Nucleic Acids, Proteins and Antibodies

[0001] This application is a claims benefit of priority under 35 U.S.C. § 365(c) and § 120 to International Application Number PCT/US00/05988, filed March 8, 2000 which was published by the International Bureau in the English language as International Publication Number WO/0055174 on September 21, 2000 and under 35 U.S.C. § 119(e) to U.S. Application No. 60/124,270 filed March 12, 1999, both of which are hereby incorporated by reference herein.

Statement under 37 C.F.R. § 1.77(b)(4)

[0002] This application refers to a "Sequence Listing" listed below, which is provided as an electronic document on two identical compact discs (CD-R), labeled "Copy 1" and "Copy 2." These compact discs each contain the following files, which are hereby incorporated in their entirety herein:

	Document	File Name	Size in bytes	Date of Creation
1	Sequence Listing	PA101SEQLIST.txt	3,111,160	08/07/2001

Field of the Invention

This invention relates to newly identified prostate or prostate cancer related F00031 polynucleotides, the polypeptides encoded by these polynucleotides herein collectively referred to as "prostate cancer antigens," and to the complete gene sequences associated therewith and to the expression products thereof, and to antibodies that immunospecifically bind these polypeptides, as well as the use of such prostate cancer polynucleotides, antigens, and antibodies for detection, prevention, prognosis, and treatment of disorders of the reproductive system, particularly disorders of the prostate, including, but not limited to, the presence of prostate cancer and prostate cancer metastases. More specifically, isolated prostate cancer nucleic acid molecules are provided encoding novel prostate cancer polypeptides. Novel prostate cancer polypeptides and antibodies that bind to these polypeptides are provided. Also provided are vectors, host cells, and recombinant and synthetic methods for producing human prostate cancer polynucleotides, polypeptides, and/or antibodies. The invention further relates to diagnostic and therapeutic methods useful for diagnosing, treating, preventing and/or prognosing disorders related to the prostate, including prostate cancer, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The invention further relates to methods and/or compositions for inhibiting or promoting the production and/or function of the polypeptides of the invention.

Background of the Invention

[0004] The normal prostate gland is quite small, weighing only about one ounce, and comprised of approximately 30% muscular tissue and 70% glandular tissue. The prostate wraps around the urethra, through which urine and semen are carried out to the tip of the penis. The primary function of the prostate is to produce a necessary fluid component of semen; just prior to male orgasm muscular contractions squeeze this fluid into the urethra. Disorders of the prostate gland, such as prostate cancers, are typically manifested by enlargement of the gland, leading to such symptoms as impaired urinary flow, infertility, and pain.

[0005] About 180,000 new cases of prostate cancer in the United States and 16,000 in Canada are diagnosed every year. Cancer of the prostate is now the second most common type of cancer in males, although the causes of prostate cancer are not well understood. While men of any age can develop prostate cancer, it is found most frequently in men over age 50, with risk increasing with age.

[0006] Most prostate cancers are adenocarcinomas, cancers that arise in glandular cells of the prostate's epithelial tissue. Types of prostate cancers also include, but are not limited to, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas. Prostate cancers usually progress slowly and produce no symptoms in the initial stages. Eventually, the tumor may enlarge the prostate gland, pressing on the urethra and causing painful or frequent urination and blood in the urine or semen. Sometimes pain in the lower back, pelvis, or upper thighs may signal that prostate cancer cells have spread to the ribs, pelvis, and other bones. The prognosis for prostate cancer is quite good if it is caught and treated early. The five-year survival rate for American men with prostate cancer is almost 93 percent, but this number rises to almost 100 percent if the tumor is caught early.

[0007] Current therapies include watchful waiting, surgery, radiation therapy, and hormone therapy, which may lead to such unpleasant side effects as incontinence, impotence, dry orgasm, pubic hair loss, nausea, breast growth, and decreased libido.

10008] There are a variety of techniques for early detection and characteristics of prostate cancers, however, none of them are devoid of problems. Because prostate cancer is a notoriously silent disease with few early symptoms, there is an urgent need for identification and characterization of factors that modulate activation and differentiation of prostate cells, both normally and in disease states. In particular, there is a need to isolate and characterize additional molecules that mediate apoptosis, DNA repair, tumor-mediated angiogenesis, genetic imprinting, immune responses to tumors and tumor antigens, among other things, that can play a role in detecting, preventing, ameliorating or correcting dysfunctions or diseases related to the prostate.

[0009] The discovery of new human prostate cancer associated polynucleotides, the polypeptides encoded by them, and antibodies that immunospecifically bind these polypeptides, satisfies a need in the art by providing new compositions which are useful in the diagnosis, treatment, prevention and/or prognosis of disorders of the reproductive system, particularly disorders of the prostate, including, but not limited to, prostate cancers

such as adenocarcinoma, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas, as well as inflammatory disorders, such as chronic prostatitis, granulomatous prostatitis and malacoplakia, prostatic hyperplasia, and as described under "Hyperproliferative Disorders" and/or "Reproductive System Disorders" below.

Summary of the Invention

The present invention includes isolated nucleic acid molecules comprising, F00101 or alternatively, consisting of, a prostate and/or prostate cancer associated polynucleotide sequence disclosed in the sequence listing (as SEQ ID Nos:1 to 940) and/or contained in a human cDNA clone described in Tables 1, 2 and 5 and deposited with the American Type Culture Collection ("ATCC"). Fragments, variant, and derivatives of these nucleic acid molecules are also encompassed by the invention. The present invention also includes isolated nucleic acid molecules comprising, or alternatively consisting of, a polynucleotide encoding a prostate or prostate cancer polypeptide. The present invention further includes prostate and/or prostate cancer polypeptides encoded by these polynucleotides. Further provided for are amino acid sequences comprising, or alternatively consisting of, prostate and/or prostate cancer polypeptides as disclosed in the sequence listing (as SEQ ID Nos: 941 to 1880) and/or encoded by a human cDNA clone described in Tables 1, 2 and 5 and deposited with the ATCC. Antibodies that bind these polypeptides are also encompassed by the invention. Polypeptide fragments, variants, and derivatives of these amino acid sequences are also encompassed by the invention, as are polynucleotides encoding these polypeptides and antibodies that bind these polypeptides. Also provided are diagnostic methods for diagnosing and treating, preventing, and/or prognosing disorders related to the prostate, including prostate cancer, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying agonists and antagonists of prostate cancer antigens of the invention.

Detailed Description

Tables

Table 1 summarizes some of the prostate cancer antigens encompassed by [0011] the invention (including contig sequences (SEQ ID NO:X) and the cDNA clone related to the contig sequence) and further summarizes certain characteristics of the prostate cancer polynucleotides and the polypeptides encoded thereby. The first column shows the "SEQ ID NO:" for each of the 940 prostate cancer antigen polynucleotide sequences of the invention. The second column provides a unique "Sequence/Contig ID" identification for each prostate and/or prostate cancer associated sequence. The third column, "Gene Name," and the fourth column, "Overlap," provide a putative identification of the gene based on the sequence similarity of its translation product to an amino acid sequence found in a publicly accessible gene database and the database accession no. for the database sequence having similarity, respectively. The fifth and sixth columns provide the location (nucleotide position nos. within the contig), "Start" and "End", in the polynucleotide sequence "SEQ ID NO:X" that delineate the preferred ORF shown in the sequence listing as SEQ ID NO:Y. The seventh and eighth columns provide the "% Id" (percent identity) and "% Si" (percent similarity), respectively, observed between the aligned sequence segments of the translation product of SEQ ID NO:X and the database sequence. The ninth column provides a unique "Clone ID" for a cDNA clone related to each contig sequence.

[0012] Table 2 summarizes ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application.

[0013] Table 3 indicates public ESTs, of which at least one, two, three, four, five, ten, fifteen or more of any one or more of these public EST sequences are optionally excluded from certain embodiments of the invention.

Table 4 lists residues comprising antigenic epitopes of antigenic epitopebearing fragments present in most of the prostate or prostate cancer associated polynucleotides described in Table 1 as predicted by the inventors using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4:181-186. The Jameson-Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power MacIntosh, DNASTAR, Inc., 1228 South Park Street Madison, WI). Prostate and prostate cancer associated polypeptides (e.g., SEQ ID NO:Y, polypeptides encoded by SEQ ID NO:X, or polypeptides encoded by the cDNA in the referenced cDNA clone) may possess one or more antigenic epitopes comprising residues described in Table 4. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly. The residues and locations shown in column two of Table 4 correspond to the amino acid sequences for most prostate and prostate cancer associated polypeptide sequence shown in the Sequence Listing.

[0015] Table 5 shows the cDNA libraries sequenced, and ATCC designation numbers and vector information relating to these cDNA libraries.

Definitions

[0016] The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

[0017] In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide. The term "isolated" does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.

[0018] As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X (as described in column 1 of Table 1) or the related cDNA clone (as described in column 9 of Table 1 and contained within a library deposited with the ATCC). For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined (obviously

excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a polyA tail of a sequence corresponding to a cDNA).

[0019] In the present invention, "SEQ ID NO:X" was often generated by overlapping sequences contained in multiple clones (contig analysis). A representative clone containing all or most of the sequence for SEO ID NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library. As shown in column 9 of Table 1, each clone is identified by a cDNA Clone ID. Each Clone ID is unique to an individual clone and the Clone ID is all the information needed to retrieve a given clone from the HGS library. In addition to the individual cDNA clone deposits, most of the cDNA libraries from which the clones were derived were deposited at the American Type Culture Collection (hereinafter "ATCC"). Table 5 provides a list of the deposited cDNA libraries. One can use the Clone ID to determine the library source by reference to Tables 2 and 5. Table 5 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE." The name of a cDNA clone ("Clone ID") isolated from that library begins with the same four characters, for example "HTWEP07". As mentioned below, Table 1 correlates the Clone ID names with SEQ ID NOs. Thus, starting with a SEQ ID NO, one can use Tables 1, 2 and 5 to determine the corresponding Clone ID, from which library it came and in which ATCC deposit the library is contained. Furthermore, it is possible to retrieve a given cDNA clone from the source library by techniques known in the art and described elsewhere herein. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposits were made persuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.

[0020] A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, or the complement thereof (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments described herein), and/or sequences contained in the related cDNA clone within a library deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate,

and 20 μ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65 degree C.

Also included within "polynucleotides" of the present invention are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50 degree C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

[0022] Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

[0023] Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).

[0024] The polynucleotides of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or,

more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).

"SEQ ID NO:X" refers to a prostate cancer antigen polynucleotide sequence described in Table 1. SEQ ID NO:X is identified by an integer specified in column 1 of Table 1. The polypeptide sequence SEQ ID NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. There are 940 prostate cancer antigen polynucleotide sequences described in Table 1 and shown in the sequence listing (SEQ ID NO:1 through SEQ ID NO:940). Likewise there are 940 polypeptide sequences shown in the sequence listing, one polypeptide sequence for each of the polynucleotide sequences (SEQ ID NO:941 through SEQ ID NO:1880). The polynucleotide sequences are shown in the sequence listing immediately followed by all of the polypeptide sequences. Thus, a polypeptide sequence corresponding to polynucleotide sequence SEQ ID NO:1 is the first polypeptide sequence shown in the sequence listing. The second polypeptide sequence corresponds to the polynucleotide sequences shown as SEQ ID NO:2, and so on. In otherwords, since there are 940 polynucleotide sequences, for any polynucleotide sequence SEQ ID NO:X, a corresponding polypeptide SEQ ID NO:Y can

be determined by the formula X + 940 = Y. In addition, any of the unique "Sequence/Contig ID" defined in column 2 of Table 1, can be linked to the corresponding polypeptide SEO ID NO:Y by reference to Table 4.

[0027] The polypeptides of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme mojety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenovlation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS. B. Johnson, Ed., Academic Press, New York, pgs, 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

[0028] The prostate and prostate cancer polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

[0029] The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

[0030] The prostate and prostate cancer polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified using techniques described herein or otherwise known in the art, such as, for example, by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural, synthetic or recombinant sources using techniques described herein or otherwise known in the art, such as, for example, antibodies of the invention raised against the polypeptides of the present invention in methods which are well known in the art.

10031] By a polypeptide demonstrating a "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein of the invention. Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide for binding) to an anti-polypeptide antibody], immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.

[0032] "A polypeptide having functional activity" refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular assay, such as, for example, a biological assay, with or without dose dependency. In the case where dose dependency

does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).

[0033] The functional activity of the prostate cancer antigen polypeptides, and fragments, variants derivatives, and analogs thereof, can be assayed by various methods.

[0034] For example, in one embodiment where one is assaying for the ability to bind or compete with full-length polypeptide of the present invention for binding to an antibody to the full length polypeptide antibody, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody. In a further embodiment, the secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.

In another embodiment, where a ligand is identified, or the ability of a polypeptide fragment, variant or derivative of the invention to multimerize is being evaluated, binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky, E., et al., Microbiol. Rev. 59:94-123 (1995). In another embodiment, physiological correlates polypeptide of the present invention binding to its substrates (signal transduction) can be assayed.

[0036] In addition, assays described herein (see Examples) and otherwise known in the art may routinely be applied to measure the ability of polypeptides of the present

invention and fragments, variants derivatives and analogs thereof to elicit polypeptide related biological activity (either in vitro or in vivo). Other methods will be known to the skilled artisan and are within the scope of the invention.

Prostate and Prostate Cancer Associated Polynucleotides and Polypeptides of the Invention

[0037] It has been discovered herein that the polynucleotides described in Table 1 are expressed at significantly enhanced levels in human prostate and/or prostate cancer tissues. Accordingly, such polynucleotides, polypeptides encoded by such polynucleotides, and antibodies specific for such polypeptides find use in the prediction, diagnosis, prevention and treatment of prostate related disorders, including prostate cancer as more fully described below.

[0038] Table 1 summarizes some of the polynucleotides encompassed by the invention (including contig sequences (SEQ ID NO:X) and the related cDNA clones) and further summarizes certain characteristics of these prostate and/or prostate cancer associated polynucleotides and the polyneptides encoded thereby.

and the second s

The state of the s

HWACS81	HWBAS37	HWBBX45	HWBAJ23	HUSGZ25	HUSIK57 HUSBF75 HUSYB27	HUSGH59	HTXJJ72
84	100	61	82	94	8	6	66
87	100	39	83	8	f	6	66
433	731	554	625	1193	497 492 607	939	970
2	ю	ю	254	393	3 214 89	300	2 2
gi 2337883	gi 3170264	gi 3986770	gi 36065	gi 34754		gi 2896148	gnlPID d1022900
(AC002451) pynvate dehydrogenase kinase isoform 4 [Homo sapiens] >gil [1399 197 pynvate dehydrogenase kinase isoform 4 [Homo sapiens]	(AF044321) cytochrome c oxidase assembly protein COX11 [Homo sapiens] -9gi[3170264 (AF044321) cytochrome c oxidase assembly	protein COX11 [Homo sapiens] (AF109906) NG22 [Mus musculus] Length =	707 MI subunit of ribonucleotide reductase [Homo sapieras] >gi[36153 large subunit ribonucleotide reductase [Homo sapieras] >pi[36158080]st6809 frobuctase [Homo sapiera] >pi[3615808]st6809 inbonucleoside-diphosphate reductase [EC i.174,1], chain MI - human Length = 792	put. ribosonnal protein L3 (AA 1 - 348) [Homo sapiens] >pir A27294 RSHUL3 ribosonnal protein L3 precursor, mitochondrial - human Length =	348	(AF047020) alpha-methylacyl-CoA racemase Homo sapiens) >sp(043673/043673 ALPHA- METHYLACYL-COA RACEMASE (EC 5.1,99.4), Length = 380	Ki antigen [Mus musculus] >gnl[PID]d1029778 (AB007139) PA28 gamma subunit [Mus musculus] >sp[035563]035563 KI ANTIGEN. Length = 254
828239	828242	828247	828248	828250 828256	828267 828269 878777	828273	828290 828326
41	15	16	17	18	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	23	25

HLYCG48 HLDBK03	HSKEI92	HSIGE72	HSDJR78	HSDFC18	HSDGQ64	HSDIC05	HSBAY13		HSDXA60	HSAAO28	HSBCA90	HSAAV04		HSBAL82		
100	71	86					93		100			82		100		
86	71	86					82		100			82		100		
942 579	873	940	180	586	212	733	1097		200	;	412	611	;	458		
1 37	-1	7	17	386	51	428	3		63	. !	173 286	6	1	36		
bbs 175341	gi 31463	gi 56312					gil863014	-	m1PTD -1240168	Sult in love or of the		0200711:-	6066/1 B	gn1PID e268230		
smooth muscle myosin light chain kinase,	smNLCA ("Citalination Jancept") as a single partial, 438 tissue, day 127 of gestation. Peptide Partial, 438 at al [Ovis aries] Longht = 438 fra-1 gene product (AA 1-271) [Homo sapiens] -pair[S15750[S15750 transforming protein (fra-1)	- human >sp P15407 FRA HUMAN FOS- RELA-RTED ANTIGEN 1. Leagh = 271 Gephyin (Ratus novegicus) prijH1068 JH068 gephyin - rat >sp Q0535 GFBH RAT GEPHYRIN - Sp Q0535 GFBH RAT GEPHYRIN 1. Novement of Novem	LINKER PROTEIN). Length = 736				men of the Charles assured the	bs4 peptide (mus mascarius) >sp[p54729]BS4_MOUSE BS4 PROTEIN.	Length = 677	14.5 kDa translational inhibitor protein, p.14.5 KDa translational I ength = 137	- O [see also output]		CCAAT-box-binding factor [Homo sapiens] >pir[A36368]A36368 transcription factor CBF,	CCAAT-binding - human	histone 2A-like protein [Homo sapiens] >gi[2088554 histone 2A-like protein [Homo	sapiens]
828397 828405	828461	828482		828488	828491	828492	828494	828490		828498	828504	828507	828512	915000	010970	
26 27	88	29		30	31	32	33	%		35	36	37	38	ć	કે -	

The same of the sa

HRGDE67 HRGDE67	HROBP89 HRGTJ13	HROEB35 HRACZ50 HPYSC02 HPZAA72 HPWDG48 HPWCG66	HRAAA23 HPWCS14	HPWDE02 HPWBZ53 HPWBR44
28	66	100	76	
38	66	100	96	
474 531	684 463	852 253 272 270 279 279	626 554	474 1302 147
142	361 14	379 134 84 1 130	366	277 1 61
gni[PtD]e1316345	gi 632974	ri 1882 594		
DEAD box-like RNA helicase (Arabidopsis thaliana) >sp(023251/023251 DEAD BOX-LIKE RNA HELICASE (FRAGMENT). Length = 450	Unknown cytokine receptor [Homo sapiens] >>n0(14213(0)(14213 CYTOKINE RECEPTOR	PRECURSOR.	ORF 7506 Inscherotion 2011 2911/054-3-3 (AE000389) aerotaxis sensor receptor, [Aavoprotein [Escherichia coli] (AF093263) homer-2a [Homo sapiens] sep[G3834617[G3834617] HOMER-2A. Length =	
828519 828521	828522 828525	828529 828530 828536 828537 828539	828540 828542 828543	828544 828546 828550
40 41	42	44 45 47 48	49 50 51	52 53 54

The state of the s

HPWCG88 HPWCG57	HPTVR29	HPWAY42	HPWBS62	HPWAZ16 HPWAJ41 HPRTP24 HPRSB55	HPWBR81	HPRTH40 HPRTP80	HPRTS71	HPRT165
95	100	100	96	001	47	61	68	
95	100	100	96	76	38	27	68	
585	359	683	204	962 1423 440	395	580 670	458	209
61 2	3	381	-	3 1214 204	204	380	6	3
gi 190664	gi 189176	gi 339400	gi 498725		gi /03112 gi 336133	gnl PID e1345081	gnl PID e189422	
prostate - specific membrane antigen [Homo	membrane antigen - human NF-LL6-beta protein [Homo sapiens] >= nid 4(0.25] [A 40.25] transcription activator NF-	The beta - human Length = 269 The ceptor (V-1-C) precursor [Homo sapiens] Spir/A26659/A26659 Theel receptor gamma-1	chain C region - human (SUB 138-310) 2gi[33080 T cell receptor gamma chain [Homo sapies8] (SUB 139-310) p-gi[330089 T-cell receptor gamma-chain constant region [Ho zine finger protein [Homo sapiens]	Krueppel-related - human (fragment)	thyroid receptor interactor [Homo sapiens] Length = 286 envelope protein [Woodchuck hepatitis B virus]	prirlA03708[S.A.V.L.Z.] large surface anugen - woodchuck hepatitis virus (clone 2) Length = 431 DY3.6 [Caenorhabditis elegans]	>sp[045323 045323 DY3.6 PROTEIN. Lengtn = 379 rTSbeta [Homo sapiens] >sp[Q15407 Q15407	RTSBETA. Length = 416
828551 828553	828557	828560	828561	828565 828566 828567	828568	828570 828571	828574	828575
55 56	57	85	59	09 19 67	£ 2	65	29	89

HPRTQ68	HPRCS86 HPRSB02	HPRCN60	HPRCF61	HPRCE51	HFRCF03	HPRTJ39	HPRCM59	HFRCHIS
68		90	100	8	<u>\$</u>	87	5	£6
68		100	100	ç	86	87		56
395 627	340	419 285	534	248	611	1272	353	213
135	2 103	258	139	120	84	-	25	-
gi 833246		11764000	gi 3452281		gi 487346	gi 298111		gi 35315
phospholipase A2 [unidentified] >gi 190887 synovial phospholipase A2. [Homo sapiens] >gi 190889 synovial phospholipase A2. (EC 31.1.4) [Homo sapiens] >pin(A32862]PSHUYF phospholipase A2 (EC 3.1.1.4) precursor, synovial Ind humann	dev.		HOXB13 I homo saparasi Lengin = 284 (AF043431) retinoblastoma-interacting protein [Homo sapiens] - sapiO75371[07537] RETINOGLASTOMA-ATVIERACTING PROTEIN 1 seed = 907	PROTEIN: Lengul = 89 /	breakpoint cluster region protein [Homo sapiens] >sp[Q12844[Q12844 BREAKPOINT CLUSTER REGION PROTEIN (FRAGMENT). Length =	889 NP-G factor [Homo supiens] >pir[835993]835993 NNA repair protein XPGC - human >sp[6303059]6303050 XPGC=DNA REPAIR PROTEIN RAD2 HOMOLOG. {SUB 1166-1180.1 renoth = 118		homeobox protein [Homo sapiens] -prir[S19010[S19010] homeotic-protein PBX3a-human -sepf-40426[PBX3_HUMAN PRE-B-CELL_LEUKEMIA TRANSCRIPTION FACTIOR-3 (HOMEOBOX PROTEIN PBX3).
828577 828578	828580 828581	828583	828585 828587	828590	828592	828593	828594	828596
69	71	73	74	92	11	78	70	80

Length = 434

HPRBB67	HPRAX93 HPRTI75 HPRAY38 HPRBF14 HPRBF14	HPRTJ08	HPRAD26 HPRBF16	HPRAG37 HPRAQ51 HPRAT22 HPQBV63 HPMGE79
88	96	100	96	
70	95	100	94	
903	108 520 601 533 899	398	350	126 156 313 275 406 1344
-	1 2 383 21 186	6	w w	4 28 125 87 68 916
gnlPID e1319429	gi 189619 gi 190664	gi 338415	gi 189613	
(AL031532) yeast gtr2 homolog, novel small GTP-ase subfamily protein [Schizosaccharomyces pombe] >sp[074544[074544 YRAST GTR2 HOMOLOG, NOVEL SMALL GTPASE SUJBAMILY PROTEIN. Longth = 31	acid phosphatase [Homo sapiens] Length = 386 prostatue-specific membrane antigen [Homo conjana] varida 54688 prostate-specific	saptusi printzoari prantzoari prantzoari membrane antigen - human membrane antigen - human seminat plasma protein precursor [Homo sapiens] >gijS14372 beta-microseminoprotein [Homo sapiens] >gij825707 prostatic secretory protein	(PSP-94) [Homo sapiens] prostatic acid phosphatase [Homo sapiens] >gil 189621 acid phosphatase [Homo sapiens] >gil 189021 acid phosphatase [Homo sapiens]	sapiens]
828597	828598 828601 828605 828608 828609	828610	828617 828620	828621 828622 828623 828625 828635 828635
81	88 88 88 88 88	87	88 88	90 92 93 94

HPOAB53	HPMDB85 HPJCK50	HPJBV55	HPWBU56	HPJDA05	HPJCY65 HPJBW32	HPJBD30	HPJCL80	HPJCT42		HPJB171	HPJBU60	HPICC36
71		84	100	69		29		87				
70		32	100	51		45		87				
366	158 313	212	375	742	189	328	23.1	703		246	315	350
-	72	210	121	41	- 9	38.	103	41		-	61	222
gi 3522923		gi 3789797	gi 189274	gnl PtD e1351769		gi 3790545		gi 306481				
(AC005600) PKD1 [Homo sapiens] >sp[075276[075276 PKD1 (FRAGMENT).	Length = 1339	(AF059569) actin binding protein MAYVEN [Homo sapieus] >spl(3789797 63789797 ACTIN BINDING PROTEIN MAYVEN. Length	= 593 neuropepide Y [Homo sapiens] >gi 189282 neuropepide Y [Homo sapiens] >gi 2992498 (AC004485) neuropepide Y precursor [Homo	sapiens] similar to ATPases associated with various	Celiulai acuviucs (AAAA),	(AF061283) neuronal protein 4.1 [Mus	musculus] >sp G3790545 G3790545 NEURONAL PROTEIN 4.1. Length = 879	calnexin [Homo sapiens] >gi[186523 calnexin	[Homo sapiens] >pirlAd6673 Ad6673 calnexin precursor -human >plP27824 CALX_HUMAN CALNEXIN PRECURSOR (MAJOR HISTOCOMPATIBILLITY COMPLEX CLASS I ANTIGEN-BINDING PROTEIN P88) (P90)	(IP90). Length = 592		
828637	828639	828648	828649	828651	828652	828655 828657		828660		999868	828668	828669 828670
96	97	8 66	100	101	102	103		105		101	80	109

HPJAD23	HPICD86 HPJBZ66	HPICC05	HPJAA76	HPJAC93	HPICG94	HPJAA30 HPIBM51 HPIBR22	нРіВQ56	HPIBS12
06	66		86		100		76	
68	66		86		100		95	
1025	255 2173	368	664	318	652	167 617 329	988	131
3	1 2	13	2	142	47	e e 2	7.7	27
gnl PID e1360006	nil7754697		gi 623244		gi 510406		gi 4101695	
(AJ005866) Sqv-7-like protein [Homo sapiens] >snE1360006[E1360006 SQV-7-LIKE	PROTEIN (FRAGMENT). Length = 261	MCM4 [Homo saptens] >sp[G2754697]G2754697 MCM4 (FRAGMENT). Length = 712	SNAP43 [Homo sapiens] >gi 1174203 PSE-	onlang actor in saping a proximal sequence sapiens parificos IJC6081 proximal sequence element-binding transcription factor gamma chair - human sepQ16533Q16533 PSE-BINDING PACTOR PTF GAMMA SUBUNIT. Length = 368	DNA primase (subunit p48) [Homo sapiens] -pair[S45630]S45630 DNA primase chain p48 - human -sap[P49642]PRII_HUMAN DNA PRIMASE SMALL SUBUNIT (EC2.7.7-) (DNA PRIMASE 49 KD SUBUNIT) (P499)pg[P355692 DNA primase 1 [Homo sapiens]	{SUB 97-146} Length = 420	(AF006010) progestin induced protein [Homo sapiens] >sp[C4101695[C4101695 PROGESTIN	INDUCED PROTEIN. Lengin = 2790
828671	828672	828675	828677 828678		828679 828680	828681 828682	828683	828687
111	112	113	1114		116	118	120	122

The second price and price only price of the second price of the s

HPJAA20	HPICC13	HPIBO30	HPIBL27	HPIBY69 HPIBA33
	84	02	69	
100 100	84	49	45	
757	1222	1000	426	333
128	227	278	1	1 171
gi 189199	06\$081 is	gn PID c1248977	gnl PID c1311294	
CCAAT-box DNA binding protein subunit NF-	YB Homos superior Sapera Plantan CCAAT- Saple 2208/CBFA_HUMAN CCAAT- BINDING TRANSCRIPTION FACTOR SUBJUNT A (CBFA) (NEV PROTEIN CHAIN B) (NEV-YB) (CAAT-BOX DNA BINDING PROTEIN SUBJUNT B). creatine kinase [Homo sapleng]. prigh 3131/Jay 37789 creatine kinase (BC 2.7.3.2) prigh 3131/Jay 37789 creatine kinase. Saple 125323/RCKU LJUMAN CRAETINE Saple 125323/RCKU LJUMAN CRAETINE SAPLE 23323/RCKU LJUMAN CRAETINE	NUTATION OF A TRANSPORT OF A TRANSPO	ARAKTA ACYL-COA-AMMO ACUD N- ACYLTRANSERASE (GC 23.1.13) (GLYCINE N-ACYLTRANSFERAS d1409.2 (Melanome-Associated Antigen MAGE LIKE) [Homo supiers] s-sp[076058[076058 D1409.2 (AIELANOMA- s-sp[076058[076058])	ASSOCIATED ANTIOEN MAGE LINE). Length = 606
828688	828689	828692	828693	828694 828696
123	124	125	126	127

and the state of t

HPICB03	HPIAZ02	HPIBB96 HPIBH30	HPBJ11	HPIAW81 HPIAZ32 HPIAU16 HPIAV37 HPIAV30 HPIAS34 HPIAL41
72	78	86	86	57
19	76	86	86	35
422	744	406	1788	589 93 309 396 1849 356 1308
258	3 118	2 2	559	2 1 49 142 68 174 403
gi 1050752	gi 190664	gi 415338	gi 1695882	gil413930
kynurenine/alpha-aminoadipate aminoransferase (RAUIS norvegicus] >spjQc4602}(Qc4602 KYNURENINEZ-HPAT-AMINOADIPATE AMINOTIRANSERASE (EC 2.6.1.7) (KYNURENINE-OXOGLUTARATE AMINOTIRANSERASE) (KYNURENINE AMINOTIRANSTRASE) (KYNURENINE	prostate-specific membrane antigen [Homo sapiens] -pirl456881[45681] prostate-specific membrane antigen - human -bbbs[6419] prostate-specific membrane antigen.	put. DNA topoisomerase I (AA 1-864) [Escherichia coli] Pen[IPDI] d10 1527 DNA tropisomerase I (EC 5.99 L.2) (w-protein) (Relaxing enzyme) (Untwisting enzyme)	(Swivelase). [Escherichia coli] mitotic centromere-associated kinesin [Homo sapiens] >spp(09966i [Q9966i MTOTIC CENTROMERE-ASSOCIATED KINESIN.	Length = 725 Length = 725 ipa-6d gene product [Bacillus subtilis] >gnllPD c1186348 alternate gene name: ipa-6d; similar to quinone biosynthesis [Bacillus subtilis]
828697	828699	828703 828704	828706	828708 828711 828712 828713 828714 828715
129	130	132	134	135 136 137 138 139 140

The state of the s

HPIAL34	HPIAS69	HPIAS40	HPHAF82	HPIAN07	HPIAK81 HPIAE30
100	86	98	2	97	06
76	86	28	34	97	06
206	255	498	1569	898	438
т	-	-	394	155	369
gi 475759	gi 504499	gi 4164442	gi 171877	gni PID e1256376	gi 2213934
UDP glucuronosyltransferase precursor [Homo sapiens] >pirlA48633[A48633] dithydrotestosetonekandrostanediol UDP-flucuronosyltransferase isoform 3, udpgth-3 -	human hydrophobic membrane-bound protein [Escherichia coli] >gil1147818 part of a molydehum periplasmic binding protein dependent transport system [Escherichia coli]	>gij973215 ModB [Escherichia coli] (AF044954) NADH:ubiquimone oxidoreductase PDSW submit [Homo sapleas] >gil4165091 (AF08891) NADH-ubiquimone oxidoreductase	PDSW stromit [Horbit salpeab]. Ledgin = 11.2 MAKI I protein [Saccharonyees cerevisite] egil486013 ORF YKL021c [Saccharonyees cervisiae] pain/29938A22998 MAKI I protein -yeast (Saccharonyees cerevisite) sepp20484[MKI1_YEAST MAKI1] PROTEIN.	Lought = 468 rab geranylgeranyl transferase [Homo saptiens] popif(C5538)[C5538 Rab geranylgeranyl ransferase (EC 2.5.1) alpha chain - human >sple126376[E126376 RAB GERANYLGERANYL TRANSFERASE.	Length = 567 (AF006265) cancer associated surface antigen [Homo sapiens] > Sep[IPDId J02440 (AB007619) EBAG9 [Homo sapiens] > sep[000559]000559 CANCER ASSOCIATED SURFACE ANTIGEN. Length = 213
828723	828726	828728	828730	828732	828733 828735
142	143	144	145	146	147 148

HPFA11 HPIAA46 HPIAC69 HPHAB61 HPEAB20	HPIAA79	HPIAA91	HPFEA08 HPFDD83 HPFD121 HPFDE61 HPFDE33 HPMSH48	HPFDB49 HPFDT61 HPWDK71 HPFDD04 HPFDF79
96	66	66	100	
95	94	66	100	
132 347 394 475 707	826	1692	187 566 409 113 317 329	80 242 937 1324 392
3 2 2 2 60	443	1051	423 2 3 3 51	3 90 797 1109 156
gi 386842	gni PID e290956	gi 1732378	gniPID c223120	
glandular kallikrein precursor [Homo sapiens] -pul ₁ A25586/A2586 tissue kallikrein (EC 3.4.21.35) hGK-1 precursor - human -sapir20151[KKZ-HUMAN GLANDULAR AKLLIKREIN 2 PRECURSOR (EC 3.4.21.35) (TISSUE KALLIKREIN) (PROSTATE) (HGK-	 Length = 261 serine/threonine kinase [Rattus norvegicus] >sp 008678 008678 SERINE/THREONINE 	KINASE. Length = 793 anthogen regulated homeobox protein [Homo sapiens] >sp(Q9801]HK31_HUMAN HOMEOBOX PROTEIN NKX-3.1. Length =	234 cytochrome c oxidase subunit VIc proprotein [Homo sapiens] - zgl[3859686 AR067637) cytochrome c oxidase subunit VIc [Homo	sapiens)
828736 828739 828740 828742 828748	828749	828752	828753 828754 828757 828761 828762 828764	828765 828766 828767 828767 828770
149 150 151 152 153	154	155	156 157 158 159 160	162 163 164 165 166

The second point words price which party point is the second point point and price where the second point point and point point and point point

HPFDS50	HPPDT28 HPPDE85 HPPCR19 HPPCX40 HPPDM39 HPPDA70 HPPDA70 HPPD40 HPPCP06	HPPCT79 HPPCX77 HPPCT31 HPPCT53 HPPCT53 HPPCT54 HPPCT54 HPPCT54 HPPCC91 HPPCC91 HPPCC92 HPPCC92
61	70	
25	90	
273	340 348 208 134 919 121 420 734 186	321 250 532 538 317 140 801 1440 259 320 239 332
-	200 115 23 3 131 2 46 46 408 61	82 32 302 341 195 6 121 1219 128 237 237 113
gi 4100621	95005Hig	
(AF001629) WASP interactor protein [Homo sapieas] >sp[G4100621[G4100621 WASP INTERACTOR PROTEIN (FRAGMENT).	Length = 328 relaxii [Homo sapiens] >gl 490063 H1-relaxii [Homo sapiens] >gl 412167 relaxii [Homo sapiens] >gl 412167 relaxii [Homo sapiens] >gl 512167 relaxii [Homo sapiens] >gl 512167 preporclaxii [Homo sapiens] >gl 513593 prepor-relaxii H1 [Homo	supiens]
828771	828772 828773 828775 828776 828777 828781 828781 828783	828785 828786 828786 828790 828791 828794 828794 828794 828798 828798 828798 828798
167	168 169 170 171 172 173 174 175 176	178 179 180 181 182 183 184 185 186 186 180

HPFBA83	HPFCF17 HPFCF96	HPEAC52 HPEBT31	HPFAA06 HPCAC47	HPEAA76	HPEAB80	HPCAF64	HPEAB79	HPCAC56	HPDDY72	HPCAN60	HPCA054	HPCAA27	HPCAB16
83							61					92	
83							4					06	
458	303 303 105	236	426 160	258	623 502	416	875	643	446	730	672	219	278
96	86 199 -	147	283 2	- ;	345	246	267	458	132	5	499		45
gni PID d1037533							gi 915203					gi 179004	
(AB022017) AMP-activated protein kinase alpha-1 [Homo sapiens] - SeplD (037533 AMP-ACTIV ATED PROTEIN KINASE ALPHA-1. SeplIPD[531574 AMP-activated protein kinase alpha-1 [Homo sapiens [SUB 294-550])	and the second of the second o						spore coat protein SP87 [Dictyostelium	discoideum] Length = 677				Arnt [Homo sapiens] spirJ[39550][39550 Annthuman ssp[P27540]ARNT_HUMAN ARYT HYDROCARBON REGETOR NUCLEAR TRANSLOCATOR (ARYT PROTEIN) (DIOXIN REGETOR, NUCLEAR TRANSLOCATOR) (HYDROXIN HYDROXIN LOCATOR)	789
828803	828804 828805	828807 828809	828810 828811	828817	828819	828820	828821		828824	828825	828826	828829 828830	828833
191	192	194	196	198	200	201	202	003	204	205	506	207 208	209

HOUDC43	HOVCJ65 HOSDG69 HSPBQ12 HPEAA46	HOVCJ86	HOUCP33	HOSAZ63 HOSAV36	HOQBM19 HPEAE55	HOHBF14
99		100	97	62	88	001
43		100	76	40	74	100
474	679 212 1034 395	1468	283	437	1013 991	637
61 2	536 69 3	62	2	1 96	2 3	143
gi 603945		gi 4001803	gi 306712	gi 2979531	gi 471981	gi 1280212
chordin [Xenopus laevis] >pirlASS 195[ASS 195] chordin precursor - African clawed frog >sp[0917] 3[CHRD_XENLA CHORDIN PRECURSOR (ORGANIZER-SPECIFIC SECRETED DORSALIZING FACTOR). Length		(AF041474) BAF53a [Homo sapiens] >sp[G4001803 G4001803 BAF53A. Length =	4.29 putative [Homo sapiens] >pir[A49364]A49364 59 putative [Homo sapiens] >protein, brain - human (fragment) >splQ09019[DMR9_HUMAN DMR-N9 PROTEIN (PROTEIN PROTEIN S9) (FRAGMENT).	Length = >>3 (AC004449) R33683_3 [Homo sapiens]	Length = 103 uridine kinase [Mus musculus] Length = 260	enhancer of filmentation I [Homo sapiens] spit Johy/RV Cr& associated substrate related protein Cas-L [Homo sapiens] ssp[014511][014511 ENHANCER OF FILMENTATION I. Length = 834
828835 828838	828840 828845 828846	828849	828850	828852 828853	828857	828866
210	212 213 214	216	217	218 219	220	222

Const. (1974), All the const. (1974) and (19

HOHAL47	HOGBL72	HOGCC24	HOFMJ67	HOGCO89	HOEJI17	HOGAF39		HODGT65	HOECIN41
94	82	66	97	95		Š	3	ì	9
93	82	66	95	95		5	Ż.	ì	90
628	905	450	275	1325	271	696	Iosy	228	1327
295	æ	1	24	282	2	139	133	82	2
gi 450277	gi 32107	gi 2304981	gi 38079	gi 178518			gi 30956		gi 1304599
pericentriol material 1 [Homo sapiens]	SpirAstroph-Articol removements of PortX-1: human >spir(3.514QUS)5154 PERICENTRIOL MATERIAL 1. Length = 2024 histone H1(0) (an 1-194) [Homo suplens] Spir(AsASG)(ERBUG) histone H1-0-human = 2024 hist	September 1994 [H10], September 1994 [H10]	1262 75 kDa subunit NADH dehydrogenase precursor [Homos aspiens] >pir[S17854[S17854 NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) 75K	chain precursor - human S-adensoylmethionine decarboxylase proenzyme (EC 4.1.1.50) old gene name "AMD' [Homo sapiens] >pit[A31786]DCHUDM	adenosylmethionine decarboxylase (EC 4.1.1.30) precursor - human		product possesses binding site dependent transcriptional suppressing activity [Homo sapiens] spirlA44351[A44351 transcription repressor B4B94 - human ssp[Q14211]Q14211	E4BP4 GEINE. Lengin = 402	ZNF127-Xp [Homo sapiens] >sp[Q13434 Q13434 ZNF127-XP. Length = 485
828872	828874	828875	828877	828878		828879 828881	828885	988868	828887
223	224	225	226	227		228	230	73.1	232

HODAQ30	HODDG78	HNWAA42	C/SSINH	HNI MC68	CZZNI NICZ	HNTCR38	HNTRO07		HNTAB76	HNHAG14	
68	100			8	6	70	S	₹		95	
88	100			é	86	57	9	2		95	
069	1238	344	999	1501	1176	1536	2501	671	1403	78	
265	48	3	33	1217	586	790	9	123	138	-	
gi 292354	gi 1006659				sp P49137 MKK2_H UMAN	gi 340446	<u>.</u>	gnl PID e254454		gi 1786992	
neurofibromin [Homo sapiens] >spip21359]NFI. HUMAN NEUROFIBROMIN (NEUROFIBROMATOSIS-RELATED PROTEIN NF-1). sgi736765 neurofibromatosis 1 [Homo sapiens] [SUB 751-1611] >gil189161 ineurofibromatosis protein type 1 [Homo sapiens]	(SUB 1168-1566) FAST kinase [Homo sapiens] >pir[137386]137386 FAST kinase - human >sp[014296]014296 FAST KINASE. Length = 549				PROTEIN C-ACTIVATED AP KINASE 2)	(MAPKAPK-2). Length = 400	zinc finger protein / (zer /) [rrounc septems] >pir[A34612]A34612 zinc finger protein ZNF7 - human Leneth = 686	RNA helicase [Homo sapiens] >pir[S71758 S71758 DEAD box protein MrDb, Myc-regulated - human >sp Q92732 Q92732	RNA HELICASE. Length = 610	(AE000180) biotin synthesis, sulfur insertion? [Escherichia coli] >gi[490219 BIOB gene product	[Escherichia coli] >gmlPIDpe303036 B1011N SYNTHASE [Escherichia coli] >pritJC2517[SYECBB biotin synthetase (EC 2.8.1.) - Escherichia coli \con P17906 RIOR FCOI
828889	828891	0	828899	828907	828911 828914		828917	828921		828922 828924	
233	234		235	236	238		239	240		241 242	

A CONTRACT C

>sp|P12996|BIOB_ECOL

HNGKM39 HNTBH70 HNGNK23 HNFJH94	HNTRL26	HNTNM15	HNGGG72	HNFHK65
91	98	95	71	
68	98	95	58	
426 522 330 1467	1447	1158	1806	386
376 28 1 412	6	124	1399	6
gi 852055	gnlPID e1330109	gi 178747	pir A46311 A46311	
casein kinase I-alpha [Homo sapiens]	\$\text{pulsy}(1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (2) (2) (2) (2) (3) (4) (2) (2) (4) (4) (4) (5) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (8) (8) (1) (8) (8) (1) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	kinesin-like protein [Homo sapiens] [SUB 1- 274] Langilla (51) 274] Langilla (51) apurini-clapyrimidinic endonuclease [Homo sapiens] zeli [B3780 apurini-clapyrimidinic endonuclease [Homo sapiens] zeji 2022 AP endonuclease [Homo sapiens] zeji 2022 AP endonuclease [Homo sapiens] zeji 2022 AP	[Homo sapiens] >pir S23550 S23550 DNA- (apurin and advancement of Molomey murine leukemia virus pir A46311 A46311	(strain 3-1R) (fragment) Length = 559
828925 828926 828928 828930	828935	828937	020040	828942
243 244 245 246	247	248	Š	250

100 HMWHS08	нмwне39	HMWIM20 HMWGG82	HMWBS21 HMWED17	HMWFM25	HMVAJ71 HMUBQ39 HMTME58
100	99	98	100	91	88 88
100	99	74	100	91	88
710	729	396 1384	306 370	742	753 678 524
т	118	199 470	1 2	2	574 85 3
gi 182626	gi 1488314	gi 2599492	gi 848985	gn PD d1007847	gni PID e1344085 gi 558458
rapamycin binding protein [Homo sapiens] >gil 182644 PK506-binding protein 25 Homo sapiens] - prilif (1522) (q 1522 peptidylprotyl isomerase (FC 5.2.1) F (RBP *- human	sopplotobash RASI LIDONAN KARAMAN SELECTIVE SS KD IMMUNOPHILIN (FKBP2s) (PEPTIDYL-PROLYL CIS-T hepatitis delta antique interacting protein A HIGONO sapiens) sopplotosado ANTIGEN SPETITIS DELTA ANTIGEN SPETITIS DELTA ANTIGEN	INTERACTING PROTEIN A: Lengur = 202 (AF029071) p52 pro-apototic protein [Gallus	gallus] Length = 465 rerin-4a-carbinolamine dehydratase [Homo	sapiens] >g 848987 pterin-4a-carbinolarmine debydratase [Homo sapiens] >grn P1D e1292435 (AJ00542) dimerization cofactor of HNF1; pterin-4a-carbinolamin debydratase [Ratus norvegicus] >grn P1D e1292435 (AJ005542 Ran-BP1 (Ran-binding protein 1) [Homo sapiens]	Length = 200 similar to leucyl-tRNA synthetase; acidic 82 kDa protein [Homo sapicus] >pir(60152)[601522 acidic 82 kDa protein - human >sp[012987][012987 ACIDIC 82 KDA PROTEIN. Length = 736
828943	828946	828947 828956	828958	828969	828971 828973 828980
251	252	253	255	257	258 259 260

HMUAQ01	HMSGL25 HMUBL18	HMTMB67 HMSIV02 HMMBW26 HMOA148	HMQA169	HMSGH89	HMSJH16 HMIAX25 HMIAJ48	HMIAJ26	HMELM45
76	88		88	93	95	-	87
76	79		88	93	46	8	87
2388	928 1137	308 1567 478	927	1262	2188 1506 223	800	1183
322	734	78 653 296	- 4	282	161 1339 41	21	89
gi 184242	gnl PID e1347884		gnlPD e1227622	gi 2665742	pir B26168 B26168	gn PID e1345001	gi 3645905
high mobility group box [Homo sapiens] -pir[A41976]A41976 structure-specific recognition protein, SSRP1 - huran Length =	709 Similariy to Yeast MSPI protein (TAT-binding homolog 4) (SW:MSPI_YEAST) ICoenorthabilis electus)	SypPs4815 MSP1_CAEEL MSP1 PROTEIN HOMOLOG. Length = 357	GTP-binding protein [Homo sapiens] >splO43824[O43824 GTP-BINDING PROTEIN.	Length = 442 (AF035537) DNA polymerase zeta [Homo	sapiens] Length = 3052 ribophorin II precursor - human Length = 631	similar to WD domain, G-beta repeats (2 domains);	RIZ [Homo sapiens] >spQ13023Q13023Q13029 ZINC FINGER PROTEIN RIZ. >prir[138902]138902 retinoblastoma-binding protein RIZhuman {SUB 3-1721} Length = 1721
828984	828985 828988	828993 828995 829000	829005 829009	829010	829012 829013 829019	829020	829021 829026
261	262	264	267	569	270 271	273	274 275

нмісо08	HMEFK17	HMEIQ04	HMEKR35 HMEJC44 HMEBB138 HMHEBB67 HMERAF61 HMERC28 HMCGK90 HMCGK90 HMCGK90 HMCGK90	
95 Н	Н 86	100 F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,
95	86	66	50	
1674	629	1032	1771 1467 256 1154 799 536 501 101 2622 1437	01/
-	2	268	2 115 2 795 116 3 310 3 1417	7
gi 517065	gi 3462807	gi 189498	gi 3777596	
chaperonin-like protein [Homo sapiens] -pirfy48087[48087]-complex-type molecular chaperon e CCT6 - human >gl 184462 chaperon e CT6 - human >gl 184402	143-531} Length = 531 (APRS216) Li receptor candidate protein (Homo sapiens) >sp(G3462807)G3462807 Li RECEPTOR CANDIDATE PROTEIN. >g[19403226 (APRS209) imidacoline receptor	alluscascocco poor Irginia 469-1063 Tength = 1504 pyrroline-5-carboxylate reductase [Homo sapiens] spiriA41770[pA41770 pyroline-5-sepboxylate reductase [EC 1.51.2] - human carboxylate reductase [EC 1.51.2] - human sysphy2322[PROC_HUMAN PYRROLINE-5-Sepp3232] PROC_HUMAN PYRROLINE-5-CARBOXYL_ATE REDUCTASE [EC 1.51.2]	_	ò
829030	829035	829041	829045 829048 829051 829057 829057 829059 829061 829063	829064
276	277	278	279 280 281 282 283 284 285 286 286 287	586

нманх38	HMSII92	HLYET39 HLYDB91 HLYFD84 HLYCP31	HLYBT93 HMCEJ41	HLYAN96	HLIDRSS	HLYAP23
86	28	78	93	100	8	100
86	84	69	93	100	8	100
1427	1319	207 1269 873 907	382	1251	850	542
009	432	1 1 181 2	194	307	2	ю
gnl PID d1013520	gi 2746333	gi 339804	gi 1644402	gi 1923256	gi 178409	gi 804750
37KD protein, similar to Y122-ECOLJ [Eschericha coll >sp(047535(047535 37KD) PROTEIN SIMILAR TO Y122-ECOLJ. Length	4.24 (APG)7204) RING zine finger protein [Homo sapiens] -gj(38792.8 (APQ)765.8) RING zine finger protein [RZF Homo sapiens] -sp[O43567]043567 RING ZINC FINGER	PROTEIN. Length = 381 topoisomerase I [Homo sapiens] >gil473581 DNA topoisomerase I [Homo sapiens] {SUB 5-765} >gil401851991 (AL022394)	dJ511B24.1 (Topoisomerase I) [Homo sapiens] [SUB 437-765] Length = 765 puative ATP/GTP-binding protein [Homo sapiens] >sp[Q29298]Q29298 PUTATIVE	ATP/GTP-BINDING PROTEIN. Length 425 26S proteasome-associated pad I homolog [Homo sapiens] >spl0004871000487 26S PROTEASOME-ASSOCIATED PAD1 PLOMOT OC I menth = 310	nonvolved appearance (EC 3.2.1.5) [Homo sapiens] prir[A33427][HWHUFA alpha-L-fucosidase (EC 3.2.1.51) 1 precursor, tissue-human sgrill[PID][A5443 alpha-L-fucosidase (EC 3.2.1.51) 2 precursor, tissue-human sgrill[PID][A5443 alpha-L-fucosidase (A5 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	[Homo sapiens] { 3CD 307-309 Edge Property Protein tyrosine phosphatase [Homo sapiens] Length = 415
829066	829068	829069 829074 829077 829078	829079 829085	829093	829099	829101
290	291	292 293 294 295	296 297	298	299	300

HLTE083	HLWAC24 HLWAX30 HLTGF21 HLTG892 HLQB97 HLQB97 HLQC037 HLQC037 HLQDA57	HLQCX53 HLQAM57	HLTHS28
94	66	86	96
84	66	86	95
29	663 525 155 333 670 265 374 910 698 585	154 2090	1254
æ	265 316 3 1 1 2 104 144 611 558	2 %	55
IIII ALU SUBFAMILY SQ WARNING ENTRY spP39194 ALU7_HU IIII Length = 593	es /\		Spirit Association of the performance of the perfor
829102	829103 829104 829109 829111 829115 829116 829110 829120 829123	829126 829135	829136
301	302 303 304 305 306 307 310 310	312 313	314

genera genera geleta desego perce sinta genera genera genera genera de la composito de la comp

HLHTN31	HLB128	HLHDP51	HLICD11	HLHCD19	HLGDA89	HLDBY56 HLDBN31	HI.2AG36	
89 F	66		001	83	68	28	5	
68	66		66	82	88	98	3	
499	1135	279	783	347	068	160	3 2	į.
35	2	55	-	6	6	7 -	- ° °	210
gi 181227	gi 2338748		gi 432274	gnlPID e253210	gi 3510462	601061	21/27/1922	
cytochrome b5 [Homo sapiens] pair[A28936[CBHU5 cytochrome b5, microsonal form - human sapiro(16/CYSB + HUMAN CYTOCHROME sapiro(16/CYSB + HUMAN CYTOCHROME so for 10, 2, 1431, sail 18729 cytochrome b5	[Hono sapiens] { SUB 87-134} Length = 134 (AF016509) oxidoreductase [Homo sapiens] ssp[O14756 O14756 OXIDOREDUCTASE.	Length = 317	protein kinase C jota [Homo sapiens] >gi 598225 protein kinase C jota [Homo sapiens] >pir[A49509]A49509 protein kinase C (EC	2,7.1) iota - human ORF YDL065 (Isaccharomyces cerevisiae] - prir(867598/867598 probable membrane protein YDL065e - yeast (Saccharomyces cerevisiae)	(AF019767) zinc finger protein [Homo sapiens] >sp[075312 075312 ZINC FINGER PROTEIN.	Length = 459	complement factor B [Homo sapiens] -gi[1234733 (AF019413) complement factor B [Homo sapiens] -gi[553536 MHC factor B [Homo sapiens] {SUB 339-509} Length = 764	
829138	829142	0000	829148 829149	829156	829162	829170	829177	829179
315	316	ţ	318	319	320	321	322	323

per control and one many control and per control and the contr

HL1BD94	HLAAB63	HL2AG38	HL4AF38	HL1BM07
86	92	87	94	92
86	92	87	94	75
1005	1238	359	886	432 252
553	787	т	4	
9839 ed. 1	gn PID ¢248491	gi 3169393	gi 312998	gi 1401126
CDC2 polypeptide (CDC2) (AA 1-297) [Homo sapiens] >g[12841 CDC2 protein (AA 1-297) [Homo sapiens] >pil/2841 CDC2 protein (AA 1-297) [Homo sapiens] >pil/28539]A.29539 protein kinase (EC 2.7.1.37) edc2 - human >sp[906493]CC2 HUMAN (ELL DIVISION CONTROL PROTEIN 2 HOMOLOG (EC 2.7.1) (P34 PROTEIN KINASE)	M-phase phosphoprotein 4 [Homo sapiens] ssp[099545](099545 M-PHASE PHOSPHOPROTEIN 4 (FRAGMENT). Length	= 611 (APJ3866) eukaryotic initiation factor 4E- binding protein 3 [Homo sapiens] >>p(boto 1) (FO002) 6 EUKARYOTIC INTIJATION FACTOR 4E-BINDING	PROTEIN 3. Longth = 100 protein kinase (Homo sapiens) prit(S44 130/S44.130) serine/threonine-specific protein kinase PLK (EC 2.7.1) - human >>ppis3350/PLK I. HUMAN SERINETHREONINE-PROTEIN KINASE PLK (EC 2.7.1) (PLK-I.) (STRINE- THREONINE PROTEIN KINASE 13)	(STPK13). Length = 603 TAK1 binding protein [Homo sapiens] >sp[Q15750[Q15750 TAK1 BINDING PROTEIN. Length = 504
829184	829185 829188	829190	829193	829196 829197
324	325 326	327	328	329

HL1AY04	HL1AL88 HL2AF80 HL1AG80 HKMSB51	HL1AG81 HL1AG22 HKMMC06 HKGBU67	HLJAC64 HNEBF88	HKMMZ30	HKIYE27 HKMME67
96	47	100	87	97	
92	74	100	08	97	
465	258 342 315 484	175 290 664 549	187 1720	1730	548 92
76	1 127 148 2	29 24 68 1	2 1607	186	285 42
gi 3170653	gi 1236235	gi 2708309	pir S72481 S72481	gi 404013	
(AF060502) peroxisome assembly protein PEX101 (Homo sapiens) asplo60683 [PEXA, HUMAN PEROXISOME ASSEMBLY PROTEIN PEX10 (PEROXIN-10).	Length = 326 cyclin G2 [Homo sapiens] >gi[1236915 cyclin G2 [Homo sapiens] >splQ16389[Q16389]	CYCLIN G2. Length = 344 (AF016371) U-snRNP-associated cyclophilin [Homo supiests] > 589/367730 (AF096331) Change supiests] > 580/47434 (AF096331) Change supiests] > 580/43447 (AF096331) Change supiests] > 580/4347 (AF096331) Change supiests] > 58	CJ-SNRNP-ASSOCIATED CYCLOPHILIN (EC 5.2.1.8). Length = 177 probable transposase - human transposable element MER37 >prifS72486/57486 putuitve	Transpossae - Influm transposs	CELL ENHANCING FACTOR PRECURSOR. Length = 491
829202	829203 829209 829210 829214	829215 829219 829220 829222	829223 829225	829226	829227 829231
331	332 333 334 335	336 337 338 339	340 341	342	343 344

TTOTEO. CORTACOS

HKGDC59	HKFBA66 HKGAB62 HKHAK14	HKAFK34 HKAHA63 HKAFL67 HKAFL67	HKADJ19
95	001	68	86
94	100	88	86
1546	782 347 955	424 309 982 1831	361
2 5	123 141 2 2	68 169 158 1043	6
gi 30307	gi 1160967	gi 3885931	gi 10616
cyclin A [Homo sapiens] >gi[510604 cyclin A [Homo sapiens] >pii[508277/508277 cyclin A - human >spi[200248/CGA_HUMAN GGMITTIC-SPECIFIC CYCLIN A. Length = 4332	palmitoyl-protein thioesterase [Homo sapiens] 2gil 314355 palmitoyl protein thioesterase [Homo sapiens] 2gi[2465725 (A4022211) palmitoyl-protein thioesterase [Homo sapiens] 2sapiPSo897]PPT HUMAN PALMITOYL- PROTEIN THIOESTERASE PRECURSOR (EC	5.1.2.22) (PALMI (AF094583) putative HIV-1 infection related protein [Homo sapiens] ssp(73889591[G885931 [PUTATIVE HIV-1 INFECTION RELATED PROTEIN	(FRAGMENT). Length = 129 histone H4 [Tigotius californicus] >gi[297562 histone H4 (Editronoma thummi] >gi[7084 histone H4 gere product [Chironomus thummi] >gi[7440 histone H4 Drosophila hydei] >gi[7440 histone H4 Drosophila hydei] >gnl[PD][6242831 histone H4 [Drosophila hydei]
829232	829233 829239 829240 829242	829246 829250 829253 829255	829263
345	346 347 348 349	350 351 352 353	354

HKADL80	HL1AG18	HKAEP12	HKAPF38	HKACB58	HKAAS81	HJKSB47
28	98	42	92	90	95	
43	98	94	76	06	95	
636	1118	507	546	2422	597	375
115	261	-	55	272	163	172
gi 1123105	gi 181041	gi 1000712	gni PID d1022913	gni PID d1014097	gi 3548790	
similar to S. cerevisiae longevity-assurance protein 1 (SP:P38703) [Caenorhabdiis elegans] >sp[0.17870]Q17870 SIMILAR TO S. CEREVISIAE LOUGEVITY-ASSURANCE	PROTEIN I. Length = 504. CAMP response element regulatory protein [Homo sapiens] >gnl PID d1014939 TAXREB67] protein [Homo sapiens] >pritA=5777/A45577 transcription factor (XEB-2 - human S=58p PIS848 ATF4_LHUMAN CYCLIC-AMP- DEPENDENT TRANCREPTION PACTOR TAXANANC CONTOR PACTOR TAXANANC CONTOR PACTOR	ATF-4 (UAV-BIA)URICA INCIDENTIAL INCIDENTI	(FRADOGAZ) Synchrome b small subunit of complex II Homo supiens) sep[01452][DHSD_HUMAN SUCCINATE DEHYDROGENAE [UBIQUINONE] CYTOCHROME B SMALL SUBUNIT PRECURSOR (CYSS) (SUCCINATE UBIQUINONE REDUCINSOR CASE) (SUCCINATE UBIQUINONE REDUCINSOR CASE) (SUCCINATE CASE	ANCHOR SUBUNIT). Length = 159 Similar to D. melanogsister cadherin-related tumor suppressor [Homo sapiens] >sp[092566]092566 MYELOBLAST KIAA0179 (FRAGMENT).	Length = 2408 (AC005620) R33590_2, partial CDS [Homo sapiens] >sp[075291[075291 R33590_2,	PARTIAL CDS (FRAGMENT). Length = 121
829266	829271	829273	829274	829276	829279	829280
355	356	357	358	359	360	361

HJAAF37 HJMBB19 HKADQ69 HJAAB29 HJACK32 HJSAN67 HJPBA19	HISAV27	HREA/2 HRAAL43 HBC185
86	8	100
86	⊗	001
414 322 912 358 212 666 225	694	929 716 853
235 2 706 134 81 352	61	600 300 161
gi 34672	gi 187579	gi 180173
mitotic kinase-like protein-1 [Homo sapiens] >prik2x3262[\$23262, kinesin-alated protein MKLP.1-1 - human >sp[00224]RMLP_LHUMAN MITOTIC KINESIN-LIKE PROTEIN-1. Length	= 960 Obmethylguanine-DNA methyltransferase [Homo sapiens] >gi[307]99 G-O-methylguanine- DNA methyltransferase (EC 2.1.1.63) [Homo sapiens] >gi[34559 Ob-methylguanine-DNA methyltransferase (Homo sapiens] >pit/A4889/KUHUMC methylated-DNA-methyltransferase (Homo sapiens)	protein-tysteine 5-m. putative [Homo sapiens] >prifB41648[B41648] protein-tyrosine-phosphatase (BC 3.1.3.48) cdc25B - human >splP30303[MPI2_HUMAN M-PHASE INDUCTER PHOSPHATASE 2 (BC 3.1.3.48). pqi2739200 (API36233) cdc25B phosphatase [Homo sapiens] (SUB 56-338) Length = 366
829283 829284 829285 829287 829295 829296 829296	829298	829302 829304 829320
362 363 364 365 366 367 368	369	370 371 372

HJBCY27	HKAEV74	HAJAC05 HAIBC14		HAGHF36 HAHCZ18	HAICN24	HAICL28	HAGDR03	HAGEX65	HAGEP17
95	88	74			86		82	100	
95	88	50			95		80	66	
938	782 651	448		222	1206	741	853	882	744
es ·	07	272		ξ,	۰.	478	7	52	1
gi 1336099	gi 325	#11065515	01 CCCC 118		gi 2766493	-	gi 182120	gi 1575615	
capping protein alpha subunit isoform 1 [Homo sapiens] -pair[GOZ639]G0Z639 capping protein alpha subunit isoform 1 - human -sapPs2907[CAZ1 HUMAN F-ACTIN CAPPING PROTEIN ALPHA-1 SUBUNIT (CAPZ) 1-cneft = 286	initiation factor 2 alpha [Box taurus] >gi[204002] translational initiation factor eIF-2, alpha submit [Rattus norvegicus] >prifA26711[A26711] translation initiation factor eIF-2 alpha chain - rat >prifS1864[S1846] translation initiation factor eIF-2 alpha chain - rat - prifS1846[S1846] translation initiation factor		weak smilarity to procollagen alpha chain L(V) chain (Caenorhabditis elegans) ssp(20020)(Q20020 SIMILARITY TO PROCOLLAGEN ALPHA CHAIN I(V) CLIAN I sannth – 607	Chain, Lengin – 07.	(A E022188) W/SB-2 [Mus musculus]	(ALCOSTOR) M. D. L. L. L. L. L. L. A. L. Sep 054929 054929 WSB-2. Length = 404	HIV-EP2/Schnurri-2 [Homo sapiens] >gi 187405 MHC binding protein-2 [Homo sapiens] {SUB	1184-1323 Length = 1833 zinc finger protein [Homo sapiens] >sn[09295 [092951 ZINC FINGER PROTEIN.	Length = 273
829322	829355 829364	829919	829941	829945	829946	146678	829952 829954	829955	829957
373	374 375	376	377	378	379	380	381	383	384

HAECH75	HAIBJ62	HAGAX57	HADDI38	HADBH65 HADFU64	HACBO64	насво88	HACAI04 HADFI12
74 H	97 I	74 H	81 I	72 F	88 I	1000 F	
62	76	40	8	70	88	100	
418	1069	505	542	878 391	721	500	849 454
2	61	185	213	5 3	26	21	325 266
gi 710295	gi 520450	gi 4008081	gi 31968	pir C34223 C34223	gi 1905998	bbs 140615	
ribosomal protein L22 [Rattus norvegicus]	Length = 128 sorbitol dehydrogenase [Homo sapiens] spil 755 138 corbitol dehydrogenase [Homo sapiens] >pil/A54674 A54674 L-iditol 2- dehydrogenase [CL 1.1.1.4] - human Assolic 755 138 (21755 138 CRB HTOL.	DEHYDROGENASE. Length = 357 (AF106835) putative Dnal [Methylovorus sp. strain SS1] >sp[G4008081]G4008081	PUTATIVE DNAJ. Lengin = 5/1 histone HI [Homo sapiens] ppir[22654HSHU1 histone HI-1 - human spip[1402] HID HUMAN HISTONE HID	(H1.2). {SUB 2-21.5} Lengtn = 21.5 transcription factor ATF-3 - human (fragment)	Length = 222 nuclear RNA helicase [Homo sapiens] >sp O00148 O00148 NUCLEAR RNA	HEILCASE. Longel = 427 smooth muscle myosin heavy chain isoform SMI [human, umbiliteal cord, fetal aorta. Peptide Partial, 30 aal [Homos septens]. pspil65768[65768 smooth muscle myosin heavy chain isoform SMI.] human firgment)	SSp(J10086/J10086 SMUOJ H MUSCLE MYOSIN HEAVY CHAIN
829958	829960	829966	829967	829970 829981	829985	829986	829988 829990
385	386	387	388	389	391	392	393 394

HACBV53	H6EDW38	H6EDK29	новъет / Новес (39	H2MBY64	H6EEX40	H2LAD85
86	17	65	11	88	42	93
86	11	43	77	88	37	93
586	240 440	830	142 856	903	347	1028
2	3	270	14 545	397	3	Е
bbs 164521	gnlPID e276888	gnlPID e1339667	gi 2258274	gi 1054752	gj 511298	gi 37070
NGFI-B/nur77 beta-type transcription factor homolog=TIVUR [human, T lymphoid cell line, PEER, Peptide, 335 aa] [Homo sapiens] >ap[01631] [Q16311 TINURE NGFI-BNUR77 BETA-TYPE TRANSCRIPTION FACTOR HOMOLOG, Length = 535	Not56-like protein [Homo sapiens] >>p Q92685 NT56_HUMAN NOT56-LIKE	PROTEIN. Length = 438 (AL033385) dna-directed ma polymerase iii subunit [Schizosaccharomyces pombe]	NNP-1 [Homo sapiens] >splP56182[NNP1_HUMAN NNP-1 PROTEIN	(D21S2056E). Length = 461 homologous to rat HREV107 (ACC.NO.	X/0453, I pitotio Sapital, League – 102 alpha I(XVIII) collagen [Mus musculus] ssp[Q61437]Q61437 PROCOLLAGEN, TYPE XVIII, ALPHA I (ALPHA I COLLAGEN)	(XVIII) (FARAUMEN I.) Lengin = 1.280 TFILE-beta [Homo sapiens] -bbs/6/862 general transcription factor IIE 34 kda subunit, TFIIE 34 kda subunit [human, Peptide, 291 aa] [Homo sapiens] >pii/S29292/S2926 transcription factor TFILE-beta - human Length = 291
829991	829992 829993	829998	829999	830001	830005	830008
395	396 397	398	399	401	402	403

H2MBU62	H2MBT25	H2CBH25 H2CBU57	H2CBX43	H2CBG30	H2CBB64
100	78	100	95	100	66
100	17	100	95	100	66
930	1074	770 2234	943	784	688
-	469	3	6	347	7
gi 3643809	gi 508725	gi 298097	gi 1263008	pir JE0065 JE0065	gi 3676399
(AF062346) zinc finger protein 216 splice variant 1 [Homo sapiens] >gij3643811 (AF062347) zinc finger protein 216 splice variant 2 [Homo sapiens] >gij368066 (AF062072) zinc finger protein 216 [Homo sapiens] >spl07080800708007 ZINC FINGER PROTEIN 216. >bbs	thymopoietin alpha [Homo sapiens] >pirlA55741[A55741 thymopoietin alpha	precursor - human Length = 694 subunit of coatenner complex (Homo sapiens) >sp[P35606(COPP_HUMAN COATOMER) BETA SUBUNIT (BETA-COAT PROTEIN) (RETA-COAT) (P102), [SUB 2-906) Length =	906 aldehyde dehydrogenase [Homo sapiens] >>p P30837[DHA5_HUMAN ALDEHYDE DEHYDROGENASE, MITOCHONDRIAL X PRECURSOR (EC 1.2.1.3) (CLASS 2). Length =	retroviral proteinase-like protein - human	(Ingment) Legin = 103 REPAGATSS) 14-3-5 epsilon Boc taurus) REPAGATS 14-3-5 epsilon Boc taurus) REPAGATS 14-3-5 epsilon Boc taurus) REPAGATS 14-3-5 protein Homo sapiens) Protein epsilon isoform [Homo sapiens] Pagil 18-722 14-3-5 protein epsilon isoform [Homo sa
830010	830127	830128	830137	830140	830157
404	405	406	408	409	410

And the first was been and the first design of the first with the first way of the first wa

HWACG91	H2CAC90	HLDCQ28	HMCBI54	HMCGQ67	HLWBS80	HKMAB33 HWBAS06
94	100	16	82	100	88	92
93	100	91	81	100	88	99
631	1263	1092	744	1059	1111	730 672
08	119	325	115	112	∞	128
gi 306891	gi 306891	gi 2351380	gi 180928	gi 28384	gi 1684845	pir S39543 S39543 gn PID d1035383
90kDa heat shock protein [Homo sapiens] -prid-2946 [IFHHU34 heat shock protein 90- beta - human >splP08238[HS98_HUMAN HEAT SHOCK PROTEIN HEY 0-BETA (HSP	84) (HSF 90), 1808 2-7243 Langin = 124 90kDa heat shock protein [Homo sapiens] 	ery (1402) (1502	Length = 352 core protein II precursor [Homo sapiens] - prir[A32629] 432629 Usiquinol-cytochrome-creductase (EC 1.10.2.2) core protein II - human	Length = 453 S'half of the product is homologues to Bacillus S'half of the product is homologues to Bacillus subriis SAICAR synthetase, 3' half corresponds to the catalytic submuin of AIR carboxylase [Homo sapiens] >pir[51447][514147] multifunctional purine biosynthesis protein -	human Length = 425 pinin [Canis familiaris] >sp P79149 P79149	PININ. Length = 773 GTP-binding protein - mouse Length = 198 (AB016869) p70 riboscomal S6 kinase beta [Homo sapiens] >sp D1035383 D1035383 P70 RIBOSOMAL S6 KINASE BETA. Length = 495
830195	830196	830409	830417	830531	830677	831355 831420
411	412	413	414	415	416	417 418

H2LAD84		HLLBB45	HKMLZ60	HWAFH33	HNFHV44	HMEFS23
93	,	96	100	81	81	66
63	}	8	86	81	78	66
1107		1309	434	542	464	1038
001		278	24	57	126	388
.:1544403	0.000 (1.	gi 182273	gi 583141	gi 190420	bbs 180090	gi 550072
	Gem [Hatmon superior, part[As-35/7,535]A. GTP-binding protein Gem - human GTP-binding protein Gem - human Sep[PS-5840]GEM_HUMAN GTP-BINDING PROTEIN GEM (GTP-BINDING MITOGEN- INDICCED T-CELL PROTEIN) (RAS-LIKE DEOCYTIN ETB. 1 Leach = 306.	AND TAILOR MAN, CARGAIN 2007. (AFO) 7257) erythroblastosis virus oncogene homolog 2 protein Homo sapiens Homos appears by parigl 3206/GTVHUE2 transcription factor es-2-pryFIR3206/GTVHUE2 transcription factor es-2-pryFIR3206/GTVHUE2 transcription factor es-2-pryFIR3206/GTVHUE2 transcription factor es-2-pryFIR3206/GTVHUE2 transcription factor es-2-pryFIR31, zgil [8227] tets protein [Homo	sapens I JOUS 5-44 lissue-specific secretory protein [unidentified] >gi[32051 HB4 protein [Homo sapiens] >ppi[3224544][52454 HE4 protein - luman >ssol014508[EP4 HUMAN MAJOR	EPIDIDYMIS SPECIFIC PROTEIN E4 PRECUGSOR (HE4) (EPIDIDYMAL SECRETORY PROTEIN E4), Length = 125 secretory granule proceegy/can peptide core (Homo supiens) sgi138062 procegylycan secretory granule 1 [Homo supiens] > 2433405	hematopoetic proteoglycan core protein (AA 1 - 158) [Homo sapiens] sprijA35183[A28058 secretory granule proteglycan core prote putative Rab5-interacting protein (clone L1-57) [human, HeLa cells, Peptide Partial, 122 aa]	[Homo sapiens] GTP-binding protein [Homo sapiens] -prit[G34323[G34323 GTP-binding protein Rab6 - human
	831702	831717	832488	833207	835940	836953
	419	420	421	422	423	424

HL1AS90 HODHJ94	HIASC92	HSLBF05	HPJCY94	HAUBJ52	HWHOA57	ý	HWBEJ29	HWBFM54	HADFY02	HIGGO WITH
	86	86		24	100	3	94		8	×
	86	86		26	00	Ĉ.	94		i	=
1168 494	714	953	294	206	540	£	1020	17	723	300
860 276	-	435	1	ю	501	/71	40	-	382	-
	gi 550013	gi 1407826		gi 1245357	10000	gi 111/984	gi 2708305			gni PID d1019745
	ribosomal protein L5 [Homo sapiens] >prifSS5912[855912 ribosomal protein L5, cytosolic - human >gr[1688578 ribosomal L5 protein [Homo sapiens] {SUB 153-297} Length	= 297 protein trafficking protein [Homo sapiens] >gen[PID]e239968 transmentbrane protein [Homo sapiens] >gen[PID]e1309760 (AJ004913) integral membrane protein, Tmp21-1 (f23) [Homo sapiens] >prir[G01159/G01159 protein trafficking protein tmp21-1 -human >splE13097	r	procollagen C-proteinase [Homo sapiens] >sp[Q13292]Q13292 PROCOLLAGEN C-	PROTEINASE. Length = 986	cyclin C [Homo sapiens] >pirl/A40268 A40268 cyclin C - human >sp P24863 CG1C_HUMAN	(AF016369) U4/U6 small nuclear	ribonucleoprotein hPtp4 [Homo sapiens] >sp 043445 043445 U4/U6 SMALL NUCLEAR RIBONUCLEOPROTEIN HPRP4. Length = 522		AZ-1 [Mus musculus] >gni[PID[d1008454 pre-acrosome localization protein [Mus musculus] >pril5(63995)[863995] acrosomal protein AZ1-mouse >sp[062036](p62036 6-AZACYTIDINE INDUCED PROTEIN (PRE-ACROSOME LOCALIZATION PROTEIN). Length = 1060
837105	837373	837687	10000	838442		840541	840543		840550	840565

HPRBG41 HOEDH35	HIBCA19 HYAAB09	HWEAD52 HWEAD52	HAPBL12	HWLFE67	HYAAY95	HWTAH85	HTYSE72		200000	HOFBUS
91	74	100				26	80	2	è	C
06	74	100				97	80	0	3	04
136 691	1097 719	292 1856	1549	867	191	170	217	31,		201
2.6	873	0.60	05	343	21	3	,	n		-
gi 1657837	gj 2852125	sp P13645 K1CJ_HU MAN				gnl PID e329709	OFFOOT !	g1498/8		gi[294502
p116Rip [Mus musculus] >splP97434 P97434	P116RIP. Length = 1024 S-adenosyl homocysteine hydrolase homolog	[Homo sapens] Longin = 300 KERATIN, TYPE I CYTOSKELETAL 10 (CYTOKERATIN 10) (K10) Sep[244509[C24450] KERATIN 10 V2 SUBDOMAIN 142 AMINO ACID VARIANT.	$\{SUB 452-593\}$ Length = 593			(AJ000480) phosphoprotein [Homo sapiens] >sp[015180 015180 PHOSPHOPROTEIN	(FRAGMENT). Length = 224	alpha-adaptin (A) (AA I-977) [Mus musculus) ppin 2011 [A3011] alpha-adaptin A - more sapit 1426 ADAA, MOUSE ALPHA- ADAPTIN A (CLATHRIN ASSEMBLY PROTIBIN CONFIEXZ A LAPHA-A LARGE FOR ANY (100 KD CAATHRIN FSICH E	PROTEIN A) (PLASMA MEMBRANE ADAPTOR HA2/AP2 ADAPT	olfactomedin [Rana catesbeiana] -pair[A77442]A4742 olfactomedin precursor- pair[A77442]A4742 olfactomedin precursor- olfactomedin PRECURSOR (OLFACTORY MUCUS PROTEIN). Length = 464
840569 840570	840571 840573	840574 840575		840579	840380	840605		840607		840609
436 437	438	440 441		445	545	1 2 1 2 1		446		447

The first of the same and could be to be the same and the

2):5151[Q15151] gallPID e214034 1784 2 B 239-409} B 239-409} GYTEN. Length OTEN. Length ini [Bos taurus] ini [Bos taurus] ini Bos taurus]	8 94 94 HBGNU40	8 HUFAT62 12 85 86 HWLFV07	34 94 94 HUKDT16	962 HTXNQ26 542 97 98 HTEK41				50 HTXB036	1550 HTXB036
plakoglobin [Homo sapiens] >sp[Q15151] gnl[PID]e214034 PLAKOGLOBIN. >gnl[PID]d101077 plakoglobin [Homo sapiens] (SUB 239-409) Length = 745 B-IND1 protein [Mus musculus] gnl[PID]e1192419 sep[O4003](00003 B-IND1 PROTEIN Length = 189 casein kinase II alpha subunit Bos taurus sep[o11 casein kinase II alpha subunit Bos taurus] sep[o11 casein kinase II alpha subunit Homo supens] ppitA303 19[A30319 casein kinase II (EC 2.71) L1-alpha-glucan branching enzyme [Homo gill 144-40]bn-glucan branching enzyme [Homo gill 144-40]bn-glucan branching enzyme [Homo gill 144-40]									1065 15
plakoglobin [Homo sapiens] >sp[015151[Q15151] PLAKOGLOBIN. >gall/PD[d1010077] plakoglobin [Homo sapiens] [SUB 2:39-409) Length = 745 B-IND1 protein [Mus musculus] B-IND2 protein [Mus musculus] sep[0:09003[O0030-B-IND1 PROTEIN. Length = 189 cacien kinase alpha subunit [Bos taurus] sep[177994 casein kinase alpha subunit [Bos taurus] sep[177994 casein kinase alpha subunit [Homo sapiens] sp[177994 casein kinase II alpha subunit [Homo sapiens] spii/A30319[A30319 casein kinase II (BC 2.7.1) 14-alpha-glucan branching euzyme [Homo sapiens] spii/A4077[A6072 glycogen suprilA4077]	gnl PID e214034	gnl PID e1192419	gi 162777	gi 184026					
	plakoglobin [Homo sapiens] >sp[Q15151[Q15151] PLAKOGLOBIN. >gnl[PID[d1010077] plakoglobin [Homo sapiens] {SUB 239-409}	Length = 745 B-IND1 protein [Mus musculus] sen[0.0000310(0)9003 B-IND1 PROTEIN. Length	= 189 casein kinase II alpha subunit [Bos taurus] >gi[611 casein kinase alpha subunit [Bos taurus]	>gi[177994 casein kinase II alpha subumit Homo appens) >gi[188147 casein kinase II alpha subumit Homo sapieas) >pith/3/03 19[A30319 casein kinase II (EC 2.7.1) 14-alpha-glucan branching erzyme (Homo sapiens) >pith/A46075[A46075 glycogen	branching enzyme - human happengengengengengengengengengengengengenge	matching enzyme - lumfan >spiQO4446[GLGB_HIMANN 1.4-ALPHA- GLUCAN BRANCHING ENZYME (EC 2.4.1.18) (GLYCOGEN BRANCHING ENZYME) (BRANCHER ENZYME). Length =	suptome quarto entition and another grayout entition and a polyother grayout entition and a polyoth	vanching earyon - iumah syiQO4446(GLOB, HUMAN 1.4-ALPHA- GLUCAN BRANCHING ENZYME (EC 2.4.1.18) (GLYCOGEN BRANCHING ENZYME) (BRANCHER ENZYME). Length = 702	monthog enzyon – tumah sepiQu446(GLGB, HUMAN 1.4-ALPHA- GLUCAN BRANCHING ENZYME (EC ELJLIS) (GLYCOGEN BRANCHING EAZYME) (BRANCHER ENZYME). Longth = 702
	448	449 450	451	452 453					;

HTTDU70	HTTFY74 HTTBA16 HTTBT86 HTTBT86 HTTBT87 HTTBT76 HTTBT74 HTTBT87 HTTBT87 HTTBT87 HTTBT87
73	88
53	31
1250	1453 612 612 438 748 382 551 1700 418 940 588
m	1241 1 1 2 232 3 3 5 134 3 15 1035 2 2 2 2 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1
gnIPID c1358418	gi 3236237 gi 673454
(AL033514) predicted using Genefinder; cDNA EST yk465c10.5 comes from this gene [Czenochabdinis elegans] >splE1358418[E1358418 Y75B8A.16 PROTEIN. Length = 431	(AC004684) putative ribotol dehydrogenase [Arabidopsis thaliana] -sp[080924]080924 PUTATIVE RIBOTOL DEHYDROGENASE. Length = 321 spermatid perinuclear RNA binding protein [Mus musculus] -pith/57284457284 spermatid perinuclear RNA-binding protein Spir - mouse >sp[062262]Q62262 SPERMATID PERINUCLEAR RNA-BINDING PROTEIN.
840631	840632 840633 840634 840635 840637 840630 840640 840650 840650
455	456 457 458 459 460 461 462 463 463 464 464

The state of the s

Length = 648

HTTDG56 HTPCP50 HTSHI54	HTOJF77 HTLGP71 HTOEY44	HTPBY35 HTTBJ61 HTJMJ95 HTHDF09	HTJAA66	HTLDZ68
68	92	66	86	87
68	06	66	86	87
989 2139 1518	520 710 1333	466 1647 1001 1739	069	525
3 1 2 11	293 3 494	179 1132 210 3	-	208
gi[2909777	gi 181123	gi 3037013	gi 179646	gi 31847
(AP016507) C-terminal binding protein 2 [Homo sapiens] >sp]P56545[CTB2, HUMAN C-TERMINAL BINDING PROTEIN 2. Length =	445 cleavage signal I protein [Homo sapiens]	SIGNAL-1 PROTEIN (CS-1). Length = 249 (AF037448) Gry-tbp [Homo sapiens]	>sp 060506 060506 GRY-RBP Length = 623 complement complement compount C1s [Homo sapiens] sgif17648 complement subcomponent C1s precursor [Homo sapiens] >gif1763110 complement protein C1s precursor [Homo sapiens] >pif17640C1HUS complement protein C1s precursor [Homo sapiens] >pif17640C1HUS complement c1s (FC 4.4.2) 14.7) meaning	succompositor compositor composit
840653 840655 840659	840660 840661 840662	840663 840670 840671 840672	840673	840674
466 467 468	469 470 471	472 473 474	476	477

PRECURSOR. Length = 558

HTJNE24 HTGFX11 HTLEI30	HTEKG75	HTELT78 HDQDW52 HTEJY89 HTELU22 HSYBK03	HSSNA42 HSSMV32	HSVBQ73
72	70	66	86	100
84	89	66	86	100
1010 842 555	006	998 1370 955 621 828	1058	284 510
237 3 115	1	54 879 713 106	561 227	3 22 6
gnlPID e1343517	gi 605	gi 1199620	gi 3242764	gi]386867
Similarity to H.influenza ribonuclease PH	(SW:RNPH_HAGIN); polynucleotide adenylytransferase [Bos taurus] -sapt25300[PAP_BOVIN POLY(A) POLYMERANE (EC 2.77.19) (PAP) (POLYNUCLEOTIDE ADENYLYLTRANSFERASE). (SUB 2.739)	Length = 739 stanniccalcin [Homo sapiens] >gi[975298] stanniccalcin precursor [Homo sapiens]	sspiPs2823(CSTP_HUMAN STANNIOCALCIN PRECURSOR. (AC005154) similar to protein U28928 (PID:g861306) [Homo sapiens] ssp(PG223)[OF223 WUGSC:H_D10777023.1	rrOttary: Longar 1705 metallothionein LF [Homo sapiens] >gi[386866 human metallothionein-If [Homo sapiens] -pir[B22654]8/MHU]F reseallothionein 1F- human >sp[P04733]MT]F_HUMAN MFTALI.OTHONEIN-IF (MT-1F). Leneth = 61
840677 840678 840680	840691	840700 840701 840702 840705 840715	840717	840719 840724
478 479 480	481	482 483 484 485 486	487	489

The state of the s

METALLOTHIONEIN-IF (MT-1F). Length = 61

HSRDA46 HSXCO55 HSSAO67	HSSGG96 HSRFE65 HSRFE95	HSSFS95 HSLJW05 HSLII31	HSRGX11	HSODA53	HTEFV12
75	100	85	96	62	06
69	100	85	96	45	06
1501 606 471	437 365 342	341 561 1420	1441	845	2519
1259 4 22	3 228 58	3 196 452	99	507	ю
gnl PID d1013599	gi 338259	gnlPID d1013883	bbs 145232	gi 2335109	sp Q15746 KMLS_H UMAN
Unknown apg-2 [Mus musculus] >sp[Q61316 HS74_MOUSE HEAT SHOCK 70-	RELATED PROTEIN APG-2. Length = 841 small nuclear ribonucleic protein [Homo sapiens]	Length = 92 similar to mouse CCI. [Homo sapiens] >=n(02260)[02260] MYELOBLAST	KIA/0202. Length = 1591 cytoplasmic antiprofeniase, CAP=38 kda intracellular serine proteinase inhibitor [human, placenta. Peptide, 37 o aal [Homo sapiens]	Length = 376 (ACW0233) putative ABC transporter [Arabidopsis thaliana] >sp[0.22950[0.22950 ABC TRANSPORTER ISOLOG; 3 PARTIAL.	OOTH MES
840725 840727 840731	840733 840734 840736	840737 840739 840746	840748	840750	840751
491 492 493	494 495 496	497 498 499	200	501	502

Tooreo oosees

HKBAL84	HSLDB56	HSKDG51 HSLCS52	HSKHK35	HHPSF20	HJKSC89 HHSGD58	ннек (285	HHFES15
100 F	100 I	100	66	93		%	86
100	100	100	66	93		41	97
998	2073	529 195	673	657	347	493	618
236	481	233	107	-	216	7	-
gni PID d1022359	gi 1100209	sp D1036490 D10364 90	gi 183258	gi 2865208		gnl PID e1185260	gnl PID d1038106
(AB005624) rig-analog DNA-binding protein [Sus scorfa] zgil306898 rig-analog protein (punaive); punaive [Homo sapiens] zgil537416 human homologue of rat insulinoma gene (rig);	putative [Homo sapiens] transcription factor ZFM1 [Homo sapiens] ssp[0.15913[Q15913 TRANSCRIPTION ssepton 27501 1 poorth = 571	FERASE 2 (EC IATE-LYASE 2)	(FRAGMENT), Longun = 110 glyoxaslase I [Homo sapiens] -ganl[PID]d1003075 lactor) glutathione lyase [Homo sapiens] -pir[A46714]A46714 lactor]glutathione lyase	(EC 44.1.5) - human (AC003003) Homolog of rat B/K protein product (Homo sapiens) - sep[043390]043330 HUMAN HOMOLOGUE OF RAT B/K PROTEIN	PRODUCT (FRAGMENT). Length = 361	polynucleotide phosphorylase (PNPase) [Bacillus subfilis] sgil 118468 polynucleotide phosphorylase Bacillus subfilis print 370691 [S17069] polynibonucleotide nucleotidi ylmansfarase (EC 2.7.7.8) alpha chain	pup. 2. prints PACSU POL (AB001915) NG,NG-dimethylarginine dimethylaminohydrolase [Homo sapiens] Length = 285
840757	840759	840760 840770	840781	840789	840790	840798	840802
503	504	505 506	507	508	509	511	512

The state of the s

HHERC56	HHEPE84 HHFBP51 HHEMJ45	HGBIC73	HHEB106	HHEAB14 HHBFD61 HHEAH66	HHEAK56	HFVIE96 HFXCN75 HFXKK43	HGBAG76	HFXJP72
63		100	8		66		80	100
36		100	66		86		62	100
1935	208 690 214	154	864	436 2360 817	1180	618 1447 566	759	832
1	2 - 2	7	82	2 2022 14	. 70	130 1166 18	322	7
gi 308967		gnlPD e1371023	dbj AB004903_1		gnlPID e225428		gi 3688090	gi 2352534
zinc finger protein [Molgula oculata] >sp[Q25473 Q25473 ZINC FINGER PROTEIN.	Length = 558	(AL022162) dJ454M7.1.1 (Lowe Oculocerebrorenal Syndrome protein OCRL-1) (isoform 1) [Homo sapiens] >ganlPID[e244699 Lowe oculocerebrorenal syndrome (OCRL)	[Homo sapiens] [SUB 356-813] Lengtn = 81.9 (AB004903) STAT induced STAT inhibitor-2. [Homo sapiens] >ej[3265033 (AR037089) STAT-induced STAT inhibitor-2 [Homo sapiens] >ep[014508]014508 STAT INDUCED STAT	INHIBITOR-2. Length = 198	Cleavage and Polyadenylation Specifity Factor protein [Bos taurus] >sp[P79101][P79101] CLEAVAGE AND POLYADENYLATION CLEAVAGE AND POLYADENYLATIONAL	SPECIFILY FACTOR PROTEIN, Lengul - 004	(AC005757) R32611_2 [Homo sapiens] >sp[075865[075865 R32611_2 (FRAGMENT).	Length = 160 (AF006386) axonemal dynein light chain [Homo sapiens] >sp[O14645[O14645 AXONEMAL DYNEIN LIGHTI CHAIN. Length = 257
840803	840809	840814	840817	840825	840828	840829	840836 840837	840838
513	514	517	518	519 520	521 522	523	525 526	527

HGAMD29 HFPCKS6 HFVGM54 HGBBY80 HFPCN94 HFOXS46 HFOXV75 HFPGKV75	HFOYQ50	HFKEN53	HFKFG36	HFKFN13 HFITH86
51	74	66	88	
14	63	66	74	
790 791 791 1031 1044 2047 224 1183 833	1163	1678	632	831
2 216 12 669 151 470 15 149 249	ю ·	- 0	33	33
gip281094	gi 1230564	gi 179089	gi 3859855	
(AC002333) molybdenum cofactor biosynthesis	protein E isolog (Arabidopsis thaltana) sspl023827/022827 MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEINE ISOLOG. Length = 198 Gu protein [Homo sapiens] >pritPC6010[PC6010 RNA haclease Gu - human (fragment) ssp[013456/Q13456 NUCLEDGAAR RNA HELICASE GU (FRAGMENT). Length = 801	argininosuccinate lyase [Homo sapiens] >gil170901 argininosuccinate lyase [Homo sapiens] >pirlA31658[WZHURS argininosuccinate lyase (EC 4.3.2.1) - human	CAPG6.244) intersectin long form [Homo sapiens] sapiG3859855(3850955) INTERSECTIN LONG FORM. 28jl8459853 (APG6.243) intersectin short form [Homo sapiens] {SUB 1-1220} - zgl[393053] (APG6.247) intersectin long form [Homo sapiens] [SUB 1-1220] - zgl[393053]	adpens foot cost good females
840841 840842 840843 840845 840847 840851 840853 840854 840854	840859	840863 840868	840869	840870 840875
528 529 530 531 533 534 535	537	538	540	541 542

HFIZQ25	HFILING 4	HFIHASO	HHPDW66 HFIIR82	UECEO77		HFEBK16
0. 19	=		06	70	00	86
\$4	=		06		4	86
1110	944	428	964	1000	5/5	410
-	m	es	71	7071	250	æ
gi 3367519	gi 184080		gnl PID e330082		gi 172462	77.
(AC004392) Contains similarity to gb[U51898 Ca2+independent phospholipase A2 from Ratus norvegicus. [Azabidopsis thaliana]	histone H2B. I [Homo sapiens] >gullpup[e130465 (A1223333) Histone H2B [Homo sapiens] >gil51306 histone H2B-291B (AA 1 - 126) [Mus muscoulus] >pir[804153]SQ4153 histone H2B (clone 291B) - mouse >pir[40335[F40335] histone H2B. I (b) - hman sap[E1301465[E130]		(AJ000506) Homeodomain protein Meis2c [Mus musculus] >spjP97367]MEI2_MOUSE HOMEOBOX PROTEIN MEIS2 (MEIS1-RELATED PROTEIN 1). Length = 477		RNA polymerase I subunit A122 [Saccharonyces cerevisiae] Pgill 19685 ORF YRR053 w [Saccharonyces cerevisiae] 2gi[531231 RNA polymerase I A12.2 subunit [Saccharonyces cerevisiae] Sgill 01573 ORF	YMOON (34CHOUNT) AS A STATE AND A STATE AN
840876	840881	040003	840886	840887	840891	840892
543	544	245	546 546	547	548	549

And the state of t

нғін060	HFIAL02	HFIAW49	HFEBI76 HETIW62	HETBS69	HETC163	HEQAN83	HFKHD68 HHPBB92 HETJW92
臣	H		ΞΞ				
80	57	100		95	87	94	93
80	78	100		95	87	94	88
705	1249	1142	265	1100	2081	949	348 1754 432
-	425	ю	396	6	348	7	103 1530 1
gi 2511529	gi 632679	gi 758105		gi 2065561	gnl PID d1010577	gnl PID e224269	gi 307157
(AF002697) EIB 19K/Bcl-2-binding protein Nip3 (Homo sapieus) >sp[O 4620[O 14620 EIB 19K/BCL-2-BINDING PROTEIN NIP3. Length	= 194 Cdc73p [Saccharomyces cerevisiae] Cdc73p [Saccharomyces cerevisiae] YLR4 l8e - yeast (Saccharomyces cerevisiae) >sp[Q06697[Q06697 CHROMOSOME XII	COSMID 9931. Longth = 393 syntaxin-d [Homo sapiens] >gnllPID[s332032 syntaxin-d [Homo sapiens] >gnllPID[s332032] >gl[3570870 (AF026007) syntaxin-d [Homo sapiens] >gridS5720870 (AF026007) syntaxin-d [Homo sapiens] >pridS52726[S52726 syntaxin-d - human	Length = 29 /	DNA fragmentation factor-45 [Homo sapiens] >spl000273 DF45, HUMAN DNA FRAGMENTATION FACTOR-45 (DFF-45).	Length = 331 KIAA0156 gene product is related to Xenopus nucleolin. [Homo.sapiens] >sp\015020\015020	ORF. Length = 963 3-methyl-adenine DNA glycosylase [Homo saniens] Length = 298	MAL protein [Homo sapiens] >gi 435478 MAL-a gene product [Homo sapiens] >gi 435478 MAL-a MAL [Homo sapiens] >pir 429472 A29472 T- cell surface glycoprotein MAL, splice form a - human
840894	840896	840897	840898	840904 840905	840908	840909	840910 840912 840916
550	551	552	553	554 555	556	557	558 559 560

The party of the company of the party of the

HETIZ12 HAJCO38	HELGB82 HEQAN39 HEMFU44 HEMCG01	неом095	HEGAD28	HEMFC70 HEGAL 15 HELFC44	HEBST22
66		92	66	67	100
66		92	66	49	66
886 1508	1033 1289 364 1258	662	1019	1164 781 1685	1435 326
518 231	839 1044 119 2	6	8	1 2 822	3
gi 3641398		gi 292037	gi 3138924	gnl PID e1343797 gi 1465772	bbs 176180
(AF020038) NADP-dependent isocitrate dehydrogenase [Homo saptens] >gil564 1398 (AF020038) NADP-dependent isocitrate	dehydrogenase [Homo sapien	helix-loop-helix phosphoprotein [Homo sapiens] >g[292055 helix-loop-helix phosphoprotein [Homo sapiens] >plif[53000]5200 G-J0/G-1 sayitch regulatory protein 8 - human >prif[65984]f65984 helix-loop-helix	phosphoprotein - human Length = 211 (AF002282) alpha-actinin-2 associated LIM protein [Homo sapiens] >epj0604-40[060440] ALPHA-ACTININ-2 ASSOCIATED LIM	PROTEIN Length = 316 similar to thiolesterase; cofactor E [Homo sapiens] >sp[Q15813]Q15813	COFACTOR E. Length = \$27 lanosterol synthase [human, fetal liver, Peptide, 732 aa] [Homo sapiens] >gnl[PD]d1010523 lanosterol synthase [Homo sapiens] >gl[95134 2,3-oxidosqualene-lanosterol cyclase [Homo sapiens] >pirjIC4194µC4194 lanosterol synthase (EC 54.99.7) -human >spiP
840917 840918	840922 840923 840927	840929 840929	840930	840931 840941 840944	840945 840948
561 562	563 564 565	367 367	568	569 570 571	572 573

HE9RM92	HELGM94	НЕ9НС20	HFLVB33	HEEAD70		HEBFH29 HE9PB53	HE8UU14	HE9DH68	HE9NG78	
95	100	95	58	100						
95	100	95	57	100						
101	1437	1949	465	029		2222	387	874	961 1765	61
3	-	69	154	224		375	- 1	548	I 1433	1433
gnl PID e1360141	bbs 160014	pir S63672 S63672	gi 1575607	gi 416017						
(AJ005324) glutamate permease [synthetic construct] >gnl[PD]e1360147 (AJ005327)	glutamate permease [synthetic construct] - synthyllo [1500] 537 (A1005330) glutamate - permease [synthetic construct] Length = 459 - P43-mitochondrial elongation factor homolog - [human, liver, Peptide, 452 an] [Homo sapiens] - spri 53499 53499 translation elongation factor - TU-like protein P43, mitochondrial - human	Length = 452 RNase L inhibitor (clone 8) - human Length =	599 FUSE binding protein 2 [Homo sapiens]	2 (FRAGMENT). Length = 652 phosphomannose isomerase [Homo sapiens]	pulsatizatoriz manazo e prospora isonerase (EC 53.18) - human sepP34949 MANA_HUMAN MANNOSE-6- PHOSPHATE ISOMBRASE (EC 53.1.8) (PHOSPHOMANNOSE ISOMERASE) (PMI) (PHOSPHOMEXOMUTASE). (SUB 2-423)	Length = 423				
840949	840953	840954	840958	840960		840968	840969	840973	840975	840978
574	575	276	577	578		579	580	587	583	584

HEBFE14	HESUK50	T. M. T. C.	HE8FA09	HE8MY23	HE8DR57	HE2BN26 HE8DJ30 HE6DC57 HE8BT63 HE2DX28	HE8AU49
06	5	3	81	66	75		66
06	8	Š.	81	66	75		66
833	359 830	102/	1559	1906	1193	390 1013 279 812	672
75	3	107	861	818	8	1 1 363 363	, -
gi 183890		gn i P ID d1034698	gi 2895494	gi 603074	gi 1256001		gni PID d1008985
nerve growth factor [Homo sapiens] >28/32031 pleiotrophin [Homo sapiens] >bobl 119887 pleiotrophin, PTN [human, Peptide, 168 aa] [Homo sapiens] >bbsl_30735 hepatin-binding neurite outgrowth promoting factor, HBNF - alexantively valieral] [human, Peptide, 16	discussion of special frameworks	(AB016247) sterol-C5-desaturase [Homo sapiens] >sp[075845[075845 STEROL-C5-DESATURASE (EC 1.3.3.2) (LATHOSTEROL	OXIDASE). Length = 299 (AF032886) forkhead protein [Homo sapiens] >sp[043524[043524 FORKHEAD PROTEIN.	Length = 673 ATP:citrate lyase [Homo sapiens] >sp[Q13037[Q13037 ATP:CITRATE LYASE.	Length = 1101 LIV-1 protein [Homo sapiens] p-pf[602273]G02273 LIV-1 protein - human p-enfol 134340 1347 ESTROGEN	Spirit of the TS2 REGULATED LIV-1 PROTEIN. Length = 752	Aopl_Human, MERS/Aopl_Mouse)-like protein [Homo sapiens] >gi 854126 humer [Homo sapiens] {SUB 227-256} Length = 256
840980	840982	840989	840991	840996	840997	840998 840999 841000 841002	841003 841008
585	586	588	589	290	591	592 593 594 595	596 597

990 44200 - 3904

HDTAU64	НЕ2ЕВ32	неорта	HE2EA79 HDTGC76	HE9CO25	HDTDZ04 HDTGP42 HDRMB48	HDTAG94	HDTGK45 HDSAL27
66	96			001		100	
66	96			100		100	
1836	1185	30	423 150 228	750	401 599 489	528	721 145
265	178	ç	48 1 48	34	3 3	-	515 23
gnlPD d1032151	gi 1545996			gi 924		gn PID d1003496	
(AB011004) UDP-N-acetylglucosamine	pytoprospinos przez AGX-1 ANTIGEN >spi(16/222)Q(15/22 AGX-1 ANTIGEN (FRAGMENT). Length = 505 fumarase precursor [Homo sapiens] >gi 4097195	fumarase Homo spiens) soplo7954pUMH_HUMAN FUMARATE HYDRATASE, MITOCHONDRIAL PRECURSOR, EC 4.2.1.2) (FUMARASE). sop[64097195[64097195 FUMARASE (EC 4.2.1.2), Longin = 510		Ran [Canis familiaris] >gi 190879 ras-like protein [Homo sapiens] >gi 2967848 (AF052578) androgen receptor associated protein 24 [Homo sapiens] >gi 727167 Ran [Mus musculus] >bbs 180269 GTP-binding protein [mice, 7241741 sulessu. 1)28 resonnder. Pendide, 2		Id-2H [Homo sapiens] >pir A40227 A40227 transcription repressor Id-2 - human >sp Q02363 ID2_HUMAN DNA-BINDING	PROTEIN INHIBITOR ID-2. Length = 134
841013	841014		841015 841018	841019 841024	841025 841026	841027 841029	841030 841031
598	599		600	603	604	909	809

The state of the s

нDQDH60 НDPTM31	нромя 1	HUQUE	HDPXK77	HDPUP64 HDPRJ46	HDPXL80 HDPMK92 HDPVB33 HDPXB24
86	9/	76	76	95	
95	09	76	76	95	
449	2112	1339	1338 347	947 1194	1262 346 695 851
267	763	5	3 -	705	60 23 492 612
gi 517196	gi 2880057	gi 3335173	gi 2689444	gi 187351	
G-rich sequence factor-1 [Homo sapiens] >gils 17196 G-rich sequence factor-1 [Homo sapiens] >spl()12849[GRF1_HUMAN G-RICH SEQUENCE FACTOR-1 (GRSE-1). >phig48608 [Js48081 [GRSE-1 protein - human (fragment) [SUB 94-424] Length = 424	(ACO02340) putative RNA helicase A, 5' partial [Arabidopsis thaliana] >sp[049345]049345 PUTATIVE RNA HELICASE A, 5' PARTIAL PER AGMENT) Lanch = 11 14	sapiens) >splG3335173/G3335173 ABC TRANSPORTER MOAT-B [Homo sapiens] >splG3335173/G3335173 ABC TRANSPORTER MOAT-B. Length = 1325	(AC003682) ZNF134 [Homo sapiens] >sp[C2689444](G2689444 ZNF134. Length = 427	monoamine oxidase A [Homo sapiens] >gl] (87353 monoamine oxidase A [Homo sapiens] >gl] (87355 monoamine oxidase A	[Homo sapiens] ppirlA36/17/8/36/17/3 amme oxidase (flavin-orntaining) (EC L4.3.4) A - human sapiP2139/JAOFA-HUMAN AMINE OXIDASE [FLAVIN-CONTAINI
841034	841036 841039	841040	841048 841049	841050 841052	841054 841055 841056 841060
019	611	613	614 615	616	618 619 620 621

And the second way got the second price of the second seco

HPIBQ60	HDPPA96	нррлQ57	Н DР QE64	HE8NS76	НDРМG95 НDРQC09	HDPCX80 HDPND16
100	96	83	83	66	65	
100	8	69	59	86	41	
614	1530	592	592	907	755 541	480 551
21	19	61	2	188	96	1 321
gi 190818	gi 1277084	gnl PID c1251068	pir B54408 B54408	gi 23222	gi 2983472	
quinone oxidoreductase [Homo sapiens] >pij15/354 quinone oxidoreductase2 [Homo sapiens] >pil432667]A32667]A3D67]ABH elphydrorenase (quinone) [GE 0.6.99.2).2 -	human Length = 231 histone deacetylase HD1 [Homo sapiens] >col01347HDA1 HUMAN HISTONE	"ACETYLASE I (HDI), Length = 482 DEACETYLASE I (HDI), Length = 482 (AL009194) SWISS-HOCTF38861; NONSENSE-MEDIATED MRNA DECAY PROTEIN 3; SACCHAROMYCES	CEREVISIAE mannosyl-oligosaccharide 1,2-alpha-mannosyl-oligosaccharide 1,2-alpha-mannosyl-oligosaccharide alpha-1,2-mannosyl-oligosaccharide alpha-1,2-mannosidase [Oryctologus cuniculus] {\$10.11 2	460/J Longui – 470. 143.3 protein [Homo sapiens] >gi[32464 HS1] gene product [Homo sapiens] ppir[S13076]S15076 protein kinase regulator 14.3.3 - human >spi[P27348][45T] FUMAN 14- 3-3 PROTEIN TAU (14-3-3 PROTEIN THETA) 14.4.3 ROPTEIN TAUL (14-3-3 PROTEIN THETA)	Seji387922 (AP070556 (AE000715) ribosomal protein L20 (Aquifex aeolicus) spir(770382/c70382 ribosomal protein L20 - Aquifex aeolicus) sspj670382 ribosomal protein L20 - Aquifex aeolicus sspj6703860607086 50S	NBCGCARTATION
841061	841062	841063	841067	841074	841076 841081	841083 841089
622	623	624	625	979	627	629

HDPP129	norrb/o	HDABX64	HDPBQ32	HDBAE85	HDLAZ62 HDPBJ61 HDFMB93 HCYBI78 HDABQ85
9 8	₹	91	55	47	
100 F	0	06	35	20	
1132	1901	384	1004	1137	396 682 1179 117 859
479	/97	-	т	133	58 47 1 1 2
gi 3406428	6/5/065 18	gi 182996	gi 710419	gi 1500558	
(AF035646) Rab10 [Mus musculus]	(AF020867) guanosme monophosphate reductase [Ratus norvegicus] > sp[G3907579[G3907579] GUANOSINE MONOPHOSPHATE REDUCTASE. Length = 345	GATA-binding protein [Homo sapicus] spir[A40815]A40815 transcription factor GATA- 2 (version 1) - human sspl22769[GAT2_HUMAN_ENDOTHELIAL TRANSCRIPTION FACTOR GATA-2_Length	phosphatidylcholine transfer protein [Box taurus] spirkAttOl/2[EPO] obosphatidylcholine transfer protein - bovine sep[00720]PPCT_BOVIN PHOSPHATIDYLCHOLINE TRANSFER PROTEIN (PC-TP). Length = 213	2-hydroxyhepta-2,4-diene-1,7-dioute isomerase (hpcB) Methanoccue jamaschiil sprijf64506F64506 2-hydroxyhepta-2,4-diene- 1,7-dioute isomerase homolog - Methanococcus jamaschii -sp(Q59050(Q59050 HYPOTHETICAL PROTEIN MJ1656. Length = 2337	
841093	841097	841098	841101	841113	841115 841116 841117 841125 841125
631	632	633	634	635	636 637 638 639 640

HDPFH18	HCYBL17	HDABE30 HDABE30	HDABK25	HCQBH60 HDPBQ85 HCQAM05 HCNSQ35 HCMSW06	HCQAG10
100	16	81	80		98
100	88	81	08		83
891	1710	802	1238	478 833 1051 1366 1061	387
49 -	• 4	124	3 3 14	347 192 452 1022 864	115
gi 409357	pir B45439 B45439	gi 1685288 gi 458692	gnlPID e218584		gi 3329384
collagenase stimulatory factor [Homo sapiens] -ggi 1209374 amino acid feature: intracellular domain, as 707, a.829, amino acid feature: transrembrane domain, as 638 70x, amino acid feature: extracellular domain, as 86 637 [Homo sapiens] -ggi 34449 M6	myosin-I, Myr 1c (alternatively spliced) - rat	gamma SNAP [Homo sapiens] Length = 312 homologous to mouse gene PC326:GenBank Accession Number M95564 [Homo sapiens] >splQ12839[Q12839 (H326). Length = 597	imogen 38 [Homo sapiens] >spl(992665)(992665 IMOGEN 38. Length = 395		(AF038957) translation initiation factor 4e [Homo sapieus] >sp[073349]073349 TRANSLATION INITIATION FACTOR 4E. Length = 236
841128	841133	841134	841136 841138	841139 841141 841142 841145 841146	841150
149 641	643	44 5	040 647	648 649 650 651	653

And the state of t

HCYBC10	HCMSB29	HCIAA60	HCHCJ07	HCLCK84 HCHAZ66 HCHOG20
96	100	98	42	
96	100	98	36	
2532	1368	1130	336	818 463 1305
1207	-	9	88	510 2 · 982
179057 ji	gi 3514097	gi 182896	gi 470674	
argininosuccinate synthetase [Homo sapiens] - sgl/28872 argininosuccinate synthetase (aa 1-412) [Homo sapiens] - pril/A01105[AJHURS argininosuccinate synthase (EC 6.3.4.5) - human - sapienosuccinate synthase (EC 6.3.4.5) - human - sapienosuccinate synthase (EC ARGININOSUCCINATE SYNTHASE (EC	6.34-20, CLI ROLLINGE-ASSIV, CLI ROLLINGE-ASSIV, CLI ROLLINGE-ASSIV, CLI ROLLINGE-ASSIV, CLI ROLLINGE Sprotein [Nuts marculus] > spi(088950] (088950] ALIEN-LIKE PROTEIN. S-spi(03514097] (03514097] (03514097] (03514097] (3514097] (3514097) (3514097)	complex submut. J. Hus massuralist 2018 4 certinoma-associated antigen GA733-2. Hono sapiens >g 182906 carcinoma-associated antigen GA733-2. Homo sapiens	314 collagen pro-alpha-1 type I chain [Mussemseubus] - ppir[587243[821.626 collagen alpha I(I) chain precursor - mouse > splP 11087[CA11_MOUSE PROCOLL_AGEN ALPHA I(I) CIFAAN PRECURSOR, > spl192262 pro-alpha-1 type I collagen [Mus musculus]	{\$UB 518-1128} >gil ⁹²²⁰⁴ p
841153	841154	841156	841157	841159 841164 841167
654	929	959	159	658 659 660

нсное21	нснво07	HCFOI36 HCGBQ34	HCGLC82	HCFMN22 HCFNJ56	HCGAA74 HCFMK76 HCFMC34
8	76	100	76	100	92
81	76	66	76	100	25
760	931	683 460	1530	283	536 1096 2749 926
7	7	561 65	553	2 251	342 458 2 336
gi 1049078	gi 338394	gi 703110	gi 3220164	gi 36100	gi 1524411
SRp30c [Homo sapiens] >gnllPID e1248292 (ALD021546) pre-mRNA splicing factor SRp30c [Homo sapiens] >gl/4099429 splicing factor SRp30c [Homo sapiens] >pit/589075[SS9075 splicing factor SRp30c - human >splicyd999429(ol499429 SPLICING FACTOR	spermidine synthase [Homo sapiens] ppin[A]2610[A]32610 spermidine synthase (EC	thyroid receptor interactor [Homo sapiens]	Length = 152 (AF0297T7) InGCN5 [Homo sapiens] spp[03220164[03220164 HGCN5. 2g] 1491935 histone acetyltansferase [Homo sapiens] {SUB 362-837) >sp[01911495][01911495 HGCNF-TRANSCURPTIONAL ADAPTOR.	70 K protein (AA 1-614) [Homo sapiens] 70 K protein (AA 1-614) [Homo sapiens] 71 Papa (AZ 70] HAS 70 (H 10 10 10 10 10 10 10 10 10 10 10 10 10	saptens) (30D 22/32/1 Longua - 034 DNA repair endonuclease subunit [Homo saptens] Length = 905
841170	841173	841176 841178	841180	841181	841187 841187 841188
661	662	663	599	999	668 669 670

HCFMO54	HCGAB52	HCEWM29 HCFBC32	HCEER84	HCEBD63	HCHOV21	HCDMF27	HCEMT64
66	95		81		100		93
66	95		75		001		93
1428	1138	623 913	703	571	1229	552	1405
-	182	6 2	35	158	99	_	7
gil187452	gil2745900		gil2827886		gil36032		gil38458
methylmalonyl-CoA mutase [Homo sapiens] >splf22033MUTA_HUMAN METHYLMALONYL-COA MUTASE PRECURSOR (EC 54.99.2) (MCM). Length = 750	(AF039405) arsenite-translocating ATPase [Mus musculus] >spl054984l054984 ARSENITE- TRANSI OCATING ATPASE I enoth = 350		(AF015037) endooligopeptidase A related protein; EOPA related protein [Oryctolagus cuniculus] >sp0.0464801046880 ENDOOLIGOPEPTIDASE A RELATED PROTEIN (FRAGMENT). Length = 667	•	thoB [Homo sapiens] >gil206656 thoB [Rattus noregions] >gil206656 thoB [Rattus noregions] >gil20100252840 RMDB [Mus musculus] >pirlA01372TV-HIRH GTP-binding protein thoB - human >pirlA39727ITVRTRH GTP-binding protein thoB - ratt >pirlC3075UTCNTRH or pirlC3075UTCNTRH	2	PTB-associated splicing factor [Homo sapiens] spird-4802,04630 PTB-associated splicing factor, long form - human spil23712 myoblast amitgen 24.1D5 [Homo sapiens] [SUB 312-707] sgil4063717 (AFI 10499) PTB-associated splicing factor [Mus musculus] [SUB 377]
841192	841194	841195	841200	841201	841202	841209	841210
672	673	674	929	21.0	829	619	089

HCEFE38 HCE1V79 HBZSI02	HCDCI63 HCBBW38 HCE2D15	HCCMD50 HBZAK55 HCDEA07	HBXCC66
84 76	95	62	
82 82	95	46	
344 1198 774	856 2486 2032	373 831 407	7176
3 208	29 2088 2	3 1 5	279
gi287865 gi287865	60 gill946347	gnllPID e1346003	
G9a [Homo sapiens] >pirlS3038SIS30385 G9a gil287865 protein - human >sp0(14349014349 G9A PROTEIN CONTAINING ANKYRIN-LIKE REPEATS. Length = 1001 SMOOTH MUSCLE MYOSIN HEAVY CHAIN spD1037960D10379	(FRAGMENT). Length = 1052 RNA polymerase II elongation factor ELL2 Humo sapiemis > 5x9000472RL1.2, HUMAN RNA POLYMERASE II ELONGATION FACTOR ELL2. Length = 640	F25H9.7 [Caenorhabditis elegans] >gnllPIDel 346003 P25H9.7 [Caenorhabditis elegans] >splP9 1989P9 1989 P25H9.7	PROTEIN, Length = 154
841213 841217 841217	841222 841223 841224	841226 841227 841228	841231
681 682 683	684 685 686	687 689 689	069

and the second s

95 HCE1S91	95 HBUAF56	91 HBWCI70	HBXGB85	HBXFF92	HBMUU08	HBNAT03	HBMTQ45	62 HBUAC02		HBJEC31	HBJLL24	HBZSH07	HBJDS57	HBJFNII	70 HBDAC79		100 HBJFJ36	HBFMD57 HBNAE62
6	6	6						9							_			
94	94	88						46							51		100	
461	673	2564	483	389	605	360	281	899		1309	247	1136	354	337	1130		622	948 423
т	6	561	187	168	405	169	c,	3		2	2	879	-	182	93		20	697 244
gil386949	gil3242978	gnllPIDle1318710						gil4097433							gnllPIDle1253290		gnllPIDld1001846	
MHC HLA-RD protein [Homo sapiens] >pirlA33640lA33640 class III histocompatibility autigen RD - human Length = 382	(AF069984) nitrilase homolog 1 [Homo sapiens] sapiens sapiens sapicos sp(0.76091 NITRILASE HOMOLOG 1 1 2004 - 201	(AJ005073) Alix [Mus musculus]	Appropriate the second					phorbolin 3 [Homo sapiens]	September 1455104697455 FIRONDOLLANDS. Length = 235						(AL021958) fadE9 [Mycobacterium tuberculosis] gnllPIDle1253290	>splO53815IO53815 ACYL-COA DEHYDROGENASE. Length = 390	p67 myc protein [Homo sapiens] >splD1001846lD1001846 P67 MYC PROTEIN	(FRAGMENT). Length = 454
841232	841233	841234	841236	841238	841239	841242	841243	841248		841250	841251	841254	841263	841266	841269		841272	841273 841276
691	692	693	694	695	969	269	869	669		200	701	702	703	<u>\$</u>	705		902	707

with any large and pain some large party and a great species of the painty and a selfter that the painty that was to the painty of the painty that the painty that and the painty that are for the painty that and the painty that the painty that the painty that the painty that the

HBICG75	HATDB46	HPIAF81	HBCA33/	HATAM48 HBAFS89	НАНСР59	HARMV18	HARMM85	HBMCL13 HARAI52	HAPOR25
94	99	09	8		08			68	8
94	4	ý	06		57			88 86	66
1171	415	645	5781	368 2880	1319	248	821	1012	1265
2	119	187	888	219 2530	201	3	6	293	e
spiQ1679SINUEM_H UMAN	pirlA46312lA46312	00003001	gli3233308		gil3132471		gnlIPIDle1245998	gnlPIDle1192260 gi312702	gil414115
NADH-UBRQUINONE OXIDOREDUCTASE 39 KD SUBUNIT PRECURSOR (EC 16.5.3) (EC 1.6.99.3) (COMPLEX 1-39KD) (Cf-39KD). 25g189049 VADH debydrogrames (thisquinone) 14mos consissed 1 SUB 4.3771 1 anoth = 317	gag polyprotein - human endogenous virus S71	Auto	(AF061S13) candidate adaptor protein CED-6 [Caenorhabditis elegans] >spl0763371076337 CANDIDATE ADAPTOR PROTEIN CED-6. Length = 492		(AC003096) putative protein phosphatase 2C [Arabidopsis thaliana] >spl064583064583 HYPOTHETICAL 26.4 KD PROTEIN. Length = 339		(ALO21428) hypothetical protein Rv0068 [Mycobacterium tuberculosis] explo336134053613 OXIDOREDUCTASE. I north = 303	selenoprotein P [Homo sapiens] Length = 381 SSR gamma subunit [Rattus norvegicus] - printS3294(S33294 translocora-sasociated	votem parime canal rate rate (1996) protein plante processing 1-100 pp. pp. pp. pp. pp. pp. pp. pp. pp. p
841277	841278	841279	841280	841282 841283	841286	841287	841288	841291 841292	841294
709	710	711	712	713	715	716	717	718 719	720

HASAS34	HATAI49	HAPNO69	HAOMG39	HAPOE40	HAMHD70	HAPAJ60	HAMGN09	HAJCP55
96	16		100	95		63		93
96	16		100	68		84		93
1405	1067	231	1457	707	1274	1699	920	1420
61	ы	10	6	ю	399	137	3	185
gil181508	gil644879		gil338244	dbjllAB000199_1		gnllPIDle1345859		gnllPIDlc1292742
protein disulfide isomerase-related protein [Homo sapiens] -pith/23723/A23723 protein disulfide-isomerase (EG 5.3.4.1) EB(P)2 proteinsor - human >splP13667IER72_HUMAN PROTEIN DISULFIDE ISOMERASE. RELATIED PROTEIN PRECURSOR (ERP72).	Castern Castern SprinG01646(G01646 Gps Cps Homo sapiens SprinG01646(G01646 Gps human ssplQ13098(GPS1_HUMAN G PROTEIN PATHWAY SUPPRESSOR 1 (GPS PROTEIN) (MFH PROTEIN), {SUB 30-500} Lenoth = 500		synexin [Homo sapiens] >splP20073(ANX7_HUMAN ANNEXIN VII (SYNEXIN), Length = 466	(AB000199) CCA2 protein [Rattus norvegicus] >spl035048iO35048 CCA2 PROTEIN. Length = 338		similar to RNA binding protein; spg0/19/06/IEFS_CAEL_RROBBLE EUKARYOTIC TRANSLATION INITIATION FACTOR 3 RNA-BINDING SUBUNIT (EIF-3 RNA-BINDING SUBUNIT) (EIF-3 PS3)		(AJ224819) tumor suppressor [Homo sapiens] >splO608581O60858 TUMOR SUPPRESSOR. Length = 407
841296	841298	841301	841303	841304	841305	841309	841314	841316
721	722	723	724	725	726	727	728	729

НАМҒQ80	HBJMK69	HAMGF04	HAMFV20	HAMGF52	HAJBV54
100	100	66	76	68	100
100	001	66	76	68	100
436	959	1755	1715	1126	671
170	ю	31	8	2	93
gil1171204	gil337449	gnllPIDie251628	gil791185	gil32354	gnilPIDle1249592
replication control protein 1 [Homo sapiens] - puriG02329/G02329 replication control protein 1 - human -splQ13471(Q13471 REPLICATION - CONTROL I PROTEIN 1 Januaria – 861	hnRNP A2 protein [Homo supiens] sgnllPIDId1006583 hnRNP A2 protein [Homo sapiens] sapiens] sgl500638 hnRNP protein A2 [Homo	saptoral, Longue acceptor [Homo sapiens] - sgi306914 interferon-alpha receptor precursor [Homo sapiens]- print/35064432694 interferon alpha receptor precursor - human - spip17181IINR1_HUMAN INTERFERON ALPHABIETA REEPPOR ALPHA CHAIN	PRECUSSON (URA-ALZ- Rech [Homo sapiens] 2g/89559 hSRP1alpha [Homo sapiens] 2g/85516/456516 nuclear localization sequence receptor SRP1 alpha- human 2sp[95292]IMA2_HUMAN IMPORTIN ALPHA-2 SUBUNIT (KARYOPHERIN ALPHA-2 SUBUNIT (KARYOPHERIN	CORON I FRO I EN J. Lengui nuclear ribon/eleoprotein [Homo sapiens] >gil35772 polypirimidine tract binding protein [Homo sapiens] >pir(S26294(S26294 polypyrimidine tract-binding protein - human	Longue 3.7 d43.4P1.3 Homo sapiens] >gil1592565 DEAD- box protein p72 [Homo sapiens] >pir(57256/SS7256 A TP-dependent RNA helicase - human >splQ9284HP72_HUMAN PROBABILE RNA-DEPENDENT HELICASE PROBABILE RNA-DEPENDENT HELICASE
841318	841321	841324	841326	841328	841329
730	731	732	733	734	735

And the second s

P72 (DEAD-BOX PROTEIN P72). Length = 650

HAJAZ71	HAJBA64	HAJBE68		HAJAT72	HAJCD33	HAJA095	HAJCB95	HAJAD20	HAJAL18	HAJAI64	0 HAMGG35		0 HAHSE21	
91	92	71					68				100		001	
91	92	59					88				100		100	
1097	2004	713		946	1557	1375	740	1017	359	1417	685		409	
ю	-	ю		443	_	263	27	820	3	1145	263		161	
gil3041821	gnllPIDld1026101	gnllPIDld1009954					gil833833				gil854675		gil4104681	
(AF002228) tbx3 [Homo sapiens]	(AB010882) hSNF2H [Homo sapiens] >snlO60264O60264 HSNF2H. Length = 1052	SDF2 [Mus musculus] >pirlJC5105IJC5105 stromal cell-derived factor 2 - mouse	>splP97307lP97307 STROMAL CELL DERIVED FACTOR 2 (SDF2). Length = 211				transcription factor SC1 [Homo sapiens] >splQ13176[Q13176 TRANSCRIPTION FACTOR SC1 Lenoth = 359				cellular nucleic acid binding protein [Mus musculus] >pirlI49259II49259 cellular nucleic	acid binding protein - mouse Length = 178	(AF038844) MKP-1 like protein tyrosine phosphatase [Homo sapiens] >splG4104681IG4104681 MKP-1 LIKE PROTEIN TYROSINE PHOSPHATASE.	Length = 198
841330	841333	841334		841335	841336	841337	841339	841340	841341	841342	841343		841347	
736	737	738		739	740	741	742	743	744	745	746		747	

And the state of t

HBJJF14 HAICO69	HAPNQ64 HAMFM60	HAMGA45	HOABW85	HABAD39	HBJJT93 HPIAP58	HBMXV50	HBKDV52
100		%	100	88		92	8
100		92	100	98		76	76
461	630 816	1319	1106	848	698	817	276
3	115	222	24	6	3 1984	2	13
gil562074		gil894162	gil606923	gil600886		gnllPIDle219699	gil517226
ribosonal protein L35 [Homo sapieus] >pirlG0147/1G01477 ribosomal protein L35 - human Length = 123		FKBP65 binding protein [Mus musculus] >pirl49669l43668 FKBP65 binding protein- mouse-sp[661576[061576 FKS06 BINDING PROTEIN 6 (65 KDA) (FKBP65 BINDING PROTEIN), Length = 581	cathepsin O [Homo sapiens] >gli562737 Cathepsin O [Homo sapiens] >bbsl172248 cathepsin O2 [Imman, splean, Peptide, 329 aa] [Homo sapiens] >pind/C2476UC2476 cathepsin K [EC 3.4.22.) precursor - human	signal recognition particle receptor beta subunit [Mus musculus] >pirtlA564871A56487 signal recognition particle receptor beta chain - mouse Lensth = 269		DNA-binding protein [Homo sapiens] - ppir3895011899501 DNA-binding protein A variant - human - splQt4121(Q14121 DNA- BINDING PROTEIN, Length = 372	mitochondrial ATPase inhibitor (Rattus norvegicus) >gnIPIDId 1002024 ATPase inhibitor preuse in preusens (Hattus ga) -gup190738180738 ATPase inhibitor protein precursor, mitochondrial - rat >spiQ03344IIATP_RAT ATPASE INHIBITOR, MITOCHONDRIAL PRECITIROR
841352	841354 841360	841366	841405	841526	841712 841860	842042	842453
748	750	752	753	754	755 756	757	758

PRECURSOR.

