Metode Runge-Kutta pentru rezolvarea ecuațiilor diferențiale

Colaboratori: Andrei STAN, Dumitru-Clementin Cercel, Adelina Vidovici

February 17, 2025

Cuprins

1	Noţ	țiuni teoretice	1
	1.1	Metode de tip Runge-Kutta	1
2	Pro	obleme rezolvate	3
	2.1	Problema 1	3
	2.2	Problema 2	3
3	Pro	obleme propuse	4
	3.1	Problema 1	4
	3.2	Problema 2	4
	3.3	Problema 3	4

În urma parcurgerii acestui laborator, studentul va fi capabil să:

- găsească soluția unei ecuații diferențiale folosind metode de tip Runge-Kutta;
- găsească soluția unui sistem de ecuații diferențiale.

1 Noţiuni teoretice

Fiind date:

- intervalul $I = [x_0, x_0 + a] \subset R$
- funcția continuă $f: I \times R \to R$ care asociază fiecarui punct (x, y) din domeniul de definiție un număr real f(x, y)
- ecuația diferențială y' = f(x, y)

problema diferențială de ordinul 1 constă în determinarea funcției $y:I\to R$ astfel încât pentru $\forall x\in I$ avem relatia:

$$y'(x) = f(x, y(x))$$

Problema diferențială de ordinul 1 cu condiții inițiale (numită și problema Cauchy) constă în rezolvarea ecuației diferențiale y'(x) = f(x, y(x)) știind condiția inițială $y(x_0) = y_0, y_0 \in R$.

În cele ce urmează, presupunem că funcția f satisface condiția Lipschitz, fapt ce asigură existența și unicitatea soluției problemei Cauchy:

$$\forall x \in I, \forall u, v \in \mathbb{R}^n, \exists L > 0 \text{ astfel încât } |f(x, u) - f(x, v)| < L |u - v|$$

1.1 Metode de tip Runge-Kutta

O metodă numerică folosită pentru rezolvarea ecuțiilor diferențiale este metoda Runge-Kutta. Această metodă este o metodă cu pași separați, caracterizată prin faptul că aproximația soluției la pasul următor i+1 ține cont doar de informația de la pasul curent i, astfel:

$$\begin{cases} y_0 = \lambda_h \\ y_{i+1} = y_i + h f_h(x_i, y_i), & i = 0, 1, \dots \end{cases}$$

și având condițiile de consistență:

$$\lim_{h \to 0} \lambda_h = \lambda; \quad \lim_{h \to 0} f_h = f.$$

Funcția $f_h(x,y)$ se determină urmând paşii:

- considerăm punctele distincte $x_{ij} = x_{i0} + u_j h$ care împart intervalul $I = [x_i, x_{i+1}]$ în q subintervale, unde $u_j \in [0, 1], u_0 = 0, u_q = 1$;
- se calculează aproximațiile soluției în punctele introduse x_{ij} folosind relațiile:

$$\begin{cases} y_{i0} = y_i \\ y_{ij} = y_i + h \sum_{l=0}^{j-1} K_{jl} f(x_{il}, y_{il}), & j = 1:q \end{cases}$$

Pentru a determina punctele introduse x_{ij} și constantele K_{jl} se impune condiția ca în dezvoltarea Taylor a lui y_{ij} după puterile lui h, termenii astfel obtinuți să coincidă cu cât mai mulți termeni din dezvoltarea Taylor a soluției exacte. O metoda Runge-Kutta este de ordin p, dacă în cele două dezvoltări termenii coincid până la h^p inclusiv. Mai mult, numărul subintervalelor q definește rangul metodei Runge-Kutta.

Metoda Runge-Kutta de ordin 1 și rang 1 este:

$$\begin{cases} y_{i0} = y_i \\ y_{i1} = y_i + hu_1 f(x_{i0}, y_{i0}) \end{cases}$$

Metoda Runge-Kutta de ordin 2 și rang 2 este:

$$\begin{cases} y_{i0} = y_i \\ y_{i1} = y_i + hu_1 f(x_{i0}, y_{i0}) \\ y_{i2} = y_i + h(1 - \frac{1}{2u_1}) f(x_{i0}, y_{i0}) + \frac{h}{2u_1} f(x_{i1}, y_{i1}) \end{cases}$$

Particularizând valoarea lui $u_1 \in [0,1]$ obţinem:

• metoda tangentei ameliorate, pentru $u_1 = \frac{1}{2}$:

$$\begin{cases} x_{i1} = x_{i0} + u_1 h = x_i + \frac{h}{2} \\ y_{i1} = y_i + \frac{h}{2} f(x_i, y_i) \\ y_{i+1} = y_i + h f(x_{i1}, y_{i1}) \end{cases}$$

