Intégration et probabilités

Introduction

Références:

- Billingsley, Probabiliy and measure
- Kolmogorov & Fomin, tome 2

Motivations:

- Définir la longueur d'une partie de \mathbb{R}
- Définir l'aire d'une partie de \mathbb{R}^2
- Définir $\int f dx$ pour $f: \mathbb{R}^d \to \mathbb{R}$
- Définir, préciser la notion mathématique décrivant une suite infinie de jets de dés

Par exemple:

- Si $f : \mathbb{R} \to \mathbb{R}$, on peut définir $\int f$ comme l'aire algébrique définie par le graphe de f. Ainsi, définir une aire permet de définir une intégrale
- De même, $\lambda(A) = \mathbb{1}_A$ avec $\mathbb{1}_A(x) = 1$ ssi $x \in A$. Donc définir une intégrale revient à définir une mesure.
- Tirer un nombre au hasard dans [0,1], cela revient à tirer au hasard la suite de ses décimales au D10, car on mesure une partie de $\{0,1,\ldots 9\}^{\mathbb{N}}$

On se demande alors comment définir la surface d'une partie du plan.

Méthode 1 : à la Riemann. On approxime avec un quadrillage. On compte le nombre de carrés qui intersectent l'ensemble considéré, puis on conclut en passant à la limite quand le côté du quadrillage tend vers 0.

Méthode 2 : on pose $\lambda(A) := \inf_{(R_i)} \sum_{i=1}^{\infty} \lambda(R_i)$ où R_i est une suite de rectangles recouvrant A.

À noter : les deux méthodes ont des cas pathologiques différents.

Ensembles dénombrables

Définition : Un ensemble est dénombrable ssi il est en bijection avec \mathbb{N}

Propriété : Toute partie d'un ensemble dénombrable est au plus dénombrable

Démonstration : On pose $x : \mathbb{N} \to X, Y \subset X$. Si Y n'est pas fini :

$$i_1 = \min\{i \in \mathbb{N}, x_i \in Y\}$$

. . .

$$i_n = \min\{i \in \mathbb{N}, x_i \in Y \setminus \{x_1, \dots, x_{n-1}\}\}\$$

Ainsi, $k \mapsto x_{n_k}$ est une bijection de $\mathbb N$ vers Y.

Propriété: L'image d'une suite est au plus dénombrable.

Démonstration : On note $x: \mathbb{N} \to X$ une suite. On crée de manière analogue une sous-suite injective de x de même image que x (sauf si $f(x(\mathbb{N}))$ est fini).

Propriété : $\mathbb{N} \times \mathbb{N}$ est dénombrable.

Démonstration : $(n_1, n_2) \mapsto 2^{n_1}(2n_2 + 1) - 1$ est une bijection $\mathbb{N}^2 \to \mathbb{N}$.

Propriété : Une réunion au plus dénombrables d'ensembles au plus dénombrable est au plus dénombrable.

Démonstration : On traite le cas "union dénombrable d'ensembles dénombrables".

Soit A_i des parties dénombrables d'un ensemble X. Pour tout i, il existe $b_i : \mathbb{N} \to A_i$ bijection. (nb : ceci requiert en fait l'axiome du choix dénombrable) $(i,j) \mapsto b_i(j)$

Alors $\mathbb{N}^2 \to \bigcup A_i$ est surjective.

Donc $\bigcup A_i$ est au plus dénombrable.

Or $\bigcup A_i^i \supset A_i$.

Donc $\bigcup_{i} A_i$ est dénombrable.

Propriété : Si X est dénombrable, $\mathcal{P}(X)$ ne l'est pas. Plus généralement, quel que soit X, X et $\mathcal{P}(X)$ ne sont jamais en bijection (théorème de Cantor).

Démonstration : Supposons qu'il existe $x: X \to \mathcal{P}(X) \atop x \mapsto A_x$ une bijection.

Considérons $B:=\{x,x\notin A_x\}$. Comme x est une bijection, il existe $y\in X$ tel que $B=A_y$.

Question : a-t-on $y \in B$. On arrive à un paradoxe type Russel.

Exercice:

- $\{0,1\}^{\mathbb{N}}$ est non dénombrable.
- \mathbb{R} est non dénombrable.

lim sup et lim inf

Définition :

Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ (plus généralement $\in \bar{\mathbb{R}}^{\mathbb{N}}$). Alors $s_n:=\sup_{k>n}x_k$.

 s_n est décroissante (donc a une limite dans $\bar{\mathbb{R}}$).

Alors $\lim s_n =: \lim \sup x_n = \inf s_n$.

De même pour $\liminf x_n$.

Propriété : $\lim x_n$ existe ssi $\lim \inf x_n = \lim \sup x_n$. Dans ce cas, $\lim x_n = \lim \sup x_n = \lim \inf x_n$.

Démonstration : \Leftarrow : $i_n \leq x_n \leq s_n$. On conclut par théorème d'encadrement.