HFIIH20 HCE3G66 HOSAB76 HDPBA08 HETIJ27 HSIGN74	HMEGI84 HHESF85	HE8UZ38	HPRSB90	HBJNC37	HAGHY70
	100	100	61	9	91
	100	100	37	40	91
936 1630 1152 2442 1359	262	751	1056	303	374
268 2 940 2050 370 520	212	7	46	-	6
	gil2415302	gil2738520	gil3789797	gil310149	spl0606131060613
	(AF010313) Pig8 [Homo sapiens] >splO146811014681 PIG8. Length = 318	(AF010187) FGF-1 intracellular binding protein [Homo superals J82738822 (AF010188) FGF-1 intracellular binding protein (Gercopithecus aethiops) >gil2738520 (AF010187) FGF-1 intracellular binding protein [Homo supeins] >eip738522 (AF010188) FGF-1 intrac	(ÅF059569) actin binding protein MAYVEN [Homo sapiens] sepf63789797(63789797 ACTIN BINDING PROTEIN MAYVEN. Length = 593	heparin-binding fihroblast growth factor receptor 2 [Rattus norvegicus] >splQ63241lQ63241 HEPARIN-BINDING FIBROBLAST GROWTH FACTOR RECEPTOR 2 (FRAGMENT). [SUB 1-330] Length = 331	15 KDA SELENOPROTEIN. Length = 162
842635 842927 842988 843080 843237 843381	843718	844056	844325	844344	844368
759 760 761 762 763	765	191	768	769	770

HTNAD87 HADGG65 HMVBJ82 HE9DB89	HEGAE94	HTLDM37	HE9DH28	HRGSE41	HCNCN11 HPFCH77 HPRTI05 HMSK193
100	100	9/	96	100	
100	100	75	95	100	
300 371 321	1475	1107	1499	277	487 80 151 192
1358 1 174 1	m	571	ю	134	182 21 2 25
gil2316040	gil29667	gil2564915	gill374792	gnIIPIDle290695	
(AF001437) dihydrolipoamide dehydrogenase- binding protein [Homo sapiens] Length = 501	pre-pro polypeptide (AA -25 to 451) [Homo supiral) -prinSOy48/809489 carboxypeptidase H (EC 34.17.10) precursor - human sapiral prinSOy48H HUMAN CARBOXYPEPTIDASE H PRECURSOR (EC 34.17.10) (CPH) (CARBOXYPEPTIDASE E) (CPE) (ENKEPHALIN CONVERTASE) (CPE) (ENKEPHALIN CONVERTASE)	(AF023268) propin1 [Homo sapiens] Length = 347	selenium-binding protein [Homo sapiens] >pirIG01872[601872 selenium-binding protein - human >spi(0.13228(0.1328 SELENIUM-BINDING PROTEIN, Length = 472	SNAP23A protein [Homo sapiens] - SgnlPpDe 13.17 (74.011915), synaptosome associated protein of 23 kilodaltons, isoform A [Homo sapiens] - prinC532960C5296 vesicle- membrane fusion protein SNAP-23A - human - septool 6100016 [NESICLE-MEMBRANE] - PISION PROTEIN SN	
844408 844508 844867 845000	845281	845288	845750	845809	846077 HPFCH77R HPRTI05R HMSKI93R
771 772 773 774	<i>211</i> 5	776	777	778	779 780 781 782

HKAAC88	HPDED94	HDTGH11	HTEJR60	HAGGY86	HPIAU47	HCGAD89	HAPOD39	HOGAA68
Н 88	Н 86	Н 96	1 LL	Н 86	91 F	Н 68	93 Н	Н 16
85	86	96	11	26	68	98	88	95
333	225	189	511	295	377	390	386	468
						9		
_	-	-	2	2	8	226	3	_
gnllPIDId1020530	gil2150046	gil2252820	gil2897954	gil3403167	gil2688989	gil3328335	gil3766220	gil28384
HKAAC88R (AB003103) 26S proteasome subunit p55 [Homo sapiens] >spl0000232)000232 PROTEASOME SUBINIT P55, 1 ensuh = 456	HPDED94R	HDTGHIIR	HTEJR60R	HAGGY86R	HPIAU47R	HCGAD89R	HAPOD39R	HOGAA68R
783	784	785	786	787	788	789	790	791

HCLBO46	HSLCA48	HMEAC81	НМQDF 20	HCHOH06 HDQMC20 HMKCW11
95	75	92	82	
98	70	92	88	
303	457	176	287	242 167 112
7 1	7	66	т	12 3 2
gil7550 pir803894lS03894	gil930045	gil64708	gil902745	
HCLBO46R Actin [Drosophila melanogaster] - pinfs 14831IS14851 actin - fruit fly (Drosophila melanogaster) - sap(0.24228 (0.2428 ACTIN. Longth = 100 - Longth = 100 - ADP, ATP carrier protein T2 - human - sappl 1233(ADTIS + HUMAN ADP, ATP CARRER PROTEIN, LIVER ISOFORM T2 (ADPATP TRANSLOCASE 3) (ADENINE NUCLEOTIDE TRANSLOCATOR 3) (ANT 3).	HSLCA48R	HMEAC81R	ALPTA-1 SO HMQDF20R beta-1,2-N-acetylglucosaminyltransferase II [Homo sapiens] spirlS66256IS66256 alpha-1,6- mamnosyl-glycoprotein beta-1, 2-N- acetylglucosaminyltransferase EC 24.1.143) - human sspQ10469GNT2_HUMAN ALPHA- 1,6-MANNOSYL-GLYCOPROTEIN BETA-	HCHOHOGR HDQMC20R HMKCW11R
792	794	795	796	797 798 799

A THE RESERVE AND A STATE OF THE PARTY OF TH

HLDRN91	HCHBR17	HMKCH15 HE6GO78	HSLFI56	HSYBY17
100	92	81	82	100
66	92	80	08	100
331	149	400 502	422	300
61	т	131 155	48	79
91190500	gil79948	gil2737894 gil307118	gil179665	gnilPIDid 1012016
HLDRN91R C4b-binding protein alpha chain [Homo sapiens] 2gil 190502 C4b-binding protein alpha chain [Homo sapiens] Pjank33568NBHUC4 C4b- binding protein alpha chain precusor - human 2-spiPa4003IC4BP_HUMAN C4b_BINDING PROTEIN ALPHA CHAIN PRECURSOR (PROTIN ALPHA CHAIN PRECURSOR	HCHBR17R cathepsin D [Homo sapiens] >gil29678 precursor polypeptide (AA -20 to 392) [Homo sapiens] >gil81180 preprocathepsin D [Homo sapiens] >pinfA25771[KHUUD cathepsin D (EC 34.23.5) precursor - human >spiP07339[CATD [HUMAN CATHEPSIN D PRECURSOR (EC 34.23.5)]	HMKCH15R Cbf5p homolog [Homo sapiens] Length = 514 HE6GO78R clathrin light-chain A [Homo sapiens] Length = 218	HSLFI56R	HSYBY17R cyclin G [Homo sapiens] sgil1236233 cyclin G1 [Homo sapiens] sgil1236913 cyclin G1 [Homo sapiens] spil1236913 cyclin G1 [Homo sapiens] spir602601[602401 eyclin G1 - lmnan syplE3 1939(CG2G HUMAN G2MITOTIC SPECIFIC CYCLIN G1, sgnlPtDld1013694 cyclin G [Homo sapiens] [SUB 1.279]
800	801	802 803	804	805

And the first of the second first of the second sec

HPJCS07	HFADV82	нгкгнов	HMCDK47	HPIB127
92	83	86	100	86
83	18	97	100	86
226	105	550	320	319
113	-	6	ю	. 23
gil2198683	gil13010	gil1008458	gil182251	gil31106
HPJCS07R cytochrome oxidase I [Apteryx australis] >sp003515ICOX, APTAU CYTOCIRCOME C OXIDASE POLYPEPTIDE I (EC 19.3.1) (FRAGMENT). Length = 337	HFADV82R cytochrome oxidase III [Homo sapiens] -pinfA00482D(THIS sytochrome-coxidase (EC 1.9.3.1) chain III - human mitochondrion (SGC1) -ssplP00414(COX3_HUMAN CYTOCHROME C OXIDAASE POLYPETIDE III (EC 1.9.3.1), ->gil2245564 (AF004341) cytochrome c oxidase subunit 1	HFKFHORR DNA polymerase delta small subunit [Homo sapieta] ppff183903890 DNA-directed DNA polymerase (BC 2.7.7.7) delta regulatory chain-human sapiR49005IDPD_HUMAN DNA POLYMERASE DELTA SMALL SUBUNIT (BC 2.7.7.7), Length = 469	809 HMCDK47R electron transport flavoprotein [Homo sapiens] 2-pirl431998A431998 electron transfer flavoprotein alpha chain precursor - human >-spP 13804IETFA_HUMAN ELECTRON TRANSFER FLAVOPROTEIN ALPHA- SUBUNT PRECURSOR (ALPHA-ETF). >-gnllPIDE1331769 (A1224002) electron	R elongation factor 2 [Homo sapiens] >gi[31 108] human elongation factor 2 [Homo sapiens] >pinSi R294[EFHU2 translation elongation factor eEF-2. human sapiP1 8G39[EF2] HUMAN EF-2. human sapiP1 8G39[EF2] >sgil 81969 elongation factor 2 [Homo sapiens] [SUB 301- 858
HPJCS07	HFADV8;	нғкғнов	HMCDK4′	HPIB127R
908	807	808	608	810

the state of the s

HSKJG37	H2LAZ24	H2LAC50	HPEAE15 HPIAA24	H2LAS11	HHERW66
100	100	100	91	100	8
100	100	100	91	100	83
372	562	415	236 507	549	386
-	23	38	51 382	28	ю
gil31106	gil31100	gil440306	splQ15946lQ15946 pirlJH0654lJH0654	pirlS48119lS48119	giH17
HSKJG37R. elongation factor 2 [Homo sapieus] >gi[31108] human elongation factor 2 [Homo sapieus] >pit[818294EPHU2 translation elongation factor eEF-2 - human >spil? 3659EF2_HUMAN ELONGATION FACTOR 2 (EF-2), >gil 81969 elongation factor 2 [Homo sapieus] [SUB 501-858]	H2LAZZAR elongation factor-1-beta [Homo saptions] >gil31135 elongation factor 1-beta [Homo saptions] partics/2430SZ432 translation elongation factor effet [beta chain - human sppP24534IEFIB_HUMAN ELONGATION FACTOR 1-BETA (EF1-BETA). [SUB 2-225] I south = 235	H2LAC50R enhancer protein [Homo sapiens] >pirlL54533l54533 enhancer protein - human I eneth = 199			HHERW66R HMGI protein (AA 1 - 2.15) Bos tarurs) pair(S01947801947801947 nonhistone chromosomal protein HMG-1 - bovine sepir(10194101051HMG1 - Bovine CROUP PROTEIN HMGI (HMG-1), (SUB 2- 215) Length = 215
		H2LAC50R	HPEAE15R HPIAA24R	H2LAS11R	HHERW661
811	812	813	814	816	817

818	818 HADMC73R hMn-superoxiddismutase [unidentified] -ggl491292 hMN-superoxiddismutase [unidentified] -gnlPDbe93456 Mn-superoxiddismutase [Homo sapiens] [SUB 23-1901 Leonh = 199	gil491290	6	42	96	100	100 HADMC73
618	H6EEU22R	NEI -N-	34	225	001	001	н6ЕЕU22
820	HDTDX66R	gil1773227	132	449	82	84	HDTDX66
821	HLPBB39R human metallothionein-le [Homo sapiens] -ppirA226348MHUI Emetallothionein 1E- human-sepl04732MT1E_HUMAN -METALLOTHIONEIN-LE (MT-1E)bbs1[44157 metallothionein MT-le isoform, metallothionein-le [human, monocytes, Peptide - Parial 31 and Homo saniend	gil386865 de	04	246	100	100	нгрввз9
822	HOELG04R	pirIJC1348IJC1348	293	415	65	89	HOELG04

нкавиз8	HBG0132	HATA103	нсере25	НК DВF62
92 н	1 19	93	100 E	95 F
92	99	06	100	95
463	240	194	283	322
2	_	т	6	170
gil288100	gil386844	gnilPIDid1004007	gnllPIDid1004007	gil188713
HKABU38R initation factor 4B [Homo sapiens] -pir(S12566S1256c translation initiation factor elf-4B - human sspt23588HF4B HUMAN EUKARYOTIC TRANSLATION INITIATION FACTOR 4B (EIF-4B). Length = 611	HBGO132R keratin 18 [Hono sapiens] >gi1307081 keratin 18 precursor [Hono sapiens] >gi1304037 cytokeratin 18 [Hono sapiens] >pinf805481 l805481 keratin 18 type 1, cytoskeletal - human >sppP057831K1CR_HUMAN KERATIN, TYPE I CYTOSKELETAL 18 (CYTOKERATIN 18)	HATA03R KIAA0106 [Iomo sapiens] SSIFSOULIAOPE - LUMAN ANTIOXIDANT PROTEIN 2 (EC 1. 11.17) (24 KD PROTEIN) (LIVER 2D PAGE SPOT 40) (RED BLOOD CELLS PAGE SPOT 12): {SUB 2-224} Length	HCEDE25R KIAA0106 [Homo sapiens] sspi20041IAOP2 HUMAN ANTIOXIDANT PROTEIN 2 (EC I. II.1.7) (24 KD PROTEIN) (LIVER 2D PAGE SPOT 40) (RED BLOOD CELLS PAGE SPOT 12). {SUB 2-224} Length	HKDBF62R metallothiomein-IG [Homo sapiens] -pirlA29236ISMHU1G metallothiomein 1G- human ssplP13640MT1G_HUMAN METALLOTHIONEIN-IG (MT-1G) -bbs144160 metallothiomein MT-1g isoform, metallothiomein-1g [human, monocytes, Pepide Partial, 31 aa] [Homo sapiens] [SUB
823	824	825	826	827

The state of the s

HNTSX94	HRGBR08	H2LAO77	HNTRW15
00	94	16	96
76	94	91	06
431	504	580	297
ю	-	137	163
gil190127	gil190127	gnIIPIDld1002345	gil178190
HNTSX94R	HRGBR08R	(00 M.D. CHAPERANIN) (HEAD I SHOCK PROTEIN 60) (HEAD OF PROTEIN 60) (HEAD OF PROTEIN 60) (HEAD OF PROTEIN CPN60) (HEAD OF PROTEIN 60) (HEAD OF PROTEIN 60) (HEAD OF PROTEIN 60) (HEAD OF PROTEIN 60) (HEAD OF HEAD OF	23) Length = 433 HNTRW15R NAD+ ADP-inboyltransferase [Homo sapiens] -ppirlA29725/RAD+ ADPinbosyltransferase (EC 2.4.2.30), nuclear-human -spiPo9874PPOL_HUMAN POLY [ADP- RBOSE] POLYMERASE (EC 2.4.2.30) (PARP) (ADPRT) (NAD+) ADP- RBOSYLTRANSFERASE) (POLY[ADP- RBOSE] SYNNSFERASE)
828	829	830	831

Toronton, noton

ноквнов	HULBL38	HNTBK49	HBAFS48	HHGAL60	нонви75	нне <i>FZ7</i> 9
8.	76	100	92	81	72	77
83	95	100	91	99	71	73
428	437	368	316	319	373	484
186	3	ы	2	2	104	293
pirlA44362lA44362	gil2707597	gill 145799	gil602958	gi11050754	gil35658	gil165009
HORBH08R	HULBL38R	HNTBK49R 1	HBAFS48R	HHGAL60R	HOHBU75R	Length = 181 HHEFZ79R progesterone-induced protein [Oryctolagus cuniculus] >piirlA269981A26998 progesterone- induced protein, endometrial - rabbit Length = 370
832	833	834	835	836	837	838

HSLBA61	HPEAE18	HNGF065	HKAKR61	H2LAP11	H2CBD90	H2LAD40
96	<i>L</i> 9	59	91	100	95	100
96	57	84	91	001	95	100
224	234	203	458	549	501	524
45	55	ю	3	169	199	156
gniiPIDid1001116	gil288145	gil215152	gil306553	gil57710	gil414587	gil515865
HSLBA61R proteasome subunit C5 [Homo sapiens] >gnllPIDe 1334433 (AL031259) C5 (proteasome subunit HC5) [Homo sapiens] >pirtS15973ISNHUC5 multicatalytic endoperpitase complex (EC3. 499.46) chain C5	HPEAE18R	DNA. Length = 196 HNGFO65R rentexchusion;96) [Bacteriophage lambda] >pirlF43010IZBPL ren protein - phage lambda Ionnth = 96	HKAKR61R	H2LAPI IR	H2CBD90R	Lengul = A.D. H2LAD40R ribosomal protein L15 gene product [Rattus norvegicus] >pirld C2369IIC2369 ribosomal protein L15 - rat Length = 204
839	840	841	842	843	844	845

And the state of t

97 98 HCYBK51	100 100 H2MBC73	100 100 H2MBU27	97 97 HDSAH53	93 100 HAIDF69
412	385	286	341	250
2	6	64	К	179
gil292441	gil292439	gil292439	gil292439	gnllPIDle1248480
HCYBK51R ribosomal protein L37 [Homo sapiens] >bbs172744 ribosomal protein L37 (C2-C2 zinc-finger-like) [human, HcLa cells, Pepride, 97 aa] [Homo sapiens] >gnllPDI01005426 ribosomal protein L37 [Homo sapiens) >gil57121 ribosomal protein L37 [Ratus norvegicus] >	H2MBC73R ribosomal protein L37a [Homo sapiens]	H2MBU27R	HDSAH53R	HAIDF69R
846	847	848	849	850

The state and th

HDBAA15	HDTHW54	HTWJC11	HKAEC40	HCFNM70
88	88	76	8	76
82	68	97	83	96
429	332	276	407	278
220	rs.	-	93	м
gil433899	gil54006	gil307391	gil337506	gil337510
HDBAA15R ribosomal protein L8 [Homo sapiens] >gil57704 ribosomal protein L8 [Rattus rattus] -gil527178 ribosomal protein L8 [Mus musculus] -priU01771RS RTL8 ribosomal protein L8, cytosolic - rat-pirtlN092310N0923 ribosomal protein L8, cytosolic - tar-pirtlN092310N0923 ribosomal protein L8, cytosolic - human >gil8851	HDTHWS4R ribosomal protein S12 (AA 1 - 132) [Mus musculus] sprikS104R18XT1 ribosomal protein S12 - rat >pitS05492R3MS12 ribosomal protein S12 - mouse >giD06741 ribosomal protein S12 Rattus norvegicus [SUB 1-130] Lenpth = 132	HTWJCIIR	HKAEC40R ribosomal protein S24 [Homo sapiens] 2gil51222 ribosomal protein S24 [Homo sapiens] 2gil49652 ribosomal protein S19 (AA I - 133) [Mésocriceus auratus] 2gil57858 ribosomal protein S24 [Rattus norvegicus] 2gil57722 ribosomal protein S24 (RAttus norvegicus] Rattus	HCFNM70R
851	852	853	854	855

And the given were great only given given by the control of the control of the given by the control of the control of

НКВАВ 93	нснеј79	HBG0124	HNDAD16	HMAEA94	HMWEA08	H6BSO48
06	98	100	78	95	93	95
84	83	66	17	95	8	95
391	446	421	380	422	394	528
64	129	7	т	8	119	-
gil36150	gil854177	gil337733	gil402483	gnlIPIDle293330	gil897851	gnilPIDid1012153
HKBAB93R ribosomal protein S8 [Homo sapiens] -pgi57139 ribosomal protein S8 (AA 1-208) [Rattus norvegicus] -pgi313298 ribosomal protein S8 [Mus masculas] -psi70510609tgxR7 ibbsomal protein S8 - tat >pii78421 105421 10 ribosomal protein S8 - mouse >piirS221025202	HLHEJ79R RNA polymerase II subunit hRPB17 [Homo sapiens] - ppir855370855370 RNA polymerase II chain hRPB17 - human Leneth = [50]	HBGO124R	HNDAD16R	HMAEA94R	HMWEA08R signal recognition particle subunit 9 [Homo sapiens] >pirlA57292/A57292 signal recognition particle protein SRP9 - human Length = 86	H6BSO48R similar to Drosophila photoreceptor cell-specific protein, calphotin. [Homo sapiens] sspl0]4676(0]4676 KIAA0170 PROTEIN. Length = 2089
856	857	858	829	860	861	862

And the second s

HRACC09	НОЕЕС67	HPFEA40	HODAV31	ннеств9	HSDFV03	HTXPN01	HHPSA49 H2LAT88
100	90	66	29	66	96	86	69
100	001	86	49	66	92	86	91
117	230	497	273	371	412	281	451
-	105	m.	-	с	20	ĸ	7 - 2
gil177175	pirlA60598IA60598	gil36796	gnllPIDld1002390	gil2073541	gil529417	gil176960	gil386851
HRACC09R smooth muscle protein [Homo sapiens] >pirJS0774JS0774 smooth muscle protein SM72 - human [- anoth = 201]	HOEEC67R smooth muscle protein SM22 homolog - mouse Length = 201	HPFEA40R t-complex polypeptide 1 (AA 1-556) [Homo sapiens] Length = 556	HODAV31R	HHECI89R transaldolase Homo sapiens) >gil2612879 (AP010400) transaldolase-related protein [Homo sapiens) >spi0007511000751 TRANSALDOLASE (EC 2.2.1.2.) >gil1480787 transaldolase [Homo sapiens] {SUB 302-337}	HSDFV03R translocase [Bos taurus] >pinfB43646lB43646 ADP.ATP carrier protein T2 - bovine sypl33007lADT3_BOVIN_ADP.ATP CARRIER PROTEIN, ISOFORM T2 (ADP/ATP TRANNSLOCASE) (ADEN/BN UUCLEOTIDE TRANSLOCASE) (ADEN/BN UUCLEOTIDE TRANSLOCASE) (ADEN/BN UUCLEOTIDE TRANSLOCASE) (ADEN/BN 17. rend-208	HTXPNOIR	HHPSA49R tuberin [Homo sapiens] Length = 1784 H2LAT88R type II mesothelial keratin K7 [Homo sapiens] ssplQ25676(Q25676 MISOTHELIAL KERATIN K7 (TYPE II) (FRAGMENT). Length = 489
863	864	865	998	867	898	698	870 871

H6EAD58 HACBH95 HACBY16	HAGCI33 HAHAD34	HAJAN69	HALSG52	HAPKI /	HAUBY86	HAVAA34	HBAFK20	HBGBE20	HBJBR66	HBJMU59	HBKDK63	HBMVT43	HCDAM59	HCFLN25	HCQAW59	HDPMA46	HDTAQ26	HDTAT40	HDTLD39	HE2PO63	HELCV09	HELHK95	HEMGL70	HETIB72	HFFAS19	HFIYH65
	2 238 61 123																									68 259
H6EAD58R HACBH95R HACBY16R	HAGCI33R HAHAD34R	HAJAN69R	HALSG52R	HAPPKI/K HAOCG78R	HAUBY86R	HAVAA34R	HBAFK20R	HBGBE20R	HBJBR66R	HBJMU59R	HBKDK63R	HBMVT43R	HCDAM59R	HCFLN25R	HCQAW59R	HDPMA46R	HDTAQ26R	HDTAT40R	HDTLD39R	HE2PO63R	HELCV09R	HELHK95R	HEMGL70R	HETIB72R	HFFAS19R	HFIYH65R

HFXAF89 HHEBR03 HHEBR03 HHSBF82 HKBAA63 HKIXO47 HLDNF70 HLQF033 HLWBC80 HLX WBC80 HLX WBC80 HLYAV50 HMCKY67 HMCAF41 HOUDQ92 HPAAD91	HPICB65 HPIBF22 HPIBF281 HRACF81 HRACT28 HSBAP03 HSDIK57
361 307 202 202 202 203 204 204 307 302 310 310 334 368 369 377 377 377 377 377 377 377 377 377 37	430 330 189 319 263 458
143 8 9 8 9 9 9 9 9 9 9 9 9 9 8 4 8 4 8 4 8	2 220 214 1 110 113 234
HFXAF89R HHGFAQ8R HHGFAQ8R HKSAF2R HKKO47R HKKO47R HLVFO3R HLVFO3R HLYAV5R HYTAV5R HNTBASR HNGAZ9IR HNTACO6R HNGAZ9IR HPGAZ19R HPTAT3R	HPJBE22R HPJBE22R HRACF81R HRACF81R HSBAP03R
HHZ, HHG, HHB, HKD, HLD, HLD, HLM, HLY, HME, HME, HME, HME, HME, HME, HME, HME	HPJB HPJB HRAC HRAC HSBA HSDJ
903 904 906 907 907 908 909 911 912 913 914 915 915 916 917 917 918 918 918 918 918 918 918 918 918 918	928 928 930 931 933

[0039] The first column of Table 1 shows the "SEQ ID NO:" for each of the 940 prostate cancer antigen polynucleotide sequences of the invention.

[0040] The second column in Table 1, provides a unique "Sequence/Contig ID" identification for each prostate and/or prostate cancer associated sequence. The third column in Table 1, "Gene Name," provides a putative identification of the gene based on the sequence similarity of its translation product to an amino acid sequence found in a publicly accessible gene database, such as GenBank (NCBI). The great majority of the cDNA sequences reported in Table 1 are unrelated to any sequences previously described in the literature. The fourth column, in Table 1, "Overlap," provides the database accession no. for the database sequence having similarity. The fifth and sixth columns in Table 1 provide the location (nucleotide position nos. within the contig), "Start" and "End", in the polynucleotide sequence "SEO ID NO:X" that delineate the preferred ORF shown in the sequence listing as SEO ID NO:Y. In one embodiment, the invention provides a protein comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by the nucleotide position nos. "Start" and "End". Also provided are polynucleotides encoding such proteins and the complementary strand thereto. The seventh and eighth columns provide the "% Id" (percent identity) and "% Si" (percent similarity) observed between the aligned sequence segments of the translation product of SEO ID NO:X and the database sequence.

The ninth column of Table 1 provides a unique "Clone ID" for a clone related to each contig sequence. This clone ID references the cDNA clone which contains at least the 5' most sequence of the assembled contig and at least a portion of SEQ ID NO:X was determined by directly sequencing the referenced clone. The reference clone may have more sequence than described in the sequence listing or the clone may have less. In the vast majority of cases, however, the clone is believed to encode a full-length polypeptide. In the case where a clone is not full-length, a full-length cDNA can be obtained by methods described elsewhere herein.

[0042] Table 3 indicates public ESTs, of which at least one, two, three, four, five, ten, or more of any one or more of these public ESTs are optionally excluded from the invention

[0043] SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing as SEO ID NO:1 through SEO ID NO:940) and the

translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing as SEQ ID NO:941 through SEQ ID NO:1880) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and decribed further below. For instance, SEQ ID NO:X has uses including, but not limited to, in designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the related cDNA clone contained in a library deposited with the ATCC. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling immediate applications in chromosome mapping, linkage analysis, tissue identification and/or typing, and a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y have uses that include, but are not limited to, generating antibodies which bind specifically to the prostate cancer antigen polypeptides, or fragments thereof, and/or to the prostate cancer antigen polypeptides encoded by the cDNA clones identified in Table 1.

[0044] Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroreously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

[0045] Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing the related cDNA clone (deposited with the ATCC, as set forth in Table 1). The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. Further, techniques known in the art can be used to verify the nucleotide sequences of SEQ ID NO:X.

[0046] The predicted amino acid sequence can then be verified from such deposits.

Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable

host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

[0047] The present invention also relates to vectors or plasmids which include such DNA sequences, as well as the use of the DNA sequences. The material deposited with the ATCC on:

TABLE 2

ADLE 2		
ATCC Deposits	Deposit	ATCC Designation Number
	Date	
LP01, LP02, LP03, LP04,	May-20-97	209059, 209060, 209061, 209062, 209063,
LP05, LP06, LP07, LP08,		209064, 209065, 209066, 209067, 209068,
LP09, LP10, LP11,		209069
LP12	Jan-12-98	209579
LP13	Jan-12-98	209578
LP14	Jul-16-98	203067
LP15	Jul-16-98	203068
LP16	Feb-1-99	203609
LP17	Feb-1-99	203610
LP20	Nov-17-98	203485
LP21	Jun-18-99	PTA-252
LP22	Jun-18-99	PTA-253
LP23	Dec-22-99	PTA-1081

each is a mixture of cDNA clones derived from a variety of human tissue and cloned in either a plasmid vector or a phage vector, as shown in Table 5. These deposits are referred to as "the deposits" herein. The tissues from which the clones were derived are listed in Table 5, and the vector in which the cDNA is contained is also indicated in Table 5. The deposited material includes the cDNA clones which were partially sequenced and are related to the SEQ ID NO:X described in Table 1 (column 9). Thus, a clone which is isolatable from the ATCC Deposits by use of a sequence listed as SEQ ID NO:X may include the entire coding region of a human gene or in other cases such clone may include

a substantial portion of the coding region of a human gene. Although the sequence listing lists only a portion of the DNA sequence in a clone included in the ATCC Deposits, it is well within the ability of one skilled in the art to complete the sequence of the DNA included in a clone isolatable from the ATCC Deposits by use of a sequence (or portion thereof) listed in Table 1 by procedures hereinafter further described, and others apparent to those skilled in the art.

[0048] Also provided in Table 5 is the name of the vector which contains the cDNA clone. Each vector is routinely used in the art. The following additional information is provided for convenience.

[0049] Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., *Nucleic Acids Res. 16*:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., *Nucleic Acids Res. 17*:9494 (1989)) and pBK (Alting-Mees, M. A. et al., *Strategies 5*:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into *E. coli* strain XL-1 Blue, also available from Stratagene.

Vectors pSport1, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into *E. coli* strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., *Focus* 15:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into *E. coli* strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into *E. coli* strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., *Nuc. Acids Res.* 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).

[0051] The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, and/or the cDNA contained in a deposited cDNA clone. The

corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

[0052] Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, and/or the cDNA contained in the related cDNA clone in the deposit, using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.

10053] The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X, and/or the related cDNA clone (See, e.g., columns 1 and 9 of Table 1). The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by the cDNA in the related cDNA clone contained in a deposited library. Polynucleotides encoding a polypeptide comprising, or alternatively consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by the the dDNA in the related cDNA clone contained in a deposited library, are also encompassed by the invention. The present invention further encompasses a polynucleotide comprising, or alternatively consisting of, the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the related cDNA clone contained in a deposited library.

[0054] Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. To list every related sequence would unduly burden the disclosure of this application. Accordingly, for each "Contig Id" listed in the first column of Table 3, preferably excluded are one or more

polynucleotides comprising a nucleotide sequence described in the second column of Table 3 by the general formula of a-b, each of which are uniquely defined for the SEQ ID NO:X corresponding to that Contig Id in Table 1. Additionally, specific embodiments are directed to polynucleotide sequences excluding at least one, two, three, four, five, ten, or more of the specific polynucleotide sequences referenced by the Genbank Accession No. for each Contig Id which may be included in column 3 of Table 3. In no way is this listing meant to encompass all of the sequences which may be excluded by the general formula, it is just a representative example.

TABLE 3

Commond	General formula	Genbank Accession No.
Sequence Contig ID		
574130	Preferably excluded from the present invention are one or more polymerical case described by the polymerical case consecutive by the polymerical formula of a-b, where a is any integer between 1 or 703 of SEQ ID NO:1, b is an integer of 15 to 717, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:1, and where b is greater than or equal to a + 14.	
637706	Preferably excluded from the present invention are one or more polymerated secondarions an audeoide sequence described by the polymerate formula of act, where a is any integer between 1 to 1611 of SEQ.ID NO.2, b is an integer of 15 of 1655, where both a and b correspond to the positions of nacleoride residues shown in SEQ.ID NO.2, and where b is greater than or equal to a + 14.	COZORI VOLONIA
638162	Preferably excluded from the present invention are one or more polynacleotides comprising a nucleotide sequence described by the polynacleotides comprising a nucleotide sequence described by the general formula of reb., where a is any integer let let 0.245, where both a and 0 SEQ ID NO.3, a lar nineger of 15 of 2455, where both a and 0 Lorrespond to the positions of nucleotide readuse shown in SEQ ID NO.3, and where b is greater than or equal to a + 14.	KR932, RV92, LH814, KR72, HV944, HV950A, IBGORA, H99479, N2197, N2892, N48317, R49043, N79526, W16679, AA017524, AA017582, AA218755, AA463914
684310	Preferably excluded from the present invention are one or more polymedrochies counterforms a meleonide sequence described by the general formula of 4b, where a is any integer between 1 to 972 of SEQ ID NO4.4 is an integer of 15 to 986, where both a and b correspond to the positions of meleonide residues shown in SEQ ID NO4, and where b is greater than or equal to a + 14.	R00703, R79938, R80028, N75501, N99910, W22289
731016	Preferably excluded from the present invention are one or more	A proper of the second control of the second

polymucleotides comprising a nucleotide sequence described by the general formula of a 4a, where a is any integer between 1 to 356 of SEQ ID NOS, b is an integer of 15 to 370, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NOS, and where b is greater than or cquall to a ++ 14. Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 437 of SEQ ID NOS, b is an integer of 15 to 31, where both and b correspond to the positions of inteclodic seadless shown in SEQ ID NOS, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 704 of SEQ ID NOS, b is an integer of 15 to 718, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NOS, and where b is any integer between 1 to 704 of SEQ ID NOS, b is an integer of 15 to 718, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NOS, and where b is greater than or equal to a + 14. 828 194 Perfectably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general format of a-b, where a is any integer between 1 to 741 of SEQ ID NOS, b is an integer of 15 to 45, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NOS, and where b is greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than or equal to a + 14. NOS, and where to be greater than
--

<u>д с ауу 5 2 п с ауу 5 2 п п мог у г п п мог у г п п т мог у п п т </u>	W33945, W16670, W03705, W04664, W13718, W33370, W33449, W3312, W03312, W03313, AA012489, AA012495, AA013860, AA0176628, AA013800, AA013900, AA013900, AA013900, AA013900, AA013900, AA013900, AA013900, AA013903, AA025077, AA023077, AA023077, AA023077, AA023078, AA024814, AA090000, AA011931, AA016011, AA032076, AA0391341, CA06189 E
828242 Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	re construction of the con

	SEQ ID NO:15, b is an integer of 15 to 864, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	
878747	Preferably excluded from the present invention are one or more	
147070	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2791 of	
	SEQ ID NO:16, b is an integer of 15 to 2805, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:16, and where b is greater than or equal to a + 14.	
828248	Preferably excluded from the present invention are one or more	T66275, R11733, H10020, H10293, AA054067, AA127524,
	polynucleotides comprising a nucleotide sequence described by the	AA192628
	general formula of a-b, where a is any integer between 1 to 696 of	
	SEQ ID NO:17, b is an integer of 15 to 710, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:17, and where b is greater than or equal to a + 14.	
828250	Preferably excluded from the present invention are one or more	F52330, T52406, H58954, H59892, H80117, H95961, AA035013,
	polynuclcotides comprising a nucleotide sequence described by the	AA233062, AA811863, AA812014, AA827886
	general formula of a-b, where a is any integer between 1 to 978 of	
	SEQ 1D NO:18, b is an integer of 15 to 992, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:18, and where b is greater than or equal to a + 14.	
828256	Preferably excluded from the present invention are one or more	R19470, R43810, R43810, R68471, R84396, H4852/, H72808,
	polynucleotides comprising a nucleotide sequence described by the	H74042, H77919, N59326, W37177, W63751, AA054952,
	general formula of a-b, where a is any integer between 1 to 1781 of	AA055414, AA075756, AA084216, AA167088, AA171933,
	SEQ ID NO:19, b is an integer of 15 to 1795, where both a and b	AA283637, AA504517, AA526903, AA548976, AA720935,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA743227, AA876493, AA922502, AA935236, AA977747,
	NO:19, and where b is greater than or equal to a + 14.	AA985556, AA995834, AI085874, AI089849, N83890, AA643000
828267	Preferably excluded from the present invention are one or more	R64277, R78171, R81344, R82497, R82551, H30248, N21678,
	polynucleotides comprising a nucleotide sequence described by the	N35076, N43816, N49970, N72024, N72025, W32428, W45005,
	general formula of a-b, where a is any integer between 1 to 695 of	W4/341, W4/466, AAU23021, AAU22493, AAI100240,
	SEQ ID NO:20, b is an integer of 15 to 709, where both a and b	AA161105, AA160827, AA262229, AA400901, AA401270,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA703121, AA310204, AA387400, MASI4296, AA826741,
	INC.20, and where o is greated than or equal to a 7 17.	AA872272, AA873216, AA877503, AA887257, AA888574,
		AA903406, AA946650, AI005204, F18545, AI096504, AI096416,

828269	Proferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 635 of 820 DNO21, b is an integer of 15 to 649, where be both a and b correspond to the positions of nucleotide residues shown in SEQ ID	CO1329
828272	Preferably eveluded from the present invention are one or more productably eveluded from the present invention are one or more polyunuclouides comprising a majoriodic sequence described by the general formula of e.b. where a is any integer between 1 to 1593 of SEQ ID NO.22, b is an integer of 15 to 1607, where both a and b reception to the positions or interceide residues shown in SEQ ID NO.22, and where b is greater than or could to # 14.	RI9809, H18934, H19375, H26539, AA055911, AA494436, AA587324, AA714132, C17882, C18668
828273	Preferably excluded from the present invention are one or more propriated are described by the general formula of a-b, where a is any integer between 1 to 554 of SEQ ID NO.23, b is an integer of 15 to 578, where both a and b recreased in the propriate of the propriate of 15 to 578, where both a and b NO.23, and where b is greater than or equal to a + 14.	H19271
828290	Preferably excluded from the present invention are one or more proproached proproached proproached sequence described by the general formula of a-b, where a is any integer between 1 or 2742 of SEQ ID NO.24, b is an integer of 15 to 2756, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.24, and where b is greater than or equal to a + 14.	175988, T5989, T9487, T9491, T16520, T6722, T6602, T17599, R0165, R0268, R10380, R1031, T80506, T80507, R1613, R27568, R20800, R25595, R3889, R39241, R41395, R8591 T, R76584, R06585, R06952, R10590, R11510, H11870, R82318, R91788, R91789, R06234, R06525, H57286, H726698, R742774, AA259022, AA148693, AA256061, AA236061, AA25902, AA417924, AA48695, AA417924, AA48695, AA417926, AA483364, AA48306, AA48306, AA48306, AA48306, AA48306, AA48306, AA48336, AA48306, AA48306, AA48306, AA48306, AA48306, AA48306, AA48336, AA8336, AA836, AA836, AA836, AA836, AA836, AA836, AA
828326	Preferably excluded from the present invention are one or more propuleschied sorrprising a motorpising senderodic sequence described by the general formula of a-b, where a is any integer between 1 to 2666 of SEQ ID NO.25, b is an integer of 15 to 2680, where both a and b correspond to the positions of nucleoride residues shown in SEQ ID NO.25, and where b is greater than or equal to a + 14.	T59632, T51535, T51684, T53316, T53317, T78655, R39299, R5001, R5002, R6024, R6047, H18598, H16101, H16348, R15367, H15969, H16101, H16348, R15367, H15969, H46597, H66682, H6689, H81508, H83033, N71968, N99700, W00835, W42577, W60798, W60929, AAMORGNS, AAMORGNS, AAMORS, AAMORGNS, AAMOR

828397 828405 828461		AA983494, AID81278, N85117, W22522 NZ7583 NZ7583 AA133102, AA076642, AA079413, AA120823, AA120824, AA133102, AA62274 AA133102, AA62274 SERIZES, T79977, T81576, T83389, T97268, T97379, R16708, R12256, T79977, T81576, T83389, T97268, T97379, R16708, R12218, R69161, R69275, H15410, H15466, H29577, H29661, HE0315, N3454, N47104, N62861, N67285, W24823, AA232725, AA226518, AA6276918, AA256793, W26725
828488	correspond to the positions of neucleotide residues known in SEQ ID NO.29, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymetocides compress the described by the general formula of a 4b, where a is any integer to 15 to 494, where both a and b Correspond to the positions of macleotide residues shown in SEQ ID NO.30, is an integer of 15 to 494, where both a and b correspond to the positions of macleotide residues shown in SEQ ID NO.30, and where b is greater than or equal to a + 14. Preferably excluded from the present invantion are one or more polymuclostides comprising a nacleotide sequence described by the	

	general formula of a-b, where a is any integer between 1 to 1249 of SEQ ID NO.3.1, bit as inneger of 15 to 1263, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.3.1, and where b is greater than or equal to a + 14.	
828492	Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 323 of SEQ ID NO;32, b is an integer of 15 to 337, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO;32, and Where b is greater than or equal to a + 14.	
828494	Preferably excluded from the present invention are one or more polymucleoutdes comprising a medicabide sequence described by the general formula of a-b. where at is any integer between 1 to 1728 of SEQ ID NO.33, b is an integer of 15 to 1742, where both a and b correspond to the positions of medicaide residiates shown in SEQ ID NO.33, and where b is general than or equal to a + 14.	177590, R.19349, H06686, N42827, N42891, N73270, W38326, AAI80126, AA194183, AA232257, AA424380, AA002702, AA939089, AA977206, AA988001, AA996359
828496	Prefetably excluded from the present invention are one or more polymucleotides compusing a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1152 of SEQ ID NO.34, b is an integer of 15 to 1166, where both a and b correspond to the positions of nucleotide residences shown in SEQ ID NO.34, and where b is greater than or equal to a + 14.	H16641, H81084, AA972362
828498	Preferably excluded from the present invention are one or more populated to comprising an unbendied sequence described by the general formula of a-b, where a is any integer between 1 to 1035 of SEQ ID NO35, b is an integer of 15 to 1049, where both a and b correspond to the positions of unbendied residues shown in SEQ ID NO35, and where both is greater than or equal to a + 14.	T79930, T98680, R89124, R89756, R91725, R91820, R92013, R9218, R9423, R9429, H94696, H6146, H92711, H82831, H67085, H67021, H71885, H71885, H79885, H79886, N31924, N42760, N55543, N72715, N76929, N79841, W46530, W46166, A7491319, AA73000, AA746111, AA88751, AA918492, AA98417, A100105, T79798, W34455, C15760
828504	Preferably excluded from the present invention are one or more polyutelevides comprising a meloride sequence described by the general formula of a.b., where a sis any integer between 11 or 475 of SEQ ID NO.36, b is an integer of 15 to 489, where both a and b creapend to the positions of melocide residents shown in SEQ ID NO.36, and where b is greater than or equal to a + 14.	
828507	Preferably excluded from the present invention are one or more	

	6	
	peneral formula of a-h, where a is any integer hetween 1 to 584 of	
	SEQ ID NO:37, b is an integer of 15 to 598, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:37, and where b is greater than or equal to a + 14.	
828512	Preferably excluded from the present invention are one or more	N27463
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 748 of	
	SEQ ID NO:38, b is an integer of 15 to 762, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:38, and where b is greater than or equal to a + 14.	
828516	Preferably excluded from the present invention are one or more	T56794, T56795, T84141, R02653, R20890, R24025, R33319,
	polynucleotides comprising a nucleotide sequence described by the	K33320, K347/4, K6/912, K69/38, K77/53, K7/7838, K81629,
	general formula of a-b, where a is any integer between 1 to 1944 of	H13449, H15508, H2/402, H58932, H589/9, H99151, N20262,
	SEQ ID NO:39, b is an integer of 15 to 1958, where both a and b	N24400, N25962, N29166, N34977, N35438, N50797, N55154,
	correspond to the positions of nucleotide residues shown in SEQ 1D	W02966, W92783, W92882, AA007585, AA036747, AA036997,
	NO:39, and where b is greater than or equal to a + 14.	AA074474, AA102125, AA100655, AA112751, AA113219,
		AA113805, AA188790, AA541250, AA541763, AA558310,
		AASS9035, AAS81570, AAS87474, AAS69332, AA687827, A A715063, A A A B A A A A A A A A A A A A A A A
		44054522, 44089224, 1017059, 41057158, 41088905,
828519	Preferably excluded from the present invention are one or more	61034270, A1030/26, 040434, C01331 W79671
	holymiclastides comprising a miclastide segmence described by the	
	polynacionades comprising a nacionade sequence accurace by an	
	SEO ID NO.40 h is an integer of 15 to 477, where both a and h	
	correspond to the positions of nucleotide residues shown in SEO ID	
	NO:40, and where b is greater than or equal to a + 14.	
828521	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 846 of	
	SEQ ID NO:41, b is an integer of 15 to 860, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
ı	NO:41, and where b is greater than or equal to a + 14.	
828522	Preferably excluded from the present invention are one or more	T54309, T63973, T64041, T89636, T90270, R62731, R63686,

	polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1117 of SEQ ID NO.42, b is an integer of 15 to 1131, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.42, and where b is greater than or equal to a + 14.	H98873, N25098, N36012, N38881, N44246, N67168, AA047726, AA081019, AA120775, AA120774, AA128274, AA128571, AA351864, AA767989, AA902693
828525	Preferably excluded from the present invention are one or more polynucleotides controlledisting an audiotide sequence described by the general formula of sel, where a is any integer between 1 to 1230 of SEQ ID NO.43, b is an integer of 15 to 1334, where both a and b correspond to the politions of medicide residues as shown in SEQ ID NO.43, and where b is greater than or equal to a + 14.	1748657, 7148687, 7148861, T34018, T345559, 1758581, R23000, R2346212, R246979, R27855, R23999, R34068, R64482, R64557, R646662, R67745, R69150, R70688, R77130, R81861, R82246, R82815, H03551, N99770, N41595, A42044, N57142, N99749, AAAD29208, AA1549686, N26256, N30247, N30819, N32903, N39559, D78905, D79060, N63792, AA402920
828529	Preferably excluded from the present invention are one or more polymetheotides countrieng an ended escarghed by the general formula of ab, where a is any integer between 1 to 2337 of SEQ ID NO.44, b is an integer of 15 to 2351, where both a and b correspond to the positions of medicable residue residues shown in SEQ ID NO.44, and where b is greater than or equal to a + 14.	
828530	Preferably excluded from the present invention are one or more polymetheotides countrieing a methodise sequence described by the general formula of #b, where a is any integer between 1 to 1573 of SEQ ID NO345, is an integer of 15 to 1587, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO345, and where b is greater than or equal to a + 14.	T74290, T79269, R24409, R24409, R33242, R33507, R34284, R0508, H3792, H3794, M24196, AA013089, AA228469, AA508953, AA508121, AA013090, AA815576, AA888323, AI032201, AA013090
828536	Preferably excluded from the present invention are one or more polymoleotides counts described by the general formula of a b, where a is any integer between 1 to 365 of SEQ ID NO.46, b is an integer of 15 to 379, where both a and b correspond to the positions of machothe residues a shown in SEQ ID NO.46, and where b is greater than or equal to a + 14.	
828537	Prefetably excluded from the present invention are one or more polymoleotides comprising a meleotide sequence described by the general formula of a b, where a is any integer between 1 to 1906 of SEQ ID NO.47, b is an integer of 15 to 1920, where both a and b correspond to the positions of meleotide residues a shown in SEQ ID NO.47, and where b is greater than or equal to a + 14.	

655070	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 305 of	
	Correspond to the positions of nucleotide residues shown in SFO ID	
	NO:48, and where b is greater than or equal to a + 14.	
828540	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 264 of	
	SEQ 1D NO:49, b is an integer of 15 to 278, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
44.2000	NO:49, and where b is greater than or equal to a + 14.	
75020	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 638 of	
	SEQ ID NO:50, b is an integer of 15 to 652, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:50, and where b is greater than or equal to a + 14.	
828543	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 929 of	
	SEQ ID NO:51, b is an integer of 15 to 943, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:51, and where b is greater than or equal to a + 14.	
828544	Preferably excluded from the present invention are one or more	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 818 of	
	SEQ ID NO:52, b is an integer of 15 to 832, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:52, and where b is greater than or equal to a + 14.	
828546	Preferably excluded from the present invention are one or more	H25827, H45313, W77774, AA587295, AA595924, AA603051.
	polynucleotides comprising a nucleotide sequence described by the	C00427
	general formula of a-b, where a is any integer between 1 to 1540 of	
	SEQ ID INC. 33, b is an integer of 15 to 1554, where both a and b	
	POLICEPOILE TO THE POSITIONS OF HITCHCOURS RESIGNES SHOWIN THE SELVE TILE	

	NO.53 and where h is greater than or equal to a + 14	
828550	Preferably excluded from the present invention are one or more polymeric present invention are one or more polymericondes comprising a methodid sequence described by the general formula of a be, where a is any integer between 1 to 267 of SEQ ID NO54, to is an integer of 15 to 281, where both a and b correspond to the positions of macleotide residues shown in SEQ ID NO55, and where he greater than or equal to a 1-14. Preferably excluded from the present invention are not or more	783634W 11578624W 24578687 AA524070 AA578787
100070	releasing veducious trom the present mention in each en to nino e polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 793 of SEQ ID NOS5, is an integer of 15 to 803, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.55, and where b is greater than or equal to a + 14.	AAS(66(33, AAS/77923
828553	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of e.b., where a is any integer between 1 to 642 of SEQ ID NOSée, b is an integer of 15 to 656, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOSée, and where b is greater than or equal to a + 14.	
828557	Prefetably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 780 of SEQ DR NO-57, b is an integer of 15 to 794, where both a and b receipted to the positions of nucleotide residues shown in SEQ ID NO-57, and where b is greater than or equal to a + 14.	
828560	Preferably excluded from the present invention are one or more polymeleotides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 114 of ISQ DI NOSE, is is an integer of 15 to 1155, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOSE, and where b is greater than or equal to a + 14.	177295; 877355; N58890, AA228477, AA229199, AA229332, AA229490, AA229542, AA508222, AA508881, AA508713, AA522664, AA525054, AA531563; AA564505, AA627496, AA569813, AA908306
828561	Preferably excluded from the present invention are one or more polymericaties compred escretate described by the general formula of a-b, where a is any integer between 1 to 478 of SEQ ID NO:59, b is an integer of 15 to 492, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID NO:59, and where b is greater than or equal to a + 14.	
828565	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1603 of	
	SEQ ID NO501, b is an integer of 15 to 1011, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID Crof. 69, and where b is greater than or equal to a + 14.	
828566	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	T74741, R89314, H66527, H66526, H67472, H67473, H68173, H68172, H96621, H96622, N27775, N28518, N33857, N66931,
	general formula of a-b, where a is any integer between 1 to 1639 of SEQ ID NO:61, b is an integer of 15 to 1653, where both a and b	AA149826, AA151993, AA152072, AA152078, AA188743
	correspond to the positions of nucleotide residues shown in SEQ ID NO:61, and where b is greater than or equal to a + 14.	
828567	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 420 or SEQ ID NO:62, b is an integer of 15 to 440, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	INO:02, and where b is greater until or equal to a + 1+.	201000 A CORDOR COCCOR CASCO A COCCOR
828568	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	R01283, R62995, R63052, R97762, R97763, AA044146, AA044262, AA150771, AA429074, AA282254, AA282728,
	general formula of a-b, where a is any integer between 1 to 1048 of	AA468569, AA586526, AA622172, AA631182, AA631273,
	SEQ ID NO:63, b is an integer of 15 to 1062, where both a and b	AA809910, AA811682
	correspond to the positions of nucleotide residues shown in SEQ ID NO:63, and where b is greater than or equal to a $+ 14$.	
828569	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	SECTION OF	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:64, and where b is greater than or equal to a + 14.	
828570	Preferably excluded from the present invention are one or more	H77440
	polynucleotides comprising a nucleotide sequence described by the	
	Schotal follidia of a-0, where a is any meets occurred a to one	

	SEQ ID NO:65, b is an integer of 15 to 709, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:65, and where b is greater than or equal to a + 14.	
828571	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the polynucleotides comprising a nucleotide sequence described by the properties of t	N27429, N34713, N51144, AA033703, AA033704, AA046488, AA046700, AA180131, AA514866, AA515411, AA527426, A A554163, A A745008, A A805885, A A867045, A A953075
	SEO ID NO:66, b is an integer of 15 to 1302, where both a and b	AIO75070
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:66, and where b is greater than or equal to a + 14.	
828574	Preferably excluded from the present invention are one or more	T92929, T93045, T92007, T92093, T98007, R28667, N79460,
	polynucleotides comprising a nucleotide sequence described by the	AA614258, AA741201, AA847513, AI083735
	general formula of a-b, where a is any integer between 1 to 1032 of	
	SEQ ID NO:67, b is an integer of 15 to 1046, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:67, and where b is greater than or equal to a + 14.	
828575	Preferably excluded from the present invention are one or more	AA837738
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 487 of	
	SEQ ID NO:68, b is an integer of 15 to 501, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:68, and where b is greater than or equal to a + 14.	
828577	Preferably excluded from the present invention are one or more	AA169882, AA169883
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 567 of	
	SEQ ID NO:69, b is an integer of 15 to 581, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:69, and where b is greater than or equal to a + 14.	
828578	Preferably excluded from the present invention are one or more	T39452, T46945, T47319, T53621, T53622, T61271, T61323,
	polynucleotides comprising a nucleotide sequence described by the	K21194, K22811, K24/05, K25199, K50407, K50406, K5756, R5759 R53759 R63751 R63131 R63969 R64075, R70570, R77117.
	SEO ID NO: 70 h is an integer of 15 to 1076, where both a and b	R77118, R80611, R80612, H00653, H00742, H02619, H02725,
	correspond to the positions of nucleotide residues shown in SEO ID	N32242, N57336, N69947, N80785, N98328, N98569, W15554,
	NO:70, and where b is greater than or equal to a + 14.	AA029021, AA029143, AA037587, AA131825, AA131992,
		AA229266, AA507524, AA533307, AA533431, AA534110,
		A 534 166 A 534281 A 535170 A 586608 A 593596

		AA838623 AA885780, AA936945, AA642546
828580	Preferably excluded from the present invention are one or more polymericative some described by the general formula of a b, where a is any integer cleaven 1 to 362 of SEQI IN 107.11, it is an integer of 15 to 376, where both a and b correspond to the positions of machonide residues shown in SEQ ID NO.71, and where b is greater than or equal to a + 14.	07/2/03 ×
828581	Preferably excluded from the present invantion are one or more polynacleotides comprising a nucleotide sequence described by the general formula of a bi, where a is any integer between 1 to 360 of SEQ ID NO.72, b is an integer of 15 to 374, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.72, and where b is greater than or equal to a + 14.	AA30/628
828583	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 405 of SEQ ID NO.73. b is an integer of 15 to 419, where both a and b correspond to the positions of nucleotide residues known in SEQ ID NO.73, and where b is greater than or equal to a + 14.	
828585	Preferably excluded from the present invention are one or more polymerleorides comprising a meleoride sequence described by the general formali of a-b, where a is any lineger of 272 of SEQ ID NO7.4, b is an integer of 15 to 286, where both a and b correspond to the positions of meleoride residues shown in SEQ ID NO7.4, and where b is greater than or equal to a + 14.	AA234220
828587	Preferably excluded from the present invention are one or more polymeroleuides comprising a meloonide sequence described by the general formula of a-b, where a is any integer between 1 to 619 of SEQ ID NO.75. b is an integer of 15 to 633, where both a and b correspond to the positions of melootide residues shown in SEQ ID NO.75, and where b is greater than or equal to a + 14.	
828590	Preferably excluded from the present invention are one or more polymucheoides countsing a mulcuodite sequence described by the general formula of a-b, where a is any integer between 1 to 242 of SEQ ID NO.76, is san integer of 15 to 256, where both a and b	

A THE CASE OF THE PARTY OF THE

	correspond to the positions of nucleotide residues shown in SEQ ID NO.75, and where h is greater than or against to a ± 14	
828592	Preferably excluded from the present invention are one or more	R52221, R54548, R97331, H57211, H55375, H55650
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 680 of	
	SEQ ID NO:77, b is an integer of 15 to 694, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:77, and where b is greater than or equal to a + 14.	
828593	Preferably excluded from the present invention are one or more	T57629, T58982, R19824, R45052, R45052, R55638, R59495,
	polynucleotides comprising a nucleotide sequence described by the	H18527, H19193, H28411, H39750, H62246, H62335, H91342,
	general formula of a-b, where a is any integer between 1 to 2548 of	N62586, N63264, N80359, W81015, W94481, W94746,
	SEQ ID NO:78, b is an integer of 15 to 2562, where both a and b	AA011589, AA029848, AA028978, AA045902, AA114951,
	correspond to the positions of nucleoude residues shown in SEQ ID	AAI14950, AAI91597, AA252900, AA253055, AA256157,
	NO:/8, and where b is greater than or equal to a + 14.	AAZ8/301, AAZ9/303, AAS00430, AAJ27/30, AAJ20123, AAS48114, AAS92904, AA808705, AA837733, AA876630,
828594	Preferably excluded from the present invention are one or more	AA908/24, N90553, AA007100 R06875, R06876, H89673, AA036961, AA150107, AA150515.
	notymicleotides comprising a nucleotide sequence described by the	AA983641
	general formula of a-h where a is any integer hetween 1 to 1596 of	
	SEO ID NO 79 h is an integer of 15 to 1610, where both a and b	
	correspond to the positions of nucleotide residues chown in SEO ID	
	NO-70 and where his creater than or equal to a ± 14	
702000	INO. 19, and where U is greater than of equal to a + 1+.	0210262 T04746 T08046 W/01774 W/48620 AA/021180
965878	Preferably excluded from the present invention are one of more	KU9003, 104/40, 190040, WU12/4, W40027, AAU02107,
	polynucleotides comprising a nucleotide sequence described by the	AA426550, C04056
	general formula of a-b, where a is any integer between 1 to 1034 of	
	SEQ ID NO:80, b is an integer of 15 to 1048, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:80, and where b is greater than or equal to a + 14.	
828597	Preferably excluded from the present invention are one or more	R41797, R41797, H61049, N58312, N79783, W07281, W23730,
	polynucleotides comprising a nucleotide sequence described by the	W23738, W35330, W35337, AA235295, AA935231, AA995710,
	general formula of a-b, where a is any integer between 1 to 1122 of	A1017376, A1088874, A1096890, W27349
	SEQ ID NO:81, b is an integer of 15 to 1136, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
003000	D. C. 11.	
828598	Preferably excluded from the present invention are one of more	

the of August 2 ID	the 5 of 2 O	of of 2 ID			AA17702, AA17702, AA17703, AA17034, AA17034, AA21504, the AA2290, AA225109, AA225109, AA225104, AA22510, of AA225162, AA225108, AA225109, AA22503, AA22501, AA225109, AA225879, AA22580, AA22963, AA229614, AA22610, AA22620, AA22604, AA226681, AA226459, AA226556, AA22663, AA2663, AA226680, AA226459,
polymoleotides comprising a meleotide sequence described by the general formula of ab, where a is any integer between 1 to 283 of SEQ ID NO.82, b is an integer of 1 S to 297, where both a and b correspond to the positions of intellectule residues shown in SEQ ID NO.82, and where b is generar than or equal to a + 14.	Preferably excluded from the present invention are one or more populareloided so-omprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 213 of SEQ ID NO:83, b is an integer of 15 to 2150, where both a and b correspond to the positions of undecoded residues shown in SEQ ID NO:83, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populated by the oppulated by the oppulated by the general formula of a-b, where a is any integer between 1 to 587 of SEQ ID NO:84, b is an integer of 15 to 601, where both a and b correspond to the positions of undereducid residues shown in SEQ ID NO:84, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more propulated secondarials are comparing a meleculed sequence described by the general formula of a-b, where a is any integer between 1, to 520 of SEQ ID NO:85, b is an integer of 15 to 534, where both a and b correspond to the positions of nucleotodic residens shown in SEQ ID NO:85, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populated comparing the unkeloide sequence described by the general formula of a-b, where a is any nineger between 1 to 1023 of SEQ ID NO:86, b is an integer of 15 to 1037, where both a and b correspond to the positions of microdroide residues shown in SEQ ID NO:86, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more popularelesides comprising a metocode expense described by the general formula of a.b., where a is any integer between 1 to 583 of SEQ ID NO.87, b is an integer of 15 to 597, where both a and b correspond to the positions of nucleotide residens shown in SEQ ID NO.87, and where b is eventer than or count to a + 14.
	828601	828605	828608	828609	828610

*	AA229223, AA229482, AA229756, AA22964, AA244017, AA244091, AA244178, AA24056, AAA24462, AA39747, AA420631, AA420633, AA420633, AA420856, AA460131, AA420631, AA420631, AA469200, AA469226, AA4692035, AA4692184, AA469200, AA4692204, AA492255, AA492285, AA492381, AAA92324, AA492255, AA492383, AA492381, AAA92341,	A499248, A4992445, A4992415, A4992424, A4992424, A4992424, A499224, A499226, A499328, A4993201, A4992201, A499201, A4992201, A	AA507659, AA507664, AA507664, AA507663, AA507663, AA507663, AA507663, AA507663, AA507664, AA507669, AA507669, AA507669, AA507669, AA507766, AA507761, AA507766, AA507760, AA5078013, AA508013, AA53101, AA508013, AA53101, AA533101, AA53301, AA53301	AA535907, AA53744, AA541876, AA541820, AA548220, AA551974, AA551977, AA551977, AA551976, AA551977, AA551977, AA551976, AA551977, AA557784, AA557784, AA557789, AA557789, AA557804, AA588634, AA58966, AA565164, AA588270, AA58960, AA588270, AA588270, AA588270, AA588270, AA588270, AA588270, AA588270, AA588270, AA588270, AA588271, AA603351, AA603352, AA653532, AA653532, AA653532, AA653532, AA65394, AA653594, AA653549, AA653909, AA65394, AA653594, AA653549, AA653909, AA65394, AA663095, AA6640184, AA6640188, AA6640188, AA6640188, AA6640188, AA6640188, AA6640184, AA6640188, AA6640188, AA6640184, AA6640188, AA6640188, AA6640188, AA6640188, AA6640184, AA6640184, AA6640188,
				*

		AA569556, AA570614, AA572857, AA574208, AA574209, AA574212, AA574273, AA580026, AA578701, AA578799, AA578900, AA579004, AA579008, AA579511, AA568108, AA568415, AA654920, AA654956, AA6579331, AA657432,
		AA65749, AA657506, AA657531, AA657541, AA657686, AA65790, AA675793, AA658141, AA65892, AA65992, AA659718, AA661721, AA662290, AA692123, AA662301, AA687736, AA649024, AA718525, AA807843, AA64220, AA6979536, AA64904, AA649929, AA642080, AA642250
828617	Preferably excluded from the present invention are one or more polynthecludes comprising an uncloudle sequence described by the general formula of 24, where a is any integer between 11 of 400 of SEQ ID NO.88, b is an integer of 15 to 474, where both a and b received not the positions on formeoloude residences shown in SEQ ID NO.88, and where b is greater than or count to 4 + 14.	
828620	Preferably excluded from the present invention are one or more populaeloidise comprising a motoridise sequence described by the general formula of e-b, where a is any integer between 1 or 1523 of SEQ ID NO.89, b is an integer of 15 to 1537, where both a and b recompound to the positions no fruebotide residences shown in SEQ ID NO.89, and where b is greater than or equal to a + 14.	AA22828, AA402280, AA50777, AA508355, AA57737, AA527805, AA559165, AA59852, AA564484, AA602957, AA659719, AA642055
828621	Preferably excluded from the present invention are one or more populacidates comprising a motorolate sequence described by the general formula of e-b, where a is any integer between 1 o-290 of SEQ ID NO:90, b is an integer of 15 to 304, where both a and b rocceptod to the positions or hortocide residences shown in SEQ ID NO:90, and where b is greater than or equal to a + 14.	
828622	Preferably excluded from the present invention are one or more populacidates comprising a motorida equence described by the general formula of e-bt, where a is any integer between 1 o.35 of SEQ ID NO.91, b is an integer of 15 to 369, where both a and b reception to the spictons of nucleotide residues shown in SEQ ID NO.91, and where b is greater than or equal to a + 14.	AA570443
828623	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 301 of	
	SEQ ID NO:92, b is an integer of 15 to 315, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:92, and where b is greater than or equal to a + 14.	
828625	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 687 of	
	SEQ ID NO:93, b is an integer of 15 to 701, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:93, and where b is greater than or equal to a + 14.	
828632	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 445 of	
	SEQ ID NO:94, b is an integer of 15 to 459, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:94, and where b is greater than or equal to a + 14.	
828635	Preferably excluded from the present invention are one or more	R13230, R19016, R35012, R40312, R44087, R46776, R49399,
	polynucleotides comprising a nucleotide sequence described by the	R44087, R40312, R49399, H22883, H24275, H71951, N73720,
	general formula of a-b, where a is any integer between 1 to 2575 of	W03891, W95360, W95359, AA055316, AA055317, AA135153,
	SEQ ID NO:95, b is an integer of 15 to 2589, where both a and b	AA135291, AA195210, AA195427, AA236624, AA237000,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA548249, AA553712, AA595319, AA770603, AA947028,
	NO:95, and where b is greater than or equal to a + 14.	D78699
828637	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 443 of	
	SEQ ID NO:96, b is an integer of 15 to 457, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:96, and where b is greater than or equal to a + 14.	
828639	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 502 of	
	SEQ ID NO:97, b is an integer of 15 to 516, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:97, and where b is greater than or equal to a + 14.	

	828645 Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 300 of	
	SEQ ID NO:98, b is an integer of 15 to 314, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:98, and where b is greater than or equal to a + 14.	
828648	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 665 of	
	SEQ ID NO:99, b is an integer of 15 to 679, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:99, and where b is greater than or equal to a + 14.	
828649	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 585 of	
	SEQ ID NO:100, b is an integer of 15 to 599, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:100, and where b is greater than or equal to a + 14.	
828651	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1175 of	
	SEQ ID NO:101, b is an integer of 15 to 1189, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:101, and where b is greater than or equal to a + 14.	
828652	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 237 of	
	SEQ ID NO:102, b is an integer of 15 to 251, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:102, and where b is greater than or equal to a + 14.	
828655	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 444 of	
	SEQ ID NO:103, b is an integer of 15 to 458, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	

NO:103, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populations comprising an analogue and or to the opposition of one of the control of the cont	Preferably excluded from the present invention are one or more populated from the present invention are one or more populated for comparing an unbodide sequence described by the general formula of a-b, where a is any integer between 1 to 219 of SEQ ID NO:105, a is an integer of 15 to 233, where both a and b correspond to the positions of unbedoutde residess shown in SEQ ID NO:105, and where b is generate than or entail to a + 14.	Preferably excluded from the present invention are one or more populuecionics comprising a muleucide sequence described by the general formula of a-b, where a is any integer between 1 to 690 of SEQ ID NO:106, b is an integer of 15 to 704, where both a and b correspond to the positions of inductionic testiales shown in SEQ ID NO:106, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populated to comprising a mulciotide sequence described by the general formula of a.b., where a is any integer between 1 to 431 of SEQ ID NO:107, b is an integer of 15 to 445, where both a and b correspond to the positions of intellectule residens shown in SEQ ID NO:107, and where b is greater than or equal to a + 14.	Prefeably excluded from the present invention are one or more populational comparing an unbedied sequence described by the general formula of a-b, where a is any integer between 1 to 578 of SEQ ID NO:108, b is an integer of 15 to 592, where both a and b correspond to the positions of multiplichted residens, shown in SEQ ID NO:108, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymorbeducides convened edsearbed by the general formula of a-b, where a is any integer between 1 to 367 of SEQ ID NO:100, b is an integer of 15 to 381, where both a and b
	828657	828660	828663	828666	828668	828669

	correspond to the positions of nucleotide residues shown in SEQ ID NO:109, and where b is greater than or equal to $a+14$.	
828670	Preferably excluded from the present invention are one or more	W38772
	polynucleotides comprising a nucleotide sequence described by the	
	SEQ ID NO:110, b is an integer of 15 to 351, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
129000	NO:110, and where b is greater than or equal to a + 14.	
1/0878	referably excluded from the present invention are one of more bolynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1569 of	
	SEQ ID NO:111, b is an integer of 15 to 1583, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:111, and where b is greater than or equal to a + 14.	
828672	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 41/ of	
	SEQ ID NO: 112, b is an integer of 15 to 431, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:112, and where b is greater than of equal to a + 14.	1000 th 1000 th 1000 th
828675	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	T56042, T56076, T59259, T39565, R20801, R20914, R9174, R976346, AA070283, AA100602, AA186719, AA192887,
	general formula of a-b, where a is any integer between 1 to 2828 of	AA258594, AA258623, AA262429, AA458551, AA425795,
	SEQ ID NO: II3, b is an integer of 15 to 2842, where both a and b	AA426147, AA420000, AA42842, AA428672, AA429274, AA429569 AA429700 AA280808, AA280860, AA583152,
	NO:113, and where b is greater than or equal to a + 14.	AA604621, AA573460, AA737552, AA745643, AA809317,
		AA811436, AA831842, AA832058, AA837490, AA847879, A1089925, AA070162
828677	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a 1s any integer between 1 to 234 of	
	correspond to the positions of nucleotide residues shown in SEO ID	
	NO:114, and where b is greater than or equal to a + 14.	
828678	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 786 of	
	SEQ ID NO:115, b is an integer of 15 to 800, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:115, and where b is greater than or equal to a + 14.	
828679	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 632 of	
	SEQ ID NO:116, b is an integer of 15 to 646, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:116, and where b is greater than or equal to a + 14.	A the state of the
828680	Preferably excluded from the present invention are one or more	N64514, N70990, W01522, AA025937, AA025996, AA210760,
	polynucleotides comprising a nucleotide sequence described by the	AA215724, AA761682, AA768989, AA911839
	general formula of a-b, where a is any integer between 1 to 1520 of	
	SEQ ID NO:117, b is an integer of 15 to 1534, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:117, and where b is greater than or equal to a + 14.	The state of the s
828681	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 325 of	
	SEQ ID NO:118, b is an integer of 15 to 339, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:118, and where b is greater than or equal to a + 14.	
828682	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 651 of	
	SEQ ID NO:119, b is an integer of 15 to 665, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:119, and where b is greater than or equal to a + 14.	
828683	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 608 of	
	SEQ ID NO:120, b is an integer of 15 to 622, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:120, and where b is greater than or equal to a + 14.	AAVA TATALAN T

828686	Preferably excluded from the present invention are one or more proprietionable comprising a microlind sequence described by the general formula of a-b, where a is any integer between 1 to \$75 of SEQ ID NO:121, b is an integer of 15 to 889, where both a and b recreasing of the positions of intellectific residences shown in SEQ ID NO:121, and where b is exenter than or couls to a + 14.	
828687	Preferably excluded from the present invention are one or more populational comprising an independent sequence described by the general formula of a-b, where a is any integer between 1 to 118 of SEQ ID NO:122, b is an integer of 15 to 132, where both a and b recreaspond to the positions of independent evidences shown in SEQ ID NO:122, and where b is greater than or equal to a + 14.	
828688	Preferably excluded from the present invention are one or move populational comprising an including sequence described by the general formula of a.b., where a is any integer between 1 to 1886 of SEQ ID NO:123, b is an integer of 15 to 1900, where both a and b recreasional to the positions or integer of the section of the section of the NO:123, and where b is greater than or equal to a + 14.	192794, 192816, N56876, W20089, N90429, AA686404, AA112766, AA130846, AA130502, AA194974, AA235868, AA554284, AA639411, AA573456, AA804901, AA828540
828689	Preferably excluded from the present invention are one or more proputational comprising a michotide sequence described by the general formula of a-b, where a is any integer between 1 to 1236 of SEQ ID NO:124, b is an integer of 15 to 1254, where both a and b recrease of the positions of meleotide residues shown in SEQ ID NO:124, and where b is greater than or equal to a + 14.	
828692	Preferably excluded from the present invention are one or more polyuniclorides comprising a moleculie sequence described by the general formula of a-b, where a is any integer between 1 to 1175 of SEQ ID NO:125, b is an integer of 15 to 1180, where both a and b creappand to the positions of meleculie residues shown in SEQ ID NO:125, and where b is generer than or equal to a + 14.	T72780, R07981, R09868, T96304, H51978
828693	Preferably excluded from the present invention to one or more polynucleotides comprising a nucleotide superior described by the general formula of a-th, where a is any integer between 1 to 414 of 15 M OSL, 50, 15 an armigen of 15 o-428, where both a and b formspond to the positions of nucleotide residues shown in SEQ III or SEQ. 100, 100, 100, 100, 100, 100, 100, 100	

	NO:126, and where b is greater than or equal to a + 14.	
828694	Preferably excluded from the present invention are one or more	R02262
	polynuciconnes complising a nucleonne sequence uescribea by me general formula of a-b, where a is any integer between 1 to 631 of	
	SEQ ID NO:127, b is an integer of 15 to 645, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
707000	NO:12/, and where b is greater than or equal to a + 14.	
060070	inclusive and a second of the present invention are one or more motivated assembled for the programment of t	
	porynuciconnes comprising a nucleonne sequence described by unc general formula of a.h. where a is any integer between 1 to 482 of	
	SEO ID NO:128, b is an integer of 15 to 496, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:128, and where b is greater than or equal to a + 14.	
828697	Preferably excluded from the present invention are one or more	AA059063
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 410 of	
	SEQ ID NO:129, b is an integer of 15 to 424, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:129, and where b is greater than or equal to a + 14.	
828699	Preferably excluded from the present invention are one or more	R75912, H40206, H40207, H41559, R87478, H52696, H52717,
	polynucleotides comprising a nucleotide sequence described by the	N40190, AA503759, AA504325, AA553825, AA553899, H64647,
	general formula of a-b, where a is any integer between 1 to 1695 of	AA582193, AA580220, AA687790, AA809845, AA917674,
	SEQ ID NO:130, b is an integer of 15 to 1709, where both a and b	AA935183, AI004172, AI027576, C14410, C14461, C14497,
	correspond to the positions of nucleotide residues shown in SEQ ID	C14511
	NO:130, and where b is greater than or equal to a + 14.	
828702	Preferably excluded from the present invention are one or more	N79392
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 852 of	
	SEQ ID NO:131, b is an integer of 15 to 866, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:131, and where b is greater than or equal to a + 14.	
828703	Preferably excluded from the present invention are one or more	T69829, R59224, H11661, AA587352, AA807572, AA806747,
	polynucleotides comprising a nucleotide sequence described by the	AA865576, AA912231, AI002338
	general formula of a-b, where a is any integer between 1 to 1579 of	
	SEQ ID NO:132, b is an integer of 15 to 1593, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID N0:132, and where b is greater than or equal to a + 14.	
828704	Preferably excluded from the present invention are one or more polyulecledisc comprising a microbridis expense described by the general formula of ab, where a is any integer between 1 to 344 of SEQ ID NO:133, b is an integer of 15 to 408, where both a and b recompound to the positions or interobridis residents shown in SEQ ID NO:133, and where b is greater than or equal to a + 14.	
828706	Preferably excluded from the present invention are one or more polyomelocidis comprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 2727 of SEQ ID NO:134, b is an integer of 15 to 2741, where both a and b recreaseport to the positions of muleotide residues shown in SEQ ID NO:134, and where b is greater than or equal to a + 14.	AK0931.3, AK00927, AK101222, AK101281, AK32428, AK326249, AK134732, AK459009, AK459230, AK32428, AK324247, AK022809, AK744977, AK933725, A1000417, U65740
828708	Preferably excluded from the present invention are one or more populate discomprizing a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 672 of SEQ ID NO:153, b is an integer of 15 to 660, where both a and b crorespond to the positions of mucleotute residues shown in SEQ ID NO:153, and where b is greater than or equal to a + 14.	AA736960
828711	Preferably excluded from the present invention are one or more polyulechoids comprising a michodine sequence described by the general formula of a-b, where a is any meger between 1 to 228 of SEQ ID NO:156, b is an integer of 15 to 242, where both a and b correspond to the positions of mcleotide residues shown in SEQ ID NO:156, and where b is greater than or equal to a + 14.	
828712	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 331 of SEQ ID NO.137, b is an integer of 15 to 545, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.137, and where b is greater than or equal to a + 14.	
828713	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 382 of	

	SEQ ID NO:138, b is an integer of 15 to 396, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:138, and where b is greater than or equal to a + 14.	
828714	Preferably excluded from the present invention are one or more populated by the populated by comprising a motorida sequence described by the general formula of e.b., where a is any integer between 1 or 2757 of SEQ ID NO:139, b is an integer of 15 to 2771, where both a and b correspond to the positions of motoridar estimates shown in SEQ ID NO:139, and where b is greater than or equal to a + 14.	
828715	Preferably excluded from the present invention are one or more proputeloudes courprising a motorida sequence described by the general formula of reb, where a is any integer between 10 od 80 of SEQ ID NO:140, b is an integer of 15 to 422, where both a and b recorspond to the positions of mulculoude residiates shown in SEQ ID NO:140, and where b is greater than or equal to a + 14.	
828718	Preferably excluded from the present invention are one or more populacidates courpring an activate broade assertibed by the general formula of a-b, where a is any integer between 1 to 1616 of SEQ ID NO:141, b is an integer of 15 to 1650, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:141, and where b is greater than or equal to a + 14.	R2DI9, R5D08, H8368, W92475, AAU46292, AA463500, AA463546, AA576113, A8862446
828723	Preferably excluded from the present invention are one or more populate discoursing an archerical sequence described by the general formula of a-b, where a is any integer between 1 to 250 of SEQ ID NO:14.2 b is an integer of 15 to 264, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:142, and where b is greater than or equal to a + 14.	
828726	Preferably excluded from the present invention are one or more populated the comprising a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 02.2 of SEQ ID NO:14.5 b is an integer of 15 to 656, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO:143, and where b is generic than or equal to a + 14.	
828728	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	N39508, W05658, AA083301, AA159253, AA195825

SGOOF SGOOF EQID TO TO TO TO TO TO TO TO TO TO TO TO TO	by the 3331 of and b EQ ID	re for the following the follo	ore by the S2 of and b EQ ID	re by the hybrid		re R36043
general formula of a.b., where a is any integer between 1 to 486 of SEQ ID NO.144, b is an integer of 1 is 0.500, where both a and b correspond to the positions of melecitide residues shown in SEQ ID NO.144, and where he is greated that an expell in an 4 +4. Preferably excluded from the present invention are one or more	polymucleoides comprising a nucleoide sequence described by the general formula of a-b, where a is any integer between 1 to 1931 of Sept DI NO:145, b is an integer of 15 to 1945, where both a and b correspond to the positions of nucleoide residues shown in SEQ ID NO:145, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any ninegar between 1 to 1100 of SEQ ID NO;146, b is an integer of 15 to 1114, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO;146, and where b is greater than or equal to a + 14.	Prefetably excluded from the present uvention are one or more polyurcleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any nineger between 1 to 532 of SEQ ID NO;147, b is an integer of 15 to 546, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO;147, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyuncleotide comparising a mulcoidide sequence described by the general formula of a-b, where a is any integer between 1 to 1749 of SEQ ID NO:148, b is an integer of 15 to 1763, where both a and b correspond to the positions of intelocidie residues shown in SEQ ID NO:148, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more oppurateoide comparing a mulcoide sequence described by the general formula of a-b, where a is any integer between 1 to 537 of SEQ ID NO;149, b is an integer of 15 to 371, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO;149, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
828730		828732	828733	828735	828736	828730

	polymuchorldes comprising a muchorlde sequence described by the general formula of £4, where a is any integer between 1 to 418 of SEQ ID NOI:30, b is an integer of 15 to 423, where both a and b CSEQ ID NOI:30, b is an integer of 15 to 423, where both a and b CSEQ ID NOI:30, b is an integer of 15 to 423, where both a and b CSEQ ID NOI:40, and where b is exteast than or caused as have in the 2 ID NOI:50, and where b is exeater than or causel to 4 + 14.	
828740	Preferably excluded from the present invention are one or more polyntheloidise comprising an including expense described by the general formula of 2-b, where a is any integer between 1 to 357 of SEQ ID NO! 51, b is an integer of 15 to 401, where both a and b correspond to the positions or honeroidic residutes shown in SEQ ID NO:151, and where b is greater than or equal to a + 14.	
828742	Preferably excluded from the present invention are one or more populateloides comprising a methodiale sequence described by the general formula of e-b, where a is any integer between 1 to 65T of SEQ ID NO.152, b is an integer of 15 to 851, where both a and b recomposal to the positions or interoide residues shown in SEQ ID NO.152, and where b is greater than or equal to a + 14.	
828748	Preferably excluded from the present invention are one or more populated the advanced sequence described by the general formula of 2-b, where a is any integer between 1 to 1664 of 150 MO-135, is an integer 15 16 16 for 3, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.153, and where b is greater than or equal to a + 14.	AA22996, AA22011, AA22917, AA22916, AA229535, AA229243, AA2290515, AA2290516, AA2290514, AA2290514, AA2290515, AA2290516, AA2290514, AA2290516, AA2290516, AA2290516, AA2290516, AA2290516, AA229051, AA290501, AA305025, AA305026, AA305027, AA305027, AA305026, AA305001, AA305001

828749	Preferably excluded from the present invention are one or more notymucleotides comprising a nucleotide sequence described by the	T65384, R46577, R52660, R46577, H11492, N73810, N99718, [AA121044, AA126520, AA126579, AA126687
	general formula of a-b, where a is any integer between 1 to 1144 of	
	SEQ ID NO.134, 018 an mieger of 1.2 to 1.136, where both a anti-0 correspond to the positions of nucleotide residues shown in SEQ ID NO.15, and where h is areaster than or ential to a + 14.	
828752	Preferably excluded from the present invention are one or more	AA492170
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1955 of	
	SEQ 1D NO:155, b is an integer of 15 to 1969, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
00000	NO:155, and where b is greater than or equal to a + 14.	
828/23	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a 1s any integer between 1 to 386 of	
	SEQ 1D NO:156, b is an integer of 15 to 400, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:156, and where b is greater than or equal to a + 14.	
828754	Preferably excluded from the present invention are one or more	N42714, N32500
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 708 of	
	SEQ 1D NO:157, b is an integer of 15 to 722, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:157, and where b is greater than or equal to a + 14.	
828757	Preferably excluded from the present invention are one or more	T90246, T90691, R14702, R34647, R42424, R49176, R42424,
	polynucleotides comprising a nucleotide sequence described by the	R49176, H06287, H06339, H14778, N69116, C03936, C15913
	general formula of a-b, where a is any integer between 1 to 1186 of	
	SEQ ID NO:158, b is an integer of 15 to 1200, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:158, and where b is greater than or equal to a + 14.	2000
828761	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 331 of	
	SEQ ID NO:159, b is an integer of 15 to 345, where both a and b	
	New Transport to the positions of musicalide residues shown in NH(1)	

in SEQ ID	r more bed by the to 380 of in SEQ.ID	r more the day the the day the to 503 of in and b tim SEQ ID	nr more the bed by the to 337 of in SEQ ID	n more bode by the to 35 of in SEQ ID		or more AA127485 bod by the through the AA127485
correspond to the positions of nucleotide residues shown in SEQ ID NO:165, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more pupplyuniceoides comprising a methodrode sequence described by the general formula of a.b., where a is any integer between 1 to 380 of SEQ ID NO:166, b is an integer of 15 to 394, where both a and b correspond to the positions of methodrode resides shown in SEQ ID NO:165, and where b is senterer than or equal to a + 14.	Preferably excluded from the present invention are one or more propulected exempting a trulection desequence described by the general formula of a.b., where a is any integer between 1 to 503 of SEQ ID NO:167, b is an integer of 15 to 517, where both a and b correspond to the positions of melecolde residues shown in SEQ ID NO:167, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populated to comprising a mulesoide sequence described by the general formula of a.b., where a is any integer between 1 to 327 of SEQ ID NO:168, b is an integer of 15 to 341, where both a and b correspond to the positions of melecoide residents shown in SEQ ID NO:168, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populate-loadies comparing an unbeloude sequence described by the general formula of a-b, where a is any integer between 1 to 356 of SEQ ID NO:169, b is an integer of 15 to 350, where both a and b correspond to the positions of melocoide residues shown in SEQ ID NO:169, and where b is greater than or equal to a + 14.	Prefeably excluded from the present invention are one or more popularical companing an unbeloid sequence described by the general formula of a-b, where a is any integer between 1 to 427 of SEQ ID NO:170, b is an integer of 15 to 441, where both a and b correspond to the positions of undecodule residues shown in SEQ ID NO:170, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the perment formula of a-h, where a is any integer between 1 to 389 of
	828770	828771	828772	828773	828775	828776

	SEQ ID NO:171, b is an integer of 15 to 403, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:171, and where b is greater than or equal to a + 14.	
828777	Preferably excluded from the present invention are one or more polymeleodies comprising a michodie sequence described by the general formula of a-b, where a is any integer between 1 to 970 of SEQ ID NO:172, b is an integer of 15 to 984, where both a and b correspond to the positions of included be readiness shown in SEQ ID NO:172, and where b is greater than or equal to a + 14.	T86451, R87531, R87627, R91402, R92669, H98729, N24299, N91402, W91402, W91402, W91402, W91402, W91402, W91402, W91402, W91402, W91402, W91403, W91402, W91403, W91403, W91403, W91403, W91403, W91402, W91402
828778	Prefrably excluded from the present invention are one or more polyumbetoride comprising a melotidie sequence described by the general formula of a-b, where a is any integer between 1 to 1180 of SPG ID NO:173, b is an integer of 15 or 1194, where both a and b correspond to the positions of nucleotide residues shown in SPQ ID NO:173, and where b is greater than or equal to a + 14.	
828780	Prefrably excluded from the present invention are one or more populue clouds comprising a nucleotide sequence described by the general formula of 2-b, where a is any integer between 1 to 687 of SEQ ID NO:174, b is an integer of 15 o. 701, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:174, and where b is greater than or equal to a + 14.	
828781	Preferably excluded from the present invention are one or more populated to comprising a motive discrete described by the general formula of a-b, where a is any integer between 1 to 1167 of SEQ ID NO.175. b is an integer of 15 of 1181, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.175, and where b is greater than or equal to a + 14.	R1766, R39304, R4332, R42342, R6150, H05114, H08622, N63035, AA03917, AA039716, AA03882, AA235700, AA255466, AA461108, AA918115, AA938595, W00511, C00278
828782	Preferably excluded from the present invention are one or more polymuleouties comprising an unberoduc sequence described by the general formula of a-b, where a is any integer between 1 to 475 of SEQ ID NO:176, b is an integer of 15 to 489, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:176, and where b is greater than or equal to a + 14.	
828783	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

		H28735, AA541256, AA935694	T50920	AA765439		
general formula of a-b, where a is any integer between 1 to 239 of SEQ ID NO:177. Is an integer of 15 to 253, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:177, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchedoidas compressing a mulciotide sequence described by the general formula of a-b, where a is any integer between 1, 0.379 of SEQ ID NO.178, b is an integer of 15 to 393, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO.178, and where bot is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchachoids connected described by the general formula of 4-b, where a is any integer between 10 of 51 of SEQ ID NO.179, b is an integer of 15 to 465, where both a and b correspond to the positions of machotide residues shown in SEQ ID NO.179, and where b is greater than or equal to 4-14.	Preferably excluded from the present invention are one or more polymachoids esource described by the general formula of 4-b, where a is any integer between 10 518 of SEQ ID NO:180, b is an integer of 15 to 532, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO:180, and where bot is greater than or equal to 4-14.	Preferably excluded from the present invention are one or more polynuchaclodise source described by the polynuchaclodise source described by the general formula of s-b, where a is any integer between 10 800 of SEQ ID NO:181, b is an integer of 15 to 814, where both a and b correspond to the positions of mulcoclide residues shown in SEQ ID NO:181, and where bot is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymuchedrides counterfordise sequence described by the general formula of a-b, where a is any integer between 10 o303 of SEQ ID NO:182. b is an integer of 15 to 317, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:182, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
	828784	828785	828786	828788	828790	828791

	TAXABLE PROPERTY OF THE PROPER
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 229 of
	SEQ ID NO:183, b is an integer of 15 to 243, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:183, and where b is greater than or equal to a + 14.
828792	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 1134 of
	SEQ ID NO:184, b is an integer of 15 to 1148, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:184, and where b is greater than or equal to a + 14.
828794	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 1957 of
	SEQ ID NO:185, b is an integer of 15 to 1971, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:185, and where b is greater than or equal to a + 14.
828797	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 352 of
	SEQ ID NO:186, b is an integer of 15 to 366, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:186, and where b is greater than or equal to a + 14.
828798	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 336 of
	SEQ ID NO:187, b is an integer of 15 to 350, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:187, and where b is greater than or equal to a + 14.
828799	Preferably excluded from the present invention are one or more R92181
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 361 of
	SEQ ID NO:188, b is an integer of 15 to 375, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:188, and where b is greater than or equal to a + 14.

or more the deby the the to 351 of to 351 of in SEQ ID	r more to 803 of to 803 of in SEQ ID	r more to 576 of a a and b in SEQ ID	r move to 294 of a a and b in SEQ ID	or more to 329 of in SEQ ID	r more AA507550, AA613671, AA991871, AI073898 to 676 of the and b
Preferably excluded from the present invention are one or more polyancelocides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 351 of ISCQ ID NO: 189. b is an integer of 15 to 365, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO: 189, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymuleborides comprising a muleboride sequence described by the general formula of a-b, where a is any integer between 1 to 803 of SEQ ID NO-190, b is an integer of 15 to 817, where both a and b correspond to the positions of undeporide residents shown in SEQ ID NO-190, and where b is genere than or equal to a + 14.	Preferably excluded from the present invention are one or more proposable proposable comprising a nucleotive sequence described by the present formula of a-b, where a is any integer between 1 to 376 of SEQ ID NO:191, b is an integer of 15 to 390, where both a and b rorrespond to the positions of nucleotide residues shown in SEQ ID NO:191, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more proposal polymeleotides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 294 of SEQ ID NO:192. b is an integer of 15 to 308, where both a and b rorrespond to the positions or fundeciotide residues shown in SEQ ID NO:192, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more propruel bends comprising a meleciotie sequence described by the general formula of a-b, where a is any nineger between 10 320 of SEQ ID NO:193, b is an integer of 15 to 343, where both a and b recreaspant to the positions of nucleoride residues shown in SEQ ID NO:193, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more proposed populaelorides comprising a methochie sequence described by the general formula of a-b, where a is any integer between 1 to 676 of SEQ ID NO.194, b is an integer of 15 to 690, where both a and b
828801	828802	828803	828804	828805	828807

	Ω.	2 <u>.</u> A	QI GI	a J		R28397, R35050, R82429, AA523252, AA541515, AA888589, ne AA931260, AA969512, N90287 f
NO:194, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populucionides compraining an tuckoride sequence described by the general formula of a-b, where a is any integer between 1 to 223 of SEQ ID NO;195, b is an integer of 15 to 237, where both a and b correspond to the positions of undeclodde residens shown in SEQ ID NO;195, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populational comprising a methodie sequence described by the general formula of a-b, where a is any integer between 1 to 255 of SEQ ID NO:196, b is an integer of 15 to 267, where both a and b correspond to the positions or functional residues shown in SEQ ID NO:196, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyumiceotides comprising a mulceotide sequence described by the general formula of a-b, where a is any integer between 1 to 420 of SEQ ID NO;197, b is an integer of 15 to 443, where both a and b correspond to the positions of undecodule residues shown in SEQ ID NO;197, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyumiconides comprising a miceoide sequence described by the general formula of a-b, where a sa my nineger between 1 to 194 of SEQ ID NO:198, b is an integer of 15 to 208, where both a and b correspond to the positions of undecidade residues shown in SEQ ID NO:198, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populucionides comprising a meleciode sequence described by the general formula of a-b, where a is any integer between 10 244 of SEQ ID NO:199, b is an integer of 15 to 258, where both a and b correspond to the positions of undecload residues shown in SEQ ID NO:199, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a 1s any integer between 1 to 879 of FEO TN OCO-7010 h is an integer of 15 to 830, where both a and b
	828809	828810	828811	828817	828818	828819

	correspond to the positions of nucleotide residues shown in SEQ ID NO:200, and where b is greater than or equal to a + 14.	
828820	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 489 of	
	SEQ ID NO:201, b is an integer of 15 to 503, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:201, and where b is greater than or equal to a + 14.	The state of the s
828821	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 424 of	
	SEQ ID NO:202, b is an integer of 15 to 438, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:202, and where b is greater than or equal to a + 14.	Addition
828823	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 862 of	
	SEQ ID NO:203, b is an integer of 15 to 876, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:203, and where b is greater than or equal to a + 14.	A STATE OF THE STA
828824	Preferably excluded from the present invention are one or more	T63961, R37805, R41200, R41200, H06703, H14569, N35284,
	polynucleotides comprising a nucleotide sequence described by the	W84891, W84386, AAU20009, AA115923, AA191098,
	general formula of a-b, where a is any integer between 1 to 1490 of	AA720881, AA825322, AA007194
	SEQ ID NO:204, b is an integer of 15 to 1504, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:204, and where b is greater than or equal to a + 14.	
828825	Preferably excluded from the present invention are one or more	T90840, R97506, R97507, H56561, H90159, AA548594
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 511 of	
	SEQ ID NO:205, b is an integer of 15 to 525, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:205, and where b is greater than or equal to a + 14,	
828826	Preferably excluded from the present invention are one or more	R54121, H53524, H83780, N33845, AA150188, AA150364,
	polynucleotides comprising a nucleotide sequence described by the	AA193510, AA236206, AA236207, AA256878, AA255472,
	general formula of a-b. where a is any integer between 1 to 2480 of	[AA292484, AA292483, AA314616, AA808/12, AA812203

E28840 Preferably excluded from the present invention are one or more T67663, NS1807, N94795 polymucleotides comprising a nucleotide sequence described by the

D D D D D D D D D D D D D D D D D D D							_
		AA278542				T8942, T89520, R00855, R01510, R17037, R44677, R44677, W71999, W76568, AA028176, AA594455, AA630811, AA640365, AA570503, AA827402, AU01038	N25191, N51394, AA085653
\$288445 6428847 6428847 6428847 6428847	general formula of a-b, where a is any integer between 1 to 666 of SEQ ID NO:212, b is an integer of 15 to 680, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:212, and where b is greater than or count to a + 14.	Preferably excluded from the present invention are one or more polynuchedides constructed described by the gohenfuckotides constructed described by the general formula of the 3, where a is any integer between 1 to 549 of SEQ ID NO.213, b is an integer of 15 to 563, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO.213, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchedrides constructed described by the general formula of e-b, where a is any integer between 1 to 2622 of SEQ ID NO.214, b is an integer of 15 to 2636, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO.214, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymerhedides convened described by the goneral formula of e-b, where a is any integer between 1 to 1808 of SEQ ID NO.215, b is an integer of 15 to 1822, where both a and b correspond to the positions of mulciodide residues shown in SEQ ID NO.215, and where b is greater than or cault to + 14.	Preferably excluded from the present invention are one or more polynucioedides countered described by the goneral formula of e-b, where a is any integer between 1 to 3113 of SEQ ID NO.216, b is an integer of 15 to 3127, where both a and b correspond to the positions of muchoolde residues shown in SEQ ID NO.216, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymerhedridas compering a mulciodis esquence described by the general formula of a -b, where a is any integer between 1 to 1515 of SEQ ID NO.217, b is an integer of 15 to 1529, where both a and b correspond to the positions of meleoatde residues shown in SEQ ID NO.217, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
		828845	828846	828847	828849	828850	678857

	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1086 of	
	SEQ ID NO:218, b is an integer of 15 to 1100, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:218, and where b is greater than or equal to a + 14.	
828853	Preferably excluded from the present invention are one or more	T69893, R23246, R23322, R23610, R26164, R76851, R78355,
	polynucleotides comprising a nucleotide sequence described by the	R78356, W37071, AA281297, AA281298, AA287617, AA286726,
	general formula of a-b, where a is any integer between 1 to 1778 of	AA830753, AA907191, AA937081
	SEQ ID NO:219, b is an integer of 15 to 1792, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:219, and where b is greater than or equal to a + 14.	
828857	Preferably excluded from the present invention are one or more	H87149, N29514, N32038, W49771, W69834, W69944, W69906,
	polynucleotides comprising a nucleotide sequence described by the	W70171, AA035645, AA262486, AA280793, AA280787,
	general formula of a-b, where a is any integer between 1 to 1296 of	AA468735, AA470769, AA814845, AA877855, AA903806
	SEQ ID NO:220, b is an integer of 15 to 1310, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:220, and where b is greater than or equal to a + 14.	
828861	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1355 of	
	SEQ ID NO:221, b is an integer of 15 to 1369, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:221, and where b is greater than or equal to a + 14.	
828866	Preferably excluded from the present invention are one or more	R17863, H06471, AA157721
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 778 of	
	SEQ ID NO:222, b is an integer of 15 to 792, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:222, and where b is greater than or equal to a + 14.	
828872	Preferably excluded from the present invention are one or more	R87888, R87900, R87908, N49168, AA931266
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 907 of	
	SEQ ID NO:223, b is an integer of 15 to 921, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:223, and where b is greater than or equal to a + 14.	

