

PLEASE NEGLECT AIR RESISTANCE

Greg Golonka, Anna Holloway, Ximena Romo, Mike Scanlon, John Tuma, Timothy Welch

TABLE OF CONTENTS

<u>Preliminary Design Review</u>			
Sequence	Content	Slide	
1	<u>Changes from CDR</u>	3	
2	Wing Design	4	
3	<u>Fuselage Design</u>	12	
4	<u>Tail Design</u>	15	
5	<u>Control Surfaces</u>	20	
6	<u>Aerodynamic Analysis</u>	23	
7	Stability Analysis	25	
8	<u>Aircraft Performance</u>	27	
9	<u>Full Design Summary</u>	30	
10	<u>Design Uniqueness</u>	34	

CHANGES FROM CDR

Changed from Anhedral to Straight-Wing

- Less Unique
- + Easier to Manufacture
- + More Lift

Added Single Boom Tail

- Possibly harder to manufacture
- + Less Weight
- + More Unique

WING DESIGN: MANUFACTURING PLAN

- The wings will be manufactured by connecting ribs with spars.
- The rib-spar structure will then be wrapped with UltraCote film.
- Additionally, balsa sheeting will be added to the leading and trailing edges for the UltraCote to attach to.
 - This plan will minimize weight, and provide ease of manufacturability as the ribs will be laser-cut.
- The ribs will be cut from 1/3" thick plywood, and the main structural spars will be aluminum.

*Image not to scale

WING DESIGN: AERODYNAMICS SUMMARY

Geometric Parameters			
Parameter	Value		
Airfoil	N-22		
Area, S	816.66 in ²		
Span, <i>b</i>	70 in.		
Aspect Ratio, AR	6.0		
Root Chord, c_r	16.66 in.		
Tip Chord, c_t	6.66 in.		
Taper Ratio, λ	0.4		
Oswald's Efficiency, e	0.8691		
MAC, \bar{c}	12.38 in.		
LE Sweep, $\Lambda_{_{LE}}$	4.336°		
<i>c̄/4</i> Sweep, Λ _{c̄/4}	0°		
$\bar{c}/4$ Thickness, $(t/\bar{c})_{\bar{c}/4}$	12.215%		
Max Thickness, (t/c̄) _{max}	12.4%		

<u>Initial Aerodynamic</u> <u>Parameters</u>				
Parameter Value				
C_{LO}	0.49			
$(C_{L,\alpha})$	4.584 ^{/rad}			
C _{Lmax}	1.48			
C_{DOw}	0.043			
Stall Speed, v_s	30.1 ft/s			
Cruise Speed, v_c	50.7 ft/s			
Dive Speed v 76.05 ft/s				

*Initial speeds were calculated solely based on the wing. Full plane speeds are stated later.

WING DESIGN: LOADING AND GUSTS

 Load factors were calculated for loaded and unloaded flight with and without gusts in MATLAB

<u>Max Loads</u>			
Loading Condition	Value		
Still Air - Unloaded	2.1		
Gusts - Unloaded	5.95		
Still Air - Loaded	2.1		
Gusts - Loaded	5.70		

WING DESIGN: RIB STRESS ANALYSIS

Total force was calculated via: $\sum_{i} F = \frac{n_{max}W}{2}$

$$\sum F = \frac{n_{max}W}{2}$$

- Yield stress of plywood in rolling shear: 250 psi
- Assuming a FoS of 2 and that all the weight will be on the main spare, the force on each beam is given as: $F = t \cdot b \cdot \tau_v$
 - Where t is the rib thickness ($\frac{1}{8}$ "), and b is the minimum distance between the main spar and top of rib
- Assuming the weight distribution follows the XFLR5 lift distribution, an FEA analysis was run to find the weights on each rib.
- Those numbers were compared to the allowed forces, and the number of ribs was adjusted so that the max force would not be exceeded.
- **Result:** 9 ribs for each wing

WING DESIGN: SPAR STRESS ANALYSIS

- The rib analysis allowed for the creation of shear-moment diagrams for the spars.

