# BMC - Exercicios: Citoesqueleto

# Felipe B. Pinto 61387 - MIEQB 2 de novembro de 2022

## Conteúdo

| Questão 1 | 2 | Questão 5 |  |  |  |  |  | 5 |
|-----------|---|-----------|--|--|--|--|--|---|
| Questão 2 | 2 | Questão 6 |  |  |  |  |  | 5 |
| Questão 3 | 3 | Questão 7 |  |  |  |  |  | 6 |
| Questão 4 | 3 | Questão 8 |  |  |  |  |  | 6 |

Imagine que é um farmacologista que está a testar uma droga que bloqueia o transporte celular, mas ainda não se conhece o seu mecanismo de acção. Ao microscópio, pode observar nitidamente vesículas intracelulares fluorescentes a deslocarem-se. Após a adição da droga, verifica que deixa de observar transporte no sentido do centríolo (MTOC), mas não no sentido oposto. Qual pensa que seja o alvo desta droga? Justifique.

#### RS

As dineinas são proteínas que seguem no sentido positívo ao negativo dos microtubulos em direção ao centriolo, elas que devem ter sido inativadas.

## Questão 2

Na doença de Alzheimer a proteína estabilizadora de microtúbulos τ é hiper- fosforilada e perde afinidade para os microtúbulos, agregando. Preveja o que acontece à célula nestas circunstâncias

## RS

Perdendo a afinidade pelos microtubulos as porteínas t ligam-se entre si desestabilisando os microtubulos interrompendo o principal transporte celular, perdendo a estrutuda celular e desacoplando os axonios e interrompendo a sinápse.

Qual das seguintes afirmações é falsa relativamente a proteínas motoras do citoesqueleto?

- a) São todas ATPases
- b) Cada uma tem um sentido próprio de movimento ao longo dos microtúbulos
- c) Cada uma tem pelo menos um domínio globular que contém um local de ligação ao citoesqueleto
- d) Todas as proteínas motoras associadas aos microtúblos se movimentam em direção ao polo positivo dos microtúbulos

#### RS

d)

## Questão 4

Em relação aos constituintes do citosqueleto, indique a afirmação incorrecta:

- a) Os filamentos de actina são formados por monómeros de actina ligados a ATP (ou ADP).
- b) Os microtúbulos são formados por heterodímeros de  $\alpha$  e  $\beta$ -tubulina ligados a GTP (ou GDP).
- c) Os filamentos intermédios são formados nos pontos de nucleação chamados MTOC.
- d) Os filamentos de actina são importantes na manutenção da forma de uma célula e na sua alteração para adaptação a novas condições.

#### (i) Polimerização invitro dos filamentos de actina

começa com a autoassociação de três monômeros de G-actina para formar um trimer. A actina ligada ao ATP, em seguida, se liga à extremidade farpado, e o ATP é posteriormente hidrolisado.

#### (ii) Microtubulos

Formados por heterodímeros de  $\alpha$ - e  $\beta$ -tubulina intimamente associados por ligação não covalentes.

Cada monómero αe βpossui um local de ligação para uma molécula de GTP.

#### (iii) Polimerização dos Microtubulos

A Nucleação é o evento que inicia a formação de microtúbulos a partir do dímero da tubulina. Os microtúbulos são tipicamente nucleados e organizados por organelas chamados centros de organização de microtúbulos (MTOCs).

## RS

c)

A despolimerização dos microtúbulos é inibida por:

a) GTP

c) ADP

b) GDP

d) proteína G

#### (i) Despolimerização

Como a tubulina se adiciona à extremidade do microtúbulo no estado ligado ao GTP, propõe-se que exista uma tampa de tubulina ligada ao GTP na ponta do microtúbulo, protegendo-o da despolimerização.

#### RS

a)

## Questão 6

Quando os microtúbulos crescem in vitro a partir de proteína tubulina purificada, e são colocados numa placa de vidro que foi previamente revestida com proteínas cinesinas ou dineínas, os microtúbulos parecer "surfar" em cima da placa, se estiverem presentes ATP e GTP. Como explica esta observação? O que aconteceria se adicionasse uma grande quantidade de ADP ou GDP em vez de ATP ou GDP?

#### RS

As proteínas de transporte celular são ATPases, sem a presença de ATP elas param de funcionar, e sem o GTP os microtubulos se tornam instáveis.

A principal diferença entre a experiencia e o interior de uma célula é que aqui as proteínas estão presas movendo os microtubulos ao invés de si

Por que razão os filamentos intermediários não exibem instabilidade dinâmica?

## RS

Os filamentos intermediarios são formados por um aglomerado de dimeros que são duas moléculas ou monomeros alognados, por serem formados por moleculas longas não sofrem a instabilidade dinâmica

## Questão 8

Com base na imagem de fagocitose abaixo, indique um processo que:



## Q8.1)

Envolva sinalização celular. De que tipo?

#### RS

Sinalização de Contato entre bactéria e anticorpo/macrofago O contato do target as proteínas na membrana plasmática iniciando o processo da fagocitose

## Q8.2)

Rearranjo do citoesqueleto. De que componente?

## Q8.3)

Envolva activação lisossomal. Que processo?