Самостоятельная работа 2.

Инвариантная часть.

Задание 2.1: Визуализация примера для моделей и подходов к организации данных. Для каждой модели и подходу к организации данных предложить соответствующую предметную область и описать взаимоотношения ее объектов.

Иерархическая (англ. hierarchical), конец 1960-х и 1970-е

Предметная область: Образовательное учреждение.

Описание взаимоотношений объектов:

В иерархической модели данных объекты организованы по принципу иерархической структуры, где каждый элемент имеет ровно одного родителя, за исключением корневого элемента, и может иметь несколько дочерних элементов. Эти связи формируются однонаправленно, от родительского элемента к дочерним, образуя древовидную структуру данных. Таким образом, каждый элемент находится в определенном уровне иерархии и связан с другими элементами в соответствии с этой структурой.

Сетевая (англ. network), 1970-е

Предметная область: Система управления проектами.

Описание взаимоотношений объектов:

В сетевой модели данные организованы как набор узлов и ребер. Узлы могут представлять задачи, ресурсы, этапы проекта и прочие сущности. Ребра определяют связи между узлами, такие как зависимости между задачами, выделение ресурсов для выполнения задачи, иерархические отношения между этапами проекта и т.д. Такая модель позволяет гибко описывать сложные структуры проектов и их взаимосвязи.

Реляционная (англ. relational), 1970-е и начало 1980-х

Предметная область: Онлайн-магазин.

Описание взаимоотношений объектов:

В реляционной модели данные организованы в виде таблиц, где каждая таблица представляет собой отдельный тип данных или сущность. Например, таблицы могут содержать информацию о заказах, клиентах, продуктах и т.д. Связи между данными устанавливаются с помощью ключей: первичных и внешних. Например, таблица заказов может иметь внешний ключ, который ссылается на таблицу клиентов, чтобы указать, к какому клиенту относится данный заказ. Такая структура данных обеспечивает эффективное хранение, управление и извлечение информации о клиентах, заказах и других аспектах работы магазина.

Сущность-связь (англ. entity-relationship), 1970-е

Предметная область: Университетская информационная система.

Описание взаимоотношений объектов:

В модели сущность-связь данные представлены в виде сущностей (entity) и их взаимосвязей (relationship). Например, сущности могут включать студентов, преподавателей, курсы и т.д., а связи между ними определяют отношения, такие как учеба

на курсе, преподавание определенного преподавателя, принадлежность студента к определенной группе и т.д. Ключевые атрибуты (attributes) определяют свойства каждой сущности, такие как имя студента или название курса. Эта модель помогает четко определить структуру данных и их взаимосвязи, что облегчает проектирование базы данных для управления информацией в университетской системе.

Расширенная реляционная (англ. extended relational), 1980-е

Предметная область: Корпоративная система управления ресурсами предприятия (ERP).

Описание взаимоотношений объектов:

Расширенная реляционная модель включает дополнительные концепции, такие как наследование, полиморфизм и ассоциации, чтобы расширить возможности модели. Например, помимо базовых таблиц для сущностей, таких как сотрудники и отделы, могут быть введены таблицы для управления правами доступа, аудита и т.д. Также можно использовать наследование для создания более общих сущностей, а затем специализировать их для конкретных целей. Например, можно создать общую сущность "работник", а затем специализировать ее в "менеджер", "разработчик" и т.д. Эта модель позволяет более гибко описывать сложные предметные области и управлять разнообразными аспектами работы предприятия в ERP-системе.

Семантическая (англ. semantic), конец 1970-х и 1980-е

Предметная область: Информационная поисковая система.

Описание взаимоотношений объектов:

В семантической модели данных основное внимание уделяется смыслу данных. Данные организованы в виде онтологий, где определяются сущности и их отношения, а также свойства сущностей. Например, для информационной поисковой системы сущностями могут быть статьи, документы, термины, пользователи и т.д., а отношениями - связь между терминами и статьями, ассоциации между пользователями и документами. Кроме того, в семантической модели могут использоваться онтологии для описания семантических отношений между данными, таких как "является частью", "содержит", "относится к категории" и т.д. Это позволяет эффективно организовывать и обрабатывать данные в информационной системе, учитывая их семантическую природу и контекст использования.

Объектно-ориентированная (англ. object-oriented), конец 1980-х – начало 1990-х

Предметная область: Разработка программного обеспечения.

