Partie 1

$$A = \begin{pmatrix} -7 & -16 & 7 & -4 \\ 9 & -3 & -4 & -7 \\ 7 & -4 & -7 & -16 \\ -4 & -7 & 9 & -3 \end{pmatrix} = M_{B_0}(f)$$

$$1/f(e_1) = -7e_1 + 9e_2 + 7e_3 - 4e_4 \text{ et}$$

$$f^2(e_1) = \begin{pmatrix} -7 & -16 & 7 & -4 \\ 9 & -3 & -4 & -7 \\ 7 & -4 & -7 & -16 \\ -4 & -7 & 9 & -3 \end{pmatrix} \begin{pmatrix} -7 \\ 9 \\ 7 \\ -4 \end{pmatrix} = \begin{pmatrix} -30 \\ -90 \\ -70 \\ 40 \end{pmatrix}$$

$$On \text{ a } rg(e_1, f(e_1), f^2(e_1)) = rg \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -7 \\ 9 \\ 7 \\ -4 \end{pmatrix}, \begin{pmatrix} -30 \\ -90 \\ -70 \\ 40 \end{pmatrix}$$

$$Donc \text{ } rg(e_1, f(e_1), f^2(e_1)) = rg \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 9 \\ 7 \\ -4 \end{pmatrix}, \begin{pmatrix} 0 \\ -90 \\ -70 \\ 40 \end{pmatrix} = 2$$

Donc la famille est liée et nous avons la relation:

$$10(f(e_1) + 7e_1) + (f^2(e_1) + 30e_1) = 0 \operatorname{donc} f^2(e_1) + 10f(e_1) + 100e_1 = 0$$

2/ De même
$$f^{2}(e_{2}) = \begin{pmatrix} -7 & -16 & 7 & -4 \\ 9 & -3 & -4 & -7 \\ 7 & -4 & -7 & -16 \\ -4 & -7 & 9 & -3 \end{pmatrix} \begin{pmatrix} -16 \\ -3 \\ -4 \\ -7 \end{pmatrix} = \begin{pmatrix} 160 \\ -70 \\ 40 \\ 70 \end{pmatrix}$$

et
$$rg(e_2, f(e_2), f^2(e_2)) = rg \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -16 \\ 0 \\ -4 \\ -7 \end{pmatrix}, \begin{pmatrix} 160 \\ 0 \\ 40 \\ 70 \end{pmatrix}$$

et nous avons, de même, la relation $10(f(e_2) + 3e_2) + (f^2(e_2) + 70e_2) = 0$ qui donne aussi $f^2(e_2) + 10f(e_2) + 100e_2 = 0$

3/ Calculons le déterminant de ces 4 vecteurs:

$$\begin{vmatrix} 1 & -7 & 0 & -16 \\ 0 & 9 & 1 & -3 \\ 0 & 7 & 0 & -4 \\ 0 & -4 & 0 & -7 \end{vmatrix} = \begin{vmatrix} 9 & 1 & -3 \\ 9 & 1 & -3 \\ |= | & 7 & 0 & -4 | = -| & 7 & -4 \\ -4 & 0 & -7 \end{vmatrix} = 65 \neq 0 \text{ donc ils forment une base}$$

4/ La relation demandée est vraie pour e_1 donc, en prenant l'image par f, est vraie pour $f(e_1)$ et de même pour e_2 et $f(e_2)$. Donc l'endomorphisme $f^2 + 10f + 100Id_E$ est nul sur une base, donc nul.

$$5/M_B(f) = \begin{pmatrix} 0 & -100 & 0 & 0 \\ 1 & -10 & 0 & 0 \\ 0 & 0 & 0 & -100 \\ 0 & 0 & 1 & -10 \end{pmatrix}$$
 donc $det(xId_E - f) = (x^2 + 10x + 100)^2$

dont les racines sont complexes non réelles donc la matrice n'est pas diagonalisable dans R.

Remarque: on a manifestement fait apparaître deux plans stables par f et le polynôme caractéristique est clairement annulateur de f...

