	NAME: SHAILJA MISHRA
	ROLL NO. 1918081
	SECTION: DY
1	Assignment-1
70	Assessment
=	Asymptotic vokutions que methods / languages using
No.	at can deline the minning time of acconting
	based on input size.
	To represent the upper & lower bounds, we need
	some kind of cyntex & this is represented in
	John of functional ICn).
->	loganimic - logn linear - n
7	Queedratic -> n2. polynomial -> n2
	Exponential -) an
100	
٥.	for (iz 1 km) { i z i * 2 y
1 (8)	'i' is doubling everytime.
- 36	
110	for kth step - 1 2 x 2 n & for (k11) we are out of loop
	Jaking loop both lides
	log 2 ^K 2 log n
	K 2 Lug n
141	Jime complexity 2 0 (log n)
3.	7(n) 2 37(n-1) if n>0 otherwise 1
	7(n) 2 a7(n-b) +f(n) (nester meoun)
	az3, b21
	$f(n) = 0$, K^{20}
	$7(n) = O(n^k a^{1/2})$
	T(n) 20(n an)
	7(n) 2 O(3n)

T(n) = aT(n-b)+f(n) T(n-1) = 2T(n-2) -T(n) = 2(2T(n-2)-1)-= 4T(n-2)-3T(n)' = 8T(n-3)-7 $T(n) = 2^{K}T(n-K)-(2^{K}-1)$ $= 2^{K} (T(1) - 1) + 1$ $=) T(n) = 0 (2^{K}) = 0 (2^{n}) Any.$

	Page Na Date
De void function (int n) &	
jent i, j, k, count =0;	
for (1=n/2; 1 (=n; 1++)	x 2)
lor (K=1) K <= n; K=	K * 2)
Court ++;	
$\frac{1000}{1000} = 0 \left(\frac{n}{2} \right)$	
2 loop = 0 (log n)	
Final = O(n log ² n) Aus,	
(8) fun (int n) { if (n = = 1) hettern; for (i = 1 to n) { for (j = 1 to n) { perint (n);	
if (n = = 1) letturn;	
lou (j=10 n) {	
perint (n);	
2	
June (n-3);	
4	
Time Complexity T(n) = T(n2).	-3 Aus.
D: void fune (int n) &	
for (i=1 ton) 70(n)	
9: void func (int n) } for (i = 1 to n) \(\to \) (n) for (j = 1 to j <= n; j = peint ('n');	(ti) > O(logn)
i. O(n log n) And,	

