泛函分析 Homework 04

姓名: 雍崔扬

学号: 21307140051

Problem 01

设 $\{x_n\}$ 为内积空间 X 中的点列, $x\in X$, 满足 $\lim_{n\to\infty}\langle x_n,y\rangle=\langle x,y\rangle$ ($\forall~y\in X$) 且 $\lim_{n\to\infty}\|x_n\|=\|x\|$ 试证明 $\{x_n\}$ 强收敛到 x

• 实际上本题的结论有更强的形式:

(工科泛函分析基础 定理 4.4.5, 泛函分析讲义 定理 4.4.3)

设 $(X,\langle\cdot,\cdot
angle)$ 为 Hilbert 空间, $\{x_n\}\subset X, x\in X$,则下列命题成立:

- \circ ① $\{x_n\}$ 弱收敛于 x 当且仅当对于任意 $y\in X$ 都有 $\lim_{n\to\infty}\langle x_n,y\rangle=\langle x,y\rangle$ 成立.
- 。 ② $\{x_n\}$ 强收敛于 x 当且仅当 $\{x_n\}$ 弱收敛于 x 且 $\lim_{n o\infty}\|x_n\|=\|x\|$

Proof:

若 $\lim_{n o\infty}\langle x_n,y
angle=\langle x,y
angle$ ($orall\ y\in X$) 且 $\lim_{n o\infty}\|x_n\|=\|x\|$,则我们有:

$$\begin{split} \lim_{n \to \infty} \|x_n - x\|^2 &= \lim_{n \to \infty} \langle x_n - x, x_n - x \rangle \\ &= \lim_{n \to \infty} \langle x_n, x_n \rangle - \lim_{n \to \infty} \langle x_n, x \rangle - \lim_{n \to \infty} \langle x, x_n \rangle + \langle x, x \rangle \\ &= \|x\|^2 - \langle x, x \rangle - \langle x, x \rangle + \|x\|^2 \\ &= 0 \end{split}$$

因此 $\{x_n\}$ 强收敛于 x (即 $\lim_{n\to\infty} \|x_n - x\| = 0$),命题得证.

Problem 02

试证明内积空间的不含零元的正交系是线性无关的.

Proof:

设 S 为域 \mathbb{F} 上的内积空间 $(X,\langle\cdot,\cdot\rangle)$ 的不含零元的正交系.

值得注意的是,S 可能是不可数的.

(反证法) 假设 S 是线性相关的,则存在一个有限支持的标量序列 $\{a_x\}_{x\in S}$ 使得 $\sum_{x\in S}\alpha_x x=0_X$ 其中使得 $\alpha_x\neq 0$ 的 x 仅为有限个 (基于线性相关的定义)

记 $I=\{x\in S: \alpha_x\neq 0\}$,则我们有 $\sum_{x\in S}\alpha_x x=\sum_{x\in I}\alpha_x x=0_X$ 于是我们有:

$$egin{aligned} 0 &= \langle 0_X, y
angle \ &= \left\langle \sum_{x \in I} lpha_x x, y
ight
angle \ &= \sum_{x \in I} lpha_x \langle x, y
angle \ &= \sum_{x \in I} lpha_x \cdot \mathbb{1}\{x = y\} \ &= lpha_y \end{aligned}$$

这与 I 的定义相矛盾,因此 S 是线性无关的.

Problem 03

设 H 是内积空间, E 是 H 的稠密子集. 证明: 若 $x \perp E$, 则 $x = 0_H$.

• 实际上本题的结论有更强的形式:

(泛函分析讲义, 定理 4.3.4)

设 $(X, \langle \cdot, \cdot \rangle)$ 为 Hilbert 空间, $S \not \in X$ 的子空间,则下列命题成立:

- \circ ① $S^{\perp\perp} = \operatorname{cl}(S)$
- \circ ② S 在 X 中稠密 (即 $\operatorname{cl}(S)=X$) 当且仅当 $S^\perp=\{0_X\}$
- \circ ③ 若 S 是 X 的真闭子空间,则 S^\perp 中必有非零元素 (即 $S^\perpackslash\{0_X\}
 eq\emptyset$)

Proof:

