

Using Machine Learning Algorithms to predict CardioVascular Disease

- Introduction & Data Cleaning
- Exploratory Data Analysis
- Feature Engineering
- Exploring Various Classifiers
- Hyperparameters Tuning & Cross Validation
- CardioVascular Prediction

PART 1

By: Luo Lan

Introduction & Data Cleaning

Causes of death

16,000 adults polled in 32 countries between Nov. 22 - Dec. 6, 2019

- Singapore Statistics
- Every day, 17 people die from cardiovascular disease (heart diseases and stroke) in Singapore. Cardiovascular disease accounted for 29.2% of all deaths in 2018. This means that almost 1 out of 3 deaths in Singapore, is due to heart diseases or stroke.
- China Statistics
- A new study published in the Journal of the American Medical Association shows that, between 1990 and 2016, the proportion of Chinese people living with heart disease increased by about 15%, from 5,265 per 100,000 people to 6,037 per 100,000.

• Data Information - taken from https://www.kaggle.com/sulianova/cardiovascular-disease-dataset

•	Age:	days														
•	gender:	1 - women, 2 - men		id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
	gender.	Women, Z men	0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
•	Height:	cm	1	1 2	20228	1	156	85.0	140	90	3	1	0	0	1	1
•	Weight:	kg	2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
	1.		3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
•	ap_hi:	Systolic blood pressure	4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0
•	ap_lo:	Diastolic blood pressure														

cholesterol: 1: normal, 2: above normal, 3: well above normal

• gluc: 1:normal, 2: above normal, 3: well above normal

• smoke: 1 when patient smoke, 0 when patient don't smoke

alco Binary feature: 1 when patient drinks alcohol, 0 when patient don't drink alcohol

active Binary feature: 1 when patient is active, 0 when patient is not active

• cardio Target variable: 1 when patient has cardiovascular disease, 0 for healthy patient.

Clean the dataset

- Check for missing data \rightarrow df.isnull().values.any()
- Drop id since it is not useful for modelling
- Check for duplicate data

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
2677	22077	1	175	69.0	120	80	1	1	0	0	1	1
45748	22077	1	175	69.0	120	80	1	1	0	0	1	1
1568	21945	1	165	60.0	120	80	1	1	0	0	1	0
48917	21945	1	165	60.0	120	80	1	1	0	0	1	0

- Remove duplicates and Confirm the removal
- Convert the age from days to years
- Explore the patient's height and weight
 Min weight is 10 kg, min height is 55cm, min age is 30 years old (10kg is not normal for anyone 30 years old or more)
 Max weight is 200 kg, max height is 250cm, max age is 65 years old (250 cm is not normal for anyone)
- To improve data quality, remove outliers. Remove weights and heights, that fall below 1% or above 99% of a given range.

Clean the dataset

- Explore the patient's blood pressure. Remove those that fall below 1.5% or above 98.5% of a given range.
- Explore the blood pressure data. Remove data where diastolic pressure is higher than systolic pressure.

	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	acti
count	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.000000	65147.0000
mean	53.310682	1.347645	164.471887	73.710447	125.873993	81.043440	1.357576	1.222036	0.086942	0.052527	0.8041
std	6.758899	0.476226	7.293385	12.836057	15.029385	8.809493	0.674307	0.568265	0.281752	0.223090	0.3968
min	30.000000	1.000000	147.000000	48.000000	90.000000	60.000000	1.000000	1.000000	0.000000	0.000000	0.0000
25%	48.000000	1.000000	159.000000	65.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.0000
50%	54.000000	1.000000	165.000000	72.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.000000	1.0000
75%	58.000000	2.000000	170.000000	81.000000	140.000000	90.000000	1.000000	1.000000	0.000000	0.000000	1.0000
max	65.000000	2.000000	184.000000	117.000000	173.000000	110.000000	3.000000	3.000000	1.000000	1.000000	1.0000

Data is now cleaned.

