

# Pattern Recognition Chapter 10: Bayesian Classification

Prof. Dr.-Ing. Uwe Sörgel soergel@ifp.uni-stuttgart.de



#### **Contents**

- Theorem of Bayes
- Modelling of the likelihood function
  - Non-parametric techniques
  - Parametric techniques
- Modelling of the prior probability
- Discussion





### **Bayesian Classification**

- Generative approach:
  - The posterior probability  $p(C|\mathbf{x})$  is maximized.
  - Posterior  $p(C|\mathbf{x})$  is modelled indirectly according to the Theorem of Bayes.
  - This requires a model of the joint distribution  $p(C, \mathbf{x})$  of the data  $\mathbf{x}$  and the class labels C
  - It is possible to generate synthetic data sets by sampling from the joint distribution.
- Strong theoretical foundation:
  - If the required distributions are known, Bayesian classification will deliver the result with the lowest proportion of classification errors!



lifp

# Motivation: Recap probabilities I

• A subset A of a population  $\Omega$  suffers from cancer. By normalization we yield a probability that a person we sample carries this disease:

$$\frac{|A|}{|\Omega|} = P(A)$$

• A drug company invents some screening test, which is either "positive" (indicating cancer) for some people (set *B*) and "negative" for the rest:

$$\frac{\left|B\right|}{\left|\Omega\right|} = P(B)$$



# Motivation: Recap probabilities II



- The joint probability A,B (shorthand  $A \cap B$ ) is:  $\frac{|A,B|}{|\Omega|} = P(A,B)$
- We ask: "Given that the test is positive for a randomly selected individual, what is the probability that said individual has cancer?"
  - This is a conditional probability  $P(A|B) = \frac{P(A,B)}{P(B)}$





https://oscarbonilla.com/2009/05/visualizing-bayes-theorem/



# Motivation: Recap probabilities III



- Now let us ask "Given that a randomly selected individual has cancer (event *A*), what is the probability that the test is positive for that individual (event *AB*)?"
- This is of course again a conditional probability:

$$P(B \mid A) = \frac{P(A,B)}{P(A)}$$

We have now:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$
 and  $P(B|A) = \frac{P(A,B)}{P(A)}$ 



### Theorem of Bayes: Derivation for our purpose



• For the joint distribution  $p(\mathbf{x}, C)$  of data  $\mathbf{x}$  and classes C the product rule applies:

$$p(\mathbf{x}, C) = p(C|\mathbf{x}) \cdot p(\mathbf{x})$$

- Likewise:  $p(C, \mathbf{x}) = p(\mathbf{x}|C) \cdot p(C)$
- Due to  $p(\mathbf{x}, C) = p(C, \mathbf{x})$ :

$$p(C|\mathbf{x}) \cdot p(\mathbf{x}) = p(\mathbf{x}|C) \cdot p(C)$$

• Therefore:  $p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C) \cdot p(C)}{p(\mathbf{x})}$ Theorem of Bayes



**■**ifp

# **Theorem of Bayes: Interpretation**



**causal relation** between object type and observed features: the observed features are a function of the object type.

- Usually it is easier to deduce the effect from the cause, i.e., it would seem to be easier to deduce the features from the object type.
- The theorem of Bayes allows inverse reasoning: derive information about the cause (the object type) from the effect (the observed features).

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C) \cdot p(C)}{p(\mathbf{x})}$$

# Theorem of Bayes: Meaning of the terms I



• *p*(*C*): prior probability

prior probability 
$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C) \cdot p(C)}{p(\mathbf{x})}$$
• Corresponds to knowledge (bias) for the occurrence of  $C$ .

- If no information is available: Uniform Distribution
  - → MAP becomes Maximum-Likelihood (ML)
- p(C) can be determined iteratively:
  - 1. Classification under the assumption of a uniform distribution of the occurrence of the individual classes.
  - 2. Determination of p(C) from the relative frequencies of occurrence of the individual classes  $C^k$ .
  - 3. Classification according to the theorem of Bayes.





# Theorem of Bayes: Meaning of the terms II



•  $p(\mathbf{x}|C)$ : likelihood

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C)p(C)}{p(\mathbf{x})}$$

- Probability to observe x if it is known to belong to class C.
- Note: the Likelihood is no probability density function of the Classes C!
- For each class  $C^k$  there is a model for  $p(x|C=C^k)$ , which describes the distribution of the features for this class.
- Determination from data in training areas
- Non-parametric Models: Direct determination of  $p(\mathbf{x}|C)$  from the **training data**
- Parametric Models: Based on the assumption of an analytical model for  $p(\mathbf{x}|C)$ , whose parameters are estimated from the training data.

#### **Paranthesis:**

#### Likelihood function vs. probability density function

#### • Probability density function :

- We have a set of n samples  $x_1, ..., x_n$  of n independent and identically distributed random variables  $X_1, ..., X_n$ .
- We know the joint probability density  $p(\mathbf{x}, \theta)$  governed by fixed (given) parameters  $\theta$ .
- Then we may **factorize** the joint probability density like this:

$$p\left(\mathbf{x}_{1},...,\mathbf{x}_{n} \mid \theta\right) = p\left(\mathbf{x}_{1} \mid \theta\right) p\left(\mathbf{x}_{2} \mid \theta\right) ... p\left(\mathbf{x}_{n} \mid \theta\right) = \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \theta\right)$$

#### • Likelihood function L:

- We kind of turn the tables by considering now  $x_1, ..., x_n$  as given and  $\theta$  as random variables.
- However, eventually we yield the exact same factorization as above:

$$L(\boldsymbol{\theta}|x_1,...,x_n) = p(x_1,...,x_n|\boldsymbol{\theta}) = p(x_1|\boldsymbol{\theta})...p(x_n|\boldsymbol{\theta}) = \prod_{i=1}^{n} p(x_i|\boldsymbol{\theta})$$

#### Comments

- The Likelihood function is no probability density function:
  - In case we integrate over parameter space  $\theta$ , the integral is usually unequal to 1.
- Important application: **Maximum Likelihood Method** (Search for best  $\theta$ ).



