MODERN ACADEMY FOR COMPUTER SCIENCE AND MANAGEMENT TECHNOLOGY IN MAADI

Department: Computer Science.

Sheet (1)

Academic year: 2021/2022 / Level: 4 th Level	Specialization: CS			
Title: Theory of Computation	Code: CS 403			
Reference: Textbook3 (Introduction to the theory of computation), Sipser.				

- 1. Each of the following languages is the intersection of two simpler languages. In each part, construct DFAs for the simpler languages, then combine them using the construction discussed in footnote 3 (page 46) to give the state diagram of a DFA for the language given. In all parts, $\Sigma = \{a, b\}$.
 - a. $\{w | w \text{ has at least three a}\}\$ and at least two b\}
 - **b.** $\{w | w \text{ has exactly two a}\}\$ and at least two b $\}$
 - **c.** $\{w | w \text{ has an even number of } a \text{ and one or two } b \text{ } \}$
 - **d.** $\{w|w \text{ has an even number of a}\}$ and each a is followed by at least one b $\}$
 - **e.** $w \mid w$ starts with an a and has at most one b }
 - **f.** $\{w | w \text{ has an odd number of as and ends with a b } \}$
 - **g.** $\{w | w \text{ has even length and an odd number of a} \}$
 - 2- Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is {0,1}.
 - **a.** The language $\{w | w \text{ ends with } 00\}$ with three states

- **b.** The language of Exercise (1.6c in textbook3) with five states
- **c.** The language of Exercise (1.6l in textbook3) with six states
- **d.** The language {0} with two states
- **e.** The language $0*1*0^+$ with three states
- **f.** The language $1*(001^+)*$ with three states
- g. The language $\{\varepsilon\}$ with one state
- **h.** The language 0^* with one state
- **3-** Give regular expressions generating the following languages, In all parts, the alphabet is $\{0,1\}$.
 - **a.** {wl w begins with a 1 and ends with a 0}
 - **b.** {wl w contains at least three 1s}
 - (w) w contains the substring 0101 (i.e., w = x0101y for some x and y)
 - **d.** {w| w has length at least 3 and its third symbol is a 0}
 - **e.** {w| w starts with 0 and has odd length, or starts with 1 and has even length}
 - **f.** {w| w doesn't contain the substring 110}
 - \mathbf{g} {which length of w is at most 5}
 - **h.** {w| w is any string except 11 and 111}
 - **i.** {wl every odd position of w is a 1}
 - **j.** {w| w contains at least two 0s and at most one 1}
 - **k.** $\{\varepsilon,0\}$
 - 1. {wl w contains an even number of 0s, or contains exactly two 1s}
 - **m.** The empty set
 - **n.** All strings except the empty string

4- For each of the following languages, give two strings that are members

and two strings that are *not* members—a total of four strings for each part. Assume the alphabet $\Sigma = \{a,b\}$ in all parts.

a.	a*b*
b.	a(ba)*b
c.	$a^* \cup b^*$
d.	(aaa)*

e.	$\Sigma^*a\Sigma^*b\Sigma^*a\Sigma^*$
f.	aba ∪ bab
g.	$(\varepsilon \cup a)b$
h.	(a \cup ba \cup bb) Σ^*