28/7/25, 9:00 Resultados: Programa 1

## **Canonical Correlation Analysis**

|   | Canonical   | Canonical 1 |          | , , , , , , , |            | Eigenvalues of Inv(E)*H<br>= CanRsq/(1-CanRsq) |            |            | Test of H0: The canonical correlations in the current row and all that follow are zero |                        |        |        |        |
|---|-------------|-------------|----------|---------------|------------|------------------------------------------------|------------|------------|----------------------------------------------------------------------------------------|------------------------|--------|--------|--------|
|   | Correlation | Correlation | Error    |               | Eigenvalue | Difference                                     | Proportion | Cumulative | Likelihood<br>Ratio                                                                    | Approximate<br>F Value | Num DF | Den DF | Pr > F |
| 1 | 0.784797    | 0.782158    | 0.020160 | 0.615906      | 1.6035     | 1.2873                                         | 0.8223     | 0.8223     | 0.28325702                                                                             | 65.76                  | 9      | 871.43 | <.0001 |
| 2 | 0.490163    | 0.487004    | 0.039876 | 0.240260      | 0.3162     | 0.2860                                         | 0.1622     | 0.9845     | 0.73746822                                                                             | 29.52                  | 4      | 718    | <.0001 |
| 3 | 0.171218    |             | 0.050948 | 0.029316      | 0.0302     |                                                | 0.0155     | 1.0000     | 0.97068442                                                                             | 10.87                  | 1      | 360    | 0.0011 |

| Multivariate Statistics and F Approximations      |               |           |             |           |        |  |
|---------------------------------------------------|---------------|-----------|-------------|-----------|--------|--|
| S=3 M=-0.5 N=178                                  |               |           |             |           |        |  |
| Statistic                                         | Value         | F Value   | Num DF      | Den DF    | Pr > F |  |
| Wilks' Lambda                                     | 0.28325702    | 65.76     | 9           | 871.43    | <.0001 |  |
| Pillai's Trace                                    | 0.88548126    | 50.25     | 9           | 1080      | <.0001 |  |
| Hotelling-Lawley Trace                            | 1.94997017    | 77.41     | 9           | 559.4     | <.0001 |  |
| Roy's Greatest Root 1.60353025 192.42 3 360 <.000 |               |           |             |           |        |  |
| NOTE: F Statistic                                 | for Roy's Gre | eatest Ro | ot is an up | per bound | d.     |  |

## **Canonical Correlation Analysis**

| Raw Canonical Coefficients for the climatic condition's |         |              |  |  |
|---------------------------------------------------------|---------|--------------|--|--|
|                                                         |         | V1           |  |  |
| VViento                                                 | VViento | 0.5221910497 |  |  |
| HAire10                                                 | HAire10 | -0.182916163 |  |  |
| TAire10                                                 | TAire10 | -0.313841348 |  |  |

| Raw Canonica | Raw Canonical Coefficients for the atmospheric pollutant |              |  |  |  |  |
|--------------|----------------------------------------------------------|--------------|--|--|--|--|
|              |                                                          | W1           |  |  |  |  |
| O3           | O3                                                       | 0.1376670363 |  |  |  |  |
| PM2.5        | PM2.5                                                    | -0.169837263 |  |  |  |  |
| PM10         | PM10                                                     | 0.1150696697 |  |  |  |  |

# **Canonical Correlation Analysis**

| Standardized Canonical Coefficients for the climatic condition's |         |         |  |  |  |
|------------------------------------------------------------------|---------|---------|--|--|--|
|                                                                  |         | V1      |  |  |  |
| VViento                                                          | VViento | 0.1348  |  |  |  |
| HAire10                                                          | HAire10 | -1.1348 |  |  |  |
| TAire10                                                          | TAire10 | -0.3580 |  |  |  |

| Standardized Canonical Coefficients for the atmospheric pollutant |       |         |  |  |  |
|-------------------------------------------------------------------|-------|---------|--|--|--|
|                                                                   | W1    |         |  |  |  |
| О3                                                                | О3    | 1.0937  |  |  |  |
| PM2.5                                                             | PM2.5 | -0.8624 |  |  |  |
| PM10                                                              | PM10  | 0.7595  |  |  |  |

