★ GAN 기반 Al Engineer, GANgineer

GAN 기반 이상 검출 모델을 통한 신소재 개발 기간 단축 프로그램

B4 오세현 강연지 김은영 우영빈 이동현 이정하

목차

01 주제 소개 05 사용 모델 소개

02 추진 배경 06 시스템 구조

03 적용 기술 07 프로젝트 산출물

04 데이터 수집 및 생성 08 기대 효과 및 향후 과제

01 주제 소개

다양한 소재들의 개발 단계에서 미세조직 관찰 결과를 분석하여 소재의 특성을 예측하는 프로그램 개발

자동차

생체 재료

Dual phase steel

우수한 가공성 높은 강도 고경도

CFRP

초경량 높은 강도 긴 피로수명

Titanium

골밀도와유사한기공도 낮은 강도 우수한 내식성

Application 별 사용 소재와 사용 환경에 따라 요구되는 특성이 다르기 때문에 인공지능을 활용해 목표 특성치에 신소재를 정확하고 신속히 도달시키는 것을 목표

02 추진 배경

: 현재 신소재 연구 단계의 한계 타파

신소재 개발 단계의 시간과 비용 대폭 감축

복잡한 미세조직의 경우, 정량적 분석이 어려운 문제 해결

미세조직 예측의 정확도 향상과 향후 신소재 연구에 기여

03 적용기술

Anomaly-GAN

: 정상 데이터만을 학습시킨 GAN 을 활용하여 비정상 데이터를 분류하는 Unsupervised 모델

→ 신소재 연구에서 Anomaly-GAN은 원하는 소재의 특성을 빠르게 파악할 수 있도록 하는 새로운 접근

※ 기존 신소재 연구에 적용된 인공지능 현황

Supervised 모델의 데이터 부족 문제, 라벨링 한계

년도	논문제목	적용 AI 기술
2020	Advanced Steel microstructural classification by deep learning methods	CNN
2020	Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries	DCGAN
2019	Structural Material Property Tailoring Using Deep Neural Networks	CNN
2019	Automatic defects detection in CFRP thermograms, using convolutional neural networks and transfer learning	CNN

04 데이터 수집 및 생성

Train Dataset: Test Data 의 특성을 분류하기 위한 데이터셋

Ferrite (보편적인 금속의 초기 형태)

: 신소재 관련 논문에서 발췌해 **보편적인 금속의 Train Dataset 확보** Data Augmentation 을 통해 rotate, flip, perspective transform 활용

Test Dataset: 소재의 특성을 알기 위한 데이터셋

① Dual Phase Steel (이중상 강철)

경도(hardness) 측정

② CFRP (탄소 섬유 강화 플라스틱)

분산도(dispersion) 측정

③ Ti64 (티타늄 합금)

기공도(porosity) 측정

05 사용 모델 소개

① Ano-GAN

정상 데이터와 비정상 데이터를 분류하는 가장 기본 모델

② Fast Ano-GAN

Encoder 를 추가해 **기존의 Ano-GAN 보다 빠른 모델**

③ GANomaly

Semi-Supervised 구조로 Generator 가 Decoder 역할

06 시스템 구조

① 모델 구현 : 미세조직 분석 결과

(1) Dual Phase Steel (이중상 강철)

실제 분율: 52.07%

ref. FEffect of the Chemical Homogencity of a Quenched and Tempered C-Mn Steel Pipe on the Mechanical Properties and Phase Transformations (2019)

Ano-GAN

예측된 분율: 30.01% 오차: - 22.06%

전체 오차 평균: 4.29%

Fast Ano-GAN

예측된 분율: 54.56% 오차: + 2.49%

전체 오차 평균: 5.16%

GANomaly

오차: + 1.13%

전체 오차 평균: 1.48%

① 모델 구현 : 미세조직 분석 결과

(2) CFRP (탄소 섬유 강화 플라스틱)

실제 분율: 50.0%

ref. FEffects of triangle-shape fiber on the transverse mechanical properties of unidirectional carbon fiber reinforced plastics (2016)

Ano-GAN

전체 오차 평균: 5.53%

Fast Ano-GAN

예측된 분율: 57.6% 오차: + 7.6 %

전체 오차 평균: 7.73%

GANomaly

예측된 분율: 53.2%

오차: + 3.2%

전체 오차 평균: 3.24%

① 모델 구현 : 미세조직 분석 결과

(3) Ti64 (티타늄 합금)

실제 분율: 57.6%

ref. "New Developments of Ti-Based Alloys for Biomedical Applications," (2014)

Ano-GAN

전체 오차 평균: 12.48%

오차: - 21.54%

Fast Ano-GAN

예측된 분율: 63.42% 오차: - 5.828%

전체 오차 평균: 10.37%

GANomaly

전체 오차 평균: 31.23%

② 프로그램 구현 : 소재의 특성 예측

※ 소재별 모델 선정 기준

- 단면 특성치로 전체를 예측

※ GANgineer 프로그램 구현 결과

08 기대효과

BEFORE

하나의 소재당 최소 50장 분석 필요

AFTER

AnoGAN 계열의 모델을 활용해 한번에 대량의 미세조직 분석을 통한 특성 예측 결과 도출 가능, Al 기반의 최적 공정 조건 마련 단기화

08 향후 수행 과제

실제 측정치와의 비교를 통한 예측 정확도 향상

소재 및 특성의 종류 범용적으로 확대

목표 특성치 달성을 위한 공정 솔루션 제공 추가

Ti64 소재에 대한 최적 모델 탐색 필요

양질의 데이터 수집으로 예측 오차 개선

감사합니다

