(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90317 A2

(51) International Patent Classification7:

C12N 9/00

(21) International Application Number: PCT/DK01/00366

(22) International Filing Date: 25 May 2001 (25.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/207,154

26 May 2000 (26.05.2000) US

(71) Applicant (for all designated States except US): ARLA FOODS AMBA [DK/DK]; Skanderborgvej 277, DK-8260 Viby J (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JØRGENSEN, Flemming [DK/DK]; Molleåparken 57, 2., DK-2800 Lyngby (DK). HANSEN, Olen, Cai [DK/DK]; Søndersø Park 42, DK-3500 Værløsc (DK). STOUGAARD, Peter [DK/DK]; Gershøjvej 103, DK-4050 Skibby (DK).

(74) Agent: HOFMAN-BANG ZACCO A/S; Hans Bekkevolds Allé 7, DK-2900 Hellerup (DK).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

7 A

(54) Title: A NEW ENZYME ISOLATED FROM A BIFIDOBACTERIUM

(57) Abstract: The present invention concerns a new β-galactosidase with transgalactosylating activity isolated from Bifidobacterium bifidum and a truncated enzyme where the C-terminal end of the β-galactosidase protein has been deleted resulting in an enzyme with a higher transgalactosylating activity than hydrolase activity. When lactose is used as a substrate, galacto-oligosaccharides are products of the transgalactgosylase activity. Galacto-oligosaccharides enhance growth of health-promoting Bifidobabacterium that may be used in a number of applications in the diary industry.

1

A new enzyme isolated from a Bifidobacterium

Technical field of invention

The present invention concerns improvement of fermented diary products. In particular, the invention concerns a β -galactosidase with transgalactosylating activity. More particular the inventions concerns a β -galactosidase isolated from Bifidobacterium bifidum where the C-10 terminal end of the protein has been deleted and the resulting truncated enzyme has higher transgalactosylating activity than hydrolase activity. lactose is used as a substrate, galactooligosaccharides are products of the transgalactosylase 15 activity. Galacto-oligosaccharides enhance growth of health-promoting Bifidobacterium that may be used in a number of applications in the diary industry.

Background of the invention

20

25

30

The genus Bifidobacterium is one of the most commonly used types of bacteria cultures in the diary industry for fermenting a variety of diary products. Ingestion of Bifidobacterium-containing products furthermore has a health-promoting effect. This effect is not only achieved by a lowered pH of the intestinal contents but also by the ability of Bifidobacterium to repopulate the intestinal flora in individuals who have had their intestinal flora disturbed by for example intake of antibiotics. Bifidobacterium furthermore has the potential of outcompeting potential harmful intestinal micro-organisms.

WO 01/90317

5

10

30

2

PCT/DK01/00366

Galacto-oligosaccharides are known to enhance the growth of *Bifidobacterium*. This effect is likely achieved through the unique ability of *Bifidobacterium* to exploit galacto-oligosaccharides as a carbon source. Dietary supplement of galacto-oligosaccharides is furthermore thought to have a number of long-term disease protecting effects. For example, galacto-oligosaccharide intake has been shown to be highly protective against development of colorectal cancer in rats (Wijnands, et al., 1999). There is therefore a great interest in developing cheap and efficient methods for producing galacto-oligosaccharides for use in the industry for improving dietary supplements and dairy products.

15 The enzyme β-galactosidase (EC 3.2.1.23usually hydrolyses lactose to the monosaccharides D-glucose and D-galactose. In the normal enzyme reaction of βgalactosidases, the enzyme hydrolyses lactose and transiently binds the galactose monosaccharide in a galactose-enzyme complex that transfers galactose to the 20 hydroxyl group of water, resulting in the liberation of D-galactose and D-glucose. However, at high lactose concentrations some β-galactosidasees are able transfer galactose to the hydroxyl groups of D-galactose 25 or D-glucose in a process called transgalactylation whereby galacto-oligosaccharides are produced.

Enzymes capable of transgalactosylation have been isolated from a wide range of micro-organisms, including bacteria and yeasts. The observation that galacto-oligosaccharides enhance the growth of health-promoting Bifidobacterium has stimulated investigations of Bifidobacterium and their β -galactosidase enzymes. Two DNA sequences of B. breve and B. longum β -galactosidase

3

genes have been deposited in GeneBank (accession numbers E5040 and AJ242596, respectively). Dumortier et al. (1994) have reported that B. bifidum DSM 20215 contains three β -galactosidases and one of these enzymes has trans-galactosylating properties. However, no identification of the enzyme possessing this activity or any sequence of the enzyme or the corresponding gene from B. bifidum DSM 20215 has been published.

Production of galacto-oligosaccharides by the use of β -galactosidases has been reported in several papers. For example, β -galactosidase from $E.\ coli$ has been shown to produce oligosaccharides at high lactose concentrations (0.5 M or approximately 20% lactose; Huber et al. 1976).

Various thermophilic microorganisms have been shown to produce oligosaccharides at high temperatures and high lactose concentrations, e.g. Sterigmatomyces elviae can produce 39% oligosaccharides from 20% lactose at 60°C (Onishi & Tanaka, 1995), and Saccharopolyspora rectivirgula can synthesize 41% oligosaccharides in 1.75

M lactose at 70°C (Nako et al., 1994).

However, the enzymes described above all have the drawbacks of requiring either high temperatures or high lactose concentrations or both in order to exhibit significant transgalactosylase activity. There is thus a need for developing cheaper and more efficient methods of producing galacto-oligosaccharides for use in the industry.

30

25

5

Summary of the invention

The present invention describes a new β -galactosidase from $Bifidobacterium\ bifidum$. A truncated version of the

4

enzyme has surprisingly been shown to have a high transgalactosylating activity. When the truncated enzyme, or a host cell expressing the recombinant truncated enzyme is incubated with lactose under appropriate conditions, galacto-oligosaccharides are produced at a high efficientcy. Presence of galacto-oligosaccharides in diary products or other comestible products have the advantage of enhancing the growth of health-promoting Bifdobacterium in the product or in the intestinal flora of the consumer after intake of the product or both.

Brief descrition of the drawings

Figure 1:

OLGA5 sequence. DNA and protein sequence of the OLGA5 β -galactosidase from *Bifidumbacterium bifidum*. The signal sequence is shown in bold and the part of OLGA5 gene deleted in OLGA347 is shown in italics. The *Bgl*II site used to create the deletion is highlighted.

20

25

5

10

Figure 2:

Comparison of β -galactosidase active site regions. Alignment of regions around the catalytic Glu461 residue (highlighted) from $E.\ coli$. The sequences are identified by their database accession numbers. 6-phospho- β -galactosidase sequences are marked with a (P).

Figure 3:

Neighbour joining analysis of the alignment in Figure 1, where the *Sulfolubus* sequences were used as an outgroup. Results from a bootstrap analysis (n = 100) are shown for the junctions with a value above 80.

Figure 4:

5

OLGA5 transgalactosylase activity. Total cell lysate of *E. coli* cells harbouring the OLGA5 gene in a plasmid were incubated with 0.4 M lactose at 37°C for 20 hours. A 50 µl total reaction volume contained the indicated amounts of total cell lysate. Reaction samples were analysed on a silica gel TLC plate. The plate was sprayed with Orcinol reagent to visualise the sugars.

Figure 5:

C-terminal deletions of OLGA5 β-galactosidase. A 1752
amino acid open reading frame encodes the OLGA5 βgalactosidase, where the starting 32 amino acids likely
represent a signal peptide (white box). Deletion mutants
of OLGA5 were constructed using the indicated restriction
sites. Lysates prepared from bacterial cultures grown
over night were used for measurement of β-galactosidase
activity, and the relative results are shown to the right
of the respective constructs. Restriction enzyme symbols
used: BglII (B), EcoRI (E), EcoRV (V), HindIII (H), KpnI
(K), NruI (N), PstI (P).

Figure 6:

TLC analysis of transgalactosylase activity. Total cell lysates for the two tested deletion mutants, OLGA347 and OLGA345, were used in the indicated amounts to react with 0.4 M lactose in 50 μ l total volume. The reactions were incubated at 37°C for 20 hours. Samples were analysed on a silica gel TLC plate. The plate was sprayed with Orcinol reagent to visualise the sugars.

30

25

Figure 7:

Oligosaccharides produced by OLGA347. The indicated amounts of OLGA347 total cell lysate were incubated with 15% lactose in a total volume of μl for 21 hours at 37°C.

6

Radioactive lactose that was labelled with ¹⁴C in the glucose C-1 position was used. Samples were separated on a TLC plate and quantitated by use of a phospho-imager. A: Image used for measurement of ¹⁴C-signals from lactose, glucose and galacto-oligosaccharides (GOS) spots. B: Measured ¹⁴C-signals after subtraction of background (blind lane).

Figure 8:

5

HPLC measurement of OLGA347 enzyme reaction products. 10 Reactions in 10%, 20% and 40% lactose were performed using the indicated amounts of OLGA347 total cell lysate. A total volume of 200 μ l was used and the reactions were incubated at 37°C for 20 hours. Diluted samples were subjected to HPLC analysis and standard curves were used 15 to convert the observed peak areas to concentrations (mg/ml). A: Obtained mg/ml saccharide after OLGA347 reaction with 10% lactose. B: Obtained mg/ml saccharide after OLGA347 reaction with 20% lactose. C: Obtained mg/ml saccharide after OLGA347 reaction with 40% lactose. 20 D: Plot of results from the 10% reaction. The resulting amount of galacto-oligosaccharides is calculated as the amount of lactose not recovered as glucose or galactose ("GOS").

