

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14110094503

FCC REPORT (WIFI)

Applicant: Worldex International Ltd

Address of Applicant: 3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: Mobile Device

Model No.: 2E

Trade mark: NEOS

FCC ID: 2ACZ2-2E

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Nov., 2014

Date of Test: 12 Nov., to 19 Nov., 2014

Date of report issued: 19 Nov., 2014

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	19 Nov., 2014	Original

Prepared by: Date: 19 Nov., 2014

Report Clerk

Reviewed by: Date: 19 Nov., 2014

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2 5.3	GENERAL DESCRIPTION OF E.U.T	
	5.3 5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5 6.6	POWER SPECTRAL DENSITY	_
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	68
Ω	FIIT	CONSTRUCTIONAL DETAILS	60

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Worldex International Ltd.
Address of Applicant:	3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan, Shenzhen, China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	Mobile Device
Model No.:	2E
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-0.20 dBi
AC adapter:	Input:100-240V AC,50/60Hz 0.15A Output:5.0V DC MAX500mA
Power supply:	Rechargeable Li-ion Battery DC3.7V-1600mAh

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Freque							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS14110094503

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Operation mode	Keep the EUT in continuous transmitting with modulation		

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS14110094503

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015		
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015		
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	04-01-2015		
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-08-2015		
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015		
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015		
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A		
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A		
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015		
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015		
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015		
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015		
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015		

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	10-10-2012	10-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-10-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.20 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7	
·			
Test Method:	ANSI C63.4: 2003		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 kHz		
Limit:	Frequency range (MHz)	Limit (c	
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test procedure	a line impedance stabilization 500hm/50uH coupling imposed for the peripheral devices at through a LISN that provision with 500hm termination. (test setup and photograph and photograph setup for the positions of equipment are changed according to AN measurement.	pedance for the measure also connected to the design a 500hm/50uH con (Please refer to the blocks). The checked for maximum and the maximum emising all of the interface controls.	uring equipment. ne main power upling impedance ock diagram of the m conducted sion, the relative ables must be
Test setup:	LISN 40cm		er — AC power
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details	,	
Test results:	Passed		

Measurement Data

Neutral:

Trace: 11

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 945RF Condition

Job. no

: Mobile Device EUT

Model : 2E
Test Mode : Wifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

MHz dBuV dB dB dB dBuV dBuV dB 1 0.170 37.21 0.25 10.77 48.23 64.94 -16.71 QP 2 0.174 20.93 0.25 10.77 31.95 54.77 -22.82 Average 3 0.219 34.34 0.25 10.76 45.35 62.88 -17.53 QP 4 0.238 19.92 0.25 10.75 30.92 52.17 -21.25 Average 5 0.289 34.08 0.26 10.74 45.08 60.54 -15.46 QP 6 0.289 19.65 0.26 10.74 30.65 50.54 -19.89 Average 7 0.310 29.87 0.26 10.74 40.87 59.97 -19.10 QP	
2 0.174 20.93 0.25 10.77 31.95 54.77 -22.82 Average 0.219 34.34 0.25 10.76 45.35 62.88 -17.53 QP	
4 0.238 19.92 0.25 10.75 30.92 52.17 -21.25 Average 5 0.289 34.08 0.26 10.74 45.08 60.54 -15.46 QP 6 0.289 19.65 0.26 10.74 30.65 50.54 -19.89 Average	
5 0.289 34.08 0.26 10.74 45.08 60.54 -15.46 QP 6 0.289 19.65 0.26 10.74 30.65 50.54 -19.89 Average	
6 0.289 19.65 0.26 10.74 30.65 50.54 -19.89 Average	
7 0.310 29.87 0.26 10.74 40.87 59.97 -19.10 QP	
8 0.466 17.88 0.28 10.75 28.91 46.58 -17.67 Average 9 1.021 33.37 0.22 10.87 44.46 56.00 -11.54 QP	
9 1.021 33.37 0.22 10.87 44.46 56.00 -11.54 QP	
10 1.077 17.17 0.23 10.88 28.28 46.00 -17.72 Average	
11 1.819 37.17 0.28 10.95 48.40 56.00 -7.60 QP	
12 1.819 21.69 0.28 10.95 32.92 46.00 -13.08 Average	

Line:

Site Condition

: 945RF Job. no EUT : Mobile Device : 2E Model

Test Mode : Wifi mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: MT

Re

emark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.162	36.48	0.27	10.77	47.52	65.34	-17.82	QP
2	0.178	18.85	0.28	10.77	29.90	54.59	-24.69	Average
3	0.282	35.11	0.26	10.74	46.11	60.76	-14.65	QP
4	0.282	18.26	0.26	10.74	29.26	50.76	-21.50	Average
5	0.461	32.60	0.29	10.75	43.64	56.67	-13.03	QP
4 5 6 7	0.461	15.86	0.29	10.75	26.90	46.67	-19.77	Average
7	0.871	16.81	0.24	10.83	27.88	46.00	-18.12	Average
8	0.880	33.03	0.24	10.83	44.10	56.00	-11.90	QP
8 9	1.839	35.63	0.26	10.95	46.84	56.00	-9.16	QP
10	1.839	18.58	0.26	10.95	29.79	46.00	-16.21	Average
11	3.058	30.29	0.27	10.92	41.48	56.00	-14.52	QP
12	3.074	13.03	0.27	10.92	24.22			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.		

Measurement Data

-	Maximum Conducted Output Power (dBm)					5
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	14.64	13.54	14.06	8.97		
Middle	14.63	13.20	13.23	11.22	30.00	Pass
Highest	14.66	12.83	12.71	9.39		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

T		6dB Emission				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	10.26	15.87	17.31	36.07		
Middle	10.26	16.19	17.07	35.91	>500	Pass
Highest	10.26	16.03	17.31	35.75		

T . O.L.		99% Occupy	1	Б		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result
Lowest	12.91	16.43	17.64	35.91		
Middle	12.99	16.43	17.64	36.07	N/A	N/A
Highest	13.07	16.43	17.56	35.91		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

14.NOV.2014 08:21:21

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Test Method:	ANSI C63.4:2003 and KDB558074	
Limit:	8dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.6 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data

		Power Spec				
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	4.30	-1.99	-1.95	-6.01		
Middle	4.48	0.37	0.36	-3.91	8.00	Pass
Highest	4.54	-1.30	-1.42	-5.95		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Test Method:	ANSI C63.4:2003 and KDB558074		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel Highest channel

Highest channel

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15 200	and 15 205		
Test Method:	FCC Part 15 C Section 15.209 and 15.205				
	ANSI C63.4: 2003				
Test Frequency Range:	2.3GHz to 2.5GHz				
Test site:	Measurement Distance: 3m				
Receiver setup: Limit: Test Procedure:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data				
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

802.11b

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 945RF Job No.

EUT : Mobile Device

2E Model

: Wifi (tx)-b-L Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

	g		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2390.000 2390.000			77.700 TO 760		52.98 42.36			Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 945RF Job No.

EUT : Mobile Device

: ZE

Test mode : Wifi (tx)-b-L Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	B (B)		Antenna Factor				Limit Line		
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000			C 57575707000					Peak Average

Test channel: Highest

Horizontal:

Site

3m chamber FCC_PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

945RF

Job No. EUT Mobile Device

: 2E
Test mode : Wifi (tx)-B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

Liidha			Antenna				Limit	Over	D1-	
	rreq	rever	Factor	Loss	ractor	rever	Line	Limit	Kemark	
-	MHz	dBu∜	dB/m		d <u>B</u>	$\overline{dBuV/m}$	dBu∜/m	<u>dB</u>		
1	2483.500	19.19	27.52	5.70	0.00	52.41	74.00	-21.59	Peak	
2	2483.500	8.35	27.52	5.70	0.00	41.57	54.00	-12.43	Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 945RF Condition

Job No.

EUT : Mobile Device

: 2E
Test mode : Wifi (tx)-B-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

Liidh			Antenna Factor						Remark	
	MHz	dBu∀	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	2483.500									
2	2483.500 2483.500									age

802.11g

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 945RF Condition

Job No.

: Mobile Device

Model : 2E
Test mode : Wifi (tx)-g-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Freq		Antenna Factor					Over Limit		
1	MHz	dBu₹	dB/m	d₿	dB	dBuV/m	dBuV/m	<u>dB</u>		-
200	2390.000 2390.000	707650000	27.58 27.58		0.00 0.00				Peak Average	

Site

: 3m chamber : FCC_PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 945RF Job No.

EUT : Mobile Device

Model : 2E

Test mode : Wifi (tx)-g-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

Laura			Antenna Factor				Limit Line		Remark
-	MHz	dBu₹	— <u>d</u> B/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1	2390.000	18.98	27.58	5.67	0.00	52.23	74.00	-21.77	Peak
2	2390.000	8.51	27.58	5.67	0.00	41.76	54.00	-12.24	Average

Test channel: Highest

Site

Condition

Job No.

