Midterm Review (Pl.2)

Midterm FRIDAY!

(20) Apply bisection million to solve

PS #4 due FRI.

tan.

thu: (IVT) Suppose f is continuous on [a,b], and
if f(a).f(b)<0, then there exists an $x \in (a,b)$

with f(x)=0.

input a, b

for n=1,2,3,... gaurantees $X_n = \frac{1}{2}(a+b)$ $(x \in [a, X_n]$

if t(x"). f(a)<0 a

b= Xn XE[Xn, b]

else

 $a = x_n$

end

 $y = sin(cos(\pi x)) - x$ a = -2 $x = \frac{1}{2} \frac{1}{2$

 $\sin(\cos(\pi x))-x=0$

(26) Apply fixed-point iteration to solve g(x)=x.

thu: Suppose for some interval [a,b] we have the following conditions.

(i) g(x) ∈ [a,b] [on * ∈ [a,b]

(ii) 19'(*)/</ | (m *E [a,b].

Then there exists a point $x \in [a_1b]$ s.t. g(x) = x. Moreover if $x_0 \in [a_1b]$, then the sequence generated by $x_n = g(x_{n-1})$, $n \ge 1$ converges to x.

y= 2x+2

end "cobwebbing"

Pendy
$$\{x_n\}$$
 converges on any $x_0 \in [3,5]$. $g(x) = \frac{1}{2}x + \frac{3}{x}$

(i) $y \in [2,5]$, is $g(y) \in [2,5]$? $g'(x) = \frac{1}{2} - \frac{3}{x^2}$
 $g(x) = 2.5$
 $g(x) = \frac{1}{2} + \frac{3}{x^2} = 0$
 $g(x) = \frac{1}{2}x + \frac{3}{x^2} = 0$

(ii)
$$|g'(y)| < 1$$

 $g'(z) = -\frac{1}{4} \leftarrow |g'(y)| < 1$
 $g'(5) = 0.38 \leftarrow 1$

(2c) Apply Newton's method to solve f(x)=0.

then: Suppose x is a simple noot of f, i.e., f(x) = 0 but f'(x) \$0. Then there exists a 8>0 so that the

sequence
$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n \ge 1$$

converge (or any $x_{\delta} \in [x-8, x+8]$.

input X_0 for n=1,2,3,... $X_n=X_0-\frac{f(x_0)}{f(x_0)}$ $X_0=X_0$ end

 $y = f'(x_0)(x - x_0) + f(x_0)$ $t_{q=0}$ is x-int.

(2d) Summarine in psuedocode or graphically how they converge.

(2e) Compute order of convergence and asymptotic error constants. (higher a, faster), (small λ , faster)

def: A sequence converges with Rivers Sublinear ($\lambda=1$) order α if there exists a $\lambda < \infty$ Super linear ($\lambda=0$) with $\lim_{n\to\infty} \frac{|x_{n+1}-x|}{|x_{n}-x|} = \lambda$. Cubic $\alpha=3$

e.g.) $x_n = \frac{2^{-7} \cdot 2^n}{n+1}$, $\lim_{n \to \infty} x_n = 0$ $\frac{|2^{-7} \cdot 2^n|}{|2^{-7} \cdot 2^n|} = \frac{(2^{-7} \cdot 2^n)^2}{2^{-7} \cdot 2^n} = 2^{-7} \cdot 2^n \xrightarrow{n \to \infty} 0$

 $\frac{2^{-7\cdot 2^{n+1}}}{(2^{-7\cdot 2^n})^2} = \frac{(2^{-7\cdot 2^n})^2}{(2^{-7\cdot 2^n})^2} = \frac{1}{(2^{-7\cdot 2^n})^2}$ quadratically

(29) Accelerate by applying Aitkens 12-method or Steffensons.

Steffensons.

apply to any sequence only for fixed-point iterations

$$\Delta^2$$
 method:

$$\chi_{N=} = \chi_{V} - \frac{\nabla_{3}\chi_{V}}{(\nabla\chi_{V})_{3}}, \quad \nabla\chi_{V} = \chi_{V+1}\chi_{V}$$

Steffensens:
$$X_n = g(x_{n-1})$$

input
$$x_0$$

for $n=1,2,3,...$
 $x_1 = g(x_0)$
 $x_2 = g(x_1)$
 $x_n = x_0 - \frac{(x_1 - x_0)^2}{x_0 - 2x_1 + x_0} = (x_2 - x_1) - (x_1 - x_0)$
 $x_0 = x_0$
end