Student Engagement Analysis using Computer Vision

Project Team

Student 1 22I-1148 Student 2 22I-0788 Student 3 22I-0962

Session 2022-2026

Supervised by

Dr Qaisar Shafi

Co-Supervised by

Sir Adil-ur-rahman

Department of Computer Science

National University of Computer and Emerging Sciences Islamabad, Pakistan

June, 2022

Contents

1	Introduction				
	1.1	Proble	m Domain	1	
	1.2	Resear	ch Problem Statement	1	
2	Lite	rature I	Review	3	
	2.1	Related	d Research	3	
		2.1.1	Detecting Student Engagement with CNN and FER[2]	3	
		2.1.2	Measuring Student Engagement through Behavioral and Emotional		
			Features[5]	4	
		2.1.3	Improving Student Engagement Detection with ResNet + TCN		
			Hybrid[1]	4	
		2.1.4	Multimodal Engagement Analysis from Facial Videos[11]	4	
		2.1.5	Student Engagement Detection Using YOLOv4[7]	5	
		2.1.6	Student Engagement Detection in Classrooms with CV[8]	5	
		2.1.7	DIPSER Dataset: Multimodal Engagement Recognition[6]	5	
		2.1.8	SLR of Computer Vision in Student Engagement[3]	5	
		2.1.9	Dynamic Interaction Between Student Behaviour and Environment[4	6	
		2.1.10	Detecting Nonverbal Speech and Gaze Behaviours[10]	6	
		2.1.11	Vision-Based Gesture Recognition for Engagement Assessment[9]	6	
	2.2	Compa	arative Table of Reviewed Studies	6	
3	Proj	posed A	pproach	9	
	3.1	System	Overview	9	
	3.2	Data C	ollection and Preprocessing	10	
	3.3	Model	Architecture and Fusion	10	
		3.3.1	Parallel Model Design	10	
		3.3.2	Multimodal Fusion and Engagement Scoring	10	
	3.4	System	Implementation	11	
	3.5	Evalua	tion Methodology	11	
	3.6	Parame	eters	11	
	3.7	Graphi	cal Models and System Design	12	
Re	eferen	ices		22	

List of Figures

3.1	System Architecture Diagram illustrating the end-to-end workflow of the	
	proposed multimodal engagement detection framework	13
3.2	Use Case Diagram illustrating the main actors and interactions within the	
	system	14
3.3	Class Diagram depicting the structural relationships among the core classes	
	of the system	14
3.4	Sequence Diagram showing the interaction flow between system compo-	
	nents during engagement analysis	15
3.5	Activity Diagram outlining the process flow from video input to engage-	
	ment report generation	16
3.6	Component Diagram illustrating the high-level modular decomposition of	
	the system	17
3.7	Data Flow Diagram (Level 1) representing the logical flow of data among	
	system processes and data stores	18
3.8	Domain Model Diagram representing the key classes and their relation-	
	ships for engagement detection	19

List of Tables

2.1 Comparative analysis of existing studies on AI-based student engageme			
	detection.	-	

Chapter 1

Introduction

This chapter introduces the research project titled AI-Based Student Engagement Analysis. It establishes the contextual foundation, explains the purpose and objectives, and defines the problem domain and specific research problem being addressed. The chapter also outlines the system's intended functionality and its relevance within modern educational technology.

1.1 Problem Domain

The education sector is transforming with AI integration in classrooms, yet measuring student engagement—a key driver of academic success—remains challenging using traditional, subjective observation methods. Computer vision and deep learning enable automated, real-time analysis of facial expressions, gestures, and behaviors, but existing systems often limit focus to emotions, ignoring posture, hand movements, and attentiveness etc. This study bridges AI, affective computing, and educational psychology to deliver multimodal feedback on emotional, cognitive, and behavioral engagement, enabling data-driven, inclusive teaching through lecture-to-lecture analysis for teachers.

