

# Ensino Médio 2025

Ciências da Natureza e suas Tecnologias Física 2°ANO Estudante- 1º Bimestre





#### Governador do Estado de Minas Gerais

Romeu Zema Neto

#### Vice-Governador do Estado de Minas Gerais

Mateus Simões de Almeida

#### Secretário de Estado de Educação

Igor de Alvarenga Oliveira Icassatti Rojas

#### Secretária Adjunta

Fernanda de Siqueira Neves

#### Subsecretaria de Desenvolvimento da Educação Básica

Kellen Silva Senra

# Superintendente da Escola de Formação e Desenvolvimento Profissional de Educadores

Graziela Santos Trindade

#### Diretor da Coordenadoria de Ensino da EFE

Tiago Vieira Lima

#### Produção de Conteúdo

Professores Formadores da Escola de Formação e Desenvolvimento Profissional de Educadores

#### Revisão

Equipe Pedagógica e Professores Formadores da Escola de Formação e Desenvolvimento Profissional de Educadores

Escola de Formação e Desenvolvimento Profissional de Educadores Av. Amazonas, 5855 - Gameleira, Belo Horizonte - MG



# Olá, estudante!

Convidamos você a conhecer e utilizar os Cadernos MAPA. Esse material foi elaborado com todo carinho para que você possa realizar atividades interessantes e desafiadoras na sala de aula ou em casa. As atividades propostas estimulam as competências como: organização, empatia, foco, interesse artístico, imaginação criativa, entre outras, para que possa seguir aprendendo e atuando como estudante protagonista. Significa proporcionar uma base sólida para que você mobilize, artícule e coloque em prática conhecimentos, valores, atitudes e habilidades importantes na relação com os outros e consigo mesmo(a) para o enfrentamento de desafios, de maneira criativa e construtiva.

Ficou curioso(a) para saber que convite é esse que estamos fazendo para você? Então não perca tempo e comece agora mesmo a realizar essa aventura pedagógica pelas atividades.

Bons estudos!



# **SUMÁRIO**

| TEMA DE ESTUDO: Energias no Cotidiano: Trabalho e Energia Cinética           | 5  |
|------------------------------------------------------------------------------|----|
| TEMA DE ESTUDO: Energias no Cotidiano: Conservação da Energia                | 12 |
| TEMA DE ESTUDO: Introdução à Termodinâmica: Termologia e Termômetros         | 15 |
| TEMA DE ESTUDO: Introdução à Termodinâmica: Propagação de Calor              | 18 |
| TEMA DE ESTUDO: Introdução à Termodinâmica: Dilatação dos Sólidos e Líquidos | 22 |



**TEMA DE ESTUDO:** Energias no Cotidiano: Trabalho e Energia Cinética

#### **OBJETOS DE CONHECIMENTO:**

# Trabalho de uma força constante. Energias: Cinética, Potencial (Gravitacional e Elástica) e Mecânica.

#### **HABILIDADES:**

(EM13CNT210MG) Reconhecer as leis da natureza, identificar suas ocorrências, avaliar suas aplicações em processos tecnológicos e elaborar hipóteses de procedimentos para a exploração do Cosmos e do planeta Terra.

(EM13CNT302) Comunicar, para públicos variados, em diversos contextos, resultados de análises, pesquisas e/ou experimentos, elaborando e/ou interpretando textos, gráficos, tabelas, símbolos, códigos, sistemas de classificação e equações, por meio de diferentes linguagens, mídias, tecnologias digitais de informação e comunicação (TDIC), de modo a participar e/ou promover debates em torno de temas científicos e/ou tecnológicos de relevância sociocultural e ambiental.

#### Saudações estudantes!

#### Energia no Cotidiano e os Princípios da Física

A energia é um conceito fundamental na Física e está presente em praticamente todos os aspectos do nosso cotidiano. Quando pedalamos uma bicicleta, ligamos um celular ou até ao abrirmos a porta da geladeira, estamos vivenciando diferentes formas de energia em ação. Mas como a Física explica essas situações? Vamos explorar o Trabalho de uma força constante, o teorema da Energia Cinética e o princípio da Conservação da Energia Mecânica.

#### Trabalho de uma Força Constante

O trabalho ocorre quando uma força é aplicada em um corpo e o desloca em uma determinada direção. Por exemplo, ao empurrar uma caixa no chão, você realiza trabalho sobre ela. O trabalho w de uma força constante é calculado pela expressão:



# $w = F \cdot d \cdot \cos \theta$

#### onde:

- F é a magnitude da força aplicada;
- d é o deslocamento do objeto;
- $\theta$  é o ângulo entre a força e o deslocamento.
- Unidade no SI é joule (J). Onde  $1 J = 1 N.m = 1 kg.m^2 s^{-2}$ .

