Econometrics Lecture 6 EC2METRIE

Dr. Anna Salomons

Utrecht School of Economics (U.S.E.)

18 December 2016

This class

Time series models

- ▶ What are time-series data?
- Different types of time series models
- Some issues arising in time-series models, including serial correlation

Studenmund

- Section 7.3
- Chapter 9 (Serial Correlation) excluding sections 9.3.2 and 9.3.3
- Note: slides contain additional materal not covered in Studenmund

Different types of data

- Cross-sectional data: different units observed in one time period
 - Units can be individuals, firms, regions, countries, ...
 - The number of observations is equal to the number of observed units.
 - ▶ Weeks 1-5 and week 8 of this course
- Time-series data: one unit of observation over different time periods.
 - ▶ Time periods can be days, weeks, months, years, ..
 - The number of observations is equal to the number of time periods.
 - Weeks 6-7 of this course.

Different types of data

- ▶ Panel data: a combination of cross-sectional and time-series data, i.e. the same units followed over time.
 - ► E.g. a number of countries followed over different time periods; a number of individuals followed over different time periods.
 - ► The number of observations is equal to the number of time periods × the number of observed units.
 - ▶ Not part of this course!

Important examples of time series in economics

- Long-run economic growth
- There has been a sustained rise over time in real GDP per capita since the Industrial Revolution for advanced economies (e.g. US, The Netherlands)
- ► In more recent decades, some developing economies (e.g. China, India) have experienced strong long-run growth.

3 time series of long-run economic growth, 1900-2010

Important examples of time series in economics

- Recent economic growth has lead to climate change
- In particular, an unsustainable rise in carbon dioxide emissions over time
- ▶ It is unsustainable because there is no market (yet) for pollution in contrast to e.g. oil of which the price rises if oil supply gets limited.

3 time series of CO2 emissions, 1980-2010

Important examples of time series in economics

- ► The Great Recession of 2007-2009
- ► The largest decrease in GDP and the largest increase in unemployment since the Great Depression in the 1930s.
- Recovery is faster in the US than in Europe

2 time series of real GDP, 2007Q1-2011Q3

Metrics Lecture 6

Time series models

What are time-series data?

3 time series of GDP growth, 2005Q1-2013Q1

Cross-sectional model

An example of a cross-sectional model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i$$

- ► Variation comes from different units of observation, denoted by *i*
- ▶ *i* can denote individuals, firms, regions, countries, houses,...: the number of observations *n* is equal to the sum of *i*
- This is what we used so far in this course.

Cross-sectional models in economics: examples

Examples of questions that economists answer with cross-sectional models:

- How high is the return to one more year of education? (i=individual workers)
- Does harsher sentencing reduce crime? (i=regions)
- What is the effect of the number of bedrooms on housing prices? (*i*=houses)
- Are firms with more unionized workers less profitable? (i=firms)
- What is the effect of investment on economic growth? (i=countries)

Times-series model

An example of a time series model:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + ... + \beta_k X_{kt} + \varepsilon_t$$

- ▶ Variation comes from different time periods, denoted by t
- ▶ t can denote days, months, years,...
- ▶ The number of observations *n* is equal to the sum of *t*

Why are time series models different?

- Time series data have a natural temporal ordering, unlike cross-sectional data, in which there is no natural ordering of the observations
 - E.g. cross-sectional data of people's wages and their respective education levels: the order in which the individuals' data is entered is irrelevant.
- The ordering means we can specify different types of models (static or dynamic).
- ▶ This **ordering also leads to a number of issues** (we discuss some of these this week, and others in week 7)

Different types of time series models

► Static time series model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \varepsilon_t$$

Distributed lag model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{1t-1} + \varepsilon_t$$

Autoregressive distributed lag model

$$Y_{t} = \beta_{0} + \beta_{1} Y_{t-1} + \beta_{2} X_{1t} + \beta_{3} X_{1t-1} + \varepsilon_{t}$$

Static time series model

Static time series model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \varepsilon_t$$

This can also be written as

$$Y_{t=1} = \beta_0 + \beta_1 X_{1t=1} + \varepsilon_{t=1}$$

 $Y_{t=2} = \beta_0 + \beta_1 X_{1t=2} + \varepsilon_{t=2}$
...
 $Y_{t=n} = \beta_0 + \beta_1 X_{1t=n} + \varepsilon_{t=n}$

▶ In a static model, **all effects are contemporaneous**: X has an impact on Y in the same time period t.

Metrics Lecture 6

Time series models

└ Different types of time series models

Example of a static model: It's the economy, stupid!

How to test whether it's the economy, stupid!

- ► US presidential elections: how important is the state of the economy for the proportion of the popular vote obtained by the incumbent party¹?
- ▶ We expect that economic conditions in the election year have an impact on people's votes: if there is higher economic growth, more people think the incumbent party is doing a good job and will support their candidate.

$$\mathsf{vote}_t = eta_0 + eta_1 \mathsf{growth}_t + arepsilon_t$$
 $H_0: eta_1 = 0$ $H_A: eta_1
eq 0$

¹The incumbent party is the party (Republican or Democratic) that won the previous election.

Summary of the dataset

variable name	-	display format	value label	variable label
vote	float	%9.0g		Incumbent share of the two-party presidential vote
growth	float	%9.0g		growth rate GDP in first three quarters of the election year

. sum year vote growth

Variable	Obs	Mean	Std. Dev.	Min	Max
year	(35)	1948	40.9878	(1880)	2016
vote	35	52.03743	5.881357	36.119	62.458
growth	35	.6971714	5.300731	-14.499	11.765

. tsset year

time variable: year, 1880 to 2016, but with gaps

delta: 1 unit

Telling Stata we have time series data

- Note: when using a time-series dataset, you have to tell Stata that this is the case.
- You do this by using the tsset command (tsset stands for "time series set"), followed by the variable which uniquely identifies time series observations in your data.
- ▶ In this case, that variable is *year*: hence *tsset year*
 - Stata tells us year goes from 1880 to 2016, but with gaps. These gaps of course occur because elections are only held every 4 years.
 - That is, the variable year changes like this: 1880, 1884, 1888, ..., 2012, 2016.

Variation in the dependent variable

Estimates of the model

. reg vote growth

SS

504200		4.2	-10	21 021100 0 3	. 01 020		-
				- F(1, 3	33)	=	17.22
Model	403.196156	1	403.19615	6 Prob	> F	=	0.0002
Residual	772.876026	33	23.420485	6 R-squa	ared	=	0.3428
				- Adj R-	squared	=	0.3229
Total	1176.07218	34	34.590358	3 Root M	ISE	=	4.8395
vote	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
growth	.6496552	.1565751	4.15	0.000	.331100	0.8	.9682097
_cons	51.58451	.8252712	62.51	0.000	49.9054	48	53.26353

MS

Number of obs =

df

. predict yhat

35

Static model: interpretation

The estimated equation is (standard errors in parentheses):

$$\mathsf{vote}_t = \underset{(0.83)}{51.6} + \underset{(0.16)}{0.65} \mathsf{growth}_t + e_t$$

- We find a significant effect of growth_t on vote_t, hence we can interpret the estimated parameter.
- ► The interpretation is: when growth in the election year was 1 percentage point higher, the incumbent party obtained 0.65 percentage points more of the popular vote in that year's election.
- ► So the economy does have an effect on US presidential election outcomes.

