MST124 18J (June 19 exam) Exam Solutions

Section A

Question	1	2	3	4	5	6	7	8	9	10
	D	Е	С	С	В	В	D	В	В	В
Question	11	12	13	14	15	16	17	18	19	20
	В	С	Α	D	Е	В	Α	Е	С	В
Question	21	22	23	24	25	26	27	28	29	30
	С	Е	Е	Е	С	Е	С	D	В	D
Question	31	32	33	34						
	В	Е	Е	С						

Worked Solutions

Q1	$(x-1)(4x+1) + 3x(x-5) = 4x^2 + x - 4x - 1 + 3x^2 - 15x$
D	$=7x^2-18x-1$
03	Γ 1 $\Gamma(2n+1)$ $(n+2)$
Q2 E	$\frac{5}{x+3} - \frac{1}{3x+1} = \frac{5(3x+1) - (x+3)}{(x+3)(3x+1)}$
_	
	$=\frac{15x+5-x-3}{}$
	$= \frac{3x^{2} + 3x^{2}}{(x+3)(3x+1)}$
	$=\frac{14x+2}{(x+3)(3x+1)}=\frac{2(7x+1)}{(x+3)(3x+1)}$
	$= \frac{1}{(x+3)(3x+1)} = \frac{1}{(x+3)(3x+1)}$
Q3	
С	$b = \sqrt{\frac{3a - 3}{a + 4}}$
HB, p.18	$\sqrt{a+4}$
	$\Rightarrow b^2 = \frac{3a-3}{a+4} \qquad \Rightarrow b^2(a+4) = 3a-3$
	$\Rightarrow b^- = \frac{1}{a+4} \Rightarrow b^-(a+4) = 3a-3$
	$\Rightarrow b^2a + 4b^2 = 3a - 3 \qquad \Rightarrow ab^2 - 3a = -4b^2 - 3$
	$\Rightarrow a(b^2 - 3) = -4b^2 - 3 \Rightarrow a = -\frac{4b^2 + 3}{b^2 - 3} = \frac{4b^2 + 3}{3 - b^2}$
Q4	$\frac{5\sqrt{3}}{5\sqrt{3}+4} = \frac{5\sqrt{3}}{5\sqrt{3}+4} \times \frac{5\sqrt{3}-4}{5\sqrt{3}-4} = \frac{5\sqrt{3}\times5\sqrt{3}-4\times5\sqrt{3}}{\left(5\sqrt{3}\right)^2-4^2}$
C	$5\sqrt{3} + 4 \ 5\sqrt{3} + 4 \ 5\sqrt{3} - 4 \ (5\sqrt{3})^2 - 4^2$
HB p.16	
	$=\frac{25\times 3-20\sqrt{3}}{25\times 3-16}=\frac{75-20\sqrt{3}}{59}$
	$={25\times 3-16}={59}$

