Chapter 2 – Coordinate geometry and linear relations

Solutions to Exercise 2A

1 a
$$A(2, 12), B(8, 4)$$

 $x = \frac{1}{2}(2+8) = 5$
 $y = \frac{1}{2}(12+4) = 8$
M is at $(5, 8)$.

b
$$A(-3,5)$$
, $B(4,-4)$
 $x = \frac{1}{2}(-3+4) = 0.5$
 $y = \frac{1}{2}(5+-4) = 0.5$
M is at $(0.5, 0.5)$.

c
$$A(-1.6, 3.4), B(4.8, -2)$$

 $x = \frac{1}{2}(-1.6 + 4.8) = 1.6$
 $y = \frac{1}{2}(3.4 + -2) = 0.7$
M is at (1.6, 0.7).

d
$$A(3.6, -2.8), B(-5, 4.5)$$

 $x = \frac{1}{2}(3.6 + -5) = -0.7$
 $y = \frac{1}{2}(-2.8 + 4.5) = 0.85$
M is at $(-0.7, 0.85)$

2 A is (1,1), B is (5,5) and C is (11, 2).
AB:
$$x = y = \frac{1}{2}(5-1) = 3$$

Midpoint is at (3, 3).
BC: $x = \frac{1}{2}(5+11) = 8$
 $y = \frac{1}{2}(5+2) = 3.5$
Midpoint is at (8, 3.5).
AC: $x = \frac{1}{2}(1+11) = 6$
 $y = \frac{1}{2}(1+2) = 1.5$
Midpoint is at (6, 1.5).

3
$$A$$
 (3.1, 7.1), B (8.9,10.5)
 $x = \frac{1}{2}(3.1 + 8.9) = 6$
 $y = \frac{1}{2}(7.1 + 10.5) = 8.8$
 C is at (6, 8.8).

4 a
$$X(-4, 2), M(0, 3)$$

For midpt x : 0 = $\frac{1}{2}(-4 + x)$
∴ $x = 4$

For midpt y:
$$3 = \frac{1}{2}(2 + y)$$

 $1 + \frac{y}{2} = 3$
 $\frac{y}{2} = 2, \therefore y = 4$

Point Y is at (4,4).

b
$$X(-1, -3), M(0.5, -1.6)$$

For midpt $x: 0.5 = \frac{1}{2}(-1 + x)$
 $1 = -1 + x, \therefore x = 2$
For midpt $y: -1.6 = \frac{1}{2}(-3 + y)$
 $-3.2 = -3 + 2, \therefore y = -0.2$
Point Y is at $(2, -0.2)$.

c
$$X(6,3), M(2,1)$$

For midpt $x: 2 = \frac{1}{2}(6+x)$
 $4 = 6 + x, \therefore x = -2$
For midpt $y: 1 = \frac{1}{2}(-3+y)$
 $2 = -3. + y, \therefore y = 5$
Point Y is at $(-2,5)$.

d
$$X(4,-3), M(0,-3)$$

For midpt
$$x$$
: $0 = \frac{1}{2}(4 + x)$
 $\therefore x = 4$

For midpt y: does not change so y = -3 Point Y is at (-4, -3)

5 At midpoint:
$$x = \frac{1}{2}(1+a)$$
; $y = \frac{1}{2}(4+b)$
 $x = \frac{1}{2}(1+a) = 5$

$$1 + a = 10, \therefore a = 9$$

$$y = \frac{1}{2}(4+b) = -1$$

$$4 + b = -2$$
, $b = -6$

6 a Distance between
$$(3,6)$$
 and $(-4,5)$

$$= \sqrt{(6-5)^2 + (3-(-4))^2}$$
$$= \sqrt{1^2 + 7^2}$$

$$=\sqrt{50}=5\sqrt{2}\approx 7.07$$

b Distance between
$$(4, 1)$$
 and $(5, -3)$

$$= \sqrt{(4-5)^2 + (1-(-3))^2}$$

$$=\sqrt{(-1)^2+4^2}$$

$$= \sqrt{17} \approx 4.12$$

c Distance between
$$(-2, -3)$$
 and

$$(-5, -8)$$
= $\sqrt{(-2 - (-5))^2 + (-3 - (-8))^2}$

$$=\sqrt{3^2+5^2}$$

$$= \sqrt{34} \approx 5.83$$

d Distance between
$$(6,4)$$
 and $(-7,4)$

$$= \sqrt{(6 - (-7))^2 + (4 - 4)^2}$$

$$=\sqrt{13^2+0^2}$$

$$= 13.00$$

7
$$A = (-3, -4), B = (1, 5), C = (7, -2)$$

 $AB = \sqrt{(1 - (-3))^2 + (5 - (-4))^2}$

$$AB = \sqrt{(1 - (-3))^2 + (5 - (-4))^2}$$

$$=\sqrt{4^2+9^2}$$

$$= \sqrt{97}$$

$$BC = \sqrt{(7-1)^2 + (-2-5)^2}$$

$$=\sqrt{6^2+(-7)^2}$$

$$= \sqrt{85}$$

$$AC = \sqrt{(7 - (-3))^2 + (-2 - (-4))^2}$$

$$=\sqrt{10^2+2^2}$$

$$= \sqrt{104}$$

$$P = \sqrt{97} + \sqrt{85} + \sqrt{104} \approx 29.27$$

8
$$A(6,6), B(10,2), C(-1,5), D(-7,1)$$

For
$$P: x = \frac{1}{2}(6+10) = 8$$

$$y = \frac{1}{2}(6+2) = 4$$

P is at (8, 4).

P is at
$$(8, 4)$$
.

For
$$M: x = \frac{1}{2}(-1 + -7) = -4$$

$$y = \frac{1}{2}(5+1) = 3$$

$$y = \frac{1}{2}(5+1) = 3$$
M is at $(-4,3)$.

$$\therefore PM = \sqrt{(-4-8)^2 + (3-4)^2}$$

$$= \sqrt{(-12)^2 + (-1)^2}$$

$$= \sqrt{145} \approx 12.04$$

9
$$DM = \sqrt{(-6-0)^2 + (1-6)^2}$$

$$=\sqrt{(-6)^2+(-5)^2}$$

$$= \sqrt{61}$$

$$DN = \sqrt{(3-0)^2 + (-1-6)^2}$$

$$=\sqrt{3^2+7^2}$$

$$= \sqrt{58}$$

DN is shorter.

Solutions to Exercise 2B

1 **a**
$$m = \frac{4-0}{0-(-1)} = 4$$

b
$$m = \frac{6-0}{3-0} = 2$$

$$\mathbf{c} \ \ m = \frac{1-0}{4-0} = \frac{1}{4}$$

d
$$m = \frac{4-0}{0-1} = -4$$

$$e m = \frac{3-0}{3-0} = 1$$

$$\mathbf{f} \ m = \frac{3-0}{-3-0} = -1$$

$$g m = \frac{10 - 0}{6 - (-2)} = \frac{5}{4}$$

h
$$m = \frac{8-2}{0-3} = \frac{6}{-3} = -2$$

$$\mathbf{i} \ m = \frac{5-0}{0-4} = \frac{5}{-4} = -\frac{5}{4}$$

j
$$m = \frac{4-0}{0-(-3)} = \frac{4}{3}$$

k Rise = zero so m = 0

2 Line with gradient 1:

3
$$m = 0$$
 so $y = mx + c$ means $y = c$.
Here $c = 6$:

4 a
$$m = \frac{4-3}{2-6} = -\frac{1}{4}$$

b
$$m = \frac{-6-4}{1-(-3)} = -\frac{5}{2}$$

$$\mathbf{c} \ \ m = \frac{-3-7}{11-6} = -2$$

d
$$m = \frac{0-8}{6-5} = -8$$

e Rise = zero so
$$m = 0$$

$$\mathbf{f} \ \ m = \frac{0 - (-6)}{-6 - 0} = -1$$

$$\mathbf{g} \ m = \frac{16-9}{4-3} = 7$$

h
$$m = \frac{36 - 25}{6 - 5} = 11$$

$$\mathbf{i} \ m = \frac{64 - 25}{-8 - (-5)} = \frac{39}{-3} = -13$$

$$\mathbf{j} \ m = \frac{100 - 1}{10 - 1} = \frac{99}{9} = 11$$

$$\mathbf{k} \ m = \frac{1000 - 1}{10 - 1} = \frac{999}{9} = 111$$

$$1 m = \frac{64 - 125}{4 - 5} = \frac{-61}{-1} = 61$$

5 a
$$m = \frac{6a - 2a}{3a - 5a}$$

= $\frac{4a}{-2a} = -2$

b
$$m = \frac{2b - 2a}{5b - 5a}$$

= $\frac{2}{5} \left(\frac{b - a}{b - a} \right) = \frac{2}{5}$

6 a
$$m = \frac{a-6}{7-(-1)}$$

= $\frac{a-6}{8} = 6$
 $a-6 = 48, \therefore a = 54$

b
$$m = \frac{7-6}{b-1}$$

= $\frac{1}{b-1} = -6$
 $1 = 6(1-b) = 6-6b$
 $6b = 5, \therefore b = \frac{5}{6}$

