Patent Claims

1. Carboxamides of the formula (1)

$$A \xrightarrow{N} \stackrel{M}{\underset{R^1}{\bigcup}} L^2_{\underset{R}{\bigcup}} R$$
 (I)

5 in which

10

15

20

25

30

stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

 $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-cycloalkyl)$ carbonyl; $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkyl)$ carbonyl, $(C_3-C_8-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-alkyl)$ carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or $-C(=O)C(=O)R^2$, $-CONR^3R^4$ or $-CH_2NR^5R^6$,

R² stands for hydrogen, C₁-C₈ alkyl, C₁-C₈ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxy₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R³ and R⁴ stand independently of one another in each case for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R³ and R⁴, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁵ and R⁶ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁵ and R⁶, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁷ stands for hydrogen or C₁-C₆ alkyl,

M stands in each case for a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R⁸ or for a thiazole ring substituted by R^{8-A},

R⁸ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R⁸ also stands for methoxy,

R^{8-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

L¹ stands for C₁-C₁₀ alkylene (alkanediyl),

Q stands for O, S, SO, SO₂ or NR⁹,

L² stands for a direct link, SiR¹⁰R¹¹ or CO,

R stands for hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1 - C_6 haloalkyl, C_2 - C_6 haloalkynyl or C_3 - C_6 cycloalkyl,

stands for hydrogen, C₁-C₈ alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl or C₃-C₆ cycloalkyl,

 R^{10} and R^{11} stand independently of one another for hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -

A stands for the group of the formula (A1)

(A1), in which

25

5

10

15

20

R¹² stands for hydrogen, cyano, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₃-C₆ cycloalkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

30

R¹³ stands for hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy or C₁-C₄ alkylthio,

R¹⁴ stands for hydrogen, C-C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄

haloalkyl, C_1 - C_4 -haloalkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A stands for the group of the formula (A2)

 R^{15} and R^{16} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R¹⁷ stands for halogen, cyano or C₁-C₄ alkyl, or C₁-C₄ haloalkyl or C₁-C₄ haloalkoxy with 1 to 5 halogen atoms in each case,

10 or

5

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

R¹⁸ and R¹⁹ stand independently of one another for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R²⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A4)

20

15

R²¹ stands or hydrogen, halogen, hydroxy, cyano, C₁-C₆ alkyl, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy or C₁-C₄ haloalkylthio in each case with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A5)

$$R^{23}$$
 N R^{22} (A5), in which

25

R²² stands for halogen, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio or C₁-C₄ haloalkoxy in each case with 1 to 5 halogen atoms,

R²³ stands for hydrogen, halogen, cyano, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy in each case with 1 to 5 halogen atoms, C₁-C₄ alkylsulfinyl or C₁-C₄ alkylsulfonyl,

or

5

10

15

25

A stands for the group of the formula (A6)

$$R^{25}$$
 Q^{1} Q^{25} Q^{25} Q^{25} Q^{25}

(A6), in which

R²⁴ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

 R^{25} stands for C_1 - C_4 alkyl,

Q¹ stands for S (sulfur), SO, SO₂ or CH₂,

p stands for 0, 1 or 2, whereby R²⁵ stands for identical or various groups if p is 2,

or

A stands for the group of the formula (A7)

(A7), in which

R²⁶ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A8)

(A8), in which

R²⁷ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

20 or

A stands for the group of the formula (A9)

(A9) in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, halogen, amino, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³⁰ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A10)

(A10), in which

R³¹ and R³² stand independently of one another for hydrogen, halogen, amino, nitro, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³³ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

5

10

15

20

25

A stands for the group of the formula (A11)

(A11), in which

R³⁴ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

 R^{35} stands for halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or A

stands for the group of the formula (A12)

(A12), in which

R³⁶ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di-(C₁-C₄ alkyl)amino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R³⁷ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A13)

(A13), in which

R³⁸ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A14)

(A14), in which

 R^{39} stands for hydrogen or C₁-C₄ alkyl,

 R^{40} stands for halogen or C₁-C₄ alkyl,

or Α .

