# 1 Shuffles de árboles

En esta seción describiremos el producto tensorial  $\Omega[S] \otimes \Omega[T]$  para todo par de árboles S y T de  $\Omega$ . Para ello deberemos introducir la noción de conjunto de shuffles de S y T, que será una gran ayuda para encontrar el producto tensorial. Así podremos entender qué es el producto tensorial de conjuntos dendroidales.

#### 1.1 Producto tensorial de árboles lineales

Antes de ver el producto tensorial para árboles en general, estudiaremos el caso de árboles lineales ya que resulta una tarea más sencilla y la podemos relacionar con el producto cartesiano de conjuntos simpliciales.

Sean  $S = L_n$  y  $T = L_m$  dos árboles lineales, entonces por la Proposición 3.30(i),

$$\Omega[L_n] \otimes \Omega[L_m] = i_!(\Delta[n]) \otimes i_!(\Delta[m]) \cong i_!(\Delta[n] \times \Delta[m])$$

Los simplices no degenerados del producto de dos representables en conjuntos simpliciales se calculan mediante un *shuffle*. Un (n,m)-shuffle es un camino de longitud máxima en el conjunto parcialmente ordenado  $[n] \times [m]$ . Los (n+m)-simplices no degenerados de  $\Delta[n] \times \Delta[m]$  corresponden a los (n, m)-shuffles. De hecho,

$$\Delta[n] \times \Delta[m] = \bigcup_{(n,m)} \Delta[n+m]$$

Donde la unión recorre todos los posibles (n, m)-shuffles.

**Ejemplo 1.1.** Sean n = 2 y m = 1. Existen tres (2, 1)-shuffles en  $[2] \times [1]$ , (00,01,02,12), (00,01,11,12) y (00,10,11,12). Tenemos la siguiente figura que representa  $\Delta[2] \times \Delta[1]$ 



Podemos ver que cada (2, 1)-shuffle corresponde a un tetraedro, y nos dan una descomposición de  $\Delta[2] \times \Delta[1]$  como la unión de tres copias de  $\Delta[3]$ :



#### 1.2 Producto tensorial de árboles

#### 1.2.1 Shuffles y conjuntos de shuffles

En este apartado vamos a introducir la noción de un shuffle entre dos árboles y la coleción de todos ellos. También daremos ejemplos extensos de como calcular dichos shuffles.

**Definición 1.2.** Sea S y T dos objetos de  $\Omega$ . Un *shuffle* de S y T es un árbol R cuyo conjunto de aristas es un subconjunto de  $E(S) \times E(T)$ . La raíz de R es (a, x), donde a es la raíz de S y x es la raíz de T, y sus hojas son todos los pares  $(l_S, l_T)$ , donde  $l_S$  es una hoja de S y  $l_T$  es una hoja de T. Los vértices son de la forma

$$(a_1, x) \qquad (a_n, x) \qquad (a, x_1) \qquad (a, x_m)$$

$$(b, x) \qquad (a, y) \qquad (a, y)$$

Donde u es un vértice de S con entradas  $a_1, \ldots, a_n$  y salida b, y v es un vértice de T con entradas  $x_1, \ldots, x_m$  y salida y. Nos referiremos a los dos tipos de vértices como v értices blancos y v értices negres, respectivamente. Para diferenciarlos visualmente los pintaremos con o y o, respectivamente.

Observamos que existe una biyección entre los shuffles de dos árboles lineales  $L_n$  y  $L_m$  con los (n, m)-shuffles de  $[n] \times [m]$ .

**Definición 1.3.** Sean S y T dos árboles. El *conjunto de shuffles de* S y T es la colección de todos los shuffles posibles entre S y T. La cardinalidad de este conjunto la denotaremos por sh(S, T).

