# Digital Logic & Boolean Algebra

#### **Background Information**

• Found in *Microcomputer Structures by Henry D'Angelo, 1981, pg 7-20* 

#### **Background Information - Charge & Electrons**

- A charge is a physical quantity
  - Can be positive (a proton)
  - Can be negative (an electron)
- The unit of measure for a charge is a coulomb
- "Like" charges repel, "unlike" charges attract
  - Think poles on a magnet

#### **Conductors vs. Insulators**

#### Conductors:

- Allow electricity to flow more freely
- Better conductor better the flow of electricity
- Copper wiring is used because it very conductive
  - It is not the most conductive, that's silver

#### Insulators:

- Disallow (or resist) the flow of electricity
- Rubber or glass are good insulators

#### Voltage (V)

- Difference in electrical potential
- Work necessary to move a charged unit from point A to point B
- Difference in electrical pressure <u>between two points</u>
- Measured in Volts (V) or Joules/Coulomb

#### Current (I)

- Rate of charged motion
- Describes the flow of electrons
- Measured as Coulomb/Second (or Ampere)

#### Resistance (R), Resistors

- Opposition to the flow of electrons
- A way to reduce electrical flow
  - Similar concept to mechanical friction
- Resistors are the method through which resistance is added to electrical circuits

#### **Circuits**

- A closed path formed by interconnecting various electronic components
- Electric current can flow through the closed path
- See <a href="http://en.wikipedia.org/wiki/Electronic circuit">http://en.wikipedia.org/wiki/Electronic circuit</a>

#### Ohm's Law

- Current through a conductor between two points defined as:
  - Directly proportional to the potential difference (Voltage)
  - Inversely proportional to the resistance between the points
- Mathematically given as:
  - $\circ$  I = V / R or
  - $\circ$  V = T \* R
  - I is current, V is Voltage, R is Resistance
- See <a href="http://en.wikipedia.org/wiki/Ohm%27s law">http://en.wikipedia.org/wiki/Ohm%27s law</a>

#### **Short Circuit**

- A different path for current than the intended path through a circuit
- Abbreviated to short or s/c
- See <a href="http://en.wikipedia.org/wiki/Short circuit">http://en.wikipedia.org/wiki/Short circuit</a>

#### **Voltage Drop Across Resistors and Switches**

- energy has to go somewhere
- limits the amount of energy that is dissipated
- a resistor converts energy into heat
- an LED is a diode
  - there is a constant drop of voltage (0.7V) across a diode
  - need to deal with the remaining 4.3V
    - a resistor dissipates it.

#### 2655 Refresher

- Computers store numbers and only numbers
- Number represented as fixed-length binary value
  - Different representations available

#### How is a bit represented?

- A voltage level is used to represent a bit:
  - 0 +0V ("low")
  - +5V ("high")
- "Low" might mean 0 (or false)
- "High" might mean 1 (or true)

#### **Analog Circuit**

- Electronic circuit which processes *continuous* voltage levels
  - o i.e. more than two distinct value
  - e.g. sound, light, temperature, pressure, position
  - Info translated from physical to electronic (e.g. microphone) or
  - Electronic to physical (e.g. speaker)

#### **Digit Circuit**

- Electronic circuit which processes *discrete* voltage levels
- The levels represent the values 0/1
- Built out of logic gates
  - and other components
  - small circuits which implement a logical operation

### **Schematic Diagram**

**Power** 



Vss

**Ground** 



#### **Schematic Diagram**

**Resistor - Europe** 



Resistor - USA, Japan



## **Schematic Diagram**

Switch LED



## **Logic Gates - Not**



| X | X' |
|---|----|
| 0 | 1  |
| 1 | 0  |

## **Logic Gates - Buffer**



| X | X |
|---|---|
| 0 | 0 |
| 1 | 1 |

## **Logic Gates - And**



| X | Y | XY |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

## **Logic Gates - OR**



| X | Y | X+Y |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

### **Logic Gates - XOR**



| X | Y | (X+Y)(XY)' |
|---|---|------------|
| 0 | 0 | 0          |
| 0 | 1 | 1          |
| 1 | 0 | 1          |
| 1 | 1 | 0          |

### **Logic Gates - NAND**



| X | Y | (XY)' |
|---|---|-------|
| 0 | 0 | 1     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

