Contents

Preface								
M	athen	natical n	notation	xi				
Co	onten	ts		xiii				
1	Introduction							
	1.1	Exam	ple: Polynomial Curve Fitting	4				
	1.2		bility Theory					
		1.2.1	Probability densities					
		1.2.2	Expectations and covariances	19				
		1.2.3	Bayesian probabilities	21				
		1.2.4	The Gaussian distribution	24				
		1.2.5	Curve fitting re-visited	28				
		1.2.6	Bayesian curve fitting	30				
	1.3	Model	Selection	32				
	1.4	The C	urse of Dimensionality	33				
	1.5	Decisi	ion Theory	38				
		1.5.1	Minimizing the misclassification rate	39				
		1.5.2	Minimizing the expected loss	41				
		1.5.3	The reject option					
		1.5.4	Inference and decision					
		1.5.5	Loss functions for regression	46				
	1.6	Inform	nation Theory					
		1.6.1	Relative entropy and mutual information	55				
	Exer	cises .		58				

xiv CONTENTS

2	Pro	bability	y Distributions 67
	2.1	Binar	y Variables
		2.1.1	The beta distribution
	2.2	Multi	nomial Variables
		2.2.1	The Dirichlet distribution
	2.3	The C	Gaussian Distribution
		2.3.1	Conditional Gaussian distributions
		2.3.2	Marginal Gaussian distributions
		2.3.3	Bayes' theorem for Gaussian variables
		2.3.4	Maximum likelihood for the Gaussian
		2.3.5	Sequential estimation
		2.3.6	Bayesian inference for the Gaussian
		2.3.7	Student's t-distribution
		2.3.8	Periodic variables
		2.3.9	Mixtures of Gaussians
	2.4		Exponential Family
		2.4.1	Maximum likelihood and sufficient statistics
		2.4.2	Conjugate priors
		2.4.3	Noninformative priors
	2.5	Nonp	arametric Methods
		2.5.1	Kernel density estimators
		2.5.2	Nearest-neighbour methods
	Exe		
3	Lin		dels for Regression 137
	3.1	Linea	r Basis Function Models
		3.1.1	Maximum likelihood and least squares 140
		3.1.2	Geometry of least squares
		3.1.3	Sequential learning
		3.1.4	Regularized least squares
		3.1.5	Multiple outputs
	3.2	The B	Bias-Variance Decomposition
	3.3	Bayes	sian Linear Regression
		3.3.1	Parameter distribution
		3.3.2	Predictive distribution
		3.3.3	Equivalent kernel
	3.4	Bayes	sian Model Comparison
	3.5		Evidence Approximation
		3.5.1	Evaluation of the evidence function 166
		3.5.2	Maximizing the evidence function
		3.5.3	Effective number of parameters
	3.6	Limit	ations of Fixed Basis Functions
	Exe	rcises	173

				CONTENTS	XV
4	Lin	ear Mo	odels for Classification		179
-	4.1		iminant Functions		
		4.1.1	Two classes		. 181
		4.1.2	Multiple classes		. 182
		4.1.3	Least squares for classification		. 184
		4.1.4	Fisher's linear discriminant		. 186
		4.1.5	Relation to least squares		
		4.1.6	Fisher's discriminant for multiple class		
		4.1.7	The perceptron algorithm		. 192
	4.2		abilistic Generative Models		. 196
		4.2.1			. 198
		4.2.2	Maximum likelihood solution		. 200
		4.2.3	Discrete features		. 202
		4.2.4	Exponential family		. 202
	4.3		abilistic Discriminative Models		. 203
	1.5	4.3.1	Fixed basis functions		. 204
		4.3.2	Logistic regression		. 205
		4.3.3	Iterative reweighted least squares		. 207
		4.3.4	Multiclass logistic regression		. 209
		4.3.5	Probit regression		. 210
		4.3.6	Canonical link functions		. 212
	4.4		Laplace Approximation		. 213
		4.4.1	Model comparison and BIC		. 216
	4.5		sian Logistic Regression		. 217
	1	4.5.1	Laplace approximation		. 217
		4.5.2	Predictive distribution		. 218
	Exe	rcises			. 220
5		ıral Ne			225
	5.1		forward Network Functions		
		5.1.1	Weight-space symmetries		. 231
	5.2		ork Training		. 232
		5.2.1	Parameter optimization		. 236
		5.2.2	Local quadratic approximation		
		5.2.3	Use of gradient information		
		5.2.4	Gradient descent optimization		
	5.3		Backpropagation		
		5.3.1	Evaluation of error-function derivative		
		5.3.2			
		5.3.3	Efficiency of backpropagation		
		5.3.4	The Jacobian matrix		
	5.4		Hessian Matrix		
		5.4.1	Diagonal approximation		
		5.4.2	Outer product approximation		
		543	Inverse Hessian		252