Fitted values against actual values

Elections & the economy: further research

- David Autor, David Dorn, Gordon Hanson & Kaveh Majlesi have examined the effect of import competition from China on the 2016 U.S. presidential election.
- They find that Clinton would have won the election if the China trade shock would have been half the size, showing another way in which the economy matters for elections.
- For those interested in this work, see: http://economics.mit.edu/files/12418

Different types of time series models

► Static time series model: no lagged variables (of either X or Y) on the right-hand side of the equation.

$$Y_t = \beta_0 + \beta_1 X_{1t} + \varepsilon_t$$

Distributed lag model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{1t-1} + \varepsilon_t$$

Autoregressive distributed lag model

$$Y_{t} = \beta_{0} + \beta_{1} Y_{t-1} + \beta_{2} X_{1t} + \beta_{3} X_{1t-1} + \varepsilon_{t}$$

Different types of time series models

Distributed lag model

$$Y_{t} = \beta_{0} + \beta_{1} X_{1t} + \beta_{2} X_{1t-1} + \dots + \beta_{p+1} X_{1t-p} + \varepsilon_{t}$$

Also known as a finite distributed lag model if not all possible lags of the independent variable are included, e.g.

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{1t-1} + \varepsilon_t$$

- ▶ In this model, independent variables have an impact that is spread out over more than one time period.
 - Let's look at an example in which this is a better representation of reality than a static model.

Finite distributed lag model: example

- Workplace accidents are common, and cost firms a lot of money.
- For this reason, many firms provide safety training for workers.
- Since safety training also costs money, firms want to know the monetary benefit of an hour of such training: by how much does 1 hr of training reduce the amount of money lost to workplace accidents?
- ➤ To do so, we start by estimating the following **static model** (i.e. not yet a finite distributed lag model):

$$loss_t = \beta_0 + \beta_1 safe_t + \varepsilon_t$$

Summary statistics

variable name	storage type		value label	variable label
time losses safety		%9.0g %10.0g %10.0g		month Losses from accidents in pounds per month Nr of hours of safety training per month

. sum time loss safety

Variable	Obs	Mean	Std. Dev.	Min	Max
time	60	30.5	17.46425	1	60
losses	60	74234.54	10178.21	45432.68	94022.72
safety	60	13.70862	15.53743	0	59.0358

. tsset time

time variable: time, 1 to 60

delta: 1 unit

Estimates of the static model

. reg loss safety

Source	SS	df		MS		Number of obs = 60 F(1, 58) = 0.10
Model Residual	10166274.7 6.1020e+09	1 58		6274.7 206747		Prob > F = 0.7570 R-squared = 0.0017 Adj R-squared = -0.0155
Total	6.1122e+09	59	103	595892		Root MSE = 10257
losses	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
safety _cons	-26.71627 74600.78	85.94 1772.		-0.31 42.09	0.757 0.000	-198.7523 145.3198 71052.85 78148.7

Improving on the static model

- ▶ In the static model, we find no effect of safety training in month t on losses due to accidents in month t.
- ▶ But maybe this is not a correctly specified model: it is likely that training in month *t* still has an effect in later months.
- ➤ To account for this, we should estimate a finite distributed lag model. Can include a different number of lags:

$$\begin{aligned} &loss_t &= \beta_0 + \beta_1 safe_t + \beta_2 safe_{t-1} + \varepsilon_t \\ &loss_t &= \beta_0 + \beta_1 safe_t + \beta_2 safe_{t-1} + \beta_3 safe_{t-2} + \varepsilon_t \\ &loss_t &= \beta_0 + \beta_1 safe_t + \beta_2 safe_{t-1} + \beta_3 safe_{t-2} + \beta_4 safe_{t-3} + \varepsilon_t \end{aligned}$$

Estimates of the finite distributed lag model (1 lag)

. reg loss safety l.safety

Source Model Residual	SS 2.0030e+09 4.1077e+09 6.1108e+09	df 2 56 58	7335	MS 15e+09 2417.7 358133		Number of obs = 59 F(2, 56) = 13.65 Prob > F = 0.0000 R-squared = 0.3278 Adj R-squared = 0.3038 Root MSE = 8564.6
losses	Coef.	Std.	Err.	t	P> t	[95% Conf. Interval]
safety L1.	-73.53727 -377.7844	72.51 72.47		-1.01 -5.21	0.315 0.000	-218.7951 71.72054 -522.96 -232.6088
_cons	80365.57	1862.	497	43.15	0.000	76634.53 84096.6

Estimates of the finite distributed lag model (2 and 3 lags)

. reg loss safety l.safety l2.safety

Source	SS	df	MS
Model Residual	4.1990e+09 1.9000e+09	3 54	1.3997e+09 35185962.8
Total	6.0990e+09	57	107000844

Number of obs = F(3, 54) = 39.78Prob > F = 0.0000 R-squared Adj R-squared = 0.6712Root MSE

losses	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
safety L1. L2.	-91.08063 -431.4759 -394.7269	50.64648 50.75049 50.50434	-1.80 -8.50 -7.82	0.078 0.000 0.000	-192.6207 -533.2245 -495.982	10.45946 -329.7273 -293.4718
cons	86933.93	1537.919	56.53	0.000	83850.59	90017.28

. reg loss safety 1.safety 12.safety 13.safety

Source	SS	df	MS
Model Residual	4.5839e+09 1.4679e+09	4 52	1.1460e+09 28228501.5
Total	6.0518e+09	56	108067954

Number of obs = F(4, 52) =Prob > F 0.0000 R-squared Adi R-squared = 0.7388

losses	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
safety L1. L2. L3.	-125.9 -443.4918 -417.6089 -179.9043	46.24049 45.88164 45.73324 46.25205	-2.72 -9.67 -9.13 -3.89	0.009 0.000 0.000 0.000	-218.6884 -535.5601 -509.3794 -272.7158	-33.11169 -351.4236 -325.8384 -87.09274
_cons	90402.22	1643.183	55.02	0.000	87104.93	93699.51

Estimates of the finite distributed lag model (4 lags)

reg loss safety l.safety l2.safety l3.safety l4.safety

Source	SS	df	MS	Number of obs = $F(5, 50) = 3$	56 31.64
Model Residual	4.5802e+09 1.4475e+09	5 50	916048673 28950924.3	Prob > F = 0 R-squared = 0	.0000 .7599
Total	6.0278e+09	55	109596174	Adj R-squared = 0 Root MSE = 53	380.6

losses	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
safety L1. L2. L3. L4.	-131.9943 -449.8597 -422.5183 -187.1041 -27.77104	47.43609 47.55659 46.77785 47.64089 47.6619	-2.78 -9.46 -9.03 -3.93 -0.58	0.008 0.000 0.000 0.000 0.563	-227.2725 -545.3799 -516.4744 -282.7936 -123.5028	-36.71608 -354.3395 -328.5623 -91.41453 67.96071
_cons	91173.32	1949.85	46.76	0.000	87256.93	95089.7

- ► The 4th lag has an insignificant effect- we prefer the model with 3 lags.
- ► (More official selection criteria for the number of lags exist, but these are not part of this course.)

