

ОСНОВЫ ТЕОРИИ РАДИОСИСТЕМ И КОМПЛЕКСОВ РАДИОУПРАВЛЕНИЯ

15. Синтез оптимальных измерителей РЭСУ

15.1. Введение. Теорема разделения.

Алгоритм оптимального линейного стохастического управления разделяется на две части:

- 1. Оптимальный фильтр для получения оценок вектора состояния
- 2. Оптимальный детерминированный регулятор

Задачи синтеза фильтра и регулятора могут ставиться и решаться отдельно друг от друга.

15.2. Постановка задачи синтеза оптимального линейного непрерывного фильтра

15.2.1 Уравнение состояния объекта, модель объекта, модель сообщения

Предполагается, что интересующий нас процесс представлен компонентом многомерного марковского процесса, задаваемого системой линейных дифференциальных уравнений в векторно-матричной форме

$$\frac{d\vec{x}}{dt} = F(t) \cdot \vec{x}(t) + B(t) \cdot \vec{u}(t) + G(t) \cdot \vec{w}(t)$$

где
$$\vec{x}(t) = [x_1, x_2, ..., x_n]^{\text{T}}$$
 - вектор состояния, $\vec{u}(t) = [u_1, u_2, ..., u_l]^{\text{T}}$ - вектор управления

$$\vec{w}(t) = [w_1, w_2, ..., w_m]^{\text{T}}$$
- вектор случайных возмущений $\overline{\vec{w}(t)} = 0, \ \overline{\vec{w}(t) \cdot \vec{w}^{\text{T}}(t-\tau)} = Q(t) \cdot \delta(\tau)$

15.2.2 Уравнение наблюдения (уравнение измерений)

$$\vec{z}(t) = H(t) \cdot \vec{x}(t) + \vec{\xi}(t)$$
 $\vec{z}(t) = [z_1, z_2, ..., z_r]^{\mathrm{T}}$ - вектор наблюдений

$$\vec{\xi}(t) = [\xi_1, \xi_2, ..., \xi_r]^{\mathrm{T}}$$
 - шум наблюдений

$$\overline{\vec{\xi}(t)} = 0$$
 $\overline{\vec{\xi}(t) \cdot \vec{\xi}^{\mathrm{T}}(t-\tau)} = R(t) \cdot \delta(\tau)$

15.2.3 Начальные условия

$$\overline{\vec{x}(0)}, \qquad P(0) = \overline{\left(\vec{x}(0) - \overline{\vec{x}(0)}\right) \cdot \left(\vec{x}(0) - \overline{\vec{x}(0)}\right)^{\mathrm{T}}}$$

15.3. Решение задачи оптимальной линейной фильтрации

Решение задачи оптимальной линейной фильтрации заключается в нахождении алгоритма, который используя наблюдения и априорную информацию (уравнение объекта и начальные условия), формирует несмещенную оценку вектора состояния с минимальной среднеквадратической ошибкой каждой составляющей в любой момент времени t.

15.3.1 Алгоритм непрерывного фильтра Калмана (Калмана-Бюси)

Структура фильтра
$$\frac{d}{dt} \hat{\vec{x}}(t) = F(t) \cdot \hat{\vec{x}}(t) + B(t) \cdot \vec{u}(t) + K(t) \cdot \left[\vec{z}(t) - H(t) \cdot \hat{\vec{x}}(t) \right] ,$$

$$\widehat{\vec{x}}(0) = \overline{\vec{x}(0)} ,$$

Алгоритм вычисления коэффициентов фильтра $K(t) = P(t) \cdot H^{\mathrm{T}}(t) \cdot R^{-1}(t)$

$$K(t) = P(t) \cdot H^{\mathrm{T}}(t) \cdot R^{-1}(t)$$

Уравнение Риккати - дисперсионное уравнение

$$\frac{dP(t)}{dt} = F(t) \cdot P(t) + P(t) \cdot F^{\mathrm{T}}(t) + G(t) \cdot Q(t) \cdot G^{\mathrm{T}}(t) - P(t) \cdot H^{\mathrm{T}}(t) \cdot R^{-1}(t) \cdot H(t) \cdot P(t)$$

