CS 550 Homework 2 (25 marks)

Instructions:

- a. Due date is Sep 3.
- b. Please type your solutions cleanly. We won't grade hand-written answers or poorly types answers. You can use LaTeX, Word or markdown etc. to do it.
- Only individual attempts and original answers will get you the credits. Copying will lead to 0
 marks and penalties will be imposed.
- 1. **(10 marks)** Deriving Decision Boundary for Learning with Prototypes **LwP Classifier** These are some training examples of +ve class: (2,3,4); (1,1,2); (0,2,0) These are some training examples of -ve class: (4,3,2); (2,1,1); (3,5,3)

(1 mark) Compute the average feature vectors of +ve and -ve class examples. Let us call them μ_+ and μ_-

(1 marks) Determine the vector ${\pmb w}$ which joins $\,\mu_+$ and μ_- : ${\pmb w}={\pmb \mu}_+-{\pmb \mu}_-$

(2 marks) Equation of the decision boundary can be written as $w^Tx+b=0$ We know that the decision boundary passes through the mid-point of the prototypes. Mid-point is given by $\frac{1}{2}(\mu_+ + \mu_-)$ Compute the value of **b**

(2 marks) Compute the distances of the training examples from the decision boundary. Are there any errors in classification using the LwP classifier?

(4 marks) Find the equation of a linear classifier which separates the data without any error? If no such classifier exists, give a justification.

- 2. (10 marks) (1 mark each) Objective type questions. Answer with a brief justification.
 - i. Explain the importance of scaling features for training Large Margin Classifiers?
 - ii. Explain the effect of changing the value of C from very small to very large in a Soft margin Classifier's objective function?

$$\begin{aligned} & \left| \left| w \right| \right|_2^2 + \Sigma_{i=1}^N C z_i \\ & \text{Subject to} & y_i(w^T x_i + b) \geq 1 - z_i \ \forall i \in \{1, 2, 3, \dots, N\} \end{aligned}$$

Where z_i are the slacks (errors)

- iii. Consider the 2-D array, arr. What is the output of np.sum(arr, axis=1)?
- iv. Which of the following are methods for indexing into a DataFrame?
 - Use the loc and iloc functions a.
 - b. Directly index columns similar to a Python dictionary
 - c. Using slices to retrieve a set of rows
 - d. All of the above
- ٧. What is an indicator feature?
 - a. A feature that indicates whether or not the data has been pre-processed
 - b. A feature that represents categorical data, using 1's and 0's to denote which categories are
 - c. An indicator of whether or not a category is quantitative or categorical
 - d. None of the above
- vi. What is the main purpose of standardizing data?
 - a. It lets us view data in terms of standard deviations from the average case (i.e. mean)
 - b. It lets us use much smaller data values, which makes computation much quicker
 - c. It makes it easier to calculate the mean of each column in the data
 - d. It removes outliers from the dataset
 - e. All of the above
- For the given confusion matrix, please calculate accuracy, precision, recall and F1 score. vii.

	Actual	
Predicted	Yes	No
Yes	12	3
No	1	9

- viii. What is the difference between bagging and boosting? Which technique would be suitable when the data has high variance?
- ix. Justify the cost function L(w) used by logistic regression for binary classification and compute its gradient $\frac{\partial L}{\partial w}$ with respect to parameters w. $p = \sigma(\mathbf{w}^T \mathbf{x_i}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x_i}}} \text{ and } L(\mathbf{w}) = \sum_{i=1}^N [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$

$$p = \sigma(\mathbf{w}^T \mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}_i}}$$
 and $L(\mathbf{w}) = \sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$

It takes 10 minutes to train a SVM algorithm on a dataset with 100K data points. х. How much time do you think it might take to train the same algorithm on 1 M data points?

3. A car insurance company is building a risk assessment prediction system based on the age of the driver and the type of car. Can you help them by building a decision tree using information gain as the split point evaluation measure?

Here is the sample data:

Age of Driver	Car Type	Risk
25	Sports	L
20	Vintage	Н
25	Sports	L
45	SUV	Н
20	Sports	Н
25	SUV	Н

a. (1 mark) Entropy of the dataset is:

Hint: Entropy =
$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

b. (1 mark) Calculate the information gain if we split the dataset by the following rule: Age<=22.5

Hint:
$$IG = H(S) - \frac{|S_1|}{|S|}H(S_1) - \frac{|S_2|}{|S|}H(S_2)$$

c. (1 mark) Calculate the information gain if we split the dataset by the following rule:

Hint: If the Car Type is not Sports, it can be either SUV or Vintage

d. (2 mark) Which of the above two rules should we use for the root-node of the decision tree? Assuming that this is the best choice, can you complete the decision tree?