Федеральное государственное бюджетное образовательное учреждение высшего образования. «Национально исследовательский университет «Московский энергетический институт» Кафедра ВМСС

Лабораторная работа №3 ИССЛЕДОВАНИЕ ПРИНЦИПОВ ОРГАНИЗАЦИИ ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА В МВС С ОБЩЕЙ ПАМЯТЬЮ

Курс: Вычислительные системы

Группа: А-08-19

Выполнил: Балашов С.А. Проверил: Карпов А.В.

Домашняя подготовка

Цель работы: изучение способов организации ВП при выполнении набора задач различных типов на многопроцессорной ВС с общей памятью и шинной организацией коммутации при определении параметров ВС (количество процессоров, шин и модулей памяти), позволяющих выполнить набор задач конкретного типа за заданное время.

- 1. Изучить соответствующий раздел лекционного курса и описание лабораторных работ.
- 2. Взвесить дуги графа, исследуемого в лабораторной работе 2, временами передач по шине. Для полученного графа рассчитать критический путь и минимальное время выполнения задачи с учетом времени передач по шине; сравнить полученный критический путь с графом, в котором не учитывается время передач.

Рис. 1. Граф с взвешенными временами выполнения вершинами и взвешенными временами передачи шинами

Рис. 2. Граф с критическим путём, минимальными и максимальными временами начала выполнения в узлах

3. Выбрать значения параметров структуры MBC с общей памятью, на которой возможно выполнение задачи за **минимальное время**.

Построить временную диаграмму.

Судя по диаграмме Ганта (Рис. 3), минимальное время выполнения задачи составило 84 такта. Это больше, чем рассчитанный критический путь.

Память 4	Память 3	Память 2	Память 1	Шина 4	Шина 3	Шина 2	Шина 1	Процессор 4	Процессор 3	Процессор 2	Процессор 1
			1.2				1-2				1 1.2
		13	1-2			1-3	1-2 1-5			1-2 2	1-5
1.4	2-6	- 1	1-5	1.4	2-6	ಪ	1-5	1-5	చ	2-6	74
	2-6	2-7			2-6	2-7		5	ω	2-7	2-6
74		7	3-7	74		7	3-7	14	3-7	7	6
		2-7	35			2-7	- 35	4	3-5	2-7	
4-8	6-11		3-8 3-8	4-8	6-11		3-8 3-8	4-8	3-8 3-8		6-11
4-8		4-9	3-7	4-8		4-9	3-7	4-9	4-8 8	3-7	
5-9	8- 8- 12 12	4-9		5-9	8- 8- 12 12	4-9		5-9	8- 8- 12 12	7	4-9
5-9		5-10	7-11	5-9		5-10	7-11	5-10		7-11	5-9
	6-11				6-11			6-11	12		9
12-15		5-10		12-15		5-10		=	12-15	5-10	9
12-15	9-13	12-16 12	7-11	12-15	9-13	12-16 12	7-11	7-11	12-16 12	10	9-13 12-15
	9-13	12-16 9-14			9-13	12-16 9-14		11	12-16 9-13	10	5 9-14
10-14		13- 13- 16 16	11-15	10-14		13- 13- 16 16	11-15	11-15	13- 13- 16 16	10-14	
10-14	13	9-14	=======================================	10-14	13	9-14	=======================================			10-14	=
	13-17	-	11-15		13-17	-	11-15		13-17	9-14	11-15
	13				13			13		14	15
	13-17	14-17	15-18		13-17	14-17	15-18	13-17	16	14-17	15-18
	16-18	7			16-18	7			16-18		
	18	14-17	15-18		18	14-17	15-18	14-17	18		15-18
16-19				16-19				17	16-19		
16-19	16-18		17-19	16-19	16-18		17-19	17-19		16-19	16-18
[9			===	19			11				18
		18-20 18-20	17-19			18-20 18-20	17-19			17-19 19	18-20 18-20
		20	19- 19- 20 20			20	19- 19- 20 <mark>20</mark>			19-	20 20
											20

Рис. 3. Диаграмма Ганта

Лабораторное задание

1. Проверить выбранный в п.3 домашней подготовки вариант на модели. Проанализировать и объяснить полученные результаты.

