

Carlos Eduardo Costa Vieira

Heurísticas para o Problema das *p*-Medianas Conectadas

Tese de Doutorado

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática da PUC–Rio como requisito parcial para obtenção do título de Doutor em Informática

Orientador: Prof. Celso da Cruz Carneiro Ribeiro

Carlos Eduardo Costa Vieira

Heurísticas para o Problema das p-Medianas Conectadas

Tese apresentada ao Programa de Pós–graduação em Informática do Departamento de Informática do Centro Técnico Científico da PUC–Rio como requisito parcial para obtenção do título de Doutor em Informática. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Celso da Cruz Carneiro Ribeiro

Orientador

Departamento de Informática - PUC-Rio

Prof. Sérgio Lifschitz

Departamento de Informática - PUC-Rio

Prof. Simone de Lima Martins

Departamento de Ciência da Computação - UFF

Prof. Maurício Cardoso de Souza

Departamento de Engenharia de Produção - UFMG

Prof. Paulo Oswaldo Boaventura Netto

Programa de Engenharia de Produção - COPPE/UFRJ

Prof. Luiz Satoru Ochi

Departamento de Ciência da Computação - UFF

Prof. José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Carlos Eduardo Costa Vieira

Completou o segundo grau em Tecnologia em Informática Industrial na Escola Técnica Federal de Ouro Preto - Minas Gerais. Graduou—se em Ciência da Computação na Universidade Federal de Ouro Preto - Minas Gerais. Obteve o título de Mestre em Sistemas e Computação no Instituto Militar de Engenharia - Rio de Janeiro. Durante o mestrado foi bolsista da CAPES e desenvolveu o trabalho em heurísticas aplicadas ao problema de alocação de canal em sistemas de telecomunicações móveis.

Ficha Catalográfica

Vieira, Carlos Eduardo Costa

Heurísticas para o Problema das p-Medianas Conectadas / Carlos Eduardo Costa Vieira; orientador: Celso da Cruz Carneiro Ribeiro. -2006.

v., 191 f: il.; 30 cm

1. Tese (Doutorado em Informática) - Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia.

1. Informática – Teses. 2. Otimização Combinatória. 3. Projeto de Redes. 4. Localização de Facilidades. 5. Programação Linear Inteira. 6. Heurísticas. 7. Metaheurísticas. I. Ribeiro, Celso da Cruz Carneiro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. III. Título.

Agradecimentos

Aos meus pais, Michele e Daniele pela força e apoio. À Leny e Luiz, Ana Paula, Cristiano, Jorge, Heidy e Rayane por serem a minha segunda família. Obrigado pelos computadores, apoio financeiro e acima de tudo, pela amizade e carinho.

Ao Departamento de Informática da Pontifícia Universidade Católica do Rio de Janeiro pela oportunidade. Um agradecimento especial aos prestativos funcionários do departamento: Rosane Teles e Cosme Leal (biblioteca), Deborah Gonçalves e Emanuelle Oliveira (secretaria), José Carlos, Anderson Oliveira e Luciana Almeida (suporte).

Aos colegas e principalmente grandes amigos que encontrei na PUC-Rio: Aletéia Favacho, Alexandre Duarte, Andréa Cynthia, Sebastián Urrutia e Thiago Noronha. Um agradecimento especial ao amigo Alexandre Duarte por disponibilizar, sempre que possível, um tempo para a discussão e troca de idéias.

Ao pesquisador Maurício Resende pelo tema de pesquisa. Ao Prof. Celso Ribeiro pela oportunidade, incentivo, troca de conhecimentos e advertências, quando necessário.

À CAPES, por financiar a pesquisa no Brasil e a todos aqueles que, direta ou indiretamente, contribuíram na elaboração deste trabalho.

