Chapter 4

The Divide-and-Conquer Strategy

Outlines

- 4-1 The 2-Dimensional Maxima Finding Problem
- 4-2 The Closest Pair Problem
- 4-3 The Convex Hull Problem
- 4-4 The Voronoi Diagrams Constructed by the Divide-and-Conquer Strategy
- 4-5 Applications of the Voronoi Diagrams
- 4-6 Matrices Multiplication

Introduction

- divide-and-conquer strategy
- problems and each sub-problem is identical to first divides a problem into two smaller subits original problem, except its input size is
- sub-solutions are finally merged into the final Both sub-problems are then solved and the solution.
- solved by the divide-and-conquer strategy again. These two sub-problems themselves can be
- Or, to put it in another way, these two subproblems are solved recursively.

A simple example

- Finding the maximum of a set S of n numbers.
- Dividing the input into two sets, each set consisting of n/2 numbers.
- Let us call these two sets S_1 and S_2 .
- Find the maximums of S_1 and S_2 respectively.
- Let the maximum of S_i be denoted as $X_{i,i} = 1, 2$.
- Then the maximum of S can be found by comparing X_1 and X_2 . Whichever is the larger is the maximum of S.

A simple example

finding the maximum of a set S of n numbers

Time Complexity

conquer algorithm is determined by the following • In general, the complexity T(n) of a divide-andformulas:

$$T(n)=\left\{ egin{array}{cc} 2T(n/2)+S(n)+M(n) &, \ n\geq c \\ b &, \ n< c \end{array}
ight.$$

where

- S(n) denotes the time steps needed to split the problem into two sub-problems,
- \blacksquare M(n) denotes the time steps needed to merge two sub-solutions and
- b is a constant.

 $=2^{k-1}+2^{k-2}+\ldots+4+2+1$

 $=2^{k}-1=n-1$

Time complexity

Time complexity:

$$T(n)=\begin{cases} 2T(n/2)+1 , n>2 \\ 1 , n < 2 \end{cases}$$

• Calculation of T(n):

Assume
$$n = 2^k$$
,

$$T(n) = 2T(n/2)+1$$

$$= 2(2T(n/4)+1)+1$$

$$= 4T(n/4)+2+1$$

$$\vdots$$

$$= 2^{k-1}T(2)+2^{k-2}+...+4+2+1$$

A general divide-and-conquer algorithm

Step1: If the problem size is small, solve this problem directly; otherwise, split the original problem into 2 sub-problems with equal sizes. Step2: Recursively solve these 2 sub-problems by applying this algorithm. Step3: Merge the solutions of the 2 sub-problems into a solution of the original problem.

Time complexity of the general algorithm

Time complexity:

$$T(n) = \left\{ \begin{array}{cc} 2T(n/2) + S(n) + M(n) &, n \geq c \\ b &, n < c \end{array} \right.$$

where S(n): time for splitting

M(n): time for merging b: a constant

c: a constant

e.g. Binary search

e.g. quick sort

e.g. merge sort

4.1 2-D maxima finding problem

and $y_1 > y_2$. A point is called a maxima if no other • $\underline{\mathbf{Def}}$: A point $(\mathbf{x}_1, \mathbf{y}_1)$ dominates $(\mathbf{x}_2, \mathbf{y}_2)$ if $\mathbf{x}_1 > \mathbf{x}_2$ point dominates it

Maxima finding problem: find the maximal points among these n points. Straightforward method: Compare every pair of points.

Time complexity:

 $O(n^2)$

Divide-and-conquer for maxima finding

Perpendicular line

The maximal points of S_L and S_R

Merge Step

- The merging process is rather simple.
- Since the x-value of a point in S_R is always larger than the x-value of every point in S_L
- value is not less than the y-value of a maxima • A point in S_L is a maxima if and only if its yof S_R .

The algorithm:

- Input: A set of n planar points.
- Output: The maximal points of S.

Step 1: If S contains only one point, return it as the maxima. Otherwise, find a line L perpendicular to the X-axis which separates the set of points into two subsets S_L and S_R, each of which consisting of n/2 points. Step 2: Recursively find the maximal points of S_L and S_R . maximal points of S_L onto L. Discard each of the maximal points of S_L if its y-value is less than the Step 3: Find the largest y-value of S_R. Project the largest y-value of S_R.

• Time complexity: T(n)

Step 1: O(n) median finding

Step 2: 2T(n/2)

Step 3: O(nlogn) :sorting n points according to their y-

$$T(n) = \left\{ \begin{array}{cc} 2T(n/2) + O(n) + O(n log n) & , \ n > 1 \\ 1 & , \ n = 1 \end{array} \right.$$

Assume $n = 2^k$

$$T(n) = O(n \log n) + O(n \log^2 n) = O(n \log^2 n)$$

Improvement

- We note that our divide-and-conquer strategy is dominated by sorting in the merging steps.
- because sorting should be done once and for all. Somehow we are not doing a very efficient job
- That is, we should conduct a presorting. If this is done, the merging complexity is O(n) and the total number of time steps needed is O(nlogn) + T(n)

where

$$T(n) = \begin{cases} 2T(n/2) + O(n) + O(n) \\ 1 \end{cases}$$
, $n > 1$

total time-complexity of using the divide-and-conquer and T(n) can be easily found to be O(nlogn). Thus the strategy to find maximal points with presorting is O(nlogn).

