Water Resources Engineering

Larry W. Mays

Water Resources Engineering

Water Resources Engineering

Second Edition

Larry W. Mays

Professor

Civil, Environmental, and Sustainable Engineering Group School of Sustainable Engineering and the Built Environment Arizona State University Tempe, Arizona

John Wiley & Sons, Inc.

VP and Publisher Don Fowley
Acquisition Editor Jenny Welter

Editorial Assistant Alexandra Spicehandler

Production Manager Janis Soo

Assistant Production Editor Elaine S. Chew

Senior Marketing Manager Christopher Ruel

Marketing Assistant Diana Smith

Media Editor Lauren Sapira

Designer RDC Publishing Group Sdn. Bhd.

Cover Image © Larry W. Mays

This book was set in 9.5/12 Times Roman by Thomson Digital and printed and bound by Hamilton Printing Company. The cover was printed by Hamilton Printing Company.

This book is printed on acid free paper.

Copyright © 2011, 2005 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging in Publication Data

```
Mays, Larry W.
Water resources engineering / Larry W. Mays.—2<sup>nd</sup> ed. p. cm.
Includes index.
ISBN 978-0-470-46064-1 (cloth: alk. paper)
1. Hydraulic engineering. 2. Hydrology. I. Title.
TC145.M383 2010
627—dc22 2010005952
```

Printed in the United States of America

10987654321

About the Author

Larry W. Mays is Professor in the Civil, Environmental, and Sustainable Engineering Group in the School of Sustainable Engineering and the Built Environment at Arizona State University (ASU), and former chair of the Department of Civil and Environmental Engineering. Prior to ASU he was Director of the Center for Research in Water Resources at the University of Texas at Austin, where he held an Engineering Foundation–endowed professorship. A registered professional engineer in several states, and a registered professional hydrologist, he has served as a consultant to many national and international organizations.

Professor Mays has published extensively in refereed journal publications and in the proceedings of national and international conferences. He was the author of the first edition of this book and *Optimal Control of Hydrosystems* (published by Marcel Dekker), and co-author of *Applied Hydrology* and *Hydrosystems Engineering and Management* (both from McGraw-Hill) and *Groundwater Hydrology* (published by John Wiley & Sons, Inc). He was editor-in-chief of *Water Resources Handbook*, *Water Distribution Systems Handbook*, *Urban Water Supply Management Tools*, *Stormwater Collection Systems Design Handbook*, *Urban Water Supply Handbook*, *Urban Stormwater Management Tools*, *Hydraulic Design Handbook*, *Water Supply Systems Security*, and *Water Resources Sustainability*, all published by McGraw-Hill. In addition, he was editor-in-chief of *Reliability Analysis of Water Distribution Systems* and co-editor of *Computer Methods of Free Surface and Pressurized Flow* published by Kluwer Academic Publishers.

Professor Mays developed the book, *Integrated Urban Water Management: Arid and Semi-arid Regions*, published by Taylor and Francis. This book was the result of volunteer work for the United Nations UNESCO-IHP in Paris. He recently was editor of the fourth edition of *Water Transmission and Distribution*, published by the American Water Works Association.

One of his major efforts is the study of ancient water systems and the relation that these systems could have on solving our problems of water resources sustainability using the concepts of traditional knowledge, not only for the present, but the future. His most recent book is *Ancient Water Technology*, published by Springer Science and Business Media, The Netherlands.

Among his honors is a distinguished alumnus award from the Department of Civil and Engineering at the University of Illinois at Champaign-Urbana and he is a Diplomate, Water Resources Engineering of the American Academy of Water Resources Engineering. He is also a Fellow of the American Society of Civil Engineers and the International Water Resources Association. He loves the mountains where he enjoys alpine skiing, hiking, and fly-fishing. In addition he loves photographing ancient water systems around the world and gardening. Professor Mays lives in Mesa, Arizona and Pagosa Springs, Colorado.

Acknowledgments

Water Resources Engineering is the result of teaching classes over the past 34 years at the University of Texas at Austin and Arizona State University. So first and foremost, I would like to thank the many students that I have taught over the years. Several of my past Ph.D. students have helped me in many ways through their review of the material and help in development of the solutions manual. These former students include Drs. Aihua Tang, Guihua Li, John Nicklow, Burcu Sakarya, Kaan Tuncok, Carlos Carriaga, Bing Zhao, El Said Ahmed, and Messele Ejeta. I would like to give special thanks to Professor Y.K. Tung of the Hong Kong University of Science and Technology. He has been a long time friend and was my very first Ph.D. student at the University of Texas at Austin. Y. K. was very gracious in providing me with some of the end of chapter problems for the hydrology chapters. I would like to acknowledge Arizona State University, especially the time afforded me to pursue this book.

I would like to thank Wayne Anderson for originally having faith in me through his willingness to first publish the book and now Jenny Welter who has worked to get this edition published.

During my academic career as a professor I have received help and encouragement from so many people that it is not possible to name them all. These people represent a wide range of universities, research institutions, government agencies, and professions. To all of you I express my deepest thanks

Water Resources Engineering has been a part of a personal journey that began years ago when I was a young boy with a love of water. This love of water resources has continued throughout my life, even in my spare time, being an avid snow skier, fly-fisherman and hiker. Books are companions along the journey of learning and I hope that you will be able to use this book in your own exploration of the field of water resources. Have a wonderful journey.

Larry W. Mays Mesa, Arizona Pagosa Springs, Colorado

Preface

AUDIENCE

Water Resources Engineering can be used for the first undergraduate courses in hydraulics, hydrology, or water resources engineering and for upper level undergraduate and graduate courses in water resources engineering design. This book is also intended as a reference for practicing hydraulic engineers, civil engineers, mechanical engineers, environmental engineers, and hydrologists.

TOPICAL COVERAGE

Water resources engineering, as defined for the purposes of this book, includes both water use and water excess management. The fundamental water resources engineering processes are the hydrologic processes and the hydraulic processes. The common threads that relate to the explanation of these processes are the fundamentals of fluid mechanics using the control volume approach. The hydraulic processes include pressurized pipe flow, open-channel flow, and groundwater flow. Each of these in turn can be subdivided into various processes and types of flow. The hydrologic processes include rainfall, evaporation, infiltration, rainfall-runoff, and routing, all of which can be further subdivided into other processes. Knowledge of the hydrologic and hydraulic processes is extended to the design and analysis aspects. This book, however, does not cover the water quality management aspects of water resources engineering.

HISTORY OF WATER RESOURCES DEVELOPMENT

Water resources development has had a long history, basically beginning when humans changed from being hunters and food gatherers to developing of agriculture and settlements. This change resulted in humans harnessing water for irrigation. As humans developed, they began to invent and develop technologies, and to transport and manage water for irrigation. The first successful efforts to control the flow of water were in Egypt and Mesopotamia. Since that time humans have continuously built on the knowledge of water resources engineering. This book builds on that knowledge to present state-of-the-art concepts and practices in water resources engineering.

NEW TO THIS EDITION

The *Second Edition* provides the most up-to-date information along with a remarkable range and depth of coverage. In addition to other changes, two new chapters have been added that explore water resources sustainability and water resources management for sustainability:

Chapter 2: Water Resources Sustainability, defines water resources sustainability, discusses challenges and specific examples of water resources systems, as well as examples of water resources unsustainability.

Chapter 19: Water Resources Management for Sustainability, introduces the idea of integrated water resources management, law related to water resources, methodologies for both arid and semi-arid regions, economics, systems analysis techniques, and uncertainty and risk-reliability analysis for sustainable design.

Principles of Flow in Hydrosystems, which was previously Chapter 2 in the *First Edition*, has now been integrated with Chapter 3 in the Second Edition.

Homework Problems: There are over 300 new problems in the Second Edition, resulting in a total of over 670 end-of-chapter problems, expanding the applications to which students are exposed.

New and updated graphics and photos: Over 50 new diagrams, maps and photographs have been integrated throughout the chapters to reinforce important concepts, and support student visualization and appreciation of water resources systems and engineering.

HALLMARK FEATURES

Breadth and Depth: The text includes a breadth and depth of topics appropriate for undergraduate courses in hydraulics, hydrology, or water resources engineering, or as a comprehensive reference for practicing engineers.

Control Volume Approach: Hydrologic and hydraulic processes are explained through their relationship to the control volume approach in fluid mechanics.

Visual program: Hundreds of diagrams, maps, and photographs illustrate concepts, and reinforce the importance and applied nature of water resources engineering.

CHAPTER ORGANIZATION

Water Resources Engineering is divided into five subject areas: Water Resources Sustainability, Hydraulics, Hydrology, Engineering Analysis and Design for Water Use, and Engineering Analysis and Design for Water Excess Management.

Water resources sustainability includes: Chapter 1 which is an introduction to water resources sustainability; Chapter 2 addresses water resources sustainability; and Chapter 19 water resources management for sustainability. Chapter 11 on water withdrawals and uses, Chapter 13 on water for hydroelectric generation, and Chapter 14 on water excess management also contain material related to water resources sustainability.

Hydraulics consists of five chapters that introduce the basic processes of hydraulics: Chapter 3 presents a basic fluid mechanics review and the control volume approach for continuity, energy, and momentum; and Chapters 4, 5, and 6 cover pressurized flow, open-channel flow, and groundwater flow, respectively. Chapter 18 covers the basics of sedimentation and erosion hydraulics.

Hydrology is covered in four chapters: Chapter 7 on hydrologic processes; Chapter 8 on rainfallrunoff analysis; Chapter 9 on routing; and Chapter 10 on probability and frequency analysis.

Engineering analysis and design for water use consists of three chapters: Chapter 11 on water withdrawals and uses; Chapter 12 on water distribution systems; and Chapter 13 on water for hydroelectric generation.

Engineering analysis and design for water excess management includes four chapters: Chapter 14 on water excess management; Chapter 15 on stormwater control using storm sewers and detention; Chapter 16 on stormwater control using street and highway drainage and culverts; and Chapter 17 on the design of hydraulic structures for flood control storage systems.

