1

11.14-4

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of peiodic motion (ω is any positive constant):

- 1) $\sin(\omega t) \cos(\omega t)$
- 2) $\sin^3(\omega t)$
- 3) $3\cos\left(\frac{\pi}{4}-2\omega t\right)$
- 4) $\cos(\omega t) + \cos(3\omega t) + \cos(5\omega t)$
- 5) $\exp(-\omega^2 t^2)$
- 6) $1 + \omega t + \omega^2 t^2$

Answer:

Periodic function:

$$x(t+T) = x(t) \forall x \in \mathbb{R} \tag{1}$$

where min T S.T T > 0 is time period

SHM:

For a function to be in shm it must satisfy

$$d^2x(t)/dt^2 = -\alpha x \tag{2}$$

$$\frac{d^2x(t)}{dt^2} = -\alpha x \tag{2}$$

Variable
 Description
 formula

$$x(t)$$
 Displacemen wrt mean position
 none

 ω
 Angular frequncy
 $2\pi f$
 T
 Time period
 none

 ϕ
 phase angle
 none

 TABLE 0

INPUT PARAMETERS

1) $\sin(2\pi ft) - \cos(2\pi ft)$

The function can be rewritten as:

$$= \sin(2\pi f t) - \sin\left(\frac{\pi}{2} - 2\pi f t\right) \tag{4}$$

$$= 2\cos\left(\frac{\pi}{4}\right)\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{5}$$

$$= \sqrt{2}\sin\left(2\pi ft - \frac{\pi}{4}\right) \tag{6}$$

$$\therefore$$
 SHM, $T = \frac{1}{f}$ and $\phi = \left(\frac{-\pi}{4}\right)$ or $\left(\frac{7\pi}{4}\right)$

(2) $\sin^{3}(wt)$

This function can be rewritten as

$$= \frac{1}{4} (3\sin(2\pi f t) - \sin(6\pi f t)) \tag{7}$$

 \therefore Periodic with period T = $\frac{1}{f}$

(3)
$$3\cos\left(\frac{\pi}{4}-4\pi ft\right)$$

This function can be rewritten as

$$=3\cos\left(4\pi ft - \frac{\pi}{4}\right) \tag{8}$$

(9)

SHM, T =
$$\frac{1}{2f}$$
 and $\phi = \left(\frac{-\pi}{4}\right) \operatorname{or}\left(\frac{7\pi}{4}\right)$

(3) (4)
$$\cos(2\pi ft) + \cos(6\pi ft) + \cos(10\pi ft)$$

This function can be rewritten as

$$= \cos(2\pi ft) + \cos(10\pi ft) + \cos(6\pi ft)$$
(10)
$$= 2\cos\left(\frac{2\pi ft + 10\pi ft}{2}\right)\cos\left(\frac{10\pi ft - 2\pi ft}{2}\right) + \cos(6\pi ft)$$
(11)

$$= 2\cos(6\pi f t)\cos(2\pi f t) + \cos(6\pi f t) \tag{12}$$

$$= \cos(6\pi f t)(1 + 2\cos(2\pi f t)) \tag{13}$$

Period of
$$cos(6\pi ft)$$
 is $\frac{1}{3f}$
Period of $1 + 2cos(2\pi ft)$ is $\frac{1}{f}$
Lcm is $\frac{1}{f}$
 \therefore SHM, $T = \frac{1}{f}$

(5)
$$\exp(-(2\pi f)^2 t^2)$$

This function can be rewritten as

As
$$T \to \infty$$

 $\exp\left(-(2\pi f)^2 t^2\right) \to \infty$
 \therefore This never repeats and non periodic

(6)
$$1 + 2\pi f t + (2\pi f)^2 t^2$$

This function can be rewritten as

As
$$T \to \infty$$

 $1 + 2\pi f t + (2\pi f)^2 t^2 \to \infty$

:. This never repeats and non periodic

Fig. 1. $\sin(2\pi ft) - \cos(2\pi ft)$

Fig. 1. $\sin^3(2\pi ft)$

Fig. 1. $3\cos\left(\frac{\pi}{4} - 4\pi ft\right)$

Fig. 1. $\cos(2\pi f t) + \cos(6\pi f t) + \cos(10\pi f t)$

Fig. 1. $exp^{(-(2\pi ft)^2)}$

Fig. 1. $1 + 2\pi f t + (2\pi f t)^2$

:

TABLE 1 Summary

	Function	Periodic	Simple harmonic motion	Non Periodic	Т	φ
(a)	$sin(2\pi ft) - cos(2\pi ft)$	Yes	Yes	No	$\frac{1}{f}$	$\left(\frac{-\pi}{4}\right)$
(b)	$sin^3(2\pi ft)$	Yes	No	No	$\frac{1}{f}$	ı
(c)	$3\cos\left(\frac{\pi}{4}-4\pi ft\right)$	Yes	Yes	No	$\frac{1}{2f}$	$\left(\frac{-\pi}{4}\right)$
(d)	$cos(2\pi ft) + cos(6\pi ft) + cos(10\pi ft)$	Yes	No	No	\overline{f}	_
(e)	$\exp\left(-(2\pi ft)^2\right)$	No	No	Yes	_	-
(f)	$1 + (2\pi f)t + (2\pi f)^2 t^2$	No	No	Yes	_	_