Kecurrence

$$T(n) = \begin{cases} c & n = 1 \\ 2T(n/2) + cn & n > 1 \end{cases}$$

is a recurrence.

Recurrence: an equation that describes a function in terms of its value on smaller functions

Recurrence (Examples)

$$T(n) = \begin{cases} 0 & n = 0 \\ c + T(n-1) & n > 0 \end{cases} T(n) = \begin{cases} 0 & n = 0 \\ n + T(n-1) & n > 0 \end{cases}$$

$$T(n) = \begin{cases} c & n=1 \\ 2T(n/2) + c & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT(n/b) + cn & n > 1 \end{cases}$$

Iteration Method

- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation

Iteration Method (Example)

Iteration Method (Example)

$$T(n) = \begin{cases} 0 & n = 0 \\ c + T(n-1) & n > 0 \end{cases}$$

$$T(n) = c + T(n-1)$$

$$= c + c + T(n-2) = 2c + T(n-2)$$

$$= 2c + c + T(n-3) = 3c + T(n-3)$$

$$=kc+T(n-k)$$

Set k = n

$$= nc + T(0) = nc$$

$$T(n) = \Theta(n)$$

Iteration Method (Example)

Iteration Method (Example)

$$T(n) = \begin{cases} 0 & n = 0 \\ n + T(n-1) & n > 0 \end{cases}$$

$$T(n) = n + T(n-1)$$

$$= n + n-1 + T(n-2)$$

$$= n + n-1 + n-2 + T(n-3)$$

$$= n + n-1 + n-2 + \dots + n-(k-1) + T(n-k)$$

$$= n + n-1 + n-2 + \dots + 1 + T(0)$$

$$= \frac{n(n+1)}{2}$$

$$T(n) = \Theta(n^2)$$

4 -22

Recursion-Tree Method

- Expand the recurrence
- Construct a recursion-tree
- Sum the costs

Merge Sort

$$T(n) = \begin{cases} \Theta(1) & n = 1 \\ 2T(n/2) + \Theta(n) & n > 1 \end{cases}$$

Rewrite:

$$T(n) = \begin{cases} c & n = 1 \\ 2T(n/2) + cn & n > 1 \end{cases}$$

Becomes A Recursion Tree

Merge Sort (Recursion Tree)

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + cn & n > 1 \end{cases}$$

$$T(n) = cn + 2T(n/2)$$

$$= cn + 2\left(\frac{cn}{2}\right) + 4T(n/4)$$

$$n+2\left(\frac{cn}{2}\right)+4\left(\frac{cn}{4}\right)+\dots?$$

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

Merge Sort (Recursion Tree)

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + cn & n > 1 \end{cases}$$

$$T(n) = cn \lg n + cn$$

$$T(n) = \Theta(n \lg n)$$

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

Recursion-Tree Method (Example)

$$T(n) = 3T(n/4) + cn^2$$

Recursion-Tree Method (Example)

$$T(n) = 3T(n/4) + cn^2$$

$$= cn^{2} + 3T(n/4)$$

$$= cn^{2} + \left(\frac{3}{16}\right)cn^{2} + 9T(n/16)$$

$$=cn^{2} + \left(\frac{3}{16}\right)cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2}$$

$$+...+\left(\frac{3}{16}\right)^{i-1}cn^2+3^iT(n/4^i)$$

$$\frac{n}{4^i} = 1, i = \log_4 n$$

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

$$T(n) = 3T(n/4) + cn^2$$

$$= cn^2 + 3T(n/4)$$

$$=cn^{2} + \left(\frac{3}{16}\right)cn^{2} + 9T(n/16)$$

$$= cn^2 + \left(\frac{3}{16}\right)cn^2 + \left(\frac{3}{16}\right)^2 cn^2$$

$$+ \dots + \left(\frac{3}{16}\right)^{\log_4 n - 1} cn^2 + 3^{\log_4 n} T(1)$$

$$3^{\log_4 n} T(1) = n^{\log_4 3} \Theta(1)$$
$$= \Theta(n^{\log_4 3})$$

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Recursion-Tree Method (Example)

$$T(n) = 3T(n/4) + cn^2$$

$$= cn^2 + 3T(n/4)$$

$$=cn^{2} + \left(\frac{3}{16}\right)cn^{2} + 9T(n/16)$$

$$= cn^2 + \left(\frac{3}{16}\right)cn^2 + \left(\frac{3}{16}\right)^2 cn^2$$

$$+...+\left(\frac{3}{16}\right)^{\log_4 n-1} cn^2 + 3^{\log_4 n} T(1)$$

$$= \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

Figure 4.1 The construction of a recursion tree for the recurrence $T(n) = 3T(n/4) + cn^2$. Part (a) shows T(n), which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has height $\log_4 n$ (it has $\log_4 n + 1$ levels).

