Carrés magiques, d'après HEC 2014

Notations 1

Espace des matrices

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 3 à coefficients réels.

Base canonique

On rappelle que la base canonique, notée \mathcal{B} , de $\mathcal{M}_3(\mathbb{R})$ est formée des 9 matrices $(E_{i,j})_{i\in [1,3]}$, ▶ tous les coefficients la matrice $E_{i,j} \in \mathcal{M}_3(\mathbb{R})$ sont nuls,

▶ sauf pour un coefficient 1, à l'intersection des $i^{\text{ème}}$ ligne et $i^{\text{ème}}$ colonne.

(on
$$a E_{1,2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, p. ex^{le} .)

Sommes Pour toute matrice $A = (a_{i,j}) \in \mathcal{M}_3(\mathbb{R})$, on note :

$$s_{1}(A) = \sum_{j=1}^{3} a_{1,j}, \quad s_{2}(A) = \sum_{j=1}^{3} a_{2,j}, \quad s_{3}(A) = \sum_{j=1}^{3} a_{3,j} \quad \text{(somme des coefficients des lignes)}$$

$$s_{4}(A) = \sum_{i=1}^{3} a_{i,1}, \quad s_{5}(A) = \sum_{i=1}^{3} a_{i,2}, \quad s_{6}(A) = \sum_{i=1}^{3} a_{i,3} \quad \text{(somme des coefficients des colonnes)}$$

$$s_{7}(A) = \sum_{i=1}^{3} a_{i,i}, \quad s_{8}(A) = \sum_{i=1}^{3} a_{i,4-i}, \quad \text{(somme des coefficients des diagonales)}$$

On s'intéresse aux « carrés magiques », dont la somme

sur chaque ligne,

sur chaque colonne,

sur chacune des deux diagonales,

des coefficients vaut toujours 0.

Énoncé du problème

1. Soit \mathcal{E} l'ensemble des matrices $A \in \mathcal{M}_3(\mathbb{R})$ telles que $s_7(A) = 0$.

a) Calculer la valeur de s_7 sur chacune des 9 matrices de la base canonique : $(E_{i,j})_{i \in [1,3]}$. Parmi celles-ci, lesquelles appartiennent à \mathcal{E} ? (il y en a 6 sur les 9)

b) Pour que $A(a) = \begin{bmatrix} a & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ et $B(b) = \begin{bmatrix} b & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ soient dans \mathcal{E} , combien doivent valoir a et de b?

c) Montrer que \mathcal{E} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

d) En s'aidant des questions 1.a) et 1.b), const.

(Cette base sera formée de 8 matrices.)

On étudie l'application $f: \mathcal{M}_3(\mathbb{R}) \to \mathbb{R}^8$, qui à toute matrice A,

(ainsi, on $a: f(A) = \begin{cases} s_2(A) \\ s_3(A) \\ s_4(A) \\ s_5(A) \\ s_5(A) \\ s_7(A) \\ s_8(A) \end{cases}$ (ainsi, on $a: f(A) = \begin{bmatrix} s_2(A) \\ s_3(A) \\ s_4(A) \\ s_5(A) \\ s_7(A) \\ s_8(A) \end{bmatrix} \in \mathbb{R}^8$.)

2. a) Montrer que l'application f est linéaire.

b) Calculer, pour

$$\blacktriangleright \ \text{les 9 matrices} \ (E_{i,j})_{\substack{i \in \llbracket 1,3 \rrbracket \\ j \in \llbracket 1,3 \rrbracket}}$$

• les 8 valeurs $s_k(E_{i,j})$, avec $k \in [1,8]$.

On donnera le résultat sous la forme du tableau ci-contre.

On note C la base canonique de \mathbb{R}^8 .

c) À la lumière de la question 2.b), justifier l'énoncé : « la matrice de f dans les bases \mathcal{B} et \mathcal{C} est F », (avec des «· » pour les «0 »)

3. On note \mathcal{G} l'ensemble des matrices $A \in \mathcal{M}_3(\mathbb{R})$ telles que :

$$s_1(A) = s_2(A) = s_3(A) = s_4(A) = s_5(A) = s_6(A) = s_7(A) = s_8(A)$$

a) Montrer que \mathcal{G} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

On note Ker(f) le noyau de l'application linéaire f.

b) Soit $M \in \mathcal{M}_3(\mathbb{R})$ une matrice quelconque.

$$M \in \mathcal{G}$$
,

alors
$$f(M) = 0$$
.

• et de plus,
$$s_7(M) = 0$$
,

c) Montrer aussi la réciproque de l'énoncé précédent.

En déduire que : $\mathcal{G} \cap \mathcal{E} = \text{Ker}(f)$.

- **4.** On note J la matrice de $\mathcal{M}_3(\mathbb{R})$ dont tous les coefficients sont égaux à 1. (Ainsi: $J = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.)
 - a) Calculer f(J).

Soit *G* une matrice quelconque telle que : $G \in \mathcal{G}$.

- **b)** Montrer que $f(G) = s_7(G) \cdot f(J)$.
- c) Pour que $G t \cdot J$ soit dans Ker(f), quelle doit être la valeur de t?
- **d)** En déduire que toute matrice de \mathcal{G} est la somme : \rightarrow d'une matrice de Ker(f), et
 - ▶ d'une matrice de Vect(*J*).

e) Trouver une base de Ker(f).