Q5	The coefficient of x is negative, so the graph will slope from top left to bottom right, so we can
В	rule out graphs D and E.
HB p.19	The constant is also negative, so the y -intercept is negative. Thus, we can rule out graphs A
06	and C. The correct graph is B.
Q6	The equation is $3y + 4x + 5 = 0$
B	$\Leftrightarrow 3y = -4x - 5 \Leftrightarrow y = \frac{-4x - 5}{3} = -\frac{4}{3}x - \frac{5}{3}$
HB p.19	Therefore, the y -intercept is $-\frac{5}{3}$
Q7	We have $5x - 2y = 3 \Leftrightarrow 10x - 4y = 6$ (1) (by multiplying through by 2)
D	And $2x - 4y = 14$ (2)
HB, p.20	Subtracting (2) from (1) $8x = -8$
	Divide both side by 8 $x = \frac{-8}{8} = -1$ $3x^2 + 12x + 3 = 3[x^2 + 4x] + 3$
Q8	$3x^2 + 12x + 3 = 3[x^2 + 4x] + 3$
В	$= 3[(x+2)^2 - 4] + 3$
HB, p.21	$=3(x+3)^2-12+3$
	$=3(x+3)^2-9$
	So, $s = -9$ $f(u) = (u-2)^2 + 4$ $-2 \le u \le 4$
Q9	$f(u) = (u-2)^2 + 4 \qquad -2 \le u \le 4$
В	Since $(u-2)^2$ can never be negative, the least value of $f(u)$ is where $(u-2)^2=0$. That is,
HB, p.25	where $u = 2$. This value is $f(2) = (2-2)^2 + 4 = 4$
	Checking the end points of the domain
	$f(-2) = (-2-2)^2 + 4 = 16 + 4 = 20$ $f(4) = (4-2)^2 + 4 = 4 + 4 = 8$
	Thus, the least value of $f(u)$ is 4 and the greatest value of $f(u)$ is 20, both are included.
	So, the image set is $[4,20]$
Q10	The domain of the function appears to be the whole of the real number line, so A is not
B	correct.
HB, p.26	The function is decreasing only on negative x values, so C is not correct.
,,,,	The function is increasing only on postive x values, so E is not correct.
	There is more than one x value which gives the same value of $f(x)$, meaning the function is
	not one-to-one. Thus, D is not correct.
	The image set does not go below 0, so B is correct.
Q11	Let y = f(x) = 3x - 5
В	Therefore, $y + 5 = 3x \implies x = \frac{y+5}{3}$
HB, p.26	And so, the inverse is $f^{-1}(x) = \frac{x+5}{3}$ $\frac{1}{2}\ln(9x^2) + \ln 3x = \ln(9x^2)^{\frac{1}{2}} + \ln 3x$
Q12	$\frac{1}{\ln(0u^2) + \ln 2u - \ln(0u^2)^{\frac{1}{2}} + \ln 2u}$
C	$\frac{1}{2}\ln(9x^2) + \ln 3x = \ln(9x^2)^2 + \ln 3x$
HB, p.6	
	$= \ln(3x) + \ln(3x)$
	$= \ln(3x)^2$
	$= \ln(9x^2)$

Q13 A HB p.32	$\frac{4}{2x+3} \le 3x$ $\Leftrightarrow \frac{4}{2x+3} - 3x \le 0$ $\Leftrightarrow \frac{4}{2x+3} - \frac{3x(2x+3)}{2x+3} \le 0$ $\Leftrightarrow \frac{4-6x^2-9x}{2x+3} \le 0$ $\Leftrightarrow \frac{6x^2+9x-4}{2x+3} \ge 0$
Q14 D HB, p.4 and p.33	$\cos 75^{\circ} = \frac{\text{adj}}{\text{hyp}} = \frac{a}{5}$ So $a = 5 \times \cos 75^{\circ} = 1.2940 \dots = 1.3 \text{ (to 1 d.p.)}$
Q15 E HB, p.37	We have three sides and want one angle, so we need the Cosine Rule $7^2 = 6^2 + 8^2 - 2 \times 6 \times 8 \times \cos \theta$ $\cos \theta = \frac{36 + 64 - 49}{96} = \frac{17}{32}$ $\theta = \cos^{-1}\left(\frac{17}{32}\right) = 57.9100 \dots^{\circ} = 58^{\circ} \text{ (to the nearest degree)}$
Q16 B HB, p.37	We need the Sine Rule $\frac{a}{\sin 51^{\circ}} = \frac{9}{\sin 55^{\circ}} \Rightarrow a = \frac{9 \times \sin 51^{\circ}}{\sin 55^{\circ}} = 8.5384 \dots = 8.5 \text{ (to 1 d.p.)}$
Q17 A HB, p.35 - 36	$y=\sin\theta$ $y=\frac{1}{5}$ The diagram shows that there are 3 values of θ which give $\sin\theta=\frac{1}{5}$ in the range $-\frac{3\pi}{2}\leq\theta\leq\frac{3\pi}{2}$
Q18 E HB, p.38	The distance is $\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} = \sqrt{(-4 - 4)^2 + (3 - 1)^2}$ = $\sqrt{64 + 4} = \sqrt{68} = 2\sqrt{17}$

