Topics in Two-Sample Testing

Nelson Ray (joint work with Susan Holmes)

Stanford University

March 3, 2013

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

- Motivation: breast cancer study with heterogeneous data
- Friedman's two-sample test [?]: leverage regression and classification techniques
- Univariate data and linear scoring functions: permutation t-test
- Permutation dependence: Stein's method for rates of convergence bounds
- Simulations to verify bounds in proof (experimental mathematics)
- Kernel-based two sample tests for non-vectorial data
- Multiple Kernel Learning for heterogeneous data

Breast Cancer Data: Spatial

Breast Cancer Data: Survival

Pathology no.	Initial Diagnosis Date	Relapse or Disease Free	RDF (R=relapsed; F=DF)	Recurrence Date	Las	
98_17969D	1997-08-25	Disease Free	F	Disease Free		
97_24046C8	1997-08-25	Disease Free	F	Disease Free		
98_8501C1	1998-04-03	Disease Free	F	Disease Free		
98_8501A1	1998-04-03	Disease Free	F	Disease Free		
98_9134D4	1998-04-09	Left in-situ BrCa in 1999 (2nd primary cancer, not a metastasis from the right BrCa in 1997)	F	Disease Free		
98_9134B	1998-04-09	Left in-situ BrCa in 1999 (2nd primary cancer, not a metastasis from the right BrCa in 1997)	F	Disease Free		
98_14783B1	1998-06-10	bone, brain, lymph nodes, pericardium, liver metastasis	R	2004-07-30		
98_14783A	1998-06-10	bone, brain, lymph nodes, pericardium, liver metastasis	R	2004-07-30		
98_16169C2	1998-06-24	Disease Free	F	Disease Free		
98_16169A	1998-06-24	Disease Free	F	Disease Free		
98_16169B	1998-06-24	Disease Free	F	Disease Free		
98_16253C1	1998-06-25	Disease Free	F	Disease Free		
60C1	1998-07-10	Disease Free	F	Disease Free		

Breast Cancer Data: Medical

Pathology no.	Age at time of diagnosis	Gender	SLN tumor status	Diagnosis	ER status	PR status	Her-2 overexpression
98 17969D	68	F	+	Invasive ductal			
98_17969D	00	F	+	carcinoma (IDC) Invasive ductal	-	-	-
97 24046C8	68	F	+	carcinoma (IDC)	_	_	_
98_8501C1	51	F	+	IDC & DCIS	+	+	?
98_8501A1	51	F	+	IDC & DCIS	+	+	?
98_9134D4 98_9134B	70	F	+	IDC	+	+	n/a n/a
98_14783B1	67	F	+	IDC & DCIS	+	+	+
98_14783A	67	F	+	IDC & DCIS	+	+	+
98_16169C2	79	F	+mic	IDC	+	+	+
98_16169A	79	F	+mic	IDC	+	+	+
98_16169B	79	F	+mic	IDC	+	+	+
98_16253C1	70	F	+mic	IDC & DCIS	+	-	-
60C1	51	F	- (rare keratin+ cells)	IDC & DCIS	+	+	+

- How do you deal with the data integration problem?
- Kernel methods
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

- How do you deal with the data integration problem?
- Kernel methods
- Are there any differences (spatial, medical) between women who relapse and those who remain disease free?
- Two-sample tests

$\{\mathbf{x}_i\}_1^N$ from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- ① Pool the two samples $\{\mathbf u_i\}_1^{N+M} = \{\mathbf x_i\}_1^N \cup \{\mathbf z_i\}_1^M$.
- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M}).$
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

 $\{\mathbf{x}_i\}_1^N$ from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- $\bullet \text{ Pool the two samples } \{\mathbf{u}_i\}_1^{N+M} = \{\mathbf{x}_i\}_1^N \cup \{\mathbf{z}_i\}_1^M.$
- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- © Calculate a univariate two-sample test statistic $T = T(\{s_i\}_1^N, \{s_i\}_{N+1}^{N+M}).$
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- ② Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

```
\{\mathbf{x}_i\}_1^N from p(\mathbf{x}) and \{\mathbf{z}_i\}_1^M from q(\mathbf{z}) testing \mathcal{H}_A: p \neq q against \mathcal{H}_0: p = q
```

