

PROYECTO 2 ALGORITMO DIJKSTRA

PEDRO MARROQUIN 21801
JUAN GONZALEZ-CAMPO 21077
PAULO SÁNCHEZ

¿QUÉ ES?

A partir de un grafo etiquetado, se busca estimar el costo del camino más corto desde un vértice dado hacia el resto.

APLICABILIDAD

- Sistemas de navegación y rutas óptimas.
- Redes de comunicación y enrutamiento de paquetes.
- Planificación de vuelos y rutas aerolíneas.
- Diseño de redes de distribución de energía eléctrica.

EJEMPLO

IMPLEMENTACION

Greedy

- Es la forma de programación clásica para el algoritmo Dijkstra.
- Ya que en cada paso hace la elección óptima para que globalmente sea la solución más eficiente.
- No siempre lleva a la respuesta correcta.

- Típicamente no es la técnica más utilizada para el algoritmo Dljkstra.
- Puede ser de mucha utilidad para intentar resolver de una manera más eficiente a grafos con una alta cantidad de nodos y aristas.
- Asi como, buscar multiples caminos más cortos entre diferentes pares de nodos.

Dinámico

DIVIDE & CONQUER

- El algoritmo involucra explorar nodos en un grafo y actualizar distancias, por lo que no es un acercamiento ideal.
- Se puede utilzar a grandes rasgos esta técnica, pero será poco eficiente.

ANÁLISIS TEÓRICO

$$T(n) = 2T(\frac{n}{2}) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 2} = n^1$$

$$l(n) = \Theta(n^2) = \Omega(n^{\log_2 2} + \varepsilon)$$

$$Appelien:$$

$$2 \cdot l(\frac{n}{2}) \le c \cdot l(n) \cdot con \cdot c < 1$$

$$2 \cdot l(\frac{n}{2})^2 = 2 \cdot \frac{n^2}{4} = \frac{n^2}{2} \le c \cdot n^2$$

$$1 > c \ge \frac{1}{2}$$

$$\Rightarrow Se cumple Condición de regularidad$$

$$T(n) = \Theta(n^2)$$

TIEMPO DE EJECUCIÓN

DIVIDE & CONQUER

GREEDY

DINAMICO

MEJOR MÉTODO