Mock Exam 3

Notation

We recall some of the terminology:

- Given a nonempty set Ω , $P(\Omega)$ is the power set on Ω ;
- $B(\mathbb{R}^k)$ denotes the Borel σ -field on \mathbb{R}^k , $k\geq 1$;
- The measure $\mu(A)=egin{cases} \#A, & \text{if A is finite} \\ \infty, & \text{otherwise} \end{cases}$, $A\in P(\Omega)$, is referred to as the counting measure on $P(\Omega)$;
- Given a measurable space (Ω,\mathcal{F}) and $x\in\Omega$, we write δ_x for the measure $\mathcal{F}\ni A\mapsto \delta_x(A)=egin{cases} 1, & \text{if } x\in A \\ 0, & \text{otherwise} \end{cases};$
- If not mentioned explicitly, a random vector is assumed to be defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercise 1 (10 points)

(a) Given a nonempty set Ω , write down the definition of an outer measure μ^* on $P(\Omega)$. [1 point]

Exercise 1(a) Solution

An outer measure μ^* on $P(\Omega)$ is a function $\mu^*:P(\Omega)\to [0,\infty]$ satisfying:

- 1. $\mu^*(\emptyset) = 0$
- 2. Monotonicity: $A\subseteq B\Rightarrow \mu^*(A)\leq \mu^*(B)$
- 3. Countable subadditivity: $\mu^*\left(\bigcup_{i=1}^\infty A_i\right) \leq \sum_{i=1}^\infty \mu^*(A_i)$
- (b) Given a measurable space (Ω, \mathcal{F}) , which of the following set functions μ_i , i=1,2,3, is not a measure on \mathcal{F} ? [1.5 point single choice, no explanation is needed to earn full points]
- ullet $\mu_1(A)=\sqrt{\lambda(A)},$ $A\in B(\mathbb{R}),$ where λ is the Lebesgue measure on $B(\mathbb{R}).$
- $\mu_2(A) = \sum_{n \in A \cap \mathbb{N}} n$, $A \in B(\mathbb{R})$.
- $oldsymbol{\cdot} \mu_3(A) = \mu(A) +
 u(A)$, $A \in \mathcal{F}$, where μ and u are measures on \mathcal{F} .

Exercise 1(b) Solution

$$\mu_2(A)$$

- (c) Given a measurable space (E, \mathcal{B}) , which of the following set functions P_i , i=1,2,3, is not a probability measure on \mathcal{B} ? [1.5 point single choice, no explanation is needed to earn full points]
- $oldsymbol{\cdot} E=\mathbb{R}$, $\mathcal{B}=B(\mathbb{R})$ and $P_1(A)=\int_A x^2 e^{-x^3/3} dx$, $A\in B(\mathbb{R})$.
- $ullet E=\mathbb{N}$, $\mathcal{B}=P(\mathbb{N})$ and $P_2(A)=\sum_{n\in A\cap \mathbb{N}}(1/2)^n$, $A\in P(\mathbb{N})$.
- $E=\mathbb{R}$, $\mathcal{B}=B(\mathbb{R})$ and $P_3(A)=\overline{\int_A e^{-|x|}dx}$, $A\in B(\mathbb{R})$.
- (d) Calculate the following integrals: [1 point each]
 - 1. $\int_{\mathbb{R}}|x|\mathbf{1}_{[-1,1]}\lambda(dx)$, where λ is the Lebesgue measure on $B(\mathbb{R})$.

Solution:

The indicator function $\mathbf{1}_{[-1,1]}$ restricts the domain to [-1,1], and |x| is symmetric. Using Lebesgue measure properties:

$$\int_{\mathbb{R}} |x| \mathbf{1}_{[-1,1]} \lambda(dx) = \int_{-1}^{1} |x| dx = 2 \int_{0}^{1} x dx = 2 \left[rac{x^{2}}{2}
ight]_{0}^{1} = 1.$$

2.
$$\int_{\mathbb{R}}e^{-|x|}P(dx)$$
, where $P(A)=(1/2)\delta_{-1}(A)+(1/2)\delta_{1}(A)$, $A\in B(\mathbb{R})$.

Solution:

P is a discrete measure concentrated at $\{-1,1\}$. The integral simplifies to:

$$\int_{\mathbb{R}} e^{-|x|} P(dx) = rac{1}{2} e^{-|-1|} + rac{1}{2} e^{-|1|} = rac{1}{2} e^{-1} + rac{1}{2} e^{-1} = e^{-1}.$$

3. $\int_{\mathbb{N}} (1/n^2) \mu(dn)$, where μ is the counting measure on $P(\mathbb{N})$.

