

INFO20003 Database Systems

Dr Renata Borovica-Gajic

Lecture 13
Query Optimization Part I

Remember this? Components of a DBMS

MELBOUKNE

This is one of several possible architectures; each system has its own slight variations.

Index files
Heap files

MELBOURNE

- Overview
- Query optimization
- Cost estimation

Readings: Chapter 12 and 15, Ramakrishnan & Gehrke, Database Systems

Query Processing Workflow: Review

Query Optimization

MELISOURNE

- Typically there are many ways of executing a given query,
 all giving the same answer
- Cost of alternative methods often varies enormously
- Query optimization aims to find the execution strategy with the lowest cost
- We will cover:
 - -Relational algebra equivalences
 - -Cost estimation
 - Result size estimation and reduction factors
 - -Enumeration of alternative plans

MELBOURNE

- A tree, with relational algebra operators as nodes and access paths as leaves
- Each operator labeled with a choice of algorithm

SELECT sname from Sailors NATURAL JOIN Reserves WHERE bid = 100 and rating > 5

MELBOURNE Query Optimization

MIELISOUKNIE

- Overview
- Query optimization
- Cost estimation

Readings: Chapter 15, Ramakrishnan & Gehrke, Database Systems

MELBOURNE A Familiar Schema for Examples

MELBOURNE

Sailors (*sid*: integer, *sname*: string, *rating*: integer, *age*: real)

Reserves (sid: integer, bid: integer, day: dates, rname: string)

Boats (bid: integer, bname: string, color: string)

Query Optimization Overview

MUELISOUKNIE

Example:

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

Query optimization steps:

- 1. Query first broken into "blocks" > every individual pour start with select is a block
- 2. Each block converted to relational algebra
- 3. Then, for each block, several alternative query plans are considered
- 4. Plan with the lowest estimated cost is selected

Step 1: Break query into query blocks

MELBOUKNE

- Query block is any statement starting with select
- Query block = unit of optimization
- Typically inner most block is optimized first, then moving towards outers

THE UNIVERSITY OF | Step 2: Convert query block into MELBOURNE relational algebra expression

MUELISOUKNIE

Query:

SELECT S.sid FROM Sailors S, Reserves R, Boats B WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = "red"

Relational algebra:

$$\pi_{\text{S.sid}}(\sigma_{\text{B.color} = \text{``red''}}(\text{Sailors} \bowtie \text{Reserves} \bowtie \text{Boats}))$$

Step 3: Relational Algebra Equivalences

sailors bager 50 1 rating=10 () bager 50 d'ipalso

• Selections:
$$\sigma_{c_1 \wedge \cdots \wedge c_n}(R) \equiv \sigma_{c_1} \left(\dots \left(\sigma_{c_n}(R) \right) \right)$$
 (Cascade) $\sigma_{c_1} \left(\sigma_{c_2}(R) \right) \equiv \sigma_{c_2} \left(\sigma_{c_1}(R) \right)$ (Commute)

• Projections:
$$\pi_{a_1}(R) \equiv \pi_{a_1}\left(\dots\left(\pi_{a_n}(R)\right)\right)$$
 (Cascade)
$$a_i \text{ is a set of attributes of R and } a_i \subseteq a_{i+1} \text{ for } i = 1 \dots n-1$$

$$\Pi_{\text{ID}}\left(\Pi_{\text{IP}, \text{age}}, \text{rane}^{(5)}\right)$$

 These equivalences allow us to 'push' selections and projections ahead of joins. MIELISOUKNIE

Selection:

$$\sigma_{age < 18 \text{ } \wedge \text{ } rating > 5}$$
 (Sailors)

$$\leftrightarrow \sigma_{\text{age} \le 18} (\sigma_{\text{rating} \ge 5} (\text{Sailors}))$$

$$\leftrightarrow \sigma_{\text{rating}>5} (\sigma_{\text{age}<18} (\text{Sailors}))$$

Projection:

$$\pi_{\text{age,rating }}(\text{Sailors}) \longleftrightarrow \pi_{\text{age }}(\pi_{\text{rating }}(\text{Sailors}))$$

$$\pi_{\text{age,rating}} \left(\text{Sailors} \right) \longleftrightarrow \pi_{\text{age,rating}} \left(\pi_{\text{age,rating,sid}} \left(\text{Sailors} \right) \right)$$

MELBOURNE Another Equivalence

MIELBOUKNIE

 A projection commutes with a selection that only uses attributes retained by the projection

$$\pi_{\text{age, rating, sid}} \left(\sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} \left(\text{Sailors}\right)\right) \\ \leftrightarrow \sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} \left(\pi_{\text{age, rating, sid}} \left(\text{Sailors}\right)\right) \\ \pi_{\text{age, sid}} \left(\sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} \left(\text{Sailors}\right)\right) \\ \xrightarrow{\bullet \quad \sigma_{\text{age}<18 \, ^{\land} \, \text{rating}>5} \left(\pi_{\text{age, sid}} \left(\text{Sailors}\right)\right)}$$

