ECON 6170 Problem Set 3

Gabe Sekeres

September 12, 2024

Exercise 2

1. Prove that the arbitrary union of open sets is open

Proof. Define a (not necessarily finite) collection of open sets \mathcal{O} . We want to show that $\bigcup_{O_i \in \mathcal{O}} O_i$ is open. Take some $x \in \bigcup_{O_i \in \mathcal{O}} O_i$. $\exists i \text{ s.t. } x \in O_i$. Since O_i is open, $\exists \varepsilon \text{ s.t. } B_{\varepsilon}(x) \subseteq O_i$. Then $B_{\varepsilon}(x) \subseteq \bigcup_{O_i \in \mathcal{O}} O_i$. Thus, $\bigcup_{O_i \in \mathcal{O}} O_i$ is open.

2. Prove that the intersection of finitely many open sets is open

Proof. Define a finite collection of open sets \mathcal{O} , where $|\mathcal{O}| = n < \infty$. We want to show that $\bigcap_{i=1}^n O_i$ is open. Take some $x \in \bigcap_{i=1}^n O_i$. We have that $x \in O_i \ \forall \ i = 1, \ldots, n$. Since each O_i is open, for each $O_i \ \exists \ \varepsilon_i$ s.t. $B_{\varepsilon_i}(x) \subseteq O_i$. Define $\varepsilon^* = \min\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$. Then $B_{\varepsilon^*}(x) \subseteq B_{\varepsilon_i}(x) \ \forall \ i$. Thus, $B_{\varepsilon^*}(x) \subseteq O_i \ \forall \ i$, so $B_{\varepsilon^*}(x) \subseteq \bigcap_{i=1}^n O_i$, and $\bigcap_{i=1}^n O_i$ is open.

3. What about arbitrary intersections of open sets? Nope!

Disproof. Consider as an example \mathcal{O} , where $O_i \in \mathcal{O}$ is defined as the interval $(-1, \frac{1}{i})$, and O_i is defined as such for all $i \in \mathbb{N}$. Then $\bigcap_{O_i \in \mathcal{O}} O_i = (-1, 0]$. Taking x = 0, any ε admits $B_{\varepsilon}(x)$ that contains some element of the positive reals. Thus, $B_{\varepsilon}(x) \not\subseteq (-1, 0]$ for all $\varepsilon > 0$, and $\bigcap_{O_i \in \mathcal{O}} O_i$ is not open. \square

Exercise 3 Prove that the interval [a, b] is closed.

Proof. Note first that $\forall x \in [a,b], x \geq a$ and $x \leq b$. This means that $\sup[a,b] = b$, and $\inf[a,b] = a$, *i.e.*, the interval [a,b] contains its suprema. Towards a contradiction, assume that there exists some sequence $\{x_n\} \subseteq [a,b]$ such that $x_n \to x$ for some $x \notin [a,b]$. This admits two cases. First, assume that x > b, meaning that $\exists \varepsilon' > 0$ s.t. $x = b + \varepsilon'$. Choosing $\varepsilon < \varepsilon'$, we have that $\exists N \in \mathbb{N}$ s.t. $|x_n - x| < \varepsilon \ \forall n > N$. This means that $\exists x_n \in B_{\varepsilon}(x)$. However, since we assumed that $x = b = \varepsilon' > \varepsilon$, this would mean that x = b = c ontradicting the fact that x = a = c. Choosing x = c we have that x = a = c on the sum of x = a = c. Choosing x = c we have that x = a = c on the sum of x = a = c. This means that x = a = c on the sum of x = a = c on the sum of x = a = c of x = a = c. Thus, we have found a contradiction, so x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c on the sum of x = a = c of x = a = c. Thus, we have found a contradiction, so x = a = c on the sum of x = a = c of x = a = c. Thus, we have found a contradiction, so x = a = c on the sum of x = a = c of x = a = c. Thus, we have found a contradiction, so x = a = c on the sum of x = a = c.

