

THE CREPANT RESOLUTION CONJECTURE FOR DONALDSON-THOMAS INVARIANTS VIA WALLCROSSING

Author: Sjoerd Viktor Beentjes sjoerd.beentjes@ed.ac.uk

Supervisor: Prof. Arend Bayer arend.bayer@ed.ac.uk

CALABI-YAU THREEFOLDS & DT-INVARIANTS

Convention. Throughout, Y denotes a smooth projective complex variety. By a curve in Y we mean an at most one-dimensional closed subscheme of Y.

Enumerative geometry studies deformation invariants of moduli spaces of curves on varieties. Depending on *Y*, there are many types of invariants: Gromow-Witten, **Donaldson-Thomas**, Pandharipande-Thomas, and Gopakumar-Vafa, BPS, and many (conjectural) relations. All invariants exist if *Y* is a Calabi-Yau threefold!

Definition 1. A (projective) Calabi-Yau threefold Y is a three-dimensional complex projective variety such that (i) $\omega_Y = \mathcal{O}_Y$, and (ii) $H^1(Y, \mathcal{O}_Y) = 0$.

The first condition is a flatness statement and gives Serre duality a crucial symmetry. The second condition excludes abelian threefolds.

Example 2. Any quintic hypersurface in \mathbb{P}^4 . (Adjunction, calculation.) As a concrete smooth example, there is the Fermat quintic $x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0$.

Take a curve class $\beta \in N_1(Y)$, $n \in \mathbb{Z}$, and let $Hilb_Y(\beta, n)$ be the Hilbert scheme parametrising curves $C \subset Y$ of class $[C] = \beta$ and $\chi(\mathcal{O}_C) = n$.

Definition 3. The **Donaldson-Thomas invariant** of Y of class (β, n) is

$$DT_Y(\beta, n) = \chi(Hilb_Y(\beta, n), \nu) = \sum_{k \in \mathbb{Z}} k \chi(\nu^{-1}(k)) \in \mathbb{Z}.$$

Here $\nu \equiv \nu_{(\beta,n)}$: Hilb $_Y(\beta,n) \to \mathbb{Z}$ is Behrend's constructible function. It encodes Hilb $_Y(\beta,n)$'s singularities. If M is smooth, $\nu_M = (-1)^{\dim M}$.

CREPANT RESOLUTION CONJECTURE (CRC) I

Curves on a Calabi-Yau threefold Y are trajectories of strings moving through Y. There are many conjectures in the string theory literature concerning curve-counting. The **Crepant Resolution Conjecture** is due to Ruan for GW-invariants, and to Bryan-Graber for DT-invariants.

Conjecture 4 (CRC). Let $\pi: \mathcal{X} \to X$ be a smooth projective three-dimensional Calabi-Yau orbifold with coarse moduli space X, and let $f: Y \to X$ be its natural **crepant** $(f^*\omega_X = \omega_Y)$ resolution [1] such that $\dim(f) \leq 1$. We have

$$\frac{\mathrm{DT}(Y)}{\mathrm{DT}_{exc}(Y)} = \frac{\mathrm{DT}_{mr}(\mathcal{X})}{\mathrm{DT}_{0}(\mathcal{X})},\tag{1}$$

where exc denotes curve classes contracted by f, the subscript 0 denotes zero-dimensional curve classes, and mr denotes multi-regular curve classes.

We have gathered DT-invariants in suitable generating functions, using a formal variable q and writing $(\beta, n) \in N_1(Y) \oplus \mathbb{Z}$. For example

$$DT_{exc}(Y) = \sum_{(\beta,n): f_*\beta=0} DT_Y(\beta,n) q^{(\beta,n)}.$$
 (2)

CREPANT RESOLUTION CONJECTURE (CRC) II

Remark 5. Etale-locally on X, the morphisms π and f are of the form [1]

$$\pi: [\mathbb{C}^3/G] \longrightarrow \mathbb{C}^3/G \longleftarrow G\text{-}\operatorname{Hilb}(\mathbb{C}^3): f$$

where $G \leq \operatorname{SL}_2(\mathbb{C}), \operatorname{SO}(3)$ in $\operatorname{SL}_3(\mathbb{C})$ is a finite subgroup, as $\dim(f) \leq 1$. The G-Hilbert scheme encodes length |G| subschemes $Z \subset \mathbb{C}^3 : H^0(\mathcal{O}_Z) \cong \mathbb{C}[G]$.

John Calabrese [2] has proven the analogous formula on point classes.

Theorem 6. As in Conjecture 4, there is an equality of generating series

$$\mathrm{DT}_0(\mathcal{X}) = \frac{\mathrm{DT}^{\vee}_{exc}(Y)}{\mathrm{DT}_0(Y)}\,\mathrm{DT}_{exc}(Y) \equiv \overline{\mathrm{DT}}^{\vee}_{exc}(Y)\,\mathrm{DT}_{exc}(Y).$$

Here $\mathrm{DT}^{\vee}_{exc}(Y) = \sum_{(\beta,n): f_*\beta=0} \mathrm{DT}_Y(\beta,n) q^{(-\beta,n)}$ similar to $\mathrm{DT}_{exc}(Y)$.

The equality holds in a completed power series ring, formal variables are identified through (3) and analytic continuation. A reformulation:

Goal. Complete the proof of the CRC: $DT_{mr}(\mathcal{X}) = \overline{DT}_{exc}^{\vee}(Y) DT(Y)$.

