A. <u>Décrire la loi de probabilité d'une expérience aléatoire</u>

Définitions.

- Une expérience est aléatoire si on connait ses issues possibles mais on ignore laquelle sera réalisée.
- L'univers est l'ensemble des issues possibles d'une expérience aléatoire. On le note Ω .

Exemple. On lance une pièce de monnaie et on regarde de quel côté elle tombe.

On connait les issues possibles : "Pile" ou "Face". C'est une expérience aléatoire dont l'univers est $\Omega =$

Définitions.

- La **probabilité** d'une issue est un *nombre entre 0 et 1* qui représente la fréquence de cette issue si on répète l'expérience un grand nombre de fois.
- La loi de probabilité d'une expérience aléatoire associe, à chaque issue possible, une probabilité.

Méthode. Pour donner la loi de probabilité d'une expérience aléatoire :

- On représente la loi avec un tableau à deux lignes (issues et probabilités).
- La somme des probabilités des issues doit être égale à 1.

Exemple. On lance un dé équilibré à 4 faces numérotées 5,6,7,8, puis on observe la valeur de la face obtenue.

- a) Donner l'univers de cette expérience aléatoire. a) $\Omega = \{5; 6; 7; 8\}$ b)
- b) Proposer une loi de probabilité associée.

Issue	5	6	7	8
Probabilité	1	1	1	1
	4	4	4	4

Exercice A1. Un dé cubique comporte deux faces rouges, une face bleue ; les faces restantes sont jaunes. On lance le dé et on observe la couleur obtenue.

- 1) Préciser l'univers de cette expérience aléatoire.
- **Exercice A2.** Une urne opaque contient dix boules : quatre noires, trois rouges, deux bleues et une jaune. On choisit une boule dans l'urne et on observe sa couleur.
- 1) Préciser l'univers de cette expérience aléatoire.
- 2) Proposer une loi de probabilité pour cette expérience.
- 2) Proposer une loi de probabilité pour cette expérience.

Exercice A3. Voici le cycle d'allumage d'un feu tricolore : 45 s pour le feu vert ; 5 s pour le feu orange ; 20 s pour le feu rouge. Un automobiliste arrive par hasard devant le feu tricolore et observe sa couleur.

1) Préciser l'univers de cette expérience aléatoire.

- **Exercice A4.** On lance deux dés cubiques dont les faces sont numérotées de 1 à 6 et on soustrait le plus petit résultat obtenu du plus grand. Le résultat est nul si le lancer produit un double.
- 1) Préciser l'univers de cette expérience aléatoire.
- 2) Proposer une loi de probabilité pour cette expérience.
- 2) Proposer une loi de probabilité pour cette expérience.

B. <u>Déterminer la probabilité d'un événement</u>

Définition. **Un événement** est un ensemble d'issues. Il est souvent décrit par *une phrase* (avec un *verbe*), et noté en lettre capitale.

Exemple. On lance un dé cubique et on observe le chiffre sur la face supérieure.

Alors l'univers est $\Omega = \{1; 2; 3; 4; 5; 6\}$. L'événement « Le résultat est un nombre pair » peut être écrit $A = \{2; 4; 6\}$

Définition. La probabilité d'un événement A est égale à la somme des probabilités <u>des issues</u> qui réalisent cet événement. Elle se note P(A) si on parle d'un événement noté A.

Exemple.

On lance un dé cubique dont la loi de probabilité est :

Issue	1	2	3	4	5	6
Probabilité	1	2	1	1	1	2
	8	8	8	8	8	8

Quelle est la probabilité d'obtenir un nombre pair ?

On note *A* : "Le résultat est un nombre pair".

$$A = \{$$

P(A) =

Exercice B1. Loane lance un dé pipé dont la loi de probabilité est :

Résultat	1	2	3	4	5	6
Probabilité	0,2	0,2	0,3	0,1	0,1	0,1

Déterminer la probabilité d'obtenir un nombre impair.

Exercice B2. On a étudié le moyen de transport utilisé par des élèves pour venir au lycée. On choisit au hasard un élève au lycée et on s'intéresse à son moyen de locomotion. Un sondage réalisé en début d'année a permis de définir la loi de probabilité ci-contre.