7 We only need positive angles, so negative ones have 180° added.

a
$$(0,3), (-3,0); m = \frac{0 - (-3)}{3 - 0} = 1$$

Angle = $\tan^{-1}(1) = 45^{\circ}$

b
$$(0, -4), (4, 0); m = \frac{0 - (-4)}{4 - 0} = 1$$

Angle = $\tan^{-1}(1) = 45^{\circ}$

c
$$(0,2), (-4,0); m = \frac{0-2}{-4-0} = \frac{1}{2}$$

Angle = $\tan^{-1}(\frac{1}{2}) = 26.57^{\circ}$

d
$$(0, -5), (-5, 0); m = \frac{0 - (-5)}{-5 - 0} = -1$$

Angle = $\tan^{-1}(-1) + 180^{\circ} = 135^{\circ}$

8 **a**
$$(-4, -2), (6,8); m = \frac{8 - (-2)}{6 - (-4)} = 1$$

Angle = $\tan^{-1}(1) = 45^{\circ}$

b (2,6), (-2,4);
$$m = \frac{4-6}{-2-2} = \frac{1}{2}$$

Angle = $\tan^{-1}(\frac{1}{2}) = 26.57^{\circ}$

c
$$(-3,4), (6,1); m = \frac{1-4}{6-(-3)} = -\frac{1}{3}$$

Angle = $\tan^{-1}\left(-\frac{1}{3}\right) = 161.57^{\circ}$

d
$$(-4, -3), (2, 4); m = \frac{4 - (-3)}{2 - (-4)} = \frac{7}{6}$$

Angle = $\tan^{-1}(\frac{7}{6}) = 49.4^{\circ}$

e
$$(3b, a), (3a, b); m = \frac{b - a}{3a - 3b}$$

= $(b - a)(\frac{1}{-3}) = -\frac{1}{3}$
Angle = $\tan^{-1}(-\frac{1}{3}) = 161.57^{\circ}$

f
$$(c,b), (b,c); m = \frac{c-b}{b-c} = -1$$

Angle = $\tan^{-1}(-1) + 180^{\circ} = 135^{\circ}$

9 a
$$\tan 45^{\circ} = 1$$

b
$$\tan 135^{\circ} = -1$$

$$\mathbf{c} \tan 60^\circ = \sqrt{3}$$

d
$$\tan 120^{\circ} = -\sqrt{3}$$

Solutions to Exercise 2C

1 **a**
$$m = 3, c = 6$$

b
$$m = -6, c = 7$$

$$c m = 3, c = -6$$

d
$$m = -1, c = -4$$

2 a
$$y = mx + c$$
; $m = 3$, $c = 5$ so $y = 3x + 5$

b
$$y = mx + c$$
; $m = -4$, $c = 6$
so $y = -4x + 6$

$$y = mx + c; m = 3, c = -4$$

so $y = 3x - 4$

3 a
$$y = 3x - 6$$
; Gradient = 3; y-axis
intercept = -6

b
$$y = 2x - 4$$
; Gradient = 2; y-axis intercept = -4

c
$$y = \frac{1}{2}x - 2$$
; Gradient = $\frac{1}{2}$; y-axis intercept = -2

d
$$y = \frac{1}{3}x - \frac{5}{3}$$
; Gradient = $\frac{1}{3}$; y-axis intercept = $-\frac{5}{3}$

4 a
$$2x - y = 9$$

 $-y = -2x + 9$
 $y = 2x - 9$, $m = 2$, $c = -9$

b
$$3x + 4y = 10$$

 $4y = -3x + 10$
 $y = -\frac{3}{4}x + \frac{5}{2}$, $\therefore m = -\frac{3}{4}$, $c = \frac{5}{2}$

c
$$-x - 3y = 6$$

$$-3y = x + 6$$

$$y = -\frac{1}{3}x - 2, \therefore m = -\frac{1}{3}, c = -2$$

d
$$5x - 2y = 4$$

 $-2y = -5x + 4$
 $y = \frac{5}{2}x - 2$, $m = \frac{5}{2}$, $c = -2$

5 a The equation is of the form
$$y = 3x + c$$
;
When $x = 6, y = 7$
 $\therefore 7 = 3 \times 6 + c$
 $\therefore c = -11$
The equation is $y = 3x - 11$

b The equation is of the form
$$y = -2x + c$$
;
When $x = 1, y = 7$
 $\therefore 7 = -2 \times 1 + c$
 $\therefore c = 9$
The equation is $y = -2x + 9$

6 a
$$(-1,4), (2,3)$$

 $m = \frac{3-4}{2-(-1)} = -\frac{1}{3}$
Using $(2,3)$: $y = -\frac{2}{3} + c = 3$
 $c = \frac{11}{3}$
 $\therefore y = -\frac{1}{3}x + \frac{11}{3}$
 $3y = -x + 11$

$$\therefore x + 3y = 11$$

- **b** (0,4), (5,-3) $m = \frac{-3-4}{5-0} = -\frac{7}{5}$ Using (0,4): y = c = 4 $\therefore y = -\frac{7}{5}x + 4$ 5y = -7x + 20 $\therefore 7x + 5y = 20$
- c (3, -2), (4, -4) $\therefore m = \frac{-4 - (-2)}{4 - 3} = -2$ Using $(3, -2) : y = -2 \times 3 + c = -2$ c = 4 $\therefore y = -2x + 4$ $\therefore 2x + y = 4$
- d (5, -2), (8, 9) ∴ $m = \frac{9 - (-2)}{8 - 5} = \frac{11}{3}$ Using (5, -2): $y = \frac{11}{3} \times 5 + c = -2$ $c + \frac{55}{3} = -2$ $c = -\frac{61}{3}$ ∴ $y = \frac{11}{3}x - \frac{61}{3}$ 3y = 11x - 61∴ -11x + 3y = -61
- 7 **a** The line passes through the point (0, 6) and (1, 8).

 Therefore gradient = $\frac{8-6}{1-0} = 2$
 - **b** The equation is y = 2x + 6
- 8 a The equation is of the form y = 2x + c; When x = 1, y = 6

$$\therefore 6 = 2 \times 1 + c$$

$$\therefore c = 4$$
The equation is $y = 2x + 4$

- **b** The equation is of the form y = -2x + c; When x = 1, y = 6 $\therefore 6 = -2 \times 1 + c$ $\therefore c = 8$ The equation is y = -2x + 8
- 9 a The equation is of the form y = 2x + c; When x = -1, y = 4 $\therefore 4 = 2 \times (-1) + c$ $\therefore c = 6$ The equation is y = 2x + 6
 - **b** The equation is of the form y = -2x + c; When x = 0, y = 4 $\therefore c = 4$ The equation is y = -2x + 4
 - c The equation is of the form y = -5x + c; When x = 3, y = 0 $\therefore 0 = -5 \times 3 + c$ $\therefore c = 15$ The equation is y = -5x + 15
- 10 **a** y = mx + c; $m = \frac{0-4}{6-0} = -\frac{2}{3}$ Using (0,4), c = 4 $y = -\frac{2x}{3} + 4$
 - **b** $y = mx + c; m = \frac{-6 0}{0 (-3)} = -\frac{6}{3} = -2$ Using (0, -6), c = -6y = -2x - 6

- **c** y = mx + c; $m = \frac{0-4}{4-0} = -\frac{4}{4} = -1$ Using (0,4), c = 4y = -x + 4
- **d** $y = mx + c; m = \frac{3 0}{0 2} = -\frac{3}{2}$ Using (0,3): $y = -\frac{3}{2}x + 3$
- 11 a Gradient = $\frac{6-4}{3-0} = \frac{2}{3}$ Passes through (0,4), $\therefore c = 4$ Therefore equation is $y = \frac{2}{3}x + 4$
 - **b** Gradient = $\frac{2-0}{4-1} = \frac{2}{3}$ When x = 1, y = 0 $\therefore 0 = \frac{2}{3} \times 1 + c$ $\therefore c = -\frac{2}{3}$

Therefore equation is $y = \frac{2}{3}x - \frac{2}{3}$

c Gradient = $\frac{3-0}{3-(-3)} = \frac{1}{2}$ When x = -3, y = 0 $\therefore 0 = \frac{1}{2} \times (-3) + c$ $\therefore c = \frac{3}{2}$

Therefore equation is $y = \frac{1}{2}x + \frac{3}{2}$

- d Gradient = $\frac{0-3}{4-(-2)} = -\frac{1}{2}$ When x = 4, y = 0 $\therefore 0 = -\frac{1}{2} \times 4 + c$ $\therefore c = 2$ Therefore equation is $y = -\frac{1}{2}x + 2$
- e Gradient = $\frac{8-2}{4.5-(-1.5)} = 1$ When x = -1.5, y = 2 $\therefore 2 = 1 \times (-1.5) + c$

$$\therefore c = 3.5$$
Therefore equation is $y = x + 3.5$

f Gradient =
$$\frac{-2 - 1.75}{4.5 - (-3)} = -0.5$$

When $x = -3$, $y = 1.75$
 $\therefore 1.75 = -0.5 \times (-3) + 0.25$
 $\therefore c = 0.25$
Therefore equation is $y = -0.5x + 0.25$

