ID	Title	Authors	Year
4	Malija su vak a galija stjega su sa su su su stjeja st fag OLF	Li Dian Tana Annalisa Iliman II	0044
	Making web applications more energy efficient for OLE		2014
_	Energy types	Cohen, Michael; Zhu, Haitao Stev	2012
3	11 1 0 07		2015
4	Energy efficient data encryption techniques in smartph	Mujtaba, Ghulam; Tahir, Muhamm	2019
5	Detecting energy bugs and hotspots in mobile apps	Banerjee, Abhijeet; Chong, Lee K	2014
6	Investigating the correlation between performance sco	Chan-Jong-Chu, Kwame; Islam, 1	2020
7	Jolinar: analysing the energy footprint of software appli	Noureddine, Adel; Islam, Syed; Ba	2016
8	A preliminary study of the impact of software engineeri	Noureddine, Adel; Bourdon, Aurel	2012
9	Object-oriented genetic improvement for improved ene	Burles, Nathan; Bowles, Edward;	2015
10	An Automated Code Optimizer of Design Patterns for F	Din, Jamilah; Wei, Ooi Chiew; Jas	2018
11	The power of system call traces: predicting the softwar	Aggarwal, Karan; Zhang, Chenlei	2014
12	Investigating the Impact of Code Refactoring Technique	Sanlialp, Ibrahim; Ozturk, Muham	2019
13	Refactoring android java code for on-demand computa	Zhang, Ying; Huang, Gang; Liu, X	2012
14	Exploiting significance of computations for energy-cons	Vassiliadis, Vassilis; Chalios, Cha	2016
15	Estimating software energy consumption with machine	Fu, Cuijiao; Qian, Depei; Luan, Zh	2018
16	Android app energy efficiency: The impact of language	Chen, Xinbo; Zong, Ziliang	2016
17	Green software: Refactoring approach	Sehgal, Rajni; Mehrotra, Deepti; N	2020
18	EnerJ: Approximate data types for safe and general lov	Sampson, Adrian; Dietl, Werner; I	2011
19	How to measure energy-efficiency of software: Metrics	Johann, Timo; Dick, Markus; Nau	2012
20	Calculating source line level energy information for and	Li, Ding; Hao, Shuai; Halfond, Wil	2013
21	Studying energy trade offs in offloading computation/co	Chen, Guangyu; Kang, BT.; Kan	2004
22	Energy efficient software development life cycle-An ap	Sharma, Sunil Kumar; Gupta, P. k	2015
23	Analysis of energy consumption and optimization techn	Corral-García, Javier; Lemus-Prie	2019
24	Green web services: Modeling and estimating power c	Bartalos, Peter; Blake, M. Brian	2012
25	Energy-efficient multisite offloading policy using Marko	Terefe, Mati B.; Lee, Heezin; Heo	2016
26	Towards a green ranking for programming languages	Couto, Marco; Pereira, Rui; Ribei	2017
27	A programming environment with runtime energy chara	Xian, Changjiu; Lu, Yung-Hsiang;	2007
28	Estimating mobile application energy consumption usir	Hao, Shuai; Li, Ding; Halfond, Wil	2013

ID	Title	Authors	Year
29	Unit testing of energy consumption of software libraries	·	2014
30	Manageable granularity in mobile application code office	Yang, Sirui	2012
31	Software-based energy profiling of android apps: Simp	Di Nucci, Dario; Palomba, Fabio;	2017
32	Evaluating the Impact of Java Virtual Machines on Ene	Ournani, Zakaria; Belgaid, Mohar	2021
33	Green configurations of functional quality attributes	Horcas, Jose-Miguel; Pinto, Mónio	2017
34	Environmental Sustainability Coding Techniques for Cl	Ahmed, Shakeel	2020
35	A process for analysing the energy efficiency of softwa	Mancebo, Javier; García, Félix; C	2021
36	Code Smell Refactoring for Energy Optimization of And	Sehgal, Rajni; Mehrotra, Deepti; t	2021
37	Automated re-factoring of android apps to enhance en	Banerjee, Abhijeet; Roychoudhur	2016
38	\${\$AppScope\$}\$: Application Energy Metering Framew	Yoon, Chanmin; Kim, Dongwon; J	2012
39	Early analysis of resource consumption patterns in mo	Berrocal, Javier; Garcia-Alonso, J	2017
40	Removing Decorator to Improve Energy Efficiency	Bree, Déaglán Connolly; Cinnéide	2022
41	Understanding green software development: A concept	Ardito, Luca; Procaccianti, Giuser	2015
42	Predicting data structures for energy efficient computing	Michanan, Junya; Dewri, Rinku; F	2015
43	Automated energy optimization of http requests for mo	Li, Ding; Lyu, Yingjun; Gui, Jiapin	2016
44	Green: A framework for supporting energy-conscious p	Baek, Woongki; Chilimbi, Trishul I	2010
45	Towards power reduction through improved software d	Sahin, Cagri; Cayci, Furkan; Clau	2012
46	A study of the energy consumption of databases and c	Bani, Béchir; Khomh, Foutse; Gu	2016
47	Using the Greenup, Powerup, and Speedup metrics to	Abdulsalam, Sarah; Zong, Ziliang	2015
48	Performance events based full system estimation on a	Yang, Shu; Luan, Zhongzhi; Li, Bi	2016
49	EARLY ANALYSIS OF SOFTWARE ARCHITECTURE	AL NIDAWI, HASAN SAJID ATTA	2018
50	Saving Energy on Mobile Devices by Refactoring.	Gottschalk, Marion; Jelschen, Jar	2014
51	Deep parameter optimisation on android smartphones	Bokhari, Mahmoud A.; Bruce, Bot	2017
52	Catalog of energy patterns for mobile applications	Cruz, Luis; Abreu, Rui	2019
53	Exploring evolutionary search strategies to improve ap	Manotas, Irene; Clause, James; F	2018
54	Inheritance versus delegation: Which is more energy e	Connolly Bree, Déaglán; Cinnéide	2020
55	Greenadvisor: A tool for analyzing the impact of softwa	Aggarwal, Karan; Hindle, Abram;	2015
56	Phone2Cloud: Exploiting computation offloading for en	Xia, Feng; Ding, Fangwei; Li, Jie;	2014

