CIÊNCIA DE DADOS COM LINGUAGEM R

Richard Guilherme dos Santos

Contents

1	Introduçãoo 2				
2	Introdução				
3	Introdução a Probabilidade	9			
4	Introdução ao R	11			
5	Medidas Descritivas	13			
	5.1 Tipos de Variáveis	13			
	5.2 Medidas de Posição	14			
	5.3 Medidas de Dispersão	15			
	5.4 Quantis Empíricos	17			
	5.5 Box Plot	17			
	5.6 Transformações	18			
	5.7 Lab 01 - Conjunto de dados Iris	18			
6	Tipos de Distribuições Discretas	23			
	6.1 Valor Médio de uma Variável Aleatória	23			
7	Tipos de Distribuições Contínuas	25			
8	Introdução as bibliotecas do R	27			
	8.1 Dplyr	27			
	8.2 Tidyr	27			
	8.3 GGPlot2	27			
9	Regressão Linear	29			

4 CONTENTS

Introduçãoo 2

Bem vindos ao meu livro!

Introdução

Este livro tem como objetivo servir como guia para as aulas do curso Ciência de Dados com R. Nele apresentaremos os conceitos de:

- 1. Estatística Básica: Nesta parte do curso abordaremos conceitos de estatística como variáveis, tipos de distribuições discretas e contínuas, medidas descritivas e distribuição normal.
- 2. Manipulação de dados no R: Neste tópico serão abordados as principais formas de manipulação de dados utilizando a linguagem R, com ênfase nas bibliotecas dplyr e tidyr. Além disso, abordaremos a criação de gráficos pelo pacote ggplot2.
- 3. Modelos de Regressão Linear: Parte final do curso, onde o aluno aprenderá sobre diagrama de dispersão, coeficiente de correlação linear, regressão linear simples, múltipla e regressão logística, ganhando a capacidade de começar a criar modelos utilizando a linguagem R.

Introdução a Probabilidade

Introdução ao R

Aqui introduziremos alguns comandos da linguagem R, onde utilizamos funções para realizar operações que vão desde leitura e manipulação de dados a operações matemáticas.

Comecemos criando um vetor de números:

```
x \leftarrow c(1,3,2,5)
# x = c(1,3,2,5) # Também podemos utilizar "=" para atribuir variáveis x "## [1] 1 3 2 5
```

O comando acima combina os números 1,3,2 e 5 em um vetor de números e os salva em um objeto denominado x. Escrevemos x para recebermos os atributos do vetor.

A partir disto podemos utilizar outras funções para calcularmos informações destes atributos, como o tamanho de um vetor:

```
length(x)
```

[1] 4

ou sua média:

```
mean(x)
```

[1] 2.75

Há outros tipos de objetos que podem ser criados quando trabalhamos com R. Os mais importantes para manipulação de dados são as matrizes:

```
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

3 Godoberto

19

80

Funções aceitam os mais diversos tipos de argumentos. Para termos uma ideia de quais utilizarmos e seus respectivos atributos devemos fazer consultas em suas bibliotecas:

```
help(matrix)
```

Além disso, para armazenamento de dados temos os data.frames, tabelas que aceitam dados de tipos distintos:

```
nomes = c('Carol', 'Alfredo', 'Godoberto')
idade = c(18, 23, 19)
peso = c(69, 75, 80)
altura = c(1.70, 1.80, 1.85)
ICM = peso/altura^2
df = data.frame(nomes, idade, peso, altura, ICM)
##
         nomes idade peso altura
## 1
                  18
                       69
                            1.70 23.87543
         Carol
## 2
                  23
                       75
       Alfredo
                            1.80 23.14815
```

1.85 23.37473

Medidas Descritivas

Importante: A partir deste capítulo utilizaremos a função kable do pacote knitr para visualização de conjuntos de dados. Na prática isto não é necessário, apenas o realizamos para efeitos de visualização.

5.1 Tipos de Variáveis

Antes de analisarmos conjuntos de dados, é necessário termos um conhecimento sobre tipos de variáveis. Para isto, consideremos a seguinte tabela:

Variáveis como sexo, escolaridade e estado civil apresentam realizações de uma qualidade ou atributo do indivíduo pesquisado, enquanto outras como número de filhos, salário e idade apresentam números como resultados de uma contagem ou mensuração. Chamamos as do primeiro tipo de **qualitativas** e as do segundo de **quantitativas**

nome	nome est_civil escolaridade		n_filhos	salario	idade
Djoko	Djoko Solteiro Pós-graduação		0	4500	29
Wilson	Casado	Ensino médio completo	0	3000	33
Jiraiya	Solteiro	Ensino médio completo	1	1500	33
Leon	Casado	Pós-graduação	0	5000	39
Nilce	Casado	Superior completo	0	5500	32

Table 5.1: Dados sobre Youtubers.

Cada uma das duas ainda pode ser dividida em dois tipos:

- Variável qualitativa nominal: atributos não apresentam uma ordem lógica;
- Variável qualitativa ordinal: atributos apresentam uma ordem lógica bem estabelecida;
- Variável quantitativa discreta: dados de contagem, assumem apenas valores inteiros;
- Variável quantitativa contínua: dados que podem assumir qualquer tipo de valor.

Muitas vezes queremos resumir estes dados, apresentando um ou mais valores que sejam representativos da série toda. Neste contexto entram às **medidas de posição e dispersão**.

5.2 Medidas de Posição

Usualmente utilizamos uma das seguintes medidas de posição (ou localização): **média, mediana ou moda**. Vamos as suas definições:

- Moda: valor mais frequente do conjunto de valores observados.
- Mediana: valor que ocupa a posição central das observações quando estas estão ordenadas em ordem crescente.

 Quando o número de observações for par, usa-se como mediana a média aritmética das duas observações centrais.

Na tabela 5.1 temos a seguinte mediana para uma coluna específica:

```
median(df$salario)
```

```
## [1] 4500
```

Para todas as colunas:

```
# Aplicaremos a função median para todas as colunas:
apply(df, MARGIN = 2, FUN = median)
```

```
## nome est_civil escolaridade n_filhos salario
## "Leon" "Casado" "Pós-graduação" "O" "4500"
## idade
## "33"
```

 Média: soma de todos os elementos do conjunto dividida pela quantidade de elementos do conjunto

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Na tabela 5.1 temos a seguinte mediana para uma coluna específica:

```
mean(df$salario)
```

```
## [1] 3900
```

Para todas as colunas:

```
colMeans(df[, c('idade', 'salario')])
```

```
## idade salario
## 33.2 3900.0
```

5.3 Medidas de Dispersão

O resumo de um conjunto de dados por uma única medida representativa de posição esconde toda a informação sobre a variabilidade de um conjunto de observações. Consideremos que cinco alunos realizaram cinco provas, obtendo as seguintes notas:

```
0,0,5,10,10), nrow = 5, ncol = 5, byrow = T)
df = data.frame(notas, row.names = nomes)
colnames(df) = c('P1', 'P2', 'P3', 'P4', 'P5')
kable(df, align = 'c')
```

	P1	P2	P3	P4	P5
alunoA	3	4	5	6	7
alunoB	1	3	5	7	9
alunoC	2	5	5	5	8
alunoD	3	5	5	5	7
alunoE	0	0	5	10	10

Temos as seguintes médias para os alunos:

rowMeans(df)

alunoA alunoB alunoC alunoD alunoE ## 5 5 5 5 5

Cada aluno possui a mesma média de notas, porém, isto não informa nada sobre a diferença na **variabilidade das notas.** A partir disto, são criadas medidas que sumarizam a **variabilidade** de um conjunto de observações.

Em um primeiro momento podemos podemos considerar a soma da diferença dos dados em relação a média:

$$x_1 - \overline{x} + x_2 - \overline{x} + \dots + x_n - \overline{x}$$

Porém, em qualquer conjunto a soma destes desvios é igual a zero. Uma alterntiva é então adicionar o valor absoluto em cada diferença:

$$|x_1-\overline{x}|+|x_2-\overline{x}|+\cdots+|x_n-\overline{x}|$$

Apesar de possuir uma boa interpretabilidade, tal métrica não possui propriedades matemáticas interessantes. Assim, trabalharemos com a diferença de quadrados de um conjunto de dados:

$$(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2$$

Como muitas vezes queremos comparar conjuntos de dados de diferentes tamanhos, realizamos a divisão destes valores pelo total de elementos em uma amostra:

$$\operatorname{var}(X) = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}$$

A partir disto, definimos desvio padrão como sendo a raiz da variância:

$$dp = \sqrt{var(X)}$$

Realizamos isto pois caso os dados estejam em uma certa unidade de medida, como cm, ao calcularmos a variância passamos a trabalhar com cm^2 , o que dificulta a interpretabilidade dos resultados.

5.4 Quantis Empíricos

Tanto a **média** como o **desvio padrão** podem não ser medidas adequadas para representar um conjunto de dados, uma vez que:

- São afetados por valores extremos;
- Apenas os dois valores não dão informação sobre a simetria ou assimetria da distribuição dos dados

Vimos que a **mediana** é define uma divisão dos dados em duas metades. Além disto existem medidas chamadas de **quantil de ordem p** ou **p-quantil** indicado por q(p) onde p é uma proporção qualquer, 0 tal que 100% das observações sejam menores do que <math>q(p).

Abaixo temos alguns dos quantis mais utilizados:

- $q(0.25) = q_1 : 1^{\circ}$ Quartil ou 25° Percentil
- $q(0.50) = q_2 : 2^{\circ}$ Quartil, Mediana ou 50° Percentil
- $q(0.75) = q_3 : 3^{\circ}$ Quartil ou 75° Percentil
- $q(0.40)1:4^{\circ}$ **Decil**
- $q(0.95): 95^{\circ}$ Percentil

5.5 Box Plot

A informação contida nos quantis pode ser confusa quando estamos observando vários conjuntos de dados. A partir disto traduzimos-a em um diagrama, qual é chamado de **box plot:**

Para construção dessa gráfico definimos por intervalo interquartil o valor:

$$IQR(X) = q_3 - q_1$$

Desenhamos um retângulo que parte do primeiro quartil até o terceiro, com a mediana sendo representada por uma linha em seu interior. A partir do retângulo desenhamos uma linha até o maior ponto que não exceta o valor $q_3+1.5\cdot \mathrm{IQR}(X)$, chamado de limite superior. De modo análogo fazemos o mesmo procedimento até a parte inferior do retângulo considerando o valor

 $q_1+1.5\cdot \mathrm{IQR}(X)$ chamado de limite interior. As observações que estiverem acima do limite superior ou abaixo do limite superior são chamados de pontos exteriores e representadas por asteriscos. Essas observações podem ser chamaas de outliers ou valores atípicos.

O box plot dá uma ideia de posição, dispersão, assimetria dos dados.

5.6 Transformações

Vários procedimentos estatísticos são baseados na posição que os dados possuem uma distribuição em forma de sino (oriundos de uma distribuição normal), ou que a distribuição seja mais ou menos simétrica.

Se quisermos utilizar tais procedimentos podemos efetuar transformações nas observações, de modo a se obter uma distribuição mais simétrica e próxima da normal. As transformações mais frequentemente utilizadas são:

$$x = \begin{cases} \sqrt{x} \\ \ln(x) \\ \frac{1}{x} \end{cases}$$

para cada transformação obtemos gráficos apropriados para os dados originais e transformados, de modo a escolhermos o valor mais adequado de p.

5.7 Lab 01 - Conjunto de dados Iris

O conjunto de dados Iris é um dos mais utilizados quando introduzimos conceitos de ciência de dados. Este pode ser encontrado em UCI Machine Learning Repository. Tal conjunto consiste de 150 amostras de 4 tipos de espécies de flores distintas contendo os atributos:

- SepalLengthCm
- SepalWidthCm
- PetalLengthCm
- PetalWidthCm

Podemos acessá-lo no R sem nenhum carregamento prévio da seguinte forma:

A função head() mostra os cinco primeiros itens de data.frame: head(iris)

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa

```
## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa
```

Há certas boas práticas ao carregar um conjunto de dados, dentre elas temos:

• Visualização de sua dimensão:

```
# O primeiro valor é a quantidade de linhas do conjunto de dados
# e o segundo a sua quantidade de atributos
dim(iris)
```