Recursion-Tree Method (Example)

$$T(n) = 3T(n/4) + cn^2$$

$$= cn^2 + 3T(n/4)$$

$$= cn^2 + \left(\frac{3}{16}\right)cn^2 + 9T(n/16)$$

$$= cn^2 + \left(\frac{3}{16}\right)cn^2 + \left(\frac{3}{16}\right)^2 cn^2$$

$$+...+\left(\frac{3}{16}\right)^{\log_4 n-1}cn^2+3^{\log_4 n}T(1)$$

$$= \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3}) -$$

$$=\frac{(3/16)^{\log_4 n}-1}{(3/16)-1}cn^2+\Theta(n^{\log_4 3})$$

Recall
$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

Recursion-Tree Method (Example)

$$T(n) = 3T(n/4) + cn^{2}$$

$$= cn^{2} + 3T(n/4)$$

$$= cn^{2} + \left(\frac{3}{16}\right)cn^{2} + 9T(n/16)$$

$$= cn^{2} + \left(\frac{3}{16}\right)cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2}$$

$$+ \left(\frac{3}{16}\right)^{\log_{4} n - 1} cn^{2} + 3^{\log_{4} n} T(1)$$

$$= \frac{(3/16)^{\log_4 n} - 1}{(3/16) - 1} cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

4

 $= \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$

Figure 4.2 A recursion tree for the recurrence T(n) = T(n/3) + T(2n/3) + cn.

Algorithms Analysis

Master Theorem

Master Theorem***

- Provide a "cookbook" method for solving recurrences
- Divide-and-conquer algorithm

size n into a subproblems, each of size n/bAn algorithm that divides the problem of

Master Theorem

$$T(n) = aT(n/b) + f(n)$$
$$a \ge 1 \text{ and } b > 1$$

1. If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, then $T(n) = \Theta(n^{\log_b a})$

2. If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$

3. If
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, and if $af(n/b) \le cf(n)$, then $T(n) = \Theta(f(n))$

 $\varepsilon > 0, c < 1$

Notes on Master Theorem

Some technicalities:

In case 1, f(n) must be polynomially smaller than $n^{\log_b a}$ by a factor of n^{ε} , $\varepsilon > 0$

In case 3, f(n) must be polynomially larger than $n^{\log_b a}$ by a factor of n^{ε} , $\varepsilon > 0$

- The three cases doesn't cover all possibilities of f(n).
- Can't use Master Theorem

$$T(n) = aT(n/b) + f(n)$$
$$a \ge 1 \text{ and } b > 1$$

$$T(n) = 9T(n/3) + n$$

$$a = 9, b = 3, f(n) = n$$

$$n^{\log_b a} = n^{\log_3 9} = n^2 = \Theta(n^2)$$

$$f(n) = O(n^{\log_3 9 - \varepsilon})$$
, where $\varepsilon = 1$

Use Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$
, then $f(n) = \Theta(n^{\log_b a})$

$$T(n) = \Theta(n^2)$$

$$T(n) = aT(n/b) + f(n)$$
$$a \ge 1 \text{ and } b > 1$$

$$T(n) = T(2n/3) + 1$$

$$a = 1, b = 3/2, f(n) = 1$$

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

$$f(n) = \Theta(n^{\log_b a}) = \Theta(1)$$

Use Case 2: If
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \lg n)$

$$T(n) = \Theta(\lg n)$$

$$T(n) = aT(n/b) + f(n)$$
$$a \ge 1 \text{ and } b > 1$$

$$T(n) = 3T(n/4) + n \lg n$$

$$a = 3, b = 4, f(n) = n \lg n$$

$$n^{\log_b a} = n^{\log_4 3} = O(n^{0.793})$$

$$f(n) = \Omega(n^{\log_4 3 + \varepsilon}), \text{ where } \varepsilon \approx 0.2$$

$$af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n = cf(n), \text{ for } c = 3/4$$
Use Case 3: If $f(n) = \Omega(n^{\log_b a + \varepsilon})$, and if $af(n/b) \le cf(n)$,

$$T(n) = \Theta(n \lg n)$$

then $T(n) = \Theta(f(n))$

$$T(n) = aT(n/b) + f(n)$$
$$a \ge 1 \text{ and } b > 1$$

$$T(n) = 2T(n/2) + n \lg n$$

$$a = 2, b = 2, f(n) = n \lg n$$

But $f(n) = n \lg n$ is not polynomially larger than $n^{\log_b a} = n$

$$f(n)/n^{\log_b a} = (n \lg n)/n = \lg n$$
 is asymptotically less than n^{ε} , $\varepsilon > 0$

Master Method doesn't Apply

Extended

$$T(n) = aT(n/b) + f(n)$$

Master Method

$$a \ge 1$$
 and $b > 1$

$$ff(n) = \Theta(n^{\log_b a} \lg^k n), k \ge 0,$$

then
$$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$$

Back to the previous recurrence:

$$T(n) = 2T(n/2) + n \lg n$$

$$f(n) = \Theta(n^{\log_b a} \lg n)$$
, and $k = 1$

$$|T(n) = \Theta(n \lg^2 n)|$$

Proof of Master Theorem (Lemma 4.2)

tree with $n^{\log_b a}$ leaves and height $\log_b n$. The cost of each level is shown at the right, and their sum Figure 4.3 The recursion tree generated by T(n) = aT(n/b) + f(n). The tree is a complete a-ary is given in equation (4.6).

1-1-

4.2 The closest pair problem

Given a set S of n points, find a pair of points which are closest together.

1-D version

Solved by sorting
Time complexity:
O(n log n)

4

4 -44

Divide-And-Conquer Solution

- When n is small, use simple solution.
- When n is large
- Divide the point set into two roughly equal parts A and B.
- Determine the closest pair of points in A.
- Determine the closest pair of points in B.
- Determine the closest pair of points such that one point is in A and the other in B.
- From the three closest pairs computed, select the one with least distance.

coordinate <= that of points in B.

- Find closest pair in A.
- Let d₁ be the distance between the points in this pair.

