安徽大学 2019 — 2020 学年第 二 学期

《线性代数 (A)》模拟试卷 (1) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	=	Ξ	四	五.	六	七	总分
得 分								
阅卷人								

一、填空题(每小题2分,共10分)

亭

本 会 後 後

装

R

得 分

1. 行列式
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ -1 & 2 & 3 & -4 \\ 1 & 4 & 9 & 16 \\ -1 & 8 & 27 & -64 \end{vmatrix} =$$

- 2. 已知 $A \in \mathbb{R}^{n \times n}$, |A| = 3, 则 $|((((A^*)^*)^*)^*)^*| = \underline{\hspace{1cm}}$
- 4. 已知向量 $\alpha_1 = (t,1,1)^T$, $\alpha_2 = (1,t,-1)^T$, $\alpha_3 = (1,-1, t)^T$, 线性相关,则t =______
- 5. 实对称矩阵 $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 的符号差等于_____

二、选择题(每小题 2 分, 共 10 分)
6. 已知以三维向量 α , β , γ 为棱的平行六面体体积等于零,则下列说法不正确的是()
A. α , β , γ 共面 B. α , β , γ 混合积等于零 C. α , β , γ 线性相关 D. α , β , γ 线性无关
7. 若n阶方阵 A 可逆,下列说法不正确的是() A. A 的特征值均不为零 B. A 的行向量组线性无关 C. A 的伴随矩阵的秩为 0 D. A 可以分解为初等矩阵的乘积
8. A 为 $m \times n$ 的矩阵,非齐次方程组 $AX = \beta$ 的导出组为 $AX = 0$,如果 $m < n$,下列说法正确的是(
9. 下列说法与 <i>A</i> 为正交矩阵等价的是() A. <i>A</i> 的行(列)向量组两两正交 B. <i>A</i> =±1 C. <i>A</i> ⁻¹ = <i>A</i> ^T D. <i>A</i> 的特征值均大于零。
10 若 n 阶矩阵 A 和 B 合同,则(

三、计算题(每小题10分,共70分)

得分

$$11. 计算 n 阶行列式 $D_n = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ & \cdots & & \cdots & & \\ 0 & 0 & 0 & 0 & 1 & 1 \end{vmatrix}$$$

12. 求矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 1 & 0 & 1 & -2 \\ 0 & 1 & -2 & 6 \end{pmatrix}$$
的逆矩阵。

14. 已知
$$A = \begin{pmatrix} 2 & -1 & 3 \\ 4 & -2 & 5 \\ 2 & -1 & 4 \end{pmatrix}$$
,构造矩阵 $B \in R^{3\times 4}$,且 $r(B) = 1$,使得 $AB = 0$

15. 设
$$A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$
, 求可逆矩阵 P 及对角阵,使 $PAP^{-1} = \Lambda$ 。

- 16. 已知向量 $\alpha_1 = (1,1,1)^T$, 求向量 α_2 , α_3 , 使得 α_1 , α_2 , α_3 为正交向量组。
- 17. 求二次型 $2x_1^2 x_2^2 x_3^2 + 4x_1x_2 + 8x_1x_3 4x_2x_3$ 的标准型。

四、证明题(每小题5分,共10分)

18. 已知三阶实矩阵 A 的特征值分别为 1, 2, 3, 证明: 矩阵 A-E, A-2E, A-3E 均不可逆。

得 分

19. 已知向量组
$$r(\alpha_1, \alpha_2, \ldots, \alpha_s) = r_1, r(\beta_1, \beta_2, \ldots, \beta_t) = r_2,$$
证明: $r(\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_t) \leq r_1 + r_2,$