Assignment-2

Software Systems Lab

B. Siddharth Prabhu

IIT Dharwad 200010003@iitdh.ac.in

August 15, 2021

Dynamic Programming

- Characteristics of Dynamic Programming
 - Overlapping Sub-problems

1

Subproblems are smaller versions of the original problem. Any problem has overlapping sub-problems if finding its solution involves solving the same subproblem multiple times.

2 Optimal Substructure

2

Any problem has optimal substructure property if its overall optimal solution can be constructed from the optimal solutions of its subproblems.

DP Methods

• Top-down with Memoization

1

In this approach, we try to solve the bigger problem by recursively finding the solution to smaller sub-problems. Whenever we solve a sub-problem, we cache its result so that we don't end up solving it repeatedly if it's called multiple times. Instead, we can just return the saved result.

DP Methods

• Top-down with Memoization

1

In this approach, we try to solve the bigger problem by recursively finding the solution to smaller sub-problems. Whenever we solve a sub-problem, we cache its result so that we don't end up solving it repeatedly if it's called multiple times. Instead, we can just return the saved result.

• Bottom-up with Tabulation

2

Tabulation is the opposite of the top-down approach and avoids recursion. In this approach, we solve the problem "bottom-up" (i.e. by solving all the related sub-problems first).

Algorithms

- Divide and Conquer
- Greedy Algorithm
- Dynamic Programming

Algorithms

- Divide and Conquer
- Greedy Algorithm
- Dynamic Programming

Algorithms

- Divide and Conquer
- Greedy Algorithm
- Dynamic Programming

Divide and Conquer

Example:

Quick-Sort: The average case run time of quick sort is $O(n*log\ n)$. This case happens when we don't exactly get evenly balanced partitions.

Divide and Conquer

Example:

Merge Sort: The time complexity of Merge Sort is O(n * log n). Merge Sort is useful for sorting linked lists in O(n * log n) time.

Hyperlinks

- Divide and Conquer
- Greedy Algorithm
- Dynamic Programming

- Primitive
- Non-Primitive
 - Linear

Non-Linear

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Dynamic

- Non-Linear
 - O Tree
 O Granh

- Primitive
- Non-Primitive
 - \bullet Linear
 - Static
 - Array
 - Dynamic
 - Linked List
 - Stack
 - Queue
 - Non-Linear
 - O Iree
 - () Grajon

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Array
 - Dynamic
 - Linked List
 - Stack
 - Queue
 - Non-Linear
 - Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Array
 - Dynamic
 - 1 Linked List
 - Stack
 - Queue
 - Non-Linear
 - (a) Tree
 - Graph

- Primitive
- Non-Primitive
 - Linear
 - Static
 - Array
 - Dynamic
 - 1 Linked List
 - Stack
 - Queue
 - Non-Linear
 - Tree
 - Graph

Data Structures

Figure: 1

Algorithm	Best Case	Average Case	Worst Case
Linear Search	O(1)	O(n)	O(n)
Binary Search	O(1)	$O(log \ n)$	$O(log \ n)$
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$
Selection Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Table: 1

${\bf Theorem~(Trigonometric~Identity)}$

$$sin^2\theta + cos^2\theta = 1$$

Proof.

Let a, b, c be lengths of right angled triangle.

By definition,

$$sin\theta = b/c \left(\frac{opposite\ side}{hypotenuse} \right)$$

$$cos\theta = a/c \left(\frac{adjacent\ side}{hypotenuse} \right)$$

$$sin^2\theta + cos^2\theta = \frac{b^2}{c^2} + \frac{a^2}{c^2} = \frac{a^2 + b^2}{c^2}$$

From Pythagoras' Theorem,

$$c^2 = a^2 + b^2$$

$$\frac{a^2+b^2}{c^2} = 1 \implies \sin^2\theta + \cos^2\theta = 1$$

Hence, Proved.

Multi-line Equations

$$f(x) = x^{6} + 7x^{3}y + 50x^{3}y^{2} + 12x^{2}y^{4}$$
$$-19x^{5}y^{4} - 10x^{7}y^{6} + 7y^{4} - m^{3}n^{3}$$

Multi-line Equations

$$f(x) = x^{6} + 7x^{3}y + 50x^{3}y^{2} + 12x^{2}y^{4}$$
$$-19x^{5}y^{4} - 10x^{7}y^{6} + 7y^{4} - m^{3}n^{3}$$

$$\begin{split} \rho \Delta x \Delta y \Delta z \Delta \tau \partial_t c_i(t,x,\tau) &= \rho \Delta x \Delta y \Delta z \Delta \tau (p_i - d_i) \\ &- \rho \Delta y, \Delta z \Delta \tau [q_{i,x}(t,x+\Delta x/2,y,z,\tau) \\ &- q_{i,x}(t,x-\Delta x/2,y,z,\tau)] \\ &- \rho \Delta x, \Delta z \Delta \tau [q_{i,y}(t,x,y+\Delta y/2,y,z,\tau) \\ &- q_{i,y}(t,x,y-\Delta y/2,z,z,\tau)] \\ &- \rho \Delta x \Delta y \Delta \tau [q_{i,z}(t,x,y,z+\Delta z/2,\tau) \\ &- q_{i,z}(t,x,y,z-\Delta z/2,\tau)] \end{split}$$