

Fuzzy Sets

Logic

Example

References and . . .

Fuzzy Logic

Péter Molnár ©2003

Introduction Fuzzy Sets Logic Example

References and . . .

1. Introduction

1.1. Motivation: The classical engineering problem of balancing an inverted pendulum

Inverted Pendulum

- A solid pendulum is hinged at its base to a platform which can move in opposite directions.
- Pendulum can move in the same plane as the platform.
- The objective is to keep the pendulum upright by compensating for the tilt of the pendulum by corresponding movements of the platform.

1.2. Practical Application

Introduction

Fuzzy Sets

Logic

Example

Fuzzy Sets

Logic

Example

References and . . .

1.3. "Classical" Controller

- Input Measurements:
 - the angle the pendulum makes with the upright,
 - the angular velocity of the pendulum must be measured,
 - the rate of change of this velocity.
- Output:
 - the direction, velocity, and
 - change in velocity of the platform.
- Find a suitable relation between these variables. Can become very complicated (Newtonian mechanics)
- Demand a lot of computing power.

Fuzzy Sets

Logic

Example

References and . . .

1.4. "Human" Controller

- When the pendulum tilts we measure the nature of this movement.
- How much the broomstick has moved, what direction it is moving in and how quickly it is moving?
- We automatically make the corresponding movement to compensate. We don't actually quantify these factors, rather we make quick, instinctive estimations.
- If we were to examine the thought pattern in such a situation it might read like this:
 - The pendulum is tilting, to the right, a little, so I must move my hand, to the right, a little.
 - The pendulum is tilting, quickly, forward, a lot, so I must move my hand, quickly, forwards, a lot.

Fuzzy Sets

Logic

Example

References and . . .

1.5. Sufficient Accurate Estimates

- And so on. The key thing here is our ability to make sufficiently accurate estimations about the nature of the situation, build a number of rules with them and act on these rules accordingly.
- We find it easy to do this. We make use of abstract concepts such as a little, a lot, quickly, slowly and apply them to the variables of pendulum tilt and hand movement.
- Fuzzy logic provides a means by which computers can imitate the way we humans make these kinds of estimations
 - rather than A or NOT A,
 - we can say MOSTLY A or SLIGHTLY A.

Fuzzy Sets

Logic

Example

References and . . .

2. Fuzzy Sets

• Fuzzy Sets - a matter of degree

Fuzzy Sets

Logic

Example

- \bullet Fuzzy truth, T, likely hood of a predicate to be true, given a crisp input value.
- Degree of membership, $\mu(x)$, of a given crisp input value to a fuzzy set.

Fuzzy Sets

Logic

Example

References and . . .

2.1. Representation of Knowledge: Sets

- Fuzzy Sets: define attributes
 - Height: TALL, AVERAGE HIGHT, SHORT
 - Build: FAT, MEDIUM, SLIM
 - Weight, HEAVY, MEDIUM, LIGHT

Membership

Fuzzy Sets

Logic

Example

References and . . .

2.2. Representation of Knowledge: Rules

- Linguistic rules:
 - if a man is tall and fat, then he will be heavy in weight.
 - if a man is tall and slim, then he will be average in weight.
 - if a man is tall and of medium build, then he will be heavy in weight.
 - if a man is short and fat, then he will be average in weight. if a man is short and slim, then he will be light in weight.
 - if a man is short and of medium build, then he will be light in weight.
 - if a man is of average height and fat, then he will be heavy in weight.
 - if a man is of average height and slim, then he will be light in weight.
 - if a man is of average height and of medium build, then he will be medium in weight.

Fuzzy Sets

Logic

Example

References and . . .

3. Logic

3.1. Fuzzy Rule Based Systems

Fuzzy Sets

Logic

Example

References and . . .

3.2. Fuzzification

- Process by which crisp, non-fuzzy, input values are converted into their fuzzy representations.
- Example: a crisp input value of 6'3" for height, fuzzification of this input entails applying this value to the fuzzy set average.

• The fuzzification process will take place for all inputs in all corresponding fuzzy sets, yielding fuzzified membership functions for use in each rule.

Fuzzy Sets

Logic

Example

References and . . .

3.3. Inference in Fuzzy Logic

- Min-Max inference (Lotfi Zadeh)
 - if A is X and B is Y, then C is min(X,Y)
 - if A is X or B is Y, then C is max(X,Y)
- Example X=0.75, Y=0.25

Fuzzy Sets

Logic

Example

References and . . .

• Logic Operators

Fuzzy Sets

Logic

Example

- Compute all rules that apply, i.e. for any set that any input value is a member of.
- Combine results: unify sets.
- Defuzzify result: calculating a crisp output value.

Fuzzy Sets

Logic

Example

References and . . .

3.4. Defuzzification

- The opposite of fuzzification; entails the rationalization of a fuzzified output to obtain a crisp value for the output.
- Several methods can be used, one of them: the Center of Gravity method.
- Finding the center of gravity of the fuzzified output membership function and returning the crisp value that corresponds to this point.

Fuzzy Sets

Logic

Example

References and . . .

4. Example

Inverted Pendulum

Figure 1.32
The Inverted Pendulum case example—a physical presentation of an experimental system.

Fuzzy Sets

Logic

Example

References and . . .

IF Θ is PM AND $\Delta\Theta$ is ZR, THEN y is PM, IF Θ is PS AND $\Delta\Theta$ is PS, THEN y is PS, IF Θ is PS AND $\Delta\Theta$ is NS, THEN y is ZR, IF Θ is NM AND $\Delta\Theta$ is ZR, THEN y is NM, IF Θ is NS AND $\Delta\Theta$ is NS, THEN y is NS, IF Θ is NS AND $\Delta\Theta$ is PS, THEN y is ZR, IF Θ is ZR AND $\Delta\Theta$ is ZR, THEN y is ZR.

Figure 1.33
Seven heuristic rules for balancing the inverted pendulum. (Adapted with permission from Yamakawa 1989.)

Fuzzy Sets

Logic

Example

	Θ							
ΔΘ		NL	NM	NS	ZR	PS	PM	PL
	PL							
	PM							
	PS			ZR		PS		
	ZR		NM		ZR		PM	
	NS			NS		ZR		
	NM							
	NL							<u> </u>

Figure 3.42
A set of fuzzy rules and membership functions for the Inverted Pendulum case problem. (Adapted with permission from Yamakawa 1989.)

5. References and Further Reading

Introduction

Fuzzy Sets

Logic

Example

Fuzzy Sets

Logic

Example

References and . . .

Disclaimer

- This presentation material has been created for class presentation only.
- This presentation is intended solely for students at Clark Atlanta University.
- All rights reserved, 2000–2003.