 $\Rightarrow : \text{Si } x_n \to l \text{ alors } : \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, l - \varepsilon \leq i_n \leq l \leq s_n \leq l + \varepsilon.$ Donc $s_n \to l \text{ et } i_n \to l$.

Propriété : Si y_n est une sous-suite de x_n , alors $\liminf x_n \le \liminf y_n \le \limsup y_n \le \limsup x_n$

Ainsi, si l est valeur d'adhérence de x_n , alors $\liminf x_n \leq l \leq \limsup x_n$.

Propriété : $\limsup x_n = -\liminf(-x_n)$

Propriété : Il existe une sous-suite de x_n qui converge vers $\limsup x_n$. Idem pour $\liminf x_n$.

Démonstration : On choisit $k_n \ge n$ tel que $s_n - \frac{1}{n} \le x_{k_n} \le s_n$. $n \mapsto x_{k_n}$ converge vers $\limsup x_n$.

Familles sommables

On pose $(a_i)_{i \in I}$ famille de nombres positifs. **Définition :** $\sum_{i \in I} a_i := \sup_{F \subset I \text{fini}} \sum_{i \in F} a_i$

Si $\sum_{i \in I} a_i$ est fini, alors $\{i \in I, a_i \neq 0\}$ est au plus Propriété: dénombrable.

Démonstration:
$$\{i \in I, a_i \in \mathbb{R} \setminus \{0\}\} \subset \bigcup_{k \in \mathbb{N}} \underbrace{\{i \in I, a_i \ge \frac{1}{k}\}}_{\# \le k \sum_{i \in I} a_i}$$

À partir de maintenant, on considérera I dénombrable.

Propriété : Si
$$\sigma: \mathbb{N} \to I$$
 est une bijection, alors $\sum_{i \in I} a_i = \lim_{n \to +\infty} \sum_{k=1}^n a_{\sigma(k)} =: \sum_{k=1}^{+\infty} a_{\sigma(k)}$

Démonstration : $\forall F \subset I \text{ fini, } \sigma^{-1}(F) \text{ est fini donc majoré par un entier}$ N.

$$\sum_{i \in F} a_i = \sum_{k \in \sigma^{-1}(F)} a_{\sigma(k)} \le \sum_{k=1}^N a_{\sigma(k)} \le \sum_{k=1}^{+\infty} a_{\sigma(k)}$$

Donc par passage au sup :
$$\sum_{i \in I} a_i \le \sum_{k=1}^{+\infty} a_{\sigma(k)}.$$

Réciproquement, $\sum_{k=1}^{N} a_{\sigma(k)} = \sum_{i \in \sigma([\![1,N]\!])} a_i \leq \sum_{i \in I} a_i$. On conclut par passage à la limite.

Corollaire: Si $(a_k) \in \mathbb{R}_+^{\mathbb{N}}, \sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma: \mathbb{N} \to \mathbb{N}$ bijection.

En particulier dans le cas $I = \mathbb{N}^2, (a_{i,j})_{(i,j) \in I} \in \mathbb{R}_+^I$:

Propriété :
$$\sum_{(i,j)\in I} a_{i,j} = \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} a_{i,j}\right) = \sum_{j=1}^{+\infty} \left(\sum_{i=1}^{+\infty} a_{i,j}\right)$$

Démonstration : $F \subset I$ fini. Il existe $N \in \mathbb{N}$ tel que $F \subset [1, N]^2$. Donc $\sum_{(i,j)\in F} a_{i,j} \leq \sum_{i=1}^N \sum_{j=1}^N a_{i,j} \leq \sum_{i=1}^N \sum_{j=1}^{+\infty} a_{i,j} \leq \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j}$. Réciproquement, $\forall N \in \mathbb{N}, \forall M \in \mathbb{N}, \sum_{i=1}^N \sum_{j=1}^M a_{i,j} \leq \sum_{(i,j)\in \mathbb{N}^2} a_{i,j}$.

Donc $(M \to +\infty)$, $\sum_{i=1}^{N} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$. Donc $(N \to +\infty)$, $\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$.

Séries absolument convergentes

Soit $(a_i)_{i\in I}$ une famille de réels tels que $\sum_{i\in I} |a_i|$ soit finie.

On définit $a_i^+ := \max(a_i, 0), a_i^- := \max(-a_i, 0).$ Donc $a_i^+ - a_i^- = a_i$ et $a_i^+ + a_i^- = |a_i|.$

Propriété :
$$\sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$
 et ce quel que soit $\sigma : \mathbb{N} \to I$ bijection.

