

DOCKET NO.: 277672US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Ralph BRANDES, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP04/04356

INTERNATIONAL FILING DATE: April 24, 2004

FOR: DISPERSION FOR CHEMICAL-MECHANICAL POLISHING

**REQUEST FOR PRIORITY UNDER 35 U.S.C. 119
AND THE INTERNATIONAL CONVENTION**

Commissioner for Patents
Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

<u>COUNTRY</u>	<u>APPLICATION NO</u>	<u>DAY/MONTH/YEAR</u>
Germany	103 20 854.2	09 May 2003

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP04/04356. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

Customer Number

22850

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 08/03)

BUNDESREPUBLIK DEUTSCHLAND

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 20 854.2

Anmeldetag: 9. Mai 2003

Anmelder/Inhaber: Degussa AG, Düsseldorf/DE

Bezeichnung: Dispersion zum chemisch-mechanischen Polieren

IPC: C 09 K 3/14

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 13. November 2003
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Hoß

Dispersion zum chemisch-mechanischen Polieren

Gegenstand der Erfindung ist eine wässrige Dispersion zum chemisch-mechanischen Polieren von metallischen Filmen,
5 welche ein Silicium-Aluminium-Mischoxid-Pulver enthält.

Integrierte Schaltungen bestehen aus Millionen aktiver, in oder auf einem Siliciumsubstrat gebildeter Vorrichtungen. Die aktiven Vorrichtungen, die anfangs voneinander isoliert sind, werden miteinander verbunden, um funktionale
10 Schaltungen und Komponenten zu bilden. Die Vorrichtungen sind durch die Verwendung bekannter Mehrebenenverdrahtungen miteinander verbunden. Verdrahtungsstrukturen, weisen normalerweise eine erste Metallisierungsschicht, eine Verdrahtungsschicht, eine zweite Metallisierungsebene und
15 manchmal eine dritte, und nachfolgende Metallisierungsebene auf. Dielektrische Zwischenebenen, wie zum Beispiel dotiertes Siliciumdioxid (SiO_2) oder Tantalnitrid mit einer niedrigen Dielektrizitätskonstante werden zur elektrischen Isolation der verschiedenen Metallisierungsebenen in einem
20 Siliciumsubstrat verwendet. Die elektrischen Verbindungen zwischen verschiedenen Verdrahtungsebenen werden durch die Verwendung von metallisierten Durchgängen hergestellt.

Auf ähnliche Weise werden Metallkontakte und -durchgänge zur Bildung elektrischer Verbindungen zwischen
25 Verdrahtungsebenen verwendet. Die Metalldurchgänge und -kontakte können mit verschiedenen Metallen und Legierungen beispielsweise Kupfer (Cu) oder Wolfram (W) gefüllt sein. Bei den Metalldurchgängen und -kontakten wird im allgemeinen eine Barriereschicht, zum Beispiel aus
30 Titanitrid (TiN), Titan (Ti), Tantal (Ta), Tantalnitrid (TaN) oder aus daraus bestehenden Kombinationen verwendet, um das Haften der Metallschicht an dem SiO_2 -Substrat zu bewirken. Auf der Kontakt ebene wirkt die Barriereschicht

als eine Diffusionsbarriere, um ein Reagieren des eingefüllten Metalles und von SiO_2 zu vermeiden.

Ein Verfahren zur Herstellung von Halbleitern beinhaltet in der Regel einen chemisch-mechanischen Polierschritt (CMP) 5 folgt. Dabei wird überschüssiges Metall entfernt. Es ist wünschenswert, dass die beim chemisch-mechanischen Polieren eingesetzte Dispersionen eine hohe Selektivität von Metallfilm zu Barrièreschicht aufweisen.

Gewöhnlich werden hierzu Aluminiumoxid haltige Dispersionen 10 eingesetzt. Nachteilig bei diesen Dispersionen ist die oft eringe Stabilität im pH-Bereich zwischen 4 und 7. Es kann zu Ausflockungen kommen, die ein reproduzierbares Polierergebnis nicht zulassen. Hinzu kommt, dass die Selektivität zwischen Barrièreschicht und Metallfilm nicht 15 ausreichend sein kann und es zu einem Überpolieren kommen kann.

