

AR-009-955 DSTO-TR-0463

Australian Airborne Trials of the Sikorsky S-70B-2 Helicopter: Part 1 – Performance Measurements

A.M. Arney and I. Fieldhouse

© Commonwealth of Australia

APPROVED FOR PUBLIC RELEASE

19970429 155

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT

Australian Airborne Trials of the Sikorsky S-70B-2 Helicopter: Part I - Performance Measurements

A. M. Arney and I. Fieldhouse

Air Operations Division
Aeronautical and Maritime Research Laboratory

DSTO-TR-0463

ABSTRACT

Airborne tests have been conducted using an instrumented Sikorsky S-70B-2 helicopter. These tests were flown by a Royal Australian Navy Test Pilot and were primarily aimed at establishing limits for the S-70B-2 when operating from an 'Adelaide' class FFG-7 frigate. While the aircraft was instrumented, the opportunity was taken to fly a series of performance and flight dynamic tests to establish baseline data that will be used to further develop a mathematical model of the helicopter. This report details the scope of the performance tests, describes data processing procedures, and presents results of the tests.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Published by

DSTO Aeronautical and Maritime Research Laboratory PO Box 4331 Melbourne Victoria 3001

Telephone: (03) 9626 8111 Fax: (03) 9626 8999 © Commonwealth of Australia 1997 AR No. 009-955 January 1997

APPROVED FOR PUBLIC RELEASE

Australian Airborne Trials of the Sikorsky S-70B-2 Helicopter: Part I - Performance Measurements

Executive Summary

From 4 to 30 March 1994, the First of Class Flight Trial (FOCFT) for the Sikorsky S-70B-2 helicopter on the 'Adelaide' class of FFG-7 frigate was conducted aboard HMAS SYDNEY. The aircraft was instrumented to record flight control positions and flight dynamic parameters. The ship was instrumented to record motion and wind velocity parameters. The purpose of this trial was to develop new Ship Helicopter Operating Limits (SHOLs) for operational use. This trial was performed by the Aircraft Maintenance and Flight Trials Unit (AMAFTU) of the Royal Australian Navy (RAN) with the aid of Air Operations Division (AOD) of the Defence Science and Technology Organisation (DSTO).

AOD has been developing a computer model of the dynamic interface for the S-70B-2 helicopter and the 'Adelaide' class of FFG-7 frigates in order to investigate operational problems and limits for the RAN. While the aircraft was configured with instrumentation for the FOCFT, the opportunity was taken to conduct a series of performance and flight dynamic tests to determine baseline data that could then be used to further develop the model of the S-70B-2 helicopter.

A contract with The Sir Lawrence Wackett Centre for Aerospace Design was negotiated entitled 'Data Processing and Development of Associated Software'. As part of this contract, processing of the aforementioned performance data has been carried out, with modifications made to the associated software. The contract also included the processing of data for the flight dynamic tests and the FOCFT, the results of which will be published at a later date.

This report gives a summary of the performance tests, details of modifications made to existing data processing software, a description of the data processing procedures, and presents time histories of the measured data. Helicopter performance data are then determined by taking the mean of the time history data over a time period during which the aircraft was trimmed.

This work will enable further development of a mathematical model of the S-70B-2 helicopter. A fully developed model will provide guidance on the outer boundaries of SHOLs, which will allow further FOCFTs to extend the SHOLs and thus give the fleet greater operational flexibility. The model will also allow the assessment of what effect different helicopter roles and role equipment will have. The Defence outcomes of this work are progress towards safe extensions of the operational capability of the S-70B-2 helicopter in embarked operations, and improvements in ability to model and plan helicopter maritime missions.

Authors

A. M. ArneyAir Operations Division

Ashley Arney graduated from the University of Sydney in 1981, having obtained an Aeronautical Engineering Degree, with honours. Since commencing employment at the then Aeronautical Research Laboratory in 1982, he has been involved with the mathematical modelling of the performance and flight dynamics of a wide range of helicopters. He has also obtained extensive experience in trials, data processing, and the use of such data for development of models. More recently he has been involved in modelling the helicopter-ship dynamic interface, and gathering data for development purposes.

I. Fieldhouse

The Sir Lawrence Wackett Centre for Aerospace Design

Ian Fieldhouse graduated from the Royal Melbourne Institute of Technology in 1994, having obtained a Bachelor of Engineering in Aerospace Engineering, with honours. He commenced employment with the Sir Lawrence Wackett Centre for Aerospace Design in 1994 providing technical service support to the Air Operations Division of the Aeronautical and Maritime Research Laboratory. In this position he has been involved in the helicopter flight dynamics area, processing and analysing flight data.

CONTENTS

1. INTRODUCTION	1
2. SCOPE OF PERFORMANCE TESTS	1
3. MODIFICATIONS TO DATA PROCESSING SOFTWARE	5
3.1 Refine Program	5
3.1.1 S70B2R1.f	5
3.1.2 S70B2R2.f	5
3.1.3 S70B2R4.f	5
3.1.4 S70B2R6.f	6
3. 2 Convert Programs	6
4. DATA PROCESSING PROCEDURES	7
4.1 Checking Data Processing Software	7
4.2 Determination of Digital Filtering Characteristics	10
4.3 Determination of Instrument and Analogue Filter Delays	12
4.4 Offset Errors in Doppler Velocity Data	14
4.5 Processing Data	17
5. RESULTS	19
6. CONCLUDING REMARKS	21
ACKNOWLEDGEMENT	21
REFERENCES	21
APPENDIX A – ADMINISTRATION FILE 'AT800.ADM'	
APPENDIX B – WEIGHT CORRECTIONS	
APPENDIX C – PERFORMANCE EVOLUTION LOG	
APPENDIX D – DARTH SET-UP FILE 'FOCFT_L.SET' FOR SORTIE 2	
APPENDIX E - CALIBRATION FILE 'SHAWKCAL'	
APPENDIX F - MACTRANS PLOT, EVOLUTION AT800	
APPENDIX G - MACTRANS PRINT FILE, EVOLUTION AT800	
APPENDIX H – ARCHIVE INFORMATION	
APPENDIX I – MEAN VALUES FOR TRIMMED FLIGHT	
ADDENDIV I CALIDDATION CODDECTION FOR STARILATOR ANGLES	

1. INTRODUCTION

From 4 to 30 March 1994, the First of Class Flight Trial (FOCFT) for the Sikorsky S-70B-2 helicopter on the 'Adelaide' class of FFG-7 frigate was conducted aboard HMAS SYDNEY (Ref. 1). The aircraft was instrumented to record flight control positions and flight dynamic parameters. The ship was instrumented to record motion and wind velocity parameters. The purpose of this trial was to develop new Ship Helicopter Operating Limits (SHOLs) for operational use. This trial was performed by the Aircraft Maintenance and Flight Trials Unit (AMAFTU) of the Royal Australian Navy (RAN) with the aid of Air Operations Division (AOD) of the Defence Science and Technology Organisation (DSTO).

AOD has been developing a computer model of the dynamic interface for the S-70B-2 helicopter and the 'Adelaide' class of FFG-7 frigates in order to investigate operational problems and limits for the RAN. While the aircraft was configured with instrumentation for the FOCFT, the opportunity was taken to conduct a series of performance and flight dynamic tests to determine baseline data that could then be used to further develop the model of the S-70B-2 helicopter.

A contract with The Sir Lawrence Wackett Centre for Aerospace Design was negotiated entitled 'Data Processing and Development of Associated Software'. As part of this contract, processing of the aforementioned performance data has been carried out, with modifications made to the associated software. The contract also included the processing of data for the flight dynamic tests (Ref. 2) and the FOCFT (Ref. 3).

This report gives a summary of the performance tests, details of modifications made to existing data processing software, a description of the data processing procedures, and presents time histories of the measured data. Helicopter performance data are then determined by taking the mean of the time history data over a time period during which the aircraft was trimmed.

Imperial units are adopted throughout this document because (a) they are used exclusively by workers in the US with whom AOD is collaborating, (b) the S-70B-2 is built in the US to imperial specifications, and (c) the RAN work in imperial units when dealing with this helicopter.

2. SCOPE OF PERFORMANCE TESTS

The aircraft was instrumented by AMAFTU and data gathered using the data acquisition system developed by AOD, known as Data Acquisition Real-Time Hardware (DARTH, Ref. 4), which was a successor to the Versatile Airborne Data Acquisition and Replay (VADAR, Ref. 5) system. The DARTH system allows up to 56 channels to be used. Of these, 32 are analogue inputs (A), eight are digital inputs (DI), eight are digital outputs (DO), two are digital-analogue outputs (DA), and six are synchro (S) inputs. Table 1 lists the measurements recorded and their respective channel allocations.

The pilot controls (shown as 'Pre-Mix' in Table 1) and Automatic Flight Control System outputs (shown as 'AFCS' in Table 1) feed into a mixing unit, which then controls movement of the primary jacks. The mixing unit outputs (shown as 'Post-Mix' in Table 1) have physical stops that do not necessarily correspond to the physical stops of the pilot controls (due to AFCS inputs and mechanical mixing). Thus both mixer unit outputs and pilot controls are used to determine the amount of control travel available (Ref. 6). The travel available for the post-mix cyclic controls are calculated real-time by the DARTH system (Channels 49 and 50) and indicated to the pilot by console mounted displays. The primary jack displacements were recorded to enable main rotor blade angles to be determined directly. By recording all these quantities, a level of redundancy was able to be achieved.

For example, if the AFCS roll instrumentation failed (Channel 11), the AFCS roll may be deduced from the other control quantities.

Table 1. Summary of Data Recording Channels

Channel No.	Туре	Variable	Channel No.	Type	Variable
1	A	Pitch Rate	22	A	No. 2 Engine Torque
2	A	Roll Rate	23	A	Weight on Wheels
3	A	Yaw Rate	24	A	Radar Altitude
4	A	Lateral Acc	25	A	Air Speed
5	A	Longitudinal Acc	26	A	Post-Mix; Yaw
6	A	Vertical Acc	27	A	Post-Mix; Pitch Aft
7	A	Longitudinal Doppler	28	A	Post-Mix; Pitch Forward
8	A	Lateral Doppler	29	A	Post-Mix; Roll Aft
9	A	Vertical Doppler	30	A	Post-Mix; Roll Forward
10	A	AFCS Pitch	31	A	Pitch Bias Actuator
11	Α	AFCS Roll	32	A	Event Marker
12	Α	AFCS Collective	33-40	DI	Not Used
13	Α	AFCS Yaw	41-48	\mathfrak{D}	Not Used
14	A	Forward Primary Jack	49	DΆ	Pitch Post-Mix
15	Α	Aft Primary Jack	50	DΆ	Roll Post-Mix
16	Α	Lateral Primary Jack	51	S	Not Used
17	A	Cyclic Long. Pre-Mix	52	S	Not Used
18	A	Cyclic Lateral Pre-Mix	53	S	Heading (AHRS ¹)
19	A	Collective Pre-Mix	54	S	Stabilator Angle
20	A	Pedals Pre-Mix	55	S	Pitch Attitude (Gyro)
21	A	No. 1 Engine Torque	56	S	Roll Attitude (Gyro)

Executive computer programs were developed by AMAFTU to operate the data acquisition software originally developed by AOD. These programs required the DARTH operator to input a sortie number for each aircraft flight. Sorties 1 to 23 were used during the FOCFT, and Sorties 98 and 99 were allocated to the performance and flight dynamic tests respectively. As the software was developed specifically for FOCFTs, it was only capable of labelling recorded data files in terms of engine startup, shutdown, aircraft take-off, and landing. Each individual test (known as an 'evolution') could thus be labelled either AU, AD, AT, or AL respectively for aircraft data, or SU, SD, ST, or SL respectively for ship data. During the FOCFT, the standard procedure was to number the recorded take-off and landing files consecutively. At the end of Sortie 23, the total number of take-offs and landings was 198 and 193 respectively.² All the evolutions during Sortie 98 were labelled as take-offs, beginning with AT800. For Sortie 99, all the evolutions were labelled as landings, beginning with AL800.

¹ Attitude and Heading Reference System.

The number of take-offs does not equal the number of landings because not every take-off and landing was recorded.

Also developed by AMAFTU, as part of this software, was the use of administration files ('.ADM' extensions). Prior to each sortie, the DARTH operator entered information such as basic aircraft weight,³ then immediately before each evolution he would input the fuel weight (as read from the aircraft fuel gauge) and atmospheric conditions. The aircraft weight, cg, and atmospheric density ratio were then calculated and written to the '.ADM' file corresponding to that evolution. For example, Evolution AT800 has acquired data stored in file AT800.DAT and administration information in file AT800.ADM. A typical administration file for Sortie 98 is shown in Appendix A. The atmospheric conditions included in the '.ADM' file were the outside air temperature (OAT), wind speed, wind direction, and pressure altitude.⁴

The majority of the performance tests were conducted during Sortie 98 on 6 April, upon return from the FOCFT, under nominally still air conditions (< 3 kn). Other performance tests were conducted on an opportunity basis over a number of sorties during the FOCFT. A limited study of ground effect was performed that involved hovering at different heights and hovering at the same heights over both land and the flight deck of an FFG-7. Since the rotor diameter of the S-70B-2 is greater than the width of an FFG-7 flight deck, it would be expected that the aircraft would be influenced by 'partial ground effect' (PGE). The PGE caused by the ship flight deck, which may be a significant factor in 'power limited' landings,⁵ is yet to be adequately determined. During the FOCFT, a stable hover was established above the bullseye (for 10 and 15 ft above the flight deck) for zero wind-over-deck and two weights (referred weights of 17000 and 19400 lbf). During Sortie 98, a stable hover was established in ground effect (IGE) at 10 and 15 ft above the ground for nominally the same referred weights used at sea. This enables direct comparison of PGE with full IGE data even though the tests were done under different atmospheric conditions.

Table 2 summarises the performance tests. Except where otherwise specified, all tests were done at an altitude ≥ 100 ft, i.e. out of ground effect (OGE). Evolutions conducted IGE are shown at heights above ground level (AGL) or above the flight deck (AFD). For all test points, the aircraft was in steady trimmed flight and data were recorded for a period of not less than 10 s.

After Sortie 98 had been completed, the weight and cg information recorded in the administration files was found to be inconsistent with the weight and balance chart for that sortie. The discrepancy was attributed to an incorrect 'Basic Weight' being entered into the '.ADM' file prior to the sortie. Also, the weight entered into the AL174.ADM file during Sortie 21 was identical to that for AL173.ADM, and was assumed incorrect. This

Although it would be more appropriate to measure the mass, which remains constant with varying gravitational acceleration (g), rather than weight, which varies with g, the weight is used throughout this report assuming the standard value for g. Since g is a function of distance from the centre of the earth, the weight will vary with latitude and altitude. The standard value for g is defined at the earth's surface at 45° latitude. At an altitude of 10000 ft for a latitude of 45°, g is reduced by about 0.10 %. On the earth's surface at the equator, g is reduced by about 0.26 %, and at the poles g is increased by about 0.27 %.

The aircraft altimeter is set to International Standard Atmosphere (ISA) sea-level pressure (29.92 inHg), so that the indicated aircraft pressure altitude will enable determination of the standard atmospheric pressure ratio. In conjunction with the OAT, the air density may then be determined from standard atmosphere relationships.

Parts of the SHOL may be defined when the power margin is reduced to 5% (day) or 10% (night), i.e. 'power limited'.

During flight tests, the ratio of weight to density ratio (W/ σ , known as 'referred weight') is used so that test data may be referred back to standard atmospheric conditions. The density ratio is given by $\sigma = \rho/\rho_o$, where ρ is the ambient density and ρ_o is the sea level density for an ISA+5°C atmosphere ($\rho_o = 0.002336$ slug/ft³).

discrepancy was attributed to an incorrect fuel weight being entered into the '. ADM' file prior to the evolution. The weight corrections for all these evolutions are detailed in Appendix B.

Along with information recorded using the DARTH system and administration files, comments were hand written into a log sheet during each evolution. For Sorties 98 and 99, these comments were made by the DSTO observer aboard the aircraft, and for the sorties at sea, by various members of the trials team (usually the test pilot). The performance evolution log, which contains the individual evolution designation, atmospheric data, corrected weight and cg position, and comments, is given in Appendix C.

Table 2. Summary of Performance Flight Tests

File #	Evolution	File#	Evolution
Hover		Forward	Climb/Descent
AT800	3 ft AGL - IGE	AT828	Climb 40 kn
AT801	10 ft AGL - IGE	AT829	Descent 40 kn
AT802	15 ft AGL - IGE	AT830	Climb 80 kn
AT803	20 ft AGL - IGE	AT831	Descent 80 kn
AT804	30 ft AGL - IGE	AT832	Climb 120 kn
AT805	40 ft AGL - IGE	AT833	Descent 120 kn
AT806	50 ft AGL - IGE	Autorota	ation
AT807	100 ft AGL - OGE	AT834	0 kn
Low Airs	speed	AT835	80 kn
AT808	Forward 15 kn	AT836	100 kn
AT809	Forward 30 km	Ground I	Effect Study
AT810	Aft 15 kn	Hovering	Above Ground
AT811	Aft 30 kn	AT816	•
AT812	Port 15 km	AT817	15 ft AGL, W/ σ =19396 lbf
AT813	Port 30 kn	AT837	10 ft AGL, W/ σ =17000 lbf
AT814	Starboard 15 kn	AT838	15 ft AGL, W/ σ =17000 lbf
AT815		AT839	100 ft AGL, W/σ=17000 lbf
Level F	light		Over Flight Deck
AT821	40 kn	AL100	3 ft AFD, $W/\sigma = 19232$ lbf
AT822	80 kn	AI.151	15 ft AFD, $W/\sigma = 17163$ lbf
AT823	120 kn	AL152	10 ft AFD, $W/\sigma = 17076$ lbf
AT824	140 kn	AL158	10 ft AFD, $W/\sigma = 17000$ lbf
Vertical	. Climb/Descent	AL159	15 ft AFD, $W/\sigma = 16922$ lbf
AT818	Climb 600 fpm	AL173	10 ft AFD, $W/\sigma = 19217$ lbf
AT819	Climb 1200 fpm	AL174	10 ft AFD, $W/\sigma = 19138$ lbf
AT819	Climb 1200 fpm		
AT820	Climb 1800 fpm		İ
AT825	Descent 600 fpm		ļ
AT826	Descent 3300 fpm		
AT827	Descent 3300 fpm		

3. MODIFICATIONS TO DATA PROCESSING SOFTWARE

Rextra.f

3.1 Refine Program

The data processing program S70B2Refine is available for running on Macintosh computers and has been developed from JBFOCFTRefine, which was developed to process data acquired during the Black Hawk FOCFT aboard the training ship HMAS JERVIS BAY. This program had been developed from program MacShipRefine (Ref. 7), which was developed from program Refine (Refs 8 and 9). Changes made to MacShipRefine to obtain JBFOCFTRefine included calculation of aircraft and ship angular accelerations, aircraft Euler angles, and channel specific modifications required for the specific trial.

This section details modifications made to *JBFOCFTRefine* that resulted in program *S70B2Refine*. The modules that make up *S70B2Refine* are listed in Table 3. Those modules with the 'S70B2' prefix were those modified to create *S70B2Refine*. These modifications are discussed further below.

Table 3. Program S70B2Refine Modules

S70B2R1.f ChkUpr.f

S70B2R2.f Ding.f
ShipR3.f TSub87.f
S70B2R4.f SPreNotch.f
ShipR5.f NotchFilter.f
S70B2R6.f Gillfix.f
Rename.f FindStartTime.f

S70B2R1.f

3.1.1

For the HMAS JERVIS BAY trial, the ship yaw attitude (Channel 51) was forced to range between $\pm 180^{\circ}$ rather than 0 to 360°. This channel was changed initially to Channel 53, which is the aircraft compass heading for the S-70B-2 trials, but was later commented out of the code as it was considered unnecessary.

For the S-70B-2 trials, the aircraft stabilator angle, heading, gyro pitch, and roll attitude measurements were recorded on synchro channels and all other data recorded on analogue channels. The DARTH system conducts signal processing on the analogue channels only, which results in a delay in those measurements. Program variable TDELAY was thus set to correct the delayed channels by a total of 0.1 s (Section 4.3).

3.1.2 S70B2R2.f

An updated Fortran compiler found that parameter PD2 was found to be declared as a double precision variable twice, which resulted in a compilation error. This parameter is now correctly declared only once. Previous and current results are unaffected.

3.1.3 S70B2R4.f

A large section of the code in this module related to an earlier undercarriage trial (Ref. 10) and used Channels 19 to 27 to calculate parameters specific to that trial. This section of code was deleted.

