Objective: Implementation of Euler, Improved Euler and Runge Kutta method for the given variant and comparison of error between them plotted in graph with capability of providing desired number of grids.

Variant 3:
$$y' = \frac{4}{x^2} - \frac{y}{x} - y^2$$

or,
$$y' + y^2 + \frac{y}{x} = \frac{4}{x^2}$$

We will seek for a particular solution in the form:

$$y = \frac{c}{x} \qquad y' = -\frac{c}{x^2}$$

Substituting this into the equation, we obtain:

or,
$$-\frac{c}{x^2} + \frac{c}{x^2} + \frac{c^2}{x^2} = \frac{4}{x^2}$$

or,
$$c^2 = 4$$

$$c = \pm 2$$

We can take any value of C. For example, let c=2. now, when the particular solution is known, we make the replacement:

or,
$$z = \frac{1}{y - \frac{2}{x}}$$
 or, $y = \frac{1}{z} + \frac{2}{x}$

and,
$$y' = -\frac{z'}{z^2} - \frac{2}{x^2}$$

Now substitute this into the original Riccati equation:

or,
$$-\frac{z'}{z^2} - \frac{2}{x^2} = \frac{4}{x^2} - \frac{\frac{1}{z} + \frac{2}{x}}{x} - (\frac{1}{z} + \frac{2}{x})(\frac{1}{z} + \frac{2}{x})$$

or,
$$-\frac{z'}{z^2} - \frac{2}{x^2} = \frac{4}{x^2} - \frac{1}{2x} - \frac{2}{x^2} - \frac{1}{z^2} - \frac{4}{zx} - \frac{4}{x^2}$$

So cancelling out the terms,

or,
$$-\frac{z'}{z^2} = \frac{5}{zx} - \frac{1}{z^2}$$

or,
$$z' = \frac{5z}{x} + 1$$

Integrating for x,

$$\therefore z = c_1 x^5 - \frac{x}{4}$$

$$y = \frac{1}{c_1 x^5 - \frac{x}{4}} + \frac{2}{x} \right\} \to (1,3)$$

Simplifying with x = 1 and y = 3 we will get $c_1 = \frac{5}{4}$

Putting back the value of c_1 we will get,

$$y = \frac{4 + 2(5x^4 - 1)}{x(5x^4 - 1)}$$
 (analytical solution)

Exact Solution

```
public class Exact {
    public static double function(double x) {
        double y;
        y = (4/(5*x*x*x*x*x - x)) + 2/x;
       return y;
    public static XYChart.Series exact(double x0, double y0, double x, double N) {
        double currX = x0;
        double currY = y0;
        XYChart.Series ser = new XYChart.Series();
        double n = Math.abs(x - x0) / N;
        //calculation of exact solution and graph
        while (currX <= x) {
            ser.getData().add(new XYChart.Data<>(currX, currY));
            // exact solution
            currY = function(currX);
            currX += n;
        return ser;
```

Euler Method

```
public class Euler {
    public static XYChart.Series euler(double x0, double y0, double x, double N) {
        Double currX = x0;
        Double currY = y0;
        XYChart.Series ser = new XYChart.Series();
        Double n = Math.abs(x - x0) / N;
        ser.getData().add(new XYChart.Data<>(currX, currY));

        //euler method and graph
        while (currX <= x) {
            currY += n * Variant.funct(currX, currY);
            currX += n;
            ser.getData().add(new XYChart.Data<>(currX, currY));
        }
        return ser;
    }
}
```

Improved Euler

```
class IEuler {
    public static XYChart.Series ieuler(double x0, double y0, double x, double N) {
        double currX = x0;
        double currY = y0;
       XYChart.Series ser = new XYChart.Series();
        double n = Math.abs(x - x0) / N;
        ser.getData().add(new XYChart.Data<>(currX, currY));
        double val;
        double tempo;
       //graph and improved euler method
        while (currX <= x) {
            tempo = Variant.funct(currX,currY);
            val = n*Variant.funct( x: currX+n/2, y: currY+ n*tempo/2);
            currX += n;
            currY += val;
            ser.getData().add(new XYChart.Data<>(currX, currY));
       return ser;
```

Runge Kutta

```
polic class RKutta {
public static XYChart. Series rKutta (double x0, double y0, double x, double N) {
       double currX = x0;
       double currY = y0;
       double kl;
       double k2;
       double k3;
       double k4;
       XYChart.Series ser = new XYChart.Series();
       double n = Math.abs(x - x0) / N;
       while (currX <= x + n) {
           ser.getData().add(new XYChart.Data<>(currX, currY));
           kl = Variant.funct(currX, currY);
           k2 = Variant.funct( x: currX + n * 0.5, y: currY + n * k1 * 0.5);
           k4 = Variant.funct( x: currX + n, y: currY + n * k3);
           currY += n / 6 * (k1 + 2 * k2 + 2 * k3 + k4);
           currX += n;
       return ser;
}
```

Plot and Error

Approximation Errors for Different Grid Sizes

Conclusion: Thus, three different methods are implemented and they are compared and their errors are plotted. This report is based on the requirements given on moodle.