เรขาคณิตคำนวณเบื้องต้น

ที่มา: โครงการตำราวิทยาศาสตร์และคณิตศาสตร์ มูลนิธิ สอวน.

เนื้อหาส่วนนี้จะเป็นการรวบรวมสูตรคำนวณเกี่ยวกับรูปทรงเรขาคณิตต่าง ๆ ซึ่งประกอบด้วย พื้นที่ของรูป เหลี่ยมและวงกลม ปริมาตรของทรงกลม ปริมาตรของทรงกระบอก ปริมาตรของปริซึม ปริมาตรของรูปพีระมิด และเรขาคณิตในสองมิติเบื้องต้น

พื้นที่ของรูปเหลี่ยมและวงกลม

รูปสามเหลี่ยม

กำหนดให้รูปสามเหลี่ยม ABC มีด้านยาว a, b และ c หน่วย ดังรูปที่ 1

ส่วนสูงของรูปสามเหลี่ยม คือ ความยาวของเส้นตรงที่ลากจากมุมยอดมาตั้งฉากกับฐาน เส้นมัธยฐานของรูปสามเลี่ยม คือ เส้นตรงที่ลากจากมุมยอดมายังจุดกึ่งกลางฐาน

พื้นที่รูปสามเหลี่ยม
$$=rac{1}{2} imes ฐาน imes สูง$$

หรือ

พื้นที่รูปสามเหลี่ยม
$$=\sqrt{s(s-a)(s-d)(s-c)}$$

เมื่อ
$$s = \frac{a+b+c}{2}$$

ให้ R และ r เป็นรัศมีวงกลมที่ล้อมรอบและแนบในรูปสามเหลี่ยม ABC จะได้

พื้นที่รูปสามเหลี่ยม
$$=rac{abc}{4R}=rs$$

รูปสามเหลี่ยมจำแนกตามสมบัติเฉพาะ

สามเหลี่ยมด้านเท่า หมายถึง สามเหลี่ยมที่มีด้านเท่ากันทุกด้าน ดังรูปที่ 2

รูปที่ 2 สามเหลี่ยมด้านเท่า

จะได้ว่า (1) มุมเท่ากันทุกมุม โดยแต่ละมุมเท่ากับ 60 องศา

(2) เส้นมัธยฐานตั้งฉากกับฐาน

พื้นที่รูปสามเหลี่ยมด้านเท่า
$$=rac{\sqrt{3}}{4} imes$$
 (ด้าน) 2

สามเหลี่ยมหน้าจั่ว หมายถึง สามเหลี่ยมที่มีด้านเท่ากันสองด้าน ซึ่งเรียกว่าด้านประกอบมุมฉาก ดังรูปที่ 3

รูปที่ 3 สามเหลี่ยมหน้าจั่ว

จะได้ว่า (1) มุมที่ฐานเท่ากัน

(2) เส้นที่ลากจากจุดยอดไปตั้งฉากกับฐานจะแบ่งครึ่งฐานและแบ่งครึ่งมุมยอดด้วย

เรียกด้าน a ว่า ฐาน และเรียกด้าน b ว่า ด้านประกอบมุมยอด

เรียกมุม A ว่า มุมยอด และเรียกมุม B ว่า มุมที่ฐาน

พื้นที่รูปสามเหลี่ยมหน้าจั่ว
$$=rac{a}{4}\sqrt{4b^2-a^2}$$

(กรณีทราบความยาวด้าน a และ b)

สามเหลี่ยมมุมฉาก หมายถึง สามเหลี่ยมที่มีมุมมุมหนึ่งเป็นมุมฉาก ดังรูปที่ 4 ซึ่งมีมุม A เป็นมุมฉาก

รูปที่ 4 สามเหลี่ยมมุมฉาก

จะได้ว่า (1) ผลบวกของกำลังสองของด้านประกอบมุมฉากเท่ากับด้านตรงข้ามมุมฉากยกกำลังสอง

- (2) พื้นที่จัตุรัสด้านตรงข้ามมุมฉาก เท่ากับ ผลรวมของจัตุรัสด้านประกอบมุมฉาก
- (3) ด้านตรงข้ามมุมฉากยกกำลังสอง เท่า ผลบวกของกำลังสองของด้านประกอบมุมฉาก หรือ

เรียก AB และ AC ว่า ด้านประกอบมุมฉาก และเรียกด้าน BC ว่า ด้านตรงข้ามมุมฉาก

พื้นที่รูปสามเหลี่ยมมุมฉาก
$$=rac{1}{2} imes$$
 ผลคูณของด้านประกอบมุมฉาก

หรือ
$$BC^2 = AB^2 + AC^2$$

ทฤษฎีบทของปีทาโกรัส (Pythagorean Theorem) เอกสารประกอบการอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์และคณิตศาสตร์ สาขาคอมพิวเตอร์ ค่ายที่ 1 **4** ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ ระหว่างวันที่ 20 มีนาคม - 2 เมษายน 2565

สามเหลี่ยมฐานโค้ง หมายถึง สามเหลี่ยมที่มีจุดยอดอยู่ที่จุดศูนย์กลางของวงกลม และฐานเป็นส่วนโค้งของเส้น รอบวงของวงกลม ดังรูปที่ 5

รูปที่ 5 สามเหลี่ยมฐานโค้ง

พื้นที่รูปสามเหลี่ยมฐานโค้ง
$$=rac{1}{2} imes rc$$

หรือ

พื้นที่รูปสามเหลี่ยมฐานโค้ง
$$=rac{1}{2}r^2 heta$$

เมื่อ a=r heta

รูปสี่เหลี่ยม

กำหนดให้รูปสี่เหลี่ยม ABCD 'มีด้านยาว a, b, c และ d หน่วย ดังรูปที่ 6

รูปที่ 6 สี่เหลี่ยมใด ๆ

เส้นทแยงมุม หมายถึง เส้นตรงที่ลากจากจากมุมหนึ่งไปยังมุมที่อยู่ตรงกันข้าม เส้นกิ่ง หมายถึง เส้นตรงที่ลากจากมุมไปตั้งฉากกับเส้นทแยงมุม