由于 E 是 H 的稠密子集,故我们有 $\mathrm{cl}(E)=H$ 对于任意 $x\in X$ 都存在 $\{x_n\}\subset E$ 使得 $x_n\to x$ $(n\to\infty)$ 若 $x\perp E$,则我们有:

$$egin{aligned} \|x\|^2 &= \langle x,x
angle \ &= \langle \lim_{n o \infty} x_n,x
angle & ext{(use contiuity of inner product)} \ &= \lim_{n o \infty} \langle x_n,x
angle & ext{(note that } x_n \in E ext{ and } x \perp E) \ &= \lim_{n o \infty} 0 \ &= 0 \end{aligned}$$

因此 $x = 0_H$

Problem 04 (*)

设 $M=\{x=\{x_k\}\in l^2: x_{2k}=0, orall\ k\in \mathbb{Z}_+\}$

- ① 试证明 $M \neq l^2$ 的闭子空间
- ② 试求 M[⊥]

Proof:

- ① 对于任意 $x,y\in M,\alpha,\beta\in\mathbb{R}$, $\alpha x+\beta y$ 的偶数下标的元素显然仍为零这表明 M 对加法和数乘封闭,因而是 l^2 的子空间. 对于 M 中的任意收敛序列 $\{x^{(n)}\}$,根据 l^2 的完备性可知极限 $x\in l^2$ (反证法) 假设 $x\notin M$,则存在 $k\in\mathbb{Z}_+$ 使得 $x_{2k}\neq 0$ 因此 $\|x^{(n)}-x\|_2\geq |x_{2k}-0|>0$ ($\forall~n\in\mathbb{Z}_+$),这与 $x^{(n)}\to x$ $(n\to\infty)$ 矛盾. 这表明 M 是闭的. 总之,M 是 l^2 的闭子空间.
- ② 设 $y \perp M$,则它满足:

$$\langle x,y
angle = \sum_{n=1}^\infty x_n y_n = \sum_{k=1}^\infty x_{2k-1} y_{2k-1} = 0 \quad (orall \ x\in M)$$

若存在 $k\in\mathbb{Z}_+$ 使得 $y_{2k-1}\neq 0$,则取 $x=e_{2k-1}\in M$ 即有 $\langle e_{2k-1},y\rangle=y_{2k-1}\neq 0$ 这与 $y\perp M$ 矛盾,因此 $y_{2k-1}=0$ $(\forall\ k\in\mathbb{Z}_+)$

当 y 满足 $y_{2k-1}=0$ ($\forall k\in\mathbb{Z}_+$) 时,必然有:

$$\langle x,y
angle = \sum_{n=1}^\infty x_n y_n = \sum_{k=1}^\infty x_{2k-1} y_{2k-1} = 0 \quad (orall \ x \in M)$$

因此 $y \perp M$

综上所述, $y\perp M$ 当且仅当 $y_{2k-1}=0$ $(\forall\ k\in\mathbb{Z}_+)$ 因此 $M^\perp=\{x=\{x_k\}\in l^2: x_{2k-1}=0, \forall\ k\in\mathbb{Z}_+\}$

Problem 05

设 $E=\{e_1,e_2,\cdots,e_n\}$ 是内积空间 X 中的标准正交系. 试证明: 任意 $x\in X$ 在 $\mathrm{span}(E)$ 上的投影都存在, 且为 $\sum_{k=1}^n\langle x,e_k\rangle e_k$

• 设 $(X,\langle\cdot,\cdot\rangle)$ 是内积空间. 设 $S\subseteq X$ 是 X 的子空间,且 $x\in X$. 若存在 $p\in S$ 和 $p_{\perp}\in S^{\perp}$ 使得 $x=p+p_{\perp}$,则称 p 是 x 在 S 上的**正交投影** (简称投影)

Proof:

任意给定 $x \in X$

记 $p:=\sum_{k=1}^n\langle x,e_k
angle e_k$ 和 $p_\perp:=x-\sum_{k=1}^n\langle x,e_k
angle e_k$ 我们有:

- ① $p+p_{\perp}=\sum_{k=1}^{n}\langle x,e_{k}
 angle e_{k}+(x-\sum_{k=1}^{n}\langle x,e_{k}
 angle e_{k})=x$
- ② $p = \sum_{k=1}^n \langle x, e_k
 angle e_k \in \operatorname{span}(E)$
- ③ $p_{\perp} \perp \operatorname{span}(E)$: 对于任意 $i = 1, \ldots, n$ 我们都有:

$$egin{aligned} \langle p_{\perp},e_i
angle &= \left\langle x - \sum_{k=1}^n \langle x,e_k
angle e_k,e_i
ight
angle \ &= \langle x,e_i
angle - \sum_{k=1}^n \langle x,e_k
angle \langle e_k,e_i
angle \ &= \langle x,e_i
angle - \sum_{k=1}^n \langle x,e_k
angle \delta_{i,k} \ &= \langle x,e_i
angle - \langle x,e_i
angle \ &= 0 \end{aligned}$$

因此 $p_{\perp} \perp \operatorname{span}(e_1, \ldots, e_n) = \operatorname{span}(E)$

根据正交投影可知任意 $x \in X$ 在 $\mathrm{span}(E)$ 上的投影都存在, 且为 $\sum_{k=1}^n \langle x, e_k \rangle e_k$

正交投影存在时一定是唯一的.

设 p_1,p_2 都是 x 在 S 上的投影,记 $p_1^\perp=x-p_1$ 和 $p_2^\perp=x-p_2$,则我们有 $p_1^\perp,p_2^\perp\in S^\perp$ 注意到 $p_1-p_2=(x-p_2)-(x-p_1)=p_2^\perp-p_1^\perp\in S^\perp$ 因此我们有 $p_1-p_2\in S\cap S^\perp=\{0_X\}$ 成立,说明 $p_1=p_2$

Problem 06

设 M 是 Hilbert 空间 X 的闭子空间, $\{e_n\}$ 和 $\{e'_n\}$ 分别是 M 和 M^\perp 的标准正交基. 试证明: $\{e_n\}\cup\{e'_n\}$ 是 X 的标准正交基.

Proof:

由于 $\{e_n\}$ 和 $\{e_n'\}$ 分别是 M 和 M^\perp 的标准正交基,故 $\{e_n\}\cup\{e_n'\}$ 也是标准正交的. 对于任意 $x\in X$,由于 M 是 Hilbert 空间 X 的闭子空间,故 x 在 M 上的正交投影一定存在. 记 $x=p+p_\perp$,其中 $p\in M, p_\perp\in M^\perp$ 于是存在序列 $\{a_k\}$ 和 $\{b_k\}$ 使得 $p=\sum_{k=1}^{|\{e_n\}|}a_ke_k$ 和 $p_\perp=\sum_{k=1}^{\{e_n'\}}b_ke_k'$ 因此我们有:

$$egin{aligned} x &= p + p_{\perp} \ &= \sum_{k=1}^{|\{e_n\}|} a_k e_k + \sum_{k=1}^{\{e_n'\}} b_k e_k' \end{aligned}$$

因此 $\{e_n\} \cup \{e'_n\}$ 是 X 的标准正交基.

Problem 07

设 X=C([-1,1]), 在其上定义内积 $\langle f,g \rangle := \int_{-1}^1 f(x) \overline{g(x)} \mathrm{d}x$. 令:

- ① $M_1 := \{ f \in X : f(x) = 0, \forall \ x < 0 \}$
- ② $M_2 := \{ f \in X : f(0) = 0 \}$

计算 M_1, M_2 在 $(X, \langle \cdot, \cdot \rangle)$ 中的正交补空间.

Solution:

• ① 若 g 满足 g(x)=0 $(orall\ x\in[0,1])$,显然有 $\langle f,g
angle=\int_{-1}^1f(x)\overline{g(x)}\mathrm{d}x=0$ $(orall\ x\in M_1)$,因而有 $g\perp M_1$

若
$$g\perp M_1$$
,则 $\langle f,g
angle =\int_{-1}^1f(x)\overline{g(x)}\mathrm{d}x=0\ (orall\ x\in M_1)$

(**反证法)** 假设 g 在 (0,1] 上的某个区间 I 中非零,我们总可以取 $f_0(t):=egin{cases} g(x) & \text{if } x\in I \\ 0 & \text{otherwise} \end{cases}$