Resumo

Vieira, C. E. C.; Ribeiro, C. C.. **Heurísticas para o Problema** das *p*-Medianas Conectadas. Rio de Janeiro, 2006. 191p. Tese de Doutorado – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Esta tese define os problemas das p-medianas conectadas e o de localização de facilidades não-capacitadas conectadas. Possíveis aplicações incluem problemas de planejamento regional e o projeto de redes de telecomunicações ou de transporte. Para o primeiro problema, duas formulações de programação linear inteira são apresentadas e comparadas. Um destes modelos é adaptado para o segundo problema. Para o problema das p-medianas conectadas, algoritmos aproximados são desenvolvidos. Uma estratégia de busca local híbrida é proposta. Para acelerar as iterações do algoritmo de busca local, idéias como circularidade, melhoria iterativa e o descarte de vizinhos são incorporadas. Heurísticas GRASP e VNS são desenvolvidas incluindo a utilização de um filtro com o objetivo de diminuir os tempos de processamento e do procedimento de reconexão por caminhos com o objetivo de melhorar a qualidade das soluções encontradas. Diversos testes são realizados comparando-se esses algoritmos. Os resultados mostraram a necessidade de se executar um passo adicional de pós-otimização às heurísticas GRASP e VNS propostas.

Palayras-chave

Otimização Combinatória. Projeto de Redes. Localização de Facilidades. Programação Linear Inteira. Heurísticas. Metaheurísticas.

Abstract

Vieira, C. E. C.; Ribeiro, C. C.. Heuristics for the Connected p-Median Problem. Rio de Janeiro, 2006. 191p. PhD Thesis – Department of Informática, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, the connected p-median and the connected facility location problems are defined. Applications arise in regional planning, design of telecommunications and transportation networks. For the first problem, two integer linear programming formulations are proposed. Adaptations are made in one of these formulations and are used to model the second problem. Approximation algorithms to solve the connected p-median problem are developed. A hybrid local search strategy is proposed. In order to speed up the local search iterations, ideas as circularity, first-improving strategy and discard neighbors are incorporated. A GRASP algorithm and a VNS heuristic are also proposed. A filter is used to reduce the computational time required and a path-relinking is applied to improve the results found. Computational experiments to compare the algorithms are reported. To improve these results, it is applied a post-optimization step to the GRASP and VNS heuristics.

Keywords

Combinatorial Optimization. Network Design. Facility Location. Integer Linear Programming. Heuristics. Metaheuristics.

Sumário

1	Introdução	17
1.1	Estado da Arte	19
1.2	Objetivos da Tese	22
2	Formulações Matemáticas para os Problemas Híbridos de Projeto de	
	Redes e de Localização de Facilidades	24
2.1	Problema de Steiner em Grafos	25
2.2	1	28
2.3	,	29
2.4	Problema Híbrido das p -Medianas Conectadas	30
2.5	Problema Híbrido de Localização de Facilidades Não-Capacitadas Conectadas	36
2.6	Comparações entre os Modelos para o Problema das p -Medianas Conectadas	39
2.7	Considerações Finais	42
3	Algoritmo de Busca Local	52
3.1	Solução Inicial dos Algoritmos de Busca Local	53
3.2		55
3.3	3	63
3.4		85
3.5	Considerações Finais	90
4	GRASP com Filtro e Reconexão por Caminhos	94
4.1	Fase de Construção	96
4.2	Ambiente de Teste, Instâncias e Medidas Utilizadas	97
4.3	Configuração dos parâmetros no GRASP	98
4.4	•	112
4.5	Reconexão por Caminhos	113
4.6	Algoritmo GRASP com Filtro e Reconexão por Caminhos	122
4.7	Considerações Finais	123
5	VNS com Filtro e Reconexão por Caminhos	125
5.1	Algoritmo VNS Básico	126
5.2	Ambiente de Teste, Instâncias e Medidas Utilizadas	127
5.3	Configuração dos Parâmetros do VNS	128
5.4	Estratégia de Filtro	129
5.5	Configuração do Parâmetro b	142
5.6	•	143
5.7	Algoritmo VNS com Filtro e Reconexão por Caminhos	147
5.8	Considerações Finais	149
6	Comparações entre as Heurísticas GRASP e VNS	150
6.1	Ambiente de Teste e Instâncias Utilizadas	151
6.2	Tempo de Processamento Limitado	151
6.3	Tempo para Atingir um Valor Alvo	156
6.4	Soluções Ótimas e Passo de Pós-Otimização	160

