Signali i sustavi

Drugi međuispit (grupa D) - 5. svibnja 2011.

1.	Zadan je signal od 6 uzoraka $x(n)=\{\underline{4},0,3,0,3,0\}$. Vrijednost DFT ₆ transformacije signala $x(n)$ za $k=3$ je:
	a) $X(3) = 1$ b) $X(3) = 4 - 6j$ c) $X(3) = 4 + 6j$ d) $X(3) = 8$ e) $X(3) = 10$
2.	Izračunajte IDFT ₄ transformaciju spektra $X(k) = \{\underline{5}, j, 3, -j\}.$
	a) $x(n) = \{\underline{2}, 0, 2, 1\}$ b) $x(n) = \{\underline{8}, 0, 8, 4\}$ c) $x(n) = \{\underline{2}, 1, 2, 0\}$ d) $x(n) = \{\underline{8}, 4, 8, 0\}$ e) $x(n) = \{\underline{3}, 1, 5, -1\}$
9	Zadan je vremenski kontinuirani gignal $x(t) = 2\sin(2t) + 2\cos(5t)$. Signal je ožitan g frakvencijem ožitavanje $x_0 = 7$ na

3. Zadan je vremenski kontinuirani signal $x(t) = 2\sin(3t) + 2\cos(5t)$. Signal je očitan s frekvencijom očitavanja $\omega_S = 7$ pa je zatim rekonstruiran idealnim interpolatorom. Koji se signal dobiva nakon tog postupka?

a) $2\cos(2t) + 2\sin(3t)$ b) $2\cos(2t) + 2\sin(3t) + 2\sin(4t) + 2\cos(5t)$ c) $2\sin(2t) + 2\sin(3t) + 2\cos(4t) + 2\cos(5t)$ d) $2\sin(3t) + 2\cos(5t)$ e) $2\sin(2t) + 2\sin(3t)$

4. Razmatramo očitavanje CTFT spektra $X(j\omega)$ vremenski kontinuiranog signala x(t) konačne energije. Koji od sljedećih uvjeta mora biti zadovoljen kako bi mogli očitati spektar u točkama $k\omega_S$, $k \in \mathbb{Z}$, tako da iz dobivenih uzoraka spektra $X(jk\omega_S)$ bude moguća rekonstrukcija polaznog kontinuiranog spektra $X(j\omega)$?

a) Najveća frekvencijska komponenta signala x(t) mora biti dvaput manja od ω_S .

b) Signal mora biti jednak nuli izvan konačnog segmenta trajana $2\pi/\omega_S$.

c) Najmanja frekvencijska komponenta signala x(t) mora biti manja od ω_S .

d) Najveća frekvencijska komponenta signala x(t) mora biti veća od ω_S .

e) Signal mora biti gladak.

5. Promatramo kontinuirani signal $x(t) = 1 + \sin(10\pi t)$. Započevši od trenutka t = 0s snimili smo 150 ms danog signala. Dobiveni segment smo zatim očitali uz frekvenciju očitavanja $f_S = 20$ Hz te smo iz dobivena četiri uzorka izračunali DFT. Koja vrijednost diskretne Fourierove transformacije odgovara kontinuiranoj frekvenciji $\omega = 10\pi \, \text{rad/s}$?

a) 4 b) j/2 c) -j/2 d) 2j e) -2j

6. Neka je y(t) odziv sustava S na pobudu u(t), dakle y(t) = S(u(t)), te neka je T realan broj. Za sustav S kažemo da je vremenski nepromjenjiv ako za svaku pobudu vrijedi:

a) $\forall T: u(t-T) = y(t-T)$ b) $\forall T: S(y(t+T)) = u(t+T)$ c) $\forall T: u(t-T) = y(t+T)$ d) $\forall T: S(u(t-T)) = y(t-T)$ e) $\forall T: S(u(t-T)) = y(t+T)$

7. Zadan je sustav $y(n) = e^{-\lambda n}u(n) + \lambda$ gdje je y(n) izlazni signal, u(n) ulazni signal i $\lambda \in \mathbb{C}$ konstanta. Samo jedna od navedenih tvrdni je točna! Koja?

a) Sustav je memorijski.
b) Ako je sustav linearan za neki λ onda je i vremenski nepromjenjiv za taj isti λ.
c) Sustav je nekauzalan.
d) Sustav je vremenski promjenjiv za svaki λ.
e) Sustav je nelinaran za svaki λ.

8. Zadan je sustav $y(t) = e^{4t} \mu(t+4)u(t)$ gdje je y(t) izlazni signal i gdje je u(t) ulazni signal. Zadani sustav je:

a) memorijski i vremenski promjenjiv b) linearan i memorijski c) linearan i vremenski nepromjenjiv

d) bezmemorijski i vremenski nepromjenjiv e) linearan i vremenski promjenjiv

9. Za promatrani diskretni sustav je poznato da na tri ulazna signala $u_1(n) = \delta(n)$, $u_2(n) = \mu(n-1)$ i $u_3(n) = \mu(n)$ redom daje odzive $y_1(n) = h(n)$, $y_2(n) = (n-1)h(n)$ i $y_3(n) = h(n)$. Pri tome je h(n) diskretni signal takav da vrijedi h(n) > 1 za svaki n. Samo jedna od navedenih tvrdnji je točna! Koja?

a) Zadani sustav je nelinearan i BIBO nestabilan.b) Zadani sustav je nelinearan i BIBO stabilan.

c) Zadani sustav je linearan i BIBO nestabilan. d) Zadani sustav je linearan i BIBO stabilan.

e) Na temelju zadanog nije moguće ispitati linearnost i BIBO stabilnost.

