Кольца Илья Вячеславович

Лабораторная работа № 3

Вариант 1

```
In [45]:
```

```
import pandas as pd
import warnings
import numpy as np
import scipy.stats as sts
import rpy2.robjects.numpy2ri
from rpy2.robjects.packages import
rpy2.robjects.numpy2ri.activate()
stats = importr('stats')
warnings.filterwarnings('ignore')
```

```
In [23]:
```

```
df = pd.read_csv('Data.csv', header=0)
df.head()
```

Out[23]:

	Age	AttendedBootcamp	BootcampFinish	BootcampFullJobAfter	BootcampLoanYesNo	BootcampMonthsAgo	BootcampNa
C	28.0	0.0	NaN	NaN	NaN	NaN	h
1	22.0	0.0	NaN	NaN	NaN	NaN	١
2	19.0	0.0	NaN	NaN	NaN	NaN	ı
3	26.0	0.0	NaN	NaN	NaN	NaN	١
4	20.0	0.0	NaN	NaN	NaN	NaN	r

5 rows × 113 columns

Новый раздел

```
In [24]:
```

```
df = df[['EmploymentField', 'EmploymentStatus', 'Gender', 'JobPref', 'JobWherePref', 'Ma
ritalStatus', 'Income']]
df.head()
```

Out[24]:

	EmploymentField	EmploymentStatus	Gender	JobPref	JobWherePref	MaritalStatus	Income
0	office and administrative support	Employed for wages	male	freelance	NaN	married or domestic	32000.0

```
partnership
MaritalStatus
                                                                   JobPref
                                                                                  JobWherePref
         EmploymentField EmploymentStatus Gender
                                                                                                                      Income
                                Employed for
                                                                                 in an office with
1
                                                                                                                      15000.0
       food and beverage
                                                                                                                NaN
                                                 male
                                                          work for a startup
                                                                               other developers
                                       wages
                                Employed for
                                                             start your own
                                                                                                                NaN 48000.0
2
                  finance
                                                 male
                                                                                           NaN
                                       wages
                                                                  business
       arts, entertainment,
                                Employed for
                                                                                                                NaN 43000.0
3
                                               female
                                                          work for a startup
                                                                                     from home
          sports, or media
                                       wages
                                                                                in an office with
                                Employed for
                                                        work for a medium-
                                                                                                                       6000.0
                education
                                                female
                                                                                                                NaN
                                                                               other developers
                                       wages
                                                            sized company
```

```
In [25]:
```

```
df = df.dropna()
df = df[(df.Gender == 'male') | (df.Gender == 'female')]
df.head()
```

Out[25]:

	EmploymentField	EmploymentStatus	Gender	JobPref	JobWherePref	MaritalStatus	Income
59	software development	Employed for wages	male	work for a medium- sized company	in an office with other developers	married or domestic partnership	35000.0
71	education	Employed for wages	male	work for a multinational corporation	from home	married or domestic partnership	56000.0
72	transportation	Employed for wages	male	work for a medium- sized company	from home	married or domestic partnership	35000.0
77	arts, entertainment, sports, or media	Employed for wages	male	work for a medium- sized company	from home	married or domestic partnership	65000.0
90	sales	Employed for wages	male	work for a startup	in an office with other developers	single, never married	30000.0

In [26]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
```

Int64Index: 764 entries, 59 to 15616

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	EmploymentField	764 non-null	object
1	EmploymentStatus	764 non-null	object
2	Gender	764 non-null	object
3	JobPref	764 non-null	object
4	JobWherePref	764 non-null	object
5	MaritalStatus	764 non-null	object
6	Income	764 non-null	float64

dtypes: float64(1), object(6)

memory usage: 47.8+ KB

In [27]:

```
df.groupby('Gender').count()
```

Out[27]:

EmploymentField EmploymentStatus JobPref JobWherePref MaritalStatus Income

Gender

female	127	127	127	127	127	127
male	637	637	637	637	637	637

```
In [28]:
```

In [29]:

```
pair = pairs[0]
print(f'Таблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.crosstab(df[pair[0]], df[pair[1]])
ct
```

Таблица сопряженности для Gender и JobPref

Out [29]:

JobPref work for a medium-sized company work for a multinational corporation work for a startup

Gender

female	82	19	26
male	362	103	172

In [30]:

```
print(f'Таблица ожидаемых значений для {pair[0]} и {pair[1]}')
et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns)
et
```

Таблица ожидаемых значений для Gender и JobPref

Out[30]:

JobPref work for a medium-sized company work for a multinational corporation work for a startup

Gender

female	73.806283	20.280105	32.913613
male	370.193717	101.719895	165.086387

In [31]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
z, p, _, _ = sts.chi2_contingency(ct, correction=False)
print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между Gender и JobPref: Статистика критерия = 2.9296663743177596 Достигаемый уровень значимости = 0.2311165414688363 Гипотеза об отсутствии связи принимается.

In [32]:

```
pair = pairs[1]
print(f'Таблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.DataFrame(pd.crosstab(df[pair[0]], df[pair[1]]))
ct
```

Таблица сопряженности для Gender и JobWherePref

Out[32]:

JobWherePref JobWherePref Gender		in an office with other in an office with others developers	no preference no preference
female	38	57	32
male	149	317	171

In [33]:

```
print(f'Taблица ожидаемых значений для {pair[0]} и {pair[1]}')
et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns)
et
```

Таблица ожидаемых значений для Gender и JobWherePref

Out[33]:

JobWherePref		from home	in an office with other developers	no preference
	Gender			
	female	31.085079	62.170157	33.744764
	male	155.914921	311.829843	169.255236

In [34]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
z, p, _, _ = sts.chi2_contingency(ct, correction=False)
print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между Gender и JobWherePref: Статистика критерия = 2.468792878230615 Достигаемый уровень значимости = 0.29101035183846335 Гипотеза об отсутствии связи принимается.

In [35]:

```
pair = pairs[2]
print(f'Таблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.DataFrame(pd.crosstab(df[pair[0]], df[pair[1]]))
ct
```

Таблица сопряженности для JobWherePref и MaritalStatus

Out[35]:

MaritalStatus divorced married or domestic partnership separated single, never married

Jobwiereriei				
from home	12	153	2	20
in an office with other developers	14	291	2	67
no preference	11	149	4	39

In [36]:

```
print(f'Таблица ожидаемых значений для {pair[0]} и {pair[1]}')
et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns)
et
```

Таблица ожидаемых значений для JobWherePref и MaritalStatus

Out[36]:

MaritalStatus divorced married or domestic partnership separated single, never married **JobWherePref** from home 9.056283 145.145288 1.958115 30.840314 in an office with other 18.112565 61.680628 290.290576 3.916230 developers no preference 9.831152 157.564136 2.125654 33.479058

In [39]:

```
ct.values
```

Out[39]:

```
array([[ 12, 153, 2, 20], [ 14, 291, 2, 67], [ 11, 149, 4, 39]])
```

In [44]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
test = stats.fisher_test(ct.values)
p = test[0][0]
#print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между JobWherePref и MaritalStatus: Достигаемый уровень значимости = 0.06912479693278728 Гипотеза об отсутствии связи принимается.

In [46]:

```
pair = pairs[3]
print(f'Таблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.DataFrame(pd.crosstab(df[pair[0]], df[pair[1]]))
ct
```

 ${\tt Таблица}$ сопряженности для ${\tt EmploymentField}$ и ${\tt JobWherePref}$

Out[46]:

JobWherePref	from home	in an office with other developers	no preference
EmploymentField			
architecture or physical engineering	8	15	4
arts, entertainment, sports, or media	17	25	7
construction and extraction	1	11	4
education	29	46	26
farming, fishing, and forestry	1	1	1
finance	8	27	8
food and beverage	9	13	10
health care	10	18	14
law enforcement and fire and rescue	1	4	2
legal	2	3	2
office and administrative support	14	33	23
sales	11	22	16
software develonment	n	4	n

```
software developers from honge in an office with other developers no preference from honge developers of the first special state of the first special state
```

In [47]:

```
print(f'Таблица ожидаемых значений для {pair[0]} и {pair[1]}') et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns) et
```

Таблица ожидаемых значений для EmploymentField и JobWherePref

Out[47]:

JobWherePref	from home	in an office with other developers	no preference
EmploymentField			
architecture or physical engineering	6.608639	13.217277	7.174084
arts, entertainment, sports, or media	11.993455	23.986911	13.019634
construction and extraction	3.916230	7.832461	4.251309
education	24.721204	49.442408	26.836387
farming, fishing, and forestry	0.734293	1.468586	0.797120
finance	10.524869	21.049738	11.425393
food and beverage	7.832461	15.664921	8.502618
health care	10.280105	20.560209	11.159686
law enforcement and fire and rescue	1.713351	3.426702	1.859948
legal	1.713351	3.426702	1.859948
office and administrative support	17.133508	34.267016	18.599476
sales	11.993455	23.986911	13.019634
software development	0.979058	1.958115	1.062827
software development and IT	71.960733	143.921466	78.117801
transportation	4.895288	9.790576	5.314136

In [51]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
test = stats.fisher_test(ct.values, simulate_p_value=True)
p = test[0][0]
#print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между EmploymentField и JobWherePref: Достигаемый уровень значимости = 0.5817091454272864 Гипотеза об отсутствии связи принимается.

In [57]:

```
pair = pairs[4]
print(f'Taблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.DataFrame(pd.crosstab(df[pair[0]], df[pair[1]]))
ct
```

Таблица сопряженности для EmploymentStatus и JobWherePref

Out[57]:

JobWherePref JobWherePref EmploymentStatus		in an officed with appears developers	no preference no preference	
EmploymentStatus Employed for wages	164	330	187	
Self-employed business owner	5	10	4	
Self-employed freelancer	18	34	12	

In [58]:

```
print(f'Таблица ожидаемых значений для {pair[0]} и {pair[1]}')
et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns)
et
```

Таблица ожидаемых значений для EmploymentStatus и JobWherePref

Out[58]:

JobWherePref	from home	in an office with other developers	no preference
EmploymentStatus			
Employed for wages	166.684555	333.369110	180.946335
Self-employed business owner	4.650524	9.301047	5.048429
Self-employed freelancer	15.664921	31.329843	17.005236

In [59]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
test = stats.fisher_test(ct.values)
p = test[0][0]
#print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между EmploymentStatus и JobWherePref: Достигаемый уровень значимости = 0.6162678097062643 Гипотеза об отсутствии связи принимается.

In [70]:

Out[70]:

	EmploymentField	EmploymentStatus	Gender	JobPref	JobWherePref	MaritalStatus	Income	income_cat
59	software development	Employed for wages	male	work for a medium-sized company	in an office with other developers	married or domestic partnership	35000.0	mid
71	education	Employed for wages	male	work for a multinational corporation	from home	married or domestic partnership	56000.0	high
72	transportation	Employed for wages	male	work for a medium-sized company	from home	married or domestic partnership	35000.0	mid
77	arts, entertainment, sports, or media	Employed for wages	male	work for a medium-sized company	from home	married or domestic partnership	65000.0	high
		Fundamed for			in an office with	-!!		

```
In [71]:
```

```
pair = ['income_cat', 'Gender']
print(f'Таблица сопряженности для {pair[0]} и {pair[1]}')
ct = pd.DataFrame(pd.crosstab(df[pair[0]], df[pair[1]]))
ct
```

Таблица сопряженности для income_cat и Gender

Out[71]:

Gender female male

income_cat

low	37	204
mid	49	215
hiah	40	207

In [67]:

```
print(f'Таблица ожидаемых значений для {pair[0]} и {pair[1]}')
et = pd.DataFrame(sts.contingency.expected_freq(ct), index=ct.index, columns=ct.columns)
et
```

Таблица ожидаемых значений для income_cat и Gender

Out[67]:

Gender	female	male	
income_cat			
low	40.380319	200.619681	
mid	44.234043	219.765957	
high	41.385638	205.614362	

In [69]:

```
print(f"Проверка гипотезы об отсутствии связи между {pair[0]} и {pair[1]}:")
z, p, _, _ = sts.chi2_contingency(ct, correction=False)
print("Статистика критерия =", z)
print("Достигаемый уровень значимости =", p)
if p < 0.05:
    print("Гипотеза об отсутствии связи отвергается.")
else:
    print("Гипотеза об отсутствии связи принимается.")</pre>
```

Проверка гипотезы об отсутствии связи между income_cat и Gender: Статистика критерия = 1.012521167081471 Достигаемый уровень значимости = 0.6027452855370555 Гипотеза об отсутствии связи принимается.