Es wurde versucht mit Dispersionen, die Mischungen von Abrasivpartikeln enthalten, dem entgegenzuwirken.

US 6444139 beschreibt die Verwendung von Dispersionen zum 20 Polieren von metallischen Schichten, welche Partikel aus Silicium-Aluminium-Mischoxidkristallen („mixed crystal abrasives“) mit variablen Anteilen der Oxide von jeweils 10 bis 90 Gew.-% enthalten. Die Herkunft dieser Partikel wird nicht offenbart.

US 6447694 beschreibt die Verwendung von Dispersionen zum 25 Polieren von Metallschichten, die ein Silicium-Aluminiumoxid-Komposit enthalten. Vorzugsweise wird das Komposit aus einem pyrogen Prozess erhalten. Der Anteil an Aluminiumoxid beträgt vorzugsweise 67 +/- 15 Gew.-%. Es hat 30 sich jedoch gezeigt, dass gerade diese Zusammensetzung an

Abrasivpartikeln im sauren Bereich nur zu wenig stabilen Dispersionen führt. Sedimentation und/oder Flokkulation führen bei Verwendung in Polierprozessen zu Kratzern und uneinheitlichem Abtrag.

- 5 Aufgabe der Erfindung ist es eine Dispersion bereitzustellen, welche eine gute Stabilität aufweist und die bei chemisch-mechanischen Polierprozessen eine hohe Metallabtragsrate bei niedriger Abtragsrate von Barriereschichten aufweist.
- 10 Die Aufgabe wird gelöst durch eine wässrige Dispersion mit einem pH-Wert zwischen 3 und 7 enthaltend 1 - 35 Gew.-% eines pyrogen hergestellten Silicium-Aluminium-Mischoxid-Pulvers mit einer spezifischen Oberfläche zwischen 5 und 400 m²/g, die dadurch gekennzeichnet ist, dass
- 15 - der Anteil an Aluminiumoxid im Pulver zwischen 90 und 99,9 Gew.-% oder zwischen 0,01 und 10 Gew.-% liegt,
- die Oberfläche des Pulvers Bereiche von Aluminiumoxid und Siliciumdioxid aufweist,
- 20 - das Pulver im Röntgendiffraktogramm keine Signale von kristallinem Siliciumdioxid aufweist.
- Die erfindungsgemäße Dispersion enthält ein pyrogen hergestelltes Silicium-Aluminium-Mischoxidpulver. Geeignet ist beispielsweise ein Pulver, welches durch ein sogenanntes „co-fumed“-Verfahren, bei dem die Precursoren 25 von Siliciumdioxid und Aluminiumoxid gemischt und anschließend in einer Flamme verbrannt werden, hergestellt wird.

Weiterhin ist das in DE-A-19847161 beschriebene Mischoxidpulver geeignet.

Für die erfindungsgemäße Dispersion sind außerdem mit
Aluminiumoxid teilweise umhüllte Siliciumdioxidpulver,
beziehungsweise mit Siliciumdioxid teilweise umhüllte
Aluminiumoxidpulver geeignet. Die Herstellung dieser Pulver
5 ist in US-A-2003/22081 beschrieben.

Dabei sind die Pulver so auszuwählen, dass deren
Aluminiumoxidgehalt zwischen 90 und 99,9 Gew.-% oder
zwischen 0,01 und 10 Gew.-% liegt. Bei den für die
erfindungsgemäße Dispersion geeigneten Pulver, weist die
10 Oberfläche Bereiche von Aluminiumoxid und Siliciumdioxid
auf, und im Röntgendiffraktogramm sind keine Signale von
kristallinem Siliciumdioxid zu erkennen.