Solution:

The counting measure μ assigns mass 1 to each $n\in\mathbb{N}.$ Thus:

$$\int_{\mathbb{N}} \frac{1}{n^2} \mu(dn) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- (e) Which of the following laws P_i , i=1,2,3, is not discrete? [1.5 point single choice, no explanation is needed to earn full points]
 - 1. The law P_1 where $P_1(X=k)=(1/e)/k!$ for $k=0,1,2,\ldots$
 - 2. The law P_2 of a random variable X with probability density function $\phi(x)=\cos(x)$ for $x\in[0,\pi/2]$, and 0 otherwise.

3. The law P_3 where $P_3(X=k)=(1/3)^k/(2-1/3)$ for $k=0,1,2,\ldots$

Solution:

2

- (f) Decide whether the following statements are true or false: [0.5 point each no explanation is needed to earn full points]
 - 1. If X_1 and X_2 are two independent Gaussian random variables, then (X_1,X_2) is a Gauss vector.
 - 2. If a sequence of random variables $(X_n)_{n\in\mathbb{N}}$ converges to X in probability, then there exists a subsequence $(X_{s(n)})_{n\in\mathbb{N}}$ that converges almost surely to X.
 - 3. The union of two σ -fields on Ω is always a σ -field on Ω .

Solution:

T.T.F

Exercise 2 (13 points)

Let X be a discrete random variable with support $\{0,1,2\}$ and law $\mathbb{P}(X=0)=1/4$, $\mathbb{P}(X=0)=1/4$

- 1) = 1/2, $\mathbb{P}(X=2) = 1/4$.
- (a) What are $\mathbb{P}(X=0)$, $\mathbb{P}(X=1)$ and $\mathbb{P}(X=2)$? [1 point]

Solution

(a)

$$\mathbb{P}(X=0) = rac{1}{4}$$
, $\mathbb{P}(X=1) = rac{1}{2}$, $\mathbb{P}(X=2) = rac{1}{4}$

(b) Calculate $\mathbb{E}[|X|^2]$. [1.5 point]

(b)
$$\mathbb{E}[|X|^2]=\mathbb{E}[X^2]=\sum x^2\mathbb{P}(X=x)=0^2\cdot rac{1}{4}+1^2\cdot rac{1}{2}+2^2\cdot rac{1}{4}=0+0.5+1=1.5$$

(c) Find $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [2 points]

(c)
$$\mathbb{E}[X]=\sum x\mathbb{P}(X=x)=0\cdot rac{1}{4}+1\cdot rac{1}{2}+2\cdot rac{1}{4}=1$$
 $\mathrm{Var}(X)=\mathbb{E}[X^2]-(\mathbb{E}[X])^2=1.5-1^2=0.5$

(d) What is the law of |X-1|? [1.5 points]

Let X_1,\ldots,X_n be n independent copies of X, i.e., for any $i=1,\ldots,n$, X_i has law P_X and X_1,\ldots,X_n are independent. Define the random vector $Y=(X_1,\ldots,X_n)$.

 $\left| X-1 \right|$ takes values:

- $\begin{array}{ll} \bullet & 0 \text{ when } X=1 \ (\mathbb{P}=\frac{1}{2}) \\ \bullet & 1 \text{ when } X=0 \text{ or } X=2 \ (\mathbb{P}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}) \\ \text{ Law: } \mathbb{P}(|X-1|=0)=\frac{1}{2}, \mathbb{P}(|X-1|=1)=\frac{1}{2} \end{array}$

Let X_1,\ldots,X_n be n independent copies of X, i.e., for any $i=1,\ldots,n$, X_i has law P_X and X_1,\ldots,X_n are independent. Define the random vector $Y=(X_1,\ldots,X_n)$.

(e) Calculate $\mathbb{P}(Y=(0,1,0,1,\ldots,0))$ assuming n is an even integer. [1 point]

For
$$Y=(0,1,0,1,\dots,0)$$
 $(n$ even): Each pair $(0,1)$ has probability $\mathbb{P}(X_i=0)\mathbb{P}(X_{i+1}=1)=\frac{1}{4}\cdot\frac{1}{2}=\frac{1}{8}$ With $n/2$ such pairs: $\left(\frac{1}{8}\right)^{n/2}=8^{-n/2}$

(f) Calculate the characteristic function of X, $\Phi_X(v)$. [3 points]

(f)
$$\Phi_X(v)=\mathbb{E}[e^{ivX}]=\sum e^{ivx}\mathbb{P}(X=x) = e^{iv\cdot 0}\cdot \frac{1}{4}+e^{iv\cdot 1}\cdot \frac{1}{2}+e^{iv\cdot 2}\cdot \frac{1}{4}=\frac{1}{4}+\frac{1}{2}e^{iv}+\frac{1}{4}e^{2iv}$$