Наборы из четырех задач **различных типов**, которые исследуются при выполнении дальнейших пунктов лабораторного задания, указаны в табл. 1. Там же указано заданное время выполнения каждого набора задач.

- В работе исследуются задачи следующих типов:
- 1) слабосвязанные задачи, в которых время выполнения узлов задачи много больше времени передач между узлами $t_p >> t_n$;
 - 2) среднесвязанные задачи, в которых $t_p \approx t_{\pi}$;
 - 3) сильносвязанные задачи, в которых $t_p << t_{\pi}$.

Рис. 4. Моделирование выполнения задачи из подготовки

Вывод: время решения на временной диаграмме, полученной при моделировании, составляет 91 такт. Это время больше, чем время решения в соответствии с графом (84 такта). Эта разница возникает из-за того, что при расчете критического пути графа мы полагали возможным прием данных другим процессором сразу же после завершения передачи предыдущим, а временная диаграмма подразумевает, что процесс получения данных процессором не может начаться раньше, чем будут завершены все передачи от предыдущего процессора.

2. Построить зависимости времени решения задач (см. в Таблице 8) от числа процессоров, числа шин и модулей памяти для набора задач каждого типа, найти лучший вариант. Выявить параметры, которые дают наиболее существенный выигрыш.

Т.к. стратегия назначения готовых к исполнению узлов не является меняющимся параметром, выберем стратегию назначения по минимальному времени выполнения. Приоритеты при моделировании не используются.

Таблица 1 Время выполнения от числа процессоров и шин для слабосвязанных задач (F21, F41, F61, F81).

BUS		CPU								
Б03	1	2	3	4	5	6	7	8	9	10
1	1874	973	751	620	543	547	487	559	487	524
2		956	674	536	440	419	369	333	322	304
3			687	519	431	383	337	317	302	282
4				517	425	369	323	311	293	263
5					440	391	328	317	287	249
6						374	333	317	293	250
7							331	315	295	248
8								315	293	250
9	·								294	250
10	·					·				250

Рис. 5. Графики зависимости времени выполнения слабосвязанного графа от числа процессоров (при фиксированном числе шин)

Рис. 6. Графики зависимости времени выполнения слабосвязанного графа от числа шин (при фиксированном числе процессоров)

Таблица 2 Время выполнения от числа процессоров и шин для среднесвязанных задач (F22, F42, F62, F82).

DENIN BEI		жиения от числа процессоров и шин для среднесвазанных задач (122, 142, 102, 102)								
BUS		CPU								
ВОЗ	1	2	3	4	5	6	7	8	9	10
1	5946	4533	4559	4596	4620	4571	4571	4616	4557	4557
2		3346	2608	2447	2528	2594	2425	2465	2558	2428
3			2239	2010	1792	1711	1944	1748	1786	1801
4				1763	1563	1431	1395	1434	1382	1325
5					1505	1319	1258	1152	1117	1123
6						1254	1216	1139	1010	1051
7							1130	1144	1050	1017
8								1127	1032	915
9									987	992
10										992

Рис. 7. Графики зависимости времени выполнения среднесвязанного графа от числа процессоров (при фиксированном числе шин)

Рис. 8. Графики зависимости времени выполнения среднесвязанного графа от числа шин (при фиксированном числе процессоров)

Время выполнения от числа процессоров и шин для сильносвязанных задач (F23, F43, F63, F83).

