# International Rectifier

# IRLML2244TRPbF

### HEXFET® Power MOSFET

| V <sub>DS</sub>                                | -20  | V                  |
|------------------------------------------------|------|--------------------|
| V <sub>GS Max</sub>                            | ± 12 | ٧                  |
| $R_{DS(on) max}$<br>(@V <sub>GS</sub> = -4.5V) | 54   | $\mathbf{m}\Omega$ |
| $R_{DS(on) max}$<br>(@V <sub>GS</sub> = -2.5V) | 95   | $\mathbf{m}\Omega$ |





### Application(s)

System/Load Switch

### **Features and Benefits**

#### **Features**

| Low $R_{DS(on)}$ ( $\leq 54m\Omega$ )                        |
|--------------------------------------------------------------|
| Industry-standard pinout                                     |
| Compatible with existing Surface Mount Techniques            |
| RoHS compliant containing no lead, no bromide and no halogen |
| MSL1, Consumer qualification                                 |

### **Benefits**

|               | Lower switching losses     |
|---------------|----------------------------|
|               | Multi-vendor compatibility |
| results in    | Easier manufacturing       |
| $\Rightarrow$ | Environmentally friendly   |
|               | Increased reliability      |

Absolute Maximum Ratings

| Absolute Maximum natings                                        |                                                   |              |       |  |  |
|-----------------------------------------------------------------|---------------------------------------------------|--------------|-------|--|--|
| Symbol Parameter                                                |                                                   | Max.         | Units |  |  |
| V <sub>DS</sub>                                                 | Drain-Source Voltage                              | -20          | V     |  |  |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C                          | Continuous Drain Current, V <sub>GS</sub> @ -4.5V | -4.3         |       |  |  |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C                          | Continuous Drain Current, V <sub>GS</sub> @ -4.5V | -3.4         | Α     |  |  |
| I <sub>DM</sub>                                                 | Pulsed Drain Current                              | -18          |       |  |  |
| P <sub>D</sub> @T <sub>A</sub> = 25°C                           | Maximum Power Dissipation                         | 1.3          | w     |  |  |
| P <sub>D</sub> @T <sub>A</sub> = 70°C Maximum Power Dissipation |                                                   | 0.8          | T vv  |  |  |
|                                                                 | Linear Derating Factor                            | 0.01         | W/°C  |  |  |
| V <sub>GS</sub>                                                 | Gate-to-Source Voltage                            | ± 12         | V     |  |  |
| T <sub>J,</sub> T <sub>STG</sub>                                | Junction and Storage Temperature Range            | -55 to + 150 | °C    |  |  |

### **Thermal Resistance**

| Symbol          | Parameter                     | Тур. | Max. | Units |
|-----------------|-------------------------------|------|------|-------|
| $R_{\theta JA}$ | Junction-to-Ambient ③         |      | 100  | °C/W  |
| $R_{\theta JA}$ | Junction-to-Ambient (t<10s) ® |      | 99   | C/VV  |

