Qualifying Exam Quantum Mechanics – SOLUTIONS August 2020

Solve <u>one</u> of the two problems in Part A, and <u>one</u> of the two problems in Part B. Each problem is worth 50 points.

Part A

Problem 1.

Let us consider an electron whose squared orbital angular momentum L^2 is measured to be $6\hbar^2$.

1.a) [5 points] For each one of the two bases described above, list all the possible states for the electron which are compatible with this measurement.

We have $s = \frac{1}{2}$ and l = 2 (since l(l+1) = 6). Since $l+s \le j \le |l-s|$, the allowed values for j will be $j = \frac{5}{2}$, $j = \frac{3}{2}$.

As a consequence, there will be ten possible states in the basis $\{|jm_j\rangle\}$: $j=\frac{5}{2}$ with $m_j=\frac{5}{2},\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2},-\frac{5}{2}$ (six states) and $j=\frac{3}{2}$ with $m_j=\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2}$ (four states).

In the basis $\{|m_l m_s\rangle\}$, we can have all possible combinations of $m_s = -\frac{1}{2}, \frac{1}{2}$ with $m_l = 2, 1, 0, -1, -2$, which is again ten states.

1.b) [15 points] Find the expression of the following basis states $\{|jm_j\rangle\}$ in terms of the appropriate elements of the basis $\{|m_lm_s\rangle\}$.

1.b.1: First state on the ladder, here is only one possible way of satisfying $m_j = m_s + m_l$, therefore

$$|j = \frac{5}{2} m_j = \frac{5}{2}\rangle = |m_l = 2 m_s = \frac{1}{2}\rangle$$

1.b.2: We should apply the lowering operator on both sides to obtain

$$|j = \frac{5}{2} m_j = \frac{3}{2}\rangle = \sqrt{\frac{4}{5}} |m_l = 1 m_s = \frac{1}{2}\rangle + \sqrt{\frac{1}{5}} |m_l = 2 m_s = -\frac{1}{2}\rangle$$

and then apply the orthogonality condition to get

$$|j = \frac{3}{2} \ m_j = \frac{3}{2}\rangle = \sqrt{\frac{1}{5}} \ |m_l = 1 \ m_s = \frac{1}{2}\rangle - \sqrt{\frac{4}{5}} \ |m_l = 2 \ m_s = -\frac{1}{2}\rangle$$

1.b.3 : Not a possible state. We cannot have $j = \frac{1}{2}$ if $s = \frac{1}{2}$ and l = 2.

1.b.4: We can continue to apply the lowering operator until we reach the minimum of m_j , or start from the bottom of the ladder (which is faster). The only combination of m_s and m_l that allows for $m_j = -\frac{5}{2}$ is

$$|j = \frac{5}{2} m_j = -\frac{5}{2}\rangle = |m_l = -2 m_s = -\frac{1}{2}\rangle$$

1.c) [15 points] Now assume the electron to be in the state with $j = \frac{3}{2}$, and $m_j = \frac{1}{2}$ (and the value of l is the same as in the previous questions). If one measures the z-components of the electron orbital angular momentum and spin, what are the possible values and their probabilities?

In our problem, there are only two configurations of m_s and m_l that are compatible with $|j=\frac{3}{2},$ and $m_j=\frac{1}{2},$ namely the states $|m_l=1|m_s=-\frac{1}{2}\rangle$ and $|m_l=0|m_s=\frac{1}{2}\rangle$.

To obtain the probabilities, we start from the expression that we obtained in question 1.b.2), and we apply once more the lowering operator, to obtain:

$$|j = \frac{3}{2} m_j = \frac{1}{2}\rangle = \sqrt{\frac{2}{5}} |m_l = 0 m_s = \frac{1}{2}\rangle - \sqrt{\frac{3}{5}} |m_l = 1 m_s = -\frac{1}{2}\rangle$$

which allows to read the probabilities $\frac{2}{5}$ and $\frac{3}{5}$, respectively for the pair of values $(m_l = 0, m_s = \frac{1}{2})$ and $(m_l = 1, m_s = -\frac{1}{2})$.

1.d) [15 points] Let us now assume that the electron is in the state with $m_l = 1$ and $m_s = -\frac{1}{2}$ (again, l did not change). What are the possible values of j and their probabilities?

Here we have the "inverse" problem as 1.c). The state $|m_l = 1m_s = -\frac{1}{2}\rangle$ must be a linear combination of the states $|j = \frac{3}{2} m_j = \frac{1}{2}\rangle$ (which we know already) and $|j = \frac{5}{2} m_j = \frac{1}{2}\rangle$ (which we do not have yet).

