Compact sets

Definition 1 (Covering) Let (S,d) be a metric space, and $E \subseteq S$. We say that the family of open sets $\{G_{\alpha}\}_{{\alpha}\in A}$ is an open covering of E iff $\bigcup_{\alpha} G_{\alpha} \supseteq E$.

Example 2 Consider (S,d) a metric space. $\{S\}$ is an open covering of any E.

Example 3 Consider (S,d) a metric space. $\{B(x,r)\}_{x\in E}$ is an open covering of E.

Example 4 Consider $(\mathbb{R}, |\cdot|)$ and E = (0,1). $\{(\frac{1}{n}, 1)\}_{n \in \mathbb{N}}$ is an open covering of E.

Definition 5 (Compact set) A subset K of a metric space (S,d) is said to be compact if every open covering of K contains a finite subcovering.

Example 6 In $(\mathbb{R}, |\cdot|)$, let A = (0,1], which is not compact. Consider the open covering $\{(\frac{1}{n}, 2)\}_{n \in \mathbb{N}}$. Note first that $\bigcup_{n \in \mathbb{N}} (\frac{1}{n}, 2) \supseteq A$. Now consider any finite subcovering. Then there exists some $n^* = \max\{n | (\frac{1}{n}, 2) \text{ is in the subcovering}\}$. Then:

$$\bigcup_{subcovering} (\frac{1}{n},2) = (\frac{1}{n^*},2) \not\supseteq A$$

since it does not contain zero.

Example 7 In $(\mathbb{R}, |\cdot|)$, let $A = [0, \infty)$, which is not compact. Take the open covering $\{(-1, n)\}_{n \in \mathbb{N}}$. However, for any n^* the subcover will only reach $(-1, n^*)$, which does not contain A.

Definition 8 (Bounded sets) Let (S,d) be a metric space. We say that a set $E \subseteq S$ is bounded iff there exists $x \in S$ and $R \in \mathbb{R}$ such that $B(x,R) \supseteq E$.

Example 9 In $(\mathbb{R}, |\cdot|)$, (0,1) is bounded. [0,1] is bounded. $[0,\infty)$ is not bounded. \mathbb{N} is not bounded.

Remark 10 Boundedness does not imply finiteness. The set A = [0, 1] is bounded, but it has infinitely many elements.

Theorem 11 A compact set is always bounded.

Proof. Consider K compact, and suppose that it is not bounded. Then $\forall x, \forall R, B(x,R) \not\supseteq K$. Consider the family $\{B(x,n)\}_{n\in\mathbb{N}}$. this is an open covering of K. For any finite subcovering $\{B(x,k_i)\}_{i=1,\dots,n}$:

$$\bigcup_{i=1,\dots,N} B(x,k_i) = B(x,k_n) \not\supseteq K$$

then K is not compact, which is a contradiction. Then the set K is bounded.

Theorem 12 A compact set is closed.

Proof. Consider K compact. Take $x \in K^C$, and consider $y \in K$. We can find $V_Y = B(y, \varepsilon_y)$ and $W_Y = B(x, \varepsilon_y)$ such that $V_Y \cap W_Y = \emptyset$. (In fact, consider $\varepsilon_y = \frac{d(x,y)}{2}$, which allows for balls that never intersect). Then $\{V_Y\}_{y \in K}$ is an open covering of K. Then, since K is compact, there exists a finite set $\{y_1, y_2, ..., y_n\}$ such that $\{V_{Y_i}\}_{i=1,...,n}$ is an open covering of K. Now consider $W = W_{y_1} \cap W_{y_2} \cap ... \cap W_{y_n}$. We now claim that $W \cap \left(\bigcup_{i=1,...,n} V_{y_i}\right) = \emptyset$. To see that this is so, consider $z \in \bigcup_{i=1,...,n} V_{y_i}$. Then $z \notin W_{y_i}$. Then $z \notin W = W_{y_1} \cap W_{y_2} \cap ... \cap W_{y_n}$.

