

김재광 교수 (소프트웨어융합대학 글로벌융합학부)

Contents

- 딥러닝과 심층신경망
- 딥러닝 심층신경망의 종류
- 딥러닝의 활용과 동향
- 딥러닝을 지원하는 하드웨어

∰ 딥러닝과 심층신경망

● 딥러닝과 심층신경망의 배경

- 심층신경망(Deep Neural Network)은 약자로 DNN이라고 함
- 심층신경망은 여러 개의 은닉층을 가진 신경망 계열의 모델
- 딥러닝(Deep Learning)은 신경망과 머신러닝의 한 분야로서 심층신경망을 기반으로 하는 학습 방법
- 딥러닝 학습은 영상이나 음성 등의 학습을 통해 음성인식, 영상인식 등 패턴인식 등에 좋은 성과를 나타내고 있음

遊 딥러닝과 심층신경망 (Cont'd)

- 딥러닝의 포함 관계
 - 딥러닝 기반의 심층신경망은 전혀 새로운 개념은 아님
 - 이미 존재하는 다층 신경망의 특수한 경우로 볼 수 있음

遊 딥러닝과 심층신경망 (Cont'd)

● 네오코그니트론 모델

- 딥러닝의 시초는 7개의 층을 가진 '네오코그니트론'
- 1980년대 초반 일본의 후쿠시마 박사가 개발
- 상당히 정확한 점이 장점
- 상당히 정교하나 학습 시간이 너무나 오래 걸림
- 당시의 컴퓨터로 한 글자 인식에 20분 정도

鄭 딥러닝과 심층신경망 (Cont'd)

● 다층 퍼셉트론, 딥러닝, 심층신경망

- '80년대 중반부터 다층 퍼셉트론 연구, 학습에 오래 걸림 1990년부터 2000년까지 다소 침체기
- 실행 시간이 빠른 SVM과 같은 머신러닝 기법 시작
- 2000년도부터 CPU, GPU 등 프로세서가 빨라짐
- 값도 싸져 대규모 네트워크 구성 가능
- 2006년 대량의 데이터를 이용한 딥러닝 학습 시작

韓 딥러닝과 심층신경망 (Cont'd)

● 신경망 vs. 심층신경망

	신경망	심층신경망
은닉층의 개수	통상 1~2개, 8개 미만	1~1,000개도 넘음, 8개 이상
알고리즘	역전파 알고리즘	딥러닝 알고리즘
주요 이용 시대	1986년 이후	2006년 이후
사용하는 데이터	제한된 학습용 데이터	대규모 데이터
이론상 수행 시간	실행시간이 많이 걸림	은닉층 개수가 많아 실행 시간이 더욱 많이 걸림
병렬처리	당시 NCUBE/10 등 병렬 수퍼컴퓨터를 사용하였으나 큰 성과 없음	수많은 고속 프로세서들을 병렬로 연결하여 빠르게 사용

(Cont'd) (## 답러닝과 심층신경망

● 심층신경망의 출발

- 2006년 토론토대학의 힌튼 교수, 딥러닝 학습 방법 발표
- 다층 신경망에다 학습을 통한 전처리 과정을 추가
- 기존의 다층 퍼셉트론은 보통 1~2개의 은닉층 가짐
- 심층신경망은 기본적으로 여러 개의 은닉층 사용
- 최대 1,000여 개의 은닉층 사용

∰ 딥러닝과 심층신경망 (Cont'd)

● 힌튼에 의한 딥러닝 출발

- "딥러닝은 다중처리 계층에서 여러 수준의 추상화를 통해 데이터 표현을 학습하여 인식하는 방법이다."라고 딥러닝의 개념 발표
- 힌턴은 RBM이란 새로운 딥러닝 기반의 학습 알고리즘 제안
- 그 후 드롭아웃 알고리즘이 과적합(overfitting) 문제 해결
- 힌튼은 제자 르쿤, 벤지오 교수와 딥러닝 기술을 발전시킴
- 2018년 그 공로로 튜링상(Turing Award) 공동 수상

心 답러닝과 심층신경망 (Cont'd)