# lifp

# **Example for Likelihood function: Coin tossing**

- Two possible outcomes:
  - Head (*H*) or tail (*T*):

$$P(H) = \theta$$
 and  $P(T) = 1 - \theta$ 

Let us toss two times:

In general: 
$$L(\theta | x_1, x_2) = p(x_1 | \theta) \cdot p(x_2 | \theta)$$

• Observation: HH

$$\theta = 0.5 \rightarrow L(0.5|H,H) = p(H|0.5) \cdot p(H|0.5) = 0.5^2 = 0.25$$

• Case 1: Fair coin: 
$$\theta = 0.5 \to L\left(0.5 \middle| H, H\right) = p\left(H \middle| 0.5\right) \cdot p\left(H \middle| 0.5\right) = 0.5^2 = 0.25$$
 • Case 2: Biased coin, e.g. 
$$\theta = 0.3 \to L\left(0.3 \middle| H, H\right) = p\left(H \middle| 0.3\right) \cdot p\left(H \middle| 0.3\right) = 0.3^2 = 0.09$$

$$HH \to \int_{0}^{1} L(\theta | H, H) d\theta = \int_{0}^{1} p(H | \theta)^{2} d\theta =$$
$$\int_{0}^{1} \theta^{2} d\theta = \left[\frac{1}{3}\theta^{3}\right]_{0}^{1} = \frac{1}{3}$$



The likelihood function for the probability of a coin landing heads-up (without prior knowledge) after observing HH (Wikipedia).

lifp

# Theorem of Bayes: Meaning of the terms III



• p(x): probability of the data (also called evidence)

$$p(C|\mathbf{x}) = \frac{p(\mathbf{x}|C) \cdot p(C)}{p(\mathbf{x})}$$

- Equal for all values of *C* becauses it does not depend on *C*.
  - $\Rightarrow$  MAP can also be applied without knowing  $p(\mathbf{x})$ :

$$p(C|\mathbf{x}) \propto p(\mathbf{x}|C) \cdot p(C)$$
$$\Rightarrow \max(p(C|\mathbf{x})) = \max(p(\mathbf{x}|C) \cdot p(C))$$

- $p(\mathbf{x})$  ensures that  $p(C|\mathbf{x})$  can be interpreted as a probability and can be used as such in further probabilistic processes.
- $p(\mathbf{x})$  can be determined as the **marginal distribution** of  $p(\mathbf{x}, C)$ :

$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x} | C^{k}) \cdot p(C^{k})$$



# ■ifp

# **Theorem of Bayes: Example**



• It is known that from 100000 people 20 suffer from a certain severe illness:

$$p(K = ill) = 0.0002, p(\overline{K} = healthy) = 0.9998$$

- It exists a screening method for this disease:
- Sensitivity of the tests: 95% of all ill persons are detected (*T*=*I*):

$$p(T|K) = 0.95, p(\overline{T}|K) = 0.05$$

• Unfortunately, the test delivers false positive result for 1% of healthy persons:

$$p(T|\overline{K}) = 0.01, p(\overline{T}|\overline{K}) = 0.99$$

• We may be interested in the portion of ill persons in the set of all persons with positive test results:

$$p(K|T) = \frac{p(T|K)p(K)}{p(T|K)p(K) + p(T|\overline{K})p(K)} = \frac{p(T|K)p(K)}{p(K|K) + p(T|K)p(K)} = \frac{p(T|K)p(K)}{p(K|K)} = \frac{p(T|K)p(K)}$$

p(T): Sum over all classes (here: 2)

https://de.wikipedia.org/wiki/

=0.0186





# **Workflow of Bayesian classification**

- Given:
- Models for the likelihoods  $p(\mathbf{x}|C^k)$  of all classes  $C^k$
- Priori probabilities  $p(C^k)$  of all classes  $C^k$
- A feature vector x to be classified
- Wanted: Class  $C_{map}$  of  $\mathbf{x}$  according to the MAP criterion.
- Procedure:

1. For all 
$$C^k$$
: calculate  $p(\mathbf{x}, C^k) = p(\mathbf{x}|C^k) \cdot p(C^k)$ 

2. Calculate 
$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x} | C^{k}) \cdot p(C^{k})$$

3. For all 
$$C^k$$
: calculate  $p(C^k | \mathbf{x}) = p(\mathbf{x}, C^k) / p(\mathbf{x})$ 

4.  $C_{map}$  results as the label  $C^k$  for which  $p(C^k|\mathbf{x})$  is a maximum.



# ■ifp

# **Training**

- Training: provision of examples
  - User marks image regions which correspond to a class C<sup>k</sup>.
  - Assumption: all pixels in the selected region belong to C<sup>k</sup>.
  - Training areas must be provided for all classes
- The training data must be representative for all classes
- Modelling of the likelihood for the classes:
  - Based on training data
  - Different for parametric and non-parametric methods.

#### **Contents**

- Theorem of Bayes
- Modelling of the likelihood function
  - Non-parametric techniques
  - Parametric techniques
- Modelling of the prior probability
- Discussion



# **■**ifp

# **Likelihood: Non-parametric methods**

- Likelihood  $p(\mathbf{x}|C)$ : Conditional probability to observe the data  $\mathbf{x}$  if the class C is known.
- Non-parametric techniques for modelling:
  - Histograms
  - Kernel density estimation
  - Techniques based on nearest neighbors

# Likelihood based on Histograms: 1D Case

• Discrete variables (e.g. gray values g):

$$p(x=g|C^k)=K_k/N_k$$

- $K_k$  ... Number of pixels in the training areas of the class  $C^k$  with grey value g
- $N_k$  ... Number of pixels in the training areas for the class  $C^k$
- Implementation via lookup tables  $L_k(g)$  for each class  $C^k$
- Fast both for training and classification





# **Likelihood based on Histograms: 1D Case**



- Continuous variables: discretization with grid width  $\Delta$ .
- For the estimation of probability at location i the step size  $\Delta_i$  needs to be considered:  $p_i\left(x\right) = \frac{K_i}{N \cdot \Delta_i}, \quad \int p_i\left(x\right) dx = 1$
- Usually equidistant step size Δ
- Quality of the approximation depends on  $\Delta$ :
  - N<sub>k</sub> = 50 samples drawn from a bimodal distribution (green)
  - Blue: histograms of the approximation
- If  $\Delta$  is too small: noisy approximation
- If  $\Delta$  is too large: smoothing too strong



• Problem: how to select the optimal value of  $\Delta$ ?

