#### CS353 ML Lab 4

Name: K V Sumanth Reddy

Roll No: 181CO225

Q: Write a program in python to implement and demonstrate linear regression for a sample training data set. Compute the accuracy of the classifier.

Dataset Used: Marketing Data (<a href="https://www.kaggle.com/fayejavad/marketing-linear-multiple-regression">https://www.kaggle.com/fayejavad/marketing-linear-multiple-regression</a>)

### ▼ Importing Libraries and Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
import sklearn.metrics as metrics
```

```
dataset = pd.read_csv('Marketing_Data.csv')
dataset.head(10)
```

| ₽ |   | youtube | facebook | newspaper | sales |
|---|---|---------|----------|-----------|-------|
|   | 0 | 84.72   | 19.20    | 48.96     | 12.60 |
|   | 1 | 351.48  | 33.96    | 51.84     | 25.68 |
|   | 2 | 135.48  | 20.88    | 46.32     | 14.28 |
|   | 3 | 116.64  | 1.80     | 36.00     | 11.52 |
|   | 4 | 318.72  | 24.00    | 0.36      | 20.88 |
|   | 5 | 114.84  | 1.68     | 8.88      | 11.40 |
|   | 6 | 348.84  | 4.92     | 10.20     | 15.36 |
|   | 7 | 320.28  | 52.56    | 6.00      | 30.48 |
|   | 8 | 89.64   | 59.28    | 54.84     | 17.64 |
|   | 9 | 51.72   | 32.04    | 42.12     | 12.12 |

#### dataset.describe()

|       | youtube    | facebook   | newspaper  | sales      |
|-------|------------|------------|------------|------------|
| count | 171.000000 | 171.000000 | 171.000000 | 171.000000 |
| mean  | 178.021053 | 27.671579  | 35.240000  | 16.922807  |
| std   | 102.449597 | 17.913532  | 24.902918  | 6.314608   |
| min   | 0.840000   | 0.000000   | 0.360000   | 1.920000   |
| 25%   | 91.080000  | 11.700000  | 13.740000  | 12.540000  |
| 50%   | 179.760000 | 26.760000  | 31.080000  | 15.480000  |
| 75%   | 262.980000 | 43.680000  | 50.880000  | 20.820000  |
| max   | 355.680000 | 59.520000  | 121.080000 | 32.400000  |

#### dataset.info()

#### Data Preprocessing

```
x = dataset.iloc[:,:-1].values
y = dataset.iloc[:, -1].values

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size)
```

### Training the model and Testing

```
model = LinearRegression()
model.fit(x_train, y_train)

y_pred = model.predict(x_test)
print("-----")
print("Model coefficients:", model.coef )
```

```
print("Model intercept: %.4f"% model.intercept_)
print("Variance score: %.4f" % model.score(x_test, y_test))
print("-----")
```

-----

Model coefficients: [0.04637277 0.17605644 0.00666605]

Model intercept: 3.5047 Variance score: 0.9142

# Regression Evaluation Metrics

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac{1}{n}\sum_{i=1}^n |y_i - \hat{y}_i|$$

Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sqrt{\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2}$$

```
print("-----")
print('Mean Absolute Error: %.3f'% metrics.mean_absolute_error(y_teg
print('Mean Squared Error: %.3f'% metrics.mean_squared_error(y_test
print('Root Mean Squared Error: %.3f'% np.sqrt(metrics.mean_squared_
print("-----")

Mean Absolute Error: 1.254
Mean Squared Error: 2.846
Root Mean Squared Error: 1.687
```

## Predictions and Visualization

```
sns.regplot(x="youtube", y="sales", data=dataset)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f7e8abf9400>



sns.regplot(x="facebook", y="sales", data=dataset)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f7e8abf9780>



sns.regplot(x="newspaper", y="sales", data=dataset)

<matplotlib.axes.\_subplots.AxesSubplot at 0x7f7e88639fd0>



```
plt.plot([i for i in range(y_pred.size)],y_pred)
plt.xlabel('Index')
plt.ylabel('Sales')
nlt plot([i for i in range(v test size)] v test)
```

```
plt.legend(['Predicted Value', 'Actual Value'])
plt.show()
```

