Functional Analysis Assignment VII

YANG, Ze (5131209043)

May 28, 2016

Problem 1. Show that both Laplace equation

$$\Delta u = \sum_{i=0}^{n} \partial_{x_i x_i} u = 0$$

And wave equation

$$\Box u = \partial_{x_0 x_0} u - \sum_{i=1}^n \partial_{x_i x_i} u = 0$$

can be written into the positive symmetric system

$$L\boldsymbol{U} = \sum_{j=0}^{n} A_j \partial_{x_j} \boldsymbol{U} + B\boldsymbol{U} = f$$

Where $A_j(j = 0, ..., n)$ are symmetric matrix functions and B is a square matrix satisfying

$$B + B^{\top} - \sum_{j=0}^{n} \partial_{x_j} A_j > kI$$
 For a constant $k > 0$.

Proof.

Problem 2. Show that a weakly sequentially compact set is bounded.

Proof. Let $K \subset X$ be a subset of normed space. Let $\{x_n\} \subset K$ and $x_n \rightharpoonup x \in K$. Then by the third part of *Principle of uniform boundedness*: there exists constant c > 0

$$||x_n|| \le c \quad (\dagger)$$

Assume K is unbounded, then we can pick $\{x_n\} \in K$ such that $||x_n|| \ge n$. Since K is weakly sequentially compact, there exists a weakly convergent subsequence $\{x_{n_k}\} \subset \{x_n\}$, and

$$||x_{n_k}|| \ge n_k$$

Contradicts (\dagger). Hence K is bounded.

Problem 3. Show that if the sequence $\{u_n\}$ is weak* convergent to u,

$$||u|| \le \liminf ||u_n||$$

Proof. Since $u_n \rightharpoonup u$, we have $|u(x)| = \lim_{n \to \infty} |u_n(x)|$, for $\forall x \in X$.

By definiton, we can find $x_0 \in X$, such that $|u(x_0)| = ||u||$ and $||x_0|| = 1$. Therefore

$$||u|| = |u(x_0)| = \lim_{n \to \infty} |u_n(x_0)|$$

$$\leq \liminf_{n \to \infty} ||u_n|| ||x_0||$$

$$= \liminf_{n \to \infty} ||u_n||$$
(1)

Which finished the proof.

Problem 4. Show that the norm of bounded linear map is sub-additive, that is

$$\|M + K\| \le \|M\| + \|K\|$$

Proof. By definition

$$||M + K|| = \sup_{\|x\|=1} ||(M + K)x||$$

$$\leq \sup_{\|x\|=1} (||Mx|| + ||Kx||)$$

$$\leq \sup_{\|x\|=1} ||Mx|| + \sup_{\|x\|=1} ||Kx|| = ||M|| + ||K||$$
(2)

Problem 5. Let X and U be Banach spaces, U reflexive. Let M be a bounded linear map: $X \to U$. Let x_n be a sequence in X, $x_n \rightharpoonup x$. Then, $Mx_n \rightharpoonup Mx$.

Proof. It suffice to show that $\lim_{n\to\infty} \xi(\boldsymbol{M}x_n) = \xi(\boldsymbol{M}x)$ for all $\xi \in U'$ For any $\xi \in U'$, we have

$$\lim_{n \to \infty} \xi(\boldsymbol{M}x_n) - \xi(\boldsymbol{M}x) = \lim_{n \to \infty} \xi(\boldsymbol{M}x_n - \boldsymbol{M}x)$$

$$= \lim_{n \to \infty} \xi(\boldsymbol{M}(x_n - x))$$

$$= \lim_{n \to \infty} (\xi \circ \boldsymbol{M})(x_n - x) \quad (\triangle)$$
(3)

The quantity (Δ) is zero. Because $(\xi \circ \mathbf{M}) := \ell \in X'$, and due to the weak convergence of $\{x_n\}$, $\ell(x) = \lim_{n \to \infty} \ell(x_n)$. Hence, we have $\lim_{n \to \infty} \xi(\mathbf{M}x_n) = \xi(\mathbf{M}x)$ for all $\xi \in U'$. Finished the proof.

Problem 6. If I is identity map: $X \to X$, show I' is identity map: $X' \to X'$.

Proof. Since $I: X \to X$, I(x) = x for all $x \in X$. By definition of transpose, $I': X' \to X'$ such that for any $\ell \in X'$

$$I'\ell(x) = \ell(Ix) = \ell(x) \tag{4}$$

Therefore $I'\ell = \ell$, which implies that I' is identity map on X'.

