Deep Learning 101

Recurrent Neural Network (RNN)

Schedule

week	Date	Topic
9	10.27	Environment setup, python, Jupyter, PyCharm, TensorFlow, & regression
10	11.03	Training and testing
11	11.10	CNN
12	11.17	RNN
13	11.24	Autoencoder & GAN

Today's Class

- Recap
- Confusion matrix
- What is RNN?
 - How do you predict the next token?
 - Vanilla RNN
 - LSTM
- Lab time

Recap – neural network

- Neural network as a function
 - y = f(x)
- Perceptron
 - Y = WX + b
 - Two inputs: x1, x2
 - One output: y
 - Linear regression
- XOR problem
 - Linear regression can't solve the XOR problem
 - Require multivariate regression

Recap - Training

- What it take to train a neural network:
 - Hypothesis: H = WX + b
 - Activation function: Sigmoid, tanh, ReLU, LeakyReLU, Softmax, etc.
 - Cost function: MSE, cross entropy, etc.
 - Gradient descent: backpropagation
- Training a neural network is basically the problem of minimizing the cost function: minimize cost(W, b)
- Gradient descent is the most popular optimizer.
- Training a neural network is NOT easy!
 - Finding hyperparameters, random initial weights, local minima, vanishing/exploding gradients, overfitting/underfitting, etc.

Recap - CNN

- Stride: step size
- Padding: putting zeroes around the outer edge of the input data.
 "same" means the output size will be the same as the input size when stride = 1.
- Kernel: the filter that extracts features
- Max pooling: means pooling the maximum value from the filtered feature map. The result is a down-sampling image (reduced dimensionality)
- Batch normalization: normalizing
- Dropout: regularization technique to prevent overfitting

How to model sequence?

Predicting the next word

"The quick brown fox jumped over the lazy ____"

- 1. Fixed window
- 2. Bag of words
- 3. Big fixed window?
 - Long term dependency

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track **long-term** dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

Next word prediction

"This morning I took my cat for a walk."

given these predict the two words next word

Fixed Window?

```
"This morning I took my cat for a walk."

given these predict the two words next word
```

One-hot feature encoding: tells us what each word is

Long term dependency

- "Korea is where I was born and raised. I moved to the US when I was twenty. I am fluent in _____"
- How big of a window do you need?

Bag of words?

RNN (Intuition)

RNN in a nutshell

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

http://introtodeeplearning.com

RNN – Across Time

http://introtodeeplearning.com

RNN

https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

Problems with RNN

- To model long-term dependencies, you have to multiply many small numbers
 - → Vanishing gradients
- Use "gated cells"
 - → LSTM (Long Short-Term Memory)

LSTM (Long Short-Term Memory

https://towardsdatascience.com/animated-rnn-lstm-and-gru-ef124d06cf45

RNN Applications

Word Embeddings

To turn words into vectors

https://jalammar.github.io/illustrated-word2vec/

Lab time

- To clone: from your terminal
 - >git clone https://github.com/changsin/DeepLearning-101.git
- Or use google colab to point to the git hub repository
- Git is an open source version control system
 - Github is a host service using git.