Notes

Trey Wilkinson

December 2, 2020

Contents

Ι	Basics	3
1	Set Theory1.1 Notation1.2 Naive set theory1.3 Zermelo-Fraenkel set theory	4 4 4
2	Logic	6
3	Type Theory	7

Part I

Basics

Chapter 1

Set Theory

1.1 Notation

Let A, B, and I(a set of indexes) be sets, then the following operations are defined.

$$(a,b):=\{a,\{a,b\}\}$$

$$A\cup B$$

$$A\cap B$$

$$A\times B,\quad A\Pi B:=\{(a,b)\mid a\in A \text{ and } b\in B\}$$

$$A\Pi$$

Following are some ways the above operations may be generalized to multiple sets.

$$\bigcup_{i=0}^{n} A_i, \quad \bigcup_{i \in I} A_i, \quad \bigcup_{S \in \mathcal{I}} S$$

1.2 Naive set theory

1.3 Zermelo-Fraenkel set theory

Axioms

- 1. Axiom of extensionality
- 2. Axiom of regularity (also called the axiom of foundation)
- 3. Axiom schema of specification (also called the axiom schema of separation or of restricted comprehension)
- 4. Axiom of pairing

- 5. Axiom of union
- 6. Axiom schema of replacement
- 7. Axiom of infinity
- 8. Axiom of power set
- 9. Well-ordering theorem

Chapter 2

Logic

Chapter 3

Type Theory