ДИСЦИПЛИНА	Вычислительная математика		
	(полное наименование дисциплины без сокращений)		
ИНСТИТУТ	информационных технологий		
КАФЕДРА	прикладной математики		
	(полное наименование кафедры)		
ВИД УЧЕБНОГО	Материалы для практических/семинарских занятий		
МАТЕРИАЛА	(в соответствии с пп.1-11)		
ПРЕПОДАВАТЕЛЬ	Волошук Сергей Алексеевич,		
	Матяш Екатерина Дмитриевна,		
	Митин Михаил Петрович		
	(фамилия, имя, отчество)		
CEMECTP 1, 2023-2024			
	(указать семестр обучения, учебный год)		

Индивидуальная работа №4 ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Задание. І)

- 1) Вычислить определенный интеграл по формулам левых и правых прямоугольников при числе разбиений n=10, оценивая точность с помощью сравнения полученных результатов.
- 2) Вычислить определенный интеграл по формуле средних прямоугольников при двух различных числах разбиений $n_1, n_2 \ge 8$.
- Задание. II) Вычислить определенный интеграл по формуле трапеций при числе разбиений n=10. Оценить полученную точность.
- Задание. III) Вычислить определенный интеграл по формуле Симпсона при числе разбиений n=10. Оценить полученную точность.
- *Задание*. IV) Вычислить определенный интеграл методом Монте-Карло при числе сгенерированных точек n_1 =20, n_2 =700, n_3 =200. Оценить полученную точность.

Сделать общие выводы, проанализировав полученные результаты.

34.4	T	30.15	
№ 1.	$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 5} dx}{2x\sqrt{x^2 + 0.5}};$	№ 16.	$\int_{0,5}^{1,9} \frac{\sqrt{0,7x^2 + 2,3}dx}{3,2 + \sqrt{0,8x + 1,4}};$
№ 2.	$\int_{0,4}^{1,2} \frac{\sqrt{0,5x+2}dx}{\sqrt{2x^2+1}+0,8};$	№ 17.	$\int_{1}^{2,6} \frac{\sqrt{0,4x+3}dx}{0,7x+\sqrt{2x^2+0,5}};$
№ 3.	$\int_{0.8}^{1.8} \frac{\sqrt{0.8x^2 + 1}dx}{x + \sqrt{1.5x^2 + 2}};$	№ 18.	$\int_{0,7}^{2,1} \frac{\sqrt{1,7x^2 + 0,5}dx}{1,4 + \sqrt{1,2x + 1,3}};$
№ 4.	$\int_{1,0}^{2,2} \frac{\sqrt{1,5x+0,6}dx}{2x\sqrt{0,8x^2+2}};$	№ 19.	$\int_{0,6}^{2,2} \frac{\sqrt{1,5x+1}dx}{1,2x+\sqrt{x^2+1,8}};$
№ 5.	$\int_{1,3}^{2,5} \frac{\sqrt{2x^2 + 1,6}dx}{2x + \sqrt{0,8x^2 + 1,3}};$	№ 20.	$\int_{1,2}^{3} \frac{\sqrt{2x^2 + 0.7} dx}{1.5 + \sqrt{0.8x + 1}};$
№ 6.	$\int_{1,3}^{2,5} \frac{\sqrt{x^2 + 0.6} dx}{1.4 + \sqrt{0.8x^2 + 1.3}};$	№ 21.	$\int_{1,3}^{2,7} \frac{\sqrt{1,3x^2 + 0.8} dx}{1,7x + \sqrt{2x + 0.5}};$
№ 7.	$\int_{0.8}^{1.6} \frac{\sqrt{0.3x^2 + 2.3}dx}{1.4 + \sqrt{2x + 1.6}};$	№ 22.	$\int_{0,6}^{1,4} \frac{\sqrt{x^2 + 0.5} dx}{2x + \sqrt{x^2 + 2.5}};$
№ 8.	$\int_{0.8}^{1.6} \frac{\sqrt{0.3x^2 + 2.3}dx}{1.8 + \sqrt{2x + 1.6}};$	№ 23.	$\int_{0,4}^{1,2} \frac{\sqrt{2x^2 + 1}dx}{0.8x + \sqrt{0.5x + 2}};$
№ 9.	$\int_{1,2}^{2} \frac{\sqrt{0.6x + 1.7} dx}{2.1x + \sqrt{0.7x^2 + 1}};$	№ 24.	$\int_{0.8}^{1.8} \frac{\sqrt{1.5x^2 + 2} dx}{x + \sqrt{0.8x^2 + 1}};$
№ 10.	$\int_{0.8}^{2.4} \frac{\sqrt{0.4x^2 + 1.5} dx}{2.5 + \sqrt{2x + 0.8}};$	№ 25.	$\int_{1}^{2,2} \frac{\sqrt{0.8x^2 + 2} dx}{1.6 + \sqrt{1.5x + 0.6}};$

№ 11.	$\int_{1,2}^{2,8} \frac{\sqrt{1,2x+0,7}dx}{1,4x+\sqrt{1,3x^2+0,5}};$	№ 26.	$\int_{1,2}^{2,0} \frac{\sqrt{0.5x^2 + 3}dx}{2x + \sqrt{2x^2 + 1.6}};$
№ 12.	$\int_{0.6}^{2.4} \frac{\sqrt{1.1x^2 + 0.9} dx}{1.6 + \sqrt{0.8x^2 + 1.4}};$	№ 27.	$\int_{1,3}^{2,5} \frac{\sqrt{0.8x^2 + 1.3} dx}{1.4 + \sqrt{x^2 + 0.6}};$
№ 13.	$\int_{0,7}^{2,1} \frac{\sqrt{0,6x+1,5}dx}{2x+\sqrt{x^2+3}};$	№ 28	$\int_{1,2}^{2,6} \frac{\sqrt{x^2 + 1,3} dx}{1,5x + \sqrt{0,4x + 1,7}};$
№ 14.	$\int_{0.8}^{2.4} \frac{\sqrt{1.5x + 2.3}dx}{3 + \sqrt{0.3x + 1}};$	№ 29	$\int_{0.9}^{1.6} \frac{\sqrt{2x+1.6}dx}{1.8+\sqrt{0.3x^2+2.3}};$
№ 15.	$\int_{1,9}^{2,6} \frac{\sqrt{2x+1,7}dx}{2,4+\sqrt{1,2x^2+0,6}};$	№ 30	$\int_{1,2}^{2} \frac{\sqrt{0,7x+1}dx}{2,1x+\sqrt{0,6x+1,7}};$