$$\frac{1}{\chi_1 = \chi_3} - \chi_3 + \eta \chi_3 - \chi_3$$

$$\frac{1}{\chi_2 = -2\chi_3} - \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 = -2\chi_1$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$
Exercises on the geometry of linear equations
$$\frac{\chi_1 + \xi \chi_2 + \eta \chi_3}{\chi_1 + \xi \chi_3 + \eta \chi_3} = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_2 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_2 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_3 + \eta \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_2 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_3 + \eta \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_2 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_3 + \eta \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_2 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_3 + \chi_4 + \chi_3 + \eta \chi_3 = 0$$

$$\chi_1 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_2 + \xi \chi_3 + \eta \chi_3 = 0$$

$$\chi_3 + \chi_4 + \chi_3 + \eta \chi_3 = 0$$

$$\chi_4 + \chi_4 + \chi_4$$

Problem 1.1: (1.3 #4. Introduction to Linear Algebra: Strang) Find a comb nation x_1 **w**₁ + x_2 **w**₂ + x_3 **w**₃ that gives the zero vector:

is not invertible.

Zero vector? LERUH/angol ZHA Plane along yety

linear combi

MZ 2/ = 3 24 = 1 E1 2 12 2

표권하시아는이 + 이들은 (ধরুধ) দ্র লান ₹*₫妆*이₹ X.

Problem 1.2: Multiply: $\begin{bmatrix} \frac{1}{2} & \frac{2}{0} & 0 \\ \frac{1}{4} & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 - 4 \\ 6 + 3 \\ 1 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \\ 1 \end{bmatrix}$

Problem 1.3: True or false: A 3 by 2 matrix A times a 2 by 3 matrix B equals \cancel{a} 3 by $\cancel{3}$ matrix AB. If this is false, write a similar sentence which is correct.

MIT OpenCourseWare http://ocw.mit.edu

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.