BPU Question 1

Considering a 2-bit saturating counter BHT of 1K entries; and assuming that the processor executes the following code fragment, determine the BHT final state and calculate the misprediction ratio in the presented case. The BPU initial state is indicated in the table.

General assumptions:

- R10 is the main loop control register and is initialized to 100
- R3 and R7 are reference values set to 5
- R2 and R6 are input registers
 - o R2 input values are always higher than 5
 - o R6 input values are always lower than 5

Address	Instruction		BHT (2-bit)	Prediction	misP. counter
0x0000	L0:		0	NT	
	;	Reading input values	0	NT	
0x0010		SLT R1, R2, R3	0	NT	
0x0014		BEQZ R1, L1	0	NT	
0x0018		DADDI R2, R0, 10	0	NT	
0x001C	L1:	SLT R4, R6, R7	0	NT	
0x0020		BEQZ R4, L2	0	NT	
0x0024		DADDI R12, R0, 10	0	NT	
0x0028	L2:	DSUB R3, R1, R2	0	NT	
0x002C		BEQZ R3, L3	0	NT	
0x0030			0	NT	
0x0038	L3:		0	NT	
0x003c		DADDI R10, R10, #-1	0	NT	
0x0040		BNEZ R10, L0	0	NT	
0x0044			0	NT	

Note:

SLT R1,R2,R3 ; IF (R2 < R3) R1
$$\leftarrow$$
 1 ; ELSE R1 \leftarrow 0

BPU Question 2

Considering a (2,2) correlating predictor of 1K entries; and assuming that the processor executes the following code fragment, determine the BPU final state and calculate the misprediction in the presented case. The BPU initial state is indicated in the table.

General assumptions:

- R10 is the main loop control register and is initialized to 100
- R3 and R7 are reference values set to 5
- R2 and R6 are input registers
 - o R2 input values are always higher than 5
 - o R6 input values are always lower than 5

Address	Instr	Instruction		bit pr	edicto	ors	2-bit shift register	misP. counter
			00	01	10	11	register	
0x0000	L0:		0	0	0	0	00	
	;	Reading input values	0	0	0	0		
0x0010		SLT R1, R2, R3	0	0	0	0		
0x0014		BEQZ R1, L1	0	0	0	0		
0x0018		DADDI R2, R0, 10	0	0	0	0		
0x001C	L1:	SLT R4, R6, R7	0	0	0	0		
0x0020		BEQZ R4, L2	0	0	0	0		
0x0024		DADDI R12, R0, 10	0	0	0	0		
0x0028	L2:	DSUB R3, R1, R4	0	0	0	0		
0x002C		BEQZ R3, L3	0	0	0	0		
0x0030			0	0	0	0		
0x0038	L3:		0	0	0	0		
0x003c		DADDI R10, R10, #-1	0	0	0	0		
0x0040		BNEZ R10, L0	0	0	0	0		
0x0044			0	0	0	0		