6.5	Considerações Finais
7	Conclusões e Trabalhos Futuros

Lista de figuras

2.1 2.2	Grafo original $G=(V,E)$ e grafo modificado $G_0=(V_0,E_0)$. Solução ótima para o problema da árvore geradora mínima restrita por grau no grafo G_0 .	2727
3.1	Algoritmo que gera as soluções iniciais das buscas locais.	54
3.2	Algoritmo de busca local para o problema das p -medianas conectadas.	59
3.3	Função que atualiza as estruturas ganho, perda e extra.	60
3.4	Função que determina o primeiro vizinho aprimorante na busca local básica.	62
3.5	Função que determina o primeiro vizinho aprimorante na busca local com teste.	64
3.6	Função que determina o primeiro vizinho aprimorante na busca local pelas bordas.	66
3.7	Função que determina o primeiro vizinho aprimorante na busca local pelas bordas com teste da menor aresta.	68
4.1	Pseudo-código da metaheurística GRASP.	94
4.2	Fase de construção do GRASP.	96
4.3	Pseudo-código do procedimento de reconexão por caminhos.	115
4.4	Função que encontra a melhor troca no algoritmo de reconexão por	116
4.5	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 11086 para a instância GRM_P11 $(w=5)$.	120
4.6	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 6436 para a instância ORM_P9 $(w=5)$.	120
4.7	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 13276 para a instância GRM_P17 $(w=5)$.	121
4.8	Distribuição de probabilidade empírica do tempo gasto para encon-	101
4.0	•	121
4.9		122
5.1 5.2	Algoritmo VNS básico. Distribuição de probabilidade empírica do tempo gasto para encon-	126
5.3		145
	trar o valor alvo 6436 para a instância ORM_P9 $(w=5)$.	145
5.4	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 7259 para a instância ORM_P18 ($w=5$).	146
5.5	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 13276 para a instância GRM_P17 $(w=5)$.	146
5.6	·	148
6.1	Distribuição de probabilidade empírica do tempo gasto para encontrar o valor alvo 8379 para a instância GRM_P5 $(w = 5)$.	157
6.2	Distribuição de probabilidade empírica do tempo gasto para encon-	
6.3	trar o valor alvo 5990 para a instância ORM_P18 ($w=2$). Distribuição de probabilidade empírica do tempo gasto para encon-	157
5.5	,	158

6.4	Distribuição de probabilidade empírica do tempo gasto para encon-	
	trar o valor alvo 10600 para a instância ORM_P20 $(w=10)$.	158
6.5	Distribuição de probabilidade empírica do tempo gasto para encon-	
	trar o valor alvo 7370 para a instância GRM_NP17.	159
6.6	Distribuição de probabilidade empírica do tempo gasto para encon-	
	trar o valor alvo 6195 para a instância ORM_NP37.	159