Let us first find $|j = \frac{5}{2} m_j = \frac{1}{2}\rangle$. We can obtain it by applying the lowering operator to $|j = \frac{5}{2} m_j = \frac{3}{2}\rangle$ or simply by using the orthogonality with $|j = \frac{3}{2} m_j = \frac{1}{2}\rangle$. In either way, we get:

$$|j = \frac{5}{2} m_j = \frac{1}{2}\rangle = \sqrt{\frac{3}{5}} |m_l = 0 m_s = \frac{1}{2}\rangle + \sqrt{\frac{2}{5}} |m_l = 1 m_s = -\frac{1}{2}\rangle$$

We can solve now for $|m_l = 1 \ m_s = -\frac{1}{2}\rangle$, to get

$$|m_l = 1 \ m_s = -\frac{1}{2}\rangle = \sqrt{\frac{2}{5}} \ |j = \frac{5}{2} \ m_j = \frac{1}{2}\rangle - \sqrt{\frac{3}{5}} \ |j = \frac{3}{2} \ m_j = \frac{1}{2}\rangle$$

. Therefor, we will have $j=\frac{5}{2}$ with probability $\frac{2}{5}$ and $j=\frac{3}{2}$ with probability $\frac{3}{5}$.

Qualifying Exam Quantum Mechanics June 2021

Problem 1. Consider two observables \hat{A} and \hat{B} in a three-dimensional Hilbert space. In the basis:

$$|1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad , \quad |2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad , \quad |3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \, ,$$

the observables \hat{A} and \hat{B} are represented, respectively, by the matrices

$$A \to a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix} \quad , \quad B \to b \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$$

where $b \ll a$.

a) [5 points] Show that the observables \hat{A} and \hat{B} are not compatible. Check the commutator $[\hat{A}, \hat{B}]$. Since \hat{A} and \hat{B} do not commute, the observables are NOT compatible. in particular, \hat{A} and \hat{B} do not admit a common set of eigenstates.

b) [10 points] Compute the possible outcomes and the corresponding probabilities of separate (independent) measurements of \hat{A} and \hat{B} in the state $|\chi\rangle = \sqrt{\frac{1}{2}} (|2\rangle - |3\rangle)$.

 \hat{A} : in general, we have three possible outcomes in the eigenvalues $a_1 = 1a$, $a_2 = 2a$, $a_3 = 6a$, which correspond to the three eigenstates $|1\rangle$, $|2\rangle$, and $|3\rangle$. The probabilities are given by $P_i = |\langle \chi | i \rangle|^2$, where i = 1, 2, 3.

Since $|\chi\rangle = \sqrt{\frac{1}{2}}(|2\rangle - |3\rangle)$, we will measure $a_2 = 2a$ with a probability of 50% and $a_3 = 6a$ with a probability of 50%.

 \hat{B} : the possible outcomes are given by the eigenvalues. Let us firts compute them together with the corresponding eigenstates $|B_1\rangle$, $|B_2\rangle$, and $|B_3\rangle$. The probabilities will be given by $P_i = |\langle \chi | B_i \rangle|^2$, where i = 1, 2, 3.

The first eigenvalue is $b_1 = -1b$, and $|B_1\rangle = |1\rangle$. By diagonalizing the sub-matrix $\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$, we find that the additional eigenvalues are $b_2 = -2b$ and $b_3 = +2b$, with respective eigenvectors $|B_2\rangle = \sqrt{\frac{1}{2}} (|2\rangle - |3\rangle)$ and $|B_3\rangle \sqrt{\frac{1}{2}} (|2\rangle + |3\rangle)$.

Since $|\chi\rangle = |B_2\rangle$, we will measure $b_2 = -2b$ with a probability of 100%.

c) [10 points] Compute the possible outcomes and the corresponding probabilities of a measurements of \hat{B} that follows a measurement of \hat{A} , if the system is initially in the state $|\chi\rangle$. What about a measurement of \hat{A} that follows a measurements of \hat{B} ?

After the measurement of \hat{A} , the state of the system will be in $|2\rangle$ or $|3\rangle$ with a probability of 50% each. Noting that $|2\rangle = \sqrt{\frac{1}{2}} (|B_2\rangle + |B_3\rangle)$ and $|3\rangle = \sqrt{\frac{1}{2}} (|B_2\rangle - |B_3\rangle)$, we can conclude

Quantum Mechanics - Solutions First Examination - June 2021 Ph.D. Program in Physics The Graduate Center CUNY

that the measurement of \ddot{B} will have a 50% probability of $b_2 = -2b$ a 50% probability of $b_3 = +2b.$

Note that, if we were to perform the measurement of \hat{B} first, it would give a $b_2 = -2b$ with 100% probability and turn the state of the system in — B_2). However, since $|\chi\rangle = |B_2\rangle$, the subsequent measurement of \hat{A} would give the same outcomes as in part b) of the problem.

