## StatMeth超浓缩整合攻略(期中篇)

statmeth

## Introduction to statistics

## Collecting Sample data

## Different sampling methods:

### Voluntary response sample

subjects decide themselves to be included in sample. (very biased)

### **Random sample**

each member of population has equal probability of being selected.

### Simple random sample

each sample of size n has equal probability of being chosen.

### Systematic sampling

after starting point, select every k-th member.

### Stratified sampling

divide population into subgroups such that subjects within groups have same characteristics, then draw a (simple) random sample from each group.

### **Cluster sampling**

divide population into clusters, then randomly select some of these clusters.

### **Convenience sampling**

### Different variables:

#### **Variable**

varying quantity.

### Response (dependent) variable

representing the effect to study

### **Explanatory (independent) variable**

possibly causing that effect

### Confounding

mixing influence of several explanatory variables on response

#### Example

Independent variable -> alcohol consumption

Dependent variable -> mortality

Confounding variables -> age, gender, education ...

Different types of study:

### **Observational study**

characteristics of subjects are observed; subjects are not modified.

- Retrospective (case-control) : data from past
- Cross-sectional : data from one point in time
- Prospective (longitudinal): data are to be collected

### **Experiment**

some subject treatment.

- Sometimes control and treatment group; single-blind or double-blind (设置对照组;单盲:被测试者 | 双盲:被测者和测试者)
- To measure placebo effect or experimenter effect. (安慰剂效应和观察者效应)

## Types of data

Differ in sample size

### **Parameter**

numerical measurement describing a **population's** characteristic.

Notation: typically Greek symbols, e.g.  $\mu$ ,  $\sigma$ .

#### **Statistic**

numerical measurement describing a samples's characteristic.

Notation: small letters, e.g.  $\overline{x}$ , s.

Differ in data type

### **Qualitative (categorical)**

names or labels represent counts or measurements

Examples: good/bad/fair

### **Quantitative (numerical)**

numbers represent counts or measurements

- **Discrete**: the set of possible values is countable (e.g. number of siblings)
- Continous: the set of possible values is uncountable (e.g. weight of oldest sibling)

Based on the level of measurement

### **Qualitative data:**

- **Nominal**: names, labels, categories (no ordering). No computation possible. (e.g. gender, eye colour)
- **Ordinal**: categories with ordering, but no meaningful differenes. (e.g. grades(A-F), opinions (totally disagree/agree))

### **Quantitative data:**

- **Interval**: ordering possible and meaningful differences, but no natural zero starting point. (e.g. year of birth, temperature)
- **Ratio**: ordering possible and meaningful differences & natural starting point. (e.g. body lenth, marathon times.)

## Summarising and graphing data

Describe data distribution:

### **Graphical:**

- Frequency distribution (table) : count occurences of category
- Bar chart
- **Pareto bar chart**: categories ordered w.r.t. frequency, required data of nominal meansurement level!
- **Pie chart**: pie piece sized determined by relative frequency of category.(Mainly: qualitative data)
- **Histogram**: bar areas are proportional to frequency in respective interval.
- **Time series**: visualization of time-varying quantity(e.g.yearly number of sunspots).

### **Descriptive:**

- Qualitative : describe shape, location and dispersion
- Quantitative: numerical summaries of location and variation

### Qualitative description:

### **Shape**

make smooth approximation of histogram.

- Symmetrical
- Skewed (right-skewed, left skewed)
- Uniform

#### Location

position on x axis.

### **Dispertion (spread/variation)**

measure of variation with dataset.

#### Numerical summaries:

### Measure of center

value at the center or middle of a data set.

- mean: the "average". Every data value used.
- Not robust: strongly affected by extreme values.

Sample mean : 
$$\overline{x} = (\sum_{i=1}^n x_i)/n$$

Population mean: 
$$\mu = (\sum_{i=1}^N x_i)/N$$

• **median**: the "middle" value of the data set (after sorting).

Robust: not much affected by extreme values.

mode: the value that occurs with highest frequency.
 Hardly used for numerical data, but applicable to nominal data.
 Dataset with unique mode: unimodal, bimodal/multimodal (graphs with different peaks).

