形式语言与自动机作业参考答案(仅供参考)

▶ 第二章

- 4. 找出右线性文法,能构成长度为1至3个字符且以字母为首的字符串。
- 答: G={N,T,P,S}

其中 N={S,A,B,C,D} T={x,y} 其中 x \in {所有字母} y \in {所有的字符} P 如下: S \rightarrow x S \rightarrow xA A \rightarrow y A \rightarrow yB B \rightarrow y

5.找出右线性文法,能够成具有奇数个 a 和奇数个 b 的所有由 a 和 b 组成的字符串。

答: G={N,T,P,S}, 其中 N={S,A,B,C}, T={a,b}

S: 偶a偶b; A: 奇a偶b; B: 奇a奇b; C: 偶a奇b P如下:

S→aA|bC

A→bB|b|aS

B→aC|bA

C→aB|a|Bs

6.构造上下文无关文法能够产生所有含有相同个数 0 和 1 的字符串

答: G={N,T,P,S}, 其中 N={S}, T={0,1} P如下:

 $S \rightarrow 01|10$

 $S \rightarrow S01|0S1|01S$

 $S \rightarrow S10|1S0|10S$

- 7. 找出由下列各组生成式产生的语言(起始符为S)
- (1) $S \rightarrow SaS$ $S \rightarrow b$
- (2) $S \rightarrow aSb S \rightarrow c$
- (3) $S \rightarrow a S \rightarrow aE E \rightarrow aS$

答: (1) b(ab)ⁿ/n≥0} 或者 L={(ba)ⁿb/n≥0}

- (2) $L = \{a^n c b^n / n \ge 0\}$
- (3) L= $\{a^{2n+1}/n \ge 0\}$

> 第三章

- 1. 下列集合是否为正则集,若是正则集写出其正则式。
- (1) 含有奇数个 0 和偶数个 1 的{0,1}*上的字符串集合
- (2) 含有相同个数 a 和 b 的字符串集合
- (3) 不含连续的 0, 也没有连续的 1 的{0,1}*上的字符串集合
- 答: (1) 是正则集,自动机如下

- (2) 不是正则集,用泵浦引理可以证明,具体见17题(2)。
- (3) 正则式为: (01)*+1(01)*+1(01)*0+(01)*0
- 4. 对下列文法的生成式,找出其正则式

G=({S,A,B,C},{a,b,c,d},P,S),生成式 P 如下:

S→baA S→B

A→aS A→bB

 $B \rightarrow b \quad B \rightarrow bC$

C→cB C→d

G=({S,A,B,C,D},{a,b,c,d},P,S),生成式 P 如下:

 $S \rightarrow aA \quad S \rightarrow B$

A→cC A→bB

B→bB B→a

 $C \rightarrow D$ $C \rightarrow abB$ $D \rightarrow d$

答: (1) 由生成式得:

S=baA+B ①

A=aS+bB ②

B=b+bC (3)

C=cB+d (4)

③④式化简消去 C, 得到 B=b+b(cB+d)

将②⑤代入①

S=baaS+bab(bc)*(bd+b)+(bc)*(bd+b)

 $=>S=(baa)*(bab+\epsilon)(bc)*(b+bd)$

注意:答案不唯一。

(2) 由生成式得:

S=aA+B ①

A = cC + bB ②

B=bB+a ③

C=D+abB 4

D=d (5)

由③得 B=b*a ⑥

将⑤⑥代入④ C=d+abb*a=d+ab⁺a ⑦

将607代入② A=c (d+b⁺a)+b⁺a ⑧

将⑥⑧代入① S=a(c(d+b⁺a)+b⁺a)+b*a

= acd+acab⁺a+ab⁺a+b*a

注意:答案不唯一。

- 5. 为下列正则集,构造右线性文法:
- $(1) \{a, b\} *$
- (2)以 abb 结尾的由 a 和 b 组成的所有字符串的集合
- (3)以 b 为首后跟若干个 a 的字符串的集合

含有两个相继 a 和两个相继 b 的由 a 和 b 组成的所有字符串集合

答: (1) 右线性文法 G=({S}, {a, b}, P, S)

P:
$$S \rightarrow aS$$
 $S \rightarrow bS$ $S \rightarrow \epsilon$

(2) 右线性文法 G=({S}, {a, b}, P, S)

(3) 此正则集为{ba*}

右线性文法 G=({S, A}, {a, b}, P, S)

P:
$$S \rightarrow bA$$
 $A \rightarrow aA$ $A \rightarrow \epsilon$

(4) 此正则集为{{a,b}*{aa,bb}{a,b}*}

右线性文法 G=({S,A},{a,b},P,S)

P: S→aS|bS|aaA|bbA

- 7. 设正则集为 a(ba)*
- (1) 构造右线性文法
- (2) 找出(1) 中文法的有限自动机

答: (1) 右线性文法 G=({S, A}, {a, b}, P, S)

(2) 自动机如下:

- 9. 对应图 (a) (b) 的状态转换图写出正则式。(图略) 注意:答案不唯一。
 - (a) 由图可知 q_0 = aq_0 + bq_1 +a+ ϵ

$$q_1=aq_2+bq_1$$

$$q_2 = aq_0 + bq_1 + a$$

 $q_1=abq_1+bq_1+aaq_0+aa$

$$=(b+ab) q_1+aaq_0+aa$$

$$=(b+ab)*(aaq_0+aa)$$

 $q_0=aq_0+b(b+ab)*(aaq_0+aa)+a+\epsilon$

=
$$(a+b (b+ab) *aa) q_0 + b(b+ab) *aa+a+ \varepsilon$$

$$=(a+b (b+ab) *aa) *(b(b+ab) *aa+a+ \varepsilon)$$

=(a+b (b+ab) *aa) *

(b) $q_0 = aq_1 + bq_2 + a + b$

$$q_1 = aq_0 + bq_2 + b$$

 $q_2 = aq_1 + bq_0 + a$

$$\begin{aligned} q_1 &= aq_0 + baq_1 + bbq_0 + ba + b \\ &= (ba)*(aq_0 + bbq_0 + ba + b) \\ q_2 &= aaq_0 + abq_2 + bq_0 + ab + a \\ &= (ab)*(aaq_0 + bq_0 + ab + a) \\ q_0 &= a(ba)*(a + bb)q_0 + a(ba)*(ba + b) + b(ab)*(aa + b)q_0 + b(ab)*(ab + a) + a + b \\ &= [a(ba)*(a + bb) + b(ab)*(aa + b)]*(a(ba)*(ba + b) + b(ab)*(ab + a) + a + b) \end{aligned}$$

