Temporal Trial

Maximilian Fernando Becker

2023-03-30

Bacterial community analysis

Becker	cker $et\ al.$ "Plant health protecting product applicat							ion"	

This document contains all statistical analyses conducted for the manuscript. Note that due to the random iterative nature of some analyses (such as PERMANOVA, CAP & PCA) some of the figure parameters will change slightly during reanalysis, though core results will remain essentially unchanged.

All data to reproduce analysis can be found here: https://github.com/mfbeuq/becker_etal_PHPPapplication

Load necessary ecological analysis libraries.

library(phyloseq) library(microbiome) library(ggord) library(metagMisc) library(ggpubr) library(FSA) library(knitr) library(rmarkdown) library(ape) library(vegan) library(philr) library(compositions) library(qiime2R) library(plyr) library(dplyr) library(tidyr) library(PMCMR) library(tibble) library(viridis) library(gridExtra) library(AcidPlots) library(grid) library(colorRamps)

```
library(rstatix)
library(dunn.test)
library(pairwiseAdonis)
library(dplyr)
library(ANCOMBC)
library(nlme)
library(tidyverse)
library(compositions)
library(readr)
library(DT)
library(matrixStats)
library(pheatmap)
library(RColorBrewer)
library(dendsort)
library(ComplexHeatmap)
library(circlize)
library(round)
library(lme4)
library(emmeans)
set.seed(225)
```

Contents of this workspace

```
load('temporal_trial.RData')
```

- ps: phyloseq object including the metadata, and the ASV table, the taxonomy table and the phylogenetic tree, all three created by QIIME2
- psl.meta: Shannon diversity index data of the loosely associated (L) root microbiota sub data set
- psT.meta: Shannon diversity index data of the tightly associated (T) root microbiota sub data set
- RA.ord: DEICODE ordination generated by QIIME2 of the entire root microbiota data set
- RA.ord.LE: DEICODE ordination generated by QIIME2 of the loosely associated (L) root microbiota sub data set sampled at the early timepoint
- RA.ord.LL: DEICODE ordination generated by QIIME2 of the loosely associated (L) root microbiota sub data set sampled at the late timepoint
- RA.ord.TE: DEICODE ordination generated by QIIME2 of the loosely associated (T) root microbiota sub data set sampled at the early timepoint
- RA.ord.TL: DEICODE ordination generated by QIIME2 of the tightly associated (T) root microbiota sub data set sampled at the late timepoint
- RA.dist.L: DEICODE distance matrix generated by QIIME2 of the loosely associated (L) root microbiota sub data set
- RA.dist.T: DEICODE distance matrix generated by QIIME2 of the tightly associated (T) root microbiota sub data set
- RA.dist.LE: DEICODE distance matrix generated by QIIME2 of the loosely associated (L) root microbiota sub data set sampled at the early timepoint
- RA.dist.LL: DEICODE distance matrix generated by QIIME2 of the tightly associated (L) root microbiota sub data set sampled at the late timepoint
- RA.dist.TE: DEICODE distance matrix generated by QIIME2 of the loosely associated (T) root microbiota sub data set sampled at the early timepoint
- RA.dist.TL: DEICODE distance matrix generated by QIIME2 of the tightly associated (T) root microbiota sub data set sampled at the late timepoint
- q_meta: the metadata table

- deicode_theme: a theme for generating the plots
- plot_theme: a theme for generating the plots
- p.colors: a color list for phyla coloring
- read_distance: function for importing a DEICODE distance matrix generated by QIIME2
- 'rename.ancombc.output": a function for renaming taxa in an ANCOM-BC table

Alpha diversity statistics:

The following does the statistical analysis for the Shannon index values of the L-compartment

```
# Calculate Mean and SD
mean(psL.meta$Shannon)
sd(psL.meta$Shannon)

# Linear Model
Model <- lm(Shannon ~ PHPP * timepoint, data = psL.meta, na.action = na.omit)
summary(Model)
anova(Model)</pre>
```

The following does the statistical analysis for the Shannon index values of the T-compartment

```
# Calculate Mean and SD
mean(psT.meta$Shannon)
sd(psT.meta$Shannon)

# Linear Model
Model <- lm(Shannon ~ PHPP * timepoint, data = psT.meta, na.action = na.omit)
summary(Model)
anova(Model)</pre>
```

Timepoints "F" and "S" are one and two weeks after final application, respectively.