#### Measure of variation

• **sample standard deviation**: common measure of variation. Measures how much the values deviate from the sample mean.

$$s = \sqrt{rac{\sum_{i=1}^{n} \left(x_i - \overline{x}
ight)^2}{n-1}} = \sqrt{rac{n \sum_{i=1}^{n} x_i - \left(\sum_{i=1}^{n} x_i
ight)^2}{n(n-1)}}$$

• sample variance : the square of standard deviation.

$$s^2=rac{\sum_{i=1}^n\left(x_i-\overline{x}
ight)^2}{n-1}$$

• population standard deviation :  $\sigma$ 

• population variance :  $\sigma^2$ 

• Range : maximum - minimum

### Measure of relative standing and boxplots :

### Percentiles $P_i$ :

i% of data values is smaller than  $P_i$  and (100-i)% is larger than  $P_i$ . Special percentiles : quartiles  $Q_1,Q_2,Q_3$ .

ullet  $Q_1=P_25$  : first quartile

ullet  $Q_2=P_50$  = median : first quartile

ullet  $Q_3=P_75$  : third quartile

### 5-number summary:

- 1. Minimum
- 2. First quartile,  $oldsymbol{Q_1}$
- 3. Median,  $oldsymbol{Q_2}$
- 4. Third quartile,  $oldsymbol{Q_3}$
- 5. Maximum

### Interquartile range (IQR):

$$\mathsf{IQR} = Q_3 - Q_1$$

### **Boxplots:**

provide information about distribution

ullet Whiskers: lines extending from the box. Not exceed 1.5\*IQR

• Outliers : all points not included

## **Probability**

## Basic concepts of probability

### **Probability experiment:**

Production of (random outcome).

E.g. die roll, coin toss.

### Sample space $\Omega$ :

Set of all possible outcomes.

E.g. 
$$\Omega = \{1,2,3,4,5,6\}$$

### **Event A, B, ...:**

Collection of outcomes.

E.g.  $A = \{\text{even number is thrown}\} = \{2,4,6\}$ 

### Simple event:

Consists 1 outcome.

E.g. {1}.

### **Probability measure:**

Function  $P(\cdot)$  assigning values between 0 and 1 to events.

E.g. 
$$P(A) = P(\{2,4,6\}) = \frac{1}{2}$$
.

### Interpretation of probabilities:

- P(A) = 0: occurrence of A is impossible. e.g.  $P(\emptyset) = 0$ .( $\emptyset$  = empty event : nothing happens)
- P(A) = 1: occurrence of A is certain. e.g.  $P(\Omega) = 1$ .
- ullet Event A is unlikely when P(A) is small, e.g. < 0.05

Law of Large numbers (LLN):

Suppose a procedure is repeated again and again and outcomes are independent. Then the relative frequency probability of an event A tends towards true P(A).

Notice -> Special case

Three ways to determine probability P(A) of event A:

1. Estimate with relative frequency:

$$P(A) = rac{number\ of\ times\ A\ occurred}{number\ of\ times\ the\ procedure\ was\ repeated}$$

Many trials -> relative frequency pprox real (true) value of P(A) (Supported by Law of Large numbers)

2. Classical (theoretical) approach:

Make probability model (outcome space, probability measure, etc.) and compute P(A) using properties of P.

E.g: rolling dice, card games...

3. Subjective approach:

Estimate P(A), based on intuition and/or experience.

**Example of classical approach**: Throw a fair (unbiased) coin 3 times. What is the probability of 1 time Heads?

- Sample space  $\Omega$  has 2\*2\*2=8 outcomes.  $\Omega$  = {HHH,HHT, HTH, HTH, HTH, THH, THT, TTH, TTT}.
- Interestion event  $A = \{1 \text{ H}\} \rightarrow A = \{\text{HTT, THT, TTH}\}.$
- The outcomes are equally like, hence:

$$P(A) = rac{number\ of\ times\ A\ occurred}{total\ number\ of\ different\ simple\ events} = rac{3}{8}$$

**Counting principle:** 

Suppose two probability experiments are performed. If

- experiment 1 has  $a \ge 0$  possible outcomes
- experiment 2 has  $b \ge 0$  possible outcomes Then the experiments combined have a\*b possible outcomes. This principle extends to any number of experiments.

**Example of counting principle**: First throw coin, then roll die.

⇒ total number of outcomes of both experiments: 2 \* 6 = 12

## General probability measure for finite/countable sample space $\Omega$

In general it is not necessarily true that all outcomes are equally likely. E.g.: biased die.

In all cases of **discrete sample spaces** (finite/countable):

ullet Each outcome  $\omega\in\Omega$  has a probability, and

$$P(\omega) \ge 0$$
 (任何事件的概率一定是正数)

$$\sum_{\omega \in \Omega} P(\omega) = 1$$
 ( sample space中所有单独项概率的和等于1 )

ullet The probability of an event  $oldsymbol{A}$  is defined by

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Example: biased die.

