ID : 201911027 Manan Gajjar

Lab Report Lab Assignment 1

Part 1: Linear Regression (univariant)

• Dataset: Total 400 columns; 340 for Training; 60 for evaluation

	GRE Score	Chance of Admit
0	337	0.92
1	324	0.76
2	316	0.72
3	322	0.80
4	314	0.65

Data Visualization

• Linear regression was performed using GRE score as the only feature to predict the chance of admission for a student.

ID: 201911027 Manan Gajjar

- Gradient Descent was implemented from scratch to calculate the slope and bias terms i.e. Θ_0 , Θ_1 which were initially taken as 0, 0
- Parameters Taken

Learning Rate or Alpha: 0.1

o Number of Iterations or Epochs: 1000

• Equation used to fit data:

$$Y = \Theta_0 + \Theta_1 * X$$

- Means Square Error was taken as Cost function which had to be minimized
- Optimal Values after 1000 Epochs were :

o M or Slope or Theta1: 0.482

o C or Bias or Theta0: 0.730

Least Error: 418.472

Prediction for New Data :

GRE Score : 340

Chance Of Admision: [0.67976141] Error: [-0.07023859]

GRE Score : 390

Chance Of Admision: [0.6990253] Error: [0.0590253]

Convergence Graph :

Part 2: Linear Regression (multivariant)

• Dataset: Total 400 columns; 340 for Training; 60 for evaluation

	GRE Score	CGPA	Chance of Admit
0	337	9.65	0.92
1	324	8.87	0.76
2	316	8.00	0.72
3	322	8.67	0.80
4	314	8.21	0.65

- 2 variables : GRE score and CGPA
- Feature scaling was performed to converge faster than the normal.

Data Visualization

- Multilinear regression was performed using GRE score and CGPA as the features to predict the chance of admission for a student.
- Equation used to fit data:

$$Y = \Theta_0 + \Theta_1^* X1 + \Theta_2^* X2$$

- Means Square Error was used as a Cost function.
- Gradient Descent was implemented from scratch to calculate the slopes and bias terms i.e. Θ_0 , Θ_1 and Θ_2 which were initially taken as 0

Parameters Taken

o Learning Rate or Alpha: 0.1

Number of Iterations or Epochs: 1000

• Optimal Values after 500 Epochs were :

 \circ Θ_2 : 0.383

 \circ Θ_1 : 0.238

O₀ or Bias : 0.730
 Least Error : 270.959

• Convergence Graph :

ID : 201911027 Manan Gajjar

• Model Performance :

GRE Score: 340

Chance Of Admision : [0.68387467] Error : [-0.06612533]

GRE Score : 390

Chance Of Admision: [0.66639327] Error: [0.02639327]

Part 3: Logistic Regression

• Dataset: Total 303 rows

	age	thalach	target
0	63	150	1
1	37	187	1
2	41	172	1
3	56	178	1
4	57	163	1

Data Visualization

- Feature/Data Normalization was done to converge faster using mean and standard deviation.
- Data after normalization :

```
([[ 0.9521966 , 0.01544279],
 [-1.91531289, 1.63347147],
 [-1.47415758, 0.97751389],
 [ 0.18017482, 1.23989692],
 [ 0.29046364, 0.58393935],
 [ 0.29046364, -0.07201822],
 [ 0.18017482, 0.1466343 ],
 [-1.1432911 , 1.0212444 ],
 [-0.26098049, 0.54020884],
 [ 0.29046364, 1.0649749 ]])
```

- Logistic regression was implemented to predict heart attack based on the features "age" and "thalach".
- Equation used to fit data:

$$Y = \Theta_0 + \Theta_1^* X1 + \Theta_2^* X2$$

Sigmoid(Z) = 1 / (1 + e^y)

- Sigmoid function ensures that value is normalized in the range (0, 1)
- Log Loss Function is used as cost function :

$$-(y\log(p)+(1-y)\log(1-p))$$

ID : 201911027 Manan Gajjar

• Gradient Descent was implemented from scratch to calculate the slopes and bias terms i.e. Θ_0 , Θ_1 and Θ_2 which were initially taken as 0.

Parameters Taken

o Learning Rate or Alpha: 0.01

o Number of Iterations or Epochs: 300

• Optimal Values after 300 Epochs were :

Θ₂: 0.00283Θ₁: -0.00159

Θ₀ or Bias : 0.00059
 Least Error : 0.6923

• Convergence Graph:

Model Performance

Training Accuracy: 0.6745Testing Accuracy: 0.7143

• In-built function's performance

Training Accuracy: 0.6934Testing Accuracy: 0.7033

Thank You