# Likelihood from histograms: Multi-dimensional case

• Example (two grey values  $g_1$ ,  $g_2$ ,  $\Delta_{x1} = \Delta_{x2} = \Delta$ ):

$$p(x_1 = g_1, x_2 = g_2 | C^k) = \frac{K_k}{N_k \cdot \Delta^2}$$

- $K_k$  ... Number of pixels in the training areas of class  $C^k$  with the grey value combination  $(g_1, g_2)$
- $N_k$  ... Number of pixels in the training areas for  $C^k$
- Q possible values for each feature

 $\rightarrow Q^2$  sub-squares, in which  $p(x_1, x_2 | C^k)$  is to be determined

(Example in Figure.: Q=4)





# Likelihood from histograms: Multi-dimensional case

- If we have *D* features with *Q* possible values per feature
  - $\rightarrow Q^{D}$  probabilities need to be determined!
- This means that  $Q^D$  parameters have to be determined from training data.
- Practically impossible for D > 2
  - "Curse of Dimensionality"
  - "Hughes phenomenon" [Hughes, 1968 (!)]:
    - Beyond a certain point, the classification accuracy is reduced by using additional features!

# **Multi-dimensional histograms: Curse of Dimensionality**

- ullet If we have D features with Q possible values per feature
  - $\rightarrow Q^D$  probabilities need to be determined!

In order to maintain the same density of training data in the feature space, the data volume increases exponentially with dimension D, here (Q=10):

• 1-dim: 10<sup>1</sup>

• 2-dim: 10<sup>2</sup>

• 3-dim: 10<sup>3</sup>





# Multi-dimensional histograms: Curse of Dimensionality

- Examples for "Curse of Dimensionality":
  - RGB image: 256 possible values for (R,G,B)
    - $\rightarrow$  256<sup>3</sup> = 16.777.216 probabilities
  - Feature vectors with D = 40 elements:
     Quantisation with 8 bit (256 possible values per feature)
    - $\rightarrow$  256<sup>40</sup> = 2.1 · 10<sup>96</sup> probabilities
    - Comparison: number of protons in the universe: 1.57 · 1080!
- Can the problem be simplified by determination of the probabilities for each feature independently?





# Likelihood from histograms: Multi-dimensional case



• Example for two features  $x_1, x_2$ :

$$p(x_1, x_2, C^k) = p(x_1, x_2 | C^k) \cdot p(C^k)$$

$$= p(x_1 | x_2, C^k) \cdot p(x_2, C^k)$$

$$= p(x_1 | x_2, C^k) \cdot p(x_2 | C^k) \cdot p(C^k)$$

• thus 
$$\Rightarrow p(x_1, x_2 | C^k) = p(x_1 | x_2, C^k) \cdot p(x_2 | C^k)$$

- In general, one cannot split ("factorize")  $p(x_1,x_2|C^k)$  into a product of the form  $p(x_1|C^k) \cdot p(x_2|C^k)$ !
- Exception: the two variables are conditional independent



# **l**ifp

# **Conditional independence**



• Two features  $x_1$ ,  $x_2$  are **conditionally independent** if  $p(x_1|x_2,C^k)$  does not depend on  $x_2$ , i.e., if:

$$p(x_1|x_2,C^k) = p(x_1|C^k)$$

and, therefore,

$$p(x_1, x_2 | C^k) = p(x_1 | C^k) \cdot p(x_2 | C^k)$$

- "Conditionally independent" means that  $x_1$  and  $x_2$  are statistically independent while that  $C_k$  has occurred.
- It does **not** mean that  $x_1$  und  $x_2$  are statistically independent in the general meaning of the word.

### Conditional independence and the Naive Bayes Model



• If the features of a multidimensional feature vector **x** are conditionally independent, the likelihood can be factorized:

$$p(\mathbf{x}|C^k) = p(x_1|C^k) \cdot p(x_2|C^k) \cdot \dots \cdot p(x_D|C^k)$$

- Consequence: the likelihood can be determined from the marginal distributions  $p(x_i \mid C^k) \rightarrow Q \cdot D$  instead of  $Q^D$  parameters!
- This is called the naive Bayes model
  - Statistical dependencies between the features are neglected.
  - In general: too strong simplification.
  - May be justified if the features are determined from independent sensors.



Universität Stuttgart

# **■**ifp

# **Example of impact of the Naive Bayes Model**

• Aerial image with training area for "vegetation" (V)  $(87 \times 85 = 7395 \text{ pixels})$ 



### **Example of impact of the Naive Bayes Model**

Aerial image with training area for "street" (S)
 (49 x 102 = 4998 Pixel)



# Other non-parametric techniques

• Probability P that a point  $\mathbf{x}$  falls into a region R:

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x}$$

• If the volume V of R is so small that  $p(\mathbf{x})$  is almost constant in R, one can approximate P by:

$$P \approx p(\mathbf{x}) \cdot V$$

• For a large number N of training samples  $\mathbf{x}_i$  one can expect that  $K \approx P \cdot N$  of these samples fall into R:

$$K \approx P \cdot N \approx p(\mathbf{x}) \cdot V \cdot N$$
  

$$\Rightarrow p(\mathbf{x}) \approx \frac{K}{N \cdot V}$$

# Other non-parametric techniques

• Methods for the determination of the likelihood based on the approximation

$$p(\mathbf{x}) \approx \frac{K}{N \cdot V}$$

- Kernel density estimation:
  - 1. Define R (and, consequently, V)
  - 2. Count the number K of the points in  $R \rightarrow p(\mathbf{x})$
- Techniques on the basis of nearest neighbors:
  - 1. Define K
  - 2. Determine  $V \rightarrow p(\mathbf{x})$