5

10

15

20

stands for the group of the formula (A15)

(A15), in which

 R^{41} stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

(A16), in which

 R^{42} stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

Α stands for the group of the formula (A17)

(A17), in which

 R^{43} stands for halogen, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio or C_1 - C_4 haloalkoxy with 1 to 5 halogen atoms in each case,

Α

stands for the group of the formula (A18)

(A18), in which

 R^{44} stands for hydrogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl with 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₁-C₄ alkylsulfonyl, di(C₁-C₄ alkyl)aminosulfonyl, C₁-C₆ alkylcarbonyl or in each case possibly substituted phenylsulfonyl or benzoyl,

25

R^{45}	stands for hydrogen, halogen, C ₁ -C ₄ alkyl or C ₁ -C ₄ haloalkyl with 1 to 5
	halogen atoms,
R^{46}	stands for hydrogen, halogen, cyano, C ₁ -C ₄ alkyl or C ₁ -C ₄ haloalkyl with 1

to 5 halogen atoms,

R⁴⁷ stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

5

10

20

25

A stands for the group of the formula (A19)

(A19), in which

R⁴⁸ stands for C₁-C₄ alkyl.

- Carboxamides of the formula (I) according to Claim I, in which R does not stand for alkoxy, if L² stands for a direct link.
- 15 3. Carboxamides of the formula (I) according to Claim 1 or 2, in which

stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case;

(C₁-C₆ alkyl)carbonyl, (C₁-C₄ alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ cycloalkyl)carbonyl; (C₁-C₄ haloalkyl)carbonyl, (C₁-C₄ haloalkoxy)carbonyl. (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶,

R² stands for hydrogen, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R³ and R⁴ stand independently of one another in each case for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case.

35

30

5

10

R³ and R⁴, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁵ and R⁶ stand independently of one another for hydrogen, C₁-C₆-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁵ and R⁶, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms together with the nitrogen atom to which they are bound, with single or multiple, the same or various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle can contain 1 or 2 additional, non-adjacent hetero atoms constituted by oxygen, sulfur or NR⁷,

R⁷ stands for hydrogen or C₁-C₄ alkyl,

15 M stands for one of the following cyclics

$$R^{8}$$
 R^{8}
 R^{8

whereby the bond marked with an asterisk is linked to the amide,

20 R⁸ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R⁸ also stands for methoxy,

R^{8-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

L1 stands for C₁-C₁₀ alkylene (alkanediyl),

Q stands for O, S, SO, SO₂ or NR⁹,

L² stands for a direct link, SiR¹⁰R¹¹ or CO,

5

10

15

20

25

R stands for hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkyl or C₁-C₄ haloalkyl or C₃-C₆ cycloalkyl,

R⁹ stands for hydrogen, C₁-C₆ alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkylthio-C₁-C₃-alkyl or C₃-C₆ cycloalkyl,

R¹⁰ and R¹¹ stand independently of one another preferably for C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl or C₁-C₃-alkylthio-C₁-C₃-alkyl,

A stands for the group of the formula (A1)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1), in which

R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

or A

stands for the group of the formula (A2)

R¹⁵ and R¹⁶ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R¹⁷ stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms.

ór

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

R¹⁸ and R¹⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁰ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A4)

10

5

R²¹ stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C₁-C₄ alkyl, C₁-C₂ haloalkyl, C₁-C₂ haloalkyl or C₁-C₂ haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A5)

$$R^{23}$$
 N R^{22} (A5), in which

15

R²² stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

20

25

R²³ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂ alkylsulfinyl or C₁-C₂ alkylsulfonyl,

or A

stands for the group of the formula (A6)

$$R^{25}$$
 Q^1
 Q^2
 Q^2
(A6), in which

R²⁴ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R²⁵ stands for methyl or ethyl,

Q1 stands for S (sulfur), SO₂ or CH₂,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

5

(A7), in which

R²⁶ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

(A8), in which

R²⁷ stands for methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl or trichloromethyl,

or

A stands for the group of the formula (A9)

15

10

A9), in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁰ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

20

or . A

stands for the group of the formula (A10)

(A10), in which

R³¹ and R³² stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³³ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

25

or

A stands for the group of the formula (A11)

(All), in which

stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁵ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

