Reporting Research Study Results with {gtsummary}

Daniel D. Sjoberg

November 16, 2021

@statistishdan

• @ddsjoberg

Motivation

The reproducibility crisis

- Quality of medical research is often low
- Low quality code in medical research part of the problem
- Low quality code is more likely to contain errors
- Reproducibility is often cumbersome and time-consuming

Image source: https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

{gtsummary} overview

- Create tabular summaries with sensible defaults but highly customizable
- Types of summaries:
 - "Table 1"-types
 - Cross-tabulation
 - Regression models
 - Survival data
 - Survey data
 - Custom tables
- Report statistics from {gtsummary}
 tables inline in R Markdown
- Stack and/or merge any table type
- Use themes to standardize across tables
- Choose from different **print**

{gtsummary} example dataset

- The trial dataset is included with {gtsummary}
- Simulated dataset of baseline characteristics for 200 patients who receive Drug A or Drug B
- Variables were assigned labels using the labelled package

```
library(gtsummary)
library(tidyverse)
head(trial)
```

```
## # A tibble: 6 x 8
             age marker stage grade response death ttdeath
##
    trt
    <chr>
           <dbl> <dbl> <fct> <fct>
                                       <int> <int>
                                                    <dbl>
##
## 1 Drug A
              23 0.16
                        T1
                              ΙI
                                                     24
                                           0
## 2 Drug B
                  1.11
                        T2
                              Ι
                                                     24
              31 0.277 T1
                                                     24
## 3 Drug A
                              II
                                           0
## 4 Drug A
                                                     17.6
           NA 2.07 T3
                              III
                                           1
## 5 Drug A
              51 2.77
                                                     16.4
                        T4
                              III
## 6 Drug B
              39
                 0.613 T4
                              Ι
                                                     15.6
                                                 1
```

{gtsummary} example dataset

This presentation will use a subset of the variables.

```
sm_trial <-
  trial %>%
  select(trt, age, grade, response)
```

Variable	Label
trt	Chemotherapy Treatment
age	Age
grade	Grade
response	Tumor Response

tbl_summary()

Basic tbl_summary()

```
tbl_summary_1 <-
   sm_trial %>%
   select(-trt) %>%
   tbl_summary()
```

- Four types of summaries: continuous, continuous2, categorical, and dichotomous
- Statistics are median (IQR) for continuous, n (%) for categorical/dichotomous
- Variables coded 0/1, TRUE/FALSE,
 Yes/No treated as dichotomous
- Lists NA values under "Unknown"
- Label attributes are printed automatically

Characteristic	$N = 200^7$
Age	47 (38, 57)
Unknown	11
Grade	
I	68 (34%)
II	68 (34%)
III	64 (32%)
Tumor Response	61 (32%)
Unknown	7
¹ Median (IQR); n (9	%)

Customize tbl_summary() output

```
tbl_summary_2 <- sm_trial %>%
 tbl_summary(
    by = trt,
    type = age ~ "continuous2",
    statistic =
      list(age ~ c("{mean} ({sd}))",
           response \sim "\{n\} / \{N\} (\{n\}
    label = grade ~ "Pathologic tur
    digits = age ~ 1
```

- by: specifies a column variable for cross-tabulation
- type: specifies the summary type
- statistic: customize the reported
- statistics

• label: change or customize

Characteristic	Drug A , N = 98	Drug B , N = 102
Age		
Mean (SD)	47.0 (14.7)	47.4 (14.0)
Range	6.0, 78.0	9.0, 83.0
Unknown	7	4
Pathologic tumor grade		
I	35 (36%)	33 (32%)
II	32 (33%)	36 (35%)
III	31 (32%)	33 (32%)
Tumor Response	28 / 95 (29%)	33 / 98 (34%)
Unknown	3	4

{gtsummary} + formulas

Use lists to pass ≥2 sets of instruction:

```
label = list(age ~ "Patient Age", marker ~ "Marker Level")
```

Add-on functions in {gtsummary}

tbl_summary() objects can also be updated using related functions.

