

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA EXAMEN

Pregunta 1

(\Rightarrow) Supongamos que $\alpha \models \beta$. Sea $v_1, v_2, ..., v_k = \bar{v}$ una valuación arbitraria de las variables $p_1, ..., p_k$. $\underline{P.D}$: $\alpha(\bar{v}) = (\alpha \land \beta)(\bar{v})$.

Hay dos opciones:

- 1. si $\alpha(\bar{v})=1$ entonces $\beta(\bar{v})=1$ (pues asumimos que $\alpha\models\beta$) y luego $(\alpha\wedge\beta)(\bar{v})=1$ por definición de conjunción.
- 2. si $\alpha(\bar{v}) = 0$ entonces directamente $(\alpha \wedge \beta)(\bar{v}) = 0$

Luego $\alpha(\bar{v}) = (\alpha \wedge \beta)(\bar{v})$ y entonces como \bar{v} es arbitraria $\alpha \equiv \alpha \wedge \beta$.

(\Leftarrow) Suponemos que $\alpha \equiv \alpha \land \beta$. Sea $v_1, ..., v_k = \bar{v}$ una valuación tal que $\alpha(\bar{v}) = 1$. P.D: $\beta(\bar{v}) = 1$. Como $\alpha \equiv \alpha \land \beta$ entonces $(\alpha \land \beta)(\bar{v}) = 1$. Luego por definición de conjunción se tiene $\beta(\bar{v}) = 1$, luego $\alpha \models \beta$

Nota: comparar directamente los valores de verdad de α y β con $\alpha \equiv \alpha \land \beta$ y $\alpha \models \beta$ en tablas de verdad como la siguiente no constituye una demostración correcta debido a que, aunque existe una relación entre el valor de verdad de α y β y lo que se pide demostrar, no se hace cargo de las definiciones de consecuencia lógica y equivalencia lógica.

α	β	$\alpha \equiv \alpha \wedge \beta$	$\alpha \models \beta$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

- (3 Puntos) Por dirección ⇒
 - (2 Puntos) Por ver el caso cuando $\alpha(\bar{v}) = 1$
 - (1 Punto) Por ver el caso cuando $\alpha(\bar{v}) = 0$
- (3 Puntos) Por dirección ←
 - (1 Punto) Por tomar una valuación \bar{v} tal que $\alpha(\bar{v}) = 1$
 - (2 Puntos) Por mostrar que $\beta(\bar{v}) = 1$ y concluir

Pregunta 2

Pregunta 2.1

PD: $\forall i \in \mathbb{N} : B_i \neq \emptyset$

Opción 1: Para i = 0:

$$B_0 = A_0 \neq \emptyset$$

Para $i \geq 1$:

Sabemos que $B_i = A_i \cap A_{i-1}^c$ y además que $A_{i-1} \subset A_i$

$$\Rightarrow \exists x \in A_i \land x \notin A_{i-1}$$

$$\Rightarrow x \in A_i \land x \in A_{i-1}^c$$

$$\Rightarrow x \in A_i \cap A_{i-1}^c$$

$$\Rightarrow A_i \cap A_{i-1}^c \neq \emptyset$$

$$\Rightarrow B_i \neq \emptyset$$

Opción 2:

Para i = 0:

$$B_0 = A_0 \neq \emptyset$$

Para $i \ge 1$ podemos demostrar por contradicción. Notamos que:

$$B_i = A_i \cap A_{i-1}^c$$

$$\Rightarrow B_i = \{x \mid x \in A_i \land x \in A_{i-1}^c\}$$

$$\Rightarrow B_i = \{x \mid x \in A_i \land x \notin A_{i-1}\}$$

$$\Rightarrow B_i = A_i A_{i-1}$$

Luego, sup. que $B_i=\emptyset$, como $A_i\neq\emptyset$ y $B_i=A_i\cap A_{i-1}^c=\emptyset$, tenemos:

$$\Rightarrow A_i = A_{i-1} \ \lor \ A_i \subset A_{i-1}$$
$$\Rightarrow A_i \subseteq A_{i-1}$$

Sin embargo, por enunciado, tenemos que $A_{i-1} \subset A_i$, por lo que llegamos a una contradicción.