PART 2

By: Zhang Liyuan

Exploratory Data Analysis


```
# checking if target are balanced
import seaborn as sns
df.groupby("cardio").count()
#traindata[["cardio", "height"]].groupby("Outcome").count()
sns.countplot(x="cardio", data=df, palette="Set1")
print ('Number of people without and with CardioVascular Disease')
```

Number of people without and with CardioVascular Disease

Exploratory Data Analysis

Checking if target are balanced

Checking dataset of gender

```
# checking dataset of gender
import seaborn as sns
df.groupby("gender").count()
#traindata[["cardio", "height"]].groupby("Outcome").count()
sns.countplot(x="gender", data=df, palette="Set1")
print ('Number of people based on gender')
```

Number of people based on gender

Visualize cardio with gender

visualize cardio with gender
sns.countplot(x='cardio', data=df, hue='gender', palette='rainbow')
print ('Visualize gender with CardioVascular Disease')

Visualize gender with CardioVascular Disease

Age boundary

Explore at what age does the number of people with CVD exceed the number of people without CVD from matplotlib import rcParams rcParams['figure.figsize'] = 11, 8 sns.countplot(x='age', hue='cardio', data = df, palette="Set1");

Bivariate analysis

Multivariate analysis

corr = df.corr()

Multivariate analysis - It might be useful to consider correlation matrix

cmap = sns.diverging_palette(220, 10, as_cmap=True)

Generate a mask for the upper triangle mask = np. zeros_like(corr, dtype=np. bool)

PART 3

By: Ma Xiaoru

Feature Engineering

Categorizing BMI (Body Mass Index)

MEDICALNEWS TODAY

Understanding the results

The following table shows standard weight status categories associated with BMI ranges for adults.

ВМІ	Weight status
Below 18.5	Underweight
18.5–24.9	Healthy
25.0–29.9	Overweight
30.0 and above	Obese

```
[85]: bmi = (df.weight/df.height/df.height)*10000
       cat_bmi = []
       for n in bmi:
           if n <= 18.5:
                                       #Underweight
               val = 2
           elif n> 18.5 and n<25:
                                        #Heal thy
               val = 1
           elif n \ge 25 and n \le 30:
                                        #Overweight
               val = 3
           else:
               val = 4
                                       #Obese
           cat_bmi.append(val)
       df['bmi'] = cat_bmi
```

```
In [86]: # visualize cardio with bmi
sns.countplot(x='cardio', data=df, hue='bmi', palette='rainbow')
print ('Visualize Body Mass Index with CardioVascular Disease')
```


Categorizing BMI (Body Mass Index)

The figure shows that obese person tends to have higher risk of cardiovascular disease

Categorizing blood pressure

How Your Numbers Translate

In [88]: # visualize cardio with bmi

Blood Pressure Stages

Blood Pressure Category	Systolic mm Hg (upper#)		Diastolic mm Hg (lower#)
Normal	less than 120	and	less than 80
Elevated	120-129		less than 80
High Blood Pressure (Hypertension) Stage 1	130-139		80-89
High Blood Pressure (Hypertension) Stage 2	140 or higher	or	90 or higher
Hypertensive Crisis (Seek Emergency Care)	higher than 180	and/or	higher than 120

Source: American Heart Association

```
In [87]: bpc = []
          for n, v in zip(df. ap_hi, df. ap_lo):
              if n < 120 and v < 80:
                  val = 1
                                                         # Normal
              elif n >= 120 and n < 130 and v < 80:
                  val = 2
                                                         # Elevated
              elif n >= 130 and n < 140 or v >= 80 and n < 90:
                                                        # High blood pressure stage 1 (Hypertension)
              elif n >= 140 and n < 180 or v >= 90 and v < 120:
                                                        # High blood pressure stage 2(Hypertension)
                  val = 4
              elif n >= 180 or v >= 120:
                  val = 5
                                                        # Hyertensive Crisis (see doctor immediately)
              bpc.append(val)
          df['bpc'] = bpc
```

sns.countplot(x='cardio', data=df, hue='bmi', palette='rainbow')
print ('Visualize Blood Pressure Category with CardioVascular Disease')

Categorizing blood pressure

The figure shows that normal blood pressure correlate with lower CVD while hypertensive correlate with higher CVD

