

NCERT Exemplar Solutions

Class 12 – Mathematics

Chapter 8 – Application of Integrals

Objective Type Questions

Question 24. The area of the region bounded by the Y-axis $y = \cos x$ and $y = \sin x$, where $0 \le x$ $\leq \frac{\pi}{2}$, is

- (a) $\sqrt{2}$ sq units
- (b) $(\sqrt{2}+1)$ sq units
- (c) $(\sqrt{2}-1)$ sq units (d) $(2\sqrt{2}-1)$ sq units

Solution. (c)

Explanation: We have, Y-axis i.e., x = 0, $y = \cos x$ and $y = \sin x$, where $0 \le x \le \frac{\pi}{2}$

Question 25. The area of the region bounded by the curve $x^2 = 4y$ and the straight line x = 4y

- (a) $\frac{3}{8}$ sq unit
- (c) $\frac{7}{8}$ sq unit

Solution. (d)

Explanation: Given equation of curve is $x^2 - 4y$ and the straight line x = 4y - 2.

For intersection point, put x = 4y - 2 in equation of curve, we get

$$(4y-2)^2=4y$$

$$\Rightarrow 16y^2 - +4 - 16y = 4y$$

$$\Rightarrow 16y^{:} - 20y + 4 = 0$$

$$\Rightarrow \qquad 4y^2 - 4y + 1 = 0$$

$$\Rightarrow 4y^2 - 4y - y + 1 = 0$$

$$\Rightarrow$$
 4y(y - 1) -1(y - 1) = 0

$$\Rightarrow$$
 $(4y-1)(y-1)=0$

For y = 1, $x = \sqrt{4 \cdot 1} = 2$ [since, negative value does not satisfy the equation of line]

For $y = \frac{1}{4}$, $x = \sqrt{4 \cdot \frac{1}{4}} = -1$ [positive value does not satisfy the equation of line]

So, the points of intersection are (2, 1) and $\left(-1, \frac{1}{4}\right)$

Graphs for the curve $x^2 = 4y$ and the straight line x = 4y - 2 are as shown below:

... Required area of shaded region = $\int_{-1}^{2} \frac{x+2}{4} dx - \int_{-1}^{2} \frac{x^2}{4} dx$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x \right]_{-1}^{2} \frac{1}{4} \left| \frac{x^3}{3} \right|^{2}$$

$$= \frac{1}{4} \left[\frac{4}{2} + 4 - \frac{1}{2} + 2 \right] - \frac{1}{4} \left[\frac{8}{3} + \frac{1}{3} \right]$$

$$= \frac{1}{4} \cdot \frac{15}{2} \cdot \frac{1}{4} \cdot \frac{9}{3} = \frac{45 - 18}{24}$$

$$= \frac{27}{24} = \frac{9}{8} \text{ sq units}$$

Question 26. The area of the region bounded by the curve $y = \sqrt{16 - x^2}$ and X-axis is

(a) 8π sq units

(b) 20π sq units

(c) 16π sq units

(d) 256 π sq units

Solution. (a)

Explanation: Given equation of curve is $y = \sqrt{16 - x^2}$ and the equation of line is *X*-axis *i.e.*, y = 0.

$$\therefore \sqrt{16-x^2} = 0$$

$$\Rightarrow 16 - x^2 = 0$$

$$\Rightarrow x^2 = 16$$

$$\Rightarrow x = \pm 4$$

So, the points of intersection are (4, 0) and (-4, 0)

∴ Required area of shaded region, $A = \int_{-4}^{4} (16 - x^2)^{1/2} dx$

$$= \int_{-4}^{4} \sqrt{4^2 - x^2} dx$$

$$= \left[\frac{x}{2}\sqrt{4^2 - x^2} + \frac{4^2}{2}\sin^4\frac{x}{4}\right]_4^4$$

$$= \left[\frac{4}{2}\sqrt{4^2-4^2} + 8\sin^{-1}\frac{4}{4}\right] - \left[\frac{4}{2}\sqrt{4^2-(-4)^2} + 8\sin^{-1}\left(\frac{4}{4}\right)\right]$$

$$= \left[2 \cdot 0 + 8 \cdot \frac{\pi}{2} - 0 + 8 \cdot \frac{\pi}{2}\right] = 8\pi \text{ sq units}$$

Question 27. Area of the region in the first quadrant enclosed by the X-axis, the line y = x and the circle x + y = 32 is

(a)
$$16\pi$$
 sq units

(b)
$$4\pi$$
 sq units

(c)
$$32\pi$$
 sq units

(d)
$$24\pi$$
 sq units

Solution. (b)

Explanation: We have, y = 0, y = x and the circle $x^2 + y^2 = 32$ in first quadrant.

