k-means vs. GMM

Comparison of k-means and GMM iterations for the clustering of a set of data points, $\{\mathbf{x_n}\}_{n=1}^{N}$.

	k-means	GMMs
Init:	Select K cluster centers $(\mathbf{m_1^{(1)}}, \dots, \mathbf{m_K^{(1)}})$	K components with means, μ_k and covariance Σ_k and mixing coefficients, P_k
E-step:	Allocate datapoints to clusters $S_i^{(t)} = \{\mathbf{x_p} : \mathbf{x_p} - \mathbf{m_i^{(t)}} ^2 \le \mathbf{x_p} - \mathbf{m_j^{(t)}} ^2 \forall \mathbf{j}\}$	Update probability that component, k , generating the data point $\mathbf{x_n}$: $\gamma_{nk} = \frac{P_k \mathcal{N}(\mathbf{x_n} \mu_k, \mathbf{\Sigma_k})}{\sum_{j=1}^K P_j \mathcal{N}(\mathbf{x_n} \mu_j, \mathbf{\Sigma_j})}$
M-step:	Re-estimate cluster centers: $m_i^{(t+1)} = \frac{1}{ S_i^{(t)} } \sum_{\mathbf{x_j} \in S_i^{(t)}} \mathbf{x_j}$	Calculating the estimated number of cluster members, N_k , means, μ_k and covariance Σ_k and mixing coefficients, P_k . $N_k = \sum_{n=1}^N \gamma_{nk},$ $\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} \mathbf{x_n},$ $\Sigma_{new}^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x_n} - \mu_{\mathbf{k}}^{\mathbf{new}}) (\mathbf{x_n} - \mu_{\mathbf{k}}^{\mathbf{new}})^{\mathbf{T}},$ $P_k^{new} = \frac{N_k}{N},$
Stop:	Based on no differences in set allocation.	When the likelihood not increasing fast enough: $\ln \Pr(\mathbf{x} \mu, \mathbf{\Sigma}, \mathbf{P}) = \sum_{\mathbf{n}=1}^{\mathbf{N}} \ln \{\sum_{\mathbf{k}=1}^{\mathbf{K}} \mathbf{P}_{\mathbf{k}} \mathcal{N}(\mathbf{x}_{\mathbf{n}} \mu_{\mathbf{k}}, \mathbf{\Sigma}_{\mathbf{k}})\}$