Including lagged variables in Stata

- ► We can include lagged variables in Stata by using the time-series operator L.
- To be able to do this, we need to have first told Stata our dataset is a time-series dataset (i.e. we must have used the tsset command)
- Stata also has time-series operators for leads (F.) and differences (D.) - and all the different operators can be combined.

Time-series operators in Stata

Operator	Meaning
L.	1-period lag $(\mathit{L}.X_t = X_{t-1})$
L1.	1-period lag $(L1.X_t = X_{t-1})$
L2.	2-period lag ($\mathit{L2}.X_t = X_{t-2}$)
F.	1-period lead $(\mathit{F}.\mathit{X}_t = \mathit{X}_{t+1})$
F1.	1-period lead $(F1.X_t = X_{t+1})$
F2.	2-period lead $(F2.X_t = X_{t+2})$
D.	1-period difference $(D.X_t = X_t - X_{t-1})$
D1.	1-period difference $(D.X_t = X_t - X_{t-1})$
L.D.	1-period lagged difference $(L.D.X_t = X_{t-1} - X_{t-2})$

Finite distributed lag model: interpretation

$$\begin{array}{lcl} \textit{loss}_t & = & \widehat{\beta}_0 + \widehat{\beta}_1 \textit{safe}_t + \widehat{\beta}_2 \textit{safe}_{t-1} + \widehat{\beta}_3 \textit{safe}_{t-2} + \widehat{\beta}_4 \textit{safe}_{t-3} + e_t \\ \textit{loss}_t & = & \left\{ \begin{array}{ll} 80365 - 125 \ \textit{safe}_t - 443 \ \textit{safe}_{t-1} \\ (45.8) \\ - 417 \ \textit{safe}_{t-2} - 180 \ \textit{safe}_{t-3} + e_t \\ (45.7) \end{array} \right\} \end{array}$$

▶ The **short-run effect** is given by $\widehat{\beta}_1$: the short-run effect of safety training on losses due to accidents is -125, i.e. one more hour of safety training reduces accident losses by £125 in the short run.

Finite distributed lag model: interpretation

$$\begin{array}{lcl} \textit{loss}_t & = & \widehat{\beta}_0 + \widehat{\beta}_1 \textit{safe}_t + \widehat{\beta}_2 \textit{safe}_{t-1} + \widehat{\beta}_3 \textit{safe}_{t-2} + \widehat{\beta}_4 \textit{safe}_{t-3} + e_t \\ \textit{loss}_t & = & \left\{ \begin{array}{ll} 80365 - 125 \ \textit{safe}_t - \ 443 \ \textit{safe}_{t-1} \\ (45.8) & (45.8) \\ - \ 417 \ \textit{safe}_{t-2} - 180 \ \textit{safe}_{t-3} + e_t \\ (45.7) & (46.3) \end{array} \right\} \end{array}$$

The long-run effect is found by letting all time-varying variables achieve their equilibrium values, i.e. they no longer vary over time.

Finite distributed lag model: finding the long-run effect

If all time-varying variables achieve their equilibrium values, they no longer vary over time- we drop the time subscript and introduce the * superscript to denote equilibrium:

$$\begin{array}{lll} \widehat{loss}_t & = & \widehat{\beta}_0 + \widehat{\beta}_1 safe_t + \widehat{\beta}_2 safe_{t-1} + \widehat{\beta}_3 safe_{t-2} + \widehat{\beta}_4 safe_{t-3} \\ \widehat{loss}^* & = & \widehat{\beta}_0 + \widehat{\beta}_1 safe^* + \widehat{\beta}_2 safe^* + \widehat{\beta}_3 safe^* + \widehat{\beta}_4 safe^* \\ \widehat{loss}^* & = & \widehat{\beta}_0 + \left(\widehat{\beta}_1 + \widehat{\beta}_2 + \widehat{\beta}_3 + \widehat{\beta}_4\right) safe^* \end{array}$$

- ▶ Hence the **long-run effect** is $\left(\widehat{\beta}_1 + \widehat{\beta}_2 + \widehat{\beta}_3 + \widehat{\beta}_4\right) = -125 443 417 180 = -1165$
- ▶ Interpretation: each hour of safety training decreases losses from workplace accidents by £1165 in the long run.

Different types of time series models

Static time series model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \varepsilon_t$$

Distributed lag model

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{1t-1} + \varepsilon_t$$

Autoregressive distributed lag model

$$Y_{t} = \beta_{0} + \beta_{1} Y_{t-1} + \beta_{2} X_{1t} + \beta_{3} X_{1t-1} + \varepsilon_{t}$$

Example of an autoregressive distributed lag model

- Back to political economy: rather than assessing whether the economy matters for elections, let's see if it matters for prime minister approval ratings.
- ➤ This time, we use UK data from the **Thatcher-Major era** (1979-1996), a time when the conservative party was in power in Britain.
- We estimate

$$pmsat_t = \beta_0 + \beta_1 pmsat_{t-1} + \beta_2 econft_t + \beta_3 econft_{t-1} + \varepsilon_t$$

Autoregressive distributed lag model: summary statistics

variable name	storage type	display format	value label	variable label
date econft pmsat		%tm %9.0g %9.0g		Date, monthly from July 1979 until December 1996 Evaluation of the economy Satisfaction with prime minister

Sorted by: econft

. tsset date

time variable: date, 1979m7 to 1996m12 delta: 1 month

Example of an autoregressive distributed lag model

$$pmsat_t = eta_0 + eta_1 pmsat_{t-1} + eta_2 econft_t + eta_3 econft_{t-1} + arepsilon_t$$

This is an autoregressive distributed lag model:

- Distributed lag since it includes a lag of the independent variable;
- Autoregressive since it includes a lag of the dependent variable (the dependent variable is regressed on its own lag, i.e. autoregressive).

Why estimate an autoregressive distributed lag model?

$$\textit{pmsat}_t = \beta_0 + \beta_1 \textit{pmsat}_{t-1} + \beta_2 \textit{econft}_t + \beta_3 \textit{econft}_{t-1} + \varepsilon_t$$

We want to estimate an autoregressive distributed lag model because:

- Distributed lag: we expect that effects are not all contemporaneous, i.e. past economic conditions can impact current approval rates;
- Autoregressive: we expect that effects are not instantaneous, i.e. the adjustment of approval rates to economic conditions does not occur within one time period.

Autoregressive distributed lag model

$$pmsat_t = eta_0 + eta_1 pmsat_{t-1} + eta_2 econft_t + eta_3 econft_{t-1} + arepsilon_t$$

Meaning of the size of the autoregressive coefficient β_1 :

- \blacktriangleright β_1 large (close to 1): slow adjustment of the approval rate
- ightharpoonup eta_1 small (close to 0): rapid adjustment of the approval rate
- $\beta_1 = 0$: instantaneous adjustment of the approval rate (i.e. no autoregressive component needs to be included)
- ▶ $\beta_1 = 1$: OLS yields biased estimates of β_1 , i.e. $E(\widehat{\beta}_1) \neq 1$. We come back to this case in week 7!

