Low-Energy Transfer Orbits

A Theoretical and Numerical Study

Gandalf Saxe

What are transfer orbits?

A way of getting from A to B in space

Hohmann

Why Are Transfer Orbits Interesting?

NASA manned spacecraft: Orion Manned Mars Mission: 2030's

"The first crewed mission — called EM-2 — is now scheduled for April 2023; the flight was originally scheduled for August 2021"

- The Verge, September 16th

Why Are Transfer Orbits Interesting?

Mars One manned spacecraft: Dragon

Manned Mars Mission: ~2026

"Elon Musk argues that we must put a million people on Mars if we are to ensure that humanity has a future"

- Interview with aeon.co, 30 September 2014

Hohmann Transfer Orbit to the Moon

Hohmann Transfer Orbit to the Moon

Hohmann Transfer Orbit to the Moon

 $t_H = 5.0 \text{ days}$

 $\Delta v_{Earth} = 3144 \text{ m/s}$

 $\Delta v_{Moon} = 802 \text{ m/s}$

 $\Delta v_{Total} = 3946 \text{ m/s}$

Low Energy Transfer Orbits

Hiten: Japanese Spacecraft, 1990

Spacecraft

Moon

Assumptions:

- 2D
- 2-body

Earth

Assumptions:

- 2D
- 2-body

- 1. θ: Position in orbit
- 2. Δv_{earth} : Velocity change
- 3. φ: Angle to velocity vector

Hohmann Transfer Orbit to the Moon

First search

φ: 0° constant

100 positions · 200 velocities = 20,000 simulations

Hohmann Transfer Orbit to the Moon

First search

100 positions 200 velocities = 20,000 simulations

Refinement

15 positions · 15 velocities · 15 angles = 3375 simulations

Hohmann Transfer Orbit to the Moon

First search

100 positions 200 velocities = 20,000 simulations

Refinement

15 positions · 15 velocities · 15 angles = 3375 simulations

Total: 20,000 + 3375 = 23,375 simulations

Hohmann Transfer Orbit to the Moon

Low Energy Transfer Orbit to the Moon

- 1. θ : 0 ± 180° \rightarrow 55 positions
- 2. Δv_{earth} : (3120 ± 100) m/s \rightarrow 55 velocities
- 3. ϕ : 0° ± 1.8° \rightarrow 55 angles

SUBTOTAL 55.55.55 = 166,375

Low Energy Transfer Orbit to the Moon

- 1. θ : best $\pm \pi/10 \rightarrow 55$ positions
- 2. Δv_{earth} : (best ± 100/10) m/s \rightarrow 55 velocities
- 3. ϕ : best \pm 1.8°/10 \rightarrow 55 angles

TOTAL 55.55.55.8 = 1,331,000

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Numerical Method

Adaptive Störmer-Verlet (symplectic)

Entering Moon Orbit

Exit from Earth orbit

Entry to Moon orbit (100±10 km)

Hohmann Transfer Orbit to the Moon

Low-Energy Transfer Orbit (short)

 $t_{short} = 41 days$

Hohmann Transfer Orbit to the Moon

(x,y)

 $\Delta v_{total} = 3795$ m/s

 $t_{long} = 194 days$

 $(\mathfrak{X},\mathfrak{Y})$

Results Summarized

All transfer orbits

Trajectory	Flight time	$\Delta v_{\rm total} \ ({\rm km/s})$	$\Delta v_{\rm earth} \ ({\rm km/s})$	$\Delta v_{\mathrm{moon}} \; (\mathrm{km/s})$
Minimum	N/A	3.721	3.099	0.622
Long LETO	194 days	3.795	3.091	0.704
Belbruno-Miller	3 months	3.838	3.187	0.651
Topputo	8 months	3.895	3.265	0.630
Short LETO	41 days	3.896	3.127	0.769
Hohmann - long (sim)	4.3 days	3.912	3.111	0.801
Hohmann - (model)	5.0 days	3.946	3.144	0.802
Hohmann - medium (sim)	3.00 days	4.015	3.136	0.880
Apollo (Hohman)	$3.05 \mathrm{\ days}$	4.115	3.048	1.067
Hohmann - short (sim)	$1.00 \mathrm{\ days}$	6.823	3.809	3.014

LETO Short Animation

0.043484 days/frame, 60 FPS

Gravitational Potential and Lagrange Points

Wishlist

- Earth \rightarrow L₁ (forward) + L₁ \rightarrow Moon (backward)
- 2D → 3D
- Include Sun's potential
- Higher-order integrator:
 4.-5.-order symplectic Runge-Kutta