# Outline

- 1. What is Machine Learning??
- 2. The Wonders of Machine Learning
- 3.Data, Models and ML Tasks

#### 4. Supervised Learning

- 1. Regression
- 2. Classification
- 5. Unsupervised Learning
  - 1. Dimensionality Reduction
  - 2. Density Estimation

### **Notation**

$$\chi' : \begin{bmatrix} 1,2,3 \end{bmatrix} \\ \chi^2 : \begin{bmatrix} 7,9,9 \end{bmatrix} \\ \chi_2 : g$$

$$\begin{bmatrix} 1\cdot3 \\ -7\cdot6 \\ 5\cdot9 \end{bmatrix} \in \mathbb{R}^3$$

•  $\mathbf{x}$ : vector.  $x_i$ :  $j^{\text{th}}$  co-ordinate.  $\|\mathbf{x}\|$ : Length of vector  $\mathbf{x}$ .

•  $(x_1)^2$ : Square of the first co-ordinate of the vector  $\mathbf{x}$ 

- $\mathbb{R}$ : real numbers,  $\mathbb{R}_+$ : Positive reals,  $\mathbb{R}^d$ : d-dimensional vector of reals.
- na. real nambers, na<sub>+</sub>. restrict reals, na . a annensional vector of reals

 $\chi_{3} \cdot 7$   $\|x\|^{2} = \chi^{2} + \chi^{2} + \dots + \chi^{2}$ 

- $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^n$ : Collection of n vectors.
- $x_i^i$ :  $j^{th}$  co-ordinate of  $i^{th}$  vector.
- 1(2 is even) = 1, 1(2 is odd) = 0.
- $\mathbf{I}(\mathbf{Z} \mid \mathbf{S} \mid \mathbf{e} \mathbf{ver}) = \mathbf{I}, \ \mathbf{I}(\mathbf{Z} \mid \mathbf{S} \mid \mathbf{odd}) = \mathbf{I}$

# Supervised Learning



- Supervised learning is curve-fitting.
- Given  $\{(\mathbf{x}^1,y^1),(\mathbf{x}^2,y^2),\ldots,(\mathbf{x}^n,y^n)\}$
- Find a model f such that  $f(\mathbf{x}^i)$  is 'close' to  $y^i$

# Regression

- E.g. Predict house price from room, area, distance.
- Training data:  $\{(\mathbf{x}^1,y^1),(\mathbf{x}^2,y^2),\dots,(\mathbf{x}^n,y^n)\}$
- $\mathbf{x}^i \in \mathbb{R}^d, y^i \in \mathbb{R}$
- Algorithm outputs a model  $f: \mathbb{R}^d {
  ightarrow} \mathbb{R}$
- Loss  $= \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}^i) y^i)^2$  = Squared loss
- $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b = \sum_{j=1}^{d} w_j x_j + b$ Linear Parameterisation =  $\mathbf{w}_j$  (# rooms) +  $\mathbf{w}_j$  (distance) +  $\mathbf{b}$

# Regression Illustration 1

| Regression Illustration 2 |      |          |       |
|---------------------------|------|----------|-------|
| Rooms                     | Area | Distance | Price |
| 3                         | 9    | 1.9      | 5.0   |

5.05



2.95

9.6

6.8

11.2

7.2

g = ROOMS +

2 \* distan

5

5

4

3.1

1.6

15

11

7.2

6.9