

planetmath.org

Math for the people, by the people.

symplectic matrix

Canonical name SymplecticMatrix
Date of creation 2013-03-22 13:32:28
Last modified on 2013-03-22 13:32:28

Owner matte (1858) Last modified by matte (1858)

Numerical id 11

Author matte (1858)
Entry type Definition
Classification msc 53D05

A real $2n \times 2n$ matrix $A \in M_{2n}(\mathbb{R})$ is a symplectic matrix if $AJA^T = J$, where A^T is the transpose of A, and $J \in O(2n)$ is the orthogonal matrix

$$J = \left(\begin{array}{cc} \mathbf{0} & \mathbf{I}_n \\ -\mathbf{I}_n & \mathbf{0} \end{array} \right).$$

Here $\mathbf{I}_n \in \mathcal{M}_n(\mathbb{R})$ is the identity $n \times n$ matrix and $\mathbf{0} \in \mathcal{M}_n(\mathbb{R})$ is the zero $n \times n$ matrix.

Symplectic matrices satisfy the following properties:

- 1. The determinant of a symplectic matrix equals one.
- 2. With standard matrix multiplication, symplectic $2n \times 2n$ matrices form a group denoted by $\operatorname{Sp}(2n)$.
- 3. Suppose $\Psi = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where A, B, C, D are $n \times n$ matrices. Then Ψ is symplectic if and only if

$$AD^T - BC^T = I$$
, $AB^T = BA^T$, $CD^T = DC^T$.

4. If X and Y are real $n \times n$ matrices, then U = X + iY is unitary if and only if $\begin{pmatrix} X & -Y \\ Y & X \end{pmatrix}$ is symplectic.