显然我们有 $f_0 \in M_1$

但我们有 $\langle f_0,g\rangle=\int_{-1}^1f(x)\overline{g(x)}\mathrm{d}x=\int_I|g(x)|^2\mathrm{d}x>0$

这与 $g \perp M_1$ 矛盾,因此 g 满足 $g(x) = 0 \ (orall \ x \in (0,1])$

根据 g 的连续性我们有 g(0) = 0

综上所述, $M_1^\perp = \{g \in X : g(x) = 0, orall \ x \in [0,1] \}$

• ② 若 $g\equiv 0$,则显然有 $\langle f,g \rangle = \int_{-1}^1 f(x) \overline{g(x)} \mathrm{d}x = 0 \ (\forall \ x \in M_2)$,因而有 $g\perp M_1$ 若 $g\perp M_2$,则 $\langle f,g \rangle = \int_{-1}^1 f(x) \overline{g(x)} \mathrm{d}x = 0 \ (\forall \ x \in M_2)$

(反证法) 假设 g 在 [-1,0) \cup (0,1] 上的某个区间 I 中非零,我们总可以取

$$f_0(t) := egin{cases} g(x) & ext{if } x \in I \ 0 & ext{otherwise} \end{cases}$$

显然我们有 $f_0 \in M_2$

但我们有 $\langle f_0,g
angle=\int_{-1}^1f(x)\overline{g(x)}\mathrm{d}x=\int_I|g(x)|^2dx>0$

这与 $g\perp M_2$ 矛盾,因此 g 满足 $g(x)=0\ (orall\,x\in[1,0)\cup(0,1])$

根据 g 的连续性我们有 g(0) = 0

综上所述, $M_2^{\perp} = \{g \in X : g \equiv 0\} = \{0_X\}$

Problem 08

设X是内积空间, $M,N\subset X$,试证明:

- ① 若 $M \perp N$, 则 $M \subset N^{\perp}$, $N \subset M^{\perp}$
- ② $M^{\perp} = (cl(M))^{\perp}$

Proof:

- ① 若 $M\perp N$,则对于任意 $y\in M$ 都有 $y\in N^\perp$ 成立,因此 $M\subseteq N^\perp$ 对 N 应用上述结论即得 $N\subset M^\perp$
- ② 若 $y \in (\operatorname{cl}(M))^{\perp}$,则 $\langle x,y \rangle = 0 \ (\forall \ x \in \operatorname{cl}(M))$ 注意到 $M \subseteq \operatorname{cl}(M)$,故 $\langle x,y \rangle = 0 \ (\forall \ x \in M)$,表明 $y \in M^{\perp}$ 因此 $(\operatorname{cl}(M))^{\perp} \subseteq M^{\perp}$

若 $y\in M^{\perp}$,则 $\langle x,y
angle =0\ (orall\ x\in M)$

对于任意 $x\in \mathrm{cl}(M)$,都存在 M 中的任意收敛序列 $\{x_n\}$ 使得 $x_n\to x$ $(n\to\infty)$ 于是我们有:

$$\langle x,y \rangle = \langle \lim_{n \to \infty} x_n, y \rangle$$
 (use continuity of inner product)
 $= \lim_{n \to \infty} \langle x_n, y \rangle$
 $= \lim_{n \to \infty} 0$
 $= 0$

因此 $\langle x,y \rangle = 0 \ (orall \ x \in \mathrm{cl}(M))$,表明 $y \in (\mathrm{cl}(M))^{\perp}$ 于是有 $M^{\perp} \subseteq (\mathrm{cl}(M))^{\perp}$ 综上所述,我们有 $M^{\perp} = (\mathrm{cl}(M))^{\perp}$

Problem 09

设 X 是内积空间, $x, y \in X$.