- 12 a Axis intercepts: (0,4) and (-1,0) $m = \frac{4-0}{0-(-1)} = 4,$ c = 4 so y = 4x + 4
 - **b** Specified points: (-3, 2) and (0,0) $m = \frac{2-0}{-3-0} = -\frac{2}{3}$ $c = 0 \text{ so } y = -\frac{2x}{3}$
 - c Axis intercepts: (-2, 0) and (0, -2) $m = \frac{0 - (-2)}{-2 - 0} = 1$ c = -2 so y = -x - 2
 - **d** Axis intercepts: (2,0) and (0, -1) $m = \frac{0 (-1)}{2 0} = \frac{1}{2},$ $c = -1 \text{ so } y = \frac{x}{2} 1$
 - **e** m = 0, c = 3.5 so y = 3.5
 - **f** *m* undefined. Vertical line is x = k so x = -2
- 13 P and Q are on the line y = mx + c; $m = \frac{1 - (-3)}{2 - 1} = 4$ Using Q at (2,1): $y = 4 \times 2 + c = 1 \text{ so } c = -7$ Line PQ has equation y = 4x - 7Q and R are on the line y = ax + b:

$$a = \frac{3-1}{2.5-2} = \frac{2}{0.5} = 4$$

Using *Q* at (2, 1):
 $y = 4 \times 2 + b = 1$ so $b = -7$
Line *QR* also has equation $y = 4x - 7$
P, *Q* and *R* are collinear.

14 a
$$y + x = 1$$

Does not pass through $(0, 0)$ because $y = 1 - x$ has $c = 1$

b
$$y + 2x = 2(x + 1)$$

Does not pass through (0,0): this equation simplifies to $y = 2$, so y is never 0.

$$\mathbf{c}$$
 $x + y = 0$
Passes through (0,0) because $c = 0$

d
$$x - y = 1$$

Does not pass through (0,0) because $y = x + 1$ has $c = 1$

15 a
$$x = 4$$
 b $y = 11$ **c** $x = 11$

Solutions to Exercise 2D

- 1 a x + y = 4If x = 0, y = 4; if y = 0, x = 4Axis intercepts are at (0,4) and (4,0)
 - **b** x y = 4If x = 0, y = -4; if y = 0, x = 4Axis intercepts are at (0, -4) and (4,0)
 - c -x y = 6If x = 0, y = -6; if y = 0, x = -6Axis intercepts are at (0, -6) and (-6, 0)
 - **d** y x = 8If x = 0, y = 8; if y = 0, x = -8Axis intercepts are at (0,8) and (-8,0)
- 2 **a** 2x 3y = 12If x = 0, -3y = 12 $\therefore y = \frac{12}{-3} = -4$ If y = 0, 2x = 12 $\therefore x = \frac{12}{2} = 6$

b x - 4y = 8: If x = 0, -4y = 8 $\therefore y = \frac{8}{-4} = -2$ If y = 0, x = 8

c -3x + 4y = 24If x = 0, 4y = 24 $\therefore y = \frac{24}{4} = 6$ If y = 0, -3x = 24 $\therefore x = \frac{24}{-3} = -8$

d -5x + 2y = 20 If x = 0, 2y = 20 ∴ y = $\frac{20}{2}$ = 10 If y = 0, -5x = 20 ∴ x = $\frac{20}{-5}$ = -4

e 4x - 3y = 15If x = 0, -3y = 15 $\therefore y = \frac{15}{-3} = -5$ If y = 0, 4x = 15 $\therefore x = \frac{15}{4} = 3.75$

f
$$7x - 2y = 15$$

If $x = 0, -2y = 15$
 $\therefore y = \frac{15}{-2} = -7.5$
If $y = 0, 7x = 15$
 $\therefore x = \frac{15}{7}$

3 a y = x - 1If x = 0, y = -1; if y = 0, x = 1Intercepts at (0, -1) and (1, 0)

b y = x + 2If x = 0, y = 2; if y = 0, x = -2Intercepts at (0, 2) and (-2, 0)

c y = 2x - 4If x = 0, y = -4; if y = 0, 2x - 4 = 0, so x = 2Intercepts at (0, -4) and (2,0)

4 a y = 2x - 10If x = 0, y = -10 so (0, -10)If y = 0, 2x = 10, x = 5 so (5,0)

b y = 3x - 9If x = 0, y = -9 so (0, -9)If y = 0, 3x = 9, x = 3 so (3,0)

41

$$-9$$
c $y = 5x + 10$
If $x = 0, y = 10$ so $(0,10)$
If $y = 0, 5x + 10 = 0$,

d
$$y = -2x + 10$$

If $x = 0$, $y = 10$ so $(0,10)$
If $y = 0$, $-2x + 10 = 0$,
so $2x = 10$ and $x = 5$ so $(5,0)$

5 **a**
$$y = x + 2$$

c
$$y = 2x + 1$$

d
$$y = -2x + 1$$

6 a
$$x + y = 1$$

$$\therefore y = -x + 1$$

b
$$x - y = 1$$

$$x - 1 = y$$

$$\therefore y = x - 1$$

$$y = x + 1$$

$$y$$

$$1$$

$$-1$$

$$0$$

$$\mathbf{d} \qquad -x - y = 1$$

$$-y = x + 1$$

$$\therefore y = -x - 1$$

7 **a**
$$y = x + 3$$

b y = 3x + 1

c
$$y = 4 - \frac{1}{2}x$$

d
$$y = 3x - 2$$

e
$$4y + 2x = 12$$

$$4y = 12 - 2x$$

$$\therefore y = -\frac{x}{2} + 3$$

f
$$3x + 6y = 12$$

$$6y = 12 - 3x$$

$$\therefore y = -\frac{x}{2} + 2$$

$$\mathbf{g} + 4y - 6x = 24$$

$$4y = 24 + 6x$$

$$\therefore y = \frac{3x}{2} + 6$$

h
$$8x - 3y = 24$$

$$-3y = 24 - 8x$$

$$\therefore y = \frac{8x}{3} - 8$$

8 a

 \mathbf{c}

d

9 a
$$y = x$$
 so $m = 1;45^{\circ}$

b
$$y = -x$$
 so $m = -1$; 135°

c
$$y = x + 1$$
 so $m = 1;45^{\circ}$

d
$$x + y = 1$$

 $y = -x + 1$ so $m = -1$; 135°

e
$$y = 2x$$
 so $m = 2$;
 $tan^{-1}(2) = 63.43^{\circ}$

f
$$y = -2x$$
; $m = -2$;
 $tan^{-1}(-2) + 180^{\circ} = 116.57^{\circ}$

10 a
$$y = 3x + 2; m = 3$$
 $\tan^{-1}(3) = 71.57^{\circ}$

b
$$2y = -2x + 1$$

 $\therefore y = -x + \frac{1}{2}; m = -1$
 $\tan^{-1}(-1) = 135^{\circ}$

c
$$2y - 2x = 6$$

 $y - x = 3$
 $\therefore y = x + 3; m = 1$
 $\tan^{-1}(1) = 45^{\circ}$

d
$$3y + x = 7$$

 $3y = -x + 7$
 $\therefore y = -\frac{x}{3} + \frac{7}{3}; m = -\frac{1}{3}$
 $\tan^{-1}\left(-\frac{1}{3}\right) + 180^{\circ} = 161.57^{\circ}$

11 A straight line has equation y = 3x - 4

$$(0,a)$$
: $a = -4$
 $(b,0)$: $0 = 3b - 4$
 $3b = 4$, $b = \frac{4}{3}$
 $(1,d)$: $d = 3 - 4 = -1$
 $(e,10)$: $10 = 3e - 4$

$$3e = 14$$
, $\therefore e = \frac{14}{3}$

Solutions to Exercise 2E

1 a Gradient = 2

Equation is of the form y = 2x + c

When
$$x = 4, y = -2$$

$$\therefore -2 = 2 \times 4 + c$$

$$\therefore c = -10$$

The equation is y = 2x - 10

b Gradient = $-\frac{1}{2}$

Equation is of the form $y = -\frac{1}{2}x + c$

When
$$x = 4, y = -2$$

$$\therefore -2 = -\frac{1}{2} \times 4 + c$$

$$\therefore c = 0$$

The equation is $y = -\frac{1}{2}x$

c Gradient = $-\frac{1}{2}$

Equation is of the form y = -2x + c

When
$$x = 4, y = -2$$

$$\therefore -2 = -2 \times 4 + c$$

$$\therefore c = 6$$

The equation is y = -2x + 6

d Gradient = $-\frac{1}{2}$

Equation is of the form $y = \frac{1}{2}x + c$

When
$$x = 4, y = -2$$

$$\therefore -2 = \frac{1}{2} \times 4 + c$$

$$\therefore c = -4$$

$$\therefore c = -4$$

The equation is $y = \frac{1}{2}x - 4$

e
$$2x - 3y = 4$$

$$-3y = -2x + 4$$

$$\therefore \quad y = \frac{2}{3}x - \frac{4}{3}$$

So the gradient we want is $\frac{2}{3}$.

