Package 'rbs'

March 12, 2025
Type Package
Title Response Best-subset Selector for Multivariate Regression
Version 1.0.1
Author Jianhua Hu [aut], Jian Huang [aut], Xiaoqian Liu [aut], Xu Liu [aut,cre]
Maintainer Xu Liu <liu.xu@sufe.edu.cn></liu.xu@sufe.edu.cn>
Description Provide a procedure to select response variables and estimate regression coefficients simultaneously. It also provides the screening procedure based on the distance correlation, the solutions to the quadratic 0-1 programming problems by transferring to k-flipping optimization problems and to continuous quadratic programming problems, and the multi-test procedure including Benjamini-Hochberg and Bonferroni correction.
License GPL (>= 2)
Depends R (>= 3.2.0)
Imports quadprog
LazyData true
NeedsCompilation yes
Repository CRAN
<pre>URL https://github.com/xliusufe/rbs</pre>
Encoding UTF-8
Archs x64
Contents
rbs-package 2 dcorr 3 flip 4 pcorr 5 pval 5 pvalrp 7 rbs 8 rbsrp 9 rbs_qp 11 tbs_cig 12

2 rbs-package

rhs-	package				D a	an	 4.0	. L) a c	 	h a .	a ŧ	C a	lac	+0	f	 1.4	11	<i>+i</i> ,	 .i.a	t a	D	 	0.0	ior	•			
Index																													17
	sirs sis sisdc .																												15

Description

Provide a procedure to select response variables and estimate regression coefficients simultaneously. It also provides the screening procedure based on the distance correlation, the solutions to the quadratic 0-1 programming problems by transferring to k-flipping optimization problems and to continuous quadratic programming problems, and the multi-test procedure including Benjamini-Hochberg and Bonferroni correction.

Details

Package: rbs
Type: Package
Version: 1.0.1
Date: 2020-08-8
License: GPL (>= 2)

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate A Practical and Powerful Approach to Multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 57(1), 289-300.

Chen, W. and L. Zhang (2010). Global Optimality Conditions for Quadratic 0-1 Optimization Problems. Journal of Global Optimization 46(2), 191-206.

Chen, W. (2015). Optimality Conditions for the Minimization of Quadratic 0-1 Problems. SIAM Journal on Optimization, 25(3), 1717-1731.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5), 849-911.

Hu, J., Huang, J., Liu, X. and Qiu F. (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

Li, R., W. Zhong, and L. Zhu (2012). Feature Screening Via Distance Correlation Learning. Journal of the American Statistical Association, 107 (499), 1129-1139.

Szekely, G.J. and Rizzo, M.L. (2009). Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1236-1265.

Szekely, G.J. and Rizzo, M.L. (2009). Rejoinder: Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1303-1308.

Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007). Measuring and Testing Dependence by Correlation of Distances, Annals of Statistics, 35(6), 2769-2794.

dcorr 3

Zhu, L. P., Li, L., Li, R. and Zhu, L. X. (2011). Model-free feature screening for ultrahigh-dimensional data. Journal of the American Statistical Association, 106(496), 1464-1475.

dcorr

Distance correlation of two multivariates.

Description

Distance correlation and covariance of two multivariates y and x.

Usage

```
dcorr(y,x)
```

Arguments

y A $n \times q$ numeric matrix. x A $n \times p$ numeric matrix.

Value

dcor

The distance correlation, which is an 4-vactor with the dcorr of both y and x, the dcov of y, the dcov of dcorr x, and the dcov of both y and x. dcov denotes the sample distance covariance, and dcorr denotes the sample distance correlation.

References

Szekely, G.J. and Rizzo, M.L. (2009). Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1236-1265.

Szekely, G.J. and Rizzo, M.L. (2009). Rejoinder: Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1303-1308.

Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007). Measuring and Testing Dependence by Correlation of Distances, Annals of Statistics, 35(6), 2769-2794.

```
n <- 200
p <- 5
q <- 10
q0 <- 5

beta <- matrix(runif(p*q0),p,q0)
eps <- matrix(rnorm(n*q),n,q)

x <- matrix(rnorm(n*p),n,p)
y <- cbind(x%*%beta, matrix(0,n,q-q0)) + eps

dcor <- dcorr(y,x)</pre>
```

4 flip

flip	Optimality conditions for the minimization of quadratic 0-1 problems

Description

Flip procedure for optimality conditions for the minimization of quadratic 0-1 problems, where one-flip, two-flip and hybrid for both are considered. The hybrid flip applies one-flip and two-flip sequentially.

Usage

```
flip(A,b=NULL,x0=NULL,nflip=1)
```

Arguments

A	A p-symmetric matrix.
b	A <i>p</i> -vector. Default is zero.
x0	The initial value. Default is zero.
nflip	An integer 1, 2, 3 with one-flip if nflip=1, two-flip if nflip=2, and hybrid if nflip=3. Default is nflip=1 corresponding to one-flip.

Value

xhat	The local minimizer.
obj	the local minimum.

References

Chen, W. (2015). Optimality Conditions for the Minimization of Quadratic 0-1 Problems. SIAM Journal on Optimization, 25(3), 1717-1731.

```
data(Qd)
Q <- as.matrix(Qd$Q)
fit <- flip(Q,nflip=1)
fit</pre>
```

pcorr 5

pcorr

Pearson correlation coefficient

Description

Pearson correlation coefficient vector between an n-dimensional vector Y and an n-by-p matrix X.

Usage

```
pcorr(Y,X)
```

Arguments

Y An *n*-dimensional numeric vector.

X An $n \times p$ numeric matrix.

Value

pcor

A p-dimensional vector, where the i-th element corresponds to the Pearson correlation coefficient between Y and the i-th column of X.

Examples

```
n <- 100
p <- 200

beta <- c(rep(0.5, 20), rep(0, p - 20))
eps <- rnorm(n, mean = 0, sd = 1)

X <- matrix(rnorm(n*p),n,p)
Y <- X %*% beta + eps

pcor <- pcorr(Y,X)</pre>
```

pval

P-values for F-test of the separate responses

Description

P-values for F-test of the separate responses for the multivariate linear regression models.

Usage

```
pval(x,y,criteria=NULL,alpha=0.05,gamma=1.15,family="Fdist",isbic=FALSE)
```

6 pval

Arguments

x A $n \times p$ Numeric design matrix for the model.

y A $n \times q$ Response matrix.

criteria A criteria to select important variables by a significant level. No corrections

if criteria=NULL, RBS procedure if criteria="RBS", Benjamini-Hochberg procedure if criteria="BH", and Bonferroni correction if criteria="Bonf".

alpha A prespecified level.

gamma A positive separating parameter γ if RBS procedure is used. Default is gamma=1.15.

family A string representing one of the built-in families, by which P-values are calcu-

lated. F-test is used if family="Fdist" with the first degrees of freedom p and the second degrees of freedom n-p, and χ^2 -test is used if family="Chi2" with

degrees of freedom p. Default is family="Fdist" (F-test).

isbic A logical flag. The BIC criteria is used (TRUE) or not (default = FALSE).

Value

Tn Values of test statistics.

Sigma2 Estimator of the marginal response variance.

pvals P-values.

pvfdr The P-values corresponding to selected variables. signifc The indices corresponding to selected variables.

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate A Practical and Powerful Approach to Multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 57(1), 289-300.

Hu, J., Huang, J., Liu, X. and Liu, X. (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

```
n <- 200
p <- 5
q <- 10
q0 <- 5

beta <- matrix(runif(p*q0),p,q0)
eps <- matrix(rnorm(n*q),n,q)

x <- matrix(rnorm(n*p),n,p)
y <- cbind(x%*%beta, matrix(0,n,q-q0)) + eps

fit <- pval(x,y)

fit$Tn
fit$pvals
fit$pvfdr
fit$signifc</pre>
```

pvalrp 7

pvalrp	P-values for F-test of the separate responses based on the random projection approach

Description

P-values for F-test of the separate responses for the multivariate linear regression models based on the random projection approach.