One of the modifications made to create JBFOCFTR4.f was to allow for 'signed' synchro channels. A 'signed' synchro parameter may have positive or negative values (e.g. roll

attitude), whereas an 'unsigned' parameter (e.g. heading) is always positive. The 'signed' parameters are defined in a DARTH '.SET' file, which was named FOCFT_L.SET (Appendix D) for the S-70B-2 trials. For the HMAS JERVIS BAY trial, aircraft Channels 51, 52, 53, and 54 were 'signed' channels, but for the S-70B-2 trials, aircraft Channels 54, 55, and 56 were 'signed' channels.

Also, for the HMAS JERVIS BAY trial, the aircraft heading (Channel 55) required a saw-toothed calibration rather than the linear calibration required for the S-70B-2 trial.

Note that, although Channel 46 has not been used for data acquisition, it is still defined in this module to be the actual start time. When running S70B2Refine (see Section 4), if the user replies Y to the question 'IS THE EXACT START TIME REQUIRED:', the exact time will be output to Channel 46. This facility has been retained so that if data are acquired in a future trial from two synchronised DARTH units, the exact time difference in the data may be determined. For the S-70B-2 FOCFT trial, the DARTH units could not be synchronised.

3.1.4 S70B2R6.f

Calculation of the Euler yaw and roll angles (ψ and ϕ respectively) requires the aircraft gyro pitch, roll, and heading measurements. For the HMAS JERVIS BAY trial, the aircraft gyro pitch, roll, and heading measurements were Channels 53, 54, and 55 respectively, whereas for the S-70B-2 trials, they were Channels 55, 56, and 53 respectively.

Calculations of the angular accelerations are also conducted in this module, thus requiring changes to the channel numbers for the angular rates. For the HMAS JERVIS BAY trial, the aircraft pitch, roll, and yaw rate measurements were Channels 2, 3, and 4 respectively, whereas for the S-70B-2 trials, they were Channels 1, 2, and 3 respectively. Channels 40, 41, and 42 were assigned to the calculated yaw, roll, and pitch accelerations respectively.

3. 2 Convert Programs

The output from program S70B2Refine was post-processed by program MacTrans (Ref. 11) to display data either graphically or in tabular form. In order to convert the tabular data from MacTrans '.COL' files into a multi-column format suitable for input into other programs, the program JBFOCFTConvert(ac) had been written for an earlier trial. This program was modified to allow for channel numbers specific to this trial and named S70B2Convert(ac).

The main change to the program involved rearranging and increasing the number of channels. Program JBFOCFTConvert(ac) only output 20 channels, whereas program S70B2Convert(ac) outputs all 44 channels from S70B2Refine. Several channels were converted either from kn to ft/s or from a unit including degrees to one using radians (e.g. deg/s to rad/s). The output files are named after the MacTrans '.COL' input file, replacing the '.COL' extension with an 'Out' extension.

Two sections of code were no longer necessary in the program. The first calculated the distance covered by the helicopter and was deleted. The second ensured the aircraft yaw attitude ranged between -180° and $+180^{\circ}$ and has been commented out.

Program Compat was used to determine time delays associated with the DARTH system signal conditioning of the analogue channels (Section 4.3). Program S70B2Convert(ac)-C is a modification of S70B2Convert(ac) that reads in MacTrans '.COL' files and then writes out motion data in a format suitable for input to Compat (Table 4). The output files are named after the MacTrans '.COL' input file, replacing the '.COL' extension with a '.Motion' extension. In Table 4, subscript 'm' denotes a measured quantity, and no subscript indicates a quantity calculated from measured data.

Variable Comments Column Time $a_{x_m}, a_{y_m}, a_{z_m}$ Linear Accelerations (ft/s²) p_m, q_m, r_m Angular Rates (rad/s) $\dot{p}, \dot{q}, \dot{r}$ 8-10 Angular Accelerations (rad/s²) U_m, V_m, W_m Doppler Velocities (ft/s) 11-13 ϕ_m, θ_m, ψ_m Euler Angles (rad) 14-16 X_m, Y_m set to zero; Z_m is Rad Alt (ft) X_m, Y_m, Z_m 17-19

Table 4. Input Format Required by Compat

4. DATA PROCESSING PROCEDURES

The DARTH system recorded the raw data in IBM binary format ('.DAT' files) and saved them to 3.5 inch floppy disks. The data acquired during the S-70B-2 flying trials were transferred from the floppy disks to a Macintosh magneto-optical disk and a Digital Data Storage (DDS) 4 mm data cartridge (DDS tape). These data were then transferred via a Macintosh computer to a RISC machine so that the data could be converted to ASCII format ('.con' files) that are in the form required as input to program S70B2Refine. Program convolata was used to convert the '.DAT' files to '.con' files. These files were then transferred back to the Macintosh and stored on compact disk and a DDS tape using program Retrospect (© Dantz Development Corporation). An example of running convolata is shown below. In examples throughout this document, bold italic type indicates user inputs and <CR> denotes a carriage-return.

<anne /home/arneya/tmp> convdata AL10.DAT -n > AL10.con

During a landing aboard ship, all channels were likely to measure variations, as opposed to the performance tests where the aircraft was in steady trimmed flight. Thus, to check all data processing software was working correctly, a landing evolution during Sortie 2 was chosen to be processed (AL10.con). Also, past experience with the VADAR system has shown that the data of some channels can contain 'noise' below the cut-off frequencies used by the DARTH signal conditioning. This can adversely affect any post-processing of the measurements, such as differentiation of the angular rates. S70B2Refine has the capability to perform digital filtering of the data to remove this noise (Ref. 8). The sections below discuss checking the data processing software and determining required digital filtering characteristics, instrument and analogue filter delays, and instrument calibration offset errors in doppler velocity data. An example of processing the data is also given.

4.1 Checking Data Processing Software

Program S70B2Refine was first used to process the data, and time history plots were then created using program MacTrans. These plots were then compared to the similar output produced by the IBM PC programs SpltData and UPltData associated with the DARTH software.

In order to run S70B2Refine, a calibration file that contains instrument calibration factors and offsets was required. The DARTH file FOCFT_L.SET, containing instrument calibration

factors and offset values for each channel, was defined prior to each sortie.⁷ The instrument calibration scale factors and offsets from the FOCFT_L.SET file for Sortie 2 (Appendix D) were used to create a temporary calibration file, TEMPCAL.

Evolution AL10, Sortie 2, was a landing during the FOCFT that was chosen to check the processing software, as variation of the measured parameters would show faulty data more obviously than the trimmed performance data.

S70B2Refine was run as shown below, with the input data file and calibration file required to be in the same directory as the program.

```
************
* Program to process data obtained from S-70B-2
* Performance, Dynamic and First of Class Flight
* Trials held March-April 1994 using PC-based Data
* Acquisition System.
* Data files must have ".con" extensions
***************
Input Data Filename (w/o ".Con" extension) = AL10
Is this an aircraft data file (default N): Y
".DAT" OUTPUT FILENAME (w/o ext) = S2AL10
TITLE (2 lines of 60 chrs)
:S-70B-2 Trials - Sortie 2 Landing 10
:Test File
ARE ASSIGNED BLK NUMBERS REQRD : N
CALIBRATION FILENAME = TEMPCAL
Day Number (Default is other than Day 1) = <CR>
IS PRE-PROCESSING WITH A NOTCH FILTER REQRD : N
OUTPUT INTERVAL (in 20'ths of sec; e.g. 40 for 2 sec) = <CR>
IS THE EXACT START TIME REQUIRED : N
STARTING TIME DELAY = <CR>
TIME LIMIT = <CR>
IS FILTERING REORD : N
IS SMOOTHING REQRD : N
ARE INSTRUMENT & ANALOGUE FILTER DELAY ADJUSTMENTS REQRD : N
ARE SCALES AND OFFSETS REQRD : Y
ARE PLOT LIMITS REQRD : N
ARE DROP-OUTS TO BE CORRECTED : N
ARE ALL CHANNELS REORD : Y
DATE = 20-SEP-94
TIME = 09:22:33
No. time corrections =
No. blocks replaced = 0
No. drop-out corrections =
STOP 1
```

Program S70B2Refine produced an output file with a '.DAT' extension. To avoid confusion with the original DARTH system raw data file (also with a '.DAT' extension), this file was named with the prefix S2 to indicate the file was from Sortie 2. For the example above, the DARTH raw data file was named AL10.DAT, the output from program convdata was named

The calibration factors and offsets for the AFCS output channels (10-13) varied between some sorties. This variation was due to failures of the instrumentation fit. The AFCS channels were recalibrated after each failure, thus a different FOCFT_L.SET file was required for each sortie where variations occurred. Due to the unreliability of the instrumentation, the data from these channels should be treated with caution.

AL10.con, and the output file from S70B2Refine was named S2AL10.DAT. This output file was used as input to program MacTrans (Ref. 11), which was used to produce plots of the time histories for all recorded channels. An example of running MacTrans for Channel 56 (roll attitude) is shown below. The input file is required to be in the same directory as the program.

```
[TRANS version date 12-FEB-91]
GO STRAIGHT TO EVENT LOOP? N
I/P FILENAME = S2AL10
S-70B-2 Trials - Sortie 2 Landing 10
Test File
I/P FILE RECORDED ON 20-SEP-94
                                 AT 09:22:33
INTEGN INT = 0.0000E+00; RUN CPU TIME =
                                           2 MIN. 31.87 SEC.
TIME FROM 0.0000E+00 TO 5.4650E+01 IN STEPS OF 5.0000E-02
*PLS
IS GRAPHICS OUTPUT TO SCREEN REQUIRED :
[PLS/O Output, for this run, going to DSK:S2AL10.PLT
STRIP PLOTS :
BLKS
56
TO SPECIFY NO. OF X UNITS/INCH, TYPE 0 FOR X
LENGTH OF AXES IN INCHES; X, Y = 5,6
ARE SYMBOLS REQRD FOR PLOTS : N
LINE KEY (0 GIVES DEFAULT) = <CR>
THE CURRENT LINE COLOURS ARE:
                           4
0 & 1
        2
                 3
BLACK
        RED
                  GREEN
                           BLUE
                  7
                           8
5
         6
        MAGENTA YELLOW
                           ORANGE
CYAN
AVAILABLE COLOURS :
BLACK, RED, GREEN, LTGREEN, BLUE, LTBLUE, CYAN,
MAGENTA, PURPLE, YELLOW, ORANGE.
DO YOU WISH TO CHANGE THE COLOURS? : N
* GOE
*EXI
STOP
```

Program SoftPC (©Insignia Solutions) was used on a Macintosh computer to emulate an IBM PC, so that DARTH programs SpltData and UPltData could be used to view time histories of the raw data. Program SpltData creates ASCII data files containing the raw data for each of the channels in imperial units. An example of running SpltData for Evolution AL10 is shown below.

> SPLTDATA AL10.DAT -n

File AL10.001 contains data for Channel 1, AL10.002 contains data for Channel 2, etc. Time data are contained in file AL10.098. Program *UPltData* then uses these ASCII data files to plot time histories to the screen. An example of running *UPltData* for Evolution AL10 is shown below.

> UPLTDATA AL10.DAT -x -j

Hard copies of these plots were obtained by taking a snapshot of the screen. Program MacDrawPro (©Claris Corporation) was then used to print the snapshot. A comparison was then made of the output using UPltData with that obtained using MacTrans, and is shown in Figure 1 for the roll attitude channel. The vertical scales for the two plots in Fig. 1 have been offset to facilitate comparison. The two plots are not identical because MacTrans does not draw every data point and thus contains fewer spikes. However, the comparison of all channels confirmed that S70B2Refine was working correctly.

Figure 1. Comparison of Roll Attitude Data Using *UPltData* and *MacTrans* (*MacTrans* Plot Vertically Offset)

The complicated procedure of running programs convdata, S70B2Refine, and MacTrans in order to achieve a time history that can be more easily obtained using programs SpltData and UPltData is only necessary if the measured data contain errors or noise. Program S70B2Refine has the capability to correct commonly encountered errors and digitally filter noisy data, as demonstrated in the following sections.

4.2 Determination of Digital Filtering Characteristics

The DARTH system used an 8 pole Elliptic filter with a 12.5 Hz cut-off frequency to condition the data acquired using the 32 analogue channels (Appendix D). Neither the digital channels nor the synchro channels underwent any signal conditioning. Experience with the DARTH system has shown that the signal conditioning has not always eliminated all the significant noise present on some channels. In particular, any noise on the angular rate channels can adversely affect the result of differentiating the data to obtain angular

accelerations. A spectral analysis was performed for all channels to determine the frequency at which any noise was present, so that suitable digital filtering characteristics may be determined.

Program spectrum was available on a RISC 6000 machine and requires the input file to be in four columns. The first column is time and the three remaining columns are the variables to be analysed. To obtain the data in column format, program MacTrans was first used to obtain data in imperial units, and program S70B2Convert(ac) was then used to convert these data to multi-column format. The input files for spectrum were created by editing the 'Out' file from S70B2Convert(ac) using program Kaleidagraph (© Abelbeck Software). The input files were then transferred to the RISC 6000 machine and processed by spectrum. An example of running MacTrans is shown below.

```
[TRANS version date 12-FEB-91]
GO STRAIGHT TO EVENT LOOP? <CR>
I/P FILENAME = S2AL10
S-70B-2 Trials - Sortie 2 Landing 10
Test File
                                 AT 09:22:33
I/P FILE RECORDED ON 20-SEP-94
                                            2 MIN. 31.87 SEC.
INTEGN INT = 0.0000E+00; RUN CPU TIME =
TIME FROM 0.0000E+00 TO 5.4650E+01 IN STEPS OF 5.0000E-02
*prc
PRINTING IN COLUMNS :
BLKS
IS O/P TO TTY REQRD :
** RUNNING **
*exi
STOP
```

The *MacTrans* output from the example above was file S2AL10.COL. When S70B2Convert(ac) was run, the user was prompted for an input file, which in this case was S2AL10.COL. File S2AL10 Out was created and then edited accordingly to produce an input file for spectrum in the format previously described. For the three linear acceleration measurements, file s2al10ACCEL was created from S2AL10 Out. This file was then transferred to a RISC 6000 and spectrum was run as shown below.

```
<anne /home/arneya/tmp> spectrum
Input File :s2al10ACCEL
<anne /home/arneya/tmp>
```

Program spectrum produced the output file FFT.OUT, which had the format of data in four columns. The first column was frequency and the remaining three columns were the power spectral densities for the three variables in the input file. For this example, the output file was renamed to s2allOACCEL.out and transferred to the Macintosh, where the spectral densities were plotted using Kaleidagraph. The spectral analysis for the lateral acceleration measurements is shown in Figure 2.

Figure 2. Spectral Density of Lateral Acceleration Measurements

The example in Fig. 2 clearly shows that noise is present between 4 and 4.5 Hz that corresponds with the main rotor frequency (main rotor rotational speed is nominally 27 rad/s = 4.3 Hz). Spectral densities for all the channels were obtained and indicated that the measurements of the angular rates and linear accelerations contained similar spikes between 4 and 4.5 Hz, and thus needed further digital filtering. A 5-pole Butterworth filter with cut-off frequency of 4 Hz and 50 dB attenuation was chosen to filter these channels. The filter characteristics are included in the calibration file for S70B2Refine, called SHAWKCAL (Appendix E). To include digital filtering of the angular rate and linear acceleration measurements and correct for resulting phase lags, program S70B2Refine was run as in Section 4.1, with the following changes in responses.

```
IS FILTERING REQRD : m{Y}
IS OUTPUT OF FILTER CHARACTERISTICS REQRD : m{N}
ARE DIGITAL FILTER DELAY ADJUSTMENTS REQRD : m{Y}
```

A comparison of the filtered and unfiltered data for the lateral acceleration is shown in Figure 3.

Figure 3. Comparison of Lateral Acceleration Raw Measurements with Digitally Filtered Data

4.3 Determination of Instrument and Analogue Filter Delays

As mentioned in Section 4.2, the measurements using the 32 analogue channels have all been conditioned using an analogue filter. This analogue filtering causes a time delay to the measurements from the conditioned channels when compared with measurements obtained

from the unconditioned synchro channels. Program *Compat* was used to identify instrument and analogue filter delays in the measurements. *Compat* is a compatibility checking program that enables comparison of measured quantities with those calculated by integrating the rigid body kinematic equations of motion. In this way, instrumentation scaling factor and offset errors may be determined. Ref. 12 gives further information on *Compat*. By comparing the pitch attitude measured using a synchro channel with the calculated value from the equations of motion, which use data from the filtered analogue channels, any time delays may also be determined.

The data used for this analysis were acquired during the S-70B-2 dynamic trials (Ref. 2), and are summarised in Table 5. These data were chosen as they provided substantial variation in the aircraft attitude with time, as opposed to the performance data where the aircraft was in trimmed flight.

Evolution	Airspeed (kn)	Control Input
AL800	0	Step Cyclic Forward
AL802	0	Step Cyclic Left
AL803	0	Step Cyclic Right
AL806	0	Step Pedal Left
AL820	40	Step Cyclic Left
AL824	40	Step Pedal Left
AL859	120	Pulse Cyclic Forward
AL860	120	Pulse Cyclic Aft

Table 5. Evolutions Analysed To Establish Time Delays

An example of running *Compat* to calculate the aircraft attitudes is shown below. The COMDAT.002 file used as input was identical to that used in Ref. 12. The input file S99AL860. Motion was created using program *S70B2Convert(ac)-C* (Section 3.2). Note that for this example, only the attitude information is actually used by *Compat*.

The output file var.dat contained the calculated aircraft attitudes. Comparison of the measured and calculated data, for the evolutions in Table 5, indicated that a time delay of about 0.1 s occurred. This delay is assumed to apply to all data acquired from the 32

analogue channels during the S-70B-2 trials. The comparison of the measured and calculated pitch attitude for Evolution AL860 is shown in Figure 4.

Figure 4. Comparison of Measured with Calculated Pitch Attitude

Program S70B2Refine was modified to incorporate this time delay (Section 3.1.1). To include this correction when processing the data, the following change in response was required.

ARE INSTRUMENT & ANALOGUE FILTER DELAY ADJUSTMENTS REQRD : Y

4.4 Offset Errors in Doppler Velocity Data

Examination of the raw data for the hover evolutions (AT800 - AT807) indicated that an offset error was present in the doppler velocity channels. For all these evolutions, the doppler velocities consistently indicated a ground speed of about 3 ft/s backwards and about 3 ft/s upwards, which was inconsistent with the Rad Alt indication and comments in the evolution log (Appendix C).

Further examination of the hover data indicated that the aircraft was not perfectly trimmed during the recording runs, i.e. the aircraft was pitching, rolling, or yawing at a small angular rate. Because hover Evolutions AT801 and AT803 had the lower angular rates, program *Compat* (Ref. 12) was used for these evolutions to determine instrument offset errors. The mean errors for these evolutions were then used to adjust the offset values of the calibrations for the doppler velocities in the FOCFT_L.SET file, resulting in those shown in the SHAWKCAL calibration file (Appendix E) used by *S70B2Refine*.

Program Compat was run according to the method described in Ref. 12, but with some differences, which are discussed further below. Firstly, as in Ref. 12, since angular terms in the rigid body kinematic equations of motion used for compatibility checking are independent of the linear terms, the angular rate instrument offsets $(b_p, b_q, \text{ and } b_r)$ were determined. Secondly, the measured aircraft velocities in body axes $(u_m, v_m, \text{ and } w_m)$ were replaced with a constant value of zero (as these would be the actual body velocities in a perfect hover) and the offset errors in the accelerometers $(b_{ax}, b_{ay}, \text{ and } b_{az})$ were determined. Finally, the measured doppler velocities were used for the aircraft velocities in body axes, and the doppler velocity offsets $(b_u, b_v, \text{ and } b_w)$ were determined. Table 6 presents the offset errors estimated by Compat and the associated Cramer-Rao (C-R) bounds for the angular rate

gyros, the accelerometers, and the doppler velocities. As a general rule, if the C-R bound is less than one tenth of the estimated parameter, then a high level of confidence can be attached to the estimate. As can be seen in Table 6, a high degree of confidence is associated with the estimates for the accelerometer offsets, and a good degree of confidence associated with the angular rates and longitudinal and vertical doppler velocities. However, the lateral doppler velocity offset is not estimated with a high level of confidence. This is assumed to be because the offset error is small, i.e. the original calibration for the lateral doppler is reasonably accurate, and possibly within the accuracy of the device. Similarly, the C-R bound for b_q , Evolution AT801, is about one fifth of the estimate, although for AT803 it is about one fifteenth. This variation is attributed to the estimates of b_q being small.