What is the probability of throwing an even number?

$$\mathbf{\Omega} = \{1, 2, 3, 4, 5, 6\}.$$

Outcomes not equally likely:

$$P(6)=rac{2}{7}$$
 and  $P(1)=P(2)=\ldots=P(5)=$ 

$$A = \{\text{even number}\} = \{2, 4, 6\}$$

$$\Rightarrow P(A) = P(\{2,4,6\}) = P(2) + P(4) + P(6) = \frac{1}{7} + \frac{1}{7} + \frac{2}{7} = \frac{4}{7}$$

Addition rule

Idea: every outcome is counted only once.

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$



Notation:

 $A \cup B = A \text{ or } B$ :

 ${f union}$ , set of outcomes which are in  ${m A}$  or  ${m B}$  (both allowed!)

 $A \cap B = A \text{ and } B$ :

**intersection**, set of outcomes which are both in A and B.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

### **Example: three coin tosses (unbiased coin)**

Compute the probability of the event "Tails twice or Heads in first throw".

 $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH\}.$ 

A = {Tails twice} = {HTT, THT, TTH}, so  $P(A) = \frac{3}{8}$ .

B = {Heads in first throw} = {HTT, HHT, HTH, HHH}, so  $P(B) = \frac{4}{8} = \frac{1}{2}$  .

 $A\cap B$  = {Tails twice and heads in first throw} = {HTT}, so  $P(A\cap B)=\frac{1}{8}$  .

 $\Rightarrow$  P( Tails twice or Heads in first throw )

$$= P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{3}{8} + \frac{1}{2} - \frac{1}{8} = \frac{3}{4}$$

## Addition rule for two disjoint events:

A and B are **disjoint** if they exclude each other, i.e.  $A \cap B = \emptyset$ .

If  $m{A}$  and  $m{B}$  are disjoint then:

$$P(A \cup B) = P(A) + P(B)$$



Notice: This is different from independence!!

**Example: Roll a fair die once.** 

What is the probability you throw an even number or 3?

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

$$A = \{\text{even number}\} = \{2, 4, 6\}, \text{ so } P(A) = \frac{3}{6} = \frac{1}{2}.$$

$$B = \{ 3 \}$$
, so  $P(B) = \frac{1}{6}$ .

Furthermore,  $A \cap B = \emptyset$ , so A and B disjoint. Hence,

$$P(A \cup B) = P(A) + P(B) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

General addition rule for disjoint events:

Let  $A_1,\ldots,A_m$  be disjoint, i.e.  $A_i\cap A_j=\emptyset$  for i
eq j . Then :

$$P(A_1 \cup \ldots \cup A_m) = \sum_{i=1}^m P(A_i)$$

### **Example: rolling two fair dice**

What is the probability of "sum equals 4, 8, 9"?

 $\Omega = \{(1,1), \dots, (1,6), (2,1), \dots, (6,6)\}$  contains 6 x 6 = 36 outcomes, which are all equally likely.

 $A = \{\text{Sum is 4}\} = \{(1,3), (2,2), (3,1)\},\$ 

 $B = \{\text{Sum is 8}\} = \{(2,6), (3,5), (4,4), (5,3), (6,2)\},\$ 

 $C = \{\text{Sum is 9}\} = \{(3,6), (4,5), (5,4), (6,3)\}.$ 

$$P(sum\ is\ 4,8,9) = P(A) + P(B) + P(C) = \frac{3}{36} + \frac{5}{36} + \frac{4}{36} = \frac{1}{3}$$

### Complement rule:

 $\overline{A}$  (or  $A^c$ ): complement of A; outcomes which are not in A.

$$P(\overline{A}) = 1 - P(A)$$

### **Example: three fair coin tosses**

What is the probability of at least one Heads?

A = {at least 1 Heads}  $\Rightarrow \overline{A}$  = {no Heads}.

$$P(A) = 1 - P(\overline{A}) = 1 - P(no\ Heads) = 1 - P(TTT) = 1 - rac{1}{8} = rac{7}{8}$$

Complement of at least one is no occurence of ...

## Multiplication rule:

P(B|A) : conditional probability that B occurs given that A has occurred.

If P(A) > 0, then :

$$P(B|A) = rac{P(A\cap B)}{P(A)}$$

- ullet If A has occurred, B only happens if outcome is in both A and B. Hence, in  $A\cap B$ .
- ullet The sample space is reduced to  $oldsymbol{A}$ .
- ullet Hence, given A has occured, compute  $P(A\cap B)$  relative to P(A).

Notice:  $P(B|A) \neq P(A|B)$  in general.

