Design and Development of the ICEACE Simulator

Roni Bülent Özel

Reykjavik University
School of Science and Engineering
bulent.ozel@gmail.com
bulent@ru.is Einar Jon Erlingsson, Marco Raberto, Hlynur Stefansson

June 22, 2013

WEIHA 2013, Reykjavik, nIceland

ICEACE Project

- Home: http://iceace.github.io/home
- Matlab: http://iceace.github.io/MATLAB
- FLAME: http://iceace.github.io/FLAME

ICEACE Model

- Agent Types:
 - Household
 - Firm
 - Bank
 - Equity Fund
 - Central Bank
 - Government
- Markets:
 - Labour Market
 - Production Markets (Consumption Goods, Housing Units)
 - Consumption Goods Market
 - Housing Market
 - Credit Market
- Communication Schemes:
 - Direct Messaging
 - Balance Sheet Flows
 - Agent-Agent Links
- Initialization

Multi-agent Design Challanges

- Agents
 - Role Multiplicity
 - Beliefs, Desires, Intentions
 - Autonomity
- Environment
 - Context
 - Influence
- Communication
- Scalability

ICEACE Implementation Choices (FLAME)

- Distributed Computing
 - -> XMachine
- Object Oriented Programming Paradigm
 - -> XMachine Markup Language (XMML)
- Message Passing
 - -> Message Boards (Broadcasting)
 - -> Message Filtering (Links)
- Synchronization
 - -> Time Units: Day (1), Week (5xD), Month (4xW), Quarter (3xM), Year (12xM)
- Acyclic Dependencies
 - -> Exclusive State Transitions
- High Performance Computing
 - -> MPI Protocal
- Initialization
 - Pythonic Agent Initialization Description Language (PyAIDL)

FLAME Multi-agent Design Frame Framework

XMachine - A Single Design Unit

State Transitions

ICEACE Model v0.2

Overall state transition and communication graph of ICEACE model:

```
http://iceace.github.io/FLAME/doxy/stategraph_
colour.pdf
```

Conceptual Design Vs Implementation

- Pseudo Agents
 - Real Estate Agency
 - Job Placement Office
 - Mall
 - Census Bureau
- Agent Subtypes
 - Households: Capitalist, Non-capitalist
 - Firm: Constructor, Regular
- Mortgage Durations & Annuity

ICEACE Reference Manual

http://iceace.github.io/FLAME/doxy/summary.pdf

- State Variables (memory)
- Functions (behaviours)
- Messages (communication)

Modular and Iterative Design

Model Descriptions:

```
https://github.com/ICEACE/FLAME/blob/master/model_v0.1.0.xml
```

Labour Market

- Monthly
- Market opens first day of the month
- Payments are done at last day of the month
- Market closes either when all positions are filled or all households are employed.
- Employment turnover is possible
- Skilled households are given priority
- Firing, new hiring, and wage adjustment is possible

Production Market

- Monthly
- Regular products are produced monthly
- A housing unit is completed in 12 months
- Production function
- Pricing
- Production planning
- Labour requirements

Consumption Market

- Weekly
- Limited yet monthly adjustable disposable consumption budget
- Unspent budget maybe used in subsequent weeks
- Wealth effect as a mean of shock transmission mechanism from housing markets
- Arrival to mall is random
- Cheaper products have a higher probability to be consumed first

Housing Market

- Monthly
- Housing units or homogenous
- Constructor firms, buyers, sellers
- Fire sale cases
- Pricing
- Mortgage requirements
- Annuity

Credit Market

- Monthly
- Loans
- Mortgage annuity adjustment
- Equity Fund
- Illiquidity
- Insolvency

Policy Making

- Quarterly, monthly, weekly.
- Interest rates
- Tax rates and taxing
- Inflation, unemployment
- General benefits, unempoylemt benefits

Computational Challanges

- Initialization
- Load Balancing
- Time Performance O(|AgentCount|)
- Memory Management

ICEACE Iterative Design Process

- Theoretical Design
- Prototyping
- Iterative Multi Agent Design Cycle:
 - Model Description (XMML):
 - Memory
 - Action Description
 - State Transitions
 - Activation Conditions
 - Inputs: (filtering, sorting, randomizing)
 - Outputs
 - Behaviors (C Functions)
 - Unit Testing
 - Modular Verificatation
- Initialization (via PyAIDL):
 - Setting policy parameters
 - Instantiating agents
 - Initializing agent memories
- Validation Experiments

Validation

- Calibration
- Randomness
- Paramater sensivity
- Empirical Tests

Serial Run Time

- Households: 8000, Firms: 125(regular) + 25(constructor),
 Banks:2, Central Bank, Government, Job Placement Office,
 Real Estate Agency, Mall
- Dual Core MacPro OS 10.8.4, CPU 2.26 GHz, RAM 4G 1067MHz
- Debug Mode
- 50 runs
- Avg clock time $\approx 7min$