Darboux sums and integrals: reminders

```
If f is bounded on S, let m(f,S) = \inf_{s \in S} f(s), M(f,S) = \sup_{s \in S} f(s). A partition of [a,b] is P = \{a = t_0 < t_1 < \ldots < t_n = b\}. Lower Darboux sum: L(f,P) = \sum_{k=1}^n m(f,[t_{k-1},t_k])(t_k-t_{k-1}). Upper Darboux sum: U(f,P) = \sum_{k=1}^n M(f,[t_{k-1},t_k])(t_k-t_{k-1}). Lower Darboux integral: L(f) = \sup_P L(f,P). Upper Darboux integral: U(f) = \inf_P U(f,P). The inf, sup are taken over all partitions P of [a,b]. f is integrable if L(f) = U(f). Denote \int_a^b f = L(f) = U(f).
```

Theorem (Theorem 32.4)

If $f:[a,b]\to\mathbb{R}$ is bounded, then $L(f)\leqslant U(f)$.

Remark. From the definition, f is integrable when U(f) = L(f). We only need to check $U(f) \leq L(f)$ to establish integrability.

Integrals: Example

```
Is h(x) = x integrable on [0, b]? If it is, compute \int_0^b h.
If P = \{a = t_0 < t_1 < \ldots < t_n = b\} is a partition, then, for any k,
m(h, [t_{k-1}, t_k]) = \inf_{t \in [t_{k-1}, t_k]} h(t) = t_{k-1}, and
M(h,[t_{k-1},t_k]) = \sup_{t \in [t_{k-1},t_k]} h(t) = t_k.
L(h,P) = \sum_{k=1}^{n} t_{k-1}(t_k - t_{k-1}), \ U(h,P) = \sum_{k=1}^{n} t_k(t_k - t_{k-1}).
To make computations easier, consider "equal" partitions
P_n = (0 < \frac{b}{n} < \frac{2b}{n} < \dots < \frac{(n-1)b}{n} < b) (that is, t_k = \frac{kb}{n}).
L(h, P_n) = \sum_{k=1}^n \frac{(k-1)b}{n} \frac{b}{n} = \frac{b^2}{n^2} \sum_{k=1}^n (k-1) = \frac{b^2}{n^2} \frac{n(n-1)}{n} = \frac{b^2}{n^2} (1 - \frac{1}{n}).
L(h) \geqslant \sup_{n} L(h, P_n) = \lim_{n} L(h, P_n) = \frac{b^2}{2}. Similarly,
U(h) \leq \lim_n U(h, P_n) = \frac{b^2}{2}. However, U(h) \geq L(h), hence
U(h) = L(h) = \frac{b^2}{2}. Thus, h is integrable, with \int_0^b h = \frac{b^2}{2}.
Can you interpret this geometrically?
```

A criterion of integrability

Theorem (32.5)

A bounded $f:[a,b] \to \mathbb{R}$ is integrable iff $\forall \varepsilon > 0 \exists$ partition P s.t. $U(f,P) - L(f,P) < \varepsilon$.

Recall that f is called integrable on [a, b] if L(f) = U(f).

- **Proof.** (1) Suppose f is integrable that is, L(f) = U(f). Fix $\varepsilon > 0$. Find partitions R, Q s.t. $U(f, R) < U(f) + \frac{\varepsilon}{2}$, $L(f, Q) > L(f) \frac{\varepsilon}{2}$. Let $P = R \cup Q$, then $L(f, P) \geqslant L(f, Q) > L(f) \frac{\varepsilon}{2}$, and $U(f, P) < U(f) + \frac{\varepsilon}{2}$. Then $U(f, P) L(f, P) < \varepsilon$.
- **(2)** Suppose $\forall \varepsilon > 0 \exists$ partition P s.t. $U(f,P) L(f,P) < \varepsilon$. As $U(f) \leq U(f,P)$ and $L(f) \geqslant L(f,P)$, we have $U(f) L(f) < \varepsilon$. As ε is arbitrary, we conclude that U(f) = L(f).

