

Choices for reference node.

reference	٧3	V ₄	V ₅	V6-	(v, s Ve Supernule)
VG	10	-4v	60	0	(C orfunde)
V ₃	0	- 20	50	-10	
V4.	50	0	loo	40	
V5	-50	- 100	Ó	-60	

Choose V6 as reference

- remember! current terms only!

Superhole:
$$\frac{V_1 - V_8}{15} - 2 - 3 = 0$$

 $V_1 - 10 - 5 \times 15 = 0$
 $V_1 = 85 \text{ V}.$

Supernode dependence:
$$V_2 - V_1 = 5i_X$$

and where $i_X = \frac{V_1 - V_3}{15} = \frac{85 - 10}{15} = 5A$

50 $V_2 - V_1 = 5(5)$
 $V_2 = V_1 + 25 = 110 \text{ V}$

Power in dependent source:
$$p = vi = (Si_x)(i_x)$$

= 125 W (absorbing)

Power in the lov source.

Note 3:

$$\frac{V_3 - V_1}{15} + \frac{V_2 - V_4}{25} + i = 0$$

 $\frac{10 - 85}{15} + \frac{(0 - (-40))}{25} + i = 0$
 $i = 3A$

power: p=vi = 10 x 3 = 30 W (absorbing)

2012 milleum

What happens if we try to write a supermesh equation here? $5(i_1-i_3)+15(i_2-i_3)+10i_2+10i_1+?=0$

unknown voltage on current source

- and ils not 3!

Instead, we know $i_1 = 3A$. And we still use the supermesh dependence equation.

$$i_2 - i_1 = 2$$
 $i_2 = 2 + i_1 = 5A$

Now mesh 3:
$$5(i_3-i_1)+5i_3-10+15(i_3-i_2)=0$$

 $25i_3-5i_1-15i_2=10$
 $25i_3-5(3)-15(5)=10$
 $25i_3=100$
 $i_3=4A$.

Find power in current sources.

Mesh 2 equation:
$$15(i_2-i_3) + 10i_2 - V_2 = 0$$

 $15(5-4) + 10(5) = V_2$
 $V_2 = 65 v$

Power in 2A source P=-iv

Choosing opposite polarity for 12

Mesh 2:
$$15(i_2-i_3) + 10i_2 + V_2 = 0$$

 $15\times 1 + 10\times 5 = -V_2$
 $V_2 = -65 \text{ V}$
 $V_3 = -65 \text{ V}$
 $V_4 = -65 \text{ V}$
 $V_5 = -65 \text{ V}$