10. Ako je poznato da je $y_1(n) = 8n \mu(n)$ odziv linearnog vremenski nepromjenjivog sustava na pobudu $u_1(n) = \mu(n)$ odredite odziv $y_2(n)$ sustava na pobudu $u_2(n) = 2\delta(n)$.

a) $y_2(n) = 16 \mu(n)$ **b)** $y_2(n) = 16 \mu(n-1)$ **c)** $y_2(n) = 8n\delta(n)$ **d)** $y_2(n) = 8 \mu(n-1)$ **e)** $y_2(n) = 8 \mu(n)$

- **11.** Sustav $y(n) = u(n^4)$ je:
 - a) BIBO stabilan i vremenski promjenjiv
 b) BIBO stabilan i vremenski nepromjenjiv
 - c) BIBO nestabilan i nelinearan
- d) BIBO stabilan i nelinearan
- e) BIBO nestabilan i vremenski nepromjenjiv

- **12.** Izračunajte $(\delta(n+3)*2^n) \cdot \delta(3n-9)$.
 - a) $64\delta(3n-9)$
- **b**) 64
- c) $\frac{1}{64}$
- **d)** $\frac{1}{8}\delta(3n-9)$
- **e)** 2^{n}
- 13. Izračunajte konvoluciju vremenski diskretnih signala konačnog trajanja $x_1(n) = \delta(n-1) + 2\delta(n-2)$ i $x_2(n) = \delta(n+1) + 2\delta(n-2)$ $\delta(n) + \delta(n-1)$.

 - a) $2\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + \delta(n-4)$ b) $\delta(n) + 3\delta(n-1) + 3\delta(n-2) + 3\delta(n-3) + 2\delta(n-4)$
 - c) $2\delta(n+3)+3\delta(n+2)+3\delta(n+1)+\delta(n)$ d) $\delta(n)+3\delta(n-1)+3\delta(n-2)+2\delta(n-3)$ e) $\delta(n+1)+3\delta(n)+3\delta(n-1)+2\delta(n-2)$
- 14. Odredite konvoluciju $x_1(t) * x_2(t)$ signala konačnih trajanja zadanih slikom.

- Ako je poznato da je y(t) = u(t) * h(t) izrazite u(t+4) * h(t-2) preko y(t)!
 - **a)** u(t+4)*h(t-2) = y(t+6) **b)** u(t+4)*h(t-2) = y(t+4) **d)** u(t+4)*h(t-2) = y(t-2) **e)** u(t+4)*h(t-2) = y(t-6)
- c) u(t+4) * h(t-2) = y(t+2)

- 16. Impulsni odziv kauzalnog, linearnog i vremenski nepromjenjivog diskretnog sustava opisanog jednadžbom diferencija y(n) - 2y(n-1) + y(n-2) = u(n) je:

 - a) $h(n) = (1+n)\mu(n)$ b) $h(n) = (1+2n)\mu(n)$ c) $h(n) = (-1)^n \mu(n)$ d) $h(n) = \mu(n)$ e) $h(n) = (1-n)\mu(n)$

- 17. Za sustav iz prethodnog zadataka odredite odziv MIRNOG sustava na pobudu $u(n) = 4 \mu(n)$.

 - a) $y_m(n) = (4 + 8n + 2n^2) \mu(n)$ b) $y_m(n) = (4 + 6n + 2n^2) \mu(n)$ c) $y_m(n) = 2n^2 \mu(n)$

- d) $y_m(n) = (2n + 2n^2) \mu(n)$
- e) $y_m(n) = (4 + 8n) \mu(n)$
- 18. Promatramo kauzalni sustav zadan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n-1)$. Odredite PRISILNI odziv sustava na svevremensku pobudu $u(n) = 10\cos(\frac{\pi}{2}n)$.

 - **a)** $y_p(n) = 3\cos(\frac{\pi}{2}n) + 9\sin(\frac{\pi}{2}n)$ **b)** $y_p(n) = -3\cos(\frac{\pi}{2}n) + 9\sin(\frac{\pi}{2}n)$ **c)** $y_p(n) = 3\sin(\frac{\pi}{2}n) 9\cos(\frac{\pi}{2}n)$ **d)** $y_p(n) = -3\sin(\frac{\pi}{2}n) + 9\sin(\frac{\pi}{2}n)$ **e)** $y_p(n) = -3\cos(\frac{\pi}{2}n) 9\sin(\frac{\pi}{2}n)$

- 19. Za sustav iz prethodnog zadatka odredite PRIRODNI odziv ako je poznato da je y(-1) = 3.
 - a) $y_0(n) = 4(-\frac{1}{3})^n \mu(n) + 3\cos(\frac{\pi}{2}n)$ b) $y_0(n) = -4(-\frac{1}{3})^n \mu(n) + 3\sin(\frac{\pi}{2}n)$ c) $y_0(n) = 4(-\frac{1}{3})^n \mu(n)$ d) $y_0(n) = -4(-\frac{1}{3})^n \mu(n)$ e) $y_0(n) = (-\frac{1}{3})^n \mu(n)$

- **20.** Za kauzalni sustav opisan jednadžbom $y(n) + \frac{1}{3}y(n-1) = u(n)$ odziv mirnog sustava na pobudu $u(n) = \mu(n) \mu(n-10)$ u koraku n=150 iznosi:
 - a) 3^{-150}

- b) $-\frac{1}{4}3^{-140}$ c) $\frac{1}{4}3^{-150} + \frac{3}{4}$ d) $\frac{1}{4}(3^{-150} 3^{-142})$ e) $\frac{1}{4}(3^{-150} 3^{-140})$