Assignment 3, TTK4190

Shiv Jeet Rai Arne Selle Erik Liland

17. November 2015

Contents

1	Aut	opilot design	2	
	1.1	Heading autopilot	2	
	1.2	Speed autopilot	:	
2	Path following and Path tracking			
	2.1	Path Generation	•	
	2.2	Path following	•	
		Path Tracking		

1 Autopilot design

1.1 Heading autopilot

We model the heading of MS Fartøystyring with a Norrbin model:

$$\dot{\Psi} = r$$

$$m\dot{r} + d_1r + d_2|r|r = \tau$$
(1)

1.2 Speed autopilot

To control the surge speed of MS Fartøystyring we suggest using a linearized model, where the surge speed is decoupled from the rest of the system. We are assuming

which leads to the conclusion that

$$U = u$$

. We then use a forward speed model from the 3DOF Momoto model

$$(m + X_{\dot{u}})\dot{u} - X_u u_r - X_{|u|u}|u_r|u_r = \tau$$
 (2)

which leads to

$$\dot{u} = \frac{\tau + X_{|u|u}|u_r|u_r + X_u u_r}{m - X_{\dot{u}}} = \frac{X_{|u|u}|u_r|u_r + X_u u_r}{m - X_{\dot{u}}} + \tau_{nl}$$
(3)

where

$$\tau_{nl} = \frac{\tau}{m - X_{ii}} \Rightarrow \tau = \tau_{nl}(m - X_{ii}) \tag{4}$$

2 Path following and Path tracking

2.1 Path Generation

Her skriver vi om Path generation

Figure 1: Different trajectories

2.2 Path following

Her skriver vi om Path following

2.3 Path Tracking

Her skriver vi om Path tracking