Lecture week 9 0 , week 9 and week 10 method: smoothed curve (rate) we will talk more about how to calculate standard crude rates in the rates week 12 tables -you have Seen in week Ing comparing these rates (week 9) Statistical tests 10.9. If the standard table is describing the experience

Chi-Square test 0x ~ Bin (Ex. 8x) $E(Q_x) = E_x q_x$ Var $(\theta_x) = E_x g_x (1-g_x)$ when g_x is small 2Ex gx Normal Approximation (CLT) Observed Death: Ox Experted Death : Ex. 8x $Z_{x} = \frac{Q_{x} - E_{x} g_{x}}{\sqrt{N(0,1)}}$ VEXX $Zi \sim N(0,1)$ rage groups 258 6 Z20+ Z21 + - - -* Graduation of = n-p p: no.of parameter X of = n

sign test of positive signs ~ Bin (N, 0.5) N(05N, 0.25N)cumulative de vation test. $\sum_{a}^{b} (\theta_{x} - \bar{t}_{x} \theta_{x})$ Zisburge for a Specific age group (Exgrpn) is this is large, refect mul

Runs Test
Definition of 'fun'
No. of grouping of positive deviation
(1, 2) -1, -2, $(3, 1)$
2 runs (positive)
1 hegative run
0.1, 0.1, 0.2, -0.1, 0.1, 0.2, -0.1
2 positive runs
Pun test -> No. of positive runs is large enough?
If No. of positive runs is too small.
we reject the null.
l.g. 0.1, 0.1, 0.2, 0.30.2, -0.5, -0.3

hi: positive de viations number of no: number et regative deviations m: no. of age groups N: no. of positive (runs) P(N=9)=7D(n): no. of ways to pick n, no. of
positive deviations $(2): h_1 \rightarrow \overline{j} \text{ groups} : \begin{pmatrix} h_1 - t \\ \overline{j} = 1 \end{pmatrix}$ e.g. (3 4)

(3): Insert J groups into no numbers $\sqrt{-1}$ $\sqrt{-2}$ $\sqrt{-3}$ $\sqrt{-3}$

$$= \sum P(N=\bar{j}) = \frac{\binom{n-1}{j-1}\binom{n+1}{\bar{j}}}{\binom{m}{n}}$$

N~ hypergeometric ollstribution

$$E(N) = \frac{n_1(n_0+1)}{n_0+n_1}$$

$$Var(N) = \frac{(ho n_i)^2}{(ho + n_i)^3}$$

 $y^2 - test \rightarrow one - side$ cum - dev = separate groups (two std. Dev = side) sign test = two - side runs test = one - side