# Applied matrix algebra for Multivariate Analysis

#### Jan Graffelman<sup>1</sup>

<sup>1</sup>Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain



jan.graffelman@upc.edu

February 8, 2020

#### Contents

- 1 Vectors & Matrices
- 2 Decompositions
- Quadratic forms
- Basic matrices in multivariate analysis
- Example
- 6 Multivariate graphics

Vectors & Matrices

•0000000000000

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\alpha \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix},$$

$$\mathbf{x}' = [x_1, x_2, \dots, x_n]$$

$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

### Geometric interpretation





#### Vectors

Vectors & Matrices

#### Norm or length

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}'\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

$$\|\alpha \mathbf{x}\| = \alpha \|\mathbf{x}\|$$

#### Scalar product:

$$\mathbf{x}'\mathbf{y} = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

$$\mathbf{x}'\mathbf{y} = \mathbf{0} \leftrightarrow \mathbf{x}$$
 and  $\mathbf{y}$  perpendicular .

Angle:

$$\cos \theta = \frac{\mathbf{x}'\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$$

# Linear combination, linear (in)dependence

Linear combination of n vectors

$$\mathbf{y} = a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \cdots + a_n\mathbf{x}_n$$

To investigate linear dependence:

$$a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_n\mathbf{x}_n = \mathbf{0} \tag{1}$$

- The set of vectors  $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n$  is linearly dependent iff Eq. (1) holds for some set  $(a_1, a_2, \ldots, a_n)$  not all zero.
- The set of vectors  $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_n$  is linearly independent iff Eq. (1) holds only for  $(a_1, a_2, ..., a_n) = (0, 0, ..., 0)$ .

## Projection



$$\cos\theta = \frac{\parallel \mathbf{p} \parallel}{\parallel \mathbf{x} \parallel}, \quad \parallel \mathbf{p} \parallel = \frac{\mathbf{x}'\mathbf{y}}{\parallel \mathbf{y} \parallel}, \quad \mathbf{p} = \alpha\mathbf{y}, \quad \alpha = \frac{\parallel \mathbf{p} \parallel}{\parallel \mathbf{y} \parallel} \rightarrow \mathbf{p} = \left(\frac{\mathbf{x}'\mathbf{y}}{\mathbf{y}'\mathbf{y}}\right)\mathbf{y}$$

#### Matrix

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

## Basic matrix operations

sum

Vectors & Matrices

0000000000000

$$C_{n\times p} = A_{n\times p} + B_{n\times p}$$
  $c_{ij} = a_{ij} + b_{ij}$ 

scalar multiplication

$$\mathbf{C} = \alpha \mathbf{A}_{n \times p}$$
  $c_{ij} = \alpha a_{ij}$ 

product

$$\mathbf{C}_{n \times p} = \mathbf{A}_{n \times k} \mathbf{B}_{k \times p}$$
  $c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$ 

transposition

$$C = A'$$
  $c_{ij} = a_{ji}$   $E = AB$   $E' = (AB)' = B'A'$ 

inversion

$$A_{k \times k}$$
  $AB = BA = I$   $B_{k \times k} = A^{-1}$ 

Vectors & Matrices

00000000000000

# Some particular cases of matrix multiplication

$$\bullet \ \mathsf{A}_{p\times k}\mathsf{B}_{k\times l}=\mathsf{C}_{p\times l}$$

$$\bullet \ \mathsf{A}_{p\times k}\mathsf{x}_{k\times 1}=\mathsf{y}_{p\times 1}$$

$$\bullet \ \mathbf{x}'_{1\times p}\mathbf{A}_{p\times k}=\mathbf{y}'_{1\times k}$$

$$\bullet \ \mathbf{X}_{n \times p} \mathbf{D}_{p \times p} = \left[ \ \mathbf{x}_1 d_1 \ \middle| \ \mathbf{x}_2 d_2 \ \middle| \cdots \ \middle| \ \mathbf{x}_p d_p \ \right]$$

$$\bullet \ \mathbf{D}_{n\times n} \mathbf{X}_{n\times p} = \begin{bmatrix} \frac{d_1 \mathbf{x}_1}{d_2 \mathbf{x}_2} \\ \vdots \\ d_n \mathbf{x}_n \end{bmatrix}$$

## Some special matrices

Vectors & Matrices

0000000000000

$$\mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$\mathbf{J} = \left| \begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right|$$

$$\mathbf{I}_n = \left[ \begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right] \qquad \mathbf{O} = \left[ \begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right]$$

$$\mathbf{J} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

# Symmetric and Orthogonal Matrices

• Symmetric matrix:  $\mathbf{A} = \mathbf{A}'$ 

$$\left[\begin{array}{ccc} a & b & c \\ b & d & e \\ c & e & f \end{array}\right]$$

Orthogonal (orthonormal) matrix:

$$\mathbf{A}\mathbf{A}' = \mathbf{A}'\mathbf{A} = \mathbf{I} \qquad \mathbf{A}' = \mathbf{A}^{-1}$$

Vectors & Matrices

0000000000000

#### Determinant

#### Matrix property

$$|\mathbf{A}_{k \times k}| = \sum_{j=1}^{k} a_{ij} |\mathbf{A}_{ij}| (-1)^{i+j}$$

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad |\mathbf{A}| = ad - bc$$

k > 2: by computer.

 $|\mathbf{A}| = 0$  implies linear dependence, and  $\mathbf{A}$  is singular.

