Экзопланеты

Методы обнаружения и всякое другое

Определение астрономической единицы: транзит Венеры

1991: PSR B1257+12 (Александр Вольщан)

1995: 51 Peg (Мишель Майор и Дидье Дело)

1. Транзит

2. Доплеровское смещение линий

3. Гравитационное микролинзирование

- Прямые наблюдения
- Фазыспутников
- Полярные сияния
- Астрометрия

А ещё:

Методы обнаружения планет

Номер (в порядке от звезды) ◆	Планета 💠	Радиус (<i>R</i> ⊕) \$	Macca (M _J)	Период обращения (суток)	Большая полуось (а.е.)	Эксцентриситет (а.е.)	Наклонение 💠
1	Kepler-90 b	1,31 ± 0,17	_	7,008151(19)	0,074 ± 0,016	_	89,4 ± 1,5°
2	Kepler-90 c	1,19 ± 0,14	_	8,719375(27)	0,089 ± 0,012	_	89,68 ± 0,74°
3	Kepler-90 i	1,32 ± 0,21	_	14,44912(20)	$0,126^{+0,025}_{-0,040}^{[12]}$	_	89,2 ^{+0,59} °
4	Kepler-90 d	2,87 ± 0,30	_	59,7372125(71)	0,32 ± 0,05	_	89,71 ± 0,29°
5	Kepler-90 e	2,66 ± 0,29	_	91,9393374(95)	0,42 ± 0,06	_	89,79 ± 0,19°
6	Kepler-90 f	2,88 ± 0,52	_	124,9144(19)	0,48 ± 0,09	_	89,77 ± 0,31°
7	Kepler-90 g	8,1 ± 0,8	<0,8	210,5935133(110)	0,71 ± 0,08	_	89,80 ± 0,06°
8	Kepler-90 h	11,3 ± 1,0	<1,2	331,60111(71)	1,01 ± 0,11	_	89,6 ± 1,3°

1)

? Из анализа условий, необходимых для существования жизни типа земной, на планете должна сформироваться и удерживаться (в течение длительного времени) азотно-кислородная атмосфера при температуре 273 K, а ускорение силы тяжести *g* должно быть заключено в интервале от 5 до 15 м/с². Укажите на диаграмме "радиус планеты (*R*) — масса планеты (*M*)" область потенциально обитаемых планет.

1)

? Из анализа условий, необходимых для существования жизни типа земной, на планете должна сформироваться и удерживаться (в течение длительного времени) азотно-кислородная атмосфера при температуре 273 K, а ускорение силы тяжести *g* должно быть заключено в интервале от 5 до 15 м/с². Укажите на диаграмме "радиус планеты (*R*) — масса планеты (*M*)" область потенциально обитаемых планет.

$$\sqrt{\frac{3kT}{m}} < \sqrt{\frac{2GM}{R}}$$

? Из анализа условий, необходимых для существования жизни типа земной, на планете должна сформироваться и удерживаться (в течение длительного времени) азотно-кислородная атмосфера при температуре 273 K, а ускорение силы тяжести *g* должно быть заключено в интервале от 5 до 15 м/с². Укажите на диаграмме "радиус планеты (*R*) — масса планеты (*M*)" область потенциально обитаемых планет.

$$\sqrt{\frac{3kT}{m}} < \sqrt{\frac{2GM}{R}}$$

$$M > \frac{3kT}{2Gm} \cdot R$$

1) Разанализа условий, необходимых для существования жизни типа земной, на планете должна сформироваться и удерживаться (в течение длительного времени) азотно-кислородная атмосфера при температуре 273 К, а ускорение силы тяжести д должно быть заключено в интервале от 5 до 15 м/с². Укажите на диаграмме "радиус планеты (R) — масса планеты (M)" область потенциально обитаемых планет.

$$g_1 < \frac{GM}{R^2} < g_2; \quad \frac{g_1}{G} \cdot R^2 < M < \frac{g_2}{G} \cdot R^2$$

$$\sqrt{\frac{3kT}{m}} < \sqrt{\frac{2GM}{R}} \qquad M > \frac{3kT}{2Gm} \cdot R$$

1) Разанализа условий, необходимых для существования жизни типа земной, на планете должна сформироваться и удерживаться (в течение длительного времени) азотно-кислородная атмосфера при температуре 273 К, а ускорение силы тяжести д должно быть заключено в интервале от 5 до 15 м/с². Укажите на диаграмме "радиус планеты (R) — масса планеты (M)" область потенциально обитаемых планет.

Спасибо за внимание!