INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS VITÓRIA MESTRADO PROFISSIONAL EM TECNOLOGIAS SUSTENTÁVEIS

ÁLVARO LUIZ LAGO DE MENEZES

OTIMIZAÇÃO DE VIGAS DE CONCRETO ARMADO DE SEÇÃO RETANGULAR E ARMADURA SIMPLES

ÁLVARO LUIZ LAGO DE MENEZES

OTIMIZAÇÃO DE VIGAS DE CONCRETO ARMADO DE SEÇÃO RETANGULAR E ARMADURA SIMPLES

Trabalho apresentado durante a disciplina Métodos de Otimização: Matemáticos e Heurísticos do Programa de Pós-graduação em Tecnologias Sustentáveis do Instituto Federal do Espírito Santo.

Área de Concentração: Desenvolvimento de Produtos e Processos Sustentáveis.

Linha de pesquisa: Linha 1 – Otimização de Serviços, Sistemas e Processos.

Professor: Mário Mestria

SUMÁRIO

1 INTRODUÇÃO	4
2 CONCEITOS	5
3 DESENVOLVIMENTO	6
3.1 FUNÇÃO OBJETIVO	6
3.2 FUNÇÕES DE RESTRIÇÃO	7
3.2.1 Capacidade de resistência à flexão	7
3.2.2 Armadura máxima	8
3.2.3 Capacidade de resistência ao cisalhamento	9
3.2.4 Verificação da flecha limite	9
3.2.5 Normas de segurança à instabilidade da viga	10
3.3 EXECUÇÃO DOS TESTES	11
3 CONCLUSÃO	11
REFERÊNCIA	13
ANEXO I	14
ANEXO II	21
ANEXO III	22
ANEXO IV	23
ANEXO V	24

1 INTRODUÇÃO

O concreto é o material construtivo mais utilizado do mundo, devido a possibilidade de modelagem em diversas formas e tamanhos, por ser resistente à água, pelo seu menor custo e pela sua menor produção de poluentes em relação a outros materiais utilizados na construção civil (Pedroso, 2009).

A Engenharia busca um dimensionamento estrutural correto do concreto armado, tendo em vista a preocupação com a relação custo/benefício e com a utilização sustentável do material. Por se tratar de um processo baseado em experiências, tentativas e erros, o auxílio de métodos computacionais é indicado para obtenção de dimensionamentos com o menor custo possível.

O dimensionamento tradicional do concreto armado é realizado através de iterações onde já se indica uma seção transversal, aproximada por experiências e projetos previamente realizados.

De acordo com as restrições do dimensionamento, uma nova seção transversal é adotada ou não, com a finalidade de atender as restrições ou de diminuir os custos. Por se tratar de um processo de tentativa e erro, o processo torna-se demorado se for feito sem a utilização de métodos computacionais.

Durante o trabalho serão apresentadas a função objetivo de custo e as restrições relativas à otimização de vigas de concreto armado biapoiadas, de seção retangular e armadura simples. Será utilizado o *solver fmincon*, presente no *Optimization Toolbox* do Matlab, para otimização do custo da viga, variando os possíveis algoritmos e comparando seus resultados e performance em termos de iterações.

Como a execução das tarefas era repetitiva, foi criada uma função auxiliar que recebe como parâmetros o comprimento L da viga em metros e executa o *solver fmincon* variando os algoritmos. O código da função está disponível no Anexo I.

5

Para a execução das tarefas, foi utilizado o Matlab R2018b, versão 9.5.0 em ambiente *Windows*.

O código e os resultados obtidos nas execuções das tarefas também estão disponíveis no *Github* em https://github.com/alvarollmenezes/ifes-otimizacao-final.

2 CONCEITOS

O concreto armado é a associação entre o concreto simples e a armadura passiva convenientemente colocada, de tal maneira que ambos resistam aos esforços solicitantes (Carvalho e Figueiredo, 2014).

O trabalho busca dimensionar vigas biapoiadas com carregamentos distribuídos e comprimento L, conforme a Figura 1.

Figura 1 – Viga biapoiada com carregamento distribuído

Fonte: Acervo pessoal

Vigas de armadura simples possuem dois tipos de armadura: armadura longitudinal, responsável pela resistência ao momento fletor e armadura transversal, responsável pela resistência ao esforço cortante.

Portanto, na formação do custo, que será utilizado como função objetivo na otimização, deve ser calculado o custo do concreto e do aço das armaduras. Também deve ser levado em conta o custo da fôrma de madeira utilizada na construção da viga.