พื้นที่รูปสี่เหลี่ยม
$$=rac{1}{2} imes$$
 เส้นทแยงมุม $imes$ ผลบวกของเส้นกิ่ง

รูปสี่เหลี่ยมจำแนกตามสมบัติเฉพาะ

สี่เหลี่ยมผืนผ้า หมายถึง สี่เหลี่ยมที่มีมุมทุกมุมเป็นมุมฉาก ดังรูปที่ 7

จะได้ว่า เส้นทแยงมุมยาวเท่ากัน และแบ่งครึ่งซึ่งกันและกัน พื้นที่รูปสี่เหลี่ยมผืนผ้า = กว้าง × ยาว

สี่เหลี่ยมจัตุรัส หมายถึง สี่เหลี่ยมที่มีมุมทุกมุมเป็นมุมฉาก และมีด้านเท่ากันทุกด้าน ดังรูปที่ 8

จะได้ว่า เส้นทแยงมุมยาวเท่ากัน ตั้งฉากและแบ่งครึ่งซึ่งกันและกัน $\ddot{\text{w}}$ นที่รูปสี่เหลี่ยมจัตุรัส = (ด้าน $)^2$

สี่เหลี่ยมด้านขนาน หมายถึง สี่เหลี่ยมที่มีด้านตรงข้ามขนานกันสองคู่ ดังรูปที่ 9

จะได้ว่า เส้นทแยงมุงแบ่งครึ่งซึ่งกันและกัน

สี่เหลี่ยมขนมเปียกปูน หมายถึง สี่เหลี่ยมที่มีด้านเท่ากันทุกด้าน ดังรูปที่ 10

จะได้ว่า เส้นทแยงมุมตั้งฉากและแบ่งครึ่งซึ่งกันและกัน

พื้นที่รูปสี่เหลี่ยมขนมเปียกปูน
$$=$$
 ฐาน $imes$ สูง หรือ $=$ $\frac{1}{2}$ $imes$ ผลคูณของเส้นทแยงมุม

สี่เหลี่ยมรูปว่าว หมายถึง สี่เหลี่ยมที่มีเส้นทแยงมุมตั้งฉากซึ่งกันและกัน ดังรูปที่ 11

พื้นที่รูปสี่เหลี่ยมรูปว่าว
$$=rac{1}{2} imes$$
 ผลคูณของเส้นทแยงมุม

สี่เหลี่ยมคางหมู หมายถึง สี่เหลี่ยมที่มีด้านตรงข้ามขนานกันหนึ่งคู่ ดังรูปที่ 12

พื้นที่รูปสี่เหลี่ยมคางหมู
$$=rac{1}{2} imes$$
 ผลบวกของเส้นทแยงมุม $imes$ สูง

ร**ูปหลายเหลี่ยมด้านเท่า** หมายถึง รูปเหลี่ยมชนิดอื่นที่มีความยาวด้านแต่ละด้านเท่ากัน และมีจำนวนเหลี่ยมหรือ จำนวนด้านมากกว่า *4* เช่น *6* และ *8* เหลี่ยม ดังรูปที่ 13

พื้นที่รูปหกเหลี่ยมด้านเท่า =
$$6 imes$$
 พื้นที่สามเหลี่ยมด้านเท่า = $\frac{3\sqrt{3}}{2} imes$ (ด้าน) 2

พื้นที่รูปแปดเหลี่ยมด้านเท่า
$$=4.82 imes$$
 (ด้าน) 2

รูปวงกลมและวงแหวน

ปริมาตรและพื้นผิวของรูปทรงสามมิติ

รูปทรงกลม

เมื่อ r คือ ความยาวรัศมีของทรงกลม

พื้นที่ผิวทรงกลม
$$=4\pi r^2$$

ปริมาตรทรงกลม $=rac{4}{3}\pi r^3$

รูปทรงกระบอก

เมื่อ r คือ ความยาวรัศมี และ h คือ ความสูงของทรงกระบอก

พื้นที่ผิวข้างของทรงกระบอก
$$=2\pi rh$$
 พื้นที่ผิวทั้งหมด $=2\pi rh+2\pi r^2=2\pi r(h+r)$ ปริมาตรทรงกระบอก $=\pi r^2 h$

รูปกรวยกลมตรง

รูปที่ 17 กรวยกลมตรง

เมื่อ r คือ ความยาวรัศมี h คือ ความสูงของทรงกรวย และ ℓ คือ ความสูงเอียง

พื้นที่ผิวข้าง
$$=\pi r l$$
พื้นที่ผิวทั้งหมด $=\pi l+\pi r^2=\pi r(l+r)$
ปริมาตร $=rac{1}{3}\pi r^2 h$ $l=\sqrt{h^2+r^2}$

รูปทรงปริซึม

รูปทรงสี่เหลี่ยมมุมฉาก

รูปทรงสี่เหลี่ยมมุมฉาก หมายถึง รูปทรงปริซึมที่มีฐานเป็นสี่เหลี่ยมมุมฉาก ดังรูปที่ 19 และ 20

รูปที่ 19 รูปทรงสี่เหลี่ยมมุมฉาก

ปริมาตรรูปทรงสี่เหลี่ยมผืนผ้า = กว้าง imes ยาว imes สูง

รูปที่ 19 ลูกบาศก์

ปริมาตรรูปทรงลูกบาศก์ = (ด้าน $)^3$

รูปพีระมิด หรือรูปกรวยเหลี่ยม

รูปที่ 19 พีระมิด

พื้นที่ผิวข้าง
$$=\frac{1}{2} imes$$
 เส้นรอบฐาน $imes$ สูงเอียง พื้นที่ผิวทั้งหมด $=$ พื้นที่ผิวข้าง $+$ พื้นที่ฐาน ปริมาตร $=\frac{1}{3} imes$ พื้นที่ฐาน $imes$ สูง

เรขาคณิตสองมิติเบื้องต้น (บนระนาบ xy)

