Nachine learning

DATE	:_	_/_/_^
PAGE	:_	

	_ Supervised lear	ning			
	has both input & ordput				
	Romanion	Clasification			
	when output is continious an	when ourper es discrete			
	numerical data	an catagorical data			
	Ex: De	Ext!			
	D= { (x; 4;) = x; ER, 4; ER}	Dn={(x:, yi); x, ER, y; E (0.1)}			
	Here D= = data for x: = ith imput (s)	ne · n = no of data (now			
	o (2) tugmi "i = ix	y= gim output			
	= such that : m =	no of inputso columns			
	12 = neal number				
_ - >	Ex :real regression, ex on training data				
	(x) 1 10 0.5 6 5 2 1	= {(x, y), x, ER, y; ER}			
	1 1 100 10.23 30 23				
	Data > Regission -> f($(x) = x^2 \Rightarrow y = x^2$			
	Date \rightarrow Regionism $\rightarrow f(x) = x^2 \Rightarrow y = x^2$ $P_n = x^2 \Rightarrow y = x^2$ ML				
	7				