#### Inverse

Vectors & Matrices

00000000000000

$$A_{k\times k}$$
  $AB = BA = I$   $B_{k\times k} = A^{-1}$ 

Case  $2 \times 2$ 

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If k > 2 then use a computer.

$$\mathbf{D} = \left[ \begin{array}{cccc} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{array} \right]$$

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \qquad \mathbf{D}^{-1} = \begin{bmatrix} 1/d_1 & 0 & \cdots & 0 \\ 0 & 1/d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/d_n \end{bmatrix}$$

#### Rank

- Row rank = maximum number of linearly independent rows.
- Column rank = maximum number of linearly independent columns.
- "The" rank = row rank = column rank.
- A rank k matrix can be represented exactly in a k dimensional space.

#### Trace

$$\mathbf{A}_{k \times k}$$
  $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{k} a_{ii}$ 

- $tr(\alpha \mathbf{A}) = \alpha tr(\mathbf{A})$
- $ullet \operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}) \qquad \operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{CAB}) = \operatorname{tr}(\mathbf{BCA})$
- $\operatorname{tr}(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}^2$

## Eigenvalues & eigenvectors

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \qquad \mathbf{A}_{k\times k}$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

The characteristic equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

- There are k roots, not necessarily all distinct.
- If  $\mathbf{A} = \mathbf{A}'$ , all roots are real.
- Each root (eigenvalue) has an associated eigenvector.
- $\mathbf{v}$  usually scaled (normalized) to unit length such that  $\mathbf{v}'\mathbf{v} = 1$ .

## Spectral decomposition

$$\mathbf{A}_{k \times k}$$
 and  $\mathbf{A} = \mathbf{A}'$ 

$$\mathbf{A} = \sum_{i=1}^{k} \lambda_i \mathbf{v}_i \mathbf{v}_i' = \lambda_1 \mathbf{v}_1 \mathbf{v}_1' + \lambda_2 \mathbf{v}_2 \mathbf{v}_2' + \dots + \lambda_k \mathbf{v}_k \mathbf{v}_k'$$

$$\mathbf{A} = \mathbf{V} \mathbf{D}_{\lambda} \mathbf{V}'$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \end{bmatrix}, \quad \mathbf{D}_{\lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix}, \quad \mathbf{V}'\mathbf{V} = \mathbf{I}.$$

- Eigenvalues usually ordered s.t.  $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_k$
- If A is not of full rank, there will be zero eigenvalues.
- $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{V}\mathbf{D}_{\lambda}\mathbf{V}') = \operatorname{tr}(\mathbf{V}'\mathbf{V}\mathbf{D}_{\lambda}) = \operatorname{tr}(\mathbf{I}\mathbf{D}_{\lambda}) = \operatorname{tr}(\mathbf{D}_{\lambda}) = \sum_{i=1}^{k} \lambda_{i}$ .
- $\lambda_1 \mathbf{v}_1 \mathbf{v}_1' + \lambda_2 \mathbf{v}_2 \mathbf{v}_2'$  provides a rank 2 least squares approximation to a **A**.

#### Exercise

Vectors & Matrices

We have a matrix

$$\mathbf{S} = \left[ \begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$$

Find the eigenvalues and eigenvectors by hand and by using R.

```
> S <- matrix(c(2,1,1,1),ncol=2)
> S
     [,1] [,2]
[1,]
Γ2.1
        1
> out <- eigen(S)
> V <- out$vectors
> V
           Γ.17
                      Γ.27
[1,] -0.8506508 0.5257311
[2,] -0.5257311 -0.8506508
> D <- diag(out$values)
> D
         [,1]
                  [,2]
[1,] 2.618034 0.000000
[2,] 0.000000 0.381966
> V%*%D%*%t(V)
     [.1] [.2]
[1.]
[2,]
```

### A data matrix

|    | Husband age | Husband height | Wife age | Wife height |
|----|-------------|----------------|----------|-------------|
| 1  | 49          | 1809           | 43       | 1590        |
| 2  | 25          | 1841           | 28       | 1560        |
| 3  | 40          | 1659           | 30       | 1620        |
| 4  | 52          | 1779           | 57       | 1540        |
| 5  | 58          | 1616           | 52       | 1420        |
| 6  | 32          | 1695           | 27       | 1660        |
| 7  | 43          | 1730           | 52       | 1610        |
| 8  | 47          | 1740           | 43       | 1580        |
| 9  | 31          | 1685           | 23       | 1610        |
| 10 | 26          | 1735           | 25       | 1590        |

Age and height of husband and wife for 10 couples

## The problem

- The data matrix **X** is  $10 \times 4$ , and of rank 4.
- Can we approximate X by a rank 2 matrix, say X̂
- Entries of X must be as "close" as possible to X
- Note: a rank 2 matrix can be represented in a two-dimensional graph.

### The Solution

$$\mathbf{X} = \begin{bmatrix} 49 & 1809 & 43 & 1590 \\ 25 & 1841 & 28 & 1560 \\ 40 & 1659 & 30 & 1620 \\ 52 & 1779 & 57 & 1540 \\ 58 & 1616 & 52 & 1420 \\ 32 & 1695 & 27 & 1660 \\ 43 & 1730 & 52 & 1610 \\ 47 & 1740 & 43 & 1580 \\ 31 & 1685 & 23 & 1610 \\ 26 & 1735 & 25 & 1590 \end{bmatrix}$$

$$\hat{\mathbf{X}} = \begin{bmatrix} 43.94 & 1809.21 & 43.72 & 1589.89 \\ 46.36 & 1838.22 & 48.00 & 1562.03 \\ 35.09 & 1659.32 & 29.27 & 1619.79 \\ 44.07 & 1780.44 & 44.75 & 1538.92 \\ 39.40 & 1618.03 & 39.32 & 1418.55 \\ 35.64 & 1694.60 & 29.49 & 1660.28 \\ 39.24 & 1731.53 & 36.00 & 1608.81 \\ 40.67 & 1740.69 & 38.73 & 1579.51 \\ 36.67 & 1683.96 & 31.92 & 1610.78 \\ 39.90 & 1733.25 & 37.32 & 1591.27 \end{bmatrix}$$

## Least squares criterion

- In linear regression, we estimate the model  $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$  by minimizing  $\sum e_i^2$ , where  $e_i = y_i (b_0 + b_1 x_i)$ .
- In this matrix approximation we minimize the errors in  $\mathbf{E} = \mathbf{X} \mathbf{\hat{X}}$ .
- The least squares criterion amounts to  $\sum_{i=1}^{n} \sum_{j=1}^{p} e_{ij}^2 = \operatorname{tr}(\mathbf{E}'\mathbf{E})$ .

