Table B.2 Heat Capacities^a

Quickly integrates tabulated heat capacities Form 1: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^2 + dT^3$ Form 2: $C_p[kJ/(mol \cdot ^{\circ}C)]$ or $[kJ/(mol \cdot K)] = a + bT + cT^{-2}$

Example: $(C_p)_{\text{acetone(g)}} = 0.07196 + (20.10 \times 10^{-5})T - (12.78 \times 10^{-8})T^2 + (34.76 \times 10^{-12})T^3$, where T is in °C.

Note: The formulas for gases are strictly applicable at pressures low enough for the ideal gas equation of state to apply.

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of <i>T</i>)
Compound	Tormula	VV L.	State	101111	Oiiit	<i>u</i> × 10	<i>U</i> × 10	t × 10	<i>u</i> × 10	<u> </u>
Acetone	CH ₃ COCH ₃	58.08	1	1	$^{\circ}\mathrm{C}$	123.0	18.6			-30-60
			g	1	$^{\circ}\mathrm{C}$	71.96	20.10	-12.78	34.76	0-1200
Acetylene	C_2H_2	26.04	g	1	$^{\circ}\mathrm{C}$	42.43	6.053	-5.033	18.20	0-1200
Air		29.0	g	1	$^{\circ}\mathrm{C}$	28.94	0.4147	0.3191	-1.965	0-1500
			g	1	K	28.09	0.1965	0.4799	-1.965	273-1800
Ammonia	NH_3	17.03	g	1	$^{\circ}\mathrm{C}$	35.15	2.954	0.4421	-6.686	0-1200
Ammonium sulfate	$(NH_4)_2SO_4$	132.15	c	1	K	215.9				275-328
Benzene	C_6H_6	78.11	1	1	$^{\circ}\mathrm{C}$	126.5	23.4			6–67
			g	1	$^{\circ}\mathrm{C}$	74.06	32.95	-25.20	77.57	0-1200
Isobutane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	89.46	30.13	-18.91	49.87	0-1200
<i>n</i> -Butane	C_4H_{10}	58.12	g	1	$^{\circ}\mathrm{C}$	92.30	27.88	-15.47	34.98	0-1200
Isobutene	C_4H_8	56.10	g	1	$^{\circ}\mathrm{C}$	82.88	25.64	-17.27	50.50	0-1200
Calcium carbide	CaC_2	64.10	c	2	K	68.62	1.19	-8.66×10^{10}	_	298-720
Calcium carbonate	$CaCO_3$	100.09	c	2	K	82.34	4.975	-12.87×10^{10}	_	273-1033
Calcium hydroxide	$Ca(OH)_2$	74.10	c	1	K	89.5				276-373
Calcium oxide	CaO	56.08	c	2	K	41.84	2.03	-4.52×10^{10}		273-1173
Carbon	C	12.01	c	2	K	11.18	1.095	-4.891×10^{10}		273-1373
Carbon dioxide	CO_2	44.01	g	1	$^{\circ}\mathrm{C}$	36.11	4.233	-2.887	7.464	0-1500
Carbon monoxide	CO	28.01	g	1	$^{\circ}\mathrm{C}$	28.95	0.4110	0.3548	-2.220	0-1500
Carbon tetrachloride	CCl ₄	153.84	1	1	K	93.39	12.98			273-343
Chlorine	Cl_2	70.91	g	1	$^{\circ}\mathrm{C}$	33.60	1.367	-1.607	6.473	0-1200
Copper	Cu	63.54	c	1	K	22.76	0.6117			273–1357

^aAdapted in part from D. M. Himmelblau, Basic Principles and Calculations in Chemical Engineering, 3rd Edition, © 1974, Table E.1. Adapted by permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.

(continued)

Table B.2 (Continued)