### **Logic Gates - NOR**



| X | Y | (X+Y)' |
|---|---|--------|
| 0 | 0 | 1      |
| 0 | 1 | 0      |
| 1 | 0 | 0      |
| 1 | 1 | 0      |

#### **Logic Gates - XNOR**



| X | Y | X'Y' + XY |
|---|---|-----------|
| 0 | 0 | 1         |
| 0 | 1 | 0         |
| 1 | 0 | 0         |
| 1 | 1 | 1         |

## **Digital Circuit** → "x and not y, or z"

**Note: Punctuation is important!!** 



#### **Digital Circuit - Exercise**

#### Draw the logic diagrams for digital circuits that compute:

- 1. neither x nor y, and z
- 2. x and y are equal

#### Digital Circuit - neither x nor y, and z

Can be rewritten as: NOT (EITHER x OR y) AND z



## Digital Circuit - x and y are equal



#### **Modern Computers and Logic Gates**

- Logic gates are built using transistors
- A transistor is a semiconductor component
  - Acts as an electrically controlled electrical switch
  - No moving parts
- Example: using CMOS technology
  - an inverter is built using two transistors
  - a 2-input NAND gate is using four transistors

#### **Integrated Circuit (IC)**

- Miniaturized electronic circuit
- Manufactured in thin layer of semiconductor material
  - Typically silicone
- A modern microprocessor may contain 100's of millions of transistors
- Each chip (CPU or otherwise) has electrical contacts around the edges or the bottom, the chip is placed inside a plastic/ceramic package
  - Connects the contacts with the packages pins
- A chip can be used as a component in a larger digital circuit
  - o i.e. soldered onto a circuit board

#### **Boolean Algebra**

- Captures the essential properties of the logic operations:
  - o AND
  - $\circ$  OR
  - NOT
- Are able to write out complex circuits using the boolean algebra notation
- In CS boolean algebra is used to describe and reason about digital circuits

#### **Boolean Algebra**

• The formula corresponding to the logical diagram below is:



 $\bullet \quad (\chi \cdot (y')) + z$ 

#### **Exercise 1 - Boolean Functions**

Using the symbols above, write the formulas corresponding to:



• (x + y), • z

#### **Exercise 1 - Boolean Functions**

Using the symbols above, write the formulas corresponding to:



• (x • y) + (x' • y')

#### **Consists of:**

- a set A
- constants and operations:
  - 0 0: A
  - o 1: A
  - $\circ$  (•): A x A  $\rightarrow$  A
  - $\circ$  (+): A x A  $\rightarrow$  A
  - $\circ$  ('):  $A \rightarrow A$

#### In a boolean algebra the following axioms must hold:

| x • 1 = x                                   | x + 0 = x                           | identities      |
|---------------------------------------------|-------------------------------------|-----------------|
| x • y = y • x                               | x + y = y + x                       | commutativity   |
| $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ | $x+(y \cdot z) = (x+y) \cdot (x+z)$ | distributivity  |
| x•x' = 0                                    | x+x' = 1                            | complentativity |

- Operator precedence, implied (·)
- In Distribution both symbol **and** operation are distributed

# **Example**

What does the following expression say:

$$xy' + z$$

It says the following:

| X | У | Z | y' | xy' | xy' + z |
|---|---|---|----|-----|---------|
| 0 | 0 | 0 | 1  | 0   | 0       |
| 0 | 0 | 1 | 1  | 0   | 1       |
| 0 | 1 | 0 | 0  | 0   | 0       |
| 0 | 1 | 1 | 0  | 0   | 1       |
| 1 | 0 | 0 | 1  | 1   | 1       |
| 1 | 0 | 1 | 1  | 1   | 1       |
| 1 | 1 | 0 | 0  | 0   | 0       |
| 1 | 1 | 1 | 0  | 0   | 1       |

- According to the definition, there can be many Boolean algebras!
- In this course, we are concerned with the **2-value Boolean algebra** {0, 1} with AND (·), OR (+) and NOT (')
  - as defined by the previous truth tables (on the logic gates handout).
- An alternative Boolean Algebra: given a set A its powerset and the operations union (AND), intersection (OR) and complement (NOT) is a Boolean algebra.