25

30

Detailed description of the invention

The first aspect of the invention concerns a new β -galactosidase, OLGA5 (SEQ ID NO:1 and SEQ ID NO:2), from Bifidobacterium bifidum that has been isolated and characterised. E. coli cells were transformed with a plasmid containing insertions consisting of PstI digested chromosomal DNA from B. bifidum. Clones with β -galactosidase activity were selected on plates containing

5

10

15

20

25

30

7

a chromogenic β -galactosidase substrate. One of the positive colonies contained a plasmid with an insert of approximately 20 kb, pOLGA5 (SEQ ID NO:1). Sequencing of the DNA sequence revealed that the deduced amino acid sequence of OLGA5 β -galactosidase (SEQ ID NO:2) approximately twice as long as the presently known β galactosidases and it furthermore shows a surprisingly with known βlow degree of sequence homology galactosidases. Expression of recombinant OLGA5 in E. coli revealed that the enzyme, in addition to lactose hydrolysing activity, also exhibited transgalactosylating activity. The C-terminal part of the OLGA5 enzyme showed no homology to known β -galactosidases. A variety of OLGA5 C-terminal deletion mutants were subsequently constructed and the resulting enzymes were investigated for their hydrolytic and transgalactosylating activity.

A second aspect of the invention concerns deletion mutants of OLGA5, e.g. OLGA347. Out of several C-terminal deletion mutants, OLGA347 which has a 578 amino acid Cterminal deletion, showed the most pronounced increased level of oligosaccharides produced when incubated with lactose even at relatively low lactose concentrations. The enzyme apparently transferred virtually all galactose molecules onto galactose or glucose. Deletion of the Cterminal end of OLGA5 hence converted the enzyme from a to hydrolytic OLGA5 β-galactosidase transgalactosylating OLGA347-transgalactosidase. Unlike other transgalactosylating β -galactosidases, including the native OLGA5 enzyme, the truncated β -galactosidase

8

OLGA347 transfers galactose onto acceptor sugar molecules at high frequency at all lactose concentrations examined.

In one embodiement, an expression vector with an insert encoding OLGA5, OLGA342, OLGA345, OLGA347, OLGA344, or any other OLGA5 variant is used. This expression vector can be transformed into a host cell selected from the Bifidobacterium, comprising Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Escherichia, 10 Streptomyces, Saccharomyces, Kluyveromyces, Candida, Torula, Torulopsis and Aspergillus. A cell of the genus Bifidobacterium is selected from the group consisting of Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium bifidum and Lactococcus lactis. The cell is then cultured in a 15 suitable culture medium under conditions permitting expression of for example an OLGA5 or an OLGA347 variant and the resulting enzyme is thereafter recovered from the culture.

20

25

30

In another embodiment of the invention, an OLGA5 variant is part of an expression vector, which can be transformed into any one of the above, mentioned host cells. The cell is then cultured in a suitable culture medium under conditions permitting expression of the OLGA5 variant and the resulting enzyme is thereafter recovered from the The OLGA5 variant may contain any random culture. mutation or any mutation generated by conventional molecular biology techniques. Any fragment of a mutated or a wild-type OLGA5 DNA molecule can be inserted into the expression vector. The fragment can be generated by PCR (polymerase chain reaction) or by means of any restriction sites present in the sequence combination of both. The procedures for generating OLGA5

9

variants are well known to a person skilled in the art. It is thus not critical to the present invention in which way the variant is obtained. The variants disclosed in the present text are obtained by subcloning by use of restriction sites present in the sequence.

Another aspect of the invention concerns use of one or more of the above mentioned cell types for producing a product selected from the group consisting of yoghurt, cheese, fermented dairy products, dietary supplements and probiotic comestible products. In this aspect, of technical of the enhanced arowth effect Bifidobacterium is used for improving the quality of the industrial products. Addition of galacto-oligosaccharides enhances the growth of health-promoting Bifidobacterium. Galacto-oligosaccharides produced by OLGA347 is thus much cheaper and easier to obtain compared to using native β galactosidases for producing oligosaccharides.

20

25

5

10

15

Yet another aspect of the invention concerns the use of OLGA5, OLGA342, OLGA345, OLGA347, OLGA344 or any other OLGA5 variant or the use of any one or more of the above mentioned cell types for producing oligosaccharides. The oligosaccharides comprise, but are not limited to fructooligo-saccharides, galacto-oligosaccharides, isomalto-oligosaccharides, malto-oligosaccharides, lacto-sucrose and xylo-oligosaccharides.

In one embodiment of the invention, the oligosaccharides are produced by incubating the cell expressing the OLGA5 variant in a medium that comprises a disaccharide substrate such as for example lactulose, trehalose, rhamnose, maltose, sucrose, lactose, or cellobiose. The

incubation is carried out under conditions where oligosaccarides are produced. The cells may be part of a product selected from the group consisting of yoghurt, cheese, fermented milk products, dietary supplements, and probiotic comestible products. Alternatively, the oligosaccharides can be recovered and subsequently be added to the product of interest before or after its preparation. Addition of oligosaccharides enhance growth of either Bifidobacterium alone or of Bifidobacterium in a mixed culture.

In another embodiment, the oligosaccharides are produced incubating the OLGA5 variant in a medium that comprises a disaccharide substrate such as for example 15 lactulose, trehalose, rhamnose, maltose, lactose, or cellobiose. The incubation is carried out under conditions where oligosaccarides are produced. The medium comprising an OLGA5 variant and lactose may be part of a product selected from the group consisting of 20 yoghurt, cheese, fermented milk products, dietarv supplements, and probiotic comestible products. Alternatively, the oligo-saccharides can be recovered and subsequently be added to the product of interest before or after its preparation. Addition of oligosaccharides 25 enhances growth of either Bifidobacterium alone or of Bifidobacterium in a mixed culture.

Definitions

5

10

" β -galactosidase or a fragment thereof". β -galactosidase is defined as an enzyme capable of hydrolysing lactose to the monosaccharides D-glucose and D-galactose. A fragment of the β -galactosidase comprises 5-98%, preferably 40-95%

11

and most preferably 55-75% of the protein and the deletion preferably concerns the C-terminal end.

A "host cell" is selected from the group consisting of:

5 fungi, yeasts, and prokaryotes. The micro-organism is
more preferably a prokaryote and most preferably a
bacterium of the genus Bifidobacterium or the species E.
coli.

10 By "oligosaccharides" is meant an oligosaccharide consisting of at least three sugar molecules. An example of an oligosaccharide, which is not meant to be limiting, is galacto-oligosaccharide. The linkages between the sugar residues of the oligosaccharide comprise but are not limited to 1-4 and 1-6 bindings.

Incubation of β -galactosidase with lactose takes place in the presence of 0.5-60% lactose, preferably 2-30% lactose and most preferably 2-15% lactose.

20

25

Conditions of incubating β -galactosidase with lactose are defined by performing the incubation at a temperature between 5 and 75 °C, preferably 15-45 °C, and most preferably at 37 °C. The time required for the incubation is 1-50 hours, preferably 5-40 hours and most preferably 15-25 hours.

A "comestible product" comprises a product intended for ingestion such as foods, drinks, tablets, and powders.

12

PCT/DK01/00366

Examples

WO 01/90317

30

Example 1:

Isolation and characterisation of transgalactosylating β -5 galactosidase from B. bifidum. PstI digested chromosomal DNA from B. bifidum DSM 20215 was ligated into pKS plasmid (Stratagene) using standard procedures. ligation mixture was transformed into E. coli strain β -galactosidase. MT102 defective LacZ and 10 in galactosidase producing clones were identified as blue plates containing the chromogenic βcolonies on galactosidase substrate X-gal.

One of the blue colonies contained a plasmid with an 15 insert of approximately 20 kb, pOLGA5. The insert was further subcloned and partly sequenced and an open reading frame encoding a putative β -galactosidase (OLGA5 β -galactosidase) was identified (Figure 1). BLAST search showed that OLGA5 β -galactosidase showed the highest 20 degree of homology with Streptomyces coelicolor \(\beta - \) galactosidase (AL133171) and Thermoanaerobacter with 38% and ethanolicus (YO8557) 30% identity, respectively. Figure 3 shows an "identity tree" of OLGA5 25 and related amino acid sequences.

A detailed analysis of the amino acid sequence of OLGA5 β -galactosidase revealed that the enzyme contains a putative signal sequence at its N-terminal and that the open reading frame encodes a polypeptide of 185 kDa which is approximately twice as large as any of the presently known β -galactosidases. Recombinant OLGA5 enzyme produced in E. coli was purified and N-terminal amino acid sequencing confirmed, that the signal sequence was

cleaved during expression in $E.\ coli.$ SDS-PAGE confirmed the molecular weight of the OLGA5 polypeptide.

13

Cellular extracts of recombinant *E. coli* MT102 containing pOLGA5 were prepared and analysed for transgalactosylating activity. Figure 4 shows that OLGA5, in addition to lactose hydrolysing activity, also exhibited transgalactosylating activity.

10 Example 2

5

30

Construction of a truncated OLGA5 β -galactosidase with high transgalactosylase activity. The region of OLGA5 homologous to other β -galactosidases is located in the N-15 terminal end of the protein. The C-terminal half showed no homology to any known β -galactosidase. However, a sialidase-like galactose-binding domain was observed in the C-terminal part. The role of this C-terminal part of the OLGA5 β-galactosidase was investigated by 20 construction of truncated deletion mutants. hydrolytic and transgalactosylating activities of the resulting recombiant β -galactosidases were analysed. Figure 5 shows that it was possible to delete almost one third of the OLGA5 enzyme and still retain hydrolytic 25 activity.