- add_*() add additional column of statistics or information, e.g. p-values, q-values, overall statistics, treatment differences, N obs., and more
- modify_*() modify table headers, spanning headers, footnotes, and more
- bold_*()/italicize_*() style labels, variable levels, significant p-values

```
tbl_summary_3a <-
   sm_trial %>%
   tbl_summary(
      by = trt
      ) %>%
   add_p() %>%
   add_q(method = "bonferroni")
```

- add_p(): adds a column of p-values
- add_q(): adds a column of p-values adjusted for multiple comparisons through a call to p.adjust()

Drug A , N = 98 ⁷	Drug B , N = 102 ⁷	p-value ²	q-value
46 (37, 59)	48 (39, 56)	0.7	>0.9
7	4		
		0.9	>0.9
35 (36%)	33 (32%)		
32 (33%)	36 (35%)		
31 (32%)	33 (32%)		
28 (29%)	33 (34%)	0.5	>0.9
3	4		
	46 (37, 59) 7 35 (36%) 32 (33%) 31 (32%) 28 (29%)	46 (37, 59) 48 (39, 56) 7 4 35 (36%) 33 (32%) 32 (33%) 36 (35%) 31 (32%) 33 (32%) 28 (29%) 33 (34%)	7 4 0.9 35 (36%) 33 (32%) 32 (33%) 36 (35%) 31 (32%) 33 (32%) 28 (29%) 33 (34%) 0.5

¹ Median (IQR); n (%)

 $^{^{\}rm 2}\,\mbox{Wilcoxon}$ rank sum test; Pearson's Chi-squared test

³ Bonferroni correction for multiple testing

 add_difference(): mean and rate differences between two groups.
 Can also be adjusted differences

```
tbl_summary_3b <-
   sm_trial %>%
   tbl_summary(
      by = trt,
      missing = "no"
      ) %>%
   add_overall() %>%
   add_n() %>%
   add_stat_label(
      label = all_categorical() ~ "Nc
)
```

Characteristic	N	Overall, N = 200	Drug A , N = 98	Drug B , N = 102
Age, Median (IQR)	189	47 (38, 57)	46 (37, 59)	48 (39, 56)
Grade, No. (%)	200			
I		68 (34%)	35 (36%)	33 (32%)
II		68 (34%)	32 (33%)	36 (35%)
III		64 (32%)	31 (32%)	33 (32%)
Tumor Response, No. (%)	193	61 (32%)	28 (29%)	33 (34%)

- add_overall(): adds a column of overall statistics
- add_n(): adds a column with the sample size
- add_stat_label(): adds a

```
tbl_summary_3b <-
   sm_trial %>%
   select(age, marker, trt)
   tbl_summary(
      by = trt,
      missing = "no"
      ) %>%
   add_stat(•••)
```

Characteristic	Drug A , N = 98 ¹	Drug B , N = 102^{7}	Treatment Comparison
Age	46 (37, 59)	48 (39, 56)	t=-0.21, p=0.8
Marker Level (ng/mL)	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)	t=1.6, p=0.12
¹ Median (IQR)			

- Customize statistics presented with add_stat()
 - Added statistics can be placed on the label or the level rows
 - Added statistics may be a single column or multiple

Update with bold_*()/italicize_*()

```
tbl_summary_4 <-
 sm_trial %>%
 tbl summary(
    by = trt
    ) %>%
 add_p() %>%
 bold_labels() %>%
 italicize_levels() %>%
 bold_p(t = 0.8)
```

- bold_labels(): bold the variable labels
- italicize_levels(): italicize the variable levels
- bold_p(): bold p-values according a specified threshold

	Drug B , N = 102^{7}	p value
46 (37, 59)	48 (39, 56)	0.7
7	4	
		0.9
35 (36%)	33 (32%)	
32 (33%)	36 (35%)	
31 (32%)	33 (32%)	
28 (29%)	33 (34%)	0.5
3	4	
	7 35 (36%) 32 (33%) 31 (32%) 28 (29%)	7 4 35 (36%) 33 (32%) 32 (33%) 36 (35%) 31 (32%) 33 (32%) 28 (29%) 33 (34%)

Median (IQR); n (%)