10.设字母表 T={a,b},找出接受下列语言的 DFA:

- (1) 含有 3 个连续 b 的所有字符串集合
- (2) 以 aa 为首的所有字符串集合
- (3) 以 aa 结尾的所有字符串集合
- (4) $L = \{a^n b^m a^k | n, m, k \ge 0\}$

答: (1) M=($\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$,其中 δ 如下:

	a	ь
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_3	q_3

(2) $M=(\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\}),$ 其中 δ 如下:

	a	b
q_0	q_1	Φ
q_1	q_2	Φ
q_2	q_2	q_2

(3) M=($\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\}$),其中 δ 如下:

	a	b
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_0

(4) $M=(\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_0,q_1,q_2\}),$ 其中 δ 如下:

	a	b
q_0	q_0	q_1
q ₁	q_2	q_1
q_2	q_2	Ф

14 构造 DFA M1 等价于 NFA M, NFA M 如下:

(1) $M=(\{q_0, q_1 q_2, q_3\}, \{a, b\}, \sigma, q_0, \{q_3\}),$ 其中 σ 如下:

$$\sigma(q_0,a)=\{q_0,q_1\}$$
 $\sigma(q_0,b)=\{q_0\}$

$$\sigma \; (q_1,a) = \{q_2\} \quad \sigma \; (q_1,b) = \; \{q_2 \; \}$$

$$\sigma (q_2,a)=\{q_3\} \quad \sigma (q_2,b)= \Phi$$

$$\sigma \; (q_3,a) = \{q_3\} \quad \sigma \; (q_3,b) = \; \{q_3 \; \}$$

(2) M=($\{q_0, q_1 \ q_2, q_3\}$, $\{a, b\}$, σ , q_0 , $\{q_1, q_2\}$), 其中 σ 如下:

$$\sigma (q_0,a) = \{q_1,q_2\} \quad \sigma (q_0,b) = \{q_1\}$$

$$\sigma(q_1,a)=\{q_2\}$$
 $\sigma(q_1,b)=\{q_1,q_2\}$

$$\sigma (q_2,a)=\{q_3\} \quad \sigma (q_2,b)=\{q_0\}$$

$$\sigma (q_3,a) = \Phi \sigma (q_3,b) = \{q_0\}$$

答: (1) DFA M_1 ={ Q_1 , {a,b}, σ_1 , [q_0],{ [q_0 , q_1 , q_3], [q_0 , q_2 , q_3], [q_0 , q_1 , q_2 , q_3]} 其中 Q_1 ={[q_0],[q_0 , q_1], [q_0 , q_1 , q_2],[q_0 , q_2],[q_0 , q_1 , q_2 , q_3],[q_0 , q_1 , q_3],[q_0 , q_2 , q_3],[q_0 , q_3]} σ_1 满足

	a	b
$[q_0]$	$[q_0,q_1]$	$[q_0]$
$[q_0,q_1]$	$[q_0,q_1,q_2]$	$[q_0,q_2]$
$[q_0,q_1,q_2]$	$[q_0,q_1,q_2,q_3]$	$[q_0,q_2]$
$[q_0,q_2]$	$[q_0,q_1,q_3]$	$[q_0]$
$[q_0,q_1,q_2,q_3]$	$[q_0,q_1,q_2,q_3]$	$[q_0,q_2,q_3]$
$[q_0,q_1,q_3]$	$[q_0,q_1,q_2,q_3]$	$[q_0,q_2,q_3]$
$[q_0,q_2,q_3]$	$[q_0,q_1,q_3]$	$[q_0,q_3]$
$[q_0,q_3]$	$[q_0,q_1,q_3]$	$[q_0,q_3]$

(2) DFA $M_1=\{Q_1, \{a,b\}, \sigma_1, [q_0], \{[q_1], [q_3], [q_1,q_3], [q_0,q_1,q_2], [q_1,q_2], [q_1,q_2,q_3], [q_2,q_3]\}$ 其中 $Q_1=\{[q_0], [q_1,q_3], [q_1], [q_2], [q_0,q_1,q_2], [q_1,q_2], [q_3], [q_1,q_2,q_3], [q_2,q_3]\}$ σ_1 满足

	a	b
$[q_0]$	$[q_1,q_3]$	[q ₁]
$[q_1,q_3]$	$[q_2]$	$[q_0,q_1,q_2]$
$[q_1]$	$[q_2]$	$[q_1,q_2]$
$[q_2]$	[q ₃]	$[q_0]$
$[q_0,q_1,q_2]$	$[q_1,q_2,q_3]$	$[q_0,q_1,q_2]$
$[q_1,q_2]$	$[q_2,q_3]$	$[q_0,q_1,q_2]$
$[q_3]$	Ф	$[q_0]$
$[q_1,q_2,q_3]$	$[q_2,q_3]$	$[q_0,q_1,q_2]$
$[q_2,q_3]$	[q ₃]	$[q_0]$