Let us now construct the Hamiltonian $\hat{H} = \hat{A} + \hat{B}$. Since $b \ll a$, we can use perturbation theory to study \hat{H} .

d) [10 points] After writing down the eigenstates and eigenvalues of $\hat{H}_0 = \hat{A}$, compute the firstand second-order corrections to the energy levels due to the correction $\hat{H}_p = \hat{B}$.

Leading Order. (just for defining notation). In the basis defined by

$$|1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad , \quad |2\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad , \quad |3\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix} \, ,$$

we have $E_1^0 = 1a$, $E_2^0 = 2a$, $E_3^0 = 6a$.

$$E_1^1 = \langle 1|\hat{H}_p|1\rangle = -1b, \ E_2^1 = \langle 2|\hat{H}_p|2\rangle = 0, \ E_3^1 = \langle 3|\hat{H}_p|3\rangle = 0.$$

First Order. We use $E_n^1 = \langle n | \hat{H}_p | n \rangle$, to obtain $E_1^1 = \langle 1 | \hat{H}_p | 1 \rangle = -1b$, $E_2^1 = \langle 2 | \hat{H}_p | 2 \rangle = 0$, $E_3^1 = \langle 3 | \hat{H}_p | 3 \rangle = 0$. Second Order. Using $E_n^2 = \sum_{k \neq n} \frac{|\langle k | \hat{H}_p | n \rangle|^2}{E_n^0 - E_k^0}$, we get $E_1^2 = 0$, $E_2^2 = -\frac{b^2}{a}$, $E_3^1 = +\frac{b^2}{a}$.

Therefore, up to second order

$$E_1 = a - b + \ldots = a [1 - X + \mathcal{O}(X^3)]$$

$$E_2 = 2a - \frac{b^2}{a} + \ldots = a \left[2 - X^2 + \mathcal{O}(X^3) \right]$$

$$E_1 = a - b + \dots = a [1 - X + \mathcal{O}(X^3)]$$

$$E_2 = 2a - \frac{b^2}{a} + \dots = a [2 - X^2 + \mathcal{O}(X^3)]$$

$$E_3 = 6a + \frac{b^2}{a} + \dots = a [6 + X^2 + \mathcal{O}(X^3)]$$

where X = b/a.

e) [10 points] Compute the energy eigenstates of \hat{H} up to first order in perturbation theory.

$$|p_1^1\rangle = 0$$

$$|p_2^1\rangle = \sum_{k\neq 2} \frac{\langle k|\hat{H}_p|2\rangle}{E_0^0 - E_0^0} |k\rangle = \frac{\langle 3|\hat{H}_p|2\rangle}{E_0^0 - E_0^0} |3\rangle = \frac{2b}{-4a} |3\rangle = -\frac{b}{2a} |3\rangle$$

$$|p_{2}^{1}\rangle = \sum_{k \neq 2} \frac{\langle k|\hat{H}_{p}|2\rangle}{E_{2}^{0} - E_{k}^{b}} |k\rangle = \frac{\langle 3|\hat{H}_{p}|2\rangle}{E_{2}^{0} - E_{3}^{0}} |3\rangle = \frac{2b}{-4a} |3\rangle = -\frac{b}{2a} |3\rangle$$

$$|p_{3}^{1}\rangle = \sum_{k \neq 3} \frac{\langle k|\hat{H}_{p}|3\rangle}{E_{3}^{0} - E_{k}^{0}} |k\rangle = \frac{\langle 2|\hat{H}_{p}|3\rangle}{E_{3}^{0} - E_{2}^{0}} |2\rangle = \frac{2b}{4a} |2\rangle = \frac{b}{2a} |2\rangle$$

Therefore, up to first order:

$$|p_1\rangle = |1\rangle$$

$$|p_2\rangle = |2\rangle - \frac{b}{2a}|3\rangle + \dots$$

$$|p_2\rangle = |2\rangle - \frac{b}{2a}|3\rangle + \dots$$

$$|p_3\rangle = |3\rangle + \frac{b}{2a}|2\rangle + \dots$$

f) [5 points] After finding the exact solutions, check that your results for the energy levels obtained in perturbation theory are correct.

By diagonalizing the matrix

$$\hat{H} = a \begin{pmatrix} 1 - X & x & 0 \\ x & 2 & 2X \\ 0 & 2X & 6 \end{pmatrix} ,$$

Quantum Mechanics - Solutions First Examination - June 2021 Ph.D. Program in Physics The Graduate Center CUNY

we get the eigenvalues
$$\lambda_1=(1-X)$$
 and $\lambda_{2,3}=4\mp 2\sqrt{1+x^2}$. By expanding $\lambda_{2,3}$ for small X , i.e. $\sqrt{1+X^2}=1+\frac{1}{2}X^2+\mathcal{O}(X^4)$, we obtain: $\lambda_2=4-2(1+\frac{1}{2}X^2)=2-X^2$, and $\lambda_3=4+2(1+\frac{1}{2}X^2)=6+X^2$, in agreement with part a).

