A Bayesian model for data flow: BikeMi

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

A BAYESIAN MODEL FOR DATA FLOW: BIKEMI

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti November 22, 2019

Politecnico di Milano

BIKE SHARING

We aim to develop a Bayesian model for the analysis of the flow counts on a complex network.

Application to the bike sharing platform BikeMi, in Milan.

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

THE BIKE SHARING SYSTEM

- Bike sharing is a service in which bicycles are made available for shared use to individuals on a short term basis for a price or free.
- BikeMi allows people to borrow a bike from a "station" and return it at another station belonging to the system.

ndrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- Date;
- Time of departure/arrival;
- Station of departure/arrival;
- Weekday: binary indicating if the day is in the weekend or not.

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- Date;
- Time of departure/arrival;
- · Station of departure/arrival;
- Weekday: binary indicating if the day is in the weekend or not.

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- Date;
- Time of departure/arrival;
- Station of departure/arrival;
- Weekday: binary indicating if the day is in the weekend or not.

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- Date;
- Time of departure/arrival;
- Station of departure/arrival;
- Weekday: binary indicating if the day is in the weekend or not.

STATISTICS ON A GRAPH

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

Setting \implies complete directed graph $\mathcal{G} = (V, E)$

- ullet vertices V representing the stations
- edges $E = \{(i, j)\}$: the weight of the edges will be the count flow of bikes.

As pre-processing it was introduced a node clusterization using the DBSCAN algorithm, since many stations are very close to one another.

STATISTICS ON A GRAPH

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Setting \implies complete directed graph $\mathcal{G} = (V, E)$

- ullet vertices V representing the stations
- edges $E = \{(i, j)\}$: the weight of the edges will be the count flow of bikes.

As pre-processing it was introduced a node clusterization using the DBSCAN algorithm, since many stations are very close to one another.

A BASIC MODEL FOR THE PHENOMENON

The flow counts are modeled with a Poisson distribution:

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

$$\left\{egin{aligned} Y_{ij} \sim \mathrm{Poi}(Y_{ij}|\mu_{ij}) \ \mu_{ij} = \exp\{oldsymbol{eta} \cdot \mathbf{x}_{ij}\} \end{aligned}
ight.$$

The means are derived through loglinear regression.

We introduce a division in *K* clusters:

$$\begin{cases} Y_{ij} \sim \text{PM}(Y_{ij}|\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) \\ \text{PM}(\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) = \sum_{k=1}^{K} \lambda_k \text{Poi}(\mu_{ijk}) \\ \mu_{ijk} = \exp\{\boldsymbol{\beta}_k \cdot \mathbf{x}_{ij}\} \end{cases}$$
 (2)

where λ_k is the probability of belonging to group k.

Andrea De Lorenzo G Giorgio N

Since the model will determine the topology of the graph we might desire a better control on $\mathbb{P}(Y_{ij}=0)$, they introduce a delta measure in 0.

$$Y_{ij} \sim \theta \delta_0 + (1 - \theta) PM(Y_{ij} | \boldsymbol{\mu}_{ij}, \boldsymbol{\lambda})$$

Final model proposed in the paper:

$$\begin{cases} Y_{ij} \sim \theta \delta_0 + (1 - \theta) \text{PM}(Y_{ij} | \boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) \\ \text{PM}(\boldsymbol{\mu}_{ij}, \boldsymbol{\lambda}) = \sum_{k=1}^{K} \lambda_k \text{Poi}(\mu_{ijk}) \\ \mu_{ijk} = \exp\{\boldsymbol{\beta}_k \cdot \mathbf{x}_{ij}\} \end{cases}$$
(3)

where $\theta \in [0,1], \lambda \in Simp(K-1), \mu_{ij} \in \mathbb{R}^K, \forall i,j, \beta_k \in$ $\mathbb{R}^p, \forall k \in 1 \dots K$ are the parameters of the model. Set priors:

$$\begin{cases} \boldsymbol{\beta}_k \sim \mathcal{N}(\mathbf{m}_0, \boldsymbol{\Sigma}) \\ \boldsymbol{\lambda} \sim \text{Dirichlet}(\boldsymbol{\alpha}) \\ \boldsymbol{\theta} \sim \mathcal{U}[0, 1] \end{cases}$$

Covariates: strenghts of the $\begin{cases} \boldsymbol{\beta}_k \sim \mathcal{N}(\mathbf{m}_0, \boldsymbol{\Sigma}) & \text{adjacent nodes and th} \\ \boldsymbol{\lambda} \sim \text{Dirichlet}(\boldsymbol{\alpha}) & \text{(4)} & \text{geographical distance} \\ \boldsymbol{\theta} \sim \mathcal{U}[0, 1] & \text{between the stations.} \end{cases}$ adjacent nodes and the

COMMENTS ON THE MODEL

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

PROS

- Proper description of flows
- interpretable clustering of the edges inside the network

CONS

- Lack of day-by-day prediction of the flow
- no distinction between different hours of the day or between various days

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- AUTOREGRESSIVE MODEL

 Adding the time dependence to the model $Y_{ij} \rightarrow Y_{ij}(t)$, with the objective of predicting the network flow for a new day;
- Introducing new covariates to keep track, for instance, of weekdays and weather;

NEW CHALLENGES

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- AUTOREGRESSIVE MODEL
 - Adding the *time dependence* to the model $Y_{ij} \rightarrow Y_{ij}(t)$, with the objective of predicting the network flow for a new day;
- Introducing new covariates to keep track, for instance, of weekdays and weather;

NEW CHALLENGES

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- AUTOREGRESSIVE MODEL Adding the time dependence to the model $Y_{ij} \rightarrow Y_{ij}(t)$, with the objective of predicting the network flow for a new day;
- Introducing new covariates to keep track, for instance, of weekdays and weather;

IMPACT OF TIME

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

WEEKENDS

IMPACT OF TIME

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

WEEKDAYS

NEW CHALLENGES

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

- AUTOREGRESSIVE MODEL
 Adding the time dependence to the model $Y_{ij} \to Y_{ij}(t)$, with the objective of predicting the network flow for a new day;
- introducing new covariates to keep track, for instance, of weekdays and weather;
- leaner computations: a mixed R/C++ implementation.

INITIAL BIBLIOGRAPHY

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

 A Bayesian model for network flow data: an application to BikeMi trips; Giulia Bissoli, Celeste Principi, Gian Matteo Rinaldi, Mario Beraha and Alessandra Guglielmi, 2019