15.对下面矩阵表示的 ε -NFA

	ε	a	b	c
P(起始状态)	ф	{p}	{q}	{r}
q	{p}	{q}	{r}	ф

- (1) 给出该自动机接收的所有长度为3的串
- (2) 将此 ε -NFA 转换为没有 ε 的 NFA

(2) ε-NFA: $M=(\{p,q,r\},\{a,b,c\},\delta,p,r)$ 其中δ如表格所示。

因为 ε -closure(p)={p}

则设不含 ε 的 NFA M_1 =({p,q,r},{a,b,c},δ₁,p,{r})

$$\delta_1(p,a) = \delta'(p,a) = \epsilon - closure(\delta(\delta'(p, \epsilon), a)) = \{p\}$$

$$\delta_1(p,b) = \delta'(p,b) = \epsilon - closure(\delta(\delta'(p, \epsilon), b)) = \{p, q\}$$

$$\delta_1(\mathbf{p},\mathbf{c}) = \delta'(\mathbf{p},\mathbf{c}) = \varepsilon - closure(\delta(\delta'(\mathbf{p}, \varepsilon), c)) = \{\mathbf{p}, \mathbf{q}, \mathbf{r}\}\$$

$$\delta_1(q,a) = \delta'(q,a) = \epsilon - closure(\delta(\delta'(q, \epsilon), a)) = \{p, q\}$$

$$\delta_1(q,b) = \delta'(q,b) = \epsilon - closure(\delta(\delta'(q, \epsilon), b)) = \{p, q, r\}$$

$$\delta_{i}(q,c) = \delta'(q,c) = \epsilon - closure(\delta(\delta'(q, \epsilon), c)) = \{p, q, r\}$$

$$\delta_1(r,a) = \delta'(r,a) = \epsilon - closure(\delta(\delta'(r, \epsilon), a)) = \{p, q, r\}$$

$$\delta_{i}(\mathbf{r},\mathbf{b}) = \delta'(\mathbf{r},\mathbf{b}) = \epsilon - \text{closure}(\delta(\delta'(\mathbf{r}, \epsilon), \mathbf{b})) = \{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$$

$$\delta_1(\mathbf{r}, \mathbf{c}) = \delta'(\mathbf{r}, \mathbf{c}) = \varepsilon - c \log(\delta'(\mathbf{r}, \varepsilon), c) = \{p, q, r\}$$

图示如下: (r 为终止状态)

17.使用泵浦引理,证明下列集合不是正则集:

- (1) 由文法 G 的生成式 S→aSbS|c 产生的语言 L(G)
- (2) {ω | ω ∈ {a,b}*且ω有相同个数的 a 和 b}
- (3) $\{0^{n}1^{m}2^{n+m} | n, m \ge 1\}$
- (4) $\{\omega \ \omega \mid \omega \in \{a,b\}^*\}$
- (5) {0ⁿ|n 为素数}

证明: (1) 在 L(G)中, a 的个数与 b 的个数相等

假设 L(G)是正则集,对于足够大的 k 取 $\omega = a^k$ (cb) k c

 $\omega \in L \perp L \mid \omega \mid > k$, $\diamondsuit \omega = \omega_1 \omega_0 \omega_2$, $\perp L + \mid \omega_0 \mid > 0 \mid \omega_1 \omega_0 \mid \leq k$

因为存在 ω_0 使 $\omega_1\omega_0^i\omega_2\in L$

所以对于任意满足条件的 ω_0 只能取 ω_0 = a^n $n \in (0, k]$

则 $\omega_1\omega_0^i\omega_2=a^{k-n}(a^n)^i(cb)^kc$,在i不等于1时不属于L与假设矛盾。则L(G)不是正则集

(2) 假设该集合是正则集,对于足够大的 k 取 $\omega = a^k b^k$

 $\omega \in L \perp |\omega| > k$, $\Leftrightarrow \omega = \omega_1 \omega_0 \omega_2$, $\neq \mu |\omega_0| > 0 |\omega_1 \omega_0| \leq k$

因为存在 ω_0 使 $\omega_1\omega_0^i\omega_2\in L$

所以对于任意满足条件的 ω_0 只能取 $\omega_0=a^n$ n \in (0, k]

则 $\omega_1 \omega_0^i \omega_2 = a^{k^-n} (a^n)^i b^k$ 在 i 不等于 1 时 a 与 b 的个数不同,不属于该集合与假设矛盾。则该集合不是正则集

(3) 假设该集合是正则集,对于足够大的 k 取 $\omega = 0^k 1^x 2^y$ 其中 v=k+x;

 $\omega \in L \perp L \mid \omega \mid > k$, $\Leftrightarrow \omega = \omega_1 \omega_0 \omega_2$, $\neq \mu \mid \omega_0 \mid > 0 \mid \omega_1 \omega_0 \mid \leq k$

因为存在 ω_0 使 $\omega_1\omega_0^i\omega_2\in L$

所以对于任意满足条件的 ω_0 只能取 $\omega_0=0^n$ n \in (0, k],

则 $\omega_1\omega_0^i\omega_2=0^{k-n}(0^n)^i1^x2^y$ 在i不等于1时,y不等于k+x,因此不属于该集合。

与假设矛盾。则该集合不是正则集

(4) 假设该集合是正则集,对于足够大的 k 取 $\omega = a^k ba^k b$

 $\omega \in L \perp |\omega| > k$, $\Leftrightarrow \omega = \omega_1 \omega_0 \omega_2 \neq |\omega_0| > 0 \mid \omega_1 \omega_0| \leq k$

因为存在ω₀使ω₁ω₀¹ω₂∈L

所以对于任意满足条件的 ω_0 只能取 $\omega_0=a^n$ n \in (0, k]

则 $\omega_1\omega_0^i\omega_2=a^{k-n}(a^n)^iba^kb$ 在i不等于1时不满足 ω ω 的形式,不属于该集合与假设矛盾。则该集合不是正则集

(5) 假设该集合是正则集,对于足够大的 k 取 ω = 0°其中 p 为素数且 p>k, ω \in L 且 $|\omega|$ >k, \otimes ω = $\omega_1 \omega_0 \omega_2$ 其中 $|\omega_0|$ >0 $|\omega_1 \omega_0|$ \leq k

因为存在 ω_0 使 $\omega_1\omega_0^i\omega_2\in L$

所以对于任意满足条件的 ω_0 只能取 $\omega_0=0^n$ n \in (0, k]