Now, if W does not intersect $\left(\bigcup_{i=1,...,n} V_{y_i}\right)$, which is a complete covering of K, then for sure it does not intersect K iteslf. Then $W \cap K = \emptyset$, and $W \subseteq K^C \Rightarrow W \in B(x,\bar{r})$, $\bar{r} = \min\{\varepsilon_{y_1}, \varepsilon_{y_2}, ..., \varepsilon_{y_n}\} > 0$. Then K^C is open, and K is compact and closed.

Theorem 13 Consider (S,d) a metric space, $K \subseteq S$ compact. If $F \subseteq K$ and F is closed, then F is compact.

Proof. Consider $F \subseteq K$ and F closed. Take $\{G_{\alpha}\}_{\alpha \in A}$, an open covering of F. Then $\{\{G_{\alpha}\}_{\alpha \in A}, F^{C}\}$ is an open covering of K. Then there exists some finite subcovering of K, which can be either:

(a) $\{G_{\alpha_i}\}_{i=1,...,n}$

(b)
$$\left\{ \left\{ G_{\alpha_i} \right\}_{i=1,...,n}, F^C \right\}$$

Then

- (a) $\bigcup_{i=1,\ldots,n} G_{\alpha_i} \supseteq K$, but since $F \subseteq K$ then $\bigcup_{i=1,\ldots,n} G_{\alpha_i} \supseteq F$, and the family $\{G_{\alpha_i}\}_{i=1,\ldots,n}$ is a finite subcovering of F, so F is compact.
- (b) Since $F^C \cup \{G_{\alpha_i}\}_{i=1,...,n} \supseteq K$, then $\bigcup_{i=1,...,n} G_{\alpha_i} \supseteq F$: if $x \in F$ then $x \in K$ because $F^C \cup \{\bigcup_{i=1,...,n} G_{\alpha_i}\} \supseteq K$, $x \in F^C$ or $x \in \{\bigcup_{i=1,...,n} G_{\alpha_i}\}$. Since $x \notin F^C$, it must be that $x \in \{\bigcup_{i=1,...,n} G_{\alpha_i}\}$. Then $\{\bigcup_{i=1,...,n} G_{\alpha_i}\} \supseteq F$ and $\{G_{\alpha_i}\}_{i=1,...,n}$ is an open subcovering of F, and therefore F is compact. \blacksquare

Corollary 14 If K is compact and F is closed, then $F \cap K$ is compact.

Proof. First note that $F \cap K \subseteq K$, and $F \cap K$ is closed, since K is compact and therefore closed. And since the intersection of closed sets is closed, then $F \cap K$ is compact.

Theorem 15 Let (S,d) be a metric space. If $\{K_{\alpha}\}_{{\alpha}\in A}$ is a collection of compact sets such that the intersection of every finite subcollection of $\{K_{\alpha}\}_{{\alpha}\in A}$ is nonempty, then $\bigcap_{{\alpha}\in A}K_{\alpha}$ is nonempty.

Proof. Consider K, any set in the collection $\{K_{\alpha}\}_{{\alpha}\in A}$. We claim that there exists $p\in K$ such that $p\in K_{\alpha}$ $\forall \alpha\in A$. Suppose not. Then $\forall p\in K$, there exists $\alpha\in A$ such that $p\in K_{\alpha}^{C}$. Then $\{K_{\alpha}^{C}\}_{{\alpha}\in A}$ is an open covering of K (since the K_{α} 's are closed because they are compact, then the K_{α}^{C} 's are open). Since K is compact, there exists a finite subcovering

$$\left\{K_{\alpha_i}^C\right\}_{i=1,\ldots,n}$$
.

But this implies that

$$K \subseteq K_{\alpha_1}^C \cup K_{\alpha_2}^C \cup \dots \cup K_{\alpha_n}^C.$$

Then $K \cap K_{\alpha_1}^C \cap K_{\alpha_2}^C \cap ... \cap K_{\alpha_n}^C = \emptyset$. (If $x \in K$, then $x \in K_{\alpha_j}^C$ for some j = 1, ..., n. Then $x \notin K_{\alpha_j}$.) It follows that $x \notin K \cap K_{\alpha_1}^C \cap K_{\alpha_2}^C \cap ... \cap K_{\alpha_n}^C$ and $K \cap K_{\alpha_1}^C \cap K_{\alpha_2}^C \cap ... \cap K_{\alpha_n}^C = \emptyset$). But this violates the assumption of every finite collection having a nonempty intersection, which is a contradiction.

