CLEAN GROUP RINGS OVER LOCALIZATIONS OF RINGS OF INTEGERS

YUANLIN LI AND QINGHAI ZHONG

ABSTRACT. A ring R is said to be clean if each element of R can be written as the sum of a unit and an idempotent. In a recent article (J. Algebra, 405 (2014), 168-178), Immormino and McGoven characterized when the group ring $\mathbb{Z}_{(p)}[C_n]$ is clean, where $\mathbb{Z}_{(p)}$ is the localization of the integers at the prime p. In this paper, we consider a more general setting. Let K be an algebraic number field, \mathcal{O}_K be its ring of integers, and R be a local ring between \mathcal{O}_K and K. We investigate when R[G] is clean, where G is a finite abelian group, and obtain a complete characterization for such a group ring to be clean for the case when $K = \mathbb{Q}(\zeta_n)$ is a cyclotomic field or $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field.

1. Introduction

All rings considered here are associative with identity $1 \neq 0$. An element of a ring R is called clean if it is the sum of a unit and an idempotent, and a ring R is called clean if each element of R is clean. Clean rings were introduced and related to exchange rings by Nicholson in 1977 [12] and the study of clean rings has attracted a great deal of attention in recent 2 decades. For some fundamental properties about clean rings as well as a nice history of clean rings we suggest the interested reader to check the article [10].

Recall that for a ring R with identity and a multiplicative group G, the group ring of G over R is the ring R[G] of all formal sums

$$\alpha = \sum_{g \in G} \alpha_g g \,,$$

where $\alpha_g \in R$ and the support of α , supp $(\alpha) = \{g \in G \mid \alpha_g \neq 0\}$, is finite. Addition is defined componentwise and multiplication is defined by the following way: for $\alpha, \beta \in R[G]$,

$$\alpha\beta = \left(\sum_{g \in G} \alpha_g g\right) \left(\sum_{h \in G} \beta_h h\right) = \sum_{g,h \in G} \alpha_g \beta_h(gh).$$

For more information on the group ring, we refer [11] as a reference. We let C_n denote the cyclic group of order n. Since a homomorphic image of a clean ring is a clean ring, it follows that it is necessary that R is clean whenever R[G] is.

In this paper, we investigate the question of when a commutative group ring R[G] over a local ring R is clean. We also study when such a group ring is *-clean (see next section for the definition of *-clean rings). Let $\mathbb{Z}_{(p)}$ denote the localization of the ring \mathbb{Z} of integers at the prime p. In [3], the authors proved that $\mathbb{Z}_{(7)}[C_3]$ is not clean. It then follows that since $\mathbb{Z}_{(p)}$ is a clean ring (as it is local) that R being a commutative clean ring is not sufficient for R[G] to be a clean ring. In a recent paper [7], it was shown that $\mathbb{Z}_{(p)}[C_3]$ is clean if and only if $p \not\equiv 1 \pmod{3}$. More generally, the authors gave a complete characterization of when $\mathbb{Z}_{(p)}[C_n]$ is clean. Note that $\mathbb{Z}_{(p)}$ is a local ring between \mathbb{Z} and \mathbb{Q} . In this paper, we consider a more general setting. Let (R, \mathfrak{m}) be a commutative local ring and we denote $\overline{R} = R/\mathfrak{m}$. Let

of Canada and by the Austrian Science Fund FWF, Project Number P 28864-N35.

²⁰¹⁰ Mathematics Subject Classification. Primary: 16S34 Secondary: 11R11, 11R18.

Key words and phrases. Clean ring; Group ring; Ring of algebraic integers; Primitive root of unity; Cyclotomic field.

This research was supported in part by a Discovery Grant from the Natural Sciences and Engineering Research Council

K be an algebraic number field, \mathcal{O}_K be its ring of integers, and R be a localization of \mathcal{O}_K at some prime ideal \mathfrak{p} . We investigate when R[G] is clean, where G is a finite abelian group, and provide a complete characterization for such a group ring to be clean for the case when $K = \mathbb{Q}(\zeta_n)$ is a cyclotomic field or $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field. Our main results are as follows.

Theorem 1.1. Let $K = \mathbb{Q}(\zeta_n)$ be a cyclotomic field for some $n \in \mathbb{N}$, $\mathcal{O} = \mathbb{Z}[\zeta_n]$ its rings of integers, $\mathfrak{p}\subset\mathcal{O}$ a nonzero prime ideal, and G a finite abelian group. Let p be the prime with $p\mathbb{Z}=\mathfrak{p}\cap\mathbb{Z}$, let n_0 be the maximal positive divisor of n with $p \nmid n_0$, let n_1 be the maximal divisor of $\exp(G)$ with $p \nmid n_1$ and $\gcd(n_1, n_0) = 1$, and let m' be the maximal divisor of $\frac{\operatorname{lcm}(\exp(G), n_0)}{n_0 n_1}$ with $p \nmid m'$.

Then the group ring $\mathcal{O}_{\mathfrak{p}}[G]$ is clean if and only if $\operatorname{ord}_{n_1} p = \varphi(n_1)$, $\operatorname{ord}_{n_0 m'} p = m' \operatorname{ord}_{n_0} p$, and

 $\gcd(\operatorname{ord}_{n_1} p, \operatorname{ord}_{n_0m'} p) = 1$. In particular, if $\exp(G)$ is a divisor of n, then $\mathcal{O}_{\mathfrak{p}}[G]$ is clean.

Note that if n=1 (i.e. $K=\mathbb{Q}$), then $n_0=1$ and m'=1. Therefore Theorem 1.1 implies the following corollary which is exactly the main result of [7, Theorem 3.3].

Corollary 1.2. Let G be a finite abelian group, let p be a prime number, and let n_1 be the maximal divisor of $\exp(G)$ with $p \nmid n_1$. Then $\mathbb{Z}_{(p)}[G]$ is clean if and only if $\operatorname{ord}_{n_1} p = \varphi(n_1)$ (i.e. p is a primitive root of n_1).

Theorem 1.3. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field for some non-zero square-free integer $d \neq 1$, \mathcal{O} its rings of integers, $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal, and G a finite abelian group. Let Δ be the discriminant of K and let n be the maximal positive divisor of $\exp(G)$ with $p \nmid n$. Then

- 1. if $\Delta \nmid n$, then $\mathcal{O}_{\mathfrak{p}}[G]$ is clean if and only if one of the following holds
 - (a) p = 2 is a primitive root of unity of n and $\Delta \not\equiv 5 \pmod{8}$;
 - (b) $p \neq 2$ is a primitive root of unity of n and $\left(\frac{\Delta}{p}\right) = 1$ or 0, where $\left(\frac{\Delta}{p}\right)$ is the Legendre symbol.
- 2. if $\Delta \mid n$ and $d \equiv 2, 3 \pmod 4$, then $\mathcal{O}_{\mathfrak{p}}[G]$ is clear if and only if |d| is a prime, $n = 4|d|^{\ell}$, $p \equiv 3$ $\pmod{4}$, $\left(\frac{\Delta}{p}\right) = 1$, and $\operatorname{ord}_n p = \varphi(n)/2$.
- 3. if $\Delta \mid n$ and $d \equiv 1 \pmod{4}$, then $\mathcal{O}_{\mathfrak{p}}[G]$ is clean if and only if one of the following holds

 (a) |d| is a prime, $n = |d|^{\ell}$ or $2|d|^{\ell}$ for some $\ell \in \mathbb{N}$, and $\operatorname{ord}_n p = \frac{2\varphi(n)}{3 + \left(\frac{d}{p}\right)}$, where $\left(\frac{d}{p}\right)$ is the Legendre symbol.
 - (b) $|d| = q_1q_2$ is a product of two distinct primes with $q_1 \equiv 3 \pmod{4}$, $q_2 \equiv 3 \pmod{4}$, and the four integers $q_1, q_2, (q_1 - 1)/2, (q_2 - 1)/2$ are pairwise co-prime, $n = q_1^{\ell_1} q_2^{\ell_2}$ or $2q_1^{\ell_1} q_2^{\ell_2}$, $\left(\frac{d}{p}\right) = 1$, and p is a primitive root of unity of $q_1^{\ell_1}$ and $q_2^{\ell_2}$.

In Section 2, we collect some necessary knowledge of the structure of the group of unites $(\mathbb{Z}/m\mathbb{Z})^{\times}$ and field extension. Furthermore, we give some general characterization theorems for clean and *-clean group rings. In Section 3, we deal with group rings over local subrings of cyclotomic fields and provide a proof of Theorem 1.1. In Section 4, we consider group rings over local subrings of quadratic fields and give a proof of Theorem 1.3.

