**Universidade Positivo** 

Disciplina: Algoritmos de Programação Referência: Profa. Fernanda Hembecker

**Professor: Kristian Capeline** 

## **Exercícios**

Matrizes

1. Realize o teste de mesa dos algoritmos a seguir, indique o valor das variáveis e o que será apresentado na tela:

## ALGORITMO Matriz1

```
VAR

INTEIRO: mat[3][2] = {{7,6},{8,4},{1,10}};

INTEIRO: i, j;

INÍCIO

i ← 0;

j ← 1;

mat[i][j] ← mat[i][j]+j;

mat[j][i] ← mat[j][i]+mat[i][j];

mat[j][j] ← mat[j][j];

mat[j+1][j] ← i+j;

mat[j][j] ← mat[i][j]*mat[j][i];

PARA(i ← 0; i < 3; i ← i + 1) FAÇA

PARA(j ← 0; j < 2; j ← j + 1) FAÇA

ESCREVA(mat[i][j]);

FIM_PARA

FIM_PARA
```

FTM

| FIM.  |                      |   |   |       |
|-------|----------------------|---|---|-------|
| Linha | mat[3][2]            | i | j | print |
| 1     |                      |   |   |       |
| 2     |                      |   |   |       |
| 3     | {7,6},{8,4},{1,10}   |   |   |       |
| 4     |                      |   |   |       |
| 5     |                      | 0 |   |       |
| 6     |                      |   | 1 |       |
| 7     | {7,7},{8,4},{1,10}   |   |   |       |
| 8     | {7,7},{14,4},{1,10}  |   |   |       |
| 9     | {4,7},{14,4},{1,10}  |   |   |       |
| 10    | {4,7},{14,48},{1,10} |   |   |       |
| 11    |                      |   |   |       |
| 12    |                      |   |   |       |
| 13    | {4,7},{14,48},{1,10} |   |   |       |
| 14    |                      |   |   |       |
| 15    |                      |   |   |       |
| 16    |                      |   |   | 4     |
| 17    |                      |   |   | 7     |
| 18    |                      |   |   | 14    |
| 20    |                      |   |   | 48    |
| 21    |                      |   |   | 1     |
| 22    |                      |   |   | 10    |
| 23    |                      |   |   |       |
| 24    |                      |   |   |       |

```
VAR
      3, 6}};
      INTEIRO: vet[3], i, j;
INÍCIO
      PARA(i \leftarrow 0; i < 3; i \leftarrow i + 1) FAÇA
            \text{vet}[i] \leftarrow 0;
             PARA(j \leftarrow 0; j < 5; j \leftarrow j + 1) FAÇA
                  vet[i] \leftarrow vet[i] + mat[i][j];
            FIM_PARA
      FIM_PARA
      PARA(i \leftarrow 0; i < 3; i \leftarrow i + 1) FAÇA
            PARA(j \leftarrow 0; j < 5; j \leftarrow j + 1) FAÇA
                  ESCREVA(mat[i][j]);
            FIM PARA;
            ESCREVA(vet[i]);
      FIM_PARA
FIM.
```

| Linha | Mat[3][5]                           | vet[3]    | i | j | print |
|-------|-------------------------------------|-----------|---|---|-------|
| 1     |                                     |           |   |   |       |
| 2     |                                     |           |   |   |       |
| 3     | {1,7,3,4,5},{2,6,5,1,0},{4,9,0,3,6} |           |   |   |       |
| 4     |                                     |           |   |   |       |
| 5     |                                     |           |   |   |       |
| 6     |                                     |           |   |   |       |
| 7     |                                     |           |   |   |       |
| 8     |                                     | vet[0]=0  |   |   |       |
| 9     |                                     |           |   |   |       |
| 10    |                                     | vet[0]=1  |   |   |       |
| 11    |                                     | vet[0]=8  |   |   |       |
| 12    |                                     | vet[0]=11 |   |   |       |
| 13    |                                     | vet[0]=15 |   |   |       |
| 14    |                                     | vet[0]=20 |   |   |       |
| 15    |                                     |           |   |   |       |
| 16    |                                     | vet[1]=2  |   |   |       |
| 17    |                                     | vet[1]=8  |   |   |       |
| 18    |                                     | vet[1]=13 |   |   |       |
| 20    |                                     | vet[1]=14 |   |   |       |
| 21    |                                     | vet[1]=14 |   |   |       |
| 22    |                                     |           |   |   |       |
| 23    |                                     | vet[2]=4  |   |   |       |
| 24    |                                     | vet[2]=13 |   |   |       |
| 25    |                                     | vet[2]=13 |   |   |       |
| 26    |                                     | vet[2]=16 |   |   |       |
| 27    |                                     | vet[2]=22 |   |   |       |
| 28    |                                     |           |   |   |       |
| 29    |                                     |           |   |   |       |
| 30    |                                     |           |   |   |       |
| 31    |                                     |           |   |   | 1     |
| 32    |                                     |           |   |   | 7     |
| 33    |                                     |           |   |   | 3     |
| 34    |                                     |           |   |   | 4     |
| 35    |                                     |           |   |   | 2     |
| 36    |                                     |           |   |   | 20    |
| 37    |                                     |           |   |   | 2     |
| 38    |                                     |           |   |   | 6     |
| 39    |                                     |           |   |   | 5     |

