Pisite v sedanjien, ranon kadar metaj Napovednjete. V bezedilu ne madomesiajte bezede vouk s krantificatorjum.

O nekaterih iracionalnih desetiških ulomkih Seminar

Gaja Jamnik
Fakulteta za matematiko in fiziko
Oddelek za matematiko

2. april 2021

1 Uvod

V tem dokumentu bomo obravnavali realna števila zapisana v obliki decimalnega zapisa. Spomnimo se definicije desetiških ulomkov ter decimalnega zapisa.

Definicija 1 Desetiški ulomek je ulomek, katerega imenovalec je potenca števila 10. Žapis desetiškega ulomka navadno nadomestimo z zapisom z decimalno vejico, ki mu pravimo decimalni zapis. Če ponazorimo s primerom, namesto $\frac{23}{1000}$ pišemo 0,023.

Pri obravnavi številskih množic se že v srednji šoli spoznamo z razliko v decimalnem zapisu racionalnih in iracionalnih števil. Racionalna števila lahko zapišemo s končnim ali neskončnim periodičnim decimalnim zapisom, medtem ko je zapis iracionalnega števila možen le z neskončno neperiodičnimi decimalkami.

Včasih pa iz zapisa decimalnega števila z neskončno števkami ne moremo razbrati ali je periodično on nekega člena dalje. Zanimalo nas bo, kaj nam lahko v takem primeru decimalni zapis realnega števila x pove o njegovi racionalnosti oz. iracionalnosti. Zaradi poenostavitve privzemimo, da velja 0 < x < 1.

V ta namen podajmo naslednjo definicijo.

ta del m vec del definiaje **Definicija 2** Naj bo x realno število, 0 < x < 1, podano z decimalnim zapisom:

$$x = \sum_{i=1}^{n} c_i 10^{-i} = 0, c_0 c_1 c_2 \cdots c_n$$

 $x=\sum_{i=1}^n c_i 10^{-i}=$ ali uma X mujuo konceu $=0,c_0c_1c_2\cdots c_n,$ decimalui Zapii?

 $kjer\ so\ 0 \le c_i \le 9\ \forall i = 1, \dots, \underline{s}.$

Z b označimo celo število sestavljeno iz zaporedja števk $b_1b_2b_3...b_s$, kjer $je \ s \ge 1 \ in \ 0 \le b_i \le 9 \ \forall i = 1, \dots, s. \ Pravimo, \ da \ število \ x \ vsebuje blok števil$ $(b) = (b_1b_2b_3...b_s)$, če obstaja $j \ge 0$, da je $c_{i+j} = b_i$ za vse i = 1, 2, ...s.

Zgled 1 Število 0,135627 vsebuje blok (356), vendar ne vsebuje bloka (352).

Poljubno decimalno število lahko razumemo kot zaporedje blokov celih števil. Tako je na primer število $0.11223344\cdots$ zaporedje blokov (nn), kjer je $n \in \mathbb{N}$.

O številu 0,23571113... $\mathbf{2}$

Za začetek obravnavajmo število 0,23571113..., ki je zgrajeno iz zaporedja blokov praštevil. Pri algebri smo letos dokazali Evklidov izrek, ki pravi, da je praštevil neskončno mnogo, zato to decimalno število ne bo končno. Iz zapisa pa ne moremo razbrati ali je po nekem členu decimalno število periodično, vapos mi knima. zato ni očitno ali je število racionalno. Trdimo naslednje:

Trditev 1 Število 0,23571113... je iracionalno.

Za dokaz te trditve bomo potrebovali različico Dirichletovega izreka [6], ki pravi naslednje:

Izrek 1 (Dirichletov izrek) V vsakem zaporedju $\{an + b\}_{n \in \mathbb{N}_0}$ naravnih števil, kjer sta a in b tuji si naravni števili, je neskončno praštevil.

menavadur Zapis

Dokaz trditve: Naj bo $s \geq 0$ celo število. Po izreku 1 vsako zaporedje $\{10^{s+1}k+1\},\ k\in\mathbb{N}$ vsebuje neskončno praštevil. Torej obstajajo praštevila oblike (k) 00...1, kjer števkam števila k sledi s ničel ter ena enica.

Decimalno število 0,23571113... očitno vsebuje vse bloke take oblike za vsak $s \geq 0$. Z večanjem števila s narašča tudi število ničel v posameznem bloku, kar pomeni, da po še tako pozni decimalki zapis ne bo periodičen.