²Wilcoxon rank sum test; Pearson's Chi-squared test

Update tbl_summary() with modify_*()

```
tbl_summary_5 <-
  sm_trial %>% select(age, response
 tbl_summary(
    by = trt, missing = "no"
    ) %>%
 modify_header(
    update = list(
      stat_1 ~ "**A**",
      stat 2 ~ "**B**"
   )) %>%
 modify_spanning_header(
    update = all_stat_cols() ~ "**C
 modify footnote(
    update = all_stat_cols() ~
      "median (IQR) for continuous;
```

	Drug			
Characteristic	\mathbf{A}^{7}	\mathbf{B}^{7}		
Age	46 (37, 59)	48 (39, 56)		
Tumor Response	28 (29%)	33 (34%)		
¹ median (IQR) for continuous; n (%) for categorical				

• Use show_header_names() to see the internal header names available for use in 17 / 61

Add-on functions in {gtsummary}

And many more!

See the documentation at http://www.danieldsjoberg.com/gtsummary/reference/index.html

And a detailed tbl_summary() vignette at http://www.danieldsjoberg.com/gtsummary/articles/tbl_summary.html

Cross-tabulation with tbl_cross()

tbl_cross() is a wrapper for tbl_summary() for **n x m** tables

```
tbl_cross_1 <-
   sm_trial %>%
   tbl_cross(
    row = trt,
    col = grade,
    percent = "row",
    margin = "row"
) %>%
   add_p(source_note = TRUE)
```

	Grade			
Characteristic	I	П	Ш	
Chemotherapy Treatment				
Drug A	35 (36%)	32 (33%)	31 (32%)	
Drug B	33 (32%)	36 (35%)	33 (32%)	
Total	68 (34%)	68 (34%)	64 (32%)	
chi-square test of independen	ce, p=0.9			

Continuous Summaries with tbl_continuous()

tbl_continuous() summarizes a continuous variable by 1, 2, or more categorical variables

```
tbl_continuous_1 <-
   sm_trial %>%
   tbl_continuous(
     data = trial,
     variable = age,
     by = trt,
     include = grade
)
```

Characteristic	Drug A , N = 98 ¹	Drug B , N = 102 ¹
Grade		
ı	46 (36, 60)	48 (42, 55)
II	44.5 (31, 54.5)	50.5 (43, 57.25)
III	51.5 (42.25, 60.25)	45 (36, 52)
¹ Median (IQR)		

Survey data with tbl_svysummary()

```
tbl_svysummary <-
   survey::svydesign(
    ids = ~1,
    data = as.data.frame(Titanic),
    weights = ~Freq
) %>%
   tbl_svysummary(by = Survived) %>%
   add_p() %>%
   modify_spanning_header(
   all_stat_cols() ~ "**Survived**
```

	Survi		
Characteristic	No , N = 1,490 ⁷	Yes , N = 711 ⁷	p-value ²
Class			0.7
1st	122 (8.2%)	203 (29%)	
2nd	167 (11%)	118 (17%)	
3rd	528 (35%)	178 (25%)	
Crew	673 (45%)	212 (30%)	
Sex			0.048
Male	1,364 (92%)	367 (52%)	
Female	126 (8.5%)	344 (48%)	
Age			0.4
Child	52 (3.5%)	57 (8.0%)	
Adult	1,438 (97%)	654 (92%)	
¹ n (%)			
² chi-squared tes	t with Rao & Scott	's second-order	correction

Survival outcomes with tbl_survfit()

```
library(survival)
fit <- survfit(Surv(ttdeath, death) ~ trt, trial)

tbl_survfit_1 <-
   tbl_survfit(
    fit,
    times = c(12, 24),
    label_header = "**{time} Month**"
) %>%
   add_p()
```

Characteristic	12 Month	24 Month	p-value ⁷
Chemotherapy Treatment			0.2
Drug A	91% (85%, 97%)	47% (38%, 58%)	
Drug B	86% (80%, 93%)	41% (33%, 52%)	
¹ Log-rank test			

tbl_regression()

Traditional model summary()

```
m1 <-
  glm(
  response ~ age + stage,
  data = trial,
  family = binomial(link = "logit
)
summary(m1)</pre>
```