| 40 |  |  | 1  |
|----|--|--|----|
| 41 |  |  | 0  |
| 42 |  |  | 14 |
| 43 |  |  | 4  |
| 44 |  |  | 9  |
| 45 |  |  | 0  |
| 46 |  |  | 3  |
| 47 |  |  | 6  |
| 48 |  |  | 22 |
| 49 |  |  |    |

**2.** Elabore um algoritmo que leia uma matriz A(5 x 5) do teclado e crie uma matriz B onde cada elemento é o triplo do elemento correspondente de A.

```
//Exerc 2
#include <stdio.h>
int main()
{
    int a[5][5];
    int b[5][5];
    printf("Digite uma matriz 5x5: \n");
    for (int i=0; i<5; i++) {
        for (int j=0; j<5; j++) {
             printf("elemento[%d][%d]:", i,j);
             scanf("%d", &a[i][j]);
        }
    }
    for (int i=0; i<5; i++) {
        for (int j=0; j<5; j++) {
            b[i][j] = a[i][j]*3;
        }
    }
    for (int i=0; i<5; i++) {
        for(int j=0; j<5; j++){
             printf("%d \n", b[i][j]);
    }
}
```

**3.** Faça um algoritmo que leia uma matriz de 10 x 8 e apresente na tela o maior e o menor elemento da matriz.

```
//Exerc 3
#include <stdio.h>
int main()
    int a[10][8];
    int maior = 0;
    int menor = 0;
   printf("Digite uma matriz 10x8: \n");
    for (int i=0; i<10; i++) {
        for (int j=0; j<8; j++) {
            printf("elemento[%d][%d]:", i,j);
            scanf("%d", &a[i][j]);
            if(i==0 \&\& j==0){
                maior = a[i][j];
                menor = a[i][j];
            }
            else{
                 if(a[i][j] > maior){
                     maior = a[i][j];
                 }
                 if(a[i][j] < menor){
                     menor = a[i][j];
                 }
            }
        }
    printf("Maior número: %i \nMenor número: %i", maior, menor);
```

 Crie um algoritmo que leia uma matriz de dimensão (10x6) e apresente na tela a quantidade de elementos pares desta matriz.

```
//Exerc 4
#include <stdio.h>
int main()
    int a[10][6];
    int p = 0;
    printf("Digite uma matriz 10x8: \n");
    for (int i=0; i<10; i++) {
        for (int j=0; j<8; j++) {
            printf("elemento[%d][%d]:", i,j);
            scanf("%d", &a[i][j]);
            if(a[i][j] % 2 == 0){
                p++;
            }
        }
    printf("Quantidade de números pares: %i", p);
}
```

5. Faça um algoritmo que leia uma matriz A (5 x 5). Construa uma matriz B de mesma dimensão onde cada elemento de B deverá ser o dobro de cada elemento correspondente de A, exceto para os valores da diagonal principal (números 1 na matriz de exemplo abaixo), cujos valores deverão ser o triplo de cada elemento correspondente da matriz A.

```
\begin{array}{c|cccc} & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{array}
```

```
//Exerc 5
#include <stdio.h>
int main()
    int a[5][5];
    int b[5][5];
    printf("Digite uma matriz 5x5: \n");
    for (int i=0; i<5; i++) {
        for (int j=0; j<5; j++) {
             printf("elemento[%d][%d]:", i,j);
             scanf("%d", &a[i][j]);
         }
    }
    for (int i=0; i<5; i++) {
        for (int j=0; j<5; j++) {
             if(i == j){
                 b[i][j] = a[i][j]*3;
             }
             else{
                 b[i][j] = a[i][j]*2;
         }
    }
    for (int i=0; i<5; i++) {
        for (int j=0; j<5; j++) {
             printf("%d \n", b[i][j]);
         }
    }
}
```