## **Canonical Structure**

| Correlations Between the climatic condition's and Their Canonical Variables |         |         |  |  |  |  |
|-----------------------------------------------------------------------------|---------|---------|--|--|--|--|
| V1                                                                          |         |         |  |  |  |  |
| VViento                                                                     | VViento | 0.5998  |  |  |  |  |
| HAire10                                                                     | HAire10 | -0.9611 |  |  |  |  |
| TAire10                                                                     | TAire10 | 0.4789  |  |  |  |  |

| Correlations Between the atmospheric pollutant and Their Canonical Variables |    |        |  |  |  |
|------------------------------------------------------------------------------|----|--------|--|--|--|
|                                                                              |    | W1     |  |  |  |
| O3                                                                           | O3 | 0.9651 |  |  |  |

| Correlations Between the atmospheric pollutant and Their Canonical Variables |       |        |  |  |  |  |
|------------------------------------------------------------------------------|-------|--------|--|--|--|--|
|                                                                              | W1    |        |  |  |  |  |
| PM2.5                                                                        | PM2.5 | 0.4005 |  |  |  |  |
| PM10                                                                         | PM10  | 0.3818 |  |  |  |  |

| Correlations Between the climatic condition's and the Canonical Variables of the atmospheric pollutant |         |         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|---------|---------|--|--|--|--|
|                                                                                                        |         | W1      |  |  |  |  |
| VViento                                                                                                | VViento | 0.4707  |  |  |  |  |
| HAire10                                                                                                | HAire10 | -0.7542 |  |  |  |  |
| TAire10                                                                                                | TAire10 | 0.3759  |  |  |  |  |

| Correlations Between the atmospheric pollutant and the Canonical Variables of the climatic condition's |       |        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------|--------|--|--|--|--|
|                                                                                                        | V1    |        |  |  |  |  |
| O3                                                                                                     | O3    | 0.7574 |  |  |  |  |
| PM2.5                                                                                                  | PM2.5 | 0.3143 |  |  |  |  |
| PM10                                                                                                   | PM10  | 0.2996 |  |  |  |  |

#### **Canonical Redundancy Analysis**

| Raw Variance of the climatic condition's Explained by |            |                          |           |                     |                          |  |  |
|-------------------------------------------------------|------------|--------------------------|-----------|---------------------|--------------------------|--|--|
| Canonical Variable Number                             |            | r Own<br>I Variables     | Canonical | The Op<br>Canonical |                          |  |  |
| Canonical variable Number                             | Proportion | Cumulative<br>Proportion | R-Square  | Proportion          | Cumulative<br>Proportion |  |  |
| 1                                                     | 0.9000     | 0.9000                   | 0.6159    | 0.5543              | 0.5543                   |  |  |

| Raw Variance of the atmospheric pollutant Explained by |                                  |                          |           |                                     |                          |
|--------------------------------------------------------|----------------------------------|--------------------------|-----------|-------------------------------------|--------------------------|
| Canonical Variable Number                              | Their Own<br>Canonical Variables |                          | Canonical | The Opposite<br>Canonical Variables |                          |
|                                                        | Proportion                       | Cumulative<br>Proportion | R-Square  | Proportion                          | Cumulative<br>Proportion |
| 1                                                      | 0.5229                           | 0.5229                   | 0.6159    | 0.3221                              | 0.3221                   |

#### **Canonical Redundancy Analysis**

| Standardized Variance of the climatic condition's Explained by |                                  |                          |           |                                     |                          |
|----------------------------------------------------------------|----------------------------------|--------------------------|-----------|-------------------------------------|--------------------------|
| Canonical Variable Number                                      | Their Own<br>Canonical Variables |                          | Canonical | The Opposite<br>Canonical Variables |                          |
|                                                                | Proportion                       | Cumulative<br>Proportion | R-Square  | Proportion                          | Cumulative<br>Proportion |
| 1                                                              | 0.5043                           | 0.5043                   | 0.6159    | 0.3106                              | 0.3106                   |

| Standardized Variance of the atmospheric pollutant Explained by |                                  |                          |           |                                     |                          |
|-----------------------------------------------------------------|----------------------------------|--------------------------|-----------|-------------------------------------|--------------------------|
| Canonical Variable Number                                       | Their Own<br>Canonical Variables |                          | Canonical | The Opposite<br>Canonical Variables |                          |
|                                                                 | Proportion                       | Cumulative<br>Proportion | R-Square  | Proportion                          | Cumulative<br>Proportion |
| 1                                                               | 0.4125                           | 0.4125                   | 0.6159    | 0.2541                              | 0.2541                   |

## **Canonical Redundancy Analysis**

| Squared Multiple Correlations Between the climatic condition's and the First M Canonical Variables of the atmospheric pollutant |         |        |
|---------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| M                                                                                                                               |         | 1      |
| VViento                                                                                                                         | VViento | 0.2216 |
| HAire10                                                                                                                         | HAire10 | 0.5689 |
| TAire10                                                                                                                         | TAire10 | 0.1413 |

| Squared Multiple Correlations Between the atmospheric pollutant and the First M Canonical Variables of the climatic condition's |    |        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----|--------|--|--|
| M                                                                                                                               |    | 1      |  |  |
| O3                                                                                                                              | О3 | 0.5736 |  |  |

| Squared Multiple Correlations Between the atmospheric pollutant and the First M Canonical Variables of the climatic condition's |       |        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------|--------|--|--|
| M                                                                                                                               |       | 1      |  |  |
| PM2.5                                                                                                                           | PM2.5 | 0.0988 |  |  |
| PM10                                                                                                                            | PM10  | 0.0898 |  |  |

