Supervised vs. Unsupervised Learning

@ Supervised Learning

- Trained on a dataset **labeled** by humans.
- Goal is to learn **mapping function** from input variable to output variable
- Allow the model to make accurate predictions on new and unseen data.
- Common Use Cases:
 - Classification: Predicting a discrete, categorical label.
 - Example: Is an image a "dog" or "not a dog"?
 - Algorithms: Logistic Regression, Decision Trees, Support Vector Machines.
 - o **Regression:** Predicting a continuous, numerical value.
 - Example: Forecasting future stock prices.
 - *Algorithms*: Linear Regression, Random Forest Regressor.

@ Unsupervised Learning

- Trained on data with **no explicit labels**
- Goal is to discover underlying structure and feature inherent in the data
- Common Use Cases:
 - o Clustering: Grouping data points into clusters based on their similarities.
 - Example: Segmenting customers into different purchasing behavior groups.
 - Algorithms: K-Means Clustering, Hierarchical Clustering.

Summary Table

Feature	Supervised Learning	Unsupervised Learning	
Data	Labeled	Unlabeled	
Goal	Predict Outcomes	Discover Patterns	
Examples	Classification, Regression	Clustering, Association	
Output	Labels / Values	Groupings / Structure	

Chain Question:

Are today's state-of-the-art AI models supervised or unsupervised?

- Modern SOTA models are rarely confined to a single learning paradigm.
- Unlike traditional ML models, these foundational models leverage a sophisticated blend of supervised, unsupervised, reinforcement learning, and self-supervised.
 - reinforcement learning: learning method that the model interacts with its environment, receiving rewards or penalties based on its action, and improves behavior over time to maximal total reward.
 - self-supervised: learning method that the model learn patterns and representation from unlabeled data by creating its "own learning signals"
- 1. Large Language Models (LLMs): Example: GPT-4, Claude 3
 - Primarily Self-Supervised (Pre-training):
 - Core Training phase involve prediction next token in a sentence from disabled text data
 - Supervised Fine-Tuning:
 - Next, the model fine tuned to a smaller curated dataset to align response with human preference for specific tasks such as maintaining a chat format.
 - Reinforcement Learning with Human Feedback (RLHF):
 - Next, reward based training process where human feedback is used to refine it's model output. make them more helpful, harmless and coherent.
- 2. Diffusion Models: Example: DALL-E 3, Sora
 - Core Unsupervised/Self-Supervised Training:
 - These models learn to generate data by reversing its process and gradually adding noise to the image until it becomes unrecognizable. This process is inherently unsupervised.
 - Guided by Supervised Data:
 - For practical applications like text-to-image generation, the model is guided by text prompts or class labels, introducing a supervised element to control the output.

• 3. Self-Driving Cars: Example: Waymo, Tesla FSD

Strongly Multi-Modal: These systems are a complex integration of multiple learning approaches.

Supervised Learning:

 Crucial for perception tasks like object detection (identifying pedestrians, vehicles) and lane following, which rely on extensively labeled image and sensor data.

Unsupervised/Self-Supervised Learning:

 Used to learn robust features from vast quantities of raw video data without explicit labels.

Imitation Learning:

 A semi-supervised approach where the model learns driving policies by observing and mimicking human drivers.

• **4. Humanoid Robots:** Example: Figure AI, Tesla Optimus

Heavily Mixed Paradigm: Robotics requires a seamless fusion of different learning methods to interact with the physical world.

• Reinforcement Learning:

 Essential for learning complex motor skills like walking, balancing, and manipulating objects through trial and error.

Imitation Learning:

■ Enables the robot to learn new tasks by observing human demonstrations.

Supervised Learning:

 Used for perception tasks, such as recognizing objects and humans in its environment.

Self-Supervised Learning:

Helps the robot understand object affordances (what can be done with an object) through interaction.

Al Model Learning Paradigm Summary

Al Model Type	Supervised	Unsup ervise d	Self-supervis ed	Reinforc ement	Imitation
LLMs (GPT, Claude)	(Fine-tuning)	×	(Pre-training)	(RLHF)	×
GANs	(Conditional)	~	×	×	×
Diffusion Models	(Text-guided)	~		×	×
Self-Driving Cars		~		(Limited)	☑
Humanoid Robots		~	~	✓	~

Conclusion: Modern AI is a Hybrid

The classic distinction between "supervised" and "unsupervised" is no longer sufficient to describe modern AI. Today's most powerful systems are characterized by:

- Hybridization: They are a sophisticated mixture of multiple learning techniques.
- **Data-Driven:** Their capabilities are driven more by the scale and variety of data they are trained on than by the specific type of labels.
- **Synergy:** This hybridization is the key to their power, allowing them to learn from raw data, human feedback, and real-world interaction simultaneously.