Intervals, Transformations, and Slope Solution (version 46)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -6) \cup (-1, 4)$
Negative	$(-9, -8) \cup (-6, -1)$
Increasing	$(-9, -7) \cup (-5, 3)$
Decreasing	$(-7, -5) \cup (3, 4)$
Domain	(-9,4)
Range	(-4,4)

Intervals, Transformations, and Slope Solution (version 46)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=25$ and $x_2=52$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 25 & 66 \\ 52 & 90 \\ 66 & 52 \\ 90 & 25 \\ \hline \end{array}$$

$$\frac{f(52) - f(25)}{52 - 25} = \frac{90 - 66}{52 - 25} = \frac{24}{27}$$

The greatest common factor of 24 and 27 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{8}{9}$$

2