Time-independent Perturbation Theory:

$$E_n^1 = \langle n|\hat{H}_p|n\rangle; \quad E_n^i = \langle p_n^0|\hat{H}_p|p_n^{i-1}\rangle; \quad |p_n^1\rangle = \sum_{k\neq n} \frac{\langle k|\hat{H}_p|n\rangle}{E_n^0 - E_k^0} |k\rangle$$

Qualifying Exam Quantum Mechanics August 2021 Solutions

Problem 1.

Consider a spin-1 particle in the state:

$$|\psi\rangle = \sqrt{\frac{1}{3}} \Big(|+\rangle + |0\rangle + |-\rangle \Big) \,,$$

where $|+\rangle \equiv |s=1,s_z=1\rangle,\, |0\rangle \equiv |s=1,s_z=0\rangle,\, \text{and}\,\, |-\rangle \equiv |s=1,s_z=-1\rangle$ are the eigenstates of \hat{S}_z .

1.a) (5 points) Show that the \hat{S}_z operator can be written as $\hat{S}_z = \hbar(|+\rangle\langle+|) - \hbar(|-\rangle\langle-|)$. Write the expression for the operator \hat{S}_z^2 .

Textbook problem. The simplest way is to use the spectral decomposition $\hat{A} = \sum_i |a_i\rangle \lambda_i\langle a_i|$, where $|a_i\rangle$ and λ_i are the eigenvectors and eigenvalues of the operator \hat{A} , respectively.

By squaring \hat{S}_z , we obtain $\hat{S}_z^2 = \hbar^2 |+\rangle \langle +|+|-\rangle \langle -|$.

In matrix form (if need be) this would be represented by

$$\hat{S}_z \to \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad , \quad \hat{S}_z^2 \to \hbar^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \; .$$

1.b) (15 points) Beginning with the state $|\psi\rangle$, consider measuring first \hat{S}_z^2 , then measuring afterwards \hat{S}_z . What are the possible measurement outcomes of \hat{S}_z^2 and the corresponding probabilities? What are the possible outcomes of a measurement of \hat{S}_z after \hat{S}_z^2 has been measured and the corresponding probabilities?

First measurement (\hat{S}_z^2) : The possible outcomes are given by the eigenvalues of \hat{S}_z^2 , which are 0 (non degenerate) and \hbar^2 (degenerate of degree 2) respectively. We will measure $S_z^2=0$ with probability $P_0=|\langle\psi|0\rangle|^2=\frac{1}{3}$. We will measure $S_z^2=\hbar^2$ with probability $P_+=|\langle\psi|1\rangle|^2=\frac{2}{3}$, where $|1\rangle=\sqrt{\frac{1}{2}}\big(|+\rangle+|-\rangle\big)$ is the eigenstate of eigenvalue \hbar^2 and the state of the system after the measurement. Note that the from of $|1\rangle$ can be obtained directly (by observing the form of the operator S_z^2 and the initial state of the system) or by applying the projector $P=|+\rangle\langle+|+|-\rangle\langle-|$ to the initial state of the system and normalizing the outcome.

Second measurement (\hat{S}_z) : If the outcome of the first measurement was $S_z^2 = 0$, the system is now in the state |0>. We will then measure $S_z = 0$ with probability $P_0 = |\langle 0|0\rangle|^2 = 1$.

If the outcome of the first measurement was $S_z^2 = 1$, the system is now in the state $|1\rangle = \sqrt{\frac{1}{2}} \left(|+\rangle + |-\rangle \right)$. We will then measure $S_z = \hbar$ with probability $P_+ = |\langle 1|+\rangle|^2 = \frac{1}{2}$ and $S_z = -\hbar$ with probability $P_- = |\langle 1|-\rangle|^2 = \frac{1}{2}$.

Assume the Hamiltonian of the system to be

$$\hat{H} = A\hat{S}_{z}^{2} + B(\hat{S}_{x}^{2} - \hat{S}_{y}^{2}) \,.$$

1.c) (5 points) Show that, in the basis of eigenstates of \hat{S}_z , the operators \hat{S}_x and \hat{S}_y have the form:

$$\hat{S}_x \to \frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad , \quad \hat{S}_y \to \frac{i\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} .$$

Textbook calculation. One common way is to use the operators S_+ and S_- , given in the formulae, and then build the linear combinations using $S_{\pm} = S_x \pm i S_y$.

1.d) (10 points) Find the matrix representation of \hat{H} , in the basis of eigenstates of \hat{S}_z . Using the expressions of S_x , S_y , and S_z , which were given in 1.c) and 1.a), one can easily obtain

$$\hat{H} \to \hbar^2 \begin{pmatrix} A & 0 & B \\ 0 & 0 & 0 \\ B & 0 & A \end{pmatrix} .$$

- 1.e) (10 points) Solve the problem exactly, to find the eigenvalues and eigenstates of \hat{H} .