Für bestimmte Anwendungen kann es vorteilhaft sein, wenn
die erfindungsgemäße Dispersion 0,3-20 Gew.-% eines
15 Oxidationsmittels aufweist. Hierfür kann
Wasserstoffperoxid, ein Wasserstoffperoxid-Addukt, wie zum
Beispiel das Harnstoff-Addukt, eine organische Persäure,
eine anorganische Persäure, eine Iminopersäure, ein
Persulfate, Perborat, Percarbonat, oxidierende Metallsalze
20 und/oder Mischungen der vorgenannten sein kann eingesetzt
werden. Besonders bevorzugt kann Wasserstoffperoxid
eingesetzt werden. Aufgrund der verringerteren Stabilität
einiger Oxidationsmittel gegenüber anderen Bestandteilen
25 der erfindungsgemäßen Dispersion kann es sinnvoll sein,
dieses erst unmittelbar vor der Benutzung der Dispersion
hinzuzufügen.

Die erfindungsgemäße Dispersion kann weiterhin Additive aus
der Gruppe pH-wert regulierender Substanzen,
Oxidationsaktivatoren, Korrosionsinhibitoren und/oder
30 oberflächenaktiver Stoffe beinhalten.

Die Einstellung des pH-Wertes kann durch Säuren oder Basen
erfolgen. Als Säuren können anorganische Säuren, organische
Säuren oder Mischungen der vorgenannten Verwendung finden.

Als anorganische Säuren können insbesondere Phosphorsäure, Phosphorige Säure, Salpetersäure, Schwefelsäure, Mischungen daraus, und ihre sauer reagierenden Salze Verwendung finden.

- 5 Als organische Säuren finden bevorzugt Carbonsäuren der allgemeinen Formel $C_nH_{2n+1}CO_2H$, mit $n=0-6$ oder $n= 8, 10, 12, 14, 16$, oder Dicarbonsäuren der allgemeinen Formel $HO_2C(CH_2)_nCO_2H$, mit $n=0-4$, oder Hydroxycarbonsäuren der allgemeinen Formel $R_1R_2C(OH)CO_2H$, mit $R_1=H$, $R_2=CH_3$, CH_2CO_2H ,
- 10 $CH(OH)CO_2H$, oder Phthalsäure oder Salicylsäure, oder sauer reagierende Salze der vorgenannten Säuren oder Mischungen der vorgenannten Säuren und ihrer Salze.

- Eine Erhöhung des pH-Wertes kann durch Addition von Ammoniak, Alkalihydroxiden oder Aminen erfolgen. Besonders
15 bevorzugt sind Ammoniak und Kaliumhydroxid.

- Geeignete Oxidationsaktivatoren können die Metallsalze von Ag, Co, Cr, Cu, Fe, Mo, Mn, Ni, Os, Pd, Ru, Sn, Ti, V und Mischungen daraus sein. Weiterhin sind Carbonsäuren, Nitrile, Harnstoffe, Amide und Ester geeignet. Besonders
20 bevorzugt kann Eisen-II-nitrat sein. Die Konzentration des Oxidationskatalysators kann abhängig vom Oxidationsmittel und der Polieraufgabe in einem Bereich zwischen 0,001 und 2 Gew.-% variiert werden. Besonders bevorzugt kann der Bereich zwischen 0,01 und 0,05 Gew.-% sein.

- 25 Geeignete Korrosionsinhibitoren, die mit einem Anteil von 0,001 bis 2 Gew.-% in der erfindungsgemäßen Dispersion vorhanden sein können, umfassen die Gruppe von Stickstoff enthaltenden Heterocyclen wie Benzotriazol, substituierte Benzimidazole, substituierte Pyrazine, substituierte Pyrazole, Glycin und deren Mischungen.

Die Dispersion kann weiter, zum Beispiel gegen Absetzen des Silicium-Aluminium-Mischoxidpulvers, Ausflockungen und

Zersetzung des Oxidationsmittels stabilisiert werden, indem 0,001 bis 10 Gew.-% mindestens eines oberflächenaktiven Stoffes, der nichtionischer, kationischer, anionischer oder amphoterer Art ist, zugesetzt wird.

- 5 Die erfindungsgemäße Dispersion kann zusätzlich zu dem Silicium-Aluminium-Mischoxid-Pulver mindestens ein weiteres Metalloxidpulver aus der Gruppe umfassend Siliciumdioxid, Aluminiumoxid, Ceroxid, Zirkonoxid und Titandioxid enthalten. Art und Anteil dieser Pulver in der
10 erfindungsgemäßen Dispersion richten sich nach der beabsichtigten Polieraufgabe. Der Anteil dieser Pulver kann bevorzugt nicht mehr als 20 Gew.-%, bezogen auf das Silicium-Aluminium-Mischoxid-Pulver, betragen.

