Predicting Online Student Success

By Josh Johnson

Online Learning

University Students Online

In 2018:
35.3% of students took enrolled in an online course
16.6% took all courses online¹

Photo by Thomas Park www.unsplash.com

• After Covid-19: ????

The Problem: Retention

- Online university courses have a 10-20% higher dropout
- Other online courses have a *drop out rate between 40% and 80%*²
 - 1. https://nces.ed.gov/fastfacts/display.asp?id=80
 - 2. https://journals.sagepub.com/doi/pdf/10.1177/2158244015621777#:~:text=Online%20courses%20have%20a%2010,Smith%2C%202010).

Can Predictive Modeling Improve Student Success And Prevent Course Withdrawals?

Only if we know who needs help, before the end of the course.

Photo by Frank Romero www.unsplash.com

The Data

Online University: Years 2012/2013 - 2013/2014

- 24743 registrations
- 22424 unique students

- 7 course modules
- 22 cohorts

10,655,280 Student VLE interactions

Features to Model

Image by Steinar Engeland, courtesy of <u>Unsplash.com</u>

- 1. Average assessment scores
- 2. Number of assessments completed
- 3. Number of days studied
- 4. Number of activities engaged
- 5. Total number of clicks
- 6. Times repeated the course

More Days Studying Correlates to Success

Some Courses are Harder Than Others.

...But My Model Shouldn't Know That.

Distribution of Assessment Scores by Course

Comparative Distribution of average_assessment_score Between Courses

Before Normalizing

Scaled Distribution of average assessment score Between Courses

After Normalizing

XGBoost Accuracy After the First Half of Courses: 79%

Needs Intervention: 75% Accuracy

No Intervention Needed: 81% Accuracy

Model Predictions

Error Analysis: Average Days Studied

Next Steps

Add new features, or use time-series analysis on student activity interactions.

Apply deep learning models on this and similar datasets.

 Train and test similar models on new datasets and active learning environments.

Contact

Josh Johnson

LinkedIn: www.linkedin.com/in/Caellwyn

Github: https://github.com/Caellwyn

Email: caellwyn@gmail.com