EUT : Mobile Device

: 2E
Test mode : Wifi (tx)-G-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

CIIICATA		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
7			<u>dB</u> /m							
	2483.500 2483.500									

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : 945RF

Job No. EUT : Mobile Device

: 2E Model

Test mode : Wifi (tx)-G-H Mode Power Rating: AC 120V/60Hz
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: MT
REMARK:

	E		Antenna Factor				Limit Line	Over Limit	Remark	
ē	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2483.500 2483.500					55.62 41.65		TO THE PARTY	Peak Average	

802.11n (H20)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 945RF Job No.

EUT : Mobile Device

: ZE
Test mode : Wifi (tx)-n20-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

	Š	Pood	Antenna	Coblo	Droopp		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	24.33	27.58	5.67	0.00	57.58	74.00	-16.42	Peak
2	2390.000	9.33	27.58	5.67	0.00	42.58	54.00	-11.42	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 945RF Job No.

EUT : Mobile Device

Model : 2E
Test mode : Wifi (tx)-n20-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

CIICHTA			Antenna Factor						Remark	
5	MHz	dBu∜	—dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
1 2	2390.000 2390.000	77676767677				53.84 41.94			Peak Average	

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 945RF Condition

Job No.

: Mobile Device EUT

Model : 2E
Test mode : Wifi (tx)-n20-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK

REMARK

	Freq		Antenna Factor						Remark	
-	MHz	dBu₹		<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500 2483.500									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. : 945RF

: Mobile Device

Model : 2E
Test mode : Wifi (tx)-n20-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

1 2

Freq		Antenna Factor				Limit Line	Over Limit	Remark	
MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
2483.500 2483.500					57.97 41.78			Peak Average	

802.11n (H40)

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 945RF Job No.

EUT : Mobile Device

: 2E Model

Test mode : Wifi (tx)-n40-L Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

THAN		Santa San		Art Statement	200		Santa Santa	48	
	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu₹	<u>dB</u> /m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	23.06	27.58	5.67	0.00	56.31	74.00	-17.69	Peak
2	2390.000	9.86	27.58	5.67	0.00	43.11	54.00	-10.89	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 945RF Job No.

EUT : Mobile Device

: ZE

Test mode : Wifi (tx)-n40-L Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000		100 TO 100 TO 100 TO 100		0.00				Peak Average

Test channel: Highest Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 945RF

Job No. EUT : Mobile Device

Model : 2E
Test mode : Wifi (tx)-n40-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

Ellund			Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB/m	dB	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								Peak Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 945RF Job No.

EUT : Mobile Device

: 2E
Test mode : Wifi (tx)-n40-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: MT
REMARK :

Mu	•	Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor						Remark	
-	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>		
	2483.500	35.19	27.52	5.70	0.00	68.41	74.00	-5.59	Peak	
2	2483.500	11.75	27.52	5.70					Average	

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Date: 14.NOV.2014 13:40:00

30MHz~25GHz

Middle channel

Date: 14.NOV.2014 13:41:26

30MHz~25GHz

Highest channel

Date: 14.NOV.2014 13:42:51

30MHz~25GHz

Test mode: 802.11g

Lowest channel

Date: 14.NOV.2014 13:49:57

30MHz~25GHz

Middle channel

Date: 14.NOV.2014 13:50:54

30MHz~25GHz

Highest channel

Date: 14.NOV.2014 13:52:08

30MHz~25GHz

Test mode: 802.11n(H20) Lowest channel

Date: 14.NOV.2014 13:55:22

30MHz~25GHz

Middle channel

Date: 14.NOV.2014 13:56:49

30MHz~25GHz

Highest channel

Date: 14.NOV.2014 14:15:38

30MHz~25GHz

Test mode: 802.11n(H40) Lowest channel

Date: 14.NOV.2014 13:59:56

30MHz~25GHz

Middle channel

Date: 14.NOV.2014 14:01:40

30MHz~25GHz

Highest channel

Date: 14.NOV.2014 14:03:22

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.4:200)3							
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:									
	Frequency Detector RBW VBW Remark								
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Val								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Peak 1MHz 10Hz Average Value								
Limit:	l			/ O2 \					
	Freque		Limit (dBuV/		Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21 216MHz-9		43.5 46.0		Quasi-peak Value Quasi-peak Value				
	960MHz-		54.0		Quasi-peak Value				
			54.0		Average Value				
	Above 1	GHz	74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the numbers and to find the numbers and nu	at a 3 meter of the position was set 3 meter which was mountained and vertical and	camber. The tool of the highesters away from the maximum cal polarization was turned to was turned to maximum the maximum to a was turned to maximum the EUT in peatesting could borted. Otherwold be re-tested.	table was rost radiation. the interfer op of a variate meter to for a value of the arrange of th	e 0.8 meters above of tated 360 degrees rence-receiving able-height antenna our meters above the field strength. Intenna are set to a from 1 meter to 4 ees to 360 degrees				

Below 1GHz

Horizontal:

Site

Condition

Job No.