Table 6. Instrument Offset Errors

Parameter	AT801	AT803	Mean
b_p (rad/s) Estimate	-0.001081	-0.000722	-0.0009
C-R Bound	0.000167	0.000191	
b_q (rad/s) Estimate	0.000515	0.001002	0.0008
C-R Bound	0.000101	0.000067	
b_r (rad/s) Estimate	0.005890	0.005402	0.0056
C-R Bound	0.000117	0.000075	
b_{a_x} (ft/s ²) Estimate	-0.534655	-0.657509	-0.60
C-R Bound	0.002614	0.002227	
$b_{a_{v}}$ (ft/s ²) Estimate	0.557048	0.495849	0.53
C-R Bound	0.003201	0.007004	
$b_{a_{\tau}}(\text{ft/s}^2)$ Estimate	0.309407	0.239789	0.27
C-R Bound	0.013513	0.007136	
b_u (ft/s) Estimate	-3.339330	-3.034545	-3.19
C-R Bound	0.082872	0.160176	
b_{v} (ft/s) Estimate	0.014445	0.585442	0.30
C-R Bound	0.108046	0.157710	
b_w (ft/s) Estimate	-3.064116	-2.853874	-2.96
C-R Bound	0.059965	0.110058	

As mentioned previously, the mean offset values in Table 6 were used to adjust the original offset factors in the FOCFT_L.SET files to obtain the final calibration file SHAWKCAL shown in Appendix E. Figure 5 shows a comparison of the calculated body velocities for AT803 obtained using optimised offset values for that evolution (from *Compat*) and using the mean offset values. Similar results were obtained using AT801. The variation using the optimised and mean values suggests that the mean values are a reasonable compromise to use for all the data.

Figure 5. Comparison of Calculated Velocities Using Mean Offsets and Optimised Offsets for AT803

4.5 Processing Data

Program S70B2Refine was used to process the raw data which had been converted to ASCII format ('.con' files). A number of responses required in running S70B2Refine had changed, compared to those in the example in Section 4.1, due to digital filtering and analogue filter delay adjustments (Sections 4.2 and 4.3). The calibration file used by S70B2Refine for processing the data was named SHAWKCAL (Appendix E). This calibration file includes digital filtering characteristics and corrected instrument calibration and offset factors (Sections 4.2 and 4.4). An example of how S70B2Refine was run for all of the performance data is shown below.

```
**************
* Program to process data obtained from S-70B-2
* Performance, Dynamic and First of Class Flight
* Trials held March-April 1994 using PC-based Data *
* Acquisition System.
* Data files must have ".con" extensions
*****************
Input Data Filename (w/o ".con" extension) = AT800
Is this an aircraft data file (default N): Y
".DAT" OUTPUT FILENAME (w/o ext) = S98AT800
TITLE (2 lines of 60 chrs)
: S98 AT800 Hover 3ft AGL IGE
: Hp=210ft Ta=17degC; Stable hover, little movement
ARE ASSIGNED BLK NUMBERS REORD : N
CALIBRATION FILENAME = SHAWKCAL
Day Number (Default is other than Day 1) = <CR>
IS PRE-PROCESSING WITH A NOTCH FILTER REQRD : N
OUTPUT INTERVAL (in 20 ths of sec; e.g. 40 for 2 sec) = <CR>
IS THE EXACT START TIME REQUIRED : N
STARTING TIME DELAY = <CR>
TIME LIMIT = <CR>
IS FILTERING REQRD : Y
IS OUTPUT OF FILTER CHARACTERISTICS REQRD : N
ARE DIGITAL FILTER DELAY ADJUSTMENTS REQRD :
IS SMOOTHING REQRD : N
ARE INSTRUMENT & ANALOGUE FILTER DELAY ADJUSTMENTS REQRD : {m Y}
ARE SCALES AND OFFSETS REQRD : Y
ARE PLOT LIMITS REORD : N
ARE DROP-OUTS TO BE CORRECTED : N
ARE ALL CHANNELS REORD : Y
DATE = 05-SEP-94
TIME = 13:37:13
No. time corrections =
No. blocks replaced =
No. drop-out corrections =
STOP 1
```

The program S70B2Refine produces a '.DAT' output file as described in Section 4.1. The '.DAT' file was the input file for program MacTrans which produced time history plots for all parameters (reproduced in the accompanying microfiche) and a '.COL' output file containing a listing of the data in imperial units.

The commands to produce the time history plots are shown below.

```
[TRANS version date 12-FEB-91]
GO STRAIGHT TO EVENT LOOP? N
I/P FILENAME = S98AT800
$98 AT800 Hover 3ft AGL IGE
Hp=210ft Ta=17degC; Stable hover, little movement
I/P FILE RECORDED ON 05-SEP-94
                                 AT 13:37:13
INTEGN INT = 0.0000E+00; RUN CPU TIME =
                                            2 MIN. 54.53 SEC.
TIME FROM 0.0000E+00 TO 2.3650E+01 IN STEPS OF 5.0000E-02
* PLS
IS GRAPHICS OUTPUT TO SCREEN REQUIRED :
[PLS/O Output, for this run, going to DSK:S98AT800.PLT
STRIP PLOTS :
BLKS
A
TO SPECIFY NO. OF X UNITS/INCH, TYPE 0 FOR X
LENGTH OF AXES IN INCHES; X, Y = 0,1
MIN X, NO. OF X UNITS/INCH = 0.5
ARE SYMBOLS REORD FOR PLOTS : N
LINE KEY (0 GIVES DEFAULT) = <CR>
THE CURRENT LINE COLOURS ARE:
0 & 1
        2
BLACK
        RED
                  GREEN
                           BLUE
        6
                  7
                           8
CYAN
        MAGENTA YELLOW
                           ORANGE
AVAILABLE COLOURS :
BLACK, RED, GREEN, LTGREEN, BLUE, LTBLUE, CYAN,
MAGENTA, PURPLE, YELLOW, ORANGE.
DO YOU WISH TO CHANGE THE COLOURS? : N
* GOE
*EXI
STOP
```

The plot files are automatically named by replacing the '.DAT' extension of the input file with a '.PLT.?' extension. The ? is a,b,c,d,e, or f, signifying the order in which the plots were produced. Each file contains a plot of up to eight variables. As an example, the file name containing time histories for the first eight variables, using as input the file S98AT800.DAT, would be S98AT800.PLT.a. The time history plots for AT800 are shown in Appendix F.

The output files containing numerical data in imperial units have a '.COL' extension. For example, using the input file S98AT800.DAT, the output file is named S98AT800.COL. An example of the commands for *Mactrans* to produce a '.COL' file is shown below. Part of file S98AT800.COL is shown in Appendix G.

The '.COL' file stores all 44 parameters in *MacTrans* column format. This file is used as an input file to program *S70B2Convert(ac)*, which converts the *MacTrans* column format to multi-column format that is more easily read in by other programs. The output file is renamed using the first eight characters from the name of the input file combined with the extension 'Out'. For example, when the input file is S98AT800.COL, the output file is

named S98AT800 Out. When S70B2Convert(ac) was run, the user was prompted for an input file, which in this case was S98AT800.COL.

```
[TRANS version date 12-FEB-91]
GO STRAIGHT TO EVENT LOOP? N
I/P FILENAME = S98AT800
S98 AT800 Hover 3ft AGL IGE
Hp=210ft Ta=17degC; Stable hover, little movement
I/P FILE RECORDED ON 05-SEP-94
                                  AT 13:37:13
INTEGN INT = 0.0000E+00; RUN CPU TIME =
                                            2 MIN. 54.53 SEC.
TIME FROM 0.0000E+00 TO 2.3650E+01 IN STEPS OF 5.0000E-02
* PRC
PRINTING IN COLUMNS :
BLKS
IS O/P TO TTY REQRD :
* GOE
** RUNNING **
*EXI
STOP
```

All data were stored on a DDS tape and a compact disk. A complete explanation of the data storage procedures is given in Appendix H.

5. RESULTS

For Sortie 98, the airfield tower indicated an initial wind velocity of 2 kn from 300°. The hover and low airspeed evolutions were conducted at low altitude in the vicinity of the airfield at the beginning of the sortie. The level flight, climbs, descents, and autorotations were all conducted at higher altitude away from the airfield. For these evolutions, the aircraft systems were used to determine the ambient wind velocity, which was then noted in the Evolution Log (Appendix C). Upon return to the airfield for the lower weight ground effect evolutions, a circuit was performed at low altitude to again allow use of the aircraft systems to determine the ambient wind speed. For the evolutions at sea, the wind velocity relative to the ship was indicated by the ship anemometer, and is indicated in Appendix C.

The time histories of all the performance data were examined and the time period for each evolution during which the aircraft was nominally trimmed was determined. Mean values for all channels for each evolution were calculated for this time period and are presented in Appendix I.

The DARTH system analogue channels have a maximum resolution of \pm 2048 counts. The maximum value that could be recorded for a particular channel could be found by applying the calibration and offset factors in the FOCFT_L.SET file. For the Rad Alt, this 'calibration' limit was about 200 ft, even though the Rad Alt instrument itself was effective at greater altitudes. Similarly, the calibration limit for the longitudinal and lateral doppler velocity was about 124 kn, and the calibration limit for the vertical doppler was about 41 kn (~4150 ft/min). These calibration limits were caused by instrumentation deficiencies, which could not be rectified in the time available. For the FOCFT evolutions (Ref. 3), none of these limits were exceeded, although for Sorties 98 and 99, the majority of the evolutions were

conducted at altitudes higher than 200 ft. Also, during some of the high speed evolutions, the ground speed exceeded 124 kn and the rate of descent exceeded 4150 ft/min. Table 7 details the evolutions during which the doppler velocity calibration limits were exceeded.

Evolution	Planned Event	Doppler Exceeded
AT824	140 kn Level Flight	Longitudinal
AT826	Descent 3300 fpm	Longitudinal
AT827	Repeat of AT826	Vertical
AT832	Climb 120 kn	Longitudinal
AT833	Descent 120 kn	Longitudinal
AT834	0 kn Autorotation	Vertical
AT835	80 kn Autorotation	Vertical
AT836	100 kn Autorotation	Vertical

Another problem with the doppler velocity channels was found to occur on Evolutions AT826, AT827, and AT834. The common factor with these evolutions is that they were all done at high altitude and all achieved high rates of descent. Examining the time histories of the performance data shows that for Evolutions AT826 and AT827, the lateral doppler measurements were uncharacteristically constant at values well below the calibration limit (~15.3 ft/s for AT826 and ~-7.6 ft/s for AT827). In addition, for AT826, the vertical doppler was reading an out-of-range value of incorrect sign (about -71.6 ft/s). The autorotation of AT834 may offer some clues for this behaviour as the data recording was continued during the recovery. The time histories show that during the descent, the longitudinal and lateral dopplers were reading constant values below the calibration limit (about 20.3 ft/s and 12.1 ft/s respectively) and the vertical doppler calibration limit had been exceeded. During the initial recovery, indicated by the rapid lowering of the aircraft pitch attitude to increase airspeed, the three doppler velocities began to read non-constant values, but as the aircraft airspeed increased, the pitch attitude was increased to arrest the descent and the dopplers again started to record constant values (about 78.4 ft/s, 8.7 ft/s, and 42.1 ft/s for the longitudinal, lateral, and vertical dopplers respectively). This suggests that a combination of high altitude, high rate of descent, and high aircraft attitude may render the doppler measurements unreliable. Further investigation would be required to confirm this.

Examination of the hover data indicated that a possible error in the calibration factors for the stabilator angle measurements was present. In hover, the stabilator angle should read -40°, but the data indicated about -36.4°. This offset was not noticed until after the data processing had been completed, so the archived stabilator angle measurements, those data presented in Appendix F, and the accompanying microfiche should all be corrected, as detailed in Appendix J. However, it should be noted that the mean stabilator angle data presented in Appendix I have been corrected.

Except for the evolutions noted above, the time histories show that the data are of good quality and reliability. The low wind speed conditions at the beginning of the sortie were ideal for the hover and low airspeed evolutions in particular, since the aircraft systems are incapable of determining the true airspeed below about 30 kn airspeed, i.e. the dopplers were used to indicate groundspeed which was about the same as the airspeed. For the higher speed evolutions, the ambient wind is less critical and the airspeed is more accurately indicated by the aircraft instruments.

6. CONCLUDING REMARKS

Measurements have been gathered representing the performance characteristics of the Sikorsky S-70B-2 helicopter. These measurements have been examined and shown to be generally of good quality and reliability. A spectral analysis has been conducted to identify the frequency of noise present in the recorded data. Offset errors in some of the instrumentation calibrations have been resolved, and phase lags due to instrumentation filters have been determined. The data processing software has been modified to account for the effects outlined above, as well as specific changes required for the particular trial, and has been shown to be working correctly. All the data have been processed and archived in a form suitable for future use in developing a mathematical model of the S-70B-2 helicopter. The low speed data in particular are expected to be of good quality, as the atmospheric conditions of the day were ideal for this kind of testing.

ACKNOWLEDGEMENT

The authors would like to express their appreciation to Rodd Perrin, a member of AOD at the time, for extracting the stabilator scheduling equations from program *GenHel*, and creating the Microsoft *Excel* spreadsheet which used these equations to determine the stabilator angles.

REFERENCES

- 1. Henschke, M., "S-70B-2/FFG-7 First of Class Flight Trial Report," Aircraft Maintenance and Flight Trials Unit Report 3/93, Royal Australian Naval Air Station, Nowra, Australia, November 1995.
- 2. Arney, A. M. and Fieldhouse, I., "Australian Airborne Trials of the Sikorsky S-70B-2 Helicopter: Part II Flight Dynamic Measurements," DSTO Document (in preparation), Defence Science and Technology Organisation, Department of Defence, Australia.
- 3. Arney, A. M. and Fieldhouse, I., "Australian Airborne Trials of the Sikorsky S-70B-2 Helicopter: Part III FFG-7 First of Class Flight Trial Measurements," DSTO Document (in preparation), Defence Science and Technology Organisation, Department of Defence, Australia.
- 4. Harvey, J. F. and Kent, S. A., "A Computer Controlled Data Acquistion System," DSTO Technical Note 12, Defence Science and Technology Organisation, Department of Defence, Australia, August 1993.
- 5. Holland, O. F., Harvey, J. F., and Sutton, C. W., "A Versatile Airborne Data Acquisition and Replay (VADAR) System," DSTO Technical Report 0368, Defence Science and Technology Organisation, Department of Defence, Australia, August 1996.
- 6. Blackwell, J., Dutton, S., Toffoletto, R., and Harvey, J. F., "Variable Control System Limits on Black Hawk and Seahawk Helicopters," DSTO Flight Mechanics Report 191, Defence Science and Technology Organisation, Department of Defence, Australia, October 1992.
- 7. Arney, A. M., "FFG-7 Ship Motion and Airwake Trial: Part I Data Processing Procedures," DSTO Technical Report 0039, Defence Science and Technology Organisation, Department of Defence, Australia, July 1994.
- 8. Gilbert, N. E., "Data Reduction Procedures for Sea King Helicopter Flight Trials," ARL Aerodynamics Technical Memorandum 338, Melbourne, Australia, May 1982.

DSTO-TR-0463

- 9. Perrin, R. H. and Feik, R. A., "Application of a Notch Digital Filter to Elimination of Sinusoidal Disturbances from Helicopter Flight Data," ARL Aerodynamics Technical Memorandum 382, Melbourne, Australia, April 1986.
- Blackwell, J., "Using Static Load Deflection Measurements to Develop an Undercarriage Model for the Sikorsky S-70B-2 Helicopter," DSTO Technical Report (in preparation), Defence Science and Technology Organisation, Department of Defence, Australia.
- 11. Blunt, D. M., "The Conversion of a Fortran Data Plotting Program Using DI-3000 Graphics to Operation on a Macintosh Personal Computer," ARL Flight Mechanics Technical Memorandum 446, Melbourne, Australia, September 1991.
- 12. Arney, A. M., "FFG-7 Ship Motion and Airwake Trial: Part II Removal of Ship Motion Effects from Measured Airwake Data," DSTO Technical Report 0093, Defence Science and Technology Organisation, Department of Defence, Australia, October 1994.
- 13. Howlett, J. J., "UH-60A Black Hawk Engineering Simulation Program: Volume I Mathematical Model," NASA Contractor Report 166309, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California, USA, December 1981.
- 14. Howlett, J. J., "UH-60A Black Hawk Engineering Simulation Program: Volume II Background Report," NASA Contractor Report 166310, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California, USA, December 1981.
- 15. Ballin, M. G., "Validation of a Real-Time Engineering Simulation of the UH-60A Helicopter," NASA Technical Memorandum 88360, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California, USA, 1987.
- Arney, A. M. and Blackwell, J., "Australian Dynamic Testing of Sikorsky S-70B-2 Helicopters in Support of Operations from Ships," NCP 95/1, Proceedings of the 6th Australian Aeronautical Conference, held in Melbourne, 20-22 March 1995, Institution of Engineers, Australia, 1995.

APPENDIX A - ADMINISTRATION FILE 'AT800.ADM'

S-70B-2 / FFG FOCFT FEB94

Aircra	ft Admir	File

Sortie	98
Evolution	T800
Pilot Rating	1
Time	

AIRCRAFT PARAMETERS:

Basic Weight	15928
Basic Moment	5654691
Total Fuel	3670
Internal	3670
External (Port)	0
External (Stbd)	0
Total Ballast	420
Ballast Blocks	10
Total Weight	20018
Target Weight (Corrected) Actual Weight (Corrected) Percent Error in W/Sigma	18000 19964 10.9
Max forward CofG Max aft CofG	346.8 364

ENVIRONMENTAL CONDITIONS:

OAT	Ι/
Pressure Altitude	210
Sigma	1.0027
Wind Direction	
Wind Speed	

EVOLUTION PARAMETERS:

Ships Pitch	0	
Ships Roll	0	
Target Q/Sigma	1	06
Average Torque	0	
Average Torque (Correc	ted). 0	
Maximum Torque	0	
Maximum Torque (Correc	ted). 0	

SORTIE PARAMETERS:

Sortie	Date	06-04-94
Sortie	Start Time	07:10:08

OTHER INFORMATION:

Last Landing	L192
Last Takeoff	T198
Last Startup	U64
Last Shutdown	
Configuration file	FOCFT_L.SET

COMMENTS:

APPENDIX B - WEIGHT CORRECTIONS

Corrections to the weight and cg calculations for Sortie 98 and Evolution AL174 of Sortie 21 are given here. These corrections were required because of incorrect weight figures in the respective '. ADM' files.

Before each sortie, AMAFTU personnel determined a weight and balance chart for the helicopter. Table B1 is a reproduction of the chart for Sortie 98. Some of the terms used in the weight and balance charts and the '.ADM' files are not consistent. The main differences are listed in Table B2. This appendix will use the terms from the weight and balance chart.

Table B1. S-70B-2 Weight and Balance Chart for Sortie 98

SEAHAWK WEIGHT AND BALANCE	CALCULA	TIONS			
SORTIE NO:	98				
CONFIG:	19000				
DATUM WEIGHT		Max Aft	CofG	Маж	
19244		364.	0		346.8
Maximum shipborne weight is	20800	lbf			
<u>Item</u>	Wt	<u>Arm</u>	Inc	Tot. Wt	
Basic Weight (Incl. Inst)	13501	361.8	1	13501	
Aircrewman's Seat (RH Aft) Ballast Box (Fwd Cabin)	16	363.0	1	16	5808
Ballast Box (Fwd Cabin)	547	275.0	1		150425
Sonobuoy Launcher Ballast Fwd Port Ext. Stores Ballas	290	267.8	1	290	77662
Fwd Port Ext. Stores Ballas	t 592	320.0	0	0	0
Port PDT	495	366.2	0	0	0
STBD PDT	495	397.7	0	0	0
Port Ext Fuel Tank	124		0	0	0
STBD Ext Fuel Tank	124	397.4	0	0	0
CREW					
Pilot & Copilot	200	227.1	2	400	
VADAR Operator		363.2	1	200	
Aircrewman	200	363.2	1	200	72640
Fuel Empty Zero Variable Ballast	Weight 8	Moment	15154	5355008	
VARIABLE BALLAST					
Ballast Weights	42	275.0	10	420	115500
Fuel Empty Gross Weight & M	Ioment			15574	5470508
FUEL					
Fuel (Int)	3670	402.5	1	3670	1477175
Fuel (Ext Port)	0	365.9	0	0	0
Fuel (Ext STBD)	0	397.4	0	0	0
Total Fuel				3670	1477175
DATUM ALL UP WEIGHT AND MOM	MENT		19244	6947683	
DATUM CG POSITION	361.0				

Table B2. Equivalent Terms in '.ADM' Files and Weight and Balance Charts

'.ADM' File	Weight and Balance Chart
Basic Weight	Fuel Empty Zero Variable Ballast Weight
Basic Moment	Fuel Empty Zero Variable Ballast Moment
Total Weight	All Up Weight

B1. Corrections For Sortie 98

Prior to Sortie 98, two torpedos (PDT in Table B1) were carried, but no aircrewman. For Sortie 98, the torpedos were removed and an aircrewman added, but the 'Fuel Empty Zero Variable Ballast Weight' entered in the '.ADM' file remained unchanged. Thus the calculated values for the weight and cg in the '.ADM' files for Sortie 98 are incorrect. Below is a calculation showing that the incorrect 'Fuel Empty Zero Variable Ballast Weight' entered in the '.ADM' file and the correct 'Fuel Empty Zero Variable Ballast Weight' from Table B1 are consistent with the items added and removed.

