Quaternions (cont)

$$81092 = \left[S_{1}S_{2} - V_{1}OV_{2}, S_{1}*V_{2} + S_{2}*V_{1} + V_{1}*V_{2} \right]$$

$$= \left[S_{1}S_{2} - V_{1}OV_{2}, S_{1}*V_{2} + S_{2}*V_{1} + V_{1}*V_{2} \right]$$

$$8.81 = [1*5-65; 1*(6,7,8)+ 1*(2,3,4) + (-4,8,-4)]$$

$$\frac{1}{9} = \frac{1}{||g_{1}||} \left(\frac{1}{5}, \frac{1}{9} - \frac{1}{1} \right) \\
= \frac{1}{||g_{1}||} \left(\frac{1}{5}, \frac{1}{9} - \frac{1}{1} \right) \\
= \frac{1}{||g_{1}||} \left(\frac{1}{5}, \frac{1}{9} - \frac{1}{1} \right) \\
= \frac{1}{||g_{1}||} \left(\frac{1}{5}, \frac{1}{1} - \frac{1}{1$$

Ex try to compute 81.81 (at home)

$$||q_1|| = \sqrt{s_1^2 + y_1^2 + y_1^2 + z_1^2}$$

rotate angle
$$\phi$$
 through the origin $w/$ normal n

$$g = \left[\cos(\phi/2), \sin(\phi/2) * n\right]$$
rotate point $p \in \mathbb{R}^3$
1) convert to quaternion $[0, p]$
2) transform w quaternion product $g_p = gpq^{-1}$

Kd-tree

