Ψηφιακές διαμορφώσεις

Εισηγητής: Χρήστος Δαλαμάγκας

cdalamagkas@gmail.com

Άδεια χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται στη διεθνή άδεια χρήσης Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

Ψηφιακές διαμορφώσεις

- Οι αναλογικές διαμορφώσεις δέχονται σήμα πληροφορίας σε αναλογική μορφή
 - Ο Από την αποδιαμόρφωση εξάγεται αναλογικό σήμα
- Οι ψηφιακές διαμορφώσεις δέχονται ως σήμα πληροφορίας ψηφιακό σήμα
 - Ο Από την αποδιαμόρφωση εξάγεται ψηφιακό σήμα
- Μεγαλύτερη η ποικιλία των ψηφιακών διαμορφώσεων
- Διαφορές ψηφιακών και αναλογικών διαμορφώσεων:
 - Ο Σήμα πληροφορίας (ψηφιακό στις ψηφιακές διαμορφώσεις)
 - Ο Στις ψηφιακές διαμορφώσεις, το διαμορφωμένο σήμα υφίσταται διακριτές μεταβολές

Ψηφιακές διαμορφώσεις

- Και τα δυο είδη διαμορφώσεων αφορούν ζωνοπερατά σήματα!
- Η μετάδοσή τους γίνεται μέσω ενός modem
- Τα bit μετατρέπονται σε σύμβολα, ομάδες από bit
 - Ο Τα σύμβολα είναι αυτά που πραγματικά διαμορφώνουν ψηφιακά ένα φέρον σήμα

Bit rate: αριθμός των bits/second

Baud rate: αριθμός των συμβόλων/second.

Κριτήρια επιδόσεων

- Αναλογικές διαμορφώσεις:
 - Λαμβανόμενο = εκπεμπόμενο σήμα
- Ψηφιακές διαμορφώσεις:
 - Ο ρυθμός μετάδοσης
 - Η πιθανότητα σφάλματος ενός bit

Σύνοψη ψηφιακών διαμορφώσεων

- Amplitude Shift keying
- Frequency Shift keying
- Phase Shift Keying
- Quadrate Amplitude Modulation

Keying: Είδος διαμόρφωσης, στην οποία το διαμορφωμένο σήμα λαμβάνει διακριτές τιμές σε όλο το πεδίο ορισμού του.

Μετατόπιση Πλάτους (ASK)

Amplitude Shift keying (ASK)

- Τα ψηφία 1 και 0 απεικονίζονται στο φέρον σήμα με διαφορετικά πλάτη
- ON-OFF Keying είναι μια ειδική περίπτωση του ASK.
- Για τη μετάδοση του 1 θεωρούμε ένα συγκεκριμένο πλάτος.
- Για το μηδέν αλλάζουμε το πλάτος και κρατάμε σταθερή τη συχνότητα.

Ακολουθία Πληροφορίας Βασικής Ζώνης: 1 0 1 1 0 1 0 1 0 1

Ακολουθία Πληροφορίας Βασικής Ζώνης: 1 0 1 1 0 1 0 1 0 1

Δυαδικό Σήμα

Ακολουθία Πληροφορίας Βασικής Ζώνης: 1 0 1 1 0 1 0 1 0 1

Παραδείγματα ASK

Μετατόπιση Συχνότητας (FSK)

Frequency Shift Keying (FSK)

- Τα ψηφία 1 και 0 απεικονίζονται στο φέρον σήμα με διαφορετικές συχνότητες
- Για τη μετάδοση του 1 θεωρούμε μια συγκεκριμένη συχνότητα.
- Για το μηδέν αλλάζουμε τη συχνότητα και κρατάμε το πλάτος σταθερό.

