ATTRIBUTES OF OUTPUT PRIMITIVES (Chapter 4 in *Computer Graphics*)

- Line Styles
- Color and Intensity
- Area Filling Commands
- Character Attributes
- Bundled Attributes

Line Styles

- line type
 - solid
 - dashed (short solid sections)
 - dotted (every other pixel)
 - set linetype (It)
- line width
 - dependent on the output device
 - · parallel lines on a video monitor
 - · pen change on a plotter
 - set_linewidth_scale_factor (lw)
- line color
 - set_line_color_index (lc)
 - Ic indexes a color table

Color and Intensity

- range of choices
 - raster-scan systems:
 - large range
 - random-scan systems:
 - small range

color tables

COLOR CODE	STORED COLOR VALUES IN FRAME BUFFER			DISPLAYED COLOR
	RED	GREEN	BLUE	
0 1 2 3 4 5 6 7	0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	Black Blue Green Cyan Red Magenta Yellow White

• 8 color choices with 3 bits per pixel

color lookup tables

- frame buffer contents are indices into the lookup table
- 6 bits per pixel means 64 choices
- 12 bits per color means 4096 colors
- set_color_table (ct, c)
 - ct is the color table position (0 to 63)
 - c is the color code

gray scale

• for monitors with no color capability

INTENSITY CODES	STORED I VALUES FRAME BUFFE	DISPLAYED GRAY SCALE	
0.0 0.33 0.67	0 1 2	(00) (01) (10)	Black Dark Gray Light Gray
1.0	3	(11)	White

Area Filling

- scan-line algorithm
- antialiasing area boundaries
- boundary-fill algorithm
- flood-fill algorithm
- area-filling commands

scan-line algorithm

• intersect area boundaries and scan lines to identify pixels inside the area

scan-line algorithm, cont.

- for each nonhorizontal scan line
 - locate the intersection with each edge
 - order intersections (x,y) on y and then x
 - remove pairs of intersections
 - fill
- for vertices
 - record only one vertex for monotonic increasing or monotonic decreasing edges
 - record two vertices for local maxima or minima

take advantage of coherence

- adjacent pixels are usually alike
- adjacent scan lines are usually alike

maintain an active edge list

- sort polygon edges according to maximum y coordinates
- maintain pointers
 - Top points to the highest active edge
 - Bottom points to the lowest active edge

to produce a patterned fill

- modify scan-line procedures so that a selected pattern is superimposed
 - begin from a specified starting position

antialiasing area boundaries

• adjust intensity according to overlap

estimating overlap by subdivision

• subdivide the pixel and count subdivisions inside

 2 subdivision centers inside the boundary suggests 50% intensity

estimating overlap using Pitteway-Watkinson

 modify the Bresenham algorithm and use the magnitude of the decision variable p

estimating coverage by very small polygons

• use pixel subdivision

boundary-fill algorithm - an alternative to the scan-line method

- select a color and an interior point or select a pattern, a reference point and an interior point
- paint neighbors which are not painted and are not boundary points
 - all four neighbors or
 - all eight neighbors

making the boundary-fill algorithm more efficient

- fill the scan line containing the starting point
 - fill scan lines above
 - then fill scan lines below
- stack numbered pixels

flood-fill algorithm

• specify an interior color value that is to be replaced by the fill color

Area-filling Commands

- fill style
 - solid, hollow, patterned, etc.
 - set_fill_area_interior_style (fs)
- fill color
 - set_fill_area_color_index (fc)
- fill pattern
 - set fill pattern index (pi)
- create pattern
 - set pattern representation (pi, nx, ny, cp)
 - pi = pattern index number
 - nx = x dimension of the pattern
 - ny = y dimension of the pattern
 - cp = two-dimensional nx-by-ny array
 - example: cp[3,6] := 6
- position pattern
 - set pattern reference point (xp, yp)
- (a) fill pattern
- (b) patterned display

Character Attributes

- text attributes
 - text font
 - set_text_font (tf)
 - text color
 - set text_color_index (tc)
 - text size (maintaining aspect ratio)
 - set_character_height (ch)
 - character string orientation
 - set_character_up_vector (dx, dy)

text attributes, continued

- character string direction
 - set_text_path (tp)
 - tp is assigned right down left or up

text attributes, continued

• combining up_vector and text_path specifications

text attributes, continued

```
• alignment
```

```
- set_text_alignment (h, v)
```

• h is assigned left, right

or

center

v is assigned top

or

bottom

T A O L P I	RIGHT ALIGNMENT			
G N M E N T	A CENTER L ALIGNMENT I B G O N T M T E O N LEFT M T ALIGNMENT			

marker attributes are similar to text attributes

- set_marker_type (mt)
- set_marker_color_index (mc)
- set_marker_size_scale_factor (ms)

inquiry functions

- check current settings of attribute values
- examples
 - inquire_linetype (ilt)
 - inquire_fill_area_color_index (ifc)
- use: inquire_linetype (old_style);
 set_linetype (new_style);
 :
 set_linetype (old_style);

Bundled Attributes

- unbundled attributes
 - each attribute is defined explicitly
 - possibly device dependent
- bundled attributes
 - provides interpretation of attribute settings for different devices using a bundle table
 - the program must specify the output device
 - activate_workstation (ws)

WORKSTATION TYPE CODE	WORKSTATION DESCRIPTION	
1	Raster Color Monitor with Keyboard	
2	Raster Color Monitor with Keyboard and Graphics Tablet	
3	DVST with Keyboard and Thumb Wheels	
4	Vector Refresh Monitor with Keyboard	
5	Color Plotter	

line attributes

- create a bundle table for each workstation
 - set_line_representation (ws, li, lt, lw, lc)
- reference it with the line index parameter li
 - set_line_index (li)

color and intensity attributes

- create a bundle table for each workstation
 - set_color_representation (ws, ci, r, g, b)
- reference it with the color index parameter ci
 - set_color_index (ci)

COLOR INDEX CI	RED COMPONENT (R)	GREEN COMPONENT (G)	BLUE COMPONENT (B)	COLOR DESCRIPTION
0	0	0	0	Black
1	0.25	0	0)	
2	0.50	0	0 [Shades
3	0.75	0	0	of Red
4	1.0	0	0)	
5	. 0	0.25	0 }	
6	0	0.50	0 [Shades
7	0	0.75	0 [of Green
8	0	1.0	ا ل ه	
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
			ı	

area-filling attributes

- create a bundle table for each workstation
 - set_fill_area_representation (ws, fi, fs, fc, pi)
- reference it with the fill index parameter fi
 - set_fill_area_index (fi)

pattern attributes

- set_pattern_representation (ws, fpi, nx, ny, cp);
 - cp is the nx-by-ny array
 - fpi is the fill pattern index
- set_pattern_reference_point (xp, yp);
- referenced via the area-filling bundle table

text attributes

- create a bundle table for each workstation
 - set_text_representation (ws, ti, tf, te, ts, tc)
- reference it with the text index parameter ti
 - set_text_index (ti)

marker attributes

- create a bundle table for each workstation
 - set_marker_representation (ws, mi, mt, ms, mc)
- reference it with the marker index parameter mi
 - set_marker_index (mi)

ATTRIBUTES OF OUTPUT PRIMITIVES

- Line Styles
- Color And Intensity
- Area Filling Commands
- Character Attributes
- Bundled Attributes