Fonction exponentielle

I – Définition et premières propriétés

Il est possible de généraliser la démarche qui a permis d'introduire dans le chapitre précédent le nombre e: il suffit de remplacer le nombre 1 par un nombre réel a quelconque.

Il existe un unique nombre réel b tel que ln(b) = a. Et

• pour
$$a = 2$$
, $b = e^2$,

• pour
$$a = -1$$
, $b = e^{-1} = \frac{1}{e}$,

• et pour
$$a = n$$
, où $n \in \mathbb{Z}$, $b = e^n$.

Définition 13.1 – Le nombre *b* tel que ln(b) = a est appelé **exponentielle de** *a* et noté e^a .

On définit ainsi une nouvelle fonction, appelée fonction exponentielle, notée exp, définie sur \mathbb{R} et prenant ses valeurs dans $]0, +\infty[$.

Pour des raisons évidentes, on note le plus souvent $\exp(x) = e^x$.

Remarque 13.2 – La fonction exponentielle est la bijection réciproque de la fonction logarithme népérien :

$$]0, +\infty[$$
 $\xrightarrow{\ln} \mathbb{R}$ et en sens inverse $]0, +\infty[$ $\xleftarrow{\exp} \mathbb{R}$.

Proposition 13.3 —

Puisque les deux fonctions sont réciproques l'une de l'autre :

- Pour tout réel $x \in \mathbb{R}$, $e^x > 0$.
- Pour tout réel $x \in \mathbb{R}$ et tout réel strictement positif $y \in \mathbb{R}_+^*$, $y = e^x \iff x = \ln(y)$.
- Pour tout réel $x \in \mathbb{R}$, $\ln(e^x) = x$.
- Pour tout réel strictement positif $y \in \mathbb{R}_+^*$, $e^{\ln(y)} = y$.

Remarque 13.4 – Toujours en raison de la réciprocité et parce que ln(1) = 0, alors $e^0 = 1$.

Exemple 13.5 – Résoudre dans \mathbb{R} les équations suivantes.

•
$$e^x = 1$$

• $\ln(x) = 2$
• $e^x = 1$ \iff $x = \ln(1)$ \iff $x = 0$
• $\ln(x) = 2$ \iff $x = e^2$

•
$$\ln(x) = 2$$

 $\ln(x) = 2 \iff x = e^2$

•
$$e^{2t-1} = 1$$

 $e^{2t-1} = 1 \iff 2t-1 = \ln(1) = 0$
 $\iff 2t = 1 \iff t = \frac{1}{2}$

$$e^{2t-1} = 1$$

$$e^{2t-1} = 1 \iff 2t-1 = \ln(1) = 0$$

$$\iff 2t = 1 \iff t = \frac{1}{2}$$

$$\ln(3x) = \frac{1}{2}$$

$$\ln(3x) = \frac{1}{2} \iff 3x = e^{\frac{1}{2}} \iff x = \frac{1}{3}e^{\frac{1}{2}}$$

Proposition 13.6 - Propriété fondamentale de l'exponentielle

Pour tous nombres réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$,

$$e^{a+b} = e^a \times e^b$$
.

Corollaire 13.7

De cette propriété algébrique fondamentale découle plusieurs conséquences.

- Pour tout nombre réel $a \in \mathbb{R}$, $e^{-a} = \frac{1}{e^a}$.
- Pour tous nombres réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$, $e^{a-b} = \frac{e^a}{e^b}$.
- Pour tout nombre réel $a \in \mathbb{R}$ et tout entier relatif $n \in \mathbb{Z}$, $e^{na} = (e^a)^n$.

Démonstration.

