Université de La Manouba Ecole Supérieure d'Economie Numérique

Matière : Architecture des ordinateurs

Niveau : 1^{ére} année LFIG Année Universitaire : 2014 - 2015

Examen: Principal Mai 2015

Enseignants : AMDOUNI Hamida, GAMMOUDI Aymen

Interdit d'utiliser la calculatrice Barème approximatif : 6pt ; 14pt

Exercice 1 : 6pts (1,5+1,5+1,5+1,5)

Soit la mémoire cache suivante :

BV	@ B	ТВ	
0	0100	000101001100010101111100011111011	
1	1010	111101100011010111110101111010001	
1	0000	01001100110101010000101100101100	

Sachant que:

BV : Bit de validation, si le bit = 1 alors la ligne est valide sinon non valide

@B : L'adresse du blocTB : Taille du bloc

TCM : Taille d'une case mémoire est de 4 digits

- **1-** Déterminer le nombre de bits nécessaires pour adresser un bloc, le nombre de blocs ainsi que la taille de la mémoire cache.
- **2-** Indiquer, pour chaque bloc, les numéros de cases qu'il contient ainsi que le contenu de chaque case.
- **3-** Déterminer le nombre de cases mémoire, le nombre de bits d'adresse, le nombre de bits de données, l'adresse base et haute de la mémoire en hexadécimal.
- **4-** Présenter les étapes à suivre pour fournir le contenu de la 22 case au processeur en utilisant la mémoire cache.

Exercice 2: 14pts (2,5+11,5(5+2+2+1+1,5))

La mémoire micro-programmée contient la description d'une instruction **CONCAT** dont le code opération est $(B)_H$. Cette instruction permet de concaténer la première moitié du contenu de la case d'adresse $[[[@_1]]]$ à la deuxième moitié du contenu de la case d'adresse $@_2$ indexé par R_X et de mettre le résultat dans la case d'adresse $@_3$ basé par R_B .

Exemple : le résultat de la concaténation de la valeur (9D)_H et (BC)_H est (9C)_H

Son format est le suivant :

CØP	@ ₁ effective	@2 effective	@ ₃ effective
c_{∞}	@ CHCCHVC	@ 2 CHCCLIVC	@3 CITCCTIVE

Initialement d'un compteur ordinal égal à (7323)₈, le pas d'avancement dans la première itération est égal à (-3), (+4) dans la deuxième itération, (+2) dans la troisième itération, (-1) dans la quatrième itération et (+2) dans les autres itérations.

Le contenu de $R_X = (15)_{10}$ et le contenu de $R_B = (011)_2$

Université de La Manouba Ecole Supérieure d'Economie Numérique

Soit le contenu suivant de la mémoire :

•	•
$(00F)_{H}$	$(11110000)_2$
•	
•	
$(01E)_{\rm H}$	$(10101010)_2$
•	
•	
$(0C8)_{H}$	$(00001111)_2$
•	
•	
$(0F0)_{H}$	$(10011101)_2$
•	
•	
$(E22)_{H}$	$(101111100)_2$
•	
•	
$(EC0)_H$	$(00000001)_2$
$(EC1)_H$	$(10101010)_2$
$(EC2)_H$	$(00110011)_2$
$(EC3)_H$	$(10111111)_2$
$(EC4)_H$	$(11100001)_2$
$(EC5)_H$	$(00011011)_2$
$(EC6)_H$	$(00110000)_2$
$(EC7)_H$	$(11110110)_2$
•	•
•	•
$(F01)_H$	$(11001000)_{\rm H}$
•	•
•	•

1- Exécuter l'instruction CONCAT.

Bonne chance