

Transition Metal Electron Configurations

- The electron configurations of the transition elements (d block) and inner transition elements (f block) exhibit trends that differ somewhat from those of the main-group elements.
- As we move to the right across a row in the d block, the d orbitals fill as shown below.

21	22	23	24	25	26	27	28	29	30
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
4s ² 3d ¹	4s ² 3d ²	4s ² 3d ³	4s ¹ 3d ⁵	4s ² 3d ⁵	4s ² 3d ⁶	4s ² 3d ⁷	4s ² 3d ⁸	4s ¹ 3d ¹⁰	4s ² 3d ¹⁰
39	40	41	42	43	44	45	46	47	48
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
5s ² 4d ¹	5s ² 4d ²	5s ¹ 4d ⁴	5s ¹ 4d ⁵	5s ² 4d ⁵	5s ¹ 4d ⁷	5s ¹ 4d ⁸	4 <i>d</i> ¹⁰	5s ¹ 4d ¹⁰	5s ² 4d ¹⁰

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

42

Irregular Electron Configurations (2 of 2)

- Expected
- $Cr = [Ar]4s^23d^4$
- $Cu = [Ar]4s^23d^9$
- Mo = $[Kr]5s^24d^4$
- Ru = $[Kr]5s^24d^6$
- $Pd = [Kr]5s^24d^8$

- Found experimentally
- $Cr = [Ar]4s^13d^5$
- $Cu = [Ar]4s^13d^{10}$
- Mo = $[Kr]5s^14d^5$
- Ru = $[Kr]5s^14d^7$
 - $Pd = [Kr] 5s^0 4d^{10}$

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

Trend in Atomic Radius: Main Group (2 of 3)

- · Atomic radius decreases across period (left to right).
 - Adding electrons to same valence shell
 - Effective nuclear charge increases
 - Valence shell held closer

Pearson

53

Trend in Atomic Radius: Main Group (3 of 3)

- Atomic radius increases down group.
 - Valence shell farther from nucleus
 - Effective nuclear charge fairly close

Pearson

Copyright © 2020 Pearson Education, Inc. All Rights Reserved

54

(bigger) (smaller) K vs. Na Zeff = Z-S / = 11-10 "Na: (s²2s²2p63s' =(+) > 19K: 15252p6353p64s1 Zeff = Z-S 3s vs 45 principal an dets: size + E larger. 45 Same Zeff going down groups... but more shells of es ... larger.

