Convex Optimization for Communications and Signal Processing

Fall 2020

Institute of Communications Engineering

Department of Electrical Engineering

National Tsing Hua University

Homework #1 – Solution

Coverage: chapter 1–2

Due date: 28 October, 2020

Instructor: Chong-Yung Chi

TAs: Wei-Bang Wang & Meng-Syuan Lin

Problem 1. (5 points) Let $\mathcal{F} = \{(x_1, x_2) \in \mathbb{R}^2_+ \mid x_1^2 \le x_2\}$. Is this a convex set? Justify your answer.

Solution:

Let $\mathbf{x} = (x_1, x_2), \mathbf{y} = (y_1, y_2) \in \mathcal{F}$ and we have $x_1^2 \le x_2$ and $y_1^2 \le y_2$. Letting $\theta \in [0, 1]$ we have

$$(z_1, z_2) = \mathbf{z} = \theta \mathbf{x} + (1 - \theta) \mathbf{y} = (\theta x_1 + (1 - \theta) y_1, \theta x_2 + (1 - \theta) y_2).$$

Then,

$$z_{2}^{2} = (\theta x_{2} + (1 - \theta)y_{2})^{2}$$

$$= \theta^{2}x_{2}^{2} + 2\theta(1 - \theta)x_{2}y_{2} + (1 - \theta)^{2}y_{2}^{2}$$

$$\leq \theta^{2}x_{2}^{2} + \theta(1 - \theta)(x_{2}^{2} + y_{2}^{2}) + (1 - \theta)^{2}y_{2}^{2} \qquad \text{(since } 2x_{2}y_{2} \leq x_{2}^{2} + y_{2}^{2})$$

$$\leq \theta^{2}x_{1} + \theta(1 - \theta)(x_{1} + y_{1}) + (1 - \theta)^{2}y_{1} \qquad \text{(by definition of } \mathcal{F})$$

$$= \theta x_{1} + (1 - \theta)y_{1}$$

$$= z_{1},$$

and hence $\mathbf{z} \in \mathcal{F}$ and this is a convex set.

Problem 2. (5 points) Let K_i for i = 1, ..., n be cones.

- (a) (2 points) Is $\mathcal{K}_1 \triangleq \bigcap_{i=1}^n K_i$ a cone? Justify your answer.
- (b) (3 points) Let $\mathcal{K}_2 \triangleq \{\mathbf{x} = \sum_{i=1}^n \mathbf{x}_i | \mathbf{x}_i \in \mathcal{K}_i\}$. Is \mathcal{K}_2 a cone? Justify your answer.

Solution:

- (a) Let $\mathbf{x} \in \mathcal{K}_1$ implying that $\mathbf{x} \in K_i$ for all i. This implies $\theta \mathbf{x} \in K_i$ for all i where $\theta \in \mathbb{R}_+$, since K_i is a cone for all i. Clearly, $\theta \mathbf{x} \in \mathcal{K}_1$. Hence, \mathcal{K}_1 is a cone.
- (b) Let $\mathbf{x} \in \mathcal{K}_2$. We have $\mathbf{x} = \sum_{i=1}^n \mathbf{x}_i$ where $\mathbf{x}_i \in K_i$. Since K_i for all i is a cone, we have $\theta \mathbf{x}_i \in K_i$ for all i where $\theta \in \mathbb{R}_+$. Clearly, $\theta \mathbf{x} \in \mathcal{K}_2$ and therefore \mathcal{K}_2 is a cone.

Problem 3. (10 points)

- (a) (3 points) Represent the set $\{\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2_+ \mid x_1 x_2 \ge 1\}$, as the intersection of some family of halfspaces.
- (b) (3 points) Suppose that C and D are disjoint subsets of \mathbb{R}^n . Show that the set,

$$A = \left\{ (\mathbf{a}, b) \in \mathbb{R}^{n+1} \, | \, \mathbf{a}^T \mathbf{x} \leq b \, \forall \mathbf{x} \in C, \ \mathbf{a}^T \mathbf{x} \geq b, \, \forall \mathbf{x} \in D \right\},$$

is a convex cone.

(c) (4 points) Consider two solid convex cones K_1 and K_2 . Show that if $\operatorname{int} K_1 \cap \operatorname{int} K_2 = \emptyset$, then there is $\mathbf{y} \neq \mathbf{0}$ such that, $\mathbf{y} \in K_1^*$, $-\mathbf{y} \in K_2^*$.