armazene a soma dos elementos de A na primeira coluna e a multiplicação dos elementos de A na segunda coluna.

```
//Exerc 6
#include <stdio.h>
int main()
    int a[5][2];
    int b[5][2];
    printf("Digite uma matriz 5x2: \n");
    for (int i=0; i<5; i++) {
        for (int j=0; j<2; j++) {
             printf("elemento[%d][%d]:", i,j);
             scanf("%d", &a[i][j]);
        }
    }
    for (int i=0; i<5; i++) {
        for (int j=0; j<2; j++) {
             if(j==0){
                 b[i][j] = a[i][j] + a[i][j];
             }
             else if(j==1){
                 b[i][j] = a[i][j] * a[i][j];
             }
        }
    }
    for (int i=0; i<5; i++) {
        for(int j=0; j<2; j++){
             printf("%d \n", b[i][j]);
    }
```

7. Construa um algoritmo que leia do teclado uma matriz quadrada (12 x 12) e verifique se ela é uma matriz identidade. Uma matriz quadrada possui o mesmo número de linhas e colunas. Uma matriz identidade possui 1 nos elementos da diagonal principal e 0 nos demais. Exemplo: matriz identidade de dimensão 3x3.

| 0 | 1                | 2                 |
|---|------------------|-------------------|
| 1 | 0                | 0                 |
| 0 | 1                | 0                 |
| 0 | 0                | 1                 |
|   | 0<br>1<br>0<br>0 | 0 1 1 0 0 1 0 0 0 |

```
//Exerc 7
```

```
#include <stdio.h>
#include <stdbool.h>
int main()
{
    int a[12][12];
    bool ident = true;
    printf("Digite uma matriz 12x12: \n");
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++) {
            printf("elemento[%d][%d]:", i,j);
            scanf("%d", &a[i][j]);
        }
    }
    for (int i=0; i<12; i++) {
        for (int j=0; j<12; j++) {
            if(i == j){
                 if(a[i][j] != 1){
                     ident = false;
             }
            else{
                 if(a[i][j] == 0){
                     ident = false;
             }
        }
    }
    if(ident){
        printf("É uma matriz identidade.");
    }
    else{
        printf("Não é uma matriz identidade.");
}
```

**8.** Construa um algoritmo que leia uma matriz de dimensão 7 x 4 e, em um vetor de 7 elementos, armazene o menor elemento de cada linha da matriz. Exemplo:

|   | 0 | 1  | 2 | 3  |
|---|---|----|---|----|
| 0 | 5 | 4  | 2 | 8  |
| 1 | 3 | 6  | 9 | -1 |
| 2 | 0 | -3 | 4 | 7  |
|   |   |    |   |    |
| 6 | 4 | 9  | 7 | 6  |

| 0 | 1 | 2  | 3 | 4 | 5 | 6 |
|---|---|----|---|---|---|---|
| 2 | - | -3 |   |   |   | 4 |
|   | 1 |    |   |   |   |   |

```
//Exerc 8
#include <stdio.h>
int main()
    int a[7][4];
    int b[7];
    int menor;
    printf("Digite uma matriz 7x4: \n");
    for (int i=0; i<7; i++) {
        for (int j=0; j<4; j++) {
            printf("elemento[%d][%d]:", i,j);
            scanf("%d", &a[i][j]);
            if(j==0){
                 menor = a[i][j];
             }
            else{
                 if(a[i][j]<menor){</pre>
                     menor = a[i][j];
            b[i] = menor;
        }
    }
    printf("Menores valores: \n");
    for (int i=0; i<7; i++) {
        printf("%i\n", b[i]);
}
```

**9.** Elabore um algoritmo que leia dois vetores A e B de 15 números do teclado. Após a leitura, crie uma matriz de 15 linhas e 2 colunas onde a primeira coluna armazena os elementos de A e a segunda coluna armazena os elementos de B. Apresente a matriz na tela. Exemplo:



```
//Exerc 9
#include <stdio.h>
int main()
{
    int a[15];
    int b[15];
    int m[15][2];
    printf("Digite 15 números: \n");
    for (int i=0; i<15; i++) {
        scanf("%i", &a[i]);
    printf("Digite mais 15 números: \n");
    for (int i=0; i<15; i++) {
        scanf("%i", &b[i]);
    for (int i=0; i<15; i++) {
        for (int j=0; j<2; j++) {
             if(j == 0){
                 m[i][j] = a[i];
             else{
                 m[i][j] = b[i];
            printf("elemento[%d][%d]:%d \n", i,j,m[i][j]);
        }
    }
```

