北京理工大学2011-2012学年第二学期

2011级《微积分A》期末试卷(A)

班级		学号					姓名				
	(注:	本试卷	送共6页,	十个大	题。请	青撕下试	卷最后-	一张空台	1纸做草	稿)	
题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得											
分											
评阅											
人											
(1) 平 (2) 曲:	面区域	D 是由 $c = \int_0^t$	x = 1,		以及 x			D			 上的切
(3) 设在	u(x, y, y)	$z) = \ln z$	$1 (x^2 +$	$y^2 + z$	²),贝	∮div(g ı	rad u	=			
(4) 判1	断级数	$\sum_{n=1}^{\infty} \frac{3^n n}{n^n}$!!的敛情	效性: _							
(5) 幂:	级数 $\sum_{n=1}^{\infty}$	$(-1)^n$	$\frac{2^n(x-1)}{\sqrt{n}}$	" 一的收敛	效域为	7:					

二、(9分)已知f具有二阶连续偏导,且 $z = f(xy^2, x^2y)$,求 $\frac{\partial z}{\partial x}$,及 $\frac{\partial^2 z}{\partial x\partial y}$.

三、 (9分) 计算曲线积分 $\oint_L \sqrt{x^2 + y^2} dl$, L为圆周 $x^2 + y^2 = 2ax$, a > 0.

四、(9分)均匀半球壳 $x^2 + y^2 + z^2 = 16$ (其中 $z \ge 0$)的密度为常数a,求该半球壳对于z轴的转动惯量.

五、(9分)求全微分方程: $(3x^2 + 2xe^{-y})dx + (3y^2 - x^2e^{-y})dy = 0$ 的通解.

六、(9分)已知S是旋转抛物面 $z=\frac{1}{2}(x^2+y^2)$ 介于z=0和z=2之间的部分,当S取上侧时,计算曲面积分 $\iint_S (z^2+x) \mathrm{d}y \mathrm{d}z + y \mathrm{d}z \mathrm{d}x - z \mathrm{d}x \mathrm{d}y.$

七、(9分)设函数f(x)使得积分 $I=\int\limits_L yf(x)\mathrm{d}x-f(x)\mathrm{d}y$ 与路径无关,且f(0)=1,

- (1) 求函数f(x)的表达式;
- (2) 当L是自点A(0,0)沿任意曲线至点B(2,3)的弧时,求I的大小

八、 (9分) 求幂级数 $\sum_{n=2}^{\infty} \frac{n-1}{n!} (x+1)^n$ 的收敛域与和函数.

九、(9分)在变力 $\vec{F} = yz\vec{i} + xz\vec{j} + xy\vec{k}$ 的作用下,一质点由原点沿直线运动到椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 上第一卦限的点(u, v, w),问当u, v, w取何值时,变力 \vec{F} 做到功最大?并求该最大值(a > 0, b > 0, c > 0).

十、(8分)将函数 $f(x)=|x|, (-\pi \le x < \pi)$ 展开成傅立叶级数,并求数项级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.