Démonstration : $\sum_{i \in I} a_i^+ \leq \sum_{i \in I} |a_i|$ donc la somme est finie. Idem pour $\sum_{i \in I} a_i^-$.

$$\sum_{k=1}^{n} a_{\sigma(k)} = \sum_{k=1}^{n} a_{\sigma(k)}^{+} - \sum_{k=1}^{n} a_{\sigma(k)}^{-} \xrightarrow[n \to +\infty]{} \sum_{k=1}^{+\infty} a_{\sigma(k)}^{+} - \sum_{k=1}^{+\infty} a_{\sigma(k)}^{-}$$

Corollaire : Sous réserve de convergence absolue, on a :

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$

$$\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} = \sum_{j=1}^{+\infty} \sum_{i=1}^{+\infty} a_{i,j}$$

Vocabulaire

Définition : Soit X un ensemble. On dit que $A \subset \mathcal{P}(X)$ est :

- une algèbre (d'ensembles) si elle est stable par union finie, intersection finie et passage au complémentaire, contient \emptyset et X.
- une tribu (ou σ -algèbre) si c'est une algèbre stable par réunion/intersection dénombrable.

Exemple:

- $\mathcal{P}(X)$ est une tribu.
- $\{\emptyset, X\}$ est une tribu.

Si on se donne une partition finie de $X:X=X_1\sqcup X_2\cdots\sqcup X_k$, alors l'ensemble des $A\subset X$ de la forme $A=\bigcup_{n\in I\subset [\![1,k]\!]}X_n$ est une tribu finie.

Lemme: Toute algèbre finie est associée à une partition finie.

Démonstration : Soit A une algèbre finie.

$$\forall x \in X, A(x) := \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A.$$

Pour x et y donnés, soit A(x) = A(y), soit $A(x) \cap A(y) = \emptyset$.

Fixons $x \in X, B \in \mathcal{A}$.

- Soit $x \in B$ et alors $A(x) \subset B$.
- Soit $x \in {}^c B$ et alors $A(x) \subset {}^c B$ i.e. $A(x) \cap B = \emptyset$

On conclut avec B = A(y).

Définition : Si \mathcal{A} est une algèbre de X et $m: \mathcal{A} \to [0, +\infty]$ une fonction. On dit que m est une mesure additive si :

5

$$-m(\emptyset) = 0$$

$$--m(A \sqcup B) = m(A) + m(B) \qquad (A \cap B = \emptyset)$$

Définition: Si $\mathcal{T} \subset \mathcal{P}(X)$ est une tribu, $m: \mathcal{T} \to [0, +\infty]$ est une mesure si:

$$--m(\emptyset) = 0$$

—
$$m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$$
 pour $(A_i)_{i \in I}$ famille dénombrable disjointe.

Remarque: Toute mesure est une mesure additive.

Remarque: On appelle parfois les mesures "mesures σ -additives".

Remarque: Lorsque $m: A \to [0, +\infty]$ est une mesure additive sur une algèbre, les propriétés suivantes sont équivalentes :

1. Si
$$A_i \in \mathcal{A}$$
 sont disjoints, (A_i) dénombrable, $\bigsqcup_{i \in I} A_i \in \mathcal{A}$, alors $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$

$$\sum_{i \in I} m(A_i)$$
2. Si $A, A_i \in \mathcal{A}, A \subset \bigcup_{i \in I} A_i$, alors $m(A) \leq \sum_{i \in I} m(A_i)$.

Dans ce cas, on dit que m est σ -additive.

Démonstration: $(1) \Rightarrow (2)$:

Soit
$$A_i \in \mathcal{A}$$
. On définit \tilde{A}_i par : $\tilde{A}_1 = A_1, \dots \tilde{A}_n = A_n \setminus \tilde{A}_{n-1} \quad \forall n \geq 1$
Alors $\bigcup A_i = \bigcup \tilde{A}_i$.

Si
$$A \subset \bigcup A_i$$
, alors $A \subset \bigcup \tilde{A}_i$. Alors $A = \bigcup (A \cap \tilde{A}_i)$.

Donc
$$m(A) = m(\bigsqcup(\tilde{A}_i \cap A)) \leq \sum m(A_i)$$
.

$$(2) \Rightarrow (1)$$
:

Si
$$A = \bigsqcup A_i \stackrel{(2)}{\Rightarrow} m(A) \le \sum m(A_i)$$
.

Si
$$A = \bigsqcup_{i=1}^{n} A_i \stackrel{(2)}{\Rightarrow} m(A) \leq \sum_{i=1}^{n} m(A_i)$$
.
 $A \supset \bigsqcup_{i=1}^{n} A_i$ quel que soit n .

Donc
$$m(A) \ge \sum_{i=1}^n m(A_i)$$
. Donc $(n \to +\infty)$, $m(A) \ge \sum_{i=1}^{+\infty} m(A_i)$.

Définition: Soit $f: \Omega \to X$ une application. Si \mathcal{A} est une algèbre (ou une tribu) sur Ω , alors on définit l'algèbre (tribu) image par :

$$f_*\mathcal{A} = \{A \subset X, f^{-1}(A) \in \mathcal{A}\}$$

Si \mathcal{A} est une algèbre (tribu) sur X, alors

$$f^*\mathcal{A} = \{f^{-1}(A), A \in \mathcal{A}\}$$

est une algèbre (tribu) sur Ω .

La vérification du fait que f^*A et f_*A est une algèbre (tribu) découle des propriétés des préimages :

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

Définition: Si $f:(\Omega,\mathcal{A},m)\to X$ est une application, on définit la mesure image (ou la loi) comme la mesure :

$$(f_*m)(Y) := m(f^{-1}(Y))$$

définie sur $f_*\mathcal{A}$.