$\mathbf{3}$ Decimalna števila z naraščajočimi bloki

V prejšnjem razdelku smo dokazali, da je decimalno število, sestavljeno iz praštevilskih blokov, iracionalno. Kaj pa lahko povemo za decimalno število, sestavljeno iz poljubnih blokov?

Naj bo $1 \le a_1 < a_2 < \dots$ strogo naraščajoče zaporedje celih števil. Označimo:

$$Dec\{a_k\} = 0, (a_1)(a_2)(a_3)... ; a_k \in \mathbb{Z}, k \in \mathbb{N}.$$

Zanimajo nas lastnosti zaporedja $\{a_k\}$, ki nam zagotovijo, da bo $Dec\{a_k\}$ iracionalno.

Izrek 2 Če za strogo naraščajoče zaporedje celih števil $\{a_i\}_{i\in\mathbb{N}}$ velja

$$\sum_{i=1}^{\infty} \frac{1}{a_i} = \infty,$$

potem je $Dec\{a_k\}$ iracionalno.

Ta izrek je posplošitev trditve 1, ki pravi, da je število 0,23571113... iracionalno. Za zaporedje praštevil 2, 3, 5, 7, ... namreč velja

$$\sum_{p \text{ praštevilo}} \frac{1}{p} = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots = \infty,$$

kar je leta 1737 dokazal Leonhard Euler v [1].

Zgled 2 Decimalno število $Dec\{7n\} = 0.714212835...(7n)...$ je iracionalno, saj bo vrsta $\sum_{k=1}^{\infty} \frac{1}{7n}$ divergira**j**a. pirite v sedanjiru, rason kadan muraj naporedujete.

Za dokaz izreka 2 bomo potrebovali naslednjo lemo.

Lema 1 Naj bo $(b) = (b_1b_2b_3 \dots b_s)$ blok števil. $Z X = X(b_1b_2b_3 \dots b_s)$ označimo zaporedje naravnih števil, ki ne vsebujejo bloka števil (b). Potem

$$\sum_{x\in X}^{\infty}\frac{1}{x}$$

konvergira.

Opomba 1 V lemi, v nasprotju z definicijo 2, obravnavamo vsebovanost blokov v celih in ne decimalnih številih. Definicijo v ta namen prilagodimo tako, da le spremenimo potenco števila 10 v vsoti. Celo število x tako zapišemo kot

$$x = \sum_{i=0}^{n} c_i 10^{n-i} =$$
$$= c_0 c_1 c_2 \cdots c_n .$$

Dokaz leme 1: Označimo delno vsoto paše vrste

$$S_n = \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}$$
.

Vzemimo tak $t \in \mathbb{N}$, da velja $x_{t-1} < 10^s \le x_t$. Število števk bloka $(b) = (b_1b_2b_3...b_s)$ je očitno s, število 10^s pa ima s+1 števk, kar pomeni, da imajo vsi x_i za $i \ge t$ več števk kot je dolžina bloka.

Delno vsoto sedaj preoblikujemo v

$$S_n = \frac{1}{x_1} + \dots + \frac{1}{x_t} + 10^{-s} \left(\frac{1}{\frac{x_{t+1}}{10^s}} + \dots + \frac{1}{\frac{x_n}{10^s}} \right) \le \frac{1}{x_1} + \dots + \frac{1}{x_t} + 10^{-s} \left(\frac{1}{\left\lfloor \frac{x_{t+1}}{10^s} \right\rfloor} + \dots + \frac{1}{\left\lfloor \frac{x_n}{10^s} \right\rfloor} \right),$$

kjer smo v neenakosti upoštevali, da za poljuben y > 0 velja $y \ge |y|$.

Ker za vsak $t < i \le n$ velja $10^s \le x_i$, bo $\lfloor \frac{x_i}{10^s} \rfloor$ pozitivno celo število. To število lahko interpretiramo kot x_i brez zadnjih s števk. Ker vsi $x_i \in X$ ne vsebujejo bloka (b), ga očitno ne vsebuje niti njegovih prvih nekaj števk. Od tod sledi, da za vsak x_i , $t < i \le n$ obstaja $x_y \in X$, tako da $x_y = \lfloor \frac{x_i}{10^s} \rfloor$.

noben

Novo nastala števila, pa so si lahko med seboj enaka. Tako bi na primer za s=2 veljalo $\lfloor \frac{12345}{10^2} \rfloor = \lfloor \frac{12387}{10^2} \rfloor = 123$.

