Types of reactions

Acid-base: Transfer of a proton from acid to base

 Complexation: Formation of covalent bonds between a transition metal species and ligands

 Oxidation – reduction: Transfer of one or more electrons from the reducing agent to the oxidizing agent

$$MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2 O$$

violet color colorless manganous

 Precipitation (ionic salt): Electrostatic attraction of cations and anions to form an ionic lattice

Acid-base titrations

Revision of the basics:

• When acids (or bases) are added to water, they undergo ionisation.

• HA +
$$H_2O \leftrightarrow A^- + H_3O^+$$

• At equilibrium, an ionisation constant (K_a) may be defined:

$$\mathbf{K_a} = \frac{\mathbf{[A^-][H_3O^+]}}{\mathbf{[HA]}}$$

• K_a is a measure of the strength of an acid.

•
$$pH = -\log [H^+]$$

Titration of strong acids or bases

When a strong acid reacts with a strong base, both are completely ionised.

In the reaction between HCl and NaOH for example, complete neutralisation (equivalence point) is reached at a pH of 7.

The sharp change in pH near the equivalence point allows us to determine the completion of a reaction.

Effect of concentration on the magnitude of the endpoint break

Titration of weak acids and bases

- Less straightforward as they only ionise partially in water.
- Salts undergo hydrolysis equivalence point will not be at pH
 7.

Example:

The CH₃COO⁻ ion produced acts as a base in water, producing the parent acid.

$$CH_3COO^- + H_2O \rightarrow OH^- + CH_3COOH$$

- Results in a 'lag' in reaching the equivalence point.
- Referred to as the buffering region - it takes a large amount of NaOH to produce a small change in pH.

- Weak acid + strong base = basic salt (equivalence pH > 7)
- Strong acid + weak base = acidic salt (equivalence pH < 7)

We can calculate pH using the Henderson-Hasselbalch equation: $pH = pK_a + \frac{log[A^-]}{log[HA]}$

Strong acid with a strong base

Weak acid with a strong base

Calculate the pH for the titration of 50.0 ml of <u>0.100 M</u> HCl with 0.100 M NaOH after the addition of 0, 5 and 50 ml of base.

0.1 M

0.1 M, 50 mL

• *At 5 mL*:

	HC1	NaOH
	50 mL, 0.1 M	0. 1 M
Start		
react		
[H+]		

Find the pH at the following points in the titration of 30 mL of 0.05 M HClO₄ with 0.1 M KOH.

- a) Before adding any KOH
- b) When 10 mL of 0.1 M KOH is added
- c) When 15 mL of 0.1 M KOH is added
- d) When 20 mL of 0.1 M KOH is added

$$HClO_4 + 0.1 \text{ M KOH} \rightarrow KClO_4 + H_2O$$

$HClO_4$ + KOH $\rightarrow KClO_4$ + H_2O 0.05 M, 30 mL 0.1 M, 10 mL

	HClO ₄	КОН
	30 mL, 0.05 M	0. 1 M, 10
Start		
react		
final		

Calculate the pH for the titration between 50.0 ml of 0.100 M acetic acid and 0.100 M NaOH after the addition of 0, 10 and 50 ml of base (K_a for acetic acid = 1.75 x 10⁻⁵).

CH₃COOH + NaOH \rightarrow CH₃COONa + H₂O 0.1 M, 50 mL 0.1 M, 10 mL (K_a for acetic acid = 1.75 x 10⁻⁵)

	CH ₃ COOH	NaOH
	50 mL, 0.1 M	0. 1 M, 10
Start		
react		
Conc.		
final		

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

0.1 M, 50 mL 0.1 M, 50 mL

Some reminders:

$$\mathbf{K_b} = \frac{\mathbf{K_w}}{\mathbf{K_a}} \longrightarrow 1.0 \times 10^{-14}$$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{[HA][OH^{-}]}{[A-]}$$

