А. Граф подстрок

Ограничение времени	6 секунд
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Антон стажируется в группе обработки комментариев и отзывов. Для проверки гипотезы об автоматической генерации текстов Антон должен построить граф подстрок существующих текстов.

Антон берет все имеющиеся у него слова и действует следующим образом:

- слово S=s1s2...sn-1sn образует n=2 слова длины
 3: w1=s1s2s3, w2=s2s3s4,w3=s3s4s5 ...wn-2=sn-2sn-1sn;
- если для какого-то из слов wi еще нет вершины в графе, то она создается;
- для каждой пары слов (w_i, w_{i+1}) добавляется ориентированное ребро веса 1, или увеличивается вес существующего ребра на 1.

Таким образом получается граф G с v вершинами и e ориентированными ребрами. Между некоторыми вершинами может быть несколько дуг (от a к b и от b к a).

По заданному набору слов помогите Антону найти количество вершин в графе и вывести ориентированные ребра между вершинами.

Формат ввода

В первой строке записано одно целое число T ($1 \le T \le 40000$) — количество слов, имеющихся у Антона.

В каждой из T следующих строк записано одно слово S_i ($4 \le |S_i| \le 30$). Все слова состоят из строчных букв английского алфавита.

Формат вывода

В первой строке выведите количество вершин v в графе G.

Во второй строке выведите количество пар вершин е, между которыми есть ориентированные ребра.

В каждой из следующих е строк выведите слово w_s , соответствующее началу ребра, затем слово w_f , соответствующее концу ребра, и количество ориентированных ребер из вершины w_s в w_f .

Ребра вы можете перечислить в произвольном порядке.

Ввод	Выв	вод	
2	6		
aaaaaaaaaaa	7		
aaabbbaaabbba	aaa	aaa	10
	aaa	aab	2
	aab	abb	2
	abb	bbb	2
	bbb	bba	2
	bba	baa	1
	baa	aaa	1

Пример 2

Ввод	Вывод
2	2
abab	2
baba	aba bab 1
	bab aba 1

Ввод	Вывод
1	6
qwertyqwertyqwertyqwerty	6
	qwe wer 5
	wer ert 5
	ert rty 5
	rty tyq 4
	tyq yqw 4
	yqw qwe 4

В. Телефонные номера

Ограничение времени	3 секунды
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Есть база данных телефонных номеров. Необходимо для каждого номера определить страну, оператора, а также привести номер в определённый формат.

Существует список шаблонов, которым может удовлетворять номер. Он имеет вид: NUMBER - COUNTRY OPERATOR

- NUMBER шаблон номера, формат ниже
- COUNTRY названия страны, последовательности символов латинского алфавита
- ОРЕКАТОК названия оператора, последовательности символов латинского алфавита и цифр

Homep в шаблоне задаётся в следующем виде: +COUNTRY_CODE (OPERATOR_CODE)
PERSONAL NUMBER

- COUNTRY CODE код страны, от одной до трёх цифр, первая цифра не может быть нулём
- ОРЕКАТОК СОДЕ код оператора, от двух до четырёх цифр
- PERSONAL_NUMBER шаблон номера абонента внутри оператора, строка длиной от пяти до девяти символов. Символом может быть цифра от 0 до 9 или символ X. Символ Xозначает, что на данной позиции может быть любая цифра от 0 до 9. Справа от символа Xне может стоять цифра

Все номера телефонов в текущей базе данных содержатся в полном формате (все цифры присутствуют), но, в отличие от формата выше:

- могут отсутствовать знак + и скобки
- могут отсутствовать или быть в любом месте номера пробелы и знак-разделить дефис
- не содержат больше никакой информации (имени абонента, оператора и т.п.)

Гарантируется, что для каждого номера существует ровно один шаблон, которому он удовлетворяет, и все шаблоны не пересекаются.

Формат ввода

Первая строка содержит число N ($I \le N \le 1000$) – количество номеров в базе данных. Далее следует N строк – номера телефонов по одному номеру в строке. Длина строки не превосходит 100 символов.

Следующая строка содержит число M ($1 \le M \le 1000$) — количество шаблонов. Далее M строк — шаблоны в формате, описанном выше. Длина шаблона не превосходит 100символов.

Формат вывода

Выведите N строк, в каждой номер в новом формате в том порядке, в котором они указаны во входе.

Пример 1

Ввод	Вывод
4	+28 (495) 1234567 - ElDorado
28-49-5-123-45-67	GoldLine
87544456789	+875 (44) 456789 - Atlantis
+28 (495) 123 45 56	MobTelecom
875-(29)-123456	+28 (495) 1234556 - ElDorado
3	GoldLine
+875 (29) 1XXXXX - Atlantis	+875 (29) 123456 - Atlantis
MythCell	MythCell
+875 (44) 4XXXXX - Atlantis	
MobTelecom	
+28 (495) XXXXXXX - ElDorado	
GoldLine	

Пример 2

Ввод	Вывод
2	+1 (23) 45678 - Canada AnotherCell
12345678	+1 (234) 56789 - USA SomeCell
123456789	
2	
+1 (234) XXXXX - USA SomeCell	
+1 (23) XXXXX - Canada AnotherCell	

Примечания

Некоторые страны могут иметь одинаковый COUNTRY_CODE.

