each group follows multivariate normal distribution

### 2. Equal Covariances

$$\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \ldots = \boldsymbol{\Sigma}_a = \boldsymbol{\Sigma}$$

Result: Linear decision boundaries

### LDA: Deriving the Discriminant Scores

Start with log-likelihood, assume  $\Sigma_k = \Sigma$  for all k:

$$\log(f_k(\boldsymbol{x})\pi_k) = -\frac{1}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k)$$

### **Expand the quadratic term:**

$$(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) = \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{x} - 2 \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k$$

### Drop terms constant across groups:

Drop 
$$-\frac{1}{2}\log |\mathbf{\Sigma}|$$
 and  $\mathbf{x}^{ op}\mathbf{\Sigma}^{-1}\mathbf{x}$ 

#### **Define LDA discriminant score:**

$$\delta_k(\boldsymbol{x}) = \boldsymbol{x}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log(\pi_k)$$

This is **linear** in x

## Fisher's Approach

### Alternative (equivalent) formulation:

Maximize ratio of between-group to within-group variance

### For two groups:

maximize 
$$\frac{(\overline{y}_1 - \overline{y}_2)^2}{s_1^2 + s_2^2}$$

where  $y = \boldsymbol{a}^{\top} \boldsymbol{x}$ 

Solution:  $a \propto \mathbf{\Sigma}^{-1}(\mathbf{\mu}_1 - \mathbf{\mu}_2)$ 

## Quadratic Discriminant Analysis (QDA)

### Relaxes equal covariance assumption

Each group k has own covariance  $\Sigma_k$ 

### When to use QDA:

- Groups have different variability patterns
- Sufficient sample size
- Linear boundaries inadequate

**Result:** Quadratic (curved) decision boundaries

## QDA: Deriving the Discriminant Scores

### Now allow different $\Sigma_k$ for each group:

$$\log(f_k(\boldsymbol{x})\pi_k) = -\frac{1}{2}\log|\boldsymbol{\Sigma}_k| - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top}\boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k)$$

### **Key difference from LDA:**

Cannot drop  $\log |\Sigma_k|$  (varies by group)

Cannot drop  $oldsymbol{x}^{ op} oldsymbol{\Sigma}_k^{-1} oldsymbol{x}$  (different  $oldsymbol{\Sigma}_k$  for each group)

### **Define QDA discriminant score:**

$$\delta_k(\boldsymbol{x}) = -\frac{1}{2}\log\lvert\boldsymbol{\Sigma}_k\rvert - \frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\top}\boldsymbol{\Sigma}_k^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k) + \log(\pi_k)$$

This is  $\mathbf{quadratic}$  in  $\boldsymbol{x}$ , producing curved decision boundaries

## LDA vs QDA Trade-offs

| Criterion           | LDA     | QDA     |
|---------------------|---------|---------|
| Parameters          | Fewer   | More    |
| Sample size need    | Smaller | Larger  |
| Decision boundaries | Linear  | Curved  |
| Interpretability    | Simpler | Complex |
| Overfitting risk    | Lower   | Higher  |

Rule of thumb: Start with LDA, move to QDA if needed

## **Analysis Workflow**

#### **Step 1: Data Preparation**

- Feature selection (avoid multicollinearity)
- Standardization (equal scales)
- Stratified train-test split

### **Step 2: Assumption Checking**

- Multivariate normality (Q-Q plots, tests)
- Equal covariances (Box's M test)
- Multicollinearity (VIF)

### **Step 3: Model Fitting**

- Fit LDA and/or QDA
- Extract discriminant functions

## **Analysis Workflow (cont.)**

### **Step 4: Interpretation**

- Examine discriminant coefficients
- Identify key separating variables
- Calculate group means on functions

### **Step 5: Validation**

- Test set accuracy
- Confusion matrix
- Cross-validation
- ROC curves and AUC
- Visualize decision boundaries