则 $\omega_1 \omega_0^i \omega_2 = 0^{p^+(i-1)n}$ 当 i=p+1 时, $|\omega|=p+pn=p(1+n)$ 不为素数,不属于该集合与假设矛盾。则该集合不是正则集

18. 构造米兰机和摩尔机

对于 $\{a,b\}$ *的字符串,如果输入以 bab 结尾,则输出 1;如果输入以 bba 结尾,则输出 2;否则输出 3。

答: 米兰机:

说明状态 qaa 表示到这个状态时,输入的字符串是以 aa 结尾。其他同理。

摩尔机,状态说明同米兰机。

19.构造一个米兰机,输入字母表 $T=\{0,1\}$,要求输出字符串只是对输入字符串延迟两个时间单位。

$$\widetilde{R}: M = (Q, T, R, \delta, g, q_0), T = \{0, 1\} R = \{0, 1\}$$

分析:可能的状态---即一个输入在输出前可能处于的状态

初始情况:

刚开始工作时输入前两个字符,输出为ε

20. 已知 DFA 的状态转移表如下,构造最小状态的等价 DFA。

	0	1
->A	В	А
В	D	С
С	D	В
*D	D	А
Е	D	F
F	G	E
G	F	G
Н	G	D

答:由表可得,E、F、G、H是不可达状态,可以删除,余下的状态构成状态集{A,B,C,

D},对该状态集划分为终止状态集 π^1 和非终止状态集 π^2 ,而 π^1 ={D}, π^2 ={A,B,C}。

对 π^2 ={A,B,C}经标 0 的边,可达集是{B,D},由于 B,D 分别属于 π^1 和 π^2 ,故将 π^2 细分为 π^{21} ={A}, π^{22} ={B,C}。

对 π^{22} ={B,C}经标 1 的边,可达集是{B,C},由于 B,C 分别同属于和 π^{22} ,故不可再细分。

这样可得最后的划分为: {{A},{B,C},{D}}, 最后可得简化了的 DFA 为:

	0	1
->A	В	А
В	D	В
*D	D	A

▶ 第四章

1. 设文法 G= ({S, T, F}, {(,), +, *, a}, P, S)。其中 生成式如下:

$$S \rightarrow S + T$$

 $S \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow (S)$
 $F \rightarrow a$

给出下列句型的推导树

(1) T * F + T

(2) a * (a + a);

(3) (a) * F + T;

2. 设文法 G= ({E, T, F}, {(,), *,/,-, b}, P, E)。中 生成式如下:

$$E \rightarrow T \mid E + T \mid E - T$$

$$T \rightarrow F \mid T * F \mid T/F$$

$$F \rightarrow (E) \mid b$$

求出 b + b/b 的最左推导

解:

最左推导:
$$E \rightarrow E + T \rightarrow T + T \rightarrow F + T \rightarrow b + T / F \rightarrow b + F / F \rightarrow b + b / F \rightarrow b + b / b$$
 最右推导: $E \rightarrow E + T \rightarrow E + T / F \rightarrow E + T / b \rightarrow E + F / b \rightarrow E + b / b \rightarrow T + b / b \rightarrow F + b / b$

3. 证明文法 $G = \{\{S\}, \{a, b\}, P, S\}$ 是二义的,其中生成式 P 如下: $S \rightarrow aSbS \mid aS \mid a$ 解:题中文法是二义的,因为对于句型 aaaba,有两棵不同的推导树,如下所示

图 1: (a)

6 请分别构建产生下列语言的上下文无关语言

(1): $\{1^n0^m \mid n \ge m \ge 1\}$;

设上下文无关语法 G=(N, T, P, S), 其中:

 $N = \{S, A, B\}$ $T = \{0, 1\}$

生成式 P 如下:

 $S \rightarrow 1S0|1S|10$

(3): $\{1^n1^n1^m0^m \mid n, m \ge 1\};$

设上下文无关语法 G=(N, T, P, S), 其中:

 $N = \{S, A, B\}$

 $T = \{0, 1\}$

生成式 P 如下:

 $S \rightarrow AB$

 $A \rightarrow 1A0 \mid 10$

 $B \rightarrow 1B0 \mid 10$

(5): 字母表{1, 2, 3}上的所有正则表达式

设上下文无关语法 G=(N, T, P, S), 其中:

 $N = \{S, A, B\}$

 $T = \{0, 1\}$

生成式 P 如下:

 $S \rightarrow 1S | 2S | 3S | 1 | 2 | 3$

注:将正则表达式写成加、乘、星号闭包等运算形式也算对,具体答案略。

8. 把下列文法 G₁和 G₂,分别变换为没有无用符号,且与其等价的上下文无关文法。

(1) G_1

 $S \rightarrow ED$

 $C \rightarrow CE \mid DC$

 $D \rightarrow a$

 $E \rightarrow aC \mid b$

解:由题:S,D,E为有用非终结符,删去有关C的生成式,得:G1:S→ED,D→a,E→b

(2) G_1

 $S \rightarrow D \mid C$

 $D \rightarrow aC | bS | b$

 $C \rightarrow DC \mid Ca$

 $E \rightarrow DS \mid b$

解: 由题: S, D, E 为有用非终结符,删去有关 C 的生成式,得: $G2:S\rightarrow D$, $D\rightarrow bS|b$, $E\rightarrow DS|b$. 又 E 不可达,删去有关 E 得生成式,得: $G2:S\rightarrow D$, $D\rightarrow bS|b$

9. 把下列文法变换为无 ε 生成式的等价文法:

$$S \rightarrow DCE, D \rightarrow CC \mid \epsilon, C \rightarrow EE \mid b, E \rightarrow DD \mid a$$

解: 由题: N' ={S, C, D, E}, 因为 S∈N', 所以 P1 中加入生成式:S1→S | ε, 变换后的无 ε 生成式的等价文法为: G1={N1, T, P1, S1}

