

Departamento de FÍSICA

Quiz 3 - Electromagnetismo II (FISI-3434) - 2015-10

PROFESOR: JAIME FORERO

Febrero 26, 2015

Tienen 20 minutos para responder las siguientes 4 preguntas. Solamente una opción es válida. No es necesario escribir una justificación. Los puntos con respuesta correcta valen +1,25.

Las primeras dos preguntas hacen referencia

- 1. Considere la superposición de dos ondas planas electromagnéticas ortogonales que se pueden escribir como la parte real de $\mathbf{E} = \hat{\mathbf{x}}E_1 \exp[i(kz \omega t)] + \hat{\mathbf{y}}E_2 \exp[i(kz \omega t + \pi)]$ donde k, ω, E_1 y E_2 son reales.
 - Si $E_2 = E_1$, la punta del vector del campo eléctrico va a describir una trayectoria que vista a lo largo del eje z desde el lugar positivo de z hacia el origen se ve como:
 - a) Una línea a 45° del eje x positivo.
 - b) Una línea a 135° del eje x positivo.
 - c) Un círculo en dirección horaria.
 - d) Un círculo en dirección antihoraria.
 - e) Un camino aleatorio.
- 2. Las ecuaciones de Maxwell se pueden escribir en la forma que aparece más abajo. Si existiera la carga magnética y se conservara ¿Cuáles ecuaciones deberían cambiarse?

$$\nabla \cdot \mathbf{E} = \rho / \epsilon_0 \tag{1}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{2}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \tag{3}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \tag{4}$$

- a) La 1 solamente.
- b) La 2 Solamente.
- c) La 3 solamente.
- d) La 1 y la 4.
- e) La 2 y la 3.

- 3. Una corriente I circula por un cable conductor de forma cilíndrica de longitud L, radio R, longitud L que tiene sus extremos a una diferencia de potencial V. ¿Cúanto vale la magnitud del vector de Poynting en la superficie del cable?
 - a) VI
 - b) $\frac{VI}{\pi R^2}$

 - c) $\frac{\pi R^2}{2\pi R}$ d) $\frac{VI}{2\pi RL}$ e) $\frac{VI}{\pi R^2 L}$
- 4. El momento angular almacenado en los campos eléctricos y magnéticos para una esfera ferromagnética de metal que tiene radio R, carga Q y una magnetización uniforme $\mathbf{M}=M\mathbf{\hat{z}}$ es proporcional a:
 - a) MQR^2
 - b) $\epsilon_0 MQR^2$
 - c) $\mu_0 MQR^2$
 - d) $\mu_0 MQR^2/\epsilon_0$
 - e) $\epsilon \mu_0 MQR^2$