HB, p.38

Q19 C	\uparrow $\tan \phi = \frac{2}{1} = 2$, so $\phi = tan^{-1}(2) = 63.4349°$
HB, p.43	<u>Q</u>
, 1	Therefore,
	$\theta = 180^{\circ} - 63.4349 \dots^{\circ} = 116.5650 \dots^{\circ}$
	= 117° (to nearest degree)
	- 117 (to flearest degree)
	' I
Q20	$\frac{d}{dx}(15x^4 - 4x^3 + 2) = 15 \times 4x^3 - 4 \times 3x^2 = 60x^3 - 12x^2$
B UD n 7	dx (16) dx (17) dx (17) dx
HB, p.7, p.44	
Q21	$f'(x) = \frac{d}{dx}(3x^3 - 27x^2 + 72x - 13) = 9x^2 - 54x + 72$
С	
HB, p.7,	The stationary points are where $f'(x) = 0$. That is, where $9x^2 - 54x + 72 = 0$ Factorising gives $9(x-2)(x-4) = 0$
p.44	The stationary points are at $x = 2$ and $x = 4$
Q22	Using the product rule
E	$\frac{d}{dx}(e^x \tan x) = e^x \tan x + e^x \sec^2 x$
HB, p.48, p.7	dx
Q23	The first derivative is
E	$\frac{d}{dx}(x^4\sin x) = 4x^3\sin x + x^4\cos x$
HB, p.7,	$\frac{dx}{dx} = 4x \sin x + x \cos x$ The second derivative is
p.48	,
	$\frac{d}{dx}(4x^3\sin x + x^4\cos x) = 12x^2\sin x + 4x^3\cos x + 4x^3\cos x - x^4\sin x$
024	$= 12x^2 \sin x + 8x^3 \cos x - x^4 \sin x$
Q24 E	$\int \left(3\sin x + x^{\frac{5}{3}}\right) dx$
HB, p.52,	
p.7	$= -3\cos x + \frac{3}{8}x^{\frac{8}{3}} + c$
Q25	The area is given by
С	3 -4 -1 3
HB, p.7,	$\int_{-5}^{3} f(x)dx = \int_{-5}^{4} f(x)dx + \int_{-4}^{4} f(x)dx + \int_{-1}^{3} f(x)dx$
p.51	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	= -0.1 + 1.2 - 6.6 = -5.5
Q26	$\frac{\pi}{3}$
E	$\int 2\cos(4x)dx = \left[\frac{1}{2}\sin(4x)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}}$
HB,	$\left[2^{\frac{\pi}{6}}\right]^{\frac{\pi}{6}}$
p.7,p.51 - 52	
32	$= \frac{1}{2} \left[\sin \left(\frac{4\pi}{3} \right) - \sin \left(\frac{2\pi}{3} \right) \right] = \frac{1}{2} \left[-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right] = -\frac{\sqrt{3}}{2}$
	<u> </u>