ID	Title	Authors	Year
57	Automated Refactoring for Energy-Aware Software	Bree, Déaglán Connolly; Cinnéide	2021
58	Choosing the Best Sorting Algorithm for Optimal Energy	Bunse, Christian; Höpfner, Hagen	2009
59	Energy efficient data sorting using standard sorting alg	Bunse, Christian; Höpfner, Hagen	2009
60	Understanding the impact of object oriented programm	Maleki, Sepideh; Fu, Cuijiao; Ban	2017
61	Toward using software metrics as indicator to measure	Keong, Ching Kin; Wei, Koh Tienç	2015
62	Optimizing energy consumption of guis in android apps	Paper proposes a multi-objective	2015
63	Energy efficiency across programming languages: how	Pereira, Rui; Couto, Marco; Ribei	2017
64	A study of energy-aware implementation techniques: R	Corral, Luis; Georgiev, Anton B.; {	2015
65	Comparing REST, SOAP, Socket and gRPC in comput	Chamas, Carolina Luiza; Cordeiro	2017
66	Green software requirements and measurement: rando	Beghoura, Mohamed Amine; Bou	2017
67	Extending software architecture views with an energy of	Jagroep, Erik; van der Werf, Jan I	2017
68	Mobile device power models for energy efficient dynam	Ali, Farhan Azmat; Simoens, Piete	2016
69	Energy optimization in Android applications through wa	Alam, Faisal; Panda, Preeti Ranja	2014
70	Energy Efficiency Analysis of Code Refactoring Technic	Şanlıalp, İbrahim; Öztürk, Muham	2022
71	Impacts of software and its engineering on the carbon	Kern, Eva; Dick, Markus; Naumar	2015
72	Green Patterns of User Interface Design: A Guideline for	Nayak, Jitesh; Chandwadkar, Apu	2021
73	Evaluation of Software Product Quality Attributes and E	Koçak, Sedef Akinli; Alptekin, Gül	2014
74	Self-adaptive battery and context aware mobile applica	Datta, Soumya Kanti; Bonnet, Ch	2014
75	Greenbundle: an empirical study on the energy impact	Chowdhury, Shaiful Alam; Hindle,	2019
76	Reducing energy consumption using genetic improvement	Bruce, Bobby R.; Petke, Justyna;	2015
77	Towards automatic significance analysis for approxima	Vassiliadis, Vassilis; Riehme, Jan	2016
78	Ape: An annotation language and middleware for energ	Nikzad, Nima; Chipara, Octav; Gr	2014
79	Investigating Energy and Security Trade-offs in the Cla	Peterson, Peter AH; Singh, Digvija	2011
80	Differences of energetic consumption between Java ar	Ramírez, Ricardo Isidro; Rubio, E	2014
81	Self-adaptive energy-efficent applications: the hadas d	Horcas, Jose Miguel; Pinto, Mónio	2017
82	Fine-grained power management using process-level p	Chen, Hui; Li, Youhuizi; Shi, Weis	2012
83	Green mining: a methodology of relating software char	Hindle, Abram	2015
84	Greenminer: A hardware based mining software reposi	Hindle, Abram; Wilson, Alex; Rasi	2014

