

Introduction to Vectors

YouTube classes with Dr Chris Tisdell

Christopher C. Tisdell

Download free books at

bookboon.com

Christopher C. Tisdell

Introduction to Vectors

YouTube classes with Dr Chris Tisdell

Introduction to Vectors: YouTube classes with Dr Chris Tisdell

1st edition

© 2014 Christopher C. Tisdell & bookboon.com

ISBN 978-87-403-0823-5

Contents

How to use this workbook	7
About the author	8
Acknowledgments	9
1 The basics of vectors	10
1.1 Geometry of vectors	10
1.2 But, what is a vector?	17
1.3 How big are vectors?	20
1.4 Determine the vector from one point to another point	24
1.5 Vectors in Three Dimensions	25
1.6 Parallel vectors and collinear points example	28
1.7 Vectors and collinear points example	29
1.8 Determine the point that lies on vector: an example.	30

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

2	Lines and vectors	31
2.1	Lines and vectors	31
2.2	Lines in \mathbb{R}^3	32
2.3	Lines: Cartesian to parametric form	33
2.4	Lines: Parametric and Cartesian forms given two points	34
2.5	Lines: Convert Parametric to Cartesian	35
2.6	Cartesian to parametric form of line	36
3	Planes and vectors	37
3.1	The span of a vector	37
3.2	Equation of plane: Parametric vector form	39
3.3	Planes: Cartesian to parametric form	41
3.4	Equation of plane from 3 points	42

Deloitte.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

Click on the ad to read more

4	Dot and cross product	43
4.1	What is the dot product?	43
4.2	Orthogonal vectors	46
4.3	Scalar Projection of vectors	49
4.4	Distance between a point and a line in \mathbb{R}^3	52
4.5	Cross product of two vectors	54
4.6	Properties of the cross product	56
4.7	What does the cross product measure?	57
4.8	Scalar triple product	58
4.9	What does the scalar triple product measure?	60
4.10	Equation of plane in \mathbb{R}^3	62
4.11	Distance between a point and a plane in \mathbb{R}^3	64
Bibliography		66

SIMPLY CLEVER

ŠKODA

We will turn your CV into
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

Click on the ad to read more

How to use this workbook

This workbook is designed to be used in conjunction with the author's free online video tutorials. Inside this workbook each chapter is divided into learning modules (subsections), each having its own dedicated video tutorial.

View the online video via the hyperlink located at the top of the page of each learning module, with workbook and paper or tablet at the ready. Or click on the *Introduction to Vectors* playlist where all the videos for the workbook are located in chronological order:

Introduction to Vectors

<http://www.YouTube.com/playlist?list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>.

While watching each video, fill in the spaces provided after each example in the workbook and annotate to the associated text.

You can also access the above via the author's YouTube channel

Dr Chris Tisdell's YouTube Channel

<http://www.YouTube.com/DrChrisTisdell>

There has been an explosion in books that connect text with video since the author's pioneering work *Engineering Mathematics: YouTube Workbook* [31]. The current text takes innovation in learning to a new level, with all of the video presentations herein streamed live online, giving the classes a live, dynamic and fun feeling.

About the author

Dr Chris Tisdell is Associate Dean, Faculty of Science at UNSW Australia who has inspired millions of learners through his passion for mathematics and his innovative online approach to maths education. He has created more than 500 free YouTube university-level maths videos since 2008, which have attracted over 4 million downloads. This has made his virtual classroom the top-ranked learning and teaching website across Australian universities on the education hub YouTube EDU.

His free online etextbook, *Engineering Mathematics: YouTube Workbook*, is one of the most popular mathematical books of its kind, with more than 1 million downloads in over 200 countries. A champion of free and flexible education, he is driven by a desire to ensure that anyone, anywhere at any time, has equal access to the mathematical skills that are critical for careers in science, engineering and technology.

At UNSW he pioneered the video-recording of live lectures. He was also the first Australian educator to embed Google Hangouts into his teaching practice in 2012, enabling live and interactive learning from mobile devices.

Chris has collaborated with industry and policy makers, championed maths education in the media and constantly draws on the feedback of his students worldwide to advance his teaching practice.

Acknowledgments

I would like to express my sincere thanks to the Bookboon team for their support.

1 The basics of vectors

1.1 Geometry of vectors

1.1.1 Where are we going?

[View this lesson on YouTube \[1\]](#)

- We will discover new kinds of quantities called “vectors”.
- We will learn the basic properties of vectors and investigate some of their mathematical applications.

The need for vectors arise from the limitations of traditional numbers (also called “scalars”, ie real numbers or complex numbers).

For example:

- to answer the question – “What is the current temperature?” we use a single number (scalar);
- while to answer the question – “What is the current velocity of the wind?” we need more than just a single number. We need magnitude (speed) and direction. This is where vectors come in handy.

1.1.2 Why are vectors AWESOME?

There are at least two reasons why vectors are AWESOME:-

1. their real-world applications;
2. their ability simplify mathematics in two and three dimensions, including geometry.

Graphics: CC BY-SA 3.0, <http://creativecommons.org/licenses/by-sa/3.0/deed.en>

1.1.3 What is a vector?

Important idea (What is a vector?).

A vector is a quantity that has a magnitude (length) and a direction. A vector can be geometrically represented by a directed line segment with a head and a tail.

Graphics: CC BY-SA 3.0,
<http://creativecommons.org/licenses/by-sa/3.0/deed.en>

- We can use boldface notation to denote vectors, eg, \mathbf{a} , to distinguish the vector \mathbf{a} from the number a .
- Alternatively, we can use a tilde (which is easier to write with a pen or pencil), ie the vector $\mathbf{\tilde{a}}$.
- Alternatively, we can use an arrow (which is easier to write with a pen or pencil), ie the vector \vec{a} .
- If we are emphasizing the two end points A and B of a vector, then we can write \vec{AB} as the vector from the point A to the point B .

The zero vector has zero length and no direction.

1.1.4 Geometry of vector addition and subtraction

As can be seen from the above diagrams:

- If two vectors form two sides of a parallelogram then the sum of the two vectors is the diagonal of the parallelogram, directed as in the above diagram.
- Equivalently, if two vectors form two sides of a triangle, then the sum of the two vectors is the third side of a triangle.
- Subtraction of two vectors \mathbf{a} and \mathbf{b} involves a triangle / parallelogram rule applied to \mathbf{a} and $-\mathbf{b}$.

I joined MITAS because
I wanted **real responsibility**

The Graduate Programme
for Engineers and Geoscientists
www.discovermitas.com

Month 16
I was a construction supervisor in the North Sea advising and helping foremen solve problems

Real work
International opportunities
Three work placements

1.1.5 Geometry of multiplication of scalars with vectors

As can be seen from the diagram:

- A scalar α times a vector can either stretch, compress and/or flip a vector.
- If $\alpha > 1$ then the original vector is stretched.
- If $0 < \alpha < 1$ then the original vector is compressed.
- If $-1 < \alpha < 0$ then the original vector is flipped and compressed.
- If $\alpha < -1$ then the original vector is flipped and stretched.

1.1.6 Parallel vectors

Important idea (Parallel vectors).

Two non-zero vectors \mathbf{u} and \mathbf{v} are parallel if there is a scalar $\lambda \neq 0$ such that

$$\mathbf{u} = \lambda\mathbf{v}.$$

Three points A , B and C will be collinear (lie on the same line) if \vec{AB} is parallel to \vec{AC} .

Example.

Consider the following diagram of triangles. Prove that the line segment joining the midpoint of the sides of the larger triangle is half the length of, and parallel to, the base of the larger triangle.

1.2 But, what is a vector?

[View this lesson on YouTube \[4\]](#)

To give a little more definiteness, we can write vectors as columns. Let us take two simple, by very important special vectors as examples:

$$\mathbf{i} := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathbf{j} := \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Any vector (in the xy -plane) can be written in terms of \mathbf{i} and \mathbf{j} using the triangle law and scalar multiplication.

Important idea (Column form).

The column form of a vector (in the xy -plane) is

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} = a_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}.$$

For example, $\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 3\mathbf{i} + 2\mathbf{j}$.

1.2.1 How to add, subtract and scalar multiply vectors

Important idea (Basic operations with vectors).

To add / subtract two vectors just add / subtract their corresponding components. To multiply a scalar with a vector, just multiply each component by the scalar.

Let $\mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{b} = \begin{pmatrix} 5 \\ 6 \end{pmatrix} = 5\mathbf{i} + 6\mathbf{j}$. Then

$$\begin{aligned}\mathbf{a} + \mathbf{b} &= \begin{pmatrix} 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \end{pmatrix} \\ \mathbf{a} - \mathbf{b} &= \begin{pmatrix} 3 \\ 4 \end{pmatrix} - \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} \\ 3\mathbf{a} + 2\mathbf{b} &= 3\begin{pmatrix} 3 \\ 4 \end{pmatrix} + 2\begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 9 \\ 12 \end{pmatrix} + \begin{pmatrix} 10 \\ 12 \end{pmatrix} = \begin{pmatrix} 19 \\ 24 \end{pmatrix}\end{aligned}$$

The advertisement features a man walking down a city street at night, looking towards the right. In the background, there are tall office buildings. On the left, the IE business school logo is visible. On the right, a badge claims "#1 European Business School" from the Financial Times 2013. A speech bubble contains the hashtag #gobeyond. Below the man, the text "MASTER IN MANAGEMENT" is displayed. At the bottom, a section reads: "Because achieving your dreams is your greatest challenge. IE Business School's Master in Management taught in English, Spanish or bilingually, trains young high performance professionals at the beginning of their career through an innovative and stimulating program that will help them reach their full potential." It lists three bullet points: "Choose your area of specialization.", "Customize your master through the different options offered.", and "Global Immersion Weeks in locations such as London, Silicon Valley or Shanghai." The tagline "Because you change, we change with you." is at the bottom. Social media links and contact information are at the very bottom.

Click on the ad to read more

If we write our vectors in terms of the unit vectors \mathbf{i} and \mathbf{j} then our calculations would look like the following:

$$\begin{aligned}\mathbf{a} + \mathbf{b} &= (3\mathbf{i} + 4\mathbf{j}) + (5\mathbf{i} + 6\mathbf{j}) = 8\mathbf{i} + 10\mathbf{j} \\ \mathbf{a} - \mathbf{b} &= (3\mathbf{i} + 4\mathbf{j}) - (5\mathbf{i} + 6\mathbf{j}) = -2\mathbf{i} - 2\mathbf{j} \\ 3\mathbf{a} + 2\mathbf{b} &= 3(3\mathbf{i} + 4\mathbf{j}) + 2(5\mathbf{i} + 6\mathbf{j}) = 19\mathbf{i} + 24\mathbf{j}.\end{aligned}$$

If we let the tail point of a vector be at the origin $(0, 0)$ and the head point be at the point $A(2, 3)$ then the vector formed from this directed line segment is known as the position vector \mathbf{a} of the point A .

$$\text{Thus, } \mathbf{a} = \vec{OA} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} = 2\mathbf{i} + 3\mathbf{j}$$

Graphics: CC BY-SA 3.0, <http://creativecommons.org/licenses/by-sa/3.0/deed.en>

1.3 How big are vectors?

[View this lesson on YouTube \[5\].](#)

To measure how “big” certain vectors are, we introduce a way of measuring the their size, known as length or magnitude.

Important idea (Length / magnitude of a vector).

For a vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1\mathbf{i} + a_2\mathbf{j}$ we define the length or magnitude of \mathbf{a} by

$$|\mathbf{a}| := \sqrt{a_1^2 + a_2^2}.$$

Geometrically, $|\mathbf{a}|$ represents the length of the line segment associated with \mathbf{a} .

1.3.1 Measuring the direction (angle) of vectors

Using trig and the length of \mathbf{a} we can to compute the angle θ that the vector \mathbf{a} makes with the positive x -axis.

Important idea (Angle to positive x axis).

For a vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1\mathbf{i} + a_2\mathbf{j}$, the angle between the vector and the positive x axis is given via

$$a_1 = |\mathbf{a}| \cos \theta; \quad a_2 = |\mathbf{a}| \sin \theta; \quad \tan \theta = a_2/a_1.$$

We take the anticlockwise direction of rotation as the positive direction.

1.3.2 Vectors: length and direction example

Example.

Calculate the length and angle to the positive x axis of the vector

$$\mathbf{a} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} = \sqrt{3}\mathbf{i} + \mathbf{j}.$$

"I studied English for 16 years but...
...I finally learned to speak it in just six lessons"

Jane, Chinese architect

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download

Click on the ad to read more

1.3.3 Properties of the length / magnitude

Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = a_1\mathbf{i} + a_2\mathbf{j}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = b_1\mathbf{i} + b_2\mathbf{j}$. Some basic properties of the magnitude are:-

$$\begin{aligned} |\mathbf{a}| &= \sqrt{a_1^2 + a_2^2} \geq 0; \\ |\mathbf{a}| &= 0 \text{ iff } \mathbf{a} = \mathbf{0}; \\ |\mathbf{a} + \mathbf{b}| &\leq |\mathbf{a}| + |\mathbf{b}|; \\ |\alpha\mathbf{a}| &= |\alpha||\mathbf{a}| \text{ where } \alpha \text{ is a scalar;} \end{aligned}$$

The ideas above generalize to more “complicated” situations where the vectors have more components.

1.4 Determine the vector from one point to another point

[View this lesson on YouTube \[6\]](#)

Consider the point $A(1, 2)$ and the point $B(4, 3)$. What is the vector from A to B ? We draw a diagram and apply the triangle rule to see

$$\mathbf{a} + \vec{AB} = \mathbf{b}$$

so a rearrangement gives

$$\begin{aligned}\vec{AB} &= \mathbf{b} - \mathbf{a} \\ &= \begin{pmatrix} 4 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}.\end{aligned}$$

Important idea (Vector from one point to another).

If A and B are points with respective position vectors \mathbf{a} and \mathbf{b} then the vector from A to B is

$$\vec{AB} = \mathbf{b} - \mathbf{a}.$$

The distance between A and B will be $|\vec{AB}|$.

1.5 Vectors in Three Dimensions

[View this lesson on YouTube \[7\]](#)

Graphics: CC BY-SA 3.0, <http://creativecommons.org/licenses/by-sa/3.0/deed.en>

Similar to the 2D case, but we now have *three* basis vectors \mathbf{i} , \mathbf{j} and a new vector \mathbf{k} from which we can describe any vector in three-dimensional space.

Excellent Economics and Business programmes at:

university of
groningen

**“The perfect start
of a successful,
international career.”**

CLICK HERE
 to discover why both socially
 and academically the University
 of Groningen is one of the best
 places for a student to be

www.rug.nl/feb/education

Important idea (Column form).

The column form of a vector (in 3D-space) is

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k} = a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

For example, $\begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$.

Important idea (Length / magnitude of a vector).

For a vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ we define the length or magnitude of \mathbf{a} by

$$|\mathbf{a}| := \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

1.5.1 Vectors in higher dimensions

Important idea.

Column form The column form of a vector (in n -dimensional space) is

$$\mathbf{a} = a_1 \mathbf{e}_1 + \cdots + a_n \mathbf{e}_n = a_1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \cdots + a_n \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.$$

Here the \mathbf{e}_j are unit vectors with all zeros, except for the j th element, which is one. The set of the vectors \mathbf{e}_j are referred to as “the standard basis vectors for \mathbb{R}^n ”.

For a vector $\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ we define the length or magnitude of \mathbf{a} by

$$|\mathbf{a}| := \sqrt{a_1^2 + \cdots + a_n^2}.$$

1.6 Parallel vectors and collinear points example

[View this lesson on YouTube \[2\]](#)

Example.

Consider the points: $A(2, -3, 5)$; $B(6, 7, -2)$; $C(-7, 1, 4)$; and $D(-15, -19, 16)$. Calculate the vectors \vec{AB} and \vec{CD} . Are they parallel – why / why not? Are A , B and C collinear – why / why not?

American online LIGS University

is currently enrolling in the
Interactive Online BBA, MBA, MSc,
DBA and PhD programs:

- ▶ enroll by **September 30th, 2014** and
- ▶ save up to **16%** on the tuition!
- ▶ pay in 10 installments / 2 years
- ▶ Interactive Online education
- ▶ visit www.ligsuniversity.com to find out more!

Note: LIGS University is not accredited by any nationally recognized accrediting agency listed by the US Secretary of Education.
[More info here.](#)

Click on the ad to read more

1.7 Vectors and collinear points example

[View this lesson on YouTube \[3\]](#)

Example.

Consider the points $A(4, 3, -2)$, $B(-3, -6, 10)$ and $C(25, 30, -39)$.

Compute the vector \vec{AB} . Show that the points A , B and C cannot lie on a straight line.

1.8 Determine the point that lies on vector: an example.

[View this lesson on YouTube \[8\]](#)

Example.

Consider the points $A(2, -3, 1)$ and $B(8, 9, -5)$

Calculate the vector \vec{AB} . Determine the point $D(x, y, z)$ that lies between A and B with $\vec{AD} = 2\vec{DB}$.

2 Lines and vectors

2.1 Lines and vectors

[View this lesson on YouTube \[9\]](#)

We can apply vectors to obtain equations for lines and line segments. For example

Important idea (Parametric vector form of a line).

A line l that is parallel to a vector \mathbf{v} and passes through the point A with position vector \mathbf{a} has equation

$$\mathbf{x} = \mathbf{a} + \lambda\mathbf{v}, \quad \lambda \in \mathbb{R}.$$

Adapted Graphics: CC BY-SA 3.0, <http://creativecommons.org/licenses/by-sa/3.0/deed.en>

2.2 Lines in \mathbb{R}^3

[View this lesson on YouTube \[10\]](#)

Let the line l be parallel to $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ and pass through the point A with position vector $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$. A parametric vector form for l is

$$\mathbf{x} = \mathbf{a} + \lambda\mathbf{v}, \quad \lambda \in \mathbb{R}$$

and we can form an equivalent Cartesian form for the line.

Important idea (Cartesian form of line in \mathbb{R}^3).

The Cartesian form for the line l that is parallel the vector \mathbf{v} and passes through the point $A(a_1, a_2, a_3)$ with position vector \mathbf{a} is

$$\frac{x - a_1}{v_1} = \frac{y - a_2}{v_2} = \frac{z - a_3}{v_3} (= \lambda).$$

2.3 Lines: Cartesian to parametric form

[View this lesson on YouTube \[11\]](#)

Example.

Consider the line l with Cartesian form

$$\frac{x+4}{3} = \frac{y+3}{-2} = \frac{z-3}{-1}.$$

Determine a parametric vector form of the line l . Identify: a point A on l ; and a vector \mathbf{v} parallel to l .

2.4 Lines: Parametric and Cartesian forms given two points

[View this lesson on YouTube \[12\]](#)

Example.

Consider the points $A(1, 2, 5)$ and $B(3, 2, 1)$.

Determine a parametric vector form of the line l that passes through A and B . Determine the Cartesian form of l .

2.5 Lines: Convert Parametric to Cartesian

[View this lesson on YouTube \[13\]](#)

Example.

Consider a vector parametric form of a line l given by

$$\mathbf{x} = \begin{pmatrix} -2 \\ -5 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ 6 \\ -3 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

Determine the Cartesian form of l . Does the point $(18, 25, 10)$ lie on l and why / why not?

..... Alcatel-Lucent

www.alcatel-lucent.com/careers

What if you could build your future and create the future?

One generation's transformation is the next's status quo. In the near future, people may soon think it's strange that devices ever had to be "plugged in." To obtain that status, there needs to be "The Shift".

Click on the ad to read more

2.6 Cartesian to parametric form of line

[View this lesson on YouTube \[14\]](#)

Example.

Consider the line l with Cartesian form

$$x = 8, \quad \frac{y - 3}{2} = \frac{z + 5}{-5}.$$

Determine a parametric vector form of the line l . Identify: a point on l ; and a vector \mathbf{v} parallel to l .

3 Planes and vectors

3.1 The span of a vector

[View this lesson on YouTube \[15\]](#)

The concept of span is important in connecting the ideas of vectors with lines and planes, plus span arises in many other areas in linear algebra.

The span of a vector \mathbf{v} is connected with all scalar multiples of \mathbf{v} , that is

$$\lambda\mathbf{v}, \quad \text{where } \lambda \in \mathbb{R}.$$

Important idea (Span of a vector).

The equation associated with all scalar multiples of a nonzero vector \mathbf{v} is

$$\mathbf{x} = \lambda\mathbf{v}, \quad \lambda \in \mathbb{R}.$$

The span of \mathbf{v} is the line l that is parallel to \mathbf{v} and passes through the origin.

In set form: $\text{span}(\mathbf{v}) := \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \lambda\mathbf{v}, \text{ for some } \lambda \in \mathbb{R}\}$.

3.1.1 Planes and vectors: span of two vectors

The span of two vectors \mathbf{v}_1 and \mathbf{v}_2 is connected with all “linear combinations” of \mathbf{v}_1 and \mathbf{v}_2 , that is

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \quad \text{where } \lambda_1, \lambda_2 \in \mathbb{R}.$$

Important idea (Span of two vectors).

The span of two nonzero, nonparallel vectors \mathbf{v}_1 and \mathbf{v}_2 is the set of points associated with all linear combinations of \mathbf{v}_1 and \mathbf{v}_2 , in set form

$$\text{span}(\mathbf{v}_1, \mathbf{v}_2) := \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \text{ for some } \lambda_1, \lambda_2 \in \mathbb{R}\}.$$

The equation

$$\mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \quad \lambda_1, \lambda_2 \in \mathbb{R}$$

describes a plane that is parallel to the vectors \mathbf{v}_1 and \mathbf{v}_2 and passes through the origin.

In the past four years we have drilled

81,000 km

That's more than **twice** around the world.

Who are we?
We are the world's leading oilfield services company. Working globally—often in remote and challenging locations—we invent, design, engineer, manufacture, apply, and maintain technology to help customers find and produce oil and gas safely.

Who are we looking for?
We offer countless opportunities in the following domains:

- Engineering, Research, and Operations
- Geoscience and Petrotechnical
- Commercial and Business

If you are a self-motivated graduate looking for a dynamic career, apply to join our team.

What will you be?

Schlumberger

careers.slb.com

3.2 Equation of plane: Parametric vector form

[View this lesson on YouTube \[16\]](#)

Combining our ideas on linear combination and span of two vectors, we can now define a plane in \mathbb{R}^n .

Important idea (Equation of plane: Parametric vector form).

Let \mathbf{v}_1 and \mathbf{v}_2 be two nonzero, nonparallel vectors and let A be a point with position vector \mathbf{a} . The plane through A that is parallel to \mathbf{v}_1 and \mathbf{v}_2 has equation

$$\mathbf{x} = \mathbf{a} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

This form is known as the parametric vector form of the plane \mathcal{P} .

In set form: $P = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{a} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \text{ for some } \lambda_1, \lambda_2 \in \mathbb{R}\}$.

The Cartesian form of a (hyper)plane is

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = d$$

where the a_i are constants and d is a constant.

Example.

Consider the Cartesian equation of a plane

$$x - 2y + 7z = 2.$$

Determine a parametric vector form of the plane. Hence, identify two nonzero and nonparallel vectors that are parallel to the plane.

3.3 Planes: Cartesian to parametric form

[View this lesson on YouTube \[17\]](#)

Example.

Consider the Cartesian equation of a plane

$$x + 3y - 2z = 4.$$

Determine a parametric vector form of the plane. Hence, identify two nonzero and nonparallel vectors that are parallel to the plane.

3.4 Equation of plane from 3 points

[View this lesson on YouTube \[18\]](#)

Example.

Consider the points $A(1, 2, 5)$, $B(3, 2, 1)$ and $C(-2, 1, 0)$.

Determine a parametric vector form of the plane \mathcal{P} that passes through A , B and C .

Write down two nonzero and nonparallel vectors that are parallel to \mathcal{P} .

4 Dot and cross product

4.1 What is the dot product?

[View this lesson on YouTube \[19\]](#)

We have already seen how to multiply a scalar with a vector. But how can we multiply a vector with a vector and what does it mean? How would it be useful?

Important idea (Dot product).

Let \mathbf{a} and \mathbf{b} be vectors. The dot product of \mathbf{a} and \mathbf{b} is defined as

$$\mathbf{a} \bullet \mathbf{b} := a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

We can connect the dot product with lengths and angles via the Cosine Rule for Triangles to obtain the following.

Important idea (Dot product).

Let \mathbf{a} and \mathbf{b} be vectors. The dot product of \mathbf{a} and \mathbf{b} can be written as

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

where $\theta \in [0, \pi]$ is the angle between the vectors.

For dimensions higher than three, the above actually enables us to define what we mean by an angle between two vectors via

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}.$$

There are two reasons why the dot product is important: to compute the angle between two vectors; to calculate the “projection” of one vector on another vector.

Maastricht University *Leading in Learning!*

**Join the best at
the Maastricht University
School of Business and
Economics!**

Top master's programmes

- 33rd place Financial Times worldwide ranking: MSc International Business
- 1st place: MSc International Business
- 1st place: MSc Financial Economics
- 2nd place: MSc Management of Learning
- 2nd place: MSc Economics
- 2nd place: MSc Econometrics and Operations Research
- 2nd place: MSc Global Supply Chain Management and Change

Sources: Keuzegids Master ranking 2013; Elsevier 'Beste Studies' ranking 2012; Financial Times Global Masters in Management ranking 2012

**Visit us and find out why we are the best!
Master's Open Day: 22 February 2014**

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

www.mastersopenday.nl

Click on the ad to read more

Example.

Calculate the dot product of the following two vectors

$$\mathbf{a} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

and also calculate the angle θ between the two vectors.

4.2 Orthogonal vectors

[View this lesson on YouTube \[20\]](#)

We can use the dot product to compute the angle θ between two vectors. If $\theta = \pi/2$ then the two vectors are perpendicular to each other. This idea is known as “orthogonality”.

Important idea (Orthogonal vectors).

Let \mathbf{a} and \mathbf{b} be vectors. If

$$\mathbf{a} \bullet \mathbf{b} = 0$$

then the angle between them is $\theta = \pi/2$ and we say that \mathbf{a} and \mathbf{b} are “orthogonal”, “normal” or “perpendicular” to each other.

4.2.1 Orthonormal vectors

If we combine the idea of orthogonality with unit length, then we arrive at the concept of orthonormality.

Important idea (Orthonormal vectors).

Let \mathbf{a} and \mathbf{b} be vectors. If

$$\mathbf{a} \bullet \mathbf{b} = 0, \quad \text{and} \quad |\mathbf{a}| = 1 = |\mathbf{b}|$$

then we call the pair of vectors $\{\mathbf{a}, \mathbf{b}\}$ an “orthonormal set”.

This means that the vectors are perpendicular to one another and both have unit length. For example, the set of vectors $\{\mathbf{i}, \mathbf{j}\}$ forms an orthonormal set.

The ideas generalize, for example, the set of vectors $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ forms an orthonormal set, but the sets $\{\mathbf{i}, -\mathbf{i}, \mathbf{k}\}$ and $\{\mathbf{i}, 2\mathbf{j}, \mathbf{k}\}$ do not.

A photograph of a young woman with red hair, smiling. She is positioned on the left side of the advertisement. The background is dark and out of focus. On the right side, there is promotional text and a logo.

> Apply now

REDEFINE YOUR FUTURE
**AXA GLOBAL GRADUATE
PROGRAM 2015**

agence edg © Photononstop

redefining / standards

Click on the ad to read more

Example.

Determine whether or not the following forms an orthonormal set of vectors.

$$S := \left\{ \begin{pmatrix} 3/5 \\ 0 \\ 4/5 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -3/5 \\ 0 \\ 4/5 \end{pmatrix} \right\}$$

4.3 Scalar Projection of vectors

[View this lesson on YouTube \[21\]](#)

When modelling with vectors, a common question is “What is the force of a given vector in a particular direction?” To answer this question, we shall first discuss what is known as “scalar projection”.

Important idea (Scalar projection).

Let \mathbf{a} and \mathbf{b} be vectors. The scalar projection of \mathbf{a} on \mathbf{b} is

$$s_{\mathbf{b}}\mathbf{a} := \frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{b}|}.$$

Consider the following diagram.

4.3.1 Vector Projection of vectors

If we seek the (vector) force of a given vector in a particular direction, then we have what is known as “the vector projection” of a vector \mathbf{a} on a vector \mathbf{b} .

Important idea (Vector projection).

Let \mathbf{a} and \mathbf{b} be vectors. The vector projection of \mathbf{a} on \mathbf{b} is

$$\text{proj}_{\mathbf{b}} \mathbf{a} := \frac{\mathbf{a} \bullet \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b}.$$

The advertisement features a central blue square with the letters "BI". Radiating from this center are numerous colorful 3D bars of varying heights and colors (red, green, blue, yellow, orange). These bars are labeled with business-related terms: "Business", "Strategic Marketing Management", "International Business", "Leadership & Organisational Psychology", "Financial Economics", and "Shipping Management". To the right of the BI logo, the text "Empowering People. Improving Business." is displayed in large blue letters. Below this, a paragraph describes the school's mission and student body. Further down, it highlights four Master of Science programs. At the bottom left is the text "BI NORWEGIAN BUSINESS SCHOOL" with the EQUIS accreditation logo. A green button at the bottom right encourages interaction.

BI NORWEGIAN BUSINESS SCHOOL

EFMD
EQUIS
ACCREDITED

**Empowering People.
Improving Business.**

BI Norwegian Business School is one of Europe's largest business schools welcoming more than 20,000 students. Our programmes provide a stimulating and multi-cultural learning environment with an international outlook ultimately providing students with professional skills to meet the increasing needs of businesses.

BI offers four different two-year, full-time Master of Science (MSc) programmes that are taught entirely in English and have been designed to provide professional skills to meet the increasing need of businesses. The MSc programmes provide a stimulating and multi-cultural learning environment to give you the best platform to launch into your career.

- MSc in Business
- MSc in Financial Economics
- MSc in Strategic Marketing Management
- MSc in Leadership and Organisational Psychology

www.bi.edu/master

Click on the ad to read more

Example.

Calculate the scalar and vector projections of

$$\mathbf{a} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} \text{ on } \mathbf{b} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}.$$

4.4 Distance between a point and a line in \mathbb{R}^3

[View this lesson on YouTube \[22\]](#)

When we speak of distance between a point and line, we mean the MINIMUM distance or perpendicular distance.

Suppose we have a given line l with vector parametric form

$$\mathbf{x} = \mathbf{a} + \lambda \mathbf{v}, \quad \lambda \in \mathbb{R}$$

and a point B with position vector \mathbf{b} .

Important idea (Distance between a point and a line).

The distance from a point B to a line l is

$$|\vec{PB}| = \sqrt{|\vec{AB}|^2 - \left(\frac{\vec{AB} \bullet \mathbf{v}}{|\mathbf{v}|} \right)^2}$$

Example.

Calculate the distance between the point $B(1, 2, 3)$ and the line

$$\mathbf{x} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}, \quad \lambda \in \mathbb{R}.$$

4.5 Cross product of two vectors

[View this lesson on YouTube \[23\]](#)

We have seen two kinds of “multiplication” so far with vectors: a scalar multiplying with a vector; and the dot product of two vectors.

Another way of “multiplying” two vectors together is through the idea of a cross product.

Important idea (Cross product).

The cross product of two vectors $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is

$$\mathbf{a} \times \mathbf{b} := (a_2 b_3 - a_3 b_2) \mathbf{i} - (a_1 b_3 - a_3 b_1) \mathbf{j} + (a_1 b_2 - a_2 b_1) \mathbf{k}$$

The cross product of two vectors produces a new vector that is perpendicular to each of the original vectors.

Sometimes it is easiest to derive this expression using what is known as determinants.

Need help with your dissertation?

Get in-depth feedback & advice from experts in your topic area. Find out what you can do to improve the quality of your dissertation!

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Helpmyassignment

Click on the ad to read more

Example.

If

$$\mathbf{a} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}$$

then compute $\mathbf{a} \times \mathbf{b}$.

4.6 Properties of the cross product

[View this lesson on YouTube \[24\]](#)

Here are some properties of the cross product that are sometimes useful in simplifying computations

Important idea (Properties of the cross product).

$$\mathbf{a} \times \mathbf{a} = 0$$

$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, so order is important!

$$\mathbf{a} \times \lambda \mathbf{b} = \lambda(\mathbf{a} \times \mathbf{b}) = \lambda \mathbf{a} \times \mathbf{b}, \quad \lambda \in \mathbb{R}$$

$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c}).$$

Brain power

By 2020, wind could provide one-tenth of our planet's electricity needs. Already today, SKF's innovative know-how is crucial to running a large proportion of the world's wind turbines.

Up to 25 % of the generating costs relate to maintenance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations. Therefore we need the best employees who can meet this challenge!

The Power of Knowledge Engineering

Plug into The Power of Knowledge Engineering.
Visit us at www.skf.com/knowledge

SKF

4.7 What does the cross product measure?

[View this lesson on YouTube \[25\]](#)

We have already seen that the cross product of two vectors produces a new vector that is perpendicular to both of the original vectors.

We now relate the cross product with area.

Important idea (Area of parallelogram).

Consider the parallelogram with sides comprised of vectors \mathbf{a} and \mathbf{b} . The area of the parallelogram is given by

$$|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$$

where θ is the angle between the vectors \mathbf{a} and \mathbf{b} .

4.8 Scalar triple product

[View this lesson on YouTube \[26\]](#)

We can combine two kinds of multiplication of vectors to form the scalar triple product, namely the dot product; and the cross product.

Important idea (Scalar triple product).

The scalar triple product of vectors \mathbf{a} , \mathbf{b} and \mathbf{c} is

$$\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c}).$$

The computation of the scalar triple product can be performed using the idea of determinants.

What do you want to do?

No matter what you want out of your future career, an employer with a broad range of operations in a load of countries will always be the ticket. Working within the Volvo Group means more than 100,000 friends and colleagues in more than 185 countries all over the world. We offer graduates great career opportunities – check out the Career section at our web site www.volvologistics.com. We look forward to getting to know you!

VOLVO
AB Volvo (publ)
www.volvologistics.com

VOLVO TRUCKS | RENAULT TRUCKS | MACK TRUCKS | VOLVO BUSES | VOLVO CONSTRUCTION EQUIPMENT | VOLVO PENTA | VOLVO AERO | VOLVO IT
VOLVO FINANCIAL SERVICES | VOLVO 3P | VOLVO POWERTRAIN | VOLVO PARTS | VOLVO TECHNOLOGY | VOLVO LOGISTICS | BUSINESS AREA ASIA

Example.

Compute the scalar triple product $\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})$, where

$$\mathbf{a} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}.$$

4.9 What does the scalar triple product measure?

[View this lesson on YouTube \[27\]](#)

We now relate the scalar triple product with volume.

Important idea (Volume of a parallelepiped).

Consider the parallelepiped with sides comprised of vectors \mathbf{a} , \mathbf{b} and \mathbf{c} . The volume of the parallelepiped is given by

$$|\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})|.$$

If $|\mathbf{a} \bullet (\mathbf{b} \times \mathbf{c})| = 0$ then the volume is zero and the three vectors must lie in the same plane.

Graphics: CC BY-SA 3.0, <http://creativecommons.org/licenses/by-sa/3.0/deed.en>

Example.

Compute the volume of the parallelepiped with sides associated with the vectors

$$\mathbf{a} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}.$$

4.10 Equation of plane in \mathbb{R}^3

[View this lesson on YouTube \[28\]](#)

Important idea.

Equation of plane: point–normal form Let \mathbf{n} be a vector and let a point A have position vector \mathbf{a} . For any point with position vector \mathbf{x} we have the following point–normal form of the equation of the plane which has \mathbf{n} as a normal vector and contains the point A

$$\mathbf{n} \bullet (\mathbf{x} - \mathbf{a}) = 0.$$

This form is known as the point–normal form of the plane \mathcal{P} .

The advertisement features a runner in motion against a sunset background. The GaitEye logo, consisting of a yellow square with a white leaf-like shape and the word "gaiteye" in lowercase, is positioned in the top left. Below it, the tagline "Challenge the way we run" is written. In the bottom left, the text "EXPERIENCE THE POWER OF FULL ENGAGEMENT..." is displayed above a dotted line. To the right, the runner's legs are shown with motion blur, and a circular diagram illustrates the technology's monitoring of foot strike and gait. A yellow call-to-action button in the bottom right corner reads "READ MORE & PRE-ORDER TODAY" followed by the website "WWW.GAITEYE.COM". A hand cursor icon is pointing at the button. The overall theme is performance and innovation in running.

Example.

Consider a parametric vector form for a plane \mathcal{P}

$$\mathbf{x} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

Does the point $E(3, 0, -1)$ lie on \mathcal{P} ? Why / why not?

4.11 Distance between a point and a plane in \mathbb{R}^3

[View this lesson on YouTube \[30\]](#)

When we speak of distance between a point and plane, we mean the MINIMUM distance or perpendicular distance.

Suppose we have a given plane with vector parametric form

$$\mathbf{x} = \mathbf{a} + \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2, \quad \lambda_1, \lambda_2 \in \mathbb{R}$$

and a point B with position vector \mathbf{b} .

Important idea (Distance between a point and a plane).

The distance from a point B to a plane is

$$|\vec{PB}| = \frac{|\vec{AB} \bullet (\mathbf{v}_1 \times \mathbf{v}_2)|}{|\mathbf{v}_1 \times \mathbf{v}_2|}.$$

This e-book
is made with
SetaPDF

PDF components for **PHP** developers

www.setasign.com

Example.

Compute the distance between the point $B(1, 2, 3)$ and the planes with equations:

$$\mathbf{x} = \begin{pmatrix} 5 \\ 0 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -3 \\ -2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R};$$
$$2x - y + z = 5.$$

Bibliography

1. Tisdell, Chris. Intro to vectors. Streamed live on 02/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=37xkVmCR7XU&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
2. Tisdell, Chris. Parallel vectors and collinear points example. Streamed live on 07/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=itCLobhr-q4&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
3. Tisdell, Chris. Vectors and collinear points example. Streamed live on 12/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=-sYsOsNUv7M&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
4. Tisdell, Chris. What is a vector? Streamed live on 07/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=kwlvfDIUtvQ&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
5. Tisdell, Chris. Vectors: length and direction. Streamed live on 04/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=PMVVVGZPOpo&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
6. Tisdell, Chris. How to determine the vector from one point to another. Streamed live on 04/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=8RQHzr8Zutc&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
7. Tisdell, Chris. Vectors in 3 dimensions. Streamed live on 04/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=cQVTMmGurCQ&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
8. Tisdell, Chris. Determine the point that lies on vector: an example. Streamed live on 06/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=eTcz7f0XTZA&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
9. Tisdell, Chris. Parametric vector form of a line. Streamed live on 08/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, http://www.YouTube.com/watch?v=tm_3gDylONY&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q
10. Tisdell, Chris. Lines in 3D. Streamed live on 09/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=bHbBHt4XqgA&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>

11. Tisdell, Chris. Lines: Cartesian to parametric form. Streamed live on 11/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=h2MlchG06AQ&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
12. Tisdell, Chris. Lines: Parametric and Cartesian forms given two points. Streamed live on 11/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=7yLZCGnaavA&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
13. Tisdell, Chris. Lines: Convert Parametric to Cartesian. Streamed live on 11/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=XB6rlniJlqc&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
14. Tisdell, Chris. Cartesian to parametric form of line. Streamed live on 12/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=Xd-8OcQrrH4&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
15. Tisdell, Chris. What is the span of vectors? Streamed live on 13/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=JODjvNIQqzg&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
16. Tisdell, Chris. Planes and vectors. Streamed live on 14/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=o56slYKYQ9A&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
17. Tisdell, Chris. Planes: Cartesian to parametric form. Streamed live on 15/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=RealD34xezI&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
18. Tisdell, Chris. Equation of plane from 3 points. Streamed live on 15/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=B29Eei7KX-I&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
19. Tisdell, Chris. Dot product of two vectors. Streamed live on 16/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=3PnrJfRGouU&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
20. Tisdell, Chris. Orthogonal + orthonormal vectors. Streamed live on 19/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, http://www.YouTube.com/watch?v=OUqRi_D1TeA&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q
21. Tisdell, Chris. Projection of vectors. Streamed live on 21/03/2014 and accessed on 24/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=qYUUxyNxRoQ&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
22. Tisdell, Chris. Distance from point to line. Streamed live on 21/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=ZvP0XcGxNR8&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
23. Tisdell, Chris. Cross product of vectors. Streamed live on 23/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, http://www.YouTube.com/watch?v=_yF-woUtxkg&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q

24. Tisdell, Chris. Vector cross product: how to derive. Streamed live on 24/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=-1nle1mGZSQ&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
25. Tisdell, Chris. Cross product and area of parallelogram. Streamed live on 26/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=Hnmz1mq1xnI&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
26. Tisdell, Chris. Scalar triple product. Streamed live on 26/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, http://www.YouTube.com/watch?v=CZn5iG7_1AE&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q
27. Tisdell, Chris. Scalar triple product and volume. Streamed live on 27/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=ApY-mtOpot0&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
28. Tisdell, Chris. Scalar triple product and volume. Streamed live on 28/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=9AjUnltehro&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
29. Tisdell, Chris. Scalar triple product and volume. Streamed live on 28/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=9AjUnltehro&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
30. Tisdell, Chris. Distance from point to plane. Streamed live on 29/03/2014 and accessed on 22/08/2014. Available on Dr Chris Tisdell's YouTube channel, <http://www.YouTube.com/watch?v=v1P8rf3orXI&list=PLGCj8f6sgswnm7f0QbRxA6h4P0d1DSD6Q>
31. Tisdell, Chris. "Engineering mathematics YouTube workbook playlist" <http://www.YouTube.com/playlist?list=PL13760D87FA88691D>, accessed on 1/11/2011 at DrChrisTisdell's YouTube Channel <http://www.YouTube.com/DrChrisTisdell>.