

Retrieving Top Weighted Triangles in Graphs

Paul Liu¹, Moses Charikar²
Stanford University
Department of Computer Science

Raunak Kumar¹, Austin Benson²
Cornell University
Department of Computer Science

1. MOTIVATION

Nearly all methods for triangle mining are for *unweighted* graphs, but many networks have a natural notion of *weight*.

weights = \$ transferred

Technical infrastructurerouter traffic, message passing loads **weights = traffic load**

The *weight* of a triangle is the mean (or more generally p-mean) of its three edge weights. Heavy-weighted triangles have applications to *link-prediction* and *community detection*.

We establish a suite of algorithms for mining heavy-weighted triangles from graphs.

3. ALGORITHMIC SUMMARY

Our suite of algorithms satisfies two different regimes:

- 1. Exact top-k triangles for small k (<100k, sequential).
- 2. Approx. top-k triangles for large k (parallel sampling).

Key observation: exploit the **power-law properties** of graphs occuring in practice (Wikipedia dataset below).

2. RESULTS

Orders of magnitude faster than "fast" enumeration: top-100k triangles in a billion-edge graph in <30 s. Results below: computing top-1000 triangles (HL = heavy-light, ES = edge samp. (64-cores, 95% acc.), BF = brute-force)

-				
dataset	# nodes	# edges	edge weight	
	// 11 0 des	11 04000	mean	max
Ethereum	38M	103M	2.8	1.9M
AMiner	93M	324M	1.3	13K
reddit-reply	8.4M	435M	1.5	165K
MAG	173M	545M	1.7	38K
Spotify	3.6M	1.9B	8.6	2.8M

\overline{k}	dataset	BF	ES	Auto-HL
1000	Ethereum Aminer reddit-reply MAG	52.91 243.75 4047.62 512.24	9.03 3.72 5.19 4.92	6.94 12.36 4.74 20.89
	Spotify	>86400	60.33	30.79

^{*} further results for k = 100000 in paper.

4. DYNAMIC HEAVY-LIGHT

A simple algorithm: choose a threshold, partition edges into those above the threshold, and those below. Find all triangles in the subgraph induced by the heavy edges.

Problem: not correct, how to get all triangles?

A better algorithm: use multiple thresholds that are dynamically moving. When an edge comes in, choose a threshold to put it in. Different enumeration rules for triangles with edges across different thresholds.

Theorem: If the input graph satisfies some common **power-law properties**, we can work out **optimal threshold values** (exact formulas in terms of the power law parameter).

5

5. THREE KINDS OF SAMPLING

We develop a family of sampling algorithms.

Algorithms sample an **edge**, two edges **(wedge)**, or three edges **(path)** and checks for triangles (inspired from well-known algorithms for *triangle counting*).

6. INTERESTED IN MORE?

Paper. arXiv:1910.00692

Code. tinyurl.com/wsdm20-code

□ paul.liu@stanford.edu