INTELIGÊNCIA ARTIFICIAL - A3

Análise, tratamento de dados e algoritmos de Machine Learning

Daniel Ikeda Kuniyoshi, 125111347030 Diego Fernandes Martinez, 12522193520 Nayane Pereira Mazaro, 125111365317 Pedro Shiraishi de Almeida, 125111350990 Rafael Henrique Gonçalves Soares, 125111374176 Vinicius Alves Vieira, 125111350019

ESCOLHA DA BASE

- Base de dados Carros e suas características e valor sugerido pela fabricante (MSRP)
 - A Base de dados abrange inicialmente cerca de 12 mil itens
 - Entre os itens temos o modelo, marca, tipo de transmissão, categoria de mercado preço e etc.

			Engine	Transmission	
Make	Model	Year Engine Fuel Type	Engine HP Cylinder	rs Type	Driven_Wheels
DN 41A7	4 Cavias M	premium unleaded	225	CAAANIIIAI	and a second particular
BMW	1 Series M	2011 (required)	335	6 MANUAL	rear wheel drive
BMW	1 Series	premium unleaded 2011 (required)	300	6 MANUAL	rear wheel drive
		premium unleaded			
BMW	1 Series	2011 (required)	300	6 MANUAL	rear wheel drive
		premium unleaded	•••		
BMW	1 Series	2011 (required)	230	6 MANUAL	rear wheel drive
BMW	1 Series	premium unleaded 2011 (required)	230	6 MANUAL	rear wheel drive
BMW	1 Series	premium unleaded 2012 (required)	230	6 MANUAL	rear wheel drive
DIVIVV	T Selles		230	OWANUAL	rear wheel unive
BMW	1 Series	premium unleaded 2012 (required)	300	6 MANUAL	rear wheel drive
		premium unleaded			
BMW	1 Series	2012 (required)	300	6 MANUAL	rear wheel drive
BMW	1 Series	premium unleaded 2012 (required)	230	6 MANUAL	rear wheel drive
		premium unleaded			
BMW	1 Series	2013 (required)	230	6 MANUAL	rear wheel drive
		premium unleaded			
BMW	1 Series	2013 (required)	300	6 MANUAL	rear wheel drive
		premium unleaded			
BMW	1 Series	2013 (required)	230	6 MANUAL	rear wheel drive

OBJETIVO DO PROJETO

- Escolher uma base de dados ampla (base atual tem 12 mil itens) e fazer um estudo sobre algoritmos de ML.
- Algoritmos de Machine Learning Escolhidos
 - Random Forest
 - Regressão por KNN
- A base de dados escolhida já tinha um código previamente feito com Random Forest, porém nossa ideia era aprofundar o estudo em cima desse código previamente feito.
- O Random Forest previamente feito feito utilizando a base toda. Dividimos a base de dados em 2as partes e estudar separadamente.
 - Carros populares
 - Carros que na categoria de mercado tem Luxo, Performance e Alta performance

TRATAMENTO DA BASE DE DADOS

- A base de dados original tem aproximadamente 12 mil valores
- Realizamos a limpeza da base excluindo valores duplicados.
- Excluímos ou alteramos os valores nulos ou desconhecidos ("Unknow"), pois esses valores poderiam interferir nos resultados da análise e do modelo.
- Com essa limpeza inicial começamos a dividir a base de dados em carros populares e carros de luxo/performance/alta-performance.

```
[611] #Separando carros que de acordo com a categoria de mercado contenham Luxo, Performance e Alta performance cars_data_popular = cars_data[~cars_data['market'].str.contains("Luxury|Performance|High-Performance")]

cars_data_luxury = cars_data[cars_data['market'].str.contains("Luxury|Performance|High-Performance")]
```

OUTLIERS

- Com a base de dados finalmente dividida, podemos fazer um tratamento adequado de outliers
 - Um Outlier é um valor "muito fora" do padrão, ou seja, um valor que de alguma forma é inconsistente com os demais.
- Ao verificar os outliers, realizamos a remoção deles.

```
[617] #Removendo Outliers dos carros populares
      s1 = cars_data_popular.shape
      clean = cars_data_popular[['hp', 'cylinders', 'highway_mpg', 'city_mpg', 'price']]
      for i in clean.columns:
         qt1 = cars data popular[i].quantile(0.25)
         qt3 = cars data popular[i].quantile(0.75)
         iqr = qt3 - qt1
         lower = qt1 - (1.5 * iqr)
         upper = qt3 + (1.5 * iqr)
         min_in = cars_data_popular[cars_data_popular[i] < lower][i].index</pre>
         max_in = cars_data_popular[cars_data_popular[i] > upper][i].index
          cars_data_popular.drop(min_in, inplace=True)
          cars_data_popular.drop(max_in, inplace=True)
      s2 = cars_data_popular.shape
     outliers = s1[0] - s2[0]
      print("Deleted outliers are: ", outliers)
 → Deleted outliers are: 325
```

DISTRIBUIÇÃO DA BASE

- Por curiosidade decidimos verificar a distribuição da base após toda a limpeza.
 - Após a limpeza a base caiu de 12 mil valores para 7.5mil
 - A distribuição ficou em cerca de ~40% em carros populares e 60% em carros de luxo/performance/alta-performance.

