Spacecraft Mechanisms

Space System Design, MAE 342, Princeton University Robert Stengel

- One-shot Devices
- Deployable Structures
- Continuous and Intermittently Operating Devices
- Components
- Materials
- Tribology
- Testing and Verification

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Mechanism Functions

- Any device that is required to move, rotate, slide or separate
- Characterized by displacements vs. small displacements of structures
- Scale: quite small (¹/4 inch or less) to very large (100+ft)
- Often a mechanism functions as structural member prior to, during, or after deployment

When Do Mechanisms Function?

AT LAUNCH

· Electrical and fluid disconnects

DURING ASCENT

- · Fairing jettison
- · Spacecraft and sub-satellite separation
- · Ion thruster gimbals

AFTER ACHIEVING ORBIT

- · Doors and covers that open or close
- Solar array, boom and antenna deployments and unfurlments

THROUGHOUT MISSION

- · Solar array sun tracking
- · Pointing antennas and instruments
- · Active doors and shields
- · Gyroscopes and reaction wheels
- · Fast steering mirrors, optical delay lines

PRIOR TO RE-ENTRY

· Dampers for re-entry and landing forces

Munder, 2008

Mechanism Design Guidelines & Selection

- Build in redundancy
- Provide high force/torque margin
- Design to preclude improper assembly or installation
- Allow for visual inspection
- Thermal considerations (materials, clearance, preload)
- Vacuum considerations (outgassing, cold welding, heat dissipation, lube)
- Vibration considerations (potting, positive locking, preload change, wear)
- Cycle life, including ground testing
- Design for ease of analysis and test

Mechanism Parts

- Bearings
- Lubrication
- Force/Torque
 - Application
 - Multipliers
 - Dampers & Load
 - Absorbers Release Devices
- Power & Signal Transfer
- Telemetry Devices
- Extension Devices

Munder, 2008

_

Separation Mechanisms Marmon clamp

Release Devices

PYROTECHNIC (EXPLOSIVE)

- Cable and Bolt cutters
- Pinpullers and pinpushers

OTHER

- Motor-driven latch
- Non-explosive initiators
 - Pinpullers and pinpushers (non-pyro)
 - Paraffin
 - Shape Memory Alloy

Munder, 2008

7

Pyrotechnic Cable and Bolt Cutters

Power Cartridge propels Cutter through the target and into the Anvil

Cutter Assembly with Power Cartridge

HousingCutter

Advantages: fast actuation, high load capability, low weight, simple design

Disadvantages: high shock, safety

Shear-Tie Release Mechanism

- Key Features:
- Utilized in sets of 3 minimum
- Preloaded steel rods and cables prevent gapping of cup-cone interface during ascent
- Relative motion between spacecraft and reflector is prevented by cup-cone shear tie seats which react in-plane loads
- Redundant pyrotechnic actuated cutters are used to sever restraint rods for deployment
- Kick-off washers/springs at each cup-cone interface ensure separation Kick-off Spring

Pyrotechnic Cutters

Cup-Cone Interface

Restraint Rod

Munder, 2008

Paraffin/Wax Release

- Advantages: resettable low weight, uses heater circuit
- Disadvantages: low force output and capability, slow actuation, overtemp self actuation

Frangibolt

Non-pyrotechnic separation device (for valving) Use of shape-memory alloy

11

Extension Devices

- LAZY TONGS
- EXTENDIBLE REEL
- COILABLE MAST
- TELESCOPIC
- INFLATABLE

Hinges

Deployment Hinges

- Redundant spring driven
- Heated viscous damper for rate control
- Preloaded ball bearings or journal bearings
- Hard stops and latches on a large radius for improved deployed repeatability

Extendible Tube Mast

15

Deployable Camera Mast

Umbrella Antenna Galileo Spacecraft

17

Solar Array Drive Assembly

Usage on S/C:

· 1 location per solar array wing

Key Features:

- Provides precision stepping rotation for sun tracking in forward and reverse directions.
- Provides power transfer across rotating interface between the solar array and spacecraft
- Tracking rate 1 rev/day
- Consisting of:
 - Stepper Motor with redundant windings
 - Harmonic Drive Assembly
 - Fiber Brush Slip Ring Assembly
 - Redundant Potentiometers provide telemetry

Solar Array Drive

19

Giotto De-Spin Mechanism Dual-spin spacecraft

Reaction Wheel Assembly

Usage on S/C:

· Qty (4) per Spacecraft, internally mounted

Key Features:

- · Function:
 - Apply reaction torque for three-axis attitude control
 - Bi-directional angular momentum storage
 - Operates at x1000 rpm
- Consist of
 - Drive electronics, brushless motor, and a inertia rotor enclosed within the housing.

