Грамматики вида LR(o/1)

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

(2)			
	((7	
	\mathbb{N}	_	
	"	=	"

X	X Action					Goto			
Q	a_1	a_2	•••	a_n	上	A_{1}	A_2	•••	$A_{\rm m}$
Q_{o}									
Q_1									
•••									

Здесь:

- Q множество состояний;
- множество $X = \Sigma \cup N \cup \{\bot\}$.

Содержимое ячейки:

- сдвиг (shift) S_k ;
- свертка (reduce) R_k ;
- ошибка ERROR;
- остановка HALT.

3

Расширение грамматики: стартовый символ *S* не должен иметь несколько альтернатив порождающего правил. Если в грамматике это правило нарушается, необходимо ввести новый искусственный стартовый символ:

$$G'=(N',\Sigma,P',S'),$$
 где $N'=N\cup\{S'\},P'=\{S'{
ightarrow}S\}\cup P.$

4

Структуры данных:

• Состояния анализатора:

$$Q = \{Q_1, Q_2, ...\},$$
$$Q_i = \{\sigma_{i1}, \sigma_{i2}, ...\}$$

5

Структуры данных:

• Граф переходов:

```
G=(Q,R) с разметкой g, R\subset Q{	imes}Q,\ g\colon Q{	imes}Q	o \Sigma{\cup}N
```

6

Структуры данных:

• LR-ситуация:

$$\sigma = [A \to \alpha \bullet \beta \mid a],$$

где $(A \rightarrow \alpha \beta) \in P$, $a \in \Sigma \cup \{\bot\}$.

7

Структуры данных:

• Таблица разбора:

8

Алгоритм:

1.
$$Q_0 = 3AMbIKAHИE(\{[S' \rightarrow \bullet S \mid \bot]\})$$

2.
$$Q = \{Q_0\}, R = \emptyset$$

3. Для каждого $Q_i \in Q$ и для каждого $X_k \in X$:

3.1.
$$Q' = \Pi E P E X O \mathcal{I}(Q_i, X_k)$$

3.2. Если
$$Q'$$
≠ \varnothing и Q' ∉ Q , то Q = Q ∪{ Q' }

3.3. Если
$$Q'\neq\varnothing$$
 и $(Q_i,Q')\not\in R$, то $R=R\cup\{(Q_i,Q')\},$
$$g(Q_i,Q')=X_k$$

4. Если Q или R изменились, возврат на шаг 3.

9

Алгоритм функции 3AMbIKAHUE(Q')

- 1. Три цикла:
- Для каждой LR-ситуации $\sigma = [A \to \alpha \bullet B\beta \mid a] \in Q',$ $A \in N', B \in N, \alpha \in X^*, \beta \in X^*, a \in \Sigma \cup \{\bot\};$
- Для каждого терминала $b \in S(\beta a), b \in \Sigma \cup \{\bot\};$
- Для каждого правила $(B \rightarrow \gamma)$ ∈P:

1.1.
$$\sigma' = [B \rightarrow \bullet \gamma \mid b]$$

- 1.2. Если $\sigma' \notin Q'$, то $Q' = Q' \cup \{\sigma'\}$
- 2. Если Q' изменилось, возврат на шаг 1.

Алгоритм функции $\Pi EPEXO \mathcal{I}(Q', X')$

1.
$$Q'' = \emptyset$$

2. Для всех ситуаций
$$\sigma = [A \to \alpha \bullet X\beta \mid a] \in Q'$$
:
$$\sigma' = [A \to \alpha X \bullet \beta \mid a]$$

$$Q'' = Q'' \cup \{\sigma'\}$$

3. Вернуть *ЗАМЫКАНИЕ(Q''*)

11

Алгоритм поиска символов-предшественников цепочки $\alpha = X_1 X_2 ... X_n$:

$$S(\alpha) = \bigcup_{i=1}^{k} (S(X_i) - \{e\}) \cup \Delta,$$

но с учетом отсутствия е-правил

$$S(\alpha) = S(X_1)$$
.