(g) What is the law of $Z=X_1+X_2$? [3 points]

$$Z=X_1+X_2$$
 takes values $\{0,1,2,3,4\}$:

z	(X_1,X_2)	$\mathbb{P}(Z=z)$
0	(0,0)	$\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$
1	(0,1),(1,0)	$2\cdot rac{1}{4}\cdot rac{1}{2}=rac{1}{4}$
2	(0,2),(1,1),(2,0)	$2 \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$
3	(1,2),(2,1)	$2\cdot rac{1}{2}\cdot rac{1}{4}=rac{1}{4}$
4	(2,2)	$\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$

Exercise 3 (18 points)

Let X be a random variable with law $P_X(dx) = \phi(x)dx$, where

$$\phi(x) = egin{cases} 3x^2 & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

(a) Verify that $\int_{\mathbb{R}} \phi(x) dx = 1$. [2 points]

$$\int_{\mathbb{R}} \phi(x) dx = \int_{0}^{1} 3x^{2} dx = \left[x^{3}\right]_{0}^{1} = 1^{3} - 0^{3} = 1$$

(b) Find the distribution function F_X of X. [4 points]

$$F_X(x) = P(X \le x) = \int_{-\infty}^x \phi(t) dt$$

- $\begin{array}{l} \bullet \ \ \text{For} \ x < 0 \\ : \int_{-\infty}^{x} 0 dt = 0 \\ \bullet \ \ \text{For} \ 0 \leq x \leq 1 \\ : \int_{0}^{x} 3t^{2} dt = \left[t^{3}\right]_{0}^{x} = x^{3} \\ \bullet \ \ \text{For} \ x > 1 \\ : \int_{0}^{1} 3t^{2} dt = 1 \\ \end{array}$

$$F_X(x) = egin{cases} 0 & x < 0 \ x^3 & 0 \leq x \leq 1 \ 1 & x > 1 \end{cases}$$

(c) Calculate the expected value $\mathbb{E}[X]$ and the variance $\mathrm{Var}(X)$. [4.5 points]

$$egin{aligned} \mathbb{E}[X] &= \int_{\mathbb{R}} x \phi(x) dx = \int_{0}^{1} x \cdot 3x^{2} dx = 3 \int_{0}^{1} x^{3} dx = 3 \left[rac{x^{4}}{4}
ight]_{0}^{1} = rac{3}{4} \ \mathbb{E}[X^{2}] &= \int_{0}^{1} x^{2} \cdot 3x^{2} dx = 3 \int_{0}^{1} x^{4} dx = 3 \left[rac{x^{5}}{5}
ight]_{0}^{1} = rac{3}{5} \ \mathrm{Var}(X) &= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2} = rac{3}{5} - \left(rac{3}{4}
ight)^{2} = rac{48}{80} - rac{45}{80} = rac{3}{80} \end{aligned}$$

- (d) Show that $F_X \upharpoonright_{(0,1)} : (0,1) \to (0,1)$ is a bijection. [3 points]
 - Injective: Let $a,b \in (0,1)$ with $F_X(a) = F_X(b)$. Then $a^3 = b^3 \implies a = b$.
 - Surjective: For any $y\in (0,1)$, let $x=y^{1/3}\in (0,1)$. Then $F_X(x)=(y^{1/3})^3=y$. Thus F_X is bijective on (0,1).
- (e) Verify that $F_X \upharpoonright_{\{1\}} \colon \{1\} o \{1\}$ is a bijection. [1.5 points]

$$F_X(1) = 1^3 = 1$$
, so $F_X|_{\{1\}}(1) = 1$.

- Injective: Only one element in domain/codomain.
- **Surjective**: 1 maps to 1, covering the codomain. Thus it is a bijection.
- (f) Calculate the inverse $F_X^{-1} \upharpoonright_{\{1\}}$ of $F_X \upharpoonright_{\{1\}}$. [3 points]

 $F_X|_{\{1\}}:\{1\}\to\{1\} \text{ is defined by } 1\mapsto 1.$ Its inverse is $F_X^{-1}|_{\{1\}}:\{1\}\to\{1\}$ defined by $1\mapsto 1.$

Exercise 4 (6 points)

Let X_1 and X_2 be two random variables that are independent with common law that is exponential with parameter $\lambda=1$. That is, $P_{X_1}(dx)=e^{-x}\mathbf{1}_{[0,\infty)}(x)dx$ and $P_{X_2}(dx)=e^{-x}\mathbf{1}_{[0,\infty)}(x)dx$. What is the probability density function of the random vector $Y=(X_1+X_2,X_1)$?

Exercise 5 (6 points)

Let X be a discrete random variable with support $\{0,1,2,\dots\}$. Suppose that X has law defined upon: $\mathbb{P}(X=k)=C/k!,\,k=0,1,2,\dots$ Find C.