Capítulo XIII

Introdução à Teoria da Complexidade

Problema

Dado um grafo **não orientado e conexo**, existe um circuito que passa uma, e uma só, vez por cada **arco**?

1, 6, 5, 4, 1, 2, 3, 5, 1

Circuito de EULER

• um circuito que passa uma, e uma só, vez por cada arco.

Dado um grafo G não orientado e conexo, G tem um circuito de Euler? Em caso afirmativo, como encontrá-lo?

Proposições

 Um grafo não orientado e conexo tem um circuito de Euler se, e só se, todos os vértices têm grau par.

Consequência: Existe um algoritmo polinomial para descobrir se um grafo não orientado e conexo tem um circuito de Euler.

 Existe um algoritmo polinomial para encontrar um circuito de Euler num grafo não orientado e conexo cujos vértices têm grau par.

Problema

Dado um grafo **não orientado e conexo**, existe um circuito que passa uma, e uma só, vez por cada **vértice**?

1, 2, 3, 4, 5, 6, 1

Circuito de HAMILTON

• um circuito simples que passa por todos os vértices.

Dado um grafo G não orientado e conexo, G tem um circuito de Hamilton? Em caso afirmativo, como encontrá-lo?

Facto

Embora os problemas do Circuito de Euler e do Circuito de Hamilton tenham enunciados muito parecidos, as respetivas soluções computacionais têm ordens de complexidade muito diferentes:

- existem algoritmos polinomiais para resolver os problemas do Circuito de Euler; mas
- todos os algoritmos que se conhecem para resolver os problemas do Circuito de Hamilton são exponenciais.

Problema, Instância & Solução

SAT: Problema da Satisfazibilidade

Dada uma fórmula proposicional f, f é satisfazível?

Instância: $p \land (q \lor \neg p)$ $p \land (q \lor \neg p)$ é satisfazível?

Solução: Sim

#-SAT: Problema da **#-Satisfazibilidade**

Dada uma fórmula proposicional f, quantas atribuições satisfazem f?

Instância: $p \land (q \lor \neg p)$ Quantas atribuições satisfazem $p \land (q \lor \neg p)$?

Solução: Uma

Um **problema de decisão** é um problema onde qualquer solução é "Sim" ou "Não".

Exemplo: SAT é um problema de decisão.

Algoritmo

Um algoritmo para resolver um problema é um procedimento que calcula a solução de qualquer instância do problema num número finito de passos.

Decidibilidade

Um problema de decisão diz-se:

- decidível, se existir algum algoritmo para o resolver;
- indecidível, no caso contrário.

Problema da Terminação

TERM: Dados um programa P e uma entrada E,

P termina com E?

Indecidível [Turing 1936]

O Problema da Terminação é indecidível, i.e., é impossível especificar um algoritmo que, dados um programa arbitrário e uma entrada arbitrária, decida se o programa termina com aquela entrada.

Cálculo de Predicados de Primeira Ordem

PRED: Dada uma fórmula f do Cálculo de Predicados de Primeira Ordem,

f é válida?

Instâncias

- $(\forall x (Px \Rightarrow Qx)) \Rightarrow ((\exists x Px) \Rightarrow (\exists x Qx))$
- $\bullet \ \forall y \ (\forall x P x \Rightarrow P y)$
- $\bullet \ \exists x (Px \lor Qx) \Rightarrow \exists x (Px \land Qx)$

Indecidível

[Church 1936, Turing 1936/7]

Décimo Problema de Hilbert (enunciado em 1900)

HILBERT: Dada uma equação polinomial de coeficientes inteiros,

$$P(x_1,\ldots,x_n)=0,$$

$$P(x_1,\ldots,x_n)=0$$
 tem solução inteira?

Instâncias

- $x^2 3x + 2 = 0$
- $7x^5y^2 4x^2y^3 + 14y^2 + 8y 3 = 0$

Indecidível

[Matijacevič 1970]

Ambiguidade de Gramáticas Independentes do Contexto

GIC-AMB: Dada uma gramática independente do contexto G, G é ambígua?