Opazimo, da se blok $(b_1b_2\dot{b}_3\dots b_s)$ pojavi v vsaj eni od prvih 10^s naravnih števil. Torej lahko poljuben $x_y\in X$ zadošča za največ 10^s-1 možnih x_i , kjer $\lfloor\frac{x_i}{10^s}\rfloor=x_y$. V zgornjem primeru (za s=2) torej število 123 zadošča za vsa števila $123\square\square$ kjer lahko na zadnji dve mesti postavimo poljubno dvomestno število, razen bloka b_1b_2 . Takih števil pa je največ 10^2-1 .

Po zgornjem premisleku lahko sedaj ocenimo izraz

$$\left(\frac{1}{\left\lfloor \frac{x_{t+1}}{10^s} \right\rfloor} + \dots + \frac{1}{\left\lfloor \frac{x_n}{10^s} \right\rfloor}\right) < (10^s - 1)S_n.$$

S pomnožitvijo $(10^s - 1)$ s S_n smo tako zagotovo zajeli vse člene na levi strani neenakosti z upoštevanjem vseh možnih ponovitev v vrednostih $\lfloor \frac{x_i}{10^s} \rfloor$. Če to oceno uporabimo na delni vsoti, dobimo:

$$S_n < \sum_{i=1}^t \frac{1}{x_i} + (10^s-1)10^{-s} S_n \text{,}$$

$$S_n < 10^s \sum_{i=1}^t \frac{1}{x_i} \text{.}$$

Desna stran neenačbe je neodvisna od n, zato vrsta konvergira.

Dokaz izreka 2: Naj bo $\{a_i\}_{i\in\mathbb{N}}$ strogo naraščajoče zaporedje celih števil za katero velja $\sum_{i=1}^{\infty} \frac{1}{a_i} = \infty$. Izrek bomo dokazali s protislovjem. Predpostavimo,

da je $Dec\{a_i\} = 0, (a_1)(a_2) \cdots \in \mathbb{Q}$. To decimalno število očitno ni končno, torej je periodično. To pomeni, da obstaja nek blok števil $(b) = (b_1 b_2 b_3 \dots b_s)$, ki se v decimalnem zapisu periodično ponavlja od nekega mesta dalje.

Definirajmo tak blok (c) dolžine 2s, da velja: če je (b) = $(11 \cdots 1)$, naj bo blok (c) iz samih dvojic, v nasprotnem primeru pa naj bo (c) iz samih enic.

Naj bo $Y = Y(c_1, c_2, \dots, c_{2s})$ zaporedje naravnih števil, ki ne vsebuje bloka (c). Razdelimo nešo vsoto glede na vsbovanost členov a_i v Y:

 $\sum_{i=1}^{\infty} \frac{1}{a_i} = \sum_{a_i \in Y} \frac{1}{a_i} + \sum_{a_i \notin Y} \frac{1}{a_i}$

1 vsch

Po predpostavki vsota na levi strani enačaja divergira in po lemi vsota $\sum_{a \in Y} \frac{1}{a}$ konvergira. Od tod sledi, da $\sum_{a \notin Y} \frac{1}{a}$ divergira. To pomeni, da bo obstaja neskončno a_i v $Dec\{a_i\} = 0, (a_1)(a_2) \dots$, ki vsebujejo blok $(c_1c_2\dots c_{2s})$. Ta blok je dvakrat daljši kot blok (b) in z drugačnimi števkami, zato se ne more zgoditi, da bi bil (c) vsebovan v (b) ali sestavljal njegove dele. Blok (b) se zato ne bo ponavljal v neskončnosti in posledično $Dec\{a_i\}$ ne more biti periodično.

Dokazan izrek nam poda kriterij iracionalnosti števila $Dec\{a_k\}$, ki pa odpove za marsikatero zaporedje $\{a_k\}$. Tako na primer kriterij ne pove nič o iracionalnosti števila $Dec\{k^2\}$, saj vrsta $\sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergira.

o iracionalnosti števila $Dec\{\kappa^-\}$, saj vista $\angle_{k=1}$ k^2 norvosana.

Predpostavimo, da zaporedje a_k narašča kot $e^{\sqrt{k}}$. Z uporabo integralskega kriterija za konvergenco vrst lahko preverimo, da pogoj izreka 2 za tako zaporedje ne bo izpolnjen $(\frac{1}{e^{\sqrt{x}}}$ je zvezna, pozitivna in padajoča na $[1,\infty)$ porit..., lahko zato integralski kriterij lahko uporabimo): $\int_{-\infty}^{\infty} \frac{1}{-1} dx = 2e^{-\sqrt{x}}(-\sqrt{x}-1)\Big|_{-\infty}^{\infty} = \text{Interij.}$

$$\int_{1}^{\infty} \frac{1}{e^{\sqrt{x}}} dx = 2e^{-\sqrt{x}} (-\sqrt{x} - 1) \Big|_{1}^{\infty} =$$

$$= -\frac{4}{e}$$

Zgornji integral konvergira, zato $\sum_{1}^{\infty} \sum_{e^{\sqrt{x}}}^{1}$ konvergentna in s tem tudi