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

0.1 M, 50 mL 0.1 M, 50 mL

 Acetic acid is a weak acid - salt hydrolyses in water. -OAc is treated as a base.

$$-OAc + H2O \rightarrow HOAc + OH$$

$$K_b = \frac{K_w}{K_w} = \frac{[HOAc][OH^-]}{[-OAc]}$$

All HOAc has been converted to OAc - 5.00 mmol in 100 ml i.e
 0.0500 M)

$$K_b = \frac{[OH^-][OH^-]}{[^-OAc]}$$
 5.71 x 10⁻¹⁰ = $\frac{[OH][OH^-]}{0.0500}$

$$[OH^{-}]$$
 = 5.35 x 10⁻⁶ M
pOH = 5.27
pH = 8.73

Complexation reactions

- Metal ions + electron-pair donors → coordination compounds or complexes
- No. of covalent bonds is the coordination number (2, 4, 6)
- The species can be []+, []- or []
- A ligand that has
 - 1 donor group = unidentate
 - 2 groups = bidenate.....
 - ...tridentate, tetradentate...hexadentate} → multidentate

Complexometric titration

- Titration based on complex formation
- The metal ion reacts with a ligand to form a complex, and the equivalence point is determined by an indicator
- We can use complex reactions to quantify.
- Can form soluble complexes or precipitates
- Most commonly used ligands are multidentate ligands (chelating ligands)

EDTA

- Ethylenediaminetetraacetic acid
- Forms 1:1 complexes with most metals
- Good primary standard
- Forms stable complexes

• Hexaprotic ligand (H_6Y^{2+})

pKa ₁	0.0	
pKa ₂	1.5	
pKa ₃	2.00	
pKa ₄	2.69	
pKa ₅	6.13	
pKa ₆	10.37	

- We can calculate the fraction of EDTA (α) in each form
- Free EDTA has the form Y⁴-

Fractional composition

$$\alpha_{Y^{4-}} = \frac{[Y^{4-}]}{[H_6Y^{2+}] + [H_5Y^+] + [H_4Y] + [H_3Y^-] + [H_2Y^{2-}] + [HY^{3-}] + [Y^{4-}]}$$

$$\alpha_{\mathbf{Y^{4-}}} = \frac{[\mathbf{Y^{4-}}]}{[\mathbf{EDTA}]}$$

рН	$lpha_{Y^{4-}}$	pΗ α _Y 4-	
0	1.3×10^{-23}	7	3.8 x 10 ⁻⁴
1	1.4×10^{-18}	8	4.2×10^{-3}
2	2.6×10^{-14}	9	0.041
3	2.1×10^{-11}	10	0.30
4	3.0×10^{-9}	11	0.81
5	2.9×10^{-7}	12	0.98
6	1.8×10^{-5}	13, 14	1.00

Formation/Stability Constants

$$M^{n+} + Y^{4-} \leftrightarrow MY^{n-4}$$
 $K_f = \frac{[MY^{n-4}]}{[M^{n+}][Y^{4-}]}$

Ion	$\operatorname{Log} \mathbf{K}_{f}$	Ion $\log K_f$	
K+	0.8	Zn^{2+}	16.50
Na ⁺	1.66	Pb ²⁺	18.04
Mg^{2+}	8.69	Ni ²⁺	18.62
Ca ²⁺	10.70	Cu ²⁺	18.80
Fe^{2+}	14.33	Fe ³⁺	25.1
Al ³⁺	16.13	Zr^{4+}	29.5

Will a reaction occur or not?