Dado lo anterior el puntaje asignado es el siguiente:

- (0.5 Puntos) Por demostrar correctamente el caso i = 0
- (1.5 Puntos) Por demostrar correctamente el caso $i \ge 1$

Pregunta 2.2

PD:
$$\forall i, j \in \mathbb{N}, i \neq j : B_i \cap B_j \neq \emptyset$$

Sin pérdida de generalidad, supongamos que i < j.

$$\Rightarrow B_i \cap B_j = (A_i \cap A_{i-1}^c) \cap (A_j \cap A_{j-1}^c)$$
$$= (A_i \cap A_j) \cap (A_{i/1} \cap A_{i-1}^c)$$

Como $A_i \subset A_j$:

$$A_i \cap A_j = A_i$$

Y como i < j:

$$i-1 < j-1$$

$$\Rightarrow A_{j-1}^c \subset A_{i-1}^c$$

$$\Rightarrow A_{j-1}^c \cap A_{i-1}^c = A_{j-1}^c$$

$$\Rightarrow B_i \cap B_j A_i^c \cap A_{j-1}^c$$

Notar que si i = 0, tendremos:

$$\Rightarrow B_i \cap B_j = (A_i) \cap (A_j \cap A_{j-1}^c)$$
$$= (A_i \cap A_j) \cap A_{j-1}^c$$
$$= A_i \cap A_{j-1}^c$$

Luego, para demostrar por contradiccón, supongamos que $A_i \cap A_{j-1}^c \neq \emptyset$

$$\Rightarrow \exists x \mid x \in A_i \land x \in A_{j-1}^c$$
$$\Rightarrow x \in A_i \land x \notin A_{j-1}$$

Sin embargo, sabemos que $i < j \leftarrow i \le j-1$

$$\Rightarrow A_i \subseteq A_{j-1} \subset A_j$$

Por lo que llegamos a una contradicción.

- (1 Punto) Por demostrar que $B_i \cap B_j = A_i \cap A_{j-1}^c$
 - (0.5 Puntos) Por demostrar que $A_i \cap A_j = A_i$
 - (0.5 Puntos) Por demostrar que $A_{j-1}^c \cap A_{i-1}^c = A_{j-1}^c$
- (1 Punto) Por demostrar que $A_i \cap A_{j-1}^c = \emptyset$
 - (0.5 Puntos) Por llegar a que $A_i \cap A_{j-1}^c \neq \emptyset \to \exists x \mid x \in A_i \land x \notin A_{j-1}$
 - (0.5 Puntos) Por llegar a la contradicción.

Pregunta 2.3

PD:
$$\bigcup_{i=0}^n B_i = A_n \wedge \bigcup_{i=1}^\infty B_i = S$$

Podemos demostrar la primera parte utilizando inducción.

Caso base, i = 0:

$$\bigcup_{i=0}^{0} B_i = A_0 = B_0$$

Sup. que (HI):

$$\bigcup_{i=0}^{n} B_i = A_n$$

$$\Rightarrow \bigcup_{i=0}^{n+1} B_i = \bigcup_{i=0}^n B_i \cup B_{n+1}$$

$$= A_n \cup B_{n+1}$$

$$= A_n \cup (A_{n+1} \cap A_n^c) \qquad (HI)$$

$$= (A_n \cup A_{n+1}) \cap (A_n \cup A_n^c)$$

$$= A_{n+1} \cap (A_n \cup A_n^c) \qquad (A_n \subset A_{n+1})$$

$$= A_{n+1} \cap S$$

$$= A_{n+1}$$

Ahora debemos demostrar la segunda parte. Notar que haber demostrado la parte anterior para todo n **no** es suficiente para afirmar que la igualdad se cumple para ∞ . Tenemos que:

$$S = \bigcup_{i=0}^{\infty} A_i$$

Luego para demostrar la igualdad, debemos demostrar:

$$\bigcup_{i=0}^{\infty} B_i \subseteq \bigcup_{i=0}^{\infty} A_i \ \land \ \bigcup_{i=0}^{\infty} A_i \subseteq \bigcup_{i=0}^{\infty} B_i$$