Partie 2

 $1/E_x = Vect(f^n(x), n \in \mathbb{N})$. Un élément quelconque de cet espace est une combinaison linéaire finie de ses générateurs, ce qui permet toujours de l'écrire sous une forme $\sum_{k=0}^p f^k(x)$ dont l'image est, par linéarité de f, $\sum_{k=0}^p f^{k+1}(x)$ qui est encore dans E_x , d'où la stabilité par f de ce sous-espace.

2/F étant un sous espace contenant x et stable par f, une récurrence très simple montre qu'il contient tout les vecteurs $f^k(x)$ et toutes les combinaisons linéaires d'un nombre fini de ces vecteurs, donc tous les éléments de E_x .

3/

a/ l'ensemble $\{k \in \mathbb{N}^*, (x, f(x), \dots, f^{k-1}(x)) \text{ libre}\}$ est une partie de \mathbb{N} , non vide car $x \neq 0$ et donc 1 appartient à cette partie. Elle est naturellement majorée par d, dimension de l'espace total. Cette partie non vide majorée de N admet donc un plus grand élément.

b/ On a donc
$$(x, f(x), \dots, f^{p-1}(x))$$
 libre et $(x, f(x), \dots, f^p(x))$ liée.

On peut donc trouver
$$(a_0, a_1, \dots, a_p) \neq 0_{\mathbb{R}^{p+1}}$$
 tels que $\sum_{k=0}^{k=p} a_k f^k(x) = 0$

Si $a_p = 0$ cette relation devient une relation de liaison non triviale entre les vecteurs de la famille $(x, f(x), \dots, f^{p-1}(x))$, ce qui est absurde, donc $a_p \neq 0$ et donc il est possible de diviser par ce réel pour obtenir: $f^p(x) = \sum_{k=0}^{k=p-1} \frac{-a_k}{a_p} f^k(x)$.

c/ Montrons par récurrence que, pour tout entier n, $f^{p+n}(x) \in E'_x$

- c'est vrai pour n=0
- supposons que ce soit vrai pour n=s

Alors il existe
$$(u_0,\ldots,u_{p-1})\in \mathbb{R}^p$$
 tel que $f^{p+s}(x)=\sum_{k=0}^{k=p-1}u_kf^k(x)$

Alors il existe
$$(u_0, \dots, u_{p-1}) \in \mathbb{R}^p$$
 tel que $f^{p+s}(x) = \sum_{k=0}^{k=p-1} u_k f^k(x)$
Alors, par linéarité de f, $f^{p+s}(x) = \sum_{k=0}^{k=p-1} u_k f^{k+1}(x) = \sum_{k=1}^{k=p} u_k f^k(x) \in E_x'$

Donc $E_x \subset E_x'$ et l'inclusion inverse est évidente, d'où l'égalité.

La famille $(x, f(x), \dots, f^{p-1}(x))$, clairement base de E'_x est donc aussi base de E_x .

4/ Avec les notations du texte, on a clairement:

$$M_{B_p}(f_{|E_x}) = \left(egin{array}{ccccc} 0 & 0 & 0 & a_0 \ 1 & 0 & . & a_1 \ 0 & 1 & . & . \ . & 0 & 0 & . \ 0 & . & 0 & 1 & a_{p-1} \end{array}
ight).$$

5/ Soit une combinaison nulle de ces endomorphismes:

 $\sum_{k=0}^{k=p-1} t_k f_{E_x}^k = 0_{L(E)}$. En prenant l'image de x par cet endomorphisme, on obtient une relation de liaison sur la famille $(x,f(x),\ldots,f^{p-1}(x))$, combinaison qui ne peut être que triviale, donc tous les t_k sont nuls et la famille des endomorphismes $\left(Id, f_{\mid E_x}, \dots, f_{\mid E_x}^{p-1}\right)$ est libre.