Para o dimensionamento da seção retangular, com vigas de armadura simples, foram admitidas as hipóteses de acordo com a NBR 6118 (2004). As restrições consideradas nas vigas são: a armadura máxima, a capacidade de resistência à flexão, a capacidade de resistência ao cisalhamento, a flecha limite e normas de segurança à instabilidade da viga.

3 DESENVOLVIMENTO

3.1 FUNÇÃO OBJETIVO

O objetivo do problema é minimizar o custo de construção da viga, os custos do concreto, aço e forma estão descritos abaixo, retirados da tabela SINAPI da Caixa Econômica Federal de 2017, referentes ao estado do Espírito Santo.

$$C_c = 314,66 R\$/m^3$$
 $C_s = 7,8 R\$/kg$
 $C_f = 70,88 R\$/m$

Os valores de cada material são calculados abaixo:

Valor total do concreto:

$$V_c = A_c \times C_c$$

Onde:

 V_c = Valor total do concreto;

 A_c = área da seção transversal do concreto;

 C_c = Custo do concreto.

• Valor total do aço:

$$V_s = (A_s + A_{sw}/100) \times \rho_s \times C_s$$

Onde:

 $V_{\rm s}$ = Valor total do aço;

 A_s = área da seção longitudinal do aço;

 A_{sw} = área da seção transversal do aço;

 $\rho_{s}=7850~kg/m^{3}$ = Peso específico do aço;

 $C_{\rm s}$ = custo do aço.

Valor total da forma:

$$V_f = (2 \times h + b) \times C_f$$

Onde:

 V_f = Valor total da forma;

h = altura da viga;

b = base da viga;

 C_f = custo da forma.

Assim, tem-se o custo total:

$$V_t = V_c + V_s + V_f$$

3.2 FUNÇÕES DE RESTRIÇÃO

As restrições consideradas nas vigas são: a armadura máxima, a capacidade de resistência à flexão, a capacidade de resistência ao cisalhamento, a flecha limite e normas de segurança à instabilidade da viga. Seus cálculos são descritos a seguir.

3.2.1 Capacidade de resistência à flexão

Momento fletor de cálculo: o momento fletor depende do carregamento e dos apoios em uma viga. Os cálculos para cada caso, são encontrados no anexo II. Após calcular o momento fletor, este deve ser multiplicado pelo coeficiente de 1,4.

• Momento fletor de cálculo máximo com armadura simples:

$$M_{d,lim} = 0.272 \times b \times d^2 \times f_{cd}$$

$$Md \leq M_{d.lim} \rightarrow Armadura simples$$

Tendo-se:

• Resistência de cálculo do concreto à compressão (f_{cd}) :

$$f_{cd} = \frac{f_{ck}}{1.4}$$

• d = Altura útil da viga

$$d = 0.9 \times h$$

3.2.2 Armadura máxima

Para a armadura máxima, deve-se levar em conta a seguinte expressão (Restrição 3):

$$A_s/(b d) \le 0.5 \rho_b$$

Onde, de acordo com ACI, ρ_b é o índice de armadura para a condição balanceada, dado pela fórmula:

$$\rho_b = (0.85 f_{ck} \beta_1) / (f_{vk} (1 + f_{vk} / (0.003 E_s)))$$

Onde:

 f_{ck} = Resistência de compressão do concreto;

 f_{yk} = Valor característico da resistência de escoamento do aço;

 E_s = Módulo de elasticidade secante do concreto.

Tendo-se:

 $f_{yk}=500~MPa$, $f_{ck}=20~MPa$ e $\beta_1=0.85$, para $20~MPa \le f_{ck} \le 40~MPa$, definido na seção 10.2.7.3 da norma ACI (1998). β_1 é um fator e este depende da resistência de compressão do concreto.

3.2.3 Capacidade de resistência ao cisalhamento

Para determinar a capacidade de resistência ao cisalhamento, devemos levar em conta a força cortante de cálculo máxima resistida por compressão diagonal das bielas de concreto. A força cortante de cálculo não pode ultrapassar a força cortante de cálculo máxima (Restrição 4):

$$V_{Rd2} = 0.45bdv f_{cd}$$
$$V_d < V_{Rd2} \rightarrow OK!$$

Tendo-se:

Coeficiente de redução da resistência do concreto fissurado por força cortante:

$$v = 0.6 \times (1 - f_{ck}/250)$$

• Resistência de cálculo do concreto à compressão (f_{cd}) :

$$f_{cd} = f_{ck}/1,4$$

Esforço cortante de cálculo em kN (V_d):

$$V_d = (p \times L)/2$$

Carregamento da viga em kN/m (p):

$$p = (1.4 \times (gpp + g + q))$$

Carga do peso próprio da viga em kN/m (gpp):

$$gpp = h/100 * b/100 * 25$$

Carregamento permanente em kN/m(g):

$$g = 22$$

3.2.4 Verificação da flecha limite

A flecha total não deve ultrapassar a flecha limite, sendo a flecha máxima para limitar o efeito visual desagradável (Restrição 5):

$$f_{total} \leq f_{limite}$$

Tendo-se:

Cálculo da flecha limite em m:

$$f_{limite} = L/250$$

Flecha total é definida a seguir:

$$f_{total} = f_{imedita} + f_{diferida}$$

Cálculo da flecha imediata é escrito como:

$$f_{imeditada} = f_{elástica} * I_c/I_e$$

- Flecha elástica ($f_{elástica}$): depende do carregamento e dos apoios em uma viga. Entra em vigor ao entrar em carga. Os cálculos para cada caso, são encontrados no Anexo II.
- Momento de inércia da seção bruta para seção retangular (Ic):

$$I_c = b * h^3/12$$

- O momento de inércia da sessão (le) é calculado de acordo com o Anexo V, na seção flecha imediata.
- Para a flecha diferida ($f_{diferida}$): ocorre do efeito da fluência no concreto, o cálculo também segue o indicado no Anexo V.

3.2.5 Normas de segurança à instabilidade da viga

As normas de segurança estão definidas conforme a NBR 6118 (2004).

A segurança à instabilidade lateral de vigas deve ser garantida através de procedimentos apropriados. Como procedimento aproximado podese adotar, para vigas de concreto, com armaduras passivas ou ativas, sujeitas à flambagem lateral, as seguintes condições (NBR 6118, 2004, p. 100).

Restrição 6:

$$b \ge L/50$$

Restrição 7:

$$h \ge 25$$

Restrição 8:

$$b \ge \beta_{fl}h$$

Sendo que para a topologia da viga utilizada, de acordo com a NBR 6118: $\beta_{fl}=$ 0,4 .

3.3 EXECUÇÃO DOS TESTES

O solver fmincon precisa de um palpite inicial de solução (x_0) , para isso adota-se uma altura e uma base inicial para a seção transversal da viga, de acordo com a NBR 6118 (2004):

Para a estimativa da altura (h), em uma viga biapoiada:

$$h = 10 * L$$

• Para a estimativa da base (b):

$$b = 3 * L$$

Foram executados três testes com comprimentos de viga 5m, 6m e 7m, o código executado foi respectivamente:

>> app(5);

>> app(6);

>> app(7);

Os resultados estão nos arquivos *out_comprimento5.pdf*, *out_comprimento6.pdf* e *out_comprimento7.pdf* no Github.

3 CONCLUSÃO

Todos os testes convergiram para a solução ótima, mostrando que o problema tem um comportamento adequado para todos os algoritmos.

Como não foi possível calcular os gradientes das funções objetivo nem de algumas das restrições, não foi possível testar a execução com o algoritmo *trust-region-reflective*, pois este requer o gradiente da função objetivo.

Quanto a performance em termos de iterações e execuções da função objetivo, os algoritmos *sqp* e *active-set* foram os mais rápidos, com o *sqp* sendo o mais rápido, por uma pequena margem.

Tabela 1 Resultados das execuções

				Comprimento da Viga		
			5m	6m	7m	
		Iterações	5	4	4	
		FuncEvals	18	15	15	
	SQP	b (cm)	22,3128	26,298	30,2104	
	S	h (cm)	55,7821	65,745	75,5259	
		Valor / m (R\$/m)	186,01	230,65	278,67	
		Valor Total (R\$)	930,07	1383,87	1950,72	
		Iterações	15	15	7	
os	int	FuncEvals	52	52	25	
Algoritmos	nterior-point	b (cm)	22,3128	26,298	30,2104	
gor	erio	h (cm)	55,7821	65,745	75,5259	
∣₹	l te	Valor / m (R\$/m)	186,01	230,65	278,67	
		Valor Total (R\$)	930,07	1383,87	1950,72	
		Iterações	6	6	5	
	ي ا	FuncEvals	18	18	15	
	Active-set	b (cm)	22,3128	26,298	30,2104	
	cti	h (cm)	55,7821	65,745	75,5259	
	⋖	Valor / m (R\$/m)	186,01	230,65	278,67	
		Valor Total (R\$)	930,07	1383,87	1950,72	

REFERÊNCIA

AMERICAN CONCRETE INSTITUTE. **ACI 318-98:** Building code requirements for reinforced concrete, 1998.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118:** Projetos de estruturas de concreto: procedimento. Rio de Janeiro, RJ. 2004.