xvi CONTENTS

		5.4.4	Finite differences
		5.4.5	Exact evaluation of the Hessian
		5.4.6	Fast multiplication by the Hessian
	5.5	Regul	larization in Neural Networks
		5.5.1	Consistent Gaussian priors
		5.5.2	Early stopping
		5.5.3	Invariances
		5.5.4	Tangent propagation
		5.5.5	Training with transformed data
		5.5.6	Convolutional networks
		5.5.7	Soft weight sharing
	5.6	Mixtu	re Density Networks
	5.7	Bayes	sian Neural Networks
		5.7.1	Posterior parameter distribution
		5.7.2	Hyperparameter optimization
		5.7.3	Bayesian neural networks for classification 28
	Exe	cises	
6		nel Me	
	6.1		Representations
	6.2		cructing Kernels
	6.3		ll Basis Function Networks
		6.3.1	Nadaraya-Watson model
	6.4		sian Processes
		6.4.1	Linear regression revisited
		6.4.2	Gaussian processes for regression
		6.4.3	Learning the hyperparameters
		6.4.4	Automatic relevance determination
		6.4.5	Gaussian processes for classification
		6.4.6	Laplace approximation
		6.4.7	Connection to neural networks
	Exe	cises	
_	C .	17	I.W. 1.'
7	Spa 7.1		rnel Machines 32
	7.1		mum Margin Classifiers
		7.1.1	Overlapping class distributions
		7.1.2	Relation to logistic regression
		7.1.3	Multiclass SVMs
		7.1.4	SVMs for regression
	<i>-</i> -	7.1.5	Computational learning theory
	7.2		ance Vector Machines
		7.2.1	RVM for regression
		7.2.2	Analysis of sparsity
	_	7.2.3	RVM for classification
	Exe	cises	

				CONTENTS	xvii
8	Gra	phical N	Models		359
•	8.1		an Networks		
	0.1	8.1.1	Example: Polynomial regression		
		8.1.2	Generative models		365
		8.1.3	Discrete variables		366
		8.1.4	Linear-Gaussian models		370
	8.2		tional Independence		372
	0.2	8.2.1	Three example graphs		373
		8.2.2	D-separation		378
	8.3		v Random Fields		383
	0.5	8.3.1	Conditional independence properties .		383
		8.3.2	Factorization properties		384
		8.3.3	Illustration: Image de-noising		387
		8.3.4	Relation to directed graphs		390
	8.4		nce in Graphical Models		393
	0.4	8.4.1	Inference on a chain		394
		8.4.2	_		398
		8.4.3	Trees		399
		8.4.4	The sum-product algorithm		402
		8.4.5	The max-sum algorithm		411
		8.4.6	Exact inference in general graphs		416
		8.4.7	Loopy belief propagation		417
		8.4.8	Learning the graph structure		418
	Exerc				418
	LACIV				710
9	Mix	ture Mo	odels and EM		423
	9.1	K-mea	ans Clustering		424
		9.1.1	Image segmentation and compression		
	9.2	Mixtu	res of Gaussians		
		9.2.1	Maximum likelihood		
		9.2.2	EM for Gaussian mixtures		435
	9.3				
		9.3.1	Gaussian mixtures revisited		
		9.3.2	Relation to K -means		
		9.3.3	Mixtures of Bernoulli distributions		
		9.3.4	EM for Bayesian linear regression		
	9.4		M Algorithm in General		
	Exer	cises .			455
10	App	roxima	te Inference		461
	10.1		onal Inference		
			Factorized distributions		
			Properties of factorized approximations		
			Example: The univariate Gaussian		
			Model comparison		
	10.2	Illustra	ation: Variational Mixture of Gaussians		474

