Applied Bayesian Modeling module 12: **Bayesian workflow**

Lecture material (slides, notes, videos) are licensed under CC-BY-NC 4.0. Code is licensed under BSD-3

Leontine Alkema (lalkema@umass.edu), Fall 2022

Background

- Setting:
 - You have a research question and a data set
 - Example: forecast COVID19 in Switzerland
 - Goal: Let's develop a Bayesian model to answer the question!
- How to go about model development?
 - Consider an iterative process...
 - Contrast this with eg clinical trial research: Sample size calculation & analysis plan -> data collection -> analysis as per plan

Bayesian workflow

- Bayesian workflow refers to the steps/iterative process used to develop a model
 - Build, debug, improve, expand
- References
 - Gelman et al (2020). "Bayesian Workflow." http://arxiv.org/abs/2011.01808
 - Gabry et al (2019). "Visualization in Bayesian Workflow." JRSS Series A 182, no. 2 (2019): 389–402. https://doi.org/10.1111/rssa.12378
 - Grinsztajn et al (2021). "Bayesian Workflow for Disease Transmission Modeling in Stan." Statistics in Medicine 40, no. 27 (2021): 6209–34. https://doi.org/10.1002/sim.9164
- By writing about Bayesian workflows, the authors (Gelman et al in particular)
 - Share guidance to help with model development
 - Help work towards formalize/systematize Bayesian model development
- Opinionated?

Elements

- (+) Exploratory data analysis
- Choose initial model(s)
- Troubleshoot before fitting
 - Prior predictive check
- Validate computation
 - Address computational issues
- Evaluate and use model
- Modify the model
- Model comparison

Getting started

- Choose initial model(s)
 - Adopt a model from a previous analysis
 - Consider starting simple, to then expand
- Troubleshoot before fitting to actual data
 - Prior predictive check
- Fit the model and validate computation
 - Consider first running the model with a smaller number of iterations (fit fast, fail fast)
 - Then consider MCMC diagnostics
 - So far, we discussed general MCMC diagnostics to check mixing of chains (Rhat and effective sample size)
 - When using default computation in Stan, some additional warnings may come up that are helpful to detect issues

Computation

- More details on Stan's default MCMC algorithm (HMC/NUTS)
 - Focus on main ideas, to understand the warnings and tuning parameters
- References
 - Nice intro to HMC: https://bookdown.org/marklhc/notes_bookdown
 - Warnings: https://mc-stan.org/misc/warnings.html

Under the hood

- Stan implements gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference, with the default algorithm being the No-U-Turn sampler (NUTS), a variant of Hamilton Monte Carlo (HMC)
- HMC: sampling from posterior == "considering the inverted posterior as a park for ice skating" (Lai, 2019)
 - You are randomly given a direction and an energy level
 - Where you end up (taking account of gravitational force [derivatives])
 == a sample from the posterior
- In practice: use numerical integration (leapfrog integrator)
 - Break path into discrete segments, referred to as leapfrog steps
 - Need to choose a step size and number of steps
 - NUTS version of HMC automates the algorithm
 - Once you stop somewhere, do a Metropolis step (accept or reject the proposed value), to make up for issues with numerical integration

Stan warnings: divergences

- A divergence arises when the simulated Hamiltonian trajectory departs from the true trajectory as measured by departure of the Hamiltonian value from its initial value.
 - E.g. when log posterior doesn't have a continuous derivative
- This is a problem because it may mean that posterior distribution isn't thoroughly explored
- Check where divergences they occur to see if there is a problematic area (combination of parameter values)
- ShinyStan or Bayesplot visualization

Stan warnings: divergences (ctd)

- Only a few divergences in different places and good other diagnostics (Rhat and ESS), often a ok
 - Could be falsely labeled as a divergence
- If there is a systematic issue:
 - Reparametrize
 - Consider the "folk theorem of statistical computing":
 - When you have computational problems, often there's a problem with your model (Yao et al, 2020). Not always—sometimes you will have a model that is legitimately difficult to fit—but many cases of poor convergence correspond to regions of parameter space that are not of substantive interest or even to a nonsensical model (Gelman et al, 2020).
 - Reconsider your model
- If you do want to throw more computational power at it: consider Stan tuning parameter
 - Adapt_delta = target acceptance rate in metropolis step
 - Defaults at 0.8
 - Increase to reduce the stepsize so algorithm won't go too far away in each jump (and is more likely to accept proposed value)

Treedepth

- You may get a warning on max treedepth
 - An efficiency concern as compared to a validity concern
 - But reaching max treedepths may (again) suggest a model specification issue
- Tuning parameter "max_treedepth" controls maximum number of leapfrog steps
 - Not typically recommended to increase as per stan warning reference

Addressing computational issues

Simple models that can be fit successfully

Complex models that cannot be fit, or that give nonsensical results

- Reparametrize
- Consider simpler models/model components
- For debugging, fit to
 - Data that's simulated from the model
 - Subset of data

Weehaa "it works"!

- ... right?
- MCMC diagnostics only tell you whether computation for the probabilistic model is valid, not if the computation reflects the model you intended to specify
- Consider "fake data simulation" or simulation-based calibration
 - When fixing the truth (e.g., a draw from prior)
 - Can we reproduce that truth?

Weehaa "it works"!

- But how useful is it for our context?
 - -> Evaluate and use model
- Use strategies from Module 11: model checking
 - Posterior predictive checks
 - Cross-validation
- Good enough?
 - No -> Modify the model
 - Informed by issues that were identified
 - Yes -> Model comparison
 - Compare (and consider reporting on) inferences from different models, combine models

Bayesian workflow for disease transmission modeling in Stan

Léo Grinsztajn¹ | Elizaveta Semenova² | Charles C. Margossian³ | Julien Riou⁴

Example: disease transmission

 Start with a simple SIR model: from a set of differential equations to Stan implementation

FIGURE 4 Diagram of the classic susceptible-infectious-recovered compartmental model

```
\begin{cases} \frac{dS}{dt} = -\beta S \frac{I}{N} \\ \frac{dI}{dt} = \beta S \frac{I}{N} - \gamma I \\ \frac{dR}{dt} = \gamma I \end{cases}
```

Prior predictive check

III MEGICILIE

Computational and model checks

FIGURE 7 Marginal posterior densities for the transmission rate (beta or β), the recovery rate (gamma or γ) and the inverse dispersion parameter (phi_inv or $1/\phi$) obtained when fitting the model to simulated data. The red dashed lines show the fixed parameter values used for simulating the data [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 A, Posterior predictive check of the number of students in bed each day during an influenza A (H1N1) outbreak at a British boarding school. The line shows the median and the orange area the 90% prediction interval. B, Prior and posterior predictive checks of the basic reproduction number \mathcal{R}_0 and of the recovery time (both truncated at 8). The dot shows the median posterior and the line shows the 95% credible interval [Colour figure can be viewed at wileyonlinelibrary.com]

COVID 19 application

Oops!

After extending the model and adding data...

Discussion of Bayesian workflow (Gelman et al. 2020)

- Potential issues with the Bayesian workflow:
 - Using the data multiple times, overfitting
 - Gelman et al advocate for reporting based on several models, models that encompasses as much information as possible,
 NOT to search for an optimally fitting model
 - Subjectivity, more of an art than a science?
- On the upside:
 - Iterative model building = gradual learning
 - The workflow allows for severe testing of model assumptions (contrast with pre-registered model)
 - This is only the start...
- Transformative steps in data science (Gelman et al):
 - Data summaries
 - Modeling
 - Computation (ongoing)
 - Towards formalizing the process of model navigation (exploring model space)