

Aplicaciones de los Números Reales

En éste capítulo realizaremos un estudio de los conjuntos numéricos, desde los naturales hasta los reales, veremos como a través de estos conjuntos se pueden desarrollar algunas aplicaciones, tales como, solución de ecuaciones lineales, cálculo de desigualdades, cálculo de intervalos, cálculo del valor absoluto y solución de sistemas de ecuaciones de dos ecuaciones por dos incógnitas.

4.1 Intervalos

Un intervalo es un conjunto de números reales que se encuentran entre dos valores dados, llamados extremos del intervalo. Los intervalos se utilizan para representar gráficamente y de manera concisa las soluciones de desigualdades.

Tipos de intervalos:

- O **Abierto:** No incluye los extremos. Se representa con paréntesis: $(a,b) = \{x | a < x < b\}$
- O **Cerrado:** Incluye los extremos. Se representa con corchetes: $[a,b] = \{x | a \le x \le b\}$
- O **Semiabierto o semicerrado:** Incluye un extremo y excluye el otro. $(a,b] = \{x | a < x \le b\}$ y $[a,b) = \{x | a \le x < b\}$

El conjunto solución de una desigualdad es el conjunto de todos los valores que satisfacen la desigualdad. Este conjunto puede ser representado mediante intervalos o utilizando la notación de conjuntos con desigualdades.

Relación entre intervalos y desigualdades

Una desigualdad de la forma a < x < b se representa con el intervalo abierto (a,b). Una desigualdad de la forma $a \le x \le b$ se representa con el intervalo cerrado [a,b]. Y así sucesivamente para las desigualdades semiabiertas o semicerradas.

4.1.1 Taller de la Sección

- 1. Representa los intervalos en la recta real y exprésalos como inecuaciones:
 - O A = [-4, 1]
 - OB[-1,4]
 - $O C = (2, +\infty)$
- 2. Expresa como intervalos los siguientes conjuntos, teniendo en cuenta los conjuntos anteriores, A,B y C
 - $\bigcirc A \cup B$
 - $\bigcirc B \cup C$
 - $\bigcirc A \cup C$
 - $\bigcirc A \cup B \cup C$
- 3. Representan los intervalos en la recta real y exprésalos como inecuaciones
 - $O A = (-\infty, 2]$
 - O B = [1, 5]
 - O C = (2, 4]
- 4. Expresa como intervalos los siguientes conjuntos A,B y C del ejercicio anterior
 - $\bigcirc A \cup B$
 - $\bigcirc B \cup C$
 - $\bigcirc A \cup C$
 - $\bigcirc A \cup B \cup C$
 - $\bigcirc A \cap B$
 - $\bigcirc B \cap C$

- $\bigcirc A \cap C$
- $\bigcirc A \cap B \cap C$
- 5. Dado los siguientes intervalos $J_R = \left[\frac{1989}{100}, \frac{506}{25}\right]$, $C_M = \left[\frac{409}{25}, \frac{506}{25}\right]$, $J_S = \left[\frac{101}{5}, \frac{506}{25}\right]$ $I_E = \left[\frac{1011}{50}, \frac{506}{25}\right]$ calcular la operación entre los conjuntos indicadas, escribir como una desigualdad y graficar en la recta numérica:
 - a) $J_R C_M$
 - **b)** $J_R (J_S \cup I_E)$
 - c) $J_R \cap (C_M J_S)$
- 6. Escribe mediante intervalos, los valores que puede tomar \boldsymbol{x} para que se pueda calcular la raíz en cada caso
 - a) $\sqrt{x-4}$
 - **b)** $\sqrt{2x+1}$
 - c) $\sqrt{-x}$
 - **d)** $\sqrt{3-2x}$
 - *e*) $\sqrt{-x-1}$
 - f) $\sqrt{1+\frac{x}{2}}$
- 7. Escribe los siguientes conjuntos como intervalos y represéntalos en la recta numérica:
 - a) $\{x \in \mathbb{R} | -20 \le x < 50\}$
 - **b)** $\{x \in \mathbb{R} | -24 < x \le 27\}$
 - c) $\{x \in \mathbb{R} | \frac{2}{3} \le x < \frac{17}{3} \}$
 - **d)** $\{x \in \mathbb{R} | x > 10\}$
 - *e*) $\{x \in \mathbb{R} | x \le -70\}$
 - f) $\{x \in \mathbb{R} | -\frac{3}{7} < x < \frac{1}{2}\}$
 - $g) \ \{x \in \mathbb{R} | 35 \le x\}$
 - $h) \{x \in \mathbb{R} | 60 \ge x\}$
- 8. Si $A = \{x \in \mathbb{R} | -\frac{3}{5} \le x \le \frac{3}{5}\}, B = \{x \in \mathbb{R} | 0 < x < \frac{6}{5}\} \text{ y } C = \{x \in \mathbb{R} | -\frac{2}{5} \le x \le \frac{1}{5}\}, \text{ escribe la solución en intervalos:}$
 - $\bigcirc (A \cup B) \cup C$
 - $\bigcirc A \cap (B \cap C)$

9. Dados los intervalos A=(-4,3), B=[1,5] y C=(-3,6] graficar y hallar:

- a) A^c
- b) B^c
- c) A B
- d) B-A
- **e)** $(A B) \cup (B A)$

10. Breve Historia de la Química

- O **Descubrimiento de la Radiactividad** $D_R = [1896.0214, 1898.1226]$: Henri Becquerel observa por primera vez la radiactividad emitida por sales de uranio, sentando las bases para la física nuclear y la química radioactiva. Marie y Pierre Curie continúan investigando este fenómeno, aislando nuevos elementos radiactivos como el polonio y el radio.
- O **Modelo Atómico de Bohr** $M_A = [1913.0228, 1913.1231]$: Niels Bohr propone un modelo revolucionario del átomo, incorporando conceptos de la física cuántica. Su modelo explica la estructura electrónica de los átomos y la emisión de luz en espectros discretos, sentando las bases para la comprensión moderna de la química.
- O **Descubrimiento del Neutrón** $D_N = [1932.0202, 1932.0817]$: James Chadwick descubre el neutrón, una partícula subatómica sin carga eléctrica presente en el núcleo de los átomos. Este descubrimiento completa la comprensión de la estructura básica de la materia y abre el camino para la investigación en física nuclear y el desarrollo de la energía nuclear. 4.
- O **Estructura del ADN** ADN = [1953.0228, 1953.0425]: James Watson y Francis Crick proponen la estructura de doble hélice del ADN, la molécula que almacena la información genética. Este descubrimiento revoluciona la biología y la medicina, sentando las bases para la comprensión de la herencia, la evolución y el desarrollo de nuevas terapias genéticas. 5.
- O **Descubrimiento del Fullereno** F = [1996.0209, 1996.1231]: Robert Curl, Harold Kroto y Richard Smalley descubren el fullereno, una nueva forma alotrópica del carbono con estructura esférica.

Clase 4 Aplicaciones Números Reales

Matemáticas Fundamentales

5

Este descubrimiento abre un nuevo campo de investigación en nanotecnología y ciencia de materiales, con aplicaciones potenciales en electrónica, medicina y energía.

Resuelve mediante operaciones de conjuntos las siguientes preguntas:

- a) Cuál es el intervalo de tiempo desde el descubrimiento de la radiactividad hasta el modelo atómico de Bohr.
- b) En que intervalo de tiempo se da el descubrimiento del modelo atómico y del neutrón.
- c) Desde el descubrimiento del neutrón hasta el descubrimiento del Fullereno, en que intervalo de tiempo se propone la estructura del ADN.