Questions de cours.

On note $\mathbf{K} = \mathbf{R}$ ou \mathbf{C} .

- 1. Soit E un K-espace vectoriel. Soit $F = (e_1, \dots e_n)$ une famille de vecteurs de E. Définition de Vect (F). Montrer que c'est le plus petit sous espace vectoriel de E contenant F. Majorer la dimension de Vect (F). Donner une CNS d'égalité.
- 2. Soit E un **K**-espace vectoriel. Soient F et G deux sous espaces vectoriels de E. Montrer que F+G est un sous espace vectoriel, et que c'est le plus petit sous espace vectoriel contenant F et G. Dans le cas où F et G sont de dimension finie, a-t-on en général dim $(F+G) = \dim(F) + \dim(G)$? Donner une condition suffisante pour que dim $(F+G) = \dim(F) + \dim(G)$ soit réalisée.
- 3. Soit n un entier naturel supérieur à 1. Montrer que $\mathcal{S}_n(\mathbf{K})$ et $\mathcal{A}_n(\mathbf{K})$ sont des sous espaces vectoriels de $\mathfrak{M}_n(\mathbf{K})$ et qu'ils sont supplémentaires.
- 4. Montrer que A, l'ensemble des fonctions impaires de $\mathbf{R}^{\mathbf{R}}$ et S l'ensemble des fonctions paires de $\mathbf{R}^{\mathbf{R}}$ sont des sous espaces vectoriels de $\mathbf{R}^{\mathbf{R}}$ et qu'ils sont supplémentaires.
- 5. Montrer qu'une famille de polynômes de degrés échelonnés ne contenant pas le polynôme nul est libre dans $\mathbf{K}[X]$. Que dire dune famille de n+1 polynômes de degrés échelonnés ne contenant pas le polynôme nul dans $\mathbf{K}_n[X]$?
- 6. Démonstration de la formule de Taylor pour les polynômes.

Exercices.

Exercice 1. Soit E un \mathbf{K} -ev. Soient F et G deux sev de E. Montrer qu'il a équivalence entre

- (i) $F \cup G$ est un sous espace vectoriel
- (ii) $F \subseteq G$ ou $G \subseteq F$

Exercice 2. Soit E un **K**-ev de dimension finie n. On considère deux sev de E: F et G. Le but de ce problème est de montrer qu'il y a équivalence entre

- (i) F et G admettent un supplémentaire commun
- (ii) $\dim(F) = \dim(G)$
- 1. Montrer que (i) \Rightarrow (ii).
- 2. On suppose (ii) et que $F \subset G$ ou $G \subset F$. Montrer que F et G admettent un supplémentaire commun. On suppose désormais que $F \not\subseteq G$ et $G \not\subseteq F$.
- 3. Pour montrer (ii) \Rightarrow (i) dans ce cas, on va procéder par récurrence descendante. Montrer que (ii) \Rightarrow (i) lorsque dim $(F) = \dim(G) = n$.

4. On note $p = \dim(F) = \dim(G) \in \{0, 1, 2, \dots, n-1\}$. On suppose que (ii) \Rightarrow (i) pour tous sev H_1 et H_2 de dimension p+1. Montrer qu'il existe (x,y) in $F \times G$ tels que

$$G \oplus \operatorname{Vect}(x)$$
 et $F \oplus \operatorname{Vect}(y)$

- 5. En déduire que ces deux SEV admettent un supplémentaire commun.
- 6. Montrer que F et G admettent un supplémentaire commun de la forme :

$$S \oplus \dots$$

7. Conclure.

1

Exercice 3. Soient P un polynôme à coefficients réels et $a \in \mathbf{R}$. On suppose que

$$P(a) > 0$$
 et $\forall k \in \mathbf{N}^* P^{(k)}(a) \ge 0$

Montrer que P n'a pas de racines dans $[a, \infty]$

Exercice 4. On se propose de montrer que toute matrice nilpotente de $\mathfrak{M}_n(\mathbf{K})$ est d'indice de nilpotence au plus n. Soit N une matrice nilpotente. On note p le plus petit entier tel que $N^p = 0$. Raisonnons par l'absurde et supposons p > n

- 1. Montrer qu'il existe $X \in \mathfrak{M}_{n,1}(\mathbf{K})$ non nul tel que $N^{p-1}X \neq 0$. En déduire que $N^kX \neq 0$ pour tout $k \in \{0,1,2,\ldots,p-1\}$
- 2. Montrer que $(X, NX, N^2X, \dots, N^{p-1}X)$ est une famille libre de $\mathfrak{M}_{n,1}(\mathbf{K})$. Conclure.