**Proposición 1.4.** El número de shuffles sh(S, T) de dos árboles S y T satisface tres propiedades:

- (i) sh(S, T) = sh(T, S)
- (ii) Si T es un árbol unitario  $\eta$ , entonces  $sh(S, \eta) = 1$
- (iii) Si  $S = C_n[S_1, \ldots, S_n]$  y  $T = C_m[T_1, \ldots, T_m]$ , entonces

$$sh(S, T) = \prod_{i=1}^{n} sh(S_i, T) + \prod_{j=1}^{m} sh(S, T_j),$$

donde  $C_n$  y  $C_m$  son n y m-corolas, respectivamente; y  $C_n[S_1, \ldots, S_n]$  es una n-corola que cada hoja i-esima la conectamos con la raíz del árbol  $S_i$ .

**Ejemplo 1.5.** Sean S y T los árboles



El conjunto de shuffles de S y T consiste de los siguientes tres árboles:



El conjunto de shuffles de S y T está parcialmente ordenado. El árbol minimal  $R_1$  en el conjunto parcialmente ordenado se obtiene mediante la inserción de una copia del árbol negro T en cada entrada del árbol blanco S. Es decir, primero hacemos una copia del árbol S de la forma  $S \otimes r_T$ , donde todas sus aristas han sido renombradas como  $(\_, r_T)$ , siendo  $r_T$  la raíz del árbol T. Luego hacemos una copia del árbol T de la forma  $l \otimes T$ , para toda hoja l de S; donde todas sus aristas han sido renombradas como  $(l, \_)$ . Finalmente, obtenemos el árbol  $R_1$  encajando las últimas copias encima de las hojas de la forma  $(l, r_T)$  de la primera copia. El árbol maximal  $R_N$  en el conjunto parcialmente ordenado se obtiene mediante la inserción de una copia del árbol blanco S en cada entrada del árbol negro T. Los árboles  $R_1$  y  $R_n$  deberían lucir de la siguiente manera



Existen los shuffles intermediarios  $R_k$  (1 < k < N) entre  $R_1$  y  $R_N$  obtenidos filtrando los vértices negros en  $R_1$  hacia la raíz del árbol mediante intercambios con los vértices blancos. Todo  $R_k$  se obtiene desde un  $R_l$  anterior. Es decir, cada intercambio se basa en transformar una configuración de  $R_l$ 



A una configuración de  $R_k$ 



Si un shuffle  $R_k$  se obtiene the otro shuffle  $R_l$  mediante la norma de arriba, entonces decimos que  $R_k$  se obtiene mediante un solo intercambio y lo denotaremos por  $R_l \leq R_k$ . Así, obtenemos un orden parcial en el conjunto de todos los shuffles.

Tenemos que especificar el caso de un intercambio con un árboles sin entradas, es decir,

n=0o m=0. Si m=0 y  $n\neq 0,$ entonces tenemos el intercambio

$$(a, x) \qquad (b_1, x) \qquad (b_n, x) \qquad (1.4)$$

Si n=0 y  $m\neq 0,$ entonces tenemos el intercambio

$$(a, y_1) \qquad (a, y_m) \qquad (a, x) \qquad (1.5)$$

Finalmente, si n=m=0, entonces tenemos el intercambio

$$(a, x) \qquad \xrightarrow{} \qquad (a, x) \qquad (1.6)$$

# **Ejemplo 1.6.** Sean S y T los árboles



Existen catorce shuffles  $R_1, \ldots, R_{14}$  de S y T. Mostramos una lista completa de ellos. Marcaremos los nombres de las aristas en los tres primeros shuffles.





Tenemos la siguiente estructura dentro del conjunto parcialmente ordenado.



## 1.2.2 Producto tensorial de árboles

Ahora podemos dar una descripción completa del producto tensorial entre dos objetos representables en  $\Omega$  mediante el cálculo de su conjunto de shuffles.

Lema 1.7. Para todo shuffle  $R_i$  de S y T tenemos un monomorfismo

$$m: \Omega[R_i] \longrightarrow \Omega[S] \otimes \Omega[T]$$

El subconjunto dendroidal, que viene dado por la imágen de este monomorfismo, lo denotaremos  $m(R_i)$ .

*Proof.* Los vértices del conjunto dendroidal  $\Omega[R_i]$  son las aristas del árbol  $R_i$ . La función m envía aristas nombradas como (a, x) en  $R_i$  a la arista con el mismo nombre en  $\Omega[S] \otimes \Omega[T]$ . Vemos que es un monomorfismo. No entiendo.