Q27	$\int_{-1}^{2} (2.4 + 4.3) \int_{-1}^{2} [2.5 + 2.2]^{2} (2.25 + 2.22) (2.2)$
C HB, p.7,	$\int (2x^4 + 4x)dx = \left[\frac{2}{5}x^5 + 2x^2\right]_1^2 = \left(\frac{2}{5} \times 2^5 + 2 \times 2^2\right) - \left(\frac{2}{5} + 2\right)$
p.51	104 12 02
'	$=\frac{104}{5}-\frac{12}{5}=\frac{92}{5}$
030	
Q28 D	$\mathbf{P} = \begin{pmatrix} -5 & -2 \\ 6 & -1 \end{pmatrix} \text{ so } 2\mathbf{P} = \begin{pmatrix} -10 & -4 \\ 12 & -2 \end{pmatrix}$
HB, p.54-	$\mathbf{Q} = \begin{pmatrix} 3 & -3 \\ -8 & -8 \end{pmatrix} \text{ so } 3\mathbf{Q} = \begin{pmatrix} 9 & -9 \\ -24 & -24 \end{pmatrix}$
55	$Q = \begin{pmatrix} -8 & -8 \end{pmatrix}$ so $3Q = \begin{pmatrix} -24 & -24 \end{pmatrix}$
	Therefore $2\mathbf{P} - 3\mathbf{Q} = \begin{pmatrix} -10 & -4 \\ 12 & -2 \end{pmatrix} - \begin{pmatrix} 9 & -9 \\ -24 & -24 \end{pmatrix} = \begin{pmatrix} -19 & 5 \\ 36 & 22 \end{pmatrix}$
Q29	$\mathbf{T} = \begin{pmatrix} -5 & -6 \\ 2 & -2 \end{pmatrix}$ so $\mathbf{T}^2 = \begin{pmatrix} -5 & -6 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} -5 & -6 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 25 - 12 & 30 + 12 \\ -10 - 4 & -12 + 4 \end{pmatrix} = \begin{pmatrix} 13 & 42 \\ -14 & -8 \end{pmatrix}$
B	$\begin{pmatrix} 2 & -2 \end{pmatrix} \qquad \begin{pmatrix} 2 & -2 \end{pmatrix} \begin{pmatrix} 2 & -2 \end{pmatrix} \begin{pmatrix} -10 - 4 & -12 + 4 \end{pmatrix} \begin{pmatrix} -14 & -8 \end{pmatrix}$
HB, p.55	$(-9 \ 9) 0 \times 0 0 \times (1) 72 \times 0 (2)$
D	$\det \begin{pmatrix} -9 & 9 \\ -1 & 8 \end{pmatrix} = -9 \times 8 - 9 \times (-1) = -72 + 9 = -63$
HB, p.56	
Q31 B	First term, $a=18$, common difference $d=3$ and last term is $l=900$
HB, p.8	$Sum = \frac{1}{2}n(2a + (n-1)d) = \frac{1}{2}n(a+l)$
	Which gives $2a + (n-1)d = a + l$ and so $a - l = -(n-1)d$
	This gives $n = \frac{l-a}{d} + 1 = \frac{900-18}{3} + 1 = 295$
	So, Sum = $\frac{1}{2}n(a+l) = \frac{1}{2} \times 295(18+900) = 135405$
Q32 E	We have $r = -\frac{7}{4}$
HB, p.60	Since $r < -1$, the sequence alternates in sign and is unbounded.
	Multiplying by -3 doesn't change its behaviour.
Q33	By the quadratic formula, with $a=1,b=-2$ and $c=10$
Е НВ, р.65	$-b \pm \sqrt{b^2 - 4ac}$ $2 \pm \sqrt{(-2)^2 - 4 \times 1 \times 10}$
and p.68	$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times 10}}{2 \times 1}$
,	$2 \pm \sqrt{-36}$ $2 \pm 6i$
	$=\frac{2\pm\sqrt{-36}}{2} = \frac{2\pm6i}{2} = 1\pm3i$
Q34 C	$z = 6\left(\cos\left(\frac{5\pi}{9}\right) + i\sin\left(\frac{5\pi}{9}\right)\right) \text{ and } w = 4\left(\cos\left(\frac{2\pi}{9}\right) + i\sin\left(\frac{2\pi}{9}\right)\right)$
HB, p.67	$\frac{z}{w} = \frac{6}{4} \left(\cos \left(\frac{5\pi - 2\pi}{9} \right) + i \sin \left(\frac{5\pi - 2\pi}{9} \right) \right)$
	$=\frac{3}{2}\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$

Section B

Question	35	36	37	38	39	40	41	42
	Α	В	Α	С	Α	Α	E	D

Worked Solutions

Q35

HB, p.41

From A to B is $-3\mathbf{i} - 2\mathbf{j}$ and from B to C is $\mathbf{i} + \mathbf{j}$ so from A to C is

$$-3\mathbf{i} - 2\mathbf{j} + \mathbf{i} + \mathbf{j} = -2\mathbf{i} - \mathbf{j}$$

Drawing this resultant vector on the diagram, we have

$$\tan \phi = \frac{1}{2}$$
 and so $\phi = \tan^{-1} \left(\frac{1}{2}\right) = 26.56505 \dots^{\circ}$

The bearing is measured from the North clockwise,

So, bearing is
$$270^{\circ}-26.5650 \dots^{\circ}=243.4349 \dots^{\circ}$$

= 243° (to nearest degree)

Q36

HB, p.47, p.7

HB, p.48

The velocity is given by $v = \frac{ds}{dt} = -\frac{5\pi}{4} \sin\left(\frac{\pi t}{4}\right) - \pi \cos\left(\frac{\pi t}{4}\right)$ When t = 2, $v = -\frac{5\pi}{4} \sin\left(\frac{\pi}{2}\right) - \pi \cos\left(\frac{\pi}{2}\right) = -\frac{5\pi}{4}$

Q37

The quotient rule says $\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{gf' - fg'}{g^2}$

