Prev | Next

Machine Learning $\,>\,$ Week 4 $\,>\,$ Examples and Intuitions II

0= 0=

Video: Examples and Intuitions II 10 min

Video: Multiclass Classification 3 min

Reading: Multiclass Classification 3 min

Review

Reading: Lecture Slides

Quiz: Neural Networks: Representation

(Programming

Examples and Intuitions II

The $\boldsymbol{\Theta}^{(1)}$ matrices for AND, NOR, and OR are:

AND:

$$\Theta^{(1)} = \begin{bmatrix} -30 & 20 & 20 \end{bmatrix}$$

NOR:
 $\Theta^{(1)} = \begin{bmatrix} 10 & -20 & -20 \end{bmatrix}$
OR:
 $\Theta^{(1)} = \begin{bmatrix} -10 & 20 & 20 \end{bmatrix}$

We can combine these to get the XNOR logical operator (which gives 1 if x_1 and x_2 are both 0 or both 1).

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} a_1^{(2)} \\ a_2^{(2)} \end{bmatrix} \rightarrow [a^{(3)}] \rightarrow h_{\Theta}(x)$$

For the transition between the first and second layer, we'll use a $\Theta^{(1)}$ matrix that combines the values for AND and NOR:

$$\Theta^{(1)} = \begin{bmatrix} -30 & 20 & 20 \\ 10 & -20 & -20 \end{bmatrix}$$

For the transition between the second and third layer, we'll use a $\Theta^{(2)}$ matrix that uses the value for OR:

Let's write out the values for all our nodes:

$$a^{(2)} = g(\Theta^{(1)} \cdot x)$$

 $a^{(3)} = g(\Theta^{(2)} \cdot a^{(2)})$
 $h_{\Theta}(x) = a^{(3)}$

And there we have the XNOR operator using a hidden layer with two nodes! The following summarizes the above algorithm:

✓ Complete Go to next item