828874	Preferably excluded from the present invention are one or more polymetestides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1965 of ISEQ ID NO.224, b is an integer of 15 to 1970, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.224, and where b is generer than or equal to a + 14.	TR7038, R70347, H39025, R91475, H57830, H59054, H62220, H62210, H62316, H62328, H62320, H63216, S4406, W25201, W32973, W69360, W69360, W69396, W69360, W69396, W691768, AA105896, AA105896, AA115834, AA115834, AA248393, AA3548393, AA574815, AA854839, AA574815, AA8574815, AA865445
828875	Preferably accluded from the present invention are one or more proynucleotides comprising an elucidide sequence described by the general formula of a-b, where a is any integer between 1 to 257 of SEQ ID NO.225, b is an integer of 15 to 541, where both a and b crespond to the positions of raudeotide residues shown in SEQ ID NO.225, and where b is greater than or equal to a + 14.	
828877	Preferably excluded from the present invention are one or more populate discourgining an almostide described by the general formula of a-b, where a is any integer between 1 to 263 of SEQ ID NO.22Ab, b is an integer of 15 in 277, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.22b, and where b is greater than or equal to a + 14.	
828878	Preferably excluded from the present invention are one or more polynucleotides comprising a melonide sequence described by the general formula of a-b, where a is any integer between 10 2055 of SEQ ID NO.227, b is an integer of 15 to 2006, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.227, and where b is greater than or equal to a + 14.	Ti66530, R28694, R77126, R9123, R69232, R822300, W07548, W40127, W61081, W63740, AA088736, AA088851, AA416637, AA425692, AA587736, AA57419, AA659481, AA746137, AA827964, AA873416, AA876962, AA876181, AA913907, W63541, AA091722
828879	Preferably excluded from the present invention are one or more populue-diseids comprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 457 of SEQ ID NO-228, b is an integer of 15 of 471, where both a and b correspond to the positions of melouide residues shown in SEQ ID NO-228, and where b is generer than or equal to a + 14.	
828881	Preferably excluded from the present invention are one or more polynacleosides comprising a meleotide sequence described by the general formula of a ba, where a is any integer between 1 to 1626 of SRQ ID NOZZA, is an integer of 15 to 1640, where both a and b correspond to the positions of meleotide residues shown in SEQ ID 100 positions of meleotide residues shown in SEQ ID to the positions of meleotide residues shown in SEQ ID and the sequence shown in SEQ ID and the positions of meleotide residues shown in SEQ ID and the	

	NO:229, and where b is greater than or equal to a + 14.	
828885	Preferably excluded from the present invention are one or more	T66265, R00322, R05577, R14288, R40578, N35835, W67698,
	polynucleotides comprising a nucleotide sequence described by the	W68707, AA226782, AA227401, AA917573, AI096970, C01407
	general formula of a-b, where a is any integer between 1 to 1956 of	
	SEO ID NO:230, b is an integer of 15 to 1970, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:230, and where b is greater than or equal to a + 14.	
828886	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 296 of	
	SEO ID NO:231, b is an integer of 15 to 310, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:231, and where b is greater than or equal to a + 14.	
828887	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2819 of	
	SEQ ID NO:232, b is an integer of 15 to 2833, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:232, and where b is greater than or equal to a + 14.	
828889	Preferably excluded from the present invention are one or more	AI084904, N87764
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 678 of	
	SEQ ID NO:233, b is an integer of 15 to 692, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:233, and where b is greater than or equal to a + 14.	
828891	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1339 of	
	SEQ ID NO:234, b is an integer of 15 to 1353, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:234, and where b is greater than or equal to a + 14.	
828899	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 332 of	
	SEQ ID NO:235, b is an integer of 15 to 346, where both a and b	

· .			
AMIJ11899, AMIJ2344, AMI23689, AMI23604, AMI30068, AMI3164, AMI31928, AMI32080, AMI34388, AMI30069, AMI31164, AMI311195, AMI31164, AMI311195, AMI31169, AMI31169, AMI31169, AMI31169, AMI31169, AMI31169, AMI31169, AMI31169, AMI31169, AMI31604, AMI31604, AMI31604, AMI31604, AMI31604, AMI31606, AMI3161, AMI31616, AMI3161, AMI3		R.14071, R40196, R40196, W78082, AA002041, AA001835, AA167058, AA564814, AA604562, AA831678, AA902298, AA922990, N88270	
	Preferably excluded from the present invention are one or more polyunic-brids comprising a melocidic sequence described by the general formula of 24s, where a is any integer between 1 to 1320 of SEQ ID NO.240, b is an integer of 15 to 1334, where both a and b correspond to the positions of melocidic residues shown in SEQ ID NO.240, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyomic loads comprising a melbrodite sequence described by the general formula of a-b, where a is any integer between 1 to 2424 of SEQ ID NO-241, b is an integer of 15 to 2438, where both a and b correspond to the positions of includedite testidess shown in SEQ ID NO-241, and where b is greater than or equal to a + 14.	Prefeably excluded from the present invention are one or more polymeleutides comprising a medeotide sequence described by the general formula of a-b, where a is any integer between 1 to 125 of SEO ID NO-242, b is an integer of 15 to 135, where both a and b
	828921	828922	828924

828925 Pret gend gend SEG SEG SEG SEG SEG NO NO NO NO NO NO NO NO NO SEG SEG SEG SEG SEG SEG SEG SEG SEG SEG	Preferably excluded from the present invention are one or more populated from the present invention are one or more general formula of a b, where a is any integer between 10 od 60 of 50 general formula of a b, where a is any integer between 10 od 60 of 50 of 50 most of 50 most of 50 of 5	AA02.1328, AA165340
	craf formila of ab- where a is any integer between 1 to 465 of for 10 N0.0243, b is an integer of 15 o.479, where both a and b respond to the positions of nucleotide residues shown in SEQ ID 2243, and where b is greater than or equal to a + 14. The starby escluded from the present invention are nor or more ynucleotides comprising a nucleotide sequence described by the cetal formula of ab- where a is any integer between 1 to 570 of for 10 N0.0244, b is an integer of 15 o.584, where both a and b respond to the positions of nucleotide residues shown in SEQ ID	AA021328, AA165340
	respond to the positions of nucleotide residues shown in SEQ ID 12-243, and where be is greater than or equal to a + 14. 12-244, and where be is greater than or equal to a + 14. 12-244, and where be is greater than or equal to a more 12-24, and the comprising a nucleotide sequence described by the 12-24 per comparising a nucleotide sequence described by the 12-24 per comparising a nucleotide sequence described by the 12-24 per comparison of the property of the positions of nucleotide residues shown in SEQ ID 12-24 per comparison of nucleotide residues shown in SEQ ID	AA021328, AA165340
	Firstly, and water to its general time to explain to a period to the form the present invention are one or more ynucleotides comprising a nucleotide sequence described by the tetal formula of 2-b, where a is any integer thewent 1 to 570 of DO MO-244, b is an integer of 15 to 584, where both a and b respond to the positions of nucleotide residues shown in SBQ ID	AA021328, AA165340
	ynucleotides comprising a nucleotide sequence described by the teral formula of 2-b, where a is any integer thewent In o570 of DD NO2-44, b is an integer of 15 to 584, where both a and b respond to the positions of nucleotide residues shown in SBQ ID respond to the positions of nucleotide residues shown in SBQ ID	
	teral formula of a-0, where a is any imager between 1 to 3.70 or Q ID NO;244, b is an integer of 15 to 584, where both a and b respond to the positions of nucleotide residues shown in SEQ ID	
	respond to the positions of nucleotide residues shown in SEQ ID	
	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	
-	NO:244, and where b is greater than or equal to a + 14.	The second secon
hori	Preferably excluded from the present invention are one or more	
loen	polynucicondes comprising a nuciconde sequence reservou of me seneral formula of a-h where a is any integer between 1 to 318 of	
SEC	SEQ ID NO.245, b is an integer of 15 to 332, where both a and b	
COL	correspond to the positions of nucleotide residues shown in SEQ ID	
ON	NO:245, and where b is greater than or equal to a + 14.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
828930 Pref poly	Preferably excluded from the present invention are one or more oolynucleotides comprising a nucleotide sequence described by the	R13197, R22953, R23059, R34735, H166800, H17441, H30722, H196486, H98091, N250531, N26040, W37582, W74506, W73933, M20027, M20
gen	general formula of a-b, where a is any integer between 1 to 1603 of	W/9218, W/9053, AAU1/108, AAU2/9/0, AAU2/9/1,
SEC	SEQ ID NO:246, b is an integer of 15 to 1617, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	AA058991, AA223821, AA468648, AA306693, AA313402, AA627542, AA627543, AA687974, AA748356, AA749265,
ON	NO:246, and where b is greater than or equal to a + 14.	AA766155, AA769265, AA810698, AA810803, AA811177, AA813864, AA815128, AA837374, AA907206, AA907432, AA911140, AA911319, AA989380, AI088862, N85247
828935 Pred	Preferably excluded from the present invention are one or more	
gen	general formula of a-b, where a is any integer between 1 to 1435 of	
COL	SEQ ID NO:247, b is an integer of 13 to 1449, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	
ON	NO:247, and where b is greater than or equal to a + 14.	200200 POLYON LEGAL TOOODS OF COMPANY AND

The second secon

	polynucleotides comprising a nucleotide sequence described by the persent librarial of a sh. where is any integer between 1 to 1470 of SEQ ID NO.248, is an integer of 15 to 1484, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.248, and where b is greater than or equal to a + 14.	R41300, R41370, R41371, R52328, R52359, R14208, R41370, R41370, R41371, R81208, R81320, R82778, IH4465, IH5469, IH54584, H7160, IH72234, H79199, IR80064, IR80065, IH60063, IH60015, IH
828940	Preferably excluded from the present invention are one or more populational comprising an encloside sequence described by the general formula of a-b, where a is any integer between 1 to 2408 of SEQ ID NO-249, b is an integer of 15 to 2422, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO-249, and where b is greater than or equal to a + 14.	TOLI 139, TH08080, TH66215, H86154, H8659S, N66051, AAM5564, AA05520, AA054010, AA055556, AA05520, AAA054010, AA055556, AA05550, AAA1657887, AAA088546, AAA100472, AA1052305, AAA16074, AA115726, AA115790, AA130450, AA130456, AA130450, AA130456, AA130450, AA130450, AA130450, AA13040, AA13040, AA13040, AA146644, AA146790, AA157314, AA157715, AA157718, AA157718, AA157719, AA157713, AAA27374, C05254
828942	Preferably excluded from the present invention are one or more pulyunitecides compribing a microdiced sequence described by the general formula of a-b, where a is any integer between 1 to 560 of SEQ ID NO.250, b is an integer of 15 to 574, where both a and b correspond to the positions or funderoid te estimates shown in SEQ ID NO.250, and where b is greater than or equal to a + 14.	H51878
828943	Preferably excluded from the present invention are one or more bolynucleotides comprising a nucleotide sequence described by the	

the state of the s

	general formula of a-b, where a is any integer between 1 to 1030 of SEQID NO.251, b is an integer of 15 to 1044, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.251, and where b is greater than or equal to a + 14.	
828946	Preferably excluded from the present invention are one or more populated to comprising a motorida sequence described by the general formula of 24, where a is any integer between 1 to 1015 of SEQ ID NO.222, b is an integer of 15 to 1029, where both a and b correspond to the socitions of nucleotide residues shown in SEQ ID NO.222, and where b is greater than or equal to a + 14.	H90J40, H50139, N91808, W17361, W23877, W25195, W31242, A4416089, AA116090, AA116090, AA18054, AA15054, AA1973, AA41813, AA279934, AA280022, AA383751, AA587199, AA618421, AA811427, AA830028, AA916097, AA9161686, AA974254, AA987758, A1083878, A108551 6, N94820, N95456
828947	Preferably excluded from the present invention are one or more paymeteriate comprising a methodide sequence described by the general formula of a b, where a is any integer between 1 to 461 of SEQ ID NO.253, b is an integer of 15 to 453, where both a and b to receipted the taps visions of nucleotide residues shown in SEQ ID NO.253, and where b is greater than or equal to a + 14.	
828956	Preferably excluded from the present invention are one or more polynucleouides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 7710 of SEQ ID NO-254, b is an integer of 15 to 1724, where both a and b recreaspond to the positions of nucleotide residues shown in SEQ ID NO-254, and where b is greater than or equal to a + 14.	N8047, 18039, 122804, N3285, WSS82, AA043830, AA05622, AA060280, AA7870, AA082403, AD 101662, AA459984, AA460077, AA501353, AA535081, AA588749, AA577376, AA814781, AA836428, AA876439, AA916459, AA938494
828958	Preferably excluded from the present invention are one or more populated by the populated state comprising a motelouide sequence described by the general formula of e.b., where a is any integer between 1 to 292 of SEQ ID NO.255, b is an integer of 15 to 306, where both a and b receipted to the positions of miclodide residues shown in SEQ ID NO.255, and where b is greater than or equal to a + 14.	
828965	Preferably excluded from the present invention are one or more physical conference of the present invention are one or more paymelocoldes compressing a may integer between 1 to 8% of SEQ ID NO.256, b is an integer of 15 to 890, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.256, and where b is greater than or equal to a + 14.	FIGO299, RO743; RICS24, ROZ566, N23156, N26234, N28744, RIGO299, RO743; ROS766, AA058706, AA0682121, AA102497, AA133193, AA1157043, AA181057, AA459909, AA413349, AA4133193, AA1157043, AA838687, AA622229, AA621698, AA687351, AA736613, AA736613, AA736613, AA736613, AA836789, AA83789, AA83789, AA834906, AA825789, AA837896, AA8348, AA984002

00000	The August Deviced at District Property of the Conference of the polymological comprising a molecule described by the general formula of a sh, where a sing winteger between 1 to 1145 of SEQ ID NO.257, a sin integer of 15 to 1159, where both a and be correspond to the positions of mulcoulde residues shown in SEQ ID NO.257, and where b is greater than or equal to a + 14.	R68336, R68415, R68416, R68429, R72408, R72447, R72956, R78248, P60524, B60516, R68429, R68429, R72408, R72447, R7296, R78284, P60671, H00761, H00950, H00910, H006175, H00575, H00575, H00577, H00576, H00578, H005787, A410142, A410142, A410142, A410287, A410287, A427292, A4272921, A4808531, A4808537, A44016373, H005787, A44019789, H005787, H005
828971	Preferably excluded from the present invention are one or more proposal polyneticlerides comparing a more problem described by the general formula of a-b, where a is any integer between 1 to 741 of SEQ ID NO.258, b is an integer of 1.5 to 755, where both a and b correspond to the positions of molecule residences shown in SEQ ID NO.258, and where b is exerter than of cental to a + 14.	
828973	Preferably excluded from the present invention are one or more powherlectides comprising a molection desequence described by the general formula of a-b, where a is any integer between 1 or 700 of SEQ ID NO.259, b is an integer of 15 to 714, where both a and b correspond to the positions of molectide residences shown in SEQ ID NO.259, and where b is exenter than or cotal to a + 14.	
828980	Preferably excluded from the present invantion are one or more propulations comprising a molecule sequence described by the opportule orders comprising a molecule sequence described by the general formula of ab., where a is any integer between 1 to 511 of SEQ ID NO.260, b is an integer of 15 to 525, where both a and b correspond to the positions or intelluding testables shown in SEQ ID NO.260, and where b is extend than or cetal to a + 14.	AAI71806, AA223318
328984	Preferably excluded from the present invention are one or more propriet and properly opportunities or comprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 2986 of 12 to 300, pt. 2015. In a minger of 15 to 300, where both and ab brocessored to the reservine of melocities residues shown in SEO III	TENROL, TRIDOT, REGGGE, R79533. H10121. H10266. N47700, N47701. N47714, N47715. W92453. W92454. AA047175. AA0781046. AA1084065. AA1084904. AA4085455. AA088196. AA408836. AA102066. AA1010567.

	NO:261, and where b is greater than or equal to a + 14.	AA15692, AA173160, AA17277, AA181676, AA17218, AA187844, AA188417, AA188720, AA203345, AA22360, AA418911, AA42676, AA42807, AA28811, AA258012, AA48117, AA481113, AA46807, AA864428, AA828185, AA506517, AA581113, AA649599, AA864428, AA872063, AA986645, AA947052, AA983384, W28603, AA640958
828985	Preferably excluded from the present invention are one or more polymulechides comprising an underlottle sequence described by the general formula of a-b, where a is any integer between 1 to 952 of SEQ ID NO.262, b is an integer of 15 or 966s, where both a and b correspond to the positions of rancleotide residues shown in SEQ ID NO.262, and where b is greater than or equal to a + 14.	
828988	Preferably excluded from the present invention are one or more phypomelocides comprising a melocide sequence described by the general formula of a.b., where a is any integer between 1 to 2724 of SEQ ID NO.263, b is an integer of 15 to 2738, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.263, and where b is greater than or equal to a + 14.	TT7414, RL12106, TG6627, TT6628, R16041, R16042, R16042, R16042, R16360, R51460, R51950, R61426, R63310, H40110, H40174, N25567, N050486, N3167, N454863, N25738, N57579, N6931, W04068, N31769, W32476, W32562, AA027581, AA029481, AA029545, AA278627, AA278267, AA278627, AA278027, AA789063, AA768638, AA768084, AA809759, AA39064, N83750, AA768084, AA809759, AA830249, N83750, A097104
828993	Preferably excluded from the present invention are one or more proprunctionate comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 10 1506 of SEQ ID NO.244, b is an integer of 15 to 1520, where both a and b rowrepound to the positions of nucleotide residues shown in SEQ ID NO.244, and where b is generer than or equal to a + 14.	
828995	Preferably excluded from the present invention are one or more populated soon pringing an about a described by the general formula of a-b, where a is any integer between 1 to 1554 of SEQ ID NO.265, b is an integer of 15 of 1568, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO.265, and where b is genater than or equal to a + 14.	
829000	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 351 of SEQ ID NO.266, b is an integer of 15 to 545, where both a and b	T84984, H62305, N94075

The state of the s

	correspond to the positions of nucleotide residues shown in SEQ ID NO:266, and where b is greater than or equal to a + 14.	
829005	Preferably excluded from the present invention are one or more pulyoutleoides comprising a microbidie sequence described by the general formula of ab, where a is any integer between 1 to 748 of SEQ ID NO-267, b is an integer of 15 to 762, where both a and b recorreporal to the positions of mobileoide residences known in SEQ ID NO-267, and where b is greater than or equal to a + 14.	I'R1847, R31803, R65658, H80178, AA086064, AA730231, AA805602, N84214, AA091994
829009	Preferably excluded from the present invention are one or more polyomichoids comprising a michotide sequence described by the general formula of a-b, where a is any integer between 1 to 1419 of SEQ ID NO-268, b is an integer of 15 to 1433, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-268, and where b is greater than or equal to a + 14.	
829010	Preferably excluded from the present invention are one or more populated to comparing a moleculae sequence described by the general formula of a-b, where a is any integer between 1 to 2264 of SEQ ID NO.269, b is an integer of 15 to 2278, where both a and b correspond to the positions of mulculocide residues shown in SEQ ID NO.269, and where b is greater than or equal to a + 14.	
829012	Preferably excluded from the present invention are one or more polyundetotates comparing an ancientie sequence described by the general formula of a-b, where a is any integer between 1 to 251 of a 250 D NO.270, is an integer of 15 or 2531, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.270, and where b is greater than or equal to a + 14.	RI 1895, T40857, TG013. TG040, T91262, T8386, TS3609, R1 1895, R22449, R22501, R44051, R44051, R62350, R62351,

AA193685, AA514744, AA525489, AA455919, AA580724, AA459036, AA600916, A4601959, AA602350, AA611450, AA633022, AA5640333, AA580044, AA715813, AA8105865, AA808711, AA811858, AA83843, AA862552, AA817197, AA87888, AA880780, AA918289, AA827805, AA9182579, AA97720, AA977779, AA97780, AA991856, AA99930, A1081179, WYS427, N86448, AA640960, AA641152	Prefeatably excluded from the present invention are one or more R17956, R23823, R23927, R39927, R3994, R40183, R60536, Solymerial controlled complete described by the R53730, R40183, R60601, H98989, NS2010, NS4024, N60635, A84281031, A842881031, A842881031, A842881031, A842881031, A842	Prefeably excluded from the present invention are one or more polymerically assert and present invention are one or more polymerically sometimes a meriodistic sequence described by the sequent formula of a.b., where a sa my integer between 1 to 456 of SEQ ID NO.272, b is an integer of 15 to 470, where both a and b corresponds to the positions of nucleotide residues shown in SEQ ID NO.272, and where b is greater than or equal to a 4.0.	or more ribed by the 1 to 969 of th a and b n in SEQ ID	or more ribed by the 1 to 1992 of oth a and b m in SEQ ID	Preferably excluded from the present invention are one or more R46780, R56425, H14131, H14048, H19909, H44884, W73060, polymoleotides comprising a nucleotide sequence described by the W76648, AA258220, AA732283, AA732519, AA748619,
	829013 Preferably exc polynucleotid general form SEQ ID NO:2 correspond to NO:271, and	829019 Preferably exc polynucleotid general formu SEQ ID NO.2 correspond to NO.272, and	829020 Preferably exc polynucleotid general formu SEQ ID NO.2 correspond to NO.273, and	829021 Preferably example of polynucleotid general formu SEQ ID NO.2 Correspond to NO.274, and	829026 Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the

	SEO ID NO:275. h is an integer of 15 to 1376, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO.275, and where b is greater than or equal to a + 14.	
829030	Preferably excluded from the present invention are one or more	
	porynucieoudes comprising a nucieoude sequence described by the general formula of a-b, where a is any integer between 1 to 2580 of	
	SEQ 1D NO:276, b is an integer of 15 to 2594, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
820035	Defeably excluded from the present invention are one or more	
629055	referrably excluded from the present invention are one of more molecular and provides communicate a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 665 of	
	SEQ 1D NO:277, b is an integer of 15 to 679, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:277, and where b is greater than or equal to a + 14.	
829041	Preferably excluded from the present invention are one or more	T64828, R13411, R40922, H17358, AA829407, AA991316
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1464 of	
	SEQ ID NO:278, b is an integer of 15 to 1478, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:278, and where b is greater than or equal to a + 14.	
829045	Preferably excluded from the present invention are one or more	R94934, R95018, R96941, R96998, N62469, N79188, AA056180,
	polynucleotides comprising a nucleotide sequence described by the	AA079122, AA079223, AA190398, AA190342, AA2/9989,
	general formula of a-b, where a is any integer between 1 to 2307 of	AA280050, AA563719, AA563967, AA621823, AA6393/4,
	SEQ ID NO:279, b is an integer of 15 to 2321, where both a and b	AA743441, AA809943, AA903/7/, AA991450, AA091152
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:279, and where b is greater than or equal to a + 14.	
829048	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1679 of	
	SEQ 1D NO.280, b is an integer of 15 to 1693, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	INO:280, and where b is greater than or equal to a + 14.	
829051	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

	general formula of a-b, where a is any integer between 1 to 244 of	
	SEQ ID NO:281, b is an integer of 15 to 258, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:281, and where b is greater than or equal to a + 14.	
829052	or more	T54099, T54192, R42585, R42585, H30486, R83722, N24879,
	the	N34365, N36398, W80812, W80905, AA040726, AA040725,
		AA069816, AA099148, AA099246, AA130358, AA131274,
		AA143111, AA150578, AA553644, H89452, AA570403,
	_	AA985591, AI076032, AA092873
829057	Preferably excluded from the present invention are one or more	R17092
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 785 of	
	SEQ ID NO:283, b is an integer of 15 to 799, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:283, and where b is greater than or equal to a + 14.	
829058	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1475 of	
	SEQ ID NO:284, b is an integer of 15 to 1489, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
829059		T99023, R54176, H73053, H72832, H73054, H80706, AA988806
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 688 of	
	SEQ ID NO:285, b is an integer of 15 to 702, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:285, and where b is greater than or equal to a + 14.	
829061	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1161 of	
	SEQ ID NO:286, b is an integer of 15 to 1175, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
400044	INC.250, and whele b is greater man or equal to a + 1+.	
829062	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a nucleotide sequence described by the general formula of the, where a is any mitege between 10. 2859 of SRQ ID NO.287, b is an integer of 15 to .2873, where both a and b correspond to the positions of nucleotide residues hown in SEQ ID NO.287, and where b is greater than or equal to a + 14.	
829063	Preferably excluded from the present invention are one or more polymerhelotides countriesing a meldodide sequence described by the general formula of a b, where a is any integer between 1 to 2090 of SEQ ID NO.288, b is an integer of 15 to 2.104, where both a and b correspond to the positions of melotide residues shown in SEQ ID NO.288, and where b is greater than or equal to a + 14.	176653, R1342, R04093, R1040, R10419, W94024, W96054, W95663, A001812, A418856, A418885, AA18886, AA18885, AA188917, AA460947, AA460082, AA461185, AA480034, AA500167, AA8001628, AA5001628
829064	Preferably excluded from the present invention are one or more polymetheotides comprising a melbouide sequence described by the general formula of n-b, where a is any integer between 1 to 1237 of SEQ ID NO;289, is an integer of 15 to 1251, where both a and b correspond to the positions of melbotide residues shown in SEQ ID NO;289, and where b is greater than or equal to n + 14.	
829066	Preferably excluded from the present invention are one or more polymelotides comprising a meleotide sequence described by the general formula of re-b, where a is any integer between 1 to 1577 of SEQ ID NO.290, b is an integer of 15 to 1591, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.290, and where b is greater than or equal to a + 14.	
829068	Preferably excluded from the present invention are one or more polymochoides constrained described by the general formula of rels, where a is any integer between 1 to 2372 of SEQ ID NO.291, b is an integer of 15 to 2386, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.291, and where b is greater than or equal to a + 14.	
829069	Preferably excluded from the present invention are one or more polymeuboides comprising a meleotide sequence described by the general formula of reb, where a is any integer between 1 to 959 of SEQ ID NO.292, b is an integer of 15 to 983, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.292, and where b is greater than or equal to 4 + 14.	AA056484, AA056650, AA742863

And the second states given the second second second to the second secon

829074	Preferably excluded from the present invention are one or more polyundesides comprising an unbeloude sequence described by the general formula of a-b, where a is any integer between 1 to 2641 of SEQ ID NO.293, b is an integer of 15 to 2655, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.293, and where b is greater than or equal to a + 14.	RZ1643, R2196, R232012, R3158, R31960, R32700, R32701, R34083, R62210, R64591, R68873, R7388, R73956, R41494, R7420, R76839, R77200, R77302, R70852, H03147, H03956, R7720, R78052, H0316, R98851, M41769, W87673, AA007439, AA019376, AA2095933, AA256073, AA519576, AA236049, AA237073, AA15662, AA570256, AA570256, AA57025, AA766062, AA57497, AA769781, AA877877, AA811416, AA911414, AA878693
829077	Preferably excluded from the present invention are one or more plyomiceloids comprising a melbodite sequence described by the general formula of a-b, where a is any integer between 1 to 1724 of SEQ ID NO.294, b is an integer of 15 to 1738, where both a and b correspond to the positions of melbodite residences shown in SEQ ID NO.294, and where b is greater than or equal to a + 14.	R11694, AA031610, AA056352, AA099809, AA190527
829078	Preferably excluded from the present invention are one or more polyuniceoides comprising a melotide sequence described by the general formula of a-b, where a is any integer between 1 to 1006 of SEQ ID NO-295, b is an integer of 15 to 1020, where both a and b romerspond to the positions of tracleotide residues shown in SEQ ID NO-295, and where b is greater than or equal to a + 14.	
829079	Preferably excluded from the present invention are one or more polyunicterides comprising an anotocine sequence described by the general formula of a-b, where a is any integer between 1 to 670 of SEQ ID NO.296, b is an integer of 15 to 664, where both a and b correspond to the positions of rauletotide residues shown in SEQ ID NO.296, and where b is generic than or equal to a + 14.	AA613454
829085	Preferably excluded from the present invention are one or more populationary comparing a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1824 of SEQ ID NO.297, b is an integer of 15 to 1838, where both at and b correspond to the positions of nucleotide residues shown in SEQ ID NO.297, and where b is greater than or equal to a + 14.	
829093	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	T86751, N67573, AA084170, AA482701, AA513177, AA715379

The state of the s

AA235899, AA524874, AA588559, AA568363, C18296	N28457	N24654, N35441, N72250, W00539, W44692, AA101155, AA491668, A1054009, A1054199, W38644	R34801, N36324, D81161, D81435, C15688, C15742	R08917, R09033, T93468, R071005, R19551, R37796, R43901, R43901, R66802, R65897, R77267, R77316, R82585, R82587, H15156, H19216, R93133, H77582, H77583, N45210, N80021, N85569, N58316, N59861, N59869, N76954, N7681, N93112, N878788, W2521, AA0115427, AA0115707, AA0143405, AA133302, AA113248, AA113429, AA113429, AA113429, AA1134044, AA4460066, AA503364, AA5227440,
general formula of a-b, where a is any integer between 1 to 1621 of RSQL IN OCAS's, that integer of 15 to 1653, where both a and b correspond to the positions of medevide residues shown in SEQ ID NO.298, and where b is greater than or equal to a + 14. NO.298, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymucleotides comprising a medevide sequence described by the general formula of a-b, where a is any integer between 1 to 834 of SEQ ID NO.295, is as mineger of 15 to 868, where both a and b correspond to the positions of medevide residues shown in SEQ ID	CutoSy) and where to its genefat than or equal to as 1 - 14. Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formation of as, where a is any integer between 1 to 533 of SEQ ID NO.300, is an integer of 15 to 547, where both a and b correspond to the positions of mulcopied residues shown in SEQ ID NO.300 and where h is eventer than or could no 4 + 14.	Preferably excluded from the present invention are one or more propulected excomprising an unbeloid sequence described by the general formula of a-b, where a is any integer between 1 to 851 of SEQ ID NO:301, b is an integer of 15 to 865, where both a and b recompound to the positions of underolder testidies shown in SEQ ID NO:301, and where b is erretter than or equal to a + 14.	Preferably excluded from the present invention are one or more propulected excompaning an including expense described by the general formula of a.b., where a is any integer between 1.0 801 of SEQ ID NO:302, b is an integer of 15 to 815, where both a and b correspond to the positions of mulcioridar establishes shown in SEQ ID NO:302, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populational comprising an unbloid sequence described by the general formula of a-b, where a is any integer between 1 to 1905 of SEQ ID NO:303, b is an integer of 15 to 1919, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:303, and where b is greater than or equal to a + 14.
829099	829101	829102	829103	829104

AA522866, AA523791, AA602932, AA602716, AA876807, AA877039, AA879223, AA923007, AA935208, AI082642, AI094830			AA064674, AA078775		T51849, T51895, R31503, H89196, W94076, AA233517, AA557320, AA582238, AA604556, AA659141	
	Preferably excluded from the present invention are one or more polynuclocidisc somprising an unclouded sequence described by the general formula of a-b, where a is any integer between 1 to 143 of SEQ ID NO:304, b is an integer of 15 to 157, where both a and b correspond to the positions of methodicide residiates shown in SEQ ID NO:304, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchedrides comprising a muchotich sequence described by the goneral formula of a-b, where a is any integer between 1 or 329 of SEQ ID NO.305, b is an integer of 15 to 343, where both a and b correspond to the positions or muchotide residente shown in SEQ ID NO.305, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymerabedised sequence described by the polymeral formula of a-b, where a is any integer between 1 to 682 of SEQ ID NO.306, b is an integer of 15 to 696, where both a and b correspond to the positions of muchotide residues shown in SEQ ID NO.306, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynachediscus comparizing an uncherolde sequence described by the general formula of a-b, where a is any integer between 1 to 382 of SEQ ID NO.307, b is an integer of 15 to 396, where both a and b correspond to the positions of medicalide residues shown in SEQ ID NO.307, and where bot is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populated to the polymeutelotides comprising an unchelotide sequence described by the general formula of a.b., where a is any integer between 1 to 535 of SEQ ID NO.308, b is an integer of 15 to 549, where both a and b correspond to the positions of metoride residences invention SEQ ID NO.308, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the
	829109	829111	829115	829116	829119	829120

	general formula of a-b, where a is any integer between 1 to 1764 of SEQ ID NO.309, b is an integer of 15 to 1778, where both a and b correspond to the positions of moleotide residues shown in SEQ ID NO.309, and where b is greater than or equal to a + 14.	
829121	Preferably excluded from the present invention are one or more polymerbecides compressing a medicatile sequence described by the general formula of a-b, where a is any integer between 1 to 757 of SEQ ID NO.310, b is an integer of 15 to 771, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NO.310, and where b is greater than or equal to a + 14.	T79424, T86294, T28674, R00205, R41707, R42706, R45491, R46635, R4107, R42706, R45491, R46655, R4207, R42706, R45491, R46655, R56708, R71860, R71861, H17970, N55556, N80100, W46204, W46205, W46205, W72406, W73710, W76436, AA133997, AA470289, AA571078, AA751010, AA875568, AA825515, AA833708, AA877103, AA98015, AA828215, AA833708, AA877103, AA98015, AA88281, AA626239
829123	Preferably excluded from the present invention are one or more polymetheotides complexing a metodetide sequence described by the general formula of a b, where a is any integer between 1 to 1405 of SEQ ID NO.311, b is an integer of 15 to 1419, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.311, and where b is greater than or equal to a + 14.	T53735, T5883, T73419, T79418, T79419, AA035245, AA530898, AA58281, AA631068, C01039
829126	Preferably excluded from the present invention are one or more polymochotides comprising a meleotide sequence described by the general formula of reb, where a is any integer between 1 to 512 of SEQ ID NO.312, b is an integer of 15 to 256, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.312, and where b is greater than or equal to a + 14.	
829135	Preferably excluded from the present invention are one or more polymerichieds comparising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2421 of SEQ ID NO;313, b is an integer of 15 to 2435, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO;313, and where b is greater than or equal to a + 14.	
829136	Preferably excluded from the present invention are one or more polymetolides comprising a meleotide sequence described by the general formula of rs-b, where a is any integer between 1 to 2529 of SEQ ID NO.314, b is an integer of 15 to 2543, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.314, and where b is greater than or equal to a + 14.	NJ441, NJ475, AA13506, AA164383, AA180231, AA180220, AA179618, AA180509, C17250

829138	Preferably excluded from the present invention are one or more polymucborides comprising a metocidie sequence described by the general formula of e-b, where a is any integer between 10 814 of SEQ ID NO.315, b is an integer of 15 to 828, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.315, and where b is greater than or equal to a + 14.	175769, 786491, 1800162, 1801054, 1801054, 1822818, 183280, 183590, 1802856, 1808556, 180362, 180324, 180324, 1803249, 18037394, 1803249, 1803249, 180329, 180
829142	Preferably excluded from the present invention are one or more polynuchackodise source described by the general formula of els, where a is any integer between 1 to 1594 of SEQ ID NO.316, b is an integer of 15 to 1608, where both a and b correspond to the positions of muchotide residues shown in SEQ ID NO.316, and where both a coursepond to the positions of muchotide residues shown in SEQ ID NO.316, and where b is greater than or equal to a + 14.	
829148	Preferably excluded from the present invention are one or more polynuchacholds connectivities and excluded from the present invention of the control of the control of SEQ ID NO.317, b is an integer of 15 to 1057, where both a and b correspond to the positions of mulcioudie residues solvan in SEQ ID NO.317, and where both a sand b NO.317, and where b is greater than or count to 4-14.	T70817, H97087, N28699, N59032, W31740, W63702
829149	Preferably excluded from the present invention are one or more polymerabedised sequence described by the general formula of e-b, where a is any integer between 16 1322 of SEQ ID NO.318, b is an integer of 15 to 1356, where both a and b correspond to the positions of motoridite residues shown in SEQ ID NO.318, and where both as its present than or equal to a + 14.	T57875, AA062633, AA180493, AA258651, AA815108, AA827196, AA988896, A1032193
829156	Preferably excluded from the present invention are one or more polymorabodised source described by the general formula of a-b, where a is any integer between 10 e482 of SEQ ID NO.319, b is an integer of 15 to 496, where both a and b correspond to the positions of microlette residues shown in SEQ ID NO.319, and where both a and b NO.319, and where be is greater than or equal to a + 14.	
829162	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	W28213, C20991

	T54688				PADI) IL DANGOLI I ZI DIGO ZI DAGOLI VOZINI GORIZANI	T58653, T58703, T75221, 177245, 177461, R09770, R10874,
general formula of a-b, where a is any integer between 1 to 1742 of SEQ ID NO:320, b is an integer of 15 to 1756, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO:320, and where b is greater than or court to a + 14.	Preferably excluded from the present invention are one or more polyundeoides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 574 of SEQ ID NO:321, b is an integer of 15 to 388, where both a and b correspond to the positions of melocidate resides shown in SEQ ID NO:321, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyuncleoidise comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 724 of SEQ ID NO-322, b is an integer of 15 to 738, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO322, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymericacles comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 862 of SEQ ID NO:323, b is an integer of 15 to 876, where both a and b correspond to the positions of undeclotide escidues shown in SEQ ID NO:323, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populucionides comprising a melocitide sequence described by the general formula of a-b, where a is any integer between 1 to 1308 of SEQ ID NO:324, b is an integer of 15 to 1332, where both a and b correspond to the positions of undecloude residues shown in SEQ ID NO:324, and where b is greater than or equal to a + 14.	Prefearbly excluded from the present invention are one or more popularicidiste comprising a mulecidis esquence described by the general formula of a-b, where a is any nineger between 1 to 328 of SEQ ID NO.325, b is an integer of 15 to 342, where both a and b correspond to the positions of nucleotide residens shown in SEQ ID NO.325, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
	829170	829177	829179	829184	829185	829188

The state of the s

	polymacleotides comprising a nucleotide sequence described by the personal formal of act, where a sin yin ingep feweren 1 to 3076 of SEQ ID NO/326, s is an integer of 15 to 360, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO/326, and where b is greater than or equal to a + 14.	R10792, T786R, R105G0, R1292, R1912, R2454, R20046, R1744, R3942, R4362, R44004, R5436, R1940, R547016, R5744, R3942, R4362, R44004, R54582, R44004, R5622, R40041, R45002, R5626, R9573, R02853, R02852, R95201, N45009, R9525, W95252, W95253, W78117, W79824, W9552, W95252, A040593, A0404097, A047284, A0473940, A0413828, A0423883, A0228883, A0289861, A047284, A0473708, A0473296, A0473096, A0473096, A0473096, A048324, A0488244, A0481876, A0481876, A04823119, A0481876, A0481876, A04918643, A04922815, A04922815, A04833119, A04833179, A04833407, A04832119, A04833407, A048328119, A04833407, A048328119, A04833407, A048328119, A04833407, A04918643, A04922815, A048328119, A04833407, A048328119, A04833407, A04833407, A04833407, A04833407, A04833407, A04833407, A048328115, A04833407, A04832815, A04822815, A04822815, A04823417, A04833407, A04833407, A04833407, A04833407, A048347307, A04833407, A048347307, A04833407, A048347307, A04833407, A048347307, A04833407, A048347307, A048347307, A04833407, A048347307, A048
829190	Preferably excluded from the present invention are one or more populouelocides congruine described by the general formula of a-b, where a is any integer between 10,705 of SEQ ID NO.327, b is an imager of 15 to 719, where both a and b crosspond to the positions of moleculed residues shown in SEQ ID NO.327 and where his oremetr than or could to a + 14.	
829193	Preferably excluded from the present invention are one or more proputelocidis comprising a unbedoid sequence described by the general formula of a.b., where a is any integer between 1 to 975 of SEQ ID NO.328, b is an integer of 15 to 989, where both a and b correspond to the positions or funderiodic residiates shown in SEQ ID NO.338, and where b is exenter than or cental to a + 14.	AA043829
829196	Prefeably excluded from the present invention are one or more propulacionics comprising a molerotide sequence described by the general formula of a-b, where a is any integer between 1 of 420 of SEQ ID NO.329, b is an integer of 15 to 434, where both a and b correspond to the positions of motoroide residences shown in SEQ ID NO.339, and where b is greater than or equal to a + 14.	AA156138
829197	Preferably excluded from the present invention are one or more polyunichordics comprising a microbidic sequence described by the general formula of a-b, where a is any integer between 1 to 682 of SEQ ID NO.330, b is an integer of 15 to 606, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.330, and where b is generer than or equal to a + 14.	R 13055

		H96926		Tr6464, TG6007, TG5616, RG8318, R81279, H19079, H21595, W38816, AA173621, AA195611, AA461025, AA429991, AA281779, AA23034	
Preferably excluded from the present invention are one or more polynuscheduse sometherising an underothe sequence described by the general formula of a-b, where a is any integer between 1 to 527 of SEQ ID NO.331, b is an integer of 15 to 541, where both a and b correspond to the positions of machotide residues shown in SEQ ID NO.331, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucheofides counterfords and excluded by the polynucheofides counterforms of a 50 years of SEQ ID NO.332, b is an integer of 15 to 305, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.332, and where both a signature than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchochdes coupring an autoclicité sorquence described by the general formula of a-b, where a is any integer between 1 to 431 of SEQ ID NO.333, b is an integer of 15 to 445, where both a and b correspond to the positions or nucleotide residues shown in SEQ ID NO.333, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucherborks comprising an anteclude sequence described by the general formula of a-b, where a is any integer between 1 to 303 of SEQ ID NO.334, b is an integer of 15 to 317, where both a and b correspond to the positions of medicide residues shown in SEQ ID NO.334, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchrolicidisc somptiming a muchotide sequence described by the general formula of a-b, where a is any integer between 10 -1510 of SEQ ID NO.335, b is an integer of 15 to 1524, where both a and b correspond to the positions of melcotide residues shown in SEQ ID NO.335, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the polynucleotides comprising a nucleotide sequence described by the general formfalls of a b, where a is any integer between 1 to 292 of SEQ 1D NO:356, to sea in integer of 15 to 306, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID.
829202	829203	829209	829210	829214	829215

	NO:336, and where b is greater than or equal to a + 14.	
829219	Prefeably excluded from the present invention are one or more pulyunichoides comprising a melendrie sequence described by the general formula of a-b, where a is any integer between 1 to 277 of SEQ ID NO:337, b is an integer of 15 to 291, where both a and b correspond to the positions of includedire testakes shown in SEQ ID NO:372 and where b is orenter than or could to a + 14.	
829220	Preferably excluded from the present invention are one or more propulated comprising a meloride sequence described by the general formula of a-b, where a is any integer between 1 to 1250 of SEQ ID NO.338, b is an integer of 15 to 1264, where both a and b correspond to the positions of medeotide residues shown in SEQ ID NO.338, and where b is greater than or equal to a + 14.	T91056, R08770, R10337, 182922, R08771, N00353, N3349, N424024, N36483, N477028, N486938, N477038, N49693, N477054, N49693, N477054, N497734, N62946, N77064, N477054, N6770704, N67704, N6770704, N6770704, N6770704, N67704,
829222	Preferably excluded from the present invention are one or more propulected comprising an encloside sequence described by the general formalia of a-b, where a is any integer between 1 to 745 of SEQ ID NO.339, b is an integer of 15 to 759, where both a and b correspond to the positions of independent developmes shown in SEQ ID NO.339, and where b is generate than or eauflo a + 14.	T53949, T55484, T55410, N5742, N99015, W21365, W88723, A4025365, A4081355, A408156, A4418410, A4418507, A4422077, A4593855, A4593915, A4659807, A8184928, AA833745, AA872346, AA887280, AA904054, AA090222
829223	Preferably excluded from the present invention are one or more populational comparing an unbedied sequence described by the general formula of a-b, where a is any integer between 1 to 2625 of SEQ ID NO:340, b is an integer of 15 to 2639, where both a and b correspond to the positions of unbediedit exclusive shown in SEQ ID NO:340, and where b is greater than or equal to a + 14.	T39922, N73780, N74186, N99401, Wa822, AA026960, AA028013, A4418391, AA418345, AA42566, AA42545, AA4280176, AA279547, AA492172, AA587366, AA621961, AA621973, AA834751, AA641513
829225	Preferably excluded from the present invention are one or more populated to comparing a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1810 of SEQ ID NO:341, as integer of 15 to 1824, where both a and b correspond to the positions of melocidite residens shown in SEQ ID NO:341, and where b is greater than or equal to a + 14.	T64318, T65668, AA01 <i>6</i> 241, AA173963, AA618544
829226	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	R17300, R31023, R61393, R61438, R61703, R61704, R72584, R72589, R74189, R74276, R78679, H20944, H22649, H39794,

when were trained to the press strong parties private the strain parties and strain parties are not as the strain parties and strain as the strain of the strain parties are strained by the strain parties and strain parties are strained by the strain parties and strained by the strain parties are strained by the strain parties and the strain parties are strained by the st

	general formula of a-b, where a is any integer between 1 to 4517 of SEQ ID NO:342, b is an integer of 15 to 4531, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:342, and where b is greater than or equal to a + 14.	R84024, H79108, H79109, H81746, H81747, N32103, N38733, N48414, N47281, N48708, N48620, N48020, N51222, N49768, N48420, N48020, N51222, N49768, N48420, N497620, N49020, N51222, N49758, W44225, W44256, AA148821, AA150421, AA160940, AA160829, AA160806, AA169821, AA16044, AA160820, AA16080, AA169821, AA27734, AA228119, AA257720, AA28183, AA424351, AA427866, AA426160, AA281120, AA28183, AA424351, AA408783, AA406075, AA806775, A8806770, AA806770, CSG70, CSG
829227	Preferably excluded from the present invention are one or more polyulebeoides comprising a mobilities described by the general formula of &b, where a is any integer between 1 to 570 of SEQ ID NO:343, b is an integer of 15 to 584, where both a and b correspond to the positions of mobilities from the size and the NO:343, and where b is resulter than or equal to a + 14.	147087, 147086, R4456), R4456, H15259, H95459, AA035630, AA179511, AA418751, AA527136, AA961714, AA992449
829231	Preferably excluded from the present invention are one or more polyomiceloides comprising a moleotide sequence described by the general formula of a.b., where a is any integer between 1 to 7/d4 of SEQ ID NO:344, b is an integer of 15 to 778, where both a and b recoveraben the presistions of moleotide residences shown in SEQ ID NO:344, and where b is greater than or equal to a + 14.	
829232	Preferably excluded from the present invention are one or more polymbicodics comprising a molerotide sequence described by the general formula of a-b, where a is any unegar between 1 to 3726 of SEQ ID NO.345, b is an integer of 15 to 3740, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO.345, and where b is generer than or equal to a + 14.	N5050, M40415, N41638, A4001329, A4001916, AA15802, A445803, AA213993, AA213994, AA313338, A444222, AA458213, AA482209, AA482297, AAA80754, AA729270, AA737966, AA742269, AA804199, AA937087, N33467, N43860, C02233
829233	Preferably excluded from the present invention are one or more polymeleoides comprising a meleoide sequence described by the general formula of a-b, where a is any integer between 1 to 432 of PSQD TO X24.5 is as a megen of 15 to 445, where both a and b verrespond to the positions of nucleoide residues silown in SEQ ID NO S24.5 or an eggen or 15 to 445, where both a and b verrespond to the positions of nucleoide residues silown in SEQ ID NO S24.5 or a megen of nucleoide residues silown in SEQ ID NO S24.5 or a megen of nucleoide residues silown in SEQ ID NO S24.5 or a megen of nucleoide residues silown in SEQ ID NO S24.5 or a megen residue silown in SEQ ID NO S24.5 or a megen of nucleoide residues silown in SEQ ID NO S24.5 or a megen residue silown in SEQ ID NO S24.5 or a megen	

	NO:346, and where b is greater than or equal to a + 14.	
829239	Preferably sociated from the present invention are one or more proprietionides compressing an including expension of the general formula of a-b, where a is any integer between 1 or 766 of SEQ ID NO:347, b is an integer of 15 to 782, where both a and b received in the positions of metocoldic residents shown in SEQ ID NO:347, and where b is greater than or equal to a + 14.	
829240	Preferably excluded from the present invention are one or more proprietcheds comprising a meteoride sequence described by the general formula of a-b, where a is any integer between 1 to 425 of SIXQ ID NO:348, b is an integer of 15 to 439, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:348, and where b is greater than or equal to a + 14s.	
829242	Preferably excluded from the present invention are one or more polyameterides couprising an autocide sequence described by the general formula of a b, where a is any integer between 1 to 2342 of ESQ ID NO:349, to is an integer 15 to 2356, where both a and b correspond to the positions of macloride residues shown in SEQ ID NO:349, and where b is greater than or equal to a + 14.	R37970, R37971, R3926, R40572, R44281, R3024, KR3000, R37970, R37970, R37971, R3925, R40572, R45583, R55866, R6659, R81490, R81731, H53614, H53652, H87392, H97030, R066679, R83814, R39823, M64533, M61693, R98267, N879268, A802501, A802593, M61031, W78096, W79455, A8022610, A80294521, A8065657, A8102657, A8022610, A802953, A8109137, A822381, A822381, A822381, A822381, A822381, A8223687, A823901, A842958, A8459016, A842988, A845958, A845916146, A8429581, A842958, A8453978, A8459579, A8459579, A8459579, A8459579, A8459579, A8459579, A8459579, A845956, A8732502, A845966, A810555, U47719, N85053, C02475, C14956, C10919, R85053, C02475, C14956, C20195,
829246	Preferably excluded from the present invention are one or more propractional commissing a motorial sequence described by the paymeticlendes commissing a motorial sequence described by the general formula of e.b., where a is any integer between 1 to 1.2105 of SEQ ID NO.350, b is an integer of 15 to 1.210, where both a and b brorespond to the positions of nacionide residues shown in SEQ ID NO.350, and where b is greater than or equal to a + 14.	
829250	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

			N41747		179261, 17920, 171203, 171203, 17120, 17200, 17120, 17200, 17120, 17200, 17120, 17200, 17120, 17
general formula of a-b, where a is any integer between 1 to 394 of SEQ ID NO:351, b is an integer of 15 to 408, where both a and b correpond to the positions of undeloude residues shown in SEQ ID NO:351, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populoucleoide comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1269 of SEQ ID NO:352, b is an integer of 15 to 1283, where both a and b correspond to the positions of muleoloide residues shown in SEQ ID NO:352, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more popurational examples to popurational examples a meleotide sequence described by the general formula of a-b, where as any integer between 1 to 3215 of SQL DNO-352, is an integer of 15 to 3220, where both a and b correspond to the positions of moleotide residues shown in SEQ ID NO-353, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populouclocides comprising a muleotide sequence described by the general formula of a-b, where a is any integer between 1 to 492 of SEQ ID NO:354, b is an integer of 15 to 506, where both a and b NO:354, and where be is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyunicloidise comprising a meliciotis esquence described by the general formula of a-b, where a is any integer between 1 or 728 of SEQ ID NO:355, b is an integer of 15 to 742, where both a and b correspond to the positions of meliciotide residues shown in SEQ ID NO:355, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more oppurated sets of the present invention and one of the oppuration of a set, where a is any integer between 1 to 1681 of Set DI NO.5356, he as in integer of 15 to 1695, where both as and becreasond to the positions of nucleotide residues shown in SEQ DI Correspond to the positions of nucleotide residues shown in SEQ DI
	829253	829256	829263	829266	829271

	NO.356, and where b is greater than or equal to a + 14.	AAQD1323, AAQD2324, AAQH8665, AAQD6153, AAQD8423, AAQD1533, AAQB2235, AAQB4588, AADD0641, AAD1642, AAD10720, AAD136625, AAD36639, AAAD0641, AAD151829, AAAD19772, ARBQ489, AARD87824, AAA188356, AAA2124078, AAA223078, AAA223078, AAA22420 AAA21305, AA742833, D83801, D83850, W22420
829273	Preferably excluded from the present invention are one or more polyumicordes comprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 914 of SEQ ID NO:357, b is an integer of 15 to 928, where both a and b correspond to the positions of intellected tersidenes shown in SEQ ID NO:357, and where b is generate than or equal to a + 14.	
829274	Prefeably excluded from the present invention are one or more populated to comprising a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 1360 of SEQ ID NO:358, b is an integer of 15 to 1374, where both a and b correspond to the positions of multicotide residues shown in SEQ ID NO:358, and where b is greater than or equal to a + 14.	
829276	Preferably excluded from the present invention are one or more popularications comprising a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 418 of SEQ ID NO.359, b is an integer of 15 to 4132, where both a and b rocrespond to the positions of nucleotide residues shown in SEQ ID NO.359, and where b is greater than or equal to a + 14.	
829279	Preferably excluded from the present invention are one or more popurationides comprising a moleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1142 of SEQ ID NO3-60, b is an integer of 15 to 1156, where both a and b correspond to the positions of nucleotide residens shown in SEQ ID NO3-500, and where b is greater than or equal to a + 14.	
829280	Preferably excluded from the present invention are one or more polymericorides comprising a melotoride sequence described by the general formula of a-b, where as a any mirger between 1 to 362 of the 2EQ ID NG-361, b as a mirger of 15 to 376, where both a and b excrespond to the positions of melocide residues shown in SEQ ID.	

Preferably accluded from the present invention are one or mop polynucleotides comprising a nucleotide sequence described by polynucleotides comprising a nucleotide sequence described by polynucleotides comprising a nucleotide sequence described 18CQ ID NO.542, b is an integer of 15 to 519, where both a an correspond to the positions of nucleotide residues shown in SI NO.552, and where b is greater than or equal to a + 14. NO.562, and where b is greater than or equal to a + 14. Preferably accided from the present invention are one or mon polynucleotides comprising a nucleotide sequence described to polynucleotides comprising a nucleotide sequence described to polynucleotides comprising a nucleotide sequence described to polynucleotides comprising a nucleotide sequence described polynucleotides comprising a nucleotide sequence described polynucleotides comprising a nucleotide sequence described the polynucleotides comprising a nucleotide residues shown in SI NO.554, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or mon polynucleotides comprising a nucleotide residues shown in SI NO.554, and where b is greater than or equal to a + 14. SEQ ID NO.354, and where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is any integer between 1 to 98 general formula of a -b, where a is an integer of 15 to 964, where both a an correspond to the positions of nucleotide requill to a + 14.		ve wy the sy vy the Sof d b	re R35022, N53092, W56437, AA425107, AA429328, AA639462 by the R110 of A4202, N53092, W56437, AA425107, AA429328, AA639462 and b B0 D		T15573, T1524, T18292, T1920, T1920
	NO:361, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyuleclorides comprising a muleotide sequence described by the general formula of a-b., where a is any integer between 1 to 505 of SEQ ID NO:362, b is an integer of 15 to 519, where both a and b correspond to the positions of muleocidic residues shown in SEQ ID NO:362, and where h is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more propruelocides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1371 of SEQ ID NO:363, b is an integer of 15 to 1385, where both a and b recreasepand to the positions of intellectiod residents shown in SEQ ID NO:363, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populueleotides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 963 of SEQ ID NO:364, as an integer of 15 to 977, where both a and b recompound to the positions of mulciotude residues shown in SEQ ID NO:364, and where b is greater than or equal to a + 14.	Preferably excluded from the present inventions are one or more populated to comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 350 of SEQ ID NO:365, b is an integer of 15 to 964, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO:365, and where b is greater than or equal to a + 14.

		AA948052, AI094757, D79222, D79845, W79251, C00060
829295	Preferably excluded from the present invention are one or more populacidates comprising a motochide sequence described by the general formula of e-b, where a is any integer between 1 or 1283 of SEQ ID NO.366, b is an integer of 15 to 1297, where both a and b correspond to the positions of motochide residances shown in SEQ ID NO.366, and where b is greater than or equal to a + 14.	N79069, N94383, AA04699, AA046766, AA101963, AA099652, AA135109, AA135204, AA148582, AA148881, AA130460, AA135662, AA534768, AA537811, AA687147, AA730106, AA810732, AA911850
829296	Preferably excluded from the present invention are one or more populated by the oppulated bards comprising a moterial sequence described by the general formula of a b, where a is any integer between 1 to 771 of SEQ DI NO.367, b is an integer of 15 to 755, where both a and b recreapond to the positions of nucleotide residues shown in SEQ ID NO.367, and where b is greater than or equal to a + 14.	
829297	Preferably excluded from the present invention are one or more polymucloridies comprising a nucleotide sequence described by the general formula of a b, where a is any integer between 1 to 306 of SEQ ID NO:368, b is an integer of 15 to 920, where both a and b recompound to the positions of nucleotide residues shown in SEQ ID NO:368, and where b is greater than or equal to a + 14.	H63163, H69239, AA291944, AA82/8/1, AA993955
829298	Preferably excluded from the present invention are one or more propute location comprising a microdite sequence described by the general formula of e.b., where a is any integer between 1 to 820 of SEQ ID NO:369, b is an integer of 15 to 834, where both a and b correspond to the positions of meleatide residues shown in SEQ ID NO:369, and where b is greater than or equal to a + 14.	TRS571, TRS572, TP8605, R00410, R00411, R2538, W2247, WS8681, AAJ26722, AAJ37218, AAJ6801, AAS31469, AAA66025, AAA98354, AA978354, AA988766, AI057145, N95214
829302	Preferably excluded from the present invention are one or more populated to comprizing a molecule sequence described by the populated order comprizing a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 933 of SEQ ID NO:370, b is an integer of 15 to 947, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:370, and where b is greater than or equal to a + 14.	T65360, R16190, R51781, H70499, AA203397
829304	Preferably excluded from the present invention are one or more polymetheorides countriesing a melacidie sequence described by the general formula of a b, where a is any integer between 1 or 2326 of SEQ ID NO.371, b is an integer of 15 to 2340, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID NO:371, and where b is greater than or equal to a + 14.	
829320	Preferably excluded from the present invention are one or more polymerlecidies countries described by the general formula of a-b, where a is any integer between 1 to 1561 of SEQ ID NO.372, b is an integer of 15 to 1575, where both a and b correspond to the positions of mulciotide residues seakows in SEQ ID NO.372, and where b is greater than or equal to a + 14.	T83172, T83188, T98062, H14392, AAL96911, AA514594
829322	Preferably excluded from the present invention are one or more polymerhecideds countering a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1864 of SEQ ID NO.373, b is an integer of 15 to 1878, where both a and b correspond to the positions of meloculate residues shown in SEQ ID NO.373, and where b is greater than or equal to a + 14.	
829355	Preferably excluded from the present invention are one or more polymerheciotides course described by the general formula of e-b, where a is any integer between 1 to 832 of SEQ ID NO;374, b is an integer of 15 to 846, where both a and b correspond to the polymerhecione or modewide residues shown in SEQ ID NO;374, and where bot is greater than or equal to a + 14.	
829364	Preferably excluded from the present invention are one or more polymerolocides convented described by the general formula of a by, where a is any integer between 1 to 643 of SEQ ID NO.375, b is an integer of 15 to 657, where both a and b correspond to the positions of meleouide residues shown in SEQ ID NO.375, and where both a suit of the No.375, and where b is greater than or equal to a + 14.	R 10800, H79360, AA130522
616628	Preferably excluded from the present invention are one or more popuracionides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 681 of SEQ ID NO.376. b is an integer of 15 to 695, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.576, and where b is greater than or equal to a + 14.	
829941	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 3596 of	

COURT DN CA377, is an integer of 15 to 360, where both a and b correspond to the positions of meleoride residues shown in SEQ II NO.377, and where b is greater than or equal to a + 14. NO.377, and where b is greater than or equal to a + 14. Polerabialy excluded from the present invention are one or more polymucleorides comprising a meleoride sequence described by the general formatia of a b, where is any integer between 1 to 209 of 3EQ ID NO.378, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymucleorides comprising a meleoride sequence described by the greater formatia of a -b, where as any integer between 1 to 795 of SEQ ID NO.379, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymucleorides comprising a meleoride sequence described by the general formatia of a -b, where a is any integer between 1 to 795 of SEQ ID NO.379, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymucleorides comprising a meleoride sequence described by the general formatia of a-b, where a is any integer between 1 to 235 of SEQ ID NO.339, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more proving to the positions of nucleotide residues shown in SEQ II NO.380, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more province of the comparison of the contract described by the general formation of a-b, where a is any integer between 1 to 235 of NO.380, and where a is any integer between 1 to 1236 of SEQ ID NO.381, b is an integer of 15 to 1250, where both a and begrenal formal of a-b, where a is any integer between 1 to 1236 of SEQ ID NO.381, b is an integer of 15 to 1250, where both a and begrenal formal of a-b, where a is any integer between a to 1235 of 15 to 130 and 15 and 15 to 1350, and 15 to 1350, and 15 to 1350, and 1	ADD the the of of the state of			 RH768, R2688, R27120, R28570, R58581, R51276, R66882, the R67067, H27381, IL28345, H38579, R93960, R97909, R97907, Ad F H58658, H61431, H61432, H62657, H67776, H63826, H65287, db Ff68180, H59868, H89664, H79690, W245747, AA002670. h77158, AA715467, AA724495, AA523405, AA5234524
	COURT DIO NO.377, b is an integer of 15 to 36(0), where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.377, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polyuncleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 209 of SEQ ID NO.378, b is an integer of 15 to 223, where both a and b Norsepond to the positions of nucleocide residues shown in SEQ ID NO.378, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more- polyuniclosides comprising a melecioride sequence described by the general formula of a-b, where a is any integer between 1 to 795 of SEQ ID NO;379, b is an integer of 15 to 809, where both a and b correspond to the positions of undecordule resides shown in SEQ ID NO;379, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populate-older comparing an embeddied sequence described by the general formula of a-b, where a is any integer between 1 to 2536 of SQL DNO:380, b as an integer of 15 to 2530, where both a and b correspond to the positions of macleotide residues shown in SEQ ID NO:380, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populate development or comparing a methodide sequence described by the general formula of 4-b, where a is any integer between 1 to 1254 of the SEC BD DO/381, b is an integer of 51 to 1266, where both a and b secretary of the acceptance of file to 1266, where both as and b secretary of the acceptance of methodicide residues shown in SEO III.

	NO:381, and where b is greater than or equal to a + 14.	AA594129, AA568558, AA864390, AA999878, AI014459, AI017407, AI017824
829954	Preferably excluded from the present invention are one or more populatediate comprising a melbediate sequence described by the general formula of a.b., where a is any integer between 10 840 of SEQ ID NO:382, b is an integer of 15 to 854, where both a and b recreaspond to the positions or functional testables shown in SEQ ID NO:382, and where b is greater than or equal to a + 14.	
829955	Preferably excluded from the present invention are one or more polyoulecledes comprising a melecidie sequence described by the general formula of a-b, where a is any integer between 1 to 1077 of SEQ ID NO:383, b is an integer of 15 to 1091, where both a and b correspond to the positions of unbediede residens shown in SEQ ID NO:383, and where b is greater than or equal to a + 14.	TI4729, T4720, R0231, R43154, R51538, R43154, H42209, R48215, N49583, N99033, W21271, W31966, AA029149, R8215, T47955, AAA48238, AA612791, AA633375, AA830042, AA917951, N83314, N86243, C02678
829957	Preferably excluded from the present invention are one or more polynucleotide courpering at melectide sequence described by the general formula of a-b, where a is any integer between 1 to 1015 of SEQ ID NO:384, b is an integer of 15 to 1029, where both a and b correspond to the positions of melectide residues shown in SEQ ID NO:384, and where b is greater than or equal to a + 14.	1779589, T40280, H7645, R29010, R9910, R99164, H53810, H58313, H58722, H61099, H61901, B67305, H63806, H75311, H58323, H58722, H61099, H61901, B67305, H6380, H75311, H75301, N8910, N46484, N66604, N69475, N75847, W01771, M07430, W74470, W74473, W78741, W78750, W09057, A001350, A0056567, A0026459, A0066353, A013506, A04205667, A0026459, A0066373, A0420601, A062057, A0420601, A062057, A0420601, A062057, A0420501, A062051, A0
829958	Preferably excluded from the present invention are one or more populational compinition and the object send of the present from the object send of the object send of the object and the object send to the object send to the object send to the object send of the	Willi95, Wisses, Nordon, Andrisch, Andried, Andrisch, Andried, Andrisch, Andrisch, Andrisch, Andrisch, Andried, Andried
829960	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2396 of	T87492, T89410, T89773, T80188, T83347, T83577, T85604, T86095, H44324, R86738, R86745, R87175, R87176, R93579, R97628, H59234, H67776, H69384, H89665, H90369, H91278.

	SEQ ID NO.386, b is an integer of 15 to 2410, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO.386, and where b is greater than or equal to a + 14.	H99827, N50685, N7225, N77230, N09493, W01516, W07398, W07490, A011532, A4127663, A4127842, A4127871, A4131770, A4131783, AA031697, AA223149, AA657524, AA770678, AA828971, AA937743
829966	Prefeably excluded from the present invention are one or more polyumichoide comprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 675 of SEQ ID NO.387, b is an integer of 15 to 689, where both a and b correspond to the positions of melocidide residues shown in SEQ ID NO.387, and where b is greater than or equal to a + 14.	1947, 791932, R10556, 795267, 195268, 190557, N59601, W02671, W03166, AA523419
829967	Preferably excluded from the present invention are one or more popularelocides countered by the general formation of a.b., where a is any integer between 1 to 784 of SEQ ID NO.388. b is an integer of 15 to 798, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.388, and where b is greater than or equal to a + 14.	TRG6615, TRG616, TOPOJOB, ROTSA, TSTGGS, TRTSR, TSZ103, TRG6615, TRG616, TGGG, R21477, R31478, R56711, R80777, R80077, R80076, H15075, H13721, R90517, H3108, H32078, H31071, R30217, H3108, H3
829970	Preferably excluded from the present invention are one or more polymulcoides comprising a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 1677 of SEQ ID NO:389, b is an integer of 15 to 1691, where both a and b correspond to the positions of inducedide residens shown in SEQ ID NO:389, and where b is greater than or equal to a + 14.	W57592, AA253247
829981	Preferably excluded from the present invention are one or more popular decides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 440 of SEQ ID NO:390, b is an integer of 15 to 454, where both a and b correspond to the positions of undecided residiates shown in SEQ ID NO:390, and where b is greater than or equal to a + 14.	N44941
829985	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	T58690, H10115, AA101544, AA17179, AA173847

polymateolates comprising a meteodus explere teasure up on general formula of a-b, where a is any integer between 1 to 1009 of SEQ D NO.393, b is an integer of 15 to 1023, where both a and b correspond to the positions of medeoide residues shown in SEQ D NO.393, and where b is a guitar than or equal to a + 14. 829990 Perfectably excluded from the present invention are one or more polymateloides comprising a medeoide sequence described by the general formula of a-b, where a is any integer between 1 to 808 of SEQ D NO.394, and where b is genter than or equal to a + 14. 829991 Prefeably excluded from the present invention are one or more polymateloides comprising a medeoide residues shown in SEQ ID NO.394, and where b is genter than or equal to a + 14. 829991 Prefeably excluded from the present invention are one or more polymateloides comprising a medeoide sequence described by the SEQ ID NO.395, and where it is any integer between 1 to 1688 of SEQ ID NO.395, and where a is any integer between in SEQ ID NO.395, and where a is any integer between the 1688 of SEQ ID NO.395, and where a is any integer between the 1688 of SEQ ID NO.395, and where a is any integer between the 168 of Sep CD ID NO.395, and where a is any integer between the 1884 of Sep CD ID NO.395, and where a is any integer between the 1884 of Sep CD ID NO.395, and where a is any integer between the 1884 of Sep CD ID NO.396, b is an integer of 15 to 838, where both a and b separal formula of a-b, where a is any integer between in SEQ ID NO.396, b is an integer of 15 to 838, where both a and b separal formula or any integer between in SEQ ID NO.396, b is an integer of 15 to 838, where both a and b secondary and and and a secondary and any and and a secondary and any and and a secondary and any and and any and and any and any and any and any and any and any and and any a
--

83000	Preferably excluded from the present invention are one or more	
	nolymicleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1456 of	
	SEQ ID NO:403, b is an integer of 15 to 1470, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:403, and where b is greater than or equal to a + 14.	
830010	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2473 of	
	SEQ 1D NO:404, b is an integer of 15 to 2487, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:404, and where b is greater than or equal to a + 14.	
830127	Preferably excluded from the present invention are one or more	T80487, R61657
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1242 of	
	SEQ 1D NO:405, b is an integer of 15 to 1256, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:405, and where b is greater than or equal to a + 14.	
830128	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 757 of	
	SEQ 1D NO:406, b is an integer of 15 to 771, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:406, and where b is greater than or equal to a + 14.	
830129	Preferably excluded from the present invention are one or more	T53792, T53907, T53943, T62085, T62142, R20454, R78770,
	polynucleotides comprising a nucleotide sequence described by the	R78927, R79027, R79077, H98608, N48338, N49063, W01400,
	general formula of a-b, where a is any integer between 1 to 2629 of	W52282, W57571, AA035258, AA035470, AA101541,
	SEQ 1D NO:407, b is an integer of 15 to 2643, where both a and b	AA114162, AA121802, AA129334, AA129628, AA130575,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA130988, AA131026, AA156750, AA156922, AA157263,
	NO:407, and where b is greater than or equal to a + 14.	AA157360, AA223729, AA223816, AA489148, AA490861,
		AA516421, AA526784, AA533164, AA535426, AA552972,
		AAS83471, AA605156, AAS75994, AA747160, AA804291,
		AA887994, AA937881, AA948245, AA974518, AA974784,
00000		AU02202, AU021135, 1004327, 1000762, AA042376, AA053413
830137	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1632 of	
	SEQ 1D NO:408, b is an integer of 15 to 1646, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:408, and where b is greater than or equal to a + 14.	
830140	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 862 of	
	SEQ 1D NO:409, b is an integer of 15 to 876, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:409, and where b is greater than or equal to a + 14.	
830157	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1836 of	
	SEQ 1D NO:410, b is an integer of 15 to 1850, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:410, and where b is greater than or equal to a + 14.	
830195	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 647 of	
	SEQ 1D NO:411, b is an integer of 15 to 661, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:411, and where b is greater than or equal to a + 14.	
830196	Preferably excluded from the present invention are one or more	T47007, T47008, T59996, T63678, T72979, T73043, R20327, B24736, D18042, D60046, D08876, W70567, A A 060850
	polynucieoudes comprising a nucleoude sequence described by me	A A A A A A A A A A A A A A A A A A A
	general formula of a-0, where a party integer between 1 to 1247 or	AA113907 AA126400 AA134002 AA134658 AA134640.
	SECTO NO. 112, 0 is an imager of 13 to 1203, when you want to	AA135254 AA146731 AA155584 AA157966 AA159110.
	NO.412 and where h is oreater than or equal to a + 14.	AA159386, AA159466, AA160637, AA179462, AA182917,
		AA182648, AA190534, AA220918, AA223557, AA227300, AA232517, AA233585, AA932527, N83710, N85080, W28216, W28475, W28650, AA090479
830409	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1323 of	

830417 830531 831355 831420	SEQ ID NO-413, he is an integre of 15 to 1337, where both a and b norregond to the positions of nucleotide residues shown in SEQ ID NO-415, and where b is geneter than or equal to a + 14. Peterlably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formals of a-b, where a is any integer between 1 to 778 of SEQ ID NO-414, b is an integer of 15 to 732, where both a and the correspond to the positions of nucleotide residues shown in SEQ ID NO-414, and where b is geneter than or equal to a + 14. No-414, and where b is geneter than or equal to a + 14. Perferably excluded from the present invention are one or more polynucleotides comprising a nucleotide esquence described by the general formal of a-b, where a sia will neger between 1 to 1328 of SEQ ID NO-415, it is an integer of 13 to 1342, where both a and becreaply excluded from the present invention are one or more polynucleotides comprising a nucleotide esquence described by the general formal or a-b, where a sia will neger between 1 to 1099 of SEQ ID NO-415, and where b is generer than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide esquence described by the general formal of a-b, where a sia my integer between 1 to 1099 of SEQ ID NO-416, and where b is generer than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formal of a-b, where a sia my integer between 1 to 1160 of SEQ ID NO-416, and where b is generer than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formal or a-b, where a sia my integer between 1 to 160 of SEQ ID NO-415, and where b is an integer of 15 to 113, where both a and becomes pound to the positions of nucleotide residues shown in SEQ ID NO-415, and where b is an integer of 1	T70867, R12290, T78032, T80453, T80532, R12452, R12507, R1857, R23506, R21556, R2975, R53401, H17296, H22829, R4018531, AA018491, AA17702, AA147778, AA226551, AA9994837, N84172, W95506, C02827, C04397, AA090040
831702	Preferably excluded from the present invention are one or more	

general formula of a-b, where a is any integer between 1 to 2164 of SEQ ID NO(419, b is an integer of 15 to 2178, where both a and b correspond to the positions of nacleotide residues shown in SEQ ID NO(416), and where b is greater than or equal to a + 14.	Prefeably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1870 of SEQ D NO.420, b is an integer of 15 to 1884, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.420, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymerhedrodies connected described by the general formula of a-b, where a is any integer between 10 c08 of SEQ ID NO.421, b is an integer of 15 to 622, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO.421, and where bo is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polynuchachdise source described by the polynuchachdise in polynuchach general formula of a-b, where a is any integer between 1 to 1271 of SEQ ID NO-422, b is an integer of 15 to 1285, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO-322, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymericoloids counterfolds esquered described by the general formula of e-b, where a is any integer between 1,0 514 of SEQ ID NO-423, b is an integer of 15 to 528, where both a and b correspond to the positions of mulciotide residues shown in SEQ ID NO-423, and where bot is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymerhedroids counterfolds esquered elsestribed by the general formula of a-b, where a is any integer between 10 3104 of SEQ ID NO434, b is an integer of 15 to 3118, where both a and b correspond to the positions of meleoride residues shown in SEQ ID NO434, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
	831717	832488	833207	835940	836953	837105

837300	polymacleotides comprising a macleotide sequence described by the pergeral formula of \$4.0, where a sia an integer between 1 to 1396 of SEQ ID NO.425, bit an integer of 15 to 1410, where both a and be correspond to the positions of macleotide residues shown in SEQ ID NO.425, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more propulectivities comprising an according to a propulation of the protitions of macerial formula of \$4.0, where a is any integer between 1 to 1408 of SEQ ID NO.426, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymacleotides comprising a nucleotide sequence described by the general formula of \$4.0, where a is any integer between 1 to 1408 of SEQ ID NO.426, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polymacleotides comprising a nucleotide sequence described by the general formula of \$4.0, where a is any integer between 1 to 81 for \$4.0, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.427, and where b is greater than or equal to a + 14.	R22778, H06717, H18453, H26987, H26988, N33207, N44745, M57844, W5845, AA578663, AA578616, AA578616, AA578615, AA578615, AA57861734, AA578615, AA578615, AA578615, AA578615, AA578615, AA578615, AA578615, AA578613, AA578613, AA57861, AA578
837687	Preferably excluded from the present invention are one or more polymucleotides comprising a micleotide sequence described by the general formula of a-b., where a is any integer between 1 to 1608 of SEQ ID NO-428, b is an integer of 15 to 1622, where both a and b correspond to the positions of micleotide residues shown in SEQ ID NO-428, and where b is greater than or equal to a + 14.	
837991	Preferably excluded from the present invention are one or more polynucleotide comprising a nucleotide sequence described by the general formula of e.b., where a is any uneger between 1 to 354 of SEQ ID NO.429, b is an integer of 15 to 548, where both a and b crorespond to the positions of nucleotide residues shown in SEQ ID NO.429, and where b is generer than or equal to a + 14.	
838442	Preferably excluded from the present invention are one or more polymericalides compressing a melocardise sequence described by the general formula of a-b, where a is any integer between 1 to 555 of SEQ ID NO.430, b is an integer of 15 to 569, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ 1D NO:430, and where b is greater than or equal to a + 14.	
840541	Preferably excluded from the present invention are one or more	AA205009, AA471299
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 535 of	
	SEC ID INC. 451, 9 is an integer of 1.15 to 249, where bour a and 9	
	NO:431, and where b is greater than or equal to a + 14.	
840543	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1207 of	
	SEQ ID NO:432, b is an integer of 15 to 1221, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO.432 and where h is greater than or some to a ± 14	
840550	Preferably excluded from the present invention are one or more	T53643, T53644, R67842, R67843, R79329, H12321, H40510,
	nolymoleotides commising a nucleotide sequence described by the	R83261, R88722, R90978, R97638, H51690, H52190, H78699,
	general formula of a-b, where a is any integer between 1 to 1101 of	H89714, N58070, N69832, N98971, AA251228, AA251227,
	SEQ ID NO:433, b is an integer of 15 to 1115, where both a and b	AA282101, AA513006, AA528240, AA558167, AA593383,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA574200, AA577197, AA765822, AA847143, AA863087,
	NO:433, and where b is greater than or equal to a + 14.	AA931049, AA694054
840563	Preferably excluded from the present invention are one or more	R38732, R71612, R71613, N24083, N31377, N47304, N48623,
	polynucleotides comprising a nucleotide sequence described by the	W87303, W90742, W90798, AA011634, AA011635, AA253397,
	general formula of a-b, where a is any integer between 1 to 1590 of	AA253501, AA257091, AA257121, AA427877, AA503469,
	SEQ ID NO:434, b is an integer of 15 to 1604, where both a and b	AA565303, AA587449, AA613721, AA/40312, C01498,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA434535, AA443422, AA454584, AA677081, AI022365,
	NO:434, and where b is greater than or equal to a + 14.	AI052631, AA693545
840565	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 287 of	
	SEQ ID NO:435, b is an integer of 15 to 301, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:435, and where b is greater than or equal to a + 14.	
840569	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 304 of	

tooteo: ooseeeco

	SEQ ID NO:436, b is an integer of 15 to 318, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:436, and where b is greater than or equal to a + 14.	
840570	Preferably excluded from the present invention are one or more populue-decides comprising a nucleotide sequence described by the general formula of e-b, where a is any integer between 1 to 1868 of SEQ ID NO-437, b is an integer of 15 to 1882, where both a and b correspond to the positions of intellectual residues shown in SEQ ID NO-437, and where b is greater than or equal to a + 14.	AID73277, AA675912, AA675911
840571	Preferably excluded from the present invention are one or more polynucleorides comprising a uncleoride sequence described by the general formula of a-b, where a is any integer between 1 to 2042 of SEQ ID NO438, b is an integer of 15 to 2056, where both a and b correspond to the positions of nucleoride residues shown in SEQ ID NO438, and where b is greater than or equal to a + 14.	T47828, T4782, T64841, T65430, T65510, T72584, R71781, R1966, R54453, R4773, R44453, R49078, R54445, R49078, R5445, R47078, R5707, R51812, R4731, R4058, R4455; H1004, H15435, H15485, H28705, H28834, AA515873, AA687085, AA863313, AA903803, AA462275, AA462275, AA462275, AA462275, AA462275, AA60321, T10761, D25841, Z41977, Z40833, Z44675, F01498, F03655, F07740, F11901, F12192, F09845, F09821
840573	Preferably excluded from the present invention are one or more populue-bedies comprising a moteroid sequence described by the general formula of a-b, where a is any integer between 1 to 707 of SEQ ID NO-439, b is an integer of 15 to 721, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO-439, and where b is generate than or equal to a + 14.	AA149788
840574	Preferably excluded from the present invention are one or more populated to comparing a melecule sequence described by the general formula of a-b, where a is any integer between 1 to 1027 of 1020 NO-440, is an integer of 15 to 1041, there both at and b correspond to the positions of melecules residues shown in SEQ ID NO-440, and where b is greater than or equal to a + 14.	TRSS88, R4068, R4224, R5329, R5394, R4248, R20733, R4068, R6641, R6643, R68439, R77258, R77229, R77259, R77595, R18969, H8069, H8064, N72287, N80600, A77404, W40167, A74053944, A74055546, A7405404, A7405546, A7405546, A748740, A448596, A748596, A748507, A748740, A748596, A748740, A748794, A748796, A748796, A7469494, A7705982, A1080676, A109758, C15094, AA404494, AA705982, A1080676, A109753, C15094, AA404494, AA705982, A1080676, A1097734, P90676
840575	Preferably excluded from the present invention are one or more polynacleotides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1981 of the 20ED 10 Cod-41. Is an integer or 15 to 1993, where both as and b locorespond to the positions of nucleotide residues shown in SEQ ID	W68038, W93774

	NO:441, and where b is greater than or equal to a + 14.	
840579	Prefeably excluded from the present invention are one or more polymechodies connect described by the general formula of a b, where a is any integer between 10 1709 of SEQ ID NO.442, b is an integer of 15 to 1733, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.442, and where b is greater than or equal to a + 14.	RESTIS, RT2972, N42280, N99672, AA046377, AA112337, AA137170, AA136083, AA136289, AA234630, AA236661, AA251313, AA236954, AA236645, AA704119, AI073518, AA773818
840580	Prefeably excluded from the present invention are one or more polymerboirdes comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1885 of SEQ ID NO.443, b is an integer of 15 to 1899, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.443, and where b is greater than or equal to a + 14.	
840581	Preferably excluded from the present invention are one or more polymuclouides comprising a melonide sequence described by the general formula of a-b, where a is any integer between 1 to 416 of SEQ ID NO.444, b is an integer of 15 to 450, where both a and b correspond to the positions of melocuide residues shown in SEQ ID NO.444, and where b is greater than or equal to a + 14.	
840605	Prefetably excluded from the present invention are one or more polymetheorides comprising a melciotide sequence described by the general formula of e-b, where a is any integer between 1 to 2.130 of SEQ ID NO.445, b is an integer of 15 to 2153, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.445, and where b is greater than or equal to a + 14.	1558118, R60700, R60701, H30430, N42386, AA126493, AA126620, AA128001, AA236455, AA234073, AA470382, AA637701, AA236455, AA677324, AA637701, AA637701, AA637701, AA637701, AA637701, AA838670, AA637801, AA637324, AA838670, AA637801, AA67807, AA838670, AA67807, AA677019, AA6888, AA671410, AA677301, AA67807, AA77701, AA67807, AA67807, AA77701, AA67808, AA87888, AA878784, AA777751, AA845416, AA696094, AU677197, AU677391, AU693994, AI694088, T24618, T25624, Z41574
840607	Prefetably excluded from the present invention are one or more polymuchocides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 478 of SEQ ID NO.446, b is an integer of 15 to 492, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.446, and where b is greater than or equal to a + 14.	
840609	Preferably excluded from the present invention are one or more	

840622	Preferably excluded from the present invention are one or more	AA699825
	Victorio y Autono Troin In place and in the Charles of Submitted by the polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 949 of SPQ ID NO4422, b is an integer of 15 to 963, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO4422, and where b is greater than or equal to a + 14.	
840623	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 590 of SEQ DD NO(435, b is an integer of 15 to 604, where both a and b correspond to the positions of nucleotide residenes shown in SEQ ID NO(453, and where b is greater than or equal to a + 14.	AA248685
840624	Preferably excluded from the present invention are one or more proprieted into comprising a uncloudie sequence described by the general formula of e-b, where a is any integer between 1 to 1903 of SEQ ID NO-454, b is an integer of 15 to 1917, where both a and b reconspond to the positions of incloudie residues shown in SEQ ID NO-454, and where b is greater than or equal to a + 14.	N38891, N54665, N45221, F13612, F13702
840631	Preferably excluded from the present invention are one or more populocleotides comprising a melcotide sequence described by the general formula of a-b, where a is any integer between 1 or 1524 of SEQ ID NO-455, b is an integer of 15 to 1538, where both a and b correspond to the positions of metocide residences shown in SEQ ID NO-455, and where b is greater than or equal to a + 14.	
840632	Preferably excluded from the present invention are one or more proprieted index comprising a unchedide sequence described by the general formula of e.b., where a is any integer between 1 or 2175 of SEQ ID NO-456, b is an integer of 15 to 2189, where both a and b recorpound to the positions of methodide residues shown in SEQ ID NO-456, and where b is greater than or equal to a + 14.	H15848, H16160, H27966, H27967, H42798, H87969, No4073, AAGAG, No4078, AAA05740, AAS00022, AA280099, AAAS8077, AA290929, AAS14009, AA975514, AI094746, AA49900, AA716758, AA724921, AA860380, AA909482
840633	Preferably excluded from the present invention are one or more polymerbedides compressed described by the general formula of a-b, where a is any integer between 1 to 1385 of SEQ ID NO-457, b is an integer of 15 to 1399, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID NO:457, and where b is greater than or equal to a $+14$.	
840634	Preferably excluded from the present invention are one or more	AA063114
	polynucleotides comprising a nucleotide sequence described by the	
	SEO ID NO:458, b is an integer of 15 to 709, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:458, and where b is greater than or equal to a + 14.	
840635	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1269 of	
	SEQ ID NO:459, b is an integer of 15 to 1283, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:459, and where b is greater than or equal to a + 14.	
840636	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 421 of	
	SEQ ID NO:460, b is an integer of 15 to 435, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:460, and where b is greater than or equal to a + 14.	
840637	Preferably excluded from the present invention are one or more	AA001547, AA012848, AA012933, AA017085, AA017194,
	polynucleotides comprising a nucleotide sequence described by the	AA018490, AA810954
	general formula of a-b, where a is any integer between 1 to 640 of	
	SEQ ID NO:461, b is an integer of 15 to 654, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:461, and where b is greater than or equal to a + 14.	
840639	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2231 of	
	SEQ ID NO:462, b is an integer of 15 to 2245, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:462, and where b is greater than or equal to a + 14.	
840640	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1260 of	

	000 000 1 1 000 1 000 1 1 0 0 1 1 1
	SEQ ID NO:465, b is an integer of 15 to 1280, where boun a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:463, and where b is greater than or equal to a + 14.
840650	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 2417 of
	SEQ ID NO:464, b is an integer of 15 to 2431, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:464, and where b is greater than or equal to a + 14.
840652	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 575 of
	SEQ 1D NO:465, b is an integer of 15 to 589, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:465, and where b is greater than or equal to a + 14.
840653	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 1093 of
	SEQ ID NO:466, b is an integer of 15 to 1107, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:466, and where b is greater than or equal to a + 14.
840655	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 2183 of
	SEQ ID NO:467, b is an integer of 15 to 2197, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:467, and where b is greater than or equal to a + 14.
840659	Preferably excluded from the present invention are one or more
	polynucleotides comprising a nucleotide sequence described by the
	general formula of a-b, where a is any integer between 1 to 3597 of
	SEQ ID NO:468, b is an integer of 15 to 3611, where both a and b
	correspond to the positions of nucleotide residues shown in SEQ ID
	NO:468, and where b is greater than or equal to a + 14.
840660	Preferably excluded from the present invention are one or more AA2S3121, AA253250 holymmoleotides commissing a muleotide sequence described by the
	polynacionare comprisme a nacionare account of me

	general formula of a-b, where a is any integer between 1 to 506 of SEQ ID NO.449b, b is an integer of 15 to 520, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO.445b, and where b is greater than or equal to a + 14.	
840661	Preferably excluded from the present invention are one or more populated to comprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 865 of SEQ ID NO-470, b is an integer of 15 to 879, where both a and b correspond to the positions of melochde residens shown in SEQ ID NO-470, and where b is greater than or equal to a + 14.	R40087, AA483309, AA720883, AA747144, AA811974, AA853049
840662	Preferably excluded from the present invention are one or more polyomic bordes comprising an uncloude sequence described by the general formula of a-b, where a is any integer between 1 to 244.3 of SEQ ID NO.471, b is an integer of 1 5 to 2557, where both at and b correspond to the positions of nucleotide residues shown in SEQ ID NO.471, and where b is greater than or equal to a + 14.	R1355, R2168R, R25164, R2007, RA0871, RA6530, R46530, R46530, R46531, R67867, R67868, H01101, H01102, H01867, H01868, H02736, H95786, H9540, H95441, N53845, N66453, AA16815, N60953, AN3742, AA465604, AA465266, AA416374, AA168453, AA119346, AA119346, AA119346, AA18954, AA318777, AA428908, AA7447, AA78108, AAA2187, AA51469, AA78108, AA5747, AA428908, AA786547, AA814696, AA991197, AA01348, COSS87, CO6049, AA496541, AA4968604, AA599560, AA665699, AA70837, AA778203, AA844411, AA889762, AA168139, AA78874, AA768549, AA844411, AA889762, AA10837, AA77837, AA778308, AA8444411, AA889762, AA10837, AA77837, AA7837, AA8444411, AA889762, AA10837, AA77837, AA7837, AA8444411, AA889762, AA10837, AA70837, AA78874411, AA888762, AA10837, AA70837, AA7887, AA84289762, AA1081389
840663	Preferably excluded from the present invention are one or more populatedistic comprising a melocidic sequence described by the general formula of e.b., where a is any integer between 1 to 453 of SEQ ID NO.472, b is an integer of 15 to 467, where both a and b recorspound to the positions of melocidie residenes shown in SEQ ID NO.472, and where b is greater than or equal to a + 14.	
840670	Preferably excluded from the present invention are one or more populate discomprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 1826 of SEQ ID NO-473, b is an integer of 15 to 1840, where both a and b correspond to the positions of melocidar lesadies shown in SEQ ID NO-473, and where b is greater than or equal to a + 14.	TT1092, T67656, R08286, H1389, H16447, H25692, H58182, R54838, R96488, R96981, N79217, W19493, W25579, AA034100, AAA056965, AAA05921, AA72097, AA768301, AA825825, AA0972578, AA094484, AA394311, AA487380, AA778203, A1004258, A1005389, Z39071, Z42947, F02333, F06078, AA682274
840671	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	R46252, R46252, N49076, W04352, W86176, W86177, W92672, W92692, W93417, AA029831, AA085198, AA464962,

	general formula of a-b, where a is any integer between 1 to 1244 of SEQ ID NO.474, b is an integer of 15 to 1258, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.474, and where b is greater than or equal to a + 14.	AA633124, AA737628, AA737662, AA780382, AA811098, AA836105, AA857959, AA994284, AI076231, CO1217, AA780068, A1004350
840672	Preferably excluded from the present invention are one or more populaciondes comprising a motoride sequence described by the general formula of rb., where a sia my meger between 1 to 4217 of SEQ ID NO.475, b is an integer of 15 to 4231, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.475, and where b is geneter than or equal to a + 14.	
840673	Preferably excluded from the present invention are one or more populacientise comprising a moleculie sequence described by the general formula of eb., where a its any integer between 1 to 677 of SEQ ID NO-476, b is an integer of 15 to 691, where both a and b recomposal to the positions of meleculie residues shown in SEQ ID NO-476, and where b is generer than or equal to a + 14.	
840674	Preferably excluded from the present invention are one or more populacionides comprising a moleculie sequence described by the general formula of reb, where a is any integer between 1 to 1404 of SEQ ID NO.477, b is an integer of 15 to 1418, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.477, and where b is greater than or equal to a + 14.	RS 19 15, R54456, R54458, H18062, H18757, W03838, W77892, AAG29317, F09686
840677	Preferably excluded from the present invention are one or more populaciotides comprising a moleculie sequence described by the general formula of reb, where a is any integer between 1 to 1223 of SEQ ID NO-478, b is an integer of 15 to 1237, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-478, and where b is generer than or equal to a + 14.	
840678	Preferably excluded from the present invention are one or more populate by the oppulatebrids compressing a more interpretable by the general formula of a-b, where a is any integer between 10 to 1094 of SEQ ID NO.479, b is an integer of 15 to 1098, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.479, and where b is greater than or equal to a + 14.	IGGS20, R75617, R75713, R78902, R79103, H75459, H77826, H785479, H85446, H92403, H92620, AA001384, AA001383, AA057832, AA253008, AA253008, AA24651, AA30054, AA430263, AA23054, AA715297, AA288014, AA481556, AA491320, AAA505123, AAA54894, AA715297, AA39984, AA715287, AA477559, AA47757676, AAA39948, AA477559, AA47757676

		AA782481, AI079168, AI040143, AI080176, AI082310, D12148
840680	Preferably excluded from the present invention are one or more populacidates comprising an anteoletic sequence described by the general formula of a-b, where a is any integer between 1 to 6710 of a CO (20 DNO-480, b) is an integer of 15 to 664, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-480, and where b is greater than or equal to a + 14.	
840691	Preferably excluded from the present invention are one or more populated by the general formula of a-b, where a list any ungest between 1 to 2981 of SEQ ID NO-481, b is an integer of 15 to 2995, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-481, and where b is greater than or equal to a + 14.	183393, 184298, 174482, R72668, H05782, H06072, H17206, A47369601, A4236200, A423432, A4256692, A4256092, A4256092, A4256092, A4256094, A4255609, A4255094, A4586710, A4671131, A5515794, A4580599, A4748677, A4872189, A4937350, A4950702, C00417, A445119, A4950712, C00417, A445119, A495171, A1091615, F01634, F03581
840700	Preferably excluded from the present invention are one or more polynucleoxides comprising a melocutie sequence described by the general formula of a-b., where a is my integer between 1 to 1234 of SEQ ID NO-482, b is an imager of 15 to 1248, where both a and b correspond to the positions of nucleotide residents shown in SEQ ID NO-482, and where b is greater than or equal to a + 14.	N74558, W02490, AA250756, AA721388, AA937643, AA077596, AA63778, AA779964, AA812335, AA912417, AA978273, AA993172, AA993810, D20826
840701	Preferably excluded from the present invention are one or more proprincipated comprising a underload sequence described by the general formula of e.b. where a is any integer between 1 to 1848 of SEQ ID NO-483, b is an integer of 15 to 1862, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-483, and where b is greater than or equal to a + 14.	R72545, H77545, H77546, H91001, W46287, W67764, W67765, M7222, W7646, W85399, W9544, AAT1990, AA172306, AA19340, AA19340, AA51974, AA481093, AA87320, AA71070, AA731304, AA765386, AA807488, AA830428, AA8816173, AA873206, AA807488, AA894330, AA879104, AA7816104, AA844037, AA773240, AA906091, AA1992629
840702	Preferably excluded from the present invention are one or more propriete order constring a morphistic sequence described by the general formula of e.b. where a is any integer between 1 to 1650 of SEQ ID NO-484. b is an integer of 15 to 1664, where both a and b correspond to the positions of nucleoride residues shown in SEQ ID NO-484, and where b is greater than or equal to a + 14.	1906-22, 1831-60, R3-4427, R38259, R46634, R48960, R46634, W80824, W80824, W80955, AA020394, AA945908, AA947355, AA047353, AA047353, AA129564, AA173541, AA173942, AA189109, AA473209, AA322201, AA325680, AA366795, AA61511, AA877392, AA876731, AA35680, AA5669, AA7616311, AA877392, AA876731, AA367633, AA976755, W26166, AA776792, AA876731, AA876733, AA976795, AA876731, AA8771, AA876731, AA8771, AA876731, AA8771, AA87771, AA8771, AA7771, AA8771, AA8771, AA7771, AA8771, AA7771, AA8771, AA7771, AA777

840705	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 955 of SEQ ID NO4855, is an integer of 15 to 999, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO485, and where b is greater than or cantal to a + 14.	
840715	Preferably excluded from the present invention are one or more	
	polynucieoudes comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2558 of	
	SEQ ID NO:486, b is an integer of 15 to 2572, where both a and b	
	NO:486, and where b is greater than or equal to a + 14.	
840717	Preferably excluded from the present invention are one or more	T79990, R16372, R25837, R32657, R42317, R46835, R53484,
	polynucleotides comprising a nucleotide sequence described by the general formula of a.h. where a is any integer between 1 to 1437 of	R53485, R46835, R42317, R60577, R60630, R71392, R72562, U06381, U06381, U106097, U06830, W731004, W731609, W731609
	SEO ID NO:487, b is an integer of 15 to 1451, where hoth a and b	TUGGO1, TUGGGG, T110997, H2G350, W / 1994, W / 0508, W 8 / 458, W87554 A A 079771 A A 079772 A A 079881 A A 079966
	correspond to the positions of nucleotide residues shown in SEQ ID	AA046839, AA047010, AA057673, AA069571, AA069563.
	NO:487, and where b is greater than or equal to a + 14.	AA524160, AA865941, AI017434, AA649997, AA705373, AA776517, AI057308, AI078071, T17221, Z40755, Z45024
840718	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1186 of	
	SEQ ID NO:488, b is an integer of 15 to 1200, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:488, and where b is greater than or equal to a + 14.	
840719	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 271 of	
	SEQ ID NO:489, b is an integer of 15 to 285, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	INU.469, and where b is greater than or equal to a + 14.	
840724	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 668 of	
	SEQ 1D NO:490, b is an integer of 15 to 682, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ 1D NO:490, and where b is greater than or equal to a + 14.	:
840725	Preferably excluded from the present invention are one or more	T52811, T52812, R55369, R55607, H29580, H29664, N34553,
	polynucleotides comprising a nucleotide sequence described by the	N59374, N72870, N76477, N78788, N93946, W03090, W03506,
	general formula of a-b, where a is any integer between 1 to 1845 of	W07215, W40445, W99359, W99389, AA031839, AA054995,
	SEQ ID NO:491, b is an integer of 15 to 1859, where both a and b	AA120818, AA232731, AA236542, AA424556, AA424653,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA514847, AA528821, AA564104, AA808072, AA446773,
	NO:491, and where b is greater than or equal to a + 14.	AA449408, AA478629, AA644625, Z38400, Z42136
840727	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2695 of	
	SEQ ID NO:492, b is an integer of 15 to 2709, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:492, and where b is greater than or equal to a + 14.	
840731	Preferably excluded from the present invention are one or more	R11513, R11731, R12441, R17288, R56469, R60452, H14889,
	polynucleotides comprising a nucleotide sequence described by the	H21054, R85192, H78221, H78227, H78420, H78427, N44642,
	general formula of a-b, where a is any integer between 1 to 1437 of	N50726, N63598, N74649, N79564, W24822, AA121181,
	SEQ ID NO:493, b is an integer of 15 to 1451, where both a and b	AA179753, AA180330, AA210820, AA227204, AA255636,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA687763, AA761335, AA948300, AA203176, AA216635,
	NO:493, and where b is greater than or equal to a + 14.	AA404332, AA434598, AA703138
840733	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1254 of	
	SEQ ID NO:494, b is an integer of 15 to 1268, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:494, and where b is greater than or equal to a + 14.	
840734	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 3/0 of	
	SEQ ID NO:495, b is an integer of 15 to 384, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:495, and where b is greater than or equal to a + 14.	
840736	Preferably excluded from the present invention are one or more	W42658, W45183, W78758, W80493, W84630, W84681,
	polynucleotides comprising a nucleotide sequence described by the	W87610, W87901, W94898, W91935, AA484859, AA484987,
	gonnard formula of a handra o in any interest hetween 1 to 061 of	A A E CAROLO A A E A CAROLO A A CENTRE A A CENTRE

And the first way and the first way to be the

	correspond to the positions of nucleotide residues shown in SEQ ID NO.496, and where b is greater than or equal to a + 14.	AA746960, AA804989, AA825665, AA825665, AA987818, N83465, C14070, AA643844, AA652253, F20803, AA432012, AA678021, AA733050, AA782910, AA846523, AI076183, AI083413, D19829
840737	Preferably excluded from the present invention are one or more notwareleadides commissing a meleotide semence described by the	T67132, T67133, T87248, H56042, H56119, N25201, N69014, A 178513, A 4129959, A 4425701, A 4428551, A 4011113
	general formula of a-b, where a is any integer between 1 to 2061)	AA976370, AA987472, 1 081047, D80388, D80909,
	SEQ ID NO:497, b is an integer of 15 to 2075, where both a and correspond to the positions of nucleotide residues shown in SEQ ω	D80910, D81505, C1447) 72, C14494, C14495, C14495, C144514, C14527, C155397, 7283123, AA779369, AA773654,
	NO:497, and where b is greater than or equal to a + 14.	A1051187, A1091167, A1093159, T24488, AA694308, AA700909
840739	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1890 of	
	SEQ ID NO:498, b is an integer of 15 to 1904, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO.498, and where h is greater than or equal to a ± 14.	
840746	Preferably excluded from the present invention are one or more notwincleorides commissing a micleoride sequence described by the	R12296, R12807, R16375, R16741, R18738, R38102, R42319, R43408, R44177, R51903, R51994, R43408, R43060, R44177.
	general formula of a-b, where a is any integer between 1 to 2857 of	R42319, H40121, H40275, N22396, N69345, W37333, W38750,
	SEQ ID NO:499, b is an integer of 13 to 28 / 1, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	AA034339, AA034619, AA131760, AA131779, AA130020, AA150085, AA255834, AA548724, AA807007, AA825362,
	NO:499, and where b is greater than or equal to a + 14.	AA828253, N83830, N85321, N86360, AA205805, AA436905, AA709097, AA725018, Z22234, T03480, AI016816, AI093402, F08823, F10788
840748	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1610 of	
	SEQ ID NO:500, b is an integer of 15 to 1624, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:500, and where b is greater than or equal to a + 14.	
840750	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 834 of	

	correspond to the positions of nucleotide residues shown in SEQ ID NO:501, and where b is greater than or equal to a + 14.	
840751	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	T39881, T40844, T40852, T40854, T40860, T40866, T50407, T50538, T55741, T94376, T94464, H77286, H91805, H04702
	general formula of a-b, where a is any integer between 1 to 3178 of	N78697, N99150, W19295, W21325, W24158, W25537, W45247,
	SEQ ID NO:302, b is an integer of 15 to 3192, where both a and b	W72714, W93341, W95026, AA027063, AA065228, AA064926,
	NO:502, and where h is greater than or equal to a ± 14	AA070691, AA099952, AA127948, AA127982, AA142908,
	Consoli and micro of the financial trians of equal to a 1 14.	AA534955, AA535709, AA557910, AA564147 AA564676
		AA583542, AA523611, AA594463, AA595987, AA603874,
		AA613440, AA613660, AA635415, AA578985, AA568423,
		AA916523, AA922346, AA935323, AA650041, AA652730,
		AA654746, AA454065, AA486952, AA487075, AA487215,
		AA706108, AA722670, AA846544, AA853055, AA853056,
		AA853392, AA861048, AA991772, AI042420, AI074102.
		AI078712, AI041798, AI095622
840/57	Preferably excluded from the present invention are one or more	T50000, T50064, T50195, T58356, T58401, T58454, T59152,
	polynucleotides comprising a nucleotide sequence described by the	T94178, R06456, R06510, R72766, R72767, H02583, H02966,
	general formula of a-b, where a is any integer between 1 to 669 of	H04264, H39892, H41455, H44794, H46477, H46959, H51519,
	SEQ ID NO:503, b is an integer of 15 to 683, where both a and b	N45305, N54519, N54756, N63507, N64319, N76221, N94805,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA053467, AA056133, AA075160, AA078755, AA078756,
	NO:303, and where b is greater than or equal to a + 14.	AA079464, AA079463, AA079663, AA079767, AA088705,
		AA100045, AA100739, AA112276, AA112446, AA112416,
		AA113258, AA113355, AA113436, AA115702, AA115703,
		AA127146, AA132371, AA132616, AA147349, AA147400,
		AA151458, AA151459, AA156143, AA156398, AA157076,
		AA157164, AA157503, AA158148, AA158599, AA159018,
		AA159163, AA159790, AA159943, AA160779, AA160885,
		AA160895, AA160910, AA179280, AA181232, AA181237,
		AA181305, AA181255, AA181209, AA181326, AA182784,
		AA187267, AA187185, AA187224, AA187761, AA186497,
		AA186503, AA187019, AA187058, AA187039, AA187079,
		AA188443, AA192753, AA192829, AA192840, AA193199,
		AA193200, AA194570, AA421647, AA427634, AA469030,
		AA480763, AA482684, AA493670, AA501840, AA506094,

		AASU
		AA582614, AA583793, AA584240, AA588860, AA603073, AA604397, AA577162, AA662810, AA69248, AA669277, AA714337, AA714532, AA71952, AA719581, AA865192
		AA888414, AA912488, AA934668, AA936157, AA945703, AA935047, AA945336, AA935047, AA968434, AA001668, AA075272, AT074486
		FINDSOLZI, ANYONESI, ANYONESI, ANYONESI, FINDSOLZI, AND 14480, FINDSOL, N84316, N85047, AA641389, AA6641389, AA695742, AA615720, AA652050, AA654250, AA672050, AA672050, AA672050, AA672050, AA772050, AA77205
		12,009, 12,009, 104,009, 104,009, 104,009, 104,009, 104,1120, 104,009, 10
840759	Preferably excluded from the present invention are one or more	A102/165, A1090099, D19841 R88018, N46360, N48866
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2182 of SEO ID NO:504 h is an integer of 15 to 2196 where both a and h	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:504, and where b is greater than or equal to a + 14.	
840760	Preferably excluded from the present invention are one or more	T73701, T73726, R09199, R09304, R18652, R48578, R48679,
	polynucleotides comprising a nucleotide sequence described by the logneral formula of a.b. where a is any integer between 1 to 035 of	R73134, H72715, H97957, N56993, N73552, W74357, W76552, A A 778851 - A A 508169 - A A 508735 - A A 513039 - A A 528001
	SEQ ID NO:505, b is an integer of 15 to 949, where both a and b	AA766418, AA862669, AI003767, AI081289, AA417379.
	correspond to the positions of nucleotide residues shown in SEQ ID	AA421192, AA609588, AA706851, AA285337, AA993015,
840770	Preferably excluded from the present invention are one or more	(AUOLI / U, AUG2525)
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 351 of	
	SEQ ID NO:506, b is an integer of 15 to 365, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:506, and where h is orearer than or equal to a ± 14	
840781	Decker and Land Land	The state of the s

	polynucleotides comprising a nucleotide sequence described by the general formula of 24, where as in any integer between 10 2045 of SEQ ID NO.507, b is an integer of 15 to 2020, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.507, and where b is greater than or equal to a + 14.	RZD9756, R24896, R23422, R88544, R296773, R666644, R667375, R71965, R20144, R80145, H09228, H09229, H490080, H49078, H79086, H19028, H190228, H09229, H490980, H49178, H79086, H19087, H81170, H82211, H82534, H94944, H98633, H79046, H98634, H98634, H98640, H98664, H98640,
		AAA4434, AA808803, AAV0642), AA22/244, AU2J956, A1023003, A1022112, A1057609, A1073779, A1088646, A1093414, ITT/246, T16420, P01940, P0236, P03439, P05682, P06177, P106249, F04246, F07152, F07995
840789	Preferably excluded from the present invention are one or more polynuciodides countered described by the general formula of a-b, where a is any integer between 1 to 1323 of SEQ ID NO;508, b is an integer of 15 to 1337, where both a and b correspond to the positions of muleoidde residues shown in SEQ ID NO;508, and where b is greater than or equal to a + 14.	H23265, AA250917, AA789157, A1033502, Z38280, F08582
840790	Preferably excluded from the present invention are one or more polymeteorides comprising a meteoride sequence described by the general formula of a-b, where a is any integer between 1 to 17 of SQL ID NG-309, is an integer of 15 to 731, where both a and b correspond to the positions of meteoride residues shown in SBQ ID.	IR7973, H88 55, N66473, AA143034, AA151105, AA528233, AA584398, AA866579

TO STATE OF THE PARTY OF THE PA	NO:509, and where b is greater than or equal to a + 14.	
840791	Prefranbly excluded from the present invention are one or more populated sort omprising an areound by the general formula of a-b, where a is any integer between 1 to 390 of SEQ ID NO-SIQ, b is an integer of 15 to 944, where both a and b correspond to the positions of macloudie residues shown in SEQ ID NO-SIQ. But we have been several than or equal to a + 14.	H21100, H40810, R89801, AA563736, AA595316, AI056419
840798	Preferably excluded from the present invention are one or more polyumicotates comprising an ancheolute sequence described by the general formula of a-b, where a is any integer between 1 to 503 of SEQ ID NO-511, b is an integer of 15 to 517, where both a and b correspond to the positions of mudeotide residues shown in SEQ ID NO-511, and where b is greater than or equal to a + 14.	AA206675, T18945
840802	Preferably excluded from the present invention are one or more populuc distile comprising a micloridic sequence described by the general formula of a-b, where a is any integer between 1 to 3637 of SEQ ID NO-512, b is an integer of 15 to 3651, where both a and b correspond to the positions of madeoutde residues shown in SEQ ID NO-512, and where b is greater than or equal to a + 14.	
840803	Preferably excluded from the present invention are one or more polymeteotides comprising a meloutide sequence described by the general formula of a-b, where a is any integer between 1 to 1922 of SEQ ID NO-513, b is an integer of 15 o 1930, where both a and b recreapend to the positions of meloutide residuars shown in SEQ ID NO-513, and where b is greater than or equal to a + 14.	198263, R01276, R0177, H87694, N46514, AA064627, AA046791, AA076077, AA076159, AA083580, AA176554, AA186922, AA185842, AA192936, AA1913132, AA234329, AA262800, AA284101, AA284046, AA827592, AA635005, A1015442, A1015761
840809	Preferably excluded from the present invention are one or more polyomelocides comprising a moleculae sequence described by the general formula of a-b, where a is any integer between 1 to 1165 of SEQ ID NO-514, bis an integer of 15 to 1177, where both a and b recreapend to the positions of mucleotide residues shown in SEQ ID NO-514, and where b is greater than or equal to a + 14.	
840811	Preferably excluded from the present invention are one or more polymuchrobidise comprising a melocurdise sequence described by the general formula of a-b, where a is any integer between 1 to 918 of SEQ ID NO.515, b is an integer of 15 to 932, where both a and b	T60555

	correspond to the positions of nucleotide residues shown in SEQ ID NO:515, and where b is greater than or equal to a + 14.	
840813	Preferably excluded from the present invention are one or more polyumichotide comprising a methodule sequence described by the general formula of a-b, where a is any integer between 1 to 1145 of SEQ ID NO516, b is an integer of 15 to 1159, where both a and b correspond to the positions of includedide residiares shown in SEQ ID NO516, and where b is greater than or equal to a + 14.	
840814	Preferably excluded from the present invention are one or more population comparing a methodide sequence described by the general formula of a-b, where a is any integer between 1 to 243 of BO S37. P b is an integer of 15 to 2451, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NOS17, and where b is greater than or equal to a + 14.	T03362, T05066, T88889, T88889, T84251, R37080, R66481, H3722, R3773, R4002, H58931, H58921, H58921, H87837, H686481, H3722, H3773, R40021, H58921, H5
840817	Preferably excluded from the present invention are one or more polyumbetoids comprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 975 of SEQ ID NO-518, b is an integer of 15 to 989, where both a and the creapound to the positions of underoid te readures shown in SEQ ID NO-518, and where b is generer than or equal to a + 14.	R2411, H13796, H39542, W87508, AA045018, AA055435, AA115239, AA137113, AA182593, AA459912, AA598757, AA772338, AI033925, AI041486, D31101
840825	Preferably excluded from the present invention are one or more populue devide comprising a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 3301 of SEQ ID NO-519, b is an integer of 15 to 331, where both a and b correspont to the positions or included be evalues shown in SEQ ID NO-519, and where b is greater than or equal to a + 14.	
840826	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	R12213, T79259, R52573, H90609, N34140, AA007443, AA126085, AA203195, AA251452, AA613266, D81536, Z24821

	general formula of a-b, where a h any lineger between 1 to 2547 of SEQ ID NO.520, b is an integer of 15 to 2361, where both a and b correspond to the mostions of nuclearide residues shown in SEO ID.	
	NO:520, and where b is greater than or equal to a + 14.	
840827	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2507 of	
	SEQ ID NO:521, b is an integer of 15 to 2521, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:521, and where b is greater than or equal to a + 14.	
840828	Preferably excluded from the present invention are one or more	T86672, T86764, T87773, T87774, R35654, R35761, H57667,
	polynucleotides comprising a nucleotide sequence described by the	H58507, N80737, W07534, W81050, W80799, W95751, W95521,
	general formula of a-b, where a is any integer between 1 to 1289 of	AA040152, AA040816, AA070448, AA213733, AA461551,
	SEQ ID NO:522, b is an integer of 15 to 1303, where both a and b	AA460625, AA471038, AA592998, AA662015, AA747769,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA827708, AA830241, AA393711, AA400724, F21899,
	NO:522, and where b is greater than or equal to a + 14.	AI023732, AI033332, AI089332
840829	Preferably excluded from the present invention are one or more	TS5234, TS3974, AA121362, AA121372, F17737, AA614605,
	polynucleotides comprising a nucleotide sequence described by the	AA662456, AA832106, AA939005, AA454502, AA629986,
	general formula of a-b, where a is any integer between 1 to 1086 of	AA928745, AA993303, AI017897, AI052396
	SEQ 1D NO:523, b is an integer of 15 to 1100, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:523, and where b is greater than or equal to a + 14.	
840831	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1949 of	
	SEQ ID NO:524, b is an integer of 15 to 1963, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:524, and where b is greater than or equal to a + 14.	
840836	Preferably excluded from the present invention are one or more	R76181, N28426, AA249749, AA249759
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 780 of	
	SEQ ID NO:525, b is an integer of 15 to 794, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:525, and where b is greater than or equal to a + 14.	
840837	Preferably excluded from the present invention are one or more	T77944 R17636 H06632 W48792 W49617 A A 121660

	Dynubleoides comprising a mulciodie sequence described by the general formula of a-b, where a is any integer between 1 to 2585 of SEQ ID NO-226, b is an integer of 15 to 2599, where both a and b romespond to the positions of mulciodie residies shown in SEQ ID NO-226, and where b is greater than or equal to a + 14.	AA121741, AA876569, D80125, D79630, D79665, AA479166, AA773279, Z44214
840838	Prefetably excluded from the present invention are one or more polymucleotides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1291 of SEQ ID NO-527, b is an integer of 1 fs or 1305, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO-527, and where b is generer than or equal to a + 14.	15643, R. 14614, H.22783, H41174, H80646, H80683, NS5490, N08923, N70603, N7697, AA056760, AA056102, AA057377, AA877761, AA987287, W04922, AA936401, AA43678, AA447554, AA448537, AA447593, AA448073, AA448092, A1089255, A1089279
840841	Preferably excluded from the present invention are one or more proprule-teidez comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1617 of EQD INO.528, b is an integer of 15 to 1631, where boils and b correspond to the positions of nucleotide residues shown in SEQ ID NO.528, and where b is greater than or equal to a + 14.	R. II.201, R. IL24, R. 36000, R. 36374, R. 700731, R. 778331, R. 77881, R. 78184, H. 10044, H. 10042, H. 11224, H. 11243, R. 78182, R. 7781, R. 18124, H. 11524, H. 11234, H. 11234, H. 11234, R. 10207, R. 2007,
840842	Preferably excluded from the present invention are one or more polymeleotides comprising an included expended by the general formula of a-b, where a is any integer between 1 to 1930 of SEQ ID NOS.29, b is an integer of 15 to 1944, where both a and b correspond to the positions of included be explicated shown in SEQ ID NOS.29, and where b is greater than or equal to a + 14.	
840843	Preferably accluded from the present invention are one or more populate development of the properties or propertie	R0765, R07683, R56490, H15484, H57022, H99251, N21556, N22947, N29473, N39077, N00273, M14907, N44667, N34167, N02294, N67127, N7775, N79824, W72240, W73240, N3917, N302548, N67127, N7775, N79824, W72240, W73240, N3917, N3164514, N544591, N4548761, N454876, N456786, A4852368, A4922693, D79992, N56078, C14941, A46544922, A4865492,

		AA628687, AA781710, AI004029, AI033065, AI076145, AI076166, AI080265, AI093765
840845	Preferably excluded from the present invention are one or more populated by the populated sort of the present invention are one described by the general formula of a-b, where a is any integer between 1 to 1452 of SEQ ID NO.531, b is an integer of 15 to 1466, where both and b correspond to the positions of nucleotide residues shown in SEQ ID NO.531, and where b is greater than or equal to a + 14.	H85970, H86679, N54585, N76666, W79488, W94055, AA012907, AA01292, AA01820, AA040483, AA47034, AA01292, AA012801, AA468318, AA406483, AA47034, AA50880, AA533304, AA55810, AA56880, AA568018, AA56801, AA560142, AA56049, AA570195, AA568019, AA580154, AA761012, AA80527, AA857633, AA865206, AA707247, AA706101, AA80527, AA837633, AA865206, AA707247, AA71680, AA283814, AA283815, AA37716, AA390618, AA411134, AA413009, AA404672, AA446702, AA447405, AA447406, AA463609, AA404672, AA446702, AA447405, AA473206, AA3776, AA390618, AA411134, AA413009, AA40547, AA46672, AA411134, AA413009, AA40547, AA46672, AA411134, AA413009, AA37744, AA056239, AA090063, Z99830, I99213, I94779,
840847	Preferably excluded from the present invention are one or more power power present and present invention are one or more general formula of a-b, where a is any integer between 1 to 1644 of SEQ ID NO.532, b is an integer of 15 to 1658, where both a and b correspond to the positions of melecidie residents shown in SEQ ID NO.532, and where b is ementer than or evanit to a ± 14 and and the present and the pres	100-241; H.005; H071; H071; H07245; N47832, N52709; N607709; N6077861, AA05705; AA05733, AA057381, AA058835, AA672373, AA059835; AA6737081, AA059835; AA6737081, AA057908, AA057908, AA057908, AA057908, AA057900
840851	Preferably excluded from the present invention are one or more populated from the present invention are one or more populated overgraphic and provide sequence described by the general formula of e.b., where a is any integer between 1 to 2843 of SEQ ID NO533, b is an integer of 15 to 2857, where both a and b rorespond to the positions or integer of 15 to 2857, where both a and b NO533, and where b is greater than or cental to a + 14.	
840853	Preferably excluded from the present invention are one or more populated to comparing a more break set of the present invention are one or more general formula of a b, where a is any integer between 1 to 1321 of SIQ ID NO.534, b is an integer of 15 to 1335, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.534, and where b is greater than or equal to a + 14.	177874, 191147, 178073, 179015, 1466575, 1477369, N23303, N17139, N17190, N17070, N68080, W066573, AAD20698, AAN05528, AA100651, AA10046, AA157024, AA157024, AA157024, AA107948, AA187866, AA19778, AA257060, AAX277161, AA257060, AAX277161, AAX27161, AAX277161, AAX27161, AAX277161, AAX27161, AAX277161, AAX277161, AAX277161, AAX277161, AAX277

		AA723044, AA844019, AA852336, AA904410, AA969896, AI002026, AA694486
840854	Preferably excluded from the present invention are one or more populated to comprising a moterial sequence described by the general formula of e-b, where a is any integer between 10.2804 of SEQ ID NO.535, b is an integer of 15 to 2818, where both a and b correspond to the positions of notheroide residates shown in SEQ ID NO.535, and where b is greater than or equal to a + 14.	
840858	Preferably excluded from the present invention are one or more populouelocides compressing a more observable by the oppulechedist compressing a more part of 1835 of SEQ ID NO-536, b is an integer of 15 to 1997, where both a and b romespond to the positions of inculoude residues shown in SEQ ID NO-536, and where b is greater than or equal to a + 14.	
840859	Preferably excluded from the present invention are one or more populate discoursing as more described by the oppulate olders coursing a motoride sequence described by the general formula of reb, where a is any integer between 1 to 1219 of SEQ ID NO-537, b is an integer of 15 to 1233, where both a and become pound to the positions of nuclouide residues shown in SEQ ID NO-537, and where b is greater than or equal to a + 14.	193690, AAOH6782, AAOH7471, H70433, W22335
840863	Preferably excluded from the present invention are one or more populate discoursing as a nonempression and countries as any integer between 1 o 1002 of SEQ ID NO-538, b is an integer of 15 to 1016, where both a and b remespond to the positions of nucleotide residues shown in SEQ ID NO-538, and where b is greater than or equal to a + 14.	
840868	Preferably excluded from the present invention are one or more populate discountising a maleotide sequence described by the general formula of re.b., where a is any integer between 1 to 1665 of SEQ ID NOS39, b is an integer of 15 to 1679, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOS39, and where b is greater than or equal to a + 14.	ANDEGOT, ANDSTRO, ANDSTSZ, ANDTRSTI, ANDTRST89, AN126106, AA531460, AA553445, AA622619, AA877899, W65615, CO3141, AA486740, C75022, AA682955, D25821
840869	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1066 of	

Norrespo Norrespo	EXECUD NO.543, to is an integer of 15 to 1080, where both a and b porsespond to the positions of maleotide residues shown in SEQ ID NO.540, and where b is greater than or equal to a + 14. Proceedings comparising a nucleotide sequence described by the polynucleotides comparising a nucleotide sequence described by the general formula of a b, where a is any integer between 1 to 2.45 of SEQ ID NO.541, b is an integer of 15 to 2239, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.542, and where b is greater intention are one or more polynucleotides comparising a nucleotide residues shown in SEQ ID Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide residues clearribed by the polynucleotides comprising a nucleotide residues clearribed by the polynucleotides comprising a nucleotide residues shown in SEQ ID NO.542, and where b is general timention are one or more polynucleotides comprising a nucleotide residues shown in SEQ ID NO.543, in su minager of 15 to 1347, where both a and b CSEQ ID NO.543, b is an integer of 15 to 1941, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.543, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide residues shown in SEQ ID NO.543, and where b is greater than or equal to a + 14. Preferably restributed from the present invention are one or more polynucleotides comprising a nucleotide residues shown in SEQ ID NO.544, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide residues shown in SEQ ID NO.544, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a b, where a as any integer between 1 to 754 of 754 of 850 Mo.544 b,	N47871, NS1132, N79772, W07271, W40535, AA659745, AA454850, AA453191, AA457737, AA480848 H40365, N30582, N87227, AA099712, AA143504, AA439979, AA48919, AA490948, AA30304, AA515940, AA415977, AA65094, AA56592, A883255, AA847119, AA975977, C16546, AA205184, AA46121, AA446243, AA46429, N31249, N33927, N49658, AA169623, AA885642, AA885643, AA995981, D80629, AA654491
840886 Preferabl	Preferably excluded from the present invention are one or more	

	SEQ ID NO.546, b is an integer of 15 to 2142, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.546, and where b is greater than or equal to a + 14.	
840887	Preferably excluded from the present invention are one or more polymeleotides comprising a meleotide sequence described by the general formula of a-b, where a is any integer between 1 or 1879 of SEQ ID NO.547, b is an integer of 15 to 1893, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.547, and where b is greater than or equal to a + 14.	
840891	Preferably excluded from the present invention are one or more polyuneleotides compressing a molecules exquence described by the general formula of a-b, where a is any integer between 1 to 616 of SEQ ID NO.548, b is an integer of 15 to 630, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO.548, and where b is greater than or equal to a + 14.	AA011494, AA036641, AA040117, AA464582, AA229586, AA514441, AA557963, AA600134, AA60203, AA569111, AA731914, AA764872, AA863271, AA865800, AA931605, AA975800, AA476216, AA477563, AA664440, AA906128, AA909907, AA994640, A1024748; AA701389
840892	Preferably excluded from the present invention are one or more polymerachied so compressing a male additional and polymerachied sequence described by the general formula of e-b, where a is any integer between 1 to 572 of SEQ ID NO.549, b is an integer of 15 to 586, where both a and b correspond to the polymerachie residues as hown in SEQ ID NO.549, and where b is greater than or equal to a + 14.	178188, H72434, H81179, N27050, N31296, N56740, N9857, W92285, AA010281, AA017504, AA018836, AA053984
840894	Prefeably excluded from the present invention are one or more polymetrolities comperiting a molecule sequence described by the general formula of selv, where at is any integer between 1 to 1572 of SEQ ID NO.550, b is an integer of 15 to 1566, where both a and b correspond to the positions of nacleotide residues shown in SEQ ID NO.550, and where b is greater than or equal to a + 14.	R13791, R18500, R19446, R19717, R26638, R34992, R37650, R814999, R44773, R44694, R844999, R44751, R44864, R844990, R44757, R44694, R86667, R41969, R44275, R434694, R44616, R46492, R45602, H10866, H21080, H2402, N25150, N28896, R82728, R85002, H97214, R19421, N25150, N28896, R82063, N65607, N55607, N57697, N80782, N8078270, AR151142, AR151142, AR151042, AR15042, AR15042, AR151142, AR250444, AR19770, AR42574, AR420538, AR429496, AR250448, AR42014, AR29126, AR

		AA875854, AA886233, AA911989, AA912330, AA918110, AA933817, AA960949, AA961737, AA970707, AA983973,
		A1084859, N87221, AA642352, C15736, AA095273, AA206988, AA640945, AA410978, AA443533, AA446839, AA599172, AA599969, AA687905, AA679282, AA679282, AA679282, AA679282, AA679282, AA679282, AA799781, AA799282, AA799781, AA799781, AA799781, AA799782, AA799781, AA799782, AA797872, AA799782, AA799782, AA79782, AA797872, AA797872, AA797872, AA797872, AA797872, A
		AAA43, AU41402, A1041839, AU90236, Z40,43, F03394, F03920, F07349, F07665, F07689, D12052, AA702844
840896	Preferably excluded from the present invention are one or more	T70566, T70837, R34229, R77683, H72423, N70430, W78960,
	polynucleotides comprising a nucleotide sequence described by the	W80454, AA157568, AA425171, AI081752, AA450124,
	general formula of a-b, where a is any integer between 1 to 2129 of	AA450190, AA479929, AA626156, AI023982, AI079467, D20574
	correspond to the positions of nucleotide residues shown in SEO ID	
	NO:551, and where b is greater than or equal to a + 14.	
840897	Preferably excluded from the present invention are one or more	R08644, AA085919, AA085920, AA112589, AA291296,
	polynucleotides comprising a nucleotide sequence described by the	AA531553, AA534454, AA610556, AA632339, AA826535,
	general formula of a-b, where a is any integer between 1 to 1620 of	AA873598, AA973899, AI000209, W22275, AA642711,
	SEQ ID NO:552, b is an integer of 15 to 1634, where both a and b	AA285014, AA290836, AA291785, AA487868, AA487869,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA598896, AA732931, D20744
	NO:552, and where b is greater than or equal to a + 14.	
840898	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 264 of	
	SEQ ID NO:553, b is an integer of 15 to 278, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
840004	Desferobly excluded from the present intention are an extension	
	holymicleotides commissing a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2644 of	
	SEQ ID NO:554, b is an integer of 15 to 2658, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:554, and where b is greater than or equal to a + 14.	
840905	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1714 of	
	SEQ 1D INC. 333, b is an integer of 13 to 1/28, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID N0:555, and where b is greater than or ceual to a + 14.	
840908	Preferably excluded from the present invention are one or more populated to comprising a unbecade sequence described by the general formula of a-b, where a is any integer between 1 to 3341 of SEQ ID NO-556, b is an integer of 15 to 3355, where both a and b procrepand to the positions of included be residents shown in SEQ ID NO-556, and where b is greater than or equal to a + 14.	
840909	Preferably excluded from the present invention are one or more populated sort comprising a molecule exquence described by the general formula of e.b., where a is any integer between 1 to 1055 of SEQ ID NO.557, b is an integer of 15 to 1079, where both a and b correspond to the positions of muleuotide residues shown in SEQ ID NO.557, and where b is greater than or equal to a + 14.	NDG/69, N30853, N91934, W11097, W76157, AA010929, AA011317, AA026824, AA026977, AA066094, AA064997, AA510382, AA52788, AA60797, AA760329, AA760382, AA52788, AA607976, AA76323, AA86008, AA87119, AA862053, W69334, N90880, AA28525, AA853981, AA971357, A0103443, A037999, A089498, FD4542
840910	Preferably excluded from the present invention are one or more populate-disk comprising a michotide sequence described by the general formula of a-b, where a is any integer between 1 to 710 of SEQ ID NO-558, b is an integer of 15 to 724, where both a and b crosspond to the positions of mucleotide residues shown in SEQ ID NO-558, and where b is greater than or equal to a + 14.	
840912	Preferably excluded from the present invention are one or more proprulectives comparing an ancience described by the general formula of a-b., where a is any integer between 1 to 311 to 1 SEQ ID NO:559, b is an integer of 15 to 312.5, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:559, and where b is greater than or equal to a + 14.	1789029, 179760, 1798176, 1798768, 175664, R76654, R76662, R01419, H63674, H84502, N22625, N23668, N59616, N67124, N75308, N78169, W04760, W15411, W15522, W16105, M07124, M15724, M175768, M18450, M471324, M2524, AM017425, AM017426, AM014990, AA161382, AA110844, AA190852, AA1913140, AA574400, AA787400, AA787400, AA7877400, AA787400, AA787400, AA787400, AA78740, AA787400, AA78740, AA78746, D20953, AA780450, T90232, F05393, AA780430, AA780450, AA780450, T90232, F05393,
840916	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2631 of	

	SEQ ID NO:560, b is an integer of 15 to 2645, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:560, and where b is greater than or equal to a + 14.	
840917	Prefetably excluded from the present invention are one or more polyuncleotides comprising a nucleotide sequence described by the general formula of 2-b, where a is any integer between 1 to 7703 of SEQ ID NO.561, b is an integer of 15 to 1717, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.561, and where b is generic than or equal to a + 14.	H3015, H58512, AA428216, AA429793, AA888482, AA402294, AA478415, AA665865, A1079558
840918	Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a.e., where a is any integer between 1 to 2460 of Sec. 241 or 2450	RGRGG, TGS794, TASSB 9, T7217, T72951, T4708, T7411, TGGGG, TGS794, TASSB 17, T217, T72951, T4708, T7411, TGGGG, TGGGGG, TGGGG, TGGGG, TGGGG, TGGGG, TGGGG, TGGGG, TGGGG, TGGGG, TGGGGG, TGGGG, TGGGGG
840922	Preferably excluded from the present invention are one or more populue-locide sourprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1530 of SEQ ID NO-563, b is an integer of 15 to 1544, where both a and b rowrepand to the positions of nucleotide resultees shown in SEQ ID NO-563, and where b is greater than or equal to a + 14.	

