Soluzioni prova scritta

Ingegneria Informatica 30/06/2025

Esercizio 1

Il primo quesito consiste in 2 domande a risposta aperta da 1 punto ciascuna. Per i quesiti 2, 3 e 4 ci si deve esprimere sulla **correttezza o falsità di 6 affermazioni**. Si ottengono 0, 1 e 2 punti in base al numero di risposte corrette, errori o risposte in bianco, secondo lo schema:

$$6 \text{ corrette} \rightarrow 2 \text{ punti}$$
 $5 \text{ corrette} + 1 \text{ errore} \rightarrow 1 \text{ punto}$
 $5 \text{ corrette} + 1 \text{ bianca} \rightarrow 1 \text{ punto}$
 $4 \text{ corrette} + 2 \text{ bianche} \rightarrow 1 \text{ punto}$
 $4 \text{ tutti gli altri casi} \rightarrow 0 \text{ punti}$

1. 2 Punti Sia $A \in \mathbb{C}^{3\times 3}$ la matrice

$$A = \begin{bmatrix} 2 & -5 + \mathbf{i} & -2 \\ -2 & -1 - \mathbf{i} & 2 - \mathbf{i} \\ 2 + 2\mathbf{i} & -3 & -\mathbf{i} \end{bmatrix}$$

e si indichino con $\mathcal{F}_i(A^H)$ i cerchi di Gershgorin della matrice trasposta coniugata.

Il centro di $\mathcal{F}_2(A^H)$ è $\boxed{-1+\mathbf{i}}$

Il raggio di $\mathcal{F}_3(A^H)$ è $2 + \sqrt{5}$

- 2. Punti Siano $A, B \in \mathbb{C}^{n \times n}$, tali che $B = S^{-1}AS$ per una qualche matrice invertibile S.
- $\overline{\mathbf{V}}$ F $A \in B$ hanno lo stesso determinante.
- $\overline{\mathbf{V}}$ F A e B hanno lo stesso raggio spettrale.
- $\overline{\mathbf{V}}$ $\overline{\mathbf{F}}$ $A \in B$ hanno lo stesso polinomio caratteristico.
- [V] **F** A e B hanno la stessa norma 2.
- V F Se A è a predominanza diagonale forte allora anche B è a predominanza diagonale forte.
- [V] F Se A è irriducibile allora anche B è irriducibile.
- N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi 2, 3 e 4.

3. Punti Data $f: \mathbb{R} \to \mathbb{R}$ si consideri il problema di approssimazione di f(x) nel senso dei minimi quadrati sui punti $(x_0, f(x_0)), \ldots, (x_k, f(x_k))$ con una funzione della forma

$$\psi(x) = c_0 \varphi_0(x) + \dots + c_m \varphi_m(x) = \sum_{j=0}^m c_j \varphi_j(x),$$

dove $\varphi_j(x)$ sono funzioni modello date e k > m.

- V F Esiste sempre almeno una soluzione ottima nel senso dei minimi quadrati.
- V F Quando esiste, la soluzione ottima è unica.
- V F Se $\psi(x)$ è soluzione ottima allora $\psi(x_j) = f(x_j)$ per almeno un punto x_j .
- V F Se $\psi(x) = \sum_{j=0}^{m} c_j \varphi_j(x)$ è soluzione ottima allora $c_j \neq 0$ per $j = 0, \ldots, m$.
- V F Se $\psi(x)$ è soluzione ottima allora $\psi(x)$ è un polinomio in x.
- $\overline{\mathbf{V}}$ F Se $\psi(x_j) = f(x_j)$ per $j = 0, \dots, k$ allora $\psi(x)$ è soluzione ottima.
- 4. 2 Punti Siano $x, y \in \mathbb{R}$ e $\tilde{x} = \text{RN}(x), \tilde{y} = \text{RN}(y)$ i corrispondenti numeri floating point in precisione doppia, ottenuti con il metodo di arrotondamento round-to-nearest. Inoltre si assume che gli arrotondamenti di x, y non abbiano generato overflow ed underflow. Da queste informazioni possiamo dedurre che:
- V F Tenere in memoria le due rappresentazioni di \tilde{x} ed \tilde{y} occupa 8 bytes.
- $| V | F | x \cdot \widetilde{x} \cdot y \cdot \widetilde{y} \ge 0.$
- $V F (x \widetilde{x})(y \widetilde{y}) \ge 0.$
- $\boxed{\mathbf{V}} \mathbf{F} \operatorname{RN}(x+y) = \operatorname{RN}(x) + \operatorname{RN}(y).$
- $\overline{\mathbf{V}} \ \overline{\mathbf{F}} \ \mathrm{RN}(\widetilde{x} + \widetilde{y}) = \mathrm{RN}(\mathrm{RN}(\widetilde{x}) + \mathrm{RN}(\widetilde{y})).$
- V F RN(x+y) = RN(y+x).