Conditional Formation Constants

• When Y^{4-} is not predominant (at pH < 10.37)

•
$$K_f = \frac{[MY^{n-4}]}{[M^{n+}][Y^{4-}]}$$
 becomes $K_f = \frac{[MY^{n-4}]}{[M^{n+}]\alpha_{Y^{4-}}[EDTA]}$

If the pH is fixed by a buffer, then

$$K'_{f} = K_{f} \times \alpha_{Y^{4-}} = \frac{[MY^{n-4}]}{[M^{n+}][EDTA]}$$
Conditional formation constant

EDTA titration curves

- We can quantify metals using EDTA as a titrant
- At any point in the titration we can calculate the value of $pM (= -log[M^{n+}])$.
- We can use this information to draw titration curves (like for acid-base curves!)
- We need information about the start of the titration,
 before equivalence point, at equivalence point and after equivalence point.

EDTA Titration Curves

- Titration reaction: $MY^{n-4} \leftrightarrows M^{n+} + EDTA$
- For large K'_f reaction considered "complete" at each point in the titration.
- Titration curve:

Considering the titration of 50.0 ml of 0.0050 M Ca^{2+} solution with 0.0100 M EDTA at pH = 10

• After the **addition of 10.0 ml EDTA**, some Ca²⁺ will have reacted with the EDTA. To find the new [Ca²⁺]:

- After the equivalence point, all the Ca²⁺ has reacted and the only source of Ca²⁺ is again the dissociation of the CaY²⁻ complex.
- This time, we have excess EDTA in the solution.
- We must determine [EDTA] and [CaY²⁻] from the stoichiometric quantities.
- Lets assume we add 50 mL after equivalence point...

EDTA and pH

- The metal –EDTA complex becomes less stable as pH decreases
- K_f decreases $[Fe^{3+}] = 5.4x10^{-7}$ at pH 2.0 $[Fe^{3+}] = 1.4x10^{-12}$ at pH 8.0
- In order to get a "complete" titration $(K_f \ge 10^6)$, EDTA requires a certain minimum pH for the titration of each metal ion
- End point becomes less distinct as pH is lowered

Effect of pH

 Adjusting the pH - one type of metal ion (e.g. Fe³⁺) can be titrated without interference from others (e.g. Ca²⁺)

Auxiliary Complexing agents

- Metal cations form complexes (M-hydroxides) at high pH.
- Problem for EDTA titrations which need to be at high pH!!
- We keep the cation in solution by using an auxiliary complexing agent
- They work as a buffer
- Must have a weaker K_f than metal-EDTA

Auxiliary complexing agent

- Titration of Cu²⁺ (CuSO₄) with EDTA
- Addition of ammonia buffer results in a dark blue solution
- Cu(II)-ammonia complex is formed
- Addition of EDTA displaces ammonia with corresponding

color change

Auxiliary complexing agent

- Ammonia, tartrate,
 citrate, triethanolamine
- How does the concentration of NH_3 affect the titration?

Metal-ion indicators

- EDTA does not have a specific indicator
- We first complex the indicator with the analyte to form a coloured complex.
- Then the indicator metal analyte complex is titrated with EDTA
- EDTA displaces the indicator and forms a EDTA-metal analyte complex.
- A colour change in the solution indicates the displacement of the dye

- The end point of the titration is when the Mg-Indicator complex (red) is completely dissociated and the becomes Mg-EDTA and free Indicator (blue)
- $Mn^{2+} + In^{n-} \rightarrow M-In$ $M-In + EDTA \rightarrow M-EDTA + In$