- 15 Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Dispersion mit Dispergier- und/oder Mahlvorrichtungen, die einen Energieeintrag von mindestens 200 KJ/m³ bewirken. Hierzu zählen Systeme nach dem Rotor-Stator-Prinzip, zum Beispiel Ultra-Turrax-Maschinen, oder Rührwerkskugelmühlen. Höhere Energieeinträge sind mit einem
20 Planetenkneter/-mixer möglich. Die Wirksamkeit dieses Systems ist jedoch mit einer ausreichend hohen Viskosität der bearbeiteten Mischung verbunden, um die benötigten hohen Scherenergien zum Zerteilen der Teilchen einzubringen.

- 25 Mit Hochdruckhomogenisierern können Dispersionen erhalten werden in denen das Silicium-Aluminium-Mischoxidpulver in der Dispersion in Form von Aggregaten von weniger als 150 nm und besonders bevorzugt von weniger als 100 nm vorliegen.
30 Bei diesen Vorrichtungen werden zwei unter hohem Druck stehende vordispergierte Suspensionsströme über eine Düse entspannt. Beide Dispersionsstrahlen treffen exakt aufeinander und die Teilchen mahlen sich selbst. Bei einer

anderen Ausführungsform wird die Vordispersion ebenfalls unter hohen Druck gesetzt, jedoch erfolgt die Kollision der Teilchen gegen gepanzerte Wandbereiche. Die Operation kann beliebig oft wiederholt werden um kleinere Teilchengrößen zu erhalten.

Die Dispergier- und Mahlvorrichtungen können auch kombiniert eingesetzt werden. Oxidationsmittel und Additive können zu verschiedenen Zeitpunkten der Dispergierung zugeführt werden. Es kann auch von Vorteil sein,
10 beispielsweise Oxidationsmittel und Oxidationsaktivatoren erst am Ende der Dispergierung, gegebenenfalls bei
geringerem Energieeintrag einzuarbeiten.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Dispersion zum chemisch-mechanischen
15 Polieren von leitfähigen, metallischen Filmen. Dies können Filme bestehend aus Kupfer, Aluminium, Wolfram, Titan, Molybdän, Niob und Tantal sein.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Dispersion zum chemisch-mechanischen
20 Polieren von leitfähigen, metallischen Filmen, welche auf einer isolierenden Barrièreschicht aufgebracht sind. Die Metallfilme umfassen die Metalle Kupfer, Aluminium, Wolfram, Titan, Molybdän, Niob, Tantal. Die Barrièreschichten können beispielsweise aus Siliciumdioxid
25 oder Tantalnitrid bestehen.

Beispiele:**Dispersionen**

Es werden Dispersionen $D_{n/m}$ mit einem Feststoffgehalt von 2 und 5 Gew.-% an Pulver P_n (Tab. 1), durch Dispergierung 5 mittels Ultraturrax, Fa. IKA, hergestellt. Der Index n bezieht sich dabei auf das eingesetzte Pulver, m auf den Feststoffgehalt des Pulvers in der Dispersion. Die Dispersion $D_{3/5}$ weist beispielsweise 5 Gew.-% an Pulver P_3 auf. Die Dispersionen werden anschließend mit KOH auf pH 4 10 bis 5 bzw. auf pH 6 eingestellt und 1,3 Gew.-% Glycin und 7,5 Gew.-% Wasserstoffperoxid zugefügt.

Die Pulver P_4 und P_5 und die dazu gehörenden Dispersionen dienen als Vergleichsbeispiele.