CARVALHO R. C.; FIGUEIREDO FILHO J. R. Cálculo e detalhamento de estruturas usuais de concreto armado. 4 ed. São Carlos: EdUFSCar, 2014.

MAIA, J. P. R. Otimização estrutural: estudo e aplicações em problemas clássicos de vigas utilizando a ferramenta Solver. 2009. 83 f. Dissertação (Mestrado em Engenharia Civil) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, SP. 2009.

MUSSO JUNIOR, F. Estruturas de Concreto. Vitória, ES. 2012. (Apostila).

PEDROSO, Fábio Luís. Concreto: as origens e a evolução do material construtivo mais usado pelo homem. **Concreto: material construtivo mais consumido no mundo.** São Paulo, SP. 53, p. 14-19, jan-mar, 2009.

PRAVIA, Z. M. C. Exemplo de um Projeto Completo de um Edifício de Concreto Armado. São Paulo, SP. 2001.

ANEXO I

Arquivo app.m:

```
function resp = app(L)
   x0 = [3*L, 10*L];
    % x0 = [-1, 1];
   lb = [ ]; % No lower bounds
   ub = [ ]; % No upper bounds
   objfungrad(x0);
    options = optimoptions(@fmincon,'Algorithm','sqp');
    [x1, fval1, exitflag1, output1] =
fmincon(@objfungrad,x0,[],[],[],[],...
        lb, ub, @confungrad, options)
   options = optimoptions(@fmincon,'Algorithm','interior-point');
    [x2, fval2, exitflag2, output2] =
fmincon(@objfungrad,x0,[],[],[],[],...
        lb, ub, @confungrad, options)
    options = optimoptions(@fmincon,'Algorithm','active-set');
    [x3, fval3, exitflag3, output3] =
fmincon(@objfungrad,x0,[],[],[],[],...
        lb,ub,@confungrad,options)
    function f = objfungrad(x)
        f = custo(x(1), x(2), L);
    end
    function [c,ceq] = confungrad(x)
       c = restricoes(x(1), x(2), L);
       ceq = [];
    end
end
```

Arquivo custo.m:

```
% Calculo do custo da viga (aço + concreto + forma)
% b = base da viga em cm
% h = altura da viga em cm
% L = comprimento da viga em m
function f = custo(b, h, L)
    Asl = asl(b, h, L);
    Asw = asw(b, h, L);
    %%% AÇO
    % Área do aço
    As = Asl + Asw / 100 * L; % cm<sup>2</sup>
    Asm = As / 10000; % m<sup>2</sup>
    % Peso específico do aço
    ROs = 7850; % kg/m<sup>3</sup>
    % Custo do aço (2017)
    Cs = 7.8; % R$/kg
    \% Valor do aço por m
    Vs = Cs * ROs * Asm; % R$/m
    %%% CONCRETO
    % Área do concreto
    Ac = b * h; % cm<sup>2</sup>
    Acm = Ac / 10000; % m<sup>2</sup>
    % Custo do Concreto (2017)
    Cc = 314.66; % R$ / m<sup>3</sup>
    % Valor do concreto por m
    Vc = Acm * Cc; % R$ / m
    %%% FORMA
    % Perímetro da forma
    p = 2 * h + b; % cm
    pm = p / 100; % m
    % Custo da montagem e materiais da forma de madeira (2017)
    Cf = 70.88; % R$ / m<sup>2</sup>
    % Valor da forma por m
    Vf = pm * Cf; % R$ / m
    % Valor total
    f = Vc + Vs + Vf;
end
```