- Find closest pair in B.
- Let d_2 be the distance between the points in this pair.

• Is there a pair with one point in A, the other in

• Let $d = \min\{d_1, d_2\}$.

B and distance < d?

- Candidates lie within d of the dividing line.
 - Call these regions R_A and R_B, respectively.

- Let q be a point in R_A.
- q need be paired only with those points in R_B that are within d of q.y.

- Points that are to be paired with q are in a d \times 2d rectangle of R_{B} (comparing region of q).
 - Points in this rectangle are at least d apart.

- So the comparing region of q has at most 6 points.
- So number of pairs to check is $<= 6 | R_A | = O(n)$.

D&C

- We first partition the set S into S_{L} and S_{R} such that every point in S_L lies to the left of every point in S_R and the number of points in S_L is equal to that in S_R .
- Find a vertical line L perpendicular to the x-axis such that S is cut into two equal sized subsets.
- Solving the closest pair problems in S_L and S_R respectively, we shall obtain d_L and d_R where d_L and d_R denote the distances of the closest pairs in S_L and S_R respectively.
- Let $d = \min(\mathbf{d}_L, \mathbf{d}_R)$.
- If the closest pair (P_{a}, P_{b}) of S consists of a point in S_{L} and a point in S_R , then P_a and P_b must lie within a slab centered at line L and bounded by lines L-d and L+d.
- Merge Step: examine points in slab.

Points in Slab

- During the merging step, we may examine only points in the slab.
- slab may not be too large, in the worst case, there can Although in average, the number of points within the be as many as n points within the slab.
- Thus the brute-force way to find the closest pair in the slab needs calculating n²/4 distances and comparisons.
- This kind of merging step will not be good for our divide-and-conquer algorithm.
- Fortunately, as will be shown in the following, the merging step can be accomplished in $\theta(n)$ time.

Merge Step

- less than d. Hence we do not have to consider a point closest pair, the distance between P and Q must be • If a point P in S_L and a point Q in S_R constitute a too far away from P. Consider Figure 4-5.
- 4-5. If P is exactly on line L, this shaded area will be We only have to examine the shaded area in Figure the largest.
- Even in this case, this shaded area will be contained in the $d \times 2d$ rectangle A as shown in Figure 5-6.
- Thus we only have to examine points within this rectangle A.

Merge Step

- examine limited number of points in the other half of • For each point P in the slab, we only have to the slab.
- Without losing generality, we may assume that P is within the left-half of the slab.
- Let the y-value of P be denoted as y_p . For P, we only have to examine points in the other half of the slab whose y-values are within y_p+d and y_p-d .
- There will be at most six such points as discussed above (why?).
- O(n) Step

Sort points by x-values and sort points by y-values.

at most 6 points in area A:

One box contains one point.

If s,s'∈ S have the property that d(s,s')<d, then s and s' are within 15 positions of each other in the sorted list Sy.

The algorithm:

- Input: A set of n planar points.
- Output: The distance between two closest points.
- Step 1: Sort points in S according to their y-values and xvalues.
- Step 2: If S contains only one points, return infinity(∞) as their distance.
- Step 3: Find a median line L perpendicular to the X-axis to divide S into two subsets, with equal sizes, S_L and
- Step 4: Recursively apply Step 2 and Step 3 to solve the closest pair problems of S_L and S_R. Let d_L(d_R) denote the distance between the closest pair in S_L (S_R). Let d $= \min(d_{L}, d_{R}).$

Step 5: For a point P in the half-slab bounded by L-d and

whose y-value fall within y_p +d and y_p -d. If the distance d' between P and a point in the other half-slab is less than d, let d=d'. The final value of d is the L, let its y-value by denoted as y_p. For each such P, find all points in the half-slab bounded by L and L+d answer.

Time complexity: O(n log n)

Step 1: O(n log n)

Steps $2\sim5$:

$$T(n) = \begin{cases} 2T(n/2) + O(n) + O(n) & , n > 1 \\ 1 & , n = 1 \end{cases}$$

$$\Rightarrow T(n) = O(n \log n)$$

4.3 The convex hull problem

concave polygon:

convex polygon:

the smallest convex polygon containing all of The convex hull of a set of planar points is the points.

Convex Polygon

- A convex polygon is a nonintersecting polygon whose internal angles are all convex (i.e., less than π)
- In a convex polygon, a segment joining two vertices of the polygon lies entirely inside the polygon
- The convex hull of a set of points is the smallest convex polygon containing the points
- Think of a rubber band snapping around the points

Convex Hull

Special Cases

- The convex hull is a segment
- All the points are Two points collinear
- The convex hull is a point
- there is one point
- All the points are coincident

64

Applications

- Motion planning
- Find an optimal route that avoids obstacles for a robot
- Geometric algorithms
- Convex hull is like a two-dimensional sorting

Convex Hull

Computing the Convex Hull

The following method computes the convex hull of a set of points

Phase 1: Find the lowest point (anchor point)

Phase 2: Form a nonintersecting polygon by sorting the points counterclockwise around the anchor point

Phase 3: While the polygon has a nonconvex vertex,

Convex Hull

whether, $\Delta(p_1, p_2, p_3)$ is positive, negative, or zero, respectively. The orientation of a triplet (p_1, p_2, p_3) of points in the plane is counterclockwise, clockwise, or collinear, depending on

 x_3 . Clearly, this triplet makes a left turn if the slope of segment p_2p_3 is greater than we show a triplet (p_1, p_2, p_3) of points such that $x_1 < x_2 <$ the slope of segment p_1p_2 . This is expressed by the following question:

Is
$$\frac{y_3 - y_2}{x_3 - x_2} > \frac{y_2 - y_1}{x_2 - x_1}$$
?