2. Preliminaries

For a finite abelian group G, we denote by $\exp(G)$ the exponent of G. We denote by \mathbb{N} the set of all positive integers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. For $n \in \mathbb{N}$, we denote by $\varphi(n)$ the Euler function. Let $n \in \mathbb{N}$ and let $n = p_1^{k_1} \dots p_s^{k_s}$ be the prime factorization, where $s, k_1, \dots, k_s \in \mathbb{N}$ and p_1, \dots, p_s are pair-wise distinct primes. It is well-known that

$$\varphi(n) = \prod_{i=1}^s \varphi(p_i^{k_i}) = \prod_{i=1}^s p_i^{k_i-1}(p_i-1)$$
 and
$$(\mathbb{Z}/n\mathbb{Z})^\times \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^\times \times \ldots \times (\mathbb{Z}/p_s^{k_s}\mathbb{Z})^\times.$$

Furthermore,

$$\begin{split} (\mathbb{Z}/p_i^k\mathbb{Z})^\times &\cong C_{p_i^{k-1}(p_i-1)} & \text{where } p_i \geq 3, \\ (\mathbb{Z}/2^\ell\mathbb{Z})^\times &= \langle -1 \rangle \times \langle 5 \rangle \cong C_2 \oplus \mathbb{C}_{2^{\ell-2}} & \text{where } \ell \geq 3, \\ \text{and} & (\mathbb{Z}/4\mathbb{Z})^\times \cong C_2 \,. \end{split}$$

For every $m \in \mathbb{N}$ with $\gcd(m,n) = 1$, we denote by $\operatorname{ord}_n m = \operatorname{ord}_{(\mathbb{Z}/n\mathbb{Z})^{\times}} m$ the multiplicative order of m modulo n. If $\operatorname{ord}_n m = \varphi(n)$, we say m is a primitive root of n and n has a primitive root if and only if $n = 2, 4, q^{\ell}$, or $2q^{\ell}$, where q is an odd prime and $\ell \in \mathbb{N}$. Let $n_1 \in \mathbb{N}$ be another integer with $\gcd(n_1, m) = 1$. Then

$$\operatorname{ord}_n m \le \operatorname{ord}_{nn_1} m \le n_1 \operatorname{ord}_n m,$$
 and
$$\operatorname{lcm}(\operatorname{ord}_n m, \operatorname{ord}_{n_1} m) = \operatorname{ord}_{\operatorname{lcm}(n,n_1)} m.$$

Let ζ_n be the *n*th primitive root of unity over \mathbb{Q} . Then $[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\varphi(n)$. Let *m* be another positive integer. Then

$$\mathbb{Q}(\zeta_n) \cap \mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_{\gcd(n,m)})$$
 and
$$\mathbb{Q}(\zeta_n)(\zeta_m) = \mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}).$$

Let (R, \mathfrak{m}) be a commutative local ring and we denote $\overline{R} = R/\mathfrak{m}$. Then \overline{R} is a field and we denote by char \overline{R} the character of \overline{R} . For any polynomial $f(x) = a_n x^n + \ldots + a_0 \in R[x]$, we denote $\overline{f(x)} = \overline{a_n} x^n + \ldots + \overline{a_0} \in \overline{R}[x]$, where $\overline{a_i} = a_i + \mathfrak{m}$ for all $i \in \{0, \ldots, n\}$.

Theorem 2.1. Let (R, \mathfrak{m}) be a commutative noetherian local ring with char $\overline{R} = p \geq 0$, let G be a finite abelian group, and let n be the maximal divisor of $\exp(G)$ with $p \nmid n$. Then R[G] is clean if and only if each monic factor of $x^n - 1$ in $\overline{R}[x]$ can be lifted to a monic factor of $x^n - 1$ in R[x].

Proof. This follows from [7, Proposition 2.1] and [14, Theorem 5.8].
$$\Box$$

Let K be an algebraic number field, \mathcal{O} its rings of integers, and $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal. Then there exists a prime p such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ and the localization $\mathcal{O}_{\mathfrak{p}}$ is a discrete valuation ring, which implies that $\mathcal{O}_{\mathfrak{p}}[x]$ is a UFD(uniquely factorization domain). Furthermore, the norm $N(\mathfrak{p}) = |\mathcal{O}/\mathfrak{p}| = |\overline{\mathcal{O}_{\mathfrak{p}}}|$ is a prime power of p.

Let \mathbb{F}_q be a finite field, where q is a power of some prime p and let $\overline{\zeta_n}$ be the nth primitive root of unity over \mathbb{F}_p with $\gcd(n,q)=1$. Then $[\mathbb{F}_q(\overline{\zeta_n}):\mathbb{F}_q]=\operatorname{ord}_n q$. Let F be an arbitrary field and let f(x) be a polynomial of F[x]. If α is a root of f(x), then $[F(\alpha):F]=\deg(f(x))$ if and only if f(x) is irreducible in F[x].

Theorem 2.2. Let K be an algebraic number field, \mathcal{O} its rings of integers, $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal, and G a finite abelian group. Then the group ring $\mathcal{O}_{\mathfrak{p}}[G]$ is clean if and only if $[K[\zeta_m]: K] = \operatorname{ord}_m(N(\mathfrak{p}))$ for every positive divisor m of $\exp(G)$ with $p \nmid m$, where ζ_m is an mth primitive root of unity over \mathbb{Q} .

Proof. Let n be the maximal divisor of $\exp(G)$ with $p \nmid \exp(G)$. Since $\mathcal{O}_{\mathfrak{p}}[x]$ is a UFD, we suppose that $x^n - 1 = f_1(x) \cdot \ldots \cdot f_s(x)$, where $s \in \mathbb{N}$ and $f_1(x), \ldots, f_s(x)$ are monic irreducible polynomials in $\mathcal{O}_{\mathfrak{p}}[x]$. Then the Generalized Gauss' Primitive Polynomial Lemma implies that $f_1(x), \ldots, f_s(x)$ are also monic irreducible polynomials in K[x]. For every positive divisor m of n, let $\Phi_m(x)$ be the mth cyclotomic polynomial. Then $\Phi_m(x) \in \mathbb{Z}[x] \subset \mathcal{O}_{\mathfrak{p}}[x]$ and

$$x^{n} - 1 = \prod_{1 < m \mid n} \Phi_{m}(x) = f_{1}(x) \cdot \ldots \cdot f_{s}(x).$$

1. Suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is clean. Let f(x) be a monic irreducible factor of $x^n - 1$ in $\mathcal{O}_{\mathfrak{p}}[x]$ and let $\mathfrak{h}(x)$ be a monic irreducible factor of $\overline{f(x)}$ in $\overline{\mathcal{O}_{\mathfrak{p}}}[x]$. By Theorem 2.1, there exists a monic irreducible factor

h(x) of x^n-1 in $\mathcal{O}_{\mathfrak{p}}[x]$ such that $\overline{h(x)}=\mathfrak{h}(x)$. If $h(x)\neq f(x)$, it follows by $\mathcal{O}_{\mathfrak{p}}[x]$ is a UFD that f(x)h(x) is a monic factor of x^n-1 in $\mathcal{O}_{\mathfrak{p}}[x]$ and hence $\overline{h(x)}^2$ is a monic factor of x^n-1 in $\overline{\mathcal{O}_{\mathfrak{p}}}[x]$. Since $\gcd(n,p)=1$, we obtain $x^n-1\in\overline{\mathcal{O}_{\mathfrak{p}}}[x]$ has no multiple root in any extension of $\overline{\mathcal{O}_{\mathfrak{p}}}$, a contradiction. Therefore h(x)=f(x) and hence $\overline{f(x)}=\overline{h(x)}=\mathfrak{h}(x)$ is irreducible in $\overline{\mathcal{O}_{\mathfrak{p}}}[x]$.

