Teoría de los números II - semestre 2020-2

La clase pasada vimos el siguiente teorema:

Teorema (2)

Demostrar que $H_n = \ln(n) + O(1)$ para $n \ge 1$.

Ahora, daremos una mejor aproximación para H_n , la cual tiene la característica de que el margen de error tiende a cero cuando n es grande, y además la igualdad para H_n contará con una constante que no tiene relación con la gran O. Cabe decir que la demostración recurre a elementos geométrico, lo que nos permitirá visualizar la relación entre H_n y $\ln(n)$.

Teorema (3)

 $H_n = \ln(n) + \gamma + O(1/n)$, para *n* mayor o igual que uno y una constante γ .

Demostración

Hagamos primero algunas consideraciones geométricas. En las Figura 1.3 se muestra que la parte rayada es lo que H_n sobrepasa a $y = \frac{1}{r}$. A cada sección le llamaremos E_i .

Todas las E_i con $1 \le i \le n-1$ se puede alojar en una sección de base con longitud 1 y altura igual, como se muestra en la Figura 1.4, y las partes no se traslapan porque la función $y = \frac{1}{x}$ es estrictamente decreciente.

 1 Lo que se plantea es que $|H_n-(\ln(n)+\gamma)|\ll 1/n$, que a su vez por definición significa que existen Ny C tales que $|H_n-(\ln(n)+\gamma)|\ll C\times\frac{1}{n}$ para todan > N.

Figura 1.3. Representación por pasos de las n primeras secciones E_i .

Como la sección –de la extrema izquierda- donde colocamos las partes sombreadas, que es lo que le sobra a cada H_n para igualar $\ln(n)$, mide uno de base por uno de altura, entonces $\sum_{i=1}^{n-1} E_i \leq 1$. Así, el valor de la suma de los E_i cuando su cantidad tiende a infinito, es menor que 1 y esta es la constante γ .²

Ahora consideremos las primeras n-1 secciones E_i , cuya suma es $\sum_{i=1}^{n-1} E_i$, y de la constante γ , podemos considerar la siguiente expresión:

$$\gamma - \sum_{i=1}^{n-1} E_i = \gamma - (H_{n-1} - \ln(n)),$$

donde γ son todos los sobrantes (partes sombreadas en la Figura 1.4) cuando n tiende a infinito, mientras que E_i son los sobrantes desde 1 hasta n-1.

 $^{^{2}}$ γ es una constante importante en matemáticas y recibe el nombre de la constante de Euler y tiene un valor aproximado de: γ =0.57721566490153286061...

Figura 1.4. Acomodando las secciones E_i en un cuadrado de área uno, para algunos valores de n

A partir de n+1 los sobrantes pueden entrar en un rectángulo de altura $\frac{1}{n}$ y base uno, el cual tendrá área $\frac{1}{n}$, y por la configuración de estos sectores sombreados ellos no llenan todo el rectángulo de área $\frac{1}{n}$. Entonces $\gamma - \sum_{i=1}^{n-1} E_i$ representa a los sobrantes a partir de n+1, y por los señalamientos anteriores podemos decir que $\gamma - \sum_{i=1}^{n-1} E_i < \frac{1}{n}$, y como la parte izquierda de la desigualdad es mayor que cero, entonces se llega a que

$$0 < \gamma - (H_{n-1} - \ln(n)) < 1/n.$$

Enseguida, multiplicamos las desigualdades por -1 y obtenemos que $-1/n < H_{n-1} - \ln(n) - \gamma < 0$, y si además se le suma $\frac{1}{n}$, se llega a

$$-1/n + 1/n < H_{n-1} - \ln(n) - \gamma + 1/n < 0 + 1/n$$

y como $H_{n-1}+\frac{1}{n}=H_n$, entonces $0< H_n-\ln(n)-\gamma<1/n$. Empero, si C=1 y N=1, entonces, $0< H_n-\ln(n)-\gamma< C\cdot 1/n$, para todo n>N. Por lo tanto $|H_n-\ln(n)-\gamma|\ll 1/n$, y por la notación de la gran O finalmente se llaga a

$$H_n = \ln(n) + \gamma + O(\frac{1}{n}).$$

En la Figura 1.4 de la demostración que acabamos de exhibir encontramos el resumen grafico de la aproximación de H_n a través de la comparación con $\ln(n)$, además de la relación de los números armónicos con la constante de Euler γ .

CDMX 1 de abril de 2020