Instâncias

- $(\{0,1\}, \{S\}, S, \{S \longrightarrow 0S \mid 1S \mid 0 \mid 1\})$
- $(\{0,1\}, \{S\}, S, \{S \longrightarrow SS \mid 0 \mid 1\})$

Indecidível

[Bar-Hillel, Perles, Shamir 1961]

Algumas Classes de Complexidade

P, PTIME: a classe dos problemas de decisão resolúveis em tempo polinomial (i.e., para os quais existe algum algoritmo determinista cujo tempo é polinomial).

EXPTIME: a classe dos problemas de decisão resolúveis em tempo exponencial.

PSPACE: a classe dos problemas de decisão resolúveis em espaço polinomial.

Um **problema** diz-se:

- tratável, se existir algum algoritmo (cujo tempo é) polinomial para o resolver;
- intratável, se (foi provado que) não existe um algoritmo (cujo tempo é) polinomial para o resolver.

Relações entre P, PSPACE e EXPTIME

Igualdade de Expressões Regulares

ER-=: Dadas duas expressões regulares, E_1 e E_2 ,

$$\mathcal{L}(E_1) = \mathcal{L}(E_2)$$
?

Instâncias

- $(a+b+c)^*$ e $(a+b+c)^*a^*$
- $(a+b)^*a^*$ e $((a+b)^*a)^*$
- $b^*a(a+b)^*$ e $(a+b)^*a(a+b)^*$

Intratável

[Stockmeyer, Meyer 1973]

A Classe NP — Definição Formal

NP: a classe dos problemas de decisão X para os quais existe:

- um algoritmo polinomial \mathcal{A} (que verifica se um candidato é a prova do sim),
- uma função P (que fornece a prova do sim, quando ela existe) e
- uma constante k

tais que, para qualquer instância I de X:

- se a solução de I for "Sim" e o tamanho de I for n, então o tamanho de $\mathcal{P}(I)$ é $O(n^k)$ e $\mathcal{A}(I,\mathcal{P}(I))$ retorna "Sim";
- se a solução de I for "Não", então não existe nenhum valor para $\mathcal{P}(I)$ que faça $\mathcal{A}(I,\mathcal{P}(I))$ retornar "Sim".

A Classe **NP** — Definições Intuitivas

NP: a classe dos problemas de decisão resolúveis em tempo polinomial não-determinista, ou seja, para os quais existe um algoritmo não determinista que, "com muita sorte ou por magia", encontra a solução em tempo polinomial.

NP: a classe dos problemas de decisão para os quais é possível verificar em tempo polinomial "se um qualquer candidato é uma prova do sim". (Esta é a definição usada nas demonstrações, como veremos a seguir.)

Onde Colocar a Classe NP?

Satisfazibilidade / Satisfiability

SAT: Dada uma fórmula proposicional na forma normal conjuntiva,

$$f = \bigwedge_{1 < i < k} C_i,$$

f é satisfazível ?

Instâncias

- $(x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land z$
- $(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$
- $(x \lor y) \land (\neg x) \land (\neg y)$

Satisfazibilidade / Satisfiability

SAT: Dada uma fórmula proposicional na forma normal conjuntiva,

$$f = \bigwedge_{1 \le i \le k} C_i,$$

f é satisfazível ?

Instâncias

- $(x \lor y \lor \neg z) \land (\neg x \lor \neg y) \land z$
- $(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$
- $(x \lor y) \land (\neg x) \land (\neg y)$

Candidato a Prova do Sim: Uma atribuição de valores de verdade às variáveis da fórmula

NP-completo

[Cook 1971]

SAT é um Problema **NP** (1)

- 1. Existe um algoritmo polinomial que, dados:
 - uma fórmula proposicional $f = \bigwedge_{1 \leq i \leq k} C_i$, na forma normal conjuntiva, e
 - uma atribuição $\theta = \{(v_1, b_1), (v_2, b_2), \dots, (v_n, b_n)\}$ de valores de verdade às variáveis de f,

verifica se θ satisfaz f.

