Modèles linéaires en actuariat - Exercices - Série 1

Régression linéaire simple

1. Vous disposez des observations suivantes pour construire un modèle de prévision du salaire de vos employés en fonction de leur nombre d'années d'expérience de travail :

Années d'expérience	Salaire annuel
3	41 185
6	47 917
10	57 675
5	49 789
2	41 595
25	96 901
7	53 840
8	57 712
10	58 027
32	111 762

- a. Dans le contexte de la régression linéaire simple, définir la variable dépendante (ou réponse) Y, ainsi que la variable indépendante (ou prédictive/exogène) X.
- b. Utiliser Microsoft Excel ou R pour produire un graphique de Y en fonction de X.
- c. Écrire l'équation du modèle de régression linéaire simple et identifier les paramètres que l'on cherche à estimer.
- d. Démontrer de façon générale comment retrouver les estimateurs des paramètres du modèle de régression linéaire simple via la minimisation de la somme résiduelle des carrés.
- e. Trouver les estimateurs de l'ordonnée à l'origine et de la pente de la droite de régression dans le contexte salaire vs années d'expérience.
- f. Ajouter la droite de régression sur le graphique tracé précédemment.
- g. Identifier le point $(\overline{X}, \overline{Y})$ sur le graphique tracé précédemment. Commenter sur l'emplacement de ce point par rapport à la droite de régression.
- h. Donner une interprétation aux coefficients de régression β_0 et β_1 du modèle de régression linéaire simple.
- i. Afin d'évaluer le « parameter risk » (incertitude liée à l'erreur d'estimation des paramètres), calculer $Var(\hat{\beta}_0)$ et $Var(\hat{\beta}_1)$.

- 2. Utiliser les données et les résultats de l'exercice 1 de cette section pour répondre aux questions suivantes :
 - a. Produire un tableau d'analyse de la variance (ANOVA).
 - b. Calculer de coefficient de détermination $\left(R^2\right)$, donner une explication de ce que cette statistique mesure, puis commenter la qualité du modèle de régression « Salaire » vs « Expérience ».
 - c. Obtenez un intervalle de confiance pour $oldsymbol{eta}_0$ et $oldsymbol{eta}_1$ au niveau de confiance (1-lpha)=95%.
 - d. Tester l'hypothèse H_0 : $\beta_0=35000$ à l'aide de la statistique de Student avec un niveau de confiance de 95%.
 - e. Tester l'hypothèse H_0 : $\beta_1=0$ à l'aide de la statistique de Student avec un niveau de confiance de 95%.
 - f. Tester la validité de la régression en utilisant la statistique F de Fisher avec un niveau de confiance de 95%. Comparer ce test avec le test effectué en (e).
 - g. Obtenez un intervalle de confiance pour la valeur moyenne, ainsi que pour la valeur prédite du salaire d'un employé ayant cumulé 15 ans d'expérience.