Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 13: Raggiungibilità e controllabilità a tempo discreto (parte 1)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2020-2021

In questa lezione

- ▶ Raggiungibilità e controllabilità: definizioni generali
- ▶ Raggiungibilità di sistemi lineari a t.d.
- ▷ Controllo a minima energia a t.d.

Raggiungibilità e controllabilità

sistema con stato x(t) e ingresso u(t)

$$u(t) \longrightarrow \sum y(t) = x(t)$$

Raggiungibilità = possibilità di raggiungere un qualsiasi stato desiderato x^* a partire da uno stato x_0 **fissato** agendo su u(t)

Controllabilità = possibilità di raggiungere uno stato desiderato x^* fissato a partire da un qualsiasi stato x_0 agendo su u(t)

Stati e spazi raggiungibili

sistema con stato x(t) e ingresso u(t)

Definizione: Uno stato x^* si dice raggiungibile dallo stato x_0 al tempo t^* se esiste un ingresso u(t), $t_0 \le t \le t^*$, tale che $x(t_0) = x_0$, $x(t^*) = x^*$.

Definizione: L'insieme $X_R(t)$ di tutti gli stati x^* raggiungibili dallo stato x_0 al tempo t è detto spazio raggiungibile al tempo t.

(tipicamente: $x_0 = 0$, $t_0 = 0$)

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021 5 / 18

Esempio introduttivo

$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

Se
$$C_1 = C_2$$
 e $x_1(0) = x_2(0) = 0$:

$$\Rightarrow x_1(t) = x_2(t), \forall u(t), \forall t \geq 0$$

$$\Rightarrow X_R(t) = \{x_1 = x_2\}, \forall t \geq 0$$

Stati e spazi controllabili

sistema con stato x(t) e ingresso u(t)

Definizione: Uno stato x_0 si dice controllabile allo stato x^* al tempo t^* se esiste un ingresso u(t), $t_0 \le t \le t^*$, tale che $x(t_0) = x_0$ e $x(t^*) = x^*$.

Definizione: L'insieme $X_C(t)$ di tutti gli stati x_0 controllabili allo stato x^* al tempo t è detto spazio controllabile al tempo t.

(tipicamente: $x_0 = 0$, $t_0 = 0$)

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021 7 / 18

Raggiungibilità e controllabilità: interpretazione grafica

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021 8 / 18

Raggiungibilità e controllabilità: interpretazione grafica

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

Raggiungibilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_t u_t$$

$$\mathcal{R}_t = \begin{bmatrix} G & FG & \cdots & F^{t-1}G \end{bmatrix} \qquad u_t = \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}$$
 matrice di raggiungibilità in t passi

G. Baggio

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021

10 / 18

Raggiungibilità di sistemi LTI a tempo discreto

$$x(t+1) = Fx(t) + Gu(t), x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow x(t) \in \mathbb{R}^n$$

$$x^* = x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_t u_t$$

Insieme di stati x^* raggiungibili al tempo t (= in t passi) a partire $\overline{da \ x(0) = 0?}$

Quando possiamo raggiungere tutti i possibili stati $x^* \in \mathbb{R}^n$?

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021

11 / 18

Spazio raggiungibile

$$X_R(t) = \text{spazio raggiungibile in } t \text{ passi} = \text{im}(\mathcal{R}_t)$$

Teorema: Gli spazi raggiungibili soddisfano:

$$X_R(1) \subseteq X_R(2) \subseteq X_R(3) \subseteq \cdots$$

Inoltre, esiste un primo intero $i \le n$ tale che

$$X_R(i) = X_R(j), \quad \forall j \geq i.$$

i = indice di raggiungibilità

 $X_R \stackrel{\triangle}{=} X_R(i) =$ (massimo) spazio raggiungibile

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021

12 / 18

Criterio di raggiungibilità del rango

Definizione: Un sistema Σ a t.d. si dice (completamente) raggiungibile se $X_R = \mathbb{R}^n$. Un sistema Σ a t.d. si dice (completamente) raggiungibile in t passi se $X_R(t) = \mathbb{R}^n$, con t indice di raggiungibilità.

