Série 4 : Dipôle RLC forcé

EXERCICE 1:

Un générateur impose une tension alternative sinusoïdale, telle que $u(t) = U_m \sin(\omega t)$, au dipôle AB,

constitué d'un condensateur de capacité $\boldsymbol{c} =$

 4.10^{-6} **F**, d'une

bobine d'inductance L de résistance négligeable et d'un résistor de résistance R, tous montés en série. L'ampèremètre de résistance négligeable, indique une intensité de valeur I = 14mA.

On branche un oscilloscope bicourbe (voie 1 et voie 2) comme l'indique la figure 1.

Pour les 2 voies : le balayage horizontal est de : 10^{-3} s/div La sensibilité verticale est de : 1 V/div On obtient l'oscillogramme de la figure 2.

- 2. Déduire des observations expérimentales :
 - a . La pulsation ω de la tension imposée par le générateur au dipôle AB.
 - b. Le déphasage entre l'intensité i(t) et la tension $u_{AB}(t)$, ainsi que la nature du circuit (résistif, capacitif ou inductif).
 - c. L'impédance **Z** du dipôle **AB**.
 - d. La résistance R du résistor.
- 3. On modifie la pulsation de la tension délivrée par le générateur.

On obtient la résonance d'intensité pour la pulsation $\omega_0 = 650\pi rad. s^{-1}$.

- a. Quelle observation à l'oscilloscope conduit à cette affirmation?
- b. Que représente cette pulsation ω_0 pour le dipôle RLC?
- c. Quelle est la relation entre la pulsation ω_0 et les caractéristiques du dipôle ?
- d. Retrouver la valeur de l'inductance *L* de la bobine.
- e. Déterminer l'intensité efficace I_0 correspondante et la puissance moyenne P_0 consommée par le circuit.

EXERCICE 2

Pour étudier le phénomène de résonance au laboratoire, un groupe d'élèves réalise un circuit (R,L,C) série. Pour cela, ils disposent d'un GBF qui fournit une tension alternative sinusoïdale de fréquence N réglable, un conducteur ohmique de résistance $R=50\Omega$, un condensateur de capacité $C=5\mu F$, une bobine de résistance r et d'inductance L.

1. Les élèves visualisent sur la voie Y_1 de l'oscilloscope la variation au cours du temps de la tension $u_G(t)$ aux bornes du générateur et sur la voie Y_2 la variation au cours du

temps de la tension $u_R(t)$ aux bornes du résistor.

- 1.1. Faire le schéma du montage qu'ils ont réalisé en y indiquant clairement les connexions à faire à l'oscilloscope pour visualiser $u_G(t)$ et $u_R(t)$.
- 1.2. Expliquer pourquoi la variation de la tension $u_R(t)$ leur donne en même temps l'allure de la variation de l'intensité i(t) du courant dans le circuit.
- 2. Sur l'écran de l'oscilloscope, sont observés les oscillogrammes reproduits sur le document 1 avec les réglages suivants : Sensibilité verticale voie Y_1 : 5 V/div; voie Y_2 : 0,5 V/div; Sensibilité horizontale : 1 ms/ div.

- a) la fréquence N de la tension délivrée par le générateur ;
- b) la tension maximale U_m aux bornes du générateur ;
- c) l'intensité maximale I_m du courant.
- 2.2. Déterminer le déphasage de la tension aux bornes du générateur sur l'intensité du courant.

- 3. Maintenant la tension maximale aux bornes du générateur constante, les élèves ont fait varier la fréquence N du GBF et relevé l'intensité efficace I du courant à l'aide d'un ampèremètre. Les mesures ainsi réalisées leur ont permis de tracer la courbe I = f(N) du document 2 .
- 3.1. Déterminer graphiquement la fréquence N_0 et l'intensité efficace I_0 à la résonance d'intensité. En déduire l'inductance L et la résistance r de la bobine.
 - 3.2. Déterminer la bande passante des fréquences et le facteur de qualité.
 - 3.3. Calculer la puissance moyenne consommée par le circuit (R, L, C) à la résonance

EXERCICE 3

Un circuit électrique comporte, montées en série, une bobine d'inductance L et de résistance $r=10\Omega$, un condensateur de capacité $C=2\mu F$, un résistor de résistance R et un ampèremètre. Un générateur basse fréquence GBF impose, aux bornes du circuit, une tension sinusoïdale $u(t)=U_m \sin{(2\pi Nt+\phi\cdot)}$, d'amplitude U_m constante et de fréquence N réglable. Un oscilloscope permet de visualiser simultanément la tension $\mathbf{u}(t)$ aux bornes du générateur et la tension $\mathbf{u}_R(t)$ aux bornes du résistor. On obtient les oscillogrammes de la figure 1.

- 1. Représenter le schéma du circuit électrique en précisant les connexions de l'oscilloscope pour visualiser simultanément les tensions $u_R(t)$ et $\mathbf{u}(t)$.
- 2. a- déterminer la valeur de φ .
 - b-Relever, à partir des oscillogrammes de la figure 1, la fréquence N du GBF et les amplitudes U_m et U_{Rm} respectivement de u(t) et $u_R(t)$.
- U_{Rm} respectivement de u(t) et $u_R(t)$. 3. a- On donne $\cos(\varphi) = \frac{R+I}{Z}$ Montrer que : $R = \frac{2r_{Rm}}{U_m-2U_{Rm}}$.
 - b- Calculer R.
- c- Déterminer la valeur de l'intensité I du courant électrique indiquée par l'ampèremètre. d-Calculer la puissance moyenne consommée par le dipôle