## Universidad Politecnica de la Zona Metropolitana de Guadalajara



Evidencia: 2.8 Calcular los parametros de circuitos activos de transistores de

potencia

Alumno: Cruz Cervantes Oscar

Profesor: Morán Garabito Carlos Enrique

Carrera: Ing. Mecatronica

Grupo:  $4^{\circ}B$ 

Fecha de entrega: 29 de Octubre del 2019

## 2.8 Calcular los parámetros de circuitos activos de transistores

El funcionamiento y utilización de los transistores de potencia es idéntico al de los transistores normales, teniendo como características especiales las altas tensiones e intensidades que tienen que soportar y, por tanto, las altas potencias a disipar.

Existen tres tipos de transistores de potencia:

- Bipolar.
- Unipolar o FET (Transistor de Efecto de Campo).
- IGBT.

En la Figura 1.Bipolar se muestra cierta comparación entre un MOSFET y un transistor Bipolar.

| Parámetros                             | MOSFET             | Bipolar          |
|----------------------------------------|--------------------|------------------|
| Impedancia de entrada                  | Muy Alta           | Media            |
| Segunda Ruptura                        | No                 | Si               |
| Resistencia ON (saturación)            | Media / alta       | Baja             |
| Resistencia OFF (corte)                | Alta               | Alta             |
| Voltaje aplicable                      | Alto (1000 V)      | Alto (1200 V)    |
| Complejidad del circuito de excitación | Baja               | Alta             |
| Frecuencia de trabajo                  | Alta (100-500 Khz) | Baja (10-80 Khz) |
| Costo                                  | Alto               | Medio            |

Figura 1: Tabla comparativa

A continuación se vera el siguiente ejemplo para calcular los parámetros de un transistor de potencia bipolar. (Observe el siguiente circuito en la Figura 2)



Figura 2: Circuito Bipolar

Cálculos:

$$I(sa) = \frac{Vcc}{Rc}$$

$$Vce = 0$$

 $Vce(corte) \approx Vcc$ 

Regla general:

$$Ib > \frac{Ic}{\beta}$$

$$-VBB + Ib \cdot Rb + 0.7V = 0$$

$$Ib = \frac{VBB - 0.7V}{Rb} = \frac{10V - 0.7V}{2.2k\Omega} = 4.2mA$$
 
$$I(sa) = \frac{15V}{100\Omega} = 150mA$$

$$Vce(corte) = 15V$$

$$\frac{Ic}{\beta} = \frac{150mA}{100} = 1,5mA$$

Comprobación:

$$Ib > \frac{Ic}{\beta} = 4.2mA > 1.5mA$$

## Bibliografía

Instituto N.C. Breage (Martes 21 de Agosto 2018). Transistores de potencia bipolar. Obtenido de: https://www.incb.com.mx/index.php/curso-de-electronica/95-curso-de-electronica-de-potencia/2633-curso-de-electronica-de-potencia-parte-3-transistores de-potencia-bipolares-cur2003s

Bermudez A.L(Julio 2018). Transistores de potencia. Obtenido de: http://www.profesorn