#### SLI Backplane Card Default Edge Connector

First 104 pins follow pumpkin CSK bus (Rev E) pins Some user and IO pins have been assigned by SLI ( that are not used by any other functions)





make more concise

## SLI Backplane Card Default Circuitry

USB 2.0 microB



#### **PAYLOAD LEVEL SHIFTERS**



#### TO FORAS PROMINEO PAB



#### **12C PROTECTION**







#### TO MAGNETOTORQUERS



## ROCKBLOCK LEVEL SHIFTERS



#### TO ROCKBLOCK 9602



Sierra Lobo INC

Sheet: /
File: FP Interface Card.kicad\_sch

Title: Blank Card for SLI Backplane

Size: B Date: 2021–11–05 Rev: A

KiCad E.D.A. kicad (6.0.4) Id: 1/25









## any way to get a super accurate 5V reference? always a dropout voltage

**IO EXPANDER** 

#### MAX7311AAG+ DAC\_LATO DAC\_LAT1 C29 \_\_AMP\_SHDN\_XY \_AMP\_SHDN\_Z DRV\_PH\_X \_DRV\_EN\_X DRV\_SLP\_X DRV\_PH\_Y DRV\_EN\_Y DRV\_SLP\_Y \_DRV\_PH\_Z \_DRV\_EN\_Z \_DRV\_SLP\_Z 10\_11 \_\_ADC\_ALERT/BUSY \_\_ADC\_CONVST ── ☐Ball\_Deploy snagging this off here saves mainboard 10 10\_15

addr. 0x40

#### 1.3.1 Technical specification

SCLD

SDAD-

SDA

| Danamatan .                             |                       |                                  |
|-----------------------------------------|-----------------------|----------------------------------|
| Parameter                               | Typical Value         | Comments                         |
| Environmenta                            | l Characteristics     |                                  |
| Qualified operational temperature range | -40 to +70°C          |                                  |
| Storage temperature range               | -50 to +85°C (RH<60%) |                                  |
| Electrical C                            | haracteristics        |                                  |
| Torquer supply voltage (design)         | 5V                    |                                  |
| Nominal magnetic dipole (per actuator)  | 0.2 Am <sup>2</sup>   |                                  |
| Actuation power (rods)                  | 0.2 W                 | 5V, 20 C,<br>0.2 Am <sup>2</sup> |
| Actuation power (air core)              | 0.57 W                | 5V, 20 C,<br>0.2 Am <sup>2</sup> |
| Temperature sensor current consumption  | <150 uA               |                                  |
| Physical Cl                             | naracteristics        |                                  |
| Dimensions (Main)                       | 95.9 x 90.1 mm        |                                  |
| External height                         | 15 mm                 |                                  |
| Weight                                  | 194 grams             |                                  |
| Table 1-2 iMTQ Overall Specification    |                       | •                                |

#### DRIVE AMPLIFIER

Magnetotorquer voltage source just a high current op amp as a unity buffer looks weird but is just a unity gain buffer





# HALF BRIDGE DRIVER & CURRENT SENSE

**5V AMPLIFIER** 

X\_Vs\_2.5V OUT\_5V X\_Vs\_5V

— ⊃IN\_2.5V OUT\_5V<

Z\_Vs\_2.5V OUT\_5V Z\_Vs\_5V

5V Amp 1

5V Amp 2

5V Amp 3

Y\_Vs\_2.5V

take 0-2.5V DAC signal to 0-5V



max rod current = 50mA max air core current = 110mA max current will be flowing both directions biased at mid supply lets say current will cause a +/- 1.0v defelection r\_rod = 1/(50mA)/100 = 200mR r\_air = 1/110mA/100 = 91mR

### CURRENT SENSE ADC









