1.2 Research Problem Statement

Current AI-based classroom analytics suffer from key limitations: over-reliance on facial expressions, ignoring gaze, posture, and gestures; the majority offer only binary engagement classifications, limited to engaged and disengaged states. Moreover, they rarely support lecture-to-lecture analysis on a student-by-student basis, hindering the tracking of individual progress and long-term trends. This research develops a multimodal AI system integrating emotion recognition and action detection for comprehensive engagement anal-

ysis from classroom videos, supporting lecture-to-lecture comparisons. It provides multi-modal, individualized insights—including lecture-to-lecture analysis per student—to help educators identify engagement and disengagement, track personalized trends, and refine strategies, advancing educational AI while enabling teachers to adapt and improve their strategies for the betterment of students.

Chapter 2

Literature Review

This chapter critically examines existing literature relevant to AI-based student engagement analysis, highlighting key studies, their methodologies, contributions, and limitations. Each review concludes by connecting the findings to the proposed multimodal engagement detection system.

2.1 Related Research

The following research items reflect foundational and state-of-the-art contributions in automated student engagement detection. For each item, a summary, critical analysis, and relevance to the present project are provided.

2.1.1 Detecting Student Engagement with CNN and FER[2]

Summary: Alruwais and Zakariah (2025) present a CNN model trained on the FER-2013 dataset (48×48 grayscale images, augmented), which recognizes static facial expressions tied to student engagement.

Critical analysis: Strengths include effective use of a standard facial-expression dataset and a robust CNN pipeline. The main limitations are the focus on static facial data only, absence of body posture or gesture analysis, and lack of real-time feedback.

Relation to proposed work: This study's approach to facial-expression classification informs the emotion stream within our multimodal fusion system, which is further extended to include dynamic and behavioral inputs.

2.1.2 Measuring Student Engagement through Behavioral and Emotional Features[5]

Summary: Mahmood et al. (2024) design a hybrid deep-learning system using ResNet-50 for feature extraction and TCN for temporal analysis, working on video clips from classrooms for engagement detection.

Critical analysis: The model's strength lies in its combination of spatial and temporal features, allowing robust analysis of video sequences. However, it is limited by basic emotion categories, and excludes detailed gestures, postures, and nuanced affective states.

Relation to proposed work: Their fusion of behavioral and temporal cues motivates the proposed use of TCNs for behavioral streams, which will be integrated with our emotion network.

2.1.3 Improving Student Engagement Detection with ResNet + TCN Hybrid[1]

Summary: Abedi and Khan (2021) introduce a multimodal engagement metric, combining behavioral gating and emotional fusion—using transfer learning approaches (ResNet50/VGG16/Inception).

Critical analysis: While leveraging multiple pretrained models and introducing an innovative engagement metric, the model's sensitivity to subtle cues (e.g., note-taking, posture shifts) is limited.

Relation to proposed work: The multimodal metric concept influences our own design, which explicitly includes fine-grained behavioral cues for richer student analysis.

2.1.4 Multimodal Engagement Analysis from Facial Videos[11]

Summary: This work deploys a ResNet-50 Attention-Net with Affect-Net on class-room video data, performing multi-label engagement classification through advanced deep learning.

Critical analysis: Strengths involve deployment on real classroom datasets and the use of multi-label output. Limitations are a persistent focus on facial features and testing in limited settings.

Relation to proposed work: We expand beyond facial-only models, adding body posture, gesture, and action detection to target multimodal fusion and real-classroom scenarios.

2.1.5 Student Engagement Detection Using YOLOv4[7]

Summary: A YOLOv4-based system (with GAN-augmented data, 1,276 images) performs binary classification of engagement and includes a feedback mechanism.

Critical analysis: Its principal advantages are speed and the provision of feedback, but it is constrained by binary labeling, missing multimodal signals, and high computational demands.

Relation to proposed work: YOLO-based action detection is incorporated, but extended to multi-class and multimodal context with scalable and efficient implementation.

