

A parallel plate capacitor is attached to a battery which maintains a constant voltage difference V between the capacitor plates. While the battery is attached, the plates are pulled apart. The electrostatic energy stored in the capacitor

- A. increases.
- B. decreases.
- C. stays constant.

LAPLACE'S EQUATION

A region of space contains no charges. What can I say about V in the interior?

- A. Not much, there are lots of possibilities for V(r) in there
- B. V(r) = 0 everywhere in the interior.
- C. V(r) =constant everywhere in the interior

A region of space contains no charges. The boundary has V=0 everywhere. What can I say about V in the interior?

- A. Not much, there are lots of possibilities for V(r) in there
- B. V(r) = 0 everywhere in the interior.
- C. V(r) =constant everywhere in the interior

For the 1D Laplace problem ($\nabla^2 V = \partial^2 V/\partial x^2 = 0$), we can choose the following ansatz:

A. $k_0 x$

B. $k_0 x + k_1$

C. $k_0 x^2 + k_1 x + k_2$

D. Can't tell

If you put a positive test charge at the center of this cube of charges, could it be in stable equilibrium?

A. Yes

B. No

C. ???

METHOD OF RELAXATION

Consider a function f(x) that is both continuous and continuously differentiable over some domain. Given a step size of a, which could be an approximate derivative of this function somewhere in that domain? $df/dx \approx$

A.
$$f(x_i + a) - f(x_i)$$

B. $f(x_i) - f(x_i - a)$
C. $\frac{f(x_i+a)-f(x_i)}{a}$
D. $\frac{f(x_i)-f(x_i-a)}{a}$

E. More than one of these

If we choose to use:

$$\frac{df}{dx} \approx \frac{f(x_i + a) - f(x_i)}{a}$$

Where are we computing the approximate derivative?

A. *a*

 $B. x_i$

 $C. x_i + a$

D. Somewhere else

Taking the second derivative of f(x) discretely is as simple as applying the discrete definition of the derivative,

$$f''(x_i) \approx \frac{f'(x_i + a/2) - f'(x_i - a/2)}{a}$$

Derive the second derivative in terms of f.