COURSE SUGGESTIONS

Several first courses could be taught from this book: a first course on hydraulics, a first course on hydrology, a first course on water resources engineering analysis and design, and a first course on hydraulic design. The flowcharts on the following pages illustrate the topics and chapters that could be covered in these courses.

This is a comprehensive book covering a large number of topics that would be impossible to cover in any single course. This was done purposely because of the wide variation in the manner in which faculty teach these courses or variations of these courses. Also, to make this book more valuable to the practicing engineer or hydrologist, the selection of these topics and the extent of coverage in each chapter were considered carefully. I have attempted to include enough example problems to make the theory more applicable, more understandable, and most of all more enjoyable to the student and engineer.

Students using this book will most likely have had an introductory fluid mechanics course based on the control volume approach. Chapter 3 should serve as a review of basic fluid concepts and the control volume approach. Control volume concepts are then used in the succeeding chapters to introduce the hydrologic and hydraulic processes. Even if the student or engineer has not had an introductory course in fluid mechanics, this book can still be used, because the concepts of fluid mechanics and the control volume approach are covered.

MOTIVATION

I sincerely hope that this book will be a contribution toward the goal of better engineering in the field of water resources. I constantly remind myself of the following quote from Baba Diodum: "In the end we will conserve only what we love, we will love only what we understand, and we will understand only what we are taught."

This book has been another part of a personal journey of mine that began as a young boy with an inquisitive interest and love of water, in the streams, creeks, ponds, lakes, rivers, and oceans, and water as rain and snow. Coming from a small Illinois town situated between the Mississippi and Illinois Rivers near Mark Twain's country, I began to see and appreciate at an early age the beauty, the useful power, and the extreme destructiveness that rivers can create. I hope that this book will be of value in your journey of learning about water resources.

WEB SITE

The Web site for this book is located at www.wiley.com/college/mays and includes the following resources:

- Errata listing: a list of any corrections that may be found in this book.
- Figures from text: non-copyrightable figures are available for making lecture slides or transparencies.
- Solutions Manual for Instructors: Includes solutions to all problems in the book. This resource is password-protected, and available only to instructors who have adopted this book for their course. Visit the Instructor Companion site portion of the Web site at www.wiley.com/college/mays to register for a password.

First Undergraduate Hydraulics Course

First Undergraduate Hydrology Course

Undergraduate Hydraulic Design Course

Water Resources Engineering and Sustainability

Brief Contents

Chapter 1	Introduction	J
1.1	Background	,
1.2	The World's Fresh Water Resources	4
1.3	Water Use in the United States	(
1.4	Systems of Units	8
1.5	The Future of Water Resources	10
Chapter 2	Water Resources Sustainability	13
2.1	What is Water Resources Sustainability?	13
2.2	Challenges to Water Resources Sustainability	16
2.3	Surface Water System – The Colorado River Basin	32
2.4	Groundwater Systems – The Edwards Aquifer, Texas	37
2.5	Water Budgets	4.
2.6	Examples of Water Resources Unsustainability	47
Chapter 3	Hydraulic Processes: Flow and Hydrostatic Forces	57
3.1	Principles	57
3.2	Control Volume Approach for Hydrosystems	64
3.3	Continuity	66
3.4	Energy	68
3.5	Momentum	72
3.6	Pressure and Pressure Forces in Static Fluids	73
3.7	Velocity Distribution	78
Chapter 4	Hydraulic Processes: Pressurized Pipe Flow	83
4.1	Classification of Flow	83
4.2	Pressurized (Pipe) Flow	86
4.3	Headlosses	90
4.4	Forces in Pipe Flow	100
4.5	Pipe Flow in Simple Networks	103
Chapter 5	Hydraulic Processes: Open-Channel Flow	113
5.1	Steady Uniform Flow	113
5.2	Specific Energy, Momentum, and Specific Force	124
5.3	Steady, Gradually Varied Flow	134
5.4	Gradually Varied Flow for Natural Channels	141
5.5	Rapidly Varied Flow	152
5.6	Discharge Measurement	158
Chapter 6	Hydraulic Processes: Groundwater Flow	173
6.1	Groundwater Concepts	173
6.2	Saturated Flow	181

xvi Contents

	6.3	Steady-State One-Dimensional Flow	186
	6.4	Steady-State Well Hydraulics	189
	6.5	Transient Well Hydraulics—Confined Conditions	195
	6.6	Transient Well Hydraulics—Unconfined Conditions	205
	6.7	Transient Well Hydraulics—Leaky Aquifer Conditions	206
	6.8	Boundary Effects: Image Well Theory	207
	6.9	Simulation of Groundwater Systems	215
Chapter	. 7	Hydrologic Processes	227
	7.1	Introduction to Hydrology	227
	7.2	Precipitation (Rainfall)	237
	7.3	Evaporation	260
	7.4	Infiltration	266
Chapter	8	Surface Runoff	283
	8.1	Drainage Basins and Storm Hydrographs	283
	8.2	Hydrologic Losses, Rainfall Excess, and Hydrograph Components	287
	8.3	Rainfall-Runoff Analysis Using Unit Hydrograph Approach	291
	8.4	Synthetic Unit Hydrographs	294
	8.5	S-Hydrographs	299
	8.6	NRCS (SCS) Rainfall-Runoff Relation	301
	8.7	Curve Number Estimation and Abstractions	303
	8.8	NRCS (SCS) Unit Hydrograph Procedure	310
	8.9	Kinematic-Wave Overland Flow Runoff Model	314
	8.10	Computer Models for Rainfall-Runoff Analysis	320
~ .	. 0	Reservoir and Stream Flow Routing	331
Chapter	· •	Reservoir and Stream Flow Routing	331
Chapter	9.1	Routing	331
Chapter		<u> </u>	
Chapter	9.1	Routing	331
Chapter	9.1 9.2	Routing Hydrologic Reservoir Routing	331 332
Chapter	9.1 9.2 9.3	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels	331 332 336
Chapter	9.1 9.2 9.3 9.4	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing	331 332 336 340 346 351
Chapter	9.1 9.2 9.3 9.4 9.5	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels	331 332 336 340 346
Chapter	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model	331 332 336 340 346 351
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum-Cunge Model Implicit Dynamic Wave Model	331 332 336 340 346 351 352
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum-Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design	331 332 336 340 346 351 352 361
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts	331 332 336 340 346 351 352 361
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions	331 332 336 340 346 351 352 361 361
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3	Routing Hydrologic Reservoir Routing Hydraulic (Distributed) Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management	331 332 336 340 346 351 352 361 364 364
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4	Routing Hydrologic Reservoir Routing Hydraulic (Distributed) Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis	331 332 336 340 346 351 352 361 364 367 373
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5	Routing Hydrologic Reservoir Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum-Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis	331 332 336 340 346 351 352 361 364 367 373 379
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5 10.6	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis Analysis of Uncertainties	331 332 336 340 346 351 352 361 364 367 373 379 384
	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Routing Hydrologic Reservoir Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis Analysis of Uncertainties Risk Analysis: Composite Hydrologic and Hydraulic Risk	331 332 336 340 346 351 352 361 361 364 367 373 379 384 387
Chapter	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis Analysis of Uncertainties Risk Analysis: Composite Hydrologic and Hydraulic Risk Computer Models for Flood Flow Frequency Analysis	331 332 336 340 346 351 352 361 364 367 373 379 384 387 393
Chapter	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis Analysis of Uncertainties Risk Analysis: Composite Hydrologic and Hydraulic Risk Computer Models for Flood Flow Frequency Analysis Water Withdrawals and Uses	331 332 336 340 346 351 352 361 361 364 367 373 379 384 387 393
Chapter	9.1 9.2 9.3 9.4 9.5 9.6 9.7 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Routing Hydrologic Reservoir Routing Hydrologic River Routing Hydraulic (Distributed) Routing Kinematic Wave Model for Channels Muskingum—Cunge Model Implicit Dynamic Wave Model Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design Probability Concepts Commonly Used Probability Distributions Hydrologic Design for Water Excess Management Hydrologic Frequency Analysis U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis Analysis of Uncertainties Risk Analysis: Composite Hydrologic and Hydraulic Risk Computer Models for Flood Flow Frequency Analysis Water Withdrawals and Uses Water-Use Data – Classification of Uses	331 332 336 340 346 351 352 361 364 367 373 379 384 387 393

		Conten	ts xvii
	11.5	Water Demand and Price Elasticity	436
	11.6	Drought Management	440
	11.7	Analysis of Surface Water Supply	448
Chapter	12	Water Distribution	463
	12.1	Introduction	463
	12.2	System Components	475
	12.3	System Configuration and Operation	492
	12.4	Hydraulics of Simple Networks	495
	12.5	Pump Systems Analysis	499
	12.6	Network Simulation	514
	12.7	Modeling Water Distribution Systems	525
	12.8	Hydraulic Transients	527
Chapter	13	Water for Hydroelectric Generation	547
	13.1	Role of Hydropower	547
	13.2	Components of Hydroelectric Plants	552
	13.3	Determining Energy Potential	561
Chapter	14	Flood Control	577
	14.1	Introduction	577
	14.2	Floodplain Management	579
	14.3	Flood-Control Alternatives	585
	14.4	Flood Damage and Net Benefit Estimation	595
	14.5	U.S. Army Corps of Engineers Risk-Based Analysis for Flood-Damage Reduction Studies	600
	14.6	Operation of Reservoir Systems for Flood Control	604
Chapter	15	Stormwater Control: Storm Sewers and Detention	611
	15.1	Stormwater Management	611
	15.2	Storm Systems	612
	15.3	Stormwater Drainage Channels	639
	15.4	Stormwater Detention	647
Chapter	16	Stormwater Control: Street and Highway Drainage and Culverts	671
	16.1	Drainage of Street and Highway Pavements	671
	16.2	Hydraulic Design of Culverts	693
Chapter	17	Design of Spillways and Energy Dissipation for Flood Control Storage	
		and Conveyance Systems	713
	17.1	Hydrologic Considerations	713
	17.2	Dams	714
	17.3	Spillways	725
	17.4	Hydraulic-Jump-Type Stilling Basins and Energy Dissipators	748
Chapter	18	Sedimentation and Erosion Hydraulics	771
	18.0	Introduction	771
	18.1	Properties of Sediment	773
	18.2	Bed Forms and Flow Resistance	781
	18.3	Sediment Transport	786
	18.4	Bed Load Formulas	792

xviii Contents

Index			873
Appendix	A	Newton-Raphson Method	869
	19.6	Life Cycle Assessment (LCA)	862
	19.5	Water Resource Systems Analysis	856
	19.4	Water Resources Economics	849
	19.3	Sustainable Water Supply Methodologies for Arid and Semi-Arid Regions	836
	19.2	Water Law: Surface and Groundwater Management Aspects	830
	19.1	Integrated Water Resources Management for Sustainability	827
Chapter	19	Water Resources Management for Sustainability	827
	18.10	Bridge Scour	821
	18.9	Stream Stability at Highway Structures	815
	18.8	Reservoir Sedimentation	812
	18.7	Watershed Sediment Yield	808
	18.6	Total Sediment Load (Bed Material Load Formulas)	800
	18.5	Suspended Load	797