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

 $\{\mathbf{x}_i\}_1^N$ from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

 $\{\mathbf{x}_i\}_1^N$ from $p(\mathbf{x})$ and $\{\mathbf{z}_i\}_1^M$ from $q(\mathbf{z})$ testing \mathcal{H}_A : $p \neq q$ against \mathcal{H}_0 : p = q

- ② Assign label $y_i = 1$ to the first group and $y_i = -1$ to the second group.
- **3** Apply a binary classification learning machine f to the training data to score the observations $\{s_i = f(\mathbf{u}_i)\}_1^{N+M}$.
- Calculate a univariate two-sample test statistic $T = T(\{s_i\}_{1}^{N}, \{s_i\}_{N+1}^{N+M})$.
- Oetermine the permutation null distribution of the above statistic to yield a p-value.

Permutation t-test Connection

With univariate data and linear scoring functions/kernels, Friedman's test reduces to the permutation *t*-test (normal convergence result). With multivariate/non-vectorial/heterogeneous data and arbitrary kernels, null distribution is consistent with the Normal.

Permutation t-test Connection

With univariate data and linear scoring functions/kernels, Friedman's test reduces to the permutation t-test (normal convergence result). With multivariate/non-vectorial/heterogeneous data and arbitrary kernels, null distribution is consistent with the Normal.

Other Work

- Fisher (1935) [?] proposed distribution-free randomization test.
- Lehmann [?] proved a normal convergence result for the randomization distribution.
- Bentkus et al. [?], Shao [?] proved Berry-Esseen bounds for Student's *t*-statistic in independent case.

Other Work

- Fisher (1935) [?] proposed distribution-free randomization test.
- Lehmann [?] proved a normal convergence result for the randomization distribution.
- Bentkus et al. [?], Shao [?] proved Berry-Esseen bounds for Student's *t*-statistic in independent case.

Other Work

- Fisher (1935) [?] proposed distribution-free randomization test.
- Lehmann [?] proved a normal convergence result for the randomization distribution.
- Bentkus et al. [?], Shao [?] proved Berry-Esseen bounds for Student's *t*-statistic in independent case.

Stein's Method and the Randomization Distribution

Let $\Phi(t)$ denote the standard normal CDF. Can we get a bound on

$$\sup_{t\in\mathbb{R}}|P(T\leq t)-\Phi(t)|?$$

 $\mathcal{O}(N^{-1/4})$ with mild conditions on the data and $\mathcal{O}(N^{-1/2})$ with an additional condition

Stein's Method and the Randomization Distribution

Let $\Phi(t)$ denote the standard normal CDF. Can we get a bound on

$$\sup_{t\in\mathbb{R}}|P(T\leq t)-\Phi(t)|?$$

 $\mathcal{O}(\mathit{N}^{-1/4})$ with mild conditions on the data and $\mathcal{O}(\mathit{N}^{-1/2})$ with an additional condition

Theorem (Berry-Esseen)

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Berry-Esseen)

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Berry-Esseen)

Suppose X_1, \ldots, X_n are i.i.d. random variables with $\mathbb{E}X_i = 0$, $\mathbb{E}X_i^2 = \sigma^2 > 0$, and $\mathbb{E}|X_i|^3 = \rho < \infty$. Let $F_n(x)$ denote the CDF of standardized sample mean of the X_i . Then

$$\sup_{x} |F_n(x) - \Phi(x)| \le \frac{0.33477(\rho + 0.429\sigma^3)}{\sigma^3 \sqrt{n}}$$
$$= \frac{C}{\sqrt{n}} f(\rho, \sigma).$$

Note that ρ and σ are fixed as $n \to \infty$.

