eterm	nine the decimal values of the following 1's complement number: 100010	
o a.	85	
) b.	91	

O d. 88

o. 93

For the timing diagram shown below, what is the function $f(x_1,x_2,x_3)$ in the simplest product-of-sums form?

$$\bigcirc$$
 a. $(x_1+x_2+x_3)(ar{x}_1+x_2+ar{x}_3)(ar{x}_1+ar{x}_2+x_3)$

O b.
$$(x_1+x_2+\bar{x}_3)(\bar{x}_1+x_2+\bar{x}_3)(x_1+\bar{x}_2+x_3)$$

O c. $(x_1+\bar{x}_2+x_3)(\bar{x}_1+x_2+x_3)(\bar{x}_1+\bar{x}_2+x_3)$

$$\circ$$
 d. $(x_1+x_2+x_3)(x_1+ar{x}_2+ar{x}_3)(ar{x}_1+x_2+x_3)$

What is the 2's complement of the decimal number 83?

- a. 000001001000
- Ob. 000001010101
- O c. 000000101001
- (a) d. 000000101101

Find the minimum-cost SOP form for the function $f(x_1,x_2,x_3) = \sum m(1,4,7) + D(2,5)$.

$$\odot$$
 d. $x_1ar{x}_3+x_2x_3+ar{x}_1x_2$

 \circ a. $x_1\bar{x}_2 + x_1x_3$

What is the simplest sum-of-products expression that implements the function $f(x_1, x_2, x_3) = \sum m(3, 4, 6, 7).$

O b. $x_1x_2 + x_2\bar{x}_3$

A hex-to-7-segment decoder can be implemented as shown in the following figure. Digits 0 to 5 to-7-segment decoder. Digits 10 to 15 are displayed as A, B, C, D, E, and F. Derive minimal sum-a segment display.

(a) Code converter

(b) 7-segment display

$$\bigcirc$$
 a. $ar{w}_0w_1 + w_0w_3 + w_1w_3 + ar{w}_2w_3 + ar{w}_1w_2w_3$

Ob.
$$ar{w}_0 w_1 + w_1 w_3 + ar{w}_2 w_3 + ar{w}_1 w_2 ar{w}_3$$

$$\bigcirc$$
 c. $ar{w}_0 w_1 + w_0 w_3 + w_1 w_3 + ar{w}_2 w_3 + ar{w}_1 w_2 ar{w}_3$

$$\bullet \ \text{d.} \ \bar{w}_0w_2 + \bar{w}_1w_3 + w_1w_2 + \bar{w}_1w_3 + \bar{w}_1w_2\bar{w}_3 \\$$

What is the simplest product-of-sums expression for the function $f(x_1,x_2,x_3)=\prod M(0,1,5,7).$ O a. $(x_1+x_2)(\bar{x}_1+x_3)$ O b. $(x_1+x_3)(x_1+\bar{x}_3)$

A four-variable logic function that is equal to 1 if any three or all four of its variables are equal to 1 is called a majority function. What is the minimum-cost SOP implementation of this majority function?

 $\bigcirc a. x_1 \bar{x}_2 x_3 + x_1 x_2 x_4 + x_1 \bar{x}_3 x_4 + x_2 x_3 x_4$ \bigcirc b. $x_1x_2x_3 + x_1x_2\bar{x}_4 + x_1x_3x_4 + \bar{x}_2x_3x_4$

 $c. x_1x_2x_3 + x_1x_2x_4 + x_1\bar{x}_3x_4 + x_2x_3x_4$

Clear my choice

 \bigcirc d. $x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4$

What is the correct Shannon's expansion in terms of w_2 ?

Consider the function $f = \bar{w}_1 \bar{w}_2 + \bar{w}_2 \bar{w}_3 + w_1 w_2 w_3$.

$$\odot$$
 a. $ar{w}_1(ar{w}_2) + w_1(w_2w_3)$

O b.
$$\bar{w}_2(\bar{w}_1) + w_2(w_1\bar{w}_3)$$

$$\odot$$
 c. $\bar{w}_2(\bar{w}_3) + w_2(w_1 + w_3)$

$$lacktriangledown$$
 d. $ar{w}_2(ar{w}_1 + ar{w}_3) + w_2(w_1w_3)$