Contents

About the Autl	hor	,
Acknowledgme	ents	vi
Preface		i
Chapter 1	Introduction	-
1.1	Background	
1.2	The World's Fresh Water Resources	4
1.3	Water Use in the United States	(
1.4	Systems of Units	;
1.5	The Future of Water Resources	10
Chapter 2	Water Resources Sustainability	13
2.1	What is Water Resources Sustainability?	1:
	2.1.1 Definition of Water Resources Sustainability	13
	2.1.2 The Dublin Principles	14
	2.1.3 Millennium Development Goals (MDGs)	14
	2.1.4 Urbanization – A Reality of Our Changing World	1:
2.2	Challenges to Water Resources Sustainability	10
	2.2.1 Urbanization	10
	2.2.2 Droughts and Floods	2
	2.2.3 Climate Change	24
	2.2.4 Consumption of Water – Virtual Water and Water Footprints	2
2.3	Surface Water System—The Colorado River Basin	32
	2.3.1 The Basin	32
2.4	Groundwater Systems – The Edwards Aquifer, Texas	3′
2.5	Water Budgets	4:
	2.5.1 What are Water Budgets?	4
	2.5.2 Water Balance for Tucson, Arizona	44
2.6	Examples of Water Resources Unsustainability	4′
2.0	2.6.1 Aral Sea	4′
	2.6.2 Mexico City	48
Chapter 3	Hydraulic Processes: Flow and Hydrostatic Forces	5
3.1	Principles	5′
	3.1.1 Properties Involving Mass or Weight of Water	5′
	3.1.2 Viscosity	5′
	3.1.3 Elasticity	59
	3.1.4 Pressure and Pressure Variation	60
	3.1.5 Surface Tension	6
	3.1.6 Flow Visualization	6
	3.1.7 Laminar and Turbulent Flow	62
	3.1.8 Discharge	6.

xx Contents

3.2	Control Volume Approach for Hydrosystems	64
3.3	Continuity	66
3.4	Energy	68
3.5	Momentum	72
3.6	Pressure and Pressure Forces in Static Fluids	73
	3.6.1 Hydrostatic Forces	73
	3.6.2 Buoyancy	77
3.7	Velocity Distribution	78
Chapter 4	Hydraulic Processes: Pressurized Pipe Flow	83
4.1	Classification of Flow	83
4.2	Pressurized (Pipe) Flow	86
	4.2.1 Energy Equation	86
	4.2.2 Hydraulic and Energy Grade Lines	89
4.3	Headlosses	90
	4.3.1 Shear-Stress Distribution of Flow in Pipes	90
	4.3.2 Velocity Distribution of Flow in Pipes	92
	4.3.3 Headlosses from Pipe Friction	94
	4.3.4 Form (Minor) Losses	97
4.4	Forces in Pipe Flow	100
4.5	Pipe Flow in Simple Networks	103
	4.5.1 Series Pipe Systems	103
	4.5.2 Parallel Pipe Systems	105
	4.5.3 Branching Pipe Flow	108
Chapter 5	Hydraulic Processes: Open-Channel Flow	113
5.1	Steady Uniform Flow	113
5.1	5.1.1 Energy	113
	5.1.2 Momentum	116
	5.1.2 Hydraulic Sections for Uniform Flow in Nonerodible Channels	122
	5.1.4 Slope-Area Method	123
5.2	Specific Energy, Momentum, and Specific Force	124
0.2	5.2.1 Specific Energy	124
	5.2.2 Momentum	129
	5.2.3 Specific Force	131
5.3	Steady, Gradually Varied Flow	134
	5.3.1 Gradually Varied Flow Equations	134
	5.3.2 Water Surface Profile Classification	137
	5.3.3 Direct Step Method	140
5.4	Gradually Varied Flow for Natural Channels	141
		141
	5.4.1 Development of Equations	
	1 1	143
	5.4.2 Energy Correction Factor	143 147
5.5	5.4.2 Energy Correction Factor5.4.3 Application for Water Surface Profile	147
	5.4.2 Energy Correction Factor5.4.3 Application for Water Surface ProfileRapidly Varied Flow	147 152
5.5 5.6	5.4.2 Energy Correction Factor5.4.3 Application for Water Surface ProfileRapidly Varied FlowDischarge Measurement	147 152 158
	5.4.2 Energy Correction Factor5.4.3 Application for Water Surface ProfileRapidly Varied Flow	147 152 158 158
	 5.4.2 Energy Correction Factor 5.4.3 Application for Water Surface Profile Rapidly Varied Flow Discharge Measurement 5.6.1 Weir 	147 152 158

Chapter 6	Hydraulic Processes: Groundwater Flow	173
6.1	Groundwater Concepts	173
6.2	Saturated Flow	181
	6.2.1 Governing Equations	181
	6.2.2 Flow Nets	184
6.3	Steady-State One-Dimensional Flow	186
6.4	Steady-State Well Hydraulics	189
	6.4.1 Flow to Wells	189
	6.4.2 Confined Aquifers	191
	6.4.3 Unconfined Aquifers	194
6.5	Transient Well Hydraulics—Confined Conditions	195
	6.5.1 Nonequilibrium Well Pumping Equation	195
	6.5.2 Graphical Solution	198
	6.5.3 Cooper-Jacob Method of Solution	200
6.6	Transient Well Hydraulics—Unconfined Conditions	205
6.7	Transient Well Hydraulics—Leaky Aquifer Conditions	206
6.8	Boundary Effects: Image Well Theory	207
	6.8.1 Barrier Boundary	208
	6.8.2 Recharge Boundary	212
	6.8.3 Multiple Boundary Systems	214
6.9	Simulation of Groundwater Systems	215
	6.9.1 Governing Equations	215
	6.9.2 Finite Difference Equations	216
	6.9.3 MODFLOW	220
Chapter 7	Hydrologic Processes	227
Chapter 7 7.1	Hydrologic Processes Introduction to Hydrology	227 227
	Introduction to Hydrology	227
	Introduction to Hydrology 7.1.1 What Is Hydrology?	227 227
	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle	227 227 227
	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems	227 227 227 229
	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation	227 227 227 229 234
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget	227 227 227 229 234 236
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall)	227 227 227 229 234 236 237
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types	227 227 227 229 234 236 237 237
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability	227 227 227 229 234 236 237 237 238
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms	227 227 227 229 234 236 237 237 238 240
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms	227 227 227 229 234 236 237 237 238 240
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms	227 227 227 229 234 236 237 237 238 240 241
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation	227 227 227 229 234 236 237 237 238 240 241 257 260
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method	227 227 227 229 234 236 237 237 238 240 241 257 260 261
7.1	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method	227 227 227 229 234 236 237 238 240 241 257 260 261
7.1 7.2 7.3	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method 7.3.3 Combined Method	227 227 227 229 234 236 237 238 240 241 257 260 261 264
7.1 7.2 7.3	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method 7.3.3 Combined Method Infiltration	227 227 227 229 234 236 237 238 240 241 257 260 261 264 265 265
7.1 7.2 7.3	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method 7.3.3 Combined Method Infiltration 7.4.1 Unsaturated Flow	227 227 227 229 234 236 237 238 240 241 257 260 261 264 265 266
7.1 7.2 7.3	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method 7.3.3 Combined Method Infiltration 7.4.1 Unsaturated Flow 7.4.2 Green-Ampt Method	227 227 227 229 234 236 237 238 240 241 257 260 261 264 265 266 267 270
7.1 7.2 7.3	Introduction to Hydrology 7.1.1 What Is Hydrology? 7.1.2 The Hydrologic Cycle 7.1.3 Hydrologic Systems 7.1.4 Atmospheric and Ocean Circulation 7.1.5 Hydrologic Budget Precipitation (Rainfall) 7.2.1 Precipitation Formation and Types 7.2.2 Rainfall Variability 7.2.3 Disposal of Rainfall on a Watershed 7.2.4 Design Storms 7.2.5 Estimated Limiting Storms Evaporation 7.3.1 Energy Balance Method 7.3.2 Aerodynamic Method 7.3.3 Combined Method Infiltration 7.4.1 Unsaturated Flow 7.4.2 Green-Ampt Method 7.4.3 Other Infiltration Methods	227 227 227 229 234 236 237 238 240 241 257 260 261 264 265 266 267 270 276