Définition : m est dite finie ssi $m(X) < +\infty$ **Définition :** m est dite de probabilité ssi m(X) = 1**Définition :** $f: (\Omega, \tau) \to (X, T)$ est dite mesurable si :

$$\forall Y \in \mathcal{T}, f^{-1}(Y) \in \tau$$

i.e.

$$f_*\tau \supset \mathcal{T}$$
$$f^*\mathcal{T} \subset \tau$$

Exercice: Soit Ω, X des ensembles, \mathcal{T} une tribu sur X. Soit $f: \Omega \to X$ une application, $g: \Omega \to X$ une application à valeurs dans un ensemble fini Y. Alors g est $f^*\mathcal{T}$ mesurable ssi $\exists h: (X, \mathcal{T}) \to (Y, \mathcal{P}(Y))$ mesurable telle que $g = h \circ f$. i.e. "g est f-mesurable ssi g ne dépend que de f".

Modélisation d'une expérience aléatoire finie (ex : jets de dés)

Soit Y un ensemble fini représentant les issues possibles. Il y a 2 manières de représenter un tirage aléatoire sur Y.

- 1. On se donne une mesure de probabilité sur $(Y, \mathcal{P}(Y))$. Pour ceci, il suffit de donner $p: Y \to [0,1]$ tel que $\sum_{y \in Y} p(y) = 1$. On note P la mesure de probabilité ainsi créée.
- 2. On se donne un espace de probabilité abstrait $(\Omega, \mathcal{T}, \mathbb{P})$ et une application mesurable $f: \Omega \to Y$ telle que $f_*\mathbb{P} = P$.

Pour passer de 1. à 2., il suffit de prendre $\Omega = Y$, $\mathcal{T} = \mathcal{P}(Y)$, $\mathbb{P} = P$, $f = \mathrm{id}$.

L'expérience aléatoire consistant à jeter un nombre fini k de dés de valeurs possibles Y_1, \ldots, Y_k est simplement une expérience aléatoire à valeurs dans le produit $Y = Y_1 \times Y_2 \times \cdots \times Y_k$.

La description en termes de variables aléatoires consiste donc à se donner une application mesurable $f:(\Omega, \mathcal{T}, P) \to Y$, c'est à dire k applications mesurables $f_i:(\Omega, \mathcal{T}, P) \to Y_i$, définies sur le même espace de probabilités.

Définition : La loi de f (qui est une probabilité sur Y) est dite loi jointe. Les lois des f_i (qui sont des probabilités sur Y_i) sont dites lois marginales.

Remarque: La loi jointe détermine les lois marginales, qui peuvent se décrire explicitement par $m_i(y_i) = \sum_{y_1,\dots,y_{i-1},y_{i+1},\dots,y_k} m(y_1,\dots,y_k)$

Plus abstraitement, ce soint les mesures images $m_i = (\Pi_i)_* m_i$ où $\Pi_i : Y \to Y_i$ est la projection.

Remarque : La loi jointe est déterminée par $|Y_1| \times \cdots \times |Y_k| - 1$ nombres réels (-1 à cause de la contrainte $\sum p = 1$).

Les lois maginales sont déterminées par $|Y_1|+\cdots+|Y_k|-k$ nombres réels, ce qui est beaucoup moins.

Si on se donnes les marginales m_1, \ldots, m_k , ilm existe de nombreuses lois jointes qui engendrent ces marginales. L'une d'entre elles est particulièrement

intéressante : la loi produit $m((y1, \ldots, y_k)) = m_1(y_1) \cdots m_k(y_k)$, qui correspond (par définition) à des expériences indépendantes.

Définition:

- Les événement A, B dans un espace de probabilité (Ω, \mathcal{T}, P) sont dits indépendants si $P(A \cap B) = P(A)P(B)$.
- Si $(X_i, \mathcal{T}_i)_{1 \le i \le k}$ sont des espaces mesurables (c'est à dire munis de tribus \mathcal{T}_i), les variables aléatoires (applications mesurables) $f_i:(\Omega,\mathcal{T},P)\to$ (X_i, \mathcal{T}_i) sont dites indépendantes si $\forall Z_i \in \mathcal{T}_i, P(f_1 \in Z_1, \dots, P_k \in Z_k) =$ $P(f_1 \in Z_i) \cdot \cdots \cdot P(f_k \in Z_k)$

Propriété: Les événements A et B sont indépendants ssi les variables aléatoires $\mathbb{1}_A$, $\mathbb{1}_B$: $(\Omega, \mathcal{T}, P) \to \{0, 1\}$ le sont.

