# Proofs with Regular Expressions

# Alyssa Lytle

# Fall 2025

#### Recall

In general, we also discussed how some patterns are redundant, and therefore we can reduce our "set" of notations for patterns to be:

- Atomic patterns:  $\{a, \epsilon, \emptyset\}$
- Compound patterns:  $\{\cup, \circ, *\}$

Another way to say this is that every pattern  $\alpha$  can be expressed in the following form. (Where  $\beta$  and  $\gamma$  are patterns.)

- $\bullet \ a \in \Sigma$
- 6
- 0
- $\beta \cup \gamma$
- $\beta \circ \gamma$
- β<sup>3</sup>

Which lead us to the inductive definition of regular expressions.

#### Definition 1

The set of regular expressions can be defined inductively using atomic patterns and operators. R is a regular expression if R is

- 1.  $a \in \Sigma$
- $2. \epsilon$
- 3. **Ø**
- 4.  $R_1 \cup R_2$  where  $R_1$  and  $R_2$  are regular expressions
- 5.  $R_1 \circ R_2$  where  $R_1$  and  $R_2$  are regular expressions
- 6.  $R_1^*$  where  $R_1$  is a regular expression

### Theorem 1

Let  $A \subseteq \Sigma^*$ . The following three statements are equivalent:

- 1. A is a regular language
- 2.  $A = L(\alpha)$  for some pattern  $\alpha$
- 3.  $A = L(\alpha)$  for some regular expression  $\alpha$

# 1 Proving Theorem 1

Since there are three equivalent statements, to prove this theorem, do you have to prove every combination of statements?

Not exactly! You can prove them in a "chain" if you will.

So we are going to prove  $3 \to 2$ ,  $2 \to 1$ , and  $1 \to 3$ !

- 3  $\rightarrow$  2: If  $A = L(\alpha)$  for some regular expression  $\alpha$ , then  $A = L(\alpha)$  for some pattern  $\alpha$
- $2 \to 1$ : If  $A = L(\alpha)$  for some pattern  $\alpha$ , then A is a regular language
- 1  $\rightarrow$  3: If A is a regular language, then  $A = L(\alpha)$  for some regular expression  $\alpha$

### 1.1 Proving $3 \rightarrow 2$

 $3 \rightarrow 2$  is trivial because every regular expression is a pattern!

## 1.2 Proving $2 \rightarrow 1$

Want to Prove: If  $A = L(\alpha)$  for some pattern  $\alpha$ , then A is a regular language.

We can do this with a proof by induction!

We can use the (non redundant) atomic patterns for our base case a,  $\epsilon$ , and  $\emptyset$  and the (non redundant) compound patterns  $\cup$ ,  $\circ$ , and \*

Base Cases:  $\{\{a\}, \epsilon, \emptyset\}$ 

For each of these, we can just define an automaton that accepts each one!

•  $a, a \in \Sigma$ 



 $\bullet$   $\epsilon$ 





### Inductive Step: $\{\cup, \circ, *\}$

Let our statement hold for smaller patterns  $\beta$  and  $\gamma$ . (Our inductive hypothesis)

More specifically, we use the IH that if  $B = L(\beta)$  and  $C = L(\gamma)$  for some pattern  $\alpha$ , then B and C are regular languages.

Since every pattern  $\alpha$  can be expressed in the following way:

- $\beta \cup \gamma$
- $\beta \circ \gamma$
- β\*

So, we can show that it holds for  $\alpha$  by showing that it holds for  $\beta \cup \gamma$ ,  $\beta \circ \gamma$ , and  $\beta^*$ . (Our WTP.) More specifically, our WTP is in three parts:

- $L(\beta \cup \gamma)$  is a regular language
- $L(\beta \circ \gamma)$  is a regular language
- $L(\beta^*)$  is a regular language

As you can see this is a *proof by cases*. For the sake of time, we will not prove each of these, but for each case, you will do a *proof by construction*.

Let's prove the first case:  $L(\beta \cup \gamma)$  is a regular language.

- 1.  $B = L(\beta)$  and  $C = L(\gamma)$  are regular languages (Inductive Hypothesis)
- 2.  $L(\beta \cup \gamma) = L(\beta) \cup L(\gamma)$  (Compound Pattern Definition)
- 3.  $L(\beta) \cup L(\gamma)$  is a regular language. (Needs to be proved!)
- 4.  $L(\beta \cup \gamma)$  is a regular language. (Plugged in equivalence from line 2.)

As you can see, we need to prove if B and C are regular languages  $B \cup C$  is a regular language. This would be your proof by construction. We already did a proof like this for  $B \cap C$ !

# 2 Proving $1 \rightarrow 3$

Want to Prove: If A is a regular language, then  $A = L(\alpha)$  for some regular expression  $\alpha$ 

This is essentially saying each language accepted by a finite automaton can be represented by an equivalent regular expression.

So, we can prove this by converting a general finite automaton N to an equivalent regular expression! (A proof by construction!)