- Grâce à la proposition précédente, je sais que $e^a \times e^{-a} = e^{a-a} = e^0 = 1$ donc $e^{-a} = \frac{1}{e^a}$.
- De la même manière, $e^{a-b} = e^a \times e^{-b} = e^a \times \frac{1}{e^b} = \frac{e^a}{e^b}$.
- Enfin en itérant, $e^{na} = \exp\left(\underbrace{a + a + \dots + a}_{n \text{ fois}}\right) = \underbrace{e^a \times e^a \times \dots e^a}_{n \text{ fois}} = \left(e^a\right)^n$.

Exemple 13.8 – Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$. Simplifier le plus possible les expressions suivantes.

1.
$$\frac{e^{2x}}{e^x} = e^{2x-x} = e^x$$

4.
$$(e^{2x})^3 \times (e^{-x})^2 = e^{6x} \times e^{-2x} = e^{6x-2x} = e^{4x}$$

2.
$$\frac{(e^x)^2}{e^x} = \frac{e^{2x}}{e^x} = e^{2x-x} = e^x$$

5.
$$e^0 \times e^{-x} \times (e^x)^2 = 1 \times e^{-x} \times e^{2x} = e^{-x+2x} = e^x$$

3.
$$\frac{e^x}{e^{-x}} = e^{x-(-x)} = e^{x+x} = e^{2x}$$

6.
$$\frac{e^x}{e^y} \times e^{y-x} = e^{x-y} \times e^{y-x} = e^{x-y+y-x} = e^0 = 1$$

II - Étude de la fonction exponentielle

1 - Ensemble de définition

Proposition 13.9

La fonction exponentielle est définie pour tout $x \in \mathbb{R}$ et a ses valeurs dans \mathbb{R}_+^* , *i.e.* dans $]0, +\infty[$.

2 - Dérivée et variations

Proposition 13.10

La fonction exponentielle est dérivable sur \mathbb{R} et $\exp'(x) = \exp(x)$.

Démonstration. En considérant la fonction composée f définie sur \mathbb{R} par $f(x) = \ln(\exp(x))$,

alors
$$f'(x) = \frac{\exp'(x)}{\exp(x)}$$
. Mais aussi $\ln(\exp(x)) = x$, *i.e.* $f(x) = x$. Donc également $f'(x) = 1$. Ainsi

$$1 = \frac{\exp'(x)}{\exp(x)} \quad \Longleftrightarrow \quad \exp'(x) = \exp(x).$$

Proposition 13.11

La fonction exponentielle est **continue** et **strictement croissante** sur \mathbb{R} .

Démonstration. La fonction exponentielle est dérivable sur \mathbb{R} donc continue sur cet intervalle. Et pour tout réel $x \in \mathbb{R}$, $\exp'(x) = \exp(x) > 0$. Donc la dérivée de la fonction est strictement positive et la fonction exponentielle est strictement croissante sur \mathbb{R} .

Proposition 13.12 —

Pour tous réels $a \in \mathbb{R}$ et $b \in \mathbb{R}$,

$$e^a = e^b \iff a = b$$
 et $e^a > e^b \iff a > b$.

Exemple 13.13 – Résoudre dans \mathbb{R} les équations et inéquations suivantes.

1.
$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1}$$

$$\frac{e^{3x+5}}{e^{3-2x}} = e^{2x^2-1} \iff e^{5x+2} = e^{2x^2-1} \iff 5x+2 = 2x^2-1 \iff 2x^2-5x-3 = 0$$

Je calcule alors le discriminant : $\Delta = (-5)^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 = 7^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{5-7}{4} = -\frac{1}{2}$$
 et $x_2 = \frac{5+7}{4} = 3$.

2.
$$e^{x^2+x-1}=1$$

$$e^{x^2+x-1} = 1 \iff e^{x^2+x-1} = e^0 \iff x^2+x-1 = 0$$

Je calcule le discriminant $\Delta = 1^2 - 4 \times 1 \times (-1) = 1 + 4 = 5 > 0$. Il y a donc deux racines

$$x_1 = \frac{-1 - \sqrt{5}}{2}$$
 et $x_2 = \frac{-1 + \sqrt{5}}{2}$.

