1.3.3.

Измерение вязкости воздуха по течению в тонких трубках

Семёнов Андрей Б02-016 25 марта 2021г. **Цель работы:** экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер

1 Теоретический материал

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого (внутреннего) трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси х, а скорость течения $v_x(y)$ зависит от координаты y в каждом слое возникает направленное по x касательное напряжение.

Величину η называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления ΔP , а также от свойств газа (плотности ρ и вязкости η) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным.

Характер течения определяется безразмерным параметром задачи — числом Рейнольд-

$$Re = \frac{\rho ua}{\eta}$$

, где

 ρ - плотность жидкости, u - скорость движения потока, a - характерный размер потока. Выпишем некоторые теоретические зависимости:

$$P(x) = P_0 - \frac{\Delta P}{l}x$$

$$u = \frac{Q}{\pi R^2} = \frac{U_{max}}{2}$$

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

$$a_{\text{yct}} \approx 0, 2R \cdot Re$$

2 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

3 Выполнение работы

Оценим расстояние, на котором происходит формирование потока при ламинарном течении. $a\approx 0, 2r*Re=0, 2*1, 95*10^{-2}*1000\approx 40$ (см)

Давление, измеряемое микроманометром, определяется по формуле:

$$P = K * h * 9,80665$$

где

Р – давление в Паскалях

h — число делений

 $K=0,2\,-\,$ постоянная угла наклона

	d, mm	σ , mm
Первая трубка	5,25	0,05
Вторая трубка	3,00	0,05
Третья трубка	3,95	0,05

Таблица 1: Внутренние диаметры трубок установки

Построим график зависимости давления от расхода:

№ измерения	ΔV , л	t, c	ΔP , дел
1	2	80	20
2	3	78	30
3	5	99	40
4	6	94	50
5	7	99	55
6	8	104	60
7	9	108	65
8	10	112	70

Таблица 2: Результаты измерения зависимости перепада давления от расхода воздуха, ламинарный режим

№ измерения	ΔV , л	t, c	ΔP , дел	
1	7	67	95	
2	10	88	127	
3	11	92	151	
4	12	92	182	
5	12	83	214	
6	15	99	243	
7	20	122	277	

Таблица 3: Результаты измерения зависимости перепада давления от расхода воздуха, турбулентный режим

Выразим искомую вязкость через коэффициент наклона прямой α

$$h = \eta * \frac{8l}{\pi r^4 K * 8,80665} Q = \alpha Q$$
$$\eta = \frac{\pi r^4 K * 9,80665 \alpha}{8l}$$

$$l = (50, 0 \pm 0, 1)$$
 см

$$\epsilon_{\eta} = \sqrt{4\epsilon_R^2 + \epsilon_{\alpha}^2 + \epsilon_l^2} = 0,03$$

$$\eta = (1,61 \pm 0,05) * 10^{-5} \text{ kg/m/c}$$

Из графика видно, что ламинарный режим переходит в турбулентный на значениях $(8-9)*10^2~{\rm M}^3/{\rm c}$

$$Re = \frac{Qr\rho}{S\eta}$$

$$Re = (980 - 1100)$$

При расходе, заведомо обеспечивающем ламинарность потока измерим распределение давления вдоль трубки:

l, см	11,2	30	40	50
ΔP , дел	54	62	73	75

Построим график зависимости давления от расстояния:

4 Выводы

1. При выполнении данной работы были исследованы различные режимы течения газа по трубкам. На практике получена экспериментальная зависимость разницы давления в различных точках трубки в зависимости от расхода воздуха, идущего через трубку.

- 2. Исследовались условия перехода течения из одного режима (ламинарного) в другой (турбулентный).
- 3. Полученные зависимости разницы давлений от расхода воздуха согласуются с существующей теорией, описывающей движение газов и жидкостей в различных режимах.
- 4. Определено значение вязкости воздуха : $\eta_{\text{эксп}} = (1, 6 \pm 0, 6) \cdot 10^{-6} \; \text{Па·с}$, при табличном значении $\eta_{\text{табл}} = (1, 3 \pm 0, 2) \cdot 10^{-6} \; \text{Па·с}$. Полученные значения равны в пределах погрешности.
- 5. Основной вклад в погрешность итогового значения вязкости внесла погрешность измерения времени, а так же погрешности измерения давлений. Погрешности, связанные с установкой (погрешность линейных размеров установки, диаметра трубок) внесли меньший вклад в итоговое значение погрешности.
- 6. Частично подтверждена теоретическая линейная зависимость падания давления с изменением расстояния от края трубки. Также необходимо уточнить, что за время выполнения лабораторной работы температура в комнате понизилась на несколько градусов.
- 7. Подтверждена формула Пуазейля для расхода газа при прохождении через трубку.