Monotone functions are integrable

Theorem (33.1)

Any monotone function on [a, b] is integrable.

Proof for the case of increasing f.

Fix $\varepsilon > 0$. Need to find a partition P s.t. $U(f,P) - L(f,P) < \varepsilon$. Find $n \in \mathbb{N}$ s.t. $\frac{(f(b)-f(a))(b-a)}{n} < \varepsilon$. Consider the "equal partition" P, with of points $t_k = a + kh$ $(0 \le k \le n)$, where $h = \frac{b-a}{n}$. Then $m(f,[t_{k-1},t_k]) = f(t_{k-1})$ and $M(f,[t_{k-1},t_k]) = f(t_k)$. $U(f,P) - L(f,P) = \sum_{k=1}^n \left(M(f,[t_{k-1},t_k]) - m(f,[t_{k-1},t_k])\right)(t_k - t_{k-1}) = h \sum_{k=1}^n \left(f(t_k) - f(t_{k-1})\right) = \frac{(f(b)-f(a))(b-a)}{n} < \varepsilon$.

Continuous functions are integrable

Theorem (33.2)

Any continuous function on [a, b] is integrable.

Proof. Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Fix $\varepsilon>0$. Need to find a partition P s.t. $U(f, P) - L(f, P) < \varepsilon$. f is uniformly continuous. Find $\delta > 0$ s.t. $|f(x) - f(y)| < \frac{\varepsilon}{h-2}$ if $|x-y|<\delta$. Find $n\in\mathbb{N}$ s.t. $h=\frac{b-a}{n}<\delta$. Consider the partition P consisting of points $t_k = a + kh$ ($0 \le k \le n$). We claim that, for any k, $M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) < \frac{\varepsilon}{h}$. Indeed, find $x_k, y_k \in [t_{k-1}, t_k]$ s.t. $M(f, [t_{k-1}, t_k]) = f(x_k), m(f, [t_{k-1}, t_k]) = f(y_k), |x_k - y_k| < \delta$. so $|f(x_k)-f(y_k)|<\frac{\varepsilon}{h}$. U(f,P)-L(f,P)= $\sum_{k=1}^{n} \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) (t_k - t_{k-1}) < hn \frac{\varepsilon}{h-a} = \varepsilon$, since hn = h - a

Mesh of a partition, and its applications

Definition (32.6)

The mesh of a partition $P = (a = t_0 < t_1 < ... < t_{n-1} < t_n = b)$ is $\operatorname{mesh}(P) = \max_{1 \le k \le n} (t_k - t_{k-1})$ (length of longest subinterval).

Theorem (32.7)

A bounded $f: [a, b] \to \mathbb{R}$ is integrable iff $\forall \varepsilon > 0 \ \exists \delta > 0$ s.t. $U(f, P) - L(f, P) < \varepsilon$ whenever $\operatorname{mesh}(P) < \delta$.

Remark. If δ is as above, $\operatorname{mesh}(P) < \delta$, then $U(f,P) - \int_a^b f, \int_a^b f - L(f,P) < \varepsilon$. Roughly speaking: $\lim_{\operatorname{mesh}P \to 0} U(f,P) = \int_a^b f = \lim_{\operatorname{mesh}P \to 0} L(f,P)$.

Proof of 32.7 (optional)

Need to show: f is integrable $\Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ U(f,P) - L(f,P) < \varepsilon$ if $\operatorname{mesh}(P) < \delta$.

Find a partition $Q = (a = s_0 < \ldots < s_m = b)$ s.t. $U(f, Q) - L(f, Q) < \frac{\varepsilon}{2}$. Let $B = \sup_{t \in [a,b]} |f(t)|$. We claim: $\delta = \frac{\varepsilon}{8mB}$ works.