			продес	topes ii						1 00, 1 00
	1	2	3	4	5	6	7	8	9	10
1	7758	6396	6414	6406	6433	6416	6444	6436	6370	6370
2		4016	3680	3372	3470	3564	3283	3445	3450	3630
3			3080	2665	2355	2321	2381	2483	2663	2440
4				2362	2001	1976	1795	2186	1827	1904
5					1999	1886	1572	1761	1698	1976
6						1687	1599	1498	1528	1490
7							1638	1356	1357	1454
8								1430	1327	1246
9									1296	1500
10										1186

Рис. 9. Графики зависимости времени выполнения сильносвязанного графа от числа процессоров (при фиксированном числе шин)

Рис. 10. Графики зависимости времени выполнения сильносвязанного графа от числа шин (при фиксированном числе процессоров)

Вывод: были рассмотрены вариации с различным количеством (от 1 до 10) процессоров и шин. Для набора слабосвязанных задач лучшим сочетанием с точки зрения скорости выполнения оказалось 10 процессоров и 6 шин, для набора среднесвязанных задач — 10 процессоров и 8 шин, для набора сильносвязанных задач — 10 процессоров и 10 шин. Однако это неоптимальные сочетания по затрате ресурсов, так как прирост производительности с увеличением числа шин и процессоров замедляется. Для наборов среднесвязанных и сильносвязанных задач ощутимый рост скорости их выполнения происходит при добавлении лишь второго процессора (при одной доступной шине), добавление следующих процессоров (без добавления новых шин) слабо повлияет на скорость выполнения (в некоторых случаях даже уменьшит её). Схожая ситуация и с увеличением числа шин — прирост в скорости происходит вплоть до добавления 4-ой шины (с соответствующим увеличением числа процессоров, так как число шин не должно превышать числа процессоров). Для слабосвязанных задач существенное изменение скорости выполнения происходит до добавления 7-го процессора. Добавление новых шин также вызывает рост скорости до добавления 5-ой шины.

3. Определить структуру BC, позволяющую выполнить набор задач каждого типа за заданное время T_{3ag} (см. Таблицу 8). Использовать процедуру **направленного** поиска.

Проанализировать полученные результаты и объяснить их.

Таблица 4
Получение заданного времени выполнения для слабосвязанного набора задач

Шаг	Было СРИ	Было BUS	Стало СРИ	Стало BUS	Старое время выполнения	Новое время выполнения
1	1	1	2	1	1874	973
2	2	1	2	2	973	956
2	Z	1	3	1	973	751
3	3	1	3	2	751	674
3	3	1	4	1	731	620
4	4	1	4	2	620	536
'	,	1	5	1	020	543
5	4	2	4	3	536	519
	·		5	2	230	440
6	5	2	5	3	440	431
			6	2		419
7	6	2	6	3	419	383
,	Ŭ	_	7	2	.17	369
8	7	2	7	3	369	337
			8	2		333
9	8	2	8	3	333	317
			9	2		322
10	8	3	8	4	317	311
			9	3		302
11	9	3	9 10	3	302	293 282
12	10	3			282	
	10		10	4		263
13	10	4	10	5	263	249
14	10	5	10	6	249	250
15	10	6	10	7	250	248
16	10	7	10	8	248	250
17	10	8	10	9	250	250

Вывод: заданное время (300 тактов) было достигнуто на 11-ом шаге алгоритма. Для получения заданного времени выполнения потребуется конфигурация из 9 процессоров и 4 шин (выбранная стратегии назначения готовых к исполнению узлов - по минимальному времени выполнения).

Таблица 5

Получение заданного времени выполнения для среднесвязанного набора задач

Шаг	Было СРИ	Было BUS	Стало СРИ	Стало BUS	Старое время выполнения	Новое время выполнения
1	1	1	2	1	5946	4533
2	2	1	2	2	4533	3346
2	2	1	3	1	4333	4559
3	2	2	3	2	3346	2608
4	3	2	3	3	2608	2239
4	3	2	4	2	2008	2447
5	3	3	4	3	2239	2010
(4	2	4	4	2010	1763
6	4	3	5	3	2010	1792
7	4	4	4	4	1763	1563
/	4	4	5	4	1703	1303
8	5	4	5	5	1563	1505
8	3	7	6	4	1505	1431
9	6	4	6	5	1431	1319
,	Ü	Т	7	4	1431	1395
10	6	5	6	6	1319	1254
	Ü	3	7	5		1258
11	6	6	7	6	1254	1216
12	7	6	7	7	1216	1130
12	,	O	8	6	1210	1139
13	7	7	8	7	1130	1144
14	8	7	8	8	1144	1127
14	0	/	9	7	11 44	1050
15	9	7	9	8	1050	1032
1.0	9	/	10	7	1030	1017
16	10	7	10	8	1017	915
17	10	8	10	9	915	992
18	10	9	10	10	992	992