**■**ifp

# Kernel density estimation I

• Definition of *R* as unit cube of side length 1 in feature space:

$$k(\mathbf{x}) = \begin{cases} 1, & |x_i| \le \frac{1}{2} \\ 0, & sonst \end{cases}$$

- $k(\mathbf{x})$  is an example of a kernel function.
- Number *K* of the points inside a cube of side length *h* at point **x**:

$$K = \sum_{i=1}^{N} k \left( \frac{\mathbf{x} - \mathbf{x}_i}{h} \right)$$

Therefore, using  $V = h^D$  for the volume of the cube:

$$p(\mathbf{x} \mid C^k) = \frac{1}{N_k} \cdot \sum_{i=1}^{N_k} \frac{1}{h^D} \cdot k\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

with  $N_k$  ... Number of training points for the class  $C^k$ 

# Kernel density estimation II

- The proposed kernel function is not continuous at the boundaries of the cube.
- Transition to a smooth kernel,
   e.g., Gaussian kernel with width h:

$$p(\mathbf{x} \mid \mathbf{C}^k) = \frac{1}{N_k} \cdot \sum_{i=1}^{N_k} \frac{1}{\sqrt{2\pi} \cdot h} \cdot \mathbf{e}^{-\frac{\|\mathbf{x} - \mathbf{x}_i\|^2}{2h^2}}$$



- No training in the sense of the determination of parameters required.
- For the classification of a new feature vector  $\mathbf{x}$ , the sum has to be evaluated using all training points  $\mathbf{x}_i$  of the class  $C^k$ 
  - → slow for a large number of training points
- For classification, all training points must be available in RAM.



# ■ifp

# Kernel density estimation III

- Influence of the parameter h: Smoothing of the estimated probability density function.
- Example (Bishop, 2006):
- $N_k = 50$  samples drawn from a bimodal distribution (green).
- Blue curve: approximation of the probability density for different values of h.



- Choice of *h* is critical for success!
- Possible choice of h:
  - For each training sample: determine distance to its nearest neighbor in feature space
- Set h to half the average distance.

# Nearest neighbor techniques I

- Remember:  $p(\mathbf{x}) \approx \frac{K}{N \cdot V}$
- Procedure:
  - 1. Select K.
  - Take a point and let the volume V grow until K points are inside..
  - 3. Calculate  $p(\mathbf{x})$ .
  - → K nearest neighbor (KNN) techniques



• The parameter *K* heavily influences the quality of the approximation.



# **■**ifp

# Nearest neighbor techniques II

- Direct classification with the KNN-Method:
  - For a feature vector **x** that is to be classified:
    - 1. Search for the *K* nearest feature vectors in feature space among the training samples of all classes.
    - 2. For each class  $C^k$ : Determine the number  $K_k$  of the training samples among the K nearest neighbors that belong to  $C^k$ .
    - 3. Assign **x** to the class with maximum  $K_k$ .
- No training in the sense of the calculation of parameters, but all of the data points must be RAM.
- Requires a spatial index (e.g., kd tree) for efficient nearest neighbor search.

### Nearest neighbor techniques III

• Example for the class boundaries as a function of *K*:



• KNN classification corresponds to Bayesian classification if the percentages of training samples per class are proportional to the prior probabilities.





# Non-parametric techniques: Discussion

- Histograms: Not applicable for D > 2; however, 2D histograms are often used for visualization.
- Kernel density estimation and KNN: Are used occasionally
  - Need all training data in RAM at test time
  - Kernel density estimation: Time for classification increases linearly with the number of training samples
  - KNN: Needs efficient indexing
  - Require the choice of a parameter (*h* or *K*, which has a strong influence on the result.
  - Possible way to determine of *h* or *K*: cross-validation

#### **Cross-Validation: Example kernel density estimation**

- The training data are randomly divided into G groups (e.g., G = 3)
  - For different values of *h* that cover the entire possible range of values:
    - 1. For  $g = 1 \dots G$ : Classify the training points of group g using the G-I remaining groups for training.
    - 2. Determine the average training error (the number of training points assigned to a wrong class).
    - 3. Select the value of h for which the training error is a minimum.
- Cross validation can also be used to select one of several classification models.





#### **Contents**

- Theorem of Bayes
- Modelling of the likelihood function
  - Non-parametric techniques
  - Parametric techniques
- Modelling of the prior probability
- Discussion





#### Likelihood: Parametric methods

- Here, an analytical model for the probability density  $p(\mathbf{x}|C)$  is assumed.
- The probability density function  $p(\mathbf{x}|C)$  also depends on parameters  $\theta$ , which are determined from training data, i.e.,  $p(\mathbf{x}|C) = p(\mathbf{x}|C,\theta)$ .
- The number of parameters  $\theta$  is usually small, therefore the training effort is often considerable lower compared to non-parametric techniques.
- Training areas are required for each class  $C^k$  to determine the parameters  $\theta_k$  of  $p(\mathbf{x}|C^k,\theta_k)$ .
- The training areas must be representative for the respective class





# **Training: Determination of the parameters I**

- The likelihood  $p(\mathbf{x}|C^k)$  is interpreted as  $p(\mathbf{x}|C^k,\theta_k)$ , where the vector  $\theta_k$  contains all parameters of  $p(\mathbf{x}|C^k)$ .
- There are  $N_k$  statistically independent data samples  $\mathbf{x}_{ik}$  for the class  $C^k$  (i.e., all points in the training areas for class  $C^k$ ).
- Determination of  $\theta_k$ : Probability  $p(\theta_k | \mathbf{x}_{lk}, \dots \mathbf{x}_{nk})$  of the parameter for the given training data should be maximum.
- Theorem of Bayes:  $p(\theta_k | \mathbf{x}_{1k}, \mathbf{x}_{2k} \dots \mathbf{x}_{Nk}) \propto p(\mathbf{x}_{1k}, \mathbf{x}_{2k} \dots \mathbf{x}_{Nk} | \theta_k) \cdot p(\theta_k)$
- Due to the statistical independence of the samples  $\mathbf{x}_{ik}$ :

$$p(\mathbf{x}_{1k}, \mathbf{x}_{2k} \dots \mathbf{x}_{Nk} | \theta_k) = p(\mathbf{x}_{1k} | \theta_k) \cdot p(\mathbf{x}_{2k} | \theta_k) \cdot \dots \cdot p(\mathbf{x}_{Nk} | \theta_k)$$

