Group Members:

Brad Lipson

Mary Morrow

Matthew McGehee

Pamela Mishaw

Prince Nhliziyo

Initial code (to set up data table) for each group member is attached at the end of this document

1. Run proc univariate to test (variable) for normality with the Shapiro-Wilk Test in proc univariate. What can you observe in the SAS results regarding the normality for this variable? Is (variable) normally distributed, using significance level 0.05? Refer to the p-value of the test.

Name	Var	Hypotheses	SAS Code	SAS Output					Conclusion	
Brad	Brad Lipson Cancer H ₀ : The cancer data is normally distributed. H _A : The cancer disease data is not normally distributed. Up: The obesity data is normally distributed. H _Q : The obesity data is normally distributed. H _A : The obesity data is normally distributed. H _A : The obesity data is not normally distributed.	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D 0.	stic 0.847378 Pr < 0.077151 Pr >	D W-Sq	<0.0001<0.0100<0.0050<0.0050	The Shapiro-Wilk test has a p-value of 0.0001. The alpha (0.05) requirement is not met by this. The cancer data are therefore not normally distributed, and we reject the null hypothesis.			
Lipson		Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D 0.	stic 0.847378 Pr < 0.077151 Pr >	D W-Sq	<0.0001 <0.0100 <0.0050 <0.0050	The Shapiro-Wilk test has a p-value of 0.0001. The alpha (0.05) requirement is not met by this. Because of this irregular distribution of the data on obesity, we reject the null hypothesis.			
Mary	Heart Disease	H₀: The heart disease data is normally distributed. H₄: The heart disease data is not normally distributed.	proc univariate normal; var heart; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D 0.) N-Sq	<0.0001 <0.0100 <0.0050	The p-value for the Shapiro-Wilk test is <0.0001. This is less than alpha (0.05). Therefore, we reject the null hypothesis and conclude that the heart disease data is not normally distributed.	
Morrow	Diabetes	H _o : The diabetes data is normally distributed. H _a : The diabetes data is not normally distributed.	proc univariate normal; var diabetes; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D 0.		D W-Sq	ue<0.0001<0.0100<0.0050<0.0050	The p-value for the Shapiro-Wilk test is <0.0001. This is less than alpha (0.05). Therefore, we reject the null hypothesis and conclude that the diabetes data is not normally distributed.	
Matthew	Mercury (data values are in Tons Per Year)	H _Q : Mercury TPY is normally distributed across counties in FL, CA, NY, & WA H _A : Mercury TPY is not normally distributed across counties in FL, CA, NY, & WA	proc univariate data=group4data normal; var Lead_TPY; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D 0.	0.58468 Pr < .263723 Pr > .035737 Pr >		<pre>clue <0.0001 <0.0100 <0.0050 <0.0050</pre>	The p-value from the Shapiro-Wilk test is <0.0001, and if we use a significance level of 0.05, we should reject the null hypothesis and conclude that Mercury TPY is not normally distributed across the counties.	
McGehee	Lead TPY (data values are in Tons Per Year)	H ₀ : Lead TPY is normally distributed across counties in FL, CA, NY, & WA H _A : Lead TPY is not normally distributed across counties in FL, CA, NY, & WA	proc univariate data=group4data normal; var Mercury_TPY; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	D (.355343 Pr < 0.35957 Pr > .658626 Pr >		<0.0001<0.0100<0.0050<0.0050	The p-value from the Shapiro-Wilk test is <0.0001, and if we use a significance level of 0.05, we should reject the null hypothesis and conclude that Lead TPY is not normally distributed across the counties.	

Name	Var	Hypotheses	SAS Code	SAS Output					Conclusion
	Mental Distress	H ₀ : The mental distress data are normally distributed. H _A : The mental distress data aren't normally distributed.	proc univariate normal; var mental_distress; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	W D W-Sq		p Va	<0.0001 <0.0100 <0.0050	Since the p-value of the Shapiro-Wilk test (<0.001) is less than the significance level of 0.05, the null hypothesis is rejected and it is concluded that the data on mental distress are not normally distributed.
Pamela Mishaw	% Bachelor Degree	H _o : The data on the percentage of those with bachelor's degrees are normally distributed. H _A : The data on the percentage of those with bachelor's degrees are normally distributed.	proc univariate normal; var Percent_with_Ba chelors; run;	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	W D W-Sq		p Va	<0.0001 <0.0100 <0.0050	Since the p-value of the Shapiro-Wilk test (<0.001) is less than the significance level of 0.05, the null hypothesis is rejected and it is concluded that the data on the percentage of those with bachelor's degrees are not normally distributed.
Prince Nhliziyo	Smoking	H _Q : Smoking rate is normally distributed H _A : Smoking rate is not normally distributed H _Q : Physical inactivity is normally distributed H _A : Physical inactivity is normally distributed	proc univariate normal; var smoking; run; proc univariate normal; var physical; run	Test Shapiro-Wilk Kolmogorov-Smirnov Cramer-von Mises Anderson-Darling	W D W-Sq A-Sq ests for St W D W-Sq	0.371962 Normality atistic 0.983368 0.044856 0.092129	p Val Pr < W Pr > D Pr > W-Sq Pr > A-Sq P Val Pr < W	0.2228 >0.1500 >0.2500 >0.2500 lue 0.0094 >0.1500	Since the p-value of the Shapiro-Wilk test is < 0.05, we reject the null hypothesis and conclude that the data is not normally distributed. Since the p-value of the Shapiro-Wilk test is < 0.05, we reject the null hypothesis and conclude that the data is not normally distributed.