 $\sum_{1}^{\infty}\frac{1}{a_{k}}$. V nadaljevanju bomo pokazali, da je $Dec\{a_{k}\}$ iracionalno, tudi kadar

Izrek 3 Naj bo $Dec\{a_k\} \in \mathbb{Q}$. Potem obstaja $x \in \mathbb{R}$, x > 1 in pozitivna konstanta C, da velja $a_k \geq Cx^k$ za vsak $k \geq 1$.

Izrek pove, da če je $Dec\{a_k\}$ racionalno, potem zaporedje a_k narašča vsaj eksponentno.

int man in anigin poda. - (zato nam pogosto labbo isputivio).

5

Posledica 1 Predpostavimo, da velja

$$\sum_{k=1}^{\infty} \frac{y^k}{a_k} = \infty$$

za vsak y > 1. Potem je decimalno število $Dec\{a_k\}$ iracionalno.

Zgornja posledica je močnejša kot izrek 2. Pogoj iz izreka $2\left(\sum_{i=1}^{\infty}\frac{1}{a_i}=\infty\right)$ tno implicira pogoj iz zgornje posledice $\left(\sum_{k=1}^{\infty}\frac{y^k}{a_k}=\infty\right)$ vni pa bo iz posledice sledilo. da so Dočitno implicira pogoj iz zgornje posledice ($\sum_{k=1}^{\infty} \frac{y^k}{a_k} = \infty$, $\forall y > 1$). Po drugi strani pa bo iz posledice sledilo, da so $Dec\{a_k\}$ iracionalna tudi za zaporedja $\{a_k\}$, ki naraščajo kot $e^{\sqrt{k}}$, oz. kot e^{k^s} za 0 < s < 1:

S korenskim kriterijem preverimo konvergenco.

$$r = \lim_{k \to \infty} \sqrt[k]{\frac{y^k}{e^{\sqrt{k}}}} = \lim_{k \to \infty} \frac{y}{e^{\frac{1}{\sqrt{k}}}} = y$$

Po predpostavki iz posledice je y > 1, zato vrsta divergira in > 0 zato $Dec\{a_k\}$ iracionalno.

Zgled 3 S pomočjo posledice 1 lahko sedaj preverimo, ali je $Dec\{k^2\}$ iracionalno. Po posledici bo število 0,149162536... iracionalno, če bo $\sum_{k=1}^{\infty} \frac{y^k}{k^2} = \infty$ $za\ vsak\ y > 1$. Uporabimo kvocientni kriterij in preverimo konvergenco vrste.

$$L = \lim_{k \to \infty} \frac{\frac{y^{k+1}}{(k+1)^2}}{\frac{y^k}{k^2}} = y \lim_{k \to \infty} \left(\frac{k}{k+1}\right)^2 = y > 1$$

Vrsta divergira, zato bo $Dec\{k^2\} \in \mathbb{R} \setminus \mathbb{Q}$.

Dokaz posledice 1: Dokazujemo s protislovjem. Predpostavimo, da je $Dec\{a_k\} \in$ \mathbb{Q} . Po izreku 3 obstaja realno število x>1 in konstanta C>0, da velja $a_k \geq Cx^k$ za vsak $k \geq 1$. Ta izraz preoblikujemo in dobimo:

$$\underbrace{\sqrt{x^k}}_{a_k} \le \frac{1}{C\sqrt{x^k}}$$

me navaden Papis

Od tod sledi

$$\sum_{k=1}^{\infty} \frac{\sqrt{x^k}}{a_k} \le C^{-1} \sum_{k=1}^{\infty} \frac{1}{\sqrt{x^k}} < \infty.$$

Desna vsota je ravno geometrijska vrsta, ki konvergira saj je x>1 in s tem $\sqrt{x}>1$. To pa je v protislovjem s predpostavko, ki pravi da $\sum_{k=1}^{\infty}\frac{y^k}{a_k}=\infty$ za vsak y > 1. Torej bo $Dec\{a_k\}$ iracioanlno.

Dokaz izreka 3: Predpostavimo, da $Dec\{a_k\} = 0, (a_1)(a_2) \cdots \in \mathbb{Q}$, torej bo periodično od nekega člena dalje. Naj bo $(b_1b_2 \dots b_p)$, $0 \le b_i \le 9 \ \forall i = 1, \dots 9$, perioda in naj bo (a_m) prvi blok, ki se pojavi v periodičnem delu decimalnega zapisa.