Arquivo restricoes.m:

```
% Conjunto de restri??es do problema
% b = base da viga em cm
% h = altura da viga em cm
% L = comprimento da viga em m
function c = restricoes(b, h, L)
   hm = h / 100; % m
   bm = b / 100; % m
   fck = 2; % 2 kN / cm? = 20 Mpa
   v = 0.552;
   % M?dulo de elasticidade secante do concreto
   Ecs = 2128.74; % kN / cm?
   fctf = 0.221; % kN / cm?
   n = 9.865;
   Es = 21000; % kN / cm?
   fyk = 50; % 50 kN / cm? = 500 Mpa
    % Carregamento permanente
   g = 22; % kN/m
    % Carregamento vari?vel
   q = 11; % kN/m
   Lcm = L * 100; % cm
    % Resist?ncia de c?lculo do concreto e do a?o
    fcd = fck / 1.4; % kN / cm?
    fcdm = fcd * 10000; % kN / m?
    % altura ?til
    d = 0.9 * h; % cm
    dm = d / 100; % m
    % Carga do peso pr?prio
    gpp = hm * bm * 25; % kN/m
    % Carregamento
   p = 1.4 * (gpp + g + q); % kN / m
   % Armadura longitudinal
    % Momento de c?lculo
   Md = p * L * L / 8; % kNm
   Mdcm = Md * 100;
    % Momento limite
   Mdlim = 0.272 * bm * dm * dm * fcdm; % kNm \,
```

```
% 4.4 Dimensionamento devido ao Momento Fletor
    % Restri??o 1 - para armadura longitudinal simples
    c(1) = Md - Mdlim;
    % Altura da Linha neutra
    x = 1.25 * d * (1 - sqrt(1 - (Mdcm / (0.425 * b * d * d * fcd)))
) ); % cm
    % 4.4 Dimensionamento devido ao Momento Fletor
    % Restri??o 2 - verifica?ao da ductilidade das estruturas
    c(2) = x - 0.5 * d;
    % Armadura longitudinal
    Asl = asl(b, h, L);
    roB = 0.85 * fck * 0.85 / ( fyk * ( 1 + fyk / ( 0.003 * Es ) ) );
    % 4.1 Funções restrições
    % Restri??o 3 - verifica??o da armadura m?xima
    c(3) = As1 / (b * d) - 0.5 * roB;
    % Esfor?o cortante de c?lculo
   Vd = p * L / 2; % kN
    % For?a cortante de c?lculo m?xima resistida por compress?o das
bielas
    Vrd2 = 0.45 * b * d * v * fcd; % kN
    % 4.5 Dimensionamento devido ao Esforço Cortante
    % Restri??o 4 - verifica??o das bielas comprimidas
    c(4) = Vd - Vrd2;
    % Verifica??es no estado limite de servi?o
    % formulas.executarVerificacoes = ( Asl ) => {
    % Momento de in?rcia da sess?o bruta
    Ic = b * h * h * h / 12; % cm^4
    % Carregamento quase permanente
    Pqp = gpp + g + 0.4 * q; % kN / m
    Pqpcm = Pqp / 100; % kN / cm
    % Flecha el?stica
    felastica = 5 * Pqpcm * Lcm * Lcm * Lcm * Lcm / ( 384 * Ecs * Ic ) *
10; % mm
```

```
% Flecha imediata
    % Momento fletor da a??o quase permanente
   Mqp = Pqp * L * L / 8; % kNm
   Mqpcm = Mqp * 100; % kNcm
    % Momento fletor de fissura??o
   Mr = b * h * h / 6 * fctf; % kNcm
    %a1, a2, a3, x2, I2, Ie;
    if ( Mqpcm >= Mr ) % Est?dio II com fissura??o
        % Momento de in?rcia da sess?o no est?dio II ( para armadura
simples )
       a1 = b / 2;
       a2 = n * Asl;
       a3 = -n * Asl * d;
       x2 = (-a2 + sqrt(a2 * a2 - 4 * a1 * a3)) / (2 * a1);
       I2 = b * x2 * x2 * x2 / 3 + n * Asl * (d - x2) * (d - x2);
       divisaole = ( Mr / Mqpcm ) * ( Mr / Mqpcm ) * ( Mr / Mqpcm );
        Ie = divisaoIe * Ic + ( 1 - divisaoIe ) * I2;
    else
        Ie = Ic;
    end
    fimediata = felastica * ( Ic / Ie ); % mm
    % Flecha diferida
    % Para t0/t = 1 / 70 meses
   alfaF = 1.323;
   fdiferida = alfaF * fimediata; % mm
    % Flecha total
    fTotal = fimediata + fdiferida; % mm
    % Flecha limite
   flimite = L * 1000 / 250; % mm
    % 4.6 Verificação de flecha
    % Restri??o 5 - verifica??o da flecha total
   c(5) = fTotal - flimite;
    % Restri??o 6 - seguran?a a instabilidade da viga NBR 6118
   c(6) = -b + 2*L;
    % Restri??o 7 - seguran?a a instabilidade da viga NBR 6118
   c(7) = -h + 25;
    % Restri??o 8 - seguran?a a instabilidade da viga NBR 6118
   c(8) = -b + 0.4*h;
end
```

