0. Team Formation

Team members and their roles:

Patrick Michel

- Specialization: Cyber security, machine learning, full stack
- Responsibilities: Development of interfaces and backend management, Al integration, Data security and GDPR compliance
- Contact: 06.63.76.14.27 / patrick.michel@holbertonstudents.com
- GitHub: github.com/Pmichel74

Benjamin Ristord

- Specialization: Cyber security, machine learning, full stack
- Responsibilities: Development of interfaces and backend management, Al integration, Data security and GDPR compliance
- Contact: 06.22.28.81.46 / benjamin.ristord@holbertonstudents.com
- GitHub: github.com/jbn179

Initial organizational proposal:

- Assignment of the role of temporary Project Manager:
- Suggestion: Patrick Michel as temporary PM
- Justification: Project initiator: first contacts with the client
- Establishing communication standards:

Communication tools offered:

- Principal : slack
 - Daily voice meetings
- Project management:
 - GitHub for task tracking
 - Canva for Agile Project Management
- Collaboration standards:
 - Daily standup meetings (15 min) every day
 - Sprint planning every 2 weeks
 - Mandatory code review before each merge
 - Systematic code documentation
- Decision-making process:
 - Major technical decisions: consensus required from both members
 - Minor decisions: autonomy in each area of specialization

1. Research and Brainstorming

Analysis of the current context:

- Problem: Cardiology practice of Dr. TZVETKOV
- Identified needs: Al integration to facilitate administrative management, data security
- Available technologies : IA (IBM Watsonx), Django, PostgreSQL

MIND MAPPING

FRAMEWORK SCAMPER

Substitute

- Replace phone calls with Al interactions
- Replace manual input with voice recognition
- · Eventually replace Doctolib with an independent system

Combine

Merge FranceConnect+ authentication with double authentication

<u>Adapt</u>

- Adapt the interface according to the user profile (patient/doctor)
- Personalize recommendations based on patient history

Modify

- Optimize wait times in real time
- Improving User Experience with Contextual Chatbots

Put to another use

• Transforming interactions into learning data for AI

Eliminate

- Remove redundant steps in making appointments
- Reduce the time allocated to administrative tasks

Reverse

- Reverse the flow: Al proactively suggests appointments
- Predictive rather than reactive system

QUESTIONS "HOW MIGHT WE"

Patient Experience:

- How could we simplify making appointments for patients?
- How could we facilitate patient care?
- How could we facilitate the provision of patient documents?
- How could we provide more personalized follow-up?

<u>Administrative Efficiency</u>:

- How could we automate document management?
- How could we optimize and automate appointment scheduling?
- How could we reduce waiting time?

Security:

- How could we strengthen data protection while maintaining accessibility?
- How could we simplify authentication while making it more secure?
- How could we ensure GDPR compliance transparently?

Al Innovation:

- How could we use AI to prevent heart risks?
- How could we improve the accuracy of Watsonx AI responses?
- How could we personalize interactions according to the patient profile?

2. Idea Evaluation

EVALUATION CRITERIA (Out of 5 points each)

A. Technical Feasibility (TF)

- 5: Technologies mastered and tested
- 3: Requires moderate learning
- 1: Complex/new technology

B. Impact Potentiel (IP)

- 5: Major benefit for users/customers
- 3: Significant improvement
- 1: Impact minimal

C. Technical Alignment (TA)

- 5: Perfectly aligned with technical stack
- 3: Requires some adaptations
- 1: Requires major changes

D. Scalability (SC)

- 5: Highly scalable
- 3: Medium scalability
- 1: Difficult to scale

E. GDPR Compliance (RG)

- 5: Fully compliant
- 3: Requires minor adaptations
- 1: Major Compliance Issues

FEATURE EVALUATION MATRIX

Feature FT IP AT SC	I	RG		То	ta.	1	Ρ	rior	i.	ty				
					'				'				- -	
FC+ Authentication	ı							5	1	5		23	ı	High
2. Chatbot Watsonx Admin		3		4		4		4		4		19		Haute
3. PostgreSQL Database		3		3		3		4		3		16		Average
4. Notifications Twilio		5		4		5		5		4		23		Haute
5. Double Auth		5		4		5		5		5		24		Haute
6. Monitoring Celery		3		3		3		3		3		15		Average1

RISK AND CONSTRAINTS ANALYSIS

1. FranceConnect+ Authentication (High Priority)

Risks:

- Deadlines for obtaining accreditations
- Changes in the FranceConnect API Constraints:
- Requires certification
- Limited response time

Constraints:

- RGS* and GDPR approval required
- Separate recipe and production environments
- FranceConnect compliance tests imposed
- High level elDAS integration
- FC+ specific user support

2. Chatbot WatsonX (High Priority)

Risks:

- Training complexity
- Ongoing maintenance required

Constraints:

- Significant server resources
- Team learning time

3. PostgreSQL Database (Medium Priority)

Risks:

- Complexity of configuration and optimization
- Increase in load to anticipate

Constraints:

- Significant hardware resources (4GB+ RAM, multi-core CPU, SSD)
- Complex configuration (tuning, backups, replication)

- Network security and access
- SQL and database admin expertise required
- Regular maintenance and monitoring

4. Twilio (High Priority)

Risks:

- Variable costs depending on use
- Dependence on an external service

Constraints:

- Communication budget to plan
- Management of SMS/call quotas
- Configuration des webhooks
- API integration time

5. Double Auth (High Priority)

Risks:

- Complexity of token management
- Risk of user blocking
- Securing secret keys

Constraints:

- Secure infrastructure required
- Management of loss of access cases
- Reinforced user support

• TOTP implementation time

5. Monitoring Celery (Medium Priority)

Risks:

- Surcharge des workers possible
- Loss of untracked tasks
- Complexity of debugging

Constraints:

- Dedicated server resources
- Configuration Redis/RabbitMQ
- Setting up alerts
- DevOps team training

3. Decision and Refinement

MVP SELECTION

After analyzing the evaluations and team discussions, the MVP will focus on:

"Virtual Administrative and Medical Management Assistant for Cardiology Practice"

PROBLEM DEFINITION

Current issues identified:

- Administrative overload of the office (70% of the time)
- Long waiting times for patients
- Difficulty managing emergencies
- Risks of errors in patient monitoring
- Complexity of GDPR compliance
- TARGET AUDIENCE

Primary Users:

A. Medical Staff

- Dr. TZVETKOV (cardiologist)
- Medical secretarial
- Nurses

B. Patients

- Regular patients (cardiac monitoring)
- New patients
- Urgent cases
- Families/Accompanying people
- KEY FEATURES OF MVP

A. Patient Portal (High Priority)

Functionality	Description		Expected Result
Authentication	FranceConne	ct+ & 2BUT	Enhanced security
Making an appointment	Int Doctoli	b egregation	-30% calls
Medical Follow-up	Patient Das	hboard	+50% engagement
Secure Messaging communication	Communicati	ons RGPD	Smooth

B. Practitioner Interface (High Priority)

C. Al Assistant (Medium Priority)

ARCHITECTURE TECHNIQUE MVP

Frontend:

Backend:

• EXPECTED RESULTS

A. Quantitative Metrics

```
Administrative errors | -80%
```

Emergency response time | -50%

B. Qualitative Metrics

- Improved medical staff satisfaction
- Reduction of administrative stress
- Better patient-practitioner communication
- Strengthened GDPR compliance
- MVP DEVELOPMENT PLAN

Phase 1: Foundations (2 months)

Phase 2: Core Features (2 months)

```
9-10 | Interface patient

11-12 | Interface practitioner

13-16 | Messaging
```

Phase 3: Al & Optimization (2 months)

• CONSTRAINTS AND LIMITS MVP

Techniques:

- Real-time performance
- Medical data security
- System availability

Regulatory:

- strict GDPR
- HDS (Health Data Hosting)
- Medical standards

Users:

- Training required
- Resistance to change
- Accessibility
- NEXT STEPS

Immediate:

- Final customer validation
- Dev environment setup
- Detailed sprint planning

Short-terme:

- Auth system development
- Creation of basic interfaces
- Preliminary tests

This detailed definition of MVP makes it possible to:

- Clarify objectives
- Set priorities
- Establish a realistic schedule
- Measuring success

4. Idea Development Documentation

A. Ideas Considered

Idea 1: Standard Web Application

- Forces:
 - Rapid development
 - Controlled costs
 - Accessibility from browser
- Weaknesses:
 - Limited performance
 - Limited offline features
 - Less smooth user experience
- Reason for rejection: Unsuitable for real-time performance constraints

Idea 2: Native Mobile Application

- Forces:
 - Performance optimale
 - Full access to device features
 - Better user experience
- Weaknesses:
 - More expensive development
 - Maintenance on multiple platforms
 - Complex distribution
- Reason for rejection: Incompatible budget and deadlines

Idea 3: Progressive Web App (Retainer)

- Forces:
 - Optimal web/native compromise
 - Simplified deployment
 - Support offline
 - Controlled costs
- Weaknesses:
 - Limitations iOS
 - Average performance
 - Increased technical complexity

B. MVP Selected

Description

PWA solution with microservices architecture, integrating:

- FranceConnect+ authentication
- Secure medical data management
- Interface responsive
- Basic offline mode

Justification

- Best cost/performance compromise
- Rapid deployment possible
- Guaranteed scalability
- Regulatory compliance made easy

Potential Impact

• Business: ROI estimated at 6-8 months

• Users: Easier gradual adoption

• Technique: Solid basis for developments

Constraints and Limits

Techniques:

- Real-time performance
- Medical data security
- 24/7 system availability

Regulatory:

- strict GDPR
- HDS (Health Data Hosting)
- Medical standards

Users:

- Training required
- Resistance to change
- Accessibility

C. Team Training

Incorporation Process

Roles identified:

- 2 Full-Stack developers
- 1 security/GDPR expert
- 2 UX/UI designers
- 1 Product Owner
- 1 Project Manager

Selection criteria:

- PWA Mastery
- GDPR/HDS knowledge

Organisation

Structure:

- Self-organized agile team
- 2 week sprints
- Daily meetings

Methodology:

- Adapted Scrum
- Systematic code review

- CI/CD Integration Continuous / Deployment Continuous
- DDD Domain Driven Design

Communication:

- Slack for daily communication
- Canva for project monitoring
- Weekly reviews with Google Meet

Next Steps

Immediate:

- Final customer validation
- Dev environment setup
- Detailed sprint planning

Short Term:

- Watsonx Al Studio Integration
- Auth system development
- Creation of basic interfaces
- Preliminary tests