Lab 01 - The Importance of Inventory Management

Assignment: Dollar-by-Value (DBV) Analysis

Objective

In this assignment, you will develop a simple computer program to analyze inventory data using the **Dollar-by-Value (DBV)** method.

The goal is to identify which items contribute most to the total annual expenditure and visualize this distribution using a **Pareto chart**.

You will also interpret what these findings mean for inventory management.

1. Program Requirements

Your program should:

- 1. **Read a spreadsheet file** (Excel or CSV) containing the following columns for *n* items:
 - o Item ID
 - D_i: Annual usage (units/year)
 - o v_i : Unit cost (\$/unit)
- 2. Compute for each item:
 - Dollar usage:

$$w_i = D_i * v_i$$

Share of total dollar usage:

$$s_i = \frac{w_i}{\sum w_i}$$

- \circ Rank items in descending order of w_i
- Cumulative percentage:

$$c_i = \sum_{r \le i} s_r$$

- 3. Generate and display:
 - A DBV table showing the results.
 - A Pareto (DBV) graph showing the cumulative percentage of total dollar usage against the percentage of items.
 - Clear labeling of A, B, and C item classes (e.g., A = top 80%, B = next 15%, C = remaining 5%).

2. Input Data

Use the following dataset for testing your program:

Item, i	ID	D_i (units/year)	v_i (\$/unit)
1	Α	80	422.33
2	В	514	54.07
3	С	19	0.65
4	D	2,442	16.11
5	Ε	6,289	4.61
6	F	128	0.63
7	G	1,541	2.96
8	Н	4	22.05
9	I	25	5.01
10	J	2,232	2.48
11	K	2	4.78
12	L	1	38.03
13	М	6	9.01
14	Ν	12	25.89
15	О	101	59.50
16	Р	715	20.78
17	Q	1	2.93
18	R	35	19.52
19	S	1	28.88
20	Т	4	29.86

3. Expected Output

Your program should produce:

- 1. A DBV Table showing for each item:
 - o Item ID
 - \circ D_i
 - \circ v_i
 - $\circ w_i = D_i * v_i$
 - o % of total dollar usage
 - o Cumulative % of total dollar usage
 - o Rank (1 = highest w_i)
 - o Class (A, B, or C)
- 2. A Pareto Chart
 - X-axis: cumulative % of items
 - o Y-axis: cumulative % of dollar usage
 - o Highlight 80% and 95% cutoff lines for A/B/C classification.
- 3. A Short Written Summary (5–8 lines) discussing:
 - o Which few items dominate total dollar usage.
 - o How management should handle A, B, and C items differently.

4. Discussion Questions

Answer the following using your program results:

- 1. What percentage of total dollar usage is contributed by:
 - o The **top 20% of items** (the 4 most expensive by usage value)?
 - o The **bottom 50% of items** (the 10 least expensive by usage value)?

(For this dataset, the top 20% contribute approximately **80%**, and the bottom 50% contribute only about **0.3%**.)

2. What practical meaning does this have for **inventory control**?

5. Deliverables

Submit the following:

- 1. Your program code (Python Interactive Notebook, i.e. ".ipynb" extension).
- 2. Input data file (Excel/CSV).
- 3. Output DBV table (exported Excel/CSV).
- 4. Pareto chart (inserted in the report).
- 5. A short report (2–3 pages) containing:
 - o Title, objective, method, and key findings.
 - DBV table and chart.
 - o Discussion of results and management implications.
 - o The computed percentages for the top 20% and bottom 50%.

6. Evaluation Criteria

Criterion	Description	Weight
Correctness of calculations	Accurate DBV computation and percentages	35%
Graph quality	Clear, labeled, and readable Pareto chart	15%
Clarity of explanation	Logical discussion of findings	20%
Code quality and documentation	Well-organized, easy to run	20%
Presentation and formatting	Professional and clear layout	10%

Bonus Challenge (Optional)

Enhance your program to:

- Let users adjust the ABC cutoff thresholds (e.g., 75–90 or 85–95).
- Show how the classification changes.
- Comment on how this affects management priorities.