O algoritmo avalia a fórmula, calculando o valor lógico de cada um dos termos C_i , para $i=1,2,\ldots,k$. Para avaliar $C_i=\bigvee_{1\leq j\leq m_i}D_{ij}$, percorre os literais D_{ij} , para $j=1,2,\ldots,m_i$. Se o literal D_{ij} for uma variável v_u , o seu valor lógico é b_u . Se o literal tiver a forma $\neg v_u$, o seu valor lógico é o complementar de b_u . Os valores b_u (com $u=1,2,\ldots,n$) são obtidos através de pesquisas em θ . (Continua.)

SAT é um Problema **NP** (2)

(Continuação da descrição do algoritmo.)

A avaliação de um termo C_i é **verdade** se o valor lógico de algum dos literais D_{ij} for **verdade**. O algoritmo retorna **true** se, e só se, a avaliação de todos os termos C_i for **verdade**.

A complexidade temporal do algoritmo é polinomial no número de símbolos de f. Se a atribuição θ estiver guardada num vetor e se f tiver n variáveis distintas, o_v ocorrências dessas variáveis e o_p ocorrências de operadores lógicos $(\neg, \lor e \land)$, o número de passos do algoritmo é $O(o_v n + o_p)$.

2. O tamanho da atribuição θ é polinomial no tamanho de f: θ tem 2n elementos, f tem $o_v + o_p$ elementos e $n \le o_v$.

Circuito de Hamilton / Hamiltonian Cycle

Seja G um grafo não orientado e conexo. Um circuito de Hamilton em G é um circuito simples que passa por todos os vértices de G.

HAMILTON: Dado um grafo G, não orientado e conexo,

G tem um circuito de Hamilton?

Instância

Circuito de Hamilton / Hamiltonian Cycle

Seja G um grafo não orientado e conexo. Um circuito de Hamilton em G é um circuito simples que passa por todos os vértices de G.

HAMILTON: Dado um grafo G, não orientado e conexo,

G tem um circuito de Hamilton?

Instância

Candidato a Prova do Sim: 1 2 4 3 (uma permutação dos vértices)

NP-completo

[Karp 1972]

HAMILTON é um Problema **NP** (1)

- 1. Existe um algoritmo polinomial que, dados:
 - um grafo G = (V, A), não orientado e conexo, e
 - uma permutação $\rho = v_1 v_2 \cdots v_n$ dos vértices de G,

verifica se $v_1 v_2 \cdots v_n v_1$ é um circuito de Hamilton em G.

O algoritmo percorre a permutação ρ , testando se os arcos (v_i, v_{i+1}) pertencem a A, para todo o $i=1,\ldots,n-1$. Depois, testa se o arco (v_n,v_1) também pertence a A. O algoritmo retorna **true** se, e só se, todos os testes tiverem sucesso.

A complexidade temporal do algoritmo é polinomial no número de vértices (|V|) e no número de arcos (|A|). Se o conjunto dos arcos estiver guardado num vetor, o número de passos do algoritmo é $O(n \times |A|) = O(|V| \times |A|)$.

HAMILTON é um Problema **NP** (2)

2. O tamanho da permutação ρ é polinomial no tamanho de G, porque ρ tem |V| vértices.

Caixeiro Viajante / Travelling Salesman

CAIXEIRO: Dados um grafo G, não orientado, pesado e completo, cujos arcos têm custo positivo, e um inteiro $k \ge 1$,

G tem um circuito de Hamilton cujo comprimento pesado não excede k?

Instância

Caixeiro Viajante / Travelling Salesman

CAIXEIRO: Dados um grafo G, não orientado, pesado e completo, cujos arcos têm custo positivo, e um inteiro $k \ge 1$,

G tem um circuito de Hamilton cujo comprimento pesado não excede k?

Instância

Candidato a Prova do Sim: 1 3 2 4 (uma permutação dos vértices)

NP-completo

CAIXEIRO é um Problema NP (1)

- 1. Existe um algoritmo polinomial que, dados:
 - um grafo G = (V, A), não orientado, pesado e completo, cujos arcos têm custo positivo,
 - um inteiro $k \geq 1$ e
 - uma permutação $\rho = v_1 v_2 \cdots v_n$ dos vértices de G,

verifica se $v_1 v_2 \cdots v_n v_1$ é um circuito de Hamilton em G cujo comprimento pesado não excede k.

