- Let G be a finitely generated group (note that G need not be finite).
- (a) Let G act by left-multiplication on the set G/H of left cosets of H. Compute the stablizer of the coset H.
- (b) Let n be a positive integer. Show that G has only finitely many homomorphisms to the symmetric group S_n .
- (c) Let n be a positive integer. Use the two parts above to show that G has only finitely many subgroups of index n.
- Let G= (a,,..., am). Looking for ge G s.t. gH=H. But gH=H iff. ge H, **@**
- (b) since 6 is finitely generated, any homomorphism of 6 is completely determined by the image of its generators. Since there are n! elements of Sn, there are at most (n!) m homomorphisms from G into Sn.
- @ A subgroup Hofinder in giver a homomorphism TiH: 6-5 Sn Now, $\alpha \in G$ belongs to H if and only if $\alpha H = H$; that is, iff $\Pi_H(\alpha)(H) = H$. Thus, H is completely determined by Π . I have \exists only finitely mong homs into Sn, I finishly many subgroups of index n.
- 2. Suppose that n = pq where p and q are primes such that $p \not\equiv 1 \pmod{q}$ and $q \not\equiv 1$

Let 161= n=pq. Then 6 has Sylow subgroups P.Q of order p.q respectively that interset trivials. WMA gop. As p#I mad q Q Q G 50 GZPAQ for P:P-Aut Q. As Q incyclic of prime order, |Aut(Q)|-9-1 Now P=(a) where |a|=p, and any v:P->AND as destermined by Y(a). Since 18(a) divides q-1 and p, we see that 18(a)=1, so & is trivial. Thus, G=PxQ=ZrxZq.

Prove or disprove the following statement:

Every subring of $\mathbb{Q}[x]$ is a UFD (= unique factorization domain).

the subring of polynomials whose a coefficient is O is not a UFD. Jalue:

> (loved under malt:

$$\left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{m} b_j x^j\right) \quad \text{the linear term has coefficient } a_0 b_1 + b_0 a_1 = a_0 \cdot 0 + b_0 \cdot 0 \cdot 0$$

 $x^2 = p(x)q(x)$. deg(p(x)q(x)) = deg(p(x) + deg(q(x) = 2Claim x2 is ited

Since neither has degree 1, wma dog p(a)=0, so p(a) is a unit from the field & a3 is irred: If deg p(n)+deg g(x)= 3 and neither has degree 1, one of p(x), g(x) is a unit.

Then x6= x2 x2 x2 = x3 x3 has 2 distinct fectorizations into irreducibles

4. Let R be a ring. An R-module M is projective if whenever $h: A \to B$ is a surjective homomorphism of R-modules, and $g: M \to B$ is a homomorphism of R-modules, there exists a homomorphism $f: M \to A$ of R-modules, such that $h \circ f = g$. Use the definition itself directly to classify all cyclic projective modules over Z.

S Clary, all actic projective Z-maldes:

A ->B M: cyclic X F acm s.t., M=Za.

Z itself in a cyclic Z-module, and is projective. Is Z/(p) projective?

$$\begin{array}{c}
\mathbb{Z}/\mathbb{Q} & \mathbb{Z} \\
A \longrightarrow B
\end{array}$$

- Find all irreducible polynomials of degree 4 in F₂[x] explicitly.
 - f(x) cannot have a root in It, and has nonzero constant term

$$x^{4} + x^{3} + x^{2} + x + 1$$
 # of nonzero verms must be odd on 1 a root $x^{4} + 1 = (x^{2} + 1)^{2} = (x + 1)^{4}$

$$x^4 + x^3 + 1$$

• How can we got furthering as quadratics?

 $x^2 + x + 1$ to the object intervals guadratic. So if $f(x)$ has no roots in $f(x)$ but in still roducible, et in $(x^2 + x + 1)(x^2 + x + 1)$

50
$$\chi^4 + \chi^3 + 1$$
, $\chi^4 + \alpha^3 + \alpha^2 + \alpha + 1$ = $\chi^4 + \chi^2 + 1$ is not irreducible.

- 6. Let p and q be distinct prime numbers and let $K = \mathbb{Q}(\sqrt{p}, \sqrt{q})$.
 - Show that the extension K/Q is Galois of degree 4.
 - (ii) Use the result of (i) to explicitly determine all the elements $\alpha \in K$ such that K = $\mathbb{Q}(\alpha)$.

O We have that
$$[Q(\sqrt{p}):Q]=1$$
 as $m_{(p)}(x)=x^2-p$.
Now as $\sqrt{g} \notin Q(\sqrt{p})$, the minimal polynomial of \sqrt{g} over $Q(\sqrt{p})$ is x^2-q , so $[Q(\sqrt{q},\sqrt{p}):Q]=[Q(\sqrt{q},\sqrt{p}):Q(\sqrt{p})][Q(\sqrt{p}):Q]=2\cdot 2=q$