Seminar on Moduli Theory Lecture 3

Neeraj Deshmukh

September 11, 2020

Last Week

- **1** \mathbb{P}^n and its standard covering.
- 2 The Proj construction.
- **3** Degree 2 generators of \mathbb{P}^1 .

More Examples

$$V_+(x^2+y^2+z^2)$$
 over $\mathbb R$ and $\mathbb C$.

More Examples

Blow-up of \mathbb{A}^2 at the origin.

More Examples

An example of a scheme without a closed point.

Morphisms

Definition

Let \mathcal{P} be a property of morphisms of schemes. Let $f: X \to Y$ be a morphism which satisfies \mathcal{P} . Then,

- **1** We say that \mathcal{P} is affine-local on the target if given any affine open cover $\{V_i\}$ of Y, $f: X \to Y$ has \mathcal{P} if and only if the restriction $f: f^{-1}(V_i) \to V_i$ has \mathcal{P} for each i.
- ② We say that \mathcal{P} is affine-local on the source if given any affine open cover $\{U_i\}$ of X, $X \to Y$ has \mathcal{P} if and only if the composite $U_i \to Y$ has \mathcal{P} for each i.

Using affine communication lemma one can then show that it suffices to check the above statements on single affine open cover.

Something flat, something finitely presented/finite type, something finite.

Not all properties are like this. For example, separatedness, properness, quasi-compactness, etc.

Something ramified, something smooth, something singular.

What are morphisms to \mathbb{P}^n ?