### **Example: 2 fair coin tosses**

What is the conditional probability of "twice Heads" given that

- 1. the first flip is Heads?
- 2. there is at least one Heads?

(1): (Sample space 和 event 陈述省略)

$$P(B|A_1) = rac{P(A_1 \cap B)}{P(A_1)} = rac{P(HH)}{P(HH,HT)} = rac{1/4}{1/2} = rac{1}{2}$$

(2):

$$P(B|A_2) = rac{P(A_2 \cap B)}{P(A_2)} = rac{P(HH)}{P(HH,HT,TH)} = rac{1/4}{3/4} = rac{1}{3}$$

The formula can also be written as:

$$P(A \cap B) = P(A) \cdot P(B|A)$$

### **Example: Draw balls from vase**

Vase with ball 1 to 9.

Draw two balls, after each other.

What is the probability of first is 1 and then 2?

$$P((1,2)) = P(first\ 1, then\ 2) = P(first\ 1) \cdot P(draw\ ball\ 2|ball\ 1\ is\ drawn) = rac{1}{9} \cdot rac{1}{8} = rac{1}{72}$$

## Independence:

Two events  $oldsymbol{A}$  and  $oldsymbol{B}$  are **independent** if

$$P(A \cap B) = P(A) \cdot P(B)$$

Thus P(B) = P(B|A) when A and B are independent.

Notice: Independence ≠ disjointness!

### Independence depend on the sampling methods:

- sampling with replacement : selections are independent events
- sampling without replacement : selections are dependent events

### **However**, to simplify calculations:

### **Small sample rule:**

When drawing a small sample from a large population, we treat the selections as independent events.

## Law of Total Probability and Baye's Theorem

## Baye's Theorem

Addition rule for disjoint events  $(B \cap A \otimes B \cap \overline{A})$ :

$$P(B) = P(B \cap A) + P(B \cap \overline{A})$$

Then, by the multiplication rule:

$$P(B) = P(B \cap A) + P(B \cap \overline{A}) = P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})$$

### Simple law of total probability:

Let A and B be events. Then

$$P(B) = P(B \cap A) + P(B \cap \overline{A}) = P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})$$

### Baye's Theorem:

Let A and B be events, then:

$$P(A|B) = rac{P(A\cap B)}{P(B)} = rac{P(B|A)\cdot P(A)}{P(B|A)\cdot P(A) + P(B|\overline{A})\cdot P(\overline{A})}$$

Notice:

$$P(B|A) + P(\overline{B}|A) = 1$$

but in general:

$$P(B|A) + P(B|\overline{A}) \neq 1$$

### **Example: medical test for certain disease**

Suppose 0.1% of population has the disease.

Medical test: if someone

- has the disease ⇒ positive test result with probability 0.98.
- does not have the disease  $\Rightarrow$  negative test result with probability 0.99.

Suppose Dennis conducts the test: the result is positive.

What is the probability that Dennis has the disease given the positive test outcome?

Let  $B = \{\text{positive}\}\$ and  $A = \{\text{disease}\}\$ Compute P(A|B).

 $P(B|A)=0.98\Rightarrow$  use Bayes's theorem :

First, compute  $P(B|\overline{A})$ , P(A) and  $P(\overline{A})$ .

 $\overline{A}$  = {does not have disease}

We know :  $P(B|\overline{A})=0.01$  , P(A)=0,001 and  $P(\overline{A})=1-0.001=0.999$  .

$$\Rightarrow P(A|B) = rac{P(B|A) \cdot P(A)}{P(B|A) \cdot P(A) + P(B|\overline{A}) \cdot P(\overline{A})} = rac{0.98*0.001}{0.98*0.001 + 0.01*0.999} pprox 0.089$$

The probability that Dennis has the disease is 8.9%.

#### Partition:

Events  $A_1, \ldots, A_m$  are called a partition if

- ullet pairwise disjoint :  $A_i \cap A_j = \emptyset$ , if i 
  eq j
- ullet union is entire sample space :  $A_1 \cup A_2 \cup \ldots \cup A_m = \Omega$

Let  $A_1,\ldots,A_m$  be a partition, then also  $B\cap A_1,\ldots B\cap A_m$  disjoint. Then :

$$P(B) = P(B \cap \Omega) = P(B \cap (A_1 \cup A_2 \cup \ldots \cup A_m))$$

$$=P((B\cap A_1)\cup (B\cap A_2)\cup\ldots\cup (B\cap A_m))$$

$$=\sum_{i=1}^m P(B\cap A_i)$$
 (general addition rule for disjoint event)

$$=\sum_{i=1}^m P(B|A_i)\cdot P(A_i)$$
 (multiplication rule)

### **Law of Total Probability:**

Let  $A_1, \ldots, A_m$  be a partition, then :

$$P(B) = \sum_{i=1}^m P(B \cap A_i) = \sum_{i=1}^m P(B|A_i) \cdot P(A_i)$$

### **Example: defective products in a factory**

Machines 1, 2 and 3 produce 30%, 45% and 25% of all products.