Beta Diversity:

Loosely associated root microbiome: First, the distance matrix calculated by QIIME2 needs to be merged with the metadata file:

```
RA.dist <- RA.dist.L #using a temporary variable

tmp_order <- colnames(RA.dist)

row.names(q_meta) <- q_meta$SampleID

de <- merge(q_meta, RA.dist, by=0, all=F, all.y=F)

row.names(de) <- de$SampleID

de <- de[ order(match(row.names(de), tmp_order)), ]

RA.dist <- RA.dist[ order(match(row.names(RA.dist), tmp_order)), ]
```

Then, PERMANOVA is calculated on the distance matrix

```
adonis2(formula = RA.dist ~ de$PHPP * de$Timepoint , permutations = 999)
```

Furthermore, PERMDISP is calculated either for the PHPP treatment and the grouped variable

```
mod <- betadisper(as.dist(RA.dist), de$PHPP); anova(mod)
#tukey <- TukeyHSD(mod, which = "group", ordered = F, conf.level = 0.95); tukey$group

mod <- betadisper(as.dist(RA.dist), de$Grouped); anova(mod)
#tukey <- TukeyHSD(mod, which = "group", ordered = F, conf.level = 0.95); tukey$group</pre>
```

Tightly associated root microbiome: First, the distance matrix calculated by QIIME2 needs to be merged with the metadata file:

```
RA.dist <- RA.dist.T #using a temporary variable

tmp_order <- colnames(RA.dist)

row.names(q_meta) <- q_meta$SampleID

de <- merge(q_meta, RA.dist, by=0, all=F, all.y=F)

row.names(de) <- de$SampleID

de <- de[ order(match(row.names(de), tmp_order)), ]

RA.dist <- RA.dist[ order(match(row.names(RA.dist), tmp_order)), ]
```

Then, PERMANOVA is calculated on the distance matrix

```
adonis2(formula = RA.dist ~ de$PHPP * de$Timepoint , permutations = 999)
```

Furthermore, PERMDISP is calculated either for the PHPP treatment and the grouped variable

```
mod <- betadisper(as.dist(RA.dist), de$PHPP); anova(mod)
#tukey <- TukeyHSD(mod, which = "group", ordered = F, conf.level = 0.95); tukey$group

mod <- betadisper(as.dist(RA.dist), de$Grouped); anova(mod)
#tukey <- TukeyHSD(mod, which = "group", ordered = F, conf.level = 0.95); tukey$group</pre>
```