Then there exists some p such that $p \in \bigcap_{\alpha \in A} K_{\alpha}$, and $\bigcap_{\alpha \in A} K_{\alpha} \neq \emptyset$.

Remark 16 The compactness of K_{α} is critical. Consider $\{K_n\}_{n\in\mathbb{N}}$, $K_n = (0, \frac{1}{n})$, which is not compact. Note that $\bigcap_{n=1,\ldots,N} K_{j_n} = (0, \frac{1}{j_n}) \neq \emptyset$. But $\bigcap_{n\in\mathbb{N}} K_n = \emptyset$.

Remark 17 The Nested Interval Theorem (Theorem 17 in Sequences and convergence) is a particular case of Theorem 15.

Theorem 18 Let (S,d) be a metric space. If $K \subseteq S$ is compact, then for any sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq K$ there exists a subsequence $\{x_{k_n}\}_{n\in\mathbb{N}}$ such that $x_{k_n} \to x \in K$.

Proof. Let E be the range of $\{x_n\}_{n\in\mathbb{N}}$, defined as

$$E = \{y | \text{there exists } n \in \mathbb{N} \text{ such that } x_n = y\}$$

(for example, for $x_n = \frac{1}{n}$, $E = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$). We have 2 possible cases:

(a) E is finite

Then there must exist some element $\bar{x} \in E$ such that $x_n = \bar{x}$ infinitely many times: $x_{k_1} = \bar{x}$, $x_{k_2} = \bar{x}$, $x_{k_3} = \bar{x}$. Then $\{x_{k_n}\}_{n \in \mathbb{N}}$ converges to \bar{x} .

(b) E is not finite.

We claim that E has a limit point in K. Suppose not. Then every point $p \in K$ is not a limit point of E. Then for every $p \in K$, there exists a ball $B(x, \varepsilon_p)$ such that $B(p, \varepsilon_p) \cap E = \begin{cases} \emptyset \\ \{p\} \end{cases}$. Notice that $\{B(p, \varepsilon_p)\}_{p \in K}$ is an open covering of K (the most basic one). Now consider any finite subcovering. Then it

does not cover E (since E is infinite and $B(p, \varepsilon_p) \cap E \subseteq \{p\}$, even less K, so K is not compact, which is a contradiction. So E has a limit point in K.

Consider $\bar{x} \in K$ that is a limit point of E. Then there is a sequence $\{y_n\}_{n\in\mathbb{N}} \subseteq E$ with $y_n \neq \bar{x}, y_n \to \bar{x}$. But $E = \{y | \text{there exists } n \in \mathbb{N} \text{ such that } x_n = y\}$. This is equivalent to $y_n = x_{k_n}$, and $\{x_{k_n}\}_{n\in\mathbb{N}} \to \bar{x}$. But $x_{k_n} \in K$, with K closed, then $\bar{x} \in K$.

Example 19 Consider $x_n = (-1)^n$, and note that $\{x_n\}_{n \in \mathbb{N}} \subseteq [-1, 1]$, which is compact. Then the sequences $\{1, 1, 1, ...\}$ and $\{-1, -1, -1, ...\}$ converge to 1 and -1, respectively.

Theorem 20 Let (S,d) be a metric space. If $K \subseteq S$ is such that $\forall \{x_n\}_{n \in \mathbb{N}} \subseteq K$ there exists some subsequence $\{x_{k_n}\}_{n \in \mathbb{N}}$ with $x_{k_n} \to \bar{x} \in K$, then K is compact.

Proof. Assigned for homework.

Theorem 21 In (\mathbb{R}^l, d_i) , i = 1, 2, 3, every closed and bounded set is compact.

