

Projet 4 - Segmentez des clients d'un site e-commerce

Aurélien Corroyer-Dulmont, PhD Ingénieur imagerie médicale

Rappel de l'appel à projet

Problématique :

- La société OLIST, société d'e-commerce souhaite segmenter ses clients pour mener des campagnes de communications
- Comprendre les différents types d'utilisateurs grâce à leur comportement et à leurs données personnelles

Objectif:

Fournir à l'équipe marketing une description actionnable de la segmentation

Données :

 Base de données comportant des informations sur l'historique de commandes, les produits achetés, les commentaires de satisfaction et la localisation des clients

Nettoyage des données

- Construction d'une base de donnée incluant toutes les informations :
 - "customers, geolocation,
 - items payments,
 - reviews,
 - orders products,
 - sellers,
 - category_name"

Data base unique

	customer_state	payment_type	review_score_mean	Time_after_last_purchase_days	nb_of_product	moy_achats	Main_prod_category	Tot_achats	Customer_score
customer_unique_id									
0000366f3b9a7992bf8c76cfdf3221e2		credit_card	5.0	160.273507		129.90	home	141.90	8
0000b849f77a49e4a4ce2b2a4ca5be3f	SP	credit_card	4.0	163.263090		18.90	health_beauty	27.19	8
0000f46a3911fa3c0805444483337064	sc	credit_card	3.0	585.850868		69.00	office	86.22	7
0000f6ccb0745a6a4b88665a16c9f078	PA	credit_card	4.0	369.875428		25.99	electronics	43.62	9
0004aac84e0df4da2b147fca70cf8255	SP	credit_card	5.0	336.905972		180.00	electronics	196.89	11
fffcf5a5ff07b0908bd4e2dbc735a684	PE	credit_card	5.0	495.853958		1570.00	health_beauty	4134.84	6
fffea47cd6d3cc0a88bd621562a9d061	ВА	credit_card	4.0	310.890532		64.89	health_beauty	84.58	11
ffff371b4d645b6ecea244b27531430a	MT	credit_card	5.0	617.070162		89.90	auto	112.46	7
ffff5962728ec6157033ef9805bacc48		credit_card	5.0	168.092095		115.00	fashion	133.69	8
ffffd2657e2aad2907e67c3e9daecbeb	PR	credit_card	5.0	532.883021		56.99	health_beauty	71.56	7

- Décompte des variables présentant un nombre de données manquantes trop important :
 - suppression de ces variables si NaN > 50 %
- Normalisation des données

Features engineering

- Informations crées :
 - « Temps depuis dernier achat »
 - En utilisant les variables "order_purchase_timestamp" et la valeur max de celle-ci
 - « Délai de livraison »
 - En utilisant les variables "order_delivered_customer_date" et "order_purchase_timestamp"
 - « Délai de réponse aux commentaires »
 - En utilisant les variables "review_answer_timestamp" et "review_creation_date"
 - « Nombre de produits, montant moyen et montant total acheté par client »
 - En utilisant les variables "customer_id", "'product_id" et "price"
 - « Catégorisation des produits plus succincte afin d'être plus spécifique »
 - « Catégorie la plus achetée »
 - En utilisant les variables "customer_id" et "product_category_name_english"

Exploration des données

- Exploration globale des variables d'intérêt
 - Les valeurs qui pourraient sembler aberrantes sont bien cohérentes avec la logique, il n'y a pas lieu de faire une sélection des valeurs aberrantes,
 - Seul 3% des clients sont revenus sur le site, 97% sont des commandes uniques

Exploration des données

- Exploration globale des variables d'intérêt
 - · Les produits de chambre/salle de bain et de beauté sont les plus achetées,
 - L'état de Sao polo et de Rio de Janeiro sont les plus gros acheteurs

Modélisation "RFM" :

Segment	Score RFM	Profil	Action
Très bons clients	RFM 13 à 15	Ambassadeurs de la marque, ils conso- lident l'image et le CA. Ils ont potentiellement une plus forte prévision de commandes.	Action de fidélisation : cartes premium, invitations
Bons clients	RFM 7 à 12	Achats récents et fréquents. La confiance existe et doit être consolidée. Taux de renouvellement potentiel de commandes inférieur à celui des très bons clients.	Action de développement de la fréquence d'achat ou du montant par commande, cou- plé avec des actions de fidéli- sation, offre couplée
Clients tièdes	RFM 1 à 6	Clients encore volatils hésitant à ache- ter dans un court délai à la concur- rence. La certitude qu'ils rachètent prochaine- ment est faible.	Action de fidélisation par des offres spécifiques et récur- rentes : réductions, promotion sur certaines offres
Nouveaux clients	RFM 8	Premier achat, l'analyse doit se pour- suivre lors des prochaines consomma- tions suite au réengagement.	Action de fidélisation (à la fin de leur engagement) et de développement de leurs achats.
Inactifs	RFM O	Aucune consommation durant la der- nière année.	Action de réactivation du client ou abandon.

