

Recette - Projet Abysse Tuteur : F. Le Pennec

Auteurs: E. Wolff (relecteur), A. Polette, P.

Gonot, S. Khazari, G. Pauliat

<u>Destinataires</u>: F. Le Pennec, B. Abiven, M.

Le Gall, J. Hemery

Groupe 83 PRONTO version 1.0 IMT Atlantique 23/05/25

SOMMAIRE

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication : site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure 1 – Projet Kosmos : caméra sous-marine

Figure 2 – CAO paramétrique du sous-marin sur Fusion 360

Objectifs

- 1. **Piloter** le sous-marin à distance et le contrôler (profondeur et déplacement) de manière précise et sans fils
- 2. Transmettre une vidéo en direct à l'utilisateur. Nous prévoyons donc une bascule entre deux flux vidéo : l'un vers l'avant pour le pilotage et l'autre vers le fond pour l'observation

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

7

- Structure modulaire pour développement en parallèle
- ▶ Identification des **fonctions** internes

Figure 3 – Schéma bloc de l'asservissement du sous-marin

La masse envisageable pour être transportable serait donc d'environ $15~\mathrm{kg}$.

Limite de la flottabilité \Rightarrow poids équivalent à son rapport en eau, donc de volume

$$V_{SM} = 15 \cdot 10^{-3} \text{ m}^3$$

Notre idée initiale était de partir sur un tube de $\varnothing 128$ mm, ce qui nous conduit à une longueur de

$$\ell_{SM} = \frac{V_{SM}}{S_{tube}} = \frac{V_{SM}}{\pi D^2 / 4} = \frac{15 \cdot 10^{-3}}{\pi (128 \cdot 10^{-3})^2 / 4} = \boxed{1,15 \text{ m}}$$
(1)

C'est utilisable

Structure interne qui doit être solide et compartimentée \Rightarrow disques imprimés en 3D

- Perçages pour les batteries
- Inserts filetés pour fixer les composants
- Trous pour tiges filetées

Figure 4 – Exemple de disque

Hélice :
$$v = p \times \omega$$
 (2)

Or choix du moteur selon le paramètre KV, avec p = 1.4 cm.

La vitesse d'avance étant de $v=5~{\rm km/h},$ soit 1,4 m/s, nous en déduisons que le taux de rotation doit être de

$$\omega = \frac{1,4}{0,014} = 100 \text{ tr/s} = 6000 \text{ tr/min}$$
 (3)

 $+25\% \Rightarrow 7500 \text{ tr/min sous } 12 \text{ V donc}$ 7500/12 = 625 KV. On choisit un $\boxed{750 \text{ KV}}$.

Figure 5 – Moteur brushless choisi de 750KV

Figure 6 – Capture du modèle 3D du sous-marin fait sous Fusion 360 (Autodesk)

Pourquoi avoir modélisé en 3D?

- Placement précis et simulation des liaisons
- \bullet Paramétrage \to modèle qui se reconstruit
- Exportation pour Blender
- Production de plans 2D et modèles 3D pour tranchage et impression

Pour diriger le sous-marin, 2 solutions :

- 1. Implanter 4 pompes directrices
- 2. Utiliser des gouvernails comme dans les vrais sous-marins

Figure 7 – Débattement mesurable sur CAO et permi par les servomoteurs

Par une **étude statique**, on récupère le nombre de barres N de lest nécessaires au sous-marin :

$$N = \frac{(\rho_{fluide} \cdot V_{SM} - m_{sans}) \cdot 4}{\rho_{fer} \pi D^2 L}$$
 (4)

Figure 8 – Positions des centres de masse

Etanchéité 15

Deux solutions d'étanchéité envisagées dans le projet :

- Des gorges dans l'impression 3D en (A) dans lesquelles se glissent des joints toriques
- Des plus petits joints toriques en (B) dans lesquels coulissent les axes