2.1.6 Student Engagement Detection in Classrooms with CV[8]

Summary: This empirical system uses YOLOv4 and GAN-based augmentation to monitor engagement in real classrooms in real time.

Critical analysis: Real-world deployment is a core strength. Limitations include binary engagement labeling, small data size, and no multimodal analysis.

Relation to proposed work: Real-time tracking and augmentation concepts are included along with emotion-behavior fusion for nuanced engagement metrics.

2.1.7 DIPSER Dataset: Multimodal Engagement Recognition[6]

Summary: Marquez-Carpintero et al. develop a hardware-integrated, multimodal dataset and recognition system that fuses visual and IMU data (YOLO, MIVIOLC, DeepFace).

Critical analysis: This dataset is a valuable multimodal resource. However, the work does not account for key behavioral features such as posture, gaze, and lacks classroom validation.

Relation to proposed work: We extend multimodal data collection to include posture and gaze, with in-classroom validation.

2.1.8 SLR of Computer Vision in Student Engagement[3]

Summary: Garbal et al. (2025) provide a systematic literature review (meta-analysis of 113 CV-based studies), synthesizing trends, methods, and datasets in the field.

Critical analysis: Comprehensiveness and synthesis are clear strengths; however, the work does not provide original model proposals and reveals serious dataset scarcity.

Relation to proposed work: Dataset expansion and multimodal integration are specifically emphasized to address the cited gaps.

2.1.9 Dynamic Interaction Between Student Behaviour and Environment[4]

Summary: Li and Xue's (2023) meta-analysis (148 effects, 71 studies, 93,189 participants) reveals the relationships between emotional, behavioral, and cognitive factors in student engagement.

Critical analysis: The diverse participant base and multi-factor perspective are strengths, offset by heterogeneity, publication bias, and focus on higher education.

Relation to proposed work: Our project designs multi-factor engagement metrics that explicitly incorporate emotional, behavioral, and cognitive streams.

2.1.10 Detecting Nonverbal Speech and Gaze Behaviours[10]

Summary: This work explores gaze tracking, group interaction detection (rule-based logic), and process mining to study collaboration in classroom video data.

Critical analysis: The study's mapping of group interaction loops is novel. Its limitations are lack of emotion analysis, reliance on rules, and weak classroom generalizability.

Relation to proposed work: The fusion of interaction, gaze, and emotion networks is a key enhancement over this reference.

2.1.11 Vision-Based Gesture Recognition for Engagement Assessment[9]

Summary: Zhang and Wang (2025) propose gesture recognition using hand joint tracking, temporal segmentation, feature fusion, and self-attention—focused on classroom gestures (e.g., hand-raising, pointing).

Critical analysis: Robust gesture recognition with attention-based fusion is a clear strength. Limitations are focus on gestures only (not emotions) and evaluation on gesture-centric datasets exclusively.

Relation to proposed work: We integrate these gesture techniques into our pipeline, fusing them with emotion outputs for richer multimodal engagement scoring.

2.2 Comparative Table of Reviewed Studies

Table 2.1: Comparative analysis of existing studies on AI-based student engagement detection.