xxii Contents

8.2	Hydrologic Losses, Rainfall Excess, and Hydrograph Components	287
	8.2.1 Hydrograph Components	289
	8.2.2 Ф-Index Method	289
	8.2.3 Rainfall-Runoff Analysis	291
8.3	Rainfall-Runoff Analysis Using Unit Hydrograph Approach	291
8.4	Synthetic Unit Hydrographs	294
	8.4.1 Snyder's Synthetic Unit Hydrograph	294
	8.4.2 Clark Unit Hydrograph	295
8.5	S-Hydrographs	299
8.6	NRCS (SCS) Rainfall-Runoff Relation	301
8.7	Curve Number Estimation and Abstractions	303
	8.7.1 Antecedent Moisture Conditions	303
	8.7.2 Soil Group Classification	304
	8.7.3 Curve Numbers	307
8.8	NRCS (SCS) Unit Hydrograph Procedure	310
	8.8.1 Time of Concentration	311
	8.8.2 Time to Peak	313
	8.8.3 Peak Discharge	313
8.9	Kinematic-Wave Overland Flow Runoff Model	314
8.10	Computer Models for Rainfall-Runoff Analysis	320
Chapter 9	Reservoir and Stream Flow Routing	331
9.1	Routing	331
9.2	Hydrologic Reservoir Routing	332
9.3	Hydrologic River Routing	336
9.4	Hydraulic (Distributed) Routing	340
7.4	9.4.1 Unsteady Flow Equations: Continuity Equation	341
	9.4.2 Momentum Equation	343
9.5	Kinematic Wave Model for Channels	346
7.5	9.5.1 Kinematic Wave Equations	346
	9.5.2 U.S. Army Corps of Engineers Kinematic Wave Model for Overland	340
	Flow and Channel Routing	348
	9.5.3 KINEROS Channel Flow Routing Model	350
	9.5.4 Kinematic Wave Celerity	350
9.6	Muskingum–Cunge Model	351
9.0 9.7	Implicit Dynamic Wave Model	351
Chapter 10	Probability, Risk, and Uncertainty Analysis for Hydrologic and Hydraulic Design	361
10.1	Probability Concepts	361
10.2	Commonly Used Probability Distributions	364
	10.2.1 Normal Distribution	364
	10.2.2 Log-Normal Distribution	364
	10.2.3 Gumbel (Extreme Value Type I) Distribution	367
10.3	Hydrologic Design for Water Excess Management	367
	10.3.1 Hydrologic Design Scale	368
	10.3.2 Hydrologic Design Level (Return Period)	370
	10.3.3 Hydrologic Risk	370
	10.3.4 Hydrologic Data Series	371
10.4	Hydrologic Frequency Analysis	373
	10.4.1 Frequency Factor Equation	373

		Contents	xxiii
	10.4.2 Application of Log-Pearson III Distribution		374
	10.4.3 Extreme Value Distribution		379
10.5	U.S. Water Resources Council Guidelines for Flood Flow Frequency Analysis		379
10.5	10.5.1 Procedure		380
	10.5.2 Testing for Outliers		381
10.6	Analysis of Uncertainties		384
10.7	Risk Analysis: Composite Hydrologic and Hydraulic Risk		387
10.7	10.7.1 Reliability Computation by Direct Integration		388
	10.7.2 Reliability Computation Using Safety Margin/Safety Factor		391
10.8	Computer Models for Flood Flow Frequency Analysis		393
Chapter 11	Water Withdrawals and Uses		399
11.1	Water-Use Data—Classification of Uses		399
11.2	Water for Energy Production		404
11.3	Water for Agriculture		411
11.5	11.3.1 Irrigation Trends and Needs		411
	11.3.2 Irrigation Infrastructure		411
	11.3.3 Irrigation System Selection and Performance		420
	11.3.4 Water Requirements for Irrigation		424
	11.3.5 Impacts of Irrigation		427
11.4	Water Supply/Withdrawals		427
11.4	11.4.1 Withdrawals		427
	11.4.2 Examples of Regional Water Supply Systems		432
11.5	Water Demand and Price Elasticity		436
11.0	11.5.1 Price Elasticity of Water Demand		436
	11.5.2 Demand Models		438
11.6	Drought Management		440
11.0	11.6.1 Drought Management Options		440
	11.6.2 Drought Severity		442
	11.6.3 Economic Aspects of Water Shortage		444
11.7	Analysis of Surface Water Supply		448
11.7	11.7.1 Surface-Water Reservoir Systems		448
	11.7.2 Storage—Firm Yield Analysis for Water Supply		448
	11.7.3 Reservoir Simulation		457
Chapter 12	Water Distribution		463
12.1	Introduction		463
	12.1.1 Description, Purpose, and Components of Water Distribution Systems		463
	12.1.2 Pipe Flow Equations		470
12.2	System Components		475
	12.2.1 Pumps		475
	12.2.2 Pipes and Fittings		486
	12.2.3 Valves		488
12.3	System Configuration and Operation		492
12.4	Hydraulics of Simple Networks		495
	12.4.1 Series and Parallel Pipe Flow		495
	12.4.2 Branching Pipe Flow		498
12.5	Pump Systems Analysis		499
	12.5.1 System Head Curves		499

xxiv Contents

	12.5.2 Pump Operating Point	500
	12.5.3 System Design for Water Pumping	503
12		514
	12.6.1 Conservation Laws	514
	12.6.2 Network Equations	515
	12.6.3 Network Simulation: Hardy Cross Method	516
	12.6.4 Network Simulation: Linear Theory Method	523
	12.6.5 Extended-Period Simulation	524
12	7 Modeling Water Distribution Systems	525
	12.7.1 Computer Models	525
	12.7.2 Calibration	525
	12.7.3 Application of Models	526
	12.7.4 Water Quality Modeling	526
12		527
	12.8.1 Hydraulic Transients in Distribution Systems	527
	12.8.2 Fundamentals of Hydraulic Transients	528
	12.8.3 Control of Hydraulic Transients	537
Chapter 13	Water for Hydroelectric Generation	547
13	1 Role of Hydropower	547
13	2 Components of Hydroelectric Plants	552
	13.2.1 Elements to Generate Electricity	552
	13.2.2 Hydraulics of Turbines	557
	13.2.3 Power System Terms and Definitions	559
13	3 Determining Energy Potential	561
	13.3.1 Hydrologic Data	561
	13.3.2 Water Power Equations	561
	13.3.3 Turbine Characteristics and Selection	563
	13.3.4 Flow Duration Method	566
	13.3.5 Sequential Streamflow-Routing Method	572
	13.3.6 Power Rule Curve	573
	13.3.7 Multipurpose Storage Operation	574
Chapter 14	Flood Control	577
14	1 Introduction	577
14	2 Floodplain Management	579
	14.2.1 Floodplain Definition	579
	14.2.2 Hydrologic and Hydraulic Analysis of Floods	579
	14.2.3 Floodways and Floodway Fringes	582
	14.2.4 Floodplain Management and Floodplain Regulations	583
	14.2.5 National Flood Insurance Program	584
	14.2.6 Stormwater Management and Floodplain Management	585
14	3 Flood-Control Alternatives	585
	14.3.1 Structural Alternatives	586
	14.3.2 Nonstructural Measures	593
14	4 Flood Damage and Net Benefit Estimation	595
	14.4.1 Damage Relationships	595
	14.4.2 Expected Damages	595
	14.4.3 Risk-Based Analysis	599
14	·	600

			Contents	XXV
		14.5.1 Terminology		600
		14.5.2 Benefit Evaluation		601
		14.5.3 Uncertainty of Stage-Damage Function		602
	14.6	Operation of Reservoir Systems for Flood Control		604
		14.6.1 Flood-Control Operation Rules		604
		14.6.2 Tennessee Valley Authority (TVA) Reservoir System Operation		604
Chapter	15	Stormwater Control: Storm Sewers and Detention		611
	15.1	Stormwater Management		611
	15.2	Storm Systems		612
		15.2.1 Information Needs and Design Criteria		612
		15.2.2 Rational Method Design		613
		15.2.3 Hydraulic Analysis of Designs		621
		15.2.4 Storm Sewer Appurtenances		635
		15.2.5 Risk-Based Design of Storm Sewers		635
	15.3	Stormwater Drainage Channels		639
		15.3.1 Rigid-Lined Channels		640
		15.3.2 Flexible-Lined Channels		641
		15.3.3 Manning's Roughness Factor for Vegetative Linings		646
	15.4	Stormwater Detention		647
		15.4.1 Why Detention? Effects of Urbanization		647
		15.4.2 Types of Surface Detention		648
		15.4.3 Sizing Detention		650
		15.4.4 Detention Basin Routing		659
		15.4.5 Subsurface Disposal of Stormwater		660
Chapter	16	Stormwater Control: Street and Highway Drainage and Culverts		671
	16.1	Drainage of Street and Highway Pavements		671
		16.1.1 Design Considerations		671
		16.1.2 Flow in Gutters		673
		16.1.3 Pavement Drainage Inlets		677
		16.1.4 Interception Capacity and Efficiency of Inlets on Grade		677
		16.1.5 Interception Capacity and Efficiency of Inlets in Sag Locations		685
		16.1.6 Inlet Locations		689
		16.1.7 Median, Embankment, and Bridge Inlets		692
	16.2	Hydraulic Design of Culverts		693
		16.2.1 Culvert Hydraulics		694
		16.2.2 Culvert Design		705
Chapter	17	Design of Spillways and Energy Dissipation for Flood Control Storage		
		and Conveyance Systems		713
	17.1	Hydrologic Considerations		713
	17.2	Dams		714
		17.2.1 Type of Dams		714
		17.2.2 Hazard Classification of Dams		715
		17.2.3 Spillway Capacity Criteria		717
		17.2.4 Examples of Dams and Spillways		719
	17.3	Spillways		725
		17.3.1 Functions of Spillways		725
		17.3.2 Overflow and Free-Overfall (Straight Drop) Spillways		726