10. Elabore um algoritmo que leia do teclado uma matriz triangular superior de dimensão 20x20. Uma matriz triangular superior é quadrada e possui 0 nos elementos abaixo da diagonal principal e qualquer outro valor nos elementos da diagonal principal e acima dela. Exemplo: matriz triangular superior de tamanho 4.

|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | Х | Х | Х | Х |
| 1 | 0 | Х | Х | Х |
| 2 | 0 | 0 | Х | Х |
| 3 | 0 | 0 | 0 | Х |

```
//Exerc 10
#include <stdio.h>
int main()
    int a[20][20];
    int b[20][20];
    printf("Digite uma matriz 20x20: \n");
    for (int i=0; i<20; i++) {
        for (int j=0; j<20; j++) {
            printf("elemento[%d][%d]:", i,j);
             scanf("%d", &a[i][j]);
        }
    }
    for (int i=0; i<20; i++) {
        for(int j=0; j<20; j++) {
             if(i<=j){
                 b[i][j] = a[i][j];
             }
             else{
                 b[i][j] = 0;
        }
    for (int i=0; i<20; i++) {
        for(int j=0;j<20;j++){
             printf("%d \n", b[i][j]);
    }
}
```

**11.** Elabore um algoritmo que leia uma matriz A dimensão 3x4 e crie uma matriz B que representa a transposta de A. Apresente na tela a matriz B. Exemplo:

|   | 0 | 1  | 2  | 3  | 0                   | 1 | 5 | 9  |
|---|---|----|----|----|---------------------|---|---|----|
| 0 | 1 | 2  | 3  | 4  | $\Longrightarrow$ 1 | 2 | 6 | 10 |
|   |   |    | 7  |    | 2                   | 3 |   | 11 |
| 2 | 9 | 10 | 11 | 12 | 3                   | 4 | 8 | 12 |

```
//Exerc 11
#include <stdio.h>
int main()
    int a[3][4];
    int b[4][3];
    printf("Digite uma matriz 3x4: \n");
    for (int i=0; i<3; i++) {
        for (int j=0; j<4; j++) {
            printf("elemento[%d][%d]:", i,j);
             scanf("%d", &a[i][j]);
        }
    }
    for (int i=0; i<4; i++) {
        for (int j=0; j<3; j++) {
                 b[i][j] = a[j][i];
        }
    }
    for(int i=0;i<4;i++){
        for (int j=0; j<3; j++) {
             printf("%d \n", b[i][j]);
    }
```

**12.** Construa um algoritmo que leia duas matrizes do teclado de dimensão 5 x 3 e realize a troca dos elementos destas matrizes.

```
//Exerc 12
1.
2. #include <stdio.h>
3.
4. void set(int m1[5][3], int m2[5][3]);
6. int a[5][3];
7. int b[5][3];
8. int c[5][3];
    int main()
10.
11.
12.
13.
          printf("Digite uma matriz 5x3: \n");
14.
          for (int i=0; i<5; i++) {
15.
               for (int j=0; j<3; j++) {
16.
                   printf("elemento[%d][%d]:", i,j);
                   scanf("%d", &a[i][j]);
17.
18.
               }
19.
          }
20.
21.
          printf("Digite outra matriz 5x3: \n");
22.
          for (int i=0; i<5; i++) {
23.
               for (int j=0; j<3; j++) {
24.
                   printf("elemento[%d][%d]:", i,j);
25.
                   scanf("%d", &b[i][j]);
26.
               }
27.
          }
28.
29.
          set(c,b);
30.
          set(b,a);
31.
          set(a,c);
32.
33.
          for(int i=0;i<4;i++){
34.
               for (int j=0; j<3; j++) {
35.
                   printf("%d \n", a[i][j]);
36.
               }
37.
38.
          for (int i=0; i<4; i++) {
39.
               for (int j=0; j<3; j++) {
                   printf("%d \n", b[i][j]);
40.
41.
42.
          }
43.
44.
45.
      void set(int m1[5][3], int m2[5][3]){
46.
47.
          for (int i=0; i<5; i++) {
48.
               for (int j=0; j<3; j++) {
49.
                       m1[i][j] = m2[i][j];
50.
51.
          }
52. }
```