Source: "https://www,e-marketing,fr/Thematique/academie-1078/fiche-outils-10154/scoring-RFM-306775,htm"

Modélisation

- Recency « Temps depuis dernier achat »
- Frequency « Nombre de produits »
- Monetary « Montant total »

7 / 20

Modélisation

- Choix des modèles de classification étudiés :
 - Comprendre le comportement des variables :
 - Principal Components Analysis()

- Classification des clients :
 - KMeans()
 - DBScan()
 - Cluster hiérarchique()

Modélisation

Features utilisés pour l'entrainement des modèles :

- Features quantitatifs :
 - review_score_mean
 - Time_after_last_purchase_days
 - nb_of_product
 - moy_achats
 - Tot_achats

- Features catégoriels :
 - customer_state
 - payment_type
 - Main_prod_category
 - RFM

Comprendre le comportement des variables :

Analyse en composantes principales :

La PCA avec 7 composantes expliques assez bien les différents caractéristiques du jeu de donnée

Classification KMeans:

Le nombre de cluster idéal pour le KMeans semble être de 7

Classification DBSCAN:

Le DBSCAN ne semble pas être adapté aux données, car malgrès un score de silhouette très intéressant il ne propose qu'une séparation par deux clusters, la densité des données doit être trop similaire,

12 / 20

Clustering hiérarchique :

Le nombre de cluster idéal pour le Clustering hiérarchique semble être de 7

Résultats des classifications (KMeans) :

	review_score_ mean	Time_after_la st_purchase_d ays	nb_of_product	moy_achats	Tot_achats
Label 1	4,09	285,78	2,29	150,83	239,01
Label 2	4,08	285,98	2,25	142,60	228,39
Label 3	4,10	286,81	2,50	144,00	213,92
Label 4	4,05	287,67	1,91	141,94	216,94
Label 5	4,12	283,08	2,32	145,17	231,30
Label 6	4,08	263,65	3,11	93,97	225,62
Label 7	4,20	354,96	2,89	172,18	333,50

Création d'une database avec le n° de clustering par client

Résultats des classifications (Clustering hiérarchique) :

	Review_score	Time_after_las t_purchase_da ys	Nb_of_product	moy_achats	Tot_achats
Label 1	4,09	286,13	2,30	150,75	238,34
Label 2	4,08	286,43	2,29	142,85	230,11
Label 3	4,10	284,56	2,26	143,21	211,90
Label 4	4,04	293,31	1,82	149,25	239,75
Label 5	4,12	283,22	2,41	144,07	228,21
Label 6	4,15	274,11	3,32	84,46	222,09
Label 7	3,97	303,42	2,00	103,75	218,22

Création d'une database avec le n° de clustering par client

Résultats des classifications (KMeans) :

La segmentation par KMeans semble bien discriminer des populations de client

Résultats des classifications (KMeans) :

	Nb de client	type de client (1)	type de client (2)	Classe client	recommandatio n pour ce client	catégorie la plus acheté	région préférentie lle	RFM score	score avis	montant moyen	nb produit	montant total	temps depuis dernier achat
Label 1	21956	achète un panier moyen assez élevé	Client moyen / bon	**	Action de fidélisation par des offres ciblées	home, élec, health	SP, RJ, MG	5,93	4,09	150,83	2,29	239,01	285,78
Label 2	43390	Plus grosse cohorte de client	Client moyen	**	Actions de développement du montant de la commande. Offres ciblées "santé"	home, health, élec	SP, RJ, MG	5,91	4,08	142,60	2,25	228,39	285,98
Label 3	15801	achète peu en montant total	Mauvais client	*	Offres ciblées "santé"	home, health, élec	SP, RJ, MG	5,95	4,10	144,00	2,50	213,92	286,81
Label 4	578	achète en moins et montant faible, score avis moins bon que les autres	Mauvais client	*	représente faible effectif, l'oublier	home, élec, health	SP, RJ, MG	5,93	4,05	141,94	1,91	216,94	287,67
Label 5	5029	score avis meilleur que les autres	Client moyen	**	Offres ciblées "home"	home, élec, health	SP, RJ, MG	5,95	4,12	145,17	2,32	231,30	283,08
Label 6	38	achète beaucoup en qté mais peu au total et souvent	Client moyen	**	pub pour articles de sport	home, sport, élec	SP, RJ, RS	5,82	4,08	93,97	3,11	225,62	263,65
Label 7	g	achète beaucoup, note bien	Très bon client	***	Action de fidélisation, carte	home, élec,	SP MG PF	6.00	4.20	172 18	2.80	333 50	354.96

Délai de maintenance

- Simulation efficacité des modèles en fonction du temps :
 - Données disponibles sur 24 mois
 - Segmentation des périodes par mois
 - Etude de la performance du modèle en soustrayant un mois à chaque itération

=> Utilisation du score ARI (Adjusted Rand Index)

Une maintenance tous les 8 mois semble optimale, en effet au delà le score ARI diminue drastiquement

CONCLUSION

- Rappel de la problématique :
 - Segmenter des clients d'une société de e-commerce pour mener des campagnes de communications

Résultats :

- Une <u>classification par RFM</u> permet une première segmentation des clients pour optimiser les modèles de segmentation
- Les modèles KMeans et clustering hiérarchique donnent des résultats intéressants
- La segmentation par <u>KMeans</u> est cependant meilleure et semble permettre de proposer des campagnes de communications spécifiques pour <u>7 catégories de client</u>
- Pour une meilleure efficacité du modèle et de prise en compte des nouveaux clients,
 une maintenance tous les 8 mois est préférable

19 / 20

Projet 4 - Segmentez des clients d'un site e-commerce

Aurélien Corroyer-Dulmont, PhD Ingénieur imagerie médicale

Exploration des données

- Exploration globale des variables d'intérêt
 - Il y a globalement beaucoup plus de vote à 5 (presque 60%) en revanche il y a plus de 10% des votes qui sont pour le plus faible score, c'est un point important,

21 / 23

Classification KMeans <u>utilisant uniquement les données RFM</u> :

excellence pour vaincre votre cand

sports_leisure