Arquivo asl.m:

```
function f = asl(b, h, L)
    hm = h / 100; % m
    bm = b / 100; % m
    fck = 2; % 2 kN / cm^2 = 20 Mpa
    fyk = 50; % 50 kN / cm^2 = 50 Mpa
    % Carregamento permanente
    g = 22; % kN/m
    % Carregamento variável
    q = 11; % kN/m
    % Resistência de cálculo do concreto e do aço
    fcd = fck / 1.4; % kN / cm<sup>2</sup>
    fyd = fyk / 1.15; % kN / cm<sup>2</sup>
    % altura útil
    d = 0.9 * h; % cm
    % Carga do peso próprio
    gpp = hm * bm * 25; % kN/m
    % Carregamento
    p = 1.4 * (gpp + g + q); % kN / m
   % Armadura longitudinal
    % Momento de cálculo
    Md = p * L * L / 8; % kNm
    Mdcm = Md * 100;
    % Altura da Linha neutra
    x = 1.25 * d * (1 - sqrt(1 - (Mdcm / (0.425 * b * d * d * fcd)))
) ); % cm
   % Armadura longitudinal
   Asl = 0.68 * b * x * fcd / fyd; % cm<sup>2</sup>
    % Armadura longitudinal mínima
    Aslmin = 0.15 / 100 * b * h;
    % Armadura longitudinal final
    f = max(Asl, Aslmin);
end
```

Arquivo asw.m:

```
function f = asw(b, h, L)
   hm = h / 100; % altura em m
   bm = b / 100; % base em m
   fyk = 50; % 50 kN / cm^2 = 50 Mpa
   fctd = 0.1105; % kN / cm<sup>2</sup>
   % Módulo de elasticidade secante do concreto
   % Carregamento permanente
   g = 22; % kN/m
   % Carregamento variável
   q = 11; % kN/m
   % Resistência de cálculo do concreto e do aço
   fyd = fyk / 1.15; % kN / cm^2
   % altura útil
   d = 0.9 * h; % cm
   % Carga do peso próprio
   gpp = hm * bm * 25; % kN/m
   % Carregamento
   p = 1.4 * (gpp + g + q); % kN / m
   % Esforço cortante de cálculo
   Vd = p * L / 2; % kN
   % Armadura transversal
   s = 100;
   Vc = 0.6 * b * d * fctd; % kN
   % Armadura transversal
   Asw = ( Vd - Vc ) * s / ( 0.9 * d * fyd ); % cm^2 / m
   % Armadura transversal mínima
   AswMin = 0.088 / 100 * b * s; % cm<sup>2</sup> / m
   % Armadura transversal final
   f = max(Asw, AswMin);
end
```