Corolario 1.8. Para todo objeto T y S en  $\Omega$ , tenemos que

$$\Omega[S] \otimes \Omega[T] = \bigcup_{i=1}^{N} m(R_i)$$

donde la unión recorre todos los posibles shuffles de S y T.

## 1.3 Shuffle de árboles en Python

No es complicado ver que tanto encontrar el producto tensorial de conjuntos dendroidales o, equivalentemente, calcular el conjunto de shuffles para dos árboles cualesquiera, resulta una tarea tediosa si los árboles son grandes. Para tal problema, el uso de un programa informático, capaz de almanezar grandes cantidades de información al momento de ejecución, nos resulta cómodo, fácil y rápido.

En este apartado describiré de manera breve el código que he escrito para poder tratar con opéradas, árboles, shuffles y finalmente con el conjunto de shuffles. También, el código incluye una función para formar figuras con el paquete xypic de LaTex de un árbol mediante una descripción básica.

Finalmente, dicho código se puede encontrar tanto en el Anexo 1 como en el repositorio público de código de Github: Trees Shuffling. Hace falta comentar que habrán diferencias entre el código completo que podréis encontrar en el anexo y los pseudocódigos usados a continuación, ya que nos quedamos con la estructura fundamental del algoritmo para una facilitar la lectura.

## Clases del paquete

**Definición 1.9.** Una *clase* es una abastración de propiedades y funciones de un objeto en concreto. Siguiendo tal definición, tenemos las siguientes clases en nuestro paquete:

- Operad: Espacio que guarda los colores y las operaciones que forman un árbol.
- Tree: Clase abstracta que define un árbol con propiedades tipo: raíz, hojas...
- TreeMerger: Clase para juntar dos árboles S y T, uno encima del otro.
- TreeManipulator: Clase para buscar y hacer intercambios.
- ShuffleLattice: Clase para generar todos los shuffles entre dos árboles S y T.

#### Utilidades

Antes de describir las clases que se pueden encontrar en el paquete, debemos comentar que existe un fichero llamado *utils.py* donde hay una colección de funciones y algoritmos útiles que usaremos a lo largo del código.

Vale la pena mencionar la función que servirá como la puerta de entrarda a los árboles, nombrada:  $string\_to\_tree\_space$ . Tiene como entrada una descripción completa de un árbol y devuelve una instáncia de la clase Tree. Por ejemplo, la cadena de cáracteres "vW(b,c;a)|wB(d,e,f;c)" describe el árbol S



donde el vértice v de color blanco (W) tiene como entradas b y c, y salida a; y el vértice w de color negro (B) tiene como entradas d, e y f, y salida c. Durante la explicación vamos llamar operaciones a "vW(b,c;a)" o "wB(d,e,f;c)".

En esta colección se encuentra el algoritmo sorted que nos va a ordenar las operaciones que generan un árbol. El orden que vamos a describir nos asegura que todo color de salida en cada operación, aparezca como entrada de otra operación en la izquierda, salvo el color correspondiente a la raíz ya que esa operación en concreto será la primera. Hemos realizado un pseudocódigo para que se entienda mejor el algoritmo sorted.

**Algoritmo 1** Pseudocódigo del algoritmo para ordenar las operaciones de un árbol T. Podéis encontrar el código completo en el anexo.

```
Input: Requires an array of operations of a tree
 1: function SORTED(operations)
 2:
        n \leftarrow \text{Length of } operations
        i \leftarrow 0

▷ Starting index

 3:
 4:
        while i < n do
           for j in [i + 1, ..., n) do
 5:
               if operations[i].trunk in operations[j].branches then
 6:
 7:
                   operation \leftarrow Pop operation on index i from operations
                   opertations.insert(operation, j)
                                                             ▶ Insert operation on new index
 8:
                   break
 9:
                        ▶ Note that this else only occurs when the for hasn't been broken
10:
           else
11:
               i \leftarrow i + 1
12:
        return operations
```

