第 1 章

直和分解と不変部分空間

部分空間の共通部分

与えられた部分空間から、新しく部分空間を作ることができる

線形部分空間の共通部分は部分空間 V, W を \mathbb{R}^n の部分空間とするとき、共通部分 $V\cap W$ は \mathbb{R}^n の部分空間である

ref: 図で整理!例題で 納得!線形空間入門 p22

証明

和について

 $oldsymbol{a}$, $oldsymbol{b} \in V \cap W$ とすると、共通部分の定義より、 $oldsymbol{a}$ と $oldsymbol{b}$ は どちらも V と W の両方に属していることになる つまり、 $oldsymbol{a}$, $oldsymbol{b} \in V$ かつ $oldsymbol{a}$, $oldsymbol{b} \in W$ である

V も W も部分空間なので、部分空間の定義より、

 $a + b \in V$ $a + b \in W$

a + b が V と W の両方に属していることから、a + b は

 $V \cap W$ に属する

よって、 $V \cap W$ は和について閉じている

スカラー倍について

共通部分の定義より、 \boldsymbol{a} は \boldsymbol{V} と \boldsymbol{W} の両方に属しているので、部分空間の定義より

 $ca \in V$

 $ca \in W$

よって、ca は $V \cap W$ に属するため、 $V \cap W$ はスカラー倍について閉じている

線形部分空間の和は部分空間 V, W を \mathbb{R}^n の部分空間とするとき、和空間

 $V + W := \{ \boldsymbol{v} + \boldsymbol{w} \mid \boldsymbol{v} \in V, \boldsymbol{w} \in W \}$

は \mathbb{R}^n の部分空間である

ref: 図で整理!例題で 納得!線形空間入門 p22 ~23

≥ 証明

和について

 $a_1, a_2 ∈ V, b_1, b_2 ∈ W$ とする

V と W は部分空間なので、部分空間の定義より

$$a_1 + a_2 \in V$$
, $b_1 + b_2 \in W$

一方、和空間の定義より、 $\boldsymbol{a}_1+\boldsymbol{b}_1$, $\boldsymbol{a}_2+\boldsymbol{b}_2$ はそれぞれ V+W の元である

これらの元の和をとったときに、その和もV+Wに属していれば、和空間は和について閉じているといえる

$$(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$$

 $\in V + W$

上式で、和空間は和について閉じていることが示された

スカラー倍について

V と W は部分空間なので、部分空間の定義より

$$c\mathbf{a} \in V$$
 $c\mathbf{b} \in W$

一方、和空間の定義より、 $\alpha + b$ は V + W の元である この元をスカラー倍したときに、そのスカラー倍も V + W に属していれば、和空間はスカラー倍について閉じていると いえる

$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$
$$\in V + W$$

上式で、和空間はスカラー倍について閉じていることが示された

部分空間を生成するベクトルを用いて、部分空間の和を表せる

 $oldsymbol{\cdot}$ 部分空間の和と生成ベクトル K^n の 2 つの部分空間 $V=\langle oldsymbol{v}_1,\ldots,oldsymbol{v}_m \rangle$ と $W=\langle oldsymbol{w}_1,\ldots,oldsymbol{w}_k \rangle$ に対して、和空間 V+W は

$$V + W = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m, \boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_k \rangle$$

となる

証明

和空間 V+W は

$$V + W = \{ \boldsymbol{x} \in K^n \mid \boldsymbol{x} = \boldsymbol{v} + \boldsymbol{w}, \ \boldsymbol{v} \in V, \ \boldsymbol{w} \in W \}$$

と定義される

また、 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m,\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$ の張る部分空間は

$$H = \langle \boldsymbol{v}_1, \ldots, \boldsymbol{v}_m, \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle$$

である

これらが等しいことを示せばよい

$V + W \subseteq H$

任意の $\boldsymbol{x} \in V + W$ に対し、 $\boldsymbol{x} = \boldsymbol{v} + \boldsymbol{w}$ ($\boldsymbol{v} \in V$, $\boldsymbol{w} \in W$) と書ける

すなわち、

$$\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_m \mathbf{v}_m \qquad (a_i \in K)$$

 $\mathbf{w} = b_1 \mathbf{w}_1 + \dots + b_k \mathbf{w}_k \qquad (b_j \in K)$

よって、

$$oldsymbol{x} = \sum_{i=1}^m a_i oldsymbol{v}_i + \sum_{j=1}^k b_j oldsymbol{w}_j \in H$$