Démonstration : Il suffit de montrer que cA et B sont indépendants (le reste est évident ou vient par symétrie).

$$P(A \cap B) = P((\Omega \setminus A) \cap B)$$

$$= P(B \setminus A \cap B)$$

$$= P(B) - P(A \cap B)$$

$$= P(B) - P(A)P(B)$$

$$= (1 - P(A))P(B)$$

$$= P(A)P(B)$$

Définition: Les événements A_1, \ldots, A_k sont dits indépendants si $\mathbb{1}_{A_1} \ldots \mathbb{1}_{A_k}$: $\Omega \to \{0,1\}$ le sont.

Remarque : Il ne suffit pas d'avoir l'indépendance deux à deux ou $P(A_1 \cap$ $\cdots \cap A_k) = P(A_1) \cdot \cdots \cdot P(A_k)$

Propriété : Il suffit d'avoir $P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdot \cdots \cdot P(A_{i_k})$, et ce $\forall \{i_1, \ldots, i_k\} \subset [\![1, k]\!].$

Démonstration: Il faut montrer que

(*)
$$P(B_1 \cap \cdots \cap B_k) = P(B_1) \cdot \cdots \cdot P(B_k) \forall B_i \in \{\emptyset, A_i, A_i, \Omega\}$$

Il découle de l'hypothèse que c'est vrai pour $B_i \in \{\emptyset, A_i, \Omega\}$.

Il suffit donc de constater que (*) implique $PB_1 \cap B_2 \cap \cdots \cap B_k = PB_1 P(B_2)$ $\cdots P(B_k)$, ce qui se montre comme ce-dessus. On conclut par récurrence finie.

Exemple : Tirage non indépendant :

On tire – chiffres dans [1,6], en leur imposant d'être distincts. La loi jointe est donc : $P(y_1, ..., y_6) = \begin{cases} 0 & \text{si non distincts} \\ \frac{1}{6!} & \text{si distincts} \end{cases}$. Les lois marginales sont : $P_1(y_1) := \sum_{y_2, ..., y_k} P(y_1, ..., y_k) = \frac{5!}{6!} = \frac{1}{6}$. Les lois

marginales sont donc les mêmes que pour un tirage indépendant!

Définition : On dit que f_i , $i \in I$ sont indépendantes si f_i , $i \in F$ le sont pour tout $F \subset I$ fini.

Modélisation d'une suite infinie de jets dés indépendants

Donnons-nous une suite infinie d'espaces de probabilités finis (Y_i, P_i) (la tribu est $\mathcal{P}(Y_i)$).

Pour chaque n, on a vu que l'on peut trouver des variables aléatoires indépendantes $f_i: (\Omega_n, \mathcal{T}_n, P_n) \to Y_i$ de loi P_i .

Question : peut-on prendre $(\Omega_n, \mathcal{T}_n, P_n)$ indépendant de n?

Théorème 1

Il existe un espace de probabilité (Ω, \mathcal{T}, P) et une suite de variables aléatoires $f_i : \Omega \to Y_i$ qui sont indépendantes et de loi P_i .

Remarque : Les variables aléatoires f_i , $i \in \mathbb{N}$ sont indépendantes ssi f_1, \ldots, f_n le sont pour tout n.

L'hypothèse d'indépendance consiste donc à dire que, pour tout n et pour tout $(y_1,\ldots,y_n)\in Y_1\times\cdots\times Y_n$, l'événement $\{f_1=y_1,\ldots,f_n=y_n\}$ est mesurable $()\in\mathcal{T})$ et de mesure $P(f_1=y_1,\ldots f_n=y_n)=P_1(y_1)\cdot\cdots\cdot P_n(y_n)$.

En termes de loi, ceci implique que $\{y_1\} \times \dots \{y_n\} \times Y_{n+1} \times \dots$ est mesurable sur $X := \prod Y_i$ et que sa mesure est $m(\{y_1\} \times \dots \times Y_{n+1}) = P_1(y_1) \cdot \dots \cdot P_n(y_n)$.

Introduction de l'algèbre \mathcal{A}_{∞} engendrée par les cylindres finis

Sur le produit $X = \prod Y_i$, pour n fixé, les ensembles de la forme $\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \ldots$ forment une partition finie (ce sont les cylindres finis), qui engendre une algèbre finie \mathcal{A}_n (qui est donc aussi une tribu).

C'est l'algèbre engendrée par les n premières coordonnées. En effet si $\Pi: X \to Y_1 \times \cdots \times Y_n$ est la projection, alors $\mathcal{A}_n = \Pi^*(\mathcal{P}(Y_1 \times \cdots \times Y_n))$.

Cette algèbre décrit les parties de X qui peuvent être décrites en termes des n premières coordonnées.

On a
$$\mathcal{A}_n \subset \mathcal{A}_{n+1}$$
. On note $\mathcal{A}_{\infty} = \bigcup_{n \geq 1} \mathcal{A}_n$.

 \mathcal{A}_{∞} est donc l'algèbre des parties de X qui dépendent d'un nombre fini de coordonnées. C'est l'algèbre engendrée par les cylindres finis.

Contrairement aux A_n , A_∞ est infinie et ce n'est pas une tribu!