When the transgalactosylating activity was analysed, similar results were obtained with extracts from $E.\ coli$ containing the plasmids pOLGA5, pOLGA342, and pOLGA345. However, extracts of cells harbouring pOLGA347 showed an increased level of oligosaccharides produced and almost no galactose. As shown in Figure 5, an extract containing the truncated OLGA347 β -galactosidase did hydrolyse lactose, but instead of transferring galactose onto

14

PCT/DK01/00366

hydroxyl groups in water, the enzyme transferred virtually all galactose molecules onto galactose or glucose (or glycerol; the spot migrating slightly slower than glucose on TLC was shown by NMR to be galactoglycerol - data not shown). In conclusion OLGA347 is a true "transgalactosylase".

Example 3

WO 01/90317

5

20

25

30

10 Characterisation of the transgalactosylating activity of OLGA347. Two methods were used to quantitate the transgalactosyalting activity of OLGA347 β -galactosidase: TLC analysis of reaction mixtures containing radioactively labelled lactose and HPLC analysis after enzymatic conversion of unlabeled lactose.

Experiments with radioactivity were carried out with lactose containing the 14C-label at the C-1 position of glucose. Since the label was in the glucose part of the disaccharide, only reaction products containing glucose result of detected. Figure 7 shows the transgalactosylation experiment with 15% lactose and varying amounts of OLGA347 enzyme. After separation of the reaction mixture by TLC, the plate was scanned and the radioactive spots were quantitated in a phosphoimager. At low enzyme concentrations (between 0 and 0.2 µl of the extract), the glucose and oligosaccharide levels were almost identical, indicating that all glucose molecules exploited as substrate were transgalactosylation reactions. "Free" hydrolysed glucose appeared only at high enzyme concentratins.

5

10

15

20

25

15

unlabelled lactose different In experiments with substrate and enzyme concentrations were examined. Figure 8 shows an experiment in which 10%, 20%, and 40% lactose was used as substrate in enzyme reactions with varying concentrations of OLGA347 enzyme. The reaction mixtures were analysed with HPLC and the concentrations of lactose, glucose, galactose, and galacto-oligosaccharides were calculated. Figure 8 shows that as the enzyme concentrations goes up, the lactose concentration is decreased and the glucose concentration is increased but virtually no "free" galactose is produced, indicating that almost all galactose molecules in lactose Calculations of transferred onto another sugar. carbohydrate concentrations measured in reactions with low enzyme concentrations, indicated that the ratio between glucose and galactose is approximately 0.1, implying that for every lactose molecule hydrolysed to free galactose and glucose, nine lactose molecules are used in transglactosylation. As seen in Figure 8, the transgalactosylation reaction is independent of lactose concentration in range from 10% to 40% lactose. maximal yield of galacto-oligosaccharides produced in transgalactosylation reactions with 10%, 20% or lactose as substrate were 39%, 44% and 37% respectively (mg of oligosaccharides produced per mg lactose added).

References

Dumortier, V., Brassart, C., and Bouquelet, S. (1994)
Purification and properties of a β -p-galactosidase from Bifidobacterium bifidum exhibiting a transgalactosylation reaction. Biotechnol. Appl. Biochem. 19, 341-354.

Huber, R.E., Kurz, G., and Wallenfels, K. (1976) A quantitation of the factors which affect the hydrolase and transgalactosylase acticities of β -galactosidase (E. coli) on lactose. Biochemistry, 15, 1994-

Nakao, M., Harada, M., Kodama, Y., Nakayama, T., Shibano, Y., and Amachi, T. (1994) Purification and haracterization of a thermostable β-galactosidase with high transgalactosylation activity from Saccharopolyspora rectivirgula. Appl. Microbiol. Biotechnol. 40, 657-663.

- Onishi, N and Tanaka, T. (1995) Purification and properties of a novel thermostable galactooligosaccharide-producing β -galactosidase from Sterigmatomyces elviae CBS8119. Appl. Environ. Microbiol. 61, 4026-4030.
- Wijnands, M. V., Appel M. J., Hollanders, V. M., and Woutersen, R. A. (1999) A comparison of the effects of diatary cellulose and fermentable galacto-oligosaccharide in a rat model of colorrectal carcinogenesis: fermentable fibre confers greater protection than non-fermentable fibre in both high and low fat backgrounds.

Carcinogenesis. 20, 651-656.

PCT/DK01/00366 WO 01/90317

17

Claims

1. A DNA sequence which

5

- a) encodes a protein with an amino acid sequence as given in SEQ ID NO:2, or
- b) hybridises under stringent conditions to the sequence of a), or
- c) is degenerative of the sequence of a) or b).
- 2. A DNA sequence according to claim 1, wherein the sequence is as given in SEQ ID NO:1 or a fragment thereof.

15

25

- 3. A DNA sequence according to claim 2, wherein the sequence comprises a sequence from SEQ ID NO:1 which starts with ATG in position 212-214 and ends with TGA in position 5468-5470, or any fragment thereof.
- 20
 - 4. A DNA sequence according to claim 3, wherein the sequence comprises a sequence from SEQ ID NO:1 which starts with ATG in position 212-214 and ends with ATCT in position 3731-3734, or any fragment thereof.
- 5. A DNA sequence according to claim 3, wherein the the sequence comprises a sequence from SEQ ID NO:1 which starts with GTC in position 308-310 and ends 30 with TGA in position 5468-5470, or any fragment thereof.

5

- 6. A DNA sequence according to claim 3, wherein the sequence comprises a sequence from SEQ ID NO:1 which starts with GTC in position 308-310 and ends with ATCT in position 3731-3734, or any fragment thereof.
- 7. A DNA sequence according to any one of claims 1-6, wherein said sequence comprises nucleotide substitutions, additions or deletions which result in less than 60%, preferably less than 45%, more preferably less than 25% change in the amino acid sequence according to SEQ ID NO:2, or a fragment thereof.
- 8. A DNA sequence according to any one of claims 1-5, wherein said sequence comprises nucleotide substitutions, which results in conservative amino acid substitutions.
- 9. An enzyme encoded by a DNA sequence of any one of claims 1-8.
 - 10.An enzyme comprising an amino acid sequence according to SEQ ID NO:2, or a fragment thereof.
 - 11.A β -galactosidase having the sequence as defined in SEQ ID NO:2.
- 12.An enzyme according to claim 10 having the sequence 30 as defined in SEQ ID NO:2 from Met (1) to Gly (1752), or a fragment thereof.
 - 13.A mature β -galactosidase according to claim 12.

WO 01/90317

10

20

25

- 14. An enzyme according to claim 10 having the sequence as defined in SEQ ID NO:2 from Met (1) to Ile (1174), or a fragment thereof.
- 5 15.A transgalactosylating enzyme according to claim 14.
 - 16.An enzyme according to claim 14 having the sequence as defined in SEQ ID NO:2 from Ala (33) to Ile (1174), or a fragment thereof.
 - 17.A mature transgalactosylating enzyme according to claim 16.
- 18.A transgalactosylating enzyme of any one of claims
 14-17 having one or more of the following
 characteristics:
 - a) The ratio of transgalactosylating activity to β -galactosidase activity in a solution of 100 g/L lactose at 37 °C is at least 1:1,
 - b) catalyses production of at least 25% galactooligosaccharides in batch reaction with a solution of 100 g/L lactose at 37 °C,
 - c) catalyses production of galacto-oligo-saccharides in batch reaction with a solution of 100 g/L lactose at 37 °C with less than 15% of galactose from the lactose being present in the free form at the reaction time with maximum concentration of galacto-oligo-saccharide.
 - 19. A recombinant vector comprising a DNA sequence of any one of claims 1-8.

- 20. A vector of claim 19, wherein said vector is an expression vector.
- 5 21. A host cell comprising a DNA sequence of any one of claims 1-8.
 - 22. A host cell comprising a vector of any one of claims 19-20.

10

- 23. A cell of claims 21-22, wherein said cell is a bacterial cell, a yeast cell, or a fungal cell.
- 24. A cell of claim 23, wherein the cell is selected

 from the group consisting of Bifidobacterium,

 Lactococcus, Lactobacillus, Streptococcus,

 Leuconostoc, Escherichia, Bacillus, Streptomyces,

 Saccharomyces, Kluyveromyces, Candida, Torula,

 Torulopsis and Aspergillus.

20

25. A cell of claim 24, wherein the cell is selected from the group consisting of Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Bifidobacterium bifidum and Lactococcus lactis.

25

26. Use of a cell of any one of claims 21-25 for producing a product selected from the group consisting of yoghurt, cheese, fermented milk product, dietary supplement and probiotic comestible product.

30 c

27. A dairy product comprising a cell of any one of claims 21-25.

21

- 28. Use of a transgalactosylating enzyme of any one of claims 14-18 or a cell of any one of claims 21-25, for producing galacto-oligosaccharides.
- 5 29. Use of a transgalactosylating enzyme of any one of claims 14-18 or a cell of any one of claims 21-25, for producing galacto-oligosaccharides to be part of a product selected from the group consisting of yoghurt, cheese, fermented dairy products, dietary supplements and probiotic comestible products.
 - 30. Use of a transgalactosylating enzyme of any one of claims 14-18 or a cell of any one of claims 21-25, for producing galacto-oligosaccharides to enhance the growth of *Bifidobacterium*.
 - 31. Use of a transgalactosylating enzyme of any one of claims 14-18 or a cell of any one of claims 21-25, for producing galacto-oligosaccharides to enhance the growth of *Bifidobacterium* in a mixed culture fermentation.
 - 32.A process for producing a transgalactosylating enzyme of any one of claims 14-18, comprising culturing a cell of any one of claims 21-25 in a suitable culture medium under conditions permitting expression of said enzyme, and recovering the resulting enzyme from the culture.
- 33.A process for producing galacto-oligosaccharides, comprising contacting of an enzyme of any one of claims 14-18 or a cell of any one of claims 21-25 with a solution of lactose.