Moyen de transport	Vélo	Marche	Bus	Voiture	Tram
Probabilité	0,05	0,55	0,15	0,2	0,05

Déterminer la probabilité que l'élève soit venu en transport motorisé.

Exercice B3. Lorsque Killian démarre sa voiture, le levier de vitesse peut être dans les états suivants.

État	Marche arrière	Point mort	Première
Probabilité	0,35	0,45	0,2

- 1) Déterminer la probabilité que la marche arrière soit enclenchée.
- 2) Déterminer la probabilité qu'une vitesse soit enclenchée.

C. <u>Déterminer une probabilité dans une situation d'équiprobabilité</u>

Définition. Une loi est dite **équiprobable** (ou **équirépartie**) lorsque chaque issue a la même probabilité de se réaliser, qui est alors $\frac{1}{n}$ où n est le nombre total d'issues.

Exemple. On lance un dé cubique <u>équilibré</u> et on observe le résultat.

La probabilité de chaque issue est donc $\frac{1}{6}$ puisqu'il y a 6 issues.

Propriété. Dans une situation d'équiprobabilité, où il y a n issues possibles,

la probabilité d'un événement A constitué de k issues est alors : $P(A) = \frac{k}{n} = \frac{\text{nombre d'issues de A}}{\text{nombre total d'issues}}$

Exemple. On lance un dé équilibré à 6 faces. Quelle est la probabilité d'obtenir un nombre pair ?

On note A: « Le résultat est un nombre pair ». $A = \{2; 4; 6\}$ est constitué de 3 issues. Il y a un total de 6 issues. P(A) =

Exercice C1. Manu lance un dé tétraédrique équilibré. Sur chacune des faces est inscrit un numéro : 2 ; 3 ; 7 et 10.

1) Déterminer la probabilité d'obtenir un nombre inférieur ou égal à 7.

Exercice C3. Léa prend une carte au hasard dans un jeu de 52 cartes.

- 1) Déterminer la probabilité que la carte soit l'as de pique.
- 2) Déterminer la probabilité que la carte soit un pique.
- 3) Déterminer la probabilité que la carte soit une figure (roi, reine ou valet)

Exercice C2.

Exercice C4. Un magasin d'électroménager dispose de machines à laver, de sèche-linge et de grille-pain, tous fabriqués en Chine, au Japon ou en Allemagne. Le tableau suivant indique le nombre d'objets produits dans chaque pays.

	Machine à laver	Sèche-linge	Grille-pain
Allemagne	230	70	40
Chine	180	15	120
Japon	50	300	240

Après avoir remporté un concours, un client gagne un produit tiré au sort dans ce magasin.

- 1) Déterminer la probabilité que ce soit une machine à laver fabriquée en Europe.
- 2) Déterminer la probabilité que ce soit un sèche-linge
- 3) Déterminer la probabilité que le produit ait été fabriqué en Asie.

Probabilités - 4

Ω

4

В

3

2

5

D. Composer des événements avec des connecteurs logiques

Exemple. On lance un dé à 6 faces et on considère les événements :

A: « Le résultat est pair » = $\{2; 4; 6\}$

B: « Le résultat est ≤ 3 » = $\{1;2;3\}$

Définition. L'événement contraire d'un événement A, noté \overline{A} , est l'ensemble des issues qui ne réalisent pas A.

 \overline{A} : « Le résultat n'est pas pair »

 $\overline{A} =$

 \overline{A} : «

Exemple. Déterminer les éléments de \overline{B} puis simplifier la description de \overline{B} .

 \overline{B} : « Le résultat n'est pas ≤ 3 »

 $\overline{B} =$

 \overline{B} : «

Définition. L'événement $A \cap B$ (se lit **A inter B**) est l'ensemble des issues réalisant A \underline{et} B.

Exemple. Déterminer les éléments de $A \cap B$ puis simplifier la description de $A \cap B$.

 $A \cap B$: « Le résultat est pair et le résultat est ≤ 3 » $A \cap B =$

 $A \cap B$: «

Définition. L'événement $A \cup B$ (se lit A union B) est l'ensemble des issues réalisant A ou B.

Exemple. Déterminer les éléments de $A \cup B$ puis simplifier la description de $A \cup B$.

 $A \cup B$: « Le résultat est pair ou le résultat est ≤ 3 » $A \cup B =$

 $A \cup B$: «

• Attention, les mots et et ou, peuvent avoir un sens variable et moins précis dans la langue courante.

