As Ciências e a Pesquisa em Computação

Prof. Marum Simão Filho

Agradecimentos

- Agrademos a/os seguintes professore/as por gentilmente terem cedido seus materiais para comporem os slides dessa disciplina:
 - Prof. Raimundo Sales UNI7
 - Profa. Sandra Maria Aluisio ICMC USP
 - Profa. Elaine Faria UFU
 - Profa. Maria Camila Barioni UFU

Agenda

- Ciência
- Classificação das Ciências
- A Computação e a Classificação das Ciências
- Estilos de Pesquisas Correntes em Ciência da Computação
- Tipos Básicos de Pesquisa

Ciência

- A ciência é o esforço para descobrir e aumentar o conhecimento humano de como o Universo funciona.
 Refere-se tanto à (ao):
 - investigação ou estudo <u>racionais</u> do <u>Universo</u>. Tal estudo ou investigação é metódico e compulsoriamente realizado em acordo com o <u>método científico</u> – um processo de avaliar o <u>conhecimento empírico</u>;
 - corpo organizado de conhecimentos adquiridos por tais estudos e pesquisas. (WIKIPÉDIA, 2015).
- Face à variedade de abordagens, várias <u>classificações das</u> <u>ciências</u> foram produzidas no sentido de tentar melhor entender seus métodos e objetivos (WAZLAWICK, 2010).

Classificações das Ciências*

- Ciências Formais e Empíricas
- Ciências Puras e Aplicadas
- Ciências Exatas e Inexatas
- Ciências Duras e Moles
- Ciências Nomotéticas e Idiográficas

^{*}Seção II de (WAZLAWICK, 2010).

Ciências Formais

 Estudam as ideias independentemente de sua aplicação à natureza ou ao ser humano (o que não quer dizer que não possam ser aplicadas).

Ex.: Lógica, Matemática e Estatística.

Ciências Empíricas

- Também chamadas por vezes de ciências reais ou factuais.
- Estudam os fenômenos que ocorrem no mundo real.
- Têm de fazer uso de observações para fundamentar suas descobertas.
 - Ciências Naturais: estudam a natureza em seus aspectos que independem da existência ou da ação do ser humano. Ex.: Astronomia, Física, Química etc.
 - Ciências Sociais: estudam o ser humano e suas interações. Ex.: História, Psicologia e Sociologia.

Ciências Formais x Empíricas

E a Computação?

Ciências Formais:

 Teoria dos algoritmos (estruturas de dados, complexidade), teoria das linguagens formais, autômatos e compiladores, os aspectos formais da inteligência artificial, o cálculo relacional em banco de dados etc.

Ciências Empíricas

Ciências Naturais:

 Eletrônica, Circuitos Lógicos, os processadores, enfim, todos os componentes físicos de um computador.

Ciências Sociais:

 Informática na Educação, Comércio Eletrônico, Games, Interação Humano-Computador.

Ciências Puras e Aplicadas

- Ciências puras (ou básicas): estudam os conceitos básicos do conhecimento, sem preocupação com sua imediata aplicação.
 Podem ser formais (p.ex., Lógica) ou empíricas (p.ex., Cosmologia).
- Ciências aplicadas: visam à realização de descobertas que possam ser imediatamente aplicadas a algum processo industrial ou assemelhado, visando produzir algum tipo de ganho. Ex.: Engenharias

Ciências Puras e Aplicadas

E a Computação?

Ciência Pura:

 O aspecto de ciência básica na Computação é difícil de identificar visto que a maioria dos resultados em Computação possui aplicação prática. Mas há, p.ex., estudos de aprendizagem humana simulada por computador (entender processos de aprendizado via modelos que trazem teorias para explicar fenômenos)

Ciência Aplicada:

• Engenharia de Software, Engenharia da Computação etc.

Ciências Exatas e Inexatas

- Ciências Exatas: são aquelas cujos resultados são precisos. Suas leis são altamente preditivas e previsíveis. Experimentos podem ser repetidos inúmeras vezes produzindo o mesmo resultado ou resultados estatisticamente previsíveis.
 - Ex.: Matemática, Física, Química.
- Ciências Inexatas: podem prever comportamentos gerais de seus fenômenos, mas nem sempre os resultados são os esperados.
 - Ex.: Meteorologia, Economia e a maioria das Ciências Sociais.

Ciências Exatas e Inexatas

E a Computação?

A Ciência da Computação normalmente é classificada entre as ciências exatas. Porém, assim como outras ciências exatas, a Computação também tem aspectos inexatos.

 Ex.: Algoritmos genéticos e alguns modelos de redes neurais são capazes de produzir resultados inesperados mesmo quando aplicados repetidamente a um mesmo conjunto de dados.

Ciências Duras e Moles

- Ciências Duras: são aquelas que usam de rigor científico em suas observações, experimentos e deduções.
- Ciências Moles: costumam aceitar evidências baseadas em estudos de caso. Isso ocorre quando é difícil ou impossível conseguir realizar experimentos totalmente controlados.