15

20

Fig. 1

81	ATGCGTTGCGTTGCGATTTTTCCGGCCCTGTATGGGGGATACAGGATTGGCGATGGCGACACGCCGTTTTTGTTAATGGC ATTTACATGAAATACAGGTAATGAGATATCATTCTCATGATCACCGTGTGGATATCGCATTGGTGCGTATACACTAACAG
161	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
241	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
321	CCCGATCCGACTCCACGCAGATGAGCTCCACGCCGGAGGTGGTCTACTCCAGCGCCCTGGATTCCAAGCAGAATCGC T R S D S T T Q M S S T P E V V Y S S A V D S K Q N R
401	ACCTCGGATTTCGACGCCAACTGGAAGTTCATGCTGTCCGATTCCGTGCAGGCGCAGGATCCGGCGTTCGACGATTCGGC T S D F D A N W K F M L S D S V Q A Q D P A F D D S A
481	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
561	$ \begin{smallmatrix} \mathtt{TTCCCGGCGGCACCGGCTGGTACCGCAAGTCCTTCACCATCGACCGGGACCTCGCCGGCAAGCGCATCGCCATCAACTTC} \\ \mathtt{L} & \mathtt{P} & \mathtt{G} & \mathtt{G} & \mathtt{W} & \mathtt{Y} & \mathtt{R} & \mathtt{K} & \mathtt{S} & \mathtt{F} & \mathtt{T} & \mathtt{I} & \mathtt{D} & \mathtt{R} & \mathtt{D} & \mathtt{L} & \mathtt{A} & \mathtt{G} & \mathtt{K} & \mathtt{R} & \mathtt{I} & \mathtt{A} & \mathtt{I} & \mathtt{N} & \mathtt{F} \\ \mathtt{I} & \mathtt{N} & $
641	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
721	CTTCGACCTGACCGCCAACGCCAAGTTCGGTGGGGGAGACACCATCGTCGTCGAGGTCGAGAACAGGCTGCCGTCCAGCC F D L T G N A K F G G E N T I V V K V E N R L P S S
801	GCTGGTACTCCGGCTCTCACCGCACGTCACCGTCACCGTCACCGTCCACGCGTGCACGTCGCCATAACGGCGTGR W Y S G S G I Y R D V T L T V T D G V H V G N N G V
881	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
961	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1041	CCACCGCATCCAAGTCCATCGCGGCCGGTGCCAGCGGGGCGGACGTGACCTCCACGATCACCGCCGCTTCGCCCAAGCTGTGGTTT T A S S I A A G A S A D V T S T I T A A S P K L W
1121	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1201	ATATGGCTTCCGCTGGACCGGCTTCGATGCGACCAGCGGTTTCTCGCTCAACGGCGAGAAAGTCAAGCTCAAGGGCGTCT Y G F R W T G F D A T S G F S L N G E K V K L K G V
1281	CAATGCATCATGACCAGGGATCGCTCGGCGGCGCCAACCGCCGCGCCATCGAGGCGCCAGGTCGAGATTCTCCAGAAGS M H H D Q G S L G A V A N R R A I E R Q V E I L Q K
1361	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1441	CGTGGTCGAAGAGGTCTTCGACATGTGGAACCGGTCGAAGAACGGCAACACCGAGGATTACGGCAAGTGGTTCGGCCAGGVVVVVVVVVV
1521	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1601	CGTGACAGGAACGCCCCGTCCGTCATCATGTGGTCGCTCGGCAACGACGTGATGATGAAGGCATCAGCGGCAGCGTCTCGGGR $\mathbb R$
1681	CTTCCCGGCTACCTCCGCCAAGCTCGCATGGACGAAGGCCGCGGACAGCACCCGCCCG
1761	$ \begin{matrix} \textbf{K} & \textbf{I} & \textbf{K} & \textbf{N} & \textbf{W} & \textbf{N} & \textbf{E} & \textbf{S} & \textbf{N} & \textbf{T} & \textbf{M} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G} & \textbf{V} & \textbf{G} & \textbf{T} & \textbf{N} & \textbf{G} & \textbf{G}$
1841	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1921	CAACAGCCGAGGCATCTACAACCGCACCACCGGCGCGCCCAGTCAAGCGAGCAAGCA
2001	CAGTCGGCTGGGGCGCCTCGCCTGGTACGACGTGGTCCAGCGCGATTTCGTCGCCGGCACATACGTGTGGACACGCGCACATACGTGTGGACACACGCGACACACAC
2081	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2161	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2241	ACGTGCACACGCTGCACATCCTCCCCGCATGGAACGAGAACGTCGTCGCCAAGGGCTCCGCCAACAACGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTCGTC

2/10 GTCTACACCGACGGCCAAGGTCAAGCTGTACTTCACACCGAAGGGCAGTACCGAAAAGCGACTGATCGGAGAGAAAGTC
V Y T D A A K V K L Y F T P K G S T E K R L I G E K S ACATGTACCTGACCTGGAACGTGCCGTGGGCCCGAGGGCACCATCTCCGCCGAAGCATACGACGAGAACAACAGGCTGATC CCCGAGGGGTCCACCGAGGGCAACGCGTCGGTGACCACCACCGCAAGGCCGCAAAGCTTAAAGCCGATGCCGACCGCAACCGCAA AGAAGACGGTCCGCAGCTTCTACTCGCGCAACTACTACGTCAAGACCGGCAACAAGCCGATTCTGCCGAGTGATGTC GAGGTGCGCTACTCCGACGGCACGTCGGACCGTCAGAACGTCACATGGGACGACGACGACCAGATCGCCAAGGC E V R Y S D G T S D R O N V T W D A V S D D Q I A K A vcceievccececevcceicciense. CCCCGGCACCGCCACCGTCTTCGGCAAGGAGTTCAAGGTCACCGCGACGATTCGCGTGCAGCGGTCGCAGGTCACCATCG AGCCACGTTCGTCAAGGTCACGGTCACCAACGCCGACACCCCACACGCGGCGTGGTCTGCCCGGCCTGACCGAGA

Fig. 1 (continued)

3/10 GTGGACGCCGACCATCCCGCCACCTTCGCCACGAGGACGTGACGTGACGTTGGGCGACGCCACGCTGCGCTACGGCGT V D A D H P A T F A T K D V T V T L G D A T L R Y G V

Fig. 1 (continued)

4/10

L35444	RFLAASQAYLDALAKQVQPLLN-HNGGP-II-AVQVB-NEYGSYAD
M13466	HYCPNHFQLITHIKRLVRAIAERYKNHPALK-MWHVN-NEYACHVS
U17417	TISSSAWYYSVGQYAAKMTRALAERYKDHPALA-LWHVD-NELGCHVS
R05040	HWRATSPVFLDYALNLCRKMAEHYKDNPYVV-SWHVS-NEYGCHNR
OLGA88	HWRPTSPVFREYALRLCRAMAEHYRDNPYVV-AWHVS-NEYGGHNR
L03424	NSCPNSPTYRKYSEKIADKLAERYKDHPAVL-VWHIS-NEYGGDCY
L03425	NHCYTSPVYREKVTAINTKLAERYSDHPAVI-GWHIS-NEFGGDCH
D49537	NHCYTSPIYREKIAIIDRLLAERYKDHPALI-LWHIS-NEFEGQCY
L20757	RWGGME-TGGNPERPPHRSSATGTTRLSY-IWGVRINESQDSHD
M57579	QYIGNS-EWKKVAEQNLREMITRDWNHPSII-LWGVRINESQDDDA
Y08557	QHIGDE-NWKNIAKENLKEMILRDRNHPCIF-MWGVRINERLDDHD
OLGA5	AVLGGDKDETWAKFD-LTSTINRDRNAPSVI-MWSLG-NEMMEGIS
M63636	NIPASEPEWLPACLDRANNMFQRDKNHASVI-IWSCG-NESYAGKD
M35107	NVPGSLPQWQAAVLDRASSMVERDKNHPSVL-IWSCG-NESYAGED
M92281	NVPGDNPHWPAAVIDRARSNYEWFKNHPSII-FWSLG-NESYAGED
X82287	NVPGSYDEWEAATLDRARTNFETFKNHVSII-FWSLG-NESYAGSV
M23530 AJ242596	NVPGDDQHWLGASLSRVKNMMARDKNHASIL-IWSLG-NESYAGTV IVPGSKREWEGACVDRVNSMMRRDYNHPSVL-IWSLG-NESYVGDV SVPGDDEAWLGACIDRLDSMTLRDRNHPSVL-VWSLG-NESYAGEV
OLGA2 U62625 Y14599	CYFARDPLF - KKAILDRQQANVERDKNRTSII-IWSLG-NESGYGAN NIIADDSKF - ETAIIERIEASIMPLKNYSSIV-SWSLG-NESGFGKN
U08186	VTLANRWEWEKAHFDRIKRMVERDKNHPSII-FWSLG-NEAGDGVN
OLGA1	RPIADNPAWIAPTVDRAQRSVERDKNHASII-FWSMG-NECAYGCT
M11441	NRLSDDPAWLPAFSARVTRMVQSNRNHPCII-IWSLG-NESGGGN
U60828	NRLTNDPTYLPLMSERVTRMVMRDRNHPSII-IWSLG-NESGYGSN
J01636	NRLTDDPRWLPAMSERVTRMVQRDRNHPSVI-IWSLG-NESGHGAN
D42077	SRLADDPRWLPAMSERVTRMVQRDRNHPSII-IWSLG-NESGHGAN
D37882 (P)	EGLHEDGDFLTHEKMDDFVEYADYCFKEFPEVK-YWITI-NEIRSVAV
J03479 (P)	EVLHKDGDFLNRKTIDYFVDYAEYCFKEFPEVK-YWTTF-NEIGPIGD
L18993 (P)	EALHSNGDFLNRENIEHFVNYAEFCFKEFSEVN-YWTTF-NEIGPIGD
M28357 (P)	EALHSNGDFLNRENIEHFIDYAAFCFEFPEVN-YWTTF-NEIGPIGD
M3 4 696	GDFTGPSGWLSTRTVYEFARFSAYIAWKFDDLVDEYSTM-NEPNVVGG
X1 5 950	GDFTGPTGWLNSRTVYEFARFSAYVAWKLDDLASEYATM-NEPNVVWG

Fig. 2

Fig. 3

SUBSTITUTE SHEET (RULE 26)

8/10

Fig. 6

9/10

FIG. 7

10/10

(A) Reaction with 10% lactose.