**13.** O tempo que um determinado avião leva para percorrer o trecho entre duas localidades distintas está disponível através da seguinte tabela:

| cidades | 0  | 1  | 2  | 3  | 4  | 5  | 6  |
|---------|----|----|----|----|----|----|----|
| 0       | -  | 02 | 11 | 06 | 15 | 11 | 01 |
| 1       | 02 | -  | 07 | 12 | 04 | 02 | 15 |
| 2       | 11 | 07 | -  | 11 | 08 | 03 | 13 |
| 3       | 06 | 12 | 11 | -  | 10 | 02 | 01 |
| 4       | 15 | 04 | 08 | 10 | -  | 05 | 13 |
| 5       | 11 | 02 | 03 | 02 | 05 | -  | 14 |
| 6       | 01 | 15 | 13 | 01 | 13 | 14 | -  |

a) Construa um algoritmo que leia a tabela acima e informe ao usuário o tempo necessário para percorrer duas cidades por ele fornecidas, até o momento em que ele fornecer duas cidades iguais (fonte e destino). Não deve ser lido informações para a diagonal principal.

```
//Exerc 13a
#include <stdio.h>
#include <stdbool.h>
int main()
       int m[7][7] = \{\{0,2,11,6,15,11,1\},\{2,0,7,12,4,2,15\},\{11,7,0,11,8,3,13\},
       \{6,12,11,0,10,2,1\},\{15,4,8,10,0,5,13\},\{11,2,3,2,5,0,14\},
       \{1,15,13,1,13,14,0\}\};
   bool p = true;
    int r[2];
    while(p){
        printf("Digite o número de duas cidades:");
        scanf("%d %d", &r[0], &r[1]);
        if(r[0] == r[1]) {
            return 0;
        printf("Tempo necessário de viagem: %dh \n", m[r[0]][r[1]]);
    }
```

**b)** Elabore um algoritmo que imprima a tabela sem repetições (apenas o triângulo superior ou o triângulo inferior).

```
//Exerc 13b
#include <stdio.h>
int main()
{
    int m[7][7] = {{0,2,11,6,15,11,1},{2,0,7,12,4,2,15},{11,7,0,11,8,3,13},
    {6,12,11,0,10,2,1},{15,4,8,10,0,5,13},{11,2,3,2,5,0,14},
    {1,15,13,1,13,14,0}};

    for (int i=0;i<7;i++){
        for (int j=0;j<7;j++){
            if (i<j) {
                printf("%d \n", m[i][j]);
            }
        }
    }
}</pre>
```

- c) Desenvolva um algoritmo que permita ao usuário informar várias cidades, até inserir a cidade "7", e que imprima o tempo total para cumprir todo o percurso especificado entre as cidades fornecidas. Ou seja:
  - O usuário deve informar as cidades que ele quer cadastrar a distância.
  - Notem que é um percurso, então, por exemplo, o segundo trajeto inicia da cidade destino do primeiro trajeto.

## Exemplo do "c":

```
Digite cidade de origem: 1
Digite cidade de destino: 3
Digite o tempo entre a cidade 1 e 3: 10
Digite cidade de destino: 5
Digite o tempo entre a cidade 3 e 5: 21
Digite cidade de destino: 2
Digite o tempo entre a cidade 5 e 2: 39
Digite cidade de destino: 7
```

O tempo total do seu trajeto é: 70 minutos

## Destino

|  | cidades | 0 | 1 | 2  | 3  | 4 | 5  | 6 |
|--|---------|---|---|----|----|---|----|---|
|  | 0       | 1 |   |    |    |   |    |   |
|  | 1       |   | - |    | 10 |   |    |   |
|  | 2       |   |   | -  |    |   |    |   |
|  | 3       |   |   |    | -  |   | 21 |   |
|  | 4       |   |   |    |    | - |    |   |
|  | 5       |   |   | 39 |    |   | -  |   |
|  | 6       |   |   |    |    |   |    | - |

rigem

```
//Exerc 13c
53.
54.
      #include <stdio.h>
55.
56.
     int soma = 0;
57.
     int calc();
58.
59.
     int main()
60.
61.
          calc();
62.
     }
63.
64.
     int calc(){
65.
66.
          int m[7][7];
67.
68.
          int r[3];
69.
70.
          printf("Digite a cidade de origem: ");
71.
          scanf("%d", &r[0]);
72.
73.
          if(r[0] == 7){
74.
              printf("O tempo total do seu trajeto é: %i", soma);
75.
              return 0;
76.
77.
78.
          printf("Digite a cidade de destino: ");
79.
          scanf("%d", &r[1]);
80.
81.
          if(r[1] == 7) {
              printf("O tempo total do seu trajeto é: %i", soma);
82.
83.
              return 0;
84.
85.
86.
          printf("Digite o tempo entre a cidade %d e %d: ", r[0], r[1]);
87.
          scanf("%d", &r[2]);
88.
89.
          m[r[0]][r[1]] = r[2];
90.
          soma += r[2];
91.
92.
          main();
93. }
```