By the expansion of $\Delta(p_1, p_2, p_3)$ shown in 12.1, we can verify that inequality 12.2 is equivalent to $\Delta(p_1, p_2, p_3) > 0$.

An example of a left turn. The differences between the coordinates between p_1 and p_2 and the coordinates of p_2 and p_3 are also illustrated.

67

Orientation

- plane is clockwise, counterclockwise, or The orientation of three points in the collinear
- orientation(a, b, c)
- clockwise (CW, right turn)
- counterclockwise (CCW, left turn)
- collinear (COLL, no turn)
- determinant $\Delta(a, b, c)$, whose absolute value is twice the area of the triangle The orientation of three points is characterized by the sign of the with vertices a_r b and c

Theorem 12.11: Let S be a set of planar points with convex hull H. Then

- A pair of points a and b of S form an edge of H if and only if all the other points of S are contained on one side of the line through a and b.
- A point p of S is a vertex of H if and only if there exists a line I through p, such that all the other points of S are contained in the same half-plane delimited by l (that is, they are all on the same side of l).
- A point p of S is not a vertex of H if and only if p is contained in the interior of a triangle formed by three other points of S or in the interior of a segment formed by two other points of S.

rem 12.11: (a) points a and b form an edge of the convex hull; (b) points a and Figure 12.22: Illustration of the properties of the convex hull given in Theob do not form an edge of the convex hull; (c) point p is not on the convex hull. a_i

Sorting by Angle

- Computing angles from coordinates is complex and leads to numerical inaccuracy
- We can sort a set of points by angle with respect to the anchor point a using a comparator based on the orientation function
- $b < c \Leftrightarrow orientation(a, b, c) = CCW$
- $b = c \Leftrightarrow orientation(a, b, c) = COLL$
- $b > c \Leftrightarrow orientation(a, b, c) = CW$

Convex Hull

Removing Nonconvex Vertices

- Testing whether a vertex is convex can be done using the orientation function
- Let p, q and r be three consecutive vertices of a polygon, in counterclockwise order
- $q \text{ convex} \Leftrightarrow orientation(p, q, r) = \text{CCW}$
- q nonconvex \Leftrightarrow orientation(p, q, r) = CW or COLL

Convex Hull

Gift Wrapping Algorithm

- We can identify a particular point, say one with minimum y-coordinate, that provides algorithm that computes the convex hull. an initial starting configuration for an
- The gift wrapping algorithm for computing plane is based on just such a starting point. the convex hull of a set of points in the

Gift Wrapping

- imagine that we tie a rope to the peg corresponding to the coordinate if there are ties). Call a the anchor point, and View the points as pegs implanted in a level field, and point a with minimum y-coordinate (and minimum xnote that *a* is a vertex of the convex hull.
- Pull the rope to the right of the anchor point and rotate it counterclockwise until it touches another peg, which corresponds to the next vertex of the convex hull.
- Continue rotating the rope counterclockwise, identifying a new vertex of the convex hull at each step, until the rope gets back to the anchor point.

Graham Scan Algorithm

- 1. We find a point a of P that is a vertex of H and call it the anchor point. We can, for example, pick as our anchor point a the point in P with minimum y-coordinate (and minimum x-coordinate if there are ties).
- In the list S, the points of P appear sorted counterclockwise "by angle" with respect to the anchor point a, although no explicit computation of angles is We sort the remaining points of P (that is, $P - \{a\}$) using the radial comparator C(a), and let S be the resulting sorted list of points. (See Figure 12.24.) performed by the comparator.

Graham Scan

- through the points in S in (radial) order, maintaining at each step a list H storing a convex chain "surrounding" the points scanned so far. Each time 3. After adding the anchor point a at the first and last position of S, we scan we consider new point p, we perform the following test:
- (a) If p forms a left turn with the last two points in H, or if H contains fewer than two points, then add p to the end of H.
- (b) Otherwise, remove the last point in H and repeat the test for p.

We stop when we return to the anchor point a, at which point H stores the vertices of the convex hull of P in counterclockwise order.

Graham Scan

- The Graham scan is a systematic procedure for removing nonconvex vertices from a polygon
- The polygon is traversed counterclockwise and a sequence H of vertices is

for each vertex r of the polygon
 Let q and p be the last and second last
 vertex of H
 while orientation(p, q, r) = CW or COLL
 remove q from H
 q ← p
 p ← vertex preceding p in H
 Add r to the end of H

Analysis

- Computing the convex hull of a set of points takes $O(n \log n)$ time
- Finding the anchor point takes O(n) time
- Sorting the points counterclockwise around the anchor point takes $O(n \log n)$ time
- sorting algorithm that runs in $O(n \log n)$ time Use the orientation comparator and any (e.g., heap-sort or merge-sort)
- The Graham scan takes O(n) time
- Each point is inserted once in sequence H
- Each vertex is removed at most once from sednence H

Convex Hull

convex hull problem

- To find a convex hull, we may use the divide-andconquer.
- The set of planar points is divided into two subsets S_L and S_R by a line perpendicular to the x-axis.
- Convex hulls for S_L and S_R are now constructed and they are denoted as $Hull(S_{\nu})$, $Hull(S_{\nu})$ respectively.
- To combine Hull(SL) and Hull(SR) into one convey use the Graham scan.

