

Sciences Industrielles de l'ingénieur Interrogation de cours 5 – B

[Aucun document - Calculatrice interdite - Répondre directement sur le sujet]

Nom:.....

Cours

Question 1 Soit un solide S_0 munit d'un repère $\mathcal{R}_0 = (\mathbf{0}_0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ et un solide S_1 munit d'un repère $\mathcal{R}_1 = (\mathbf{0}_1, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$. Soit un point M appartenant au solide S_1 . Donner la vitesse du point P par rapport à \mathcal{R}_0 .

Question 2 Le vecteur instantané de rotation permettant de passer de \mathcal{R}_0 à \mathcal{R}_1 est noté $\overline{\Omega(\mathcal{R}_1/\mathcal{R}_0)}$. On donne $\overline{V(A \in \mathcal{R}_1/\mathcal{R}_0)}$ et \overline{AD} . Calculer $\overline{V(D \in \mathcal{R}_1/\mathcal{R}_0)}$. (Formule de Varignon)

EXERCICE

On donne la figure suivante :

On note $\mathcal{R}_0 = (O_0, \overrightarrow{X_0}, \overrightarrow{Y_0}, \overrightarrow{Z_0}), \mathcal{R}_1 = (O_0, \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{Z_0}), \mathcal{R}_2 = (O_0, \overrightarrow{w}, \overrightarrow{Z_1}, \overrightarrow{u}) \text{ et } \mathcal{R}_3 = (O_0, \overrightarrow{X_1}, \overrightarrow{Y_1}, \overrightarrow{Z_1}).$

Question 1 Calculer $\overrightarrow{X_0} \wedge \overrightarrow{Y_0}$ et $\overrightarrow{w} \wedge \overrightarrow{Y_1}$.

Question 2 Donner $\overline{\Omega(\mathcal{R}_2/\mathcal{R}_1)}$.

Question 3 Calculer $\left[\frac{d\overline{v(t)}}{dt}\right]_{\mathcal{R}_0}$.

Question 4 Calculer $\left[\frac{d\overline{X_1(t)}}{dt}\right]_{\mathcal{R}_0}$