X-Band Antenna Pointing Mechanism

Antenna Gimbal

- Key Features:
- Contains two nearly identical, orthogonally mounted drive mechanisms
- Each drive consists of a stepper motor with redundant windings that is coupled to a drive transmission
- Redundant course and fine potentiometers for angle telemetry
- Heaters and thermal tape on housings

Force/Torque Application

STORED ENERGY

- Compression spring
- Tension spring (not usually used due to its failure mode)
- Torsion spring
- Constant-force spring (Ne' gator)
- Lenticular strut (Carpenter Tape)
- Gas pressure Gas Springs

ELECTRICAL ENERGY

- Motors
- Solenoids

Dampers and Load Absorbers

F = ma; without control, loads would be excessive

DAMPERS

- Rotary and Linear
 - · Viscous fluid
 - Induced electrical current

(Eddy current) LOAD ABSORBERS

- Elastomer Bumpers
- Friction washers Brake Shoes
- Crushable Honeycomb

Munder, 2008

25

DC Brush Motor

- DC brushed motors
 - Simple electronics: two wires going to motor
 - Low cost
 - Can operate open loop (which is good and bad!)
 - Rapid wear of the brushes (especially under vacuum)
 - Need purging during ambient testing with special brushes
 - Current spikes may occur under vacuum
 - Requires EMI shielding
 - Concern about restart after storage
 - Concern about brushes during vibration
 - Shorting risks due to brush wear debris
 - Used on one-shot deployables

Stepper Motor

Stepper motors (DC brushless)

- -Weight
- -Few wearing parts
- -Simple construction, simple electronics
- -Can operate open loop (which is good and bad!)
- Each step is a structural excitation May excite modes of other equipment and structure
- May have stability problems that depend on friction, damping, and frequency
- -Good unpowered detent torque
- -Used on Lockheed Gimbals and Solar Array Drives

Munder, 2008

DC Brushless Motor

DC brushless torquer motors

- Motion control, torque ripple, life are all advantages
- Low vibration
- Relatively complex electronics
- Commutator reliability
- Low unpowered detent torque
- Intolerant to stall condition
- Used on Lockheed Reaction Wheel Assemblies

Force/Torque Multipliers

Harmonic Drive

Planetary Gears

Advantages: low backlash, high

stiffness

Disadvantages: torque efficiency,

torque ripple, fatigue life

Munder, 2008

Advantages: torque capability, different gear ratios based on

operation

Disadvantages: backlash, wear

20

Power & Signal Transfer Mechanisms

Advantages: full rotation, low friction

Disadvantages: failure mode, lubrication issues for

long life, signal noise

Bearing Choices

Bearings (in some form) are used in almost all mechanisms to provide for smooth relative motion

- · Journal: Shaft in round or square hole
- Advantages: simple
- Disadvantages: susceptible to small changes in lubrication
- Flex pivot: Beam in bending
- Advantages: low friction, no wear, environment insensitive
- Disadvantages: ± 30° rotation, center shift, low radial load capability
- Rolling element: Ball, Roller, Linear
- Advantages: low friction, combined radial and thrust capability
- Disadvantages: more packaging space radially, expensive

Munder, 2008

31

Bearing Choices

- Magnetic: Magnetic levitation
- Advantages: non-contacting, controllable stiffness
- Disadvantages: complex control, poor axial stiffness, high power req'd
- Typical Problems:
- Torque / force required
- Performance at temperature and loads
- Instability
- Lubrication
- · · Strength / fatigue life
- Stiffness / deadband

Munder, 2008

32

Lubrication

- Solid films how applied: bonded (thick), impinged (thin), sputtered (control thin)
 - MoS₂
 - Graphite
 - Tungsten Disulfide
- Composites & Transfer film
 - PTFE (Teflon, glass reinforced)
 - Polyimide (Vespel)
 - Polyacetal (Delrin)
 - Polyimide-imide (Torlon)
- Soft Metals (ion-plated, ion sputtered)
 - Gold
 - Silver
 - Lead

Migration
Outgassing
Life
Friction
-Temperature Range

Issues

Munder, 2008

33

Lubrication

- Oils/Greases
 - Mineral oil (KG-80)
 - Silicones (F-50)
 - Perfluoropolyalkylether (PFPE) (Bray, Krytox, Fomblin)
 - Trialkylated cyclopentane (TAC) (Pennzane)
 - Poly-*a*-olefin (PAO) (Nye 179A)

Issues
Migration
Outgassing
Life
Friction
-Temperature Range

Sensors for Telemetry

Potentiometer

- small size, weight, easy electronics
- can be unreliable for large number of cycles
- single-turn potentiometer
 - multi-turn potentiometer not used often
 - carbon pot (actually graphite in a plastic matrix) essentially infinite resolution, low inductance
- thermal stability, stair-step linearity (less precise)

Resolver

- Rotary transformers that provide voltage output proportional to rotation angle
- No sliding or rubbing parts and low voltage mean high reliability
- Electronics to drive and interpret resolver can be expensive

Encoder

- small size, weight (sometimes)
- low power requirements (but more than a potentiometer)
- High accuracy / cost

Munder, 2008

35

Test of Deployment Mechanisms

- BALLOONS
 - reflector deployments
- OVERHEAD TRACK
 - solar arrays
- · CABLE AND SPRING
 - jettison, booms
- · CONICAL PENDULUM
 - booms
- · ROCKING BEAM
 - separation
- BALANCE BEAM
 - separation, deployments

- WATER FLOATS
 - masts
- · AIR BEARING
 - large deployments
- · SERVO-CONTROLLED SUSPENSION
 - unusual motions

Progress and Dragon Docking and Berthing with ISS

37

Docking and Berthing Mechanisms

Apollo Probe and Drogue Docking Mechanism

30

Apollo-Soyuz Docking Mechanism

Future NASA Common Berthing Mechanism

// 1

Next Time: Space Robotics