

BASE DE DONNEES

Chap 2. Le modèle relationnel

Dr. Coulibaly Tiékoura

Plan du Chapitre 2

- I. LES CONCEPTS
- II. LES DÉPENDANCES FONCTIONNELLES
- ◆ III. LES REGLES DE PASSAGE DU MODELE E-A AU MODELE
 - RELATIONNEL
- IV. LES RÈGLES D'INTÉGRITÉ
- *** V. LES FORMES NORMALES**

I. LES CONCEPTS

DOMAINE

- □ ensemble de valeurs atomiques d'un certain type sémantique
- Ex.: NOM_VILLE = { Nice, Paris, Rome }
- □ les domaines sont les ensembles de valeurs possibles dans lesquels sont puisées les données
- ☐ deux ensembles peuvent avoir les mêmes valeurs bien que sémantiquement distincts

Ex.:

```
NUM_ELV = { 1, 2, ..., 2000 }
NUM_ANNEE = { 1, 2, ..., 2000 }
```


LA RELATION

= sous ensemble du produit cartésien de plusieurs domaines

 $R \subset D1 \times D2 \times ... \times Dn$ avec D1, D2, ..., Dn sont les domaines de R et n est le degré ou l'arité de R

Ex:

```
Les domaines :
NOM_ELV = { dupont, durant }
PREN_ELV = { pierre, paul, jacques }
DATE_NAISS = {Date entre 1/1/1990 et 31/12/2020}
NOM_SPORT = { judo, tennis, foot }
```


\$ LES N-UPLETS

- = un élément d'une relation est un n-uplet de valeurs (tuple en anglais)
- un n-uplet représente un fait

Ex.: « Dupont pierre est un élève né le 1 janvier 1992 »

« dupont est inscrit au judo »

DEFINITION PRÉDICATIVE D'UNE RELATION

Une relation peut être considérée comme un PRÉDICAT à n variables

$$\theta(x, y, z)$$
 vrai $\Leftrightarrow (x, y, z) \in R$

Ex.:

est_inscrit (dupont, judo) ⇔ (dupont, judo) ∈ INSCRIPT

LES ATTRIBUTS

Chaque composante d'une relation est un attribut

- · Le nom donné à un attribut est porteur de sens
- Il est en général différent du nom de domaine
- Plusieurs attributs peuvent avoir le même domaine

Ex. :

La relation TRAJET:

TRAJET ⊂ NOM_VILLE × NOM_VILLE

Dans laquelle la première composante représente la ville de départ VD, la deuxième composante la ville d'arrivée VA d'un trajet.

LE SCHÉMA D'UNE RELATION

Le schéma d'une relation est défini par :

- le nom de la relation
- la liste de ses attributs

on note: R (A1, A2, ..., An)

Ex.:

ELEVE (NOM, PRENOM, NAISS)
INSCRIPT (NOM_ELV, SPORT)
TRAJET (VD, VA)

Extension

- L'extension d'une relation correspond à l'ensemble de ses éléments (n-uplets)
- → le terme RELATION désigne une extension

♦ LE SCHÉMA D'UNE BDR

Le schéma d'une base de données est défini par :

- l'ensemble des schémas des relations qui la composent

- ☐ Différence entre :
- le schéma de la BDR qui dit comment les données sont organisées dans la base
- l'ensemble des n-uplets de chaque relation, qui représentent les données stockées dans la base

LA REPRÉSENTATION

□1 RELATION = 1 TABLE

U1	V1	W1	X1	Y1
U2	V2	W2	X2	Y2
U3	V3	W3	X3	Y3

LA REPRÉSENTATION

□ 1 ÉLÉMENT ou n-uplet = 1 LIGNE

* une relation est un ensemble ⇒ on ne peut pas avoir 2 lignes identiques $LIGNE \rightarrow$

1 élément

U1	V1	W1	X1	Y1

□ 1 ATTRIBUT = 1 COLONNE

U1		
U2		
U3		
\uparrow		

COLONNE

1 attribut ou propriété

■ EXEMPLE: La relation ELEVE

ELEVE:

élément →

NOM	PRENOM	NAISS			
dupont	Pierre	1/1/1992			
durant	Jacques	2/2/1994			
duval	Paul	3/03/81			

Fenêtre Création de Table sur MySQL (PhpMyAdmin)

Affichage d'une table sur MySQL (PhpMyAdmin)

