Лабораторная работа по квантовой электронике

№ 26. Пространственные характеристики излучения ИПЛ

Яромир Водзяновский Б04-855а

1 Введение

1.1 Цель работы

1. Исследовать диаграммы направленности излучения полупроводникового инжекционного лазера в плоскости активного слоя и в плоскости, перпендикулярной активному слою.

1.2 Суть работы

Используя вращающийся фотодетектор, который снимает зависимость интенсивности, пропорциональной получаемому в опыте напряжению, приходящего на него лазерного излучения от угла поворота. Возможно ограничить распространение сигнала с помощью щели, расположив её перпендикулярно активной среде.

2 Эксперимент

2.1 Щель расположена перпендикулярно активному слою

Рис. 1: U(Angle)

2.2 Щель расположена параллельно активному слою

Рис. 2: U2(Angle)

Таблица 1: Коэффициенты аппроксимации $I=8\ mA$

coeffs	$coef_values$	$standart_error$
U0	-12.549157	16.503157
A	4.106410	0.076892
xc	-6.560648	0.327160
\mathbf{w}	-3818.948496	285.046729

Таблица 2: Коэффициенты аппроксимации $I=8.5\ mA$

coeffs	coef_values	standart_error
U0	17.921781	20.133823
A	4.451687	0.081142
xc	5.363032	0.252814
W	5113.828306	313.554494

Делали фит гауссовского пучка:

$$U = U_0 + \frac{A}{w\sqrt{\pi/2}}e^{-2\frac{(\alpha - \alpha_0)^2}{w^2}}$$
 (1)

Получим толщину активной зоны:

$$d = \frac{1}{2} \frac{\lambda}{\sigma} = \frac{1}{4} (\frac{652}{2.68} + \frac{652}{3.28}) = 111 \text{ HM} \approx \frac{1}{6} \lambda \tag{2}$$

3 Выводы

- Провели измерения напряжения на фотодетекторе от угла его поворота относительно направления излучения лазера в плоскости активного слоя и плоскости, перпендикулярной активному слою;
- При параллельном расположении щели и активного слоя измерения хорошо аппроксимируются гауссианами с ошибками порядка единиц процентов;
- Оценилили толщину активного слоя $\sim \frac{\lambda}{6}$;
- Зависимость $U(\alpha)$ при взаимноперпендикулярного расположении щели и активного слоя не соответсвует гауссовому, что говорит нам об искажениях сигнала ввиду внесения ограничений в его распространени с помощью щели;