Estimates of an autoregressive distributed lag model

. reg pmsat l.pmsat econft l.econft

Source	SS	df	MS
Model Residual	19413.186 2674.96952	3 205	6471.06202 13.0486318
Total	22088.1556	208	106.193056

umber of obs	=	209
(3, 205)	=	495.92
rob > F	=	0.0000
-squared	=	0.8789
dj R-squared	=	0.8771
oot MSE	=	3.6123

pmsat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(pmsat) (L1.)	.9166358	.0258064	35.52	0.000	.8657557	.9675158
econft L1.	.1148156	.0240748	4.77 -2.28	0.000 0.024	.0673497 1044939	.1622815 0075461
_cons	3.551733	1.050092	3.38	0.001	1.481369	5.622097

Fitted versus actual values

Autoregressive distributed lag model: interpretation

$$\begin{array}{ll} \textit{pmsat}_t & = & \widehat{\beta}_0 + \widehat{\beta}_1 \textit{pmsat}_{t-1} + \widehat{\beta}_2 \textit{econft}_t + \widehat{\beta}_3 \textit{econft}_{t-1} + \textit{e}_t \\ \\ \textit{pmsat}_t & = & \left\{ \begin{array}{ll} 3.55 + 0.92 \ \textit{pmsat}_{t-1} + 0.11 \ \textit{econft}_t \\ (0.026) & (0.024) \\ & - 0.06 \ \textit{econft}_{t-1} + \textit{e}_t \end{array} \right\} \end{array}$$

▶ Short-run effect is given by the estimated β_2 : when the economy is evaluated 1 point higher, satisfaction with the prime minister increases by 0.11 point.

Autoregressive distributed lag model: finding the long-run effect

$$pmsat_t = \widehat{eta}_0 + \widehat{eta}_1 pmsat_{t-1} + \widehat{eta}_2 econft_t + \widehat{eta}_3 econft_{t-1} + e_t$$

Long-run effect is found by letting all time-varying variables achieve their equilibrium values, i.e. they no longer vary over time:

$$\begin{array}{lll} \mathit{pmsat}^* = \widehat{\beta}_0 + \widehat{\beta}_1 \mathit{pmsat}^* + \widehat{\beta}_2 \mathit{econft}^* + \widehat{\beta}_3 \mathit{econft}^* + e^* \\ \\ \mathit{pmsat}^* - \widehat{\beta}_1 \mathit{pmsat}^* & = & \widehat{\beta}_0 + \widehat{\beta}_2 \mathit{econft}^* + \widehat{\beta}_3 \mathit{econft}^* + e^* \\ \\ \left(1 - \widehat{\beta}_1\right) \mathit{pmsat}^* & = & \widehat{\beta}_0 + \left(\widehat{\beta}_2 + \widehat{\beta}_3\right) \mathit{econft}^* + e^* \\ \\ \mathit{pmsat}^* & = & \frac{\widehat{\beta}_0}{1 - \widehat{\beta}_*} + \frac{\widehat{\beta}_2 + \widehat{\beta}_3}{1 - \widehat{\beta}_*} \mathit{econft}^* + e^* \end{array}$$

Autoregressive distributed lag model: interpretation

Long-run effect is:

$$\widehat{\mathit{pmsat}^*} = \frac{\widehat{eta}_0}{\left(1 - \widehat{eta}_1
ight)} + \frac{\left(\widehat{eta}_2 + \widehat{eta}_3
ight)}{\left(1 - \widehat{eta}_1
ight)} econft^*$$

▶ Hence the long-run effect is given by

$$\frac{(\hat{\beta}_2 + \hat{\beta}_3)}{(1 - \hat{\beta}_1)} = \frac{0.1148 - 0.0560}{1 - 0.9166} \approx 0.71$$

▶ In the long run, when voters the economy is evaluated 1 point higher, satisfaction with the prime minister increases by 0.71 point.

Some issues specific to time series models

- ► Here we discuss a few issues that arise when we estimate time series models
- ▶ These are all specific to time series datasets, i.e. we did not yet encounter them in cross-sectional analysis.
- The remaining issues are discussed in week 7

Some issues specific to time series models

- 1. An introduction to **spurious regression** (more in week 7!)
- 2. Seasonality
- 3. Serial correlation

Spurious regression

- ► In time series models, we can have a **problem** known as **spurious regression**
- Spurious regression: a strong statistical relationship between two or more variables that is not driven by an underlying causal relationship
- ▶ Spurious regression essentially means we get "fake results"

Spurious regression due to trending variables

- Economic time series often have a trend (i.e. increase or decrease steadily over time)
- Just because 2 series are trending together, we can't assume that the relation is causal
- Often, both will be trending because of other unobserved factors
- ► Even if those factors are unobserved, we can control for them by directly **controlling for the trend**

└Spurious regression: a first introduction

Spurious regression: an example

. descr marriages beer

var	iable name	storage type		value label	variable label
mar bee	riages) ")		%10.0g %10.0g		UK marriages, in thousands UK home consumption of beer, in hectoli

. sum marriages beer

Variable	Obs	Mean	Std. Dev.	Min	Max
marriages	14	327.5429	31.70272	286.1	392
beer	14	60483.14	2479.284	57007	65303

. tsset year

time variable: year, 1989 to 2002 delta: 1 unit

derta: I unit

Spurious regression: an example

. reg marriages beer

Source	SS	df	MS
Model Residual	9622.21377 3443.60051	1 12	9622.21377 286.966709
Total	13065.8143	13	1005.06264

Number of obs	=	14
F(1, 12)	=	33.53
Prob > F	=	0.0001
R-squared	=	0.7364
Adj R-squared	=	0.7145
Root MSE	=	16.94

	marriages	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_	beer	.0109734	.001895	5.79	0.000	.0068444	.0151023
	_cons	-336.1602	114.7072	-2.93	0.013	-586.0857	-86.23473

Spurious regression: an example

$$marriages_t = \beta_0 + \beta_1 beer_t + \varepsilon_t$$

- From the estimated model, it looks like an increase in beer consumption significantly increases the number of marriages in the UK.
- But this makes no sense—this is an example of spurious regression as we'll demonstrate.
- In particular, a spurious relationship appears because both the number of marriages and beer consumption follow a timetrend— that is, they change steadily over time.

Metrics Lecture 6

Some issues specific to time series models

Spurious regression: a first introduction

Both variables follow a timetrend

Some issues specific to time series models

Spurious regression: a first introduction

Both variables follow a timetrend

reg marriages year

Source	SS	df	MS
Model Residual	12077.5286 988.28567	1 12	12077.5286 82.3571392
Total	13065.8143	13	1005.06264

14
65
00
44
81
51

marriages	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
year	-7.286154	.6016722	-12.11	0.000	-8.597085	-5.975223
_cons	14867.06	1200.639	12.38		12251.09	17483.03

. reg beer year

Source	SS	df	MS
Model Residual	53863943.8 26045118	1 12	53863943.8 2170426.5
Total	79909061.7	13	6146850.9

s =	14
) =	24.82
=	0.0003
=	0.6741
d =	0.6469
=	1473.2
) = = = d =

beer	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
year _cons	-486.5846 1031463	97.67464 194910.2		0.000	-699.3994 606790	-273.769 145613

Spurious regression

- ► The previous slide shows that both the number of marriages and beer consumption follow a trend.
 - ► The number of marriages decreases by 7286 per year.
 - Beer consumption decreases by 486 hectolitres per year.
- As such, a regression of the number of marriages on beer consumption produces spurious results if we do not control for a timetrend.
 - Essentially, the timetrend is an omitted variable since time has a significant effect on the dependent variable (marriages) AND is correlated with the independent variable (beer consumption).
- Solution: include a timetrend in the model.