EUT : Mobile Device

Model : 2E
Test mode : Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBm	<u>dB</u> /m	₫B	<u>dB</u>	dBm/m	dBm/m	<u>dB</u>	
1	62.871	36.26	11.50	0.73	29.76	18.73	40.00	-21.27	QP
2	88.964	45.73	11.61	0.90	29.58	28.66	43.50	-14.84	QP
3	94,760	44.69	12.84	0.93	29.55	28.91	43.50	-14.59	QP
4	127.218	44.55	9.32	1.17	29.35	25.69	43.50	-17.81	QP
5	146.374	44.38	8.23	1.30	29.24	24.67	43.50	-18.83	QP
6	201.393	37.84	10.60	1.39	28.82	21.01	43.50	-22.49	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Job No. : 945RF

EUT : Mobile Device

: 2E Model

Test mode : Wifi Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

CHENTUR									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBm	dB/m	<u>dB</u>	<u>dB</u>	_dBm/m	dBm/m	dB	
1	32.749	41.60	12.31	0.46	29.96	24.41	40.00	-15.59	QP
2	62.651	41.02	11.63	0.72	29.76	23.61	40.00	-16.39	QP
	81.212	45.89	8.98	0.86	29.63	26.10	40.00	-13.90	QP
4 5	92.462	45.47	12.41	0.92	29.56	29.24	43.50	-14.26	QP
5	131.297	45.29	8.82	1.20	29.32	25.99	43.50	-17.51	QP
6	237.476	40.53	11.99	1.56	28.61	25.47	46.00	-20.53	QP

Above 1GHz

Test mode: 80	02.11b		Test channe	el: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.87	31.53	8.90	40.24	49.06	74.00	-24.94	Vertical
7236.00								Vertical
4824.00	48.51	31.53	8.90	40.24	48.70	74.00	-25.30	Horizontal
7236.00	-			-	-	-	-	Horizontal
Test mode: 80	02.11b		Test channe	el: Lowest		Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	39.67	31.53	8.90	40.24	39.86	54.00	-14.14	Vertical
7236.00								Vertical
4824.00	39.61	31.53	8.90	40.24	39.80	54.00	-14.20	Horizontal
7236.00								Horizontal

Test mode: 802	2.11b		Test channe	el: Middle		Remark: Pe	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	58.47	31.58	8.98	40.15	58.88	74.00	-15.12	Vertical
7311.00	-			-	-	-		Vertical
4874.00	58.07	31.58	8.98	40.15	58.48	74.00	-15.52	Horizontal
7311.00	-			-	-	-		Horizontal
Test mode: 802	2.11b		Test channe	el: Middle		Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.27	31.58	8.98	40.15	46.68	54.00	-7.32	Vertical
7311.00								Vertical
4874.00	47.89	31.58	8.98	40.15	48.30	54.00	-5.70	Horizontal
7311.00							-	Horizontal

Test mode: 802	2.11b		Test channe	el: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	58.46	31.69	9.08	40.03	59.20	74.00	-14.80	Vertical
7386.00	-			-		-		Vertical
4924.00	55.01	31.69	9.08	40.03	55.75	74.00	-18.25	Horizontal
7386.00	-			-		-		Horizontal
Test mode: 802	2.11b		Test channe	el: Highest		Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.03	31.69	9.08	40.03	47.77	54.00	-6.23	Vertical
7386.00								Vertical
4924.00	46.78	31.69	9.08	40.03	47.52	54.00	-6.48	Horizontal
7386.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.	.11g		Test channe	el: Lowest		Remark: Pe	ak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.56	31.53	8.90	40.24	48.75	74.00	-25.25	Vertical
7236.00		-	-	-			-	Vertical
4824.00	48.02	31.53	8.90	40.24	48.21	74.00	-25.79	Horizontal
7236.00		-	-	-			-	Horizontal
Test mode: 802.	11g		Test channel: Lowest			Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.45	31.53	8.90	40.24	37.64	54.00	-16.36	Vertical
7236.00								Vertical
4824.00	39.44	31.53	8.90	40.24	39.63	54.00	-14.37	Horizontal
7236.00								Horizontal

