Image Processing Fundamentals SCC0251/5830 – Image Processing

Prof. Moacir A. Ponti

Instituto de Ciências Matemáticas e de Computação – USP

2019/1

Agenda

- Image and Digital Image
- Natural/biologic vision
- Samping and Quantisation
- 4 History and typical image sources

Image

- Bidimensional function (2-d) of intensity of light f(x, y):
 - x and y are spatial coordinates
 - f at (x,y) represents the intensity of light or color in the given coordinate
 - in practice, we define those functions as rectangular regions
- Continuous in space
- Coutinuous in amplitude

Acquisition

Acquisition

Image formation

Digital image generation pipeline

Digital image

- When acquiring images, the continuous function is sampled, its amplitude is quantised.
- As a result, a digital image is an image representation in a 2-d array of discrete samples.
- Each element of the matrix is called pixel.

Digital Image: CCD sensor

- The light is captured via the lens system and integrated during the exposure time (usually expressed in fractions of a second),
- CCD: charge-coupled device,
 - each cell in the array is photo-sensitive, acting like a bucket
 - electrons are accumulated in each cell, in proportion with the amount of captured photons,
 - after exposure, the electrons run from cell to cell to an amplifier for charge-to-voltage conversion.

Digital Image: CCD sensor

Digital Image: CMOS

- CMOS: complementary metal oxide on silicon.
 - (Active Pixel Sensor): photons affect directly the conductivity of each cell, which is locally amplified,
 - is prone to more energy dispersion among nearby cells then CCDs,
 - transmission via microwires that already have the voltage.

Digital Image: CMOS sensor

Natural/biologic vision

- Cornea, pupil, lens, retina and optical nerve play the most important roles in vision
 - Cornea, pupil and lens control the amount of light and how it refracts,
 - Retina/fovea contains the photo-sensitive cells: rods and cones,
 - Optic nerve is the neuron that carries the activations to the brain.

- The size of the sensor defines most of the image quality, followed by the analog gain (can be simulated via ISO) and the sensor noise.
- More megapixels not always mean more quality.

Typical sensor sizes:

	1/3"	1/2.7"	1/2.5"	1/2"	1/1.8"	1/1.7"	2/3"	1"
Width	4.8	5.37	5.76	6.4	7.18	7.6	8.8	12.8
Height	3.6	4.04	4.29	4.8	5.32	5.7	6.6	9.6
Size	17.3	21.7	24.7	30.7	38.2	43.3	58.1	123

Images obtained using the same sensor but different sampling parameters:

- Spatial resolution of human vision: how many points can be distinguished?
- \bullet Visual field of around 24000 imes 24000 points, or 576 megapixels.
- However, our brains cannot see all in the same way, a smaller region is often processed at once.
- Displays are often adaptations of visual human vision, trying to provide something close to a continuous image.

Displays

- SD: 512 × 480 (480 lines)
- HDTV: 1280 × 720 (720 lines)
- FullHD: 1920 × 1080 (1080 lines)
- 4K: 4000 × 2000 (2000 lines)

Aspect:

- 4:3
- 16:9 (widescreen)
- 21:9 (ultra widescreen)

Quantisation and number of colors/levels

 After sampling, each "real" observation must be converted into a discrete one, defined by the number of bits

Quantisation and number of colors/levels

Human perception on colour

How many colours can a human distinguish?

• 100K different colours (disputable)

24 bits

04 bits

03 bits

Color components

24 bits (8 + 8 + 8)

Grey levels

Different parameters of quantisation, ordered can show false contours.

Quantisation

(Domício Pinheiro / Agência Estado)

Binary image (0-1)

Grey levels: bright discrimination

A threshold was experimentally found by Weber:

$$\Delta I/I \approx K_{\text{Weber}} \approx 1..2\%$$
,

law of Fechner-Weber. Human brightness perception is uniform in log(I)

$\log vs \gamma$ -predistortion

displays/cameras have y-predistortion, while our perception is in log(I)

Agenda

- Image and Digital Image
- 2 Natural/biologic vision
- Samping and Quantisation
- 4 History and typical image sources

History

1970 1980 1990 2000 Learning Pictorial structures Stereo correspondence Intrinsic images Optical flow Structure from motion Image pyramids Scale-space processing Shape from shading, texture, and focus Physically-based modeling Regularization Markov Random Fields Kalman filters 3D range data processing Projective invariants Factorization Physics-based vision Graph cuts Particle filtering Energy-based segmentation Face recognition and detection Subspace methods Image-based modeling and rendering Texture synthesis and inpainting Feature-based recognition Category recognition Digital image processing Blocks world, line labeling Generalized cylinders Computational photography MRF inference algorithms

Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

Natural images

Scientific images

Medical imaging

Remote sensing

