

VinMin = 12.0V VinMax = 22.0V Vout = 5.0V lout = 0.5A Device = TPS62175DQCR Topology = Buck Created = 10/19/16 6:45:29 AM BOM Cost = \$1.08 BOM Count = 7 Total Pd = 0.41W

WEBENCH® Design Report

Design: 3962751/10 TPS62175DQCR TPS62175DQCR 12.0V-22.0V to 5.00V @ 0.5A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	MuRata	GRM21BR61E225KA12L Series= X5R	Cap= 2.2 uF ESR= 8.857 mOhm VDC= 25.0 V IRMS= 1.3111 A	1	\$0.04	0805 7 mm ²
2.	Cout	MuRata	GRM31CR61A226ME19L Series= X5R	Cap= 22.0 uF ESR= 3.637 mOhm VDC= 10.0 V IRMS= 3.56456 A	1	\$0.08	1206_190 11 mm ²
3.	L1	Coilcraft	LPS4018-103MRB	L= 10.0 μH DCR= 180.0 mOhm	1	\$0.35	LPS4018 24 mm ²
4.	Rfbb	Vishay-Dale	CRCW0402383KFKED Series= CRCWe3	Res= 383.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
5.	Rfbt	Vishay-Dale	CRCW04022M00FKED Series= CRCWe3	Res= 2.0 MOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
6.	Rpg	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
7.	U1	Texas Instruments	TPS62175DQCR	Switcher	1	\$0.58	R-PWSON-N10 12 mm ²

Operating Values

Opc	rating values			
#	Name	Value	Category	Description
1.	Cin IRMS	213.716 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	117.215 mA	Current	Output capacitor RMS ripple current
3.	IC lpk	703.022 mA	Current	Peak switch current in IC
4.	lin Avg	132.16 mA	Current	Average input current
5.	L lpp	406.04 mA	Current	Peak-to-peak inductor ripple current
6.	M1 Irms	245.241 mA	Current	Q lavg
7.	BOM Count	7	General	Total Design BOM count
8.	FootPrint	63.0 mm ²	General	Total Foot Print Area of BOM components
9.	Frequency	1.007 MHz	General	Switching frequency
10.	IC Tolerance	24.0 mV	General	IC Feedback Tolerance
11.	M Vds Act	195.585 mV	General	Voltage drop across the MosFET
12.	Mode	CCM	General	Conduction Mode
13.	Pout	2.5 W	General	Total output power
14.	Total BOM	\$1.08	General	Total BOM Cost
15.	Vout Actual	4.978 V	Op_Point	Vout Actual calculated based on selected voltage divider resistors
16.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
17.	Duty Cycle	24.057 %	Op_point	Duty cycle
18.	Efficiency	85.986 %	Op_point	Steady state efficiency
19.	IC Tj	51.416 degC	Op_point	IC junction temperature
20.	ICThetaJA	61.6 degC/W	Op_point	IC junction-to-ambient thermal resistance
21.	IOUT_OP	500.0 mA	Op_point	lout operating point
22.	VIN_OP	22.0 V	Op_point	Vin operating point
23.	Vout p-p	3.039 mV	Op_point	Peak-to-peak output ripple voltage
24.	Cin Pd	404.538 μW	Power	Input capacitor power dissipation
25.	Cout Pd	49.97 μW	Power	Output capacitor power dissipation
26.	IC Pd	347.661 mW	Power	IC power dissipation
27.	L Pd	59.341 mW	Power	Inductor power dissipation
28.	Total Pd	407.46 mW	Power	Total Power Dissipation
29.	Vout Tolerance	4.746 %		Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

Design Inputs

#	Name	Value	Description
1.	lout	500.0 m	Maximum Output Current
2.	VinMax	22.0	Maximum input voltage
3.	VinMin	12.0	Minimum input voltage
4.	Vout	5.0	Output Voltage
5.	base_pn	TPS62175	Base Product Number
6.	source	DC	Input Source Type
7.	Та	30.0	Ambient temperature

Design Assistance

1. **TPS62175** Product Folder: http://www.ti.com/product/TPS62175: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.