L'hypothèse d'indépendance des f_i implique que la loi m doit être définie sur \mathcal{A}_{∞} , et qu'elle y est déterminée par la relation

$$(*) \quad m(\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \dots) = P_1(y_1) \cdot \cdots \cdot P(y_n)$$

Théorème 2

Il existe sur $X = \prod Y_i$ une tribu τ , qui contient \mathcal{A}_{∞} , et une mesure m sur \mathcal{T} qui vérifie (*).

On vient en fait de voir que le théorème 1. implique le théorème 2. Réciproquement, il suffit de prendre $\Omega = X, \mathcal{T} = \tau, P = m, f = \text{projection}$.

Pour démontrer l'utilité du théorème 2., donnons des exemples d'ensembles qu'il est naturel de considérer et qui sont dans τ mais pas dans \mathcal{A}_{∞} . On suppose $Y_i \subset \mathbb{R}$

Exemple: L'ensemble $\{(y_i) \in X, \frac{y_1 + \dots y_n}{n} \to l\}$ est mesurable. En effet, il s'écrit: $\bigcap_{k \ge 1} \bigcap_{n \in \mathbb{N}} \bigcap_{m \ge n} \{\left| \frac{y_1 + \dots y_n}{n} - l \right| \le \frac{1}{k} \}$, i.e. $\forall k \ge 1, \exists n \in \mathbb{N}, \forall m \ge n, \dots$

Chacun des ensembles est dans \mathcal{A}_{∞} donc l'ensemble considéré est dans τ .

lim inf et lim sup d'ensembles

Si A_n est une suite d'ensembles, on note :

$$\liminf A_n = \bigcup_n \bigcap_{m \ge n} A_m = \{A_i \text{ APCR}\}\$$

$$\limsup A_n = \bigcap_n \bigcup_{m \geq n} A_m = \{A_i \text{ infinitely often (i.o.)}\}\$$

Si τ est une tribu, que les $A_n \in \tau$, alors $\limsup A_n \in \tau$ et $\liminf A_n \in \tau$.

Propriété:

- $--\liminf A_n \subset \limsup A_n$
- $--\lim\inf^{c} A_n = c(\lim\sup A_n)$

Démonstration : $\forall m, M, \quad \bigcap_{n \geq m} A_n \subset \underset{n \geq M_n}{A}.$ Donc $\bigcap_{n \geq m} A_n \subset \limsup A_n$, donc $\liminf A_n \subset \limsup A_n$

Exercice: $\limsup \mathbb{1}_{A_n} = \mathbb{1}_{\limsup A_n}$

Exemple : On considère un tirafe aléatoire indépendant $f_n \in -1, 1^{\mathbb{N}}$, ce que l'on voit comme un jeu de hasard (le joueur gagne ou perd 1 à chaque étape). Étant donnée la richesse initiale r_0 et un objectif R, on considère l'événement {le joueur atteint la richesse R avant de se ruiner}.

Il s'écrit
$$\bigcup_{n \ge 1} \{ y_1 + \dots y_n \ge -r_0 \quad \forall k < n \text{ et } y_1 + \dots + y_k = R - r_0 \}.$$

C'est une réunion dénombrable d'éléments de \mathcal{A}_{∞}

Le théorème 2 sera déductible du théorème suivant :

10

Théorème 3 Hahn-Kolmogorov

Soit \mathcal{A} une algèbre d'ensembles sur X. Soit \underline{m} une mesure de probabilité additive sur \mathcal{A} , qui vérifie la propriété de σ -additivité.

Alors il existe une tribu τ contenant \mathcal{A} , et une mesure de proba m sur τ qui prolonge \underline{m} . De plus, on peut prendre : $m(B) = \inf_{B \subset \bigcup A_i} \sum_{i \in \mathbb{N}} \underline{m}(A_i)$, où

le inf est pris sur les recouvrements dénombrables de B par des éléments de $\mathcal{A}.$

Pour démontrer le théorème 2, on va appliquer le théorème 3 avec $\mathcal{A} = \mathcal{A}_{\infty}$, et \underline{m} la mesure additive déterminée par $\underline{m}(\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \cdots) = P_1(y_1) \dots P_n(y_n)$.

Il nous suffit donc de vérifier que cette mesure additive a la propriété de σ -additivité.

Propriété : Toute mesure additive sur A_{∞} est σ -additive.

Démonstration : Soient $A \in \mathcal{A}_{\infty}$ et $A_i \in \mathcal{A}_i nfty$ tel que $A \subset \bigcup_i A_i$, alors $\exists n, A \subset \bigcup_{i=1}^n A_i$.

- méthode savante : c'est la compacité de A dans X muni de la topologie produit (les A_i sont ouverts et compacts)
- à la main : On pose $B_n = A \setminus \bigcup_{i=1}^n A_i$. On veut montrer que $\exists n, B_n = \emptyset$, sachant que $\bigcap_{n \geq 0} B_n = \emptyset$.

On suppose que $B_n \neq \emptyset, \forall n$. On note $B_n(y_1) := \Pi_1^{-1}(y_1) \cup B_n$, ce sont les éléments de B_n qi commencent par y_1 .

