IEL – semestrální projekt Jiří Žák (xzakji02) 20. prosince 2018

Stanovte napětí U_{R3} a proud I_{R3}. Použijte metodu postupného zjednodušování obvodu.

$$U_1 = 80V$$
, $U_2 = 120V$, $R_1 = 350\Omega$,

$$R_2 = 650\Omega$$
, $R_3 = 410\Omega$,

$$R_4 = 130\Omega$$
, $R_5 = 360\Omega$, $R_6 = 750\Omega$, $R_7 = 310\Omega$,

$$R_8 = 190\Omega$$
, $U_{R3} = ?$, $I_{R3} = ?$

Zjednodušíme:

$$R_{12} = R_1 + R_2 = 1000 \Omega$$

$$R_{78}=(R_7*R_8)/(R_7+R_8)=117.8\Omega$$

$$R_A=(R_4*R_5)/(R_4+R_5+R_6)=37,7419\Omega$$

$$R_B = (R_4 * R_6)/(R_4 + R_5 + R_6) = 78,629\Omega$$

$$R_C = (R_6 * R_5)/(R_4 + R_5 + R_6) = 217,742\Omega$$

 $R_{A12B3} = 332,2068 \Omega$

 $R_{A12B3C78}$ = 667,7478 Ω

Vypočítáme si celkový proud:

 $I = U / R_{A12B3C78} = 200 / 667,7478 = 0.3 A$

Postupně zase rozkládáme zpět a tím vypočítáme U_{R3} a I_{R3:}

$$U_{12B3} = RA12B3 * I = 99,66204 V$$

$$I_{RB3} = U_{A12B3} / R_{B3} = 0,204 A$$

$$U_{R3} = R_3 * I_{RB3} = 83,64 \text{ V}$$

 $I_{R3} = I_{RB3}$

Stanovte napětí U_{R1} a proud I_{R1}. Použijte metodu Theveninovy věty.

Spočítáme si celkový odpor obvodu a poté proud obvodu:

$$R = ((R_2 + R_3) * R_4)/(R_2 + R_3 + R_4) + R_5 = ((350 + 600) * 195)/(350 + 600 + 195) + 650 = 811,7904 \Omega$$

$$I = U / R = 0,1601 A$$

Zjistíme, jak velký proud protéká větví R₂₃:

$$I_{R23} = (I * R_4) / (R_2 + R_3 + R_4) = 0,2727 A$$

Napětí na terminálech AB je stejně velké jako na R₂:

$$U_1 = U_{R2} = I_{R23} * R_2 = 9,54 V$$

Vypočítáme si odpor RI:

$$\begin{split} R_1 &= \left(R_2 * (((R_4 * R_5)/(R_4 + R_5)) + R_3)\right) / (R_2 + (((R_4 * R_5)/(R_4 + R_5)) + R_3)) = 238 \; \Omega \end{split}$$

Podle Ohmova zákona dosadíme:

$$I_{R1} = U_I / (R_I + R_1) = 0.0228 A$$

$$U_{R1} = I_{R1} * R_1 = 4,1042V$$

Pro napájecí napětí platí: u1 = U1·sin(2π *f*t), u2 = U2·sin(2π *f*t).

Ve vztahu pro napět $u_{c2} = U_{C2} \sin(2*f*t + \varphi_{C2})$ určete $|U_{C2}|$ a φ_{C2} . Použijte metodu smyčkových proudů.

Nejprve si vypočítáme impedanci cívek a kondenzátorů:

$$\omega = 2*70*\pi = 439,823 \text{ rad/s}$$

$$Z_{C1} = -j / (\omega^*C_1) = -j / (439,823 * 0,0002) = -j / 0,088 \Omega = -11,3682j \Omega$$

$$Z_{C2} = -j / (\omega^* C_2) = -j / 0,0462 \Omega = -21,6537j \Omega$$

$$Z_{L1} = j^* \omega^* L_1 = 52,7788j \Omega$$

$$Z_{L2} = i^* \omega^* L_2 = 43,9823i \Omega$$

Pomocí smyčkových proudů uděláme 3 rovnice:

A:
$$-U_1 + I_A * Z_{L1} + I_A * R_2 + I_A * Z_{C2} - I_B * R_2 - IB * Z_{L1} - I_C * Z_{C2} = 0$$

B:
$$U_2 + I_B * Z_{L2} + I_B * R_2 + I_B * Z_{L1} + I_B * Z_{C1} + I_B * R_1 - I_A * Z_{L1} - I_A * R_2 - I_C * Z_{L2} = 0$$