Solution:

(a) The set is the intersection of all supporting halfspaces at points on its boundary, which is given by $\{\mathbf{x} \in \mathbb{R}^2_+ \mid x_1x_2 = 1\}$. Using the basic calculus, the supporting hyperplane at the point $\mathbf{x} = (t, 1/t)$ is given by

$$x_1/t^2 + x_2 = 2/t,$$

so we can express the set as

$$\bigcap_{t>0} \left\{ \mathbf{x} = (x_1, x_2) \in \mathbb{R}^2 \mid x_1/t^2 + x_2 \ge 2/t \right\}.$$

- (b) The conditions $\mathbf{a}^T \mathbf{x} \leq b$, $\forall \mathbf{x} \in C$ and $\mathbf{a}^T \mathbf{x} \geq b$, $\forall \mathbf{x} \in D$ form a set of homogeneous linear inequalities in (\mathbf{a}, b) . Therefore A is the intersection of halfspaces that pass through the origin which implies a convex cone.
- (c) Let $\mathbf{y} \neq \mathbf{0}$ be the normal vector of a separating hyperplane, which separates the interiors: $\mathbf{y}^T \mathbf{x} \geq \alpha$ for all $\mathbf{x} \in \mathbf{int} K_1$ and $\mathbf{y}^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in \mathbf{int} K_2$. We must have $\alpha = 0$ because K_1 and K_2 are cones. So,

$$\mathbf{y} \in (\mathbf{int} K_1 \cup \{\mathbf{0}\})^* = K_1^*, \quad -\mathbf{y} \in (\mathbf{int} K_2 \cup \{\mathbf{0}\})^* = K_2^*.$$

Problem 4. (10 points) Consider the set of points, $X \triangleq \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ and point \mathbf{q} , all in \mathbb{R}^d . Let $\mathcal{H}(\mathbf{q} - \mathbf{x}_i, \mathbf{x}_i)$ be the hyperplane that contains \mathbf{x}_i and is perpendicular to the line segment between \mathbf{q} and \mathbf{x}_i . Define $H_{\mathbf{q}}(\mathbf{x}_i)$ as the halfspace that does not contain the point $\mathbf{q} \in \mathbb{R}^d$ and bounded by hyperplane $\mathcal{H}(\mathbf{q} - \mathbf{x}_i, \mathbf{x}_i)$. Show that

$$\bigcap_{i=1}^n H_{\mathbf{q}}(\mathbf{x}_i) = \emptyset \quad \Leftrightarrow \quad \mathbf{q} \in \mathbf{conv}\, X.$$

Solution:

We prove both directions with contradiction.

• (\Rightarrow) Suppose that $\bigcap_{i=1}^{n} H_{\mathbf{q}}(\mathbf{x}_{i}) = \emptyset$ and $\mathbf{q} \notin \mathbf{conv} X$. Then there exists a hyperplane Π that separates \mathbf{q} from $\mathbf{conv} X$. Let ℓ be the ray with tip \mathbf{q} , perpendicular to Π , and that intersects Π at the point $\mathbf{p} \neq \mathbf{q}$.

Note that for each \mathbf{x}_i , the hyperplane $\mathcal{H}(\mathbf{q} - \mathbf{x}_i, \mathbf{x}_i)$ is not parallel to ℓ (by definition of hyperplane Π and the ray ℓ). Therefore, for each \mathbf{x}_i , there is a $\theta_i \in \mathbb{R}_{++}$ such that,

$$\mathcal{L}_{\theta_i} \triangleq \left\{ \mathbf{q} + \theta(\mathbf{p} - \mathbf{q}) \mid \theta \geq \theta_i, \ \theta \in \mathbb{R}_{++} \right\} \subset H_{\mathbf{q}}(\mathbf{x}_i).$$

This implies that $\bigcap_{i=1}^n H_{\mathbf{q}}(\mathbf{x}_i)$ is nonempty which is a contradiction.

The above figure, illustrates the simplified case when $\mathbf{q} \notin \mathbf{conv} X$, $(X = \{\mathbf{x}_1, \mathbf{x}_2\})$ in \mathbb{R}^2 .