Respectively 2%, 3% and 2% thereof are defective.

A randomly selected product is defective.

What is the probability that it came from machine 2?

 $A_i$  = {machine i made product}, B = {product defective},

so interested in  $P(A_2|B)$ .

We have 
$$P(A_1)=0.30$$
,  $P(A_2)=0.45$ ,  $P(A_3)=0.25$ .

$$P(B|A_1)=0.02$$
,  $P(B|A_2)=0.03$  and  $P(B|A_3)=0.02$ . Hence,

$$P(A_2|B) = rac{P(B|A_2) \cdot P(A_2)}{P(B|A_1) \cdot P(A_1) + P(B|A_2) \cdot P(A_2) + P(B|A_3) \cdot A_3} = rac{0.0135}{0.0245} pprox 0.55$$

## **Probability Distributions**

#### **Random Variable:**

A random variable is a variable that assigns a numerical value to each outcome of a

probability experiment.

Notation: 
$$X,Y,\ldots$$

 $\boldsymbol{x}$  -> value of random variable

### **Example: two coin tosses**

Throw a fair coin twice. Let the random variable X be the number of heads.

Sampe space :  $\Omega$  = {HH, HT, TH, TT} .

Values of  $\boldsymbol{X}$  for those outcomes :

$$X(HH) = 2$$
,  $X(HT) = 1$ ,  $X(TH) = 1$ ,  $X(TT) = 0$ .

So,  $\boldsymbol{X}$  takes values 0, 1, 2.

### A probability distribution :

determines all probabilities of possible values of a random variable. Given by a table, formula or graph.

### A discrete random variable:

has finite (or countably) many different values.

- Its probability distribution is the collection of all their individual probabilities.
- The total sum of these probabilities is 1.

### A continous random variable:

has uncountably many different values.

- Its probability distribution is given by **probability density function**.
- Probabilities can be computed by area under this function.
- The total area is 1.

## Discrete random variable

### Recipe to find probability distribution of discrete random variable.

• Determine the sample space of the underlying probability experiment and the probabilities of the outcomes  $\omega$ .

- List the values  $X(\omega)$  for all  $\omega$  in  $\Omega$ .
- For each value x of X, find all simple events {\omega} with value x. They form the event  $\{X = x\}$   $\{x \in X(\omega) = x\}$ .
- Probabilities  $P(\{\omega\})$  determine the probability of  $\{X = x\}$ :

$$P(X = X) = P(\{\omega : X(\omega) = x\}) = \sum_{\omega : X(\omega) = x} P(\{\omega\})$$

• Make a table : left column with all values x of X, right column with probabilities P(X = x).

### **Example: two coin tosses (fair)**

Random variable X: number of heads.

$$\Rightarrow$$
  $X(HH) = 2$ ,  $X(HT) = 1$ ,  $*X(TH) = 1$ ,  $X(TT) = 0$ .

$$P(X = 0) = P(\{TT\}) = \frac{1}{4},$$
  
 $P(X = 1) = P(\{TH, HT\}) = \frac{2}{4} = \frac{1}{2},$   
 $P(X = 2) = P(\{TT\}) = \frac{1}{4},$ 

| х | P(X = x) | num. $P(X = x)$ |
|---|----------|-----------------|
| 0 | 1/4      | 0.25            |
| 1 | 1/2      | 0.50            |
| 2 | 1/4      | 0.25            |

Check: 
$$P(X = 0) + P(X = 1) + P(X = 1) = \frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 1$$
.

### **Expected value (expectation / mean):**

of a discrete random variable X with possible values  $x_1, \ldots, x_k$  is the weighted average of all possible values of X:

$$\mu = E(X) = \sum_{i=1}^k \cdot P(X = x_i)$$

### Example: X = maximum of two fair dice

What is E(X)?

| х | P(X = x) | num. $P(X = x)$ | $x \cdot P(X = x)$ |
|---|----------|-----------------|--------------------|
|   |          |                 |                    |

| x | P(X = x) | num. $P(X = x)$ | $x \cdot P(X = x)$ |
|---|----------|-----------------|--------------------|
| 1 | 1/36     | 0.028           | 0.028              |
| 2 | 1/12     | 0.083           | 0.167              |
| 3 | 5/36     | 0.139           | 0.417              |
| 4 | 7/36     | 0.194           | 0.778              |
| 5 | 1/4      | 0.250           | 1.250              |
| 6 | 11/36    | 0.306           | 1.833              |