```
## [1] 150 5
```

• Visualização do tipo de cada atributo:

```
str(iris) # Structure of an Arbitrary R Object
```

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

• Sumário de seus atributos:

summary(iris)

##

```
##
     Sepal.Length
                      Sepal.Width
                                       Petal.Length
                                                        Petal.Width
##
           :4.300
   Min.
                            :2.000
                                             :1.000
                     Min.
                                      Min.
                                                      Min.
                                                              :0.100
##
    1st Qu.:5.100
                     1st Qu.:2.800
                                      1st Qu.:1.600
                                                       1st Qu.:0.300
##
    Median :5.800
                     Median :3.000
                                      Median :4.350
                                                      Median :1.300
    Mean
           :5.843
                     Mean
                            :3.057
                                      Mean
                                             :3.758
                                                      Mean
                                                              :1.199
                                                      3rd Qu.:1.800
##
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                      3rd Qu.:5.100
           :7.900
                            :4.400
                                             :6.900
##
    Max.
                     Max.
                                      Max.
                                                      Max.
                                                              :2.500
##
          Species
##
    setosa
               :50
##
    versicolor:50
##
    virginica:50
##
```

Dessa maneira poderemos contatar valores errôneos no conjunto de dados, distribuições de variáveis categóricas e ter um melhor contato com o conjunto de dados.

Há ainda diversas maneiras de realizarmos visualizações desse conjunto no R, observemos o boxplot da variável Sepa.Length:

boxplot(iris\$Sepal.Length)


```
ggplot(data = iris, aes(y = Sepal.Length)) +
  geom_boxplot() +
  labs(title = 'Boxplot Iris')
```



```
## List of 2
## $ axis.text.x : list()
## ..- attr(*, "class") = chr [1:2] "element_blank" "element"
## $ axis.ticks.x: list()
## ..- attr(*, "class") = chr [1:2] "element_blank" "element"
## - attr(*, "class") = chr [1:2] "theme" "gg"
- attr(*, "complete") = logi FALSE
## - attr(*, "validate") = logi TRUE
```

Observamos que não há presença de outliers, além disso, como a parte debaixo do retângulo separado pela linha que representa a mediana é menor, isto indica que a distribuição dos dados é ligeiramente assimétrica, o qual é confirmado pelo histograma:

```
hist(iris$Sepal.Length)
```

Histogram of iris\$Sepal.Length


```
ggplot(data = iris, aes(x = Sepal.Length, fill = ..count..)) +
geom_histogram(binwidth = 0.25, boundary = 0) +
scale_x_continuous(breaks = seq(1, 10, by = 0.25))
```


Tipos de Distribuições Discretas

Para atender a situações mais práticas, é necessário expandir os conceitos relacionados a probabilidade de forma que tenhamos modelos probabilísticos que representem todos os tipos de variáveis. Neste capítulo trabalharemos com variáveis quantativas discretas.

Exemplo (Bussab):

Chamamos de variável aleatória discreta uma função X definida no espaço amostral Ω que assume valores em um conjunto de números finito.

Neste contexto vimos como associar a cada valor x_i da variável aleatória X a sua probabilidade de ocorrência. Matematicamente, escrevemos

Além disso, chamamos de **função de probabilidade** da variável aleatória discreta X a função que a cada valor de x_i associa a sua probabilidade de ocorrência

$$p(x_i) = PX = x_i = p_i, i = 1, 2, ...$$

6.1 Valor Médio de uma Variável Aleatória

Dada uma variável aleatóra
iX discreta, assumindo os valores $x_1,\dots, x_n\$ chamamos de valor médio ou esperança de
 Xo valor

$$E[X] = \sum_{i=1}^n x_i P(X=x_i) = \sum_{i=1}^n x_i p_i.$$

Chamamos de variância da variável aleatória X o valor

$$\mathrm{var}[X] = \sum_{i=1}^n [x_i - E[X]]^2 p_i$$

Tipos de Distribuições Contínuas

Introdução as bibliotecas do ${\bf R}$

- 8.1 Dplyr
- 8.2 Tidyr
- 8.3 GGPlot2

Regressão Linear