Table 12-3 Common metal ion indicators

Name	Structure	pK_a	Color of free indicator	Color of metal ion complex
Calmagite	$OH HO$ $ON = N - OO_3$ $CH_3 (H_2In^-)$	$pK_2 = 8.1$ $pK_3 = 12.4$	H ₂ In ⁻ red HIn ²⁻ blue In ³⁻ orange	Wine red
Eriochrome black T	$ \begin{array}{c c} OH & OH \\ -O_3S - & -N = N - OH \\ \hline (H_2In^-) & -N = N - OH \\ NO_2 & -N = N - OH \\ \hline (NO_2 - N = N - OH - $	$pK_2 = 6.3$ $pK_3 = 11.6$	H ₂ In ⁻ red HIn ²⁻ blue In ³⁻ orange	Wine red
Murexide	$ \begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & & \\ & & & & $	$pK_2 = 9.2$ $pK_3 = 10.9$	$ m H_4 In^-$ red-violet $ m H_3 In^{2-}$ violet $ m H_2 In^{3-}$ blue	Yellow (with Co ²⁺ , Ni ²⁺ , Cu ²⁺); red with Ca ²⁺
Xylenol orange	$\begin{array}{c} CH_3 & CH_3 \\ O \\ -O_2C & HN^+ \\ \hline \\ (H_3In^{3-}) & SO_3^- \end{array}$	$pK_2 = 2.32$ $pK_3 = 2.85$ $pK_4 = 6.70$ $pK_5 = 10.47$ $pK_6 = 12.23$	H_5In^- yellow H_4In^{2-} yellow H_3In^{3-} yellow H_2In^{4-} violet HIn^{5-} violet In^{6-} violet	Red
Pyrocatechol violet	OH OH OH OH OH (H ₃ In ⁻)	$pK_1 = 0.2$ $pK_2 = 7.8$ $pK_3 = 9.8$ $pK_4 = 11.7$	H_4In red H_3In^- yellow H_2In^{2-} violet HIn^{3-} red-purple	Blue

S.No.	Name of the Indicator	Colour change	pH range	Metals detected
1.	Mordant black II	Red to Blue	6-7	Ca, Ba, Mg, Zn, Cd, Mn, Pb, Hg
	Eriochrome blackT			
	Solochrome blackT			
2.	Murexide or Ammonium purpurate	Violet to Blue	12	Ca, Cu, Co
3.	Catechol-violet	Violet to Red	8-10	Mn, Mg, Fe, Co, Pb
4.	Methyl Blue	Blue to Yellow	4-5	Pb, Zn, Cd, Hg
	Thymol Blue	Blue to Grey	10-12	
5.	Alizarin	Red to Yellow	4.3	Pb, Zn, Co, Mg, Cu
6.	Sodium Alizarin sulphonate	Blue to Red	4	Al, Thorium
		Lemon to Yellow	1-3	Bi, Thorium
7.	Xylenol range		4-5	Pb, Zn
			5-6	Cd, Hg

EDTA titration techniques

- Direct (Analyte titrated with EDTA, may use aux agents)
- Back titration (Excess EDTA titrated with a metal ion)
- Displacement titration (Analyte that does not have an appropriate indicator displaces a metal-EDTA complex that undergoes colour change)
- Indirect titration

Titration selectivity

- We control pH to titrate different metal cations
- Not always easy e.g. analysing Al^{3+} if Mg^{2+} is present
- We can use a masking agent
- The masking agent will complex with the analyte leaving other cations to complex with EDTA
 - − *e.g.* Fluoride reacts with Al³⁺

Masking and demasking example

A solution containing Mg, Zn, and Cu can be titrated as follows:

- Add excess of standard EDTA and back-titrate with standard Mg solution using solochrome black as indicator. This gives the sum of all the metals present.
- Treat an aliquot portion with excess of KCN and titrate as before. This gives Mg only.
- Add excess of **chloral hydrate** to the titrated solution in order to liberate the Zn from the cyanide complex, and titrate until the indicator turns blue. This gives the Zn only.
- The Cu content may then be found by difference

A 25.00 ml aliquot of a solution containing Cu^{2+} and Fe^{3+} was titrated with 16.06 ml of 0.05083 M EDTA. A second 25.00 ml aliquot of the Cu/Fe mixture was treated with NaF to form a stable iron-fluoride complex. This mixture was then titrated with 0.05083 M EDTA and the endpoint volume was found to be 5.43 ml. Calculate the molar concentrations of Cu^{2+} and Fe^{3+} .