Thus:

$$E(X) = \sum_{i=1}^6 \cdot P(X=x_i) pprox 4.472$$

Variance:

of a discrete random variable X with values  $x_1, \ldots, x_k$  is

$$\sigma^2=Var(X)=\sum_{i=1}^k[(x_i-\mu)^2P(X=x_i)]$$

**Standard deviation of** *X***:** 

$$\sigma = SD(X) = \sqrt{Var(X)} = \sqrt{\sum_{i=1}^k [(x_i - \mu)^2 P(X = x_i)]}$$

**NB**: convenient manual computation

$$Var(x) = \sum_{i=1}^k [x_i^2 P(X=x_i)] - \mu^2$$

Example : X = maximum of two fair dice

What is SD(X)?

Probability distribution + weighted averages :

| х | P(X = x) | num. <i>P( X = x)</i> | $x \cdot P(X = x)$ | $x^2 \cdot P(X = x)$ |
|---|----------|-----------------------|--------------------|----------------------|
| 1 | 1/36     | 0.028                 | 0.028              | 0.028                |
| 2 | 1/12     | 0.083                 | 0.167              | 0.333                |
| 3 | 5/36     | 0.139                 | 0.417              | 1.250                |
| 4 | 7/36     | 0.194                 | 0.778              | 3.110                |
| 5 | 1/4      | 0.250                 | 1.250              | 6.250                |
| 6 | 11/36    | 0.306                 | 1.833              | 11.000               |

Thus  $\sum_{i=1}^6 i^2 \cdot P(x=i) pprox$  . Hence,

$$\sigma^2 = Var(x) = \sum_{i=1}^6 [i^2 P(X=i)] - \mu^2 pprox 21.972 - 20.000 = 1.972$$

Finally,

$$\sigma = \sqrt{Var(X)} pprox \sqrt{1.972} pprox 1.404$$

**Law of Large Numbers Theorem:** 

Let  $X_1, \ldots, X_n$  be n independent versions of random variable  $X_n$ , where X has expected value  $\mu$ . Then their mean  $\frac{1}{n}(X_1+\ldots+X_n)$  tends to approach  $\mu$ .

Notice

This is a special version of the LLN in basic Probability section : random variable  $X_i=1$  if A occurs,  $X_i=0$  if A does not occur.

Example: X = sum of two fair dice

We can find that E(X)=7. Behaviour of mean of  $X_i'$ s after  $n( o\infty)$  double rolls.

## 

## Continuous random variables

### **Example: choose point in interval**

Let *X* denote a random point between -2 and 1. What is the probability distribution of *X*?

### uniform(-2,1) density



The probability density function is :

$$p(x)=rac{1}{3}$$
 for  $x\in[-2,1]$ .

Prob. of X between -1 and 0.5



(长 x 宽 = 长方形面积)

$$P(-1 \leq X \leq rac{1}{2}$$
 = blue area =  $(rac{1}{2}-(-1))\cdotrac{1}{3}=rac{3}{2}\cdotrac{1}{3}=rac{1}{2}$ 

## Standard normal distribution

**Probability density function:** 

a curve p(x) such that

- $p(x) \ge 0$  for all x,
- total area under curve = 1.

The **probability** that X takes values between a and b, i.e.  $P(a \le X \le b)$  equals the area under the curve p(x) between a and b.

**Example: bell-shaped density** 

Bell-shaped density



Prob. between -1 and 1



#### Normal distribution:

A random variable X has a normal distribution if it has probability density

$$p(x)=rac{1}{\sigma\sqrt{2\pi}}\,e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

This density is continuous, bell-shaped and symmetric.

We write  $X \sim N(\mu, \sigma^2)$  and for X normally distributed with mean  $\mu$  and variance  $\sigma^2$ .

he standard normal distribution has mean 0 and variance 1 : N(0,1).

## Rule of thumb for $N(\mu,\sigma^2)$



- 68% of probability mass lies between  $\mu-\sigma$  and  $\mu+\sigma$
- 95% of probability mass lies between  $\mu-2\sigma$  and  $\mu+2\sigma$
- 99.7% of probability mass lies between  $\mu-3\sigma$  and  $\mu+3\sigma$

### Determine probabilities of a normally distributed random variable

 $P(X \leq Z)$  = area under density to the left of z

$$P(a \leq X \leq b) = P(X \leq b) - P(X \leq a)$$

$$P(X \ge b) = 1 - P(X \le b)$$

- In case of N(0,1): Use Table 2 of book (p.786-787)
- For $N(\mu, \sigma^2)$ : compute z-scores and use Table 2.