Figure 9 – Solutions de jointage dans la CAO

Figure 10 – Coupe de la partie seringue

Figure 11 – Choix des cellules li-ion INR18650 3500 mAh

Dimensionnement de la batterie

- Évaluation du besoin
 - tension nominale $U \approx 12 \text{ V}$
 - intensité maximale $I_{max} \approx 16 \text{ A}$
- Réponse au besoin
 - tension nominale $U_{\text{cellule}} = 3,7 \text{ V}$
 - intensité maximale $I_{\rm max,cellule} \approx 10 \text{ A}$

 \Rightarrow batterie 3S2P

Schéma électrique et choix des bandes conductrices

- Nécessité d'un **BMS**
 - équilibrage des charges des cellules
 - protection de la batterie
- Choix du matériau et de la **géométrie**
 - bandes de nickel
 - \bullet 8 mm en largeur / 0.4 mm en épaisseur

Figure 13 – Récepteur

Figure 14 – Émetteur

Figure 15 – Circuit du moteur brushless

Figure 16 – Circuit des motoréducteurs

RECETTE - PROJET ABYSSE
Groupe 83 Pronto

23/05/25

Figure 17 – Circuit électrique complet du sous-marin

Figure 18 – Structure du code

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

L'avancée du projet a été permise par la **parallélisation des tâches**, grâce aux modules du projet :

ī

Transmission vidéo et RC		
Programmation de l'Arduino et adaptations		
Montage du sous-marin avec composants	Usinage des pièces mécaniques	
CAO complète	Création des circuits électroniques	
Phase de cadrage	Commande des pièces	

Figure 19 – Étagement du projet

Disques imprimés et leur montage :

Figure 20 – Exemple de certains disques (à gauche, celui supportant le contrôleur moteur, éloigné de la surface par des entretoises elles aussi imprimées et à droite, celui tenant l'Arduino)

Structure:

• Esthétique : corps transparent

 Limiter les problèmes d'étanchéité : augmentation les risques avec le nombre de jonctions

Figure 21 – Ogive arrière, sortie

Figure 22 – Deux techniques de soudage : soudage par point à gauche, soudage classique à droite

Après avoir changé de BMS en cours de réalisation, nous obtenons :

Figure 23 – Avant et arrière de la batterie assemblée

RECETTE - PROJET ABYSSE

23/05/2

Figure 24 – Usinage sur fraiseuse des axes et montage sur les gouvernails

Sont présents :

- les supports des servomoteurs, intégrés dans la coque intérieur de l'impression 3D et qui reçoivent des inserts filetés pour y visser une plaque pour empêcher leur mouvement lorsque l'index tourne
- un des **axes** qui apparaît horizontalement
- la biellette excentrée qui est actionnée par les servomoteurs démontés pour la photo.

Figure 25 – Tringlerie de l'ogive arrière

RECETTE - PROJET ABYSSE Groupe 83 Pronto

23/05/25

Figure 26 – Paramètre s12 du câble

Recherche de la meilleure transmission de puissance possible

- Très bonne pour les fonctions de commande
- Moins pour la vidéo

Figure 27 – Paramètre s11 de l'antenne

► Adaptée au 2.4GHz

RECETTE - PROJET ABYSSE

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure 28 – Table de montage dans l'atelier mécanique de IMT Atlantique et machine d'usinage

Les étapes de montage du sous-marin ont été les suivantes :

- Essai dimensionnel de la solution à joints toriques
- Montage unitaire des composants sur les disques
- Coulissage des disques sur les tiges filetées en respectant les espacements
- Insertion dans le tube et fermeture de l'ensemble

Figure 29 – Rangement des composants

Figure 30 – Test en piscine

Figure 31 – Avant du sous-marin submergé

- Beaucoup de fuites, certaines à des endroits inattendus
 - On réfléchit rapidement à des corrections