Let m be a positive divisor of n. It follows by $\mathcal{O}_{\mathfrak{p}}[x]$ is a UFD that there exists $i \in [1, s]$ such that $f_i(x)$ divides $\Phi_m(x)$ in $\mathcal{O}_{\mathfrak{p}}[x]$. Thus every root of $f_i(x)$ is a mth primitive root of unity in K and hence $[K(\zeta_m):K]=\deg(f_i(x))=\deg(\overline{f_i(x)})$. Since $\overline{f_i(x)}$ is irreducible in $\overline{\mathcal{O}_{\mathfrak{p}}}[x]$ and every root of $\overline{f_i(x)}$ is a mth primitive root of unity in $\overline{\mathcal{O}_{\mathfrak{p}}}$, we have $\deg(\overline{f_i(x)})=[\overline{\mathcal{O}_{\mathfrak{p}}}(\overline{\zeta}_m):\overline{\mathcal{O}_{\mathfrak{p}}}]=\operatorname{ord}_m N(\mathfrak{p})$, where $\overline{\zeta}_m$ is a mth primitive root of unity over \mathbb{F}_p . Therefore $[K(\zeta_m):K]=\operatorname{ord}_m N(\mathfrak{p})$.

2. Conversely, suppose $[K(\zeta_m):K] = \operatorname{ord}_m N(\mathfrak{p})$ for every divisor m of n. Let $i \in [1,s]$. Then $f_i(x)$ is a factor of some mth cyclotomic polynomial $\Phi_m(x)$ with $m \mid n$. Since $f_i(x)$ is irreducible in K[x], we have $\deg(f_i(x)) = |K(\zeta_m):K|$ and hence

$$\deg(\overline{f_i(x)}) = \deg(f_i(x)) = |K(\zeta_m) : K| = \operatorname{ord}_m N(\mathfrak{p}) = |\overline{\mathcal{O}_{\mathfrak{p}}}(\overline{\zeta}_m) : \overline{\mathcal{O}_{\mathfrak{p}}}|.$$

Therefore $\overline{f_i(x)}$ is irreducible in $\overline{\mathcal{O}}_{\mathfrak{p}}[x]$ and

$$x^n - 1 = \overline{f_1(x)} \cdot \ldots \cdot \overline{f_s(x)} \in \overline{\mathcal{O}_{\mathfrak{p}}}[x].$$

Let $\mathfrak{h}(x)$ be a monic factor of $x^n - 1 \in \overline{\mathcal{O}_{\mathfrak{p}}}[x]$. Since $\overline{\mathcal{O}_{\mathfrak{p}}}[x]$ is a UFD, there exists a subset $I \subset [1, s]$ such that $\mathfrak{h}(x) = \prod_{i \in I} \overline{f_i(x)}$ and hence $\overline{\prod_{i \in I} f_i(x)} = \mathfrak{h}(x)$. Therefore every monoic factor of $x^n - 1 \in \overline{\mathcal{O}_{\mathfrak{p}}}[x]$ can be lifted to a monioc factor of $x^n - 1 \in \mathcal{O}_{\mathfrak{p}}[x]$. It follows from Theorem 2.1 that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean. \square

A ring R is called a *-ring if there exists an operation $*: R \to R$ such that $(x+y)^* = x^* + y^*$, $(xy)^* = x^*y^*$, and $(x^*)^* = x$ for all $x, y \in R$. An element $p \in R$ is said to be a projection if $p^* = p = p^2$ and a *-ring R is said to be a *-clean ring if every element of R is the sum of a unit and a projection. A commutative *-ring is *-clean if and only if it is clean and every idempotent is a projection([8, Theorem 2.2]). Let G be an ableian group. With the classical involution

*:
$$R[G] \to R[G]$$
, given by $(\sum a_g g)^* = \sum a_g g^{-1}$,

the group ring R[G] is a *-ring. The question of when a group ring R[G] is *-clean has been recently studied by several authors and many interesting results were obtained (see, for examples, [2, 4, 5, 6, 8, 9], for some recent developments). Next we provide a characterization for $\mathcal{O}_{\mathfrak{p}}[G]$ to be *-clean.

Theorem 2.3. Let K be an algebraic number field, \mathcal{O} its rings of integers, $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal with $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$, and G a finite abelian group with $p \nmid \exp(G)$. If the group ring $\mathcal{O}_{\mathfrak{p}}[G]$ is clean, then $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean if and only if K[G] is *-clean.

Proof. Let $\mathcal{O}_{\mathfrak{p}}[G]$ be clean. Suppose K[G] is *-clean. Since every idempotent of $\mathcal{O}_{\mathfrak{p}}[G]$ is an idempotent of K[G], thus every idempotent of $\mathcal{O}_{\mathfrak{p}}[G]$ is a projective. It follows that $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.

Suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean. Let $\mathcal{O}_{K(\zeta_{\exp(G)})/\mathbb{Q}}$ be the ring of integers of $K(\zeta_{\exp(G)})$ and let I be a prime ideal of $\mathcal{O}_{K(\zeta_{\exp(G)})/\mathbb{Q}}$ with $I \cap \mathcal{O} = \mathfrak{p}$. By [4, The beginning of Section 5] and $p \nmid \exp(G)$, there is a complete family of orthogonal idempotents of $K(\zeta_{\exp(G)})[G]$ which lies in $(\mathcal{O}_{K(\zeta_{\exp(G)})/\mathbb{Q}})_I[G]$. It Follows from [4, Lemma 4.3] that every idempotent of K[G] lies in $(\mathcal{O}_{K(\zeta_{\exp(G)})/\mathbb{Q}})_I[G] \cap K[G] = \mathcal{O}_{\mathfrak{p}}[G]$. Since every idempotent of $\mathcal{O}_{\mathfrak{p}}[G]$ is a projective, we obtain every idempotent of K[G] is a projective. Note that K[G] is clean. Thus K[G] is *-clean.

3. Group rings over local subrings of cyclotomic fields

In this section, we investigate when a group ring over a local subring of a cyclotomic field is clean and provide a proof for our main theorem 1.1. We also characterize when such a group ring is *-clean. We start with the following lemma which we will use without further mention.

Lemma 3.1. Let $K = \mathbb{Q}(\zeta_n)$ be a cyclotomic field for some $n \in \mathbb{N}$, $\mathcal{O} = \mathbb{Z}[\zeta_n]$ its rings of integers, and $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal with $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some prime p. Suppose $n = p^u n_0$ with $p \nmid n_0$. Then $N(\mathfrak{p}) = p^{\operatorname{ord}_{n_0} p}$.

Proof. This follows by [1, VI.1.12 and VI.1.15].

Proof of Theorem 1.1. Let n_2 be the maximal divisor of $\exp(G)$ such that $p \nmid n_2$ and let $n_3 = \frac{n_2}{n_1}$. Since

$$m' = \frac{\text{lcm}(n_2, n_0)}{n_0 n_1} = \frac{\text{lcm}(n_3, n_0)}{n_0}$$

we have $lcm(n_3, n_0) = n_0 m'$ and $lcm(n_2, n_0) = n_0 m' n_1$.

Let m be a divisor of n_2 . Then

$$[\mathbb{Q}(\zeta_n)(\zeta_m):\mathbb{Q}(\zeta_n)] = [\mathbb{Q}(\zeta_{\mathrm{lcm}(n,m)}:\mathbb{Q}(\zeta_n)] = \frac{\varphi(\mathrm{lcm}(n,m))}{\varphi(n)} = \frac{\varphi(\mathrm{lcm}(n_0,m))}{\varphi(n_0)}$$

and

$$\operatorname{ord}_m N(\mathfrak{p}) = \operatorname{ord}_m p^{\operatorname{ord}_{n_0} p} = \frac{\operatorname{ord}_m p}{\gcd(\operatorname{ord}_m p, \operatorname{ord}_{n_0} p)} = \frac{\operatorname{lcm}(\operatorname{ord}_{n_0} p, \operatorname{ord}_m p)}{\operatorname{ord}_{n_0} p} = \frac{\operatorname{ord}_{\operatorname{lcm}(n_0, m)} p}{\operatorname{ord}_{n_0} p} \,.$$

Therefore by Theorem 2.2 that R[G] is clean if and only if

for every divisor
$$m$$
 of n_2 , we have $\frac{\varphi(\operatorname{lcm}(n_0,m))}{\varphi(n_0)} = \frac{\operatorname{ord}_{\operatorname{lcm}(n_0,m)} p}{\operatorname{ord}_{n_0} p}$.

