${\rm CS113/DISCRETE~MATHEMATICS\text{-}SPRING~2024}$

Worksheet 29

Topic: Primes and Greatest Common Divisors

In today's session, we will delve into two fundamental mathematical concepts: Primes and Greatest Common Divisors (GCD). Additionally, we will explore the Euclidean Algorithm, a historic and effective technique for determining the GCD by repeatedly subtracting the smaller number from the larger one until one of them reaches zero. Happy Learning!

	Student's Name and ID:
	Instructor's name:
1.	. Use the Euclidean algorithm to find:
	(a) $gcd(100, 101)$

(b) gcd(1529, 14038)

Page 3

2. Use the extended Euclidean algorithm to express $\gcd(26,\,91)$ as a linear combination of 26 and 91.

3.	Use the extended	l Euclidean algorithm	to express g	cd(144, 89) a	s a linear c	ombination of	of 144 and 89.

4. Show that $a^m + 1$ is composite if a and m are integers greater than 1 and m is odd.