Mathematisches Seminar Prof. Dr. Mathias Vetter Ole Martin, Adrian Theopold

Sheet 05

Computational Finance

Exercises for participants of the programme 'Quantitative Finance'

T-Exercise 14

Let W_1 , W_2 be independent standard Brownian motions. Consider a market with three assets S_0 , S_1 , S_2 , which follow the equations

$$S_0(t) = 1,$$

 $dS_1(t) = S_1(t) (3dt + dW_1(t) - dW_2(t)),$
 $dS_2(t) = S_2(t) (1dt - dW_1(t) + dW_2(t)).$

Construct an arbitrage in this market.

Hint: For an arbitrary self-financing strategy $\varphi = (\varphi_0, \varphi_1, \varphi_2)$, represent \hat{V}_{φ} as Itō process. Then try to choose φ_2 such that the risk is eliminated.

T-Exercise 15 (Black-Scholes price of a forward start call)

A forward start option is an option that transforms at time T_0 to a European call option with strike $S(T_0)$, i.e., it pays off at maturity $T > T_0$ the amount

$$V(T) = (S(T) - S(T_0))^+$$
.

Determine the fair price process v(t, S(t)) and the perfect hedging strategy $\varphi(t) = (\varphi_0(t), \varphi_1(t))$ of the forward start option in the Black-Scholes model for all $t \in [0, T]$. *Hint:* Recap the basic properties of conditional expectations.

C-Exercise 16 (Black-Scholes price of a down-and-out call)

a) Write a function

that computes the price of a down-and-out call with maturity T, strike K and barrier H at time t given the stock price $S(t) = S_t$ in the Black-Scholes model with parameters $r, \sigma > 0$ according to the formula from the lecture notes.

b) For r = 0.03, $\sigma = 0.3$, T = 1, H = 80 plot V_t as a function of both t and S_t in the range $(t, S_t) \in [0, 1] \times [70, 130]$ for K = 80, 90, 100, 120.

Useful commands: cdfnor, surf, subplot, xtitle

Please save your solution of each C-Exercise in a file named Exercise_##.sce, where ## denotes the number of the exercise. Please include your name(s) as comment in the beginning of the file.

Submit until: Fri, 26.05.2017, 10:00

Discussion: 29./31.05.2017