Using the point (4, -2):

$$y - (-2) = \frac{2}{3}(x - 4)$$

$$y = \frac{2}{3}(x-4) - 2$$

$$y = \frac{2}{3}x - \frac{8}{3} - 2$$

$$y = \frac{2}{3}x - \frac{14}{3}$$

$$3y = 2x - 14$$

$$\therefore 2x - 3y = 14$$

f
$$2x - 3y = 4$$

$$\therefore 3y = 2x - 4$$

$$\therefore y = \frac{2}{3}x - \frac{4}{3}$$

Gradient =
$$-\frac{3}{2}$$

Equation is of the form $y = -\frac{3}{2}x + c$

When
$$x = 4, y = -2$$

$$\therefore -2 = -\frac{3}{2} \times 4 + c$$

$$\therefore c = 4$$

The equation is $y = -\frac{3}{2}x + 4$

g
$$x + 3y = 5$$

$$\therefore 3y = -x + 5$$

$$\therefore y = -\frac{1}{3}x + \frac{5}{3}$$

Gradient =
$$-\frac{1}{3}$$

Equation is of the form $y = -\frac{1}{3}x + c$

When
$$x = 4, y = -2$$

$$\therefore -2 = -\frac{1}{3} \times 4 + c$$

$$\therefore c = -\frac{2}{3}$$

The equation is $y = -\frac{1}{3}x - \frac{2}{3}$

$$h x + 3y = -4$$
∴ $3y = -x - 4$
∴ $y = -\frac{1}{3}x - \frac{4}{3}$
Gradient = 3

Equation is of the form y = 3x + c

When
$$x = 4, y = -2$$

$$\therefore -2 = 3 \times 4 + c$$

$$\therefore c = -14$$

The equation is y = 3x - 14

2 a
$$2y = 6x + 4$$
; $y = 3x + 4$
Parallel: $m = 3$ for both

b
$$x = 4 - y$$
; $2x + 2y = 6$
Parallel: $m = -1$ for both

c
$$3y - 2x = 12$$
; $y + \frac{1}{3} = \frac{2}{3}x$
Parallel: $m = \frac{2}{3}$ for both

d
$$4y - 3x = 4$$
; $3y = 4x - 3$
Not parallel:

$$4y - 3X = 4$$
$$4y = 3x + 4$$

$$4y = 3x + 4$$

$$y = \frac{3x}{4} + 1$$

$$3y = 4x - 3$$

$$3y = 4x - 3$$

$$\therefore y = \frac{4x}{3} - 1$$

3 **a**
$$y = 4$$
 (The y-coordinate)

b
$$x = 2$$
 (The *x*-coordinate)

$$\mathbf{c} \ y = 4$$
 (The *y*-coordinate)

d
$$x = 3$$
 (The *x*-coordinate)

4 Gradient of
$$y = -\frac{1}{2}x + 6$$
 is $-\frac{1}{2}$.

So perpendicular gradient is

$$-1 \div -\frac{1}{2} = 2$$

Using the point (1,4):

$$y - 4 = 2(x - 1)$$

$$y = 2(x-1) + 4$$

$$\therefore y = 2x + 2$$

5
$$A(1,5)$$
 and $B(-3,7)$

Midpoint

$$M(\frac{1+(-3)}{2}, \frac{7+5}{2}) = M(-1, 6)$$

Gradient
$$AB = \frac{7-5}{-3-1} = -\frac{1}{2}$$

∴ gradient of line perpendicular to

AB = 2. The equation of the line is of

the form
$$y = 2x + c$$

When
$$x = -1, y = 6$$

$$\therefore 6 = 2 \times (-1) + c$$

$$\therefore c = 8$$

Equation of line is y = 2x + 8

6 Gradient of
$$AB = \frac{-3-2}{2-5} = \frac{5}{3}$$

Gradient of $BC = \frac{3-(-3)}{-8-2} = -\frac{3}{5}$
Product of these gradients

$$=-\frac{3}{5}\times\frac{5}{3}=-1$$

AB and BC are perpendicular, so ABC is a right–angled triangle.

7
$$A(3,7), B(6,1), C(-8,3)$$

Gradient $AB = \frac{7-1}{3-6} = -2$

Gradient
$$BC = \frac{8-1}{20-6} = \frac{1}{2}$$

∴ $AB \perp BC$

8 Gradient of
$$RS = \frac{4-6}{6-2} = -\frac{1}{2}$$

Gradient of
$$ST = \frac{-4 - 4}{2 - 6} = 2$$

Product of these gradients = -1, so RS

and ST are perpendicular.

Gradient of
$$TU = \frac{-2 - (-4)}{-2 - 2} = -\frac{1}{2}$$

Gradient of
$$UR = \frac{6 - (-2)}{2 - (-2)} = 2$$

Similarly, TU and UR are perpendicular, as are ST and TU, and RS and UR. So RSTU must be a rectangle.

$$9 4x - 3y = 10
 -3y = 10 - 4x$$

$$3v = 4x - 10$$

$$\therefore \quad y = \frac{4}{3}x - \frac{10}{3}$$

Gradient =
$$\frac{4}{3}$$

$$4x - ly = m$$

$$-ly = m - 4x$$

$$ly = 4x - m$$

$$\therefore \quad y = \frac{4}{l}x - \frac{m}{l}$$

Gradient =
$$\frac{4}{1}$$

These lines are perpendicular, so their gradients multiplied equal -1:

$$\frac{4}{3} \times \frac{4}{l} = -1$$

$$\frac{16}{3} = -l$$

$$\therefore l = -\frac{16}{3}$$

At intersection (4, 2) the y and x values are equal. From 4x - ly = m:

$$m = 16 - 2\left(-\frac{16}{3}\right)$$
$$= 16 + \frac{32}{3} = \frac{80}{3}$$

10 a The line perpendicular to AB through B has gradient $-\frac{1}{2}$ and passes through (-1, 6).

The equation of this line is $y = -\frac{1}{2}x + \frac{11}{2}$.

b Intersects AB when $2x + 3 = -\frac{1}{2}x + \frac{11}{2}$. $\therefore x = 1, y = 5$ are the coordinates of point B.

c The coordinates of *A* and *B* are (0, 3) and (1, 5) respectively.

 \therefore the coordinates of C are (2,7).

48

Solutions to Exercise 2F

- 1 The point (2,7) is on the line y = mx 3. Hence 7 = 2m - 3That is, m = 5
- 2 The point (3, 11) is on the line y = 2x + c. Hence $11 = 2 \times 3 + c$ That is, c = 5
- 3 a Gradient of line perpendicular to the line y = mx + 3 is $-\frac{1}{m}$ The y-intercept is 3.

 The equation of the second line is $y = -\frac{x}{m} + 3$.
 - **b** If (1, -4) is on the line, $-4 = -\frac{1}{m} + 3$. Hence $-\frac{1}{m} = -7$. That is, $m = \frac{1}{7}$
- $4 \quad 8 = m \times 3 + 2$ m = 2
- 5 $f: R \to R, f(x) = mx 3, m \in R/\{0\}$
 - **a** x-axis intercept: mx 3 = 0, $\therefore x = \frac{3}{m}$
 - 6 = 5m 3 5m = 9 $m = \frac{9}{5}$
 - **c** x-axis intercept ≤ 1 for $\frac{3}{m} \leq 1$, $\therefore m \geq 3$
 - **d** y = f(x) has gradient = m, so a

perpendicular line has gradient $=-\frac{1}{m}$. Using the straight line formula for the point (0, -3): $y - (-3) = -\frac{1}{m}(x - 0)$

$$y - (-3) = -\frac{1}{m}(x - 0)$$

$$\therefore y = -\frac{1}{m}x - 3$$

$$\mathbf{OR} \ my + x = -3m$$

- 6 $f: R \to R, f(x) = 2x + c$, where $c \in R$
 - **a** x-axis intercept: 2x + c = 0, $\therefore x = -\frac{c}{2}$
 - **b** $6 = 5 \times 2 + c$ c = -4
 - $\mathbf{c} \quad -\frac{c}{2} \le 1$ $c \ge -2$
 - **d** y = f(x) has gradient = 2, so a perpendicular line has gradient = $-\frac{1}{2}$. Using the straight line formula for the point (0, c): $y c = -\frac{1}{2}(x 0)$ $\therefore y = -\frac{1}{2}x + c$
- $7 \frac{x}{a} \frac{y}{12} = 4$
 - **a** When y = 0, $\frac{x}{a} = 4$, $\therefore x = 4a$ The coordinates of the x-axis intercept are (4a, 0).
 - **b** Rearranging to make y the subject. $y = \frac{12x}{a} - 48$ The gradient of the line is $\frac{12}{a}$