Se você empurrar uma caixa em linha reta com uma força de 50 N por 2 metros, aplicando a força na mesma direção do deslocamento (ângulo zero), onde  $(\cos(0^0) = 1)$ , o trabalho será:

$$w = F \cdot d \cdot \cos \theta \implies w = 50(N) \cdot 2(m) \cdot \cos \left(0^{0}\right) \implies w = 100 \ N. \ m \implies w = 100 \ J.$$

O trabalho mede a transferência de energia para o objeto. No exemplo, essa energia pode se transformar em movimento da caixa e, em parte, em calor devido ao atrito.

Observe nos diagramas a seguir, os tipos de trabalhos estudados.



Fonte: Silva, 2024

Trabalho da Força Peso: não depende da trajetória, porque a força peso é conservativa.





Fonte: Silva, 2024

Trabalho da Força Elástica: não depende da trajetória, porque a força elástica é conservativa.



Fonte: Silva, 2024

## Teorema da Energia Cinética

O Teorema da Energia Cinética afirma que o trabalho total realizado sobre um objeto é igual à variação da sua energia cinética:

$$w_{Total} = \Delta E_C = \frac{1}{2} m \left( v_f^2 - v_i^2 \right)$$

onde:

- m é a massa do corpo;
- $v_i e v_f$  são as velocidades inicial e final do corpo.

Se você empurra um carrinho de 10 kg que estava parado ( $v_i = 0$ ) e ele alcança uma velocidade de 3 m/s, o trabalho realizado é:

$$w_{Total} = \Delta E_C = \frac{1}{2} m \left( v_f^2 - v_i^2 \right) \Rightarrow w_{Total} = \frac{1}{2} \cdot 10 \ kg \left( (3 \ m/s)^2 - 0 \right) =$$

$$w_{Total} = 45 \ kg \cdot m^2 \cdot s^{-2} = 45 \ N. \ m \Rightarrow$$

$$w_{Total} = 45 J$$

É por isso que a unidade de energia no SI também é o joule (J).

#### **ATIVIDADES**

1. (FGV) Em alguns países da Europa, os radares fotográficos das rodovias, além de detectarem a velocidade instantânea dos veículos, são capazes de determinar a velocidade média desenvolvida pelos veículos entre dois radares consecutivos.

Considere dois desses radares instalados em uma rodovia retilínea e horizontal. A velocidade instantânea de certo automóvel, de 1500 kg de massa, registrada pelo primeiro radar foi de 72 km/h. Um minuto depois, o radar seguinte acusou 90 km/h para o mesmo automóvel.

O trabalho realizado pela resultante das forças agentes sobre o automóvel foi, em joules, mais próximo de

- A)  $1.5 \times 10^{4}$ .
- B)  $5.2 \times 10^4$ .
- C)  $7.5 \times 10^4$ .
- D)  $1.7 \times 10^5$ .
- E)  $3.2 \times 10^{5}$ .
- 2. Qual é a variação da energia cinética de um objeto de massa m que se encontra sobre um plano horizontal quando sobre ele for aplicada uma força de intensidade 50 N que forma um ângulo de  $60^{\circ}$  com a horizontal e arrasta-o por 5m? Use  $\cos 60^{\circ} = 0.5$ .
- A) 155 J
- B) 220 J
- C) 350 J
- D) 125 J
- E) 555 J
- 3. Explique o trabalho de uma força conservativa e dissipativa. Cite exemplo de cada.
- 4. Uma criança de 40 kg está sobre um escorregador. Calcule o trabalho da força peso sobre a criança em três pontos: Use  $g = 10 \text{ m/s}^2$ .



- A) ponto mais alto: 3m de altura
- B) Ponto a 1 m de altura da base.
- C) na Base
- D) calcule a variação da energia potencial entre os pontos de alturas 1m e 3m.
- 5. Um bloco desliza sobre um plano horizontal sob a ação das forças constantes especificadas na figura a seguir.



No percurso AB, no qual o bloco desloca d = 1,5 m:

A) que forças não realizam trabalho? Por que?

B) qual o trabalho total realizado sobre o bloco?

### **REFERÊNCIAS**

HEWITT, P. G. **Física conceitual**. 9. ed. Porto Alegre: Bookman, 2002.