Fixing spurious regression by including the timetrend

. reg marriages beer year

Source	SS	df	MS
Model Residual	12267.3227 798.491611	2 11	6133.66134 72.5901465
Total	13065.8143	13	1005.06264

Number of obs	=	14
F(2, 11)	=	84.50
Prob > F	=	0.0000
R-squared	=	0.9389
Adj R-squared	=	0.9278
Root MSE	=	8.52

	marriages	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
-	beer	.0026995	.0016695	1.62	0.134	000975	.0063739
	year	-5.972634	.9894252	-6.04	0.000	-8.150345	-3.794924
	_cons	12082.66	2058.108	5.87	0.000	7552.797	16612.53

Spurious regression

- Once we control for a timetrend, there is no significant relationship between beer consumption and the number of marriages (as we would expect).
- Thus: when we estimate time-series regressions, we should always check whether a time-trend belongs in the equation- we should then include it to avoid spurious regression.
- In week 7, we will see that spurious regression is more generally caused by nonstationarity in timeseries variables- a timetrend is just one example of this.
 - In week 7, we will also see how to test for nonstationarity; and correct for it.

Spurious regression - another example

- ► The **South-African AIDS epidemic** has been pinpointed as having an important effect on child mortality there.
- ▶ We can investigate this in the following time-series model:

$$cmortality_t = eta_0 + eta_1 aids_t + arepsilon_t$$

Some issues specific to time series models

└Spurious regression: a first introduction

Spurious regression - another example

variable name variable label

cmortality Probability that a child dies before the age of 5, rate per 100 live births. aids Number of people living with HIV per 100 population of age group 15-49.

. sum cmortality aids

Variable	Obs	Mean	Std. Dev.	Min	Max
cmortality	22	6.710909	.890382	4.67	7.93
aids	22	12.46818	6.609185	.7	18.1

. tsset year

time variable: year, 1990 to 2011

delta: 1 unit

Spurious regression: a first introduction

Spurious regression - another example

. reg cmortality aids

Source	SS	df	MS
Model Residual	3.56898549 13.0793976	1 20	3.56898549 .653969881
Total	16.6483831	21	.792780149

Number of obs	=	22
F(1, 20)	=	5.46
Prob > F	=	0.0300
R-squared	=	0.2144
Adj R-squared	=	0.1751
Root MSE	=	.80868

	cmortality	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_	aids _cons		.0267006 .374905			.0066791 5.15116	.1180721 6.715237

Spurious regression - another example

- ▶ From the regression results we see that when the fraction of 15-49 year olds with AIDS increases by 1 percentage point, the probability that a child dies before the age of 5 increases by 0.06 percentage points.
- However, it is possible that this result is spurious because we have not yet checked what happens when we include a timetrend in the equation.
- ▶ To do so, estimate the following model:

$$cmortality_t = \beta_0 + \beta_1 aids_t + \beta_2 t + \varepsilon_t$$

Spurious regression - another example

. reg cmortality aids year

Source	SS	df	MS
Model Residual	13.1489127 3.49947045	2 19	6.57445634 .184182655
Total	16.6483831	21	.792780149

cmortality	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
<mark>aids</mark>	.2688616	.0319454	8.42	0.000	.201999	.3357241
year	2344923	.0325141	-7.21	0.000	3025451	1664395
_cons	472.4605	64.6878	7.30	0.000	337.0674	607.8537

Spurious regression: a first introduction

Spurious regression - another example

- ▶ From the regression results we see that the **timetrend is significant**, indicating a decrease in the probability that a child dies before the age of 5 of 0.23 percentage points per year, controlling for AIDS.
- More importantly, we now get a much stronger effect of AIDS on child mortality: when the fraction of 15-49 year olds with AIDS increases by 1 percentage point, the probability that a child dies before the age of 5 increases by 0.27 percentage points.
- ➤ This again illustrates the importance of checking whether a timetrend should be included in the model, to avoid spurious regression results.

Some issues specific to time series models

- 1. An introduction to spurious regression (more in week 7!)
- 2. Seasonality
- 3. Serial correlation

Seasonality

- Seasonality or a seasonal effect is a systematic and calendar related effect in a time series.
- ► Example: the sharp increase in most retail time series around December during the Christmas period
- Sometimes we are interested in the seasonal effects themselves, and sometimes we want to say something about the non-seasonal characteristics of the time-series, meaning we want to control for seasonality.
- ▶ Both these aims can be achieved by including dummies for the relevant time period(s).

An example of seasonality: icecream consumption

We have a dataset of icecream consumption for a number of years, and we observe the consumption per capita in each month for these years.

. descr consumption							
variable name		display format	value label	variable label			
consumption	float	%9.0g		monthly consumption of ice cream per capita (in pints)			
. tsset time time variable: time, 1 to 30 delta: 1 unit							

To test for seasonality in icecream consumption, we estimate a model with dummies for all but one calendar month (to avoid perfect collinearity):

$$\textit{consumption}_t = \beta_0 + \beta_1 \textit{feb}_t + \beta_2 \textit{mar}_t + \beta_3 \textit{apr}_t + ... + \beta_{12} \textit{dec}_t + \varepsilon_t$$

An example of seasonality: icecream consumption

. reg consumption feb mar apr may jun jul aug sept oct nov dec

Source	SS	df	MS	Number of obs = 30 F(11. 18) = 4.21
Model Residual	.090411025 .035112333		.008219184 .001950685	Prob > F = 0.0035 R-squared = 0.7203 Adj R-squared = 0.5493
Total	.125523358	29	.004328392	Root MSE = .04417

consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
feb	.027	.0441666	0.61	0.549	0657905	.1197905
mar	.0563333	.0403184	1.40	0.179	0283724	.1410391
apr	.0653333	.0403184	1.62	0.123	0193724	.1500391
may	.0983333	.0403184	2.44	0.025	.0136276	.1830391
jun	.1223333	.0403184	3.03	0.007	.0376276	.2070391
jul	.1526667	.0403184	3.79	0.001	.0679609	.2373724
aug	.16	.0403184	3.97	0.001	.0752942	.2447057
sept	.0715	.0441666	1.62	0.123	0212905	.1642905
oct	.03	.0441666	0.68	0.506	0627905	.1227905
no∨	.009	.0441666	0.20	0.841	0837905	.1017905
dec	0035	.0441666	-0.08	0.938	0962905	.0892905
_cons	.285	.0312305	9.13	0.000	.2193872	.3506128

Seasonality

An example of seasonality: icecream consumption

To **test for seasonality** in icecream consumption, we should perform an **F-test** for joint significance of the monthly dummies

```
test feb mar apr may jun jul aug sept oct nov dec
      feh = 0
     mar = 0
     apr = 0
     mav = 0
(5)
     iun = 0
(6)
     iu1 = 0
č 75
     aua = 0
(8) sept = 0
    oct = 0
(10)
     nov = 0
     F(11. 18) =
                        4.21
                        0.0035
```

We reject the null hypothesis of joint insignificance, which means we find **evidence of seasonality** in icecream consumption.

