Rohit Tripathy

#5 225 South River Road West Lafayette, IN

+1-765-476-6988 rtripath@purdue.edu

Education

Purdue University

West Lafayette, IN

PhD., Mechanical Engineering

January. 2016 - Present

 Relevant courses: Uncertainty Quantification, Computational Methods in Optimization, Bayesian Data Analysis, Machine Learning Theory.

Purdue University

West Lafayette, IN

MS., Mechanical Engineering

August 2014-December 2015

Relevant courses: Applied Decision Theory and Bayesian Statistics, Finite Element Method,
Computational Fluid Dynamics, Atomistic View of Materials, Fluid Mechanics.

Research Experience

Predictive Science Lab, Purdue University

West Lafayette, IN

Graduate Research Assistant

August 2014 - Present

- Currently work here under the supervision of Prof. Ilias Bilionis.
- Rearch focuses on uncertainty propagation in high dimensions and small data regime.
- Developed a novel gradient-free, dimensionality reduction technique called Active subspace Gaussian process regression (ASPGP).
- Implemented Python code for ASPGP. Open source code hosted on github (see 'links' section below).

Publications

• Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation

Rohit Tripathy, Ilias Bilionis, Marcial Gonzalez; Journal of Computational Physics, Sept. 2016.

- Dimensionality reduction technique which relies on discovering a low dimensional manifold known as the "active subspace" which captures maximal variation of the quantity of interest.
- Method bypasses requirement of the gradient of the quantity of interest with respect to the inputs and Bayesian formulation makes the method robust to observational noise.
- Method applied to a challenging high dimensional dynamical system problem of quantifying uncertainty in properties of solitary waves propagating through granular crystals.

Talks / Presentations

• ASME Verification and validation Symposium Probabistic Active subspaces (oral presentation).

SIAM Purdue CSESC 2016

Purdue University

A novel method for gradient-free dimensionality reduction (poster presentation).

March 2016

Selected Coursework Projects

Optimization over the Stiefel Manifold

Computational methods in optimization course, CS 520

Jan 2016 - May 2016

 Implemented, in Python, a modified form of gradient descent on manifold space, with update scheme based on the Cayley transform.

Finite element solver for a plane stress hypoelasticity problem

Finite Element Methods course, ME 681.

Jan. 2015 - May 2015

- Implemented in Python from scratch a nonlinear finite element solver for 2D hypoelasticity problem for a square plate.

2-D Incompressible Navier Stokes solver

Computational Fluid Dynamics course, ME 614

Jan. 2015 - May 2015

- Implemented, in Python, from scratch, a fully conservative finite difference solver with a staggered grid formulation to solve the lid driven cavity problem.

Skills

Languages (In order of comfort): Python, R, MATLAB, C/C++.

Deep Learning frameworks: caffe, Theano.

Other software: LATEX, git, ANSYS, Solidworks.

Previous work experience

- Vocational Trainee, Hindustan Aeronautics Limited, Kanpur, India (May 2012 June 2012).
- Manufacturing intern, Scooters India, Lucknow, India (December 2012).

Interests

Academic: Uncertainty Quantification, Machine Learning, Deep learning and Artificial Intelligence, Data Analysis, Finite Element methods. Computational physics.

Membership: Society of Industrial and Applied Mathematics (SIAM) student member (August 2015-present), SIAM Purdue chapter Treasurer (August 2016 - present)

Links

- **Bitbucket**: https://bitbucket.org/rohitkt10/
- Active subspace project github: https://github.com/PredictiveScienceLab/py-aspgp