# Example : Probabilities of standard normal distribution Let $Z \sim N(0,1)$ .

1.  $P(Z \le 0.5) = 0.6915$  (cumulative area to the left of 0.5)

2. 
$$P(Z \ge -1.33) = 1 - P(Z \le -1.33) = 1 - 0.0918 = 0.9082$$

3. 
$$P(Z \in [-1.33, 0.5]) = P(-1.33 \le Z \le 0.5)$$
  
=  $P(Z \le 0.5) - P(Z \le -1.33) = 0.6915 - 0.09$ 

## Applications of normal distributions

Relationship  $N(\mu,\sigma^2)$  versus N(0,1)

If random variable  $X \sim N(\mu, \sigma^2)$ , then  $Z = rac{X - \mu}{\sigma} \sim N(0, 1)$  .

### **Z**-score of value *x*:

Let x be a (data) value of interest, related to a population distribution with mean  $\mu$  and standard deviation  $\sigma$ . The z-score of x is  $z = \frac{x-\mu}{\sigma}$ .

Interpretation: number of standard deviations away from the mean.

Exampe :  $X \sim N(10, 25)$ . What is  $P(X \ge 8)$ ?

Prob. larger than 8

$$X \sim N(10,25)$$
 so  $\mu=10$  and  $\sigma=5$ .

Since  $Z=rac{X-10}{5}\sim N(0,1)$  ,

$$P(X \ge 8) = P(\frac{X - 10}{5} \ge \frac{8 - 10}{5})$$

$$= P(Z \ge -0.4)$$

$$= 1 - 0.3446$$

$$= 0.6554$$
(8)

Example: X = "random test score"

X is appoximately N(500, 10000)-distributed.

What is the probability that random participant scores are between 550 and 700?

Compute z-scores of 550 and 700:

$$x=550 o z = rac{550-500}{100} = 0.5$$
 ,

$$x = 8700 
ightarrow z = rac{700 - 500}{100} = 2.0$$

Hence, 
$$P(500 \le X \le 700) = 0.9772 - 0.6915 = 0.2825$$

## The Central Limit Theorem

### The Central Limit Theorem (CLT):

Independently draw a sample of size n > 30 from a population with mean  $\mu$  and standard deviation  $\sigma$ .

Then  $\overline{X}_n$  has approxmately a  $N(\mu, \frac{\sigma^2}{n})$ -distribution (hence, standard deviation  $\frac{\sigma}{\sqrt{n}}$ ).

Notice: the population can have any distribution!

### Special case:

Independently draw a sample of size n from a **normal** population with mean  $\mu$  and standard deviation  $\sigma$ .

Then 
$$\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$$
.

Notice: *n* can be any number.

### Example: illustration of CLT for sample mean of a fair die.

Histograms : distribution of 1000 sample means of n = 1, 8, 64, and 256 die rolls.

Red line: normal distribution according to CLT, i.e.  $N(3.5, \frac{2.92}{n})$ 

# Distribution of sample mean of sample of size n= 1



# Distribution of sample mean of sample of size n= 8



# Distribution of sample mean of sample of size n= 64



# Distribution of sample mean of sample of size n= 256



### **Example application of CLT: test scores**

Test scores are approximately N(500, 10000)-distributed.

- 1.Alice scores 475. What perentage of students performs better?
- 2.A school of 100 students has an everage score of 475. What percentage of schools performs better?

1. The z-score of x = 475 is 
$$\frac{475-500}{100}$$
 = -0.25.

Table 2:1 - 0.4013 = 0.5987,

so ca. 60% of students performs better.

### 2.CLT - >

Distribution of mean score of a school of 100 students is  $N(500, \frac{10000}{100})$ ,

so mean  $\mu=500$  and standard deviation  $\sigma=\frac{100}{\sqrt{100}}=10$ . Hence, z-score of x=475 is  $\frac{475-500}{10}=-2.5$ .

Table 2:1 - 0.0062 = 0.9938, so 99.38% of comparable schools perform better.

### Is the sample mean normally distributed?

Consider a population distribution with mean  $\mu$  and standard deviation  $\sigma$  Take a sample of size n from this population.