Suppose $\operatorname{mesh}(P) < \delta$, let $R = P \cup Q$. We have $U(f,R) \leqslant U(f,Q)$ and $L(f,R) \geqslant L(f,Q)$, hence $U(f,R) - L(f,R) < \frac{\varepsilon}{2}$. Need: $U(f,P) \leqslant U(f,R) + \frac{\varepsilon}{4}$, $L(f,P) \geqslant L(f,R) + \frac{\varepsilon}{4}$.

Say
$$P = (a = t_0 < ... < t_N = b)$$
.

$$U(f,P) = \sum_{k=1}^{N} M(f,[t_{k-1},t_k])(t_k-t_{k-1}).$$

Notation.
$$R = (a = r_0 < ... < r_M = b)$$
.

$$R|_{[r_i,r_i]} := (r_i < r_{i+1} < \ldots < r_i).$$

$$U_{[r_i,r_i]}(f,R|_{[r_i,r_i]}) = \sum_{k=i+1}^{j} M(f,[r_{k-1},r_k])(r_k-r_{k-1});$$

$$L_{[r_i,r_j]}(f,R|_{[r_i,r_j]}) = \sum_{k=i+1}^{j} m(f,[r_{k-1},r_k])(r_k-r_{k-1}).$$

$$U(f,R) = \sum_{k=1}^{N} U_{[t_{k-1},t_k]}(f,R|_{[t_{k-1},t_k]}).$$

Proof of 32.7, part 2

If
$$(t_{k-1}, t_k) \cap Q = \emptyset$$
, then $R|_{[t_{k-1}, t_k]} = \{t_{k-1}, t_k\}$, hence $U_{[t_{k-1}, t_k]}(f, R|_{[t_{k-1}, t_k]}) = M(f, [t_{k-1}, t_k])(t_k - t_{k-1})$.

If
$$(t_{k-1}, t_k) \cap Q \neq \emptyset$$
, then $U_{[t_{k-1}, t_k]}(f, R|_{[t_{k-1}, t_k]}) \geqslant -B(t_k - t_{k-1})$, and $M(f, [t_{k-1}, t_k])(t_k - t_{k-1}) - U_{[t_{k-1}, t_k]}(f, R|_{[t_{k-1}, t_k]}) \leqslant 2B(t_k - t_{k-1})$.

Let S be the set of all $k \in \{1, ..., N\}$ for which $(t_{k-1}, t_k) \cap Q \neq \emptyset$. Then $|S| \leq m$.

$$U(f,P) - U(f,R) = \sum_{k \in S} \left(M(f,[t_{k-1},t_k])(t_k - t_{k-1}) - U_{[t_{k-1},t_k]}(f,R|_{[t_{k-1},t_k]}) \right) \geqslant \sum_{k \in S} 2B(t_k - t_{k-1}) \leqslant 2mB \operatorname{mesh}(P) < \frac{\varepsilon}{4}.$$

Similarly,
$$L(f,R) - L(f,P) < \frac{\varepsilon}{4}$$
.

Conclusion:
$$U(f, P) - L(f, P) = (U(f, P) - U(f, R)) + (U(f, R) - L(f, R)) + (L(f, R) - L(f, P)) < \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon$$
.

We can shrink the interval of integration

Proposition (Exercise 32.8)

If f is integrable on [a, b], and $[c, d] \subset [a, b]$, then f is integrable on [c, d].

Proof. Need to show: $\forall \varepsilon > 0 \exists$ partition P of [c, d] s.t.

 $U_{[c,d]}(f,P)-L_{[c,d]}(f,P)<\varepsilon$. Find $\delta>0$ s.t. $U(f,Q)-L(f,Q)<\varepsilon$ if Q is a partition of [a, b], with $\operatorname{mesh}(Q) < \delta$.

