Devoir surveillé n°5 Version n°1

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit (G, \times) un groupe, H et K deux sous-groupes de G.

- 1) Montrer que $H \cap K$ est un sous-groupe de G.
- 2) Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

II. Un résultat de croissances comparées.

I – Fonctions continues vérifiant une limite.

Dans cette partie, on considère une fonction $f: \mathbb{R}_+ \to \mathbb{R}$ continue telle que

$$f(x+1) - f(x) \xrightarrow[x \to +\infty]{} 0.$$

L'objectif est de montrer que

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0.$$

On fixe un entier $n \in \mathbb{N}^*$.

1) Soit $\varepsilon_n \in \left]0, \frac{1}{n}\right[$. Montrer qu'il existe $p_n \in \mathbb{N}$ tel que :

$$\forall x \in [p_n, +\infty[, f(x) - \varepsilon_n \leqslant f(x+1) \leqslant f(x) + \varepsilon_n.$$

2) On considère l'intervalle $I_n = [p_n, p_n + 1]$. Montrer que f est bornée sur I_n et en déduire qu'il existe $M_n \in \mathbb{R}_+^*$ tel que :

$$\forall x \in I_n, -M_n \leqslant f(x) - \frac{x}{n} \leqslant M_n.$$

3) Montrer par récurrence que pour tout $k \in \mathbb{N}$ et tout $x \in I_n$:

$$f(x+k) - \frac{x+k}{n} \leqslant M_n + k\left(\varepsilon_n - \frac{1}{n}\right).$$

4) Montrer qu'il existe $K_n \in \mathbb{N}$ tel que pour tout entier $k \geqslant K_n$:

$$M_n + k\left(\varepsilon_n - \frac{1}{n}\right) \leqslant 0.$$

5) En déduire que pour tout $x \in I_n$ et pour tout entier $k \geqslant K_n$:

$$f(x+k) < \frac{x+k}{n}.$$

6) En déduire que pour tout $x \in [p_n + K_n, +\infty[$:

$$\frac{f(x)}{x} \leqslant \frac{1}{n}.$$

On montrerait de même à partir des questions 1) et 2) que :

$$\forall x \in [p_n + K_n, +\infty[, -\frac{1}{n} \leqslant \frac{f(x)}{x}].$$

7) Conclure en montrant que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0$.

II – Application : morphismes continus de (\mathbb{R}_+^*, \times) dans $(\mathbb{R}, +)$.

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ une fonction continue vérifiant :

$$\forall x, y \in \mathbb{R}_+^*, \ f(xy) = f(x) + f(y).$$

8) Montrer que f(1) = 0, puis que :

$$\forall x \in \mathbb{R}_+^*, \ f\left(\frac{1}{x}\right) = -f(x).$$

- 9) Montrer que $f(x+1) f(x) \xrightarrow[x \to +\infty]{} 0$.
- **10)** Montrer enfin que :

$$\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} 0 \quad \text{et} \quad xf(x) \xrightarrow[x \to 0]{} 0.$$

Remarque : ceci montre que, pour savoir que $\lim_{x\to +\infty} \frac{\ln(x)}{x} = \lim_{x\to 0} x \ln(x) = 0$, il suffit de savoir que ln est continue et transforme les produits en sommes.

III. Étude d'une suite définie par récurrence.

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = u_n^2 + u_n.$$

- 1) Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser, le cas échéant, sa limite.
- 2) Pour tout $n \in \mathbb{N}$, on pose,

$$v_n = \frac{1}{2^n} \ln u_n.$$

a) Prouver que pour tous $n, p \in \mathbb{N}$:

$$0 \leqslant v_{n+p+1} - v_{n+p} \leqslant \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right).$$

b) En déduire que pour tous $n, k \in \mathbb{N}$:

$$0 \leqslant v_{n+k+1} - v_n \leqslant \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right).$$

- c) En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$ vers un réel, que l'on choisit d'écrire comme un logarithme, *i.e.* ln α avec $\alpha > 0$.
- 3) a) Déterminer un encadrement de $\ln \alpha v_n$ pour tout $n \in \mathbb{N}$.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$:

$$u_n \leqslant \alpha^{2^n} \leqslant u_n + 1.$$

- c) Comparer α et 1.
- **d)** En déduire la limite $\lim_{n\to+\infty} \frac{u_n}{\alpha^{2^n}}$.
- **4)** Pour tout $n \in \mathbb{N}$ on pose $\delta_n = \alpha^{2^n} u_n$.
 - a) Montrer que la suite $(\delta_n)_{n\in\mathbb{N}}$ est bornée et que, pour tout $n\in\mathbb{N}$,

$$\delta_n = \frac{1}{2} + \frac{\delta_{n+1} + \delta_n^2 - \delta_n}{2} \alpha^{-2^n}.$$

- **b)** En déduire que, pour tout $n \in \mathbb{N}$, $\delta_n < 1$.
- c) En déduire que, pour tout $n \in \mathbb{N}$, $u_n = \left\lfloor \alpha^{2^n} \right\rfloor$.
- d) Montrer enfin que la suite $(\delta_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

— FIN —