## **Python Implementation**

```
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
# Prepare data
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test size=0.3, stratify=y, random state=42
# Standardize
scaler = StandardScaler()
X train scaled = scaler.fit_transform(X_train)
X test scaled = scaler.transform(X test)
# Fit IDA
```

```
lda = LinearDiscriminantAnalysis()
lda.fit(X_train_scaled, y_train)

# Predict
y_pred = lda.predict(X_test_scaled)
accuracy = lda.score(X_test_scaled, y_test)
```

## Marketing Example: Setup

#### **Business Problem:**

E-commerce with 1,200 customers, 3 segments for targeting

### **Three Segments:**

- High-Value (30%): Premium customers
- Loyal (40%): Regular customers
- Occasional (30%): Infrequent buyers

### **Eight Behavioral Metrics:**

Purchase frequency, order value, browsing time, cart abandonment, email open rate, loyalty points, support tickets, social engagement

## **Marketing Example: Results**

#### **Discriminant Functions:**

- LD1 (95.8%): Overall customer value
  - Drivers: frequency, loyalty points, order value
  - Separates High-Value from Occasional
- LD2 (4.2%): Order size patterns
  - Drivers: order value, browsing time

#### **Performance:**

- LDA: 99.9% accuracy
- QDA: 100.0% accuracy

**Recommendation:** Use LDA (simpler, equally effective)

### **Business Insights**

High-Value: High frequency, strong engagement, premium retention strategy

Loyal: Moderate metrics, upselling and cross-selling focus

Occasional: Low frequency, high abandonment, re-engagement campaigns

### **Applications:**

- Auto-classify new customers (2-3 months)
- Monitor segment migration
- Optimize marketing ROI
- Personalize campaigns

## **Advanced Topics**

#### **Variable Selection:**

- Stepwise methods (forward/backward)
- Regularized DA (RDA)
- Penalized LDA

#### **Imbalanced Classes:**

- Adjust prior probabilities
- Oversampling (SMOTE)
- Undersampling

### **Diagnostics:**

- Wilks' Lambda
- Canonical correlation

## **Comparison with Other Methods**

| Method                | Best For                                    |
|-----------------------|---------------------------------------------|
| Logistic Regression   | Binary outcomes, no normality assumption    |
| SVM                   | Non-linear boundaries, no assumptions       |
| Random Forest         | Non-linear, robust to outliers              |
| Discriminant Analysis | Interpretability, understanding differences |

### **Common Pitfalls**

#### Mistakes to Avoid:

- Ignoring assumptions (normality, equal covariances)
- Not checking for outliers
- Overfitting (too many predictors)
- Evaluating only on training data
- Ignoring class imbalance
- Using correlated predictors

### **Best Practices**

### **Data Quality:**

- Handle missing data
- Screen for outliers
- Verify data integrity

#### **Model Selection:**

- Start with LDA baseline
- Use cross-validation
- Report multiple metrics

#### Validation:

- Independent test data
- Monitor over time
- Update as needed

## **Key Takeaways**

#### **Core Value:**

- Not just prediction, but **understanding** group differences
- Interpretable discriminant functions
- Probabilistic classification confidence

#### When to Use:

- Labeled training data
- Need interpretability
- Moderate dimensionality
- Approximate multivariate normality

**Decision: LDA vs QDA** 

Start simple (LDA), add complexity (QDA) only if justified

## **Hands-On Learning**

#### **Interactive Notebook:**

ch5\_guiding\_example/marketing\_discriminant\_analysis.ipynb

### Complete workflow:

- 1. Data generation (reproducible)
- 2. Exploratory analysis
- 3. LDA implementation
- 4. QDA comparison
- 5. Decision boundaries
- 6. Performance evaluation

### Experiment with different splits, features, priors!

# Questions?

"The goal is to turn data into information, and information into insight."

• Carly Fiorina

MA2003B - Multivariate Methods Dr. Juliho Castillo

