Master Plan - Isak Hammer Solving Cahn-Hilliard Equation using CutCIP

Version: March 9, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	CutCIP for $\partial_t u + \Delta^2 u = g$	CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$	Progress in report
Goals	 Analysis ✓ Coercivity ✓ Boundedness ✓ A priori estimates ✓ Condition number ✓ Constructing face based g_h Implementation ✓ Poisson CutDG ✓ L² convergence ✓ H¹ convergence ✓ a_h, * convergence ✓ Implement № Implement № elements 	 Analysis ✓ Initial problem setup ✓ Coercivity ✓ Boundedness □ A priori estimates □ Constructing g_h □ Condition number † Implementation □ CIP Nitsche Implementation □ First plot □ L² convergence □ H¹ convergence 	 Analysis □ BDF analysis Implementation □ First plot □ L²L² convergence □ L²H¹ convergence 	• Implementation \Box Fixed point method \Box L^2L^2 convergence \Box L^2H^1 convergence	
Comments	Mostly based on (Gürkan and Massing, 2019)	† Maybe			Marked done only if it is 95% done.Page counter: 21
Digression		Aggregated FEM (Badia, Verdugo, and Martín, 2018) for \mathcal{P}^k , $k = 1, 2, 3$		Solve $\partial_t u + \kappa(u) \Delta^2 u = g$	

	January	February	March	April	May	June
Introduction						
Phase 1						
Phase 2				1		
Phase 3						
Phase 4						
Final						
	0 %	25	%	50 %	75 %	100 %

Other

- 1) Maybe exam in mid of April?
- 2) Easter 5.-10. April