ครอบคลุม การหาระยะทาง จุดกึ่งกลาง และความชั้นของเส้นตรง

จากรูป กำหนดให้ $A(x_1,y_1)$ และ $B(x_2,y_2)$ เป็นจุดสองจุดบนระนาบ ระยะระหว่างจุด ความชั้นของ เส้นตรงที่เชื่อมระหว่างจุดทั้งสอง และจุดกึ่งกลางของเส้นตรงสามารถคำนวณได้ ดังนี้

ระยะห่างระหว่างจุด

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

ความชั้นของเส้นตรง

ความชั้นของ
$$AB=rac{y_2-y_1}{x_2-x_1}$$

จุดกึ่งกลาง เมื่อ สมมติให้ $C(ar{x},ar{y})$ เป็นจุดกึ่งกลางของเส้นตรง AB

$$C(\bar{x}, \bar{y}) = \left(\frac{x_1 + x_2}{2} + \frac{y_1 + y_2}{2}\right)$$

ถ้า $P_0(x_0,y_0)$ เป็นจุดบนส่วนของเส้นตรง AB ที่ทำให้ระยะ $AP\colon PB=m\colon n$ แล้ว จะได้ว่า

$$x_0 = \frac{nx_1 + mx_2}{m+n}$$
, $y_0 = \frac{ny_1 + my_2}{m+n}$

สมการเส้นตรง

สมการเส้นตรงบนระนาบ xy มีรูปทั่วไปเป็น

$$ax + by + c = 0$$

เมื่อ a,b และ c เป็นค่าคงที่ โดยที่ a และ b ไม่เป็น o พร้อมกัน ถ้า $b \neq 0$ แล้ว เส้นตรงจะมีความชั้นเท่ากับ $-\frac{b}{a}$ และตัดแกน y ที่จุด $\left(0,-\frac{c}{b}\right)$

สมการเส้นตรงที่มีความชั้นเท่ากับ m และผ่านจุด (x_1,y_1) คือ

$$(y - y_1) = m(x - x_1)$$

สมการเส้นตรงที่ตัดแกน x ที่จุด (a,0) และตัดแกน y ที่จุด (0,b) คือ

$$\frac{x}{a} + \frac{y}{b} = 1$$
 เมื่อ $a \neq 0$, $b \neq 0$

การขนานและการตั้งฉากกันของเส้นตรง

เส้นตรงสองเส้นจะขนานกันก็ต่อเมื่อมีความชั้นเท่ากัน

เส้นตรงสองเส้นจะตั้งฉากกัน เมื่อ ผลคูณของความชั้นของทั้งสองเส้นมีค่าเท่ากับ -1

ข้อสังเกต

เส้นตรง
$$ax+by+c_1=0$$
 จะขนานกับเส้นตรง $ax+by+c_2=0$ เส้นตรง $ax+by+c_1=0$ จะขนานกับเส้นตรง $bx-ay+c_3=0$ หรือขนานกับ $-bx+ay+c_3=0$

ระยะระหว่างจุดกับเส้นตรง

เมื่อให้ d เป็นระยะตั้งฉากจากจุด (x_1,y_1) ไปยังเส้นตรง ax+by+c=0จะได้

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

ข้อสังเกต

- 1. ถ้าจุด (x_1,y_1) อยู่บนเส้นตรง ax+by+c=0 แล้ว จะได้ d=0
- 2. จากรูป ถ้าเส้นตรง AB ขนานกับแกน x แล้ว จะได้ระยะ $AB = |x_2 x_1|$ และความชั้นของเส้นตรง AB เท่ากับ ho
- 3. จากรูป ถ้าเส้นตรง AB ขนานกับแกน y แล้ว จะได้ระยะ $AB = |y_2 y_1|$ และความชั้นของเส้นตรง AB หาค่าไม่ได้

ระยะห่างระหว่างเส้นคู่ขนาน

ให้ $ax+by+c_1=0$ และ $ax+by+c_2=0$ เป็นเส้นตรงสองเส้นที่ขนานกัน และให้ d เป็นระยะห่างระหว่างเส้นตรงทั้งสอง จะได้

$$d = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$

จุดตัดของเส้นตรง

ให้ $a_1x+b_1y=c_1$ และ $a_1x+b_1y=c_1$ เป็นสมการของเส้นตรงสองเส้นที่ตัดกันที่จุด (x,y) จะได้

$$x = \frac{c_1b_2 - c_2b_1}{a_1b_2 - a_2b_1}$$
 และ $y = \frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$

พื้นที่รูปหลายเหลี่ยม

ให้รูป n เหลี่ยมมีจุดยอดอยู่ที่จุด (x_1,y_1) , (x_2,y_2) , ... , (x_n,y_n) เรียงลำดับกัน จะได้ว่า พื้นที่รูป n เหลี่ยม $=rac{1}{2}ig|_{y_1}^{x_1} ig|_{y_2}^{x_2} rac{x_n}{y_n} rac{x_1}{y_1}ig|_{y_1}^{x_2}$

$$= \frac{1}{2} [(x_1 y_2 + x_2 y_3 + x_3 y_4 + \dots + x_{n-1} y_n + x_n y_1) - (x_2 y_1 + x_3 y_2 + x_4 y_3 + \dots + x_n y_{n-1} + x_1 y_n)]$$

ความรู้พื้นฐาน เรขาคณิต

ที่มา: เอกสารประกอบการอบรมค่ายโอลิมปิกวิชาการ อ.วัฒนา เถาว์ทิพย์ ม.ขอนแก่น

ความรู้พื้นฐานทางเรขาคณิตที่เรียนในระดับมัธยมศึกษา สามารถสรุปไว้เป็นหมวดหมู่ในลักษณะ ของนิยาม สัจพจน์ และทฤษฎีบท โดยนักเรียนควรฝึกพิสูจน์ด้วยตนเองให่ได้ทุกทฤษฎีบท