### **Training: Determination of the parameters II**



• Thus:

$$\underbrace{p\left(\theta_{k} \left| \mathbf{x}_{1k}, \mathbf{x}_{2k} \dots \mathbf{x}_{Nk}\right.\right)}_{\text{posterior}} \propto p\underbrace{\left(\mathbf{x}_{1k} \left|\theta_{k}\right.\right) \cdot \dots \cdot p\left(\mathbf{x}_{Nk} \left|\theta_{k}\right.\right) \cdot p\left(\theta_{k}\right.\right)}_{\text{prior}}$$

- Estimation of  $\theta_k$  according to the **maximum likelihood (ML)** principle:
  - Assumption of a uniform distribution of  $p(\theta_{\nu})$ , therefore:

$$p(\mathbf{x}_{1k}|\theta_k) \cdot \dots \cdot p(\mathbf{x}_{Nk}|\theta_k) \Rightarrow \max$$

- Bayesian Estimation
- Requires knowledge about the prior  $p(\theta_{\nu})$



# **■**ifp

### **Parametric methods**

- The choice of an analytical model for the likelihood  $p(\mathbf{x}|C^k,\theta_k)$  depends on
  - The nature of the features
  - The expected distribution of the features in the feature space
- · Different probability density functions for
  - Binary features
  - Discrete features
  - Continuous features

# **Binary features**

- A feature x, which can take two values (0,1)
- Probability that *x* takes the value 1 or 0, respectively:

$$p(x=1) = \mu \implies p(x=0) = 1 - \mu$$

- Bernoulli distribution:  $p(x) = \mu^x \cdot (1 \mu)^{1-x}$ 
  - or in the case of the likelihood function  $p(x|C^k)$ :

$$p(x \mid C^k, \mu_K) = \mu_k^x \cdot (1 - \mu_k)^{1-x}$$

- This is just another notation for  $p(x \mid C^k, \mu_k) = \begin{cases} \mu_k & \text{for} \quad x = 1\\ 1 \mu_k & \text{for} \quad x = 0 \end{cases}$
- For each class, one parameter  $\mu_{\it k}$  must be determined  $\rightarrow \theta_{\it K} = \mu_{\it K}$



# ifp

# **Binary Features: Training**

- ullet Given:  $N_k$  independent training points  $x_{ik}$  for the class  $C^k$
- Wanted: Parameter  $\mu_k$  of the Bernoulli distribution for  $C^k$
- Determination by the maximum likelihood method:
  - Maximize the probability of  $x_{ik}$  for given  $\mu_k$ :

$$p(x_{1k},...,x_{jk},...x_{N_kk} \mid \mu_k) = \prod_{i=1}^{N_k} \mu_k^{x_i} \cdot (1-\mu_k)^{(1-x_i)} \to \max$$

# **Binary Features: Training**



- Maximum likelihood estimation:
  - Equivalent problem: maximize the log-likelihood
    - The location of the maximum stays the same, the advantage is that **products turn to** sums and exponents to products.

$$\ln \rho \left( x_{1k}, \dots, x_{ik}, \dots x_{N_k k} \mid \mu_k \right) =$$

$$\sum_{i=1}^{N_k} \left[ x_i \cdot \ln \mu_k + (1 - x_i) \cdot \ln (1 - \mu_k) \right] \rightarrow \max$$

• Result: 
$$\mu_k = \frac{1}{N_k} \cdot \sum_{i=1}^{N_k} x_i = \frac{m_k}{N_k}$$
 with  $m_k$  ... Number of  $x_{ik}$  with  $x_{ik} = 1$ 



# ■ifp

# **Example coin tossing**



- Two possible values a feature can take (here parameter  $\theta$  for  $\mu$ ):
- Head (*H*) or tail (*T*):

$$P(H) = \theta$$
 und  $P(T) = 1 - \theta$ 

• We toss n times:  $x_1 ... x_n$ 

$$L(\theta) = p(\mathbf{x} \mid \theta) = \prod_{n} P(x_i \mid \theta)$$

- Which choice of  $\theta$  is optimal?
- Let's assume we toss the coin five times:



$$L(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$$

$$= \theta^5 - 2\theta^4 + \theta^3$$

$$\frac{L(\theta)}{\partial \theta} = \frac{L(\theta)}{2\theta} = \frac{L(\theta)}{2\theta}$$

### Multinomial discrete features

- · Generalization of binary probabilities
- We desire now to have features that can take more than just 2 discrete values, which are mutually exclusive (i.e., only one possible at a time like rolling a dice).
- Formally:
  - A feature *x* that can assume *W* discrete values.
- 1-in-W representation of x: Vector  $\mathbf{x}$  of W binary variables  $\mathbf{x}_j$  with  $\sum_{i=1}^{W} \mathbf{x}_j = 1$
- **Example**: (W = 6): x = 2 is represented by  $\mathbf{x} = (0, 1, 0, 0, 0, 0)^T$
- Using  $p(x = j) = p(x_j = l) = \mu_j$  results for likelihood in:  $p\left(\mathbf{x} \mid \mathbf{C}^k, \mathbf{\mu}_k\right) = \prod_{j=1}^W \mu_{kj}^{x_j} \quad \text{or} \quad p\left(\mathbf{x} \mid \mathbf{C}^k, \mathbf{\mu}_k\right) = \begin{cases} \mu_{k1} & \text{for} \quad \mathbf{x} = 1 \\ \mu_{k2} & \text{for} \quad \mathbf{x} = 2 \\ \vdots & \vdots & \vdots \\ \mu_{kW} & \text{for} \quad \mathbf{x} = W \end{cases}$
- ullet For each class the parameter vector  $oldsymbol{\mu}_{k}$  has to be determined

$$\rightarrow \mathbf{\theta}_K = \mathbf{\mu}_K$$
 subject to the constraint  $\sum_{j=1}^W \mu_{kj} = 1$ 





