Scan Report

March 29, 2024

Summary

This document reports on the results of an automatic security scan. All dates are displayed using the timezone "Coordinated Universal Time", which is abbreviated "UTC". The task was "Immediate scan of IP 10.10.92.0/24". The scan started at Thu Mar $28\ 23:34:00\ 2024\ UTC$ and ended at Fri Mar $29\ 00:35:59\ 2024\ UTC$. The report first summarises the results found. Then, for each host, the report describes every issue found. Please consider the advice given in each description, in order to rectify the issue.

Contents

1	Res	ult Ov	verview	2
2	Res	ults p	er Host	2
	2.1	10.10.	92.10	2
		2.1.1	High 4444/tcp	2
		2.1.2	Low 22/tcp	3
		2.1.3	Low general/icmp	4
		2.1.4	Low general/tcp	5
	2.2	10.10.	92.26	6
		2.2.1	High 443/tcp	7
		2.2.2	Medium 443/tcp	8
		2.2.3	Medium 21/tcp	12
		2.2.4	Medium 80/tcp	13
		2.2.5	Low general/tcp	14
		2.2.6	Low general/icmp	15
		2.2.7	Low 22/tcp	16
	2.3	10.10.	92.2	17
		2.3.1	Low general/icmp	18
		2.3.2	Low 22/tcp	19
		2.3.3	Low general/tcp	20
	2.4	10.10.	92.20	21
		2.4.1	Low 22/tcp	21

2

	2.4.2	Low general/tcp	22
	2.4.3	Low general/icmp	23
2.5	10.10.	02.1	24
	2.5.1	Low general/icmp	25

3

1 Result Overview

Host	High	Medium	Low	Log	False Positive
10.10.92.10	1	0	3	0	0
10.10.92.26	1	4	3	0	0
10.10.92.2	0	0	3	0	0
10.10.92.20	0	0	3	0	0
10.10.92.1	0	0	1	0	0
Total: 5	2	4	13	0	0

Vendor security updates are not trusted.

Overrides are off. Even when a result has an override, this report uses the actual threat of the result.

Information on overrides is included in the report.

Notes are included in the report.

This report might not show details of all issues that were found.

Issues with the threat level "Log" are not shown.

Issues with the threat level "Debug" are not shown.

Issues with the threat level "False Positive" are not shown.

Only results with a minimum QoD of 70 are shown.

This report contains all 19 results selected by the filtering described above. Before filtering there were 204 results.

2 Results per Host

$2.1 \quad 10.10.92.10$

Host scan start Thu Mar 28 23:35:32 2024 UTC Host scan end Thu Mar 28 23:51:41 2024 UTC

Service (Port)	Threat Level
$4444/\mathrm{tcp}$	High
$22/\mathrm{tcp}$	Low
general/icmp	Low
general/tcp	Low

2.1.1 High 4444/tcp

4

High (CVSS: 10.0)

NVT: Possible Backdoor: Ingreslock

Summary

A backdoor is installed on the remote host.

Quality of Detection: 99

Vulnerability Detection Result

The service is answering to an 'id;' command with the following response: uid=0(\hookrightarrow root) gid=0(root)

Impact

Attackers can exploit this issue to execute arbitrary commands in the context of the application. Successful attacks will compromise the affected isystem.

Solution:

Solution type: Workaround

A whole cleanup of the infected system is recommended.

Vulnerability Detection Method

Details: Possible Backdoor: Ingreslock

OID:1.3.6.1.4.1.25623.1.0.103549Version used: 2023-07-25T05:05:58Z

[return to 10.10.92.10]

2.1.2 Low 22/tcp

Low (CVSS: 2.6)

NVT: Weak MAC Algorithm(s) Supported (SSH)

Summary

The remote SSH server is configured to allow / support weak MAC algorithm(s).