2. Using SAS, compare the 4 population means for (variable) with the ANOVA F test with proc glm. What can you conclude based on the significance level alpha=0.01? Are the means of (variable) for the 4 states equal or not? What can you conclude if you had used significance level alpha=0.10 instead? Refer to the p-value of the test.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
Brad Lipson	Cancer	H _Q : All state (group) means are equal. H _Q : At least one state (group) mean is different from the other state (group) means.	proc glm; class state; model cancer = state; run;	Source DF Sum of Squares Mean Square F Value Pr > F	The p-value (.0001) is smaller than alpha for an alpha of 0.01 or more. The null hypothesis is thus rejected, and we draw the conclusion that at least one state mean is different for cancer. The p-value (.0001) is smaller than alpha for alpha = 0.10 in this example. The null hypothesis is thus rejected, and we draw the conclusion that at least one state mean is different for cancer.
Lipson	Obesity	H ₀ : All state (group) means are equal. H _A : At least one state (group) mean is different from the other state (group) means.	proc glm; class state; model obesity = state; run;	Source DF Sum of Squares Mean Square F Value Pr > F Model 3 1090.069411 363.356470 25.57 < 0001	The p-value (.0001) is smaller than alpha for an alpha of 0.01 or more. We thereby reject the null hypothesis and come to the conclusion that at least one state mean differs for obesity. The p-value (.0001) is smaller than alpha for alpha = 0.10 in this example. We thereby reject the null hypothesis and come to the conclusion that at least one state mean differs for obesity.
Mary	Heart Disease	H _Q : All state (group) means are equal. H _A : At least one state (group) mean is different from the other state (group) means.	proc glm; class state; model heart = state; run;	Source	For alpha = 0.01: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for heart disease. For alpha = 0.10: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for heart disease.
Morrow	Diabetes	H₂: All state (group) means are equal. H₄: At least one state (group) mean is different from the other state (group) means.	proc glm; class state; model diabetes = state; run;	Source DF Sum of Squares Mean Square F Value Pr > F	For alpha = 0.01: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for diabetes. For alpha = 0.10: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for diabetes.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
Matthew McGehee	Mercury	H ₀ : The mean mercury level across each state is equivalent H _a : At least one state's mean mercury level is not equivalent to the others.	proc glm data=group4data; class State; model Mercury_TPY=Sta te; run;	Source DF Sum of Squares Mean Square F Value Pr > F	With a p-value of 0.0314, we cannot conclude that at least one state's mean Mercury distribution is different using a significance level of 0.01. However, if we were to use an alpha equal to 0.10, we would have to conclude that at least one state's mean mercury level is different.
McGenee	Lead	\underline{H}_0 : The mean lead level across each state is equivalent $\underline{\underline{H}}_{\underline{a}}$: At least one state's mean lead level is not equivalent to the others.	proc glm data=group4data; class State; model Lead_TPY=State; run;	Source DF Sum of Squares Mean Square F Value Pr > F Model 3 4.48151395 1.49383798 5.06 0.0021 Error 222 65.50314832 0.29505923 0.0021 Corrected Total 225 69.98468227 0.0021	With a p-value of 0.0021, we would have to reject the null hypothesis and conclude that at least one state's mean lead level is different, whether we used a significance level of 0.01 or 0.10.
Domasla	Mental Distress	H _Q : All state means of mental distress rating are equal. H _Q : At least two of the means of mental distress rating differ at a statistically significant level.	proc glm; class state; model mental_distress=s tate; run;	Source DF Sum of Squares Mean Square F Value Pr > F Model 3 103.2202764 34.4067588 30.98 < 0001	At the significance level of 0.01, the null hypothesis is rejected since the p-value (<0.001) is smaller and it is concluded that at least two of the means of mental distress are statistically significant in difference and thus the four means are likely not all equal. At significance level 0.10, since the p-value is smaller, the conclusion would be the same as that reached at the 0.01 significance level—the null hypothesis is rejected and it is concluded that at least two of the states have means that are statistically different.
Pamela Mishaw	% Bachelor Degree	H _o : All state means of bachelor's degree percentages are equal. H _a : At least two of the means of bachelor's degree percentages differ at a statistically significant level.	proc glm; class state; model Percent_with_Bac helors=state; run;	Source	At the significance level of 0.01, the null hypothesis is rejected since the p-value (0.0018) is smaller and it is concluded that at least two of the means of bachelor's degree percentages are statistically significant in difference and thus the four means are likely not all equal. At significance level 0.10, since the p-value is smaller, the conclusion would be the same as that reached at the 0.01 significance level—the null hypothesis is rejected and it is concluded that at least two of the states have means that are statistically different.

Name	Var	Hypotheses	SAS Code	SAS Outp	out				Conclusion
Prince Nhliziyo	Smoking	H ₀ : All state means are equal. H _A : At least one state mean is different from the other state means.	proc glm; class state; model smoking = state; run;	Source Model Error Corrected Total	3 222	Sum of Squares 1648,649490 2690,441447 4339,090945	Mean Square 549.549833 12.119106	Pr > F <.0001	Based on significance level alpha=0.01,we reject the null hypothesis and conclude that at least one mean is different for smoking rate. Based on significance level alpha=0.10, we reject the null hypothesis and conclude that at least one mean is different for smoking rate
Nilliziyo	Inactivity	H ₀ : All state means are equal. H _A : At least one state mean is different from the other state means.	proc glm; class state; model physical = state; run;	Source Model Error Corrected Total	3 222	Sum of Squares 2657.315846 2340.543099 4997.858945	885.771949 10.542987	Pr > F <.0001	Based on significance level alpha=0.01,we reject the null hypothesis and conclude that at least one mean is different for physical inactivity. Based on significance level alpha=0.10 ,we reject the null hypothesis and conclude that at least one mean is different for physical inactivity.