1. We first suppose that R[G] is clean. Since n_1 , n_3 and n_2 are divisors of n_2 , we obtain

$$\begin{split} \frac{\varphi(\operatorname{lcm}(n_0,n_1))}{\varphi(n_0)} &= \frac{\operatorname{ord}_{\operatorname{lcm}(n_0,n_1)} p}{\operatorname{ord}_{n_0} p} \,, \\ \frac{\varphi(\operatorname{lcm}(n_0,n_3))}{\varphi(n_0)} &= \frac{\operatorname{ord}_{\operatorname{lcm}(n_0,n_3)} p}{\operatorname{ord}_{n_0} p} \,, \\ \text{and} \quad \frac{\varphi(\operatorname{lcm}(n_0,n_2))}{\varphi(n_0)} &= \frac{\operatorname{ord}_{\operatorname{lcm}(n_0,n_2)} p}{\operatorname{ord}_{n_0} p} \,. \end{split}$$

Since $gcd(n_1, n_0) = 1$, we obtain

$$\varphi(n_1) = \frac{\varphi(\operatorname{lcm}(n_0, n_1))}{\varphi(n_0)} = \frac{\operatorname{ord}_{\operatorname{lcm}(n_0, n_1)} p}{\operatorname{ord}_{n_0} p} = \frac{\operatorname{lcm}(\operatorname{ord}_{n_0} p, \operatorname{ord}_{n_1} p)}{\operatorname{ord}_{n_0} p} \leq \frac{\operatorname{ord}_{n_1} p \operatorname{ord}_{n_0} p}{\operatorname{ord}_{n_0} p} = \operatorname{ord}_{n_1} p \leq \varphi(n_1).$$

Then $\operatorname{ord}_{n_1} p = \varphi(n_1)$.

Since

$$m' = \frac{\varphi(n_0 m')}{\varphi(n_0)} = \frac{\varphi(\operatorname{lcm}(n_0, n_3))}{\varphi(n_0)} = \frac{\operatorname{ord}_{\operatorname{lcm}(n_0, n_3)} p}{\operatorname{ord}_{n_0} p} = \frac{\operatorname{ord}_{n_0 m'} p}{\operatorname{ord}_{n_0} p} \le \frac{m' \operatorname{ord}_{n_0} p}{\operatorname{ord}_{n_0} p} = m',$$

we obtain $\operatorname{ord}_{n_0m'} p = m' \operatorname{ord}_{n_0} p$.

Since

$$\begin{split} m'\varphi(n_1) &= \frac{\varphi(n_0m'n_1)}{\varphi(n_0)} = \frac{\varphi(\operatorname{lcm}(n_0,n_2))}{\varphi(n_0)} = \frac{\operatorname{ord}_{\operatorname{lcm}(n_0,n_2)}p}{\operatorname{ord}_{n_0}p} = \frac{\operatorname{ord}_{n_0m'n_1}p}{\operatorname{ord}_{n_0}p} \\ &= \frac{\operatorname{lcm}(\operatorname{ord}_{n_0m'}p,\operatorname{ord}_{n_1}p)}{\operatorname{ord}_{n_0}p} \leq \frac{\operatorname{ord}_{n_0m'}p\operatorname{ord}_{n_1}p}{\operatorname{ord}_{n_0}p} = \frac{m'\operatorname{ord}_{n_0}p\varphi(n_1)}{\operatorname{ord}_{n_0}p} = m'\varphi(n_1)\,, \end{split}$$

we obtain $\operatorname{lcm}(\operatorname{ord}_{n_0m'}p,\operatorname{ord}_{n_1}p) = \operatorname{ord}_{n_0m'}p\operatorname{ord}_{n_1}p$. Thus $\operatorname{gcd}(\operatorname{ord}_{n_0m'}p,\operatorname{ord}_{n_1}p) = 1$.

2. Conversely, suppose that $\operatorname{ord}_{n_1} p = \varphi(n_1)$, $\operatorname{ord}_{n_0 m'} p = m' \operatorname{ord}_{n_0} p$, and $\operatorname{gcd}(\operatorname{ord}_{n_1} p, \operatorname{ord}_{n_0 m'} p) = 1$. Then for every $m \mid n_2$, we let $m_1 = \operatorname{gcd}(m, n_1)$ and $m_2 = \frac{\operatorname{lcm}(m/m_1, n_0)}{n_0}$. Then $\operatorname{ord}_{m_1} p = \varphi(m_1)$. It follows by $n_0m_2 \mid n_0m'$ that $gcd(ord_{m_1} p, ord_{n_0m_2} p) = 1$ and

$$\operatorname{ord}_{n_0m'} p = \operatorname{ord}_{n_0m_2\frac{m'}{m_2}} p \leq \frac{m'}{m_2}\operatorname{ord}_{n_0m_2} p \leq \frac{m'}{m_2}m_2\operatorname{ord}_{n_0} p = m'\operatorname{ord}_{n_0} p = \operatorname{ord}_{n_0m'} p.$$

Thus $\operatorname{ord}_{n_0 m_2} p = m_2 \operatorname{ord}_{n_0} p$. It follows that

$$\frac{\operatorname{ord}_{\operatorname{lcm}(n_0,m)} p}{\operatorname{ord}_{n_0} p} = \frac{\operatorname{ord}_{m_1 n_0 m_2} p}{\operatorname{ord}_{n_0} p} = \frac{\operatorname{lcm}(\operatorname{ord}_{m_1} p, \operatorname{ord}_{n_0 m_2} p)}{\operatorname{ord}_{n_0} p}$$

$$= \frac{\operatorname{ord}_{m_1} p \operatorname{ord}_{n_0 m_2} p}{\operatorname{ord}_{n_0} p} = \frac{m_2 \operatorname{ord}_{m_1} p \operatorname{ord}_{n_0} p}{\operatorname{ord}_{n_0} p}$$

$$= m_2 \operatorname{ord}_{m_1} p = m_2 \varphi(m_1)$$

$$= \frac{\varphi(m_1 n_0 m_2)}{\varphi(n_0)} = \frac{\varphi(\operatorname{lcm}(n_0, m))}{\varphi(n_0)}.$$

Therefore R[G] is clean.

3. In particular, if $\exp(G)$ is a divisor of n, then $n_1 = m' = 1$ and hence $\mathcal{O}_{\mathfrak{p}}[G]$ is clean.

Next we characterize when a group ring of a finite abelian group over a local ring $\mathcal{O}_{\mathfrak{p}}$ is *-clean. We need the following two propositions.

Proposition 3.2. Let $m, n \in \mathbb{N}$. Then $\mathbb{Q}(\zeta_m + \zeta_m^{-1})(\zeta_n) = \mathbb{Q}(\zeta_m)(\zeta_n)$ if and only if $\gcd(m, n) \geq 3$ or $m \leq 2$.

Proof. If $m \leq 2$, then it is obvious that $\mathbb{Q}(\zeta_m + \zeta_m^{-1})(\zeta_n) = \mathbb{Q}(\zeta_m)(\zeta_n)$. We suppose $m \geq 3$. Let $K = \mathbb{Q}(\zeta_m + \zeta_m^{-1})$. Then $K \subset K(\zeta_n) \subset \mathbb{Q}(\zeta_m)(\zeta_n) = \mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)})$. Thus $K(\zeta_n) = \mathbb{Q}(\zeta_m)(\zeta_n)$ if and only if $[K(\zeta_n) : K] = [\mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}) : K]$. Since $[\mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}) : K] = \frac{[\mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}) : \mathbb{Q}]}{[K:\mathbb{Q}]} = \frac{2\varphi(\operatorname{lcm}(m,n))}{\varphi(m)} = \frac{2\varphi(n)}{\varphi(\operatorname{gcd}(m,n))}$ and

Since
$$\left[\mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}):K\right] = \frac{\mathbb{Q}(\zeta_{\operatorname{lcm}(n,m)}):\mathbb{Q}}{[K:\mathbb{Q}]} = \frac{2\varphi(\operatorname{lcm}(m,n))}{\varphi(m)} = \frac{2\varphi(n)}{\varphi(\operatorname{gcd}(m,n))}$$
 and
$$\left[K(\zeta_n):K\right] = \left[\mathbb{Q}(\zeta_n):K\cap\mathbb{Q}(\zeta_n)\right] = \left[\mathbb{Q}(\zeta_n):\mathbb{Q}(\zeta_{\operatorname{gcd}(m,n)})\right]\left[\mathbb{Q}(\zeta_{\operatorname{gcd}(m,n)}):K\cap\mathbb{Q}(\zeta_n)\right]$$

$$= \frac{\varphi(n)}{\varphi(\operatorname{gcd}(m,n))}\left[\mathbb{Q}(\zeta_{\operatorname{gcd}(m,n)}):K\cap\mathbb{Q}(\zeta_{\operatorname{gcd}(m,n)})\right]$$

$$= \frac{\varphi(n)}{\varphi(\operatorname{gcd}(m,n))}\left[K(\zeta_{\operatorname{gcd}(m,n)}):K\right],$$

we obtain $|K(\zeta_{\gcd(m,n)}):K| \leq 2$. Moreover, $K(\zeta_n) = \mathbb{Q}(\zeta_m)(\zeta_n)$ if and only if $|K(\zeta_{\gcd(m,n)}):K| = 2$ if and only if $\zeta_{\gcd(m,n)} \notin K$.

