3/27/25, 11:02 AM 22104A0061 - Colab

Experiment 10 ML (K Means Clustering Technique)

import numpy as np import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import warnings

warnings.filterwarnings('ignore')

df = pd.read_csv('CreditCard.csv')

df	•	h	e	a	d	(

→		CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	(
	0	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	
	1	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	
	2	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	
	3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	
	4	C10005	817.714335	1.000000	16.00	16.00	0.0	0.000000	0.083333	

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.shape

→ (8950, 18)

df.info()

</pre RangeIndex: 8950 entries, 0 to 8949 Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype						
0	CUST_ID	8950 non-null	object						
1	BALANCE	8950 non-null	float64						
2	BALANCE_FREQUENCY	8950 non-null	float64						
3	PURCHASES	8950 non-null	float64						
4	ONEOFF_PURCHASES	8950 non-null	float64						
5	INSTALLMENTS_PURCHASES	8950 non-null	float64						
6	CASH_ADVANCE	8950 non-null	float64						
7	PURCHASES_FREQUENCY	8950 non-null	float64						
8	ONEOFF_PURCHASES_FREQUENCY	8950 non-null	float64						
9	PURCHASES_INSTALLMENTS_FREQUENCY	8950 non-null	float64						
10	CASH_ADVANCE_FREQUENCY	8950 non-null	float64						
11	CASH_ADVANCE_TRX	8950 non-null	int64						
12	PURCHASES_TRX	8950 non-null	int64						
13	CREDIT_LIMIT	8949 non-null	float64						
14	PAYMENTS	8950 non-null	float64						
15	MINIMUM_PAYMENTS	8637 non-null	float64						
16	PRC_FULL_PAYMENT	8950 non-null	float64						
17	TENURE	8950 non-null	int64						
<pre>dtypes: float64(14), int64(3), object(1)</pre>									
memo	memory usage: 1.2+ MB								

df.describe()

₹		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	NO.
	count	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	
	mean	1564.474828	0.877271	1003.204834	592.437371	411.067645	978.871112	0.490351	
	std	2081.531879	0.236904	2136.634782	1659.887917	904.338115	2097.163877	0.401371	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	128.281915	0.888889	39.635000	0.000000	0.000000	0.000000	0.083333	
	50%	873.385231	1.000000	361.280000	38.000000	89.000000	0.000000	0.500000	
	75%	2054.140036	1.000000	1110.130000	577.405000	468.637500	1113.821139	0.916667	
	max	19043.138560	1.000000	49039.570000	40761.250000	22500.000000	47137.211760	1.000000	

3/27/25, 11:02 AM 22104A0061 - Colab

We observe that two columns contains null or blank values these columns are 'CREDIT LIMIT' and 'MINIMUM PAYMENTS'. We assume that these columns may contain outliers. Therefore we replace missing values in these columns with median value of column.

```
# Filling the missing values with their column median
df['CREDIT LIMIT'] = df['CREDIT LIMIT'].fillna(df['CREDIT LIMIT'].median())
df['MINIMUM_PAYMENTS'] = df['MINIMUM_PAYMENTS'].fillna(df['MINIMUM_PAYMENTS'].median())
# dropping first column
new_df = df.drop('CUST_ID', axis=1)
new_df.info()
    <class 'pandas.core.frame.DataFrame'>
₹
     RangeIndex: 8950 entries, 0 to 8949
     Data columns (total 17 columns):
                                            Non-Null Count Dtype
     #
         Column
     ---
         BALANCE
     0
                                            8950 non-null
                                                            float64
          BALANCE_FREQUENCY
      1
                                            8950 non-null
                                                            float64
          PURCHASES
                                            8950 non-null
                                                             float64
      2
          ONEOFF PURCHASES
                                            8950 non-null
      4
          INSTALLMENTS_PURCHASES
                                            8950 non-null
                                                             float64
         CASH_ADVANCE
                                            8950 non-null
                                                             float64
          PURCHASES_FREQUENCY
                                            8950 non-null
                                                             float64
          ONEOFF PURCHASES FREQUENCY
                                            8950 non-null
                                                             float64
          PURCHASES_INSTALLMENTS_FREQUENCY
                                            8950 non-null
                                                             float64
      8
         CASH_ADVANCE_FREQUENCY
                                            8950 non-null
                                                             float64
         CASH_ADVANCE_TRX
      10
                                            8950 non-null
                                                             int64
      11
         PURCHASES TRX
                                            8950 non-null
                                                             int64
      12
         CREDIT LIMIT
                                            8950 non-null
                                                             float64
      13
         PAYMENTS
                                            8950 non-null
                                                             float64
      14 MINIMUM_PAYMENTS
                                            8950 non-null
                                                             float64
      15 PRC_FULL_PAYMENT
                                            8950 non-null
                                                             float64
     16 TENURE
                                            8950 non-null
                                                             int64
     dtypes: float64(14), int64(3)
     memory usage: 1.2 MB
# scaling all numerical columns
col_names = new_df.columns
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(new_df), columns = col_names)
df scaled.head()
₹
          BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY ONEOFF_PURCH
      0 -0.731989
                            -0.249434
                                       -0.424900
                                                         -0.356934
                                                                                 -0.349079
                                                                                                -0.466786
                                                                                                                     -0.806490
      1 0.786961
                            0.134325
                                       -0.469552
                                                         -0.356934
                                                                                 -0.454576
                                                                                                2.605605
                                                                                                                     -1.221758
      2 0.447135
                            0.518084
                                       -0.107668
                                                          0.108889
                                                                                 -0.454576
                                                                                                -0.466786
                                                                                                                     1.269843
      3
        0.049099
                            -1.016953
                                                          0.546189
                                                                                                -0.368653
                                       0.232058
                                                                                 -0.454576
                                                                                                                     -1.014125
      4 -0.358775
                            0.518084
                                      -0.462063
                                                         -0.347294
                                                                                  -0.454576
                                                                                                -0.466786
                                                                                                                     -1.014125
 Next steps: (Generate code with df scaled)

    View recommended plots

                                                                       New interactive sheet
# k means clustering algorithm
from sklearn.cluster import KMeans
km = KMeans(n_clusters=3, random_state=4)
\# we start by guessing number of clusters to be 3
kmeans_fit = km.fit(df_scaled)
km.labels # shows unique labels assigned by the algorithm
⇒ array([2, 1, 2, ..., 2, 2, 2], dtype=int32)
from sklearn.metrics import silhouette_score, silhouette_samples
silhouette_score(df_scaled, km.labels_)
np.float64(0.25098792290537314)
```

```
\# Silhouette score is ranging between -1 to 1
# Silhouette score = 1 ideal case (perfect fit for selected k)
# Silhouette score = 0 data points are close to boundaries
# Silhouette score = -1 data points are assigned to wrong group
# determination of best no.of clusters for guven dataset
wcss =[] # wcss = within clusted sum of squares
s1 =[] # empty list for storing silhouette
k=10 # initialize total no. of clusters to test
for i in range(2,k+1):
  kmeans = KMeans(n_clusters=i,random_state=4)
  kmeans.fit(df_scaled)
  wcss.append(kmeans.inertia_)
  score = silhouette_score(df_scaled,kmeans.labels_)
  s1.append(score)
\mbox{\tt\#} for each value of k display WCSS and Silhouette score
optimal_k = pd.DataFrame({'k': range(2,k+1),'WCSS':wcss,'Silhouette_score':s1})
optimal_k
₹
                     WCSS Silhouette_score
                                                \blacksquare
         2 127784.842986
                                    0.210132
                                                ıl.
         3 111975.043593
                                    0.250988
      1
         4 103145.612421
                                    0.183471
      3
             92131.465545
                                    0.192566
         5
             84829.997103
                                    0.202724
                                    0.194086
      5
         7
             81221.525853
             75545.268317
                                    0.208639
      6
         8
      7
         9
             72168.365836
                                    0.204017
        10
             68206.537103
                                    0.211677
      8
             Generate code with optimal k
                                           View recommended plots
                                                                         New interactive sheet
 Next steps:
# plotting the scores
```

```
# plotting the scores
sns.lineplot(x='k', y='WCSS', data=optimal_k)
plt.title('WCSS Elbow method plot')
plt.grid(True)
plt.show()
```



```
sns.lineplot(x = 'k', y = 'Silhouette_score', data = optimal_k, color='red')
plt.title('Silhouette score plot')
plt.grid(True)
plt.show()
```