Figure 32 – Test en bac n°1

Figure 33 – Test en bac n°2

- Moins de fuites, certaines modifications ont fonctionné
- Des fuites demeurent au niveau des gouvernails notamment

Figure 34 – Module électronique

- Les deux pistons ne progressent pas à la même vitesse
- Difficulté du côté du piston avant

- Implémentation de zones mortes
- Implémentation de butées
- Adaptation de la puissance fournie aux motoréducteurs

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Figure 35 – Capture d'écran du site web

RECETTE - PROJET ABYSSE
Groupe 83 PRONTO

23/05/25

Figure 36 – Un site pensé comme une expérience

- Site one-page dynamique avec scroll fluide
- Nombreuses animations visuelles au fil du scroll
- Ambiance sonore: bruit marin et sonar discret

- Options envisagées :
 - HTML/CSS
 - CMS comme WordPress

Figure 37 – React

- React choisi : composants réutilisables, animations faciles à intégrer, grande liberté de création
- Stack : React + Tailwind CSS + GSAP

Figure 38 – Importation de Fusion 360 dans la modélisation Blender

- Présentation de l'équipe et du sous-marin
- Modèle 3D interactif du prototype
- Galerie photo
- Lien vers notre GitHub
- Illustrations réalistes avec scènes animées via Blender

Figure 39 – Déploiement sur Netlify grâce à Github

- Hébergement via Netlify avec déploiement automatique depuis GitHub
- Site toujours à jour, accessible à tous
- Outil de communication moderne qui valorise à la fois le fond technique et la forme immersive

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

- ► Implémentation des caméras
- Étanchéification des ogives
- Choix de métaux inoxydables
- Mise en place de la bouée

Figure 40 – Kit caméra

- ▶ Rendre le comportement des servomoteurs plus fluide
- Moduler les deux pistons en même temps au lieu d'un pour l'équilibrage
- Améliorer la précision des différents paramètres de manière empirique

- 1. Présentation du projet et des objectifs
- 2. Conception
- 3. Réalisation et tests unitaires
- 4. Intégration et tests
- 5. Communication: site internet
- 6. Perspectives d'amélioration
- 7. Travail de groupe

Réussites de la gestion de projet :

- Planification à l'aide de Ganttproject
- Réduction des problèmes de conception en amont avec la CAO 3D
- Organisation pour la gestion des problèmes : solutions alternatives, tests, etc.

Figure 41 – L'équipe qui travaille à l'atelier

Réussites de l'organisation :

- Parallélisation des taches
- Organisation des séances
- Outils collaboratifs
- Collaboration avec des personnes extérieures à l'équipe PRONTO

Bilan 53

- ✓ Construire de A à Z un sous-marin
- \checkmark Chaîne de puissance sur mesure
- ✓ Asservissement de ballast fonctionnel
- ✓ Communication tout au long du projet

Conclusion 54

Figure 42 – La Pron'team et son sous-marin

RECETTE - PROJET ABYSSE
Groupe 83 PRONTO

23/05/25

- [1] Brick experiment Channel, Building a Lego-powered Submarine 4.0 automatic depth control, Youtube, 16 juil. 2022. https://www.youtube.com/watch?v=KLEH8RJsYgI
- [2] Antoine Géju, *Projet Kosmos*, 2025. https://kosmos.fish/index.php/faq/
- [3] Saad-Eddine Khazari, Site Web du projet Abysse, 2025. https://abysse.netlify.app/
- [4] Diy Perks, Building a DIY submarine DIY Perk, 2025. https://www.youtube.com/watch?v=pUba126uzvU
- [5] Norelem, Informations techniques pour le joint torique, 2025. https://urlr.me/eW8s36

Pour assurer le bon maintien des composants, on a utilisé des inserts filetés

Figure 43 – Préconisation de modélisation

Utilisation du PLA (polylactic acid) :

