

CLAIMSWhat is claimed is

- 1 1. A circuit for providing a regulated voltage comprising:
 - 2 an upper transistor connected to an input voltage from a voltage source, the
 - 3 upper transistor having a control terminal;
 - 4 a lower transistor connected to the upper transistor , the lower transistor
 - 5 having a control terminal;
 - 6 a voltage regulator connected to receive the regulated voltage, the voltage
 - 7 regulator operable to generate a first control signal applied to the control terminal of
 - 8 the upper transistor, and further operable to generate a second control signal applied
 - 9 to the control terminal of the lower transistor;
 - 10 and
 - 11 a voltage protection circuit comprising:
 - 12 an over-voltage detector circuit powered by the regulated voltage
 - 13 operable to detect an over-voltage condition and further operable to generate
 - 14 an over-voltage detected signal, wherein the over-voltage detected signal
 - 15 causes the lower transistor to draw sufficient current from the voltage source
 - 16 such that the over-voltage condition is abated.
- 1 2. The circuit of claim 1 wherein:
 - 2 the over-voltage detector circuit is powered solely by the regulated voltage.
- 1 3. The circuit of claim 1 wherein:
 - 2 the voltage regulator comprises a linear regulator
- 1 4. The circuit of claim 1 wherein:
 - 2 the voltage regulator comprises a switching regulator.
- 1 5. The circuit of claim 4 wherein:

2 the switching regulator comprises a pulse width modulator.

1 6. The circuit of claim 1 wherein:

2 the voltage protection circuit is operable to generate a clamp signal in
3 response to the over-voltage detected signal, wherein the clamp signal is supplied to
4 the control terminal of the lower transistor and wherein the clamp signal causes the
5 lower transistor to draw sufficient current from the input voltage source such that the
6 over-voltage condition is abated.

1 7. The circuit of claim 1 wherein:

2 the over-voltage condition is abated by causing the voltage source to shut
3 down.

1 8. The circuit of claim 1 wherein:

2 the over-voltage condition is abated by shunting the regulated voltage.

1 9. A circuit for protecting against over-voltage comprising:

2 an over-voltage detector powered by a regulated voltage operable to generate
3 an over-voltage detected signal;

4 an amplifier powered by the regulated voltage operable to generate a trigger
5 signal in response to the over-voltage detected signal; and

6 a thyristor adapted to clamp the regulated voltage in response to the trigger
7 signal.

1 10. The circuit of claim 9 wherein:

2 the over-voltage detector is a self-regulating bandgap detector.

1 11. The circuit of claim 10 wherein:

2 the thyristor comprises a silicon controlled rectifier.

- 1 12. A method for providing a regulated voltage comprising:
 - 2 providing an upper transistor connected to an input voltage from a voltage
 - 3 source, the upper transistor having a control terminal;
 - 4 providing a lower transistor connected to the upper transistor , the lower
 - 5 transistor having a control terminal;
 - 6 providing a voltage regulator connected to receive the regulated voltage, the
 - 7 voltage regulator operable to generate a first control signal applied to the control
 - 8 terminal of the upper transistor, and further operable to generate a second control
 - 9 signal applied to the control terminal of the lower transistor;
- 10 and
- 11 providing a voltage protection circuit comprising:
 - 12 an over-voltage detector circuit powered by the regulated voltage
 - 13 operable to detect an over-voltage condition and further operable to generate
 - 14 an over-voltage detected signal, wherein the over-voltage detected signal
 - 15 causes the lower transistor to draw sufficient current from the voltage source
 - 16 such that the over-voltage condition is abated.
- 1 13. The method of claim 12 wherein:
 - 2 the voltage regulator comprises a pulse width modulator.
- 1 14. A method for protecting against over-voltage conditions comprising:
 - 2 providing an over-voltage detector powered by a regulated voltage operable
 - 3 to generate an over-voltage detected signal;
 - 4 providing an amplifier powered by the regulated voltage operable to generate
 - 5 a trigger signal in response to the over-voltage detected signal; and
 - 6 providing a thyristor operable to clamp the regulated voltage in response to
 - 7 the trigger signal.
- 1 15. The method of claim 14 wherein:
 - 2 the thyristor is a silicon-controlled rectifier.