JÚNIOR, Joab Silas da Silva. Exercícios sobre trabalho e energia. **Mundo Educação**, 2024. Disponível em:

https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-trabalho-energi a.htm. Acesso em 13 dez. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Plano de Curso**: ensino médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2024. Disponível em:

https://curriculoreferencia.educacao.mg.gov.br/index.php/plano-de-cursos-crmg. Acesso em: 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Currículo Referência de Minas Gerais: Ensino Médio**. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2022. Disponível em: https://acervodenoticias.educacao.mg.gov.br/images/documentos/Curr%C3%ADculo%20 Refer%C3%AAncia%20do%20Ensino%20M%C3%A9dio.pdf. Acesso em: 25 nov. 2024.

RESNICK, R.; HALLIDAY, D.; KRANE, K. S. **Fundamentos de Física**. 9. ed. Rio de Janeiro: LTC, 2008.

SILVA, G.E. Trabalho de uma Força Constante. Criado pelo **CANVA**. Disponível em: https://www.canva.com/design/DAGXIAD-DIM/U6DtE\_0pmBqze6UMpESmuA/view?utm\_content=DAGXIAD-DIM&utm\_campaign=designshare&utm\_medium=link&utm\_source=view er. Acesso 21 nov. 2024.

SILVA, G.E. Trabalho da Força Elástica. In **Canva** Disponível em: https://www.canva.com/design/DAGXISEiJEY/\_c6WHHkXlCJKT96P1wm6ZQ/view?utm\_content=DAGXISEiJEY&utm\_campaign=designshare&utm\_medium=link&utm\_source=viewer. Acesso em: 21 nov. 2024.

SILVA, G.E. Trabalho da Força Peso. In **Canva**. Disponível em: https://www.canva.com/design/DAGXISKSTsQ/qeVWT6JNt84XVnesltER\_g/view?utm\_conte nt=DAGXISKSTsQ&utm\_campaign=designshare&utm\_medium=link&utm\_source=viewer. Acesso em 21 nov. 2024.



SILVA, G.E. Notas de aula: elaboração de atividades. In **Canva**. Disponível em: https://www.canva.com/design/DAGZc9InVOc/v3qff9ee-TCdpJIft6N7fA/edit?utm\_content= DAGZc9InVOc&utm\_campaign=designshare&utm\_medium=link2&utm\_source=sharebutto n. Acesso em 22 nov. 2024.

TIPLER, P. A.; MOSCA, G. **Física para Cientistas e Engenheiros**. 6. ed. Porto Alegre: Bookman, 2009.



**TEMA DE ESTUDO:** Energias no Cotidiano - Conservação da Energia.

#### **OBJETOS DE CONHECIMENTO:**

# Princípio da Conservação da Energia Mecânica.

#### **HABILIDADES:**

(EM13CNT210MG) Reconhecer as leis da natureza, identificar suas ocorrências, avaliar suas aplicações em processos tecnológicos e elaborar hipóteses de procedimentos para a exploração do Cosmos e do planeta Terra.

(EM13CNT302) Comunicar, para públicos variados, em diversos contextos, resultados de análises, pesquisas e/ou experimentos, elaborando e/ou interpretando textos, gráficos, tabelas, símbolos, códigos, sistemas de classificação e equações, por meio de diferentes linguagens, mídias, tecnologias digitais de informação e comunicação (TDIC), de modo a participar e/ou promover debates em torno de temas científicos e/ou tecnológicos de relevância sociocultural e ambiental.

# Conservação da Energia Mecânica

A conservação da energia mecânica é um princípio fundamental da Física que explica como a energia de um sistema é transformada sem ser destruída. Em um sistema ideal — ou seja, sem forças dissipativas, como o atrito ou a resistência do ar — a soma das energias cinética e potencial de um corpo permanece constante ao longo do tempo:

$$E_{\textit{Mecânica}} = E_{\textit{Cinética}} + E_{\textit{Potencial}}$$

Isso significa que a energia pode se transformar de uma forma para outra, mas o total não muda.

Por exemplo, imagine uma bola rolando por uma rampa sem atrito. No ponto mais alto, toda a energia é potencial gravitacional ( $E_p=mgh$ ). Ao descer, parte dessa energia se transforma em cinética ( $E_c=\frac{1}{2}mv^2$ ), mas a soma das duas permanece constante.