- Facilité d'impression : faible retrait thermique, bonne adhérence au plateau
- Écologique et biodégradable : fabriqué à partir d'amidon de maïs ou de canne à sucre
- Étanche (testé en conditions extrêmes)

Width	Thickness of step 01mm	Cross- sectional area of step 0.5 mm ²	Approximate Vise Basege Equivalent (AVIG) 26 AVIG					Amp	city"(A)	/ Flesist	ance [m]	Imeter)	of metal s	trip letten i	nade of i				
of strip				Copper		Aluminium		Zinc		Nickel		kon		Tin		Carbon Steel		Stainless Steel	
				0,2	22,6	5,0	50,4	2,5	112	2,1	140	1,5	104	1,4	210	1,0	296	1,22	1200
Smm	0.15 mm	0.75 mm²	BAVB	125	22,4	7,4	37,6	3,7	78,7	3,1	53,2	2,3	129	2,0	165	1,9	191	0,32	520
	0.2 mm	'imm'	BAUB	15	16,8	8,6	28,2	4,3	59.8	4,1	69.9	3.0	97,1	2,7	109	2,1	143	8,43	690
	0.25 mm	125 mm*	17 AVB	18	13,4	12	22,6	6.6	47.2	5.1	55,8	3.7	77.7	3,3	87.2	2,8	114	8,54	562
	0.3 mm	1.5 mm*	BAVG	21	11.2	14	18.8	7.1	33.3	6.8	48.8	4.4	84.7	4.0	72.7	3.0	35.3	0.85	460
	0.4 mm	2 mm²	EAV8	27	8,40	11	14,1	9.3	28.5	7.8	35.0	5.8	48.6	5.2	64.6	4,8	71.6	0,36	345
	0.5 mm	25mm/	HAVS	35	6.72	21	11.2	11	23.6	9,7	29.0	7,2	38,8	6.6	43.8	5.0	57.2	1.1	276
	Imm	5 mm	MAMB	49	3,36	35	5,84	20	11.8	- 11	14.0	13	18,4	17	21.8	18	29,6	2,1	138
	01 nm	9.6mm*	56 VAG	9.7	28.0	6,8	47,9	2,6	98,3	2,5	187	1,8	1112	1,6	192	1,2	238	0,20	1850
	3.15 mm	0.8mm²	BAVE	14	18,7	8,8	31,3	4.4	65.6	3,7	77.7	2.7	102	2.4	121	1.8	15:9	0,39	767
	0.2 mm	1.2 mm²	TAVE	18	14.0	- 81	23,5	5.9	49.2	6,9	59,2	2.6	80.9	3,2	30.8	2,5	IIIS	8,52	575
2000	0,25 mm	15mm ²	WAVE	21	11,2	24	10,0	7,5	33.2	6,0	46,6	4.4	64,7	4,0	7.57	3,8	35,2	8,65	460
8 mm	0.3 mm	18 mm²	MAVE.	2%	9.22	11	15.7	0.4	22.8	7,2	29.9	5.3	52.0	6,7	00.0	2,6	79.4	8,77	202
	0.4 mm	24mm²	BAVS	30	7,80	15	11,0	11	24.6	3,4	20,1	6.3	40,5	5.8	15.4	4.8	30,6	1,0	288
	0.5 mm	3mm ¹	DAVE	36	5,68	24	2,40	13	15,7	11	23,3	8.5	32,4	7.5	36.3	5,2	47.7	1.3	228
4	Timm	6 mm ¹	10 AVG	53	2.50	40	4.70	24	9,63	21	11,7	160	16.2	16	10,2	11	23.8	2.5	185
	0.1 mm	0.2 mm2	BAVD	11	24,0	6.2	40.3	3,4	84.3	2,3	-53.3	2,1	123	1,3	156	1,4	284	0,30	385
	0.15 mm	105 mm ²	ITAVE.	16	16.0	111	26.5	5.1	96.2	4.3	0.00	3,1	92.5	2.0	104	2,2	136	8.45	657
	02mm	14 mm	BAVB	219	12.0	13	20.1	6.6	42,1	5.7	49.9	4.1	63,4	3.7	77.9	2,8	102	8,00	493
22739	0.25 mm	128 mm²	BAUS	26	9.80	10	10.1	8.2	33.7	7.0	39.9	5.1	55.5	4.0	62.3	3,5	81.7	0.75	394
Trim	0.3 mm	21mm	MAVB	28	8,89	111	13.6	9.7	28.1	8.3	33.3	6,1	46.2	5.5	51.2	4,2	68.1	0,30	329