- Results:

$$- v_{max} = -30.2$$
 lbf

-
$$M_{max} = -74.7$$
 ft-lbf

Both maximums occur at the wing root

WING DESIGN: SPAR STRESS ANALYSIS

- An aluminum spar was chosen with cross-sectional dimensions as shown.
- Bending and shear stress were calculated via:

$$-\tau_{max} = 374.7 \,^{\text{psi}}, \, \sigma_{max} = 2978 \,^{\text{psi}}$$

- Yield Shear Stress of Aluminum: 30000 psi
- Yield Tensile Stress of Aluminum: 40000 psi
- Therefore, predicted stresses will be much lower than their maximum allowable limits.

WING DESIGN: SPAR STRESS ANALYSIS

- A SolidWorks FEA was also conducted, approximating the wing as the main spar.
- The applied load magnitude was determined by the maximum load factor.
- The applied load distribution was determined by the lift distribution from XFLR5.

- Results:

$$- au_{max} = 240.9$$
 psi

$$- \sigma_{max} = 1568^{\text{ psi}}$$

- FoS = 5.908

WING DESIGN: FINAL

- Wings will be built around the fuselage
- Components for construction are shown here

FUSELAGE DESIGN: GEOMETRY

- Inverted camber shape
- Cross-sectional dimensions: 4.125" x 6.25"
- Length:
 - Main Fuselage: 37.5"
 - Boom: 3.095" (exposed)
- Divided into upper and lower compartments for avionics and payload.
- Payload space: 348.75 in³
- Nose-cone to house motor and reduce drag.

FUSELAGE DESIGN: MANUFACTURE PLAN

- Wooden panels of fuselage will be laser cut from ½" plywood and assembled with glue in a "jigsaw" fashion.
- Nose cone will 3D printed and attached with screws.
- Fuselage will be coated in UltraCote

FUSELAGE DESIGN: DRAG ANALYSIS

A Solidworks Flow simulation was conducted to calculate the drag and coefficient of drag due to the fuselage and landing gear.

Drag = 2.176 [N]

 $C_{D0} = 0.0284$

TAIL DESIGN: VERTICAL TAIL SIZING

Givens:

 $b_{W} = 70.0 \text{ in}^2$ $S_{W}^{"}$ = 816.67 in² $C_{VT} = 0.04$ $\Lambda_{\text{wLE}} = 4.336 \text{ deg}$

Calculations:

 $ybar_{W} = 15 in$ $MAC_{11/2} = 12.38 \text{ in}$

Using approximation that $I_{VT} \sim 0.55L$: $I_{\nu\tau}$ = 33.825 in

Results:

$$S_{VT} = 67.6 \text{ in}^2$$

 $AR_{VT} = 1.6$
 $\forall_{VT} = 0.040$

$$\bar{y} \cdot tan\Lambda_{LE} + \frac{MAC}{4}$$
 $S_{VT} = C_{VT} \frac{b_W S_W}{l_{VT}}$

$$S_{VT} = C_{VT} \frac{b_W S_W}{l_{VT}}$$

	$C_{ ext{VT}}$
Sail Plane	0.02
Homebuilt	0.04

Normalized spanwise location of MAC from wing center: $\frac{\bar{y}}{1} = \frac{1}{1} \cdot \frac{1+2\lambda}{1+2\lambda}$

	Aft-horizontal		Vertical	
	AR	λ	AR	λ
Combat	3-4	0.2 - 0.4	0.6 - 1.4	0.2 - 0.4
Sail Plane	6-10	0.3 - 0.5	1.5-2.0	0.4-0.6
Other	3-5	0.3 - 0.6	1.3 - 2.0	0.3-0.6
T-Tail	-	-	0.7 - 1.2	0.6-1.0

TAIL DESIGN: HORIZONTAL TAIL SIZING

Givens:

 $S_{W} = 816.67 \text{ in}^2$ $C_{HT} = 0.5$ $\Lambda_{\text{wl F}} = 4.336 \text{ deg}$

Calculations:

 $ybar_{w} = 15 in$ $MAC_{W} = 12.38 \text{ in}$

Using approximation that $I_{\mu\tau} \sim 0.55L$: $I_{LT} = 33.825 \text{ in}$

Results:

$$S_{HT} = 149.45 \text{ in}^2$$

 $AR_{HT} = 0.5*AR_W = 3$
 $\forall_{HT} = 0.50$

$$\bar{y} \cdot tan \Lambda_{LE} + \frac{MAG}{4}$$

$$\bar{y} \cdot tan \Lambda_{LE} + \frac{MAC}{4} S_{HT} = C_{HT} \frac{\bar{c}_W S_W}{l_{HT}}$$

	C_{VT}	$C_{ m HT}$
Sail Plane	0.02	0.5
Homebuilt	0.04	0.5

Normalized spanwise location of MAC from wing center: $\frac{y}{x}$ =

	Aft-horizontal		Vertical	
	AR	λ	AR	λ
Combat	3-4	0.2 - 0.4	0.6 - 1.4	0.2 - 0.4
Sail Plane	6-10	0.3 - 0.5	1.5-2.0	0.4 - 0.6
Other	3-5	0.3 - 0.6	1.3-2.0	0.3-0.6
T-Tail	-	-	0.7 - 1.2	0.6-1.0

TAIL DESIGN: GEOMETRIC SUMMARY

<u>Vertical Tail</u>				
Parameter	Value			
Airfoil	NACA 0010			
VT Area, S _{VT}	67.6 in ²			
VT Span, <i>b_{VT}</i>	10.4 in.			
VT Aspect Ratio, AR _{VT}	1.6			
VT Chord, $c_{_{VT}}$	6.5 in.			
Σ̄	33.825 in.			

<u>Horizontal Tail</u>			
Parameter	Value		
Airfoils	NACA 0010		
HT Area, S _{HT}	149.45 in ²		
HT Span, b _{HT}	21.17 in.		
HT Aspect Ratio, AR _{HT}	3.0		
HT Chord, $c_{_{\!HT}}$	7.05 in.		
X	33.825 in.		

TAIL DESIGN: MANUFACTURE PLAN

- The tails will be manufactured by connecting ribs with a spar.
 - The ribs will be cut from ½" thick plywood, and the main structural spar will be aluminum.
- The rib-spar structure will then be wrapped with UltraCote film.
- Additionally, balsa sheeting will be added to the leading and trailing edges for the UltraCote to attach to.
- The tails will be connected to a boom attached to the fuselage.

TAIL DESIGN: FINAL

- Final CAD of tail is shown.
- Horizontal and vertical stabilizer will be connected to the boom via the geometry displayed.
- Control surfaces will rotate about the rods shown.

CONTROL SURFACES: FLAPERONS

DBF Historical Sizing

S_f~0.25*S_W b_f~0.5*b_W

Givens:

 $S_W = 816.67 \text{ in}^2$ $b_W = 70 \text{ in}$

Calculations: $S_f=204.167 \text{ in}^2$ $b_f=35 \text{ in}$ $c_f=5.833 \text{ in}$

Modifications for our Plane

 c_f =4.5 in b_f =33.1 in S_f =148.95 in²

CONTROL SURFACES: ELEVATOR FLAPS

Hand Calculations

Givens:

c = 12.38 in

 $S_W = 816.67 \text{ in}^2$

I_{HT} = 33.825 in S_{HT} = 149.45 in²

XFLR5:

 $C_{m,0}$ =-0.13 $C_{L,\alpha}$ =0.08

Calculations:

 $\tau = 0.13 \rightarrow S_e/S_{HT} = 0.3 \rightarrow S_e = 44.835 \text{ in}^2$

FIGURE 2.21

Flap effectiveness parameter.

