EXAMEN FINAL TEORICO DE ANALISIS MATEMATICO I – 02-08-19

Alumna/o:	Legajo:
Carrera: LM - PM - LF - PF - LCC	

- 1. Definir formalmente qué significan las expresiones $c = \sup A$ y $d = \min B$. Exhibir ejemplos de estas situaciones.
- 2. Dado $x_0=1$, mostrar una función g para la cual $\lim_{x\to x_0}g(x)=+\infty$ y una función h para la cual $\lim_{x\to x_0^+}h(x)=-\infty$ y $\lim_{x\to x_0^-}h(x)=+\infty$.
- 3. Sean $a, L \in \mathbb{R}$ y f una función tal que $\lim_{x \to a} f(x) = L$. Probar que si L > 0 entonces existe un entorno reducido $E'(a, \delta)$ tal que si $x \in E'(a, \delta)$ entonces f(x) > 0.
- 4. Sea f una función definida en un intervalo abierto de \mathbb{R} y a un punto de dicho intervalo. Definir derivada de f en el punto a. Definir recta tangente a la gráfica de f en (a, f(a)). Interpretar geométricamente.

- 5. Analizar la veracidad de los siguientes enunciados, justificando adecuadamente la respuesta:
 - a) Hay una sucesión de números reales creciente que es divergente.
 - b) Toda sucesión de números reales decreciente y acotada inferiormente, es convergente.
 - c) Existe un suceción acotada que es convergente.
 - d) Toda sucesión acotada es convergente.
- 6. a) Enunciar el Teorema de Bolzano.
 - b) Enunciar los teoremas de Weierstrass y demostrar uno de ellos.
 - c) Enunciar y demostrar el teorema de Fermat.