Quality of Detection: 80

Vulnerability Detection Result

The remote SSH server supports the following weak client-to-server MAC algorithm \hookrightarrow (s):

 $\verb|umac-64-etm@openssh.com||$

umac-64@openssh.com

The remote SSH server supports the following weak server-to-client MAC algorithm \hookrightarrow (s):

umac-64-etm@openssh.com umac-64@openssh.com

Solution:

Solution type: Mitigation

Disable the reported weak MAC algorithm(s).

Vulnerability Detection Method

Checks the supported MAC algorithms (client-to-server and server-to-client) of the remote SSH server.

Currently weak MAC algorithms are defined as the following:

- MD5 based algorithms
- 96-bit based algorithms
- 64-bit based algorithms
- 'none' algorithm

Details: Weak MAC Algorithm(s) Supported (SSH)

OID:1.3.6.1.4.1.25623.1.0.105610Version used: 2023-10-12T05:05:32Z

References

url: https://www.rfc-editor.org/rfc/rfc6668

url: https://www.rfc-editor.org/rfc/rfc4253#section-6.4

[return to 10.10.92.10]

2.1.3 Low general/icmp

Low (CVSS: 2.1)

 ${
m NVT}$: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection: 80

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2023-05-11T09:09:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 10.10.92.10]

2.1.4 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection: 80

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 2552946809 Packet 2: 2552947973

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID: 1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323

url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

 \hookrightarrow ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 10.10.92.10]

$2.2 \quad 10.10.92.26$

Host scan start Thu Mar 28 23:35:32 2024 UTC Host scan end Fri Mar 29 00:19:47 2024 UTC

Service (Port)	Threat Level
$443/\mathrm{tcp}$	High
$443/\mathrm{tcp}$	Medium
$21/\mathrm{tcp}$	Medium
$80/\mathrm{tcp}$	Medium
general/tcp	Low
general/icmp	Low
$22/\mathrm{tcp}$	Low

2.2.1 High 443/tcp

High (CVSS: 7.5)

NVT: CS Whois Lookup RCE Vulnerability (Apr 2009) - Active Check

Summary

CS Whois Lookup and CS DNS Lookup are prone to a remote command execution (RCE) vulnerability because the software fails to adequately sanitize user-supplied input.

Quality of Detection: 99

Vulnerability Detection Result

The following URLs are affected:

https://10.10.92.26/index.php?ip=;/bin/cat%20/etc/passwd

Impact

Successful attacks can compromise the affected software and possibly the computer.

Solution:

Solution type: WillNotFix

No known solution was made available for at least one year since the disclosure of this vulnerability. Likely none will be provided anymore. General solution options are to upgrade to a newer release, disable respective features, remove the product or replace the product by another one.

Vulnerability Detection Method

Sends a crafted HTTP GET request and checks the response.

Details: CS Whois Lookup RCE Vulnerability (Apr 2009) - Active Check

OID:1.3.6.1.4.1.25623.1.0.100166Version used: 2023-12-22T16:09:03Z

References

url: http://www.securityfocus.com/bid/34700

[return to 10.10.92.26]

2.2.2 Medium 443/tcp

Medium (CVSS: 5.0)

NVT: SSL/TLS: Known Untrusted / Dangerous Certificate Authority (CA) Detection

Summary

The service is using an SSL/TLS certificate from a known untrusted and/or dangerous certificate authority (CA).

Quality of Detection: 99

Vulnerability Detection Result

The certificate of the remote service is signed by the following untrusted and/o $\,$

fingerprint (SHA-1) | 7459C5905382644AE55732FE386A085D52E1C808

fingerprint (SHA-256) | 9BCD732AD8C3D94365CDEE9D2E02A71B0909EFF4442DCA

→60CB85E5F47745D065

issued by | CN=localhost

serial | 27A9479B694A2D5A294D9B5CB4D1805608601C6D

signature algorithm | sha256WithRSAEncryption

valid from | 2022-03-28 12:10:19 UTC valid until | 2032-03-25 12:10:19 UTC

Impact

An attacker could use this for man-in-the-middle (MITM) attacks, accessing sensible data and other attacks.

Solution:

Solution type: Mitigation

Replace the SSL/TLS certificate with one signed by a trusted CA.