 $N1 = \{S1, S, C, D, E\}$

P1:S1 \rightarrow S| ϵ S \rightarrow DCE|CE|DE|CE|D|C|E, D \rightarrow CC|C, C \rightarrow EE|E|b, E \rightarrow DD|D|a

10. 把下列文法变换为无 ε 生成式、无单生成式和没有无用符号的等价文法:

$$S \rightarrow A_1 \mid A_2, A_1 \rightarrow A_3 \mid A_4, A_2 \rightarrow A_4 \mid A_5, A_3 \rightarrow S \mid b \mid \epsilon, A_4 \rightarrow S \mid a, A_5 \rightarrow S \mid d \mid \epsilon$$

解: (1) 由算法 3,变换为无 ε 生成式:

$$N' = \{ S, A_1, A_2, A_3, A_4, A_5 \}$$

 $G_1 = (\{S_1,S,A_1,A_2,A_3,A_4,A_5\},\{a,b,d\},P_1,S_1)$,其中生成式 P_1 如下:

$$S_1 \rightarrow \varepsilon \mid S$$

$$S \rightarrow A_1 \mid A_2$$
,

$$A_1 \rightarrow A_3 \mid A_4$$

$$A_2 \rightarrow A_4 \mid A_5$$
,

$$A_3 \rightarrow S \mid b$$
,

$$A_4 \rightarrow S \mid a$$
,

$$A_5 \rightarrow S \mid d$$
,

(2) 由算法 4, 消单生成式:

$$N_{S1} = \{ S_1, S, A_1, A_2, A_3, A_4, A_5 \},$$

$$N_S = N_{A1} = N_{A2} = N_{A3} = N_{A4} = N_{A5} = \{ S, A_1, A_2, A_3, A_4, A_5 \},$$

运用算法 4,则 P₁ 变为:

S1
$$\rightarrow a \mid b \mid d \mid \epsilon$$
,

$$S \rightarrow a \mid b \mid d$$

$$A_1 \rightarrow a \mid b \mid d$$
,

$$A_2 \rightarrow a \mid b \mid d$$

$$A_3 \rightarrow a \mid b \mid d$$

$$A_4 \rightarrow a \mid b \mid d$$

$$A_5 \rightarrow a \mid b \mid d$$

(3) 由算法 1 和算法 2,消除无用符号,得到符合题目要求的等价文法:

$$G_1 = (\{S_1\}, \{a,b,d\}, P_1, S_1)$$
, 其中生成式 P_1 为: $S_1 \rightarrow a \mid b \mid d \mid \epsilon$.

11. 设 2 型文法 G = ({ S,A,B,C,D,E,F }, { a,b,c }, P, S), 其中 P:

$$S \rightarrow ASB \mid \epsilon ; A \rightarrow aAS \mid a ; B \rightarrow SBS \mid A \mid bb$$

试将 G 变换为无 ε 生成式, 无单生成式, 没有无用符号的文法, 再将其转换为 Chomsky 范式.

解: (1) 由算法 3,变换为无 ε 生成式:

$$N' = \{ S \}$$

由 S∈N' 得出
$$S_1 \rightarrow \epsilon \mid S$$
,

因此无 ϵ 的等效文法 G_1 = ({ S_1 ,S,A,B } , { a,b,d } , P_1 , S_1) ,其中生成式 P_1 如下: $S_1 \rightarrow \epsilon \mid S$,

 $S \rightarrow ASB \mid AB$

 $A \rightarrow aAS \mid aA \mid a$

 $B \rightarrow SBS \mid SB \mid BS \mid B \mid A \mid bb$,

(2) 由算法 4,消单生成式:

 $N_{S1} = \{ S_1, S \}, N_S = \{ S \}, N_A = \{ A \}, N_B = \{ A, B \}$

由于 S → ASB | AB \in P 且不是单生成式,故 P₁ 中有 S₁ → ϵ | ASB | AB,

同理有 $S \rightarrow ASB \mid AB$, $A \rightarrow aAS \mid aA \mid a$, $B \rightarrow SBS \mid SB \mid BS \mid aAS \mid aA \mid a \mid bb$, 因此生成的无单生成式等效文法为

G₁ = ({S₁,S,A,B}, {a,b}, P₁, S₁),其中生成式 P₁如下:

 $S_1 \rightarrow \varepsilon \mid ASB \mid AB$,

 $S \rightarrow ASB \mid AB$,

 $A \rightarrow aAS \mid aA \mid a$,

 $B \rightarrow SBS \mid SB \mid BS \mid aAS \mid aA \mid a \mid bb$,

- (3) 由算法1和算法2,消除无用符号(此题没有无用符号);
- (4) 转化为等价的 Chomsky 范式的文法:

将 S1 → ASB 变换为 S1 → AC, C → SB,

将 S → ASB 变换为 S → AC,

将 A → aAS | aA 变换为 A → ED | EA, D → AS, E → a,

将 B → SBS | aAS | aA | a | bb, 变换为 B → CS | ED | EA | FF, F → b,

(5) 由此得出符合题目要求的等价文法:

 $G_1 = (\{S_1, S, A, B, C, D\}, \{a, b\}, P_1, S_1),$ 其中生成式 P_1 如下:

 $S_1 \rightarrow \varepsilon \mid AC \mid AB$,

 $S \rightarrow AC \mid AB$,

 $A \rightarrow ED \mid EA \mid a$

 $B \rightarrow CS \mid SB \mid BS \mid ED \mid EA \mid a \mid FF$,

 $C \rightarrow SB$,

 $D \rightarrow AS$,

 $E \rightarrow a$,

 $F \rightarrow b$.

