Licenciatura en Estadística Muestreo y Planificación de Encuestas 2014 Sexta Pruebita

Ejercicio 1 En una población con N=60 hay definidos $N_I=20$ PSUs. Se toma una muestra mediante un diseño SIC con $n_I=3$. Los datos obtenidos son:

i	k	y_k
3	10	1
3	11	2
3	12	3
5	17	4
17	48	1
17	49	4

- 1. Calcule el estimador π de t_y .
- 2. Calcule $\hat{V}_{SIC}(\hat{t}_y)$.

3. Calcule el estimador π de N.

Ejercicio 2 Para estimar el total de números telefónicos $(t_y = \sum_U y_k)$ que existen en una guía se realiza el siguiente diseño muestral: Se seleccionan según un diseño SI de tamaño $n_I = 3$ carillas de un total de $N_I = 300$; posteriormente, en cada carilla seleccionada se toman, según un diseño SI, 2 columnas de las cuatro que hay en cada carilla. El total de números telefónicos en las columnas seleccionadas se presentan en el siguiente cuadro:

Carilla	Columna	y_k
149	1	62
149	3	48
7	2	67
7	4	63
208	4	57
208	3	63

- 1. Estimar t_y .
- 2. Estimar $V(\hat{t}_{y\pi})$.

3. Explique en que consisten los supuestos de invarianza e independencia en este caso.

 ${\bf Ejercicio~3}$ Considere un diseño en dos etapas. Demostrar que el estimador

$$\hat{V}^* = \sum \sum_{s_I} \check{\Delta}_{Iij} \frac{\hat{t}_{i\pi}}{\pi_{Ii}} \frac{\hat{t}_{j\pi}}{\pi_{Ij}}$$

es sesgado para

$$V_{2st}(\hat{t}_y) = \sum \sum_{U_I} \Delta_{Iij} \frac{t_i}{\pi_{Ii}} \frac{t_j}{\pi_{Ij}} + \sum_{U_I} \frac{V_i}{\pi_{Ii}}$$

y su sesgo viene dado por

$$-\sum\nolimits_{U_{I}}V_{i}.$$

Ejercicio 4 Considere una población de N elementos donde está definida una variable y. El tamaño de la población N es conocido. Se desea estimar la media poblacional, $\bar{y}_U = \sum_U y_k/N$, y se dispone de una muestra s tomada según un diseño $p(\cdot)$ medible de tamaño n_s , no necesariamente fijo.

1. Plantear el estimador π de $\bar{y}_U,\, \widehat{\bar{y}_{U\pi}},\, \mathbf{y}$ su varianza.

2. Considerando el parámetro $\theta = f(N,t_y) = t_y/N = \bar{y}_U$ y el estimador $\hat{\theta} = f(\hat{N}_\pi,\hat{t}_{y\pi}) = \hat{t}_{y\pi}/\hat{N}_\pi = \tilde{y}_s$, plantee la varianza aproximada de \tilde{y}_s y un estimador para la varianza de \tilde{y}_s . Observar que $\frac{1}{N}\tilde{y}_s = \frac{\hat{N}}{N}\widehat{y}_{U\pi}$, o sea, tiene la forma de un estimador de razón multiplicado por la constante $\frac{1}{N}$