Some issues specific to time series models

- 1. An introduction to spurious regression (more in week 7!)
- 2. Seasonality
- 3. Serial correlation

Assumptions 1-4

OLS is unbiased estimator of parameters β if assumptions 1-4 hold:

- Population model is linear in parameters (and the error term is additive).
- 2. Error term has a zero population mean: $E(\varepsilon_i) = 0$.
- 3. All independent variables are uncorrelated with the error term: $Corr(\varepsilon_i, X_i) = 0$.
- 4. **No perfect (multi)collinearity** between independent variables.

Assumptions 5-6

OLS is unbiased estimator of $Var(\widehat{\beta})$ if assumptions 1-4 hold, as well as 5-6:

- 5. No serial correlation: $Corr(\varepsilon_i, \varepsilon_j) = 0$.
- 6. No heteroskedasticity: error term has constant variance, $Var(\varepsilon_i) = \sigma^2$ (where σ^2 is a constant).

Questions about serial correlation

- 1. What is serial correlation?
- 2. What are the consequences of serial correlation?
- 3. How to test for serial correlation?
- 4. How to correct for serial correlation?

Serial correlation

- ▶ This week, we discuss assumption 5: no serial correlation.
- ▶ **Serial correlation** is also called **autocorrelation**, and means the error term is correlated over subsequent time periods.
- ▶ Positive serial correlation: $Corr(\varepsilon_t, \varepsilon_{t-1}) > 0$, the error in period t is likely to be positive if the the error in period t-1 is positive
 - **Negative serial correlation**: $Corr(\varepsilon_t, \varepsilon_{t-1}) < 0$, the error in period t is likely to be negative if the error in period t-1 is positive
 - ▶ In economic time series, we are more likely to have positive than negative serial correlation.

What is serial correlation?

Consider the model:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \varepsilon_t$$

If the error term of this model is serially correlated, we can write:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

 ε_t depends on ε_{t-1} ; u_t is a serially uncorrelated error term with a mean of zero and a constant variance.

▶ This is **first order serial correlation** because the error in t depends on the error in t - 1.

What is serial correlation?

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \varepsilon_t$$

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- ▶ ρ is the correlation between ε_t and ε_{t-1} (see next 2 slides for proof)
- ▶ Thus $|\rho| \le 1$ (since this is the range any correlation coefficient can have).
- ▶ The closer $|\rho|$ is to 1, the stronger the serial correlation.
 - ▶ If $|\rho| = 1$, OLS yields biased estimates of β_1 ,i.e. $E(\widehat{\beta}_1) \neq \beta_1$. We come back to this case in week 7!
- If $\rho = 0$, there is no serial correlation.

Proof of interpretation of rho (I)

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

To prove that ρ is the correlation between ε_t and ε_{t-1} , we first calculate the autocovariance, which is the covariance between ε_t and ε_{t-1} :

$$Cov(\varepsilon_{t}, \varepsilon_{t-1}) = Cov(\rho \varepsilon_{t-1} + u_{t}, \varepsilon_{t-1})$$

$$= Cov(\rho \varepsilon_{t-1}, \varepsilon_{t-1}) + Cov(u_{t}, \varepsilon_{t-1})$$

$$= \rho Cov(\varepsilon_{t-1}, \varepsilon_{t-1}) = \rho Var(\varepsilon_{t-1})$$

Proof of interpretation of rho (II)

We assume the variance of ε is the same in all time periods (assumption 6- homoskedasticity), such that $Var(\varepsilon_{t-1}) = Var(\varepsilon_t)$

$$\begin{array}{ll} \textit{Corr}(\varepsilon_{t}, \varepsilon_{t-1}) & = & \frac{\textit{Cov}(\varepsilon_{t}, \varepsilon_{t-1})}{\sqrt{\textit{Var}(\varepsilon_{t})} \sqrt{\textit{Var}(\varepsilon_{t-1})}} \\ & = & \frac{\rho \textit{Var}(\varepsilon_{t})}{\sqrt{\textit{Var}(\varepsilon_{t})} \sqrt{\textit{Var}(\varepsilon_{t-1})}} \\ & = & \frac{\rho \textit{Var}(\varepsilon_{t})}{\sqrt{\textit{Var}(\varepsilon_{t})} \sqrt{\textit{Var}(\varepsilon_{t})}} = \rho \end{array}$$

Illustration: The demand for ice cream

▶ We estimate a model that relates icecream consumption to the price of icecream, income, and the monthly temperature:

$$\textit{consumption}_t = \beta_0 + \beta_1 \textit{price}_t + \beta_2 \textit{income}_t + \beta_3 \textit{temp}_t + \epsilon_t$$

We predict residuals of this model, and plot them against the time variable.

Estimated icecream demand equation

. reg consumption price income temp

Source	SS	df	MS	Number of obs = 3 F(3, 26) = 22.1	
 Model Residual	.090250521 .035272836			Prob > F = 0.00 R-squared = 0.719 Adi R-squared = 0.686	0
 Total	.125523358	29	.004328392	Root MSE = .0368	

consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price	-1.044413	.834357	-1.25	0.222	-2.759458	.6706323
income	.0033078	.0011714	2.82	0.009	.0008999	.0057156
temp	.0062252	.000802	7.76	0.000	.0045767	.0078737
_cons	.3079846	.2657777	1.16	0.257	2383292	.8542985

. predict uhat, resid

Residuals for ice cream demand equation

This shows that positive and negative residuals group together over time: this is what **positive serial correlation** looks like.

Questions about serial correlation

- 1. What is serial correlation?
- 2. What are the consequences of serial correlation?
- 3. How to test for serial correlation?
- 4. How to correct for serial correlation?

Consequences of serial correlation

- ▶ **Assumption 5 is not satisfied** and therefore OLS formulas for $\widehat{\sigma}^2$ and therefore $se(\widehat{\beta}_k)$ are incorrect.
- ▶ Hence, t-test and F-tests are invalid: cannot perform hypothesis tests.
- Typically, we too often conclude that the estimated parameters are significant.
- However, serial correlation does not cause bias in the estimated coefficients- with one important exception (see next slide)!

Consequences of serial correlation in a model with a lagged dependent variable

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 X_{1t} + \varepsilon_t$$

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

When there is serial correlation (i.e. if $\rho \neq 0$) in a time-series model containing a lagged dependent variable, not only are the $se(\widehat{\beta}_k)$ incorrect, the $\widehat{\beta}_k$ are also biased!