Figure 3 A:

```
## PCoA L-Early samples ---
RA.ord <- RA.ord.LE
p1E <- RA.ord$data$Vectors %>%
  dplyr::select(SampleID, PC1, PC2) %>%
  left_join(q_meta) %>%
  mutate(Grouped = fct_relevel(Grouped, "CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE")) %>%
  ggplot(aes(x=PC1, y=PC2, color=Grouped)) +
  geom_point(alpha=0.9, size=12) + deicode_theme +
  guides(color = guide_legend(order = 1, override.aes = list(size=12))) +
  geom_hline(yintercept = 0, linetype="dotted") +
  geom_vline(xintercept = 0, linetype="dotted") +
  xlab(paste("PC1 - ",format(round(100*RA.ord$data$ProportionExplained[1,1],digits = 1), nsmall = 1),"%
  ylab(paste("PC2 - ",format(round(100*RA.ord$data$ProportionExplained[1,2],digits = 1), nsmall = 1), "%
  theme(legend.text.align = 0, legend.spacing.y = unit(1, 'cm'), legend.key.height = unit(1, 'cm')) +
  scale_color_manual(values=c("black", "red1", "purple1", "orange1", "paleturquoise3"), name="PHPP",
                     labels = c("CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE"))
## PCoA L-Late samples --
RA.ord <- RA.ord.LL
p1L <- RA.ord$data$Vectors %>%
  dplyr::select(SampleID, PC1, PC2) %>%
  left_join(q_meta) %>%
  mutate(Grouped = fct_relevel(Grouped, "CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE")) %>%
  ggplot(aes(x=PC1, y=PC2, color=Grouped)) +
  geom_point(alpha=0.9, size=12) + deicode_theme +
  guides(color = guide_legend(order = 1, override.aes = list(size=12))) +
  geom_hline(yintercept = 0, linetype="dotted") +
  geom_vline(xintercept = 0, linetype="dotted") +
  xlab(paste("PC1 - ",format(round(100*RA.ord$data$ProportionExplained[1,1],digits = 1), nsmall = 1),"%
  ylab(paste("PC2 - ",format(round(100*RA.ord$data$ProportionExplained[1,2],digits = 1), nsmall = 1), "%
  theme(legend.text.align = 0, legend.spacing.y = unit(1, 'cm'), legend.key.height = unit(1, 'cm')) +
  scale_color_manual(values=c("black", "red1", "purple1", "orange1", "paleturquoise3"), name="PHPP",
                     labels = c("CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE"))
```

```
## PCoA T-Early samples -
RA.ord <- RA.ord.TE
p2E <- RA.ord$data$Vectors %>%
   dplyr::select(SampleID, PC1, PC2) %>%
   left_join(q_meta) %>%
   mutate(Grouped = fct_relevel(Grouped, "CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE")) %>%
   ggplot(aes(x=PC1, y=PC2, color=Grouped)) +
   geom_point(alpha=0.9, size=12) + deicode_theme +
   guides(color = guide_legend(order = 1, override.aes = list(size=12))) +
   geom_hline(yintercept = 0, linetype="dotted") +
   geom_vline(xintercept = 0, linetype="dotted") +
   xlab(paste("PC1 - ",format(round(100*RA.ord$data$ProportionExplained[1,1],digits = 1), nsmall = 1),"%
   ylab(paste("PC2 - ",format(round(100*RA.ord$data$ProportionExplained[1,2],digits = 1), nsmall = 1), "%
   theme(legend.text.align = 0, legend.spacing.y = unit(1, 'cm'), legend.key.height = unit(1, 'cm')) +
   scale_color_manual(values=c("black", "red1", "purple1", "orange1", "paleturquoise3"), name="PHPP",
                                   labels = c("CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE"))
## PCoA T-Late samples -----
RA.ord <- RA.ord.TL
p2L <- RA.ord$data$Vectors %>%
   dplyr::select(SampleID, PC1, PC2) %>%
   left_join(q_meta) %>%
   mutate(Grouped = fct_relevel(Grouped, "CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE")) %>%
   ggplot(aes(x=PC1, y=PC2, color=Grouped)) +
   geom_point(alpha=0.9, size=12) + deicode_theme +
   guides(color = guide_legend(order = 1, override.aes = list(size=12))) +
   geom_hline(yintercept = 0, linetype="dotted") +
   geom_vline(xintercept = 0, linetype="dotted") +
   xlab(paste("PC1 - ",format(round(100*RA.ord$data$ProportionExplained[1,1],digits = 1), nsmall = 1),"%
   ylab(paste("PC2 - ",format(round(100*RA.ord$data$ProportionExplained[1,2],digits = 1), nsmall = 1), "%
   theme(legend.text.align = 0, legend.spacing.y = unit(1, 'cm'), legend.key.height = unit(1, 'cm')) +
   scale_color_manual(values=c("black", "red1", "purple1", "orange1", "paleturquoise3"), name="PHPP",
                                   labels = c("CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE"))
# Create legend
RA.ord <- RA.ord.TL
legend <- RA.ord$data$Vectors %>%
   dplyr::select(SampleID, PC1, PC2) %>%
   left_join(q_meta) %>%
   mutate(Grouped = fct_relevel(Grouped, "CONTROL", "ALIETTE", "LUNA", "MOVENTO", "SERENADE")) %>%
   ggplot(aes(x=PC1, y=PC2, color=Grouped)) +
   scale_color_manual(values=c("black", "red1", "purple1", "orange1", "paleturquoise3"), name="PHPP",
                                   labels = c("Control", "Aliette", "Luna", "Movento", "Serenade")) +
   deicode_theme + theme(legend.key.size = unit(1.5, "cm"), legend.text = element_text(size=28),
legend2 <- cowplot::get_legend(legend)</pre>
c1 \leftarrow ggpar(p1E, legend = "", legend.title = "", font.x = c(24, "bold"), font.y = c(24, "bold"), font.t
   annotate(\texttt{geom="text", y = max(p1E\$data\$PC2), x = max(p1E\$data\$PC1), label="(1)", color="black", size="footnote: size="foot
   scale_y_continuous(labels = scales::number_format(accuracy = 0.1)) + scale_x_continuous(labels = scal
c2 \leftarrow ggpar(p1L, legend = "", legend.title = "", font.x = c(24, "bold"), font.y = c(24, "bold"), font.t
```