PART 4

By: Luo Kexin

Exploring Various Classifiers

Exploring Various Classifiers

1. Train/ Test split

Define test size=0.25

MinMaxScaler rescales the data set such that all feature values are in the range [0, 1]

After spliting:

Train data: 48860

Test data:16287

```
print (x_train.shape, y_train.shape, x_test.shape, y_test.shape)
(48860, 13) (48860,) (16287, 13) (16287,)
```

Exploring Various Classifiers

Comparison of Different Classifiers

Processing Naive Bayes

Processing SVM

Processing Logistic Regression

Processing Decision Tree

Processing Random Forest

Processing KNeighborst

Processing AdaBoost

Processing Extra Trees

Processing Gradient Boosting

Processing Extreme Gradient Boosting

Summary of Results

	Accuracy(train)	Accuracy(test)	F1 Score	Time
Model				
Extreme Gradient Boosting	0.73842	0.72469	0.70142	29.75746
Gradient Boosting	0.73717	0.72444	0.70223	3.03555
Decision Tree	0.73878	0.72125	0.69938	0.08049
AdaBoost	0.72972	0.72008	0.68669	2.58600
Logistic Regression	0.72835	0.71824	0.69506	0.10230
SVM	0.72583	0.71665	0.67743	52.46618
Naive Bayes	0.71832	0.71106	0.68099	0.04439
KNeighborst	0.72603	0.71094	0.67811	25.17822
Random Forest	0.98721	0.70019	0.68576	5.17517
Extra Trees	0.98723	0.68146	0.66778	5.69215

3.1 Testing Accuracy

3.2 F1 score

Graph showing the F1 Score for the various models

3.3 Training Time

Graph showing the processing time for the various models

From the results, we will focus our model using Extreme Gradient Boosting

PART 5

By: Koh Swee Guan

Tuning of XGBoost hyperparameters & Cross Validation


```
xgb = XGBClassifier(n_estimators= 2000, learning_rate=0.01)
print (xgb)
xgb.fit(dfx, dfy)
predict = xgb.predict(dfx)
acc = round(accuracy_score(dfy, predict), 5)
print (acc)
```

• Best Score: 0.73544

Tuning of max_depth & min_child_weight parameters

```
# Step 1: Fix learning rate and number of estimators for tuning tree-based parameters
# Tuning of max depth & min child weight
param test1 = {
 'max depth':range(1,8,1),
 'min_child_weight':range(1,8,1)
gsearch1 = GridSearchCV(estimator = XGBClassifier(learning rate = 0.1, n estimators = 2000, max depth = 5,
min child weight=1, gamma=0, subsample=0.8, colsample bytree=0.8,
objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27),
param grid = param test1, scoring='roc auc', n jobs=4, cv=5)

    Tuned hyperparameter:

gsearch1. fit (dfx, dfy)
                                                                      {'max_depth': 2,
# Print hyperparameter
                                                                       'min_child_weight': 4}
print("Tuned hyperparameter: {}". format(gsearch1. best params ))
print("Best score: {}". format(gsearch1. best score ))
                                                                        Best score: 0.79743
```


Tuning of gamma

```
# Step 2: Tune gamma
# Use 'max_depth': 2, 'min_child_weight': 4
param_test2 = {'gamma':[i/10.0 for i in range(0,10)]}

gsearch2 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=2000, max_depth=2, min_child_weight=4, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27), param_grid = param_test2, scoring='roc_auc', n_jobs=4, cv=5)

gsearch2.fit(dfx, dfy)

# Print hyperparameter
print("Tuned hyperparameter: {}".format(gsearch2.best_params_))
print("Best score: {}".format(gsearch2.best_score_))
• Tuned hyperparameter: {'gamma': 0.5}
• Best score: 0.79744
```

