Листок №LA3

ЛИНЕЙНАЯ АЛГЕБРА — III ДВОЙСТВЕННОЕ ПРОСТРАНСТВО

11-й "Д" КЛАСС 2012 г

Определение 1. Пусть L — линейное пространство над полем \mathbb{F} . Пространство $\mathrm{Hom}(L,\mathbb{F})$ называется deo йственным (или conp яженным) к L и обозначается L^* . Его элементы называются koe ковекторами, линейными функциями или линейными функционалами (на L).

Задача 1. Пусть (e_1, \ldots, e_n) — базис линейного пространства L.

- а) Докажите, что $\dim L^* = n$ и что в L^* можно выбрать такой базис (f^1, \dots, f^n) , что $f^i(e_i) = 1$ и $f^i(e_j) = 0$ при всех $i, j = 1, \dots, n; i \neq j$.
- **б**) Пусть $A \in \text{Hom}(L, L^*)$ такое отображение, что $A(e_i) = f^i$. Зависит ли отображение A от выбора базиса (e_1, \ldots, e_n) ?

Замечание 1. Базис (f^1, \ldots, f^n) пространства L^* называется двойственным к базису (e_1, \ldots, e_n) пространства L.

Задача 2. а) Докажите, что для всякого линейного пространства L существует и единственно отображение $D_L \colon L \to L^{**}$, удовлетворяющее условию $\forall x \in L \ \forall y \in L^* \colon (D_L(x))(y) = y(x)$.

- **б)** Докажите, что $D_L \in \text{Hom}(L, L^{**})$, то есть D_L линейное отображение.
- в) Пусть (e_1, \ldots, e_n) базис $L, (g_1, \ldots, g_n)$ дважды двойственный ему базис L^{**} . Рассмотрим отображение $A \in \text{Hom}(L, L^{**})$ такое, что $A(e_i) = g_i$. Зависит ли A от выбора базиса (e_1, \ldots, e_n) ?
- г) Докажите, что если L конечномерно, то D_L является изоморфизмом.

Задача 3. Докажите, что пространство многочленов $\mathbb{Q}[x]$ не изоморфно своему двойственному.

Определение 2. Аннулятором подпространства L_0 линейного пространства L называется множество $\{f \in L^* \mid L_0 \subset \operatorname{Ker} f\}$. Обозначение: Ann L_0 .

Задача 4. Докажите, что аннулятор являются линейным подпространством пространства L.

Определение 3. Суммой линейных подпространств L_1 и L_2 линейного пространства L называется множество $\{x+y\mid x\in L_1,\,y\in L_2\}$. Обозначение: L_1+L_2 .

Задача 5. Пусть L_1 и L_2 — линейные подпространства. Выясните, какие из следующих множеств являются линейными подпространствами и выразите их размерности через dim L, dim L_1 и dim L_2 :

a) $L_1 + L_2$; 6) $L_1 \cup L_2$; B) $L_1 \cap L_2$.

Задача 6. Найдите суммы и пересечения:

- a) пространства чётных и пространства нечётных функций на \mathbb{R} ;
- **б)** пространств функций на \mathbb{R} , равных нулю на множествах M_1 и M_2 ;
- в) пространств многочленов, делящихся на фиксированные многочлены $p_1, p_2 \in \mathbb{R}[x]$.

Задача 7. Пусть L_1 и L_2 — линейные подпространства конечномерного пространства L.

- а) Найдите Ann 0 и Ann L.
- **б)** Выразите $Ann(L_1 + L_2)$ и $Ann(L_1 \cap L_2)$ через $Ann L_1$ и $Ann L_2$.
- в) Выразите $\dim(\operatorname{Ann} L_1)$ через $\dim L$ и $\dim L_1$.
- **г)** Верно ли, что Ann(Ann L_1) = $D_L(L_1)$?

Определение 4. Линейное пространство L называется npsmoй cymmoй своих подпространств L_1, L_2, \ldots, L_n , если всякий вектор $x \in L$ ровно одним способом представляется в виде $x = x_1 + x_2 + \ldots + x_n$, где $x_i \in L_i$ для всех i. Обозначение: $L = L_1 \oplus L_2 \oplus \ldots \oplus L_n$.

Задача 8. Докажите, что $L=L_1\oplus L_2$ тогда и только тогда, когда $L=L_1+L_2$ и $L_1\cap L_2=0$

Задача 9. Докажите, что если $L = L_1 \oplus L_2$, то $L^* = \operatorname{Ann} L_1 \oplus \operatorname{Ann} L_2$.

Определение 5. Пусть $A \in \text{Hom}(L, M)$. Линейное отображение $A^* \in \text{Hom}(M^*, L^*)$ называется двойственным (или сопряжённым) к A, если выполняется следующее условие:

$\forall f \in M^* \ \forall x \in L : \ (A^*)$	f)(x) = f(Ax).
---	----------------

1 a	1 6	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	2 Г	3	4	5 a	5 6	5 В	6 a	6 6	6 B	7 a	7 б	7 B	7 Г	8	9