Orthogonal Matrices

Sonny Monti

April 4, 2014

Definition

Two subspaces V & W are orthogonal if for any $\underline{v} \in V$ and any $\underline{w} \in W$ we have $\langle \underline{v}, \underline{w} \rangle = 0$.

note

if vector $\underline{\mathbf{r}}$ belongs to two orthogonal subspaces, then it has to be zero vector. Lets consider matrix $A \in \mathbb{R}^{n,m}$. **Nullspace**, $N(A) \subset \mathbb{R}^m$ consists of all $x \in \mathbb{R}^m$ such that $A\underline{x} = \underline{0}$.

Columnspace, $C \subset \mathbb{R}$, span of columns of matrix A.

We also define **rowspace** $R(A) \subset \mathbb{R}^m$, span of rows of matrix A.

Left Nullspace, $N(A^T) \subset \mathbb{R}$ consists of all $y \in \mathbb{R}^n$ such that:

 $A^T\underline{y} = \underline{0}, \underline{y}A^T = \underline{0}$

note

$$C(A) = R(A^T)$$
 and viceversa.

Theorem

Lets consider Matrix $A \in \mathbb{R}^{m,n}$. Nullspace N(A) is orthogonal to rowspace of A, R(A).

proof1

lets consider any arbitrary $x \in N(A)$ so that Ax = 0.

we got that \underline{x} is orthogonal to every row of matrix A therefore, \underline{x} is orthogonal to any combination of row of A therefore N(A) is orthogonal to R(A).//

Proof2

Rowspace consists of all linear combination of rows of A. $A^T \underline{y}$ belongs to rowspace. It is the linear combination of rows of A. Lets consider any $x \in N(A), \underline{x}^T (A^T \underline{y}) = (\underline{x}^T A^T) \underline{y} = (A\underline{x})^T \underline{y} = \underline{0}\underline{y} = \underline{0}$

0.1 Theorem

Lets consider matrix $A \in \mathbb{R}^{nm}$ Left nullspace of A, $N(A^T)$ is orthogonal to the columnspace of A, C(A).

proof

Remember that $C(A)=R(A^T)$. Then we can apply the proof above to A^T

Definition

An orthogonal complement of subspace M of vectors $s \in V$ consist of all vectors orthogonal to m. this subspace is denoted by M^{\perp}

Remark: Dim M + dim M^{\perp} = dim V

based on this definition null space of A is an orthogonal complement of rowspace of A

Theorem

N(A) is orthogonal complement of R(A) and dim(N(A))+dim(R(A))=m

Theorem

 $N(A^{\perp})$ is orthogonal complement of C(A). $\dim(N(A^{\perp})) + \dim C(A) = n$

Theorem

if $\underline{b} \in C(A)$ then there exist one and only one vector $\underline{x}_r \in R(A)$ such that $A\underline{x}_r = \underline{b}$

Proof

Lets assume that \underline{x}_r and \underline{x}_r^i both belong to R(A) and also $A\underline{x}_r=\underline{b}$ and $A\underline{x}_r^i=\underline{b}$

Then $A\underline{x}_r - A\underline{x}_r^i = \underline{0}$

 $A(underlinex_r - underlinex_r^i) = \underline{0}$

and so $A\underline{x}_r - A\underline{x}_r^i \in N(A)$

but since xr and xr prime, belongs to R(A).

 $A\underline{x}_r - A\underline{x}_r^i \in R(A)$

it is only possible if xr minus xr prime is equal to $\underline{0}$