Jerrold E. Marsden and Anthony J. Tromba

Vector CalculusFifth Edition

Chapter 3: High-Order Derivatives: Maxima and Minima

3.5 The Implicit Function Theorem

3.5 The Implicit Function Theorem

Key Points in this Section.

- 1. One-Variable Version. If $f:(a,b) \to \mathbb{R}$ is C^1 and if $f'(x_0) \neq 0$, then locally near x_0 , f has a C^1 inverse function $x = f^{-1}(y)$. If f'(x) > 0 on all of (a,b) and is continuous on [a,b], then f has an inverse defined on [f(a), f(b)]. This result is used in one-variable calculus to define, for example, the log function as the inverse of $f(x) = e^x$ and \sin^{-1} as the inverse of $f(x) = \sin x$.
- 2. Special *n*-variable Version. If $F: \mathbb{R}^{n+1} \to \mathbb{R}$ is C^1 and at a point $(\mathbf{x}_0, z) \in \mathbb{R}^{n+1}$, $F(\mathbf{x}_0, z) = 0$ and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$, then locally near (\mathbf{x}_0, z_0) there is a unique solution $z = g(\mathbf{x})$ of the equation $F(\mathbf{x}, z) = 0$. We say that $F(\mathbf{x}, z) = 0$ implicitly defines z as a function of $\mathbf{x} = (x_1, \dots, x_n)$.

3. The partial derivatives are computed by *implicit differentiation*:

$$\frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x_i} = 0,$$

SO

$$\frac{\partial z}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}$$

4. The special implicit function theorem guarantees that if $\nabla g(\mathbf{x}_0) \neq \mathbf{0}$, then the level set g = c is a smooth surface near \mathbf{x}_0 , a fact needed in the proof of the Lagrange multiplier theorem.

5. The general implicit function theorem deals with solving m equations

$$F_1(x_1, \dots, x_n, z_1, \dots, z_m) = 0$$

$$\vdots \qquad \qquad \vdots$$

$$F_m(x_1, \dots, x_n, z_1, \dots, z_m) = 0$$

for m unknowns $\mathbf{z} = (z_1, \dots, z_m)$. If

$$\begin{vmatrix} \frac{\partial F_1}{\partial z_1} & \cdots & \frac{\partial F_1}{\partial z_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial z_1} & \cdots & \frac{\partial F_m}{\partial z_m} \end{vmatrix} \neq 0$$

at $(\mathbf{x}_0, \mathbf{z}_0)$, then these equations define (z_1, \ldots, z_m) as functions of (x_1, \ldots, x_n) . The partial derivatives $\partial z_i/\partial x_j$ may again be computed by using implicit differentiation.

6. The *Inverse Function Theorem*, which is a special case of the general implicit function theorem, states that a system

$$f_1(x_1, \dots, x_n) = y_1$$

$$\vdots \qquad \vdots$$

$$f_n(x_1, \dots, x_n) = y_n$$

where $f = (f_1, ..., f_n)$ is a C^1 mapping, can be solved for the x_i 's as functions of $(y_1, ..., y_n)$ near a given point \mathbf{x}_0 , $\mathbf{y}_0 = f(\mathbf{x}_0)$ provided the $Jacobian\ determinant$

$$\frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)}\Big|_{\mathbf{x} = \mathbf{x}_0} = J(f)(\mathbf{x}_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

(where partials are evaluated at \mathbf{x}_0) is non-zero. Again the partial derivatives $\partial x_i/\partial y_j$ can be determined by implicit differentiation.

THEOREM 11: Special Implicit Function Theorem Suppose that $F: \mathbb{R}^{n+1} \to \mathbb{R}$ has continuous partial derivatives. Denoting points in \mathbb{R}^{n+1} by (\mathbf{x}, z) , where $\mathbf{x} \in \mathbb{R}^n$ and $z \in \mathbb{R}$, assume that (\mathbf{x}_0, z_0) satisfies

$$F(\mathbf{x}_0, z_0) = 0$$
 and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$.

Then there is a ball U containing \mathbf{x}_0 in \mathbb{R}^n and a neighborhood V of z_0 in \mathbb{R} such that there is a unique function $z = g(\mathbf{x})$ defined for \mathbf{x} in U and z in V that satisfies

$$F(\mathbf{x}, g(\mathbf{x})) = 0.$$

Moreover, if \mathbf{x} in U and z in V satisfy $F(\mathbf{x}, z) = 0$, then $z = g(\mathbf{x})$. Finally, $z = g(\mathbf{x})$ is continuously differentiable, with the derivative given by

$$\mathbf{D}g(\mathbf{x}) = -\frac{1}{\frac{\partial F}{\partial z}(\mathbf{x}, z)} \mathbf{D}_{\mathbf{x}} F(\mathbf{x}, z) \bigg|_{z=g(\mathbf{x})},$$

where $\mathbf{D}_{\mathbf{x}}F$ denotes the (partial) derivative of F with respect to the variable \mathbf{x} , that is, we have $\mathbf{D}_{\mathbf{x}}F = [\partial F/\partial x_1, \dots, \partial F/\partial x_n]$; in other words,

$$\frac{\partial g}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}, \qquad i = 1, \dots, n. \tag{1}$$

THEOREM 12: General Implicit Function Theorem

The general implicit function theorem deals with solving m equations

$$F_1(x_1, \dots, x_n, z_1, \dots, z_m) = 0$$

$$\vdots$$

$$F_m(x_1, \dots, x_n, z_1, \dots, z_m) = 0$$

for m unknowns $\mathbf{z} = (z_1, \dots, z_m)$. If

$$\begin{vmatrix} \frac{\partial F_1}{\partial z_1} & \cdots & \frac{\partial F_1}{\partial z_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial z_1} & \cdots & \frac{\partial F_m}{\partial z_m} \end{vmatrix} \neq 0$$

at $(\mathbf{x}_0, \mathbf{z}_0)$, then these equations define (z_1, \ldots, z_m) as functions of (x_1, \ldots, x_n) . The partial derivatives $\partial z_i/\partial x_j$ may again be computed by using implicit differentiation.

THEOREM 13: Inverse Function Theorem

The *Inverse Function Theorem*, which is a special case of the general implicit function theorem, states that a system

$$f_1(x_1, \dots, x_n) = y_1$$

$$\vdots \qquad \vdots$$

$$f_n(x_1, \dots, x_n) = y_n$$

where $f = (f_1, ..., f_n)$ is a C^1 mapping, can be solved for the x_i 's as functions of $(y_1, ..., y_n)$ near a given point \mathbf{x}_0 , $\mathbf{y}_0 = f(\mathbf{x}_0)$ provided the **Jacobian determinant**

$$\frac{\partial(f_1, \dots, f_n)}{\partial(x_1, \dots, x_n)}\Big|_{\mathbf{x} = \mathbf{x}_0} = J(f)(\mathbf{x}_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$

(where partials are evaluated at \mathbf{x}_0) is non-zero. Again the partial derivatives $\partial x_i/\partial y_j$ can be determined by implicit differentiation.