# Singular value decomposition (compact)

Any real matrix  $n \times p$  matrix **X** can be decomposed as

$$X = UDV'$$

- **U**  $n \times r$  matrix of orthonormal left singular vectors.  $\mathbf{U}'\mathbf{U} = \mathbf{I}_r$
- **D**  $r \times r$  diagonal matrix of non-increasing positive singular values  $(d_{11} \ge d_{22} \ge \cdots \ge d_{rr})$ .
- $\mathbf{V} p \times r$  matrix of orthonormal right singular vectors.  $\mathbf{V}'\mathbf{V} = \mathbf{I}_r$

Alternatively

$$\mathbf{X} = \sum_{i=1}^r d_{ii}\mathbf{u}_i\mathbf{v}_i' = d_1\mathbf{u}_1\mathbf{v}_1' + d_2\mathbf{u}_2\mathbf{v}_2' + \cdots + d_r\mathbf{u}_r\mathbf{v}_r'$$

# Singular value decompostion (theorem)

A rank k approximation  $\hat{\mathbf{X}}$  to matrix  $\mathbf{X}$ , optimal in the least squares sense, is obtained as

$$\mathbf{\hat{X}} = \mathbf{U}_{[,1:k]} \mathbf{D}_{[1:k,1:k]} \mathbf{V}_{[,1:k]}'$$

E.g., a rank 2 approximation to matrix **X** is obtained by  $\mathbf{U}_{n\times 2}\mathbf{D}_{(2\times 2)}\mathbf{V}_{p\times 2}{}'$ 

- $X'X = VDU'UDV' = VD^2V'$
- $XX' = UDV'VDU' = UD^2U'$
- Eigenvalues of XX' and X'X are squared singular values.
- Singular vectors are eigenvectors, U of XX' and V of X'X.

# Singular value decomposition (extended)

Sometimes the svd is also written as

$$X = UDV'$$

- **U**  $n \times p$  matrix of orthonormal left singular vectors.  $\mathbf{U}'\mathbf{U} = \mathbf{I}_p$
- **D**  $p \times p$  diagonal matrix of non-increasing singular values.
- ullet  $oldsymbol{\mathsf{V}}$  p imes p matrix of orthonormal right singular vectors.  $oldsymbol{\mathsf{V}}' oldsymbol{\mathsf{V}} = oldsymbol{\mathsf{I}}_p$

where matrix **D** now has trailing zeros on the diagonal.

# Singular value decomposition in R

Decompositions

```
X <- read.table("c:/data/HusbandsAndWives.dat")</pre>
X <- read.table("http://www-eio.upc.edu/~jan/data/MVA/HusbandsAndWives.dat")</pre>
X <- as.matrix(X)
X \leftarrow X[,1:4]
syd_results <- syd(X)
U <- svd.results$u
V <- svd.results$v
D <- diag(svd.results$d)
print(U)
print(V)
print(D)
U2 <- U[.1:2]
V2 \leftarrow V[,1:2]
D2 <- D[1:2,1:2]
Xhat <- U2\%*\%D2\%*\%t(V2)
print(Xhat)
```

### Goodness-of-fit

- How good (or bad) is our approximation to X?
- Some statistic expressing goodness of fit is needed (like  $\mathbb{R}^2$  in regression)
- The singular values are informative about the goodness-of-fit

Note that

Vectors & Matrices

$$\operatorname{tr}(\mathbf{X}'\mathbf{X}) = \operatorname{tr}(\mathbf{V}\mathbf{D}\mathbf{U}'\mathbf{U}\mathbf{D}\mathbf{V}') = \operatorname{tr}(\mathbf{V}\mathbf{D}^2\mathbf{V}') = \operatorname{tr}(\mathbf{V}'\mathbf{V}\mathbf{D}^2) = \operatorname{tr}(\mathbf{D}^2) = \sum_{j=1}^p d_{ij}^2 = \sum_{j=1}^p \lambda_j$$

And that for a rank 2 approximation

$$\begin{split} \operatorname{tr}(\hat{\boldsymbol{X}}'\hat{\boldsymbol{X}}) &= \operatorname{tr}(\boldsymbol{V}_{[,1:2]}\boldsymbol{D}_{[1:2,1:2]}\boldsymbol{U}_{[,1:2]}'\boldsymbol{J}_{[,1:2]}\boldsymbol{D}_{[1:2,1:2]}\boldsymbol{V}_{[,1:2]}') = \operatorname{tr}(\boldsymbol{V}_{[,1:2]}\boldsymbol{D}_{[1:2,1:2]}^2\boldsymbol{V}_{[,1:2]}') = \operatorname{tr}(\boldsymbol{V}_{[,1:2]}'\boldsymbol{V}_{[,1:2]}'\boldsymbol{J}_{[1:2,1:2]}') \\ &= \operatorname{tr}(\boldsymbol{D}_{[1:2,1:2]}^2) = d_{11}^2 + d_{22}^2 = \lambda_1 + \lambda_2 \end{split}$$

And that for the error matrix

$$\mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}((\mathbf{X} - \mathbf{\hat{X}})'(\mathbf{X} - \mathbf{\hat{X}})) = \mathsf{tr}(\mathbf{V}_{[,3:\rho]}\mathbf{D}^2_{[3:\rho,3:\rho]}\mathbf{V}'_{[,3:\rho]}) = \lambda_3 + \lambda_4 + \cdots \\ \lambda_{\rho} = \lambda_{\rho} + \lambda_{\rho} +$$

And a natural measure for goodness-of-fit is

$$\frac{\operatorname{tr}(\hat{\mathbf{X}}'\hat{\mathbf{X}})}{\operatorname{tr}(\mathbf{X}'\mathbf{X})} = \frac{\lambda_1 + \lambda_2}{\sum_{j=1}^{p} \lambda_j}$$

Similar to the total, explained and residual sum-of-squares in regression.