Theorem (Hoeffding, Stein)

Let $A = \{a_{ij}\}_{i,j \in \{1,...,n\}}$ be a square array of numbers such that $\sum_j a_{ij} = 0$ for all i, $\sum_i a_{ij} = 0$ for all j, and $\sum_i \sum_j a_{ij}^2 = n - 1$. Then with $F_n(x) = P(\sum_i a_{i\Pi(i)} \le x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Theorem (Hoeffding, Stein)

Let $A=\{a_{ij}\}_{i,j\in\{1,\dots,n\}}$ be a square array of numbers such that $\sum_j a_{ij}=0$ for all i, $\sum_i a_{ij}=0$ for all j, and $\sum_i \sum_j a_{ij}^2=n-1$. Then with $F_n(x)=P(\sum_i a_{i\Pi(i)}\leq x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Theorem (Hoeffding, Stein)

Let $A=\{a_{ij}\}_{i,j\in\{1,\dots,n\}}$ be a square array of numbers such that $\sum_j a_{ij}=0$ for all i, $\sum_i a_{ij}=0$ for all j, and $\sum_i \sum_j a_{ij}^2=n-1$. Then with $F_n(x)=P(\sum_i a_{i\Pi(i)}\leq x)$,

$$|F_n(x) - \Phi(x)| \le \frac{C}{\sqrt{n}} \left(\sqrt{\sum_{i,j} a_{ij}^4} + \sqrt{\sum_{i,j} |a_{ij}|^3} \right)$$
$$= \frac{C}{\sqrt{n}} f(A).$$

Given a sampling scheme for A, f(A) must be $\mathcal{O}(1)$ to have rate $\mathcal{O}(n^{-1/2})$.

Exchangeable Pair

Assume M = N. Fix data $\{u_1, \dots, u_N, u_{N+1}, \dots, u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^N, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let
$$(I,J)=(i,j)$$
 w.p. $\frac{1}{N^2}$ for $1 \leq i \leq N$ and $N+1 \leq j \leq 2N$. Then
$$T'=T\left(\{u_{\Pi\circ (I,J)(i)}\}_{i=1}^N,\{u_{\Pi\circ (I,J)(i)}\}_{i=N+1}^{2N}\right).$$

T and T' form an exchangeable pair.

Exchangeable Pair

Assume M = N. Fix data $\{u_1, \dots, u_N, u_{N+1}, \dots, u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^N, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let (I,J)=(i,j) w.p. $\frac{1}{N^2}$ for $1 \le i \le N$ and $N+1 \le j \le 2N$. Then

$$T' = T\left(\{u_{\Pi\circ(I,J)(i)}\}_{i=1}^N, \{u_{\Pi\circ(I,J)(i)}\}_{i=N+1}^{2N}\right).$$

T and T' form an exchangeable pair.

Exchangeable Pair

Assume M=N. Fix data $\{u_1,\ldots,u_N,u_{N+1},\ldots,u_{2N}\}$. Π is a uniformly random permutation, and let

$$T = T\left(\{u_{\Pi(i)}\}_{i=1}^{N}, \{u_{\Pi(i)}\}_{i=N+1}^{2N}\right).$$

Let (I,J)=(i,j) w.p. $\frac{1}{N^2}$ for $1\leq i\leq N$ and $N+1\leq j\leq 2N$. Then

$$T' = T\left(\{u_{\Pi\circ(I,J)(i)}\}_{i=1}^N, \{u_{\Pi\circ(I,J)(i)}\}_{i=N+1}^{2N}\right).$$

T and T' form an exchangeable pair.