Problem 7. M^* is adjoint operator on Hilbert space, show thm.5 is valid for it, that is

- 1. M^* is bounded, and $||M^*|| = ||X||$.
- 2. The nullspace of M^* is the annihilator of the range of M. That is, $N_{M^*} = R_M^{\perp}$.
- 3. The null space of \boldsymbol{M} is the annihilator of the range of $\boldsymbol{M}^*.$ $N_{\boldsymbol{M}}=R_{\boldsymbol{M}^*}^{\perp}.$
- 4. $(M + N)^* = M^* + N^*$.

Proof. (1) Consider linear functional with respect to $\ell_y(x) = \langle \mathbf{M}x, y \rangle$, for fixed $y \in H$. By (**Riesz**), there exists unique $z \in H$, such that

$$\ell_y(x) = \langle \boldsymbol{M}x, y \rangle = \langle x, z \rangle$$

Now define $M^*: H \to H$ as $M^*y = z$ (\triangle). This exactly is the defining property of adjoint of bounded linear map M. So it suffices to verify the theorem on M^* defined by (\triangle). For any $x \in H$,

$$\|\boldsymbol{M}^*x\|^2 = |\langle \boldsymbol{M}^*x, \boldsymbol{M}^*x \rangle| = |\langle \boldsymbol{M}(\boldsymbol{M}^*x), x \rangle|$$

$$= |\ell_x(\boldsymbol{M}^*x)| \le \|\ell_x\| \|\boldsymbol{M}^*x\|$$

$$\Rightarrow \|\boldsymbol{M}^*x\| \le \|\ell_x\| \le \|\boldsymbol{M}\| \|x\|$$
(5)

Hence by definition, we have $||M^*|| \le ||M||$. Since **M** is bounded linear map, M^* too. Now we show $||M|| = ||M^*||$. Consider

$$|\langle \boldsymbol{M}x, y \rangle| = |\langle x, \boldsymbol{M}^*y \rangle| \le ||x|| \, ||M^*|| \, ||y|| \tag{6}$$

So

$$m{M}^* = \sup_{\|x\| = \|y\| = 1} |\langle m{M} x, y \rangle| = \sup_{\|x\| = 1} \|m{M} x\| = \|m{M}\|$$

Finished the proof.

- (2) $\forall y \in N_{\mathbf{M}^*}, \langle x, \mathbf{M}^* y \rangle = 0$ for all $x \in H$. Hence $\langle \mathbf{M} x, y \rangle = 0 \Rightarrow y \in R_{\mathbf{M}}^{\perp}$.
- On the other hand, $\forall y \in R_{\boldsymbol{M}}^{\perp}$, $0 = \langle \boldsymbol{M}x, y \rangle = \langle x, \boldsymbol{M}^*y \rangle$. $\Rightarrow y \in N_{\boldsymbol{M}^*}$. We conclude that $N_{\boldsymbol{M}^*} = R_{\boldsymbol{M}}^{\perp}$. (3) $\forall x \in N_{\boldsymbol{M}}$, $\langle \boldsymbol{M}x, y \rangle = 0$ for all $y \in H$. $\Rightarrow \langle x, \boldsymbol{M}^*y \rangle = 0$. So $N_{\boldsymbol{M}} \subseteq R_{\boldsymbol{M}^*}^{\perp}$.
- On the other hand, $\forall x \in R_{M^*}^{\perp}$, $0 = \langle x, M^*y \rangle = \langle Mx, y \rangle$. And $||Mx|| = \sup |\langle Mx, y \rangle|$. $\Rightarrow Mx = 0$,

 $x \in N_{\mathbf{M}}$. So $N_{\mathbf{M}} \supseteq R_{\mathbf{M}^*}^{\perp}$. We conclude that $N_{\mathbf{M}} = R_{\mathbf{M}^*}^{\perp}$.

(4) By bilinearity of inner product,

$$\langle (\boldsymbol{M} + \boldsymbol{N})x, y \rangle = \langle \boldsymbol{M}x, y \rangle + \langle \boldsymbol{N}x, y \rangle$$

$$= \langle x, \boldsymbol{M}^*y \rangle + \langle x, \boldsymbol{N}^*y \rangle$$

$$= \langle x, (\boldsymbol{M}^* + \boldsymbol{N}^*)y \rangle$$
(7)

Therefore, we have $(M + N)^* = M^* + N^*$.

Problem 8. (Ex.6) Show that if w- $\lim_{n\to\infty} M_n = M$, then w- $\lim_{n\to\infty} M'_n = M'$, provided that X is

(Ex.7) (Thm.6) Let X, U be Banach spaces, M_n a sequence of linear maps: $X \to U$, uniformly bounded in norm:

$$|M_n| \le c$$
 for all n .

Suppose further that s- $\lim_{n\to\infty} M_n x$ exists for a dense set of x in X. Then $\{M_n\}$ converges strongly. I.e. the s- $\lim_{n\to\infty} M_n x$ exists for all $x\in X$. Show the thm above and formulate analogous theorem for weak convergence.