Looks **messy** and it's not easy for others to understand.

```
glm(formula = response ~ age + stage, family = binomial(link = "logit"),
   data = trial)
Deviance Residuals:
  Min 1Q Median 3Q
-1.2302 -0.8911 -0.7720 1.3563 1.9994
          Estimate Std. Error z value Pr(>|z|)
0.01147 1.691 0.0909 .
           0.01939
stageT2
          -0.54143 0.44000 -1.231
          -0.05953 0.45042 -0.132 0.8948
stageT3
stageT4
          -0.23109 0.44823 -0.516 0.6062
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 228.58 on 182 degrees of freedom
Residual deviance: 223.93 on 178 degrees of freedom
 (17 observations deleted due to missingness)
AIC: 233.93
Number of Fisher Scoring iterations: 4
```

Basic tbl_regression()

```
m1_tbl_1 <-
  tbl_regression(
    m1
)</pre>
```

- Displays **p-values** for covariates
- Shows reference levels for categorical variables

Characteristic	log(OR) ⁷	95% CI ⁷	p-value			
Age	0.02	0.00, 0.04	0.091			
T Stage						
T1	_	_				
T2	-0.54	-1.4, 0.31	0.2			
T3	-0.06	-1.0, 0.82	0.9			
T4	-0.23	-1.1, 0.64	0.6			
¹ OR = Odds Ratio, CI = Confidence Interval						

Customize tbl_regression() output

```
m1_tbl_2 <-
  tbl_regression(
    m1,
    exponentiate = TRUE
) %>%
  add_global_p() %>%
  add_glance_table(
  include = c(nobs, logLik, AIC,
```

- Display odds ratio estimates and confidence intervals
- Add global p-values
- Add various model statistics

Characteristic	OR ¹	95% CI ¹	p-value			
Age	1.02	1.00, 1.04	0.087			
T Stage			0.6			
T1	_	_				
T2	0.58	0.24, 1.37				
Т3	0.94	0.39, 2.28				
T4	0.79	0.33, 1.90				
No. Obs.	183					
Log-likelihood	-112					
AIC	234					
BIC	250					
¹ OR = Odds Ratio, CI = Confidence Interval						

Supported models in tbl_regression()

```
stats::lm(), stats::glm(), stats::aov(), ordinal::clm(), ordinal::clmm(),
survival::coxph(), survival::survreg(), survival::clogit(),
lme4::lmer(), lme4::glmer(), lme4::glmer.nb(), brms::brm(),
geepack::geeglm(), gam::gam(), mgcv::gam(), nnet::multinom(),
survey::svyglm(), survey::svycoxph(), survey::svyolr(), MASS::polr(),
MASS::glm.nb(), mice::mira, lavaan::lavaan(), cmprsk::crr(),
stats::nls(), lfe::felm(), rstanarm::stan_glm(), VGAM::vglm(), and more!
```

Custom tidiers can be written and passed to tbl_regression() using the tidy_fun= argument.

Univariate models with tbl_uvregression()

```
tbl_uvreg <-
   sm_trial %>%
   tbl_uvregression(
    method = glm,
   y = response,
   method.args = list(family = bin
   exponentiate = TRUE
)
```

- Specify model method, method.args, and the response variable
- Arguments and helper functions like exponentiate, bold_*(), add_global_p() can also be used with tbl_uvregression()

Characteristic	N	OR ¹	95% CI ⁷	p-value		
Chemotherapy Treatment	193					
Drug A		_	_			
Drug B		1.21	0.66, 2.24	0.5		
Age	183	1.02	1.00, 1.04	0.10		
Grade	193					
1		_	_			
II		0.95	0.45, 2.00	0.9		
III		1.10	0.52, 2.29	0.8		
¹ OR = Odds Ratio, CI = Confidence Interval						

inline_text()

{gtsummary} reporting with inline_text()

- Tables are important, but we often need to report results in-line in a report.
- Any statistic reported in a {gtsummary} table can be extracted and reported in-line in an R Markdown document with the inline_text() function.
- The pattern of what is reported can be modified with the pattern = argument.
- Default is pattern = "{estimate} ({conf.level*100}% CI {conf.low}, {conf.high}; {p.value})".