Output: Returns the list of operations sorted

Por ejemplo, todas las siguientes descripciones hablan de un mismo árbol S:

```
1. "2W(3;2)|1W(2,4,6;1)|3W(5;4)|4W(7;6)|0W(1;0)"
2. "1W(2,4,6;1)|2W(3;2)|3W(5;4)|0W(1;0)|4W(7;6)"
3. "3W(5;4)|2W(3;2)|4W(7;6)|0W(1;0)|1W(2,4,6;1)"
```

Si aplicamos el algoritmo sorted a estas entradas obtendremos la siguiente cadena de carácteres "0W(1;0)|1W(2,4,6;1)|4W(7;6)|3W(5;4)|2W(3;2)" que describe el árbol S de manera estándar.

## Clase Tree

La clase *Tree* tiene las propiedades que define un árbol como una opérada coloreada.

- trunk: Color de salida.
- branches: Lista de colores de entrada.
- node: Nombre de la operación.

Sea S un árbol con más de una operación, cada operación será una instancia de Tree y estarán relacionadas entre si mediante las ramas (branches) y los troncos (trunk). Es

decir, sea S = "vW(b,c;a)|wB(d,e,f;c)", la rama c de la operación "vW(b,c;a)" esta relacionada con el tronco c de la operación "wB(d,e,f;c)".

De esta manera tenemos una estructura de árbol en forma de grafo, que podremos explotar con los algoritmos que vienen a continuación. Y además, tendremos todo el árbol a mano mediante la operación que contienen la raíz. Falta mencionar que usaremos la clase uTree que describe un árbol sin node ni branches.

### Clase TreeMerger

Esta clase tiene unos algoritmos, que no describiremos, para poder unir dos árboles de la misma manera descrita en el apartado 4.2.1. Es decir, la clase genera el shuffle  $R_1$  si usamos los dos árboles S y T de entrada; y a la inversa, la clase genera el shuffle  $R_N$  si usamos los árboles T y S de entrada.

# Clase TreeManipulator

Esta clase es importante para la clase que explicaremos a contiunación Shuffle Lattice, ya que será su alimento. Es decir, esta clase nos busca en un shuffle R los vértices disponibles para realizar un intercambio, explicado en el apartado 4.2.1; y también la función necesaria para realizar tal intercambio.

El algoritmo de búsqueda se llama  $find\_percolations$ . Es el encargado de buscar los vértices disponibles para realizar un intercambio en un shuffle R cualquiera. Es un algoritmo recursivo donde va acumulando las operaciones donde se encuentran los intercambios posibles. Seguidamente podemos ver el pseudocódigo.

Algoritmo 2 Pseudocódigo del algoritmo para encontrar los vértices para hacer un intercambio de un shuffle R. Podéis encontrar el código completo en el anexo.

```
Input: Requires a Tree R and an optional array found
 1: function FIND_PERCOLATIONS(R, found)
                                                     \triangleright Note that R is the rooted operation
 2:
        if found is None then
           found \leftarrow \text{Initialize empty array}
 3:
       if R.node is from S.operations then
 4:
           for branch in R.branches do
                                                                \triangleright Note that branch is a Tree
 5:
 6:
               if branch.node not in T. operations then
 7:
           else
                        ▶ Note that this else only occurs when the for hasn't been broken
 8:
               found \leftarrow Append R
 9:
        for R' in R.branches do
10:
                                                                      \triangleright Note that R' is a Tree
           find\_percolations(R', found)
11:
12:
        return found
Output: Returns the list found of locations
```

La función de acción se llama *make\_percolation*. Es la encargada de realizar el intercambio, préviamiente encontrado por el algoritmo *find\_percolations*. Es decir, realiza un cambio de operaciones y un cambio de los nombres de las aristas afectadas siguiendo la norma de intercambios.

### Clase Shuffle Lattice

Finalmente, la clase Shuffle Lattice es la clase más importante del paquete que usa directamente o indirecatamente todas las clases que hemos comentado anteriormente. Esta clase va a generar todos los shuffles  $R_i$  entre dos árboles cualesquiera S y T.

