SPRAV	SPRAWOZDANIE Z LABORATORIUM MIERNICTWA ELEKTRONICZNEGO										
Numer ćwiczenia	Pomiar prądu stałego przyrządami analogowymi i cyfrowymi										
Numer grupy 2 Termin zajęć 13 kwietnia 2016											
S	kład gr	иру	Prowadzący Ocena								
Bartosz F	Rodziew	ricz, 226105									
Wojciech	Orman	iec, 226181	Mgr inż. Krzysztof Skorupski								
Sebastian	Kornie	wicz, 226183									

1. Cel ćwiczenia

Celem ćwiczenia jest poznanie:

- podstawowej wielkości elektrycznej natężenia prądu
- parametrów typowych amperomierzy prądu stałego oraz warunków poprawnej ich eksploatacji,
- metod obliczania i uwzględniania błędów pomiaru, wynikających ze zmiany wartości mierzonej wskutek włączania przyrządu pomiarowego,
- pośrednich metod pomiaru natężenia prądu.

2. Wstęp teoretyczny

Prąd stały w obwodach zachowuje się zgodnie z prawem Ohma. Wiąże ono ze sobą takie pojęcia fizyczne jak napięcie (U), natężenie (I) i rezystancję (R). Prawo to brzmi następująco: $R = \frac{U}{I}$.

$$X=rac{lpha}{lpha_{max}}*x_{zakr},$$
 gdzie X to wartość rzeczywista, $lpha$ to wskazanie wyświetlacza, $lpha_{max}$ to górna wartość przedziałki na wyświetlaczu, a x_{zakr} to górna granica zakresu.

Wzór nr 1

$$\Delta X = \frac{k*x_{zakr}}{100}$$
, gdzie ΔX to wartość błędu bezwzględnego, k to klasa urządzenia, a x_{zakr} to górna granica zakresu.

Wzór nr 2 – błąd bezwzględny w miernikach analogowych

$$\delta X = \frac{\Delta X}{X} * 100\%,$$

gdzie δX to błąd względny,
 ΔX to wartość błędu
bezwzględnego,
a X to wartość zmierzona.

Wzór nr 3 – błąd względny

3. Spis przyrządów

- Zasilacz DC {DG1730SB3A}
- Amperomierz analogowy LM-3 klasa 0.5
- Multimetr LG DM-441B
- Opornik wzorcowy RN-1 100Ω klasa 0.02
- Opornik dekadowy DR56-16 klasa 0.05

4. Przebieg ćwiczenia

- 1. Pomiar bezpośredni prądu w obwodach o różnej rezystancji
 - a. Pomiar amperomierzem analogowym LM-3

$$U = 2V$$

Rezystancja wewnętrzna amperomierza:

$$R_{w} = \frac{23}{I_{zakr}} + 0.004 \Omega \text{, gdzie I}_{zakr} \text{ to zakres}$$
 amperomierza w [mA].

	Ro	α	α_{max}	I _{zakr}	ı	R_{w}	ΔΙ	δι	I±ΔI
L.p.	Ω	dz	dz	mA	mA	Ω	mA	%	mA
1	10	51	75	300	204	0.081	1.5	0.74	204±1.5
2	100	52	75	30	20.8	0.771	0.15	0.72	20.8±0.15
3	1k	52	75	3	2.08	7.67	0.015	0.72	2.08±0.015

R_o – opór w obwodzie, I – napięcie zmierzone, R_w – opór wewnętrzny amper.

Przykładowe obliczenia:

$$I = \frac{51}{75} * 300 = 204, R_w = \frac{23}{300} + 0.004 = 0.08066(6) \approx 0.081,$$

$$\Delta I = \frac{0.5*300}{100} = 1.5, \delta I = \frac{1.5}{204} * 100 = 0.735294 \dots \approx 0.74$$

b. Pomiar amperomierzem cyfrowym DM-441B

$$U=2V$$

Błąd względny: $\Delta I = 0.5\% * I + 1 * \Delta r$

	Ro	ı	l _{zakr}	Δr	ΔΙ	δΙ	I±ΔI					
L.p.	Ω	mA	mA	mA	mA	%	mA					
1	10	199.8	2000	0.1	1.1	0.55	199.8±1.1					
2	100	20.29	200	0.01	0.12	0.59	20.29±0.12					
3	1k	2.037	20	0.001	0.012	0.59	2.037±0.012					
	Ar – rozdzialczość											

