Übungen zum Ferienkurs Analysis 1, Vorlesung 4 Wintersemester 2014/2015

Fabian Hafner, Thomas Baldauf

I Taylorreihen

Bestimmen Sie die Taylorreihen der folgenden Funktionen zum jeweiligen Entwicklungspunkt a. Geben Sie die Konvergenzradien $R \geq 0$ an und untersuchen Sie, für welche $x \in (a-R,a+R)$ eine Übereinstimmung zwischen Funktion und Taylorreihe vorliegt.

1.
$$f(x) = -\frac{3}{(2+3x)^2}, a = 2$$

2.
$$f(x) = \begin{cases} \frac{\sin x - x}{x^3}, & x = 0\\ -1/6, & x \neq 0 \end{cases}$$
, $a = 0$

3. $f(x) = \operatorname{arctanh}(x), a = 0$ Hinweis: betrachten Sie zunächst die Ableitung $\operatorname{arctanh}'(x)$

4.
$$f(x) = \frac{\sin(x)}{2+x}$$
, $a = 0$ bis einschließlich des Gliedes 5. Ordnung

5.
$$f(x) = \frac{x}{\ln(x)}$$
, $a = 2$ bis einschließlich des Gliedes 3. Ordnung.

II Kurvendiskussion

Berechen Sie die Definitions- und Wertebereiche, die Extrema und die zweiten Ableitungen folgender Funktionen $(x \in \mathbb{R})$:

1

1.
$$f(x) = \exp(\sin(x))$$

2.
$$g(x) = \sqrt[3]{(x-1)^2(x+1)}$$
 (nur erste Ableitung)

3.
$$h(x) = \frac{((\ln(3x))^2}{x}$$

III Fourierreihen

Berechnen Sie die Fourierreihe von:

1.
$$f(x) = \left(\frac{x}{\pi}\right)^3 - \frac{x}{\pi} \text{ für } x \in [-\pi, \pi)$$

2.
$$f(x) = \sin(x)\cos^2\left(\frac{x}{2}\right)$$

3.
$$f(x) = |\sin(x)|$$
 für $x \in [-\pi, \pi)$

IV Unendliche Reihe

Gegeben ist die 2π -periodische Funktion f mit

$$f(x) = \pi - |x|$$
 für $-\pi \le x \le \pi$.

- 1. Berechnen Sie die Koeffizienten a_k und b_k der cos-sin-Darstellung von $F_f(x)$.
- 2. Bestimmen Sie unter Zuhilfenahme der vorherigen Teilaufgabe den Wert der unendlichen Reihe

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

V Rechtecksignal

Entwickeln Sie folgende Funktion in eine komplexwertige Fourier-Reihe $(t_0 = 2\pi)!$ Für welche Werte von t konvergiert die Fourier-Reihe gegen die Funktion (f(t)) "springt" bei t = -a und t = a jeweils von 0 auf c)?

VI Differentialgleichungen I

Geben Sie alle Lösungen der folgenden DGLen und AWPs an:

- 1. $\dot{x}t = 2x$. Skizzieren Sie die Lösung!
- 2. $\dot{x} = \frac{2t}{t^2+1}x$
- 3. $x(1-t)\dot{x}=1-x^2$. Welche Form haben die Lösungen?
- 4. $t^2x = (1+t)\dot{x}, \ x(0) = 1$

VII Differentialgleichungen II

Geben Sie die Lösungsbasis des folgenden DGL-Systems an:

$$\vec{y}' = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \vec{y}$$

2