

Model Revision of Boolean Logical Models of Biological Regulatory Networks

Doctoral Program in Computer Science and Engineering

Filipe Gouveia

Advisor: Prof. Pedro Monteiro **Co-advisor:** Prof. Inês Lynce

INESC-ID / Instituto Superior Técnico Universidade de Lisboa Lisbon, Portugal

September 2021

Table of Contents

- Introduction
 - Regulatory networks
 - Motivation
 - Contributions
- 2 Model Revision
 - Approach
 - Boolean Functions
 - Examples
- Second Second
- 4 Conclusion
 - Discussion and Future Work

Regulatory Networks

- Biological processes arise at the cellular level, governed by complex regulatory networks
- Regulatory network:
 - Collection of molecular compounds (e.g. proteins, genes)
 - Compounds interact with each other
- Computational modelling allows:
 - Functional understanding of the network
 - Test hypotheses
 - Identify predictions in silico
 - ▶ ..

Boolean Logical Model

- Different formalisms can be used [KS08]
 - ► We consider the Boolean logical formalism [Tho73]
- Compounds represented by a Boolean variable:
 - ► active/inactive
- Interactions defined as positive (activation) or negative (inhibition)
- Regulations defined as Boolean functions

$$f_{v_1}=v_2$$

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

Dynamics

- The value of each node can change through time
 - Defining the state of the network
- The regulatory functions update the value of the corresponding node
- Different update schemes:

Synchronous

Asynchronous

Dynamics

• State Transition Graph (STG) - synchronous update scheme

Stable State (Point Attractor)

Cycle Attractor

Motivation

- As new experimental data becomes available, models may become inconsistent
 - ▶ Models may not be able to reproduce the new information
 - Models need to be revised

- Model Revision is mainly a manual task
 - Performed by a modeller
 - Prone to error

Motivation

- How can we repair an inconsistent model?
 - Change a regulatory function?
 - ★ 2^{2^k} possibilities for each node!
 - Change the type of interaction?
 - ► Add or remove interactions?

There are $\approx 10^{24}$ possible combinations! (65536 Boolean functions with 4 regulators)

Contributions

- Model revision approach for Boolean logical models of biological regulatory networks
 - Confronting a model with:
 - ★ Stable state observations
 - ★ Time-series observations
 - Consider different dynamics:
 - ★ Synchronous update scheme
 - ★ Asynchronous update scheme
- Modrey tool
 - ▶ Implements the model revision procedure
 - Produces all optimum repair sets to repair an inconsistent model
 - ModRev available at https://filipegouveia.github.io/ModelRevisionASP/

Contributions

- "ModRev Model Revision Tool for Boolean Logical Models of Biological Regulatory Networks", CMSB 2020 [GLM20a]
- "Revision of Boolean Models of Regulatory Networks Using Stable State Observations", Journal of Computational Biology [GLM20b]
- "Model Revision of Boolean Regulatory Networks at Stable State", ISBRA 2019 [GLM19]
- "Model Revision of Logical Regulatory Networks Using Logic-Based Tools", ICLP Doctoral Consortium 2018 [GLM18]

- A model is *consistent* if all of its nodes are consistent
 - Value of each node given by its regulatory function is equal to the observed value
- A model is inconsistent otherwise
 - Needs to be revised

Possible causes of inconsistency and repair operations:

Cause	Repair Operation
Wrong Regulatory Function	Function change
Wrong Interaction Type	Edge sign flip
Wrong Regulator	Edge removal
Missing Regulator	Edge addition

Possible causes of inconsistency and repair operations:

Cause	Repair Operation
Wrong Regulatory Function	Function change
Wrong Interaction Type	Edge sign flip
Wrong Regulator	Edge removal
Missing Regulator	Edge addition

Optimization Criteria:

- Minimize interaction addition/removal
- Minimize interaction type changes
- Minimize Boolean function changes

Model Revision Approach

Iterate over each inconsistent node:

- Try to change the function
- Try to flip the sign of 1 edge
 - Consider changing the function again
 - Repeat this step for 2 edges, and so on
- Try to add or remove 1 edge
 - Consider changing the function and/or flip the sign of edges as previously
 - Repeat this step for adding or removing 2 edges and so on

Assumption: consider monotone non-degenerate Boolean functions

- Monotone: each regulator only has one role: positive/activation or negative/inhibition
 - each variable appears with the same sign in the function in Blake Canonical Form (BCF)

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

Monotone

$$f_{v_3} = (v_1 \land \neg v_2) \lor (v_2 \land \neg v_4)$$
 Non-monotone

Assumption: consider monotone non-degenerate Boolean functions

- Monotone: each regulator only has one role: positive/activation or negative/inhibition
 - each variable appears with the same sign in the function in Blake Canonical Form (BCF)
- **Non-degenerate**: each regulator is essential in the regulatory function
 - each variable has an impact on the truth table

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

Non-degenerate

$$f_{v_3} = (v_2 \wedge \neg v_4)$$

 $f_{v_2} = (v_2 \land \neg v_4)$ (missing v_1) Degenerate

• Relation \leq between monotone non-degenerate Boolean functions [CMC19]

$$f \leq f' \iff f(X) \Rightarrow f'(X)$$
.

where f(X) denotes the entries where the function is **true** (or 1)

- f' is a parent of f iff $f \leq f'$ and $\nexists f''$ such that $f \leq f''$ and $f'' \leq f'$
 - f is a **child** of f'

Hasse Diagram

Function Repair

If a function is inconsistent:

- Determine if is necessary to generalize or specify the function
- Compute set of parents (children) to go up (down) the diagram
- Continue to do so until a consistent function is found
 - or no function is found

If a function is found, is closest to the original function

Architecture

Stable State Example

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

Inconsistent Model

- Node v_1 is inconsistent
- Change the interaction between v_2 and v_1
- Node *v*₃ is inconsistent
- Consistent Model

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

- Inconsistent Model
- Node v₁ is inconsistent
- Change the interaction between v_2 and v_1
- Node *v*₃ is inconsistent
- Consistent Model

$$f_{v_1} = \neg v_2$$

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

- Inconsistent Model
- Node v_1 is inconsistent
- Change the interaction between v_2 and v_1
- Node *v*₃ is inconsistent
- Consistent Model

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

- Inconsistent Model
- Node v_1 is inconsistent
- Change the interaction between v_2 and v_1
- Node *v*₃ is inconsistent
- Consistent Model

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = (v_1 \wedge v_2) \vee (v_2 \wedge \neg v_4)$$

- Inconsistent Model
- Node v_1 is inconsistent
- Change the interaction between v₂ and v₁
- Node *v*₃ is inconsistent
- Consistent Model

Time-series Example - Synchronous Update Scheme

$$f_{v_1} = v_2$$

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

Time

		T_0	T_1	T_2
	v ₁	1	1	0
Node	v ₂	1	0	1
ž	v ₃	0	1	0
	v ₄	1	1	1

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time					
		T_0	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	V ₄	1	1	1			

t_{v_2}	=	$\neg v_1$	Λ	<i>V</i> 4

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time					
		T_0	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	v ₄	1	1	1			

Time-series Example - Synchronous Update Scheme

f_{v_3}	=	v_1	\vee	(v_2)	Λ	$\neg v_4$

 $f_{v_2} = \neg v_1 \wedge v_4$

		Time					
		T_0	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	v ₄	1	1	1			

f_{v_2}	=	$\neg v_1$	Λ	<i>V</i> ₄
v 2				

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time					
		T_0	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	V 4	1	1	1			

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time					
		T ₀	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	v ₄	1	1	1			

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time					
		T_0	$T_0 \mid T_1 \mid T_2$				
	v ₁	1	1	0			
Node	v ₂	1	0	1			
ž	v ₃	0	1	0			
	v ₄	1	1	1			

f_{v_2}	=	$\neg v_1$	Λ	V ₄
v 2				

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time		
		T_0	T_1	T ₂
	v ₁	1	1	0
Node	v ₂	1	0	1
ž	v ₃	0	1	0
	v ₄	1	1	1