Lista de tabelas

2.1	Resultados obtidos pela formulação por fluxos para as instâncias	
	proporcionais $(w=2)$.	40
2.2	Resultados obtidos pela formulação por fluxos para as instâncias	
	proporcionais $(w=5)$.	41
2.3	Resultados obtidos pela formulação por fluxos para as instâncias	
	proporcionais $(w = 10)$.	42
2.4	Resultados obtidos pela formulação por árvore para as instâncias	
	proporcionais $(w=2)$.	43
2.5	Resultados obtidos pela formulação por árvore para as instâncias	
	proporcionais $(w=5)$.	44
2.6	Resultados obtidos pela formulação por árvore para as instâncias	
	proporcionais $(w = 10)$.	45
2.7	Resultados obtidos pela formulação por fluxos para as instâncias	
	não proporcionais $(w=2)$.	46
2.8	Resultados obtidos pela formulação por fluxos para as instâncias	
	não proporcionais $(w=5)$.	47
2.9	Resultados obtidos pela formulação por fluxos para as instâncias	
	não proporcionais $(w=10)$.	48
2.10	Resultados obtidos pela formulação por árvore para as instâncias	
	não proporcionais $(w=2)$.	49
2.11	Resultados obtidos pela formulação por árvore para as instâncias	
	não proporcionais $(w=5)$.	50
2.12	Resultados obtidos pela formulação por árvore para as instâncias	
	não proporcionais $(w=10)$.	51
0.1		
3.1	Classe de instâncias ORM_P para o problemas das p -medianas	70
0.0	conectadas.	70
3.2	Classe de instâncias GRM_P para o problemas das p -medianas	70
	conectadas.	70
3.3	Classe de instâncias SLM_P para o problemas das p -medianas	
0.4	conectadas.	71
3.4	Qualidade relativa das buscas locais $(w = 2)$.	72
3.5	Qualidade relativa das buscas locais $(w = 5)$.	72
3.6	Qualidade relativa das buscas locais ($w = 10$).	73
3.7	Quantidade média de vizinhos em 15 iterações - ORM_P $(w=2)$.	75
3.8	Quantidade média de vizinhos em 15 iterações - ORM_P $(w=5)$.	76
3.9	Quantidade média de vizinhos em 15 iterações - ORM_P $(w = 10)$.	77
3.10	Quantidade média de vizinhos em 15 iterações - GRM_P $(w=2)$.	78
3.11	Quantidade média de vizinhos em 15 iterações - GRM $_{-}$ P $(w=5)$.	78
3.12	Quantidade média de vizinhos em 15 iterações - GRM_P $(w=10)$.	79
3.13	Quantidade média de vizinhos em 15 iterações - SLM_P $(w=2)$.	79
3.14	Quantidade média de vizinhos em 15 iterações - SLM_P $(w=5)$.	79
3.15	Quantidade média de vizinhos em 15 iterações - SLM_P $(w=10)$.	79
3.16	Tempos de execução em segundos tam - ORM_P $(w=2)$.	80
3.17	Tempos de execução em segundos tam - ORM_P $(w=5)$.	81
3.18	Tempos de execução em segundos tam - ORM_P $(w=10)$.	82
3.19	Tempos de execução em segundos tam - GRM_P $(w=2)$.	83

3.20	Tempos de execução em segundos tam - GRM_P $(w=5)$.	83
3.21	Tempos de execução em segundos tam - GRM_P $(w=10)$.	84
3.22	Tempos de execução em segundos tam - SLM_P $(w=2)$.	84
3.23	Tempos de execução em segundos tam - SLM_P $(w=5)$.	84
3.24	Tempos de execução em segundos tam - SLM_P ($w=10$).	84
3.25	Qualidade relativa das buscas locais, incluindo BL_Conc - $(w=2)$.	85
3.26	Qualidade relativa das buscas locais, incluindo BL_Conc - $(w=5)$.	86
	Qualidade relativa das buscas locais, incluindo BL_Conc - $(w=10)$.	86
	Tempos de execução em segundos tam, incluindo BL_Conc -	
	ORM_P $(w=2)$.	87
3.29	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc -	
	ORM_P $(w=5)$.	88
3.30	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc -	
0.00	ORM_P ($w=10$).	89
3 31	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc -	05
5.51	GRM_P $(w=2)$.	90
2 27	Tempos de execução em segundos tam , incluindo BL_Conc -	90
3.32	•	01
2 22	GRM_P $(w=5)$.	91
3.33	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc -	01
0.04	GRM_P $(w=10)$.	91
3.34	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc - SLM_P	0.0
	(w=2).	92
3.35	Tempos de execução em segundos <i>tam</i> , incluindo BL_Conc - SLM_P	
	(w=5).	92
3.36	Tempos de execução em segundos tam, incluindo BL_Conc - SLM_P	
	(w=10).	92
4.1	Configuração de α : qualidade média das instâncias ORM_P1 a	
4.1		100
4.2	,	100
4.2	Configuração de α : qualidade média das instâncias ORM_P1 a	101
4.0		101
4.3	Configuração de α : qualidade média das instâncias ORM_P1 a	100
	,	102
4.4	Configuração de α : qualidade média das instâncias GRM_P $(w=2)$.	
4.5	Configuração de α : qualidade média das instâncias GRM_P $(w=5)$.	
4.6	Configuração de α : qualidade média das instâncias GRM_P $(w=10)$.	105
4.7	Configuração de α : tempo médio de execução das instâncias	
	,	106
4.8	Configuração de α : tempo médio de execução das instâncias	
	ORM_P1 a ORM_P24 $(w=5)$.	107
4.9	Configuração de α : tempo médio de execução das instâncias	
	ORM_P1 a ORM_P24 ($w = 10$).	108
4.10	Configuração de α : tempo médio de execução das instâncias	
		109
4.11	Configuração de α : tempo médio de execução das instâncias	
		110
4.12	Configuração de α : tempo médio de execução das instâncias	-
		111
4.13		112
		113
		118
	The state of the s	