3. Using normal scores (or normal quantiles) for (variable) in SAS, obtain the ANOVA F Test based on normal scores or quantiles. What can you conclude based on significance level alpha=0.01? Are the mean lengths equal for the 4 states or not, based on the normal scores? Compare the results in (3) with your results in (2). What can you conclude if you had used significance level alpha=0.10 instead? Refer to the p-value of the test.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
Brad	Cancer	H _Q : The group means would be equal for all of the states. H _Q : The group means would not be equal for all of the states, so one or more would differ.	proc glm; class state; model cancer=state; run; proc rank normal=blom out=normals; var cancer; ranks q; data normals; set normals; proc plot; plot cancer*q; run; proc glm; class state; model q=state; run;	Source DF Sum of Squares Mean Square F Value Pr > F	The p-value (.0001) is smaller than alpha for an alpha of 0.01 or more. The null hypothesis is thus rejected, and we draw the conclusion that at least one state mean is different for cancer. The p-value (.0001) is smaller than alpha for alpha = 0.10 in this example. The null hypothesis is thus rejected, and we draw the conclusion that at least one state mean is different for cancer. We failed to accept the null hypotheses for alpha=0.01 and alpha=0.10 for cancer in problems 2 and 3, respectively, and came to the conclusion that at least one state mean is different.
Lipson	Obesity	H ₀ : The group means would be equal for all of the states. H _A : The group means would not be equal for all of the states, so one or more would differ.	proc glm; class state; model obesity=state; run; proc rank normal=blom out=normals; var obesity; ranks q; data normals; set normals; proc plot; plot obesity*q; run; proc glm; class state; model q=state; run;	Source DF Sum of Squares Mean Square F Value Pr > F Model 3 55.6135895 18.5378632 24.66 < 0001	The p-value (.0001) is smaller than alpha for an alpha of 0.01 or more. As a result, we find that at least one state mean is different for obesity and reject the null hypothesis. The p-value (.0001) is smaller than alpha for alpha = 0.10 in this example. We thereby reject the null hypothesis and come to the conclusion that at least one state mean differs for obesity. We failed to accept the null hypotheses for alpha=0.01 and alpha=0.10 for obesity in problems 2 and 3, respectively, and came to the conclusion that at least one state mean is different.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
Mary Morrow	Heart Disease	H₀: All state (group) means are equal. H₄: At least one state (group) mean is different from the other state (group) means. H₀: All state (group) means are equal. H₄: At least one state (group) mean is different from the other state (group) means are equal.	proc glm; class state; model heart=state; run; proc rank normal=blom out=normals; var heart; ranks q; data normals; set normals; proc plot; plot heart*q; run; proc glm; class state; model q=state; run; proc rank normal=blom out=normals; var diabetes; ranks q; data normals; set normals; var diabetes; ranks q; data normals; var diabetes; ran	Dependent Variable: q Rank for Variable heart	For alpha = 0.01: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for heart disease. For alpha = 0.10: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for heart disease. For both problem 2 and problem 3, we rejected the null hypotheses for both alpha=0.01 and alpha=0.10 for heart disease and concluded that at least one state mean is different. For alpha = 0.01: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for diabetes. For alpha = 0.10: The p-value (<.0001) is less than alpha. Therefore, we reject the null hypothesis and conclude that at least one state mean is different for diabetes. For alpha = 0.10: The p-value (<.0001) alpha=0.10: The p-val
Matthew McGehee	Mercury	H _Q : The mean mercury level across each state is equivalent H _A : At least one state's mean mercury level is not equivalent to the others.	proc rank normal=blom out=normals; var Mercury_TPY; ranks q; data normals; set normals; proc plot; plot Mercury_TPY*q; run; proc glm; class State; model q=State; run;	The GLM Procedure Dependent Variable: q Rank for Variable Mercury_TPY	With a p-value of 0.0002, we would have to reject the null hypothesis and conclude that at least one state's mean lead level is different, whether we used a significance level of 0.01 or 0.10.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
	Lead	H _n : The mean lead level across each state is equivalent H _a : At least one state's mean lead level is not equivalent to the others.	proc rank normal=blom out=normals; var Lead_TPY; ranks q; data normals; set normals; proc plot; plot Lead_TPY*q; run; proc glm; class State; model q=State; run;	With a p-value of 0.0003, we would have to reject the null hypothesis and conclude that at least one state's mean lead level is different, whether we used a significance level of 0.01 or 0.10.	
Pamela Mishaw	Mental Distress	H ₀ : All state means of mental distress rating are equal. H _A : At least two of the means of mental distress rating differ at a statistically significant level.	proc glm; class state; model mental_distress= state; run; proc rank normal=blom out=normals; var mental_distress; ranks q; data normals; set normals; proc plot; plot mental_distress* q; run; proc glm; class state; model q=state; run;	The SAS System The GLM Procedure Dependent Variable: q Rank for Variable mental_distress Source DF Sum of Squares Mean Square F Value Pr > F Model 3 60.8734992 20.2911664 30.41 < .0001 Error 222 148.1297635 0.6672512 Corrected Total 225 209.0032628	Since the p-value, <0.0001, is less than the significance value of 0.01, we reject the null hypothesis and conclude that the state means are not statistically different. This same conclusion will be made at significance level 0.10. These results are the same as those of part 2.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion			
	% Bachelor Degree	H ₀ : All state means of bachelor's degree percentages are equal. H _A : At least two of the means of bachelor's degree percentages differ at a statistically significant level.	proc glm; class state; model Percent_with _Bachelors=st ate; run; proc rank normal=blom out=normals; var Percent_with _Bachelors; ranks q; data normals; set normals; proc plot; plot Percent_with _Bachelors*q ; run; proc glm; class state; model q=state; run;	proc glm; class state; model Percent_with _Bachelors=st ate; run; proc rank normal=blom out=normals; var Percent_with _Bachelors; ranks q; data normals; set normals; proc plot; plot Percent_with _Bachelors*q; ; run; proc glm; class state; model q=state;				
Prince	Smoking	H ₀ : All state means are equal. H _A : At least one state mean is different from the other state means.	proc rank normal=blom out=normals; var smoking; ranks q; data normals; set normals; proc glm; class state; model q=state; run;	Source	Based on significance level alpha=0.01,we reject the null hypothesis and conclude that at least one mean is different for smoking rate. Based on significance level alpha=0.10 ,we reject the null hypothesis and conclude that at least one mean is different for smoking rate			
Nhliziyo	Inactivity	H ₀ : All state means are equal. H _A : At least one state mean is different from the other state means.	proc rank normal=blom out=normals; var physical; ranks q; data normals; set normals; proc glm; class state; model q=state; run;	Dependent Variable: q Rank for Variable physical	Based on significance level alpha=0.01,we reject the null hypothesis and conclude that at least one mean is different for physical inactivity. Based on significance level alpha=0.10, we reject the null hypothesis and conclude that at least one mean is different for physical inactivity.			

4. Calculate the correlation coefficient between Alzheimer's and (variable 1) or (variable 2). What can you conclude regarding a linear association between these two variables? Use all values in the experiment and not for each state separately.

Name	Var	Hypotheses	SAS Code	SAS Output	t	Conclusion
Brad Lipson	Cancer	H ₀ : There is not a significant correlation between cancer and obesity H _A : There is a significant correlation between obesity and cancer.	proc corr; var heart diabetes; run;	Pearson Co	orrelation Coefficie b > r under H0: RI obesity 1.00000 0.58326 <.0001	P-value = <.0001 Pearson Correlation Coef = 0.58326 Obesity and cancer have a positive relationship. Additionally, we reject the null hypothesis and can determine that there is a statistically significant correlation between cancer and obesity because the p-value (.0001) is smaller than alpha (0.05).
Mary	Heart Disease	H _Q : There is not a significant correlation between heart disease and the age adjusted Alzheimer's disease mortality rate (ad). H _A : There is a significant correlation between heart disease and the age adjusted Alzheimer's disease mortality rate (ad).	<pre>proc corr; var heart alz; run;</pre>		nrelation Coefficion > r under H0: R heart 1.00000 -0.24249 0.0002	P-value = 0.0002 Pearson Correlation Coef = -0.24249 There is a negative correlation between heart disease and the age adjusted Alzheimer's disease mortality rate. Also, since the p-value (0.0002) is less than alpha (0.05), we reject the null hypothesis and can conclude that the correlation between heart disease and the age adjusted Alzheimer's disease mortality rate is statistically significant.
Morrow	Diabetes	H₀: There is not a significant correlation between diabetes and the age adjusted Alzheimer's disease mortality rate (ad). H₆: There is a significant correlation between diabetes and the age adjusted Alzheimer's disease mortality rate (ad).	<pre>proc corr; var diabetes alz; run;</pre>		diabetes 1.00000 -0.07639 0.2527	P-value = 0.2527 Pearson Correlation Coef = -0.7639 There is a negative correlation between diabetes and the age adjusted Alzheimer's disease mortality rate. Also, since the p-value (0.2527) is greater than alpha (0.05), we fail to reject the null hypothesis and can conclude that there is sufficient evidence to prove that the correlation between heart disease and the age adjusted Alzheimer's disease mortality rate is not statistically significant.

