
What this script does: • Loads UCI Bike Sharing "day.csv" • Restricts weathersit to values {1, 2, 3} • (b) OLS: cnt ~ weathersit (as categorical with baseline=1) • (c) Computes expected count difference between weathersit=1 and 3 • (d) Reports RSS, R^2, and residual std. dev. for (b) • (e) OLS: cnt ~ weathersit + temp + hum + windspeed (+ interprets temp's +10°C impact) • (f) Logistic Regression for High vs Low demand (> 4000), with train/test accuracy • (g) Chooses an alternative probability threshold (via max F1 on a validation split)

Imports (with explanations)

```
In [1]: import os
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import inspect
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.compose import ColumnTransformer
        from sklearn.linear model import LogisticRegression
        from sklearn.pipeline import Pipeline
        from sklearn.metrics import accuracy_score, f1_score, confusion_matrix, class
        # (0) Load and pre-process the dataset for this question
        DATA PATH = "data/day.csv"
        df = pd.read_csv(DATA_PATH)
        # Keep only the columns required by Q1 parts (b)—(g) to simplify analysis
        df = df[["cnt", "weathersit", "temp", "hum", "windspeed"]].copy()
        df = df[df["weathersit"].isin([1, 2, 3])].copy() # Filter rows
        df["weathersit"] = pd.Categorical(df["weathersit"], categories=[1, 2, 3]) #
        print("Weathersit levels kept:", df["weathersit"].cat.categories.tolist())
        print(df.head()) # Peek at the first few rows to confirm structure
        # (a) Marginal & conditional distributions (histogram + grouped boxplots + K
        plt.figure(figsize=(6, 4))
        plt.hist(df["cnt"], bins=30, edgecolor="black")
        plt.title("Marginal distribution of total rentals (cnt)")
        plt.xlabel("cnt")
        plt.ylabel("Frequency")
        plt.tight_layout()
        plt.show()
```

Weathersit levels kept: [1, 2, 3] cnt weathersit hum windspeed temp 0 985 2 0.344167 0.805833 0.160446 2 0.363478 0.696087 1 801 0.248539 2 1349 1 0.196364 0.437273 0.248309 3 1562 1 0.200000 0.590435 0.160296 0.226957 0.436957 4 1600 0.186900

Marginal distribution of total rentals (cnt)


```
In [2]: # ---- Conditional distribution of cnt by weather category (boxplots) ----
fig, ax = plt.subplots(figsize=(6, 4))
df.boxplot(column="cnt", by="weathersit", ax=ax)
ax.set_title("Count by weather situation (boxplots)")
ax.set_xlabel("weathersit")
ax.set_ylabel("cnt")
plt.suptitle("")
plt.tight_layout()
plt.show()
```

Count by weather situation (boxplots)

/var/folders/nw/cm9mnh314r948fx2f2wgq3xr0000gn/T/ipykernel_5882/2154472783.p y:2: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence th is warning.

for ws, sub in df.groupby("weathersit"):

0.00030 - weathersit=1 weathersit=2 weathersit=3 0.00020 - \$\frac{1}{2} \text{ 0.00015} - 0.00010 - \$\frac{1}{2} \text{ 0.00010} -

