German University in Cairo Faculty of Media Engineering and Technology Prof. Dr. Slim Abdennadher Dr. Aysha ElSafty

Introduction to Computer Science, Winter Semester 2016 Practice Assignment 10

Discussion: 31.12.2016 - 5.01.2017

Exercise 10-1

Use AND, OR and NOT gates to implement the circuits represented by the following two expressions:

$$S = P'X'Y + P'XY' + PX'Y' + PXY$$

$$C = P'XY + PX'Y + PXY' + PXY$$

Exercise 10-2

Draw a logic circuit that corresponds to each of the expressions shown below:

a)
$$AB' + A'C'D' + A'B'D + A'B'CD'$$

b)
$$B' + A'C'D'$$

c)
$$(A' + B' + C + D')(A + B + C' + D)$$

Exercise 10-3

Given the following the following truth table, where A, B and C are the input variables and X is the output variable.

A	В	$ \mathbf{C} $	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- a) Use the sum-of-products algorithm to find the Boolean expression that describes the output of the truth table.
- b) What is the functionality of the circuit?
- c) Draw the Boolean circuit. Note that each gate can have only two inputs.

Exercise 10-4

Simplify the Boolean expressions to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

x + 0 = x	x * 1 = x	
x + 1 = 1	x * 0 = 0	
x + x = x	x * x = x	
x + x' = 1	x * x' = 0	
(x')' = x		
x + y = y + x	xy = yx	Commutativity
x + (y+z) = (x+y) + z	x(yz) = (xy)z	Associativity
x(y+z) = xy + xz	x + yz = (x+y)(x+z)	Distributivity
(x+y)' = x'y'	(xy)' = x' + y'	DeMorgan's Law

- ABC + ABC' + A'B
- (A+B)'(A'+B')
- (A+B'+AB')(AB+A'C+BC)
- P'XY + PX'Y + PXY' + PXY
- (AB)'(A+B)
- B + A'C + AB'
- AB + A'C + BC

Exercise 10-5

Given the following Boolean expression, simplify it to a minimum number of literals using the Boolean algebra. Please mention the applied rules.

$$((A+B)(B'+C'+D')) + B'C'(A+B'+C) + A'C+D$$

Hint: The circuit of the simplified expression consists of zero gates.

Exercise 10-6 Boolean Circuits Comparator

A one-bit comparator is a circuit that takes two numbers consisting of one bit each and outputs 1 if the numbers are equal, 0 otherwise.

- a) Construct a truth table for a one bit equality comparator.
- b) Assume that you have already manufactured one-bit comparators.

Design a circuit that uses one-bit comparators and AND-gates to check the equality of two numbers consisting of 4 bits each.

c) Assume that our one-bit comparator was modified to have two input variables A, B and three output variables (one checking for A = B, one checking for A > B and one checking for A < B).

2

Design a circuit that uses the modified one-bit comparators with other gates to compare two numbers consisting of 2 bits each. **Do not draw the truth table.**