 The energy eigenstates and eigenvalues are: $|E_{\pm}\rangle = \sqrt{\frac{1}{2}} \Big(|+\rangle \pm |-\rangle \Big)$ with eigenvalues $E_{\pm} = \hbar^2 (A \pm B)$ and $|E_0\rangle = |0\rangle$ with eigenvalue $E_0 = 0$.
- 1.f) (5 points) Compute the expectation value of the energy in the state $|\psi\rangle$. Compute $\langle \hat{H} \rangle_{\psi} = \langle \psi | \hat{H} | \psi \rangle = \sum_{i} E_{i} |\langle \psi | E_{i} \rangle|^{2}$ to obtain $\langle \hat{H} \rangle_{\psi} = \frac{2}{3} \hbar^{2} (A + B)$.

Qualifying Exam Quantum Mechanics

SOLUTIONS Problem 1: August 2022

Problem 1. Part A.

In the basis of eigenstates of the angular momentum operator \hat{S}_z , namely

$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $|-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ where $\hat{S}_z |\pm\rangle = \pm \frac{\hbar}{2} |\pm\rangle$,

the state of a particle of spin $\frac{1}{2}$ is represented by $|\psi\rangle = \begin{pmatrix} 2i \\ -1 \end{pmatrix}$.

A physical observable \hat{G} is represented, in the same basis, by the matrix

$$\hat{G} = g \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} .$$

a) (10 points) After properly normalizing the state $|\psi\rangle$, find the possible outcomes and related probabilities of independent measurements of \hat{S}_z and \hat{S}^2 .

Since $\langle \psi | \psi \rangle = 5$, the properly normalized initial state is $|\psi\rangle = \frac{1}{\sqrt{5}} \begin{pmatrix} 2i \\ -1 \end{pmatrix} = \frac{2i}{\sqrt{5}} |+\rangle - \frac{1}{\sqrt{5}} |-\rangle$

The operators \hat{S}_z and \hat{S}^2 in the basis of eigenstates of \hat{S}_z are given by

$$\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad , \quad \hat{S}^2 = \frac{3\hbar}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} .$$

A measurement of \hat{S}_z in $|\psi\rangle$ will give $\lambda_+ = +\frac{\hbar}{2}$ with probability $P_+ = |\langle +|\psi\rangle|^2 = 0.80$ and $\lambda_- = -\frac{\hbar}{2}$ with probability $P_- = |\langle -|\psi\rangle|^2 = 0.20$. A measurement of \hat{S}^2 will give $\frac{3\hbar^2}{4}$ with probability 1.

b) (10 points) Compute the expectation values of \hat{S}_z and \hat{S}^2 in the state $|\psi\rangle$ and the related uncertainties. Expectation value of \hat{S}_z : $\langle \hat{S}_z \rangle_{\psi} = \lambda_+ P_+ + \lambda_- P_- = \frac{4}{5} \frac{\hbar}{2} - \frac{1}{5} \frac{\hbar}{2} = \frac{3\hbar}{10}$. (It can be also computed using $\langle \psi | \hat{S}_z | \psi \rangle \dots \rangle$.

Similarly $\langle \hat{S}_{z}^{2} \rangle_{\psi} = \lambda_{+}^{2} P_{+} + \lambda_{-}^{2} P_{-} = \frac{4}{5} \frac{\hbar^{2}}{4} + \frac{1}{5} \frac{\hbar^{2}}{4} = \frac{\hbar^{2}}{4}.$ The related uncertainty is $\Delta \hat{S}_{z} = \sqrt{\langle \hat{S}_{z}^{2} \rangle_{\psi} - \langle \hat{S}_{z} \rangle_{\psi}^{2}} = \sqrt{\frac{\hbar^{2}}{4} - \frac{9\hbar^{2}}{100}} = \sqrt{\frac{4\hbar^{2}}{25}} = \frac{2\hbar}{5}$

Expectation value of \hat{S}^2 : Not much to compute here. $\langle \hat{S}^2 \rangle_{\psi} = \frac{3\hbar^2}{4}$ with $\Delta \hat{S}^2 = 0$.

c) (5 points) Is the observable \hat{G} compatible with \hat{S}_z ? Is it compatible with \hat{S}^2 ? Compute the commutators to show that $[\hat{G}, \hat{S}_z] \neq 0$ while $[\hat{G}, \hat{S}^2] = 0$.

d) (15 points) Compute the possible outcomes of an independent measurement of \hat{G} in the state $|\psi\rangle$ and the related probabilities.

