

Intro to. Spacecraft Thermal Analysis

Mark Campbell
Charlie Vaughan (Primex)

AA420 Space Design

Outline

Goals

- Maintain temperature range within payload and system component qualification limits.
- Minimize or manage temperature gradients

Strategies

- Employ passive (aka low cost) techniques to reach a target temperature.
- Use heaters or radiators to heat or cool as required by spacecraft operations.
- Selection of external α/ε ratio determines average spacecraft temperature.
- Payload heat rejection is most often the largest internal heat source. Heaters are often needed when systems are shut down.
- High ɛ surfaces to radiatively couple internal surfaces and conductance pathways are important parts of passive design

Passive	Semi-Passive	Active
Thermal Coatings Paints Metallized Tapes Anodize, Sputter or other coating technique	Heat Pipes	Heaters Resistance Isotope
MLI Blankets	Capillary Pumped Loops	Thermostats & Temp. Controllers
Radiating Surfaces	Louvered Radiators	Pumped Coolant Loops with Cold Plates and Radiators
Phase Change Devices	Evaporative Cryogenic Dewars	Cryocoolers

Thermal Analysis Flow Plan

- 1. Identify thermal environments and interfaces with other systems
- 2. Determine component/subsystem temperature requirements
- 3. Perform preliminary analysis
 - Simple finite difference models, hand calculations
 - Work with design and structural on key thermal interfaces
- 4. Component/subsystem development tests if needed
- 5. Perform detailed thermal modeling and analysis
- 6. Present design and analysis results to the customer
- 7. Perform qualification tests to demonstrate requirement compliance (and margin)
 - thermal-vacuum
 - thermal cycling
 - temperature withstand
- 8. Update detailed thermal model
- 9. Document analysis and test results

Spacecraft Thermal Analysis

- Spacecraft Heat Balance
 - Heat Gains
 - · Direct Solar, Earth IR, Earth Albedo, Internal Heat Dissipation
 - Heat Rejection
 - · Radiation is the only heat transfer modality
 - Absence of convection greatly changes performance relative to our earthbound experience
- Orbital Environment has a large influence on results
 - Low orbit: Periodic boundary conditions, large earth effect
 - High orbit: Nearly constant boundary conditions smaller earth effect
 - Knowledge of β angle needed for full thermal analysis
- Spacecraft Operational Modes influence thermal performance
 - Payload heat loads continuous or duty-cycle dependent
 - "Sun-safe" and other ACS modes

A Simple Example

- An aluminum plate in free space perpendicular to a vector to the center of the sun, at 1 AU
- 10 cm x 10 cm, thin
- · 3 K space in all other directions
- $\alpha = 0.379, \epsilon = 0.0346$
- $Q_s = 1400 \text{ W/m}^2$
- Calculate T_{AI}

W

Now Paint it White

- A white painted aluminum plate in free space perpendicular to a vector to the center of the sun, at 1 AU
- 10 cm x 10 cm, thin
- 3 K space in all other directions
- $\alpha = 0.225, \epsilon = 0.825$
- Q_s = 1400 W/m²
- Calculate T_{AI}
- Black: $\alpha = 0.95$, $\epsilon = 0.90$
- Gold: $\alpha = 0.299$, $\epsilon = 0.023$

Now Add the Earth

- An aluminum plate in space perpendicular to a vector to the center of the sun, at 1 AU. The other side is nadir pointing to a full visual field earth.
- 10 cm x 10 cm, thin
- 3 K space in the sun direction
- $\alpha = 0.379, \epsilon = 0.0346$
- Q_s = 1400 W/m²
- Q_e = 240 W/m² + 420 W/m² solar reflection (albedo 0.3)
- T_e = 300 K
- Calculate T_{AI}

UW

Homework

- An thin aluminum plate is bonded to 1 cm thick Teflon and orbits the earth with the white side down. 10 cm x 10 cm,
- Teflon α = 0.100, ϵ = 0.60, \mathbf{k} = 0.2 W/m-K
- Calculate T_{AI}, T_{Tef} for:
- 1. Full sun case shown before
- 2. Eclipse case on opposite side of the Earth
- 3. Sun angle of 45°

extra credit: flip the plate over