If $\gcd(m,n) \geq 3$, then $\zeta_{\gcd(m,n)} \notin \mathbb{R}$ and hence $\zeta_{\gcd(m,n)} \notin K \subset \mathbb{R}$. It follows that $K(\zeta_n) = \mathbb{Q}(\zeta_m)(\zeta_n)$. If $\gcd(m,n) \leq 2$, then $\zeta_{\gcd(m,n)} \in \mathbb{Q} \subset K$ and hence $K(\zeta_n) \neq \mathbb{Q}(\zeta_m)(\zeta_n)$.

Proposition 3.3. Let G be a finite abelian group and let $n \in \mathbb{N}$. Then $\mathbb{Q}(\zeta_n)[G]$ is *-clean if and only if $\exp(G) \ge 3$ and $\gcd(\exp(G), n) \le 2$.

Proof. This follows from [4, Theorem 1.2] and Proposition 3.2.

Theorem 3.4. Let $K = \mathbb{Q}(\zeta_n)$ be a cyclotomic field for some $n \in \mathbb{N}$, $\mathcal{O} = \mathbb{Z}[\zeta_n]$ its rings of integers, $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal with $p\mathbb{Z} = \mathfrak{p} \cap \mathbb{Z}$, where p is a prime, and G a finite abelian group with $p \nmid \exp(G)$. let n_0 be the maximal positive divisor of n with $p \nmid n_0$ and let n_1 be the maximal divisor of $\exp(G)$ with $\gcd(n_1, n_0) = 1$. Then the group ring $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean if and only if $\operatorname{ord}_{n_1} p = \varphi(n_1)$, $3 \leq \exp(G) \leq 2n_1$, and $\gcd(\operatorname{ord}_{n_1} p, \operatorname{ord}_{n_0} p) = 1$.

Proof. 1. Suppose $\operatorname{ord}_{n_1} p = \varphi(n_1)$, $3 \leq \exp(G) \leq 2n_1$, and $\gcd(\varphi(n_1), \operatorname{ord}_{n_0} p) = 1$. Since every prime divisor of $\exp(G)/n_1$ is a divisor of n_0 , it follows from $\exp(G)/n_1 \leq 2$ that $(\exp(G)/n_1)$ divides n_0 . Hence

$$\frac{\mathrm{lcm}(\exp(G), n_0)}{n_0 n_1} = \frac{\mathrm{lcm}(\exp(G)/n_1, n_0)}{n_0} = 1.$$

Thus by Theorem 1.1 $\mathcal{O}_{\mathfrak{p}}[G]$ is clean. Since $p \nmid \exp(G)$, we have $\gcd(n, \exp(G)) = \gcd(n_0, \exp(G)/n_1) \leq 2$. Thus it follows from Proposition 3.3 that $\mathbb{Q}(\zeta_n)[G]$ is *-clean and hence by Theorem 2.3 $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.

2. Suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean. Let $m' = \frac{\operatorname{lcm}(\exp(G), n_0)}{n_0 n_1}$. Since $\mathcal{O}_{\mathfrak{p}}[G]$ is clean, it follows from Theorem 1.1 that

$$\operatorname{ord}_{n_1} p = \varphi(n_1), \quad \operatorname{ord}_{n_0 m'} p = m' \operatorname{ord}_{n_0} p, \quad \text{and} \quad \gcd(\varphi(n_1), m' \operatorname{ord}_{n_0} p) = 1.$$

By Theorem 2.3 and Proposition 3.3, we have $\exp(G) \ge 3$ and $\gcd(n, \exp(G)) \le 2$. Thus $\gcd(n_0, \exp(G)/n_1) \le 2$. Since every prime divisor of $\exp(G)/n_1$ is a divisor of n_0 , we obtain

$$\exp(G) = 2^{\ell} n_1$$
 for some $\ell \in \mathbb{N}_0$.

If $\ell \geq 2$, then $n_0 = 2n'_0$ with n'_0 is odd which implies that $m' = 2^{\ell-1}$. Thus

$$2^{\ell-1}\operatorname{ord}_{n_0} p = m'\operatorname{ord}_{n_0} p = \operatorname{ord}_{m'n_0} p = \operatorname{lcm}(\operatorname{ord}_{2^{\ell}} p, \operatorname{ord}_{n'_0} p) \leq 2^{\ell-2}\operatorname{ord}_{n'_0} p = 2^{\ell-2}\operatorname{ord}_{n_0} p,$$

a contradiction. Thus $\exp(G) \leq 2n_1$ and m' = 1. The assertion follows.

Next, we provide some (*-clean or non *-clean) clean group rings in each case of the characterizations of Theorems 1.1 and 3.4.

Example 3.5. Let $K = \mathbb{Q}(\zeta_n)$ be a cyclotomic field for some $n \in \mathbb{N}$, $\mathcal{O} = \mathbb{Z}[\zeta_n]$ its rings of integers, and G a finite abelian group with $\exp(G) \geq 3$.

- 1. If p is a primitive root of unity of $\exp(G)$, then $\mathbb{Z}_{(p)}[G]$ is *-clean.
- 2. Suppose $\gcd(\exp(G), n) = 1$ and $\exp(G)$ has a primitive root. If there is a prime divisor q of $\varphi(n)$ such that $q \nmid \varphi(\exp(G))$, then there exists $x, y \in \mathbb{N}$ with $\gcd(x, n) = 1$ and $\gcd(y, \exp(G)) = 1$ such that $\operatorname{ord}_n x = q$ and $\operatorname{ord}_{\exp(G)} y = \varphi(\exp(G))$. By Chinese Reminder Theory, there exists $z \in \mathbb{N}$ with $\gcd(z, n \exp(G)) = 1$ such that $\operatorname{ord}_n z = q$ and $\operatorname{ord}_{\exp(G)} z = \varphi(\exp(G))$. By Dirichlet prime number theorem, there is a prime p such that $p \equiv z \pmod{n \exp(G)}$. Let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. Then by Theorem 3.4 $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.
- 3. Suppose $\gcd(\exp(G), n) \geq 3$, $\gcd\left(\frac{\exp(G)}{\gcd(\exp(G), n)}, n\right) = 1$, and $\frac{\exp(G)}{\gcd(\exp(G), n)}$ has a primitive root. If there is a prime divisor q of $\varphi(n)$ such that $q \nmid \varphi\left(\frac{\exp(G)}{\gcd(\exp(G), n)}\right)$, then there exists a prime p such that $\gcd(\operatorname{ord}_n p, \operatorname{ord}_{\frac{\exp(G)}{\gcd(\exp(G), n)}} p) = 1$. Let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal such that $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. Then by Theorems 1.1 and 3.4, $\mathcal{O}_{\mathfrak{p}}[G]$ is clean but not *-clean.
- 4. Let n = 7, $\exp(G) = 49 \times 3$, and let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal such that $\mathfrak{p} \cap \mathbb{Z} = 23\mathbb{Z}$. Since $\operatorname{ord}_7 23 = 3$, $\operatorname{ord}_3 23 = 2 = \varphi(3)$, and $\operatorname{ord}_{49} 23 = 21 = 7 \operatorname{ord}_7 23$, it follows from Theorems 1.1 and $3.4 \mathcal{O}_{\mathfrak{p}}[G]$ is clean but not *-clean.

4. Group rings over local subrings of quadratic fields

In this section, we investigate when a group ring over a local subring of a quadratic field is clean. Let d be a non-zero square-free integer with $d \neq 1$, $K = \mathbb{Q}(\sqrt{d})$ a quadratic number field,

$$\omega = \begin{cases} \sqrt{d} & \text{if } d \equiv 2,3 \pmod{4}, \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4}, \end{cases} \text{ and } \Delta = \begin{cases} 4d & \text{if } d \equiv 2,3 \pmod{4}, \\ d & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Then $\mathcal{O}_K = \mathbb{Z}[\omega]$ is the ring of integers and Δ is the discriminant of K.

For an odd prime p and an integer a, we denote by $\left(\frac{a}{p}\right) \in \{-1,0,1\}$ the Legendre symbol of a modulo p.

We first provide two useful lemmas.

