Statistical Power

---- A non-technical view

Hu Chuan-Peng (胡传鹏) Nanjing Normal University hcp4715@hotmail.com

N = 42

NHST下统计检验力分析中的四个变量

模型思维视角下的power analysis

历史与现实中的power analysis

替代的方案?

1. NHST框架下的Power analysis

Power contour estimation

2. 模型思路下的Power analysis

• NHST本身是一个统计模型

2. 模型思路下的Power analysis

Parameter recovery

Journal of Abnormal and Social Psychology 1962, Vol. 65, No. 3, 145-153

THE STATISTICAL POWER OF ABNORMAL–SOCIAL PSYCHOLOGICAL RESEARCH:

A REVIEW 1

TABLE 2

VALUES OF POPULATION PARAMETERS WHICH DEFINE THE LEVELS OF SIZE OF EFFECT FOR THE VARIOUS STATISTICAL TESTS

JACOB COHEN

New York University

Test	Population parameter	Values			
		Small	Medium	Large	
1. t (two means are equal)	$ M_1 - M_2 /\sigma$.25	.50	1.00	
2. Normal (two proportions are equal)	$(P_1 - P_2)$.10	.20	.30	
3. Normal (two r's are equal)	$ r_1 - r_2 $.10	.20	.30	
4. $t(r = 0)$	17	.20	.40	.60	
5. Sign test	P50	.10	.20	.30	
6. F (k means are equal)	$\sigma_{M_i}/\sigma = f$.125	.25	.50	
	r	3:2	2:1	4:1	
7a. χ^2 (k proportions are equal)	Ratio: $\frac{\text{Largest } P}{\text{Smallest } P}$				
7b. χ² (contingency test)	$\sum_{i=1}^{kr} \frac{(P_{0i} - P_{1i})^2}{P_{0i}} = l$	Varies with table size, but uses criteria equivalent, for equal degrees of free			

dom, to 7a (see text).

Journal of Abnormal and Social Psychology 1962, Vol. 65, No. 3, 145-153

7b. χ^2 (contingency test)

TABLE 2

VALUES OF POPULATION PARAMETERS WHICH DEFINE THE LEVELS OF SIZE OF EFFECT FOR THE VARIOUS STATISTICAL TESTS

Test	Population parameter	Values			
		Small	Medium	Large	
 t (two means are equal) Normal (two proportions are equal) Normal (two r's are equal) t (r = 0) 	$ M_1 - M_2 /\sigma \ P_1 - P_2 \ r_1 - r_2 $.25 .10 .10	.50 .20 .20	1.00 .30 .30	
5. Sign test 6. F (k means are equal) 7a. χ^2 (k proportions are equal)	$ P50 $ $\sigma_{M_i}/\sigma = f$ Ratio: $\frac{\text{Largest } P}{\text{Smallest } P}$	Tre	Trends in Cog		

Trends in Cognitive Sciences

Supports open access

OPINION | VOLUME 24, ISSUE 3, P200-207, MARCH 01, 2020

Avoid Cohen's 'Small', 'Medium', and 'Large' for Power Analysis

Joshua Correll A Christopher Mellinger Gary H. McClelland Charles M. Judd

Published: January 15, 2020 * DOI: https://doi.org/10.1016/j.tics.2019.12.009 *

our main focus is the desirability of achieving accurate parameter estimates, either instead of or in addition to obtaining sufficient power.

nature reviews neuroscience

Explore content > About the journal > Publish with us >

nature > nature reviews neuroscience > analyses > article

Published: 10 April 2013

Power failure: why small sample size undermines the reliability of neuroscience

Katherine S. Button, John P. A. Ioannidis, Claire Mokrysz, Brian A. Nosek, Jonathan Flint, Emma S. J. Robinson & Marcus R. Munafò ⊡

Nature Reviews Neuroscience 14, 365-376 (2013) Cite this article

415k Accesses 3696 Citations 1310 Altmetric Metrics

Neurolmage
Volume 221, 1 November 2020, 117164

Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals

Denes Szucs ^a ≈ ⊠, John PA. Ioannidis ^b

Show more ✓

+ Add to Mendeley ← Share 55 Cite

nature

Explore content > About the journal > Publish with us >

nature > articles > article

Article Open Access Published: 16 March 2022

Reproducible brain-wide association studies require thousands of individuals

Scott Marek ☑, Brenden Tervo-Clemmens ☑, ... Nico U. F. Dosenbach ☑ + Show authors

Nature 603, 654-660 (2022) Cite this article

44k Accesses | 73 Citations | 1441 Altmetric | Metrics

nature

Explore content > About the journal >

nature > articles > article

Article Open Access | Published: 16 March

Reproducible brain-wide thousands of individuals

Scott Marek ⊠, Brenden Tervo-Clemmens ⊠

Nature 603, 654-660 (2022) Cite this arti

44k Accesses | 73 Citations | 1441 Altme

Neuron

Volume 110, Issue 9, 4 May 2022, Pages 1446-1449

Spotlight

Brain-behavior correlations: Two paths toward reliability

Caterina Gratton 1, 2 × M, Steven M. Nelson 3, 4, Evan M. Gordon 5

Show more V

+ Add to Mendeley & Share 🥦 Cite

4. 替代方案

• Sample size justification or power analysis

4. 替代方案

Improving Your Statistical Inferences

Search

Table of contents

Introduction

- 1 Using p-values to test a hypothesis
- 2 Error control
- 3 Likelihoods
- 4 Bayesian statistics
- 5 Asking Statistical Questions
- 6 Effect Sizes
- 7 Confidence Intervals
- 8 Sample Size Justification
- 9 Equivalence Testing and Interval

10 Sequential Analysis

Repeatedly analyzing incoming data while data collection is in progress has many advantages. Researchers can stop the data collection at an interim analysis when they can reject the null hypothesis or the smallest effect size of interest, even if they would be willing to collect more data if needed, or if the results show there is an unexpected problem with the study (e.g., participants misunderstand the instructions or questions). One could easily argue that psychological researchers have an ethical obligation to repeatedly analyze accumulating data, given that continuing data collection whenever the desired level of confidence is reached, or whenever it is sufficiently clear that the expected effects are not present, is a waste of the time of participants and the money provided by taxpayers. In addition to this ethical argument, designing studies that make use of sequential analyses can be more efficient than when data is only analyzed a single time, when the maximum sample size a researcher is willing to collect has been reached.

4. 替代方案

Psychological Methods 2017, Vol. 22, No. 2, 322–339 © 2015 American Psychological Association 1082-989X/17/\$12.00 http://dx.doi.org/10.1037/met0000061

Sequential Hypothesis Testing With Bayes Factors: Efficiently Testing Mean Differences

Felix D. Schönbrodt Ludwig-Maximilians-Universität München

Michael Zehetleitner Ludwig-Maximilians-Universität München Eric-Jan Wagenmakers University of Amsterdam

Marco Perugini University of Milan–Bicocca

谢谢大家!

希望大家hack得开心!