(1) มุม

นิยาม มุมขนาด 1 องศา หมายถึงมุมที่เกิดจากการแบ่งมุมรอบจุดออกเป็น 360 ส่วนเท่า ๆ กัน ทฤษฎีบท 1 มุมตรงทุกมุมมีขนาด 180 องศา

ทฤษฎีบท 2 มุมฉากทุกมุมมีขนาด 90 องศา

(2) เส้นขนาน

นิยาม เส้นตรงสองเส้นขนานกันก็ต่อเมื่อเส้นตรงสองเส้นอยู่นนระนาบเดียวกันและไม่ตัดกัน ไม่ว่าจะต่อ ออกไปให้ยาวเท่าไรก็ตาม

ทฤษฎีบท 3 ถ้าเส้นตรงสองเส้นตัดกันแล้ว ขนาดของมุมตรงข้ามย่อมเท่ากัน

สัจพจน์ (สัจพจน์ข้อที่ 5 ของยุคลิด) เส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่งเส้นตรงคู่นั้นจะขนานกันก็ต่อเมื่อ ผลบวกของขนาดของมุมภายในบนข้างเดียวกันของเส้นตัดเท่ากับ 180 องศา

ทฤษฎีบท 4 ถ้าเส้นตรงเส้นหนึ่งตัดเส้นคู่ขนานคู่หนึ่งแล้ว มุมแย้งที่เกิดขึ้นย่อมมีขนาดเท่ากัน

ทฤษฎีบท 5 ถ้าเส้นตรงเส้นหนึ่งตัดเส้นตรงคู่หนึ่งและมุมแย้งที่เกิดขึ้นมีขนาดเท่ากันแล้ว เส้นตรงคู่นั้นย่อม ขนานกัน

(3) ทฤษฎีบทพื้นฐานเกี่ยวกับด้านและมุมของรูปสามเหลี่ยม

ทฤษฎีบท 6 ผลบวกของมุมภายในของรูปสามเหลี่ยมใด ๆ เท่ากับ 180 องศา

ทฤษฎีบท 7 ขนาดของมุมภายนอกของรูปสามเหลี่ยมใด ๆ จะเท่ากับผลบวกของขนาดของมุมภายในที่อยู่ ตรงข้ามกับมุมภายนอก

นิยาม การเคลื่อนที่ของรูปเรขาคณิต คือ การเปลี่ยนตำแหน่งของรูปเรขาคณิตบนระนาบ โดยที่ระยะห่าง ระหว่างจุดสองจุดใด ๆ ของรูปนั้นไม่เปลี่ยนแปลง

สัจพจน์ รูปเรขาคณิตสามารถเคลื่อนที่ได้

สัจพจน์ เส้นตรงที่ไม่ขนานกันย่อมตัดกัด และตัดกันเพียงจุดเดียวเท่านั้น

สัจพจน์ ระหว่างจุดสองจุด จะมีส่วนของเส้นตรงเพียงเส้นเดียวเท่านั้น นิยามรูปเรขาคณิตเท่ากันทุกประการ ก็ต่อเมื่อเคลื่อนที่รูปหนึ่งให้ทับอีกรูปหนึ่งได้สนิท

ทฤษฎีบท 8 ถ้าสามเหลี่ยมสองรูปใด ๆ มีด้านยาวเท่ากันสองคู่และมุมในระหว่างด้านคู่ที่เท่ากันมีขนาด เท่ากันแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ (ด.ม.ด.)

ทฤษฎีบท 9 ถ้าสามเหลี่ยมสองรูปใด ๆ มีมุมที่มีขนาดเท่ากันสองคู่และด้านที่เป็นแขนร่วมระหว่างมุมคู่ที่ เท่ากันมีขนาดเท่ากันแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ (ม.ด.ม.)

ทฤษฎีบท 10 ถ้าสามเหลี่ยมสองรูปใด ๆ มีมุมที่มีขนาดเท่ากันสองคู่และด้านที่อยู่ตรงข้ามมุมคู่เท่ากันมีขนาด เท่ากันหนึ่งคู่แล้วรูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ (ม.ม.ด.)

ทฤษฎีบท 11 ถ้ารูปสามเหลี่ยมสองรูปมีด้านยาวเท่ากั้นทั้งสามด้าน แล้วรูปสามเหลี่ยมสองรูปนั้นจะเท่ากัน ทุกประการ (ด.ด.ด.)

ทฤษฎีบท 12 ถ้ารูปสามเหลี่ยมมุมฉากสองรูปมีด้านตรงข้ามมุมฉากยาวเท่ากัน และมีด้านอีกด้านหนึ่งยาว เท่ากันแล้ว รูปสามเหลี่ยมสองรูปนั้นจะเท่ากันทุกประการ (ฉ.ด.ด.)

ทฤษฎีบท 13 ในรูปสามเหลี่ยมหนา้จั่วมุมที่อยู่ตรงข้ามกับด้านที่ยาวเท่ากันย่อมกางเท่ากัน

สัจพจน์ ในรูปสามเหลี่ยมใด ๆ ผลบวกของด้านสองด้านย่อมยาวกว่าด้านที่สาม

ทฤษฎีบท 14 ในรูปสามเหลี่ยมใด ๆ ด้านที่อยุ่ตรงข้ามกับมุมที่มีขนาดใหญ่กว่า ย่อมยาวกว่าด้านที่อยู่ตรง ข้ามกับมุมที่มีขนาดเล็กกว่า

ทฤษฎีบท 15 ในรูปสามเหลี่ยมมุมฉากใด ๆ ด้านตรงข้ามมุมฉากย่อมยาวที่สุด

ทฤษฎีบท 16 ในบรรดาส่วนของเส้นตรงทั้งหลายที่ลากจากจุดภายนอกของเส้นตรงเส้นหนึ่งไปยังเส้นตรงเส้น นั้น จะมีส่วนของเส้นตรงเพียงเส้นเดียวเท่านั้นที่เป็นเส้นตั้งฉาก และเส้นตรงนี้จะเป็นเส้นที่สั้นที่สุด