15.3.2 Стационарный режим

$$\frac{dP(t)}{dt} = 0, \qquad F(t) \cdot P(t) + P(t) \cdot F^{\mathrm{T}}(t) + G(t) \cdot Q(t) \cdot G^{\mathrm{T}}(t) - P(t) \cdot H^{\mathrm{T}}(t) \cdot R^{-1}(t) \cdot H(t) \cdot P(t) = 0$$

15.3.3 Структурная схема фильтра

15.4. Синтез следящих измерителей одного параметра на основе фильтра Калмана

15.5. Комплексирование измерителей РТСУ

Перспективный путь повышения точности измерений состоит в объединении различных по принципу действия измерителей в единую измерительную систему. Объединение измерителей и датчиков информации называют комплексированием информации, единую объединенную измерительную систему называют комплексным измерителем (КИ).

В единую комплексную систему могут объединяться радиотехнические, оптоэлектронные, инерциальные, электромеханические и др. виды измерителей.

15.5.1 Классификация комплексных измерителей

Использование (наличие) априорной информации об объекте

- КИ с полной априорной информацией об объекте,
- КИ с неполной априорной информацией об объекте

Чувствительность к модели информационного процесса

- Инвариантные КИ
- Неинвариантные КИ

Структура КИ

- Схема компенсации
- Схема фильтрации
- Схема коррекции

15.6. Синтез неинвариантных КИ с использованием полной априорной информации об объекте

Задача сводится к стандартной постановке задачи синтеза фильтра Калмана при многомерном измерении. Измеряемый процесс $\vec{y}(t) = [y_1, y_2, ..., y_r]^T$ совместно с шумом образует модель измерения

$$\vec{z}(t) = H(t) \cdot \vec{x}(t) + \vec{\xi}(t) = \vec{y}(t) + \vec{\xi}(t), \qquad \vec{y}(t) = H(t) \cdot \vec{x}(t)$$

Пример

Рассмотрим задачу комплексирования измерений параметра и его производной (скорости): дальность-скорость, фаза-частота, скорость-ускорение.

Возьмем для определенности, комплексирование временного и частотного дискриминатора в КИ дальности $\mathcal {I}$ и скорости V объекта, перемещающегося под воздействием случайного ускорения a . Вектор состояния $\vec{x}(t) = [\mathcal{I}, V]^{\mathrm{T}}$

Модель объекта Модель измерений

$$\begin{cases} \frac{d\mathcal{I}}{dt} = V & \begin{cases} z_{\mathcal{I}} = \mathcal{I} + \xi_{\mathcal{I}} \\ z_{V} = V + \xi_{V} \end{cases} & \vec{z} = \begin{pmatrix} z_{\mathcal{I}} \\ z_{V} \end{pmatrix} & \vec{y} = \begin{pmatrix} \mathcal{I} \\ V \end{pmatrix} \end{cases}$$
 где $a, \xi_{\mathcal{I}}, \xi_{V}$ - случайные процессы — «белые шумы» нулевым м.о. и

спектральными плотностями Q, S_{II}, S_{V}

Матрицы, задающие модель объекта и модель измерений

$$F = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \quad H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad G = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad R = \begin{pmatrix} S_{\mathcal{A}} & 0 \\ 0 & S_{\mathcal{V}} \end{pmatrix}; \quad \mathcal{Q}$$

Алгоритм фильтра

$$\begin{cases} \frac{d\widehat{\mathcal{I}}}{dt} = \widehat{V} + K_{11}(z_{\mathcal{I}} - \widehat{\mathcal{I}}) + K_{12}(z_{V} - \widehat{V}); \\ \frac{d\widehat{V}}{dt} = K_{21}(z_{\mathcal{I}} - \widehat{\mathcal{I}}) + K_{22}(z_{V} - \widehat{V}); \end{cases} K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}; K_{12} = \frac{P_{12}}{S_{\mathcal{I}}}; K_{12} = \frac{P_{12}}{S_{\mathcal{I}}}; K_{12} = \frac{P_{12}}{S_{\mathcal{I}}}; K_{21} = \frac{P_{21}}{S_{\mathcal{I}}}; K_{22} = \frac{P_{22}}{S_{\mathcal{I}}}; K_{21} = \frac{P_{22}}{S_{\mathcal{I}}}; K_{22} = \frac{P_{22}}{S_{\mathcal{I}}}; K_{22} = \frac{P_{22}}{S_{\mathcal{I}}}; K_{23} = \frac{P_{23}}{S_{\mathcal{I}}}; K_{24} = \frac{P_{24}}{S_{\mathcal{I}}}; K_{25} = \frac{P_{25}}{S_{\mathcal{I}}}; K_{27} = \frac{P_{27}}{S_{\mathcal{I}}}; K_{28} = \frac{P_{28}}{S_{\mathcal{I}}}; K_{38} = \frac{P_{38}}{S_{\mathcal{I}}}; K_{38} = \frac{P_{38}}{S_{\mathcal{I}}}; K_{38} = \frac{P_{38}}{S_{\mathcal{I}}}; K_{38} = \frac{P_{38}}{S_{\mathcal{I}}}; K_{48} = \frac{P_{48}}{S_{\mathcal{I}}}; K_{48} = \frac{P_{48}}{S_{\mathcal$$

