Discrete event traffic simulation

Part 2 - Report

Sérgio Gonçalves up201603271 António Mendes up201608357

- **a)**O nosso programa recebe 4 parâmetros como argumento:
 - 1º Valor de Lambda
 - 2º Número de amostras k
 - 3º Número de canais N
 - 4º Número de elementos da queue L

L=0

Lista vazia!
Tamanho da queue:0
Numero de arrivals :7219
Numero de departures :2781
Chamadas bloqueadas : 0
Chamadas perdidas : 4438
Probabilidade de atraso : 0.000000
Probabilidade de perda : 0.614767
Média de tempos entre chegadas de chamadas : 0.005095
Média de duração de chamadas : 0.021011
Média de atraso dos pacotes : inf
Delta : 0.001000

Figure 2-./erl 200 1000 1 0

Servers	Blocking Probability (%)
1	61.54
2	32.99
3	14.96
4	5.65
5	1.77

Figure 1-Tabela de Calculo

```
Llista vazia!
Tamanho da queue:0
Numero de arrivals :5977
Numero de departures :4023
Chamadas bloqueadas : 0
Chamadas perdidas : 1954
Probabilidade de atraso : 0.000000
Probabilidade de perda : 0.326920
Média de tempos entre chegadas de chamadas : 0.004951
Média de duração de chamadas : 0.015339
Média de atraso dos pacotes : inf
Delta : 0.001000
```

Figure 3 - ./erl 200 10000 2 0

```
Lista vazia!
Tamanho da queue:0
Numero de arrivals :5404
Numero de departures :4596
Chamadas bloqueadas : 0
Chamadas perdidas : 809
Probabilidade de atraso : 0.000000
Probabilidade de perda : 0.149704
Média de tempos entre chegadas de chamadas : 0.004937
Média de duração de chamadas : 0.013809
Média de atraso dos pacotes : inf
Delta : 0.001000
```

Figure 4 - ./erl 200 10000 3 0

Decidimos utilizar o programa final da alínea c) para encontrar os valores das probabilidades de perda e atraso das restantes alíneas devido à sua maior precisão.

$\mathbf{b})L = \infty$

```
Tamanho da queue:2216
Numero de arrivals :6108
Numero de departures :3892
Chamadas bloqueadas : 6106
Chamadas perdidas : 0
Probabilidade de atraso : 0.999673
Probabilidade de perda : 0.000000
Média de tempos entre chegadas de chamadas : 0.005043
Média de duração de chamadas : 0.015831
Média de atraso dos pacotes : 2.250776
Delta : 0.001000
```

Figure 6 - ./erl 200 10000 1 100000

Servers	Service Level (%)	Delay (%)	Avg Wait (minute)
1	0.00	100.00	NaN
2	100.00	71.11	0.00
3	100.00	27.38	0.00
4	100.00	9.07	0.00
5	100.00	2.59	0.00

Figure 5 - Tabela de probabilidades

```
Lista vazia!
Tamanho da queue:0
Numero de arrivals :5000
Numero de departures :5000
Chamadas bloqueadas : 3555
Chamadas perdidas : 0
Probabilidade de atraso : 0.711000
Probabilidade de perda : 0.000000
Média de tempos entre chegadas de chamadas : 0.004991
Média de duração de chamadas : 0.012964
Média de atraso dos pacotes : 0.026997
Delta : 0.001000
```

Figure 7 - ./erl 200 10000 2 100000

Figure 8 - ./erl 200 10000 3 100000

Figure 9 – Histogramas N =3

No terminal podemos observar a probabilidade de o delay ser maior que Ax, quando temos Ax = 0.005.

```
Lista vazia!

Numero de arrivals :5000

Numero de departures :5000

Probabilidade de ser atrasado mais que ax=0.005000 :0.426275

Chamadas bloqueadas : 1431

Chamadas perdidas : 0

Probabilidade de atraso : 0.286200

Probabilidade de perda : 0.000000

Média de tempos entre chegadas de chamadas : 0.004931

Média de duração de chamadas : 0.012872

Média de atraso dos pacotes : 0.047899

Delta : 0.001000
```

Figure 10 - ./erl 200 10000 3 10000

c)

L=10

Os valores da probabilidade de atraso estão perto dos esperados, para os diversos valores de N canais.

