SS 2020 • Analysis IIa • Übungsaufgaben

Blatt 5

Abgabefrist (NEU!): bis zum 28.05.2020 um 23:59:59 als PDF-Datei an den zuständigen Tutor

Aufgabe 1 (2+2 Punkte)

Bestimmen Sie allgemeine Lösungen folgender Differentialgleichungen:

1.
$$y'(x) = (y(x)^2 + 1)(x^2 + 1),$$

2.
$$y'(x) = e^{y(x)} \cos x$$
.

Aufgabe 2 (3+1 Punkte)

Betrachte das Anfangswertproblem $y'(x) = y(x)^2 \sin x$, $y(0) = y_0$.

- 1. Lösen Sie das Anfangswertproblem.
- 2. Für welche y_0 sind die Lösungen auf ganz \mathbb{R} definiert?

Aufgabe 3 (3+3 Punkte)

Lösen Sie folgende Anfangswertprobleme:

1.
$$y'(x) = -y(x) + \sin x$$
, $y(0) = 0$,

2.
$$y'(x) = \frac{2}{x}y(x) + x^2 \cos x \quad (x > 0), \quad y(\pi) = 0.$$

Aufgabe 4 (4+2 Punkte)

1. Betrachte die Differentialgleichung y'(x) = a(x)y(x) + b(x), wobei $a, b : \mathbb{R} \to \mathbb{R}$ stetig sind und die uneigentlichen Integrale

$$\int_{-\infty}^{\infty} a(x) dx \text{ und } \int_{-\infty}^{\infty} b(x) dx$$

absolut konvergieren. Zeigen Sie, dass jede Lösung dieser Differentialgleichung auf $\mathbb R$ beschränkt ist.

2. Hat die Differentialgleichung

$$y'(x) = \frac{x \sin x}{x^4 + 1} y(x) + \frac{\cos x}{x^2 + 1}$$

unbeschränkte Lösungen auf \mathbb{R} ?

Präsenzaufgaben

- 1. Seien $a \neq 0$ und $b \in \mathbb{R}$. Betrachte die Differentialgleichung y'(x) = ay(x) + b.
 - (a) Finden Sie die allgemeine Lösung.
 - (b) Sei $y_0 \in \mathbb{R}$. Finden Sie alle Lösungen, die die Anfangsbedingungen $y(0) = y_0$ erfüllen, und berechne $\lim_{x\to +\infty} y(x)$ für diese Lösungen.
- 2. Finden Sie allgemeine Lösungen folgender Differentialgleichungen:
 - (a) $xy'(x) = 3y(x) + 2x^4$ auf $(0, +\infty)$,
 - (b) $y'(x) + y(x) \tan x = \frac{1}{\cos x} \text{ auf } (0, \frac{\pi}{2}),$
- 3. Betrachte die Differentialgleichung $y'(x)\sin(2x) = 2(y(x) + \cos x)$ auf $(0, \frac{\pi}{2})$.
 - (a) Finden Sie die allgemeine Lösung.
 - (b) Finden Sie alle Lösungen, für die der Grenzwert $\lim_{x\to \frac{\pi}{2}^-} y(x)$ existiert und endlich ist.
- 4. Unter der Bernoullischen Gleichung versteht man eine Differentialgleichung der Form $y' = ay + by^{\alpha}$, wobei a, b stetige relle Funktionen auf einem Intervall I sind und α eine reelle Zahl ist, $\alpha \notin \{0, 1\}$.
 - (a) Sei $z := y^{1-\alpha}$. Zeigen Sie: y ist genau dann eine positive Lösung der Bernoullischen Gleichung auf einem Intervall, wenn z auf demselben Intervall eine positive Lösung von $z' = (1 \alpha)(az + b)$ ist.
 - (b) Finden Sie alle positiven Lösungen von $xy' 2x^2\sqrt{y} = 4y \ (x > 0)$,
 - (c) Finden Sie alle positiven Lösungen von $x(y'+y^2)+y=0$ (x>0).
- 5. Finden Sie allgemeine Lösungen folgender Differentialgleichungen. (Beschreiben Sie auch die Definitionsbereiche der Lösungen.)
 - (a) $y'(x) = (2 + \sin y(x)) \sin x$,
 - (b) $y'(x) = 2x\sqrt{y(x)^2 + 1}$. Hinweis: um die Lösungen in kompakter Form zu schreiben, bestimmen Sie zuerst die inverse Funktion zu $x \mapsto \sinh x = \frac{1}{2} (e^x e^{-x})$.
 - (c) $y'(x) = \cos(y(x) + 3x)$. Hinweis: nutzen Sie die Substituion z(x) = y(x) + 3x.
 - (d) $y'(x) = (x + y(x))^2$.