

Claims

1. A system for performing service operations
5 on a machine, comprising:
a first computer based service tool;
a second computer based service tool;
a computer based workbench having first and
second application proxies and a binary network object
10 with first and second interfaces, the first
application proxy being coupled to the first computer
based service tool and the second application proxy
being coupled to the second computer based service
tool, wherein the first computer based service tool
15 has access to service information in the second
computer based service tool through the computer based
workbench.

2. A system, as set forth in claim 1, wherein
20 the first computer based service tool provides
diagnostic services for the machine.

3. A system, as set forth in claim 1, wherein
the machine is a mobile work machine.
25

4. A system, as set forth in claim 1, wherein
the binary network object uses the Component Object
Model.

30 5. A system, as set forth in claim 1, wherein
the first and second application proxies each comprise
a constant portion coupled to the binary network

object and an application programming interface coupled to the constant portion.

6. A system, as set forth in claim 5, wherein
5 data is communicated by one of the service tools to an other of the service tools through the respective constant portions.

7. A system, as set forth in claim 6, wherein
10 the first and second computer based service tools communicate using a respective communication protocol.

8. A system, as set forth in claim 7, wherein
the application programming interface of each of the
15 first and second service tools is adapted to communicate using the respective communication protocol.

9. A system for performing service operations
20 on a machine, comprising:

a first computer based service tool;
a second computer based service tool;
a computer based workbench having first and second application proxies and a binary network object
25 with first and second interfaces, the first application proxy being coupled to the first computer based service tool and the second application proxy being coupled to the second computer based service tool, wherein the first computer based service tool
has access to service information in the second computer based service tool through the computer based workbench, the computer based workbench includes a

graphical user interface, the first and second computer based service tools being accessible through the graphical user interface.

5 10. A system, as set forth in claim 9, wherein the graphical user interface includes an application container and a launch pad, wherein the launch pad includes first and second buttons and wherein actuation of one of the first and second buttons
10 launches a respective one of the first and second service tools in the application container.

11. A system for performing service operations on a machine, comprising:

15 a computer based diagnostic advisor;
 a computer based service information system;
 a computer based workbench having first and second application proxies and a binary network object with first and second interfaces, the first
20 application proxy being coupled to the computer based diagnostic advisor and the second application proxy being coupled to the computer based service information system, wherein the diagnostic advisor has access to service information in the service
25 information system through the computer based workbench.

12. A system, as set forth in claim 11, including a computer based electronic technician and
30 wherein the binary network object includes a third interface and the computer based workbench includes a third application proxy, the third application proxy

being coupled to the computer based electronic technician.

13. A system, as set forth in claim 11,
5 including a computer based data view module and
wherein the binary network object includes a fourth
interface and the computer based workbench includes a
fourth application proxy, the fourth application proxy
being coupled to the computer based data view module.
10

14. A system, as set forth in claim 11,
including a computer based engine performance
estimator and wherein the binary network object
includes a fifth interface and the computer based
15 workbench includes a fifth application proxy, the
fifth application proxy being coupled to the computer
based engine performance estimator.

15. A system, as set forth in claim 11,
20 including a computer based reports and feedback module
and wherein the binary network object includes a sixth
interface and the computer based workbench includes a
sixth application proxy, the sixth application proxy
being coupled to the computer based reports and
25 feedback module.

16. A method for sharing service information
between first and second service tools, including the
steps of:

30 providing a binary network object having first
and second interfaces;
providing a first application proxy coupled to

the first interface;

providing a second application proxy coupled to
the second interface; and,

sharing service information between the first and
5 second computer based service tools through the first
and second application proxies and the first and
second interfaces.

17. A method, as set forth in claim 16, wherein
10 the first computer based service tool provides
diagnostic services for the machine.

18. A method, as set forth in claim 16, wherein
the machine is a mobile work machine.

15 19. A method, as set forth in claim 16, wherein
the binary network object uses the Component Object
Model.

20 20. A method, as set forth in claim 16, wherein
the first and second application proxies each comprise
a constant portion coupled to the binary network
object and an application programming interface
coupled to the constant portion.

25 21. A method, as set forth in claim 20,
including the step of communicating data by one of the
service tools to an other of the service tools through
the respective constant portions.

30 22. A method, as set forth in claim 21, wherein
the first and second computer based service tools

communicate using a respective communication protocol.

23. A method, as set forth in claim 22, wherein
the application programming interface of each of the
5 first and second service tools is adapted to
communicate using the respective communication
protocol.

24. A method for sharing service information
10 between first and second service tools , including the
steps of:

providing a binary network object having first
and second interfaces;

15 providing a first application proxy coupled to
the first interface;

providing a second application proxy coupled to
the second interface;

20 sharing service information between the first and
second computer based service tools through the first
and second application proxies and the first and
second interfaces; and,

providing a graphical user interface, the first
and second computer based service tools being
accessible through the graphical user interface.

25

25. A method, as set forth in claim 24,
including the step of providing the graphical user
interface with an application container and a launch
pad, wherein the launch pad includes first and second
30 buttons and wherein actuation of one of the first and
second buttons launches a respective one of the first
and second service tools in the application container.

26. A method for sharing service information between a computer based diagnostic advisor and a computer based service information system, including
5 the steps of:

providing a binary network object having first and second interfaces;

providing a first application proxy coupled to the first interface;

10 providing a second application proxy coupled to the second interface; and,

sharing service information between the computer based diagnostic advisor and the computer based service information system through the first and
15 second application proxies and the first and second interfaces.

27. A computer program product for sharing service information between a first computer based
20 service tool and a second computer based service tool, including the steps of:

computer readable program code means for providing a binary network object having first and second interfaces;

25 computer readable program code means for providing a first application proxy coupled to the first interface;

computer readable program code means for providing a second application proxy coupled to the
30 second interface; and,

computer readable program code means for sharing service information between the first and second

computer based service tools through the first and second application proxies and the first and second interfaces.