Tutorat mathématiques : TD1 Université François Rabelais Département informatique de Blois

Algèbre

*

Problème 1

On définit sur l'ensemble $\mathbb N$ la loi de composition \star telle que :

$$\forall (a,b) \in \mathbb{N}^2, a \star b = a + b - ab$$

- 1. Est-ce que la loi \star est une loi de composition interne?
- 2. Est-ce que (\mathbb{R}, \star) est-un groupe abélien? Si non, quelle(s) propriété(s) lui manque(nt) t-il?
- 3. Calculer $\underbrace{a \star a \star \dots \star a}_{n \text{ fois}} = a^{\star n}$.

Problème 2

Soit la loi de composition interne \star définie sur $E=\{a,b,c,d\}$ telle que :

*	a	b	c	d
a	c	a	d	b
b	a	b	c	d
c	b	c	d	d
d	a	c	b	d

- 1. La loi \star est-elle commutative? Associative? Pour quels éléments l'écriture $x\star x\star x$ a t-elle un sens?
- 2. (E,\star) possède-t-elle l'élément neutre? Un élément neutre à gauche? Neutre à droite?
- 3. L'ensemble $A = \{a, b, c\}$ est-il stable?

Problème 3

Soit un ensemble Ω tel que $\operatorname{card}(\Omega) = n$.

Combien de lois de composition interne différentes peut-on créer sur Ω ? Parmi toutes ces lois, combien sont commutatives? Combien possèdent l'élément neutre?

Problème 4

Soit une loi \star associative sur un ensemble E. Un élément $x \in E$ est dit *idempotent* si et seulement si $x \star x = x$.

- 1. Montrer que si x et y sont idempotents et commutent, alors $x \star y$ est idempotent.
- 2. Montrer que si x est idempotent et inversible, alors x^{-1} est idempotent.

Problème 5

On définit le groupe des n-entiers relatifs comme suit :

$$\forall n \in \mathbb{N}, n\mathbb{Z} = \{n \times k | k \in \mathbb{Z}\}\$$

- 1. Déterminer $0\mathbb{Z}$ et $1\mathbb{Z}$.
- 2. Montrer que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 3. Montrer que $A=3\mathbb{Z}\cup 4\mathbb{Z}$ n'est pas stable pour l'addition.
- 4. Montrer que l'application f telle que $f: \begin{cases} \mathbb{Z} & \to \mathbb{Z} \\ k & \mapsto 6k \end{cases}$ est un endomorphisme de $(\mathbb{Z}, +)$.
- 5. Déterminer $\ker(f)$ et $\operatorname{Im}(f)$. Qu'en déduisez-vous?

Problème 6

On se place ici dans l'algèbre $\mathcal L$ de la logique propositionnelle.

On considère qu'un système [d'opérateurs] S est complet quand toute formule $\varphi \in \mathcal{L}$ peut-être représentée à l'aide de S. On considère que $S = \{\neg, \lor, \land\}$ est un système complet.

- 1. Combien d'opérateurs d'arité 2 peut-on définir au total?
- 2. Trouver un système à 8 opérateurs d'arité 2 qui n'est pas complet.
- 3. On considère les deux opérateurs \uparrow et \downarrow respectivement Nand et Nor dont on donne la table de vérité suivante :

p	q	$p \uparrow q$	$p \downarrow q$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

- (a) Ces opérateurs sont-ils associatifs? Commutatifs? Montrer que $\{\uparrow\}$ et $\{\downarrow\}$ sont des systèmes complets?
- (b) Montrer que les seuls opérateurs qui forment à eux seuls un système complet sont \uparrow et \downarrow .

Problème 7

- 1. Soit l'application φ telle que $\varphi: \begin{cases} \mathbb{C}^* & \to \mathbb{R}^* \\ z & \mapsto |z| \end{cases}$
 - (a) Montrer que φ définie un morphisme de groupes de (\mathbb{C}^*, \times) vers (\mathbb{R}^*, \times) .
 - (b) Calculer $\ker(\varphi)$ et $\operatorname{Im}(\varphi)$. En donner une interprétation géométrique.
- 2. Soit l'application ψ telle que $\psi: \begin{cases} \mathbb{R} & \to \mathbb{U} \\ \theta & \mapsto e^{i\theta} \end{cases}$. On rappelle que $\mathbb{U} = \{z \in \mathbb{C}^* | |z| = 1\}$
 - (a) Montrer que ψ définie un morphisme de groupes de $(\mathbb{R}, +)$ vers (\mathbb{U}, \times) .
 - (b) ψ est-elle injective? Surjective? Bijective?