Best Score: 0.79743 -> 0.79744

Tuning of subsample & colsample_bytree

```
# Step 3: Tune subsample and colsample bytree
# Use 'max depth': 2, 'min child weight': 4, 'gamma': 0.5
param test3 = {
 'subsample': [i/10.0 \text{ for } i \text{ in } range(6, 12)],
 'colsample bytree': [i/10.0 \text{ for } i \text{ in range}(1,8)]
gsearch3 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=2000, max_depth=2,
min child weight=4, gamma=0.5, subsample=0.8, colsample bytree=0.8,
objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27),
param grid = param test3, scoring='roc auc', n jobs=4, cv=5)

    Tuned hyperparameter:

gsearch3. fit (dfx, dfy)
                                                                        {'colsample_bytree': 0.3,
                                                                        'subsample': 1.0}
# Print hyperparameter
print("Tuned hyperparameter: {}".format(gsearch3.best params))
                                                                     • Best score: 0.79851
print("Best score: {}".format(gsearch3.best score ))
```

Best Score: 0.79743 -> 0.79744 -> 0.79851

Optimized Parameters ('max_depth': 2, 'min_child_weight': 4, 'gamma': 0.5, 'colsample_bytree': 0.3, 'subsample': 1.0)

Cross Validation

 Extreme Gradient Boosting gives the best average accuracy and the standard deviation is relatively low indicating the reliability of the training algorithm.

```
# Cross validation for top 5 algorithms
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from sklearn. model selection import cross val score
lr = LogisticRegression( class weight="balanced", random state=42, solver='liblinear', max iter=10000, C = 1, penalty='12'
dt = DecisionTreeClassifier(max_depth=8, min_samples_split=50, min_samples_leaf=50, random state=13)
ada = AdaBoostClassifier(n estimators=100)
gb = GradientBoostingClassifier(n estimators = 100)
xgb = XGBClassifier(learning rate = 0.1, n estimators=2000, max depth=2,
      min child weight=4, gamma=0.5, subsample=1.0, colsample bytree=0.3,
      objective= 'binary:logistic', nthread=4, scale pos weight=1, seed=27)
accuracies xgb = cross val score(estimator=xgb, X=dfx, y=dfy, cv=10)
print("Extreme Gradient Boosting Average accuracy: ", accuracies xgb.mean())
print("Extreme Gradient Boosting Standard Deviation: ", accuracies xgb.std())
accuracies gb = cross val score(estimator=gb, X=dfx, y=dfy, cv=10)
print("Gradient Boosting Average accuracy: ", accuracies_gb.mean())
print("Gradient Boosting Standard Deviation: ", accuracies_gb.std())
accuracies dt = cross val score(estimator=dt, X=dfx, y=dfy, cv=10)
print("Decision Tree Average accuracy: ", accuracies_dt.mean())
print("Decision Tree Standard Deviation: ", accuracies dt.std())
accuracies ada = cross val score(estimator=ada, X=dfx, y=dfy, cv=10)
print("AdaBoosting Average accuracy: ", accuracies ada.mean())
print("AdaBoosting Standard Deviation: ", accuracies ada.std())
accuracies lr = cross_val_score(estimator=lr, X=dfx, y=dfy, cv=10)
print("Logistic Regression Average accuracy: ", accuracies_1r.mean())
print("Logistic Regression Standard Deviation: ", accuracies lr.std())
```


Extreme Gradient Boosting Average accuracy: 0.7323284920771627 Extreme Gradient Boosting Standard Deviation: 0.004677612963894862

