Chapter 7.1 Solutions Solution 1

(3 marks)

A model electric train's velocity is graphed as it moves along a section of straight track.

(a)	During which section of the graph is the acceleration the greatest?	(1 mark)
-----	---	----------

(Circle	the correct answer:	Α	В	С	D	E	F	G

-									
(Circle	the correct answer:	Α	В	C	D	Ε	F	G
	· /								

(c) At the end of the journey, the train's displacement relative to its starting position will be: (1 mark)

Circle the correct answer:	Positive	Zero	Negative	

Description	Marks
(a) A	1
(b) D	1
(c) Positive	1
	Total 3

(3 marks)

A sprinter completes one lap of an oval 400 m track in 55.0 s, finishing at the same point he started.

(a) Determine the speed of the sprinter.

Description	Marks
Speed = distance/time = 400/55	1
$= 7.27 \text{ m s}^{-1}$	1
Total	2

Determine the velocity of the sprinter. (b)

Description	Marks
$v = s/t = 0/55 = 0 \text{ m s}^{-1}$	1
Total	1

Chapter 7.1 Solution 3

Solutions

page 2

(4 marks)

A farmer walked 745 m west from a gate to repair a fence post. When that job was finished he turned around and walked 984 m east to repair another part of the fence. Draw and label a vector diagram of his total journey then calculate his resultant displacement.

	Description		Marks
	745 m		
Labels 1	984 m	>	1–2
Direction 1			
984 – 745			
= 239 east			1–2
		Total	4

Solution 4

(5 marks)

An aircraft attempts to land along a north-south aligned landing strip. It approaches from the south and has an air speed of 133 km hr $^{-1}$. The wind is blowing from the west at 45.0 km hr $^{-1}$. Draw a vector diagram to show the direction the aircraft needs to head and calculate its actual velocity, in m s $^{-1}$, relative to the runway. Show **all** workings.

Descrip	tion	Marks
Two vectors drawn at an appropriate angle to each other Resultant shown If directions incorrect, max. 1 mark $133^2 = v^2 + 45^2$	Resultant velocity, v_R	1–2
$v_R = 125 \text{ km hr}^{-1} \text{ North}$		1
$v_R = 125/3.6 = 34.7 \text{ m s}^{-1} \text{ North (direction im)}$	plied, so not required)	1
θ=sin ⁻¹ (45/133)=19.8° (heading)		1
	Total	5

Solution 5

(3 marks)

A hiker is walking east across a flat desert. After walking for 945 m, he realises he has dropped his water bottle and walks back 570 m to get it. Draw and label a vector diagram showing his path and calculate his resultant displacement.

Description	Marks
570 m	
945 m	1–2
Label 1	1-2
direction 1	
945-570= 375 m	1
Total	3

(10 marks)

(a) Given that 1 knot equals 0.5144 m s⁻¹, complete the third column of the table below to three significant figures. (2 marks)

Time (s)	speed in knots	speed in m s ⁻¹
4.00	30.7	15.8
5.00	31.9	16.4

Description	Marks
Values correct in third column	1
All answers to three significant figures	1
Total	2

(b) Using the grid on page 29, plot a graph of speed (in m s⁻¹) against time and draw a straight line of best fit. (4 marks)

Description	Marks
Time on the x-axis	1
Axis labelled with units	1
Points clearly shown and plotted correctly	1
Line of best fit drawn	1
Total	4

(c) Calculate the gradient of the line of best fit, including the correct units. Show **all** workings. (4 marks)

Description		Marks
gradient taken from line of best fit and not data points		1
Gradient = 9.5 / 7.5 = 1.3 range 1.2 to 1.4		1–2
m s ⁻²		1
	Total	4