PD:
$$\bigcup_{i=0}^{\infty} B_i \subseteq \bigcup_{i=0}^{\infty} A_i$$

Sea $x \in \bigcup_{i=0}^{\infty} B_i$

$$\Rightarrow \exists n \mid x \in B_n$$

$$\Rightarrow x \in \bigcup_{i=0}^n B_i$$

$$\Rightarrow x \in A_n$$

$$\Rightarrow x \in \bigcup_{i=0}^\infty A_i$$

PD:
$$\bigcup_{i=0}^{\infty} A_i \subseteq \bigcup_{i=0}^{\infty} B_i$$

Sea $x \in \bigcup_{i=0}^{\infty} A_i$

$$\Rightarrow \exists n \mid x \in A_n$$

$$\Rightarrow x \in \bigcup_{i=0}^n B_i$$

$$\Rightarrow x \in \bigcup_{i=0}^\infty B_i$$

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por demostrar que $\bigcup_{i=0}^{n} B_i = A_n$
 - (0.5 Puntos) Por el caso base
 - (0.5 Puntos) Por el caso general
- (1 Punto) Por demostrar que $\bigcup_{i=1}^{\infty} B_i = S$
 - (0.5 Puntos) Por demostrar que $\bigcup_{i=0}^{\infty} B_i \subseteq \bigcup_{i=0}^{\infty} A_i$
 - (0.5 Puntos) Por demostrar que $\bigcup_{i=0}^{\infty} A_i \subseteq \bigcup_{i=0}^{\infty} B_i$

Nota: Se asignaron 0 puntos en esta sección si se dijo que haber demostrado para todo n era suficiente para afirmar que se cumplía para ∞ .

Pregunta 3

Pregunta 3.1

Sea $S \subset \mathbb{N}$. Consideremos la función característica de $S, f_S : \mathbb{N} \to \{0, 1\}$, definida por

$$f_S(n) = \begin{cases} 1 & n \in S \\ 0 & n \notin S \end{cases}$$

y definamos también la función $\mathcal{F}:2^{\mathbb{N}}\to\mathcal{O}(a)$ como aquella que entrega la función característica de su argumento. Esto es,

$$\mathcal{F}(S) = f_S$$
.

¿Cómo sabemos que \mathcal{F} llega a $\mathcal{O}(a)$? Pues, sea $a \in \mathbb{N} \setminus \{0\}$ y $S \subseteq \mathbb{N}$. Luego, para c = 1 y $n_0 = 0$ se tiene que

$$\forall n \geq n_0. \ f_S(n) \leq 1$$

y como $1 \le ca$, tenemos que $f_S \in \mathcal{O}(a)$. De esto deducimos que $\operatorname{Im}(\mathcal{F}) \subseteq \mathcal{O}(a)$ (es decir, habíamos definido correctamente la función).

 \mathcal{F} es evidentemente inyectiva, pues $S_1 \neq S_1$ implica, sin pérdida de generalidad, que $\exists n. \ n \in S_1 \land n \notin S_2$ por lo que $f_{S_1}(n) \neq f_{S_2}(n)$. También, se tiene que es trivialmente sobreyectiva a su imagen. Por esto, sabemos que $2^{\mathbb{N}}$ es equinumeroso con $\operatorname{Im}(\mathcal{F})$, por lo que $\operatorname{Im}(\mathcal{F})$ es no numerable. Pero además, como $\operatorname{Im}(\mathcal{F}) \subseteq \mathcal{O}(a)$, debemos concluir que $\mathcal{O}(a)$ es no numerable (esto último se sigue de que si A es no numerable y $A \subseteq B$ entonces B no es numerable, demostrado en la tarea 6).

- (1 Punto) Por definir correctamente f_S .
- (0.5 Puntos) Por demostrar que \mathcal{F} es inyectiva.
- (0.5 Puntos) Por demostrar que $\operatorname{Im}(\mathcal{F}) \subseteq \mathcal{O}(a)$.
- (0.5 Puntos) Por demostrar que $Im(\mathcal{F})$ no es numerable.
- (0.5 Puntos) Por concluir correctamente que $\mathcal{O}(a)$ no es numerable.

