WHAT WE CLAIMS IS:

1. A compound of formula I:

$$(R^{2})_{p}$$

$$(CH_{2})_{y}$$

$$(CH_{2})_{g}$$

$$(CH_{2})_{g}$$

$$(I)$$

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof, wherein:

L and L¹ are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

15

10

5

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C2-C8 alkenyl,

20

C₂-C₄ haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

 $C(0)OC_1$ - C_8 alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇

-171-

cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

5 C_1 - C_8 alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

10 (D)C(O)C₁-C₄ alkyl,

(D)C(O)OC₁-C₄ alkyl,

 $(CH_2)_mN(R^8)_2$,

 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 alkyl),$

15 $(CH_2)_m OR^8$,

(CH₂)_mSC₁-C₄ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl})$, or

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C₁-C₈ alkyl, C₃-C₇ cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoroC₁-C₄ alkoxy, halo, hydroxy, C₁-C₈ alkyl, C₁-C₄ alkoxy, and C₁-C₄ haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

25

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

-172-

(D)C(O)C $_1$ -C $_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

(D)CON(\mathbb{R}^8)2, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to five substituent selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

5

C₁-C₈ alkyl,

CONHC₁-C₄ alkyl,

10 (D)phenyl, oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

20 R⁴ is: hydrogen,

C₁-C₈ alkyl,

 $CH_2(CH_2)_mC_1$ -C₄ alkoxy,

C(0)C₁-C₄ alkyl or

C(0)OC1-C4 alkyl;

25

R is: hydroxy,

halo,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C₁-C₈ alkoxy,

C₁-C₄ haloalkyl,

(D)C3-C7 cycloalkyl,

(D)aryl,

5 (D)heteroaryl;

(D)C(O)C $_1$ -C $_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

(D)C(O)heteroaryl,

(D) $N(R^8)_2$,

10 (D)NR 8 C(O)C $_1$ -C $_4$ alkyl,

(D)NR 8 SO₂(C₁-C₄ alkyl),

(D)OC₁-C₄ alkyl,

(D)OC(O)C₁-C₄ alkyl,

(D)heterocyclic,

15 (D) SC_1 - C_4 alkyl, or

(D) $SO_2N(R^8)_2$;

wherein C₁-C₈ alkyl, C₁-C₈ alkoxy, C₃-C₇ cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R⁸; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

 C_1 - C_8 alkyl,

20

(D)C3-C7 cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

5

T is:

$$(R^{12})_p$$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$

$$(R^{12})_{p}$$

$$(R^{$$

R⁹ is independently:

hydrogen,

10 (C₁-C₈) alkyl,

C₂-C₈ alkenyl,

 $C(O)C_1-C_8$ alkyl,

C₂-C₈ alkynyl,

phenyl,

15 aryl, or

heteroaryl;

R¹⁰ is: hydrogen, (C₁-C₈) alkyl,

20 C₃-C₈ alkenyl,

 $C(O)C_1$ - C_8 alkyl,

```
C<sub>2</sub>-C<sub>8</sub> alkynyl,
                     phenyl,
                     aryl, or
                     heteroaryl;
 5
         R<sup>11</sup> is independently:
                    hydrogen, (C<sub>1</sub>-C<sub>8</sub>) alkyl, (D)phenyl, or aryl;
         R<sup>12</sup> is independently:
10
                     C<sub>1</sub>-C<sub>8</sub> alkyl,
                     phenyl,
                     aryl,
                     heteroaryl,
                     (CH_2)_nN(R^8)_2,
                     (CH_2)_nNR^8C(O)C_1-C_4 alkyl,
15
                     (CH<sub>2</sub>)<sub>n</sub>NR<sup>8</sup>C(O)OC<sub>1</sub>-C<sub>4</sub> alkyl,
                     (CH<sub>2</sub>)<sub>n</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>a</sub>N(R<sup>8</sup>)<sub>2</sub>,
                     (CH<sub>2</sub>)<sub>n</sub>(OCH<sub>2</sub>CH<sub>2</sub>)<sub>o</sub>NR<sup>8</sup>C(O)C<sub>1</sub>-C<sub>4</sub> alkyl,
                     (CH_2)_n(OCH_2CH_2)_qNR^8SO_2(C_1-C_4 alkyl), or
                     (CH_2)_n[O]_q(C_1-C_8)alkylheterocyclic; and wherein for R^{12}, n is 2–8 when R^{12} is
20
                     substituted on a carbon atom adjacent to a heteroatom;
         R<sup>13</sup> is independently:
                     hydrogen,
                     C<sub>1</sub>-C<sub>8</sub> alkyl,
25
                     (D)C3-C7 cycloalkyl,
                     (D)phenyl,
                     C(O)C_1-C_8 alkyl,
                     SO<sub>2</sub>C<sub>1</sub>-C<sub>8</sub> alkyl, or
```

-176-

SO₂-phenyl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

5 y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1.

