MAS350: Assignment 1

1. Recall that the Borel σ -field $\mathcal{B}(\mathbb{R})$ is the smallest σ -field on \mathbb{R} containing all open intervals (a,b) with $-\infty < a < b < \infty$. Define

$$A = \bigcup_{n=1}^{N} [a_n, b_n]$$

where $a_1 \le b_1 < a_2 \le b_2 < a_3 \le b_3 < \dots$ are real numbers.

- (a) Prove, starting from the definition given above, that $A \in \mathcal{B}(\mathbb{R})$.
- (b) Write down a formula for the Lebesgue measure of A, in terms of the a_i and b_i . Is your formula valid if $N = \infty$?
- (c) Consider the following claims.
 - (i) The Borel σ -field is an infinite set.
 - (ii) The Borel σ -field contains an infinite number of infinite sets.
 - (iii) All countable sets are Borel sets with zero Lebesgue measure.
 - (iv) All Borel sets with positive Lebesgue measure contain at least one open interval.
 - (v) The Cantor set is a Borel set.
 - (vi) The Cantor set has Lebesgue measure zero.

In each case (i)-(vi), state whether you believe the claim to be true or false. For claims that you believe are true, give a proof. For claims that you believe are false, give a counterexample. Use parts (a) and (b) to support your arguments.

2. Let $\mathcal{B}(\mathbb{R})$ denote the Borel σ -field on \mathbb{R} . This question concerns examples of decreasing sequences of Borel sets (B_n) and measures m on $\mathcal{B}(\mathbb{R})$ such that

$$m\left(\bigcap_{n=1}^{\infty} B_n\right) \neq \lim_{N \to \infty} m\left(\bigcap_{n=1}^{N} B_n\right).$$

- (a) Let λ denote Lebesgue measure on \mathbb{R} . Taking $m = \lambda$, show that $B_n = (-\infty, -n]$ is an example of this type.
- (b) Find a second example, with the additional property that $\bigcap_{n=1}^{\infty} B_n$ is non-empty.
- (c) Find a third example, with the additional property that B_1 is countable.
- 3. In each of the following cases, show that the given function is measurable, from $\mathbb{R} \to \mathbb{R}$ with the Borel σ -field. State clearly any results from lectures that you make use of.

1

(a) $f(x) = \cos x$

(b)
$$g(x) = \begin{cases} 0 & \text{for } x < 0 \\ x + 1 & \text{for } x \ge 0. \end{cases}$$

(c)
$$h(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^n \cos(x)}{n!}$$

(d) $i(x) = \lfloor x \rfloor$ (i.e. x rounded down to the nearest integer)