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	57.04	31.58	8.98	40.15	57.45	74.00	-16.55	Vertical
7311.00								Vertical
4874.00	51.25	31.58	8.98	40.15	51.66	74.00	-22.34	Horizontal
7311.00								Horizontal
Test mode: 802	2.11g		Test chann	el: Middle		Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.37	31.58	8.98	40.15	45.78	54.00	-8.22	Vertical
7311.00								Vertical
4874.00	41.85	31.58	8.98	40.15	42.26	54.00	-11.74	Horizontal
7311.00								Horizontal

Test mode: 802.11g			Test channe	Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	48.45	31.69	9.08	40.03	49.19	74.00	-24.81	Vertical	
7386.00								Vertical	
4924.00	48.06	31.69	9.08	40.03	48.80	74.00	-25.20	Horizontal	
7386.00								Horizontal	
Test mode: 8	02.11g		Test channel: Highest			Remark: A	verage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	38.41	31.69	9.08	40.03	39.15	54.00	-14.85	Vertical	
7386.00								Vertical	
4924.00	48.02	31.69	9.08	40.03	48.76	54.00	-5.24	Horizontal	
7386.00								Horizontal	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 8	Test mode: 802.11n(H20)			el: Lowest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	48.13	31.53	8.90	40.24	48.32	74.00	-25.68	Vertical
7236.00	-	-		-				Vertical
4824.00	47.68	31.53	8.90	40.24	47.87	74.00	-26.13	Horizontal
7236.00	-	-		-				Horizontal
Test mode: 8	02.11n(H20)		Test channel: Lowest			Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	37.24	31.53	8.90	40.24	37.43	54.00	-16.57	Vertical
7236.00							-	Vertical
4824.00	38.21	31.53	8.90	40.24	38.40	54.00	-15.60	Horizontal
7236.00								Horizontal

Test mode: 802.11n(H20)		Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	55.21	31.58	8.98	40.15	55.62	74.00	-18.38	Vertical
7311.00								Vertical
4874.00	51.02	31.58	8.98	40.15	51.43	74.00	-22.57	Horizontal
7311.00	-	-		-	-		-	Horizontal
Test mode: 8	02.11n(H20)		Test channel: Middle			Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	45.33	31.58	8.98	40.15	45.74	54.00	-8.26	Vertical
7311.00							-	Vertical
4874.00	42.01	31.58	8.98	40.15	42.42	54.00	-11.58	Horizontal
7311.00								Horizontal

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	48.23	31.69	9.08	40.03	48.97	74.00	-25.03	Vertical
7386.00								Vertical
4924.00	47.90	31.69	9.08	40.03	48.64	74.00	-25.36	Horizontal
7386.00								Horizontal
Test mode: 8	02.11n(H20)		Test channel: Highest			Remark: Av	rerage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	39.74	31.69	9.08	40.03	40.48	54.00	-13.52	Vertical
7386.00								Vertical
4924.00	37.46	31.69	9.08	40.03	38.20	54.00	-15.80	Horizontal
7386.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 8	est mode: 802.11n(H40)		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	48.31	31.53	8.90	40.24	48.50	74.00	-25.50	Vertical	
7266.00	-	-		-			-	Vertical	
4844.00	48.03	31.53	8.90	40.24	48.22	74.00	-25.78	Horizontal	
7266.00								Horizontal	
Test mode: 8	302.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	37.16	31.53	8.90	40.24	37.35	54.00	-16.65	Vertical	
7266.00								Vertical	
4844.00	38.68	31.53	8.90	40.24	38.87	54.00	-15.13	Horizontal	
7266.00								Horizontal	

Test mode: 8	est mode: 802.11n(H40)		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	53.57	31.58	8.98	40.15	53.98	74.00	-20.02	Vertical
7311.00								Vertical
4874.00	50.63	31.58	8.98	40.15	51.04	74.00	-22.96	Horizontal
7311.00								Horizontal
Test mode: 8	302.11n(H40)		Test channel: Middle			Remark: A	verage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
	Level	Factor		Factor			Limit	Polar.
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 4874.00	Level (dBuV)	Factor (dB/m)	Loss (dB) 8.98	Factor (dB) 40.15	(dBuV/m) 44.05	(dBuV/m) 54.00	Limit (dB)	Vertical

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	48.65	31.69	9.08	40.03	49.39	74.00	-24.61	Vertical
7356.00								Vertical
4904.00	47.65	31.69	9.08	40.03	48.39	74.00	-25.61	Horizontal
7356.00								Horizontal
Test mode: 8	302.11n(H40)		Test channel: Highest			Remark: Av	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	39.34	31.69	9.08	40.03	40.08	54.00	-13.92	Vertical
7356.00								Vertical
4904.00	37.48	31.69	9.08	40.03	38.22	54.00	-15.78	Horizontal
7356.00								Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "--", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366