~~~	0.4 mm	2800'	BAVB	34	6.00	23	30.5	13	21.1	11	29.0	8.6	34.7	7.2	38.9	5,5	51.1	1.2	248
	0.9 mm	3.5mm/	TIAVE	33	4,80	27	2.06	151	16.8	11	20.0	8.8	27.7	8.8	31.1	8,8	40.8	1,5	197
100	1000	7 mm*	9AV9	57	2,40	44	4.03	27	8,43	23	10.0	18	13.9	16	15.6	13	20,4	2.9	98.6
_	01mm	0.8 mm ²	BAVG	13	21,0	7,8	35,3	3,8	73.8	3,3	87.4	2.4	821	2,1	136	1,6	178	0,35	863
	0.5mm	12 mm²	FAVG	18	14.0	H	23.5	5.8	49.2	6.3	58,3	3.6	86.3	3.8	39.8	2,5	1113	0.52	575
	02mm	1.5 mm²	BAUS	22	10.5	25	17.6	7,5	36.9	11,4	43.7	4.7	60.7	4.2	68.1	2,2	23,4	0.59	431
2500	0.25 mm	2 mm²	BAUG	27	0,40	- 11	14,5	9,3	29,5	7,9	35,0	5,4	40,6	5,2	54,5	4.0	71,5	8,89	345
SIMM	0.2 mm	2.1 mm²	MAVE	38	7,80	21	IL8	- 11	24.6	9,4	29,1	6.9	40,8	6.2	45.4	5,0	89.6	1,0	298
1275	0.4 mm	22mm²	DAVE	27	5,25	26	9,01	14	10,4	u	21.0	3.6	20,2	0.1	34,8	6,2	44,7	1.4	216
	05mm	4mm	TAVE	43	6,70	30	7,05	17	14,8	11	17.5	11	24,3	3,3	27,3	7,8	35,8	1,7	173
	Imm	Qmm ¹	SAVG	41	2.10	47	2.53	25	7.38	20	9.7	20	12.1	10	12.6	14	17.0	2.4	00.7
_	01mm	0.0 mm ²	BAVO	14	10,7	0,0	31,3	4.4	65,6	3,7	TET	2.7	100	2,4	121	1,0	15/0	0,33	767
	8.15 mm	125 mm²	MAVE	20	12.4	12	20.9	6.4	42.7	5.5	51.0	4.0	71,9	3,0	00.7	2,7	104	8,50	511
- 1	0.2 mm	1.5 mm²	BAVE	29	9,33	111	15.7	8,4	32.8	7.2	38,8	5.3	53.9	4,7	8,60	3,6	79.4	8,77	383
A.m.	0.25 mm	2.25 mm*	HAVE	29	7.47	19	12.5	10	26.2	8.8	21.1	6.5	43.7	5.0	48.4	4.5	63.6	1.0	307
9 mm	0.3 mm	22 mm²	10.60/8	33	6.22	23	10.4	12	21.8	11	25.0	7.7	36,8	6.9	40.4	5,4	53.0	1.2	256
	0.6 mm	3.6 mm'	EAVE	69	6,67	28	7.83	16	18,4	13	19.4	10	27,8	3,0	38.3	7,8	33,7	1.5	132
	0.5 mm	6.5mm ²	1043	45	3,73	33	6.27	19	13.1	11	15.5	12	21.6	11	24.2	8,8	31.8	1.9	153
. 1	lmm	3mm	9/1/9	64	1,87	50	3,83	32	6,56	20	7,9	22	19,9	29	1,31	16	15.0	3.8	76.7
_	01mm	1mm/	BAVS	15	16.8	9,6	29.2	4.9	59.8	6,1	69.9	3.6	97.1	2.7	109	2.1	143	0,43	690
	9.15 mm	15 mm²	BAVS	23	11,2	11	18,8	7,1	28,3	0,0	19,8	4.4	84,7	4,0	72,7	3,0	35,2	0,05	460
10 m/m	0.2 mm	2 mm²	BAUS	27.	8,40	111	14,3	9.7	28.5	7.3	35,0	5.8	48,5	5.2	54.5	4.0	71,5	8,85	345
	0.25 mm	25mm	HAVE	31	6,72	21	11,3	11	23,6	9,7	29,0	7,2	38,8	0.4	43,6	5,0	57,2	1,1	274
	0.3 mm	3 mm²	DAVG	36	5,50	24	3,40	13	19.7	H	23,3	8.5	32.4	7.6	36,3	5,0	47.7	1,3	239
	0.4 mm	4mm ²	BAUS	42	4.70	30	7.05	17	14.0	15	17.5	11	24.2	9,9	27.3	7,8	35,8	1,7	173
	0.5 mm	5mm ¹	MAKG	19	3,36	30	5,64	20	11,8	11	14.0	13	10,4	12	21,0	3,5	28,6	1.5	128
	1mm	15 mm ³	RANG	66	1.00	53	2.02	24	5.50	70	2.0	24	9.7	72	10.9	17	14.7	4.2	69.0



4 - Code 58