● 딥러닝의 발전

- 2009년에 들어와 딥러닝 알고리즘이 많이 발전
- 기존의 패턴인식 방법을 능가하기 시작
- 2012년 앤드류 응(Andrew Ng) 교수와 구글의 브레인 팀에서 딥러닝으로 1,000만 개 동영상 중 고양이 영상 추출 성공

遊 딥러닝과 심층신경망 (Cont'd)

● 딥러닝을 통한 패턴인식

- 딥러닝은 패턴인식 분야에서 좋은 성과 보이기 시작
- 큰 관심 속에 다양한 모델들이 속속 개발되고 있음
- 딥러닝을 통한 숫자인식의 결과

9	9
2	2
6	6
4	4
0	0
4	4
7	7

∰ 딥러닝과 심층신경망 (Cont'd)

● 머신러닝과 딥러닝의 차이점

	머신러닝	딥러닝
데이터 크기	상대적으로 작은 데이터 집합에 도 좋은 결과	매우 큰 데이터 집합에 좋은 결과
처리하는 컴퓨터	학습 시간이 짧아 일반 컴퓨터도 사용함	학습 시간이 오래 걸리며 강력한 성능의 전용 컴퓨터를 사용함
특징 추출의 방법	최상의 결과를 위해 여러 특징 추출과 분류 방법 시도	특징 추출과 분류가 자동적으로 처리됨, end to end 모델
학습 시간	몇 분에서 수십 시간	수일에서 수주
알고리즘의 종류	다양하고도 많음	현재는 적으나 연구 중

心 답러닝과 심층신경망 (Cont'd)

● 머신러닝과 딥러닝에서의 분류 방식

- 머신러닝과 딥러닝의 분류 방식 차이
- 머신러닝은 특징 추출, 분류, 차 여부 단계로 판정
- 딥러닝의 장점은 특징 추출 + 분류가 동시 자동적임

能 딥러닝과 심층신경망 (Cont'd)

- 데이터의 양에 따른 머신러닝, 신경망, 딥러닝
 - 딥러닝은 큰 규모의 데이터 학습 가능
 - 딥러닝이 데이터의 양에 따른 성능 비교에서 우수
 - 따라서 영상이나 음성 등의 인식에서 각광 받음

∰ 딥러닝 심층신경망의 종류

● 딥러닝 심층신경망의 종류별 용도 비교

모델의 종류	주요 용도
컨볼루션 신경망	영상인식, 컴퓨터 비전
순환 신경망	음성인식, 작곡, 주가 예측
제한적 볼츠만머신 신경망	분류, 회귀 분석
심층 신뢰 신경망	글씨와 음성의 인식
생성적 적대 신경망	영상과 음성의 복원

- 컨볼루션 신경망(Convolutional Neural Network, CNN)
 - CNN은 합성곱 연산 사용, '합성곱 신경망'이라고도 함
 - 영상분석과 영상인식용 심층신경망의 한 종류
 - 특징 지도(feature map)를 이용하여 학습
 - 영상인식 외 컴퓨터 비전 등의 응용에도 좋은 결과
 - 영상인식의 예에서 가장 가능성이 큰 '차(car)' 인식

● CNN을 이용한 물체의 인식

- CNN을 이용하여 고양이를 인식하는 예
- 영상에서 어떤 물체일지의 가능성 측정
- 개 37%, 새 21%, 보트 1%, 고양이 91%로 측정
- 따라서 가능성이 가장 큰 고양이로 인식!

● 컨볼루션 신경망과 알파고

- 컨볼루션 신경망은 알파고에도 이용
- 프로기사들의 바둑 기보를 딥러닝으로 학습
- 머신러닝 기법의 게임 트리 방식 적용
- 스스로 학습하는 알파고의 하루는 인간의 35.7년에 해당
- 딥러닝을 통해 새로운 영역의 개척과 가능성 보여줌

- 순환 신경망 (Recurrent Neural Network, RNN)
 - 순환 신경망은 데이터에서 규칙적인 패턴을 인식
 - 추상화된 정보를 추출할 수 있는 모델
 - 노드 간의 연결이 순환적 구조를 가지는 것이 특징
 - 시간에 따라 변하는 특징을 가지는 데이터를 잘 처리
 - 음악, 작사, 작곡, 언어 번역, 주가 예측 등에 활용