6/

a/ On a, en reprenant les notations du texte $f^p(x_0) = \sum_{k=0}^{p-1} a_k f^k(x_0)$

Prenons, pour tout s<p, l'image par f^s des deux membres: alors

$$f^{p+s}(x_0) = \sum_{k=0}^{p-1} a_k f^{k+s}(x_0) \operatorname{donc} f^p(x_s) = \sum_{k=0}^{p-1} a_k f^k(x_s).$$

L'endomorphisme $f^p - \sum_{k=0}^{p-1} a_k f^k$ envoie donc sur 0 tous les vecteurs de la base de E_x , il est donc nul sur ce sous-espace.

Partie 3

1/

a/ Si f est supposée diagonalisable, cela signifie que $E = \bigoplus_{i=1}^{i=p} E_i$, d'où la décomposition unique de tout vecteur de E dans cette somme directe.

b/ Ces vecteurs non nuls x_1, \ldots, x_q sont donc des vecteurs propres associés à des valeurs propres distinctes, donc forment une famille libre.

c/ On a classiquement, $f^k(x_i) = \lambda_i^k x_i$ donc $f^k(x) = \sum_{i=1}^{i=q} \lambda_i^k x_i$.

d/ On a $0 = \sum_{k=0}^{q-1} \alpha_k f^k(x) = \sum_{i=1}^{i=q} \left(\sum_{k=0}^{q-1} \alpha_k \lambda_i^k\right) x_i$. Les vecteurs x_1, \ldots, x_q formant une famille libre on a, pour tout i $\sum_{k=0}^{q-1} \alpha_k \lambda_i^k = 0_R$ d'où le résultat.

e/ Le polynôme précédent, de degré q-1, admet q racines distinctes, donc c'est le polynôme nul, d'où le résultat.

f/ Les q+1 vecteurs $x, f(x), \ldots, f^q(x)$ sont tous dans $Vect(x_1, \ldots, x_q)$ espace engendré par q vecteurs, donc ils forment une famille liée, et, de même que dans Partie 2/3/c , $f^q(x) \in Vect(x, f(x), \ldots, f^{q-1}(x))$ et, par la même récurrence, pour tout entier s $f^{q+s}(x) \in Vect(x, f(x), \ldots, f^{q-1}(x))$ d'où $E_x = Vect(x, f(x), \ldots, f^{q-1}(x))$

De plus
$$Vect(x, f(x), \dots, f^{q-1}(x)) \subset Vect(x_1, \dots, x_q)$$

et c'est un sous-espace de dimension q d'un espace de dimension q, d'où l'égalité.

2/ On a, E_i étant aussi stable par f, F_i stable par f.

Soit $x \in F$, non nul. On écrit, comme dans $1/b/x = \sum_{i=1}^{q} x_i$ avec des vecteurs $x_i \neq 0$ Le raisonnement précédent donne $E_x = Vect(x, f(x), \dots, f^{q-1}(x)) = Vect(x_1, \dots, x_q)$

Or $Vect(x, f(x), ..., f^{q-1}(x)) \subset F$, sous-espace stable par f, donc, pour tout i de [1, q], $x_i \in F$ et $x_i \in E_i$ donc $x_i \in F_i$.

Si x = 0, sa décomposition dans la somme directe $\bigoplus_{i=1}^{i=p} E_i$ est nécessairement triviale et le vecteur nul appartient à tous les F_i .

Remarque: une question suivante logique aurait été: démontrer que $F = \bigoplus_{i=1}^{i=p} F_i$ et donc que la restriction à un sous-espace stable d'un endomorphisme diagonalisable est encore diagonalisable...

$$\mathsf{a}/M_{B_0}(f) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$x-1 & -1 & 1 & x-1 & -1 & 1 & x-2 & 0 & 0$$

$$\det(xId-f) = \begin{vmatrix} -1 & x-1 & -1 & |= x| & -1 & 1 & -1 & |= x| & -1 & 1 & -1 & |\\ -1 & -1 & x-1 & -1 & 0 & x-1 & -1 & 0 & x-1 \end{pmatrix}$$

$$\mathsf{Donc} \det(xId-f) = x(x-2)(x-1)$$

f admet donc trois valeurs propres distinctes donc, étant en dimension 3, nous en déduisons que f est diagonalisable.