La clase tiene una propiedad llamada dictionary donde vamos acumulando todos los shuffles encontrados. También tiene una propiedad llamada skeleton donde guardamos las relaciones entre shuffles  $R_l < R_k$  y así poder tener la estructura del conjunto de shuffles parcialmente ordenado.

La clase se basa en la ejecución del algoritmo generate\_shuffle, que básicamente es el algoritmo clásico de búsqueda en anchura, más conocido como BFS en inglés. Es decir, es un algoritmo de búsqueda no informada que se alimenta con nuestro algoritmo find\_percolations y actúa con la función make\_percolation. Seguidamente podemos ver el pseudocódigo.

Algoritmo 3 Pseudocódigo del algoritmo para generar todos los shuffles entre S y T. Podéis encontrar el código completo en el anexo.

```
Input: Requires the class instance of ShuffleLattice
```

```
1: function GENERATE_SHUFFLES(self)
                                                                \triangleright Note that R_1 is the first shuffle
        queue \leftarrow Append R_1
 2:
        self.dictionary \leftarrow Save initial shuffle
 3:
        while queue not empty do
 4:
            shuffle \leftarrow Pop the first shuffle in queue
 5:
 6:
            for location in find_percolations(shuffle) do
                new\_shuffle \leftarrow Apply make\_percolation on location
 7:
                if new_shuffle not in self.dictionary then
 8:
                    queue \leftarrow new\_shuffle Append new shuffle
 9:
                    self.dictionary \leftarrow Save new shuffle
10:
```

Output: The algorithm does not return anything because the shuffles have been stored on the class property dictionary

Finalmente para esta clase, comentaremos el algoritmo sh que usa la Proposición 4.4. Este algoritmo devuelve el número de shuffles entre dos árboles S y T. Seguidamente podemos ver el pseudocódigo.

Observación 1.10. Para usar el paquete tendremos que cortar los vértices que no tienen entradas, ya que para generar los shuffles no añaden más posibles shuffles. Por ejemplo,



**Algoritmo 4** Pseudocódigo del algoritmo para computar el número de shuffles entre S y T. Podéis encontrar el código completo en el anexo.

```
Input: Requires two trees S and T
 1: function SH(S, T)
        if S is a unitary Tree then
 2:
            return 1
 3:
        if T is a unitary Tree then
 4:
            return 1
 5:
        prod_S \leftarrow 1
 6:
        for branch in S.get_branches() do
 7:
            prod_S \leftarrow prod_S * sh(branch, T)
                                                            \triangleright Note that every branch is a Tree
 8:
        prod_T \leftarrow 1
 9:
        for branch in T.get_branches() do
10:
            prod_T \leftarrow prod_T * sh(S, branch)
                                                             \triangleright Note that every branch is a Tree
11:
        return prod_S + prod_T
Output: Returns the sum of the products
```

#### Figuras en LaTex

Como se ha podido observar, es necesario usar representaciones gráficas de los árboles durante todo el trabajo, ya que facilita entender como actúan los morfismos o que son los shuffles, entre otros casos.

Hemos usado el paquete *xypic* para hacer las figuras. Dichas figuras se forman mediante la descripción de puntos en el plano cartesiano y segmentos que unen dichos puntos. Hemos creado un fichero *latex\_gen.py* que es una colección de funciones para poder convertir una descripción completa de un árbol cualquiera a la descripción necesaria del paquete *xypic*, ya que la clase *Tree* genera una estructura de grafo. La función principal es *tree\_to\_latex*.

La descripción completa de un árbol admite símbolos de LaTex para que sean compilados. Por ejemplo, sea  $S = "c \setminus otimes \ qB(b_1,b_2;b)|wW(\setminus Omega;b_1)"$ , si usámos la función obtendremos la siguiente figura



Ejemplo 1.11. Par acabar esta sección, pondremos un ejemplo para enseñar la utilidad

del paquete. Sean S y T los árboles



Este sería un ejemplo tedioso de calcular el conjunto de shuffles ya que según la función sh existen 296 shuffles diferentes. Encontramos todos ellos mediante la clase ShuffleLattice, mostramos los shuffles  $R_{44}$  y  $R_{157}$ 



Se pueden encontrar todos los shuffles de este ejemplo en el anexo 2.