Consider $Q = (a = s_0 < ... < s_{i-1} = c < ... < s_i = d < ... < s_m = b)$, with $\operatorname{mesh}(Q) < \delta$. We claim that $P = Q \cap [c, d]$ works. Indeed,

$$U_{[c,d]}(f,P) - L_{[c,d]}(f,P) =$$

Riemann integration

Definition (32.8)

Suppose $f:[a,b] \to \mathbb{R}$ is bounded. For a partition

 $P = (a = t_0 < t_1 < ... < t_{n-1} < t_n = b)$, and $x_k \in [t_{k-1}, t_k]$, define the Riemann sum $S = \sum_{k=1}^{n} f(x_k)(t_k - t_{k-1})$.

f is Riemann integrable if $\exists r \in \mathbb{R}$ s.t. $\forall \varepsilon > 0 \ \exists \delta > 0$ s.t. $|S - r| < \varepsilon$ when $\operatorname{mesh}(P) < \delta$. Notation: $r = \mathcal{R} \int_a^b f$ is the Riemann integral.

Note that the Riemann integral is unique.

Theorem (32.9)

A bounded $f:[a,b] \to \mathbb{R}$ is Riemann integrable iff it is (Darboux) integrable. In this case, $\mathcal{R} \int_a^b f = \int_a^b f$.

Corollary 32.8. If the Riemann sums S_n correspond to partitions P_n , and $\lim_n \operatorname{mesh}(P_n) = 0$, then $\lim_n S_n = \int_a^b f$.

Proof: equivalence of Riemann and Darboux integrability

Remark. Any Riemann integrable function is bounded.

Proof: Darboux \Rightarrow Riemann. Suppose $f:[a,b] \to \mathbb{R}$ is integrable. For $\varepsilon > 0$ find $\delta > 0$ s.t. $U(f,P) - L(f,P) < \varepsilon$ if $\operatorname{mesh}(P) < \delta$. Note that $U(f,P) \geqslant \int_a^b f \geqslant L(f,P)$, hence $U(f,P) - \int_a^b f, \int_a^b f - L(f,P) < \varepsilon$. For any Riemann sum S, $U(f,P) \geqslant S \geqslant L(f,P)$. If $\operatorname{mesh}(P) < \delta$, then $\int_a^b f + \varepsilon > U(f,P) \geqslant S \geqslant L(f,P) > \int_a^b f - \varepsilon$, hence $|S - \int_a^b f| < \varepsilon$. Thus, f is Riemann integrable, with $\mathcal{R} \int_a^b f = \int_a^b f$.

Proof: equivalence of Riemann and Darboux integrability

Proof: Riemann ⇒ **Darboux** (optional).

 $L(f) = U(f) = \mathcal{R} \int_{a}^{b} f$.

Suppose $f:[a,b]\to\mathbb{R}$ is Riemann integrable. Fix a partition P; note that $U(f,P)=\sup S$, and $L(f,P)=\inf S$, where the sup and inf run over all Riemann sums corresponding to the partition P.

Fix
$$\varepsilon > 0$$
. Find $\delta > 0$ s.t. $\left| \mathcal{R} \int_a^b f - S \right| < \varepsilon$ whenever $\operatorname{mesh}(P) < \delta$. For such $P, S \in \left(\mathcal{R} \int_a^b f - \varepsilon, \mathcal{R} \int_a^b f + \varepsilon \right)$, hence $\mathcal{R} \int_a^b f - \varepsilon \leqslant L(f,P) \leqslant U(f,P) \leqslant \mathcal{R} \int_a^b f + \varepsilon$. In particular, $U(f) - L(f) \leqslant U(f,P) - L(f,P) \leqslant 2\varepsilon$. As $\varepsilon > 0$ is arbitrary, we obtain $U(f) = L(f)$, hence f is integrable. Further, $\mathcal{R} \int_a^b f - \varepsilon \leqslant L(f) \leqslant U(f) \leqslant \mathcal{R} \int_a^b f + \varepsilon$ for any $\varepsilon > 0$, hence