 $H \subseteq V + W$

任意の $\boldsymbol{x} \in H$ は

$$oldsymbol{x} = \sum_{i=1}^m a_i oldsymbol{v}_i + \sum_{j=1}^k b_j oldsymbol{w}_j$$

と書ける

ここで

$$oldsymbol{v} = \sum_{i=1}^m a_i oldsymbol{v}_i \in V, \ oldsymbol{w} = \sum_{j=1}^k b_j oldsymbol{w}_j \in W$$

とすれば、

$$\boldsymbol{x} = \boldsymbol{v} + \boldsymbol{w} \in V + W$$

以上より、 $V+W\subseteq H$ と $H\subseteq V+W$ が成り立つので、V+W=H が示された

部分空間の和の次元

** 部分空間の和の次元 $*K^n$ の部分空間 *V, *W に対して、次が成り立つ

 $\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$

ref: 行列と行列式の基

礎 p103

ref: 図で整理!例題で 納得!線形空間入門 p39

~41

 $\dim(V) = n, \dim(W) = m$ とする

 $V \cap W$ の基底 $\mathcal{V} = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_d\}$ をとる これを基底の延長の定理に基づいて、V の基底

$$V \cup \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{n-d}\}$$

に延長する

同様に、 $\boldsymbol{\mathcal{V}}$ を \boldsymbol{W} の基底

$$\mathcal{V} \cup \{ oldsymbol{w}_1, \ldots, oldsymbol{w}_{m-d} \}$$

に延長する

このとき、 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_d,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-d},\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{m-d}$ がV+Wの基底になることを示す

V+W を生成すること

 $oldsymbol{v} \in V$, $oldsymbol{w} \in W$ とすると、それぞれ基底の線形結合で表す ことができる

$$egin{aligned} oldsymbol{v} &= \sum_{i=1}^d a_i oldsymbol{u}_i + \sum_{j=1}^{n-d} b_j oldsymbol{v}_j \ oldsymbol{w} &= \sum_{i=1}^d c_i oldsymbol{u}_i + \sum_{k=1}^{m-d} d_k oldsymbol{w}_k \end{aligned}$$

V+W の任意の元は、 $\boldsymbol{v}+\boldsymbol{w}$ と書けるので、

$$oldsymbol{v} + oldsymbol{w} = \sum_{i=1}^d (a_i + c_i) oldsymbol{u}_i + \sum_{j=1}^{n-d} b_j oldsymbol{v}_j + \sum_{k=1}^{m-d} d_k oldsymbol{w}_k$$

となり、 $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_d,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-d},\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{m-d}\}$

の線形結合で表せる

 $oldsymbol{u}_1,\ldots,oldsymbol{u}_d,oldsymbol{v}_1,\ldots,oldsymbol{v}_{n-d}$ 、 $oldsymbol{w}_1,\ldots,oldsymbol{w}_{m-d}$ が線型独立であることを示すために、次のような線形関係式を考える

$$\sum_{i=1}^{d} c_i \boldsymbol{u}_i + \sum_{j=1}^{n-d} c_{d+j} \boldsymbol{v}_j + \sum_{k=1}^{m-d} c_{d+n-d+k} \boldsymbol{w}_k = \mathbf{0}$$

ここで、 $c_i \in K$ はスカラーである

この式を V と W の基底の線型結合として考えると、V の基底 \boldsymbol{u}_i , \boldsymbol{v}_j に関する部分と W の基底 \boldsymbol{u}_i , \boldsymbol{w}_k に関する部分がそれぞれ線形独立であるため、結局どの項においても $c_i=0$ である必要がある

よって、 $oldsymbol{u}_1,\ldots,oldsymbol{u}_d,oldsymbol{v}_1,\ldots,oldsymbol{v}_{n-d},oldsymbol{w}_1,\ldots,oldsymbol{w}_{m-d}$ は線型独立である

以上より、 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_d,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-d},\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{m-d}$ はV+Wの基底であることが示された

この基底をなすベクトルの個数(次元)について考えると、

$$\dim(V + W) = d + (n - d) + (m - d)$$
$$= n + m - d$$

となる

CCC, $d = dim(V \cap W)$ xoC,

$$\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$$

と書き換えられ、目的の式が得られた