	0 μί	0.1 μ1	0.2 μ1	0.4 μ1	0.8 μ1	1.5 µl	3 µl	6 µl
lactose	112.38	105.87	101.35	92.52	75.56	51.82	34.04	30.08
glucose	0	1.52	2.85	6.11	11.53	20.66	30.16	36.92
galactose	0	0.19	0.30	0.66	1.30	2.16	3.80	5.58

(B) Reaction with 20% lactose.

	0 μ1	0.1 µl	0.2 µl	0.4 µl	0.8 μΙ	1.5 µl	3 µl	6 µІ
lactose	235.65	217.58	205.30	177.70	137.27	93.78	66.24	61.69
glucose	0	2.95	6.48	13.93	29.57	45.99	61.06	73.06
galactose	0	0.34	0.48	0.78	1.96	3.07	4.87	6.95

(C) Reaction with 40% lactose.

	0 µl	0.1 μl	0.2 μl	0.4 µl	0.8 μ1	1.5 µl	3 µl	6 μ1
lactose	426.47	395.16	370.29	308.07	224.08	174.88	136.73	121.29
glucose	0	7.96	17.51	37.96	63.42	93.99	123.99	144.27
galactose	0	0.65	0.97	1.48	2.94	4.11	6/84	8.89

(D) Plot of reaction with 10% lactose.

Fig. 8

1

SEQUENCE LISTING

	<110> Arla Foods amba	
5	<120> A new enzyme from a Bifidobacterium	
	<130> P200000660 US	
LO	<140> <141>	
	<150> US 60/207154 <151> 2000-05-26	
15	<160> 2	
	<170> PatentIn Ver. 2.1	
20	<210> 1 <211> 5509 <212> DNA <213> Bifidobacterium bifidum	
25	<220> <221> CDS <222> (212)(5470) <223> Beta-galactosidase	
30	<400> 1 atgcgttgcg ttgcgatttt tccggccctg tatgggggat acaggattgg cgatggcgac	60
	acgccgtttt tgttaatggc atttacatga aatacaggta atgagatatc attctcatga	120
35	tcaccgtgtg gatatcgcat tggtgcgtat acactaacag caacagagcg gcgcggcagg	180
55	cgctcgtgga ttcaatgaag aaggaacgtt t atg gca gtt cgc aga ctt ggt Met Ala Val Arg Arg Leu Gly 1 5	232
40	ggc cgc atc gtg gct ttc gcc gcc aca gtg gcc ttg tca ata ccg tta Gly Arg Ile Val Ala Phe Ala Ala Thr Val Ala Leu Ser Ile Pro Leu 10 15 20	286
45	ggg ttg tta aca aat tca gcg tgg gcg gtc gag gac gcc acc cga tcc Gly Leu Leu Thr Asn Ser Ala Trp Ala Val Glu Asp Ala Thr Arg Ser 25 30 35	32
50	gac tcc acc acg cag atg agc tcc acg ccg gag gtc gtc tac tcc agc Asp Ser Thr Thr Gln Met Ser Ser Thr Pro Glu Val Val Tyr Ser Ser 40 45 50 55	37
	gcc gtg gat tcc aag cag aat cgc acc tcg gat ttc gac gcc aac tgg Ala Val Asp Ser Lys Gln Asn Arg Thr Ser Asp Phe Asp Ala Asn Trp 60 65 70	42
55	aag ttc atg ctg tcc gat tcc gtg cag gcg cag gat ccg gcg ttc gac Lys Phe Met Leu Ser Asp Ser Val Gln Ala Gln Asp Pro Ala Phe Asp 75 80 85	47:
60	gat tcg gcc tgg cag cag gtc gac ctg ccg cat gac tac agc atc acg Asp Ser Ala Trp Gln Gln Val Asp Leu Pro His Asp Tyr Ser Ile Thr 90 95 100	52

												•					
	cag Gln	aag Lys 105	tat Tyr	tcg Ser	cag Gln	agc Ser	aac Asn 110	gag Glu	gcc Ala	gaa Glu	agc Ser	gca Ala 115	tac Tyr	ctt Leu	ccc Pro	ggc Gly	568
5	ggc Gly 120	acc Thr	ggc Gly	tgg Trp	tac Tyr	cgc Arg 125	aag Lys	tcc Ser	ttc Phe	acc Thr	atc Ile 130	gac Asp	cgg Arg	gac Asp	ctc Leu	gcc Ala 135	616
10	ggc Gly	aag Lys	cgc Arg	atc Ile	gcc Ala 140	atc Ile	aac Asn	ttc Phe	gac Asp	ggc Gly 145	gtg Val	tac Tyr	atg Met	aac Asn	gcc Ala 150	acc Thr	664
15	gtc Val	tgg Trp	ttc Phe	aac Asn 155	GJ Y ggc	gtc Val	aag Lys	ctc Leu	ggc Gly 160	acc Thr	cat His	ccg Pro	tac Tyr	ggc Gly 165	tac Tyr	tcg Ser	712
	ccg Pro	ttc Phe	tcc Ser 170	ttc Phe	gac Asp	ctg Leu	acç Thr	ggc Gly 175	aac Asn	gcc Ala	L ys	ttc Phe	ggt Gly 180	ej A aaa	gag Glu	aac Asn	760
20	acc Thr	atc Ile 185	gtc Val	gtc Val	aag Lys	gtc Val	gag Glu 190	aac Asn	agg Arg	ctg Leu	ccg Pro	tcc Ser 195	agc Ser	cgc Arg	tgg Trp	tac Tyr	808
25	tcc Ser 200	ggc Gly	tcc Ser	ggc ggc	atc Ile	tac Tyr 205	cgc Arg	gac Asp	gtc Val	acc Thr	ctc Leu 210	acc Thr	gtc Val	acc Thr	gac Asp	ggc Gly 215	856
30	gtg Val	cac His	gtc Val	ggc Gly	aat Asn 220	aac Asn	ggc Gly	gtg Val	gcc Ala	atc Ile 225	aag Lys	acc Thr	ccg Pro	agc Ser	ctc Leu 230	gcc Ala	904
35	acc Thr	caa Gln	aac Asn	ggc Gly 235	ggc Gly	gac Asp	gtg Val	acg Thr	atg Met 240	aac Asn	ctc Leu	acc Thr	acc Thr	aag Lys 245	gtc Val	gcc Ala	952
	aac Asn	gac Asp	acc Thr 250	gag Glu	gcc Ala	gcg Ala	gcg Ala	aac Asn 255	atc Ile	acc Thr	ctc Leu	aag Lys	cag Gln 260	acc Thr	gtg Val	ttc Phe	1000
40	CCC Pro	aag Lys 265	gga Gly	ggc	aag Lys	acc Thr	gac Asp 270	gcc Ala	gcc Ala	atc Ile	ggc Gly	acc Thr 275	gtc Val	acc Thr	acc Thr	gca Ala	1048
45	tcc Ser 280	aag Lys	tcc Ser	atc Ile	gcg Ala	gcc Ala 285	ggt Gly	gcc Ala	agc Ser	gcg Ala	gac Asp 290	Val	acc Thr	tcc Ser	acg Thr	atc Ile 295	1096
50	acc Thr	gcc Ala	gct Ala	tcg Ser	ccc Pro 300	aag Lys	ctg Leu	tgg Trp	agc Ser	atc Ile 305	aag Lys	aac Asn	ccg Pro	aac Asn	ctg Leu 310	tac Tyr	1144
55	acc Thr	gtg Val	cgc Arg	acc Thr 315	gaa Glu	gtg Val	ctc Leu	aac Asn	ggc Gly 320	ggc	aag Lys	gtg Val	ctc Leu	gac Asp 325	act Thr	tac Tyr	1192
	gac Asp	acc	gaa Glu 330	Tyr	ggc Gly	ttc Phe	cgc Arg	tgg Trp 335	Thr	ggc Gly	ttc Phe	gat Asp	gcg Ala 340	Thr	agc Ser	ggt Gly	1240
60	ttc Phe	tcg Ser 345	Leu	aac Asn	ggc	gag Glu	aaa Lys 350	Val	aag Lys	ctc Leu	aag Lys	ggc Gly 355	Val	tca Ser	atg Met	cat His	1288