{gtsummary} reporting with inline_text()

Characteristic	N	OR ¹	95% CI ⁷	p-value
Chemotherapy Treatment	193			
Drug A		_	_	
Drug B		1.21	0.66, 2.24	0.5
Age	183	1.02	1.00, 1.04	0.10
Grade	193			
I		_	_	
II		0.95	0.45, 2.00	0.9
III		1.10	0.52, 2.29	8.0
OR = Odds Ratio, CI = Conf	C: _l			2.23

In Code: The odds ratio for age is 'r inline_text(tbl_uvreg, variable = age)'

In Report: The odds ratio for age is 1.02 (95% CI 1.00, 1.04; p=0.10)

tbl_merge()/tbl_stack()

tbl_merge() for side-by-side tables

A univariable table:

```
library(survival)

tbl_uvsurv <-
    trial %>%
    select(age, grade, death, ttdeath
    tbl_uvregression(
        method = coxph,
        y = Surv(ttdeath, death),
        exponentiate = TRUE
    ) %>%
    add_global_p()
```

A **multivariable** table:

```
library(survival)

tbl_mvsurv <-
   coxph(
    Surv(ttdeath, death) ~ age + gr
   data = trial
) %>%
   tbl_regression(
    exponentiate = TRUE
) %>%
   add_global_p()
```

tbl_merge() for side-by-side tables

A **univariable** table:

Characteristic	N	HR ¹	95% CI ⁷	p-value		
Age	189	1.01	0.99, 1.02	0.3		
Grade	200			0.075		
I		_	_			
II		1.28	0.80, 2.05			
III		1.69	1.07, 2.66			
¹ HR = Hazard Ratio, CI = Confidence Interval						

A **multivariable** table:

Characteristic	HR ¹	95% CI ¹	p-value		
Age	1.01	0.99, 1.02	0.3		
Grade			0.041		
ı		_			
II	1.20	0.73, 1.97			
III	1.80	1.13, 2.87			
¹ HR = Hazard Ratio, CI = Confidence Interval					

tbl_merge() for side-by-side tables

```
tbl_surv_merge <-
  tbl_merge(
    list(tbl_uvsurv, tbl_mvsurv),
    tab_spanner = c("**Univariable**", "**Multivariable**")
)</pre>
```

		Univariable				Multivariable		
Characteristic	N	HR ¹	95% CI ⁷	p-value	HR ⁷	95% CI ⁷	p-value	
Age	189	1.01	0.99, 1.02	0.3	1.01	0.99, 1.02	0.3	
Grade	200			0.075			0.041	
I		_	_		_	_		
II		1.28	0.80, 2.05		1.20	0.73, 1.97		
III		1.69	1.07, 2.66		1.80	1.13, 2.87		
¹ HR = Hazard Ratio, CI = Confidence Interval								

tbl_stack() to combine vertically

An **unadjusted** model:

An **adjusted** model:

```
t4 <-
    coxph(Surv(ttdeath, death) ~
        trt + grade + stage + mar
        data = trial) %>%

tbl_regression(
    show_single_row = trt,
    label = trt ~ "Drug B vs A",
    exponentiate = TRUE,
    include = "trt"
)
```

tbl_stack() to combine vertically

An **unadjusted** model:

Characteristic	HR ¹	95% CI ¹	p-value			
Drug B vs A	1.25	0.86, 1.81	0.2			
¹ HR = Hazard Ratio, CI = Confidence Interval						

An **adjusted** model:

Characteristic	HR ¹	95% CI ¹	p-value			
Drug B vs A	1.30	0.88, 1.92	0.2			
¹ HR = Hazard Ratio, CI = Confidence Interval						

tbl_stack() to combine vertically

```
tbl_surv_stack <-
  tbl_stack(
    list(t3, t4),
    group_header = c("Unadjusted", "Adjusted")
)</pre>
```

Characteristic	HR ¹	95% CI ¹	p-value		
Unadjusted					
Drug B vs A	1.25	0.86, 1.81	0.2		
Adjusted					
Drug B vs A	1.30	0.88, 1.92	2 0.2		
⁷ HR = Hazard Ratio, CI = Confidence Interval					

tbl_strata() for stratified tables

```
tbl_strata <-
   sm_trial %>%
   mutate(grade = paste("Grade", grade)) %>%
   tbl_strata(
      strata = grade,
      ~tbl_summary(.x, by = trt, missing = "no") %>%
      modify_header(all_stat_cols() ~ "**{level}**")
)
```