- Silhouette score is maximum at k = 3 in this case
- Elbow

```
# Redesigning clusters with k = 2
kmeans = KMeans(n_clusters=3, random_state=4)
kmeans.fit(df_scaled)
```


kmeans.cluster_centers_

kmeans_fit.inertia_

→ 111975.0435932569

adding a new column to the original dataset for label
df_scaled['Cluster'] = kmeans.labels_
df_scaled.head()

→		BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	ONEOFF_PURCH
	0	-0.731989	-0.249434	-0.424900	-0.356934	-0.349079	-0.466786	-0.806490	
	1	0.786961	0.134325	-0.469552	-0.356934	-0.454576	2.605605	-1.221758	
	2	0.447135	0.518084	-0.107668	0.108889	-0.454576	-0.466786	1.269843	
	3	0.049099	-1.016953	0.232058	0.546189	-0.454576	-0.368653	-1.014125	
	4	-0.358775	0.518084	-0.462063	-0.347294	-0.454576	-0.466786	-1.014125	

Next steps: Generate code with df_scaled View recommended plots New interactive sheet

```
# plotting final graph of results
plt.figure(figsize=(12, 10))
plt.subplot(2,2,1)
sns.scatterplot(x=df\_scaled['PURCHASES'], \ y=df\_scaled['PAYMENTS'], \ hue = df\_scaled['Cluster'])
plt.xlabel('Purchases', fontsize=8)
plt.ylabel('Payments', fontsize=8)
plt.title('Purchases vs Payments', fontsize=10)
plt.subplot(2,2,2)
sns.scatterplot(x=df\_scaled['ONEOFF\_PURCHASES'], \ y=df\_scaled['PAYMENTS'], \ hue = df\_scaled['Cluster'])
plt.xlabel('One off Purchases', fontsize=8)
plt.ylabel('Payments', fontsize=8)
plt.title('One off Purchases vs Payments', fontsize=10)
plt.subplot(2,2,3)
sns.scatterplot(x=df\_scaled['INSTALLMENTS\_PURCHASES'], \ y=df\_scaled['PAYMENTS'], \ hue = df\_scaled['Cluster'])
plt.xlabel('Installment Purchases', fontsize=8)
plt.ylabel('Payments', fontsize=8)
plt.title('Installments vs Payments', fontsize=10)
plt.subplot(2,2,4)
sns.scatterplot(x=df\_scaled['CASH\_ADVANCE'], \ y=df\_scaled['PAYMENTS'], \ hue = df\_scaled['Cluster'])
plt.xlabel('Cash Advance', fontsize=8)
plt.ylabel('Payments', fontsize=8)
plt.title('Cash Advance vs Payments', fontsize=10)
plt.show()
```


Start coding or generate with AI.