Gradient Boosting Average accuracy: 0.7319907697477138

Gradient Boosting Standard Deviation: 0.004555104186902315

Decision Tree Average accuracy: 0.7290128493538093

Decision Tree Standard Deviation: 0.005768765772964501

AdaBoosting Average accuracy: 0.7273090440307917

AdaBoosting Standard Deviation: 0.00363061817869509

Logistic Regression Average accuracy: 0.7260656791877038

Logistic Regression Standard Deviation: 0.004372793000511551

Saving the Optimised Model

Running the XGB Algorithm

```
from sklearn import metrics
from sklearn.metrics import fl score
from xgboost import XGBClassifier
import pickle
xgb = XGBClassifier(learning rate =0.1, n estimators=2000, max depth=2,
      min child weight=4, gamma=0.5, subsample=1.0, colsample bytree=0.3,
      objective= 'binary:logistic', nthread=4, scale pos weight=1, seed=27)
xgb.fit(x train, y train)
y train predict = xgb.predict(x train)
y test predict = xgb. predict(x test)
accuracy1 = round(accuracy score(y train, y train predict), 5)
accuracy2 = round(accuracy score(y test, y test predict), 5)
accuracy3 = round(f1 score(y test, y test predict), 5)
print ('Training accuracy (optimized):', accuracy1, '(pre-optimized 0.73842)')
print ('Testing accuracy (optimized):', accuracy2, '(pre-optimized 0.72469)')
print ('F1 Score (optimized):', accuracy3, '(pre-optimized 0.70142)')
# save the optimised trained model
print ('\nSave the Optimised XGB Model')
model = xgb. fit(dfx, dfy)
filename = 'xgbopt model.sav'
pickle.dump(model, open(filename, 'wb'))
```

 The hyperparameters tuning resulted in an improvement in both the testing accuracy and F1 Score.

Training accuracy (optimized): 0.73813 (pre-optimized 0.73842)
Testing accuracy (optimized): 0.725 (pre-optimized 0.72469)
F1 Score (optimized): 0.70154 (pre-optimized 0.70142)

Save the Optimised XGB Model

SAVING THE TRAINED XGB MODEL

PART 6

By: Koh Swee Guan

Using Optimized XGB Algorithm for Prediction

Using Optimized XGB Algorithm for Prediction

Getting Health Information of Patient & Predicting

```
This alogorithm will try to predict if you are likely to have Cardiovascular Disease.

The following information is needed for the prediction.

Please input your name: Ms Zhang

Please input your age (in years): 35

Please input 1 for female & 2 for male: 1

Please input your weight in kg: 88

Please input your height in cm: 150

Please input your Systolic Blood Pressure (the higher value) in mmHg: 165

Please input your Diastolic Blood Pressure (the lower value) in mmHg: 140

Please input 1 for normal cholesterol, 2 for above normal cholesterol & 3 for well above normal cholesterol: 2

Please input 1 for smoker & 0 for non-smoker: 0

Please input 1 for drinker & 0 for non-drinker: 0

Please input 1 for active & 0 for non-active: 0

LOADING THI

Your name: Ms Zhang
```

Your age is 35 years old Your weight is 88 kg Your height is 150 cm Your Systolic Blood Pressure is 165 mmHg Your Diastolic Blood Pressure is 140 mmHg Your cholesterol is above normal Your glucose is above normal You are female

Is the information correct (Y/N)?y

You are a non-smoker

You are non-active

You are non-alcohol drinker

LOADING THE TRAINED XGB MODEL

Using Optimized XGB Algorithm for Prediction

Getting Information of Patient & Predicting

Is the information correct (Y/N)?y High Blood Press (Hypertension) Stage Hypertensive Cris (Seek Emergency Category Your BMI is 39.11 and you are in Obese Category Your Blood Pressure Category is Hypertension Stage 2 Hello, Ms Zhang The probability of you having or to have a Cardiovascular Disease is high. :(You must visit a doctor to check it. Thank you for using this tool. This prediction of Cardiovascular Disease is carried out using Machine Learning.

It is important that the user understands this is still a prediction and not an absolute.

The authors/developers of the tools are in no way liable for outcomes following the use of the tools.

Blood Pressure Stages

Blood Pressure Category	Systolic mm Hg (upper #)		Diastolic mm Hg (lower#)
Normal	less than 120	and	less than 80
Elevated	120-129		less than 80
High Blood Pressure (Hypertension) Stage 1	130-139		80-89
High Blood Pressure (Hypertension) Stage 2	140 or higher		90 or higher
Hypertensive Crisis (Seek Emergency Care)	higher than 180	and/or	higher than 120

Source: American Heart Association

BMI Class	sification
ВМІ	Category
Lower than 18.5	Underweight
18.5 up to 25	Optimal
25 up to 30	Overweight
30 upwards	Obese
https://www.prokeral	a.com/health/bmi.ht

Thank you!

Python Pandas

Questions