Описание взаимоотношений объектов:

В объектно-ориентированной модели данных основной упор делается на объекты и их взаимосвязи. Объекты представляют реальные или абстрактные сущности, а классы определяют типы этих объектов и их поведение. Например, для системы управления библиотекой объектами могут быть книги, читатели, библиотекари и т.д., а классами - Book, Reader, Librarian и т.д. Взаимосвязи между объектами определяются через методы и свойства классов. Например, у книги может быть метод "получить информацию о доступности", который возвращает информацию о том, доступна ли книга для выдачи, и свойство "название", содержащее название книги. Эта модель позволяет описывать

программные системы в терминах объектов и их взаимодействия, что облегчает проектирование, разработку и поддержку программного обеспечения.

Объектно-реляционная (англ. object-relational), конец 1980-х – начало 1990-х

Предметная область: Информационная система для управления персоналом.

Описание взаимоотношений объектов:

В объектно-реляционной модели данных объединяются преимущества объектно-ориентированной и реляционной моделей. Данные организованы в виде объектов, каждый из которых соответствует записи в базе данных, а классы определяют структуру этих объектов и их поведение. Например, для системы управления персоналом объектами могут быть сотрудники, отделы, проекты и т.д., а классами - Employee, Department, Project и т.д. В то же время, для хранения данных используются реляционные таблицы, а для установления связей между объектами - внешние ключи. Например, таблица сотрудников может содержать информацию о каждом сотруднике, а таблица проектов - информацию о каждом проекте, а затем через внешний ключ можно установить связь между сотрудниками и проектами, указывая, кто работает над каким проектом. Это позволяет объединить гибкость объектно-ориентированной модели с эффективностью хранения данных реляционной модели, обеспечивая удобство использования и эффективность работы с данными в информационной системе.

Вариативная часть.

Задание 2.2: Заполните таблицу "Преимущества и недостатки моделей данных"

No	Модель данных	Преимущества	Недостатки
1	Иерархическая	1. Простота структуры: Иерархическая	1. Жёсткость структуры: Одним из
		модель представляет данные в виде	основных недостатков
		древовидной структуры, что делает её	иерархической модели является её
		легкой для понимания и использования.	жёсткая структура. Изменение
			структуры данных может быть
		2. Быстрый доступ к данным: Запросы к	сложным и требует много времени
		данным в иерархической модели	и усилий.
		обычно быстрее из-за её упорядоченной	
		структуры. Это особенно полезно, когда	2. Ограничения в отношениях
		необходимо быстро получать данные из	между данными: Иерархическая
		больших наборов.	модель не всегда подходит для
			моделирования сложных
		3. Эффективность при хранении	отношений между данными, так как
		древовидных данных: Иерархическая	она ориентирована на
		модель хорошо подходит для хранения	иерархические связи.
		данных, которые естественным образом	
		представляются в виде иерархии, таких	3. Дублирование данных:
		как организационные структуры или	Повторяющиеся данные могут стать
		файловые системы.	проблемой в иерархической модели,
			особенно если один и тот же
			элемент данных используется в
		177	нескольких ветвях иерархии.
2	Сетевая	1. Гибкость: Сетевая модель позволяет	1. Сложность запросов: Поскольку
		описывать сложные отношения между	данные в сетевой модели
		данными, такие как множественные	организованы в виде сложной сети
		связи между записями, что делает её	связей, запросы к этим данным
		более гибкой по сравнению с	могут быть сложными и требовать
		иерархической моделью.	глубокого понимания структуры
		2. Эффективность при обработке связей:	данных.
		Эта модель хорошо подходит для	2. Зависимость от структуры:
		приложений, где связи между данными	Изменение структуры данных
		играют важную роль, таких как	может потребовать изменения
		социальные сети или сети поставщиков	множества запросов и приложений,
		и потребителей.	использующих эти данные, что
		in norpeonresion.	может привести к сложностям в
		3. Относительная простота добавления	управлении и поддержке.
		новых связей: Добавление новых типов)Isystem a method physics.
		связей или расширение существующих	3. Возможность появления
		связей может быть сравнительно	циклических зависимостей: Сетевая
		простым в сетевой модели без	модель может привести к
		необходимости изменения всей	появлению циклических
		структуры данных.	зависимостей между данными, что
			может усложнить обработку и
			анализ данных.
3	Реляционная	1. Простота использования:	1. Сложность моделирования
	•	Реляционная модель представляет	некоторых типов данных: Для
		1 , 1 , 1 , 1 , 1 , 1	I 1 P7

данные в виде таблиц, что делает её легкой для понимания и использования как для разработчиков, так и для конечных пользователей.