# Multinomial discrete features: Training

- Here again: Maximum likelihood estimation of  $\mu_k$
- In this case, one has to consider the constraint

$$\sum_{j=1}^{W} \mu_{kj} = 1$$

- Result (Derivation see Bishop, 2006):  $\mu_{kj} = \frac{m_{kj}}{N_k}$ 
  - Number of training samples for the class  $C^k$  that with have the feature value *j* 
    - $N_k \dots$ Total number of training samples for class Ck

#### **Continuous features**



• Frequent assumption: Multivariate normal distribution

$$\rho(\mathbf{x} \mid C^k) = \frac{1}{(2\pi)^{\frac{D}{2}} \cdot \|\mathbf{\Sigma}_k\|^{\frac{1}{2}}} \cdot e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \cdot \mathbf{\Sigma}_k^{-1} \cdot (\mathbf{x} - \boldsymbol{\mu}_k)}$$

- Motivation: Central limit theorem (the sum of many random variables is approximately normally distributed).
- Prerequisite: The class Ck only corresponds to one cluster in feature space
- Grey values are considered as continuous features.
- For each class  $C^k$  the mean value  $\mu_k$  and the covariance matrix  $\Sigma_k$  have to be determined  $\rightarrow \theta_k = (\mu_k, \Sigma_k)$



# **■**ifp

# **Normal distribution: Training**

- Given:  $N_k$  independent training samples  $x_{ik}$  for the class  $C^k$
- Wanted: Parameters  $\theta_k = (\mu_k, \Sigma_k)$  for  $C^k$
- Determination by maximum likelihood estimation:

$$p(\mathbf{x}_{1k}|\theta_k) \cdot \dots \cdot p(\mathbf{x}_{Nk}|\theta_k) \Rightarrow \max$$

• Log-Likelihood:  $\sum_{i} \ln p(\mathbf{x}_{1k} | \theta_k) \Rightarrow \max$ 

$$\ln p(\mathbf{x}_{ik} \mid \mathbf{\theta}_{k}) = -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(\|\mathbf{\Sigma}_{k}\|) - \frac{1}{2} (\mathbf{x}_{ik} - \mathbf{\mu}_{k})^{\mathsf{T}} \cdot \mathbf{\Sigma}_{k}^{-1} \cdot (\mathbf{x}_{ik} - \mathbf{\mu}_{k})$$
and, therefore, 
$$\sum_{i} \ln p(\mathbf{x}_{ik} \mid \mathbf{\theta}_{k}) =$$

$$= N \cdot \left[ -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln(\|\mathbf{\Sigma}_{k}\|) \right] - \frac{1}{2} \sum_{i} (\mathbf{x}_{ik} - \mathbf{\mu}_{k})^{\mathsf{T}} \cdot \mathbf{\Sigma}_{k}^{-1} \cdot (\mathbf{x}_{ik} - \mathbf{\mu}_{k})$$

# Normal distribution: Training

- Maximum Likelihood estimation:  $\sum_{i} \ln p(\mathbf{x}_{1k} | \theta_k) \Rightarrow \max$
- Derivative of  $\sum_{i} \ln p(\mathbf{x}_{1k} | \theta_k)$  by  $\mathbf{\mu}_k$  must be  $\theta$ :

$$\frac{\partial \left[\sum_{i} \ln p(\mathbf{x}_{ik} \mid \mathbf{\theta}_{k})\right]}{\partial \mathbf{\mu}_{k}} = \sum_{i} \left[\mathbf{\Sigma}_{k}^{-1} \cdot (\mathbf{x}_{ik} - \mathbf{\mu}_{k})\right] = 0$$

and, therefore,

$$\sum_{i} (\mathbf{x}_{ik} - \mathbf{\mu}_{k}) = \sum_{i} \mathbf{x}_{ik} - \sum_{i} \mathbf{\mu}_{k} = \sum_{i} \mathbf{x}_{ik} - N_{k} \cdot \mathbf{\mu}_{k} = 0$$

$$\Rightarrow$$
 Result for  $\mu_k$ :  $\mu_k = \frac{1}{N_k} \cdot \sum_i \mathbf{X}_{ik}$ 



# ■ifp

# **Normal distribution: Training**

- Solution for  $\Sigma_k$  is more complicated; again, the derivatives of the log-likelihood by the elements of  $\Sigma_k$  have to vanish.
- Result:  $\boldsymbol{\Sigma}_{k}^{ML} = \frac{1}{N_{k}} \cdot \sum_{i} (\boldsymbol{x}_{ik} \boldsymbol{\mu}_{k}) \cdot (\boldsymbol{x}_{ik} \boldsymbol{\mu}_{k})^{T}$
- Caution: While the ML-estimation of  $\mu_k$  is unbiased, this is not the case for  $\Sigma_k^{ML}$ !
- Unbiased estimation:  $\mathbf{\Sigma}_{k} = \frac{1}{N_{k} 1} \cdot \sum_{i} (\mathbf{x}_{ik} \mathbf{\mu}_{k}) \cdot (\mathbf{x}_{ik} \mathbf{\mu}_{k})^{T}$
- Bayesian estimation:  $p(\theta_k)$  corresponds to regularization.

# **Normal Distribution: Example I**

Aerial image with training area for "vegetation" (V)
 (87 x 85 = 7395 pixels)





Good approximation by normal distribution



**■**ifp

# **Normal Distribution: Example II**

Aerial image with training area for "street" (S)
 (49 x 102 = 4998 Pixel)





Poor approximation by a normal distribution because there are multiple clusters (shadow / sun)

# Classes with multiple clusters

- Option 1: Splitting of a "thematic class" into several sub-classes
  - For example, *street:*
- → "street with shadow"
- → "street without shadow"
- Each of these sub-classes corresponds to a single cluster in feature space → can be modelled by a normal distribution
- Extra effort for the definition of the training data because the user must provide training samples for all sub-classes.
- Option 2: <u>Automatic separation of the training data of a class into multiple</u> clusters and estimation of the parameters of the individual clusters.