Figure 3 B:

Phylogenetic Beta Diversity:

Figures S3 and S4: Load necessary packages and create theme for plots. Then, betaNTI and betaNRI, as well as tNST, are calculated for the compartments and timepoints individually.

```
library(microeco)
library(file2meco)
library(scales)
library(phyloseq)
library(magrittr)
library(ggplot2)
library(ggpubr)
library(dplyr)
dir.create("stat_results")
dir.create("stat_results/PD")
### ind. timepoints - ssp----
# same species pool
comp <- "T"
tp <- "F"
for (comp in c("L","T")) {
  for (tp in c("F", "S")) {
    pseq <- subset_samples(ps, compartment==comp)</pre>
    pseq <- subset_samples(pseq, timepoint==tp)</pre>
    dataset <- phyloseq2meco(pseq)</pre>
    dataset$tidy_dataset(); dataset
```

```
# generate trans_nullmodel object
t1 <- trans_nullmodel$new(dataset)</pre>
#### beta NRI ---
method <- "bNRI"
# see null.model parameter for other null models
# null model run 500 times for the example
t1$cal_ses_betampd(runs=999, abundance.weighted = TRUE)
# return t1$res_ses_betampd
# add betaNRI matrix to beta_diversity list
dataset$beta_diversity[["betaNRI"]] <- t1$res_ses_betampd</pre>
# create trans_beta class, use measure "betaNRI"
t2 <- trans_beta$new(dataset = dataset, group = "PHPP", measure = "betaNRI")
# transform the distance for each group
t2$cal_group_distance(); t2$res_group_distance
# export data
t2$res_group_distance %>%
  write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_rawdata_ssp.tsv"), row.nam
#calculate Mean and SD
t2$res_group_distance %>% group_by(PHPP) %>% summarise(Average=mean(Value), SD=sd(Value)) %>%
  write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_mean_ssp.tsv"), row.names
# export ANOVA and post-hoc tests
sink(file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_ANOVA_ssp.txt"))
one.way <- aov(Value ~ PHPP, data = t2$res_group_distance); summary(one.way)
agricolae::SNK.test(one.way, "PHPP", alpha = 0.05, group=TRUE, main = NULL,console=TRUE)
sink(file = NULL)
##### **Figure S4:**
p_bNRI <- ggplot(t2$res_group_distance, aes(x=PHPP, y=Value, fill=PHPP)) +</pre>
  geom_boxplot() +
  geom_hline(yintercept = -2, linetype = 2) + geom_hline(yintercept = 2, linetype = 2) +
  scale_fill_manual(values=c("red1", "black", "purple1", "orange1", "paleturquoise3"), name="Treatme:
                     labels = c("ALIETTE", "CONTROL", "LUNA", "MOVENTO", "SERENADE")) +
  xlab("") + ylab("betaNRI") +
  coord_cartesian(ylim = c(-8, 4)) +
  scale_y_continuous(breaks = seq(-8, 4, by = 2)) +
  plot theme
p_bNRI$layers[[2]]$aes_params$textsize <- 20</pre>
print(p_bNRI)
### beta NTI ---
method <- "bNTI"</pre>
# null model run 500 times
t1$cal_ses_betamntd(runs=999, abundance.weighted = TRUE, nworker = 10, use_iCAMP = FALSE)
# return t1$res_ses_betamntd
# add betaNRI matrix to beta_diversity list
dataset$beta_diversity[["betaNTI"]] <- t1$res_ses_betamntd</pre>
# create trans_beta class, use measure "betaNRI"
```

```
t2 <- trans_beta$new(dataset = dataset, group = "PHPP", measure = "betaNTI")
# transform the distance for each group
t2$cal_group_distance(); t2$res_group_distance
# export data
t2$res_group_distance %>%
  write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_rawdata_ssp.tsv"), row.nam
#calculate Mean and SD
t2$res_group_distance %>% group_by(PHPP) %>% summarise(Average=mean(Value), SD=sd(Value)) %>%
  write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_mean_ssp.tsv"), row.names
# export ANOVA and post-hoc tests
sink(file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_ANOVA_ssp.txt"))
one.way <- aov(Value ~ PHPP, data = tmp); summary(one.way)</pre>
agricolae::SNK.test(one.way, "PHPP", alpha = 0.05, group=TRUE, main = NULL,console=TRUE)
sink(file = NULL)
##### **Figure S3:**
p_bNTI <- ggplot(t2$res_group_distance, aes(x=PHPP, y=Value, fill=PHPP)) +</pre>
  geom_boxplot() +
  geom_hline(yintercept = -2, linetype = 2) + geom_hline(yintercept = 2, linetype = 2) +
  scale_fill_manual(values=c("red1", "black", "purple1", "orange1", "paleturquoise3"), name="Treatme:
                     labels = c("ALIETTE","CONTROL","LUNA","MOVENTO","SERENADE")) +
  xlab("") + ylab("betaNTI") +
  coord_cartesian(ylim = c(-8, 4)) +
  scale_y_continuous(breaks = seq(-8, 4, by = 2)) +
  plot_theme
p_bNTI$layers[[2]]$aes_params$textsize <- 16</pre>
print(p_bNTI)
```