Przykładowe obliczenia:

$$\Delta I = 0.5\% * 199.8 + 1 * 0.1 = 1.099 \approx 1.1, \delta I = \frac{1.1}{199.8} * 100 = 0.55055 \dots \approx 0.55$$

c. Ocena wyników pomiarów

Wyniki wyszły dość bliskie sobie (dla odpowiadających wartości R_0), jednak można zauważyć, że wyniki podawane przez miernik analogowy są wyższe niż przez miernik cyfrowy. Jest to związane z oporem własnym mierników, co za chwilę wyeliminujemy. Widzimy również większe wartości błędów ΔI w przypadku miernika analogowego, co jest spowodowane jego mniejszą dokładnością.

d. Wyeliminowanie błędu systematycznego spowodowanego niezerową rezystancją amperomierza analogowego

	ı	ΔΙ	δΙ	Rw	Ro	ΔmI	ΔmI	I±ΔI	(I+Δ _m I)±ΔI			
L.p.	mA	mA	%	Ω	Ω	mA	%	mA	mA			
1	204	1.5	0.74	0.081	10	1.7	0.8	204±1.5	205.7±1.5			
2	20.8	0.15	0.72	0.771	100	0.16	0.8	20.8±0.15	20.96±0.15			
3	2.08	0.015	0.72	7.67	1k	0.016	0.76	2.08±0.015	2.096±0.015			
	Λ _m I – bezwzgledny bład metody. δ _m I – wzgledny bład metody											

Analiza sytuacji:

Zanim wpięliśmy do obwodu amperomierz prąd płynący w nim wynosił $I_{\chi} = \frac{U}{Ro}$ Po wpięciu amperomierza z niezerowym oporem wynosi on jednak $I = \frac{U}{R_O + R_W}$

Z tego wynika, że
$$\Delta_m I = I_X - I \xrightarrow{po \ przekształceniach} \Delta_m I = I * \frac{R_W}{R_O}$$
.

Błąd względny natomiast wynosi: $\delta_m I = \frac{\Delta_m I}{I_v} * 100 = \frac{R_w}{R_w + R_O} * 100$

Przykładowe obliczenia:

$$\Delta_m I = 204 * \frac{0.081}{10} = 1.6524 \approx 1.7, \, \delta_m I = \frac{0.081}{0.081 + 10} * 100 \approx 0.8$$

e. Wyeliminowanie błędu systematycznego w przypadku miernika cyfrowego Dla miernika cyfrowego nie znalazłem informacji wprost jak wyliczyć rezystancję wewnętrzną miernika, jednak w instrukcji podana była inna metoda na wyeliminowanie błędu systematycznego.

 $\Delta U = rac{I}{I_{Zakr}} * \Delta U_{max}$, gdzie ΔU to spadek napięcia na mierniku, I to zmierzona wartość natężenia, I_{zakr} to zakres pracy miernika, a ΔU_{max} to maksymalna wartość spadku napięcia dla konkretnego zakresu odczytana z tabelki poniżej.

l _{zakr}	ΔU_{max}
2mA – 200mA	0.3V
2000mA - 20A	0.9V

Teraz mając ΔU wzory na $\Delta_m I$ i $\delta_m I$ są następujące:

$$\Delta_m I = \frac{\Delta U * I}{U - \Delta U}, \, \delta_m I = \frac{\Delta U}{U - \Delta U} * 100$$

	I	ΔΙ	δΙ	I _{zakr}	U	Δ _m I	$\delta_{m}I$	I±ΔI	(I+Δ _m I)±ΔI			
L.p.	mA	mA	%	mA	٧	mA	%	mA	mA			
1	199.8	1.1	0.55	2000	2	9.4	4.71	199.8±1.1	209.2±1.1			
2	20.29	0.12	0.59	200	2	0.32	1.6	20.29±0.12	20.61±0.12			
3	2.037	0.012	0.59	20	2	0.032	1.6	2.037±0.012	2.069±0.012			
	U – napiecie na zasilaczu											

Przykładowe obliczenia:

Przykładowe obliczenia:
$$\Delta U = \frac{^{199.8}}{^{2000}}*~0.9 = 0.08991, \\ \Delta_m I = \frac{^{0.08991*199.8}}{^{2-0.08991}} = 9.4048 \dots \approx 9.4, \\ \delta_m I = \frac{^{0.08991}}{^{1.91009}}*~100 = 4.7071 \dots \approx 4.71$$

f. Ocena poprawionych wyników

Wyniki wydają się być spójne, a lekkie rozbieżności wynikają z niedokładności miernika analogowego

Poprawka znaczący wpływ na wynik miała w przypadku miernika cyfrowego przy pomiarze na zakresie 2A. W innych przypadkach poprawka była bardzo mała.