b/Les sous-espaces propres sont tous de dimension 1 et:

clairement:
$$E_0 = Vect(e_1 - e_2)$$

$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in E_1 \Leftrightarrow \begin{cases} b - c = 0 \\ a + c = 0 \\ a + b = 0 \end{cases} \text{ donc } F_1 = Vect(e_1 - e_2 - e_3)$$

$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in E_2 \Leftrightarrow \begin{cases} -a + b - c = 0 \\ a - b + c = 0 \\ a + b - c = 0 \end{cases} \Leftrightarrow \begin{cases} -a + b - c = 0 \\ 2b - 2c = 0 \end{cases} \text{ donc } F_1 = Vect(e_1 - e_2 - e_3)$$

 $F_1 = Vect(e_2 + e_3)$

c/ La théorie élaboré jusqu'en 2 montre clairement que $F = \bigoplus_{i=1}^{i=p} (F \cap E_i)$

Or chaque E_i étant de dimension 1, $F \cap E_i$ est de dimension 1 au plus et donc $F \cap E_i = E_i$ ou $F \cap E_i = \{0_E\}$

Donc les sev stables par f sont des sommes directes des trois sev propres, donc:

Les sev stables de dimension 1 sont les trois sous-espaces propres E_0, E_1, E_2 précédents

Les sev stables de dimension 2 sont du type $E_i \oplus E_j$ avec $i \neq j$ soit trois plans stables

L'espace entier est le sev stable de dimension 3.

Conclusion: 3 sev stables de dimension 1, 3 de dimension 2 et l'espace entier.

Probabilités

1/ pour i entier
$$P(X = i) = \sum_{j=0}^{+\infty} P(X = i, Y = j) = \sum_{j=0}^{i} P(X = i, Y = j)$$

Donc $P(X = i) = \sum_{j=0}^{i} \frac{\lambda^{i} e^{-\lambda} \alpha^{j} (1-\alpha)^{i-j}}{j! (i-j)!} = \lambda^{i} e^{-\lambda} \sum_{j=0}^{j=i} \frac{\alpha^{j} (1-\alpha)^{i-j}}{j! (i-j)!} = \frac{\lambda^{i} e^{-\lambda}}{i!} \sum_{j=0}^{j=i} \frac{i! \alpha^{j} (1-\alpha)^{i-j}}{j! (i-j)!}$

Or $\sum_{j=0}^{j=i} \frac{i! \alpha^{j} (1-\alpha)^{i-j}}{j! (i-j)!}$ est le développement de Newton de $(1-\alpha+\alpha)^{i}=1$

Or
$$\sum_{j=0}^{j=i} \frac{i!\alpha^j(1-\alpha)^{j-j}}{j!(i-j)!}$$
 est le développement de Newton de $(1-\alpha+\alpha)^i=1$

D'où $P(X = i) = \frac{\lambda^i e^{-\lambda}}{i!}$ X suit une loi de Poisson de paramètre λ .

2/ De même
$$P(Y = j) = \sum_{i=0}^{+\infty} P(X = i, Y = j) = \sum_{i=j}^{+\infty} P(X = i, Y = j)$$

Donc
$$P(Y = j) = \sum_{i=j}^{+\infty} \frac{\lambda^{i} e^{-\lambda} \alpha^{j} (1-\alpha)^{i-j}}{i! (i-j)!} = \frac{e^{-\lambda} \alpha^{j} \lambda^{j}}{i!} \sum_{i=j}^{+\infty} \frac{\lambda^{i-j} (1-\alpha)^{i-j}}{(i-j)!} = \frac{e^{-\lambda} \alpha^{j} \lambda^{j}}{i!} \sum_{i=0}^{+\infty} \frac{\lambda^{i} (1-\alpha)^{i}}{i!}$$