Incorrect Fuel Empty Zero Variable Ballast Weight	$= 15928^{\dagger} lbf$
Torpedo Weight (2 off)	= 990‡ lbf
Aircrewman Weight	= 200 [‡] lbf
Aircrewman's Seat	= 16 [‡] lbf
Corrected Fuel Empty Zero Variable Ballast Weight	= 15928 - 990 + 200 + 16
	= 15154 lbf

The 'All Up Weight' and cg were recalculated for all evolutions in Sortie 98 and are given in Appendix C. An example of the calculation is shown below for Evolution AT800.

Item	Weight	Arm	Moment
	(lbf)	(in)	(lbf.in)
Fuel Empty Gross Weight & Moment	15574 [‡]		5470508 [‡]
Fuel	<u>3670 [†]</u>	402.5‡	1477175
All Up Weight & Moment	19244		6947683

CG Position = 6947683/19244 = **361.0**

B2. Corrections For Evolution AL174 Sortie 21

For Evolution AL174 in Sortie 21, the fuel weight recorded in the '. ADM' file was the same as for Evolution AL173 and was assumed to have been incorrectly input by the DARTH operator. A correction was made by estimating fuel flow between Evolutions AL171 and

[†] Value from '. ADM' file (Appendix A).

[‡] Value from weight and balance chart (Table B1).

AL173,¹ taking the time elapsed between Evolutions AL173 and AL174, then calculating the amount of fuel used. For the calculations below, the fuel used and time elapsed between Evolutions AL171 and AL174 were obtained from the respective '.ADM' files.

STEP 1. Calculate Fuel Flow Rate.

Time between Evolutions AL171 and AL173	= 1758 s
Fuel used between Evolutions AL171 and AL173	= 350 lb
Fuel Flow Rate = 350/1758	= 0.20 lb/s

STEP 2. Calculate Fuel Used.

Time between Evolutions AL173 and AL174 = 393 s

Fuel used between Evolutions AL173 and AL174 = $393 \times 0.2 = 79 \text{ lb}$

As fuel quantities were always rounded to the nearest 10 lb, the fuel usage was set to 80 lb.

STEP 3. Calculate Weights and Moments for Evolution AL174.

Item	Weight	Arm	Moment
	(lbf)	(in)	(lbf.in)
Fuel - AL173	2770		
Fuel Used AL173 - AL174	80		
Fuel - AL174	2690	402.5	1082725
From weight and balance chart for Sortie 21,			
Fuel Empty Gross Weight & Moment	+ 16726		+ 5874141
All Up Weight & Moment - AL174	19416		6956866

CG Position = 6956866/19416 = **358.3**

Evolution AL172 was skipped in calculating the average fuel flow rate in order that an average over a longer period of time could be found.

APPENDIX C - PERFORMANCE EVOLUTION LOG

This appendix contains atmospheric data, corrected weight and cg position, and comments made for all performance evolutions. The pressure altitude (H_p) was read from the aircraft altimeter and the ambient temperature (T_a) was read from the aircraft Outside Air Temperature (OAT) gauge.

Table C1. Hover

File #	Time	Height AGL (ft)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	<i>cg</i> (in)	Comments
AT800	7:10:55	3 IGE	210	17	1.0027	19244	361.0	Stable Hover - little movement.
AT801	7:12:47	10 IGE	210	17	1.0027	19194	360.9	Stable Hover - little movement.
AT802	7:14:07	15 IGE	210	17	1.0027	19174	360.9	Same rocking and rolling.
AT803	7:15:13	20 IŒ	210	17	1.0027	19154	360.8	Some rocking and rolling.
AT804	7:16:10	30 IŒ	210	16	1.0062	19134	360.8	Stable Hover - little movement.
AT805	7:17:26	40 IGE	210	16	1.0062	19104	360.7	Stable Hover - little movement.
AT806	7:18:23	50 IGE	210	16	1.0062	19094	360.7	Stable Hover - little movement.
AT807	7:19:43	100 Œ	210	16	1.0062	19064	360.6	Stable Hover - little movement.

Table C2. Low Airspeed

File #	Time	Airspeed (KIAS)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	<i>cg</i> (in)	Comments
808TA	7:23:06	15 Fwd	380	18	0.9931	18994	360.5	High nose up.
AT809	7:25:08	30 Fwd	380	18	0.9931	18964	360.4	High nose up; vibration apparent.
AT810	7:27:12	15 Aft	380	18	0.9931	18924	360.3	High nose up; vibration apparent (more than 30 km fwd).
AT811	7:29:00	30 Aft	380	18	0.9931	18864	360.2	High nose up; vibration apparent (less than 15 km aft).
AT812	7:31:00	15 Port	380	18	0.9931	18854	360.2	Relatively less vibration; some rock & roll (lots of right pedal).
AT813	7:32:50	30 Port	380	18	0.9931	18814	360.1	Much smoother than others.
AT814	7:34:48	15 Stbd	380	18	0.9931	18764	360.0	Smooth (much smoother than left).
AT815	7:36:39	30 Stbd	380	18	0.9931	18744	359.9	Vibration as in transition.

Table C3. Vertical Climb/Descent

File #	Time	RoC/D (fpm)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	cg (in)	Comments
AT818	7:47:17	600	1000	20	0.9644	18584	359.6	(approx 90% Q) Climb begins very low at 40 ft, Heading 330 & going backwards to zero wind. Recordings begin at approx 150 ft - finished at 1000ft - wind 9 km at 330.
AT819	7:50:01	1200	1000	20	0.9644	18544-	359.5	(approx 98% Q) Very stable climb.
AT820	7:52:37	1800	1000	20	0.9644	18514	359.4	(approx 106% Q) Stable climb.
AT825	8:06:08	600	1500	20	0.9467	18304	358.9	Descents away from airfield (beginning at 4000 ft); at 1500, Wind 320 at 6 km. Recording beginning at 1700 ft; comfortable descent.
AT826	8:14:48	3300	2500	19	0.9160	18164	358.6	Atmospherics at 2500, Wind 17 km (backwards to nill wind). Setting up at 5000 ft (at 4000 things happen too quickly) - start with an autorotation then bring back to zero airspeed, then pull in power (avoids vortex ring) - airspeed too high (try again AT827).
AT827	8:19:15	3300	2500	19	0.9160	18104	358.4	V. bumpy & beginning to get vortex ring; otherwise good datum.

Table C4. Level Flight

File #	Time	Airspeed (KIAS)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	cg (in)	Comments
AT821	7:56:11	40	1500	20	0.9470	18444	359.2	Stable, not much vibration (<30 km).
AT822	7:57:50	80	1500	20	0.9470	18424	359.2	Wind indicating 6km from 320. Stable -some rock & roll - little vibration (<40 km).
AT823	7:59:36	120	1500	20	0.9470	18404	359.1	Bumpy - more rock & roll (smoother towards end of run).
AT824	8:01:36	140	1500	21	0.9437	18364	359.0	Bumpy in parts (smoother at start of run). Vh limited due to chicken sticks in place of radome.

Table C5. Forward Climb / Descent

File #	Time	Airspeed (KIAS)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	<i>cg</i> (in)	Comments
AT828	8:22:54	40	1500	20	0.9470	18064	358.3	Climb; stable, smooth.
AT829	8:24:21	40	1500	20	0.9470	18044	358.3	Descent; vibration upon entry (before recording), otherwise smooth.
AT830	8:26:32	80	1500	20	0.9470	18014	358.2	Climb; Recordings attempted at datum height (1500 ft) climb very smooth.
AT831	8:28:32	80	1500	20	0.9470	17984	358.1	Descent; very smooth.
AT832	8:30:49	120	1500	20	0.9470	17954	358.1	Climb; smooth - a little bumpy towards end.
AT833	8:33:09	120	1500	20	0.9470	17914	358.0	Descent smooth.

Table C6. Autorotation - All at $H_{\rm p}$ 1500 ft

File #	Time	Airspeed (KIAS)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	<i>cg</i> (in)	Comments
AT834	8:36:41	0	3800	20	0.9470	17854	357.8	Nr101 good - recording began 2000 ft; pitch, pull (Nr went to 94) and flare (fairly violent). Vert auto uncomfortable - need 1000 ft to recover airspeed. 3800 ft/min descent.
AT835	8:39:53	80	2500	20	0.9470	17814	357.7	Nr 102 - 101, reduced to 93 in pull out. Airspeed to 20 km, 2500 ft/min descent.
AT836	8:43:39	100	2900	20	0.9470	17754	357.6	Nr 101, reduced to 98 in pull out, 2900 ft/min descent.

Table C7. Ground Effect Study - Over Land

File #	Time	Height AGL (ft)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	cg (in)	Comments
AT816	7:39:09	10	210	17	1.0027	18714	359.9	Smooth hover.
AT817	7:40:16	15	210	17	1.0027	18684	359.8	Same rock and roll.
AT837	9:33:11	10	220	22	0.9854	16154	353.1	4 kn backwards to compensate for wind.
AT838	9:34:51	15	220	22	0.9854	16094	352.9	4 kn backwards to compensate for wind.
AT839	9:36:39	100	400	22	0.9790	16084	352.9	4 kn backwards to compensate for wind.

Table C8. Ground Effect Study - At Sea

File #	Time	Height AFD (ft)	H _p (ft)	T _a (°C)	σ	Weight (lbf)	cg (in)	Comments
AL:100	12:35:13	5	-180	14	1.0276	19762	359.6	Sortie 12, relative wind 6 km from 160°.
AL151	17:39:50	15	-400	16	1.0286	17654	360.3	Sortie 17, relative wind 1 km from 155°.
AL152	17:46:13	15	-400	16	1.0286	17564	360.1	Sortie 17, relative wind 1 kn from 150°.
AL158	19:19:00	10–15	-4 20	16	1.0293	17498	360.4	Sortie 18, light spray, relative wind 1 kn from ahead.
AL159	19:25:43	10-15	-420	16	1.0293	17418	360.2	Sortie 18,1ight spray, relative wind 2 kn from 350°.
AL173	22:14:45	10	-400	20	1.0145	19496	358.5	Sortie 21, 9 ft hover, 10 s, relative wind 1 kn from 255°.
AL174	22:21:18	10	-400	20	1.0145	19416	358.3	Sortie 21, 10 ft hover, 20 s, relative wind 0.5 km from 250°.

APPENDIX D - DARTH SET-UP FILE 'FOCFT_L.SET' FOR SORTIE 2

The DARTH set-up files are of the form of a single column. For the purpose of this report, the file has been split into two columns.

```
-5V to +5V
Twos complement
7/03/94
5:37:57.72
                                              A07
A01
                                              Doppler - Longitudinal Velocity
Pitch Rate
20
                                              -2.7999999999927E+0000
 2.14999999999918E-0001
                                              6.10350000000039E-0002
-1.95310000000006E-0002
                                              -0.0000000000000E+0000
 0.0000000000000E+0000
                                              -4.0000000000205E-0002
 0.0000000000000E+0000
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
                                              Doppler - Lateral Velocity
Roll Rate
                                              20
20
                                              -1.2000000000073E+0000
-1.00000000000023E-0001
                                               6.10351000000264E-0002
 1.95310000000006E-0002
                                               0.0000000000000E+0000
 0.00000000000000E+0000
                                              1
                                               0.0000000000000E+0000
-7.8999999999509E-0002
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
                                              Doppler - Vertical Velocity
Yaw Rate
                                              20
20
                                              -2.5000000000000E+0000
-4.00000000000091E-0001
                                               2.0344999999918E-0002
 1.95310000000006E-0002
                                               0.0000000000000E+0000
 0.0000000000000E+0000
                                              1
                                               0.0000000000000E+0000
-4.00000000000205E-0002
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
                                              AFCS Output - Pitch
Lateral Acceleration
20
                                               4.7000000000000E+0001
-5.0000000000000E-0001
                                               1.08899999999949E-0001
 2.0929999999928E-0002
                                               0.0000000000000E+0000
 0.0000000000000E+0000
                                              2
                                              -1.5439999999987E+0000
 4.00000000000205E-0002
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
                                              A11
                                              AFCS Output - Roll
Longitudinal Acceleration
                                              20
                                               5.0500000000000E+0001
 1.3999999999964E+0000
                                               1.08899999999949E-0001
 2.0929999999928E-0002
                                               0.0000000000000E+0000
 0.0000000000000E+0000
                                              2
                                              -1.6630000000047E+0000
-7.8999999999509E-0002
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
                                              A12
                                              AFCS Output - Collective
Vertical Acceleration
                                              20
20
                                               7.5000000000000E+0001
-3.21500000000233E+0001
                                               1.0889999999949E-0001
-2.0929999999928E-0002
                                               0.00000000000000E+0000
 0.0000000000000E+0000
                                              -1.42599999999948E+0000
-3.76199999999881E+0000
                                              12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
```

DSTO-TR-0463

AL3	A20
AFCS Output - Yaw	Pedals - Pre-Mix
20	20
5.8000000000000E+0001	4.6900000000233E+0001
1.08899999999949E-0001	4.9803999999946E-0002
0.0000000000000E+0000	-2.49999999999903E-0006
2	2
-1.3459999999955E+0000	-2.3359999999933E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	
A14	A21
Primary Jack - Fwd	No 1 Engine Torque
20	20
4.9306400000013E+0001	0.0000000000000E+0000
-3.0020000000075E-0002	6.6900000000324E-0002
2.0990000000020E-0007	-0.000000000000E+0000
2	"1
-2.3760000000020E+0000	-4.0000000000205E-0002
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	
A15	
	A22
Primary Jack - Aft	No 2 Engine Torque
5 25122222222222222	20
5.2510000000093E+0001	0.000000000000E+0000
2.6422999999941E-0002	6.6900000000324E-0002
-3.46599999999798E-0007	0.000000000000E+0000
2	1
-2.4550000000175E+0000	0.000000000000E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
A16	A23
Primary Jack - Lateral	Weight on Wheels
20	20
4.97689999999711E+0001	0.000000000000E+0000
-2.9678999999874E-0002	1.0000000000000E+0000
-1.0259000000007E-0007	0.000000000000E+0000
2	1
-3.0099999999840E+0000	-5.0690000000314E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
A17	A24
Cyclic Longitudinal - Pre-Mix	Radar Altitude
20	20
5.0840000000256E+0001	-5.1760000000093E+0001
3.22118000000273E-0002	1.2170000000033E-0001
-1.91920000000090E-0007	0.0000000000000E+0000
2	1
-2.4550000000175E+0000	0.000000000000E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
A18	A25
Cyclic Lateral - Pre-Mix	Air Speed
20	20
5.0200000000116E+0001	6.50999999999767E+0001
2.92975000000126E-0002	3.08259999999905E-0002
3.53550000000216E-0007	0.0000000000000E+0000
2	1
-2.49499999999898E+0000	-4.98999999999796E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
A19	A26
Collective - Pre-Mix	Yaw - Post-Mix
20	20
5.03379999999888E+0001	5.0413000000005E+0001
3.1997999999873E-0002	2.8887999999949E-0002
1.0587000000063E-0006	-9.7360000000671E-0007
2	2
-2.2570000000143E+0000	-2.3760000000020E+0000
12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)	12.5 Hz, 8 Pole, Elliptic (LTC-1064-1)
, 0 10+0, DILIPUTC (DIC-1004-1)	14.3 HZ, O FOIE, EITIPCIC (LIC-1064-1)

A27		DI3
Post Mix - Pitch Aft		Ch Not Used
20		0
3.08120000000054E+0000		0.00000000000000E+0000 1.00000000000000E+0000
9.75000000000392E-0004 0.00000000000000E+0000		0.0000000000000E+0000
2		DI4
-2.2570000000143E+0000		Ch Not Used
12.5 Hz, 8 Pole, Elliptic	(LTC-1064-1)	0
A28		0.0000000000000E+0000
Post Mix - Pitch Fwd		1.00000000000000E+0000 0.00000000000000E+0000
20 6.22080000000278E+0000		DI5
7.24650000000437E-0004		Ch Not Used
0.0000000000000E+0000		-0
2		0.0000000000000E+0000
-1.1880000000010E+0000	1061 11	1.0000000000000E+0000
12.5 Hz, 8 Pole, Elliptic	(LTC-1064-1)	0.00000000000000E+0000 DI6
A29 Post Mix - Roll Aft		Ch Not Used
20		0
6.10050000000047E+0000		0.0000000000000E+0000
9.8007000000666E-0004		1.0000000000000E+0000
0.0000000000000E+0000		0.0000000000000E+0000
2		DI7 Ch Not Used
-2.49499999999898E+0000 12.5 Hz, 8 Pole, Elliptic	(IJTC-1064-1)	0
A30	(DIC 1001 1)	0.0000000000000E+0000
Post Mix - Roll Fwd		1.0000000000000E+0000
20		0.0000000000000E+0000
5.44819999999891E+0000		DI8
9.7550000000018E-0004		Ch Not Used 0
0.00000000000000E+0000 2		0.0000000000000E+0000
-2.2570000000143E+0000		1.00000000000000E+0000
12.5 Hz, 8 Pole, Elliptic	(LTC-1064-1)	0.0000000000000E+0000
A31		D01
Pitch Bias Actuator		Ch Not Used 0
20 3.25700000000070E+0001		0.0000000000000E+0000
4.096700000000033E-0002		1.0000000000000E+0000
0.0000000000000E+0000		0.0000000000000E+0000
1		D02
-4_0000000000000E+0000	(=== 1054 1)	Ch Not Used
12.5 Hz, 8 Pole, Elliptic	(LTC-1064-1)	0 0.00000000000000E+0000
A32 Event Marker		1.0000000000000E+0000
20		0.00000000000000E+0000
-1.0000000000023E-0001		DO3
2.5000000000128E-0003		Ch Not Used
0.0000000000000E+0000		0 0.00000000000000E+0000
1		1.0000000000000E+0000
0.00000000000000E+0000 12.5 Hz, 8 Pole, Elliptic	(тлс-1064-1)	0.0000000000000E+0000
DI1	(224 244 27	DO4
Ch Not Used		Ch Not Used
0		0
0.0000000000000E+0000		0.00000000000000E+0000 1.0000000000000E+0000
1.00000000000000E+0000 0.0000000000000E+0000		0.00000000000000E+0000
DI2		D05
Ch Not Used		Ch Not Used
0		0
0.0000000000000E+0000		0.00000000000000E+0000
1.00000000000000E+0000		1.00000000000000E+0000 0.00000000000000E+0000
0.0000000000000E+0000		3.0000000000000000000000000000000000000

DSTO-TR-0463

Unsigned

DO6	SY2
Ch Not Used	
0	0
0.0000000000000E+0000	0.000000000000E+0000
1.0000000000000E+0000	1.000000000000E+0000
0.0000000000000E+0000	0.000000000000E+0000
D07	Unsigned
Ch Not Used	SY3
0	Heading (AHRS)
0.0000000000000E+0000	20
1.0000000000000E+0000	0.000000000000E+0000
0.0000000000000E+0000	5.4931999999653E-0003
DO8	0.000000000000E+0000
Ch Not Used	Unsigned
0	SY4
0.0000000000000E+0000	Stabilator Angle
1.0000000000000E+0000	20
0.0000000000000E+0000	0.000000000000E+0000
DA1	5.4931999999653E-0003
Pitch - Post-Mix (%)	0.000000000000E+0000
20	Signed
0.00000000000000E+0000	SY5
4.88520000000108E-0002	Pitch (Gyro)
0.0000000000000E+0000	20
DA2	0.000000000000E+0000
Roll - Post-Mix (%)	-5.4931999999653E-0003
20	0.00000000000E+0000
0.0000000000000E+0000	Signed
4.88520000000108E-0002	SY6
0.0000000000000E+0000	Roll (Gyro)
SY1	20
	0.000000000000E+0000
0	5.4931999999653E-0003
0.0000000000000E+0000	0.000000000000E+0000
1.0000000000000E+0000	Signed
0 0000000000000000000000000000000000000	