Consequences of serial correlation in a model with a lagged dependent variable

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 X_{1t} + \varepsilon_t$$

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- ▶ Recall that OLS assumption 3 states that the **correlation** between the error term ε_t and all independent variables is zero.
- ▶ But it turns out Y_{t-1} (one of the independent variables) will always be correlated with ε_t if there is serial correlation. (See proof on next slide)
- ► A violation of assumption 3 means we get biased estimates of the coefficients!

Consequences of serial correlation in a model with a lagged dependent variable

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 X_{1t} + \varepsilon_t$$
 $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$

To see why $\rho \neq 0$ causes $Corr(\varepsilon_t, Y_{t-1}) \neq 0$:

▶ We can write the correlation between ε_t and Y_{t-1} as:

$$Corr(\varepsilon_t, Y_{t-1}) = Corr(\rho \varepsilon_{t-1} + u_t, Y_{t-1})$$

= $Corr(\rho \varepsilon_{t-1}, Y_{t-1})$

▶ But Y_{t-1} and ε_{t-1} are correlated by definition, as seen by rewriting the model for t-1

$$Y_{t-1} = \beta_0 + \beta_1 Y_{t-2} + \beta_2 X_{1t-1} + \varepsilon_{t-1}$$

This proves that ε_t is correlated with Y_{t-1} if $\rho \neq 0$ (i.e. if there is serial correlation), which means we obtain **biased coefficient** estimates.

Consequences of serial correlation: summary

- ▶ Serial correlation in static or finite distributed lag models:
 - Biased standard errors
- Serial correlation in autoregressive models- i.e. models with a lagged dependent variable²:
 - Biased standard errors;
 - Biased coefficient estimates.

Questions about serial correlation

- 1. What is serial correlation?
- 2. What are the consequences of serial correlation?
- 3. How to test for serial correlation?
- 4. How to correct for serial correlation?

How to test for serial correlation?

There are 2 commonly used tests for serial correlation:

Durbin-Watson test

- This test is will not be on the exam- you may skip that part of Studenmund.
- Here, a few slides about it are included because statistical software often reports this test (and you may see it in research papers).
- Breusch-Godfrey test (resembles Breusch-Pagan test for heteroskedasticity)
 - This is the test we will use in this course.

The Durbin-Watson test (DW-test)

► The test statistic is

$$d = rac{\sum\limits_{t=2}^{T} \left(e_{t} - e_{t-1}
ight)^{2}}{\sum\limits_{t=2}^{T} e_{t}^{2}}$$

► This has the property:

$$d \approx 2(1-\rho)$$

- If $\rho = 0$ then d = 2: no serial correlation
- If ho o 1 then d o 0 : strong positive serial correlation

The Durbin-Watson test (DW-test)

The hypotheses are

$$H_0$$
 : $ho=0$ no serial correlation H_A : $ho
eq 0$ serial correlation

- Drawback of DW test is that it cannot be for models with a lagged dependent variable because it requires the assumption that all regressors are strictly exogenous (we discuss what this means in week 7).
- ▶ The advantage of the Breusch-Godfrey test is that it can be used for all types of time-series models: the assumption required for this test is that all regressors are contemporaneously exogenous (which we discuss in week 7 as well).

The Durbin-Watson test (DW-test): demand for icecream example

. reg consumption price income temp

Source	SS	df	MS
Model Residual	.090250521 .035272836	3 26	.030083507 .001356648
Total	.125523358	29	.004328392

Number of obs = F(3, 26) =Prob > F 0.0000 R-squared = 0.7190Adj R-squared = 0.6866= .03683 Root MSE

consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price	-1.044413	.834357	-1.25	0.222	-2.759458	.6706323
income	.0033078	.0011714	2.82	0.009	.0008999	.0057156
temp	.0062252	.000802	7.76	0.000	.0045767	.0078737
_cons	.3079846	.2657777	1.16	0.257	2383292	.8542985

. dwstat

Durbin-Watson d-statistic(4, 30) = 1.021169

The Breusch-Godfrey test (BG-test)

We want to test for first-order serial correlation in the following time series model:

$$Y_{t} = \beta_{0} + \beta_{1}X_{1t} + \beta_{2}X_{2t} + ... + \beta_{k}X_{kt} + \varepsilon_{t}$$

$$\varepsilon_{t} = \rho\varepsilon_{t-1} + u_{t} \quad \text{with } |\rho| < 1$$

$$(1)$$

- 1. Estimate equation (1)
- 2. Compute the residuals e_t from the estimated equation
- 3. Regress e_t on the 1-period lagged residual e_{t-1} and all independent variables from equation 1 X_{1t} , X_{2t} .. X_{kt}
- 4. Use the t-value on e_{t-1} to test

$$H_0$$
 : $ho=0$ no 1st-order serial correlation

$$H_A$$
: $\rho \neq 0$ 1st-order serial correlation

(Note that the structure of the BG test for serial correlation resembles that of the BP test for heteroskedasticity)

Example: The demand for ice cream

$$consumption_t = eta_0 + eta_1 price_t + eta_2 income_t + eta_3 temp_t + arepsilon_t$$

- We estimated this model for the demand for icecream, and want to know whether the error term in this equation is serially correlated.
- When inspecting the residuals of these estimated model, we saw a pattern indicative of positive serial correlation- however, such an analysis is never conclusive.
- ► To determine whether there is serial correlation, we should use the **Breusch-Godfrey test for serial correlation**.

BG test for 1st order serial correlation: steps 1 and 2

. reg consumption price income temp

Source	SS	df	MS	Number of obs = $F(3. 26) =$
Model Residual	.090250521 .035272836			Prob > F = R-squared = Adj R-squared =
Total	.125523358	29	.004328392	Root MSE =

consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price	-1.044413	.834357	-1.25	0.222	-2.759458	.6706323
income	.0033078	.0011714	2.82	0.009	.0008999	.0057156
temp	.0062252	.000802	7.76	0.000	.0045767	.0078737
_cons	.3079846	.2657777	1.16	0.257	2383292	.8542985

. predict uhat, resid

0.0000 0.7190 0.6866 .03683

BG test for 1st order serial correlation: step 3

. reg uhat l.uhat price income temp

Source	SS	df	MS		Number of obs	
Model Residual	.004878776 .025197463		1219694 1049894		Prob > F R-squared Adi R-squared	= 0.3523 = 0.1622
Total	.030076239	28 .00	1074151		Root MSE	= .0324
uhat	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
uhat L1.	.3998496	.1970353	2.03	0.054	0068114	.8065105
price income temp _cons	.1513481 .0005283 0000289 0875828	.7495092 .0010725 .0007412 .2439211	0.20 0.49 -0.04 -0.36	0.842 0.627 0.969 0.723	-1.395563 0016853 0015587 5910112	1.698259 .0027418 .0015008 .4158457

BG test for 1st order serial correlation: step 4

- ► The p-value for the lagged residual is statistically significant at the 10% level.
- ▶ Hence we reject the null hypothesis of no serial correlation and conclude there is first-order serial correlation in the demand for icecream model. (Note that we have chosen $\alpha = 0.10$ since the dataset is quite small.)