15

25

10 2. The compound according to Claim 1 wherein for the Z ring y is 1, or 2.

3. The compound according to Claim 1 wherein the Z ring is saturated.

4. The compound according to Claim 1 wherein the Z ring is cyclopentyl or cyclohexyl.

5. The compound according to Claim 3 wherein E is O, S, NR^{1b}, SO₂, SO, or CHR⁹.

6. The compound according to Claim 1 wherein E is CH₂.

7. The compound according to Claim 1 wherein E is CHR⁹ and R⁹ combines with adjacent R¹ to form a benzene ring.

8. The compound according to Claim 1 wherein for the Z ring R¹ is hydrogen, C₁-C₈ alkyl, C₁-C₈ alkenyl, C₂-C₄ haloalkyl, (D)C₃-C₇ cycloalkyl, 2-fluorobenzyl, (D)phenyl, (CH₂)_mC(O)C₁-C₄ alkyl, (CH₂)_mN(R⁸)₂, or (CH₂)_mNR⁸C(O)C₁-C₄ alkyl; D is a bond or CH₂; and p is 1; and m is 1.

- 9. The compound according to Claim 1 wherein R is hydrogen, methyl, trifluoromethyl, phenyl or benzyl, wherein phenyl and benzyl groups are optionally substituted with halo or hydroxy and p is 1.
- 10. The compound according to Claim 1 wherein R^{1a} is C₁-C₈ alkyl, C₁-C₈ alkenyl, C₂-C₄ haloalkyl, (D)C₃-C₇ cycloalkyl, (D)phenyl, (D)COR⁸, (D)N(R⁸)₂, or (D)NR⁸COR⁸.

- 11. The compound according to Claim 1 wherein R^{1a} is isopropyl, isobutyl, cyclohexylmethyl, phenyl, 2-fluorobenzyl or benzyl.
- 12. The compound according to Claim 11 wherein E is selected from the group consisting of: -NCH₃, -NCH(CH₃)₂, S, CR⁹, C(R⁹)₂, -NC(O)CH₃, -
- 5 NC(O)CH(CH₃)₂, -NCH₂CH₃, NSO₂CH₃, and O.
 - 13. The compound according to Claim 12 wherein E is CR^9 or $C(R^9)_2$, wherein each R^9 is independently selected from hydrogen and C_1 - C_4 alkyl, and wherein each R^9 may combine with an adjacent R^1 to form a 5 or 6-member carbocycle.
- The compound according to Claim 1 wherein R² is hydrogen, C₁-C₈ alkyl,
 C₁-C₄ haloalkyl, (D)C₃-C₇ cycloalkyl, (D)phenyl, or (D)C(O)C₁-C₈ alkyl.
 - 15. The compound of Claim 1 wherein R³ is phenyl optionally being parasubstituted with chloro, bromo, benzyloxy, methoxy or methyl.
 - 16. The compound of any one of Claims 1 to 15 wherein R³ is phenyl parasubstituted with chloro.
- 15 17. The compound of any one of Claims 1 to 15 wherein R¹⁰ is hydrogen, C₁-C₄ alkyl, or C(O)C1-C4 alkyl.
 - 18. The compound of any one of Claims 1 to 15 wherein R¹⁰ is hydrogen at each occurrence.
- 19. The compound of any one of Claims 1-15 wherein T of the C domain is selected from the group consisting of:

$$(R^{12})_{p}$$

$$(R^{$$

-178-

20. The compound according to Claims 1 to 15 wherein "T" is a moiety of the formula:

21. The compound according to any of Claims 1 to 15 wherein "T" is a moiety selected from the group consisting of:

and

22. The compound of any one of Claims 1 to 15 wherein T is a moiety of the formula:

10

wherein R is as described; and wherein the carbon atom marked * represents a chiral center.

23. The compound of any one of Claims 1 to 15 wherein L and L^1 are each hydrogen; and T is a moiety of the formula:

15

24. The compound according to any one of Claims 1 to 15 wherein L and L¹

are each hydrogen, and T is a moiety of the formula:

25

- 25. The compound of Claim 22, 23, or 24 wherein the carbon atom marked with * has the R or S configuration.
 - 26. Use of a compound of formula I:

$$(R^{2})_{p}$$

$$(CH_{2})_{y}$$

$$(CH_{2})_{q}$$

$$(CH_{2})_{q}$$

$$(CH_{2})_{q}$$

$$(I)$$

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof, wherein:

L and L¹ are both hydrogen or combine together to form an oxo group;

