Summer-2019 UM-SJTU JI Ve311 Homework #6

Instructor: Dr. Chang-Ching Tu

Due: 10:00 am, July 11, 2019 (Thursday) in class

Note:

(1) Please use A4 size papers.

(2) Please use the SPICE model in page 3 for simulation and calculation.

1. [Common-Source with Diode-Connected Load]

- (a) [30%] Assume $\lambda=0$ and $\gamma=0$. For $V_{DD}=5$ V, $V_{in}=1$ V, $(W_{drawn}/L_{drawn})_2=5$ μm / 2 μm and $(W_{drawn}/L_{drawn})_1=x$ μm / 2 μm , what is the value of x to obtain a voltage gain $A_v=-5$? What is the range of V_{in} for M_1 to stay in the saturation region?
- (b) [10%] Using the design and biasing condition in (a), plot V_{out} and A_v as a function of V_{in} (from 0 V to 5 V) in Pspice. Compare the hand-calculation results in (a) with the simulation results here.
- (c) [10%] Using the design and biasing conditions in (a), plot V_{out} as a function of time (from 0 to 0.1 second) in Pspice, when $V_{in} = 1 + A \times \sin(2\pi 100)$ (V) and A = 0.01 V, 0.1 V and 1 V. What do you observe when the swing of V_{in} goes beyond the range for M_1 to stay in the saturation region, as calculated in (a)?

- 2. [Common-Source with Source Degradation]
 - (a) [30%] Assume $\lambda=0$ and $\gamma=0$. For $V_{DD}=5$ V, $V_{in}=1.2$ V, $(W_{drawn}/L_{drawn})_1=200~\mu m$ / 2 μm , $R_D=100~k\Omega$ and $R_S=20~k\Omega$, what is the voltage gain A_v ? Does the voltage gain approach $-R_D$ / R_S as expected? (b) [10%] Using the design and biasing condition in (a), plot V_{out} and A_v as a function of V_{in} (from 0 V to 5 V) in Pspice. Compare the hand-calculation results in (a) with the simulation results here.
 - (c) [10%] Using the design and biasing conditions in (a), plot V_{out} as a function of time (from 0 to 0.1 second) in Pspice, when $V_{in} = 1.2 + A \times \sin(2\pi 100)$ (V) and A = 0.01 V.

NMOS Model				
	LEVEL = 1	VTO = 0.7	GAMMA = 0.45	PHI = 0.9
	NSUB = 9e+14	LD = 0.08e-6	UO = 350	LAMBDA = 0.1
	TOX = 9e-9	PB = 0.9	CJ = 0.56e-3	CJSW = 0.35e-11
	MJ = 0.45	MJSW = 0.2	CGDO = 0.4e-9	JS = 1.0e-8
PMOS Model				
	LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
	NSUB = 5e+14	LD = 0.09e-6	UO = 100	LAMBDA = 0.2
	TOX = 9e-9	PB = 0.9	CJ = 0.94e-3	CJSW = 0.32e-11
	MJ = 0.5	MJSW = 0.3	CGDO = 0.3e-9	JS = 0.5e-8

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body effect coefficient (unit: V1/2)

PHI: $2\Phi_F$ (unit: V)

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²) CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

Vacuum permittivity (ϵ_0) = 8.85 × 10⁻¹² (F / m) Silicon oxide dielectric constant (ϵ_r) = 3.9