Lemma 4.1. Let $d \neq 1$ be a non-zero square-free integer and let Δ be the discriminant of $\mathbb{Q}(\sqrt{d})$. Then $\mathbb{Q}(\sqrt{d}) \subset \mathbb{Q}(\zeta_n)$ if and only if n is a multiple of Δ .

Proof. This follows from [13, Corollary 4.5.5]

Lemma 4.2. Let $d \neq 1$ be a non-zero square-free integer and let I be a prime ideal of \mathcal{O}_K , where $K = \mathbb{Q}(\sqrt{d})$. Suppose Δ is the discriminant of K and char $\mathcal{O}_K/I = p$, where p is a prime.

- 1. If p=2, then N(I)=p if and only if $\Delta\not\equiv 5\pmod 8$. 2. If p is odd, then N(I)=p if and only if $\left(\frac{\Delta}{p}\right)=1$ or 0.

Proof. This follows by [1, Theorem 22, III.2.1, and V.1.1].

Proof of Theorem 1.3. Let $R = \mathcal{O}_{\mathfrak{p}}$. By Theorem 2.2, we have $R[G] = \mathcal{O}_{\mathfrak{p}}[G]$ is clean if and only if $[\mathbb{Q}(\zeta_m):\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\sqrt{d})]=\operatorname{ord}_m(N(\mathfrak{p}))$ for every divisor m of n.

- 1. Since $\Delta \nmid n$, it follows by Lemma 4.1 that $\mathbb{Q}(\sqrt{d}) \cap \mathbb{Q}(\zeta_m) = \mathbb{Q}$ for every positive divisor m of n.
- 1.1. Suppose the item 1.(a) or 1.(b) holds. By Lemma 4.2 we have $N(\mathfrak{p})=p$. Therefore for every divisor m of n, we obtain that p is a primitive root of unity of m and hence

$$[\mathbb{Q}(\zeta_m):\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\sqrt{d})]=[\mathbb{Q}(\zeta_m):\mathbb{Q}]=\varphi(m)=\mathrm{ord}_m\,p=\mathrm{ord}_m(N(\mathfrak{p}))\,.$$

Thus R[G] is clean.

- 1.2. Conversely, suppose R[G] is clean. Then $[\mathbb{Q}(\zeta_n):\mathbb{Q}(\zeta_n)\cap\mathbb{Q}(\sqrt{d})]=[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\mathrm{ord}_n(N(\mathfrak{p}))$ implies that $\varphi(n) = \operatorname{ord}_n(N(\mathfrak{p}))$. Thus $N(\mathfrak{p}) = p$ is a primitive root of unity of n. The assertions follow by Lemma 4.2.
- 2.1. Suppose that R[G] is clean. Since $\Delta = 4d \nmid 4$, we have $[\mathbb{Q}(\zeta_4) : \mathbb{Q}(\zeta_4) \cap \mathbb{Q}(\sqrt{d})] = [\mathbb{Q}(\zeta_4) : \mathbb{Q}(\zeta_4) \cap \mathbb{Q}(\sqrt{d})]$ \mathbb{Q}] = ord₄ $(N(\mathfrak{p}))$. Thus $\varphi(4)$ = ord₄ $(N(\mathfrak{p}))$ and hence $N(\mathfrak{p})=p\equiv 3\pmod 4$. If $p\mid d$, then $p\mid n$, a contradiction. Thus $p \nmid d$ and hence by Lemma 4.2.2 $\left(\frac{\Delta}{p}\right) = 1$.

Since $[\mathbb{Q}(\zeta_n):\mathbb{Q}(\zeta_n)\cap\mathbb{Q}(\sqrt{d})]=[\mathbb{Q}(\zeta_n):\mathbb{Q}(\sqrt{d})]=\mathrm{ord}_n(N(\mathfrak{p})),$ we obtain that $\varphi(n)/2=\mathrm{ord}_n(N(\mathfrak{p}))=\mathrm{ord}_n(N(\mathfrak{p}))$ $\operatorname{ord}_n p$. Since $4 \mid n$, we may assume that $n = 2^{\ell} n'$ with $\ell \geq 2$ and n' is odd. Thus $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong$ $(\mathbb{Z}/2^{\ell}\mathbb{Z})^{\times} \times (\mathbb{Z}/n^{\prime}\mathbb{Z})^{\times}$. Since $(\mathbb{Z}/n\mathbb{Z})^{\times}$ has an element of order $\varphi(n)/2$, we obtain that n'=1 if $\ell\geq 3$ and n' is a prime power if $\ell = 2$. Thus $n = 4q^{\ell}$ and $d \mid q^{\ell}$, where q is a prime.

If $d \equiv 2 \pmod{4}$, then |d| = q = 2 is a prime. Suppose $d \equiv 3 \pmod{4}$. Then $q \geq 3$. If $|d| = q^t$ with $t \geq 2$, then $4d \nmid q$ and $4d \nmid 4q$. Thus $q-1 = \operatorname{ord}_q p$ and $2(q-1) = \operatorname{ord}_{4q} p$. Since $p^{(q-1)/2} \equiv -1 \pmod{q}$ and $q^2 \equiv 1 \pmod{4}$, we have $p^{q-1} \equiv 1 \pmod{4q}$, a contradiction to $2(q-1) = \operatorname{ord}_{4q} p$. Therefore |d| = qis a prime.

2.2. Conversely, $\left(\frac{\Delta}{p}\right)=1$ implies that $N(\mathfrak{p})=p$. Suppose |d|=2 and $n=2^{\ell}$ with $\ell\geq 3$. Let m be a positive divisor of n. If m=4, then $|\mathbb{Q}(\zeta_4):\mathbb{Q}(\zeta_4)\cap\mathbb{Q}(\sqrt{2})|=2$ and $\operatorname{ord}_4 p=2$ by $p\equiv 3\pmod 4$. Thus $[\mathbb{Q}(\zeta_4):\mathbb{Q}(\zeta_4)\cap\mathbb{Q}(\sqrt{2})]=\operatorname{ord}_4 p$. If $m=2^t$ with $t\geq 3$, then $[\mathbb{Q}(\zeta_m):\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\sqrt{2})]=2^{t-2}$

and $\operatorname{ord}_m p = m/4 = 2^{t-2}$ by $2^{\ell-2} = \varphi(n)/2 = \operatorname{ord}_n p$. Thus $[\mathbb{Q}(\zeta_m) : \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{2})] = \operatorname{ord}_m(N(\mathfrak{p}))$. Putting all these together, we obtain that R[G] is clean.

Suppose $|d| \geq 3$ is a prime and $n = 4|d|^{\ell}$. Let m be a positive divisor of n. If $m = |d|^t$ for some $1 \leq t \leq \ell$, then $4d \nmid m$ and hence $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \varphi(m) = |d|^{t-1}(|d|-1)$. Since p is a primitive root of unity of $|d|^{\ell}$, we obtain $\varphi(m) = \operatorname{ord}_m p$. Therefore $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \operatorname{ord}_m(N(\mathfrak{p}))$. If $m = 2|d|^t$ for some $1 \leq t \leq \ell$, then $4d \nmid m$ and hence $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \varphi(m) = |d|^{t-1}(|d|-1)$. Since p is a primitive root of unity of $|d|^{\ell}$, we obtain $\varphi(m) = \operatorname{ord}_m p$. Therefore $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \operatorname{ord}_m(N(\mathfrak{p}))$. If $m = 4|d|^t$ for some $1 \leq t \leq \ell$, then $4d \mid m$ and hence $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \varphi(m)/2 = |d|^{t-1}(|d|-1)$. Since p is a primitive root of unity of $|d|^{\ell}$, we obtain $\varphi(m) = \operatorname{ord}_m p$. Therefore $[\mathbb{Q}(\zeta_m): \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \operatorname{ord}_m(N(\mathfrak{p}))$. If m = 4, then $[\mathbb{Q}(\zeta_4): \mathbb{Q}(\zeta_4) \cap \mathbb{Q}(\sqrt{2})] = 2$ and $\operatorname{ord}_4 p = 2$ as $p \equiv 3 \pmod{4}$. Thus $[\mathbb{Q}(\zeta_4): \mathbb{Q}(\zeta_4) \cap \mathbb{Q}(\sqrt{2})] = \operatorname{ord}_4 p$. Putting all these together, we obtain that R[G] is clean.