Vulnerability Detection Method

The script reads the certificate used by the target host and checks if it was signed by a known untrusted and/or dangerous CA.

 $\operatorname{Details}: \operatorname{SSL/TLS}: \operatorname{Known} \operatorname{Untrusted} / \operatorname{Dangerous} \operatorname{Certificate} \operatorname{Authority} (\operatorname{CA}) \operatorname{Detection}$

OID:1.3.6.1.4.1.25623.1.0.113054 Version used: 2021-11-22T15:32:39Z

Medium (CVSS: 4.3)

NVT: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

Summary

It was possible to detect the usage of the deprecated TLSv1.0 and/or TLSv1.1 protocol on this system.

Quality of Detection: 98

Vulnerability Detection Result

In addition to TLSv1.2+ the service is also providing the deprecated TLSv1.0 and \hookrightarrow TLSv1.1 protocols and supports one or more ciphers. Those supported ciphers c \hookrightarrow an be found in the 'SSL/TLS: Report Supported Cipher Suites' (OID: 1.3.6.1.4.1 \hookrightarrow .25623.1.0.802067) VT.

Impact

An attacker might be able to use the known cryptographic flaws to eavesdrop the connection between clients and the service to get access to sensitive data transferred within the secured connection.

Furthermore newly uncovered vulnerabilities in this protocols won't receive security updates anymore.

Solution:

Solution type: Mitigation

It is recommended to disable the deprecated TLSv1.0 and/or TLSv1.1 protocols in favor of the TLSv1.2+ protocols. Please see the references for more information.

Affected Software/OS

All services providing an encrypted communication using the TLSv1.0 and/or TLSv1.1 protocols.

Vulnerability Insight

The TLSv1.0 and TLSv1.1 protocols contain known cryptographic flaws like:

- CVE-2011-3389: Browser Exploit Against SSL/TLS (BEAST)
- CVE-2015-0204: Factoring Attack on RSA-EXPORT Keys Padding Oracle On Downgraded Legacy Encryption (FREAK)

Vulnerability Detection Method

Check the used TLS protocols of the services provided by this system.