- 15. 将下列文法变换为等价的 Greibach 范式文法:
 - (1) $S \rightarrow DD \mid a, D \rightarrow SS \mid b$
- 解: 将非终结符排序为 S,D,S 为低位,D 为高位,

对于 D →SS,用 S →DD | a 代入得 D →DDS | aS | b,

用引理 4.2.4,变化为 D \rightarrow aS | b | aSD' | bD', D' \rightarrow DS | DSD',

将 D 生成式代入 S 生成式得 S →aSD | bD | aSD'D | bD'D | a,

将 D 生成式代入 D'生成式得

 $D' \rightarrow aSS \mid bS \mid aSD'S \mid bD'S \mid aSS D' \mid bS D' \mid aSD'S D' \mid bD'S D'$

由此得出等价的 Greibach 范式文法:

G₁ = ({S,D,D'}, {a,b}, P₁, S),其中生成式 P₁如下:

 $S \rightarrow aSD \mid bD \mid aSD'D \mid bD'D \mid a$,

 $D \rightarrow aS | b | aSD' | bD'$,

形式语言与自动机 四、五章部分习题答案

(2) $A_1 \rightarrow A_3b \mid A_2a, A_2 \rightarrow A_1b \mid A_2A_2a \mid b, A_3 \rightarrow A_1a \mid A_3A_3b \mid a$

解: (1) 转化为等价的 Chomsky 范式的文法:

 $A_1 \rightarrow A_3A_4 \mid A_2A_5$,

 $A_2 \rightarrow A_1A_4 \mid A_2A_6 \mid b$,

 $A_3 \rightarrow A_1A_5 | A_3A_7 | a$,

 $A_4 \rightarrow b$,

 $A_5 \rightarrow a$,

 $A_6 \rightarrow A_2 A_5$,

 $A_7 \rightarrow A_3 A_4$

(2) 转化为等价的 Greibach 范式的文法:

将非终结符排序为 A₁, A₂,A₃,A₄,A₅,A₁ 为低位 A₅ 为高位,

①对于 $A_2 \rightarrow A_1A_4$,用 $A_1 \rightarrow A_3A_4$ | A_2A_5 代入得 $A_2 \rightarrow A_3A_4A_4$ | $A_2A_5A_4$ | A_2A_6 | b , 用引理 4.2.4,变化为

 $A_2 \rightarrow A_3 A_4 A_4 | b | A_3 A_4 A_4 A_2' | b A_2',$

 $A_2' \rightarrow A_5 A_4 A_2' | A_6 A_2' | A_5 A_4 | A_6$

②对于 $A_3 \rightarrow A_1A_5$,用 $A_1 \rightarrow A_3A_4$ | A_2A_5 代入得 $A_3 \rightarrow A_3A_4A_5$ | $A_2A_5A_5$ | A_3A_7 | a , A_3 生成式右边第一个字符仍是较低位的非终结符,将 A_2 生成式代入 A_3 生成式得 $A_3 \rightarrow A_3A_4$ A_5 | $A_3A_4A_4$ A_5A_5 | A_5A_5 | $A_3A_4A_4$ A_5A_5 | A_3A_4 A_4A_5 A_5A_5 | A_3A_4 A_4A_5 A_5A_5 | A_5A_5

 $A_3 \to b \, A_5 A_5 \, | \, b A_2 \dot{}^{} A_5 A_5 \, | \, a \, | \, b \, A_5 A_5 A_3 \dot{}^{} | \, b A_2 \dot{}^{} A_5 A_5 A_3 \dot{}^{} | \, a A_3 \dot{}^{} \, ,$

 $A_3' \rightarrow A_4A_5 \mid A_4A_4A_5A_5 \mid A_4A_4A_2'A_5A_5 \mid A_7 \mid A_4A_5A_3' \mid A_4A_4A_5A_5A_3' \mid A_4A_4A_2'A_5A_5A_3' \mid A_7A_3',$

③对于 $A_6 \rightarrow A_2 A_5$,将 A_2 生成式代入 A_6 生成式得

 $A_6 \rightarrow A_3 A_4 A_4 A_5 \mid b A_5 \mid A_3 A_4 A_4 A_2' A_5 \mid b A_2' A_5$

④对于 $A_7 \rightarrow A_3 A_4$, 将 A_3 生成式代入 A_7 生成式得

 $A_7 \rightarrow b A_5 A_5 A_4 \mid b A_2' A_5 A_5 A_4 \mid a A_4 \mid b A_5 A_5 A_3' A_4 \mid b A_2' A_5 A_5 A_3' A_4 \mid a A_3' A_4$

⑤将 A₅,A₆生成式代入 A₂'生成式得

 $A_3' \rightarrow aA_5 \mid aA_4A_5A_5 \mid aA_4A_2'A_5A_5 \mid aA_5A_3' \mid aA_4A_5A_5A_3' \mid aA_4A_2'A_5A_5A_3' \mid b \mid A_5A_5A_4 \mid bA_2'A_5A_5A_4 \mid aA_4 \mid bA_5A_5A_3'A_4 \mid bA_2'A_5A_5A_3'A_4 \mid aA_3'A_4 \mid bA_5A_5A_4A_3' \mid bA_5A_5A_4A_3' \mid bA_5A_5A_5A_4 \mid aA_5' \mid bA_5A_5A_5A_4 \mid bA_5A_5A_5A_5A_5 \mid bA_5A_5A_5A_5 \mid bA_5A_5A_5 \mid bA_5A_5 \mid bA_5A_5$

bA₂'A₅A₅A₄A₃' | a A₄A₃' | b A₅A₅A₃'A₄ A₃' | bA₂'A₅A₅A₃'A₄ A₃' | aA₃'A₄A₃',

(3) 由此得出等价的 Greibach 范式文法:

 $G_1 = (\{S,D,D'\},\{a,b\},P_1,S),$ 其中生成式 P_1 如下:

 $A_1 \rightarrow A_3 A_4 | A_2 A_5$,

 $A_2 \rightarrow A_3 A_4 A_4 | b | A_3 A_4 A_4 A_2' | b A_2',$

 $A_3 \rightarrow b A_5 A_5 | bA_2' A_5 A_5 | a | bA_5 A_5 A_3' | bA_2' A_5 A_5 A_3' | aA_3',$

