Total No. of Questions:	8]
--------------------------------	----

SEAT No.		
SEAT NO.	•	

PA-1451

[Total No. of Pages : 2

[5926]-67

T.E. (Computer Engineering) ARTIFICIAL INTELLIGENCE

(2019 Pattern) (Semester - II) (310253)

	0,1/0	
Time: 21/2	[Max. Marks	: 70
Instruction	ons to the candidates:	
1)	Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
2)	Neut diagrams must be drawn wherever necessary.	
3)	Assume suitable data, if necessary.	
Q1) a)	Explain Min Max and Alpha Beta pruning algorithm for advers	arial
	search with example.	[9]
b)	Define and explain Constraints satisfaction problem.	[9]
	OR	
Q2) a)	Explain with example graph coloring problem.	[9]
b)	How AI technique is used to solve tic-tac-toe problem.	[9]
Q3) a)	Evploin Wumpus world environment siving its DEAS describe	5
Q3) a)	Explain Wumpus world environment giving its PEAS description	9]
b)	Explain different inference rules in FOL with suitable example.	[8]
	OR 20 110	
Q4) a)	Write an propositional logic for the statement,	[10]
	i) "All birds fly"	
	ii) "Every man respect his parents"	
b)	Differentiate between propositional logic and First order logic.	[7]
		<i>T</i> . 0

Q5) a	a)	Explain Forward chaining algorithm with the help of example.	[9]
b)	Write and explain the steps of knowledge engineering process.	[9]
Q6) a	a)	Explain Backward chaining algorithm with the help of example	[9]
d: 70)	Write a short note on:	[9]
		i) Resolution and	
		ii) Unification	
Q7) a	1)	Write a short note on planning agent, state goal and act	
[6]		representation.	[6]
b))	Explain different components of planning system.	[6]
С	:)	Explain the components of AI. OR	[5]
Q8) a	1)	What are the types of planning? Explain in detail.	[6]
b)	Explain Classical Planning and its advantages with example.	[6]
c)	Write note on hierarchical task network planning.	[5]
			000
		The late of metacinear task network planning.	
		25.	