Hoofdstuk 1 - Kinematica van een puntmassa

K. Henrioulle, E. Demeester

Overzicht H1 t.e.m. H8

Overzicht H1 t.e.m. H8

Basisformules voor de dynamica

Rechtlijnige beweging van een puntmassa

KINEMATICA

x-, y-, 2-0	coördinaten	r -, θ -, z - c	oördinaten
$v_x = \dot{x}$	$a_x = \ddot{x}$	$v_r = \dot{r}$	$a_r = \ddot{r} - r\dot{\theta}^2$
$v_y = \dot{y}$	$a_y = \ddot{y}$	$v_{ heta} = r\dot{ heta}$	$a_{\theta} = r\ddot{\theta} + 2\dot{r}$
$v_z = \dot{z}$	$a_z = \ddot{z}$	$v_z = \dot{z}$	$a_z = \ddot{z}$
n-, t-, b-c	coördinaten	85.0	
$v = \dot{s}$	$a_t = \dot{v} =$	$v \frac{dv}{ds}$	
0 - 3			
-3	$a_n = \frac{v^2}{a}$	= [1 + (d)]	$\frac{(y/dx)^2}{(y/dx^2)^2}$

Beweging van een star lichaam om een vaste as

$\alpha = \frac{d\omega}{dt}$	$\omega = \omega_0 + \alpha_c t$
$\omega = \frac{d\theta}{dt}$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$
$\omega d\omega = \alpha d\theta$	$\omega^2 = \omega_0^2 + 2\alpha_c(\theta - \theta_0)$
oor punt P	

constante $\alpha = \alpha$

$s = \theta r$ $v = \omega r$ $a = \alpha r$

variabele a

Relatieve algemene beweging in het platte vlaktranslerende assen

 $\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A(\text{scharnier})} \quad \mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A(\text{scharnier})}$

Relatieve algemene beweging in het platte vlak translerende en roterende assen

$$\mathbf{v}_{B} = \mathbf{v}_{A} + \Omega \times \mathbf{r}_{B/A} \times (\mathbf{v}_{B/A})_{xyz}$$

$$\mathbf{a}_{B} = \mathbf{a}_{A} + \Omega \times \mathbf{r}_{B/A} + \Omega \times (\Omega \times \mathbf{r}_{B/A}) +$$

$$\mathbf{a}_A + \Omega \times \mathbf{r}_{B/A} + \Omega \times (\Omega \times \mathbf{r}_{B/A}) + 2\Omega \times (\mathbf{v}_{B/A})_{xyz} \times (\mathbf{a}_{B/A})_{xyz}$$

MINETICA

Massatraagheidsmoment $I = \int r^2 dm$

Evenwijdige-assenstelling $I = I_G + md^2$

Gyrostraal

 $k = \sqrt{\frac{I}{m}}$

Bewegingsvergelijkingen

Puntmassa	$\Sigma \mathbf{F} = m\mathbf{a}$
Star lichaam	$\Sigma F_x = m(a_G)_x$
(beweging in het	$\Sigma F_{\mathbf{v}} = m(a_G)_{\mathbf{v}}$
platte vlak)	$\Sigma M_G = I_G \alpha$ or $\Sigma M_P = \Sigma (\mathcal{M}_k)_P$

r imeipe van arbeid en energie

 $T_1 + U_{1-2} = T_2$ Kinetische energie

Puntmassa	$T = \frac{1}{2}mv^2$
Star tichaam (beweging in het platte vlak)	$T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2$

Arbeid

Variabele kracht $U_F = \int F \cos \theta \, ds$ Constante kracht $U_F = (F_c \cos \theta) \, \Delta s$ Gewicht $U_W = -W \, \Delta y$

Veer $U = -(\frac{1}{2}ks^2 - \frac{1}{2}ks^2)$

Koppelmoment $U_M = M \Delta \theta$

Vermogen en rendement $P = \frac{dU}{dt} = \mathbf{F} \wp \mathbf{v} \quad \epsilon = \frac{P_{\text{uit}}}{P_{\text{in}}} = \frac{U_{\text{uit}}}{U_{\text{in}}}$

Wet van behoud van energie

$T_1 + V_1 = T_2 + V_2$ Potentiële energie

 $V = V_g + V_e$, waarbij $V_g = \pm Wy$, $V_e = +\frac{1}{2}ks^2$

Principe van stoot en impuls

Puntmassa $m\mathbf{v}_1 + \Sigma \mathbf{F} dt = m\mathbf{v}_2$

Star lichaam $m(\mathbf{v}_G)_1 + \sum \int \mathbf{F} dt = m(\mathbf{v}_G)_2$

Behoud van impuls

 $\Sigma(\operatorname{st.} m\mathbf{v})_1 = \Sigma(\operatorname{st.} m\mathbf{v})_2$

Restitutie coëfficient $e = \frac{(v_B)^2 - (v_A)^2}{(v_A)^2 - (v_B)^2}$

Principe van stootmoment en impulsmoment $(\mathbf{H}_{a})_{b} + \sum_{i} \mathbf{M}_{a} dt = (\mathbf{H}_{a})_{b}$