←	← ĢServeur: MySQL:3308 » 🗑 Base de données: etablissement » 📠 Table: etudiants													
	Parcourir	M St	ructure		QL	Reche	ercher 📑	Insére	er 🖶 Ex	porter	🚂 lm	porter		Privilèges
←	Τ→			▽	id	nom	prenom	С	reated_at		updated	l_at		filiere_id
	🥜 Ėditer	≩ i Copie	r 🔵 Sup	primer	1	KOFFI	Moussa	2	022-03-09 0	9:42:10	2022-03	-09 10:2	5:36	14
	<i>Ø</i> Éditer	≩ Copie	r 🔵 Sup	primer	2	AYA	Virginie	2	022-03-09 0	9:44:39	2022-03	-09 10:26	6:00	13
	🥜 Éditer	≩ ≟ Copie	r 🔵 Sup	primer	3	KOUAO	Yves	2	022-03-09 0	9:50:24	2022-03	-09 09:50):24	1
	<i>&</i> Éditer	≩ ≟ Copie	r 🔵 Sup	primer	6	KOUAKOU	Kouamé Ya	annick 2	022-03-10 1	0:37:09	2022-03	-10 10:37	7:09	5
	🥜 Éditer	≩ Copie	r 🔵 Sup	primer	5	Diakite	Akissi Sola	nge 2	022-03-09 0	9:52:00	2022-03	-09 09:52	2:00	11
t		ut cocher	Avec	la séle	ction	: 🔗 Éditer	- 3 € Cop	ier (Supprimer	<u> </u>	xporter			

II LES DÉPENDANCES FONCTIONNELLES

II. les dépendances fonctionnelles

Dépendance fonctionnelle

Soit R(A1, A2,, An) un schéma de relation. Soit X et Y des sous ensembles de {A1,A2,...An} On dit que Y dépend fonctionnellement de X (X->Y) si à chaque valeur de X correspond une valeur unique de Y.

```
\square on écrit : X \rightarrow Y
```

□ on dit que : X détermine Y

```
♦ Ex.:
```

```
PRODUIT (no_prod, nom, prixUHT) : no_prod → (nom, prixUHT)

NOTE (no_contrôle, no_élève, note) : (no_contrôle, no_élève) → note
```

• une dépendance fonctionnelle est une propriété sémantique, elle correspond à une contrainte supposée toujours vrai du monde réel

II. les dépendances fonctionnelles

La clé d'une relation

Attribut (ou groupe minimum d'attributs) qui détermine tous les autres.

□ Ex.:

PRODUIT (no_prod, nom, prixUHT)

no_prod → (nom, prixUHT)

no_prod est une clé

- Une clé détermine un n-uplet de façon unique
- Pour trouver la clé d'une relation, il faut examiner attentivement les hypothèses sur le monde réel
- Une relation peut posséder plusieurs clés, on les appelle clés candidates

□ Ex.:

dans la relation PRODUIT, nom est une clé candidate (à condition qu'il n'y ait jamais 2 produits de même nom)

II. les dépendances fonctionnelles

Clé primaire

Choix d'une clé parmi les clés candidates.

Clé étrangère ou clé secondaire

Attribut (ou groupe d'attributs) qui fait référence à la clé primaire d'une autre relation

Ex.:

CATEG (no_cat, design, tva)

PRODUIT(no_prod, nom, marque, no_cat, prixUHT)

no_cat dans PRODUIT est une clé étrangère

□ CLÉ ÉTRANGÈRE = CLÉ PRIMAIRE dans une autre relation

REGLES DE PASSAGE MODELE E-A/MODELE RELATIONNEL

Règle de passage: entités

- Il possède une seule structure qui est la relation
- Une relation est identifiée par son nom.
- Chaque relation se compose d'un ensemble de colonnes désignés par les attributs.
- Un modèle relationnel est constitué par un ensemble de relations.
- ☐ Le schéma d'une relation est constitué du nom de la relation, suivi des attributs.
- □ Pour chaque entité du schéma E/A:
 - On crée une relation de même nom que l'entité.
 - Chaque propriété de l'entité, y compris
 - l'identifiant, devient un attribut de la relation.
 - Les attributs de l'identifiant constituent la clé de la relation.

DEPARTEMENT

Num_Département Nom_Département Localisation

DEPARTEMENT(<u>Num_département</u>,nom_département,localisation)

Règle de passage: associations

- Toute classe d'association est transformée en relation.
 - La clé de cette relation est composée de tous les identifiants des entités participantes.

Règle d'optimisation

- ●Toute association reliée à une entité avec une cardinalité de type 0,1 ou 1,1 peut être fusionnée avec l'entité la reliant.
- Nous devons déplacer les attributs de l'association vers ceux de la relation traduisant l'entité.

- * Règle de passage: associations de 1 à 1 ou de 1 à plusieurs
- O Soit une association de un à plusieurs ou de un à un entre A et B. Le passage au modèle logique suit les règles suivantes :
 - On crée les relations Ra et Rb correspondant respectivement aux entités A et B.
 - L'identifiant de B devient un attribut de Ra.
- Une occurrence de A référence l'occurrence de B qui lui est associée à l'aide d'une clé étrangère.
- O Cette référence se fait de manière unique et suffisante à l'aide de l'identifiant.