• metoda Heun, pentru $u_1 = \frac{2}{3}$:

$$\begin{cases} x_{i1} = x_i + \frac{2}{3}h \\ y_{i1} = y_i + \frac{2}{3}hf(x_i, y_i) \\ \\ y_{i+1} = y_i + \frac{h}{4}f(x_i, y_i) + \frac{3h}{4}f(x_{i1}, y_{i1}) \end{cases}$$

• metoda Euler-Cauchy, pentru $u_1 = 1$:

$$\begin{cases} x_{i1} = x_i + h \\ y_{i1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i), f(x_{i1}, y_{i1})] \end{cases}$$

În mod uzual, se utilizează o metodă Runge-Kutta de ordin 4 pentru care avem relația:

$$y_{i+1} = y_i + \frac{K_1 + 2K_2 + 2K_3 + K_4}{6}$$

unde:

$$K_1 = hf(x_i, y_i)$$

$$K_2 = hf(x_i + \frac{h}{2}, y_i + \frac{K_1}{2})$$

$$K_3 = hf(x_i + \frac{h}{2}, y_i + \frac{K_2}{2})$$

$$K_4 = hf(x_i + h, y_i + K_3)$$

2 Probleme rezolvate

2.1 Problema 1

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda tangentei ameliorate. Programul primește ca date de intrare: a, b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Soluție:

```
function y = tangenta_ameliorata(a, b, n, y0, f)
h = (b-a)/n;
y(1) = y0;

for i = 1 : n
    x = a+(i-1)*h;
    xi1 = x+h/2;
    yi1 = y(i)+h/2*feval(f, x, y(i));
    y(i+1) = y(i)+h*feval(f, xi1, yi1);
endfor
endfunction
```

Listing 1: Metoda tangentei ameliorate.

Date de intrare:	Date de ieşire:
	$\begin{bmatrix} 0.5 \end{bmatrix}$
	0.215691
	-0.074489
	-0.421686
	-0.883347
a = 0, b = 3, n = 10, y0 = 0.5, @functie	y = -1.521975
	-2.390099
	-3.495294
	-4.751827
	-5.952477
	[-6.811686]

unde am considerat funcția f(x,y) definită astfel:

```
function rez = functie(x, y)
  rez = y*sin(x)-1;
endfunction
```

Listing 2: Exemplu de funcție de integrat.

2.2 Problema 2

Să se scrie program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Runge-Kutta de ordin 4. Programul primește ca date de intrare: a, b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

Soluție:

```
function y = Runge_Kutta4(a, b, n, y0, f)
h = (b-a)/n;
y(1) = y0;

for i = 1 : n
    x = a+(i-1)*h;
    K1 = h*feval(f, x, y(i));
    K2 = h*feval(f, x+h/2, y(i)+K1/2);
    K3 = h*feval(f, x+h/2, y(i)+K2/2);
    K4 = h*feval(f, x+h, y(i)+K3);
    y(i+1) = y(i)+(K1+2*K2+2*K3+K4)/6;
endfor
endfunction
```

Listing 3: Metoda Runge-Kutta de ordin 4.

Date de intrare:	Date de ieşire:
	$\begin{bmatrix} 0.5 \end{bmatrix}$
	0.213770
	-0.079085
	-0.431524
	-0.902985
a = 0, b = 3, n = 10, y0 = 0.5, @functie	y = -1.557599
	-2.447435
	-3.575427
	-4.847639
	-6.051285
	-6.905223

3 Probleme propuse

3.1 Problema 1

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Euler-Cauchy. Programul primește ca date de intrare: a, b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

3.2 Problema 2

Să se scrie un program OCTAVE care să rezolve o ecuație diferențială de ordin 1 folosind metoda Heun. Programul primește ca date de intrare: a, b - capătul superior, respectiv inferior al intervalului de integrare; n - numărul de puncte; y0 - condiția inițială; f - funcția f(x,y). Rezultatul programului va fi y, reprezentând vectorul aproximațiilor soluției ecuației diferențiale.

3.3 Problema 3

Să se scrie un program OCTAVE care să rezolve un sistem de 2 ecuații diferențiale de ordin 1 folosind metoda Runge-Kutta de ordin 4. Ambele ecuații diferențiale se rezolvă pe intervalul delimitat de parametrii a și b, într-un număr de n puncte; y10, y20 reprezintă condiția inițială a primei ecuații diferențiale, respectiv

celei de-a doua; f1, f2 reprezintă prima funcție a sistemului, respectiv cea de-a doua funcție. Programul va avea ca rezultat vectorii y1 și y2 (vectorul aproximațiilor soluției asociată primei ecuații diferențiale, respectiv celei de-a doua).

 $function [y1 \ y2] = \texttt{Runge_Kutta4_sistem}(a, b, n, y10, y20, f1, f2)$