Universidad: Mayor de San Ándres. Asignatura: Álgebra Lineal I

Ejercicio: Prueba de Diagnostico.

Alumno: PAREDES AGUILERA CHRISTIAN LIMBERT.

Prueba Diagnostico

- 1. Dado el conjunto $U = \mathbb{R}$, $B = [0, \infty)$, C = [0, 1] y D = (0, 1) determinar los siguientes (si es posible esbozar una idea geométrica):
 - a) $D^c \cap C$.

Respuesta.- Sea $D^c = (-\infty, 0] \cap [1, \infty)$ entonces $D^c \cap C = 0, 1$.

b) $B \times U$.

Respuesta.- $B \times U = \{(a, b) : a \in B \land b \in U\}.$

c) $B \cap D \cup \{x \in U : x \le 1/2\}.$

Respuesta.- Sea $B \cap D = [0,1]$, entonces, $B \cap D \cup \{x \in U : x \le 1/2\} = (-\infty,1]$.

2. Dada la función $f:[0,5] \to \mathbb{R}$, con regla de correspondencia $f(t) = \int_0^t (x^2 + 1) dx$. Determinar el recorrido de la función. ¿Es la función inyectiva?.

Respuesta.- Sea $f(t) = \int_0^t (x^2 + 1) dx = \left(\frac{x^3}{3} + x\right)\Big|_0^t = \frac{t^3}{3} + t$ entonces,

- $f(0) = \frac{0^3}{3} + 0 = 0.$
- $f(5) = \frac{5^3}{3} + 5 = \frac{125}{3} + 5 = \frac{28}{3}.$

El recorrido estará dado por $\left[0, \frac{28}{3}\right]$.

La función es inyectiva en [0,5] dado que si trazamos lineas horizontales sobre la gráfica de la función la función solo se intersecta en un sólo punto.

- **3.** Definir funciones biyectivas entre los siguientes conjuntos:
 - a) Entre \mathbb{R} y \mathbb{R} .

Respuesta.-

b) Entre \mathbb{R} y (0,1).

Respuesta.-

c) calcular la ecuación de una linea recta que pasa por los puntos P(3,1), Q(-6,-2). Describir la función que caracteriza dicha recta. $\xi(0,0)$ está en la recta?.

Respuesta.- Haciendo uso de la ecuación de la recta, tenemos por un lado que su pendiente viene dado por,

$$m = \frac{1+2}{3+6} = \frac{1}{3}$$

Luego reemplazamos uno de los puntos,

$$y - 1 = \frac{1}{3}(x - 3) \implies y = \frac{1}{3}x$$

Por último vemos que el punto (0,0) está en la recta encontrada dado que 0=0.