3. If $p \mid d$, then $p \mid n$, a contradiction. Therefore $\left(\frac{d}{p}\right) = 1$ or -1.

3.1. Let R[G] be clean. Suppose |d| is a prime and $n = |d|^{\ell}$ or $n = 2|d|^{\ell}$ for some $\ell \in \mathbb{N}$. If $\left(\frac{d}{p}\right) = -1$, then $N(\mathfrak{p}) = p^2$ and hence $[\mathbb{Q}(\zeta(n)) : \mathbb{Q}(\zeta(n)) \cap \mathbb{Q}(\sqrt{d})] = \operatorname{ord}_n p^2$ implies that $\varphi(n) = \operatorname{ord}_n p$. If $\left(\frac{d}{p}\right) = 1$, then $N(\mathfrak{p}) = p$ and hence $[\mathbb{Q}(\zeta(n)) : \mathbb{Q}(\zeta(n)) \cap \mathbb{Q}(\sqrt{d})] = \operatorname{ord}_n p$ implies that $\varphi(n)/2 = \operatorname{ord}_n p$. Putting all these together, we have $\operatorname{ord}_n p = \frac{2\varphi(n)}{3+\left(\frac{d}{p}\right)}$.

Otherwise, there exists a $m \mid n$ with $m \geq 3$ such that $d \nmid m$. Therefore $|\mathbb{Q}(\zeta_m) : \mathbb{Q}(\zeta_m) \cap Q(\sqrt{d})| = \varphi(m) = \operatorname{ord}_m(N(\mathfrak{p}))$. Since $\varphi(m)$ must be even, we obtain that $N(\mathfrak{p}) = p$ and hence $\left(\frac{d}{p}\right) = 1$. Since $d \mid n$, we have $\varphi(n)/2 = \operatorname{ord}_n p$. Therefore $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong C_{\varphi(n)}$ or $C_2 \oplus C_{\varphi(n)/2}$, which implies that $n = q_1^{\ell_1} q_2^{\ell_2}$ or $2q_1^{\ell_1} q_2^{\ell_2}$ or $4q_1^{\ell_1}$ or 2^{ℓ_1} , where q_1, q_2 are distinct odd primes.

Since $d \equiv 1 \pmod 4$, we have $n \neq 2^{\ell_1}$. If $|d| = q_1^t$ with $t \geq 2$, then choose $m = q_1$ and hence $d \nmid m$, $\varphi(m) = q_1 - 1 = \operatorname{ord}_m p$. Thus $p^{m-1/2} \equiv -1 \pmod m$ and hence $p^{q_1^{t-1}(q_1-1)/2} \equiv -1 \pmod |d|$, a contradiction to $\varphi(|d|)/2 = \operatorname{ord}_{|d|} p$.

Suppose $|d| = q_1$. Then $n = q_1^{\ell_1} q_2^{\ell_2}$ or $2q_1^{\ell_1} q_2^{\ell_2}$ or $4q_1^{\ell_1}$ with $q_1 \equiv 1 \pmod{4}$. If $n = q_1^{\ell_1} q_2^{\ell_2}$ or $2q_1^{\ell_1} q_2^{\ell_2}$, then p is a primitive root of unity of q_2 and $(q_1 - 1)/2 = \operatorname{ord}_{q_1} p$, $(q_1 - 1)(q_2 - 1)/2 = \operatorname{ord}_{q_1 q_2} p$. Since $p^{q_1 - 1/4} \equiv -1 \pmod{q_1}$, we obtain that $p^{(q_2 - 1)(q_1 - 1)/4} \equiv 1 \pmod{q_1}$ and $p^{(q_2 - 1)(q_1 - 1)/4} \equiv 1 \pmod{q_2}$. Therefore $p^{(q_2 - 1)(q_1 - 1)/4} \equiv 1 \pmod{q_1 q_2}$, a contradiction to $(q_1 - 1)(q_2 - 1)/2 = \operatorname{ord}_{q_1 q_2} p$. If $n = 4q_1^{\ell_1}$, then $p \neq 2$, $(q_1 - 1)/2 = \operatorname{ord}_{q_1} p$, and $(q_1 - 1) = \operatorname{ord}_{4q_1} p$. Since $p^{(q_1 - 1)/4} \equiv -1 \pmod{q_1}$ and $p^2 \equiv 1 \pmod{4}$, we have that $p^{(q_1 - 1)/2} \equiv 1 \pmod{q_1}$ and $p^{(q_1 - 1)/2} \equiv 1 \pmod{4}$. Thus $p^{(q_1 - 1)/2} \equiv 1 \pmod{4q_1}$, a contradiction to $(q_1 - 1) = \operatorname{ord}_{4q_1} p$.

Suppose $|d|=q_1^{t_1}q_2^{t_2}$ with $t_1,t_2\in\mathbb{N}$. Then p is a primitive root of unity of $q_1^{\ell_1}$ and $q_2^{\ell_2}$. If $t_1+t_2\geq 3$, then $d\nmid q_1q_2$ and hence $\varphi(q_1q_2)=\operatorname{ord}_{q_1q_2}p$, a contradiction (as q_1q_2 has no primitive root). Thus $t_1=t_2=1$. If $q_1\equiv 1\pmod 4$ and $q_2\equiv 1\pmod 4$, then there is a subgroup H of $(\mathbb{Z}/n\mathbb{Z})^\times(\cong C_{\varphi(n)})$ or $C_2\oplus C_{\varphi(n)/2}$ such that $H\cong C_4\oplus C_4$, a contradiction. Since $d=q_1q_2\equiv 1\pmod 4$, we have $q_1\equiv 3\pmod 4$ and $q_2\equiv 3\pmod 4$ and $q_1,q_2,(q_1-1)/2,(q_2-1)/2$ are pairwise co-prime integers.

3.2. Conversely, suppose that (a) holds. Let m be a positive divisor of n with $m \geq 3$. Then $d \mid m$. If $\left(\frac{d}{p}\right) = 1$, then $N(\mathfrak{p}) = p$ and hence $[\mathbb{Q}(\zeta_m) : \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \varphi(m)/2 = \operatorname{ord}_m p = \operatorname{ord}_m(N(\mathfrak{p}))$, implying that R[G] is clean. If $\left(\frac{d}{p}\right) = -1$, then $N(\mathfrak{p}) = p^2$ and hence $[\mathbb{Q}(\zeta_m) : \mathbb{Q}(\zeta_m) \cap \mathbb{Q}(\sqrt{d})] = \varphi(m)/2 = \operatorname{ord}_m p^2 = \operatorname{ord}_m(N(\mathfrak{p}))$, implying that R[G] is clean.

Suppose that (b) holds. Then $N(\mathfrak{p})=p$. Let m be a positive divisor of n with $m\geq 3$. If $m=q_1^t$ or $2q_1^t$ for some $1\leq t\leq \ell_1$, then $d\nmid m$ and hence $[\mathbb{Q}(\zeta_m):\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\sqrt{d})]=\varphi(m)=\operatorname{ord}_m p=\operatorname{ord}_m(N(\mathfrak{p}))$. If $m=q_1^{t_1}q_2^{t_2}$ or $2q_1^{t_1}q_2^{t_2}$, then $d\mid m$ and hence $[\mathbb{Q}(\zeta_m):\mathbb{Q}(\zeta_m)\cap\mathbb{Q}(\sqrt{d})]=\varphi(m)/2=\operatorname{ord}_m p=\operatorname{ord}_m(N(\mathfrak{p}))$. Therefore R[G] is clean.

Next we characterize when such a group ring is *-clean. We first prove the following lemma.

Lemma 4.3. Let $d \neq 1$ be a non-zero square free integer. Then $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) = \mathbb{Q}(\sqrt{d})(\zeta_n)$ if and only if either $(d < 0 \text{ and } \Delta \mid n)$ or $n \leq 2$, where $n \in \mathbb{N}$ and Δ is the discriminant of $\mathbb{Q}(\sqrt{d})$.

Proof. If $n \leq 2$, it is obvious that $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) = \mathbb{Q}(\sqrt{d})(\zeta_n)$. Now we let $n \geq 3$.

Suppose that d < 0 and $\Delta \mid n$. Then by Lemma 4.1 $\mathbb{Q}(\sqrt{d}) \subset \mathbb{Q}(\zeta_n)$ and hence $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) \subset \mathbb{Q}(\zeta_n)$. Since $n \geq 3$ and d < 0, we have

$$[\mathbb{Q}(\zeta_n):\mathbb{Q}(\zeta_n+\zeta_n^{-1})]=[\mathbb{Q}(\sqrt{d})(\zeta_n+\zeta_n^{-1}):\mathbb{Q}(\zeta_n+\zeta_n^{-1})]=2.$$

Therefore $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) = \mathbb{Q}(\zeta_n) = \mathbb{Q}(\sqrt{d})(\zeta_n)$.