So,
$$\frac{d}{dx} \left(\frac{9 + \cos x}{e^x + 4} \right) = \frac{(e^x + 4)(-\sin x) - (9 + \cos x)e^x}{(e^x + 4)^2}$$
$$= -\frac{e^x (9 + \cos x) + (e^x + 4)\sin x}{(e^x + 4)^2}$$

Q38

p.7

Use the chain (composite) rule

HB, p.48,

$$\frac{d}{dx}(\cos((3+4x)^2)) = -\sin((3+4x)^2) \times \frac{d}{dx}((3+4x)^2)$$

$$= -\sin((3+4x)^2) \times 2(3+4x) \times 4$$

$$= -8(3+4x)\sin((3+4x)^2)$$

Q39 $4xe^{x/2}dx$ HB, p.52 -By parts, we have f(x) = 4x, so f'(x) = 4 and $g'(x) = e^{x/2}$, so $g(x) = 2e^{x/2}$ 53 So $\int 4xe^{x/2}dx = fg - \int f'g$ $=8xe^{x/2}-\int 4\times 2e^{x/2}dx=8xe^{x/2}-8\int e^{x/2}dx$ $= 8xe^{x/2} - 8 \times 2e^{\frac{x}{2}} + c$ $=-16e^{\frac{x}{2}}+8xe^{\frac{x}{2}}+c$ $\int_{0}^{\pi/4} \frac{\cos(2x)}{(\sin(2x))^4} dx$ Q40 HB p.52 We need to use substitution. Let $u = \sin(2x)$, which gives $\frac{du}{dx} = 2\cos(2x)$ or $\frac{1}{2}du = \cos(2x)dx$ **Changing limits** When $x = \frac{\pi}{8}$, $u = \sin\left(2 \times \frac{\pi}{8}\right) = \frac{1}{\sqrt{2}}$ and when $x = \frac{\pi}{4}$, $u = \sin\left(2 \times \frac{\pi}{4}\right) = 1$ So, $\int_{\frac{\pi}{0}}^{\frac{\pi}{4}} \frac{\cos(2x)}{(\sin(2x))^4} dx = \int_{\frac{1}{\sqrt{2}}}^{1} \frac{1}{u^4} \times \frac{1}{2} du$ $=\frac{1}{2}\int_{1}^{1}u^{-4}du$ $=\frac{1}{2}\left[-\frac{1}{3}u^{-3}\right]\frac{1}{\sqrt{2}}$ $=\frac{1}{2}\left[-\frac{1}{3}+\frac{1}{3}\left(\sqrt{2}\right)^{3}\right]$ $=\frac{-1+2\sqrt{2}}{6}=\frac{2\sqrt{2}-1}{6}$

Q41

Ε

HB p.61

The expression is $(6-3t^4)^{10}$ and we want the coefficient of the term in t^{20}

By the binomial theorem, each term has the form

$${}^{10}C_k \times 6^{10-k} \times (-3t^4)^k$$

= ${}^{10}C_k \times 6^{10-k} \times (-3)^k \times t^{4k}$

As we need the term in t^{20} , we let k=5

So, the coefficient is

$$^{10}C_5 \times 6^5 \times (-3)^5$$

= 252 × 7776 × (-243)
= -476171136

Q42

D

HB p.66, p.67

Let
$$z = -1 - \sqrt{3}i$$

The modulus is $|z| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{1+3} = 2$

From the diagram

$$\tan \phi = \frac{\sqrt{3}}{1}$$
, so $\phi = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

The principal argument is $\theta = -\left(\pi - \frac{\pi}{3}\right) = -\frac{2\pi}{3}$

So,
$$z = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$$

By de Moire's formula

$$z^{4} = 2^{4} \left(\cos \left(4 \times \left(-\frac{2\pi}{3} \right) \right) + i \sin \left(4 \times \left(-\frac{2\pi}{3} \right) \right) \right)$$
$$= 16 \left(\cos \left(-\frac{8\pi}{3} \right) + i \sin \left(-\frac{8\pi}{3} \right) \right)$$
$$= 16 \left(-\frac{1}{2} + i \left(-\frac{\sqrt{3}}{2} \right) \right)$$
$$= -8 \left(1 + \sqrt{3}i \right) = -8 - 8\sqrt{3}i$$