Lista vazia!
Tamanho da queue:0
Numero de arrivals :5074
Numero de departures :4926
Chamadas bloqueadas : 3548
Chamadas perdidas : 147
Probabilidade de atraso : 0.699251
Probabilidade de perda : 0.028971
Média de tempos entre chegadas de chamadas : 0.004928
Média de duração de chamadas : 0.013283
Média de atraso dos pacotes : 0.026969
Delta : 0.001000

Servers	Service Level (%)	Delay (%)	Avg Wait (minute)
1	0.00	100.00	NaN
2	100.00	69.23	0.00
3	100.00	27.36	0.00
4	100.00	9.07	0.00
5	100.00	2.59	0.00

Figure 12 - ./erl 200 10000 2 10

Figure 11 - Tabela de probabilidades

```
Lista vazia!
Tamanho da queue:0
Numero de arrivals :5001
Numero de departures :4999
Chamadas bloqueadas : 1371
Chamadas perdidas : 0
Probabilidade de atraso : 0.274145
Probabilidade de perda : 0.000000
Média de tempos entre chegadas de chamadas : 0.004874
Média de duração de chamadas : 0.012937
Média de atraso dos pacotes : 0.049751
Delta : 0.001000
```

Figure 13 - ./erl 200 10000 3 10

L=2

Tipo=0 Tempo=24.840545
Tipo=0 Tempo=24.843992
Tamanho da queue:2
Numero de arrivals :5020
Numero de departures :4980
Chamadas bloqueadas : 413
Chamadas perdidas : 35
Probabilidade de atraso : 0.082271
Probabilidade de perda : 0.006972
Média de tempos entre chegadas de chamadas : 0.004949
Média de duração de chamadas : 0.013069
Média de atraso dos pacotes : 0.159329
Delta : 0.001000

Figure 14 - ./erl 200 10000 5

Servers	Service Level (%)	Delay (%)	Avg Wait (minute)
1	0.00	100.00	NaN
2	100.00	54.57	0.00
3	100.00	24.23	0.00
4	100.00	8.54	0.00
5	100.00	2.51	0.00

Figure 15 - Tabela de probabilidades atraso

```
Lista vazia!
Tamanho da queue:0
Numero de arrivals :5107
Numero de departures :4893
Chamadas bloqueadas : 1084
Chamadas perdidas : 212
Probabilidade de atraso : 0.212258
Probabilidade de perda : 0.041512
Média de tempos entre chegadas de chamadas : 0.004930
Média de duração de chamadas : 0.013109
Média de atraso dos pacotes : 0.061536
Delta : 0.001000
```

Figure 16 - ./erl 200 10000 4

Para L=2 os valores da probabilidade de atraso estão um pouco mais distantes dos valores esperados(~3%). Especulamos que isto aconteça por causa da fraca eficácia das fórmulas Erlang para um canal altamente congestionado.

Se tivermos uma queue muito grande (por exemplo L=10000) para N=3 canais teremos de decrescer o L até 4 para ter uma probabilidade de perda de pacote de 1%.

```
Lista vazia!
Tamanho da queue:0
Numero de arrivals :5027
Numero de departures :4973
Chamadas bloqueadas : 1311
Chamadas perdidas : 52
Probabilidade de atraso : 0.260792
Probabilidade de perda : 0.010344
Média de tempos entre chegadas de chamadas : 0.004942
Média de duração de chamadas : 0.012984
Média de atraso dos pacotes : 0.051844
Delta : 0.001000
```

Figure 17 - Ploss = 1%, N = 3, L = 4