* Règle de passage: associations de 1 à 1 ou de 1 à plusieurs

DEPARTEMENT Num_département Nom_département Localisation DE 1 Å 1 ETRE CHEF_DE 0:1 CIN_Enseignant Nom_Enseignant Prénom_Enseignant

ASSOCIATIONS DE 1 À PLUSIEURS

DEPARTEMENT(<u>Num_département</u>, nom_départemen|t, localisation, CIN_Enseignant#)

ENSEIGNANT(<u>CIN_enseignant</u>, Nom_Enseignant, prénom_Enseignant| Adresse_Employé, Num_département#)

DEPARTEMENT (<u>Num_Département</u>, Nom_Département, Localisation)

EMPLOYE (<u>CIN_Employé</u>, Nom_Employé, Prénom_Employé,

Adresse Employé. Num département#)

Règle de passage: associations de plusieurs à plusieurs

ENSEIGNANT (CIN_Enseignant, Nom_Enseignant, Prénom_Enseignant, Adresse_Enseignant)

ETUDIANT(CIN_Etudiant,Nom_Etudiant,Prénom_Etudiant, Adresse_Etudiant)

S'INSCRIRE(CIN_Enseignant#, CIN_Etudiant #, Année)

* Règle de passage: associations ternaires

ENSEIGNANT (CIN_Enseignant, Nom_Enseignant, Prénom_Enseignant, Adresse_Enseignant)

ETUDIANT(CIN_Etudiant,Nom_Etudiant,Prénom_Etudiant, Adresse_Etudiant)

MATIERE (Num_Matière, Nom_Matière, Coefficient_Matière)

S'INSCRIRE(CIN_Enseignant#, CIN_Etudiant #, Num_Matière#, Année)

* Règle de passage: associations avec entité faible

BATIMENT (Numéro_Batiment, adresse)

SALLE (Numéro_Batiment#, Numéro_Salle, capacité)

IV LES RÈGLES D'INTÉGRITÉ

Les règles d'intégrité sont les assertions qui doivent être vérifiées par les données contenues dans une base.

Le modèle relationnel impose les contraintes structurelles suivantes :

- □ INTÉGRITÉ DE DOMAINE
- □ INTÉGRITÉ DE CLÉ
- □ INTÉGRITÉ RÉFÉRENCIELLE

• La gestion automatique des contraintes d'intégrité est l'un des outils les plus importants d'une base de données.

• Elle justifie à elle seule l'usage d'un SGBD.

*INTÉGRITÉ DE DOMAINE

Les valeurs d'une colonne de relation doivent appartenir au domaine correspondant.

- contrôle des valeurs des attributs
- contrôle entre valeurs des attributs

*INTÉGRITÉ DE CLÉ

Les valeurs de clés primaires doivent être :

- uniques
- non NULL

- Unicité de clé
- Unicité des n-uplets

- Valeur NULL: valeur conventionnelle pour représenter une information inconnue
- dans toute extension possible d'une relation, il ne peut exister 2 n-uplets ayant même valeur pour les attributs clés.

Sinon 2 clés identiques détermineraient 2 lignes identiques (d'après la définition d'une clé), ce qui est absurde

*INTÉGRITÉ RÉFÉRENCIELLE

Les valeurs de clés étrangères sont 'NULL' ou sont des valeurs de la clé primaire auxquelles elles font référence

Relations dépendantes

• LES DÉPENDANCES :

Liaisons de un à plusieurs exprimées par des attributs particuliers: clés étrangères ou clés secondaires

Remarque: Les contraintes de référence ont un impact important pour les opérations de mises à jour, elles permettent d'éviter les anomalies de mises à jour

Exemple:

CLIENT (no_client, nom, adresse)

ACHAT (no_produit, no_client, date, qte)

Clé étrangère no_client dans ACHAT

- insertion tuple no_client = X dans ACHAT
 - vérification si X existe dans CLIENT
- suppression tuple no_client = X dans CLIENT
 - soit interdire si X existe dans ACHAT
- soit supprimer en cascade tuple X dans ACHAT
- soit modifier en cascade X = NULL dans ACHAT
- modification tuple no_client = X en X' dans CLIENT
 - → soit interdire si X existe dans ACHAT
 - soit modifier en cascade X en X' dans ACHAT

MySQL

IV. Les règles d'intégrité

Paramétrage des Relations dans MySQL (Ajouter une contrainte

d'intégrité référentielle)

ALTER TABLE nom_table_avec_cle_etrangere

ADD CONSTRAINT nom_contrainte

FOREIGN KEY (cle_etrangere)

REFERENCES table_referencee(cle_primaire);

On entrera la requête suivante :

ALTER TABLE voitures

ADD CONSTRAINT fk_voitures_clients

FOREIGN KEY (client_id)