A second, topological proof:

Proof. Define an open cover of [a,b] as \mathcal{O} , a (not necessarily finite) collection of open sets such that $[a,b]\subseteq\bigcup_{O_i\in\mathcal{O}}O_i$. Define $S:=\{x\mid [a,x]\text{ is covered by finitely many elements of }\mathcal{O}\}$. Note that S is nonempty because taking x=a, since $a\in\bigcup_{O_i\in\mathcal{O}}O_i$, there exists at least one i such that $a\in O_i$, and $\{a\}$ is covered by finitely many (namely, one) elements of \mathcal{O} . It remains to show that $\sup S=b$. First, note that b is an upper bound of S trivially, because $x\leq b$ \forall $x\in[a,b]$. Define $x_0=\sup S$. Towards a contradiction, assume that $x_0< b$. First note that $x_0>a$, because $a\in O_i$, so \exists $\varepsilon>0$ s.t. $B_\varepsilon(a)\subseteq O_i$, which means that $a+\varepsilon>a$ can be covered by finitely many $O_i\in\mathcal{O}$, so $x_0>a$. Note that since x_0 is also in an open set (call it O_0), \exists $\varepsilon>0$ s.t. $B_\varepsilon(x_0)\subseteq O_0$. By the density of the reals, \exists $y\in[a,b]$ s.t. $x_0< y< x_0+\varepsilon$. Thus, [a,y] can be covered by a finite union of open sets, taking the union of the finite collection of open sets that cover

 $[a, x_0]$ and U_0 . This contradicts the earlier assumption that $x_0 = \sup S$, so $b = \sup S$. Thus, [a, b] can be covered by a finite subcover of \mathcal{O} , and is compact. By Heine-Borel, it is closed.

Exercise 4

1. Prove that the arbitrary intersection of closed sets is closed

Proof. Define a (not necessarily finite) collection of closed sets \mathcal{C} . We aim to show that $\bigcap_{C_i \in \mathcal{C}} C_i$ is closed. Take some sequence $\{x_n\} \subseteq \bigcap_{C_i \in \mathcal{C}} C_i$, where $x_n \to x$. We have that $\{x_n\} \in C_i \ \forall \ C_i \in \mathcal{C}$. Since each C_i is closed, by the limit definition of closed sets, $x \in C_i \ \forall \ C_i \in \mathcal{C}$. Thus, $x \in \bigcap_{C_i \in \mathcal{C}} C_i$, and $\bigcap_{C_i \in \mathcal{C}} C_i$ is closed.

2. Prove that the finite union of closed sets is closed

Proof. Define a finite collection of closed sets \mathcal{C} , where $|\mathcal{C}| = n < \infty$. We aim to show that $\bigcup_{i=1}^n C_i$ is closed. Take some sequence $\{x_n\} \subseteq \bigcup_{i=1}^n C_i$, where $x_n \to x$. We have that at least one $C_j \in \bigcup_{i=1}^n C_i$ contains infinite elements of $\{x_n\}$, as $\{x_n\}$ is an infinite sequence so it cannot be the case that only finite elements of it are contained in a finite union of sets. Define the subsequence $\{x_{n_k}\}$, where $n_k \in \{n \mid x_n \in C_j\}$. From Exercise 26 in Problem Set 2, $\{x_{n_k}\} \to x$. Since C_j is closed, $x \in C_j$, which means that $x \in \bigcup_{i=1}^n C_i$, so $\bigcup_{i=1}^n C_i$ is closed.

3. What about arbitrary unions of closed sets? Nope!

Disproof. Define an infinite collection of closed sets \mathcal{C} as follows: $C_n \in \mathcal{C}$ is such that $C_n = \{\frac{1}{n}\}$, for all $n \in \mathbb{N}$. Each set is closed because finite sets are closed. However, taking $\{x_n\}$ where $x_n = \frac{1}{n}$, we have that $x_i \in C_i \ \forall \ i \in \mathbb{N}$. However, $x_n \to 0$, and $0 \notin \bigcup_{C_n \in \mathcal{C}} C_n$, so an infinite union of closed sets is not necessarily closed. \square

Additional Exercise 1 Extend Bolzano-Weierstrass into \mathbb{R}^d . The statement is: Theorem 1. Every bounded sequence $\{x_n\}_n \in \mathbb{R}^d$ has a convergent subsequence $\{x_{n_k}\}_k \in \mathbb{R}^d$.