#### **Exercise**

- Prove the initially defined 2-value Boolean Algebra is a Boolean algebra
- This is done by showing that ALL of the axioms hold for the algebra
- Which is done using truth tables where you show that both sides of the axiom equations are equivalent
- Show that  $x \cdot 1 = x$



#### Many theorems follow from those axioms:

| x + x = x         | idempotency                                                                   |
|-------------------|-------------------------------------------------------------------------------|
| x + 1 = 1         | boundedness                                                                   |
| x+ xy = x         | absorption                                                                    |
| x+(y+z) = (x+y)+z | associativity                                                                 |
| (x+y)' = x'•y'    | De Morgan's Law                                                               |
| 1' = 0            | 0,1 are comp's                                                                |
|                   | involution                                                                    |
|                   | $x + 1 = 1$ $x + xy = x$ $x + (y + z) = (x + y) + z$ $(x + y)' = x' \cdot y'$ |

- idempotency property of operations that yield the same result after the operation is applied numerous times.
- boundedness a distinct and knowable upper and lower bound

# **Exercise: Prove Idempotency**

• Show that  $x \cdot x = x$ 

- This proves half of the idempotency theorem
  - The second proof is analogous

- Note the duality of the axioms and theorems.
  - Obtained by swapping (·) and (+) as well as 0 and 1
- A theorem is true if and only if its dual is true (this is the duality meta-theorem)
- How can we use associativity to further avoid explicit parenthesization?
  - Since the result is identical regardless of the way the terms are grouped the parenthesis can be eliminated

#### **Exercise**

 choose any appropriate axioms or theorems, and show how they can be used to simplify the following logic diagrams



- Which is f = x(x+y)
- By absorption is becomes f=x



- The theorems can be generalized to include more than two inputs
- Example:
  - The first idempotency theorem (xx=x) can generalized to (xx...x)=x
  - o How would you prove this?
- It is useful to have generalization of other theorems/axioms
  - Distributivity
  - De Morgan's Law

# **Proof of Generalized Idempotency Theorem**

#### **Use Induction**

- Given xx=x is true
- Assume that by applying the idempotency theorem in reverse (x=xx) grows xx to xx...x (with n x's)
- Take any of the x's in the sequence and apply the idempotency theorem to it (x=xx)
  - This replaces the one with x with two, making the sequence n+1 x's in length

**Note:** You can apply induction similarly to "shrink" a sequence of x's as well

# **Boolean Algebra Formulas**

- A Boolean expression can be considered a function, where the variables represent the inputs
  - These functions are assigned names
  - $\circ$  Example: f = xy' + z

# Forms of Boolean Algebra Formulas

- There are two ways in which an expression can be listed
  - SOP Sum of Products
  - POS Product of Sums
- These two methods are considered standard forms
- The function on the previous slide is in SOP
- All functions in SOP can also be written in POS

# Forms of Boolean Algebra Formulas

#### Consider the following table:

- minterms are the product (AND) of the specified values
- maxterms are the dual of the minterms
  - and visa versa

| х | у | Z | minterms | maxterms |
|---|---|---|----------|----------|
| 0 | 0 | 0 | x'y'z'   | x+y+z    |
| 0 | 0 | 1 | x'y'z    | x+y+z'   |
| 0 | 1 | 0 | x'yz'    | x+y'+z   |
| 0 | 1 | 1 | x'yz     | x+y'+z'  |
| 1 | 0 | 0 | xy'z'    | x'+y+z   |
| 1 | 0 | 1 | xy'z     | x'+y+z'  |
| 1 | 1 | 0 | xyz'     | x'+y'+z  |
| 1 | 1 | 1 | xyz      | x'+y'+z' |

## **Truth Tables and Boolean Algebras**

- A truth table for a function can be used to generate its Boolean function
  - sum all the minterms when the function is 1 (gives SOP form)
  - multiply all the maxterms where the function is 0 (gives POS form)
- These are called the "canonical" forms. It may be possible to simplify them (e.g. algebraically)
- In "canonical" form all of the terms in SOP/POS use ALL variables.

# Digital Circuit Design With Boolean Algebra

- Design a digital circuit which implements the following Boolean function, as specified by the truth table
- This by summing the minterms, this yields:

$$\circ f = x'y'z + xy'z' + xy'z$$

| Х | у | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

# Digital Circuit Design With Boolean Algebra

- f = x'y'z + xy'z' + xy'z
- This can be directly implemented using 5 inverters (really only 3 are needed), 3 3-input AND gates and 1 3-input OR gate.
- Can it be simplified so it uses a smaller number of gates? YES
- f = x'y'z + xy'z' + xy'zLook for duplicate parts
- f = x'y'z + xy'(z' + z) (z' + z) = 1 and 1 x = x
- f = x'y'z + xy' = (x'z + x)y'
- Now down to 2 invertors, 1 3-input AND, 1 2-input AND and 1 2-input OR can also change to 2 invertors, 2 2-input AND and 1 2-input OR

- It may be possible to algebraically simplify an expression
- If the expression remains completely as SOP and POS it is called in "standard" form.
- Otherwise it is simply an expression.