Ακολουθία Πληροφορίας Βασικής Ζώνης: 1011010101

Μετατόπιση Φάσης (PSK)

Phase Shift Keying (PSK)

- Τα ψηφία 1 και 0 απεικονίζονται στο φέρον σήμα με διαφορετική φάση
- Για τη μετάδοση του 1 θεωρούμε μηδενική αρχική φάση.
- Για το μηδέν ολισθαίνουμε τη φάση κατά 180 μοίρες.
- Η BPSK αποτελεί την πιο απλή μορφή διαμόρφωσης φάσης:
 - Η φάση μετατοπίζεται μεταξύ δυο διακριτών καταστάσεων
 - Υπάρχουν δυο σύμβολα: 0 και 1

Ακολουθία Πληροφορίας Βασικής Ζώνης: 1 0 1 1 0 1 0 1 0 1

Παραδείγματα PSK

Τετραγωνικές διαμορφώσεις (QPSK/QAM)

Παραλλαγές της PSK

- Η BPSK χρησιμοποιεί 1 bit/symbol
- Είναι δύσκολο να υλοποιηθεί η BPSK για εφαρμογές
 υψηλού ρυθμού μετάδοσης bit
- Δίπλα φαίνεται το διάγραμμα αστερισμού (constellation diagram) της BPSK
 - Κάθε σύμβολο απεικονίζεται με μια κουκίδα
 - Η θέση της κουκίδας υποδεικνύει τη τιμή της φάσης που αντιπροσωπεύει το σύμβολο
 - Πάνω από την κουκίδα φαίνονται τα bit πληροφορίας που αντιστοιχούν στο σύμβολο

Η διαμόρφωση QPSK

- Περισσότερες διακριτές φάσεις μπορούν να υιοθετηθούν σε ένα διαμορφωμένο σήμα
 - Αρκεί να έχουν τετραγωνική σχέση μεταξύ τους (Δφ=180°)
- Αυτή η τακτική επιτρέπει την αντιστοίχιση περισσότερων bit σε κάθε μια φάση
- Το διάγραμμα αστερισμού για την 4PSK φαίνεται δίπλα
- Κάθε σύμβολο αντιστοιχεί σε 2 bit
- Αποτέλεσμα: Διπλασιασμός του ρυθμού μετάδοσης χρησιμοποιώντας το ίδιο εύρος ζώνης!

Η διαμόρφωση 8-PSK

 Η υψηλότερη τάξη αστερισμού που μπορεί να χρησιμοποιεί

 Περισσότερες φάσεις προκαλούν μεγάλο ρυθμό σφαλμάτων

Differential phase-shift keying (DPSK)

- Οι διαφορικές κωδικοποιήσεις ή διαμορφώσεις έχουν ελαφρώς διαφορετική λογική στην αποτύπωση του σήματος
 - Για παράδειγμα, Το ψηφίο 1 απεικονίζεται με μετατόπιση +180 μοίρες στο φέρον και 0 απεικονίζεται με μετατόπιση 0 μοιρών

Quadrature amplitude modulation (QAM)

- Αποτελεί συνδυασμός των μετατοπίσεων πλάτους και φάσης (ASK και PSK)
- Η QAM ξεπερνά τον περιορισμό των 8
 φάσεων της M-PSK
- Δίπλα φαίνεται το διάγραμμα αστερισμού για 16 σύμβολα (16-QAM)
- Οι διαμορφώσεις 2-QAM, 4-QAM και 8-QAM ταυτίζονται με τις αντίστοιχες PSK

Quadrature amplitude modulation (QAM)

- Όσο μεγαλώνουμε την τάξη QAM
 - Μειώνεται η απόσταση μεταξύ των σημείων
 - Αυξάνεται η πιθανότητα διασυμβολικών παρεμβολών
 - Πρέπει να μειωθεί ο λόγος Eb/No, δηλαδή ο σηματοθορυβικός λόγος ενός bit κανονικοποιημένος ως προς την ισχύ θορύβου για 1 Hz εύρους ζώνης

Παραλλαγές QAM

Διαμόρφωση	Bit ανά σύμβολο	Συμβολορυθμός
BPSK	log2(2) = 1	1 x bitrate
QPSK	log2(4) = 2	½ x bitrate
8PSK	log2(8) = 3	1/3 x bitrate
16QAM	log2(16) = 4	1/4 x bitrate
32QAM	log2(32) = 5	1/5 x bitrate
64QAM	log2(64) = 6	1/6 x bitrate

Εφαρμογές QAM

- Ψηφιακή τηλεόραση (64 ή 256 QAM)
- Κινητή τηλεφωνία (LTE 64QAM)
- WiFi
 - ο Το νέο πρότυπο WiFi @6GHz χρησιμοποιεί 1024-QAM!
- Homeplug (500 Mbps @ 1024 ή 4096 QAM)
- Οπτικά δίκτυα (Πειραματικά 128-QAM)

Discrete Multitone (DMT)