2010	Preferably excluded from the present invention are one or more nolynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2285 of	
	SEQ ID NO:564, b is an integer of 15 to 2299, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:564, and where b is greater than or equal to a + 14.	
840927	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 350 of	
	SEQ ID NO:565, b is an integer of 15 to 364, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO.565, and where his greater than or equal to a + 14.	
840928	Preferably excluded from the present invention are one or more	R52991, R52992, AA075795, AA236859, AA237058, AA258294,
	polynucleotides comprising a nucleotide sequence described by the	AA490530, AA582199, AA594981, AA768625, AA918784,
	general formula of a-b, where a is any integer between 1 to 2467 of	AA400122, AA400211, AA599540, AA620310, AA757241,
	SEQ ID NO:566, b is an integer of 15 to 2481, where both a and b	AA853706, Z44647
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:566, and where b is greater than or equal to a + 14.	
840929	Preferably excluded from the present invention are one or more	T65391, T65468, T82268, T83555, R23120, R23121, H05767,
	polynucleotides comprising a nucleotide sequence described by the	H15242, H15243, N27484, N75846, W07429, W55965, W55966,
	general formula of a-b, where a is any integer between 1 to 1350 of	W69486, W69610, AA024480, AA024481, AA035363,
	SEQ ID NO:567, b is an integer of 15 to 1364, where both a and b	AA035364, AA036732, AA045784, AA045785, AA054537,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA054576, AA058867, AA081962, AA082833, AA122107,
	NO:567, and where b is greater than or equal to a + 14.	AA122108, AA160026, AA506569, AA582633, AA593717,
		AA593757, AA596048, AA741487, AA830268, AA834091,
		AA917654, AA922770, AA948018, C00527, AA648362,
		AA448872, AA447937, AA708846, AA769947, AA775569,
		AA835167, A1090227, F02032, F11824, F09473
840930	Preferably excluded from the present invention are one or more	T66390, R13067, R20192, R40498, R44978, R54122, R40498,
	polynucleotides comprising a nucleotide sequence described by the	R44978, R55825, R55910, R56182, H05938, H10239, H13040,
	general formula of a-b, where a is any integer between 1 to 1592 of	H22780, H22987, H26826, H28018, R84898, R85844, N48284,
	SEQ ID NO:568, b is an integer of 15 to 1606, where both a and b	N49013, W59970, AA029938, AA030050, AA037606, AA040869.
	correspond to the positions of nucleotide residues shown in SEQ ID	AA043138, AA147575, AA152015, AA152022, AA152089,
	NO:568, and where b is greater than or equal to a + 14.	AA152096, AA150150, AA152219, AA156446, AA429964,
		A A J TO J O D D D D D D D D D D D D D D D D D

		AA972352, F18878, CO4576, AA090702, C16326, AA649510, AA211287, AA211332, AA44338A, AA466384, AA666330, AA993887, AU032649, AU096674, Z24984, ZZ5108, ZZ5306, Z33590, TZ5134, Z27011, F12229, F00286, F09858
840931	Preferably excluded from the present invention are one or more populated source described by the gonden development and proprinting a coungrising a mobility asset of 1371 of SEQ ID NO-569, b is an integer of 15 to 1385, where both a and b correspond to the positions of mobility and source described by the SEQ ID NO-569, b is an integer of 15 to 1385, where both a and b correspond to the positions of mobility and source and the positions of mobility and source and the SEQ ID NO-569, and where b is greater than or equal to a + 14.	AA164298, AA164299, AA215696, AA553729, AA600053
840941	Preferably excluded from the present invention are one or more populate-base comparing an anotherial sequence described by the general formula of e.b., where a is any integer between 1 to 1130 of SEQ ID NO-570, b is an integer of 15 to 1144, where both a and b correspond to the positions or horboride residuates shown in SEQ ID NO-570, and where b is greater than or equal to a + 14.	T71972, T72113, N66952, AA037833, AA037834, AA63937, AA84729, AA56671, C02493, AA400259, AA703387, AA897154, AA065309, AA991791, AI091736, AI097161, AA699338, AA699546
840944	Preferably excluded from the present invention are one or more proprulechable comprising a motorida sequence described by the general formula of a-b, where a is any integer between 1 to 7240 of SEQ ID NO-571, b is an integer of 15 to 2754, where both a and b recreapend to the positions of motoridar estimation of sequences shown in SEQ ID NO-571, and where b is greater than or equal to a + 14.	23977, R53166, N66238, N06388, N08299, N08791, W52420, W58272, AAA5166, AA102647, AA401309, AA22482, AA52448, AA504618, AA504713, AA509565, AA577883, AA7765244, AA837194, AA936390, AA938580, AA969268, A1056953, Z25291, Z28894, T25120
840945	Preferably excluded from the present invention are one or more populated to comprising a motoridus sequence described by the general formula of a b, where a is any integer between 10 2643 of SEQ ID NO-572, b is an integer of 15 to 2657, where both a and b correspond to the positions of muchotide residues shown in SEQ ID NO-572, and where b is greater than or equal to a + 14.	
840948	Preferably excluded from the present invention are one or more populutedwide comprising a methodride sequence described by the general formula of eb., where a is any integer between 1 to 3238 of SRQ DI NO-573, b is an integer of 15 to 2352, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-573, and where b is greater than or equal to a + 14.	
840949	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a nucleotide sequence described by the general formula of a b, where a is any integer between 1 to 314 of SEQ ID NO.574, to is an integer of 15 to 353, where both a and b correspond to the positions of nucleotide residuates shown in SEQ ID NO.574, and where b is everater than of cotal to a + 14.	
840953	Preferably excluded from the present invention are one or more polyulecknides comprising a melocidie sequence described by the general formula of a.b., where a is any integer between 1 to 1664 of SEQ ID NO 575, b is an integer of 15 to 1678, where both a and b correspond to the positions of melocidie residanes shown in SEQ ID NO 575, and where b is greater than or equal to a + 14.	
840954	Preferably excluded from the present invention are one or more polyomleoides comprising a moleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2494 of SEQ ID NO 576, b is an integer of 15 to 2508, where both a and b correspond to the positions of moleotide residens shown in SEQ ID NO 576, and where b is greater than or equal to a + 14.	T70122, R01105, R01854, R26511, R50976, W39281, W88823, AND19014, AA22004, AA223012, AA224067, AA226591, AA516295, AA888082, AA6035864, AA644305, AA66829, AA680062, AA705885, Z25045, Z25169, Z28742, Z40110, F06996, F00269
840958	Preferably excluded from the present invention are one or more phylometorides courprising an unbecidite sequence described by the general formula of a.b., where a is any integer between 1 to 1517 Of SEQ ID NO.577, b is an integer of 15 o 1531, where both a and b correspond to the positions of motieotide residues shown in SEQ ID NO.577, and where b is greater than or equal to a + 14.	EDGOG, T9217, TOPGOG, T9968, BND032, ROLOGA, RV432, REDGOT, PES414, H2548, H25814, H39512, H49218, 1449404, RES71, H98480, N21621, RAS91, M4477, N93796, M37511, H99218, H4477, N93796, M37519, M37919, W44671, N93924, AA225381, AA22543, AA22506, AA22808, AA22808, AA22808, AA22808, AA28081, AA281028, AA570114, AA570316, AA688054, AA731686, AA73163, AA806688, AA810762, AA810762, AA805764, AA907132, AA807731, AA9776482, AA907138, AA907731, AA9776482, AA91789, AA77811, AA7781, AA77811, AA7781, AA7781, AA77811,
840960	Preferably excluded from the present invention are one or more propriete detection by the populatelotide comprising a motivoide sequence described by the general formula of a.b., where a is any integer between 1 to 1230 of SEQ ID NO-578, b is an integer of 15 to 1244, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-578, and where b is greater than or equal to a + 14.	R80950, R81055, H1706, H17714, H21060, H2801, H39514, NE2583, N48074, N93030, N93491, AA005164, AA005250, AA037756, AA0373247, AA062387, AA062364, AA153246, AA461237, AA4602240, AA543298, AA548271, AA602298, AA461280, AA54622, AA8742806, AA546280, AA548284, AA884176, AA45282, AA45286, AA628205, AA622928, AA07757, AAA884020, A1086838, AA052266, AA552007,

		H03951 F04326 F07686
840968	Preferably excluded from the present invention are one or more populacidates comparising an uncloudite sequence described by the general formula of 2-b, where a is any integer between 1 to 2511 of SEQ ID NO.579, b is an integer of 15 to 252s, where both a and b correspond to the positions or integer of 15 to 252s, where both a and b NO.579, and where b is greater than or equal to a + 14.	
840969	Preferably excluded from the present invention are one or more populacidates comprising a unclouding expense described by the general formula of e.b., where a is any integer between 10 3992 of SEQ ID NO:580, b is an integer of 15 to 4006, where both a and b recomposed to the positions or interolude residues shown in SEQ ID NO:580, and where b is greater than or equal to a + 14.	
840972	Preferably excluded from the present invention are one or more populacionide comprising a uncloude sequence described by the general formula of e-b, where a is any integer between 1 to 551 of SEQ ID NO:581, b is an integer of 15 to 565, where both a and b correspond to the positions of macloudie residues shown in SEQ ID NO:581, and where b is greater than or equal to a + 14.	
840973	Preferably excluded from the present invention are one or more physical coulds comprising a morphodic sequence described by the general formula of 24, where a is any integer between 1 to 2514 of SEQ ID NO.582, b is an integer of 15 to 2528, where both a and b correspond to the positions of melevide residues shown in SEQ ID NO.582, and where b is greater than or equal to a + 14.	179294, 179361, 179387, 179362, R01416, R01417, R14186, R14075, R40475, R6217, H02363, H02413, N9128, N92794, W19380, W24105, W24216, W92317, W92333, AA000965, AA009414, AA010522, AA023716, AA02316, AA03316, AA03316, AA03317, AA468889, AA302015, AA314448, AA234548, AA033782, AA437829, AA5702015, AA314448, AA234548, AA63782, AA6378, AA63782, AA639783, AA63783, AA639783, AA63783, AA639783, AA639783, AA639783, AA639783, AA639783, AA639783, AA639783, AA639783, AA639783, AA63783, AA63
840975	Preferably excluded from the present invention are one or more polymerical method and one described by the general formula of a-b, where a is any integer between 1 to 493 of SEQ ID NO.583, b is an integer of 15 to 507, where both a and b	AA187971, AA491557

	correspond to the positions of nucleotide residues shown in SEQ ID NO:583, and where b is greater than or equal to a + 14.	
840978	Preferably excluded from the present invention are one or more polyulecloides comprising a melocidate sequence described by the general formula of re.b, where a is any integer between 1 to 1917 of SEQ ID NO.584, b is an integer of 15 to 1931, where both a and b recrepand to the positions or londeride residences shown in SEQ ID NO.585, and where h is evener than or cental to a + 14.	
840980	Preferably excluded from the present invention are one or more polyulecloides comprising a uncloudie sequence described by the general formula of reb, where a is any integer between 1 to 1006 of SEQ ID NO.585, b is an integer of 15 to 1020, where both a and b correspond to the positions of molecular residences shown in SEQ ID NO.585, and where b is greater than or equal to a + 14.	7D1979, T85031, R51511, H08105, H14962, H843-44, H95886, M6713, AA001454, AA015861, AA045054, AA4460816, AA045054, AA460816, AA548181, AA600217, AA677119, AA019072, NR5463, AA090718, AA090747, AA205839, AA215860, AA889349, A1005058, A1051749
840982	Preferably excluded from the present invention are one or more pupplyoulcohdes coungrising a molerable skept ob the pupplishedoldes coungrising a molerable skept of SEQ ID NO-586, b is an integer of 15 to 767, where both a and b ronceptond to the positions of molerable shown in SEQ ID NO-586, and where be its greater than or equal to a + 14.	
840985	Preferably excluded from the present invention are one or more propruelocides courprising a moberoide sequence described by the paymelocides course described by the general formula of reb, where a is any integer between 1 to 833 of SEQ ID NO-587, b is an integer of 15 to 847, where both a and b recreaspond to the positions of intelluctule residences shown in SEQ ID NO-587, and where b is greater than or equal to a + 14.	AA469388, AA469387, AA579307, AA838301
840989	Preferably excluded from the present invention are one or more physical points of the promising a mobility and the polytheologies comparising a mobility and to 214 of SEQ ID NO.588, b is an integer of 15 to 2158, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.588, and where b is greater than or equal to a + 14.	TIESGY, TS6419, T47072, H02553, H00566, H05217, H28221, H28220, H55671, N24802, N26321, N56312, N39771, N43764, M19923, N91928, AA132017, AA132102, AA195206, AA272017, AA195206, AA27264, AA27361, AA23165, AA492770, AA281606, AA27764, AA277363, AA571863, AA571963, AA571963, AA77963, AA57963, AA77963, AA77963, AA77963, AA797963, AA797963, AA797963, AA797963, AA797963, AA797963, AA4977963, AA4977963, AA4977963, AA4977963, AA4977963, AA4977963, AA4977963, AA4977963, AA716938, AA497784, AA497784, AA497784, AA497784, AA497784, AA497784, AA797785, AA797785, AA7978938,

		A4771705, A4771724, AA868151, AA993850, AI033921, Z32830, AA952909, F11180, F11002, F11632
840991	Preferably excluded from the present invention are one or more proprint comparing to comprising an elucidic sequence described by the general formula of a-b, where a is any integer between 1 to 2285 of SEQ ID NO:589, b is an integer of 15 to 2299, where both a and b correspond to the positions of mulciodic festionises shown in SEQ ID NO:589, and where b is generate than or count to a + 14.	T81125, N29118, N3644, N46478, AA169588, AA169707, AA01930, AA191190, AA462591, AA569663, AA572882, AA927990, A1031844, W26259, W26429, W27367, W27994, W28877, AA453067, Z39013, Z42882
840996	Pretenably excluded from the present invention are one or more populacidade comprising a methodide sequence described by the general formula of a-b, where a is any integer between 1 to 2166 of SEQ ID NO:590, b is an integer of 15 to 2180, where both a and b correspond to the positions of moleculed residiass shown in SEQ ID NO:590, and where b is generate than or equal to a + 14.	R. 11816, T80577, R18182, R55973, R59203, R61044, H08547, H08548, H16428, AA001999, AA001722, AA181466, AA181638, AA530035, AA811299, AA774853, AA853584, T48535
840997	Preferably excluded from the present invention are one or more polyuniclosides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1179 of SEQ ID NO-591, b is an integer of 15 to 1193, where both a and b correspond to the positions or funderold te relations shown in SEQ ID NO-591, and where b is greater than or equal to a + 14.	HB B91, N27695, AA24258, AA242898, AA262282, AA463638, AA443047, AA677853
840998	Preferably excluded from the present invention are one or more populated to comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1988 of SEQ ID NO-592, b is an integer of 15 to 2002, where both a and b correspond to the positions of melocided residues shown in SEQ ID NO-592, and where b is greater than or equal to a + 14.	H39956, R95173, N71653, N92006, AA126765, W25859, AA126814, AA411155, AA479348, AA663608, AA723137, AA904646, AA956314
840999	Preferably excluded from the present invention are one or more popular devides comprising a microlide sequence described by the general formula of a-b, where a 1st any integer between 1 to 1000 of SEQ ID NO-593, b is an integer of 1 5 to 1014, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO-593, and where b is greater than or equal to a + 14.	T59001, R38613, AA558946, D80113, AA628765, AA931368, A1087859, A1087860, A1088020, A1088042, A1088041, Z41502, T59074, F10347
841000	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 319 of	Tr63281

	SEQ ID NO.594, b is an integer of 15 to 333, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.594, and where b is greater than or equal to a + 14.	
841002	Preferably excluded from the present invention are one or more polyoule-codics comprising a meloridis esquence described by the general formula of a-b, where a is any integer between 1 to 1106 of SEQ ID NO-595, b is an integer of 15 to 1120, where both a and b recreaspond to the positions of underoide residances shown in SEQ ID NO-595, and where b is exequent than or coull to a + 14.	N7536, N'9007, W33128, AA04456, AA192107, AA194732, AA530142, AA602405, AA732494, AA730346, AA767992, AA83639, A1083657, AA200755, AA206075, AA649037, AA446467, AA722661, AA993269, AA994380, A1005394, A1052012
841003	Preferably excluded from the present invention are one or more populuelocides comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 518 of SEQ ID NO:596, b is an integer of 15 to 532, where both a and b recreaspond to the positions of melocide residues shown in SEQ ID NO:596, and where b is greater than or equal to a + 14.	N50091, W78173, W79236, AA758361, AA992853
841008	Preferably excluded from the present invention are one or more polymeteotides comprising a nucleotide sequence described by the general formula of a-16, where a is any integer between 1 to 1480 to CSQT, and CSQT, is an imager of 15 to 1494, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-597, and where b is greater than or equal to a + 14.	R22003, R329.66 R43069, R64817, R52006, R21355, R22003, R32906, R21355, R22001, R32011, H39073, H563049, H56306, H96075, H56205, H56206, H56201, R21076, R21154, R211164, R21164, R2124, R2134, R
841013	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 2174 of	

	SEQ ID NO:598, b is an integer of 15 to 2188, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:598, and where b is greater than or equal to a + 14.	
841014	Preferably excluded from the present invention are one or more populated to comprising a melocidic sequence described by the general formula of a-b, where a is any integer between 1 to 1259 of SEQ ID NO:599, b is an integer of 15 to 1273, where both a and b correspond to the positions of intelluctual residents as functional residents as formula and box NO:500, and where h is exemper than or contain to a.t. M.	R13850, R3693, R40384, R40290, R40290, R7049, H20581, M205201, H1942, W32797, W63724, AA026917, AA14962, AA223955, AA232357, AA16604, AA282009, AA28187, AA541604, AA282009, AA54187, AA5435348, N83640, W28199, AA641025, AA652459, AA707275, D19833
841015	Preferably excluded from the present invention are one or more polyulecorides comprising a meloride sequence described by the general formula of a-b, where a is any integer between 1 to 1225 of SEQ ID NO-600, b is an integer of 15 to 1239, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-600, and where b is greater than or equal to a + 14.	T60712, T39204, T40475, T89115, R23975, R42835, R50864, R8534, R8534, R85410, H85126, H86120, R81030, R81037, B48127, H458344, R85410, H85126, H86110, H95438, H962489, M45682, N48966, N64573, NG730, W38863, W60856, W73806, W73808, W73809, W738393, W738393, AA570824, AA88303, AA672824, AA88303, AA672824, AA88303, AA672824, AA88303, AA672821, AA072821, AA072821, AA073924, AA673924, AA673992, AA708921, A
841018	Preferably excluded from the present invention are one or more populated comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1272 of SEQ ID NO-601, b is an integer of 15 to 1286, where both a and b correspond to the positions of underolde residues shown in SEQ ID NO-601, and where b is greater than or equal to a + 14.	
841019	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 390 of	AA248515

	SEQ ID NO:602, b is an integer of 15 to 404, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:602, and where h is croster than or equal to a + 14	
841024	Preferably excluded from the present invention are one or more polymeral excluded from the present invention are one or more polymeral exclusions.	
	general formula of a-b, where a is any integer between 1 to 1154 of	
	SEQ ID NO:603, b is an integer of 15 to 1168, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
200110	INC:005, and where 0 is greater than or equal to a + 14.	29 4 1 0 8 4 6 C
841025	Preferably excluded from the present invention are one or more	AA188400
	polynucleotides comprising a nucleotide sequence described by the general formula of a.b. where a is any interest between 1 to 444 of	
	SEO ID NO:604. b is an integer of 15 to 458, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:604, and where b is greater than or equal to a + 14.	And a second representation of the second se
841026	Preferably excluded from the present invention are one or more	N72911, AA148215, AA166925, AA228038, AA228148,
	polynucleotides comprising a nucleotide sequence described by the	AA483775, AA504475, AA740596, AA742681, AA808693,
	general formula of a-b, where a is any integer between 1 to 897 of	AA811844, AI054163, D12456, D12055, AA446237, AA599068,
	SEQ ID NO:605, b is an integer of 15 to 911, where both a and b	AI075720
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:605, and where b is greater than or equal to a + 14.	
841027	Preferably excluded from the present invention are one or more	H41598, H62017, H69575, H69596, H84745, H95065, N36218,
	polynucleotides comprising a nucleotide sequence described by the	N54430, N80053, W52484, AA010201, AA235462, AA513394,
	general formula of a-b, where a is any integer between 1 to 724 of	AA559062, H84833, AA574343, AA835915, AA872643,
	SEQ ID NO:606, b is an integer of 15 to 738, where both a and b	AA877236
	correspond to the positions of nucleotide residues shown in SEQ ID	
841029	Preferably excluded from the present invention are one or more	T50950, T40351, T41210, T64654, T99782, T99883, R12658,
	polynucleotides comprising a nucleotide sequence described by the	R20557, R48599, R48701, R20557, H10512, R82975, R83815,
	general formula of a-b, where a is any integer between 1 to 1334 of	H51313, H51908, H54291, H54369, H57072, H57073, H70169,
	SEQ ID NO:607, b is an integer of 15 to 1348, where both a and b	H81838, H89935, H91980, N26532, N26640, N35643, N39712,
	correspond to the positions of nucleotide residues shown in SEQ ID	N39735, N44132, N45472, N46821, N66762, N68174, N73964,
	NO:607, and where b is greater than or equal to a + 14.	N80633, N93213, N93218, N94936, W19558, W19581, W20315,
		W33192, W37258, W386/3, W38998, W3880/, W39086,
		W44800, W49000, W49129, W02044, W00004, W00017,

841030	Preferably excluded from the present invention are one or more polymactorides comprising a medeotide sequence described by the general formula of a be, where a lary ninger between 1 to 708 of SRQ ID NOGOR, b is an integer of 15 to 722, where both a and b correspond to the positions of medocide residues shown in SEQ ID NOGOR, and where his treater than or causal to a + 14.	AAA03992, AA03993, AA03912, AA02260, AA022787, AAA03992, AA03993, AA03912, AA129076, AAA151620, AA228010, AA22420, AA225616, AA4460804, AAA518216, AA428216, AA224242, AA24944, AA282782, AA4458126, AA2428126, AA242424, AA24944, AA282782, AA452422, AA465647, AA514260, AA524819, AA526652, AA4572101, AA57575, AA597518, AA5974201, AA77381, AA814201, AA81401, AA81292, AA877323, AA56022, AA242526, AA45731, AA66675, AA457302, AA477816, AA57820, AA457325, AA449102, AA449538, AA45256, AA457325, AA449102, AA45993, AA58250, AA9467338, AA957323, AA77101, AA77230, AA781604, AA732524, AA479102, AA54599, AA582506, AA86664, AA782537, AA883140, AA84599, AA85756, AA86144, AA86155, AA883960, AA65990, AA56906, AA866637, AA87736, AA883760, AA67738, AU002453, AU01906, AU01908, AU019790, AU05790, AU05990, AU056013, AU056647, AU01924, AU07270, AU05720, AU05990, AU056013, AU05647, AU05421, DO2047, F05340, AA6945556
841031	Preferably excluded from the present invention are one or more polymorleodied source described by the polymorleofied source described by the general formula of e-b, where a is any tineger between 1 to 316 of SEQ ID NO.609, b is an integer of 15 to 330, where both a and b correspond to the positions of mulcodied residues shown in SEQ ID NO.609, and where b is greater than or equal to a + 14.	
841034	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

	general formula of a-b, where a is any integer between 1 to 1852 of SEQ ID NO:61(b, b is an integer of 15 to 1866, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID WO:610, and where b is greater than or equal to a + 14.	
841036	Preferably excluded from the present invention are one or more populuebordies comprising a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 2160 of SEQ ID NO/611, b is an integer of 15 to 2176, where both a and b recreasing the positions of meleotide residues shown in SEQ ID NO/611, and where b is genarer than or equal to a + 14.	
841039	Preferably excluded from the present invention are one or more populue bordes comprising a melocutie sequence described by the general formula of e.b., where a is any meger between 1 to 5605 of SEQ ID NO-612, b is an integer of 15 to 3619, where both a and b recrease and the provisions of melocutie residues shown in SEQ ID NO-612, and where b is greater than or equal to a + 14.	
841040	Preferably excluded from the present invention are one or more populate discussions are one or more populate discussions as any integer between 10 to 1413 of SEQ ID NO:613. bis an integer of 15 to 1427, where both a and b correspond to the positions of meloutide residues shown in SEQ ID NO:613, and where b is greater than or equal to a + 14.	
841048	Preferably excluded from the present invention are one or more polymbioeloides comprising a moleroide sequence described by the general formula of a-b, where a is any integer between 1 to 1419 of SEQ ID NO.614, b is an integer of 15 to 1433, where both a and b correspond to the positions of moleroide residences shown in SEQ ID NO.614, and where b is greater than or equal to a + 14.	N0349, W37995, W37996, AA00982, AA120834, AA124879, AA18613, AA136101, AA213847, AA27288, AA278834, AA639603, AA743601, AA743588, AA766478, AA829501, AA836048, AA837990, AA877341, AA887480, AA910616, C01221, AA13878, AA410913, AA441809, AA441871, AA447511, AA679476, E13794.
841049	Preferably excluded from the present invention are one or more polyuluelorides comprising a molerotide sequence described by the general formula of a-b, where a is any integer between 1 to 492 of SEQ ID NO.615, b is an integer of 15 to 506, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.615, and where b is greater than or equal to a + 14.	AA206670
841050	Preferably excluded from the present invention are one or more	R13856, R36998, H88745, H88749, H88750, H88744, H88745,

	holynucleotides comprising a nucleotide sequence described by the	H88750, N20597, N27562, N28993, N40383, W23671, W42418,
	general formula of a-b, where a is any integer between 1 to 2160 of	W42515, AA017276, AA054535, AA054527, AA081056, AA083441 AA165758 AA165357 AA195316 AA195497
	SEC 1D 190:010, 0 is all illugger of 13 to 2114, which both a find of	A \$504774 A \$731655 A \$743407, A \$827654, A \$1074376.
	NO:616, and where b is greater than or equal to a + 14.	AA096064, AA677874, A1049801, T10385, D31353, AA700430
841052	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 3133 of	
	SEQ ID NO:617, b is an integer of 15 to 3147, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:617, and where b is greater than or equal to a + 14.	
841054	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2515 of	
	SEQ ID NO:618, b is an integer of 15 to 2529, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:618, and where b is greater than or equal to a + 14.	
841055	Preferably excluded from the present invention are one or more	T86070
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 537 of	
	SEQ ID NO:619, b is an integer of 15 to 551, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:619, and where b is greater than or equal to a + 14.	
841056	Preferably excluded from the present invention are one or more	T65020, T66102, T74444, R12529, R36487, R36488, R37425,
	polynucleotides comprising a nucleotide sequence described by the	R52082, R52176, N58833, N/5250, AA5/3305, AA68/450,
	general formula of a-b, where a is any integer between 1 to 1721 of	AA687507, AA810182, AA815088, AA908253, AI084103,
	SEQ 1D NO:620, b is an integer of 15 to 1735, where both a and b	AA489756, AA844081, AA844438, AA824762, AA897722,
	correspond to the positions of nucleotide residues shown in SEQ ID	F11861, F12468, T83267, F09506, F10088
	NO:620, and where b is greater than or equal to a + 14.	
841060	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1012 of	
	SEQ ID NO:621, b is an integer of 15 to 1026, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:621, and where b is greater than or equal to a + 14.	

841061	Preferably excluded from the present invention are one or more	W47450, AA491124
	polymecleotides comprising a meleotide sequence described by the general formula of a-b, where a is any uteger between 1 to 656 of SEQ 100 MO6.22, b as an integer of 15 to 670, where both a and b correspond to the rositions of meleotide residues shown in SEO ID	
	NO:622, and where b is greater than or equal to a + 14.	
841062	Preferably excluded from the present invention are one or more nolynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2149 of SEO ID NO:623, b is an integer of 15 to 2163, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO:623, and where b is greater than or equal to a + 14.	
841063	Preferably excluded from the present invention are one or more	AA227288, AA282718
	polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 587 of	
	SEQ ID NO:624, b is an integer of 15 to 601, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:624, and where b is greater than or equal to a + 14.	
841067	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a 1s any integer between 1 to 379 of SEO ID MO-625. It is an integer of 15 to 503, where both a and b	
	correspond to the positions of nucleotide residues shown in SEO ID	
	NO:625, and where b is greater than or equal to a + 14.	
841074	Preferably excluded from the present invention are one or more	T39947, T40903, T90518, T90617, T86882, T86883, R11373,
	polynucleotides comprising a nucleotide sequence described by the	[7/99/2, 183338, 183304, K16291, K18340, K16/26, K21632,
	general formula of a-b, where a 1s any integer between 1 to 2235 of SEO 1D NO-636. It is an integer of 15 to 2272, where both a and b	K42089, R50812, R41528, R42089, R63072, R63114, R66886,
	correspond to the positions of nucleotide residues shown in SEO ID	R68286, R68328, R77261, R77305, H04160, H04159, H09820,
	NO:626, and where b is greater than or equal to a + 14.	H09915, H11374, H11399, H11475, H11580, H20564, H20656,
		H77971. H85921. H95617. H97011. H97137. H97973. H99201.
		H99869, N20626, N21042, N23341, N23509, N27621, N27863,
		N28554, N28813, N33434, N35711, N36525, N40636, N42409, N50418 N50473 N55717 N55526 N77009 W15345 W31916.
		TOOLIO, Toolio

UUUJAM JUUGAM VARANA VA
W39297, W39437, W40362, W40386, W32313, W36373,
W56584, W56673, W56738, W60072, W73328, AA001060,
AA001061, AA001355, AA012936, AA013022, AA020854,
AA021013, AA021245, AA021350, AA041249, AA044791,
AA057517, AA070118, AA081114, AA081289, AA081518,
AA081758, AA081910, AA081910, AA081807, AA083386,
AA084143, AA084169, AA084637, AA102204,
AA101101, AA112305, AA112273, AA113158, AA113205,
AA113234, AA113290, AA112514, AA114269, AA114292,
AA121997, AA122357, AA122358, AA127073,
AA125796, AA134535, AA148203, AA148204,
AA148659, AA156277, AA156388, AA158662,
AA159027, AA160336, AA159855, AA160818, AA176261,
AA176262, AA181259, AA18251, AA187516, AA186906,
AA186943, AA210754, AA211829, AA223289, AA223297,
AA223271, AA223868, AA223866, AA223866, AA223930,
AA224002, AA226834, AA251007, AA251494, AA464562,
AA464663, AA282038, AA282799, AA282890,
AA454945, AA455324, AA459366, AA459591, AA471068,
AA493188, AA506956, AA515184, AA525415, AA528016,
AA531574, AA557548, AA559080, AA558794, AA601508.
AA602820, AA604093, AA580330, AA665041, AA688154,
AA714131, AA721076, AA729400, AA736940,
AA745800, AA746251, AA74771, AA749097, AA761791,
AA765245, AA769486, AA810468, AA810903, AA815070,
AA815124, AA825529, AA827628, AA827818, AA830566,
AA831651, AA835026, AA836109, AA856618, AA858034,
AA862500, AA908700, AA916911, AA923104, AA911251,
AA922814, AA948643, AA975963, AA976127, AA988496,
AA995369, AI015981, D82125, N85599, N85825, W60998,
N87121, N88156, C05715, C05853, AA046846, AA641779,
AA070117, C20828, C21327, AA159483, AA206049, AA206104,
AA206105, AA206439, AA206536, AA2065577,
AA206641, AA205227, AA205483, AA205488.
AA205554, AA205495, AA205683, AA205707, AA205655,
AA648896, AA649019, AA211090, AA211201, AA219240,

AA219379, AA248392, AA263057, AA436015, AA436120, AA441113, AA441608, AA483456, AA438606, C74998, C75013, C75718, C7558, C75660, AA598408, AA60022, AA63397, AA642525, AA670477, AA596848, AA457067, AA457533, AA707431, AA708046, AA708522, AA47254, AA457731, AA774733, AA776854, AA78520, AA782243, AA852970, AA825969, AA85257, AA854017, AA884011, AA912564, A003524, A003161, A1061383, A107987, A1080214, A1085729, A1085340, A108599, T10660, T11369, T17106, Z41696, F15652, AA702026		H80295, Ne6964, W00868, W00094, AA554024, AA581858, AA603775, AA569390, AA721420, AA736938, AA746990, AA746955, AA862453, AA886662, AA902151, AA922977, AA931635, A1004155, C17761, AA642325, AA5494546, AA401851, AA76992, AA861007, AA868853, AA010999, A0138228, AN080277, D12310, AA699302, AA700733		1'0768, IZ7458, IZ7583, H3012, H3016, H4039, H6439, H909038, NZD188, NZD089, W74593, W47194, W47399, W52638, W52632, W73795, W77994, W80386, W825632, W77632, W77954, W78984, W80386, W825632, W87076, W88576, W58354, W92696, AAA101992, AAQ10991, AAZ29878, AAZ39283, AAZ39283, AAS37081, AAS32764, AA805299, AA877051, A1053512,
	Preferably excluded from the present invention are one or more populousloades comprising a melocide sequence described by the general formula of a.b., where a is any integer between 1 to 857 of SEQ ID NO.627, b is an integer of 1.5 to 871, where both a and b rowrspond to the pastitions of induciotal creations shown in SEQ ID NO.627, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyunlechoids comprising an unbeloide sequence described by the general formula of a-b, where a is any integer between 1 to 765 of SEQ ID NO.628, b is an integer of 15 to 775, where both a and b porrespond to the positions of indeolotide residues shown in SEQ ID NO.628, and where b is genater than or equal to a + 14.	Preferably excluded from the present invention are one or more populueleotide comprising a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 1821 of SEQ ID NO-629, b is an integer of 15 to 1835, where both a and b correspond to the positions of mulcohottle residious shown in SEQ ID NO-629, and where b is greater than or equal to a + 14.	Preferably excluded from the present inventions are one or more populous/caids comprising a motiotide sequence described by the general formula of a-b, where a is any integer between 1 to 1083 of SEQ ID NOG-60, b is an integer of 15 to 1097, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOG-60, and where b is greater than or equal to a + 14.
	841076	841081	841083	841089

		A <u>1053734, A1054001, A1054092, A1054119, A1054274, A1054309,</u> AA758790, AA <i>972288, A1028150, A1077801, A1092052, D20235,</i> 197631
841093	Preferably excluded from the present invention are one or more populate-bridge comprising a motoridise sequence described by the general formula of reb, where a is any integer between 1 to 1523 of SEQ ID NO.631, b is an integer of 15 to 1537, where both a and b correspond to the positions of motoridie residences invent in SEQ ID NO.631, and where b is greater than or equal to a + 14.	
841097	Preferably excluded from the present invention are one or more populacebase comprising a underodied sequence described by the general formula of reb, where a is any integer between 1 to 1887 of SEQ ID NO.652, b is an integer of 15 to 1901, where both a and b recreaseband to he positions of interoduce fresidenes shown in SEQ ID NO.652, and where b is greater than or equal to a + 14.	
841098	Preferably excluded from the present invention are one or more pupply electride somprising a moleration sequence described by the opputicebrides common described by the general formula of reb, where a is any integer between 1 to 1736 of SEQ ID NO.633, b is an integer of 15 to 1750, where both a and b recomposable to the solitions of interbeduce residences shown in SEQ ID NO.633, and where b is greater than or equal to a + 14.	T39572, R32405, R78435, R82780, H01823, W23901, AA705025
841101	Preferably excluded from the present invention are one or more populate-blast comprising a molecule sequence described by the general formula of e.b., where a is any integer between 1 to 1912 of SEQ ID NO.654, b is an integer of 15 to 1926, where both a and b correspond to the positions of meloculde residues shown in SEQ ID NO.654, and where b is greater than or equal to a + 14.	R11755, R12466, R22435, R24254, H10274, N31847, W63594, AA488942, AA581018, AA767425, N56490, W26165, N87429, AA093862, Z41888
841113	Preferably excluded from the present invention are one or more populacionides comprising a moteoride sequence described by the general formula of a-b, where a is any integer between 1 to 1332 of SEQ ID NO.653, b is an integer of 15 to 1346, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.655, and where b is greater than or equal to a + 14.	
841115	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

770 of and b EQU ID EQU	ed ID re 733 of and b EQ ID	re R40268, R40268, R60037, H05829, H71311, H71355, H94227, yt the N3711, N56868, W70033, W80987, W95264, W92648, L11 of A03711, M56868, W70033, W80987, W95264, W92648, L11 of A03715, A043642, A043698, A0457131, A0437131, A043711, A0437131, A0437131, A043711, A043711, A043711, A043711, A043711, A		re by the 992 of
general formula of a-b, where a is any integer between 1 to 1370 of 292 DI DOG-56, b is an integer of 15 to 1584, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID MOG-56, and where be greaten than or equilation at 14. Preferably, excluded from the present invention tare one or more polymacleotides comprising a nucleotide sequence described by the permetal formula of ta-b, where a is any images elevenen 1 to 169 of SEQ ID NOG-57, b is an image of 156 is where both a and b	NO 657, and where b is greater than or cqual to a + 14. Preferably excluded from the present invention are one or more polymucleotides comprising a maleonide sequence described by the general formula of a b, where a is any integer between 1 to 393 of SEQ ID NO.658, b is an integer of 15 to 3947, where both a and b correspond to the positions of integer of 15 to 3947, where both a and b correspond to the positions of independent and because the positions of the po	Prefetably excluded from the present invention are one or more prefetably excluded from the present invention are one or more polymucleotides comprising a unbelodic sequence described by the general formula of ab, where a is any integer between 1 to 1413 of SEQ ID N0.639, b is an integer of 15 to 1427, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.639, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more propulations comprising a muleotide sequence described by the general formula of a.b., where a is any integer between 10 906 of SEQ ID NO.640, b is an integer of 15 to 920, where both a and b correspond to the positions of muleodide residues shown in SEQ ID NO.640, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is say integer between 1 to 1692 of the property of the prope
841116	841117	841125	841127	841128

correspond to the positions of nucleotide residues shown in SEQ ID NOV.641 and release is concentration or enter to a ± 1.4	Preferrably excluded from the present invention are one or more polymorleoxides comprising a microtroid sequence described by the general formula of a b, where a is any ineger between 1 to 2.156 of FZQID ING-642, b is an integer of 15 to 2.170, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	NOWAGE and WINDOW DE SETURIOR THAN THE SETURIOR THAN THE SETURIOR OF THE SETUR	or more ribed by the 1 to 1779 of oth a and b n in SEQ ID	or more ribed by the DI to 2665 of OI to a and b on in SEQ ID	Preferably excluded from the present invention are one or more polymered to a nucleotide sequence described by the AA461049, AA514387, AA928902, C06109, C15637, AI033621, and a nucleotide sequence described by the AA461049, AA514387, AA928902, C06109, C15637, AI033621, and a nucleotide sequence described by the AA461049, AA514387, AA928902, C06109, C15637, AI033621, and a nucleotide sequence described by the AA61049, AA514387, AA928902, C06109, C15637, AI033621, and a nucleotide sequence described by the AA61049, AA514387, AA51438
correspond to the positions of nucleotide residues show	referably excluded from the present invention an synthetic ordinates comprising a nucleotide sequence areal formula of a-b, where a is any integer better QC ID NOG42, is an integer of 15 to 2170, where a particular and the positions of nucleotide residues.	Prefetably excluded from the present invention are one oppolymule-bridges comprising a met-boild sequence described formals of a met-boild sequence described formals of a-b, where a is any integer between SEQ ID NOG-64, b is an integer of 15 to 1712, where b to recognod to the positions of metoclide residues show NOG-64, and where h is revealer than or cannot lot a + 14.	Preferably excluded from the present invention are one open oppurated responsing an autoprofite sequence descend formula of a b, where a is any integer between SEQ ID NO:644, b is an integer of 15 to 1793, where b to recognoil on the positions of noteologie residues show where b is restare than or earlied to a + 14.	Preferably excluded from the present invention are one protectably excluded from the present any underodise sequence descend formula of a.b. where a its any integer between SEQ ID NO.645, b is an integer of 15 to 2679, where b correspond to the positions of nucleotide residues show NO.645, and where b is greater than or equal to a + 14 NO.645, and where b is greater than or equal to a + 14 NO.645.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the
103	841132 Properties Prop	841133 Programmer Prog	841134 Pre gere gere SE SE SE SON NO	841135 Pra po po general series (NC NC N	841136 Pro

	SEQ ID NO:646, b is an integer of 15 to 832, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:646, and where b is greater than or equal to a + 14.	
841138	Preferably excluded from the present invention are one or more proprieted sort comprising an including sequence described by the general formula of a-b, where a is any integer between 1 to 1311 of SEQ ID NO-647, b is an integer of 15 to 1235, severe both a and b correspond to the positions of meleotide residue selevation in SEQ ID NO-647, and where b is greater than or equal to a + 14.	TTALIGA, ROBGOS, RYST80, PETISTO, 1895-51, N4737, NSG920, NSI5190, NSG992, NG5081, W07268, W74061, W78768, W8120, AAMOHS94, AAMOHS94, AAMOHS94, AAMOHS94, AAMOHS94, AAMOHS97, AAMOHS960, AA74219, AAA86311, AAA96119, AAA94272, AAMOHS96, AA74212, AAA943962, AA706890, AA7521, AAA95143, AAA49962, AA706890, AA7521, AA15066, AA947582, AA49506, AA71582, AA49506, AA715820, AA151606, AA971808, AA97589, AUST 19724, P19266, F10524.
841139	Preferably excluded from the present invention are one or more polymbichedisc comprising a michedia sequence described by the general formula of a-b, where a is any integer between 1 to 392 of SEQ ID NO.648, b is an integer of 15 to 606, where both a and b correspond to the positions of interolecide residues shown in SEQ ID NO.648, and where b is greater than or equal to a + 14.	
841141	Preferably excluded from the present invention are one or more proponal countries as one or more proponal countries as any uneger between 1 to 1682 of SEQ ID NO.649, b is an integer of 15 to 1696, where both a and b correspond to the positions or integer of 15 to 1696, where both a and b NO.649, and the positions or integer of 15 to 1696, where both a and b NO.649, and where b is greater than or equal to a + 14.	770178, 778370, H06915, H19407, H20353, H59580, H68520, AA282429, AA504514, AA504598, AA564110, AA6227709, AA635277, AA814782, AA094590, AA890363, A1082674, T69852
841142	Preferably excluded from the present invention are one or more polymethodisc comprising an unbelodise sequence described by the general formula of a-b, where a is any integer between 1 to 3445 of SEQ ID NO.650, b is an integer of 15 to 3459, where both a and b correspond to the positions of mulcutide residues shown in SEQ ID NO.650, and where b is generer than or equal to a + 14.	Fil (1619) R550C2, 887973, R58932, R72647, R7276, H05024, W13957, N49675, N49676, W16510, W16600, AAA03229, AAA033647, AA465305, AA280166, AA72929, AA673249, AA035847, C02527, AA393868, AA778565, AG73246, A1078056, A
841145	Preferably excluded from the present invention are one or more populuciotistic sourpising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1352 of SEQ ID NOGS(1, b) is an integer of 15 to 1366, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOGS1, and where b is greater than or equal to a + 14.	179010, R25613, R25016, R15165, R2570, R42626, H44680, R27901, R97841, H96639, N36375, AA 192798, AA236455, AA262945, AA4691856, AA491856, AA506296, AA533612, AA563664, AA639599, AA19170, AA478689, AA628811, AA971928

The second secon

841146	Preferably excluded from the present invention are one or more proposed comparing a mucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 141 to 142 of 202 ID NOG622, is an integer of 15 to 1423, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO.652, and where b is greater than or equal to a + 14.	RGSGG, 18090, 175791, R410, R4106, R5623, R63710, R62661, H07014, H073791, R4104, R4105, R5623, R63710, R62661, H07014, H07034, H07348, N33136, N36915, N42188, NS8782, AA044364, AA056411, AA056659, AA466927, AA463834, AA442387, AA429008, AA248199, AA542930, AA542746, AA572444, AA573485, AA731750, AA478641, W2149, C03886, C04870, AA401440, AA44382, AA731676, AA478641, W2149, C03886, C04870, AA401440, AA44382, AA778641, W3149, C03886, C04870, AA401440, AA44382, AA689012, AA88393, AA773518, AA903939, AA778647, M31499, C03886, C04870, AA773518, AA903939, AA778647, M31499, C03886, C04870, AA773618, AA903939, AA778678, AA778641, AA778611, AA778641, AA778641, AA778641, AA778641, AA778611, AA778611, AA778611, AA778611, AA788611, AA778611, AA778
841150	Preferably excluded from the present invention are one or more proputelecides comprising an including exquence described by the general formula of e.b., where a is any integer between 1 to 600 of SEQ ID NO.653, b is an integer of 15 to 614, where both a and b correspond to the positions of included residues shown in SEQ ID NO.653, and where b is generer than or equal to a + 14.	
841153	Preferably excluded from the present invention are one or more polymethodisc comprising a nucleotide sequence described by the general formula of 2-b, where a is any integer between 1 to 2798 of SEQ ID NO-654, b is an integer of 15 to 2812, where both a and b recreaspend to the positions of rancleotide residues shown in SEQ ID NO-654, and where b is greater than or equal to a + 14.	
841154	Preferably excluded from the present invention are one or more populational comprising an another sequence described by the general formula of a-b, where a is any integer between 1 to 1983 of SEQ ID NO-655, b is an integer of 15 to 1997, where both a and b correspond to the positions of unleudide residues shown in SEQ ID NO-655, and where b is greater than or equal to a + 14.	
841156	Preferably excluded from the present invention are one or more populoueloedes comprising a molocide sequence described by the general formula of a-b, where a is any uneger between 10.583 of SEQ ID NO.656, b is an integer of 15 of 1507, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO.656, and where b is generic than or equal to a +14.	
841157	Preferably excluded from the present invention are one or more	

	polynucleotides comprising a mucleotide sequence described by the general formula of ab, where a is any integer between 1 to 358 of SEQ ID NO.657, to its an integer of 1 so 372, where both a and b correspond to the positions of integer of 1 so 472, where both a and b NO.657 and adverse his exenter than or entail to a + 14.	
841159	Preferably excluded from the present invention are one or more populateiotic comprising an unbelled free queen of populateiotic comprising an unbelled free queen of the position of any integer between 1 to 1212 of SEQ ID NO-658, b is an integer of 15 to 1226, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO-658, and where b is greater than or equal to a + 14.	TGGG13, TG6157, R10329, R21935, R22192, R22243, R22243, R22243, R2226, R22244, R22262, R22262, R23262, R23262, R2362, R10526, R105215, R12515, R10526, R10526, R2502, R2502, R2502, R10526, R10526, R10526, R10527, R4503, R2651, R10516, R31763, R3234, R3234, R3243, R3243
841164	Preferably excluded from the present invention are one or more populure-leadies comprising a unberlade sequence described by the general formula of a-b, where a is any integer between 1 to 450 of SEQ ID NO-659, b is an integer of 15 to 464, where both a and b correspond to the positions or fundoidate resultes shown in SEQ ID NO-659, and where b is greater than or equal to a + 14.	
841167	Preferably excluded from the present invention are one or more polyuniceoides comprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 2553 of SEQ ID NOG-60, b is an integer of 1 5 to 2549, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NOG-60, and where b is greater than or equal to a + 14.	
841170	Preferably excluded from the present invention are one or more	R01156, R05766, R36365, H10217, H10272, R85306, R85305,

	younderotides comprising a motoritie sequence described by the general formula of a.b., where a is any integer between 1 to 1148 of SEQ ID NO-661, b is an integer of 15 to 1162, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO-661, and where b is greater than or equal to a + 14.	R02966, R94034, R94544, R18799, N30404, N62490, N67401, ANGSSGO, ANGSGO, ANGS
841173	Preferably excluded from the present invention are one or more populational comparing an are one or more populational comparing an any integer between 1 to 1164 of SEQ ID NO-662, b is an integer of 1.5 to 11.78, where both a and b recreased in the positions of motivate shown in SEQ ID NO-662, and where b is greater than or equal to a + 14.	T5522, T8072, R4800, R48018, F10499, H04950, H3550, AA03409, AA100837, AA12880, AA14362, AA191274, AA01066, AA223155, AA223325, AAA21101, AA426188, AA01066, AA399132, AA39614, AA481845, F01004
841176	Preferably excluded from the present invention are one or more populate date countries as uncelestive sequence described by the general formula of a-b, where a is any integer between 1 to 726 of 150 POO-666, is an integer of 15 of 40, where both a and b correspond to the positions of nucleoxide residues shown in SEQ ID NO-665, and where b is greater than or equal to a + 14.	ITTYSC2, TSPAS, 198869, WINDGGS, WASDOB, AALIABS3, AALISGIG, AALISTGS, AALISTGS, AALISTISS, AALI99358, AAA91525, AA492088, AA515898, AA572791, AAVIP4065, AAA757806, AA5779808, AA572791, AAVIP4066, AAA71404, AA827641, AA8623841, AAA52208, AA8774467, AAA95725, FIQJI, FIQSQ4, NSSG8, NSG464, NSQ217, AAA27453, AAA01334, PZ0491, PZ0992, PZ1312, AA608827, FIZAG5, PZ2587, AA707812, AA889907
841178	Preferably excluded from the present invention are one or more populated store or prompting an unbedient sequence described by the general formula of a-b, where a is any integer between 1 to 1650 of SEQ ID NO.664, b is an integer of 15 to 1670, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO.664, and where b is greater than or equal to a + 14.	
841180	Preferably excluded from the present invention are one or more polyunctionalize comprising a melocitotile sequence described by the general formula of a-b, where a is any integer between 1 to 3350 of SEQE ID NOGAC is as an integer of 1 fo 3354 where both as and b correspond in the restinent of fundicitide residues shown in SEO ID correspond in the restinent of melocitide residues shown in SEO III	

	NO-665 and where h is greater than or equal to a + 14.	
841181	Prefectably excluded from the present invention are one or more proposed from the present invention are one or more populated expension and produced exception by the general formula of a-b, where a is any integer between 1 to 1209 of SEQ ID NO.666, b is an integer of 15 to 1223, where both a and b No.666, b is an integer of 15 to 1223, where both a and b NO.666, and where b is greater than or equal to a + 14.	
841182	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b. where a is any integer between 1 to 1983 of ISEQ ID NOGGI, b is an integer of 15 of 1997, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOGGI, and where b is greater than or cetalla to a + 14.	
841185	Preferably excluded from the present invention are one or more polyuncleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 372 of SEQ ID NOG&B, b is an integer of 15 to 58c, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOC&B, and where b is generer than or equal to a + 14.	R62220, R70423, N32509, N40823, W42954, AA28 ISU0, AA524713, AA093155
841187	Preferably excluded from the present invention are one or more polyumeloculose comprising a meleatide sequence described by the general formula of a-b, where a is any integer between 1 to 1083 of SEQ ID NO-669, b is an integer of 15 or 1097, where both a and b rorrespond to the positions of nucleotide residues shown in SEQ ID NO-669, and where b is generer than or equal to a + 14.	18,458, R3786, AAB1459, AAR7179, AAB919, AID04908, F19612, C15655, AA200403, AA86444, AA480297, AA677279, AA77589, AA8079931, AID32801, AID34230, AID40649, AID91697
841188	Preferably excluded from the present invention are one or more polyunicetacles comprising a meleculie sequence described by the general formula of a-b, where a is any integer between 1 to 2866 of SEQ ID NO-670. h is an integer of 15 to 2900, where both at and b correspond to the positions of mulecutide residues shown in SEQ ID NO-670, and where b is greater than or equal to a + 14.	
841189	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formal of a-b, where a is any integer between 1 to 973 of SRQ ID NO;671, b is an integer of 15 to 987, where both a and b	AA001736, AA132627, AA568390, F19019, W26201, W69639, W69638

	correspond to the positions of nucleotide residues shown in SEQ ID NO:671, and where b is greater than or equal to a + 14.	
841192	Preferably excluded from the present invention are one or more opportunctions comparing a melocitie sequence described by the general formation of a.b., where a is any integer between 1 to 281 to 07 at 070 to 0.050 b. on a mineger of 15 to 282, where both a and b correspond to the positions of melocitide exiduse shown in SEQ ID NO672, and where b is greater than or equal to a + 14.	RX301, R309, R304, R4046, R1873, 1796665, R2503, R2501, R20701, R20701, R2075, I 126656, R2503, R25010, R3781, R40701, R20701, R2075, I 126656, R2503, R2501, R20701,
841194	Preferably excluded from the present invantion are one or more polymeteotides comparing a nucleotide suggested by the general formula of a.b. where a is any integer between 1 to 1416 of SEAD IN OGS7, is as an integer of 15 to 1430, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO 673, and where b is greater than or equal to a + 14.	R27731, R8901, R1912, T84049, R18157, R27731, R27738, R2706, R4278, R4278, R61822, R61424, R69423, R69553, R7706, 100275, H00754, H08524, B108525, B707851, H81064, H81141, AA429044, AA429638, AA564809, AA56159, AA552544, AA782297, AA613016, AA627349, AA639590, AA573385, AA575599, AA6757838, AA864949, AA639590, AA648991, AA6480457, AA56806, AA479714, AA479846, AA486457, AA486480, AA479714, AA47984807, AA6486457, AA486480, AA479714, AA479815, AA486457, AA486480, AA479714, AA479815, AA486457, AA486480, AA479714, AA479815, AA486457, AA486480, AA479714, AA479816, AA486457, AA486480, AA479714, AA479816, AA486487, AA486487, AA488013, AA486171, T19678,
841195	Preferably excluded from the present invention are one or more polyumicloudies comprising a nucleotide sequence described by the general formula of a-b. where a is any integer between 1 to 1111 of SEQID NOG74, b is an integer of 15 to 1125, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NOG94, and where b is greater than or equal to a + 14.	
841198	Prefetably excluded from the present invention are once unover polymeteorides comprising a moteloride sequence described by the general formula of a-b, where a is any integer between 1 to 1063 of SEAD IN ORGA'S, is an integer of 15 to 1077, where both and ab correspond to the positions of micleoride residues shown in SEQ III.	

	A.C. Care 1	
	INO:6/5, and where b is greater than or equal to a + 14.	
841200	Preferably excluded from the present invention are one or more polymorheoides compressing a meleonide sequence described by the general formula of a-b, where as is any integer between 110 906 of SQD ID NO-676, is an integer of 15 to 920, where both a and b coverseand to the nextitions of meleonide residues shown in SFO III.	R5754, R5778, R22912, R72400, H29740, AA232258, AA442918, Z42805, F13301
	NO:676, and where b is greater than or equal to a + 14.	
841201	Preferably excluded from the present invention are one or more	AA932596, D80656, D81201, D81580, C15574, AI025303,
	polynucicondes comprising a nucleonuc sequence described by me general formula of a-b, where a is any integer between 1 to 1233 of	000000
	SEQ ID NO:677, b is an integer of 15 to 1247, where both a and b	
	Correspond to the positions of nucleotide residues shown in SEQ in NO:677, and where b is greater than or equal to a + 14.	
841202	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between I to 2653 of	
	SEQ ID NO:678, b is an integer of 15 to 2667, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:678, and where b is greater than or equal to a + 14.	
841209	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 938 of	
	SEQ ID NO:679, b is an integer of 15 to 952, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO.679 and where h is greater than or equal to a + 14	
841210	Preferably excluded from the present invention are one or more	And the second s
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between I to 2295 of	
	SEQ ID NO:680, b is an integer of 15 to 2309, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:680, and where b is greater than or equal to a + 14.	
841213	Preferably excluded from the present invention are one or more	AA133947
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 437 of	
	SECTIONOCOST, DIS AN INTEGRA OF 15 TO 451, WILCIA DOLL & MINE D	

	Perfectably excluded from the present invention are one or more polynucleotides compressed from the present invention are one or more polynucleotides compressed a microtide sequence described by the polynucleotides compressed to Li284 of SEQ ID NO.682, b is an integer of 15 to 1298, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID	C17425
	nucleotides comprising a nucleotide sequence described by the informal of a by, where a is any nieger between 1 to 1284 of 11D NO-682, b is an integer of 15 to 1298, where both a and b expond to the positions of nucleotide residues shown in SEQ ID	
	The NO:682, b is an integer of 15 to 1298, where both a and b spond to the positions of nucleotide residues shown in SEQ ID	
	sepond to the positions of nucleotide residues shown in SEQ 1D	
	CO and tribons to accompany the CO	
841219 Prefe	Preferably excluded from the present invention are one or more	
poly	polynucleotides comprising a nucleotide sequence described by the	
gene	general formula of a-b, where a is any integer between 1 to 845 of	
SEQ	SEQ ID NO:683, b is an integer of 15 to 859, where both a and b	
ON	correspond to the positions of nucleotide residues shown in SEQ 1D NO.683, and where b is greater than or equal to a + 14.	
841222 Prefe	Preferably excluded from the present invention are one or more	
ylod	oolynucleotides comprising a nucleotide sequence described by the	
gene	general formula of a-b, where a is any integer between 1 to 1237 of	
SEQ	SEQ ID NO:684, b is an integer of 15 to 1251, where both a and b	
COL	correspond to the positions of nucleotide residues shown in SEQ1D	
NO:	NO:684, and where b is greater than or equal to a + 14.	OUT COM THE CONTROL CONTROL TO CONTROL
841223 Prefi poly	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	148001, 148881, 148882, 173986, 181100, 182438, R1470, R31770, R42540, R42540, R59226, R59286, R74588,
gene	general formula of a-b, where a is any integer between 1 to 2586 of	R78473, R78539, H11611, H11700, H24632, H30034, H42336,
SEC	SEQ ID NO:685, b is an integer of 15 to 2000, where both a and b	W94237, AA026530, AA039301, AA039302, AA039611,
ÖN	NO:685, and where b is greater than or equal to a + 14.	AA234259, AA460377, AA460815, AA428913, AA429928,
	•	AA468129, AA468177, AA490801, AA602786, AA622704,
		AA911637, AA972558, AA973765, AA987526, A1005162, A1032242, W21787, W27428, AA654230, AA443814, AA447184,
		AA453411, AA453917, AA479442, AA489468, AA885138,
		AA904627, AA972149, A1014507, A1079892, Z39201, Z43111, D45594, D45647, F13465, F10053, AA700349
841224 Pref	Preferably excluded from the present invention are one or more	
gene	general formula of a-b, where a is any integer between 1 to 4627 of	

						T86954, T87037, T91296, R11017, T78621, T79104, T84877, R00236, R00549, R06637, R27822, R27923, R35744, R45232,
SEQ ID NO:686, b is an integer of 15 to 4641, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:686, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyundecoldes comprising a meleopide sequence described by the general formula of a-b, where a is any integer between 1.0 386 of SEQ ID NO.687, b is an integer of 15 to 400, where both a and b correspond to the positions of undeclodde residues shown in SEQ ID NO.687, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyumichoids comprising a melebidis esquence described by the general formula of a-b, where a is any imeger between 1 to 2737 of SEQ ID NO.688, b is an integer of 15 to 2751, where both a and b correspond to the positions of melecodite residues shown in SEQ ID NO.688, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more popularicheides comprising a mulciolide sequence described by the general formula of a-b, where a is any integer between 1 to 955 of SEQ ID NO.689, b is an integer of 15 to 969, where both a and b correspond to the positions for indecledite residues shown in SEQ ID NO.689, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more popurateloide comparing a mulcoide sequence described by the general formula of a-b, where a is any integer between 1 to 965 of SEQ ID NO.690, b is an integer of 15 to 979, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.690, and where b is geneter than or equal to a + 14.	Preferably excluded from the present invention are one or more popularelocides comprising a mulcoide sequence described by the general formula of a-b, where a is any integer between 1 to 679 of SEQ ID NO.691, b is an integer of 15 to 693, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.691, and where b is geneter than or equal to a + 14.	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the
	841226	841227	841228	841231	841232	841233

The state of the s

erweet in 1366 of R45222, R3170, R21414, IRS67 (H00222, H00220, H00220	are one or more to describe by the the where to District and b ses shown in SEQ ID		are one or more [140724, 141188, T/19648, R10059, T80445, T85689, R12791, noe described by the [18012, R24766, R24982, R3316, R32388, R33060, R43570, R45245, R45496, R52598, R54047, R54048, R45570, R45245, R4596, R19030, H1931, L82420, H24221, R45245, R4598, H19030, H1931, L82420, H2420, H24225, R45498, R4598, H19030, H1931, R4048, R45408, R458701, R41622, R416225, R41622, R416222, R41622, R416222, R41622, R416222,
Second formula of ab., where a is any integer between It ol 1368 of Second 10.00 of a b., where a is any integer of 15 to 1382, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:602, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populouelevides comprising a melecide sequence described by the general formula of a-b, where a is any integer between 1 to 3084 of SEQ ID NO-693, b is an integer of 15 to 3098, where both a and b correspond to the positions of intellecide residues shown in SEQ ID NO-693, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more propriate decomprising a mulciotide sequence described by the general formula of a-b, where a is any integer between 1 to 475 of SEQ ID NO.694, b is an integer of 15 to 489, where both a and b rorrespond to the positions of nucleoider esistias shown in SEQ ID NO.694, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are none or more populated scomprising a nucleotide sequence described by the general formula of a.e., where a is any integer between 1 to 1830 of SQL DIOAGO'S, is as in megen of 15 to 1844, where both a and b SQL DIOAGO'S, is as in megen of 15 to 1844, where both a and b NOF695, and where b is greater than or equal to a + 14.
	841234	841236	841238

Perfectably excluded from the present invention are one or more perfectably excluded from the present invention are one or more general formula of e.b., where a is any integer between 1 to 591 of SEQ ID NO:696, b is an integer of 15 to 665, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:696, and where b is greater than or cellal to a +14. 841242 Preferably excluded from the present invention as to nor more polymacleoides comprising a melecide residues shown in SEQ ID NO:697, is an integer of 15 to 540, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:697, is an integer of 15 to 540, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:697, is an integer of 15 to 540, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:698, is an integer of 15 to 450, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:698, is an integer of 15 to 540, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:699, is an integer of 15 to 450, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:699, and where b is general invention are one or more polymeteleoides comprising a melecidie residues shown in SEQ ID NO:699, b is an integer of 15 to 987, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:699, and where b is general invention are one or more polymeteleoides comprising a melecidie residues shown in SEQ ID NO:699, and where b is general invention are not or more polymeteleoides comprising a melecidie residues shown in SEQ ID NO:699, and is an integer of 15 to 167, where both a and b correspond to the positions of melecide residues shown in SEQ ID NO:699, and in some present invention are not or more polymeteleoides comprising a melecidie residues shown in SEQ ID NO:699, and is an integer of 15 to 1675, where both a and b correspond to the position
NO:700, and where b is greater than or equal to a + 1.4. 841251 Perfectenbly excluded from the present invention are one or more hardware common ending the common perfecting a melecule secure described by the

AA765476, AA807570, A1056471, A1075269, T24438	H58432, AA996201, AA598598, AA676797 f	AA194189, Z36730			H03779, H16233, AA026349, AA192805, AA662333, F19078,
general formula of a-b, where a is any integer between 1 to \$42 of \$20 of \$20 in NOTOI, b is an integer of 15 to \$56, where both a and b correspond to the positions of meleotide residues shown in \$8Q ID NOTOI, and where b is greater than or equal to a + 14. NoCOI, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one on more polymeteorides comprising a nucleotide sequence described by the general formula of a-b, where as any integer of the 1124 of SEQ ID NOTO, b is an integer of 15 to 1138, where both a and b NOTO, and when he was to the present of the part of the top to the positions of integer of 15 to 1138, where both a and b NOTO, and when he was not more proposed to the positions of integer of 15 to 1138, where both a and b NOTO, and when he was not more proposed by the greater of the positions of integer of 15 to 1138, where both a and b NOTO, and when he was not more proposed to 1138, where both a not be not the positions of integer of 15 to 1138, where both a not be not	Preferably excluded from the present invention are one or more propule companient or comprising a muleotide sequence described by the general formula of a.b., where a is any integer between 1 to 1048 of SEQ ID NO:703, b is an integer of 15 to 1062, where both a and b correspond to the positions or intelledule selvam in SEQ ID NO:703, and where b is greater than or could to a + 14.	Preferably excluded from the present invention are one or more populated comprising an enterior described by the general formula of a.b., where a is any integer between 1 to 851 of SEQ ID NO:704, b is an integer of 15 to 865, where both a and b correspond to the positions of muckload te residues shown in SEQ ID NO:704, and where b is greater than or could 10 a + 14.	Preferably excluded from the present invention are one or more propulations comparing an unbeloide sequence described by the general formula of a.b., where a is any integer between 1 to 1369 of SEQ ID NO:705, b is an integer of 15 to 1383, where both a and b correspond to the positions of intecloide residens shown in SEQ ID NO:705, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populate dideated comprising a relicitied so that the general formula of a-b, where a is any integer between 1 to 1141 of SEQ ID NO;706, b is an integer of 15 to 1155, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO;706, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
841254	841263	841266	841269	841272	841273

		4 4 100 01 1 4 4 0 2 10 2 4 TO 1 4 0 4 7 2 0 1 0 2
		AA192911, AA921722, Alottoot, Elottoo
	general formula of a-b, where a is any integer per well 1 to 1+05 of SEO ID NO-707 h is an integer of 15 to 1417, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:707, and where b is greater than or equal to a + 14.	
841276	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 934 of	
	SEQ ID NO:708, b is an integer of 15 to 948, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:708, and where b is greater than or equal to a + 14.	
841277	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1315 of	
	SEQ ID NO:709, b is an integer of 15 to 1329, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:709, and where b is greater than or equal to a + 14.	
841278	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 520 of	
	SEQ ID NO:710, b is an integer of 15 to 534, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:710, and where b is greater than or equal to a + 14.	
841279	Preferably excluded from the present invention are one or more	R09746, R10170, R65983, R65982, AA159394
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1129 of	
	SEQ ID NO:711, b is an integer of 15 to 1143, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:711, and where b is greater than or equal to a + 14.	
841280	Preferably excluded from the present invention are one or more	R09747, R10073, R33389, R33390, R53830, R53881, R62135,
	polynucleotides comprising a nucleotide sequence described by the	KGZZ36, KO6300, KO6372, 1100263, 1100263, 1102633, 1103747,
	general formula of a-b, where a is any integer between 1 to 3765 of	AAI5/541, AAI58194, AAI5929/, AA346/56, D62/6/, CU2009,
	SEQ ID NO:712, b is an integer of 15 to 3779, where both a and b	AA443368, AA446944, AA431/33, AA//0228, AA94/360,
	correspond to the positions of nucleotide residues shown in SEQ ID	AA94/962, AI091389, 148313
	NO:712, and where b is greater than or equal to a + 14.	

841282	Preferably excluded from the present invention are one or more polyuncitedisc comprising a melocidie sequence described by the general formula of a-b, where a is any integer between 1 to 1022 of SEQ ID NO-713, b is an integer of 15 to 1036, where both a and b correspond to the positions of intededide residues shown in SEQ ID NO-713, and where b is greater than or equal to a + 14.	174298, R51507, R78167, H08569, N9881, N779231, AA460120, N565228, N83597, N86852, N87082, C04661, AA090325, AA090524, AA309525, AA306259, F12501
841283	Preferably excluded from the present invention are one or more popularelectates comparing a melecutie sequence described by the general formula of a.b., where a is any integer between 1 to 4420 of SEQ ID NO.714, b is an integer of 15 to 4443, where both a and b correspond to the positions of melecutie residues shown in SEQ ID NO.714, and where b is greater than or equal to a + 14.	R1560, TSBR B1, R1558, R2588, R24089, R31059, R31059, R31020, TSBR B1, R1520, R41141, R41502, R41141, R72053, R310791, R310711, R0281, H17299, H17300, H44461, N73623, N49466, N404234, W36266, W32186, W36286, W36286, W36286, W36286, W36286, W36286, W36286, W36286, W36236, A0401349, A0401319, A0401319, A0401349, A0401349, A0401349, A0401349, A0401349, A0401349, A0401349, A0401346, A0401349, A0401346, A0401346, A0401346, A0401341, A0401346, A0601349, A071316, A071311, A0601341, A0401341, A0401341, A0401341, A0401341, A0401341, A0401341, A0401341, A0401341, A0401341, A0401346, A0601346, A06013
841286	Preferably excluded from the present invention are one or more populoueloide coumprising a muleoidie sequence described by the general formula of a-b, where a is any integer between 1 to 2085 of SEQ ID NO:715, b is an integer of 15 to 2099, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO:715, and where b is greater than or equal to a + 14.	AA028928, H9309, H31912, H37306, H27307, H44791, H4724030, AA887304, AA687304, AA687304, AA638702, AA637304, AA073023, H447302, H4473023, H4473023, H4473023, H4473023, H4473023, H4473023, H4473023, H477302, H4772
841287	Preferably excluded from the present invention are one or more polyumichoide comprising a mulciotide sequence described by the general formula of a-b, where a is any integer between 1 to 560 of SEQ ID NO716, b is an integer of 15 to 574, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO716, and where b is greater than or equal to a + 14.	
841288	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	

					LUSO I M. IUPOLN. IUOUSN. TCCEPH. MD295 G. DE212G. EXPIPAL.	104093, K31079, K30000, D47224, IN30001, IN79401, W 13077,
general formula of a-b, where a is any integer between 1 to 833 of SEQ ID NO7171, b is an integer of 15 to 847, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO717, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polymethodises comprising an unbeolide sequence described by the general formula of a-b, where a is any integer between 1 to 2072 of SEQ ID NO.718, b is an integer of 15 to 2086s, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.718, and where b is greater fram or equal to a + 14.	Preferably excluded from the present invention are one or more opportunciousles compraising a mulcoinfe sequence described by the general formula of a-b, where a is any integer between 1 to 2404 of SEQ ID NO.719, b is an integer of 15 to 2418, where both a and b correspond to the positions of uncleotide residues shown in SEQ ID NO.719, and where b is greater fluin or equal to a + 14.	Preferably excluded from the present invention are one or more polyuncleotides comprising a mulciotide sequence described by the general formula of a-b, where a is any integer between 1 to 2527 of SEQ ID NO.720, b is an integer of 15 to 2541, where both a and b correspond to the positions of undecodite residues shown in SEQ ID NO.720, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more populations of compraining the properties of comparing a multicordis expense described by the general formula of a.b. where a is any integer between 1 to 2157 of SEQ ID NO.721, b is an integer of 15 to 2171, where both a and b correspond to the positions of multicodite residues shown in SEQ ID NO.721, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more polyunclocides comprising a mucboide sequence described by the general formula of risk, where a is any integer between 1 to 1874 of SEQ D NOVEZE, b is an integer of 15 to 1888, where both a and b correspond to the positions of maclocide residues shown in SEQ ID NO7722, and where b is greater than or equal to a + 14.	Preferably excluded from the present invention are one or more
	841291	841292	841294	841296	841298	841301

	polymacleotides comprising a nucleotide sequence described by the pergeral formula of a 4b. Where a is any integer between 1 to 96 of SEQ ID NO.723, b is an integer of 15 to 980, where both a anable received mineger of 15 to 980, where both a anable breezepond to the positions of molecular residents shown in SEQ ID NO.723, and where b is erester than or cental to a + 14.	AAJ43155, H59360, H69073, AA580509, AA487750, AA226464, 710911, T11398, T18502, T18605, T61708, F00905, F01050, F00254, F01055, F01138
841303	Preferably excluded from the present invention are one or more proputed only comprising a moleculie sequence described by the general formula of a-b, where a is any integer between 1 to 1798 of SEQ ID NO.724, b is an integer of 15 to 1812, where both a and b correspond to the positions of meleculeir estedues shown in SEQ ID NO.724, and where b is greater than or equal to a + 14.	FISTORES, R. 18595, R. 24742, R. 2710, R. SATO, R. 48307, R. 48307, R. 48307, R. 48307, R. 48307, R. 4846, H. 18504, H. 18797, H. 19306, H. 2923, N. 94966, W. 30841, W. 19375, W. 194024, N. 185210, A. 484682, A. A. 184310, A. 4845110, A. 484682, A. A. 184311, A. 48561707, A. 48466270, A. 484997, A. 484907, A. 4849027, A. 48492705, A. 484907, A. 184966, A. 484907, A. 4849027, A. 484907, A. 184966, P. 184907, A. 1849027, A. 184966, A. 484907, A. 184907, A. 184
841304	Preferably excluded from the present invention are one or more populated sort or prompting a molecule sequence described by the general formula of a-b, where a is any integer between 1 to 960 of SEQ ID NO.725, b is an integer of 15 to 974, where both a and b correspond to the positions of muleotide residues shown in SEQ ID NO.725, and where b is generer than or equal to a + 14.	
841305	Preferably excluded from the present invention are one or more populuciedate comprising a medicitie sequence described by the general formula of a-b, where a is any mager between 1 to 1494 of SEQ ID NO-726, b is an integer of 15 to 1508, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-726, and where b is greater than or equal to a + 14.	
841309	Preferably excluded from the present invention are one or more populated to comprising a molecule sequence described by the general formula of a-b, where a is any megar between 1 to 1990 of SEQ ID NO.727, b is an integer of 15 to 2004, where both at and b correspond to the positions of nucleotide residues shown in SEQ ID NO.727, and where b is generate than or equal to a + 14.	(RC2724, HE248, H1111, H7111, N2184, N9514, W3691, W45047, W49839, AA046636, AA046775, AA047446, AAAF378, AAA160181, AAA88796, AA741383, AA746409, AA811149, AA833797, AA948892, AA74383, AA749075, AAA8881, AA451825, AA454157, AA628416, AA846238, A1004357
841314	Preferably excluded from the present invention are one or more polymericoldes compering a metoride sequence described by the general formula of a-b, where a is any integer between 1 or 1456 of SEQ ID NO7728, b is an integer of 15 to 1470, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:728, and where b is greater than or equal to a + 14.	
841316	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1741 of	
	SEQ ID NO:729, b is an integer of 15 to 1755, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:729, and where b is greater than or equal to a + 14.	
841318	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 423 of	
	SEQ ID NO:730, b is an integer of 15 to 437, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:730, and where b is greater than or equal to $a + 14$.	
841321	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 3649 of	
	SEQ ID NO:731, b is an integer of 15 to 3663, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:731, and where b is greater than or equal to a + 14.	100411
841324	Preferably excluded from the present invention are one or more	T96831, AA258405, AA258750, H61868, AA828983, AA447894,
	polynucleotides comprising a nucleotide sequence described by the	1,96832
	general formula of a-b, where a is any integer between 1 to 2003 of	
	SEQ ID NO:732, b is an integer of 15 to 2017, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO-732 and where h is greater than or equal to a + 14.	
841326	Preferably excluded from the present invention are one or more	T67169, T67170, R13400, R25161, R40914, R81373, H03937,
	polynucleotides comprising a nucleotide sequence described by the	N32627, N46428, N47847, N99904, W23203, W30840, W00329,
	general formula of a-b, where a is any integer between 1 to 1990 of	W86618, W86691, AAU62970, AAU82437, AA100373,
	SEQ ID NO: /33, 6 Is an integer of 13 to 2004, where both a and 5	AA157068, AA156974, AA165009, AA171491, AA171862,
	NO:733 and where h is greater than or collad to a + 14.	AA179767, AA180187, AA180497, AA179780, AA180441,
		AA187010, AA190353, AA195448, AA227391, AA258327,
		AA258536, AA262632, AA489087, AA489151, AA503664,
		AA323/41, AA362440, AA366337, AA621630, AA621702,

		AA640554, AA568289, AA744568, AA761881, AA827997, AA844453, AA911318, AA911362, AA9174501, U46229, NA9275, NIS548, NIS7880, AA641297, C21410, AA091107, AA05542, AA209417, AA219739, AA599003, AA67660, AA677610, AA678161, AA725266, AA757007, AA779171, AA779610, AA852239, AA773175, AA993290, A1023440, AA770610, AA852293, AA773175, AA993290, A1023440, AA770610, AA852293, AA773175, AA993290, A1023440, AA770610, AA872293, AA773175, A10893250, A773895
841328	Preferably excluded from the present invention are one or more populated to anoptising an uncloudied sequence described by the general formula of a-b, where a is any integer between 1 o 114 of SEQ ID NO.734, b is an integer of 15 to 1128, where both a and b reconspond to the positions of nucleotide residues shown in SEQ ID NO.734, and where b is greater than or equal to a + 14.	R93165, R93258, AA115956, AA251714, AA206198, AA676321
841329	Preferably excluded from the present invention are one or more populatebides comprising a methodia exquerce described by the general formula of 1-b, where a is any integer between 1 o 75s of SEQ ID NO.735, b is an integer of 15 to 772, where both a and b recomposed to the positions or functional results as shown in SEQ ID NO.735, and where b is greater than or equal to a + 1-4.	
841330	Preferably excluded from the present invention are one or more populacebades comprising a motoridus exquence described by the general formula of a-b, where a is any integer between 1 to 1085 of SEQ ID NO:736, b is an integer of 15 to 1099, where both a and b recomponed to the positions of hortocide residues shown in SEQ ID NO:736, and where b is exerted than or equal to a + 14.	R2283, R66728, R78688, H95005, H95113, N27178, N39923, AA037201, AA991171, U69556, AA91389, AI085980
841333	Preferably excluded from the present invention are one or more propule-boddes comparising a moderide sequence described by the general formula of a-b, where a is any integer between 1 to 3205 of SEQ ID NO-737, b is an integer of 15 to 3219, where both a and b correspond to the positions of mucleotide residues shown in SEQ ID NO-737, and where b is greater than or equal to a + 14.	T59818, T59662, R12023, R0204, R2144, R53122, R20254, R5024, R802624, R80257, N95515, W21251, W35070, W35419, W96447, W96644, A603907, AAM49958, AAM49524, AAM45665, AAM59907, AAM49980, AAL05565, AAL77996, AAM56902, AAM56902, AAM5639347, AAM510033, AAM569041, AAM590487, B7107, N89092, C02655, C04655, AAM16971, AAM69021, AAS98468, AAM54690, C02655, C04655, AAM16971, AAM69021, AAM59468, AAM54690, AAM599133, AAM5990131, AAM599131, AAM5990131, AM599468, AAM59609, AAM5990133, AAM5990131, AM59960311, AM59968, T19281
841334	Preferably excluded from the present invention are one or more	

	holynucleotides comprising a nucleotide sequence described by the	
	papers formula of a higher a is any interes herwen 1 to 835 of	
	SEO ID NO:738. h is an integer of 15 to 849, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:738, and where b is greater than or equal to a + 14.	
841335	Preferably excluded from the present invention are one or more	R22949, R23055, R78445, W19388, AA126774, AA133979,
	polynucleotides comprising a nucleotide sequence described by the	AA173276, AA210721, AA210826, AA287324, AA287338,
	general formula of a-b, where a is any integer between 1 to 2055 of	AA504314, AA688155, AA829651, AA836121, AA934545,
	SEQ 1D NO:739, b is an integer of 15 to 2069, where both a and b	AI004681, AA205833, AA628867, AI028632, AI026835,
	correspond to the positions of nucleotide residues shown in SEQ 1D	A1075920
	NO:739, and where b is greater than or equal to a + 14.	
841336	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1553 of	
	SEQ 1D NO:740, b is an integer of 15 to 1567, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:740, and where b is greater than or equal to a + 14.	
841337	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 2815 of	
	SEQ 1D NO:741, b is an integer of 15 to 2829, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:741, and where b is greater than or equal to a + 14.	A. A
841339	Preferably excluded from the present invention are one or more	R05977, W07729, W85962
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 912 of	
	SEQ ID NO:742, b is an integer of 15 to 926, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:742, and where b is greater than or equal to a + 14.	
841340	Preferably excluded from the present invention are one or more	T87162, T87245, R83644, H65997, W86660, W87319, AA279035,
	polynucleotides comprising a nucleotide sequence described by the	Z25793
	general formula of a-b, where a is any integer between 1 to 1003 of	
	SEQ 1D NO:743, b is an integer of 15 to 1017, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ 1D	
	NO:743, and where b is greater than or equal to a + 14.	

841341	Preferably excluded from the present invention are one or more polymucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 10.347 of SEQ ID NO7444, b is an integer of 15 to 361, where both a and b correspond to the positions or integer of 15 to 361, where both a and b NO744 and where his oreater than or cental to a + 14.	
841342	Preferably excluded from the present invention are one or more proputelectides comprising a underload sequence described by the general formula of e.b., where a is any integer between 1 to 1922 of SEQ ID NO:745, b is an integer of 15 to 1936, where both a and b correspond to the positions of interbedired residens shown in SEQ ID NO:745, and where b is greater than or equal to a + 14.	76/211, R31792, R31806, R31888, A4465633, A74279178, AAZ79190, AA419400, AA482006, AA5210039, AA528684, D80048, AA669069, AA651768, AA652075, AA652129, AA293205, AA293206, AA443179, AA936343
841343	Preferably excluded from the present invention are one or more populate-index countrings in medicide sequence described by the general formula of a.b., where a is any integer between 1 to 1605 of SQL DNO744, is an integer of 15 of 160, where both a and b correspond to the positions of melecuide residues shown in SEQ ID NO746, and where b is greater than or equal to a + 14.	AAM5221, 192607, 18301, 119750, 12228, N2350, AAM5341, AAM5429, AAM5480, AAM58517, AAM5374, AA111873, AA112181, AA12875, AA146828, AA146662, AAM5955, AA194443, AA425051, AAM50515, AAM51224, AAK51274, AAK61245, AAK5689, AAM51254, AAK612524, AAK61251, AAK612521, AAK
841347	Preferably excluded from the present invention are one or more populue-locates comprising an unberlotide sequence described by the general formula of a-b, where a is any integer between 1 to 478 of SEQ ID NO.747, b is an integer of 15 to 492, where both a and b rorrespond to the positions of maleotide residues shown in SEQ ID NO.747, and where b is greater than or equal to a + 14.	R 14800, R25047, R59757, W238 11, Z42261
841352	Preferably excluded from the present invention are one or more proprincelously compressing a normaring and or the present invention of the present of practice as any integer between 1 to 580 of SEQ ID NO.748, b is an integer of 1 st to 603, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.748, and where b is greater than or equal to a + 14.	179021, 174602, 174031, 173024, 175020, 175011, 173994, 175021, 176056, 19297, 198578, W19319, W21208, W25470, W38523, W79772, W79108, N90073, AM63228, AA131028, AA130518, AA131028, AA131028, AA131028, AA135045, AA15043, AA150443, AA150

AA470507. AA470518. AA470554. AA470564. AA470784. AA806062. AA4805271. AA482845. AA489446. AA492057. AA4092060. AA501534. AA501068. AA501705. AA502485. AA503438. AA507807. AA522566. AA523150. AA523460. AA520708. AA5207807. AA522866. AA53150. AA523460. AA51205. AA548431. AA559139. AA558899. AA558995. AA511205. AA582864. AA582077. AA548277. AA548277. AA5400752.	AAKSTI143, AAKSTI240, AAKSTI970, AAKSTI143, AAKSTI143, AAKSTI1240, AAKSTI970, AAKTI970, AAKSTI970, AAKTI970, AATI970, A	AAASOBOU, AAASO SIA4, AAASO ORGA, AAAO SAGO, AAAAO SAGO, AAAO SAGO, AAAAA SAGO, AAAAAA SAGO, AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AA625634, AA669489, AA457881, P22821, AA845104, T25813, AA6233, AA680527, A080006, A1060259, D19608, T50162, T59495, F13766, AA69437, MERST, NSW775, AK6951, WOSST3, W86223, W86223, AA101268, AA877981, D79871, D81890, AA206735, AA205181, AA20525, AA20539, AA447456, AA454967, AA454966, AA778364, AA77084, T98020, D21013, Z38951, Z45683, T27408, T37472, P60430, P49722.
			Preferably excluded from the present invention are one or more polymeteotides comprising a nucleotide sequence described by the general formula of a.b., where a is any integer between 1 to 2031 of the 200 ID NO.24/b. is an imager of 1 to 2030, a where both as and be formerspond to the positions of mucleotide residues shown in SEQ ID No.24/b.
			841353

	NO:749, and where b is greater than or equal to a + 14.	
841354	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	H08639, W86219, AA136665, AA136781, AA256507, AA256508, AA603334, AA830237, AA978040, AA987352, AA733094,
	general formula of a-b, where a is any integer between 1 to 1130 of	T10254, Z40940
	SEQ ID NO:750, b is an integer of 15 to 1144, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID NO-750 and where h is orester than or equal to a + 14.	
841360	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1584 of	
	SEQ ID NO:751, b is an integer of 15 to 1598, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:751, and where b is greater than or equal to a + 14.	
841366	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1471 of	
	SEQ ID NO:752, b is an integer of 15 to 1485, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:752, and where b is greater than or equal to a + 14.	
841405	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1742 of	
	SEQ ID NO:753, b is an integer of 15 to 1756, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:753, and where b is greater than or equal to a + 14.	
841526	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1781 of	
	SEQ ID NO:754, b is an integer of 15 to 1795, where both a and b	
	correspond to the positions of nucleotide residues shown in SEQ ID	
	NO:754, and where b is greater than or equal to a + 14.	
841712	Preferably excluded from the present invention are one or more	
	polynucleotides comprising a nucleotide sequence described by the	
	general formula of a-b, where a is any integer between 1 to 1266 of	
	SEO ID NO:755, b is an integer of 15 to 1280, where both a and b	

	correspond to the positions of nucleotide residues shown in SEQ ID NO:755, and where b is greater than or equal to a + 14.	
841860	Preferably excluded from the present invention are one or more proprulechades comprising a mobeolide sequence described by the general formula of e.b., where a sia my integer between 1 to 3651 of SEQ ID NO.756, b is an integer of 15 to 3665, where both a and b recreaspond to the positions of mobeolide residates shown in SEQ ID NO.756, and where b is greater than or equal to a + 14.	
842042	Preferably excluded from the present invention are one or more polymetochades constrained by the polymetochades copromising a moterable asset formula of a-b, where a is any integer between 1 to 1207 of SEQ ID NO/57, b is an integer of 15 to 1221, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO/57, and where b is greater than or equal to a + 14.	R27775, R80938, R81040, H25849, H30556, H39898, H44685, H86421, H853-4, H88768, H97623, N20020, N24066, N27150, N34137, N14869, AA013261, AA018222, AA056554, AA075594, AA11995, AA176737, AA196064, AA514335, AA731163, AA73204, AA76198, AAA871155, AA887521, AA887647, AA791592, A101780, C03891, AA648526, AA411503, AA896018, T03509, T11362, P00065
842453	Preferably excluded from the present invention are one or more populue-decides comprising a moleculie sequence described by the general formula of a-b, where a is any integer between 1 to 617 of SEQ ID NO.758, b is an integer of 15 to 631, where both a and b correspond to the positions of meleoutide residues shown in SEQ ID NO.758, and where b is greater than or equal to a + 14.	
842635	Preferably excluded from the present invention are one or more polyomichedise coungrising an altologide sequence described by the general formula of a-b, where a is any integer between 1 to 2482 of SEQ ID NO.759, b is an integer of 15 to 2496, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.759, and where b is greater than or equal to a + 14.	
842927	Preferably excluded from the present invention are one or more polyometerides comprising a melotide sequence described by the general formula of a-b, where a is any integer between 1 to 2024 of SEQ ID NO:760, b is an integer of 15 to 2048, where both a and b recreaspond to the positions of nucleotide residues shown in SEQ ID NO:760, and where b is greater than or equal to a + 14.	R0931, 179454, R02759, R86215, H39062, AA193428, AA193451, AA235140, Z45646
842988	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the	R18558, R33656, R33770, R41425, R41425, R62291, R62292, H00771, H03451, H03535, H11769, H12026, H16764, H16873,

	general formula of a-b, where a is any integer between I to 1743 of SEQ ID NO7761, b is an integer of 15 of 1757, where both a and b correspond to the positions of meleotide residues shown in SEQ ID NO7761, and where b is greater than or equal to a + 14.	HES402, HES403, HES761, HES802, HE6831, N27708, N33053, N35107, N36527, N48776, N62848, N77755, M48862, W48754, AA016281, AAA040052, AA045094, AA151597, AA19477, AA304776284, AA305086, AA421931, AA458926, AA805058, AA451459, AA805268, AA451459, AA805268, AA946706, A0107010, D80611, D80610, D70660, Z7842, C. C. 1502, AA428166, AA446595, AAA452707, AA711, S2842, C. C. 1502, AA428166, AA446595, AA462707, AA711, ZSA92, C. AA7051, AA711, AA7107, AA
843080	Preferably excluded from the present invention are one or more populeciotide comprising a unbelondie sequence described by the general formula of a.b., where a is any integer between 1 to 4434 of SEQ ID NO:762, b is an integer of 15 to 4448, where both a and b recreapend to the positions of moleculeit residences shown in SEQ ID NO:762, and where b is greater than or equal to a + 14.	
843237	Preferably excluded from the present invention are one or more populated to comprising a mote or more populated source and source as is any unegar between 10 2876 of SEQ ID NO.763, b is an integer of 15 to 2890, where both a and b correspond to the positions of moteoride residues shown in SEQ ID NO.763, and where b is greater than or equal to a + 14.	
843381	Preferably excluded from the present invention are one or more populated to comprising a melocitie sequence described by the general formula of a-b, where a is any megar between 1 to 1689 of SEQ ID NO:764, b is an integer of 15 of 1703, where both a and b recreasing the positions of nucleotide residues shown in SEQ ID NO;764, and where b is genater than or equal to a + 14.	
843718	Preferably excluded from the present invention are one or more populated to comparing a melocitie sequence described by the general formula of a-b, where a is any integer between 1 to 248 of SEQ ID NO.765, b is an integer of 15 to 262, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.765, and where b is generate than or equal to a + 14.	
843823	Preferably excluded from the present invention are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 3058 of	

	SEQ ID NO:766, b is an integer of 15 to 3072, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:766, and where h is oreater than or ental 10 a + 14.	
844056	Prefetably excluded from the present invention are one or more properties by excluded from the present invention are one or more propule-closide source described by the general formula of a-b, where a is any integer between 1 to 1307 of SEQ ID NQ-767, b is an integer of 15 to 1321, where both a and b NO-767 and where by the presence of the presence	
844325	or more ribed by the 1 to 1518 of oth a and b n in SEQ ID	H13033, H19108, W17353
844344	Preferably excluded from the present invention are one or more populacionide comprising an uncloude sequence described by the general formula of a-b, where a is any integer between 1 to 2555 of SEQ ID NO.769, b is an integer of 15 to 2569, where both a and b recorporation the positions or interoclude residues shown in SEQ ID NO.769, and where b is greater than or equal to a + 14.	
844368	Prefearbly excluded from the present invention are one or more populated interpretation are one or more approximediate comprising a metoricule sequence described by the general formula of a-b, where a is any integer between 1 to 1623 of SEQ ID NO.770, b is an integer of 15 to 1637, where both a and b servergoard to the positions of incloude residues shown in SEQ ID NO.770, and where b is greater than or equal to a + 14.	
844408	the of D	2625739, R25848, R26558, R36046, R78347, R4332, R43324, R43324, R43324, R43324, R43324, R43324, R43230, R43046, R75714, AA010818, AA122109, AA122109, AA12324, AA152349, AA152349, AA4158712, L486273, AA595813, AA612911, AAA72347, AA959517, CO4219, AA018291, AA442061, AA442163, AA732417, AA923788, T198807, A0138239, A1051425, Z35949, R03166, F06863, F06899, F10884
844508	Preferably excluded from the present invention are one or more	AA043997

ribed by the lio 418 of lio 418 o	norm SEQ ID To more R22590, H92298, W04657, W31581, W37780, W39080 To more hips by the rip 1005 of rip 1 10 1005 of with and b with seq ID	cor more 1792139, 1793;66, 79488; 719433, 18.1017, 18.17377, 18.2556, 18.1016. ptp. 18.2546, 179485, 719485, 719483, 719481, 28.1016. ptp. 18.2546, 18.1016. ptp. 18.2546, 18.1016. ptp. 18.2546, 18.1016. ptp. 18.2546, 18.25466, 18.25466, 18.2546, 18.25466, 18.2546, 18.25466, 18.25466, 18.25466, 18.25466, 18.2
polymucleotides comprising a nucleotide sequence described by the greenel formula of a.b., where is any nineger between 1 to 418 of SEQ ID N0.772, be an integer of 15 to 432, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID N0.772, and where b is general runn or equal to a + 1-4. Preferably excluded from the present invention are one or more population of the positions of any properties or any or any properties or the position of the position of the present invention are one or more peneral formula of a-b, where a is any integer between 1 to 1034 of SEQ ID N0.773, b is an integer of 15 to 1048, where both a and b.	correspond to the positions of melectivide resulted shown in BKU ID NO.773, and where b is greater than or equal to a + 14. Preferably excluded from the present invention are one or more polynucleorides comprising a mulecitide sequence described by the general formula of a b, where a is any integer between 10 1005 of SEQ ID NO.774, b is an integer of 15 to 1019, where both a and b No.774 and when by integer of 15 to 1019, where both a and b No.774 and when by integer of 15 to 1019, and a set of the No.774 and when by integer of 15 to 1019, and a set of the No.774 and when by integer of 15 to 1019, and a set of the No.774 and when by integer between the No.774 and when by integer between the set of the No.774 and when by integer between the No.774 a	Preferably excluded from the present invention are one or more populated or comparing a melocide sequence described by the general formula of a-b, where a is any integer between 1 to 2234 of SEQ ID NO.775, b is an integer of 15 to 2248, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO.775, and where b is greater than or equal to a + 14.
844867	845000	845281

		A1034036, A1056096, T16991, T23523, T19071, F01728, F02334, F05468, F06081, F04719, F08503
845288	Preferably excluded from the present invention are one or more polyuniclorides comprising a unbendite sequence described by the general formula of a.b., where a is any integer between 1 to 1591 of SEQ ID NO-776, b is an integer of 15 to 1605, where both a and b correspond to the positions of moberoider residences shown in SEQ ID NO-776, and where b is greater than or equal to a + 14.	
845750	Preferably excluded from the present invention are one or more polyomicodies comprising a microdies equence described by the general formula of a-b, where a is any integer between 1 to 1794 of SEQ ID NO-777, b is an integer of 15 to 1808, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO-777, and where b is greater than or equal to a + 14.	FISHERS, TS417, TS9162, TS9200, TG736, TG810, RI3390, RT1878, H71816, H71811, H78311, H78458, F99330, H93493, MR19824, MR19808, MR19712, WZ5908, WZ5905, WZ5908, WZ5905, WZ5908, WZ5905, WZ5908, WZ5907, WS9081, WZ69057, AM104057, AM104058, AM04586, AA42592, AA52929, AA262985, AA42592, AA52928, AA45292, AA52815, AA52317, AA614644, AA617675, AA62592, AA26298, C05394, C05392, C05392, AA26275, AA26275, AA26275, AA26275, AA26275, AA26275, AA26275, AA462911, AA411366, AA411367, AA4411367, AA4411367, AA4411367, AA4411367, AA441367, AA462841, AA67288, C05398, C06398, C06398, C06398, C06398, C06398, C06398, C06398, C06398, C06398, C06388, AA411367, AA4411367, AA481367, AA481367, AA6888, T16907, T1696, D31140, D31471, P02456, P32921, P02975, P06184, P706659
845809	Preferably excluded from the present in vention are one or more polyunicevides comprising an includie sequence described by the general formula of a-b, where a is any integer between 1 to 1470 of SEQ ID NO-778, b is an integer of 15 to 1484, where both a and b correspond to the positions of muleutide residues shown in SEQ ID NO-778, and where b is greater than or equal to a + 14.	
846077	Preferably excluded from the present invention are one or more polyunic bedate comprising a nucleotide sequence described by the general formula of a-b, where a is any integer between 1 to 1329 of SEQ ID NO-779, b is an integer of 15 to 1343, where both at and b correspond to the positions of nucleotide residues shown in SEQ ID NO-779, and where b is greater than or equal to a + 14.	

Polynucleotide and Polypeptide Variants

[0055] The present invention is directed to variants of the polynucleotide sequence disclosed in SEQ ID NO:X or the complementary strand thereto, and/or the cDNA sequence contained in a cDNA clone contained in the deposit.

[0056] The present invention also encompasses variants of the prostate and prostate cancer polypeptide sequence disclosed in SEQ ID NO:Y, a polypeptide sequence encoded by the polynucleotide sequence in SEQ ID NO:X, and/or a polypeptide sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

[0057] "Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

The present invention is also directed to nucleic acid molecules which [0058] comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, the nucleotide coding sequence in SEQ ID NO:X or the complementary strand thereto, the nucleotide coding sequence of the related cDNA contained in a deposited library or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID NO:Y, a nucleotide sequence encoding a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a nucleotide sequence encoding the polypeptide encoded by the cDNA in the related cDNA contained in a deposited library, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polypeptides encoded by these nucleic acid molecules are also encompassed by the invention. In another embodiment, the invention encompasses nucleic acid molecules which comprise or alternatively consist of, a polynucleotide which hybridizes under stringent hybridization conditions, or alternatively, under low stringency conditions, to the nucleotide coding sequence in SEQ ID NO:X, the nucleotide coding sequence of the related cDNA clone contained in a deposited library, a nucleotide sequence encoding the polypeptide of SEQ ID NO:Y, a nucleotide sequence encoding a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a nucleotide sequence encoding the polypeptide encoded by the cDNA in the related cDNA clone contained in a deposited library, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.

In present invention is also directed to polypeptides which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to, for example, the polypeptide sequence shown in SEQ ID NO:Y, a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the cDNA in the related cDNA clone contained in a deposited library, and/or polypeptide fragments of any of these polypeptides (e.g., those fragments described herein). Polynucleotides which hybridize to the complement of the nucleic acid molecules encoding these polypeptides under stringent hybridization conditions, or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.

"identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleit acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be, for example, an entire sequence referred to in Table 1, an ORF (open reading frame), or any fragment specified as described herein.

[0061] As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the present invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245

(1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. In another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case

the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 80%, [0065] 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence in SEQ ID NO:Y or a fragment thereof, the amino acid sequence encoded by the nucleotide sequence in SEQ ID NO:X or a fragment thereof, or the amino acid sequence encoded by the cDNA in the related cDNA clone contained in a deposited library, or a fragment thereof, can be determined conventionally using known computer programs. A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci.6:237- 245(1990)). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, ktuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-[0066] terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C- terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a [0067] 100 residue query sequence to determine percent identity. The deletion occurs at the Nterminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

[0068] The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which less than 50, less than 40, less than 30, less than 10, or 5-50, 5-25, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

[0069] Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, as discussed herein, one or more amino acids can be deleted from the N-terminus or C-terminus of the polypeptide of the present invention without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

[0071] Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid

position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, as discussed herein, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

[0073] Thus, the invention further includes polypeptide variants which show a functional activity (e.g., biological activity) of the polypeptide of the invention of which they are a variant. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity.

10074] The present application is directed to nucleic acid molecules at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein or fragments thereof, (e.g., including but not limited to fragments encoding a polypeptide having the amino acid sequence of an N and/or C terminal deletion), irrespective of whether they encode a polypeptide having functional activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having functional activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having functional activity include, inter alia, (1) isolating a gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); and (3) Northern Blot analysis for

detecting mRNA expression in specific tissues.

[0075] Preferred, however, are nucleic acid molecules having sequences at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein, which do, in fact, encode a polypeptide having a functional activity of a polypeptide of the invention.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, for example, the nucleic acid sequence of the cDNA in the related cDNA clone contained in a deposited library, the nucleic acid sequence referred to in Table 1 (SEQ ID NO:X), or fragments thereof, will encode polypeptides "having functional activity." In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having functional activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

[0077] For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

[0078] The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

the second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are [0080] surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly. Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

[0081] For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins

et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

100821 A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions. Of course it is highly preferable for a polypeptide to have an amino acid sequence which comprises the amino acid sequence of a polypentide of SEO ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X, and/or the amino acid sequence encoded by the cDNA in the related cDNA clone contained in a deposited library which contains, in order of ever-increasing preference, at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions. In specific embodiments, the number of additions, substitutions, and/or deletions in the amino acid sequence of SEQ ID NO:Y or fragments thereof (e.g., the mature form and/or other fragments described herein), an amino acid sequence encoded by SEQ ID NO:X or fragments thereof, and/or the amino acid sequence encoded by the cDNA in the related cDNA clone contained in a deposited library or fragments thereof, is 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, conservative amino acid substitutions are preferable.

Polynucleotide and Polypeptide Fragments

The present invention is also directed to polynucleotide fragments of the prostate and prostate cancer polynucleotides (nucleic acids) of the invention. In the present invention, a "polynucleotide fragment" refers, for example, to a polynucleotide having a nucleic acid sequence which: is a portion of the cDNA contained in a deposited cDNA clone; or is a portion of a polynucleotide sequence encoding the polypeptide encoded by the cDNA contained in a deposited cDNA clone; or is a portion of the polynucleotide sequence in SEQ ID NO:X or the complementary strand thereto; or is a polynucleotide sequence encoding a portion of the polypeptide of SEQ ID NO:Y; or is a polynucleotide sequence encoding a portion of a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto. The nucleotide fragments of the invention are preferably at least about 15 nt, and more preferably at least about 20 nt, still more

preferably at least about 30 nt, and even more preferably, at least about 40 nt, at least about 50 nt, at least about 75 nt, at least about 100 nt, at least about 125 nt or at least about 150 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from, for example, the sequence contained in the cDNA in a related cDNA clone contained in a deposited library, the nucleotide sequence shown in SEQ ID NO:X or the complementary stand thereto. In this context "about" includes the particularly recited value or a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides. These nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., at least 150, 175, 200, 250, 500, 600, 1000, or 2000 nucleotides in length) are also encompassed by the invention.

Moreover, representative examples of polynucleotide fragments of the F00841 invention, include, for example, fragments comprising, or alternatively consisting of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551- $1600,\,1601\text{-}1650,\,1651\text{-}1700,\,1701\text{-}1750,\,1751\text{-}1800,\,1801\text{-}1850,\,1851\text{-}1900,\,1901\text{-}1950,$ $1951\text{-}2000,\ 2001\text{-}2050,\ 2051\text{-}2100,\ 2101\text{-}2150,\ 2151\text{-}2200,\ 2201\text{-}2250,\ 2251\text{-}2300,\ 2301\text{-}2250,\ 2251\text{-}2300,\ 2301\text{-}2250,\ 2251\text{-}2300,\ 2301\text{-}2250,\ 2251\text{-}2300,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301\text{-}2301,\ 2301,\ 2301\text{-}2301,\ 2301,\$ $2350,\,2351\text{-}2400,\,2401\text{-}2450,\,2451\text{-}2500,\,2501\text{-}2550,\,2551\text{-}2600,\,2601\text{-}2650,\,2651\text{-}2700,$ 2701-2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051- $3100,\, 3101\text{-}3150,\, 3151\text{-}3200,\, 3201\text{-}3250,\, 3251\text{-}3300,\, 3301\text{-}3350,\, 3351\text{-}3400,\, 3401\text{-}3450,\, 3351\text{-}3400,\, 3401\text{-}3450,\, 3401\text{-}3450$ 3451-3500, 3501-3550, and 3551 to the end of SEQ ID NO:X, or the complementary strand thereto. In this context "about" includes the particularly recited range or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has a functional activity (e.g., biological activity) of the polypeptide encoded by the polynucleotide of which the sequence is a portion. More preferably, these fragments can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides or fragments.

Moreover, representative examples of polynucleotide fragments of the [0085] invention, include, for example, fragments comprising, or alternatively consisting of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, 701-750, 751-800, 800-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101-1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501-1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901-1950, 1951-2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301-2350, 2351-2400, 2401-2450, 2451-2500, 2501-2550, 2551-2600, 2601-2650, 2651-2700, 2701-2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051-3100, 3101-3150, 3151-3200, 3201-3250, 3251-3300, 3301-3350, 3351-3400, 3401-3450, 3451-3500, 3501-3550, and 3551 to the end of the cDNA nucleotide sequence contained in the deposited cDNA clone, or the complementary strand thereto. In this context "about" includes the particularly recited range, or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has a functional activity (e.g., biological activity) of the polypeptide encoded by the cDNA nucleotide sequence contained in the deposited cDNA clone. More preferably, these fragments can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these fragments under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides or fragments.

In the present invention, a "polypeptide fragment" refers to an amino acid sequence which is a portion of that contained in SEQ ID NO:Y, a portion of an amino acid sequence encoded by the polynucleotide sequence of SEQ ID NO:X, and/or encoded by the cDNA contained in the related cDNA clone contained in a deposited library. Protein (polypeptide) fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, an amino acid sequence from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-320, 321-340,

341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501-520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701-720, 721-740, 741-760, 761-780, 781-800, 801-820, 821-840, 841-860, 861-880, 881-900, 901-920, 921-940, 941-960, 961-980, 981-1000, 1001-1020, 1021-1040, 1041-1060, 1061-1080, 1081-1100, 1101-1120, 1121-1140, 1141-1160, 1161-1180, and 1181 to the end of SEQ ID NO:Y. Moreover, polypeptide fragments of the invention may be at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about" includes the particularly recited ranges or values, or ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either terminus or at both termini. Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.

[0087] Even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities, ability to multimerize, ability to bind a ligand) may still be retained. For example, the ability of shortened muteins to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted N-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response.

[0088] Accordingly, polypeptide fragments of the invention include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any

combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotides encoding these polypeptide fragments are also preferred.