First of all we need to "diagonalize" \hat{G} , i.e. find eigenvalues and eigenvectors. With standard procedures we can find that the two eigenvalues are $g_1 = g$ and $g_2 = 3g$. The corresponding eigenstates are $|g_1\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix} = \frac{1}{\sqrt{2}}|+\rangle - \frac{1}{\sqrt{2}}|-\rangle$ and $|g_2\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}}|+\rangle + \frac{1}{\sqrt{2}}|-\rangle$.

A measurement of \hat{G} in $|\psi\rangle$ will give $g_1=g$ with probability $P_1=|\langle g_1|\psi\rangle|^2=\frac{1}{2}$ and $g_2=3g$ with probability $P_2 = |\langle g_2 | \psi \rangle|^2 = \frac{1}{2}$.

e) (10 points) Suppose the system is initially in the state $|\psi\rangle$. Now consider a measurement of \hat{S}_z performed on the system right after a measurement of \hat{G} . List the possible outcomes and their probabilities. Repeat the calculation for a measurement of \hat{G} performed after a measurement of \hat{S}_z .

Measurement of \hat{S}_z performed on the system right after a measurement of \hat{G} : after the first measurement (\hat{G}) the system will not be in $|\psi\rangle$ anymore, but in the state $|g_1\rangle$ or $|g_2\rangle$, according to the outcome of the measurement of \hat{G} . We now measure \hat{S}_z . If the measurement of \hat{G} gave g_1 , we will find $\lambda_+ = +\frac{\hbar}{2}$ with probability $P_+ = |\langle +|g_1\rangle|^2 = \frac{1}{2}$ and $\lambda_- = -\frac{\hbar}{2}$ with probability $P_- = |\langle -|g_1\rangle|^2 = \frac{1}{2}$. Similarly, ff the measurement of \hat{G} gave g_2 , we will find $\lambda_+ = +\frac{\hbar}{2}$ with probability $P_+ = |\langle +|g_2\rangle|^2 = \frac{1}{2}$ and $\lambda_- = -\frac{\hbar}{2}$ with probability $P_- = |\langle -|g_2\rangle|^2 = \frac{1}{2}$.

Measurement of \hat{G} performed on the system right after a measurement of \hat{S}_z : after the first measurement (\hat{S}_z) the system will not be in $|\psi\rangle$ anymore, but in the state $|+\rangle$ or $|-\rangle$, according to the outcome of the measurement of \hat{S}_z . We now measure \hat{G} . If the measurement of \hat{S}_z gave $+\frac{\hbar}{2}$, we will find $g_1=g$ with probability $P_1=|\langle g_1|+\rangle|^2=\frac{1}{2}$ and $g_2=3g$ with probability $P_2=|\langle g_2|+\rangle|^2=\frac{1}{2}$. Similarly, ff the measurement of \hat{S}_z gave $-\frac{\hbar}{2}$ we will find $g_1=g$ with probability $P_1=|\langle g_1|-\rangle|^2=\frac{1}{2}$ and $g_2=3g$ with probability $P_2=|\langle g_2|-\rangle|^2=\frac{1}{2}$.

Qualifying Exam – June 2023 Quantum Mechanics

Solutions

The operators **L** and **S** (such that $[\mathbf{L}, \mathbf{S}] = 0$) are associated with angular momenta l = 3 and s = 1, respectively. The operator **J** is defined as the the sum of **L** and **S**, namely $\mathbf{J} = \mathbf{L} + \mathbf{S}$.

1.a) [10 pts] How many states belong to each of the two o.n.c. sets $\{|l, s, m_l, m_s\rangle\} = \{|m_l, m_s\rangle\}$ and $\{|l, s, j, m_j\rangle\} = \{|j, m_j\rangle\}$? List all the elements of each set.

We have s=1 and l=3. Since $l+s \le j \le |l-s|$, the allowed values for j will be j=2, j=3, and j=4.

As a consequence, there will be 21 possible states in the basis $\{|jm_j\rangle\}$: j=4 with $m_j=4,3,2,1,0,-1,-2,-3,-4$ (9 values); j=3 with $m_j=3,2,1,0,-1,-2,-3$ (7 values); j=2 with $m_j=2,1,0,-1,-2$ (5 values).

In the basis $\{|m_l m_s\rangle\}$, we can have all possible combinations of $m_s = 1, 0, -1$ with $m_l = 3, 2, 1, 0, -1, -2, -3$, namely $(2m_s + 1) * (2m_l + 1)$, which is again 21 states.

1.b) [15 pts] Find the expression of the following states in terms of the appropriate elements of the basis $\{|m_l,m_s\rangle\}$. This part requires the direct construction of all CG coefficients relevant to the solution of the problem.

$$|j = 4, m_j = 4\rangle$$

 $|j = 3, m_j = 3\rangle$
 $|j = 4, m_i = -4\rangle$

 $|j=4 m_j=4\rangle$. As the first state on the ladder, here there is only one possible way of satisfying $m_j=m_s+m_l$, therefore

$$|j = 4 \ m_j = 4\rangle = |m_l = 3 \ m_s = 1\rangle$$
.