Esercizio 2

Nel k-esimo passo dell'algoritmo di eliminazione di Gauss senza pivoting (nell'immagine k=3):

$$(A^{(k)} \mid b^{(k)}) = \begin{pmatrix} * & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & 0 & A_{33}^{(k)} & * & * & * \\ 0 & 0 & A_{43}^{(k)} & * & * & * \\ 0 & 0 & A_{53}^{(k)} & * & * & * \\ 0 & 0 & A_{63}^{(k)} & * & * & * \end{pmatrix} \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ b_3^{(3)} \\ b_3^{(3)} \\ b_5^{(3)} \\ b_6^{(3)} \\ b_6^{(3)} \\ \end{bmatrix}$$

l'algoritmo modifica la matrice aumentata $A^{(k)}|b^{(k)}$ sommando alle sue righe da k+1 ad n multipli della riga k in modo che gli elementi in posizione $(k+1,k),(k+2,k),\ldots,(n,k)$ diventino zero. In particolare, alla riga i, con i>k, viene sommata la riga k moltiplicata per $-A^{(k)}_{ik}/A^{(k)}_{kk}$.

Dopo n-1 iterazioni il metodo di Gauss ha ridotto il sistema nella forma triangolare superiore Ux = c (ovvero $A^{(n-1)} = U$ e $b^{(n-1)} = c$).

8 Punti se si usano al più 2 for/while, 6 punti se si usano più di 2 cicli for/while

Si implementi, una funzione Matlab my_gauss che prende in ingresso

- una matrice quadrata $A \in \mathbb{C}^{n \times n}$,
- un vettore $b \in \mathbb{C}^n$,

e restituisce

- la matrice triangolare superiore U,
- il vettore c,

ottenuti dopo n-1 iterazioni del metodo di Gauss senza pivoting sul sistema lineare Ax=b.

Soluzione con 2 cicli for:

Esercizio 3

Si consideri l'equazione non lineare

$$e^{-x} - \sin(x) = 0.$$

- (i) 2 Punti Si determini il numero di soluzioni reali dell'equazione e si dimostri l'esistenza di un'unica soluzione α nell'intervallo $[0, \frac{\pi}{2}]$.
- (ii) 3 Punti Si proponga un metodo di punto fisso, ovvero una successione della forma $x_{k+1} = \phi(x_k)$, dove $\phi(x)$ verifica $\phi(\alpha) = \alpha$, che sia localmente convergente ad α .
- (iii) 3 Punti Si proponga un metodo di punto fisso, come nel punto precedente, che **non sia** localmente convergente ad α .
- (i) Ci sono infinite soluzioni in $[0, \infty)$; valutando la funzione in 0 ed $\frac{\pi}{2}$ si vede che c'è almeno una radice nell'intervallo, l'unicità segue dal fatto che e^{-x} decresce mentre $\sin(x)$ cresce in tale intervallo.
- (ii) Si può prendere ad esempio il metodo di Newton che in questo caso fornisce $\phi_1(x) = x + \frac{e^{-x} \sin(x)}{e^{-x} + \cos(x)}$.
- (iii) Si può far vedere che il metodo definito da $\phi_2(x) = -\log_e(\sin(x))$ non è localmente convergente ad α .

Esercizio 4

Si consideri la formula di quadratura

$$\int_{0}^{1} f(x)dx \approx \frac{1}{6}f(\alpha) + \frac{1}{3}f(\frac{1}{2} - \beta) + \frac{1}{3}f(\frac{1}{2} + \beta) + \frac{1}{6}f(1 - \alpha),$$

dipendente dai paramatri $\alpha, \beta \in \mathbb{R}$ appartenenti agli intervalli $\alpha \in [0, \frac{1}{2}]$ e $\beta \in [0, \frac{1}{2}]$.

- (i) 5 Punti Si discutano i possibili ordini di precisione della formula nel caso $\alpha = \beta$.
- (ii) 3 Punti Si discutano i possibili ordini di precisione della formula nel caso $\alpha = 0, \beta \in [0, \frac{1}{2}].$
- (i) Per $\alpha=0$ ed $\alpha=\frac{1}{3}$ si ha grado di precisione 3. Per gli altri α nell'intervallo si ha grado di precisione 1.
- (ii) Per $\beta=0$ si ha grado di precisione 3 (caso precedente $\alpha=\beta=0$), per $\beta\in(0,\frac{1}{2}]$ il grado di precisione è 1.