	Grade I		Gra	de II	Grade III		
Characteristic	Drug A ¹	Drug B ¹	Drug A ¹	Drug B ¹	Drug A ¹	Drug B ¹	
Age	46 (36, 60)	48 (42, 55)	44 (31, 54)	50 (43, 57)	52 (42, 60)	45 (36, 52)	
Tumor Response	8 (23%)	13 (41%)	7 (23%)	12 (36%)	13 (43%)	8 (24%)	
¹ Median (IQR); n (%)							

Define custom function tbl_cmh()

	Contr	ol	Case	•			
Characteristic	Not Exposed	Exposed	Not Exposed	Exposed	Odds Ratio	CMH Odds Ratio	p-value
T Stage							
Crude	46	42	52	60	1.26 (0.72, 2.21)	1.23 (0.69, 2.18)	0.6
T1	16	13	12	12	1.23 (0.42, 3.64)		
T2	14	13	11	16	1.57 (0.53, 4.60)		
T3	9	12	13	9	0.52 (0.15, 1.74)		
T4	7	4	16	23	2.52 (0.63, 10.0)		
Grade							
Crude	46	42	52	60	1.26 (0.72, 2.21)	1.26 (0.71, 2.22)	0.5
1	19	16	16	17	1.26 (0.49, 3.27)		
II	16	16	16	20	1.25 (0.48, 3.25)		
III	11	10	20	23	1.27 (0.44, 3.60)		

Define custom functiont tbl_cmh()

	Contro	ol tbl_n	nerge() Case	,	0	ndd_stat()	
Characteristi	: Not Exposed	Exposed	Not Exposed	Exposed	Odds Ratio	CMH Odds Ratio	p-value
T Stage	tbl_cross())					
Crude	46	42	52	60	1.26 (0.72, 2.21)	1.23 (0.69, 2.18)	0.6
T1	16	13	12	12	1.23 (0.42, 3.64)		
T2	14	13	11	16	1.57 (0.53, 4.60)		
Т3	9	12	13	9	0.52 (0.15, 1.74)		
T4	7	4	16	23	2.52 (0.63, 10.0)		
Grade	tbl_stack()					
Crude	46	42	52	60	1.26 (0.72, 2.21)	1.26 (0.71, 2.22)	0.5
1	19	16	16	17	1.26 (0.49, 3.27)		
II	16	16	16	20	1.25 (0.48, 3.25)		
III	11	10	20	23	1.27 (0.44, 3.60)		

{gtsummary} themes

{gtsummary} theme basics

- A **theme** is a set of customization preferences that can be easily set and reused.
- Themes control **default settings for existing functions**
- Themes control more **fine-grained customization** not available via arguments or helper functions
- Easily use one of the available themes, or create your own

{gtsummary} default theme

```
reset_gtsummary_theme()
no_theme <-
  tbl_regression(m1, exponentiate =
  modify_caption("Default Theme")</pre>
```

Default Theme						
Characteristic	OR ⁷	95% CI ⁷	p-value			
Age	1.02	1.00, 1.04	0.091			
T Stage						
T1	_					
T2	0.58	0.24, 1.37	0.2			
Т3	0.94	0.39, 2.28	0.9			
T4	0.79	0.33, 1.90	0.6			
¹ OR = Odds Rat	io, CI =	= Confidence	e Interval			

{gtsummary} theme_gtsummary_journal()

```
reset_gtsummary_theme()
theme_gtsummary_journal(journal = "
jama_theme <-
   tbl_regression(m1, exponentiate =
   modify_caption("Journal Theme (JA))</pre>
```

Journal Theme (JAMA)					
Characteristic	OR (95% CI) ¹	p-value			
Age	1.02 (1.00 to 1.04)	0.091			
T Stage					
T1	_				
T2	0.58 (0.24 to 1.37)	0.22			
Т3	0.94 (0.39 to 2.28)	0.89			
T4	0.79 (0.33 to 1.90)	0.61			
¹ OR = Odds Ratio, CI = Confidence Interval					

Contributions welcome!