 $|j=3|m_j=3\rangle$. We should first apply the lowering operator on both sides to obtain

$$|j = 4 \ m_j = 3\rangle = \sqrt{\frac{3}{4}} |m_l = 2 \ m_s = 1\rangle + \sqrt{\frac{1}{4}} |m_l = 3 \ m_s = 0\rangle,$$

and then apply the orthogonality condition to get

$$|j = 3 \ m_j = 3\rangle = \sqrt{\frac{1}{4}} |m_l = 2 \ m_s = 1\rangle - \sqrt{\frac{3}{4}} |m_l = 3 \ m_s = 0\rangle.$$

 $|j=4 m_j=-4\rangle$. We can continue to apply the lowering operator until we reach the minimum of m_j , or start from the bottom of the ladder (which is more advisable!). The only combination of m_s and m_l that allows for $m_j=-4$ is

$$|j = 4 \ m_j = -4\rangle = |m_l = -3 \ m_s = -1\rangle$$
.

1.c) [15 pts] A quantum system is prepared in the state

$$|\phi\rangle = |j=3, m_i=3\rangle$$
.

Compute the expectation values of \hat{S}_z , \hat{L}_z , \hat{J}_z , \hat{L}^2 , \hat{S}^2 , and \hat{J}^2 in the state $|\phi\rangle$.

 $|\phi\rangle$ is an eigenstate of \hat{L}^2 , \hat{S}^2 , \hat{J}^2 , \hat{J}_z , with quantum numbers l=3, s=1, j=3 and $m_j=3$, respectively. Therefore, the corresponding expectation values are:

$$\langle \phi | \hat{L}^2 | \phi \rangle = \hbar^2 l(l+1) = 12\hbar^2$$
$$\langle \phi | \hat{S}^2 | \phi \rangle = \hbar^2 s(s+1) = 2\hbar^2$$
$$\langle \phi | \hat{J}^2 | \phi \rangle = \hbar^2 j(j+1) = 12\hbar^2$$
$$\langle \phi | \hat{J}_z | \phi \rangle = \hbar m_j = 3\hbar.$$

In order to compute the expectation values of \hat{S}_z and \hat{L}_z , we express $|\phi\rangle$ in the basis $\{|m_l m_s\rangle\}$. As found previously, we have

$$|\phi\rangle = |j = 3 \ m_j = 3\rangle = \sqrt{\frac{1}{4}} \ |m_l = 2 \ m_s = 1\rangle - \sqrt{\frac{3}{4}} \ |m_l = 3 \ m_s = 0\rangle.$$

We can now compute $\langle \phi | \hat{L}_z | \phi \rangle$ and $\langle \phi | \hat{S}_z | \phi \rangle$ to find:

$$\langle \phi | \hat{L}_z | \phi \rangle = \frac{11}{4} \hbar$$

$$\langle \phi | \hat{S}_z | \phi \rangle = \frac{1}{4} \hbar .$$

1.d) [10 pts] List the probabilities of all possible outcomes in a measurement of m_s performed in the quantum state $|\phi\rangle$ (and check that they sum to one). Repeat the same calculation for independent measurements of m_l and m_j in the state $|\phi\rangle$.

Since

$$|\phi\rangle = |j = 3 \ m_j = 3\rangle = \sqrt{\frac{1}{4}} \ |m_l = 2 \ m_s = 1\rangle - \sqrt{\frac{3}{4}} \ |m_l = 3 \ m_s = 0\rangle$$

we would measure $m_s = 1\hbar$ with a probability $P_1 = \frac{1}{4}$ and $m_s = 0$ with a probability $P_0 = \frac{3}{4}$ (while $P_{-1} = 0$). Similarly for m_l , we would measure $m_l = 3\hbar$ with a probability $P_3 = \frac{3}{4}$ and $m_l = 2\hbar$ with a probability $P_2 = \frac{1}{4}$ (all other values with probability zero). Finally, a measurement of m_i would always give $3\hbar$ ($P_3 = 1$, all other probabilities are zero).

Qualifying Exam – August 2023 Quantum Mechanics

Solutions

Problem 1. Consider two observables \hat{A} and \hat{B} in a four-dimensional Hilbert space. In the basis $\{|n\rangle\}$:

$$|1\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \quad , \quad |2\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \quad , \quad |3\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \quad , \quad |4\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \, ,$$

the physical observables \hat{A} and \hat{B} are represented, respectively, by the matrices

$$A \to \begin{pmatrix} a_1 & 0 & 0 & 0 \\ 0 & a_2 & 0 & 0 \\ 0 & 0 & 10 & 5i \\ 0 & 0 & -5i & 10 \end{pmatrix} \quad , \quad B \to \begin{pmatrix} 2 & 4 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 0 & 0 & b_3 & 0 \\ 0 & 0 & 0 & b_4 \end{pmatrix} \, ,$$

where the parameters a_1 , a_2 , b_3 , b_4 are real numbers different from zero.