Graham scan

- An interior point of Hull(S₁) is selected.
- Consider the point as the origin.
- Then each other point forms a polar angle with interior point.
- All of the points are now sorted with respect to these polar angle.
- The Graham scan examines the points one by one and eliminates the points which cause reflexive angles, as illustrated in Figure 4-10.

• e.g. points b and f need to be deleted.

- The merging procedure:
- Select an interior point p.
- There are 3 sequences of points which have increasing polar angles with respect to p.
- (1) g, h, i, j, k
- (2) a, b, c, d
- (3) f, e
- Merge these 3 sequences into 1 sequence:
- g, h, a, b, f, c, e, d, i, j, k.
- Apply Graham scan to examine the points one by one and eliminate the points which cause reflexive angles.

The divide-and-conquer strategy to solve the problem:

Divide-and-conquer for convex hull

- Input : A set S of planar points
- Output: A convex hull for S

Step 1: If S contains no more than five points, use exhaustive searching to find the convex hull and return.

X-axis which divides S into S_L and S_R; S_L lies Step 2: Find a median line perpendicular to the to the left of S_{R} .

and S_R . Denote these convex hulls by Hull(S_L) and Hull(S_R) respectively. Step 3: Recursively construct convex hulls for S,

- merge $Hull(S_L)$ and $Hull(\bar{S}_R)$ together to form a convex hull. Step 4: Apply the merging procedure to
- Time complexity:
- T(n) = 2T(n/2) + O(n)= O(n log n)

4.4 The Voronoi diagram problem

e.g. The Voronoi diagram for two & three points

Definition of Voronoi diagrams

denote the half plane containing P_i. The Voronoi polygon associated with P_i is defined <u>**Def**</u>: Given two points P_i , $P_j \in S$, let $H(P_i, P_j)$

 $V(i) = \bigcap_{i \neq j} H(P_i, P_j)$

Given a set of n points, the Voronoi diagram consists of all the Voronoi polygons of these points.

called Voronoi points and its segments are The vertices of the Voronoi diagram are called Voronoi edges.

Delaunay triangulation

mathematician. There is a line segment connecting P, and The straight line dual of a Varonoi diagram is called the \mathcal{P}_j in a Delaunay triangulation if and only if the Voronoi Delaunay triangulation, in honor of a famous French polygons of P_i and P_i share the same edge.

4 -92

Application of Voronoi Diagram

- Voronoi diagrams are very useful for many purposes:
- problem by extracting information from the • We can solve the so called all closest pairs Voronoi diagram.
- A minimal spanning tree can also be found from the Voronoi diagram.

Example for constructing Voronoi diagrams

Divide the points into two parts.

Fig. 5-17: Two Voronoi Diagrams After Step 2

Merging two Voronoi diagrams

Merging along the piecewise linear hyperplane HP

Fig. 5-18: The Piecewise Linear Hyperplane for the set of Points Shown in Fig. 5-17.

Property of HP

- If a point P is within the left(right) side of HP, the nearest neighbor of P must be a point in $S_L(S_R)$.
- we obtain the resulting Voronoi diagram as • After discarding all of VD(SL) to the right of HP and all of VD(SR) to the left of HP, shown in Figure 5-19.

4-0-4

The final Voronoi diagram

After merging

Fig. 5-19: The Voronoi Diagram of the Points in Fig. 5-17.

Divide-and-conquer for Voronoi

diagram

Input: A set S of n planar points.

Output: The Voronoi diagram of S.

Step 1: If S contains only one point, return.

Step 2: Find a median line L perpendicular to such that $S_L(S_R)$ lies to the left(right) of L the X-axis which divides S into S_L and S_R and the sizes of S_{L} and S_{R} are equal.

Step 3: Construct Voronoi diagrams of S, and S_R recursively. Denote these Voronoi diagrams by VD(S_I) and VD(S_R).

point in S_R . Discard all segments of $\overline{VD}(S_L)$ which lie to the right of HP and all segments simultaneously closest to a point in S, and a resulting graph is the Voronoi diagram of S. Step 4: Construct a dividing piece-wise linear hyperplane HP which is the locus of points of VD(S_R) that lie to the left of HP. The

(See details on the next page.)

Merging Two Voronoi Diagrams into

One Voronoi Diagram

Input: (a) S_L and S_R where S_L and S_R are

divided by a perpendicular line

(b) $VD(S_L)$ and $VD(S_R)$.

Output: VD(S) where $S = S_L \cap S_R$

Step 1: Find the convex hulls of S_L and S_R , denoted as $Hull(S_L)$ and $Hull(S_R)$, respectively. (A special algorithm for finding a convex hull in this case will by given later.)

HULL(S_L) and HULL(S_R) into a convex hull (P_a and P_c belong to S_L and P_b and P_d belong to S_R) Assume that $\overline{P_aP_b}$ lies above $\overline{P_cP_d}$. Let $\overline{P_aP_b}$ and HP = $\overline{\varnothing}$. Step 2: Find segments $P_a P_b$ and $P_c P_d$ which join

= $\overline{P_c P_d}$, go to Step 5; otherwise, go to Step 4. Denote it by BS. Let HP = HP \cup {BS}. If SG Step 3: Find the perpendicular bisector of SG.

some z. If this ray is the perpendicular bisector of $\overline{P_yP_z}$, then let $SG = \overline{P_xP_z}$; otherwise, let $SG = \overline{P_zP_y}$. Go to Step 3. perpendicular bisector of either $\overline{P_xP_z}$ or P_yP_z for Step 4: The ray from VD(S₁) and VD(S_R) which BS first intersects with must be a

edges of VD(S_R) which extend to the left of extend to the right of HP and discard the HP. The resulting graph is the Voronoi diagram of $S = S_L \cup S_R$.

