Definition CW-complex	 Anything that can be constructed with the following type of construction: Start with any set of points X⁰ with the discrete topology. Form Xⁿ = Dⁿ_α ⊔_{φα} Xⁿ⁻¹ by attaching n-cells to the (n − 1)-skeleton. If you go infinitely, use the weak topology; where A ⊂ X if A ⊂ Xⁿ for all n.
Definition $g \ \operatorname{Homotopic} \ \operatorname{to} \ h \ \operatorname{rel} \ A$	$g \simeq h \operatorname{rel} A$ if \exists a homotopy F s.t. • $f_0 = g$ • $f_1 = h$ • $f_{t_1}(a) = f_{t_2}(a) \forall a \in A$
Definition $ \label{eq:homotopy} \text{Homotopy Equivalent rel } A$	$\exists f: X \to Y, g: Y \to X \text{ such that}$ $\bullet \ gf \simeq \mathbb{1} \text{ rel } A$ $\bullet \ fg \simeq \mathbb{1} \text{ rel } A$
Definition Homotopy Extension Property	The following are equivalent: • $\forall F: A \times I \to Y \text{ and}$ $f: X \to Y \text{ s.t. } f \text{ extends } F_0,$ $\exists \bar{F}: X \times I \text{ which extends } F \text{ and } f.$ • $X \times \{0\} \cup A \times I \text{ is a retract of } X \times I.$

Definition Smash Product	$X \wedge Y = X \times Y / X \vee Y$, where we wedge X and Y at their respective base points x_0, y_0 , usually given.