DESIGN AND ANALYSIS OF ALGORITHMS

Course code: 17IS4DCADA L: P: T: S: 4:0:0:0

Exam Hours: 03 Total Hours: 50

Credits: 04 CIE Marks: 50 SEE Marks: 50

Course Objectives:

- 1. Identify the problem and design an algorithmic stratergy to solve it.
- 2. Ability to understand and use asymptotic notation to formulate the time and space complexities of algorithms.
- 3. Develop different algorithms for the same problem and classify them based on their complexities.
- 4. Acquire basic knowledge of computational complexity, approximation algorithms.

Course Outcomes

C01	Identifying asymptotic runtime complexity and formulating recurrence relations of algorithms.
CO2	Interpret the various algorithm paradigms and optimization
CO3	Implement various searching and sorting algorithmic techniques.
C04	Implement Dynamic programming, greedy technique, and Backtracking algorithmic technique.
C05	Analyze the limitations of various algorithms and finding approximate solution to them.
C06	Apply and analyze different algorithm techniques and derive its time complexity.

Mapping of Course outcomes to Program outcomes:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
CO1	3	3	3	1	276	SE	200	•	*	٠	878	2	3	2	

CO2	3	3	3	1	.70	1.0		٠				2	3	2	37.7
CO3	3	3	3	1	1.0	•	٠	٠	٠	*	(*)	2	3	2	1
CO4	3	3	3	1	*	*	8.	*	•		*	2	3	2	***
CO5	3	3	3	1								2	3	2	
C06	3	3	3	2								2	3	2	1

Unit	Contents of the Unit	Hours	COs
1	INTRODUCTION: What is an algorithm, Fundamentals of Algorithmic Problem Solving. Fundamentals of the Analysis of Algorithm Efficiency: The Analysis Framework, Asymptotic and Basic Efficiency Classes, Mathematical Analysis of Non recursive, Algorithms Mathematical Analysis of Recursive Algorithms. BRUTE FORCE: Introduction, Bubble sort, Selection Sort, Sequential/linear Search, Brute Force String Matching.	10	CO1
2	DIVIDE-AND-CONQUER: Introduction, Master theorem, Quick sort, Mergesort, Multiplication of Large Integers and Strassen's Matrix Multiplication. DECREASE-AND-CONQUER: Introduction, Insertion Sort, Depth-First Search and Breadth-First Search, Topological Sorting, Algorithms for	10	C03

	3	SPACE AND TIME TRADE-OFFS: Introduction, Sorting by Counting, Input Enhancement in String Matching.	10	C04
	DYNAMIC PROGRAMMING: Introduction, Warshall's and Floyd's Algorithms, The Knapsack Problem and Memory Functions.		004	
	4	GREEDY TECHNIQUE: Introduction, Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Huffman Trees and Codes. PRAM ALGORITHMS: Introduction, Computational Model, Parallel Algorithms for Prefix Computation.	10	CO6
	5	LIMITATIONS OF ALGORITHM POWER: Lower-Bound Arguments, Decision Trees, P, NP, and NP Complete Problems. COPING WITH THE LIMITATIONS OF ALGORITHM POWER: Backtracking & Branch-and-Bound: nqueens problem, sum of subset, assignment, problem.	10	CO5

Self study component:

Note: 1.Questions for CIE and SEE not to be set from self-study component. 2. Assignment Questions should be from self-study component only. **UNIT 1: Fibonacci Numbers**

UNIT 2: Job Sequencing with deadlines, Defective chessboard Problem

UNIT 3: The sales person problem using dynamic programming.

UNIT 4: List Ranking and Graph Problems

UNIT 5: Approximation Algorithms for NP-Hard Problems, Hamiltonian Circuit Problem.

1. AnanyLevitin: Introduction to the Design & Analysis of Algorithms, 3rd Edition, Pearso Education, 2012.

Text Books:

- 2. Ellis Horowitz, SartajSahni, SanguthevarRajasekaran: Fundamentals of Computer Algorithms, 2nd Edition, Universities Press.
- Reference Books:

1. Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein: Introduction t

- Algorithms, 3rd Edition, PHI, 2010.
- 2. Kenneth A. Berman, Jerome L. Paul: Algorithms, Cengage Learning, 2002.

Assessment Pattern:

Bloom's Category	Tests	Assignments	AAT1	AAT2
Marks (Out of 50)	30	10	05	05
Remember			02	01
Understand	10		01	01
Apply	10	05	-	01
Analyze	05	05	02	02
Evaluate	05			
Create				

*AAT 1- Alternate Assessment Tool 1: Quiz AAT 2 - Alternate Assessment Tool 2: Surprise Test

SEE -Semester End Examination Theory (50 Marks)

Bloom's Category	Marks Theory(50)
Remember	10
Understand	10
Apply	10
Analyze	10
Evaluate	10
Create	