Usage

```
\label{eq:pvalrp} pvalrp(x,y,rho=0.4,Pk=NULL,criteria=NULL,alpha=0.05,gamma=1.15,\\ family="Fdist",isbic=FALSE)
```

Arguments

Bernie	
x	A $n \times p$ Numeric design matrix for the model.
У	A $n \times q$ Response matrix.
rho	The given ratio $\rho = \lim \frac{k}{n}$, a scale in the unit inteval. Default is rho = 0.4.
Pk	The preset random matrix. Default is Pk = NULL, in the case of which each entry is drawn independently from the standard normal distribution.
criteria	A criteria to select important variables by a significant level. No corrections if criteria=NULL, RBS procedure if criteria="RBS", Benjamini-Hochberg procedure if criteria="BH", and Bonferroni correction if criteria="Bonf".
alpha	A prespecified level.
gamma	A positive separating parameter γ if RBS procedure is used. Default is gamma=1 . 15.
family	A string representing one of the built-in families, by which P-values are calculated. F-test is used if family="Fdist" with the first degrees of freedom p and the second degrees of freedom $n-p$, and χ^2 -test is used if family="Chi2" with degrees of freedom p . Default is family="Fdist" (F-test).
isbic	A logical flag. The BIC criteria is used (TRUE) or not (default = FALSE).

Value

Tn	Values of test statistics.
Sigma2	Estimator of the marginal response variance.
pvals	P-values.
pvfdr	The P-values corresponding to selected variables.
signifc	The indices corresponding to selected variables.
rho	The input ratio $\rho = \lim \frac{k}{n}$.

References

Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate A Practical and Powerful Approach to Multiple testing. Journal of the Royal Statistical Society: Series B (Methodological). 57(1), 289-300.

Hu, J., Huang, J., Liu, X. and Liu, X. (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

8 rbs

Examples

```
n <- 200
p <- 5
q <- 10
q0 <- 5

beta <- matrix(runif(p*q0),p,q0)
eps <- matrix(rnorm(n*q),n,q)

x <- matrix(rnorm(n*p),n,p)
y <- cbind(x%*%beta, matrix(0,n,q-q0)) + eps

fit <- pvalrp(x,y)

fit$Tn
fit$pvals
fit$pvfdr
fit$signifc</pre>
```

rbs

RBS without covariance of responses

Description

Select the response variables and estimate regression coefficients simultaneously for multivariate linear regression without covariance of responses.

Usage

```
rbs(x,y,gamma=1.5, lambda=NULL,criteria=2,tau=1)
```

Arguments

x A $n \times p$ Numeric design matrix for the model.

y A $n \times q$ Response matrix.

gamma A positive separating parameter γ . Default is gamma=1.5.

lambda A user-specified sequence of λ values. By default, a sequence of values of length

nlambda is computed, equally spaced on the scale.

criteria The criteria to be applied to select parameters. Either AIC if criteria=1, BIC

(the default) if criteria=2, or GCV if criteria=3. There is no selection if

criteria=0, in which case lambda should be a number.

tau A constant to adjust AIC creteria. Default is tau=1.

Value

delta The estimation of the δ . theta The estimation of the θ .

rss Residual sum of squares (RSS) without the selection of tuning parameters.

deltapath The estimation path of the δ with the selection of tuning parameters.

rbsrp 9

bic The AIC or BIC or GCV with the selection of tuning parameters.

selected The index of λ corresponding to lambda_opt with the selection of tuning pa-

rameters.

References

Hu, J., Huang, J., Liu, X. and Liu, X (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

Examples

```
n <- 200
p <- 5
q <- 10
q0 <- 5

beta <- matrix(runif(p*q0),p,q0)
eps <- matrix(rnorm(n*q),n,q)

x <- matrix(rnorm(n*p),n,p)
y <- cbind(x%*%beta, matrix(0,n,q-q0)) + eps

fit <- rbs(x,y,lambda=0.4)
fit$delta

lambda <- seq(0.01, 2, length = 50)
fit <- rbs(x,y,lambda=lambda)
fit$delta

fit$selected</pre>
```

rbsrp

RBS without covariance of responses based on the random projection approach

Description

Select the response variables and estimate regression coefficients simultaneously for multivariate linear regression without covariance of responses based on the random projection approach.