Details: SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

OID:1.3.6.1.4.1.25623.1.0.117274 Version used: 2023-10-20T16:09:12Z

References

cve: CVE-2011-3389 cve: CVE-2015-0204

```
... continued from previous page ...
url: https://ssl-config.mozilla.org/
url: https://bettercrypto.org/
url: https://datatracker.ietf.org/doc/rfc8996/
url: https://vnhacker.blogspot.com/2011/09/beast.html
url: https://web.archive.org/web/20201108095603/https://censys.io/blog/freak
url: https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters
\hookrightarrow-report-2014
cert-bund: WID-SEC-2023-1435
cert-bund: CB-K18/0799
cert-bund: CB-K16/1289
cert-bund: CB-K16/1096
cert-bund: CB-K15/1751
cert-bund: CB-K15/1266
cert-bund: CB-K15/0850
cert-bund: CB-K15/0764
cert-bund: CB-K15/0720
cert-bund: CB-K15/0548
cert-bund: CB-K15/0526
cert-bund: CB-K15/0509
cert-bund: CB-K15/0493
cert-bund: CB-K15/0384
cert-bund: CB-K15/0365
cert-bund: CB-K15/0364
cert-bund: CB-K15/0302
cert-bund: CB-K15/0192
cert-bund: CB-K15/0079
cert-bund: CB-K15/0016
cert-bund: CB-K14/1342
cert-bund: CB-K14/0231
cert-bund: CB-K13/0845
cert-bund: CB-K13/0796
cert-bund: CB-K13/0790
dfn-cert: DFN-CERT-2020-0177
dfn-cert: DFN-CERT-2020-0111
dfn-cert: DFN-CERT-2019-0068
dfn-cert: DFN-CERT-2018-1441
dfn-cert: DFN-CERT-2018-1408
dfn-cert: DFN-CERT-2016-1372
dfn-cert: DFN-CERT-2016-1164
dfn-cert: DFN-CERT-2016-0388
dfn-cert: DFN-CERT-2015-1853
dfn-cert: DFN-CERT-2015-1332
dfn-cert: DFN-CERT-2015-0884
dfn-cert: DFN-CERT-2015-0800
dfn-cert: DFN-CERT-2015-0758
dfn-cert: DFN-CERT-2015-0567
dfn-cert: DFN-CERT-2015-0544
... continues on next page ...
```

```
... continued from previous page ...
dfn-cert: DFN-CERT-2015-0530
dfn-cert: DFN-CERT-2015-0396
dfn-cert: DFN-CERT-2015-0375
dfn-cert: DFN-CERT-2015-0374
dfn-cert: DFN-CERT-2015-0305
dfn-cert: DFN-CERT-2015-0199
dfn-cert: DFN-CERT-2015-0079
dfn-cert: DFN-CERT-2015-0021
dfn-cert: DFN-CERT-2014-1414
dfn-cert: DFN-CERT-2013-1847
dfn-cert: DFN-CERT-2013-1792
dfn-cert: DFN-CERT-2012-1979
dfn-cert: DFN-CERT-2012-1829
dfn-cert: DFN-CERT-2012-1530
dfn-cert: DFN-CERT-2012-1380
dfn-cert: DFN-CERT-2012-1377
dfn-cert: DFN-CERT-2012-1292
dfn-cert: DFN-CERT-2012-1214
dfn-cert: DFN-CERT-2012-1213
dfn-cert: DFN-CERT-2012-1180
dfn-cert: DFN-CERT-2012-1156
dfn-cert: DFN-CERT-2012-1155
dfn-cert: DFN-CERT-2012-1039
dfn-cert: DFN-CERT-2012-0956
dfn-cert: DFN-CERT-2012-0908
dfn-cert: DFN-CERT-2012-0868
dfn-cert: DFN-CERT-2012-0867
dfn-cert: DFN-CERT-2012-0848
dfn-cert: DFN-CERT-2012-0838
dfn-cert: DFN-CERT-2012-0776
dfn-cert: DFN-CERT-2012-0722
dfn-cert: DFN-CERT-2012-0638
dfn-cert: DFN-CERT-2012-0627
dfn-cert: DFN-CERT-2012-0451
dfn-cert: DFN-CERT-2012-0418
dfn-cert: DFN-CERT-2012-0354
dfn-cert: DFN-CERT-2012-0234
dfn-cert: DFN-CERT-2012-0221
dfn-cert: DFN-CERT-2012-0177
dfn-cert: DFN-CERT-2012-0170
dfn-cert: DFN-CERT-2012-0146
dfn-cert: DFN-CERT-2012-0142
dfn-cert: DFN-CERT-2012-0126
dfn-cert: DFN-CERT-2012-0123
dfn-cert: DFN-CERT-2012-0095
dfn-cert: DFN-CERT-2012-0051
dfn-cert: DFN-CERT-2012-0047
... continues on next page ...
```

dfn-cert: DFN-CERT-2012-0021
dfn-cert: DFN-CERT-2011-1953
dfn-cert: DFN-CERT-2011-1946
dfn-cert: DFN-CERT-2011-1844
dfn-cert: DFN-CERT-2011-1826
dfn-cert: DFN-CERT-2011-1774
dfn-cert: DFN-CERT-2011-1743
dfn-cert: DFN-CERT-2011-1738
dfn-cert: DFN-CERT-2011-1706
dfn-cert: DFN-CERT-2011-1628
dfn-cert: DFN-CERT-2011-1627
dfn-cert: DFN-CERT-2011-1619
dfn-cert: DFN-CERT-2011-1619

[return to 10.10.92.26]

2.2.3 Medium 21/tcp

Medium (CVSS: 4.8)

NVT: FTP Unencrypted Cleartext Login

Summary

The remote host is running a FTP service that allows cleartext logins over unencrypted connections

Quality of Detection: 70

Vulnerability Detection Result

The remote FTP service accepts logins without a previous sent 'AUTH TLS' command \hookrightarrow . Response(s):

Non-anonymous sessions: 331 Please specify the password. Anonymous sessions: 331 Please specify the password.