Exercice 5. Polynômes de Newton. On considère la suite de polynômes (P_n) définie par

$$\begin{cases} P_0 = 1 \\ \forall n \in \mathbf{N} : P_{n+1} = \frac{X-n}{n+1} P_n \end{cases}$$

- (a) Calculer les premiers termes de cette suite. Montrer que $(P_0, \dots P_n)$ est une base de $\mathbf{K}_n[X]$ pour tout $n \in \mathbf{N}$.
- (b) On fixe un entier $n \geq 1$. Soit Q un polynôme de $\mathbf{K}_n[X]$. Déterminer les coordonnées de Q dans cette base.
- (c) Montrer que Q est à coordonnées entières (dans cette base) si et seulement si $P(\mathbf{Z}) \subset \mathbf{Z}$.

Exercice 6. On note E l'espace vectoriel des suites réelles convergente.

- (a) Montrer que $\{(x_n) \in E : x_n \longrightarrow 0\}$ est un sous espace vectoriel de E. On le notera F.
- (b) Déterminer un supplémentaire de F dans E.

Exercice 7. Soit E un K-ev. On se donne \mathcal{F}_1 et \mathcal{F}_2 deux familles finies de vecteurs de E. On note $V = \text{Vect}(\mathcal{F}_1)$ et $W = \text{Vect}(\mathcal{F}_2)$ Montrer que

$$V + W = \operatorname{Vect}(\mathcal{F}_1 \cup \mathcal{F}_2)$$

Exercice 8. On rappelle qu'en dimension finie, un hyperplan d'un espace de dimension d est un sous espace de dimension d-1. Soient E un **K**-ev de dimension finie, F un sev de E et H un hyperplan de E. On suppose que $F \nsubseteq H$. Montrer que

$$\dim\left(F\cap H\right) = \dim\left(F\right) - 1$$

Exercice 9. Dans ce problème, on propose de montrer un résultat classique :

Tout hyperplan de $\mathfrak{M}_n(\mathbf{K})$ contient une matrice inversible.

On rappelle qu'en dimension finie, un hyperplan d'un espace de dimension d est un sous espace de dimension d-1. On fixe H un hyperplan de $\mathfrak{M}_n(\mathbf{K})$. On suppose que $I_n \notin H$ (sinon, I_n étant inversible, il n'y a rien à montrer)

- (a) Montrer que Vect (I_n) est un supplémentaire de H.
- (b) Construisez une matrice inversible de H. Conclure. Indication : On pourra s'intéresser aux matrices élémentaires $E_{i,j}$.

Exercice 10. On note E le \mathbf{R} espace vectoriel des polynômes de degré au plus n. Pour $i \in \{0, 1, \dots, n\}$ on note :

$$F_i = \{ P \in E : \forall j \le n, j \ne i, P(j) = 0 \}$$

Montrer que F_i est un sous espace vectoriel de E pour tout i et que

$$E = \bigoplus_{i=0}^{n} F_i$$

Exercice 11. On note E le sous espace vectoriel des fonctions de classes C^1 sur \mathbf{R} . On pose

$$F = \{ f \in E \text{ tel que } f(0) = f'(0) = 0 \}$$

Montrer qu'il s'agit d'un SEV de E. Cherchez un supplémentaire de F.

Exercice 12. Soit E un **K**-ev de dimension finie n. On considère deux hyperplans de $E: H_1$ et H_2 . Montrer que ces deux hyperplans admettent un supplémentaire commun. Le résultat reste t-il vrai si E est de dimension infinie?