APPENDIX E - CALIBRATION FILE SHAWKCAL

(Alpha, dF) (Min Freq., Max Freq., Exp Freq.)	0.0000E+00	DSTO-TR
Trial Smoothing Characteristics Limits (Freq, Atten) (No. Pts Smoothed) r, Upper) (No. Poles)	-5.0000E+01 4.0000E+00 5.0000E+01 2.5000E+02 -1.0000E+01 4.0000E+00 5.0000E+01 1.0000E+01 4.0000E+00 5.0000E+01 1.0000E+01 4.0000E+00 5.0000E+01 1.0000E+01 4.0000E+00 5.0000E+01 2.5000E+01 4.0000E+00 5.0000E+01 1.0000E+01 4.0000E+00 5.0000E+01 1.0000E+01 4.0000E+00 5.0000E+01 1.0000E+02 5.0000E+01 1.0000E+02 5.0000E+01 1.0000E+02 6.000E+02 1.0000E+02 6.000E+02 1.0000E+02 6.000E+00 1.0000E+00 6.000E+00	0.0000E+00 2.0000E+02 0.0000E+00 1.5000E+02
for S70B2 Performance 1994) .me] Filter Characteristics actor, Assigned Plot	0 0 0 0 0 0 0 0 0 11 2 2 2 1 2 2 2 2 1 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0
chrs) March 1994) Astes time] Fil Cal Factor, Offset	5.0000E-02 0.0000E+00 1.9531E-02 1.9531E-02 1.9531E-02 1.9531E-02 1.9531E-02 1.9531E-02 1.9531E-02 1.9531E-02 2.029E-02 2.0929E-02 2.0929E-02 2.0929E-02 2.0929E-02 1.9999E+00 2.0929E-02 1.9999E+00 2.0929E-02 1.9999E+01 1.0899E-01 1.0889E-01 1.0889E-01 1.0890E-01 1.0890E-01 1.0890E-01 2.6422E-02 3.2500E+01 2.2500E+01 2.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01 3.2500E+01	3.2212E-02 5.0840E+01 2.9296E-02 5.0200E+01
TITLE (2 lines of 60 chrs) Aircraft calibration file August 1994 (Trials March [Channel no1 denotes ti Channel Label Cal Fa	Time (s) Pitch Rate (deg/s) Roll Rate (deg/s) Yaw Rate (deg/s) Lat Accel (ft/s/s) Long Vel (ft) Accel (kn) Dop. Vert Vel (kn) AFCS Pitch (%) AFCS Roll (%) AFCS Roll (%) AFCS Yaw (%) Prim Jack Fwd (%) Prim Jack Fwd (%) Prim Jack Fwd (%) Prim Jack Fwd (%)	7 % 7 %
TITLE (2 lir Aircraft cal August 1994 [Channel no. No.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	17

-5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -5.0000E+00 -1.0000E+01 -1.000

00000	1.0000E+00	1.0000E+00	0.0000E+00	1.0000E+00		0.0000E+00	0.0000E+00	4.8852E-02	0.0000E+00	1.0000E+00	1.0000E+00	0.0000E+00	0.0000E+00	5.4932E-03	0.0000E+00	-5.4932E-03	5.4932E-03	.0000E+0	1.0000E+00	1.0000E+00	0.0000E+00			Ţ	Factor	3														
Dai	rst (deg)	Start	Time	Not used	Not Used	Pitch pM	(%)	Roll PM	(%) Not 11202		Not Used	Dooding	AHRS (dea)			(deg)	Roll Gyro	(deg)	Not Used	Not Used			IONS		NO.	· •														
45	n *	46		*	48	49	:	50	ר ד	T C	52	n 2	ה ה	54	U	0	26		57	58			EXCEPTIONS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cilanne. No.	• •														
_															•								•	•																
0.0000E+00	1.5000E+02	-4.0000E+01	4.0000E+01	5.0000E+00	2.0000E+01	5.0000E+01 -2.0000E+01	2.0000E+01	-2.0000E+01	Z.UUUUE+UI -2 0000医+01	2.0000E+01	0.0000E+00	-1.0000E+02	1.0000E+03	-5.0000E+00	5.0000E+00	1.0000E+02	0.0000E+00	1.0000E+02	0.0000E+00	5.0000E+02	7.0000E+02	-5.0000E+00	5.0000E+00	-5.0000E+00 5.0000E+00	-5.0000E+00	5.0000E+00	-5.0000E+00	-5.0000E+00	5.0000E+00	-5.0000E+00 5.0000E+00	-5.0000E+00	5.0000E+00	-5.0000世+00	5.0000E+00 -5.0000E+00	5.0000E+00	-5.0000E+00	5.0000E+00	-5.0000E+00	00140000	5.0000E+00
0	•	Н	r	1	c,	4		ស	v)	7	œ)	σ	30)	31	į	109	602		10		Ţ	12	:	13	14	L	12	16	1	17	603)	604	!	605	909)))
3.1998E-02	5.0338E+01	4.9804E-02	4.6900E+01	0.0000E+00	6.6900E-02	1.0000E+00	0.0000E+00	1.2170E-01	3.0826E-02	6.5099E+01	2.8888E-02	9.7500E-04	3.0812E+00	7.2465E-04	6.2208E+00	6.1005E+00	9.7550E-04	5.4482E+00	4.096/E-02	2.5000E-03	-1.0000E-01	1.0000E+00	0.0000E+00	1.0000E+00	1.0000E+00	0.0000E+00	1,0000時+00	1.0000E+00	0.0000E+00	0.0000E+00	1.0000E+00	0.0000E+00	1.0000E+00	1.0000E+00	0.0000E+00	1.0000E+00	0.0000E+00	1.0000E+00	1.00001	0.0000E+00
Collective	_	$\overline{}$	Pre-Mix Engine 1	Torque (%)	Engine 2	Wt-Wheels)	;	Rad Alt	Air Speed	(kn)	Yaw Doetm (2)	Pitch Aft	PostM(in)	Pitch Fwd	Roll Aft	PostM (in)	Roll Fwd	PostM (in)	Acuatr (%)	•	Marker	Not Used	NO+ 1100	NOC OSEC	Not Used		Not Used	Not Used	Mot Hand		Not Used		raw Acc	Roll Acc	(deg/s/s)	Pitch Acc	(deg/s/s)	Not Used	Phi	(deg)
61 E2		20	21		22	23		24	25		26	27		28	29		30	ć	31	32		33	7.7	# ?	35	ţ	36	37	0	0	39	•	4 ,	41		42	,	4 3	44]

Offset

9

S98 AT800 Hover 3 ft AGL IGE; New Offsets Hp=210 ft Ta=17degC; Stable hover, little movement

F3

05-SEP-94 13:37:13

APPENDIX G - MACTRANS PRINT FILE, EVOLUTION AT800

Shown below is part of the MacTrans file S98AT800. COL showing the column format of the data. The data are written in up to six columns broken up with titles at regular intervals.

```
1 S98 AT800 Hover 3ft AGL IGE; New Offsets
 Hp=210ft Ta=17degC; Stable hover, little movement
 RECORDED ON 05-SEP-94 AT 13:37:13 INTEGN INT = 0.0000E+00
                                           RUN CPU TIME = 2 MIN. 54.53 SEC.
                                       3
                                                  4
               1
 HIK NUMBER =
         Pitch Rate Roll Rate Yaw Rate Lat Accel Long Accel
             (deg/s) (deg/s) (deg/s)
                                             (ft/s/s)
                                                          (ft/s/s)
  0.0000E+00 1.6916E-01 2.4453E-01 -1.1505E+00 -4.6492E-01 3.5696E+00
  5.0000E-02 1.6917E-01 2.4436E-01 -1.1506E+00 -4.6472E-01 3.5695E+00
  1.0000E-01 1.6925E-01 2.4296E-01 -1.1510E+00 -4.6286E-01 3.5685E+00
  1.5000E-01 1.6976E-01 2.3760E-01 -1.1529E+00 -4.5467E-01 3.5652E+00
  2.4500E+00 1.8384E-01 -1.1307E+00 -7.8874E-01 4.5324E-01 3.4873E+00
  2.5000E+00 1.8618E-01 -1.0035E+00 -7.8410E-01 4.1716E-01 3.5103E+00
                            2
1 BLK NUMBER =
               1
        Pitch Rate Roll Rate Yaw Rate Lat Accel Long Accel
  Time
             (deg/s) (deg/s) (deg/s) (ft/s/s)
  (s)
  2.5500E+00 2.0276E-01 -8.9162E-01 -7.8191E-01 3.7867E-01 3.5285E+00
  2.6000E+00 2.3309E-01 -7.9235E-01 -7.8111E-01 3.4207E-01 3.5413E+00
  2.6500E+00 2.7356E-01 -7.0026E-01 -7.8121E-01 3.1040E-01 3.5494E+00
2.3550E+01 -7.1166E-01 7.0883E-01 1.6801E-01 6.6052E-02 3.6273E+00
  2.3600E+01 -7.0672E-01 4.9252E-01 1.3405E-01 1.0324E-02 3.6157E+00
1 S98 AT800 Hover 3ft AGL IGE; New Offsets
  Hp=210ft Ta=17degC; Stable hover, little movement
  RECORDED ON 05-SEP-94 AT 13:37:13 INITES INT = 0.0000E+00
                                           RUN CPU TIME = 2 MIN. 54.53 SEC.
                            7
  BLK NUMBER = 6
            Vert Accel Dap. Long Dap. Lat Dap. Vert AFCS Pitch
  Time
             (ft/s/s) Vel (kn) Vel (kn)
                                             Vel (kn)
  0.0000E+00 -3.3194E+01 -1.1637E-01 -1.3778E+00 -6.6482E-01 3.6430E+01
  5.0000E-02 -3.3194E+01 5.6950E-03 -1.2557E+00 -6.8517E-01 3.5886E+01
  1.0000E-01 -3.3194E+01 3.1087E-01 -8.8952E-01 -5.2241E-01 3.6104E+01
  1.5000E-01 -3.3190E+01 2.4984E-01 -8.8952E-01 -4.8172E-01 3.5668E+01
1 S98 AT800 Hover 3ft AGL IGE; New Offsets
  Ho=210ft Ta=17deqC; Stable hover, little movement
  RECORDED ON 05-SEP-94 AT 13:37:13 INITEGN INT = 0.0000E+00
                                           RIN CPU TIME = 2 MIN. 54.53 SEC.
                                       56
  BLK NUMBER = 54
  Time Stab Angle Pitch Gyro Roll Gyro
                    (đeg)
                                 (đea)
             (deg)
  0.0000E+00 -3.6365E+01 3.8672E+00 -3.0103E+00
  5.0000E-02 -3.6365E+01 3.8892E+00 -2.5708E+00
  1.0000E-01 -3.6365E+01 3.9112E+00 -2.4829E+00
  1.5000E-01 -3.6365E+01 3.9112E+00 -2.6367E+00
  2.3550E+01 -3.6387E+01 3.7793E+00 -2.0435E+00
  2.3600E+01 -3.6387E+01 3.7573E+00 -2.2852E+00
```

APPENDIX H - ARCHIVE INFORMATION

H1. Hardware

The computer used to store data was an Apple Macintosh IIsi, using System Software Z1-7.1 (©Apple Computer, Inc). All processed data have been stored on a 4 mm Digital Data Storage (DDS) tape and a compact disk (CD). The data stored on the DDS tape and CD are identical, thus providing two copies of all data and software on two different media.

H2. Software

Program Retrospect was used to store data on the DDS tape. Retrospect creates a storage set to label and catalogue the DDS tape. The name of the storage set for the DDS tape containing the data is S70B2 Processd Flt Data. Fig. H1 shows a 'Files Report' from Retrospect for the DDS tape used. Each time data is stored, Retrospect catalogues the data in a session. Four sessions were used to store the data and software and these are shown in Fig. H1, reading from top to bottom, in the reverse order that they were stored. Session S70B2 Converted Data contains all the '.con' files for Sortie 98, as well as those for Sortie 99 (Ref. 2) and the FOCFT sorties (Ref. 3). Session S70B2 SetUp Data contains all data files produced in checking that the data processing software was working correctly as described in Section 4.1. Session Performance Data contains all data produced in processing Sortie 98 and the ground effect trials at sea (Table 2), and session Software contains the data processing software.

Figure H1. Files Report From Retrospect

The data were written to the CD by using a Pinnacle Micro recordable CD drive (RCD-1000) with RCD-MAC software. The data were stored using the Hierarchical File System format that allows the CD (named 'S70B2 Flight Data') to be read by any Macintosh with a CD-ROM drive. The same data as contained in the *Retrospect* storage set are stored on the CD in directories with the same names as the sessions. An explanation of the directory structure is given in Section H3.

H3. Directory Structure

The directory structure in the three sessions used by *Retrospect* is the same as that stored on the CD, and is detailed in the following sub-sections.

H3.1 S70B2 Converted Data

All the '.con' files are stored in session S70B2 Converted Data on the DDS tape and the directory of this name on the CD. Files are stored in individual sortic directories labelled S??Processed, where ?? is the sortic number. For example, the performance data are stored in the directory named S98Processed.

H3.2 S70B2 SetUp Data

The directory structure for S70B2 SetUp Data is shown in Fig. H2. All directory structure figures in this appendix show file names in bold print.

The files in S2AL10 DATA are the input, output and calibration files for the data processing software as used in Section 4.1. The significance of file extensions is detailed in Section 4.5. Files beginning with an 'f' are those that have had digital filtering included using filter characteristics determined in Section 4.2. The sub-directories are explained as follows.

S2AL10 uplt graphs contains the graphs of the raw data as displayed by the program *UPltData* (Section 4:1). Each channel has an individual file, which is a snapshot of the screen, and is labelled according to the channel name. For example Channel 12 recorded the AFCS Collective and the snapshot is labelled AFCS Coll. Using *MacDraw Pro* the snapshots were combined in groups of four and labelled appropriately. For example Combined 1-4 is a *MacDraw Pro* file displaying Channels 1 to 4.

S2Al10KGspect contains the files produced using program *Kaleidagraph*, to be used as input to program *spectrum* as described in Section 4.2. The files are labelled as a description of the three channels included in each file. For example s2al10ACCEL includes the three channels recording the linear accelerations, whereas s2al10-10-12 includes Channels 10 to 12. s2al10-56 contains only the one channel, but contains two dummy parameters to satisfy the format requirements of *spectrum*.

S2Allospect contains the output files from *spectrum* ('.out' extension) and the same files converted for use by *Kaleidagraph* ('KG' suffix replacing '.out' extension). These files retain the descriptive part of the name as given to the *spectrum* input files. Spectral density plots of each channel created using *Kaleidagraph* are individually named in a similar manner to the snapshots of the *UPltData* graphs.

S2AL10TRANS contains all time histories produced by *MacTrans*, as described in Sections 4.1 and 4.5. Plots are included for both filtered and unfiltered data.

fs2al10KGspect is the same as S2Al10KGspect but using filtered data.

fs2al10spect is the same as S2Al10spect but using filtered data. Only the six filtered channels and three doppler channels were plotted.

Aircraft Delays contains the data used to establish the instrument and analogue filter delays (Section 4.3). Sub-directories are labelled by evolution designation, but only evolutions listed in Table 5 were used. The files contained in each sub-directory are similar to those described in sub-directory AL800, but for the corresponding evolution. The files for AL800 are explained as follows.

Al800.con, Al800.DAT, Al800.COL and Al800.Motion are files produced by the data processing software. Digital filtering was included.

THIST.dat and var.dat are output files from program *Compat*, and THIST.datKG and var.datKG are the corresponding files converted for use by program *Kaleidagraph*.

THETA - AL800 is a *Kaleidagraph* plot of the pitch attitude using the calculated and measured data from the two *Compat* files mentioned above.

H3.3 Performance Data

The first two levels of the Performance Data directory structure are shown in Fig. H3. The file S98SHAWKCAL is the calibration file used by program S70B2Refine for processing data from Sortie 98.

Sortie 98 has three sub-directories (Fig. H3) that are further subdivided (Fig. H4). A description of the contents of the three main sub-directories follows.

S98ADMfiles contains the '.ADM' files recorded before each evolution (Section 2). Also included are the files FOCFT_L.SET, FOCFT_L.LMT and ASORTIE.LOG. These files were recorded only once for the sortie.

S98FILES contains eight sub-directories which have been labelled according to the phase of the performance flight tests (Table 2) for which they contain data. The hover phase has two directories labelled HOVER and HoverNewOff. The former contains data produced before the offset corrections were determined (Section 4.4), and the latter has the new offsets included. All other phases included the offset corrections. All eight sub-directories contain the appropriate ?????Files sub-directories as described further below.

S98Means contains nine sub-directories. The first seven directories are labelled according to the different flight test phases (Table 2). For example, LowAirspeed contains data for the Low Airspeed test phase. These directories contain the appropriate output files from S70B2Convert(ac) ('Out' files), converted for use by Kaleidagraph, hence the 'kg' suffix. For example S98AT808 Outkg is a Kaleidagraph file containing the data output by S70B2Convert(ac) for Evolution AT808. The two remaining files in the example directory are named Low AS Means and LowASMeansTab. The first is a Kaleidagraph file containing means for all channels from each evolution in the flight test phase, while the second is a Word (@Microsoft Corporation) document containing the same information in table format. Two subdirectories contain means for the data obtained in the hover phase. Hover Aves contains means determined prior to the calculation of the doppler offset errors (Section 4.4), hence the name of the other sub-directory Hover New. The last sub-directory is Means Tables and contains Word documents based on those in the previous seven directories. These documents present the quantities rearranged in a more logical order than in channel sequence, and form the basis of Appendix I. The files containing these rearranged tables have an 'R' added to the name, e.g. LowASMeansTabR.

IGE Study at Sea Files has nine sub-directories (Fig. H3) as follows.

AL100FILES - AL174Files (seven directories) are similar to that described below for AT800FILES

IGEatSeaMeans contains *Kaleidagraph* and *Word* files used to produce the means tables as shown in Appendix I. The files are named along the same lines as those in S98 Means

IGESeaADM contains the '.ADM' files recorded before each evolution (Section 2).

```
S70B2 SetUp Data
      - S2AL10 DATA
            - AL10.con
            - s2al10 Out
            - s2al10.COL
            - s2al10.DAT
            - fs2al10. Out
            - fs2al10.COL
            - FS2AL10.DAT
            - S2SHAWKCAL
            - S2AL10 uplt graphs
                  - AFCS Coll
                  - Yaw Rate
                  - Combined 1-4
                  - Combined 55/6-98/9
           - S2Al10KGspect
                  - s2al10ACCEL
                  - s2al10-56
           - S2Al10spect
                  - s2al10ACCEL.out
                  - s2al10ACCELKG
                  - s2al10-56.out
                  - s2al10-56KG
                  - AFCSColl
                  - YawPos
           - S2AL10TRANS
                  - s2al10.PLT.a
                 - fs2al10.PLT.f
           - fs2al10KGspect
                 - fs2al10-Acc
                  - fs2al10-56
           - fs2al10spect
                 - fs2al10-Acc.out
                 - fs2al10-AccKG
                 - fs2al10-56.out
                 - fs2al10-56KG
                 - DopVx
                 - YawRate
    - Aircraft Delays
          - AL800
                 - AL800.con
                 - AL800.DAT
                 - AL800.COL
                - AL800.Motion
                - THIST.dat
                 - THIST.datKG
                - var.dat

    var.datKG

                 - THETA - AL800
          - AL802
          - AL803
          - AL806
          - AL820
          - AL824
          - AL859
          - AL860
```

Figure H2. Directory Structure For S70B2 SetUp Data

Performance Data - S98SHAWKCAL - Sortie98 - S98ADMfiles - S98FILES - S98Means - IGE Study at Sea Files - AL100FILES - AL151Files - AL152Files - AL158Files - AL159Files - AL173Files - AL174Files - IGEatSeaMeans - IGESeaADM - AL100.ADM - AL174.ADM

Figure H3. Upper Level Directory Structure For Performance Data

As can be seen from Figs H3 and H4, the majority of sub-directories in Performance Data are labelled ?????Files or ?????FILES, where ????? is the evolution designation. An example of this is AT800FILES which contains the files produced by the data processing software for Evolution AT800 (Fig. H4). A description of these files is given below.

AT800.con - the raw data file converted from IBM binary to ASCII format (program convdata).

S98AT800. DAT - the output from S70B2Refine, which has the S98 prefix added so as not to be confused with the raw data file AT800. DAT. Also used as input to MacTrans.

S98AT800.COL - MacTrans output file containing all parameters in five columns. Input file into S70B2Convert(ac)

S98AT800 Out - Output from S70B2Convert(ac) containing all parameters in individual columns.