Paper	Methodology	Contribution	Limitations	
Detecting Student	CNN on FER-2013	CNN model for en-	Facial-only analysis,	
Engagement with	dataset (48×48	gagement detection	static images, no	
CNN and FER [2]	grayscale images with	using static facial	posture/action data,	
	augmentation)	expressions	not real-time	
Measuring Stu-	ResNet-50 for fea-	ResNet + TCN hybrid	Basic emotions	
dent Engagement	tures + TCN for	for engagement detec-	only, misses confu-	
through Behavioral	temporal analysis on	tion from classroom	sion/curiosity, ignores	
and Emotional	video clips	videos	gestures and posture	
Features [5]				
Improving Student	Transfer learning	Multimodal approach	Oversimplified cues,	
Engagement Detec-	(ResNet50/VGG16/InceptionVin)ing behav		ignores fine actions	
tion with ResNet +	with behavioral gating	and emotions with	like note-taking or	
TCN Hybrid [1]	+ emotional fusion	new engagement	posture changes	
		metric		
Multimodal En-	ResNet-50 Attention-	Facial video-based	Mostly facial	
gagement Analysis	Net + Affect-Net,	engagement clas-	expression-based,	
from Facial Videos	multiple classifiers,	sification in real	tested in small con-	
[9]	real classroom data	classrooms with	trolled lab settings	
G. I F	VOLO 4 14 CAN	multi-state labels	D' 1 'C '	
Student Engage-	YOLOv4 with GAN-	YOLOv4 system for	Binary classification,	
ment Detection	augmented dataset	binary engagement	lacks multimodal	
Using YOLOv4 [7]	(1,276 images), bi-	with weighted scoring	feedback, heavy com-	
	nary classification +	and feedback	putational needs	
Ctudent Engage	feedback	Dunatical alasanaan	Dinama alassifastian	
Student Engage-	YOLOv4-based em-	Practical classroom demonstration of	Binary classification	
ment Detection in Classrooms with	pirical CV system, with GAN data aug-	YOLOv4 for real-time	only, limited dataset, no multimodal fusion	
Classiconis with CV [8]	mentation	CV monitoring	no muminodai rusion	
DIPSER Dataset:	Visual + IMU fusion	Comprehensive multi-	Ignores posture, gaze,	
Multimodal En-	(YOLO, MIVIOLC,	modal dataset and sys-	and head movement,	
gagement Recogni-	DeepFace) on Rasp-	tem for engagement	not tested in real class-	
tion [6]	berry Pi clusters	recognition	rooms	
SLR of Computer	Meta-analysis of 113	Comprehensive syn-	No experimental	
Vision in Student	CV-based engagement	thesis of CV methods,	model; highlights lack	
Engagement [3]	studies across modali-	datasets, and engage-	of public datasets	
66	ties	ment trends	r	
Dynamic Inter-	Meta-analysis of 148	Identifies emotional,	Heterogeneity, publi-	
action Between	effects from 71 studies	behavioral, and	cation bias, limited to	
Student Behaviour	(93,189 participants)	cognitive factors in-	higher education	
and Environment		fluencing engagement	_	
[4]				
Detecting Non-	Uses video data for	Introduced seven	Focuses only on gaze,	
verbal Speech and	gaze tracking and	group interaction	no emotion detection,	
Gaze Behaviours	group interaction	types, showed how	no student action anal-	
[11]	detection with rule-	interaction loops	ysis, rule-based meth-	
	based logic; process	improve group learn-	ods may not general-	
	mining to study col-	ing, and connected	ize, limited classroom	
	laboration patterns	7 findings with collabo-	applicability	
		rative learning theory		
Vision-Based Ges-	Uses hand joint track-	Provides gesture-	Focuses only on	
ture Recognition	ing with deep learn-	based engagement	gestures, no emotion	
for Engagement	ing tested on gesture	analysis, robust across	analysis, not fully	
Assessment [10]	datasets	classroom conditions	multimodal	

Chapter 3

Proposed Approach

This chapter details the comprehensive methodology for developing the AI-based student engagement analysis system. Emphasizing multimodal fusion of emotional and behavioral cues, the approach blends computer vision, deep learning, and robust software engineering to deliver both per-student and class-level engagement insights.

3.1 System Overview

The proposed solution adopts a modular, scalable architecture engineered to reliably process classroom video data from ingestion to actionable feedback. The approach is systematically structured around the following core modules:

- **Data Preprocessing:** Handles video file input, frame extraction at regular intervals, and rich data augmentation strategies to boost model robustness.
- AI Model Pipeline: Includes two parallel neural networks—one specialized for emotion recognition via facial analysis, and another for action detection (e.g., hand gestures, posture) using object detection and pose estimation.
- Backend API Services: Manages all computation beyond model inference, including RESTful API design, secure data storage in both SQL and NoSQL databases, and automated report generation.
- Frontend Visualization Dashboard: Provides real-time feedback, video upload, engagement visualization, and detailed reporting to educators through an intuitive web interface.