Impact

An attacker can uncover login names and passwords by sniffing traffic to the FTP service.

Solution:

Solution type: Mitigation

Enable FTPS or enforce the connection via the 'AUTH TLS' command. Please see the manual of the FTP service for more information.

Vulnerability Detection Method

Tries to login to a non FTPS enabled FTP service without sending a 'AUTH TLS' command first and checks if the service is accepting the login without enforcing the use of the 'AUTH TLS' command.

Details: FTP Unencrypted Cleartext Login

OID:1.3.6.1.4.1.25623.1.0.108528 Version used: 2023-12-20T05:05:58Z

[return to 10.10.92.26]

2.2.4 Medium 80/tcp

Medium (CVSS: 5.3)

NVT: phpinfo() Output Reporting (HTTP)

Summary

Reporting of files containing the output of the phpinfo() PHP function previously detected via HTTP.

Quality of Detection: 80

Vulnerability Detection Result

The following files are calling the function phpinfo() which disclose potentiall \hookrightarrow y sensitive information: http://10.10.92.26/phpinfo.php

Concluded from:

<title>PHP 7.4.33 - phpinfo()</title>

Configuration File (php.ini) Path

<h2>PHP Variables</h2>

http://10.10.92.26/phpinfo.php

Concluded from:

<title>PHP 7.4.33 - phpinfo()</title><meta name="ROBOTS" content="NOINDEX,NOFO \hookrightarrow LLOW,NOARCHIVE" /></head>

Configuration File (php.ini) Path /etc/ph \hookrightarrow p/7.4/fpm

<h2>PHP Variables</h2>

Impact

Some of the information that can be gathered from this file includes:

The username of the user running the PHP process, if it is a sudo user, the IP address of the host, the web server version, the system version (Unix, Linux, Windows, ...), and the root directory of the web server.

Solution:

Solution type: Workaround

Delete the listed files or restrict access to them.

Affected Software/OS

All systems exposing a file containing the output of the phpinfo() PHP function.

This VT is also reporting if an affected endpoint for the following products have been identified:

- CVE-2008-0149: TUTOS
- CVE-2023-49282, CVE-2023-49283: Microsoft Graph PHP SDK

Vulnerability Insight

Many PHP installation tutorials instruct the user to create a file called phpinfo.php or similar containing the phpinfo() statement. Such a file is often left back in the webserver directory.

Vulnerability Detection Method

This script reports files identified by the following separate VT: 'phpinfo() Output Detection (HTTP)' (OID: 1.3.6.1.4.1.25623.1.0.108474).

Details: phpinfo() Output Reporting (HTTP)

OID: 1.3.6.1.4.1.25623.1.0.11229

Version used: 2023-12-14T08:20:35Z

References

cve: CVE-2008-0149 cve: CVE-2023-49282 cve: CVE-2023-49283

url: https://www.php.net/manual/en/function.phpinfo.php

[return to 10.10.92.26]

2.2.5 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection: 80

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 2249769633 Packet 2: 2249770765

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled.

The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 10.10.92.26]

2.2.6 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection: 80

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2023-05-11T09:09:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

 $[\ {\rm return\ to\ 10.10.92.26}\]$

2.2.7 Low 22/tcp

18

Low (CVSS: 2.6)

NVT: Weak MAC Algorithm(s) Supported (SSH)

Summary

The remote SSH server is configured to allow / support weak MAC algorithm(s).

Quality of Detection: 80

Vulnerability Detection Result

The remote SSH server supports the following weak client-to-server MAC algorithm \hookrightarrow (s):

umac-64-etm@openssh.com

umac-64@openssh.com

The remote SSH server supports the following weak server-to-client MAC algorithm \hookrightarrow (s):

umac-64-etm@openssh.com

umac-64@openssh.com

Solution:

Solution type: Mitigation

Disable the reported weak MAC algorithm(s).

