Análise Matemática I 1º Teste - 10 de Novembro de 2001 Civ. e Ter.

Resolução

- 1. Se p é verdadeira, então $\sim p$ é falsa e $\sim p \Rightarrow (p \Rightarrow q)$ é verdadeira. Se pé falsa, então $p \Rightarrow q$ é verdadeira e $\sim p \Rightarrow (p \Rightarrow q)$ é verdadeira. Portanto, a proposição $\sim p \Rightarrow (p \Rightarrow q)$ é verdadeira quaisquer que sejam os valores lógicos de p e q.
- 2. Sabemos pela propriedade da tricotomia que $\frac{1}{x} = 0$, $\frac{1}{x} < 0$ ou $\frac{1}{x} > 0$, apenas se verificando uma destas três possibilidades. Como zero é elemento absorvente da multiplicação, se $\frac{1}{x} = 0$, então $0 = x \times \frac{1}{x} = 1$; mas $0 \neq 1$, logo $\frac{1}{x} \neq 0$. Analisemos agora a segunda possibilidade. Sabemos que x > y e z < 0, implica xz < yz. Tomando y = 0 e $z = \frac{1}{x} < 0$, vem $1 = x \times \frac{1}{x} < 0 \times \frac{1}{x} = 0$; mas $1 \nleq 0$, logo $\frac{1}{x} \nleq 0$. Concluímos que $\frac{1}{x} > 0$.

3.

- a) (z_n) é o produto de um infinitésimo $(\frac{1}{n})$ por uma sucessão limitada $(|\sin n| < 1)$, pelo que é um infinitésimo.
- b) $\lim u_n = \frac{(1+\lim \frac{1}{n})^2}{1-\lim \frac{1}{n}} = 1.$ c) $\lim v_n = \frac{\lim u_n}{\lim (n-2)} = 0.$
- d) $0 < w_n \le v_n$, para todo o n natural maior do que 2. Pelo teorema das sucessões enquadradas, $\lim w_n = 0$.

4.

- a) A proposição $(0 \le u_1 < 1) \land (0 \le u_2 < \frac{1}{2})$ é verdadeira porque $u_2 =$ $u_1 = 0$. Suponhamos que $(0 \le u_{2n+1} < 1) \land (0 \le u_{2n+2} < \frac{1}{2})$. Então $(0 \le u_{2n+3} = \frac{1}{2} + u_{2n+2} < \frac{1}{2} + \frac{1}{2} = 1) \land (0 \le u_{2n+4} = \frac{u_{2n+3}}{2} < \frac{1}{2})$.
- b) O Teorema de Bolzano-Weierstrass garante que u tem subsucessões convergentes.

c)

$$u_{1} = 0, u_{2} = 0,$$

$$u_{3} = \frac{1}{2}, u_{4} = \frac{1}{4},$$

$$u_{5} = \frac{1}{2} + \frac{1}{4}, u_{6} = \frac{1}{4} + \frac{1}{8},$$

$$u_{7} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}, u_{8} = \frac{1}{4} + \frac{1}{8} + \frac{1}{16},$$

$$\dots u_{2n+1} = \sum_{k=1}^{n} \frac{1}{2^{k}}, u_{2n+2} = \sum_{k=2}^{n+1} \frac{1}{2^{k}},$$

$$\dots \dots$$

De facto, para $n=0,\ u_1=\sum_{k=1}^0\frac{1}{2^k}=0$ e $u_2=\sum_{k=2}^1\frac{1}{2^k}=0$. Por outro lado, seja $n\in\mathbb{N}$. Se $u_{2n+1}=\sum_{k=1}^n\frac{1}{2^k}$ e $u_{2n+2}=\sum_{k=2}^{n+1}\frac{1}{2^k}$, então

$$u_{2n+3} = \frac{1}{2} + \sum_{k=2}^{n+1} \frac{1}{2^k} = \sum_{k=1}^{n+1} \frac{1}{2^k} e \ u_{2n+4} = \frac{1}{2} \sum_{k=1}^{n+1} \frac{1}{2^k} = \sum_{k=1}^{n+1} \frac{1}{2^{k+1}} = \sum_{k=2}^{n+2} \frac{1}{2^k}.$$

Provámos que, para todo o $n \in \mathbb{N}$,

$$u_{2n+1} = \sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n}$$
 e $u_{2n+2} = \sum_{k=2}^{n+1} \frac{1}{2^k} = \frac{1}{2} - \frac{1}{2^{n+1}}$.

- d) $\lim_{n\to+\infty}u_{2n+1}=1-\lim\frac{1}{2^n}=1$ e $\lim_{n\to+\infty}u_{2n+2}=\frac{1}{2}-\lim\frac{1}{2^{n+1}}=\frac{1}{2}.$ Provemos que a sucessão não tem outros sublimites para além de $\frac{1}{2}$ e 1. Seja (u_{n_k}) uma subucessão convergente de (u_n) e designemos por a o seu limite. Então há infinitos números n_k que são pares ou há infinitos números n_k que são ímpares. No primeiro caso $a=\frac{1}{2}$, pois (u_{n_k}) tem uma subsucessão cujo limite coincide necessariamente com $\lim_{n\to+\infty}u_{2n+2}$. No segundo caso a=1.
- e) A sucessão não é de Cauchy porque não converge, pois tem duas subsucessões com limites diferentes.
- **5.** Se $u_n \to a$, então qualquer subsucessão (u_{n_k}) de (u_n) tem uma subsucessão convergente para a, nomeadamente a própria sucessão (u_{n_k}) .

Para provarmos a implicação recíproca, e uma vez que

$$(q \Rightarrow p) \Leftrightarrow (\sim p \Rightarrow \sim q),$$

provemos que se (u_n) não converge para a, então (u_n) tem uma subsucessão sem nenhuma subsucessão convergente para a.

Suponhamos então que (u_n) não converge para a. Existe um $\epsilon > 0$ tal que para qualquer ordem $p \in \mathbb{N}$ existe n > p com $|u_n - a| \ge \epsilon$. Logo (u_n) tem uma subsucessão, digamos (u_{n_k}) , tal que $|u_{n_k} - a| \ge \epsilon$ para todo o $k \in \mathbb{N}_1$. Obviamente, a subsucessão (u_{n_k}) não tem nenhuma subsucessão convergente para a.