S98AT800.PLT.? - time history plots produced from *MacTrans*, where ? is a, b, c, d, e or f.

```
- S98ADMfiles
       - AT800.ADM
       - AT839.ADM
       - FOCFT_L.SET
       - FOCFT_L.LMT
       - ASORTIE.LOG
- S98FILES
      - HOVER
             - AT800FILES
                   - AT800.com
                   - S98AT800.DAT
                   - S98AT800.COL
                   - S98AT800 Out
                   - S98AT800.PLT.a
                   - S98AT800.PLT.b
                   - S98AT800.PLT.c
                   - S98AT800.PLT.d
                   - S98AT800.PLT.e
                   - S98AT800.PLT.f
            - AT801 FILES to AT807FILES
      - HoverNewOff
            - AT800FILES to AT807FILES
      - Low Airspeed
            - AT808FILES to AT815FILES
      - Vert Clb/Desc
            - AT818FILES to AT820FILES
      - Level Flight
            - AT821FILES to AT824FILES
            - AT825FILES to AT827FILES
      - Fwd Climb/Desc
            - AT828FILES to AT833FILES
      - AutoRot
            - AT834FILES to AT836FILES
      - Grnd Eff
            - AT816FILES to AT817FILES
            - AT837FILES to AT839FILES
- S98Means
     - Hover New
      - LowAirspeed
            - S98AT808 Outkg
            - S98AT815 Outkg
            - Low AS Means
            - LowASMeansTab
     - Vert Clb/Des
     - Lev Flight
     - Fwd C/D
     - Autorot
     - Grd Eff
     - Hover Aves
     - Means Tables
```

Figure H4. Lower Level Directory Structure For Sortie 98

H3.4 Software

The Software directory structure is shown in Fig. H5.

Software contains two sub-directories which contain the files necessary to compile three of the data processing programs. The files in sub-directory S70B2Refine f are those required for program S70B2Refine. The files in sub-directory S70B2Convert f are those required for programs S70B2Convert(ac) and S70B2Convert(ac)-C. A number of files with the same extensions are contained in these directories. These files are explained as follows using the files from S70B2Refine f as examples.

S70B2Refine - no extension indicates the executable code.
S70B2Refine.make - file containing compiler directives.
S70B2Refine.SYM - file containing symbolic debugger information.
S70B2Refine.rsrc - resource file.

S70B2R1.f.-file containing Fortran source code. A number of source modules are used for program S70B2Refine (Table 3. Ref. 1), but only one source file is used for each of programs S70B2Convert(ac) and S70B2Convert(ac)-C.

S70B2Refine.f.o - object file produced when program is compiled.

Figure H5. Directory Structure for Software

APPENDIX I - MEAN VALUES FOR TRIMMED FLIGHT

Table II. Hover

							1000	10,450	Cilo AT904 (7,42c)	17.4261	File AT805 (2-8s)	(\$ (2-8s)	File AT806 (7-12s)	3 (7-12s)	File AT807 (15-20s)	(15-20s)
Variable	File AT800	0 (13-18s)	File AT801 (7-14s)	1 (7-14s)	File A1802 (6-14s)	Z (6-14S)	FIIE A 1 603 (9-105)	(6-132)	מועשווי	(1-16.9)			100	Std Day	Mean	Std Dev
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	mean	olo Cev	incair c		9	0.0
Draction (8)	60.7	0.5	57.1	1.3	58.4	0.8	58.3	0.7	28.0	1.1	59.2	1.1	6.60			1.0
projectat (%)	56.7	1.1	56.0	0.4	55.4	9.0	54.9	0.3	55.1	0.2	54.5	0.2	2.00	7.0	2000	
Brocol, (%)	62.5	0.5	66.1	0.4	67.2	0.3	68.2	0.3	69.5	0.3	70.2	9.0	11.3	0.0	7.07	2: 6
Dropodals (%)	41.9	0.1	39.5	0.1	39.6	0.2	39.2	0.1	38.9	0.4	40.4	0	1.60		7.7.5	
AFC Dit (9)	36.8	3.0	34.2	4.2	32.2	4.8	35.0	1.8	36.3	1.6	37.7	0.6	36.9	, ,		2.7
AFCS FIL (8)	21.2	0.4	20.5	1.8	18.7	3.3	19.2	1.7	19.8	1.8	17.4	1.5	18.4	6.0	0.01	
AFCS ROLL (6)	3.1.5	4.0	29.1	0.7	28.9	0.5	29.0	0.3	29.4	0.3	29.0	9.0	28.8	7.0	29.4	0.0
Arcs Coll (6)	71.7		31.1	. C	33.0	7.8	34.7	6.1	32.7	6.2	29.8	4.7	34.5	9.8	33.9	5.0
AFCS Yaw (%)	41.7		1.12		51.4	8	52.1	0.5	52.4	0.2	52.6	0.4	52.7	0.4	52.5	0.3
PitchPstM (%)	54.3	2.0	1116	9 0	73.7		43.9	0.5	43.7	9.0	44.0	6.0	42.6	0.4	40.9	0.4
RollPstM (%)	45.6	. ·	7.66	0.0	20.6		28.8	0.5	28.3	9.0	27.9	0.7	26.9	1.0	29.3	9.0
YawPostM (%)	34.4		29.8	6.0	2.5.2		55.0	0.3	56.3	0.2	56.8	0.3	57.5	0.4	56.8	0.4
PrJck Fwd (%)	53.3	0.3	53.2	4.0	1.50		46.1	4.0	45.6	0.3	45.4	0.4	44.8	0.5	45.3	0.3
PrJck Aft (%)	50.2	6.0	46.0	0.0	7.07		5.05		5.5	0.2	61.7	0.3	62.4	0.4	60.7	0.3
PrJck Lat (%)	57.7	0.3	59.3	7.0	8.60	5 0	9.00		26.8	0.2	26.9	0.3	27.1	0.2	26.8	0.2
Pit Bias (%)	28.6	0.3	26.0	0.4	797	٠٠٠	20.07		0.01		0.04-		-40.0	0.0	-40.0	0.0
Stab Ang (deg)	-40.0	0.0	-40.0	0.0	-40.0	0.0	-40.0	0.0	2				5.0	0.2	5.2	0.1
Theta (deg)	3.9	0.2	5.9	0.3	5.8		4.0	0.1	7.0			6	-2.1	0.2	-2.1	0.2
Phi (dea)	-2.4	0.8	-1.5	0.2	-1.8	0.5	-1.7	0.3	-2.0	6.0	£ - 7 -		: ;	2	-2.1	0.2
Boll (deg)	-2.4	0.8	-1.5	0.2	-1.8	0.5	-1.8	0.3	-2.0	0.5	-2.4	2.0	1.2.1		-	0.4
Def (ded)	2.0	0.2	-0.7	0.7	1.6	0.3	0.3	0.4	-4.2	_	9.0	7.0	1.1	2 4	208	4
rst (deg)	303.3	0.2	301.8	0.7	301.9	0.3	300.6	0.4	295.6	0.7	298.9	0.2	300.3		236.3	
neduting (deg)	2 0 0	4	-0.2	0.4	0.1	0.5	-0.1	0.2	0.0	0.1	0:0	0.2	-0.1	0.4	0.0	7.0
Q (deg/s)			-		0.1	1.2	0.2	9.0	0.4	0.4		0.4	0.5	0.3	0.2	2.0
P (deg/s)	7.0				4.0-	0.7	8.0-	0.5	-1.2	9.0	-0.3	0.3	-0.7	0.7	-0.8	0.3
R (deg/s)	-0.5		? •			-	C I	6.0	0.0	0.4	0.0	9.0	-0.3	1:1	0:0	0.7
QDot (deg/s')	0.3	0.1			0 0	, ,		6.1	-0.2		_	1.0	0.3	1.4	-0.1	1.1
PDot (deg/s')	-0.1				2			1.5	-0.2	_	0.1	0.9	-0.3	1.4	0.1	0.7
RDot (deg/s²)	-0.3		<u> </u>		-		4 6	0.1	4.1	0.1	4.0	0.1		0.1	4.1	0.1
Ax (ft/s')	3.5	0.1							0.0	0.2	_	0.1	0.1	0.1	0.1	0.1
Ay (ft/s')	0.5		_				-32 5		-32.6	0.2	Ϋ́ —	0.2	-32.7	0.4	-32.3	0.3
Az (ft/s')	-32.6		-32.0		_		4.0	2.0		2.4	1.4	1.7		1.6		1.4
DopVx (ft/s)	.0-		_				_		_	1.8	_	2.3	-0.1	1.6		1.4
DopVy (ft/s)	0.1								_			1.3	-1.0	1.7	0.2	1.5
DopVz (ft/s)	0.1		-0.2					0.0		0:0	53.1	0.0		0:0		0.0
U (ft/s)	53.1	0.0					-22.4		•	1.2	-41.2	1.3	-49.2	_	7	1.2
2 (ft)	7.6-	_	_	_	_		81.4	0.7		9.0	83.9	1:0		1.5	_	6.0
Engine1 (%)	70.1				_		82.9			9.0	85.5	1:1	_	1.5	ш.	1.0
Engine2 (%)		1.0	_			-				0.0	2.9	0:0	_	0.0	2.9	0.0
PitAftPstM (in)	_	0 -	2.9				_			0.0	9.9	0.0	9.9	0:0		0.0
PitFwdPstM (in)			0.0					-	5.7	0:0	5.7	0.0	5.7	0.	5.7	0:0
RolAftPstM (in)	5.7). 		-				-	9	0.0	0.9	0.1	0.9	0.0	6.0	0.0
ne Desdorth (in)		-		۰.۰	-	; -	;	:								

Table I2. Low Airspeed

Variable	File AT8	File AT808 (3-8s)	File AT80	File AT809 (11-16s)	File AT810 (4-10s)	0 (4-10s)	File AT811 (7-12s)	(7-12s)	File AT812 (13-20s)	? (13-20s)	File AT81	File AT813 (6-11s)	File AT8	File AT814 (4-9s)	File AT815 (6-12s)	5 (6-12s)
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Day
PreCycLon (%)	49.3	9.0	50.1	0.2	65.5	0.2	69.2	1:1	70.4	9.0	74.5	9 0	5.4.3	2	0	
PreCyclat (%)	44.3	9.0	45.5	0.2	9.99	0.2	71.8	9.0	50.1	1.6	47.7	1.0	5.69	2.0	71.7	
PreColl (%)	63.5	0.4	56.7	0.2	68.2	0.1	57.8	0.7	65.2	0.1	62.3	0.7	65.1	0.3	54.2	2.0
PrePedals (%)	44.5	0.1	47.2	0.1	41.4	0.3	40.7	1.7	45.6	1.7	52.5	1.2	32.6	9.0	28.9	0.2
AFCS Pit (%)	34.4	3.4	40.2	1.5	27.6	1.2	13.5	3.8	29.5	7.0	12.9	4.3	30.5	2.8	15.9	2.5
AFCS Roll (%)	19.1	2.5	26.5	1:1	17.0	1.1	18.0	2.2	18.3	9.9	17.1	5.1	45.6	3.0	30.6	2.4
AFCS Coll (%)	20.6	3.2	47.3	2.5	41.4	3,3	23.5	6.5	40.2	4.5	31.3	6.6	43.7	2.1	32.4	1.4
AFCS Yaw (%)	31.4	4.4	34.4	1.9	35.0	5.0	35.5	10.8	38.1	16.9	35.4	15.2	31.4	7.0	24.2	3.3
PitchPstM (%)	41.6	0.3	45.5	0.2	55.1	0.3	56.8	9.0	59.4	1.2	57.7	0.5	50.0	0,3	46.9	0.3
RollPstM (%)	32.9	0.4	35.1	0.2	54.4	0.2	61.0	0.7	39.2	1.3	37.9	1.1	54.8	0.3	6.09	0.6
YawPostM (%)	35.9	0.4	43.5	0.4	31.5	0.5	35.7	0.8	37.5	3.2	45.2	2.4	23.5	0.8	23.4	0.5
PrJck Fwd (%)	46.2	0.3	43.3	0.3	57.4	0.3	53.7	0.5	58.9	1.1	56.8	0.7	51.7	0.3	43.1	0.2
PrJck Aft (%)	41.3	0.5	47.9	0.2	48.0	0.3	53.2	0.4	52.0	0.7	51.6	0.4	46.9	0.3	49.5	0.2
PrJck Lat (%)	54.0	0.3	48.7	0.2	64.9	0.3	61.9	0.3	56.9	9.0	55.4	0.5	62.4	0.2	58.3	0.5
Fit Blas (*)	23.7	0.3	28.9	0.5	24.9	0.1	21.9	0.5	27.5	0.7	25.6	9.0	26.1	0.3	24.7	0.3
Stab Ang (deg)	-40.0	0.0	-39.8	0.0	-39.8	0.0	-39.8	0.0	-39.9	0.0	-39.9	0.0	-39.8	0.0	-39.6	0.0
Theta (deg)	9.	0.2	3.7	0.2	6.2	0.1	8.6	0.4	4.3	0.5	5.8	0.4	5.5	0.2	9.9	0.2
Fn1 (deg)	-1.3	0.3	9.0-	0.2	-3.4	0.3	-2.0	0.3	-7.5	8.0	-9.4	0.4	1.7	0.5	-0.5	0.3
Roll (deg)	-1.3	0.3	9.0-	0.2	-3.5	0.3	-2.1	0.3	-7.5	8.0	-9.5	0.4	1.7	0.5	-0.5	0.3
PS1 (deg)	1.0	0.2	-3.1	0.5	8.0	0.5	1.5	9.0	1.4	6.0	3.9	0.5	-0.5	0.4	-3.5	0.5
Heading (deg)	298.3	0.5	296.5	0.5	126.3	0.5	126.0	9.0	27.3	6.0	30.9	0.5	211.0	0.4	214.3	0.5
(deg/s)	-0.1	6.0	-0.0	0.1	-0:1	0:1	-0.3	0.3	-0.2	8.0	-0.1	9.0	-0.1	0.2	-0.2	0.2
P (deg/s)	7.0	9.0	0.2	0.5	0.3	0.4	0.0	0.7	0.7	2.4	-0.2	2.2	-0.1	0.7	0.1	0.7
R (deg/S)	2.0-	4. 0	-0.7	0.1	9.0-	0.5	-0.3	1.0	6.0-	2.0	-0.1	1.8	-0.6	9.0	-0.1	0.2
Phot (deg/s)	9.0		0.0	0.5	0.0	0.3	-0.2	0.7	.0*0	2.3	-0.0	2.9	-0.1	8.0	0.0	9.0
Proc (deg/s')	7.0	9.1	0.0	9.0	-0.1	1.7	-0.2	3.0	-0.2	9.5	0.4	9.7	0.0	2.4	0.3	3.5
Abot (deg/s)	1.0		0.0	0.2	-0.3	1:0	-0.5	1.0	-0.7	5.1	0.1	5.0	0.1	1.4	0.1	8.0
AX (IT/S')	υ· α	0.1	E .	0.1	6.4	0:1	5.7	0.2	3.6	0.2	4.3	0.3	4.1	0.1	4.5	0.1
Ay (10/8")	7.0-	9.0	-0.7	0.0	9.0	0:1	0.5	0.1	3.0	0.3	4.2	0.3	-2.3	0.1	-1.8	0.1
Az (10/8)	-32.6	7.0	-32.5	0.1	-32.4	0.2	-32.9	0.3	-32.3	9.0	-32,3	9.0	-32.2	0.2	-32.5	0.3
Doply (ft/s)	0.02	» ,	53.2	1.1	-23.1	0.7	-55.3	1.4	-0.3	1.5	-1.3	1.8	1.2	1.3	6.0	1.9
Detail (66/1)		1.1	3,3	1.5	1.2	1.1	3.7	2.0	-29.5	1.1	-53.7	1.6	29.9	1.0	56.7	2.0
Dopvz (It/S)	a. (4.0	5.0	0.7	-4.5	0.5	-13.6	1.7	-5.6	0.8	-15,3	1.1	-1.1	0.8	1.1	1.0
0 (IT/S)	53.0	0.5	55.9	0.2	52.9	0.4	52.8	0.3	52.8	0.0	52.8	0.0	52.7	0.0	52.7	0.0
2 (IC)	-102.0	1.5	-104.9	1.4	-95.1	1.4	9.06-	1:1	-94.4	1.4	-90.6	2.7	-96.7	1.3	-94.1	1.0
Engine! (*)	72.4	0.5	58.4	9.0	76.8	0.7	64.2	1.1	72.8	2.2	69.7	1.5	73.3	1.0	60.3	0.4
Engine2 (%)	74.1	0.4	59.2	1.2	78.3	1.0	65.2	1.4	72.5	2.2	70.5	1.4	75.2	9.0	61.8	0.4
PitArtPstM (in)	2.6	0.0	2.8	0.0	3.0	0.0	3.1	0.0	3.2	0.0	3.1	0.0	2.9	0.0	2.8	0.0
PitrwdPstM (in)	6.4	0.0	6.3	0.0	9.9	0.0	6.4	0.0	9.9	0.0	6.5	0.0	6.5	0.0	6.3	0.0
KOLATTPSTM (1n)	5.9	0.0	0.9	0.0	5.4	0.0	5.4	0.0	5.8	0.0	5.8	0.0	5.5	0.0	5.4	0.0
RolfwdPstM (in)	υ. υ.	0.0	8.8	0.0	0.9	0.0	5.8	0.0	5.9	0.0	5.9	0	6	-	7	-

Table 13. Vertical Climb/Descent

		10000	File AT040 (40 40c)	(40,400)	Elle ATR20 (20.25c)	(20.25e)	File AT825 (3-8s)	5 (3-8s)	File AT825 (20-25s)	(20-25s)	File AT826 (2-6s)	6 (2-6s)	File AT827 (2-8s)	7 (2-8s)
Variable	FILE A 181	File A1816 (0-10s)	TILE ATOL	(sol 2)	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
	Mean	sid Dev	Medil	200 000	2 73	4	7 67	1.4	55.0	0.7	64.6	1.0	55.5	2.6
PreCycLon (%)	62.7	» ·	64.1		5.4.2		43.6	0.2	44.5	0.2	38.2	6.0	42.4	2.1
PreCycLat (%)	52.6	0.3	24.5		70.5		64.3	0.1	64.4	0.0	30.7	0.3	43.2	9.0
PreColl (%)	73.3	0.1	0.07	2 0	35.4		37.2	0.2	39.5	0.3	52.5	0.2	44.3	1.9
PrePedals(%)	39.3	?.	9.66	0.0	27.0	1.2	33.5	4.8	28.8	4.6	13.8	6.5	29.1	19.0
AFCS Pit (%)	39.6	0.4.0	30.0	1.5	15.5	2.1	17.8	1.2	20.5	2.6	51.1	5.4	39.1	15.3
AFCS Roll (%)	7.91		2.01	7.1	26.1	0.4	24.1	0.5	24.8	0.5	28.8	6.0	26.9	1.5
AFCS Coll (%)	30.1	2. 4	20.02	. 6	28.0	3.0	26.2	5.5	29.4	5.6	38.3	13.4	29.0	18.0
AFCS Yaw (%)	20.00		7.1.7		55.2	0.2	44.3	0.8	47.0	0.7	53.0	1.2	49.9	4.5
PitchPstM (%)	25.5				41.6	0.1	33.6	0.2	34.1	0.4	30.3	0.8	34.2	2.9
RollPstM (%)	40.5	0.0				0.3	29.4	0.5	32.1	0.5	9.09	1.8	46.4	3.9
YawPostM (%)	7.97		63 1		64.8	0.1	48.5	9.0	50.5	0.4	35.9	9.0	40.3	3:1
PrJck Fwd (%)	6.10				42.5	0.1	43.0	9.0	44.7	0.4	9.59	0.7	57.5	2.5
PrJck Att (*)	0.03			0.1	67.2	0.0	54.1	0.2	54.5	0.2	30.4	0.4	39.7	1.0
Prock Lat (%)				2.0	26.0	0.1	24.1	0.4	24.4	0.5	_	8.0		1.8
Pit Blas (%)	7.8.1		_		7 98-	0.0	-39.9		-39.8	0.0	1	0.0	۳	0.0
Stab Ang (deg)	139.0	_				0.1	7.1	0.3	6.7	0.4	7.5	9.0	4.2	1.3
Theta (deg)	· ·	7.5			-23	_	-1.3	0.3	-1:1	0.4		9.0	1.3	1.9
Phi (deg)	-4.4	0.4	_				-1.4	0.3		0.4		9.0	1.3	
Roll (deg)	-4.4	0.4		_			-2.6	0.4	-5.3		1.9	0.4	0.2	
Psi (deg)	0.5	6.0	-0.2				321 3	7	318.5		3	0.4	298.0	2.4
Heading (deg)	329.0	0.5	330.5		_		351.3					6.0	-0.8	2.5
Q (deg/s)	-0.1	0.4	-0.1		<u>'</u>	1.0	? -					2.0	_	3.2
P (deg/s)	0.2	0.4	0.2				; ;						_	3.4
R (deg/s)	-0.5	0.4	-0.4				_					2.8		7.4
QDot (deg/s ²)	0.0-	_		0.4			3 6			_	_		0:1	10.5
PDot (deg/s ²)	-0.0	1.1	<u>.</u>	_	0.0				_		_		_	6.7
RDot (deg/s ²)	-0.1	9.0	0.3		_		•							0.9
Ax (ft/s²)	3.7	0.1	3.8				_		_			0.3	'	0.7
Ay (ft/s2)	1.3	1.0	6:0	_		_	0.0-							1.1
Az (ft/s²)	-32.5	1.0	-32.4	_		_			_		_		_	0.1
DopVx (ft/s)	-16.8		_	_	7						_			0.1
DopVy (ft/s)	1.8		_					_	•			0.0	0.69	0.0
DopVz (ft/s)	-17.6	9.0	-38.5		_					_				0.2
U (ft/s)	52.6	.0	3 52.				2.26						-	0.0
2 (ft)	-197.4). -	0 -197.4		_		_			_	_			3.2
Engine1 (%)	6.06	_	3 98.1	0.3		_	_						_	3.2
Engine2 (%)	91.	2 0.5	01	2 0.4	104.5	_			_					0.1
PitAftPstM (in)	3.0	0.0	3.0	0.0	3.0	_	2.1		2.0			_		0.0
PitFwdPstM (in)	6.7	٥. (0 6.7	7 0.0	9	0.0		2.0						0.1
RolAftPstM (in)		7 0.0	0 5.6	0.1	5.	0.0								0.0
Rol FwdPstM (in)	9	1 0.	0	1 0.0	9	0.0	2	1.0			;			