Дана грамматика:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

Она описывает математические выражения, состоящие из операндов (обозначены терминалом x), а также операций сложения и умножения.

13

Формальная запись:

$$G=(N,\Sigma,P,S);$$
 $N=\{E,T,F\};$
 $\Sigma=\{+,*,x\};$
 $P=\{(E,E+T),(E,T),(T,T*F),(T,F),(F,x)\}$ или $\{E\to E+T,E\to T,T\to T*F,T\to F,F\to x\};$
 $S=E.$
Тогда $X=\{E,T,F,+,*,x\}$

Добавление искусственного стартового символа:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

15

Формальная запись:

$$G' = (N', \Sigma, P', S');$$
 $N' = \{E', E, T, F\};$
 $\Sigma = \{+, *, x\};$
 $P' = \{(E', E), (E, E + T), (E, T), (T, T * F), (T, F), (F, x)\}$ или $\{E' \to E, E \to E + T, E \to T, T \to T * F, T \to F, F \to x\};$
 $S' = E'.$
Тогда $X' = \{E', E, T, F, +, *, x\}.$

Определение символов-предшественников:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

Алгоритм получения Q и R:

$$Q' = \{[E' \rightarrow \bullet E \mid \bot]\}$$
 $Q_{o} = 3AMЫКАНИЕ(Q')$
 $Q = \{Q_{o}\}$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

Алгоритм получения Q и R:

$$Q' = \{ [E' \rightarrow \bullet E \mid \bot] \}$$

 $Q_0 = 3$ АМЫКАНИЕ (Q')

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

1)
$$[E' \rightarrow \bullet E \mid \bot]$$

Алгоритм получения Q и R:

$$Q = \{Q_{o}\},\$$
 $R = \emptyset$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

$$[E' \rightarrow \bullet E \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet T \mid F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

Переход из Q_0 по E:

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[E' \rightarrow \bullet E \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet T \mid F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

Переход из Q_0 по E:

$$Q = \{Q_0, Q_1\},\$$

$$R = \{(Q_0, Q_1)\},\$$

$$g((Q_0, Q_1)) = E.$$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

$$[E' \to E \bullet | \bot]$$

$$[E \to E \bullet + T | \bot]$$

$$[E \to E \bullet + T | +]$$

Переход из Q_0 по T:

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[E' \rightarrow \bullet E \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid +]$$

Переход из Q_0 по T:

$$Q = \{Q_0, Q_1, Q_2\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2)\},$$

$$g((Q_0, Q_2)) = T.$$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

$$\begin{split} [E \rightarrow T \bullet \mid \bot] \\ [E \rightarrow T \bullet \mid +] \\ [T \rightarrow T \bullet * F \mid \bot] \\ [T \rightarrow T \bullet * F \mid +] \\ [T \rightarrow T \bullet * F \mid *] \end{split}$$

Переход из Q_0 по F:

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

$$[E' \rightarrow \bullet E \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid F \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid +]$$

Переход из Q_0 по F:

$$Q = \{Q_0, Q_1, Q_2, Q_3\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3)\},$$

$$g((Q_0, Q_3)) = F.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[T \to F \bullet \mid \bot]$$

$$[T \to F \bullet \mid +]$$

$$[T \to F \bullet \mid *]$$

Переход из Q_0 по x:

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[E' \rightarrow \bullet E \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid +]$$

Переход из Q_0 по x:

$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3),$$

$$(Q_0, Q_4)\},$$

$$g((Q_0, Q_4)) = x.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[F \rightarrow x \bullet | \bot]$$

$$[F \rightarrow x \bullet | +]$$

$$[F \rightarrow x \bullet | *]$$

Переходы из Q_1 , Q_2 , Q_3 , Q_4 :

$$\begin{split} [E' \rightarrow E \bullet \mid \bot] \\ [E \rightarrow E \bullet + T \mid \bot] \\ [E \rightarrow E \bullet + T \mid +] \end{split}$$

$$[E \rightarrow T \bullet | \bot]$$

$$[E \rightarrow T \bullet | +]$$

$$[T \rightarrow T \bullet * F | \bot]$$

$$[T \rightarrow T \bullet * F | +]$$

$$[T \rightarrow T \bullet * F | *]$$

$$\begin{bmatrix} T \rightarrow F \bullet \mid \bot \end{bmatrix} \\ \begin{bmatrix} T \rightarrow F \bullet \mid + \end{bmatrix} \\ \begin{bmatrix} T \rightarrow F \bullet \mid * \end{bmatrix}$$

$$[F \rightarrow x \bullet | \bot]$$

$$[F \rightarrow x \bullet | +]$$

$$[F \rightarrow x \bullet | *]$$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

Переход из Q_1 по +:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[E' \to E \bullet | \bot]$$

$$[E \to E \bullet + T | \bot]$$

$$[E \to E \bullet + T | +]$$

Переход из Q_1 по +:

$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3),$$

$$(Q_0, Q_4), (Q_1, Q_5)\},$$

$$g((Q_1, Q_5)) = +.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

```
[E \rightarrow E + \bullet T \mid \bot]
[E \rightarrow E + \bullet T \mid +]
[T \rightarrow \bullet T * F \mid \bot]
[T \rightarrow \bullet F \mid \bot]
[T \rightarrow \bullet F \mid +]
[T \rightarrow \bullet T * F \mid *]
[T \rightarrow \bullet F \mid *]
[F \rightarrow \bullet x \mid \bot]
[F \rightarrow \bullet x \mid \bot]
[F \rightarrow \bullet x \mid \bot]
```

(32)

Переход из Q_2 по *:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow X$$

$$\begin{split} [E \rightarrow T \bullet \mid \bot] \\ [E \rightarrow T \bullet \mid +] \\ [T \rightarrow T \bullet * F \mid \bot] \\ [T \rightarrow T \bullet * F \mid +] \\ [T \rightarrow T \bullet * F \mid *] \end{split}$$

Переход из Q_2 по *:

$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3),$$

$$(Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6)\},$$

$$g((Q_2, Q_6)) = *.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

```
[T \rightarrow T^* \bullet F \mid \bot]
[T \rightarrow T^* \bullet F \mid +]
[T \rightarrow T^* \bullet F \mid *]
[F \rightarrow \bullet x \mid \bot]
[F \rightarrow \bullet x \mid +]
[F \rightarrow \bullet x \mid *]
```


Переходы из Q_5 , Q_6 :

$$[E \rightarrow E + \bullet T \mid \bot]$$

$$[E \rightarrow E + \bullet T \mid +]$$

$$[T \rightarrow \bullet T * F \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid *]$$

$$[T \rightarrow T * \bullet F \mid \bot]$$

$$[T \rightarrow T * \bullet F \mid +]$$

$$[T \rightarrow T * \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid *]$$

 $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow X$

Переход из Q_5 по T:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[E \rightarrow E + \bullet T \mid \bot]$$

$$[E \rightarrow E + \bullet T \mid +]$$

$$[T \rightarrow \bullet T * F \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid +]$$

Переход из Q_5 по T:

$$Q = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7\},$$

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3),$$

$$(Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6), (Q_5, Q_7)\},$$

$$g((Q_5, Q_7)) = T.$$

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[E \rightarrow E + T \bullet | \bot]$$

$$[E \rightarrow E + T \bullet | +]$$

$$[T \rightarrow T \bullet * F | \bot]$$

$$[T \rightarrow T \bullet * F | +]$$

$$[T \rightarrow T \bullet * F | *]$$

Переход из Q_5 по F:

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[E \rightarrow E + \bullet T \mid \bot]$$

$$[E \rightarrow E + \bullet T \mid +]$$

$$[T \rightarrow \bullet T * F \mid \bot]$$

$$[T \rightarrow \bullet F \mid \bot]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid +]$$

$$[T \rightarrow \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid +]$$

Переход из Q_5 по F:

$$\begin{split} R &= \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3), \\ (Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6), (Q_5, Q_7), \\ (Q_5, Q_3)\}, \\ g((Q_5, Q_3)) &= F. \end{split}$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[T \to F \bullet \mid \bot]$$

$$[T \to F \bullet \mid +]$$

$$[T \to F \bullet \mid *]$$

Переход из Q_5 по x:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$\begin{bmatrix} E \rightarrow E + \bullet T \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} E \rightarrow E + \bullet T \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet T * F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid \bot \end{bmatrix}$$

Переход из Q_5 по x:

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3), \\ (Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6), (Q_5, Q_7), \\ (Q_5, Q_3), (Q_5, Q_4)\}, \\ g((Q_5, Q_4)) = x.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[F \rightarrow x \bullet | \bot]$$

$$[F \rightarrow x \bullet | +]$$

$$[F \rightarrow x \bullet | *]$$

Переход из Q_6 по F:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[T \rightarrow T * \bullet F \mid \bot]$$

$$[T \rightarrow T * \bullet F \mid +]$$

$$[T \rightarrow T * \bullet F \mid *]$$

$$[F \rightarrow \bullet x \mid \bot]$$

$$[F \rightarrow \bullet x \mid +]$$

$$[F \rightarrow \bullet x \mid *]$$

Переход из Q_6 по F:

$$\begin{split} Q &= \{Q_0,\, Q_1,\, Q_2,\, Q_3,\, Q_4,\, Q_5,\, Q_6,\, Q_7,\, Q_8\}, \\ R &= \{(Q_0,\, Q_1),\, (Q_0,\, Q_2),\, (Q_0,\, Q_3), \\ (Q_0,\, Q_4),\, (Q_1,\, Q_5),\, (Q_2,\, Q_6),\, (Q_5,\, Q_7), \\ (Q_5,\, Q_3),\, (Q_5,\, Q_4),\, (Q_6,\, Q_8)\}, \\ g((Q_6,\, Q_8)) &= F. \end{split}$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$[T \to T * F \bullet | \bot]$$

$$[T \to T * F \bullet | +]$$

$$[T \to T * F \bullet | *]$$

Переход из Q_6 по x:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[T \rightarrow T^* \cdot F \mid \bot]$$

$$[T \rightarrow T^* \cdot F \mid +]$$

$$[T \rightarrow T^* \cdot F \mid *]$$

$$[F \rightarrow \cdot x \mid \bot]$$

$$[F \rightarrow \cdot x \mid +]$$

$$[F \rightarrow \cdot x \mid *]$$

Переход из Q_6 по x:

$$R = \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3), (Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6), (Q_5, Q_7), (Q_5, Q_3), (Q_5, Q_4), (Q_6, Q_8), (Q_6, Q_4)\},$$

$$g((Q_6, Q_4)) = x.$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

$$[F \rightarrow x \bullet | \bot]$$

$$[F \rightarrow x \bullet | +]$$

$$[F \rightarrow x \bullet | *]$$

Переходы из Q_7 , Q_8 :

$$\begin{bmatrix} E \to E + T \bullet \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} E \to E + T \bullet \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \to T * F \bullet \mid * \end{bmatrix}$$

$$[T \rightarrow T * F \bullet | \bot]$$

$$[T \rightarrow T * F \bullet | +]$$

$$[T \rightarrow T * F \bullet | *]$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

(48)

Переход из Q_7 по *:

$$E' \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow x$$

$$[E \rightarrow E + T \bullet | \bot]$$

$$[E \rightarrow E + T \bullet | +]$$

$$[T \rightarrow T \bullet * F | \bot]$$

$$[T \rightarrow T \bullet * F | +]$$

$$[T \rightarrow T \bullet * F | *]$$

Переход из Q_7 по *:

$$\begin{split} R &= \{(Q_0, Q_1), (Q_0, Q_2), (Q_0, Q_3), \\ (Q_0, Q_4), (Q_1, Q_5), (Q_2, Q_6), (Q_5, Q_7), \\ (Q_5, Q_3), (Q_5, Q_4), (Q_6, Q_8), (Q_6, Q_4), \\ (Q_7, Q_6)\}, \\ g((Q_7, Q_6)) &= F. \end{split}$$

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$

```
[T \rightarrow T^* \bullet F \mid \bot]
[T \rightarrow T^* \bullet F \mid +]
[T \rightarrow T^* \bullet F \mid *]
[F \rightarrow \bullet x \mid \bot]
[F \rightarrow \bullet x \mid +]
[F \rightarrow \bullet x \mid *]
```


$$[E' \rightarrow \bullet E \mid \bot] \qquad Q_0$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid \bot]$$

$$\begin{bmatrix} E' \to E \bullet \mid \bot \\ [E \to E \bullet + T \mid \bot] \end{bmatrix} Q_1$$

$$[E \to E \bullet + T \mid +]$$

$$\begin{array}{c|c} [E \rightarrow T \bullet \mid \bot] & Q_2 \\ \hline [E \rightarrow T \bullet \mid +] & \\ [T \rightarrow T \bullet *F \mid \bot] & \\ [T \rightarrow T \bullet *F \mid +] & \\ [T \rightarrow T \bullet *F \mid *] & \\ \end{array}$$

$$\begin{array}{c|c} [T \rightarrow F \bullet \mid \bot] \\ [T \rightarrow F \bullet \mid +] \\ [T \rightarrow F \bullet \mid *] \end{array} \qquad \boxed{Q_3}$$

$$\begin{array}{c|c} [F \rightarrow x \bullet | \bot] \\ [F \rightarrow x \bullet | +] \\ [F \rightarrow x \bullet | *] \end{array}$$

$$\begin{bmatrix} T \rightarrow T^* \cdot F \mid \bot \\ [T \rightarrow T^* \cdot F \mid +] \end{bmatrix} Q_6$$

$$\begin{bmatrix} T \rightarrow T^* \cdot F \mid * \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \cdot x \mid \bot \\ [F \rightarrow \cdot x \mid +] \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \cdot x \mid +]$$

$$\begin{bmatrix} F \rightarrow \cdot x \mid * \end{bmatrix}$$

$$\begin{bmatrix} E \rightarrow E + \bullet T \mid \bot \\ E \rightarrow E + \bullet T \mid + \end{bmatrix} Q_{5}$$

$$\begin{bmatrix} T \rightarrow \bullet T * F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet X \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} E \rightarrow E + T \bullet \mid \bot \end{bmatrix} \quad Q_7$$

$$\begin{bmatrix} E \rightarrow E + T \bullet \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow T \bullet * F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow T \bullet * F \mid + \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow T \bullet * F \mid + \end{bmatrix}$$

$$egin{array}{c} [T
ightarrow T st F ullet | oxedsymbol{\perp} \ [T
ightarrow T st F ullet | +] \ [T
ightarrow T st F ullet | st] \end{array} egin{array}{c} Q_8 \end{array}$$

Грамматика с состояниями:

$$E' \rightarrow_{0} E_{1}$$
 $E \rightarrow_{0} E_{1} +_{5} T_{7}$
 $E \rightarrow_{0} T_{2}$
 $T \rightarrow_{0,5} T_{2,7} *_{6} F_{8}$
 $T \rightarrow_{0,5} F_{3}$
 $F \rightarrow_{0,5,6} x_{4}$

53

Исходные данные: $X = \Sigma \cup N$, Q, R, g

Алгоритм:

- 1. Создаем таблицу из #X+1 столбца (по столбцу на каждый терминал $a \in \Sigma$ и нетерминал $A \in N$, а также столбец для маркера конца цепочки « \bot ») и #Q строк (по одной на каждое состояние анализатора).
- 2. В каждую ячейку таблицы записываем элемент *ERROR*.

54

- 3. Для всех состояний $Q_i \in Q$ выполняем следующие действия:
- 3.1. Если $[A \to \alpha \bullet X_j \beta \mid a] \in Q_i$, где $A \in N', X_j \in X$, $\alpha \in X^*$, $\beta \in X^*$, $a \in \Sigma \cup \{\bot\}$, а также $(Q_i, Q_j) \in R$ и $g((Q_i, Q_k)) = X_j$, то $T(Q_i, X_j) = Q_k$.
- 3.2. Если $[A \to \alpha \bullet \mid a] \in Q_i, A \in N', \alpha \in X^+, a \in \Sigma \cup \{\bot\}$, то:
- а) если A=S' (и $a=\bot$), то $T(Q_i,a)=HALT$,
- б) иначе $T(Q_i, a) = R_k$, где k номер правила $(A \to \alpha) \in P$ в грамматике, т.е. $P_k = (A \to \alpha)$.

55

LR-конфликты:

- При попытке записать в ячейку сдвиг Q_i , обнаруживаем, что там уже содержится свёртка R_j (конфликт типа сдвиг-свёртка);
- При попытке записать в ячейку свёртку R_i , обнаруживаем, что там уже содержится сдвиг Q_j (конфликт типа свёрткасдвиг);
- При попытке записать в ячейку сдвиг Q_i , обнаруживаем, что там уже содержится другой сдвиг Q_j (конфликт типа сдвиг-сдвиг);
- При попытке записать в ячейку свёртку R_i обнаруживаем, что там уже содержится другая свёртка R_j (конфликт типа свёртка-свёртка).

Конфликты типа «сдвиг-свёртка» и «свёрткасдвиг» являются *разрешимыми*. В большинстве случаев предпочтительным является сдвиг.

Пример:

 $COND \rightarrow if EXPR then CODE$

 $COND \rightarrow if EXPR then CODE else CODE$

Конфликты типа «сдвиг-сдвиг» и «свёрткасвёртка» являются *неразрешимыми* и свидетельствуют об ошибках при составлении грамматики.

$$S \rightarrow A S$$

$$S \rightarrow SA$$

$$S \rightarrow A S A$$

$$S \rightarrow a$$

$$A \rightarrow a$$

$$A \rightarrow AA$$

59

	E	T	F	+	*	х	Т
Q_{o}							
$egin{array}{c} Q_0 \ Q_1 \ Q_2 \ Q_3 \ Q_4 \ Q_5 \ Q_6 \ Q_7 \ Q_8 \ \end{array}$							
Q_2							
Q_3							
Q_4							
Q_5							
Q_6							
Q_7							
Q_8							

	E	T	F	+	*	X	Т
Q_{o}	$Q_{\scriptscriptstyle 1}$	Q_2	Q_3			Q_4	
$Q_{ m o}$ $Q_{ m i}$				Q_5			
Q_2					Q_6		
$egin{array}{c} Q_3 \ Q_4 \ Q_5 \ \end{array}$							
Q_4							
Q_5		Q_7	Q_3			Q_4	
Q_6			Q_8			Q_4	
$egin{array}{c} Q_6 \ Q_7 \ Q_8 \ \end{array}$					Q_6		
Q_8							

$$[E' \rightarrow \bullet E \mid \bot] \qquad Q_0$$

$$[E \rightarrow \bullet E + T \mid \bot]$$

$$[E \rightarrow \bullet T \mid \bot]$$

$$[E \rightarrow \bullet E + T \mid +]$$

$$[E \rightarrow \bullet T \mid +]$$

$$[T \rightarrow \bullet T \mid \bot]$$

$$\begin{bmatrix} E' \to E \bullet \mid \bot \\ [E \to E \bullet + T \mid \bot] \end{bmatrix} Q_1$$

$$[E \to E \bullet + T \mid +]$$

$$\begin{array}{c|c} [E \rightarrow T \bullet \mid \bot] \\ [E \rightarrow T \bullet \mid +] \\ [T \rightarrow T \bullet *F \mid \bot] \\ [T \rightarrow T \bullet *F \mid +] \\ [T \rightarrow T \bullet *F \mid *] \\ \end{array}$$

$$\begin{array}{c|c} [T \rightarrow F \bullet \mid \bot] & Q_3 \\ [T \rightarrow F \bullet \mid +] & [T \rightarrow F \bullet \mid *] \end{array}$$

$$\begin{array}{c|c} [F \rightarrow x \bullet | \bot] \\ [F \rightarrow x \bullet | +] \\ [F \rightarrow x \bullet | *] \end{array}$$

$$\begin{bmatrix} T \rightarrow T^* \cdot F \mid \bot \\ [T \rightarrow T^* \cdot F \mid +] \end{bmatrix} Q_6$$

$$\begin{bmatrix} T \rightarrow T^* \cdot F \mid * \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \cdot x \mid \bot \\ [F \rightarrow \cdot x \mid +] \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \cdot x \mid + \\ [F \rightarrow \cdot x \mid *] \end{bmatrix}$$

$$\begin{bmatrix} E \rightarrow E + \bullet T \mid \bot \\ [E \rightarrow E + \bullet T \mid +] \end{bmatrix} Q_5$$

$$\begin{bmatrix} T \rightarrow \bullet T * F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid +] \\ [T \rightarrow \bullet F \mid +] \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow \bullet F \mid * \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid \bot \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid +] \\ \end{bmatrix}$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid +]$$

$$\begin{bmatrix} F \rightarrow \bullet x \mid +] \\ \end{bmatrix}$$

$$\begin{bmatrix} E \rightarrow E + T \bullet \mid \bot \\ [E \rightarrow E + T \bullet \mid +] \end{bmatrix} Q_{7}$$

$$\begin{bmatrix} T \rightarrow T \bullet * F \mid \bot \\ [T \rightarrow T \bullet * F \mid +] \\ [T \rightarrow T \bullet * F \mid *] \end{bmatrix}$$

$$\begin{bmatrix} T \rightarrow T * F \cdot | \bot \\ [T \rightarrow T * F \cdot | +] \end{bmatrix} Q_{8}$$

$$[T \rightarrow T * F \cdot | *]$$

	E	T	F	+	*	X	Т
Q_{o}	$Q_{\scriptscriptstyle 1}$	Q_2	Q_3			Q_4	
$Q_{ m o}$ $Q_{ m i}$				Q_5			
Q_2					Q_6		
$egin{array}{c} Q_3 \ Q_4 \ Q_5 \ \end{array}$							
Q_4							
Q_5		Q_7	Q_3			Q_4	
Q_6			Q_8			Q_4	
$egin{array}{c} Q_6 \ Q_7 \ Q_8 \ \end{array}$					Q_6		
Q_8							

	E	T	F	+	*	X	Δ.
Q_{o}	$Q_{\scriptscriptstyle 1}$	Q_2	Q_3			Q_4	
$Q_{\scriptscriptstyle 1}$				Q_5			HALT
Q_2				R_2	Q_6		R_2
Q_3				R_4	R_4		R_4
Q_4				R_5	R_5		R_5
Q_5		Q_7	Q_3			Q_4	
Q_6			Q_8			Q_4	
Q_7				$R_{\scriptscriptstyle 1}$	Q_6		$R_{\scriptscriptstyle 1}$
Q_8				R_3	R_3		R_3

Разбор цепочки по таблице

Конфигурация LR-анализатора:

$$(Q_0 X_1 Q_1 X_2 Q_2 ... X_m Q_m, a_i a_{i+1} ... a_n \bot),$$

где:

- $Q_i \in Q, X_i \in X, a_i \in \Sigma;$
- $Q_0 X_1 Q_1 X_2 Q_2 ... X_m Q_m$ содержимое магазина;
- $\omega = X_1 X_2 ... X_m a_i a_{i+1} ... a_n$ правая сентенциальная форма;
- $X_1 X_2 ... X_m$ активный префикс анализатора.