Vulnerability Detection Method

Checks the supported MAC algorithms (client-to-server and server-to-client) of the remote SSH server

Currently weak MAC algorithms are defined as the following:

- MD5 based algorithms
- 96-bit based algorithms
- 64-bit based algorithms
- 'none' algorithm

Details: Weak MAC Algorithm(s) Supported (SSH)

OID:1.3.6.1.4.1.25623.1.0.105610 Version used: 2023-10-12T05:05:32Z

References

url: https://www.rfc-editor.org/rfc/rfc6668

url: https://www.rfc-editor.org/rfc/rfc4253#section-6.4

[return to 10.10.92.26]

$2.3 \quad 10.10.92.2$

Host scan start Thu Mar 28 23:35:32 2024 UTC Host scan end Fri Mar 29 00:15:03 2024 UTC

Service (Port)	Threat Level
general/icmp	Low
$22/\mathrm{tcp}$	Low
general/tcp	Low

2.3.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection: 80

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2023-05-11T09:09:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514
cert-bund: CB-K14/0632
dfn-cert: DFN-CERT-2014-0658

[return to 10.10.92.2]

2.3.2 Low 22/tcp

Low (CVSS: 2.6)

NVT: Weak MAC Algorithm(s) Supported (SSH)

Summary

The remote SSH server is configured to allow / support weak MAC algorithm(s).

Quality of Detection: 80

Vulnerability Detection Result

The remote SSH server supports the following weak client-to-server MAC algorithm \hookrightarrow (s):

umac-64-etm@openssh.com

umac-64@openssh.com

The remote SSH server supports the following weak server-to-client MAC algorithm \hookrightarrow (s):

umac-64-etm@openssh.com

umac-64@openssh.com

Solution:

Solution type: Mitigation

Disable the reported weak MAC algorithm(s).

Vulnerability Detection Method

Checks the supported MAC algorithms (client-to-server and server-to-client) of the remote SSH server

Currently weak MAC algorithms are defined as the following:

- $\mathrm{MD}5$ based algorithms
- 96-bit based algorithms
- 64-bit based algorithms
- 'none' algorithm

Details: Weak MAC Algorithm(s) Supported (SSH)

OID:1.3.6.1.4.1.25623.1.0.105610

Version used: 2023-10-12T05:05:32Z

References

url: https://www.rfc-editor.org/rfc/rfc6668

url: https://www.rfc-editor.org/rfc/rfc4253#section-6.4

[return to 10.10.92.2]

2.3.3 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection: 80

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 4183258962 Packet 2: 4183260114

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323
url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 10.10.92.2]

$2.4 \quad 10.10.92.20$

Host scan start Thu Mar 28 23:35:32 2024 UTC Host scan end Fri Mar 29 00:13:00 2024 UTC

Service (Port)	Threat Level
$22/\mathrm{tcp}$	Low
general/tcp	Low
general/icmp	Low

2.4.1 Low 22/tcp

Low (CVSS: 2.6)

NVT: Weak MAC Algorithm(s) Supported (SSH)

Summary

The remote SSH server is configured to allow / support weak MAC algorithm(s).

Quality of Detection: 80

Vulnerability Detection Result

The remote SSH server supports the following weak client-to-server MAC algorithm \hookrightarrow (s):

 ${\tt umac-64-etm@openssh.com}$

umac-64@openssh.com

The remote SSH server supports the following weak server-to-client MAC algorithm

 \hookrightarrow (s):

umac-64-etm@openssh.com umac-64@openssh.com

Solution:

Solution type: Mitigation

Disable the reported weak MAC algorithm(s).

Vulnerability Detection Method

Checks the supported MAC algorithms (client-to-server and server-to-client) of the remote SSH server.