	cat His 360	gac Asp	cag Gln	gga Gly	tcg Ser	ctc Leu 365	Gly ggc	gcg Ala	gtc Val	gcc Ala	aac Asn 370	cgc Arg	cgc Arg	gcc Ala	atc Ile	gag Glu 375	1336
5		cag Gln															1384
10		cac His															1432
15		gtc Val															1480
20		ggc Gly 425															1528
	ggt Gly 440	gac Asp	aac Asn	gcc Ala	gtc Val	ctg Leu 445	ggt Gly	ggc Gly	gac Asp	aag Lys	gac Asp 450	gag Glu	acc Thr	tgg Trp	gcc Ala	aag Lys 455	1576
25		gac Asp			_				_	-			-	-		-	1624
30		atg Met															1672
35		tcg Ser															1720
40		gcg Ala 505															1768
10		aac Asn															1816
45		ggc Gly															1864
50		cgc Arg															1912
55	tcc Ser	gcc Ala	atc Ile 570	aac Asn	agc Ser	cga Arg	ggc Gly	atc Ile 575	tac Tyr	aac Asn	cgc Arg	acc Thr	acc Thr 580	ggc	ggc Gly	gcc Ala	1960
60	cag Gln	tca Ser 585	agc Ser	gac Asp	aag Lys	cag Gln	ctg Leu 590	acc Thr	agc Ser	tat Tyr	gac Asp	aat Asn 595	tcc Ser	gca Ala	gtc Val	ggc Gly	2008
		GJ A GGC															2056

								tgg Trp									2104
5								Gly Ggc									2152
10								cgg Arg 655									2200
15								cag Gln									2248
20	acg Thr 680	ctg Leu	cac His	atc Ile	ctc Leu	ccc Pro 685	gca Ala	tgg Trp	aac Asn	gag Glu	aac Asn 690	gtc Val	gtc Val	gcc Ala	aag Lys	ggc Gly 695	2296
20								gtc Val									2344
25								ggc Gly									2392
30								acc Thr 735									2440
35								gac Asp									2488
40								gcc Ala									2536
								atc Ile									2584
45								aag Lys									2632
50								gac Asp 815									2680
55								Gly Ggc									2728
60								G] À ààc									2776
								gac Asp									2824

	gcg Ala	ttc Phe	agc Ser	ggc Gly 875	r As	gtg Val	ctc Leu	gcc Ala	atc Ile 880	gtc Val	cag Gln	tcc Ser	Thr	aag Lys 885	gag Glu	gcg Ala	2872
5 .	Gly	gag Glu	atc Ile 890	acc Thr	gtc Val	acc Thr	gcc Ala	aag Lys 895	gcc Ala	gac Asp	ggt Gly	ctg Leu	caa Gln 900	tca Ser	tcc Ser	aca Thr	2920
10	gtg Val	aag Lys 905	atc Ile	gcc Ala	acc Thr	acc Thr	gcc Ala 910	gtc Val	ccc Pro	Gly ggc	acc Thr	agc Ser 915	acc Thr	gag Glu	aag Lys	acg Thr	2968
15	gtc Val 920	cgc Arg	agc Ser	ttc Phe	tac Tyr	tac Tyr 925	tcg Ser	cgc Arg	aac Asn	tac Tyr	tac Tyr 930	gtc Val	aag Lys	acc Thr	Gly ggc	aac Asn 935	3016
20	aag Lys	ccg Pro	att Ile	ctg Leu	ccg Pro 940	agt Ser	gat Asp	gtc Val	gag Glu	gtg Val 945	cgc Arg	tac Tyr	tcc Ser	gac Asp	ggc Gly 950	acg Thr	3064
20	tcg Ser	gac Asp	cgt Arg	cag Gln 955	aac Asn	gtc Val	aca Thr	tgg Trp	gac Asp 960	gca Ala	gtc Val	agc Ser	gac Asp	gac Asp 965	cag Gln	atc Ile	3112
25	gcc Ala	aag Lys	gcc Ala 970	ggt Gly	tcg Ser	ttc Phe	agc Ser	gtg Val 975	gcc Ala	ggc Gly	acg Thr	gtc Val	gcc Ala 980	G] À ààà	cag Gln	aag Lys	3160
30	atc Ile	tcc Ser 985	gtg Val	cgc Arg	gtg Val	acg Thr	atg Met 990	atc Ile	gac Asp	gag Glu	atc Ile	ggt Gly 995	gcg Ala	ctg Leu	ctc Leu	aac Asn	3208
35	tat Tyr 100	Ser	gcc Ala	agc Ser	Thr	ccg Pro 1005	gtc Val	ggc Gly	acg Thr	Pro	gcc Ala 1010	gtg Val	ctg Leu	cct Pro	Gly	tcg Ser 1015	3256
40	cgt Arg	ccg Pro	gcc Ala	Val	ctg Leu 1020	ccc Pro	gac Asp	ggc Gly	Thr	gtg Val 1025	acc Thr	agc Ser	gcg Ala	Asn	ttc Phe 1030	gcc Ala	3304
10	gtc Val	cac His	Trp	acc Thr 1035	ГЛа sad	ccc Pro	gcc Ala	gac Asp	acc Thr 1040	gtg Val	tac Tyr	aac Asn	Thr	gcc Ala 1045	ggc	acc Thr	3352
45	gtc Val	Ьys	gtc Val 1050	ccc Pro	ggc Gly	acc Thr	Ala	acc Thr 1055	gtc Val	ttc Phe	ggc	ГЛЗ	gag Glu 1060	ttc Phe	aag Lys	gtc Val	3400
50	Thr	gcg Ala 1065	acg Thr	att Ile	cgc Arg	Val	cag Gln 1070	cgg Arg	tcg Ser	cag Gln	۷al	acc Thr 1075	atc Ile	Gly	agc Ser	agc Ser	3448
55	gtc Val 108	Ser	ggc	aat Asn	Ala	ctg Leu 1085	cgc Arg	ctg Leu	act Thr	Gln	aac Asn 1090	atc Ile	ccc Pro	gcc Ala	Asp	aag Lys 1095	3496
60	cag Gln	tcc Ser	gac Asp	Thr	ctg Leu 1100	qzA	gcc Ala	atc Ile	Lys	gac Asp 1105	ggc Gly	tcc Ser	acg Thr	Thr	gtc Val 1110	Asp	3544
	gcc Ala	aat Asn	Thr	ggc Gly 1115	ggc	ggc	gcg Ala	aac Asn	ccg Pro 1120	Ser	gca Ala	tgg Trp	Thr	aac Asn 1125	Trp	gcg Ala	3592

	tac tcg Tyr Ser	aag Lys 1130	gcc Ala	Gly ggc	cac His	Asn	acc Thr .135	gcc Ala	gag Glu	atc Ile	Thr	ttc Phe 140	gag Glu	tac Tyr	gcg Ala	3640
5	acc gag Thr Glu 1145	cag Gln	cag Gln	ctc Leu	Gly	cag Gln .150	att Ile	gtc Val	atg Met	Tyr	ttc Phe 155	ttc Phe	cgc Arg	gac Aśp	agc Ser	3688
10	aac gcg Asn Ala 1160			Phe					Lys					Ile		3736
15	gcg gac Ala Asp	Gly Ggc	Lys	aac Asn 180	tgg Trp	acg Thr	gat Asp	Leu	gct Ala 185	gcc Ala	acg Thr	gag Glu	Thr	atc Ile 1190	gcg Ala	3784
20	gcc cag Ala Gln	Glu					Val					Tyr				3832
20	ccg gtg Pro Val					Val					Thr					3880
25	aca acc Thr Thr 1225	ccc Pro	agc Ser	Gly ggc	Val	gtc Val L230	tgc Cys	gcc Ala	Gly Ggc	Leu	acc Thr 1235	gag Glu	atc Ile	gag Glu	ctg Leu	3928
30	aag acc Lys Thr 1240	gcg Ala	acc Thr	Ser	aag Lys 1245	ttc Phe	gtc Val	acg Thr	Asn	acg Thr 1250	tcc Ser	gcc Ala	gcg Ala	Leu	tcg Ser 1255	3976
35	tcg ctg Ser Leu	aca Thr	Val	aac Asn 1260	ggc Gly	acg Thr	aag Lys	Val	tcc Ser 1265	gac Asp	tcc Ser	gtg Val	Leu	gcc Ala 1270	gcc Ala	4024
40	ggc tcc Gly Ser	Tyr	aac Asn 1275	acg Thr	ccc Pro	gcg Ala	Ile	atc Ile 1280	gcg Ala	gac Asp	gtc Val	Lys	gcc Ala 1285	gag Glu	Gly	4072
10	gaa ggc Glu Gly					Thr					His					4120
45	cgc gtg Arg Val 1305				Ser					Thr						4168
50	atc aac Ile Asn 1320	ctg Leu	ggc	Thr	gag Glu 1325	cag Gln	gaa Glu	ttc Phe	Pro	gca Ala 1330	gac Asp	tcc Ser	gat Asp	Glu	cgc Arg 1335	4216
55	gac tac Asp Tyr	ccg Pro	Ala	gcc Ala 1340	gac Asp	atg Met	acg Thr	Val	acc Thr 1345	gtg Val	ggc Gly	agc Ser	Glu	cag Gln 1350	acg Thr	4264
60	tcc ggc Ser Gly	Thr	gcg Ala 1355	acc Thr	gaa Glu	Gly	Pro	aag Lys 1360	aaa Lys	ttc Phe	gcg Ala	Val	gac Asp 1365	Gly	aac Asn	4312
00	acc agc Thr Ser	acg Thr 1370	tac Tyr	tgg Trp	cat His	Ser	aac Asn 1375	tgg Trp	acg Thr	CCC Pro	Thr	acc Thr 1380	gtg Val	aac Asn	gac Asp	4360