Pregunta 3.2

Lo que se pide demostrar es que las funciones acotadas y (débilmente) crecientes son numerables. Para hacer esto haremos una demostración directa que utiliza una formalización de la idea de que si $f \in \mathcal{C} \cap \mathcal{O}(a)$ entonces $\mathrm{Im}(f)$ es un conjunto finito.

Sea $f \in \mathcal{C} \cap \mathcal{O}(a)$. Entonces existe $n_f \in \mathbb{N}$ tal que

$$\forall n \geq n_f$$
. $f(n) = f(n_f)$.

Esto es porque, en caso contrario, $f \notin \mathcal{O}(a)$. Con esto en mente, definamos $\mathcal{F}: \mathcal{C} \cap \mathcal{O}(a) \to \{0,1,\#\}^*$ según

$$\mathcal{F}(f) = \operatorname{bin}(f(0)) \cdot \# \cdot \operatorname{bin}(f(1)) \cdot \# \cdot \cdots \cdot \# \operatorname{bin}(f(n_f))$$

donde · es la concatenación de *strings*. Es decir, \mathcal{F} es una función que lista la codificación binaria de los valores de f, separados por un caracter #, hasta que f se estabiliza en el valor $f(n_f)$ donde n_f fue definido anteriormente.

Notemos que si $f_2 \neq f_2$ entonces existe n tal que $f_1(n) \neq f_2(n)$. Sin pérdida de generalidad, supongamos $f_1(n) < f_2(n)$, lo que implica que $f_1(n) < f_2(n_f)$. Aquí tenemos dos casos:

1. $n \leq n_{f_1}$.

En este caso, tenemos que $bin(f_1(n))$ sí aparece en $\mathcal{F}(f_1)$ y es distinto de $bin(f_2(n_{f_2}))$, por lo que $\mathcal{F}(f_1) \neq \mathcal{F}(f_2)$ pues habrá necesariamente al menos un caracter distinto en sus *strings*.

2. $n > n_{f_1}$

En este caso, $f_1(n) = f_1(n_{f_1})$ y luego $bin(f_1(n_{f_1})) \neq bin(f_2(n_{f_2}))$ porque habíamos dicho que $f_1(n) < f_2(n_{f_2})$. De esto se sigue que $\mathcal{F}(f_1) \neq \mathcal{F}(f_2)$ pues su última seguidilla de bits es necesariamente distinta.

Notemos que la separación por casos era necesaria pues no sabíamos si $f_1(n)$ se codificaba en $\mathcal{F}(f_1)$ por n o por n_{f_1} . De lo anterior concluimos que \mathcal{F} es inyectiva. Como $\operatorname{Im}(\mathcal{F}) \subseteq \{0,1,\#\}^*$ que es numerable pues el conjunto de palabras finitas de un alfabeto finito es numerable, $\operatorname{Im}(\mathcal{F})$ es numerable (esto último se sigue del contrapositivo del argumetno final de 3.1). Finalmente, como $|\operatorname{Im}(\mathcal{F})| = |\mathcal{C} \cap \mathcal{O}(a)|$ debido a que \mathcal{F} es biyectiva a su imagen por ser inyectiva, concluimos que $\mathcal{C} \cap \mathcal{O}(a)$ es numerable.

- (0.5 Puntos) Por demostrar la existencia de n_f para cada $f \in \mathcal{C} \cap \mathcal{O}(a)$.
- (1 Punto) Por definir que \mathcal{F} .
- (0.5 Puntos) Por demostrar que $f_1 \neq f_2 \implies \mathcal{F}(f_1) \neq \mathcal{F}(f_2)$ en el primer caso.
- (0.5 Puntos) Por el segundo caso, y concluir que \mathcal{F} es inyectiva.
- (0.5 Puntos) Por concluir correctamente a partir de lo anterior que $\mathcal{C} \cap \mathcal{O}(a)$ es numerable.

Pregunta 4

Pregunta 4.1

El valor de f(t) se puede explicar como: "el largo de la rama más corta de t".