#### **ORDERING INFORMATION:**

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

International
TOR Rectifier

### Electric Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

| Symbol                            | Parameter                              | Min. | Тур. | Max. | Units | Conditions                                         |
|-----------------------------------|----------------------------------------|------|------|------|-------|----------------------------------------------------|
| V <sub>(BR)DSS</sub>              | Drain-to-Source Breakdown Voltage      | -20  |      |      | ٧     | $V_{GS} = 0V, I_D = -250\mu A$                     |
| $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient    |      | 0.01 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = -1mA           |
| R <sub>DS(on)</sub>               | Static Drain-to-Source On-Resistance   |      | 42   | 54   | mΩ    | V <sub>GS</sub> = -4.5V, I <sub>D</sub> = -4.3A ②  |
| 1 1DS(on)                         | Static Dialific-Source Off-nesistatice |      | 71   | 95   | 11122 | V <sub>GS</sub> = -2.5V, I <sub>D</sub> = -3.4A ②  |
| $V_{GS(th)}$                      | Gate Threshold Voltage                 | -0.4 |      | -1.1 | >     | $V_{DS} = V_{GS}$ , $I_D = -10\mu A$               |
| I <sub>DSS</sub>                  | Drain-to-Source Leakage Current        |      |      | 1    | μA    | $V_{DS} = -16V, V_{GS} = 0V$                       |
|                                   | Diam-to-Source Leakage Current         |      |      | 150  | μΑ    | $V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                  | Gate-to-Source Forward Leakage         | _    | _    | -100 | nA    | V <sub>GS</sub> = 12V                              |
|                                   | Gate-to-Source Reverse Leakage         |      | _    | 100  | IIA   | V <sub>GS</sub> = -12V                             |
| $R_{G}$                           | Internal Gate Resistance               |      | 8.9  |      | Ω     |                                                    |
| gfs                               | Forward Transconductance               | 6.5  |      |      | S     | $V_{DS} = -10V, I_{D} = -4.3A$                     |
| $Q_g$                             | Total Gate Charge                      |      | 6.9  |      |       | $I_D = -4.3A$                                      |
| $Q_{gs}$                          | Gate-to-Source Charge                  |      | 1.0  |      | nC    | V <sub>DS</sub> =-10V                              |
| $Q_{gd}$                          | Gate-to-Drain ("Miller") Charge        |      | 2.9  |      |       | V <sub>GS</sub> = -4.5V ②                          |
| t <sub>d(on)</sub>                | Turn-On Delay Time                     |      | 7.0  |      |       | V <sub>DD</sub> =-10V②                             |
| t <sub>r</sub>                    | Rise Time                              |      | 12   |      |       | I <sub>D</sub> = -1A                               |
| t <sub>d(off)</sub>               | Turn-Off Delay Time                    |      | 34   |      | ns    | $R_G = 6.8\Omega$                                  |
| t <sub>f</sub>                    | Fall Time                              |      | 25   |      |       | V <sub>GS</sub> = -4.5V                            |
| C <sub>iss</sub>                  | Input Capacitance                      |      | 570  |      |       | V <sub>GS</sub> = 0V                               |
| C <sub>oss</sub>                  | Output Capacitance                     |      | 160  |      | pF    | V <sub>DS</sub> = -16V                             |
| C <sub>rss</sub>                  | Reverse Transfer Capacitance           |      | 110  |      |       | f = 1.0KHz                                         |

### **Source - Drain Ratings and Characteristics**

| Symbol          | Parameter                 | Min. | Тур. | Max. | Units | Conditions                                            |
|-----------------|---------------------------|------|------|------|-------|-------------------------------------------------------|
| Is              | Continuous Source Current |      |      | -1.3 |       | MOSFET symbol                                         |
|                 | (Body Diode)              |      |      | -1.0 | A     | showing the                                           |
| I <sub>SM</sub> | Pulsed Source Current     |      |      | -18  |       | integral reverse                                      |
|                 | (Body Diode) ①            |      |      | -10  |       | p-n junction diode.                                   |
| $V_{SD}$        | Diode Forward Voltage     |      |      | -1.2 | ٧     | $T_J = 25^{\circ}C$ , $I_S = -4.3A$ , $V_{GS} = 0V$ ② |
| t <sub>rr</sub> | Reverse Recovery Time     |      | 21   | 32   | ns    | $T_J = 25^{\circ}C$ , $V_R = -16V$ , $I_F = -4.3A$    |
| Q <sub>rr</sub> | Reverse Recovery Charge   |      | 9.0  | 14   | nC    | di/dt = 100A/µs ②                                     |

# International **TOR** Rectifier

# IRLML2244TRPbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance Vs. Temperature

International

TOR Rectifier



**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage

**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage



Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

# International **TOR** Rectifier

# IRLML2244TRPbF



**Fig 9.** Maximum Drain Current Vs. Ambient Temperature



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier



200  $R_{\mbox{\footnotesize DS}}(\mbox{on}), \mbox{ Drain-to -Source On Resistance } (\mbox{$\mathfrak{m}\Omega$})$ 160 Vgs = -2.5V120 80 40 0 0 5 35 15 20 25 30 -I<sub>D</sub>, Drain Current (A)