O algoritmo percorre a permutação ρ , calculando a soma dos pesos dos arcos (v_i, v_{i+1}) , para todo o i = 1, ..., n-1. Ao resultado, soma o peso do arco (v_n, v_1) . O algoritmo retorna **true** se, e só se, o resultado final for inferior ou igual a k.

CAIXEIRO é um Problema NP (2)

A complexidade temporal do algoritmo é polinomial no número de vértices (|V|) e no número de arcos (|A|). Se o conjunto dos arcos estiver guardado num vetor, o número de passos do algoritmo é $O(n \times |A|) = O(|V| \times |A|)$.

Curiosidade: A complexidade temporal do algoritmo também é $O(|V|^3)$ porque, como o grafo é não orientado e completo,

$$|A| = \frac{|V| \times (|V| - 1)}{2} = \Theta(|V|^2).$$

2. O tamanho da permutação ρ é polinomial no tamanho de (G, k), porque ρ tem |V| vértices.

Conjunto de Ataque / Hitting Set

Sejam D um conjunto finito, \mathcal{C} uma coleção de subconjuntos de D e $k \geq 1$. Um **conjunto de ataque de** \mathcal{C} **de cardinalidade** k é um conjunto $A \subseteq D$ tal que: |A| = k e $(\forall X \in \mathcal{C}) \ X \cap A \neq \emptyset$.

ATAQUE: Dados um conjunto finito D, uma coleção \mathcal{C} de subconjuntos de D e um inteiro $k \geq 1$,

 $\mathcal C$ tem um conjunto de ataque de cardinalidade inferior ou igual a k?

Instância

$$(\{1,2,3,4,5,6,7,8\}, \{\{1,2,3\}, \{4,5,6\}, \{2,3,5,7\}\}, 2)$$

Conjunto de Ataque / Hitting Set

Sejam D um conjunto finito, \mathcal{C} uma coleção de subconjuntos de D e $k \geq 1$. Um **conjunto de ataque de** \mathcal{C} **de cardinalidade** k é um conjunto $A \subseteq D$ tal que: |A| = k e $(\forall X \in \mathcal{C}) \ X \cap A \neq \emptyset$.

ATAQUE: Dados um conjunto finito D, uma coleção \mathcal{C} de subconjuntos de D e um inteiro $k \geq 1$,

 $\mathcal C$ tem um conjunto de ataque de cardinalidade inferior ou igual a k?

Instância

$$(\{1,2,3,4,5,6,7,8\}, \{\{1,2,3\}, \{4,5,6\}, \{2,3,5,7\}\}, 2)$$

Candidato a Prova do Sim: $\{1,5\}$ (um subconjunto de D)

NP-completo [Karp 1972]

ATAQUE é um Problema **NP** (1)

- 1. Existe um algoritmo polinomial que, dados:
 - um conjunto finito D,
 - uma coleção ^C de subconjuntos de D,
 - um inteiro $k \geq 1$ e
 - um subconjunto A de D,

verifica se A é um conjunto de ataque de C de cardinalidade inferior ou igual a k.

O algoritmo começa por contar o número de elementos de A, retornando **false** se esse número for superior a k. Se a execução continuar, o algoritmo percorre a coleção \mathcal{C} e, para cada elemento X de \mathcal{C} , testa se a interseção entre X e A é não vazia. O algoritmo retorna **true** se, e só se, todos os testes tiverem sucesso. (Continua.)

ATAQUE é um Problema **NP** (2)

(Continuação da descrição do algoritmo.)

Para determinar se a interseção de dois conjuntos é não vazia, basta percorrer um dos conjuntos, verificando se algum dos seus elementos pertence ao outro conjunto.

