Floating Point

CSE 238/2038/2138: Systems Programming

Instructor:

Fatma CORUT ERGİN

Today: Floating Point

- **■** Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional Binary Numbers

What is 1011.101₂?

Fractional Binary Numbers

■ Representation

Bits to right of "binary point" represent fractional powers of 2

Represents rational number:
$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers

What is X = 1011.101₂?
$$\sum_{k=-j}^{i} b_k \times 2^k$$

$$X = 1*23 + 0*22 + 1*21 + 1*20 + 1*2-1 + 0*2-2 + 1*2-3$$

$$X = 11\frac{5}{8}$$

Fractional Binary Numbers: Examples

Value	Representation
$5\frac{3}{4}$	101.112
$2\frac{7}{8}$	010.1112
$1\frac{7}{16}$	001.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111..., are just below 1.0

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{i}} + \dots \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

Limitation #1

- Only numbers of the form $\frac{x}{2^k}$ can be represented exactly
 - Other rational numbers have repeating bit representations

Value	Representation
$\frac{1}{3}$	0.0101010101[01]2
$\frac{1}{5}$	$0.001100110011[0011]_{2}$
$\frac{1}{10}$	0.0001100110011[0011]2

Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many machine specific formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

IEEE Floating Point Representation

```
Example: (12345_{10} = 0011000000111001_2)

12345.0_{10} = (-1)^0 * 1.1000000111001_2 * 2^{13}
```

Numerical Form:

$$(-1)^{s} \times M \times 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range
 - [1.0, 2.0), or
 - [0.0, 1.0)
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exponent field encodes E (but is not equal to E)
- fraction field encodes M (but is not equal to M)

S	exponent	fraction
---	----------	----------

Precision options

■ Single precision: 32 bits

≈ 7 decimal digits, $10^{\pm 38}$

S	ехр	frac
1 bit	8-bits	23-bits

■ Double precision: 64 bits

≈ 16 decimal digits, $10^{\pm 308}$

s	ехр	frac
1 bit	11-bits	52-bits

Three "kinds" of Floating Point Numbers

"Normalized" Values

value = $(-1)^s$ M 2^E E = e - Bias

■ When: exp ≠ 000...0 and exp ≠ 111...1

- **Exponent** coded as a *biased* value: E = e Bias
 - e: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - **Single precision:** *Bias =* 127 (e: 1...254, E: -126...127)
 - **Double precision:** *Bias* = 1023 (e: 1...2046, E: -1022...1023)
- Significand (mantissa) coded with implied leading 1: $M = 1 \cdot x \times x \dots \times x_2$
 - **xxx**...**x**: bits of *frac* field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example (single prec.)

```
■ Value: float \mathbf{F} = 12345.0;

12345_{10} = 11000000111001_2

12345.0_{10} = 1.1000000111001_2 * 2^{13}
```

```
value = (-1)^s M 2^E
E = e - Bias
```

Significand

Exponent

```
E = 13
Bias = 127
e = 140 = 10001100_2 (8 bits)
```

Result:

0 10001100 1000000111001000000000 s exp frac

"Denormalized" Values

```
value = (-1)^s M 2^E
E = 1 - Bias
```

- When: exp = 000...0
- **Exponent** coded as: E = 1 Bias (instead of E = e Bias)
- Significand coded with implied leading 0: $M = 0 . xxx...x_2$
 - **xxx**...**x**: bits of *frac* field

Cases

- exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
- exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

"Special" Values

- When: exp = 111...1
- Cases
 - exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - e.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - e.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

C float Decoding Example

value = $(-1)^s$ M 2^E E = e - Bias $Bias = 2^{k-1} - 1 = 127$

```
float f = 0xC0A00000
```

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- **■** Summary

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next 4 bits are the exp, with a bias of 7
- the last 3 bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

value = $(-1)^s$ M 2^E

D	Dynamic Range (8-bit FP numbers)						
	Bias=7	s	ехр	frac	E	Value	Denorm: E = 1 - Bia Explanation
	-	0	0000	000	-6	0	
	zec	0	0000	001	-6	1/8 * 1/64 = 1/512	Closest to zero
	Denormalized Numbers	0	0000	010	-6	2/8 * 1/64 = 2/512	$(-1)^0 * (0+\frac{1}{4}) * 2^{-6}$
	orr					••••••	
	Sen N	0	0000	110	-6	6/8 * 1/64 = 6/512	$(-1)^{0} * (0+\frac{3}{4}) * 2^{-6}$
	_	0	0000	111	-6	7/8 * 1/64 = 7/512	Largest denormalized
		0	0001	000	-6	1 * 1/64 = 8/512	Smallest normalized
		0	0001	001	-6	9/8 * 1/64 = 9/512	$(-1)^{0} * (1+\frac{1}{8}) * 2^{-6}$
						••••••	
	ਰ ,	0	0110	110	-1	14/8 * 1/2 = 14/16	$(-1)^{0} * (1+\frac{3}{4}) * 2^{-1}$
	lize ers	0	0110	111	-1	15/8 * 1/2 = 15/16	Closest to one below
	Normalized Numbers	0	0111	000	0	1 * 1 = 1	$(-1)^0 * (1+0) * 2^0$
	ori Nu	0	0111	001	0	9/8 * 1 = 9/8	Closest to one above
	Z	0	0111	010	0	10/8 * 1 = 10/8	$(-1)^{\circ} * (1+\frac{1}{4}) * 2^{\circ}$
						••••••	
		0	1110	110	7	14/8 * 128 = 224	$(-1)^0 * (1+\frac{3}{4}) * 2^7$
_		0	1110	111	7	15/8 * 128 = 240	Largest normalized
		0	1111	000	n/a	inf	

Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +^{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times^{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes

VALUE	Towards Zero	Round down (-∞)	Round up (+∞)	Nearest Even (default)
1.40	1	1	2	1
1.60	1	1	2	2
1.50	1	1	2	2
2.50	2	2	3	2
-1.5	-1	-2	-1	-2

Closer Look at Round-To-Nearest-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- Examples: round to nearest hundredth (2 digits after the decimal point)

Value	Action	Rounded Value
7.8949999	Less than half way	7.89
7.8950001	Greater than half way	7.90
7.8950000	Half way—round up	7.90
7.8850000	Half way—round down	7.88

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits after the binary point)

Value	Binary	Rounded	Action	Rounded Value
$2\frac{3}{32}$	10.000112	10.002	$<\frac{1}{2} \rightarrow down$	2
$2\frac{3}{16}$	10.00112	10.012	$>\frac{1}{2} \rightarrow up$	$2\frac{1}{4}$
$2\frac{7}{8}$	10.1112	11.002	$=\frac{1}{2} \rightarrow up$	3
$2\frac{5}{8}$	10.101 ₂	10.102	$=\frac{1}{2} \rightarrow down$	$2\frac{1}{2}$

Floating Point Addition

$$(-1)^s M 2^E = (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$$

- 1. Compare exponents (E1 and E2)
 - shift the binary point of the number with smaller exponent to the left until the exponents are equal.
- 2. Add the significands (M1 and M2) with binary points aligned
- 3. Fix the result
 - a) If $M \ge 2$, shift M right and increment E
 - b) If M < 1, shift M left k positions, decrement E by k
 - c) Overflow if *E* out of range
 - d) Round M to fit **frac** precision

```
Example: 1.010_2 * 2^2 + 1.110_2 * 2^3 = (0.1010_2 + 1.1100_2) * 2^3

= 10.0110_2 * 2^3 = 1.00110_2 * 2^4 = 1.010_2 * 2^4

E1(2) < E2(3) \rightarrow 0.1010 M(10.0110) \ge 2 \rightarrow M=1.010, E=4

1 \frac{1.1100}{10.0110} 3.a \frac{3.d}{2}
```

Mathematical Properties of FP Addition

Closed under addition?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

- -3.14 + 1e10 = 1e10 + 3.14
- Associative?

No

- Overflow and inexactness of rounding
- (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?

Yes

■ Every element has additive inverse?

Almost

- Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Floating Point Multiplication

$$(-1)^s M 2^E = (-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$$

1. Exact Result

- ■Sign *s*: *s1* ^ *s2*
- ■Significand *M*: *M1* * *M2*
- **E**Exponent *E*: *E*1 + *E*2

2. Fix the result

- ■If $M \ge 2$, shift M right and increment E
- ■Overflow if *E* out of range
- Round M to fit frac precision

Example:
$$1.010_2 * 2^2 * 1.110_2 * 2^3 = 10.001100_2 * 2^5$$

= $1.0001100_2 * 2^6 = 1.001_2 * 2^6$

Mathematical Properties of FP Mult

Closed under multiplication?

Yes

- But may generate infinity or NaN
- Commutative?

Yes

Associative?

No

- Possibility of overflow, inexactness of rounding
- (1e20*1e20) *1e-20=inf, 1e20* (1e20*1e-20) =1e20
- 1 is multiplicative identity?

Yes

■ Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20)=0.0, (1e20*1e20) (1e20*1e20) =NaN
- Monotonicity
 - $a \ge b \ \& \ c \ge 0 \Rightarrow a * c \ge b * c$?

