Práctica 5: Lógica de predicados - Semántica

7. Demuestre:

a) $\exists x \forall y \phi \models \forall y \exists x \phi$

Tenemos que probar que si $[|\exists x \forall y \phi|]_{Ms}$ = T entonces se cumple $[|\forall y \exists x \phi|]_{Ms}$ = T

Podemos utilizar definiciones alternativas de la semántica de los cuantificadores :

```
\mathsf{M} \models \forall \mathsf{x} \, \phi \text{ sii para todo a} \in |\mathsf{M}|, [[\phi]]_{\mathsf{M},\mathsf{s}[\mathsf{x}\to\mathsf{a}]} = \mathsf{T}
\mathsf{M} \models \exists \mathsf{x} \, \phi \text{ sii para algún a} \in |\mathsf{M}|, [[\phi]]_{\mathsf{M},\mathsf{s}[\mathsf{x}\to\mathsf{a}]} = \mathsf{T}
\mathfrak{A} \models \forall \mathsf{x} \varphi \Leftrightarrow \mathfrak{A} \models \varphi[\overline{a}/x], \text{ for all } a \in |\mathfrak{A}|,
\mathfrak{A} \models \exists \mathsf{x} \varphi \Leftrightarrow \mathfrak{A} \models \varphi[\overline{a}/x], \text{ for some } a \in |\mathfrak{A}|.
```

• $[[\exists x \forall y \phi]]_{M,s} = T$ sii $\langle def. [[]] \rangle$ para algún $c \in |M|, [[\forall y \phi]]_{M,s[x \to c]} = T$ sii $\langle def. [[]] \rangle$ para algún $c \in |M|$ y para todo $d \in |M|, [[\phi]]_{M,s[x \to c][y \to d]} = T$ (1)

7. a)

```
para algún c \in |M| y para todo d \in |M|, [[\phi]]<sub>M,s[x\toc][y\tod]</sub> = T (1)
```

Veamos qué pasa con $[|\forall y \exists x \phi|]_{M_s}$... $[|\forall y \exists x \phi|]_{Ms} = T$ sii <def. [[]]> para todo a $\in |M|, [[\exists x \phi]]_{M,s[v \to a]} = T sii < def. [[]] >$ para todo a $\in |M|$ y para algún b $\in |M|$, $[[\phi]]_{M,s[v \to a][x \to b]} = T$ Sea entonces $a \in |M|$. Queremos verificar que para algún $b \in |M|$, $[[\phi]]_{M,s[v\to a][x\to b]}$ = T. Tomando d = a resultará por (1) que existe un valor b (en particular b = c) tal que: $[[\phi]]_{M,s[x\to b][v\to a]} = [[\phi]]_{M,s[x\to c][v\to d]} = T.$ Es decir: para cualquier $a \in |M|$ y para algún $b \in |M|$, $[[\phi]]_{M,s[v \to a][x \to b]} = T$ Luego $[|\forall y \exists x \phi|]_{M_s} = T$

7. b) $\forall x \exists y \phi \not\models \exists y \forall x \phi$

No sucede que: Si $[| \forall x \exists y \phi |]_{M,s} = T$ entonces $[| \exists y \forall x \phi |]_{M,s} = T$ es decir: Existe M, s t. q. $[| \forall x \exists y \phi |]_{M,s} = T$ pero $[| \exists y \forall x \phi |]_{M,s} = F$ Sea:

a

- $(F, P) = (\emptyset, \{R\}) \text{ con ar}(R) = 2$
- M tal que:
 - \circ |M| = A = {a, b}
 - $\circ R^{M} = \{(a,b); (b,a)\}$
- $\phi \equiv R(x,y)$

8. Sea ϕ una fórmula tal que $FV(\phi) = \{x\}$. Demuestre que para cualquier modelo \mathcal{M} :

$$\mathcal{M} \models \phi \text{ sii } \mathcal{M} \models Cl(\phi).$$

Definición: Sea FV $(\phi) = \{z_1, \dots, z_k\}$, entonces $Cl(\phi) := \forall z_1 \dots z_k \phi$ es el cierre universal (universal closure) de ϕ

Como FV (ϕ) = { x } tenemos que probar que:

9. Demuestre el teorema de sustitución para términos: $\models t_1 = t_2 \rightarrow s[t_1/x] = s[t_2/x]$.

Sabemos que:
$$= t_1 = t_2$$
 sii $< def. = >$

$$[[t_1 = t_2]]_{M,s} = T \text{ para todo M y s} \quad \text{sii} \quad < def. [[=]] >$$

$$[[t_1]]_{M,s} = [[t_2]]_{M,s} \text{ para todo M y s} \quad \text{sii}$$

$$\text{dado M t. q. } [[t_1]]_{M,s} = t_1^M \text{ y } [[t_2]]_{M,s} = t_2^M \text{ entonces } t_1^M = t_2^M \quad \text{(1)}$$

Demostramos por inducción sobre s...

casos base:

•
$$s = c (ctte)$$
: $s[t_1/x] = s[t_2/x] = c$

•
$$s = x_j$$
 : $s[t_1/x] =$

• $Si x_j = x \Rightarrow x_j[t_1/x] = t_1^{\text{def. sust.}} = x_j[t_2/x]$

• $Si x_j = x \Rightarrow x_j[t_1/x] = x_j[t_2/x]$

• $Si x_j \neq x \Rightarrow x_j[t_1/x] = x_j[t_2/x]$

9. Demuestre el teorema de sustitución para términos: $\models t_1 = t_2 \rightarrow s[t_1/x] = s[t_2/x]$.

caso inductivo:

• $s = f(s_1, S_2, ..., S_n)$:

```
HI:

s_i[t_1/x] = s_i[t_2/x] para todo i: 1 .. n
```

```
s[t_1/x] = f(s_1, S_2, ..., S_n)[t_1/x] = <por Def. sustitución >
= f(s_1[t_1/x], ..., s_n[t_1/x]) = <por HI >
= f(s_1[t_2/x], ..., s_n[t_2/x]) = <por Def. sustitución >
= s[t_2/x]
```