• (\Leftarrow) Suppose that $\mathbf{q} \in \mathbf{conv} X$. Then there exists $\alpha_1, \ldots, \alpha_n$, such that every $\alpha_i \geq 0$,

$$\sum_{i=1}^{n} \alpha_i = 1 \quad \& \quad \mathbf{q} = \sum_{i=1}^{n} \alpha_i \mathbf{x}_i. \tag{1}$$

Note that for every $\mathbf{y} \in H_{\mathbf{q}}(\mathbf{x}_i)$,

$$(\mathbf{y} - \mathbf{q})^T (\mathbf{x}_i - \mathbf{q}) \ge |\mathbf{q} - \mathbf{x}_i|^2 > 0.$$
 (2)

Suppose to the contrary that there exists a point $\mathbf{z} \in \bigcap_{i=1}^n H_{\mathbf{q}}(\mathbf{x}_i)$. Hence,

$$\mathbf{0} = (\mathbf{z} - \mathbf{q})^{T} (\mathbf{q} - \mathbf{q})$$

$$= \sum_{Eq.(1)} (\mathbf{z} - \mathbf{q})^{T} (\sum_{i=1}^{n} \alpha_{i} (\mathbf{x}_{i} - \mathbf{q}))$$

$$= \sum_{i=1}^{n} \alpha_{i} (\mathbf{z} - \mathbf{q})^{T} (\mathbf{x}_{i} - \mathbf{q}),$$

but based on (1), at least one of the α_i is greater than zero and

$$\mathbf{0} = \sum_{i=1}^{n} \alpha_i (\mathbf{z} - \mathbf{q})^T (\mathbf{x}_i - \mathbf{q}) \underbrace{>}_{Eq.(1),(2)} \mathbf{0}$$

which is a contradiction.

Problem 5. (20 points) Which of the following sets S are polyhedra? If possible, express S in the form $S = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{F}\mathbf{x} = \mathbf{g}\}.$

- (a) $S = \{y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 \mid -1 \le y_1 \le 1, -1 \le y_2 \le 1\}$, where $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^n$ are linearly independent.
- (b) $S = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \succeq \mathbf{0}, \ \mathbf{1}^T \mathbf{x} = 1, \ \sum_{i=1}^n x_i a_i = b_1, \ \sum_{i=1}^n x_i a_i^2 = b_2 \}, \text{ where } a_1, \dots, a_n \in \mathbb{R} \text{ and } b_1, b_2 \in \mathbb{R}.$
- (c) $S = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \succeq \mathbf{0}, \ \mathbf{x}^T \mathbf{y} \le 1 \text{ for all } \mathbf{y} \text{ with } \|\mathbf{y}\|_2 = 1 \}.$
- (d) $S = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \succeq \mathbf{0}, \ \mathbf{x}^T \mathbf{y} \le 1 \text{ for all } \mathbf{y} \text{ with } \sum_{i=1}^n |y_i| = 1 \}.$

Solution:

(a) $\mathbf{x} = y_1 \mathbf{a}_1 + y_2 \mathbf{a}_2 \in \text{span}[\mathbf{a}_1, \mathbf{a}_2]$. Then for the basis \mathbf{v}_k in the null space of matrix $[\mathbf{a}_1, \mathbf{a}_2]$, $k = 1, \dots, n-2$, we have $\mathbf{v}_k^T \mathbf{x} = 0$. Choose \mathbf{c}_1 , \mathbf{c}_2 which are orthogonal to \mathbf{a}_2 and \mathbf{a}_1 , respectively, and lie in the subspace $\text{span}[\mathbf{a}_1, \mathbf{a}_2]$, and then we have

$$-|\mathbf{c}_1^T \mathbf{a}_1| \le \mathbf{c}_1^T \mathbf{x} \le |\mathbf{c}_1^T \mathbf{a}_1|, \ (-1 \le y_1 \le 1)$$
$$-|\mathbf{c}_2^T \mathbf{a}_2| \le \mathbf{c}_2^T \mathbf{x} \le |\mathbf{c}_2^T \mathbf{a}_2|, \ (-1 \le y_2 \le 1)$$

so S is a polyhedron.

(b) Choose

$$\mathbf{A} = -\mathbf{I}, \ \mathbf{b} = \mathbf{0}, \ \mathbf{F} = \begin{bmatrix} \mathbf{1}^T \\ [a_1, a_2, \dots, a_n] \\ [a_1^2, a_2^2, \dots, a_n^2] \end{bmatrix}, \text{ and } \mathbf{g} = \begin{bmatrix} 1 \\ b_1 \\ b_2 \end{bmatrix}.$$

Then S is a polyhedron.