The present invention further provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X, and/or a polypeptide encoded by the cDNA contained in the related cDNA clone contained in a deposited library). In particular, N-terminal deletions may be described by the general formula m-q, where q is a whole integer representing the total number of amino acid residues in a polypeptide of the invention (e.g., the polypeptide disclosed in SEQ ID NO:Y), and m is defined as any integer ranging from 2 to q-6. Polynucleotides encoding these polypeptides are also encompassed by the invention.

Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities, ability to multimerize, ability to bind a ligand) may still be retained. For example the ability of the shortened mutein to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted C-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response.

[0091] Accordingly, the present invention further provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X, and/or a polypeptide encoded by the cDNA contained in deposited cDNA clone referenced in Table 1). In particular, C-terminal deletions may be described by the general formula 1-n, where n is any whole integer ranging from 6 to q-1, and where n corresponds to the position of an amino acid

residue in a polypeptide of the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention.

[0092] In addition, any of the above described N- or C-terminal deletions can be combined to produce a N- and C-terminal deleted polypeptide. The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of a polypeptide encoded by SEQ ID NO:X (e.g., including, but not limited to, the preferred polypeptide disclosed as SEQ ID NO:Y), and/or the cDNA in the related cDNA clone contained in a deposited library, where n and m are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.

Any polypeptide sequence contained in the polypeptide of SEQ ID NO:Y, encoded by the polynucleotide sequences set forth as SEQ ID NO:X, or encoded by the cDNA in the related cDNA clone contained in a deposited library may be analyzed to determine certain preferred regions of the polypeptide. For example, the amino acid sequence of a polypeptide encoded by a polynucleotide sequence of SEQ ID NO:X, or the cDNA in a deposited cDNA clone may be analyzed using the default parameters of the DNASTAR computer algorithm (DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715 USA: http://www.dnastar.com/).

Polypeptide regions that may be routinely obtained using the DNASTAR computer algorithm include, but are not limited to, Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions, Chou-Fasman alpha-regions, beta-regions, and turn-regions, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Eisenberg alpha- and beta-amphipathic regions, Karplus-Schulz flexible regions, Emini surface-forming regions and Jameson-Wolf regions of high antigenic index. Among highly preferred polynucleotides of the invention in this regard are those that encode polypeptides comprising regions that combine several structural features, such as several (e.g., 1, 2, 3 or 4) of the features set out above.

[0095] Additionally, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Emini surface-forming regions, and Jameson-Wolf regions of high antigenic index (i.e., containing four or more contiguous amino acids having an antigenic index of greater than or equal to 1.5, as identified using the default parameters of the Jameson-Wolf program) can routinely be used to determine polypeptide regions that exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from data by DNASTAR analysis by choosing values which represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.

[0096] Preferred polypeptide fragments of the invention are fragments comprising, or alternatively consisting of, an amino acid sequence that displays a functional activity of the polypeptide sequence of which the amino acid sequence is a fragment.

[0097] By a polypeptide demonstrating a "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein of the invention. Such functional activities include, but are not limited to, biological activity, antigenicity [ability to bind (or compete with a polypeptide for binding) to an anti-polypeptide antibody], immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.

[0098] Other preferred polypeptide fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

[0099] In preferred embodiments, polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the antigenic fragments of the polypeptide of SEQ ID NO:Y, or portions thereof. Polynucleotides encoding these polypeptides are also encompassed by the invention.

TABLE 4

Sequence/ Contig ID	Epitopes
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 941 as residues: Ala-10 to Asp-18, Asp-20 to Cys-27, Cys-44 to Gly-52, Pro-57 to Ser-62, Pro-65 to His-72, Gln-88 to Asp-94, Pro-118 to Thr-127, Pro-129 to Thr-143, Tyr-156 to Tyr-165, Pro-167 to Leu-172, Cys-180 to Asp-185.
637706	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 942 as residues: Arg-1 to Glu-6, Lys-11 to Val-24, Pro-27 to Gln-36, Glu-49 to Gly-54, His-59 to Gly-73, Thr-86 to Ala-97, Pro-104 to Gly-13, Asp-137 to Asp-160, Arg-177 to Asn-195, Leu-203 to Asn-212, Asn-219 to Thr-231, Lys-238 to Tyr-247, Glu-249 to Asn-254, Met-269 to Asp-303, Ser-328 to Ser-336.
684310	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 944 as residues: Ala-13 to Arg-20, Glu-25 to Arg-40.
731016	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 945 as residues: Gly-13 to Leu-20, Gly-40 to Ala-45.
827771	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 946 as residues: Ala-11 to Glu-16.
828193	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 947 as residues: Gly-1 to Gly-9, Ala-15 to Ala-21.
828194	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 948 as residues: Pro-45 to Trp-53.
828199	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 949 as residues: Gly-38 to Ser-44, Leu-123 to Trp-138, His-149 to Pro-154.
828221	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 950 as residues: Lys-32 to Leu-41, Arg-119 to Tyr-124, Pro-197 to Arg-204, Asp-236 to Lys-242, Ala-290 to Tyr-296, Thr-320 to Arg-331, Asp-337 to Val-343, His-358 to Gly-368, Thr-419 to Glin-424.
828235	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 951 as residues: Pro-74 to Arg-82.
828236	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 952 as residues: Lys-10 to Gly-15, Pro-22 to Ser-27, Lys-38 to Glu-63, Lys-74 to Val-87, Met-89 to Glu-123, Lys-130 to Glu-196, Val-201 to Ala-207, Arg-251 to Lys-256, Glu-271 to Arg-279, Pro-317 to Asn-327, Lys-382 to Gln-390, Tyr-409 to Glu-415.
828237	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 953 as residues: Ala-6 to Arg-20, Glu-33 to Lys-40, Gln-45 to Leu-50, Arg-52 to Gln-72, Leu-78 to Gln-94, Gln-105 to Gln-114.
828242	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 955 as residues: Thr-1 to Trp-9, Pro-26 to Ala-32, Gly-58 to Arg-68, Gln-73 to Thr-99, Ala-191 to Asp-196, Glu-225 to Glu-234.
828248	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 957 as residues: Lys-21 to Glu-27, Thr-84 to Asp-89, His-103 to Val-109.
828250	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 958 as residues: Glu-106 to Ser-111.
828256	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 959 as residues: Gly-44 to Trp-49, Pro-90 to Ser-95, Tyr-133 to Lys-142, Trp-223 to Gly-242.
828267	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 960 as residues: Pro-1 to His-11, Arg-36 to Gly-52, Arg-62 to Gly-73, Gly-85 to Leu-96, Pro-112 to Gly-117, Ser-130 to Gly-138.
828272	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 962 as residues: Glu-1 to Gly-13, Ser-58 to Phe-65, Thr-118 to Gly-131, Gly-139 to Arg-157.
828273	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 963 as residues: Ser-1 to Pro-6, Gln-38 to Arg-43.
828290	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 964 as

	residues: Trp-61 to Cys-67.
828326	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 965 as
020320	residues: Arg-2 to Gln-11, Ala-17 to Ser-24, Arg-45 to Arg-58, Pro-60 to Gly-67, Ser-86 to
	Thr-92, Asn-143 to Leu-158.
828397	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 966 as
828391	
000 10 5	residues: Arg-18 to Arg-33.
828405	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 967 as
	residues: Ser-50 to Leu-57, Ser-88 to Ser-99, Glu-104 to Val-112, Glu-122 to Val-127, Ile-
	152 to Asp-157.
828461	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 968 as
	residues: Ala-3 to Ala-16, Leu-25 to Pro-44, Ser-82 to Leu-88, Pro-91 to Arg-99, Pro-110 to
	Glu-118, Ile-120 to Lys-136, Cys-142 to Leu-149, Glu-156 to Leu-167, Arg-169 to Arg-180
	Gly-197 to Pro-212, Arg-269 to Leu-283.
828482	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 969 as
	residues: Glu-1 to Ser-7.
828491	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 971 as
	residues: Arg-42 to Asn-48.
828492	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 972 as
	residues: Pro-28 to Lys-33, Arg-41 to Glu-47.
828494	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 973 as
	residues: Phe-24 to Val-32, Arg-49 to Val-55, Tyr-59 to Glu-68, Leu-72 to Asn-80.
828496	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 974 as
020470	residues: Gly-1 to Arg-8, Ser-17 to Arg-22, Arg-41 to Leu-47, Lys-49 to Lys-57, Leu-66 to
	Arg-73, Glu-94 to Thr-104, Arg-117 to Leu-126, Lys-184 to Asn-193, Glu-197 to Arg-216.
828498	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 975 as
020490	residues: Glu-62 to Leu-68, Ile-104 to Ser-111.
828504	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 976 as
828304	residues: Ser-14 to Pro-21.
828512	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 978 as
020312	residues: Asn-26 to Gln-36, Val-48 to Asp-62, Lys-112 to Ser-123, Val-127 to Phe-132,
	Phe-139 to Asp-151, Val-158 to Glu-180.
828516	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 979 as
020310	residues: Gly-14 to Gly-20, Ala-22 to Ala-33, Arg-83 to Thr-88, Arg-100 to Leu-105, Lys-
	130 to Lvs-141.
828519	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 980 as
828319	residues: Gly-7 to Pro-13, His-20 to Ala-25.
828521	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 981 as
828321	
200500	residues: Asn-13 to His-19, Ser-37 to Arg-45.
828522	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 982 as
	residues: Lys-12 to Glu-19, Glu-38 to Gly-43, Pro-82 to Lys-93.
828525	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 983 as
	residues: Pro-23 to Pro-30, Ala-59 to Ser-64, Pro-84 to Thr-93, Pro-135 to Gly-140.
828529	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 984 as
	residues: Ser-15 to Gln-20, Gln-92 to Phe-113, Thr-141 to Gly-146, Val-153 to Thr-158.
828530	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 985 as
	residues: Pro-5 to Gln-15, Lys-23 to Leu-32.
828536	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 986 as
	residues: His-28 to Glu-34.
828537	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 987 as
	residues: Ile-28 to Leu-33, Gln-42 to Ser-52, Ser-54 to Trp-59.
828539	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 988 as
	residues: Ala-1 to Leu-9, Ser-19 to Thr-31.
828540	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 989 as
	residues: Arg-1 to Lys-12, Gly-17 to 1le-23.
828543	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 991 as
	residues: Ala-13 to Gln-20, Asp-33 to Asn-39.

828544	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 992 as residues: Val-15 to Asp-21.
828551	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 995 as residues: Met-12 to Pro-17.
828560	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 998 as residues: Val-8 to Arg-17.
828561	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 999 as residues: Asn-7 to Gly-20, Thr-32 to Tyr-37, Arg-57 to Gly-66.
828565	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1000 as residues: Arg-1 to Asn-18.
828566	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1001 as residues: Arg-41 to His-50, Lys-52 to Thr-60.
828567	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1002 as residues: Gln-7 to Cys-12, Pro-20 to Lys-30.
828568	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1003 as residues: Pro-10 to Glu-20, Asn-29 to Trp-37, Ala-44 to Arg-51, Gln-69 to Gly-79.
828570	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1005 as residues: Ser-16 to Leu-24.
828571	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1006 as residues: Leu-1 to Gln-17.
828574	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1007 as residues: Pro-117 to Lys-134, Gln-136 to Trp-143.
828575	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1008 as residues: Lys-6 to Ala-13.
828578	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1010 as residues: Gly-72 to Asp-81, Cys-89 to Gly-100, Lys-107 to Arg-114, Lys-119 to Gln-126, Arg-140 to Ser-160.
828580	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1011 as residues: Pro-1 to Ala-7, Lys-54 to Gln-68, Leu-81 to Gln-93.
828581	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1012 as residues: Glu-13 to Ser-21, Glu-31 to Glu-37, Lys-53 to Ala-60.
828583	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1013 as residues: Gln-1 to Gly-7, Thr-22 to Gly-31.
828585	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1014 as residues: Leu-28 to His-34.
828587	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1015 as residues: Gln-1 to Lys-8, Ser-25 to Phe-38, Thr-79 to Val-90, Arg-118 to Glu-125.
828592	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1017 as residues: Gln-12 to Gln-17, Arg-43 to Gln-49, Lys-62 to Lys-67, Glu-78 to Gly-83.
828594	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1019 as residues: Glu-9 to Gln-18.
828596	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1020 as residues: Thr-1 to His-8.
828597	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1021 as residues: Gln-12 to Trp-17, Asp-83 to Ile-97, Gln-99 to Asp-104, Thr-210 to Ser-216, Arg-279 to Thr-296.
828598	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1022 as residues: Thr-1 to Ser-7.
828601	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1023 as residues: Ile-1 to Trp-10, Thr-32 to Ser-38, Pro-49 to Gly-56, Ser-78 to Arg-83, Phe-113 to Arg-122, Leu-156 to Asp-173.
828605	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1024 as residues: Arg-6 to Pro-12.
828608	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1025 as residues: Arg-52 to Ile-59, Asp-65 to Phe-76, Lys-96 to Leu-102.
828609	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1026 as

	residues: Gly-29 to Gly-36, Lys-105 to Thr-112, Phe-134 to Asn-145, Pro-182 to Gly-190.
828610	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1027 as residues: Pro-49 to Asp-58, Lys-60 to Ile-66, Ser-68 to Glu-76, Val-95 to Asn-101, Lys-114 to Thr-124.
828617	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1028 as residues: Ser-14 to Arg-22, Leu-24 to Cys-30, Pro-35 to Gly-40.
828620	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1029 as residues: Leu-2 to Arg-10, Ala-57 to Lys-64, Lys-81 to Leu-88, Tyr-160 to Pro-169, Met-203 to Asp-216.
828623	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1032 as residues: His-38 to His-44.
828625	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1033 as residues: Ile-19 to Asn-28.
828635	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1035 as residues: Arg-3 to Arg-10.
828637	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1036 as residues: Asp-9 to Cys-15.
828639	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1037 as residues: Pro-13 to His-20.
828645	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1038 as residues: Glu-1 to Gly-10, Lys-18 to Arg-41, Ala-55 to Pro-65.
828648	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1039 as residues: Ala-12 to Asn-20, Pro-23 to Asn-28, Phe-47 to Val-52, Lys-88 to Gly-93, Tyr-11 to Asn-120.
828649	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1040 as residues: Pro-14 to Gln-29.
828651	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1041 as residues: Gly-2 to Lys-13.
828655	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1043 as residues: Val-13 to Trp-27.
828657	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1044 as residues: Glu-20 to Leu-30, Glu-79 to Gly-84, Asp-89 to Trp-96.
828660	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1045 as residues: Pro-37 to Thr-43.
828663	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1046 as residues: Ala-19 to Gly-24.
828666	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1047 as residues: His-54 to Gly-59.
828668	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1048 as residues: Pro-1 to Gly-12, Pro-30 to Leu-48.
828669	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1049 as residues: Pro-2 to Ser-7, Trp-27 to Lys-38.
828671	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1051 as residues: Asp-89 to Ile-94.
828672	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1052 as residues: Lys-16 to Ser-23.
828675	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1053 as residues: Lys-11 to His-16, Ala-26 to Ser-65.
828677	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1054 as residues: Pro-7 to Trp-13.
828678	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1055 as residues: Glu-188 to Arg-196.
828679	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1056 as residues: Asn-17 to Lys-23.
828680	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1057 as residues: Pro-7 to Glu-17, Ser-68 to Tyr-85, Ser-94 to Asn-101, Thr-122 to Arg-129, Ser-

	169 to Val-174.
828681	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1058 as residues: Asp-1 to Asp-19, Arg-27 to Leu-33.
828682	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1059 as residues: Pro-34 to Glu-39, Ala-41 to Gly-47, Glu-100 to Ser-111.
828683	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1060 as residues: Gly-7 to Val-14.
828686	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1061 as residues: Pro-15 to Glu-20, Gln-71 to Leu-84, Glu-86 to Ser-96, Glu-116 to Pro-121, Val-176 to Leu-196, Asn-216 to Ala-224.
828687	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1062 as residues: Glu-3 to Ala-13, Ile-22 to Ser-28.
828688	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1063 as residues: Asp-7 to Ala-15, Pro-34 to Ile-60, Gln-110 to Asn-117.
828689	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1064 as residues: Ser-74 to Met-96, Lev-108 to Trp-117, Gly-126 to Gly-131, Glu-161 to Asp-178 Lys-181 to Tyr-191, Arg-196 to Ser-202.
828692	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1065 as residues: Pro-73 to Thr-86, Ser-93 to Val-102, Ala-157 to Lys-162, Thr-169 to Lys-184, Asp-198 to Tyr-211.
828694	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1067 as residues: Thr-1 to Ala-10, Pro-18 to Arg-25, Ala-49 to Leu-56, Ser-104 to Arg-111.
828696	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1068 as residues: Ser-5 to Ser-10.
828699	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1070 as residues: Asp-7 to Val-17, Ala-21 to Ser-26.
828702	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1071 as residues: Val-14 to Gly-26, Ser-76 to His-87, Ile-127 to Phe-134, Pro-151 to Asn-157.
828703	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1072 as residues: Cys-58 to Ser-66.
828704	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1073 as residues: Thr-35 to Thr-42.
828706	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1074 as residues: Arg-1 to Glu-13.
828708	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1075 as residues: Asn-17 to Pro-27, Ser-46 to His-51, Leu-53 to Asp-60, Cys-62 to Ile-68.
828711	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1076 as residues: Asp-24 to Phe-31.
828712	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1077 as residues: Ser-44 to Lys-49, Glu-65 to Lys-76.
828713	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1078 as residues: Pro-1 to Asp-6, Arg-13 to Gly-26.
828714	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1079 as residues: Pro-24 to Glu-42, Gln-58 to Asp-64, Gln-80 to His-90, Pro-92 to Asp-103, Tyr-139 to Glu-133, Asp-162 to Asp-180, Glu-189 to Phe-200, Ser-203 to Gln-213, Glu-219 Gly-224, Lys-227 to Ser-236, Pro-241 to Asn-260, Phe-275 to Ser-281, Phe-305 to Asn-3 Gln-319 to Tyr-329, Thr-341 to Ser-357, Pro-360 to Cys-365, Trp-384 to Phe-398, Gln-40 to Lys-410.
828718	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1081 as residues: Asp-70 to Leu-85, Ser-195 to Arg-205, Arg-262 to Ala-268, Asn-270 to Ala-27
828728	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1084 as residues: Gly-12 to Val-19, Asp-38 to Gln-55, Gln-84 to Tyr-91, Gln-96 to Asp-102.
828730	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1085 as residues: Gly-142 to Arg-148, Ser-173 to Gln-178, Thr-202 to Ile-207, Leu-276 to Val-28 Pro-321 to Gly-353, Thr-355 to Gly-364, Glu-380 to Lys-385.

	residues: Leu-8 to Lys-29, Leu-79 to Glu-86, Asn-106 to Trp-113.
828733	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1087 as residues: Lys-26 to Lys-33.
828735	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1088 as
	residues: Ser-10 to Pro-21, Ser-94 to Ala-111, Ala-125 to Met-142, Pro-144 to Gln-150,
	Asp-194 to Asn-201, Val-216 to Arg-243.
828740	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1091 as residues: Asn-12 to Leu-21, Leu-23 to Ser-28.
828742	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1092 as residues: Ser-149 to Leu-158.
828748	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1093 as
	residues: Pro-21 to Lys-31, Glu-46 to Thr-52, Cys-93 to Trp-100, Glu-144 to Gln-150, Glr
	171 to Ser-180, Pro-205 to Trp-210, Ser-222 to Cys-228.
828752	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1095 as residues: Pro-23 to Gly-28, Ser-34 to Gly-39, Leu-44 to Arg-56, Gln-101 to Leu-112, Leu-119 to Ser-124, Lys-129 to Trp-138.
828753	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1096 as residues: Ile-1 to Gly-44.
828754	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1097 as residues: Leu-21 to Gln-27.
828757	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1098 as residues: Thr-27 to Arg-34, Tyr-40 to Trp-47, Thr-83 to Ser-90.
828761	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1099 as residues: Arg-1 to Gln-19.
828762	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1100 as residues: Phe-1 to Arg-11, Leu-48 to Lys-56.
828764	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1101 as residues: Asp-79 to Arg-84.
828765	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1102 as residues: Ala-5 to Ala-10.
828766	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1103 as residues: Gly-1 to Lys-10, Glu-21 to Leu-27, Ser-38 to Leu-43.
828768	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1105 as residues: Lys-39 to Lys-64.
828770	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1106 as residues: Ser-3 to Tyr-9.
828771	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1107 as residues: Ser-13 to Cys-21.
828772	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1108 as residues: Arg-28 to Asp-34.
828776	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1111 as residues: Pro-6 to Thr-13.
828784	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1118 as residues: Glu-6 to Leu-21, Ala-34 to Ala-40.
828785	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1119 as residues: Arg-53 to Ser-64.
828786	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1120 as residues: Thr-1 to Thr-16, Ser-32 to Lys-39.
828790	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1122 as residues: Pro-13 to Ala-21.
828791	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1123 as residues: Lys-1 to Cys-6.
828792	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1124 as residues: Arg-1 to Thr-7, Gln-12 to Gly-17.
828799	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1128 as residues: Thr-2 to Lys-8, Val-47 to Trp-52.

828802	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1130 as
	residues: Gly-41 to Met-47, Lys-59 to Arg-72.
828803	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1131 as
	residues: Arg-8 to Thr-14, Ala-51 to Ser-58, Ser-60 to Ser-79, Leu-97 to His-104.
828804	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1132 as
	residues: Lys-1 to Pro-12, Asn-43 to Lys-48.
828805	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1133 as
	residues: Glu-15 to Ser-20, Thr-28 to Arg-39.
828807	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1134 as
020007	residues: Glu-14 to Lys-19.
828821	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1142 as
020021	residues: Cys-9 to Leu-15, His-28 to Gly-36.
828825	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1145 as
040043	residues: Pro-38 to Pro-43.
828826	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1146 as
020020	residues: Ile-7 to Leu-15, Lys-18 to Ser-36, Thr-66 to Lys-72, Thr-91 to Tyr-97, Val-99 to
	Cys-106, Glu-154 to Lys-159, Glu-171 to Asn-176, Met-187 to Ser-192, Leu-203 to Gln-
	212.
828829	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1147 as
020007	residues: Ser-52 to Glu-58.
828835	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1150 as
	residues: Lys-89 to Ser-104.
828838	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1151 as
	residues: Arg-1 to Arg-11.
828840	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1152 as
	residues: Gly-32 to Gly-37.
828845	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1153 as
	residues: Asn-23 to Tyr-34.
828846	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1154 as
	residues: Ala-40 to Tyr-55, Glu-57 to Asn-66, Glu-74 to Asn-79.
828847	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1155 as
	residues: Gln-66 to Gly-77, Gly-86 to Ala-93.
828849	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1156 as
	residues: Arg-16 to Ser-25, Asp-97 to Pro-106, Pro-166 to Leu-176, Glu-271 to Gln-285,
	Thr-287 to Met-294, Ser-310 to Glu-316, Pro-330 to Gly-338, Phe-400 to Ser-415, Thr-425
	to Ser-433, Lys-453 to Pro-469.
828852	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1158 as
	residues: Val-33 to Ser-39.
828853	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1159 as
	residues: Pro-25 to Ser-31, Ser-34 to Gly-41.
828857	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1160 as
	residues: Lys-5 to Leu-10, Ser-20 to Glu-30, Leu-32 to Thr-37.
828861	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1161 as
	residues: Arg-33 to Phe-38, Arg-59 to Gly-64, Pro-100 to His-121, Arg-144 to Pro-162,
	Gln-213 to Thr-221, Pro-262 to Trp-268, Ala-292 to Phe-302, Pro-315 to Pro-323.
828866	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1162 as
	residues: Cys-1 to Gln-6, Gln-79 to Ala-89, Thr-96 to Leu-102.
828872	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1163 as
0200.2	residues: Gly-17 to Leu-40, Ala-47 to Phe-63, Glu-66 to Val-71, Ile-75 to His-92, Glu-112
	to Asn-119, Asp-122 to Arg-135, Asn-140 to Phe-152, Asn-160 to Arg-166.
828874	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1164 as
0200/4	residues: Arg-1 to Ala-34, Pro-41 to Pro-47, Pro-49 to Asp-57, Asn-99 to Ala-105, Met-107
	to Thr-112, Lys-118 to Ser-135, Glu-145 to Ile-156, Ala-202 to Lys-209, Lys-214 to Ile-220,
	Ala-224 to Ala-236, Ala-239 to Pro-248, Pro-260 to Lys-270, Lys-275 to Lys-300.
828875	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1165 as
020073	residues: Pro-17 to Gly-24, His-31 to Phe-36, Glu-72 to Val-79, Val-99 to Asp-104.
L	residues: 110-17 to Gly-24, 1118-31 to 1 10-30, Glu-72 to Val-72, Val-72 to Asp-104.

828878	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1167 as residues: Ser-33 to Asp-45, Thr-48 to Glu-53, Lys-70 to Glu-75, Phe-125 to Phe-131, Asp-216 to Ile-223, Met-244 to Thr-252, Asn-272 to Leu-281, Gln-314 to Lys-320, Ala-340 to Ser-348.
828879	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1168 as residues: Ser-1 to Arg-8.
828881	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1169 as residues: Arg-1 to Lys-8, Asp-184 to Gly-190, Pro-269 to Asp-274.
828885	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1170 as residues: Glu-6 to Gly-11, Gln-34 to Ala-41, Val-62 to Gly-69, Val-79 to Glu-92, Pro-95 to Asp-100, Lys-106 to Leu-123, Asp-178 to Asn-185, His-208 to Ser-213, Glu-224 to Val-231, Gly-233 to Lys-241, Ser-254 to Ser-265, Phe-279 to Ser-285, Asn-292 to Gly-307, Lys 311 to Gly-324.
828887	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1172 as residues: Aln-1 to Lys-6, Aln-55 to Ser-60, Tyr-65 to Tyr-70, Thr-75 to Pro-84, Ser-106 to Ser-111, Asn-121 to Arg-131, Glu-145 to Pro-150, Pro-156 to His-171, Ser-188 to Leu-196, Asp-231 to His-238, Ser-276 to Arg-281, Arg-298 to Glu-307, Glu-332 to Glu-339, Tyr-355 to Thr-362, Ala-381 to Ser-392, Glu-409 to Val-422.
828891	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1174 as residues: Pro-1 to Glu-18, Gly-26 to Pro-33, Pro-66 to Gly-75, Gln-105 to Val-110, Ser-128 to Pro-134, Glu-182 to Leu-187.
828899	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1175 as residues: His-1 to Arg-11, Ser-40 to Gln-49.
828907	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1176 as residues: Ser-21 to Asp-28, Pro-30 to Cys-38, Arg-98 to His-103, Asn-118 to Ile-136, Ser-153 to Typ-161, Arg-163 to Tyr-172, Thr-174 to Ser-181.
828917	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1179 as residues: His-1 to Gln-22, Thr-27 to Phe-38.
828921	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1180 as residues: Glu-1 to Glu-6.
828922	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1181 as residues: Thr-6 to Ser-21.
828926	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1184 as residues: Gly-108 to Tyr-117.
828928	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1185 as residues: Gln-7 to Trp-13, Pro-46 to Ala-55.
828930	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1186 as residues: Glu-73 to His-79, Gly-105 to Tyr-110, Asp-161 to Asn-166, Lys-187 to Gln-196, Tyr-200 to Leu-206, Glu-222 to Met-229, Ala-252 to Ser-267, Asn-314 to Trp-323, Gly-34 to Asn-352.
828937	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1188 as residues: Met-28 to Lys-33, Asp-40 to Ala-64, Tyr-72 to Lys-85, Thr-124 to Leu-131, Ala-148 to Tyr-155.
828940	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1189 as residues: Pro-23 to Gln-29, Ile-56 to Asn-61, Lys-69 to Lys-75.
828943	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1191 as residues: Val5 to Gly11, Gln-26 to Asp-36, Val93 to Lys-98, Lys-101 to Thr-124, Lys- [130 to Asp-141, Thr-163 to Lys-172, Ser-195 to Ala-200, Tyr-210 to Ile-220.
828946	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1192 as residues: Arg-29 to Glu-34, Ala-74 to Leu-79, Ser-88 to Ala-96, Glu-126 to Leu-133, Glu-149 to Pro-156, Pro-177 to Asp-182.
828947	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1193 as residues: Lvs-28 to Gly-40.
828956	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1194 as residues: Pro-84 to Asp-94, Ile-99 to Asn-105, Lys-131 to Lys-136, Lys-141 to Asn-146, Lys-153 or Ill-162, Asp-170 to Arg. 179, Glin-248 to Ile-258, Thr-262 to Leu-267, Thr-270

	to Phe-279, Arg-294 to Leu-302.
828958	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1195 as residues: Cys-14 to Ser-25.
828965	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1196 as residues: Ala-29 to Leu-35, Pro-83 to Val-88.
828969	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1197 as residues: Arg-2 to Gly-8.
828971	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1198 as residues: Glu-53 to Lys-60.
828973	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1199 as residues: Ser-18 to Thr-25, His-177 to Tyr-186.
828980	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1200 as residues: Cys-4 to Glu-15.
828984	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1201 as residues: Asn-14 to Lys-19, Asp-55 to Lys-64. Thr: 120 to Gilu-125, Pro-149 to Giy-154. His-206 to Lys-213, Pro-242 to Arg-249, Met-269 to Giu-279, Arg-281 to Ser-287, Phe-31 to Giy-317, Arg-361 to Ser-368, Giu-374 to Gin-380, Ile-386 to Tyr-391, Gitu-12 to Gin-428, Arg-435 to Val-471, Ser-483 to Lys-502, Lys-507 to Giu-517, Lys-519 to Pro-530, Sey-507 to Pro-550, Giy-567 to Lys-589, Giu-593 to Val-613, Lys-616 to Leu-636, Ser-647 to Leu-673, Pro-677 to Giu-689.
828988	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1203 as residues: Asp-60 to Lys-75.
828995	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1205 as residues: Thr-26 to Gly-33, Ser-42 to Ser-53, Pro-73 to Leu-78, Pro-101 to Gly-107, Pro-147 to Ser-175, Pro-168 to Ser-176, Ser-203 to His-208, Ser-216 to Cys-221.
829005	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1207 as residues: Pro-17 to Glu-22, Thr-129 to Lys-137, Asp-164 to Asp-170.
829009	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1208 as residues: Pro-1 do Arg-14, Pro-36 to Arg-54, Arg-61 to His-68, Arg-83 to Ile-92, Ala-95 to Arg-107 to Glu-114.
829012	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1210 as residues: His-6 to Ser-11, Ser-122 to Asn-128, Leu-216 to Asp-221, Ser-323 to His-328.
829013	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1211 as residues: Ile-10 to Leu-16, Pro-24 to Cys-29.
829019	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1212 as residues: Tyr-29 to Ser-42.
829020	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1213 as residues: Pro-22 to Arg-32, Leu-122 to Asp-127, Gln-134 to Tyr-140, Asp-153 to Arg-166
829021	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1214 as residues: Ile-11 to Phe-16, Pro-38 to Ile-53.
829030	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1216 as residues: Lys-82 to Gly-87, Lys-224 to Asp-230, His-245 to Glu-253, Ser-279 to Lys-285 Val-308 to Lys-314, Arg-342 to Met-348, Lys-392 to Arg-397, His-452 to Gly-458.
829035	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1217 as residues: His-36 to Ser-43.
829051	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1221 as residues: Pro-3 to Trp-9.
829052	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1222 as residues: Ala-32 to Pro-37, Pro-57 to Trp-62, Pro-82 to Leu-93.
829057	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1223 as residues: Glu-9 to Thr-21, Leu-32 to Arg-45, Glu-49 to Ala-54, Lys-62 to Leu-68, Ala-71 fhr-99, Leu-106 to Glu-113.
829059	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1225 as residues: Asn-2 to Ser-16.
829061	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1226 as residues: Lys-1 to Ser-7.

829062	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1227 as
829002	residues: Pro-15 to Cys-23, Pro-46 to Ala-54, Pro-71 to Gly-78, Leu-84 to Pro-92, Leu-131
	to Arg-137, Ala-151 to Glu-161, Thr-215 to Leu-222, Glu-253 to Ser-261, Leu-269 to Leu-
	275, Asn-280 to Ser-285, Arg-292 to Glu-298, Gly-302 to Ser-309, Thr-322 to Arg-327,
	Lys-376 to Leu-388.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1228 as
829063	residues: Gly-12 to Ala-20, Arg-58 to Phe-68.
829064	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1229 as
	residues: Cvs-9 to Tvr-14, Glv-35 to Thr-41, Ser-44 to Thr-49, Cvs-53 to Thr-68, Leu-98 to
	Val-103, Ile-180 to Tyr-187, Ser-208 to Val-215.
829066	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1230 as
	residues: Phe-15 to Met-20.
829069	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1232 as
	residues: Asn-1 to Gly-12, Pro-31 to His-38, Ser-54 to Ser-59, Gly-64 to Lys-69.
829074	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1233 as
025071	residues: Leu-1 to Thr-17, Glu-38 to Gln-44, Glu-46 to Asp-55, Glu-82 to Glu-100, Lys-119
	to Gly-129, Lys-147 to Ser-153, Pro-187 to Thr-210, Leu-225 to Val-233, Pro-272 to Gly-
	279, Arg-290 to Ser-303, Pro-311 to Lys-318, Ser-334 to Pro-356, Ser-370 to Arg-377, Gly-
	407 to Ser-412, Met-415 to His-423.
829077	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1234 as
025077	residues: Thr-1 to Thr-10, Asp-29 to Trp-35, His-37 to Trp-50, Lys-58 to Thr-65, Glu-77 to
	Glu-91, Glu-116 to Arg-128, Cys-219 to Pro-224.
829085	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1237 as
027003	residues: Arg-9 to Lys-31, Leu-66 to Lys-71, Gln-119 to Gly-131, Gln-230 to Leu-239.
829093	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1238 as
023033	residues: Gln-21 to Asp-26, Glu-178 to Asn-185, Arg-213 to Glu-218, Asp-238 to Asn-246.
	Val-264 to Pro-272, Val-280 to His-288.
829099	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1239 as
023033	residues: Arg-2 to Ser-8, Thr-140 to Ser-151, Val-153 to His-165, Leu-176 to Arg-182,
	Asp-200 to Thr-207, Asn-224 to Asp-229, Cys-239 to Ser-246.
829102	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1241 as
027102	residues: Pro-10 to Lys-19.
829103	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1242 as
027100	residues: Pro-30 to His-46, Glu-127 to Leu-133.
829104	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1243 as
023104	residues: Ser-19 to Trp-26, Lys-37 to Leu-59.
829109	
829109	Preferred epitones include those comprising a sequence shown in SEO ID NO 1244 as
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1244 as residues: Gln-22 to Ser-29.
829115	residues: Gln-22 to Ser-29.
829115	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as
829115	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-
	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155.
829115 829120	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as
829120	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88.
	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as
829120 829126	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28.
829120	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Tln-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as
829120 829126	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229,
829120 829126 829136	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240.
829120 829126	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240.
829120 829126 829136	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-123 to Gly-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91
829120 829126 829136 829138	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-159 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-159 to Asp-82. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Ala-23 to Glu-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117.
829120 829126 829136	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-23 to Glu-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-23 to Gly-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117.
829120 829126 829136 829138 829142	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-127 to Gly-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1256 as residues: Asp-121 to Thr-35.
829120 829126 829136 829138	residues: Gln-22 to Ser-29. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1246 as residues: Gly-23 to Cys-29, Pro-35 to Cys-40, Gly-51 to Ser-64, Asp-108 to Arg-115, Glu-132 to Val-146, Thr-149 to Glu-155. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1249 as residues: Gly-68 to Arg-74, Pro-83 to Asn-88. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1252 as residues: Lys-18 to Lys-28. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1254 as residues: Asp-19 to His-26, Asp-127 to Gly-144, Thr-179 to Gln-194, Val-223 to Thr-229, Pro-235 to Tyr-240. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-23 to Glu-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1255 as residues: Asp-23 to Gly-28, Glu-37 to Ser-46, Glu-63 to Gly-68, Gln-75 to Phe-84, Thr-91 to Ser-97, His-106 to Pro-117.

	residues: His-9 to Glu-18, Arg-91 to Gly-96, Ser-124 to Asp-133, Asn-163 to Cys-172,
	Asn-216 to Thr-222, Thr-229 to Ile-235, Lys-238 to Glu-243.
829162	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1260 as
-27102	residues: Arg-1 to Arg-6, Ala-53 to Gln-58.
829179	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1263 as
	residues: Gln-10 to Thr-21.
829184	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1264 as
	residues: Thr-76 to Val-81, Leu-88 to Pro-100, Tyr-140 to Lys-150.
829185	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1265 as
	residues: Pro-1 to Ser-21.
829188	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1266 as
	residues: Lys-11 to Trp-20, Ser-22 to Ala-27, Ile-35 to Met-51, Val-53 to Glu-69, Asn-145
	to Leu-151, Asp-179 to Gln-187, Pro-280 to Ala-285, Asp-293 to Ile-300.
829190	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1267 as
	residues: Arg-3 to Gln-9, Pro-29 to Gln-34, Glu-98 to Asp-111.
829196	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1269 as
	residues: Leu-53 to Asn-62, Ala-125 to Ala-132.
829197	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1270 as
	residues: Leu-14 to Pro-19, Ser-25 to Ser-37.
829203	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1272 as
	residues: Gly-1 to Leu-9, Ser-80 to Gly-85.
829209	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1273 as
	residues: Ser-17 to Glu-29.
829210	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1274 as
	residues: Ser-13 to Tvr-18.
829214	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1275 as
02721	residues: Pro-2 to Asn-10, Lys-49 to Asn-54, Arg-91 to Asn-96, Glu-118 to Cys-125, Pro-
	139 to Glu-144.
829215	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1276 as
027215	residues: Asn-1 to Leu-6, Ser-27 to Pro-32.
829219	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1277 as
02,21,	residues: Pro-15 to Pro-25, Ala-54 to Phe-61, Ile-63 to Ser-82.
829220	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1278 as
027220	residues: Pro-1 to Ser-9, Glu-48 to Gly-54, Gly-66 to Leu-71, Pro-78 to Glu-84, Ala-108 to
	Gln-116, Ile-167 to Asp-172, Thr-179 to His-185.
829222	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1279 as
02,222	residues: Thr-45 to Gln-51, Cys-53 to Asp-60, Gly-122 to Gly-127, Lys-136 to Gly-142,
	Pro-164 to Lys-172.
829223	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1280 as
027223	residues: Ile-11 to Trp-16.
829225	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1281 as
02,223	residues: Lys-24 to Trp-30.
829226	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1282 as
027220	residues: Lys-48 to Lys-56, Arg-64 to Glu-79, Glu-102 to Tyr-111, Glu-159 to Cys-165,
	Thr-187 to Lys-193, Tyr-212 to Arg-220, Tyr-254 to Pro-262, Gly-278 to Asp-284, Pro-33
	to Pro-341, Pro-441 to Gly-452, Glu-468 to Asp-480, Phe-486 to Tyr-495, Asp-498 to Asn
	503.
829227	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1283 as
	residues: Pro-40 to Ala-46.
829231	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1284 as
327231	residues: Cys-12 to Ser-17.
829233	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1286 as
02,233	residues: Pro-5 to Met-16, Ala-37 to Ala-46, Pro-70 to Leu-75.
829230	
829239	
829239	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1287 as residues: Glu-63 to Arg. 70, Pro-82 to Leu-91, Arg-139 to Gln-146.

	residues: Arg-11 to Gly-17, Lys-113 to Gly-120, Arg-163 to Ser-168, Asp-200 to His-210, lle-217 to Ile-223, Arg-260 to Glu-266, Ser-274 to Leu-281.
829246	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1290 as residues: Arg-17 to Phe-25, Asn-27 to Asn-41, Thr-57 to Ser-69, Gln-92 to Asp-98.
829250	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1291 as residues: Ser-2 to Ile-16.
829253	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1292 as residues: Arg-10 to Arg-20, Gly-48 to Val-53, Glu-69 to Asp-76, Glu-116 to Glu-122, Glu-132 to Trp-143, Asp-166 to Asn-175, Arg-191 to Asn-197, Gln-205 to Gly-233, Lys-235 to Ala-274.
829263	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1294 as residues: Pro-1 to Arg-13, Gly-20 to Gly-27, Gly-32 to Lys-38.
829266	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1295 as residues: Lys-1 to Arg-6.
829271	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1296 as residues: Ala-7 to Thr-13, Lys-56 to Lys-66, Pro-81 to Asp-88, Glu-140 to Thr-148, Ser-158 to Gln-164, Glu-201 to Asp-207, Glu-221 to Ser-230, Pro-236 to Gly-241, Pro-243 to Arg-261, Glh-270 to Gly-286.
829273	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1297 as residues: Ser-19 to Ala-24.
829274	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1298 as residues: Pro-58 to Ser-64.
829276	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1299 as residues: Arg-5 to Glu-38.
829280	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1301 as residues: Ser-31 to Arg-36, Gln-61 to Lys-66.
829284	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1303 as residues: Arg-1 to Thr-7, Ala-9 to Arg-14, Gly-24 to Gly-29, Gly-52 to Ala-60, Arg-62 to Gly-71, Arg-84 to Asn-96, Pro-102 to Thr-107.
829287	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1305 as residues: Gln-38 to Lys-45.
829295	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1306 as residues: Pro-1 to Lys-13, Ala-32 to Gln-44.
829296	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1307 as residues: Glu-45 to Glu-59, Phe-61 to His-67, Ala-78 to Ser-85, Trp-100 to Pro-105.
829298	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1309 as residues: Phe-4 to Gln-10.
829302	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1310 as residues: Ser-17 to Trp-22, Ser-73 to Arg-80.
829320	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1312 as residues: Val-5 to Lys-18, Val-56 to Lys-64, Pro-94 to Gly-100, Phe-140 to Met-148, Glu 154 to Asp-161, Pro-182 to Cys-188, Pro-190 to Asp-197, Ala-216 to Leu-224.
829322	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1313 as residues: Pro-14 to Lys-26, Asp-31 to Lys-39, Arg-112 to Ile-120, Arg-128 to Gly-141, Lys-144 to Asp-151, Lys-159 to Gly-165, His-187 to Trp-203, Asn-246 to Ala-251, Ala-2 to Gln-266, Glu-271 to Tlr-280.
829355	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1314 as residues: Ala-26 to Leu-33, Arg-120 to Phe-126, Thr-191 to Asn-203, Ser-223 to Pro-232
829364	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1315 as residues: Arg-9 to Leu-15, Leu-67 to Ser-74, Asp-93 to Tyr-98, Leu-101 to Pro-108, Lys- II7 to Thr-123, Thr-138 to Leu-143.
829946	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1319 as residues: Pro-20 to Gly-29, Gly-46 to Thr-56.
829952	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1321 as residues: Pro-11 to Glu-34, Leu-82 to Gln-88.
829954	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1322 as

	residues: Leu-32 to Val-38, Gly-75 to Ser-83, Ser-86 to Tyr-92, Lys-96 to His-104, Ser-109
	to Ser-117, Gln-124 to Ser-130, Asn-132 to Asn-141, Pro-164 to Leu-178, His-187 to Gly-
	194, Pro-203 to Gln-217.
829955	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1323 as
829955	residues: Asp-39 to Gly-45, Asn-53 to Arg-80, Gln-85 to Gly-95, Glu-101 to Glu-111, His-
	132 to Gly-151, Leu-159 to Tyr-166, Ser-174 to Ser-179, His-188 to Gly-200, Gln-226 to
	Gly-235, Cys-255 to Gly-263.
829957	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1324 as
	residues: Gly-1 to Phe-12, Thr-14 to Val-22, Arg-30 to Met-37, Arg-63 to Pro-69, Arg-82 to
	Tyr-95, Glu-102 to Gly-109, Lys-223 to Leu-240.
829958	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1325 as
	residues: Arg-13 to Trp-31, Val-61 to Asn-67, Lys-87 to Arg-92, Leu-97 to Asp-109, Ser-
	129 to Asp-139.
829960	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1326 as
	residues: Ile-1 to Ser-10, Ile-26 to Pro-31, Lys-83 to Asp-89, Gly-96 to Asn-101, Pro-122 to
	Asn-127, Ser-224 to Ile-231, Asp-350 to Pro-356.
829966	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1327 as
	residues: Tyr-7 to Tyr-15, Pro-43 to Ala-52, Gln-57 to Ala-62, Asn-68 to Ala-73, Tyr-75 to
	Met-83.
829981	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1330 as
	residues: Ala-96 to Lys-111, Cys-117 to Cys-128.
829985	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1331 as
	residues: Arg-11 to Val-19, Ala-21 to Trp-26, Tyr-54 to Lys-76, His-107 to Gln-112.
829988	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1333 as
02//00	residues: Leu-32 to Glu-43, Gly-50 to Arg-58.
829990	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1334 as
027770	residues: Ser-27 to Ser-34, Gly-41 to Val-46.
829991	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1335 as
029991	residues: Leu-15 to Gln-25.
829992	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1336 as
829992	residues: Asp-1 to Gly-8, Lys-26 to Trp-33, Pro-49 to Pro-54.
829993	
829993	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1337 as
000000	residues: Leu-3 to Ser-9.
829998	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1338 as
	residues: Glu-42 to Leu-47, Glu-125 to Ala-136.
830001	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1341 as
	residues: Gly-1 to Met-8, Ile-12 to Pro-17, Gly-77 to Ser-92.
830010	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1344 as
	residues: Cys-1 to Ser-6, Ala-55 to Ala-65, Pro-92 to Asn-97, Gln-100 to Pro-106, Gly-119
	to Gly-125, Leu-135 to Arg-143, Ser-151 to Asp-159, Gln-164 to Ser-169, Thr-180 to Asn-
	186, Ser-204 to Val-216, Pro-224 to Arg-250, His-275 to Tyr-287.
830128	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1346 as
	residues: His-4 to Thr-10.
830129	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1347 as
	residues: Trp-52 to Thr-58, Arg-222 to Gly-227, Asn-255 to Asp-265, Pro-452 to Arg-458,
	Glu-503 to Lys-509, Gly-556 to Asn-563, Asp-628 to Glu-633, Glu-676 to Ser-697, Ala-708
	to Ser-714.
830140	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1349 as
	residues: Gln-61 to Lys-67.
830157	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1350 as
-50157	residues: Pro-1 to Arg-7, Arg-14 to Glu-24.
830195	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1351 as
550175	residues: Ser-2 to Arg-14, Ala-37 to Lys-45, Glu-60 to Leu-68, His-75 to Glu-82, Arg-92 to
	Ser-99, Gly-105 to Gln-110, Arg-119 to Phe-125.
830196	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1352 as

	174 to Ile-182, Ala-249 to Lys-257, Glu-272 to Leu-280, His-287 to Glu-294, Arg-304 to
	Ser-311, Gly-317 to Gln-322, Leu-372 to Lys-388, His-404 to Leu-409.
830409	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1353 as
	residues: Ser-4 to Ala-9.
830417	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1354 as
	residues: Pro-33 to Leu-39, Glu-54 to Val-59, Gly-69 to Ser-76.
830531	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1355 as
	residues: Lys-29 to Glu-37, Leu-126 to Gly-131, Asp-149 to Glu-159, Pro-235 to Thr-255.
830677	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1356 as
	residues: Leu-23 to Val-37, Glu-39 to Asp-51, Gly-66 to Arg-71, Gly-79 to Gly-85, Pro-87
	to Leu-94, Gly-102 to Lys-123, Ser-135 to Asp-142, Gln-145 to Arg-158, Gln-169 to Glu-
	174, Ala-178 to Gln-190, Ala-196 to Glu-209, Glu-212 to Glu-220, Arg-249 to His-255,
	Ala-298 to Glu-309, Arg-314 to Lys-368.
831355	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1357 as
	residues: Lys-49 to Gln-55, Glu-83 to Lys-90, Gly-158 to Gly-164, Lys-185 to Gly-192.
831420	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1358 as
	residues: Ala-6 to His-19, Glu-28 to Ser-42.
831702	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1359 as
	residues: Gly-1 to Gly-12, Glu-23 to Gly-28, Gln-56 to Trp-62, Lys-75 to Thr-103, Arg-217
	to Asp-223.
832488	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1361 as
00=100	residues: Leu-52 to Thr-59, Pro-86 to Ser-92, Arg-107 to Gly-118, Lys-121 to Gly-128.
833207	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1362 as
033207	residues: Val-29 to Arg-43, Gly-66 to Arg-75, Ser-94 to Gly-99, Ser-106 to Ser-112, Asp-
	135 to Leu-151.
835940	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1363 as
833940	residues: Arg-9 to Gln-35, Arg-94 to Cys-104.
837105	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1365 as
65/105	residues: Ser-59 to Ser-65, Gln-75 to Gln-80.
837373	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1367 as
631313	residues: Arg-48 to Tyr-58, Asp-67 to Lys-75.
837687	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1368 as
83/08/	residues: Gly-1 to Asp-9, Ser-40 to Lys-46, Ser-65 to Pro-72, Lys-124 to Asn-137.
837991	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1369 as
83/991	residues: Lys-41 to Lys-48.
000440	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1370 as
838442	
	residues: Cys-7 to Glu-13, Tyr-27 to Phe-37, Phe-64 to Gly-72, Val-96 to Asp-105, Asp-
0.405.41	111 to Ala-117, Arg-119 to Gly-125.
840541	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1371 as
0.405.42	residues: Phe-38 to His-43, Asp-53 to Asp-61.
840543	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1372 as
	residues: Ala-26 to Pro-32, Ser-49 to Ala-59, Glu-106 to Arg-112, Gly-140 to Arg-149,
	Ala-159 to Trp-181, Glu-216 to Leu-229, Ile-243 to Ser-250, Phe-254 to Lys-259.
840563	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1374 as
	residues: Ala-67 to Pro-87.
840565	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1375 as
	residues: Gln-6 to Asn-13, Ser-29 to Lys-37, Arg-73 to Val-78.
840569	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1376 as
	residues: Ile-1 to Thr-6.
840570	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1377 as
	residues: Pro-9 to Asp-23.
840571	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1378 as
	residues: Gly-1 to Leu-6, Gln-13 to Ser-19.
840573	
840573	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1379 as residues: Arg-1 to Ala-7, Cys-16 to Cys-21, Arg-28 to Trp-33, Ala-36 to Gln-42, Arg-50 to

	Ser-155 to Ser-161, Thr-167 to Ser-187, Arg-219 to Leu-228.
840574	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1380 as
	residues: Lys-60 to Lys-72, Asn-81 to Pro-88.
840575	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1381 as
	residues: Pro-1 to Arg-6, Tyr-16 to Gly-32, Ser-67 to Gly-74, Ser-95 to Gly-101, Glu-194
	Lys-218, Lys-295 to Leu-305, Met-332 to Glu-337, Leu-339 to Ala-347, Glu-353 to Leu-
	358, Ile-369 to Glu-375, Glu-437 to Gln-444, Glu-467 to Gly-478, Gly-481 to Gly-505.
840579	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1382 as
	residues: Pro-40 to Ala-50, Lys-71 to Leu-76, Glu-125 to Lys-138, Cys-153 to Ser-159,
	Arg-167 to Glu-173, Lys-210 to Ser-215, Asn-251 to Ser-260, Trp-289 to Ser-296, Ala-353
	to Ala-363, Thr-369 to Gly-376, Asn-404 to Gly-410, Pro-425 to Glu-433, His-439 to Glu-
	450, Gln-470 to Ile-476, Thr-493 to Leu-499.
840580	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1383 as
0000	residues: Glu-13 to Ile-28, Pro-70 to Gly-75.
840581	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1384 as
	residues: Ser-1 to Gly-12, Thr-27 to Pro-36, Ser-50 to Met-56.
840605	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1385 as
040003	residues: Leu-12 to Leu-17, Glu-49 to Ser-54.
840610	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1388 as
040010	residues: Thr-19 to Lys-26, Gly-46 to Thr-52, Thr-63 to Glu-68, Gly-145 to Gly-153, Ser-
	236 to Thr-241, Ser-253 to Arg-263, Glu-291 to Asp-296.
840612	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1390 as
040012	residues: Arg-101 to Arg-108, Trp-119 to Ala-125, Ala-131 to Asn-138, Leu-142 to Thr-
	150, His-354 to Ile-370.
840622	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1392 as
040022	residues: Asp-6 to Gly-11, Ala-13 to Ser-28, His-40 to Thr-232, Arg-242 to Gly-247, Gly
	268 to Gln-276.
840624	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1394 as
840024	residues: Lys-5 to Gly-12, Ala-20 to Met-26, Gly-49 to Ser-55, Pro-57 to Tyr-63.
840631	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1395 as
040051	residues: Glu-8 to Arg-24, Ser-36 to Ser-44, Phe-78 to Arg-84, Ser-116 to Trp-123, Gly-2
	to Gly-274, Lys-327 to Lys-332.
840633	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1397 as
340033	residues: Ser-137 to Ala-146, Gln-165 to Gln-171.
840636	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1400 as
040030	residues: Lys-24 to Tyr-32, Tyr-42 to Lys-47, Gly-60 to Ala-66, Pro-68 to His-77.
840637	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1401 as
840037	residues: Ala-10 to Gln-16, Gly-29 to Glu-40, Arg-45 to Ser-51, Thr-62 to Pro-67.
040620	
840639	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1402 as residues: Pro-35 to Asn-48, Ser-66 to Ser-73, Asp-76 to Gly-81, Gly-115 to Glu-120, Asp-
0.10 5.10	131 to Gly-147, Ser-152 to Gly-158, Pro-175 to Ser-184, Arg-206 to Asn-220.
840640	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1403 as
	residues: Ser-118 to Ile-123.
840650	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1404 as
	residues: Leu-30 to Glu-44, Gly-52 to Ala-57, Tyr-133 to Leu-140, Asp-207 to Ser-219,
	Gln-272 to Asn-281.
840652	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1405 as
	residues: Trp-33 to Gly-64.
840653	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1406 as
	residues: Pro-1 to Ser-6, Leu-14 to Ser-40, Leu-81 to Asp-93, Pro-125 to Phe-130, Gly-1
	to Glu-148, Trp-238 to Arg-246, Gln-279 to Asp-295, Cys-305 to Pro-311.
840655	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1407 as
	residues: Pro-2 to His-7.
840659	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1408 as
	residues: Gln-1 to Val-15, Ser-21 to Gly-27, Pro-32 to Trp-42, Asn-272 to Arg-277, Pro-
	314 to Gln-336.

 840660 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1409 as residues: Glu-1 to Asn-17. 840661 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1410 as residues: Cys-7 to Ser-20. Pro-35 to Pro-42. Pro-67 to Ile-80, Thr-94 to Met-100, Leu-122 to Cys-129. 840662 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1411 as residues: Gln-97 to Leu-102, Ala-130 to Ser-136, Ser-142 to Thr-148, Ala-180 to Ser-186, Pro-191 to Glu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840663 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Pro-1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asp-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence		
residues: Cys-7 to Ser-20, Pro-35 to Pro-42, Pro-67 to Ile-80, Thr-94 to Met-100, Leu-122 to Cys-129. 840662 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1411 as residues: Gin-97 to Leu-102, Ala-130 to Ser-136, Ser-142 to Thr-148, Ala-180 to Ser-186, Pro-191 to Giu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840662 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: For 1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-1 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Ala-10, Ala-13 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Gln-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-381 to Tyr-50, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-19 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-81 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gl	840660	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1409 as residues: Glu-1 to Asn-17.
to Cys-129. 840662 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1411 as residues: Gln-97 to Leu-102, Ala-130 to Ser-136, Ser-142 to Thr-148, Ala-180 to Ser-186, Pro-191 to Glu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840663 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gly-577, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Thr-264 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes inc	840661	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1410 as
840662 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1411 as residues: Gln-97 to Leu-102, Ala-130 to Ser-136, Ser-142 to Thr-148, Ala-180 to Ser-186, Pro-191 to Glu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840663 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Pro-1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-6 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-83 to Glu-84, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gl		
residues: Gin-97 to Len-102, Ala-130 to Ser-136, Ser-142 to Thr-148, Ala-180 to Ser-186, Pro-191 to Giu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840663 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Gly-65 to Cys-71, Lys-81 to Gin-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gli-277, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Glin-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-19 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Gly-34 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Thr-34, Asp-84 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-18, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 8	840662	
Pro-191 to Glu-198, Asn-234 to Leu-240, Ser-270 to His-280. 840663 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Pro-1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: App-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-434, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-85 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-86 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys	040002	
 840630 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1412 as residues: Pro-1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-1 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gly-647, Ala-555 to Gly-56 Glh-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gry-10 Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to IB-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred e		
residues: Pro-1 to Gly-12. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-166 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gly-434, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-58 to Tyr-19, Lys-21 to Asp-28, Ile-107 to Leu	010660	PTO-191 to Giu-198, ASII-234 to Leu-240, Sei-270 to Fiis-280.
840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1413 as residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: App. 3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-1111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitop	840663	
residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro- 161 to Ala-169. 840671 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. 840672 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34. Gln-96 to Asp-101, Thr-118 to Gly-126, Ala- 130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gla-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-557. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Bro-515, Asp- 188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-200, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala- 154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-88 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro- 179 to Gly-185, Arg-206 to Glu-223, Gly-237 to Thr-258, Gln-266 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-88 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro- 179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-266 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-		
161 to Ala-169.	840670	
Feferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as residues: Pro-4 to Thr-11, Ala-15 to Pro-20. Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Fro-268 to Gly-76-70-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-595, Gly-514 to Arg.521, Pro-525 to Gly-547, Ala-555 to Gly-550, Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-595, Gly-514 to Arg.521, Pro-525 to Gly-547, Ala-555 to Gln-567.		residues: Gly-65 to Cys-71, Lys-81 to Gln-88, Thr-97 to Asp-106, Glu-135 to Gly-143, Pro-
residues: Pro-4 to Thr-11, Ala-15 to Pro-20. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-437, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-457, Pro-477 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-526 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-278. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-58 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Asp-2 to Met-37. Pro-179 Ferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as resi		161 to Ala-169.
 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as residues: Asp-3 to Ala-10, Val-23 or InT-s4, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala-130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gly-6443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg. 521, Pro-525 to Gly-547, Ala-555 to Gla-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gry-10 Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-234, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-58 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: C	840671	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1414 as
residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala- 130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Glr-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp- 188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840601 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-485, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-2 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-64, Val-19 to Ala		residues: Pro-4 to Thr-11, Ala-15 to Pro-20.
residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Gly-126, Ala- 130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Glr-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp- 188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840601 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-485, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-2 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-64, Val-19 to Ala	840672	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1415 as
130 to Lys-140, Thr-156 to Ser-176, Pro-268 to Gln-275, Pro-296 to Gly-304, Pro-342 to Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. R40673		residues: Asp-3 to Ala-10, Val-23 to Thr-34, Gln-96 to Asp-101, Thr-118 to Glv-126, Ala-
Pro-348, Glu-382 to Asp-389, Met-408 to Glu-414, Pro-425 to Gln-443, Pro-457 to Tyr-478, Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-9 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-485, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-296 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-25, Gly-237 to Thr-258, Gln-296 to Asp-275. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-25. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-2 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840716 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Gl		
Glu-481 to Tyr-505, Gly-514 to Arg-521, Pro-525 to Gly-547, Ala-555 to Gln-567. 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-24 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to He-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to He-121, Pro-137 to Tyr-1		Pro 348 Glu-382 to Aep-389 Mat-408 to Glu-414 Pro-425 to Gln-443 Pro-457 to Tyr-478
 840673 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1416 as residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp-188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-15 to Gly-8. 840670 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840703 Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-21 to He-17, Included those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Glu-42. 840715 Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Glu-42. 840716 Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Glu-6, Val-19 to Ala-24. 840717 Freferred epit		
residues: Ser-9 to Gly-15, Ser-57 to Arg-72, Lys-90 to Pro-111, Pro-138 to Ser-151, Asp- 188 to Arg-193. 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-2 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840716 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-79, Pro-137 to Tyr-143. 84071	940672	
188 to Arg. 193.	840073	maniference epitopes include those comprising a sequence shown in SEQ 15 NO. 1410 as
 840677 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1418 as residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840601 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840716 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. <li< td=""><td></td><td></td></li<>		
residues: Gly-17 to Asn-22, Ser-59 to Val-74, Glu-83 to Glu-89, Leu-91 to Ser-97, Glu-165 to Leu-183, Ala-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to He-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840716 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown i	0.40.699	
to Leu-183, Ála-197 to Ile-202, Ala-207 to Pro-212, Lys-227 to Lys-243, Pro-251 to His-258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Glu-722. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840728 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-42. 840729 Preferred epitopes include those comprising a sequ	840677	
258. 840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-1179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-79, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as		
840678 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1419 as residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gly-89, Thr-61 to Cys-67, Gly-86 to Cys-93.		
residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala- 154 to Asn-161, Thr-266 to Gln-272. 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840601 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro- 179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-6, Val-19 to Ala-24. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Gln-78, Thr-61 to Cys-67, Gly-86 to Cys-93. 840726 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cys-2 to Thr-27.		
154 to Asn-161, Thr-266 to Gln-272.	840678	
 840680 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as residues: Pro-2 to Gly-8. 840601 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-3 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cyz-2 to Thr-27. 840726 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cyz-2 to Thr-27. 		residues: Glu-43 to Glu-48, Gly-75 to Asp-81, Arg-92 to Ser-100, Asp-108 to Tyr-114, Ala-
residues: Pro-2 to Gly-8. 840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro-1179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to He-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cys-2 to Thr-27.		154 to Asn-161, Thr-266 to Gln-272.
840691 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as residues: Gln-58 to Sen-64, Asp-83 to Met-88, Sen-104 to Pro-114, Asn-137 to Sen-146, Pro-179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-25. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37, 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-2 to Trp-13, Lys-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-15 to Gln-42. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Thr-27. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-2 to Thr-27. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cys-2 to Thr-27. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cys-2 to Thr-27.	840680	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1420 as
residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro- 179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Glu-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27.		residues: Pro-2 to Gly-8.
residues: Gln-58 to Ser-64, Asp-83 to Met-88, Ser-104 to Pro-114, Asn-137 to Ser-146, Pro- 179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275. 840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Glu-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27.	840691	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1421 as
179 to Gly-185, Arg-206 to Glu-228, Gly-237 to Thr-258, Gln-269 to Asp-275.		
840700 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1422 as residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trh-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-3 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cyz-2 to Thr-27.		
residues: His-25 to Cys-32, Arg-46 to Glu-52. 840701 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trp-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Cys-2 to Thr-27.	840700	
Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1423 as residues: Gln-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu-159 to Trr-164. S40702	040700	
residues: Gin-8 to Trp-13, Lys-21 to Asp-28, Ile-107 to Leu-112, Lys-125 to Trp-130, Leu- 159 to Thr-164. 840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Typ-2 to Thr-27.	940701	
159 to Thr-164.	040701	
840702 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1424 as residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to He-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27.		
residues: Asp-22 to Met-37. 840705 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as exidues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27.	0.40700	
Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1425 as residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-2 to Thr-27.	840/02	
residues: Asp-4 to Pro-12, His-29 to Ala-39, Leu-43 to Glu-66, Asp-71 to Glu-78, Leu-84 to Asp-98, Glu-102 to Ile-121, Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Typ-2 to Thr-27.		
Asp-98. Glu-102 to Ite-121. Pro-137 to Tyr-143. 840715 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6. Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59. Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Typ-2 to Thr-27.	840705	
Section 2015 Freferred epitopes include those comprising a sequence shown in SEQ ID NO. 1426 as residues: Cys-1 to Gln-42. Section 3.		
residues: Cys-1 to Gln-42. 840717 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Try-22 to Thr-27.		
Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Tys-22 to Thr-27.	840715	
residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Trp-22 to Thr-27.		
residues: Cys-1 to Gln-6, Val-19 to Ala-24. 840718 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Trp-22 to Thr-27.	840717	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1427 as
Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1428 as residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Trp-22 to Thr-27.		
residues: Gln-1 to Ser-14. 840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Try-2 to Thr-27.	840718	
840724 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1430 as residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Trp-22 to Thr-27.		
residues: Cys-53 to Lys-59, Thr-61 to Cys-67, Gly-86 to Cys-93. 840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Try-2 to Thr-27.	840724	
840725 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1431 as residues: Trp-22 to Thr-27.	0.0724	
residues: Trp-22 to Thr-27.	840725	
	040723	
640727 Freienred epitopes include those comprising a sequence shown in SEQ ID NO. 1432 as	940707	
	840727	r referred epitopes include those comprising a sequence snown in SEQ ID NO. 1432 as

	residues: Thr-1 to Gln-8, Val-23 to Gln-28, Glu-51 to His-63, Glu-73 to Gln-91.
840731	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1433 as
	residues: Thr-35 to Glu-43, Leu-54 to Leu-60, Pro-89 to Gly-107, Val-109 to Gly-117, Gln
	119 to Thr-125.
840733	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1434 as
	residues: Asp-33 to Ser-48, Pro-62 to Gly-76, Ser-80 to Gln-89, Gly-96 to Trp-109.
840734	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1435 as
	residues: Gln-12 to Gln-17.
840736	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1436 as
	residues: Arg-7 to Val-13, Leu-28 to Arg-33, Ser-69 to Gln-76.
840746	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1439 as
010710	residues: Asp-7 to Ser-13, Gln-21 to Lvs-30, Gln-34 to Val-49, Glu-68 to Glu-73, Leu-79 t
	Leu-96, Glu-109 to Glu-115, Leu-146 to Ser-153, Leu-197 to Asn-206, Ser-218 to Glu-223
	Ala-278 to Trp-283, Lys-297 to Phe-303, Ser-318 to Val-323.
840748	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1440 as
010710	residues: Lys-11 to Trp-24, Arg-30 to Ser-36, Arg-41 to Ser-55, Ser-68 to Arg-74, Leu-102
	to Lvs-108, Val-162 to Thr-167, Ser-188 to Lvs-195, Glu-211 to His-216, Arg-253 to Arg-
	268, Ser-273 to Pro-279, Arg-325 to Glu-330, Lys-358 to Asp-364.
840750	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1441 as
	residues: Met-48 to Gln-55, Ile-64 to Arg-69.
840751	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1442 as
	residues: Thr-30 to Lys-37, Gln-51 to Pro-56, Thr-58 to Val-72, Lys-81 to Val-88, Glu-90
	to Asp-101, Gly-107 to Pro-113, Glu-115 to Ser-120, Lys-133 to Pro-143, Gly-172 to Asn-
	194, Val-196 to Gly-216, Phe-221 to Gln-226, Asn-255 to Lys-260, Leu-282 to Lys-290.
840757	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1443 as
	residues: Arg-8 to Gln-19, Arg-25 to Lys-38, Pro-91 to Pro-97.
840760	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1445 as
	residues: Gly-9 to Thr-14, Tyr-23 to Asp-32, Pro-40 to Pro-46.
840781	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1447 as
	residues: Glu-8 to Ser-13, Ser-26 to Lys-33, Lys-45 to Ser-50, Glu-81 to Glu-92, Asn-109
	to Asp-115.
840789	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1448 as
	residues: Val-141 to Glu-147, Met-160 to Phe-166, Ser-176 to Asn-183, Arg-203 to Arg-
	210.
840790	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1449 as
	residues: Pro-17 to Asn-25.
840791	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1450 as
	residues: Ser-62 to Gln-126, Ala-143 to Gly-182.
840798	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1451 as
	residues: Ser-87 to Gln-95.
840802	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1452 as
	residues: Pro-22 to Glu-30, Lys-73 to Gly-79, Met-133 to Lys-140, Arg-166 to Lys-176.
840803	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1453 as
	residues: Ala-3 to Pro-12, Gln-29 to Ile-39, Ser-54 to Glu-72, Glu-79 to Asp-86, Pro-140 to
	Asp-147, Lys-161 to Lys-184, Val-188 to Thr-195, Asp-203 to Glu-215, Gln-231 to Phe-
	248, Gly-271 to Thr-281, Ser-290 to Asp-302, Gly-322 to Ser-336, Pro-342 to Leu-347, Ly
	370 to Arg-394, Ser-424 to Ser-431, Asp-467 to Gln-483, Lys-507 to Ser-519, Phe-522 to
	Ser-567, Leu-578 to Gly-583, Thr-593 to Gln-600.
840811 840814	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1455 as
	residues: Ser-10 to Gln-25, Pro-108 to Lys-124.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1457 as
	residues: Gln-29 to Arg-36.
840825	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1459 as
	residues: Ala-1 to Arg-10.
0.10000	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1461 as
840827	

	Gly-89, Gly-96 to Arg-102, Asp-118 to Glu-123, Thr-126 to Ala-132, Glu-178 to Glu-184,
	Glu-254 to Gly-260.
840828	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1462 as residues: Trp-53 to Asn-59, Thr-106 to Thr-111.
840829	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1463 as residues: Pro-16 to Thr-23, Val-67 to Asn-73.
840831	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1464 as residues: Thr-34 to Leu-42, Pro-82 to Tyr-88.
840837	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1466 as residues: Phe-39 to Ala-44, Lys-67 to Gln-77.
840838	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1467 as
	residues: Arg-2 to Gly-9, Arg-38 to Lys-46, Ser-53 to Ser-73, Asp-79 to Ala-84, Leu-129 to Glu-136, Glu-202 to Arg-210, Glu-216 to Ala-231, Glu-234 to Glu-254, Lys-259 to Leu-265.
840842	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1469 as
0.00.2	residues: Phe-20 to Gly-25, Pro-73 to His-81, Pro-84 to Gly-90, Ser-94 to Arg-100.
840843	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1470 as
	residues: Gln-45 to Arg-55, Glu-74 to Leu-79, Lys-97 to Lys-103, Arg-108 to Lys-114,
	Asp-124 to Asp-138, His-153 to Gly-174, Lys-205 to Ala-223, Glu-230 to Arg-241, Glu-249
0.400.45	to Arg-256.
840845	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1471 as
840851	residues: Pro-29 to Trp-37, Pro-39 to Arg-44, Thr-51 to Trp-56, Ala-63 to Pro-73. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1473 as
840831	residues: Thr-23 to Glu-30, Gly-34 to Pro-51, Ser-53 to Pro-65, Lys-68 to Asp-85, Gly-97
	to Gly-105, Ser-150 to Leu-163, Gln-205 to Thr-216, Thr-221 to Ser-227, Pro-237 to Leu-
	242, Val-258 to Asn-269, Glu-280 to Phe-291, Gly-295 to Pro-302, Gly-324 to Pro-332, Ser
	342 to Ala-353, Arg-388 to Thr-426, Ser-432 to Tyr-439, Ala-452 to Gly-510, Glu-512 to
	Pro-524.
840854	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1475 as residues: Met-37 to Arg-43.
840858	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1476 as residues: Glu-37 to Lys-51, Thr-85 to Gly-91, Ser-115 to Trp-121, Tyr-177 to Asn-186.
840859	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1477 as residues: Asp-1 to Gln-7, Met-27 to Val-34.
840863	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1478 as residues: Lys-41 to Ala-51.
840868	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1479 as
	residues: Ala-3 to Trp-16, Lys-63 to Asn-72, Gln-112 to Leu-121, Leu-153 to Asp-159,
	Ala-163 to Leu-168, His-180 to Asp-187, Asp-347 to Gly-352, Met-356 to Ser-364, Pro-390
840869	to Lys-401, Ala-519 to Thr-541, Arg-549 to Lys-554.
040809	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1480 as residues: Pro-6 to Asp-12, Arg-28 to Thr-37, Ile-50 to Lys-59, Ala-63 to Gly-70, Pro-89 to
	Tyr-96, Ser-103 to Ile-111, Thr-114 to Phe-121, Asp-141 to Pro-147, Arg-162 to Thr-172.
840870	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1481 as
0.100=	residues: Pro-18 to Gly-24.
840875	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1482 as
	residues: Thr-29 to Asn-37, Val-58 to Thr-63, Glu-114 to Glu-120, Thr-177 to Leu-184, Leu-196 to Ser-205.
840876	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1483 as
040070	residues: Gln-2 to Thr-7, Phe-119 to Trp-125, Thr-141 to Cys-147, Asn-210 to Gly-216,
	Thr-248 to Val-255, Pro-291 to Arg-296, Asp-308 to Asp-316, Glu-327 to Lys-335, Ser-341
	Inf-248 to Vai-255, Pro-291 to Arg-296, Asp-508 to Asp-516, Giu-527 to Lys-555, Ser-541 to Thr-346.
840881	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1484 as
- 10001	residues: Asp-1 to Pro-14, Met-24 to Val-42, Lys-44 to Ser-60, Tyr-107 to Thr-114.
840883	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1485 as

840886	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1486 as residues: Arg-1 to Ser-6, Gln-45 to Gln-51.
840887	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1487 as residues: Asn-77 to Met-83.
840891	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1488 as residues: Gln-1 to His-8, Arg-16 to Gln-25, Thr-32 to Ser-42.
840892	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1489 as residues: Pro-19 to Val-29, Lys-31 to Tyr-48.
840894	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1490 as residues: Pro-48 to Leu-55. Ser-65 to Gly-70, His-93 to His-126, Ile-128 to Glu-146, Leu-151 to Trp-159, Trp-161 to Pro-170, His-177 to Ala-182.
840896	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1491 as residues: Thr-37 to Ser-51.
840897	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1492 as residues: Ser-8 to Gly-13, Cys-32 to Ser-39, Cys-59 to Gly-64, Arg-72 to Gly-78, Leu-91 tr Glu-104, Gly-118 to Glu-123, Asn-140 to Gln-149, Leu-157 to Ile-173, Glu-188 to Gln-209 Asn-222 to Lys-244, Gln-294 to Ile-300, Glu-336 to Val-342, Leu-346 to Lys-355.
840898	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1493 as residues: Ala-1 to Thr-6.
840904	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1494 as residues: Arg-7 to Gly-18, Asn-33 to Trp-40, Leu-48 to Thr-54, Pro-101 to Ala-106, Lys-119 to Val-126, Lys-169 to Leu-175, Gln-205 to Asp-216, Met-232 to Val-239, Arg-241 to Glu-252, Glu-260 to Pro-276, Ser-284 to Ile-291.
840905	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1495 as residues: Pro-17 to Ala-29, Leu-57 to His-67, Tyr-131 to Gly-137, Val-148 to Ser-153, Leu-214 to Gln-225, Ser-242 to Ser-247, Gly-261 to Ser-267, Arg-281 to Pro-286, Thr-299 to Lys-304, Ile-314 to Val-320, Lys-348 to Thr-366.
840908	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1496 as residues: Phe-49 to Glu-58, Leu-71 to Pro-85, Gln-105 to Leu-110, Thr-153 to Glu-158, Glu-168 to Ser-173, Asn-192 to Lys-197, Gln-207 to Asn-264, Pro-292 to Lys-197, Gln-33 to Leu-337, Ser-355 to Gly-362, Asp-381 to Gly-387, Val-396 to Asp-403, Thr-411 to His-416, Arg-451 to Gly-457, Glu-464 to Ala-469, Asn-492 to Gly-509, Tyr-518 to Thr-526, Glu-562 to Ser-567.
840909	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1497 as residues: Pro-15 to Gly-29, Arg-34 to Ser-52.
840910	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1498 as residues: Arg-26 to Met-31.
840912	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1499 as residues: Ala-14 to His-19, Gln-31 to Thr-39, Phe-55 to Cys-60.
840916	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1500 as residues: Gly-7 to Leu-13.
840917	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1501 as residues: Ile-20 to Cys-26.
840918	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1502 as residues: Glu-59 to Thr-69, Thr-89 to Glu-96, Met-103 to Thr-110, Tyr-168 to Lys-176, Asn-196 to Ile-201, Thr-226 to Phe-235, Asp-244 to Glu-252, Lys-282 to Ser-290, Thr-325 to Thr-339, Lys-357 to Lys-362, Asn-397 to Tyr-403.
840922	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1503 as residues: Phe-1 to Lys-7.
840927	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1505 as residues: Cys-52 to Lys-57.
840928	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1506 as residues: Arg-2 to Thr-7, Gln-65 to Trp-73, Glu-103 to Glu-110, Glu-219 to Asn-227, Glu-309 to Trp-320, Asp-389 to Asp-394.
840929	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1507 as residues: Pro-1 to Arg-7, Asp-21 to Lys-43, Lys-48 to Arg-53, Gln-59 to Gln-75, Pro-81 to

	141 06 A 107 Y 140 61 401 A 107
0.10000	Ala-86, Asp-127 to Lys-143, Glu-191 to Arg-197.
840930	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1508 as
	residues: Phe-1 to Cys-8, Ala-10 to Gly-23, Gln-114 to Lys-120, Glu-129 to Phe-135, Ile-
	155 to Gln-160, Ser-193 to Thr-199, Asp-214 to Gly-226, Asp-236 to Gly-245, Ala-283 to
840931	Arg-288, Ala-322 to Asp-331.
840931	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1509 as
840941	residues: Leu-28 to Asp-35, Leu-59 to Ser-65, Glu-111 to Lys-117, Gln-131 to Ala-137.
840941	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1510 as
	residues: Pro-16 to Ser-26, Arg-41 to Gly-49, Glu-51 to Arg-64, Tyr-69 to Phe-77, Thr-82 to Asp-90, Asp-168 to Gln-173, Lys-240 to Tyr-248.
840944	
840944	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1511 as
840948	residues: Gln-1 to Asp-10, Pro-104 to Glu-113, Pro-136 to Ala-142, Asn-152 to Lys-161. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1513 as
040940	residues: Ala-21 to His-26, Pro-41 to Gln-46, Lys-56 to Glu-66.
840953	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1515 as
840933	residues: Gly-1 to Ser-8, Arg-10 to Ser-15, Leu-17 to Gly-22, Lys-115 to Ala-130, Tyr-149
	to Gly-156, Asn-181 to Glu-190, Glu-252 to Glu-257, Ser-339 to Asp-347, Leu-356 to Leu-
	361, Ser-387 to Lys-395, Thr-470 to Ile-476.
840954	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1516 as
0.055.	residues: Pro-12 to Phe-17, Asn-40 to Lys-55, Ser-105 to Thr-112, Lys-154 to Trp-168,
	Arg-176 to Phe-184, Leu-216 to Thr-224, Leu-237 to Val-242, Ala-365 to Val-370, Pro-379
	to Gly-386, Leu-424 to Gly-430, Tyr-439 to Ser-451, Lys-459 to Tyr-464, Arg-595 to Asn-
	606, Asp-613 to Asn-621.
840958	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1517 as
	residues: Ala-1 to Lys-14, Glu-18 to Lys-40, Pro-61 to Thr-68, Pro-70 to Gln-78, Tyr-82 to
	Gly-90.
840960	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1518 as
	residues: Pro-42 to Asp-47, Thr-53 to Pro-59.
840968	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1519 as
	residues: Gln-5 to Glu-11.
840969	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1520 as
	residues: Glu-40 to His-45, Tyr-59 to Gly-68, Pro-107 to Pro-112, Leu-116 to Thr-121,
	Asp-139 to Lys-152.
840978	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1524 as
	residues: 1le-14 to Asp-19.
840980	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1525 as
	residues: Leu-1 to Pro-9, Val-13 to Val-41, Glu-79 to Met-86, Gln-89 to Lys-97, Glu-116 to
	Lys-128, Ser-130 to Gln-136, Arg-152 to Gly-158, Cys-161 to Lys-171, Pro-173 to Ala-182,
840982	Cys-184 to Ala-190, Leu-200 to Ser-206, Pro-225 to Leu-252.
040902	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1526 as residues: Pro-1 to Cys-9, Lys-27 to Ser-32, Glu-58 to Val-63, Ser-78 to Val-83.
840985	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1527 as
040505	residues: Asn-6 to Leu-17, Met-23 to Asp-33, His-56 to Gln-69, Arg-82 to Asp-89, Arg-92
	to Lys-97, Ala-99 to Arg-104, Glu-140 to Asp-146, Ser-173 to Tyr-178, Cys-189 to Leu-
	194, Val-239 to Asp-145, Glu-266 to Arg-276.
840989	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1528 as
	residues: Asn-72 to Ile-78, Gly-102 to Asp-109, Arg-150 to Trp-158, Phe-255 to Pro-266,
	Glu-272 to Lys-277.
840991	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1529 as
	residues: Thr-10 to Ala-17, His-24 to Leu-30, Ala-128 to Val-136.
840996	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1530 as
	residues: Cys-107 to Gln-112, Lys-142 to Ser-148.
840997	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1531 as
	residues: Ile-25 to Pro-35, Asp-37 to Thr-42, Ala-56 to Phe-71, Arg-75 to Gln-82, Thr-127
	to Tyr-139.
840998	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1532 as

	residues: Lys-19 to Thr-24, Pro-35 to Gln-130.
840999	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1533 as
010)))	residues: Phe-44 to Arg-53.
841000	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1534 as
041000	residues: Ala-4 to Pro-13.
841002	
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1535 as
	residues: Pro-8 to Ser-18, His-27 to Ser-39, Pro-50 to Gly-59.
841003	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1536 as
	residues: Pro-24 to Glu-31.
841008	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1537 as
	residues: Cys-10 to Cys-16, Thr-114 to Gly-120, Asn-200 to Lys-209.
841013	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1538 as
	residues: Phe-58 to Asn-66, Ala-82 to Gln-88, Ser-169 to Glu-178, Pro-222 to Gly-227,
	Glu-283 to Glu-289, Ala-314 to Gly-321, Ile-370 to Asn-376, Lys-409 to Ala-423, Asp-44
	to Arg-449, Ser-456 to Glu-463, Asn-472 to Asn-477.
841014	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1539 as
0.101.	residues: Asn-8 to Phe-17, Gly-58 to Asp-64, Glu-186 to Ser-191, Ala-266 to Ile-271, Thi
	300 to Lys-309, Val-327 to Met-332.
841015	
041013	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1540 as
041010	residues: Tyr-17 to Thr-29, Lys-35 to Glu-40.
841019	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1542 as
	residues: Phe-9 to Phe-16.
841024	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1543 as
	residues: Ser-6 to Gly-15, Ala-90 to Gly-96, Val-119 to Trp-127, Val-147 to Lys-155, Ala-
	174 to Glu-181, Ala-231 to Leu-239.
841025	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1544 as
	residues: Leu-18 to His-27, Asp-29 to Ser-42, Glu-62 to Asn-72, Ser-76 to Glu-81.
841026	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1545 as
	residues: Ala-3 to Gly-10, Lys-41 to Gly-48, Pro-69 to Ser-81, Pro-92 to Thr-97, Asn-101
	to Lys-110, Gly-173 to Gly-182, Arg-188 to Asn-199.
841027	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1546 as
	residues: Pro-1 to Arg-19, Asp-42 to Glu-48, Asp-70 to Tyr-79, Asn-81 to Gly-88, Ala-91
	to Gly-98, Glu-153 to Pro-163.
841029	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1547 as
0.1.000	residues: Arg-50 to Ser-58, Arg-66 to Asp-73, Pro-96 to Ser-102, Gln-133 to Arg-142.
841030	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1548 as
041030	residues: Ser-23 to Gln-30.
841034	
841034	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1550 as
941026	residues: Ser-56 to Lys-61.
841036	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1551 as
0.41000	residues: Leu-89 to Lys-102.
841039	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1552 as
	residues: Glu-19 to Ser-24, Ser-52 to Gly-60, Ser-67 to Gly-74, Lys-142 to Gly-148, Pro-
	178 to Arg-184.
841048	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as
841048	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi
841048	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to Ile-188, Asn-191 to Arg-201, Arg-251 to
	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to IBc-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44
841048 841050	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to IBc-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44
	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to Ile-188, Asn-191 to Arg-201, Arg-251 to
	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to IB-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1556 as residues: Ile-6 to Asn-15.
841050	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, HI 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to IBe-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1556 as residues: Ile-6 to Asn-15. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1557 as
841050	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to Ile-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1556 as residues: Ile-6 to Asn-15. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1557 as residues: Pro-37 to Arg-42, Asn-83 to Phe-90, Lys-187 to Cys-192, Asp-209 to Gly-215,
841050 841052	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to IBc-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-410, Ser-470 to Pro-414, Thr-428 to Lys-44 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1556 as residues: Ile-6 to Asn-15. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1557 as residues: Pro-37 to Arg-42, Asn-83 to Phe-90, Lys-187 to Cys-192, Asp-209 to Gly-215, His-236 to Lys-243, Tyr-263 to Gly-276, Thr-308 to Gly-314, Glu-346 to Asp-351.
841050	178 to Arg-184. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1554 as residues: Met-22 to Tyr-49, Arg-60 to Thr-69, Gln-93 to Glu-111, Pro-113 to Glu-139, Hi 152 to Ser-162, Lys-172 to Glu-178, Ser-183 to Ile-188, Asn-191 to Arg-201, Arg-251 to Asn-259, Thr-297 to Arg-303, Val-379 to Gln-401, Ser-407 to Pro-414, Thr-428 to Lys-44 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1556 as residues: Ile-6 to Asn-15. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1557 as residues: Pro-37 to Arg-42, Asn-83 to Phe-90, Lys-187 to Cys-192, Asp-209 to Gly-215,

	residues: Val-13 to Leu-31.
841056	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1560 as residues: Arg-8 to Phe-13, Arg-29 to Val-36.
841060	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1561 as residues: Asp-69 to Gln-74.
841062	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1563 as
041002	residues: Gly-1 to Lys-6, Thr-10 to Lys-16, Asp-22 to Pro-35, Pro-62 to Asp-77, Ile-85 to
	Met-97, Leu-130 to Thr-135, Lvs-206 to Gly-213, Leu-234 to Ser-242, Leu-334 to Glu-341.
	Ser-354 to Lys-369, Glu-398 to Lys-409, Glu-425 to Glu-477.
841063	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1564 as
041005	residues: Ala-1 to Trp-12, Glu-49 to Gly-56, Lys-99 to Thr-110, Glu-147 to Lys-154.
841067	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1565 as
041007	residues: Ser-7 to Ala-12, Gly-14 to Met-30, Lys-52 to Ala-58.
841074	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1566 as
0.10,4	residues: Ala-1 to Gln-6, Glu-22 to Arg-30, Leu-43 to Ser-52, Glu-61 to Lys-70, Lys-75 to
	Glu-84, Thr-105 to Lys-110, Asp-131 to Ala-143, Ser-151 to Thr-158, Thr-200 to Asp-208.
841076	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1567 as
011010	residues: Lys-1 to Gly-6, Asp-13 to Glu-27.
841083	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1569 as
	residues: Leu-42 to Lys-49, Glu-63 to Ser-68, Glu-93 to Gln-98, Asn-109 to Ser-115, Met-
	147 to Lys-152.
841093	Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1571 as
	residues: Pro-5 to Glu-14, Ala-84 to His-90, Thr-93 to Gly-99, Asn-124 to Val-133, Met-
	144 to Val-149, Thr-192 to Glu-200.
841097	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1572 as
	residues: Pro-46 to Glu-56, Phe-65 to Ser-73, Glu-114 to Asp-121, Thr-132 to Gln-139,
	Asp-171 to Pro-177, Thr-215 to Val-221.
841098	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1573 as
	residues: Arg-9 to Gly-14, Met-36 to Lys-57, Pro-93 to Gly-98.
841113	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1575 as
	residues: Gln-10 to Gly-18.
841115	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1576 as
	residues: 1le-1 to Lys-13, Thr-36 to Ala-42, Asn-49 to Leu-55, Phe-59 to Arg-70, Asp-80 to
	Arg-86, Lys-92 to Lys-98.
841117	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1578 as
	residues: Arg-1 to Glu-26, Thr-59 to Glu-64, Gln-69 to Met-77, Arg-79 to Ser-84, Pro-86 to
	Pro-97, Arg-104 to Lys-121, Ala-133 to Arg-141, Leu-162 to Ser-169.
841127	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1580 as
	residues: Pro-1 to Pro-12, Arg-51 to Ile-56, Lys-69 to Arg-85, Glu-115 to Arg-122, Gly-12
	to Gln-134, Lys-138 to Lys-156, Gly-163 to Pro-170.
841128	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1581 as
	residues: Pro-75 to Glu-91, Glu-121 to Gly-126, Ile-149 to Lys-155, Ala-185 to Asp-201,
	Glu-237 to Gly-252, Leu-256 to Ser-276.
841134	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1584 as
	residues: Lys-43 to Leu-48, Lys-54 to Ala-62, Asn-75 to Ala-82, Glu-135 to Asp-140, Glu-
	173 to Leu-178, Lys-213 to Tyr-222.
841138	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1587 as
	residues: Arg-68 to Gln-74, Ser-85 to Asp-115, Arg-133 to Lys-144, Arg-152 to 1le-165,
	Pro-184 to Lys-191, Leu-198 to Lys-215, Val-235 to Glu-240, Asp-246 to Asn-266, Glu-28
041444	to Pro-292.
841141	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1589 as
	residues: Pro-16 to Glu-27, Pro-36 to Phe-43, Asn-71 to Ser-84, Thr-107 to Ser-115, Glu-
041145	147 to Lys-161, Pro-167 to Ser-185, Ser-187 to Ser-206.
841145	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1591 as
041443	residues: Glu-33 to Pro-40, Arg-48 to Pro-56, Met-71 to Gly-76, Ser-103 to Arg-115.
841146	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1592 as

residues: Lys-21 to Thr-26, Thr-37 to Pro-42. 841150 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1593 residues: Ser-5 to Thr-62.	
	as
841153 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1594 residues: Glu-4 to Trp-9.	as
841154 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1595	as
residues: Asp-24 to Tyr-29, Ser-34 to Asn-42, Leu-45 to Lys-61, Thr-117 to Ser-12 153 to Asp-158, Glu-174 to Lys-180, Leu-188 to Gly-204, Ala-220 to Leu-227, Gly His-268, Lys-276 to Thr-287, Phe-307 to Pro-319, Thr-345 to Met-351, Gln-427 to Asp-438 to Glin-443.	-262 to
841156 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1596	as
residues: Glu-4 to Gly-12, Thr-21 to Gln-27, Pro-40 to Ser-47, Pro-50 to Ser-61, Va Cys-107, Lys-138 to Gly-147, Gln-150 to Tyr-156, Lys-169 to Thr-174.	ıl-101 to
841157 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1597 residues: Val-35 to Ala-41, Gln-56 to Trp-70.	as
841159 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1598	as
residues: Gln-1 to Arg-7, Arg-14 to Glu-22, Ala-43 to Asp-55, Thr-65 to Arg-71.	
841164 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1599	
residues: Arg-1 to Cys-11, Arg-18 to Arg-25, Glu-83 to Glu-88, Gly-108 to Lys-11	
841167 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1600 residues: Arg-16 to Asp-22.	
841170 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1601	
residues: Ala-1 to Ala-14, Ala-37 to Asp-45, Thr-55 to Leu-62, Glu-76 to Gly-82, I	
Gly-110, Pro-119 to Gly-127, Pro-129 to Asp-142, Lys-196 to Ser-210, Pro-216 to	
841173 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1602	
residues: Arg-52 to Gln-57, Asp-181 to Gly-187, Ser-260 to Val-271, Lys-285 to A	
841178 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1604	
residues: Ser-1 to Ala-9, Ala-14 to Ile-30, Pro-41 to Ser-50, Asn-56 to Arg-63, Asp	-95 to
Lys-102, Pro-126 to Ser-132.	
841181 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1606 residues: Thr-3 to Arg-12.	
841182 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1607	
residues: Gly-12 to Gln-26, Cys-34 to Gly-49, Glu-86 to Tyr-93, Phe-103 to Thr-13	
145 to Gln-153, Tyr-167 to Arg-176, Ser-192 to Gly-200, Ala-219 to Gly-226, Glu- Trp-242.	
841187 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1609	
residues: Glu-1 to Gly-15, Pro-23 to Val-48, Pro-58 to Glu-63, Thr-79 to Trp-91, A to Lys-213.	
841188 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1610	
residues: Arg-1 to Gly-7, Ile-92 to Tyr-98, Arg-153 to Gly-159, Ala-319 to Ser-324	, Lys-
350 to Glu-359.	
Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1611	
residues: Arg-13 to Ala-21, Thr-29 to Arg-34, Glu-41 to Ala-50, Ser-65 to Glu-71, to Glu-117, Ile-144 to Arg-154, Gly-159 to His-186, Lys-189 to Tyr-197.	Giu-108
841192 Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1612	
residues: Gln-56 to Leu-63, Gln-188 to Lys-193, His-200 to Gly-205, Leu-208 to A	
Thr-358 to Lys-367, Lys-369 to Gln-377, His-426 to Arg-431, Tyr-437 to Glu-446,	
to Pro-476.	51u-459
Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1613 residues: Phe-54 to Ser-59, Thr-63 to Asp-69.	as
841195 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1614	ac
residues: His-1 to Gln-6, Ala-66 to Gly-79, Leu-88 to Asp-95, Glu-121 to Ile-126, I	
to Pro-147, Ile-173 to Trp-180, Asn-195 to Tyr-206.	10-140
841198 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1615	as
residues: Gln-29 to Arg-34, Thr-65 to Thr-76, Arg-100 to Arg-108, Leu-163 to Ala	-173.
841201 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1617	as

	11 Cl 2: 1 10 D 42: D 50 C 44: C 20 Cl 107: Al 121
	residues: Gln-3 to Lys-10, Pro-42 to Pro-50, Ser-66 to Ser-80, Glu-107 to Ala-121.
841202	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1618 as
	residues: Ser-11 to Trp-23, Glu-25 to Gly-32, Ala-56 to Gly-67, Glu-80 to Pro-96, Ala-166
	to Leu-177, Asn-222 to His-231, Met-239 to Gly-249, Gly-318 to Pro-338.
841209	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1619 as
	residues: Arg-4 to Leu-27, Gln-63 to Leu-82, Pro-168 to Ser-175.
841213	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1621 as
	residues: Val-17 to Tyr-22, Cys-32 to Asp-49, Ser-104 to Pro-114.
841219	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1623 as
041217	residues: Leu-10 to Glu-28, Lys-54 to Gln-60.
841222	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1624 as
841222	
	residues: Ile-9 to Ser-14, Pro-68 to Cys-80, Ser-82 to Thr-87, Ile-136 to His-155, Lys-214
	Asn-224.
841223	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1625 as
	residues: Pro-12 to Glu-17.
841226	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1627 as
	residues: Ala-40 to Thr-52.
841227	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1628 as
0.122,	residues: Val-54 to Asn-60, Glu-81 to Thr-87, Asn-103 to Glu-108, Asn-163 to His-168,
	Ile-170 to Tvr-175.
841233	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1632 as
641233	
	residues: Gly-8 to Gly-20, Ser-81 to Phe-89, Leu-135 to Gln-140, Glu-156 to Tyr-168.
841234	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1633 as
	residues: Lys-65 to Phe-70, Asp-99 to Ile-104, Arg-122 to Asp-128, Leu-244 to Ile-250,
	Leu-258 to Leu-268, Ala-270 to Lys-286, Lys-310 to Asp-318, Asn-338 to Gln-344, Asp-
	360 to Leu-369, Lys-414 to Gln-422, Glu-435 to Arg-449, Lys-471 to Phe-476, Arg-498 to
	Leu-505, Ala-526 to Gly-534, Ala-536 to Pro-559, Pro-586 to Tyr-612, Tyr-624 to Tyr-629
	Gln-639 to Gln-668.
841236	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1634 as
	residues: Lys-5 to Pro-18, Glu-24 to Ser-36, Pro-57 to Gly-63.
841239	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1636 as
011237	residues: Arg-1 to Ser-6.
841243	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1638 as
841243	
	residues: Gln-1 to Asp-7, Pro-26 to Ser-31, Leu-41 to Arg-46, Gly-57 to Thr-65, Lys-71 to
	Lys-76.
841248	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1639 as
	residues: Ala-8 to Thr-23, Pro-35 to Met-41, Asn-60 to Thr-65, Asn-89 to Glu-94, Pro-161
	to Leu-167, Asp-184 to Trp-189, Phe-192 to Leu-206, Arg-215 to Leu-221.
841250	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1640 as
	residues: Asn-13 to Gly-22, Gln-24 to Lys-29, Ser-44 to Gly-51, Thr-128 to Asp-138, Glu-
	166 to Leu-175, Arg-187 to Ala-192, Pro-240 to Ala-256, Ser-259 to Trp-265, Met-281 to
	Lys-288, Leu-318 to Trp-356, Ser-379 to Thr-385, Phe-409 to Tyr-419.
841251	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1641 as
041231	residues: Arg-13 to Phe-20, His-22 to Ser-27, Gln-70 to Phe-76.
041054	
841254	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1642 as
	residues: Thr-1 to Lys-15, Gln-41 to Glu-46.
841263	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1643 as
	residues: Ser-27 to Arg-35, Leu-76 to Trp-85, Arg-112 to Thr-118.
841269	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1645 as
	residues: Lys-12 to Lys-19.
841273	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1647 as
UT1213	residues: Tyr-3 to Asn-9.
041077	
841277	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1649 as
	residues: Pro-55 to Ser-62, Arg-124 to Ile-129, Arg-145 to Asn-151, Asn-186 to Asn-196,
	Lys-267 to Lys-274, Arg-368 to Arg-373. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1650 as
841278	

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	residues: Ala-6 to Pro-13, Asn-19 to Phe-24.
841279	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1651 as residues: Thr-3 to Gly-12, Arg-19 to Ala-24, Arg-30 to Gly-43, Pro-46 to Trp-51, Gly-77 to
041000	Arg-85. Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1652 as
841280	residues: Ser-14 to Thr-20, Glu-44 to Gly-50, Lys-68 to Pro-76, Glu-91 to Glu-96, Ala-110
	to Lys-116, Lys-124 to His-131, Gly-164 to Gln-173, Leu-191 to Asn-200, Met-215 to Ser-
	221, Gln-236 to Lys-258, Pro-266 to Asn-271, Pro-279 to Asp-286.
841282	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1653 as residues: Leu-3 to Lys-8.
841283	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1654 as residues: Tyr-1 to Glu-9, Ala-12 to Ser-18, His-63 to Phe-77, Asn-98 to Arg-110.
841286	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1655 as
041200	residues: Ser-13 to Arg-19, Leu-28 to Val-35, Pro-37 to Gly-57, Ser-81 to Pro-87, Ile-102 to Arg-111.
841287	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1656 as
041207	residues: Arg-1 to Ala-10, Val-23 to Phe-42, Asp-60 to Tyr-69, Pro-71 to Ser-79.
841288	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1657 as
	residues: Ser-4 to Pro-9, Arg-18 to Pro-26.
841291	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1658 as
	residues: Lys-16 to Ser-23, Gln-56 to Asp-63, Lys-137 to His-145, Glu-149 to His-156,
	Glu-163 to Gly-171, Pro-173 to Ala-180, Lys-189 to Ala-206, Glu-208 to Gln-214, Pro-231 to Ser-240.
841294	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1660 as
041254	residues: Gly-6 to Gly-12, Glu-19 to Pro-37, Gly-43 to Pro-55, Asp-62 to Gln-78, Arg-89 to
	Gln-95, Lys-99 to Arg-118, Glu-123 to Ala-139.
841301	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1663 as
041301	residues: Asn-8 to Arg-13, Gly-36 to Leu-43, Arg-53 to Cys-59.
841303	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1664 as
041505	residues: Pro-23 to Gly-35, Pro-38 to Phe-45, Pro-47 to Gly-56, Val-68 to Tyr-73, Gly-123
	to Gly-135, Met-150 to Gln-164, Arg-212 to Ile-220, Arg-284 to Ile-289, Tyr-296 to His-
	315, Gln-325 to Ile-334, Thr-471 to Arg-476.
841304	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1665 as
011001	residues: Phe-33 to Arg-47, Asn-65 to Gly-71, Asp-95 to Gly-100, Asp-152 to Asn-163,
	His-223 to Gly-229.
841305	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1666 as
041303	residues: Gly-5 to Trp-19, Pro-21 to Ser-35, Pro-42 to Ser-58, Pro-64 to Asp-75.
841309	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1667 as
041509	residues: Lys-1 to Lys-6, Lys-18 to Asp-25, Thr-46 to Arg-64, His-97 to Lys-105, Glu-113
	to Ala-118, Asn-126 to Gly-137, Thr-142 to Pro-147, Glu-155 to Ile-173, Ala-175 to Asn-
	184, Ser-188 to Glu-222, Glu-228 to Ala-242, Ala-263 to Asp-272, Thr-277 to Asp-288,
	Lys-293 to Met-308, Ile-348 to Gly-359, Pro-361 to Thr-386, Pro-403 to Arg-411, Asp-466
	to Gln-473, Arg-479 to Thr-493, Lys-507 to Lys-513.
841314	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1668 as
041314	residues: Leu-4 to Ala-11, Phe-106 to Trp-112, Lys-204 to Ile-209, Ser-224 to Leu-236,
	Pro-254 to Ser-262, Phe-282 to Met-295.
841316	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1669 as
041310	residues: Pro-60 to Ser-67, Lys-86 to Ile-92, Arg-125 to Lys-130, Glu-155 to Asp-161, Glu-
	170 to Ser-176. Thr-181 to Val-187, Leu-198 to Asn-203, Gln-258 to Lys-263, Pro-271 to
	Asn-276. Phe-286 to Glu-292.
041210	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1670 as
841318	
0.41001	residues: Pro-14 to Trp-25, His-36 to Arg-41, Gly-66 to Tyr-73, Glu-82 to Pro-89.
841321	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1671 as
	residues: Asp-11 to Gly-19, Asp-26 to Val-31, Ala-52 to Asn-71, Gly-75 to Gly-81, Pro-88
	to Gly-119, Pro-125 to Pro-180, Gly-187 to Gly-193, Tyr-196 to Tyr-218.
841324	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1672 as

	residues: Gly-45 to Val-54, Trp-67 to Gly-75, Asp-82 to Asn-90, Ala-124 to Trp-132, Thr-
	residues: Giy-45 to Vai-54, 11p-67 to Giy-75, Asp-62 to Asii-90, Aia-124 to 11p-152, 11ii-
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1673 as residues: Thr-45 to Asn-50, Lys-60 to Arg-73, Arg-81 to Asp-87, Lys-91 to Ser-96, Pro-105
	to Gly-114, Ser-130 to Leu-136, Leu-145 to 1le-154, Cys-279 to Pro-284, Thr-321 to Glu- 326, Pro-389 to Thr-398, Ala-406 to Ile-412, Ala-431 to Glu-438, Lys-495 to Glu-500, Asn-
	520 to Val-526, Glu-541 to Asn-547, Thr-552 to Tyr-557.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1674 as residues: Asn-64 to Ala-78, Ser-155 to Ala-169, Lys-290 to Asp-314.
841329	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1675 as
	residues: Leu-10 to Trp-18, Arg-21 to Leu-32, Pro-35 to Leu-55, Arg-74 to Phe-90, Pro-100 to Trp-115, Val-142 to Thr-152.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1676 as residues: Gly-14 to Ala-19, Arg-34 to Arg-41.
841333	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1677 as residues: Leu-20 to Val-26.
841335	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1679 as residues: Asn-10 to Cys-17.
841336	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1680 as residues: Lys-1 to Arg-9, Ala-57 to Met-66, Ile-70 to Glu-78, Ile-104 to Gly-125, Thr-155 to Glu-160, Pro-174 to Leu-184, Ala-200 to Arg-206, Ser-231 to Ser-255, Gln-281 to Asp-287.
841337	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1681 as residues: Arg-79 to Val-86, Al-111 to Glu-125, Pro-148 to Met-153, Arg-180 to Leu-188, Pro-275 to Gly-296, Pro-336 to Phe-350, Gly-353 to Ser-362, Val-364 to Arg-371.
841340	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1683 as residues: Pro-39 to Ser-46.
841341	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1684 as residues: Pro-9 to Gly-23, Glu-43 to Ala-51, Ser-62 to Gly-91.
841343	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1686 as residues: Lys-49 to Gly-66, Ala-78 to Ser-85, Gly-90 to Thr-97, Arg-124 to Gly-129.
841352	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1688 as residues: Arg-37 to Leu-47, Gln-93 to Asp-112, Arg-114 to Arg-119, Arg-124 to Arg-142.
841353	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1689 as residues: Leu-23 to Thr-28, Ile-47 to Lys-56, Arg-91 to Gln-99, Gly-111 to Ser-119.
841354	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1690 as residues: Ser-36 to Arg-42.
841360	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1691 as residues: Asn-1 to Thr-11, Pro-64 to Phe-75, Phe-117 to Ile-122, Glu-124 to Arg-131, Trp-142 to Gln-147, Thr-176 to Ser-185, Arg-208 to Gly-215, Gln-238 to Ser-244, Ala-246 to Val-256, Ser-264 to Lys-272.
841405	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1693 as residues: Leu-1 to Gly-14, Arg-21 to Gln-26, Lys-62 to Val-73, His-13 to Asp-136, Glu-142 to Tyr-158, Val-162 to Gly-169, Gln-183 to Gly-189, Glu-205 to Gly-210, Gln-222 to Asp-231, Gly-237 to Tyr-244, Ala-251 to Leu-267, Asp-298 to Asn-305, Glu-332 to Lys-337, Arg-344 to Ala-349.
841526	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1694 as residues: Pro-1 to Arg-8.
841712	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1695 as residues: Gln-34 to Lys-44, Ser-70 to Leu-75, Ala-79 to Pro-89, Glu-94 to Thr-101, Gln-103 to Ser-112.
842042	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1697 as residues: Arg-64 to Glu-69, Ile-78 to Tyr-86, Asp-128 to Gly-148, Pro-166 to Pro-187, Alt 194 to Lys-239, Ala-243 to Ala-255.
842453	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1698 as residues: Gly-41 to Gly-53, Gly-65 to Arg-74.

	No 1000
842635	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1699 as
}	residues: Cys-2 to Asp-11, Lys-39 to Phe-55, Tyr-72 to Trp-78, Thr-154 to Lys-164, Ser-
i	191 to Lvs-203, Asp-218 to Asp-223.
842927	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1700 as
042727	residues: Pro-8 to Trp-14, Gly-33 to Glu-48, Arg-58 to Lys-67, Thr-76 to Gln-96, Ala-98 to
	Ser-118, Cys-193 to Thr-201, Leu-225 to Trp-232, Asp-256 to Phe-262.
	Ser-118, Cys-193 to 11ft-201, Lett-223 to 11ft-232, Asp-230 to 11ft-202.
843237	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1703 as
	residues: His-1 to Gly-14, Leu-36 to Ser-41, Gln-45 to Arg-59, Gly-66 to Arg-91, Lys-104
	to Trp-113, Arg-143 to Leu-148, Val-172 to Val-181, Pro-235 to Lys-242.
843381	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1704 as
040001	residues: Arg-9 to Arg-14, Gly-27 to Cys-32, Ser-53 to Leu-61, Ala-66 to Phe-71.
042022	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1706 as
	residues: Asp-11 to Tyr-16.
844056	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1707 as
	residues: Lys-145 to Thr-159, Ser-167 to Lys-176, Asn-216 to Lys-224.
844344	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1709 as
	residues: Gly-4 to Asp-9, Glu-23 to Lys-31, Asn-38 to Tyr-47.
844368	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1710 as
044500	residues: His-5 to Gly-15, Pro-97 to Cys-103.
211100	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1711 as
844408	
	residues: Thr-49 to Gln-60.
844867	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1713 as
	residues: Ile-49 to Thr-60.
845281	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1715 as
0-13201	residues: Gly-5 to Arg-12.
0.45000	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1716 as
845288	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1710 as
	residues: Ala-1 to Gly-6, Ala-8 to Val-15, Ala-159 to Pro-164.
845750	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1717 as
	residues: Arg-1 to Thr-9.
845809	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1718 as
	residues: Glu-9 to Arg-14, Thr-19 to Arg-27, Asp-48 to Ile-57, Gln-63 to Leu-75, Cys-89 t
	Thr-104, Gly-106 to Pro-113, Gly-127 to Thr-133, Arg-144 to Asn-157, Ile-179 to Arg-199
846077	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1719 as
846077	Preferred epitopes include those comprising a sequence shown in SEQ 10 100 117 as
	residues: Pro-11 to Trp-18, Cys-59 to Pro-68, Thr-77 to Glu-86, Arg-94 to Asn-102.
HPRTI05R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1721 as
	residues: Pro-22 to Tyr-34.
HPDED94R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1724 as
	residues: Gly-1 to Glu-6.
HDTGHIIR	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1725 as
ilDioiiii	residues: Thr-32 to Met-37.
YVIII FO COD	
HTEJR60R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1726 as
	residues: Ala-1 to Ser-6.
HAGGY86F	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1727 as
	residues: Leu-25 to Trp-40, Val-49 to His-56, Leu-60 to Asn-67.
HPIATI47R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1728 as
III I/IO+/IC	residues: Glu-88 to Leu-93.
	residues: Gid-66 to Led-95.
HCGAD89F	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1729 as
	residues: Glu-30 to Asp-45.
HAPOD39R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1730 as
	residues: Tyr-21 to Ala-28, Ser-74 to Gly-81.
HDR A A 14E	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1733 as
	residues: Ala-1 to Pro-8, Ala-10 to Val-16, Pro-43 to Leu-52.
TIOT CLA COT	D. C. and a rise and include the anappropriate a accordance about in QEO ID MO. 1724 or
HSLCA48F	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1734 as
	residues: Gln-26 to Leu-31.
	Perferred epitopes include those comprising a sequence shown in SEQ ID NO. 1736 as residues: Phe-33 to Ala-43, His-86 to Ser-93.

HCHOH06R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1737 as residues: Gly-4 to Lys-10, Arg-17 to Glu-24, Gln-36 to Glu-41, Arg-61 to Arg-76. HLDRN91R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1740 as residues: Arg-22 to Gln-27, Ser-33 to Val-38, Lys-46 to Gly-57, Gln-92 to Gly-97. HE6GO78R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1743 as residues: Ser-3 to Trp-12 HSYBY17R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1745 as residues: Gln-30 to Pro-36. HPJCS07R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1746 as residues: Tyr-25 to Phe-32. HFKFH08R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1748 as residues: Arg-2 to Gln-8, Val-49 to Asn-54, Gln-58 to Tyr-64. HPIB127R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1750 as residues: Glu-17 to Asp-22, Pro-46 to Arg-52, Pro-75 to Asp-84. HSKJG37R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1751 as residues: Leu-66 to Gly-72, Asp-89 to Pro-97, Thr-104 to Leu-110. H2LAZ24R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1752 as residues: Pro-20 to Ala-26, Ser-107 to Ala-113, Asp-129 to Gly-135, Thr-139 to Asp-146, Ser-152 to Arg-168, Glu-173 to Pro-180. H2LAS11R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1756 as residues: Pro-20 to Ser-25, Lys-67 to Phe-76, Pro-78 to Asn-86, Asp-100 to Gly-108, Arg-116 to Glv-122, Glu-153 to Ala-158. HADMC73 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1758 as residues: Ala-1 to Tvr-9. HDTDX66R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1760 as residues: Met-2 to Leu-9, Lys-11 to Pro-28, Asp-57 to Leu-68, Gln-81 to Ser-96, Ser-98 to HLPBB39R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1761 as residues: Cvs-27 to Lvs-33, Thr-35 to Cvs-41. HKABU38RPreferred epitopes include those comprising a sequence shown in SEQ ID NO. 1763 as residues: Pro-1 to Pro-11, Ala-17 to Lys-25, Asp-54 to Leu-59, Thr-66 to Arg-76, Arg-90 to Pro-107, Pro-139 to Glu-146. HATAIO3R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1765 as residues: Phe-1 to Asn-6. HCEDE25R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1766 as residues: Ala-6 to Thr-13. H2LAO77R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1770 as residues: Ala-16 to Pro-30, Thr-44 to Val-57, Lys-75 to Gly-80, Asp-92 to Leu-102, Ala-113 to Tvr-120 HNTRW15RPreferred epitopes include those comprising a sequence shown in SEQ ID NO. 1771 as residues: Met-3 to Lvs-9, Ala-16 to Trp-37. HULBL38R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1773 as residues: Cys-1 to Glu-6, Asp-52 to Asp-65, Lys-82 to Pro-88. HNTBK49R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1774 as residues: Pro-40 to Gly-45. HBAFS48R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1775 as residues: Pro-1 to Glu-18, Pro-37 to Met-44. HOHBU75R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1777 as residues: His-24 to Gly-29, Glu-32 to Asp-37, Gly-47 to Pro-60.

residues: Trp-13 to Asp-19, Cvs-29 to Gln-34, Ala-41 to Arg-52, Glv-54 to Gln-59, Arg-69

HSLBA61R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1779 as

HKAKR61R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1782 as

residues: Asn-37 to Thr-42.

residues: Arg-1 to Thr-7.

to Pro-78

H2MBU27R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1788 as residues: Asp-3 to Lys-9, Arg-88 to Gln-95. HDSAH53R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1789 as residues: Asp-7 to Lys-13. HAIDF69R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1790 as residues: Gln-13 to Pro-22 HTWJC11R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1793 as residues: Pro-27 to Val-32. HKAEC40R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1794 as residues: Lys-86 to Lys-91. HCFNM70R Preferred epitopes include those comprising a sequence shown in SEQ 1D NO. 1795 as residues: Thr-19 to Lvs-24. HKBAB93R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1796 as residues: Lys-9 to Tyr-26, Arg-48 to Lys-53, Ser-68 to Thr-75, Ala-84 to Leu-89. HMAEA94R Preferred epitopes include those comprising a sequence shown in SEQ 1D NO. 1800 as residues: His-60 to Asp-69, Phe-87 to Ala-93. HMWEA08 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1801 as residues: Met-3 to Thr-8, Tyr-33 to Gly-38, Lys-54 to Glu-65. HRACC09R Preferred epitopes include those comprising a sequence shown in SEO ID NO, 1803 as residues: Lys-7 to Trp-18 HOEEC67R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1804 as residues: Lys-24 to Glu-31. HPFEA40R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1805 as residues: Arg-4 to Ile-20. HHECI89R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1807 as residues: Ala-1 to Arg-12, Pro-22 to Met-28, Glu-53 to Thr-61, Gly-90 to Ile-97, HSDFV03R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1808 as residues: Ser-18 to Phe-24, Pro-40 to Thr-46. HTXPN01R Preferred epitopes include those comprising a sequence shown in SEQ 1D NO. 1809 as residues: Lys-19 to Glu-28. HACBH95R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1813 as residues: Pro-43 to Gly-51. HACBY16R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1814 as residues: Arg-1 to Glu-16. HAHAD34R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1816 as residues: Gly-13 to Ala-21. HAJAN69R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1817 as residues: Gly-1 to Gly-22, Pro-61 to Ala-70. HAPPR17R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1819 as residues: Asn-8 to Met-13, Asp-15 to Met-21. HBGBE20R Preferred epitopes include those comprising a sequence shown in SEO ID NO. 1824 as residues: Arg-28 to Leu-33. HBMVT43RPreferred epitopes include those comprising a sequence shown in SEO ID NO. 1828 as residues: Pro-1 to Asn-8. HCFLN25R Preferred epitopes include those comprising a sequence shown in SEQ 1D NO. 1830 as residues: Gly-16 to Trp-21, Pro-24 to Leu-32. HCQAW59 Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1831 as residues: Gly-1 to Gly-8, Pro-11 to Asn-21. HDPMA46R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1832 as residues: Glu-14 to Gly-32, Pro-61 to Gly-66. HDTAQ26R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1833 as

HDTLD39R Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1835 as

residues: Ser-1 to Glv-7.

residues: Thr-14 to Ser-44.

residues: Phe-11 to Lys-17, Gly-36 to Gly-43.