Usage

```
rbsrp(x,y,rho=0.4,Pk=NULL,gamma=1.5, lambda=NULL,criteria=2,tau=1)
```

Arguments

Х	A $n \times p$ Numeric design matrix for the model.
у	A $n \times q$ Response matrix.
rho	The given ratio $\rho = \lim \frac{k}{n}$, a scale in the unit inteval. Default is rho = 0.4.
Pk	The preset random matrix. Default is Pk = NULL, in the case of which each entry is drawn independently from the standard normal distribution.
gamma	A positive separating parameter γ . Default is gamma=1.5.

10 rbsrp

lambda A user-specified sequence of λ values. By default, a sequence of values of length nlambda is computed, equally spaced on the scale.
Criteria The criteria to be applied to select parameters. Either AIC if criteria=1, BIC (the default) if criteria=2, or GCV if criteria=3. There is no selection if criteria=0, in which case lambda should be a number.

tau A constant to adjust AIC creteria. Default is tau=1.

Value

delta The estimation of the δ . The estimation of the θ . Residual sum of squares (RSS) without the selection of tuning parameters. The estimation path of the δ with the selection of tuning parameters. The AIC or BIC or GCV with the selection of tuning parameters. Selected The index of λ corresponding to lambda_opt with the selection of tuning parameters. The input ratio $\rho = \lim \frac{k}{n}$.

References

Hu, J., Huang, J., Liu, X. and Liu, X (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

```
<- 200
    <- 5
р
    <- 10
q
q0 <- 5
beta <- matrix(runif(p*q0),p,q0)</pre>
eps <- matrix(rnorm(n*q),n,q)</pre>
x <- matrix(rnorm(n*p),n,p)</pre>
y \leftarrow cbind(x%*\%beta, matrix(0,n,q-q0)) + eps
fit <- rbsrp(x,y,lambda=0.4)</pre>
fit$delta
lambda \leftarrow seq(0.01, 2, length = 50)
fit <- rbsrp(x,y,lambda=lambda)</pre>
fit$delta
fit$selected
```

rbs_qp

rbs_qp	RBSS with considering covariance of responses based on continuous quadratic programming.

Description

Select the response variables and estimate regression coefficients simultaneously for multivariate linear regression with considering covariance of responses, in which the quadratic 0-1 programming problems are transferred to continuous quadratic programming problems.

Usage

```
rbs_qp(x,y,V=NULL,gamma=1.5,lambda=NULL,criteria=2,tau=1)
```

Arguments

x	A $n \times p$ numeric design matrix for the model.
у	A $n \times q$ response matrix.
V	A user-specified $q \times q$ precision matrix. A estimator is provided if V=NULL. Default is V=NULL.
gamma	A positive separating parameter γ . Default is gamma=1.5.
lambda	A user-specified sequence of λ values. By default, a sequence of values of length nlambda is computed, equally spaced on the scale.
criteria	The criteria to be applied to select parameters. Either AIC if criteria=1, BIC (the default) if criteria=2, or GCV if criteria=3. There is no selection if criteria=0, in which case lambda should be a number.
tau	A constant to adjust AIC creteria. Default is tau=1.

Value

delta	The estimation of the δ .
theta	The estimation of the θ .
rss	Residual sum of squares (RSS) without the selection of tuning parameters.
deltapath	The estimation of the δ with the selection of tuning parameters.
bic	The AIC or BIC or GCV with the selection of tuning parameters.
selected	The index of λ corresponding to lambda_opt with the selection of tuning parameters.

References

Chen, W. and L. Zhang (2010). Global Optimality Conditions for Quadratic 0-1 Optimization Problems. Journal of Global Optimization 46(2), 191-206.