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{\left(2\pi\right)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\leq N^{-1/4}f_1(\mathbf{u})}}_{\leq N^{-1/4}f_2(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^2-1|}_{\leq N^{-1}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_4(\mathbf{u})} \leq N^{-1/2}f_6(\mathbf{u})$$

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{(2\pi)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\frac{\lambda}{\lambda}}}_{\leq N^{-1/4}f_1(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{\mathbb{E}T^2 - 1}_{\leq N^{-1/2}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_6(\mathbf{u})} \leq N^{-1/4}f_6(\mathbf{u})$$

Main Theorem

Theorem

If T, T' are mean 0, exchangeable random variables with variance $\mathbb{E}[T^2]$ satisfying

$$\mathbb{E}[T'-T|T] = -\lambda(T-R)$$

for some $\lambda \in (0,1)$ and some random variable R, then $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{(2\pi)^{-1/4}\sqrt{\frac{\mathbb{E}|T'-T|^3}{\lambda}}}{\frac{\lambda}{\lambda}}}_{\leq N^{-1/4}f_1(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T'-T)^2|T])}}_{\leq N^{-1}f_2(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^2-1|}_{\leq N^{-1}f_3(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_6(\mathbf{u})} \leq N^{-1/4}f_6(\mathbf{u})$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T'-T| \leq \delta$, $\sup_{t \in \mathbb{R}} |P(T \leq t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^{3}}{\lambda}}_{\leq N^{-1/2}c_{1}^{\prime\prime\prime\ast}} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^{2}} + \mathbb{E}|R|)}{\leq N^{-1}f_{1}^{\prime}(\mathbf{u})^{\ast}}}_{\leq N^{-1}f_{2}^{\prime}(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T^{\prime} - T)^{2}|T])}}_{\leq N^{-1}f_{2}(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^{2} - 1|}_{\leq N^{-1}f_{3}(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_{4}(\mathbf{u})} \leq N^{-1/2}f_{5}(\mathbf{u})$$

* if
$$\delta < c_1' N^{-1/2}$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T' - T| \le \delta$, $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^{3}}{\lambda}}_{\leq N^{-1/2}c_{1}^{\prime\prime\prime\ast}} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^{2}} + \mathbb{E}|R|)}{\leq N^{-1}f_{1}^{\prime}(\mathbf{u})^{\ast}}}_{\leq N^{-1}f_{2}^{\prime}(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\mathrm{var}(\mathbb{E}[(T^{\prime} - T)^{2}|T])}}_{\leq N^{-1}f_{2}(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^{2} - 1|}_{\leq N^{-1}f_{3}(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_{4}(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_{5}(\mathbf{u})}$$

* if
$$\delta < c_1' N^{-1/2}$$

Main Theorem (Improved Rate)

Theorem

If in addition $|T' - T| \le \delta$, $\sup_{t \in \mathbb{R}} |P(T \le t) - \Phi(t)|$ is bounded by

$$\underbrace{\frac{.41\delta^{3}}{\lambda}}_{\leq N^{-1/2}c_{1}^{\prime\prime\prime\ast}} + \underbrace{\frac{3\delta(\sqrt{\mathbb{E}T^{2}} + \mathbb{E}|R|)}{\leq N^{-1}f_{1}^{\prime}(\mathbf{u})^{\ast}}}_{\leq N^{-1}f_{2}(\mathbf{u})} + \underbrace{\frac{1}{2\lambda}\sqrt{\operatorname{var}(\mathbb{E}[(T^{\prime} - T)^{2}|T])}}_{\leq N^{-1}f_{2}(\mathbf{u})}$$

$$\underbrace{|\mathbb{E}T^{2} - 1|}_{\leq N^{-1}f_{3}(\mathbf{u})} + \underbrace{\mathbb{E}|TR|}_{\leq N^{-1/2}f_{4}(\mathbf{u})} + \underbrace{\mathbb{E}|R|}_{\leq N^{-1/2}f_{5}(\mathbf{u})}$$

* if
$$\delta < c_1' N^{-1/2}$$

Simulated Bounds

Simulated Bounds (Improved Rate)

Simulated Bounds (Improved Rate)

Twitter Example

Barack Obama

@BarackObama Washington, DC 44th President of the United States http://www.barackobama.com