Pour chaque $y_1, n \mapsto B_n(y_1)$ est décroissante. Comme $B_n = \bigcup_{y_1 \in Y_1} B_n(y_1)$

(union finie) (et $B_n \neq \emptyset$), il existe y_1 tel que les $B_n(y_1)$ sont tous non vides.

On fixe maintenant un tel y_1 et on reprend le même raisonnement sur y_2 , puis... On obtient de la sorte une suite y.

Ainsi, il existe une suite $(y_1, \dots) \in B_n \forall n \text{ car } \forall n, \exists k_n, B_n \in \mathcal{A}_{k_n}$.

Ainsi, $\forall n, B_n \ni y \text{ donc } \bigcap B_n \neq \emptyset$. Absurde.

Propriété : Dans le contexte du théorème d'Hahn-Kolmogorov, m^* : $\mathcal{P}(X) \to [0,\infty]$ est une mesure extérieure, c'est à dire que $m^*(\emptyset) = 0$, m^* est croissante, et $m^*\left(\bigcup_{i \in \mathbb{N}} Z_i\right) \leq \sum_{i \in \mathbb{N}} m^*(Z_i), \forall Z_i$.

Démonstration : Démontrons la dernière propriété. Fixons $\varepsilon > 0$. Pour tout i, il existe un recouvrement $A_{i,j}, j \in \mathbb{N}$ de Z_i tel que $\sum_j \underline{m}(A_{i,j}) \geq m^*(Z_i) \geq \sum_j \underline{m}(A_{i,j}) - \varepsilon 2^{-i}$, alors $A_{i,j}, i \in \mathbb{N}, j \in \mathbb{N}$ est un recouvrement de $\bigcup Z_i$, et $m^*(\bigcup Z_i) \leq \sum_{i,j} \underline{m}(A_{i,j}) \leq \sum_{i\geq 1} (m^*(Z_i) + \varepsilon 2^{-1}) \leq \varepsilon + \sum_{i\geq 1} m^*(Z_i)$.

Démonstration : Démonstration du théorème d'Hahn-Kolmogorov Deux étapes :

- 1. $m^*|_{\mathcal{A}} = \underline{m}$ Si $A \subset \bigcup_i A_i$, alors $\underline{m}(A) \leq \sum \underline{m}(A_i)$ par σ -additivité de \underline{m} . En prenant l'inf, on obtient $\underline{m}(A) \leq m^*(A)$. L'inégalité réciproque s'obtient en considérant le recouvrement trivial $A_1 = A, A_2 = A_3 = \cdots = \emptyset$.
- 2. On dit que $Y \subset X$ est mesurable si, pour tout $\varepsilon > 0, \exists A \in \mathcal{A}$ tel que $m^*(Y\Delta A) \leq \varepsilon$. Alors l'ensembre \mathcal{T} des parties mesurables est une algèbre.

Démonstration:

- si $m^*(Y\Delta A) \leq \varepsilon$, alors $m^*(Y\cap^c A) \leq \varepsilon$, donc \mathcal{T} est stable par complément.
- Soient Y, Z mesurables et A, B tels que $m^*(Y\Delta A) \leq \varepsilon, m^*(Z\Delta B) \leq \varepsilon$ alors $m^*((Y \cup Z)\Delta(A \cup B)) \leq 2\varepsilon$ car $(Y \cup Z)\Delta(A \cup B) \subset (Y\Delta A) \cup (Z\Delta B)$.

П

3. m^* est une mesure additive sur \mathcal{T} .

Démonstration : Y, Z disjoints, A, B comme ci-dessus.

$$(A \cap B) = (Y \cup (A \setminus Y)) \cap (Z \cup (B \setminus Z)) \subset Y \cap Z \cup (B \setminus Z) \cup (A \setminus Y)$$
 donc $\underline{m}(A \cap B) \leq 2\varepsilon$

$$A \cup B = (Y \cup (A \setminus Y)) \cup (Z \cup (B \setminus Z)) \subset Y \cup Z \cup (A \setminus Y) \cup (B \setminus Z)$$

$$\underline{m}(A \cup B) \leq m^*(Y \cup Z) + 2\varepsilon$$

et
$$\underline{m}(A \cup B) = \underline{m}(A) + \underline{m}(B) - \underline{m}(A \cap B) \ge \underline{m}(A) + \underline{m}(B) - 2\varepsilon \ge m^*(Y) - \varepsilon + m^*(Z) - \varepsilon - 2\varepsilon.$$

Finalement, $m^*(Y) + m^*(Z) \le m^*(Y \cup Z) + 6\varepsilon$

Comme m^* est une mesure extérieure et une mesure additive sur l'algèbre $\mathcal{T},$ elle a la propriété de σ -additivité.

4. \mathcal{T} est une tribu.

