Current IMS Database

DS Group

Invention Database

Layout of Segment in Directory Dataset

Segment Prefix 26		Segment Data 28		
Seg Code &	Prefix Pointers	Pointer to	Metadata	
Delete Byte		Seg Data	Seg Key Born-0n-Date	

Figure 2A. Split Segment Composition – Prefix Portion with Metadata in segment data portion

Layout of Segment in Segdata Dataset

Segment P	refix 26			Seg Data
30 Seg Code &	Prefix Pointers	Metadata		Pointer to
Delete Byte	32	Seg Key	Born-0n-Date 36	Seg Data

Figure 2B. Split Segment Composition – Prefix Portion with Metadata in segment prefix portion

Layout of Segment in Segdata Dataset

Segment Prefix 40	Segment Data <u>42</u>	Trans- parent _{yy}
Seg code & delete byte	User Data 48	Born on Date 50

Fig. 3

FINISH END

```
122
       NAME=IVPDB1, ACCESS=(HIDAM, OSAM)
DBD
        DD1=DFSIVD1, SIZE=2048, UOW= (500, 50, 10)
DIR
DATASET DD1=DFSIVD1A, DEVICE=3380, SIZE=2048
       NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLV, LAST), PTR=(TB, CTR)
       NAME= (A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C
FIELD
       NAME=A9999999, BYTES=010, START=00011, TYPE=C
{	t FIELD}
LCHILD NAME=(A1, IVPDB1I), POINTER=INDX, RULES=LAST
LCHILD NAME=(A1X, IVPDB1X), POINTER=INDX
       NAME=AXXXXXXX, SEGMENT=A1111111, SRCH=(A9999999)
LCHILD NAME=(C1X, IVPDB1Z), POINTER=INDX
       NAME=CXXXXXXX, SEGMENT=C1111111, SRCH=(C9999999)
DATASET DD1=DFSIVD1B, DEVICE=3380, SIZE=4096
                                                                         X
       NAME=B1111111, PARENT=A1111111, BYTES=(1000, 50),
SEGM
              RULES=(LLV, LAST), PTR=(TB)
       NAME=(B1111111, SEQ, M), BYTES=010, START=00003, TYPE=C
FIELD
       NAME=/SXB1
FIELD
LCHILD NAME=(B1X, IVPDB1Y), POINTER=INDX
XDFLD..NAME=BXXXXXXX, SEGMENT=B1111111, SRCH=(B1111111), SUBSEQ=(/SXB1)
DATASET DD1=DFSIVD1C, DEVICE=3380, SIZE=8192
       NAME=C1111111, PARENT=B1111111, COMPRTN=(DFSKMPX0, DATA, INIT),
SEGM
              RULES=(LLV, LAST), PTR=(TB), BYTES=(8000,50)
       NAME=(C1111111, SEQ, U), BYTES=010, START=00003, TYPE=C
FIELD
        NAME=C9999999, BYTES=010, START=00011, TYPE=C
FIELD
DIRGEN
DBDGEN
```

Figure 4A Sample HIDAM DBD

```
NAME=IVPDB2, ACCESS=HDAM, RMNAME=(DFSHDC40, 4, 1000)
DBD
      DD1=DFSIVD2, UOW=(100,10)
DIR
DATASET DD1=DFSIVD2A, DEVICE=3380, SIZE=2048
       NAME=A1111111, PARENT=0, BYTES=40, RULES=(LLL, LAST),
SEGM
              COMPRTN=(DFSKMPX0,DATA,INIT)
       NAME=(A1111111, SEQ, U), BYTES=010, START=00001, TYPE=C
FIELD
DATASET DD1=DFSIVD2B, DEVICE=3380, SIZE=4096
                                                                    Χ
       NAME=B1111111, PARENT=A1111111, BYTES=(1000,50),
SEGM
              RULES=(LLV,LAST),PTR=(TB)
       NAME=(B1111111, SEQ, U), BYTES=010, START=00003, TYPE=C
FIELD
DATASET DD1=DFSIVD2C, DEVICE=3380, SIZE=8192
       NAME=C1111111, PARENT=B1111111, COMPRTN=(DFSKMPX0, DATA, INIT),
SEGM
       RULES=(LLV, LAST), PTR=TB, BYTES=8000
       NAME=(C1111111, SEQ, U), BYTES=010, START=00001, TYPE=C
FIELD
DIRGEN
DBDGEN
FINISH
END
```

Figure 48 Sample HDAM DBD

Target Database

Figure 5 Secondary Index Architecture

Figure 6 Secondary Index Before Reorganizing

Figure 7 Secondary Index After Reorganizing

Figure & Retrieving a Target Segment via a Secondary Index

Figure 9 Correcting Direct Pointer in a Secondary Index

Figure 10 Saving the Database Definition at DB Load Time

Figure | Checking the Database Definition at DB Processing Time

Figure 12. Unit Of Work (UOW) Architecture

Figure 13. HDAM UOW Architecture

Figure 14. HIDAM UOW Architecture

Figure 15. Prime & DOVF Block Composition

Figure 16. IOVF Block Composition

Figure 17 Block Composition Using IMS' Space Management

144	144.	144	144	148	142	(142 (. 146
Dep Seg#11	Dep Seg#12	Dep Seg#21	Dep Seg#22	Free Space	Root Seg#2	Root Seg#1	<

Figure 18 Block Composition Using Invention's Space Management

Figure 19 Space Management at Database Load Time

Figure 20 Space Management at Database Update Time

Figure 21. Space Management at Database Load Time

Figure 22. Space Management at Database Update Time