2.a) [15 pts] What are the possible outcomes in a measurement of \hat{A} ? What about a measurement of \hat{B} ?

In order to find the possible outcomes in a measurement, we should diagonalize the operators \hat{A} and \hat{B} , in the 2 × 2 sector that is not already diagonal. Regarding \hat{A} , by solving

$$\det\begin{pmatrix} 10 & 5i \\ -5i & 10 \end{pmatrix} = 0,$$

we find the eigenvalues $\lambda_{A,3} = 5$ and $\lambda_{A,4} = 15$. The possible outcomes for a measurement of \hat{A} are therefore a_1 , a_2 , 5, and 15. We also compute right away the corresponding eigenvectors (this will useful later on) to find

$$|3'\rangle = \frac{1}{\sqrt{2}} (|3\rangle - i|4\rangle$$

$$|4'\rangle = \frac{1}{\sqrt{2}} (|3\rangle + i|4\rangle$$

for $\lambda_{A,3}$ and $\lambda_{A,4}$, respectively. For \hat{B} , in a similar manner, we solve

$$\det\begin{pmatrix} 2 & 4i \\ 4 & 2 \end{pmatrix} = 0,$$

to find the eigenvalues $\lambda_{B,1}=-2$ and $\lambda_{B,2}=6$ and the corresponding eigenvectors

$$|1'\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |2\rangle$$

$$|2'\rangle = \frac{1}{\sqrt{2}} (|3\rangle + |4\rangle$$

for $\lambda_{B,1}$ and $\lambda_{B,2}$, respectively. The possible outcomes for a measurement of \hat{B} are therefore -2, 6, b_3 and b_4 .

2.b) [15 pts] We perform a measurement of \hat{A} for a quantum system that is in the physical state represented by $|s\rangle = \frac{1}{\sqrt{2}}|2\rangle + \frac{1}{2}|3\rangle + \frac{1}{2}|4\rangle$. List the probabilities for each one of the possible outcomes of the measurement and compute the expectation value of \hat{A} in the state $|s\rangle$.

The probabilities for each outcome are given by the inner products $|\langle \lambda | s \rangle|^2$, where we denote with $|\lambda\rangle$ the appropriate eigenstate. Using the results obtained above, we find:

$$P(a_1) = |\langle 1|s \rangle|^2 = 0$$

$$P(a_2) = |\langle 2|s \rangle|^2 = \frac{1}{2}$$

$$P(5) = |\langle 3'|s \rangle|^2 = \frac{1}{4}$$

$$P(15) = |\langle 4'|s \rangle|^2 = \frac{1}{4}$$

which sum correctly to 1. Regarding the expectation value, while we could compute directly $\langle s|\hat{A}|s\rangle$ using the matrix representation (this is also a correct path!), we opt to use the information already available as $\langle s|\hat{A}|s\rangle = \sum_i \lambda_i P_i$. Either way, we obtain

$$\langle s|\hat{A}|s\rangle = \frac{a_2}{2} + \frac{5}{4} + \frac{15}{4} = 5 + \frac{a_2}{2}.$$

2.c) [15 pts] What are the conditions that a_1 , a_2 , b_3 , b_4 should satisfy in order for the two observables \hat{A} and \hat{B} to be compatible? Under these conditions, find a set $\{|n'\rangle\}$ of common eigenstates.

Two observables are compatible if they commute. In our problem, \hat{A} and \hat{B} commute if $a_1 = a_2$ and $b_3 = b_4$. A basis of common eigenstates is readily provides by $|1'\rangle$, $|2'\rangle$, $|3'\rangle$, provided as part of the answer to the first question.

2.d) [5 pts] If we choose the values $a_1 = 2$, $a_2 = 2$, $b_3 = 5$, $b_4 = 5$, what is the correct statement about the obsevables \hat{A} and \hat{B} ? a) they are NOT compatible; b) they are compatible but DO NOT form a complete set of compatible observables; c) they are compatible and form a complete set of compatible observables. Explain your answer.

The choice of the parameters $a_1 = 5$, $a_2 = 5$, $b_3 = 6$, $b_4 = 6$ satisfies the condition of compatibility, namely $a_1 = a_2$ and $b_3 = b_4$. However, the states $|2'\rangle$ and $|3'\rangle$ would not be distinguishable based on measurements of \hat{A} and \hat{B} alone, thus \hat{A} and \hat{B} do not form a complete set of compatible observables.