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time		
		T_0	T_1	T ₂
	v ₁	1	1	0
Node	v ₂	1	0	1
ž	v ₃	0	1	0
	v ₄	1	1	1

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time		
		T_0	T_1	T ₂
	v ₁	1	1	0
Node	v ₂	1	0	1
ž	v ₃	0	1	0
	v ₄	1	1	1

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time				
		T_0	T_1	T ₂		
	v ₁	1	1	0		
Node	v ₂	1	0	1		
ž	v ₃	0	1	0		
	v ₄	1	1	1		

Time-series Example - Synchronous Update Scheme

f_{V3}	=	v_1	V ((v_2)	Λ	$\neg v_4$
· v3				(- 2		

 $f_{v_2} = \neg v_1 \wedge v_4$

		Time			
		T_0	T_1	T ₂	
	v ₁	1	1	0	
Node	v ₂	1	0	1	
ž	v ₃	0	1	0	
	v ₄	1	1	1	

$t_{v_2} = \neg v_1 \wedge v_2$	f_{v_2}	=	\neg	v_1	Λ	V4
---------------------------------	-----------	---	--------	-------	---	----

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time			
		T_0	T_1	T ₂	
	v ₁	1	1	0	
Node	v ₂	1	0	1	
ž	v ₃	0	1	0	
	v ₄	1	1	1	

Time-series Example - Synchronous Update Scheme

f_{V3}	=	<i>V</i> ₁	V	(v2	\wedge	$\neg v_4$

 $f_{v_2} = \neg v_1 \wedge v_4$

		Time			
		T_0	T_1	T ₂	
	v ₁	1	1	0	
Node	v ₂	1	0	1	
ž	v ₃	0	1	0	
	v ₄	1	1	1	

f_{v_2} :	= ¬١	/ 1	Λ	V ₄
-------------	------	------------	---	----------------

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time			
		T_0	T_1	T ₂	
	v ₁	1	1	0	
Node	v ₂	1	0	1	
ž	v ₃	0	1	0	
	v ₄	1	1	1	

$$f_{v_2} = \neg v_1 \wedge v_4$$

$$f_{v_3} = v_1 \vee (v_2 \wedge \neg v_4)$$

		Time				
		T_0	T_1	T ₂		
	v ₁	1	1	0		
Node	v ₂	1	0	1		
ž	v ₃	0	1	0		
	v ₄	1	1	1		

Evaluation

• 5 well-known biological models considered

Abbr.	Model	#N	#E	#SS	Reg.	Ref.
FY	Fission Yeast	10	27	12	5	[DB08]
SP	Segment Polarity	19	57	7	8	[SCT02]
TCR	TCR Signalisation	40	57	7	5	[Kla+06]
MCC	Mammalian Cell Cycle	10	35	1	6	[Fau+06]
Th	Th Cell Differentiation	23	35	3	5	[MX06]

Evaluation

- Random changes were made according to probabilistic parameters:
 - ► F% : Change a Function
 - ▶ E% : Flip the sign of an **E**dge
 - ▶ R% : **R**emove an existing edge
 - ► A% : Add a missing edge

- Several configurations of these parameters were considered
- 100 instances were generated for each configuration for each model
- Timeout of 3600 seconds was considered

Results

Time-series Results - Synchronous (5 observations, 20 time steps)

Results

Time-series Results - Synchronous vs Asynchronous

Results

- More connected networks have higher solving times
- Topologically corrupted models lead to higher solving times
 - Change the sign of edges
 - Remove edges
 - Add edges

- Asynchronous update scheme performs better than the synchronous update scheme:
 - ▶ 91,82% of instances solved considering asynchronous update scheme
 - ▶ 76,84% of instances solved considering synchronous update scheme

Conclusion

 Proposed a model revision approach for Boolean logical models of biological regulatory networks