DBF Historical Sizing

S_a~0.3*S_{ht}

Calculations:

 $S_2 = 44.835 \text{ in}^2$

CONTROL SURFACES: RUDDER FLAP

Hand Calculations

Givens:

c = 12.38 in

 $S_W = 816.67 \text{ in}^2$

 $I_{VT}^{W} = 33.825 \text{ in}$ $S_{VT}^{} = 67.6 \text{ in}^{2}$

XFLR5:

 $C_{m,0} = -0.13$ $C_{L,\alpha} = 0.08$

Calculations:

 $\tau = 0.287 \rightarrow S_r/S_{VT} = 0.47 \rightarrow S_r = 31.772 \text{ in}^2$

FIGURE 2.21

Flap effectiveness parameter.

DBF Historical Sizing

S_r~0.3*S_{HT}

Calculations:

 $S_r = 44.835 \text{ in}^2$

AERODYNAMIC ANALYSIS: LIFT AND DRAG

Lift

 $C_{L0} = 0.391$ $(C_{L,\alpha}) = 4.584 / rad$ $C_{Lmax} = 1.48$ $(C_{L}/C_{D})_{max} = 9.8$

Drag

 $C_{D,0, VT} = 0.00088$ $C_{D,0, HT} = 0.00572$ $C_{D,0, f} = 0.02537$ $C_{D,0, w} = 0.04267$

 $C_{D,0, \text{total}} = 0.07464$

AERODYNAMIC ANALYSIS: LIFT DISTRIBUTION

The lift distribution obtained from XFLR5 is depicted here.

It follows a more elliptical distribution that it would have had the wings been rectangular.

STABILITY ANALYSIS: DIRECTIONAL

Static Stability

<u>Directional Static Stability</u>					
Parameter Unloaded Loaded					
Neutral Point	6.792 in	6.805 in			
Center of Gravity	5.667 in	5.809 in			
Static Margin	0.106	0.081			
Trim AoA	0.5°	2°			
$C_{m,lpha}$	-0.0089	-0.0067			

UNLOADED

LOADED

CG and NP were determined by combining CAD and XFLR5 results through an iterative process, adjusting payload and internal component placement. A zero slope on the Cm vs a curve indicated CG equals NP. The final configuration ensures a negative slope, trimming to a positive a for stability.

STABILITY ANALYSIS: STABILITY MODES

Dynamic Stability

- XFLR5 was used to calculate the time constants, damping frequencies, and damping ratio of the five relevant stability modes.

<u>Mode Analysis Unloaded</u>						
Parameter Phugoid Short Period Roll Spiral Div. Dutch Roll						
Time to Double (non-oscillatory)			0.055 s	3.319 s		
Damping Frequency (oscillatory)	0.097 Hz	0.792 Hz			0.816 Hz	
Damping Ratio (oscillatory)	0.01	0.770			0.226	

Mode Analysis Loaded					
Parameter	Phugoid	Short Period	Roll	Spiral Div.	Dutch Roll
Time to Double(non-oscillatory)			0.049 s	3.405 s	
Damping Frequency (oscillatory)	0.091 Hz	0.895 Hz			0.965 Hz
Damping Ratio (oscillatory)	0.001	0.732			0.223

AIRCRAFT PERFORMANCE: T/O VELOCITY

C_L distribution for both loaded and unloaded Takeoff configuration

Aircraft Performance				
Parameter	Unloaded	Loaded		
Takeoff Velocity	7.662 ft/s	9.018 ft/s		

Take-off configuration with extended flaperon aerodynamic control surfaces.