Compound	Formula	Mol. Wt.	State	Form	Temp. Unit	$a \times 10^3$	$b \times 10^5$	$c \times 10^8$	$d \times 10^{12}$	Range (Units of T)
Cumene	C ₉ H ₁₂	120.19	g	1	°C	139.2	53.76	-39.79	120.5	0–1200
(Isopropyl benzene)										
Cyclohexane	C_6H_{12}	84.16	g	1	$^{\circ}\mathrm{C}$	94.140	49.62	-31.90	80.63	0-1200
Cyclopentane	C_5H_{10}	70.13	g	1	$^{\circ}\mathrm{C}$	73.39	39.28	-25.54	68.66	0-1200
Ethane	C_2H_6	30.07	g	1	$^{\circ}\mathrm{C}$	49.37	13.92	-5.816	7.280	0-1200
Ethyl alcohol	C_2H_5OH	46.07	ĺ	1	$^{\circ}\mathrm{C}$	103.1				0
(Ethanol)			1	1	$^{\circ}\mathrm{C}$	158.8				100
			g	1	$^{\circ}\mathrm{C}$	61.34	15.72	-8.749	19.83	0-1200
Ethylene	C_2H_4	28.05	g	1	$^{\circ}\mathrm{C}$	+40.75	11.47	-6.891	17.66	0-1200
Ferric oxide	Fe_2O_3	159.70	c	2	K	103.4	6.711	-17.72×10^{10}	_	273-1097
Formaldehyde	CH_2O	30.03	g	1	$^{\circ}\mathrm{C}$	34.28	4.268	0.0000	-8.694	0-1200
Helium	He	4.00	g	1	$^{\circ}\mathrm{C}$	20.8				0-1200
<i>n</i> -Hexane	C_6H_{14}	86.17	1	1	$^{\circ}\mathrm{C}$	216.3				20-100
			g	1	$^{\circ}\mathrm{C}$	137.44	40.85	-23.92	57.66	0-1200
Hydrogen	H_2	2.016	g	1	$^{\circ}\mathrm{C}$	28.84	0.00765	0.3288	-0.8698	0-1500
Hydrogen bromide	HBr	80.92	g	1	$^{\circ}\mathrm{C}$	29.10	-0.0227	0.9887	-4.858	0-1200
Hydrogen chloride	HCl	36.47	g	1	$^{\circ}\mathrm{C}$	29.13	-0.1341	0.9715	-4.335	0-1200
Hydrogen cyanide	HCN	27.03	g	1	$^{\circ}\mathrm{C}$	35.3	2.908	1.092		0-1200
Hydrogen sulfide	H_2S	34.08	g	1	$^{\circ}\mathrm{C}$	33.51	1.547	0.3012	-3.292	0-1500
Magnesium chloride	$MgCl_2$	95.23	c	1	K	72.4	1.58			273-991
Magnesium oxide	MgO	40.32	c	2	K	45.44	0.5008	-8.732×10^{10}		273-2073
Methane	$ m CH_4$	16.04	g	1	$^{\circ}\mathrm{C}$	34.31	5.469	0.3661	-11.00	0-1200
			g	1	K	19.87	5.021	1.268	-11.00	273-1500
Methyl alcohol	CH_3OH	32.04	1	1	$^{\circ}\mathrm{C}$	75.86	16.83			0-65
(Methanol)			g	1	$^{\circ}\mathrm{C}$	42.93	8.301	-1.87	-8.03	0-700
Methyl cyclohexane	C_7H_{14}	98.18	g	1	$^{\circ}\mathrm{C}$	121.3	56.53	-37.72	100.8	0-1200
Methyl cyclopentane	C_6H_{12}	84.16	g	1	$^{\circ}\mathrm{C}$	98.83	45.857	-30.44	83.81	0-1200
Nitric acid	NHO_3	63.02	ĺ	1	$^{\circ}\mathrm{C}$	110.0				25
Nitric oxide	NO	30.01	g	1	$^{\circ}\mathrm{C}$	29.50	0.8188	-0.2925	0.3652	0-3500

Nitrogen	N_2	28.02	g	1	°C	29.00	0.2199	0.5723	-2.871	0-1500
Nitrogen dioxide	NO_2	46.01	g	1	°C	36.07	3.97	-2.88	7.87	0-1200
Nitrogen tetraoxide	N_2O_4	92.02	g	1	$^{\circ}\mathrm{C}$	75.7	12.5	-11.3		0-300
Nitrous oxide	N_2O	44.02	g	1	°C	37.66	4.151	-2.694	10.57	0–1200
Oxygen	O_2	32.00	g	1	°C	29.10	1.158	-0.6076	1.311	0–1500
<i>n</i> -Pentane	C_5H_{12}	72.15	ĺ	1	$^{\circ}\mathrm{C}$	155.4	43.68			0–36
	- 3 12		g	1	°C	114.8	34.09	-18.99	42.26	0-1200
Propane	C_3H_8	44.09	g	1	°C	68.032	22.59	-13.11	31.71	0-1200
Propylene	C_3H_6	42.08	g	1	$^{\circ}\mathrm{C}$	59.580	17.71	-10.17	24.60	0-1200
Sodium carbonate	Na_2CO_3	105.99	c	1	K	121				288-371
Sodium carbonate	Na_2CO_3	286.15	c	1	K	535.6				298
decahydrate	·10H ₂ O									
Sulfur	S	32.07	c	1	K	15.2	2.68			273-368
		(Rho	ombic)							
			c	1	K	18.3	1.84			368-392
		(Mon	oclinic))						
Sulfuric acid	H_2SO_4	98.08	1	1	°C	139.1	15.59			10-45
Sulfur dioxide	SO_2	64.07	g	1	°C	38.91	3.904	-3.104	8.606	0-1500
Sulfur trioxide	SO_3	80.07	g	1	$^{\circ}\mathrm{C}$	48.50	9.188	-8.540	32.40	0-1000
Toluene	C_7H_8	92.13	1	1	$^{\circ}\mathrm{C}$	148.8	32.4			0-110
			g	1	$^{\circ}\mathrm{C}$	94.18	38.00	-27.86	80.33	0-1200
Water	H_2O	18.016	Ĩ	1	°C	75.4				0-100
			g	1	$^{\circ}\mathrm{C}$	33.46	0.6880	0.7604	-3.593	0-1500