Dado lo anterior el puntaje asignado es el siguiente:

• (2 Puntos) Por explicar correctamente que representa el valor de f(t)

Pregunta 4.2

PD:
$$f(t_n) = \lfloor \log_2(\#nodes(t_n)) \rfloor$$

En primer lugar, se demostrará que $f(t_n) = n$ mediante inducción:

CB:
$$f(t_0) = f(\bullet) = 0$$

HI: $f(t_n) = n$
PD: $f(t_{n+1}) = n + 1$

$$f(t_{n+1}) = f(\bullet(t_n, t_n)) = \min\{f(t_n), f(t_n)\} + 1 \text{ (Definición)}$$

$$= n + 1 \text{ (HI)}$$

Por lo tanto, queda demostrado que $f(t_n) = n$.

A continuación se demostrará que #nodes $(t_n) = 2^{n+1} - 1$:

CB:
$$\# nodes(t_0) = 2^{0+1} - 1 = 1$$

HI: $\# nodes(t_n) = 2^{n+1} - 1$
PD: $\# nodes(t_{n+1}) = 2^{n+2} - 1$
 $\# nodes(t_{n+1}) = \# nodes(\bullet(t_n, t_n)) = 1 + 2 \cdot \# nodes(t_n)$ (Definición)
 $= 1 + 2 \cdot (2^{n+1} - 1)$ (HI)
 $= 2 \cdot 2^{n+1} - 1$
 $= 2^{n+2} - 1$

Por lo tanto, queda demostrado que #nodes $(t_n) = 2^{n+1} - 1$. Tomando en cuenta esto, volvemos a nuestra demostración original:

PD:
$$f(t_n) = \lfloor \log_2(\#nodes(t_n)) \rfloor$$

= $\lfloor \log_2(2^{n+1} - 1) \rfloor$
= $n = f(t_n)$

- (1 Puntos) Por demostrar que $f(t_n) = n$.
 - (0.5 Puntos) Plantear el caso base y afirmar qué se quiere demostrar.
 - (0.5 Puntos) Hacer correctamente el paso inductivo.
- (1 Puntos) Por demostrar que #nodes $(t_n) = 2^{n+1} 1$.
 - (0.5 Puntos) Plantear el caso base y afirmar qué se quiere demostrar.
 - (0.5 Puntos) Hacer correctamente el paso inductivo.

Pregunta 4.3

Para el caso base:

$$CB: f(\bullet) = 0 \le \log_2(1) = 0$$

Suponga que $f(t) \leq \log_2(\# \text{nodes}(t))$ se cumple para todas las capas menores que n, demostraremos que se cumple para n.

Sea
$$t \in C[n] \Rightarrow t = \bullet(t_1, t_2)$$
, con $t_1, t_2 \in C[n-1]$

Ahora bien, por HI, se cumple que $f(t_i) \leq log_2(\# nodes(t_i)) \ \forall i \in \{1,2\}$. En otras palabras, el largo de la rama más corta de t_i es menor o igual que $log_2(\# nodes(t_i))$.

Por otro lado, se cumple que:

$$\exists i. \# \text{nodes}(t_i) \le \frac{\# \text{nodes}(t) - 1}{2} \ i \in \{1, 2\} \ (*)$$

Tomando esto en cuenta:

$$\begin{split} f(t) &= \min\{f(t_1), f(t_2)\} + 1 \\ &\leq \min_{i \in \{1, 2\}} \{log_2(\# \text{nodes}(t_i))\} + 1 & (HI) \\ &\leq log_2(\frac{\# \text{nodes}(t) - 1}{2}) + 1 & (*) \\ &\leq log_2(\frac{\# \text{nodes}(t)}{2}) + 1 & (\text{Funci\'on Creciente}) \\ &= log_2(\# \text{nodes}(t)) \end{split}$$

Quedando así demostrado que $f(t) \leq log_2(\#nodes(t))$.

- (0.5 Puntos) Por plantear el caso base y plantear que la hipótesis se cumple para las capas menores a n.
- (1 Puntos) Por darse cuenta que $\exists i.\# \text{nodes}(t_i) \leq \frac{\# \text{nodes}(t) 1}{2} \ i \in \{1, 2\}.$
- (0.5 Puntos) Por completar la demostración.