

Termodinâmica e Dinâmica de Fluidos

1º Semestre – Ano Lectivo 2023/24

Problemas: 8^a série (em construção !!!!!!)

1. Um gás a 20°C pode ser considerado rarefeito, desviando-se da aproximação de contínuo, quando contém menos de 10¹² moléculas por milímetro cúbico. Qual será a pressão absoluta (em Pa) mínima para que se mantenha válida a aproximação de meio contínuo para o gás?

Solução: $p = 4.0 \,\mathrm{Pa}$

2. A Tabela A.6 lista a densidade da atmosfera padrão em função da altitude. Use esses valores para estimar, de forma grosseira — digamos, com um erro menor que um factor de 2 — o número de moléculas de ar em toda a atmosfera da Terra.

Solução: $\approx 1.3 \times 10^{44}$ moléculas

3. Usando o elemento de líquido representado em baixo, mostre que se superfície do líquida for inclinada e estiver em contacto com uma atmosfera à pressão p_a , o líquido deve sofrer tensões de corte e, portanto, começar a fluir.

Table A.6 Properties of the Standard Atmosphere

z, m	<i>T</i> , K	p, Pa	ρ , kg/m ³	<i>a</i> , m/s
-500	291.41	107,508	1.2854	342.2
0	288.16	101,350	1.2255	340.3
500	284.91	95,480	1.1677	338.4
1000	281.66	89,889	1.1120	336.5
1500	278.41	84,565	1.0583	334.5
2000	275.16	79,500	1.0067	332.6
2500	271.91	74,684	0.9570	330.6
3000	268.66	70,107	0.9092	328.6
3500	265.41	65,759	0.8633	326.6
4000	262.16	61,633	0.8191	324.6
4500	258.91	57,718	0.7768	322.6
5000	255.66	54,008	0.7361	320.6
5500	252.41	50,493	0.6970	318.5
6000	249.16	47,166	0.6596	316.5
6500	245.91	44,018	0.6237	314.4
7000	242.66	41,043	0.5893	312.3
7500	239.41	38,233	0.5564	310.2
8000	236.16	35,581	0.5250	308.1
8500	232.91	33,080	0.4949	306.0
9000	229.66	30,723	0.4661	303.8
9500	226.41	28,504	0.4387	301.7
10,000	223.16	26,416	0.4125	299.5
10,500	219.91	24,455	0.3875	297.3
11,000	216.66	22,612	0.3637	295.1
11,500	216.66	20,897	0.3361	295.1
12,000	216.66	19,312	0.3106	295.1
12,500	216.66	17,847	0.2870	295.1
13,000	216.66	16,494	0.2652	295.1
13,500	216.66	15,243	0.2451	295.1
14,000	216.66	14,087	0.2265	295.1
14,500	216.66	13,018	0.2094	295.1
15,000	216.66	12,031	0.1935	295.1
15,500	216.66	11,118	0.1788	295.1
16,000	216.66	10,275	0.1652	295.1
16,500	216.66	9496	0.1527	295.1
17,000	216.66	8775	0.1411	295.1
17,500	216.66	8110	0.1304	295.1
18,000	216.66	7495	0.1205	295.1
18,500	216.66	6926	0.1114	295.1
19,000	216.66	6401	0.1029	295.1
19,500	216.66	5915	0.0951	295.1
20,000	216.66	5467	0.0879	295.1
** ***	240 40	10.10		****

4. Calcule e represente as linhas de corrente do seguinte campo de velocidade:

$$u = kx$$
; $v = -ky$; $w = 0$, onde $K \acute{e}$ uma constante.

5. Considere o campo de velocidade bidimensional não estacionário dado por u = x(1+2t), v = y. Calcule as linhas de corrente, e represente algumas que, ao longo do tempo, passam por algum ponto de referência (x_0, y_0) .

Solução:
$$y = y_0 (x/x_0)^{1/(1+2t)}$$