C. RLE-сжатие

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

RLE-сжатие – один из самых простых методов сжатия строки, основанный на сокращении подстрок, состоящих из одинаковых символов. Сжатие осуществляется следующим образом:

- Строка разбивается на минимальное количество подстрок, состоящих из одинаковых символов. Например, abbcaaa превращается в строки a, bb, c, aaa.
- Каждая из полученных строк превращается в строку, состоящую из числа и буквы. Числом является количество повторений символа в этой строке, буква берётся из первого символа обрабатываемой строки. Число не добавляется, если количество символов в строке равно единице. Из предыдущего массива строк мы получаем a, 2b, c, 3a.
- Затем полученные строки конкатенируются в исходном порядке. В рассмотренном примере в итоге получим a2bc3a.

Вам дана строка s, уже сжатая в RLE-формате. Назовём строку, из которой была получена s, строкой t. Вам даны q запросов, каждый из них представлен целыми числами l и r. В каждом запросе вам необходимо найти длину **сжатой** подстроки $t[l\dots r]$.

Формат ввода

В первой строке входного файла записана строка s, состоящая из строчных букв латинского алфавита и цифр ($1 \le |s| \le 1000000$). Гарантируется, что существует такая непустая строка t, из которой RLE-сжатием получается строка s. Также гарантируется, что t0 строке t1 больше t1000000000 одинаковых подряд идущих символов.

В следующей строке дано количество запросов $q(1 \le q \le 100000)$. Каждая из следующих qстрок содержит два числа l_i и $r_i(1 \le l_i \le r_i \le |t|)$ — параметры запросов.

Формат вывода

Выведите q чисел, каждое в отдельной строке — ответы на запросы в том порядке, в котором запросы были заданы во входных данных.

Ввод	Вывод
a2bc3a	6
5	2

Ввод	Вывод
1 7	2
5 7	3
1 2	1
3 5	
4 4	

Пример 2

Ввод	Вывод
x100000000yz	11
3	12
2 1000000001	9
2 1000000002	
5938493 15938493	

D. Любимые числа

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

У Саши есть три любимых числа: 5, 6, 10.

Кроме них, у Саши есть число N, не содержащее нулей. Он хочет сделать так, чтобы оно делилось хотя бы на одно из его любимых чисел. Для этого он K раз выполняет следующее: выбирает две цифры, стоящие на разных позициях, и меняет их местами.

Помогите Саше найти вероятность того, что итоговое число будет делиться хотя бы на одно из любимых чисел.

Формат ввода

В первой строке содержится единственное целое число $(10 \le N \le 1018)$, не содержащее нулей. Во второй строке содержится единственное целое число $(0 \le K \le 100)$ – количество операций над числом N.

Формат вывода

В единственной строке выведите искомую вероятность. Абсолютная или относительная погрешность не должна превышать 10–9.

Пример 1

Ввод	Вывод
21	1.0000000000000000
1	

Пример 2

Ввод	Вывод
145	0.333333333333333
2	

Е. Произведение

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

У Васи есть массив A длины N из неотрицательных целых чисел и число M. Необходимо выбрать ровно K элементов массива A, чтобы их произведение было в точности равно M.

Формат ввода

Первая строка входного файла содержит три числа N, M, $K(1 \le K \le N \le 5000, 0 \le M \le 109)$ – размер массива A, произведение, которое нужно построить, и количество выбираемых элементов соответственно.

Вторая строка входного файла содержит N неотрицательных целых чисел $A_i(0 \le A_i \le 10^9)$ – элементы массива A.

Гарантируется, что ответ всегда существует.

Формат вывода

Выведите К различных натуральных чисел – индексы выбранных элементов массива А. Если решений несколько, выведите любое. Индексы можно выводить в произвольном порядке.

Пример 1

Ввод	Вывод
7 27 2	4 2
9 1 1 27 3 27 3	

Пример 2

Ввод	Вывод
7 60 4	5 6 3 2
30 1 1 3 10 6 4	

F. Квадрат и окружность

Ограничение времени	1 секунда
Ограничение памяти	512Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

У Васи есть квадрат, вершины которого расположены в точках с координатами (0,0), (1,0),(0,1), (1,1). В этом квадрате расположены N фишек, i-я фишка имеет координаты (x_i,y_i) . Фишки имеют пренебрежительно малые размеры, будем считать их материальными точками.

Вася играет в игру. Он выбирает случайную точку с равномерным распределением в своем квадрате. Потом Вася подсчитывает количество фишек, расстояние от которых до выбранной точки не превышает R, и получает соответствующее количество очков.

Помогите Васе узнать математическое ожидание количества очков, которые он наберет в описанной выше игре.

Формат ввода

В первой строке входных данных содержатся два числа N и R ($1 \le N \le 1000$, $0.001 \le R \le 2$). Каждая из следующих N строк содержит разделенные пробелом координаты очередной фишки x_i и y_i ($0.001 \le x_i, y_i \le 0.999$).

Все числа во входных данных содержат не более 3 знаков после десятичной точки.

Формат вывода

Выведите единственное число – матожидание количества очков.

Ответ будет считаться верным, если его относительная или абсолютная погрешность не превосходит 10–9.

Пример 1

Ввод	Вывод
1 0.5	0.7853981634
0.5 0.5	

Ввод	Вывод
2 2	2.000000000
0.001 0.001	
0.999 0.999	