Figure ?? provides an architectural overview of the entire framework.

3.2 Data Collection and Preprocessing

Custom datasets are constructed to capture the nuanced reality of classroom engagement, including:

- Individual recording of students in diverse classroom-like scenarios to ensure high annotation quality.
- Annotation of primary emotions (happy ,confused/bored, neutral) and key behavioral actions (hand raise, writing notes, mobile usage, looking away, sleeping , yawning).
- Automated preprocessing pipeline for video frame extraction and class-balanced augmentation.

This structured approach ensures the resulting dataset supports robust model training and fair, repeatable evaluation.

3.3 Model Architecture and Fusion

3.3.1 Parallel Model Design

Two specialized neural network pipelines operate in parallel:

- Emotion Recognition Network: Convolutional Neural Networks (CNNs) finetuned for facial expression analysis.
- Action Detection Network: Object detection and pose estimation models for identifying key student behaviors.

3.3.2 Multimodal Fusion and Engagement Scoring

Outputs from the emotion and action branches are fused through a multi-level integration mechanism:

- Weighted engagement scoring combines emotion probabilities with detected behavioral cues.
- Temporal smoothing accounts for engagement variability across video sequences, yielding both per-frame and session-level scores.

3.4 System Implementation

- **Backend:** Developed in Python using FastAPI/Flask, leveraging both relational (MySQL) and non-relational (MongoDB) databases.
- **Frontend:** Built with React.js for responsiveness and ease-of-use, incorporating dynamic visualizations for educators.
- **Deployment:** Docker-based containerization ensures consistent and scalable rollout across cloud or local environments.

3.5 Evaluation Methodology

Performance is assessed through a multi-phase evaluation:

- **Technical Validation:** Assessed via standard metrics (accuracy, precision, recall, F1-score), real-time performance, and computational resource analysis.
- **User Validation:** Involves classroom educators testing the system, providing feedback on practicality, interpretability, and the utility of engagement reports.

3.6 Parameters

These are the parameteres or classes in the dataset:

- 1. Hand Raise
- 2. Looking Away
- 3. Mobile Using
- 4. Neutral
- 5. Sleeping
- 6. Writing Notes
- 7. Yawning
- 8. Happy
- 9. Confusion/Bored

These discrete states reflect diverse forms of student engagement and serve as primary labels for multimodal analysis.

3.7 Graphical Models and System Design

The following figures represent the complete set of UML and system diagrams developed for the proposed AI-Based Student Engagement Analysis system.

All these diagrams collectively demonstrate the design perspective of the system — from user interactions (use case) to structural (class), behavioral (activity and sequence), logical (DFD), and physical (component) viewpoints — ensuring a well-rounded representation of the proposed approach.

Figure 3.1: System Architecture Diagram illustrating the end-to-end workflow of the proposed multimodal engagement detection framework.

Figure 3.2: Use Case Diagram illustrating the main actors and interactions within the system.

Figure 3.3: Class Diagram depicting the structural relationships among the core classes of the system.

Figure 3.4: Sequence Diagram showing the interaction flow between system components during engagement analysis.

Start System Teacher Uploads Lecture Video Preprocess Video (Extract Frames, Resize, Normalize) Emotion Detection (using CNN/ResNet) **Action Detection** (using YOLOv8/PoseNet) **Fuse Emotion and Action Results Compute Engagement Metrics Generate Student Engagement Report** Store Results in Database (MySQL + MongoDB) **Display Report on Dashboard** Allow Teacher to Download or View Insights

Activity Diagram - Al-Based Student Engagement Analysis System

Figure 3.5: Activity Diagram outlining the process flow from video input to engagement report generation.