- c i When the gradient is $2, \frac{12}{a} = 2, \therefore a = 6$
 - ii When the gradient is $-2, \frac{12}{a} = -2, \therefore a = -6$
- **8 a** When $y = 0, x = \frac{c}{2}$
 - **b** y = -2x + c. When x = 1, y = 7∴ 7 = -2 + c∴ c = 9.
 - $\mathbf{c} \quad \frac{c}{2} \le 1 \Leftrightarrow c \le 2$
 - **d** Line perpendicular to y = -2x + c has gradient $\frac{1}{2}$ Therefore $y = \frac{1}{2}x + c$
 - e $A(\frac{c}{2},0)$ and B(0,c)
 - i The midpoint of line segment AB has coordinates $\left(\frac{c}{4}, \frac{c}{2}\right)$ If $\left(\frac{c}{4}, \frac{c}{2}\right) = (3, 6)$ then c = 12
 - ii The area of the triangle $AOB = \frac{1}{2} \times c \times \frac{c}{2} = \frac{c^2}{4}$ If the area is 4, $\frac{c^2}{4} = 4$ which implies $c^2 = 16$. Therefore c = 4 since c > 0

iii
$$OM = \sqrt{\left(\frac{c}{4}\right)^2 + \left(\frac{c}{2}\right)^2}$$

$$= \sqrt{\frac{5c^2}{16}}$$
If $OM = 2\sqrt{5}$ then $\sqrt{\frac{5c^2}{16}} = 2\sqrt{5}$
 $\therefore c = 8$

- **9** 3x + by = 12
 - **a** 3x + by = 12by = -3x + 12 $y = -\frac{3}{b}x + \frac{12}{b}$ $\therefore y\text{-axis intercept is } \frac{12}{b}.$
 - **b** : gradient = $-\frac{3}{b}$
 - $\mathbf{c} \quad \mathbf{i} \quad -\frac{3}{b} = 1$ b = -3
 - $ii \quad -\frac{3}{b} = -2$ $b = \frac{3}{2}$
 - d Gradient of perpendicular line is $\frac{b}{3}$ The line is of the form $y = \frac{b}{3}x + c$ When x = 4, y = 0 $0 = \frac{b}{3} \times 4 + c$ $c = -\frac{4b}{3}$ $\therefore y = \frac{b}{3}x - \frac{4b}{3}$ or 3y = bx - 4b

Solutions to Exercise 2G

- 1 At n = 0, w = \$350, paid at \$20 per n $\therefore w = 20n + 350$; $n \in N \cup \{0\}$
- **2 a** At t = 0, $d_1 = 0$ and v = 50 km/h $\therefore d_1 = vt = 50 t$
 - **b** At t = 0, $d_2 = 80$ and v = -40 km/h
 ∴ $d_2 = 80 40 t$
 - \mathbf{c} Gradient = 50

Gradient = -40

- **3 a** At t = 0, V = 0, fills at 5 L/min ∴ V = 5t
 - **b** At t = 0, V = 10, fills at 5L/min $\therefore V = 5t + 10$
- **4 a** At t = 0, v = 500, empties at 2.5 L/min $\therefore v = -2.5t + 500$
 - **b** Since the bag is emptying, $v \le 500$ The bag cannot contain a negative volume so $v \ge 0$

$$\therefore 0 \le v \le 500$$

The bag does not go back in time so
$$t > 0$$

The bag empties when

$$-2.5t + 500 = 0$$

$$2.5t = 500$$

$$t = 200$$

After that the function no longer holds true,

$$0 \le t \le 200$$

c

- 5 At n = 0, C = 2.6, C per km = 1.5 $\therefore C = 1.5n + 2.6$
- **6 a** At x = 0, C = 85, C per km = 0.24 ∴ C = 0.24x + 85
 - **b** When x = 250, C = 0.24 (250) + 85= 60 + 85 = \$145
- 7 At t = 0, d = 200 km, v = -5 km/h from B $\therefore d = -5t + 200$

b
$$w = 50 + 0.2x$$

c If
$$w = 52.5$$
 g,
 $x = 5 \times (52.5 - 50)$
 $= 5 \times 2.5 = 12.5$ cm

9 **a**
$$C = an + b$$

If $n = 800$, $C = 47$; if $n = 600$, $C = 35$
 $800 \ a + b = 47$
 $600 \ a + b = 35$
 $200 \ a = 12$
 $\therefore a = \frac{12}{200} = \frac{3}{50} = 0.06$
Substitute into 2nd equation:

$$600 \times \frac{3}{50} + b = 35$$
$$36 + b = 35$$
$$b = -1$$
$$\therefore C = 0.06n - 1$$

b If
$$n = 1000$$
,
 $c = 0.06(1000) - 1$
 $= 60 - 1 = 59

10 **a**
$$C = an + b$$

If $n = 160$, $C = 975$; if $n = 120$, $C = 775$
 $160 \ a + b = 975$
 $120 \ a + b = 775$
 $40 \ a = 200$
 $\therefore a = \frac{200}{40} = 5$
Substitute into 2nd equation: $600 + b = 775$
 $b = 175$
 $\therefore C = 5n + 175$

- **b** Yes, because $b \neq 0$
- **c** When n = 0, C = \$175

Solutions to Exercise 2H

- 1 The lines x + y = 6 and 2x + 2y = 13both have gradient -1 but different y-intercepts.
- **2** Let $x = \lambda$. Then solution is $\{(\lambda, 6 \lambda) : \lambda \in R\}$
- 3 a m = 4. The line y = 4x + 6 is parallel to the line y = 4x 5
 - **b** $m \neq 4$
 - c 15 = 5m + 6 $\therefore m = \frac{9}{5}$ Check: (5,15) lies on the line y = 4x - 5
- 4 6 = 4 + k and 6 = 2m − 4 ∴ k = 2 and m = 5
- 5 2(m-2) + 8 = 4...(1)2m + 24 = k...(2)From (1) 2m 4 + 8 = 4m = 0From (2) k = 24
- **6** The simultaneous equations have no solution when the cooresponding lines have the same gradient and no point in common.

Gradient of mx - y = 5 is m.

Gradient of 3x + y = 6 is -3.

 \therefore lines are parallel when m = -3

Gradient of 3x + my = 5 is $-\frac{3}{m}$.

Gradient of (m+2)x + 5y = m is $-\frac{m+2}{5}$.

If the gradients are equal

$$-\frac{3}{m} = -\frac{m+2}{5}$$

$$15 = m^2 + 2m$$

$$m^2 + 2m - 15 = 0$$

$$(m+5)(m-3) = 0$$

$$m = -5 \text{ or } m = 3$$

a When m = -5 the equations become

$$3x - 5y = 5$$

$$-3x + 5y = -5$$

They are equations of the same line. There are infinitely many solutions.

b When m = 3 the equations become

$$3x + 3y = 5$$

$$5x + 5y = 3$$

They are the equations of parallel lines with no common point.

No solutions

8 A: C = 10t + 20

B:
$$C = 8t + 30$$

b Costs are equal when

$$10t + 20 = 8t + 30$$
$$2t = 10, \therefore t = 5$$

9 Day 1:

John:
$$v = \frac{1}{a}$$
 m/s

Michael:
$$v = \frac{1}{h}$$
 m/s

$$d = vt = 50$$
 m, so Michael's time is:

$$t = 50 \frac{1}{v} = 50 b$$

Similarly, John's time is:

$$t = 50 \frac{1}{v} = 50 a$$

Michael wins by 1 second

$$\therefore 50 \ a = 50 \ b + 1$$

Day 2:

John runs only 47 m:

$$t = 47 \ a$$

Michael runs the same time:

$$t = 50 b$$

Michael wins by 0.1 seconds

$$\therefore 47 \ a = 50 \ b + 0.1$$

From day 1:
$$50 b = 50 a - 1$$

$$\therefore$$
 47 $a = 50 a - 1 + 0.1$

$$3 a = 0.9$$
. $a = 0.3$

$$50 b = 50 \times 0.3 - 1 = 14$$

$$b = 0.28$$

Michael's speed:

$$v = \frac{1}{b} = \frac{1}{0.28} = \frac{25}{7}$$
 m/s

10
$$d_{\rm A} = 10t + 15$$

$$d_{\rm B} = 20t + 5$$

t is the time in hours after 1.00 p.m.

10t = 10, :: t = 1

b
$$d_A = d_B$$
 when $20t + 5 = 10t + 15$

11 a A:
$$C = 1.6x + 210$$
 B: $C = 330$

c Costs are equal when

$$l.6x + 210 = 330$$

$$1.6x = 120$$

$$x = \frac{120}{1.6} = 75$$

When x < 75, method A is cheaper; when x > 75, method B is cheaper. So the fixed charge method is cheaper when x > 75.

12 a

b C wins the race

c
$$A(t) = 20t$$

$$B(t) = 25(t-5)$$

$$C(t) = 40(t - 10)$$

After 25 hours,

$$A(25) = 500$$

$$B(25) = 25(25 - 5) = 500$$

$$C(25) = 40(25 - 10) = 600$$

C completes the course in *t* hours where:

$$40(t - 10) = 500$$

$$t - 10 = \frac{500}{40} = 12.5$$

$$t = 12.5 + 10 = 22.5$$

d C, leaving 5 hours after B, overtakes B $13\frac{1}{2}$ hours after B had started and then overtakes A 20 hours after A had started. C wins the race with a total handicap time of $22\frac{1}{2}$ hours $(12\frac{1}{2}$ hours for journey +10 hours handicap) with A and B deadheating for 2nd, each with a total handicap time of 25 hours.