A complexidade temporal do algoritmo é polinomial no número de elementos de D (|D|), de \mathcal{C} ($|\mathcal{C}|$) e de A (|A|). A contagem do número de elementos de A é $\Theta(|A|)$. Cada teste de interseção é $O(|A| \times |D|)$, porque os elementos de \mathcal{C} são subconjuntos de D. O número máximo de testes de interseção realizados é $|\mathcal{C}|$. Portanto, o número de passos do algoritmo é

$$O(|A| + |C| \times |A| \times |D|) = O(|C| \times |A| \times |D|).$$

2. O **tamanho** do conjunto A é **polinomial** no tamanho de (D, C, k), porque A é um subconjunto de D.

Clique / Clique

Sejam G=(V,A) um grafo não orientado e $n\geq 1$. Uma clique de G de cardinalidade n é um conjunto $V'\subseteq V$ tal que:

$$|V'| = n$$
 e $\forall a, b \in V'$: $a \neq b \Rightarrow (a, b) \in A$.

CLIQUE: Dados um grafo G não orientado e um inteiro $n \ge 1$, G tem uma clique de cardinalidade $\ge n$?

Clique / Clique

Sejam G=(V,A) um grafo não orientado e $n\geq 1$. Uma clique de G de cardinalidade n é um conjunto $V'\subseteq V$ tal que:

$$|V'| = n$$
 e $\forall a, b \in V'$: $a \neq b \Rightarrow (a, b) \in A$.

CLIQUE: Dados um grafo G não orientado e um inteiro $n \ge 1$,

G tem uma clique de cardinalidade $\geq n$?

Candidato a Prova do Sim: {4,5,9,10} (um conjunto de vértices)

NP-completo

Coloração de Vértices / Vertex Colouring

Sejam G = (V, A) um grafo não orientado e $k \ge 2$. Uma coloração dos vértices de G com k cores é uma função, cor : $V \longrightarrow \{1, 2, \dots, k\}$, que atribui a cada vértice uma das k cores possíveis tal que:

$$\forall (v, w) \in A : \operatorname{cor}(v) \neq \operatorname{cor}(w).$$

COLVERT: Dados um grafo G não orientado e um inteiro $k \geq 2$, existe uma coloração dos vértices de G com k cores?

Instância

Coloração de Vértices / Vertex Colouring

Sejam G = (V, A) um grafo não orientado e $k \ge 2$. Uma coloração dos vértices de G com k cores é uma função, cor : $V \longrightarrow \{1, 2, ..., k\}$, que atribui a cada vértice uma das k cores possíveis tal que:

$$\forall (v, w) \in A : \operatorname{cor}(v) \neq \operatorname{cor}(w).$$

COLVERT: Dados um grafo G não orientado e um inteiro $k \geq 2$, existe uma coloração dos vértices de G com k cores?

Instância

Candidato a Prova do Sim: uma atribuição de cores aos vértices NP-completo

Cobertura de Vértices / Vertex Cover

Sejam G=(V,A) um grafo não orientado e $k\geq 1$. Uma cobertura de vértices de G de cardinalidade k é um conjunto $V'\subseteq V$ tal que:

$$|V'| = k$$
 e $\forall (a, b) \in A$: $a \in V'$ ou $b \in V'$.

COBVERT: Dados um grafo G não orientado e um inteiro $k \geq 1$,

G tem uma cobertura de vértices de cardinalidade $\leq k$?

Instância

$$k = 2$$

Cobertura de Vértices / Vertex Cover

Sejam G = (V, A) um grafo não orientado e $k \ge 1$. Uma cobertura de vértices de G de cardinalidade k é um conjunto $V' \subseteq V$ tal que:

$$|V'| = k$$
 e $\forall (a, b) \in A$: $a \in V'$ ou $b \in V'$.

COBVERT: Dados um grafo G não orientado e um inteiro $k \geq 1$,

G tem uma cobertura de vértices de cardinalidade $\leq k$?