	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1838 as residues: Pro-20 to Pro-28.
HETIB72R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1840 as residues: Gln-1 to Glu-9.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1842 as residues: Ala-2 to His-8, Gly-26 to Cys-32.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1848 as residues: Ala-1 to Arg-8, Val-12 to Lys-25.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1851 as residues: Arg-72 to Gly-80, Leu-86 to Phe-92.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1852 as residues: Asp-1 to Gly-6, Gly-44 to Arg-50.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1853 as residues: Arg-12 to Phe-24, Pro-32 to Ser-43.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1858 as residues: Arg-1 to Cys-7.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1860 as residues: Gln-1 to Arg-17, Ala-25 to Pro-32.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1861 as residues: Pro-9 to Gly-18.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1862 as residues: Arg-9 to Gln-35, Arg-51 to Gly-56.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1863 as residues: Ala-16 to Arg-26, Thr-67 to Asn-76.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1864 as residues: Glu-1 to His-6, Gly-19 to Trp-31.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1865 as residues: Glu-1 to His-6, Gly-19 to Trp-31.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1866 as residues: Pro-25 to Lys-31.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1867 as residues: Ser-2 to Gln-10, Val-26 to Lys-34, Asp-52 to Glu-58, Arg-93 to Trp-102.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1868 as residues: Glu-1 to His-6, Gly-19 to Trp-31.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1869 as residues: Ser-18 to Gly-23.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1873 as residues: Thr-53 to Arg-64.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1874 as residues: Phe-35 to Asp-58, Phe-92 to Phe-105.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1878 as residues: Pro-16 to Phe-25.
	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1879 as residues: Pro-13 to Gly-22, Arg-45 to Cys-50.
HTGFW12R	Preferred epitopes include those comprising a sequence shown in SEQ ID NO. 1880 as residues: Pro-6 to Gly-16, Arg-24 to Pro-32.

[0100] The present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of the polypeptide sequence shown in SEQ ID NO:Y, or an epitope of the polypeptide sequence encoded by the cDNA in the related cDNA clone contained in a deposited library or encoded by a polynucleotide that hybridizes to the complement of an epitope encoding sequence of SEQ ID NO:X, or an epitope encoding sequence contained in the deposited cDNA clone under stringent hybridization conditions, or alternatively, under lower stringency hybridization conditions, as defined supra. The present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ID NO:X), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to this complementary strand under stringent hybridization conditions or alternatively, under lower stringency hybridization conditions, as defined supra.

[0101] The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic.

[0102] Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4.631.211.)

[0103] In the present invention, antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least

10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids. Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)).

Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).

[0105] Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid.

For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about $100~\mu g$ of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

As one of skill in the art will appreciate, and as discussed above, the [0106] polypeptides of the present invention, and immunogenic and/or antigenic epitope fragments thereof can be fused to other polypeptide sequences. For example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CH1, CH2, CH3, or any combination thereof and portions thereof) resulting in chimeric polypeptides. Such fusion proteins may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331:84-86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT Publications WO 96/22024 and WO 99/04813). IgG Fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958-3964 (1995).

[0107] Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin

molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, may be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

[0109] Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.

[0110] Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin ("HA") tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., Proc. Natl. Acad. Sci. USA 88:8972-897 (1991)). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an aminoterminal tag consisting of six histidine residues. The tag serves as a matrix binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose column and histidine-tagged proteins can be selectively eluted with imidazole-containing buffers.

[0111] Additional fusion proteins of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling"). DNA shuffling may be employed to modulate the activities of polypeptides of the invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Pattern et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-82 (1998); Hansson, et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308- 13 (1998) (each of these patents and publications are hereby incorporated by reference in its entirety). In one embodiment, alteration of polynucleotides corresponding to SEQ ID NO:X and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments by homologous or sitespecific recombination to generate variation in the polynucleotide sequence. In another embodiment, polynucleotides of the invention, or the encoded polyneptides, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide encoding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.

[0112] As discussed herein, any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, polypeptides of the present invention which are shown to be secreted can be used as targeting molecules once fused to other proteins.

[0113] Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

[0114] In certain preferred embodiments, proteins of the invention comprise fusion proteins wherein the polypeptides are N and/or C- terminal deletion mutants. In preferred embodiments, the application is directed to nucleic acid molecules at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequences encoding polypeptides having the amino acid sequence of the specific N- and C-terminal deletions mutants. Polynucleotides encoding these polypeptides are also encompassed by the invention.

[0115] Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Vectors, Host Cells, and Protein Production

[0116] The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

[0117] The polynucleotides of the invention may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

[0118] The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the

transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

[0119] As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

[0120] Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1, pPIC3.5K, pPIC9K, and PAO815 (all available from Invitrogen, Carlbad, CA). Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

[0122] A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

[0123] Polypeptides of the present invention can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

[0124] In one embodiment, the yeast *Pichia pastoris* is used to express polypeptides of the invention in a eukaryotic system. *Pichia pastoris* is a methylotrophic yeast which can metabolize methanol as its sole carbon source. A main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using O₂. This reaction is catalyzed by the enzyme alcohol oxidase. In order to metabolize methanol as its sole carbon source, *Pichia pastoris* must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for O₂. Consequently, in a growth medium depending on methanol as a main carbon source, the promoter region of one of the two alcohol oxidase genes (*AOXI*) is highly active. In the presence of methanol, alcohol oxidase produced from the *AOXI* gene comprises up to approximately 30% of the total soluble protein in *Pichia pastoris*. *See*, Ellis, S.B., *et al.*, *Mol. Cell. Biol.* 5:1111-21

(1985); Koutz, P.J. et al., Yeast 5:167-77 (1989); Tschopp, J.F., et al., Nucl. Acids Res. 15:3859-76 (1987). Thus, a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, under the transcriptional regulation of all or part of the AOXI regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.

[0125] In one example, the plasmid vector pPIC9K is used to express DNA encoding a polypeptide of the invention, as set forth herein, in a *Pichea* yeast system essentially as described in "*Pichia* Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998. This expression vector allows expression and secretion of a polypeptide of the invention by virtue of the strong *AOXI* promoter linked to the *Pichia pastoris* alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.

[0126] Many other yeast vectors could be used in place of pPIC9K, such as, pYES2, pYD1, pTEF1/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHIL-D2, pHIL-S1, pPIC3.5K, and PAO815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an inframe AUG as required.

[0127] In another embodiment, high-level expression of a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, may be achieved by cloning the heterologous polynucleotide of the invention into an expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol.

[0128] In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and

endogenous polynucleotide sequences via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).

[0129] In addition, polypeptides of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-111 (1984)). For example, a polypeptide corresponding to a fragment of a polypeptide can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4-diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, omithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, nad amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).

Non-naturally occurring variants may be produced using art-known mutagenesis techniques, which include, but are not limited to oligonucleotide mediated mutagenesis, alanine scanning, PCR mutagenesis, site directed mutagenesis (see, e.g., Carter et al., Nucl. Acids Res. 13:4331 (1986); and Zoller et al., Nucl. Acids Res. 10:6487 (1982)), cassette mutagenesis (see, e.g., Wells et al., Gene 34:315 (1985)), restriction selection mutagenesis (see, e.g., Wells et al., Philos. Trans. R. Soc. London SerA 317:415 (1986)).

[0131] The invention additionally, encompasses polypeptides of the present invention which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other

cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH₄; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.

[0132] Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression. The polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.

[0133] Also provided by the invention are chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.

[0134] The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog). For example, the polyethylene glycol may have an average molecular weight of about 200; 500; 1000; 1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000; 5500; 6000; 6500; 7000; 7500; 8000; 8500; 9000; 9500; 10,000; 10,500; 11,000; 11,500; 12,000; 12,500; 13,000; 13,500;

14,000; 14,500; 15,000; 15,500; 16,000; 16,500; 17,000; 17,500; 18,000; 18,500; 19,000; 19,500; 20,000; 25,000; 30,000; 35,000; 40,000; 50,000; 55,000; 60,000; 65,000; 70,000; 75,000; 80,000; 85,000; 90,000; 95,000; or 100,000 kDa.

[0135] As noted above, the polyethylene glycol may have a branched structure. Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Morpurgo et al., Appl. Biochem. Biotechnol. 56:59-72 (1996); Vorobjev et al., Nucleosides Nucleotides 18:2745-2750 (1999); and Caliceti et al., Bioconjug. Chem. 10:638-646 (1999), the disclosures of each of which are incorporated herein by reference.

[0136] The polyethylene glycol molecules (or other chemical moieties) should be attached to the protein with consideration of effects on functional or antigenic domains of the protein. There are a number of attachment methods available to those skilled in the art, e.g., EP 0 401 384, herein incorporated by reference (coupling PEG to G-CSF), see also Malik et al., Exp. Hematol. 20:1028-1035 (1992) (reporting pegylation of GM-CSF using tresyl chloride). For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as, a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free amino group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group.

[0137] As suggested above, polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues. For example, polyethylene glycol can be linked to a proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues. One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) of the protein.

[0138] One may specifically desire proteins chemically modified at the N-terminus. Using polyethylene glycol as an illustration of the present composition, one

may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.

[0139] As indicated above, pegylation of the proteins of the invention may be accomplished by any number of means. For example, polyethylene glycol may be attached to the protein either directly or by an intervening linker. Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al., Crit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al., Intern. J. of Hematol. 68:1-18 (1998); U.S. Patent No. 4,002,531; U.S. Patent No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incorporated herein by reference.

[0140] One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (CISO₂CH₂CF₃). Upon reaction of protein with tresylated MPEG, polyethylene glycol is directly attached to amine groups of the protein. Thus, the invention includes protein-polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group.

[0141] Polyethylene glycol can also be attached to proteins using a number of different intervening linkers. For example, U.S. Patent No. 5,612,460, the entire disclosure of which is incorporated herein by reference, discloses urethane linkers for connecting polyethylene glycol to proteins. Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced

by reaction of proteins with compounds such as MPEG-succinimidylsuccinate, MPEG activated with 1,1'-carbonyldiimidazole, MPEG-2,4,5-trichloropenylcarbonate, MPEG-pnitrophenolcarbonate, and various MPEG-succinate derivatives. A number additional polyethylene glycol derivatives and reaction chemistries for attaching polyethylene glycol to proteins are described in WO 98/32466, the entire disclosure of which is incorporated herein by reference. Pegylated protein products produced using the reaction chemistries set out herein are included within the scope of the invention.

10142 The number of polyethylene glycol moieties attached to each protein of the invention (*i.e.*, the degree of substitution) may also vary. For example, the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules. Similarly, the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado *et al.*, *Crit. Rev. Thera. Drug Carrier Sys.* 9:249-304 (1992).

[0143] The prostate cancer antigen polypeptides of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to monomers and multimers of the polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them. In specific embodiments, the polypeptides of the invention are monomers, dimers, trimers or tetramers. In additional embodiments, the multimers of the invention are at least dimers, at least trimers, or at least tetramers.

Multimers encompassed by the invention may be homomers or heteromers. As used herein, the term homomer, refers to a multimer containing only polypeptides corresponding to the amino acid sequence of SEQ ID NO:Y or an amino acid sequence encoded by SEQ ID NO:X, and/or an amino acid sequence encoded by the cDNA in a related cDNA clone contained in a deposited library (including fragments, variants, splice variants, and fusion proteins, corresponding to any one of these as described herein). These homomers may contain polypeptides having identical or different amino acid sequences. In a specific embodiment, a homomer of the invention is a multimer containing only polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer of the invention is a multimer containing polypeptides having

different amino acid sequences. In specific embodiments, the multimer of the invention is a homodimer (e.g., containing polypeptides having identical or different amino acid sequences) or a homotrimer (e.g., containing polypeptides having identical and/or different amino acid sequences). In additional embodiments, the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.

[0145] As used herein, the term heteromer refers to a multimer containing one or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the polypeptides of the invention. In a specific embodiment, the multimer of the invention is a heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the heteromeric multimer of the invention is at least a heterotetramer, or at least a heterotetramer.

[0146] Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked, by for example, liposome formation. Thus, in one embodiment, multimers of the invention, such as, for example, homodimers or homotrimers, are formed when polypeptides of the invention contact one another in solution. In another embodiment, heteromultimers of the invention, such as, for example, heterotrimers or heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution. In other embodiments, multimers of the invention are formed by covalent associations with and/or between the polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID NO:Y, or contained in a polypeptide encoded by SEQ ID NO:X, and/or by the cDNA in the related cDNA clone contained in a deposited library). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences which interact in the native (i.e., naturally occurring) polypeptide. In another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a fusion protein. In one example, covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., US Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence

contained in a Fc fusion protein of the invention (as described herein). In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, oseteoprotegerin (see, e.g., International Publication NO: WO 98/49305, the contents of which are herein incorporated by reference in its entirety). In another embodiment, two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides of the invention separated by peptide linkers may be produced using conventional recombinant DNA technology.

[0147] Another method for preparing multimer polypeptides of the invention involves use of polypeptides of the invention fused to a leucine zipper or isoleucine zipper polypeptide sequence. Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschulz et al., Science 240:1759, (1988)), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference. Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art.

[0148] Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity. Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers. One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, (1994)) and in U.S. patent application Ser. No. 08/446,922, hereby incorporated by reference. Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides of the invention.

[0149] In another example, proteins of the invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins of the invention

containing Flag® polypeptide seuquence. In a further embodiment, associations proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins of the invention and anti-Flag® antibody.

[0150] The multimers of the invention may be generated using chemical techniques known in the art. For example, polypeptides desired to be contained in the multimers of the invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Further, polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C-terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).

[0151] Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art. In one embodiment, polypeptides contained in multimers of the invention are produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). In a specific embodiment, polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). In another embodiment, recombinant techniques described herein or otherwise known in the art are applied to generate

recombinant polypeptides of the invention which contain a transmembrane domain (or hyrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).

Antibodies

[0152] Further polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of SEQ ID NO:Y, and/or an epitope, of the present invention (as determined by immunoassays well known in the art for assaying specific antibody-antigen binding). Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), and epitope-binding fragments of any of the above. The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule.

[0153] Most preferably the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CH1, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CH1, CH2, and CH3 domains. The antibodies of the invention may be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin

and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al.

The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).

Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention which they recognize or specifically bind. The epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N-terminal and C-terminal positions, or by size in contiguous amino acid residues. Antibodies which specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides of the present invention, and allows for the exclusion of the same.

Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 66%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 55%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the

present invention are also included in the present invention. In a specific embodiment, the above-described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies which bind polypeptides encoded by polynucleotides which hybridize to a polynucleotide of the present invention under stringent hybridization conditions (as described herein). Antibodies of the present invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10² M, 10² M, 5 X 10³ M, 10³ M, 5 X 10⁴ M, 10⁴ M, 5 X 10⁵ M, 10⁵ M, 5 X 10¹⁰ M, 10¹⁰ M, 5 X 10¹⁰ M, 10¹⁰ M, 5 X 10¹⁰ M, 10¹¹ M, 5 X 10¹¹ M, 10¹¹ M, 5 X 10¹² M, 5 X 10¹³ M, 10¹³ M, 5 X 10¹⁴ M, 10¹⁴ M, 5 X 10¹⁵ M or 10¹⁵ M

[0157] The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.

Antibodies of the present invention may act as agonists or antagonists of the polypeptides of the present invention. For example, the present invention includes antibodies which disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully. Preferrably, antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies which do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra). In specific embodiments, antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 90%, at least 85%, at

least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.

[0159] The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptorligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand. Likewise, included in the invention are neutralizing antibodies which bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies which bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies which activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein. The above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Patent No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4):1786-1794 (1998); Zhu et al., Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J. Immunol. 160(7):3170-3179 (1998); Prat et al., J. Cell. Sci. 111(Pt2):237-247 (1998); Pitard et al., J. Immunol. Methods 205(2):177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J. Biol. Chem. 272(17):11295-11301 (1997); Taryman et al., Neuron 14(4):755-762 (1995); Muller et al., Structure 6(9):1153-1167 (1998); Bartunek et al., Cytokine 8(1):14-20 (1996) (which are all incorporated by reference herein in their entireties).

[0160] Antibodies of the present invention may be used, for example, but not limited to, to purify, detect, and target the polypeptides of the present invention, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have use in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988) (incorporated by reference herein in its entirety).

[0161] As discussed in more detail below, the antibodies of the present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalently and non-covalently conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5.314.995; and EP 396.387.

The antibodies of the invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.

Interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties). The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.

Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art and are discussed in detail in the Examples. In a non-limiting example, mice can be immunized with a polypeptide of the invention or a cell expressing such peptide. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention. Ascites fluid, which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones.

[0166] Accordingly, the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.

[0167] Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, Fab and F(ab')2 fragments of the invention may be

produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab)2 fragments). F(ab)2 fragments contain the variable region, the light chain constant region and the CH1 domain of the heavy chain.

[0168] For example, the antibodies of the present invention can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles which carry the polynucleotide sequences encoding them. In a particular embodiment, such phage can be utilized to display antigen binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994); Persic et al., Gene 187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT application No. PCT/GB91/01134; PCT publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Patent Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety. [0169] As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043 (1988) (said references incorporated by reference in their entireties).

[0170] Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Patents 4.946,778 and 5.258,498; Huston et al., Methods in Enzymology 203:46-88 (1991); Shu et al., PNAS 90:7995-7999 (1993); and Skerra et al., Science 240:1038-1040 (1988). For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol, Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567; and 4,816397, which are incorporated herein by reference in their Humanized antibodies are antibody molecules from non-human species entirety. antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and a framework regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter. preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089; Riechmann et al., Nature 332;323 (1988), which are incorporated herein by reference in their entireties.) Antibodies can be humanized using a variety of techniques known in the art including, for example, CDRgrafting (EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS 91:969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332).

Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.

[0172] Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and light chain genes. The mouse heavy and chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring which express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; and 5,939,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.

[0173] Completely human antibodies which recognize a selected epitope can be generated using a technique referred to as "guided selection." In this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).

[0174] Further, antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444; (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand. For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligands/receptors, and thereby block its biological activity.

Polynucleotides Encoding Antibodies

[0175] The invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. The invention also encompasses polynucleotides that hybridize under stringent or alternatively, under lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide of the invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ID NO:Y.

[0176] The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the

nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.

[0177] Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art.

[0178] Once the nucleotide sequence and corresponding amino acid sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

[0179] In a specific embodiment, the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain

variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention. Preferably, as discussed supra, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.

[0180] In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., Proc. Natl. Acad. Sci. 81:851-855 (1984); Neuberger et al., Nature 312:604-608 (1984); Takeda et al., Nature 314:452-454 (1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described supra, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies.

[0181] Alternatively, techniques described for the production of single chain antibodies (U.S. Patent No. 4,946,778; Bird, Science 242:423- 42 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-54 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in E. coli may also be used (Skerra et al., Science 242:1038-1041 (1988)).

[0182] The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques.

Recombinant expression of an antibody of the invention, or fragment, [0183] derivative or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods which are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT Publication WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.

Ions In the expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter. In preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.

A variety of host-expression vector systems may be utilized to express the [0185]antibody molecules of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).

[0186] In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z

coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem. 24:5503-5509 (1989)); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

[0187] In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in *Spodoptera frugiperda* cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).

In mammalian host cells, a number of viral-based expression systems may [0188] be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non- essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts. (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 81:355-359 (1984)). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).

[0189] In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g.,

cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule.

[0191] A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which

confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 Clinical Pharmacy 12:488-505; Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, 1993, TIB TECH 11(5):155-215); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984)). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds), Current Protocols in Human Genetics, John Wiley & Sons, NY (1994); Colberre-Garapin et al., J. Mol. Biol. 150:1 (1981), which are incorporated by reference herein in their entireties.

[0192] The expression levels of an antibody molecule can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).

[0193] The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.

[0194] Once an antibody molecule of the invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.

The present invention encompasses antibodies recombinantly fused or [0195] chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. The antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention. For example, antibodies may be used to target the polypeptides of the present invention to particular cell types, either in vitro or in vivo, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to the polypeptides of the present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., supra, and PCT publication WO 93/21232; EP 439,095; Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981; Gillies et al., PNAS 89:1428-1432 (1992); Fell et al., J. Immunol. 146:2446-2452(1991), which are incorporated by reference in their entireties.

[0196] The present invention further includes compositions comprising the polypeptides of the present invention fused or conjugated to antibody domains other than the variable regions. For example, the polypeptides of the present invention may be fused or conjugated to an antibody Fc region, or portion thereof. The antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CH1 domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof. The polypeptides may also be fused or conjugated to the above antibody

portions to form multimers. For example, Fc portions fused to the polypeptides of the present invention can form dimers through disulfide bonding between the Fc portions. Higher multimeric forms can be made by fusing the polypeptides to portions of IgA and IgM. Methods for fusing or conjugating the polypeptides of the present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053; 5,447,851; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 91/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Zheng et al., J. Immunol. 154:5590-5600 (1995); and Vil et al., Proc. Natl. Acad. Sci. USA 89:11337- 11341(1992) (said references incorporated by reference in their entireties).

As discussed, supra, the polypeptides corresponding to a polypeptide, [0197] polypeptide fragment, or a variant of SEQ ID NO:Y may be fused or conjugated to the above antibody portions to increase the in vivo half life of the polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEO ID NO:Y may be fused or conjugated to the above antibody portions to facilitate purification. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP 394,827; Traunecker et al., Nature 331:84-86 (1988). The polypeptides of the present invention fused or conjugated to an antibody having disulfide-linked dimeric structures (due to the IgG) may also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995)). In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP A 232,262). Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).

Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)) and the "flag" tag.

The present invention further encompasses antibodies or fragments thereof [0199] conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 125I, 131I, 111In or 99Tc.

[0200] Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic

agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not methotrexate, 6-mercaptopurine, 6-thioguanine, limited to, antimetabolites (e.g., cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

10201] The conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, B-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/33899), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti- angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("GCSF"), or other growth factors.

[0202] Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports

include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.

Review", in Monoclonal Antibodies 84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies Sets In Cancer Therapy (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies 84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62:119-58 (1982).

[0204] Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.

[0205] An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.

Immunophenotyping

102061 The antibodies of the invention may be utilized for immunophenotyping of cell lines and biological samples. The translation product of the gene of the present invention may be useful as a cell specific marker, or more specifically as a cellular marker that is differentially expressed at various stages of differentiation and/or maturation of particular cell types. Monoclonal antibodies directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker. Various techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid matrix (i.e.,

plate), and flow cytometry (See, e.g., U.S. Patent 5,985,660; and Morrison *et al., Cell,* 96:737-49 (1999)).

[0207] These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e. minimal residual disease (MRD) in acute leukemic patients) and "non-self" cells in transplantations to prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.

Assays For Antibody Binding

[0208] The antibodies of the invention may be assayed for immunospecific binding by any method known in the art. The immunoassays which can be used include but are not limited to competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).

[0209] Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X- 100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters

that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.

Western blot analysis generally comprises preparing protein samples, [0210] electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 125I) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.8.1.

102111 ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal

detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 11.2.1.

10212] The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3H or 125I) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen. The affinity of the antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, the antigen is incubated with antibody of interest conjugated to a labeled compound (e.g., 3H or 125I) in the presence of increasing amounts of an unlabeled second antibody.

Therapeutic Uses

The present invention is further directed to antibody-based therapies which [0213] involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to treat, inhibit or prevent diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, any one or more of the diseases, disorders, or conditions described herein. The treatment and/or prevention of diseases, disorders, or conditions associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

[0214] A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.

[0215] The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, IL-3 and IL-7), for example, which serve to increase the number or activity of effector cells which interact with the antibodies.

[0216] The antibodies of the invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.

[0217] It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of disorders related to polynucleotides or polypeptides, including fragments thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides of the invention, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X 10⁻² M, 10⁻² M, 5 X 10⁻³ M, 10⁻³ M, 5 X 10⁻⁴ M, 10⁻⁴ M, 5 X 10⁻⁵ M, 10⁻⁵ M, 5 X 10⁻⁶ M, 10⁻⁶ M, 5 X 10⁻⁷ M, 10⁻⁷ M, 5 X 10⁻⁸ M, 10⁻⁸ M, 5 X 10⁻⁹ M, 10⁻⁹ M, 5 X 10⁻¹⁰ M, 10⁻¹⁰ M, 5 X 10⁻¹¹ M, 10⁻¹¹ M, 5 X 10⁻¹² M, 10⁻¹² M, 5 X 10⁻¹³ M, 10⁻¹³ M, 5 X 10⁻¹⁴ M, 10⁻¹⁴ M, 5 X 10⁻¹⁵ M, and 10⁻¹⁵ M.

Gene Therapy

[0218] In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.

[0219] Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.

For general reviews of the methods of gene therapy, see Goldspiel et al., Clinical Pharmacy 12:488-505 (1993); Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, TIBTECH 11(5):155-215 (1993). Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990).

In a preferred aspect, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host. In particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.

[0222] Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid- carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy.

In a specific embodiment, the nucleic acid sequences are directly [0223] administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; WO93/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (Koller and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).

[0224] In a specific embodiment, viral vectors that contains nucleic acid sequences encoding an antibody of the invention are used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitates delivery of

the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdr1 gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993).

Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143- 155 (1992); Mastrangeli et al., J. Clin. Invest. 91:225-234 (1993); PCT Publication WO94/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). In a preferred embodiment, adenovirus vectors are used.

[0226] Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Patent No. 5.436.146).

[0227] Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.

[0228] In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection,

electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome-mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol. 217:618-644 (1993); Cline, Pharmac. Ther. 29:69-92m (1985) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.

The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art.

[0230] Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as Tlymphocytes, Blymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.

[0231] In a preferred embodiment, the cell used for gene therapy is autologous to the patient.

[0232] In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, Cell 71:973-985 (1992);

Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 (1986)).

[0233] In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by controlling the presence or absence of the appropriate inducer of transcription. Demonstration of Therapeutic or Prophylactic Activity

10234] The compounds or pharmaceutical compositions of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample. The effect of the compound or composition on the cell line and/or tissue sample can be determined utilizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays. In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.

Therapeutic/Prophylactic Administration and Composition

[0235] The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably a polypeptide or antibody of the invention. In a preferred aspect, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.

[0236] Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.

Various delivery systems are known and can be used to administer a [0237] compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

[0239] In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353- 365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)

In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J.Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

[0241] Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).

[0242] In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier"

refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water

for injection or saline can be provided so that the ingredients may be mixed prior to administration.

[0245] The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions—such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations—such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

[0246] The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder—associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

[0247] For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation.

[10248] The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

Diagnosis and Imaging

Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic purposes to detect, diagnose, or monitor diseases, disorders, and/or conditions associated with the aberrant expression and/or activity of a polypeptide of the invention. The invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression.

[0250] The invention provides a diagnostic assay for diagnosing a disorder, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and

technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

One aspect of the invention is the detection and diagnosis of a disease or [0252] disorder associated with aberrant expression of a polypeptide of interest in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis parenterally, subcutaneously, or comprises: a) administering (for example, intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the polypeptide of interest. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.

It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).

Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days.

[0255] In an embodiment, monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.

Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.

In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).

Kits

[0258] The present invention provides kits that can be used in the above methods. In one embodiment, a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers. In a specific embodiment, the kits of the present invention contain a substantially isolated polypeptide comprising an epitope which is specifically immunoreactive with an antibody included in the kit. Preferably, the kits of the present invention further comprise a control antibody which does not react with the polypeptide of interest. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).

In another specific embodiment of the present invention, the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative and/or cancerous polynucleotides and polypeptides. Such a kit may include a control antibody that does not react with the polypeptide of interest. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope which is specifically immunoreactive with at least one anti-polypeptide antigen antibody. Further, such a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen of the kit may also be attached to a solid support.

[0260] In a more specific embodiment the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.

In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody. In one embodiment, the antibody is attached to a solid support. In a specific embodiment, the antibody may be a monoclonal antibody. The detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.

[0262] In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the

reporter is an enzyme which is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).

[0263] The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

[0264] Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface-bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound antiantigen antibody.

Uses of the Polynucleotides

[0265] Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

[0266] The prostate cancer antigen polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome, thus each polynucleotide of the present invention can routinely be used as a chromosome marker using techniques known in the art.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably at least 15 bp (e.g., 15-25 bp) from the sequences shown in SEQ ID NO:X, or the complement thereto. Primers can optionally be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to SEQ ID NO:X will yield an amplified fragment.

[0268] Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, preselection by hybridization to construct chromosome specific-cDNA libraries, and computer mapping techniques (See, e.g., Shuler, Trends Biotechnol 16:456-459 (1998) which is hereby incorporated by reference in its entirety).

[0269] Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

[0270] For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes).

[0271] Thus, the present invention also provides a method for chromosomal localization which involves (a) preparing PCR primers from the polynucleotide sequences in Table 3 and SEQ ID NO:X and (b) screening somatic cell hybrids containing individual chromosomes.

The polynucleotides of the present invention would likewise be useful for radiation hybrid mapping, HAPPY mapping, and long range restriction mapping. For a review of these techniques and others known in the art, see, e.g. Dear, "Genome Mapping: A Practical Approach," IRL Press at Oxford University Press, London (1997); Aydin, J. Mol. Med. 77:691-694 (1999); Hacia et al., Mol. Psychiatry 3:483-492 (1998); Herrick et al., Chromosome Res. 7:409-423 (1999); Hamilton et al., Methods Cell Biol. 62:265-280 (2000); and/or Ott, J. Hered. 90:68-70 (1999) each of which is hereby incorporated by reference in its entirety.

[0273] Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick,

Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in a polynucleotide of the invention and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

[0275] Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using the polynucleotides of the invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

Thus, the invention provides a method of detecting increased or decreased expression levels of the prostate cancer polynucleotides in affected individuals as compared to unaffected individuals using polynucleotides of the present invention and techniques known in the art, including but not limited to the method described in Example 11. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

[0277] Thus, the invention also provides a diagnostic method useful during diagnosis of a prostate related disorder, including prostate cancer, involving measuring the expression level of prostate cancer polynucleotides in prostate tissue or other cells or body fluid from an individual and comparing the measured gene expression level with a standard prostate cancer polynucleotide expression level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a prostate related disorder.

In still another embodiment, the invention includes a kit for analyzing samples for the presence of proliferative and/or cancerous polynucleotides derived from a test subject. In a general embodiment, the kit includes at least one polynucleotide probe containing a nucleotide sequence that will specifically hybridize with a polynucleotide of the invention and a suitable container. In a specific embodiment, the kit includes two polynucleotide probes defining an internal region of the polynucleotide of the invention, where each probe has one strand containing a 31'mer-end internal to the region. In a further embodiment, the probes may be useful as primers for polymerase chain reaction amplification.

[0279] Where a diagnosis of a prostate related disorder, including, for example, diagnosis of a tumor, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed prostate cancer polynucleotide expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.

By "measuring the expression level of prostate cancer polynucleotides" is intended qualitatively or quantitatively measuring or estimating the level of the prostate cancer polypeptide or the level of the mRNA encoding the prostate cancer polypeptide in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the prostate cancer polypeptide level or mRNA level in a second biological sample). Preferably, the prostate cancer polypeptide level or mRNA level in the first biological sample is measured or estimated and compared to a standard prostate cancer polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the prostate related disorder or being determined by averaging levels from a population of individuals not having a prostate related disorder. As will be appreciated in the art, once a standard prostate cancer polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.

[0281] By "biological sample" is intended any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source which contains prostate cancer polypeptide or the corresponding mRNA. As indicated, biological samples include body fluids (such as semen, lymph, sera, plasma, urine, synovial fluid and spinal fluid) which contain the prostate cancer polypeptide, prostate tissue, and other tissue sources

found to express the prostate cancer polypeptide. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.

The method(s) provided above may preferrably be applied in a diagnostic [0282] method and/or kits in which polynucleotides and/or polypeptides of the invention are attached to a solid support. In one exemplary method, the support may be a "gene chip" or a "biological chip" as described in US Patents 5,837,832, 5,874,219, and 5,856,174. Further, such a gene chip with prostate cancer polynucleotides attached may be used to identify polymorphisms between the prostate cancer polynucleotide sequences, with polynucleotides isolated from a test subject. The knowledge of such polymorphisms (i.e. their location, as well as, their existence) would be beneficial in identifying disease loci for many disorders, such as for example, in neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions, though most preferably in prostate related proliferative, and/or cancerous diseases and conditions. Such a method is described in US Patents 5,858,659 and 5,856,104. The US Patents referenced supra are hereby incorporated by reference in their entirety herein.

[0283] The present invention encompasses prostate cancer polynucleotides that are chemically synthesized, or reproduced as peptide nucleic acids (PNA), or according to other methods known in the art. The use of PNAs would serve as the preferred form if the polynucleotides of the invention are incorporated onto a solid support, or gene chip. For the purposes of the present invention, a peptide nucleic acid (PNA) is a polyamide type of DNA analog and the monomeric units for adenine, guanine, thymine and cytosine are available commercially (Perceptive Biosystems). Certain components of DNA, such as phosphorus, phosphorus oxides, or deoxyribose derivatives, are not present in PNAs. As disclosed by P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science 254, 1497 (1991); and M. Egholm, O. Buchardt, L.Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, Nature 365, 666 (1993), PNAs bind specifically and tightly to complementary DNA strands and are not degraded by nucleases. In fact, PNA binds more strongly to DNA than DNA itself does. This is probably because there is no electrostatic repulsion between the two strands, and also the

polyamide backbone is more flexible. Because of this, PNA/DNA duplexes bind under a wider range of stringency conditions than DNA/DNA duplexes, making it easier to perform multiplex hybridization. Smaller probes can be used than with DNA due to the strong binding. In addition, it is more likely that single base mismatches can be determined with PNA/DNA hybridization because a single mismatch in a PNA/DNA 15-mer lowers the melting point (T.sub.m) by 8°-20° C, vs. 4°-16° C for the DNA/DNA 15-mer duplex. Also, the absence of charge groups in PNA means that hybridization can be done at low ionic strengths and reduce possible interference by salt during the analysis.

The present invention have uses which include, but are not limited to, detecting cancer in mammals. In particular the invention is useful during diagnosis of pathological cell proliferative neoplasias which include, but are not limited to: acute myelogenous leukemias including acute monocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute erythroleukemia, acute megakaryocytic leukemia, and acute undifferentiated leukemia, etc.; and chronic myelogenous leukemias including chronic myelomonocytic leukemia, chronic granulocytic leukemia, etc. Preferred mammals include monkeys, apes, cats, dogs, cows, pigs, horses, rabbits and humans. Particularly preferred are humans.

Pathological cell proliferative disorders are often associated with inappropriate activation of proto-oncogenes. (Gelmann, E. P. et al., "The Etiology of Acute Leukemia: Molecular Genetics and Viral Oncology," in Neoplastic Diseases of the Blood, Vol 1., Wiernik, P. H. et al. eds., 161-182 (1985)). Neoplasias are now believed to result from the qualitative alteration of a normal cellular gene product, or from the quantitative modification of gene expression by insertion into the chromosome of a viral sequence, by chromosomal translocation of a gene to a more actively transcribed region, or by some other mechanism. (Gelmann et al., supra) It is likely that mutated or altered expression of specific genes is involved in the pathogenesis of some leukemias, among other tissues and cell types. (Gelmann et al., supra) Indeed, the human counterparts of the oncogenes involved in some animal neoplasias have been amplified or translocated in some cases of human leukemia and carcinoma. (Gelmann et al., supra)

[0286] For example, c-myc expression is highly amplified in the non-lymphocytic leukemia cell line HL-60. When HL-60 cells are chemically induced to stop proliferation, the level of c-myc is found to be downregulated. (International Publication Number WO

91/15580). However, it has been shown that exposure of HL-60 cells to a DNA construct that is complementary to the 5' end of c-myc or c-myb blocks translation of the corresponding mRNAs which downregulates expression of the c-myc or c-myb proteins and causes arrest of cell proliferation and differentiation of the treated cells. (International Publication Number WO 91/15580; Wickstrom et al., Proc. Natl. Acad. Sci. 85:1028 (1988); Anfossi et al., Proc. Natl. Acad. Sci. 86:3379 (1989)). However, the skilled artisan would appreciate the present invention's usefulness is not limited to treatment of proliferative disorders of hematopoietic cells and tissues, in light of the numerous cells and cell types of varying origins which are known to exhibit proliferative phenotypes.

In addition to the foregoing, a prostate cancer antigen polynucleotide can [0287] be used to control gene expression through triple helix formation or through antisense DNA or RNA. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991); "Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Both methods rely on binding of the polynucleotide to a complementary DNA or RNA. For these techniques, preferred polynucleotides are usually oligonucleotides 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. The oligonucleotide described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of polypeptide of the present invention antigens. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease, and in particular, for the treatment of proliferative diseases and/or conditions.

[0288] Polynucleotides of the present invention are also useful in gene therapy.

One goal of gene therapy is to insert a normal gene into an organism having a defective

gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

In polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

[0290] The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

[0291] Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, synovial fluid, amniotic fluid, breast milk, lymph, pulmonary sputum or surfactant, urine, fecal matter, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to prostate or prostate cancer polynucleotides prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

probable of the present invention are also useful as hybridization probes for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays) or cell type(s) (e.g., immunocytochemistry assays). In addition, for a number of disorders of the above tissues or cells, significantly higher or lower levels of gene expression of the polynucleotides/polypeptides of the present invention may be detected in certain tissues (e.g., tissues expressing polypeptides and/or polynucleotides of the present invention, prostate and prostate cancer tissues and/or cancerous and/or wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" gene expression level, i.e., the expression level in healthy tissue from an individual not having the disorder.

[0294] Thus, the invention provides a diagnostic method of a disorder, which involves: (a) assaying gene expression level in cells or body fluid of an individual; (b) comparing the gene expression level with a standard gene expression level, whereby an increase or decrease in the assayed gene expression level compared to the standard expression level is indicative of a disorder.

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

[0296] Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

[0297] Polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays such as, for example, ABC immunoperoxidase (Hsu et al., J. Histochem. Cytochem. 29:577-580 (1981)) or cell type(s) (e.g., immunocytochemistry assays).

Antibodies can be used to assay levels of polypeptides encoded by polynucleotides of the invention in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (1311, 1251, 1231, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (115mIn, 1113mIn, 1112In, 1111In), and technetium (99Te, 99mTe), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

[0299] In addition to assaying levels of polypeptide of the present invention in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

[0300] A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ¹³¹I, ¹¹²In, ^{99m}Tc, (¹³¹I, ¹²⁵I, ¹²³I, ¹²¹D, carbon (¹⁴C), sulfur (³⁵S), tritium (³H), indium (^{115m}In,

113mIn, 112In, 111In), and technetium (99Tc, 99mTc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F, 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for immune system disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which express the polypeptide encoded by a polynucleotide of the invention. *In vivo* tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in *Tumor Imaging: The Radiochemical Detection of Cancer*, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

[0301] In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (e.g., polypeptides encoded by polynucleotides of the invention and/or antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0302] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention in association with toxins or cytotoxic prodrugs.

[0303] In a preferred embodiment, the invention provides a method for the specific destruction of prostate cells (e.g., aberrant prostate cells, prostate neoplasm) by administering polypeptides of the invention (e.g., polypeptides encoded by polynucleotides of the invention and/or antibodies) in association with toxins or cytotoxic prodrugs.

By "toxin" is meant one or more compounds that bind and activate [0304] endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. "Toxin" also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alphaemitters such as, for example, 213Bi, or other radioisotopes such as, for example, 103Pd, $^{133}\mathrm{Xe}, ^{131}\mathrm{I}, ^{68}\mathrm{Ge}, ^{57}\mathrm{Co}, ^{65}\mathrm{Zn}, ^{85}\mathrm{Sr}, ^{32}\mathrm{P}, ^{35}\mathrm{S}, ^{90}\mathrm{Y}, ^{153}\mathrm{Sm}, ^{153}\mathrm{Gd}, ^{169}\mathrm{Yb}, ^{51}\mathrm{Cr}, ^{54}\mathrm{Mn}, ^{75}\mathrm{Se}, ^{113}\mathrm{Sn}, ^{113}\mathrm{Sm}, ^{11$ 90Yttrium, 117Tin, 186Rhenium, 166Holmium, and 188Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

[0305] In a specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope ⁹⁰Y. In another specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope ¹¹¹In. In a further specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope ¹³¹I.

Techniques known in the art may be applied to label polypeptides of the invention (including antibodies). Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety).

[0307] Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression level of a prostate cancer polypeptide of the present

invention in cells or body fluid of an individual, or more preferrably, assaying the expression level of a prostate cancer polypeptide of the present invention in prostate cells or semen of an individual; and (b) comparing the assayed polypeptide expression level with a standard polypeptide expression level, whereby an increase or decrease in the assayed polypeptide expression level compared to the standard expression level is indicative of a disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

[0308] Moreover, prostate cancer antigen polypeptides of the present invention can be used to treat or prevent diseases or conditions such as, for example, neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions, preferably proliferative disorders of the prostate, and/or cancerous disease and conditions. polypeptides of the present invention can be used to treat or prevent diseases or conditions of the prostate such as, for example, prostate cancers such as adenocarcinoma, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas, and as described under "Hyperproliferative Disorders" and/or "Reproductive System Disorders" below. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement of the immune response to proliferative cells or tissues).

[0309] Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease (as described *supra*, and elsewhere herein). For example,

administration of an antibody directed to a polypeptide of the present invention can bind, and/or neutralize the polypeptide, and/or reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

[0310] At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Diagnostic Asssays

[0311] The compounds of the present invention are useful for diagnosis, treatment, prevention and/or prognosis of various prostate-related disorders in mammals, preferably humans. Such disorders include, but are not limited to, prostate cancers such as adenocarcinoma, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas, and as described under "Hyperproliferative Disorders" and/or "Reproductive System Disorders" below.

[0312] Prostate cancer antigens are expressed in the prostate. For a number of prostate-related disorders, substantially altered (increased or decreased) levels of prostate cancer antigen gene expression can be detected in prostate cancer tissue or other cells or bodily fluids (e.g., sera, plasma, urine, semen, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" prostate cancer antigen gene expression level, that is, the prostate cancer antigen expression level in prostate tissues or bodily fluids from an individual not having the prostate disorder. Thus, the invention provides a diagnostic method useful during diagnosis of a prostate disorder, which involves measuring the expression level of the gene encoding the prostate cancer associated polypeptide in prostate tissue or other cells or body fluid from an individual and comparing the measured gene expression level with a standard prostate cancer antigens gene expression level, whereby an increase or decrease in the gene expression level(s) compared to the standard is indicative of an prostate disorder.

[0313] In specific embodiments, the invention provides a diagnostic method useful

during diagnosis of a disorder of a normal or diseased tissue/cell source, which involves measuring the expression level of the coding sequence of a polynucleotide sequence associated with this tissue/cell source as disclosed by Tables 1 and 5 in the tissue/cell source or other cells or body fluid from an individual and comparing the expression level of the coding sequence with a standard expression level of the coding sequence of a polynucleotide sequence, whereby an increase or decrease in the gene expression level(s) compared to the standard is indicative of a disorder of a normal or diseased tissue/cell source.

[0314] In particular, it is believed that certain tissues in mammals with cancer of cells or tissue of the prostate express significantly enhanced or reduced levels of normal or altered prostate cancer antigen expression and mRNA encoding the prostate cancer associated polypeptide when compared to a corresponding "standard" level. Further, it is believed that enhanced or depressed levels of the prostate cancer associated polypeptide can be detected in certain body fluids (e.g., sera, plasma, urine, and spinal fluid) or cells or tissue from mammals with such a cancer when compared to sera from mammals of the same species not having the cancer.

For example, as disclosed herein, prostate cancer associated polypeptides [0315] of the invention are expressed in the prostate. Accordingly, polynucleotides of the invention (e.g., polynucleotide sequences complementary to all or a portion of a prostate cancer antigen mRNA nucleotide sequence of SEQ ID NO:X, the nucleotide coding sequence of the related cDNA contained in a deposited library, a nucleotide sequence encoding SEQ ID NO:Y, a nucleotide sequence encoding a polypeptide encoded by SEQ ID NO:X, the nucleotide sequence encoding the polypeptide encoded by the cDNA in the related cDNA contained in a deposited library, polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein), and/or antibodies (and antibody fragments) directed against the polypeptides of the invention may be used to quantitate or qualitate concentrations of cells of the prostate cancer expressing prostate cancer antigens, preferrably on their cell surfaces. These polynucleotides and antibodies additionally have diagnostic applications in detecting abnormalities in the level of prostate cancer antigens gene expression, or abnormalities in the structure and/or temporal, tissue, cellular, or subcellular location of prostate cancer antigens. These diagnostic assays may be performed in vivo or in vitro, such as, for example, on blood samples, biopsy tissue or autopsy tissue.

[0316] Thus, the invention provides a diagnostic method useful during diagnosis of a prostate disorder, including cancers, which involves measuring the expression level of the gene encoding the prostate cancer antigen polypeptide in prostate tissue or other cells or body fluid from an individual and comparing the measured gene expression level with a standard prostate cancer antigen gene expression level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a prostate disorder.

[0317] Where a diagnosis of a disorder in the prostate, including diagnosis of a tumor, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed prostate cancer antigen gene expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.

[0318] By "assaying the expression level of the gene encoding the prostate cancer associated polypeptide" is intended qualitatively or quantitatively measuring or estimating the level of the prostate cancer antigen polypeptide or the level of the mRNA encoding the prostate cancer antigen polypeptide in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the prostate cancer associated polypeptide level or mRNA level in a second biological sample). Preferably, the prostate cancer antigen polypeptide expression level or mRNA level in the first biological sample is measured or estimated and compared to a standard prostate cancer antigen polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having a disorder of the prostate. As will be appreciated in the art, once a standard prostate cancer antigen polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.

[0319] By "biological sample" is intended any biological sample obtained from an individual, cell line, tissue culture, or other source containing prostate cancer antigen polypeptides (including portions thereof) or mRNA. As indicated, biological samples include body fluids (such as sera, plasma, urine, synovial fluid and spinal fluid) which contain cells expressing prostate cancer antigen polypeptides, prostate tissue, and other tissue sources found to express the full length or fragments thereof of a prostate cancer

antigen. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.

Total cellular RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski and Sacchi, Anal. Biochem. 162:156-159 (1987). Levels of mRNA encoding the prostate cancer antigen polypeptides are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

The present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of prostate cancer antigen polypeptides, in a biological sample (e.g., cells and tissues), including determination of normal and abnormal levels of polypeptides. Thus, for instance, a diagnostic assay in accordance with the invention for detecting over-expression of prostate cancer antigens compared to normal control tissue samples may be used to detect the presence of tumors. Assay techniques that can be used to determine levels of a polypeptide, such as a prostate cancer antigen polypeptide of the present invention in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Assaying prostate cancer antigen polypeptide levels in a biological sample can occur using any art-known method.

Assaying prostate cancer antigen polypeptide levels in a biological sample can occur using antibody-based techniques. For example, prostate cancer antigen polypeptide expression in tissues can be studied with classical immunohistological methods (Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting prostate cancer antigen polypeptide gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125 I, 121 I), carbon (14 C), sulfur (35 S), tritium (3H), indium (112 In), and technetium (99m Tc), and fluorescent labels, such as fluorescein

and rhodamine, and biotin.

[0323] The tissue or cell type to be analyzed will generally include those which are known, or suspected, to express the prostate cancer antigen gene (such as, for example, cells of the prostate or prostate cancer). The protein isolation methods employed herein may, for example, be such as those described in Harlow and Lane (Harlow, E. and Lane, D., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York), which is incorporated herein by reference in its entirety. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells that could be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the prostate cancer antigen gene.

[0324] For example, antibodies, or fragments of antibodies, such as those described herein, may be used to quantitatively or qualitatively detect the presence of prostate cancer antigen gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.

[0325] In a preferred embodiment, antibodies, or fragments of antibodies directed to any one or all of the predicted epitope domains of the prostate cancer antigen polypeptides (Shown in Table 4) may be used to quantitatively or qualitatively detect the presence of prostate cancer antigen gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow extometric, or fluorimetric detection.

[0326] In an additional preferred embodiment, antibodies, or fragments of antibodies directed to a conformational epitope of a prostate cancer antigen may be used to quantitatively or qualitatively detect the presence of prostate cancer antigen gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.

[0327] The antibodies (or fragments thereof), and/or prostate cancer antigen polypeptides of the present invention may, additionally, be employed histologically, as in

immunofluorescence, immunoelectron microscopy or non-immunological assays, for in situ detection of prostate cancer antigen gene products or conserved variants or peptide fragments thereof. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody or prostate cancer antigen polypeptide of the present invention. The antibody (or fragment thereof) or prostate cancer antigen polypeptide is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the prostate cancer antigen gene product, or conserved variants or peptide fragments, or prostate cancer antigen polypeptide binding, but also its distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.

[0328] Immunoassays and non-immunoassays for prostate cancer antigen gene products or conserved variants or peptide fragments thereof will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells which have been incubated in cell culture, in the presence of a detectably labeled antibody capable of binding prostate cancer antigen gene products or conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art.

[0329] The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled anti-prostate cancer antigen antibody or detectable prostate cancer antigen polypeptide. The solid phase support may then be washed with the buffer a second time to remove unbound antibody or polypeptide. Optionally the antibody is subsequently labeled. The amount of bound label on solid support may then be detected by conventional means.

[0330] By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The

support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.

[0331] The binding activity of a given lot of anti- prostate cancer antigen antibody or prostate cancer antigen polypeptide may be determined according to well known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

In addition to assaying prostate cancer antigen polypeptide levels or polynucleotide levels in a biological sample obtained from an individual, prostate cancer antigen polypeptide or polynucleotide can also be detected *in vivo* by imaging. For example, in one embodiment of the invention, prostate cancer antigen polypeptide and/or anti- prostate cancer antigen antibodies are used to image prostate diseased cells, such as neoplasms. In another embodiment, prostate cancer antigen polynucleotides of the invention (e.g., polynucleotides complementary to all or a portion of prostate cancer antigen mRNA) and/or anti- prostate cancer antigen antibodies (e.g., antibodies directed to any one or a combination of the epitopes of prostate cancer antigens, antibodies directed to a conformational epitope of prostate cancer antigens, antibodies directed to the full length polypeptide expressed on the cell surface of a mammalian cell) are used to image diseased or neoplastic cells of the prostate.

[0333] Antibody labels or markers for *in vivo* imaging of prostate cancer antigen polypeptides include those detectable by X-radiography, NMR, MRI, CAT-scans or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma. Where *in vivo* imaging is used to detect enhanced levels of prostate cancer antigen polypeptides for diagnosis in humans, it may be preferable to use human antibodies or "humanized" chimeric monoclonal antibodies. Such antibodies can be

produced using techniques described herein or otherwise known in the art. For example methods for producing chimeric antibodies are known in the art. See, for review, Morrison, *Science 229*:1202 (1985); Oi et al., *BioTechniques 4*:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., *Nature 312*:643 (1984); Neuberger et al., *Nature 314*:268 (1985).

[0334] Additionally, any prostate cancer antigen polypeptides whose presence can be detected, can be administered. For example, prostate cancer antigen polypeptides labeled with a radio-opaque or other appropriate compound can be administered and visualized *in vivo*, as discussed, above for labeled antibodies. Further such prostate cancer antigen polypeptides can be utilized for *in vitro* diagnostic procedures.

[0335] A prostate cancer antigen polypeptide-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, ¹³¹I, ¹¹²In, ^{99m}Tc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a prostate disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of ^{90m}Tc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain prostate cancer antigen protein. *In vivo* tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in *Tumor Imaging: The Radiochemical Detection of Cancer*, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982)).

[0336] With respect to antibodies, one of the ways in which the anti- prostate cancer antigen antibody can be detectably labeled is by linking the same to an enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, MD); Voller et al., J. Clin. Pathol. 31:507-520 (1978); Butler, J.E., Meth. Enzymol. 73:482-523 (1981); Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, FL.; Ishikawa, E.

et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The enzyme, which is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha-glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods which employ a chromogenic substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

[0337] Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect prostate cancer antigens through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by means including, but not limited to, a gamma counter, a scintillation counter, or autoradiography.

[0338] It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycocrythrin, phycocyanin, allophycocyanin, ophthaldehyde and fluorescamine.

[0339] The antibody can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

[0340] The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is

then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

[0341] Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Methods for Detecting Prostate Disease, Including Cancer

[0342] In general, a prostate disease or cancer may be detected in a patient based on the presence of one or more prostate cancer antigen proteins of the invention and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine, and/or tumor biopsies) obtained from the patient. In other words, such proteins and/or polynucleotides may be used as markers to indicate the presence or absence of a prostate disease or disorder, including cancer. Cancers that may be diagnosed, and/or prognosed using the compositions of the invention include but are not limited to, prostate cancer. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding prostate cancer antigen polypeptides, which is also indicative of the presence or absence of a prostate disease or disorder, including cancer. In general, prostate cancer antigen polypeptides should be present at a level that is at least three fold higher in diseased tissue than in normal tissue.

[0343] There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, *supra*. In general, the presence or absence of a prostate disease in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

[0344] In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the prostate cancer antigen polypeptide of the invention from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an antiimmunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include prostate cancer antigen polypeptides and portions thereof, or antibodies, to which the binding agent binds, as described above.

[0345] The solid support may be any material known to those of skill in the art to which prostate cancer antigen polypeptides of the invention may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for the suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of plastic microtiter plate (such as polystyrene or polyvinylchloride) with an

amount of binding agent ranging from about 10 ng to about 10 ug, and preferably about 100 ng to about 1 ug, is sufficient to immobilize an adequate amount of binding agent.

[0346] Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

Gene Therapy Methods

Another aspect of the present invention is to gene therapy methods for treating or preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of the polypeptide of the present invention. This method requires a polynucleotide which codes for a polypeptide of the present invention operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.

[0348] Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide of the present invention ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide of the present invention. Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al., J. Immunology 153: 4604-4615 (1994); Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura, H., et al., Cancer Research 50: 5102-5106 (1990); Santodonato, L., et al., Human Gene Therapy 7:1-10 (1996); Santodonato, L., et al., Gene Therapy 4:1246-1255 (1997); and Zhang, J.-F. et al., Cancer Gene Therapy 3: 31-38 (1996)), which are herein incorporated by reference. In one embodiment, the cells which are engineered are arterial

cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.

[0349] As discussed in more detail below, the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

In one embodiment, the polynucleotide of the present invention is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotide of the present invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.

[0351] The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEF1/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.

[0352] Any strong promoter known to those skilled in the art can be used for driving the expression of the polynucleotide sequence. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionein promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter for the polynucleotide of the present invention.

[0353] Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

[0354] The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.

[0355] For the naked nucleic acid sequence injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.

[0356] The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial

tissues, throat or mucous membranes of the nose. In addition, naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

[0357] The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art.

[0358] The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.

In certain embodiments, the polynucleotide constructs are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA (1989) 86:6077-6081, which is herein incorporated by reference); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192, which is herein incorporated by reference), in functional form.

[0360] Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Felgner et al., Proc. Natl Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer).

[0361] Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Felgner et al., Proc. Natl. Acad. Sci.

USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

[0363] For example, commercially dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG/DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size. Other methods are known and available to those of skill in the art.

milamellar vesicles (SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated. When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile

water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA. The liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca²⁺-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell (1979) 17:77); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta (1976) 443:629; Ostro et al., Biochem. Biophys. Res. Commun. (1977) 76:836; Fraley et al., Proc. Natl. Acad. Sci. USA (1979) 76:3348); detergent dialysis (Enoch, H. and Strittmatter, P., Proc. Natl. Acad. Sci. USA (1979) 76:145); and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem. (1980) 255:10431; Szoka, F. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. USA (1978) 75:145; Schaefer-Ridder et al., Science (1982) 215:166), which are herein incorporated by reference.

[0365] Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10. Preferably, the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3:1 to about 1:3. Still more preferably, the ratio will be about 1:1.

[0366] U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U.S. Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide methods for delivering DNA-cationic lipid complexes to mammals.

[0367] In certain embodiments, cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA which comprises a sequence encoding a polypeptide of the present invention. Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.

[0368] The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

[0369] The producer cell line generates infectious retroviral vector particles which include polynucleotide encoding a polypeptide of the present invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express a polypeptide of the present invention.

[0370] In certain other embodiments, cells are engineered, ex vivo or in vivo, with polynucleotide contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses a polypeptide of the present invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz, A. R. et al. (1974) Am. Rev. Respir. Dis.109:233-238). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha-1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. (1979) Proc. Natl. Acad. Sci. USA 76:6606).

[0371] Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al., Cell 68:143-155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Patent No. 5,652,224, which are herein incorporated by reference.

For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the E1 region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector. In addition to Ad2, other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.

[0372] Preferably, the adenoviruses used in the present invention are replication deficient. Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest which is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of all or a portion of the following genes: E1a, E1b, E3, E4, E2a, or L1 through L5.

[0373] In certain other embodiments, the cells are engineered, ex vivo or in vivo, using an adeno-associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377.

[0374] For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration. The polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989). The recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc. Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles which contain the polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo

or in vivo. The transduced cells will contain the polynucleotide construct integrated into its genome, and will express a polypeptide of the invention.

10375] Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding a polypeptide of the present invention) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; Koller et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.

[0376] Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5' end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination.

[0377] The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter. The amplified promoter and targeting sequences are digested and ligated together.

[0378] The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.

[0379] The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control of the promoter. The promoter then drives the expression of the endogenous sequence.

[0380] Preferably, the polynucleotide encoding a polypeptide of the present invention contains a secretory signal sequence that facilitates secretion of the protein. Typically, the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region. The signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.

[0381] Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery. For example, direct injection of naked calcium phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression of the foreign gene in the rat livers (Kaneda et al., Science 243:375 (1989)).

[0382] A preferred method of local administration is by direct injection. Preferably, a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries. Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries.

[0383] Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound

[0384] Therapeutic compositions useful in systemic administration, include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site.

[0385] Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.

[0386] Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.

[0387] Therapeutic compositions of the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.

Biological Activities

[0388] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, can be used in assays to test for one or more biological activities. If these polynucleotides or polypeptides, or agonists or antagonists of the present invention, do exhibit activity in a particular assay, it is likely that these molecules may be involved in

the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides, and agonists or antagonists could be used to treat, prevent diagnose and/or prognose the associated disease.

[0389] The prostate cancer antigen polynucleotides and polypeptides of the invention are predicted to have predominant expression in prostate tissues.

[0390] Thus, the prostate cancer antigens of the invention (e.g., polynucleotides of the invention (e.g., nucleotide coding sequence in SEQ ID NO:X, the nucleotide coding sequence of the related cDNA contained in a deposited library or fragments or variants thereof), polypeptides of the invention (e.g., the polypeptide of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, a polypeptide encoded by the cDNA in the related cDNA clone contained in a deposited library, and/or fragments or variants thereof), and/or an antibody, or fragment thereof, directed to a polypeptide of the invention) may be useful as therapeutic molecules. Each would be useful for diagnosis, detection, treatment and/or prevention of diseases or disorders of the prostate, including but not limited to prostate cancers such as adenocarcinoma, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas.

[0391] Particularly, the prostate cancer antigens may be a useful therapeutic for prostate cancer. Treatment, diagnosis, detection, and/or prevention of prostate disorders could be carried out using a prostate cancer antigen or soluble form of a prostate cancer antigen, a prostate cancer antigen ligand, gene therapy, or ex vivo applications. Moreover, inhibitors of a prostate cancer antigen, either blocking antibodies or mutant forms, could modulate the expression of the prostate cancer antigen. These inhibitors may be useful to treat, diagnose, detect, and/or prevent diseases associated with the misregulation of a prostate cancer antigen.

[0392] In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells (e.g., normal or diseased prostate cells) by administering polypeptides of the invention (e.g., prostate cancer antigen polypeptides or anti- prostate cancer antigen antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell (e.g., an aberrant prostate cell or prostate cancer cell). In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid

(e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0393] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of aberrant prostate cells, including, but not limited to, prostate tumor cells) by administering polypeptides of the invention (e.g., prostate cancer antigen polypeptides or fragments thereof, or anti-prostate cancer antigen antibodies) in association with toxins or cytotoxic prodrugs.

EVALUATION BY "toxin" is meant compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, cytotoxins (cytotoxic agents), or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, *Pseudomonas* exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. "Toxin" also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alphaemitters such as, for example, ¹⁰³Pd, ¹³³Xe, ¹³¹I, ⁶⁸Ge, ⁵⁷Co, ⁶⁵Zn, ⁸⁵Sr, ³²P, ³⁵S, ⁹⁰Y, ¹⁵³Sm, ¹⁵³Gd, ¹⁶⁹Yb, ⁵¹Cr, ⁵⁴Mn, ⁷⁵Se, ¹¹³Sn, ⁹⁰Yttrium, ¹¹⁷Tin, ¹⁸⁶Rhenium, ¹⁶⁶Holmium, and ¹⁸⁸Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.

[0395] Techniques known in the art may be applied to label antibodies of the invention. Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361; 5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety). A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and

puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

[0396] By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.

[0397] It will be appreciated that conditions caused by a decrease in the standard or normal level of a prostate cancer antigen activity in an individual, particularly disorders of the prostate, can be treated by administration of a prostate cancer antigen polypeptide (e.g., such as, for example, the complete prostate cancer antigen polypeptide, the soluble form of the extracellular domain of a prostate cancer antigen polypeptide, or cells expressing the complete protein) or agonist. Thus, the invention also provides a method of treatment of an individual in need of an increased level of prostate cancer antigen activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated prostate cancer antigen polypeptide of the invention, or agonist thereof (e.g., an agonistic anti- prostate cancer antigen antibody), effective to increase the prostate cancer antigen activity level in such an individual.

[0398] It will also be appreciated that conditions caused by a increase in the standard or normal level of prostate cancer antigen activity in an individual, particularly disorders of the prostate, can be treated by administration of prostate cancer antigen polypeptides (e.g., such as, for example, the complete prostate cancer antigen polypeptide, the soluble form of the extracellular domain of a prostate cancer antigen polypeptide, or cells expressing the complete protein) or antagonist (e.g., an antagonistic prostate cancer

antigen antibody). Thus, the invention also provides a method of treatment of an individual in need of an decreased level of prostate cancer antigen activity comprising administering to such an individual a pharmaceutical composition comprising an amount of an isolated prostate cancer antigen polypeptide of the invention, or antagonist thereof (e.g., an antagonistic anti-prostate cancer antigen antibody), effective to decrease the prostate cancer antigen activity level in such an individual.

[0399] More generally, polynucleotides, translation products and antibodies corresponding to this gene may be useful for the diagnosis, prognosis, prevention, and/or treatment of diseases and/or disorders associated with the following systems.

Reproductive System Disorders

[0400] The polynucleotides or polypeptides, or agonists or antagonists of the invention may be used for the diagnosis, treatment, or prevention of diseases and/or disorders of the reproductive system. Reproductive system disorders that can be treated by the compositions of the invention, include, but are not limited to, reproductive system injuries, infections, neoplastic disorders, congenital defects, and diseases or disorders which result in infertility, complications with pregnancy, labor, or parturition, and postpartum difficulties.

[0401] Reproductive system disorders and/or diseases include diseases and/or disorders of the testes, including, but not limited to, testicular atrophy, testicular feminization, cryptorchism (unilateral and bilateral), anorchia, ectopic testis, epididymitis and orchitis (typically resulting from infections such as, for example, gonorrhea, mumps, tuberculosis, and syphilis), testicular torsion, vasitis nodosa, germ cell tumors (e.g., seminomas, embryonal cell carcinomas, teratocarcinomas, choriocarcinomas, yolk sac tumors, and teratomas), stromal tumors (e.g., Leydig cell tumors), hydrocele, hematocele, varicocele, spermatocele, inguinal hernia, and disorders of sperm production (e.g., immotile cilia syndrome, aspermia, asthenozoospermia, azoospermia, oligospermia, and teratozoospermia).

[0402] Reproductive system disorders also include, but are not limited to, disorders of the prostate gland, such as acute non-bacterial prostatitis, chronic non-bacterial prostatitis, acute bacterial prostatitis, chronic bacterial prostatitis, prostatodystonia, prostatosis, granulomatous prostatitis, malacoplakia, benign prostatic

hypertrophy or hyperplasia, and prostate neoplastic disorders, including adenocarcinomas, transitional cell carcinomas, ductal carcinomas, and squamous cell carcinomas.

[0403] Additionally, the compositions of the invention may be useful in the diagnosis, treatment, and/or prevention of disorders or diseases of the penis and urethra, including, but not limited to, inflammatory disorders, such as balanoposthitis, balanitis xerotica obliterans, phimosis, paraphimosis, syphilis, herpes simplex virus, gonorrhea, non-gonococcal urethritis, chlamydia, mycoplasma, trichomonas, HIV, AIDS, Reiter's syndrome, condyloma acuminatum, condyloma latum, and pearly penile papules; urethral abnormalities, such as hypospadias, epispadias, and phimosis; premalignant lesions, including Erythroplasia of Queyrat, Bowen's disease, Bowenoid paplosis, giant condyloma of Buscke-Lowenstein, and varrucous carcinoma; penile cancers, including squamous cell carcinomas, carcinoma in situ, verrucous carcinoma, and disseminated penile carcinoma; urethral neoplastic disorders, including penile urethral carcinoma, bulbomembranous urethral carcinoma, and prostatic urethral carcinoma; and erectile disorders, such as priapism, Peyronie's disease, erectile dysfunction, and impotence.

[0404] Moreover, diseases and/or disorders of the vas deferens include, but are not limited to, vasculititis and CBAVD (congenital bilateral absence of the vas deferens); additionally, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders of the seminal vesicles, including but not limited to, hydatid disease, congenital chloride diarrhea, and polycystic kidney disease.

[0405] Other disorders and/or diseases of the male reproductive system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, Klinefelter's syndrome, Young's syndrome, premature ejaculation, diabetes mellitus, cystic fibrosis, Kartagener's syndrome, high fever, multiple sclerosis, and gynecomastia.

[0406] Further, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases and/or disorders of the vagina and vulva, including, but not limited to, bacterial vaginosis, candida vaginitis, herpes simplex virus, chancroid, granuloma inguinale, lymphogranuloma venereum, scabies, human papillomavirus, vaginal trauma, vulvar trauma, adenosis, chlamydia vaginitis, gonorrhea, trichomonas vaginitis, condyloma

acuminatum, syphilis, molluscum contagiosum, atrophic vaginitis, Paget's disease, lichen sclerosus, lichen planus, vulvodynia, toxic shock syndrome, vaginismus, vulvovaginitis, vulvar vestibulitis, and neoplastic disorders, such as squamous cell hyperplasia, clear cell carcinoma, basal cell carcinoma, melanomas, cancer of Bartholin's gland, and vulvar intraepithelial neoplasia.

[0407] Disorders and/or diseases of the uterus that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, dysmenorrhea, retroverted uterus, endometriosis, fibroids, adenomyosis, anovulatory bleeding, amenorrhea, Cushing's syndrome, hydatidiform moles, Asherman's syndrome, premature menopause, precocious puberty, uterine polyps, dysfunctional uterine bleeding (e.g., due to aberrant hormonal signals), and neoplastic disorders, such as adenocarcinomas, keiomyosarcomas, and sarcomas. Additionally, the polypeptides, polynucleotides, or agonists or antagonists of the invention may be useful as a marker or detector of, as well as in the diagnosis, treatment, and/or prevention of congenital uterine abnormalities, such as bicornuate uterus, septate uterus, simple unicornuate uterus, unicornuate uterus with a non-communicating cavitary rudimentary horn, unicornuate uterus with a communicating cavitary rudimentary horn, unicornuate uterus with a communicating cavitary born, arcuate uterus, uterine didelfus, and T-shaped uterus.

[0408] Ovarian diseases and/or disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, anovulation, polycystic ovary syndrome (Stein-Leventhal syndrome), ovarian cysts, ovarian hypofunction, ovarian insensitivity to gonadotropins, ovarian overproduction of androgens, right ovarian vein syndrome, amenorrhea, hirutism, and ovarian cancer (including, but not limited to, primary and secondary cancerous growth, Sertoli-Leydig tumors, endometriod carcinoma of the ovary, ovarian papillary serous adenocarcinoma, ovarian mucinous adenocarcinoma, and Ovarian Krukenberg tumors).

[0409] Cervical diseases and/or disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, cervicitis, chronic cervicitis, mucopurulent cervicitis, cervical dysplasia, cervical polyps, Nabothian cysts, cervical erosion, cervical incompetence, and cervical neoplasms (including, for example, cervical carcinoma, squamous metaplasia, squamous cell carcinoma, adenosquamous cell neoplasia, and columnar cell neoplasia).

[0410] Additionally, diseases and/or disorders of the reproductive system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, disorders and/or diseases of pregnancy, including miscarriage and stillbirth, such as early abortion, late abortion, spontaneous abortion, induced abortion, therapeutic abortion, threatened abortion, missed abortion, incomplete abortion, complete abortion, habitual abortion, missed abortion, and septic abortion; ectopic pregnancy, anemia, Rh incompatibility, vaginal bleeding during pregnancy, gestational diabetes, intrauterine growth retardation, polyhydramnios, HELLP syndrome, abruptio placentae, placenta previa, hyperemesis, preeclampsia, eclampsia, herpes gestationis, and urticaria of pregnancy. Additionally, the polynucleotides, polypeptides, and agonists or antagonists of the present invention may be used in the diagnosis, treatment, and/or prevention of diseases that can complicate pregnancy, including heart disease, heart failure, rheumatic heart disease, congenital heart disease, mitral valve prolapse, high blood pressure, anemia, kidney disease, infectious disease (e.g., rubella, cytomegalovirus, toxoplasmosis, infectious hepatitis, chlamydia, HIV, AIDS, and genital herpes), diabetes mellitus, Graves' disease, thyroiditis, hypothyroidism, Hashimoto's thyroiditis, chronic active hepatitis, cirrhosis of the liver, primary biliary cirrhosis, asthma, systemic lupus eryematosis, rheumatoid arthritis, myasthenia gravis, idiopathic thrombocytopenic purpura, appendicitis, ovarian cysts, gallbladder disorders, and obstruction of the intestine.

[0411] Complications associated with labor and parturition that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, premature rupture of the membranes, pre-term labor, post-term pregnancy, postmaturity, labor that progresses too slowly, fetal distress (e.g., abnormal heart rate (fetal or maternal), breathing problems, and abnormal fetal position), shoulder dystocia, prolapsed umbilical cord, amniotic fluid embolism, and aberrant uterine bleeding.

[0412] Further, diseases and/or disorders of the postdelivery period, that may be diagnosed, treated, and/or prevented with the compositions of the invention, include, but are not limited to, endometritis, myometritis, parametritis, peritonitis, pelvic thrombophlebitis, pulmonary embolism, endotoxemia, pyelonephritis, saphenous thrombophlebitis, mastitis, cystitis, postpartum hemorrhage, and inverted uterus.

[0413] Other disorders and/or diseases of the female reproductive system that may be diagnosed, treated, and/or prevented by the polynucleotides, polypeptides, and agonists or antagonists of the present invention include, but are not limited to, Turner's syndrome, pseudohermaphroditism, premenstrual syndrome, pelvic inflammatory disease, pelvic congestion (vascular engorgement), frigidity, anorgasmia, dyspareunia, ruptured fallopian tube, and Mittelschmerz.

Immune Activity

[0414] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, diagnosing and/or prognosing diseases, disorders, and/or conditions of the immune system, by, for example, activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of [0415] the present invention may be useful in treating, preventing, diagnosing, and/or prognosing immunodeficiencies, including both congenital and acquired immunodeficiencies. Examples of B cell immunodeficiencies in which immunoglobulin levels B cell function and/or B cell numbers are decreased include: X-linked agammaglobulinemia (Bruton's disease), X-linked infantile agammaglobulinemia, X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, X-linked lymphoproliferative syndrome (XLP), agammaglobulinemia including congenital acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, unspecified hypogammaglobulinemia, recessive agammaglobulinemia (Swiss type), Selective IgM deficiency, selective IgA deficiency, selective IgG subclass deficiencies, IgG subclass deficiency (with or without IgA deficiency), Ig deficiency with increased IgM, IgG and IgA deficiency with increased IgM, antibody deficiency with normal or elevated Igs, Ig heavy chain deletions, kappa

chain deficiency, B cell lymphoproliferative disorder (BLPD), common variable immunodeficiency (CVID), common variable immunodeficiency (CVI) (acquired), and transient hypogammaglobulinemia of infancy.

[0416] In specific embodiments, ataxia-telangiectasia or conditions associated with ataxia-telangiectasia are treated, prevented, diagnosed, and/or prognosing using the polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof.

[0417] Examples of congenital immunodeficiencies in which T cell and/or B cell function and/or number is decreased include, but are not limited to: DiGeorge anomaly, severe combined immunodeficiencies (SCID) (including, but not limited to, X-linked SCID, autosomal recessive SCID, adenosine deaminase deficiency, purine nucleoside phosphorylase (PNP) deficiency, Class II MHC deficiency (Bare lymphocyte syndrome), Wiskott-Aldrich syndrome, and ataxia telangiectasia), thymic hypoplasia, third and fourth pharyngeal pouch syndrome, 22q11.2 deletion, chronic mucocutaneous candidiasis, natural killer cell deficiency (NK), idiopathic CD4+ T-lymphocytopenia, immunodeficiency with predominant T cell defect (unspecified), and unspecified immunity.

[0418] In specific embodiments, DiGeorge anomaly or conditions associated with DiGeorge anomaly are treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides of the invention, or antagonists or agonists thereof.

[0419] Other immunodeficiencies that may be treated, prevented, diagnosed, and/or prognosed using polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, include, but are not limited to, chronic granulomatous disease, Chédiak-Higashi syndrome, myeloperoxidase deficiency, leukocyte glucose-6-phosphate dehydrogenase deficiency, X-linked lymphoproliferative syndrome (XLP), leukocyte adhesion deficiency, complement component deficiencies (including C1, C2, C3, C4, C5, C6, C7, C8 and/or C9 deficiencies), reticular dysgenesis, thymic alymphoplasia-aplasia, immunodeficiency with thymoma, severe congenital leukopenia, dysplasia with immunodeficiency, neonatal neutropenia, short limbed dwarfism, and Nezelof syndrome-combined immunodeficiency with Igs.

[0420] In a preferred embodiment, the immunodeficiencies and/or conditions associated with the immunodeficiencies recited above are treated, prevented, diagnosed

and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0421] In a preferred embodiment polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among immunodeficient individuals. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among B cell and/or T cell immunodeficient individuals.

[0422] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, diagnosing and/or prognosing autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of polynucleotides and polypeptides of the invention that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

[0423] Autoimmune diseases or disorders that may be treated, prevented, diagnosed and/or prognosed by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, one or more of the following: systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, autoimmune thyroiditis, Hashimoto's thyroiditis, autoimmune hemolytic anemia, hemolytic anemia, thrombocytopenia, autoimmune thrombocytopenia purpura, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, purpura (e.g., Henloch-Scoenlein purpura), autoimmunocytopenia, Goodpasture's syndrome, Pemphigus vulgaris, myasthenia gravis, Grave's disease (hyperthyroidism), and insulin-resistant diabetes mellitus.

[0424] Additional disorders that are likely to have an autoimmune component that may be treated, prevented, and/or diagnosed with the compositions of the invention include, but are not limited to, type II collagen-induced arthritis, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, neuritis, uveitis ophthalmia, polyendocrinopathies, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-

Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disorders.

[0425] Additional disorders that are likely to have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the compositions of the invention include, but are not limited to, scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.g., antispermatozoal antibodies), glomerulonephritis (often characterized, e.g., by glomerular basement membrane antibodies or immune complexes), bullous pemphigoid (often characterized, e.g., by IgG and complement in basement membrane), Sjogren's syndrome (often characterized, e.g., by multiple tissue antibodies, and/or a specific nonhistone ANA (SS-B)), diabetes mellitus (often characterized, e.g., by cell-mediated and humoral islet cell antibodies), and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis) (often characterized, e.g., by beta-adrenergic receptor antibodies).

Additional disorders that may have an autoimmune component that may be treated, prevented, diagnosed and/or prognosed with the compositions of the invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondria antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM antibodies to IgE), atopic dermatitis (often characterized, e.g., by IgG and IgM antibodies to IgE), asthma (often characterized, e.g., by IgG and IgM antibodies to IgE), and many other inflammatory, granulomatous, degenerative, and atrophic disorders.

[0427] In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using for example, antagonists or agonists, polypeptides or polynucleotides, or antibodies of the present invention. In a specific preferred embodiment, rheumatoid arthritis is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0428] In another specific preferred embodiment, systemic lupus erythematosus is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. In another specific preferred embodiment, idiopathic thrombocytopenia purpura is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0429] In another specific preferred embodiment IgA nephropathy is treated, prevented, and/or diagnosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0430] In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are treated, prevented, diagnosed and/or prognosed using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.

[0431] In preferred embodiments, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a immunosuppressive agent(s).

Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, prognosing, and/or diagnosing diseases, disorders, and/or conditions of hematopoietic cells. Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells, including but not limited to, leukopenia, neutropenia, anemia, and thrombocytopenia. Alternatively, Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of

hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with an increase in certain (or many) types of hematopoietic cells, including but not limited to, histiocytosis.

[0433] Allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated, prevented, diagnosed and/or prognosed using polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof. Moreover, these molecules can be used to treat, prevent, prognose, and/or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

[0434] Additionally, polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, may be used to treat, prevent, diagnose and/or prognose IgE-mediated allergic reactions. Such allergic reactions include, but are not limited to, asthma, rhinitis, and eczema. In specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to modulate IgE concentrations in vitro or in vivo.

Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or [0435] antagonists of the present invention have uses in the diagnosis, prognosis, prevention, and/or treatment of inflammatory conditions. For example, since polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists of the invention may inhibit the activation, proliferation and/or differentiation of cells involved in an inflammatory response, these molecules can be used to prevent and/or treat chronic and acute inflammatory conditions. Such inflammatory conditions include, but are not limited to, for example, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome), ischemia-reperfusion injury, endotoxin lethality, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, over production of cytokines (e.g., TNF or IL-1.), respiratory disorders (e.g., asthma and allergy); gastrointestinal disorders (e.g., inflammatory bowel disease); cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast); CNS disorders (e.g., multiple sclerosis; ischemic brain injury and/or stroke, traumatic brain injury, neurodegenerative disorders (e.g., Parkinson's disease and Alzheimer's disease); AIDS-related dementia; and prion disease); cardiovascular disorders (e.g., atherosclerosis, myocarditis, cardiovascular disease, and cardiopulmonary bypass complications); as well as many additional diseases, conditions, and disorders that are characterized by inflammation (e.g., hepatitis, rheumatoid arthritis, gout, trauma, pancreatitis, sarcoidosis, dermatitis, renal ischemia-reperfusion injury, Grave's disease, systemic lupus erythematosus, diabetes mellitus, and allogenic transplant rejection).

[0436] Because inflammation is a fundamental defense mechanism, inflammatory disorders can effect virtually any tissue of the body. Accordingly, polynucleotides, polypeptides, and antibodies of the invention, as well as agonists or antagonists thereof, have uses in the treatment of tissue-specific inflammatory disorders, including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis, balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrositis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrinthitis, laryngitis, lymphangitis, mastitis, media otitis, meningitis, metritis, mucitis, myocarditis, myosititis, myringitis, nephritis, neuritis, orchitis, osteochondritis, otitis, pericarditis, peritendonitis, peritonitis, pharyngitis, phlebitis, poliomyelitis, prostatitis, spondylitis, steatitis, stomatitis, synovitis, syringitis, tendonitis, tonsillitis, urethritis, and vaginitis.

[0437] In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat organ transplant rejections and graft-versus-host disease. Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. Polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or GVHD. In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be

an effective therapy in preventing experimental allergic and hyperacute xenograft rejection.

[0438] In other embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to diagnose, prognose, prevent, and/or treat immune complex diseases, including, but not limited to, serum sickness, post streptococcal glomerulonephritis, polyarteritis nodosa, and immune complex-induced vasculitis.

Polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the invention can be used to treat, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation activation and/or differentiation of B and/or T cells, infectious diseases may be treated, detected, and/or prevented. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may also directly inhibit the infectious agent (refer to section of application listing infectious agents, etc.), without necessarily eliciting an immune response.

[0440] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a vaccine adjuvant that enhances immune responsiveness to an antigen. In a specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance tumor-specific immune responses.

In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-viral immune responses. Anti-viral immune responses that may be enhanced using the compositions of the invention as an adjuvant, include virus and virus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AIDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B). In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, respiratory syncytial virus, Dengue, rotavirus. Japanese B encephalitis,

influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, herpes simplex, and yellow fever.

[0442] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-bacterial or anti-fungal immune responses. Anti-bacterial or anti-fungal immune responses that may be enhanced using the compositions of the invention as an adjuvant, include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B.

[0443] In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Meisseria meningitidis, Streptococcus pneumoniae, Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli, and Borrelia burgdorferi.

In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-parasitic immune responses. Anti-parasitic immune responses that may be enhanced using the compositions of the invention as an adjuvant, include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a parasite. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria) or Leishmania.

[0445] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat infectious diseases including silicosis, sarcoidosis, and idiopathic pulmonary fibrosis; for example, by preventing the recruitment and activation of mononuclear phagocytes.

[0446] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an antigen for the

generation of antibodies to inhibit or enhance immune mediated responses against polypeptides of the invention.

[0447] In one embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production and immunoglobulin class switching (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response.

[0448] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell responsiveness to pathogens.

[0449] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an activator of T cells.

[0450] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.

[0451] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to induce higher affinity antibodies.

[0452] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to increase serum immunoglobulin concentrations.

[0453] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to accelerate recovery of immunocompromised individuals.

[0454] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among aged populations and/or neonates.

[0455] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g.,

allogeneic or xenogeneic organ transplantation). With respect to transplantation, compositions of the invention may be administered prior to, concomitant with, and/or after transplantation. In a specific embodiment, compositions of the invention are administered after transplantation, prior to the beginning of recovery of T-cell populations. In another specific embodiment, compositions of the invention are first administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.

[0456] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function. Conditions resulting in an acquired loss of B cell function that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, HIV Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).

In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency. Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, and recovery from surgery.

[0458] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a regulator of antigen presentation by monocytes, dendritic cells, and/or B-cells. In one embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention enhance antigen presentation or antagonizes antigen presentation in vitro or in vivo. Moreover, in related embodiments, said enhancement or antagonism of antigen presentation may be useful as an anti-tumor treatment or to modulate the immune system.

[0459] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to direct an

individual's immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.

[0460] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means to induce tumor proliferation and thus make it more susceptible to anti-neoplastic agents. For example, multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly their susceptibility profile would likely change.

[0461] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell production in pathologies such as AIDS, chronic lymphocyte disorder and/or Common Variable Immunodificiency.

[0462] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in the pretreatment of bone marrow samples prior to transplant.

[0463] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno-incompetence/immunodeficiency such as observed among SCID patients.

[0464] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania.

[0465] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of regulating secreted cytokines that are elicited by polypeptides of the invention.

[0466] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in one or more of the applications decribed herein, as they may apply to veterinary medicine.

[0467] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of blocking various aspects of immune responses to foreign agents or self. Examples of diseases or conditions in which blocking of certain aspects of immune responses may be desired include autoimmune disorders such as lupus, and arthritis, as well as immunoresponsiveness to skin allergies, inflammation, bowel disease, injury and diseases/disorders associated with pathogens.

[0468] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for preventing the B cell proliferation and Ig secretion associated with autoimmune diseases such as idiopathic thrombocytopenic purpura, systemic lupus erythematosus and multiple sclerosis.

[0469] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a inhibitor of B and/or T cell migration in endothelial cells. This activity disrupts tissue architecture or cognate responses and is useful, for example in disrupting immune responses, and blocking sepsis.

[0470] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for chronic hypergammaglobulinemia evident in such diseases as monoclonal gammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonal gammopathies, and plasmacytomas.

[0471] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed for instance to inhibit polypeptide chemotaxis and activation of macrophages and their precursors, and of neutrophils, basophils, B lymphocytes and some T-cell subsets, e.g., activated and CD8 cytotoxic T cells and natural killer cells, in certain autoimmune and chronic inflammatory and infective diseases. Examples of autoimmune diseases are described herein and include multiple sclerosis, and insulin-dependent diabetes.

[0472] The polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat idiopathic hypereosinophilic syndrome by, for example, preventing eosinophili production and migration.

[0473] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit complement mediated cell lysis.

[0474] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit antibody dependent cellular cytotoxicity.

[0475] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed for treating atherosclerosis, for example, by preventing monocyte infiltration in the artery wall.

[0476] In another specific embodiment, polypeptides, antibodies, polypucleotides and/or agonists or antagonists of the present invention may be employed to treat adult respiratory distress syndrome (ARDS).

[0477] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be useful for stimulating wound and tissue repair, stimulating angiogenesis, and/or stimulating the repair of vascular or lymphatic diseases or disorders. Additionally, agonists and antagonists of the invention may be used to stimulate the regeneration of mucosal surfaces.

In a specific embodiment, polynucleotides or polypeptides, and/or agonists thereof are used to diagnose, prognose, treat, and/or prevent a disorder characterized by primary or acquired immunodeficiency, deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction. Moreover, polynucleotides or polypeptides, and/or agonists thereof may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and/or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pneumocystis camii. Other diseases and disorders that may be prevented, diagnosed, prognosed, and/or treated with polynucleotides or polypeptides, and/or agonists of the present invention include, but are

not limited to, HIV infection, HTLV-BLV infection, lymphopenia, phagocyte bactericidal dysfunction anemia, thrombocytopenia, and hemoglobinuria.

[0479] In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention are used to treat, and/or diagnose an individual having common variable immunodeficiency disease ("CVID"; also known as "acquired agammaglobulinemia" and "acquired hypogammaglobulinemia") or a subset of this disease.

In a specific embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to diagnose, prognose, prevent, and/or treat cancers or neoplasms including immune cell or immune tissue-related cancers or neoplasms. Examples of cancers or neoplasms that may be prevented, diagnosed, or treated by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL) Chronic lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, EBV-transformed diseases, and/or diseases and disorders described in the section entitled "Hyperproliferative Disorders" elsewhere herein.

[0481] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for decreasing cellular proliferation of Large B-cell Lymphomas.

[0482] In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of decreasing the involvement of B cells and Ig associated with Chronic Myelogenous Leukemia.

[0483] In specific embodiments, the compositions of the invention are used as an agent to boost immunoresponsiveness among B cell immunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy.

[0484] Antagonists of the invention include, for example, binding and/or inhibitory antibodies, antisense nucleic acids, ribozymes or soluble forms of the polypeptides of the present invention (e.g., Fc fusion protein; see, e.g., Example 9). Agonists of the invention include, for example, binding or stimulatory antibodies, and soluble forms of the polypeptides (e.g., Fc fusion proteins; see, e.g., Example 9). Polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present

invention may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as described herein.

[0485] In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (including, but not limited to, those listed above, and also including transgenic animals) incapable of producing functional endogenous antibody molecules or having an otherwise compromised endogenous immune system, but which is capable of producing human immunoglobulin molecules by means of a reconstituted or partially reconstituted immune system from another animal (see, e.g., published PCT Application Nos. WO98/24893, WO/9634096, WO/9633735, and WO/9110741). Administration of polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention to such animals is useful for the generation of monoclonal antibodies against the polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention.

Blood-Related Disorders

10486] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to modulate hemostatic (the stopping of bleeding) or thrombolytic (clot dissolving) activity. For example, by increasing hemostatic or thrombolytic activity, polynucleotides or polypeptides, and/or agonists or antagonists of the present invention could be used to treat or prevent blood coagulation diseases, disorders, and/or conditions (e.g., afibrinogenemia, factor deficiencies, hemophilia), blood platelet diseases, disorders, and/or conditions (e.g., thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment or prevention of heart attacks (infarction), strokes, or scarring.

In specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to prevent, diagnose, prognose, and/or treat thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina. In specific embodiments, the polynucleotides.

polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease. Other uses for the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, include, but are not limited to, the prevention of occlusions in extrcorporeal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines).

polynucleotides, polypeptides, antibodies, and/or agonists or The [0488] antagonists of the present invention may be used to modulate hematopoietic activity (the formation of blood cells). For example, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to increase the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets. The ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of Alternatively, the polynucleotides, anemias and leukopenias described below. polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to decrease the quantity of all or subsets of blood cells, such as, for example, erythrocytes, lymphocytes (B or T cells), myeloid cells (e.g., basophils, eosinophils, neutrophils, mast cells, macrophages) and platelets.. The ability to decrease the quantity of blood cells or subsets of blood cells may be useful in the prevention, detection, diagnosis and/or treatment of leukocytoses, such as, for example eosinophilia.

[0489] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to prevent, treat, or diagnose blood dvscrasia.

[0496] Anemias are conditions in which the number of red blood cells or amount of hemoglobin (the protein that carries oxygen) in them is below normal. Anemia may be caused by excessive bleeding, decreased red blood cell production, or increased red blood cell destruction (hemolysis). The polynucleotides, polypeptides, antibodies, and/or

agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias. Anemias that may be treated prevented or diagnosed by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include iron deficiency anemia, hypochromic anemia, microcytic anemia, chlorosis, hereditary siderob;astic anemia, idiopathic acquired sideroblastic anemia, red cell aplasia, megaloblastic anemia (e.g., pernicious anemia, (vitamin B12 deficiency) and folic acid deficiency anemia), aplastic anemia, hemolytic anemias (e.g., autoimmune helolytic anemia, microangiopathic hemolytic anemia, and paroxysmal nocturnal hemoglobinuria). The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias associated with diseases including but not limited to, anemias associated with systemic lupus erythematosus, cancers, lymphomas, chronic renal disease, and enlarged spleens. The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias arising from drug treatments such as anemias associated with methyldopa, dapsone, and/or sulfadrugs. Additionally, rhe polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing anemias associated with abnormal red blood cell architecture including but not limited to, hereditary spherocytosis, hereditary elliptocytosis, glucose-6-phosphate dehydrogenase deficiency, and sickle cell anemia.

[0491] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing hemoglobin abnormalities, (e.g., those associated with sickle cell anemia, hemoglobin C disease, hemoglobin S-C disease, and hemoglobin E disease). Additionally, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating thalassemias, including, but not limited to major and minor forms of alphathalassemia and beta-thalassemia.

[0492] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating bleeding disorders including, but not limited to, thrombocytopenia (e.g., idiopathic thrombocytopenic purpura, and thrombotic

thrombocytopenic purpura), Von Willebrand's disease, hereditary platelet disorders (e.g., storage pool disease such as Chediak-Higashi and Hermansky-Pudlak syndromes, thromboxane A2 dysfunction, thromboasthenia, and Bernard-Soulier syndrome), hemolytic-uremic syndrome, hemophelias such as hemophelia A or Factor VII deficiency and Christmas disease or Factor IX deficiency, Hereditary Hemorthagic Telangiectsia, also known as Rendu-Osler-Weber syndrome, allergic purpura (Henoch Schonlein purpura) and disseminated intravascular coagulation.

[0493] The effect of the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention on the clotting time of blood may be monitored using any of the clotting tests known in the art including, but not limited to, whole blood partial thromboplastin time (PTT), the activated partial thromboplastin time (aPTT), the activated clotting time, or the Lee-White Clotting time.

[0494] Several diseases and a variety of drugs can cause platelet dysfunction. Thus, in a specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating acquired platelet dysfunction such as platelet dysfunction accompanying kidney failure, leukemia, multiple myeloma, cirrhosis of the liver, and systemic lupus erythematosus as well as platelet dysfunction associated with drug treatments, including treatment with aspirin, ticlopidine, nonsteroidal anti-inflammatory drugs (used for arthritis, pain, and sprains), and penicillin in high doses.

[0495] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders characterized by or associated with increased or decreased numbers of white blood cells. Leukopenia occurs when the number of white blood cells decreases below normal. Leukopenias include, but are not limited to, neutropenia and lymphocytopenia. An increase in the number of white blood cells compared to normal is known as leukocytosis. The body generates increased numbers of white blood cells during infection. Thus, leukocytosis may simply be a normal physiological parameter that reflects infection. Alternatively, leukocytosis may be an indicator of injury or other disease such as cancer. Leokocytoses, include but are not limited to, eosinophilia, and accumulations of macrophages. In specific embodiments, the

polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukopenia. In other specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukocytosis

Leukopenia may be a generalized decreased in all types of white blood [0496] cells, or may be a specific depletion of particular types of white blood cells. Thus, in specific embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating decreases in neutrophil numbers, known as neutropenia. Neutropenias that may be diagnosed, prognosed, prevented, and/or treated by the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, infantile genetic agranulocytosis, familial neutropenia, cyclic neutropenia, neutropenias resulting from or associated with dietary deficiencies (e.g., vitamin B 12 deficiency or folic acid deficiency), neutropenias resulting from or associated with drug treatments (e.g., antibiotic regimens such as penicillin treatment, sulfonamide treatment, anticoagulant treatment, anticonvulsant drugs, anti-thyroid drugs, and cancer chemotherapy), and neutropenias resulting from increased neutrophil destruction that may occur in association with some bacterial or viral infections, allergic disorders, autoimmune diseases, conditions in which an individual has an enlarged spleen (e.g., Felty syndrome, malaria and sarcoidosis), and some drug treatment regimens.

10497] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating lymphocytopenias (decreased numbers of B and/or T lymphocytes), including, but not limited lymphocytopenias resulting from or associated with stress, drug treatments (e.g., drug treatment with corticosteroids, cancer chemotherapies, and/or radiation therapies), AIDS infection and/or other diseases such as, for example, cancer, theumatoid arthritis, systemic lupus erythematosus, chronic infections, some viral infections and/or hereditary disorders (e.g., DiGeorge syndrome, Wiskott-Aldrich Syndome, severe combined immunodeficiency, ataxia telangiectsia).

[0498] The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing,

and/or treating diseases and disorders associated with macrophage numbers and/or macrophage function including, but not limited to, Gaucher's disease, Niemann-Pick disease, Letterer-Siwe disease and Hand-Schuller-Christian disease.

[0499] In another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders associated with eosinophil numbers and/or eosinophil function including, but not limited to, idiopathic hypereosinophilic syndrome, eosinophilia-myalgia syndrome, and Hand-Schuller-Christian disease.

In yet another embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating leukemias and lymphomas including, but not limited to, acute lymphocytic (lymphpblastic) leukemia (ALL), acute myeloid (myelocytic, myelogenous, myeloblastic, or myelomonocytic) leukemia, chronic lymphocytic leukemia (e.g., B cell leukemias, T cell leukemias, Sezary syndrome, and Hairy cell leukemia), chronic myelocytic (myeloid, myelogenous, or granulocytic) leukemia, Hodgkin's lymphoma, non-hodgkin's lymphoma, Burkitt's lymphoma, and mycosis fungoides.

[0501] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in diagnosing, prognosing, preventing, and/or treating diseases and disorders of plasma cells including, but not limited to, plasma cell dyscrasias, monoclonal gammaopathies, monoclonal gammaopathies of undetermined significance, multiple myeloma, macroglobulinemia, Waldenstrom's macroglobulinemia, cryoglobulinemia, and Raynaud's phenomenon.

[0502] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in treating, preventing, and/or diagnosing myeloproliferative disorders, including but not limited to, polycythemia vera, relative polycythemia, secondary polycythemia, myelofibrosis, acute myelofibrosis, agnogenic myelod metaplasia, thrombocythemia, (including both primary and secondary thrombocythemia) and chronic myelocytic leukemia.

[0503] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as a treatment prior to surgery, to increase blood cell production.

[0504] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to enhance the migration, phagocytosis, superoxide production, antibody dependent cellular cytotoxicity of neutrophils, eosionophils and macrophages.

[0505] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase the number of stem cells in circulation prior to stem cells pheresis. In another specific embodiment, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase the number of stem cells in circulation prior to platelet pheresis.

[0506] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful as an agent to increase cytokine production.

[0507] In other embodiments, the polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in preventing, diagnosing, and/or treating primary hematopoietic disorders.

Hyperproliferative Disorders

[0508] Prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, diagnose and/or prognose hyperproliferative diseases, disorders, and/or conditions, including neoplasms.

[0509] In a specific embodiment, prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, and/or diagnose hyperproliferative diseases, disorders, and/or conditions of the prostate.

[0510] In a preferred embodiment, prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists thereof, can be used to treat, prevent, and/or diagnose prostate neoplasms.

[0511] Prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists of the invention, may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists thereof, may proliferate other cells, which can inhibit the hyperproliferative disorder.

[0512] For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative diseases, disorders, and/or conditions can be treated, prevented, and/or diagnosed. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating, preventing, and/or diagnosing hyperproliferative diseases, disorders, and/or conditions, such as a chemotherapeutic agent.

[0513] Examples of hyperproliferative diseases, disorders, and/or conditions that can be treated, prevented, and/or diagnosed by prostate cancer associated polynucleotides or polypeptides, or agonists or antagonists thereof, include, but are not limited to neoplasms located in the: prostate, colon, abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by polynucleotides or polypeptides, or agonists or antagonists of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: Acute Childhood Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Acute Lymphoblastic Leukemia, Adult (Primary) Hepatocellular Cancer, Adult (Primary) Liver Cancer, Adult Acute Lymphocytic Leukemia, Adult Acute Myeloid Leukemia, Adult Hodgkin's Disease, Adult Hodgkin's Lymphoma, Adult Lymphocytic Leukemia, Adult Non-Hodgkin's Lymphoma, Adult Primary Liver Cancer, Adult Soft Tissue Sarcoma, AIDS-Related Lymphoma, AIDS-Related Malignancies, Anal Cancer, Astrocytoma, Bile Duct Cancer, Bladder Cancer, Bone Cancer, Brain Stem Glioma, Brain Tumors, Breast Cancer, Cancer of the Renal Pelvis and Ureter, Central Nervous System (Primary) Lymphoma, Central Nervous

System Lymphoma, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Childhood (Primary) Hepatocellular Cancer, Childhood (Primary) Liver Cancer, Childhood Acute Lymphoblastic Leukemia, Childhood Acute Myeloid Leukemia, Childhood Brain Stem Glioma, Childhood Cerebellar Astrocytoma, Childhood Cerebral Astrocytoma, Childhood Extracranial Germ Cell Tumors, Childhood Hodgkin's Disease, Childhood Hodgkin's Lymphoma, Childhood Hypothalamic and Visual Pathway Glioma, Childhood Lymphoblastic Leukemia, Childhood Medulloblastoma, Childhood Non-Hodgkin's Lymphoma, Childhood Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood Primary Liver Cancer, Childhood Rhabdomyosarcoma, Childhood Soft Tissue Sarcoma, Childhood Visual Pathway and Hypothalamic Glioma, Chronic Lymphocytic Leukemia, Chronic Myelogenous Leukemia, Colon Cancer, Cutaneous T-Cell Lymphoma, Endocrine Pancreas Islet Cell Carcinoma, Endometrial Cancer, Ependymoma, Epithelial Cancer, Esophageal Cancer, Ewing's Sarcoma and Related Tumors, Exocrine Pancreatic Cancer, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Eye Cancer, Female Breast Cancer, Gaucher's Disease, Gallbladder Cancer, Gastric Cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Tumors, Germ Cell Tumors, Gestational Trophoblastic Tumor, Hairy Cell Leukemia, Head and Neck Cancer, Hepatocellular Cancer, Hodgkin's Disease, Hodgkin's Lymphoma, Hypergammaglobulinemia, Hypopharyngeal Cancer, Intestinal Cancers, Intraocular Melanoma, Islet Cell Carcinoma, Islet Cell Pancreatic Cancer, Kaposi's Sarcoma, Kidney Cancer, Laryngeal Cancer, Lip and Oral Cavity Cancer, Liver Cancer, Lung Cancer, Lymphoproliferative Disorders, Macroglobulinemia, Male Breast Cancer, Malignant Mesothelioma, Malignant Thymoma, Medulloblastoma, Melanoma, Mesothelioma, Metastatic Occult Primary Squamous Neck Cancer, Metastatic Primary Squamous Neck Cancer, Metastatic Squamous Neck Cancer, Multiple Myeloma, Multiple Myeloma/Plasma Cell Neoplasm, Myelodysplastic Syndrome, Myelogenous Leukemia, Myeloid Leukemia, Myeloproliferative Disorders, Nasal Cavity and Paranasal Sinus Cancer, Nasopharyngeal Cancer, Neuroblastoma, Non-Hodgkin's Lymphoma During Pregnancy, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Occult Primary Metastatic Squamous Neck Cancer, Oropharyngeal Cancer, Osteo-/Malignant Fibrous Sarcoma, Osteosarcoma/Malignant Fibrous Histiocytoma, Osteosarcoma/Malignant Fibrous Histiocytoma of Bone, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Pancreatic Cancer, Paraproteinemias, Purpura, Parathyroid Cancer, Penile Cancer, Pheochromocytoma, Pituitary Tumor, Plasma Cell Neoplasm/Multiple Myeloma, Primary Central Nervous System Lymphoma, Primary Liver Cancer, Prostate Cancer, Rectal Cancer, Renal Cell Cancer, Renal Pelvis and Ureter Cancer, Retinoblastoma, Rhabdomyosarcoma, Salivary Gland Cancer, Sarcoidosis Sarcomas, Sezary Syndrome, Skin Cancer, Small Cell Lung Cancer, Small Intestine Cancer, Soft Tissue Sarcoma, Squamous Neck Cancer, Stomach Cancer, Supratentorial Primitive Neuroectodermal and Pineal Tumors, T-Cell Lymphoma, Testicular Cancer, Thymoma, Thyroid Cancer, Transitional Cell Cancer of the Renal Pelvis and Ureter, Transitional Renal Pelvis and Ureter Cancer, Trophoblastic Tumors, Ureter and Renal Pelvis Cell Cancer, Urethral Cancer, Uterine Cancer, Uterine Sarcoma, Vaginal Cancer, Visual Pathway and Hypothalamic Glioma, Vulvar Cancer, Waldenstrom's Macroglobulinemia, Wilms' Tumor, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

[0515] In another preferred embodiment, polynucleotides or polypeptides, or agonists or antagonists of the present invention are used to diagnose, prognose, prevent, and/or treat premalignant conditions and to prevent progression to a neoplastic or malignant state, including but not limited to those disorders described above. Such uses are indicated in conditions known or suspected of preceding progression to neoplasia or cancer, in particular, where non-neoplastic cell growth consisting of hyperplasia, metaplasia, or most particularly, dysplasia has occurred (for review of such abnormal growth conditions, see Robbins and Angell, 1976, Basic Pathology, 2d Ed., W. B. Saunders Co., Philadelphia, pp. 68-79.)

[0516] Hyperplasia is a form of controlled cell proliferation, involving an increase in cell number in a tissue or organ, without significant alteration in structure or function. Hyperplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, angiofollicular mediastinal lymph node hyperplasia, angiolymphoid hyperplasia with eosinophilia, atypical melanocytic hyperplasia, basal cell hyperplasia, benign giant lymph node hyperplasia, comentum hyperplasia, congenital adrenal hyperplasia, congenital sebaceous hyperplasia, cystic hyperplasia, cystic hyperplasia of the breast, denture hyperplasia, ductal hyperplasia,

endometrial hyperplasia, fibromuscular hyperplasia, focal epithelial hyperplasia, gingival hyperplasia, inflammatory fibrous hyperplasia, inflammatory papillary hyperplasia, intravascular papillary endothelial hyperplasia, nodular hyperplasia of prostate, nodular regenerative hyperplasia, pseudoepitheliomatous hyperplasia, senile sebaceous hyperplasia, and verrucous hyperplasia.

Metaplasia is a form of controlled cell growth in which one type of adult or fully differentiated cell substitutes for another type of adult cell. Metaplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, agnogenic myeloid metaplasia, apocrine metaplasia, atypical metaplasia, autoparenchymatous metaplasia, connective tissue metaplasia, epithelial metaplasia, intestinal metaplasia, metaplastic anemia, metaplastic ossification, metaplastic polyps, myeloid metaplasia, primary myeloid metaplasia, secondary myeloid metaplasia, squamous metaplasia, squamous metaplasia of amnion, and symptomatic myeloid metaplasia.

Dysplasia is frequently a forerunner of cancer, and is found mainly in the [0518] epithelia; it is the most disorderly form of non-neoplastic cell growth, involving a loss in individual cell uniformity and in the architectural orientation of cells. Dysplastic cells often have abnormally large, deeply stained nuclei, and exhibit pleomorphism. Dysplasia characteristically occurs where there exists chronic irritation or inflammation. Dysplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, anhidrotic ectodermal dysplasia, anterofacial dysplasia, asphyxiating thoracic dysplasia, atriodigital dysplasia, bronchopulmonary dysplasia, cerebral dysplasia, cervical dysplasia, chondroectodermal dysplasia, cleidocranial dysplasia, congenital ectodermal dysplasia, craniodiaphysial dysplasia, craniocarpotarsal dysplasia, craniometaphysial dysplasia, dentin dysplasia, diaphysial dysplasia, ectodermal dysplasia, enamel dysplasia, encephalo-ophthalmic dysplasia, dysplasia epiphysialis hemimelia, dysplasia epiphysialis multiplex, dysplasia epiphysialis punctata, epithelial dysplasia, faciodigitogenital dysplasia, familial fibrous dysplasia of jaws, familial white folded dysplasia, fibromuscular dysplasia, fibrous dysplasia of bone, florid osseous dysplasia, hereditary renal-retinal dysplasia, hidrotic ectodermal dysplasia, hypohidrotic ectodermal dysplasia, lymphopenic thymic dysplasia, mammary dysplasia, mandibulofacial dysplasia, metaphysial dysplasia, Mondini dysplasia, moostotic fibrous dysplasia, mucoepithelial dysplasia, multiple epiphysial dysplasia, oculoauriculovertebral dysplasia, oculodentodigital dysplasia, oculovertebral dysplasia, odontogenic dysplasia, ophthalmomandibulomelic dysplasia, periapical cemental dysplasia, polyostotic fibrous dysplasia, pseudoachondroplastic spondyloepiphysial dysplasia, retinal dysplasia, septooptic dysplasia, spondyloepiphysial dysplasia, and ventriculoradial dysplasia.

Additional pre-neoplastic disorders which can be diagnosed, prognosed, prevented, and/or treated with compositions of the invention (including polynucleotides, polypeptides, agonists or antagonists) include, but are not limited to, benign dysproliferative disorders (e.g., benign tumors, fibrocystic conditions, tissue hypertrophy, intestinal polyps, colon polyps, and esophageal dysplasia), leukoplakia, keratoses, Bowen's disease, Farmer's Skin, solar cheilitis, and solar keratosis.

In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat cancers and neoplasms, including, but not limited to those described herein. In a further preferred embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention conjugated to a toxin or a radioactive isotope, as described herein, may be used to treat acute myelogenous leukemia.

[0521] Additionally, polynucleotides, polypeptides, and/or agonists or antagonists of the invention may affect apoptosis, and therefore, would be useful in treating a number of diseases associated with increased cell survival or the inhibition of apoptosis. For example, diseases associated with increased cell survival or the inhibition of apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders such as, multiple sclerosis,

Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) and viral infections (such as herpes viruses, pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection.

[0522] In preferred embodiments, polynucleotides, polypeptides, and/or agonists or antagonists of the invention are used to inhibit growth, progression, and/or metastasis of cancers, in particular those listed above.

Additional diseases or conditions associated with increased cell survival 105231 that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia promyelocytic, myelomonocytic, monocytic. (including myeloblastic, erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, emangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.

Diseases associated with increased apoptosis that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, cerebellar degeneration and brain tumor or prior associated disease); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.

[0525] Hyperproliferative diseases and/or disorders that could be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention, include, but are not limited to, neoplasms located in the liver, abdomen, bone, breast, digestive system, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous system (central and peripheral), lymphatic system, pelvis, skin, soft tissue, spleen, thorax, and urogenital tract.

[0526] Similarly, other hyperproliferative disorders can also be diagnosed, prognosed, prevented, and/or treated by polynucleotides, polypeptides, and/or agonists or antagonists of the invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

[0527] One preferred embodiment utilizes polynucleotides of the present invention to inhibit aberrant cellular division, by gene therapy using the present invention, and/or protein fusions or fragments thereof.

[0528] Thus, the present invention provides a method for treating cell proliferative diseases, disorders, and/or conditions by inserting into an abnormally proliferating cell a

polynucleotide of the present invention, wherein said polynucleotide represses said cell proliferation, disease, disorder, and/or condition.

[0529] In a preferred embodiment, the present invention provides a method for treating cell proliferative diseases, disorders and/or conditions of the prostate cancer by inserting into a cell, a polynucleotide of the present invention, wherein said polynucleotide represses said cell proliferation, disease and/or disorder.

Another embodiment of the present invention provides a method of treating cell-proliferative diseases, disorders, and/or conditions in individuals comprising administration of one or more active gene copies of the present invention to an abnormally proliferating cell or cells. In a preferred embodiment, polynucleotides of the present invention is a DNA construct comprising a recombinant expression vector effective in expressing a DNA sequence encoding said polynucleotides. In another preferred embodiment of the present invention, the DNA construct encoding the polynucleotides of the present invention is inserted into cells to be treated utilizing a retrovirus, or more preferably an adenoviral vector (see, e.g., G J. Nabel, et. al., PNAS 96: 324-326 (1999), which is hereby incorporated by reference). In a most preferred embodiment, the viral vector is defective and will not transform non-proliferating cells, only proliferating cells. Moreover, in a preferred embodiment, the polynucleotides of the present invention inserted into proliferating cells either alone, or in combination with or fused to other polynucleotides, can then be modulated via an external stimulus (i.e., magnetic, specific small molecule, chemical, or drug administration, etc.), which acts upon the promoter upstream of said polynucleotides to induce expression of the encoded protein product. As such the beneficial therapeutic affect of the present invention may be expressly modulated (i.e., to increase, decrease, or inhibit expression of the present invention) based upon said external stimulus.

[0531] Polynucleotides of the present invention may be useful in repressing expression of oncogenic genes or antigens. By "repressing expression of the oncogenic genes" is intended the suppression of the transcription of the gene, the degradation of the gene transcript (pre-message RNA), the inhibition of splicing, the destruction of the messenger RNA, the prevention of the post-translational modifications of the protein, the destruction of the protein, or the inhibition of the normal function of the protein.

For local administration to abnormally proliferating cells, polynucleotides [0532] of the present invention may be administered by any method known to those of skill in the art including, but not limited to transfection, electroporation, microinjection of cells, or in vehicles such as liposomes, lipofectin, or as naked polynucleotides, or any other method described throughout the specification. The polynucleotide of the present invention may be delivered by known gene delivery systems such as, but not limited to, retroviral vectors (Gilboa, J. Virology 44:845 (1982); Hocke, Nature 320:275 (1986); Wilson, et al., Proc. Natl. Acad. Sci. U.S.A. 85:3014), vaccinia virus system (Chakrabarty et al., Mol. Cell Biol. 5:3403 (1985) or other efficient DNA delivery systems (Yates et al., Nature 313:812 (1985)) known to those skilled in the art. These references are exemplary only and are hereby incorporated by reference. In order to specifically deliver or transfect cells which are abnormally proliferating and spare non-dividing cells, it is preferable to utilize a retrovirus, or adenoviral (as described in the art and elsewhere herein) delivery system known to those of skill in the art. Since host DNA replication is required for retroviral DNA to integrate and the retrovirus will be unable to self replicate due to the lack of the retrovirus genes needed for its life cycle. Utilizing such a retroviral delivery system for polynucleotides of the present invention will target said gene and constructs to abnormally proliferating cells and will spare the non-dividing normal cells.

[0533] The polynucleotides of the present invention may be delivered directly to cell proliferative disorder/disease sites in internal organs, body cavities and the like by use of imaging devices used to guide an injecting needle directly to the disease site. The polynucleotides of the present invention may also be administered to disease sites at the time of surgical intervention.

[0534] By "cell proliferative disease" is meant any human or animal disease or disorder, affecting any one or any combination of organs, cavities, or body parts, which is characterized by single or multiple local abnormal proliferations of cells, groups of cells, or tissues, whether benign or malignant.

[0535] Any amount of the polynucleotides of the present invention may be administered as long as it has a biologically inhibiting effect on the proliferation of the treated cells. Moreover, it is possible to administer more than one of the polynucleotide of the present invention simultaneously to the same site. By "biologically inhibiting" is meant partial or total growth inhibition as well as decreases in the rate of proliferation or

growth of the cells. The biologically inhibitory dose may be determined by assessing the effects of the polynucleotides of the present invention on target malignant or abnormally proliferating cell growth in tissue culture, tumor growth in animals and cell cultures, or any other method known to one of ordinary skill in the art.

[0536] The present invention is further directed to antibody-based therapies which involve administering of anti-polypeptides and anti-polynucleotide antibodies to a mammalian, preferably human, patient for treating one or more of the described diseases, disorders, and/or conditions. Methods for producing anti-polypeptides and anti-polynucleotide antibodies polyclonal and monoclonal antibodies are described in detail elsewhere herein. Such antibodies may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.

[0537] A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g., as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation.

[0538] In particular, the antibodies, fragments and derivatives of the present invention are useful for treating a subject having or developing cell proliferative and/or differentiation diseases, disorders, and/or conditions as described herein. Such treatment comprises administering a single or multiple doses of the antibody, or a fragment, derivative, or a conjugate thereof.

[0539] The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors, for example, which serve to increase the number or activity of effector cells which interact with the antibodies.

