Day 3

Outline

- 1. Expected value of the random variable
- 2. Variance and standard deviation of random variable
- 3. [If time allows]

Expected values (mean)

Please refer to day_two.pdf

Law of Large Numbers

Suppose we have "N" <u>independent</u> and <u>identically distributed</u> (IID) realization of "X". That is, we observe out random event "N" times <u>independently</u> and record the value of "X". Then, as "N" increases, the sample mean of the "N" independent observations converges to μ_x . We can get arbitrarily close to μ_x by simply observing values of "X" enough times.

Variance of a Random Variable

Average squared deviance from mean (distance away from the middle)

<u>Variance Formula:</u>

$$\sigma_{x}^{2} = \sum [x^{2} * P(x)] - \mu_{x}^{2}$$

Figure 1: variance formula

- Variance is non-negative
- Variance is <u>not</u> a linear operator

In general, Var(X+Y) != Var(X) + Var(Y)

However, if X and Y are independent

$$Var(X+Y) == Var(X) + Var(Y)$$

Var(cX) != cVar(X)

$$\underline{\text{However!}} \rightarrow \text{Var}(cX) == \underline{C^2}\text{Var}(X)$$

When X and Y are independent,

$$Var(aX+bY) = a^2\sigma_x^2 + b^2\sigma_y^2$$

Standard Deviation of Random Variable

$$\sigma_{\rm x} = \sqrt{\sigma_{\rm x}}$$

Standard deviation is $\underline{\text{not}}$ linear

$$\sigma_{x+y} = \sqrt{\sigma_x + \sigma_y}$$

If X and Y are independent

$$\sigma_{\rm cx} = |C|\sigma_{\rm x}$$

Adding a constant

```
Consider W = X + c (where c is an arbitrary constant) \Sigma[W] = \Sigma[X+c] = \Sigma[X] + \Sigma[c] \Sigma(W) = \Sigma(X) + c Var(W) = Var(X+c) = Var(X) + Var(c) Var(c) = 0 Var(W) = Var(x) SD(W) = SD(X)
```

Example One

- Toss two fair coins.
- Let X be the number of heads observed
- Find the PMF, expected value, variance and standard deviation of X.

Each win is independent

```
P(Heads)=1/2 Independence: P(A\cap B)=P(A)*P(B)0 heads: TT=>P(TT)=P(T_1)*P(T_2)=1/2*1/2=1/41 heads: HT TH 2 heads: HH
```

Easy Way

- 1. Find the PMF and write as a table
- 2. Expand our table by adding columns
- 3. Add down each column

Example Two

You enter a lottery in which there is a 1 in 1000 chance of winning. If you win, you get \$500 and if you don't you get nothing Let Y be the amount of money you win.

Find the PMF, expected value, variance and standard deviation

```
map = {
    0: 0.999 -----> 0 ---> 0
    500: 0.001 ---> 0.5 --> 250 ---> 15.811
}
```

expected value: 0 and 500

Example Two (With a twist)

You enter a lottery in which there is a 1 in 1000 chance of winning. If you win, you get \$500 and if you don't you get nothing Let Y be the amount of money you win.

Let V = amount of money you have after the lottery

Find the PMF, expected value, variance and standard deviation

$$\Sigma[V] = \Sigma[Y-1] = \Sigma[Y] - 1 = 0.5 - 1 = -0.5 \text{ Var}(V) = \text{Var}(Y-1) = \text{Var}(Y) = 249.75 \text{ SD}(V) = \text{SD}(Y) = 15.8$$

Relationship Between Probability and Statistics

Let our random event be:

Pick one person at random and record some characteristics of the individual

The individual we record is the <u>case</u> or <u>unit</u>

The characteristics we record are called <u>variables</u>

The set of all cases of interest: population