$$K = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix};$$

$$K_{11} = \frac{P_{11}}{S_{\mathcal{I}}}; \quad K_{12} = \frac{P_{12}}{S_{\mathcal{V}}};$$

$$K_{21} = \frac{P_{21}}{S_{II}}; \quad K_{22} = \frac{P_{22}}{S_{V}};$$

$$P = \begin{pmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{pmatrix}$$

$$\begin{cases} \frac{dP_{11}}{dt} = 2P_{12} - \frac{P_{11}^{2}}{S_{\mathcal{A}}} - \frac{P_{12}^{2}}{S_{\mathcal{V}}} \\ \frac{dP_{12}}{dt} = P_{22} - \frac{P_{11}P_{12}}{S_{\mathcal{A}}} - \frac{P_{12}P_{22}}{S_{\mathcal{V}}} \\ \frac{dP_{22}}{dt} = Q - \frac{P_{12}^{2}}{S_{\mathcal{A}}} - \frac{P_{22}^{2}}{S_{\mathcal{V}}} \end{cases}$$

В установившемся режиме

$$P_{11} = \frac{\sqrt{\rho \cdot (2 + \rho \cdot b)}}{1 + \rho \cdot b} \cdot S_{\mathcal{A}}, \quad P_{12} = \frac{\rho}{1 + \rho \cdot b} \cdot S_{\mathcal{A}}, \quad P_{22} = \frac{\rho \cdot b \cdot \sqrt{\rho \cdot (2 + \rho \cdot b)}}{1 + \rho \cdot b} \cdot S_{\mathcal{V}},$$

$$\rho = \sqrt{Q/S_{\mathcal{I}}}, \quad b = S_{\mathcal{I}}/S_{V}.$$

Структурная схема фильтра

Схема со взаимной коррекцией

Частный случай при $S_V o \infty$, $\Rightarrow K_{12} o 0$, $K_{22} o 0$,

Некомплексированный дальномер

$$T_{\mathcal{A}} = \frac{K_{11}}{K_{21}}, \qquad K_{ab}(p) = K_{21} \frac{pT+1}{p^2},$$

15.7. Инвариантные КИ

Комплексные измерители, в которых ошибки одного или нескольких выходов не зависят от характеристик одного или нескольких входных возмущений, называются *инвариантными*.

Достоинства инвариантных КИ

- Возможность оценивать параметры объекта при отсутствии полной априорной информации об объекте.
- Меньшая размерность измерительной системы.
- В инвариантных системах отсутствуют динамические ошибки.

Недостатки

• Не использование априорной информации увеличивает ошибки измерителя.

15.7.1. Инвариантный КИ на основе схемы компенсации

Обычно используется при наличии нескольких измерителей одного параметра, причём ошибки измерений имеют существенные различия спектров шумов. Пусть имеем два измерителя полезного сообщения $\lambda(t)$, информация о котором отсутствует.

$$z_1 = \lambda + \xi_1(t),$$
 $\xi_1 -$ широкополосный процесс – белый шум, $z_2 = \lambda + \xi_2(t),$ $\xi_2 -$ узкополосный процесс.

15.7.2. Инвариантный КИ на основе схемы фильтрации

Выполним эквивалентное преобразование предыдущей схемы.