10 E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

15 R¹ is selected from the group consisting of:

Hydrogen,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C2-C4 haloalkyl

20 (D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

C(O)OC1-C8 alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇

cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

5 C_1 - C_8 alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

(D)heteroaryl;

10 (D)C(O)C $_1$ -C $_4$ alkyl,

(D)C(O)OC $_1$ -C $_4$ alkyl,

 $(CH_2)_mN(R^8)_2$,

(CH₂)_mNR⁸C(O)C₁-C₄ alkyl,

 $(CH_2)_mNR^8SO_2(C_1-C_4 alkyl),$

15 $(CH_2)_m OR^8$,

(CH₂)_mSC₁-C₄ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl})$, or

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C₁-C₈ alkyl, C₃-C₇ cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoroC₁-C₄ alkoxy, halo, hydroxy, C₁-C₈ alkyl, C₁-C₄ alkoxy, and C₁-C₄ haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

25

R1b is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

SO₂(C₁-C₈ alkyl),

-181-

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

(D)CON(\mathbb{R}^8)2, or

SO₂(D)phenyl, wherein the phenyl group is optionally substituted with one to five substituents selected from halo, and C₁-C₈ alkyl;

R² is: hydrogen,

5

C1-C8 alkyl,

CONHC₁-C₄ alkyl,

10 (D)phenyl, oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R² is oxo, R² is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

20 R⁴ is: hydrogen,

C₁-C₈ alkyl,

 $CH_2(CH_2)_mC_1$ -C₄ alkoxy,

C(O)C₁-C₄ alkyl, or

 $C(O)OC_1-C_4$ alkyl;

25

R is: hydroxy,

halo,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C₁-C₈ alkoxy,

C₁-C₄ haloalkyl,

- (D)C3-C7 cycloalkyl,
- (D)aryl,
- 5 (D)heteroaryl;
 - (D)C(O)C $_1$ -C $_4$ alkyl,
 - $(D)C(O)OC_1-C_4$ alkyl,
 - (D)C(O)heteroaryl,
 - (D) $N(R^8)_2$,
- 10 (D) $NR^8C(O)C_1-C_4$ alkyl,
 - (D) $NR^8SO_2(C_1-C_4 \text{ alkyl}),$
 - (D) OC_1 - C_4 alkyl,
 - (D)OC(O)C₁-C₄ alkyl,
 - (D)heterocyclic,
- 15 (D)SC₁-C₄ alkyl, or
 - (D) $SO_2N(R^8)_2$;

wherein C₁-C₈ alkyl, C₁-C₈ alkoxy, C₃-C₇ cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R⁸; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

25 C₁-C₈ alkyl,

20

(D)C3-C7 cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

5

T is:

$$(R^{12})_p$$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$
 $(R^{12})_p$

$$(R^{12})_{p}$$

$$(R^{$$

R⁹ is independently:

10 hydrogen,

 (C_1-C_8) alkyl,

C₂-C₈ alkenyl,

 $C(O)C_1-C_8$ alkyl,

 C_2 - C_8 alkynyl,

15 phenyl,

aryl, or

heteroaryl;

R¹⁰ is: hydrogen,
20 (C₁-C₈) alkyl,
C₃-C₈ alkenyl,

```
C(O)C_1-C_8 alkyl,
                C2-C8 alkynyl,
                phenyl,
                aryl, or
 5
                heteroaryl;
       R<sup>11</sup> is independently:
                hydrogen, (C1-C8) alkyl, (D)phenyl, or aryl;
       R<sup>12</sup> is independently:
                C<sub>1</sub>-C<sub>8</sub> alkyl,
10
                phenyl,
                 aryl,
                heteroaryl,
                 (CH_2)_nN(R^8)_2,
                 (CH_2)_nNR^8C(O)C_1-C_4 alkyl,
15
                 (CH_2)_nNR^8C(O)OC_1-C_4 alkyl,
                 (CH_2)_n(OCH_2CH_2)_aN(R^8)_2,
                 (CH_2)_n(OCH_2CH_2)_qNR^8C(O)C_1-C_4 alkyl,
                 (CH_2)_n(OCH_2CH_2)_oNR^8SO_2(C_1-C_4 alkyl), or
                 (CH_2)_n[O]_q(C_1-C_8)alkylheterocyclic; and wherein for \mathbb{R}^{12}, n is 2–8 when \mathbb{R}^{12} is
20
                 substituted on a carbon atom adjacent to a heteroatom;
        R<sup>13</sup> is independently:
                 hydrogen,
25
                 C<sub>1</sub>-C<sub>8</sub> alkyl,
                 (D)C3-C7 cycloalkyl,
                 (D)phenyl,
                 C(O) C<sub>1</sub>-C<sub>8</sub> alkyl,
                 SO<sub>2</sub>C<sub>1</sub>-C<sub>8</sub> alkyl, or
```

-185-

SO₂-phenyl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

y is: 1 or 2;

5 m is: 1-4;

10

15

n is: 0-8;

p is: 0-4; and

q is: 0-1, in the manufacture of a medicament for treating obesity and/or diabetes.