Properties of Voronoi Diagrams

- the distance between P and S is the distance **Def:** Given a point P and a set S of points, between P and P_i which is the nearest neighbor of P in S.
- The HP obtained from the above algorithm is the locus of points which keep equal distances to S_L and S_R.
- The HP is monotonic in y.

The relationship between a horizontal line H and S_L and S_R.

Each horizontal line H intersects with HP at one and only on point.

of Voronoi edges

of edges of a Voronoi diagram $\leq 3n - 6$, where n is # of points.

Voronoi edge

Reasoning:

of edges of a planar graph with n vertices <

A Delaunay triangulation is a planar graph.

Edges in Delaunay triangulation
 ← 1-1 → edges in Voronoi diagram.

Corollary: If G is a connected planar simple graph with E edges and V vertices where V≥3, then E≤3V-6.

of Voronoi vertices

- # of Voronoi vertices $\leq 2n 4$ (upper bound).
- Reasoning:

Voronoi vertices

- Let F, E and V denote # of face(region), edges and vertices in a planar graph.
- Euler's relation: F = E V + 2.
- ii. In a Delaunay triangulation,
- $V = n, E \le 3n 6$

$$\Rightarrow$$
 F = E - V + 2 \leq 3n - 6 - n + 2 = 2n - 4.

Reference: Rosen pp. 606~607.

Construct a convex hull from a

- Voronoi diagram
- After a Voronoi diagram is constructed, a convex hull can by found in O(n) time.
- Connecting the points associated with the infinite rays

Fig. 5-25: Constructing a Convex Hull from a Voronoi Diagram

Construct Convex Hull from Voronoi diagram

Step 1: Find an infinite ray by examining all Voronoi edges. O(n)

infinite ray. P_i is a convex hull vertex. Examine the Voronoi polygon of P_i to find the Step 2: Let P_i be the point to the left of the next infinite ray.

Step 3: Repeat Step 2 until we return to the Starting ray.

Time complexity

Time complexity for merging 2 Voronoi diagrams:

Total: O(n)

Step 1: O(n)

Step 2: O(n)

Step 3 ~ Step 5: O(n)

(at most 3n - 6 edges in $VD(S_L)$ and $VD(S_R)$ and at most n segments in HP)

Time complexity for constructing a Voronoi diagram: O(n log n)

because $T(n) = 2T(n/2) + O(n) = O(n \log n)$

4 -110

Finding lower bound by problem transformation

iff A can be solved by using any algorithm which Problem A reduces to problem B (A~B) solves B.

If A∝B, B is more difficult.

Lower bound of the Voronoi

diagram

- Let us consider a set of points on a straight line.
- consists of a set of bisecting lines as shown in The Voronoi diagram of such a set of points Figure 5-26.
- scanning of these Voronoi edges will accomplish After these lines have been constructed, a linear the function of sorting.
- In other words, the Voronoi diagram problem can not be easier than the sorting problem.
- A lower bound of the Voronoi diagram problem is therefore O(nlogn) and the algorithm is consequently optimal.

Lower bound

sorting ~ Voronoi diagram problem The lower bound of the Voronoi diagram problem is \O(n log n).

The Voronoi diagram for a set of points on a straight line

5.5 Applications of Voronoi diagrams

- The Euclidean nearest neighbor searching problem.
- The Euclidean all nearest neighbor problem.

The Euclidean nearest neighbor searching problem.

- P,'s and the distance used is the Euclidean distance. The Euclidean nearest neighbor searching problem is points: P_1 , P_2 , ..., P_n , and a testing point P. Our problem is to find a nearest neighbor of P among defined as follows: We are given a set of n planar
- A straightforward method is to conduct an exhaustive search. This algorithm would be an O(n) algorithm.
- searching time to O(logn) with preprocessing time Using the Voronoi diagram, we can reduce the O(nlogn).

- Note that the Voronoi diagram divides the entire plane into regions R_I , R_2 R_n . Within each region R_i there is a point P_i .
 - If a testing point falls within region R_{ν} , then its nearest neighbor, among all points, is P_i.
- Therefore, we may avoid an exhaustive search by simply transforming the problem into a region location problem.
- testing point is located, we can determine a nearest That is, if we can determine which region R, a neighbor of this testing point.

- A Voronoi diagram is a planar graph.
- Our first step is to sort these Voronoi vertices according to their y-values.
- Voronoi vertex, a horizontal line is drawn passing according to their decreasing y-values. For each The Voronoi vertices are labeled V₁, V₂,..., this vertex.
- These horizontal lines divide the entire space into slabs.

The Application of Voronoi Diagrams to Slove the Euclidean Nearest Neighbor Searching Problem. Figure 5-27

Euclidean nearest neighbor searching algorithm

- Conduct a binary search to determine which slab this testing point is located. Since there are at most O(n)Voronoi vertices, this can be done in O(logn) time.
- Within each slab, conduct a binary search to determine which region this point is located in. Since there are at most O(n) Voronoi edges, this can be done in O(logn)
- The total searching time is O(logn).
- It is easy to see that the preprocessing time is O(nlogn), essentially the time needed to construct the Voronoi diagram.