Almost

Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - **double** double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int/float → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point C Puzzles

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither **d** nor **f** is NaN

x == (int)(float) x	

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x	==	(int)(float) x	False
x	==	(int)(double) x	

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x ==	(int)(float) x	False
x ==	(int)(double) x	True
f ==	(float) (double) f	

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x ==	(int)(float) x False	
x ==	(int) (double) x True	
f ==	(float) (double) f True	
d ==	(double) (float) d	

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x False		
x == (int) (double) x True		
f == (float) (double) f True		
d == (double) (float) d False		
f == -(-f);		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False	
x == (int)(double) x True		
f == (float)(double) f True		
d == (double) (float) d False		
f == -(-f); True		
2/3 == 2/3.0		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False	
x == (int) (double) x True		
f == (float)(double) f True		
d == (double) (float) d False		
f == -(-f);		
2/3 == 2/3.0	False	
$d < 0.0 \Rightarrow ((d*2) < 0.0)$		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False	
x == (int) (double) x True		
f == (float)(double) f True		
d == (double) (float) d False		
f == -(-f);		
2/3 == 2/3.0	False	
$d < 0.0 \Rightarrow ((d*2) < 0.0)$		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False	
x == (int)(double) x	True	
f == (float)(double) f True		
d == (double) (float) d False		
f == -(-f);	True	
2/3 == 2/3.0	False	
$d < 0.0 \Rightarrow ((d*2) < 0.0)$ True		
$d > f \Rightarrow -f > -d$		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int) (float) x	False
x == (int) (double) x	True
f == (float)(double) f	True
d == (double)(float) d	False
f == -(-f);	True
2/3 == 2/3.0	False
$d < 0.0 \Rightarrow ((d*2) < 0.0)$ True	
$d > f \Rightarrow -f > -d$	True
d*d >= 0.0	

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False	
x == (int)(double) x	True	
f == (float)(double) f	True	
d == (double)(float) d	False	
f == -(-f); True		
2/3 == 2/3.0 False		
$d < 0.0 \Rightarrow ((d*2) < 0.0)$ True		
$d > f \Rightarrow -f > -d$ True		
d*d >= 0.0 True		
(d+f)-d == f		

Initialization

```
int x = ...;
float f = ...;
double d = ...;
```

x == (int)(float) x	False
x == (int)(double) x	True
f == (float)(double) f	True
d == (double)(float) d	False
f == -(-f); True	
2/3 == 2/3.0 False	
$d < 0.0 \Rightarrow ((d*2) < 0.0)$ True	
$d > f \Rightarrow -f > -d$ True	
d*d >= 0.0 True	
(d+f)-d == f False	

Creating Floating Point Number

Steps

- 1. Normalize to have leading 1
- 2. Round to fit within fraction
- 3. Postnormalize to deal with effects of rounding

Case Study: Convert numbers to tiny floating point format

Value	Binary
128	100000002
15	000011112
33	001000012
35	001000112
63	001111112

Step 1: Normalize to have leading 1

Requirement

 Set binary point so that numbers of form 1.xxxxx

- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	100000002	1.00000002	7
15	000011112	1.11100002	3
33	001000012	1.00001002	5
35	001000112	1.00011002	5
63	001111112	1.11111002	5

Step 2: Round to fit within fraction

Round-to-nearest-even

frac = 3 bits

S	ехр	frac
1 hit	4-bits	3-bits

Value	Fraction	Rounded	Exponent
128	1.00000002	1.0002	7
15	1.11100002	1.1112	3
33	1.00001002	1.0002	5
35	1.00011002	1.0012	5
63	1.11111002	10.0002	5

Step 3: Postnormalize to deal with effects of rounding

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exponent	Adjusted	Adjusted Exponent	Result
128	1.0002	7		7	$1.000_2 * 2^7 = 128$
15	1.1112	3		3	$1.111_2 \times 2^3 = \frac{15}{8} \times 2^3 = 15$
33	1.0002	5		5	$1.000_2 \times 2^5 = 32$
35	1.0012	5		5	$1.001_2 \times 2^5 = \frac{9}{8} \times 2^5 = 36$
63	10.0002	5	1.0002	6	$1.000_2 \times 2^6 = 64$

Binary Representations

value =
$$(-1)^s$$
 M 2^E
 $E = e - Bias$
 $Bias = 2^{k-1} - 1 = 7$

Unsigned Value	Mantissa	Exponent	Floating Point Value	Binary representation
128	1.0002	7	128	0 1110 000
15	1.1112	3	15	0 1010 111
33	1.0002	5	32	0 1100 000
35	1.0012	5	36	0 1100 001
63	1.0002	6	64	0 1101 000

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value	
Zero	0000	0000	0.0	
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$	
■ Single $\approx 1.4 \times 10^{-45}$				
■ Double $\approx 4.9 \times 10^{-324}$				
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$	
■ Single $\approx 1.18 \times 10^{-38}$				
■ Double $\approx 2.2 \times 10^{-308}$				
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$	
Just larger than largest denormalized				
One	0111	0000	1.0	
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$	
Single ≈ 3.4 x 10 ³⁸				