- 2. Гибкость структуры: Таблицы в реляционной модели могут быть легко изменены, добавлены или удалены без больших сложностей. Это облегчает адаптацию модели к изменяющимся потребностям бизнеса.
- 3. Целостность данных: Реляционная модель предоставляет механизмы для обеспечения целостности данных, таких как ограничения, индексы и транзакции, что помогает поддерживать точность и надёжность данных.
- 4. Мощные языки запросов: SQL (Structured Query Language) является стандартным языком для работы с данными в реляционной модели, предоставляя широкий спектр возможностей для выполнения запросов и анализа данных.
- 5. Поддержка множественных пользователей: Реляционные СУБД обычно обладают хорошей поддержкой многопользовательского доступа, что позволяет нескольким пользователям одновременно работать с данными без конфликтов.

- некоторых типов данных, таких как иерархические или графовые структуры, реляционная модель может быть неэффективной или неудобной в использовании.
- 2. Избыточность данных: В реляционной модели иногда происходит дублирование данных между таблицами, что может привести к избыточности и усложнению поддержки целостности данных.
- 3. Производительность при сложных запросах: Некоторые сложные запросы в реляционной модели могут быть медленными изза необходимости объединения большого количества таблиц или использования сложных операций.
- 4. Сложность обновления больших объёмов данных: При обновлении больших объёмов данных в реляционной модели может потребоваться значительное время из-за необходимости выполнения множества операций.

- 4 Сущность-связь
- 1. Простота визуализации: Модель сущность-связь позволяет легко визуализировать структуру данных с помощью сущностей (таблиц) и их связей, что упрощает понимание модели как разработчикам, так и конечным пользователям.
- 2. Гибкость в описании отношений: Эта модель позволяет описывать сложные отношения между различными сущностями, включая один к одному, один ко многим и многие ко многим, что делает её эффективным инструментом для моделирования реальных бизнес-сценариев.
- 1. Не всегда эффективна для сложных структур данных: Для некоторых типов данных, особенно связанных с графовыми или иерархическими структурами, модель сущность-связь может быть неэффективной или неудобной в использовании.
- 2. Сложность в описании сложных отношений: В некоторых случаях описание сложных отношений между сущностями может быть сложным и запутанным, особенно когда требуется учесть множество условий или вариантов.

		3. Наглядность при проектировании баз	3. Ограничения визуализации при
		данных: Модель сущность-связь	больших объёмах данных: При
		помогает разработчикам лучше понять	работе с большими объёмами
		требования к базе данных и	данных модель сущность-связь
		проектировать её таким образом, чтобы	может стать сложной для
		она соответствовала бизнес-логике и	визуализации и анализа, особенно
		потребностям приложения.	если сущностей и связей становится
			слишком много.
5	Расширенная	1. Поддержка объектов и типов данных:	1. Сложность проектирования и
	реляционная	Расширенная реляционная модель	использования: Дополнительные
	•	обычно включает поддержку более	возможности и концепции могут
		разнообразных типов данных, включая	увеличить сложность
		геометрические, графовые, текстовые и	проектирования и использования
		другие специализированные типы	базы данных, особенно для
		данных.	разработчиков, не знакомых с
			расширенными концепциями.
		2. Способность описывать более	
		сложные отношения: Эта модель	2. Требования к
		позволяет описывать более сложные	производительности: Некоторые
		типы отношений между данными, такие	расширенные функции и операции
		как множественные значения атрибутов,	могут иметь более высокие
		наследование и полиморфизм.	требования к производительности,
			что может потребовать более
		3. Поддержка расширенных функций и	мощного оборудования или
		операторов: Расширенная реляционная	оптимизации запросов.
		модель может включать более широкий	
		набор функций и операторов для	3. Необходимость дополнительного
		работы с данными, таких как	обучения: Использование
		аналитические функции, операции с	расширенных возможностей
		геоданными и т.д.	реляционной модели может
			потребовать дополнительного
		4. Интеграция с другими типами	обучения для разработчиков и
		данных: Эта модель может включать	администраторов баз данных.
		возможности для интеграции с другими	
		системами и форматами данных, такими	4. Ограничения совместимости:
		как XML, JSON и другими	Некоторые расширенные функции
		структурированными форматами.	могут быть специфичны для
			определённых СУБД и не
			поддерживаться другими
			системами, что может создавать
		1.5	проблемы с переносимостью кода.
6	Семантическая	1. Более глубокое понимание данных:	1. Сложность в разработке и
		Семантическая модель позволяет	понимании: Построение
		описывать данные с более высоким	семантической модели требует
		уровнем абстракции, что способствует	глубокого понимания данных и их
		лучшему пониманию их значения и	отношений, что может быть сложно
		контекста.	для неподготовленных
		2 Form man publication was	пользователей.
		2. Большая гибкость при	2 Trafapayya - afywayya
		моделировании данных: Семантическая	2. Требования к обучению и навыкам: Использование
		модель не привязана к определенной структуре данных, что делает её более	навыкам: использование семантической модели требует
		тотруктуре даппых, что делает се облес	гомантической модели требует