1st titration: 25 mL aliquot, 16.06 mL of 0.05083 M EDTA 2nd titration: 25 mL aliquot, 5.43 mL of 0.05083 M EDTA

Redox titrations

Redox facts

Is the reaction redox?	If any atoms change oxidation number –YES!		
What is oxidised?	↑ oxidation number (Fe²+)		
What is reduced	↓ oxidation number (Cu²+)		
Reducing agent	Substance with element oxidised (Fe ²⁺)		
Oxidising agent	Substance with element reduced (Cu ²⁺)		

Redox titration

- Oxidation and reduction reaction between analyte and titrant
- We can deduce the shape of the redox titration curve using half reactions and their associated potentials.
- During the titration, the potential difference will change over time

Redox Indicators

- Redox indicators change colour based on the redox potential of the solution
- Respond to the appearance or disappearance of a reagent.
 - Starch as an indicator for excess iodine solution.
 - Thiocyanate as a detector of Fe³⁺.

• *e.g.* 1,10-phenanthroline undergoes a change in colour when Fe(II) is oxidised. $Cr_2O_7^{2-} + 6 Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + 6 Fe^{3+} + 7H_2O$

Starch is used as a redox indicator when triiodide (I₃-) is present. Starch forms a very dark blue-black complex with triiodide which can be made by mixing iodine with iodide.
 The complex is not formed if only iodine or only iodide (I-) is present.

Redox indicator range

•
$$E = \left(E^0 \pm \frac{0.05916}{n}\right)$$
 volts ($w.r.t$ SHE)

From a table no. of electrons

- A redox titration is feasible if the difference is $\geq 0.2 \text{ V}$.
- The bigger the difference, the sharper the endpoint colour change

Iodometric Titrations

• The basic reaction in the determination of copper using the iodometric method is represented by the equation:

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI(s) + I_{2}$$

 The iodine is then titrated with thiosulphate solution (which has been standardised)

$$I_2 + 2 S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

- The amount of iodine liberated in the reaction between iodide ion and an oxidizing agent is a measure of the quantity of oxidizing agent originally present in the solution.
- The amount of standard sodium thiosulfate solution required to titrate the liberated iodine is then equivalent to the amount of oxidizing agent.
- Iodometric methods can be used for the quantitative determination of strong oxidizing agents such as potassium dichromate, permanganate, hydrogen peroxide, cupric ion and oxygen.

Example- Homework

• 0.3021 g of brass is dissolved in HCl and H_2SO_4 . 4.0 g of KI was then added to the sample. This is titrated with 27.34 mL of a standard thiosulfate solution with a concentration of 0.1008 M. Calculate the %Cu in brass.

Redox titration curves

Nernst Equation!:
$$E = E^{0} + \frac{RT}{nF} \ln \frac{[Ox]}{[Red]}$$

Using Ce (titrant) and Fe:

$$Fe^{2+} + Ce^{4+} \rightarrow Fe^{3+} + Ce^{3+}$$

- Calomel is the reference electrode (0.241 V)
- @the platinum electrode:

$$- Fe^{3+} \rightarrow Fe^{2+} + e^{-}$$

$$E^{o} = 0.767 \text{ V}$$

$$- Ce^{4+} + e^{-} \rightarrow Ce^{3+}$$

$$E^{o} = 1.70 \text{ V}$$

Before equivalence point

- Each aliquot of Ce⁴⁺ creates an equal number of moles of Ce³⁺ and Fe³⁺
- Excess unreacted Fe²⁺ remains in solution
- Use iron half-reaction relative to calomel reference electrode

 $E = E_{+}(indicator\ electrode) - E_{-}(reference\ electrode)$

50 mL of 0.05 M Fe²⁺ with 15 mL, 25 mL and 26 mL 0.100 M Ce⁴⁺ . Calomel electrode is 0.241 V

$$Ce^{4+} + e^{-} \leftrightarrow Ce^{3+}$$
 $E^{0} = 1.70 \text{ V}$
 $Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$ $E^{0} = 0.767 \text{ V}$
 $Fe^{2+} + Ce^{4+} \leftrightarrow Ce^{3+} + Fe^{3+}$