Teacher Dashboard UI Uploads lecture video Video Upload Sends video for preprocessing Preprocessing Engine Emotion Detection Module Action Detection Module Display analytics & engagement charts Engagement results Report Generator Save reports & logs Database Layer (MySQL + MongoDB)

Figure 3.6: Component Diagram illustrating the high-level modular decomposition of the system.

Figure 3.7: Data Flow Diagram (Level 1) representing the logical flow of data among

system processes and data stores.

Domain Model Diagram - Al-Based Student Engagement Analysis System C Teacher C Student o TeacherID: int o Name: string o StudentID: int o Email: string o Name: string o Department: string RollNo: string ClassSection: string uploadLecture() viewReports() ▼ uploads many C Lecture o LectureID: int o CourseName: string o Date: date Duration: float VideoFilePath: string contains generates (C) Video C EngagementMetrics o VideoID: int o EngagementID: int o LectureID: int o LectureID: int ¶ produces FrameCount: int AverageEngagement: float o Resolution: string AttentionScore: float o ParticipationScore: float extractFrames() preprocess() calculateEngagement() ▼ identifies detects summarized in many many C Report C EmotionAnalysis C ActionAnalysis o ReportID: int o ActionID: int o EmotionID: int o LectureID: int o FrameID: int o FrameID: int o GeneratedOn: date EmotionType: string Confidence: float ActionType: string o SummaryText: string o Confidence: float o downloadReport()

Figure 3.8: Domain Model Diagram representing the key classes and their relationships for engagement detection.

Bibliography

- [1] Ali Abedi and Shehroz S. Khan. Improving state-of-the-art in detecting student engagement with resnet and tcn hybrid network. 2021 18th Conference on Robots and Vision (CRV), pages 151–157, 2021.
- [2] Nuha Alruwais and Mohammed Zakariah. Detecting student engagement with convolutional neural networks and facial expression recognition. *Traitement du Signal*, 42(2):229–240, 2025.
- [3] Mohamed Garbal, Siham El Janati, and Lahcen El Ghadraoui. Student's engagement detection based on computer vision: Systematic literature review. *Education and Information Technologies*, 30(3):2845–2891, 2025.
- [4] Xiaojing Li and En Xue. Dynamic interaction between student learning behaviour and environment: Meta-analysis of student engagement in higher education. *Behaviour Information Technology*, 42(4):471–497, 2023.
- [5] Nasir Mahmood, Sohail Masood Bhatti, Hussain Dawood, Manas Ranjan Pradhan, and Haseeb Ahmad. Measuring student engagement through behavioral and emotional features using deep-learning models. *Algorithms*, 17(10):458, 2024.
- [6] L. Marquez-Carpintero, S. Suescun-Ferrandiz, C. Lorenzo Álvarez, J. Fernandez Herrero, D. Viejo, R. Roig-Vila, and M. Cazorla. Dipser: A dataset for in-person student engagement recognition in the wild. *arXiv preprint arXiv:2502.20209*, 2025.
- [7] A. S. Pillai. Student engagement detection in classrooms through computer vision and deep learning: A novel approach using yolov4. *Sage Science Review of Educational Technology*, 5(1):87–97, 2023.
- [8] Aishwarya S. Pillai and N. Radhika. Student engagement detection in classrooms through computer vision and deep learning. In 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), pages 1–6. IEEE, 2022.

- [9] Xin Zhang and Li Wang. A vision-based gesture recognition and student engagement assessment model for interactive educational environments. *IEEE Transactions on Learning Technologies*, 2025.
- [10] Qi Zhou, Wannapon Suraworachet, and Mutlu Cukurova. Detecting non-verbal speech and gaze behaviours with multimodal data and computer vision to interpret effective collaborative learning interactions. *Computers Education*, 197:104712, 2023.
- [11] Ömer Sümer, Patricia Goldberg, Sidney D'Mello, Peter Gerjets, Ulrich Trautwein, and Enkelejda Kasneci. Multimodal engagement analysis from facial videos in the classroom. *IEEE Transactions on Affective Computing*, 14(2):1012–1027, 2021.