<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 2: Geometry of Derivati... / Lecture 5: Finding vectors normal to level cur...

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

Previous

44:12:31

☐ Bookmark this page

⊞ Calculator

Hide Notes

Explore

Perpendicular vectors to parallel lines

Start of transcript. Skip to the end.

PROFESSOR: So any questions or comments?

Yeah.

STUDENT: What if we don't have a line that's exactly equal to 0?

PROFESSOR: OK.

Good.

So the question is, what if we don't have a line that's

exactly equal to 0?

In other words, instead of violus 1/2

0:00 / 0:00

▶ 2.0x X CC

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

66

What if the line is not equal to zero? For example, what if it was $x + \frac{1}{2}y = 1$?

POLL

Let l_0 be the line x+y/2=0 and let l_1 be the line x+y/2=1. /n What is the relationship between the lines $\it l_0$ and $\it l_1$?

RESULTS

They are parallel. 97%

2% They are perpendicular.

I do not know how to think about this yet 1%

Submit

Results gathered from 578 respondents.

FEEDBACK

Your response has been recorded

Reasoning

PROFESSOR: So how can we see that they're parallel?

Go back here where there actually was a picture of them.

All right.

OK, let me declutter this screen for a

OK, so what is this a picture of up here?

0:00 / 0:00

▶ 2.0x

X

CC 66

Video

Download video file

Transcripts

Download SubRip (.srt) file Download Text (.txt) file

⋄ More explanation, or a hint to the problem above

Because the lines l_0 and l_1 are parallel, the vector $\langle 1,1/2
angle$ will also be perpendicular to the line l_1 . In other words, the same procedure we used for an equation like x+1/2y=0 will also work for x+1/2y=1.

<u>Hide</u>

5. Parallel lines

Topic: Unit 2: Geometry of Derivatives / 5. Parallel lines

Hide Discussion

Add a Post

by recent activity > Show all posts parallel lines 2

Previous

Next >

© All Rights Reserved

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>