Übungsaufgaben zur Vorlesung Panorama der Mathematik

Dr. Moritz Firsching Sommersemester 2017

Blatt 2 Donnerstag, 16.II.2017

CHOU PEI SUAN CHING, 500-200 v.Chr.

Aufgabe 5 (Wahre unbeweisbare Aussagen)

Finden Sie mathematische Aussagen, die sie für wahr halten, von denen sie aber nicht erwarten, dass sie jemals bewiesen werden können.

Aufgabe 6 (Der Satz des Pythagoras)

Betrachten Sie obige Abbildung, und benutzten sie diese um einen Beweis für den Satz des Pythagoras zu geben. Nennen sie einen weiteren Beweis für den Satz des Pythagoras.

Aufgabe 7 (Fehlerhafte Beweise)

Welche Fehler können in einer mathematischen Argumentation auftreten? Finden sie Beispiele für Beweise, die sich später als fehlerhaft herausgestellt haben.

Aufgabe 8 (Mathematischer Textsatz mit LATEX)

Ordnen sie die umseitig aufgeführten Beispiele für LATEX-Quellcode dem jeweilen output zu. Diskutieren Sie inwieweit es für den Schulunterricht nützlich wäre ein open-source Textsatzsystem zu benutzten, welches nicht nach dem What-you-see-is-what-you-get-Prinzip funktioniert.

```
(1) \left(\int \left(\int x\right)^{p}, dx \right)^{1/p} \leq (1) \left(\int x\right)^{p} dx
    \left(\int \left(\int \left(x\right)\right)^{p}, dx \right)^{1/p} +
    \left(\int \left(\int x\right)^{p}, dx \right)^{1/p}.
(2) =, \pi, e, \int, \log, \sin, \leq, \sqrt{}, \forall, \aleph
(3) \begin{tikzpicture}
     \draw[dashed,color=gray] (0,0) arc (-90:90:0.5 and 1.5);
     \draw[semithick] (0,0) -- (4,1);
     \draw[semithick] (0,3) -- (4,2);
     \draw[semithick] (0,0) arc (270:90:0.5 and 1.5);
     \draw[semithick] (4,1.5) ellipse (0.166 and 0.5);
     \draw (-1,1.5) node {$\varnothing d_1$};
     \draw (3.3,1.5) node {\$\varnothing d 2\$\};
     \draw[-,semithick] (0,-0.5) -- (4,-0.5);
     \draw[->, semithick] (4,-0.5) -- (4.5,-0.5);
     draw (0,-1) node {$x=0$};
     \draw (4,-1) node {$x=1$};
    \end{tikzpicture}
(4) \begin{tabular}{|r|1|}\hline
      7C0 & hexadecimal \\
      3700 & octal \\ \cline{2-2}
      11111000000 & binary \\
      \hline \hline
      1984 & decimal \\\hline
    \end{tabular}
(5) V (x_1, x_2, \beta) =
    \begin{pmatrix}
             & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
      1
             & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
      1
             & x_3 & x_3^2 & \cdots & x_3^{n-1} \\
      \vdots & \vdots & \vdots & \vdots
             & x n
                     & x_n^2 & \cdots & x_n^{n-1}
    \end{pmatrix}
(6) \begin{tikzpicture}
       \path coordinate (A) at (0,0)
              coordinate (B) at (-60:12cm)
              coordinate (C) at (240:12cm);
       \foreach \density in {20,30,...,180}{%
           \draw[fill=blue!\density]
                 (A) -- (B) -- (C) -- cycle;
             \path (A) coordinate (X)
                -- (B) coordinate[pos=.15](A)
                -- (C) coordinate[pos=.15](B)
                -- (X) coordinate[pos=.15](C);}
     \end{tikzpicture}
(7) \zeta(2) = \sum_{n=1}^{\inf y \inf y frac{1}{n^2}}
              = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}
                 + \cdots = \frac{\pi^2}{6} \approx 1.644934
(8) \det V(x_1,x_2, \ldots, x_n) = \frac{1 \leq i \leq j \leq n} (x_j - x_i)
```

(A)
$$\det V(x_1, x_2, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

(B)
$$\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6} \approx 1.644934$$

(D)
$$V(x_1, x_2, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

(C)

(E)

(F)
$$=, \pi, e, \int, \log, \sin, \leq, \sqrt{,} \forall, \aleph$$

(G)
$$\left(\int |f(x) + g(x)|^p dx \right)^{1/p} \le \left(\int |f(x)|^p dx \right)^{1/p} + \left(\int |g(x)|^p dx \right)^{1/p}.$$

(H)	7C0	hexadecimal
	3700	octal
	11111000000	binary
	1984	decimal