Figure S8: tNST is calculated for each compartment and timepoint individually with both Bray's and Jaccard's distance.

```
for (comp in c("L","T")) {
   for (tp in c("F","S")) {
     for (dist in c("jaccard", "bray")) {

       method <- "NST"

     pseq <- subset_samples(ps, Compartment==comp)
     pseq <- subset_samples(pseq, timepoint==tp)

     meta.df = as(sample_data(pseq), "matrix")
     meta.df = as.data.frame(meta.df)
     meta.df = meta.df[,"PHPP", drop=FALSE]

     OTU1 = as(otu_table(pseq), "matrix")
     if(taxa_are_rows(pseq)){OTU1 <- t(OTU1)}
     comm.df = as.data.frame(OTU1)</pre>
```

```
# calculate NST
               cal_nst <- NST::tNST(comm = comm.df, group= meta.df, rand = 999,
                                                                 nworker = 10, between.group = TRUE, output.rand = TRUE, dist.method = dist)
               # bootstrap NST
               cal_nst.boot <- NST::nst.boot(nst.result = cal_nst, group = meta.df, rand = 999, trace = TRUE,
                                                                           two.tail = TRUE, out.detail = TRUE, between.group = FALSE,
                                                                           nworker = 10, SES = FALSE, RC = FALSE)
               cal_nst.boot$compare[,-c(7,9:10)] %>% write.table( file = paste0("stat_results/PD/",method,"_",compare[,-c(7,9:10)] %>% write.table( file = paste0("stat_results/PD/",method,",compare[,-c(7,9:10)] %> write.table( file = paste0("stat_results/PD/",method,",compare[,-c(7,9:10)] %> write.table( file = paste0("stat_results/PD/",method,",compare[,-c(7,9:1
               # PERMANOVA
              cal_nst.permanova <- NST::nst.panova(nst.result = cal_nst, group = meta.df, rand = 999,
                                                                                                         trace=TRUE, SES=FALSE, RC=FALSE)
              cal_nst.permanova %>% write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_",di
              tmp <- cal_nst.boot$detail$NST.boot</pre>
              df <- plyr::ldply (tmp,data.frame)</pre>
              # export data
              df %>% write.table( file = paste0("stat_results/PD/",method,"_",comp,"_",tp,"_",dist,"_rawdata.ts
              # plot
              p_tNSTI <- ggplot(df, aes(x=.id, y=X..i.., fill=.id)) +</pre>
                   geom_boxplot() +
                   xlab("") + ylab("tNST") +
                   coord_cartesian(ylim = c(0, 1), expand = T) +
                   plot_theme +
                   scale_y_continuous(breaks = seq(0, 1, by = 0.2)) +
                   geom_hline(yintercept = 0, linetype = 1) + geom_hline(yintercept = 1, linetype = 2) +
                   scale_fill_manual(values=c("red1", "black", "purple1", "orange1", "paleturquoise3"), name="Treat
                                                                 labels = c("ALIETTE", "CONTROL", "LUNA", "MOVENTO", "SERENADE"))
              p_tNSTI$layers[[2]]$aes_params$textsize <- 20</pre>
              print(p_tNSTI)
         }
    }
}
```

