基本逻辑部件设计——实验报告

孙启翔 241220098

1 3输入多数表决器

1.1 整体方案设计

根据给出的逻辑表达式和电路图实现电路

1.2 logisim电路图

Figure 1: 3输入多数表决器电路

1.3 仿真测试图

Figure 2: 测试结果

XYZ	F
000	0
001	0
010	0
0 1 1	1
100	0
101	1
110	1
111	1

Table 1: 真值表

1.4 错误现象即分析

照着图片连线, 想错都难(

2 或门实现电路

2.1 整体方案设计

思路是或非门加非门,共用3对CMOS

2.2 logisim电路图

Figure 3: 活门实现电路

2.3 仿真测试图

(a)图1

Figure 4: 测试结果

XY	F
0.0	0
0.1	1
10	1
11	1

Table 2: 真值表

2.4 错误现象即分析

容易搞反PMOS的源极和漏极

3 2选1多路选择器(1)

3.1 整体方案设计

看图连线

3.2 logisim电路图

Figure 5: 2选1多路选择器(1)

3.3 仿真测试图

(a)图1

Figure 6: 测试结果

3.4 错误现象即分析

照着图片连线, 想错都难(

4 2选1多路选择器 (2)

4.1 整体方案设计

看图连线, 多了个传输门

$D_0 D_1$	S	F
0.0	0	0
0.0	1	0
0.1	0	0
0.1	1	1
10	0	1
10	1	0
11	0	1
11	1	1

Table 3: Caption

4.2 logisim电路图

Figure 7: 2选1多路选择器(2)

4.3 仿真测试图

(a)图1

Figure 8: 测试结果

真值表同第三题

4.4 错误现象即分析

多了个传输门需要注意一下

5 4选1多路选择器

5.1 整体方案设计

通过两个2路选择器再进行一次选择,通过 s_0,s_1 信号进行筛选

5.2 logisim电路图

Figure 9: 整体实现

Figure 10: 2选1多路选择器的实现

5.3 仿真测试图

Figure 12: 测试结果2

Figure 13: 测试结果3

5.4 错误现象即分析

注意到不仅需要实现整体,还需要在第五题做一遍第四题已经做过的并且是一模一样的东西

6 思考题

- 6.1 根据2选1多路选择器的与-或电路,替换成与非-与非电路, 并分析两种电路的特性
 - 1. 设输入端为A,B,选择控制端为S,输出端口为F,则 $Y = \overline{S}A + SB$ 。变为非与非电路后, $F = \overline{\overline{S}A \cdot SB}$,将该逻辑表达式化为电路即可。
 - 2. 与-或电路更加简单直观,同时使用的逻辑门更少,电路延迟更低

6.2 实现4位二进制数转换成格雷码的转换电路

对于4位二进制数 $B_3B_2B_1B_0$,对应的格雷码记为 $G_3G_2G_1G_0$,对应的转换为:

$$G_3 = B_3$$

$$G_2 = B_3 \oplus B_2$$

$$G_1 = B_2 \oplus B_1$$

$$G_0 = B_1 \oplus B_0$$

依次将这四个输入端进行3个异或门操作得到4个输出段即可

6.3 实现4位二进制数的奇偶校验位生成电路

偶校验位可以将所有位进行异或操作:

$$F_{even} = B_3 \oplus B_2 \oplus B_1 \oplus B_0$$

对于奇校验位则可以简单地将偶校验位的结果取反, 电路可以简单地通过3个异或门和一个非门实现