xxvi Contents

		17.3.3 Ogee (Overflow) Spillways	728
		17.3.4 Side Channel Spillways	735
		17.3.5 Drop Inlet (Shaft or Morning Glory) Spillways	738
		17.3.6 Baffled Chute Spillways	746
		17.3.7 Culvert Spillways	748
	17.4	Hydraulic-Jump-Type Stilling Basins and Energy Dissipators	748
		17.4.1 Types of Hydraulic Jump Basins	748
		17.4.2 Basin I	752
		17.4.3 Basin II	752
		17.4.4 Basin III	752
		17.4.5 Basin IV	755
		17.4.6 Basin V	755
		17.4.7 Tailwater Considerations for Stilling Basin Design	756
Chapter	18	Sedimentation and Erosion Hydraulics	771
	18.0	Introduction	771
	18.1	Properties of Sediment	773
		18.1.1 Size and Shape	773
		18.1.2 Measurement of Size Distribution	775
		18.1.3 Settling Analysis for Finer Particles	775
		18.1.4 Fall Velocity	777
		18.1.5 Density	781
		18.1.6 Other Important Relations	781
	18.2	Bed Forms and Flow Resistance	781
		18.2.1 Bed Forms	781
		18.2.2 Sediment Transport Definitions	782
	10.2	18.2.3 Flow Resistance	784
	18.3	Sediment Transport	786
		18.3.1 Incipient Motion	786
		18.3.2 Sediment Transport Functions	789
	10 /	18.3.3 Armoring Bed Load Formulas	790
	18.4		792 793
		18.4.1 Duboys Formula18.4.2 Meyer-Peter and Muller Formula	793 794
		18.4.3 Schoklitsch Formula	794
	18.5	Suspended Load	797
	18.6	Total Sediment Load (Bed Material Load Formulas)	800
	10.0	18.6.1 Colby's Formula	800
		18.6.2 Ackers-White Formula	803
		18.6.3 Yang's Unit Stream Power Formula	805
	18.7	Watershed Sediment Yield	808
	18.8	Reservoir Sedimentation	812
	18.9	Stream Stability at Highway Structures	815
		18.9.1 Factors that Affect Stream Stability	815
		18.9.2 Basic Engineering Analysis	815
		18.9.3 Countermeasures (Flow Control Structure) for Stream Instability	817
		18.9.4 Spurs	817
		18.9.5 Guide Banks (Spur Dikes)	818
		18.9.6 Check Dams (Channel Drop Structures)	820
	18.10	Bridge Scour	821

		Contents	xxvi
19.1 19.2 19.3 19.4	Water Resources Management for Sustainability		827
19.1	Integrated Water Resources Management for Sustainability		827
	19.1.1 Principles of Integrated Water Resources Management (IWRM)		827
	19.1.2 Integrated Urban Water Management (IUWM): The Big Picture		828
	19.1.3 Water-Based Sustainable Regional Development		829
19.2	Water Law: Surface and Groundwater Management Aspects		830
	19.2.1 Water Law		830
	19.2.2 Surface Water Systems Management: Examples		831
	19.2.3 Groundwater Systems Management: Examples		835
19.3	Sustainable Water Supply Methodologies for Arid and Semi-Arid Regions		836
	19.3.1 Overall Subsystem Components and Interactions		836
	19.3.2 Water Reclamation and Reuse		836
	19.3.3 Managed Aquifer Recharge (MAR)		836
	19.3.4 Desalination		840
	19.3.5 Water Transfers		845
	19.3.6 Rainfall Harvesting		845
	19.3.7 Traditional Knowledge		847
19.4	Water Resources Economics		849
	19.4.1 Engineering Economic Analysis		849
	19.4.2 Benefit Cost Analysis		851
	19.4.3 Value of Water for Sustainability		854
	19.4.4 Allocation of Water to Users		855
19.5	Water Resource Systems Analysis		856
	19.5.1 Application of Optimization		856
	19.5.2 Example Applications of Optimization to Water Resources		858
	19.5.3 Decision Support Systems (DSS)		861
19.6	Life Cycle Assessment (LCA)		862

869

869

870

871

873

Appendix A

Index

Newton-Raphson Method

Finding the Root for a Single Nonlinear Equation

Application to Solve Manning's Equation for Normal Depth

Finding the Roots of a System of Nonlinear Equations

Chapter 1

Introduction

1.1 BACKGROUND

Water resources engineering (and management) as defined for the purposes of this book includes engineering for both water supply management and water excess management (see Figure 1.1.1). This book does not cover the water quality management (or environmental restoration) aspect of water resources engineering. The two major processes that are engineered are the hydrologic processes and the hydraulic processes. The common threads that relate to the explanation of the hydrologic and hydraulic processes are the fundamentals of fluid mechanics. The hydraulic processes include three types of flow: pipe (pressurized) flow, open-channel flow, and groundwater flow.

The broad topic of *water resources* includes areas of study in the biological sciences, engineering, physical sciences, and social sciences, as illustrated in Figure 1.1.1. Areas in the biological sciences range from ecology to zoology, those in the physical sciences range from chemistry to meteorology to physics, and those in the social sciences range from economics to sociology. Water resources engineering as used in this book focuses on the engineering aspects of hydrology and hydraulics for water supply management and water excess management.

Figure 1.1.1 Ingredients of water resources management (from Mays (1996)).

Figure 1.1.2 Comparative irrigation networks in Upper Egypt and Mesopotamia. (*a*) Example of linear, basin irrigation in Sohag province, ca. A.D. 1850; (*b*) Example of radial canalization system in the lower Nasharawan region southeast of Baghdad, Abbasid (A.D. 883–1150) (modified from R. M. Adams (1965), Fig. 9. Same scale as Egyptian counterpart); (*c*) Detail of field canal layout in (*b*) (simplified from Adams (1965), Fig. 10. Figure as presented in Butzer (1976)).

Water resources engineering not only includes the analysis and synthesis of various water problems through the use of the many analytical tools in hydrologic engineering and hydraulic engineering but also extends to the design aspects.

Water resources engineering has evolved over the past 9000 to 10,000 years as humans have developed the knowledge and techniques for building hydraulic structures to convey and store water. Early examples include irrigation networks built by the Egyptians and Mesopotamians (see Figure 1.1.2) and by the Hobokam in North America (see Figure 1.1.3). The world's oldest large dam was the Sadd-el-kafara dam built in Egypt between 2950 and 2690 B.C. The oldest known pressurized water distribution (approximately 2000 B.C.) was in the ancient city of Knossos on Crete (see Mays, 1999, 2000, for further details). There are many examples of ancient water systems throughout the world (see Mays (2007, 2008, 2010) and Mays et al. (2007)).

Figure 1.1.3 Canal building in the Salt River Valley with a stone hoe held in the hand without a handle. These were the original engineers, the true pioneers who built, used, and abandoned a canal system when London and Paris were clusters of wild huts (from Turney (1922)). (Courtesy of Salt River Project, Phoenix, Arizona.)

1.2 THE WORLD'S FRESHWATER RESOURCES

Among today's most acute and complex problems are water problems related to the rational use and protection of water resources (see Gleick, 1993). Associated with water problems is the need to supply humankind with adequate, clean freshwater. Data collected on global water resources by Soviet scientists are listed in Table 1.2.1. These obviously are only approximations and should not be considered as accurate (Shiklomanov, 1993). Table 1.2.2 presents the dynamics of actual water availability in different regions of the world. Table 1.2.3 presents the dynamics of water use in the world by human activity. Table 1.2.4 presents the annual runoff and water consumption by continents and by physiographic and economic regions of the world.

Table 1.2.1 Water Reserves on the Earth

				Percentage of global reserves		
	Distribution area (10 ³ km ²)	Volume (10^3 km^3)	Layer (m)	Of total water	Of fresh- water	
World ocean	361,300	1,338,000	3700	96.5		
Groundwater	134,800	23,400	174	1.7	_	
Freshwater		10,530	78	0.76	30.1	
Soil moisture		16.5	0.2	0.001	0.05	
Glaciers and permanent	16,227	24,064	1463	1.74	68.7	
snow cover						
Antarctic	13,980	21,600	1546	1.56	61.7	
Greenland	1802	2340	1298	0.17	6.68	
Arctic islands	226	83.5	369	0.006	0.24	
Mountainous regions	224	40.6	181	0.003	0.12	
Ground ice/permafrost	21,000	300	14	0.022	0.86	
Water reserves in lakes	2058.7	176.4	85.7	0.013		
Fresh	1236.4	91	73.6	0.007	0.26	
Saline	822.3	85.4	103.8	0.006	_	
Swamp water	2682.6	11.47	4.28	0.0008	0.03	
River flows	148,800	2.12	0.014	0.0002	0.006	
Biological water	510,000	1.12	0.002	0.0001	0.003	
Atmospheric water	510,000	12.9	0.025	0.001	0.04	
Total water reserves	510,000	1,385,984	2718	100	_	
Total freshwater reserves	148,800	35,029	235	2.53	100	

Source: Shiklomanov (1993).

Table 1.2.2 Dynamics of Actual Water Availability in Different Regions of the World

		Actual water availability (10 ³ m ³ per year per capita)						
Continent and region	Area (10^6 km^2)	1950	1960	1970	1980	2000		
Europe	10.28	5.9	5.4	4.9	4.6	4.1		
North	1.32	39.2	36.5	33.9	32.7	30.9		
Central	1.86	3.0	2.8	2.6	2.4	2.3		
South	1.76	3.8	3.5	3.1	2.8	2.5		
European USSR (North)	1.82	33.8	29.2	26.3	24.1	20.9		
European USSR (South)	3.52	4.4	4.0	3.6	3.2	2.4		

North America	24.16	37.2	30.2	25.2	21.3	17.5
Canada and Alaska	13.67	384	294	246	219	189
United States	7.83	10.6	8.8	7.6	6.8	5.6
Central America	2.67	22.7	17.2	12.5	9.4	7.1
Africa	30.10	20.6	16.5	12.7	9.4	5.1
North	8.78	2.3	1.6	1.1	0.69	0.21
South	5.11	12.2	10.3	7.6	5.7	3.0
East	5.17	15.0	12.0	9.2	6.9	3.7
West	6.96	20.5	16.2	12.4	9.2	4.9
Central	4.08	92.7	79.5	59.1	46.0	25.4
Asia	44.56	9.6	7.9	6.1	5.1	3.3
North China and Mongolia	9.14	3.8	3.0	2.3	1.9	1.2
South	4.49	4.1	3.4	2.5	2.1	1.1
West	6.82	6.3	4.2	3.3	2.3	1.3
South-east	7.17	13.2	11.1	8.6	7.1	4.9
Central Asia and	2.43	7.5	5.5	3.3	2.0	0.7
Kazakhstan						
Siberia and Far East	14.32	124	112	102	96.2	95.3
Trans-Caucasus	0.19	8.8	6.9	5.4	4.5	3.0
South America	17.85	105	80.2	61.7	48.8	28.3
North	2.55	179	128	94.8	72.9	37.4
Brazil	8.51	115	86.0	64.5	50.3	32.2
West	2.33	97.9	77.1	58.6	45.8	25.7
Central	4.46	34.0	27.0	23.9	20.5	10.4
Australia and Oceania	8.59	112	91.3	74.6	64.0	50.0
Australia	7.62	35.7	28.4	23.0	19.8	15.0
Oceania	1.34	161	132	108	92.4	73.5

Source: Shiklomanov (1993).