 $A_4 \rightarrow b$,

 $A_5 \rightarrow a$,

 $A_7 \rightarrow b A_5 A_5 A_4 \mid b A_2 A_5 A_5 A_4 \mid a A_4 \mid b A_5 A_5 A_3 A_4 \mid b A_2 A_5 A_5 A_3 A_4 \mid a A_3 A_4 \mid a A_4 \mid b A_5 A_5 A_5 A_5 A_5 A_5 A_5 A_5 A_6 \mid a A_5 A_5 A_6 \mid a A_6 \mid b A_5 A_5 A_6 \mid a A_6 \mid b A_5 A_5 A_6 \mid a A_6 \mid b A_6 \mid a A_6 \mid a A_6 \mid b A_6 \mid a A_6 \mid a$

 $\begin{array}{l} A_{3}{'} \rightarrow aA_{5} \mid aA_{4}A_{5}A_{5} \mid aA_{4}A_{2}{'}A_{5}A_{5} \mid aA_{5}A_{3}{'} \mid aA_{4}A_{5}A_{5}A_{3}{'} \mid aA_{4}A_{2}{'}A_{5}A_{5}A_{3}{'} \mid b \mid A_{5}A_{5}A_{4} \mid \\ bA_{2}{'}A_{5}A_{5}A_{4} \mid aA_{4} \mid bA_{5}A_{5}A_{3}{'}A_{4} \mid bA_{2}{'}A_{5}A_{5}A_{3}{'}A_{4} \mid aA_{3}{'}A_{4} \mid bA_{5}A_{5}A_{4}A_{3}{'} \mid \\ bA_{2}{'}A_{5}A_{5}A_{4}A_{3}{'} \mid aA_{4}A_{3}{'} \mid b \mid A_{5}A_{5}A_{3}{'}A_{4}A_{3}{'} \mid bA_{2}{'}A_{5}A_{5}A_{3}{'}A_{4}A_{3}{'} \mid aA_{3}{'}A_{4}A_{3}{'} \mid aA_{3}{'} \mid aA_{3}{'}A_{3}A_{3}{'} \mid aA_{3}{'}A_{3}A_{3}{'} \mid aA_{3}{'}A_{3}A_{3}{'} \mid aA_{3}{'}A_{3}A_{3}{'} \mid aA_{3}$

20. 构造与下列文法等价的 PDA。

1) $S \rightarrow 0BB \mid 1AA$

 $B \rightarrow 0BB \mid 0A \mid 0$

 $D \rightarrow 1BA \mid \epsilon$

1) $S \rightarrow 0BcB \mid 1AAd$

 $B \rightarrow 0B0 \mid D0 \mid \epsilon$

 $A \rightarrow 11A \mid \epsilon$

 $D \rightarrow d$

 $\epsilon, S/0BcB$

ε,S/1AAd

解: $G=(\{S,A,B,C,D,E\},\{a,b,c\},P,S)$

因为当句子 ω 中 a,b,c 个数相同时,对于 ω 存在两个不同的最左(右)推导。

如 $abc \in L$,存在两个不同的最左推导 $S \Rightarrow AD \Rightarrow aAbD \Rightarrow abcC \Rightarrow abc$ 及 $S \Rightarrow EB \Rightarrow aEB \Rightarrow aBB \Rightarrow abBc \Rightarrow abc$ 。

- 22. 设下推自动机 $M = (\{q_0,q_1\},\{a,b\},\{Z_0,X\},\delta,q_0,Z_0,\phi)$,其中 δ 如下:
 - $δ (q_0,b, Z_0) = \{(q_0, XZ_0)\}, δ (q_0, ε, Z_0) = \{(q_0, ε)\}, A$
 - $\delta (q_0,b,X) = \{(q_0,XX)\}, \delta (q_1,b,X) = \{(q_1, \epsilon)\},$
 - $\delta (q_0,b,X) = \{(q_1,X)\}, \quad \delta (q_1,a,Z_0) = \{(q_0,Z_0)\},$

试构造文法 G 产生的语言 L(G) = L(M).

- 解: 在 G 中,N = { [q_0 , Z_0 , q_0], [q_0 , Z_0 , q_1], [q_0 ,X, q_0], [q_0 ,X, q_1], [q_1 , Z_0 , q_0], [q_1 , Z_0 , q_1], [q_1 ,X, q_0], [q_1 ,X, q_1] } .
 - (1) S 生成式有
 - $S \rightarrow [q_0, Z_0, q_0]$,
 - $S \rightarrow [q_0, Z_0, q_1],$

根据 δ $(q_0,b,Z_0) = \{(q_0,XZ_0)\}$,则有

 $[q_0,Z_0,q_0] \rightarrow b[q_0,X,q_0] [q_0,Z_0,q_0],$

 $[q_0,Z_0,q_0] \rightarrow b[q_0,X,q_1] [q_1,Z_0,q_0],$

 $[q_0,Z_0,q_1] \rightarrow b[q_0,X,q_0] [q_0,Z_0,q_1],$

 $[q_0,Z_0,q_1] \rightarrow b[q_0,X,q_1] [q_1,Z_0,q_1],$

因为有 δ (q₀,b, X) = {(q₀, XX)},则有

 $[q_0,X,q_0] \rightarrow b[q_0,X,q_0] [q_0,X,q_0],$

 $[q_0, X, q_0] \rightarrow b[q_0, X, q_1] [q_1, X, q_0],$

 $[q_0, X, q_1] \rightarrow b[q_0, X, q_0] [q_0, X, q_1],$

 $[q_0, X, q_1] \rightarrow b[q_0, X, q_1] [q_1, X, q_1],$

因为有 δ (q₀,a, X) = {(q₁, X)},则有

 $[q_0, X, q_0] \rightarrow a[q_1, X, q_0],$

 $[q_0, X, q_1] \rightarrow a[q_1, X, q_1],$

因为有 δ (q₁,a, Z₀) = {(q₀, Z₀)},则有

$$\begin{split} [q_1, Z_0, q_0] &\to a[q_0, Z_0, q_0] \;, \\ [q_1, Z_0, q_1] &\to a[q_0, Z_0, q_1] \;, \\ \mathbb{B} 为有 \; \delta \; (q_0, \; \epsilon \;, Z_0) &= \{(q_0, \; \; \epsilon \;)\}, 则有 \\ [q_0, Z_0, q_0] &\to \epsilon \;, \\ \mathbb{B} 为有 \; \delta \; (q_1, b, X) &= \{(q_1, \; \; \epsilon \;)\}, 则有 \\ [q_1, X, q_1] &\to b \end{split}$$