Differential abundance analysis:

```
library(dplyr)
library(ANCOMBC)
library(nlme)
library(tidyverse)
library(compositions)
library(readr)
library(DT)
library(matrixStats)
library(pheatmap)
library(RColorBrewer)
library(viridis)
```

```
library(dendsort)
library(qiime2R)
library(phyloseq)
library(microbiome)
library(ComplexHeatmap)
library(circlize)
library(round)
library(tidyr)
library(tibble)
tax <- "genus"
dir.create("stat_results/ANCOMBC/")
dir.create("stat_results/ANCOMBC/genus")
# Timepoints individually: --
for (comp in c("L","T")){
 pseq <- subset_samples(ps, Compartment==comp)</pre>
  genus_data <- tax_glom(pseq, taxrank <- rank_names(pseq)[6], NArm = FALSE)</pre>
  var1 <- "PSM_TP" #is equal to the grouped variable</pre>
  tax="genus"
  ## to control early -----
  var2="Early"
  sample_data(genus_data)$PSM_TP <- factor(sample_data(genus_data)$PSM_TP, levels = c("CONTROL-F", "CONT.</pre>
                                                                                          "ALIETTE-F", "ALIE
                                                                                          "LUNA-F", "LUNA-S"
                                                                                          "MOVENTO-F", "MOVE
                                                                                          "SERENADE-F", "SER
  # Run ancombc function
  out = ancombc(phyloseq = genus_data, formula = "PSM_TP",
                p_adj_method = "holm", zero_cut = 0.90, lib_cut = 10000,
                group = var1, struc_zero = TRUE, neg_lb = FALSE,
                tol = 1e-5, max_iter = 100, conserve = TRUE,
                alpha = 0.1, global = FALSE)
  res = out$res
  #Coefficients
  tab_coef = res$W
  colnames(tab_coef)
  col_name = c("Control_E - Control_L",
               "Control_E - Aliette_E", "Control_E - Aliette_L",
               "Control_E - Luna_E", "Control_E - Luna_L",
               "Control_E - Movento_E", "Control_E - Movento_L",
               "Control_E - Serenade_E", "Control_E - Serenade_L")
  colnames(tab_coef) = col_name
  source("ancom_bc_rename_variables.R", echo = T, spaced = T)
  tmp <- tab_diff</pre>
  tmp2 <- merge(tmp, tab_w, by=0)</pre>
  write_csv(tmp2, file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var2,".csv"))
```

```
var2="Late"
  sample data(genus data)$PSM TP <- factor(sample data(genus data)$PSM TP, levels = c("CONTROL-S", "CONT.</pre>
                                                                                           "ALIETTE-F", "ALIE
                                                                                           "LUNA-F", "LUNA-S"
                                                                                           "MOVENTO-F", "MOVE
                                                                                           "SERENADE-F", "SER
  # Run ancombc function
  out = ancombc(phyloseq = genus_data, formula = "PSM_TP",
                p_adj_method = "holm", zero_cut = 0.90, lib_cut = 10000,
                 group = var1, struc_zero = TRUE, neg_lb = FALSE,
                tol = 1e-5, max_iter = 100, conserve = TRUE,
