# **HW1** Solution

#### Problem 1

```
library(alr4)
data(UN11)
```

## (a)

```
y = UN11$fertility
x = UN11$ppgdp
```

The response is fertility and the predictor is ppgdp.

## (b)

The trend between fertility and the predictor is decreasing, but it's not linear. The decreasing rate is much larger when ppgdp have small values.

## (c)

```
plot(log(x), log(y), xlab = 'log(ppgdp)', ylab = 'log(fertility)')
```



Yes, a simple linear regression model is plausible now.

### Problem 2

```
data(Heights)
y = Heights$dheight
x = Heights$mheight
n = length(y)
```

# (a)

```
plot(x, y, xlab = 'mheight', ylab = 'dheight')

19
29
29
55
60
65
70

mheight
```

Yes, a simple linear regression model is reasonable.

# (b)

```
xbar = mean(x)
xbar

## [1] 62.4528
ybar = mean(y)
ybar
```

```
## [1] 63.75105
Sxx = sum((x - xbar)^2)
Syy = sum((y - ybar)^2)
Sxy = sum((x - xbar)*(y - ybar))
Sxx
## [1] 7620.907
Syy
## [1] 9288.616
Sxy
## [1] 4128.603
The answers are \bar{x}=62.4528, \ \bar{Y}=63.751052, \ S_{xx}=7620.907, \ S_{yy}=9288.616, \ S_{xy}=4128.603.
b1 = Sxy / Sxx
b0 = ybar - b1*xbar
b0
## [1] 29.91744
b1
## [1] 0.541747
plot(x, y, xlab = 'mheight', ylab = 'dheight')
abline(b0, b1, col = 2)
                              dheight
                                    65
                                    55
```

The answers are  $b_0 = 29.91744$  and  $b_1 = 0.541747$ .

#### Problem 3

```
data(ftcollinstemp)
x = ftcollinstemp$fall
y = ftcollinstemp$winter
```

60

65

mheight

70

55

## (a)

```
fit = lm(y ~ x)
plot(x, y, xlab = 'fall temperature', ylab = 'winter temperature')
abline(coef(fit), col = 2)
```



fall temperature

### (b)

```
rxy = Sxy/sqrt(Sxx)/sqrt(Syy)
rxy
```

### ## [1] 0.1926098

The answer is  $r_{xy} = 0.1926098$ .