## Weighted singular value decomposition

- On occasions we may wish to use weights for cases (rows,  $r_i$ ) and/or variables (columns,  $c_j$ )
- We normally minimize  $\sum_{i=1}^{n} \sum_{j=1}^{p} e_{ij}^2 = \operatorname{tr}(\mathbf{E}'\mathbf{E})$
- Define  $D_r$  with weights for the rows  $D_c$  with weights for the columns.
- We now wish to minimize  $\sum_{i=1}^{n} \sum_{j=1}^{p} r_i c_j e_{ij}^2 = \operatorname{tr}(\mathbf{D}_c \mathbf{E}' \mathbf{D}_r \mathbf{E})$
- $\bullet \quad \text{Note that } \textstyle \sum_{i=1}^n \sum_{j=1}^p r_i c_j e_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^p \left( \sqrt{r_i} \sqrt{c_j} e_{ij} \right)^2 = \sum_{i=1}^n \sum_{j=1}^p \tilde{e}_{ij}^2$
- $\bullet \quad \textstyle \sum_{i=1}^n \sum_{j=1}^p \tilde{e}_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^p \left( \sqrt{r_i} \sqrt{c_j} x_{ij} \sqrt{r_i} \sqrt{c_j} \hat{x}_{ij} \right)^2$
- Osolution obtained by transforming the data prior to the svd, and backtransforming afterwards

$$\mathbf{X}_t = \mathbf{D}_r^{\frac{1}{2}} \mathbf{X} \mathbf{D}_c^{\frac{1}{2}} = \mathbf{U} \mathbf{D} \mathbf{V}'$$

Now compute  $\tilde{\mathbf{U}}=\mathbf{D}_r^{-\frac{1}{2}}\mathbf{U}$  and  $\tilde{\mathbf{V}}=\mathbf{D}_c^{-\frac{1}{2}}\mathbf{V}$ 

- Note that  $\tilde{\mathbf{U}}\mathbf{D}\tilde{\mathbf{V}}' = \mathbf{D}_{r}^{-\frac{1}{2}}\mathbf{U}\mathbf{D}\mathbf{V}'\mathbf{D}_{c}^{-\frac{1}{2}} = \mathbf{D}_{r}^{-\frac{1}{2}}\mathbf{D}_{r}^{\frac{1}{2}}\mathbf{X}\mathbf{D}_{c}^{\frac{1}{2}}\mathbf{D}_{c}^{-\frac{1}{2}} = \mathbf{X}$
- $ilde{\mathbf{U}}_{[,1:k]}\mathbf{D}_{[1:k,1:k]}\tilde{\mathbf{V}}'_{[,1:k]}$  is a rank k approximation to  $\mathbf{X}$  in the weighted least squares sense.

Vectors & Matrices

# $4x_1^2 + 5x_2^2 + 3x_3^2 + 2x_1x_2 + 4x_1x_3 + x_2x_3 = \mathbf{x}'\mathbf{A}\mathbf{x}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 5 & \frac{1}{2} \\ 2 & \frac{1}{2} & 3 \end{bmatrix}$$

In general

$$\sum_{i=1}^k \sum_{j=1}^k a_{ij} x_i x_j = \mathbf{x}' \mathbf{A} \mathbf{x}$$

- A positive definite x'Ax > 0 for all  $x \neq 0$
- A positive semi-definite  $\mathbf{x}'\mathbf{A}\mathbf{x} \geq 0$  for all  $\mathbf{x} \neq \mathbf{0}$
- A negative definite x'Ax < 0 for all  $x \neq 0$
- A negative semi-definite x'Ax < 0 for all  $x \neq 0$
- A indefinite

# Quadratic forms and eigenvalues

- A positive definite  $\leftrightarrow$  all  $\lambda_i > 0$
- **A** positive semi-definite  $\leftrightarrow$  all  $\lambda_i \geq 0$
- A negative definite  $\leftrightarrow$  all  $\lambda_i < 0$
- A negative semi-definite  $\leftrightarrow$  all  $\lambda_i \leq 0$
- A indefinite

## Quadratic forms and distance



- $\| \mathbf{x} \|^2 = \mathbf{x}' \mathbf{x} = x_1^2 + x_2^2 = \mathbf{x}' \mathbf{A} \mathbf{x}$  with  $\mathbf{A} = \mathbf{I}$
- x'Ax is squared Euclidean distance from the origin.
- (x y)'A(x y) is squared Euclidean distance from x to y.

## Quadratic forms and distance



Account for difference in variability: 
$$\tilde{\mathbf{x}} = \mathbf{D}^{-1}\mathbf{x}$$
  $\mathbf{D} = \begin{bmatrix} s_1 & 0 \\ 0 & s_2 \end{bmatrix}$ 

$$\bullet \quad \|\,\tilde{\mathbf{x}}\,\|^2 = \tilde{\mathbf{x}}'\,\tilde{\mathbf{x}} = \left(\frac{x_1}{s_1}\right)^2 + \left(\frac{x_2}{s_2}\right)^2 = \mathbf{x}'\,\mathbf{A}\mathbf{x} \text{ with } \mathbf{A} = \mathbf{D}^{-2} = \begin{bmatrix} & \frac{1}{2} & 0 \\ & s_1^2 & \\ & 0 & \frac{1}{s_2^2} \end{bmatrix}$$

- x'Ax is squared Weighted Euclidean distance from the origin.
- (x y)'A(x y) is squared Weighted Euclidean distance from x to y.

