Nom .	
ou Nu	MÉRO D'ÉTUDIANTsi l'examen est anonyme
	INF124
	Durée : 2h00, sans documents. - Tous les appareils électroniques sont interdits à l'exception des montres - Le barème est donné à titre indicatif - Le sujet comporte 4 exercices indépendants - Le sujet est sur 60 points. - Répondez sur le sujet lorsque les questions comportent des pointillés - N'oubliez pas de glisser le sujet dans votre copie. - Commencez par lire tout le sujet pour repérer les questions faciles
Exer	cice 1 : Preuves en déduction naturelle et en français
Q1.	Donnez la preuve en déduction naturelle du théorème $(\neg A \lor B) \Rightarrow (A \Rightarrow B)$
	$\overline{(\neg A \lor B) \Rightarrow (A \Rightarrow B)}$
Q2.	Donnez, sur votre copie , la version en français de la preuve précédente.

 $\begin{array}{|c|c|c|}
\hline
23 pt \\
\hline
& \\
\hline
& 4 pt \\
\end{array}$

 $\mathbf{Q3.} \qquad \text{Donnez la preuve en déduction naturelle du théorème} \quad (A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \lor B) \Rightarrow C))$

$$\overline{(A \Rightarrow C) \Rightarrow ((B \Rightarrow C) \Rightarrow ((A \lor B) \Rightarrow C))}$$

Q4. Donnez la preuve en déduction naturelle du théorème $(\exists u, (\forall v, F(u, v))) \Rightarrow (\forall x, (\exists y, F(y, x)))$

$$\overline{(\exists u, (\forall v, F(u, v))) \Rightarrow (\forall x, (\exists y, F(y, x)))}$$

 $\frac{2\,pt}{}$

Q5. Donnez, sur votre copie, la version en français de la preuve précédente.

4 pt		La relation $R(x,q)$ représente le fait que « x connaît la réponse à la question q ». La relation x modélise le fait que « q est une énigme pour x ». Donnez la preuve en déduction naturelle du
	théore	$ \text{Pime} \ (\forall v, R(Socrate, v)) \Rightarrow \left[(\exists u, E(u, Platon)) \Rightarrow (\exists y, (R(Socrate, y) \land E(y, Platon))) \right] $
		$\overline{(\forall v, R(Socrate, v)) \Rightarrow \big[(\exists u, E(u, Platon)) \Rightarrow (\exists y, (R(Socrate, y) \land E(y, Platon))) \big]}$
4pt	Q7.	Donnez la preuve en déduction naturelle du théorème suivant : $(A\Rightarrow B)\Rightarrow (\neg A\vee B)$

Exercice 2 : Preuve de propriétés des ensembles

- Démontrez à l'aide d'une preuve en déduction naturelle que les 3 règles de déduction suivantes sont correctes :

1.
$$\underline{a \in A \quad A \subseteq B}$$
$$\underline{a \in B}$$

2.
$$a \in A$$

3.
$$\underbrace{a \in A \cap B}_{a \in A}$$

2pt	Q9.	Utilisez les règles de la déduction de la déduction précédent de la question précédent	9	(0

$$\overline{\left(X\cap (Y\cup Z)\right)\subseteq \left(X\cup (Y\cap Z)\right)}$$

Q10. On désigne l'ensemble vide par \emptyset . Utilisez les règles de la déduction naturelle et les règles de déduction sur les ensembles pour montrer le théorème $((X \cap Y) = \emptyset) \Longrightarrow ((X \subseteq Y) \Longrightarrow (X = \emptyset))$

Q11.	Soit expr un type défini par :
type ex	<pre>xpr = of int</pre>
_	of expr us of expr * expr
– Donne	z trois élements différents de type expr.
– Compl	étez le schéma de récurrence associé au type expr.
	$\forall i \in \mathtt{expr}, Q(i)$
Q12.	Soit desc un type défini par :
type de P	
P C	
P C F c	of desc z trois élements différents de type desc.
P C F c	of desc
P C F c	of desc
P C F c	of desc z trois élements différents de type desc. étez le schéma de récurrence associé au type desc.
P C F c	of desc z trois élements différents de type desc.

 $\frac{}{6 pt}$

Q16. Utilisez les axiomes qui définissent neg et le principe de récurrence sur zint pour démontrer sous forme d'arbre de preuve le théorème suivant :

 $Thm_1: \ \forall i \in \mathtt{zint}, \ neg(\mathit{neg}(i)) = i$

		les axiomes qui défini me d'arbre de preuve l			currence sur zint pou	ır
$\overline{}$ 6 pt		Exint, $nbP(neg(i)) = r$				
4pt	Q18. En résuivant : $\forall i \in \mathtt{zint}$	utilisant les théorèmes $nbS(neg(i)) = nbP(i)$	Thm_1 et Thm_2 ,	démontrez (sans r	écurrence) le théorèm	ne