ЛАБОРАТОРНАЯ РАБОТА 41

ОПРЕДЕЛЕНИЕ L И ТЕМПЕРАТУРЬ			ЦИЕНТА СОП	РОТИЕ	ВЛЕНИЯ М	ІЕТАЛЛ А			
Выполнил студент гр			(Ф.И.О					
Подпись преподавателя									
<u> Цель работы</u> : исследовать завопределить ширину запрещен		-	• •						
ния металла.									
Описание установки					t,C°		\overline{R} ,OM		
Величина температуры в С и измеряемого сопротивления п					пока- о индикаторы о				
ывается в окнах вверху панел измерительному устройству полупроводника. Тумблер S_2 в включает нагрев образца. П	ец лер	р Багрев В вкл мет		сеть р & ^{вкл} Ѕ2 ^{выкл}					
цие лампочки индикаторов.	три этом	our opuro	ien coorderendy	10		Таблица	a 1.		
Торядок выполнения работы				Полупроводник		Металл			
1. Разобраться в назначени	и элемен	тов уста	новки.	t ^o C	R_{π} , Om	t ^o ,C	R_{m} , Om		
2. Включить установку в с				t_0°, C	R_{Π} , OM $R_{\Pi 0} =$	$t_0^{\circ} =$	$R_{\rm M0} =$		
"выкл"), измерить начальную комнатную температуру $t_0^{ { m o}}$					$\kappa_{\Pi()}$ –	$t_0 =$	$N_{\rm M0}$ –		
и, переключая тумблер S_3 , из			· ·						
проводника $R_{\Pi 0}$ и металла R									
туре. Результаты занести в таб									
3. Тумблером S_3 подключ	нить к из	змерител	льному уст-						
оойству образец металла. Тум									
ватель. Через каждые $10^{ m o}{ m C}$ и									
галла $R_{_{ m M}}$. Значения температ	уры в °С	и изме	еренных со-						
противлений $R_{_{ m M}}$ заносить в та	аблицу 1.								
4. Когда температура дост	гигнет 10	0-120°C	выключить						
нагреватель (выше 120°C не нагревать!) и сразу же						O/If			
гумблером S_3 подключить к измерительному устройству					$\alpha = O_{M}/K$				
олупроводник. При остыван	ии через	каждые	10°С измеряти	ь его со	противлені	ие R_{Π} из	аносить		
иеренные величины сопротив	ления и т	температ	туры в °С в табл	тицу 1	вплоть до н	начальной	і комнатн		
емпературы.							блица 2		
5. Закончив измерения, выключить установку.6. По формуле <i>T</i>=<i>t</i>°+273 К	Т, К	$\frac{1}{T}$, K ⁻¹	$\theta = \frac{1}{T_0} - \frac{1}{T}, K^{-1}$	$\frac{R_{\Pi 0}}{R_{\Pi}}$	$\ln\left(\frac{R_{\Pi 0}}{R_{\Pi}}\right)$		ж ΔE_3 ,		

перевести температуру в градусы Кельвина. Заполнить таблицу 2. Все вычисленные результаты записывать с точностью до трех значащих цифр. По данным таблицы 1 строить график зависимости $R_{\rm M}$ от $t^{\rm o}$, а по данным таблицы 2 – график зависимости $\ln\left(R_{\Pi 0}/R_{\Pi}\right)$ от θ (эти графики должны быть прямыми линиями).

		Табли	Таблица 2			
Т, К	$\frac{1}{T}$, K^{-1}	$\theta = \frac{1}{T_0} - \frac{1}{T}, K^{-1}$	$\frac{R_{\Pi 0}}{R_{\Pi}}$	$\ln\left(\frac{R_{\Pi 0}}{R_{\Pi}}\right)$	ΔE_3 , Дж	ΔE_3 , \Im B
		_				
		_				

7. Пользуясь построенными графиками по формулам

$$\alpha = \frac{\Delta R_{\rm M}}{R_0 \Delta t^{\rm o}} \quad (*) \qquad \Delta E_3 = 2k_{\rm B} \cdot \frac{\Delta \ln \left(R_{\rm H0}/R_{\rm H}\right)}{\Delta \theta} \quad (**)$$

где
$$\theta = \frac{1}{T_0} - \frac{1}{T}$$
, $k_{\rm B} = 1.38 \cdot 10^{-23} \, \text{Дж/K} - \text{постоянная Больц-}$

мана, определить температурный коэффициент сопротивления металла α и величину ширины запрещенной зоны собственного полупроводника ΔE_3 в Дж, а затем в эВ (1 эВ = $1,6\cdot 10^{-19}$ Дж)

<u>Контрольные вопросы к лабораторной работе № 41</u>

- 1. Объясните причину возникновения разрешенных и запрещенных энергетических зон.
- 2. Какие энергетические зоны называются зоной проводимости и валентной зоной?
- 3. Сформулируйте принцип Паули. Какую роль он играет при заполнении электронами разрешенных энергетических зон?
- 4. В чем различие структуры энергетических зон у диэлектрика, полупроводника и металла?
- 5. Почему в металле надо учитывать только электронную проводимость, а в полупроводнике необходимо учесть и электронную и дырочную проводимость? Что такое "дырка" и как она перемещается?
- 6. Как удельная проводимость среды связана с концентрацией свободных заряженных частиц?
- 7. Что называется распределением Ферми-Дирака? В каком случае это распределение превращается в распределение Максвелла-Больцмана?
- 8. Что такое функция Ферми, и каков её физический смысл?
- 9. Дайте определение энергии Ферми $E_{\,\Phi}$. Где расположен уровень $E_{\,\Phi}$ в металле? В собственном полупроводнике?
- 10. Какой электронный газ называется вырожденным и невырожденным? Сформулируйте условие вырожденности и невырожденности такого газа.
- 11. Получите формулу зависимости от температуры для концентрации свободных электронов и дырок в собственном полупроводнике.
- 12. Что называется температурным коэффициентом сопротивления металла?
- 13. Сделайте вывод расчетных формул (*) и (**).
- 14. Объясните причины линейной зависимости сопротивления металла и экспоненциальной зависимости сопротивления полупроводника от температуры. Чем объясняются эти различия?
- 15. Объясните методику вычисления ширины запрещенной зоны полупроводника и температурного коэффициента сопротивления металла в данной работе.

Изучаемый в работе материал можно найти в следующих учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт. СПб., М., Краснодар: Лань, 2008. : Т. 3 §\$42-43.
- 2. Колмаков Ю. Н., Левин Д.М., Семин В.А. Основы физики конденсированных сред и физики микромира: Ч.1, изд. ТулГУ. 2014, гл.2 §2.2, гл.5 §5.1, гл.6 §§6.1, 6.2.