Name	Var	Hypotheses	SAS Code	SAS Output			Conclusion	
	Mercury	H ₀ : There is not a significant correlation between mercury	proc corr; var Mercury_TPY alz; run;	Pearson Correla Prob > r	under H0: Rho	=0	There is a positive correlation between mercury levels and alz, but it's very weak at 0.11411.	
		levels and lead levels. H _A : There is a significant correlation between mercury levels and lead levels.		Mercury_TPY Mercury_TPY	1.00000	0.11411 0.0870	Also, with a p-value of 0.087, which is greater than	
Matthew				alz alz	0.11411 0.0870	1.00000	significance level 0.05, we should not reject the null hypothesis, and conclude that there is no linear correlation between mercury and alz.	
McGehee	Lead	H ₀ : There is not a significant correlation between mercury	proc corr; var Lead_TPY alz; run;	Pearson Correla Prob > r	tion Coefficient		There is a positive correlation between mercury levels and alz, but it's very weak at 0.16707.	
		levels and lead levels.			Lead_TPY	alz	However, with a p-value of	
		$\underline{H}_{\underline{a}}$: There is a significant correlation between mercury		Lead_TPY Lead_TPY	1.00000	0.16070 0.0156	0.0156, which is less than significance level 0.05, we	
				alz alz	0.16070 0.0158	1.00000	should reject the null hypothesis, and conclude that there could be a linear correlation between lead	
		levels and lead levels.					levels and alz.	
	Mental Distress	H ₀ : There is not a significant correlation between mental distress and percentage of the population with a bachelor's degree.	proc corr; var mental_distress Percent_with_Ba chelors; run;		orrelation Coefficients bb > r under H0: Rho=	There is a strong negative correlation between the		
				mental_distress	mental_distress Pe	rcent_with_Bachelors -0.59572 <.0001	percentage of those with bachelor's degrees and mental distress. The p-value is	
Pamela	% Bachelor Degree			Percent_with_Bachelors	-0.59572 <.0001	1.00000	which indicates that this correlation is statistically	
Mishaw		H _a : There is a significant correlation between mental distress and percentage of the population with a bachelor's degree.					significant.	
	Smoking	H ₀ : There is not a significant correlation	proc corr; var smoking		lation Coefficie r under H0: Rh		There is a positive correlation between smoking rate and physical inactivity.Based on the	
		between smoking rate and physical	physical;		smoking	physical	p-value,we reject the null hypothesis and conclude that	
Prince	Inactivity	_ inactivity.	run;	smoking	1.00000	0.70925 <.0001	the correlation is significant.	
Nhliziyo		H _A : There is a significant correlation between smoking		physical	0.70925 <.0001	1.00000		
		rate and physical inactivity.						

5. Using the raw data, run the Brown-Levene-Forsythe Test to test for equal population variances for the (variable). Then run Bartlettt's Test also on (variable). Which of

these two tests for variability would you recommend using with this data set and why? Do you need to run a normality test first in order to be able to recommend one test over the other? Refer to the p-value of the test.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
	Cancer	H _a : All state (group) variance are equal. H _A : At least one state (group) variance is different from the other state (group) variance.	proc glm; class state; model cancer=state; means state/hovtest=bf; run; proc glm; class state; model cancer = state; means state/hovtest=bartlett ; run;	Brown and Forsythe's Test for Homogeneity of cancer Variance ANOVA of Absolute Deviations from Group Medians	- I cana to be non norman
Brad Lipson	Obesity	H ₀ : All state (group) variance are equal. H _A : At least one state (group) variance is different from the other state (group) variance.	proc glm; class state; model obesity=state; means state/hovtest=bf; run; proc glm; class state; model obesity = state; means state/hovtest=bartlett ; run;	Brown and Forsythe's Test for Homogeneity of obesity Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > state 3 150.3 50.1124 9.57 < .000 Error 222 1162.0 5.2342 Bartlett's Test for Homogeneity of obesity Variance Source DF Chi-Square Pr > ChiSq state 3 18.3235 0.0004	Before deciding which test to use, you would need to test for normality. Because the obesity data was tested in (1) and found to

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
Mary	Heart Disease	H _o : All state (group) variance are equal. H _a : At least one state (group) variance is different from the other state (group) variance.	proc glm; class state; model heart=state; means state/hovtest=bf; run; proc glm; class state; model heart = state; means state/hovtest=bartlett ; run;	Brown and Forsythe's Test for Homogeneity of heart Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F state 3 1890.8 630.3 1.61 0.1888 Error 222 87115.7 392.4 Bartlett's Test for Homogeneity of heart Variance Source DF Chi-Square Pr > Chi Sq state 3 11.8799 0.0078	Before deciding which test to use, you would need to test for normality. This is because Bartlett's test assumes the data is normally distributed. Because the heart disease data was tested in (1) and found to be non-normal, Brown-Levene-Forsythe Test should be used to test for equal population variances. The p-value (0.0078) for Bartlett's test is less than alpha (0.05). Therefore, we reject the null hypothesis and conclude that at least one of the four states has different variance for heart disease.
Morrow	Diabetes	H _o : All state (group) variance are equal. H _A : At least one state (group) variance is different from the other state (group) variance.	proc glm; class state; model diabetes=state; means state/hovtest=bf; run; proc glm; class state; model diabetes = state; means state/hovtest=bartlett ; run;	Brown and Forsythe's Test for Homogeneity of diabetes Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F state 3 20.5060 6.8353 13.13 < .0001 Error 222 115.6 0.5205 Bartlett's Test for Homogeneity of diabetes Variance Source DF Chi-Square Pr > ChiSq state 3 47.1875 < .0001	Before deciding which test to use, you would need to test for normality. This is because Bartlett's test assumes the data is normally distributed. Because the diabetes data was tested in (1) and found to be non-normal, Brown-Levene-Forsythe Test should be used to test for equal population variances. The p-value (<.0001) for Bartlett's test is less than alpha (0.05). Therefore, we reject the null hypothesis and conclude that at least one of the four states has different variance for diabetes.
Matthew McGehee	Mercury	H ₀ : The variance in mercury levels from each state is equal. H _A : At least one state's mercury level variance is different from one of the other states' observed variance.	proc glm data=group4data; class State; model Mercury_TPY=State; means State/hovtest=bf; run; proc glm data=group4data; class State; model Mercury_TPY = State; means State/hovtest=bartlett ; run;	Brown and Forsythe's Test for Homogeneity of Mercury_TPY Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F State 3 0.0428 0.0143 2.78 0.0419 Error 222 1.1387 0.00513 Bartlett's Test for Homogeneity of Mercury_TPY Variance Source DF Chi-Square Pr > ChiSq State 3 166.9 < .0001	Because we concluded that the data for mercury levels was not normally distributed, we should use the Brown-Forsythe-Levene test. With a p-value of 0.0419 and an alpha of 0.05, we would have to reject the null hypothesis and conclude that at least one state's mercury level variance is different from one of the other states observed. However, at alpha 0.01, we should not reject the null hypothesis.

