

#7

SEQUENCE LISTING

<110> FUCHS, Sara
BARCHAN, Dora
SOUROUJON, Miriam

<120> RECOMBINANT FRAGMENTS OF THE HUMAN ACETYLCHOLINE RECEPTOR AND THEIR USE FOR TREATMENT OF MYASTHENIA GRAVIS

<130> FUCHS=2A

<150> 09/423,398
<151> 1999-11-08

<150> PCT/IL98/00211
<151> 1998-05-06

<160> 32

<170> PatentIn version 3.0

<210> 1
<211> 630
<212> DNA
<213> Homo sapiens

<400> 1
tccgaacatg agacccgtct ggtggcaaag ctatttaaag actacagcag cgtggtgccg 60
ccagtggaaag accaccgcca ggtcggtggag gtcaccgtgg gcctgcagct gatacagctc 120
atcaatgtgg atgaagtaaa tcagatcgta acaaccaatg tgcgtctgaa acagcaatgg 180
gtggattaca acctaaaatg gaatccagat gactatggcg gtgtaaaaaa aattcacatt 240
ccttcagaaa agatctggcg cccagacatt gttctctata acgatgcaga tggtgacttt 300
gctattgtca agttcaccaa agtgctcctg cagtagactg gccacatcac gtggacacct 360
ccagccatct ttaaaagcta ctgtgagatc atcgtcaccc actttccctt tggatgaacag 420
aactgcagca tgaagctggg cacctggacc tacgacggct ctgtcggtgc catcaacccg 480
gaaagcgacc agccagacct gagcaactc atggagagcg gggagtggtt gatcaaggag 540
tcccggggct ggaagcactc cgtgacctat tcctgctgcc ccgacaccccc ctacctggac 600
atcacctacc acttcgtcat gcagcgctg 630

<210> 2
<211> 210
<212> PRT
<213> Homo sapiens

<400> 2

Ser Glu His Glu Thr Arg Leu Val Ala Lys Leu Phe Lys Asp Tyr Ser
1 5 10 15

Ser Val Val Arg Pro Val Glu Asp His Arg Gln Val Val Glu Val Thr
20 25 30

Ala Gly Leu Gln Leu Ile Gln Leu Ile Asn Val Asp Glu Val Asn Gln
 35 40 45

Ile Val Thr Thr Asn Val Arg Leu Lys Gln Gln Trp Val Asp Tyr Asn
 50 55 60

Leu Lys Trp Asn Pro Asp Asp Tyr Gly Gly Val Lys Lys Ile His Ile
 65 70 75 80

Pro Ser Glu Lys Ile Trp Arg Pro Asp Leu Val Leu Tyr Asn Asn Ala
 85 90 95

Asp Gly Asp Phe Ala Ile Val Lys Phe Thr Lys Val Leu Leu Gln Tyr
 100 105 110

Thr Gly His Ile Thr Trp Thr Pro Pro Ala Ile Phe Lys Ser Tyr Cys
 115 120 125

Glu Ile Ile Val Thr His Phe Pro Phe Asp Glu Gln Asn Cys Ser Met
 130 135 140

Lys Leu Gly Thr Trp Thr Tyr Asp Gly Ser Val Val Ala Ile Asn Pro
 145 150 155 160

Glu Ser Asp Gln Pro Asp Leu Ser Asn Phe Met Glu Ser Gly Glu Trp
 165 170 175

Val Ile Lys Glu Ser Arg Gly Trp Lys His Ser Val Thr Tyr Ser Cys
 180 185 190

Cys Pro Asp Thr Pro Tyr Leu Asp Ile Thr Tyr His Phe Val Met Gln
 195 200 205

Arg Leu
 210

<210> 3
 <211> 75
 <212> DNA
 <213> Homo sapiens

<400> 3
 ggtgacatgg tagatctgcc acgccccagc tgcgtgactt tgggagttcc tttgtttct 60
 catctgcagg atgag 75

<210> 4
 <211> 25
 <212> PRT
 <213> Homo sapiens

<400> 4

Gly Asp Met Val Asp Leu Pro Arg Pro Ser Cys Val Thr Leu Gly Val
 1 5 10 15

Pro Leu Phe Ser His Leu Gln Asp Glu
 20 25

<210> 5
 <211> 705
 <212> DNA

<213> Homo sapiens

<400>	5					
tccgaacatg	agaccgtct	ggtggcaaag	ctattaaag	actacagcag	cgtggtcgg	60
ccagtggaaag	accaccgcca	ggtcggtggag	gtcacccgtgg	gcctgcagct	gatacagctc	120
atcaatgtgg	atgaagtaaa	tcagatcgtg	acaaccaatg	tgcgtctgaa	acagggtgac	180
atggtagatc	tgccacgccc	cagctgcgtg	actttggag	ttcccttgg	ttctcatctg	240
caggatgagc	aatgggtgga	ttacaaccta	aatggaatc	cagatgacta	tggcggtgtg	300
aaaaaaaattc	acattccatc	agaaaagatc	tggcgcccag	accttggatc	ctataacat	360
gcagatggtg	actttgctat	tgtcaagttc	accaaagtgc	tcctgcagta	cactggccac	420
atcacgtgga	caccccccagc	catctttaaa	agctactgtg	agatcatcgt	cacccacttt	480
ccctttgatg	aacagaactg	cagcatgaag	ctgggcaccc	ggacctacga	cggctctgtc	540
gtggccatca	acccggaaag	cgaccagcca	gacctgagca	acttcatgga	gagcggggag	600
tgggtgatca	aggagtcccg	gggctggaaag	cactccgtgaa	cctattcctg	ctgccccgac	660
accccttacc	tggacatcac	ctaccatcc	gtcatgcagc	gcctg		705

<210> 6

<211> 235

<212> PRT

<213> Homo sapiens

<400> 6

Ser	Glu	His	Glu	Thr	Arg	Leu	Val	Ala	Lys	Leu	Phe	Lys	Asp	Tyr	Ser
1					5				10					15	

Ser	Val	Val	Arg	Pro	Val	Glu	Asp	His	Arg	Gln	Val	Val	Glu	Val	Thr
				20				25				30			

Ala	Gly	Leu	Gln	Leu	Ile	Gln	Leu	Ile	Asn	Val	Asp	Glu	Val	Asn	Gln
		35				40						45			

Ile	Val	Thr	Thr	Asn	Val	Arg	Leu	Lys	Gln	Gly	Asp	Met	Val	Asp	Leu
				50		55				60					

Pro	Arg	Pro	Ser	Cys	Val	Thr	Leu	Gly	Val	Pro	Leu	Phe	Ser	His	Leu
65					70				75				80		

Gln	Asp	Glu	Gln	Trp	Val	Asp	Tyr	Asn	Leu	Lys	Trp	Asn	Pro	Asp	Asp
					85				90				95		

Tyr	Gly	Gly	Val	Lys	Lys	Ile	His	Ile	Pro	Ser	Glu	Lys	Ile	Trp	Arg
				100				105				110			

Pro	Asp	Leu	Val	Leu	Tyr	Asn	Asn	Ala	Asp	Gly	Asp	Phe	Ala	Ile	Val
					115			120				125			

Lys	Phe	Thr	Lys	Val	Leu	Leu	Gln	Tyr	Thr	Gly	His	Ile	Thr	Trp	Thr
					130			135				140			

Pro	Pro	Ala	Ile	Phe	Lys	Ser	Tyr	Cys	Glu	Ile	Ile	Val	Thr	His	Phe
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

145	150	155	160
-----	-----	-----	-----

Pro	Phe	Asp	Glu	Gln	Asn	Cys	Ser	Met	Lys	Leu	Gly	Thr	Trp	Thr	Tyr
				165					170					175	

Asp	Gly	Ser	Val	Val	Ala	Ile	Asn	Pro	Glu	Ser	Asp	Gln	Pro	Asp	Leu
			180					185					190		

Ser	Asn	Phe	Met	Glu	Ser	Gly	Glu	Trp	Val	Ile	Lys	Glu	Ser	Arg	Gly
		195			200						205				

Trp	Lys	His	Ser	Val	Thr	Tyr	Ser	Cys	Cys	Pro	Asp	Thr	Pro	Tyr	Leu
	210				215					220					

Asp	Ile	Thr	Tyr	His	Phe	Val	Met	Gln	Arg	Leu
	225				230			235		

<210> 7

<211> 690

<212> DNA

<213> Homo sapiens

<400> 7

tccgaacatg agaccgtct ggtggcaaag ctatttaag actacagcag cgtggtgccg 60

ccagtggaaag accaccgcca ggtcggtgg gtcaaccgtgg gcctgcagct gatacagctc 120

atcaatgtgg atgaagtaaa tcagatcgta acaaccaatg tgcgtctgaa acagggtgac 180

atggtagatc tgccacgccc cagctgcgtg actttggag ttcccttggtt ttctcatctg 240

caggatgagc aatgggtgga ttacaaccta aaatggaatc cagatgacta tggcggtgtg 300

aaaaaaaaattc acattccttc agaaaagatc tggcgcccag accttggttt ctataacgat 360

gcagatggtg actttgctat tgtcaagttc accaaagtgc tcctgcagta cactggccac 420

atcacgtgga cacctccagc catctttaaa agctactgtg agatcatcgta caccctactt 480

ccctttgatg aacagaactg cagcatgaag ctgggcaccc ggacctacgta cggctctgtc 540

gtggccatca acccgaaag cgaccagcca gacctgagca acttcatgga gagcggggag 600

tgggtgatca aggagtcccg gggctgaaag cactccgtga cctattcctg ctgccccgac 660

accccttacc tggacatcac ctaccacttc 690

<210> 8

<211> 230

<212> PRT

<213> Homo sapiens

<400> 8

Ser	Glu	His	Glu	Thr	Arg	Leu	Val	Ala	Lys	Leu	Phe	Lys	Asp	Tyr	Ser
1					5			10				15			

Ser	Val	Val	Arg	Pro	Val	Glu	Asp	His	Arg	Gln	Val	Val	Glu	Val	Thr
	20				25						30				

Ala	Gly	Leu	Gln	Leu	Ile	Gln	Leu	Ile	Asn	Val	Asp	Glu	Val	Asn	Gln
					35			40			45				

Ile Val Thr Thr Asn Val Arg Leu Lys Gln Gly Asp Met Val Asp Leu
 50 55 60

Pro Arg Pro Ser Cys Val Thr Leu Gly Val Pro Leu Phe Ser His Leu
 65 70 75 80

Gln Asp Glu Gln Trp Val Asp Tyr Asn Leu Lys Trp Asn Pro Asp Asp
 85 90 95

Tyr Gly Gly Val Lys Lys Ile His Ile Pro Ser Glu Lys Ile Trp Arg
 100 105 110

Pro Asp Leu Val Leu Tyr Asn Asn Ala Asp Gly Asp Phe Ala Ile Val
 115 120 125

Lys Phe Thr Lys Val Leu Leu Gln Tyr Thr Gly His Ile Thr Trp Thr
 130 135 140

Pro Pro Ala Ile Phe Lys Ser Tyr Cys Glu Ile Ile Val Thr His Phe
 145 150 155 160

Pro Phe Asp Glu Gln Asn Cys Ser Met Lys Leu Gly Thr Trp Thr Tyr
 165 170 175

Asp Gly Ser Val Val Ala Ile Asn Pro Glu Ser Asp Gln Pro Asp Leu
 180 185 190

Ser Asn Phe Met Glu Ser Gly Glu Trp Val Ile Lys Glu Ser Arg Gly
 195 200 205

Trp Lys His Ser Val Thr Tyr Ser Cys Cys Pro Asp Thr Pro Tyr Leu
 210 215 220

Asp Ile Thr Tyr His Phe
 225 230

<210> 9
<211> 20
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 9
ccggatccga acatgagacc 20

<210> 10
<211> 23
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 10
cggaaattcca ggcgcgtgcata gac 23

<210> 11
<211> 26

<212> DNA		
<213> Artificial		
<220>		
<223> synthetic		
<400> 11		
cggaattctg gaggtgtcca cgtgat		26
<210> 12		
<211> 23		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic		
<400> 12		
ccggatccgc catcttaaa agc		23
<210> 13		
<211> 25		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic		
<400> 13		
ggccatgggc tccgaacatg agacc		25
<210> 14		
<211> 29		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic		
<400> 14		
ccggatcctc aaaagtgrta ggtgatrc		29
<210> 15		
<211> 24		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic		
<400> 15		
cgttatgggg ctgcttgttg acag		24
<210> 16		
<211> 24		
<212> DNA		
<213> Artificial		

<220>
<223> synthetic

<400> 16
gacggtatca gtggtctcag tggc 24

<210> 17
<211> 26
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 17
cagcccaagt gAACAGGGAG attcgc 26

<210> 18
<211> 20
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 18
gttcctcaaa ttgcagcaca 20

<210> 19
<211> 20
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 19
agccaaaaga tgagaaggca 20

<210> 20
<211> 24
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 20
tgggagacag ctgacggta aaag 24

<210> 21
<211> 20
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 21	
cggaaatggg aattttacct	20
<210> 22	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	
<400> 22	
tccagagcag tgatggtag	20
<210> 23	
<211> 24	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	
<400> 23	
aacatgacac cgcggagact cggg	24
<210> 24	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	
<400> 24	
aggacttggc cttttggagt	20
<210> 25	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	
<400> 25	
cagtccttgg atggtgaggt	20
<210> 26	
<211> 24	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	
<400> 26	
tgatgaggta cgggtgacgg tgct	24

<210> 27
<211> 21
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 27
gtgagagaaa aggcatggct g 21

<210> 28
<211> 21
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 28
ggttcttggt tgtttctctg c 21

<210> 29
<211> 24
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 29
ggtgctctct gtcatctccg gggt 24

<210> 30
<211> 23
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 30
gaggcaagct tacttcaata gca 23

<210> 31
<211> 23
<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 31
atgccagtgt ttcttgtttc att 23

<210> 32
<211> 24

<212> DNA
<213> Artificial

<220>
<223> synthetic

<400> 32
acacccacgg gatcaattat cctc

24