(c) Since \mathbf{x} lies in the intersection of unit ball and non-negative orthant, it can not be described by finite linear inequalities and equalities. Hence, S is not a polyhedron.

(d)

$$\mathbf{x}^T \mathbf{y} \le \|\mathbf{x}\|_{\infty} \|\mathbf{y}\|_1 \le 1$$

$$\Rightarrow \|\mathbf{x}\|_{\infty} \le 1 \Rightarrow -1 \le \mathbf{x} \le 1$$

and we have the constraint $\mathbf{x} \succeq \mathbf{0}$

$$\Rightarrow \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$$
$$\Rightarrow \{\mathbf{x} \mid \mathbf{x} \leq \mathbf{1}, -\mathbf{x} \leq \mathbf{0}\}$$
$$\Rightarrow S \text{ is a polyhedron.}$$

Problem 6. (10 points) Consider the sets $\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{C} \subseteq \mathbb{R}^n$, where \mathcal{A} is a closed set. Assume that \mathcal{H} is a supporting hyperplane of \mathcal{A} and \mathcal{C} . Prove $(\mathbf{bd}\ \mathcal{A}) \cap \mathcal{H} \subseteq \mathbf{bd}\ \mathcal{B}$.

Solution:

Let us prove by contradiction. Assume that there exists $x \in (\mathbf{bd} \ \mathcal{A}) \cap \mathcal{H}$, but $x \notin \mathbf{bd} \ \mathcal{B}$. Then

$$\mathbf{x} \in (\mathbf{bd} \ \mathcal{A}) \cap \mathcal{H} \subseteq \mathbf{bd} \ \mathcal{A} \subseteq \mathcal{A} \subseteq \mathcal{B},$$
 (3)

where the inequality "**bd** $\mathcal{A} \subseteq \mathcal{A}$ " is due to the fact that \mathcal{A} is closed. By (3) and $\mathbf{x} \notin \mathbf{bd} \mathcal{B}$, we see that $\mathbf{x} \in \mathbf{int} \mathcal{B}$, which, together with the assumption of $\mathcal{B} \subseteq \mathcal{C}$, yields that $\mathbf{x} \in \mathbf{int} \mathcal{C}$. Hence, $\mathbf{x} \in \mathbf{int} \mathcal{C} \cap \mathcal{H}$, implying that \mathcal{H} cannot be a supporting hyperplane of \mathcal{C} which is a clear contradiction.

Problem 7. (10 points) A set C is *midpoint convex* if whenever two points a, b are in C, the average or midpoint (a+b)/2 is in C. Obviously a convex set is midpoint convex. Prove that if C is closed and midpoint convex, then C is convex.

Solution:

Let $\mathbf{x}, \mathbf{y} \in C$, and $\theta \in [0, 1]$. We prove $\theta \mathbf{x} + (1 - \theta) \mathbf{y}$ through the following recursion:

k = 1:

By midpoint convexity, we have

$$\mathbf{z}_{1}^{(1)} = \frac{1}{2}\mathbf{x} + \frac{1}{2}\mathbf{y} \in C$$

$$\Rightarrow \mathbf{z}_{1}^{(1)} = \theta_{1}^{(1)}\mathbf{x} + (1 - \theta_{1}^{(1)})\mathbf{y} \in C,$$

where $\theta_1^{(1)} = 1/2$, and a 3-point sequence $\{\mathbf{x}, \mathbf{z}_1^{(1)}, \mathbf{y}\}$ on the line segment between \mathbf{x} and \mathbf{y} .

k = 2:

By midpoint convexity, we can have two more midpoints between each pair of consecutive points as follows

$$\begin{cases} \mathbf{z}_{1}^{(2)} = \frac{1}{2}(\mathbf{x} + \mathbf{z}_{1}^{(1)}) \in C \\ \mathbf{z}_{2}^{(2)} = \frac{1}{2}(\mathbf{z}_{1}^{(1)} + \mathbf{y}) \in C \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{z}_{1}^{(2)} = (2^{-1} + 2^{-2})\mathbf{x} + 2^{-2}\mathbf{y} \in C \\ \mathbf{z}_{2}^{(2)} = 2^{-2}\mathbf{x} + (2^{-1} + 2^{-2})\mathbf{y} \in C \end{cases}$$

$$\Rightarrow \mathbf{z}_{i}^{(2)} = \theta_{i}^{(2)}\mathbf{x} + (1 - \theta_{i}^{(2)})\mathbf{y} \in C,$$

where $\theta_i^{(2)} = c_1 2^{-1} + 2^{-2}$, i = 1, 2, and $c_1 \in \{0, 1\}$, along with a 5-point sequence $\{\mathbf{x}, \mathbf{z}_1^{(2)}, \mathbf{z}_1^{(1)}, \mathbf{z}_2^{(2)}, \mathbf{y}\}$ on the line segment between \mathbf{x} and \mathbf{y} .