Polierversuche**15 Poliertool und Polierparameter**

Poliermaschine: MECAPOL E460 (STEAG) mit 46 cm Platten und 6" Wafercarrier

Polierpad: IC1400 (RODEL Corp.)
Padkonditionierung mit Diamant-Segment nach jedem polierten Wafer

Slurry-Menge: 120 ml/min

Polierparameter: Arbeitsdruck: 10-125 kPa (1,45-18,13 psi)
Standard: 45 und 60 kPa
Rückseitendruck: 10 kPa

Polierzeit: $\omega_p = \omega_c = 40$ U/min; Sweep = 4 cm

Nachreinigung: 2 min

Nach der Politur wurde 30 s mit DI-Wasser gespült und anschließend in einer Bürstenreinigungsanlage mit Sprühstrahl und Megaschall-Unterstützung beidseitig gereinigt und trockengeschleudert.

Tab. 1: Silicium-Aluminium-Mischoxidpulver

	Pulver	hergestellt nach	Gehalt Al_2O_3	BET- Ober- fläche
			Gew.-%	m^2/g
P ₁	SiO_2 dotiert mit Al_2O_3	DE-A-19847161 (Beispiel 1)	0,19	55
P ₂	SiO_2 teilweise umhüllt mit Al_2O_3	US-A-2003/ 22081 (Beispiel 18)	4,2	48
P ₃	„Cofumed“ $\text{SiO}_2/\text{Al}_2\text{O}_3$	entsprechend EP-A-585 544	91	90
P ₄	„co-fumed“ $\text{SiO}_2/\text{Al}_2\text{O}_3$	entsprechend EP-A-585 544	67	100
P ₅	Al_2O_3 (*)	-	-	90

(*) Aluminiumoxid C, Degussa AG

Tab. 2: Stabilität der Dispersionen

Bei- spiel	Stabilität der Dispersion nach	
	14 Tagen ohne Oxidationsmittel	24 Stunden mit Oxidationsmittel
D _{1/2}	keine Auftrennung	keine O ₂ -Entwicklung keine Auftrennung
D _{1/5}	keine Auftrennung	keine O ₂ -Entwicklung keine Auftrennung
D _{2/2}	keine Auftrennung	keine O ₂ -Entwicklung keine Auftrennung
D _{2/5}	keine Auftrennung	keine O ₂ -Entwicklung keine Auftrennung
D _{3/2}	keine Auftrennung	geringe O ₂ -Entwicklung geringe Auftrennung
D _{3/5}	keine Auftrennung	geringe O ₂ -Entwicklung geringe Auftrennung
D _{4/2}	Auftrennung	geringe O ₂ -Entwicklung Auftrennung
D _{4/5}	Auftrennung	geringe O ₂ -Entwicklung Auftrennung
D _{5/2}	keine Auftrennung	O ₂ -Entwicklung geringe Auftrennung
D _{5/5}	keine Auftrennung	O ₂ -Entwicklung geringe Auftrennung

Eingesetzte Wafer

- Kupfer: 6" Wafer mit ganzflächig 140 nm Oxid,
5 50 nm TaN und ca. 500 oder 1000 nm PVD-Kupfer
Tantalnitrid: 6" Wafer mit ganzflächig 140 nm Oxid
und ca. 100 nm PVD-Tantalnitrid

Auswertung

- 10 Die Polierrate wird durch Schichtdickendifferenz ermittelt.
Die Schichtdicke von Cu und TaN wird durch Messung des
elektrischen Schichtwiderstandes bestimmt (Waferprober AVT
110).
- 15 Die Polierergebnisse sind in Tab. 3 wiedergegeben. Die
erfindungsgemäßen Dispersionen D₁ bis D₃ zeigen bei guter
Stabilität hohe Abtragsraten und eine gute Selektivität
Cu/TaN. Die Dispersionen D₄, welche als Abrasiv ein „co-
fumed“ Silicium-Aluminium-Mischoxidpulver mit einem
20 Aluminiumoxidgehalt von 67 Gew.-% aufweist, zeigen
ebenfalls hohe Abtragsraten bei guter Selektivität, die
Stabilität der Dispersionen D₄ ist jedoch deutlich geringer
als die der erfindungsgemäßen Dispersionen D₁ bis D₃. Die
erfindungsgemäßen Dispersionen D₁ bis D₃ weisen deutliche
25 Vorteile gegenüber den Aluminiumoxid-Dispersionen D₅
bezüglich Selektivität auf.