	ctg tgg a Leu Trp 1 1385	atc gcc Ile Ala	Phe Glu	ctc cag Leu Gln 1390	aaa ccc Lys Pro	acc aag cto Thr Lys Let 1395	gac gcg Asp Ala	ctg . 4408 Leu
5	cgc tac o Arg Tyr I 1400	ctg ccg Leu Pro	cgc ccc Arg Pro 1405	gcg ggc Ala Gly	Ser Lys	aac ggc tco Asn Gly Sei .410	Val Thr	gaa 4456 Glu 415
10	tac aag (Tyr Lys \	Val Gln	gtc agc Val Ser .420	gat gac Asp Asp	ggc acc Gly Thr 1425	aac tgg acc Asn Trp Thi	gac gcg Asp Ala 1430	ggc 4504 Gly
15	tcc ggc a Ser Gly 1	aca tgg Thr Trp 1435	acc acc Thr Thr	Asp Tyr	ggc tgg Gly Trp 1440	aag ctc gcc Lys Leu Ala	gag ttc Glu Phe 1445	aat 4552 Asn
20	Gln Pro V	gtg acc Val Thr 450	acc aag Thr Lys	cac gtg His Val 1455	cgg ctc Arg Leu	aag gcc gtc Lys Ala Val 1460	. His Thr	tat 4600 Tyr
20	gcg gat 1 Ala Asp 3 1465	tcc ggc Ser Gly	Asn Asp	aag ttc Lys Phe 1470	atg tcc Met Ser	gcc tcc gaz Ala Ser Gli 1475	atc cgc	ctg 4648 Leu
25	cgc aag q Arg Lys 1 1480	gcc gtc Ala Val	gac acc Asp Thr 1485	acc gac Thr Asp	Ile Ser	ggc gcg acc Gly Ala Thi 1490	Val Thr	gtg 4696 Val 495
30	ccc gcc a	Lys Leu	acc gtc Thr Val 1500	gac cgg Asp Arg	gtg gac Val Asp 1505	gcc gac cat Ala Asp Hi:	ccc gcc Pro Ala 1510	acc 4744 Thr
35	ttc gcc a	acg aag Thr Lys 1515	gac gtg Asp Val	Thr Val	acg ttg Thr Leu 1520	ggc gac gcc Gly Asp Ala	acg ctg Thr Leu 1525	cgc 4792 Arg
40	Tyr Gly	gtg gac Val Asp 530	tac ctg Tyr Leu	ctc gac Leu Asp 1535	tac gcg Tyr Ala	ggc aac acc Gly Asn Th	r Ala Val	ggc 4840 Gly
40	aag gcc Lys Ala ' 1545	acg gtg Thr Val	acc gtg Thr Val	cgc ggc Arg Gly 1550	atc gac Ile Asp	aag tac to Lys Tyr Se 1555	ggc acc Gly Thr	gtc 4888 Val
45	gcc aag Ala Lys 1560	acg ttc Thr Phe	acc atc Thr Ile 1565	gaa ctg Glu Leu	Lys Asn	gcc ccg gc Ala Pro Ala 1570	a Pro Glu	ccg 4936 Pro 575
50		Thr Ser				cct tcc aac Pro Ser Ly		
55	gtg gtc Val Val	ggc gac Gly Asp 1595	gcg ttc Ala Phe	Asp Pro	gca gga Ala Gly 1600	ctg gtg ct Leu Val Le	g cag cac u Gln His 1605	gac 5032 Asp
60	Arg Gln	gcc gat Ala Asp 610	cgc ccc Arg Pro	cca cag Pro Gln 1615	cca ctt Pro Leu	gtt gga ga Val Gly Gl 162	ı Gln Ala	gac 5080 Asp
υU	gaa cgc Glu Arg 1625	gga ctg Gly Leu	acg tgc Thr Cys	gga acg Gly Thr 1630	cga tgc Arg Cys	gat cgc gt Asp Arg Va 1635	t gaa cag l Glu Gln	ctg 5128 Leu

	cgc aaa Arg Lys 1640	cac g His G	lu Asn	cgt (Arg (gaa Glu i	gcc Ala	cat His .	Arg	acg Thr 650	ggc Gly	ctc Leu	gat Asp	His	ctg Leu 655	5176
5	gaa ttc Glu Phe	gtg g Val G	gt gcc ly Ala 1660	gcc Ala	gat Asp	gga Gly	Ala	gtc Val 665	ggt Gly	gaa Glu	cag Gln	Ala	acc Thr 670	ttc Phe	5224
10	aag gtg Lys Val	His V	tc cat al His	gcc. Ala	gat Asp	Gln	ggt Gly 680	gac Asp	ggc Gly	cgc Arg	His	gat Asp 685	gat Asp	gcc Ala	5272
15	gat gaa Asp Glu 1	ege g Arg A .690	sat atc Asp Ile	gat Asp	Pro	cat His 695	gtc Val	cct Pro	gtc Val	Asp	cac His 700	gcg Ala	gtc Val	ggt Gly	5320
20	gag ctt Glu Leu 1705	gcg c Ala A	gg gct Arg Ala	Ala	tgc Cys 710	cat His	cac His	gtc Val	Ile	ggt Gly 715	ctg Leu	cgg Arg	gtc Val	gac Asp	5368
	acc cat Thr His 1720	ege c Arg I	en Lia	gca Ala 1725	tcc Ser	ggc ggc	ttc Phe	Gln	atc Ile 730	ccc Pro	gcc Ala	gac Asp	Asp	atg Met 735	5416
25	gcc gag Ala Glu	atc ç Ile <i>P</i>	gac cgc Asp Arg 1740	atc Ile	acc Thr	ggc Gly	Phe	cac His 745	cgc Arg	ttc Phe	gag Glu	Arg	cac His 750	gtc Val	5464
30	ggc tga Gly	cgtga	attggg.	cttcc	ccgc	t gt	ctgg	tgco	gg(ctcgc	ga				5509
35	<210> 2 <211> 17	752													
55	<212> PI <213> Bi	RT	oacteri	um bi	.fidu	ım									
40	<213> Bi <400> 2 Met Ala 1	RT ifidol Val 2	Arg Arg 5	Leu	Gly	Gly		10					15		
	<213> Bi	RT ifidol Val / Leu :	Arg Arg 5 Ser Ile 20	Leu	Gly Leu	Gly Gly	Leu 25	10 Leu	Thr	Asn	Ser Met	Ala 30	15 Trp	Ala	
	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu	RT ifidol Val A Leu S Asp A 35	Arg Arg 5 Ser Ile 20 Ala Thr	Leu Pro	Gly Leu Ser Ser	Gly Gly Asp 40	Leu 25 Ser	10 Leu Thr	Thr Thr	Asn Gln Lys	Ser Met 45	Ala 30 Ser	15 Trp Ser	Ala Thr	
40	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65	Val A Leu S Asp A S Val V	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr	Leu Pro Arg Ser Asn 70	Gly Leu Ser Ser 55	Gly Gly Asp 40 Ala Lys	Leu 25 Ser Val Phe	10 Leu Thr Asp	Thr Thr ser Leu 75	Asn Gln Lys 60 Ser	Ser Met 45 Gln Asp	Ala 30 Ser Asn Ser	15 Trp Ser Arg Val	Ala Thr Thr Gln 80	
40	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65 Ala Gln	Val Asp	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala	Leu Pro Arg Ser Asn 70 Phe	Gly Leu Ser Ser 55 Trp	Gly Gly Asp 40 Ala Lys Asp	Leu 25 Ser Val Phe Ser	10 Leu Thr Asp Met Ala 90	Thr Thr Ser Leu 75 Trp	Asn Gln Lys 60 Ser Gln	Ser Met 45 Gln Asp Gln	Ala 30 Ser Asn Ser Val	15 Trp Ser Arg Val Asp 95	Ala Thr Thr Gln 80 Leu	
40 45	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65 Ala Gln Pro His	Val Asp Asp Asp Asp Asp Asp	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala 85 Tyr Ser	Leu Pro Arg Ser Asn 70 Phe	Gly Leu Ser Ser 55 Trp Asp	Gly Gly Asp 40 Ala Lys Asp Gln	Leu 25 Ser Val Phe Ser Lys 105	10 Leu Thr Asp Met Ala 90 Tyr	Thr Thr Ser Leu 75 Trp	Asn Gln Lys 60 Ser Gln Gln	Ser Met 45 Gln Asp Gln Ser	Ala 30 Ser Asn Ser Val Asn 110	15 Trp Ser Arg Val Asp 95 Glu	Ala Thr Thr Gln 80 Leu Ala	
40 45 50	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65 Ala Gln Pro His Glu Ser	Val Asp Asp Asp Asp Ala 115	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala 85 Tyr Ser 100 Tyr Leu	Leu Pro Arg Ser Asn 70 Phe Ile	Gly Leu Ser Ser 55 Trp Asp Thr	Gly Gly Asp 40 Ala Lys Asp Gln Gly	Leu 25 Ser Val Phe Ser Lys 105 Thr	10 Leu Thr Asp Met Ala 90 Tyr	Thr Ser Leu 75 Trp Ser Trp	Asn Gln Lys 60 ser Gln Gln Tyr	Ser Met 45 Gln Asp Gln Ser Arg 125	Ala 30 Ser Asn Ser Val Asn 110 Lys	15 Trp Ser Arg Val Asp 95 Glu Ser	Ala Thr Thr Gln 80 Leu Ala	
40 45	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65 Ala Gln Pro His Glu Ser Thr Ile 130	Val A Leu S Asp A Val V Asp I Asp I Asp I Asp I Asp I Asp I	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala 85 Tyr Ser 100 Tyr Leu Arg Asp	Leu Pro Arg Ser Asn 70 Phe Ile Pro	Gly Leu Ser Ser Trp Asp Thr Gly Ala 135	Gly Gly Asp 40 Ala Lys Asp Gln Gly 120 Gly	Leu 25 Ser Val Phe Ser Lys 105 Thr	10 Leu Thr Asp Met Ala 90 Tyr Gly Arg	Thr Ser Leu 75 Trp Ser Trp	Asn Gln Lys 60 ser Gln Gln Tyr Ala 140	Met 45 Gln Asp Gln Ser Arg 125 Ile	Ala 30 Ser Asn Ser Val Asn 110 Lys	15 Trp Ser Arg Val Asp 95 Glu Ser	Ala Thr Thr Gln 80 Leu Ala Phe Asp	
40 45 50	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp .65 Ala Gln Pro His Glu Ser Thr Ile	Val Asp Asp Asp Alas 115 Asp Tyr I	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala 100 Tyr Ser 100 Tyr Leu Arg Asp	Leu Pro Arg Ser Asn 70 Phe Ile Pro Leu Ala 150	Gly Leu Ser 555 Trp Asp Thr Gly Ala 135 Thr	Gly Gly Asp 40 Ala Lys Asp Gln Gly 120 Gly Val	Leu 25 Ser Val Phe Ser Lys 105 Thr Lys	10 Leu Thr Asp Met Ala 90 Tyr Gly Arg	Thr Thr Ser Leu 75 Trp Ser Trp Ile Asn 155	Asn Gln Lys 60 Ser Gln Gln Tyr Ala 140 Gly	Met 45 Gln Asp Gln Ser Arg 125 Ile Val	Ala 30 ser Asn Ser Val Asn 110 Lys Asn	15 Trp Ser Arg Val Asp 95 Glu Ser Phe Leu	Ala Thr Thr Gln 80 Leu Ala Phe Asp Gly 160	
40 45 50	<213> Bi <400> 2 Met Ala 1 Val Ala Val Glu Pro Glu 50 Ser Asp 65 Ala Gln Pro His Glu Ser Thr Ile 130 Gly Val 145	Val Asp Asp Asp Alas Asp Tyr I	Arg Arg 5 Ser Ile 20 Ala Thr Val Tyr Asp Ala Pro Ala 100 Tyr Ser 100 Tyr Leu Arg Asp Met Asn Tyr Gly	Leu Pro Arg Ser Asn 70 Phe Ile Pro Leu Ala 150	Gly Leu Ser 555 Trp Asp Thr Gly Ala 135 Thr Ser	Gly Gly Asp 40 Ala Lys Asp Gln Gly 120 Gly Val	Leu 25 Ser Val Phe Ser Lys 105 Thr Lys Trp Phe	10 Leu Thr Asp Met Ala 90 Tyr Gly Arg Phe Ser 170	Thr Thr Ser Leu 75 Trp Ser Trp Ile Asn 155 Phe	Asn Gln Lys 60 Ser Gln Gln Tyr Ala 140 Gly Asp	Met 45 Gln Asp Gln Ser Arg 125 Ile Val Leu	Ala 30 Ser Asn Ser Val Asn 110 Lys Asn Lys	Ser Arg Val Asp 95 Glu Ser Phe Leu Gly 175	Ala Thr Thr Gln 80 Leu Ala Phe Asp Gly 160 Asn	

