5.3 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is appropriately named because it establishes a connection between the two branches of calculus: differential calculus and integral calculus. Differential calculus arose from the tangent problem, whereas integral calculus arose from a seemingly unrelated problem, the area problem. Newton's mentor at Cambridge, Isaac Barrow (1630–1677), discovered that these two problems are actually closely related. In fact, he realized that differentiation and integration are inverse processes. The Fundamental Theorem of Calculus gives the precise inverse relationship between the derivative and the integral. It was Newton and Leibniz who exploited this relationship and used it to develop calculus into a systematic mathematical method. In particular, they saw that the Fundamental Theorem enabled them to compute areas and integrals very easily without having to compute them as limits of sums as we did in Sections 5.1 and 5.2.

■ The Fundamental Theorem of Calculus, Part 1

The first part of the Fundamental Theorem deals with functions defined by an equation of the form

$$g(x) = \int_{a}^{x} f(t) dt$$

where f is a continuous function on [a, b] and x varies between a and b. Observe that g depends only on x, which appears as the variable upper limit in the integral. If x is a fixed number, then the integral $\int_a^x f(t) dt$ is a definite number. If we then let x vary, the number $\int_a^x f(t) dt$ also varies and defines a function of x denoted by g(x).

If f happens to be a positive function, then g(x) can be interpreted as the area under the graph of f from a to x, where x can vary from a to b. (Think of g as the "area so far" function; see Figure 1.)

SOLUTION First we notice that $g(0) = \int_0^0 f(t) dt = 0$. From Figure 3 we see that g(1) is the area of a triangle:

$$g(1) = \int_0^1 f(t) dt = \frac{1}{2} (1 \cdot 2) = 1$$

To find q(2) we add to q(1) the area of a rectangle:

$$g(2) = \int_0^2 f(t) dt = \int_0^1 f(t) dt + \int_1^2 f(t) dt = 1 + (1 \cdot 2) = 3$$

y = f(t)

v = f(t)

area = q(x)

0 *a*

2

FIGURE 1

FIGURE 2

FIGURE 4 $g(x) = \int_{0}^{x} f(t) dt$

FIGURE 5

We abbreviate the name of this theorem as FTC1. In words, it says that the derivative of a definite integral with respect to its upper limit is the integrand evaluated at the upper limit.

We estimate that the area under f from 2 to 3 is about 1.3, so

$$g(3) = g(2) + \int_{2}^{3} f(t) dt \approx 3 + 1.3 = 4.3$$

For t > 3, f(t) is negative and so we start subtracting areas:

$$g(4) = g(3) + \int_{3}^{4} f(t) dt \approx 4.3 + (-1.3) = 3.0$$

$$g(5) = g(4) + \int_{4}^{5} f(t) dt \approx 3 + (-1.3) = 1.7$$

We use these values to sketch the graph of g in Figure 4. Notice that, because f(t) is positive for t < 3, we keep adding area for t < 3 and so g is increasing up to x = 3, where it attains a maximum value. For x > 3, g decreases because f(t) is negative.

If we take f(t) = t and a = 0, then, using Exercise 5.2.47, we have

$$g(x) = \int_0^x t \, dt = \frac{x^2}{2}$$

Notice that g'(x) = x, that is, g' = f. In other words, if g is defined as the integral of f by Equation 1, then g turns out to be an antiderivative of f, at least in this case. And if we sketch the derivative of the function g shown in Figure 4 by estimating slopes of tangents, we get a graph like that of f in Figure 2. So we suspect that g' = f in Example 1 too.

To see why this might be generally true we consider any continuous function f with $f(x) \ge 0$. Then $g(x) = \int_a^x f(t) dt$ can be interpreted as the area under the graph of f from a to x, as in Figure 1.