                 alpha = 0.1, global = FALSE)
  res = out$res
  #Coefficients
  tab_coef = res$W
  colnames(tab_coef)
  col_name = c("Control_L - Control_E",
                "Control_L - Aliette_E", "Control_L - Aliette_L",
                "Control_L - Luna_E", "Control_L - Luna_L",
                "Control_L - Movento_E", "Control_L - Movento_L",
                "Control_L - Serenade_E", "Control_L - Serenade_L")
  colnames(tab_coef) = col_name
  source("ancom_bc_rename_variables.R", echo = T, spaced = T)
  tmp <- tab_diff</pre>
  tmp2 <- merge(tmp, tab_w, by=0)</pre>
  write_csv(tmp2, file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var2,".csv"))
}
# Timepoints individually: combine datasets -----
for (comp in c("L","T")){
 var1 <- "PSM TP"</pre>
  var2="Early";R1 <- read.csv(file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var2,".csv"))[,c(1</pre>
  var2="Late";R2 <- read.csv(file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var2,".csv"))[,c(1,...)]</pre>
  tmp <- Reduce(function(x, y) merge(x, y, all=TRUE, by="Row.names"), list(R1,R2))</pre>
  rownames(tmp) <- tmp$Row.names; tmp <- tmp[,-1]
  pseq <- subset_samples(ps, compartment==comp)</pre>
  pseq <- subset_samples(pseq, timepoint=="F")</pre>
  genus_data <- tax_glom(pseq, taxrank <- rank_names(pseq)[6], NArm = FALSE)</pre>
  PGroup <- transform_sample_counts(genus_data, function(x)100* x / sum(x))
  OTUg <- otu_table(PGroup)</pre>
  AverageD <- as.data.frame(rowMeans(OTUg))</pre>
  names(AverageD) <- "Early Mean"</pre>
  SD <- as.data.frame(rowSds(OTUg),na.rm = T)</pre>
```

```
names(SD) <- "Early SD"</pre>
  tmp_early <- cbind(AverageD,SD)</pre>
  pseq <- subset_samples(ps, compartment==comp)</pre>
  pseq <- subset_samples(pseq, timepoint=="S")</pre>
  genus_data <- tax_glom(pseq, taxrank <- rank_names(pseq)[6], NArm = FALSE)</pre>
  PGroup <- transform_sample_counts(genus_data, function(x)100* x / sum(x))
  OTUg <- otu table(PGroup)
  AverageD <- as.data.frame(rowMeans(OTUg))</pre>
  names(AverageD) <- "Late Mean"</pre>
  SD <- as.data.frame(rowSds(OTUg),na.rm = T)</pre>
  names(SD) <- "Late SD"</pre>
  tmp late <- cbind(AverageD,SD)</pre>
  tmp4 <- merge(tmp_early,tmp_late, by=0, all=TRUE)</pre>
  rownames(tmp4) <- tmp4$Row.names; tmp4 <- tmp4[,-1]
  tmp5 <- merge(tmp,tmp4, by=0, all=TRUE)</pre>
  #export as .csv
  write_csv(tmp5, file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var1,"_results.csv"))
# Treatment at individual timepoints -----
for (comp in c("L","T")){
  ###ANCOM results
  tmp <- read.csv(file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"-",var1,"_results.csv"))</pre>
  rownames(tmp) <- tmp$Row.names; tmp$Row.names = NULL</pre>
  pseq <- subset_samples(ps, compartment==comp)</pre>
  genus_data <- tax_glom(pseq, taxrank <- rank_names(pseq)[6], NArm = FALSE)</pre>
  ttable <- as.data.frame(tax_table(genus_data))</pre>
  GTable <- merge(ttable,tmp, by=0)
  rownames(GTable) <- GTable$Row.names; GTable$Row.names = NULL
  head(GTable)
  ancom <- GTable[(GTable$Late.Mean>=0.1 | GTable$Early.Mean>=0.1),] %% drop_na(P)
  ancom \leftarrow ancom[,-c(1,7:8)]
  ancom$Phylum <- ancom$P</pre>