Currently weak MAC algorithms are defined as the following:

- MD5 based algorithms
- 96-bit based algorithms
- 64-bit based algorithms
- 'none' algorithm

Details: Weak MAC Algorithm(s) Supported (SSH)

OID:1.3.6.1.4.1.25623.1.0.105610 Version used: 2023-10-12T05:05:32Z

References

url: https://www.rfc-editor.org/rfc/rfc6668

url: https://www.rfc-editor.org/rfc/rfc4253#section-6.4

 $[\ \mathrm{return\ to\ }10.10.92.20\]$

2.4.2 Low general/tcp

Low (CVSS: 2.6)

NVT: TCP Timestamps Information Disclosure

Summary

The remote host implements TCP timestamps and therefore allows to compute the uptime.

Quality of Detection: 80

Vulnerability Detection Result

It was detected that the host implements RFC1323/RFC7323.

The following timestamps were retrieved with a delay of 1 seconds in-between:

Packet 1: 1756133940 Packet 2: 1756135082

Impact

A side effect of this feature is that the uptime of the remote host can sometimes be computed.

Solution:

Solution type: Mitigation

To disable TCP timestamps on linux add the line 'net.ipv4.tcp_timestamps = 0' to /etc/sysctl.conf. Execute 'sysctl-p' to apply the settings at runtime.

To disable TCP timestamps on Windows execute 'netsh int tcp set global timestamps=disabled' Starting with Windows Server 2008 and Vista, the timestamp can not be completely disabled. The default behavior of the TCP/IP stack on this Systems is to not use the Timestamp options when initiating TCP connections, but use them if the TCP peer that is initiating communication includes them in their synchronize (SYN) segment.

See the references for more information.

Affected Software/OS

TCP implementations that implement RFC1323/RFC7323.

Vulnerability Insight

The remote host implements TCP timestamps, as defined by RFC1323/RFC7323.

Vulnerability Detection Method

Special IP packets are forged and sent with a little delay in between to the target IP. The responses are searched for a timestamps. If found, the timestamps are reported.

Details: TCP Timestamps Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.80091

Version used: 2023-12-15T16:10:08Z

References

url: https://datatracker.ietf.org/doc/html/rfc1323 url: https://datatracker.ietf.org/doc/html/rfc7323

url: https://web.archive.org/web/20151213072445/http://www.microsoft.com/en-us/d

→ownload/details.aspx?id=9152

url: https://www.fortiguard.com/psirt/FG-IR-16-090

[return to 10.10.92.20]

2.4.3 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection: 80

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2023-05-11T09:09:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792
url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632 dfn-cert: DFN-CERT-2014-0658

[return to 10.10.92.20]

$2.5 \quad 10.10.92.1$

Host scan start Thu Mar 28 23:35:32 2024 UTC

 ${\rm Host\ scan\ end}$

Service (Port)	Threat Level
m general/icmp	Low

2.5.1 Low general/icmp

Low (CVSS: 2.1)

NVT: ICMP Timestamp Reply Information Disclosure

Summary

The remote host responded to an ICMP timestamp request.

Quality of Detection: 80

Vulnerability Detection Result

The following response / ICMP packet has been received:

- ICMP Type: 14 - ICMP Code: 0

Impact

This information could theoretically be used to exploit weak time-based random number generators in other services.

Solution:

Solution type: Mitigation

Various mitigations are possible:

- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing through the firewall in either direction (either completely or only for untrusted networks)

Vulnerability Insight

The Timestamp Reply is an ICMP message which replies to a Timestamp message. It consists of the originating timestamp sent by the sender of the Timestamp as well as a receive timestamp and a transmit timestamp.

Vulnerability Detection Method

Sends an ICMP Timestamp (Type 13) request and checks if a Timestamp Reply (Type 14) is received.

Details: ICMP Timestamp Reply Information Disclosure

OID:1.3.6.1.4.1.25623.1.0.103190 Version used: 2023-05-11T09:09:33Z

References

cve: CVE-1999-0524

url: https://datatracker.ietf.org/doc/html/rfc792

 \dots continued from previous page \dots

url: https://datatracker.ietf.org/doc/html/rfc2780

cert-bund: CB-K15/1514 cert-bund: CB-K14/0632

dfn-cert: DFN-CERT-2014-0658

[return to 10.10.92.1]

This file was automatically generated.