ANEXO II

VIGA - MON Momento FI	IENTO FLETOR etor (α = a/L; β	R, FORÇA	CORT	ANTE, M	OMEN	TO TOR	ÇOR E	FLECH	A		S. S.	
Sistema	<u>_</u>	Δ				1				× 03000	1	
Carga	M _{máx} ; x _o /L	M _{máx} ;	x _o /L M _{di}			M _{máx}	; x ₀ /L	Mes		M _{dir}	Meso	
	Carga M_{max} ; χ_{p}/L M_{max} ; 0 . $\frac{\text{pL}^2}{8}$; 0.5 $\frac{\text{9pL}^2}{128}$; 0 .		,375	,375 - pL		pL ² ; 0		0,5 - pL		- pL ²	- pL ²	
	$\frac{pL^2}{9\sqrt{3}}$; 0,577	pL ² 15√5;(0,447	_ <u>pl</u>	5	pL ² 46,64; 0,548		- pL ² 30		$-\frac{pL^{2}}{20}$	- pL2 3	
	$\frac{pL^2}{9\sqrt{3}}$; 0,423	pL ² 23,65	0,329	- 7pL ² 120		pL ² 46,64	; 0,452	- pL ² 20		$-\frac{pL^{2}}{30}$	- pL ²	
L/2 ↓	PL 4; 0,5	5PL 32;	0,5	- 3F		PL; 0,5		- <u>PL</u> 8		-PL 8	- <u>PL</u>	
a↓ b	3_8				-αPL	$2\alpha^2\beta^2PL;\alpha$		19 mg/3/d-m1		-α²βPL	-αPL	
Força Corta	nte ($\alpha = a/L$; β	= b/L)	207									
Sistema	Δ			Δ				1			1	
Carga		V _{esq} V _{dir}		V _{esq}	\	dir.	V,	90	Var		V _{esq}	
	pL _pL 2			3pL 8		5pL 8	<u>pL</u> 2		_ <u>pL</u> 2		pL	
	<u>pL</u> 6	6 3		pL 10	$-\frac{2p}{6}$		0,15pL		-0,35pL		pL 2	
	<u>P</u> 2	- <u>pL</u>	11pL 40			9pL 40	0,38),35pL –		,15pL	pL 2	
L/2 ↓	P 2	- <u>pL</u> 6 - <u>P</u> 2		5P 16		11P 16	6 2		-		P	
a↓ b			$\frac{3-\beta}{2}\beta^2P$		-3-	$\frac{ -\alpha^2 }{2}\alpha P$ (3		-2β)β ² P -(3-		-2α)α ² P	P	
Momento To	orçor (α = a/L;	β = b/L)								87		
Carga	Carga							L/2		a	b	
Sistema	Tesq	Tdir	Tesq	Tor	Tesq			Tesq	Tdir	Tesq	Tair	
-	# <u>L</u>	- tL 2	tL 6	- tL 3	tL 3		<u>1L</u> 6	<u>T</u>	$-\frac{T}{2}$	βТ	-αΤ	
1	T _{esq}	T,				T _{esq}		T _{esq}		1	T _{esq}	
Flechas (α =	a/L; β = b/L)	á	tL 2		5	<u>tL</u> 2	8	- 1		Y	1	
Sistema	Δ		Δ	8		1				1	- 8	
Carga	Δ _{máx} ; X _o /L		Δ _{máx} ; x _o /L			Δ _{máx} ; x _o /L			Δdir			
5pL ⁴ 384EI;0,5		0,5	pL ⁴ 184,6EI; 0,422					; 0,5		pL⁴ 8EI		
	0,00652 PL ⁴ ;0,519		pL ⁴ 419,3EI; 0,447			pL ⁴ 764,2EI; 0,525			11pL ⁴ 120EI			
	0,00652 PL ⁴ ;0,481			pL ⁴ 328,1EI; 0,402			pL ⁴ 764,2EI; 0,475			pL ⁴ 30EI		
L/2 ↓	PL ³ 48EI; 0,5		PL³ 48√5EI; 0,447			PL ³ 192EI; 0,5			4	5PL ³ 48EI		
a \downarrow b $\frac{(3-4\alpha^2)\alpha PL^3}{48EI}$; $\alpha \le 0.5$			-			-			10	$(3-\alpha)\alpha^2PL^3$		
[MUSSO]			1							6EI		

Fernando Musso Junior

musso@npd.ufes.br

Estruturas de Concreto Armado

26

Fonte: Musso Junior (2012)

ANEXO III

Estruturas de Concreto Armado

38

Fonte: Musso Junior (2012)

ANEXO IV

Fernando Musso Junior musso@npd.ufes.br

Estruturas de Concreto Armado

31

Fonte: Musso Junior (2012)