**■**ifp

#### Gaussian mixture model

- In the case of  $N_i$  clusters, every cluster is described by a normal distribution.
- The total probability density is obtained from the weighted sum of the components :

$$\rho(\mathbf{x} \mid C^k) = \sum_{j=1}^{N_j} \pi_j \cdot N(\mathbf{x} \mid \mathbf{\mu}_{kj}, \mathbf{\Sigma}_{kj})$$

with  $\pi_i$ 

... Mixture coefficient for cluster *j*,

corresponding to the prior probability for j

 $\mu_{ki}$ 

... Mean value for cluster *j* 

 $\Sigma_{kj}$ 

... Covariance matrix for cluster *j* 

 $N(x|\mathbf{\mu}_{kj}, \mathbf{\Sigma}_{kj})$ 

Probability density of the normal

distribution for cluster j

# Gaussian mixture model: Training

- Parameters to be estimated:  $\pi_i$ ,  $\mu_{ki}$ ,  $\Sigma_{ki}$  (1 set per cluster)
- Training of the mixture model requires cluster analysis of the feature space
   → unsupervised classification
- Closed estimation of the parameters is not possible.
- Method: "Expectation Maximization" (EM)
  - → see lecture "Unsupervised Classification"
- In general, EM requires the number of clusters  $N_i$  to be known in advance.



■ifp

# Gaussian mixture model: Example

Aerial image with training area for "street" (S)
 (49 x 102 = 4998 Pixel)
 EM with

EM with three clusters

$$x_{2} = G$$

$$y$$

$$y$$

$$S_{3}$$

$$S_{2}$$

$$p(x_{1}, x_{2}|S)$$

$$S_{1}$$

$$\mu_{s1} = \begin{pmatrix} 13.4 \\ 32.4 \end{pmatrix} \quad \Sigma_{s1} = \begin{pmatrix} 10.6 & 4.1 \\ 4.1 & 5.7 \end{pmatrix}$$

$$\mu_{s2} = \begin{pmatrix} 65.3 \\ 73.3 \end{pmatrix} \quad \Sigma_{s2} = \begin{pmatrix} 1559.6 & 1440.5 \\ 1440.5 & 1349.8 \end{pmatrix}$$

$$\mu_{s3} = \begin{pmatrix} 129.3 \\ 128.5 \end{pmatrix} \quad \Sigma_{s3} = \begin{pmatrix} 26.6 & 18.4 \\ 18.4 & 19.3 \end{pmatrix}$$

$$\pi_{s3} = 0.669 \quad \pi_{s3} = 0.105 \quad \pi_{s3} = 0.226$$

 $\pi_{S1} = 0.669 \ \pi_{S2} = 0.105 \ \pi_{S3} = 0.226$ 

Good approximation by three components

#### **Likelihood: Discussion**

- Assumption of a normal distribution is often justified due to the central limit theorem.
- With inhomogeneous feature vectors (e.g. characteristics of data from different sensors) or discrete features one must make different assumptions.
- Assumption of a normal distribution is not justified for distributions having multiple clusters → mixture models
  - Example: streets in the shadow or in the sun correspond to different clusters in feature space.
- In many cases, one tries to avoid explicit modelling of probability densities
  - → discriminative methods





#### **Contents**

- Theorem of Bayes
- Modelling of the likelihood function
  - Non-parametric techniques
  - Parametric techniques
- Modelling of the prior probability
- Discussion





### **Types of priors**

- Origin of the priors  $p(C^k)$ :
  - 1) From experiments, e.g. in the case of sequential data: the prior for the classification at time *t* depends on the state at time *t-1*.
  - 2) "Uninformed" / subjective: from prior knowledge (... from whichever source)
- These two types of prior information are modelled in different ways.



■ifp

# **Priors from Experiments: Maximum likelihood**



- Requirement: the prior distribution should have the same algebraic form as the likelihood function →
- Example: Estimation of the parameter  $\mu$  of a Bernoulli distribution with  $p(x) = \mu^x \cdot (1 \mu)^{(1-x)}$ 
  - N experiments
    - in n<sub>+</sub> cases the result is "1"
    - in n cases the result is "0"
    - with:  $n_{+} + n_{-} = N$
    - → Maximum Likelihood estimation:  $μ = n_+ / N$ Can lead to overfitting → prior for μ?

# **Priors from Experiments: Bayesian estimation**

- Bayesian estimation of  $\mu$ :  $p(\mu \mid n_+) \propto p(n_+ \mid \mu) \cdot p(\mu)$
- $p(n_+ | \mu)$  follows a binomial distribution:

$$p(n_{+} \mid \mu) = \frac{N!}{n_{+}! \cdot (N - n_{+})!} \mu^{n_{+}} \cdot (1 - \mu)^{N - n_{+}}$$

- Prior distribution for  $\mu$ ?
  - Conjugate prior: Beta distribution with hyperparameters *a,b*:

$$p(\mu) = p(\mu \mid a,b) = \frac{\Gamma(a+b)}{\Gamma(a) \cdot \Gamma(b)} \cdot \mu^{a-1} \cdot (1-\mu)^{b-1}$$

· Resulting posterior:

$$p(\mu \mid n_+) \propto p(n_+ \mid \mu) \cdot p(\mu) \propto \mu^{n_+ + a - 1} \cdot (1 - \mu)^{N - n_+ + b - 1}$$



# **■**ifp

# **Priors from Experiments: Bayesian estimation**

· Resulting posterior:

$$p(\mu \mid n_{+}) \propto p(n_{+} \mid \mu) \cdot p(\mu) \propto \mu^{n_{+}+a-1} \cdot (1-\mu)^{N-n_{+}+b-1}$$

- Interpretation:
  - a-1 ... The number of trials with x = I from "earlier experiments" which formed the basis of the prior.
  - b-1 ... The number of trials with x = 0 from "earlier experiments" which formed the basis of the prior.
- · Simplifies the processing of sequential data.