C Follow

Sarah Palin o

@SarahPalinUSA Alaska

Former Governor of Alaska and GOP Vice Presidential Nominee http://www.facebook.com/sarahpalin

You betcha!! MT "@AlaskaAces: Alaska Aces are 2011 Kelly

Oup Champs w/ 5-3 win over Kalamazoo Wings! Aces win

21 May Sarah Palin USA Sarah Palin

Yes, they did & we couldn't be any more blessed! RT" @C4Palin: Track Palin and Britta Hanson Married

http://bit.lv/iCkT3i #tcot #palin" 19 May

ECHL Championship series 4-1"

Sarah Palin USA Sarah Palin

Favorites Following Followers Lists

Delivering the commencement address at the United States Coast Guard Academy. Watch live at 11:30am ET:

Speaking today about the United States' policy in the Middle

East and North Africa. Watch live: http://wh.gov/live

www.wh.gov/live 18 May

Sarah Palin USA Sarah Palin

I'm jealous! RT"@secupp: At the Wasilla Sportsman's Warehouse w/Joe the Plumber, Colorado Buck, Ken Onion and Sarah's parents. Good people." 19 May

Twitter Data

Raw:

"BarackObama: We need to reward education reforms that are driven not by Washington, but by principals and teachers and parents. http://OFA.BO/6p2EMy"

"SarahPalinUSA: You betcha!! MT \"@AlaskaAces: Alaska Aces are 2011 Kelly Cup Champs w/ 5-3 win over Kalamazoo Wings! Aces win ECHL Championship series 4-1\""

After pre-processing:

"we need to reward education reforms that are driven not by washington but by principals and teachers and parents "
"you betcha mt alaskaaces alaska aces are kelly cup champs w win over kalamazoo wings aces win echl championship series "

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

- \mathcal{X} is our input space, built up from an alphabet $\mathcal{A} = \{a, b, \dots, z, \}$ with $|\mathcal{A}| = 27$.
- The k-spectrum ($k \ge 1$) of an input sequence is the set of all length k contiguous subsequences it contains.
- Define the feature map from \mathcal{X} to $\mathbb{R}^{|\mathcal{A}|^k}$ by $\Phi_k(x) = (\phi_a(x))_{a \in \mathcal{A}^k}$ where $\phi_a(x)$ is the number of times a occurs in x: $\{\#aaa, \#aab, \#aac, \ldots, \}$.
- $K_k(x,y) = \langle \Phi_k(x), \Phi_k(y) \rangle$.

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

V is taken to be ϵ -insensitive loss

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \ |r| - \epsilon & ext{otherwise} \end{array}
ight.$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

V is taken to be ϵ -insensitive loss

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \\ |r| - \epsilon & ext{otherwise} \end{array}
ight.$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

V is taken to be ϵ -insensitive loss:

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \ |r| - \epsilon & ext{otherwise}. \end{array}
ight.$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) + \beta_0, \quad h_m(x) \text{ basis functions}$$

To estimate β and β_0 , minimize

$$H(\beta, \beta_0) = \sum_{i=1}^{N} V(y_i - f(x_i)) + \frac{\lambda}{2} \sum_{m=1}^{M} \beta_m^2.$$

V is taken to be ϵ -insensitive loss:

$$V_{\epsilon}(r) = \left\{ egin{array}{ll} 0 & ext{if } |r| < \epsilon, \ |r| - \epsilon & ext{otherwise}. \end{array}
ight.$$

Twitter Example

p < .001:

Power Simulations at .05 Level

Image Data (Cars)

Caltech 101 Object Categories [?] The cars are 300×197 grayscale.

Planes Before

The planes aren't.

Planes After

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn.

Given $X \in \mathbb{R}^{n \times p}$, the linear kernel is given by

$$K(x, x') = \langle x, x' \rangle = \langle \Phi(x), \Phi(x') \rangle$$

The kernel matrix is given simply by $XX^T \succeq 0$. This corresponds to the identity mapping: $\Phi(x) = x$.