k = 3:

By midpoint convexity, we can obtain a 9-point sequence $\{\mathbf{x}, \mathbf{z}_1^{(3)}, \mathbf{z}_1^{(2)}, \mathbf{z}_2^{(3)}, \mathbf{z}_1^{(1)}, \mathbf{z}_3^{(3)}, \mathbf{z}_2^{(2)}, \mathbf{z}_4^{(3)}, \mathbf{y}\}$ on the line segment between \mathbf{x} and \mathbf{y} , where

$$\begin{cases} \mathbf{z}_{1}^{(3)} = \frac{1}{2}(\mathbf{x} + \mathbf{z}_{1}^{(2)}) \in C \\ \mathbf{z}_{2}^{(3)} = \frac{1}{2}(\mathbf{z}_{1}^{(2)} + \mathbf{z}_{1}^{(1)}) \in C \\ \mathbf{z}_{3}^{(3)} = \frac{1}{2}(\mathbf{z}_{1}^{(1)} + \mathbf{z}_{2}^{(2)}) \in C \\ \mathbf{z}_{4}^{(3)} = \frac{1}{2}(\mathbf{z}_{2}^{(2)} + \mathbf{y}) \in C \end{cases}$$

$$\Rightarrow \begin{cases} \mathbf{z}_{1}^{(3)} = (2^{-1} + 2^{-2} + 2^{-3})\mathbf{x} + 2^{-3}\mathbf{y} \in C \\ \mathbf{z}_{2}^{(3)} = (2^{-1} + 2^{-3})\mathbf{x} + (2^{-2} + 2^{-3})\mathbf{y} \in C \\ \mathbf{z}_{3}^{(3)} = (2^{-2} + 2^{-3})\mathbf{x} + (2^{-1} + 2^{-3})\mathbf{y} \in C \\ \mathbf{z}_{4}^{(3)} = 2^{-3}\mathbf{x} + (2^{-1} + 2^{-2} + 2^{-3})\mathbf{y} \in C \end{cases}$$

$$\Rightarrow \mathbf{z}_{i}^{(3)} = \theta_{i}^{(3)}\mathbf{x} + (1 - \theta_{i}^{(3)})\mathbf{y} \in C,$$

where $\theta_i^{(3)} = c_1 2^{-1} + c_2 2^{-2} + 2^{-3}$, i = 1, 2, 3, 4, and $c_1, c_2 \in \{0, 1\}$.

For the recursion k, we come up with

$$\mathbf{z}_{i}^{(k)} = \theta_{i}^{(k)} \mathbf{x} + (1 - \theta_{i}^{(k)}) \mathbf{y} \in C, i = 1, \dots, 2^{k-1},$$

where the k-bit binary number $\theta_i^{(k)} = c_1 2^{-1} + c_2 2^{-2} + \dots + c_{k-1} 2^{-(k-1)} + 2^{-k}$, $\forall i$, and $c_j \in \{0,1\}$, $j = 1, \dots, k-1$.

Since C is closed, there exists an unique i such that $\mathbf{z}_i^{(k)}$ converges to $\theta \mathbf{x} + (1 - \theta) \mathbf{y}$ when $k \to \infty$, thereby yielding

$$\lim_{k \to \infty} \mathbf{z}_i^{(k)} = \lim_{k \to \infty} [\theta_i^{(k)} \mathbf{x} + (1 - \theta_i^{(k)}) \mathbf{y}] = \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in C.$$

Therefore, C is convex.

