Física numérica Tarea #4

Instrucciones: Resuelva cada uno de los siguientes problemas. No olvide incluir el código de Python desarrollado en cada caso.

1. Estudiando una caminata aleatoria en 2D.

(a) Escriba un programa que genere una caminata aleatoria en 2D. Para asegurar la aleatoriedad, elija valores aleatorios independientes para $\Delta x'$ y $\Delta y'$ en el rango [-1,1], depués normaliza para que cada paso sea unitario:

$$\Delta x = \frac{1}{L} \Delta x', \quad \Delta y = \frac{1}{L} \Delta y', \quad L = \sqrt{\Delta x'^2 + \Delta y'^2}.$$

- (b) Si su caminante virtual da N pasos en cada experimento, entonces realice un total de $K \approx \sqrt{N}$ experimentos. Cada experimento debe tener N pasos e iniciar con una semilla diferente.
- (c) Calcule la distancia al cuadrado R^2 para cada experimento y después promedie sobre los K experimentos para estimar $\langle R^2(N) \rangle$.
- (d) Revise la validez de la hipótesis teórica

$$\frac{\langle \Delta x_i \Delta x_j \rangle_{i \neq j}}{R^2} \approx 0.$$

(e) Grafique el valor cuadrático medio de la distancia R_{rms} como función de \sqrt{N} . Los valores de N deben ser pequeños al principio (ahí no esperamos que se cumpla que $R_{rms} \approx \sqrt{N}$) pero al final, los valores de N deben ser realmente grandes (considere al menos dos o tres cifras decimales en el promedio).