Разбор цепочки по таблице

Действия LR-анализатора

$$(Q_0 X_1 Q_1 X_2 Q_2 ... X_m Q_m, a_i a_{i+1} ... a_n \bot)$$

- Если $T(Q_m, a_i) = Q_k$, выполняется сдвиг: $(Q_0 X_1 Q_1 X_2 Q_2 ... X_m Q_m a_i Q_k, a_{i+1} ... a_n \bot).$
- Если $T(Q_m, a_i) = R_k$, выполняется свёртка: $(Q_0 X_1 \, Q_1 X_2 \, Q_2 ... \, X_{m-r} \, Q_{m-r}, \, a_i a_{i+1} ... a_n \bot),$ $(Q_0 X_1 \, Q_1 X_2 \, Q_2 ... \, X_{m-r} \, Q_{m-r} \, A \, Q_j, \, a_i a_{i+1} ... a_n \bot),$ где $P_k = (A {\rightarrow} \alpha) {\in} P, \, r = |\alpha|, \, Q_i = T(Q_{m-r}, A).$
- Если $T(Q_m, a_i) = HALT$ или ERROR, конец разбора.

$$\alpha = x^*x + x \perp$$

	E	T	F	+	*	х	1
Q_{o}	Q_1	Q_2	Q_3			Q_4	
Q_1				Q_5			HALT
Q_2				R_2	Q_6		R_2
Q_3				R_4	R_4		R_4
Q_4				R_5	R_5		R_5
Q_5		Q_7	Q_3			Q_4	
Q_6			Q_8			Q_4	
Q_7				$R_{\scriptscriptstyle 1}$	Q_6		R_1
Q_8				R_3	R_3		R_3

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to x$$

$$\alpha = x^*x + x \perp$$

$$\begin{array}{l} (Q_{o}, x^{*}x + x \bot) \\ (Q_{o} \times Q_{4}, \ ^{*}x + x \bot) \\ (Q_{o} F Q_{3}, \ ^{*}x + x \bot) \\ (Q_{o} T Q_{2}, \ ^{*}x + x \bot) \\ (Q_{o} T Q_{2} \ ^{*} Q_{6}, x + x \bot) \\ (Q_{o} T Q_{2} \ ^{*} Q_{6} \times Q_{4}, \ ^{*}x \bot) \\ (Q_{o} T Q_{2} \ ^{*} Q_{6} F Q_{8}, \ ^{*}x \bot) \\ (Q_{o} T Q_{2}, \ ^{*} X \bot) \\ (Q_{o} T Q_{2}, \ ^{*}x \bot) \\ (Q_{o} E Q_{1}, \ ^{*}x \bot) \\ (Q_{o} E Q_{1}, \ ^{*}x \bot) \\ (Q_{o} E Q_{1} + Q_{5} \times Q_{4}, \ ^{\bot}) \\ (Q_{o} E Q_{1} + Q_{5} F Q_{3}, \ ^{\bot}) \\ (Q_{o} E Q_{1} + Q_{5} T Q_{7}, \ ^{\bot}) \\ (Q_{o} E Q_{1}, \ ^{\bot}) \\ HALT \end{array}$$

	E	T	F	+	*	х	Τ
Q_{0}	Q_1	Q_2	Q_3			Q_4	
Q_1				Q_5			HALT
Q_2				R_2	Q_6		R_2
Q_3				R_4	R_4		R_4
Q_4				R_5	R_5		R_5
Q_5		Q_7	Q_3			Q_4	
Q_6			Q_8			Q_4	
Q_7				R_1	Q_6		$R_{\scriptscriptstyle 1}$
Q_8				R_3	R_3		R_3

$$E' \to E$$

$$E \to E + T$$

$$E \to T$$

$$T \to T * F$$

$$T \to F$$

$$F \to X$$