13
$$y = -\frac{3}{4}x$$
 meets $y = \frac{3}{2}x - 12$ when $-\frac{3x}{4} = \frac{3x}{2} - 12$ $-3x = 6x - 48$ $9x = 48$ $x = \frac{48}{9} = \frac{16}{3} = 5\frac{1}{3}$ $\therefore y = -\frac{3}{4} \times \frac{16}{3} = -4$

The paths cross at $\left(5\frac{1}{3}, -4\right)$

14 a Public transport: \$C = 2.8x

Bus:
$$C = x + 54$$

c Costs are equal when 2.8x = x + 54

$$1.8x = 54$$

$$x = 30$$

It is more economical if there are more than 30 students.

15 a Anne: when t = 0, d = 0; $v = 20 \text{ km/h} = \frac{1}{3} \text{km/min}$ $\therefore d = \frac{t}{3}$ Maureen: when t = 0, d = 57; $v = -18 \text{ km/h} = -\frac{3}{10} \text{km/min}$ $\therefore d = 57 - \frac{3}{10}t$

 ${f c}$ They meet when

$$\frac{t}{3} = 57 - \frac{3t}{10}$$

$$\frac{t}{3} + \frac{3t}{10} = 37$$

$$10t + 9t = 1710$$

$$19t = 1710$$

$$t = \frac{1710}{19} = 90$$

They meet after 90 min, i.e. 10.30 a.m.

d Substitute into either equation, but Anne's is easier: $d = \frac{t}{3} = \frac{90}{3} = 30$ Anne has traveled 30 km, so Maureen

must have traveled 57 - 30 = 27 km.

56

1 a A(1,2) and B(5,2): y does not change.

Length AB = 5 - 1 = 4Midpoint $x = \frac{1+5}{2} = 3$ \therefore midpoint is at (3, 2).

b A(-4, -2) and B(3, -7)Length $AB = \sqrt{(-4 - 3)^2 + (-2 - (-7))^2}$

Length $AB = \sqrt{(-4-3)^2 + (-2-(-7)^2)}$ $= \sqrt{(-7)^2 + 5^2} = \sqrt{74}$ Midpoint $x = \frac{-4+3}{2} = -\frac{1}{2}$ $y = \frac{-2+-7}{2} = -\frac{9}{2}$

 \therefore midpoint is at $\left(-\frac{2}{2}, -\frac{9}{2}\right)$.

c A(3,4) and B(7,1)

Length $AB = \sqrt{(7-3)^2 + (1-4)^2}$ = $\sqrt{4^2 + (-3)^2} = \sqrt{25} = 5$

Midpoint $x = \frac{3+7}{2} = 5$

 $y = \frac{4+1}{2} = \frac{5}{2}$

 \therefore midpoint is at $\left(5, \frac{5}{2}\right)$.

2 **a** $m = \frac{12-3}{8-4} = \frac{9}{4}$

b $m = \frac{-6 - 4}{8 - (-3)} = -\frac{10}{11}$

c *x* does not change so gradient is undefined.

d $m = \frac{0-a}{a-0} = -1$

 $\mathbf{e} \ m = \frac{b-0}{a-0} = \frac{b}{a}$

 $\mathbf{f} \ m = \frac{0-b}{a-0} = -\frac{b}{a}$

3 If m = 4 then y = 4x + c

a Passing though (0,0); y = 4x

b Passing though (0, 5); y = 4x + 5

c Passing though (1, 6); y = 4 + c = 6, : c = 2y = 4x + 2

d Passing though (3, 7); y = 12 + c = 7, c = -5y = 4x - 5

4 a y = 3x - 5Using (1, a), a = 3 - 5 = -2

b y = 3x - 5Using (b, 15), 3b - 5 = 153b = 20, $b = \frac{20}{3}$

5 y = mx + c; $m = \frac{-4 - 2}{3 - (-5)} = -\frac{3}{4}$ Using (3, -4): $-4 = \left(-\frac{3}{4}\right)3 + c$ $\frac{9}{4} - 4 = c = -\frac{7}{4}$ $y = -\frac{3}{4}x - \frac{7}{4}$ 4y = -3x - 7

 $\therefore 3x + 4y = -7$

6 $y = mx + c : m = -\frac{2}{3}$ Using (-4, 1): $y = -\frac{2}{3}(-4) + c = 1$

$$\frac{8}{3} + c = 1 \therefore c = -\frac{5}{3}$$

$$y = -\frac{2}{3x} - \frac{5}{3}$$

$$3y = -2x - 5$$

$$\therefore 2x + 3y = -5$$

- 7 **a** Lines parallel to the x-axis are y = c. Using (5, 11), y = 11
 - **b** Parallel to y = 6x + 3 so gradient m = 6When x = 0, y = -10, so c = -10y = 6x - 10

$$3x - 2y + 5 = 0$$

$$-2y = -3x - 5$$

$$\therefore \qquad y = \frac{3}{2}x + \frac{5}{2}$$

$$m = \frac{3}{2} \text{ so perpendicular gradient}$$

$$= -\frac{2}{3}$$
Using (0,1), $c = 1$

$$y = -\frac{2}{3}x + 1$$

$$3y = -2x - 3$$

$$\therefore \qquad 2x + 3y = -3$$

8
$$y = mx + c$$

Line at 45° to x-axis
 $m = \tan(45^\circ) = 1$
Using (2, 3): $3 = 1 \times 2 + c$
So $c = 1$ and $y = x + 1$
 $\therefore y = x + 1$

9
$$y = mx + c$$
:
Line at 135° to *x*-axis,

$$m = \tan 135^{\circ} = -1$$

Using $(-2, 3) : 3 = -1 \times -2 + c$
So $c = 1$ and $y = -x + 1$
 $\therefore x + y = 1$

- 10 Gradient of a line perpendicular to y = -3x + 2 is $\frac{1}{3}$.

 Therefore required line is of the form $y = \frac{1}{3}x + c$.

 When x = 4, y = 8 $\therefore 8 = \frac{1}{3} \times 4 + c$ Hence $c = 8 \frac{4}{3} = \frac{20}{3}$ $y = \frac{1}{3}x + \frac{20}{3}$
- 11 y = 2x + 1When x = 0, y = 1. $\therefore a = 1$ When y = 0, 2x + 1 = 0. $\therefore b = -\frac{1}{2}$ When x = 2, y = 5. $\therefore d = 5$ When y = 7, 2x + 1 = 7. $\therefore e = 3$
- 12 **a** y = 2x 8When x = 0, y = -8 and when y = 0, x = 4 y = 2x - 8 y = 2x - 8 y = 2x - 8 (4, 0)
 - **b** 3x + y = 6When x = 0, y = 6 and when y = 0, x = 2

58

c 3x + y + 6 = 0When x = 0, y = -6 and when y = 0, x = 2

d y - 2x - 8 = 0When x = 0, y = 8 and when y = 0, x = -4

e y = -6x + 6When x = 0, y = 6 and when y = 0, x = 1

f 2x + 5y + 10 = 0When x = 0, y = -2 and when y = 0, x = -5

13 a Line is of the form y = c. ∴ y = -9 is the equation

b Line is of the form x = a. $\therefore x = 8$ is the equation.

c i y = 3x

- ii y = -3x
- **14 a** d = 60t
 - **b** gradient is 60
- **15** S = 800 + 500n

16 a
$$y = ax + 2$$

When
$$x = 2, y = 6$$

$$\therefore 6 = 2a + 2$$

$$\therefore a = 2$$

The equation is y = 2x + 2

b i When
$$y = 0$$
, $ax + 2 = 0$
∴ $x = \frac{-2}{a}$

$$ii \qquad \frac{-2}{a} > 1$$
$$-2 < a$$

(Since
$$a < 0$$
)
∴ $0 > a > -2$

Equivalently -2 < a < 0

$$x + 3 = ax + 2$$
 Substitute in

$$x - ax = 2 - 3$$

$$x(1-a) = -1$$

$$x = \frac{1}{a-1}$$

 $x = \frac{1}{a-1}$ y = x + 3 to find the y-coordinate.

$$y = \frac{1}{a-1} + 3$$
$$y = \frac{3a-2}{a-1}$$

The coordinates of the point of

intersection are $\left(\frac{1}{a-1}, \frac{3a-2}{a-1}\right)$

60

Solutions to Review: Multiple-choice questions

- 1 **D** Midpoint $x = \frac{4+6}{2} = 5$ Midpoint $y = \frac{12+2}{2} = 7$ Midpt is at (5, 7)
- **2** E Midpoint *x*-coordinate $6 = \frac{-4 + x}{2}, \therefore x = 16$ Midpoint *y*-coordinate $3 = \frac{-6 + y}{2}, \therefore y = 12$ $\therefore x + y = 28$
- 3 A Gradient = $\frac{-10 (-8)}{6 5} = -2$
- **4 E** Gradient = $\frac{2a (-3a)}{4a 9a} = -1$
- 5 C y = mx + c; m = 3Using (1,9): 9 = 3 + c so c = 6y = 3x + 6
- **6 D** $y = mx + c; m = \frac{-14 (-6)}{-2 2} = 2$ Using (2, -6): y = 4 + c = -6; c = -10So y = 2x - 10
- 7 **B** y = 2x 6Using (a, 2): y = 2a - 6 = 2, $\therefore a = 4$
- **8** E Axis intercepts at (1,0) and (0,-3):