Problem 8. (15 points) Define the monotone nonnegative cone as

$$K = \{ \mathbf{x} = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \}.$$

- (a) Show that K is a proper cone.
- (b) Find the dual cone K^* . Hint. Use the identity

$$\sum_{i=1}^{n} x_i y_i = (x_1 - x_2) y_1 + (x_2 - x_3) (y_1 + y_2) + (x_3 - x_4) (y_1 + y_2 + y_3)$$

$$+ \dots + (x_{n-1} - x_n) (y_1 + \dots + y_{n-1}) + x_n (y_1 + \dots + y_n).$$

Solution:

(a) The set K is defined as n homogeneous linear inequalities, hence it is a closed (polyhedral) cone. The interior of K is nonempty, because there are points that satisfy the inequalities with strict inequality, for example, $\mathbf{x} = (n, n-1, \dots, 1)$.

To show that K is pointed, we note that if $\mathbf{x} \in K$, then $-\mathbf{x} \in K$ only if $\mathbf{x} = \mathbf{0}$. This implies that the cone does not contain an entire line.

To summarize the above, we prove that the set K satisfies the four conditions of proper cone.

(b) According to the definition, the dual cone of K is defined as

$$K^* = \{ \mathbf{y} \mid \mathbf{y}^T \mathbf{x} \ge 0, \forall \mathbf{x} \in K \}.$$

Let $\mathbf{y} = [y_1, y_2, \dots, y_n]$, we can prove that $\mathbf{y}^T \mathbf{x} \ge 0$ for all $\mathbf{x} \in K$ if and only if $\sum_{i=1}^k y_i \ge 0$ for all $k \in \{1, \dots, n\}$. The following is the prove.

• (\Rightarrow) Let us prove this direction by contradiction. Suppose $\mathbf{y}^T\mathbf{x} \geq 0$ for all $\mathbf{x} \in K$ and there exist a number $m \in \{1, \ldots, n\}$, such that $\sum_{i=1}^m y_i < 0$. Then we can see that

$$\mathbf{y}^{T}\mathbf{x} = (x_{1} - x_{2})y_{1} + (x_{2} - x_{3})(y_{1} + y_{2}) + \dots + (x_{n-1} - x_{n})(y_{1} + \dots + y_{n-1}) + x_{n}(y_{1} + \dots + y_{n})$$

$$= x_{1}[(\frac{x_{1} - x_{2}}{x_{1}})y_{1} + (\frac{x_{2} - x_{3}}{x_{1}})(y_{1} + y_{2}) + \dots + (\frac{x_{n}}{x_{1}})(y_{1} + \dots + y_{n})] (x_{1} \neq 0)$$

$$= x_{1}[\theta_{1}y_{1} + \theta_{2}(y_{1} + y_{2}) + \dots + \theta_{n}(y_{1} + \dots + y_{n})] \text{ (where } \theta_{i} \triangleq \frac{x_{i} - x_{i+1}}{x_{1}})$$

$$< 0 \text{ (if } \theta_{i} = 0 \text{ for } i \in \{1, \dots, n\} \setminus \{m\}),$$

which is a contradiction to the assumption. Hence we conclude that if $\mathbf{y}^T \mathbf{x} \geq 0$ for all $\mathbf{x} \in K$, then $\sum_{i=1}^k y_i \geq 0$ for all $k \in \{1, \dots, n\}$.

• (\Leftarrow) Since the vector $\mathbf{z} = [x_1 - x_2, x_2 - x_3, \dots, x_{n-1} - x_n, x_n] \succeq \mathbf{0}$ for all $\mathbf{x} \in K$ and $\sum_{i=1}^k y_i \geq 0$ for all $k \in \{1, \dots, n\}$, we can easily known that $\mathbf{y}^T \mathbf{x} \geq 0$ for all $\mathbf{x} \in K$ by the hint.

Therefore,

$$K^* = \{ \mathbf{y} \mid \sum_{i=1}^k y_i \ge 0, k = 1, \dots, n \}.$$

Problem 9. (15 points) Let C be a set in \mathbb{R}^n . For any $\mathbf{x} \in \mathbf{conv}\ C$, prove that it can be represented as

$$\mathbf{x} = \sum_{i=1}^{d} \theta_i \mathbf{x}_i, \quad \theta_i \in [0, 1], \ \sum_{i=1}^{d} \theta_i = 1,$$

where $\mathbf{x}_i \in C$ such that $d \leq n+1$.