In order to compute g'(x) from the definition of a derivative we first observe that, for h > 0, g(x + h) - g(x) is obtained by subtracting areas, so it is the area under the graph of f from x to x + h (the blue area in Figure 5). For small h you can see from the figure that this area is approximately equal to the area of the rectangle with height f(x) and width h:

$$g(x + h) - g(x) \approx hf(x)$$
$$\frac{g(x + h) - g(x)}{h} \approx f(x)$$

so

Intuitively, we therefore expect that

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f(x)$$

The fact that this is true, even when f is not necessarily positive, is the first part of the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{-\infty}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

PROOF If x and x + h are in (a, b), then

$$g(x+h) - g(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt$$

$$= \left(\int_{a}^{x} f(t) dt + \int_{x}^{x+h} f(t) dt \right) - \int_{a}^{x} f(t) dt \qquad \text{(by Property 5 of integrals)}$$

$$= \int_{x}^{x+h} f(t) dt$$

$$\frac{g(x+h)-g(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

For now let's assume that h > 0. Since f is continuous on [x, x + h], the Extreme Value Theorem says that there are numbers u and v in [x, x + h] such that f(u) = m and f(v) = M, where m and M are the absolute minimum and maximum values of f on [x, x + h]. (See Figure 6.)

By Property 8 of integrals, we have

$$mh \le \int_{x}^{x+h} f(t) dt \le Mh$$
$$f(u)h \le \int_{x}^{x+h} f(t) dt \le f(v)h$$

that is,

Now we use Equation 2 to replace the middle part of this inequality:

$$f(u) \le \frac{g(x+h) - g(x)}{h} \le f(v)$$

Inequality 3 can be proved in a similar manner for the case where h < 0. (See Exercise 87.)

Now we let $h \to 0$. Then $u \to x$ and $v \to x$ because u and v lie between x and x + h. Therefore

$$\lim_{h \to 0} f(u) = \lim_{u \to x} f(u) = f(x)$$
 and $\lim_{h \to 0} f(v) = \lim_{v \to x} f(v) = f(x)$

because f is continuous at x. We conclude, from (3) and the Squeeze Theorem, that

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f(x)$$

If x = a or b, then Equation 4 can be interpreted as a one-sided limit. Then Theorem 2.8.4 (modified for one-sided limits) shows that g is continuous on [a, b].

Using Leibniz notation for derivatives, we can write FTC1 as

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

when f is continuous. Roughly speaking, Equation 5 says that if we first integrate f and then differentiate the result, we get back to the original function f.

FIGURE 6

FIGURE 7

$$f(x) = \sin(\pi x^2/2)$$

$$S(x) = \int_0^x \sin(\pi t^2/2) dt$$

FIGURE 8

The Fresnel function

$$S(x) = \int_0^x \sin(\pi t^2/2) dt$$

EXAMPLE 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1 + t^2} dt$.

SOLUTION Since $f(t) = \sqrt{1 + t^2}$ is continuous, Part 1 of the Fundamental Theorem of Calculus gives

$$g'(x) = \sqrt{1 + x^2}$$

EXAMPLE 3 Although a formula of the form $g(x) = \int_a^x f(t) dt$ may seem like a strange way of defining a function, books on physics, chemistry, and statistics are full of such functions. For instance, the **Fresnel function**

$$S(x) = \int_0^x \sin(\pi t^2/2) dt$$

is named after the French physicist Augustin Fresnel (1788–1827), who is famous for his works in optics. This function first appeared in Fresnel's theory of the diffraction of light waves, but more recently it has been applied to the design of highways.

Part 1 of the Fundamental Theorem tells us how to differentiate the Fresnel function:

$$S'(x) = \sin(\pi x^2/2)$$

This means that we can apply all the methods of differential calculus to analyze S (see Exercise 81).

Figure 7 shows the graphs of $f(x) = \sin(\pi x^2/2)$ and the Fresnel function $S(x) = \int_0^x f(t) dt$. A computer was used to graph S by computing the value of this integral for many values of x. It does indeed look as if S(x) is the area under the graph of f from 0 to x [until $x \approx 1.4$ when S(x) becomes a difference of areas]. Figure 8 shows a larger part of the graph of S.

If we now start with the graph of S in Figure 7 and think about what its derivative should look like, it seems reasonable that S'(x) = f(x). [For instance, S is increasing when f(x) > 0 and decreasing when f(x) < 0.] So this gives a visual confirmation of Part 1 of the Fundamental Theorem of Calculus.