15.7.3. Инвариантный КИ на основе схемы коррекции (введения информации в следящий контур)

15.7.4. Пример

Прием следующую модель узкополосного шума измерений

$$x = -\xi_2$$

$$\frac{dx}{dt} = -\frac{1}{T}x + \frac{1}{T}w - MOД$$

 $\frac{dx}{dt} = -\frac{1}{T}x + \frac{1}{T}w$ - модель объекта (узкополосного шума)

$$z = x + \xi_1$$

- модель измерения для синтеза фильтра схемы компенсации

Q, R w, ξ_1 - белые шумы с нулевым среднем и спектральными плотностями

$$\frac{d\widehat{x}}{dt} = -\frac{1}{T}\widehat{x} + K(z - \widehat{x}), \qquad K = \frac{P}{R}$$

$$\frac{dP}{dt} = -\frac{2}{T}P - \frac{P^2}{R} + \frac{Q}{T^2},$$

$$\xi_1(t)$$

В стационарном режиме

$$K = \frac{1}{R}$$

$$K = \frac{1}{T} \left(\sqrt{1 + \frac{Q}{R}} - 1 \right)$$

$$K_{z\bar{x}}(p) = \frac{KT}{pT + 1 + KT}$$

$$\hat{x}(t) = -\hat{\xi}_{2}$$

$$K = \frac{1}{T} \left(\sqrt{1 + \frac{Q}{R}} - 1 \right)$$

$$\frac{1}{T} \left(\sqrt{1 + \frac{Q}{R}} - 1 \right)$$

КИ на основе схемы компенсации

15.7.5. Инвариантный КИ на основе схемы компенсации при многомерных измерениях (r > 2)

При наличии m измерителей одного параметра (r>2) и при условии, что шумы измерений $\xi_i(t)$, $i=1\div(r-1)$ - белые, а $\xi_r(t)$ - узкополосный (коррелированный) процесс, КИ можно построить по следующей схеме:

Постановка задачи синтеза фильтра

Порядок фильтра определяется порядком модели шума $\xi_r(t)$, который является оцениваемым информационным процессом

$$y = -\xi_r = H_y \vec{x}$$
 $\vec{x}(t) = [x_1, x_2, ..., x_n]^T$

$$\frac{d\vec{x}}{dt} = F \cdot \vec{x} + G \cdot \vec{w}$$
 - модель объекта (узкополосного шума)

$$ec{z}_{\phi}(t) = H \cdot ec{x} + ec{\xi}_{\phi}$$
 - модель измерения для синтеза фильтра схемы компенсации $ec{z}_{\phi}(t) = [z_1, z_2, ..., z_{r-1}]^{\mathrm{T}}$ $ec{\xi}_{\phi}(t) = [\xi_1, \xi_2, ..., \xi_{r-1}]^{\mathrm{T}}$ $H = \begin{bmatrix} H_y \\ H_y \\ ... \\ H_y \end{bmatrix}_{r-1,n}$

$$\vec{z}_{\phi}(t) = [z_1, z_2, ..., z_{r-1}]^{T}$$
 $\vec{\xi}_{\phi}(t) = [\xi_1, \xi_2, ..., \xi_{r-1}]^{T}$

Алгоритм фильтрации

$$\begin{split} \frac{d}{dt} \widehat{\vec{x}}(t) &= F \cdot \widehat{\vec{x}}(t) + K(t) \cdot \left[\vec{z}_{\phi}(t) - H \cdot \widehat{\vec{x}}(t) \right] , \\ \widehat{\vec{x}}(0) &= \overline{\vec{x}(0)} , \\ \widehat{\lambda}(t) &= z_r(t) + H_y \cdot \widehat{\vec{x}}(t) \end{split}$$

15.7.6. Инвариантный КИ на основе схемы коррекции при измерении связанных параметров

Применяются при комплексировании радиотехнических измерителей и автономных датчиков (акселерометры, гироскопические измерители, индукционные и др.). Погрешности таких датчиков обычно связаны с технологическими допусками при производстве, выставке нулей, ошибками юстировки, накоплением ошибок при интегрировании данных. Флюктуационная погрешность таких датчиков мала.