4.16	Tempo relativo na configuração de <i>MaxElite</i> no GRASP.	118
5.1	Qualidade relativa na configuração do filtro no VNS.	129
5.2	Tempo relativo na configuração do filtro no VNS.	129
5.3	Configuração de k_{max} : qualidade média das instâncias ORM_P1 a	
	ORM_P20 $(w=2)$.	130
5.4	Configuração de k_{max} : qualidade média das instâncias ORM_P1 a	-00
J.T		131
	ORM_P20 $(w = 5)$.	191
5.5	Configuração de k_{max} : qualidade média das instâncias ORM_P1 a	
	ORM_P20 ($w = 10$).	132
5.6	Configuração de k_{max} : qualidade média das instâncias GRM_P	
	(w=2).	133
5.7	Configuração de k_{max} : qualidade média das instâncias GRM_P	
	(w=5).	134
5.8	Configuração de k_{max} : qualidade média das instâncias GRM_P	101
5.0	· · · · · · · · · · · · · · · · · · ·	195
- A	(w=10).	135
5.9	Configuração de k_{max} : tempo médio de execução das instâncias	
	ORM_P1 a ORM_P20 $(w=2)$.	136
5.10	Configuração de k_{max} : tempo médio de execução das instâncias	
	ORM_P1 a ORM_P20 ($w=5$).	137
5.11	Configuração de k_{max} : tempo médio de execução das instâncias	
	ORM_P1 a ORM_P20 ($w=10$).	138
5 12	Configuração de k_{max} : tempo médio de execução das instâncias	
5.12	GRM_P $(w=2)$.	139
E 12		109
5.15	Configuração de k_{max} : tempo médio de execução das instâncias	1.40
	GRM_P $(w=5)$.	140
5.14	Configuração de k_{max} : tempo médio de execução das instâncias	
	$GRM_P\ (w=10).$	141
5.15	Qualidade relativa na configuração de b .	142
5.16	Tempo relativo na configuração de b .	142
5.17	Qualidade relativa na configuração de <i>MaxElite</i> no VNS.	143
	Tempo relativo na configuração de <i>MaxElite</i> no VNS.	144
• • • • • • • • • • • • • • • • • • • •	6	
6.1	Qualidade relativa das heurísticas no tempo tp para as instâncias	
	proporcionais $(w=2)$.	152
6.2	Qualidade relativa das heurísticas no tempo tp para as instâncias	
V	proporcionais $(w=5)$.	152
6.3	Qualidade relativa das heurísticas no tempo tp para as instâncias	102
0.5	• • •	150
<i>c</i> 4	proporcionais $(w = 10)$.	153
6.4	Qualidade relativa das heurísticas no tempo ti para as instâncias	
	proporcionais $(w=2)$.	153
6.5	Qualidade relativa das heurísticas no tempo ti para as instâncias	
	proporcionais $(w=5)$.	153
6.6	Qualidade relativa das heurísticas no tempo ti para as instâncias	
	proporcionais $(w = 10)$.	154
6.7	Qualidade relativa das heurísticas no tempo tg para as instâncias	
	proporcionais $(w=2)$.	154
6.8	Qualidade relativa das heurísticas no tempo tg para as instâncias	104
0.0		151
6.0	proporcionais $(w=5)$.	154
6.9	Qualidade relativa das heurísticas no tempo tg para as instâncias	
	proporcionais $(w=10)$.	155