[0540] It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of diseases, disorders, and/or conditions related to polynucleotides or polypeptides, including

fragments thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5X10⁻⁶M, 10⁻⁶M, 5X10⁻⁷M, 10⁻⁷M, 5X10⁻⁸M, 10⁻⁸M, 5X10⁻⁹M, 5X10⁻¹⁰M, 10⁻¹⁰M, 5X10⁻¹¹M, 10⁻¹¹M, 5X10⁻¹²M, 10⁻¹²M, 5X10⁻¹³M, 10⁻¹³M, 5X10⁻¹⁴M, 10⁻¹⁴M, 5X10⁻¹⁵M, and 10⁻¹⁵M.

Moreover, prostate cancer antigen polypeptides of the present invention or fragments thereof, are useful in inhibiting the angiogenesis of proliferative cells or tissues, either alone, as a protein fusion, or in combination with other polypeptides directly or indirectly, as described elsewhere herein. In a most preferred embodiment, said antiangiogenesis effect may be achieved indirectly, for example, through the inhibition of hematopoietic, tumor-specific cells, such as tumor-associated macrophages (see, e.g., Joseph IB, et al. J Natl Cancer Inst, 90(21):1648-53 (1998), which is hereby incorporated by reference). Antibodies directed to polypeptides or polynucleotides of the present invention may also result in inhibition of angiogenesis directly, or indirectly (see, e.g., Witte L, et al., Cancer Metastasis Rev. 17(2):155-61 (1998), which is hereby incorporated by reference).

[0542] Polypeptides, including protein fusions, of the present invention, or fragments thereof may be useful in inhibiting proliferative cells or tissues through the induction of apoptosis. Said polypeptides may act either directly, or indirectly to induce apoptosis of proliferative cells and tissues, for example in the activation of a death-domain receptor, such as tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2 (see, e.g., Schulze-Osthoff K, et.al., Eur J Biochem 254(3):439-59 (1998), which is hereby incorporated by reference). Moreover, in another preferred embodiment of the present invention, said polypeptides may induce apoptosis through other mechanisms, such as in the activation of other proteins which will activate apoptosis, or through stimulating the expression of said proteins, either alone or in combination with small molecule drugs or adjuvants, such as apoptonin, galectins, thioredoxins, antiinflammatory proteins (See for example, Mutat. Res. 400(1-2):447-55 (1998), Med Hypotheses.50(5):423-33 (1998), Chem. Biol. Interact. Apr 24;111-112:23-

34 (1998), J. Mo. Med. 76(6):402-12 (1998), Int. J. Tissue React. 20(1):3-15 (1998), which are all hereby incorporated by reference).

Polypeptides, including protein fusions to, or fragments thereof, of the present invention are useful in inhibiting the metastasis of proliferative cells or tissues. Inhibition may occur as a direct result of administering polypeptides, or antibodies directed to said polypeptides as described elsewhere herein, or indirectly, such as activating the expression of proteins known to inhibit metastasis, for example alpha 4 integrins, (See, e.g., Curr Top Microbiol Immunol 1998;231:125-41, which is hereby incorporated by reference). Such therapeutic affects of the present invention may be achieved either alone, or in combination with small molecule drugs or adjuvants.

In another embodiment, the invention provides a method of delivering compositions containing the polypeptides of the invention (e.g., compositions containing polypeptides or anti- prostate cancer antigen polypeptide antibodies associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs) to targeted cells expressing the polypeptide of the present invention prostate cancer antigen polypeptides or anti- prostate cancer antigen polypeptide antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions.

[0545] Polypeptides, protein fusions to, or fragments thereof, of the present invention are useful in enhancing the immunogenicity and/or antigenicity of proliferating cells or tissues, either directly, such as would occur if the polypeptides of the present invention 'vaccinated' the immune response to respond to proliferative antigens and immunogens, or indirectly, such as in activating the expression of proteins known to enhance the immune response (e.g. chemokines), to said antigens and immunogens.

Urinary System Disorders

[0546] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose disorders of the urinary system, including but not limited to disorders of the renal system, bladder, ureters, and urethra. Renal disorders include, but are not limited to, kidney failure, nephritis, blood vessel disorders of kidney, metabolic and congenital kidney disorders.

urinary disorders of the kidney, autoimmune disorders, sclerosis and necrosis, electrolyte imbalance, and kidney cancers.

[0547] Kidney failure diseases include, but are not limited to, acute kidney failure, chronic kidney failure, atheroembolic renal failure, and end-stage renal disease. Inflammatory diseases of the kidney include acute glomerulonephritis, postinfectious glomerulonephritis, rapidly progressive glomerulonephritis, nephrotic syndrome, membranous glomerulonephritis, familial nephrotic syndrome, membranoproliferative glomerulonephritis I and II, mesangial proliferative glomerulonephritis, acute tubulointerstitial nephritis, chronic tubulointerstitial nephritis, acute post-streptococcal glomerulonephritis (PSGN), pyelonephritis, lupus nephritis, chronic nephritis, interstitial nephritis, and post-streptococcal glomerulonephritis.

[0548] Blood vessel disorders of the kidneys include, but are not limited to, kidney infarction, atheroembolic kidney disease, cortical necrosis, malignant nephrosclerosis, renal vein thrombosis, renal underperfusion, renal ischemia-reperfusion, renal artery embolism, and renal artery stenosis. Kidney disorders resulting form urinary tract problems include, but are not limited to, pyelonephritis, hydronephrosis, urolithiasis (renal lithiasis, nephrolithiasis), reflux nephropathy, urinary tract infections, urinary retention, and acute or chronic unilateral obstructive uropathy.

Metabolic and congenital disorders of the kidneys include, but are not limited to, renal tubular acidosis, renal glycosuria, nephrogenic diabetes insipidus, cystinuria, Fanconi's syndrome, vitamin D-resistant rickets, Hartnup disease, Bartter's syndrome, Liddle's syndrome, polycystic kidney disease, medullary cystic disease, medullary sponge kidney, Alport's syndrome, nail-patella syndrome, congenital nephrotic syndrome, CRUSH syndrome, horseshoe kidney, diabetic nephropathy, nephrogenic diabetes insipidus, analgesic nephropathy, kidney stones, and membranous nephropathy, Kidney disorders resulting from an autoimmune response include, but are not limited to, systemic lupus erythematosus (SLE), Goodpasture syndrome, IgA nephropathy, and IgM mesangial proliferative glomerulonephritis.

[0550] Sclerotic or necrotic disorders of the kidney include, but are not limited to, glomerulosclerosis, diabetic nephropathy, focal segmental glomerulosclerosis (FSGS), necrotizing glomerulonephritis, and renal papillary necrosis. Kidneys may also develop

carcinomas, including, but not limited to, hypernephroma, nephroblastoma, renal cell cancer, transitional cell cancer, squamous cell cancer, and Wilm's tumor.

[0551] Kidney disorders may also result in electrolyte imbalances, including, but not limited to, nephrocalcinosis, pyuria, edema, hydronephritis, proteinuria, hyponatremia, hypertalemia, hypocalcemia, hypocalcemia, hypocalcemia, hypophosphatemia, and hyperphosphatemia.

10552] Bladder disorders include, but are not limited to, benign prostatic hyperplasia (BPH), interstitial cystitis (IC), prostatitis, proteinuria, urinary tract infections, urinary incontinence, urinary retention. Disorders of the ureters and urethra include, but are not limited to, acute or chronic unilateral obstructive uropathy. The bladder, ureters, and urethra may also develop carcinomas, including, but not limited to, superficial bladder cancer, invasive bladder cancer, carcinoma of the ureter, and urethra cancers.

Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Cardiovascular Disorders

[0554] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose cardiovascular disorders, including, but not limited to, peripheral artery disease, such as limb ischemia.

[0555] Cardiovascular disorders include cardiovascular abnormalities, such as arterio-arterial fistula, arteriovenous fistula, cerebral arteriovenous malformations, congenital heart defects, pulmonary atresia, and Scimitar Syndrome. Congenital heart defects include aortic coarctation, cor triatriatum, coronary vessel anomalies, crisscross heart, dextrocardia, patent ductus arteriosus, Ebstein's anomaly, Eisenmenger complex, hypoplastic left heart syndrome, levocardia, tetralogy of fallot, transposition of great vessels, double outlet right ventricle, tricuspid atresia, persistent truncus arteriosus, total

anomalous pulmonary venous connection, hypoplastic left heart syndrome, and heart septal defects, such as aortopulmonary septal defect, endocardial cushion defects, Lutembacher's Syndrome, atrioventricular canal defect, trilogy of Fallot, ventricular heart septal defects.

Cardiovascular disorders also include heart disease, such as arrhythmias, carcinoid heart disease, high cardiac output, low cardiac output, cardiac tamponade, endocarditis (including bacterial), heart aneurysm, cardiac arrest, sudden cardiac death, congestive heart failure, congestive cardiomyopathy, paroxysmal dyspnea, cardiac edema, heart hypertrophy, congestive cardiomyopathy, left ventricular hypertrophy, right ventricular hypertrophy, post-infarction heart rupture, ventricular septal rupture, heart valve diseases, myocardial diseases, myocardial ischemia, pericardial effusion, pericarditis (including constrictive and tuberculous), pneumopericardium, postpericardiotomy syndrome, pulmonary heart disease, rheumatic heart disease, ventricular dysfunction, hyperemia, cardiovascular pregnancy complications, Scimitar Syndrome, diastolic dysfunction, enlarged heart, heart block, J-curve phenomenon, rheumatic heart disease, Marfan syndrome, cardiovascular syphilis, and cardiovascular tuberculosis.

[0557] Arrhythmias include sinus arrhythmia, atrial fibrillation, atrial flutter, bradycardia, extrasystole, Adams-Stokes Syndrome, bundle-branch block, sinoatrial block, long QT syndrome, parasystole, Lown-Ganong-Levine Syndrome, Mahaim-type pre-excitation syndrome, Wolff-Parkinson-White syndrome, sick sinus syndrome, tachycardias, and ventricular fibrillation. Tachycardias include paroxysmal tachycardia, supraventricular tachycardia, accelerated idioventricular rhythm, atrioventricular nodal reentry tachycardia, estopic atrial tachycardia, ectopic junctional tachycardia, sinoatrial nodal reentry tachycardia, sinus tachycardia, Torsades de Pointes, and ventricular tachycardia.

[0558] Heart valve disease include aortic valve insufficiency, aortic valve stenosis, heart murmurs, aortic valve prolapse, mitral valve prolapse, tricuspid valve prolapse, mitral valve insufficiency, mitral valve stenosis, pulmonary atresia, pulmonary valve insufficiency, pulmonary valve stenosis, tricuspid atresia, tricuspid valve insufficiency, tricuspid valve stenosis, and bicuspid aortic valve.

[0559] Myocardial diseases include alcoholic cardiomyopathy, congestive cardiomyopathy, hypertrophic cardiomyopathy, aortic subvalvular stenosis, pulmonary

subvalvular stenosis, restrictive cardiomyopathy, Chagas cardiomyopathy, endocardial fibroelastosis, endomyocardial fibrosis, Kearns Syndrome, Barth syndrome, myocardial reperfusion injury, and myocarditis.

Myocardial ischemias include coronary disease, such as angina pectoris, Prinzmetal's angina, unstable angina, coronary aneurysm, coronary arteriosclerosis, coronary thrombosis, coronary vasospasm, myocardial infarction and myocardial stunning.

[0561] Cardiovascular diseases also include vascular diseases such as aneurysms, angiodysplasia, angiomatosis, bacillary angiomatosis, Hippel-Lindau Disease, Klippel-Trenaunay-Weber Syndrome, Sturge-Weber Syndrome, angioneurotic edema, aortic diseases, Takayasu's Arteritis, aortitis, Leriche's Syndrome, arterial occlusive diseases, arteritis, enarteritis, polyarteritis nodosa, cerebrovascular disorders, diabetic angiopathies, diabetic retinopathy, embolisms, thrombosis, erythromelalgia, hemorrhoids, hepatic veno-occlusive disease, hypertension, hypotension (shock), ischemia, peripheral vascular diseases, phlebitis, superficial phlebitis, pulmonary veno-occlusive disease, chronic obstructive pulmonary disease, Buerger's disease, Raynaud's disease, CREST syndrome, retinal vein occlusion, Scimitar syndrome, superior vena cava syndrome, telangiectasia, atacia telangiectasia, hereditary hemorrhagic telangiectasia, deep vein thrombosis, varicocele, varicose veins, varicose ulcer, vasculitis, and venous insufficiency.

[0562] Aneurysms include dissecting aneurysms, false aneurysms, infected aneurysms, ruptured aneurysms, aortic aneurysms, cerebral aneurysms, coronary aneurysms, heart aneurysms, and iliac aneurysms.

[0563] Arterial occlusive diseases include arteriosclerosis, arteriolosclerosis, atherosclerosis, intermittent claudication, carotid stenosis, fibromuscular dysplasias, mesenteric vascular occlusion, Moyamoya disease, renal artery obstruction, retinal artery occlusion, and thromboangiitis obliterans.

[0564] Cerebrovascular disorders include carotid artery diseases, cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformation, cerebral artery diseases, cerebral embolism and thrombosis, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, cerebral hemorrhage, epidural hematoma, subdural hematoma, subdaraxhnoid hemorrhage, cerebral infarction, cerebral ischemia (including transient), subclavian steal syndrome, periventricular

leukomalacia, vascular headache, cluster headache, migraine, and vertebrobasilar insufficiency.

[0565] Embolisms include air embolisms, amniotic fluid embolisms, cholesterol embolisms, blue toe syndrome, fat embolisms, pulmonary embolisms, and thromoboembolisms. Thrombosis include coronary thrombosis, hepatic vein thrombosis, deep vein thrombosis, retinal vein occlusion, carotid artery thrombosis, sinus thrombosis, Wallenberg's syndrome, and thrombophlebitis.

[0566] Ischemia includes cerebral ischemia, ischemic colitis, silent ischemia, compartment syndromes, anterior compartment syndrome, myocardial ischemia, reperfusion injuries, and peripheral limb ischemia. Vasculitis includes aortitis, arteritis, Behcet's Syndrome, Churg-Strauss Syndrome, mucocutaneous lymph node syndrome, thromboangiitis obliterans, hypersensitivity vasculitis, Schoenlein-Henoch purpura, allergic cutaneous vasculitis, and Wegener's granulomatosis.

[0567] Cardiovascular diseases can also occur due to electrolyte imbalances that include, but are not limited to hyponatremia, hypernatremia, hypokalemia, hyperkalemia, hypocaleemia, hypercaleemia, hypophosphatemia, and hyperphophatemia. Neoplasm and/or cancers of the cardiovascular system include, but are not limited to, myxomas, fibromas, and rhabdomyomas.

[0568] Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Respiratory Disorders

[0569] Polynucleotides or polypeptides, or agonists or antagonists of the present invention may be used to treat, prevent, diagnose, and/or prognose diseases and/or disorders of the respiratory system.

Diseases and disorders of the respiratory system include, but are not limited [0570] to, nasal vestibulitis, nonallergic rhinitis (e.g., acute rhinitis, chronic rhinitis, atrophic rhinitis, vasomotor rhinitis), nasal polyps, and sinusitis, juvenile angiofibromas, cancer of the nose and juvenile papillomas, vocal cord polyps, nodules (singer's nodules), contact ulcers, vocal cord paralysis, laryngoceles, pharyngitis (e.g., viral and bacterial), tonsillitis, tonsillar cellulitis, parapharyngeal abscess, laryngitis, laryngoceles, and throat cancers (e.g., cancer of the nasopharynx, tonsil cancer, larynx cancer), lung cancer (e.g., squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and pneumonia, hypersensitivity adenocarcinoma), allergic disorders (eosinophilic pneumonitis (e.g., extrinsic allergic alveolitis, allergic interstitial pneumonitis, organic dust pneumoconiosis, allergic bronchopulmonary aspergillosis, asthma, Wegener's granulomatosis (granulomatous vasculitis), Goodpasture's syndrome)), pneumonia (e.g., bacterial pneumonia (e.g., Streptococcus pneumoniae (pneumoncoccal pneumonia), Staphylococcus aureus (staphylococcal pneumonia), Gram-negative bacterial pneumonia (caused by, e.g., Klebsiella and Pseudomas spp.), Mycoplasma pneumoniae pneumonia, Hemophilus influenzae pneumonia, Legionella pneumophila (Legionnaires' disease), and Chlamydia psittaci (Psittacosis)), and viral pneumonia (e.g., influenza, chickenpox (varicella).

Additional diseases and disorders of the respiratory system include, but are [0571] not limited to bronchiolitis, polio (poliomyelitis), croup, respiratory syncytial viral infection, mumps, erythema infectiosum (fifth disease), roseola infantum, progressive rubella panencephalitis, german measles, and subacute sclerosing panencephalitis), fungal pneumonia (e.g., Histoplasmosis, Coccidioidomycosis, Blastomycosis, fungal infections in people with severely suppressed immune systems (e.g., cryptococcosis, caused by Cryptococcus neoformans; aspergillosis, caused by Aspergillus spp.; candidiasis, caused by Candida; and mucormycosis)), Pneumocystis carinii (pneumocystis pneumonia), atypical pneumonias (e.g., Mycoplasma and Chlamydia spp.), opportunistic infection pneumonia, nosocomial pneumonia, chemical pneumonitis, and aspiration pneumonia, pleural disorders (e.g., pleurisy, pleural effusion, and pneumothorax (e.g., simple spontaneous pneumothorax, complicated spontaneous pneumothorax, pneumothorax)), obstructive airway diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), emphysema, chronic or acute bronchitis), occupational lung diseases (e.g., silicosis, black lung (coal workers' pneumoconiosis), asbestosis, berylliosis, occupational asthsma, byssinosis, and benign pneumoconioses), Infiltrative Lung Disease (e.g., pulmonary fibrosis (e.g., fibrosing alveolitis, usual interstitial pneumonia), idiopathic pulmonary fibrosis, desquamative interstitial pneumonia, lymphoid interstitial pneumonia, histiocytosis X (e.g., Letterer-Siwe disease, Hand-Schüller-Christian disease, eosinophilic granuloma), idiopathic pulmonary hemosiderosis, sarcoidosis and pulmonary alveolar proteinosis), Acute respiratory distress syndrome (also called, e.g., adult respiratory distress syndrome), edema, pulmonary embolism, bronchitis (e.g., viral, bacterial), bronchiectasis, atelectasis, lung abscess (caused by, e.g., Staphylococcus aureus or Levionella pneumophila), and cystic fibrosis.

Anti-Angiogenesis Activity

The naturally occurring balance between endogenous stimulators and [0572] inhibitors of angiogenesis is one in which inhibitory influences predominate. Rastinejad et al., Cell 56:345-355 (1989). In those rare instances in which neovascularization occurs under normal physiological conditions, such as wound healing, organ regeneration, embryonic development, and female reproductive processes, angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail. Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases. A number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al., Biotech. 9:630-634 (1991); Folkman et al., N. Engl. J. Med., 333:1757-1763 (1995); Auerbach et al., J. Microvasc. Res. 29:401-411 (1985); Folkman, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203 (1985); Patz, Am. J. Opthalmol. 94:715-743 (1982); and Folkman et al., Science 221:719-725 (1983). In a number of pathological conditions, the process of angiogenesis contributes to the disease state. For example, significant data have accumulated which suggest that the growth of solid tumors is dependent on angiogenesis. Folkman and Klagsbrun, Science 235:442-447 (1987).

[0573] The polynucleotides encoding a polypeptide of the present invention may

be administered along with other polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin like growth factor, colony stimulating factor, macrophage colony stimulating factor, and nitric oxide synthase.

The present invention provides for treatment of diseases or disorders [0574] associated with neovascularization by administration of the polynucleotides and/or polypeptides of the invention, as well as agonists or antagonists of the present invention. Malignant and metastatic conditions which can be treated with the polynucleotides and polypeptides, or agonists or antagonists of the invention include, but are not limited to, malignancies, solid tumors, and cancers described herein and otherwise known in the art (for a review of such disorders, see Fishman et al., Medicine, 2d Ed., J. B. Lippincott Co., Philadelphia (1985)). Thus, the present invention provides a method of treating an angiogenesis-related disease and/or disorder, comprising administering to an individual in need thereof a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist of the invention. For example, polynucleotides, polypeptides, antagonists and/or agonists may be utilized in a variety of additional methods in order to therapeutically treat a cancer or tumor. Cancers which may be treated with polynucleotides, polypeptides, antagonists and/or agonists include, but are not limited to solid tumors, including prostate, lung, breast, ovarian, stomach, pancreas, larynx, esophagus, testes, liver, parotid, biliary tract, colon, rectum, cervix, uterus, endometrium, kidney, bladder, thyroid cancer; primary tumors and metastases; melanomas; glioblastoma; Kaposi's sarcoma; leiomyosarcoma; non- small cell lung cancer; colorectal cancer; advanced malignancies; and blood born tumors such as leukemias. For example, polynucleotides, polypeptides, antagonists and/or agonists may be delivered topically, in order to treat cancers such as skin cancer, head and neck tumors, breast tumors, and Kaposi's sarcoma.

[0575] Within yet other aspects, polynucleotides, polypeptides, antagonists and/or agonists may be utilized to treat superficial forms of bladder cancer by, for example, intravesical administration. Polynucleotides, polypeptides, antagonists and/or agonists

may be delivered directly into the tumor, or near the tumor site, via injection or a catheter. Of course, as the artisan of ordinary skill will appreciate, the appropriate mode of administration will vary according to the cancer to be treated. Other modes of delivery are discussed herein

Polynucleotides, polypeptides, antagonists and/or agonists may be useful in treating other disorders, besides cancers, which involve angiogenesis. These disorders include, but are not limited to: benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing; endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osler-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis

[0577] For example, within one aspect of the present invention methods are provided for treating hypertrophic scars and keloids, comprising the step of administering a polynucleotide, polypeptide, antagonist and/or agonist of the invention to a hypertrophic scar or keloid.

Within one embodiment of the present invention polynucleotides, polypeptides, antagonists and/or agonists are directly injected into a hypertrophic scar or keloid, in order to prevent the progression of these lesions. This therapy is of particular value in the prophylactic treatment of conditions which are known to result in the development of hypertrophic scars and keloids (e.g., burns), and is preferably initiated after the proliferative phase has had time to progress (approximately 14 days after the initial injury), but before hypertrophic scar or keloid development. As noted above, the present invention also provides methods for treating neovascular diseases of the eye, including for example, corneal neovascularization, neovascular glaucoma, proliferative diabetic retinopathy, retrolental fibroplasia and macular degeneration.

[0579] Moreover, Ocular disorders associated with neovascularization which can be treated with the polynucleotides and polypeptides of the present invention (including agonists and/or antagonists) include, but are not limited to: neovascular glaucoma, diabetic retinopathy, retinoblastoma, retrolental fibroplasia, uveitis, retinopathy of prematurity macular degeneration, corneal graft neovascularization, as well as other eye inflammatory diseases, ocular tumors and diseases associated with choroidal or iris neovascularization. See, e.g., reviews by Waltman et al., Am. J. Ophthal. 85:704-710 (1978) and Gartner et al., Surv. Ophthal. 22:291-312 (1978).

Thus, within one aspect of the present invention methods are provided for treating neovascular diseases of the eye such as corneal neovascularization (including corneal graft neovascularization), comprising the step of administering to a patient a therapeutically effective amount of a compound (as described above) to the cornea, such that the formation of blood vessels is inhibited. Briefly, the cornea is a tissue which normally lacks blood vessels. In certain pathological conditions however, capillaries may extend into the cornea from the pericorneal vascular plexus of the limbus. When the cornea becomes vascularized, it also becomes clouded, resulting in a decline in the patient's visual acuity. Visual loss may become complete if the cornea completely opacitates. A wide variety of disorders can result in corneal neovascularization, including for example, corneal infections (e.g., trachoma, herpes simplex keratitis, leishmaniasis and onchocerciasis), immunological processes (e.g., graft rejection and Stevens-Johnson's syndrome), alkali burns, trauma, inflammation (of any cause), toxic and nutritional deficiency states, and as a complication of wearing contact lenses.

[0581] Within particularly preferred embodiments of the invention, may be prepared for topical administration in saline (combined with any of the preservatives and antimicrobial agents commonly used in ocular preparations), and administered in eyedrop form. The solution or suspension may be prepared in its pure form and administered several times daily. Alternatively, anti-angiogenic compositions, prepared as described above, may also be administered directly to the cornea. Within preferred embodiments, the anti-angiogenic composition is prepared with a muco-adhesive polymer which binds to cornea. Within further embodiments, the anti-angiogenic factors or anti-angiogenic compositions may be utilized as an adjunct to conventional steroid therapy. Topical therapy may also be useful prophylactically in corneal lesions which are known to have a

high probability of inducing an angiogenic response (such as chemical burns). In these instances the treatment, likely in combination with steroids, may be instituted immediately to help prevent subsequent complications.

[0582] Within other embodiments, the compounds described above may be injected directly into the comeal stroma by an ophthalmologist under microscopic guidance. The preferred site of injection may vary with the morphology of the individual lesion, but the goal of the administration would be to place the composition at the advancing front of the vasculature (i.e., interspersed between the blood vessels and the normal cornea). In most cases this would involve perilimbic corneal injection to "protect" the cornea from the advancing blood vessels. This method may also be utilized shortly after a corneal insult in order to prophylactically prevent corneal neovascularization. In this situation the material could be injected in the perilimbic cornea interspersed between the corneal lesion and its undesired potential limbic blood supply. Such methods may also be utilized in a similar fashion to prevent capillary invasion of transplanted corneas. In a sustained-release form injections might only be required 2-3 times per year. A steroid could also be added to the injection solution to reduce inflammation resulting from the injection itself.

[0583] Within another aspect of the present invention, methods are provided for treating neovascular glaucoma, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. In one embodiment, the compound may be administered topically to the eye in order to treat early forms of neovascular glaucoma. Within other embodiments, the compound may be implanted by injection into the region of the anterior chamber angle. Within other embodiments, the compound may also be placed in any location such that the compound is continuously released into the aqueous humor. Within another aspect of the present invention, methods are provided for treating proliferative diabetic retinopathy, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eyes, such that the formation of blood vessels is inhibited.

[0584] Within particularly preferred embodiments of the invention, proliferative diabetic retinopathy may be treated by injection into the aqueous humor or the vitreous, in

order to increase the local concentration of the polynucleotide, polypeptide, antagonist and/or agonist in the retina. Preferably, this treatment should be initiated prior to the acquisition of severe disease requiring photocoagulation.

[0585] Within another aspect of the present invention, methods are provided for treating retrolental fibroplasia, comprising the step of administering to a patient a therapeutically effective amount of a polynucleotide, polypeptide, antagonist and/or agonist to the eye, such that the formation of blood vessels is inhibited. The compound may be administered topically, via intravitreous injection and/or via intraocular implants.

[0586] Additionally, disorders which can be treated with the polynucleotides, polypeptides, agonists and/or agonists include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osler-Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.

Moreover, disorders and/or states, which can be treated with be treated with [0587] the the polynucleotides, polypeptides, agonists and/or agonists include, but are not limited to, solid tumors, blood born tumors such as leukemias, tumor metastasis, Kaposi's sarcoma, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas, rheumatoid arthritis, psoriasis, ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, and uvietis, delayed wound healing, endometriosis, vascluogenesis, granulations, hypertrophic scars (keloids), nonunion fractures, scleroderma, trachoma, vascular adhesions, myocardial angiogenesis, coronary collaterals, cerebral collaterals, arteriovenous malformations, ischemic limb angiogenesis, Osler-Webber Syndrome, plaque neovascularization, telangiectasia, hemophiliac joints, Crohn's disease, angiofibroma fibromuscular dysplasia, wound granulation, atherosclerosis, birth control agent by preventing vascularization required for embryo implantation controlling menstruation, diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele minalia quintosa), ulcers (Helicobacter pylori), Bartonellosis and bacillary angiomatosis.

[0588] In one aspect of the birth control method, an amount of the compound sufficient to block embryo implantation is administered before or after intercourse and

fertilization have occurred, thus providing an effective method of birth control, possibly a "morning after" method. Polynucleotides, polypeptides, agonists and/or agonists may also be used in controlling menstruation or administered as either a peritoneal lavage fluid or for peritoneal implantation in the treatment of endometriosis.

[0589] Polynucleotides, polypeptides, agonists and/or agonists of the present invention may be incorporated into surgical sutures in order to prevent stitch granulomas.

Polynucleotides, polypeptides, agonists and/or agonists may be utilized in a wide variety of surgical procedures. For example, within one aspect of the present invention a compositions (in the form of, for example, a spray or film) may be utilized to coat or spray an area prior to removal of a tumor, in order to isolate normal surrounding tissues from malignant tissue, and/or to prevent the spread of disease to surrounding tissues. Within other aspects of the present invention, compositions (e.g., in the form of a spray) may be delivered via endoscopic procedures in order to coat tumors, or inhibit angiogenesis in a desired locale. Within yet other aspects of the present invention, surgical meshes which have been coated with anti-angiogenic compositions of the present invention may be utilized in any procedure wherein a surgical mesh might be utilized. For example, within one embodiment of the invention a surgical mesh laden with an anti-angiogenic composition may be utilized during abdominal cancer resection surgery (e.g., subsequent to colon resection) in order to provide support to the structure, and to release an amount of the anti-angiogenic factor.

[0591] Within further aspects of the present invention, methods are provided for treating tumor excision sites, comprising administering a polynucleotide, polypeptide, agonist and/or agonist to the resection margins of a tumor subsequent to excision, such that the local recurrence of cancer and the formation of new blood vessels at the site is inhibited. Within one embodiment of the invention, the anti-angiogenic compound is administered directly to the tumor excision site (e.g., applied by swabbing, brushing or otherwise coating the resection margins of the tumor with the anti-angiogenic compound). Alternatively, the anti-angiogenic compounds may be incorporated into known surgical pastes prior to administration. Within particularly preferred embodiments of the invention, the anti-angiogenic compounds are applied after hepatic resections for malignancy, and after neurosurgical operations.

[0592] Within one aspect of the present invention, polynucleotides, polypeptides, agonists and/or agonists may be administered to the resection margin of a wide variety of tumors, including for example, breast, colon, brain and hepatic tumors. For example, within one embodiment of the invention, anti-angiogenic compounds may be administered to the site of a neurological tumor subsequent to excision, such that the formation of new blood vessels at the site are inhibited.

[0593] The polynucleotides, polypeptides, agonists and/or agonists of the present invention may also be administered along with other anti-angiogenic factors. Representative examples of other anti-angiogenic factors include: Anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel, Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, Plasminogen Activator Inhibitor-1, Plasminogen Activator Inhibitor-2, and various forms of the lighter "d group" transition metals.

[0594] Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.

[0595] Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.

Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IV) oxide and tungsten (VI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (VI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable

molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.

A wide variety of other anti-angiogenic factors may also be utilized within [0597] the context of the present invention. Representative examples include platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al., Cancer Res. 51:22-26, 1991); Sulphated Polysaccharide Peptidoglycan Complex (SP-PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4dehydroproline, Thiaproline, alpha, alpha, dipyridyl, aminopropionitrile fumarate; 4-Mitoxantrone: Heparin: propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, 1992); Chymostatin (Tomkinson et al., Biochem J. 286:475-480, 1992); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (Ingber et al., Nature 348:555-557, 1990); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, 1987); anticollagenase-serum; alpha2-antiplasmin (Holmes et al., J. Biol. Chem. 262(4):1659-1664, 1987); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; Takeuchi et al., Agents Actions 36:312-316, 1992); Thalidomide; Angostatic steroid; AGM-1470; carboxynaminolmidazole; and metalloproteinase inhibitors such as BB94.

Musculoskeletal System Disorders

[0598] Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose disorders of the musculoskeletal system, including but not limited to, disorders of the bone, joints, ligaments, tendons, bursa, muscle, and/or neoplasms and cancers associated with musculoskeletal tissue.

[0599] Diseases or disorders of the bone include, but are not limited to, Albers-Schönberg disease, bowlegs, heel spurs, Köhler's bone disease, knock-knees, Legg-Calvé-Perthes disease, Marfan's syndrome, mucopolysaccharidoses, Osgood-Schlatter disease, osteochondrodysplasia, osteomyelitis, osteopetroses, osteoporosis

(postmenopausal, senile, and juvenile), Paget's disease, Scheuermann's disease, scoliosis, Sever's disease, and patellofemoral stress syndrome.

[0600] Joint diseases or disorders include, but are not limited to, ankylosing spondylitis, Behçet's syndrome, CREST syndrome, Ehlers-Danlos syndrome, infectious arthritis, discoid lupus erythematosus, systemic lupus erythematosus, Lyme disease, osteoarthritis, psoriatic arthritis, relapsing polychondrites, Reiter's syndrome, rheumatoid arthritis (adult and juvenile), scleroderma, and Still's disease.

[0601] Diseases or disorders affecting ligaments, tendons, or bursa include, but are not limited to, ankle sprain, bursitis, posterior Achilles tendon bursitis (Haglund's deformity), anterior Achilles tendon bursitis (Albert's disease), tendinitis, tenosynovitis, poplieus tendinitis, Achilles tendinitis, medial or lateral epicondylitis, rotator cuff tendinitis, spasmodic torticollis, and fibromyalgia syndrome.

Muscle diseases or disorders include, but are not limited to, Becker's muscular dystrophy, Duchenne's muscular dystrophy, Landouzy-Dejerine muscular dystrophy, Leyden-Möbius muscular dystrophy, Erb's muscular dystrophy, Charcot's joints, dermatomyositis, gout, pseudogout, glycogen storage diseases, Pompe's disease, mitochondrial myopathy, periodic paralysis, polymyalgia rheumatica, polymyositis, Steinert's disease, Thomsen's disease, anterolateral and posteromedial shin splints, posterior femoral muscle strain, and fibromyositis.

[0603] Musculoskeletal tissue may also develop cancers and/or neoplasms that include, but are not limited to, osteochondroma, benign chondroma, chondroblastoma, chondromyxoid fibroma, osteoid osteoma, giant cell tumor, multiple myeloma, osteosarcoma, fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's tumor, and malignant lymphoma of bone.

Neural Activity and Neurological Diseases

[0604] The polynucleotides, polypeptides and agonists or antagonists of the invention may be used for the diagnosis and/or treatment of diseases, disorders, damage or injury of the brain and/or nervous system. Nervous system disorders that can be treated with the compositions of the invention (e.g., polypeptides, polynucleotides, and/or agonists or antagonists), include, but are not limited to, nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or

degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the methods of the invention, include but are not limited to, the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems: (1) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia; (2) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries; (3) malignant lesions, in which a portion of the nervous system is destroyed or injured by malignant tissue which is either a nervous system associated malignancy or a malignancy derived from non-nervous system tissue; (4) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, or syphilis; (5) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to, degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis (ALS); (6) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including, but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration; (7) neurological lesions associated with systemic diseases including, but not limited to, diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis; (8) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and (9) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including, but not limited to, multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis. [0605] In one embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to protect neural cells from the damaging effects of hypoxia. In a further preferred embodiment, the polypeptides, polynucleotides, or agonists

or antagonists of the invention are used to protect neural cells from the damaging effects of cerebral hypoxia. According to this embodiment, the compositions of the invention are used to treat or prevent neural cell injury associated with cerebral hypoxia. In one non-exclusive aspect of this embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention, are used to treat or prevent neural cell injury associated with cerebral ischemia. In another non-exclusive aspect of this embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with cerebral infarction.

[0606] In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with a stroke. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent cerebral neural cell injury associated with a stroke.

[0607] In another preferred embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent neural cell injury associated with a heart attack. In a specific embodiment, the polypeptides, polynucleotides, or agonists or antagonists of the invention are used to treat or prevent cerebral neural cell injury associated with a heart attack.

[0608] The compositions of the invention which are useful for treating or preventing a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, compositions of the invention which elicit any of the following effects may be useful according to the invention: (1) increased survival time of neurons in culture either in the presence or absence of hypoxia or hypoxic conditions; (2) increased sprouting of neurons in culture or *in vivo*; (3) increased production of a neuron-associated molecule in culture or *in vivo*, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or (4) decreased symptoms of neuron dysfunction *in vivo*. Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may routinely be measured using a method set forth herein or otherwise known in the art, such as, for example, in Zhang *et al.*, *Proc Natl Acad Sci USA* 97:3637-42 (2000) or in Arakawa *et al.*, *J. Neurosci.*, 10:3507-15 (1990); increased sprouting of neurons may be detected by methods known in the art, such

as, for example, the methods set forth in Pestronk et al., Exp. Neurol., 70:65-82 (1980), or Brown et al., Ann. Rev. Neurosci., 4:17-42 (1981); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, etc., using techniques known in the art and depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

[0609] In specific embodiments, motor neuron disorders that may be treated according to the invention include, but are not limited to, disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including, but not limited to, progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

[0610] Further, polypeptides or polynucleotides of the invention may play a role in neuronal survival; synapse formation; conductance; neural differentiation, etc. Thus, compositions of the invention (including polynucleotides, polypeptides, and agonists or antagonists) may be used to diagnose and/or treat or prevent diseases or disorders associated with these roles, including, but not limited to, learning and/or cognition disorders. The compositions of the invention may also be useful in the treatment or prevention of neurodegenerative disease states and/or behavioural disorders. Such neurodegenerative disease states and/or behavioural disorders. Such neurodegenerative disease, Parkinson's Disease, Huntington's Disease, Tourette Syndrome, schizophrenia, mania, dementia, paranoia, obsessive compulsive disorder, panic disorder, learning disabilities, ALS, psychoses, autism, and altered behaviors, including disorders in feeding, sleep patterns, balance, and perception. In addition, compositions of the invention may also play a role in the treatment, prevention and/or detection of developmental disorders associated with the developing embryo, or sexually-linked disorders.

[0611] Additionally, polypeptides, polynucleotides and/or agonists or antagonists of the invention, may be useful in protecting neural cells from diseases, damage, disorders.

or injury, associated with cerebrovascular disorders including, but not limited to, carotid artery diseases (e.g., carotid artery thrombosis, carotid stenosis, or Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis (e.g., carotid artery thrombosis, sinus thrombosis, or Wallenberg's Syndrome), cerebral hemorrhage (e.g., epidural or subdural hematoma, or subarachnoid hemorrhage), cerebral infarction, cerebral ischemia (e.g., transient cerebral ischemia, Subclavian Steal Syndrome, or vertebrobasilar insufficiency), vascular dementia (e.g., multi-infarct), leukomalacia, periventricular, and vascular headache (e.g., cluster headache or migraines). In accordance with yet a further aspect of the present invention, there is [0612] provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate neurological cell proliferation and/or differentiation. Therefore, polynucleotides, polypeptides, agonists and/or antagonists of the invention may be used to treat and/or detect neurologic diseases. Moreover, polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used as a marker or detector of a particular nervous system disease or disorder.

[0613] Examples of neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include brain diseases, such as metabolic brain diseases which includes phenylketonuria such as maternal phenylketonuria, pyruvate carboxylase deficiency, pyruvate dehydrogenase complex deficiency, Wemicke's Encephalopathy, brain edema, brain neoplasms such as cerebellar neoplasms which include infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms, supratentorial neoplasms, canavan disease, cerebellar diseases such as cerebellar ataxia which include spinocerebellar degeneration such as ataxia telangiectasia, cerebellar dyssynergia, Friederich's Ataxia, Machado-Joseph Disease, olivopontocerebellar atrophy, cerebellar neoplasms such as infratentorial neoplasms, diffuse cerebral sclerosis such as encephalitis periaxialis, globoid cell leukodystrophy, metachromatic leukodystrophy and subacute sclerosing panencephalitis.

[0614] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention

include cerebrovascular disorders (such as carotid artery diseases which include carotid artery thrombosis, carotid stenosis and Moyamoya Disease), cerebral amyloid angiopathy, cerebral aneurysm, cerebral anoxia, cerebral arteriosclerosis, cerebral arteriovenous malformations, cerebral artery diseases, cerebral embolism and thrombosis such as carotid artery thrombosis, sinus thrombosis and Wallenberg's Syndrome, cerebral hemorrhage such as epidural hematoma, subdural hematoma and subarachnoid hemorrhage, cerebral infarction, cerebral ischemia such as transient cerebral ischemia, Subclavian Steal Syndrome and vertebrobasilar insufficiency, vascular dementia such as multi-infarct dementia, periventricular leukomalacia, vascular headache such as cluster headache and migraine.

Additional neurologic diseases which can be treated or detected with [0615] polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include dementia such as AIDS Dementia Complex, presenile dementia such as Alzheimer's Disease and Creutzfeldt-Jakob Syndrome, senile dementia such as Alzheimer's Disease and progressive supranuclear palsy, vascular dementia such as multiinfarct dementia, encephalitis which include encephalitis periaxialis, viral encephalitis such as epidemic encephalitis, Japanese Encephalitis, St. Louis Encephalitis, tick-borne encephalitis West Nile Fever, acute disseminated encephalomyelitis, meningoencephalitis such as uveomeningoencephalitic syndrome, Postencephalitic Parkinson Disease and subacute sclerosing panencephalitis, encephalomalacia such as periventricular leukomalacia, epilepsy such as generalized epilepsy which includes infantile spasms, absence epilepsy, myoclonic epilepsy which includes MERRF Syndrome, tonic-clonic epilepsy, partial epilepsy such as complex partial epilepsy, frontal lobe epilepsy and temporal lobe epilepsy, post-traumatic epilepsy, status epilepticus such as Epilepsia Partialis Continua, and Hallervorden-Spatz Syndrome.

[0616] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include hydrocephalus such as Dandy-Walker Syndrome and normal pressure hydrocephalus, hypothalamic diseases such as hypothalamic neoplasms, cerebral malaria, narcolepsy which includes cataplexy, bulbar poliomyelitis, cerebri pseudotumor, Rett Syndrome, Reye's Syndrome, thalamic diseases, cerebral toxoplasmosis, intracranial tuberculoma and Zellweger Syndrome, central nervous system infections such as AIDS

Dementia Complex, Brain Abscess, subdural empyema, encephalomyelitis such as Equine Encephalomyelitis, Venezuelan Equine Encephalomyelitis, Necrotizing Hemorrhagic Encephalomyelitis, Visna, and cerebral malaria.

[0617] Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include meningitis such as arachnoiditis, aseptic meningitis such as viral meningitis which includes lymphocytic choriomeningitis, Bacterial meningitis which includes Haemophilus Meningitis, Listeria Meningitiis, Meningococcal Meningitiis such as Waterhouse-Friderichsen Syndrome, Pneumococcal Meningitiis and meningeal tuberculosis, fungal meningitis such as Cryptococcal Meningitiis, subdural effusion, meningoencephalitis such as uvemeningoencephalitic syndrome, myelitis such as transverse myelitis, neurosyphilis such as tabes dorsalis, poliomyelitis which includes bulbar poliomyelitis and postpoliomyelitis syndrome, prion diseases (such as Creutzfeldt-Jakob Syndrome, Bovine Spongiform Encephalopathy, Gerstmann-Straussler Syndrome, Kuru, Scrapie), and cerebral toxoplasmosis.

Additional neurologic diseases which can be treated or detected with [0618] polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include central nervous system neoplasms such as brain neoplasms that include cerebellar neoplasms such as infratentorial neoplasms, cerebral ventricle neoplasms such as choroid plexus neoplasms, hypothalamic neoplasms and supratentorial neoplasms, meningeal neoplasms, spinal cord neoplasms which include epidural neoplasms, demyelinating diseases such as Canavan Diseases, diffuse cerebral sceloris which includes adrenoleukodystrophy, encephalitis periaxialis, globoid cell leukodystrophy, diffuse cerebral sclerosis such as metachromatic leukodystrophy, allergic encephalomyelitis, necrotizing hemorrhagic encephalomyelitis, progressive multifocal leukoencephalopathy, multiple sclerosis, central pontine myelinolysis, transverse myelitis, neuromyelitis optica, Scrapie, Swayback, Chronic Fatigue Syndrome, Visna, High Pressure Nervous Syndrome, Meningism, spinal cord diseases such as amyotonia congenita, amyotrophic lateral sclerosis, spinal muscular atrophy such as Werdnig-Hoffmann Disease, spinal cord compression, spinal cord neoplasms such as epidural neoplasms, syringomyelia, Tabes Dorsalis, Stiff-Man Syndrome, mental retardation such as Angelman Syndrome, Cri-du-Chat Syndrome, De Lange's Syndrome, Down Syndrome, Gangliosidoses such as gangliosidoses G(M1), Sandhoff Disease, Tay-Sachs Disease, Hartnup Disease, homocystinuria, Laurence-Moon- Biedl Syndrome, Lesch-Nyhan Syndrome, Maple Syrup Urine Disease, mucolipidosis such as fucosidosis, neuronal ceroid-lipofuscinosis, oculocerebrorenal syndrome, phenylketonuria such as maternal phenylketonuria, Prader-Willi Syndrome, Rett Syndrome, Rubinstein-Taybi Syndrome, Tuberous Sclerosis, WAGR Syndrome, nervous system abnormalities such as holoprosencephaly, neural tube defects such as anencephaly which includes hydrangencephaly, Arnold-Chairi Deformity, encephalocele, meningocele, meningomyelocele, spinal dysraphism such as spina bifida cystica and spina bifida occulta.

Additional neurologic diseases which can be treated or detected with F06191 polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include hereditary motor and sensory neuropathies which include Charcot-Marie Disease, Hereditary optic atrophy, Refsum's Disease, hereditary spastic paraplegia, Werdnig-Hoffmann Disease, Hereditary Sensory and Autonomic Neuropathies such as Congenital Analgesia and Familial Dysautonomia, Neurologic manifestations (such as agnosia that include Gerstmann's Syndrome, Amnesia such as retrograde amnesia, apraxia, neurogenic bladder, cataplexy, communicative disorders such as hearing disorders that includes deafness, partial hearing loss, loudness recruitment and tinnitus, language disorders such as aphasia which include agraphia, anomia, broca aphasia, and Wernicke Aphasia, Dyslexia such as Acquired Dyslexia, language development disorders, speech disorders such as aphasia which includes anomia, broca aphasia and Wernicke Aphasia, articulation disorders, communicative disorders such as speech disorders which include dysarthria, echolalia, mutism and stuttering, voice disorders such as aphonia and hoarseness, decerebrate state, delirium, fasciculation, hallucinations, meningism, movement disorders such as angelman syndrome, ataxia, athetosis, chorea, dystonia, hypokinesia, muscle hypotonia, myoclonus, tic, torticollis and tremor, muscle hypertonia such as muscle rigidity such as stiff-man syndrome, muscle spasticity, paralysis such as facial paralysis which includes Herpes Zoster Oticus, Gastroparesis, Hemiplegia, ophthalmoplegia such as diplopia, Duane's Syndrome, Horner's Syndrome, Chronic progressive external ophthalmoplegia such as Kearns Syndrome, Bulbar Paralysis, Tropical Spastic Paraparesis, Paraplegia such as Brown-Sequard Syndrome, quadriplegia, respiratory paralysis and vocal cord paralysis, paresis, phantom limb, taste disorders such as ageusia

and dysgeusia, vision disorders such as amblyopia, blindness, color vision defects, diplopia, hemianopsia, scotoma and subnormal vision, sleep disorders such as hypersomnia which includes Kleine-Levin Syndrome, insomnia, and somnambulism, spasm such as trismus, unconsciousness such as coma, persistent vegetative state and syncope and vertigo, neuromuscular diseases such as amyotonia congenita, amyotrophic lateral sclerosis, Lambert-Eaton Myasthenic Syndrome, motor neuron disease, muscular atrophy such as spinal muscular atrophy, Charcot-Marie Disease and Werdnig-Hoffmann Disease, Postpoliomyelitis Syndrome, Muscular Dystrophy, Myasthenia Gravis, Myotonia Atrophica, Myotonia Confenita, Nemaline Myopathy, Familial Periodic Paralysis, Multiplex Paramyloclonus, Tropical Spastic Paraparesis and Stiff-Man Syndrome, peripheral nervous system diseases such as acrodynia, amyloid neuropathies, autonomic nervous system diseases such as Adie's Syndrome, Barre-Lieou Syndrome, Familial Dysautonomia, Horner's Syndrome, Reflex Sympathetic Dystrophy and Shy-Drager Syndrome, Cranial Nerve Diseases such as Acoustic Nerve Diseases such as Acoustic Neuroma which includes Neurofibromatosis 2, Facial Nerve Diseases such as Facial Neuralgia, Melkersson-Rosenthal Syndrome, ocular motility disorders which includes amblyopia, nystagmus, oculomotor nerve paralysis, ophthalmoplegia such as Duane's Syndrome, Horner's Syndrome, Chronic Progressive External Ophthalmoplegia which includes Kearns Syndrome, Strabismus such as Esotropia and Exotropia, Oculomotor Nerve Paralysis, Optic Nerve Diseases such as Optic Atrophy which includes Hereditary Optic Atrophy, Optic Disk Drusen, Optic Neuritis such as Neuromyelitis Optica, Papilledema, Trigeminal Neuralgia, Vocal Cord Paralysis, Demyelinating Diseases such as Neuromyelitis Optica and Swayback, and Diabetic neuropathies such as diabetic foot.

Additional neurologic diseases which can be treated or detected with polynucleotides, polypeptides, agonists, and/or antagonists of the present invention include nerve compression syndromes such as carpal tunnel syndrome, tarsal tunnel syndrome, thoracic outlet syndrome such as cervical rib syndrome, ulnar nerve compression syndrome, neuralgia such as causalgia, cervico-brachial neuralgia, facial neuralgia and trigeminal neuralgia, neuritis such as experimental allergic neuritis, optic neuritis, polyneuritis, polyradiculoneuritis and radiculities such as polyradiculitis, hereditary motor and sensory neuropathies such as Charcot-Marie Disease, Hereditary Optic Atrophy, Refsum's Disease, Hereditary Spastic Paraplegia and Werdnig-Hoffmann

Disease, Hereditary Sensory and Autonomic Neuropathies which include Congenital Analgesia and Familial Dysautonomia, POEMS Syndrome, Sciatica, Gustatory Sweating and Tetany).

Endocrine Disorders

[0621] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose disorders and/or diseases related to hormone imbalance, and/or disorders or diseases of the endocrine system.

[0622] Hormones secreted by the glands of the endocrine system control physical growth, sexual function, metabolism, and other functions. Disorders may be classified in two ways: disturbances in the production of hormones, and the inability of tissues to respond to hormones. The etiology of these hormone imbalance or endocrine system diseases, disorders or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy, injury or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular disease or disorder related to the endocrine system and/or hormone imbalance.

[0623] Endocrine system and/or hormone imbalance and/or diseases encompass disorders of uterine motility including, but not limited to: complications with pregnancy and labor (e.g., pre-term labor, post-term pregnancy, spontaneous abortion, and slow or stopped labor); and disorders and/or diseases of the menstrual cycle (e.g., dysmenorrhea and endometriosis).

[0624] Endocrine system and/or hormone imbalance disorders and/or diseases include disorders and/or diseases of the pancreas, such as, for example, diabetes mellitus, diabetes insipidus, congenital pancreatic agenesis, pheochromocytoma--islet cell tumor syndrome; disorders and/or diseases of the adrenal glands such as, for example, Addison's Disease, corticosteroid deficiency, virilizing disease, hirsutism, Cushing's Syndrome, hyperaldosteronism, pheochromocytoma; disorders and/or diseases of the pituitary gland, such as, for example, hyperpituitarism, hypopituitarism, pituitary adenoma, panhypopituitarism, acromegaly, gigantism; disorders and/or diseases of the thyroid, including but not limited to, hyperthyroidism, hypothyroidism, Plummer's

disease, Graves' disease (toxic diffuse goiter), toxic nodular goiter, thyroiditis (Hashimoto's thyroiditis, subacute granulomatous thyroiditis, and silent lymphocytic thyroiditis), Pendred's syndrome, myxedema, cretinism, thyrotoxicosis, thyroid hormone coupling defect, thymic aplasia, Hurthle cell tumours of the thyroid, thyroid cancer, thyroid carcinoma, Medullary thyroid carcinoma; disorders and/or diseases of the parathyroid, such as, for example, hyperparathyroidism, hypoparathyroidism; disorders and/or diseases of the hypothalamus.

[0625] In addition, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases of the testes or ovaries, including cancer. Other disorders and/or diseases of the testes or ovaries further include, for example, ovarian cancer, polycystic ovary syndrome, Klinefelter's syndrome, vanishing testes syndrome (bilateral anorchia), congenital absence of Leydig's cells, cryptorchidism, Noonan's syndrome, myotonic dystrophy, capillary haemangioma of the testis (benign), neoplasias of the testis and neo-testis.

[0626] Moreover, endocrine system and/or hormone imbalance disorders and/or diseases may also include disorders and/or diseases such as, for example, polyglandular deficiency syndromes, pheochromocytoma, neuroblastoma, multiple Endocrine neoplasia, and disorders and/or cancers of endocrine tissues.

Gastrointestinal Disorders

[0627] Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to treat, prevent, diagnose, and/or prognose gastrointestinal disorders, including inflammatory diseases and/or conditions, infections, cancers (e.g., intestinal neoplasms (carcinoid tumor of the small intestine, non-Hodgkin's lymphoma of the small intestine, small bowl lymphoma)), and ulcers, such as peptic ulcers.

Gastrointestinal disorders include dysphagia, odynophagia, inflammation of the esophagus, peptic esophagitis, gastric reflux, submucosal fibrosis and stricturing, Mallory-Weiss lesions, leiomyomas, lipomas, epidermal cancers, adeoncarcinomas, gastric retention disorders, gastroenteritis, gastric atrophy, gastric/stomach cancers, polyps of the stomach, autoimmune disorders such as pernicious anemia, pyloric stenosis, gastritis (bacterial, viral, eosinophilic, stress-induced, chronic erosive, atrophic, plasma cell, and Ménétrier's), and peritoneal diseases (e.g., chyloperioneum, hemoperitoneum,

mesenteric cyst, mesenteric lymphadenitis, mesenteric vascular occlusion, panniculitis, neoplasms, peritonitis, pneumoperitoneum, bubphrenic abscess).

Gastrointestinal disorders also include disorders associated with the small intestine, such as malabsorption syndromes, distension, irritable bowel syndrome, sugar intolerance, celiac disease, duodenal ulcers, duodenitis, tropical sprue, Whipple's disease, intestinal lymphangiectasia, Crohn's disease, appendicitis, obstructions of the ileum, Meckel's diverticulum, multiple diverticula, failure of complete rotation of the small and large intestine, lymphoma, and bacterial and parasitic diseases (such as Traveler's diarrhea, typhoid and paratyphoid, cholera, infection by Roundworms (Ascariasis lumbricoides), Hookworms (Ancylostoma duodenale), Threadworms (Enterobius vermicularis), Tapeworms (Taenia saginata, Echinococcus granulosus, Diphyllobothrium spp., and T. solium).

106301 Liver diseases and/or disorders include intrahepatic cholestasis (alagille syndrome, biliary liver cirrhosis), fatty liver (alcoholic fatty liver, reye syndrome), hepatic vein thrombosis, hepatolentricular degeneration, hepatomegaly, hepatopulmonary syndrome, hepatorenal syndrome, portal hypertension (esophageal and gastric varices). liver abscess (amebic liver abscess), liver cirrhosis (alcoholic, biliary and experimental), alcoholic liver diseases (fatty liver, hepatitis, cirrhosis), parasitic (hepatic echinococcosis, fascioliasis, amebic liver abscess), jaundice (hemolytic, hepatocellular, and cholestatic), cholestasis, portal hypertension, liver enlargement, ascites, hepatitis (alcoholic hepatitis, animal hepatitis, chronic hepatitis (autoimmune, hepatitis B, hepatitis C, hepatitis D, drug induced), toxic hepatitis, viral human hepatitis (hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E), Wilson's disease, granulomatous hepatitis, secondary biliary cirrhosis, hepatic encephalopathy, portal hypertension, varices, hepatic encephalopathy, primary biliary cirrhosis, primary sclerosing cholangitis, hepatocellular adenoma, hemangiomas, bile stones, liver failure (hepatic encephalopathy, acute liver failure), and liver neoplasms (angiomyolipoma, calcified liver metastases, cystic liver metastases, epithelial tumors, fibrolamellar hepatocarcinoma, focal nodular hyperplasia, hepatic adenoma, hepatobiliary cystadenoma, hepatoblastoma, hepatocellular carcinoma, hepatoma, liver cancer, liver hemangioendothelioma, mesenchymal hamartoma, mesenchymal tumors of liver, nodular regenerative hyperplasia, benign liver tumors (Hepatic cysts [Simple cysts, Polycystic liver disease, Hepatobiliary cystadenoma, Choledochal cyst], Mesenchymal tumors [Mesenchymal hamartoma, Infantile hemangioendothelioma, Hemangioma, Peliosis hepatis, Lipomas, Inflammatory pseudotumor, Miscellaneous], Epithelial tumors [Bile duct epithelium (Bile duct hamartoma, Bile duct adenoma), Hepatocyte (Adenoma, Focal nodular hyperplasia, Nodular regenerative hyperplasia)], malignant liver tumors [hepatocellular, hepatoblastoma, hepatocellular carcinoma, cholangiocellular, cholangiocarcinoma, cystadenocarcinoma, tumors of blood vessels, angiosarcoma, Karposi's sarcoma, hemangioendothelioma, other tumors, embryonal sarcoma. fibrosarcoma, leiomyosarcoma, rhabdomyosarcoma, carcinosarcoma, teratoma, carcinoid, squamous carcinoma, primary lymphoma]), peliosis hepatis, erythrohepatic porphyria, hepatic porphyria (acute intermittent porphyria, porphyria cutanea tarda), Zellweger syndrome).

Pancreatic diseases and/or disorders include acute pancreatitis, chronic pancreatitis (acute necrotizing pancreatitis, alcoholic pancreatitis), neoplasms (adenocarcinoma of the pancreas, cystadenocarcinoma, insulinoma, gastrinoma, and glucagonoma, cystic neoplasms, islet-cell tumors, pancreoblastoma), and other pancreatic diseases (e.g., cystic fibrosis, cyst (pancreatic pseudocyst, pancreatic fistula, insufficiency)).

[0632] Gallbladder diseases include gallstones (cholelithiasis and choledocholithiasis), postcholecystectomy syndrome, diverticulosis of the gallbladder, acute cholecystitis, chronic cholecystitis, bile duct tumors, and mucocele.

Diseases and/or disorders of the large intestine include antibiotic-associated colitis, diverticulitis, ulcerative colitis, acquired megacolon, abscesses, fungal and bacterial infections, anorectal disorders (e.g., fissures, hemorrhoids), colonic diseases (colitis, colonic neoplasms [colon cancer, adenomatous colon polyps (e.g., villous adenoma), colon carcinoma, colorectal cancer], colonic diverticulitis, colonic diverticulosis, megacolon [Hirschsprung disease, toxic megacolon]; sigmoid diseases [proctocolitis, sigmoin neoplasms]), constipation, Crohn's disease, diarrhea (infantile diarrhea, dysentery), duodenal diseases (duodenal neoplasms, duodenal obstruction, duodenal ulcer, duodenitis), enteritis (enterocolitis), HIV enteropathy, ileal diseases (ileal neoplasms, ileitis), immunoproliferative small intestinal disease, inflammatory bowel disease (ulcerative colitis, Crohn's disease), intestinal atresia, parasitic diseases (anisakiasis, balantidiasis, blastocystis infections, cryptosporidiosis, dientamoebiasis,

amebic dysentery, giardiasis), intestinal fistula (rectal fistula), intestinal neoplasms (cecal neoplasms, colonic neoplasms, duodenal neoplasms, ileal neoplasms, intestinal polyps, ieiunal neoplasms, rectal neoplasms), intestinal obstruction (afferent loop syndrome, duodenal obstruction, impacted feces, intestinal pseudo-obstruction [cecal volvulus], intussusception), intestinal perforation, intestinal polyps (colonic polyps, gardner syndrome, peutz-jeghers syndrome), jejunal diseases (jejunal neoplasms), malabsorption syndromes (blind loop syndrome, celiac disease, lactose intolerance, short bowl syndrome, tropical sprue, whipple's disease), mesenteric vascular occlusion, pneumatosis cystoides intestinalis, protein-losing enteropathies (intestinal lymphagiectasis), rectal diseases (anus diseases, fecal incontinence, hemorrhoids, proctitis, rectal fistula, rectal prolapse, rectocele), peptic ulcer (duodenal ulcer, peptic esophagitis, hemorrhage, perforation, stomach ulcer, Zollinger-Ellison syndrome), postgastrectomy syndromes (dumping syndrome), stomach diseases (e.g., achlorhydria, duodenogastric reflux (bile reflux), gastric antral vascular ectasia, gastric fistula, gastric outlet obstruction, gastritis (atrophic or hypertrophic), gastroparesis, stomach dilatation, stomach diverticulum, stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, hyperplastic gastric polyp), stomach rupture, stomach ulcer, stomach volvulus), tuberculosis, visceroptosis, vomiting (e.g., hematemesis, hyperemesis gravidarum, postoperative nausea and vomiting) and hemorrhagic colitis.

Further diseases and/or disorders of the gastrointestinal system include biliary tract diseases, such as, gastroschisis, fistula (e.g., biliary fistula, esophageal fistula, gastric fistula, intestinal fistula, pancreatic fistula), neoplasms (e.g., biliary tract neoplasms, esophageal neoplasms, such as adenocarcinoma of the esophagus, esophageal squamous cell carcinoma, gastrointestinal neoplasms, pancreatic neoplasms, such as adenocarcinoma of the pancreas, mucinous cystic neoplasm of the pancreas, pancreatic cystic neoplasms, pancreatoblastoma, and peritoneal neoplasms), esophageal disease (e.g., bullous diseases, candidiasis, glycogenic acanthosis, ulceration, barrett esophagus varices, atresia, cyst, diverticulum (e.g., Zenker's diverticulum), fistula (e.g., tracheoesophageal fistula), motility disorders (e.g., CREST syndrome, deglutition disorders, achalasia, spasm, gastroesophageal reflux), neoplasms, perforation (e.g., Boerhaave syndrome, Mallory-Weiss syndrome), stenosis, esophagitis, diaphragmatic hernia (e.g., hiatal hernia); gastrointestinal diseases, such as, gastroenteritis (e.g., cholera morbus, norwalk virus

infection), hemorrhage (e.g., hematemesis, melena, peptic ulcer hemorrhage), stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, stomach cancer)), hemia (e.g., congenital diaphragmatic hemia, femoral hemia, inguinal hemia, obturator hemia, umbilical hemia, ventral hemia), and intestinal diseases (e.g., cecal diseases (appendicitis, cecal neoplasms)).

Developmental and Inherited Disorders

Polynuceotides or polypeptides, or agonists or antagonists of the present invention may be used to treat, prevent, diagnose, and/or prognose diseases associated with mixed fetal tissues, including, but not limited to, developmental and inherited disorders or defects of the nervous system, musculoskelelal system, execretory system, cardiovascular system, hematopoietic system, gastrointestinal system, reproductive system, and respiratory system. Compositions of the present invention may also be used to treat, prevent, diagnose, and/or prognose developmental and inherited disorders or defects associated with, but not limited to, skin, hair, visual, and auditory tissues, metabolism. Additionally, the compositions of the invention may be useful in the diagnosis, treatment, and/or prevention of disorders or diseases associated with, but not limited to, chromosomal or genetic abnormalities and hyperproliferation or neoplasia.

Disorders or defects of the nervous system associated with developmental [0636] or inherited abnormalities that may be diagnosed, treated, and/or prevented with the compostions of the invention include, but are not limited to, adrenoleukodystrophy, agenesis of corpus callosum, Alexander disease, anencephaly, Angelman syndrome, Arnold-Chiari deformity, Batten disease, Canavan disease, cephalic disorders, Charcot-Marie-Tooth disease, encephalocele, Friedreich's ataxia, Gaucher's disease, Gorlin syndrome, Hallervorden-Spatz disease, hereditary spastic paraplegia, Huntington disease, Joubert syndrome, hydranencephaly, hydrocephalus, Lesch-Nyhan syndrome, disease, microcephaly, Niemann-Pick Type leukodystrophy, Menkes neurofibromatosis, porencephaly, progeria, proteus syndrome, Refsum disease, spina bifida, Sturge-Weber syndrome, Tay-Sachs disease, tuberous sclerosis, and von Hippel-Lindau disease.

[0637] Developmental and inherited disorders resulting in disorders or defects of the musculoskeletal system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, achondroplasia, atlantooccipital fusion, arthrogryposis mulitplex congenita, autosomal recessive muscular
dystrophy, Becker's muscular dystrophy, cerebral palsy, choanal atresia, cleft lip, cleft
palate, clubfoot, congenital amputation, congenital dislocation of the hip, congenital
torticollis, congenital scoliosis, dopa-repsonsive dystonia, Duchenne muscular dystrophy,
early-onset generalized dystonia, femoral torsion, Gorlin syndrome, hypophosphatasia,
Klippel-Feil syndrome, knee dislocation, myoclonic dystonia, myotonic dystrophy, nailpatella syndrome, osteogenesis imperfecta, paroxysmal dystonia, progeria, prune-belly
syndrome, rapid-onset dystonia parkinsonism, scolosis, syndactyly, Treacher Collins'
syndrome, velocardiofacial syndrome, and X-linked dystonia-parkinsonism.

Developmental or hereditary disorders or defects of the excretory system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, Alport's syndrome, Bartter's syndrome, bladder diverticula, bladder exstrophy, cystinuria, epispadias, Fanconi's syndrome, Hartnup disease, horseshoe kidney, hypospadias, kidney agenesis, kidney ectopia, kidney malrotation, Liddle's syndrome, medullary cystic disease, medullary sponge, multicystic kidney, kidney polycystic kidney disease, nail-patella syndrome, Potter's syndrome, urinary tract flow obstruction, vitamin D-resistant rickets, and Wilm's tumor.

T06391 Cardiovascular disorders or defects of developmental or hereditary origin that may be diagnosed, treated, and/or prevented with the compositions of the inventtion include, but are not limited to, aortic valve stenosis, atrial septal defects, artioventricular (A-V) canal defect, bicuspid aortic valve, coarctation or the aorta, dextrocardia, Ebstein's anomaly, Eisenmenger's complex, hypoplastic left heart syndrome, Marfan syndrome, patent ductus arteriosus, progeria, pulmonary atresia, pulmonary valve stenosis, subaortic stenosis, tetralogy of fallot, total anomalous pulmonary venous (P-V) connection, transposition of the great arteries, tricuspid atresia, truncus arteriosus, ventricular septal defects. Developmental or inherited disorders resulting in disorders involving the hematopoietic system that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but not limited to, Bernard-Soulier syndrome, Chédiak-Higashi syndrome, hemophilia, Hermansky-Pudlak syndrome, sickle cell anemia, storage pool disease, thromboxane A2 dysfunction, thrombasthenia, and von Willebrand's disease

[0640] The compositions of the invention may also be used to diagnose, treat, and/or prevent developmental and inherited disorders resulting in disorders or defects of the gastrointestinal system, including, but not limited to, anal atresia, biliary atresia, esophageal atresia, diaphragmatic hernia, Hirschsprung's disease, Meckel's diverticulum, oligohydramnios, omphalocele, polyhydramnios, porphyria, situs inversus viscera. Developmental or inherited disorders resulting in metabolic disorders that may be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, alpha-1 antitrypsin deficiency, cystic fibrosis, hemochromatosis, lysosomal storage disease, phenylketonuria, Wilson's disease, and Zellweger syndrome.

[0641] Disorders of the reproductive system that are developmentally or hereditary related that may also be diagnosed, treated, and/or prevented with the compositions of the invention include, but are not limited to, androgen insensitivity syndrome, ambiguous genitalia, autosomal sex reversal, congenital adreneal hyperplasia, gonadoblastoma, ovarian germ cell cancer, pseudohermphroditism, true hermaphroditism, undescended testis, XX male syndrome, and XY female type gonadal dysgenesis. The compositions of the invention may also be used to diagnose, treat, and/or prevent developmental or inherited respiratory defects including, but not limited to, askin tumor, azygos lobe, congenital diaphragmatic hernia, congenital lobar emphysema, cystic adenomatoid malformation, lobar emphysema, hyaline membrane disease, and pectus excavatum.

Developmental or inherited disorders may also result from chromosomal or genetic aberration that may be diagnosed, treated, and/or prevented with the compositions of the invention including, but not limited to, 4p- syndrome, cri du chat syndrome, Digeorge syndrome, Down's syndrome, Edward's syndrome, fragile X syndrome, Klinefelter's syndrome, Patau's syndrome, Prader-Willi syndrome, progeria, Turner's syndrome, triple X syndrome, and XYY syndrome. Other developmental disorders that can be diagnosed, treated, and/or prevented with the compositions of the invention, include, but are not limited to, fetal alcohol syndrome, and can be caused by environmental factors surrounding the developing fetus.

[0643] The compositions of the invention may further be able to be used to diagnose, treat, and/or prevent errors in development or a genetic disposition that may result in hyperproliferative disorders or neoplasms, including, but not limited to, acute childhood lymphoblastic leukemia, askin tumor, Beckwith-Wiedemann syndrome,

childhood acute myeloid leukemia, childhood brain stem glioma, childhood cerebellar astrocytoma, childhood extracranial germ cell tumors childhood (primary), gonadoblastoma, hepatocellular cancer, childhood Hodgkin's disease, childhood Hodgkin's lymphoma, childhood hypothalamic and visual pathway glioma, childhood (primary) liver cancer, childhood lymphoblastic leukemia, childhood medulloblastoma, childhood non-Hodgkin's lymphoma, childhood prinary liver cancer, childhood rhabdomyosarcoma, childhood soft tissue sarcoma, Gorlin syndrome, familial multiple endrocrine neoplasia type I, neuroblastoma, ovarian germ cell cancer, pheochromocytoma, retinoblastoma, and Wilm's tumor.

Polypeptides may be administered using any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, biolistic injectors, particle accelerators, gelfoam sponge depots, other commercially available depot materials, osmotic pumps, oral or suppositorial solid pharmaceutical formulations, decanting or topical applications during surgery, aerosol delivery. Such methods are known in the art. Polypeptides may be administered as part of a Therapeutic, described in more detail below. Methods of delivering polynucleotides are described in more detail herein.

Diseases at the Cellular Level

Diseases associated with increased cell survival or the inhibition of apoptosis that could be treated or detected by polynucleotides or polypeptides, as well as antagonists or agonists of the present invention, include cancers (such as follicular lymphomas, carcinomas with p53 mutations, and hormone-dependent tumors, including, but not limited to colon cancer, cardiac tumors, pancreatic cancer, melanoma, retinoblastoma, glioblastoma, lung cancer, intestinal cancer, testicular cancer, stomach cancer, neuroblastoma, myxoma, myxoma, lymphoma, endothelioma, osteoblastoma, osteoclastoma, osteosarcoma, chondrosarcoma, adenoma, breast cancer, prostate cancer, Kaposi's sarcoma and ovarian cancer); autoimmune disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's lupus erythematosus and immune-related disease, polymyositis, systemic glomerulonephritis and rheumatoid arthritis) and viral infections (such as herpes viruses,

pox viruses and adenoviruses), inflammation, graft v. host disease, acute graft rejection, and chronic graft rejection. In preferred embodiments, polynucleotides, polypeptides, and/or antagonists of the invention are used to inhibit growth, progression, and/or metasis of cancers, in particular those listed above.

[0646] Additional diseases or conditions associated with increased cell survival that could be treated or detected by polynucleotides or polypeptides, or agonists or antagonists of the present invention include, but are not limited to, progression, and/or metastases of malignancies and related disorders such as leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia)), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, and solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma. angiosarcoma, endotheliosarcoma. lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma. mesothelioma. Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma, and retinoblastoma.

[0647] Diseases associated with increased apoptosis that could be treated or detected by polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, include AIDS; neurodegenerative disorders (such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Retinitis pigmentosa, Cerebellar degeneration and brain tumor or prior associated disease); autoimmune

disorders (such as, multiple sclerosis, Sjogren's syndrome, Hashimoto's thyroiditis, biliary cirrhosis, Behcet's disease, Crohn's disease, polymyositis, systemic lupus erythematosus and immune-related glomerulonephritis and rheumatoid arthritis) myelodysplastic syndromes (such as aplastic anemia), graft v. host disease, ischemic injury (such as that caused by myocardial infarction, stroke and reperfusion injury), liver injury (e.g., hepatitis related liver injury, ischemia/reperfusion injury, cholestosis (bile duct injury) and liver cancer); toxin-induced liver disease (such as that caused by alcohol), septic shock, cachexia and anorexia.

Wound Healing and Epithelial Cell Proliferation

In accordance with yet a further aspect of the present invention, there is [0648] provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associted with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote dermal reestablishment subsequent to dermal loss

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that polynucleotides or polypeptides, agonists or antagonists of the present invention, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia

graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, Ollier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, can be used to promote skin strength and to improve the appearance of aged skin.

It is believed that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, will also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intesting, and large intestine. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Polynucleotides or polypeptides, agonists or antagonists of the present invention, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may have a cytoprotective effect on the small intestine mucosa. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may also stimulate healing of mucositis (mouth ulcers) that result from chemotherapy and viral infections.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to treat gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular

mucosa and duodenal mucosal lining more rapidly. Inflamamatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. Treatment with polynucleotides or polypeptides, agonists or antagonists of the present invention, is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat diseases associate with the under expression.

Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to prevent and heal damage to the lungs due to various pathological states. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, which could stimulate proliferation and differentiation and promote the repair of alveoli and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated using polynucleotides or polypeptides, agonists or antagonists of the present invention. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.

Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).

[0655] In addition, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used treat or prevent the onset of diabetes mellitus. In patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.

Infectious Disease

[0656] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention. Examples of viruses, include, but are not limited to Examples of viruses, include, but are not limited to Examples of viruses, include, but are not limited to the following DNA and RNA viruses and viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Dengue, EBV, HIV, Flaviviridae, Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza A, Influenza B, and parainfluenza), Papiloma virus, Papovaviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, respiratory syncytial virus, encephalitis, eye infections (e.g., conjunctivitis,

keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), Japanese B encephalitis, Junin, Chikungunya, Rift Valley fever, yellow fever, meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat: meningitis, Dengue, EBV, and/or hepatitis (e.g., hepatitis B). In an additional specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat patients nonresponsive to one or more other commercially available hepatitis vaccines. In a further specific embodiment polynucleotides, polypeptides, or agonists or antagonists of the invention are used to treat AIDS.

106581 Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but are not limited to, the following Gram-Negative and Gram-positive bacteria, bacterial families, and fungi: Actinomyces (e.g., Norcardia), Acinetobacter, Cryptococcus neoformans, Aspergillus, Bacillaceae (e.g., Bacillus anthrasis), Bacteroides (e.g., Bacteroides fragilis), Blastomycosis, Bordetella, Borrelia (e.g., Borrelia burgdorferi), Brucella, Candidia, Campylobacter, Chlamydia, Clostridium (e.g., Clostridium botulinum, Clostridium dificile, Clostridium perfringens, Clostridium tetani), Coccidioides, Corynebacterium (e.g., Corynebacterium diptheriae), Cryptococcus, Dermatocycoses, E. coli (e.g., Enterotoxigenic E. coli and Enterohemorrhagic E. coli), Enterobacter (e.g. Enterobacter aerogenes), Enterobacteriaceae (Klebsiella, Salmonella (e.g., Salmonella typhi, Salmonella enteritidis, Salmonella paratyphi), Serratia, Yersinia, Shigella), Erysipelothrix, Haemophilus (e.g., Haemophilus influenza type B), Helicobacter, Legionella (e.g., Legionella pneumophila), Leptospira, Listeria (e.g., Listeria monocytogenes), Mycoplasma, Mycobacterium (e.g., Mycobacterium leprae and Mycobacterium tuberculosis), Vibrio (e.g., Vibrio cholerae), Neisseriaceae (e.g., Neisseria gonorrhea, Neisseria meningitidis), Pasteurellacea, Proteus, Pseudomonas (e.g., Psuedomonas aeruginosa), Rickettsiaceae, Spirochetes (e.g., Treponema spp., Leptospira spp., Borrelia spp.) Shigella spp., Staphylococcus (e.g., Staphylococcus aureus), Meningiococcus, Pneumococcus and Streptococcus (e.g., Streptococcus pneumoniae and Groups A,B, and C Streptococci), and Ureaplasmas. These bacterial, parasitic, and fungal families can cause diseases or symptoms, including, but not limited to: antibiotic-resistant infections, bacteremia, endocarditis, septicemia, eye infections (conjunctivitis) tuberculosis, uveitis, gingivitis, bacterial diarrhea, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, dental caries, Reiter's Disease, respiratory tract infections (e.g., Whooping Cough or Empyema), sepsis, Lyme Disease, Cat-Scratch Disease, dysentery, paratyphoid fever, food poisoning, Legionella disease, chronic and acute inflammation, erythema, yeast infections, typhoid, pneumonia, gonorrhea, meningitis (e.g., meningitis types A and B), chlamydia, syphilis, diphtheria, leprosy, burcellosis, peptic ulcers, anthrax, spontaneous abortion, birth defects, lung infections, ear infections, deafness, blindness, lethargy, malaise, vomiting, chronic diarrhea, Crohn's disease, colitis, vaginosis, sterility, pelvic inflammatory disease, candidiasis, paratuberculosis, tuberculosis, lupus, botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections or noscomial infections. Polynucleotides or polypeptides, agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases. In specific embodiments, polynucleotides, polypeptides, agonists or antagonists of the invention are used to treat: tetanus, diptheria, botulism, and/or meningitis type B.

[0659] Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide and/or agonist or antagonist of the present invention include, but not limited to, the following families or class: Amebiasis, Babesiosis. Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas and Sporozoans (e.g., Plasmodium virax, Plasmodium falciparium, Plasmodium malariae and Plasmodium ovale). These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), malaria, pregnancy complications, and toxoplasmosis. polynucleotides or polypeptides, or agonists or antagonists of the invention, can be used to treat or detect any of these symptoms or diseases.

[0660] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

[0661] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

[0662] Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vasculature (including vascular and lymphatics), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

[0663] Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotides or polypeptides, as well as agonists or antagonists of the present invention.

Chemotaxis

[0665] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

[0666] Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds

[0667] It is also contemplated that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

[0668] A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

[0671] The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

[0672] Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

[0673] Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody

can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

Additionally, the receptor to which the polypeptide of the present invention binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)). For example, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NIH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the polypeptides. Transfected cells which are grown on glass slides are exposed to the polypeptide of the present invention, after they have been labelled. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase.

[0675] Following fixation and incubation, the slides are subjected to autoradiographic analysis. Positive pools are identified and sub-pools are prepared and retransfected using an iterative sub-pooling and re-screening process, eventually yielding a single clones that encodes the putative receptor.

10676] As an alternative approach for receptor identification, the labeled polypeptides can be photoaffinity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.

[0677] Moreover, the techniques of gene-shuffling, motif-shuffling, exonshuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling") may be employed to modulate the activities of the polypeptide of the present invention thereby effectively generating agonists and antagonists of the polypeptide of the present invention. See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458, and Patten, P. A., et al., Curr. Opinion Biotechnol. 8:724-33 (1997);

Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson, L. O., et al., J. Mol. Biol. 287:265-76 (1999); and Lorenzo, M. M. and Blasco, R. Biotechniques 24(2):308-13 (1998) (each of these patents and publications are hereby incorporated by reference). In one embodiment, alteration of polynucleotides and corresponding polypeptides may be achieved by DNA shuffling, DNA shuffling involves the assembly of two or more DNA segments into a desired molecule by homologous, or site-specific, recombination. In another embodiment, polynucleotides and corresponding polypeptides may be alterred by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of the polypeptide of the present invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are family members. In further preferred embodiments, the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor (FGF), TGF-beta, bone morphogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dpp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS, inhibin-alpha, TGF-beta1, TGF-beta2, TGF-beta3, TGFbeta5, and glial-derived neurotrophic factor (GDNF).

[0678] Other preferred fragments are biologically active fragments of the polypeptide of the present invention. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

[0679] Additionally, this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide of the present invention. An example of such an assay comprises combining a mammalian fibroblast cell, a the polypeptide of the present invention, the compound to be screened and ³[H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate. A control assay may be performed in the absence of the compound to be screened and compared to the amount of fibroblast proliferation in the presence of the compound to

determine if the compound stimulates proliferation by determining the uptake of ³[H] thymidine in each case. The amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of ³[H] thymidine. Both agonist and antagonist compounds may be identified by this procedure.

In another method, a mammalian cell or membrane preparation expressing a receptor for a polypeptide of the present invention is incubated with a labeled polypeptide of the present invention in the presence of the compound. The ability of the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of a compound to be screened and the receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.

[0681] All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptides of the invention from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the present invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the present invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

Targeted Delivery

[0683] In another embodiment, the invention provides a method of delivering compositions to targeted cells expressing a receptor for a polypeptide of the invention, or cells expressing a cell bound form of a polypeptide of the invention.

As discussed herein, polypeptides or antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions. In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (including antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.

[0685] In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention (e.g., polypeptides of the invention or antibodies of the invention) in association with toxins or cytotoxic prodrugs.

By "toxin" is meant compounds that bind and activate endogenous [0686] cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.

Drug Screening

[0687] Further contemplated is the use of the polypeptides of the present invention, or the polypucleotides encoding these polypeptides, to screen for molecules which modify the activities of the polypeptides of the present invention. Such a method would include contacting the polypeptide of the present invention with a selected compound(s) suspected of having antagonist or agonist activity, and assaying the activity of these polypeptides following binding.

This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the present invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and a polypeptide of the present invention.

[10689] Thus, the present invention provides methods of screening for drugs or any other agents which affect activities mediated by the polypeptides of the present invention. These methods comprise contacting such an agent with a polypeptide of the present invention or a fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or a fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the present invention.

[0690] Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the present invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is incorporated herein by reference herein. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds

are reacted with polypeptides of the present invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.

[0691] This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the present invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.

Antisense And Ribozyme (Antagonists)

[0692] In specific embodiments, antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ID NO:X, or the complementary strand thereof, and/or to nucleotide sequences contained in the cDNA contained in the related cDNA clone identified in Table 1. In one embodiment, antisense sequence is generated internally, by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques discussed for example, in Okano, J., Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1300 (1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.

[0693] For example, the use of c-myc and c-myb antisense RNA constructs to inhibit the growth of the non-lymphocytic leukemia cell line HL-60 and other cell lines was previously described. (Wickstrom et al. (1988); Anfossi et al. (1989)). These experiments were performed in vitro by incubating cells with the oligoribonucleotide. A similar procedure for in vivo use is described in WO 91/15580. Briefly, a pair of

oligonucleotides for a given antisense RNA is produced as follows: A sequence complimentary to the first 15 bases of the open reading frame is flanked by an EcoR1 site on the 5 end and a HindIII site on the 3 end. Next, the pair of oligonucleotides is heated at 90°C for one minute and then annealed in 2X ligation buffer (20mM TRIS HCl pH 7.5, 10mM MgCl2, 10MM dithiothreitol (DTT) and 0.2 mM ATP) and then ligated to the EcoR1/Hind III site of the retroviral vector PMV7 (WO 91/15580).

[0694] For example, the 5' coding portion of a polynucleotide that encodes the polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.

[0695] In one embodiment, the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in vertebrate cells. Expression of the sequence encoding the polypeptide of the present invnetion or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981), the regulatory sequences of the metallothionein gene (Brinster, et al., Nature 296:39-42 (1982)), etc.

[0696] The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of a gene of the present invention. However, absolute complementarity, although preferred, is not required. A

sequence "complementary to at least a portion of an RNA," referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with a RNA it may contain and still form a stable duplex (or triplex as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.

Oligonucleotides that are complementary to the 5' end of the message, e.g., [0697] the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994, Nature 372:333-335. Thus, oligonucleotides complementary to either the 5'- or 3'- non- translated, non-coding regions of polynucleotide sequences described herein could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of mRNA of the present invention, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length. In specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.

[0698] The polynucleotides of the invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al.,

1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134, published April 25, 1988), hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.

The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenvladenine. 1-methylguanine, 1-methylinosine, 2.2-dimethylguanine. 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-5'-methoxycarboxymethyluracil, 5-methoxyuracil, D-mannosylqueosine, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

[0700] The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose.

[0701] In yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidate, a phosphoramidate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

[0702] In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide

is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).

[0703] Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

[0704] While antisense nucleotides complementary to the coding region sequence could be used, those complementary to the transcribed untranslated region are most preferred.

[0705] Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published October 4, 1990; Sarver et al, Science 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach, Nature 334:585-591 (1988). There are numerous potential hammerhead ribozyme cleavage sites within the nucleotide sequence of SEQ ID NO:X. Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.

[0706] As in the antisense approach, the ribozymes of the invention can be composed of modified oligonucleotides (e.g. for improved stability, targeting, etc.) and should be delivered to cells which express in vivo. DNA constructs encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that transfected cells will

produce sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.

[0707] Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects of the polypeptides of the present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth.

[0708] The antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention of the mitogenic activity of the polypeptides of the present invention may also be desirous in cases such as restenosis after balloon angioplasty.

[0709] The antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.

[0710] The antagonist/agonist may also be employed to treat the diseases described herein.

Thus, the invention provides a method of treating disorders or diseases, including but not limited to the disorders or diseases listed throughout this application, associated with overexpression of a polynucleotide of the present invention by administering to a patient (a) an antisense molecule directed to the polynucleotide of the present invention, and/or (b) a ribozyme directed to the polynucleotide of the present invention.

Binding Peptides and Other Molecules

[0712] The invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind prostate cancer antigen polypeptides, and the prostate cancer antigen binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists of the prostate cancer antigen polypeptides. Such agonists and antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below.

[0713] This method comprises the steps of: contacting prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides with a plurality of molecules; and identifying a molecule that binds the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides.

Ion 14] The step of contacting the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides on a solid support and bringing a solution of the plurality of molecules in contact with the immobilized prostate cancer antigen-like polypeptides. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised of the immobilized prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides. The molecules having a selective affinity for the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides can then be purified by affinity selection. The nature of the solid support, process for attachment of the prostate cancer antigen polypeptides to the solid support, solvent, and conditions of the affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.

[0715] Alternatively, one may also separate a plurality of polypeptides into substantially separate fractions comprising a subset of or individual polypeptides. For instance, one can separate the plurality of polypeptides by gel electrophoresis, column chromatography, or like method known to those of ordinary skill for the separation of polypeptides. The individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage). Individual isolates can then be "probed" by the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides, optionally in the presence of an inducer should one be required for expression, to determine if any selective affinity interaction takes place between the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides and the individual clone. Prior to contacting the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience. Such a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon. In this manner, positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA construct encoding a polypeptide having a selective affinity for prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides. Furthermore, the amino acid sequence of the polypeptide having a selective affinity for the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides can be determined directly by conventional means or the coding sequence of the DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy.

In certain situations, it may be desirable to wash away any unbound prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides, or alternatively, unbound polypeptides, from a mixture of the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides and the plurality of polypeptides prior to attempting to determine or to detect the presence of a selective affinity interaction. Such a wash step may be particularly desirable when the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides or the plurality of polypeptides is bound to a solid support.

The plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind prostate cancer antigen polypeptides. Many libraries are known in the art that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and *in vitro* translation-based libraries. Examples of chemically synthesized libraries are described in Fodor et al., 1991, Science 251:767-773; Houghten et al., 1991, Nature 354:84-86; Lam et al., 1991, Nature 354:82-84; Medynski, 1994, Bio/Technology 12:709-710;Gallop et al., 1994, J. Medicinal Chemistry 37(9):1233-1251; Ohlmeyer et al., 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91:1614-1618; Salmon et al., 1993, Proc. Natl. Acad. Sci. USA 90:11708-11712; PCT Publication No. WO 93/20242; and Brenner and Lerner, 1992, Proc. Natl. Acad. Sci. USA 89:5381-5383.

[0718] Examples of phage display libraries are described in Scott and Smith, 1990.

Science 249:386-390; Devlin et al., 1990, Science, 249:404-406; Christian, R. B., et al., 1992, J. Mol. Biol. 227:711-718); Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al., 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated Aug. 18, 1994.

[0719] In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058 dated Apr. 18, 1991; and Mattheakis et al., 1994, Proc. Natl. Acad. Sci. USA 91:9022-9026.

By way of examples of nonpeptide libraries, a benzodiazepine library (see e.g., Bunin et al., 1994, Proc. Natl. Acad. Sci. USA 91:4708-4712) can be adapted for use. Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91:11138-11142).

[0721] The variety of non-peptide libraries that are useful in the present invention is great. For example, Ecker and Crooke, 1995, Bio/Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta-mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.

Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers. Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine structure.

Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and morpholinos. Peptoids, peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries. The first non-peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility.

[0724] Screening the libraries can be accomplished by any of a variety of

commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Parmley and Smith, 1989, Adv. Exp. Med. Biol. 251:215-218; Scott and Smith, 1990, Science 249:386-390; Fowlkes et al., 1992; BioTechniques 13:422-427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci. USA 89:5393-5397; Yu et al., 1994, Cell 76:933-945; Staudt et al., 1988, Science 241:577-580; Bock et al., 1992, Nature 355:564-566; Tuerk et al., 1992, Proc. Natl. Acad. Sci. USA 89:6988-6992; Ellington et al., 1992, Nature 355:850-852; U.S. Pat. No. 5,096,815, U.S. Pat. No. 5,223,409, and U.S. Pat. No. 5,198,346, all to Ladner et al.; Rebar and Pabo, 1993, Science 263:671-673; and CT Publication No. WO 94/18318.

[0725] In a specific embodiment, screening to identify a molecule that binds prostate cancer antigen polypeptides can be carried out by contacting the library members with a prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides immobilized on a solid phase and harvesting those library members that bind to the prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides. Examples of such screening methods, termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992, BioTechniques 13:422-427; International Publication No. WO 94/18318; and in references cited herein.

[0726] In another embodiment, the two-hybrid system for selecting interacting proteins in yeast (Fields and Song, 1989, Nature 340:245-246; Chien et al., 1991, Proc. Natl. Acad. Sci. USA 88:9578-9582) can be used to identify molecules that specifically bind to prostate cancer antigen polypeptides or prostate cancer antigen-like polypeptides.

[0727] Where the prostate cancer antigen binding molecule is a polypeptide, the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries. The term "biased" is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity of the resulting collection of molecules, in this case peptides.

[0728] Thus, a truly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position of the peptide is the same for all 20 amino acids. A bias can be introduced into the library, however, by specifying, for example, that a lysine occurs every fifth amino acid or that

positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine. Clearly, many types of biases can be contemplated, and the present invention is not restricted to any particular bias. Furthermore, the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA construct comprising a lambda phage vector with a DNA insert.

[0729] As mentioned above, in the case of a prostate cancer antigen binding molecule that is a polypeptide, the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids. In another embodiment, a prostate cancer antigen binding polypeptide has in the range of 15-100 amino acids, or 20-50 amino acids.

[0730] The selected prostate cancer antigen binding polypeptide can be obtained by chemical synthesis or recombinant expression.

Other Activities

[0731] A polypeptide, polynucleotide, agonist, or antagonist of the present invention, as a result of the ability to stimulate vascular endothelial cell growth, may be employed in treatment for stimulating re-vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. The polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.

[0732] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for treating wounds due to injuries, burns, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.

[0733] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed stimulate neuronal growth and to treat and prevent neuronal damage which occurs in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease, Parkinson's disease, and AIDS-related complex. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may have the

ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts.

[0734] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.

[0735] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth. Along the same lines, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.

[0736] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to maintain organs before transplantation or for supporting cell culture of primary tissues. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos.

[0737] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

[0738] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

[0739] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

[0740] A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

[0741] The above-recited applications have uses in a wide variety of hosts. Such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human. In specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.

Other Preferred Embodiments

[0742] Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, and/or the cDNA in the related cDNA clone contained in the deposit.

[0743] Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions identified as "Start" and "End" in columns 7 and 8 as defined for SEQ ID NO:X in Table 1.

[0744] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, and/or the cDNA in the related cDNA clone contained in the deposit.

[0745] Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, and/or the cDNA in the related cDNA clone contained in the deposit.

[0746] A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X in the range of positions identified as "Start" and "End" in columns 7 and 8 as defined for SEO ID NO:X in Table 1.

[0747] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, and/or the cDNA in the related cDNA clone contained in the deposit.

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, and/or the cDNA in the related cDNA clone contained in the deposit, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

[0749] Also preferred is a composition of matter comprising a DNA molecule which comprises a cDNA clone contained in the deposit.

[0750] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of the cDNA in the related cDNA clone contained in the deposit.

[0751] Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of an open reading frame sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

[0752] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

[0753] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

[0754] A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; and a nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

[0757] A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; and a nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit.

[0758] Also preferred is the above method for identifying the species, tissue or cell type of a biological sample which comprises a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleotide sequence of SEQ ID NO:X; or the cDNA in the related cDNA clone identified in Table 1 which encodes a protein, wherein the method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; and a nucleotide sequence of the cDNA in the related cDNA clone contained in the deposit.

[0760] Also preferred is the above method for diagnosing a pathological condition which comprises a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

[0761] Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; and a nucleotide sequence encoded by the cDNA in the related cDNA clone contained in the deposit. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a DNA microarray or "chip" of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 500, 1000, 2000, 3000 or 4000 nucleotide sequences, wherein at least one sequence in said DNA microarray or "chip" is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; and a nucleotide sequence encoded by the cDNA in the cDNA clone referenced in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

[0763] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and/or a polypeptide encoded by the cDNA in the related cDNA clone contained in the deposit.

[0764] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and/or a polypeptide encoded by the cDNA in the related cDNA clone contained in the deposit.

[0765] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and/or a polypeptide encoded by the cDNA in the related cDNA clone contained in the deposit.

[0766] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and/or a polypeptide encoded by the cDNA in the related cDNA clone contained in the deposit.

[0767] Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a polypeptide encoded by the cDNA clone referenced in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a portion of said polypeptide encoded by the cDNA clone referenced in Table 1; a polypeptide encoded by SEQ ID NO:X; and/or the polypeptide sequence of SEO ID NO:Y.

[0769] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of a polypeptide encoded by the cDNA clone referenced in Table I

[0770] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of a polypeptide encoded by the cDNA clone referenced in Table 1.

[0771] Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of a polypeptide encoded by the cDNA clone referenced in Table 1.

[0772] Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone contained in the deposit.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1.

[0775] Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleic acid sequence identified in Table 1 encoding a polypeptide, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1.

[0779] In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

[0780] Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID

NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table I.

[0781] Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

[0782] Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1.

[0783] Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a human protein comprising an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X; and a polypeptide encoded by the cDNA in the related cDNA clone referenced in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a protein activity, which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to increase the level of said protein activity in said individual

[0786] Also preferred is a method of treatment of an individual in need of a decreased level of a protein activity, which method comprised administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding

fragment of the claimed invention effective to decrease the level of said protein activity in said individual.

[0787] Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

[0788] Each deposited cDNA clone is contained in a plasmid vector. Table 5 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The following correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 5 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

Vector Used to Construct Library	Corresponding Deposited Plasmid
Lambda Zap	pBluescript (pBS)
Uni-Zap XR	pBluescript (pBS)
Zap Express	pBK
lafmid BA	plafmid BA
pSport1	pSport1
pCMVSport 2.0	pCMVSport 2.0
pCMVSport 3.0	pCMVSport 3.0
pCR®2.1	pCR®2.1

[0789] Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one

orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

[0790] Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 5, as well as the corresponding plasmid vector sequences designated above.

[0791] The deposited material in the sample assigned the ATCC Deposit Number cited by reference to Table 2 and 5 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone referenced in Table 1.

TABLE 5

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HUKA HUKB HUKC HUKD HUKE HUKF HUKG	Human Uterine Cancer	Lambda ZAP II	LP01
HCNA HCNB	Human Colon	Lambda Zap II	LP01
HFFA	Human Fetal Brain, random primed	Lambda Zap II	LP0I
HTWA	Resting T-Cell	Lambda ZAP II	LP01
`	Early Stage Human Brain, random primed	Lambda ZAP II	LP0I
HLMJ HLMM HLMN	breast lymph node CDNA library	Lambda ZAP II	LP01
	mannan coron cancer	Lamda ZAP II	LP01
HMEG HMEI HMEJ HMEK HMEL	Human Microvascular Endothelial Cells, fract. A		LP01
	Human Umbilical Vein Endothelial Cells, fract. A	Lambda ZAP 11	LP01
(Hepatocellular Tumor	Lambda ZAP II	LP01
	Hemangropericytoma	Lambda ZAP II	LP01
HSDM	Human Striatum Depression, re-rescue	Lambda ZAP II	LP0I
	H Umbilical Vein Endothelial Cells, frac A, re-excision		LP01
HSGS	Salıvary gland, subtracted	Lambda ZAP II	LP0I
HFXA HFXB HFXC HFXD HFXE HFXF HFXG HFXH	Brain frontal cortex	Lambda ZAP II	LP01
HPQA HPQB HPQC	PERM TF274	Lambda ZAP II	LPOI
НБХЈ НБХК	Brain Frontal Cortex, re-excision	Lambda ZAP II	LP0I
HCWA HCWB HCWC HCWD HCWE HCWF HCWG HCWH HCWI HCWJ HCWK	CD34 positive cells (Cord Blood)	ZAP Express	LP02
HCUA HCUB HCUC	CD34 depleted Buffy Coat (Cord Blood)	ZAP Express	LP02
HRSM	A-14 cell line	ZAP Express	LP02
HRSA	AI-CELL LINE	ZAP Express	LP02
HCUD HCUE HCUF HCUG HCUH HCUI	CD34 depleted Buffy Coat (Cord Blood), re-excision	ZAP Express	LP02
HBXE HBXF HBXG	H. Whole Brain #2, re-excision	ZAP Express	LP02
HRLM	L8 cell line	ZAP Express	LP02
НВХА НВХВ НВХС НВХО	Human Whole Brain #2 - Oligo dT > I.5Kb	ZAP Express	LP02
HUDA HUDB HUDC	Testes	ZAP Express	LP02
ннтм ннто ннто	H. hypothalamus, frac A;re-excision	ZAP Express	LP02
HHTL	H. hypothalamus, frac A	ZAP Express	LP02
HASA HASD	Human Adult Spleen	Uni-ZAP XR	LP03
HFKC HFKD HFKE HFKF HFKG	Human Fetal Kidney	Uni-ZAP XR	LP03
HESM HESN	Human 8 Week Whole Embryo	Uni-ZAP XR	LP03
HGBA HGBD HGBE HGBF HGBG HGBH HGBI	Human Gall Bladder	Uni-ZAP XR	LP03
HLHA HLHB HLHC HLHD HLHE HLHF HLHG HLHH HLHQ	Human Fetal Lung III	Uni-ZAP XR	LP03
НРМА НРМВ НРМС НРМО НРМЕ НРМГ НРМG НРМН	Human Placenta	Uni-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP03
HSIA HSIC HSID HSIE	Human Adult Small Intestine	Uni-ZAP XR	LP03
HTEA HTEB HTEC HTED HTEE HTEF HTEG HTEH HTEI HTEJ HTEK	Human Testes	Uni-ZAP XR	LP03
НТРА НТРВ НТРС НТРD HTPE	Human Pancreas Tumor	Uni-ZAP XR	LP03
HTTA HTTB HTTC HTTD HTTE HTTF	Human Testes Tumor	Uni-ZAP XR	LP03
НАРА НАРВ НАРС НАРМ	Human Adult Pulmonary	Uni-ZAP XR	LP03
HETA HETB HETC HETD HETE HETF HETG HETH HETI	Human Endometrial Tumor	Uni-ZAP XR	LP03
HHFB HHFC HHFD HHFE HHFF HHFG HHFH HHFI	Human Fetal Heart	Uni-ZAP XR	LP03
ННРВ ННРС ННРО ННРЕ ННРГ ННР G ННРН	Human Hippocampus	Uni-ZAP XR	LP03
HCE1 HCE2 HCE3 HCE4 HCE5 HCEB HCEC HCED HCEE HCEF HCEG			
HUVB HUVC HUVD HUVE	Human Umbilical Vein, Endo. remake	Uni-ZAP XR	LP03
HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP03
HTAA HTAB HTAC HTAD HTAE	Human Activated T-Cells	Uni-ZAP XR	LP03
HFEA HFEB HFEC	Human Fetal Epithelium (Skin)	Uni-ZAP XR	LP03
HJPA HJPB HJPC HJPD	HUMAN JURKAT MEMBRANE BOUND POLYSOMES	Uni-ZAP XR	LP03
HESA	Human epithelioid sarcoma	Uni-Zap XR	LP03
HLTA HLTB HLTC HLTD HLTE HLTF	Human T-Cell Lymphoma	Uni-ZAP XR	LP03
HFTA HFTB HFTC HFTD	Human Fetal Dura Mater	Uni-ZAP XR	LP03
HRDA HRDB HRDC HRDD HRDE HRDF	Human Rhabdomyosarcoma	Uni-ZAP XR	LP03
НСАА НСАВ НСАС	Cem cells cyclohexamide treated	Uni-ZAP XR	LP03
HRGA HRGB HRGC HRGD	Raji Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HSUA HSUB HSUC HSUM	Supt Cells, cyclohexamide treated	Uni-ZAP XR	LP03
HT4A HT4C HT4D	Activated T-Cells, 12 hrs.	Uni-ZAP XR	LP03
HE9A HE9B HE9C HE9D HE9E HE9F HE9G HE9H HE9M HE9N	Nine Week Old Early Stage Human	Uni-ZAP XR	LP03
HATA HATB HATC HATD HATE	Human Adrenal Gland Tumor	Uni-ZAP XR	LP03
HT5A	Activated T-Cells, 24 hrs.	Uni-ZAP XR	LP03
HFGA HFGM	Human Fetal Brain	Uni-ZAP XR	LP03
HNEA HNEB HNEC HNED HNEE	Human Neutrophil	Uni-ZAP XR	LP03
HBGB HBGD	Human Primary Breast Cancer	Uni-ZAP XR	LP03
HBNA HBNB	Human Normal Breast	Uni-ZAP XR	LP03
HCAS	Cem Cells, cyclohexamide treated, subtra	Uni-ZAP XR	LP03
HHPS	Human Hippocampus, subtracted	pBS	LP03
HKCS HKCU	Human Colon Cancer, subtracted	pBS	LP03
HRGS	Raji cells, cyclohexamide treated, subtracted	pBS	LP03
HSUT	Supt cells, cyclohexamide treated, differentially expressed	pBS	LP03
HT4S	Activated T-Cells, 12 hrs, subtracted	Uni-ZAP XR	LP03
HCDA HCDB HCDC HCDD HCDE	Human Chondrosarcoma	Uni-ZAP XR	LP03
НОАА НОАВ НОАС	Human Osteosarcoma	Uni-ZAP XR	LP03
HTLA HTLB HTLC HTLD HTLE	Human adult testis, large inserts	Um-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HTLF			
HLMA HLMC HLMD	Breast Lymph node cDNA library	Uni-ZAP XR	LP03
H6EA H6EB H6EC	HL-60, PMA 4H	Uni-ZAP XR	LP03
HTXA HTXB HTXC HTXD HTXE HTXF HTXG HTXH	Activated T-Cell (12hs)/Thiouridine labelledEco	Uni-ZAP XR	LP03
HNFA HNFB HNFC HNFD HNFE HNFF HNFG HNFH HNFJ	Human Neutrophil. Activated	Uni-ZAP XR	LP03
нтов нтос	HUMAN TONSILS, FRACTION 2	Uni-ZAP XR	LP03
HMGB	Human OB MG63 control fraction I	Uni-ZAP XR	LP03
НОРВ	Human OB HOS control fraction I	Uni-ZAP XR	LP03
HORB	Human OB HOS treated (10 nM E2) fraction I	Uni-ZAP XR	LP03
HSVA HSVB HSVC	Human Chronic Synovitis	Uni-ZAP XR	LP03
HROA	HUMAN STOMACH	Uni-ZAP XR	LP03
НВЈА НВЈВ НВЈС НВЈО НВЈЕ НВЈГ НВЈС НВЈН НВЈІ НВЈЈ НВЈК	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP03
HCRA HCRB HCRC	human corpus colosum	Um-ZAP XR	LP03
HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP03
HDSA	Dermatofibrosarcoma Protuberance	Uni-ZAP XR	LP03
HMWA HMWB HMWC HMWD HMWE HMWF HMWG HMWH HMWI HMWJ	Bone Marrow Cell Line (RS4;I1)	Uni-ZAP XR	LP03
HSOA	stomach cancer (human)	Uni-ZAP XR	LP03
HERA	SKIN	Uni-ZAP XR	LP03
HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP03
HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP03
HEAA	H. Atrophic Endometrium	Uni-ZAP XR	LP03
НВСА НВСВ	H. Lymph node breast Cancer	Uni-ZAP XR	LP03
HPWT	Human Prostate BPH, re-excision	Uni-ZAP XR	LP03
HFVG HFVH HFVI	Fetal Liver, subtraction II	pBS	LP03
HNFI	Human Neutrophils, Activated, re- excision	pBS	LP03
НВМВ НВМС НВМD	Human Bone Marrow, re-excision	pBS	LP03
HKML HKMM HKMN	H. Kidney Medulla, re-excision	pBS	LP03
HKIX HKIY	H. Kidney Cortex, subtracted	pBS	LP03
HADT	H. Amygdala Depression, subtracted	pBS	LP03
H6AS	Hl-60, untreated, subtracted	Uni-ZAP XR	LP03
H6ES	HL-60, PMA 4H, subtracted	Uni-ZAP XR	LP03
H6BS	HL-60, RA 4h, Subtracted	Uni-ZAP XR	LP03
H6CS	HL-60, PMA Id, subtracted	Uni-ZAP XR	LP03
нтхі нтхк	Activated T-cell(12h)/Thiouridine-re- excision	Uni-ZAP XR	LP03
HMSA HMSB HMSC HMSD HMSE HMSF HMSG HMSH HMSI HMSI HMSK	Monocyte activated	Uni-ZAP XR	LP03
HAGA HAGB HAGC HAGD HAGE HAGF	Human Amygdala	Uni-ZAP XR	LP03
HSRA HSRB HSRE	STROMAL -OSTEOCLASTOMA	Uni-ZAP XR	LP03
HSRD HSRF HSRG HSRH	Human Osteoclastoma Stromal Cells - unamplified	Uni-ZAP XR	LP03
HSQA HSQB HSQC HSQD HSQE	Stromal cell TF274	Uni-ZAP XR	LP03

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HSQF HSQG			
HSKA HSKB HSKC HSKD HSKE HSKF HSKZ	Smooth muscle, serum treated	Uni-ZAP XR	LP03
HSLA HSLB HSLC HSLD HSLE HSLF HSLG	Smooth muscle,control	Uni-ZAP XR	LP03
HSDA HSDD HSDE HSDF HSDG HSDH	Spinal cord	Uni-ZAP XR	LP03
HPWS	Prostate-BPH subtracted II	pBS	LP03
HSKW HSKX HSKY	Smooth Muscle- HASTE normalized	pBS	LP03
HFPB HFPC HFPD	H. Frontal cortex,epileptic;re-excision	Um-ZAP XR	LP03
HSDI HSDJ HSDK	Spinal Cord, re-excision	Uni-ZAP XR	LP03
HSKN HSKO	Smooth Muscle Serum Treated, Norm	pBS	LP03
HSKG HSKH HSKI	Smooth muscle, serum induced,re-exc	pBS	LP03
HFCA HFCB HFCC HFCD HFCE HFCF	Human Fetal Brain	Uni-ZAP XR	LP04
НРТА НРТВ НРТО	Human Pituitary	Uni-ZAP XR	LP04
нтнв нтнс нтно	Human Thymus	Uni-ZAP XR	LP04
HE6B HE6C HE6D HE6E HE 6F HE6G HE6S	Human Whole Six Week Old Embryo	Uni-ZAP XR	LP04
HSSA HSSB HSSC HSSD HSSE HSSF HSSG HSSH HSSI HSSJ HSSK	1	Uni-ZAP XR	LP04
HE7T	7 Week Old Early Stage Human, subtracted	Uni-ZAP XR	LP04
НЕРА НЕРВ НЕРС	Human Epididymus	Uni-ZAP XR	LP04
HSNA HSNB HSNC HSNM HSNN	Human Synovium	Uni-ZAP XR	LP04
HPFB HPFC HPFD HPFE	Human Prostate Cancer, Stage C fractio	nUni-ZAP XR	LP04
HE2A HE2D HE2E HE2H HE2I HE2M HE2N HE2O	12 Week Old Early Stage Human	Uni-ZAP XR	LP04
HE2B HE2C HE2F HE2G HE2P HE2Q	12 Week Old Early Stage Human, II	Uni-ZAP XR	LP04
HPTS HPTT HPTU	Human Pituitary, subtracted	Uni-ZAP XR	LP04
HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP04
HAQA HAQB HAQC HAQD	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP04
HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP04
HBSD	Bone Cancer, re-excision	Um-ZAP XR	LP04
HSGB	Salivary gland, re-excision	Uni-ZAP XR	LP04
HSJA HSJB HSJC	Smooth muscle-ILb induced	Uni-ZAP XR	LP04
HSXA HSXB HSXC HSXD	Human Substantia Nigra	Uni-ZAP XR	LP04
HSHA HSHB HSHC	Smooth muscle, IL1b induced	Uni-ZAP XR	LP04
HOUA HOUB HOUC HOUD HOUE	Adipocytes	Uni-ZAP XR	LP04
HPWA HPWB HPWC HPWD HPWE	Prostate BPH	Uni-ZAP XR	LP04
HELA HELB HELC HELD HELE HELF HELG HELH	Endothelial cells-control	Uni-ZAP XR	LP04
HEMA HEMB HEMC HEMD HEME HEMF HEMG HEMH	Endothelial-induced	Uni-ZAP XR	LP04
HBIA HBIB HBIC	Human Brain, Striatum	Uni-ZAP XR	LP04
HHSA HHSB HHSC HHSD HHSE	Human Hypothalmus, Schizophrenia	Uni-ZAP XR	LP04
HNGA HNGB HNGC HNGD HNGE HNGF HNGG HNGH HNGI HNGJ	neutrophils control	Um-ZAP XR	LP04
HNHA HNHB HNHC HNHD HNHE HNHF HNHG HNHH HNHI HNHJ	Neutrophils IL-1 and LPS induced	Uni-ZAP XR	LP04
HSDB HSDC	STRIATUM DEPRESSION	Uni-ZAP XR	LP04

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
ННРТ	Hypothalamus	Uni-ZAP XR	LP04
HSAT HSAU HSAV HSAW HSAX HSAY HSAZ	Anergic T-cell	Um-ZAP XR	LP04
HBMS HBMT HBMU HBMV HBMW HBMX	Bone marrow	Uni-ZAP XR	LP04
HOEA HOEB HOEC HOED HOEE HOEF HOEJ	Osteoblasts	Uni-ZAP XR	LP04
HAIA HAIB HAIC HAID HAIE HAIF	Epithelial-TNFa and INF induced	Uni-ZAP XR	LP04
HTGA HTGB HTGC HTGD	Apoptotic T-cell	Uni-ZAP XR	LP04
HMCA HMCB HMCC HMCD HMCE	Macrophage-oxLDL	Uni-ZAP XR	LP04
HMAA HMAB HMAC HMAD HMAE HMAF HMAG	Macrophage (GM-CSF treated)	Uni-ZAP XR	LP04
НРНА	Normal Prostate	Uni-ZAP XR	LP04
НРІА НРІВ НРІС	LNCAP prostate cell line	Uni-ZAP XR	LP04
НРЈА НРЈВ НРЈС	PC3 Prostate cell line	Uni-ZAP XR	LP04
HOSE HOSF HOSG	Human Osteoclastoma, re-excision	Uni-ZAP XR	LP04
HTGE HTGF	Apoptotic T-cell, re-excision	Uni-ZAP XR	LP04
НМАЈ НМАК	H Macrophage (GM-CSF treated), re- excision	Uni-ZAP XR	LP04
HACB HACC HACD	Human Adipose Tissue, re-excision	Uni-ZAP XR	LP04
HFPA	H. Frontal Cortex, Epileptic .	Uni-ZAP XR	LP04
HFAA HFAB HFAC HFAD HFAE	Alzheimers, spongy change	Uni-ZAP XR	LP04
HFAM	Frontal Lobe, Dementia	Uni-ZAP XR	LP04
НМІА НМІВ НМІС	Human Manic Depression Tissue	Uni-ZAP XR	LP04
HTSA HTSE HTSF HTSG HTSH	Human Thymus	pBS	LP05
HPBA HPBB HPBC HPBD HPBE	Human Pineal Gland	pBS	LP05
HSAA HSAB HSAC	HSA 172 Cells	pBS	LP05
HSBA HSBB HSBC HSBM	HSC172 cells	pBS	LP05
HJAA HJAB HJAC HJAD	Jurkat T-cell G1 phase	pBS	LP05
НЈВА НЈВВ НЈВС НЈВD	Jurkat T-Cell, S phase	pBS	LP05
HAFA HAFB	Aorta endothelial cells + TNF-a	pBS	LP05
HAWA HAWB HAWC	Human White Adipose	pBS	LP05
HTNA HTNB	Human Thyroid	pBS	LP05
HONA	Normal Ovary, Premenopausal	pBS	LP05
HARA HARB	Human Adult Retina	pBS	LP05
HLJA HLJB	Human Lung	pCMVSport 1	LP06
HOFM HOFN HOFO	H. Ovarian Tumor, II, OV5232	pCMVSport 2.0	LP07
HOGA HOGB HOGC	OV 10-3-95	pCMVSport 2.0	LP07
HCGL	CD34+cells, II	pCMVSport 2.0	LP07
HDLA	Hodgkin's Lymphoma I	pCMVSport 2.0	LP07
HDTA HDTB HDTC HDTD HDTE	Hodgkin's Lymphoma II	pCMVSport 2.0	LP07
HKAA HKAB HKAC HKAD HKAE HKAF HKAG HKAH	Keratinocyte	pCMVSport2.0	LP07
HCIM	CAPFINDER, Crohn's Disease, lib 2	pCMVSport 2.0	LP07
HKAL	Keratinocyte, lib 2	pCMVSport2.0	LP07
НКАТ	Keratinocyte, lib 3	pCMVSport2.0	LP07
HNDA	Nasal polyps	pCMVSport2.0	LP07
HDRA	H. Primary Dendritic Cells,hb 3	pCMVSport2.0	LP07