#### Resumo:

| Energia                 | Energia Potencial | Energia Potencial          |
|-------------------------|-------------------|----------------------------|
| Cinética                | Gravitacional     | Elástica                   |
| $E_C = \frac{1}{2}mv^2$ | $E_{Pg} = mgh$    | $E_{PE} = \frac{1}{2}kx^2$ |

#### **ATIVIDADES**

- 1. Na natureza nada se cria, tudo se transforma. Este é o princípio da conservação da energia. *Cite três exemplos de transformação de energia no cotidiano*. Por exemplo: uma pedra ao cair de certa altura, transforma a energia potencial (altura) em energia cinética (velocidade).
- 2. Uma bola com 0,5 kg desce um plano horizontal de 2 metros de altura até atingir uma parede. Com base nisso, calcule a velocidade aproximada da bola imediatamente antes da colisão.
- A) 2,80 m/s
- B) 3,75 m/s
- C) 4,69 m/s
- D) 5,14 m/s
- E) 6,32 m/s
- 3. Um objeto de 6 kg está conectado a uma mola comprimida, de constante elástica 200 N/m. Quando solto, ele passa a se movimentar com uma velocidade de 10 m/s. Com base nisso, determine a compressão da mola, imediatamente, após o objeto ser solto.
- A) 1,73 m
- B) 2,23 m
- C) 2,45 m
- D) 2,64 m
- E) 3,16 m

4. Qual a altura máxima atingida por um atleta de 75 kg, do salto com vara, que consegue converter 80% da sua energia cinética em energia potencial gravitacional, sabendo que ele corre a uma velocidade de 8 m/s antes de fixar a vara no chão? Considere a aceleração da gravidade como sendo 10 m/s².



#### **REFERÊNCIAS**

HEWITT, P. G. Física conceitual. 9. ed. Porto Alegre: Bookman, 2002.

MELO, Pâmella Raphaella. Exercícios sobre conservação da energia mecânica. **Mundo Educação**. 2024. Disponível em:

https://exercicios.mundoeducacao.uol.com.br/exercicios-fisica/exercicios-sobre-conservaca o-energia-mecanica.htm. Acesso em 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Plano de Curso**: ensino médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2024. Disponível em:

https://curriculoreferencia.educacao.mg.gov.br/index.php/plano-de-cursos-crmg. Acesso em: 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Currículo Referência de Minas Gerais: Ensino Médio**. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2022. Disponível em: https://acervodenoticias.educacao.mg.gov.br/images/documentos/Curr%C3%ADculo%20R efer%C3%AAncia%20do%20Ensino%20M%C3%A9dio.pdf. Acesso em: 25 nov. 2024.

RESNICK, R.; HALLIDAY, D.; KRANE, K. S. **Fundamentos de Física**. 9. ed. Rio de Janeiro: LTC, 2008.

TIPLER, P. A.; MOSCA, G. **Física para Cientistas e Engenheiros**. 6. ed. Porto Alegre: Bookman, 2009.



# **TEMA DE ESTUDO:** Introdução à Termodinâmica: Termologia e Termômetros.

#### **OBJETOS DE CONHECIMENTO:**

#### **HABILIDADES:**

Escalas de Temperatura.

(EM13CNT102XA) Identificar e interpretar sistemas térmicos que visem à sustentabilidade, considerando sua composição e os efeitos das variáveis termodinâmicas sobre seu funcionamento.

(EM13CNT306X) Avaliar os riscos envolvidos em atividades cotidianas, aplicando conhecimentos das Ciências da Natureza, para justificar o uso de equipamentos e recursos, bem como à comportamentos de visando segurança, integridade física, individual e coletiva, socioambiental, podendo fazer uso de dispositivos e aplicativos digitais que viabilizem a estruturação de simulações de tais riscos, conhecer as normas de segurança, o tratamento de resíduos e reconhecer os equipamentos de proteção individual e coletivo, inclusive a tecnologia aplicada nos mesmos.

## Calor, Temperatura e Termômetros

O calor e a temperatura são conceitos fundamentais na termodinâmica, embora muitas vezes sejam confundidos.

Calor é a energia térmica em trânsito entre sistemas devido a uma diferença de temperatura. Ele flui espontaneamente do corpo mais quente para o mais frio, buscando o equilíbrio térmico.

Já a temperatura é uma grandeza física que mede o grau de agitação das partículas em um corpo, sendo um indicativo do estado térmico desse sistema.

#### Lei Zero da Termodinâmica

A Lei Zero da Termodinâmica estabelece o princípio fundamental do equilíbrio térmico, sendo essencial para o entendimento das interações térmicas entre sistemas. Ela afirma que, se dois sistemas A e B estão em equilíbrio térmico com um terceiro sistema C, então A e B também estão em equilíbrio térmico entre si.

#### **Termômetros - Escalas termométricas**

As escalas termométricas, como Celsius, Fahrenheit e Kelvin, são sistemas de referência criados para medir a temperatura. Cada escala possui pontos fixos, como o ponto de fusão do gelo e o ponto de ebulição da água em condições padrão, para definições de divisões uniformes.