Conditional density of cnt given weathersit

2500

5000

cnt

7500

10000

12500

0.00005

0.00000

-2500

0

=== (b) OLS: cnt ~ C(weathersit, reference=1) === OLS Regression Results

Dep. Variable: cnt R-squared: 0.0 99 Model: 0LS Adj. R-squared: 0.0 97 Method: Least Squares F-statistic: 40. 07 Date: Mon, 29 Sep 2025 Prob (F-statistic): 3.11e- 17 Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	015 Negression Nesuces						
999 Model:	==						
Model: OLS Adj. R-squared: 0.0 97 Method: Least Squares F-statistic: 40.0 7 Date: Mon, 29 Sep 2025 Prob (F-statistic): 3.11e- 17 Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	Dep. Variable:	cnt	R-squared:	0.0			
Method: Least Squares F-statistic: 40.07 Date: Mon, 29 Sep 2025 Prob (F-statistic): 3.11e-17 Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+04 Df Residuals: 728 BIC: 1.308e+04 Df Model: 2 Covariance Type: nonrobust	Model:	0LS	OLS Adj. R-squared:				
Date: Mon, 29 Sep 2025 Prob (F-statistic): 3.11e- 17 Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	97	Loast Squares	F ctatictic.	40.			
17 Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	07	Least Squares	1-Statistic.				
Time: 12:19:43 Log-Likelihood: -653 1.5 No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	Date:	Mon, 29 Sep 2025 Prob (F-statistic):		3.11e-			
No. Observations: 731 AIC: 1.307e+ 04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust	Time:	12:19:43	Log-Likelihood:	-653			
04 Df Residuals: 728 BIC: 1.308e+ 04 Df Model: 2 Covariance Type: nonrobust		731	۸۲۲۰	1 3076+			
04 Df Model: 2 Covariance Type: nonrobust	04	751	AIC.	1.30/01			
Df Model: 2 Covariance Type: nonrobust	Df Residuals:	728	BIC:	1.308e+			
coef std err t P> t [0.025 0.975] Intercept 4876.7862 85.567 56.994 0.000 4708.798 5044.774 C(weathersit, Treatment(reference=1))[T.2] -840.9238 145.073 -5.797 0.000 -1125.736 -556.112 C(weathersit, Treatment(reference=1))[T.3] -3073.5005 410.790 -7.482 0.000 -3879.975 -2267.026 === Omnibus: 38.064 Durbin-Watson: 0.2 60 Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.6	Df Model:	2					
Coef std err t	Covariance Type:	nonrobust					
P> t [0.025 0.975]	=======================================	======================================		=======			
Intercept 4876.7862 85.567 56.994 0.000 4708.798 5044.774 C(weathersit, Treatment(reference=1))[T.2] -840.9238 145.073 -5.797 0.000 -1125.736 -556.112 C(weathersit, Treatment(reference=1))[T.3] -3073.5005 410.790 -7.482 0.000 -3879.975 -2267.026 ==== Omnibus: 38.064 Durbin-Watson: 0.2 60 Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.6	D 111	0.0751	coef std err	t			
0.000 4708.798 5044.774 C(weathersit, Treatment(reference=1))[T.2] -840.9238 145.073 -5.797 0.000 -1125.736 -556.112 C(weathersit, Treatment(reference=1))[T.3] -3073.5005 410.790 -7.482 0.000 -3879.975 -2267.026 ===================================	P> t [0.025	0.9/5] 					
0.000 4708.798 5044.774 C(weathersit, Treatment(reference=1))[T.2] -840.9238 145.073 -5.797 0.000 -1125.736 -556.112 C(weathersit, Treatment(reference=1))[T.3] -3073.5005 410.790 -7.482 0.000 -3879.975 -2267.026 ===================================	Intercept		4976 7962	56 004			
0.000 -1125.736 -556.112 C(weathersit, Treatment(reference=1))[T.3] -3073.5005 410.790 -7.482 0.000 -3879.975 -2267.026 ====================================		5044.774	467017602 631307	30.994			
C(weathersit, Treatment(reference=1))[T.3] -3073.5005	C(weathersit, Treatment(reference=1))[T.2] -840.9238 145.073						
0.000 -3879.975 -2267.026 ====================================							
== 0mnibus: 38.064 Durbin-Watson: 0.2 60 Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.6	0.000 -3879.975	-2267.026					
60 Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.6	=======================================			========			
Prob(Omnibus): 0.000 Jarque-Bera (JB): 15.6	Omnibus:	38.064	Durbin-Watson:	0.2			
		0.000	larque-Bera (1B):	15.6			
	65	01000	Sarque Bera (SB):	1510			
	Skew: 97	-0.061	Prob(JB):	0.0003			
	Kurtosis:	2.293	Cond. No.	6.			
46	46						
======================================	=======================================	=======================================		=======			
Notos	Notes:						

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- (b) Coefficients (interpretation in comments):
 Intercept 4876.786177

