M106 Summer 2020 Recitation Lectures: Symmetries

6/6 Practice Lecture

Theorem 2.6 (Symmetries of Finite 2D Figures). Every symmetry of a finite 2D-figure is one of the following: Trivial symmetry Rotation Reflection

1 6... +11/104

6/10 Lecture:

SHUT DOWN STEM STRIKE

6/11 Lecture:

Recap (on 6/9):

- -Compositions (Class 3)
- -Composition Tables (Class 4)

Homework/Exam:

- -Homework 1 due TONIGHT (11:59 pm)
- -Homework 2 due TOMORROW NIGHT
- -EXAM on Monday (6/15)

-Homework 3 due MONDAY (6/15)

Questions on ANY homework?

-Homework 2 question 1

r3
$$\circ$$
l \circ m43 \circ r $-$ 1 \circ m $-$ 22 \circ l r^3*I*m^3

$$(r^{3} \circ I) = m^{4} \circ r^{5} \circ m^{2} \circ r^{5} \circ m^{5} \circ r^{5} \circ r^{5} \circ m^{5} \circ r^{5} \circ r^{5} \circ m^{5} \circ r^{5} \circ r^{5}$$

A polygon has the same SYMMETRY TYPE if it has the same composition table

 D_n is an n-gon C_n the symmetry type of an n-pinwheel

Theorem: Every finite figure has symmetry type \mathcal{D}_n or \mathcal{C}_n

 C_1

In Homework 2 Question 2: Any letter has symmetry type D_n or \mathcal{C}_n

Symmetry type of letter A: $\{I, \ m_1\} \ C_2$

 C_2 is a special case of the "pinwheel" symmetry type, where any shape containing only one reflection OR only one rotation has that same symmetry type.

Plan for Tomorrow: Infinite symmetries (Class 6-7) Frieze patterns (Class 8) Homework 3 is based on those classes

6/12 Lecture

Announcements:

Office hour doodle poll AFTER CLASS Review Session THIS WEEKEND (doodle poll for that AFTER CLASS as well) Game Theory is up

Upcoming Assigments:

- -Homework 2 (due Tonight)
- -EXAM ON MONDAY AT CLASS TIME
 - *Given on Canvas (you will download PDF)
 - *2 hours AFTER USUAL CLASS TIME (factoring in for any tech difficulties)
 - *WILL NOT BE PROCTORED
 - *DON'T CHEAT

-Homework 3 (due Monday night)

Previously (on the exam):

- *Symmetries of finite figures (class 2)
- *Composing symmetries (class 3)
- *Composition Tables (class 4)
- *Symmetry Types (class 5)

Upcoming:

- *Infinite Symmetries (class 6-7)
- *Frieze Patterns (class 8)

Questions Homework 2&3? Expect grades for Homework 1&2 Saturday

Homework 2 Question 2

NOTE: Symmetry types WILL be used more than once

NOTE FOR HOMEWORK 1 QUESTION 1 B: The trivial symmetry will only be used only once. More generally speaking,

M106 Study Sesh

$$x^{h} = x \times x \times \dots \times x$$
 $m_{s}^{h} = (m_{s})^{h} \times n_{s} \times n$

Infinite Symmetries:

Classes 1-5 talked symmetries of finite shapes

Classes 6-8 deal with infinite symmetries

As before infinite symmetries have rotations (including trivial symmetry and nontrivial rotations) and reflections

With infinite symmetries, THERE IS TWO MORE KINDS OF SYMMETRIES

- -Translation symmetries
- -Gliding symmetries

Theorem: Symmetries of an xy-plane consist of the following

*trivial

*translations

- *reflections (with respect some line)
- *rotations (within a single center)
- *glide reflections

Theorem: Every frieze pattern always has the trivial and translational symmetries. Only possible additional symmetries include the following:

- -(R) Rotation by 1/2-turn
- -(V) Reflection in vertical lines
- -(H) Reflection in horizontal line
- -(G) Glide reflection in the horizontal line
- -Symmetry represented sub-string of TRVHG
- -T
- -TR
- -TV
- -TRVH
- -TRVHG
- -And so on...