ANEXO V

VIGA - VERIFICAÇÃO DE FLECHA EM VIGA DE SI A _s área da seção da armadura longitudinal				L _{bel}	comp	orimento do	balanço				
	tracionada				momento fletor da ação permanente G						
A's	A's área da seção da armadura longitudinal				momento fletor da ação variável Q						
-	comprimida			M _Q M _{QP}	M _G + ψ ₂ M _O momento fletor da ação quase						
b	largura da seção t	ransversal		IVIQP-	permanente poe (momento positivo no vão;						
ď	altura útil da seção	90.000				aso de bala					
distância do centróide da armadura tracionada						momento					
	à borda comprimio		n				ulos de elas	sticidade			
ď	distância do centro	óide da armadura com	primida	882.8	do aço e do concreto						
	à borda comprimio	al	Pop	G + y ₂ Q ação quase permanente							
ď	h-d	State of the state		Q	acão variável						
Eco	4760f4 1/2 MPa m	ódulo de elasticidade	secante	X2							
	do concreto			Xe	profu	indidade da	linha neut	ra da seção	bruta		
E	210000 MPa mó	dulo de elasticidade de	o aço					eção bruta			
fck		erística do concreto à			extre	ma compri	mida				
	compressão aos 2			t	temp	o que se de	eseja calcu	lar a flecha	(meses)		
fetf	αf _{etm} resistência d	do concreto à tração n	a flexão	to				r em carga			
fctm	0,3fck 2/3 (fck em M	do concreto à tração n (Pa) resistência média	a do	Vt.	h - x	distância	do centróic	le da seção	bruta à		
	concreto à tração				fibra	extrema tra	acionada				
fdiferida	flecha do efeito da	fluência do concreto		We	I _o /y _t	(bh²/6 para	seção reta	ngular)			
felástica	flecha obtida com	p = pop, E = E e e l = l	l _e	320		ulo resisten					
fimediata	flecha da viga ao e	entrar em carga		α	1,0 (EC2); 1,5 s	eção retan	gular (NBR	6118)		
firmite	flecha máxima par	ra limitar efeito visual		αf	coefi	ciente para	levar em o	onta a fluêr	icia do		
	desagradável			1070	concreto no cálculo da flecha diferida						
f _{total}	fimediata + fallerida fle	echa total		Ψ2	0,3 para edificios residenciais						
G	ação permanente			1.5	0,4 p	ara edificio	s comercia	is, de escrit	órios,		
h	altura da seção tra	insversal			estações e edificios públicos 0,6 para bibliotecas, oficinas e garagens fator de redução da ação variável para combinação de ação quase permanente						
12	momento de inérc	ia da seção no estádio	02								
l _e	bh3/12 para seção	retangular									
54.77	momento de inérc	ia da seção bruta									
I _e	momento de inérc	ia efetivo da seção		p'	A, 1/(t	d) taxa ge	eométrica o	le armadura	1		
L	vão entre apoios	STATE OF THE PROPERTY OF		7777	longi	tudinal com	primida				
A - Flee	cha elástica		9000	F - Par	råmetr	os auxiliar	es	t matter of a	200		
	felasti	ca	A1	fck M	lPa	20	25	30	35		
	(ver flechas em div	ersos sistemas)	AI	for N	//Pa	2,210	2,565	2,896	3,210		
	cha imediata			ferrece		2,210	2,565	2,896	3,210		
		100		E _{cs} N		21287	23800	26072	2816		
	$f_{imediata} = f_{e}$	dástica .	B1	n=E		9.865	8.824	8.055	7,45		
		I _e				quivalente		surada – es			
	seção fissurada	a (Moo > M.)		-		o real		eção equiv			
	()3 [($\left \frac{M_r}{\log P}\right ^3 \left I_2 \right $ (BRANSON)							de concreto		
1 -1	M _r 1 1 1 1	A BRANSON	B2			_ 		b → ↓ d'			
'e -	M _{QP}) 'c T M	OP 2 (DIVANGOIV)	,								
10				1	A's T X2		2				
	seção não fissura		B3	d	1	N	d	LN	*		
	l _e =	l _c	50	_ ~			-		d-x		
C - Flee	cha diferida]		· ·		nA _e			
	$f_{dferida} = \alpha$	fimediata	C1	-	- 0 0	- 0 0 0					
	$\alpha_f = \frac{\xi(t)}{t}$	- F(t-)	1	1		viii		1000 NO			
	$\alpha_1 = \frac{q(t)}{t}$	500'	C2		X =	= [-a ₂ + √a	2 - 4a,a,	1/(2a,)	(
				-		7.5		- 8			
$\xi(t \le 70 \text{ meses})$ 0,68(0,996 ^t) $t^{0,32}$				a ₁ = b/2					(
ξ(t > 70 meses) 2						$a_n = nA$	+ (n - 1)A		(
		T	. 70		1.79	a ₂ = -nA ₅			_		
t meses		6 12	≥ 70		19	a ₃ = -nA _s	u – (n – 1)A	o.	(
ξ(t)	0,68 0,95	1,18 1,44	2,00		hy 3				. 1		
D - Fle	cha total			l ₂ =	UX2	+nAs(d-x	$(2)^2 + (n-1)^2$)A's(x2 - d'	2 (
	f _{total} = f _{imediata} + f	diferida ≤ f _{limite}	D1	10.00	3	200					
E Fla	cha limite				adid - i	a da 1	- 4		indust-		
E - FIRE	$f_{limite} = \frac{L}{250}$ (L = 2L _{bal} , no caso de balanço) E1					profundidade da I. neutra momento de iné $x = \sum x_i A_i / \sum A_i$ $I = \sum (I_i + A_i \Delta_i)$			inercia		
7 1 1 1 1 1 1 1 1	= L (L = 2Lm.	no caso de balanco)	E1		$= \sum x$			$I = \sum (I_i + A)$	Δ_i^2		

Fernando Musso Junior

musso@npd.ufes.br

Estruturas de Concreto Armado

50