Assessing the efficacy of air quality policies in the Jing-Jin-Ji region using satellite observations

Gongda Lu (gxl642@student.bham.ac.uk), Eloïse A Marais, Zongbo Shi

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

UNIVERSITYOF

BIRMINGHAM

- ☐ The Beijing-Tianjin-Hebei (Jing-Jin-Ji) region experiences severely degraded air quality in autumn-winter due to anthropogenic emissions from various sources and stagnant conditions that lead to buildup of pollution.
- ☐ In autumn-winter 2017-2018, strict short-term mitigation strategies were imposed to address poor air quality.
- ☐ Here we use surface observations of air pollutants from the national air quality monitoring network to assess the efficacy of these short-term pollution controls and test the skill of satellite observations in detecting changes in air quality in the Jing-Jin-Ji region.

2. METHODOLOGY

- \Box Validate national air quality surface observations of PM_{2.5} with U.S. Embassy PM_{2.5} in Beijing.
- ☐ Estimate the effect of short-term emission controls on air pollutant concentrations by comparing autumn-winter 2016-2017 (AW2016) and autumn-winter 2017-2018 (AW2017) concentrations of fine particles (PM_{2.5}), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), carbon monoxide (CO), and ozone (O₃).
- ☐ Compare surface and satellite observation changes in concentrations of NO₂, SO₂ and CO. NO₂ and SO₂ are from the Ozone Monitoring Instrument (OMI) and CO is from the Measurements of Pollution in the Troposphere (MOPITT).

3. VALIDATION OF SURFACE OBSERVATIONS

Nongzhanguan and U.S. Embassy are 2 km apart.

Figure 1. Comparisons of hourly PM_{2.5} observations at Nongzhanguan (from Sinaapp) and U.S. Embassy during AW2016 and AW2017.

- Sinaapp PM_{2.5} at Nongzhanguan is consistent with U.S. Embassy PM_{2.5}.
- PM_{2.5} decreased by 44% at Nongzhanguan and 46% at U.S. Embassy.

5. CHANGES IN SATELLITE NO₂, SO₂ AND CO

Satellites measure column density in the troposphere (NO₂), planetary boundary layer (SO₂), and throughout the total column.

Figure 3. Relative changes in satellite observations of NO₂, SO₂ and CO over the Jing-Jin-Ji region and its surrounding areas. Results show (AW2017 – AW2016)/AW2016.

- NO₂ is stable in the Jing-Jin-Ji region and increases in the adjacent area.
- Satellite observations of SO₂ are too noisy to yield meaningful results.
- Slight reduction in CO is extensively observed within this domain.

4. PRELIMINARY RESULTS FROM SURFACE DATA

Figure 2. Relative changes in surface observations of PM_{2.5}, NO₂, SO₂, CO and O₃ at 72 sites within the Jing-Jin-Ji region and 49 sites in the surrounding area. Points show (AW2017 – AW2016)/AW2016. Values inset are domain means.

- Strict emission controls were successful in reducing surface concentrations of PM_{2.5}, NO₂, SO₂, and CO.
- Ozone increases with a decrease in NO_x, as there is less NO available to titrate ozone.

Data availability

National Air Quality Historical Data: https://beijingair.sinaapp.com/ U.S. Embassy PM_{2.5} Historical Data (Beijing): https://openaq.org/#/location/Beijing%20US%20Embassy?_k=lupud9 OMI NO₂ Data (OMNO2d): https://disc.gsfc.nasa.gov/datasets/OMNO2d_V003/summary OMI SO₂ Data (OMSO2e): https://disc.gsfc.nasa.gov/datasets/OMSO2e_V003/summary MOPITT CO Data (V7 TIR-NIR): https://www2.acom.ucar.edu/mopitt/products

6. NEXT STEPS

- ☐ Compare coincident surface and satellite observations and also analyse satellite observations of formaldehyde (HCHO) from OMI, and ammonia (NH₃) from the Atmospheric Infrared Sounder (AIRS).
- ☐ Conduct additional validation of national air quality surface observations with APHH campaign measurements.
- ☐ Use the GEOS-Chem chemical transport model to assess the contribution of interannual variability in meteorology to the changes in pollutant concentrations and interpret the results from the satellite observations.