ทฤษฎีบท 17 ในรูปสามเหลี่ยมใด ๆ ส่วนสูงของสามเหลี่ยมทั้งสามย่อมพบกันที่จุด ๆ หนึ่ง

ทฤษฎีบท 18 ในรูปสามเหลี่ยมมุมใด ๆ เส้นมัธยฐานของสามเหลี่ยม ทั้งสามย่อมพบกันที่จุด ๆ หนึ่ง และจุด นั้นจะแบ่งเส้นมัธยฐานออกเป็นอัตราส่วน 2:1

ทฤษฎีบท 19 ในรูปสามเหลี่ยมหน้าจั่ว เส้นมัธยฐานที่ลากจากจุดยอด ย่อมตั้งฉากกับฐาน

(4) สามเหลี่ยมคล้าย

นิยาม รูปเรขาคณิตที่คล้ายกัน หมายถึง รูปที่มุมเท่ากันทุกคู่และอัตราส่วนของด้านที่สมนัยกันมีค่าเท่ากัน ทฤษฎีบท 20 ถ้ารูปสามเหลี่ยมสองรูปมีอัตราส่วนของด้านที่สมนัยกันมีค่าเท่ากันแล้ว สามเหลี่ยมสองรูปนั้น ย่อมคล้ายกัน

ทฤษฎีบท 21 ถ้ารูปสามเหลี่ยมสองรูปมีมุมเท่ากันทั้งสามคู่แล้ว สามเหลี่ยมสองรูปนั้นย่อมคล้ายกัน

ทฤษฎีบท 22 ถ้ารูปสามเหลี่ยมสองรูปมีมุมเท่ากัน 1 คู่และอัตราส่วนของความยาวของด้านประกอบมุมนั้น เท่ากันแล้ว สามเหลี่ยมสองรูปนั้นจะคล้าย

ทฤษฎีบท 23 เส้นตรงที่ต่อจุดกึ่งกลางของด้านสองด้านของรูปสามเหลี่ยมใด ๆ ย่อมขนานและยาวเป็น ครึ่งหนึ่งของด้านที่สามของสามเหลี่ยม

(5) สี่เหลี่ยมด้านขนาน

นิยาม รูปสี่หลี่ยมดา้นขนานหมายถึงรูปสี่เหลียมที่มีด้านขนานกันสองคู่

ทฤษฎีบท 24 ด้านตรงข้ามของสี่เหลี่ยมด้านขนานย่อมยาวเท่ากัน

ทฤษฎีบท 25 ถ้ารูปสี่เหลี่ยมรูปหนึ่งมีด้านตรงข้ามยาวเท่ากันทั้งสองคู่แล้ว สี่เหลี่ยมรูปนั้นย่อมเป็นสี่เหลี่ยม ด้านขนาน

ทฤษฎีบท 26 ผลบวกของมุมภายในของรูปสี่เหลี่ยมใด ๆ ย่อมเท่ากับ 360 องศา

ทฤษฎีบท 27 มุมตรงข้ามของรูปสี่เหลี่ยมด้านขนานย่อมมีขนาดเท่ากัน

ทฤษฎีบท 28 เส้นทแยงมุมของรูปสี่เหลี่ยมด้านขนานย่อมแบ่งครึ่งซึ่งกันและกัน

ทฤษฎีบท 29 เส้นทแยงมุมของรูปสี่เหลี่ยมด้านเท่าย่อมตั้งฉากกัน

ทฤษฎีบท 30 เส้นขนานตั้งแต่สามเส้นขึ้นไปตัดเส้นขวางสองเส้นอัตราส่วนของส่วนตัดย่อมเท่ากัน

นิยาม พื้นที่ 1 หน่วย หมายถึงพื้นที่สี่เหลี่ยมจัตุรัสที่ยาวด้านละ 1 หน่วย

ทฤษฎีบท 31 พื้นที่สี่เหลี่ยมผืนผ้า เท่ากับ กว้าง คุณ ยาว

ทฤษฎีบท 32 พื้นที่สี่เหลี่ยมดด้านขนาน เท่ากับ สูง คูณ ฐาน

ทฤษฎีบท 33 พื้นที่สามเหลียมเท่ากับ ครึ่งหนึ่งของ ผลคูณของสูง กับ ฐาน

ทฤษฎีบท 34 (Pythagoras theorem) ในรูปสามเหลี่ยมใด ๆ พื้นที่สี่เหลี่ยมจัตุรัสบนด้านตรงข้ามุมฉาก ย่อมเท่ากับ ผลบวกของพื้นที่สี่เหลียมจัตุรัสบนด้านประกอบมุมฉาก

(6) วงกลม

นิยาม วงกลมหมายถึงทางเดินของจุด (Locus) ซึ่งอยุ่ห่างจากจุดคงที่จุดหนึ่งเป็นระยะทางคงตัว ทฤษฎีบท 35 ถ้ามุมที่จุดศูนย์กลางของวงกลม และมุมที่เส้นรอบวงของวงกลม รองรับด้วยส่วนโค้งเดียวกัน แล้ว มุมที่จุดศูนย์กลางย่อมมีขนาดเป็นสองเท่าของมุมที่เส้นรอบวง

ทฤษฎีบท 36 มุมในของครึ่งวงกลมเป็นมุมฉาก (90 องศา)

นิยาม รูปสี่เหลี่ยมแนบในวงกลมหมายถึงรูปสี่เหลียมที่มีจุดยอดมุมทั้งสี่อยู่บนเส้นรอบวงของวงกลม

ทฤษฎีบท 37 ผลบวกของขนาดของมุมตรงข้ามของสี่เหลี่ยมแนบในวงกลมเท่ากับ 180 องศา

ทฤษฎีบท 38 ในวงกลมที่เท่ากัน หรือวงกลมเดียวกัน มุมที่เส้นรอบวงของวงกลมที่รองรับด้วยส่วนโค้งที่ เท่ากันหรือส่วนโค้งเดียวกัน ย่อมมีขนาดเท่ากัน

