	Subject Name - Chemistry	
	Name - Shreerang Mhatre	
	Division - 11	
	Rollno-111056	
	Batch - K3	
-	Experiment No.1	
-		
	Estimation of total hardness of water	
2		
Sundaram	FOR EDUCATIONAL USE	

		VEC 00	Maria American de moderno de moderno de la companyo della companyo della companyo della companyo de la companyo della companyo
	*	Aim-	To estimate total hardness of water by EDTA
			method by double burette method
	*		-To determine the hardness of a water sample
			by complexometric titration method. Ethylene di
			amine tetra acetic acid (EDTA) is used as chelating agent. It forms complex with divalent
			cations such as cazt and Mgzt ions in
			stoichiometric amount and thus hardness can
			be determined as ppm of cacoz.
			auld of be is in - thing brett- usell
	*	Apparati	s: Burette, conical Flask, loom I volumetric
			Plask, Beaker, watch glass, Burette Stand etc.
	*	chemical	S: NazEDTA solution, 0.01M znsoy, Buffer Solution
			(pH=10), Hard water sample, Eriochrome Black-T [EBI] etc.
			DIGCK -1 ISO IJ ETC.
0			
,			
1			
Sundaram			FOR EDUCATIONAL USE

* Part B - standardization of MazEDTA solution by double burette method. observation table.

Burette 1 - NazEDTA solution (odM) approx

Burette 2- Znsoy solution (0.01M)

Indicator - Eriochrome

Mask Beatley, Water alone, Borelte Stond etc.

Black-TEndpoint - Winered to blue

mildle ratios, apens who o, not bloc Atosper identifica

		COVERD	and the second last	aldoby	15" -) in	11:
	*		andardization wette method		TA Solution	bydouble
		Reaction -	NazEDTA+Zx	n2+ ->[EDT	A(Zn2t)com	pex]2+ 2vat
		Burettel	Na ₂ EDTA	$\times_{l} =$	×2=	X3 =
		Burette 2	zn504	5ml	6m1	7m1
		calculation	ons! - Smov	60 N3 - 10	donibut	
		To calcu	late exact m	polarity of	EDTA LO.01	(M)
			M2XV2			
		EDTA =	2ns04			
		: M1X V1	=0.01x5			
		Mt	= 0.01x5/4	-9		
			= 0.0102M			
		M ₂	= 0.0103M			
		M3	= 0.0101 M			
			0	1 1 1 + 1 + 1		
		· Molarity	of EDTA = M	3	+N13	
	-			= 0.01M		
			1 ~~	STA 16 O G		
		· Exact r	nolanily of E	DIA 15 0.C)(/ <u>M</u>	
Sundaram			FO	R EDUCATIONAL US	E	

* Part C- To find out total hardness of given water sample.

· observation table:

Burette1 - NazEDTA solution (0.01 M)

Borette 2- Hard Water sample

Indicator - Eviochrome

Black-T Endpoint-Wine red to blue

MOLOVILY OF EDTA = MI THE + M

is a contained as East in contain

	*		imple.	total have	tness of giv	ren water	
		Equations Ca2t	tHIn2=	Calr		tor complex	
0		caln	(Blue)	(win	e Red) 2- + 1+1n ²		
			17212 -	Metal- com		ee Indicator (Blue)	
		Burette 1 Burette 2	NOVED TA Hourd Water sample	y1 = 5m1	γ ₂ = 6m)	γ ₃ = 7m1	
0		Calculation EDTA		(or Mg2+)	ions form	1:1 complex	
		Imole Thus 1000m		= 100g c = 100 g c = 100 mg	of caco3 of caco3	(2t) = Imole of Caco3	
Eundaram				FOR EDUCATION	DNAL USE		

	: Y, ml of M' NazEDTA = Y, xM' - A, mg (aloz
	$A_1 = 2.1 \times 0.01 = 2.1 \text{ mg}$
	H ₁ = 200 x 2·1 = 420 ppm
	:. Az= 2.6mg
	:. Itz = 167.33 x 2.6 = 435.06 ppm
0	: A3 = 3.1mg
	: H3 = 142.85 x 31 = 442.83 ppm
	Hardness of given sample = $\frac{1}{3} + \frac{1297.89}{3}$
	= 432:63 ppm of Ca(03
	Joes pp. 11 of Sag
	* Results:
	Exact molarity of EDTA solun. 15=0.0102M
	Total hardness of given sample of
	water = 432.63 ppm of caco3
	* conclusion -
	The total hardness of a given sample of
	water was astimated to be 432.63 ppm
	of Caco3 by EDTA method by double burette
	MOLLIOUP .
Sundaram	FOR EL UCATIONAL USE

		*	Questions -
Φ.	シ		Explain the significance of determination of hardness of water.
Ans	>		For determining suitability of water for domestic and industrial purpose type of hardness and determination of magnitude of hardness is important
Q.	2>		why is the end point of titration is wine red to blue?
Ans	>	2	In this titration EBT is used as an indicator It forms less stable wine red coloured complex with metal ions But when NazEDTA is added, metal indicator complex dissociates setting metal ions free.
0		9	They immediately form stable colourless complex with EDTA. As a result, solution appears blue. Appearance of blue colour is taken as end point of titration.
Q	3		why and how is the pit value adjusted to about 10?
Ans	>		The EDTA forms a stable complex in basic medium, thus the alkaline buffer of Mayor and NHyCl of pH-10 is used.
Sundara	· CE		FOR EDUCATIONAL USE

©.	4)		As per wito norms, what is the standard value of hardness for drinking water?
Ans	>		According to with hardness is in the range 10- sooms of caces per litre for drinking water.
0	5)		what is portable water, deionized water, saline water, brakish and mineral water?
Ans		2 3. 4	Portable water is fresh water that is sanitized and safe for drinking. Deionized water is water that has been treated to remove all ions and dissolved mineral salts. Soline water is water that contains a high concentration of dissolved salts. Brackish water is water occoning in natural environment having more salinity than freshwater but less than seawater. Mineral water is water from a mineral spoiling (spring) that contains various minerals such as salts and soffe sulfur compounds.
Sundaram	3		FOR EDUCATIONAL USE