- Χρησιμοποιείται κυρίως σε ADSL και VDSL
- Η DMT χρησιμοποιεί πολλαπλά σήματα φέροντος (subcarriers) τα οποία διαμορφώνονται με QAM και μεταδίδονται στις τηλεφωνικές γραμμές
 - ο Συνδυασμός QAM και FDM (Frequency Division Multiplexing)
- Τεχνικές ψηφιακής επεξεργασίας σήματος, όπως Fast Fourier Transform (FFT)
 μπορούν να διαμορφώσουν μέχρι και 4096 subcarriers
- Η ενέργεια μπορεί να μειωθεί σε κάποιες υποφέρουσες ώστε να αυξηθεί το SNR

Παλμικές διαμορφώσεις

Διαμορφώσεις παλμών

- Για τη μετάδοση αναλογικών σημάτων με ψηφιακό τρόπο χρησιμοποιούνται οι διαμορφώσεις παλμών
- Ως φέρον μπορεί να χρησιμοποιηθεί μια σειρά παλμών, οι οποίοι διαμορφώνονται με βάση το σήμα πληροφορίας.
- Οι παλμοί ουσιαστικά παίρνουν δείγματα από το αναλογικό σήμα
- Ενδεικτικές διαμορφώσεις παλμών:
 - o PAM
 - o PWM
 - PPM
 - o PCM
- Οι διαμορφώσεις παλμών μπορεί να είναι αναλογικές (PAM, PWM, PPM) ή ψηφιακές (PCM)

Pulse-Altitude modulation (PAM)

 Η PAM χρησιμοποιείται για αναπαράσταση αναλογικών σημάτων με μορφή παλμών

- (1) original signal,
- (2) PAM signal,
- (a) amplitude of signal,
- (b) time

Pulse-width Modulation (PWM)

- Η μεταβολή του αναλογικού σήματος
 αποτυπώνεται στη μεταβολή του πλάτους των παλμών
- Στη διάρκεια μιας περιόδου ο παλμός καταλαμβάνει ένα ποσοστό της συνολικής περιόδου
 - Αυτή η διάρκεια ονομάζεται duty cycle

Παράδειγμα PWM

Pulse-position Modulation (PPM)

Η θέση των σταθερής διάρκειας και πλάτους παλμών στον άξονα του χρόνου μεταβάλλεται με βάση αναφοράς ένα σήμα πλαμού PWM

Amplitude

Η θέση του κάθε παλμού είναι ανάλογη του πλάτους των αντίστοιχων παλμών

Η απαιτούμενη ενέργεια είναι σταθερή

Base band signal

Time

Σύγκριση PAM, PWM και PPM

PAM	PWM	PPM
Amplitude is varied	Width is varied	Position is varied
Bandwidth depends on the width of the pulse	Bandwidth depends on the rise time of the pulse	Bandwidth depends on the rise time of the pulse
Instantaneous transmitter power varies with the amplitude of the pulses	Instantaneous transmitter power varies with the amplitude and width of the pulses	Instantaneous transmitter power remains constant with the width of the pulses
System complexity is high	System complexity is low	System complexity is low
Noise interference is high	Noise interference is low	Noise interference is low
It is similar to amplitude modulation	It is similar to frequency modulation	It is similar to phase modulation

Παλμικές διαμορφώσεις - PCM

Παλμοκωδική διαμόρφωση (PCM)

- Αποτελεί την αμιγώς ψηφιακή εκδοχή της PAM
- Η PCM μετατρέπει ένα αναλογικό σήμα σε ακολουθία bit (κβαντισμένη PAM)
- Ουσιαστικά, εφαρμόζεται πρώτα η PAM και μετά τα πλάτη κβαντίζονται
 - Δηλαδή, αντιστοιχίζονται σε συγκεκριμένες ακολουθίες bit (κωδικολέξεις)
- Ο ρυθμός δειγματοληψίας πρέπει να είναι σύμφωνος με τον ρυθμό Nyquist,
 δηλαδή να είναι μεγαλύτερος από το διπλάσιο της μέγιστης συχνότητας του αναλογικού σήματος

$$f_s > 2f_{max}$$

Διαδικασία κβαντισμού

- Οι στάθμες ενός αναλογικού σήματος μπορεί να είναι άπειρες
- Από τις πιθανές στάθμες, επιλέγονται όσες μπορούν να αναπαρασταθούν και προσαρμόζονται με κάποιο επίπεδο ακριβείας
- Το πόσα επίπεδα ακριβείας θα έχουμε (δλδ πλήθος στάθμεων) εξαρτάται από το πόσα bit χρησιμοποιούμε για την αναπαράσταση της κάθε στάθμης