- 제한된 볼츠만머신 (Restricted Boltzmann Machine, RBM)
 - RBM은 힌튼이 제안한 모델로서 비지도 학습에 활용
 - 입력에 대한 확률 분포를 학습할 수 있는 신경망
 - 확률은 에너지 함수 형태임, 에너지가 최소화되는 방향으로 학습
 - 자체적으로도 사용, 또한 심층 신뢰 신경망의 구성에도 쓰임
 - 방향이 따로 없는 가시적 층과 은닉층의 2개 층으로 구성

- RBM의 활용 분야
 - RBM은 분류, 선형 회귀 분석, 필터링, 특징값 학습, 차원 축소 등에 활용됨
 - RBM을 이용하여 숫자를 분류하는 것을 보여주는 예

- 심층 신뢰 신경망 (Deep Belief Network, DBN)
 - DBN은 다층의 잠재 변수로 표현하는 은닉층으로 이루어짐
 - 사전에 훈련된 RBM을 여러 층으로 쌓아 올린 구조

- 심층 신뢰 신경망 (Deep Belief Network, DBN) (cont'd)
 - 레이블(label)이 없는 데이터에 대한 비지도 학습 가능
 - 부분적인 이미지에서 전체를 연상하는 일반화 과정 실현
 - DBN은 손으로 쓴 글씨 인식에서 좋은 결과를 나타냄

- DBN 기반 음성의 감정인식
 - DBN은 음성 감정 인식도 가능
 - 최근 영국에서 개발된 DBN 기반 음성 감정인식 시스템

- 생성적 적대 신경망 (Generative Adversarial Network, GAN)
 - 2014년 이안 굿펠로우(lan Goodfellow) 등이 발표
 - 서로 경쟁하는 두 개의 신경망에 의해 구현됨
 - 진짜 같은 가짜 이미지나 영상을 만들어낼 수 있음
 - 범죄와 같이 나쁜 일에 악용할 가능성의 우려가 커짐
 - 학습된 패턴을 이용하여 영상과 음성의 생성과 복원 가능
 - GAN은 현재 컴퓨터 게임, 패션, 광고 등에 활용되고 있음

● GAN을 이용한 유사한 영상들끼리 묶기

- GAN은 차세대 딥러닝 알고리즘으로 주목 받고 있음
- GAN을 이용하여 유사한 영상들끼리 묶을 수 있음
- 다양한 종류의 꽃들을 유사 그룹으로 묶는 예

遊 딥러닝의 활용과 동향

- 딥러닝을 이용한 구글의 고양이 인식
 - 구글의 브레인팀 1만 6천 개의 컴퓨터로 심층신경망 구현
 - ✓ 심층신경망이 스스로 찾아낸 고양이들
 - ✓ 고양이 얼굴과 사람 얼굴인식을 위한 딥러닝

● 딥러닝의 컴퓨터 게임에의 활용

- 딥러닝은 요즘 컴퓨터 게임에도 다양하게 활용되고 있음
- 슈퍼마리오 게임에서 장애물 피하기에도 딥러닝 적용
- 딥러닝을 통한 학습을 통해 다양한 행동에 적용 가능
- 가령 장애물을 만날 때 점프하거나, 날아가는 행동과 중간 다리 이용, 사다리 타는 등의 행동에도 활용

● 딥러닝의 컴퓨터 게임에의 활용

https://www.youtube.com/watch?v=exXD6wJLJ6s

● 딥러닝의 활용과 연구 동향

- 세계적 IT 기업들이 딥러닝 연구개발에 과감하게 투자
- 딥러닝의 활용 분야는 주로 사진과 동영상을 분류하거나 음성 정보를 인식하는 영역
- 현재 구글이 선두주자로 달리고 있음
- 마이크로소프트, 페이스북, 트위터 등이 뒤따름
- 국내에서도 딥러닝과 관련된 연구개발에 힘쓰고 있음
- 네이버, 다음카카오, 인공지능 벤처기업들 등

● 구글 (Google)

- 음성인식과 번역을 비롯한 분야에 딥러닝 기술 적용
- 2012년 딥러닝을 이용한 고양이 영상인식에 성공
- 2013년 힌튼 교수 등을 영입하여 딥러닝 기술 개발 중
- 음성인식, 유튜브 추천, 물체에 대한 자동 태깅 등에 적용
- 텐서플로우 소스 코드를 공개, 이 분야에서 선두