Instância

Candidato a Prova do Sim: {2,5} (um conjunto de vértices)

NP-completo

Cobertura de Conjuntos / Set Cover

Sejam D um conjunto finito, \mathcal{C} um conjunto de subconjuntos de D e $n \geq 1$. Uma cobertura de conjuntos de \mathcal{C} de cardinalidade n é um conjunto $\mathcal{C}' \subseteq \mathcal{C}$ tal que:

$$|\mathcal{C}'| = n$$
 e $\bigcup_{X \in \mathcal{C}'} X = D$.

COBCONJ: Dados um conjunto finito D, um conjunto \mathcal{C} de subconjuntos de D e um inteiro $n \geq 1$,

 \mathcal{C} tem uma cobertura de conjuntos de cardinalidade $\leq n$?

Instância

$$(\{1,2,3,4,5,6\}, \{1,2,3,5\}, \{2,3,4\}, \{2,4,6\}\}, 2)$$

Cobertura de Conjuntos / Set Cover

Sejam D um conjunto finito, $\mathcal C$ um conjunto de subconjuntos de D e $n\geq 1$. Uma cobertura de conjuntos de $\mathcal C$ de cardinalidade n é um conjunto $\mathcal C'\subseteq \mathcal C$ tal que:

$$|\mathcal{C}'| = n$$
 e $\bigcup_{X \in \mathcal{C}'} X = D$.

COBCONJ: Dados um conjunto finito D, um conjunto \mathcal{C} de subconjuntos de D e um inteiro $n \geq 1$,

 \mathcal{C} tem uma cobertura de conjuntos de cardinalidade $\leq n$?

Instância

$$(\{1,2,3,4,5,6\}, \{1,2,3,5\}, \{2,3,4\}, \{2,4,6\}\}, 2)$$

Candidato a Prova do Sim: um subconjunto de $\mathcal C$

NP-completo

Partição de Conjunto/ Set Partition

PARTCONJ: Dado um conjunto finito X de números positivos, existe um subconjunto $A \subseteq X$ tal que:

$$\sum_{x \in A} x = \sum_{x \in X \setminus A} x?$$

Instância

$$\{1, 2, 3, 4, 6, 10\}$$

Partição de Conjunto/ Set Partition

PARTCONJ: Dado um conjunto finito X de números positivos, existe um subconjunto $A \subseteq X$ tal que:

$$\sum_{x \in A} x = \sum_{x \in X \setminus A} x?$$

Instância

$$\{1, 2, 3, 4, 6, 10\}$$

Candidato a Prova do Sim: $\{3,10\}$ (um subconjunto de X)

NP-completo

Mochila 0-1 / 0-1 Knapsack

MOCH01: Seja I um conjunto finito de itens. Cada item $i \in I$ tem um peso w_i e um valor v_i , ambos não negativos. Sejam $C \geq 0$ a capacidade da mochila e $V \geq 0$. Existe um subconjunto $S \subseteq I$ tal que:

$$\sum_{i \in S} w_i \le C \quad \land \quad \sum_{i \in S} v_i \ge V?$$

Forma das Instâncias

$$((w_1, w_2, \ldots), (v_1, v_2, \ldots), C, V)$$

Instância

Mochila 0-1 / 0-1 Knapsack

MOCH01: Seja I um conjunto finito de itens. Cada item $i \in I$ tem um peso w_i e um valor v_i , ambos não negativos. Sejam $C \geq 0$ a capacidade da mochila e $V \geq 0$. Existe um subconjunto $S \subseteq I$ tal que:

$$\sum_{i \in S} w_i \le C \quad \land \quad \sum_{i \in S} v_i \ge V?$$

Forma das Instâncias

$$((w_1, w_2, \ldots), (v_1, v_2, \ldots), C, V)$$

Instância

Candidato a Prova do Sim: um conjunto de itens

NP-completo

Redução de Problemas

Um problema X reduz-se a um problema Y se existir uma função ϕ que transforma qualquer instância I de X numa instância $\phi(I)$ de Y,

$$\phi : X \longrightarrow Y$$

$$I \longmapsto \phi(I)$$

de tal forma que:

Solução_{$$X$$}(I) = Solução _{Y} ($\phi(I)$).

Se ϕ pertencer à classe Ω , ϕ diz-se uma **redução** Ω de X para Y.