```
Aliciaso "2200en."
Aliciaso "2000en (Anto-Metor-Specifica"
1616258 npc
HILLIEF BEE, BOY, BOT, Top. OVE. DVC. OVE.
```





```
MITTE MEGING);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
MITTE SERVICE (MITTE SERVICE);
Minimagic();

Mi
                          pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
pismocranorfina, DETRIT;
                                            guaradelerschieften, Ochrothy
```



If (ploage w-m)(ploage a	
viss of (ploage 100)(ploa	
statek - pluegej statek - pluegej	
inclinapriotle(ploage);	
motoury (states);	



```
harre hart a may (militally (gir harre hart, HIOH), res min, res man, 8 , 150);
berg set - applicable (the here set, 1800), on all, research (180); plonge a sus(paired (the plonge, 1800), on all, research (the plonge temperature).
if(herro hors s255)(herre hors = 255;)
17(0114gs 1055)(plongs - 155;)
Tiphonge (-200) (alleage - -1251)
tension_AL + AUD.residE((1); // House
tension_solts_AL + AUD.toWalfage(tension_AU);
```



```
Serial prior (termine, wolfs, AU);
Serial prior(",");
Serial prior("is termine on Al con ");
 Secial print in tension volts 41):
 makeg = mm(ACX, minusi, manusi, -WO, 90);
  im theg + min(Act, winval, wasval, -00, 90);
x = 840_T0_DER * (stanit_ying, -ring) + PI);
y = 840_T0_DER * (stanit_wing, -ring) + PI);
z = 840_T0_DER * (stanit_ying, -ring) + PI);
```



```
moteurn (int states)
     digitally frequency State, siled,
     digitalis ita@meterPin42, 1040;
    digitalwille(esterPisk), the); algitalwille(esterPisk), slow;
    digitalifiti(esterfick), 8280);
digitalifiti(esterfick), 8280;
If (states o to 48 tender velts AL va.) I make
 digitals in (meta-riett, miss):
digitals it (meta-riett, 100);
 digitalistic(materists, 100;
  digitalerité(metropies, elle);
```