Titration curve

• 50.00 mL solution of 0.100 M Fe²⁺ with 0.100 M Ce⁴⁺ in 1 M H_2SO_4

$$E = 0.526 - 0.05916 \log \left(\frac{[Fe^{2+}]}{[Fe^{3+}]} \right)$$

Gravimetry & Precipitation Titrations

Precipitation reactions

- We can use precipitation in titration
- Most common to quantify chlorides, bromides, iodides, and thiocyanate using silver nitrate
- Technique is called Argentometric titration
- The titrant reacts with the analyte → precipitate
- The first drop of titrant in excess will react with an indicator (color change)

Argentometric Titration - Mohr Method

- Chromate as an indicator.
- Chromate forms a precipitate with Ag⁺
- Precipitate has a greater solubility than that of AgCl
- AgCl is formed first and after all Cl⁻ is consumed, the first drop of Ag⁺ in excess will react with the chromate indicator giving a reddish precipitate.

$$Ag^{+} + Cl^{-} \rightarrow AgCl$$
 (titration reaction)
 $2 Ag^{+} + CrO_{4}^{2-} = Ag_{2}CrO_{4}$ (endpoint reaction)

Conditions for Mohr

- Neutral medium (~ pH 7)
- In alkaline solutions, silver will react with the hydroxide ions forming AgOH.
- In acidic solutions, chromate will be converted to dichromate.

Argentometric titration - Volhard Method

- Indirect method
- Fe³⁺ as an indicator.
- Excess amount of standard Ag⁺ is added to the *Cl*⁻ solution:

$$Ag^+ + Cl^- \rightarrow AgCl + Ag^+$$

• The excess Ag⁺ is then titrated with standard SCN⁻:

$$Ag^+ + SCN^- \rightarrow AgSCN$$

The first excess of SCN results in a red color (endpoint)

$$Fe^{3+} + SCN^{-} = Fe(SCN)^{2+}$$

Conditions for Volhard

- Acidic medium otherwise Fe indicator will react (precipitated Fe oxides)
- May need to filter the precipitate formed in the first reaction if it is more soluble than AgSCN.
- Can also add something to form a film around the precipitate *e.g.* nitrobenzene to prevent reaction

Argentometric titration - Fajans Method

- Adsorption indicator is used
- Silver to titrate *Cl*-

$$Ag^+ + Cl^- \rightarrow AgCl$$
 (titration reaction)

- Fluorescein adsorbs to the surface of colloidal AgCl.
- The first drop of excess $Ag^+ \rightarrow \text{reddish color}$

$$Ag^+ + FI^- = AgF$$

Conditions for Fajans

- Fluorescein and its derivatives are weak acids,
- The pH of the solution should be slightly alkaline (keeps indicator in anion form)
- Should not be alkaline enough to convert Ag⁺ into AgOH.

Mohr

Volhard

Fajan

Chromate

Fe

Fluorescein

Direct

Indirect

Direct

Neutral

Acidic

Slightly alkaline

Electrodes

- Typically precipitation reaction are monitored by electrodes.
- We can use them to draw up precipitation curves to locate the equivalence point.
- Same as for acid-base titrations except we use the solubility product of the precipitate
- $K_{sp} = [A^+][B^-]$

Generate a titration curve for 50.00 mL of 0.0500 M NaCl with 0.1000 M AgNO₃

Ag⁺ (aq) + Cl⁻ (aq)
$$\Leftrightarrow$$
 AgCl(s),
 $K_{sp} = [Ag^+][Cl^-] = 1.82 \times 10^{-10}$

