Devoir à la maison n° 8

À rendre le 7 décembre

Pour chaque $n \in \mathbb{N}^*$, on note d_n le nombre de diviseurs entiers naturels de n. On pourra noter $\mathscr{D}^+(n)$ l'ensemble des diviseurs positifs de $n:d_n$ est donc le nombre d'éléments de $\mathscr{D}^+(n)$.

- 1) Donner d_1 , d_2 , d_3 , d_4 , d_5 et d_6 .
- 2) Diviseurs communs au produit de deux entiers. Soit $a, b \in \mathbb{N}^*$.
 - a) Montrer que les diviseurs positifs de ab sont exactement les produits d'un diviseur positif de a par un diviseur positif de b.
 - **b)** Montrer que si a et b sont premiers entre eux, alors chaque diviseur positif de ab s'écrit de manière unique comme le produit d'un diviseur positif de a par un diviseur positif de b.
 - c) Montrer que si a et b sont premiers entre eux, alors $d_{ab} = d_a d_b$.
 - d) L'implication précédente est-elle en fait une équivalence?
- 3) Quelques caractérisations.
 - a) Caractériser les entiers $n \in \mathbb{N}^*$ vérifiant $d_n = 2$.
 - b) Soit $n \in \mathbb{N}^*$. Montrer que $d_n = 3$ si et seulement si n est le carré d'un nombre premier.
- 4) Soit p un nombre premier et $k \in \mathbb{N}$. Que vaut d_{p^k} ?
- 5) Soit $n \in \mathbb{N}^*$ ayant q diviseurs premiers distincts p_1, \ldots, p_q , dont on écrit la décomposition en facteurs premiers :

$$n = p_1^{\nu_1} \times \dots \times p_q^{\nu_q}.$$

Montrer que
$$d_n = (\nu_1 + 1) \times \cdots \times (\nu_q + 1) = \prod_{k=1}^{q} (\nu_k + 1).$$

- 6) Encore d'autres caractérisations.
 - a) Caractériser les entiers $n \in \mathbb{N}^*$ vérifiant $d_n = 4$.
 - b) Soit $n \in \mathbb{N}^*$. Montrer que d_n est impair si et seulement si n est un carré parfait (carré d'un nombre entier).
- 7) Soit $n \in \mathbb{N}^*$, montrer que

$$\prod_{d \in \mathscr{D}^+(n)} d = (\sqrt{n})^{d_n}.$$

- 8) Applications.
 - a) Combien 4680 possède-t-il de diviseurs positifs?
 - b) Trouver le plus grand nombre n'ayant pas de diviseur premier supérieur strictement à 5 et ayant exactement 455 diviseurs positifs.
 - c) Quel est le plus petit entier naturel ayant exactement 17 diviseurs positifs? Et 21 diviseurs positifs?

— FIN —