27. A pharmaceutical composition comprising a compound of any one of Claims 1-25 and a pharmaceutical carrier.

28. The pharmaceutical composition of Claim 27 further comprising a second active ingredient selected from the group consisting of an insulin sensitizer, insulin mimetic, sulfonylurea, alpha-glucosidase inhibitor, HMG-CoA reductase inhibitor, sequestrant cholesterol lowering agent, beta 3 adrenergic receptor agonist, neuropeptide Y antagonist, phosphodiester V inhibitor, and an alpha2 adrenergic receptor antagonist.

29. A compound selected from the group consisting of:

N-(1-(4-Chloro-benzyl)-2-{4-[4-(2-fluoro-benzyl)-1-methyl-piperidin-4-yl]-piperazin-1-yl}-2-oxo-ethyl)-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-isopropyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(1-isobutyl-cyclopentyl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-cyclohexylmethyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1-methanesulfonyl-piperidin-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(1-ethyl-4-isobutyl-piperidin-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-[2-[4-(1-Acetyl-4-isobutyl-piperidin-4-yl)-piperazin-1-yl]-1-(4-chloro-benzyl)-2-oxoethyl]-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-1,1-dioxo-hexahydro-116-thiopyran-4-yl)-piperazin-1-yl]-2-oxo-ethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-isobutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

5

 $N-\{1-(4-Chloro-benzyl)-2-[4-(3-isobutyl-1-methyl-piperidin-3-yl)-piperazin-1-yl]-2-oxoethyl\}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide,$

-191-

N-{1-(4-Chloro-benzyl)-2-[4-(4-isobutyl-tetrahydro-pyran-4-yl)-piperazin-1-yl]-2-oxoethyl}-2-(2,3-dihydro-1H-isoindol-1-yl)-acetamide, and

5

1,2,3,4-Tetrahydro-isoquinoline-3-carboxylic acid {1-(4-chloro-benzyl)-2-[4-(1-diethylaminomethyl-cyclopentyl)-piperazin-1-yl]-2-oxo-ethyl}-amide, and its pharmaceutically acceptable salt, solvate, prodrug and enantiomer thereof.

30. A process for preparing a compound of formula I:

10

or a pharmaceutically acceptable salt or stereoisomer thereof,

wherein:

-CLL'- $(CH_2)_n$ -T is:

 R^{10} is a CBz or Boc protecting group, hydrogen, (C₁-C₈) alkyl, C₃-C₈ alkenyl, C(O)C₁-C₈ alkyl, C₂-C₈ alkynyl, phenyl, aryl, or heteroaryl;

Q is represent the moiety:

L and L^1 are both hydrogen or combine together to form an oxo group;

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

15

10

5

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C2-C8 alkenyl,

20

C2-C4 haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

-193-

C(O)OC₁-C₈ alkyl,

wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇ cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

R_{1a} is: hydrogen,

5

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

10 (D)phenyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

15 $(CH_2)_m N(R^8)_2$,

(CH₂)_mNR⁸C(O)C₁-C₄ alkyl,

(CH₂)_mNR⁸SO₂(C₁-C₄ alkyl),

(CH₂)_mOR⁸,

 $(CH_2)_mSC_1-C_4$ alkyl,

20 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl})$, or

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R^{1b} is: hydrogen,

25

C₁-C₈ alkyl,

-194-

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

 $(D)C(O)C_1-C_4$ alkyl,

(D)C(O)OC₁-C₄ alkyl,

5 (D)CON(R⁸)2, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to five substituents selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

 C_1 - C_8 alkyl,

15

CONHC₁-C₄ alkyl,

(D)phenyl,

oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of:

cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl;

R⁴ is: hydrogen,

C₁-C₈ alkyl,

25 $CH_2(CH_2)_mC_1-C_4$ alkoxy,

 $C(O)C_1$ - C_4 alkyl, or

 $C(0)OC_1-C_4$ alkyl;