Proof. Consider K closed and bounded. Since K is bounded we know that $K \subseteq \bigotimes_{i=1}^{l} [a_i, b_i]$, a rectangle in \mathbb{R}^l . Now consider $\{x_n\}_{n\in\mathbb{N}}\subseteq K$. Then $\{x_n^1\}_{n\in\mathbb{N}}\subseteq [a_1,b_1]$. By the Bolzano-Weierstrass Theorem (Theorem 22 in Sequences and convergence) there exists some subsequence $\{x_{k_{n_1}}^1\}_{n\in\mathbb{N}}$ such that $x_{k_{n_1}}^1\to \bar{x}^1$. Consider now the sequence $\{x_{k_{n_1}}\}_{n\in\mathbb{N}}$. Looking at the second component of this subsequence, $\{x_{k_{n_1}}^2\}_{n\in\mathbb{N}}\subseteq [a_2,b_2]$, and by applying the Bolzano-Weierstrass Theorem we obtain a subsequence $x_{k_{n_1n_2}}^2\to \bar{x}^2$.

Repeating the process until the l-th component, we get $\left\{x_{k_{n_{1_{n_{2...n_{l}}}}}}\right\}_{n\in\mathbb{N}}$ such that $x_{k_{n_{1_{n_{2...n_{l}}}}}}\to \bar{x}=$ $\left(\bar{x}^{1}\ \cdots\ \bar{x}^{l}\right)$. Since $\{x_{n}\}_{n\in\mathbb{N}}\subseteq K$, then $\left\{x_{k_{n_{1_{n_{2...n_{l}}}}}}\right\}_{n\in\mathbb{N}}\subseteq K$ is closed. Then $\bar{x}\in K$, and by Theorem 20, K is compact. \blacksquare

Theorem 22 Let (S,d) be a metric space and $\{K_a\}_{\alpha\in A}$ a family of sets such that $K_\alpha\subseteq S$ and K_α is compact. Then:

- (a) $\bigcup_{\alpha \in A} K_{\alpha}$ is compact if A is finite.
- (b) $\bigcap_{\alpha \in A} K_{\alpha}$ is compact.

Proof. (a)

Consider a sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq\bigcup_{\alpha\in A}K_\alpha$. Since A is finite, there exists $\bar{\alpha}\in A$ such that there are infinitely many elements of the sequence $\{x_n\}_{n\in\mathbb{N}}$ in $K_{\bar{\alpha}}$. Now consider the subsequence $\{x_{k_n}\}_{n\in\mathbb{N}}$ such that $x_{k_n}\in K_{\bar{\alpha}}\ \forall n\in\mathbb{N}$. Since $K_{\bar{\alpha}}$ is compact, there exists a subsequence $\{x_{k_n}\}_{n\in\mathbb{N}}$ such that $x_{k_n}\to \bar{x}\in K_{\bar{\alpha}}\subseteq\bigcup_{\alpha\in A}K_\alpha$. Then $\bigcup_{\alpha\in A}K_\alpha$ is compact.

Consider a sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq\bigcap_{\alpha\in A}K_\alpha$. Then, in particular, $\{x_n\}_{n\in\mathbb{N}}\subseteq K_{\alpha_1}$. Since K_α is compact, there exists a subsequence $\{x_{k_n}\}_{n\in\mathbb{N}}$ such that $x_{k_n}\to \bar x\in K_\alpha$. We claim that $\bar x\in\bigcap_{\alpha\in A}K_\alpha$. Suppose not. Then there exists $\bar\alpha\in A$ such that $\bar x\notin K_{\bar\alpha}$. But $\{x_{k_n}\}_{n\in\mathbb{N}}\subseteq\bigcap_{\alpha\in A}K_\alpha$ (since the sequence contained in the intersection, $\{x_n\}_{n\in\mathbb{N}}\subseteq\bigcap_{\alpha\in A}K_\alpha$). This is, $\{x_n\}_{n\in\mathbb{N}}\subseteq\bigcap_{\alpha\in A}K_\alpha\Rightarrow\{x_{k_n}\}_{n\in\mathbb{N}}\subseteq K_{\bar\alpha}\Rightarrow x_{k_n}\to \bar x$, but $\bar x\notin K_{\bar\alpha}$. Then $K_{\bar\alpha}$ is not closed, which is a contradiction since $K_{\bar\alpha}$ is compact, therefore closed.