The sample mean  $\overline{m{X}}$  has a normal distribution if

- Sample size n > 30. Then CLT applies and  $\overline{X}$  has approximately a normal distribution with mean  $\mu$  and standard deviation  $\sigma/\sqrt{n}$ .
- The population distribution is a normal distribution. Then,  $\overline{X}$  has a normal distribution with mean  $\mu$  and standard deviation  $\sigma/\sqrt{n}$  for any n.

### Normally assumption for X is reasonable if

- X is a mean of many independent measurements.(CLT applies)
- The dataset's shape suggests normality:
  - o histogram bell-shaped curve
  - o Normal QQ-plot approximately straight line

## Assessing normality

### **Example of non-normal distributions**

A normal distribution with the same mean and standard deviation is plotted in red.



### A model distribution:

is a (theoretical) probability distribution for describing the **unknown** true population distribution.

Examples (continous variables) : normal, uniform, t,  $\chi^2$ , exponential.

If a model distribution is used, we say:

The variable < ... > is modelled as a random variable having a < model distribution > with < relevant parameters >.

### Example

The variable "Birth date - Due date" is a random variable having a normal distribution with mean 0 and standard deviation 10.

Normal QQ - Plot:

QQ-plot = quantile-quantile plot consider the dataset  $x_1, \ldots, x_n$ .

- ullet Ordered values  $x_(1),\ldots,x_(n)$  are plotted against theoretical quantiles  $z_{a_1},\ldots,z_{a_n}$  of N(0,1).
- If points approximately follow a straight line, then  $N(\mu, \sigma^2)$  is a reasonable model distribution.
- ullet If the straight line is y=a+bx, then  $\mu\sim a$  (line's intercept) and  $\sigma\sim b$  (line's slope).

Notice: There are QQ-plots other than "normal QQ-plots", those use theoretical quantiles of other continuous distribution.

Sample size matters:

Small n: more variation  $\Rightarrow$  histogram and QQ-plot can deviate a lot from bell shape and straight line

respectively even if data come from  $N(\mu, \sigma^2)$ .

Large n: the histogram and QQ-plot are more reliable.

Example: normal QQ-plots



Left & middle: no straight line at all, obviously not from normal distribution.

Right: approximately straight line y = 5000 + 1000x, so N(5000, 1000000) is a reasonable model distribution.

### A location-scale family:

is a family of probability distributions such that each family member is obtained from another by

- shifting (change in location) and/or
- stretching/squeezing (change in scale).

In short : by a linear transformation, Y = a + bX, for some a and b > 0.

Normal distributions form a location-scale family.

(If 
$$X \sim N(\mu, \sigma^2)$$
 , then  $Z = rac{X - \mu}{\sigma} \sim N(0, 1)$  )

Stochasts(随机) X and Y have probability distributions that are in the same location-scale family  $\iff$  the QQ-Plot shows a straight line Y = a + bX.

### There are three types of QQ-Plots:

1. x-axis: theoretical quantiles of a probability distribution.

y-axis: sample quantiles of a dataset.

Used to assess whether the particular distribution could be used as model distribution.

2. x-axis: theoretical quantiles of a probability distribution.

y-axis: theoretical quantiles of another probability distribution.

Used to **compare the shape of two probability distributions**, for instance to verify whether they belong to the same location-scale family.

3. x-axis: sample quantiles of a dataset.

y-axis: sample quantiles of another dataset.

Used to **compare the shape** of the two data distributions and assess whether they could possibly **originate from two model distributions belonging to the same location-scale family**.

Example: theoretical QQ-plots

Top: t-distribution with 3 degrees of freedom,

Bottom: uniform(0,1) distribution,

vs. a normal distribution with the same mean and standard deviation.



### How to interpret QQ-plots

Draw (imaginary) straight line through middle of the QQ-plot.

- Points on left side below straight line?
   ⇒ left tail of sample is heavier than left tail of N(0, 1).
- Points on left side above straight line?
  - $\Rightarrow$  left tail of N(0, 1) is heavier than left tail of sample.
- Points on right side above straight line?
  - $\Rightarrow$  right tail of sample is heavier than right tail of N(0, 1).
- Points on right side below straight line?
  - $\Rightarrow$  right tail of N(0, 1) is heavier than right tail of sample.

### **Example: interpreting normal QQ-plots**



### How to assess normality of data with QQ-plot

- Make a normal QQ-plot (qqnorm()).
- If points follow approximately a straight line y = a + bx (with slope b > 0), then  $N(a, b^2)$  is reasonable as model distribution.
- If points don't follow a straight line, then the sample is most likely not from a normal distribution.

In latter case: the sample is most likely from a location-scale family with lighter or heavier tails than those of the normal distribution, depending on the shape of the QQ-plot.