{gtsummary} theme_gtsummary_language()

```
reset_gtsummary_theme()

theme_gtsummary_language(language =

lang_theme <-
   tbl_regression(m1, exponentiate =
   modify_caption("Language Theme (C))</pre>
```

Language Theme (Mandarin)					
特色	OR ⁷	95% CI ⁷	P值		
Age	1.02	1.00, 1.04	0.091		
T Stage					
T1		_			
T2	0.58	0.24, 1.37	0.2		
Т3	0.94	0.39, 2.28	0.9		
T4	0.79	0.33, 1.90	0.6		
¹ OR=勝	算比, C	=信賴區間			

Language options: "de" (German), "en" (English), "es" (Spanish), "fr" (French), "gu" (Gujarati), "hi" (Hindi), "is" (Icelandic), "ja" (Japanese), "kr" (Korean), "mr" (Marathi),

{gtsummary} theme_gtsummary_compact()

```
reset_gtsummary_theme()
theme_gtsummary_compact()
compact_theme <-
   tbl_regression(m1, exponentiate =
   modify_caption("Compact Theme")</pre>
```

Compact Theme					
Characteristic	OR ¹	95% CI ¹	p-value		
Age	1.02	1.00, 1.04	0.091		
T Stage					
T1	_	_			
T2	0.58	0.24, 1.37	0.2		
T3	0.94	0.39, 2.28	0.9		
T4	0.79	0.33, 1.90	0.6		
¹ OR = Odds Ratio, CI = Confidence Interval					

Reduces padding and font size

{gtsummary} set_gtsummary_theme()

```
my_theme <-
 list(
    # round large pvalues to 2 places
    "pkgwide-fn:pvalue_fun" = function(x) gtsummary::style_pvalue(x, digits
    # Some gt customization
    "as_gt-lst:addl_cmds" = list(
      # make the font size small
     tab_spanner = rlang::expr(gt::tab_options(table.font.size = 'small'))
      # add a custom title and subtitle to every table
      user_added1 = rlang::expr(gt::tab_header(
        title = "ACME Corp.", subtitle = "For Internal Use Only")),
      # add a custom data source note
      user_added2 = rlang::expr(gt::tab_source_note(
        source_note = paste("Table created", Sys.Date()))),
      # stripe the table rows
      user_added3 = rlang::expr(gt::opt_row_striping()),
     user_added4 = rlang::expr(gt::opt_table_lines("none"))
```

{gtsummary} set_gtsummary_theme()

```
reset_gtsummary_theme()
set_gtsummary_theme(my_theme)
my_theme_tbl <-
   tbl_regression(m1, exponentiate =
   modify_caption("My Theme")</pre>
```

- Made the font size small
- Added custom title, subtitle, source note
- Striped the rows
- Removed all row lines

My Theme							
ACME Corp.							
For Internal Use Only							
Characteristic OR ¹ 95% CI ¹ p-value							
Age	1.02	1.00, 1.04	0.091				
T Stage							
T1	_	_					
T2	0.58	0.24, 1.37	0.22				
T3	0.94	0.39, 2.28	0.89				
T4	0.79	0.33, 1.90	0.61				
⁷ OR = Odds Rati	o, CI =	Confidence I	nterval				

Table created 2021-04-24

And many more options!

See the {gtsummary} + themes vignette: http://www.danieldsjoberg.com/gtsummary/articles/themes.html

{gtsummary} print engines

{gtsummary} print engines

Print Engine	Function	HTML	PDF	RTF	Word
g <u>t</u>	as gt()	(*)	À	Ŕ	
kable	as kable()	<u>··</u>	<u>:</u>	$ \bigcirc $	<u>·</u>
flextable	<pre>as flex table()</pre>	(F)	(1)		6
kableExtra	as kable extra()	(*)	(
huxtable	as hux table()	(i)	(1)	((F)
tibble	as tibble()		\bigcirc		⟨

{gtsummary} print engines

Use any print engine to customize table

```
library(gt, warn.conflicts = FALSE)

print_engine <-
    trial %>%
    select(age, grade) %>%
    tbl_summary() %>%
    as_gt() %>%
    cols_width(label ~ px(300)) %>%
    cols_align(columns = vars(stat_0)
        align = "left")
```

