- (1) Find the volume bounded attents above the disc $x^2+y^2=4$ and under the come $z=Jx^2+y^2$
- (2) Find the volume bounded above the cone $2=\sqrt{x^2+y^2}$ and below the sphere $x^2+y^2+z^2=1$
- 3) A swimming pool is circular with a 40 foot diameter.

 The depth is constant along east-west lines
 and increases linearly attracted from 2 feet
 at the south end to 7 feet at the north end.

 Find the volume of water in the pool
- Evaluate SSE 6xy dV where E lies under the plane 2=1+x+y and above the region in the xy-plane 50 mided by the curves y=5x, y=0, and x=1.
- (5) Evaluate $SSS_E x^2 dV$ where E is the solid that lies within the addition cylinder $x^2 + y^2 = 1$, above the plane z = 0 and below the cone $z^2 = 4x^2 + 4y^2$
- 6) Find the volume of the solid that lies within both the cylinder x2+y2=1 and the sphere x2+y2+22=4
- Evaluate ISSE Z dV where E lies between spheres of radius I and 2, combred at (0,0,0), in the first octant

6	T. 1 11 11 11 11 11 11 11 11 11 11 11 11
0	Find the volume of the smaller wedge cut from a sphere of radius 2 by two planes that intersect along a diameter at angle 7/6
	that intersect along a diameter at angle 1/6