Question 6 : Final Results

Table I : Summary Accuracy Scores for Abalone Dataset

Model	Setting	Dataset	Accuracy(%)	
KNN	n_neighbors = 84 (from prev assgn)	abalone-raw	25.1196172248804	
KNN	n_neighbors = 84 (from prev assgn)	abalone-pca	25.1196172248804	
KNN	n_neighbors = 84 (from prev assgn)	abalone-lda	25.717703349282296	
Naive Bayes	Gaussian	abalone-raw	22.0746067673266	
Naive Bayes	Gaussian	abalone-pca	22.16995673724322	
Naive Bayes	Gaussian	abalone-lda	23.318454001088732	
Naive Bayes	Multinomial	abalone-raw	16.6625791479242	
Naive Bayes	Multinomial	abalone-pca	16.495086382259405	
Naive Bayes	Multinomial	abalone-Ida	16.495086382259405	
Naive Bayes	Complement	abalone-raw	14.7475861673782	
Naive Bayes	Complement	abalone-pca	19.29536143024955	
Naive Bayes	Complement	abalone-lda	23.006790247256685	
Decision Tree	{'max_depth': 4}	abalone-raw	26.26310059307223	
Decision Tree	{'max_depth': 4}	abalone-pca	26.33515743632352	
Decision Tree	{'max_depth': 3}	abalone-lda	25.8082972	
Random Forest	{'max_depth': 8, 'n_estimators': 183}	abalone-raw	27.364725095264014	
Random Forest	{'max_depth': 6, 'n_estimators': 23}	abalone-pca	27.029653611437414	
Random Forest	{'max_depth': 6, 'n_estimators': 143}	abalone-lda	27.100793628054898	
Gradient Tree Boost	{'max_depth': 3, 'n_estimators': 80}	abalone-raw	25.35400968398132	
Gradient Tree Boost	{'max_depth': 3, 'n_estimators': 160}	abalone-pca	23.89364811047761	
Gradient Tree Boost	{{'max_depth': 3, 'n_estimators': 80}	abalone-lda	24.22851903847807	

Table II : Summary Accuracy Scores for WINE Dataset

Model	Setting	Dataset	Accuracy(%)
Gradient Tree Boosting	{'max_depth': 6, 'n_estimators': 150}	wine-pca	46.9617457
Gradient Tree Boosting	{'max_depth': 6, 'n_estimators': 100}	wine-lda	49.6547285
Gradient Tree Boosting	{'max_depth': 6, 'n_estimators': 20}	wine-raw	47.5932374
KNN	n_neighbors = 84 (from prev assgn)	wine-raw	68.3076923
KNN	n_neighbors = 84 (from prev assgn)	wine-pca	68.2307692
KNN	n_neighbors = 84 (from prev assgn)	wine-lda	68.5384615
Naive Bayes	Gaussian	wine-raw	30.1210399
Naive Bayes	Gaussian	wine-pca	44.9918399
Naive Bayes	Gaussian	wine-lda	52.9787174
Naive Bayes	Multinomial	wine-raw	41.512465209 924784
Naive Bayes	Multinomial	wine-pca	43.650926748 38634
Naive Bayes	Multinomial	wine-lda	43.650926748 38634
Naive Bayes	Complement	wine-raw	36.955421330 017174
Naive Bayes	Complement	wine-pca	42.759187540 71179
Naive Bayes	Complement	wine-lda	42.449943743 70818
Decision Tree	{'max_depth': 6}	wine-pca	45.576171
Decision Tree	{'max_depth': 1}	wine-lda	53.1946468
Decision Tree	{'max_depth': 4}	wine-raw	49.9779831
Random Forest	{'max_depth': 10, 'n_estimators': 183}	wine-pca	48.9016166
Random Forest	{'max_depth': 4, 'n_estimators': 103}	wine-lda	54.4722805
Random Forest	{'max_depth': 8, 'n_estimators': 163}	wine-raw	49.5327175

Best Pipeline:

- Abalone: Among all, Random Forest on abalone without performing dimensionality reduction performed the best. LDA outperformed PCA in all models except for Decision Trees
- **2. Wine:** Among all, applying LDA transformation and then classifying using KNN has performed the best. Even between the same classifier, the LDA transformed datasets have performed consistently better than raw or PCA transformed.

Effect of Dimensionality Reduction (on Abalone dataset):

- a. KNN: A negligible improvement in performance (+0.8%) was observed for LDA
- b. **Naive Bayes:** For Gaussian NB, both LDA(~2%) and PCA(~0.1%) performed better by a small margin after dimensionality reduction. For Multinomial NB, all the 6 datasets were observed to perform poorly with only a slight variation in the accuracy scores. For Complement NB, considerable variation in the accuracy scores were seen Raw(14.74%) < PCA (19.29%)< **LDA (23%)**
- c. **Decision Trees:** A slight degradation in performance (-1%) was observed for LDA while the increase was negligible for PCA.
- d. **Random Forest:** A slight degradation in performance was observed for both LDA and PCA as compared to the raw dataset
- e. **Gradient Tree Boosting:** A slight degradation in performance was observed for both LDA and PCA as compared to the raw dataset

Effect of Dimensionality Reduction (on Wine dataset):

- a. KNN: There was negligible difference in performance (± 0.2%)
- b. Naive Bayes: For Gaussian, significant difference in performance was observed Raw (30.12%) < PCA (44.99) < LDA (52.97%). For Multinomial, a slight improvement was observed for both LDA and PCA. For Complement, both PCA and LDA performed much better than the raw dataset with LDA outperforming PCA</p>
- c. Decision Trees: Different in performance was observed, but it wasn't as significant as Naive Bayes PCA (45.57%) < Raw (49.97%) < LDA (53.19%)</p>
- **d. Random Forest:** Different in performance was observed, as much as Decision Trees. PCA (48.90%) < Raw (49.53%) < **LDA (54.47%)**
- e. Gradient Tree Boosting: Difference in performance was observed, but it wasn't as much significant (± 1.5%)

As a general trend, for the wine dataset, LDA transformation has performed the best among all the pipelines in most models except in Complement Naive Bayes where PCA performed better.

Additional interesting observations -

• In both the abalone and wine dataset, the tree-based models have performed better at lower values of depth (<10).