В зависимости от типа функциональной связи между измеряемыми параметрами различают:

- -**Позиционную коррекцию** измеряется один параметр
- -*Скоростную коррекцию* измеряется параметр и его производная
- -Коррекцию по ускорению измеряется параметр и его вторая производная

При синтезе КИ заменяют модель информационного процесса или ее часть на модель ошибок автономного датчика. Это позволяет снизить размерность задачи и устранить проблемму априорных данных.

Пример

Синтез инвариантного доплеровского измерителя скорости со скоростной коррекцией от акселерометра.

Радиотехнический измеритель скорости (доплеровский)

$$z_1 = v + \xi_v$$

$$\xi_v$$

$$\overline{\xi_{v}(t)} = 0$$

$$z_1 = v + \xi_v$$
 - белый шум $\overline{\xi_v(t)} = 0$ $\overline{\xi_v(t) \cdot \xi_v(t - \tau)} = R_v \cdot \delta(\tau)$

Автономный измеритель продольного ускорения (акселерометр)

$$z_2 = a + \xi_a$$

 $z_2 = a + \xi_a$ - случайные ошибки автономного измерителя (ошибки выставки нуля, медленный дрейф показаний)

$$\frac{d}{dt}\xi_a = w_a$$

 $w_{\scriptscriptstyle a}$ - белый шум

$$\overline{w_a(t)} = 0$$

$$\overline{w_a(t)} = 0$$
 $\overline{w_a(t) \cdot w_a(t-\tau)} = Q_a \cdot \delta(\tau)$

$$z = \begin{bmatrix} z_1, z_2 \end{bmatrix}^T$$

$$\vec{x} = \begin{bmatrix} v \\ a \\ \dots \end{bmatrix}^T \qquad \begin{cases} \frac{d}{dt}v = a \\ \frac{d}{dt}a = \dots \\ \dots \end{cases}$$

Преобразуем уравнения для получения новой модели состояния

$$\vec{x}_{\text{\tiny KM}} = \begin{bmatrix} v \\ \mu \end{bmatrix}$$

$$\mu = -\varepsilon$$

$$\begin{cases} \frac{d}{dt}v = a = z_2 + \mu \\ \frac{d}{dt}\mu = -w_a \end{cases}$$

 $ec{x}_{_{\mathrm{KM}}} = egin{bmatrix} v \\ \mu \end{bmatrix}$ $= b \begin{bmatrix} d \\ dt \end{bmatrix} v = a = z_2 + \mu \\ dt \end{bmatrix}$ - из уравнения состояния исключена модель ускорения, добавлена модель ошибок датчика ускорения, а измерение z_2 рассматривается как известная функция.

Модель измерения

$$z_1 = v + \xi_v$$

$$\xi_v$$
 - белый шум

$$\overline{\xi_{v}(t)} = 0$$

$$z_1 = v + \xi_v$$
 - белый шум $\overline{\xi_v(t)} = 0$ $\overline{\xi_v(t) \cdot \xi_v(t - \tau)} = R_v \cdot \delta(\tau)$

Алгоритм фильтра

$$\begin{cases} \frac{d}{dt}\hat{v} = z_2 + \hat{\mu} + k_1(z_1 - \hat{v}) \\ \frac{d}{dt}\hat{\mu} = k_2(z_1 - \hat{v}) \end{cases}$$

$$\begin{cases} k_{1} = \frac{P_{11}}{R_{v}} \\ k_{2} = \frac{P_{12}}{R_{v}} \end{cases}$$

$$\begin{cases} \frac{d}{dt}\hat{v} = z_2 + \hat{\mu} + k_1(z_1 - \hat{v}) \\ \frac{d}{dt}\hat{\mu} = k_2(z_1 - \hat{v}) \end{cases} \begin{cases} k_1 = \frac{P_{11}}{R_v} \\ k_2 = \frac{P_{12}}{R_v} \end{cases} \begin{cases} \frac{d}{dt}P_{11} = 2P_{12} - \frac{P_{11}^2}{R_v} \\ \frac{d}{dt}P_{12} = P_{22} - \frac{P_{11}P_{12}}{R_v} \\ \frac{d}{dt}P_{22} = Q_a - \frac{P_{12}^2}{R_v} \end{cases}$$

$$T = \frac{k_1}{k_2}$$

$$K_{v\hat{v}}(p)=1$$

Спасибо за внимание!

