§ 3.3 Cauchy toferm. Trage: Wie steht man allgemen ob ene: Folge bruggert? Sei (on) represent mit liman=a Also gibt es su jeden e>0, n(E) mit $|q_n - q| \leq E \quad \forall n \geq n(E)$ Doraus flat, dass $\forall n, m \geq n(\epsilon)$ [an-an = lan-a + a-an] $\leq |a_n - a| + |a_m - a| < 2\varepsilon$ Defn 3.21 (an) 1st eine Cauchy Folge falls für ε 00 ein $n(\varepsilon)$ 21 gibt so dass $(q_n - q_m) \langle \varepsilon \rangle + \langle n, m \rangle n \langle \varepsilon \rangle$.

 $|a_n - a| = |a_n - ae(n) + a|$ $\leq |a_n - ae(n)| + |a_e(n)| - a|$

nach satz 3.9 (Monotore konnegenz Sotz)
nach satz 3.9 (Monotore konnegenz satz) (5.62)
₩ + n € N = b - b - 1 = 1 n + 1
haben sie zudem denselben Limes
und (bn) new konunguet nach Sotz 3-19.
D (andog wie in BSp. 3.20)

Notmalch ist auch der (geschlossene)
C-Bell (1)
Notmalch 1st auch der (geschlossene) $F(B, B, A) = B(A) = \{ x \in \mathbb{R}^d : \ x - a\ \le r \}.$
der dos Interal [a-r, a+r] verallgemen
Défni 3, 25. Eine Folge (an) CIRC Eoniergiert gegen acirc fells
O fir Jedes Edo, die llege der
Indien n21 for welche an & Bee(a)
endlich Tst.
Falls dieses Butifft, schreibt men
O ling = a oder on 3a.
Es git doinn meder
Es gift doing weder
Lemma 3.26 Set (an) 21 = 12d bornegnet
Oder Lines ist undertig bestment
(2) du tolo (0) 1st 60.6-2-10
(2) du Folge (an) 1st beschaanlet.

5)	Benerbing. Die Konlegenz von
	(an) ~ 12d Ist glerabeduetend
	mit der Existenz von errem vekter
	a EIR so dors du Folge in IR
),	(llan-all) gegen O konegret
0	
2.	

For eire Folge (an) van Veldoren in 12d

1st es Zweekmassing folgende Nodethon

for die Koordmaten van 9, zu

benotien $a_n = (a_n^{(1)}, a_n^{(2)}, c_n^{(2)})$.

Dann got

Lek 1

C-1-2---Satz 3.28. Folgende Aussagen sind Equivalent. (T) (an) no longer + in 112d (I) Jede der Folgen (an) konverguert Folls dieses zuhrft seien a= liman Source at = 1 m an (1) dann gitt a=(a', a², aal) Dazu branchen wir geometrisches lemma: lemma 3.29. $\forall x = (x', x^2, x^2) \in \mathbb{R}^d$ git $\max |x^{-1}| \leq \max |x^{-1}|$ $1 \leq i \leq d$ $1 \leq i \leq d$ $1 \leq i \leq d$

For a hoben wir noch dass sich die Korperstrikter mit Konvergenz gut Vertragt Nämlich Sot 2 3-32 Seien (Zn), (wn) zwet Konvergente Følgen in C mit 0 Z= lm Zn, w= limwa Dann (i) Zn -> 2n ind (12/11) Long gegen /12/1 (II) Die Folge (2 mm) konvergert gegen Zw. (111) Falls wto und wn to the so konunguet (2n/un) gegen 2/w.