R is: hydroxy,

halo,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C1-C8 alkoxy,

C₁-C₄ haloalkyl,

- 5 (D)C₃-C₇ cycloalkyl,
 - (D)aryl,
 - (D)heteroaryl;
 - $(D)C(O)C_1-C_4$ alkyl,
 - (D)C(O)OC $_1$ -C $_4$ alkyl,
- 10 (D)C(O)heteroaryl,
 - (D) $N(R^8)_2$,
 - (D) $NR^8C(O)C_1-C_4$ alkyl,
 - (D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,
 - (D)OC₁-C₄ alkyl,
- 15 (D)OC(O) C_1 - C_4 alkyl,
 - (D)heterocyclic,
 - (D)SC₁-C₄ alkyl, or
 - (D)SO₂N(\mathbb{R}^8)₂;

wherein C1-C8 alkyl, C1-C8 alkoxy, C3-C7 cycloalkyl, phenyl, aryl, heterocyclic,

and heteroaryl are optionally substituted with one to five substituents

independently selected from R⁸; and provided that when R is halo or hydroxy it is

not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

25 hydrogen,

oxo,

C1-C8 alkyl,

(D)C3-C7 cycloalkyl,

-196-

phenyl,

aryl or

heteroaryl,

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C_1 - C_8 alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom; R^9 is independently hydrogen, $(C_1$ - C_8) alkyl, C_2 - C_8 alkenyl, C(O)

R is independently hydrogen, (C_1-C_8) alkyl, C_2-C_8 alkenyl, $C(0)C_1-C_8$ alkyl, C_2-C_8 alkynyl, phenyl, aryl, or heteroaryl;

10

5

R¹¹ is independently:

hydrogen, (C1-C8) alkyl, (D)phenyl or aryl;

D is: a bond or C₁-C₄ alkyl;

15 g is: 0, 1, or 2;

y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

20 q is: 0-1;

comprising the steps of:

b) reacting a compound having a structural formula 1:

25

(1)

with CH₂CH=C(O)OR^a wherein R^a is hydrogen or C₁-C₈ alkyl and X is halo, in the presence of a catalyst and a base in a suitable organic solvent to give the compound of formula 2:

f) reductively aminating the compound of formula 2 in the presence of amine in an acidic condition to give a compound of formula 3:

10

5

g) cyclizing the compound of formula 3 by Michael addition to give a compound of formula 4 or stereoisomers thereof:

$$(R)_{p}$$
 R^{10}
 R^{11}
 R^{11}
 R^{11}

15

h) coupling the compound of formula 4 or stereoisomers thereof wherein R^a is H, with a compound of formula 5:

$$R^{a}O$$

$$NHR^{4}$$
.HCl

5

wherein R^a is C_1 - C_8 alkyl, to give a compound of formula 6:

$$\mathbb{R}^{3}$$
 \mathbb{R}^{8}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{11}
 \mathbb{R}^{1}
 \mathbb{R}^{10}
 \mathbb{R}^{10}
 \mathbb{R}^{10}

10

i) coupling the compound of formula 6 wherein R^a is H, with a compound having a structural formula:

$$(R^2)_p$$
 $(CH_2)_y$

to afford the compound of formula 1.

31. The process of Claim 30, wherein:

15

$$(R)_p$$
 CHO

in Step a) is 2-boromobenzaldehyde.

- 32. The process of Claim 31, wherein CH₂CH=C(O)OR^a in Step (a) is methylacrylate.
- 33. The process of Claim 32, wherein the catalyst in Step (a) is selected from the group consisting of: Pd(Ph₃P)₂Cl₂, Pd(Ph₃P)₄Cl₂, Pd(Ph₃P)₄, Pd(Ph₃P)₂Cl₂/CuI, Pd(OAc)₂/Ph₃P-Bu₄NBr, Pd(Ph₃P)₄Cl₂/H₂ and Pd(OAc)₂/P(O-tol)₃; and wherein the base in Step (a) is N(R)₃ where R is hydrogen or C₁-C₈ alkyl.
- 34. The process of Claim 33, wherein the amine in Step (b) is selected from the group consisting of: benzylamine, alpha-methylbenzylamine and BocNH₂.
- 35. The process of Claim 34, wherein Step (b) further comprises the step of reducing an intermediate imine compound in the presence of reducing agent selected from the group consisting of: NaCNBH3, Na(OAc)3BH, NaBH4/H+ and a combination of Et₃SiH and TFA in CH₃CN or CH₂Cl₂.
- 36. The process of Claim 31, wherein the stereoisomer of compound of formula (7) in Step (c) is a compound of formula 7a:

5

10

37. The process of Claim 36, wherein the compound of formula 7a is prepared by asymmetric hydrogenation of a compound having structural formula,

- 38. The process of Claim 31, wherein the Michael addition in Step (c) is carried out under basic workup condition.
- 39. The process of Claim 31, wherein the Step (e) further comprises deprotecting or protecting of the compound of formula (4) at NR¹⁰.
 - 40. A process for preparing a compound of formula I:

$$(R^2)_p$$
 $(CH_2)_y$
 R^3
 $(CH_2)_n$ -T
 $(CH_2)_n$

or a pharmaceutically acceptable salt or stereoisomer thereof,

10 wherein:

5

 $-LL'(CH_2)_n$ -T is represented by the group:

and Q represents the moiety:

$$(R^1)_p$$
 $CH_2)$
 E
 $(CH_2)_g$

15

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

5 C₂-C₄ haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

C(O)OC1-C8 alkyl,

- wherein phenyl, aryl, alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇ cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;
- 15 R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

(D)aryl,

20 (D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

(D)C(O)OC₁-C₄ alkyl,

 $(CH_2)_mN(R^8)_2$,

 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

25 $(CH_2)_mNR^8SO_2(C_1-C_4 \text{ alkyl}),$

 $(CH_2)_m OR^8$,

 $(CH_2)_mSC_1-C_4$ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

(CH₂)_mSO₂(C₁-C₄ alkyl), or

-202-

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy, and C_1 - C_4 haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

5

C₁-C₈ alkyl,

10 (D)C₃-C₇ cycloalkyl,

SO₂(C₁-C₈ alkyl),

 $(D)C(O)C_1-C_4$ alkyl,

(D)C(O)OC₁-C₄ alkyl,

(D)CON(\mathbb{R}^8)2, or

SO₂(D)phenyl, wherein the phenyl group is optionally substituted with one to five substituent selected from halo, and C₁-C₈ alkyl;

R² is: hydrogen,

C₁-C₈ alkyl,

20 CONHC₁-C₄ alkyl,

(D)phenyl,

oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R² is oxo, R² is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

25

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of:

-203-

cyano, perfluoro C_1 - C_4 alkoxy, halo, C_1 - C_8 alkyl, (D) C_3 - C_7 cycloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl;

R⁴ is: hydrogen,

5 C_1 - C_8 alkyl,

 $CH_2(CH_2)_mC_1-C_4$ alkoxy,

C(O)C₁-C₄ alkyl or

 $C(O)OC_1-C_4$ alkyl;

10 R is: hydroxy,

halo,

C₁-C₈ alkyl,

C2-C8 alkenyl,

C₁-C₈ alkoxy,

 C_1 - C_4 haloalkyl,

(D)C3-C7 cycloalkyl,

(D)aryl,

(D)heteroaryl;

(D)C(O)C $_1$ -C $_4$ alkyl,

20 (D)C(O)OC $_1$ -C $_4$ alkyl,

(D)C(O)heteroaryl,

(D)N(\mathbb{R}^{8})₂,

(D) $NR^8C(O)C_1-C_4$ alkyl,

(D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,

25 (D)OC₁-C₄ alkyl,

(D)OC(O) C_1 - C_4 alkyl,

(D)heterocyclic,

(D)SC₁-C₄ alkyl, or

-204-

(D) $SO_2N(R^8)_2$;

wherein C₁-C₈ alkyl, C₁-C₈ alkoxy, C₃-C₇ cycloalkyl, phenyl, aryl, heterocyclic, and heteroaryl are optionally substituted with one to five substituents independently selected from R⁸; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

each R⁸ is independently:

hydrogen,

oxo,

 C_1 - C_8 alkyl,

5

(D)C3-C7 cycloalkyl,

phenyl,

aryl or

heteroaryl,

wherein C₁-C₈ alkyl, C₃-C₇ cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to three substituents selected from the group consisting of C₁-C₈ alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are not substituted on a carbon adjacent to a heteroatom;

20 R⁹ is independently:

hydrogen,

 (C_1-C_8) alkyl,

C2-C8 alkenyl,

 $C(O)C_1-C_8$ alkyl,

25 C₂-C₈ alkynyl,

phenyl,

aryl, or

heteroaryl;

-205-

R¹⁰ is: hydrogen,

(C₁-C₈) alkyl,

C₃-C₈ alkenyl,

C(O)C₁-C₈ alkyl,

5

C₂-C₈ alkynyl,

phenyl,

aryl, or

heteroaryl;

10 R¹¹ is independently:

hydrogen, (C1-C8) alkyl, or (D)phenyl, or aryl;

D is: a bond or C₁-C₄ alkyl;

g is: 0, 1, or 2;

15 y is: 1 or 2;

m is: 1-4;

n is: 0-8;

p is: 0-4; and

q is: 0-1;

20

comprising the steps of:

b) esterifying a compound of formula 1 with an alcohol RaOH

$$CO_2H$$
 NH_2

1;

-206-

to form a compound of formula 2:

2;

wherein Ra is a group selected from C1-C4 alkyl, and (D) phenyl;

i) reacting a compound of formula 2 with R¹¹COR¹¹ to form a compound of formula:

3;

- wherein R¹¹ is independently hydrogen, C₁-C₄ alkyl;
 - j) reacting a compound of formula 3 with an activating group to form a compound of formula 4:

4;

wherein A is an activating group;

15

5

k) deoxygenating the compound of formula 4 by hydrogenation to afford a compound of formula 5:

5;

optionally reacting the compound of formula 5 wherein HA is an acidic, with an inorganic base to form a compound of formula 6:

wherein M is a univalent cation;

10

m) resolving the compound of formula 5 or the compound of formula 6 wherein M is hydrogen to afford a chiral compound of formula 7:

- wherein Ra' is H or Ra;
 - n) coupling the compound of formula 7 with a compound of formula 8:

to afford a compound of formula 9:

o) coupling the compound of formula 9 with a compound of formula 10:

$$(R^2)_p$$
 $(CH_2)_y$
 $(CH_2)_y$
 $(R^2)_p$
 $(R^2)_p$
 $(R^2)_p$
 $(R^2)_p$
 $(R^2)_p$
 $(R^2)_p$
 $(R^2)_p$

to afford a compound of formula I:

$$(R^2)_p$$
 N
 R^4
 R^{11}
 R^{11}

I.

i0

5

- 41. The process according to Claim 40 wherein the esterification is performed via an acylhalide intermediate formed by reaction of compound (1) with thionyl chloride, or oxalylchloride.
- 15 42. The process according to Claim 41 wherein the activating agent is trifluoromethanesulfonic anhydride to form the triflate.

-209-

43. A process for preparing a compound of formula I:

$$(R^2)_p$$
 $(CH_2)_y$
 $(CH_2)_y$
 (I)

or a pharmaceutically acceptable salt or stereoisomer thereof, wherein $-LL'(CH_2)_n$ -T is represented by the group:

5

 R^{10} is a CBz or Boc protecting group, hydrogen, (C₁-C₈) alkyl, C₃-C₈ alkenyl, C(O)C₁-C₈ alkyl, C₂-C₈ alkynyl, phenyl, aryl, or heteroaryl;

Q represents the moiety:

10

E is: O, S, NR^{1b}, SO, SO₂, CR⁹, or C(R⁹)₂, provided that when E is CR⁹, or C(R⁹)₂, R⁹ may combine with an adjacent R¹ to form a 5, 6, or 7-member saturated or unsaturated carbocycle;

wherein the Z ring has 0, or 1 double bond;

15

R¹ is selected from the group consisting of:

hydrogen,

C₁-C₈ alkyl,

C₂-C₈ alkenyl,

C₂-C₄ haloalkyl

(D)C3-C7 cycloalkyl,

(D)phenyl,

aryl,

5 $C(O)OC_1$ - C_8 alkyl,

wherein phenyl, aryl alkenyl, and cycloalkyl groups are optionally substituted with hydroxy, halo, C₁-C₈ alkyl, C₁-C₄ alkoxy, C₂-C₄ haloalkyl, and (D)C₃-C₇ cycloalkyl provided that the halo, hydroxy are not substituted on a carbon atom adjacent to a heteroatom;

10

R_{1a} is: hydrogen,

C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

(D)phenyl,

15 (D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

 $(D)C(O)OC_1-C_4$ alkyl,

 $(CH_2)_mN(R^8)_2,$

20 $(CH_2)_mNR^8C(O)C_1-C_4$ alkyl,

(CH₂)_mNR⁸SO₂(C₁-C₄ alkyl),

(CH₂)_mOR⁸,

 $(CH_2)_mSC_1-C_4$ alkyl,

 $(CH_2)_mSO(C_1-C_4 \text{ alkyl}),$

25 $(CH_2)_mSO_2(C_1-C_4 \text{ alkyl})$, or

 $(CH_2)_mSO_2 N(R^8)_2;$

wherein C_1 - C_8 alkyl, C_3 - C_7 cycloalkyl, phenyl, aryl and heteroaryl are optionally substituted with one to five substituents independently selected from the group consisting of perfluoro C_1 - C_4 alkoxy, halo, hydroxy, C_1 - C_8 alkyl, C_1 - C_4 alkoxy,

-211-

and C₁-C₄ haloalkyl; provided that halo and hydroxy groups are not substituted on a carbon atom adjacent to a heteroatom;

R1b is: hydrogen,

5 C₁-C₈ alkyl,

(D)C3-C7 cycloalkyl,

 $SO_2(C_1-C_8 \text{ alkyl}),$

(D)C(O)C₁-C₄ alkyl,

(D)C(O)OC $_1$ -C $_4$ alkyl,

10 (D)CON(R⁸)2, or

 $SO_2(D)$ phenyl, wherein the phenyl group is optionally substituted with one to 1 to 5 substituent selected from halo, and C_1 - C_8 alkyl;

