ECE2101L Electrical Circuit Analysis II Laboratory

${\bf Lab\ 1}$ Positive and Negative Gain Op Amp Circuits

Report

Choi Tim Antony Yung

Willis Nguyen Phineas Cozmiuc

10 February 2020

Objective

The objective of this lab is to explore the behavior of an operation amplifier (op amp) with a positive or negative gain.

1 Basic characteristics of positive-gain op amp circuit

Procedure

A circuit was set up following the above schematic, with $V_s = 2.0115\,\mathrm{V}$, $V_{cc} = 20\,\mathrm{V}$ and $-V_{cc} = -20\,\mathrm{V}$ supplied by a DC power supply and a DC dual power supply with the COM port of both power supplies connected to the ground of circuit. For each value of R_f , V_o was measured with the positive terminal of a digital multimeter (DMM) connected to pin 6 of LM741 chip, the output of the op amp, and negative terminal of DMM connected to ground, and the current I was then measured with the positive terminal of DDM connected to pin 6 of LM741 and negative terminal connected to R_f .

Result

R_f	G	V_o	I
	calculated	measured	measured
$3.3 \mathrm{k}\Omega$	2	4.0153 V	$0.602\mathrm{mA}$
$3.9\mathrm{k}\Omega$	2.18	$4.3768\mathrm{V}$	$0.602\mathrm{mA}$
$4.7\mathrm{k}\Omega$	2.42	$4.8045\mathrm{V}$	$0.602\mathrm{mA}$

Analysis

Assuming ideal op amp, no current flow into the inverting input of op amp, and therefore current flowing across R_g must be the same as I, current flowing across R_f , by KCL. As the current flowing across R_g is $\frac{V_-}{R_g} = \frac{V_s}{R_g}$ which does not depend on the value of R_f , I must remain constant as well.

 $\mathbf{2}$

Procedure

A circuit was set up following the above schematic, with $V_s = 2.0115\,\mathrm{V}$, $V_{cc} = 20\,\mathrm{V}$ and $-V_{cc} = -20\,\mathrm{V}$ supplied by a DC power supply and a DC dual power supply with the COM port of both power supplies connected to the ground of circuit. For each value of R_f , V_o was measured with the positive terminal of a digital multimeter (DMM) connected to pin 6 of LM741 chip, the output of the op amp, and negative terminal of DMM connected to ground, V_s was measured by connecting the positive terminal of DMM to positive terminal of V_s and negative to the ground, and the current I was then measured with the positive terminal of DDM connected to positive terminal of V_s and negative to the resistor R.

Result

$$R_f = 5.6 \,\mathrm{k}\Omega$$

$$G_{calc} = -1.697$$

V_s nominal	V_s measured	V_o calculated	V_o measured	G measured	I measured	Error
IIOIIIIIai	measured	carculated	measured	measured	measureu	
$0\mathrm{V}$	$0.002\mathrm{V}$	$-0.003{ m V}$	$0.019\mathrm{V}$	9.500	$0\mu\mathrm{A}$	659.82%
$1\mathrm{V}$	$1.011\mathrm{V}$	$-1.716\mathrm{V}$	$-1.631\mathrm{V}$	-1.613	$289\mu\mathrm{A}$	4.93%
$2\mathrm{V}$	$2.065\mathrm{V}$	$-3.504\mathrm{V}$	$-3.346\mathrm{V}$	-1.620	$594\mu\mathrm{A}$	4.52%
$3\mathrm{V}$	$3.037\mathrm{V}$	$-5.154\mathrm{V}$	$-4.931\mathrm{V}$	-1.624	$878\mu\mathrm{A}$	4.32%
$4\mathrm{V}$	$4.054\mathrm{V}$	$-6.880{ m V}$	$-6.600{ m V}$	-1.628	$1175\mu\mathrm{A}$	4.06%
$5\mathrm{V}$	$4.964\mathrm{V}$	$-8.424{ m V}$	$-8.089\mathrm{V}$	-1.630	$1441\mu\mathrm{A}$	3.97%

Analysis

The RMS value of V_o was measured to be 11.947 V, which is a positive value. The op amp circuit did indeed invert the sinusoidal voltage. However, the calculation of the RMS value concern simply the amplitude of the sinusoidal output, and results in a positive value.