REFERENCES clients (id);

Par exemple, pour appliquer une contrainte d'intégrité référentielle à la table voitures :

- client_id de voitures est une clé étrangère qui fait référence à la clé primaire id de clients
- □ Appliquer l'intégrité référentielle signifie que l'on ne pourra pas avoir, à aucun moment, une ligne de voitures avec un identifiant client_id inexistant dans la table clients.
- ☐ Une valeur de clé étrangère peut être Null

ON UPDATE et ON DELETE

Si l'utilisateur tente de supprimer une ligne d'une table parente, alors qu'une ou plusieurs lignes existent dans une table enfant correspondante à la première, il y a plusieurs possibilités :

- □ CASCADE efface la ligne de la table parente et supprime automatiquement les lignes correspondants dans la table enfant
- □ SET NULL supprime la ligne de la table parente et met la (ou les) valeur(s) de la clé étrangère à NULL
- □ SET DEFAULT supprime la ligne de la table parente et met tous les composants de la cl´e étrangère à leur valeur par défaut dans la table enfant
- □ NO ACTION rejette l'opération de suppression dans la table parente

V LES FORMES NORMALES

La théorie de la normalisation

- Elle met en évidence les relations "indésirables«
- Elle définit les critères des relations "désirables« appelées formes normales
- Propriétés indésirables des relations
 - Redondances
 - Valeurs NULL
- Elle définit le processus de normalisation permettant de décomposer une relation non normalisée en un ensemble équivalent de relations normalisée \$.35

La décomposition

Objectif:

- décomposer les relations du schéma relationnel sans perte d'informations
- obtenir des relations canoniques ou de base du monde réel
- aboutir au schéma relationnel normalisé
- Le schéma de départ est le schéma universel de la base
- Par raffinement successifs ont obtient des sous relations sans perte d'informations et qui ne seront pas affectées lors des mises à jour (non redondance).

Les formes normales

5 FN, les critères sont de plus en plus restrictifs

$$FNj \Rightarrow FNi (j > i)$$

Notion intuitive de FN

une « bonne relation » peut être considérée comme une fonction de la clé primaire vers les attributs restants 36

1ère Forme Normale 1FN

Une relation est en 1FN si tout attribut est atomique (non décomposable)

Contre-exemple

ELEVE (no_elv, nom, prenom, liste_notes)

Un attribut ne peut pas être un ensemble de valeurs

→ Décomposition

ELEVE (**no_elv**, nom, prenom)

NOTE (no_elv, no_matiere, note)

2ème Forme Normale 2FN

Une relation est en 2FN si:

- elle est en 1FN
- si tout attribut n'appartenant pas à la clé ne dépend pas d'une partie de la clé
- C'est la phase d'identification des clés
- Cette étape évite certaines redondances
- Tout attribut doit dépendre fonctionnellement de la totalité de la clé

Contre-exemple

```
une relation en 1FN qui n'est pas en 2FN
```

COMMANDE (date, no_cli, no_pro, qte, prixUHT)

elle n'est pas en 2FN car la clé = (date, no_cli, no_pro), et le prixUHT ne dépend que de no_pro

Décomposition

COMMANDE (date, no_cli, no_pro, qte)
PRODUIT (no_pro, prixUHT)

3ème Forme Normale 3FN

Une relation est en 3FN si:

- elle est en 2FN
- si tout attribut n'appartenant pas à la clé ne dépend pas d'un attribut non clé

Ceci correspond à la non transitivité des D.F. ce qui évite les redondances.

En 3FN une relation préserve les D.F. et est sans perte.

Contre-exemple

une relation en 2FN qui n'est pas en 3FN

VOITURE (matricule, marque, modèle, puissance)

on vérifie qu'elle est en 2FN; elle n'est pas en 3FN car la clé = matricule, et la puissance dépend de (marque, modèle)

■ Décomposition

VOITURE (matricule, marque, modèle)

MODELE (marque, modèle, puissance)

* 3ème Forme Normale de BOYCE-CODD BCNF

Une relation est en BCFN:

- elle est en 1FN et
- ssi les seules D.F. élémentaires sont celles dans lesquelles une clé détermine un attribut
- BCNF signifie que l'on ne peut pas avoir un attribut (ou groupe d'attributs) déterminant un autre attribut et distinct de la clé
- Ceci évite les redondances dans l'extension de la relation: mêmes valeurs pour certains attributs de nuplets différents
- BCNF est plus fin que FN3 : BCNF ⇒ FN3

Contre-exemple

une relation en 3FN qui n'est pas BCNF

CODEPOSTAL (ville, rue, code)

on vérifie qu'elle est FN3, elle n'est pas BCNF car la clé = (ville,rue) (ou (code, ville) ou (code, rue)), et code → ville

