高中 數學 科考試卷 ____年___班 座號: ____ 姓名: _____

一、單選題:

1. 已知 $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 2$, $|\overrightarrow{a}| \cdot |\overrightarrow{b}| = -6$ 且 θ 為 $|\overrightarrow{a}|$ 與 $|\overrightarrow{b}|$ 的夾角,則 $|\cos\theta|$ 之值為何?

(A)1 (B)-1 (C)
$$-\frac{3}{5}$$
 (D) $-\frac{4}{5}$ (E)0

答案:(C)

解析:
$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|} = \frac{-6}{5 \times 2} = -\frac{3}{5}$$
,

故選(C)。

2. 已知 $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 4$, 且 $(\overrightarrow{a} + k\overrightarrow{b}) \perp (\overrightarrow{a} - k\overrightarrow{b})$, 則 k 等於

(A)
$$\pm \frac{4}{3}$$
 (B) $\pm \frac{3}{4}$ (C) $\pm \frac{3}{5}$ (D) $\pm \frac{4}{5}$

答案:(B)

解析: $(\overrightarrow{a} + k\overrightarrow{b}) \cdot (\overrightarrow{a} - k\overrightarrow{b}) = 0$

$$\Rightarrow |\overrightarrow{a}|^2 - k^2 |\overrightarrow{b}|^2 = 0 \Rightarrow 9 - 16k^2 = 0 \Rightarrow k = \pm \frac{3}{4}$$

.. 選(B)

3. 坐標平面上, $\overline{a} = (2,t)$, $\overline{b} = (t,3)$,則滿足 \overline{a} 與 \overline{b} 之夾角為 45°的實數 t 共有幾個? (A)0 (B)1 (C)2 (D)3 (E)4

答案:(C)

解析:
$$\overrightarrow{a}$$
 · \overrightarrow{b} = | \overrightarrow{a} | | \overrightarrow{b} | cos 45° , $2t+3t=\sqrt{4+t^2}$ · $\sqrt{t^2+9}$ · $\frac{\sqrt{2}}{2}$,

平方得 2 (25 t^2)= t^4 +13 t^2 +36,但 $t \ge 0$,

∴t=1或6(2個),

故選(C)。

二、填充題:

1. $|\overrightarrow{a}|=4$, $|\overrightarrow{b}|=5$, $|\overrightarrow{a}+\overrightarrow{b}|=6$,且 \overrightarrow{a} 、 \overrightarrow{b} 夾角為 θ ,則 $\sin\theta=$ _____。

答案:
$$\frac{3\sqrt{7}}{8}$$

解析:
$$|\overrightarrow{a} + \overrightarrow{b}|^2 = 36 = |\overrightarrow{a}|^2 + 2|\overrightarrow{a}||\overrightarrow{b}|\cos\theta + |\overrightarrow{b}|^2$$

$$\therefore$$
 36=16+2×4×5×cos θ +25

$$\Rightarrow \cos \theta = -\frac{1}{8}$$

$$\sin\theta = \sqrt{1 - \cos^2\theta} = \frac{3\sqrt{7}}{8}$$

2. $|\overrightarrow{u}|=3$, $|\overrightarrow{v}|=4$,又 \overrightarrow{u} , \overrightarrow{v} 的灰角為 120°,則 $|\overrightarrow{u}-\overrightarrow{v}|=$ _____。

答案: √37

解析: $|\overrightarrow{u} - \overrightarrow{v}|^2 = |\overrightarrow{u}|^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + |\overrightarrow{v}|^2$ = $3^2 - 2(3 \times 4 \times \cos 120^\circ) + 4^2 = 37$

$$\therefore |\overrightarrow{u} - \overrightarrow{v}| = \sqrt{37}$$

3. $\triangle ABC$ 中,已知 \overline{AB} = 7, \overline{BC} = 8, \overline{CA} = 9,求 \overline{AB} . \overline{BC} =

答案:-16

解析: $\overrightarrow{AB} \cdot \overrightarrow{BC} = -(\overrightarrow{BA} \cdot \overrightarrow{BC}) = -|\overrightarrow{BA}| |\overrightarrow{BC}| \cos B$

$$= -\frac{|\overrightarrow{BA}|^2 + |\overrightarrow{BC}|^2 - |\overrightarrow{AC}|^2}{2} = -\frac{1}{2} (49 + 64 - 81)$$

$$= -16 \circ$$

4. 已知 | \overrightarrow{a} | =3,且 3 \overrightarrow{a} +2 \overrightarrow{b} = $\overrightarrow{0}$,求 \overrightarrow{a} · \overrightarrow{b} = _____ \circ

答案: $-\frac{27}{2}$

解析:
$$\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a} \cdot (-\frac{3}{2} \overrightarrow{a}) = -\frac{3}{2} |\overrightarrow{a}|^2 = -\frac{27}{2}$$
。

5. 已知 $|\overrightarrow{a}|=4$, $|\overrightarrow{b}|=3$, $|\overrightarrow{a}|$ 和 $|\overrightarrow{b}|$ 的夾角為 $|\overrightarrow{a}|$ 60°, 試求:

(1) $|3\vec{a} + \vec{b}| = _____$ 。
(2) 若 $k\vec{a} + \vec{b}$ 與 $\vec{a} - \vec{b}$ 互相垂直,則實數 k 之值為___

答案: (1) $3\sqrt{21}$; (2) $\frac{3}{10}$

解析: $\overline{a} \cdot \overline{b} = 4 \times 3 \times \cos 60^{\circ} = 6 \circ$

(1)
$$|3\overrightarrow{a} + \overrightarrow{b}|^2 = 9 |\overrightarrow{a}|^2 + 6 |\overrightarrow{a}| \cdot |\overrightarrow{b}| + |\overrightarrow{b}|^2$$

= 144+36+9=189,

$$| \cdot \cdot | 3\overrightarrow{a} + \overrightarrow{b} | = \sqrt{189} = 3\sqrt{21} | \cdot |$$

(2)
$$0 = (k \overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b})$$

$$= k | \overrightarrow{a}|^2 + (1 - k) \overrightarrow{a} \cdot \overrightarrow{b} - | \overrightarrow{b}|^2$$

$$= 16k + 6(1 - k) - 9$$

$$= 10k - 3$$

$$\therefore k = \frac{3}{10} \circ$$

平行四邊形 ABCD,若 $|\overrightarrow{AB}|=5$, $|\overrightarrow{BC}|=6$,則 \overrightarrow{AC} . $\overrightarrow{BD}=$ ____。

答案:11

解析:
$$\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{AD}) \cdot (\overrightarrow{AD} - \overrightarrow{AB})$$

$$= |\overrightarrow{AD}|^2 - |\overrightarrow{AB}|^2$$

$$= 6^2 - 5^2 = 11 \circ$$