MODELOS- Random Forest (rfr)

- O Random forest é basicamente um modelo que busca um dado aleatório de uma base inicial e através dele cria uma árvore, e repete o processo, construindo árvores de dados.
- Quando se trata de regressão ele pega um novo dado e faz uma média com relação às previsões das árvores criadas, essa média é o resultado da regressão.
- Quando se trata de classificação, a cada novo dado, a árvore faz uma previsão da classe do dado (a que possível árvore ele faz parte), a classe mais "votada" entre as arvorés é o resultado final da classificação.
- O Random Forest consegue lidar bem com uma alta gama de dados, mas ao mesmo tempo pode ter um custo computacional maior (mais memória e poder computacional) devido ao seu formado de criar múltiplas "árvores", impactando também no tempo de previsão (também devido ao número de dados/árvores"

Random Forest - Carros Populares

- A densidade do algoritmo dos carros populares performou com uma precisão (R2 Score) de 0.85, o que significa que teve uma capacidade de explicar 85% da variabilidade de dados da resposta de acordo com os dados de entrada.
 - É como falar sobre a "Precisão" do algoritmo em relação a entrada e saída
- A linha representa a tendência linear das previsões do modelos, ou seja, valores reais x valores previstos.
 Quanto mais próximos os pontos estão das linhas, mais performático é o resultado do algoritmo

Random Forest – Luxo/Performance

- A densidade do algoritmo dos carros de luxo performou com uma precisão (R2 Score) de 0.96, o que significa que teve uma capacidade de explicar 96% da variabilidade de dados da resposta de acordo com os dados de entrada.
 - Ele performou melhor que os carros populares, provavelmente porque teve uma quantidade de dados maior que os valores
- Observa-se que a densidade dos pontos ao redor da linha de tendência é maior que os populares, o que evidencia um R2 maior.

MODELOS- Regressão por KNN

- O KNN é um algoritmo simples, ele faz uso da estratégia de verificação de "Vizinhos próximos", por isso seu nome K-Nearest Neighbors (KNN).
- O seu funcionamento é simples, na predição e classificação, quando um valor novo é adicionado ele verifica a distância dos seus vizinhos mais próximos e classifica de acordo com eles, quando se trata de regressão ele utiliza a média dos seus vizinhos.
- A KNN também é treinada com uma base de dados já definida, com uma estrada e uma saída determinada, ou seja, um algoritmo supervisionado

KNN- Carros Populares

- A densidade do algoritmo com carros populares performou com uma precisão (R2 Score) de 0.82, o que significa que teve uma capacidade de explicar 82% da variabilidade de dados da resposta de acordo com os dados de entrada.
 - Ele performou melhor que os carros populares, provavelmente porque teve uma quantidade de dados maior que os valores

KNN- Luxo/Performance

- A densidade do algoritmo dos carros de luxo performou com uma precisão (R2 Score) de 0.90, o que significa que teve uma capacidade de explicar 90% da variabilidade de dados da resposta de acordo com os dados de entrada.
 - Ele performou melhor que os carros populares, provavelmente porque teve uma quantidade de dados maior que os valores
- Observa-se que a densidade dos pontos ao redor da linha de tendência é maior que os populares, o que evidencia um R2 maior.

CONCLUSÕES

- Observamos que se compararmos os algoritmos Random Forest e KNN com suas respectivas bases (populares e de luxo/performance), o random forest tem um score R2 melhor que o KNN, isso se deve ao fato que o algoritmo de rfr lida melhor com uma maior densidade de dados.
- Foi observado também em testes que quanto maior o número de vizinhos no KNN, menor é o score, provavelmente pela característica de que o KNN usa de referência os valores mais próximos e não lida tão bem com uma grande densidade de valores
- Mesmo com a base de carros de luxo tendo uma densidade de dados quase o dobro dos carros populares.
- Através dos histogramas também percebemos que a faixa de preço de carros populares é até 50k enquanto os de luxo sua maioria se concentra em 20k e 65k e ultrapassando esses valores