  ancom <- merge(ancom, p.colors, by="Phylum", all.y = F)</pre>
  ancom$G[ancom$G=="uncultured"] <- "Unclassified"</pre>
  ancom$G[is.na(ancom$G)] <- "Unclassified"</pre>
  ancom <- add_column(ancom, Name = ancom$G, .after = "G")</pre>
  ancom <- ancom[(rowSums(ancom[,c(8:12,18:21)])!=0),] %>% drop_na(Phylum)
  head(ancom)
  ancom \leftarrow ancom[,-c(2)]
  colnames(ancom)[1:5] <- c("Phylum", "Class", "Order", "Family", "Genus")</pre>
  tax.clean <- ancom
  colnames(tax.clean)
```

```
tax.clean <- rename.ancombc.output(ancom)</pre>
  write_csv(tax.clean, file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"_subplots_combined.csv"))
 file.copy(from = paste0("stat_results/ANCOMBC/",tax,"/",comp,"_subplots_combined.csv"), to = paste0("
  #redo in excel! -> add specific row names if necessary
for (comp in c("L", "T", "B")){
  mat.df <- read.csv(file = paste0("stat_results/ANCOMBC/",tax,"/",comp,"_subplots_combined_mod.csv"),</pre>
  str(mat.df)
  colnames(mat.df) <- c("Phylum", "Control.Early:Late.sig", "E:Control:Aliette.sig", "E:Control:Luna.sig",</pre>
  #IMPORTANT: specify ONLY the columns with the differentials
  col.order <- c("Control Early -> Late", "Early: Control -> Aliette", "Early: Control -> Luna", "Early:
  mat.diff \leftarrow as.matrix(mat.df[,c(7:11,16:19)])
  sig_mat <- as.matrix(mat.df[,c(2:6,12:15)])</pre>
  #rownames(mat.diff) <- mat.df$Taxonomy</pre>
  min_lc <- min(mat.diff, na.rm = T)</pre>
  max_lc <- max(mat.diff, na.rm = T)</pre>
  colors <- colorRamp2(c(min_lc, 0, max_lc), c("blue", "white", "red"))</pre>
 hb = rowAnnotation('Mean Abundance [%]' = anno_barplot(as.vector(mat.df$`Early Mean`), gp = gpar(fill
 lgd = Legend(at = c(round(min_lc+min_lc*0.05, digits = 1), 0, round(max_lc+max_lc*0.05, digits = 1)),
 ht = Heatmap(mat.diff , name = "logfold change",
               column_gap = unit(5, "mm"),
               row_split = mat.df$Phylum,
               row_gap = unit(5, "mm"),
               row_names_gp = gpar(fontsize = 32, fontface = "bold",
                                    col = mat.df$`P-color`),
               column_split = c("A","B","B","B","B","C","C","C","C","C"),
               na_col = "grey",
               col = colors,
               rect_gp = gpar(col = "white", lwd = 2), #white spaces in between
               border = TRUE,
               cluster_rows = FALSE, #remove cluster
               show_column_dend = FALSE, #remove cluster
               show_heatmap_legend = FALSE, #r emove legend
               row_names_side = "right",
               row_names_max_width = unit(2, "cm"),
               row_names_rot = 0,
               row_names_centered = FALSE,
               row_title_gp = gpar(fontsize = 28),
               row_title_rot = 0,
               column_title = pasteO("ANCOM-BC W-value"),
               column_title_gp = gpar(fill = "black", col = "white", fontsize = 28, fontface = "bold",
               column_title_side = "top",
               column_names_max_height = unit(6, "cm"),
               column_names_gp = gpar(fontsize = 30, fontface = "bold", col = "black"),
               column_names_rot = 90,
```

Figure S11: