Лабораторная работа №1

Установка и конфигурация операционной системы на виртуальную машину

Липатникова М.С. группа НФИбд-02-19

Содержание

1	Цель работы	4
2	Выполнение лабораторной работы	5
3	Домашнее задание	13
4	Контрольные вопросы	16
5	Вывод	18
6	Список литературы	19

List of Figures

2.1	Новая машина
2.2	Размер памяти
2.3	Конфигурация жёсткого диска
2.4	Размер диска
2.5	Образ ОС
2.6	Общие настройки
2.7	Раздел выбора программ
2.8	KDUMP
2.9	Сетевое соединение
2.10	Пользователь и пароль
2.11	Раздел выбора программ
3.1	Версия ядра Linux
3.2	Частота процессора
3.3	Модель процессора
3.4	Объем доступной оперативной памяти
3.5	Тип обнаруженного гипервизора
3.6	Тип файловой системы корневого раздела
3.7	Последовательность монтирования файловых систем

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Выполнение лабораторной работы

Создала новую виртуальную машину(Машина->Создать). Указала имя виртуальной машины (логин в дисплейном классе), тип операционной системы — Linux, RedHat (fig. 2.1).

Figure 2.1: Новая машина

Указала размер основной памяти виртуальной машины (fig. 2.2) — 2048 MБ.

Figure 2.2: Размер памяти

Задала конфигурацию жёсткого диска— загрузочный, VDI (VirtualBox Disk Image), динамический виртуальный диск (fig. 2.3).

Figure 2.3: Конфигурация жёсткого диска

Задала размер диска — $40 \, \Gamma \text{Б}$ (fig. 2.4).

Укажите имя и размер фаила

Пожалуйста укажите имя нового виртуального жёсткого диска в поле снизу или используйте кнопку с иконкой папки справа от него.

Figure 2.4: Размер диска

Добавила новый привод оптических дисков и выбрала образ операционной системы (Настройки->Носители)(fig. 2.5).

Figure 2.5: Образ ОС

Запустила виртуальную машину, выбрала English в качестве языка интерфейса

и перешла к настройкам установки операционной системы. Поменяла раскладку клавиатуры (добавила русский язык, задала комбинацию клавиш для переключения между раскладками клавиатуры) (fig. 2.6).

Figure 2.6: Общие настройки

В разделе выбора программ указала в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools (fig. 2.7).

Figure 2.7: Раздел выбора программ

Отключила KDUMP (fig. 2.8).

Figure 2.8: KDUMP

Место установки ОС оставила без изменения. Включила сетевое соединение

и в качестве имени узла указала mslipatnikova.localdomain (fig. 2.9).

Figure 2.9: Сетевое соединение

Установила пароль для root и пользователя с правами администратора (fig. 2.10).

Figure 2.10: Пользователь и пароль

В меню Устройства виртуальной машины подключила образ диска дополнений

гостевой ОС (fig. 2.11).

Figure 2.11: Раздел выбора программ

После загрузки дополнений нажала Return или Enter и перезагрузила виртуальную машину.

3 Домашнее задание

Получила следующую информацию с помощью команды dmesg | grep -i "то, что ищем"

1. Версия ядра Linux (Linux version) (fig. 3.1): Linux version 5.14.0-70.13.1.el9_0.x86_64 (gcc (GCC) 11.2.120220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9)

```
[mslipatnikova@mslipatnikova ~]$ dmesg | grep -i 'Linux Version'

[ 0.000000] Linux version 5.14.0-70.13.1.el9 0.x86_64 (mockbuild@dal1-prod-builder001.bl

d.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-

17.el9) #1 SMP PREEMPT Wed May 25 21:01:57 UTC 2022
```

Figure 3.1: Версия ядра Linux

2. Частота процессора (Detected Mhz processor) 3382.402 МГц(fig. 3.2).

Figure 3.2: Частота процессора

3. Модель процессора (CPU0) (fig. 3.3): 11th Gen Intel(R) Core(TM) i7-11370H (**3.30GHz?**) (family: 0x6, model: 0x8c, stepping: 0x1).

```
[mslipatnikova@mslipatnikova -]$ dmesg | grep -i "CPU0"
[ 0.156420] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz (family: 0x6, model: 0x8c, stepping: 0x1)
```

Figure 3.3: Модель процессора

4. Объем доступной оперативной памяти (Memory available) (fig. 3.4): 260860K/2096696K.

Figure 3.4: Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected) (fig. 3.5): KVM.

```
[mslipatnikova@mslipatnikova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
```

Figure 3.5: Тип обнаруженного гипервизора

6. Тип файловой системы корневого раздела (fig. 3.6): XFS.

```
XFS (dm-0):
2.5311451
                        Mounting V5 Filesyste
3.2877501
          systemd[1]:
                       Set up auto
                            ing Huge Pages Fi
3.299046]
         systemd[1]:
3.300067]
         systemd[1]:
                            ing POSIX Message
3.301557] systemd[1]:
                            ing Kernel Debug
3.314090]
                            ing Kernel Trace
          systemd[1]:
3.371073]
          systemd[1]:
                       Starting Re
                                         Root
4.5756981
          XFS (sdal):
                        founting V5 Filesystem
```

Figure 3.6: Тип файловой системы корневого раздела

- 7. Последовательность монтирования файловых систем (fig. 3.7):
- Set up automount Arbitrary Executable File Formats File System Automount Point
- Mounting Huge Pages File System
- Mounting POSIX Message Queue File System
- Mounting Kernel Debug File System
- Mounting Kernel Trace File System

• Starting Remount Root and Kernel File Systems

```
[ 3.287750] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 3.299046] systemd[1]: Mounting Huge Pages File System...
[ 3.300067] systemd[1]: Mounting POSIX Message Queue File System...
[ 3.301557] systemd[1]: Mounting Kernel Debug File System...
[ 3.314090] systemd[1]: Mounting Kernel Trace File System...
[ 3.371073] systemd[1]: Starting Remount Root and Kernel File Systems...
```

Figure 3.7: Последовательность монтирования файловых систем

4 Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Учётные записи представляют собой средства идентификации пользователей и проверки их подлинности. Учётные записи пользователей имеют несколько компонентов. Первый компонент — имя пользователя. Второй — пароль, а затем идёт информация об управлении доступом.

- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде: man
- для перемещения по файловой системе: cd
- для просмотра содержимого каталога: ls
- для определения объёма каталога: df
- для создания / удаления каталогов / файлов: mkdir/touch(echo), rmdir/rm
- для задания определённых прав на файл / каталог: chmod
- для просмотра истории команд: history
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система – это инструмент, позволяющий операционной системе и программам обращаться к нужным файлам и работать с ними. - FAT32. Благодаря отсутствию шифрования, современных систем защиты информации и журнала данных, накопители с файловой системой FAT32 могут работать быстрее, но только с единичными файлами. Работа с массивом небольших файлов может затянуться надолго. Причиной является иерархическая

структура, которая подразумевает многоуровневый доступ к файлам, в отличие от бинарного дерева, где доступ к файлам открывается напрямую, независимо от других. - NTFS. Структура системы хранения данных имеет вид бинарного дерева. В отличие от иерархической, как у FAT32, доступ к информации осуществляется по запросу, а поиск ведется по названию файла. При этом система имеет каталог, отсортированный по названиям. Массив делится на 2 части и отсекается та, в которой данного файла не будет, оставшаяся часть также делиться на 2, и так далее до тех пор, пока не будет найден нужный файл. - ReFS. Файловая система ReFS отличается высокой степенью надежности хранения файлов и легким их восстановлением в случае сбоя. - ZFS. Файловая система, разработанная для систем хранения данных. Главная ее черта – отказоустойчивость. Данные с которыми ведется работа копируются в служебный сектор. Его объем должен быть равен области хранения.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Для монтирования и размонтирования файловых систем используются программы mount и umount. Информация о файловых системах и точках монтирования находится в файле /etc/fstab.

5. Как удалить зависший процесс?

Команда killall в Linux предназначена для «убийства» всех процессов, имеющих одно и то же имя.

5 Вывод

Приобрела практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

6 Список литературы

1. Теоретические материалы курса.