Transformation de Fourier 2

1 Exercices

Exercice 1. Modulation d'amplitude

Soit $f(t) \in L^1(\mathbb{R})$ une fonction representant un signal temporel que l'on souhaite transmettre puis reconstruire.

Transmission

- a) On introduit le signal modulé $g(t) = f(t)\cos(2\pi\nu_0 t)$. Exprimer sa transformée de Fourier $F(g)(\nu)$ en fonction de celle de f.
- b) En utilisant

$$F\left(\frac{\sin(\pi t)}{\pi t}\right)(\nu) = \mathbf{1}_{[-\frac{1}{2},\frac{1}{2}]}(\nu)$$

calculer $F\left(\frac{\sin(\pi t a)}{\pi t}\right)(\nu)$ pour a > 0.

c) Soient maintenant deux signaux f_0 et f_1 :

$$f_0(t) = \frac{\sin(\pi t a_0)}{\pi t}, \quad f_1(t) = \frac{\sin(\pi t a_1)}{\pi t}$$

transmis simultanément sur des fréquences différentes ν_0 et ν_1 , i.e.

$$g(t) = f_0(t)\cos(2\pi\nu_0 t) + f_1(t)\cos(2\pi\nu_1 t).$$

Exprimer la transformée de Fourier du signal transmis $F(g)(\nu)$.

d) Illustrer le calcul précédent (en prenant par exemple $\nu_1 > \nu_0$). Quelle est la condition sur ν_0 et ν_1 pour que la transformée de Fourier du signal total transmis (g) ne mélange pas les signaux respectifs de f_0 et f_1 ?

Reconstruction

- a) On considère maintenant qu'on a reçu un signal $g(t) = f(t)\cos(2\pi\nu_0 t)$, et on cherche à reconstruire f à partir de g. Calculer la transformée de Fourier $F(g(t)\cos(2\pi\nu_0 t))$ en fonction de F(f).
- b) Illustrer dans le cas où $f(t) = f_0(t) = \frac{\sin(\pi t a_0)}{\pi t}$.
- c) Donner une condition sur la fréquence porteuse ν_0 pour pouvoir espérer reconstruire f. Interpréter.
- d) Montrer qu'on peut alors retrouver f comme une convolution entre le signal reçu démodulé $g(t)\cos(2\pi\nu_0 t) = f(t)\cos(2\pi\nu_0 t)^2$ et un sinus cardinal à déterminer.