## Working with sample data matrices

- Data matrix  $\mathbf{X}_{n \times p}$
- Sample mean vector  $\mathbf{m}_{p\times 1} = (\frac{1}{n}\mathbf{1}'\mathbf{X})'$
- Centered data matrix

$$X_c = X - 1_{n \times 1} m' = X - \frac{1}{n} 11' X = (I - \frac{1}{n} 11') X$$

- Centring matrix  $\mathbf{H} = \mathbf{I} \frac{1}{n}\mathbf{1}\mathbf{1}'$   $\mathbf{X}_c = \mathbf{H}\mathbf{X}$
- Standardized data matrix

$$\mathbf{X}_s = \mathbf{X}_c \mathbf{D}_s^{-1}$$
  $\mathbf{D}_s = diag(s_1, s_2, \dots, s_p)$   $\mathbf{X}_s = \mathbf{H} \mathbf{X} \mathbf{D}_s^{-1}$ 

- Sample covariance matrix  $\mathbf{S} = \frac{1}{n-1} \mathbf{X}_c' \mathbf{X}_c$
- Sample correlation matrix  $\mathbf{R} = \mathbf{D}_s^{-1} \mathbf{S} \mathbf{D}_s^{-1} = \frac{1}{n-1} \mathbf{X}_s' \mathbf{X}_s$

## Sample covariance matrix

$$\mathbf{S}_{n-1} = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{bmatrix} = \frac{1}{n-1} \mathbf{X}_c' \mathbf{X}_c$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{m}) (\mathbf{x}_i - \mathbf{m})'$$

$$\mathbf{S}_n = \frac{n-1}{n} \mathbf{S}_{n-1}$$

## Sample correlation matrix

$$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{bmatrix} = \frac{1}{n-1} \mathbf{X}_s' \mathbf{X}_s$$

Multivariate graphics

### Euclidean Distance

Vectors & Matrices



$$\delta_{rs}^2 = (x_{r1} - x_{s1})^2 + (x_{r2} - x_{s2})^2$$
  
=  $(\mathbf{x}_r - \mathbf{x}_s)'(\mathbf{x}_r - \mathbf{x}_s)$ 

Generalizes to p variables.

## Some dissimilarity measures (quantitative data)

Euclidean distance:

$$\delta_{rs} = \sqrt{(\mathbf{x}_r - \mathbf{x}_s)'(\mathbf{x}_r - \mathbf{x}_s)} = \left\{ \sum_{i=1}^p (x_{ri} - x_{si})^2 \right\}^{\frac{1}{2}}$$

Mahalanobis distance:

$$\delta_{rs} = \left\{ (\mathbf{x}_r - \mathbf{x}_s)' \mathbf{S}^{-1} (\mathbf{x}_r - \mathbf{x}_s) \right\}^{\frac{1}{2}}$$

Minkowski distance

$$\delta_{rs} = \left\{ \sum_{i=1}^{p} |x_{ri} - x_{si}|^{\lambda} \right\}^{\frac{1}{\lambda}}$$

- $\lambda = 1$  Manhattan distance
- $\lambda = 2$  Euclidean distance

## A duality

Vectors & Matrices

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \mid \mathbf{y}_2 \mid \cdots \mid \mathbf{y}_p \end{bmatrix}$$

- n points in a p-dimensional space
- p points in a n-dimensional space

# Example data set: Swiss banknotes (1/8)



Download the Swiss banknote data

```
Data matrix (all variables in mm):
```

```
> head(X,10)
   Length Left Right Bottom Top Diagonal
   214.8 131.0 131.1
                        9.0 9.7
                                    141.0
   214.6 129.7 129.7
                        8.1
                             9.5
                                    141.7
3
   214.8 129.7 129.7
                        8.7 9.6
                                    142.2
4
   214.8 129.7 129.6 7.5 10.4
                                    142.0
5
   215.0 129.6 129.7
                      10.4 7.7
                                    141.8
6
   215.7 130.8 130.5
                        9.0 10.1
                                    141.4
7
   215.5 129.5 129.7
                        7.9 9.6
                                    141.6
8
   214.5 129.6 129.2 7.2 10.7
                                    141.7
9
   214.9 129.4 129.7
                        8.2 11.0
                                    141.9
   215.2 130.4 130.3
                        9.2 10.0
                                    140.7
10
>
> nrow(X)
Γ1] 100
> ncol(X)
[1] 6
>
```

Vectors & Matrices

# Example data set: Swiss banknotes (3/8)

```
> class(X)
[1] "data.frame"
> X <- as.matrix(X)
> m <- apply(X,2,mean)
> m
 Length Left
                  Right Bottom Top Diagonal
214.969 129.943 129.720 8.305 10.168 141.517
> colMeans(X)
 Length Left Right Bottom Top Diagonal
214.969 129.943 129.720 8.305 10.168 141.517
>
> v <- apply(X,2,var)
> v
  Length Left
                    Right
                            Bottom Top Diagonal
0.1502414 0.1325768 0.1262626 0.4132071 0.4211879 0.1998091
>
> s <- sqrt(v)
> s
  Length Left Right Bottom Top Diagonal
0.3876099 0.3641109 0.3553345 0.6428118 0.6489899 0.4470001
> s <- apply(X,2,sd)
> s
  Length Left Right Bottom Top Diagonal
0.3876099 0.3641109 0.3553345 0.6428118 0.6489899 0.4470001
>
```

