试 题 五 (考试时间: 120分钟)

٠,	判断题(每小题 3 分,共 18 分)			
1.	设 $A \setminus B$ 均为 n 阶方阵,则 $ A B = A B $.	()	
2.	设 A 为 $m \times n$ 矩阵,且 $m < n$,则线性方程组 $Ax = b$ 有无穷多解.	()	
	n 阶实对称矩阵一定与对角矩阵相似.	()	
4.	已知 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 为 n 维列向量组, A 是 $m \times n$ 矩阵,如果 $\alpha_1,\alpha_2,\cdots,$	α_s 线	性相差	关,
	则 $Alpha_{_{\! 1}}, Alpha_{_{\! 2}}, \cdots, Alpha_{_{\! s}}$ 也线性相关.	()	
5.	实二次型 $f = x^T A x$ 的标准形是唯一的.	()	
6.	已知向量组 $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (-1,1,1)^T$, $\alpha_3 = (0,3,9)^T$ 线性无	关,	则向量	量组
	$\beta_1 = (1, 2, 3, a)^T$, $\beta_2 = (-1, 1, 1, b)^T$, $\beta_3 = (0, 3, 9, c)^T$ 也线性无关.	()	
	单项选择题(每小题 4 分, 共 24 分)			
1.	行列式 $\begin{vmatrix} 2 & -1 & x & 2x \\ 1 & 1 & x & -1 \\ 0 & x & 2 & 0 \\ x & 0 & -1 & -x \end{vmatrix}$ 中 x^4 项的系数是	()	
	(A) 1 (B) -1 (C) 2 (D) -2			
2.	设 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 3 \end{pmatrix}$, $C = AB^{-1}$, 则 C^{-1} 中第 3 行第 2 列元	素是	()
	(A) 1/3 (B) 1/2 (C) 1 (D) 3/2			
3.	已知 A 为 4 阶非零矩阵,其伴随矩阵 A^* 的秩 $r(A^*)=0$,则秩 $r(A)=$	()	
	(A)1或2 (B)1或3 (C)2或3 (D)3或4			
4.	设 ξ_1,ξ_2,ξ_3 是线性方程组 $Ax=0$ 的基础解系,则它的另一个基础解系	是()	
	(A) 三个与 ξ_1,ξ_2,ξ_3 等秩的向量组 (B) 三个与 ξ_1,ξ_2,ξ_3 等价的向量			
	(C) $\xi_1, \xi_2 + \xi_3, \xi_1 + \xi_2 + \xi_3$ (D) $\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$			
5.	设 n 阶方阵 A 满足 $A^2 + A = 0$,则错误结论是	()	
()	A) $A+2E$ 可逆 (B) $A-2E$ 可逆 (C) $A-E$ 可逆 (D) $A+E$	可逆		
6.	已知多项式线性空间 $V = \{ax^2 + bx + c \mid a, b, c \in R\}$, $e_1 = 1$, $e_2 = x - 1$, $e_3 = x - 1$	$r_3 = ()$	$(x-1)^2$	是
V	f' 的一组基,则多项式 $f(x) = 2x^2 - 5x + 6$ 在该组基下的坐标是 ()		

1

(A)
$$(2,-5,6)$$
 (B) $(2,-1,3)$ (C) $(3,-1,2)$ (D) $(-1,2,3)$

三、(8分) 设
$$\alpha_1$$
, α_2 , ..., α_n 为 n 维列向量, $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, ...,

$$\beta_{\scriptscriptstyle n} = \alpha_{\scriptscriptstyle n} + \alpha_{\scriptscriptstyle 1} \text{ , } 方阵 \, A = \left(\alpha_{\scriptscriptstyle 1}, \alpha_{\scriptscriptstyle 2}, \cdots, \alpha_{\scriptscriptstyle n}\right) \text{ , } B = (\beta_{\scriptscriptstyle 1}, \ \beta_{\scriptscriptstyle 2}, \cdots, \beta_{\scriptscriptstyle n}) \text{ , } 如果 \left|A\right| = 1003 \text{ , } 求 \left|B\right|.$$

四、(10 分) 已知 3 阶方阵
$$A, B$$
 满足 $A^*BA = 2BA - 8E$,其中 $A = \begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}$,求矩 阵 B .

五、(10 分) 设矩阵
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & x \\ 0 & 0 & 6 \end{pmatrix}$$
可对角化,求矩阵 A 的特征值及 x 的值。

六、(12 分)已知向量 $\alpha_1 = (1,1,1,1+a)^T$, $\alpha_2 = (2,2,2+a,2)^T$, $\alpha_3 = (3,3+a,3,3)^T$, $\alpha_4 = (4+a,4,4,4)^T$,问 a 为何值时, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关? 当 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关时, 求其一个极大线性无关组,并将其余向量由该极大线性无关组线性表示.

七、(12 分) 已知非齐次线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1 \textbf{有 3 个线性无关解.} \\ ax_1 + x_2 + 3x_3 + bx_4 = 1 \end{cases}$$

(1)证明:方程组的系数矩阵 A 的秩 r(A) = 2; (2) 求 a,b 的值及方程组的通解.

八、(6 分) 证明: n 元实二次型 $f(x) = x^T A x$ 正定的充分必要条件是它的标准形中 n 个系数全为正.

