Text Mining and Language Analytics

Lecture 5

Feed-forward Neural Networks & Convolutional Neural Networks

Dr Stamos Katsigiannis 2023-24

Artificial Neural Networks (ANN)

- Simply called Neural Networks (NN)
- Algorithms that vaguely mimic the operations of a biological brain to recognise relationships between data
- Based on a collection of connected units (nodes) called artificial neurons
- Artificial neurons loosely model the neurons in a biological brain
- Neural network connections, like the synapses in a biological brain, can transmit a signal to other neurons
- Each neuron takes some numbers as input and outputs the result of a function of the sum of the inputs

Perceptron: The building block of NNs

Input Weights

The bias term is optional

University

$$y = g\left(b + \sum_{i=1}^{n} x_i w_i\right)$$

Output

Activation functions g(z)

$$sigmoid(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$ReLU(z) = \max(0, z)$$

Leaky ReLU(z) =
$$\begin{cases} z & z > 0\\ 0.01z & \text{otherwise} \end{cases}$$

•••

Activation functions

University

$$z_{j}^{[1]} = \sum_{i=1}^{n_{0}} x_{i} w_{i,j}^{[1]}$$

$$h_{j} = g(z_{j}^{[1]})$$

$$z_{j}^{[2]} = \sum_{i=1}^{n_{1}} h_{i} w_{i,j}^{[2]}$$

$$y_{j} = g(z_{j}^{[2]})$$

Use softmax to convert output to class probabilities $softmax(z_i) = \frac{e^{z_i}}{\sum_{i=1}^d e^{z_j}}$

7

 $g(z) = ReLU(z) = \max(0, z)$

 $g(z) = ReLU(z) = \max(0, z)$

0

1

x_1	x_2	y_1
0	0	0
0	1	1
1	0	1
1	1	0

 $g(z) = ReLU(z) = \max(0, z)$

 $egin{array}{c|cccc} x_1 & x_2 & y_1 \\ \hline 0 & 0 & \mathbf{0} \\ \hline 0 & 1 & \mathbf{1} \\ \hline 1 & 0 & \mathbf{1} \\ \hline 1 & 1 & \mathbf{0} \\ \hline \end{array}$

Durham

University

 $g(z) = ReLU(z) = \max(0, z)$

- The number of neurons in the output layer is typically equal to the number of classes (classification)
- Can have multiple hidden layers of any size (trial and error?)
- The more layers a NN has, the deeper it is considered

Intuition behind NN neurons and layers

University

- At the first hidden layer, each neuron will create a linear decision boundary between classes
- At the next layer, the combination of the linear decision boundaries by a neuron will create a non-linear decision boundary
- The non-linear decision boundaries will be combined in the next layer and create even more complex decision boundaries
- Each layer creates a new representation of its input
 - Problem may be linearly separable using the new representation

 \bullet y = 1

 \bigcirc y = 0

Cannot separate class samples using a line!

New representation is linearly separable!

Feed data into an ANN

- How to use a feature vector as the input to an ANN?
 - e.g. A word or a document embedding
- Define the size of the input layer equal to the number of elements in the feature vector
 - An input layer of size k is needed for an embedding with k elements
- As the input layer's size increases and the number of additional layers and their size increases, the computational complexity of training the ANN increases

Loss computation

- The output \hat{y} of a NN is an estimate of a true value y
- We would like \hat{y} to be as close as possible to y
- How can we measure the error (loss) of an ANN in estimating y?
- We need a loss function!

University

Cross-entropy loss typically used in classification

$$L_{CE} = -\sum_{i=0}^{n} y_i \log \widehat{y_i}$$

 $\widehat{y_i}$: predicted probability that sample belongs to class i y_i : 1 or 0 if sample actually belongs to class i or not n: number of classes

• ANN training: Given an error (loss) function E o Minimise E

Convolutional Neural Networks (CNN)

- Neural Networks that contain Convolutional layers
- Convolutional layers apply filters on the input using the convolution operation
- Local information calculated from parts of the input
- Captures local neighbourhood relationships
- Convolution operator is a sliding window function applied to the input data
- A filter kernel must be defined and moved (slid) across the data

Convolutional layer

Input

Kernel

1 0 1 0 1 0 1 0 1

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Output

$$(1\times1 + 0\times1 + 1\times1 + 0\times0 + 1\times1 + 0\times1 + 1\times0 + 0\times0 + 1\times1)$$

= $(1 + 0 + 1 + 0 + 1 + 0 + 0 + 1) = 4$

Slide kernel 1 element at a time and compute result

Convolutional layer: Stride

- Stride → How much to slide the kernel at each step
- Larger stride leads to smaller result

Convolutional layer: Padding

- Applying a filter within the matrix works fine
 - But leads to smaller output than the input
- What about the edges?
- How to apply the filter to the first element of a matrix since it doesn't have neighbours on the left and above?
 - Similar for other elements on the edges
- Use zero-padding! → Add zero valued elements

Valid padding

Same padding

Flatten layer (I)

- What if we have input vectors with more than 1 dimension?
 - e.g. A greyscale image (2-D) (x, y)
 - e.g. An RGB (3-channel) image (3-D) (x, y, channel)
 - e.g. A colour video (4-D) (x, y, channel, time)
 - e.g. Output of a convolutional layer
 - •
- Typical dense layers only accept 1-D input

Dense / Fully connected layerConsists of artificial neurons

- Flatten layer → Converts N-D data to 1-D
 - Concatenates data to a 1-D array, one row at a time

Flatten layer (II)

Pooling layer (Max/Average)

- Reduces the dimensionality of its input
- Reduces the size of its input by pooling together the values of an input patch
 - Max pooling: Replaces the patch with the maximum value in the patch
 - Average pooling: Replaces the patch with the average value of the patch

1-D Convolution

- The convolution operation can be applied to input of any number of dimensions
- Text is usually 1-D → Use 1-D convolution

University

Explore ANN training and testing

Questions?

Appendix: Back Propagation

- ANN training: Given an error (loss) function $E \to Minimise E$
- The Back Propagation algorithm:
 - Start with random weights

 - Compute the output of the network for all available inputs For each input and each weight $w_{i,j}^{[k]}$, compute $\frac{\partial E}{\partial w_{i,j}^{[k]}}$, the partial derivative of E with respect to $w_{i,i}^{[k]}$
 - For each weight $w_{i,j}^{[k]}$, compute the average partial derivative of E across all inputs: $\frac{\partial E_{total}}{\partial w_{i,j}^{[k]}} = \frac{1}{N} \sum \frac{\partial E}{\partial w_{i,j}^{[k]}}$ Update each weight as follows: $w_{i,j}^{\prime [k]} = w_{i,j}^{[k]} \eta \cdot \frac{\partial E_{total}}{\partial w_{i,j}^{[k]}}$

 - n is the learning rate, typically $0 < \eta < 1$
 - Repeat until a maximum number of iterations (epochs) is reached or a stopping criterion has been met