O Brasil adota a escala Célsius como referência de medida de temperatura. Já a escala Kelvin, é usada pelo Sistema Internacional de unidades (SI). Ela é particularmente importante por estar relacionada diretamente à energia térmica, sendo o zero absoluto a menor temperatura possível ( zero absoluto equivale a -273,16 °C).

Tabela de conversão de temperatura entre as escalas Celsius, Fahrenheit e Kelvin.

$$\frac{t_C}{5} = \frac{t_F - 32}{9} = \frac{T_K - 273}{5}$$

#### **ATIVIDADES**

- 1. Defina, com suas palavras, equilíbrio térmico e a lei zero da Termodinâmica.
- 2. Explique como ocorre a transferência de calor entre dois corpos.
- 3. Explique a função das roupas e agasalhos, em relação à transferência de calor.
- 4. Converta as seguintes temperaturas:
- A) -40 °C em °F:
- B) 10 °F em °C:
- C) 36 °C em K:
- D) 100 K em °C:
- E) 20 °F em K:
- F) 200 K em °F:

- 5. Dois termômetros, um com a escala Celsius e outro na escala Kelvin, foram colocados no mesmo fluido. Sabendo que a temperatura registrada na escala Celsius era de 38 °C, qual a temperatura marcada no termômetro em Kelvin?
- A) 254 K
- B) 298K
- C) 311 K
- D) 313 K
- E) 315 K.
- 6. Para calibrar um termômetro, um técnico relacionou a temperatura medida e o comprimento da coluna de mercúrio no interior do termômetro e os dados obtidos foram:
- I. Quando a temperatura registrada era de 0  $^{\rm o}$ C, o fluido apresentava um deslocamento de 5 cm.
- II. Ao atingir a temperatura de 100 °C, o comprimento registrado foi de 10 cm.

A partir dessas informações, determine, por uma função termométrica, a relação existente entre a temperatura e o comprimento da coluna de mercúrio.

- A) T = 20X 100
- B) T = 5X 100
- C) T = X 100
- D) T = 15X 100
- E) T = 20X 5

# **REFERÊNCIAS**

ASTH, Rafael C. Escalas Termométricas - Exercícios. **Toda Matéria.** Adaptada. 2011-2024. Disponível em: https://www.todamateria.com.br/escalas-termometricas-exercicios/. Acesso em: 16 dez. 2024.

HEWITT, P. G. Física conceitual. 9. ed. Porto Alegre: Bookman, 2002.

MINAS GERAIS. Secretaria do Estado de Educação. **Plano de Curso**: Ensino Médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2024. Disponível em:

https://curriculoreferencia.educacao.mg.gov.br/index.php/plano-de-cursos-crmg. Acesso em: 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Currículo Referência de Minas Gerais: Ensino Médio**. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2022. Disponível em: https://acervodenoticias.educacao.mg.gov.br/images/documentos/Curr%C3%ADculo%20 Refer%C3%AAncia%20do%20Ensino%20M%C3%A9dio.pdf. Acesso em: 25 nov. 2024.

RESNICK, R.; HALLIDAY, D.; KRANE, K. S. **Fundamentos de Física**. 9. ed. Rio de Janeiro: LTC, 2008.

TIPLER, P. A.; MOSCA, G. **Física para Cientistas e Engenheiros**. 6. ed. Porto Alegre: Bookman, 2009.



#### **OBJETOS DE CONHECIMENTO:**

#### **HABILIDADES:**

Processos de Transmissão de Calor.

(EM13CNT102XA) Identificar e interpretar sistemas térmicos que visem à sustentabilidade, considerando sua composição e os efeitos das variáveis termodinâmicas sobre seu funcionamento.

(EM13CNT306X) Avaliar os riscos envolvidos em atividades cotidianas, aplicando conhecimentos das Ciências da Natureza, para justificar o uso de equipamentos е recursos, bem como comportamentos de visando à segurança, integridade física, individual e coletiva, socioambiental, podendo fazer uso de dispositivos e aplicativos digitais que viabilizem a estruturação de simulações de tais riscos, conhecer as normas de segurança, o tratamento de resíduos e reconhecer os equipamentos de proteção individual e coletivo, inclusive a tecnologia aplicada nos mesmos.

#### Propagação de calor

O calor é uma forma de energia que se transfere de um corpo para outro devido à diferença de temperatura entre eles. Esse processo pode ocorrer de três maneiras principais: condução, convecção e radiação. Cada uma dessas formas de propagação possui características específicas e exemplos claros no cotidiano.