试题五参考答案

一 判断题(每小题3分,共18分)

1. 设
$$A \setminus B$$
均为 n 阶方阵,则 $||A|B| = |A||B|$. (×)

- 2. 设A为 $m \times n$ 矩阵,且m < n,则线性方程组Ax = b有无穷多解. (x)
- 3. n 阶实对称矩阵一定与对角矩阵相似.
- 4. 已知 $\alpha_1, \alpha_2, \dots, \alpha_s$ 为n维列向量组, $A \\neta m \times n$ 矩阵,如果 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关,则 $A\alpha_1, A\alpha_2, \dots, A\alpha_s$ 也线性相关. (1)
- 5. 实二次型 $f = x^T A x$ 的标准形是唯一的. (x)
- 6. 已知向量组 $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (-1,1,1)^T$, $\alpha_3 = (0,3,9)^T$ 线性无关,则向量组 $\beta_1 = (1, 2, 3, a)^T$, $\beta_2 = (-1, 1, 1, b)^T$, $\beta_3 = (0, 3, 9, c)^T$ 也线性无关.
- 二 单项选择题题(每小题 4 分, 共 24 分)

故
$$|B| = \begin{cases} 2006, & n$$
为奇数 $0, & n$ 为偶数

四 解: 因为 $|A| = -2 \neq 0$,故 A 可逆,又 $AA^* = |A|E = -2E$

所以 $AA^*BAA^{-1} = 2ABAA^{-1} - 8AA^{-1}$, 得 (A+E)B = 4E

曲
$$|A+E| = -4 \neq 0$$
, 求得 $(A+E)^{-1} = -\frac{1}{4}(A+E)^* = -\frac{1}{4} \begin{pmatrix} -2 & -4 & 6 \\ 0 & 4 & -8 \\ 0 & 0 & -2 \end{pmatrix}$

所以
$$B = \begin{pmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{pmatrix}$$

五解:
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & -x \\ 0 & 0 & \lambda - 6 \end{vmatrix} = (\lambda - 6)^2 (\lambda + 2)$$

故 特征值 $\lambda_1 = \lambda_2 = 6$, $\lambda_3 = -2$

由于 A 可对角化,所以 $\lambda_1 = \lambda_2 = 6$ 有两个线性无关的特征向量,故 r(6E-A)=1

又
$$6E - A = \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & -x \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & -x \\ 0 & 0 & 0 \end{pmatrix}$$
, 从而 $x = 0$

$$\overrightarrow{R}: A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & 2 & 3 & 4+a \\ 1 & 2 & 3+a & 4 \\ 1 & 2+a & 3 & 4 \\ 1+a & 2 & 3 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4+a \\ 0 & 0 & a & -a \\ 0 & a & 0 & -a \\ a & 0 & 0 & -a \end{pmatrix}$$

当 a=0时, r(A)=1, 故 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关,

 α_1 为其一个极大线性无关组,且 $\alpha_2 = 2\alpha_1$, $\alpha_3 = 3\alpha_1$, $\alpha_4 = 4\alpha_2$

当
$$a \neq 0$$
 时, $A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4+a \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4+a \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -10-a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 9+a \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -10-a \end{pmatrix}$

而 a = -10 时, r(A) = 3 < 4 , 故 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关,

 $\alpha_1, \alpha_2, \alpha_3$ 为其一个极大线性无关组,且 $\alpha_4 = -\alpha_1 - \alpha_2 - \alpha_3$,

七 解: (1) 设 ξ_1, ξ_2, ξ_3 是 Ax = b 的 3 个线性无关解,则 $\xi_1 - \xi_2, \xi_1 - \xi_3$ 是 Ax = 0 的 2 个线性无关解,故 $4 - r(A) \ge 2$, $r(A) \le 2$;

又
$$A$$
中有一个二阶子式 $\begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} \neq 0$, $r(A) \geq 2$, 所以 $r(A) = 2$

$$(2) \ \overline{A} = \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 4 & 3 & 5 & -1 & -1 \\ a & 1 & 3 & b & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 4-2a & 4a+b-5 & 4-2a \end{pmatrix}$$

因为
$$r(A) = 2$$
,所以 $4-2a = 0,4a+b-5=0$,解得 $a = 2,b=-3$

这时
$$\overline{A} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & 2 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,同解方程组

$$\begin{cases} x_1 = 2 - 2x_3 + 4x_4 \\ x_2 = -3 + x_3 - 5x_4 \end{cases}, \quad 通解 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 0 \\ 0 \end{pmatrix} + k_1 \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 4 \\ -5 \\ 0 \\ 1 \end{pmatrix} (k_1, k_2 是任意常数)$$

八 证明: 设存在正交变换 x = Cy, 使得 $f = y^T (C^T A C) y = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$

充分性 设
$$d_i > 0 (i = 1, \dots, n)$$
, 则 $\forall x \neq 0$ 有 $y = C^{-1}x = (y_1, y_2, \dots, y_n) \neq 0$,

故
$$f(x) = y^T(C^TAC)y = d_1y_1^2 + d_2y_2^2 + \dots + d_ny_n^2 > 0$$
,即 $f(x)$ 为正定二次型

必要性 (反证法) 假设存在
$$d_k \leq 0$$
 ,若取 $y = e_k = (0, \cdots 0, \frac{1}{\mathfrak{g}_k \wedge}, 0, \cdots, 0)^T$,则有 $x = Ce_k \neq 0$,

故
$$f(Ce^k) = e_k^T(C^TAC)e_k = d_k \le 0$$
,与 $f(x)$ 正定相矛盾,所以 $d_i > 0(i=1 \sim n)$