The Euclidean all nearest neighbor problem.

- We are given a set of n planar points $P_1, P_2, ...,$
- The Euclidean closest pair problem is to find a nearest neighbor of every P_i.
- Properties:
- If P_j is a nearest neighbor of P_i , then P_i and P_j share the same Voronoi edge.
- Moreover, the midpoint of segment P_iP_j is located exactly on this commonly shared Voronoi edge.

Proof

- We shall show this property by contradiction.
- polygons, the perpendicular bisector of P;P; must be outside of the Voronoi polygon associated with P_i. Suppose that P; and P; do not share the same Voronoi edge. By the definition of Voronoi
- Voronoi edge at N, as illustrated in Figure 5-28. • Let P, Pi intersect the bisector at M and some

Figure 5-28 An Illustration Showing the Nearest Neighbor Property of Voronoi

Euclidean all nearest neighbor problem

- neighbor problem can be solved by examining every Given the above property, the Euclidean all nearest Voronoi edge of each Voronoi polygon.
- Since each Voronoi edge is shared by exactly two Voronoi polygons, no Voronoi edge is examined more than twice.
- That is, this Euclidean all nearest neighbor problem can be solved in linear time after the Voronoi diagram is constructed.
- Thus this problem can be solved in O(nlogn) time.

FIGURE 4-29 The all nearest neighbor relationship.

5.8 Matrix multiplication

• Let A, B and C be n × n matrices

$$C = AB$$

$$C(i, j) = \sum_{1 \le k \le n} A(i, k)B(k, j)$$

The straightforward method to perform a matrix multiplication requires $O(n^3)$ time.

$$c_{ij} = \sum_{a_{ik}}^{n} a_{ik} \cdot b_{kj}$$

n個乘法, n-1個加法, 產生了一個entries

Divide-and-conquer approach

 $\mathbf{C} = \mathbf{AB}$

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{II} = A_{II} B_{II} + A_{I2} B_{2I}$$
 $C_{I2} = A_{II} B_{I2} + A_{I2} B_{22}$
 $C_{2I} = A_{2I} B_{II} + A_{22} B_{2I}$
 $C_{2I} = A_{2I} B_{II} + A_{22} B_{2I}$
 $C_{22} = A_{2I} B_{I2} + A_{22} B_{22}$

Time complexity:

$$T(n) = \begin{cases} b & \text{if } s \le 2 \\ 8T(n/2) + cn^2, & \text{if } n > 2 \\ T(n) = \Theta(1) + 8T(\frac{n}{2}) + \Theta(n^2) = 8T(\frac{n}{2}) + \Theta(n^2) \end{cases}$$
(# of additions : n²) We get T₁(n) = O(n³)

Pseudo code:

Square-Matrix-Multiply-Recursive (A, B) n=A.rows

 $T(1) = \Theta($ let C be a new n x n matrix if n==1 | Base case $c_{11} = a_{11} \cdot b_{11} \quad \Theta(1)$

Recursive case

else partition the matrix into $4 \text{ n/2} \times \text{n/2}$ matrices

 $C_{11}=$ Square-Matrix-Multiply-Recursive (A_{12},B_{11}) n+Square-Matrix-Multiply-Recursive (A_{12},B_{11}) $gT(\frac{1}{2})$ Combi

 $C_{12} = Square-Matrix-Multiply-Recursise (<math>C_{11}, B_{12}$)

ne $\Theta(n^2)$ +Square-Matrix-Multiply-Recursive (4/2, B_{22})

 $C_{21} = \operatorname{Square-Matrix-Multiply-Recursive}(A_{21}, B_{11})$ +Square-Matrix-Multiply-Recursive (A_{22},B_{21})

 $C_{22} = \operatorname{Square-Matrix-Multiply-Recursive}(A_{21}, B_{12})$

+Square-Matrix-Multiply-Recursive (A_{22} , B_{22})

return C

Strassen's matrix multiplication

$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22})B_{11}$$

$$R = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$A = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$\Gamma = (A_{11} + A_{12})B_{22}$$

$$T = (A_{11} + A_{12})B_{22}$$

$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$V = (A_{12} - A_{22})(B_{21} + B_{22}).$$

$$C_{11} = P + S - T + V$$

$$C_{12} = R + T$$
$$C_{21} = Q + S$$

$$C_{22} = P + R - Q + U$$

Volker 攝於2009年 德國數學家 Strassen

Time complexity

- 7 multiplications and 18 additions or subtractions
- Time complexity:

$$T(n) = \begin{cases} b & n \le 2 \\ 7T(n/2) + an^2, & n > 2 \end{cases}$$

=
$$\operatorname{an}^{2}(1 + 7/4 + (7/4)^{2} + ... + (7/4)^{k-1} + 7^{k}T(1))$$

 $\leq \operatorname{cn}^{2}(7/4)^{\log_{2}n} + 7^{\log_{2}n}, \quad \text{c is a constant}$
= $\operatorname{cn}^{\log_{2}4 + \log_{2}7 - \log_{2}4} + \operatorname{n}^{\log_{2}7}$
= $\operatorname{O}(\operatorname{n}^{\log_{2}7})$
 $\equiv \operatorname{O}(\operatorname{n}^{2.81})$