 Table 1.2.3
 Dynamics of Water Use in the World by Human Activity

	1900	900 1940 1950		1960	1960 1970 1	1975	198	1980		1990 ^b		0 _p
Water users ^a	(km ³ per year)	(%)	(km³ per year)	(%)	(km³ per year)	(%)						
Agriculture												
Withdrawal	525	893	1130	1550	1850	2050	2290	69.0	2680	64.9	3250	62.6
Consumption	409	679	859	1180	1400	1570	1730	88.7	2050	86.9	2500	86.2
Industry												
Withdrawal	37.2	124	178	330	540	612	710	21.4	973	23.6	1280	24.7
Consumption	3.5	9.7	14.5	24.9	38.0	47.2	61.9	3.2	88.5	3.8	117	4.0
Municipal supply												
Withdrawal	16.1	36.3	52.0	82.0	130	161	200	6.0	300	7.3	441	8.5
Consumption	4.0	9.0	14	20.3	29.2	34.3	41.1	2.1	52.4	2.2	64.5	2.2
Reservoirs												
Withdrawal	0.3	3.7	6.5	23.0	66.0	103	120	3.6	170	4.1	220	4.2
Consumption	0.3	3.7	6.5	23.0	66.0	103	120	6.2	170	7.2	220	7.6
Total (rounded off)												
Withdrawal	579	1060	1360	1990	2590	2930	3320	100	4130	100	5190	100
Consumption	417	701	894	1250	1540	1760	1950	100	2360	100	2900	100

^aTotal water withdrawal is shown in the first line of each category, consumptive use (irretrievable water loss) is shown in the second line.

Source: Shiklomanov (1993).

^bEstimated.

Table 1.2.4 Annual Runoff and Water Consumption by Continents and by Physiographic and Economic Regions of the World

		n annual		Water consumption (km ³ per year)						
	runoff (km ³		Aridity		1980		1990	2000		
Continent and region	(mm)	per year)	index (R/LP) Total Irretrievable Total		Total	Irretrievable	Total	Irretrievable		
Europe	310	3210		435	127	555	178	673	222	
North	480	737	0.6	9.9	1.6	12	2.0	13	2.3	
Central	380	705	0.7	141	22	176	28	205	33	
South	320	564	1.4	132	51	184	64	226	73	
European USSR (North)	330	601	0.7	18	2.1	24	3.4	29	5.2	
European USSR (South)	150	525	1.5	134	50	159	81	200	108	
North America	340	8200	_	663	224	724	255	796	302	
Canada and Alaska	390	5300	0.8	41	8	57	11	97	15	
United States	220	1700	1.5	527	155	546	171	531	194	
Central America	450	1200	1.2	95	61	120	73	168	93	
Africa	150	4570	_	168	129	232	165	317	211	
North	17	154	8.1	100	79	125	97	150	112	
South	68	349	2.5	23	16	36	20	63	34	
East	160	809	2.2	23	18	32	23	45	28	
West	190	1350	2.5	19	14	33	23	51	34	
Central	470	1909	0.8	2.8	1.3	4.8	2.1	8.4	3.4	
Asia	330	14,410	_	1910	1380	2440	1660	3140	2020	
North China and Mongolia	160	1470	2.2	395	270	527	314	677	360	
South	490	2200	1.3	668	518	857	638	1200	865	
West	72	490	2.7	192	147	220	165	262	190	
South-east	1090	6650	0.7	461	337	609	399	741	435	
Central Asia and Kazakhstan	70	170	3.1	135	87	157	109	174	128	
Siberia and Far East	230	3350	0.9	34	11	40	17	49	25	
Trans-Caucasus	410	77	1.2	24	14	26	18	33	21	
South America	660	11,760	_	111	71	150	86	216	116	
Northern area	1230	3126	0.6	15	11	23	16	33	20	
Brazil	720	6148	0.7	23	10	33	14	48	21	
West	740	1714	1.3	40	30	45	32	64	44	
Central	170	812	2.0	33	20	48	24	70	31	
Australia and Oceania	270	2390		29	15	38	17	47	22	
Australia	39	301	4.0	27	13	34	16	42	20	
Oceania	1560	2090	0.6	2.4	1.5	3.3	1.8	4.5	2.3	
Land area (rounded off)	_	44,500	_	3320	1450	4130	2360	5190	2900	

Source: Shiklomanov (1993).

1.3 WATER USE IN THE UNITED STATES

Dziegielewski et al. (1996) define *water use* from a hydrologic perspective as all water flows that are a result of human intervention in the hydrologic cycle. The National Water Use Information Program (NWUI Program), conducted by the United States Geological Survey (USGS), used this perspective on water use in establishing a national system of water-use accounting. This accounting system distinguishes the following water-use flows: (1) water withdrawals for off-stream purposes, (2) water deliveries at point of use or quantities released after use, (3) consumptive use, (4) conveyance loss, (5) reclaimed wastewater, (6) return flow, and (7) in-stream flow (Solley et al., 1993). The relationships among these human-made flows at various points of measurement are illustrated in Figure 1.3.1. Figure 1.3.2 illustrates the estimated water use by tracking the sources, uses, and disposition of freshwater using the hydrologic accounting system given in Figure 1.3.1. Table 1.3.1 defines the major purposes of water use.

Figure 1.3.1 Definition of water-use flows and losses (from Solley et al. (1993)).

Table 1.3.1 Major Purposes of Water Use

Water-use purpose	Definition
Domestic use	Water for household needs such as drinking, food preparation, bathing, washing clothes and dishes, flushing toilets, and watering lawns and gardens (also called residential water use).
Commercial use	Water for motels, hotels, restaurants, office buildings, and other commercial facilities and institutions.
Irrigation use	Artificial application of water on lands to assist in the growing of crops and pastures or to maintain vegetative growth in recreational lands such as parks and golf courses.
Industrial use	Water for industrial purposes such as fabrication, processing, washing, and cooling.
Livestock use	Water for livestock watering, feed lots, dairy operations, fish farming, and other on-farm needs.
Mining use	Water for the extraction of minerals occurring naturally and associated with quarrying, well operations, milling, and other preparations customarily done at the mine site or as part of a mining activity.
Public use	Water supplied from a public water supply and used for such purposes as firefighting, street washing, municipal parks, and swimming pools.
Rural use	Water for suburban or farm areas for domestic and livestock needs, which is generally self-supplied.
Thermoelectric power use	Water for the process of the generation of thermoelectric power.

Source: Solley et al. (1993).

Figure 1.3.2 Estimated water use in the United States, 1990. Freshwater withdrawals and disposition of water in billion gallons per day (bgd). For each water use category, this diagram shows the relative proportion of water source and disposition and the general distribution of water from source to disposition. The lines and arrows indicate the distribution of water from source to disposition for each category; for example, surface water was 76.5 percent of total freshwater withdrawn, and, going from "Source" to "Use" columns, the line from the surface water block to the domestic and commercial block indicates that 0.6 percent of all surface water withdrawn was the source for 4.1 percent of total water (self-supplied withdrawals, public supply deliveries) for domestic and commercial purposes (from Solley et al. (1993)).

1.4 SYSTEMS OF UNITS

The analysis of pressurized (conduit) flow, open-channel flow, and groundwater flows requires an understanding of the elements of fluid mechanics (presented in Chapter 3). A review of the mechanics of materials is a prerequisite to the examination of fluid mechanics principles. Table 1.4.1

Table 1.4.1 Dimensions and SI Units for Basic Mechanical Properties

Property	SI unit	SI symbol	Dimension of unit	
			Derived	Basic
Mass	kilogram	kg		kg
Length	meter	m		m
Time	second	S		S
Area				m^2
Volume				m^3
Velocity				m/s
Acceleration				m/s^2
Force	newton	N		$kg \cdot m/s^2$
Weight	newton	N		$kg \cdot m/s^2$
Pressure	pascal	Pa	N/m^2	$kg/m \cdot s^2$
Work	joule	J	$N \cdot m$	$kg \cdot m^2/s^2$
Energy	joule	J	$N \cdot m$	$kg \cdot m^2/s^2$
Mass density				kg/m ²
Weight density			N/m^3	$kg/m^2 \cdot s^2$
Stress	pascal	Pa	N/m^2	$kg/m \cdot s^2$

lists the basic mechanical properties of matter with their dimensions and units in the SI system. In the United States much of the technology related to water resources engineering is still based upon the foot-pound-second (FPS) system of units, or what are referred to in this book as U.S. customary units. Table 1.4.2 provides a set of correction factors for converting U.S. customary units to SI units.