гибкой и адаптируемой к различным видам данных и их изменениям. области семантики и онтологий. 3. Повышение интероперабельности: Описание семантической модели в терминах значений и отношений позволяет лучше интегрировать данные из различных источников и обеспечивает более эффективное взаимодействие между системами. 4. Поддержка автоматической обработки и анализа данных: Семантическая модель способствует автоматизации обработки данных и проведению анализа, так как позволяет компьютерам лучше понимать смысл информации. данных. 7 Объектно-1. Модульность и повторное использование кода: Объектноориентированная ориентированное программирование (ООП) способствует созданию модульного кода, который легко поддерживать и модифицировать. Это позволяет повторно использовать классы и объекты в различных частях другие. программы или даже в разных проектах.

определенных навыков и знаний, как в области данных, так и в

- 3. Возможные проблемы с масштабируемостью: При работе с большими объемами данных и сложными отношениями между ними семантическая модель может столкнуться с проблемами масштабируемости.
- 4. Неоднозначность интерпретации: Интерпретация семантической модели может быть различной для разных пользователей или систем, что может приводить к неоднозначности в понимании
- 1. Перегрузка понятий и сложность: Для непривычных пользователей объектно-ориентированный подход может показаться сложным из-за большого количества понятий, таких как наследование, полиморфизм, инкапсуляция и
- 2. Потребление ресурсов: Использование объектноориентированного подхода может требовать больше памяти и процессорного времени из-за дополнительных накладных расходов, связанных с созданием объектов и управлением ими.
- 3. Сложность тестирования и отладки: При использовании ООП тестирование и отладка могут быть сложными из-за сложных взаимосвязей между объектами и классами, а также из-за возможных проблем с наследованием и полиморфизмом.
- 4. Возможность возникновения проблем при проектировании: Неправильное использование ООП или нелостаточное понимание концепций может привести к плохому проектированию
- 3. Использование наследования и полиморфизма: Наследование позволяет создавать иерархии классов, что способствует повторному использованию кода и организации его в логические группы. Полиморфизм позволяет обрабатывать объекты различных типов с использованием общего интерфейса.
- 4. Улучшенная абстракция и моделирование реального мира: ООП позволяет создавать модели, более

2. Упрощение разработки и сопровождения: ООП позволяет абстрагироваться от сложных деталей реализации, фокусируясь на моделировании объектов и их взаимодействии. Это упрощает разработку нового кода и облегчает поддержку и сопровождение существующего.

		точно отражающие структуру и поведение объектов в реальном мире, что делает код более понятным и легко поддерживаемым.	программы, что может привести к проблемам с производительностью, поддержкой и расширяемостью.
8	Объектно- реляционная	1. Упрощение разработки: ORM позволяет разработчикам использовать объектно-ориентированный подход к программированию при работе с реляционными базами данных, что упрощает процесс разработки. 2. Более высокий уровень абстракции:	1. Производительность: Использование ORM может привести к снижению производительности в сравнении с написанием ручных SQL-запросов, особенно в случае сложных запросов или больших объемов данных.
		ORM скрывает сложности написания SQL-запросов, предоставляя более высокоуровневый интерфейс для работы с данными, что делает код более понятным и легко поддерживаемым.	2. Ограничения ORM: ORM может иметь ограничения в возможностях работы с базой данных, что может привести к тому, что определенные функции или оптимизации
		3. Уменьшение времени разработки: ORM позволяет быстрее создавать приложения, так как уменьшает необходимость вручную писать SQL-запросы и маппинг объектов на таблицы базы данных.	недоступны. 3. Сложность отладки и оптимизации: При использовании ORM отладка и оптимизация запросов могут быть сложными изза того, что ORM скрывает детали
		4. Повышение переносимости кода: Используя ORM, можно легко переключаться между различными системами управления базами данных без изменения прикладного кода, так как ORM обеспечивает абстракцию от конкретной СУБД.	внутреннего выполнения SQL- запросов. 4. Недостаточная гибкость: В некоторых случаях ORM может оказаться недостаточно гибким для реализации сложных бизнес-логик или отображения сложных структур данных.