Proof. $M: X \to U$ weakly converges. By definition, $\forall x \in X$ and $\ell \in U'$, we have

$$\ell(\boldsymbol{M}x) = \lim_{n \to \infty} \ell(\boldsymbol{M}_n x)$$

Since X is reflexive, and by definition of transpose,

$$\ell(\boldsymbol{M}_n x) = (\boldsymbol{M}_n' \ell) x$$

Since X is reflexive, w- $\lim_{n\to\infty} M'$ exists. Denote $M'_n \rightharpoonup N'$. For any $x \in X$, $\ell \in U$. So we have

$$(\mathbf{N}'\ell)x = \lim_{n \to \infty} (\mathbf{M}'_n\ell)x = \lim_{n \to \infty} \ell(\mathbf{M}_n x) = \ell(\mathbf{M}x) = (\mathbf{M}'\ell)x$$
(8)

Hence N' = M', i.e. $M'_n \rightharpoonup M'$.

Proof. (1) Denote E the set in which s- $\lim_{n\to\infty} M_n x$ exists. E is dense in X.

 $\forall \epsilon > 0$, for any $x \in X$, since E dense, $\exists \tilde{x} \in E$, s.t. $||x - \tilde{x}|| < \epsilon/4c$.

Since s- $\lim_{n\to\infty} M_n x$ exists in E, it is Cauchy sequence. $\exists N>0$, for all n,m>N we have

$$\|(\boldsymbol{M}_n-\boldsymbol{M}_m)\tilde{x}\|<rac{\epsilon}{2}$$

So

$$\|(\boldsymbol{M}_{n} - \boldsymbol{M}_{m})\boldsymbol{x}\| \leq \|(\boldsymbol{M}_{n} - \boldsymbol{M}_{m})\tilde{\boldsymbol{x}}\| + \|(\boldsymbol{M}_{n} - \boldsymbol{M}_{m})(\boldsymbol{x} - \tilde{\boldsymbol{x}})\|$$

$$\leq \frac{\epsilon}{2} + \|\boldsymbol{M}_{n} - \boldsymbol{M}_{m}\| \|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|$$

$$\leq \frac{\epsilon}{2} + 2c \cdot \frac{\epsilon}{4c}$$

$$= \epsilon$$
(9)

So $\{M_n x\}$ is Cauchy sequence for all $x \in X$, which stongly convergent. Finished the proof.

(b) Analogous theorem: X, U Banach spaces. $M_n : X \to U$, are uniformly bounded in norm, i.e. $\|M_n\| \le c$ for all n. And w-lim $M_n x$ exists for $x \in E$ which is dense in X. Then, M_n converges weakly, i.e. w-lim $M_n x$ exists for all $x \in X$.

Proof. For any fixed $\ell \in U'$, $\forall \epsilon > 0$, any $x \in X$, there exists $\tilde{x} \in E$, such that

$$||x - \tilde{x}|| < \frac{\epsilon}{4c \, ||\ell||}$$

Since $M_n x$ weakly convergent on E, $\exists N$, for any $n, m \geq N$:

$$\|\ell(\boldsymbol{M}_n\tilde{x}) - \ell(\boldsymbol{M}_m\tilde{x})\| < \frac{\epsilon}{2}$$

Hence

$$\|\ell(\boldsymbol{M}_{n}x) - \ell(\boldsymbol{M}_{m}x)\| \leq \|\ell((\boldsymbol{M}_{n} - \boldsymbol{M}_{m})\tilde{x})\| + \|\ell((\boldsymbol{M}_{n} - \boldsymbol{M}_{m})(x - \tilde{x}))\|$$

$$\leq \frac{\epsilon}{2} + \|\ell\| \|\boldsymbol{M}_{n} - \boldsymbol{M}_{m}\| \|x - \tilde{x}\|$$

$$\leq \frac{\epsilon}{2} + \|\ell\| \cdot 2c \cdot \frac{\epsilon}{4c \|\ell\|}$$

$$= \epsilon$$

$$(10)$$

So $\{\ell(\mathbf{M}_n x)\}\$ is Cauchy sequence for all $x \in X$ and $\ell \in U'$, implies that $\{\mathbf{M}_n\}$ converges weakly. \square

Problem 9. Show that in a complex Hilbert space $(NM)^* = M^*N^*$

Proof. It is clear by definition.

$$\langle \mathbf{N}\mathbf{M}x, y \rangle = \langle \mathbf{M}x, \mathbf{N}^*y \rangle = \langle x, \mathbf{M}^*\mathbf{N}^*y \rangle$$
 (11)

Hence $(NM)^* = M^*N^*$.