# 1. Condução

A condução é o processo pelo qual o calor se transfere através de um material sólido devido ao contato direto entre átomos ou moléculas. Materiais bons condutores, como os metais, facilitam essa transferência, enquanto materiais como madeira e plástico são isolantes.

#### Exemplo do cotidiano:

• Quando você aquece uma colher de metal em uma panela quente, o calor é



transferido da ponta da colher em contato com a panela para o restante da colher. Após algum tempo, a colher inteira se torna quente.

#### 2. Convecção

A convecção ocorre em líquidos e gases. Nesse processo, o calor é transferido pelo movimento das partículas do fluido, criando correntes de convecção. Essas correntes são formadas porque as regiões mais quentes do fluido tornam-se menos densas e sobem, enquanto as regiões mais frias, mais densas, descem.

#### Exemplo do cotidiano:

- Ao ferver água em uma panela, é possível observar o movimento das bolhas e das correntes dentro do líquido. Isso demonstra a transferência de calor por convecção.
- O ar quente de um aquecedor sobe, enquanto o ar frio desce, criando uma circulação no ambiente que aquece o cômodo. O mesmo acontece com o ar condicionado e o congelador de uma geladeira.

# 3. Irradiação

A radiação é a transferência de calor por meio de ondas eletromagnéticas, como a luz infravermelha. Esse processo não requer um meio material, ou seja, o calor pode ser transmitido através do vácuo através das *radiações eletromagnéticas na faixa do infravermelho.* 

#### Exemplo do cotidiano:

- A energia do Sol chega à Terra através da radiação, aquecendo superfícies, oceanos e até nosso corpo.
- Quando você se aproxima de uma fogueira, sente o calor em seu rosto, mesmo sem tocar nas chamas. Esse é o calor transferido por radiação.

#### Resumo Visual

- 1. Condução: calor fluindo através de um sólido (exemplo: colher de metal em panela quente).
- 2. Convecção: movimentos em fluidos (exemplo: água fervendo).
- 3. Radiação: calor transferido por ondas eletromagnéticas (exemplo: calor do Sol ou de uma fogueira).



#### **ATIVIDADES**

- 1. (CFT) Analise as situações a seguir descritas, considerando-se o processo de transferência de calor relacionado a cada uma delas:
  - I. Um legume se aquece ao ser colocado dentro de uma panela com água fervente.
  - II. O congelador, localizado na parte superior de uma geladeira, resfria todo o interior dela.
  - III. Os componentes eletrônicos de aparelhos em funcionamento de uma estação espacial transmitem calor para o espaço.

As situações I, II e III correspondem, respectivamente, aos processos de

- A) condução, convecção e condução.
- B) convecção, radiação e convecção.
- C) condução, convecção e radiação.
- D) radiação, condução e radiação.
- E) radiação, convecção, radiação.
- 2. Sobre a transmissão de calor por convecção, explique as brisas marítimas.
- 3. Se o Sol apagar, o que poderá acontecer com a vida na Terra?
- 4. (PUC) Analise as afirmações referentes à condução térmica:
  - I. Para que um pedaço de carne cozinhe mais rapidamente, pode-se introduzir nele um espeto metálico. Isso se justifica pelo fato de o metal ser um bom condutor de calor.
  - II. Os agasalhos de lã dificultam a perda de energia (na forma de calor) do corpo humano para o ambiente, devido ao fato de o ar aprisionado entre suas fibras ser um bom isolante térmico.
  - III. Devido à condução térmica, uma barra de metal mantém-se em uma temperatura inferior à de uma barra de madeira colocada no mesmo ambiente.



# Podemos afirmar que

- A) I, II e III estão corretas.
- B) I, II e III estão erradas.
- C) apenas I está correta.
- D) apenas II está correta.
- E) apenas I e II estão corretas.



# **REFERÊNCIAS**

HEWITT, P. G. **Física conceitual**. 9. ed. Porto Alegre: Bookman, 2002.

MELO, Pâmella Raphaella. Exercícios sobre propagação de calor. **Brasil Escola.** 2024.Disponível em: https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-processos-prop agacao-calor.htm. Acesso em 16 dez. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Plano de Curso**: ensino médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2024. Disponível em: https://curriculoreferencia.educacao.mg.gov.br/index.php/plano-de-cursos-crmg. Acesso em: 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Currículo Referência de Minas Gerais: Ensino Médio**. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2022. Disponível em: https://acervodenoticias.educacao.mg.gov.br/images/documentos/Curr%C3%ADculo%20 Refer%C3%AAncia%20do%20Ensino%20M%C3%A9dio.pdf. Acesso em: 25 nov. 2024.

