Technika bezdrátové komunikace **B2B17TBK**

Další výpočty s dB a dBm

Přemysl Hudec

ČVUT-FEL katedra elektromagnetického pole

hudecp@fel.cvut.cz

verze 2025

- Zadání
 - 1. Výkony ve W převeďte do dBm

P[W]	7.10^{-15}	4.10 ⁻⁶	0,00084	0,6	32	155
P [dBm]						

Použitý vztah:

$$P_{dBm} = 10.\log \frac{P}{10^{-3}} = 10.\log \frac{7.10^{-15}}{10^{-3}} = -115,5dBm$$

Výsledky pro kontrolu:

P[W]	7.10 ⁻¹⁵	4.10^{-6}	0,00084	0,6	32	155
P [dBm]	-115,5	-24,0	-0,76	27,8	45,1	51,9

- Zadání:
 - Výkony v dBm převeďte do W

P [dBm]	-164	-25	-6	9	24	38
P[W]						

Použitý vztah:

$$P = 1.10^{-3} \ 10^{\frac{P_{dBm}}{10}} = 1.10^{-3} 10^{\frac{9}{10}} = 7,94.10^{-3} \ W$$

• Výsledky pro kontrolu:

P [dBm]	-164	-25	-6	9	24	38
P[W]	4.10^{-20}	$3,15.10^{-6}$	$2,5.10^{-4}$	7,94.10 ⁻³	0,25	6,31

 Zadání: Vypočtěte výkon na vstupu demodulátoru RX

 Nejprve přepočteme vstupní výkon na dBm:

$$P_{dBm} = 10.\log \frac{P}{10^{-3}} = 10.\log \frac{5.10^{-12}}{10^{-3}} = -83,0dBm$$

 Vstupní výkon demodulátoru je:

$$P_{indem} = -83.0 - 1.5 + 22 - 8 - 6 + 18 - 6.5 - 5 + 25 = -45dBm$$

Přepočet na W:

elmag.org

$$P_{indem} = 1.10^{-3} \ 10^{\frac{P_{dBm}}{10}} = 1.10^{-3} 10^{\frac{-45}{10}} = 3,15.10^{-8} \ W$$

Zadání:

$$G_1 = -3.5dB$$
 $F_1 = 3.5dB$

$$G_2 = 13dB$$
 $F_2 = 1.9dB$

$$G_3 = +15,5dB$$
 $F_3 = 5,5dB$

 Nejprve je nutné všechny proměnné "oddecibelovat":

$$G_1 = 10^{\frac{G_{dBm}}{10}} = 10^{\frac{-3.5}{10}} = 0,4467$$

$$G_2 = 10^{\frac{G_{dBm}}{10}} = 10^{\frac{13}{10}} = 20$$

$$G_3 = 10^{\frac{G_{dBm}}{10}} = 10^{\frac{15,5}{10}} = 35,5$$

$$F_c = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2}$$

$$F_1 = 10^{\frac{F_{dBm}}{10}} = 10^{\frac{3.5}{10}} = 2,24$$

$$F_2 = 10^{\frac{F_{dBm}}{10}} = 10^{\frac{1.9}{10}} = 1.55$$

$$F_3 = 10^{\frac{F_{dBm}}{10}} = 10^{\frac{5.5}{10}} = 3,55$$

Vlastní výpočet:

$$F_c = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} = 2,24 + \frac{1,55 - 1}{0,4467} + \frac{3,55 - 1}{20} = 3,6 = 5,56dB$$

$$G_c = -3.5 + 13 + 15.5 = 25dB = 316.2$$