Quantitative Sociological Analysis

Inferential Statistics Confidence Intervals and Hypothesis Testing

Part 6

March 27, 2025

Confidence intervals for sample statistics

- Why is a different equation needed for nominal and ordinal variables?
 - sample mean vs proportion

Recall

$$SE = \frac{sd}{\sqrt{N}}$$

- Why would a CI get wider if alpha were set smaller?
- Why would a CI get narrower if the random sample size were larger?

Hypothesis testing: one-sample

• Through the confidence interval (CI) exercise you constructed a range of plausible values within which the true population parameter, in this case mean age, was likely to fall given a specified level of confidence

- However, this did not tell us whether your sample statistic was consistent with the population value if known, or hypothesized population value if unknown
 - Was your sample mean (\bar{X}) statistically different from the population mean (μ) ?
- The probability of obtaining a sample statistic as extreme as the observed one, assuming the null hypothesis is true, is given by the p-value in a hypothesis test
 - Null hypothesis (H_0) : assumes no difference
 - Alternative hypothesis (H_a): suggests a difference

Hypothesis testing: sample mean

- Let's pretend that our Netflix survey results are the consumer population
 - Since we do not know the true Netflix consumer population parameters

$$\mu_{age} = 19.82$$

$$\sigma_{age} = 4.09$$

- One team obtained a relatively large mean age ($\bar{X}=23.8$) and
 - relatively wide 95% confidence interval (16.47,31.13)
- What is the probability of obtaining a sample with a mean age of 23.8?
 - two-tailed hypothesis test with known parameters (μ, σ)
 - set alpha, significance level: in this case let's use 0.05

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{N}}$$
, so $Z = \frac{23.8 - 19.82}{4.09/\sqrt{5}} = 2.18$

Thus, should we reject or fail to reject the null hypothesis at that 0.05 level?

What about at the 0.01 level?

*Null hypothesis: the sample mean (\bar{X}) is not statistically different from the population mean (μ)

Hypothesis testing

- designed to determine whether an observed difference is statistically significant
 - Unlikely to have occurred by random chance alone
- Z-test: used when comparing a sample statistic to a known population parameter
 - given the population standard deviation (σ) is known
- t-test: used when the population standard deviation is unknown, either
 - to compare a sample statistic to a hypothesized value (one-sample), or
 - to compare a sample statistic between groups in the same sample (paired t-test) or
 - a different sample (two-sample t-test)

Z and t are theoretical probability distributions used to compute p-values, which indicate the likelihood of obtaining a statistic as extreme as the observed one under the null hypothesis (H_0): assumes no difference

The p-value is the probability of obtaining a test statistic as extreme as or more extreme than the observed one, assuming the null hypothesis (H_0) is true

The Z and some t distributions

See how the shape of a t distribution differs based on degrees of freedom (df)

In this case, df is based on sample size (df = n - 1)

Why do t distributions with relatively smaller df have fatter tails compared to the Z distribution?

Note: area under each distribution, curve, respectively sums to 1

Hypothesis testing

- 1. Make assumptions and meet test requirements
 - random sample; level of measurement; sample size; are parameters un/known
- 2. State the null (H_0) and alternative (H_a) hypothesis
 - H_0 no difference; H_a there is a difference
- 3. Choose a significance level (critical value)
 - e.g., $\alpha = 0.05$
- 4. Compute the test statistic
- 5. Draw a conclusion and interpret the test results
 - If $p < \alpha$ then reject H_0

Hypothesis testing: step one

- 1. Make assumptions and meet test requirements
 - random sample; level of measurement; sample size; are parameters un/known
- Why would the data need to be from a random sample?
 - consider the CLT and its connection with probability theory
- Why does level of measurement matter?
 - consider how assumptions based on connections to probability distributions
- Why is it important to consider sample size?
 - consider how a t distribution is determined
- How would the test differ if parameters were known versus unknown?

Hypothesis testing: step two

- 2. State the null (H_0) and alternative (H_a) hypothesis
 - H_0 no difference; H_a there is a difference
- H_0 : $\theta = \theta_0$
- The alternative hypothesis can take on one of three forms

• H_a : $\theta \neq \theta_0$

two-tailed

• H_a : $\theta > \theta_0$

one-tailed

• H_a : $\theta < \theta_0$

What region(s) of the distribution would each be concerned with?

Hypothesis testing: step three

- 3. Choose a significance level (critical value)
 - e.g., $\alpha = 0.05$
- Threshold at which the null hypothesis will be reject
 - the probability of rejecting H_0 when it is actually true

Type I error

 $z \text{ curve (probability distribution of test statistic } Z \text{ when } H_0 \text{ is true})$ $= \alpha = P(\text{type I error})$ $= \alpha = P(\text{type I error})$ $= \alpha = P(\text{type I error})$ $= \alpha = \alpha/2$ $= \alpha/2$

See how the region(s) of the curve differ based on one-tailed vs two-tailed test

Hypothesis testing: errors

• How improbable must a sample statistic be to reject the null hypothesis?

	Decision	
State of H_0	Reject H_0	Fail to reject H_0
TRUE	Type I Error	ОК
FALSE	ОК	Type II Error

false negative

false positive

Hypothesis testing: step four & five

- 4. Compute the test statistic
 - e.g., obtain a Z or t score
- 5. Draw a conclusion and interpret the test results
- A table of values that correspond with the test statistic can be used to determine if it falls beyond the critical value at which α was set
 - In which case, the null hypothesis H_0 would be rejected
- Rather, critical values are associated with p-values, and we can use that information
 - If $p < \alpha$ then reject H_0 , or If $p > \alpha$ then fail to reject H_0

Hypothesis testing: p-values

- The probability of obtaining a sample statistic as extreme, or more extreme, than the one observed, assuming the null hypothesis H_0 is true
 - p-values range between 0 and 1
- The smaller the p-value, the stronger the evidence to reject H_0
 - assuming H_0 is true
- NOT the probability that H_0 is true
- NOT the probability of an error

Hypothesis testing: Exercise 6b

See Rscript Ex_6b_Cl_HypTest