Minor Examination

SEPT 24, 2024

IMT& IMG -Ist Semester

Engineering Physics

Time Duration: Two hours

Max Marks:30

Note: -Attempt All. Non-Programmable scientific calculators allowed.

Q.1. Answer in True/False to Any 5 of the following and justify your answer.

10

- (a) In the monoclinic crystal structure, angles between the axes are, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$.
- (b) 5-fold rotation symmetry doesn't exist in nature.
- (c) Lattice planes are characterized with Miller indices (hkl)
- [at] Number of defects is the function of Activation energy only.
- (e) All crystals with the same crystal system have the same symmetry.
- •(f) The hexagonal close-packed (HCP) structure is one of the 14 Bravais lattices.
- (g) The face-centered cubic (FCC) has ABCABC stacking.

Q.2. Identify the following defects and explain briefly about the science of these defects.

nέ

ABV-Indian Institute of Information Technology & Management-Gwalior

Q.3. (a) Using following tabled information, explain the rule of predicting more Al or Ag to dissolve in Zn?

Element	Atomic Radius (nm)	Crystal Structure	Electro- nega- tivity	Valence
COHO	0.1278 0.071 0.046 0.060	FCC	1.9	+2
Ag Al Co Cr Fe Ni Pd Zn	0 1445 0 1431 0 1253 0 1249 0 1241 0 1246 0 1376 0 1332	FCC FCC BCC BCC FCC FCC HCP	1.9 1.5 1.8 1.6 1.8 1.8 2.2	+1 +3 +2 +3 +2 +2 +2 +2 +2

(b) Write any three possibilities because of which point defect may occur in crystals. Explain the computation of Equilibrium Concentration of point defects: Following is the hint. 2.5

- Q.4. Given a face-centered cubic crystal structure whose edge length of the unit cell is measured to be 4.0 Angstrom:
 - a) Calculate the radius of the atom (r) in the FCC structure.
 - b) Determine the density of the material using atomic radius with atomic mass of the material is 58.44gm/mol and Avogadro's number is 6.022 x 10²³ atoms/mol.
- Q.5. Find the equilibrium concentration of vacancies in 1 m³ of nickel at 350°C and 950°C.
 Analyze the effect of increasing temperature on the formation of vacancies.

0.9eV

OR

Determine the surface density of atoms on the (211) plane in a body-centered cubic lattice with a lattice constant of 0.5 nm.