Example

00000000

# Example data set: Swiss banknotes (4/8)

#### Centered data matrix:

```
> Xc <- scale(X,scale=FALSE)
> head(Xc.10)
     Length Left Right Bottom
                                  Top Diagonal
 [1,] -0.169 1.057 1.38 0.695 -0.468
                                         -0.517
 [2,] -0.369 -0.243 -0.02 -0.205 -0.668
                                          0.183
 [3,] -0.169 -0.243 -0.02 0.395 -0.568
                                          0.683
 [4,] -0.169 -0.243 -0.12 -0.805 0.232
                                          0.483
 [5,] 0.031 -0.343 -0.02 2.095 -2.468
                                          0.283
 [6,] 0.731 0.857 0.78 0.695 -0.068
                                         -0.117
 [7,] 0.531 -0.443 -0.02 -0.405 -0.568
                                          0.083
 [8,] -0.469 -0.343 -0.52 -1.105 0.532
                                          0.183
 [9,] -0.069 -0.543 -0.02 -0.105 0.832
                                          0.383
[10,] 0.231 0.457 0.58 0.895 -0.168
                                         -0.817
> apply(Xc,2,mean)
      Length
                      Left
                                  Right
                                                Bottom
 5.400113e-15 -1.250554e-14 5.684084e-16 3.375219e-16 7.371637e-16
    Diagonal
4.547419e-15
> apply(Xc,2,sd)
   Length
              Left
                       Right
                                Bottom
                                            Top Diagonal
0.3876099 0.3641109 0.3553345 0.6428118 0.6489899 0.4470001
```

# Example data set: Swiss banknotes (5/8)

#### Standardized data matrix:

Vectors & Matrices

```
> Xs <- scale(X.scale=TRUE)
> head(Xs.10)
           Length
                       Left
                                  Right
                                            Bottom
                                                                 Diagonal
                                                          Top
 [1,] -0.43600541 2.9029615 3.88366425 1.0811873 -0.7211206 -1.1565993
 [2,] -0.95198813 -0.6673790 -0.05628499 -0.3189114 -1.0292918
                                                               0.4093959
 [3,] -0.43600541 -0.6673790 -0.05628499 0.6144877 -0.8752062
                                                               1.5279639
 [4,] -0.43600541 -0.6673790 -0.33770993 -1.2523105
                                                   0.3574786
                                                               1.0805367
     0.07997732 -0.9420206 -0.05628499 3.2591185 -3.8028327
                                                               0.6331095
     1.88591687 2.3536783 2.19511458 1.0811873 -0.1047782 -0.2617449
 [6.]
      1.36993414 -1.2166622 -0.05628499 -0.6300444 -0.8752062
 [7,]
                                                               0.1856823
 [8.] -1.20997950 -0.9420206 -1.46340972 -1.7190100 0.8197354
                                                               0.4093959
 [9,] -0.17801404 -1.4913038 -0.05628499 -0.1633448
                                                   1.2819922
                                                               0.8568231
[10,] 0.59596005 1.2551120 1.63226468
                                        1.3923203 -0.2588638 -1.8277401
> apply(Xs,2,mean)
      Length
                      Left
                                   Right
                                                Bottom
                                                                 Top
 1.394436e-14 -3.432972e-14 1.600814e-15 5.194976e-16 1.129951e-15
    Diagonal
 1.016017e-14
> apply(Xs,2,sd)
  Length
                    Right
                                        Top Diagonal
            Left
                             Bottom
       1
```

# Example data set: Swiss banknotes (6/8)

#### Covariance matrix:

```
> S <- cov(X)
> S
              Length
                             Left
                                        Right
                                                      Bottom
                                                                     Top
                                                                                Diagonal
Length
         0.150241414
                      0.05801313
                                   0.05729293
                                               0.0571262626
                                                              0.01445253
                                                                            0.0054818182
Left
         0.058013131
                      0.13257677
                                   0.08589899
                                                              0.04906667
                                                                           -0.0430616162
                                               0.0566515152
         0.057292929
                                   0.12626263
Right
                      0.08589899
                                               0.0581818182
                                                              0.03064646
                                                                          -0.0237777778
         0.057126263
                      0.05665152
                                   0.05818182
                                               0.4132070707 -0.26347475
Bottom.
                                                                           -0.0001868687
Top
         0.014452525
                      0.04906667
                                   0.03064646 -0.2634747475
                                                              0.42118788
                                                                          -0.0753090909
Diagonal 0.005481818 -0.04306162 -0.02377778 -0.0001868687 -0.07530909
                                                                           0.1998090909
> (1/(n-1))*t(Xc)%*%Xc
              Length
                             Left
                                        Right
                                                      Bottom
                                                                     Top
                                                                                Diagonal
                      0.05801313
                                               0.0571262626
                                                                            0.0054818182
Length
         0.150241414
                                   0.05729293
                                                              0.01445253
Left
         0.058013131
                      0.13257677
                                   0.08589899
                                               0.0566515152
                                                              0.04906667
                                                                           -0.0430616162
Right
         0.057292929
                      0.08589899
                                   0.12626263
                                               0.0581818182
                                                              0.03064646
                                                                           -0.0237777778
Bottom
         0.057126263
                      0.05665152
                                   0.05818182
                                               0.4132070707
                                                             -0.26347475
                                                                           -0.0001868687
Top
         0.014452525
                      0.04906667
                                   0.03064646 -0.2634747475
                                                              0.42118788
                                                                           -0.0753090909
Diagonal 0.005481818 -0.04306162 -0.02377778 -0.0001868687 -0.07530909
                                                                           0.1998090909
```