Notação:

 $X \leq_{P} Y$ significa que há uma redução polinomial de X para Y.

$PAR \leq_P MULT$

PAR: Dado um inteiro positivo k, k é par?

MULT: Dados dois inteiros positivos m e n, m é múltiplo de n?

PAR reduz-se a MULT porque a função

$$f: \mathsf{PAR} \longrightarrow \mathsf{MULT}$$

$$k \longmapsto$$

$PAR \leq_P MULT$

PAR: Dado um inteiro positivo k, k é par?

MULT: Dados dois inteiros positivos m e n, m é múltiplo de n?

PAR reduz-se a MULT porque a função

$$f: \mathsf{PAR} \longrightarrow \mathsf{MULT}$$
 $k \longmapsto (k,2)$

é tal que:

Solução_{PAR}
$$(k)$$
 = Solução_{MULT} $((k, 2))$,

ou seja:

$$k \in \text{par} \iff k \in \text{multiplo de 2}.$$

A redução é polinomial porque a transformação f pode ser efetuada em tempo polinomial.

A dificuldade de PAR é menor ou igual à dificuldade de MULT.

HAMILTON \leq_P **CAIXEIRO**

HAMILTON: Dado um grafo G, não orientado e conexo,

G tem um circuito de Hamilton?

CAIXEIRO: Dados um grafo G, não orientado, pesado e completo, cujos arcos têm custo positivo, e um inteiro $k \ge 1$,

G tem um circuito de Hamilton cujo comprimento pesado não excede k?

$$\phi : \mathsf{HAMILTON} \longrightarrow \mathsf{CAIXEIRO}$$

$$((V,A)) \longmapsto$$

Exemplo

HAMILTON → CAIXEIRO

Grafo não orientado e conexo.

Grafo não orientado, pesado e completo; $k \ge 1$.

∃ circuito de Hamilton?

 \exists circuito de Hamilton com comprimento pesado $\leq k$?

SIM

 \iff

SIM

Exemplo

HAMILTON → CAIXEIRO

Grafo não orientado e conexo.

Grafo não orientado, pesado e completo; $k \ge 1$.

∃ circuito de Hamilton?

 \exists circuito de Hamilton com comprimento pesado $\leq k$?

dificuldade de HAMILTON < dificuldade de CAIXEIRO

HAMILTON \leq_P **CAIXEIRO**

HAMILTON: Dado um grafo G, não orientado e conexo,

G tem um circuito de Hamilton?

CAIXEIRO: Dados um grafo G, não orientado, pesado e completo, cujos arcos têm custo positivo, e um inteiro $k \ge 1$,

G tem um circuito de Hamilton cujo comprimento pesado não excede k?

$$\phi$$
: HAMILTON \longrightarrow CAIXEIRO $((V,A)) \longmapsto ((V,A'),|V|)$

onde A' é o conjunto:

$$\{(x,y,1) \mid (x,y) \in A\} \cup \{(x,y,2) \mid x \in V, y \in V, x \neq y, (x,y) \not\in A\}.$$

Teorema (T1)

Redução
$$\phi: X \longrightarrow Y$$
 $x \longmapsto \phi(x)$

 $X \text{ indecidível} \Rightarrow Y ????????$

Teorema (T1)

Redução
$$\phi: X \longrightarrow Y$$
 $x \longmapsto \phi(x)$

X indecidível $\Rightarrow Y$ indecidível

Demonstração (por contra-recíproco)

Suponhamos que Y é decidível, existindo um algoritmo para resolver Y. Seja x uma instância qualquer de X.

Calculando $\phi(x)$ e executando o algoritmo que resolve Y com o input $\phi(x)$, obtém-se a solução de x em dois passos.

Estes dois passos definem um algoritmo para resolver X, concluindo-se que X é decidível.

Teorema (T2)

Redução Polinomial $\phi: X \longrightarrow Y$ $x \longmapsto \phi(x)$

X intratável $\Rightarrow Y$????????