Breusch-Godfrey test for second-order serial correlation

The BG test can also be used to test for second-order (or in general, higher-order) serial correlation. Second order serial correlation implies:

$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + u_t$$

The test procedure is the same, except:

- In step 3 we regress ε_t on the independent variables from the original model, ε_{t-1} (one-period lagged residual) as well as ε_{t-2} (two-period lagged residual).
- ▶ In **step 4** we must use a **joint significance test** (i.e. F-test) for ε_{t-1} and ε_{t-2} to test:

 H_0 : $ho_1=
ho_2=0$ no 2nd order serial correlation

 H_A : H_0 not true 2nd order serial correlation

BG test for second-order serial correlation: step 3

. reg uhat l.uhat l2.uhat price income temp

Source	SS	df	MS
Model Residual	.005423863 .024291415	5 22	.001084773 .001104155
Total	.029715278	27	.001100566

Number of obs	=	28
F(5, 22)	=	0.98
Prob > F	=	0.4505
R-squared		0.1825
Adj R-squared	=	-0.0033
Root MSE	=	.03323

uhat	uhat Coef.		uhat Coef. Std.		uhat Coef. Std. Err. t P> t		P> t	[95% Conf. Interval		
uhat L1. L2.	.5085876 2158795	.2435505	2.09	0.049 0.402	.0034947	1.01368 .3079364				
price income temp _cons	.1706399 .0007143 .0003236 1117705	.7723084 .0011562 .0008768 .2517041	0.22 0.62 0.37 -0.44	0.827 0.543 0.716 0.661	-1.43103 0016835 0014947 6337729	1.77231 .0031122 .0021419 .4102319				

. test l.uhat l2.uhat

```
(1) L.uhat = 0
(2) L2.uhat = 0
```

$$F(2, 22) = 2.18$$

 $Prob > F = 0.136$

BG test for second-order serial correlation: step 4

- ▶ The p-value for the F-test is not statistically significant at the 10% level.
- Hence we do not reject the null hypothesis of no second-order serial correlation.
- ► To sum up, we do find evidence of first-order serial correlation (see previous BG test) but not of second-order serial correlation in the demand for icecream model.

Questions about serial correlation

- 1. What is serial correlation?
- 2. What are the consequences of serial correlation?
- 3. How to test for serial correlation?
- 4. How to correct for serial correlation?

How to correct for serial correlation

Different solutions are possible:

- Use a different estimator: Cochrane-Orcutt/Prais-Winsten **Generalized Least Squares** (GLS)
- Use Newey-West standard errors
- ► Alternatively: include more lags of the variables in your model
 - we will see an example of this in week 7

- Stata command prais instead of reg
- Adjusts for first-order serial correlation.
- ➤ Transforms the dependent and independent variables to eliminate first-order serial correlation from the equation (see Appendix slides).
- ▶ Due to this transformation, both the estimated parameters and their standard errors may change.

Example of Prais-Winsten: demand for icecream

. prais consumption price income temp

Iteration 0: rho = 0.0000Iteration 1: rho = 0.4006

..etc..

Iteration 41: rho = 0.8002

Prais-Winsten AR(1) regression -- iterated estimates

Source	SS	df	MS
Model Residual	.044945961 .027154356	3 26	.014981987 .001044398
Total	.072100317	29	.002486218

Number of obs	=	30
F(3, 26)	=	14.35
Prob > F	=	0.0000
R-squared	=	0.6234
Adj R-squared	=	0.5799
Root MSE	=	.03232

consumption	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
price income temp _cons	-1.048854 0008022 .0053173 .6815345	.759751 .0020458 .0012795 .2903562	-1.38 -0.39 4.16 2.35	0.179 0.698 0.000 0.027	-2.610545 0050074 .0026872 .0846987	.5128362 .0034029 .0079474 1.27837
rho	.8002264)				

Durbin-Watson statistic (original) 1.021169 Durbin-Watson statistic (transformed) 1.846795

Newey-West standard errors

- ▶ Stata command *newey* instead of *reg*, and the number of autocorrelated lags also have to be specified, *e.g. newey y x1 x2*, *lags*(1) for first-order autocorrelation
- Adjusts for serial correlation of any specified order.
- ➤ Only the standard errors change, the estimated parameters remain the same.
- Side note: Newey-West standard errors correct for both serial correlation and heteroskedasticity, and are for that reason also known as HAC (Heteroskedasticity and Autocorrelation Consistent) standard errors.

Example of Newey-West standard errors: demand for icecream

newey consumption price income temp, lag(1)

Regression with Newey-West standard errors maximum lag: 1

Number of obs = F(3, 26) = 18.76Prob > F 0.0000

consumption	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
price	-1.044413	.8874728	-1.18	0.250	-2.868639	.7798133
income	.0033078	.0012065	2.74	0.011	.0008278	.0057877
temp	.0062252	.0008364	7.44	0.000	.0045059	.0079444
_cons	.3079846	.2955309	1.04	0.307	2994879	.9154572

Example of Newey-West standard errors: demand for icecream

- ► The Newey-West standard errors are higher than the OLS standard errors.
- Since we found first-order autocorrelation in the original model, we specified , lag(1)
 - ► Had we found second-order autocorrelation in the original model, we should have specified , lag(2)

Serial correlation: summary

- Serial correlation: violates OLS assumption 5
- ► Consequences: biased standard errors, and additionally, biased coefficient estimates in autoregressive models.
- ▶ **Diagnosis**: Breusch-Godfrey test.
- ▶ **Solution**: GLS estimation or Newey-West standard errors.

Things to do for your project paper this week

- Download a time series dataset from the course website (whichever one you want, doesn't have to be related to the cross-sectional one)— choose a dependent variable and 1 independent variable.
- Determine whether your dependent and independent variables follow a timetrend (to avoid spurious regression)
- Estimate a model with lagged dependent and independent variables (and a timetrend, if you find this to be necessary) and interpret the estimated parameters (short-run vs long-run effect).
- Test for serial correlation.
- ▶ If necessary, re-estimate the model, adjusting for serial correlation.

Take the following model:

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$$

Let's say the errors of this model are first-order serially correlated:

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

where u_t is an error term that meets all OLS assumptions.

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$$

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

First, write the model for the period t-1:

$$Y_{t-1} = \beta_0 + \beta_1 X_{t-1} + \varepsilon_{t-1}$$

Next, subtract ρY_{t-1} from both sides of the original model:

$$Y_{t} - \rho Y_{t-1} = \beta_{0} (1 - \rho) + \beta_{1} (X_{t} - \rho X_{t-1}) + \varepsilon_{t} - \rho \varepsilon_{t-1}$$

We now have

$$Y_{t} - \rho Y_{t-1} = \beta_{0} (1 - \rho) + \beta_{1} (X_{t} - \rho X_{t-1}) + \varepsilon_{t} - \rho \varepsilon_{t-1}$$

Note that

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t
\Leftrightarrow \varepsilon_t - \rho \varepsilon_{t-1} = u_t$$

Hence

$$Y_t - \rho Y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (X_t - \rho X_{t-1}) + u_t$$

This gives the following transformed equation:

$$Y_{t} - \rho Y_{t-1} = \beta_{0} (1 - \rho) + \beta_{1} (X_{t} - \rho X_{t-1}) + u_{t}$$

Note that this transformation has removed serial correlation from the model as u_t is a serially uncorrelated error term.