# Comparing Correlated Data Models on Single-Cell RNA Expression Profiles

Lee Panter

Monday, November 25, 2019



#### Presentation Overview

#### Project Goals and Desired Outcomes:

- Develop multiple statistical models for Single-Cell RNA Sequencing data
- Compare the models for: fit, estimate stability, and diagnostic integrity.
- Suggest a model.

#### Presentation Highlights:

- Introduction to RNA and Single-Cell
- Data Summaries and Proposed Modeling Approaches
- Results, Comparisons, and Conclusions
- Future Research, Outstanding Problems, Areas of Interest



# Introduction to RNA Sequencing

### RNA Sequencing (RNAseq) [1]

- Which genes are being expressed and at what magnitude?
- How do gene expressions change over time, or between treatment groups?
- ► Used in:
  - Transcriptional Profiling
  - Single Nucleotide Polymorphism (SNP) identification
  - Differential Expression

#### RNAseq Expression Profiles

- ightharpoonup Count data higher values  $\Rightarrow$  higher level of expression
- ▶ Genes  $\rightarrow$  (on/off)?  $\Rightarrow$  Expression Value is (0 or > 0)
- Indicative of zero-inflation



# Single-Cell Methods

#### Single-Cell (sc) Data:

- Measurements single-cell resolution
- ▶ Batch-Samples from subjects ⇒ Single-Cells "sub-sampled" from each = Observational Units.

#### Repeated Measure/Clustering Assumptions:

- SC observations are independent between Batch Samples
- Covariance between all Batch Samples assumed to be identical

#### Case Study scRNA-seq Data:

- $ightharpoonup \sim 38*10^3$  variables (genes),  $\sim 9*10^3$  observations (SCs) [2]
- ▶ Poor measurement accuracy. Problems with: batch effects, contamination, duplicate reads,...etc. [3]
- ▶ Quality control filtering:  $\sim 9*10^3$  obs  $\longrightarrow \sim 1,000$  obs



# scRNA-seq Data Summary

#### MALAT1 vs CD19



NOTE 223 extreme observations removed to enlarge main distribution



# Proposed Modeling Approaches: Notation – OLS & LMM

#### Notation:

- ► Fixed Effects:
  - Global Intercept:

$$\sim 1 + \cdots$$

Subject Factor:

$$\sim$$
 subject  $+\cdots$ 

Covariate Factor:

$$\sim CD19 + \cdots$$

- Random Effects:
  - Intercept:

$$\sim$$
 (1|subject)  $+ \cdots$ 

• Slope:

$$\sim$$
 (CD19|subject)  $+ \cdots$ 

#### OLS and Linear Mixed Effects Models

- OLS:
  - Predictors:

$$\sim$$
1 + CD19

- LMM:
  - Fixed Effects:

$$\sim 1 + \text{CD19}$$

• Random Effects:

$$\sim$$
 (1 | subject)

 Repeated Measures: Unstructured (CS)

## Proposed Modeling Approaches: Generalized Linear (Mixed) Models

- Poisson Regression (No Over-dispersion) & Poisson Quasi-Likelihood (w/Over-dispersion)
  - Error Distribution: Poisson
  - Linear Predictor: 1 + CD19
  - Link Function: log
- ► Generalized Linear Mixed Models (Penalized QL) [4]
  - Error Distribution: Poisson

  - Link Function: log



# Proposed Modeling Approaches: Zero Inflated Poisson [5]

Occurrence Model:  $R_{ij} \sim bernoulli(p_{ij}|a_0, a_1)$  where  $a_0, a_1$  are Occurrence-Model random effect parameters

Intensity Model:  $Y_{ij} | (r_{ij} = 1, a_0, a_1), \sim Poisson(\lambda_{ij} | b_0, b_1)$  where  $b_0, b_1$  are Intensity-Model random effect parameters

#### Zero-Inflated Poisson, Generalized Linear (Mixed) Models

Fit Using Adaptive Gauss-Hermite Quadrature

- Error Distribution: "Zero-Inflated Poisson"
- Occurence & Intensity Model Linear Predictors:
  - Fixed Effects:  $\{\sim 1, \sim 1 + CD19\}$
  - Random Effects:  $\{\sim 1, \sim 1 + \textit{CD}19\}$
- Link Function: Log



# Results, Comparisons, Conclusions

|    | Model    | Intercept Estimate | Std.Err           | p-value          |
|----|----------|--------------------|-------------------|------------------|
|    | LMwFE    | $7.7624 * 10^3$    | $2.3480*10^{2}$   | $< 2 * 10^{-16}$ |
| •  | LMMwRE   | $7.338 * 10^3$     | $7.6776 * 10^2$   | $< 2 * 10^{-16}$ |
| ĺ  | POI      | 8.957              | $3.723 * 10^{-4}$ | $< 2 * 10^{-16}$ |
|    | POlql    | 8.957              | $3.007 * 10^{-2}$ | $< 2 * 10^{-16}$ |
|    | POlqILMM | 8.8362             | $1.0160*10^{-1}$  | $1.7 * 10^{-3}$  |
| \[ | ZIP      | 8.9572             | $< 2 * 10^{-4}$   | $< 2 * 10^{-4}$  |

| Model    | Slope Estimate   | Std.Err           | p-value          |
|----------|------------------|-------------------|------------------|
| LMwFE    | $7.1320*10^{-1}$ | 1.5426            | $6.440*10^{-1}$  |
| LMMwRE   | 2.168            | 1.797             | $2.278*10^{-1}$  |
| POI      | $8.839*10^{-5}$  | $2.369*10^{-6}$   | $< 2 * 10^{-16}$ |
| POlql    | $8.839*10^{-5}$  | $1.913 * 10^{-4}$ | $6.440*10^{-1}$  |
| POlqILMM | $3.16*10^{-4}$   | $1.653 * 10^{-4}$ | $5.61*10^{-2}$   |
| ZIP      | $1*10^{-4}$      | $2.03*10^{-6}$    | $< 2 * 10^{-16}$ |

Note:  $e^{8.957} \approx 7.762 * 10^3$ 



## Results, Comparisons, Conclusions

#### **Conclusions Drawn from Results:**

- Simpler models performed better according to the AIC criterion
- Parameter estimates for global intercept showed higher stability and significance than estimates for slope

| Model    | AIC             |  |
|----------|-----------------|--|
| LMwFE    | $2.2851*10^4$   |  |
| LMMwRE   | $2.2851*10^4$   |  |
| POI      | $5.7046 * 10^6$ |  |
| POlql    | NA              |  |
| POIqILMM | NA              |  |
| ZIP      | $4.1791 * 10^6$ |  |



## Future Research, Outstanding Problems, Areas of Interest

#### **Outstanding Issues:**

Comparing quasi-likelihood models to linear models and quadrature methods

#### Future Research & Areas of Interest:

 Log-transformed responses, additional variable combinations, marginal average models

# Thanks for Listening!

#### If You Want To Learn More:

- email: lee.panter@ucdenver.edu
- Project GitHub: https://github.com/leepanter/BIOS6643FinalProject.git