Teorema (T2)

Redução Polinomial
$$\phi: X \longrightarrow Y$$

 $x \longmapsto \phi(x)$

X intratável $\Rightarrow Y$ intratável

Demonstração (por contra-recíproco)

Suponhamos que Y é tratável, existindo um algoritmo polinomial para resolver Y.

Seja x uma instância qualquer de X.

Calculando $\phi(x)$ e executando o algoritmo polinomial que resolve Y com o input $\phi(x)$, obtém-se a solução de x em dois passos polinomiais. Estes dois passos definem um algoritmo polinomial para resolver X, concluindo-se que X é tratável.

O Sufixo Difícil (Hard)

Seja Ω a classe P, NP, EXPTIME ou PSPACE.

Um problema Y é Ω -difícil se qualquer problema em Ω se reduz a Y através de uma redução polinomial: $(\forall X \in \Omega) \ X \leq_P Y$.

Y é **pelo menos tão difícil como** os problemas em Ω

O Sufixo Completo (Complete)

Seja Ω a classe **P**, **NP**, **EXPTIME** ou **PSPACE**. Um problema Y é Ω -completo se Y é Ω -difícil e $Y \in \Omega$.

Y é um dos problemas mais difíceis de Ω

Teorema (T3)

Redução Polinomial
$$\phi: X \longrightarrow Y$$

 $x \longmapsto \phi(x)$

$$X \Omega$$
-completo $\Rightarrow Y \Omega$ -difícil

Demonstração

Seja A um problema qualquer na classe Ω .

Como X é Ω -completo, é Ω -difícil e existe uma redução polinomial

$$\psi:A\longrightarrow X.$$

Efetuando a redução $\psi:A\longrightarrow X$, seguida da redução $\phi:X\longrightarrow Y$, obtém-se uma redução polinomial de A para Y.

Exemplos

GIC- \emptyset : Dada uma gramática independente do contexto G,

$$\mathcal{L}(G) = \emptyset$$
?

P-completo

[Jones, Laaser 1977]

HORN: Dados um conjunto H, de cláusulas de Horn fechadas, e uma fórmula atómica fechada f,

$$H \vdash f$$
?

P-completo

[Jones, Laaser 1977]

 $\mathsf{ER}\text{-}T^*$: Dada uma expressão regular R, sobre um alfabeto T,

$$\mathcal{L}(R) = T^*?$$

PSPACE-completo

[Meyer, Stockmeyer 1972]

Principal Questão em Aberto: P = NP?

Se alguém criar um algoritmo polinomial que resolve algum problema **NP-completo**, então:

$$P = NP$$

Se alguém provar que algum problema **NP** não pode ser resolvido por um algoritmo polinomial, então:

$$P \subset NP$$
 e $P \cap NP$ -completo $= \emptyset$.

$$P = NP$$
?

Se alguém criar um algoritmo polinomial que resolve algum problema X **NP-completo**, então:

P = NP

Demonstração

Sabe-se que $P \subseteq NP$. Provemos que $NP \subseteq P$.

Seja A um problema **NP** qualquer.

Como X é **NP-completo**, existe uma redução polinomial $\phi: A \longrightarrow X$.

Como X é tratável, pelo Teorema (T2), A é tratável.

Portanto, A pertence à classe \mathbf{P} (é um problema de decisão tratável).

$$P = NP$$
?

Se alguém provar que algum problema **NP** não pode ser resolvido por um algoritmo polinomial, então:

$$P \subset NP$$
 e $P \cap NP$ -completo $= \emptyset$.

Se existir um problema X, **NP** e **intratável**, então:

NP-completo \subseteq **Intratável**.

Demonstração

Seja A um problema **NP-completo** qualquer.

Se $X \in \mathbf{NP}$, existe uma redução polinomial $\phi: X \longrightarrow A$.

Como X é intratável, pelo Teorema (T2), A é intratável.

Ainda há muitas Questões em Aberto e,

de vez em quando, surgem Novos Resultados

Teste à Primalidade

PRIMO: Dado um número inteiro $p \ge 2$,

p é primo?

P

[Agrawal, Kayal, Saxena 2002]