**Fig 12.** Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current



Fig 14a. Basic Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

# International **IOR** Rectifier

# IRLML2244TRPbF



**Fig 15.** Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time



### Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)









| DIMENSIONS |        |       |        |       |  |
|------------|--------|-------|--------|-------|--|
| SYMBOL     | MILLIM | ETERS | INCHES |       |  |
| STIVIDOL   | MIN    | MAX   | MIN    | MAX   |  |
| Α          | 0.89   | 1.12  | 0.035  | 0.044 |  |
| A1         | 0.01   | 0.10  | 0.0004 | 0.004 |  |
| A2         | 0.88   | 1.02  | 0.035  | 0.040 |  |
| b          | 0.30   | 0.50  | 0.012  | 0.020 |  |
| С          | 0.08   | 0.20  | 0.003  | 0.008 |  |
| D          | 2.80   | 3.04  | 0.110  | 0.120 |  |
| E          | 2.10   | 2.64  | 0.083  | 0.104 |  |
| E1         | 1.20   | 1.40  | 0.047  | 0.055 |  |
| е          | 0.95   | BSC   | 0.037  | BSC   |  |
| e1         | 1.90   | BSC   | 0.075  | BSC   |  |
| L          | 0.40   | 0.60  | 0.016  | 0.024 |  |
| L1         | 0.54   | REF   | 0.021  | REF   |  |
| L2         | 0.25   | BSC   | 0.010  | BSC   |  |
| 0          | 0      | 8     | 0      | 8     |  |

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 3. CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

  ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

  ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

  ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTINGIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

  ADMENSION LIS THE LEAD LEWISH FOR SOLDEFINIO TO A SUBSTRATE.

  8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

### Micro3 (SOT-23/TO-236AB) Part Marking Information



W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

| YEAR | Υ | WEEK | W |  |
|------|---|------|---|--|
| 2001 | 1 | 01   | Α |  |
| 2002 | 2 | 02   | В |  |
| 2003 | 3 | 03   | С |  |
| 2004 | 4 | 04   | D |  |
| 2005 | 5 |      |   |  |
| 2006 | 6 |      |   |  |
| 2007 | 7 |      |   |  |
| 2008 | 8 | 1    | 1 |  |
| 2009 | 9 | y    | 7 |  |
| 2010 | 0 | 24   | X |  |
|      |   | 25   | Υ |  |
|      |   | 26   | Z |  |
|      |   |      |   |  |

A= IRLML2402 S = IRLML6244B = IRLML2803 T = IRLML6246 C= IRLML6302 U = IRLML6344 D = IRLML5103 E = IRLML6402 F = IRLML6401 G= IRLML2502 Y = IRLML2246 Z = IRFML9244

V= IRLML6346 W = IRFML8244 X = IRLML2244

H = IRLML5203 I = IRLML0030 J = IRLML2030K = IRLML0100L = IRLML0060 M = IRLML0040 N = IRLML2060 P = IRLML9301

R = IRLML9303

Note: A line above the work week (as shown here) indicates Lead - Free.

W = (27-52) IF PRECEDED BY ALETTER

| YEAR | 2 Y | WORK<br>WEEK | W |
|------|-----|--------------|---|
| 2001 | Α   | 27           | Α |
| 2002 | В   | 28           | В |
| 2003 | С   | 29           | С |
| 2004 | D   | 30           | D |
| 2005 | Ε   |              |   |
| 2006 | F   |              |   |
| 2007 | G   |              |   |
| 2008 | Н   | 1            | 1 |
| 2009 | J   | 7            | 7 |
| 2010 | K   | 50           | Χ |
|      |     | 51           | Υ |
|      |     | 52           | Z |

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

# Micro3<sup>TM</sup> Tape & Reel Information Dimensions are shown in millimeters (inches)



NOTES:

CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

International

TOR Rectifier

| Orderable part number | Package Type | Standard Pack Note |          | Note |
|-----------------------|--------------|--------------------|----------|------|
| _                     |              | Form               | Quantity |      |
| IRLML2244TRPbF        | Micro3       | Tape and Reel      | 3000     |      |

### Qualification information<sup>†</sup>

| Qualification level        | Consumer <sup>††</sup><br>(per JEDEC JES D47F <sup>†††</sup> guidelines ) |                                            |  |
|----------------------------|---------------------------------------------------------------------------|--------------------------------------------|--|
|                            | (per JEDEC JES D4/F guidelines )                                          |                                            |  |
|                            |                                                                           | MS L 1                                     |  |
| Moisture Sensitivity Level | Micro3                                                                    | (per IPC/JEDEC J-STD-020D <sup>†††</sup> ) |  |
| RoHS compliant             | Yes                                                                       |                                            |  |

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width  $\leq$  400 $\mu$ s; duty cycle  $\leq$  2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.01/2011

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRLML2244TRPBF