

Energy-Harvesting Wireless Sensor Node for IoT Networks

Robert Flechas Jennifer Hellar Nathaniel Morris Rachel Nguyen Brady Taylor Robyn Torregrosa Rice ECE Capstone Design Team 2018-2019 | chariot.rice2018@gmail.com

Modular IoT Node

We have created a **self-powered**, **modular**, and **compact** device that can easily be deployed in different environments, collect data from different sensor types, and **communicate** that data with other nodes in a **network**, all with **minimal redesign**.

Design Criteria

System Diagram

Criteria	Our Design	
Modularity	Distinct energy harvesting, communications, and sensing modules	
Self-powered	Produces >12 mW in direct sunlight	
Networking Capabilities	Supports wireless transmitters with <30 mA peak current	
Sensing Capabilities	Supports sensors with <5 mA peak current	
Scalable (small)	40mm x 35mm x 20mm	

CHARIOT Node

a single System-in-Package (SiP)

smaller than a quarter.

ENERGY HARVESTING BOARD

- ❖ 3.3 V and optional 5 V power rails
- Maximum power point tracking (MPPT) for efficient charging
- Battery charge tracking for dynamic sleep adjustment

WIRELESS COMMUNICATIONS BOARD

- Adjustable 2.4GHz Transmission Schemes (Bluetooth, ZigBee, ...)
- External power control by processor board
- Optional SMA connection for higher gain antenna

SENSOR BOARD

- Multiple low-power modes
- Persistent program and data memory in case of power loss
- Support for I2C, SPI, and UART sensor protocols

Demonstrated Performance

Lithium-lon Battery	Energy Harvester	Monocrystalline Solar cell
Fuel Gauge		2.4 GHz Wireless Chip & Antenna
Triaxial	Temperature &	MSP430
Accelerometer	Humidity Sensor	Microcontroller
Power Bus	I2C Data Bus	SPI Data Bus

Conditions	Charge Current	Time to Fully Charge Battery*	Sense and Transmit
Sunny	30 mA	5 hours	Every 3 sec
Cloudy/Shaded	5 mA	22 hours	Every 20 sec
Indoor (Direct Light)	5 mA	22 hours	Every 20 sec

*Dependent on weather and time of day

Small Footprint, Huge Potential

Our design accomplished our primary goals of versatility, modularity, and low-power. Future work will involve developing node-to-node network protocols, robust power management techniques, and novel programming methods for a potentially pinless package. The CHARIOT node will be compressed into a System-in-Package, rapidly customizable for a variety of applications.

Acknowledgements

We would like to thank our faculty sponsors Gene Frantz, Erik Welsh, and Ray Simar, for their financial and technical assistance. Special thanks to Dr. Gary Woods for his invaluable guidance and mentorship.