Equivalences Involving Joins

MELISOUKNE

$$R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T$$
 (Associative)
 $(R \bowtie S) \equiv (S \bowtie R)$ (Commutative)

These equivalences allow us to choose different join orders

Mixing Joins with Selections & Projections

MIELIBOURNIE

• Converting selection + cross-product to join

$$\sigma_{S.sid = R.sid}$$
 (Sailors x Reserves)

$$\leftrightarrow$$
 Sailors $\bowtie_{S, \text{sid} = R, \text{sid}}$ Reserves

$$\sigma_{S.age < 18}$$
 (Sailors $\bowtie_{S.sid = R.sid}$ Reserves) first selection \rightarrow then join

$$\leftrightarrow$$
 ($\sigma_{\text{S.age} < 18}$ (Sailors)) $\bowtie_{\text{S.sid} = \text{R.sid}}$ Reserves

We can also "push down" projection (but be careful...)

$$\pi_{S.\text{sname}} \text{ (Sailors)} \bowtie_{S.\text{sid} = R.\text{sid}} \text{ Reserves)} \text{ are ful above the attribute teep}$$

$$\longleftrightarrow \pi_{S.\text{sname}} \left(\pi_{\text{sname}, \text{sid}} (\text{Sailors}) \right) \bowtie_{S.\text{sid} = R.\text{sid}} \pi_{\text{sid}} (\text{Reserves}))$$

MELBOURNE Query Optimization

MIELISOUKNIE

- Overview
- Query optimization
- Cost estimation

Readings: Chapter 15, Ramakrishnan & Gehrke, Database Systems

Recall: Query Optimization Overview

MELBOURNE

- 1. Query first broken into "blocks"
- 2. Each block converted to relational algebra
- 3. Then, for each block, several alternative query plans are considered
- 4. Plan with lowest estimated cost is selected

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

 $\pi_{(sname)}\sigma_{(bid=100 \land rating > 5)}$ (Reserves $\triangleright \triangleleft$ Sailors)

21

Cost-based Query Sub-System

Cost Estimation

MUELIBOURNIE

- For each plan considered, must estimate cost:

 -Must estimate size of result for each operation in tree
 - Use information about input relations (from the system catalogs), and apply rules (discussed next)
 - -Must estimate cost of each operation in plan tree
 - Depends on input cardinalities
 - •We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins)
 - Next time we will calculate the cost of entire plans...

Statistics and Catalogs

MELBOUKNE

- To decide on the cost, the optimizer needs information about the relations and indexes involved. This information is stored in the system catalogs.
- Catalogs typically contain at least:

Statistics in catalogs are updated periodically

not recemany 100% amorate

Result size estimation

MELBOUKNE

• Consider a query block: WHERE predicate1 AND ... AND predicate_k

SELECT attribute list

- Maximum number of tuples in the result is the product of the cardinalities of relations in the FROM clause
- Reduction factor (RF) associated with each predicate reflects
 the impact of the predicate in reducing the result size. RF is
 also called selectivity.

Result size estimation calculations

MELBOURNE

Single table selection:

ResultSize =
$$NTuples(R) \prod_{i=1..n} RF_i$$

• Joins (over k tables):

ResultSize =
$$\prod_{j=1...k} NTuples(R_j) \prod_{i=1...n} RF_i$$

 If there are no selections (no predicates), reduction factors are simply ignored, i.e. they are ==1

Calculating Reduction Factors(RF)

MUELISOUKNIE

- Depend on the type of the predicate:
 - 1 Col = value

Col > value

RF = (val - Low(Col)) / (High(Col) - Low(Col))

Col A = Col B (for joins)

RF = 1/ (Max (NKeys(Col A), NKeys(Col B)))

In no information about Nkeys or interval, use a "magic number" 1/10 RF = 1/10

max of distinct value

MIELISOUKNIE

$$RF : \frac{1}{10}$$

SELECT * FROM Sailors WHERE rating = 3 AND age > 50;

Ntuple. RF(rating). RF(age>50)

Calculate result size:

NTuples(S) = 1000
RF(rating) = 1/10 = 0.1
RF(age) =
$$(100-50)/(100-0) = 0.5$$

ResultSize = NTuples(S)*RF(rating)*RF(age)
= $1000*0.1*0.5=50$ tuples

MUELLISOUKNIE

- What is query optimization/describe steps?
- Equivalence classes
- Result size estimation

Important for Assignment 3 as well

MELBOUKNE

- Query optimization Part II
 - Plan enumeration