Data Analysis: Assignment 2

Ghazal Ayobi and Shah Ali Gardezi

Introduction

The Question of this case study is how hotels stars is related to highly rated hotels. For this assignment we use Hotels-Europe data. This data set contains two tables **Features** and **Price**. We joined the two tables using left join.

Data Transformation

As a process of filtering and data transformation, we use hotel user rating as the dependent variables and transformed it to a binary variable called <code>highly_rated</code> which equals to one if <code>rating</code> is more than 4, 0 otherwise. We selected <code>Paris</code> City and considered <code>Hotels</code> as accommodation type. Moreover, we excluded hotels with less than <code>USD 600</code> per night, and we removed null and duplicated values from the data set. In order to understand what functional form to include in the regression we examined <code>Lowess</code> regression with highly rated hotels and distance. <code>Figure 1</code> in the appendix shows that distance and highly rated hotels have negative relationship from city center to 1.2 miles away from center, however <code>highly_rated</code> hotels does not indicated any relationship between 1.2 and 3 miles. After 3 miles, as distance changes by one mile highly rated declines. We created a binary variable for <code>Stars</code> called <code>top_stars</code> which equals to one if <code>stars</code> is more than 3, 0 otherwise. Other variables are <code>price</code> which was transformed to log of Price and <code>weekend</code> which is binary variable

Analysis

Table 2 shows five regression mpdels: lpm, logit, marginal logit, probit and marginal probit regression results.

- Filtered the data for **Paris**
- Selected Hotels and Apartments for accommodation type
- Price is less than 600
- Removed null values from stars
- Removed duplicates
- Removed Null values from rating, stars, and distance
- Created log of price, *lnprice*
- Created highly_rated if rating >= 4

Table 1: Summary Statistics

	Mean	SD	Min	Max	Median	P95	N
highly_rated distance stars	1.62	$0.50 \\ 0.78 \\ 0.78$	0.10	1.00 4.20 5.00	1.00 1.60 3.00		11397 11397 11397

Table 2: The Probability of Highly rated hotels and top stars - LMP, Logit, and Probit models

	(1) LMP0	(2)LMP	(3) logit coeffs	(4) logit Marg	(5) Probit	(6) Probit Marg
Constant	0.137**	0.027	-2.551**		-1.451**	
	(0.011)	(0.027)	(0.146)		(0.084)	
top_stars	0.497**	0.421**	2.145**	0.436**	1.266**	0.432**
	(0.012)	(0.012)	(0.075)	(0.012)	(0.041)	(0.011)
lspline(distance, $c(1.2, 3)$)1		-0.108**	-0.518**	-0.104**	-0.340**	-0.113**
		(0.021)	(0.110)	(0.022)	(0.065)	(0.021)
lspline(distance, $c(1.2, 3)$)2		0.018*	0.096*	0.019*	0.061*	0.020*
		(0.009)	(0.043)	(0.009)	(0.026)	(0.009)
lspline(distance, $c(1.2, 3)$)3		-0.251**	-1.268**	-0.254**	-0.802**	-0.268**
		(0.050)	(0.259)	(0.050)	(0.155)	(0.049)
price		0.001**	0.006**	0.001**	0.003**	0.001**
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
weekend		0.101**	0.481**	0.098**	0.313**	0.106**
		(0.010)	(0.049)	(0.010)	(0.030)	(0.010)
Num.Obs.	11 397	11 397	11 397	11 397	11 397	11 397

^{*} p < 0.05, ** p < 0.01

Probability of Highly Rated vs Distance

^{##} fitting null model for pseudo-r2
fitting null model for pseudo-r2

	Model 1	Model 2	Model 3
Constant	0.027	-2.551**	-1.451**
	(0.027)	(0.146)	(0.084)
top_stars	0.421**	2.145**	1.266**
	(0.012)	(0.075)	(0.041)
lspline(distance, $c(1.2, 3)$)1	-0.108**	-0.518**	-0.340**
	(0.021)	(0.110)	(0.065)
lspline(distance, $c(1.2, 3)$)2	0.018*	0.096*	0.061*
	(0.009)	(0.043)	(0.026)
lspline(distance, $c(1.2, 3)$)3	-0.251**	-1.268**	-0.802**
	(0.050)	(0.259)	(0.155)
price	0.001**	0.006**	0.003**
	(0.000)	(0.000)	(0.000)
weekend	0.101**	0.481**	0.313**
	(0.010)	(0.049)	(0.030)
Num.Obs.	11 397	11 397	11 397
R2	0.185		
PseudoR2		0.149	0.148
* .005 ** .001			

^{*} p < 0.05, ** p < 0.01

Predicted Probability of LMP, Logit and Probit Models