Effect of concentration

Titrating a mixture

- Less soluble precipitates first
- Titration of 50.00 mL of a solution ($[I^-]$ = 0.0500M and $[Cl^-]$ =0.0800 M) with 0.1000 M AgNO₃.
- K_{sp} (Cl⁻) = 1.82 x 10⁻¹⁰ K_{sp} (I⁻) = 8.3 x 10⁻¹⁷
- We know that $K_{sp} = [Ag^+][Cl^-]$ and $K_{sp} = [Ag^+][I^-]$

50.00 mL of ($[I^-]$ = 0.0500M and $[CI^-]$ = 0.0800 M) solution with 0.1000 M AgNO₃ @25 mL:

- n_{Cl} = 0.08 M x 0.05L = 0.004 moles
- $[Cl^-] = \frac{n}{v} = \frac{0.004 \text{ mols}}{0.05 \text{ L} + 0.025 \text{ L}} = 0.0533 \text{ M}$

•
$$[Ag^+] = \frac{K_{sp}}{[Cl^-]} = \frac{1.82 \times 10^{-10}}{0.0533 \text{ M}} = 3.41 \times 10^{-9} \text{ M} \rightarrow pAg = 8.47$$

• What about the I⁻?

•
$$\frac{K_{sp}}{[Cl^{-}]} = \frac{K_{sp}}{[I^{-}]} \rightarrow \frac{[I^{-}]}{[Cl^{-}]} = \frac{K_{sp}(I)}{K_{sp(Cl)}} \rightarrow [I^{-}] = 2.43 \times 10^{-8} \text{ M}$$

50.00 mL of ($[I^{-}]$ = 0.0500M and $[CI^{-}]$ = 0.0800 M) solution with 0.1000 M AgNO₃ @30 mL:

- n_{Cl} = 0.08 M x 0.05L = 0.004 moles
- $n_{Ag^+} = 0.100 \text{ M} \times 0.03 \text{L} = 0.003 \text{ moles}$
- $n_{I^-} = 0.05 \text{ M} \times 0.05 \text{L} = 0.0025 \text{ moles}$

•
$$[Cl^-] = \frac{n}{v} = \frac{0.004 \text{ mols} - (0.003 - 0.0025) \text{ mols}}{0.05 \text{ L} + 0.03 \text{ L}} = 0.0438 \text{ M}$$

•
$$[Ag^+] = \frac{K_{sp}}{[Cl^-]} = \frac{1.82 \times 10^{-10}}{0.0438 \text{ M}} = 4.16 \times 10^{-9} \text{ M} \rightarrow pAg = 8.38$$

Gravimetric Analysis

- Analyte measured based on mass
- Analyte is precipitated out of solution in a chemical reaction
- Precipitate is washed of impurities
- Converting precipitate to a known composition
- Dried mass by difference weighed.

Steps for gravimetric analysis

- Preparation of the solution
- Precipitation
- Digestion
- Filtration
- Washing
- Drying or igniting
- Weighing
- Calculation

Example: Pb in water

Details of each step

- The sample is dissolved, if it is not already insoluble.
- The solution may be treated to adjust the pH
 - To form the proper precipitate
 - To suppress the formation of other precipitates
- The precipitating reagent is added at a concentration that favors the formation of a "good" precipitate.
- This may require:
 - low concentration,
 - extensive heating (digestion)
 - control of the pH.
- Heating can help reduce the amount of coprecipitation.

- After the precipitate has formed and been allowed to "digest", the solution is carefully filtered.
- The filter is chosen to trap the precipitate

• However, they must be carefully cleaned to minimize contamination or carryover(cross-contamination).