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
НОНА НОНВ НОНС	Human Osteoblasts II	pCMVSport2.0	LP07
HLDA HLDB HLDC	Liver, Hepatoma	pCMVSport3.0	LP08
HLDN HLDO HLDP	Human Liver, normal	pCMVSport3.0	LP08
НМТА	pBMC stimulated w/ poly I/C	pCMVSport3.0	LP08
HNTA	NTERA2, control	pCMVSport3.0	LP08
HDPA HDPB HDPC HDPD HDPF		pCMVSport3.0	LP08
HDPG HDPH HDPI HDPJ HDPK	1	·	
HDPM HDPN HDPO HDPP		pCMVSport3.0	LP08
HMUA HMUB HMUC	Myoloid Progenitor Cell Line	pCMVSport3.0	LP08
HHEA HHEB HHEC HHED	T Cell helper I	pCMVSport3.0	LP08
ННЕМ ННЕО ННЕР	T cell helper II	pCMVSport3.0	LP08
HEQA HEQB HEQC	Human endometrial stromal cells	pCMVSport3.0	LP08
НЈМА НЈМВ	Human endometrial stromal cells-treated with progesterone	pCMVSport3.0	LP08
HSWA HSWB HSWC	Human endometrial stromal cells-treated with estradiol	·	LP08
HSYA HSYB HSYC	Human Thymus Stromal Cells	pCMVSport3.0	LP08
HLWA HLWB HLWC	Human Placenta	pCMVSport3.0	LP08
HRAA HRAB HRAC	Rejected Kidney, lib 4	pCMVSport3.0	LP08
НМТМ	PCR, pBMC I/C treated	PCRII	LP09
НМЈА	H. Memingima, M6	pSport 1	LP10
НМКА НМКВ НМКС НМКО НМКЕ	H. Meningima, M1	pSport 1	LP10
HUSG HUSI	IL-4 induced	pSport 1	LP10
HUSX HUSY	Cells, uninduced	pSport 1	LP10
HOFA	Ovarian Tumor I, OV5232	pSport 1	LP10
HCFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport 1	LP10
HCFL HCFM HCFN HCFO	T-Cell PHA 24 hrs	pSport I	LP10
HADA HADC HADD HADE HADF HADG	Human Adipose	pSport 1	LP10
HOVA HOVB HOVC	Human Ovary	pSport 1	LP10
HTWB HTWC HTWD HTWE HTWF	Resting T-Cell Library,II	pSport 1	LP10
HMMA	Spleen metastic melanoma	pSport 1	LP10
HLYA HLYB HLYC HLYD HLYE	Spleen, Chronic lymphocytic leukemia	pSport 1	LP10
HCGA	CD34+ cell, 1	pSport 1	LP10
HEOM HEON	Human Eosinophils	pSport 1	LP10
HTDA	Human Tonsil, Lib 3	pSport 1	LP10
HSPA	Salivary Gland, Lib 2	pSport I	LP10
НСНА НСНВ НСНС	Breast Cancer cell line, MDA 36	pSport 1	LP10
НСНМ HCHN	Breast Cancer Cell line, angiogenic	pSport 1	LP10
HCIA	Crohn's Disease	pSport 1	LP10
HDAA HDAB HDAC	HEL cell line	pSport 1	LP10
НАВА	Human Astrocyte	pSport 1	LP10
HUFA HUFB HUFC	Ulcerative Colitis	pSport 1	LP10
HNTM	NTERA2 + retinoic acid, 14 days	pSport 1	LP10
HDQA	Primary Dendritic cells,CapFinder2, frac		LP10
HDQM	Primary Dendritic Cells, CapFinder, frac	pSport 1	LP10
		f ·	

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
	2		
HLDX	Human Liver, normal, CapFinder	pSport 1	LP10
	Human Dermal Endothelial Cells,untreated	pSport1	LP10
HUMA	Human Dermal Endothelial cells,treated	pSport1	LP10
HCJA	Human Stromal Endometrial fibroblasts, untreated	pSport1	LP10
	treated w/ estradiol	pSport1	LP10
	treated with progesterone	pSport1	LP10
HFNA	Human ovary tumor cell OV350721	pSport1	LP10
HKGA HKGB HKGC HKGD	Merkel Cells	pSport1	LP10
HISA HISB HISC	Pancreas Islet Cell Tumor	pSport1	LP10
HLSA	Skin, burned	pSport1	LP10
HBZA	Prostate,BPH, Lib 2	pSport 1	LP10
HBZS	Prostate BPH,Lib 2, subtracted	pSport 1	LP10
HFIA HFIB HFIC	Synovial Fibroblasts (control)	pSport 1	LP10
HFIH HFII HFIJ	Synovial hypoxia	pSport 1	LP10
HEIT HEIU HEIV	Synovial IL-1/TNF stimulated	pSport 1	LP10
HGCA	Messangial cell, frac l	pSport1	LP10
HMVA HMVB HMVC	Bone Marrow Stromal Cell, untreated	pSport1	LP10
HFIX HFIY HFIZ	Synovial Fibroblasts (III/TNF), subt	pSport1	LP10
HFOX HFOY HFOZ	Synovial hypoxia-RSF subtracted	pSport1	LP10
HMOA HMOB HMOC HMOD	Human Activated Monocytes	Uni-ZAP XR	LP11
HLIA HLIB HLIC	Human Liver	pCMVSport 1	LP012
HHBA HHBB HHBC HHBD HHBE	Human Heart	pCMVSport 1	LP012
HBBA HBBB	Human Brain	pCMVSport 1	LP012
HLJA HLJB HLJC HLJD HLJE	Human Lung	pCMVSport 1	LP012
HOGA HOGB HOGC	Ovarian Tumor	pCMVSport 2.0	LP012
нтум	Human Tonsils, Lib 2	pCMVSport 2 0	LP012
HAMF HAMG	KMH2	pCMVSport 3.0	LP012
НАЈА НАЈВ НАЈС	L428	pCMVSport 3.0	LP012
HWBA HWBB HWBC HWBD HWBE	Dendritic cells, pooled	pCMVSport 3.0	LP012
HWAA HWAB HWAC HWAD HWAE	Human Bone Marrow, treated	pCMVSport 3.0	LP012
HYAA HYAB HYAC	B Cell lymphoma	pCMVSport 3.0	LP012
нwнg нwнн нwн1	Healing groin wound, 6.5 hours post incision	pCMVSport 3.0	LP012
HWHP HWHQ HWHR	Healing groin wound; 7.5 hours post incision	pCMVSport 3.0	LP012
HARM	Healing grom wound - zero hr post- incision (control)	pCMVSport 3.0	LP012
НВІМ	Olfactory epithelium; nasalcavity	pCMVSport 3.0	LP012
HWDA	Healing Abdomen wound; 70&90 min post incision	pCMVSport 3.0	LP012
HWEA	Healing Abdomen Wound;15 days post incision	pCMVSport 3.0	LP012
HWJA	Healing Abdomen Wound;21&29 days	pCMVSport 3.0	LP012
HNAL	Human Tongue, frac 2	pSport1	LP012
HMJA HMKA HMKB HMKC HMKD HMKE	H. Meniingima, M6 H. Meningima, M1	pSport1 pSport1	LP012 LP012

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HOFA	Ovarian Tumor I, OV5232	pSport1	LP012
HCFA HCFB HCFC HCFD	T-Cell PHA 16 hrs	pSport1	LP012
HCFL HCFM HCFN HCFO	T-Cell PHA 24 hrs	pSport1	LP012
HMMA HMMB HMMC	Spleen metastic melanoma	pSport1	LP012
HTDA	Human Tonsil, Lib 3	pSportI	LP012
HDBA	Human Fetal Thymus	pSport1	LP012
HDUA	Pericardium	pSport1	LP012
HBZA	Prostate, BPH, Lib 2	pSport1	LP012
HWCA	Larvnx tumor	pSport1	LP012
HWKA	Normal lung	pSport1	LP012
HSMB	Bone marrow stroma treated	pSport1	LP012
НВНМ	Normal trachea	pSport1	LP012
HLFC	Human Larynx	pSport1	LP012
HLRB	Siebben Polyposis	pSport1	LP012
HNIA	Mammary Gland	pSport1	LP012
HNIB	Palate carcinoma	pSport1	LP012
HNKA	Palate normal	pSport1	LP012
HMZA	Pharynx carcinoma	pSport1	LP012
HABG	Cheek Carcinoma	pSport1	LP012
HMZM	Pharynx Carcinoma	pSport1	LP012
HDRM	Larynx Carcinoma	pSport1	LP012
HVAA	Pancreas normal PCA4 No	pSport1	LP012
HICA	Tongue carcinoma	pSport1	LP012
HUKA HUKB HUKC HUKD HUKE	Human Uterine Cancer	Lambda ZAP II	LP012
HFFA		Lambda ZAP II	LP013
HTUA	Human Fetal Brain, random primed Activated T-cell labeled with 4-thioluri	Lambda ZAP II	LP013
HBQA	Early Stage Human Brain, random	Lambda ZAP II	LP013
_	primed Human microvascular Endothelial cells.	Lambda ZAP II	LP013
НМЕВ	fract. B		
HUSH	Human Umbilical Vein Endothelial cells, fract. A. re-excision	Lambda ZAP II	LP013
HLQC HLQD	Hepatocellular tumor, re-excision	Lambda ZAP II	LP013
HTWJ HTWK HTWL	Resting T-cell, re-excision	Lambda ZAP II	LP013
HF6S	Human Whole 6 week Old Embryo (II), subt	pBluescript	LP013
HHPS	Human Hippocampus, subtracted	pBluescript	LP013
HL1S	LNCAP, differential expression	pBluescript	LP013
HLHS HLHT	Early Stage Human Lung, Subtracted	pBluescript	LP013
HSUS	Supt cells, cyclohexamide treated, subtracted	pBluescript	LP013
HSUT	Supt cells, cyclohexamide treated, differentially expressed	pBluescript	LP013
HSDS	H. Striatum Depression, subtracted	pBluescript	LP013
HPTZ	Human Pituitary, Subtracted VII	pBluescript	LP013
HSDX	H. Striatum Depression, subt II	pBluescript	LP013
HSDZ	H. Striatum Depression, subt	pBluescript	LP013
НРВА НРВВ НРВС НРВО НРВЕ	Human Pineal Gland	pBluescript SK-	LP013
HRTA	Colorectal Tumor	pBluescript SK-	LP013
HSBA HSBB HSBC HSBM	HSC172 cells	pBluescript SK-	LP013
HJAA HJAB HJAC HJAD	Jurkat T-cell G1 phase	pBluescript SK-	LP013
НЈВА НЈВВ НЈВС НЈВО	Jurkat T-cell, S1 phase	pBluescript SK-	LP013

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HTNA HTNB	Human Thyroid	pBluescript SK-	LP013
НАНА НАНВ	Human Adult Heart	Uni-ZAP XR	LP013
HE6A	Whole 6 week Old Embryo	Uni-ZAP XR	LP013
HFCA HFCB HFCC HFCD HFCE	Human Fetal Brain	Uni-ZAP XR	LP013
HFKC HFKD HFKE HFKF HFKG	Human Fetal Kidney	Uni-ZAP XR	LP013
HGBA HGBD HGBE HGBF HGBG	Human Gall Bladder	Uni-ZAP XR	LP013
HPRA HPRB HPRC HPRD	Human Prostate	Uni-ZAP XR	LP013
HTEA HTEB HTEC HTED HTEE	Human Testes	Uni-ZAP XR	LP013
HTTA HTTB HTTC HTTD HTTE	Human Testes Tumor	Uni-ZAP XR	LP013
НҮВА НҮВВ	Human Fetal Bone	Uni-ZAP XR	LP013
HFLA	Human Fetal Liver	Uni-ZAP XR	LP013
HHFB HHFC HHFD HHFE HHFF	Human Fetal Heart	Uni-ZAP XR	LP013
HUVB HUVC HUVD HUVE	Human Umbilical Vein, End. remake	Uni-ZAP XR	LP013
нтив итис итир	Human Thymus	Uni-ZAP XR	LP013
HSTA HSTB HSTC HSTD	Human Skin Tumor	Uni-ZAP XR	LP013
HTAA HTAB HTAC HTAD HTAE	Human Activated T-cells	Uni-ZAP XR	LP013
HFEA HFEB HFEC	Human Fetal Epithelium (skin)	Uni-ZAP XR	LP013
НЈРА НЈРВ НЈРС НЈРD	Human Jurkat Membrane Bound Polysomes	Uni-ZAP XR	LP013
HESA	Human Epithelioid Sarcoma	Uni-ZAP XR	LP013
HALS	Human Adult Liver, Subtracted	Uni-ZAP XR	LP013
HFTA HFTB HFTC HFTD	Human Fetal Dura Mater	Uni-ZAP XR	LP013
HCAA HCAB HCAC	Cem cells, cyclohexamide treated	Uni-ZAP XR	LP013
HRGA HRGB HRGC HRGD	Raji Cells, cyclohexamide treated	Uni-ZAP XR	LP013
НЕ9А НЕ9В НЕ9С НЕ9D НЕ9Е	Nine Week Old Early Stage Human	Uni-ZAP XR	LP013
HSFA	Human Fibrosarcoma	Uni-ZAP XR	LP013
HATA HATB HATC HATD HATE	Human Adrenal Gland Tumor	Uni-ZAP XR	LP013
HTRA	Human Trachea Tumor	Uni-ZAP XR	LP013
HE2A HE2D HE2E HE2H HE21	12 Week Old Early Stage Human	Uni-ZAP XR	LP013
HE2B HE2C HE2F HE2G HE2P	12 Week Old Early Stage Human, II	Uni-ZAP XR	LP013
HNEA HNEB HNEC HNED HNEE	Human Neutrophil	Uni-ZAP XR	LP013
HBGA	Human Primary Breast Cancer	Uni-ZAP XR	LP013
HPTS HPTT HPTU	Human Pituitary, subtracted	Uni-ZAP XR	LP013
HMQA HMQB HMQC HMQD	Human Activated Monocytes	Uni-ZAP XR	LP013
HOAA HOAB HOAC	Human Osteosarcoma	Uni-ZAP XR	LP013
HTOA HTOD HTOE HTOF HTOG	human tonsils	Uni-ZAP XR	LP013
HMGB	Human OB MG63 control fraction I	Uni-ZAP XR	LP013
НОРВ	Human OB HOS control fraction 1	Uni-ZAP XR	LP013
HOQB	Human OB HOS treated (1 nM E2) fraction I	Uni-ZAP XR	LP013
HAUA HAUB HAUC	Amniotic Cells - TNF induced	Uni-ZAP XR	LP013
HAQA HAQB HAQC HAQD	Amniotic Cells - Primary Culture	Uni-ZAP XR	LP013
HROA HROC	HUMAN STOMACH	Uni-ZAP XR	LP013
НВЈА НВЈВ НВЈС НВЈО НВЈЕ	HUMAN B CELL LYMPHOMA	Uni-ZAP XR	LP013
HODA HODB HODC HODD	human ovarian cancer	Uni-ZAP XR	LP013
HCPA	Corpus Callosum	Uni-ZAP XR	LP013
HSOA	stomach cancer (human)	Um-ZAP XR	LP013
HERA	SKIN	Uni-ZAP XR	LP013
HMDA	Brain-medulloblastoma	Uni-ZAP XR	LP013
HGLA HGLB HGLD	Glioblastoma	Uni-ZAP XR	LP013

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
HWTA HWTB HWTC	wilm's tumor	Uni-ZAP XR	LP013
HEAA	H. Atrophic Endometrium	Uni-ZAP XR	LP013
HAPN HAPO HAPP HAPO HAPR	Human Adult Pulmonary;re-excision	Uni-ZAP XR	LP013
HLTG HLTH	Human T-cell lymphoma;re-excision	Uni-ZAP XR	LP013
HAHC HAHD HAHE	Human Adult Heart:re-excision	Uni-ZAP XR	LP013
HAGA HAGB HAGC HAGD HAGE	Human Amygdala	Uni-ZAP XR	LP013
HSJA HSJB HSJC	Smooth muscle-ILb induced	Uni-ZAP XR	LP013
HSHA HSHB HSHC	Smooth muscle, IL1b induced	Uni-ZAP XR	LP013
HPWA HPWB HPWC HPWD HPWE	Prostate BPH	Uni-ZAP XR	LP013
HPIA HPIB HPIC	LNCAP prostate cell line	Uni-ZAP XR	LP013
НРЈА НРЈВ НРЈС	PC3 Prostate cell line	Uni-ZAP XR	LP013
HBTA	Bone Marrow Stroma, TNF&LPS ind	Uni-ZAP XR	LP013
HMCF HMCG HMCH HMCI HMCJ	Macrophage-oxLDL; re-excision	Uni-ZAP XR	LP013
HAGG HAGH HAGI	Human Amygdala;re-excision	Uni-ZAP XR	LP013
HACA	H. Adipose Tissue	Uni-ZAP XR	LP013
HKFB	K562 + PMA (36 hrs),re-excision	ZAP Express	LP013
HCWT HCWU HCWV	CD34 positive cells (cord blood),re-ex	ZAP Express	LP013
HBWA	Whole brain	ZAP Express	LP013
HBXA HBXB HBXC HBXD	Human Whole Brain #2 - Oligo dT >	ZAP Express	LP013
HAVM	Temporal cortex-Alzheizmer	pT-Adv	LP014
HAVT	Hippocampus, Alzheimer Subtracted	pT-Adv	LP014
HHAS	CHME Cell Line	Uni-ZAP XR	LP014
HAJR	Larvnx normal	pSport 1	LP014
HWLE HWLF HWLG HWLH	Colon Normal	pSport 1	LP014
HCRM HCRN HCRO	Colon Carcinoma	pSport 1	LP014
HWLI HWLJ HWLK	Colon Normal	pSport 1	LP014
HWLO HWLR HWLS HWLT	Colon Tumor	pSport 1	LP014
HBFM	Gastrocnemius Muscle	pSport 1	LP014
HBOD HBOE	Quadriceps Muscle	pSport 1	LP014
HBKD HBKE	Soleus Muscle	pSport 1	LP014
нссм	Pancreatic Langerhans	pSport 1	LP014
HWGA	Larynx carcinoma	pSport 1	LP014
HWGM HWGN	Larynx carcinoma	pSport 1	LP014
HWLA HWLB HWLC	Normal colon	pSport I	LP014
HWLM HWLN	Colon Tumor	pSport 1	LP014
HVAM HVAN HVAO	Pancreas Tumor	pSport 1	LP014
HWGQ	Larynx carcinoma	pSport 1	LP014
HAQM HAQN	Salivary Gland	pSport 1	LP014
HASM	Stomach; normal	pSport 1	LP014
НВСМ	Uterus; normal	pSport 1	LP014
HCDM	Testis; normal	pSport 1	LP014
HDJM	Brain; normal	pSport 1	LP014
HEFM	Adrenal Gland,normal	pSport 1	LP014
HBAA	Rectum normal	pSport 1	LP014
HFDM	Rectum tumour	pSport I	LP014
HGAM	Colon, normal	pSport 1	LP014
ННММ	Colon, tumour	pSport 1	LP014
HCLB HCLC	Human Lung Cancer	Lambda Zap II	LP015
HRLA	Ll Cell line	ZAP Express	LP015

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
ннам	Hypothalamus, Alzheimer's	pCMVSport 3.0	LP015
HKBA	Ku 812F Basophils Line	pSport 1	LP015
HS2S	Saos2, Dexamethosome Treated	pSport 1	LP016
HA5A	Lung Carcinoma A549 TNFalpha activated	pSport 1	LP016
HTFM	TF-1 Cell Line GM-CSF Treated	pSport 1	LP016
HYAS	Thyroid Tumour	pSport 1	LP016
HUTS	Larynx Normal	pSport 1	LP016
HXOA	Larynx Tumor	pSport 1	LP016
HEAH	Ea.hy.926 cell line	pSport 1	LP016
HINA	Adenocarcinoma Human	pSport 1	LP016
HRMA	Lung Mesothelium	pSport 1	LP016
HLCL	Human Pre-Differentiated Adipocytes	Uni-Zap XR	LP017
HS2A	Saos2 Cells	pSport 1	LP020
HS2I	Saos2 Cells; Vitamin D3 Treated	pSport I	LP020
HUCM	CHME Cell Line, untreated	pSport 1	LP020
HEPN	Aryepiglottis Normal	pSport 1	LP020
HPSN	Sinus Piniformis Tumour	pSport 1	LP020
HNSA	Stomach Normal	pSport 1	LP020
HNSM	Stomach Tumour	pSport 1	LP020
HNLA	Liver Normal Met5No	pSport 1	LP020
HUTA	Liver Tumour Met 5 Tu	pSport 1	LP020
HOCN	Colon Normal	pSport 1	LP020
HOCT	Colon Tumor	pSport 1	LP020
HTNT	Tongue Tumour	pSport 1	LP020
HLXN	Larynx Normal	pSport 1	LP020
HLXT	Larynx Tumour	pSport 1	LP020
HTYN	Thymus	pSport 1	LP020
HPLN	Placenta	pSport 1	LP020
HTNG	Tongue Normal	pSport 1	LP020
HZAA	Thyroid Normal (SDCA2 No)	pSport I	LP020
HWES	Thyroid Thyroiditis	pSport 1	LP020
HFHD	Ficolled Human Stromal Cells, 5Fu	pTrip1Ex2	LP021
HFHM,HFHN	treated Ficolled Human Stromal Cells, Untreated	pTrip1Ex2	LP021
HPCI	Hep G2 Cells, lambda library	lambda Zap-CMV XR	LP021
HBCA,HBCB,HBCC	H. Lymph node breast Cancer	Uni-ZAP XR	LP021
нсок	Chondrocytes	pSPORT1	LP022
HDCA, HDCB, HDCC	Dendritic Cells From CD34 Cells	pSPORT1	LP022
HDMA, HDMB	CD40 activated monocyte dendritic cell		LP022
HDDM, HDDN, HDDO	LPS activated derived dendritic cells	nSPORT1	LP022
HPCR	Hep G2 Cells, PCR library	lambda Zap-CMV XR	LP022
НААА, НААВ, НААС	Lung, Cancer (4005313A3): Invasive Poorly Differentiated Lung Adenocarcinoma	pSPORT1	LP022
НІРА, НІРВ, НІРС	Lung, Cancer (4005163 B7): Invasive, Poorly Diff. Adenocarcinoma. Metastatic	pSPORT1	LP022
НООН, НООІ	Ovary, Cancer: (4004562 B6) Papillary Serous Cystic Neoplasm, Low	pSPORT1	LP022

Libraries owned by Catalog	Catalog Description	Vector	ATCC Deposit
	Malignant Pot		
HIDA	Lung, Normal: (4005313 B1)	pSPORT1	LP022
HUJA,HUJB,HUJC,HUJD.HUJE	B-Cells	pCMVSport 3.0	LP022
HNOA,HNOB,HNOC,HNOD	Ovary, Normal: (9805C040R)	pSPORT1	LP022
HNLM	Lung, Normal: (4005313 B1)	pSPORT1	LP022
HSCL	Stromal Cells	pSPORTI	LP022
HAAX	Lung, Cancer: (4005313 A3) Invasive Poorly-differentiated Metastatic lung adenocarcinoma	pSPORT1	LP022
HUUA,HUUB,HUUC,HUUD	B-cells (unstimulated)	pTrip1Ex2	LP022
HWWA,HWWB,HWWC,HWWD,HW WE.HWWF.HWWG	B-cells (stimulated)	pSPORT1	LP022
HCCC	Colon, Cancer: (9808C064R)	pCMVSport 3.0	LP023
HPDO HPDP HPDQ HPDR HPD	Ovary, Cancer (9809C332): Poorly differentiated adenocarcinoma	pSport 1	LP023
НРСО НРСР НРСО НРСТ	Ovary, Cancer (15395A1F): Grade II Papillary Carcinoma	pSport 1	LP023
НОСМ НОСО НОСР НОСО	Ovary, Cancer: (15799A1F) Poorly differentiated carcinoma	pSport 1	LP023
НСВМ НСВО НСВО	Breast, Cancer: (4004943 A5)	pSport 1	LP023
HNBT HNBU HNBV	Breast, Normal: (4005522B2)	pSport 1	LP023
НВСР НВСQ	Breast, Cancer: (4005522 A2)	pSport 1	LP023
HBCJ	Breast, Cancer: (9806C012R)	pSport 1	LP023
HSAM HSAN	Stromal cells 3.88	pSport 1	LP023
HVCA HVCB HVCC HVCD	Ovary, Cancer: (4004332 A2)	pSport 1	LP023
HSCK HSEN HSEO	Stromal cells (HBM3.18)	pSport 1	LP023
HSCP HSCQ	stromal cell clone 2.5	pSport 1	LP023
HUXA	Breast Cancer: (4005385 A2)	pSport 1	LP023
НСОМ НСОО НСОР НСОО	Ovary, Cancer (4004650 A3): Well- Differentiated Micropapillary Serous Carcinoma	pSport 1	LP023
HBNM	Breast, Cancer: (9802C020E)	pSport 1	LP023
HVVA HVVB HVVC HVVD HVVE	Human Bone Marrow, treated	pSport 1	LP023

[0792] Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 5. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to the nucleotide sequence of SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 32P-y-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

10794] Alternatively, two primers of 17-20 nucleotides derived from both ends of the nucleotide sequence of SEQ ID NO:X are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 μl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 μM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

[0795] Several methods are available for the identification of the 5' or 3' noncoding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

[0799] A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the sequence corresponding to SEQ ID NO:X, according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue specific expression analysis

[0800] The Human Genome Sciences, Inc. (HGS) database is derived from sequencing tissue specific cDNA libraries. Libraries generated from a particular tissue are selected and the specific tissue expression pattern of EST groups or assembled contigs within these libraries is determined by comparison of the expression patterns of those groups or contigs within the entire database. ESTs which show tissue specific expression are selected.

The original clone from which the specific EST sequence was generated, is obtained from the catalogued library of clones and the insert amplified by PCR using methods known in the art. The PCR product is denatured then transferred in 96 well format to a nylon membrane (Schleicher and Scheull) generating an array filter of tissue specific clones. Housekeeping genes, maize genes, and known tissue specific genes are included on the filters. These targets can be used in signal normalization and to validate assay sensitivity. Additional targets are included to monitor probe length and specificity of hybridization.

[0802] Radioactively labeled hybridization probes are generated by first strand cDNA synthesis per the manufacturer's instructions (Life Technologies) from mRNA/RNA samples prepared from the specific tissue being analyzed. The hybridization probes are purified by gel exclusion chromatography, quantitated, and hybridized with the array filters in hybridization bottles at 65°C overnight. The filters are washed under stringent conditions and signals are captured using a Fuji phosphorimager.

[0803] Data is extracted using AIS software and following background subtraction, signal normalization is performed. This includes a normalization of filter-wide expression levels between different experimental runs. Genes that are differentially expressed in the tissue of interest are identified and the full length sequence of these clones is generated.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5'end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

Example 5: Bacterial Expression of a Polypeptide

[0805] A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

[0806] The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (KanF). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

[0807] Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

[0808] Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) OIAGEN, Inc., supra).

[0809] Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

[0811] In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication,

3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

[0813] The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

Example 6: Purification of a Polypeptide from an Inclusion Body

[0814] The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

[0815] Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

[0816] The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

[0817] The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

[0818] Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

[0819] To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with $0.16~\mu m$ membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

[0820] Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

[0821] The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from E. coli under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

[0823] Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

[0824] Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon, is amplified using the PCR protocol described in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

[0825] The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

[0826] The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

[0827] The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μ g of a plasmid containing the polynucleotide is co-transfected with 1.0 μ g of a commercially available linearized baculovirus DNA ("BaculoGoldTM baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μ g of BaculoGoldTM virus DNA and 5 μ g of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μ l of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μ l Lipofectin plus 90 μ l Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

[0829] After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing

the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

[0830] To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci of ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

[0831] Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

In polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

[0833] Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells. Cos 1, Cos 7 and

CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

[0834] Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as DHFR, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells

[0835] The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

[0837] Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be

modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

[0838] The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

[0839] The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for [0840] transfection. Five μg of the expression plasmid pC6 or pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μM , 2 μM , 5 μM , 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 \(\mu M \). Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

[0841] The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827;

Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

[0842] Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

[0843] For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

[0844] If the naturally occurring signal sequence is used to produce the polypeptide of the present invention, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCCCA
GCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAA
GGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGTGGACG
TAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGA
GGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGGAGCAGTACAACAGCACGTAC
CGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGA

Example 10: Production of an Antibody from a Polypeptide

a) Hybridoma Technology

[0845] The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing a polypeptide of the present invention are administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of a polypeptide of the present invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

Monoclonal antibodies specific for polypeptide of the present invention are prepared using hybridoma technology. (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, an animal (preferably a mouse) is immunized with polypeptide of the present invention or, more preferably, with a secreted polypeptide of the present invention-expressing cell. Such polypeptide-expressing cells are cultured in any suitable tissue culture medium, preferably in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

[0847] The splenocytes of such mice are extracted and fused with a suitable

myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide of the present invention.

Alternatively, additional antibodies capable of binding to a polypeptide of the present invention can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the polypeptide of the present invention-specific antibody can be blocked by a polypeptide of the present invention. Such antibodies comprise anti-idiotypic antibodies to the polypeptide of the present invention-specific antibody and are used to immunize an animal to induce formation of further polypeptide of the present invention-specific antibodies.

[0849] For in vivo use of antibodies in humans, an antibody is "humanized". Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric and humanized antibodies are known in the art and are discussed herein. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

b) Isolation Of Antibody Fragments Directed Against A Polypeptide of the Present Invention From A Library Of scFvs

Naturally occurring V-genes isolated from human PBLs are constructed into a library of antibody fragments which contain reactivities against a polypeptide of the present

invention to which the donor may or may not have been exposed (see e.g., U.S. Patent 5,885,793 incorporated herein by reference in its entirety).

Rescue of the Library. A library of scFvs is constructed from the RNA of human PBLs as described in PCT publication WO 92/01047. To rescue phage displaying antibody fragments, approximately 109 E. coli harboring the phagemid are used to inoculate 50 ml of 2xTY containing 1% glucose and 100 μ g/ml of ampicillin (2xTY-AMP-GLU) and grown to an O.D. of 0.8 with shaking. Five ml of this culture is used to innoculate 50 ml of 2xTY-AMP-GLU, 2 x 108 TU of delta gene 3 helper (M13 delta gene III, see PCT publication WO 92/01047) are added and the culture incubated at 37°C for 45 minutes without shaking and then at 37°C for 45 minutes with shaking. The culture is centrifuged at 4000 r.p.m. for 10 min. and the pellet resuspended in 2 liters of 2xTY containing 100 μ g/ml ampicillin and 50 ug/ml kanamycin and grown overnight. Phage are prepared as described in PCT publication WO 92/01047.

[0850] M13 delta gene III is prepared as follows: M13 delta gene III helper phage does not encode gene III protein, hence the phage(mid) displaying antibody fragments have a greater avidity of binding to antigen. Infectious M13 delta gene III particles are made by growing the helper phage in cells harboring a pUC19 derivative supplying the wild type gene III protein during phage morphogenesis. The culture is incubated for 1 hour at 37° C without shaking and then for a further hour at 37° C with shaking. Cells are spun down (IEC-Centra 8,400 r.p.m. for 10 min), resuspended in 300 ml 2xTY broth containing $100~\mu g$ ampicillin/ml and $25~\mu g$ kanamycin/ml (2xTY-AMP-KAN) and grown overnight, shaking at 37°C. Phage particles are purified and concentrated from the culture medium by two PEG-precipitations (Sambrook et al., 1990), resuspended in 2 ml PBS and passed through a $0.45~\mu m$ filter (Minisart NML; Sartorius) to give a final concentration of approximately 1013~transducing~units/ml~(ampicillin-resistant clones).

[0851] Panning of the Library. Immunotubes (Nunc) are coated overnight in PBS with 4 ml of either $100 \mu g/ml$ or $10 \mu g/ml$ of a polypeptide of the present invention. Tubes are blocked with 2% Marvel-PBS for 2 hours at 37°C and then washed 3 times in PBS. Approximately 1013 TU of phage is applied to the tube and incubated for 30 minutes at room temperature tumbling on an over and under turntable and then left to stand for another 1.5 hours. Tubes are washed 10 times with PBS 0.1% Tween-20 and 10 times with PBS. Phage are eluted by adding 1 ml of 100 mM triethylamine and rotating 15

minutes on an under and over turntable after which the solution is immediately neutralized with 0.5 ml of 1.0M Tris-HCl, pH 7.4. Phage are then used to infect 10 ml of mid-log E. coli TG1 by incubating eluted phage with bacteria for 30 minutes at 37°C. The E. coli are then plated on TYE plates containing 1% glucose and 100 µg/ml ampicillin. The resulting bacterial library is then rescued with delta gene 3 helper phage as described above to prepare phage for a subsequent round of selection. This process is then repeated for a total of 4 rounds of affinity purification with tube-washing increased to 20 times with PBS, 0.1% Tween-20 and 20 times with PBS for rounds 3 and 4.

[0852] Characterization of Binders. Eluted phage from the 3rd and 4th rounds of selection are used to infect E. coli HB 2151 and soluble scFv is produced (Marks, et al., 1991) from single colonies for assay. ELISAs are performed with microtitre plates coated with either 10 pg/ml of the polypeptide of the present invention in 50 mM bicarbonate pH 9.6. Clones positive in ELISA are further characterized by PCR fingerprinting (see, e.g., PCT publication WO 92/01047) and then by sequencing. These ELISA positive clones may also be further characterized by techniques known in the art, such as, for example, epitope mapping, binding affinity, receptor signal transduction, ability to block or competitively inhibit antibody/antigen binding, and competitive agonistic or antagonistic activity.

Example 11: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X; and/or the nucleotide sequence of the related cDNA in the cDNA clone contained in a deposited library. Suggested PCR conditions consist of 35 cycles at 95 degrees C for 30 seconds; 60-120 seconds at 52-58 degrees C; and 60-120 seconds at 70 degrees C, using buffer solutions described in Sidransky et al., Science 252:706 (1991).

[0854] PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

[0855] PCR products is cloned into T-tailed vectors as described in Holton et al., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.

[0856] Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 12: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

[0858] A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit

their particular needs.

[0859] For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

[0860] The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

[0861] Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

[0862] Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 13: Formulation

[0863] The invention also provides methods of treatment and/or prevention of diseases or disorders (such as, for example, any one or more of the diseases or disorders disclosed herein) by administration to a subject of an effective amount of a Therapeutic. By therapeutic is meant a polynucleotides or polypeptides of the invention (including fragments and variants), agonists or antagonists thereof, and/or antibodies thereto, in combination with a pharmaceutically acceptable carrier type (e.g., a sterile carrier).

[0864] The Therapeutic will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the Therapeutic alone), the site of delivery.

the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations

As a general proposition, the total pharmaceutically effective amount of the Therapeutic administered parenterally per dose will be in the range of about 1ug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the Therapeutic is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Therapeutics can be are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

[0868] Therapeutics of the invention are also suitably administered by sustainedrelease systems. Suitable examples of sustained-release Therapeutics include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt).

[0869] Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al., Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988).

[0870] Sustained-release Therapeutics also include liposomally entrapped Therapeutics of the invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 317 -327 and 353-365 (1989)). Liposomes containing the Therapeutic are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. (USA) 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. (USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.

[0871] In yet an additional embodiment, the Therapeutics of the invention are delivered by way of a pump (*see Langer*, *supra*; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)).

[0872] Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)).

[0873] For parenteral administration, in one embodiment, the Therapeutic is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation

preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.

Generally, the formulations are prepared by contacting the Therapeutic uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

[0876] The Therapeutic is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

[0877] Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutics generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

[0878] Therapeutics ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with

5 ml of sterile-filtered 1% (w/v) aqueous Therapeutic solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized Therapeutic using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the Therapeutics of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the Therapeutics may be employed in conjunction with other therapeutic compounds.

[0880] The Therapeutics of the invention may be administered alone or in combination with adjuvants. Adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG, and MPL. In a specific embodiment, Therapeutics of the invention are administered in combination with alum. In another specific embodiment. Therapeutics of the invention are administered in combination with QS-21. Further adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the Therapeutics of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

[0881] The Therapeutics of the invention may be administered alone or in combination with other therapeutic agents. Therapeutic agents that may be administered in combination with the Therapeutics of the invention, include but not limited to, other members of the TNF family, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, cytokines and/or growth factors. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.

[0882] In one embodiment, the Therapeutics of the invention are administered in combination with members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the Therapeutics of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), AIM-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), TR6 (International Publication No. WO 98/30694), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-IBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (International Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TR6 (International Publication No. WO 98/30694), TR7 (International Publication No. WO 98/41629), TRANK, TR9 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202), 312C2 (International Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.

[0883] In certain embodiments, Therapeutics of the invention are administered in combination with antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors. Nucleoside reverse

transcriptase inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, RETROVIR™ (zidovudine/AZT), VIDEX™ (didanosine/ddI), HIVID™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T), EPIVIR™ (lamivudine/3TC), and COMBIVIR™ (zidovudine/lamivudine). Non-nucleoside reverse transcriptase inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, VIRAMUNE™ (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTIVA™ (efavirenz). Protease inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, CRIXIVAN™ (indinavir), NORVIR™ (ritonavir), INVIRASE™ (saquinavir), and VIRACEPT™ (nelfinavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any combination with Therapeutics of the invention to treat AIDS and/or to prevent or treat HIV infection.

In other embodiments, Therapeutics of the invention may be administered in combination with anti-opportunistic infection agents. Anti-opportunistic agents that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, TRIMETHOPRIM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™. ATOVAQUONE™, ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™. ETHAMBUTOL™, RIFABUTIN™, CLARITHROMYCIN™, AZITHROMYCIN™. GANCICLOVIR™. FOSCARNET™, CIDOFOVIR™, FLUCONAZOLE™, ITRACONAZOLE™, KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™. PYRIMETHAMINE™. LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and LEUKINE™ (sargramostim/GM-CSF). In a specific embodiment, Therapeutics of the invention are used in any combination with TRIMETHOPRIM-SULFAMETHOXAZOLE™. DAPSONE™, PENTAMIDINE™, and/or ATOVAQUONE™ to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™, and/or ETHAMBUTOL™ to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection. In another specific embodiment, Therapeutics of the invention are used in any combination with RIFABUTINTM, CLARITHROMYCIN™, and/or AZITHROMYCIN™ to prophylactically treat or prevent an opportunistic Mycobacterium tuberculosis infection. In another specific embodiment, Therapeutics of the invention are used in any combination with GANCICLOVIRTM, FOSCARNET™, and/or CIDOFOVIR™ to prophylactically treat or prevent an opportunistic cytomegalovirus infection. In another specific embodiment, Therapeutics of invention used in any combination with FLUCONAZOLE™. ITRACONAZOLE™, and/or KETOCONAZOLE™ to prophylactically treat or prevent an opportunistic fungal infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ACYCLOVIR™ and/or FAMCICOLVIR™ to prophylactically treat or prevent an opportunistic herpes simplex virus type I and/or type II infection. In another specific embodiment, Therapeutics of the invention are used in any combination with PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat or prevent an opportunistic Toxoplasma gondii infection. In another specific embodiment, Therapeutics of the invention are used in any combination with LEUCOVORIN™ and/or NEUPOGEN™ to prophylactically treat or prevent an opportunistic bacterial infection.

[0885] In a further embodiment, the Therapeutics of the invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the Therapeutics of the invention include, but are not limited to, acyclovir, ribavirin, amantadine, and remantidine.

[0886] In a further embodiment, the Therapeutics of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the Therapeutics of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rifampin, streptomycin, sulfonamide, tetracyclines, trimethoprim, trimethoprim-sulfamthoxazole, and vancomycin.

[0887] Conventional nonspecific immunosuppressive agents, that may be administered in combination with the Therapeutics of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide

methylprednisone, prednisone, azathioprine, FK-506, 15-deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells.

In specific embodiments, Therapeutics of the invention are administered in combination with immunosuppressants. Immunosuppressants preparations that may be administered with the Therapeutics of the invention include, but are not limited to, ORTHOCLONE™ (OKT3), SANDIMMUNE™/NEORAL™/SANGDYA™ (cyclosporin), PROGRAF™ (tacrolimus), CELLCEPT™ (mycophenolate), Azathioprine, glucorticosteroids, and RAPAMUNE™ (sirolimus). In a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation.

[0889] In an additional embodiment, Therapeutics of the invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the Therapeutics of the invention include, but not limited to, GAMMAR™, IVEEGAM™, SANDOGLOBULIN™, GAMMAGARD S/D™, and GAMIMUNE™. In a specific embodiment, Therapeutics of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).

[0890] In an additional embodiment, the Therapeutics of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the Therapeutics of the invention include, but are not limited to, glucocorticoids and the nonsteroidal anti-inflammatories, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylacetic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino-4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap.

[0891] In another embodiment, compostions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the Therapeutics of the invention include, but are not limited to.

antibiotic derivatives (e.g., doxorubicin, bleomycin, daunorubicin, and dactinomycin); antiestrogens (e.g., tamoxifen); antimetabolites (e.g., fluorouracil, 5-FU, methotrexate, floxuridine, interferon alpha-2b, glutamic acid, plicamycin, mercaptopurine, and 6-thioguanine); cytotoxic agents (e.g., carmustine, BCNU, lomustine, CCNU, cytosine arabinoside, cyclophosphamide, estramustine, hydroxyurea, procarbazine, mitomycin, busulfan, cis-platin, and vincristine sulfate); hormones (e.g., medroxyprogesterone, estramustine phosphate sodium, ethinyl estradiol, estradiol, megestrol acetate, methyltestosterone, diethylstilbestrol diphosphate, chlorotrianisene, and testolactone); nitrogen mustard derivatives (e.g., mephalen, chorambucil, mechlorethamine (nitrogen mustard) and thiotepa); steroids and combinations (e.g., bethamethasone sodium phosphate); and others (e.g., dicarbazine, asparaginase, mitotane, vincristine sulfate, vinblastine sulfate, and etoposide).

[0892] In a specific embodiment, Therapeutics of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or any combination of the components of CHOP. In another embodiment, Therapeutics of the invention are administered in combination with Rituximab. In a further embodiment, Therapeutics of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of the components of CHOP.

In an additional embodiment, the Therapeutics of the invention are administered in combination with cytokines. Cytokines that may be administered with the Therapeutics of the invention include, but are not limited to, IL.2, IL.3, IL.4, IL.5, IL.6, IL.7, IL.10, IL.12, IL.13, IL.15, anti-CD40, CD40L, IFN-gamma and TNF-alpha. In another embodiment, Therapeutics of the invention may be administered with any interleukin, including, but not limited to, IL.-1alpha, IL.-1beta, IL.-2, IL.-3, IL.-4, IL.-5, IL.-6, IL.-7, IL.-8, IL.-9, IL.-10, IL.-11, IL.-12, IL.-13, IL.-14, IL.-15, IL.-16, IL.-17, IL.-18, IL.-19, IL.-20, and IL.-21.

[0894] In an additional embodiment, the Therapeutics of the invention are administered in combination with angiogenic proteins. Angiogenic proteins that may be administered with the Therapeutics of the invention include, but are not limited to, Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor-B (PDGF-B), as disclosed in European Patent

Number EP-282317; Placental Growth Factor (PIGF), as disclosed in International Publication Number WO 92/06194; Placental Growth Factor-2 (PIGF-2), as disclosed in Hauser et al., Gorwth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in International Publication Number WO 90/13649; Vascular Endothelial Growth Factor-A (VEGF-A), as disclosed in European Patent Number EP-506477; Vascular Endothelial Growth Factor-2 (VEGF-2), as disclosed in International Publication Number WO 96/39515; Vascular Endothelial Growth Factor B (VEGF-3); Vascular Endothelial Growth Factor B-186 (VEGF-B186), as disclosed in International Publication Number WO 96/26736; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/02543; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/07832; and Vascular Endothelial Growth Factor-E (VEGF-E), as disclosed in German Patent Number DE19639601. The above mentioned references are incorporated herein by reference herein

[0895] In an additional embodiment, the Therapeutics of the invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the Therapeutics of the invention include, but are not limited to, LEUKINE™ (SARGRAMOSTIM™) and NEUPOGEN™ (FILGRASTIM™).

[0896] In an additional embodiment, the Therapeutics of the invention are administered in combination with Fibroblast Growth Factors. Fibroblast Growth Factors that may be administered with the Therapeutics of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF-15.

[0897] In additional embodiments, the Therapeutics of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.

Example 14: Method of Treating Decreased Levels of the Polypeptide

[0898] The present invention relates to a method for treating an individual in need of an increased level of a polypeptide of the invention in the body comprising

administering to such an individual a composition comprising a therapeutically effective amount of an agonist of the invention (including polypeptides of the invention). Moreover, it will be appreciated that conditions caused by a decrease in the standard or normal expression level of a polypeptide of the present invention in an individual can be treated by administering the agonist or antagonist of the present invention. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a Therapeutic comprising an amount of the agonist or antagonist to increase the activity level of the polypeptide in such an individual.

[0899] For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the agonist or antagonist for six consecutive days. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 13.

Example 15: Method of Treating Increased Levels of the Polypeptide

[0900] The present invention also relates to a method of treating an individual in need of a decreased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an antagonist of the invention (including polypeptides and antibodies of the invention).

[0901] In one example, antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, due to a variety of etiologies, such as cancer.

[0902] For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 13.

Example 16: Method of Treatment Using Gene Therapy-Ex Vivo

[0903] One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.

[0904] At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

[0905] pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

[0906] The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1 using primers and having appropriate restriction sites and initiation/stop codons, if necessary. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

[0907] The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are

now referred to as producer cells).

[0908] Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.

[0909] The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

Example 17: Gene Therapy Using Endogenous Genes Corresponding To Polynucleotides of the Invention

Another method of gene therapy according to the present invention involves operably associating the endogenous polynucleotide sequence of the invention with a promoter via homologous recombination as described, for example, in U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411, published September 26, 1996; International Publication NO: WO 94/12650, published August 4, 1994; Koller et al., *Proc. Natl. Acad. Sci. USA*, 86:8932-8935 (1989); and Zijlstra et al., *Nature*, 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not expressed in the cells, or is expressed at a lower level than desired.

Polynucleotide constructs are made which contain a promoter and targeting sequences, which are homologous to the 5' non-coding sequence of endogenous polynucleotide sequence, flanking the promoter. The targeting sequence will be sufficiently near the 5' end of the polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the

amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.

[0912] The amplified promoter and the amplified targeting sequences are digested with the appropriate restriction enzymes and subsequently treated with calf intestinal phosphatase. The digested promoter and digested targeting sequences are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The construct is size fractionated on an agarose gel then purified by phenol extraction and ethanol precipitation.

[0913] In this Example, the polynucleotide constructs are administered as naked polynucleotides via electroporation. However, the polynucleotide constructs may also be administered with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, precipitating agents, etc. Such methods of delivery are known in the art.

[0914] Once the cells are transfected, homologous recombination will take place which results in the promoter being operably linked to the endogenous polynucleotide sequence. This results in the expression of polynucleotide corresponding to the polynucleotide in the cell. Expression may be detected by immunological staining, or any other method known in the art.

[0915] Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in DMEM + 10% fetal calf serum. Exponentially growing or early stationary phase fibroblasts are trypsinized and rinsed from the plastic surface with nutrient medium. An aliquot of the cell suspension is removed for counting, and the remaining cells are subjected to centrifugation. The supernatant is aspirated and the pellet is resuspended in 5 ml of electroporation buffer (20 mM HEPES pH 7.3, 137 mM NaCl, 5 mM KCl, 0.7 mM Na₂ HPO₄, 6 mM dextrose). The cells are recentrifuged, the supernatant aspirated, and the cells resuspended in electroporation buffer containing 1 mg/ml acetylated bovine serum albumin. The final cell suspension contains approximately 3X10⁶ cells/ml. Electroporation should be performed immediately following resuspension.

[0916] Plasmid DNA is prepared according to standard techniques. For example, to construct a plasmid for targeting to the locus corresponding to the polynucleotide of the invention, plasmid pUC18 (MBI Fermentas, Amherst, NY) is digested with HindIII. The

CMV promoter is amplified by PCR with an Xbal site on the 5' end and a BamHl site on the 3'end. Two non-coding sequences are amplified via PCR: one non-coding sequence (fragment 1) is amplified with a HindIII site at the 5' end and an Xba site at the 3'end; the other non-coding sequence (fragment 2) is amplified with a BamHl site at the 5'end and a HindIII site at the 3'end. The CMV promoter and the fragments (1 and 2) are digested with the appropriate enzymes (CMV promoter - Xbal and BamHl; fragment 1 - Xbal; fragment 2 - BamHl) and ligated together. The resulting ligation product is digested with HindIII, and ligated with the HindIII-digested pUC18 plasmid.

[0917] Plasmid DNA is added to a sterile cuvette with a 0.4 cm electrode gap (Bio-Rad). The final DNA concentration is generally at least 120 µg/ml. 0.5 ml of the cell suspension (containing approximately 1.5.X10⁶ cells) is then added to the cuvette, and the cell suspension and DNA solutions are gently mixed. Electroporation is performed with a Gene-Pulser apparatus (Bio-Rad). Capacitance and voltage are set at 960 µF and 250-300 V, respectively. As voltage increases, cell survival decreases, but the percentage of surviving cells that stably incorporate the introduced DNA into their genome increases dramatically. Given these parameters, a pulse time of approximately 14-20 mSec should be observed.

[0918] Electroporated cells are maintained at room temperature for approximately 5 min, and the contents of the cuvette are then gently removed with a sterile transfer pipette. The cells are added directly to 10 ml of prewarmed nutrient media (DMEM with 15% calf serum) in a 10 cm dish and incubated at 37 degree C. The following day, the media is aspirated and replaced with 10 ml of fresh media and incubated for a further 16-24 hours.

[0919] The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product. The fibroblasts can then be introduced into a patient as described above.

Example 18: Method of Treatment Using Gene Therapy - In Vivo

[0920] Another aspect of the present invention is using *in vivo* gene therapy methods to treat disorders, diseases and conditions. The gene therapy method relates to

the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, WO98/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata et al., Cardiovasc. Res. 35(3):470-479 (1997); Chao et al., Pharmacol. Res. 35(6):517-522 (1997); Wolff, Neuromuscul. Disord. 7(5):314-318 (1997); Schwartz et al., Gene Ther. 3(5):405-411 (1996); Tsurumi et al., Circulation 94(12):3281-3290 (1996) (incorporated herein by reference).

[0921] The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.

[0922] The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Felgner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and Abdallah B. et al. (1995) Biol. Cell 85(1):1-7) which can be prepared by methods well known to those skilled in the art.

[10923] The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapies techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.

[0924] The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder,

stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. *In vivo* muscle cells are particularly competent in their ability to take up and express polynucleotides.

[0925] For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.

10926] The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA.

[0927] Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.

[0928] After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supernatants from injected and control mice. The results of the above experimentation in mice can be use to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.

Example 19: Transgenic Animals

[0929] The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro-pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.

[0930] Any technique known in the art may be used to introduce the transgene (i.e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al., Appl. Microbiol. Biotechnol. 40:691-698 (1994); Carver et al., Biotechnology (NY) 11:1263-1270 (1993); Wright et al., Biotechnology (NY) 9:830-834 (1991); and Hoppe et al., U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci., USA 82:6148-6152

(1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al., Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al., Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol. 115:171-229 (1989), which is incorporated by reference herein in its entirety.

[0931] Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al., Nature 385:810-813 (1997)).

[0932] The present invention provides for transgenic animals that carry the transgene in all their cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al., Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al., Science 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.

[0933] Once transgenic animals have been generated, the expression of the

recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product.

[0934] Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.

[0935] Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 20: Knock-Out Animals

[0936] Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination. (*E.g.*, see Smithies et al., Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al., Cell 5:313-321 (1989); each of which is incorporated by

reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention *in vivo*. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site *in vivo* using appropriate viral vectors that will be apparent to those of skill in the art.

[0937] In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient in vivo. Such cells may be obtained from the patient (i.e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, liposomes, etc. The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally.

[0938] Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety).

[0939] When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.

[0940] Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.

Example 21: Assays Detecting Stimulation or Inhibition of B cell Proliferation and Differentiation

[0941] Generation of functional humoral immune responses requires both soluble and cognate signaling between B-lineage cells and their microenvironment. Signals may impart a positive stimulus that allows a B-lineage cell to continue its programmed development, or a negative stimulus that instructs the cell to arrest its current developmental pathway. To date, numerous stimulatory and inhibitory signals have been found to influence B cell responsiveness including IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-13, IL-14 and IL-15. Interestingly, these signals are by themselves weak effectors but can, in combination with various co-stimulatory proteins, induce activation, proliferation, differentiation, homing, tolerance and death among B cell populations.

[0942] One of the best studied classes of B-cell co-stimulatory proteins is the TNF-superfamily. Within this family CD40, CD27, and CD30 along with their respective

ligands CD154, CD70, and CD153 have been found to regulate a variety of immune responses. Assays which allow for the detection and/or observation of the proliferation and differentiation of these B-cell populations and their precursors are valuable tools in determining the effects various proteins may have on these B-cell populations in terms of proliferation and differentiation. Listed below are two assays designed to allow for the detection of the differentiation, proliferation, or inhibition of B-cell populations and their precursors.

In Vitro Assay- Agonists or antagonists of the invention can be assessed for its ability to induce activation, proliferation, differentiation or inhibition and/or death in B-cell populations and their precursors. The activity of the agonists or antagonists of the invention on purified human tonsillar B cells, measured qualitatively over the dose range from 0.1 to 10,000 ng/mL, is assessed in a standard B-lymphocyte co-stimulation assay in which purified tonsillar B cells are cultured in the presence of either formalin-fixed Staphylococcus aureus Cowan I (SAC) or immobilized anti-human IgM antibody as the priming agent. Second signals such as IL-2 and IL-15 synergize with SAC and IgM crosslinking to elicit B cell proliferation as measured by tritiated-thymidine incorporation. Novel synergizing agents can be readily identified using this assay. The assay involves isolating human tonsillar B cells by magnetic bead (MACS) depletion of CD3-positive cells. The resulting cell population is greater than 95% B cells as assessed by expression of CD45R(B220).

Various dilutions of each sample are placed into individual wells of a 96-well plate to which are added 10⁵ B-cells suspended in culture medium (RPMI 1640 containing 10% FBS, 5 X 10⁻⁵M 2ME, 100U/ml penicillin, 10ug/ml streptomycin, and 10⁻⁵ dilution of SAC) in a total volume of 150ul. Proliferation or inhibition is quantitated by a 20h pulse (1uCi/well) with 3H-thymidine (6.7 Ci/mM) beginning 72h post factor addition. The positive and negative controls are IL2 and medium respectively.

[0945] In Vivo Assay- BALB/c mice are injected (i.p.) twice per day with buffer only, or 2 mg/Kg of agonists or antagonists of the invention, or truncated forms thereof. Mice receive this treatment for 4 consecutive days, at which time they are sacrificed and various tissues and serum collected for analyses. Comparison of H&E sections from normal spleens and spleens treated with agonists or antagonists of the invention identify the results of the activity of the agonists or antagonists on spleen cells, such as the

diffusion of peri-arterial lymphatic sheaths, and/or significant increases in the nucleated cellularity of the red pulp regions, which may indicate the activation of the differentiation and proliferation of B-cell populations. Immunohistochemical studies using a B cell marker, anti-CD45R(B220), are used to determine whether any physiological changes to splenic cells, such as splenic disorganization, are due to increased B-cell representation within loosely defined B-cell zones that infiltrate established T-cell regions.

[0946] Flow cytometric analyses of the spleens from mice treated with agonist or antagonist is used to indicate whether the agonists or antagonists specifically increases the proportion of ThB+, CD45R(B220)dull B cells over that which is observed in control mice.

Likewise, a predicted consequence of increased mature B-cell representation in vivo is a relative increase in serum Ig titers. Accordingly, serum IgM and IgA levels are compared between buffer and agonists or antagonists-treated mice.

[0947] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 22: T Cell Proliferation Assay

IO948] A CD3-induced proliferation assay is performed on PBMCs and is measured by the uptake of ³H-thymidine. The assay is performed as follows. Ninety-six well plates are coated with 100 μl/well of mAb to CD3 (HIT3a, Pharmingen) or isotype-matched control mAb (B33.1) overnight at 4 degrees C (1 μg/ml in .05M bicarbonate buffer, pH 9.5), then washed three times with PBS. PBMC are isolated by F/H gradient centrifugation from human peripheral blood and added to quadruplicate wells (5 x 10⁴/well) of mAb coated plates in RPMI containing 10% FCS and P/S in the presence of varying concentrations of agonists or antagonists of the invention (total volume 200 ul). Relevant protein buffer and medium alone are controls. After 48 hr. culture at 37 degrees C, plates are spun for 2 min. at 1000 rpm and 100 μl of supernatant is removed and stored –20 degrees C for measurement of IL-2 (or other cytokines) if effect on proliferation is observed. Wells are supplemented with 100 ul of medium containing 0.5 uCi of ³H-

thymidine and cultured at 37 degrees C for 18-24 hr. Wells are harvested and incorporation of ³H-thymidine used as a measure of proliferation. Anti-CD3 alone is the positive control for proliferation. IL-2 (100 U/ml) is also used as a control which enhances proliferation. Control antibody which does not induce proliferation of T cells is used as the negative controls for the effects of agonists or antagonists of the invention.

[0949] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 23: Effect of Agonists or Antagonists of the Invention on the Expression of MHC Class II, Costimulatory and Adhesion Molecules and Cell Differentiation of Monocytes and Monocyte-Derived Human Dendritic Cells

10950] Dendritic cells are generated by the expansion of proliferating precursors found in the peripheral blood: adherent PBMC or elutriated monocytic fractions are cultured for 7-10 days with GM-CSF (50 ng/ml) and IL-4 (20 ng/ml). These dendritic cells have the characteristic phenotype of immature cells (expression of CD1, CD80, CD86, CD40 and MHC class II antigens). Treatment with activating factors, such as TNF- α , causes a rapid change in surface phenotype (increased expression of MHC class I and II, costimulatory and adhesion molecules, downregulation of FCγRII, upregulation of CD83). These changes correlate with increased antigen-presenting capacity and with functional maturation of the dendritic cells.

[0951] FACS analysis of surface antigens is performed as follows. Cells are treated 1-3 days with increasing concentrations of agonist or antagonist of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FTTC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).

[0952] <u>Effect on the production of cytokines</u>. Cytokines generated by dendritic cells, in particular IL-12, are important in the initiation of T-cell dependent immune

responses. IL-12 strongly influences the development of Thl helper T-cell immune response, and induces cytotoxic T and NK cell function. An ELISA is used to measure the IL-12 release as follows. Dendritic cells (106/ml) are treated with increasing concentrations of agonists or antagonists of the invention for 24 hours. LPS (100 ng/ml) is added to the cell culture as positive control. Supernatants from the cell cultures are then collected and analyzed for IL-12 content using commercial ELISA kit (e..g, R & D Systems (Minneapolis, MN)). The standard protocols provided with the kits are used.

[0953] Effect on the expression of MHC Class II, costimulatory and adhesion molecules. Three major families of cell surface antigens can be identified on monocytes: adhesion molecules, molecules involved in antigen presentation, and Fc receptor. Modulation of the expression of MHC class II antigens and other costimulatory molecules, such as B7 and ICAM-1, may result in changes in the antigen presenting capacity of monocytes and ability to induce T cell activation. Increase expression of Fc receptors may correlate with improved monocyte cytotoxic activity, cytokine release and phagocytosis.

[0954] FACS analysis is used to examine the surface antigens as follows. Monocytes are treated 1-5 days with increasing concentrations of agonists or antagonists of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).

[0955] Monocyte activation and/or increased survival. Assays for molecules that activate (or alternatively, inactivate) monocytes and/or increase monocyte survival (or alternatively, decrease monocyte survival) are known in the art and may routinely be applied to determine whether a molecule of the invention functions as an inhibitor or activator of monocytes. Agonists or antagonists of the invention can be screened using the three assays described below. For each of these assays, Peripheral blood mononuclear cells (PBMC) are purified from single donor leukopacks (American Red Cross, Baltimore, MD) by centrifugation through a Histopaque gradient (Sigma). Monocytes are isolated from PBMC by counterflow centrifugal elutriation.

progressively lose viability when cultured in absence of serum or other stimuli. Their death results from internally regulated process (apoptosis). Addition to the culture of activating factors, such as TNF-alpha dramatically improves cell survival and prevents DNA fragmentation. Propidium iodide (PI) staining is used to measure apoptosis as follows. Monocytes are cultured for 48 hours in polypropylene tubes in serum-free medium (positive control), in the presence of 100 ng/ml TNF-alpha (negative control), and in the presence of varying concentrations of the compound to be tested. Cells are suspended at a concentration of 2 x 106/ml in PBS containing PI at a final concentration of 5 µg/ml, and then incubaed at room temperature for 5 minutes before FACScan analysis. PI uptake has been demonstrated to correlate with DNA fragmentation in this experimental paradigm.

cvtokine release. important function [0957] Effect An monocytes/macrophages is their regulatory activity on other cellular populations of the immune system through the release of cytokines after stimulation. An ELISA to measure cytokine release is performed as follows. Human monocytes are incubated at a density of 5x10⁵ cells/ml with increasing concentrations of agonists or antagonists of the invention and under the same conditions, but in the absence of agonists or antagonists. For IL-12 production, the cells are primed overnight with IFN (100 U/ml) in presence of agonist or antagonist of the invention. LPS (10 ng/ml) is then added. Conditioned media are collected after 24h and kept frozen until use. Measurement of TNF-alpha, IL-10, MCP-1 and IL-8 is then performed using a commercially available ELISA kit (e. g, R & D Systems (Minneapolis, MN)) and applying the standard protocols provided with the kit.

[0958] Oxidative burst. Purified monocytes are plated in 96-w plate at 2-1x10⁵ cell/well. Increasing concentrations of agonists or antagonists of the invention are added to the wells in a total volume of 0.2 ml culture medium (RPMI 1640 + 10% FCS, glutamine and antibiotics). After 3 days incubation, the plates are centrifuged and the medium is removed from the wells. To the macrophage monolayers, 0.2 ml per well of phenol red solution (140 mM NaCl, 10 mM potassium phosphate buffer pH 7.0, 5.5 mM dextrose, 0.56 mM phenol red and 19 U/ml of HRPO) is added, together with the stimulant (200 nM

PMA). The plates are incubated at 37° C for 2 hours and the reaction is stopped by adding $20~\mu 1$ IN NaOH per well. The absorbance is read at 610~nm. To calculate the amount of H_2O_2 produced by the macrophages, a standard curve of a H_2O_2 solution of known molarity is performed for each experiment.

[10959] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 24: Biological Effects of Agonists or Antagonists of the Invention

Astrocyte and Neuronal Assays.

Agonists or antagonists of the invention, expressed in *Escherichia coli* and purified as described above, can be tested for activity in promoting the survival, neurite outgrowth, or phenotypic differentiation of cortical neuronal cells and for inducing the proliferation of glial fibrillary acidic protein immunopositive cells, astrocytes. The selection of cortical cells for the bioassay is based on the prevalent expression of FGF-1 and FGF-2 in cortical structures and on the previously reported enhancement of cortical neuronal survival resulting from FGF-2 treatment. A thymidine incorporation assay, for example, can be used to elucidate an agonist or antagonist of the invention's activity on these cells.

[0961] Moreover, previous reports describing the biological effects of FGF-2 (basic FGF) on cortical or hippocampal neurons *in vitro* have demonstrated increases in both neuron survival and neurite outgrowth (Walicke et al., "Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension." *Proc. Natl. Acad. Sci. USA 83*:3012-3016. (1986), assay herein incorporated by reference in its entirety). However, reports from experiments done on PC-12 cells suggest that these two responses are not necessarily synonymous and may depend on not only which FGF is being tested but also on which receptor(s) are expressed on the target cells. Using the primary cortical neuronal culture paradigm, the ability of an agonist or antagonist of the

invention to induce neurite outgrowth can be compared to the response achieved with FGF-2 using, for example, a thymidine incorporation assay.

Fibroblast and endothelial cell assays.

Human lung fibroblasts are obtained from Clonetics (San Diego, CA) and [0962] maintained in growth media from Clonetics. Dermal microvascular endothelial cells are obtained from Cell Applications (San Diego, CA). For proliferation assays, the human lung fibroblasts and dermal microvascular endothelial cells can be cultured at 5,000 cells/well in a 96-well plate for one day in growth medium. The cells are then incubated for one day in 0.1% BSA basal medium. After replacing the medium with fresh 0.1% BSA medium, the cells are incubated with the test proteins for 3 days. Alamar Blue (Alamar Biosciences, Sacramento, CA) is added to each well to a final concentration of 10%. The cells are incubated for 4 hr. Cell viability is measured by reading in a CytoFluor fluorescence reader. For the PGE2 assays, the human lung fibroblasts are cultured at 5.000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or agonists or antagonists of the invention with or without IL-1α for 24 hours. The supernatants are collected and assayed for PGE2 by EIA kit (Cayman, Ann Arbor, MI). For the IL-6 assays, the human lung fibroblasts are cultured at 5,000 cells/well in a 96-well plate for one day. After a medium change to 0.1% BSA basal medium, the cells are incubated with FGF-2 or with or without agonists or antagonists of the invention IL-1\alpha for 24 hours. The supernatants are collected and assayed for IL-6 by ELISA kit (Endogen, Cambridge, MA).

[0963] Human lung fibroblasts are cultured with FGF-2 or agonists or antagonists of the invention for 3 days in basal medium before the addition of Alamar Blue to assess effects on growth of the fibroblasts. FGF-2 should show a stimulation at 10 - 2500 ng/ml which can be used to compare stimulation with agonists or antagonists of the invention.

Parkinson Models.

[0964] The loss of motor function in Parkinson's disease is attributed to a deficiency of striatal dopamine resulting from the degeneration of the nigrostriatal

dopaminergic projection neurons. An animal model for Parkinson's that has been extensively characterized involves the systemic administration of 1-methyl-4 phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the CNS, MPTP is taken-up by astrocytes and catabolized by monoamine oxidase B to 1-methyl-4-phenyl pyridine (MPP*) and released. Subsequently, MPP* is actively accumulated in dopaminergic neurons by the high-affinity reuptake transporter for dopamine. MPP* is then concentrated in mitochondria by the electrochemical gradient and selectively inhibits nicotidamide adenine disphosphate: ubiquinone oxidoreductionase (complex I), thereby interfering with electron transport and eventually generating oxygen radicals.

[0965] It has been demonstrated in tissue culture paradigms that FGF-2 (basic FGF) has trophic activity towards nigral dopaminergic neurons (Ferrari et al., Dev. Biol. 1989). Recently, Dr. Unsicker's group has demonstrated that administering FGF-2 in gel foam implants in the striatum results in the near complete protection of nigral dopaminergic neurons from the toxicity associated with MPTP exposure (Otto and Unsicker, J. Neuroscience, 1990).

Based on the data with FGF-2, agonists or antagonists of the invention can be evaluated to determine whether it has an action similar to that of FGF-2 in enhancing dopaminergic neuronal survival *in vitro* and it can also be tested *in vivo* for protection of dopaminergic neurons in the striatum from the damage associated with MPTP treatment. The potential effect of an agonist or antagonist of the invention is first examined in vitro in a dopaminergic neuronal cell culture paradigm. The cultures are prepared by dissecting the midbrain floor plate from gestation day 14 Wistar rat embryos. The tissue is dissociated with trypsin and seeded at a density of 200,000 cells/cm² on polyorthinine-laminin coated glass coverslips. The cells are maintained in Dulbecco's Modified Eagle's medium and F12 medium containing hormonal supplements (N1). The cultures are fixed with paraformaldehyde after 8 days in vitro and are processed for tyrosine hydroxylase, a specific marker for dopminergic neurons, immunohistochemical staining. Dissociated cell cultures are prepared from embryonic rats. The culture medium is changed every third day and the factors are also added at that time.

[0967] Since the dopaminergic neurons are isolated from animals at gestation day 14, a developmental time which is past the stage when the dopaminergic precursor cells are proliferating, an increase in the number of tyrosine hydroxylase immunopositive

neurons would represent an increase in the number of dopaminergic neurons surviving in vitro. Therefore, if an agonist or antagonist of the invention acts to prolong the survival of dopaminergic neurons, it would suggest that the agonist or antagonist may be involved in Parkinson's Disease.

[0968] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 25: The Effect of Agonists or Antagonists of the Invention on the Growth of Vascular Endothelial Cells

[0969] On day 1, human umbilical vein endothelial cells (HUVEC) are seeded at 2-5x10⁴ cells/35 mm dish density in M199 medium containing 4% fetal bovine serum (FBS), 16 units/ml heparin, and 50 units/ml endothelial cell growth supplements (ECGS, Biotechnique, Inc.). On day 2, the medium is replaced with M199 containing 10% FBS, 8 units/ml heparin. An agonist or antagonist of the invention, and positive controls, such as VEGF and basic FGF (bFGF) are added, at varying concentrations. On days 4 and 6, the medium is replaced. On day 8, cell number is determined with a Coulter Counter.

[0970] An increase in the number of HUVEC cells indicates that the compound of the invention may proliferate vascular endothelial cells, while a decrease in the number of HUVEC cell indicates that the compound of the invention inhibits vascular endothelial cells.

[0971] The studies described in this example tested activity of a polypeptide of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), agonists, and/or antagonists of the invention.

Example 26: Rat Corneal Wound Healing Model

[0972] This animal model shows the effect of an agonist or antagonist of the

invention on neovascularization. The experimental protocol includes:

- a) Making a 1-1.5 mm long incision from the center of comea into the stromal layer.
- b) Inserting a spatula below the lip of the incision facing the outer corner of the eve.
 - Making a pocket (its base is 1-1.5 mm form the edge of the eye).
- d) Positioning a pellet, containing 50ng- 5ug of an agonist or antagonist of the invention, within the pocket.
- e) Treatment with an agonist or antagonist of the invention can also be applied topically to the corneal wounds in a dosage range of 20mg - 500mg (daily treatment for five days).

[0973] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 27: Diabetic Mouse and Glucocorticoid-Impaired Wound Healing Models

Diabetic db+/db+ Mouse Model.

[0974] To demonstrate that an agonist or antagonist of the invention accelerates the healing process, the genetically diabetic mouse model of wound healing is used. The full thickness wound healing model in the db+/db+ mouse is a well characterized, clinically relevant and reproducible model of impaired wound healing. Healing of the diabetic wound is dependent on formation of granulation tissue and re-epithelialization rather than contraction (Gartner, M.H. et al., J. Surg. Res. 52:389 (1992); Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)).

[0975] The diabetic animals have many of the characteristic features observed in Type II diabetes mellitus. Homozygous (db+/db+) mice are obese in comparison to their normal heterozygous (db+/+m) littermates. Mutant diabetic (db+/db+) mice have a single autosomal recessive mutation on chromosome 4 (db+) (Coleman et al. Proc. Natl. Acad. Sci. USA 77:283-293 (1982)). Animals show polyphagia, polydipsia and polyuria. Mutant diabetic mice (db+/db+) have elevated blood glucose, increased or normal insulin

levels, and suppressed cell-mediated immunity (Mandel et al., J. Immunol. 120:1375 (1978); Debray-Sachs, M. et al., Clin. Exp. Immunol. 51(1):1-7 (1983); Leiter et al., Am. J. of Pathol. 114:46-55 (1985)). Peripheral neuropathy, myocardial complications, and microvascular lesions, basement membrane thickening and glomerular filtration abnormalities have been described in these animals (Norido, F. et al., Exp. Neurol. 83(2):221-232 (1984); Robertson et al., Diabetes 29(1):60-67 (1980); Giacomelli et al., Lab Invest. 40(4):460-473 (1979); Coleman, D.L., Diabetes 31 (Suppl):1-6 (1982)). These homozygous diabetic mice develop hyperglycemia that is resistant to insulin analogous to human type II diabetes (Mandel et al., J. Immunol. 120:1375-1377 (1978)).

[0976] The characteristics observed in these animals suggests that healing in this model may be similar to the healing observed in human diabetes (Greenhalgh, et al., Am. J. of Pathol. 136:1235-1246 (1990)).

[0977] Genetically diabetic female C57BL/KsJ (db+/db+) mice and their non-diabetic (db+/+m) heterozygous littermates are used in this study (Jackson Laboratories). The animals are purchased at 6 weeks of age and are 8 weeks old at the beginning of the study. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. The experiments are conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.

[0978] Wounding protocol is performed according to previously reported methods (Tsuboi, R. and Rifkin, D.B., *J. Exp. Med. 172*:245-251 (1990)). Briefly, on the day of wounding, animals are anesthetized with an intraperitoneal injection of Avertin (0.01 mg/mL), 2,2,2-tribromoethanol and 2-methyl-2-butanol dissolved in deionized water. The dorsal region of the animal is shaved and the skin washed with 70% ethanol solution and iodine. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full-thickness wound is then created using a Keyes tissue punch. Immediately following wounding, the surrounding skin is gently stretched to eliminate wound expansion. The wounds are left open for the duration of the experiment. Application of the treatment is given topically for 5 consecutive days commencing on the day of wounding. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.

[0979] Wounds are visually examined and photographed at a fixed distance at the

day of surgery and at two day intervals thereafter. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.

[0980] An agonist or antagonist of the invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.

[0981] Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for histology and immunohistochemistry. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.

Three groups of 10 animals each (5 diabetic and 5 non-diabetic controls) are evaluated: 1) Vehicle placebo control, 2) untreated group, and 3) treated group.

Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total square area of the wound. Contraction is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 is 64mm², the corresponding size of the dermal punch. Calculations are made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

Specimens are fixed in 10% buffered formalin and paraffin embedded blocks are sectioned perpendicular to the wound surface (5mm) and cut using a Reichert-Jung microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of bisected wounds. Histologic examination of the wounds are used to assess whether the healing process and the morphologic appearance of the repaired skin is altered by treatment with an agonist or antagonist of the invention. This assessment included verification of the presence of cell accumulation, inflammatory cells, capillaries, fibroblasts, re-epithelialization and epidermal maturity (Greenhalgh, D.G. et al., Am. J. Pathol. 136:1235 (1990)). A calibrated lens micrometer is used by a blinded observer.

[0982] Tissue sections are also stained immunohistochemically with a polyclonal rabbit anti-human keratin antibody using ABC Elite detection system. Human skin is used

as a positive tissue control while non-immune IgG is used as a negative control. Keratinocyte growth is determined by evaluating the extent of reepithelialization of the wound using a calibrated lens micrometer.

[0983] Proliferating cell nuclear antigen/cyclin (PCNA) in skin specimens is demonstrated by using anti-PCNA antibody (1:50) with an ABC Elite detection system. Human colon cancer served as a positive tissue control and human brain tissue is used as a negative tissue control. Each specimen included a section with omission of the primary antibody and substitution with non-immune mouse IgG. Ranking of these sections is based on the extent of proliferation on a scale of 0-8, the lower side of the scale reflecting slight proliferation to the higher side reflecting intense proliferation.

[0984] Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant.

B. Steroid Impaired Rat Model

The inhibition of wound healing by steroids has been well documented in [0985] various in vitro and in vivo systems (Wahl, Glucocorticoids and Wound healing. In: Anti-Inflammatory Steroid Action: Basic and Clinical Aspects. 280-302 (1989); Wahlet al., J. Immunol. 115; 476-481 (1975); Werb et al., J. Exp. Med. 147:1684-1694 (1978)). Glucocorticoids retard wound healing by inhibiting angiogenesis, decreasing vascular permeability (Ebert et al., An. Intern. Med. 37:701-705 (1952)), fibroblast proliferation, and collagen synthesis (Beck et al., Growth Factors. 5: 295-304 (1991); Haynes et al., J. Clin. Invest. 61: 703-797 (1978)) and producing a transient reduction of circulating monocytes (Haynes et al., J. Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects, Academic Press, New York, pp. 280-302 (1989)). The systemic administration of steroids to impaired wound healing is a well establish phenomenon in rats (Beck et al., Growth Factors. 5: 295-304 (1991); Haynes et al., J. Clin. Invest. 61: 703-797 (1978); Wahl, "Glucocorticoids and wound healing", In: Antiinflammatory Steroid Action: Basic and Clinical Aspects, Academic Press, New York, pp. 280-302 (1989); Pierce et al., Proc. Natl. Acad. Sci. USA 86: 2229-2233 (1989)).

[0986] To demonstrate that an agonist or antagonist of the invention can accelerate the healing process, the effects of multiple topical applications of the agonist or

antagonist on full thickness excisional skin wounds in rats in which healing has been impaired by the systemic administration of methylprednisolone is assessed.

[0987] Young adult male Sprague Dawley rats weighing 250-300 g (Charles River Laboratories) are used in this example. The animals are purchased at 8 weeks of age and are 9 weeks old at the beginning of the study. The healing response of rats is impaired by the systemic administration of methylprednisolone (17mg/kg/rat intramuscularly) at the time of wounding. Animals are individually housed and received food and water ad libitum. All manipulations are performed using aseptic techniques. This study is conducted according to the rules and guidelines of Human Genome Sciences, Inc. Institutional Animal Care and Use Committee and the Guidelines for the Care and Use of Laboratory Animals.

[0988] The wounding protocol is followed according to section A, above. On the day of wounding, animals are anesthetized with an intramuscular injection of ketamine (50 mg/kg) and xylazine (5 mg/kg). The dorsal region of the animal is shaved and the skin washed with 70% ethanol and iodine solutions. The surgical area is dried with sterile gauze prior to wounding. An 8 mm full-thickness wound is created using a Keyes tissue punch. The wounds are left open for the duration of the experiment. Applications of the testing materials are given topically once a day for 7 consecutive days commencing on the day of wounding and subsequent to methylprednisolone administration. Prior to treatment, wounds are gently cleansed with sterile saline and gauze sponges.

[0989] Wounds are visually examined and photographed at a fixed distance at the day of wounding and at the end of treatment. Wound closure is determined by daily measurement on days 1-5 and on day 8. Wounds are measured horizontally and vertically using a calibrated Jameson caliper. Wounds are considered healed if granulation tissue is no longer visible and the wound is covered by a continuous epithelium.

[0990] The agonist or antagonist of the invention is administered using at a range different doses, from 4mg to 500mg per wound per day for 8 days in vehicle. Vehicle control groups received 50mL of vehicle solution.

[0991] Animals are euthanized on day 8 with an intraperitoneal injection of sodium pentobarbital (300mg/kg). The wounds and surrounding skin are then harvested for histology. Tissue specimens are placed in 10% neutral buffered formalin in tissue cassettes between biopsy sponges for further processing.

[0992] Four groups of 10 animals each (5 with methylprednisolone and 5 without glucocorticoid) are evaluated: 1) Untreated group 2) Vehicle placebo control 3) treated groups.

[0993] Wound closure is analyzed by measuring the area in the vertical and horizontal axis and obtaining the total area of the wound. Closure is then estimated by establishing the differences between the initial wound area (day 0) and that of post treatment (day 8). The wound area on day 1 is 64mm², the corresponding size of the dermal punch. Calculations are made using the following formula:

[Open area on day 8] - [Open area on day 1] / [Open area on day 1]

Specimens are fixed in 10% buffered formalin and paraffin embedded blocks are sectioned perpendicular to the wound surface (5mm) and cut using an Olympus microtome. Routine hematoxylin-eosin (H&E) staining is performed on cross-sections of bisected wounds. Histologic examination of the wounds allows assessment of whether the healing process and the morphologic appearance of the repaired skin is improved by treatment with an agonist or antagonist of the invention. A calibrated lens micrometer is used by a blinded observer to determine the distance of the wound gap.

[0994] Experimental data are analyzed using an unpaired t test. A p value of < 0.05 is considered significant

[0995] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 28: Lymphadema Animal Model

The purpose of this experimental approach is to create an appropriate and consistent lymphedema model for testing the therapeutic effects of an agonist or antagonist of the invention in lymphangiogenesis and re-establishment of the lymphatic circulatory system in the rat hind limb. Effectiveness is measured by swelling volume of the affected limb, quantification of the amount of lymphatic vasculature, total blood

plasma protein, and histopathology. Acute lymphedema is observed for 7-10 days. Perhaps more importantly, the chronic progress of the edema is followed for up to 3-4 weeks.

[0997] Prior to beginning surgery, blood sample is drawn for protein concentration analysis. Male rats weighing approximately ~350g are dosed with Pentobarbital. Subsequently, the right legs are shaved from knee to hip. The shaved area is swabbed with gauze soaked in 70% EtOH. Blood is drawn for serum total protein testing. Circumference and volumetric measurements are made prior to injecting dye into paws after marking 2 measurement levels (0.5 cm above heel, at mid-pt of dorsal paw). The intradermal dorsum of both right and left paws are injected with 0.05 ml of 1% Evan's Blue. Circumference and volumetric measurements are then made following injection of dye into paws.

[0998] Using the knee joint as a landmark, a mid-leg inguinal incision is made circumferentially allowing the femoral vessels to be located. Forceps and hemostats are used to dissect and separate the skin flaps. After locating the femoral vessels, the lymphatic vessel that runs along side and underneath the vessel(s) is located. The main lymphatic vessels in this area are then electrically coagulated or suture ligated.

[0999] Using a microscope, muscles in back of the leg (near the semitendinosis and adductors) are bluntly dissected. The popliteal lymph node is then located. The 2 proximal and 2 distal lymphatic vessels and distal blood supply of the popliteal node are then and ligated by suturing. The popliteal lymph node, and any accompanying adipose tissue, is then removed by cutting connective tissues.

[1000] Care is taken to control any mild bleeding resulting from this procedure. After lymphatics are occluded, the skin flaps are sealed by using liquid skin (Vetbond) (AJ Buck). The separated skin edges are sealed to the underlying muscle tissue while leaving a gap of ~0.5 cm around the leg. Skin also may be anchored by suturing to underlying muscle when necessary.

[1001] To avoid infection, animals are housed individually with mesh (no bedding). Recovering animals are checked daily through the optimal edematous peak, which typically occurred by day 5-7. The plateau edematous peak are then observed. To evaluate the intensity of the lymphedema, the circumference and volumes of 2 designated places on each paw before operation and daily for 7 days are measured. The effect plasma

proteins on lymphedema is determined and whether protein analysis is a useful testing perimeter is also investigated. The weights of both control and edematous limbs are evaluated at 2 places. Analysis is performed in a blind manner.

[1002] Circumference Measurements: Under brief gas anesthetic to prevent limb movement, a cloth tape is used to measure limb circumference. Measurements are done at the ankle bone and dorsal paw by 2 different people then those 2 readings are averaged. Readings are taken from both control and edematous limbs.

[1003] Volumetric Measurements: On the day of surgery, animals are anesthetized with Pentobarbital and are tested prior to surgery. For daily volumetrics animals are under brief halothane anesthetic (rapid immobilization and quick recovery), both legs are shaved and equally marked using waterproof marker on legs. Legs are first dipped in water, then dipped into instrument to each marked level then measured by Buxco edema software(Chen/Victor). Data is recorded by one person, while the other is dipping the limb to marked area.

[1004] Blood-plasma protein measurements: Blood is drawn, spun, and serum separated prior to surgery and then at conclusion for total protein and Ca2+ comparison.

[1005] Limb Weight Comparison: After drawing blood, the animal is prepared for tissue collection. The limbs are amputated using a quillitine, then both experimental and control legs are cut at the ligature and weighed. A second weighing is done as the tibiocacaneal joint is disarticulated and the foot is weighed.

[1006] Histological Preparations: The transverse muscle located behind the knee (popliteal) area is dissected and arranged in a metal mold, filled with freezeGel, dipped into cold methylbutane, placed into labeled sample bags at - 80EC until sectioning. Upon sectioning, the muscle is observed under fluorescent microscopy for lymphatics.

[1007] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 29: Suppression of TNF alpha-induced adhesion molecule expression by a Agonist or Antagonist of the Invention

[1008] The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.

[1009] Tumor necrosis factor alpha (TNF-a), a potent proinflammatory cytokine, is a stimulator of all three CAMs on endothelial cells and may be involved in a wide variety of inflammatory responses, often resulting in a pathological outcome.

[1010] The potential of an agonist or antagonist of the invention to mediate a suppression of TNF-a induced CAM expression can be examined. A modified ELISA assay which uses ECs as a solid phase absorbent is employed to measure the amount of CAM expression on TNF-a treated ECs when co-stimulated with a member of the FGF family of proteins.

[1011] To perform the experiment, human umbilical vein endothelial cell (HUVEC) cultures are obtained from pooled cord harvests and maintained in growth medium (EGM-2; Clonetics, San Diego, CA) supplemented with 10% FCS and 1% penicillin/streptomycin in a 37 degree C humidified incubator containing 5% CO₂. HUVECs are seeded in 96-well plates at concentrations of 1×10^4 cells/well in EGM medium at 37 degree C for 18-24 hrs or until confluent. The monolayers are subsequently washed 3 times with a serum-free solution of RPMI-1640 supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin, and treated with a given cytokine and/or growth factor(s) for 24 h at 37 degree C. Following incubation, the cells are then evaluated for CAM expression.

[1012] Human Umbilical Vein Endothelial cells (HUVECs) are grown in a standard 96 well plate to confluence. Growth medium is removed from the cells and replaced with 90 ul of 199 Medium (10% FBS). Samples for testing and positive or

negative controls are added to the plate in triplicate (in 10 ul volumes). Plates are incubated at 37 degree C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μ l of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min

[1013] Fixative is then removed from the wells and wells are washed 1X with PBS(+Ca,Mg)+0.5% BSA and drained. Do not allow the wells to dry. Add 10 μ l of diluted primary antibody to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μ g/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA.

filling the add 20 μ l of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution) to each well and incubated at 37°C for 30 min. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA. 1 tablet of p-Nitrophenol Phosphate pNPP is dissolved in 5 ml of glycine buffer (pH 10.4). 100 μ l of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10^{0}) > $10^{-0.5}$ > 10^{-1} > 10^{-15} . 5 μ l of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100μ l of pNNP reagent must then be added to each of the standard wells. The plate must be incubated at 37°C for 4h. A volume of 50 μ l of 3M NaOH is added to all wells. The results are quantified on a plate reader at 405 nm. The background subtraction option is used on blank wells filled with glycine buffer only. The template is set up to indicate the concentration of AP-conjugate in each standard well [5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

[1015] The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).

Example 30: Production Of Polypeptide of the Invention For High-Throughput Screening Assays

[1016] The following protocol produces a supernatant containing polypeptide of the present invention to be tested. This supernatant can then be used in the Screening Assays described in Examples 32-41.

[1017] First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (Img/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

[1018] Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

[1019] The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8-10, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degree C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in [1021]DMEM with 1x penstrep, or HGS CHO-5 media (116.6 mg/L of CaCl2 (anhyd); 0.00130 mg/L CuSO₄-5H₂O; 0.050 mg/L of Fe(NO₃)₃-9H₂O; 0.417 mg/L of FeSO₄-7H₂O; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl2; 48.84 mg/L of MgSO4; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHCO3; 62.50 mg/L of NaH2PO4-H20; 71.02 mg/L of Na2HPO4; .4320 mg/L of ZnSO4-7H2O; .002 mg/L of Arachidonic Acid; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine: 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine-H₂0; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H₂0; 31.29 mg/ml of L-Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H20; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg/ml of L-Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H20; and 99.65 mg/ml of L-Valine; 0.0035 mg/L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg/L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-Inositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg/L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; 0.680 mg/L of Vitamin B₁₂; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal Acetate. Adjust osmolarity to 327 mOsm) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

[1022] The transfection reaction is terminated, preferably by tag-teaming, at the

end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37 degree C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

[1023] On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 32-39.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide of the present invention directly (e.g., as a secreted protein) or by polypeptide of the present invention inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

Example 31: Construction of GAS Reporter Construct

[1025] One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

[1026] GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in Thelper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

[1027] The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are

generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Damell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:1882)).

[1029] Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

		JAKs XXX		STATS GAS(elements) or ISRE			
Ligand	tyk2	<u>Jak l</u>	Jak2	Jak3			
IFN family							
IFN-a/B	+	+	-	-	1,2,3	ISRE	
IFN-g		+	+	-	1	GAS (IRF1>Lys6>IFP)	
II-10	+	?	?	-	1,3		
gp130 family							
IL-6 (Pleiotrohic)	+	+	+	?	1,3	GAS (IRF1>Lys6>IFP)	
Il-11(Pleiotrohic)	?	+	?	?	1,3		
OnM(Pleiotrohic)	?	+	+	?	1,3		
LIF(Pleiotrohic)	?	+	+	?	1,3		
CNTF(Pleiotrohic)	-/+	+	+	?	1,3		
G-CSF(Pleiotrohic)	?	+	?	?	1,3		
IL-12(Pleiotrohic)	+	-	+	+	1,3		
g-C family							
IL-2 (lymphocytes)	-	+	-	+	1,3,5	GAS	
IL-4 (lymph/myeloid)	-	+	-	+	6	GAS ($IRF1 = IFP$	
>>Ly6)(IgH)							
IL-7 (lymphocytes)	-	+	-	+	5	GAS	
IL-9 (lymphocytes)	-	+	-	+	5	GAS	
IL-13 (lymphocyte)	-	+	?	?	6	GAS	
IL-15	?	+	?	+	5	GAS	
gp140 family							
IL-3 (myeloid)	-	-	+	-	5	GAS (IRF1>IFP>>Ly6)	
IL-5 (myeloid)	**	-	+	-	5	GAS	
GM-CSF (myeloid)	-	-	+	-	5	GAS	
Growth hormone family							
GH	?	-	+	-	5		
PRL	?	+/-	+	-	1,3,5		
EPO	?	-	+	-	5	GAS(B-	
CAS>IRF1=IFP>>Ly	6)						
Receptor Tyrosine Kinases							
EGF	?	+	+	_	1,3	GAS (IRF1)	
PDGF	?	+	+	_	1,3	5.15 (Hd 1)	
CSF-1	?	+	+	-	1,3	GAS (not IRF1)	
CO1 -1					* , ~	OIN (MOUNT I)	

[1031] To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 32-33, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is:

5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAA ATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO:1883).

[1032] The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:1884).

[1033] PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGA TTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTA ACTCCGCCCATCCCGCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCAT GGCTGACTAATTTTTTTATTTATTCAGAGAGGCCGAGGCCGCCTCGGCCTCTGAG CTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAA GCTT:3' (SEO ID NO:1885).

[1034] With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenical acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

[1035] The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and

XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using SalI and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 32-33.

GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 34 and 35. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 32: High-Throughput Screening Assay for T-cell Activity.

I1038] The following protocol is used to assess T-cell activity by identifying factors, and determining whether supernate containing a polypeptide of the invention proliferates and/or differentiates T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 31. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

[1039] Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to

generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

[1040] Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

[1041] During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37 degree C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

[1042] The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing polypeptide of the present invention or polypeptide of the present invention induced polypeptides as produced by the protocol described in Example 30.

[1043] On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

[1045] After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng)

is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20 degree C until SEAP assays are performed according to Example 36. The plates containing the remaining treated cells are placed at 4 degree C and serve as a source of material for repeating the assay on a specific well if desired.

[1047] As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

[1048] The above protocol may be used in the generation of both transient, as well as, stable transfected cells, which would be apparent to those of skill in the art.

Example 33: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity of polypeptide of the present invention by determining whether polypeptide of the present invention proliferates and/or differentiates myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 31. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KGI can be used.

[1050] To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 31, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest $2x10e^7$ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

[1051] Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37

degrees C for 45 min.

[1052] Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37 degree C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

[1053] These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

[1054] Add 50 ul of the supernatant prepared by the protocol described in Example 30. Incubate at 37 degee C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 36.

Example 34: High-Throughput Screening Assay Identifying Neuronal Activity.

[1055] When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed by polypeptide of the present invention.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells by polypeptide of the present invention can be assessed.

[1057] The EGR/SEAP reporter construct can be assembled by the following

protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO: 1886)

and

5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO: 1887).

[1058] Using the GAS:SEAP/Neo vector produced in Example 31, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes Xhol/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

[1059] To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

[1060] PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 30. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

[1062] To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

[1063] The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium.

Count the cell number and add more low serum medium to reach final cell density as 5×10^5 cells/ml

[1064] Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1x10⁵ cells/well). Add 50 ul supernatant produced by Example 30, 37 degree C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 36.

Example 35: High-Throughput Screening Assay for T-cell Activity

[1065] NF-KB (Nuclear Factor KB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-KB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- KB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

[1066] In non-stimulated conditions, NF- KB is retained in the cytoplasm with I-KB (Inhibitor KB). However, upon stimulation, I- KB is phosphorylated and degraded, causing NF- KB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- KB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

[1067] Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-KB promoter element are used to screen the supernatants produced in Example 30. Activators or inhibitors of NF-KB would be useful in treating, preventing, and/or diagnosing diseases. For example, inhibitors of NF-KB could be used to treat those diseases related to the acute or chronic activation of NF-KB, such as rheumatoid arthritis.

[1068] To construct a vector containing the NF-KB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-KB binding site (GGGGACTTTCCC) (SEQ ID NO:1888), 18 bp of sequence

complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site:

5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTT CCATCCTGCCATCTCAATTAG:3' (SEQ ID NO:1889).

[1069] The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:1884).

[1070] PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGGACTTTCCCGGGGACTTTCCGGGACTTTCCATC TGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCCATCCC GCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTT TTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGT AGTGAGGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT:3' (SEQ ID NO:1890).

[1071] Next, replace the SV40 minimal promoter element present in the pSEAP2promoter plasmid (Clontech) with this NF-KB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

[1072] In order to generate stable mammalian cell lines, the NF-KB/SV40/SEAP cassette is removed from the above NF-KB/SEAP vector using restriction enzymes SalI and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-KB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

[1073] Once NF-KB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 32. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 32. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 36: Assay for SEAP Activity

[1074] As a reporter molecule for the assays described in Examples 32-35, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

[1075] Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

[1077] Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Buffer Formulation:

# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
5	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25

20	110	5.5
21	115	5.75
22	120	6
23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 37: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

[1078] Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane

potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

[1079] The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here.

[1080] For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO_2 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

[1081] A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4,50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37 degrees C in a CO₂ incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to $2\text{-}5x10^6$ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degrees C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to $1x10^6$ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley Cell Wash with 200 ul, followed by an aspiration step to 100 ul final volume.

 $\hbox{\bf [1083]} \qquad \hbox{For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4} \ . \ \ \hbox{The supernatant is added to the well, and a change in fluorescence is detected.}$

11084] To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event caused by the a molecule, either polypeptide of the present invention or a

molecule induced by polypeptide of the present invention, which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

Example 38: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

[1085] The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

[1086] Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

[1087] Because of the wide range of known factors capable of stimulating tyrosine kinase activity, identifying whether polypeptide of the present invention or a molecule induced by polypeptide of the present invention is capable of activating tyrosine kinase signal transduction pathways is of interest. Therefore, the following protocol is designed to identify such molecules capable of activating the tyrosine kinase signal transduction pathways.

[1088] Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with

PBS and stored at 4 degree C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 30, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4 degree C at 16,000 x g.

[1090] Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

[1091] Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

[1092] The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM

ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degree C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

[1093] The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degree C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degree C for one hour. Wash the well as above.

[1095] Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 39: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 38, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

[1097] Specifically, assay plates are made by coating the wells of a 96-well ELISA

plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degree C until use.

[1098] A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 30 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation by polypeptide of the present invention or a molecule induced by polypeptide of the present invention.

Example 40: Assay for the Stimulation of Bone Marrow CD34+ Cell Proliferation

[1100] This assay is based on the ability of human CD34+ to proliferate in the presence of hematopoietic growth factors and evaluates the ability of isolated polypeptides expressed in mammalian cells to stimulate proliferation of CD34+ cells.

[1101] It has been previously shown that most mature precursors will respond to only a single signal. More immature precursors require at least two signals to respond. Therefore, to test the effect of polypeptides on hematopoietic activity of a wide range of progenitor cells, the assay contains a given polypeptide in the presence or absence of other

hematopoietic growth factors. Isolated cells are cultured for 5 days in the presence of Stem Cell Factor (SCF) in combination with tested sample. SCF alone has a very limited effect on the proliferation of bone marrow (BM) cells, acting in such conditions only as a "survival" factor. However, combined with any factor exhibiting stimulatory effect on these cells (e.g., IL-3), SCF will cause a synergistic effect. Therefore, if the tested polypeptide has a stimulatory effect on a hematopoietic progenitors, such activity can be easily detected. Since normal BM cells have a low level of cycling cells, it is likely that any inhibitory effect of a given polypeptide, or agonists or antagonists thereof, might not be detected. Accordingly, assays for an inhibitory effect on progenitors is preferably tested in cells that are first subjected to *in vitro* stimulation with SCF+IL+3, and then contacted with the compound that is being evaluated for inhibition of such induced proliferation.

Briefly, CD34+ cells are isolated using methods known in the art. The cells are thawed and resuspended in medium (QBSF 60 serum-free medium with 1% L-glutamine (500ml) Quality Biological, Inc., Gaithersburg, MD Cat# 160-204-101). After several gentle centrifugation steps at 200 x g, cells are allowed to rest for one hour. The cell count is adjusted to 2.5 x 10^5 cells/ml. During this time, $100 \mu l$ of sterile water is added to the peripheral wells of a 96-well plate. The cytokines that can be tested with a given polypeptide in this assay is rhSCF (R&D Systems, Minneapolis, MN, Cat# 255-SC) at 50 ng/ml alone and in combination with rhSCF and rhIL-3 (R&D Systems, Minneapolis, MN, Cat# 203-ML) at 30 ng/ml. After one hour, $10 \mu l$ of prepared cytokines, $50 \mu l$ of the supernatants prepared in Example 30 (supernatants at 1:2 dilution = $50 \mu l$) and $20 \mu l$ of diluted cells are added to the media which is already present in the wells to allow for a final total volume of $100 \mu l$. The plates are then placed in a 37° C/5% CO₂ incubator for five days.

[1103] Eighteen hours before the assay is harvested, 0.5 μ Ci/well of [3H] Thymidine is added in a 10 μ l volume to each well to determine the proliferation rate. The experiment is terminated by harvesting the cells from each 96-well plate to a filtermat using the Tomtec Harvester 96. After harvesting, the filtermats are dried, trimmed and placed into OmniFilter assemblies consisting of one OmniFilter plate and one OmniFilter Tray. 60 μ l Microscint is added to each well and the plate sealed with TopSeal-A press-on

sealing film A bar code 15 sticker is affixed to the first plate for counting. The sealed plates is then loaded and the level of radioactivity determined via the Packard Top Count and the printed data collected for analysis. The level of radioactivity reflects the amount of cell proliferation.

The studies described in this example test the activity of a given polypeptide to stimulate bone marrow CD34+ cell proliferation. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof. As a nonlimiting example, potential antagonists tested in this assay would be expected to inhibit cell proliferation in the presence of cytokines and/or to increase the inhibition of cell proliferation in the presence of cytokines and a given polypeptide. In contrast, potential agonists tested in this assay would be expected to enhance cell proliferation and/or to decrease the inhibition of cell proliferation in the presence of cytokines and a given polypeptide.

[1105] The ability of a gene to stimulate the proliferation of bone marrow CD34+ cells indicates that polynucleotides and polypeptides corresponding to the gene are useful for the diagnosis and treatment of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein.

Example 41: Assay for Extracellular Matrix Enhanced Cell Response (EMECR)

[1106] The objective of the Extracellular Matrix Enhanced Cell Response (EMECR) assay is to identify gene products (e.g., isolated polypeptides) that act on the hematopoietic stem cells in the context of the extracellular matrix (ECM) induced signal.

Cells respond to the regulatory factors in the context of signal(s) received from the surrounding microenvironment. For example, fibroblasts, and endothelial and epithelial stem cells fail to replicate in the absence of signals from the ECM. Hematopoietic stem cells can undergo self-renewal in the bone marrow, but not in *in vitro* suspension culture. The ability of stem cells to undergo self-renewal *in vitro* is dependent upon their interaction with the stromal cells and the ECM protein fibronectin (fn). Adhesion of cells to fn is mediated by the α_5 , β_1 and α_4 , β_1 integrin receptors, which are

expressed by human and mouse hematopoietic stem cells. The factor(s) which integrate with the ECM environment and responsible for stimulating stem cell self-renewal has not yet been identified. Discovery of such factors should be of great interest in gene therapy and bone marrow transplant applications

Briefly, polystyrene, non tissue culture treated, 96-well plates are coated F11081 with fn fragment at a coating concentration of 0.2 µg/ cm². Mouse bone marrow cells are plated (1,000 cells/well) in 0.2 ml of serum-free medium. Cells cultured in the presence of IL-3 (5 ng/ml) + SCF (50 ng/ml) would serve as the positive control, conditions under which little self-renewal but pronounced differentiation of the stem cells is to be Gene products of the invention (e.g., including, but not limited to, polynucleotides and polypeptides of the present invention, and supernatants produced in Example 30), are tested with appropriate negative controls in the presence and absence of SCF(5.0 ng/ml), where test factor supernates represent 10% of the total assay volume. The plated cells are then allowed to grow by incubating in a low oxygen environment (5% CO₂, 7% O₂, and 88% N₂) tissue culture incubator for 7 days. The number of proliferating cells within the wells is then quantitated by measuring thymidine incorporation into cellular DNA. Verification of the positive hits in the assay will require phenotypic characterization of the cells, which can be accomplished by scaling up of the culture system and using appropriate antibody reagents against cell surface antigens and FACScan.

[1109] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

[1110] If a particular polypeptide of the present invention is found to be a stimulator of hematopoietic progenitors, polynucleotides and polypeptides corresponding to the gene encoding said polypeptide may be useful for the diagnosis and treatment of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein. The gene product may also be useful in the expansion of stem cells and committed progenitors of various blood lineages, and in the differentiation and/or proliferation of various cell types.

[1111] Additionally, the polynucleotides and/or polypeptides of the gene of

interest and/or agonists and/or antagonists thereof, may also be employed to inhibit the proliferation and differentiation of hematopoietic cells and therefore may be employed to protect bone marrow stem cells from chemotherapeutic agents during chemotherapy. This antiproliferative effect may allow administration of higher doses of chemotherapeutic agents and, therefore, more effective chemotherapeutic treatment.

[1112] Moreover, polynucleotides and polypeptides corresponding to the gene of interest may also be useful for the treatment and diagnosis of hematopoietic related disorders such as, for example, anemia, pancytopenia, leukopenia, thrombocytopenia or leukemia since stromal cells are important in the production of cells of hematopoietic lineages. The uses include bone marrow cell ex-vivo culture, bone marrow transplantation, bone marrow reconstitution, radiotherapy or chemotherapy of neoplasia.

Example 42: Human Dermal Fibroblast and Aortic Smooth Muscle Cell Proliferation

[1113] The polypeptide of interest is added to cultures of normal human dermal fibroblasts (NHDF) and human aortic smooth muscle cells (AoSMC) and two co-assays are performed with each sample. The first assay examines the effect of the polypeptide of interest on the proliferation of normal human dermal fibroblasts (NHDF) or aortic smooth muscle cells (AoSMC). Aberrant growth of fibroblasts or smooth muscle cells is a part of several pathological processes, including fibrosis, and restenosis. The second assay examines IL6 production by both NHDF and SMC. IL6 production is an indication of functional activation. Activated cells will have increased production of a number of cytokines and other factors, which can result in a proinflammatory or immunomodulatory outcome. Assays are run with and without co-TNFa stimulation, in order to check for costimulatory or inhibitory activity.

[1114] Briefly, on day 1, 96-well black plates are set up with 1000 cells/well (NHDF) or 2000 cells/well (AoSMC) in 100 µl culture media. NHDF culture media contains: Clonetics FB basal media, 1mg/ml hFGF, 5mg/ml insulin, 50mg/ml gentamycin, 2%FBS, while AoSMC culture media contains Clonetics SM basal media, 0.5 µg/ml hEGF, 5mg/ml insulin, 1µg/ml hFGF, 50mg/ml gentamycin, 50 µg/ml Amphotericin B, 5%FBS. After incubation at 37°C for at least 4-5 hours, culture media is aspirated and replaced with growth arrest media. Growth arrest media for NHDF contains fibroblast

basal media, 50mg/ml gentamycin, 2% FBS, while growth arrest media for AoSMC contains SM basal media, 50mg/ml gentamycin, $50\mu g/ml$ Amphotericin B, 0.4% FBS. Incubate at 37° C until day 2.

[1115] On day 2, serial dilutions and templates of the polypeptide of interest are designed such that they always include media controls and known-protein controls. For both stimulation and inhibition experiments, proteins are diluted in growth arrest media. For inhibition experiments, TNFa is added to a final concentration of 2ng/ml (NHDF) or 5ng/ml (AoSMC). Add 1/3 vol media containing controls or polypeptides of the present invention and incubate at 37°C/5% CO₂ until day 5.

Transfer 60μ l from each well to another labeled 96-well plate, cover with a plate-sealer, and store at 4° C until Day 6 (for IL6 ELISA). To the remaining 100μ l in the cell culture plate, aseptically add Alamar Blue in an amount equal to 10% of the culture volume (10μ l). Return plates to incubator for 3 to 4 hours. Then measure fluorescence with excitation at 530nm and emission at 590nm using the CytoFluor. This yields the growth stimulation/inhibition data.

[1117] On day 5, the IL6 ELISA is performed by coating a 96 well plate with 50-100 ul/well of Anti-Human IL6 Monoclonal antibody diluted in PBS, pH 7.4, incubate ON at room temperature.

I118] On day 6, empty the plates into the sink and blot on paper towels. Prepare Assay Buffer containing PBS with 4% BSA. Block the plates with 200 μl/well of Pierce Super Block blocking buffer in PBS for 1-2 hr and then wash plates with wash buffer (PBS, 0.05% Tween-20). Blot plates on paper towels. Then add 50 μl/well of diluted Anti-Human IL-6 Monoclonal, Biotin-labeled antibody at 0.50 mg/ml. Make dilutions of IL-6 stock in media (30, 10, 3, 1, 0.3, 0 ng/ml). Add duplicate samples to top row of plate. Cover the plates and incubate for 2 hours at RT on shaker. Plates are washed with wash buffer and blotted on paper towels. Dilute EU-labeled Streptavidin 1:1000 in Assay buffer, and add 100 μl/well. Cover the plate and incubate 1 h at RT. Plates are again washed with wash buffer and blotted on paper towels. Add 100 μl/well of Enhancement Solution and shake for 5 minutes. Read the plate on the Wallac DELFIA Fluorometer. Readings from triplicate samples in each assay are tabulated and averaged.

[1119] A positive result in this assay suggests AoSMC cell proliferation and that the polypeptide of the present invention may be involved in dermal fibroblast proliferation

and/or smooth muscle cell proliferation. A positive result also suggests many potential polypeptides, polynucleotides, agonists and/or antagonists of polynucleotide/polypeptide of the present invention which gives a positive result. For example, inflammation and immune responses, wound healing, and angiogenesis, as detailed throughout this specification. Particularly, polypeptides of the present invention and polynucleotides of the present invention may be used in wound healing and dermal regeneration, as well as the promotion of vasculargenesis, both of the blood vessels and lymphatics. The growth of vessels can be used in the treatment of, for example, cardiovascular diseases. Additionally, antagonists of polypeptides and polynucleotides of the invention may be useful in treating diseases, disorders, and/or conditions which involve angiogenesis by acting as an anti-vascular (e.g., anti-angiogenesis). These diseases, disorders, and/or conditions are known in the art and/or are described herein, such as, for example, malignancies, solid tumors, benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; artheroscleric plaques; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, rubeosis, retinoblastoma, uvietis and Pterygia (abnormal blood vessel growth) of the eye; rheumatoid arthritis; psoriasis; delayed wound healing: endometriosis; vasculogenesis; granulations; hypertrophic scars (keloids); nonunion fractures; scleroderma; trachoma; vascular adhesions; myocardial angiogenesis; coronary collaterals; cerebral collaterals; arteriovenous malformations; ischemic limb angiogenesis; Osler-Webber Syndrome; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; fibromuscular dysplasia; wound granulation; Crohn's disease; and atherosclerosis. Moreover, antagonists of polypeptides and polynucleotides of the invention may be useful in treating anti-hyperproliferative diseases and/or antiinflammatory known in the art and/or described herein.

[1120] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

[1121] The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.

Briefly, endothelial cells (e.g., Human Umbilical Vein Endothelial cells [1122] (HUVECs)) are grown in a standard 96 well plate to confluence, growth medium is removed from the cells and replaced with 100 µl of 199 Medium (10% fetal bovine serum (FBS)). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 µl volumes). Plates are then incubated at 37°C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 µl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min. Fixative is removed from the wells and wells are washed 1X with PBS(+Ca,Mg) + 0.5% BSA and drained, 10 µl of diluted primary antibody is added to the test and control wells. Anti-ICAM-1-Biotin, Anti-VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 µg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed three times with PBS(+Ca,Mg) + 0.5% BSA. 20 µl of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution, refered to herein as the working dilution) are added to each well and incubated at 37°C for 30 min. Wells are washed three times with PBS(+Ca,Mg)+0.5% BSA. Dissolve 1 tablet of p-Nitrophenol Phosphate pNPP per 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (100) $> 10^{-0.5} > 10^{-1} > 10^{-1}$ 5.5 μ l of each dilution is added to triplicate wells and the resulting AP

content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μ l of pNNP reagent is then added to each of the standard wells. The plate is incubated at 37°C for 4h. A volume of 50 μ l of 3M NaOH is added to all wells. The plate is read on a plate reader at 405 nm using the background subtraction option on blank wells filled with glycine buffer only. Additionally, the template is set up to indicate the concentration of AP-conjugate in each standard well [5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.

Example 44: Alamar Blue Endothelial Cells Proliferation Assay

Initial This assay may be used to quantitatively determine protein mediated inhibition of bFGF-induced proliferation of Bovine Lymphatic Endothelial Cells (LECs), Bovine Aortic Endothelial Cells (BAECs) or Human Microvascular Uterine Myometrial Cells (UTMECs). This assay incorporates a fluorometric growth indicator based on detection of metabolic activity. A standard Alamar Blue Proliferation Assay is prepared in EGM-2MV with 10 ng /ml of bFGF added as a source of endothelial cell stimulation. This assay may be used with a variety of endothelial cells with slight changes in growth medium and cell concentration. Dilutions of the protein batches to be tested are diluted as appropriate. Serum-free medium (GIBCO SFM) without bFGF is used as a non-stimulated control and Angiostatin or TSP-1 are included as a known inhibitory controls.

Briefly, LEC, BAECs or UTMECs are seeded in growth media at a density of 5000 to 2000 cells/well in a 96 well plate and placed at 37-C overnight. After the overnight incubation of the cells, the growth media is removed and replaced with GIBCO EC-SFM. The cells are treated with the appropriate dilutions of the protein of interest or control protein sample(s) (prepared in SFM) in triplicate wells with additional bFGF to a concentration of 10 ng/ml. Once the cells have been treated with the samples, the plate(s) is/are placed back in the 37°C incubator for three days. After three days 10 ml of stock alamar blue (Biosource Cat# DAL1100) is added to each well and the plate(s) is/are placed back in the 37°C incubator for four hours. The plate(s) are then read at 530nm excitation and 590nm emission using the CytoFluor fluorescence reader. Direct output is recorded in relative fluorescence units.

[1125] Alamar blue is an oxidation-reduction indicator that both fluoresces and

changes color in response to chemical reduction of growth medium resulting from cell growth. As cells grow in culture, innate metabolic activity results in a chemical reduction of the immediate surrounding environment. Reduction related to growth causes the indicator to change from oxidized (non-fluorescent blue) form to reduced (fluorescent red) form. i.e. stimulated proliferation will produce a stronger signal and inhibited proliferation will produce a weaker signal and the total signal is proportional to the total number of cells as well as their metabolic activity. The background level of activity is observed with the starvation medium alone. This is compared to the output observed from the positive control samples (bFGF in growth medium) and protein dilutions.

Example 45: Detection of Inhibition of a Mixed Lymphocyte Reaction

Ithis assay can be used to detect and evaluate inhibition of a Mixed Lymphocyte Reaction (MLR) by gene products (e.g., isolated polypeptides). Inhibition of a MLR may be due to a direct effect on cell proliferation and viability, modulation of costimulatory molecules on interacting cells, modulation of adhesiveness between lymphocytes and accessory cells, or modulation of cytokine production by accessory cells. Multiple cells may be targeted by these polypeptides since the peripheral blood mononuclear fraction used in this assay includes T, B and natural killer lymphocytes, as well as monocytes and dendritic cells.

[1127] Polypeptides of interest found to inhibit the MLR may find application in diseases associated with lymphocyte and monocyte activation or proliferation. These include, but are not limited to, diseases such as asthma, arthritis, diabetes, inflammatory skin conditions, psoriasis, eczema, systemic lupus erythematosus, multiple sclerosis, glomerulonephritis, inflammatory bowel disease, crohn's disease, ulcerative colitis, arteriosclerosis, cirrhosis, graft vs. host disease, host vs. graft disease, hepatitis, leukemia and lymphoma.

[1128] Briefly, PBMCs from human donors are purified by density gradient centrifugation using Lymphocyte Separation Medium (LSM $^{\circ}$, density 1.0770 g/ml, Organon Teknika Corporation, West Chester, PA). PBMCs from two donors are adjusted to 2 x 10 $^{\circ}$ cells/ml in RPMI-1640 (Life Technologies, Grand Island, NY) supplemented with 10% FCS and 2 mM glutamine. PBMCs from a third donor is adjusted to 2 x 10 $^{\circ}$

cells/ml. Fifty microliters of PBMCs from each donor is added to wells of a 96-well round bottom microtiter plate. Dilutions of test materials (50 µl) is added in triplicate to microtiter wells. Test samples (of the protein of interest) are added for final dilution of 1:4; rhuIL-2 (R&D Systems, Minneapolis, MN, catalog number 202-IL) is added to a final concentration of 1 µg/ml; anti-CD4 mAb (R&D Systems, clone 34930.11, catalog number MAB379) is added to a final concentration of 10 µg/ml. Cells are cultured for 7-8 days at 37°C in 5% CO₂, and 1 µC of [³H] thymidine is added to wells for the last 16 hrs of culture. Cells are harvested and thymidine incorporation determined using a Packard TopCount. Data is expressed as the mean and standard deviation of triplicate determinations.

[1129] Samples of the protein of interest are screened in separate experiments and compared to the negative control treatment, anti-CD4 mAb, which inhibits proliferation of lymphocytes and the positive control treatment, IL-2 (either as recombinant material or supernatant), which enhances proliferation of lymphocytes.

[1130] One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.

[1131] It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

[1132] The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference. Further, the paper copy on CD-ROM of the sequence listing submitted herewith and the corresponding computer readable form on CD-ROM are both incorporated herein by reference in their entireties. Moreover, the hard copy of and the corresponding computer readable form of the Sequence Listing of Serial No. 60/124,270 and International Application No. PCT/US00/05988 are also incorporated herein by reference in their entireties.