6.10	Qualidade relativa das heurísticas no tempo tp para as instâncias	1 5 5
	não proporcionais.	155
6.11	Qualidade relativa das heurísticas no tempo ti para as instâncias não proporcionais.	155
6 12	Qualidade relativa das heurísticas no tempo tg para as instâncias	100
0.12	não proporcionais.	155
6 12	• •	199
0.13	Valor da solução ótima para algumas instâncias da classe propor-	1.01
	cional ORM_P ($w=2$, $w=5$ e $w=10$).	161
6.14	Valor da solução ótima para algumas instâncias da classe propor-	
	cional GRM_P ($w = 2$, $w = 5$ e $w = 10$).	162
6.15	Comparações absolutas entre as heurísticas para as instâncias	
	proporcionais da classe ORM_P $(w=2)$.	163
6.16	Comparações absolutas entre as heurísticas para as instâncias	
	proporcionais da classe ORM_P ($w=5$).	164
6.17	Comparações absolutas entre as heurísticas para as instâncias	
	proporcionais da classe ORM_P ($w=10$).	165
6 18	Comparações absolutas entre as heurísticas para as instâncias	
0.10	proporcionais da classe GRM_P $(w=2)$.	166
6 10	Comparações absolutas entre as heurísticas para as instâncias	100
0.13	proporcionais da classe GRM_P $(w=5)$.	166
6 20	Comparações absolutas entre as heurísticas para as instâncias	100
0.20	• •	167
6.01	proporcionais da classe GRM_P ($w=10$).	107
0.21	Comparações absolutas entre as heurísticas para as instâncias	1.07
	proporcionais da classe SLM_P $(w=2)$.	167
6.22	Comparações absolutas entre as heurísticas para as instâncias	- o-
	proporcionais da classe SLM_P ($w=5$).	167
6.23	Comparações absolutas entre as heurísticas para as instâncias	
	proporcionais da classe SLM_P ($w=10$).	167
6.24	Comparações absolutas entre as heurísticas para as instâncias não	
	proporcionais da classe ORM_NP.	168
6.25	Comparações absolutas entre as heurísticas para as instâncias não	
	proporcionais da classe GRM_NP.	169
6.26	Resultados da pós-otimização para a heurística GRASPf_RC nas	
	instâncias proporcionais da classe ORM_P $(w=2)$.	171
6.27	Resultados da pós-otimização para a heurística VNSf_RC nas	
	instâncias proporcionais da classe ORM_P $(w=2)$.	172
6.28	Resultados da pós-otimização para a heurística GRASPf_RC nas	
	instâncias proporcionais da classe ORM_P ($w=5$).	173
6.29	Resultados da pós-otimização para a heurística VNSf_RC nas	
	instâncias proporcionais da classe ORM_P $(w=5)$.	174
6.30	Resultados da pós-otimização para a heurística GRASPf_RC nas	
	instâncias proporcionais da classe ORM_P $(w=10)$.	175
6 31	Resultados da pós-otimização para a heurística VNSf_RC nas	110
0.01	instâncias proporcionais da classe ORM_P $(w=10)$.	176
6 32	Resultados da pós-otimização para as heurísticas GRASPf_RC e	110
0.52	VNSf_RC nas instâncias proporcionais da classe GRM_P $(w=2)$.	177
6 33	Resultados da pós-otimização para as heurísticas GRASPf_RC e	T 1 1
0.55		178
624	VNSf_RC nas instâncias proporcionais da classe GRM_P ($w=5$).	110
0.34	Resultados da pós-otimização para as heurísticas GRASPf_RC e	170
	VNSf_RC nas instâncias proporcionais da classe GRM_P ($w = 10$).	178

Lista de tabelas

6.35 Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w=2). 179 6.36 Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe SLM_P (w=2). 179 6.37 Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w = 5). 179 6.38 Resultados da pós-otimização para a heurística VNSf_RC nas instâncias proporcionais da classe SLM_P (w=5). 1796.39 Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias proporcionais da classe SLM_P (w = 10). 179 6.40 Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe SLM_P (w = 10). 179 6.41 Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias não proporcionais da classe ORM_NP (w=2). 180 6.42 Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe ORM_NP (w=2). 181 6.43 Resultados da pós-otimização para a heurística GRASPf_RC nas instâncias não proporcionais da classe GRM_NP (w=2). 182 6.44 Resultados da pós-otimização para a heurística VNSf_RC nas instâncias não proporcionais da classe GRM_NP (w=2). 182

16