3.
$$e^{2x} \le e^x$$

$$e^{2x} \leqslant e^x \iff 2x \leqslant x \iff x \leqslant 0$$

Donc $S =]-\infty, 0]$.

4.
$$e^{2x}e^{x^2} < 1$$

$$e^{2x}e^{x^2} < 1 \iff e^{2x+x^2} < e^0 \iff 2x+x^2 < 0 \iff x(2+x) < 0$$

J'établis le tableau de signe du produit :

x	$-\infty$		-2		0		+∞
x		_		_	0	+	
x + 2		-	0	+		+	
$x^2 + 2x$		+	0	-	0	+	

Et donc S =]-2,0[.

3 - Limites

Proposition 13.14

La fonction exponentielle a pour limite $+\infty$ en $+\infty$, *i.e.*

$$\lim_{x \to +\infty} e^x = +\infty.$$

La fonction exponentielle a pour limite 0 en $-\infty$, *i.e.*

$$\lim_{x\to-\infty}e^x=0.$$

L'axe des abscisses est **asymptote horizontale** à la courbe d'équation $y = e^x$ en $-\infty$.

Exemple 13.15 – Calculer $\lim_{x \to +\infty} \exp\left(\frac{1}{x}\right)$, $\lim_{x \to 0^-} \exp\left(\frac{1}{x}\right)$ et $\lim_{x \to 0^+} \exp\left(\frac{1}{x}\right)$. Je raisonne par composition :

$$\lim_{\substack{x \to +\infty \\ x \to 0}} \frac{1}{x} = 0$$

$$\lim_{\substack{x \to +\infty \\ x \to 0}} e^{X} = 1$$
Par composition,
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} \exp\left(\frac{1}{x}\right) = 1.$$

$$\lim_{\substack{x \to 0^{-} \\ X \to -\infty}} \frac{1}{x} = -\infty$$

$$\lim_{\substack{x \to 0^{-} \\ X \to -\infty}} e^{X} = 0$$
Par composition, $\lim_{\substack{x \to 0^{-} \\ x \to 0^{-}}} \exp\left(\frac{1}{x}\right) = 0$.

$$\lim_{\substack{x \to 0^+ \ x \\ \lim_{X \to +\infty} e^X = +\infty}} \frac{1}{x} = +\infty$$
 Par composition,
$$\lim_{x \to 0^+} \exp\left(\frac{1}{x}\right) = +\infty.$$

4 - Courbe représentative

- La fonction exponentielle est la fonction réciproque de la fonction logarithme népérien. Dans un repère orthonormé, leurs courbes représentatives sont symétriques par rapport à la droite \mathcal{D} d'équation y = x.
- Connaître l'allure des courbes des fonctions logarithme et exponentielle permet de retrouver graphiquement toutes les informations importantes à propos de ces deux fonctions.

5 - Croissances comparées

Proposition 13.16

Pour tout entier naturel non nul n,

$$\lim_{x \to -\infty} x^n e^x = 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

En particulier lorsque n = 1,

$$\lim_{x \to -\infty} x e^x = 0 \quad \text{ et } \quad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

Remarque 13.17 – Ces limites sont normalement des **formes indéterminées**. Pour lever de telles indéterminations, on applique les résultats de *croissances comparées*. On retient que l'exponentielle "l'emporte" sur les puissances.

Exemple 13.18 – Calculer $\lim_{x \to -\infty} x^2 e^x = 0$ et $\lim_{x \to +\infty} e^x - x$.

Par croissances comparées, et en réécrivant $e^x - x = x \left(\frac{e^x}{x} - 1 \right)$, alors

$$\lim_{x \to -\infty} x^2 e^x = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} e^x - x = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 \right) = +\infty.$$

III – Étude d'une fonction de la forme exp(u)

Proposition 13.19

Soit u une fonction dérivable sur un intervalle I. La fonction composée $f = e^u$ est dérivable sur I et

$$\forall x \in I$$
, $f'(x) = u'(x)e^{u(x)}$.

