Problem 1

Greeks for Call Option:

```
'delta': 0.5134924341675868,
'gamma': 0.04018251491006158,
'theta': -0.06049658790492133,
'vega': 0.1978135668935456,
'rho': 0.07300692770779327}
```

Greeks for Put Option:

```
'delta': -0.4865075658324132,

'gamma': 0.04018251491006158,

'theta': -0.05936670633167526,

'vega': 0.1978135668935456,

'rho': -0.07613743996068799}
```

Price for Call & Put Options (respectively):

```
callp, putp
(3.230683995715243, 4.141876902240273)
```

Conclusions:

- Put options become more expensive since the price will drop by the amount of the dividend
- Call options become cheaper due to the anticipated drop in the price of the stock
- The value of put option respond less than call option to a price change as the absolute value of delta(put) < delta(call)

Problem 2

I was not entirely sure about how to use the formula you provided with gradient to calculate delta normal VaR. And it took me too long to figure out problem 1 and 3. I will try and figure out this problem on my own next week.

Problem 3

Expected Returns:

	AA	APL	FB	UNH	MA	MSFT	NVDA	HD	PFE	AMZN	BRK-B	PG	XOM	TSLA	JPM	V	DIS
	0 0.012	163	0.012056	0.012147	0.012016	0.012136	0.011982	0.01206	0.012236	0.012054	0.012146	0.01216	0.012022	0.012061	0.012072	0.01205	0.0121
	GOOG	L	JN	J	BAC	CSCC)										
Γ	0 0120	a	0.01216	2 0.01	2051	0 012106	3										

Optimized efficient portfolio weights for 20 stocks:

```
0.75618169, -0.24243637, 0.75618129, -0.24243734, -0.24243439, -0.24243817, -0.24243628, 0.75618349, -0.24243641, -0.14073608, 0.7561816, -0.24243721, -0.24243625, -0.24243598, -0.24243651, -0.2424348, -0.24243555, 0.75618164, -0.24243648, 0.75618248]
```