# tample data set. Swiss bankhotes (1/0

#### Correlation matrix:

```
> R <- cor(X)
> R
            Length
                         Left.
                                   Right
                                                Bottom
                                                               Top
                                                                        Diagonal
Length
         1.00000000
                    0.4110529
                               0.4159765
                                          0.2292752146
                                                        0.05745277
                                                                    0.0316389581
Left
        0.41105294
                    1.0000000
                               0.6639218
                                          0.2420437898 0.20764186 -0.2645751130
        0.41597649
                    0.6639218
                                          0.2547217369
                                                        0.13289390 -0.1497015279
Right
                               1.0000000
Bottom
        0.22927521
                    0.2420438
                               0.2547217
                                          1.000000000 -0.63156375 -0.0006503468
Top
        0.05745277
                    0.2076419 0.1328939 -0.6315637468 1.00000000 -0.2595983041
Diagonal 0.03163896 -0.2645751 -0.1497015 -0.0006503468 -0.25959830 1.0000000000
> (1/(n-1))*t(Xs)%*%Xs
            Length
                         Left
                                   Right
                                                               Top
                                                                        Diagonal
                                                Bottom
Length
         1.00000000
                    0.4110529
                               0.4159765
                                          0.2292752146
                                                        0.05745277
                                                                    0.0316389581
Left
        0.41105294
                    1.0000000
                               0.6639218
                                          0.2420437898
                                                        0.20764186 -0.2645751130
Right
        0.41597649
                    0.6639218
                               1.0000000
                                          0.2547217369
                                                        0.13289390 -0.1497015279
        0.22927521
                    0.2420438 0.2547217
                                          1.0000000000 -0.63156375 -0.0006503468
Bot.t.om
        0.05745277
                    0.2076419 0.1328939 -0.6315637468
                                                        1.00000000 -0.2595983041
Top
Diagonal 0.03163896 -0.2645751 -0.1497015 -0.0006503468 -0.25959830 1.0000000000
```

# Example data set: Swiss banknotes (8/8)

#### Euclidean distance matrix of standardized data:

Vectors & Matrices

Vectors & Matrices

# Multivariate descriptive statistics: graphical summary

- For quantitative variables
  - Scatterplot matrix
  - Biplots
  - Chernoff faces
  - Star plots
- For categorical variables
  - stratified bar chart
  - Biplots
  - ...

# Numerical summary

Vectors & Matrices

|    | mec | vec | alg | ana | sta |
|----|-----|-----|-----|-----|-----|
| 1  | 77  | 82  | 67  | 67  | 81  |
| 2  | 63  | 78  | 80  | 70  | 81  |
| 3  | 75  | 73  | 71  | 66  | 81  |
| 4  | 55  | 72  | 63  | 70  | 68  |
| 5  | 63  | 63  | 65  | 70  | 63  |
| 6  | 53  | 61  | 72  | 64  | 73  |
| 7  | 51  | 67  | 65  | 65  | 68  |
| 8  | 59  | 70  | 68  | 62  | 56  |
| 9  | 62  | 60  | 58  | 62  | 70  |
| 10 | 64  | 72  | 60  | 62  | 45  |
| 11 | 52  | 64  | 60  | 63  | 54  |
| 12 | 55  | 67  | 59  | 62  | 44  |
| 13 | 50  | 50  | 64  | 55  | 63  |
| 14 | 65  | 63  | 58  | 56  | 37  |
| 15 | 31  | 55  | 60  | 57  | 73  |
| 16 | 60  | 64  | 56  | 54  | 40  |
| 17 | 44  | 69  | 53  | 53  | 53  |
| 18 | 42  | 69  | 61  | 55  | 45  |
| 19 | 62  | 46  | 61  | 57  | 45  |
| 20 | 31  | 49  | 62  | 63  | 62  |
| :  |     | :   |     | :   |     |
|    |     |     |     |     |     |
| 84 | 15  | 38  | 39  | 28  | 17  |
| 85 | 5   | 30  | 44  | 36  | 18  |
| 86 | 12  | 30  | 32  | 35  | 21  |
| 87 | 5   | 26  | 15  | 20  | 20  |
| 88 | 0   | 40  | 21  | 9   | 14  |
|    |     |     |     |     |     |

#### Mean vector:

| mec   | vec   | alg   | ana   | sta   |
|-------|-------|-------|-------|-------|
| 38.95 | 50.59 | 50.60 | 46.68 | 42.31 |

#### Covariance matrix

|     | mec    | vec    | alg    | ana    | sta    |
|-----|--------|--------|--------|--------|--------|
| mec | 305.77 | 127.22 | 101.58 | 106.27 | 117.40 |
| vec | 127.22 | 172.84 | 85.16  | 94.67  | 99.01  |
| alg | 101.58 | 85.16  | 112.89 | 112.11 | 121.87 |
| ana | 106.27 | 94.67  | 112.11 | 220.38 | 155.54 |
| sta | 117.40 | 99.01  | 121.87 | 155.54 | 297.76 |

#### Correlation matrix

| mec  | vec                          | alg                                              | ana                                                                                                           | sta                                                                                                                                               |
|------|------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.00 | 0.55                         | 0.55                                             | 0.41                                                                                                          | 0.39                                                                                                                                              |
| 0.55 | 1.00                         | 0.61                                             | 0.49                                                                                                          | 0.44                                                                                                                                              |
| 0.55 | 0.61                         | 1.00                                             | 0.71                                                                                                          | 0.66                                                                                                                                              |
| 0.41 | 0.49                         | 0.71                                             | 1.00                                                                                                          | 0.61                                                                                                                                              |
| 0.39 | 0.44                         | 0.66                                             | 0.61                                                                                                          | 1.00                                                                                                                                              |
|      | 1.00<br>0.55<br>0.55<br>0.41 | 1.00 0.55<br>0.55 1.00<br>0.55 0.61<br>0.41 0.49 | 1.00     0.55     0.55       0.55     1.00     0.61       0.55     0.61     1.00       0.41     0.49     0.71 | 1.00     0.55     0.55     0.41       0.55     1.00     0.61     0.49       0.55     0.61     1.00     0.71       0.41     0.49     0.71     1.00 |