- y = mx + c: c = -3Using (1, 0): 0 = m - 3 so m = 3y = 3x - 3
- 9 C 5x y + 7 = 0 -y = -5x - 7 $\therefore y = 5x + 7$ Gradient = 5 ax + 2y - 11 = 0 2y = -ax + 11
 - $y = -\frac{a}{2}x + \frac{11}{2}$ Parallel lines mean gradients are equal: $-\frac{a}{2} = 5, \therefore a = -10$
- 10 E C = 2.5x + 65 = 750 $2.5x = 685, \therefore x = 274$
- 11 C 2ax + 2by = 3...(1)3ax 2by = 7...(2)Add (1) and (2)5ax = 10 $\therefore x = \frac{2}{a}$ Substitute in (1)

$$y = -\frac{1}{2h}$$

Solutions to Review: Extended-response questions

1 a
$$C = 100n + 27.5n + 50 + 62.5n = 550 + 190n$$

b

$$C \le 3000$$
 $\therefore 550 + 190n \le 3000$

$$\therefore$$
 190*n* \leq 2450

$$\therefore \qquad \qquad n \le \frac{2450}{190}$$

$$\therefore \qquad \qquad n < 12.9$$

The cruiser can be hired for up to and including 12 days by someone wanting to spend no more than \$3000.

c
$$300n < 550 + 190n$$

It's cheaper to hire from the rival company for cruises less than 5 days.

- 2 a It is the cost of the plug.
 - **b** It is the cost per metre of the cable.
 - **c** 1.8

d

$$24.5 = 4.5 + 1.8x$$

$$\therefore$$
 20 = 1.8x

$$\therefore x = \frac{20}{1.8}$$

$$= \frac{100}{9}$$

$$= 11\frac{1}{9}$$

11 $\frac{1}{9}$ metres of cable would give a total cost of \$ 24.50.

3 a It is the maximum profit when the bus has no empty seats, i.e. x = 0.

b
$$P < 0$$

 $1020 - 24x < 0$
 $-24x < -1020$
 $x > \frac{-1020}{-24}$
 $x > 42.5$

43 empty seats is the least number to cause a loss on a single journey.

c The profit reduces by \$24 for each empty seat.

4 a i
$$C = 0.091n$$
, $0 < n \le 50$
ii $C = 0.058(n - 50) + 0.091 \times 50$
 $= 0.058n - 2.9 + 4.55$
 $= 0.058n + 1.65$, $50 < n \le 200$
iii $C = 0.0356(n - 200) + 0.058 \times 200 + 1.65$
 $= 0.0356n - 7.12 + 11.6 + 1.65$

= 0.0356n + 6.13,

n > 200

from the graph
$$C \approx $3$$

from the formula
$$C = 0.091 \times 30$$

$$= $2.73$$

ii When
$$n = 90$$
 kWh,

$$C \approx $7$$

$$C = 0.058 \times 90 + 1.65$$

$$= $6.87$$

iii When
$$n = 300$$
 kWh,

$$C \approx 17$$

$$C = 0.0356 \times 300 + 6.13$$

$$= $16.81$$

c When
$$C = 20$$
,

$$20 = 0.0356n + 6.13$$

$$13.87 = 0.0356n$$

$$n = 389.60...$$

Approximately 390 kWh of electricity could be used for \$20.

$$(x_1, y_1) = (2, 10)$$
 and $(x_2, y_2) = (8, -4)$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 10}{8 - 2}$$
$$= \frac{-14}{6}$$
$$= \frac{-7}{3}$$

$$y - y_1 = m(x - x_1)$$

$$\therefore \qquad y - 10 = \frac{-7}{3}(x - 2)$$

$$\therefore y - 10 = \frac{-7}{3}x + \frac{14}{3}$$

$$y + \frac{7}{3}x = 10 + \frac{14}{3}$$

$$\therefore \qquad y + \frac{7}{3}x = \frac{44}{3}$$

$$\therefore \qquad 3y + 7x = 44$$

$$\therefore y = -\frac{7}{3}x + 14\frac{2}{3}$$

The equation describing the aircraft's flight path is 7x + 3y = 44.

b When
$$x = 15$$
, $7 \times 15 + 3y = 44$
 \therefore $105 + 3y = 44$
 \therefore $3y = -61$

$$\therefore \qquad \qquad y = \frac{-61}{3}$$

$$=-20\frac{1}{3}$$

When x = 15, the aircraft is $20\frac{1}{3}$ km south of O.

6 a
$$s = 100 - 7x$$

b

s (%)
100
(0, 100)
8
6
4
2
(100
7, 0)

c
$$100 - 7x \ge 95$$

$$\therefore \qquad -7x \ge -5$$

$$\therefore \qquad x \le \frac{5}{7}$$

i.e. $\frac{5}{7}\%$ air can be left in the concrete for at least 95% strength.

d
$$100 - 7x = 0$$

$$\therefore \qquad -7x = -100$$

$$\therefore \qquad x = \frac{100}{7}$$
$$= 14\frac{2}{7}$$

i.e. the concrete contains $14\frac{2}{7}\%$ air when at 0% strength.

e Concrete at 0% strength would not be useful, therefore not a sensible model.

f
$$\{x: 0 \le x \le 14\frac{2}{7}\}$$

7 **a** For line AB, let $(x_1, y_1) = (0, 2)$ and $(x_2, y_2) = (4, 6)$

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 0} = 1$$

(Alternatively, y = mx + c, where m = 1 as shown and c = 2, y = x + 2.)

Now $y - y_1 = m(x - x_1)$

$$y - 2 = 1(x - 0)$$

 \therefore y = x + 2 is the equation of line AB.

For line *CD*, let $(x_1, y_1) = (3, 0)$ and $(x_2, y_2) = (5, 4)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 0}{5 - 3} = 2$$

Now $y - y_1 = m(x - x_1)$

$$\therefore \qquad y - 0 = 2(x - 3)$$

$$\therefore \qquad \qquad \mathbf{y} = 2\mathbf{x} - \mathbf{6}$$

The equation of line CD is y = 2x - 6.

b The lines intersect where x + 2 = 2x - 6

$$\therefore \qquad 2 = x - 6$$

$$\therefore$$
 $x = 8$

When
$$x = 8$$
, $y = 2 \times 8 - 6$

$$\therefore \qquad \qquad y = 10$$

i.e. the coordinates of the point of intersection are (8, 10), and the paths of the rabbit and the fox meet on the near bank of the irrigation channel.

8 a For the equation of line AB, let $(x_1, y_1) = (-4.5, 2)$ and $(x_2, y_2) = (0.25, 7)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{7 - 2}{0.25 - (-4.5)}$$

$$= \frac{5}{4.75}$$

$$= \frac{20}{19}$$

Now
$$y - y_1 = m(x - x_1)$$

$$\therefore \qquad y - 2 = \frac{20}{19}(x - (-4.5))$$

$$y = \frac{20}{19}x + \frac{90}{19} + 2$$

$$y = \frac{20}{19}x + \frac{128}{19}$$

The equation of line AB is $y = \frac{20}{19}x + \frac{128}{19}$.

 \therefore the y-coordinate of the point V is the y-axis intercept of $\frac{128}{19}$.

b For the equation of line VC, let $(x_1, y_1) = (0, \frac{128}{19})$ and $(x_2, y_2) = (5, 1.5)$.

$$C = \frac{128}{19} \text{ and} \qquad m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{1.5 - \frac{128}{19}}{5 - 0} - \frac{\frac{57}{38} - \frac{256}{38}}{5} = \frac{1}{5} \times -\frac{199}{38} = -\frac{199}{190}$$

Now

$$y = mx + c$$

$$y = -\frac{199}{190}x + \frac{128}{19}$$
 is the equation of the line *VC*.

- c Cuts AB and VC are not equally inclined to the vertical axis because the gradients of AB and VC (although opposite in sign) are not the same size, (gradient $AB \approx 1.053$, gradient $VC \approx -1.047$).
- **9** a For the equation of line PQ, let $(x_1, y_1) = (4, -75)$ and $(x_2, y_2) = (36, -4)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{-4 - (-75)}{36 - 4}$$

$$= \frac{71}{32}$$
Now
$$y - y_1 = m(x - x_1)$$

$$\therefore \qquad y - (-75) = \frac{71}{32}(x - 4)$$

$$\therefore \qquad y + 75 = \frac{71}{32}x - \frac{71}{8}$$

$$\therefore \qquad y = \frac{71}{32}x - \frac{671}{8} \text{ is the equation of line } PQ.$$
When $7x = 20$,
$$y = \frac{71}{32} \times 20 - \frac{671}{8}$$

$$= \frac{355}{8} - \frac{671}{8}$$

$$= \frac{-316}{8}$$

$$= -39\frac{1}{2}$$
i.e. line PQ does not pass directly over a hospital located at $H(20, -36)$.

b When
$$y = -36$$
, $-36 = \frac{71}{32}x - \frac{671}{8}$
 $\therefore \frac{383}{8} = \frac{71}{32}x$
 $\therefore x = \frac{383}{8} \times \frac{32}{71} = 21\frac{41}{71}$
i.e. when $y = -36$, the aircraft is $1\frac{41}{71}$ km east of H .