Puntmassa	waarbij $H_O = (d)(mv)$
Star lichaam (beweging in het platte vlak)	$ \begin{aligned} &(\mathbf{H}_G)_1 + \Sigma \int \mathbf{M}_G dt = (\mathbf{H}_G)_2 \\ &\text{waarbij } H_G = I_G \omega \\ &(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2 \\ &\text{waarbij } H_O = I_O \omega \end{aligned} $

Behoud van impulsmoment

 $\Sigma(\mathsf{st}.\,\mathbf{H})_1 = \Sigma(\mathsf{st}.\,\mathbf{H})_2$

H₂

H6

H7

H3

H4

H8

H1

H₅

1.1 Inleiding

Mechanica

- Beweging van lichamen onderworpen aan krachten
- Statica (a=0) dynamica ($a\neq 0$)

Dynamica

- Kinematica: beweging
- Kinetica: krachten die de beweging veroorzaken

Puntmassa:

 Een model, geïdealiseerde voorstelling van een lichaam waarbij de ruimte, vorm, afmetingen, oriëntatie van het lichaam geen rol speelt, maar wel de massa
 ▶ UHASSELT

Verplaatsing - Snelheid

$$\Delta s = s' - s$$

$$v_{\text{gem}} = \frac{\Delta s}{\Delta t}$$

$$v = \frac{ds}{dt}$$

(1.1)

Fig. 1.1

Gemiddelde snelheid en gemiddelde snelheidsgrootte

(d)

$$(v_{
m sg})_{
m gem} = rac{s_T}{\Delta t}$$

- s, Δs , v, Δv zijn **Vectoriële grootheden** in handboek in vet gedrukt in handgeschreven nota's met pijl erboven: $\Delta \vec{s}$, \vec{v} enz.
- Vector Δs (stel s=7,5m s'=10m)
 - Grootte ($\Delta s=2,5m$)
 - Aangrijpingspunt
 - Richting: volgens rechte s
 - Zin: naar rechts zelfde zin als s: positief (+2,5m)

$$\Delta s = s' - s$$

- Vector Δs (stel s=10m s'=7,5m)
 - Grootte (Δs =2,5m)
 - Aangrijpingspunt
 - Richting: volgens rechte s
 - Zin: naar links tegengestelde zin als s: negatief (-2,5m) $\Delta s = s' - s$

Constante versnelling

$$\int_{v_0}^v dv = \int_0^t a_c dt$$

 $v = v_0 + a_c t$

Constante versnelling

$$\int_{s_0}^{s} ds = \int_{0}^{t} (v_0 + a_c t) dt$$

 $s = s_0 + v_0 t + \frac{1}{2} a_c t^2$

Constante versnelling

$$\int_{v_0}^v v \, dv = \int_{s_0}^s a_c \, ds$$

$$v^2 = v_0^2 + 2a_c(s - s_0)$$

Constante versnelling

(1.4)

(1.5)

(1.6)

$$\frac{ds}{dt} = v$$

$$\frac{ds}{dt} = de \text{ snelheid}$$

$$\frac{ds}{dt} = v$$

$$\frac{ds}{dt} = v$$

Fig. 1.7

$$\frac{dv}{dt} = a$$

 $\frac{\text{de hellingshoek}}{\text{van de } v\text{-}t\text{-}\text{grafiek}} = \text{de versnelling}$

Fig. 1.8

$$a = \frac{dv}{dt}$$

$$dv = a dt$$

$$\int_{v_0}^{v_1} dv = v_1 - v_0 = \Delta v = \int_{t_0}^{t_1} a dt$$

$$\Delta v = \int a \, dt$$
 snelheidsverandering =
$$\frac{oppervlakte \ onder \ de}{a\text{-}t\text{-grafiek}}$$

Maar:
$$v_1 = \Delta v + v_0 !!!$$

$$\Delta s = \int v \, dt$$

verplaatsing = $\int v \, dt$
verplaatsing = $\int v \, dt$
 v - t -grafiek

1.4 Algemene kromlijnige beweging

$$\mathbf{v}_{\text{gem}} = \frac{\Delta \mathbf{r}}{\Delta t}$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$

$$v = \frac{ds}{dt}$$

1.4 Algemene kromlijnige beweging

$$\mathbf{a}_{\text{gem}} = \frac{\Delta \mathbf{v}}{\Delta t}$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

$$\mathbf{a} = \frac{d^2\mathbf{r}}{dt^2}$$

Fig. 1.16 (vervolg)

1.5 Kromlijnige beweging – rechthoekig assenstelsel

Plaats

(a)

Fia. 1.17

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$$

$$\mathbf{a} = \frac{d\mathbf{v}}{dt} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$

$$a_x = \dot{v}_x = \ddot{x}$$

$$a_y = \dot{v}_y = \ddot{y}$$

$$a_z = \dot{v}_z = \ddot{z}$$