C(weathersit, Treatment(reference=1))[T.2] -840.923829

C(weathersit, Treatment(reference=1))[T.3] -3073.500463

dtype: float64

```
In [5]: #
        # (c) Expected difference between Clear (1) and Wet (3)
        # In this parameterization, the difference E[cnt|3] - E[cnt|1] equals the
        diff_1c = coefs_b.get("C(weathersit, Treatment(reference=1))[T.3]", np.nan)
        print("\n=== (c) Expected difference (Clear=1 vs Wet=3) ===")
        print(f"Diff = {diff 1c:.3f}")
        # Interpretation:

    Positive value → wet (3) has higher expected rentals than clear (1) by

            • Negative value → wet (3) has fewer expected rentals than clear (1) by
       === (c) Expected difference (Clear=1 vs Wet=3) ===
       Diff = -3073.500
In [6]: # -----
        # (d) Goodness-of-fit for model (b): RSS, R^2, residual std. deviation
        resid = model_b.resid
        RSS = float(np.sum(resid**2))
        R2 = float(model b.rsquared)
        n = int(model b.nobs)
        p = int(len(model_b.params))
        # Estimated residual standard deviation sgrt(RSS / (n - p))
        sigma_hat = float(np.sqrt(RSS / (n - p)))
        print("\n=== (d) Goodness-of-fit for (b) ===")
        print(f"RSS=\{RSS:.3f\}, R^2=\{R2:.4f\}, sigma hat=\{sigma hat:.3f\}")
        # Interpretation:
            • RSS smaller → better fit (all else equal).
            • R^2 closer to 1 → more variance in cnt explained by weathersit levels.

    sigma_hat measures typical size of residuals in cnt units.

       === (d) Goodness-of-fit for (b) ===
       RSS=2467890819.437, R^2=0.0992, sigma_hat=1841.184
In [7]: # --
        # (e) Multiple OLS: cnt ~ weathersit + temp + hum + windspeed (+10°C impact
        formula_e = "cnt ~ C(weathersit, Treatment(reference=1)) + temp + hum + wind
        model e = smf.ols(formula=formula e, data=df).fit()
        print("\n=== (e) OLS: cnt ~ weathersit + temp + hum + windspeed ===")
        print(model_e.summary())
        # Extract coefficient on 'temp' to compute the effect of +10°C on expected r
        beta_temp = model_e.params["temp"]
        # Two interpretations for +10°C, depending on how 'temp' is stored.
            1) If temp is normalized by 41^{\circ}C to [0,1], then +10^{\circ}C corresponds to +10^{\circ}
            2) If temp is already degrees Celsius, then +10°C is literally +10 in mc
        impact_10C_if_normalized = beta_temp * (10.0 / 41.0)
        impact_10C_if_celsius = beta_temp * 10.0
        print("(e) Coef(temp) =", f"{beta_temp:.3f}")
        print("--> If 'temp' normalized by 41°C: +10°C impact ≈", f"{impact_10C_if_r
        print("--> If 'temp' already in °C: +10°C impact \approx", f"{impact_10C_if_c}
```

=== (e) OLS: cnt \sim weathersit + temp + hum + windspeed === OLS Regression Results

== Dep. Variable: 80	cnt	R-squared:		0.4
Model:	0LS	OLS Adj. R-squared:		
Method: Lea	st Squares	Squares F-statistic: Sep 2025 Prob (F-statistic):		13 1.62e-1
•	29 Sep 2025			
00 Time:	12:19:43 Log-Likelihood:			-633
<pre>0.5 No. Observations:</pre>	731 AIC:			1.267e+
04 Df Residuals:	725	BIC:		1.270e+
04 Df Model:	5			
Covariance Type:				
=======================================				
P> t [0.025 0.97			std err	
Intercept 0.000 2722.213 4147.6	326	3434.9195	363.025	9.462
C(weathersit, Treatment(ref	erence=1))[Γ.2] -287.2432	137.135	-2.095
0.037 -556.473 -18.0 C(weathersit, Treatment(ref	erence=1))[Г.3] -1824.4716	351.479	-5.191
0.000 -2514.510 -1134.4 temp		6395.1590	295.582	21.636
0.000 5814.860 6975.4 hum	158	-1905.6176	490.561	-3.885
0.000 -2868.707 -942.5 windspeed	528	-3951 . 1452	717.608	-5.506
0.000 -5359.983 -2542.3	808 			
==	22 077			
Omnibus: 70	23.077	Durbin-Watson:		0.3
Prob(Omnibus): 08	0.000	Jarque-Bera (JB):		14.2
Skew: 22	0.192	Prob(JB):		0.0008
Kurtosis: 1.1	2.436	Cond. No.		2
	-=======		-======	=======

Notes:

 $^{\[1\]}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

⁽e) Coef(temp) = 6395.159

```
--> If 'temp' already in °C: +10°C impact ≈ 63951.59 rentals
In [8]: # -----
        # (f) Logistic Regression: classify demand as High (>4000) vs Low (≤4000), r
        # -----
        # Create a binary label for "High Demand": 1 if cnt > 4000, else 0
        df["high_demand"] = (df["cnt"] > 4000).astype(int)
        # Define features X and target y for classification
        X = df[["weathersit", "temp", "hum", "windspeed"]] # Include categorical ar
y = df["high_demand"] # The binary target
        # Split into train and test sets (25% test). Use stratify to preserve class
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.25, random_state=42, stratify=y
        # Identify categorical and numerical columns for preprocessing
        cat cols = ["weathersit"]
        num_cols = ["temp", "hum", "windspeed"]
        # Build OneHotEncoder kwargs in a version-compatible way:
        # • scikit-learn >= 1.2: OneHotEncoder(..., sparse_output=False)
        # • scikit-learn < 1.2: OneHotEncoder(..., sparse=False)</pre>
        ohe kwargs = {}
        if "sparse_output" in inspect.signature(OneHotEncoder.__init__).parameters:
            ohe_kwargs["sparse_output"] = False
        else:
            ohe kwarqs["sparse"] = False
        # ColumnTransformer applies one—hot to 'weathersit' (drop='first' sets basel
        # and passes through numerical columns unchanged.
        preproc = ColumnTransformer(
            transformers=[
                ("cat",
                OneHotEncoder(categories=[[1, 2, 3]], drop="first", **ohe_kwargs),
                 cat cols),
                ("num", "passthrough", num_cols)
            remainder="drop"
        # Define the logistic regression classifier
        clf = LogisticRegression(max_iter=1000, solver="lbfgs")
        pipe = Pipeline(steps=[("pre", preproc), ("clf", clf)])
        pipe.fit(X train, y train)
        # Predict class labels on train and test sets using the default 0.5 probabil
        train_pred = pipe.predict(X_train)
        test pred = pipe.predict(X test)
        # Compute accuracies
        acc_train = accuracy_score(y_train, train_pred)
        acc test = accuracy score(y test, test pred)
        print("\n=== (f) Logistic Regression (>4000 => High) ===")
        print(f"Accuracy - train: {acc_train:.3f}, test: {acc_test:.3f}") # Report
        print("Confusion matrix (test):\n", confusion_matrix(y_test, test_pred))
        print("Classification report (test):\n", classification_report(y_test, test_
        # (g) Choose a DIFFERENT decision threshold by maximizing F1 on a validation
        # First, split the training set again into (tr2, val) for threshold selection
        X_tr, X_val, y_tr, y_val = train_test_split(
```

--> If 'temp' normalized by 41° C: $+10^{\circ}$ C impact ≈ 1559.79 rentals

```
pipe.fit(X tr, y tr)
        val_proba = pipe.predict_proba(X_val)[:, 1] # Probability of class 1 (High
        # Define a grid of candidate thresholds to scan (from 0.1 to 0.9 by 0.01)
        thresholds = np.linspace(0.1, 0.9, 81)
        def f1_at(y_true, prob, t):
            # Convert probabilities to hard labels using threshold t
            yhat = (prob >= t).astype(int)
            # Compute F1 score for the positive class (1)
            return f1_score(y_true, yhat)
        f1s = np.array([f1 at(y val, val proba, t) for t in thresholds])
        # Pick the threshold that maximizes validation F1
        best_t = float(thresholds[int(np.argmax(f1s))])
        best f1 val = float(np.max(f1s))
        # Now evaluate BOTH: (i) the chosen best_t and (ii) the default 0.5 on the 1
        test_proba = pipe.predict_proba(X_test)[:, 1]
                                                               # Probabilities on te
        test_pred_new = (test_proba >= best_t).astype(int)
                                                               # Hard labels with ch
        test_pred_base = (test_proba >= 0.5).astype(int)
                                                              # Hard labels with de
        # Compute accuracy and F1 for both thresholds
        acc_test_new = accuracy_score(y_test, test_pred_new)
        f1_test_new = f1_score(y_test, test_pred_new)
        acc_test_base = accuracy_score(y_test, test_pred_base)
        f1_test_base = f1_score(y_test, test_pred_base)
       === (f) Logistic Regression (>4000 => High) ===
       Accuracy - train: 0.832, test: 0.803
       Confusion matrix (test):
        [[51 19]
        [17 96]]
       Classification report (test):
                      precision
                                   recall f1-score
                                                      support
                         0.750
                                   0.729
                                             0.739
                                                          70
                  0
                  1
                         0.835
                                   0.850
                                                         113
                                             0.842
                                             0.803
                                                         183
           accuracy
          macro avq
                         0.792
                                   0.789
                                             0.791
                                                         183
       weighted avg
                         0.802
                                   0.803
                                             0.803
                                                         183
In [9]: print("\n=== (g) Threshold selection by max F1 on validation ===")
        print(f"Best threshold t* (val): {best_t:.3f}, F1_val={best_f1_val:.3f}")
        print(f"Test with t*: Accuracy={acc_test_new:.3f}, F1={f1_test_new:.3f}")
        print(f"Test with 0.5: Accuracy={acc_test_base:.3f}, F1={f1_test_base:.3f}")
        # Interpretation:
            • If F1(t*) > F1(0.5) on TEST, the chosen threshold improved the precisi

    If not, the threshold tuned on validation did not generalize as well (

              class imbalance, or imperfect probability calibration).
       === (q) Threshold selection by max F1 on validation ===
       Best threshold t* (val): 0.460, F1 val=0.870
       Test with t*: Accuracy=0.814, F1=0.856
       Test with 0.5: Accuracy=0.809, F1=0.847
```

X_train, y_train, test_size=0.30, random_state=42, stratify=y_train