Tab. 3: Abtragsraten und Selektivitäten

Bei- spiel	Arbeits- druck p_A	pH 4 - 5				pH 6			
		RR Cu	RR TaN	Selek- tivität Cu : TaN	$\Delta RR/\Delta p_A$	RR Cu	RR TaN	Selek- tivität Cu : TaN	$\Delta RR/\Delta p_A$
	kPa	nm/min	nm/min	1/kPa		nm/min	nm/min	nm/min	1/kPa
D _{1/2}	45	144				135			
	60	220	4	55	5,1	167	20	8,4	2,1
D _{1/5}	45	179				168			
	60	281	5	56	6,8	247	15	16,5	5,3
D _{2/2}	45	286				182			
	60	392	3	131	7,1	240	10	24	2,5
D _{2/5}	45	324				202			
	60	519	4	130	13	302	15	20	6,7
D _{3/2}	45	242				170			
	60	300	3	100	3,9	251			
D _{3/5}	45	272				183			
	60	331	3	110	3,9	240	10	10	3,8
D _{4/2}	45	200				167			
	60	310	3	103	7,3	235			
D _{4/5}	45	260				175			
	60	404	3	101	9,6	259	17	15	5,6
D _{5/2}	45	137				121			
	60	155	10	16	1,2	164	30	5,5	2,9
D _{5/5}	45	164				125			
	60	205	25	8	2,7	182	39	4,7	3,8

RR = mittlere Polierrate

Patentansprüche:

1. Wässrige Dispersion mit einem pH-Wert zwischen 3 und 7 enthaltend 1 bis 35 Gew.-% eines pyrogen hergestellten Silicium-Aluminium-Mischoxid-Pulvers mit einer spezifischen Oberfläche von 5 bis 400 m²/g, dadurch gekennzeichnet, dass

- der Anteil an Aluminiumoxid im Pulver zwischen 90 und 99,9 Gew.-% oder zwischen 0,01 und 10 Gew.-% liegt,
- die Oberfläche des Pulvers Bereiche von Aluminiumoxid und Siliciumdioxid aufweist,
- das Pulver im Röntgendiffraktogramm keine Signale von kristallinem Siliciumdioxid aufweist.

2. Wässrige Dispersion nach Anspruch 1, dadurch gekennzeichnet, dass die Dispersion 0,3-20 Gew.-% eines Oxidationsmittels aufweist.

15 3. Wässrige Dispersion nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass sie Additive enthält.

4. Wässrige Dispersion nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass sie zusätzlich zu dem Silicium-Aluminium-Mischoxid-Pulver mindestens ein weiteres Metalloxidpulver aus der Gruppe umfassend Siliciumdioxid, Aluminiumoxid, Ceroxid, Zirkonoxid Titandioxid enthält.

25 5. Verwendung der wässrigen Dispersion gemäß den Ansprüchen 1 bis 4 zum chemisch-mechanischen Polieren von leitfähigen, metallischen Filmen.

6. Verwendung der wässrigen Dispersion gemäß den Ansprüchen 1 bis 4 zum chemisch-mechanischen Polieren von leitfähigen, metallischen Filmen, welche auf einer isolierenden Barrièreschicht aufgebracht sind.

Zusammenfassung

Dispersion zum chemisch-mechanischen Polieren

Wässrige Dispersion mit einem pH-Wert zwischen 3 und 7
5 enthaltend 1 bis 35 Gew.-% eines pyrogen hergestellten
Silicium-Aluminium-Mischoxid-Pulvers mit einer spezifischen
Oberfläche von 5 bis 400 m²/g, wobei der Anteil an
Aluminiumoxid im Pulver zwischen 90 und 99,9 Gew.-% oder
zwischen 0,01 und 10 Gew.-% liegt, die Oberfläche des
Pulvers Bereiche von Aluminiumoxid und Siliciumdioxid
aufweist und das Pulver im Röntgendiffraktogramm keine
Signale von kristallinem Siliciumdioxid aufweist. Sie kann
zum chemisch-mechanischen Polieren von leitfähigen,
metallischen Filmen verwendet werden.