ID	Title	Authors	Year
0.5		Di 4 O 4 I I 14 O 4	0040
	A comprehensive study on the energy efficiency of java		2016
86	Initial explorations on design pattern energy usage	Sahin, Cagri; Cayci, Furkan; Gutic	2012
87	GREEN MOBILE APPLICATION DEVELOPMENT THE	•	2019
88	Evaluating the impact of code smell refactoring on the		2019
89	Is software "green"? Application development environment		2012
90	Exploring the energy consumption of data sorting algor	Bunse, Christian; Höpfner, Hagen	2009
91	Program energy efficiency: The impact of language, co	Abdulsalam, Sarah; Lakomski, Do	2014
92	What is keeping my phone awake? Characterizing and	Pathak, Abhinav; Jindal, Abhilash	2012
93	Haskell in green land: Analyzing the energy behavior o	Lima, Luís Gabriel; Soares-Neto,	2016
94	Process-level power estimation in vm-based systems	Colmant, Maxime; Kurpicz, Mascl	2015
95	Monitoring energy hotspots in software	Noureddine, Adel; Rouvoy, Roma	2015
96	Understanding the impact of cloud patterns on perform	Khomh, Foutse; Abtahizadeh, S. /	2018
97	On the impact of code smells on the energy consumpti	Palomba, Fabio; Di Nucci, Dario;	2019
98	An investigation into energy-saving programming pract	Li, Ding; Halfond, William GJ	2014
99	Greening an existing software system using the GPU	Scanniello, Giuseppe; Erra, Ugo;	2013
100	Understanding energy behaviors of thread management	Pinto, Gustavo; Castor, Fernando	2014
101	Assessment of rest and websocket in regards to their e	Herwig, Volker; Fischer, René; Br	2015
102	Anole: a case for energy-aware mobile application des	Chen, Hui; Luo, Bing; Shi, Weisor	2012
103	Variability models for generating efficient configurations	Horcas, Jose-Miguel; Pinto, Mónio	2018
104	Energy Efficient Software Development Techniques for	Alsayyah, Aeshah A.; Ahmed, Sha	2020
105	Melta: A method level energy estimation technique for	Farooq, Muhammad Umer; Khan,	2019
106	An empirical study of the energy consumption of andro	Li, Ding; Hao, Shuai; Gui, Jiaping	2014
107	Characterizing the performance and energy efficiency	Hunt, Nicholas; Sandhu, Paramjit	2011
108	A source-level energy optimization framework for mobi		2016
109	Time-and-energy-aware computation offloading in hand	Lin, Ying-Dar; Chu, Edward TH.;	2013
	Tools supporting green computing in Erlang	Nagy, Gergely; Mészáros, Áron A	2019
	Green software architectures: A market-based approach		2010
	Accurate online power estimation and automatic batter		2010

ID	Title	Authors	Year
113	A green software development life cycle for cloud comp	Chauhan Nitin Singh: Sayana As	2013
	Seeds: A software engineer's energy-optimization decision		2013
	Investigation for Software Power Consumption of Code		2014
	,	Do, Thanh; Rawshdeh, Suhib; Sh	2014
	ptop: A process-level power profiling tool		2009
	Greenoracle: Estimating software energy consumption	·	2016
	Energy profiles of java collections classes	Hasan, Samir; King, Zachary; Haf	
	Empirical evaluation of two best practices for energy-e		2016
120	0 0 01	-	2017
121	3, .h		2017
122		Noureddine, Adel; Rajan, Ajitha	2015
	Mining energy-greedy api usage patterns in android ap	·	2014
124	An Aspect Oriented Model for Software Energy Efficier		2014
125	0, 0,11	-	2017
126	Architectural Tactics to Optimize Software for Energy E	Vos, Sophie; Lago, Patricia; Verde	2022
127	Energy consumption and efficiency in mobile application	Wilke, Claas; Richly, Sebastian; C	2013
128	Data-oriented characterization of application-level ener	Liu, Kenan; Pinto, Gustavo; Liu, Y	2015
129	Code-level Optimization for Program Energy Consump	Fu, Cuijiao; Qian, Depei; Huang,	2019
130	SPELLing out energy leaks: Aiding developers locate e	Pereira, Rui; Carção, Tiago; Cout	2020
131	Model-based energy efficiency analysis of software arc	Stier, Christian; Koziolek, Anne; C	2015
132	Seflab: A lab for measuring software energy footprints	Ferreira, Miguel A.; Hoekstra, Eric	2013
133	Impact of developer choices on energy consumption of	Singh, Jasmeet; Naik, Kshirasaga	2015
134	The software perspective for energy-efficient mobile ap	Siebra, Clauirton; Costa, Paulo; N	2012
135	Comparing the Energy Consumption of Java I/O Librar	Ournani, Zakaria; Rouvoy, Romai	2021
136	Measuring application software energy efficiency	Capra, Eugenio; Francalanci, Chi	2012
137	How green are cloud patterns?	Abtahizadeh, S. Amirhossein; Kho	2015
138	Leafactor: Improving energy efficiency of android apps	Cruz, Luis; Abreu, Rui; Rouvignac	2017
139	Towards an Energy-Consumption Based Complexity C	Höpfner, Hagen; Bunse, Christian	2010
140	Enforcing green code with Android lint	Goaër, Olivier Le	2020

ID	Title	Authors	Year
141	Software optimization for performance, energy, and the	Khan, Md Ashfaquzzaman; Hanke	2011
142	Managing the energy-delay tradeoff in mobile application	Nikzad, Nima; Radi, Marjan; Chip	2015