Hu, J., Huang, J., Liu, X. and Liu, X (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

rbs_sig

Examples

```
<- 200
   <- 5
р
   <- 10
q
q0 <- 5
Sigma <- matrix(0,q,q)
for(i in 1:q) for(j in 1:q) Sigma[i,j]=0.5^{(abs(i-j))}
A <- chol(Sigma)
V <- solve(Sigma)</pre>
beta <- matrix(runif(p*q0),p,q0)</pre>
eps <- matrix(rnorm(n*q),n,q)</pre>
x <- matrix(rnorm(n*p),n,p)</pre>
y \leftarrow cbind(x%*\%beta, matrix(0,n,q-q0)) + eps%*%A
fit <- rbs_sig(x,y,lambda=0.4)</pre>
fit$delta
fit <- rbs_sig(x,y,V,lambda=0.4)</pre>
fit$delta
lambda <- seq(0.01, 2, length = 50)
fit <- rbs_sig(x,y,lambda=lambda)</pre>
fit$delta
fit$selected
fit <- rbs_sig(x,y,V,lambda=lambda)</pre>
fit$delta
fit$selected
```

rbs_sig

RBS with considering covariance of responses based on k-flipping optimization problems.

Description

Select the response varibales and estimate regression coefficients simultaneously for multivariate linear regression with considering covariance of responses, in which the quadratic 0-1 programming problems are transferred to k-flipping optimization problems.

Usage

```
rbs\_sig(x,y,V=NULL,gamma=1.5,\ lambda=NULL,criteria=2,nflip=1,tau=1)
```

Arguments

```
x A n \times p numeric design matrix for the model.
y A n \times q response matrix.
```

V A user-specified $q \times q$ precision matrix. A estimator is provided if V=NULL. Default is V=NULL.

rbs_sig 13

gamma	A positive separating parameter γ . Default is gamma=1.5.
lambda	A user-specified sequence of λ values. By default, a sequence of values of length nlambda is computed, equally spaced on the scale.
criteria	The criteria to be applied to select parameters. Either AIC if criteria=1, BIC (the default) if criteria=2, or GCV if criteria=3. There is no selection if criteria=0, in which case lambda should be a number.
nflip	An integer $1,2,3$ with one-flip if nflip=1, two-flip if nflip=2, and hybrid if nflip=3. Default is nflip=1 corresponding to one-flip.
tau	A constant to adjust AIC creteria. Default is tau=1.

Value

delta The estimation of the δ . The estimation of the θ . Residual sum of squares (RSS) without the selection of tuning parameters. deltapath The estimation of the δ with the selection of tuning parameters. bic The AIC or BIC or GCV with the selection of tuning parameters. selected The index of λ corresponding to lambda_opt with the selection of tuning parameters.

References

Chen, W. (2015). Optimality Conditions for the Minimization of Quadratic 0-1 Problems. SIAM Journal on Optimization, 25(3), 1717-1731.

Hu, J., Huang, J., Liu, X. and Liu, X (2020). Response Best-subset Selector for Multivariate Regression. Manuscript.

```
<- 200
   <- 5
   <- 10
q0 <- 5
Sigma <- matrix(0,q,q)
for(i in 1:q) for(j in 1:q) Sigma[i,j]=0.5^{(abs(i-j))}
A <- chol(Sigma)
V <- solve(Sigma)</pre>
beta <- matrix(runif(p*q0),p,q0)</pre>
eps <- matrix(rnorm(n*q),n,q)</pre>
x <- matrix(rnorm(n*p),n,p)</pre>
y \leftarrow cbind(x%*\%beta, matrix(0,n,q-q0)) + eps%*%A
fit <- rbs_sig(x,y,lambda=0.4)
fit$delta
fit <- rbs_sig(x,y,V,lambda=0.4)</pre>
fit$delta
lambda \leftarrow seq(0.01, 2, length = 50)
```

14 sirs

```
fit <- rbs_sig(x,y,lambda=lambda)
fit$delta
fit$selected

fit <- rbs_sig(x,y,V,lambda=lambda)
fit$delta
fit$selected</pre>
```

sirs

Sure independence ranking and screening (SIRS)

Description

A model-free screening method, proposed by Zhu et al. (2011), which combines a soft cutoff value and a hard cutoff.