(2) 利用算法 1 和算法 2,消除无用符号后,得出文法 G 产生的语言 $L(G) = \{ N,T,P,S \}$ 其中 $N = \{ S,[q_0,Z_0,q_0],[q_1,Z_0,q_0],[q_1,X,q_1],[q_0,X,q_1] \}$, $T = \{ a,b \}$,生成式 P 如下: $S \rightarrow [q_0,Z_0,q_0]$,

 $[q_0,Z_0,q_0] \rightarrow b[q_0,X,q_1] [q_1,Z_0,q_0],$

 $[q_0, X, q_1] \rightarrow b[q_0, X, q_1] [q_1, X, q_1],$

 $[q_0, X, q_1] \rightarrow a[q_1, X, q_1],$

 $[q_1,Z_0,q_0] \rightarrow a[q_0,Z_0,q_0],$

 $[q_0,Z_0,q_0] \to \varepsilon ,$

 $[q_1,Z_0,q_1] \rightarrow b$.

- 23. 用泵浦引理证明下列语言不是 CFL:
- (1) $\{0^n1^m | n=m^2\};$

证明: 假设 L 是上下文天关语言 由泵浦引理,取常数 p,当 $w \in L$ 且 $|w| \ge p$ 时,可取 $w = 0^{p*p}1^p(k \ge p; k \ne 1)$,将 w 写为 $w = w_1w_2w_0w_3w_4$,同时满足 $w_2w_0w_3/ \le p$,且 $w_2w_3/ = j \ge 1$,

- (1) 如果 w_2 、 w_3 只含有 0 或 1,那么 w_1w_2 'wow's' w_4 中当 $i \neq 1$ 时一定会出现 0 的个数和 1 的个数不是平方的关系,矛盾。
- (2)如果 w_2 、 w_3 分别包含 0、1,不妨设 $w_2=0^j$, $w_3=I^k$ 并且 1 < j+k < p;则 $i=p^2+1$ 时 $w_1w_2^j$ $w_2=0^j$, $w_3=0^j$, $w_4=0^{p_1p_2p_3p_4}$,这不是语言中的句子,与假设矛盾,故 1 不是上下文天关语言
- (2) { 0ⁿ | n 为素数 };

证明: 假设 L 是上下文无关语言 由泵浦引理,取常数 p, 当 $w \in L$ 且 $|w| \ge p$ 时,可取 $w = 0^k (k \ge p; k \ne 1)$,将 w 写为 $w = w_1w_2w_0w_3w_4$,同时满足 $|w_2w_0w_3| \le p$,且 $|w_2w_3| = j \ge 1$,则当 i = k+1 时, $|w_1w_2|w_0w_3|w_4| = k+(i-1)*j = k+k*j = k*(1+j),k*(1+j)$ 至少包含因子,且 $k \ne 1$,因此必定不是质数,即 $w_1w_2|w_0w_3|w_4$ 不属于 L.这与假设矛盾,故 L 不是上下文无关语言

(3) $\{0^n 1^n 2^n | n \ge 0\}.$

证明: 假设 L 是上下文天关语言 由泵浦引理, 取常数 p, 当 $w \in L$; $|w| \ge p$ 时, 可取 w =

0^k1^k2^k(k≥p),将 w 写为 w = w1w2w0w3w4, 同时满足w2w0w3/ ≤ p

(1) w_2 和 w_3 不可能同时分别包含 0 和 2, 因为在这种情况下, 有 $w_2w_0w_3/>p$;

- (2) 如果 w_2 和 w_3 都只包含 0 (1 或 2) ,即 $w_2w_0w_3 = 0^j(I^j, 2^j)(j \le p)$,则当 $i \ne 1$ 时, $w_1w_2^j$ $w_0w_3^iw_4$ 中会出现 0,1,2 的个数不再相等;
- (3) 如果 w_2 和 w_3 分别包含 0 和 1 (1 和 2), $w_1w_2'w_0w_3'w_4$ 中会出现 0,1 的个数与 2 的不等; 这些与假设矛盾, 故 L 不是上下文天关语言

25.设计 PDA 接受下列语言(注意:不要求为确定的)

 $(1) \quad \{ \ 1^n 0^m \, | \ 1 \le m \le n \ \};$

(5) {含有相同个数的 0 和 1 的所有的 0,1 串;

(7) $\{ ww^T | w \in \{0,1\}^* \};$

▶ 第五章

- 1. 考虑如下的图灵机 $M = (\{q_0, q_1, q_f, \}, \{0,1\}, \{0,1,B\}, \delta, q_0,B, \{q_f\}\})$,其中 δ 定义为: δ $(q_0,0) = \{(q_1,1,R)\}$, δ $(q_1,1) = \{(q_0,0,R)\}$, δ $(q_1,B) = \{(q_f,B,R)\}$, 非形式化但准确地描述该图灵机的工作过程及其所接受的语言.
- 解: 开始时,M 的带上从左端起放有字符串 $0(10)^i$ ($i \ge 0$),后跟无限多个空白符 B.M 的第一次 动作先读到第一个 0,并改写为 1;然后右移,如果找到第一个 1,则改写为 0,并继续向右寻找下一个 0,这样重复进行.当向右寻找 1 的时候,找到一个空白符 B,则结束. 该图灵机所接受的语言 $L(M) = \{ 0(10)^i \mid i \ge 0 \}$.