# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИС

### ОТЧЕТ

# по лабораторной работе №3 по дисциплине «Машинное обучение»

Тема: Исследование алгоритмов классификации

| Студентка гр. 1373 | <br>Новикова А.С. |
|--------------------|-------------------|
| Преподаватель      | <br>Татчина Я.А.  |

Санкт-Петербург 2023 Цель работы: оценить и сравнить результаты классификации, используя алгоритмы kNN и дерево решений, сравнить полученные результаты с помощью метрик качества и объяснить их.

### 1. Краткое описание датасета

Для этой работы был выбран другой набор данных, так как прошлый не подходил для задачи классификации.

Это набор данных признаков опухоли головного мозга. Он включает 5 признаков первого порядка и 8 признаков второго.

В датасете представлены следующие атрибуты:

- Class целевой класс. 1 = опухоль, 0 = нет опухоли
- Меап среднее значение (1 порядок)
- Variance дисперсия (1 порядок)
- Standart deviation стандартное отклонение (1 порядок)
- Entropy энтропия (2 порядок)
- Skewness ассиметрия (1 порядок)
- Kurtosis эксцесс (1 порядок)
- Contrast контраст (2 порядок)
- Energy энергия (2 порядок)
- ASM второй угловой момент (2 порядок)
- Homogeneity однородность (2 порядок)
- Dissimilarity непохожесть (2 порядок)
- Correlation корреляция (2 порядок)
- Coarseness грубость (2 порядок)
- 2. Оценить, насколько набор данных подходит для решения

В качестве целевого класса был выбран атрибут «Class», который показывает наличие опухоли головного мозга у человека. Датасет довольно сбалансирован: количество элементов, равных 1, равно 1683, а равных 0 – 2079.

- 3. Оценить и сравнить результаты классификации
  - Дерево решений

На обучающей выборке средняя доля верных ответов составила 0. 9840513416209118. После того, как мы обучили модель, лучшее качество

составило 0.9821487579454693. Максимальная глубина = 5, макс. число признаков, которые нужно перебирать = 0.7, то есть нам необязательно перебирать все параметры, чтобы верно спрогнозировать наличие опухоли.

Получившееся дерево изображено на рис. 1.



Рисунок 1. Дерево решений

### kNN

На обучающей выборке средняя доля верных ответов составила 0. 8066882634324429. После обучения лучшее качество составило 0.8188375264247731. Оптимальное число ближайших соседей = 3, то есть нам будет достаточно посмотреть на три ближайших значения, чтобы верно спрогнозировать ответ.

Во время работы на обучение дерева решений понадобилось 9.53 секунды, а kNN – 3.68 секунды. Но, несмотря на это, дерево решений даёт результат, который верен почти во всех случаях, а именно в 98%, в то время как kNN даёт верный ответ только в 82%. В нашем случае получается, что хоть и kNN обучается почти в три раза быстрее, он не даёт настолько же точные результаты, как дерево решений.

## 4. Сравнить полученные результаты с помощью метрик качества

Accuracy

Дерево: 0.9813994685562445

kNN: 0.8193091231178034

Дерево предсказывает верный ответ в 98% случаев, kNN – в 82%.

Precision

Дерево: 0.978217821782

kNN: 0.8177966101694916

Для дерева доля правильных ответов модели в пределах класса составила 98%, для kNN -81%.

• Recall

Дерево: 0.9801587301587301

kNN: 0.7658730158730159

Доля предсказанных объектов, действительно относящихся к положительному классу, у дерева составила 98%, у kNN – 77%.

• F-measure

Дерево: 0.9791873141724479 – 98%

kNN: 0.790983606557377 - 79%

• ROC

ROC-кривая для дерева изображена на рис. 2, для kNN – на рис. 3.



Рисунок 2. ROC-кривая дерева решений



Рисунок 3. ROC-кривая kNN

На графиках мы видим, что кривая дерева выше, чем кривая kNN. Это значит, что в данном случае дерево работает лучше.

Для всех 5 метрик дерево решений показало лучшее качество, чем kNN.

### 5. Выводы

В ходе работы мы рассмотрели такие методы классификации, как дерево решений и kNN на датасете для выявления опухоли головного мозга. С нашей задачей по всем параметрам лучше справился метод дерева решений, так как все его оценки не падают ниже 0,97, а это значит, что метод показывает точный результат почти в 100% случаях, в то время как оценки метода kNN находятся в диапазоне от 0,78 до 0,82.