试证明下列命题等价:

- ① $x \perp y$
- ② $||x + \alpha y|| \ge ||x||, \forall \alpha \in \mathbb{C}$

Proof:

① ⇒ ②③
 若 x ⊥ y, 则根据勾股定理我们有:

$$||x + \alpha y||^{2} = ||x||^{2} + ||\alpha y||^{2}$$

$$\geq ||x||^{2}$$

$$||x + \alpha y||^{2} = ||x||^{2} + ||\alpha y||^{2}$$

$$= ||x||^{2} + ||-\alpha y||^{2}$$

$$= ||x - \alpha y||^{2}$$

• ② \Rightarrow ① 注意到 x 在 y 方向上的投影为 $\langle x,y \rangle \frac{y}{\|y\|}$ 根据 $x-\langle x,y \rangle \frac{y}{\|y\|} \perp y$ 可知:

$$\left\|x-\langle x,y
anglerac{y}{\|y\|}
ight\|^2=\|x\|^2-\left\|\langle x,y
anglerac{y}{\|y\|}
ight\|^2\leq\|x\|^2$$

当且仅当 $\langle x,y\rangle \frac{y}{\|y\|}=0$ 时取等.

若 $\|x+\alpha y\|\geq \|x\|, orall\ \alpha\in\mathbb{C}$,则我们有 $\langle x,y
angle \frac{y}{\|y\|}=0$ 当 $y=0_X$ 时是平凡的,一定有 $x\perp y$ 当 $y\neq 0_X$ 时我们有 $\langle x,y
angle=0$,即 $x\perp y$

• ③ \Rightarrow ① 若 $\|x+\alpha y\|=\|x-\alpha y\|, \forall \ \alpha\in\mathbb{C}$,则我们有:

$$\|x\|^2 + 2\operatorname{Re}(\alpha\langle x,y\rangle) + \|\alpha y\|^2 = \|x + \alpha y\|^2 = \|x - \alpha y\|^2 = \|x\|^2 - 2\operatorname{Re}(\alpha\langle x,y\rangle) + \|\alpha y\|^2 \quad (\forall \ \alpha \in \mathbb{C})$$

因此 $\mathrm{Re}(\alpha\langle x,y\rangle)=0\ (orall\ \alpha\in\mathbb{C})$ 分别取 $\alpha=1$ 和 $\alpha=i$ 可知 $\langle x,y\rangle$ 的实部和虚部均为零,因此 $\langle x,y\rangle=0$ 即有 $x\perp y$ 成立.

Problem 10 (*)

(tedious, time-wasting, and definitely won't come up in exam)

(More unfortunately, there is an idiot sitting next to me who hits his keyboard in a very noisy way) (I want to strangle him)

设x,y是复内积空间X中的两个非零向量,试证明:

- ① ||x+y|| = ||x|| + ||y|| 当且仅当 $y = \alpha x$, 其中 $\alpha > 0$
- ② ||x-y|| = |||x|| ||y||| 当且仅当 $y = \alpha x$, 其中 $\alpha > 0$
- ③ 设 $z \in X$, 则 $\|x-y\| = \|x-z\| + \|z-y\|$ 当且仅当存在 $\alpha \in [0,1]$, 使得 $z = \alpha x + (1-\alpha)y$

• 助教: 复内积注意交叉项取实部.

用 Cauchy-Schwarz 不等式的取等条件也挺麻烦的.

$$\operatorname{Re}(\langle x, y \rangle) \le |\langle x, y \rangle| \le ||x|| ||y||$$

Proof:

• ① 充分性显然,下证必要性:

设 ||x+y|| = ||x|| + ||y||, 则我们有:

$$||x||^{2} + ||y||^{2} + 2\operatorname{Re}(\langle x, y \rangle) = ||x + y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

$$= ||x||^{2} + ||y||^{2} + 2||x|| ||y||$$

因此我们有 $\operatorname{Re}(\langle x,y\rangle)=\|x\|\|y\|$ 从而有:

$$\left\| y - \frac{\|y\|}{\|x\|} x \right\| = 2\|y\|^2 - 2\frac{\|y\|}{\|x\|} \operatorname{Re}(\langle x, y \rangle)$$
$$= 2\|y\|^2 - 2\frac{\|y\|}{\|x\|} \|x\| \|y\|$$
$$= 0$$

• ② 充分性显然, 下证必要性:

设 ||x-y|| = |||x|| - ||y|||, 则我们有:

$$||x||^{2} + ||y||^{2} - 2\operatorname{Re}(\langle x, y \rangle) = ||x - y||^{2}$$

$$= (||x|| - ||y||)^{2}$$

$$= ||x||^{2} + ||y||^{2} - 2||x|| ||y||$$

因此我们有 $\operatorname{Re}(\langle x,y\rangle) = \|x\|\|y\|$ 从而有:

$$\begin{aligned} \left\| y - \frac{\|y\|}{\|x\|} x \right\| &= 2\|y\|^2 - 2 \frac{\|y\|}{\|x\|} \operatorname{Re}(\langle x, y \rangle) \\ &= 2\|y\|^2 - 2 \frac{\|y\|}{\|x\|} \|x\| \|y\| \\ &= 0 \end{aligned}$$

• ③ 充分性:

$$\|x - z\| + \|z - y\| = \|x - \alpha x - (1 - \alpha)y\| + \|\alpha x + (1 - \alpha)y - y\|$$

= $(1 - \alpha)\|x - y\| + \alpha\|x - y\|$
= $\|x - y\|$

下证必要性:

当 $z \neq x, y$ 时,命题 ③ 退化为 ①②

因此存在 $\lambda>0$ 使得 $(z-y)=\lambda(x-z)$,于是有 $\alpha=\frac{\lambda}{1+\lambda}\in(0,1)$ 满足:

$$z=rac{1}{\lambda+1}(\lambda x+y)=lpha x+(1-lpha)y$$

当z=x时,取 $\alpha=1$ 即可.

当z = y时,取 $\alpha = 0$ 即可.

Problem 11

设 X 是内积空间, $x, y \in X$. 假定:

$$\|\lambda x + (1 - \lambda)y\| = \|x\| \quad (\forall \ \lambda \in [0, 1])$$

- ① 证明: x = y
- ② 若 X 只是赋范空间而非内积空间,则 ① 的结论还成立吗?

Solution:

• ① 分别取 $\lambda = 0$ 和 $\lambda = \frac{1}{2}$ 就得到:

$$||y|| = ||x||$$

 $||x + y|| = 2||x||$

根据平行四边形法则我们有:

$$||x - y||^2 = 2(||x||^2 + ||y||^2) - ||x + y||^2 = 4||x||^2 - 4||x||^2 = 0$$

因此 x = y

② 不一定成立.

考虑 $(\mathbb{R}^2,\|\cdot\|_{\max})$ 中的单位圆 (即一个边长为 2,中心为原点的正方形) 取 x=(1,1),y=(-1,1) 则 $\|\lambda x+(1-\lambda)y\|_{\infty}=\|(2\lambda-1,1)\|_{\infty}=1=\|x\|_{\infty}$ 但 $x\neq y$

Problem 12

设 H 是 Hilbert 空间, $\{x_n\} \subset H$, 满足:

$$\sum_{n=1}^{\infty}\|x_n\|<\infty.$$

证明: $\sum_{n=1}^{\infty} x_n$ 在 H 中收敛.

Proof:

根据 $\sum_{n=1}^{\infty}\|x_n\|<\infty$ 可知 $\{\|x_k\|\}$ 是 Cauchy 序列,

因此对于任意 $\varepsilon>0$,都存在 $N\in\mathbb{Z}_+$ 使得对于任意 m>n>N 都有 $\sum_{k=n+1}^m\|x_k\|<arepsilon$

记部分和为 $S_n := \sum_{k=1}^n x_k$

我们有:

$$\|S_m-S_n\|=\left\|\sum_{k=n+1}^m x_k
ight\|\leq \sum_{k=n+1}^m \|x_k\|$$

因此 $\{S_n\}$ 是 H 中的 Cauchy 序列.

根据 Hilbert 空间的完备性可知: 存在 $s \in H$ 使得:

$$s = \lim_{n o \infty} S_n = \sum_{n=1}^\infty x_n$$

Problem 13

设 M 是 Hilbert 空间 H 的闭子空间, P 为从 H 到 M 的正交投影算子. 试证明 $\|Px\|^2 = \langle Px, x \rangle$

Proof:

$$||Px||^{2} = \langle Px, Px \rangle$$

$$= \langle Px, x + (Px - x) \rangle$$

$$= \langle Px, Px \rangle - \langle Px, x - Px \rangle \quad \text{(note that } Px \perp (x - Px) \text{)}$$

$$= \langle Px, Px \rangle$$