RESNICK, R.; HALLIDAY, D.; KRANE, K. S. **Fundamentos de Física**. 9. ed. Rio de Janeiro: LTC, 2008.

TIPLER, P. A.; MOSCA, G. **Física para Cientistas e Engenheiros**. 6. ed. Porto Alegre: Bookman, 2009.



#### **OBJETOS DE CONHECIMENTO:**

#### **HABILIDADES:**

Dilatação térmica

(EM13CNT102XA) Identificar e interpretar sistemas térmicos que visem à sustentabilidade, considerando sua composição e os efeitos das variáveis termodinâmicas sobre seu funcionamento.

(EM13CNT306X) Avaliar os riscos envolvidos em atividades cotidianas, aplicando conhecimentos das Ciências da Natureza, para justificar o uso de equipamentos е recursos, bem como comportamentos de visando à segurança, integridade física, individual е coletiva, socioambiental, podendo fazer uso de dispositivos e aplicativos digitais que viabilizem a estruturação de simulações de tais riscos, conhecer as normas de segurança, o tratamento de resíduos e equipamentos reconhecer os de proteção individual e coletivo, inclusive a tecnologia aplicada nos mesmos.

# Dilatação Térmica

A dilatação térmica é o fenômeno que ocorre quando um material sofre alteração em suas dimensões em resposta a uma variação de temperatura. Esse fenômeno ocorre em todos os estados físicos, mas as formas de dilatação variam entre os sólidos, líquidos e gases. A dilatação térmica dos sólidos e líquidos pode ser descrita principalmente por três tipos de dilatação: linear, superficial e volumétrica.

# Dilatação Linear

A dilatação linear ocorre quando uma substância sofre variação em uma de suas dimensões, geralmente o comprimento. Em sólidos, esse tipo de dilatação é observado em barras, fios ou qualquer outro objeto que tenha um comprimento inicial definido. A equação que descreve a dilatação linear é dada por:

$$\Delta L = L_0 \cdot \alpha \cdot \Delta t$$

Onde,

 $\Delta L$  é a variação do comprimento

 $L_0$  é o comprimento inicial

 $\alpha$  é o coeficiente de dilatação linear

 $\Delta t$  é a variação de temperatura.

A dilatação linear é diretamente proporcional à variação de temperatura e ao coeficiente de dilatação do material.

# Dilatação Superficial

Quando o material sofre uma variação em sua área, esse fenômeno é chamado de dilatação superficial. Essa dilatação é observada em superfícies de materiais sólidos, como placas ou filmes, e a equação que a descreve é:

$$\Delta A = A_0 \cdot \beta \cdot \Delta t$$

Onde,

 $\Delta A$  é a variação da área

 $A_0$  é a área inicial

 $\beta$  é o coeficiente de dilatação superficial ( $\beta=2\alpha$ )

 $\Delta t$  é a variação de temperatura.

# Dilatação Volumétrica



A dilatação volumétrica ocorre quando há alteração no volume de um material, o que é especialmente notável em líquidos e sólidos. A equação que descreve esse tipo de dilatação é:

$$\Delta V = V_{0} \cdot \gamma \cdot \Delta t$$

Onde,

 $\Delta V$  é a variação do volume

 $V_0$  é o volume inicial

 $\gamma$  é o coeficiente de dilatação volumétrico ( $\gamma = 3\alpha$ )

 $\Delta t$  é a variação de temperatura.

# Dilatação da Água

A água apresenta um comportamento peculiar em relação à dilatação térmica, especialmente entre 0°C e 4°C. Ao aquecer a água, ela se expande, mas essa expansão ocorre de forma anômala, já que a água tem a menor densidade a 4°C, o que faz com que, ao ser aquecida a partir de temperaturas abaixo de 4°C, ela se contraia e diminua seu volume. Esse fenômeno é responsável pela flutuação do gelo na água, uma característica única.

Em temperaturas mais elevadas, a água sofre uma dilatação volumétrica típica dos líquidos, com aumento de volume proporcional à variação da temperatura. No entanto, a água apresenta um ponto de inflexão (veja a figura) entre 0°C e 4°C, o que a torna um exemplo interessante de como as propriedades térmicas de um material podem ser influenciadas por sua estrutura molecular.



Puppi, 2024.