Table 14. Level Flight

Variable	File AT82	File AT821 (15-20s)	File AT82	File AT822 (12-22s)	File AT82	File AT823 (15-30s)	File AT824 (12-17s)	4 (12-17s)
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
PreCycLon (%)	51.4	0.1	48.8	0.2	45.3	0.2	39.0	0.3
PreCyclat (%)	48.0	0.2	52.2	0.2	56.3	0.2	58.6	0.2
PreColl (%)	52.4	0.1	50.1	0.3	63.5	0.4	78.0	0.4
dals	48.8	0.2	57.8	0.4	62.7	0.3	58.8	0.2
Pit (36.8	2.3	33.0	3.8	34.1	4.6	32.4	4.1
Roll	33.2	2.9	36.4	2.1	31.3	3.0	27.8	2.3
C011	24.4	0.8	33.6	2.9	32.6	4.1	14.5	1.3
_	28.3	2.3	38.1	3.6	36.8	3.6	35.6	2.9
•	46.6	0.3	39.1	9.0	35.7	0.8	30.2	0.8
	38.4	0.4	43.2	0.4	45.3	9.0	44.3	0.5
_	46.5	0.2	57.6	0.4	54.3	0.4	43.4	0.5
_	42.7	0.3	36.7	0.5	42.5	0.5	48.9	0.4
Aft	49.8	0.2	47.2	0.4	37.9	9.0	26.6	0.7
	48.1	0.2	48.4	0.2	59.1	0.3	70.4	0.4
	30.0	0.2	29.4	0.3	41.0	0.3	48.4	0.3
Stab Ang (deg)	-35.9	0.0	-8.1	0.1	-5.4	0.2	-4.9	0.2
Theta (deg)	2.1	0.2	2.7	0.2	-0.8	0.2	-3.6	0.3
	0.0	0.3	0.3	0.3	-0.3	9.0	-0.4	0.3
Roll (deg)	0.0	0.3	0.3		-0.3	9.0	-0.4	0.3
PS1 (deg)	9-9-	0.1	1.5	0.3	-2.7	0.5	0.1	0.2
	32.9	0.1	36.1	0.3	34.6	0.5	39.0	0.2
	-0.2	0.5	-0.1	0.4	-0.1	0.5	-0.0	0.4
P (deg/s)	0.5	0.4	0.2	0.5	0.1	0.9	0.1	0.7
R (deg/s)	0:0	0.2	0.1	0.4	-0.1	0.4	0.0	0.5
	0.1	0.3	-0.1	1.5	-0.0	5.6	-0.0	2.3
PDot (deg/s')	0.5	1.5	0.0	2.2	0.1	4.2	-0.1	2.9
RDot (deg/s')	0.1	0.5	-0.0	1.1	-0.0	1.3	0.1	1.2
Ax (ft/s')	-0.4	0.1	-0.8	0.1	-0.7	0.2	-0.7	0.2
	1.8	0.1	1.7	0.1	-0.4	0.2	-1.5	0.1
	-32.1	0.2	-32.2	0.5	-32.3	1.2	-32.5	6.0
	75.6	1.4	138.5	2.8	203.4	2.2	209.3	0.0
	13.8	1.6	12.5	2.8	20.8	2.3	24.6	2.6
Dopvz (tt/s)	7.2	6.0	12.8	1.5	-3.9	2.7	-25.8	2.0
	67.7	9.0	128.9	0.7	194.4	1.6	216.4	0.0
	-197.4	0.0	-197.4	0.0	-197.4	0.0	-197.4	0.0
	20.3	0.5	45.0	0.4	58.6	0.8	87.4	1.4
_	51.8	9.0	43.5	0.4	0.09	1.0	87.3	1.0
	2.8	0.0	2.6	0.0	2.4	0.0	2.3	0.0
	6.3	0.0	6.2	0.0	6.4	0.0	6.8	0.0
	5.9	0.0	5.8	0.0	5.7	0.0	5.6	0.0
RolfwdPstM (in)	5.7	0.0	5.6	0.0	5.9	0.0	6.3	0.0

Table 15. Forward Climb/Descent

	10024	1207 077	(aC1.9) (AT9.47e)	1961-97	Ella ATR30 (10-18s)	(40.18s)	File AT831 (10-20s)	(10-20s)	File AT831 (35-45s)	(35-45s)	File AT832 (0-15s)	2 (0-15s)	File AT833 (0-24s)	3 (0-24s)
Variable	File A1828 (10-16s)	(10-105)	LIEATOR	9 (0-123)	Man	Std Day	Меап	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
	Mean	Sid Dev	Mean	old Dev	Medi	2000	1	6	50.7	0.2	45.7	0.3	45.6	0.3
PreCycLon (%)	52.0	9.0	51.5	1:1	d. 7	0	50.10		50.9	0.4	58.0	0.2	57.0	0.2
PreCyclat (%)	53.2	0.5	43.3	1.0	33.4	1.0	2. 20		30		74.4	0.0	49.2	0.2
PreColl (%)	65.5	0.0	36.0	1.0	62.4		200		61.9	0.1	56.8	1.3	61.1	2.7
PrePedals(%)	37.7	0.5	54.3		00.00	7.0	0.00	2.0	38.9	2,3	35.2	3.2	39.7	2.6
AFCS Pit (%)	29.8	0.	33.5	. ·	36.00		30.00		36.4	3.4	37.5	2.3	40.7	2.5
AFCS Roll (%)	27.0	3.0	5.15		6.02	2.0	2000	5.0	29.3	0.3	25.2	0.4	28.8	0.5
AFCS Coll (%)	23.8	6.0	26.9	0.5	1.87	, ,	9 4		38.2	2.6	35.6	3.6	38.3	3.1
AFCS Yaw (8)	35.4	6.5	34.7	2.5	35.1	3.0	20.00		40.4		35.5	9.0	38.9	0.4
PitchPstM (%)	45.0	0.5	43.5	0.3	39.5	0.4	¥.0.	2.0	2		0.00	4.0	48.6	9.0
RollPstM (%)	42.3	0.5	37.2	0.3	44.8	1.0	44.9	6.0	45.1	3.6	2.4.6		9 29	0.5
YawPostM (8)	31.7	9.0	59.2	0.3	45.7	0.1	69.5	0.2	9.0	0.2		: :	36.7	
Dr.Toly Fluid (%)	49.8	0.3	33.0	0.3	44.5	0.4	31.9	0.2	29.5	0.3		: :		3.0
Dr.72b Aft (9)	42.7	0.3	57.7	0.2	40.7	0.2	55.8	0.2	58.1	6.3		7.7	4/.1	
PLUCK ALC (8)		0	36.7	0.1	57.5	0.1	40.6	0.1	37.9	0.2		0.2	_	0.2
Prock nat. (6)	27.5	-	28.4	0.5	29.7	0.4	30.0	0.3	30.2	0.3		_		7.0
Fit bias (6)	0.72		-35.1	0.4	-11.7	0.2	-5.2	0.1	-5.2	0.1	_			1.0
Stab Ang (deg)	7.06-			4	2.6	0.3	2.2	0.2	2.0	0.2	6.0-	0.5	_	_
Theta (deg)	2.0		; ;				-0,3	0.3	0.1	0.4	0.5	0.4		
Phi (deg)	2.0-		: :		- 0		-0.3	0.3	0.1	0.4		0.4	0.2	
Roll (deg)	-0.2	4.0	2			_	0.8	0.3	4.6		0.5	0.4	-0.3	0.5
Psi (deg)	5.4	9 0	2.5		230	_	41.4	0.3	4	0.2	43.8	0.4	235.1	0.5
Heading (deg)	227.2	9.0	237.4		0.057			0.2				0.4	-0.1	0.3
Q (deg/s)	0.5	0.3								_	0.1	0.5	0.1	9.0
P (deg/s)	0.3	9.0	0.1	0.4	0.01				2 2				0.1	0.4
R (deg/s)	-0.1	9.0	-0.2	_	<u> </u>		_			_		1.6	-0.0	1.3
QDot (deg/s ²)	0.0-	0.9	0.0-	_					_	_			٠.	2.9
PDot (deg/s ²)	-0.2	2.3	-0.1				_	1.2						1.0
RDot (deg/s2)	-0.2	1.7	-0.2	0.5		_	_	_	_					_
Ax (ft/s²)	-0.5	0.1	8.0-	0.1	-0.7	_	_		_		_		_	
Av (ft/s²)	2.4	0.1	2.2	0.1	1.3	_					_		33.3	_
A7 (ft/s²)	-32.5	0.3	-32.4	0.2	-32.6		_		_		_			
Donyx (ft/s)	74.9	1.5	74.6	1.0			7	2.4			N	2.5		. 4
Doply, (ft/s)	-14.8	1.8	1	1.6	-20.3	2.4					_		_	
Dopyy (ft/s)	-23.2	1.2	_	1.1	-19.0	1.0	36.5	1.5						
12 (54/2)	70.5	2.5		1.0	_	0.7	_	0.8						
0 (IE/S)	-197.4	0.0	7	_		0.0	-197.4	0.0	<u> </u>		7	_	<u> </u>	
2 (11)			_	0.2	64.8	0.3	23.0	0.4		_				0.0
Engines (5)	7.6					0.3	24.6	5 0.3	2		ω		4	0.0
Enginez (%)						0.0	2.9	0:0	2.9	0.0		0.0		0.0
				0	6.4			0.0	0.9			0.0	0 6.2	0.0
PittwdPstm (in)				-	5.7		6.0	0.0	9	0.0	0 5.6	0.0	0 5.7	0.0
	_			-	5.8		2.	0.0	5.	3 0.0	0 6.	0.0	0 5.6	0.0
ROLFWGPSCM (111)														

Table 16. Autorotation

Variable	File AT8	File AT834 (1-6s)	File AT83	File AT835 (5-25s)	File AT836 (5-25s)	6 (5-25s)
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
PreCycLon (%)	52.3	1.4	47.1	0.5	44.4	1.3
PreCycLat (%)	41.0	0.9	51.6	0.3	54.5	9.0
PreColl (%)	13.1	0.3	16.3	0.1	16.2	1.4
PrePedals(%)	55.5	0.3	50.9	2.6	55.9	1.2
Pit (15.0	7.9	37.6	3.0	42.7	4.8
	42.1	5.6	42.1	2.6	44.7	2.6
	29.7	1.5	29.5	0.7	29.9	9.0
AFCS Yaw (%)	34.9	8.5	51.0	2.4	46.0	3.1
PitchPstM (%)	37.5	1.3	38.5	0.4	37.3	0.3
RollPstM (%)	37.7	6.0	48.0	0.4	50.6	0.5
	73.3	9.0	72.4	0.2	73.5	0.4
Fwd	19.6	6.0	21.8	0.3	21.1	9.0
PrJck Aft (%)	9.89	9.0	67.2	0.3	9.99	1.0
PrJck Lat (%)	22.4	0.5	28.6	0.1	29.7	0.9
	24.3	8.0	30.5	1.2	34.3	0.8
Stab Ang (deg)	-39.5	0.0	-3.8	9.0	-0.7	0.2
	6.9	9.0	2.4	6.0	1.0	9.0
	0.8	0.5	1.3	0.4	1.5	0.4
	0.8	0.5	1.3	0.4	1,5	0.4
	-1.0	6.0	-0.5	0.9	0.9	9.0
a)	320.2	6.0	318.4	6.0	330.3	9.0
	-0.1	1:1	-0.2	0.3	-0.3	0.3
	0.3		0.2	0.5	0.2	0.5
ÓΣ	e.0-	0.8	-0.4	0.4	-0.1	0.4
	0.0		0.0	0.7	0.0-	0.8
(deg/	0.3		0.0	1.6	0.0	2.1
7	-0.4	2.2	-0.0	0.7	0.0	0.8
_	-2.3	0.3	-1.8	0.1	-1.5	0.1
	3.1	0.3	1.8	0.1	1.0	0.1
	-31.2	0.4	-32.2	0.4	-31.9	9.0
	20.3	0.1	103.7	3.8	148.3	5.0
(£t/	12.1	0.1	-6.2	2.4	-3.7	5.3
0	0.69	0.0	0.69	0.0	0.69	0.0
	51.9	0.0	127.3	2.4	158.4	2.7
	-197.4	0:0	-197.4	0.0	-197.4	0.0
	1.0	0.1	9.0	0.2	1.7	0.7
_	1.0	0.1	9.0	0.1	1.9	0.5
_	•	0:0	3.2	0:0	3.1	0.0
	5.7	0.0	5.8	0.0	5.8	0.0
	6.5	0.0	6.2	0.0	6.2	0.0
RolFwdPstM (in)	5.1	0.0	5.1	0:0	5.0	0.0

Table 17. Ground Effect Study - Over Land

	File AT816 (20-25s)	(20-25s)	File AT817 (10-20s)	(10-20s)	File AT837 (7-12s)	7 (7-12s)	File AT83	File AT838 (15-20s)	File AT839 (20-30s)	(20-30s)
Vanable	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Description (8)	r ar	0.3	59.0	0.4	65.0	0.2	64.6	0.4	68.1	0.5
Precyclist (%)	55.8	9.0	55.0	0.4	56.7	0.2	55.9	0.8	55.8	0.1
PreColl (%)	64.2	0.8	66.2	0.5	60.2	0.2	60.7	9.0	65.2	0.0
PrePedals(%)	39.2	1.1	39.4	0.3	37.5	0.4	38.6	1.2	41.7	8.0
AFCS Pit (#)	36.2	3.1	35.2	4.4	31.2	4.0	36.8	2.9	34.6	3,3
AFCS Roll (8)	18.9	3.2	17.4	2.8	17.3	1.4	16.1	2.4	18.1	9.0
	33.5	0.3	33.2	0.3	22.1	0.4	22.0	9.0	22.6	2.7
_	30.0	6.7	30.2	6.9	37.7	4.6	30.4	8.9	27.5	5.4
~	52.4	0.7	52.5	0.8	58.3	0.5	58.7	0.3	59.7	0.5
~	47.1	1.2	45.4	6.0	51.1	9.0	49.4	1.3	46.3	0.2
_	31.6	0.3	30.6	9.0	32.8	0.4	33.5	0.7	33.0	0.7
	53.6	0.5	54.6	9.0	56.3	0.4	57.0	0.3	60.5	0.5
	48.1	9.0	47.3	9.0	53.4	0.3	53.3	0.4	51.8	0.4
	58.8	9.0	59.6	0.3	57.8	0.2	57.9	0.4	60.4	0.2
	26.6	0.2	26.5	0.4	28.2	0.3	29.1	_	29.3	0.3
	-39.5	0.0	-39.5	0.0	-39.4	0.0	-39.4	0:0	-39.5	0:0
Theta (dea)	5.2	0.1	5.3	0.2	3.4	0.2	2.7	9.0	2.6	0.3
Phi (dea)	-1.7	0.4	-2.0	0.4	-2.0	0.4	-2.6	_	-2.5	0.4
Boll (deg)	-1.7	0.4	-2.0	0.4	-2.0	0.4	-2.6	9.0	-2.5	0.4
Psi (ded)	-4.2	0.9	-0.7	0.3	4.6	0.5	-3.3			9.0
Heading (deg)	295.6	_	298.0	0.3	314.5	0.5	33		<u>د</u>	9.0
0 (dea/s)	-0.2	0.4	-0.1	0.5	-0.1	0.5			_	0.4
p (deg/s)	0.1	0.9	0.0	9.0	0.2	0.4				0.3
R (dea/s)	-1.2	0.5	-0.4	0.7	-0.5	0.5			_	0.5
Obot (deg/s²)	0.2	0.9	0.2	1.9	-0.5	1:1				0.7
Phot (deg/s ²)	-0.0		_	2.8	-0.0	1.5				
RDot (deg/s²)	-0.0		-0.1	1.2	0.1	1.3		8.0	<u> </u>	0.8
Ax (ft/s²)	-0.2		0.0	0.2	_	_				0.1
Av (ft/s²)	4.0	0.2	4.0				_		_	0.1
Az (ft/s²)	-32.4	0.5	-32.5	0.4	-32.2	0.3			'	0.2
DopVx (ft/s)	0.4	1.2	-0.6	1.2	_		_	_		
DopVv (ft/s)	9.0	1.1	-0.2	1.6	0.2	0.5				
DopVz (ft/s)	-0.0	1:0	-0.2	1:1		0.4			_	
U (ft/s)	52.7	0:0	52.7	0.0			_		_	
2 (ft)	-10.3	0.7		1.0	9.6-	•	-15.1		_	
Engine1 (%)	73.0	1.4		1:1		9.0				-
Engine2 (%)	74.4	1.8	77.6	1.4	_	•	66.8	1.1	_	_
PitAftPstM (in)	3.0	0:0	3.0	0:0		•	3.2			
PitFwdPstM (in)	6.5	0.0		0.0	6.5					
RolAftPstM (in)	5.7	0:0	5.7	0.0	2.6	0:	5.6	0.0	9.0	0.0
RolFwdPstM (in)	5.8	0.1	5.5	٥	5.	0	2	٥	6	3

