Untitled4

In [1]:

Import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
Load the dataset

Load the dataset
url = '/Users/kiran/Desktop/insurance.csv'
data = pd.read_csv(url)

Preview the dataset
data.head()

Out[1]:

				childre			charge
	age	sex	bmi	n	smoker	region	S
0	19	female	27.900	0	yes	southw est	16884. 92400
1	18	male	33.770	1	no	southe ast	1725.5 5230
2	28	male	33.000	3	no	southe ast	4449.4 6200
3	33	male	22.705	0	no	northw est	21984. 47061
4	32	male	28.880	0	no	northw est	3866.8 5520

In [3]:

Check for missing values
data.isnull().sum()

Data summary
data.describe()

Visualize the relationships
sns.pairplot(data)

```
Out[3]:
<seaborn.axisgrid.PairGrid at 0x14b567800>
No description has been provided for this image
In [23]:
# Convert categorical variables using one-hot encoding
data = pd.get dummies(data, drop first=True)
# Define features (X) and target (y)
X = data.drop('charges', axis=1)
y = data['charges']
# Train-test split (80% training, 20% testing)
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=42)
In [25]:
# Initialize and train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Predict on the test data
y_pred = model.predict(X_test)
In [9]:
# Calculate Mean Squared Error
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
# Plot the results
plt.scatter(y_test, y_pred)
plt.xlabel("True Values")
plt.ylabel("Predictions")
plt.title("True Values vs Predictions")
plt.show()
Mean Squared Error: 33596915.85136147
No description has been provided for this image
In []:
```