Proof. Induction on d. The base case \mathbb{R}^1 is the exact statement of Bolzano-Weierstrass we had in class. Assume that this theorem holds for each bounded sequence in \mathbb{R}^k . It remains to show that it holds for bounded sequences in \mathbb{R}^{k+1} . Take some sequence $\{x_n\}_n \in \mathbb{R}^{k+1}$ which is bounded, meaning that there exists $b \in \mathbb{R}$ such that $|x_{i,j}| < b \ \forall i,j$. Take the sequence $\{x_n\}_n \setminus x_{k+1} \in \mathbb{R}^k$, i.e., the above bounded sequence less its final element. Since this sequence is bounded, there exists a subsequence $\{x_{n_i}\}_i \in \mathbb{R}^k$ such that $x_{n_i} \to x \in \mathbb{R}^k$. This means, from class, that $x_{n_i,j} \to x_j \ \forall j=1,\ldots,k$. Finally, consider the sequence $\{x_{n,k+1}\}_n \in \mathbb{R}^1$. We have that this sequence is bounded, so by Bolzano-Weierstrass it has a convergent subsequence, which we denote as $\{x_{n_i,k+1}\}_l \in \mathbb{R}$, where $x_{n_i,k+1} \to x_{k+1} \in \mathbb{R}$. Construct a subsequence of the (original) $\{x_n\}_n \in \mathbb{R}^{k+1}$ as follows. $\{x_{n_m}\}_m$, where $m \in \{m \mid \exists x_{n_i} \in \{x_{n_i}\} \text{ s.t. } m = n_l\}$. Since the two other respective subsequences are infinite, $\{x_{n_m}\}$ has infinite elements, and since $x_{n_m,j} \to x_j \ \forall j \in 1,\ldots,k+1$ by definition, $x_{n_m} \to x$. Thus, an arbitrary bounded sequence $\{x_n\}_n \in \mathbb{R}^{k+1}$ has a convergent subsequence. \square

Additional Exercise 2 Prove the following:

Theorem 2. A set $S \subseteq \mathbb{R}^d$ is sequentially compact if and only if it is closed and bounded.

Proof. (closed and bounded \Rightarrow sequentially compact): We have that S is closed and bounded. Take some sequence $\{x_n\}_n \in S$. Since S is bounded, $\{x_n\}_n$ is bounded and has a convergent subsequence $\{x_{n_k}\}_k \to x$ by Bolzano-Weierstrass. Since $\{x_{n_k}\}_k \in S$ and S is closed, $x \in S$ by the limit definition of closed sets. Thus, S is sequentially compact.

(sequentially compact \Rightarrow closed): We have that S is sequentially compact. Take some convergent sequence $\{x_n\}_n \in S$ where $x_n \to x$. Since S is sequentially compact, $\{x_n\}_n$ has a convergent subsequence $\{x_{n_k}\}_k$

where $x_{n_k} \to x' \in S$. Since all subsequences of a convergent sequence converge to the same limit, x' = x, so $x \in S$. Thus, S contains its limit points and is closed.

(sequentially compact \Rightarrow bounded): Towards a contradiction, assume that S is sequentially compact but not bounded. WLOG, assume that it is not bounded above, meaning that $\forall b \in \mathbb{R}^d$, $\exists x \in S$ s.t. x > b. We will construct a sequence as follows. Take some $x_1 \in S$. Since S is not bounded above, $\exists x_2 \in S$ s.t. $x_2 > y \ \forall y \in B_1(x_1)$, where $B_1(x_1)$ is the ε -ball of length 1 about x_1 . If x_2 did not exist in S, x_2 would be an upper bound for S. Thus, $x_2 \in S$. Define x_3 , where $x_3 \in S$ where $x_3 > y \ \forall y \in B_1(x_2)$, and do so to construct $x_n \ \forall n \in \mathbb{N}$. $\{x_n\}_n$ is a sequence in S. It remains to show that it has no convergent subsequence. Note that $\{x_n\}_n$ is not Cauchy, since taking $\varepsilon < 1$, $|x_n - x_m| > 1 > \varepsilon \ \forall n, m \in \mathbb{N}$. Thus, $\{x_n\}_n$ is not convergent. Additionally, this condition holds for every subsequence $\{x_{n_k}\}_k$, since $\forall n_k, m_k \in \mathbb{N}, |x_{n_k} - x_{m_k}| > 1$, so every subsequence is not convergent, contradicting the definition of sequential compactness. Note that we assumed S was not bounded above, but the same proof with signs flipped suffices if S is not bounded below. Thus, S is bounded.