Вывод: заданное время (1200 тактов) было достигнуто на 12-ом шаге алгоритма. Для получения заданного времени выполнения потребуется конфигурация из 7 процессоров и 7 шин (выбранная стратегии назначения готовых к исполнению узлов - по минимальному времени выполнения).

Таблица 6

Получение заданного времени выполнения для сильносвязанного набора задач

Шаг	Было СРИ	Было BUS	Стало СРИ	Стало BUS	Старое время выполнения	Новое время выполнения
1	1	1	2	1	7758	6396
2	2	1	2	2	6396	4016
2	2	1	3	1	0390	6414
3	2	2	3	2	4016	3680
4	3	2	3	3	3680	3080
4	3	2	4	2	3080	3372
5	3	3	4	3	3080	2665
6	4	3	4	4	2665	2362
O	4	3	5	3	2003	2355
7	5	3	5	4	2355	2001
/	3	3	6	3	2333	2321
8	5	4	5	5	2001	1999
8	3	7	6	4	2001	1976
9	6	4	6	5	1976	1886
,	O	7	7	4	1970	1795
10	7	4	7	5	1795	1572
10	,	•	8	4	1773	2186
11	7	5	7	6	1572	1599
11	,	3	8	5	1372	1761
12	7	6	7	7	1599	1638
12	,	Ü	8	6	1377	1498
13	8	6	8	7	1498	1356
15	Ü	Ü	9	6	1100	1528
14	8	7	8	8	1356	1430
	Ŭ	,	9	7	1550	1357
15	9	7	9	8	1357	1327
	·	·	10	7		1454
16	9	8	9	9	1327	1296
			10	8		1246
17	10	8	10	9	1246	1500
18	10	9	10	10	1500	1186

Вывод: заданное время (1500 тактов) было достигнуто на 12-ом шаге алгоритма. Для получения заданного времени выполнения потребуется конфигурация из 8 процессоров и 6 шин (выбранная стратегии назначения готовых к исполнению узлов - по минимальному времени выполнения).

Результаты для трех наборов задач

Связность графа	Требуемое время	Полученное время	Число процессоров	Число шин	Шагов
слабая	300	293	9	4	11
средняя	1200	1130	7	7	12
сильная	1500	1498	8	6	12

Вывод: заданное время выполнения было достигнуто во всех случаях (что может говорить об удачном выборе стратегии назначения готовых к выполнению узлов для данных наборов задач), также очевидна закономерность необходимого для выполнения за заданный промежуток времени количества процессоров и шин для наборов задач различной связности. Для слабосвязных задач количество процессоров явно превосходит количество шин, что объясняется соотношением времени выполнения узлов к времени передачи результатов ($t_p >> t_n$). В случае средне- и сильносвязанных задач количество необходимых шин возрастает из-за изменения времени передачи в большую сторону (из чего следует большая занятость имеющихся шин и, значит, необходимость добавления дополнительных шин).

Таблица 8

Варианты задач для исследования при выполнении лабораторной работы

	Варианты зада і для неследования при выполнен	ini naceparephen pacerai
	Наборы задач для исследования различных	
	типов задач	
№	1 – слабосвязанные задачи:Laba3\Grafs\Easy\	Заданное время выполнения набора
	2 – среднесвязанные задачи:	задач
бригады	Laba3\Grafs\Easy\	${f T}_{\scriptscriptstyle 3$ ад.
	3 – сильносвязанные задачи:	
	Laba3\Grafs\Easy\	
4	1 - F21,F41,F61,F81	300
	2 - F22,F42,F62,F82	1200
	3 - F23,F43,F63,F83	1500