Theorem 23 Let (S, d_S) , (T, d_T) be two metric spaces, and $f: S \to T$ be a continuous function. If $K \subseteq S$ is compact, then f[K] is also compact.

Proof. Consider $\{y_n\}_{n\in\mathbb{N}}\subseteq f[K]$. Since $y_n\in f[K]$ $\forall n\in\mathbb{N}$, we know that there exists $x_n\in K$ with $f(x_n)=y_n\ \forall n\in\mathbb{N}$. Then $\{x_n\}_{n\in\mathbb{N}}\subseteq K$. But since K is compact, there exists some subsequence $\{x_{k_n}\}_{n\in\mathbb{N}}$ with $x_{k_n}\to \bar x\in K$. Since f is continuous, it follows that $f(x_{k_n})\to f(\bar x)$. And since $f(x_{k_n})=y_{k_n}$, then $y_{k_n}\to f(\bar x)\in f[K]$ (because $\bar x\in K$). Therefore, f[K] is compact.

Example 24 Let (S,d) be a metric space, and $f: S \to \mathbb{R}$ a continuous function. Then, the kernel of f, defined as $Z(f) = \{x \in S | f(x) = 0\}$ is closed.

Proof. Consider $\{x_n\}_{n\in\mathbb{N}}\subseteq Z(f)$ such that $x_n\to \bar x$. We now have to prove that $\bar x\in Z(f)$. Since $x_n\to \bar x$ and f is continuous, then $f(x_n)\to f(\bar x)$. But since all the sequences $\{x_n\}_{n\in\mathbb{N}}$ are in Z(f), then $f(x_n)=0$. It follows that $f(\bar x)=0$ and $\bar x\in Z(f)$.

Example 25 Let (S,d) be a metric space, with $S = \{f | f : [0,1] \to \mathbb{R}, \text{ continuous}\}$, and the metric d(f,g) defined as $d(f,g) = \max_{0 \le x \le 1} |f(x) - g(x)|$. Then $\bar{B}(0,1)$ is not compact (although it is closed and bounded).

Proof. Consider the following sequence of functions $\{f_n\}_{n\in\mathbb{N}}$:

$$f_n(x) = \begin{cases} 0 & \text{for } 0 \le x \le 2^{-n-1} \\ 2^{n+2} (x - 2^{-n-1}) & \text{for } 2^{-n-1} \le x \le 3 \cdot 2^{-n-2} \\ -2^{n+2} (x - 2^{-n}) & \text{for } 3 \cdot 2^{-n-2} \le x \le 2^{-n} \\ 0 & \text{for } 2^{-n} \le x \le 1 \end{cases}.$$

The proof is in 2 steps:

- (a) Note first that $\{f_n\}_{n\in\mathbb{N}}\subseteq \bar{B}(0,1)$, since $d(f_n,0)=\max_{0\leq x\leq 1}|f_n(x)-0|=1$.
- (b) Now,

$$d(f_n, f_m) = \max_{0 < x < 1} |f_n(x) - f_m(x)| = 1.$$

Then any subsequence $\{f_{k_n}\}_{n\geq 1}$ has also the property that $d(f_{k_n}, f_{k_m}) = 1$. Then the subsequence is not Cauchy, so it does not converge. So the sequence $\{f_n\}_{n\in\mathbb{N}}$ does not have any convergent subsequence, and $\bar{B}(0,1)$ is not compact.

Example 26 Let (S,d) be a metric space. We say that $E \subseteq S$ is dense in S iff $\forall \varepsilon > 0$ and $\forall x \in S$, there exists $y \in E$ such that $d(x,y) < \varepsilon$.

- (a) Let $f:(S,d_S)\to (T,d_T)$ be a continuous function. If $E\subseteq S$ is dense in S, then f[E] is dense in f[S].
- (b) Let $f, g: (S, d_S) \to (T, d_T)$ be two continuous functions such that $f(x) = g(x) \ \forall x \in E$ and E is dense in S. Then $f(x) = g(x) \ \forall x \in S$.

Proof. (a) We need to show that f[E] is dense in f[S], or that $\forall z \in f[S], \forall \varepsilon > 0$, there exists some $w \in f[E]$ with $d(w, z) < \varepsilon$.

Consider $\varepsilon > 0$ and $z \in f[S]$. Then there exists $x \in S$ such that f(x) = z. By continuity of f, there exists some $\delta > 0$ such that if $d_S(x, y) < \delta$, then $d_T(f(x), f(y)) < \varepsilon$. Since E is dense in S, there exists $\bar{y} \in E$ such that $d_S(x, \bar{y}) < \delta \Rightarrow d_T(f(x), f(\bar{y})) < \varepsilon \Rightarrow d_T(z, w) < \varepsilon$, where $w \in f[E]$.

(b) We need to show that $f(x) = g(x) \ \forall x \in S$.

Note that

$$d_T(f(x), g(x)) \le d_T(f(x), f(y)) + d_T(f(y), g(y)) + d_T(g(y), g(x)). \tag{1}$$

Consider any $\varepsilon > 0$. There exists δ_1 such that $d_S(x,y) < \delta_1 \Rightarrow d_T(f(x),f(y)) < \frac{\varepsilon}{2}$. There exists δ_2 such that $d_S(x,y) < \delta_2 \Rightarrow d_T(g(x),g(y)) < \frac{\varepsilon}{2}$ (by continuity of f and g). Take $\delta = \min\{\delta_1,\delta_2\}$, and the first and third terms in the right-hand side of (1) are less than $\frac{\varepsilon}{2}$. Since E is dense in S, it is possible to find Y with $d(y,x) < \delta$ and $y \in E$. Then $d_T(f(y),g(y)) = 0$ and

$$d_T(f(x),g(x)) < \varepsilon.$$

Since this is true $\forall \varepsilon > 0$, we have that $d_T(f(x), g(x)) = 0$, then f(x) = g(x).

Example 27 Let (S, d_S) and (T, d_T) be metric spaces, $f: E \subseteq S \to T$, E compact. In $S \times T$ define the metric

$$d((x_1, y_1), (x_2, y_2)) = \max \{d_S(x_1, x_2), d_T(y_1, y_2)\}.$$

We define the graph of f as

$$qr(f) = \{(x, y) \in S \times T | x \in E \text{ and } y = f(x) \}.$$

Then f is continuous iff gr(f) is compact.

Proof. "⇒"

Assume that f is continuous, and consider $\{(x_n, y_n)\}_{n \in \mathbb{N}} \subseteq gr(f)$. Then the sequence can be expressed as $\{(x_n, f(x_n))\}_{n \in \mathbb{N}}$, where the first components are in E. Since $\{x_n\}_{n \in \mathbb{N}} \subseteq E$, and E is compact, we know that there exists a subsequence $\{x_{k_n}\}_{n \in \mathbb{N}}$ with $x_{k_n} \to \bar{x} \in E$.

Then $f(x_{k_n}) \to f(\bar{x})$, and $(x_{k_n}, f(x_{k_n})) \to (\bar{x}, f(\bar{x})) \in gr(f)$ since $\bar{x} \in E$ and $f(\bar{x})$ is the preimage of \bar{x} . But $gr(f) = \{(x, y) \in S \times T | x \in E \text{ and } y = f(x)\}$, then the graph is compact.

Suppose that gr(f) is compact. Then f is continuous. Suppose not. Then there exists some point \bar{x} with a discontinuity. Then there exists a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $x_n\to\bar{x}$ but $f(x_n)$ does not converge to $f(\bar{x})$. If $f(x_n)$ does not converge to $f(\bar{x})$, then there exists some $\varepsilon>0$, such that $\forall N\in\mathbb{N}$, there exists some n>N and $d(f(x_n),f(\bar{x}))\geq \varepsilon$. It follows that we can construct a subsequence $\{f(x_{k_n})\}_{n\in\mathbb{N}}$ with the property that

$$d\left(f\left(x_{n}\right), f\left(\bar{x}\right)\right) \geq \varepsilon \ \forall n \in \mathbb{N}.\tag{2}$$

Now consider, in gr(f), the sequence $\{(x_{k_n}, f(x_{k_n}))\}_{n\in\mathbb{N}}$. We claim that there is no subsequence of $\{(x_{k_n}, f(x_{k_n}))\}_{n\in\mathbb{N}}$ that converges to a point in gr(f). Note that any subsequence $\{(x_{k_{l_n}}, f(x_{k_{l_n}}))\}_{n\in\mathbb{N}}$ has the property that $x_{k_{l_n}} \to \bar{x}$ and $f(x_{k_{l_n}})$ does not converge to $f(\bar{x})$ (because of (2)). Then, if $(x_{k_{l_n}}, f(x_{k_{l_n}})) \to (\bar{x}, \bar{y})$ then $\bar{y} \in f(\bar{x})$, and $(\bar{x}, \bar{y}) \notin gr(f)$. It follows that gr(f) is not compact, which is a contradiction.

Definition 28 (Upper and lower bounds) Consider \mathbb{R} or a subset of \mathbb{R} . We say that X is an upper bound of $S \subseteq \mathbb{R}$ iff $s \leq X \ \forall s \in S$. We say that X is a lower bound of $S \subseteq \mathbb{R}$ iff $s \geq X \ \forall s \in S$.

Example 29 Consider S = [0, 1). 1 is an upper bound of S. But so is 2, or 3, or π ,... On the other hand, -1, 0, -100,... are lower bounds of S.

Definition 30 (Supremum) We say that $X = \sup S$ iff

- (a) X is an upper bound of S.
- (b) If Y is an upper bound of S, then $X \leq Y$.

Definition 31 (Infimum) We say that $X = \inf S$ iff

- (a) X is a lower bound of S.
- (b) If Y is a lower bound of S, then $X \geq Y$.

Example 32 Consider S = [0,1). Then $\sup S = 1$. Also, $\inf S = 0$. Now consider S = (0,1]. Then, as before, $\sup S = 1$ and $\inf S = 0$.

Remark 33 sup S and inf S do not necessarily belong to the set.

Remark 34 If S has no upper bound, we say that $\sup S = \infty$. If S has no lower bound, we say that $\inf S = -\infty$.

Axiom 35 If $S \subseteq \mathbb{R}$, $S \neq \emptyset$ and S is bounded from above, then $\sup S$ exists (and it belongs to \mathbb{R}).

Proposition 36 If $S \subseteq \mathbb{R}$, $S \neq \emptyset$ and S is bounded from below, then inf S exists (and it belongs to \mathbb{R}).

Proof. Assigned for homework.

Definition 37 If $\sup S \in S$, we say that $\sup S = \max S$ (and also we say that the maximum exists). If $\inf S \in S$, we say that $\inf S = \min S$ (and also we say that the minimum exists).

Lemma 38 If $L = \sup S$, then $\forall \varepsilon > 0$ there exists some $x \in S$ such that $x > L - \varepsilon$.

Proof. Suppose not. Then there exists some $\varepsilon > 0$ such that $\forall x \in S, x \leq L - \varepsilon$. Then $L - \varepsilon$ is an upper bound. But this is a contradiction, since L is the supremum, so it is the lowest upper bound.

Proposition 39 Consider $S \subseteq \mathbb{R}$ and the usual metric in \mathbb{R} . If $\sup S$ exists, then there exists a sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq S$ such that $x_n\to \sup S$.

Proof. By Lemma 38, there exists $x_1 > L - 1$, $x_1 \in S$. Also, there exists some $x_2 > L - \frac{1}{2}$, $x_2 \in S$. This reasoning can be repeated up to $x_n > L - \frac{1}{n}$, $x_n \in S$. Then $\{x_n\}_{n \in \mathbb{N}} \subseteq S$ and

$$L - \frac{1}{n} < x_n \le L$$

and by Theorem 13 in Sequences and convergence, since $L - \frac{1}{n} \to L$ and $L \to L$, then $x_n \to L$.

Theorem 40 Let (S,d) be a metric space, $X \subseteq S$ compact and $X \neq \emptyset$. If $f: X \to \mathbb{R}$ is continuous, then there exists x^* such that $f(x^*) = \sup_{x \in X} f(x)$, y^* such that $f(y^*) = \inf_{x \in X} f(x)$. In this case we say that $f(x^*) = \max_{x \in X} f(x)$, $f(y^*) = \min_{x \in X} f(x)$.

Proof. The proof is done in 3 steps.

(a) Note that

$$\sup_{x \in X} f(x) = \sup f[X]$$

where $f[X] = \{y \in \mathbb{R} | \text{there exists } x \in X \text{ with } f(x) = y \}.$

- (b) Since f is continuous and X is compact, we know that f[X] is compact. In particular, it is bounded and it is nonempty. It follows that $\sup f[X]$ exists.
- (c) By Proposition 39, there exists $\{y_n\}_{n\in\mathbb{N}}\subseteq f[X]$ such that $y_n\to\sup f[X]$. Since f[X] is closed (since it's compact), we know that $\sup f[X]\in f[X]$. Then, by definition of f[X], there exists some x^* such that $f(x^*)=\sup f[X]=\sup_{x\in X}f(x)=\max_{x\in X}f(x)$.

Remark 41 The hypotheses are important. If f is not continuous, then it does not attain a maximum. The same applies when X is not closed, or when X is not bounded.

Example 42 Consider the problem of maximizing a function $U(x_1, x_2, ..., x_L)$ subject to $p_1x_1 + p_2x_2 + ... + p_Lx_L \leq I$, $x_i \geq 0 \ \forall i \in \{1, 2, ..., L\}$. If $U: \mathbb{R}^L_+ \to \mathbb{R}$ is continuous and $p_1, p_2, ..., p_L > 0$, then there exists $(x_1^*, x_2^*, ..., x_L^*)$ such that $U(x_1^*, x_2^*, ..., x_L^*) = \max U(x_1, x_2, ..., x_L)$.

We are working in \mathbb{R}^{L}_{+} with U continuous. We only need to prove that the set

$$\{(x_1,...,x_L) | p_1x_1 + ... + p_Lx_L \le I \text{ and } x_i \ge 0 \ \forall i \in \{1,...,L\}\}$$

is compact. So we need to check that it is bounded and closed.

(a) Rounded

Consider $d_3(x,y) = \max_{i=1,...,L} |x_i - y_i|$. If $(x_1,...,x_L) \in X$ then $0 \le x_1 \le \frac{I}{p_1}$, $0 \le x_2 \le \frac{I}{p_2}$, ..., $0 \le x_L \le \frac{I}{p_L}$. But note that $0 \le x_1 \le \frac{I}{p_1} \le \frac{I}{\min\{p_1,...,p_L\}}$, ..., $0 \le x_L \le \frac{I}{p_L} \le \frac{I}{\min\{p_1,...,p_L\}}$. Then:

$$d(x,0) \le \frac{I}{\min\{p_1, ..., p_L\}}$$

It follows that $\forall x \in X$,

$$x \in B\left(0, \frac{I}{\min\left\{p_1, ..., p_L\right\}} + 1\right)$$

So it is bounded.

(b) Closed

Note that the set X can be expressed as

$$X = \mathbb{R}_{+}^{L} \cap \{(x_1, ..., x_L) | p_1 x_1 + ... + p_L x_L \le I \}.$$

And note also that \mathbb{R}_+^L is closed, so it remains to prove that $\{\cdot\}$ is closed for X to be closed (since the intersection of closed sets is closed). Consider $g: \mathbb{R}_+^L \to \mathbb{R}$, $(x_1, ..., x_L) \to p_1 x_1 + ... + p_L x_L$, g continuous. But $\{\cdot\}$ is $g^{-1}[(-\infty, I]]$. Since $(-\infty, I]$ is closed, then $g^{-1}[(-\infty, I]]$ is closed and X is closed.

It follows that X is compact and by Theorem 40, there exists $(x_1^*, x_2^*, ..., x_L^*) \in X$ such that $U(x_1^*, x_2^*, ..., x_L^*) = \max_{(x_1, ..., x_L) \in X} U(x_1, x_2, ..., x_L)$.