Name	Var	Hypothese	SAS Code	SAS	Outp	out					Conclusion
	Lead	H ₀ : The variance in lead levels from each state is equal. H _A : At least one state's lead level variance is different from one of the other states' observed variance.	proc glm data=group4data; class State; model Lead_TPY=State; means State/hovtest=bf; run; proc glm data=group4data; class State; model Lead_TPY = State; means State/hovtest=bartlett ; run;	Sour State Erro	ANOVA roe DF e 3 r 222 rtlett's Te	Sum of	Squares 2.6660 51.9505	omogeneity of Litions from Grou Mean Square 0.8887 0.2340 neity of Lead hi-Square 61.9572	F Value 3.80 TPY Var Pr > (Pr > F 0.0110	Because we concluded that the data for mercury levels was not normally distributed, we should use the Brown-Forsythe-Levene test. With a p-value of 0.0110 and an alpha of 0.05, we would have to reject the null hypothesis and conclude that at least one state's lead level variance is different from one of the other states observed. However, at alpha 0.01, we should not reject the null hypothesis, but only
Pamela Mishaw	Mental Distress	H ₀ : All state variances of mental distress rating are equal. H _A : At least two of the variances of mental distress rating differ at a statistically significant level.	proc glm; class state; model mental_distress = state; means state / hovtest=bf; run; proc glm; class state; model mental_distress = state; means state / hovtest=bartlett; run;	Sour state Error	ANOV	The The ett's nenta	st for Homolute Device of Squares 5.4980 130.9 SAS GLM Test for Homolute Device of Squares 5.4980 130.9 Chi-S	Procedure Ogeneity of men attions from Grou Mean Square 1.8327 0.5899 S System Procedure Or Homogetress Var Square 9.6235	n F Value 3.11 Te geneity iance	Pr > F 0.0273	marginally. As determined in Part 1, the mental distress rating data are not normally distributed. Since Bartlett's test is more sensitive to non-normalized data, one should use the Brown-Levene-Forsythe test for this data. At significance level alpha = 0.05, we would reject the null hypothesis since the p-value (0.0273) is smaller. Thus, we would conclude that at least two of the variances differ statistically.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
	% Bachelor Degree	H _Q : All state variances of percentage of those with bachelor's degree are equal. H _A : At least two of the variances of the percentage of those with bachelor's degree differ at a statistically significant level.	proc glm; class state; model Percent_with_Bache lors = state; means state / hovtest=bf; run; proc glm; class state; model Percent_with_Bache lors = state; means state / hovtest=bartlett; run;	The SAS System The GLM Procedure Brown and Forsythe's Test for Homogeneity of Percent_with_Bachelors Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F State 3 71,9891 23,9964 0.61 0.6123 Error 222 8802.5 39,6507 The SAS System The GLM Procedure Bartlett's Test for Homogeneity of Percent_with_Bachelors Variance Source DF Chi-Square Pr > ChiSquare State 3 1.7827 0.6187	As determined in Part 1, the data on the percentage of those with bachelor's degree are not normally distributed. Since Bartlett's test is more sensitive to non-normalized data, one should use the Brown-Levene-Forsythe test for this data. At significance level alpha = 0.05, we would fail to reject the null hypothesis since the p-value (0.6123) is larger. Thus, we would conclude that the variances of the data on those with bachelor's degree are statistically
	Smoking	H ₀ : All state variances are equal. H _A : At least one state variance is different from the another state variance.	proc glm; class state; model smoking=state; means state/hovtest=bf; run; proc glm; class state; model smoking = state; means state/hovtest=bartlett ;	Brown and Forsythe's Test for Homogeneity of smoking Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F state 3 19.5791 6.5264 1.46 0.2264 Error 222 992.5 4.4708 Bartlett's Test for Homogeneity of smoking Variance Source DF Chi-Square Pr > ChiSq state 3 4.2792 0.2329	l would recommend using the Brown-forsythe test over the Bartlett test because the Bartlett test is sensitive to non-normality. Based on the p-value from the Brown-forsythe test, we fail to reject the null hypothesis. There is not enough evidence to suggest that at least two state variances are different.
Prince Nhliziyo	Inactivity	H _o : All state variances are equal. H _A : At least one state variance is different from the another state variance	run; proc glm; class state; model physical=state; means state/hovtest=bf; run; proc glm; class state; model physical = state; means state/hovtest=bart lett; run;	Brown and Forsythe's Test for Homogeneity of physical Variance ANOVA of Absolute Deviations from Group Medians Source DF Sum of Squares Mean Square F Value Pr > F state 3 157.1 52.3595 15.01 <.0001 Error 222 774.2 3.4872 Bartlett's Test for Homogeneity of physical Variance Source DF Chi-Square Pr > Chi Sq state 3 33.6058 <.0001	I would recommend using the Brown-forsythe test over the Bartlett test because the Bartlett test is sensitive to non-normality. Based on the p-value from the Brown-forsythe test, we reject the null hypothesis and conclude that at least one state has different variance from another for physical inactivity.

6. Compare pairwise the population means for each variable in the 4 states with Tukey's Test. What can you conclude based on significance level alpha=0.05? Which states have significantly different means? Discuss.

