Smok

VI OIG Zawody drużynowe, 4. trening, grupa A. Dostępna pamięć: 64 MB.

13 II 2012

Od pewnego czasu mieszkańców Bajtocji nęka smok, który ziejąc ogniem niszczy dobytek całego życia. Na szczęście możliwe jest zabezpieczenie się przed atakiem potwora. Niestety wiąże się to z kosztami. Miasto ma kształt kwadratu o boku n i jest podzielone na n^2 parceli. Bestia, znajdująca się na pozycji (x,y) atakuje wszystkie domostwa o współrzędnych (a,b), takich, że $b\leqslant y$ i $|x-a|\leqslant |y-b|$. Znając położenie smoka, należy obliczyć koszt zabezpieczenia się przed nim.

	0	1	2	3	4
0	5	7	6	2	3
1	ത	1	4	0	7
2	7	8	3	6	2
3	2	5	3	1	4
4	4	4	8	9	7

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby naturalne n i t ($1 \le n \le 1000$), ($1 \le t \le 1000000$), oznaczające kolejno wymiary miasta i liczbę zapytań. W kolejnych n wierszach znajduje się n liczb całkowitych nie większych niż 1000, opisujących koszty zabezpieczeń domostw w Bajtocji. Następnie podane jest t zapytań w postaci dwóch liczb, określających położenie smoka (kolumna, wiersz).

Wyjście

Na standardowe wyjście w t wierszach należy wypisać koszty zabezpieczenia posesji dla kolejnych zapytań.

Przykłady

Wejście:	Wejście:	Wejście:
5 1	3 3	3 3
5 7 6 2 3	7 6 2	6 2 3
9 1 4 0 7	2 1 4	7 8 2
78362	8 9 7	4 9 7
25314	0 0	1 2
4 4 8 9 7	0 1	0 1
2 2	1 2	1 1
Wyjście:	Wyjście:	Wyjście:
31	7	37
	15	15
	31	19

 Smok

Człowiek – najlepsza inwestycja