2/ De même
$$P(Y=j) = \sum_{i=0}^{+\infty} P(X=i,Y=j) = \sum_{i=j}^{+\infty} P(X=i,Y=j)$$
Donc $P(Y=j) = \sum_{i=j}^{+\infty} \frac{\lambda^i e^{-\lambda} \alpha^j (1-\alpha)^{i-j}}{j! (i-j)!} = \frac{e^{-\lambda} \alpha^j \lambda^j}{j!} \sum_{i=j}^{+\infty} \frac{\lambda^{i-j} (1-\alpha)^{i-j}}{(i-j)!} = \frac{e^{-\lambda} \alpha^j \lambda^j}{j!} \sum_{i=0}^{+\infty} \frac{\lambda^i (1-\alpha)^i}{i!}$
Donc $P(Y=j) = \frac{e^{-\lambda} \alpha^j \lambda^j}{j!} e^{\lambda(1-\alpha)} = \frac{e^{-\lambda \alpha} (\alpha \lambda)^j}{j!}$ Y suit une loi de Poisson de paramètre $\alpha \lambda$

3/ On a
$$P(X=i)P(Y=j)=\frac{\lambda^i e^{-\lambda}}{i!}\frac{e^{-\lambda\alpha}(\alpha\lambda)^j}{j!}$$
 et $P(X=i,Y=j)=\frac{\lambda^i e^{-\lambda}\alpha^j(1-\alpha)^{i-j}}{j!(i-j)!}$

Comme $\frac{e^{-\lambda a}\lambda^{j}}{i!} \neq \frac{(1-\alpha)^{i-j}}{(i-j)!}$ pour i=j=0 par exemple, les variables X et Y ne sont pas indépendantes.

4/ Z prend manifestement ses valeurs dans Z.

Pour k<0,
$$P(Z = k) = 0$$

Pour $k \ge 0$, $\{X - Y = k\} = \bigcup_{s \in \mathbb{N}} \{Y = s, X = k + s\}$ car $(\{Y = s\})_{s \in \mathbb{N}}$ est une famille

Donc
$$P(Z = k) = \sum_{s=0}^{+\infty} \frac{\lambda^{k+s} e^{-\lambda} \alpha^s (1-\alpha)^k}{s!(k)!} = \frac{\lambda^k e^{-\lambda} (1-\alpha)^k}{(k)!} \sum_{s=0}^{+\infty} \frac{\lambda^s \alpha^s}{s!} = \frac{\lambda^k e^{-\lambda} (1-\alpha)^k}{(k)!} e^{\lambda \alpha}$$

Z suit donc une loi de Poisson de paramètre $\lambda(1-\alpha)$

$$P(Y = j | Z = n) = \frac{P(Y = j, Z = n)}{P(Z = n)} = \frac{P(Y = j, X = n + j)}{P(Z = n)} = \frac{\lambda^{n + j} e^{-\lambda} \alpha^{j} (1 - \alpha)^{n}}{j! n!} / \frac{\lambda^{n} e^{-\lambda} (1 - \alpha)^{n}}{n!} e^{\lambda \alpha}$$

$$\text{Donc } P(Y = j | Z = n) = \frac{\lambda^{j} \alpha^{j}}{j!} e^{-\lambda \alpha} = P(Y = j)$$

6/ Les variables Y et Z sont donc indépendantes.

7/ Notons X le nombre total d'enfants et Y le nombre de garçons.

Si X=i

Alors, les i "tirages" étant indépendants (!), Y suit une loi binômiale B $\left(i,\frac{1}{2}\right)$

Donc
$$P(Y = j | X = i) = \binom{i}{j} \left(\frac{1}{2}\right)^{j} \left(1 - \frac{1}{2}\right)^{i-j} = \binom{i}{j} \left(\frac{1}{2}\right)^{i}$$

Donc $P(X = i, Y = j) = P(Y = j | X = i) P(X = i) = \binom{i}{j} \left(\frac{1}{2}\right)^{i} \frac{(2.2)^{i} e^{-2.2}}{i!}$

Donc $P(X = i, Y = j) = (1, 1)^{i} \frac{e^{-2, 2}}{j!(i-j)!}$.