- Considering both:
 - Stable state observations
 - Time-series observations

- Considering different dynamics:
 - Synchronous update scheme
 - Asynchronous update scheme

Conclusion

- Model revision approach computes optimum sets of repair operations
 - Optimisation criterion defined
- ullet Model revision approach implemented as a tool: ModRev
 - Assess whether a Boolean logical model is consistent with a set of observations
 - ▶ Produces all optimum repair sets to repair an inconsistent model
 - ModRev available at https://filipegouveia.github.io/ModelRevisionASP/

Conclusion

- Approach successfully tested using five well-known biological models
- Able to solve 84,89% of the (108 000) instances
 - Most of the instances solved under 60 seconds
- Degree of connectivity plays a big role on the model revision procedure
- The dimension of the regulatory functions has the biggest impact on the performance
 - Number of monotone non-degenerate Boolean functions increases exponentially

Discussion and Future Work

Heuristics could be used to reduce the number of solutions

- Study the solutions produced to determine common repair operations
- Consider different approaches:
 - Different ASP encodings
 - Use other logic-based approaches

- Facilitate the interoperability of ModRev with other tools
 - BioLQM toolkit

Thank you!

 ${
m ModRev}$ https://filipegouveia.github.io/ModelRevisionASP/

Acknowledgements:

References

[CMC19]

[DB08]

[Tho73]

pp. 563-585.

[DB08]	Yeast". In: PLoS ONE 3.2 (Feb. 2008). Ed. by Gustavo Stolovitzky, e1672.
[Fau+06]	A. Fauré et al. "Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle". In: <i>Bioinformatics</i> 22.14 (July 2006), e124–e131.
[GLM18]	Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro. "Model Revision of Logical Regulatory Networks Using Logic-Based Tools". en. In: Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2018. DOI: 10.4230/0ASICS.ICLP.2018.23.
[GLM19]	Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro. "Model Revision of Boolean Regulatory Networks at Stable State". In: <i>Bioinformatics Research and Applications</i> . Springer International Publishing, 2019, pp. 100–112. DOI: 10.1007/978-3-030-20242-2_9.
[GLM20a]	Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro. "ModRev - Model Revision Tool for Boolean Logical Models of Biological Regulatory Networks". In: Computational Methods in Systems Biology. Springer International Publishing, 2020, pp. 339–348. DOI: 10.1007/978-3-030-60327-4_18.
[GLM20b]	Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro. "Revision of Boolean Models of Regulatory Networks Using Stable State Observations". In: <i>Journal of Computational Biology</i> 27.2 (Feb. 2020), pp. 144–155. DOI: 10.1089/cmb.2019.0289.
[Kla+06]	Steffen Klamt et al. "A methodology for the structural and functional analysis of signaling and regulatory networks". In: <i>BMC Bioinformatics</i> 7.1 (2006), p. 56.
[KS08]	Guy Karlebach and Ron Shamir. "Modelling and analysis of gene regulatory networks". In: <i>Nature Reviews Molecular Cell Biology</i> 9.10 (2008), p. 770.
[MX06]	Luis Mendoza and Ioannis Xenarios. "A method for the generation of standardized qualitative dynamical systems of regulatory networks". In: <i>Theor. Biol. Med. Model.</i> 3.1 (2006), p. 13.
[SCT02]	Lucas Sánchez, Claudine Chaouiya, and Denis Thieffry. "Segmenting the fly embryo: logical analysis of the role of the Segment Polarity cross-regulatory module". In: Int. J. Dev. Biol. 52.8 (2002), pp. 1059–1075.

René Thomas. "Boolean formalization of genetic control circuits". In: J. Theor. Biol. 42.3 (1973),

Functions". In: arXiv preprint arXiv:1901.07623 (2019).

José ER Cury, Pedro T Monteiro, and Claudine Chaouiya. "Partial Order on the set of Boolean Regulatory

Maria I. Davidich and Stefan Bornholdt "Boolean Network Model Predicts Cell Cycle Sequence of Fission