	Thr		Thr	Val	Thr	qeA		Val	His	Val	Gly	Asn 220	Asn	Gly	Val	Ala
	Ile 225	210 Lys	Thr	Pro	Ser	Leu 230	215 Ala	Thr	Gln	Asn	Gly 235		Asp	Val	Thr	Met 240
5		Leu	Thr	Thr	Lys 245		Ala	Asn	Asp	Thr 250		Ala	Ala	Ala	Asn 255	
			ГÀЗ	260					265					270		
10		_	Thr 275					280					285			
		290	Val				295					300				
15	305		Asn Val			310					315					320
13			Asp		325					330					335	
			Gly	340			-		345					350		
20			355 Arg					360					365			
		370	Asn				375					380				
25	385		Val		Asn	390				Leu	395				Val	400
	Asp	Met	Trp		405 Arg	Ser	Lys	Asn		410 Asn	Thr	Glu	Asp	Tyr 430	415 Gly	Lys
30	Trp	Phe	Gly 435	420 Gln	Ala	Ile	Ala	Gly 440	425 Asp	Asn	Ala	Val	Leu 445		Gly	Asp
30	Lys	Asp 450	Glu	Thr	Trp	Ala	Lys 455		Asp	Leu	Thr	Ser 460		Ile	Asn	Arg
	465	Arg	Asn			470	Val				475					480
35			Gly		485					490					495	
			Val	500					505					510		
40			Asp 515					520					525			
		530	Asn Ala				535					540				
45	545		Gly			550					555					560
		_	Thr		565					570					575	
		_	Asn	580					585					590		
50	Tyr		595 Val	Val	Gln	Arg		600 Phe	Val	Ala	Gly			Val	Trp	Thr
			Asp	Tyr	Leu	Gly 630	615 Glu	Pro	Thr	Pro	Trp 635	620 Asn		Thr	Gly	Ser 640
55	625 Gly		Val	Gly	Ser 645		Ala	Val	Ala	Glu 650		Leu	Val	Leu	Arg 655	
	Arg	Arg	His	Arg 660	Arg	Leu	Pro	Glu	Asp 665	Thr	Tyr	Tyr	Phe	Tyr 670		Ser
60			Asn 675					680					685			
		690					695					700				
	Tyr 705		Asp	Ala	Ala	Lys 710		Lys	Leu	Tyr	Phe 715	Thr	Pro	Lys	Gly	Ser 720

	Thr	Glu	Lys	Arg	Leu 725	Ile	Gly	Glu	Ъуз	Ser 730	Phe	Thr	Lys	Lys	Thr 735	Thr
	Ala	Ala	Gly	Tyr 740		Tyr	Gln	Val	Tyr 745		Gly	Ser	qeA	Lys 750		Ser
5	Thr	Ala	His 755		Asn	Met	Tyr	Leu 760		Trp	Asn	Val	Pro 765		Ala	Glu
	Gly	Thr 770	Ile	Ser	Ala	Glu	Ala 775		Asp	Glu	Asn	Asn 780		Leu	Ile	Pro
10	Glu 785		Ser	Thr	Glu	Gly 790		Ala	Ser	Val	Thr 795		Thr	Gly	Lys	Ala 800
, O	Ala	Lу.s	Leu	Г¥з	Ala 805		Ala	Asp	Arg	Lys 810		Ile	Thr	Ala	Asp 815	
	Lys	Asp	Leu	Ser 820		Ile	Glu	Val	Asp 825		Thr	Asp	Ala	Asn 830	Gly	His
15	Ile	Val	Pro 835		Ala	Ala	Asn	Arg 840		Thr	Phe	Asp	Val 845	Lys	Gly	Ala
		850	Leu				855					860				
20	865		Ala			870					875					880
			Ser		885					890					895	
			Leu	900					905					910		
25	_		Ser 915					920					925			
	_	930	Val				935					940				
30	945		Tyr			950					955					960
			Ser		965					970					975	
			Val	980					985					990		•
35			Gly 995					1000				•	1005			
		1010	Val				1015					1020				
40	102	5	Ser			1030					1035					1040
٠			Asn	•	1045					1050					1055	
4 5				1060					1065					1070		
45			Thr 1075 Ile					1080				:	1085			
		1090					1095					1100				
50	110	5	Trp			1110					1115					1120
			Thr		1125					1130					1135	
55				1140					1145					1150		
			1155 Lys					1160	l				1165			
	_	1170					1175					1180				
60	118	5	Thr			1190					1195					1200
			Thr		1205					1210)			•	1215	
				1220					1225			- 3		1230		

	GTĀ		Thr 1235	GLu	ITE	GIu		Lys .240	Thr	Ala	Thr		ьуя 1245	Pne	var	Thi
			Ser	Ala	Ala				Leu	Thr				Thr	ГÀЗ	۷al
5	1265	5			1	1270				1	1275					280
	Ala	Asp	Val		Ala 1285	Glu	Gly	Glu		Asn L290	Ala	Ser	Val	Thr 1	Val 1295	Let
10			1	L300				1	305				1	1310	Asp	
		1	1315				1	.320				1	1325		Glu	
	1	1330				1	L335				:	L340			Thr	
15	1345	5			• 1	L350				1	1355					1360
				;	1365				1	L370				1	Asn 1375	
20			1	1380				1	L385				1	1390		
			1395				1	L400				:	1405		Gly	
25	3	1410				1	1415				:	1420			Asp	
2.5	1425	5			:	1430				1	1435				Tyr Val	L44(
				:	1445				:	1450				:	1455 Phe	
30		-	:	1460			_	:	L465				:	1470		
			1475				:	L480				:	1485		Arg	
35	:	1490				:	1495					1500			Val	
	1509	5				1510				1	1515					L52(
					1525				;	1530					1535 Gly	
40				1540					1545					1550		
			1555					1560			Ser	Val	1565 Ser		Lys	
45	Lys		Ser	Lys		Thr		Val	Val		Asp			Asp	Pro	
		Leu			Gln		Asp			Ala		Arg			Gln	
50	Leu	Val		Glu		Ala	Asp	Glu	Arg	1610 Gly	Leu	Thr	Суз	Gly	1615 Thr	Ar
50	Cys			1620 Väl		Gln			1625 Lys	His	Glu			1630 Glu	Ala	Hi
			Gly	Leu	Asp				Phe	Val			Ala	Asp	Gly	Al
55		Gly		Gln				Lys	Val					Asp	Gln	Gl;
			Arg				Ala	Asp				Ile	Asp		His 1695	
60	Pro	Val			Ala	Val	Gly				Arg	Ala			His	Hi
-	Val					Val				Arg	Leu				Gly	Ph
			Pro	Ala	Asp				Glu	Ile			Ile	Thr	Gly	Ph

12

His Arg Phe Glu Arg His Val Gly