Name	Var	SAS Code	SAS Out	put			Conclusion
	Cancer	proc glm;	Comparis	ons significa	nt at the 0.05 level are	indicated by ***.	Based on the output:
		<pre>class state; model cancer = state;</pre>	state Comparison	Difference Between Means	Simultaneous 95% Co	onfidence Limits	$\mu_{NY} = \mu_{FL}$
		<pre>means state/tukey;</pre>	FL - NY	8.740	-1.473	18.953	μ _{NY} ≠ μ _{CA}
		run;	FL - WA	10.619	-1.054	22.292	μ _{NY} = μ _{WA}
			FL - CA	23.262	12.867	33.656 ***	
			NY - FL	-8.740	-18.953	1.473	μ fl ≠ μ ca
			NY - WA	1.879	-9.966	13.724	μ _{FL} = μ _{WA}
			NY - CA WA - FL	14.522 -10.619	3.935	25.109 *** 1.054	
			WA - FL	-10.619	-22.292 -13.724	9.966	μ ca = μ wa
			WA - N1	12.643	0.641	24.645 ***	
			CA - FL	-23.262	-33.656	-12.867 ***	
			CA - NY	-14.522	-25.109	-3.935 ***	
			CA - WA	-12.643	-24.645	-0.641 ***	
Brad Lipson	Obesity	proc glm;	Comparis	ons significa	nt at the 0.05 level are	e indicated by ***.	Based on the output:
		<pre>class state; model obesity = state;</pre>	state Comparison	Difference Between Means	Simultaneous 95% C	onfidence Limits	µ _{NY} ≠ µ _{FL}
		<pre>means state/tukey;</pre>	FL - WA	0.3790	-1.5863	2.3443	μ _{NY} ≠ μ _{CA}
		run;	FL - NY	2.5793	0.8598	4.2989 ***	μ _{NY} ≠ μ _{WA}
			FL - CA	5.4895	3.7395	7.2396 ***	
			WA - FL	-0.3790	-2.3443	1.5863	μ fl ≠ μ ca
			WA - NY	2.2003	0.2061	4.1946 ***	μ _{FL} =μ _{WA}
			WA - CA	5.1105	3.0899	7.1312 ***	
			NY - FL	-2.5793	-4.2989	-0.8598 ***	μ ca ≠ μ wa
			NY - WA	-2.2003 2.9102	-4.1946 1.1277	-0.2061 *** 4.6927 ***	
			CA-FL	-5.4895	-7.2396	-3.7395 ***	
			CA - WA	-5.1105	-7.1312	-3.0899 ***	
			CA - NY	-2.9102	-4.6927	-1.1277 ***	
	Heart Disease	<pre>proc glm; class state;</pre>	Com		gnificant at the 0.0 ndicated by ***.	5 level are	Based on the output: $\mu_{\text{NY}} \neq \mu_{\text{FL}}$
		<pre>model heart = state; means state/tukey;</pre>	state Comparison	Difference Between Means	Simultaneous 95		μ _{NY} ≠ μ _{CA}
		run;	NY - FL	16.662	2 3.532	29.793 ***	μ _{NY} ≠ μ _{WA}
			NY - CA	30.696	17.085	44.307 ***	μ fl ≠ μ CA
			NY - WA	35.460	20.232	50.688 ***	μ _{FL} ≠ μ _{WA}
			FL - NY	-16.662	-29.793	-3.532 ***	$\mu_{CA} = \mu_{WA}$
			FL - CA	14.034	0.670	27.397 ***	μca – μwa
Mary			FL - WA	18.798	3.791	33.805 ***	
_			CA - NY	-30.696	-44.307	-17.085 ***	
Morrow			CA - FL	-14.034	-27.397	-0.670 ***	
			CA - WA	4.764	1 -10.666	20.194	
			WA - NY	-35.460		-20.232 ***	
			WA - NI	-18.798		-3.791 ***	
			WA - FL	-18.798		10.666	
			VVA - CA	-4.764	-20.194	10.666	

Name	Var SAS Code SAS Output						Conclusion
	Diabetes	<pre>proc glm; class state;</pre>	Comp		nificant at the 0.05 l	evel are	Based on the output: $\mu_{NY} \neq \mu_{FL}$
		<pre>model diabetes = state; means state/tukey;</pre>	state Comparison	Difference Between Means	Simultaneous 95% Limits		μ _{NY} ≠ μ _{CA}
		run;	FL - NY	1.5895	1.0572	2.1218 ***	$\mu_{NY} = \mu_{WA}$
			FL - WA	1.6999	1.0915	2.3083 ***	μ _{FL} ≠ μ _{CA}
			FL - CA	2.4904	1.9486	3.0321 ***	μ _{FL} ≠ μ _{WA}
			NY - FL	-1.5895	-2.1218	-1.0572 ***	μ _{CA} ≠ μ _{WA}
			NY - WA	0.1104	-0.5069	0.7278	μca τ μwa
			NY - CA	0.9009	0.3491	1.4527 ***	
			WA - FL	-1.6999	-2.3083	-1.0915 ***	
			WA - NY	-0.1104	-0.7278	0.5069	
			WA - CA	0.7905	0.1650	1.4160 ***	
			CA - FL	-2.4904	-3.0321	-1.9486 ***	
			CA - NY	-0.9009 -0.7905	-1.4527 -1.4160	-0.3491 *** -0.1650 ***	
			CA - WA	-0.7905	-1.4160	-0.1650	
Matthew	Mercury	proc glm data=group4data; class State; model Mercury_TPY=State; means State/tukey lines; run;	Means State Estin CA 0.00 FL 0.00	(A covered by the s	y Grouping for Me Ipha = 0.05) ame bar are not significan		At alpha 0.05: The states with significantly different mean values of mercury tpy are CA and WA. Florida and New York are not significantly different from any of the other states observed.
McGehee	Lead	proc glm data=group4data; class State; model Lead_TPY=State; means State/tukey lines; run;	Means State Estin CA 0.3 FL 0.3	(A covered by the	Grouping for Mea Ipha = 0.05) name bar are not significar		At alpha 0.05, CA has a significantly different mean level of lead tpy compared to either WA or NY. Only Florida is not significantly different from any of the other states observed.