C:
$$I_C*R_3 + I_C*Z_{C2} + I_C*Z_{L2} - I_A*Z_{C2} - I_B*Z_{L2} = 0$$

$$I_A(Z_{L1} + R_2 + Z_{C2}) - I_B(R_2 + Z_{C1}) - I_C * Z_{C2} = U_1$$

$$-I_A(Z_{L1} + R_2) + I_B(Z_{L2} + R_2 + Z_{L1} + Z_{C1} + R_1) - I_C * Z_{L2} = -U_2$$

$$-I_A*Z_{C2}-I_B*Z_{L2}+I_C(R_3+Z_{C2}+Z_{L2})=0$$

Uděláme si z toho matici:

14+31,1251j	-(14+52,7788j)	21,6537j	35
-(14+52,7788j)	26+85,3929j	-43,9823j	-55
21,653j	-43,9823j	10+22,3286j	0

Z toho nám vyjde I_A a I_C:

$$I_A = 0,6885 - 1,0518j$$

$$I_C = -1,3001 - 0,0728j$$

Z toho vypočítáme I_{C2}:

$$I_{C2} = I_A - I_C = 1,9886 - 0,979j$$

Dále pak U_{C2}:

$$U_{C2} = I_{C2} * z_{c2} = (1,9886 - 0,979j)*(-21,6537j) = -43,0605 + 21,199jV$$

$$|U_{C2}| = \sqrt{(-43,0605) * (-43,0605) + 21,199 * 21,199}$$

$$|U_{C2}| = 47,9959V$$

$$\varphi C_2 = \arctan(I_{UC2})/R_{UC2}) = 2,6841 \text{ rad}$$

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosažením hodnot parametru. Vypočítejte analytické řešení $u_C = f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

- C = 30 F
- $R = 15 \Omega$
- $U_{c}(0) = 4 V$

Uc

- 1) $I_R = U_R / R$, $I = I_r = I_C$
- 2) $u_C u_R = 0$, $u_C = -u_R$
- 3) $u'_{C} = (1/c)*I_{C} = I/C$

a) dosadíme 1 do 3:

$$u'_{C} = I/C = u_{R} / (R*C)$$

b) vyjádříme u_R z 2)

$$u_R = - u_C$$

c) dosadíme b) do a)

$$u'_C = u_R / (R*C)$$

$$u'_{C} - u_{c} / (R*C) = 0$$

Očekávané řešení (nevíme K a λ):

$$u_c(t) = K(t) * e^{\lambda * t}$$

 λ – charakteristická rovnice

$$\lambda + 1/(R*C) = 0$$

$$\lambda = -1/(R*C) u$$

$$u''_c \rightarrow \lambda^2$$

$$u'_C \rightarrow i$$

$$u_c -> 1$$

konst. -> 0

Dosadíme vyjádřenou lambdu:

$$u_c$$
 (t) = K(t) * $e^{-t/(R^*C)}$

$$u'_{c}(t) = K'(t) * e^{-t/(R*C)} + K(t) * e^{-t/(R*C)} * (-1/R*C)$$

Dosadíme do rovnice:

$$u'_{C} - u_{c} / (R*C) = 0$$

$$K'(t) * e^{-t/(R*C)} + K(t) * e^{-t/(R*C)} * (-1/R*C) + (1/R*C) * K(t) * e^{-t/(R*C)} = 0$$

$$K'(t) * e^{-t/(R*C)} = 0$$

$$K'(t) = 0$$

Integrujeme K':

$$K(t) = k$$

Dosadíme:

$$u_c(t) = k * e^{-t/(30*15)}$$

$$u_c$$
 (t) = u_{cp} * $e^{-t/(15*30)}$

$$u_c(t) = 4 * e^{-t/(15*30)}$$

$$u_c(t) = 4 V$$

Řešení odpovídá původní podmínce:

$$u_{c}(0) = 4 V$$

Dosadíme do počáteční podmínky:

$$u_{c}(0) = u_{cp}$$

$$u_{cp} = k * e^{-t/(R*C)}$$

$$u_{cp} = k * 1$$

$$u_{cp} = k$$

1. příklad	2. příklad	příklad	4. příklad	5. příklad
I _{R3} = 0,204 A	I _{R1} = 0,0228 A		U _{C2} = 47,9959V	u _c (t) = 4 V
U _{R3} = 83,64 V	U _{R1} = 4,1042V		$\phi C_2 = 2,6841 \text{ rad}$	