Characteristic	$N = 200^7$		
Age	47 (38, 57)		
Unknown	11		
Grade			
I	68 (34%)		
II	68 (34%)		
III	64 (32%)		
¹ Median (IQR); n (%)			

In Closing

{gtsummary} website

http://www.danieldsjoberg.com/gtsummary/

{gtsummary} installation

Install production version from CRAN:

install.packages("gtsummary")

Install development version from GitHub:

remotes::install_github("ddsjoberg/

{gtsummary} sandbox in {bstfun}

http://www.danieldsjoberg.com/bstfun/

Characteristic	$N = 200^7$	Histogram
Age, yrs	47 (38, 57)	
Marker Level, ng/mL	0.64 (0.22, 1.39)	
¹ Median (IQR)		

Characteristic	Forest Plot	Beta	95% CI ⁷	p-value	
cyl	 = ;	-2.5	-3.4, -1.6	<0.001	
am	I : -	2.4	-0.89, 5.7	0.15	
drat	 	0.36	-3.3, 4.0	0.8	
¹ CI = Confidence Interval					

Thank you

```
| Source on Save | Source | So
```

gtsummary questions?

a Ask on stackoverflow.com and *use the gtsummary tag*. Hundreds of Qs already answered!

gtsummary object

<chr> <chr>

```
tbl <- tbl_summary(trial, by = trt, include = c(age, trt)) %>% add_p()
tbl$table_body

## # A tibble: 2 x 12
## variable test_name var_type var_label row_type label stat_1 stat_2 test_resul
```

1 age wilcox.t~ continu~ Age label Age 46 (3~ 48 (3~ <named lis

... with 3 more variables: statistic <dbl>, p.value <dbl>, alternative <chr>

2 age wilcox.t~ continu~ Age missing Unkn~ 7 4 <NULL>

<chr> <chr< <chr> <chr< <chr> <chr< <chr> <

gtsummary object

```
names(tbl$table_styling)
                         "footnote"
                                           "footnote abbrev" "text format"
## [1] "header"
                         "fmt fun"
                                           "cols merge"
## [5] "fmt_missing"
tbl$table_styling
## $header
## # A tibble: 12 x 7
   column hide align interpret_label label interpret_spanni~ spanning_heade
##
##
   <chr>
              <lgl> <chr> <chr>
                                           <chr> <chr>
                                                                    <chr>
   1 variab~ TRUE center gt::md
                                           varia~ gt::md
                                                                    <NA>
   2 test_n~ TRUE center gt::md
                                           test_~ gt::md
                                                                    <NA>
##
   3 var_ty~ TRUE center gt::md
                                           var_t~ gt::md
                                                                    <NA>
   4 var_la~ TRUE center gt::md
                                           var_l~ gt::md
##
                                                                    <NA>
   5 row ty~ TRUE center gt::md
                                           row t~ gt::md
                                                                    <NA>
   6 label FALSE left
                                           **Cha~ gt::md
##
                          gt::md
                                                                    <NA>
   7 stat_1 FALSE center gt::md
                                           **Dru~ gt::md
                                                                    <NA>
   8 stat_2 FALSE center gt::md
                                           **Dru~ gt::md
##
                                                                    <NA>
   9 test r~ TRUE center gt::md
                                           test_~ gt::md
                                                                    <NA>
## 10 statis~ TRUE center gt::md
                                           stati~ gt::md
                                                                    <NA>
                                                                           60 / 61
## 11 p.value FALSE center gt::md
                                           **p-v~ gt::md
                                                                    <NA>
```

gtsummary object

```
modify_table_styling(
                                        modify_header()
 х,
                                        modify_footnote()
  columns,
                                        modify_spanning_header()
  rows = NULL,
                                        modify_caption()
 label = NULL,
                                        modify_column_hide()
  spanning_header = NULL,
                                        modify column unhide()
  hide = NULL,
  footnote = NULL,
                                        modify_fmt_fun()
  footnote_abbrev = NULL,
  align = NULL,
                                        modify_table_body()
 missing_symbol = NULL,
  fmt_fun = NULL,
 text_format = NULL,
 undo_text_format = FALSE,
  text_interpret = c("md", "html"),
  cols_merge_pattern = NULL
```