Démonstration : $Y_i \in \mathcal{T}$. On veut montrer que $Y_{\infty} := \bigcup Y_i \in \mathcal{T}$. On

peut supposer que les Y_i sont disjoints. Alors $\forall n, m^*(\bigsqcup_{i=1}^n Y_i) = \sum_{i=1}^n m^*(Y_i) \le$

 $m^*(X)=1.$ Donc la série $\sum m^*(Y_i)$ converge, donc $\forall \varepsilon, \exists n, \sum\limits_{i=n+1}^{+\infty} m^*(Y_i) \leq \varepsilon$

Alors en posant $Z=\bigcup\limits_{i=1}^nY_i$, on a $m^*(Y_\infty\setminus Z)\leq \varepsilon,\ Z\subset Y_\infty.$ Ensuite, on prend $A\in\mathcal{A}$ tel que $m^*(A\setminus Z)\leq \varepsilon, m^*(Z\setminus A)\leq \varepsilon.$ On obtient $A\setminus Y_\infty\subset A\setminus Z, Y_\infty\setminus A\subset (Z\setminus A)\cup (Y_\infty\setminus Z).$

Complément : on aurait pu donner une autre preuve du théorème 3 basée sur un résultat général sur les mesures extérieures. Lorsque m^* est une mesure extérieure, on dit que $Y \subset X$ est m^* -mesurable si

$$\forall Z \subset X, m^*(Z) = m^*(Z \cap Y) + m^*(Z \cap Y).$$

Théorème 4 Carathéodory

Si m^* est une mesure extérieure, l'ensemble \mathcal{T} des parties m^* -mesurables est une tribu, et $m^*|_{\mathcal{T}}$ est une mesure.

Remarque : Dans le cas du théorème de Hahn, la tribu \mathcal{T} est la même que celle introduite dans la démonstration précédente.

Démonstration: $Carath\'{e}odory \Rightarrow Hahn\text{-}Kolmogorov$

Il suffit de montrer que les éléments de \mathcal{A} sont m^* -mesurables, et que $m^*|_{\mathcal{A}} =$

- $--m^*(A) \le \underline{m}(A) \forall A \in \mathcal{A}$
- $m^*(A) \geq \underline{m}(A) \forall A \in \mathcal{A}$. En effet, si $A \subset \bigcup A_i$, on peut supposer les A_i disjoints. Alors par σ -additivité de \underline{m} sur $\mathcal{A}^{'}$: $\underline{m}(A) = \sum_{i} \underline{m}(A_i) \geq m^*(A)$.
- Soit $A \in \mathcal{A}$ et $Zin\mathcal{P}(X)$. On considère un recouvrement A_i de Z. $\sum \underline{m}(A_i) = \sum \underline{m}(A_i \cap A) + \underline{m}(A_i \cap A) \ge m^*(Z \cap A) + m^*(Z \cap A).$ On prend l'inf : $m^*(Z) \geq m^*(Z \cap A) + m^*(Z \cap A)$. L'autre inégalité découle de la sous-additivité.

Démonstration: Carathéodory

1. \mathcal{T} est une algèbre.

Démonstration : On a $\emptyset \in \mathcal{T}, X \in \mathcal{T}$, et stabilité par complément de manière triviale.

 $A, B \in \mathcal{T} \Rightarrow \forall Y, m^*(Y) = m^*(Y \cap A) + m^*(Y \cap A) = m^*(Y \cap A \cap B) + m^*(Y \cap A) = m^*(Y \cap A)$ $m^*(Y \cap A \cap^c B) + m^*(Y \cap^c A \cap^c B) + m^*(Y \cap^c A \cap B).$

Remarque: $(A \cap B) = (B \cap A) \cup (B \cap A) \cup (A \cap B)$ Donc $m^*(Y) \geq A$ $m^*(Y \cap (B \cup A)) + m^*(Y \cap {}^c(B \cap A))$

2. m^* est additive sur \mathcal{T}

Démonstration: $A, B \in \mathcal{T}, A \cap B = \emptyset$. $m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A) = m^*(A) + m^*(B)$

3. \mathcal{T} est une tribu.

Démonstration : soit A_n une suite d'éléments deux à deux disjoints

de \mathcal{T} . Posons $B_n = \bigcup_{k=1}^n A_n$ et $B_\infty = \bigcup_{k=1}^\infty A_n$. $\forall Y \subset X, m^*(Y \cap B_n) = m^*(Y \cap B_n \cap A_n) + m^*(Y \cap B_n \cap A_n) = m^*(Y \cap B_n \cap A_n)$ $A_n) + m^*(Y \cap B_{n-1}).$

Donc $m^*(Y \cap B_n) = \sum_{k=1}^n m^*(Y \cap A_k)$. Alors $m^*(Y) = m^*(Y) = m^*(Y \cap B_n) + m^*(Y \cap B_n) \ge \sum_{k=1}^n m^*(Y \cap B_n)$ $\begin{array}{l} A_k) + m^*(Y \cap {}^cB_{infty}). \\ \text{\grave{A} la limite} : m^*(Y) \geq \sum_{n=1}^\infty m^*(Y \cap A_n) + m^*(Y \cap {}^cB_\infty) \end{array}$