R² is: hydrogen,

15 C₁-C₈ alkyl,

CONHC₁-C₄ alkyl,

(D)phenyl, oxo, or

(D)C₃-C₇ cycloalkyl, provided that when R^2 is oxo, R^2 is on one of the ring carbon atoms adjacent to the nitrogen atom bearing the Z ring;

20

25

R³ is: phenyl, aryl or thienyl;

wherein phenyl, aryl and thienyl are optionally substituted with one to three substituents independently selected from the group consisting of: cyano, perfluoroC₁-C₄ alkoxy, halo, C₁-C₈ alkyl, (D)C₃-C₇ cycloalkyl, C₁-C₄

alkoxy, C₁-C₄ haloalkyl;

R⁴ is: hydrogen,

C₁-C₈ alkyl,

 $CH_2(CH_2)_mC_1-C_4$ alkoxy,

-212-

 $C(O)C_1$ - C_4 alkyl, or $C(O)OC_1$ - C_4 alkyl;

R is: hydroxy,

5 halo,

C1-C8 alkyl,

C2-C8 alkenyl,

C1-C8 alkoxy,

C1-C4 haloalkyl,

10 (D)C₃-C₇ cycloalkyl,

(D)aryl,

(D)heteroaryl;

 $(D)C(O)C_1-C_4$ alkyl,

(D)C(O)OC $_1$ -C $_4$ alkyl,

15 (D)C(O)heteroaryl,

(D) $N(R^8)_2$,

(D)NR 8 C(O)C $_1$ -C $_4$ alkyl,

(D) $NR^8SO_2(C_1-C_4 \text{ alkyl})$,

(D)OC1-C4 alkyl,

20 (D)OC(O) C_1 - C_4 alkyl,

(D)heterocyclic,

(D)SC1-C4 alkyl, or

(D) $SO_2N(R^8)_2$;

wherein C1-C8 alkyl, C1-C8 alkoxy, C3-C7 cycloalkyl, phenyl, aryl, heterocyclic,

and heteroaryl are optionally substituted with one to five substituents independently selected from R⁸; and provided that when R is halo or hydroxy it is not substituted on a carbon adjacent to a heteroatom;

1-4;

m is:

-213-

```
each R<sup>8</sup> is independently:
               hydrogen,
               oxo,
               C<sub>1</sub>-C<sub>8</sub> alkyl,
               (D)C3-C7 cycloalkyl,
 5
               phenyl,
               aryl or
               heteroaryl,
               wherein C1-C8 alkyl, C3-C7 cycloalkyl, phenyl, aryl and heteroaryl are optionally
               substituted with one to three substituents selected from the group consisting of
10
               C<sub>1</sub>-C<sub>8</sub> alkyl, halo, and hydroxy; provided that the halo and hydroxy groups are
               not substituted on a carbon adjacent to a heteroatom;
       R<sup>9</sup> is independently:
15
               hydrogen,
               (C_1-C_8) alkyl,
               C2-C8 alkenyl,
               C(O)C_1-C_8 alkyl,
               C2-C8 alkynyl,
20
               phenyl,
                aryl, or
               heteroaryl;
       R<sup>11</sup> is independently:
25
                hydrogen, (C<sub>1</sub>-C<sub>8</sub>) alkyl, or (D)phenyl, aryl;
                a bond or C<sub>1</sub>-C<sub>4</sub> alkyl;
       D is:
       g is:
                0, 1, or 2;
       y is:
                1 or 2;
```

-214-

n is: 0-8;

p is: 0-4; and

q is: 0-1;

- 5 comprising the steps of:
 - f) reacting a compound formula 1:

1;

wherein X is halo and R¹¹ is independently, hydrogen or C1-C4 alkyl, with CNCH₂CO₂R²
wherein R² is C₁-C₈ alkyl, or benzyl to afford a compound of formula 2:

g) protecting the compound of formula 2 to form the compound of formula 3:

20

15

h) hydrogenating the compound of formula 3 to afford a compound of formula 4:

5

i) coupling the compound of formula 4 wherein R^{a'} is hydrogen with a compound of formula 5:

10

to afford a compound of formula 6:

15

j) coupling the compound of formula 6 with a compound of formula 7:

$$(R^2)_p - \left(\begin{matrix} H \\ N \\ Q \end{matrix}\right)_{Q} (CH_2)_{Q}$$

7

to afford a compound of formula I:

$$(R^2)_p$$
 N
 R^4
 R^{10}
 R^{11}
 R^{11}

- A method of preventing or treating obesity in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
 - 45. A method of preventing or treating diabetes mellitus in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
 - 46. A method of preventing or treating male or female sexual dysfunction in a mammal comprising the administration of a therapeutically effective amount of the compound of formula I as recited in Claim 1.
- 47. The method of 46, wherein the male or female sexual dysfunction is erectile dysfunction.