Exercice D1. On lance un dé cubique.

On note A: « Le résultat est pair » ; B: « Le résultat est ≥ 5 » ; C: « Le résultat est un multiple de 3 ou de 5 »

- 1) a) Déterminer les éléments de $A \cap B =$
- 1) b) Simplifier la description de $A \cap B$: «
- 2) a) Déterminer les éléments de $\overline{A} \cap C =$
- 2) b) Simplifier la description de $\overline{A} \cap C$: «
- 3) a) Déterminer les éléments de $\overline{A \cup C} =$
- 3) b) Simplifier la description de $\overline{A \cup C}$: «

E. Déterminer la probabilité d'événements composés

Propriété.

$$P(\bar{A}) = 1 - P(A)$$

Exemple. On lance un dé équilibré à 6 faces. Calculer la probabilité de *ne pas* obtenir un multiple de 3.

On note A: « Le résultat est un multiple de 3 ». $A = \{3, 6\}$.

$$P(\overline{A}) = 1 - P(A) =$$

Propriété.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exercice E1. On choisit un élève au hasard, équiprobablement, parmi les 2 000 élèves d'un lycée.

	Seconde	Première	Terminale	Total
Garçons	300	350	450	1100
Filles	350	250	300	900
Total	650	600	750	2000

On note G l'événement « l'élève est un garçon ». On note T l'événement « l'élève est en terminale ». Calculer :

$$P(G) =$$

$$P(T) =$$

$$P(G \cap T) =$$

$$P(G \cup T) =$$

Exercice E2. Dans un club de danse, chaque adhérent pratique une danse. La répartition des danses pratiquées est donnée dans le tableau suivant.

	Rock	Tango	Swing	Valse
Femme	21	13	26	25
Homme	35	15	17	28

On choisit au hasard une personne dans le club de danse. On considère les événements suivants :

• F: « La personne est une femme ». • R: « La personne danse le rock ». • S: « La personne danse le swing ». Déterminer:

$$P(F) =$$

$$P(S) =$$

$$P(\overline{F}) =$$

$$P(\overline{R}) =$$

$$P(F \cap S) =$$

$$P(F \cup S) =$$

Exercice E3. Le tableau suivant indique le nombre de personnes pratiquant chaque sport dans un club sportif, en fonction du sexe des adhérents.

	Football	Baseball	Rugby
Femmes	50	35	115
Hommes	70	87	123

On choisit au hasard un adhérent dans le club.

- 1) Déterminer la probabilité que l'adhérent soit une femme :
- 2) Déterminer la probabilité que l'adhérent pratique le Football :
- 3) Déterminer la probabilité que l'adhérent soit une femme pratiquant le Football.
- 4) Déterminer la probabilité que l'adhérent pratique le Football ou que l'adhérent soit une femme.

Probabilités - 6

F. Représenter une expérience aléatoire simple avec un arbre de probabilités

Exercice F1.	On lance deux fois de suite une pièce équilibrée. Le résultat de l'expérience est la suite des faces
obtenues dans	l'ordre, par exemple PF.

- 1) Représenter la situation avec un arbre.
- 2) Combien d'issues cette expérience aléatoire possèdet-elle ?
- 3) Quelle est la probabilité d'obtenir deux « Pile » après ces deux lancers ?

Exercice F2. Adrien possède un jeton sur lequel figurent le nombre 1 sur une face et le nombre 2 sur l'autre. Il lance trois fois de suite ce jeton en relevant le nombre obtenu. Le résultat de cette expérience aléatoire est le produit des trois nombres obtenus.

- 1) Représenter la situation avec un arbre.
- 2) Proposer une loi de probabilité qui permettrait de modéliser le résultat de cette expérience aléatoire

Exercice F3. On lance deux dés cubiques équilibrés.

- 1) Représenter la situation avec un arbre.
- 2) Déterminer la probabilité que la somme des deux dés soit un nombre pair.

Exercice F4. On lance trois fois une pièce bien équilibrée.

- 1) Représenter la situation avec un arbre.
- 2) Quelle est la probabilité d'avoir 3 « Face »?
- 3) Quelle est la probabilité que le deuxième lancer soit « Face » ?
- 4) Quelle est la probabilité que le troisième lancer soit différent du premier ?