Usage

```
sirs(Y, X, standardize_X = TRUE, N = NULL, d = 10, ntop = 10)
```

Arguments

Υ	An <i>n</i> -dimensional numeric vector.
X	An $n \times p$ numeric matrix.
standardize_X	Logical flag for X standardization, prior to performing screening. Default is ${\tt standardize_X=TRUE}.$
N	An integer specified by the user for the hard threshold rule, representing the number of top N ranked variables to retain after sorting. The default value is NULL, which corresponds to $\lfloor n/\log(n) \rfloor$ (floor function).
d	An integer specified by the user for the soft threshold rule, representing the dimension of the auxiliary variables. The default value is 10.
ntop	An integer, which is integer that the indices of the top ntop most correlated variables will be output.

Value

omega	The entire correlation vector consists of the values ω_k , $k=1,\cdots,p$, as defined in Zhu et al. (2011).
indn	The indices of the top ntop most correlated variables. If ntop exceeds the number of variables selected by the combined soft and hard threshold rules, the in-
	dices of all variables selected by the threshold rules are returned. Otherwise, the

indices of the top ntop variables are returned.

References

Zhu, L. P., Li, L., Li, R. and Zhu, L. X. (2011). Model-free feature screening for ultrahigh-dimensional data. Journal of the American Statistical Association, 106(496), 1464-1475.

sis 15

Examples

```
n <- 100
p <- 200

beta <- c(rep(0.5, 20), rep(0, p - 20))
eps <- rnorm(n, mean = 0, sd = 1)

X <- matrix(rnorm(n*p),n,p)
Y <- X %*% beta + eps

fit <- sirs(Y,X)</pre>
```

sis

Sure independence screening (SIS)

Description

Screening procedure based on Pearson correlation coefficient of Y and X.

Usage

```
sis(Y, X, ntop=10)
```

Arguments

Y An *n*-dimensional numeric vector.

X An $n \times p$ numeric matrix.

ntop An integer specifying the number of top correlated variables (ntop) whose in-

dices will be output.

Value

pcor The whole Pearson correlation.

indn The indices of the top ntop most correlated variables.

References

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(5), 849-911.

```
n <- 100
p <- 200

beta <- c(rep(0.5, 20), rep(0, p - 20))
eps <- rnorm(n, mean = 0, sd = 1)

X <- matrix(rnorm(n*p),n,p)
Y <- X %*% beta + eps

fit <- sis(Y,X)</pre>
```

16 sisdc

S	i s	sd	C
9	Τ,	Ju	·

Screening procedure based on the distance correlation.

Description

Screening procedure based on the distance correlation of two multivariates y and x.

Usage

```
sisdc(y, x, d=1, ntop=10)
```

Arguments

У	A $n \times q$ numeric matrix.
Х	A $n \times p$ numeric matrix.
d	An integer. Screening variable y if d=1, and Screening variable x if d=2.
ntop	An integer, which is integer that the indices of the top ntop most correlated variables will be output.

Value

dcor The whole distance correlation.

indn The indices of the top ntop most correlated variables.

References

Li, R., W. Zhong, and L. Zhu (2012). Feature Screening Via Distance Correlation Learning. Journal of the American Statistical Association, 107 (499), 1129-1139.

Szekely, G.J. and Rizzo, M.L. (2009). Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1236-1265.

Szekely, G.J. and Rizzo, M.L. (2009). Rejoinder: Brownian Distance Covariance, Annals of Applied Statistics, 3(4), 1303-1308.

Szekely, G.J., Rizzo, M.L., and Bakirov, N.K. (2007). Measuring and Testing Dependence by Correlation of Distances, Annals of Statistics, 35(6), 2769-2794.

```
n <- 200
p <- 5
q <- 10
q0 <- 5

beta <- matrix(runif(p*q0),p,q0)
eps <- matrix(rnorm(n*q),n,q)

x <- matrix(rnorm(n*p),n,p)
y <- cbind(x%*%beta, matrix(0,n,q-q0)) + eps

fit <- sisdc(y,x)
fit</pre>
```

Index

```
* package
rbs-package, 2
dcorr, 3
flip, 4
pcorr, 5
pval, 5
pvalrp, 7
rbs, 8
rbs-package, 2
rbs_qp, 11
rbs_sig, 12
rbsrp, 9
sirs, 14
sis, 15
sisdc, 16
```