## Véletlen fizikai folyamatok, hetedik házi feladat

## Horváth Bendegúz

2018. április 21.

## Szimuláció

A szimulációt python nyelven valósítottam meg. Előszőr importáltam a szükséges csomagokat, kiírtam a betaJ listába a saját  $\beta J$  változóimat, majd elkészítettem egy Energia függvényt, ami a listaként megadott spinláncból kiszámolja az energiát, J faktor nélkül.

```
%pylab inline
q = 0
betaJ = [0.14, 0.28, 0.56, 1.15]

def E(spins):
    s = 0
    for i in range(1, len(spins)):
        s = s+ spins[i-1]*spins[i]
    E = -s
    return E
```

Ezek után létrehoztam egy dE függvényt, ami a  $\Delta E$ -t számolja ki, majd a simulationStep függgvényt, ami egy szimulációs lépésnek felel meg.

```
def dE(s0,s1, s2):
   return 2*s1*(s0+s2)
def simulationStep(s, N, betaJ):
   rand = random.randint(0, N)
   if rand ==0:
       s1 = s[rand]
       s0 = s[N-1]
       s2 = s[rand+1]
   if rand == N-1:
       s1 = s[rand]
       s0 = s[rand-1]
       s2 = s[0]
   else:
       s0 = s[rand-1]
       s1 = s[rand]
       s2 = s[rand+1]
```

```
if dE(s0, s1, s2) <0:</pre>
   s[rand] = -s[rand]
   return s
elif dE(s0, s1, s2) == 0:
   P = random.random()
   if P< 0.5:
       s[rand] = -s[rand]
       return s
   else:
       return s
else:
   P = random.random()
   if P < \exp(-betaJ*dE(s0, s1, s2)):
       s[rand] = -s[rand]
       return s
   else:
       return s
```

Egy szimuláció során t=1000-ig néztem, így  $1000\cdot 100=t\cdot N$  lépés volt. Egy  $\beta J$ -re több mérést is megnéztem. A végeredménynek a mérések átlagát veszem, hibának a mérések szórását. Az eredmények a következőnek adódtak:

| mérés | $\beta J$ | m                  | $\langle m \rangle$                 | $\sigma_m^2$                      |
|-------|-----------|--------------------|-------------------------------------|-----------------------------------|
| 0     | 0.14      | 0.3                | 0.0035                              | 0.01287                           |
| 1     | 0.14      | 0.08               | -0.00649                            | 0.0126422                         |
| 2     | 0.14      | -0.14              | 0.00288                             | 0.0127007                         |
| 3     | 0.14      | -0.04              | 0.0081                              | 0.01132                           |
| 4     | 0.14      | 0.02               | 0.00566                             | 0.01295                           |
| átlag | 0.14      | $0.044 \pm 0.0217$ | $0.00273 \pm (2.460 \cdot 10^{-5})$ | $0.0125 \pm (3.62 \cdot 10^{-7})$ |

| mérés | $\beta J$ | m                | $\langle m \rangle$               | $\sigma_m^2$                         |
|-------|-----------|------------------|-----------------------------------|--------------------------------------|
| 0     | 0.28      | 0.34             | -0.003                            | 0.0183                               |
| 1     | 0.28      | -0.02            | 0.0055                            | 0.0200                               |
| 2     | 0.28      | 0.04             | -0.0037                           | 0.01732                              |
| 3     | 0.28      | 0.02             | 0.0053                            | 0.01608                              |
| 4     | 0.28      | -0.06            | 0.00133                           | 0.01585                              |
| átlag | 0.28      | $0.095 \pm 0.02$ | $0.0010 \pm (1.53 \cdot 10^{-5})$ | $0.0.0175 \pm (2.351 \cdot 10^{-6})$ |

| mérés | $\beta J$ | m                | $\langle m \rangle$                | $\sigma_m^2$                        |
|-------|-----------|------------------|------------------------------------|-------------------------------------|
| 0     | 0.56      | 0.26             | 0.00393                            | 0.02725                             |
| 1     | 0.56      | 0.16             | 0.17157                            | 0.02941                             |
| 2     | 0.56      | 0.06             | -0.004066                          | 0.03215                             |
| 3     | 0.56      | -0.02            | 0.00613                            | 0.02872                             |
| 4     | 0.56      | 0.22             | -0.0195                            | 0.030677                            |
| átlag | 0.56      | $0.079 \pm 0.01$ | $0.00122 \pm (1.65 \cdot 10^{-3})$ | $0.02964 \pm (2.797 \cdot 10^{-6})$ |

| mérés | $\beta J$ | m               | $\langle m \rangle$      | $\sigma_m^2$                    |
|-------|-----------|-----------------|--------------------------|---------------------------------|
| 0     | 1.15      | 0.1             | -0.07922                 | 0.1089                          |
| 1     | 1.15      | 0.4             | 0.01964                  | 0.06454                         |
| 2     | 1.15      | -0.04           | -0.1458                  | 0.10169                         |
| 3     | 1.15      | 0.34            | -0.005755                | 0.11115                         |
| 4     | 1.15      | -0.36           | 0.15794                  | 0.06074                         |
| átlag | 1.15      | $0.2 \pm 0.031$ | $0.000172 \pm (0.01158)$ | $0.089 \pm (4.8 \cdot 10^{-4})$ |



1. ábra. A m értékeinek változása ugrásonként, különböző  $\beta J$  értékekkel

A 1 ábrán látszik, ami a táblázatadatokban is, hogy a  $\beta J$  értékének növelésével a szórás nő. Megvizsgálva a többi mennyiséget nem kapunk ilyen egyértelmű össszefüggést.



2. ábra. (a) az egyes csúcsokhoz tartozó kapcsolatok száma (b) a fokszámeloszlás.