Το σύστημα ΡCΜ

Πλεονεκτήματα PCM

- Ευρωστία (robustness) στο θόρυβο και στην παρεμβολή
- Αποδοτική αναγέννηση
- Απόδοση σε επίπεδο SNR και εύρος ζώνης
- Ομοιομορφία στη μετάδοση
- Ασφαλές (κρυπτογραφία)

Κβαντισμός (Quantization)

- Η διακριτοποίηση συνεχών τιμών του πλάτους ενός αναλογικού/συνεχούς
 δείγματος του σήματος ονομάζεται κβαντισμός
- Η διαφορά μεταξύ δύο γειτονικών τιμών ονομάζεται quantum ή μέγεθος βήματος.

Σφάλμα κβαντισμού

Υπολογίζεται από τη διαφορά μεταξύ των σημάτων εισόδου και εξόδου του κβαντιστή.

Παράδειγμα κβαντισμού

Είδη κβαντίσεων

- Ομοιόμορφη: Ομοιόμορφη απόσταση μεταξύ των επίπεδων κβαντισμού.
- Μη ομοιόμορφη: Μεταβλητή απόσταση μεταξύ των επίπεδων κβαντισμού.
- Μη ικανοποιητική η ομοιόμορφη κβάντιση: Το σύστημα ακοής του ανθρώπου επιδεικνύει λογαριθμική ευαισθησία.
 - Ο Πιο ευαίσθητο στα ασθενή σήματα (π.χ. το 0.1 ακούγεται διαφορετικά από το 0.2)
 - Λιγότερο ευαίσθητο σε σήματα ισχυρά με μεγάλα πλάτη (π.χ. 0.8 δεν ακούγεται πολύ διαφορετικά από το 0.9)

Κωδικοποίηση

- Τελευταίο βήμα της ψηφιοποίησης είναι η κωδικοποίηση
- Σε κάθε κβαντισμένη στάθμη αντιστοιχίζεται μια κωδικολέξη από bit
- Το πόσα bit χρησιμοποιεί κάθε στάθμη εξαρτάται από το πλήθος στάθμεων
 - ο Πχ για 128 στάθμες χρησιμοποιούνται 7 bit, διότι 2⁷ = 128
- Υπάρχουν πολλές μέθοδοι αντιστοίχισης κωδικοποίησης κβαντισμένων σημάτων
 - Κώδικας Gray

Εύρος ζώνης ΡCΜ

Καθορίζεται από τη μέγιστη συχνότητα

Ρυθμός Μετάδοσης = Εύρος Ζώνης = ρυθμός δειγματοληψίας * αριθμός των bits / δείγμα

Το ακουστικό σήμα έχει περίπου μέγιστη συχνότητα αποκοπής 3.4kHz. Ο ρυθμός Nyquist είναι 3.4*2 = 6.8kHz.

- Συνήθης ρυθμός δειγματοληψίας τα 8000 δείγματα/sec, fs =8kHz
- Αν κβαντιστεί το σήμα σε μία από τις 128 στάθμες δηλαδή χρησιμοποιούμε
 7bits/ανά δείγμα:

Απαιτούμενος Ρυθμός = Εύρος ζώνης >= 56kHz

Μετάδοση ΡCΜ

- Συνήθεις ρυθμοί δειγματοληψίας για ψηφιακό ήχο:
 - 8 kHz για ήχο, audiobooks, etc. (τηλεφωνία)
 - 22 kHz για μονοφωνικές καταγραφές ή κασέτες
 - 32 kHz για ραδιοσταθμούς και streaming μουσικής
 - ο 44.1 kHz για audio CDs και de facto standard για κωδικοποιήσεις τύπου MP3, AAC, WMA κλπ
 - 48 και 96 kHz για ήχο υψηλής ευκρίνειας και επαγγελματίες.
- Για τη μετάδοση παλμών PCM χρησιμοποιούνται τεχνικές μετάδοσης παλμών στη βασική ζώνη (line coding)