Ciências Duras

- Ciências duras formais: utilizam fortemente a Lógica e a Matemática como ferramentas de construção teórica.
- Ciências duras naturais: dependem muitas vezes de comprovação estatística para dar credibilidade a seus experimentos. Exigem grande rigor na comprovação de resultados empíricos.
- Ex.: Medicina.

Ciências Duras e Moles

- E a Computação?
- Normalmente, entende-se a Computação como uma Ciência Dura, mas a realidade ainda, em muitos casos, é que os pesquisadores têm dificuldade em providenciar dados em quantidade suficiente para dar suporte empírico a suas conclusões.

Precisamos de bons benchmarks!

- Assim, é comum encontrar artigos em Computação que utilizam um ou alguns poucos estudos de caso para tentar "validar" uma técnica, modelo ou teoria.
 - Estudo de caso é uma fonte de dados para uma pesquisa exploratória, mas não valida a hipótese em estudo.

Ciências Nomotéticas e Idiográficas

- Ciência nomotética: estudam fenômenos que se repetem e que podem levar à descoberta de leis gerais que permitam fazer previsões.
- Ciência idiográficas: analisam fenômenos únicos que não se repetem, mas que, ainda assim, têm validade como campo de estudo.
 - Ex: História. Estuda fatos que nunca se repetem.

Ciências Nomotéticas e Idiográficas

- E a Computação?
- Poucas áreas são idiográficas. Por exemplo, o estudo da própria história da computação e o desenvolvimento de determinadas tecnologias, como linguagens, paradigmas e arquiteturas computacionais.

Uma Área Nova

Ciência da Computação é uma área relativamente nova em franco desenvolvimento → Há necessidade de **embasamento metodológico** adequado.

Após 2000, definição clara das carreiras:

- Bacharelado em Ciência da Computação
- Bacharelado em Sistemas de Informação
- Engenharia de Computação
- Licenciatura em Informática

Estilos da Pesquisa Corrente em Computação

- 1. Apresentação de um produto
- 2. Apresentação de algo diferente
- Apresentação de algo presumivelmente melhor
- 4. Apresentação de algo reconhecidamente melhor
- 5. Apresentação de uma prova

Níveis de Maturidade Científica

1. Apresentação de um produto

- Própria de áreas emergentes dentro da Computação.
- Pesquisa eminentemente exploratória, na qual se procura apresentar algo novo.
- Difícil comparar com trabalhos anteriores.
- Resumo do trabalho: "Fiz algo novo. Eis meu produto".

1. Apresentação de um produto

- Tipo de pesquisa dificilmente aceita por áreas maduras.
- Exemplos
 - Um artigo do tipo "um novo método para análise de sistemas" dificilmente seria aceito em um evento de Engenharia de Software.
 - Artigos ou trabalhos que apresentam uma ferramenta ou protótipo sem a devida comparação com outros trabalhos.
- É interessante que a pesquisa demonstre que está resolvendo um problema relevante.

1. Apresentação de um produto

- Artigos que descrevem sistemas desenvolvidos se enquadram bem nessa categoria
 - servem mais como propaganda do grupo de pesquisa
 - podem ser apropriados para workshops de ferramentas
- O desenvolvimento de um sistema e sua apresentação são relevantes em cursos de graduação e especialização.

- Tipo de pesquisa mais amadurecido, também característico de áreas emergentes.
- Apresentação de uma forma diferente de resolver um problema.
 - Comparação entre técnicas.
 - Não exige muito rigor científico na apresentação dos resultados.
- Comparações, se houver, são muito mais qualitativas do que quantitativas.
- Exemplo: trabalho em Engenharia de Software no qual se apresenta uma nova técnica para realizar algo.
 - Forma de apresentação típica: compara-se a nova técnica com técnicas existentes e apresenta-se um ou dois estudos de caso para reforçar o argumento.

- Estudos de caso usualmente não provam nada, mas podem ajudar a convencer o leitor.
 - Pode servir para provar que um método consagrado falha em uma ou outra situação.
- Típico de áreas onde é difícil conseguir dados e efetuar análise empírica.
- Para que esse tipo de pesquisa funcione, são necessários:
 - Uma boa hipótese;
 - Uma boa teoria construída para sustentá-la;
 - Uma boa argumentação para convencer da validade da proposta.

- Trabalhos de mestrado e doutorado, em geral, propõem algo novo:
 - um novo método, uma nova ideia, um novo sistema, etc.
 - dificuldade: mostrar que a proposta supera, em algum aspecto, outras propostas existentes.
- Por isso, a importância de uma boa hipótese!
 - Se a hipótese for mal escolhida, o trabalho pode não alcançar os objetivos.
- Pode-se estruturar esse tipo de trabalho na forma de uma tabela comparativa:
 - A ideia é que se crie algo que incorpore várias características importantes em um mesmo artefato.

Tabela de características

- Resultado de uma boa revisão bibliográfica
 - Identificam-se as formas usuais de resolver o problema em questão;
 - Analisam-se as diferentes propriedades de cada abordagem.