EXAMPLE: WE NEED ANALYTIC CONTINUATION

Let $f: (E \subset Y) \to (C \subset X)$ be a crepant resolution as above, where $C = \mathbb{P}^1$ embeds as the trivial family of A_1 -singularities. The exceptional locus is $E = \mathbb{P}^1 \times \mathbb{P}^1$ with normal bundle $\mathcal{N}_{E/Y} = \mathcal{O}_E(-2, -2)$. A curve class on $Y = \operatorname{Tot}_E(\mathcal{N}_{E/Y})$ is determined by a triple $(s, f, n) \in \mathbb{Z}^3$. The diagram shows the numerically effective cones of \mathcal{X}, Y for s = 2.

The DT-generating functions restricted to $L \subset \{s = 2\}$ with $x = q^{(1,-1)}$

$$\left. \frac{\mathrm{DT}(Y)}{\mathrm{DT}_{\mathrm{exc}}(Y)} \right|_{s=2} \equiv_L 3q^{(0,2)} \left(\frac{1}{1+x} \right)^2 \stackrel{!}{=} 3q^{(-2,4)} \left(\frac{1}{1+x^{-1}} \right)^2 \equiv_L \left. \frac{\mathrm{DT}_{\mathrm{mr}}(\mathcal{X})}{\mathrm{DT}_0(\mathcal{X})} \right|_{s=2}$$

Key: the CRC only holds after analytic continuation $q^{(1,-1)} = x \leftrightarrow x^{-1}$.

APPROACH: DERIVED CATEGORIES & HALL ALGEBRA

Following [2], the derived McKay correspondence of [1] and [2] yield

$$\Phi: D^b(Y) \xrightarrow{\sim} D^b(\mathcal{X}), \quad \text{sending} \quad \Phi(\mathcal{O}_Y) = \mathcal{O}_{\mathcal{X}}, \quad (3)$$

identifying $Per(Y/X) \cong Coh(\mathcal{X})$: a curve on \mathcal{X} is a perverse curve on Y. A perverse coherent sheaf is a complex $E = (E^{-1} \to E^0)$ in $D^b(Y)$ s.t.

$$0 \to F[1] \to E \to T \to 0,$$

where F, T are sheaves on Y such that $f_*F = 0$ and $\mathbf{R}^1 f_*T = 0$. But a **sheaf** G on Y is an extension $T \hookrightarrow G \twoheadrightarrow F$. We need a **wall-crossing**, a procedure to relate curves on Y to perverse curves on Y (curves on X). By work of Joyce, Bridgeland, and later Toda for any heart $A \subset D^b(Y)$:

Theorem 7. There exists an associative unital motivic Hall algebra H(A) whose product encodes extensions in the abelian category A. There exists a unique* Poisson algebra morphism called integration map on a subquotient of H(A) called semi-classical Hall algebra, i.e., $I: H_{sc}(A) \to \mathbb{C}[\![q]\!]$.

Example 8. Take A = Coh(Y). Then we have the identity A = T * F in H(A). Why? Any $E \in A$ is a unique extension $0 \to T \to E \to F \to 0$ in A.

RESULT: WALLCROSSING FORMULA FOR THE CRC

In [2], $\operatorname{Hilb}(Y)$ parametrises structure sheaves with section. For us, it parametrises **ideal sheaves**. These moduli spaces are isomorphic on Y. Ideal sheaves live in the abelian category $\mathcal{C}(\mathcal{X}) = \langle \mathcal{O}_{\mathcal{X}}, \operatorname{Coh}_{\leq 1}(\mathcal{X})[-1] \rangle_{\operatorname{ex}}$.

Theorem 9. There is an identity in the Hall algebra $H = H(\mathcal{C}(\mathcal{X}))$

$$\operatorname{Hilb}_{\leq 1}(\mathcal{X}) * \mathcal{F} = \mathcal{F} * \operatorname{E}_{f} \otimes \operatorname{Hilb}_{\leq 1}(Y).$$
 (4)

Here $E_f = \{ line \ bundles \ associated \ to \ divisors \ on \ the \ exceptional \ locus \ of \ f \}.$

Lemma 10. The torsion filtration induces $\mathcal{F} = \mathcal{F}_1 * \mathcal{F}_2$ in H, where dim(F) = i for $F \in \mathcal{F}_i$. We obtain $\mathcal{F}_1^{-1} * \mathrm{Hilb}_{\leq 1}(\mathcal{X}) * \mathcal{F}_1 = \mathcal{F}_2 * \mathrm{E}_f \otimes \mathrm{Hilb}_{\leq 1}(Y) * \mathcal{F}_2^{-1}$.

To apply the integration map I we need a **stability condition** to apply Joyce's work and show $[\mathbb{C}^{\times}]\log(\mathcal{F}_i) \in H_{sc}(\mathcal{C}(\mathcal{X}))$. For \mathcal{F}_1 , this is in [2].

Proposition 11. Integrating the term with \mathcal{F}_1 yields $\overline{\mathrm{DT}}_{exc}^{\vee}(Y)^{-1}\mathrm{DT}_{mr}(\mathcal{X})$.

Goal. To prove CRC, we must show $I(\mathcal{F}_2 * E_f \otimes \operatorname{Hilb}_{\leq 1}(Y) * \mathcal{F}_2^{-1}) = \operatorname{DT}(Y)$.

REFERENCES

- [1] T. Bridgeland, A. King, M. Reid (2001), *The McKay correspondence as an equivalence of derived categories*, J. Amer. Math. Soc., Vol. 14, 535–554.
- [2] J. Calabrese (2016), On the crepant resolution conjecture for Donaldson-Thomas invariants J. Algebraic Geom., Vol. 25, 1–18.