AIRCRAFT PERFORMANCE: T/O DISTANCE

$$k_{eff} = \frac{1}{\pi e A R_{eff}}$$

$$S_R = (3 [s]) V_{TO}$$

$$f_1 = \left(\frac{T}{W} - \mu\right)$$

$$s_G = \frac{1}{2f_2} \ln\left(1 + \frac{f_2}{f_1} V_{TO}^2\right)$$

$$f_2 = \frac{g\rho}{2\left(\frac{W}{S}\right)} \left[\mu C_{LG} - C_{D0} - k_{eff} C_{LG}^2\right]$$

- Calculated takeoff
 distance from ground roll
 and rotation equations
- Used XFLR5 to calculate $C_{L,max}$ and C_{D0} from drag study

Unloaded

Loaded

$$s_{TO}$$
 = 29.6228 ft

AIRCRAFT PERFORMANCE: TURNING

Parameter	Loaded	Unloaded	
Cruise Speed	56.9 ft/s	54.7 ft/s	
Max Turn Rate	67.09 deg/s	62.99 deg/s	
Min Turn Radius	49.15 ft	48.60 ft	
Max Bank Angle	61.56 deg	64.23 deg	

Found using matlab code that iterated through bank angles from 0 to 60. Used the loaded and unloaded speed and max load factors to find values.

$$R = \frac{V_{\infty}^2}{g * \sqrt{n^2 - 1}}$$

$$\psi = \frac{g * \sqrt{n^2 - 1}}{v}$$

FULL DESIGN SUMMARY: CAD

Fully
 dimensioned
 plane is shown
 for design and
 construction
 reference.

FULL DESIGN SUMMARY: CAD

- Components will be assembled in the geometry shown.
- Fasteners are not included in this assembly for clarity of information presentation.

FULL DESIGN SUMMARY: CHARACTERISTICS

<u>Wing</u>			
Parameter	Value		
Airfoil	N-22		
Area, S	816.66 in ²		
Span, b	70 in.		
Aspect Ratio, AR	6.0		
Root Chord, c_r	16.66 in.		
Tip Chord, c_t	6.66 in.		
Taper Ratio, λ	0.4		
MAC, \bar{c}	12.38 in.		
LE Sweep, Λ _{LE}	4.336°		
$\bar{c}/4$ Sweep, $\Lambda_{\bar{c}/4}$	0°		

<u>Tails</u>			
Parameter	Value		
Airfoils	NACA 0010		
HT Area, S _{HT}	149.45 in ²		
HT Span, b _{HT}	21.17 in.		
HT Aspect Ratio, AR _{HT}	3.0		
HT Chord, $c_{_{\!HT}}$	7.05 in.		
VT Area, S _{VT}	67.6 in ²		
VT Span, <i>b_{VT}</i>	10.4 in.		
VT Aspect Ratio, AR _{VT}	1.6		
VT Chord, $c_{_{VT}}$	6.5 in.		

Control Surface			
Parameter	Value		
Flaperon Area, S_f	148.95 in ²		
Flaperon Span, b _f	33.1 in.		
Flaperon Chord, $c_{_{\! f}}$	4.5 in.		
Elevator Area, S _e	44.835 in ²		
Elevator Span, b _e	21.17 in.		
Elevator Chord, $c_{_{\!e}}$	2.118 in.		
Rudder Area, S _r	31.772 in ²		
Rudder Span, <i>b_r</i>	10.4 in.		
Rudder Chord, c_r	3.055 in.		

FULL DESIGN SUMMARY: CHARACTERISTICS

- The weights found through the CAD in SolidWorks were added to the expected weight of components and glue.
- The result was incredibly similar to the initial weight estimate
 - As such, the initial estimates were very accurate and are improved here slightly

<u>Performance</u>				
Parameter	Unloaded	Loaded		
TO Speed	7.662 ft/s	9.018 ft/s		
Cruise Speed	54.04 ft/s	56.91 ft/s		
TO Distance	24.25 ft	29.62 ft		
Min. Turn Radius	49.15 ft	48.60 ft		
Max. Bank Angle	61.56 deg	64.23 deg		
Max. Turn Rate	63.04 deg/s	67.15 deg/s		

Weights and Loading				
Parameter	Unloaded	Loaded		
Weight	8.744 lb	12.279 lb		
Wing Loading	0.0104 psi	0.0147 psi		
Max Load Factor	2.1	2.3		
Max Gust Load Factor	5.95	5.70		