Najprej dokažimo, da ima blok (a_{k+p}) vsaj eno števko več kot blok (a_k) za $\forall k \geq m$. Predpostavimo, da imata (a_{k+p}) in (a_k) oba po N števk. Ker je zaporedje $\{a_k\}$ strogo naraščajoče, bodo imeli vsi $a_k, a_{k+1}, \ldots a_{k+p}$ po N števk. Število $(a_k)(a_{k+1})\ldots(a_{k+p-1})$ ima torej Np števk. Ker pa je perioda enaka p, bo od tod sledilo, da je $a_k = a_{k+p}$, kar ne more biti res, saj je $\{a_k\}$ strogo naraščajoče zaporedje.

Sledi, da ima a_{k+2p} vsaj eno števko več kot a_{k+p} , in zato vsaj dve števki več kot a_k za vsak $k \geq m$. Torej velja, da je $a_{k+2p} \geq 10a_k$. Z indukcijo lahko dokažemo, da je

$$a_{k+2np} \ge 10^n a_k; \ \forall k \ge m, \ n \in \mathbb{N}.$$

Vzemimo sedaj poljuben $l \geq m$ in označimo $n := \lfloor \frac{l-m}{2p} \rfloor$. Veljako bo

$$a_l \ge a_{m+2np} \ge 10^n a_m \ge 10^{\frac{l-m-2p}{2p}} a_m,$$
 (1)

za kar dokažimo vsak neenačaj posebej.

Za dokaz prve neenakosti si poglejmo indekse obeh členov.

$$m + 2np = m + 2\left\lfloor \frac{l - m}{2p} \right\rfloor p$$

$$\leq m + 2\left(\frac{l - m}{2p}\right) p$$

$$= m + l - m = l$$

Ker je $\{a_k\}$ strogo naraščajoče, be sledilo $a_{m+2np} \leq a_l$. Druga neenakostj sledi po prejšnji ugotovitvi, da je $a_{k+2np} \geq 10^n a_k$. Za tretjo neenakost pa podrobneje poglejmo eksponenta števila 10. Velja

$$n = \left| \frac{l-m}{2p} \right| > \frac{l-m}{2p} - 1,$$

saj je po pravilih za računanje s celim delom realnega števila $x < \lfloor x \rfloor + 1$.

Definirajmo $C':=10^{-\frac{m+2p}{2p}}$ in $x:=10^{\frac{1}{2p}}$, za kar be veljalø

$$C'x^{l} = 10^{-\frac{m+2p}{2p}} \cdot 10^{\frac{l}{2p}} = 10^{\frac{l-m-2p}{2p}} \le 10^{\frac{l-m-2p}{2p}} a_m, \tag{2}$$

kjer smo upoštevali, da je $\{a_k\}$ zaporedje pozitivnih celih števil in je zato $a_m \geq 1$.

Če sedaj združimo neeančbi 1 in 2 dobimo $a_l \geq C'x^l$ za vsak $l \geq m$. Po potrebi zmanšajmo C' na C > 0, da bo neenakost veljala za vse $k \geq 1$.

Angleško-slovenski slovar strokovnih izrazov

desetiški ulomek decimal fraction digit števka Dirichlet's theorem Dirichletov izrek floor function celi del števila integral test integralski kriterij irracional number iracionalno število prime number praštevilo ratio test kvocientni kriterij root test korenski kriterij racionalno število racional number sequence zaporedje series vrsta

Literatura

- [1] L. Euler, Variae observationes circa series infinitas, Commen. Academ. Scient. Petropolitanae 9 (1737), 160-188.
- [2] G. H. Hardy in E. M. Wright, An introduction to the theory of numbers, 5-jizdaja, Clarendon Press, Oxford, 1970.
- [3] N. Hegyvari, On some irrational decimal fractions, Amer. Math. Monthly **100(8)** (Okt., 1993), 779-780.
- [4] P. Martinez, Some new irrational decimal fractions, Amer. Math. Monthly 108(3) (Mar., 2001), 250-253.
- [5] A. McD. Mercer, A note on some irrational decimal fractions, Amer. Math. Monthly **101(6)** (Jun.-Jul., 1994), 567-568.
- [6] J. Vogrinc, *Dirichletov izrek in karakterizacija praštevil*, magistrsko delo, Fakulteta za matematiko in fiziko, Univerza v Ljubljani, 2013.