On note parfois pour simplifier $(e^u)' = u'e^u$.

Exemple 13.20 – Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{x^3 - 4x^2 + 2x - 3}$. Calculer f'(x).

La fonction f est de la forme $f = e^u$ avec $u(x) = x^3 - 4x^2 + 2x - 3$. Alors $u'(x) = 3x^2 - 8x + 2$ et donc

$$f'(x) = u'(x)e^{u(x)} = (3x^2 - 8x + 2)e^{x^3 - 4x^2 + 2x - 3}.$$

Exemple 13.21 – Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x^3 - 15x^2 + 36x - 25}$.

1. Calculer les limites de f en $-\infty$ et $+\infty$.

$$\lim_{x \to -\infty} 2x^3 - 15x^2 + 36x - 25 = \lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{X \to -\infty} e^X = 0$$
Par composition,
$$\lim_{x \to -\infty} e^{2x^3 - 15x^2 + 26x - 25} = 0.$$

$$\lim_{x \to +\infty} 2x^3 - 15x^2 + 36x - 25 = \lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to +\infty} e^X = +\infty$$
Par composition,
$$\lim_{x \to +\infty} e^{2x^3 - 15x^2 + 26x - 25} = +\infty.$$

2. Étudier les variations de la fonction f.

La fonction f est de la forme $f = e^u$ avec $u(x) = 2x^3 - 15x^2 + 36x - 25$. Puisque $u'(x) = 6x^2 - 30x + 36 = 6(x^2 - 5x + 6)$, alors

$$f'(x) = 6(x^2 - 5x + 6)e^{2x^3 - 15x^2 + 36x - 25}.$$

Comme l'exponentielle est toujours positive, il ne reste plus qu'à étudier le signe de $x^2 - 5x + 6$. Le discriminant vaut $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1 = 1^2 > 0$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

J'en déduis alors le tableau de signe de f'(x) et le tableau de variation de f:

IV - Primitives et fonction exponentielle

La fonction exponentielle étant désormais connue, on peut compléter le tableau des primitives usuelles en y ajoutant les deux lignes suivantes :

f est définie sur I par	une primitive F est donnée par			
$f(x) = e^x$	$F(x) = e^x$			
$f = u'e^u$	$F = e^u$			

Remarque 13.22 – On peut remarquer en particulier qu'une primitive d'une fonction de la forme $f(x) = e^{ax}$ (avec $a \ne 0$) est donnée par

$$F(x) = \frac{1}{a}e^{ax}.$$

Exemple 13.23 – Calculer les primitives des fonctions suivantes sur \mathbb{R} .

1.
$$f(x) = e^{2x}$$

2.
$$f(x) = e^{3x} - e^{-x}$$

3.
$$f(x) = xe^{x^2}$$

1. La fonction f est de la forme $f(x) = e^{ax}$ avec a = 2, donc une primitive de f est donnée par

$$F(x) = \frac{1}{2}e^{2x}.$$

2. La fonction f est la somme de deux fonctions dont je peux calculer une primitive.

En effet, une primitive de $f_1(x) = e^{3x}$ est donnée par $F_1(x) = \frac{1}{3}e^{3x}$ et une primitive de $f_2(x) = e^{-x}$ est donnée par $F_2(x) = -e^{-x}$. Donc une primitive de f est donnée par

$$F(x) = \frac{1}{3}e^{3x} - (-e^{-x}) = \frac{1}{3}e^{3x} + e^{-x}.$$

3. La fonction f semble être de la forme $u'e^u$ avec $u(x) = x^2$. Puisque u'(x) = 2x alors

$$u'(x)e^{u(x)} = 2xe^{x^2} = 2f(x).$$

Donc une primitive de f est donnée par

$$F(x) = \frac{1}{2}e^{u(x)} = \frac{1}{2}e^{x^2}.$$