#### **ATIVIDADES**

- 1. (UDESC/2012) Em um dia típico de verão utiliza-se uma régua metálica para medir o comprimento de um lápis. Após medir esse comprimento, coloca-se a régua metálica no congelador a uma temperatura de -10°C e esperam-se cerca de 15 min para, novamente, medir o comprimento do mesmo lápis. O comprimento medido nesta situação, com relação ao medido anteriormente, será:
- A) maior, porque a régua sofreu uma contração.
- B) menor, porque a régua sofreu uma dilatação.
- C) maior, porque a régua se expandiu.
- D) menor, porque a réqua se contraiu.
- E) o mesmo, porque o comprimento do lápis não se alterou.
- 2. Uma barra de 2 metros de alumínio a uma temperatura inicial de 30 °C fica exposta ao sol, sendo sua temperatura elevada para 60°C. Sabendo que o coeficiente de dilatação do alumínio é  $\alpha_{AI}=22\times10^{-6}$  ° $\mathcal{C}^{-1}$ , calcule a dilatação sofrida pela barra.
- 3. (UNIC –MT) Uma chapa de alumínio tem um furo central de 100 cm de raio, estando numa temperatura de 12°C.



Sabendo-se que o coeficiente de dilatação linear do alumínio equivale a  $\alpha_{Al}=22\times10^{-6}\,^{\circ}\mathrm{C}^{-1}$ , a nova área do furo, quando a chapa for aquecida até 112°C, será equivalente a qual valor em metros? Considere que a área do círculo é  $A=\pi r^2$  e  $\pi=3$ .



4. (UPE) Ao lavar pratos e copos, um cozinheiro verifica que dois copos estão encaixados firmemente, um dentro do outro. Sendo o copo externo feito de alumínio e o interno, de vidro, sobre as formas de separá-los, utilizando os princípios básicos de dilatação térmica, analise os itens a seguir:

Dados: os coeficientes de dilatação térmica do alumínio e do vidro são iguais a, respectivamente,  $\alpha_{Al}=22\times10^{-6}\,^{\circ}\text{C}^{-1}$  e  $\alpha_{Vidro}=0,5\times10^{-6}\,^{\circ}\text{C}^{-1}$ .,

- I. Aquecendo apenas o copo de vidro.
- II. Esfriando apenas o copo de alumínio.
- III. Aquecendo ambos.
- IV. Esfriando ambos.

Está(ão) CORRETO(S) apenas

- A) I e II.
- B) I.
- C) II.
- D) III.
- E) IV.

#### **REFERÊNCIAS**

ALMEIDA, Frederico Borges de. Exercícios sobre Dilatação Superficial. **Brasil Escola**, 2024. Disponível em: https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-dilatacao-superficial.htm. Acesso em: 16 dez. 2024.

ASTH, Rafael C. Escalas Termométricas - Exercícios. **Toda Matéria.** 2024. Adaptada. Disponível em: https://www.todamateria.com.br/escalas-termometricas-exercicios/. Acesso em: 16 dez. 2024.

HEWITT, P. G. **Física conceitual**. 9. ed. Porto Alegre: Bookman, 2002.

MELO, Pâmella Raphaella. Exercícios sobre dilatação volumétrica. **Brasil Escola**. 2024.Disponível em: https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-dilatacao-volumetrica.htm. Acesso em 16 dez. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. **Plano de Curso**: ensino médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2024. Disponível em:

https://curriculoreferencia.educacao.mg.gov.br/index.php/plano-de-cursos-crmg. Acesso em: 25 nov. 2024.

MINAS GERAIS. Secretaria do Estado de Educação. Currículo Referência de Minas Gerais: Ensino Médio. Escola de Formação e Desenvolvimento Profissional de Educadores de Minas Gerais, Belo Horizonte, 2022. Disponível em: https://acervodenoticias.educacao.mg.gov.br/images/documentos/Curr%C3%ADculo%20 Refer%C3%AAncia%20do%20Ensino%20M%C3%A9dio.pdf. Acesso em: 25 nov. 2024.

PUPPI, Júlia. Dilatação Anômala da Água. **Jovens Cientistas**, 2024. Disponível em: https://www.jovenscientistasbrasil.com.br/post/dilata%C3%A7%C3%A3o-an%C3%B4mal a-da-%C3%A1gua. Acesso em: 16 dez. 2024.

RESNICK, R.; HALLIDAY, D.; KRANE, K. S. **Fundamentos de Física**. 9. ed. Rio de Janeiro: LTC, 2008.

TEIXEIRA, Mariane Mendes. Exercícios sobre dilatação linear. **Brasil Escola.** 2024.Disponível em: https://exercicios.brasilescola.uol.com.br/exercicios-fisica/exercicios-sobre-dilatacao-linear.htm. Acesso em 16 dez. 2024.

TIPLER, P. A.; MOSCA, G. **Física para Cientistas e Engenheiros**. 6. ed. Porto Alegre: Bookman, 2009.