ทฤษฎีบท 39 ถ้าส่วนของเส้นตรงผ่านจุดศูนย์กลางของวงกลม และตั้งฉากกับคอร์ดใด ๆ แล้ว ส่วนของ เส้นตรงนั้น ย่อมแบ่งครึ่งคอร์ด

ทฤษฎีบท 40 ถ้าส่วนของเส้นตรงผ่านจุดศูนย์กลางของวงกลม และแบ่งครึ่งคอร์ดใด ๆ แล้ว ส่วนของเส้นตรง นั้นย่อมตั้งฉากกับคอร์ด

ทฤษฎีบท 41 ในวงกลมวงหนึ่ง คอร์ดที่ยาวเท่ากันย่อมอยู่ห่างจากจุดศูนย์กลางเท่ากัน

ทฤษฎีบท 42 ในวงกลมวงหนึ่ง คอร์ดที่อยู่ห่างจากจุดศูนย์กลางเท่ากัน ย่อมยาวเท่ากัน

ทฤษฎีบท 43 ในวงกลมที่เท่ากัน หรือวงกลมเดียวกัน มุมที่จุดศูนย์กลางของวงกลมที่รองรับด้วยส่วนโค้งที่ เท่ากันย่อมมีขนาดเท่ากัน

ตรีโกณมิติ

ตรีโกณมิติ (trigonometry) เป็นวิชาที่ว่าด้วยการคำนวณเกี่ยวกับด้าน มุม และพื้นที่รูปสามเหลี่ยม มา จากคำว่า

ตรี tri แปลว่า "สาม"โกณ gono แปลว่า "ด้าน"มิติ metry แปลว่า "การวัด"

อัตราส่วนตรีโกณมิติ คือ อัตราส่วนของด้านทั้งสามของรูปสามเหลี่ยมมุมฉาก ได้แก่ Sine, Cosine, Tangent, Cosecant, Secant และ Cotangent

จากรูปเมื่อพิจารณามุม A หรือ $B \hat{A} \mathcal{C}$ จะได้ว่า

- c คือ ด้านตรงข้ามมุมฉาก สมมติเรียกย่อว่า "ฉาก"
- a คือ ด้านตรงข้ามมุม A สมมติเรียกย่อว่า "ข้าม"
- b คือ ด้านประชิดมุม A สมมติเรียกย่อว่า "ชิด"

$sin\ A$ คือ ค่า Sine ของมุม A	มีค่าเท่ากับ	า $\frac{a}{c}$ ห $^{'}$		ารือ <u>ข้าม</u> ฉาก	
$cos\ A$ คือ ค่า $\it Cosine$ ของมุม $\it A$	มีค่าเท่ากับ	$\frac{b}{c}$	หรือ	<u>ชิด</u> ฉาก	
$tan\ A$ คือ ค่า Tangent ของมุม A	มีค่าเท่ากับ	$\frac{a}{b}$	หรือ	ข้าม - ชิด	

เอกสารประกอบการอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์และคณิตศาสตร์ สาขาคอมพิวเตอร์ ค่ายที่ 1 **20** ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ ระหว่างวันที่ 20 มีนาคม - 2 เมษายน 2565

$$cosec~A$$
 คือ ค่า Cosecant ของมุม A มีค่าเท่ากับ $\dfrac{1}{sin~A}$ หรือ $\dfrac{c}{a}$ หรือ $\dfrac{\alpha}{v}$ หรือ $\dfrac{\alpha}{v}$

ตารางสรุปอัตราส่วนตรีโกณมิติประกอบมุม 30, 45 และ 60 องศา

มุม	sin A	cos A	tan A
A	33.7.2	000.7	
30°			
45°			
60°			
	30°	A 30°	A 30°

โจทย์ปัญหา

โจทย์ 1 (CountPoints) เขียนโปรแกรมเพื่อนับจำนวนจุดบนภาพที่มีค่าเป็น 1 เมื่อ

ข้อมูลนำเข้า บรรทัดแรก คือ ขนาดภาพ กว้างxสูง (m x n) บรรทัดถัดไป m บรรทัด คือ ค่าข้อมูลในแต่ ละแถว ซึ่งมีค่าเป็น 0 หรือ 1

ข้อมูลน้ำออก คือ จำนวนตำแหน่งที่มีค่า 1

```
Example: Counting points
Input: 3 3 line 1 size row x column
1 0 1 data of row 1
0 1 0 data of row 2
0 0 0 data of row 3
Output: 3
*/
```

โจทย์ 2 (GetPoints2Arr) เขียนโปรแกรมเพื่อแสดงตำแหน่งพิกัดบนภาพที่มีค่าเป็น 1 เมื่อ

ข้อมูลนำเข้าบรรทัดแรก คือ ขนาดภาพ กว้างxสูง (m x n) บรรทัดถัดไป m บรรทัด คือ ค่าข้อมูลในแต่ ละแถว ซึ่งมีค่าเป็น 0 หรือ 1 เว้นระยะระหว่างค่า 1 space

ข้อมูลนำออก คือ ลำดับตำแหน่งของภาพ (x,y) ในระบบพิกัดภาพบนหน้าจอ (ไล่ลำดับตามแถวและ คอลัมน์ของข้อมูลนำเข้า) เว้นระยะระหว่างจุด 1 space

Note: ระบบพิกัดภาพของหน้าจอ มุมบนซ้าย คือ จุด 0,0 แนวนอน คือ ความกว้างหรือแกน x และแนวตั้ง คือ ความสูงหรือแกน y

```
/**
Problem: show all points
Input: 3 3 line 1 size of input row x column
1 0 1 data of row 1
0 1 0 data of row 2
0 1 0 data of row 3
Output: (0,0) (2,0) (1,1) (1,2) ตำแหน่ง x,y ของจุด
*/
```

โจทย์ 3 (CheckTri) เขียนโปรแกรมเพื่อตรวจสอบตำแหน่งจุดสามจุดบนภาพที่มีค่าเป็น 1 ว่าเป็นจุดที่สามารถ ประกอบกันเป็น<u>สามเหลี่ยมมุมฉาก</u>หรือไม่ เมื่อ