Solution:

Let $\mathbf{x} \in \mathbf{conv}\ C$ and we have

$$\mathbf{x} = \sum_{i=1}^{d} \theta_i \mathbf{x}_i, \quad \mathbf{x}_i \in C \,\forall i, \, \theta_i \in [0, 1], \, \sum_{i=1}^{d} \theta_i = 1.$$
 (4)

Assume d is the minimum number of elements of C for which \mathbf{x} can be expressed by (4) and this implies θ_i is nonzero for all $i=1,\ldots,d$. Suppose by contradiction d>n+1. Then, the vectors $\mathbf{x}_i-\mathbf{x}_1$ for $i=2,\ldots,d$ are linearly dependent. Hence, there exist real scalars α_2,\ldots,α_d (not all zero) such that

$$\sum_{i=2}^{d} \alpha_i(\mathbf{x}_i - \mathbf{x}_1) = 0.$$

Let $\beta_1 \triangleq -\sum_{i=2}^d \alpha_i$ and $\beta_i \triangleq \alpha_i$ for $i=2,\ldots,d$ (not all zero). Clearly, we have

$$\sum_{i=1}^{d} \beta_i \mathbf{x}_i = 0, \quad \sum_{i=1}^{d} \beta_i = 0, \quad \text{and at least one } \beta_i > 0.$$

Letting $\theta'_i \triangleq \theta_i - \hat{\mu}\beta_i$ for i = 1, ..., d where $\hat{\mu} = \min_{i=1,...,d} \{\theta_i/\beta_i \mid \beta_i > 0\}$. This implies $\theta_i - \hat{\mu}\beta_i \geq 0$, $\forall i$ and $\sum_{i=1}^d \theta'_i = 1$. Then we have

$$\sum_{i=1}^{d} \theta_i' \mathbf{x}_i = \sum_{i=1}^{d} (\theta_i - \hat{\mu}\beta_i) \mathbf{x}_i = \sum_{i=1}^{d} \theta_i \mathbf{x}_i - \hat{\mu} \sum_{i=1}^{d} \beta_i \mathbf{x}_i = \mathbf{x}.$$

Since at least one of θ'_i is zero, **x** is written as a convex combination of fewer than d elements of C which is a clear contradiction with the initial assumption of d and thereby the proof is completed.

Note:

This question actually refers to a well-known theory in convex geometry. Carathéodory's theorem states that: if $C \subset \mathbb{R}^n$, then every point in **conv** C can be written as a convex combination of at the most of n+1 elements of C.

Problem 10. (10 points) Suppose that C and D are closed convex cones in \mathbb{R}^n , and C^* and D^* are the associated dual cones. Show that

$$(C \cap D)^* = C^* + D^*.$$

Solution:

We first show that $C^* + D^* \subseteq (C \cap D)^*$. Suppose that $\mathbf{x} \in C^* + D^*$, i.e., there exist some $\mathbf{u} \in C^*$, $\mathbf{v} \in D^*$ such that $\mathbf{x} = \mathbf{u} + \mathbf{v}$. Then, for any $\mathbf{y} \in (C \cap D)$, we have $\mathbf{u}^T \mathbf{y} \ge 0$, $\mathbf{v}^T \mathbf{y} \ge 0$, and hence,

$$\mathbf{x}^T \mathbf{y} = \mathbf{u}^T \mathbf{y} + \mathbf{v}^T \mathbf{y} \ge 0,$$

which implies that $\mathbf{x} \in (C \cap D)^*$. Therefore, $C^* + D^* \subseteq (C \cap D)^*$.

Next, we show that $(C \cap D)^* \subseteq C^* + D^*$. Note that C^* and D^* are closed convex cones, and it can be proved by definition that $C^* + D^*$ is the conic hull of the closed set $C^* \cup D^*$. Hence, $C^* + D^*$ is also a closed convex cone, and $(C^* + D^*)^{**} = C^* + D^*$. By the property

$$C \subseteq D \Rightarrow D^* \subseteq C^*, \tag{5}$$

we have that

$$(C^* + D^*)^* \subseteq (C \cap D) \tag{6}$$

$$\Rightarrow (C \cap D)^* \subset C^* + D^* \tag{7}$$

Therefore, it is sufficient to show (6). Since C and D are closed convex cones, we have $(C^*)^* = C$ and $(D^*)^* = D$. By the fact $\mathbf{0} \in C^*$, $\mathbf{0} \in D^*$, and by (5), it can be easily verified that

$$(C^* + D^*)^* \subseteq (C^* + \{\mathbf{0}\})^* = C$$

 $(C^* + D^*)^* \subseteq (D^* + \{\mathbf{0}\})^* = D.$

Therefore, we have proven (6), and thus (7) is true. The proof has been completed.