Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem

Ridge-i inc.

Masanari Kimura (mkimura@ridge-i.com)

About

Education & Career

- 筑波大学卒 (2018)
- 株式会社Ridge-iエンジニア (2018~)
- 産総研特専研究員 (2019 ~)

Twitterやってます @machinery81

Researches ater joining Ridge-i

- Interpretation of Feature Space using Multi-Channel Attentional Sub-Networks (CVPRW2019)
- Intentional Attention Mask Transformation for Robust CNN Classification (MIRU2019)
- PNUNet: Anomaly Detection using Positive-and-Negative Noise based on Self-Training
 Procedure (MIRU2019)
- Progressive Data Increasing as the Neural Network Initializer (JSAI2019)
- Anomaly Detection Using GANs for Visual Inspection in Noisy Training Data (ACCVW2018)
- Analyzing Centralities of Embedded Nodes (ICDMW2018)

今回紹介する論文

Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem

Abstract

- CVPR2019採択論文 [1]
- DNNsの出力の信頼度に関する論文

Confidence of DNNs outputs

• 一般的なsoftmaxを用いたDNNsの出力例

Problem of Overconfident Predictions

- 学習データと全く関係ないタスクのデータを入力
 - * DNNsは非常に高い確信度で適当なクラスに分類してしまう
 - * 本当はどのクラスの予測確率も低くあってほしい

Training on CIFAR10 – Test on SVHN

Problem of Overconfident Predictions

Why ReLU Networks lead Overconfident?

ReLU networks produce piecewise affine functions

Definition 2.1. A function $f : \mathbb{R}^d \to \mathbb{R}$ is called piecewise affine if there exists a finite set of polytopes $\{Q_r\}_{r=1}^M$ (referred to as linear regions of f) such that $\bigcup_{r=1}^M Q_r = \mathbb{R}^d$ and f is an affine function when restricted to every Q_r .

→ NN with ReLU = piecewise affine function ○ classifier

ReLU networks produce piecewise affine functions

ReLUを用いた、最終層が全結合層であるようなネットワークは、

- 1. 入力を有限の超多面体に分割
- 2. 全結合層で分類

と解釈できる[2].

Why ReLU Networks lead Overconfident?

Lemma 3.1. Let $\{Q_i\}_{i=1}^R$ be the set of linear regions associated to the ReLU-classifier $f: \mathbb{R}^d \to \mathbb{R}^K$. For any $x \in \mathbb{R}^d$ there exists $\alpha \in \mathbb{R}$ with $\alpha > 0$ and $t \in \{1, \ldots, R\}$ such that $\beta x \in Q_t$ for all $\beta \geq \alpha$.

All the proofs can be found in the supplementary material. Using Lemma 3.1 we can now state our first main result.

Theorem 3.1. Let $\mathbb{R}^d = \bigcup_{l=1}^R Q_l$ and $f(x) = V^l x + a^l$ be the piecewise affine representation of the output of a ReLU network on Q_l . Suppose that V^l does not contain identical rows for all $l = 1, \ldots, R$, then for almost any $x \in \mathbb{R}^d$ and $\epsilon > 0$ there exists an $\alpha > 0$ and a class $k \in \{1, \ldots, K\}$ such that for $z = \alpha x$ it holds

$$\frac{e^{f_k(z)}}{\sum_{r=1}^K e^{f_r(z)}} \ge 1 - \epsilon.$$

Moreover,
$$\lim_{\alpha \to \infty} \frac{e^{f_k(\alpha x)}}{\sum_{r=1}^K e^{f_r(\alpha x)}} = 1.$$

Why ReLU Networks lead Overconfident?

$$\lim_{\alpha \to \infty} \frac{e^{f_k(\alpha x)}}{\sum_{r=1}^K e^{f_r(\alpha x)}} = 1.$$

ReLUを使ったネットワークはlpha xの予測確率の極限が1になる

- αは定数
- αxとは?

Intuitive Understanding

• 以下のように入力を変換

Intuitive Understanding

• 学習データ&想定した入力データは以下のエリアに変換

Intuitive Understanding

- 想定していない入力データは以下のエリアに変換
- 定数 $\alpha > 0$ を掛ける \rightarrow 変換後の空間で右上に. . .
 - $\rightarrow \alpha x = 想定していない入力$

(再活)

$$\lim_{\alpha \to \infty} \frac{e^{f_k(\alpha x)}}{\sum_{r=1}^K e^{f_r(\alpha x)}} = 1.$$

つまり、想定していない入力に対する予測確率の極限が1になる

Adversarial Confidence Enhanced Training

• 想定していない入力に対する予測確率を低くするような正則化

$$\frac{1}{N} \sum_{i=1}^{N} L_{CE}(y_i, f(x_i)) + \lambda \mathbb{E} \left[\max_{\|u-Z\|_p \le \epsilon} L_{p_{\text{out}}}(f, u) \right],$$

Adversarial Confidence Enhanced Training

• 想定していない入力に対する予測確率を低くするような正則化

Experimental Results

• 各データセットに対するOverconfidentの実験結果

	Plain				ACET			
	MNIST	SVHN	CIFAR-10	CIFAR-100	MNIST	SVHN	CIFAR-10	CIFAR-100
Median α	1.5	28.1	8.1	9.9	$> 10^6$	49.8	45.3	9.9
% overconfident	98.7%	99.9%	99.9%	99.8%	0.0%	50.2%	3.4%	0.0%

	Plain				ACET			
	MNIST	SVHN	CIFAR-10	CIFAR-100	MNIST	SVHN	CIFAR-10	CIFAR-100
Median α	1.5	28.1	8.1	9.9	$> 10^6$	49.8	45.3	9.9
% overconfident	98.7%	99.9%	99.9%	99.8%	0.0%	50.2%	3.4%	0.0%

Conclusion & 疑問

- ReLUを用いたネットワークのoverconfident問題について理由づけ
- それを解決する正則化手法を提案
- そもそもsoftmaxの出力を信頼度と捉えてしまっていいのか
 - 不確実性を取り扱う手法を検討した方がいい気もする
 - Bayesian NNs etc.

References

- [1] Hein, et al. "Why ReLU Networks Yield High-Confidence Predictions Far Away From the Training Data and How to Mitigate the Problem" The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2019.
- [2] R. Arora, A. Basuy, P. Mianjyz, and A.
 "Mukherjee.Understanding deep neural networks with rectified linear unit" International Conference on Learning Representations (ICLR).2018.