Name	Var	SAS Code	SAS Out	put	Conclusion			
	Mental Distress	proc glm; class state; model mental_distress = state; means state / tukey cldiff	Comparisons significant at the 0.05 level are indicated by ***. Difference state Comparison Means Simultaneous 95% Confidence Limits				0.05, Florida's mean me distress level differs sign from those of California Washington, and New Yo	At significance level alpha = 0.05, Florida's mean mental distress level differs significantly from those of California, Washington, and New York.
		lines;	FL - CA	0.9743	0.4850	1.4635	Also, California's mean o	liffers
		run;	FL - WA	1.2599	0.7104	1.8093	significantly from that o	f New
			FL - NY	1.7429	1.2622	2.2236	*** York.	
			CA - FL	-0.9743	-1.4635	-0.4850	The mean of Washingto	n does
			CA - WA	0.2856	-0.2793	0.8505	not differ significantly fr	
			CA - NY	0.7686	0.2703	1.2669	of California. The mean	
			WA - FL	-1.2599	-1.8093	-0.7104	*** Washington does not di	ffer
			WA - CA	-0.2856	-0.8505	0.2793	significantly from that o	f New
			WA - NY	0.4830	-0.0745	1.0406	York.	
			NY - FL	-1.7429	-2.2236	-1.2622	***	
			NY - CA	-0.7686	-1.2669	-0.2703	***	
Pamela			NY - WA	-0.4830	-1.0406	0.0745		
Mishaw	% Bachelor Degree	proc glm; class state; model Percent_with_Bachelors = state;	Co	mparisons s are i	0.05, New York's mean o	At significance level alpha = 0.05, New York's mean differs		
			state Comparison	Difference Between Means	Simultaneous 9 Lim		significantly from that o and California's mean di significantly from that o	ffers
		means state / tukey	NY - CA	0.634	-3.826	5.094	Florida, as well.	
		cldiff lines;	NY - WA	2.018	-2.971	7.008		
		run;	NY - FL	5.942	1.639	10.244		
			CA - NY	-0.634	-5.094	3.826	•	pairs of state means do not indicate statistical difference at
			CA - WA	1.384	-3.672	6.440	this significance level.	ence at
			CA - FL	5.307	0.929	9.686	***	
			WA - NY	-2.018	-7.008	2.971		
			WA - CA	-1.384	-6.440	3.672		
			WA - FL	3.923	-0.994	8.841		
			FL - NY	-5.942	-10.244	-1.639	***	
			FL - CA	-5.307	-9.686	-0.929	***	
			FL - WA	-3.923	-8.841	0.994		
	Smoking	proc glm; class state;		(A	rouping for Me		μ _{NY} ≠ μ _{FL}	
		model smoking = state; means state/tukey lines;	state Es		ame bar are not signife	sently different.	μny ≠ μca	
		run;	FL 25.6030				μny = μwa	
Prince				21,7510			μ _{fl} ≠μ _{ca}	
Nhliziyo				20.8959			μ _{FL} ≠ μwa	
			CA	18.4528			μ ca ≠ μ wa	

Name	Var	SAS Code	SAS Output	Conclusion
	Inactivity	proc glm; class state;	physical Tukey Grouping for Means of state (Alpha = 0.05)	μ _{NY} ≠ μ _{FL}
		model physical = state; means state/tukey lines;	Means covered by the same bar are not significantly different. state Estimate	µny ≠ µca
		run	FL 25.9994	μny ≠ μwa
			NY 23.8655	μ _{FL} ≠ μ _{CA}
			WA 20.0779 CA 17.3621	µfl≠µwa
			•	μ ca ≠ μ wa

7. Compare pairwise the population means for each variable in the 4 states with SNK Test. What can you conclude based on significance level alpha=0.05? Which states have significantly different means? Discuss.

Name	Var	SAS Code	SAS Output	Conclusion	
Brad	Cancer	<pre>proc glm; class state; model cancer = state; means state/SNK; run;</pre>	cancer SNK Grouping for Means of state (Alpha = 0.05) Means covered by the same bar are not significantly different. state Estimate FL 183.03 NY 174.29 WA 172.42 CA 159.77	For Cancer, there is a statistically significant difference in the mean between New York and Florida, New York and California, and Florida and California. However, there is no statistically significant difference in the mean between New York and Washington, or between Florida and Washington	
Lipson	Obesity	<pre>proc glm; class state; model obesity = state; means state/SNK; run;</pre>	obesity SNK Grouping for Means of state (Alpha = 0.05) Means covered by the same bar are not significantly different. State Estimate FL 29.4764 WA 29.0974 NY 26.8971 CA 23.9869	For Obesity, there is a statistically significant difference in the mean between New York and Florida, New York and California, and New York and Washington. However, there is no statistically significant difference in the mean between Florida and Washington, but there is a statistically significant difference between California and Washington	

Name	Var	SAS Code	SAS Output	Conclusion
Mary	Heart Disease	<pre>proc glm; class state; model heart = state; means state/SNK; run;</pre>	heart SNK Grouping for Means of state (Alpha = 0.05) Means covered by the same bar are not significantly different. state Estimate NY 138.88 FL 122.21 CA 108.18 WA 103.42	Based on the output: μ _{NY} ≠ μ _{FL} μ _{NY} ≠ μ _{CA} μ _{NY} ≠ μ _{WA} μ _{FL} ≠ μ _{CA} μ _{FL} ≠ μ _{WA} μ _{CA} = μ _{WA}
Morrow	Diabetes	<pre>proc glm; class state; model diabetes = state; means state/SNK; run;</pre>	diabetes SNK Grouping for Means of state (Alpha = 0.05) Means covered by the same bar are not significantly different. state Estimate FL 9.9466 NY 8.3571 WA 8.2467 CA 7.4562	Based on the output: μνν ≠ μει μνν ≠ μα μνν = μwa μει ≠ μα μει ≠ μα μει ≠ μwa μα ≠ μwa μα ≠ μwa
Matthew	Mercury	proc glm data=group4data; class State; model Mercury_TPY=Sta te; means State/snk lines; run;	Mercury_TPY SNK Grouping for Means of State (Alpha = 0.05) Means covered by the same bar are not significantly different. State Estimate CA 0.05078 FL 0.02189 NY 0.01845 WA 0.01190	At alpha 0.05, CA has a significantly different mean level of mercury tpy compared to either WA or NY. Only Florida is not significantly different from any of the other states observed.
McGehee	Lead	proc glm data=group4data; class State; model Lead_TPY=State; means State/snk lines; run;	Lead_TPY SNK Grouping for Means of State (Alpha = 0.05) Means covered by the same bar are not significantly different. State Estimate CA 0.5658 FL 0.3644 WA 0.2729 NY 0.1926	At alpha 0.05, CA has a significantly different mean level of lead tpy compared to either WA or NY. Only Florida is not significantly different from any of the other states observed.

Name	Var	SAS Code	SAS Output Conclusion		
	Mental Distress	proc glm; class state; model	Means with the same letter are not significantly different. At significance level alpha = 0.05, Florida's mean differs significantly from those of		
		mental_distress = state;	SNK Grouping Mean N state California, Washington, and New York. New York's mean		
		means state / snk linestable; run;	A 12.3881 67 FL differs significantly from those of California and Washington.		
			B 11.4138 58 CA California and Washington have statistically similar means.		
			В		
			B 11.1282 39 WA		
Pamela			C 10.6452 62 NY		
Mishaw	% Bachelor Degree	proc glm; class state; model	Means with the same letter are not significantly different. The mean of Florida differs significantly from those of California, New York, and		
		Percent_with_B achelors = state; means state / snk linestable; run;	SNK Grouping Mean N state Washington.		
			A 25.777 62 NY The means of New York, California, and Washington are statistically similar.		
			A		
			A 25.143 58 CA		
			A		
			A 23.759 39 WA		
			B 19.836 67 FL		
	Smoking	proc glm; class state;	smoking SNK Grouping for Means of state (Alpha		
		model smoking = state; means state/SNK;	= 0.05) Means covered by the same bar are not significantly different. \$\mu_{NY} ≠ \mu_{CA}\$		
		run;	FL 25.8030 μNY = μWA		
Duines			NY 21.7810 μFL ≠ μCA		
Prince Nhliziyo					wa 20.8999 μfl.≠μwa
			LCA ≠ μwa		