Since,
$$x^2 + (x)^2 = 32$$

$$[\because y = x]$$

$$\Rightarrow$$
 $2x^2 = 32$

$$\Rightarrow$$
 $x = \pm 4$

So, the points of intersection of circle $x^2 + y^2 = 32$ and line y = x are (4, 4) or (-4, 4),

And
$$x^2 + y^2 = (4\sqrt{2})^2$$

Since,
$$y = 0$$

$$x^2 + (0)^2 = 32$$

$$\Rightarrow$$
 $x = \pm 4\sqrt{2}$

So, the circle intersects the *X*-axis at $(\pm 4\sqrt{2}.0)$.

From the figure area of shaded region $=\int_{0}^{4\sqrt{2}} x dx + \int_{4}^{4\sqrt{2}} \sqrt{\left(4\sqrt{2}\right)^{2} = x^{2}} dx$

$$= \frac{|x^2|^4}{2} + \frac{|x|}{2} \sqrt{(4\sqrt{2})^2 = x^2} + \frac{(4\sqrt{2})^2}{2} \sin^4 \frac{x}{4\sqrt{2}} \Big|_4^{4\sqrt{2}}$$

$$= \frac{16}{2} + \left[\frac{4\sqrt{2}}{2} \cdot 0 + 1 \sin^{-1} \frac{(4\sqrt{2})}{(4\sqrt{2})} + \frac{4}{2} \sqrt{(4\sqrt{2})^2 - 16} - 16 \sin^{-1} \frac{4}{4\sqrt{2}} \right]$$

$$= 8 + \left[16 \cdot \frac{\pi}{2} - 2 \cdot \sqrt{16} - 16 \cdot \frac{\pi}{4} \right]$$

$$= 8 + \left[8\pi - 8 - 4\pi \right] = 4\pi \text{ sq units}$$

Question 28. Area of the region bounded by the curve $y = \cos x$ between x = 0 and $x = \pi$ is

- (a) 2 sq units
- (b) 4 sq units
- (c) 3 sq units
- (d) 1 sq units

Solution. (a)

Explanation: Graph for the curve $y = \cos x$ between x = 0 and $x = \pi$ is as below:

Required area enclosed by the curve $y = \cos x$, x = 0 and $x = \pi$ is

$$A = \int_0^{\pi/2} \cos x \, dx + \left| \int_{\pi/2}^{\pi} \cos x \, dx \right|$$
$$= \left[\sin \frac{\pi}{2} - \sin 0 \right] + \left[\sin \frac{\pi}{2} - \sin \pi \right]$$
$$= 1 + 1 = 2 \text{sq units}$$

Question 29. The area of the region bounded by parabola $y^2 = x$ and the straight line 2y = x is

- (a) $\frac{4}{3}$ sq units
- (b) 1 sq unit
- (c) $\frac{2}{3}$ sq unit

(d) $\frac{1}{3}$ sq unit

Solution. (a)

Explanation: Solving $y^2 = x$ and 2y = x, we get:

$$\left(\frac{x}{2}\right)^2 = x$$

$$\Rightarrow$$
 $x^2 = 4^{3/2}$

$$\Rightarrow x(x-4) = 0$$

$$\Rightarrow$$
 $x = 4, 0$

When x = 0, y = 0 and when x = 4, y = 2

So, the intersection points are (0, 0) and (4, 2).

Thus required area of shaded region,

$$A = \int_0^4 \left[\sqrt{x} \frac{x}{2} \right] dx$$

$$= \left[\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} \frac{1}{2} \cdot \frac{x^2}{2} \right]_0^4 = \left[2 \cdot \frac{x^{3/2}}{3} \frac{x^2}{4} \right]_0^4$$

$$= \frac{2}{3} 4^{3/2} \frac{16}{4} \frac{2}{3} \cdot 0 + \frac{1}{4} \cdot 0$$

$$= \frac{16}{3} \frac{16}{4} = \frac{64 - 48}{12} = \frac{16}{12} = \frac{4}{3} \text{ sq units}$$

Question 30. The area of the region bounded by the curve $y = \sin x$ between the ordinates $x = \frac{\pi}{2}$

$$0, x = \frac{\pi}{2}$$
 and the *X*-axis is

(a) 2 sq units

(b) 4 sq units

(c) 3 sq units

(d) 1 sq unit

Solution. (d)

Explanation: Graph for $y = \sin x$; $0 \le x \le \frac{\pi}{2}$ is shown below:

Thus, required area of the shaded region, $A = \int_0^{\pi/2} \sin x dx$

$$= -[\cos x]_0^{\pi/2} = -\left[\cos \frac{\pi}{2} - \cos o\right]$$

$$= -[0-1] = 1$$
 sq unit

Question 31. The area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is

micose

(a) 20π sq units

(b) $20\pi^2$ sq units

(c) $1.6\pi^2$ sq units

(d) 25π sq units

Solution. (a)

Explanation: We have, $\frac{x^2}{5^2} + \frac{y^2}{4^2} = 1$ which is an ellipse with $a = \pm 5$ and $b = \pm 4$.

$$\Rightarrow \frac{y^2}{4^2} = 1 - \frac{x^2}{5^2}$$

$$\Rightarrow y^2 = 16 \left(1 - \frac{x^2}{25} \right)$$

$$\Rightarrow \qquad y = \sqrt{\frac{16}{25} \left(25 - x^2\right)}$$

$$\Rightarrow y = \frac{4}{5} \sqrt{\left(5^2 - x^2\right)}$$

∴ Area enclosed by ellipse, $A = 2 \cdot \frac{4}{5} \sqrt{(5^2 - x^2)} dx$

$$= 2 \cdot \frac{8}{5} \int_{0}^{5} \sqrt{5^{2} - x^{2}} dx$$

$$= 2 \cdot \frac{8}{5} \left[\frac{x}{2} \sqrt{5^{2} - x^{2}} + \frac{5^{2}}{2} \sin^{-1} \frac{x}{5} \right]_{0}^{5}$$

$$= 2 \cdot \frac{8}{5} \left[\frac{5}{2} \sqrt{5^{2} - 5^{2}} + \frac{5^{2}}{2} \sin^{-1} \frac{5}{5} - 0 - \frac{25}{2} \cdot 0 \right]$$

$$= 2 \cdot \frac{8}{5} \left[\frac{25}{2} \cdot \frac{\pi}{2} \right]$$

$$= \frac{16}{5} \cdot \frac{25\pi}{4}$$

$$= 20 \pi \text{ sq units}$$

Question 32. The area of the region bounded by the circle $x^2 + y^2 = 1$ is

(a) 2π sq units

(b) π sq units

(c) 3π sq units

(d) 4π sq units

Solution. (b)

Explanation: Here, $x^2 + y^2 = 1^2$ is a circle with centre at (0, 0)

$$\Rightarrow$$
 $y^2 = 1 - x^2$

$$\Rightarrow$$
 $y = \sqrt{1 = x^2}$

Graph for the circle $x^2 + y^2 = 1^2$ is shown below:

 \therefore Area enclosed by circle = $2\int_{-1}^{1} \sqrt{1^2 - x^2} dx = 2 \cdot 2\int_{0}^{1} \sqrt{1^2 - x^2} dx$

$$= 2 \cdot 2 \left[\frac{x}{2} \sqrt{1^2 - x^2} + \frac{1^2}{2} \sin^{-1} \frac{x}{1} \right]_0^1$$
$$= 4 \left[\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{\pi}{2} - 0 \frac{1}{2} \cdot 0 \right]$$

$$=4\cdot\frac{\pi}{4} = \pi \text{ sq units}$$

Question 33. The area of the region bounded by the curve y = x + 1 and the lines x = 2, x - 3, is

(a) $\frac{7}{2}$ sq units

(b) $\frac{9}{2}$ sq units

(c) $\frac{11}{2}$ sq units

(d) $\frac{13}{2}$ sq units

Solution. (a)

Explanation: Graph for given functions is given below:

From figure, required area of shaded region, $A = \int_{2}^{3} (x+1) dx = \left[\frac{x^{2}}{2} + x \right]_{2}^{3}$

$$= \left[\frac{9}{2} + 3 - \frac{4}{2} - 2 \right] = \left[\frac{5}{2} + 1 \right] = \frac{7}{2} \text{ sq units}$$

Question 34. The area of the region bounded by the curve x = 2y + 3 and the lines y = 1, y = 1 is

(a) 4 sq units

(b) $\frac{3}{2}$ sq units

(c) 6squnits

(d) 8 sq units

Solution. (c)

Explanation: Graph for given functions is given below:

From figure, required area of shaded region = $\int_{-1}^{1} (2y+3) dy$

$$= \left[\frac{2y^2}{2} + 3y \right]_{-1}^{1}$$

$$= \left[y^2 + 3y \right]_{-1}^{1}$$

$$= \left[1 + 3 - 1 + 3 \right] = 6 \text{ sq units}$$