EXAMPLE 4 Find $\frac{d}{dx} \int_{1}^{x^4} \sec t \, dt$.

SOLUTION Here we have to be careful to use the Chain Rule in conjunction with FTC1. Let $u = x^4$. Then

$$\frac{d}{dx} \int_{1}^{x^{4}} \sec t \, dt = \frac{d}{dx} \int_{1}^{u} \sec t \, dt$$

$$= \frac{d}{du} \left[\int_{1}^{u} \sec t \, dt \right] \frac{du}{dx} \qquad \text{(by the Chain Rule)}$$

$$= \sec u \, \frac{du}{dx} \qquad \text{(by FTC1)}$$

$$= \sec(x^{4}) \cdot 4x^{3}$$

■ The Fundamental Theorem of Calculus, Part 2

In Section 5.2 we computed integrals from the definition as a limit of Riemann sums and we saw that this procedure is sometimes long and difficult. The second part of the Fundamental Theorem of Calculus, which follows easily from the first part, provides us with a much simpler method for the evaluation of integrals.

We abbreviate this theorem as FTC2.

The Fundamental Theorem of Calculus, Part 2 If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function F such that F' = f.

PROOF Let $g(x) = \int_a^x f(t) dt$. We know from Part 1 that g'(x) = f(x); that is, g is an antiderivative of f. If F is any other antiderivative of f on [a, b], then we know from Corollary 4.2.7 that F and g differ by a constant:

$$F(x) = g(x) + C$$

for a < x < b. But both F and g are continuous on [a, b] and so, by taking limits of both sides of Equation 6 (as $x \to a^+$ and $x \to b^-$), we see that it also holds when x = a and x = b. So F(x) = g(x) + C for all x in [a, b].

If we put x = a in the formula for g(x), we get

$$g(a) = \int_a^a f(t) \, dt = 0$$

So, using Equation 6 with x = b and x = a, we have

$$F(b) - F(a) = [g(b) + C] - [g(a) + C]$$
$$= g(b) - g(a) = g(b) = \int_a^b f(t) dt$$

Part 2 of the Fundamental Theorem states that if we know an antiderivative F of f, then we can evaluate $\int_a^b f(x) dx$ simply by subtracting the values of F at the endpoints of the interval [a, b]. It's very surprising that $\int_a^b f(x) dx$, which was defined by a complicated procedure involving all of the values of f(x) for $a \le x \le b$, can be found by knowing the values of F(x) at only two points, a and b.

Although the theorem may be surprising at first glance, it becomes plausible if we interpret it in physical terms. If v(t) is the velocity of an object and s(t) is its position at time t, then v(t) = s'(t), so s is an antiderivative of v. In Section 5.1 we considered an object that always moves in the positive direction and made the observation that the area under the velocity curve is equal to the distance traveled. In symbols:

$$\int_a^b v(t) dt = s(b) - s(a)$$

That is exactly what FTC2 says in this context.

EXAMPLE 5 Evaluate the integral $\int_1^3 e^x dx$.

SOLUTION The function $f(x) = e^x$ is continuous everywhere and we know that an antiderivative is $F(x) = e^x$, so Part 2 of the Fundamental Theorem gives

$$\int_{1}^{3} e^{x} dx = F(3) - F(1) = e^{3} - e$$

Notice that FTC2 says we can use *any* antiderivative F of f. So we may as well use the simplest one, namely $F(x) = e^x$, instead of $e^x + 7$ or $e^x + C$.

Compare the calculation in Example 5 with the much harder one in Example 5.2.4.

Notation

We often use the notation

$$F(x)\Big]_a^b = F(b) - F(a)$$

So the equation of FTC2 can be written as

$$\int_{a}^{b} f(x) dx = F(x) \Big]_{a}^{b} \quad \text{where} \quad F' = f$$

Other common notations are $F(x)|_a^b$ and $[F(x)]_a^b$.

EXAMPLE 6 Find the area under the parabola $y = x^2$ from 0 to 1.