	Característica 1	Característica 2	Característica 3	Característica 4
Artefato 1	Х	Х		
Artefato 2	X			Х
Artefato 3		Х	Х	Х
Novo Artefato	Х	Х	Х	Х

3. Apresentação de algo presumivelmente melhor

- Exige comparação quantitativa com a literatura da área.
- Na falta de benchmarks, o próprio autor cria seus testes.
- Problemas:
 - Trabalho extra;
 - Possibilidade de introdução de erros.

3. Apresentação de algo presumivelmente melhor

- Questões importantes:
 - Certificar-se de realizar a comparação com o estado da arte;
 - Não é necessário que o novo método supere o estado da arte para toda e qualquer situação;
 - É importante ter métricas claras.

4. Apresentação de algo reconhecidamente melhor

- Analisado por meio de testes padronizados reconhecidos internacionalmente.
- O trabalho se concentra na elaboração da hipótese e não na busca dos dados.
- Supõe-se que, após a publicação dos resultados, ninguém mais possa ignorar esta nova abordagem em função das vantagens que ela oferece em relação às anteriores.
- É o que se entende por "avançar o estado da arte".
- Pesquisa típica de boas teses de doutorado.

4. Apresentação de algo reconhecidamente melhor

- Características da pesquisa
 - Mais fácil de executar
 - Os testes-padrão já estão definidos e os dados já estão disponíveis.
 - Basta implementar a bordagem e realizar os testes.
 - Problema/dificuldade > encontrar uma hipótese de trabalho que faça sentido e seja promissora.

Exige:

- Amplo estudo sobre o estado da arte;
- Muita reflexão sobre a forma como as técnicas são desenvolvidas para resolver os problemas da área alvo da pesquisa.

4. Apresentação de algo reconhecidamente melhor

Presumivelmente x Reconhecidamente

- Presumivelmente melhor refere-se a comparações cujas métricas podem ser contestadas – por exemplo, um algoritmo de processamento de imagens/textos que pode ter sido beneficiado pela escolha das imagens/textos e pela escolha do pré-processamento.
- Reconhecidamente melhor refere-se a comparações incontestáveis – por exemplo, um algoritmo de compactação de arquivos que representa a mesma informação com menos bits e que foi testado sobre um benchmark aceito pela comunidade.
- Reconhecidamente é uma validação mais estrita do que presumivelmente.

5. Apresentação de uma prova

- Os resultados dos tipos de pesquisa anteriores são apresentados a partir de evidências empíricas, argumentações ou estudos de caso que <u>sugerem provas</u>.
- Algumas subáreas da computação exigem provas matemáticas, de acordo com as regras da lógica.
- Típico das subáreas ligadas à Lógica, Matemática, Métodos formais ou Compiladores.

5. Apresentação de uma prova

- Deve-se construir uma teoria (conjunto de definições) e uma prova formal de seus principais teoremas.
- Resultados devem dar demonstrações de que:
 - um determinado algoritmo é o melhor algoritmo possível para resolver um determinado tipo de problema; ou
 - um algoritmo para resolver um determinado tipo de problema não existe; ou
 - a complexidade de qualquer algoritmo que resolve um determinado tipo de problema não pode ser menor do que um determinado polinômio.

- Diferentes subáreas da computação caracterizam-se por diversos estilos de pesquisa:
 - Formal
 - É exigida a elaboração de uma teoria e uma prova formal de que essa teoria é correta.
 - Ferramenta de trabalho: Lógica Formal.
 - Mais difícil de fazer.
 - Resultados mais difíceis de refutar.

- Empírica

- Uma nova abordagem apresentada é comparada com outras por meio de testes aceitos pela comunidade.
- Ferramenta de trabalho: Estatística.
- Poderá ser refutável se não estiver embasada em uma boa teoria.
- Estatística não explica causas.

Exploratória

- Pode parece ser mais fácil de realizar porque não é necessário utilizar os métodos da lógica formal e nem realizar experimentos exaustivos.
- Não se consegue provar uma teoria nem apresentar resultados estatisticamente aceitos.
- Entram aqui os estudos de caso, as análises qualitativas e as pesquisas exploratórias em áreas emergentes.
- Ferramentas de trabalho: Argumentação e convencimento.

- Exploratória (cont.)
 - É a abordagem mais arriscada, pois a aceitação dos argumentos não é universal.
 - Ajuda o pesquisador a convencer o leitor do seu ponto de vista, mas não constituem provas.
 - Trabalhos que não se fundamentam em uma boa teoria e/ou em um bom conjunto de testes têm menor chance de serem publicados em bons veículos.

Bibliografia

- WAZLAWICK, R.S. (2009). Metodologia de pesquisa para Ciência da Computação, 184p. Editora Campus/Elsevier. ISBN: 9788535235227.
- WAZLAWICK., R.S., "Uma Reflexão sobre a Pesquisa em Ciência da Computação à Luz da Classificação das Ciências e do Método Científico", Revista de Sistemas de Informação da FSMA, No. 6, pp. 3-10, 2010. Disponível em:

http://www.fsma.edu.br/si/edicao6/FSMA_SI_2010_2_Princip al_1.html