安徽大学 2018—2019 学年第一学期

《高等数学 A (一)》期末考试试卷 (B 卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	 =	三	四	五.	总 分
得 分					
阅卷人					

一、填空题(每空2分,共10分)

装

得 分

- 1. 若极限 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{h} = 2$,则 $\frac{df(x)}{dx}\Big|_{x=x_0}$ _______;
- 2. 积分 $\int \sin x e^{2\cos x} dx =$ _____
- 3. $y = e^{2(x-1)} + x$ 在 x = 1 在所对应点的切线方程为 ______;
- 4. 若对定积分 $\int_0^a f(a-2x)dx$ 作换元 a-2x=u,则该定积分化为_____;
- 5. 设函数 $f(x) = \begin{cases} \frac{e^{-2x} 1}{x} & x \neq 0 \\ a & x = 0 \end{cases}$ 在 x = 0 处连续,则 a =_____;

二、选择题(每小题2分,共10分)

得 分

- 6. 设 f(x) 的导函数为 $\sin x$,则 f(x) 的一个原函数为 (
 - (A) $\sin x + 1$
- (B) $\sin x + x$
- (C) $1 + \cos x$
- (D) $x \sin x$
- 7. 设函数 f(x) 在 x = 1 处连续但不可导,则下列在 x = 1 处可导的函数是()。
 - (A) f(x)(x+1)
- (B) $f(x)x^2$
- (C) $f(x^2)$
- (D) $(x^2 1)f(x)$
- 8. 下列广义积分收敛的是()。

(A) $\int_{e}^{+\infty} \frac{\ln x}{x} dx$

- (B) $\int_{e}^{+\infty} \frac{1}{r \ln r} dx$
- (C) $\int_{e}^{+\infty} \frac{1}{x(\ln x)^2} dx$ (D) $\int_{e}^{+\infty} \frac{1}{x\sqrt{\ln x}} dx$

9.. 设 f(x) 为 $(-\infty, +\infty)$ 内连续的偶函数, $\frac{dF(x)}{dx} = f(x)$, 则原函数 F(x) ()。

- (A) 均为奇函数;
- 均为偶函数; (B)
- (C)中只一个奇函数; (D) 既非奇函数也非偶函数.

10. 下列函数中在区间[0,3]上不满足拉格朗日定理条件的是(

- (A) $2x^2 + x + 1$
- (B) $\cos(1+x)$
- (C) $\frac{x^2}{(1-x^2)}$
- (D) ln(1+x)

三、计算题(每题8分,共40分)

得分

11.
$$\lim_{x\to 0} \frac{\int_{\cos x}^1 t \ln t dt}{x^4}$$
.

12.
$$\int_0^{\pi} \sqrt{1 + \cos 2x} dx$$
.

13. 已知f(x)的一个原函数为 $(1+\sin x)\ln x$,求 $\int xf'(x)dx$ 。

14.判定反常积分 $\int_{e}^{+\infty} \frac{\ln x - 1}{x^2} dx$ 的收敛性, 如果收敛, 求出其值。

15. 可导函数 f(x) 满足等式 $\int_0^{2x} tf(\frac{t}{2}) dt = f(x) - 2$, 求函数 f(x)。

四、证明题(每小题8分,共24分)

得 分

16. 若 $0 \le x \le 1$,证明不等式: $\sin \pi x \le \frac{\pi^2}{2} x(1-x)$ 。

17. 设函数 f(x) 在[-2,2]上连续,在(-2,2)上可导,且 f(-2)=0.f(0)=2, f(2)=0。证明:曲线段 y=f(x), $(-2 \le x \le 2)$ 上至少有一点的切线平行于 x-2y+6=0。

18. 设 f(x) 在[0,1]上连续且单调递减,证明: 对 $\forall x \in [0,1]$,有 $\int_0^x f(t)dt \ge x \int_0^1 f(t)dt \ .$

五、解答题 (每小题 8 分共 16 分)

得 分

- (1) a,b为何值时,f(x)在($-\infty$, $+\infty$) 内连续?
- (2) 当 f(x) 在 $(-\infty, +\infty)$ 内连续时, f(x) 在 x = 0 处是否可导?

20. 一只容器由 $y = x^2$ ($0 \le x \le 2$) 绕 y 轴旋转而成.

- (1)如果容器内的水量是容器容量的 $\frac{1}{4}$, 求容器内水面的高度;
- (2)如果要将题(1)中这部分水吸尽,求外力需要作的功。