# **Priors from Experiments**

· Conjugate priors for other distributions:

| Likelihood         | Parameter                | Conjugate<br>prior | Hyper-<br>parameter        | Posterior<br>parameter                                                                           |
|--------------------|--------------------------|--------------------|----------------------------|--------------------------------------------------------------------------------------------------|
| Binomial           | μ                        | Beta               | a,b                        | $a+n_+, b+(N-n_+)$                                                                               |
| Multinomial        | $\mu (\Sigma \mu_i = 1)$ | Dirichlet          | a                          | $a_i + n_{i+}$                                                                                   |
| Normal,<br>σ known | μ                        | Normal             | $\mu_{o}$ $\sigma_{o}^{2}$ | $\frac{\mu_{0} / \sigma_{0}^{2} + \sum x_{i} / \sigma^{2}}{1 / \sigma_{0}^{2} + 1 / \sigma^{2}}$ |
| Normal,<br>μ known | w<br>(Precision)         | Gamma              | α, β                       | $\alpha$ +n/2,<br>$\beta$ +1/2 $\Sigma$ ( $x_i$ - $\mu$ ) <sup>2</sup>                           |



■ifp

# **Application: Generation of synthetic data**



• We desire to train a Bayesian classier based on synthetic data, which is nothing else than to derive the (artificial) evidence:

$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x} | C^{k}) \cdot p(C^{k})$$

• For example, we look at a binary decision that is governed by Gaussian likelihood functions (embedded into a 2D feature space x), thus:

$$p(\mathbf{x}) = N_1(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \cdot p(C^1) + N_2(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \cdot (1 - p(C^1))$$

- Hence, we need priors for following parameters, which luckily can be at least coarsely be narrowed down to certain range due to **prior knowledge**:
  - $p(C^I)$ : Beta distribtion (a, b)
  - μ<sub>1</sub> and μ<sub>2</sub>:
  - $\Sigma_i$  or precision  $\mathbf{W}_i := \Sigma_i^{-1}$ : Gamma distribtion of major axis  $(w_1, w_2)$  and uniform distribtion of orientation angle  $\theta$  in  $[0,\pi]$ .

# **Generation of synthetic data: Example**

Precision or Covariance of centers, respectively:

Set of samples:

N = 1000,

Prior probabilities:

 $p(C^1) \sim 0.5$ ,

Coordinates of cluster centers:

 $\mu_i \sim 1$ ,  $\sigma_{\mu i} \sim 3$ ,

- Coordinates of cluster certiers.

 $w_1$ ,  $w_2$ :  $\mu_{wi} \sim 2$  ,  $\sigma_{wi} \sim 3$ 













# **Uninformed priors**

- A priori probabilities from minimal additional information
- Subjective priors (without measurements / experiments)
  - → Principle of Maximum Entropy (ME):

$$p_{ME} = \operatorname{argmax}_{p} \int_{x} -p(x) \log_{2} p(x) dx$$

• Prior knowledge concerning the value range or moments of the distribution can be used to formulate of constraints for  $p_{ME}$ .

### **Uninformed Priors**

- Example for ME-Priors:
  - Known value range with  $a \le x \le b$ :  $\int_{x-a}^{b} p(x) dx = 1$ 
    - $\rightarrow$  Uniform distribution in the interval (a,b)
    - $\rightarrow$  Also applies for  $(-\infty, +\infty) \rightarrow$  in this case: **ML classification!**
  - Known expected value  $m, x \ge 0$ :  $\int_{x} x \cdot p(x) dx = m$ 
    - ⇒ Exponential distribution:  $p(x) = \frac{1}{m} \cdot e^{-\frac{x}{m}}$
  - Known expected value m, known variance s<sup>2</sup>:

$$\int_{x} x \cdot p(x) dx = m \qquad \int_{x} (x - m)^{2} \cdot p(x) dx = s^{2}$$

 $\rightarrow$  Normal distribution  $N(\mu, \sigma^2)$ 



# **■**ifp

### **Contents**

- Theorem of Bayes
- Modelling of the likelihood function
  - Non-parametric techniques
  - Parametric techniques
- Modelling of the prior probability
- Discussion

### **Bayesian classification: Discussion I**

- Bayesian classification (and extensions) has many applications.
- There are many variants depending on the models used for the individual components.
- · Bayesian classification delivers optimal results if
  - The assumptions about the likelihood function and the priors are correct.
  - The training data are representative for the classes.
  - There are enough training data to estimate the parameters of the models reliably.
- Problems occur when one of these assumptions is not justified...





# **Bayesian classification: Discussion II**

- Examples of problems:
  - Assumption: the assumptions about the likelihood function and the priors are correct
    - → Possible problem: unknown / wrong number of clusters for one or more classes in feature space.
  - Assumption: The training data are representative
    - → Possible problem: training data only for objects in the sun, not for objects in the shadow.
  - Assumption: There are enough training data
    - → Possible problem: not enough training data → reliable determination of the parameters may be impossible





# **Bayesian classification: Discussion III**

- There is no mechanism to take into account uncertainties in the probabilities.
  - → If the requirements are not fulfilled, Bayesian classification may yield suboptimal results.
- How to describe the quality of the results?
- How to determine the priors?
- Modelling the distribution of the data may require more parameters and, therefore, more training data than direct models of the posterior distribution
  - → Discriminative methods: Only the class boundaries have to be learned





#### Literature

- Bishop, C.: Pattern Recognition and Machine Learning. 1st edition, Springer, New York, USA, 2006.
- Duda, R. O., Hart, P. E., Stork, D. G.: Pattern Classification. 2nd edition, Wiley & Sons, New York, USA, 2001.
- Klein, L. A.: Data and sensor fusion: a tool for information assessment and decision making. SPIE Optical Engineering, Bellingham, WA, USA, 2004.
- Förstner, W., 2012: Probabilistic data analysis using graphical models. Tutorial, lecture notes, ISPRS Congress Melbourne.