#### **SOP vs POS - Which is better?**

- Since they are duals they are equivalent!
- "Better" depends on what purpose the form is being used for.
- For purposes of expressing
  - whichever is simpler, i.e. has the fewer terms
- For purposes of implementing
  - again this depends on the gates being used
- With NAND gates → SOP is better to use
- With NOR gates → POS is better to use

# **Boolean Algebra - Completeness**

- From this discussion it should be clear that any Boolean function can be implemented out of NOT, AND and OR gates (even if they are only 2-input AND and OR gates).
- For this reason, the set of these three operations is said to be complete.
- A set of operations/gates is said to be complete if any Boolean function/circuit can be implemented using only combinations of (or, "by composing") the operations / gates in the set.

### **Boolean Operations**

- how many 1- and 2-input Boolean operations are there?
- 41-input op but we are only interested in NOT
  - identity (buffer),
  - o not,
  - o constant 0,
  - constant 1
- 16 2-input ops only interested in AND, OR, XOR, NAND, NOR, XNOR
- see gre\_bol1.pdf output patterns

# **Boolean Algebra - Completeness**

- Are there other complete sets of operations?
  - how about just NOT and AND?
  - how about just NOT and OR?
  - how about just NAND?
  - o how about just NOR?
- Any Boolean function can be implemented just out of 2-input NAND gates!

# **Boolean Algebra - NAND Completeness**

- The following can be proven via truth tables
  - $\circ$  NOT y = y NAND y
  - $\circ$  x AND y = (x NAND y) NAND (x NAND y)
    - 2 gates since bracketed terms the same
  - $\circ$  x OR y = (x NAND x) NAND (y NAND y)  $\rightarrow$  x NAND y
- Since NAND gates are easy to build out of transistors, this is useful

# **Exercise - Implement with NAND gates only**

- Implement f = xy' + z out of just NAND gates
- Remember the basic circuit for the function is:



- Each of the gates in the above circuit can be replaced with the corresponding NAND implementation
- But this requires remembering the AND, OR and NOT NAND implementations



# Is there a simpler version

- While the above version a valid circuit it takes a lot of gates.
- Is there a simpler version? YES
- Truth table for the function is to the left

| Х | У | z | y' | xy' | xy'+z |
|---|---|---|----|-----|-------|
| 0 | 0 | 0 | 1  | 0   | 0     |
| 0 | 0 | 1 | 1  | 0   | 1     |
| 0 | 1 | 0 | 0  | 0   | 0     |
| 0 | 1 | 1 | 0  | 0   | 1     |
| 1 | 0 | 0 | 1  | 1   | 1     |
| 1 | 0 | 1 | 1  | 1   | 1     |
| 1 | 1 | 0 | 0  | 0   | 0     |
| 1 | 1 | 1 | 0  | 0   | 1     |

- Rewrite the functions as f = A + B
- Where A = xy' and B = z
- Involution says we can apply NOT twice and get the same results

$$\circ$$
 f = ((A + B)')'

then by DeMorgan's

$$\circ$$
 (A+B)' = A'B'

- So the original function becomes:
  - o f = (A'B')'

- Notice that this is only using an AND.
- This can be interpreted as an AND with the inputs negated and then the output negated.
- Thus, an OR can be converted to an AND with the inputs and outputs negated
- Now A is the AND of x and y'. Whether the NOT is done after this AND or before the above AND makes no difference.

• Thus, this circuit can be implemented as:



- Thus, any expression in SOP form can be easily translated to an all-NAND circuit. Similarly, any expression in POS form can be easily translated to all-NOR
- Conversion from SOP to all NAND is done by:
- Applying involution to the function in SOP form
  - Then applying DeMorgan's to the inter expression
- An alternative way of viewing this is to negate both the output of AND gates and the inputs to the OR gate
  - DeMorgan's law shows that NOT OR is equivalent to NAND

# **Example**

Create the all NAND circuit for

$$\circ$$
 f = xy + yz + xyz

This expression in normal SOP form



# **Example Solution**

Apply one of the above methods and the circuit becomes:



# **Grey Code**

- Is a sequence of bit patterns that meet the following criteria
  - All the patterns are n-bits long for some value of n
  - Each pattern must differ from the previous by exactly one bit
  - All possible n-bit patterns must be included in the grey code
  - No bit pattern can be repeated in the code

```
2-bit Grey Code:00
```

01

11

10

# **Summary**

- Boolean algebra is used to reason about digital logic. These activities are common:
  - proof of equality
  - algebraic simplification