ข้อมูลนำเข้า บรรทัดแรก คือ ขนาดภาพ กว้างxสูง (m x n) บรรทัดถัดไป m บรรทัด คือ ค่าข้อมูลในแต่ ละแถว ซึ่งมีค่าเป็น 0 หรือ 1

ข้อมูลน้ำออก คือ รายการจุดทั้งสาม และผลการตรวจสอบ (YES/NO) มี space ระหว่างค่า 1 space

```
/**
   Example1:
   Input: 3 3
                     line 1: size row x column
          1 0 1
                   data of row 1
          0 1 0
                   data of row 2
          000
                   data of row 3
   Output: (0,0) (2,0) (1,1) NO
   Example1:
   Input: 3 4
                    line 1: size row x column
                   data of row 1
          1 0 1
          0 0 0
                   data of row 2
          1 0 0
                   data of row 3
          0 0 0
                   data of row 4
   Output: (0,0) (2,0) (0,2) YES
*/
```

โจทย์ 4 (RectInside) ให้จุดมุมของสี่เหลี่ยมมุมฉากมา 2 รูป จงเขียนโปรแกรมเพื่อตรวจสอบว่าสี่เหลี่ยมสองรูป นั้นซ้อนทับกันแบบสมบูรณ์หรือไม่ เมื่อ

ข้อมูลนำเข้า บรรทัดแรก คือ คู่อันดับของจุด 4 จุดของสี่เหลี่ยมรูปแรก บรรทัดที่สอง คือ คู่อันดับของจุด 4 จุดของสี่เหลี่ยมรูปที่สอง โดยที่ลำดับจุดการนำเข้าเป็นแบบวนขวา

ข้อมูลน้ำออก คือ ผลการตรวจสอบ (YES/NO)

เอกสารประกอบการอบรมโอลิมปิกวิชาการและการพัฒนามาตรฐานวิทยาศาสตร์และคณิตศาสตร์ สาขาคอมพิวเตอร์ ค่ายที่ 1 **23** ศูนย์คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสงขลานครินทร์ ระหว่างวันที่ 20 มีนาคม - 2 เมษายน 2565

โจทย์ 5 (InsidePartInde) ให้จุดมุมของสี่เหลี่ยมมุมฉากมา 2 รูป จงเขียนโปรแกรมเพื่อตรวจสอบว่าสี่เหลี่ยมสอง รูปนั้นซ้อนทับกันบางส่วน (Partial) หรืออิสระกัน (Independent) หรืออยู่ภายในอีกรูปหนึ่ง (Inside) เมื่อ

ข้อมูลนำเข้า บรรทัดแรก คือ คู่อันดับของจุด 4 จุดของสี่เหลี่ยมรูปแรก บรรทัดที่สอง คือ คู่อันดับของจุด 4 จุดของสี่เหลี่ยมรูปที่สอง โดยที่ลำดับจุดการนำเข้าเป็นแบบวนขวา

ข้อมูลนำออก คือ ผลการตรวจสอบ (Inside/Partial/Independent)

```
/**
    Example 1:
    Input:
               0 0 0 4 4 4 4 0
                                             พิกัด x,y ของจุดทั้งสี่ของรูปแรก
              1 1 1 3 3 3 3 1
                                             พิกัด x,y ของจุดทั้งสี่ของรูปที่สอง
    Output: Inside
    Example 2:
    Input:
               0 0 0 4 4 4 4 0
               1 1 1 6 3 6 3 1
    Output: Partial
    Example 3:
    Input:
               0 0 0 4 4 4 4 0
               7 1 7 3 10 3 10 1
    Output: Independent
*/
```

โจทย์ 6 (ImageRotate) จงเขียนโปรแกรมเพื่อหมุนภาพต้นฉบับขนาด n x n pixels ทำมุม 90 องศา ไปทางขวา (R) หรือซ้าย (L) ตามจำนวนครั้ง (steps) ที่กำหนด โดยแสดงภาพผลลัพธ์ที่ได้หลังจากหมุน ดังตัวอย่าง

```
/**
    Example 1:
    Input: 5
                           line 1 size n \times n of image
                           data of row 1
           0 0 0 0 0
           0 1 0 0 0
                           data of row 2
                           data of row 3
           0 1 1 0 0
           0 1 1 1 0
                           data of row 4
           0 0 0 0 0
                           data of row 5
           R 1
                           rotate 90 degree right 1 step
    Output:
           0 0 0 0 0
                           data of row 1
           0 1 1 1 0
                           data of row 2
                           data of row 3
           0 1 1 0 0
           0 1 0 0 0
                           data of row 4
                           data of row 5
           0 0 0 0 0
    Example 2:
    Input: 5
                           line 1 size n \times n of image
                           data of row 1
           0 0 0 0 0
                           data of row 2
           0 1 0 0 0
           0 1 1 0 0
                           data of row 3
           0 1 1 1 0
                           data of row 4
           0 0 0 0 0
                           data of row 5
           L 1
                           rotate 90 degree left 1 step
    Output:
           0 0 0 0 0
                           data of row 1
           0 0 0 1 0
                           data of row 2
           0 0 1 1 0
                           data of row 3
           0 1 1 1 0
                           data of row 4
           0 0 0 0 0
                           data of row 5
*/
```

โจทย์ 7 (Movelmg) จงเขียนโปรแกรมเพื่อย้าย (move) ภาพต้นฉบับไปทางซ้าย-ขวา (LR) หรือ บน-ล่าง (UD) ของเฟรมแสดงผลตามที่กำหนด

หากค่า LR เป็น + หมายถึงย้ายไปทางขวาตามจำนวนหน่วยที่ระบุ และหากเป็น – หมายถึง ย้ายไป ทางซ้ายตามจำนวนหน่วยที่ระบุ

หากค่า UD เป็น + หมายถึงย้ายลงด้านล่างตามจำนวนหน่วยที่ระบุ และหากเป็น – หมายถึง ย้ายขึ้น ด้านบนตามจำนวนหน่วยที่ระบุ

