- 1- Seja $M \subset \mathbb{R}^3$ a região limitada inferiormente pelo plano z=0 e superiormente pela superficie $z=9-x^2-y^2$.
 - **a)** Escreva um integral triplo em coordenadas cartesianas que representa o volume de M.
 - b) Reescreva o integral do volume de M em coordenadas cilíndricas.
 - c) Sabendo que a densidade da região é dada por $\rho(x, y, z) = z$, determine um integral em coordenadas cilíndricas que representa a massa de M.
- **2-** Considere a curva $C \subset \mathbb{R}^2$ definida pela união de curvas C_1 e C_2 sendo percorrida no sentido direto ao longo de C_1 e no sentido inverso ao longo de C_2 .

$$C_1$$
: $y = x^3, x \in [0,1]$

$$C_2$$
: $y = \sqrt{x}$, $x \in [0,1]$

- a) Sendo $\vec{F}(x,y) = (y,x)$, determine a área da região delimitada por C usando um integral de linha.
- **b)** Seja, agora, $\vec{F}(x, y) = (y \cos x, x \sin y)$. Determina o integral que calcula o trabalho realizado por \vec{F} ao longo da curva C. Utilize o Teorema de Green.
- **3-** Seja $\vec{F}(x, y, z) = (yz, xz, xy)$.
 - a) Verifique se \vec{F} é conservativo. Em caso afirmativo, determine a função potencial f tal que $\vec{F} = \nabla f$.
 - **b)** Calcule o trabalho realizado por \vec{F} ao longo da curva C parametrizada por:

$$\phi=(t,t^2,t^3),t\epsilon[0,1]$$

4- Seja $\vec{F}(x,y,z) = (z,x,y)$ e S a superfície do paraboloide $z = 4 - x^2 - y^2$, para $z \ge 0$, orientada para cima. Indique o integral de superfície $\iint_S \vec{F} \, d\vec{S}$ usando o Teorema de Stokes.