CSE 383C: Numerical Linear Algebra

Fall 2016

1 Algorithm Complexity

Let $A \in \mathbb{C}^{m \times n}$, $x, y, z \in \mathbb{C}^n$, $H \in \mathbb{C}^{m \times m}$, $u, v \in \mathbb{C}^m$.

- i. Inner Product x^ty O(2n) time, O(1) space.
- ii. Outer Product xy^t $O(n^2)$ time, $O(n^2)$ space.
- iii. Outer Product Vector $(xy^t)z = x(y^tz) O(3n)$ time, O(n) space.
- iv. Dense Matrix Vector Ax O(2mn) time, O(m) space.
- v. Spar Matrix Vector Ax O(m+n) time, O(m+n) space.
- vi. Gram Schmidt $O(\frac{3}{2}mn^2)$ time.
- vii. Householder Vector $Hv = (I 2uu^*)v = v 2uu^*v O(4m)$ time.
- viii. Householder $O(2mn^2 \frac{2}{3}n^3)$ time.
- ix. Givens $O(mn^2)$ time.

2 QR Factorization

Given a matrix $A \in \mathbb{R}^{m \times n}$, we can write A = QR, where Q is orthonormal and R is upper triangular. This matrix factorization exists for all matrices.

2.1 Reduced QR

If $A \in \mathbb{R}^{m \times n}$, then A = QR produces $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$.

The typical GS orthogonalization produces this.

2.2 Full QR

If $A \in \mathbb{R}^{m \times n}$, then A = QR produces $Q \in \mathbb{R}^{m \times m}$ and $R \in \mathbb{R}^{m \times n}$.

A typical GS factorization loops over the columns of A and orthogonalizes that column with respect to the previous columns of A. But if m > n, there are only n columns of A and so there are m - n more orthogonal vectors that we need to form a basis for $\mathbb{R}^{m \times m}$.

This means we need m-n more linearly independent vectors. Well we can just pick random vectors to orthogonalize because the probability of picking a vector that aligns exactly with a previous one (linearly dependent vector) is 0.

Another option is just to use Householder QR, or Givens QR.

2.3 Gram Schmidt

Given a matrix $A \in \mathbb{R}^{m \times n}$, A full rank (why? explained later), we want to form an orthogonal basis for the range of A.

Pick the first column of A, called a_1 . We want an orthogonal basis for span of a_1 , well we can just pick $v_1 = a_1$.

Now we are on the second column of A, called a_2 . We want to now find an orthogonal vector to v_1 . Well we can just find the projection onto v_1 , defined as $v_1v_1^Ta_2$, and then subtract this bit off off v_1 . So $v_2 = (I - v_1v_1^T)a_2$.

We are now on the third column of A, called a_3 . We want to find an orthogonal vector to v_1 , v_2 . Well we can find this by finding the component of a_3 that lives in $span\{v_1, v_2\}$, then subtracting that component from a_3 . So $v_3 = (I - v_1v_1^T - v_2v_2^T)a_3$.

We continue until we have gone through every column, now we have an orthogonal basis for Range(A), but this is not orthonormal. We can simply normalize each column $q_i = \frac{v_i}{|v_i|}$.

Now we have formed our matrix Q, and the R follows. A column of R, say r_j , tells us the linear combination of Q that we need to form the corresponding column a_j . By construction, R is upper triangular.

Why does A have to be full rank? If the columns of A are not linearly independent, then when we try to find a orthogonal vector, we will get a $v_i = 0$, and get NaNs in our answer.

2.4 Modified Gram Schmidt

In CGS, we use $v_i = a_i - \sum_{j=1}^{i-1} q_j q_j^* a_i$, but if the columns of A are almost linearly dependent, the inner product and subtraction operations will cause

large numerical instabilities, and cause $q_i \cdot q_j \neq 0$.

Instead, we will initialize $v_i = a_i$, but then for every iteration, we do $v_i = v_i - q_j q_j^* v_i \ \forall j < i$. This makes it so that even though we have some instabilities in R, we focus on the orthogonality of Q, and we can bound $|Q^*Q - I| = O(\kappa(A)\epsilon_m)$.