SOLUTION An antiderivative of $f(x) = x^2$ is $F(x) = \frac{1}{3}x^3$. The required area *A* is found using Part 2 of the Fundamental Theorem:

$$A = \int_0^1 x^2 dx = \frac{x^3}{3} \bigg]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$$

If you compare the calculation in Example 6 with the one in Example 5.1.2, you will see that the Fundamental Theorem gives a *much* shorter method.

EXAMPLE 7 Evaluate $\int_3^6 \frac{dx}{x}$.

SOLUTION The given integral is another way of writing

$$\int_3^6 \frac{1}{x} dx$$

An antiderivative of f(x) = 1/x is $F(x) = \ln |x|$ and, because $3 \le x \le 6$, we can write $F(x) = \ln x$. So

$$\int_{3}^{6} \frac{1}{x} dx = \ln x \Big]_{3}^{6} = \ln 6 - \ln 3 = \ln \frac{6}{3} = \ln 2$$

EXAMPLE 8 Find the area under the cosine curve from 0 to b, where $0 \le b \le \pi/2$.

SOLUTION Since an antiderivative of $f(x) = \cos x$ is $F(x) = \sin x$, we have

$$A = \int_0^b \cos x \, dx = \sin x \Big]_0^b = \sin b - \sin 0 = \sin b$$

In particular, taking $b = \pi/2$, we have proved that the area under the cosine curve from 0 to $\pi/2$ is $\sin(\pi/2) = 1$. (See Figure 9.)

When the French mathematician Gilles de Roberval first found the area under the sine and cosine curves in 1635, this was a very challenging problem that required a great deal of ingenuity. If we didn't have the benefit of the Fundamental Theorem, we would have to compute a difficult limit of sums using obscure trigonometric identities (or use a computer algebra system as in Exercise 5.1.33). It was even more difficult for Roberval because the apparatus of limits had not been invented in 1635. But in the 1660s and 1670s, when the Fundamental Theorem was discovered by Barrow and

In applying the Fundamental Theorem we use a particular antiderivative F of f. It is not necessary to use the most general antiderivative.

FIGURE 9

exploited by Newton and Leibniz, such problems became very easy, as you can see from Example 8.

EXAMPLE 9 What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

SOLUTION To start, we notice that this calculation must be wrong because the answer is negative but $f(x) = 1/x^2 \ge 0$ and Property 6 of integrals says that $\int_a^b f(x) dx \ge 0$ when $f \ge 0$. The Fundamental Theorem of Calculus applies to continuous functions. It can't be applied here because $f(x) = 1/x^2$ is not continuous on [-1, 3]. In fact, f has an infinite discontinuity at x = 0, and we will see in Section 7.8 that

$$\int_{-1}^{3} \frac{1}{x^2} dx$$
 does not exist.

Differentiation and Integration as Inverse Processes

We end this section by bringing together the two parts of the Fundamental Theorem.

The Fundamental Theorem of Calculus Suppose f is continuous on [a, b].

- **1.** If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- **2.** $\int_a^b f(x) dx = F(b) F(a)$, where F is any antiderivative of f, that is, F' = f.

We noted that Part 1 can be rewritten as

$$\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x)$$

This says that if we integrate a continuous function f and then differentiate the result, we arrive back at the original function f. We could use Part 2 to write

$$\int_{a}^{x} F'(t) dt = F(x) - F(a)$$

which says that if we differentiate a function F and then integrate the result, we arrive back at the original function F, except for the constant F(a). So taken together, the two parts of the Fundamental Theorem of Calculus say that integration and differentiation are inverse processes.

The Fundamental Theorem of Calculus is unquestionably the most important theorem in calculus and, indeed, it ranks as one of the great accomplishments of the human mind. Before it was discovered, from the time of Eudoxus and Archimedes to the time of Galileo and Fermat, problems of finding areas, volumes, and lengths of curves were so difficult that only a genius could meet the challenge, and even then, only for very special cases. But now, armed with the systematic method that Newton and Leibniz fashioned out of the Fundamental Theorem, we will see in the chapters to come that these challenging problems are accessible to all of us.