Suppose that d > 0. Then $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) \subset \mathbb{R}$ and by $n \geq 3$, we have $\mathbb{Q}(\sqrt{d})(\zeta_n) \not\subset \mathbb{R}$. Hence $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) \neq \mathbb{Q}(\sqrt{d})(\zeta_n)$.

Suppose that d < 0 and $\Delta \nmid n$. Thus by Lemma 4.1 $\sqrt{d} \notin \mathbb{Q}(\zeta_n)$. Therefore $[\mathbb{Q}(\sqrt{d})(\zeta_n) : \mathbb{Q}] = 2\varphi(n)$ and $[\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) : \mathbb{Q}] = \varphi(n)$. It follows that $\mathbb{Q}(\sqrt{d})(\zeta_n + \zeta_n^{-1}) \neq \mathbb{Q}(\sqrt{d})(\zeta_n)$.

Proposition 4.4. Let G be a finite abelian group with exponent n. Then $\mathbb{Q}(\sqrt{d})[G]$ is *-clean if and only if $n \geq 3$ and either d > 0 or $\Delta \nmid n$, where Δ is the discriminant of $\mathbb{Q}(\sqrt{d})$.

Proof. This result follows from [4, Theorem 1.2] and Lemma 4.3.

Theorem 4.5. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field for some non-zero square-free integer $d \neq 1$, \mathcal{O} its ring of integers, $\mathfrak{p} \subset \mathcal{O}$ a nonzero prime ideal with $p\mathbb{Z} = \mathfrak{p} \cap \mathcal{O}$, and G a finite abelian group with $p \nmid \exp(G)$. Let Δ be the discriminant of the field extension K/\mathbb{Q} . Then

- 1. if d > 0, then $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean if and only $\mathcal{O}_{\mathfrak{p}}[G]$ is clean and $\exp(G) \geq 3$.
- 2. if d < 0, then $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean if and only if $\Delta \nmid \exp(G)$, p is a primitive root of unity of $\exp(G)$, $\exp(G) \ge 3$, and $\left(\frac{\Delta}{p}\right) = 1$ or 0.

Proof. 1. Let d > 0. Suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is clean and $\exp(G) \geq 3$. Then by Proposition 4.4 $\mathbb{Q}(\sqrt{d})[G]$ is *-clean. It follows from Theorem 2.3 that $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.

Conversely, suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean. Then by Theorem 2.3 $\mathbb{Q}(\sqrt{d})[G]$ is *-clean. It follows from Proposition 4.4 that $\exp(G) \geq 3$.

2. Let d < 0. Suppose that $\Delta \nmid \exp(G)$, p is a primitive root of unity of $\exp(G)$, $\exp(G) \ge 3$, and $\left(\frac{\Delta}{p}\right) = 1$ or 0. Then by Theorem 1.3 $\mathcal{O}_{\mathfrak{p}}$ is clean and by Proposition 4.4 $\mathbb{Q}(\sqrt{d})[G]$ is *-clean. It follows from Theorem 2.3 that $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.

Conversely, suppose $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean. Then by Theorem 2.3 $\mathbb{Q}(\sqrt{d})[G]$ is *-clean and hence by Proposition 4.4 $\exp(G) \geq 3$ and $\Delta \nmid \exp(G)$. It follows from Theorem 1.3.1 that p is a primitive root of unity of $\exp(G)$ and $\left(\frac{\Delta}{p}\right) = 1$ or 0.

We close the paper by the following example which provide some (*-clean or non *-clean) clean group rings for each case of the characterizations of Theorems 1.3 and 4.5.

Example 4.6. 1. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{d})$ and let G be a finite abelian group with $\gcd(\exp(G),d)=1$, where $d\neq 1$ is a square free integer and $\exp(G)\neq 4$ has a primitive root. Suppose that $d=\delta d_0$ such that d_0 is the maximal odd positive divisor of d. Thus $\delta\in\{-1,2,-2\}$. For every prime p with $p\equiv 1\pmod{8d_0}$, we have $\left(\frac{d}{p}\right)=\left(\frac{d_0}{p}\right)=1$. Since there exists $x\in\mathbb{N}$ with $\gcd(x,\exp(G))=1$ such that $\gcd(x)=x$ and $\gcd(x)=x$ be $\gcd(x)=x$ and $\gcd(x)=x$ be a prime $\gcd(x)=x$ be a prime $\gcd(x)=x$. Note that $\gcd(x)=x$ be a prime ideal such that $\gcd(x)=x$. Then by Theorem 1.3.1 $\mathcal{O}_{\mathfrak{p}}[G]$ is clean. If $\gcd(G)\geq 3$, then by Theorem 4.5 $\mathcal{O}_{\mathfrak{p}}[G]$ is *-clean.

- 2. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{-2})$, let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal with $\mathfrak{p} \cap \mathbb{Z} = 3\mathbb{Z}$, and let G be a finite abelian group with $\exp(G) = 8$. Then Theorem 1.3.2 and Theorem 4.5.2 imply that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean but not *-clean.
- 3. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{3})$, let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal with $\mathfrak{p} \cap \mathbb{Z} = 11\mathbb{Z}$, and let G be a finite abelian group with $\exp(G) = 12$. Then Theorem 1.3.2 and Theorem 4.5.1 imply that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean as well as *-clean.
- 4. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{5})$, let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal with $\mathfrak{p} \cap \mathbb{Z} = 19\mathbb{Z}$, and let G be a finite abelian group with $\exp(G) = 5$. Then Theorem 1.3.3.a and Theorem 4.5.1 imply that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean as well as *-clean.
- 5. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{-3})$, let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal with $\mathfrak{p} \cap \mathbb{Z} = 5\mathbb{Z}$, and let G be a finite abelian group with $\exp(G) = 6$. Then Theorem 1.3.3.a and Theorem 4.5.2 imply that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean but not *-clean.
- 6. Let \mathcal{O} be the ring of integer of $\mathbb{Q}(\sqrt{33})$, let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal with $\mathfrak{p} \cap \mathbb{Z} = 2\mathbb{Z}$, and let G be a finite abelian group with $\exp(G) = 33$. Then Theorem 1.3.3.b and Theorem 4.5.1 imply that $\mathcal{O}_{\mathfrak{p}}[G]$ is clean as well as *-clean.

References

- [1] A. Fröhlich and M. J. Taylor , *Algebraic number theory*, cup ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1992.
- [2] Y. Gao, J. Chen and Y. Li, Some *-clean group rings, Algebra Colloq. 22 (2015) 169-180.
- [3] J. Han and W.K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001) 2589-255.
- [4] D. Han, Y.uan Ren, and H. Zhang, On *-clean rings over abelian groups, J. Algebra and its Applications 16 (2017) 1750152, 11p.
- [5] H. Huang, Y. Li and G. Tang, On *-clean non-commutative group rings, J. Algebra Appl. 15 (2016) 1650150, 17p.
- [6] H. Huang, Y. Li and P. Yuan, On *-clean group rings II, Comm. Algebra 44 (2016) 3171-3181
- [7] Nicholas A. Immormino and Warren Wm. McGovern, Examples of clean commutative group rings, J. Algebra 405 (2014) 168 – 178.
- [8] C.Li and Y. Zhou, On strongly *-clean rings, J. Algebra Appl. ${\bf 10}$ (2011) 1363-1370.
- [9] Y. Li, M.M. Parmenter and P. Yuan, On *-clean group rings, J. Algebra Appl. 14 (2015) 1550004, 11p.
- [10] W. Wm. McGovern, $Neat\ rings,$ J. Pure Appl. Algebra ${\bf 205}\ (2006)\ 243\text{-}265.$
- [11] C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Netherlands, Kluqver Academic Publishers, 2002.
- [12] W.K. Nicholson, Lifting idempotens and exchange rings, Trans. Amer. Math. Soc. 220 (1977) 269-278.
- [13] Steven H. Weintraub, Galois theory, 1 ed., Universitext, Springer, 2006.
- $[14] \ \mathrm{S.\ M.\ Woods}, \ \textit{Some results on semi-perfect group rings}, \ \mathrm{Can.\ J.\ Math.} \ \textbf{26} \ (1974) \ 121-129.$

Department of Mathematics and Statistics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada L2S 3A1

 $E ext{-}mail\ address: yli@brocku.ca}$

Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria

 $E ext{-}mail\ address: qinghai.zhong@uni-graz.at}$