- 마이크로소프트 (MS)
 - 2014년 '아담 프로젝트'라는 딥러닝 기술 공개
 - ✓ 스마트폰으로 찍은 개 사진의 품종을 알려주는 기술

✓ 코타나와 스카이프에서 선보인 동시통역 기술 개발

● 페이스북 (Facebook)

- 2014년 '딥페이스'란 얼굴인식 알고리즘 개발
- 딥페이스(DeepFace)는 딥러닝 기술로 사람 얼굴을 인식
- 사용자가 업로드한 얼굴을 다양한 각도나 조명에서 인식 가능
- 인간과 비슷한 97% 정도의 정확도로 사람 얼굴을 인식
- AI 번역 도구인 'Translator'는 하루 60억 개 이상 번역

● 트위터 (Twitter)와 바이두 (Baidu)

- 트위터는 딥러닝 회사를 인수하여 사진 분석 기술 확보
- 구글에서 브레인 프로젝트를 주도하던 앤드류 응 교수 2014년 중국 '바이두(Baidu)'로 이적, 인공지능 연구 주도

● 벤처기업들

- 다양한 딥러닝 기술 개발로 각광 받고 있음
- 알파고를 개발한 영국의 '딥 마인드'가 구글에 인수됨
- 개발자 하사비스는 최근 새로운 딥러닝 기술 제시

● 국내

- 네이버, 다음카카오, NC, 삼성, LG 등 딥러닝 연구 진행
- 네이버는 음성인식, 뉴스 요약 등에 딥러닝 기술 적용
- 다음카카오도 자회사를 통해 딥러닝 기술 활용
- 그 외 많은 기술 기업들이 딥러닝 연구개발에 합류

● 딥러닝의 진화하고 있는 기술

- 딥러닝을 통한 영상인식 기술이 진화 중
- 고양이 인식의 정확도가 높아지고, 인식 시간도 단축
- 가까운 미래에 XAI(설명가능 인공지능)가 떠오름
- 딥러닝을 통한 인식 결과 외에 그 이유까지 설명해 줌

● XAI(설명가능 인공지능)으로의 발전

- 지금은 매우 간단한 경우에만 설명 가능
- 현재 영상인식에서는 'cat'이란 결과만 알 수 있음
- 미래엔 XAI가 'cat'이라 판정된 이유까지 알려줄 것
- 예를 들어, 이 영상은 털, 수염, 발톱을 가지고 있음
- 귀 부분이 전형적인 고양이의 모양
- 따라서 이 영상을 고양이로 인식/인식 이유도 설명

● 딥러닝에 대한 제한점과 기대감

- 최근 딥러닝은 인식 면에서 많은 발전을 이루었음
- 문자, 영상, 음성, 동영상 등의 인식
- 딥러닝은 아직도 상당한 제한점을 가지고 있음
- 고양이 얼굴 추출에 성공, 아직도 걸음마 단계
- 대규모 데이터에 대한 학습이 이루어지기 시작함
- 범위가 점점 넓어지고 정확성도 정교해지고 있음
- 응용 범위도 점차 확대되고 있음
- 4차 산업혁명에서 딥러닝에 대한 기대감이 큼

∰ 딥러닝을 지원하는 하드웨어

- NPU (Neural Processing Unit, 신경망 처리장치)의 등장
 - 딥러닝 알고리즘은 수많은 연산을 동시에 처리할 필요
 - 병렬처리 할 하드웨어인 NPU가 개발됨(퀄컴과 삼성전자)
 - NPU는 복잡한 연산의 실시간 처리가 가능한 차세대 반도체
 - 인공지능 구현의 핵심 기술, 인공지능 장치들에 탑재될 것
 - 앞으로 자율주행차와 드론 등으로 적용이 확대될 것

學 딥러닝을 지원하는 하드웨어 (Cont'd)

● 인공지능 하드웨어 시장의 확대

- 인공지능을 구현할 반도체 시장이 급격히 증가하는 추세
- 인공지능 반도체 시장, 2023년에는 343억 달러 규모
- 삼성전자의 '엑시노스 오토 V9' NPU 개발 탑재
- 얼굴, 음성, 동작 등의 인식 기능 개선
- 차세대 NPU를 개발하고 있는 중