- 2. Pośredni pomiar natężenia poprzez spadek napięcia na znanej rezystancji
 - a. Pomiar za pomocą miernika cyfrowego

$$R_w = 100\Omega$$

$$U = 2V$$

 $U_{zakr} = 20V$ (Wykonaliśmy pomiary na złym zakresie, powinniśmy użyć zakresu 2V) Błąd pomiaru: $\Delta U = 0.1\% * U + 4 * \Delta r$

Jest to pomiar pośredni, więc trzeba

wykorzystać zależność z prawa Ohma $I=rac{U}{R_N}$

Wartość ΔI wyliczymy korzystając z różniczki logarytmicznej $\delta I = \delta U + \delta R_n$, a $\Delta I = \delta I * I$

	U	ΔU	δU	Rn		ΔR_n	δ	Rn	Ro	ı	ΔΙ
L.p.	٧	٧	%	Ω		Ω		%	α	mA	mA
1	1.599	0.006	0.37	100	0.02		0.	02	10	15.99	0.07
2	1.011	0.006	0.59	100)	0.02	0.	02	100	10.11	0.07
3	0.167	0.005	2.99	100	0.02		0.	02	1k	1.67	0.05
δΙ	$\Delta_{m}I$	δ_m I	I±Δ	ΔI (I+p)±		(I+p)±∆	I				
%	Α	%	Α			Α					
0.39	159.9	90.9	15.99±0	0.07	1	75.89±0.	07				
0.61	10.11	50	10.11±0	0.07	.07 20.22±0.07		07				
3.01	0.167	9.09	1.67±0	.05 1.837±0.050							
	U – zr	nierzone	e napięci	e, R _n	– (opór na c	por	niku	wzor	cowym	

Przykładowe obliczenia:

$$\Delta U = 0.1\% * 1.599 + 0.004 = 0.005599 \approx 0.006, I = \frac{1.599}{100} = 0.01599A = 15.99mA, \delta I = 0.02 + 0.37 = 0.39\%, \Delta I = 0.0039 * 15.99 = 0.062361 \approx 0.07, \Delta_m I = 15.99 * \frac{100}{10} = 159.9, \delta_m I = \frac{100}{110} * 100$$

b. Analiza wyników

Wyniki wydają się być spójne i logiczne. Zgadzają się również z wynikami uzyskanymi w pkt. 1.

- 3. Pomiar prądu płynącego w wybranej gałęzi obwodu elektrycznego
 - a. Pomiar bezpośredni

$$R_1 - 511R \rightarrow R = 511\Omega$$

$$R_2 - 4K87 \rightarrow R = 4.87k\Omega$$

Do pomiarów wykorzystaliśmy zbyt duże zakresy co spowodowało wzrośnięcie błędu pomiarowego

	1	I_{zakr}	Δr	ΔΙ	δΙ	I±ΔI
L.p.	mA	mA	mA	mA	%	mA
1	0.357	20	0.001	0.003	0.84	0.357±0.003
2	0.12	200	0.01	0.01	8.33	0.12±0.01
3	0.3732	2	0.0001	0.0020	0.54	0.3732±0.002

b. Pomiar pośredni

$$R_1 - 511R \rightarrow R = 511\Omega$$

$$R_2 - 4K87 \rightarrow R = 4.87 k\Omega$$

	U	ΔU	δU	Rn	δR_n	- 1	ΔΙ	δΙ	I±ΔI
L.p.	mV	mV	%	Ω	%	mA	mA	%	Α
1	170	4	2.35	511	1	0.333	0.011	3.35	0.333±0.011
2	160	40	25	4870	1	0.033	0.009	26	0.033±0.009
3	195.3	0.6	0.3	511	1	0.382	0.005	1.3	0.382±0.005

c. Analiza wyników

Wyniki wyszły w miarę spójnie, jednak pomiar 2 został zepsuty poprzez źle dobrany zakres.

5. Wnioski

- o Mierniki analogowe są wyjątkowo niedokładne
- o Rezystancja amperomierza dość mocno wpływa na wynik pomiaru
- Zakres pomiarowy należy dobierać jak najmniejszy oby tylko wynik go nie przekroczył.
- o Pomiary pośrednie są mniej dokładne.