 Vectors & Matrices
 Decompositions
 Quadratic forms
 Basic matrices in MVA
 Example
 Multivariate graphics

 0000000000000000
 0000000
 000000
 000000
 0000000
 0000000

### Scatterplot matrix





 Vectors & Matrices
 Decompositions
 Quadratic forms
 Basic matrices in MVA
 Example
 Multivariate graphics

 000000000000000
 0000000000000000
 0000000
 0000000
 0000000
 00000000

### **Biplot**



### Chernoff faces

|    | mec | vec | alg | ana | sta |
|----|-----|-----|-----|-----|-----|
| 1  | 77  | 82  | 67  | 67  | 81  |
| 2  | 63  | 78  | 80  | 70  | 81  |
| 3  | 75  | 73  | 71  | 66  | 81  |
| 4  | 55  | 72  | 63  | 70  | 68  |
| 5  | 63  | 63  | 65  | 70  | 63  |
| 6  | 53  | 61  | 72  | 64  | 73  |
| 7  | 51  | 67  | 65  | 65  | 68  |
| 8  | 59  | 70  | 68  | 62  | 56  |
| 9  | 62  | 60  | 58  | 62  | 70  |
| 10 | 64  | 72  | 60  | 62  | 45  |
| 11 | 52  | 64  | 60  | 63  | 54  |
| 12 | 55  | 67  | 59  | 62  | 44  |
| 13 | 50  | 50  | 64  | 55  | 63  |
| 14 | 65  | 63  | 58  | 56  | 37  |
| 15 | 31  | 55  | 60  | 57  | 73  |
| 16 | 60  | 64  | 56  | 54  | 40  |
| 17 | 44  | 69  | 53  | 53  | 53  |
| 18 | 42  | 69  | 61  | 55  | 45  |
| 19 | 62  | 46  | 61  | 57  | 45  |
| 20 | 31  | 49  | 62  | 63  | 62  |
| :  |     | :   |     |     |     |
|    |     |     |     |     |     |
| 84 | 15  | 38  | 39  | 28  | 17  |
| 85 | 5   | 30  | 44  | 36  | 18  |
| 86 | 12  | 30  | 32  | 35  | 21  |
| 87 | 5   | 26  | 15  | 20  | 20  |
| 88 | 0   | 40  | 21  | 9   | 14  |



### Star plots

Vectors & Matrices

|     | mec | vec | alg | ana | sta |
|-----|-----|-----|-----|-----|-----|
| 1   | 77  | 82  | 67  | 67  | 81  |
| 2   | 63  | 78  | 80  | 70  | 81  |
| 3   | 75  | 73  | 71  | 66  | 81  |
| 4   | 55  | 72  | 63  | 70  | 68  |
| 5   | 63  | 63  | 65  | 70  | 63  |
| 6   | 53  | 61  | 72  | 64  | 73  |
| 7   | 51  | 67  | 65  | 65  | 68  |
| 8   | 59  | 70  | 68  | 62  | 56  |
| 9   | 62  | 60  | 58  | 62  | 70  |
| 10  | 64  | 72  | 60  | 62  | 45  |
| 11  | 52  | 64  | 60  | 63  | 54  |
| 12  | 55  | 67  | 59  | 62  | 44  |
| 13  | 50  | 50  | 64  | 55  | 63  |
| 14  | 65  | 63  | 58  | 56  | 37  |
| 15  | 31  | 55  | 60  | 57  | 73  |
| 16  | 60  | 64  | 56  | 54  | 40  |
| 17  | 44  | 69  | 53  | 53  | 53  |
| 18  | 42  | 69  | 61  | 55  | 45  |
| 19  | 62  | 46  | 61  | 57  | 45  |
| 20  | 31  | 49  | 62  | 63  | 62  |
|     |     |     |     |     |     |
| - 1 |     |     |     |     |     |
| 84  | 15  | 38  | 39  | 28  | 17  |
| 85  | 5   | 30  | 44  | 36  | 18  |
| 86  | 12  | 30  | 32  | 35  | 21  |
| 87  | 5   | 26  | 15  | 20  | 20  |
| 88  | 0   | 40  | 21  | 9   | 14  |
| 00  | U   | 70  | -1  | 9   | 14  |

#### Star plots open/closed book exams



# Categorical variables: stratified bar charts

|       | VG  | G   | R   | В   | VB |
|-------|-----|-----|-----|-----|----|
| 16-24 | 243 | 789 | 167 | 18  | 6  |
| 25-34 | 220 | 809 | 164 | 35  | 6  |
| 35-44 | 147 | 658 | 181 | 41  | 8  |
| 45-54 | 90  | 469 | 236 | 50  | 16 |
| 55-64 | 53  | 414 | 306 | 106 | 30 |
| 65-74 | 44  | 267 | 284 | 98  | 20 |
| 75+   | 20  | 136 | 157 | 66  | 17 |



Health questionnaire of 6371 individuals

# Categorical variables: barchart and biplot





## Bibliography

- Manly, B.F.J. (1989) Multivariate statistical methods: a primer. 3rd edition. Chapman and Hall, London.
- Johnson & Wichern, (2002) Applied Multivariate Statistical Analysis, 5th edition. Prentice Hall.
- Peña, D. (2002) Análisis de datos multivariantes. McGraw-Hill, Madrid.