การย้ายตำแหน่งภาพไปทางซ้าย-ขวา/บน-ล่าง นั้น ภาพจะต้องอยู่ภายในขอบเฟรม หมายความว่าถ้าชน เฟรมแล้วให้หยุดแค่นั้น ดังตัวอย่าง

```
/**
    Example 1:
    Input: 5 7
                                line 1 size of data
                                data of row 1
          0 0 0 0 0 0
          0 1 0 0 0 0 0
                                data of row 2
          0 1 1 0 0 0 0
                                data of row 3
          0 1 1 1 0 0 0
                                data of row 4
          0 0 0 0 0 0 0
                                data of row 5
          -21
                                move LR:-2 UD:1
    Output:
                                data of row 1
          0 0 0 0 0 0
          0 0 0 0 0 0
                                data of row 2
          1000000
                                data of row 3
          1 1 0 0 0 0 0
                                data of row 4
                                data of row 5
          1 1 1 0 0 0 0
    Example 2:
    Input: 5 7
                                line 1 size of data
                                data of row 1
          0 0 0 0 0 0
          0100000
                                data of row 2
          0 1 1 0 0 0 0
                                data of row 3
          0 1 1 1 0 0 0
                                data of row 4
          0000000
                                data of row 5
          2 - 1
                                move LR:2 UD:-1
   Output:
                                data of row 1
          0001000
          0001100
                                data of row 2
          0 0 0 1 1 1 0
                                data of row 3
          0 0 0 0 0 0
                                data of row 4
          0000000
                                data of row 5
*/
```

โจทย์ 8 จงเขียนโปรแกรมเพื่อขยับ (shift) ภาพต้นฉบับไปทางซ้ายหรือขวาของเฟรมแสดงผลตามที่กำหนด การ ขยับซ้ายหรือขวานั้น หากภาพสุดขอบเฟรมให้วนกลับมาแสดงต่อยังขอบอีกด้าน ดังตัวอย่าง

```
/**
   Example 1:
   Input: 5 7
                                line 1 size of data
                               data of row 1
          0 0 0 0 0 0
          0 1 0 0 0 0 0
                               data of row 2
          0 1 1 0 0 0 0
                               data of row 3
          0 1 1 1 0 0 0
                               data of row 4
          0000000
                               data of row 5
                               shift left 2 steps
          L 2
   Output:
          0 0 0 0 0 0
                               data of row 1
                               data of row 2
          0000001
          1000001
                               data of row 3
          1 1 0 0 0 0 1
                               data of row 4
          0 0 0 0 0 0
                               data of row 5
   Example 2:
   Input: 5 7
                                line 1 size of data
          0 0 0 0 0 0
                               data of row 1
          0 1 0 0 0 0 0
                               data of row 2
          0 1 1 0 0 0 0
                               data of row 3
          0 1 1 1 0 0 0
                               data of row 4
          0000000
                               data of row 5
                               shift right 1 step
   Output:
          0 0 0 0 0 0
                               data of row 1
          0010000
                               data of row 2
          0011000
                               data of row 3
          0 0 1 1 1 0 0
                               data of row 4
          0000000
                               data of row 5
```

ข้อมูลนำเข้า บรรทัดที่ 1 ขนาดความสูงและความกว้างของหน้าจอแสดงผล (screen) แถว (m) คูณ คอลัมน์ (n) m แถวถัดมา คือ ค่าข้อมูลในแต่ละคอลัมน์ ซึ่งประกอบด้วย 0 หรือ 1 ซึ่งคั่นด้วยที่ว่าง 1 ตำแหน่ง บรรทัดสุดท้าย คือ รูปแบบการขยับภาพ (L/R) และจำนวนครั้งของการขยับ (เป็นจำนวนเต็มบวก <= 1000) เช่น L 2 คือ ขยับไปทางซ้าย 2 ตำแหน่ง, R 1 คือ ขยับไปทางขวา 1 ตำแหน่ง ข้อมูลนำออก คือ ผลลัพธ์หน้าจอแสดงผลหลังดำเนินการขยับภาพตามที่กำหนด ซึ่งมีขนาดเท่ากับ m คูณ n เช่นเดิม

หมายเหตุ การใช้เศษจากการหาร (modulo) จะช่วยให้เขียนโปรแกรมง่ายขึ้น

โจทย์ 9 (RectOrTri) จงเขียนโปรแกรมเพื่อตรวจสอบภาพว่าเป็นรูปสามเหลี่ยม (Triangle) หรือสี่เหลี่ยม (Rectangle) เมื่อกำหนดตำแหน่งจุดของเส้นบนภาพเป็น 1 (สีดำ) ตำแหน่งที่เป็น 0 เป็นพื้นขาว ดังตัวอย่าง

```
/**
   Example 1:
    Input: 5 7
                                 line 1 size of data m x n
                                 data of row 1
           0 0 0 0 0 0
                                 data of row 2
           0 1 1 1 1 1 0
                                 data of row 3
           0 1 0 0 0 1 0
           0 1 1 1 1 1 0
                                 data of row 4
           0 0 0 0 0 0
                                 data of row 5
   Output:
          Rectangle
    Example 2:
    Input: 5 7
                                 line 1 size of data m x n
                                 data of row 1
           0 0 0 0 0 0
           0 1 0 0 0 0 0
                                 data of row 2
                                 data of row 3
           0 1 1 0 0 0 0
           0 1 1 1 0 0 0
                                 data of row 4
           0 0 0 0 0 0
                                 data of row 5
    Output:
          Triangle
    Example 3:
    Input: 5 7
                                 line 1 size data m x n
                                 data of row 1
           0 0 0 0 0 1 0
           0 0 0 0 1 1 0
                                 data of row 2
           0001010
                                 data of row 3
           0 0 1 0 0 1 0
                                 data of row 4
           0 1 1 1 1 1 0
                                 data of row 5
   Output:
          Triangle
```

*/