- After the solution has been filtered test to make sure that the analyte has been completely precipitated.
- Add a few drops of the precipitating reagent if a precipitate is observed, the precipitation is incomplete.
- After filtration, the precipitate is heated so
 - The remaining moisture is removed (drying).
 - The precipitate is converted to a more chemically stable form. *e.g.* the Ca ion is precipitated with oxalate to produce calcium oxalate (CaC₂O₄); it can then be heated to convert to CaO.
 - The filter paper is removed must use ash-less filter paper.
- Cool the precipitate in a desiccator.
- Weighed the product in the crucible (mass difference)
- Since the composition of the precipitate is known, it is simple to calculate the mass of analyte in the original sample

Criteria for using gravimetric analysis

- The precipitating agent should react specifically or at least selectively with the analyte.
- The precipitate must be easily transferred
- The precipitate must be of

• The precipitate must be easy to filtered *i.e.* large crystals

Filterability

- Want product to be large enough to collect on filter:
 - Best Case: Pure Crystals
 - Worst Case: Colloidal suspension: Difficult to filter due to small size, tend to stay in solution
- Whether crystals or colloids are obtained depends on conditions used in the precipitation
- Particle size influenced by experimental variables as
 - precipitate solubility,
 - temperature,
 - reactant concentrations
 - rate at which reactants are mixed.

Precipitate formation

- Precipitates form by nucleation and particle growth.
- A few ions, atoms, or molecules come together to form a stable solid.
- Formed on the surface of suspended solid contaminants,
 e.g. dust particles.

Nucleation and particle growth

- Further precipitation involves a competition between additional nucleation and growth on existing nuclei (particle growth).
- If nucleation predominates, a precipitate containing a large number of small particles results
- If particle growth predominates, a smaller number of larger particles is produced. ©

Coagulation of Colloids

Colloidal precipitates

- Electric double layer prevents coagulation of indiviual particles.
- Heat decreases the thickness of the double layer.
- Increasing the electrolyte concentration
 (i.e. add more AgNO₃ for Cl precipitation)
 will also decrease this layer.
- Problem: Washing reverts coagulated colloid to original state - PEPTISATION

Crystal Impurities

Adsorbed to crystal surface

Absorbed or trapped within crystal pockets

Impurity placed in crystal instead of analyte

Filtering & Drying samples

Weighing techniques

- Reproducible amounts of water drying in an oven until constant mass
- Cannot touch crucible with fingers or dirty tongs oil residue and dirt
- Cleaning off sides of crucible with a cloth static charge
- Open container so no temperature/pressure issues

Gravimetric Example

A 2.00 g sample of limestone was dissolved in HCl and all the Ca in the sample was converted to $Ca^{2+}_{(aq)}$. Excess ammonium oxalate solution, $(NH_4)_2C_2O_{4(aq)}$, was added to the solution to precipitate the Ca ions as $CaC_2O_{4(s)}$. The precipitate was filtered, dried and weighed to a constant mass of 2.43 g. Determine the percentage by mass of calcium in the limestone sample.

Calculating using a gravimetric factor

$$\mathsf{GF} = \frac{\mathsf{f}\;\mathsf{mass\;analyte}}{\mathsf{f}\;\mathsf{mass\;precipitate}} \times \frac{\mathsf{mol\;analyte}}{\mathsf{mol\;precipitate}} = \frac{\mathsf{g}\;\mathsf{analyte}}{\mathsf{g}\;\mathsf{precipitate}}$$

- Still need the equation
- Still uses stoichiometry

A barium halide exists as the hydrated salt $BaX_2.2H_2O$, where X is the halogen. A sample of the halide (0.2650 g) was dissolved in water (200 cm³⁾ and excess sulfuric acid added. The precipitate formed (barium sulfate) was filtered, washed and dried. Precipitate weighed = 0.2533 g. Determine the identity of X.

25.00 mL of Pb(NO₃)₂ [MM = 331.2098 g mol⁻¹]solution with an unknown concentration reacts with excess aqueous Rb₃AsO₄. After filtering and drying, 0.0814 g of precipitate is found. What is the concentration of the lead(II) nitrate solution? $M(Pb_{3}(AsO_{4})_{2}) = 692.2 \text{ g mol}^{-1}$