- 1 Indicate whether the following statements are true(**T**) or false(**F**). You do **not**3+3+4 need to justify your answer.
 - (a) Let n be a positive integer with $n \geq 2$. Let A be a nonzero $n \times 1$ matrix and B a nonzero $1 \times n$ matrix. Then, 0 is an eigenvalue of AB.
 - (b) Let A be a 2×2 matrix which is not the identity matrix. If A is orthogonal and 1 is an eigenvalue of A, then det(A) = 1.
 - (c) Let A be a 2×2 matrix. If

$$A^T \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

then det(A) = 1.

Solution.

- (a) True. Since $n \geq 2$, we can find a nonzero $n \times 1$ matrix C such that BC = 0. So, $(AB)C = A \cdot 0 = 0 = 0 \cdot C$. Therefore, 0 is an eigenvalue of AB.
- (b) False. Let $H_{\theta/2} = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$, i.e., the standard matrix for a reflection about a line through the origin. Then $\det(H_{\theta/2}) = -1$.
- (c) True. Denote

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Then

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -c & a \\ -d & b \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$= \begin{bmatrix} 0 & ad - bc \\ bc - ad & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Thus, det(A) = ad - bc = 1.

Name:

2 Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a orthogonal linear operator. Show that $T(\mathbf{x}) \cdot T(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ 10 points for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

Solution. Let \mathbf{x} and \mathbf{y} be any two vectors in \mathbb{R}^n . We can derive $\mathbf{x} \cdot \mathbf{y} = \frac{1}{4}(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2)$. Thus,

$$T(\mathbf{x}) \cdot T(\mathbf{y}) = \frac{1}{4} (\|T(\mathbf{x}) + T(\mathbf{y})\|^2 - \|T(\mathbf{x}) - T(\mathbf{y})\|^2)$$

$$= \frac{1}{4} (\|T(\mathbf{x} + \mathbf{y})\|^2 - \|T(\mathbf{x} - \mathbf{y})\|^2)$$

$$= \frac{1}{4} (\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2) \qquad [T \text{ IS LENGTH PRESERVING}]$$

$$= \mathbf{x} \cdot \mathbf{y}.$$