Table 18. Ground Effect Study at Sea $\frac{W}{\sigma} \approx 17000$ lbr

151 (18-25s) File AL151 (40-50s)			File A	1152		File AL152 (40-50s)	(40-50s)	File AL152 (60-66s)	(60-66s)	File AL15	File AL158 (27-37s)	File AL158	File AL158 (45-55s)	File AL159 (30-40s)	(30-40s)	File AL159 (48-58s)	(48-58s)	File AL159 (85-95s)	(85-95s)
Std Dev Mean Std Dev Mean Std Dev	Std Dev Mean Std Dev	Mean Std Dev	Std Dev	Н	ž	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
2.3 61.3 1.4 64.1 2.8	1.4 64.1 2.8	64.1 2.8	2.8		61.	6	1.8	61.1	3.7	57.5	2.2	59.0	1.9	57.6	2.9	58.4	2.3	59.8	3.2
53.5 1 6 64 0 1 0 52 5 1 2 54.5	1.2 55.7 2.0	55.7 2.0	2.0	2.0 54.5	54.5		2.2	56.1	2.6	56.8	2.4	56.8	3.1	56.7	5.6	56.3	2.1	58.0	2.0
1.3 39.3 1.6 39.0 1.8	1.6 39.0 1.8	39.0		1.8 40	40	p. 4	6.0	38.8	2.6	63.0	2.1	63.0	4.0	63.4	2.7	63.4	1.6	65.4	1.7
12.3 33.9 7.2 18.3 13.6	33.9 7.2 18.3 13.6	18.3 13.6	13.6	13.6 36	36	36.2	6.6	31.6	14.1	42.7	11.9	40.3	12.5	46.5	14.1	47.3	10.8	44.5	2.3
5.6 23.8 3.9 23.8 5.5	23.8 3.9 23.8 5.5	23.8 5.5	5.5	5.5 22	22	22.9	5.7	25.1	9.0	24.9	7.2	25.7	9.0	24.1	6.6	23.8	5.1	22.4	6.1
1.0 29.2 0.9 28.7 1.2	29.2 0.9 28.7 1.2	28.7 1.2	1.2	1.2	N	28.7	1.2	28.7	1.8	28.6	1.4	28.7	1.4	28.7	1.6	28.5	1.2	28.6	1.4
2.3 46.1 2.6	2.6		46.4 3.2	3.2		46.1	2.3	46.8	2.0	45.8	2.7	46.3	3.0	45.4	2.9	45.1	2.3	46.6	2.8
54.1	1.7		53.7 2.9	2.9		54.2	1.8	53.6	3.3	53.6	2.0	53.7	2.3	53.3	2.4	54.3	1.9	54.3	2.8
o. r	7.0		31.6	1.6		45.6	2.2	46.8	2.1	47.2	2.0	47.0	2.6	46.9	2.5	46.6	1.8	48.1	1.9
1.0 55.3 1.0 54.8	3.0	C. 15.		2.0		52.4	2 .	31.4	2.5	29.3	3.0	31.3	3.1	31.7	2.6	30.4	2.4	30.9	1.8
1.7 49.2 1.4	1.4 49.0	49.0		2.6		49.5		1.00	.,	7.6		34.8	1.5	54.8	1.4	55.4	1.5	56.7	2.0
58.8 0.8	0.8		59.0	1.4		58.9		20.05				2.64	2.2	9.0	5.6	49.5	1.6	48.4	2.1
1.6 26.7 0.6 25.2 1.7	0.6 25.2 1.7	25.2 1.7	1.7	1.7		27.0	1.1	26.7	1.6	27.1	1.2	0.00		26.7	7.7	1.60	1:1	1.10	1.3
0.0 -39.4 0.0 -39.5 0.0	0.0 -39.5 0.0	-39.5 0.0	0.0	0.0	ï	-39.5	0.0	-39.5	0.0	-39.5	0.0	-39.5	0.0	-39.5	0.0	-39.4	0.0	-39.5	0.0
4.9 0.4	0.4		6.0 1.2	1.2		4.6	6.0	4.9	1.1	4.5	0.8	4.7	9.0	4.7	1.1	4.6	0.8	4.6	1.2
1.4 -2.3 0.6 -2.7 0.9	0.6 -2.7 0.9	-2.7 0.9	6.0	6.0	•	-2.9	6.0	-3.0	1.7	-2.1	1.2	-2.4	1.7	-2.4	1.6	-2.4	1.0	-3.6	1.2
1.4 -2.3 0.6 -2.7 0.9	0.6 -2.7 0.9	-2.7 0.9	6.0	6.0		-2.9	6.0	-3.0	1.7	-2.2	1.2	-2.4	1.7	-2.5	1.6	-2.4	1.0	-3.6	1.2
0.7 -8.8 0.8 -3.9 4.2	0.8 -3.9 4.2	-3.9 4.2	4.2	4.2	ï	.25.3	1.5	-24.9	0.9	9.0	0.9	-4.5	1.6	-9.2	1.4	-12.0	6.0	-17.8	1.0
212.7 0.8 218.7 4.2	0.8 218.7 4.2	218.7 4.2	2.5	4.2	-	197.3	1.5	197.7	0.8	194.4	0.9	189.2	1.6	188.9	1.4	186.1	6.0	180.3	1.0
2 7 0 2 1 9 0 1 2 2	1.0 - 1.7	-0.1	1.7	1.7		-0.1	0.1	-0.2	1.6	0.0	1.2	0.0-	1.3	0.1	1.6	-0.1	1.4	0.0	2.1
1.0 -0.1 1.2	1.2 -0.2	-0.2		1.7		1.0-	0	0 -	0.6	0.3	2.8	0.3	3.6	-0.4	3.8	0.2	2,3	0.0	2.8
3.1 0.0 3.0 0.0	3.0 0.0	0.0	_	4.		0.1	3.5		. A			6.0	٠.٠	7.0	1.5	0.2	1.2	-0.2	1.5
9.2 0.0 8.9	6.8		-0.1 7.4	7.4		9.0-	13.2	-1.2	14.3	0.2	10.5	0.3	12.5	-0.5	17.4	-0.0	υ. α.	7.0	12.6
2.3 -0.1 3.3	3.3		0.1 4.4	4.4		-0.1	3.3	-0.2	2.1	0.1	3.3	-0.1	4.6	-0.1	3.9	0.0-	2.6	-0.4	3.5
0.4 0.0 0.4	0.4		0.1	4.0		0.2	0.4	0.2	0.5	0.1	0.5	0.1	0.5	0.2	0.5	0.2	0,3	0.5	0.4
9.5 3.7 0.4	0.4		3.7 0.6	9.0		3.6	0.5	3.7	0.7	3.6	0.5	3.6	9.0	3.7	9.0	3,5	0.5	3,3	0.7
1.4 -32.4 0.7 -3	0.7	" —	-32.4 1.2	1.2		-32.2	8.	-31.8	1.8	-32.2	1.4	-32.4	1.5	-32.3	1.9	-32.3	1.2	-32,3	1.2
-0.2	8.		2.8	2.6		-0.1	8.0	6.0	1.2	-0:1	1.1	-0.1	8.0	-0.5	6.0	0.0	1.0	-0.4	6.0
1.4 0.2			0.3	1.3		0.4	1.3	9.0	6.0	0.3	1.3	0.0	1.3	0.3	1.3	0.1	1.3	0.9	1.3
1.2 -0.1 0.8	æ. ç		0.9	1.4		-0.1	1.3	0.2	1.0	0.0	1.0	-0.1	1.1	-0.0	1.0	0.0	0.8	0.4	1.0
52.2 0.0 52.2 0.0	0.0 52.2 0.0	52.2 0.0	0.0	0.0		52.2	0.1	52.2	0.0	52.0	0:0	52.0	0.0	52.0	0.0	52.0	0.0	52.0	0.0
0.6 -14.4 0.3 -14.1 1.4	0.3 -14.1 1.4	-14.1 1.4	1.4	1.4	•	-14.5	6.0	-11.2	0.3	-10.6	0.5	-12.1	8.0	-13.5	9.0	-13.7	9.0	-12.4	9.0
74.3	1.5		73.8 3.4	3.4		73.8	5.7	74.6	6.2	73.7	5.1	74.1	5.9	74.0	5.4	74.3	4.6	7.97	3.5
3.3 /6.1 1.8 7	1.8	_	75.1 3.6	3.6		74.9	6.4	6.97	6.5	75.5	6.1	7.5.7	6.3	75.3	0.9	76.0	4.6	78.3	3.5
3.0 0.1 3.0 0.1	0.1		3.0	0.1		3.0	0.1	3.0	0.1	3.0	0.1	3.0	0.1	3.0	0.1	3.0	0.1	3.0	0.1
0.0		0.0 6.5	6.5	0.0		9 1	0.0	6.5	0:0	6.5	0.0	6.5	0.0	6.5	0.0	6.5	0.0	6.5	0.0
0.0		0.0 5.6 0.0	5.6	0.0		2.1	0:0	5.6	0.0	5.6	0.1	5.6	0.1	5.6	0.1	5.6	0.0	5.6	0.0
5.3 0.0 5.8 0.0	5.9 0.0 5.8 0.0	0.0 5.8 0.0	5.8 0.0	0.0		5.9	0.1	5.9	0.1	5.9	0.0	5.9	0.0	5.9	0.1	6.5	0	ŭ	0

Table 19. Ground Effect Study at Sea $\frac{W}{\sigma} \approx 19000$ lbf

- Jacks	File AL10	File AL100 (35-45s)	File AL173 (30-35s)	(30-35s)	File AL17	File AL174 (30-40s)	File AL174 (45-55s)	(45-55s)
Variable	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Drochor (8)	59.8	1.2	65.9	3.7	62.1	1.4	62.5	1.1
	57.3	3.4	56.0	3.0	54.4	1.6	55.1	2.9
	66.1	1.8	67.1	1.5	9.99	1:1	67.3	1.3
PrePedals(8)	38.9	1.5	38.1	1.5	38.4	1.2	39.0	1.5
AFCS Dit (8)	32.4	7.7	16.6	13.4	35.2	5.8	35.2	5.0
AFCS Roll (%)	28.6	10.9	13.5	10.8	13.1	7.5	12.2	9.6
	26.8	9.0	29.5	1.2	29.4	0.9	29.4	0.7
y mey	44.7	2.8	19.5	11.1	17.9	10.8	15.0	8.6
DitchpatM (%)	54.0	1.2	54.5	2.7	55.2	1.0	55.6	1.2
	46.0	2.2	45.2	3.1	44.4	1.3	45.0	2.3
	30.0	2.0	28.6	2.7	29.1	1.2	28.9	1.5
	56.4	1.0	57.9	2.0	58.2	0.9	58.8	1.1
	47.9	1.4	47.5	1.9	48.1	6.0	48.0	1.2
1 1	60.8	1.5	61.4	1.3	60.7	1.0	61.4	1.3
_	27.6		25.4	2.7	27.2	9.0	_	0.5
	-39.5		-39.5	0.0	-39.5	0.0	-39.6	_
	3.7	9.0	5.7	2.0	4.3	9.0		0.4
Phi (dea)	-1.4		-1.4	1.1	-1.9	1.4	-2.1	1.4
Roll (deq)	-1.4	2.1	-1.4	1.1		1.4	-2.1	1.4
Psi (ded)	-4.1	0.8	3.3	0.4	_	0.7	-4.2	1.0
Heading (deg)	6.3	0.8	256.0	0.4	242.7	0.7	~	
0 (dea/s)	-0.1	0.7	0.7	1.8	<u>'</u>	9.0		
P (deg/s)	0.4	3.4	0.2				_	2.7
R (deq/s)	-0.1	1.4	0.2	1.0	-0.2	1.0		7.0
ODot (deg/s²)	0.1	2.1	-0.0	4.0				
PDot (deq/s ²)	0.7	11.2		13.0	-0.0			
	-0.1		-0.3	2.3			_	2.7
	-0.1		٥.٥	0.5	_			
Av (ft/s²)	3.7	0.4	3.2	9.0	3.3	0.3	3.2	
	-32.2	1.2	ï	9.0	_		_	
DopVx (ft/s)	-0.5	6.0	3.9	1.3	<u>'</u>	_	_	_
DopVv (ft/s)	-0.1	1.2	-1.2	1.0	0.1	_	_	_
	-0.2		1.7	0.8	-0.1			
U (ft/s)	52.2	0.1	51.9	0:0	51.8	_		
2 (ft)	-3.2	9.0	-8.4	0.7	_			
Engine1 (%)	80.5		_	4.	81.3			_
Engine2 (%)	81.1		80		<u> </u>			
PitAftPstM (in)	3.0	0.0	3.0					
PitFwdPstM (in)						_	_	
RolAftPstM (in)	5.6	5 0.1		0.1		0.0	2.	0.1
RolFwdPstM (in)	5.9	0.0	0.9	0.0	9 6.	0.	9	0.0

APPENDIX J - CALIBRATION CORRECTION FOR STABILATOR ANGLES

Observations of the flight data showed that the measured stabilator angle for all hover cases indicated about -36.4°. However, the true angle of the stabilator in hover is known to be -40°. This discrepancy could be due to an error in either the calibration scale or offset factors, or both.

Program GenHel (Refs 13,14) was originally obtained from the Naval Air Warfare Center (NAWC) under the auspices of The Technical Cooperation Panel. GenHel, which uses a blade element model to represent the rotor aerodynamics, has been tested for validity by Ballin (Ref. 15) at NASA Ames for the US UH-60A Black Hawk (or S-70A-1), and has been shown to represent the aircraft flight behaviour reasonably well. Preliminary comparisons between GenHel and the performance data show that the model also predicts the behaviour of the S-70B-2 reasonably well (Ref. 16). The GenHel equations were used to determine the correct stabilator angle for a given flight condition. A Microsoft Excel spreadsheet that used the GenHel equations for the stabilator scheduling, which is a function of airspeed, collective stick position, pitch rate, and lateral acceleration, was created. For the hover and level flight evolutions, the mean airspeed, collective stick position, pitch rate, and lateral acceleration were input to the spreadsheet and stabilator angles were calculated.

Program Kaleidagraph was used to plot the GenHel stabilator angles against the measured stabilator angles and determine a best fit straightline. However, in order to force the best fit equation to give a stabilator angle of -40° when the measured data indicated -36.4°, the measured data were first incremented by 36.4°. By plotting this offset data against the GenHel data, an equation of the form y = mx' - 40 was fitted, where x' was the measured stabilator angle + 36.4° and y was the GenHel stabilator angle (Fig. J1). The measured, offset, and GenHel stabilator angles are shown in Table J1.

Evolution	Level Flight Airspeed (kn)	Measured Stab Angle (deg)	Offset Measured Stab Angle (deg)	<i>GenHel</i> Stab Angle (deg)
AT8071	0	-36.4	0	-40.0
AT821	40	-32.6	3.8	-35.3
AT822	76	-6.9	29.5	-9.7
AT823	115	-4.4	32.0	-4.6
AT824	128	-3.9	32.5	-4.3

Table J1. Measured and Calculated Stabilator Angles

From Fig. J1, the equation for the stabilator angle is

$$y = 1.0809x' - 40$$

where x' = x + 36.4 and x is the measured stabilator angle. Thus

$$y = 1.0809(x + 36.4) - 40$$
$$= 1.0809x - 0.65524$$

AT807 was chosen to represent the hover data, although all the IGE hovers AT800 to AT806 indicated a stabilator angle of -36.4°.

For future data processing of aircraft data (Refs 2,3), the calibration file (Appendix E) needs to be modified so that the calibration factor for the stabilator angle (Channel 54) becomes 1.0809(5.4932E-03) = 5.9376E-03, and the offset factor becomes -0.65524.

Figure J1. Curve Fit for Offset Measured Stabilator Angle vs GenHel Angle

DISTRIBUTION LIST

Australian Trials of the Sikorsky S-70B-2 Helicopter: Part I - Performance Measurements A. M. Arney and I. Fieldhouse

AUSTRALIA

DEFENCE ORGANISATION

Task Sponsor DAVENG-N

S&T Program

Chief Defence Scientist

FAS Science Policy

AS Science Industry and External Relations

AS Science Corporate Management

Counsellor Defence Science, London (Doc Data Sheet)

Counsellor Defence Science, Washington (Doc Data Sheet)

Scientific Adviser to MRDC Thailand (Doc Data Sheet)

Director General Scientific Advisers and Trials/Scientific Adviser Policy and

shared copy

Command (shared copy)

Navy Scientific Adviser

Scientific Adviser - Army (Doc Data Sheet and distribution list only)

Air Force Scientific Adviser

Director Trials

Aeronautical and Maritime Research Laboratory

Director

Electronics and Surveillance Research Laboratory

Director

Chief, Air Operations Division

Chief, Airframes and Engines Division

Research Leader, Aircraft Performance

Research Leader, Avionics

Research Leader, Flight Systems

Research Leader, Human Factors

Head AOSC

Head Helicopter Operations (6 copies)

Head Operations & Performance Analysis

A. M. Arney (2 copies)

I. Fieldhouse (2 copies)

DSTO Library

Library Fishermens Bend

Library Maribyrnong

Library DSTOS (2 copies)

Australian Archives

Library, MOD, Pyrmont (Doc Data sheet only)

Forces Executive

Director General Force Development (Sea)

Director General Force Development (Land) (Doc Data Sheet only)

Director General Force Development (Air) (Doc Data Sheet only)

Air Force

Aircraft Research and Development Unit

Scientific Flight Group

Library

Director of Flying Safety - Air Force

RAAF Base Amberley

RAAF Base East Sale

RAAF Base Glenbrook

RAAF Base Pearce

RAAF Base Richmond

RAAF Base Tindal

RAAF Base Williamtown

Army

ABCA Office, G-1-34, Russell Offices, Canberra (4 copies)

CO 5 RGT, Townsville

School of Army Aviation, Oakey

Navy

SO (Science), Director of Naval Warfare, Maritime Headquarters Annex,

Garden Island, NSW 2000 (Doc Data Sheet only)

ASSTASS, APW2-1-OA2, Anzac Park West, Canberra

Aircraft Maintenance and Flight Trials Unit

Director of Aviation Engineering - Navy

Director of Aviation Projects - Navy

Director of Naval Architecture

Director of Occupational Health and Safety and Naval Medicine

CO HMAS Albatross

CO HMAS Cerberus

Office of Naval Attache, Washington

RAN Tactical School, Library

Superintendent Naval Aircraft Logistics

S&I Program

Defence Intelligence Organisation

Library, Defence Signals Directorate (Doc Data Sheet only)

B&M Program (libraries)

OIC TRS, Defence Central Library

Officer in Charge, Document Exchange Centre (DEC), 1 copy

*US Defence Technical Information Center, 2 copies

*UK Defence Research Information Centre, 2 copies

*Canada Defence Scientific Information Service, 1 copy

*NZ Defence Information Centre, 1 copy

National Library of Australia, 1 copy

UNIVERSITIES AND COLLEGES

Australian Defence Force Academy

Library

Head of Aerospace and Mechanical Engineering

Deakin University, Serials Section (M list), Deakin University Library

Senior Librarian, Hargrave Library, Monash University

Melbourne

Engineering Library

Newcastle

Library

Institute of Aviation

NSW

Physical Sciences Library

RMIT

Library

Aerospace Engineering

Swinburne

Engineering Library

Sydney

Engineering Library

Librarian, Flinders University

OTHER ORGANISATIONS

NASA (Canberra)

AGPS

Bureau of Air Safety Investigations

Civil Aviation Authority

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS

INSPEC: Acquisitions Section Institution of Electrical Engineers

Library, Chemical Abstracts Reference Service

Engineering Societies Library, US

American Society for Metals

Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS

Acquisitions Unit, Science Reference and Information Service, UK

Library - Exchange Desk, National Institute of Standards and Technology, US

CANADA

Defence Research Establishment, Atlantic

J.L. Colwell

National Research Council, Ottawa

P. R. Sully (Canadian NL TTCP HTP-6)

S. Zan

University of Toronto

L.D. Reid

Bombardier Inc., Canadair, Montreal

B.I.K. Ferrier

UNITED KINGDOM

Defence Research Agency, Bedford

G.D. Padfield

B. Lumsden

Defence Research Agency, Farnborough

A.F. Jones (UKNL TTCP HTP-6)

UNITED STATES

US Army Aeroflightdynamics Directorate, Ames Research Center

W.G. Bousman (USNL TTCP HTP-6)

Naval Air Warfare Center, Aircraft Division, Warminster

J.W. Clark, Jr (TTCP HTP-6)

J. Funk

Naval Air Warfare Center, Aircraft Division, Patuxent River

D. Carico

J. McCrillis

L. Trick

Naval Air Warfare Center, Aircraft Division, Lakehurst

H. Fluk

SPARES (10 copies)

Total number of copies: 122

Page classification: UNCLASSIFIED

DEFENCE SCIENC DOC	E ANI UMEI	D TECHNOLOG NT CONTROL D	Y ORGAN		PRIVACY MARKI DOCUMENT)			
2. TITLE				3. SECURITY	CLASSIFICATION (FOR IMITED RELEASE USE	OR UN	CLASSIFIED REPORTS	
Australian Airborne Trial Part I - Performance Meas	s of the uremen	Sikorsky S-70B-2 H	elicopter:	CLASSIFICA Do Tit	TION) cument	(U) (U) (U)		
4. AUTHOR(S)				5. CORPORA	ATE AUTHOR			
A. M. Arney and I. Fieldh	ouse			PO Box 4333 Melbourne	Vic 3001			
6a. DSTO NUMBER		6b. AR NUMBER		6c. TYPE OF			OCUMENT DATE ary 1997	
DSTO-TR-0463 AR-009-955 8. FILE NUMBER 9. TASK NUMBER 10. TASK S			Technical R		Janua	ily 1777		
8. FILE NUMBER NAV 95/183 DAVENG				11. NO. OF PAGES 72		12. NO. OF REFERENCES 16		
13. DOWNGRADING/DELIMITING INSTRUCTIONS				14. RELEASE AUTHORITY				
None				Chief, Air Operations Division				
15. SECONDARY RELEASE OVERSEAS ENQUIRIES OUTSI	DE STAI	A)	oproved for p	nublic release		ENTRE,	DIS NETWORK OFFICE,	
DEPT OF DEFENCE, CAMPBEL 16. DELIBERATE ANNOUN	L PARK	OFFICES, CANBERRA A	CI 2600					
No limitations	(CLIVIL	•••						
17. CASUAL ANNOUNCE	MENT		Yes					
18. DEFTEST DESCRIPTOR								
Flight tests, Sikorsky hel	icopter	s, Oliver Hazard Cla	ass Perry friga	ites, performa	nce tests, flight dyna	mics, r	nathematical models	
19. ABSTRACT Airborne tests have flown by a Royal A S-70B-2 when opera opportunity was tal that will be used to of the performance	Austra ting f ken to	lian Navy Test rom an 'Adelaid fly a series of p or develon a mat	Pilot and seed class FFO performance hematical seeds	were prima G-7 frigate. e and flight nodel of the	While the aircra t dynamic tests to helicopter. This	ft was o esta s repo	s instrumented, the blish baseline data ort details the scope	

Page classification: UNCLASSIFIED