## **Trilhas**

#### Matemática - Fácil

Arquivo fonte: trilhas.c, trilhas.cc, trilhas.cpp ou trilhas.pas

Nos finais de semana Paulo faz longas caminhadas pelas bonitas trilhas que atravessam as matas vizinhas à sua cidade. Recentemente Paulo adquiriu um aparelho de GPS (siglas do inglês Sistema de Posicionamento Global) e com ele mapeou as mais belas trilhas da região. Paulo programou o GPS para armazenar, a intervalos regulares, a altitude do ponto corrente durante o trajeto. Assim, após percorrer as trilhas com o seu GPS, Paulo tem informações que permitem por exemplo produzir gráficos como os abaixo:





Paulo tem uma nova namorada, e quer convencê-la a passear junto com ele pelas trilhas. Para o primeiro passeio juntos, Paulo quer escolher uma trilha "fácil". Segundo o seu critério, a trilha mais fácil é a que, em um dos sentidos do percurso, exige o menor esforço de subida. O esforço exigido em um trecho de subida é proporcional ao desnível do trecho.

#### Tarefa

Dadas as informações colhidas por Paulo sobre distâncias e altitudes de um conjunto de trilhas, você deve escrever um programa que determine qual é a trilha que exige o menor esforço de subida.

#### Entrada

A primeira linha da entrada contém um número inteiro N que indica o número de trilhas. Cada uma das N linhas seguintes contém a descrição de uma trilha ( $1 \le N \le 100$ ). As trilhas são identificadas por números de 1 a N. A ordem em que as trilhas aparecem na entrada determina os seus identificadores (a primeira trilha é a de número 1, a segunda a de número 2, a última a de número N). A descrição de uma trilha inicia com um número inteiro M que indica a quantidade de pontos de medição da trilha ( $2 \le M \le 1000$ ), seguido de M números inteiros  $H_i$  representando a altura dos pontos da trilha (medidos a intervalos regulares e iguais para todas as linhas). Paulo pode percorrer a trilha em qualquer sentido (ou seja, partindo do ponto de altitude  $H_1$  em direção ao ponto de altitude  $H_M$ , ou partindo do ponto de altitude  $H_M$  em direção ao ponto de altitude  $H_1$ ).

A entrada deve ser lida do dispositivo de entrada padrão (normalmente o teclado).

#### Saída

Seu programa deve produzir uma única linha na saída, contendo um número inteiro representando o identificador da melhor trilha, conforme determinado pelo seu programa. Em caso de empate entre duas ou mais trilhas, imprima a de menor identificador.

A saída deve ser escrita no dispositivo de saída padrão (normalmente a tela).

# Restrições

 $\begin{array}{l} 1 \leq N \leq 100 \\ 2 \leq M \leq 1000 \\ 0 \leq H_i \leq 1000 \end{array}$ 

## Exemplos de entrada e saída

### Exemplo 1

| Entrada                           | Saída |
|-----------------------------------|-------|
|                                   |       |
| 5                                 | 2     |
| 4 498 500 498 498                 |       |
| 10 60 60 70 70 70 70 80 90 90 100 |       |
| 5 200 190 180 170 160             |       |
| 2 1000 900                        |       |
| 4 20 20 20 20                     |       |
|                                   |       |

### Exemplo 2

| Entrada                                | Saída |
|----------------------------------------|-------|
| 3<br>5 600 601 600 601 600             | 2     |
| 4 500 499 500 499<br>4 300 300 302 300 |       |