Table 1.4.2 Conversion Factors FPS (Foot-Pound-Second) System of Units to SI Units

	Multiply	Ву	To obtain
Length	ft	3.048×10^{-1}	m
J	ft	3.048×10	cm
	ft	3.048×10^{-4}	km
	mile	1.609×10^{3}	m
	mile	1.609	km
Area	ft^2	9.290×10^{-2}	m^2
	mi^2	2.590	km^2
	acre	4.047×10^{3}	m^2
	acre	4.047×10^{-3}	km^2
Volume	ft^3	2.832×10^{-2}	m^3
· v.uv	U.S. gal	3.785×10^{-3}	m^3
	U.K. gal	4.546×10^{-3}	m^3
	ft^3	2.832×10	ℓ
	U.S. gal	3.785	ℓ
	U.K. gal	4.546	ℓ
Velocity	ft/s	3.048×10^{-1}	m/s
	ft/s	3.048×10	cm/s
	mi/h	4.470×10^{-1}	m/s
	mi/h	1.609	km/h
Acceleration	ft/s ²	3.048×10^{-1}	m/s ²

(Continued)

Table 1.4.2 (Continued)

	Multiply	Ву	To obtain
Mass	lb _m	4.536×10^{-1}	kg
	slug	1.459×10	kg
	ton	1.016×10^{3}	kg
Force and weight	$lb_{ m f}$	4.448	N
	poundal	1.383×10^{-1}	N
Pressure and stress	psi	6.895×10^{3}	Pa or N/m ²
	lb _f /ft ²	4.788×10	Pa
	poundal/ft ²	1.488	Pa
	atm	1.013×10^{5}	Pa
	in Hg	3.386×10^{3}	Pa
	mb	1.000×10^{2}	Pa
Work and energy	ft-lbf	1.356	J
	ft-poundal	4.214×10^{-2}	J
	Btu	1.055×10^{-3}	J
	calorie	4.187	J
Mass density	lbm/ft ³	1.602×10	kg/m ³
	slug/ft ³	5.154×10^{2}	kg/m ³
Weight density	lb _f /ft ³	1.571×10^{2}	N/m^3
Discharge	ft ³ /s	2.832×10^{-2}	m^3/s
	ft ³ /s	2.832×10	ℓ /s
	U.S. gal/min	6.309×10^{-5}	m^3/s
	U.K. gal/min	7.576×10^{-5}	m^3/s
	U.S. gal/min	6.309×10^{-2}	ℓ /s
	U.K. gal/min	7.576×10^{-2}	ℓ /s
Hydraulic conductivity	ft/s	3.048×10^{-1}	m/s
(see also Table 2.3)	U.S. gal/day/ft ²	4.720×10^{-7}	m/s
Transmissivity	ft ² /s	9.290×10^{-2}	m^2/s
	U.S. gal/day/ft	1.438×10^{-7}	m^2/s

1.5 THE FUTURE OF WATER RESOURCES

The management of water resources can be subdivided into three broad categories: (1) water-supply management, (2) water-excess management, and (3) environmental restoration. All modern multipurpose water resources projects are designed and built for water-supply management and/ or water-excess management. In fact, throughout human history all water resources projects have been designed and built for one or both of these categories. A water resources system is a system for redistribution, in space and time, of the water available to a region to meet societal needs (Plate, 1993). Water can be utilized from surface water systems, from groundwater systems, or from conjunctive/ground surface water systems.

When discussing water resources, we must consider both the quantity and the quality aspects. The hydrologic cycle must be defined in terms of both water quantity and water quality. Because of the very complex water issues and problems that we face today, many fields of study are involved in their solution. These include the biological sciences, engineering, physical sciences, and social sciences (see Figure 1.1.1), illustrating the wide diversity of disciplines involved in water resources.

In the twenty-first century we are questioning the viability of our patterns of development, industrialization, and resources usage. We are now beginning to discuss the goals of attaining an equitable and sustainable society in the international community. Looking into the future, a new set of problems face us, including the rapidly growing population in developing countries; uncertain impacts of global climate change; possible conflicts over shared freshwater resources; thinning of the ozone layer; destruction of rain forests; threats to wetland, farmland, and other renewable resources; and many others.

These problems are very different from those that humans have faced before. The fact that there are so many things undiscovered by the human race leads me to the statement by Sir Isaac Newton, shortly before his death in 1727:

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me.

REFERENCES

Adams, R. M., Heartland of Cities, Surveys of Ancient Settlement and Land Use in the Central Floodplain of the Euphrates, University of Chicago Press, Chicago, 1965.

Butzer, K. W., Early Hydraulic Civilization in Egypt, University of Chicago Press, Chicago, 1976.

Dziegielewski, B., E. M. Opitz, and D. R. Maidment, "Water Demand Analysis," Chapter 23 in Water Resources Handbook edited by L. W. Mays, McGraw-Hill, New York, 1996.

Gleick, P. H., Water in Crisis, Oxford University Press, Oxford, 1993. Mays, L. W., "Water Resources: An Introduction," in Water Resources Handbook edited by L. W. Mays McGraw-Hill, New York, 1996.

Mays, L. W., "Introduction," in Hydraulic Design Handbook edited by L. W. Mays, McGraw-Hill, New York, 1999.

Mays, L. W., "Introduction," in Water Distribution Systems Handbook edited by L. W. Mays, McGraw-Hill, New York, 2000.

Mays, L. W., D. Koutsoyiannis, and A. N. Angelakis, "A Brief History of Urban Water Supply in Antiquity," Water and Science Technology: Water Supply, vol. 7, no. 1, pp. 1-12, IWA Publishing, 2007.

Mays, L. W., "Water Sustainability of Ancient Civilizations in Mesoamerica and the American. Southwest," Water and Science Technology: Water Supply, vol. 7, no. 1, pp. 229-236, IWA Publishing, 2007.

Mays, L. W., "A Very Brief History of Hydraulic Technology during Antiquity," Environmental Fluid Mechanics, vol. 8, no. 5, pp. 471–484, 2008. Mays, L. W., (Editor-in-Chief), Ancient Water Technology, Springer, New York, 2010.

Plate, E. J., "Sustainable Development of Water Resources: A Challenge to Science and Engineering," Water International, vol. 18, no. 2, pp. 84-94, International Water Resources Association, 1993.

Shiklomanov, I., "World Fresh Water Resources," in Water in Crisis edited by P. H. Gleick, Oxford University Press, New York, 1993.

Solley, W. B., R. R. Pierce, and H. A. Perlman, "Estimated Use of Water in the United States in 1990," U.S. Geological Survey Circular 1081, Washington, DC, 1993.

Turney, O. S., Map of Prehistoric Irrigation Canals, Map No. 002004, Archaeological Site Records Office, Arizona State Museum, University of Arizona, Tucson, 1922.

Water Resources Sustainability

2.1 WHAT IS WATER RESOURCES SUSTAINABILITY?

Traditionally, sustainability explores the relationships among economics, the environment, and social equity, using the three-legged stool analogy that includes not only the technical, but also the economic and social issues.

The term "sustainable development" was defined in 1987 by the World Commission on Environment and Development as "development that can meet the needs of the present generation without compromising the ability of future generations to meet their own needs. Some of the questions related to sustainable systems and sustainable design are:

- What are the characteristics of sustainable systems?
- How does the design process encourage sustainability?
- What is sustainable water resources development?
- What are the components of sustainable development?

2.1.1 Definition of Water Resources Sustainability

We live in a world where approximately 1.1 billion people lack safe drinking water, approximately 2.6 billion people lack adequate sanitation, and between 2 and 5 million people die annually from water-related diseases (Gleick, 2004). The United Nations Children's Fund's (UNICEF) report, "The State of the World's Children 2005: Childhood under Threat," concluded that more than half the children in the developing world are severely deprived of various necessities essential to childhood. For example, 500 million children have no access to sanitation and 400 million children have no access to safe water. One might ask how sustainable is this? The key to sustainability is the attention to the survival of future generations. Also important is the global context within which we must think and solve problems. The future of water resources thinking must be within the context of water resources sustainability.

The overall goal of water resources management for the future must be water resources sustainability. Mays (2007) defined water resources sustainability as follows:

"Water resources sustainability is the ability to use water in sufficient quantities and quality from the local to the global scale to meet the needs of humans and ecosystems for the present and the future to sustain life, and to protect humans from the damages brought about by natural and human-caused disasters that affect sustaining life."

The Brundtland Commissions's report, "Our Common Future" (World Commission on Environment and Development, WCED), defined sustainability as focusing on the needs of both current and future generations. A development is sustainable if "it meets the needs of the present without compromising the ability of future generations to meet their own needs."

Because water impacts so many aspects of our existence, there are many facets that must be considered in water resources sustainability including:

- Water resources sustainability includes the *availability of freshwater supplies* throughout periods of climatic change, extended droughts, population growth, and to leave the needed supplies for the future generations.
- Water resources sustainability includes having the *infrastructure*, to provide water supply for human consumption and food security, and to provide protection from water excess such as floods and other natural disasters.
- Water resources sustainability includes having the *infrastructure* for clean water and for treating water after it has been used by humans before being returned to water bodies.
- Water sustainability must have adequate *institutions* to provide the management for both the water supply management and water excess management.
- Water sustainability must be considered on a local, regional, national, and international basis.
- To achieve water resources sustainability, the principles of integrated water resources management (IWRM) must be implemented.

Sustainable water use has been defined by Gleick et al. (1995) as "the use of water that supports the ability of human society to endure and flourish into the indefinite future without undermining the integrity of the hydrological cycle or the ecological systems that depend on it." Seven sustainability requirements are presented in Section 11.1.

2.1.2 The Dublin Principles

The following four simple, but yet powerful messages, were provided in 1992 in Dublin and were the basis for the Rio Agenda 21 and for the millennium Vision-to-Action:

- **1.** Freshwater is a finite and vulnerable resource, essential to sustain life, development and the environment, i.e. one resource, to be holistically managed.
- 2. Water development and management should be based on a participatory approach, involving users, planners, and policy-makers at all levels, i.e. manage water with people—and close to people.
- **3.** Women play a central role in the provision, management and safeguarding of water, i.e. involve women all the way!
- **4.** Water has an economic value in all its competing uses and should be recognized as an economic good, i.e. having ensured basic human needs, allocate water to its highest value, and move towards full cost pricing, rational use, and recover costs.

Poor water management hurts the poor most! The Dublin principles aim at wise management with focus on poverty.

2.1.3 Millennium Development Goals (MDGs)

The *Millennium Development Goals* (MDGs), adopted in September 2000 during the Millennium Summit of the United Nations General Assembly, is comprised of eight goals (see Table 2.1.1). All of the goals can be translated directly or indirectly into water-related terms (Gleick, 2004). For example, Goal No. 1—"Eradicate extreme poverty and hunger"—and No. 7—"Ensure

Table 2.1.1 UN Millennium Development Goals and Targets for Goal 7

Goal 1 Eradicate Extreme Hunger and Poverty

Goal 2 Achieve Universal Primary Education

Goal 3 Promote Gender Equality and Empower Women

Goal 4 Reduce Child Mortality

Goal 5 Improve Maternal Health

Goal 6 Combat HIV/AIDS, Malaria, and Other Diseases

Goal 7 Ensure Environmental Sustainability

Target 9 Integrate the principles of sustainable development into country policies and programs and reverse the loss of environmental resources.