xviii CONTENTS

		10.2.1							475
		10.2.2	Variational lower bound						481
		10.2.3	Predictive density						482
		10.2.4	Determining the number of components						483
		10.2.5	Induced factorizations						485
	10.3		onal Linear Regression						486
		10.3.1	e						486
		10.3.2	Predictive distribution						488
			Lower bound						489
	10.4		ential Family Distributions						490
		-	Variational message passing						491
	10.5		Variational Methods						493
			onal Logistic Regression						498
	10.0		Variational posterior distribution						498
			Optimizing the variational parameters .						500
			Inference of hyperparameters						502
	10.7		tation Propagation						505
	10.7	10.7.1	Example: The clutter problem	•	•		 •	 •	511
			Expectation propagation on graphs						513
	Ever								517
	LACIO			•	•		 •	 •	317
11	Sam	pling N	lethods						523
			Sampling Algorithms						526
		11.1.1	Standard distributions						526
		11.1.2	Rejection sampling						528
		11.1.3	Adaptive rejection sampling				 ·		530
			Importance sampling						532
			Sampling-importance-resampling						534
		11 1 6	Sampling and the EM algorithm	•	•		 •	 ·	536
	11.2	Marko	v Chain Monte Carlo	•	•		 •	 ·	537
	11.2		Markov chains						539
			The Metropolis-Hastings algorithm						541
	11 3		Sampling						542
			Sampling						546
	11.5	The H	ybrid Monte Carlo Algorithm	•	•	• •	 •	 •	548
	11.5	11 5 1	Dynamical systems	•	•	• •	 •	 •	548
		11.5.1	Hybrid Monte Carlo	•	•		 •	 •	
	11.6	Fetime	orting the Partition Function	•	•		 •	 •	554
	Fyor	L'SUIII Picae	ating the Partition Function	•	•		 •	 •	556
	LACIO	. 1808		•	•		 •	 •	550
12	Con	tinuous	Latent Variables						559
	12.1		pal Component Analysis						561
	12.1		Maximum variance formulation						561
			Minimum-error formulation						563
			Applications of PCA						
			PCA for high-dimensional data						
		14.1.4	1 C/1 101 High-unifolisional data				 •	 •	209

	CONTENTS	χiχ
12.2	Probabilistic PCA	570
	12.2.1 Maximum likelihood PCA	574
	12.2.2 EM algorithm for PCA	577
	12.2.3 Bayesian PCA	580
	12.2.4 Factor analysis	583
12.3	Kernel PCA	586
12.4	Nonlinear Latent Variable Models	591
	12.4.1 Independent component analysis	591
	12.4.2 Autoassociative neural networks	592
	12.4.3 Modelling nonlinear manifolds	595
Exe	rcises	599
3 Seq	uential Data	60
13.1	Markov Models	60′
13.2	Hidden Markov Models	610
	13.2.1 Maximum likelihood for the HMM	613
	13.2.2 The forward-backward algorithm	618
	13.2.3 The sum-product algorithm for the HMM	625
	13.2.4 Scaling factors	62'
	13.2.5 The Viterbi algorithm	629
12.2	13.2.6 Extensions of the hidden Markov model	63
13.3	Linear Dynamical Systems	635
	13.3.1 Inference in LDS	638
	13.3.2 Learning in LDS	642 644
	13.3.4 Particle filters	645
Exer	rcises	646
14 Co.	uhining Madala	653
14.1	nbining Models Bayesian Model Averaging	654
	Committees	65:
14.3		65'
17.5	14.3.1 Minimizing exponential error	659
	14.3.2 Error functions for boosting	66
14.4		66.
	Conditional Mixture Models	660
1	14.5.1 Mixtures of linear regression models	66
	14.5.2 Mixtures of logistic models	670
	14.5.3 Mixtures of experts	672
	1	
Exe	cises	0/4
Exer Append Append	lix A Data Sets	674 677 685

XX CONTENTS

Appendix D	Calculus of Variations	703
Appendix E	Lagrange Multipliers	707
References		711
Index		729