 $\mathcal{R} \triangleq \mathcal{R}_n = \text{matrice di raggiungibilità del sistema}$

$$\Sigma$$
 raggiungibile \iff im $(\mathcal{R}) = \mathbb{R}^n \iff$ rank $(\mathcal{R}) = n$

m = 1: Σ raggiungibile \iff $\det(\mathcal{R}) \neq 0$

m > 1: Σ raggiungibile \iff $\det(\mathcal{R}\mathcal{R}^{\top}) \neq 0$

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021

13 / 18

Esempi

1.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
, $\alpha_1, \alpha_2 \in \mathbb{R} \implies$ non raggiungibile

2.
$$x(t+1) = \begin{bmatrix} \alpha_1 & 0 \\ 1 & \alpha_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
, $\alpha_1, \alpha_2 \in \mathbb{R} \implies \text{raggiungibile (in 2 passi)}$

3.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$
 \implies raggiungibile (in 2 passi)

Raggiungibilità ed equivalenza algebrica

$$x(t+1) = Fx(t) + Gu(t)$$
 $\xrightarrow{z=T^{-1}x}$ $z(t+1) = F'z(t) + G'u(t)$
 $F' = T^{-1}FT, G' = T^{-1}G$

$$\mathcal{R}' = \begin{bmatrix} G' & F'G' & \cdots & (F')^{n-1}G' \end{bmatrix} = T^{-1}\mathcal{R}$$

 $rank(\mathcal{R}') = rank(\mathcal{R}) \implies cambio di base non modifica la raggiungibilità!!$

Inoltre, se Σ raggiungibile: $\mathcal{R}'\mathcal{R}^{\top} = \mathcal{T}^{-1}\mathcal{R}\mathcal{R}^{\top} \implies \mathcal{T} = \mathcal{R}\mathcal{R}^{\top}(\mathcal{R}'\mathcal{R}^{\top})^{-1}$

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021 15 / 18

Calcolo dell'ingresso di controllo (a minima energia)

Se Σ è raggiungibile in t passi, come costruire una sequenza di ingresso $u_t \in \mathbb{R}^{mt}$ per raggiungere un qualsiasi stato $x^* \in \mathbb{R}^n$ in t passi?

Caso
$$x_0 = 0$$
:

1.
$$x^* = x(t) = \mathcal{R}_t u_t$$

2.
$$u_t = \mathcal{R}_t^{\top} \eta_t$$
, $\eta_t \in \mathbb{R}^{mt} \implies \eta_t = (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} x^*$

3.
$$u_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} x^* \ (= \mathcal{R}_t^+ x^*)$$

Caso
$$x_0 \neq 0$$
: $u_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} (x^* - F^t x_0) \ (= \mathcal{R}_t^+ (x^* - F^t x_0))$

$$(\mathcal{R}_t^+ = \text{pseudoinversa di Moore-Penrose di } \mathcal{R}_t)$$

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021

Calcolo dell'ingresso di controllo: osservazioni

1. Ingresso u_t generalmente non unico! Insieme dei possibili ingressi:

$$\mathcal{U}_t = \{ u'_t = u_t + \bar{u}, \ \bar{u} \in \ker(\mathcal{R}_t) \}.$$

2. Ingresso a minima "energia":

$$u_t^* = \arg\min_{u' \in \mathcal{U}_t} \|u_t'\|^2 = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} (x^* - F^t x_0).$$

3. L'energia minima per raggiungere x^* in t passi è:

$$||u_t^*||^2 = (x^*)^\top \mathcal{W}_t x^*,$$

dove $W_t \triangleq \mathcal{R}_t \mathcal{R}_t^{\top} = \sum_{k=0}^{t-1} F^{k-1} G G^{\top} (F^{\top})^{k-1}$ è detto Gramiano di raggiungibilità in t passi del sistema. Gli autovalori di \mathcal{W}_t quantificano l'energia minima richiesta per raggiungere diversi stati $x(t) = x^*$ del sistema.

G. Baggio

Lez. 13: Raggiungibilità e controllabilità a t.d. (pt. 1)

24 Marzo 2021 17 / 18

Esempio

1.
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

ingressi
$$u'(t)$$
 per raggiungere $x^* = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ da $x_0 = 0$ in 2 passi?

$$u'(0)=egin{bmatrix}1\\lpha\end{bmatrix},\ lpha\in\mathbb{R},\ \ u'(1)=egin{bmatrix}1\\0\end{bmatrix}.\qquad u^*(0)=egin{bmatrix}1\\0\end{bmatrix},\ \ u^*(1)=egin{bmatrix}1\\0\end{bmatrix}\ ext{min. energia}$$