Target 10 Halve, by 2015, the proportion of people without sustainable access to safe drinking water and basic sanitation.

Target 11 Achieve by 2020 a significant improvement in the lives of at least 100 million slum dwellers.

Goal 8 Develop a Global Partnership for Development

Source: http://www.mdgmonitor.org/browse goal.cfm

environmental sustainability" have direct relevance to water; whereas Goal No. 2-"Achieve universal primary education" and No. 3—"Promote gender equality and empower women" are water-related as millions of women and young girls spend many hours every day to fetch water. The health related Goals 4, 5, and 6 also have strong relevance to water, or the lack of it.

The MDG Goal 7, target 10 of halving, by the year 2015, the proportion of people without sustainable access (to reach or to afford) to safe drinking water seems unlikely to be met. The international community has made little progress to meet the similar part of target 10—to halve, also by 2015, the proportion of people without access to basic sanitation—adopted at the World Summit on Sustainable Development (WSSD), in Johannesburg in 2002 (United Nations,). An interesting fact is that this goal did not specifically emphasize wastewater treatment and disposal, because in many parts of the world wastewater treatment does not exist even though sanitation services exist and the sewage is used to irrigate agricultural crops. It is estimated that in Latin America 1.3 million hectares of agricultural land is irrigated with raw wastewater and has related health and disease issues. In countries with water shortages, the reuse of untreated wastewater will likely increase in the future.

2.1.4 Urbanization – A Reality of Our Changing World

Urban populations demand high quantities of energy and raw material, water supply, removal of wastes, transportation, etc. Urbanization creates many challenges for the development and management of water supply systems and the management of water excess from storms and floodwaters. Many urban areas of the world have been experiencing water shortages, which are expected to explode this century unless serious measures are taken to reduce the scale of this problem (Mortada, 2005). Most developing countries have not acknowledged the extent of their water problems, as evidenced by the absence of any long-term strategies for water management.

Changes Caused by Urbanization

Urbanization is a reality of our changing world. From a water resources perspective, urbanization causes many changes to the hydrological cycle including radiation flux, amount of precipitation,

amount of evaporation, amount of infiltration, increased runoff, etc. Changes brought about by urbanization can be summarized briefly as follows (Marsalek et al., 2006):

- Transformation of undeveloped land into urban land (including transportation corridors);
- Increased energy release (i.e., greenhouse gases, waste heat, heated surface runoff); and
- Increased demand on water supply (municipal and industrial).

2.2 CHALLENGES TO WATER RESOURCES SUSTAINABILITY

Urban populations are growing rapidly around the world with the addition of many mega-cities (populations of 10 million or more inhabitants). In 1975 there were only four mega-cities in the world and by 2015 there may be over 22 mega-cities in the world (Marshall, 2005). Other cities that will not become mega-cities are also growing very rapidly around the world. By 2010, more than 50% of the world's population is expected to live in urban areas (World Water Assessment Program, 2006).

Mega-cities mean mega problems of which urban water supply management and water excess management are among the largest. Mega-cities and other large cities will be a drain on the Earth's dwindling resources, while at the same time significantly contributing to the environmental degradation. Many of the large cities around the world are prone to water supply shortages, others are prone to flooding, and many are prone to both. A large number of the cities of the world do not have adequate wastewater facilities and most of the waste is improperly disposed or used as irrigation of agricultural lands. As the Earth's population continues to grow, so will the growth of cities continue across the globe, stretching resources and the ability to cope with disasters such as floods and droughts. These factors, coupled with the consequences of global warming, create many challenges for future generations.

There are many factors that affect water resources sustainability including: urbanization, droughts, climate change, flooding, and human-induced factors. Developed areas of the world such as the United States are not exempt from the need for water resources sustainability. Figure 2.2.1 shows areas in the western United States with potential water supply crisis by 2025.

2.2.1 Urbanization

The Urban Water Cycle

The overall urban water cycle is illustrated in Figure 2.2.2 showing the main components and pathways. How does the urbanization process change the water budget from predevelopment to developed conditions of the urban water cycle in arid and semi-arid regions? This change is a very complex process and very difficult to explain.

Urban Water Systems

Urban water system implies that there is a single urban water system and the reality of this is that it is an integrated whole. The concept of a single "urban water system" is not fully accepted because of the lack of integration of the various components that make up the total urban water system. For example, in municipalities it is common to plan, manage, and operate urban water into separate entities such as by service, i.e. water supply, wastewater, flood control, and stormwater. Typically there are separate water organizations and management practices within a municipality, or local or regional government because that is the way they have been historically. Grigg (1986) points out that integration could be achieved by functional integration

Figure 2.2.1 Areas in the western United States with potential water supply crisis by 2025. Source: U.S. Department of the Interior (2003).

Figure 2.2.2 Urban water cycle: Main components and pathways (from Marsalek et al. (2006)).

and area-wide integration. There are many linkages of the various components of the urban water system with the hydrologic cycle being what connects the urban water system together. There are many reasons for considering the urban water system in an integrated manner. Two of the principal reasons are (a) the natural connectivity of the system through the hydrologic cycle and (b) the real benefits that are realized through integrated management rather than by independent action.

The urban water management system is considered herein as two integrated major entities, water supply management and water excess management. The various interacting components of water excess and water supply management in conventional urban water infrastructure are:

Water Supply Management

- Sources (groundwater, surface water, reuse)
- Transmission
- Water treatment (WT)
- Distribution system
- Wastewater collection
- Wastewater treatment (WWT)
- Reuse

Water Excess Management

- Collection/drainage systems
- Storage/treatment
- Flood control components (levees, dams, diversions, channels)

Sustainable Urban Water Systems

Sustainable urban water systems are being advocated because of the depletion and degradation of urban water resources coupled with the rapid increases in urban populations around the world. Marsalek et al. (2006) defined the following basic goals for sustainable urban water systems:

- Supply of safe and good-tasting drinking water to the inhabitants at all times.
- Collection and treatment of wastewater in order to protect the inhabitants from diseases and the
 environment from harmful impacts.
- Control, collection, transport, and quality enhancement of stormwater in order to protect the environment and urban areas from flooding and pollution.
- Reclamation, reuse, and recycling of water and nutrients for use in agriculture or households in
 case of water scarcity.

In North America and Europe many of the above goals have been achieved or are within reach. In many developing parts of the world these goals are far from being achieved. Climate change will be a major factor in both the developed and undeveloped parts of the world that has not been addressed for the future of water resources sustainability. The Millennium Development Goals put a strong emphasis on poverty reduction and reduced child mortality.

Urban Stormwater Runoff

Urban stormwater runoff includes all flows discharged from urban land uses into stormwater conveyance systems and receiving waters. Urban runoff includes both dry-weather, non-stormwater sources (e.g., runoff from landscape irrigation, dewatering, and water line and hydrant flushing) and wet-weather stormwater runoff. Water quality of urban stormwater runoff can be affected by the transport of sediment and other pollutants into streams, wetlands, lakes, estuarine

and marine waters, or groundwater. The costs and impacts of water pollution from urban runoff are significant and can include fish kills, health concerns of human and/or terrestrial animals, degraded drinking water, diminished water-based recreation and tourism opportunities, economic losses to commercial fishing and aquaculture industries, lowered real estate values, damage to habitat of fish and other aquatic organisms, inevitable costs of clean-up and pollution reduction, reduced aesthetic values of lakes, streams, and coastal areas, and other impacts (Leeds et al., 1993).

Increased stormwater flows from urbanization have the following major impacts (FLOW, 2003):

- acceleration of stream velocities and degradation of stream channels,
- declining water quality due to washing away of accumulated pollutants from impervious surfaces to local waterways, and an increase in siltation and erosion of soils from pervious areas subject to increased runoff,
- increase in volume of runoff with higher pollutant concentrations that reduces receiving water dilution effects.
- diminished groundwater recharge, resulting in decreased dry-weather flows; poorer water quality of streams during low flows; increased stream temperatures; and greater annual pollutant load delivery,
- · increased flooding,
- · combined and sanitary sewer overflows due to stormwater infiltration and inflow,
- damage to stream and aquatic life resulting from suspended solids accumulation, and increased health risks to humans from trash and debris which can also endanger, and
- destroying food sources or habitats of aquatic life (FLOW, 2003).

Groundwater Changes

Urbanization often causes changes in groundwater levels as a result of decreased recharge and increased withdrawal. In rural areas, water supplies are usually obtained from shallow wells, while most of the domestic wastewater is returned to the ground through cesspools or septic tanks. Thus the quantitative balance in the hydrologic system remains. As urbanization occurs many individual wells are abandoned for deeper public wells. With the introduction of sewer systems, stormwater, and (treated or untreated) wastewater are discharged to nearby surface water bodies. Three conditions disrupt the subsurface hydrologic balance and produce declines in groundwater levels.

- 1. Reduced groundwater recharge due to paved surface areas and storm sewers
- 2. Increased groundwater discharge by pumping wells
- 3. Decreased groundwater recharge due to export of wastewater collected by sanitary sewers

Groundwater quality is certainly another challenge to water resources sustainability resulting in many cases from urbanization. Groundwater quality can be affected by residential and commercial development as illustrated in Figure 2.2.3. The U.S. Geological Survey's National Water Quality Assessment (NAWQA) program (http://water.usgs.gov/nawqa) seeks to determine how shallow groundwater quality is affected by development (Squillace and Price, 1996). Residential developments have taken up very large tracts of land, and as a consequence, have widespread influence on the quality of water that recharges aquifers, streams, lakes, and wetlands. Liquids discharged onto the ground surface in an uncontrolled manner can migrate downward to degrade groundwater. Septic tanks and cesspools are another source of groundwater pollution. Polluted surface water bodies that contribute to groundwater recharge are sources of groundwater pollution.

Figure 2.2.3 Groundwater pollution affected by differences in chemical composition, biological, and chemical reactions, and distance from discharge areas (from Heath, 1998).