1(30pts) Is each of following groups a cyclic group or not? Explain the reason. If it is a cyclic group, then write down an element that generates the whole group.

- (1) $\mathbb{Z}_2 \times \mathbb{Z}_2$; no
- (2) $\mathbb{Z}_2 \times \mathbb{Z}_3$; yes
- (3) $\mathbb{Z}_2 \times \mathbb{Z}$. n0
- (1) no

$$(01)^2 = (00)$$

 $(10)^2 = (00)$

thus no element could generate a group of size 4.

(2) yes

(3) no.

suppose $e = \langle a, b \rangle$ generates $\mathbb{Z}_2 \times \mathbb{Z}$

then b must generate II.

there are 2 elements generate Z, -1 and 1

Ams e can only be (0, -1)(0, 1)(1, -1)(1, 1)

try tem one by one, none of them generates < Z = x Z thus Z2 × Z is not cyclic.

2(30pts) Let $G = \langle a, b \mid a^2 = b^4 = e, ba = ab^3 \rangle$ be the group of symmetries of a square. Write down a table for G. Is G isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_4$?

		ε	Ь) ·	b ³	a	ab	ab²	ab3	
	8	٤	Ь	b2	b3	a	ab	abi	ab3	T
	Ь	b	b²	b^3	٤	ab	abi	ab^3	a	
	bz	bz	b³	٤	b	abz	ab^3	a	ab	
	P3	P3	٤	b	b²	063	a	ab	ab ²	
•	a	a	ab^3	abz	ab	3	b3	b2	Ь	
	orb	ab	a	ab³		Ь	٤	63	bz	
	abi	ab	ab	0	ab3	b²	b	٤	b ³	
	ab3	063	abz	ab	a	b ³	b	Ъ	٤	
-										
									1	

not isomorphic

Z2 x Z4 is communicative, G is not =

3(20pts) G is the set of positive real numbers with the operation x * y = 2xy. Find an isomorphism of $(\mathbb{R}_{>0}, \times)$ to G.

let
$$f(x)$$
 be $G \rightarrow (R_0, x)$
 $f(x + x) = f(x)f(x)$
 $f(x) = \int f(2x^2)$
guess: $f(x) = axb$.
 $f(1) = \int f(2)$ $a = b = \int a \cdot 2^b$ $a^2 = a \cdot 2^b$ $a = 2^b$
try $b = 1$ $f(x) = 2^t \cdot x^t = 2x$ clearly it is bijective.
 $f(x + y) = f(2xy) = 4xy = 2x \times 2y = f(x)f(y)$, it works
thus $f(x) = 2x$ is an isomorphism.
actually. ony $f(x) = f(2x)b$ should work.

4(20pts) Calculate the product $(123)(234)(123)^{-1}$ in S_4 . Is the resulting permutation an odd or even permutation?

it is
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$$
, which is $(1 & 4 & 3)$.