10 a 5 km due south of *E* is D(68, 30).

For the equation of line AD, let
$$(x_1, y_1) = (48, 10)$$
 and $(x_2, y_2) = (68, 30)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{30 - 10}{68 - 48} = 1$$

 $y - y_1 = m(x - x_1)$ Now

$$y - 10 = 1(x - 48)$$

y = x - 38 is the equation of the new runway.

b A(48, 10)

68

$$B((48 + 8), y) = (56, y)$$
When $x = 56$, $y = x - 38$

$$= 56 - 38$$

$$= 18$$

 \therefore the coordinates of B are (56, 18).

c Consider the line connecting C(88, -10) and D(68, 30).

Let
$$(x_1, y_1) = (88, -10)$$
 and $(x_2, y_2) = (68, 30)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{30 - (-10)}{68 - 88}$$

$$= \frac{40}{-20} = -2$$

Now
$$y - y_1 = m(x - x_1)$$

$$\therefore y - (-10) = -2(x - 88)$$

$$\therefore$$
 $y + 10 = -2x + 176$

$$\therefore \qquad y = -2x + 166 \text{ is the equation defining the line } CD.$$

d y = 10 for an auxiliary beacon due east of A.

$$\therefore$$
 2*x* + 10 = 166

$$\therefore$$
 2*x* = 156

$$\therefore \qquad \qquad x = 78$$

i.e. the coordinates of the auxiliary beacon are (78, 10).

11 a Gradient of
$$AB = \frac{6-8}{8-2}$$

= $-\frac{2}{6}$
= $-\frac{1}{3}$

As $AD \perp AB$, gradient of AD = 3.

Equation of the line through A and D is

$$y - 8 = 3(x - 2)$$
$$= 3x - 6$$

$$\therefore \qquad \qquad y = 3x + 2$$

b D lies on the line with equation y = 3x + 2, and has an x-coordinate of 0. When x = 0, y = 2. D is the point (0, 2).

c Let M be the midpoint of AB, with coordinates (x, y).

$$x = \frac{2+8}{2} = 5$$

and

$$y = \frac{8+6}{2} = 7$$

 \therefore M is the point (5, 7).

The point M lies on the perpendicular bisector of AB that has a gradient 3.

The equation of the perpendicular bisector of AB is

$$y - 7 = 3(x - 5)$$

$$= 3x - 15$$

$$\therefore \qquad \qquad y = 3x - 8$$

d Let C be the point (a, b).

C lies on the lines with equation y = 3x - 8 and 3y = 4x - 14

∴
$$b = 3a - 8$$

and

3b = 4a - 14Substituting (1) into (2) yields

$$3(3a - 8) = 4a - 14$$

$$\therefore$$
 9a - 24 = 4a - 14

$$\therefore 5a = 10$$

$$\therefore$$
 $a=2$

$$b = 3(2) - 8 = -2$$

 \therefore C is the point (2, -2).

e Area of triangle *ADC*

Using
$$\frac{1}{2}$$
 (base)(height), area $\triangle ADC$ is simply $\frac{1}{2}(2)(10) = 10$ square units [since $AC =$ base

$$\frac{1}{2}(2)(10) = 10$$
 square units [since $AC = base$ length = 10 units]

f Area $\triangle ABC$ is simply $\frac{1}{2}(6)(10) = 30$ square units Area of quadrilateral \overline{ABCD}

= area of
$$\triangle ADC$$
 + area of $\triangle ABC$

$$= 10 + 30$$

= 40 square units

12 a
$$C = 40x + 30000$$

b When
$$x = 6000$$
, $C = 40 \times 6000 + 30000$
= 270000
Cost per wheelbarrow = $\frac{270000}{6000}$
= 45

i.e. overall cost per wheelbarrow is \$45.

$$\therefore \frac{40x + 30000}{x} = 46$$

$$\therefore$$
 40*x* + 30 000 = 46*x*

$$\therefore$$
 30 000 = 6x

$$x = 5000$$

i.e. 5000 wheelbarrows must be made for an overall cost of \$46 each.

d
$$R = 80x$$

f
$$R > C$$
, $\therefore 80x > 40x + 30000$

$$\therefore$$
 40*x* > 30 000

$$\therefore \qquad x > 750$$

i.e. minimum number of wheelbarrows to make a profit is 751.

$$\mathbf{g} P = R - C$$
$$= 80x - (40x + 30000)$$
$$= 40x - 30000$$

13 a Cost of Method
$$1 = 100 + 0.08125 \times 1560$$

= 226.75
Cost of Method $2 = 4 \times 27.5 + 0.075 \times 1560$

= 227

i.e. Method 1 is cheaper for 1560 units.

b		Number of units of electricity				
		0	1000	2000	3000	
	Cost (\$) by Method 1	100	181.25	262.50	343.75	
	Cost (\$) by Method 2	110	185	260	335	

Calculations for Method 1:

$$100 + 0.08125 \times 0 = 100$$

$$100 + 0.08125 \times 1000 = 181.25$$

$$100 + 0.08125 \times 2000 = 262.50$$

$$100 + 0.08125 \times 3000 = 343.75$$

Calculations for Method 2:

$$4 \times 27.5 + 0.075 \times 0 = 110$$

$$4 \times 27.5 + 0.075 \times 1000 = 185$$

$$4 \times 27.5 + 0.075 \times 2000 = 260$$

$$4 \times 27.5 + 0.075 \times 3000 = 335$$

d
$$C_1 = 100 + 0.08125x$$

$$C_2 = 4 \times 27.5 + 0.075 \times x$$

$$= 110 + 0.075x$$

When
$$C_1 = C_2$$
, $100 + 0.08125x = 110 + 0.075x$
 $0.00625x = 10$
 $x = 1600$

14 a *M* is the point directly below the intersection of lines AC and BD.

Find the equations of the lines AC and BD.

M is the midpoint of both AC and BD.

Use the midpoint formula to find the coordinates of M.

Using line *AC*:

$$M = (\frac{10 + 24}{2}, \frac{16 + 8}{2})$$
$$= (17, 12)$$

i.e. the point to which the hook must be moved has coordinates (17, 12).

b (17, 12) is a point on the line, and m = gradient of AB

where
$$(x_1, y_1) = (10, 16)$$

and
$$(x_2, y_2) = (16, 20)$$

$$m = \frac{20 - 16}{16 - 10} = \frac{2}{3}$$

$$\therefore \text{ equation of line parallel to } AB \text{ is}$$

$$y - 12 = \frac{2}{3}(x - 17)$$

$$y = \frac{2}{3}x - \frac{34}{3} + 12$$

$$\therefore \qquad 3y = 2x + 2$$

15 a Find equations of lines PA, AB, BC, CD and DP using the formula $y - y_1 = m(x - x_1)$, where $m = -\frac{y_2 - y_1}{x_2 - x_1}$.

For line
$$PA$$

$$m = \frac{60 - 120}{100 - 0}$$

$$= -\frac{3}{5}$$

$$y - 120 = -\frac{3}{5}(x - 0)$$

$$y = -\frac{3}{5}x + 120$$
For line AB

$$m = \frac{100 - 60}{200 - 100}$$

$$= \frac{2}{5}$$

$$y - 60 = \frac{2}{5}(x - 100)$$

$$y = \frac{2}{5}x + 20$$

$$m = \frac{200 - 100}{160 - 200}$$

$$= -\frac{5}{2}$$

$$y - 100 = -\frac{5}{2}(x - 200)$$

$$y = -\frac{5}{2}x + 600$$
For line CD

$$m = \frac{160 - 200}{60 - 160}$$

$$= \frac{2}{5}$$

$$y - 200 = \frac{2}{5}(x - 160)$$

$$\therefore \qquad y = \frac{2}{5}x + 136$$
For line DP

$$m = \frac{120 - 160}{0 - 60}$$

$$= \frac{2}{3}$$

$$y - 120 = \frac{2}{3}(x - 0)$$

$$\therefore \qquad y = \frac{2}{3}x + 120$$

$$m_{PA} = -\frac{3}{5}$$

$$m_{AB} = \frac{2}{5}$$

$$m_{BC} = -\frac{5}{2}$$

$$m_{CD} = \frac{2}{5}$$
and
$$m_{DP} = \frac{2}{3}$$
Now
$$m_{AB} = m_{CD} = \frac{2}{5}$$
and
$$m_{AB} \times m_{BC} = \frac{2}{5} \times -\frac{5}{2} = -1$$

 \therefore line *BC* is perpendicular to lines A*B* and *CD*, which are parallel. Hence $\angle ABC$ and $\angle BCD$ are right angles.