5

10

15

20

25

A stands for the group of the formula (A12)

(A12), in which

R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C₁-C₄ alkyl)amino, cyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁷ stands for fluorine, chlorine, bromine, methyl; ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

(A13), in which

R³⁸ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

stands for the group of the formula (A14)

(A14), in which

R³⁹ stands for hydrogen, methyl or ethyl,

R⁴⁰ stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

(A15), in which

R⁴¹ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

stands for the group of the formula (A16)

(A16), in which

R⁴² stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A17)

(A17), in which

R⁴³ stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂ haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

15

5

or

A stands for the group of the formula (A18)

(A18), in which

stands for hydrogen, methyl, ethyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxymethyl, hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

R⁴⁵ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁶ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁷ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

20

25

or

A stands for the group of the formula (A19)

(A19), in which

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

5

- 4. A process for synthesizing the carboxamides of the formula (I) according to Claim 1, characterized in that
 - (a) carboxylic acid derivatives the formula (II)

$$A = X^{1}$$
 (II)

10

in which

A has the meanings specified above and

X¹ stands for halogen or hydroxy,

are reacted with aniline derivatives of the formula (III)

15

in which

R¹, M, Q, L² and R have the meanings specified above,

 L^3 stands for hydrogen or C_1 - C_9 alkyl,

possibly in the presence of a catalyst, possibly in the presence a condensation agent, possibly in the presence of an acid binder and possibly in the presence of a diluent,

20

25

or

(b) carboxamides of the formula (IV)

$$A \xrightarrow{N} H \xrightarrow{L_{Q}} H$$
 (IV)

in which M, L¹, Q and A have the meanings specified above are reacted with a compound of the formula (V),

$$Y^{L^2}R$$
 (V)

in which

L² and R have the meanings specified above and

Y stands for halogen, triflate (trifluoromethylsulfonyl), mesylate (methylsulfonyl) or tosylate (4-methylphenylsulfonyl),

in the presence of a base and in the presence of a dilution medium,

or

(c) carboxamides of the formula (1-a)

$$A \xrightarrow{O} N \xrightarrow{M} \bigcup_{L^{1} Q \xrightarrow{L^{2}} R} (I-a)$$

in which M, L^1 , Q, L^2 , R and A have the meanings specified above, are reacted with halides of the formula (VI)

$$R^{1-A} - X^2$$
 (VI)

10

15

20

25

30

5

in which

X² stands for chlorine, bromine or iodine,

 R^{1-A} stands for C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C_1 - C_6 haloalkyl, C_1 - C_4 haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃alkyl)carbonyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; $(C_1-C_8 \text{ alkyl})$ carbonyl, $(C_1-C_8 \text{ alkoxy})$ carbonyl, $(C_1-C_4-\text{alkoxy}-C_1-C_4-\text{alkoxy})$ alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl, (C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R², -CONR³R⁴ or -CH₂NR⁵R⁶, whereby R², R³, R⁴, R⁵ and R⁶ have the meanings specified above,

in the presence of a base and in the presence of a dilution medium.

5. Media for combating undesirable microorganisms, characterized by containing at least one carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.

5

10

- 6. The use of carboxamides of the formula (I) according to Claim I to combat undesired microorganisms.
- 7. Processes for combating undesired microorganisms, characterized in that carboxamides of the formula (I) are applied microorganisms and/or their environment in accordance with Claim 1.
 - 8. Processes for synthesizing materials to combat undesired microorganisms, characterized in that carboxamides of the formula (I) are mixed with extenders and/or surface-active materials according to Claim 1.
 - 9. Aniline derivatives of the formula (III)

in which

15 R¹, M, Q, L² and R have the meanings specified in Claim 1 and L³ stands for hydrogen or C₁-C₉ alkyl.

Carboxamides

Summary

New carboxamides of the formula (I)

$$A \xrightarrow{N} \underbrace{M}_{R^1} \underbrace{L^1}_{Q} \underbrace{L^2}_{R}$$
 (I)

in which

R¹, M, L¹, Q, L², R and A have the meanings specified in the description,

several processes for synthesizing these materials and their use in combating undesirable microorganisms, as well as new intermediate products and their synthesis.