MTH9899 Machine Learning Final Project

Hongshan Chu, Yuchen Qi, Linwei Shang, ShengQuan Zhou

Baruch MFE

May 24, 2017

Overview of Dataset

Training dataset

- $\sim 140,000 \text{ rows};$
- key: stock ID and a timestamp;
- 27 features: 17 quantitative and 10 categorical;
- A weight column and an output column.

General guidelines

- Predictions are made based on the information contained in each row, without cross-row reference.
- No time series modelling is explored, partly because the data points per ID along the time axis are inhomogeneous and incomplete.
- No stock-specific modeling is explored given that the data points per ID are inhomogeneous and incomplete.
- Timestamp information is used only for dividing the dataset into training set and test set.
- Weighted R^2 is used as the final benchmark.

Data Preprocessing

The provided dataset is divided into two parts according to timestamp:

- The first 2/3 are used for training and testing;
- The remaining 1/3 are reserved for a production run.

A series of split points are chosen to divide the first 2/3 of the complete dataset into two parts:

- The first part for training;
- The second part for testing.

Selection of Quantitative Features

Three tests are performed to select quantitative features:

- Pearson correlation coefficient;
- Kendall's rank correlation coefficient, also known as Kendall's τ ;
- Spearman's rank correlation coefficient, also known as Spearman's ρ ; with respect to the training set of output data, based on the criterion that the p-value for correlation coefficients being less than 3%.

Feature	Pearson	<i>p</i> -value	Kendall's $ au$	<i>p</i> -value	Spearman's $ ho$	<i>p</i> -value
x0	-0.019	10^{-6}	-0.013	10^{-6}	-0.019	10^{-6}
×17	+0.016	10^{-5}	+0.009	10^{-3}	+0.013	10^{-3}
x22	+0.026	10^{-11}	+0.014	10^{-7}	+0.020	10^{-7}
×49	+0.015	10^{-4}	+0.009	10^{-4}	+0.013	10^{-4}
x53	+0.018	10^{-6}	+0.012	10^{-6}	+0.018	10^{-6}
×61	-0.009	0.03	-0.009	10^{-3}	-0.013	10^{-4}

Selection of Categorical Features

Similar tests are performed on categorical features:

Feature	Pearson	<i>p</i> -value	Kendall's $ au$	<i>p</i> -value	Spearman's $ ho$	<i>p</i> -value
x2	-0.038	10^{-22}	-0.026	10^{-21}	-0.037	10^{-21}
x6	-0.014	10^{-4}	-0.007	0.02	-0.010	0.01
×30	+0.020	10^{-7}	+0.014	10^{-6}	+0.018	10^{-6}
×46	+0.026	10^{-11}	+0.018	10^{-10}	+0.026	10^{-10}
x51	+0.017	10^{-5}	+0.011	10^{-4}	+0.015	10^{-4}

A selected list of categorical features are treated as

- ordinal numbers; or
- one-hot dummy variables.

Inspection of Period-by-Period Correlations

Period	×17	×49	×53	×22	×46	×61	×0	×30	×42	×51
1	.007	.014	.022	.018	.027	.008	013	.005	006	.003
2	.014	.019	.010	.020	.020	009	029	.012	003	007
3	.021	.006	.016	.015	.014	014	027	002	.014	027
4	.018	.017	.025	.045	.032	021	006	.017	017	002
5	.016	.012	.009	.044	.033	002	007	.019	019	009
6	.009	.017	.012	.009	.032	008	014	0004	011	.0005
7	.045	.008	.024	.045	.007	004	008	.011	016	003
8	.015	.012	.011	.021	012	.003	009	.013	014	003
9	.021	010	.006	.019	.002	.004	016	026	.027	013

Removal of Outliers

As a final step of data cleaning, outliers observed in features and outputs in the training set are removed:

- Remove all data rows with output |y| > 0.05;
- Remove all data rows that have outliers in at least one column, based on the criterion *z*-score > 3.

Linear Regression & Random Forest

• Linear Regression

Method	Feature	In-Sample R^2 (bps)	Out-of-Sample R^2 (bps)
OLS	all	+47.20	-23.37
OLS	selected	+6.28	+7.33
Ridge	selected	+3.91	+7.19
Lasso	selected	+3.10	+7.01

• Tree-based Methods

Method	In-Sample R^2 (bps)	Out-of-Sample $R^2(bps)$
Random Forest	+5.3	+3.9
Boosting Trees (2:1)	+10	+4.7
Boosting Trees (3:1)	+10	+12.7

Selected Details on Testing Boosting Trees

Out-of-sample R^2 for the method of boosting trees:

Train $\#$ / Test $\#$	R^2 (bps) No Outlier Removal	$R^2(bps)$ Outlier Removal
1:1	+3	+4
2:1	+4	+5
3:1	+15	+13
4:1	+15	+13
5:1	+7	~ 1
6:1	~ 1	-5
7:1	-2	-3
8:1	-1	-2

Conclusion and Outlook

- The methods of linear regressions, random forests, and gradient boosting trees are tested.
- With a series of procedures including feature selection and data cleaning, a range of values 5 \sim 15(bps) can be reached for the out-of-sample R^2 for boosting trees.
- Regime shifting behavior are observed where the correlation between the features and the output vary over time.
- A mixture of models, for example, boosting trees combind with random forest, is expected to improve the performance.