The homogeneous polynomial kernel,

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle = \langle x, x' \rangle^d,$$

corresponds to the mapping

$$\Phi(x) = [x_1^d, \dots, x_p^d, x_1^{d-1}x_2, \dots, x_p^{d-1}x_{p-1}]^T \in \mathbb{R}^{d'}, \text{ where } d' = \binom{d+N-1}{d}.$$

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn. Given $X \in \mathbb{R}^{n \times p}$, the linear kernel is given by

$$K(x, x') = \langle x, x' \rangle = \langle \Phi(x), \Phi(x') \rangle.$$

The kernel matrix is given simply by $XX^T \succeq 0$. This corresponds to the identity mapping: $\Phi(x) = x$.

The homogeneous polynomial kernel,

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle = \langle x, x' \rangle^d,$$

corresponds to the mapping

$$\Phi(x) = [x_1^d, \dots, x_p^d, x_1^{d-1}x_2, \dots, x_p^{d-1}x_{p-1}]^T \in \mathbb{R}^{d'}, \text{ where } d' = \binom{d+N-1}{d}.$$

Polynomial Kernel

Each $m \times n$ grayscale image is converted to a vector of length p = mn. Given $X \in \mathbb{R}^{n \times p}$, the linear kernel is given by

$$K(x, x') = \langle x, x' \rangle = \langle \Phi(x), \Phi(x') \rangle.$$

The kernel matrix is given simply by $XX^T \succeq 0$. This corresponds to the identity mapping: $\Phi(x) = x$.

The homogeneous polynomial kernel,

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle = \langle x, x' \rangle^d,$$

corresponds to the mapping

$$\Phi(x) = [x_1^d, \dots, x_p^d, x_1^{d-1}x_2, \dots, x_p^{d-1}x_{p-1}]^T \in \mathbb{R}^{d'}, \text{ where } d' = \binom{d+N-1}{d}.$$

Standardization

In order to mitigate the effects of global differences in illumination, each vector is scaled so that it has mean zero and unit norm.

Unscaled linear kernel matrix, left; scaled, right

Standardization

In order to mitigate the effects of global differences in illumination, each vector is scaled so that it has mean zero and unit norm.

Unscaled linear kernel matrix, left; scaled, right

Car/Airplane Example (Linear Kernel)

Roosters

Pigeons

Rooster/Pigeon Example (Linear Kernel)

$$p = .138$$

Rooster/Pigeon Example (Inhomogeneous Degree 4)

p < .001

- Generalize theory for higher dimensional settings and/or non-linear scoring functions
- Develop similarities with Hotelling's T^2 -test
- Explore performance on different types of data, in particular, unstructured data such as images
- Heterogeneous data: optimal combinations of kernels via SDPs, KL divergence

- Generalize theory for higher dimensional settings and/or non-linear scoring functions
- Develop similarities with Hotelling's T^2 -test
- Explore performance on different types of data, in particular, unstructured data such as images
- Heterogeneous data: optimal combinations of kernels via SDPs, KL divergence

- Generalize theory for higher dimensional settings and/or non-linear scoring functions
- Develop similarities with Hotelling's T^2 -test
- Explore performance on different types of data, in particular, unstructured data such as images
- Heterogeneous data: optimal combinations of kernels via SDPs, KL divergence

- Generalize theory for higher dimensional settings and/or non-linear scoring functions
- Develop similarities with Hotelling's T^2 -test
- Explore performance on different types of data, in particular, unstructured data such as images
- Heterogeneous data: optimal combinations of kernels via SDPs, KL divergence

- Generalize theory for higher dimensional settings and/or non-linear scoring functions
- Develop similarities with Hotelling's T^2 -test
- Explore performance on different types of data, in particular, unstructured data such as images
- Heterogeneous data: optimal combinations of kernels via SDPs, KL divergence

References I