Name	Var	SAS Code	SAS Output	Conclusion
	Inactivity	proc glm; class state; model physical = state; means state/SNK; run;	physical SNK Grouping for Means of state (Alpha = 0.05) Means covered by the same bar are not significantly different. state Estimate FL 25.9594 NY 23.8855 WA 20.9779 CA 17.3521	μny ≠ μfl μny ≠ μca μny ≠ μwa μfl ≠ μca μfl ≠ μwa
				μ ca ≠ μ wa

8. Compare pairwise the population means for each variable in the 4 states with Fisher's LSD Test. What can you conclude based on significance level alpha=0.05? Which states have significantly different means? Discuss.

Name	Var	SAS Code	SAS Outp	ut	Conclusion			
Brad Lipson	Cancer	<pre>proc glm; class state; model cancer = state; means state/lsd; run;</pre>	state Comparison FL - NY FL - WA FL - CA NY - FL NY - WA NY - CA WA - FL WA - NY WA - CA CA - FL CA - NY CA - WA	significant at the Difference Between Means 8.740 10.619 23.262 -8.740 1.879 14.522 -10.619 -1.879 12.643 -23.262 -14.522 -12.643	95% Confider 0.964 1.732 15.348 -16.515 -7.139 6.462 -19.506 -10.897 3.506 -31.175 -22.582 -21.780		本市市	 The means of the New York and Florida populations are not equal. The means of the New York and California populations are not equal. The means of the New York and Washington populations are not equal. The means of the Florida and California populations are not equal. The means of the Florida and Washington populations are not equal. The means of the Florida and Washington populations are not equal. The means of the California and Washington populations are equal. However, there is no statistically significant difference in the mean between Florida and Washington

Name	Var	SAS Code	SAS Out	put				Conclusion
	Obesity	proc glm;	Comparisons significant at the 0.05 level are indicated by ***.					There is a statistically
		class state;		Difference				significant difference in the
		<pre>model obesity = state;</pre>	state Comparison	Between Means Si	multaneous 95% C	onfidence Limits		mean between New York
		means	FL - WA	0.3790	-1.5863	2.3443		and Florida, New York and
		state/lsd;	FL - NY	2.5793	0.8598	4.2989	***	California, and New York and
		run;	FL - CA	5.4895	3.7395	7.2396	***	Washington. However, there is no statistically significant
			WA - FL WA - NY	-0.3790 2.2003	-2.3443 0.2061	1.5863 4.1946	***	difference in the mean
			WA - CA	5.1105	3.0899	7.1312	***	between Florida and
			NY - FL	-2.5793	-4.2989	-0.8598	***	Washington, but there is a
			NY - WA	-2.2003	-4.1946	-0.2061	***	statistically significant
			NY - CA CA - FL	2.9102 -5.4895	1.1277 -7.2396	4.6927 -3.7395	***	difference between
			CA - WA	-5.1105	-7.1312	-3.0899	***	California and Washington.
			CA - NY	-2.9102	-4.6927	-1.1277	***	
	Heart Disease	<pre>proc glm; class state;</pre>	Compa	risons signi indi	ificant at the (0.05 level are		Based on the output:
		model heart =		Difference				µny ≠ µfl
		state;	state	Betwee	en			µny ≠ µca
		<pre>means state/lsd;</pre>	Comparisor	n Mear	ns 95% Confi	dence Limits		μ _{NY} ≠ μ _{WA}
		run;	NY - FL	16.60	6.666	26.659	***	μ fl ≠ μ ca
			NY - CA	30.69	96 20.334	41.058	***	μfl≠μwa
			NY - WA	35.40	60 23.867	7 47.053	***	μca = μwa
			FL - NY	-16.60	62 -26.659	-6.666	***	μca – μwa
			FL - CA	14.0	3.860	24.207	***	
			FL - WA	18.79	98 7.373	30.223	***	
			CA - NY	-30.69			***	
			CA - FL	-14.03			***	
			CA - WA	4.70			***	
			WA - NY	-35.40 -18.79				
D. G			WA - FL	-10.73				
Mary		proc glm;	WA - CA	-4.11	-10.51	0.303		
Morrow	Diabetes	class state;	Compa		ificant at the 0 cated by ***.	0.05 level are		Based on the output: $\mu_{NY} \neq \mu_{FL}$
		<pre>model diabetes =</pre>		Difference				μ _{NY} ≠ μ _{CA}
		state;	state Comparisor	Between Mean	en ns 95% Confi	dence Limits		μ _{NY} = μ _{WA}
		means	FL - NY	1.58			***	
		<pre>state/lsd; run;</pre>	FL - WA				***	µfl ≠ µca
			FL - CA	2.49			***	µfl ≠ µwa
			NY - FL	-1.58			***	μ ca ≠ μ wa
			NY - WA	0.11	04 -0.3596	0.5804		
			NY - CA	0.90	0.4808	1.3210	***	
			WA - FL	-1.69	99 -2.1631	1 -1.2367	***	
			WA - NY	-0.11	04 -0.5804	0.3596		
			WA - CA	0.79	0.3143	1.2667	***	
			CA - FL	-2.49				
			CA - NY	-0.90			***	
			CA - WA	-0.79	05 -1.2667	-0.3143	***	

Name	Var	SAS Code	SAS Output	Conclusion
Matthew	Mercury	proc glm data=group4data; class State; model Mercury_TPY=Sta te; means State/Isd lines; run;	Mercury_TPY t Grouping for Means of State (Alpha = 0.05) Means covered by the same bar are not significantly different. State Estimate CA 0.05078 FL 0.02189 NY 0.01845 WA 0.01190	At alpha 0.05: CA has a significantly different mean level of mercury tpy compared to FL, NY, or WA. Conversely, we cannot conclude that there is a significant difference in mean levels of mercury tpy between FL, NY, and WA.
McGehee	Lead	proc glm data=group4data; class State; model Lead_TPY=State; means State/Isd lines; run;	Lead_TPY t Grouping for Means of State (Alpha = 0.05) Means covered by the same bar are not significantly different. State Estimate CA 0.5658 FL 0.3644 WA 0.2729 NY 0.1926	At alpha 0.05, CA has a significantly different mean level of lead tpy compared to either WA or NY. Only Florida is not significantly different from any of the other states observed.
	Mental Distress	proc glm; class state; model mental_distress = state; means state / Isd	Means with the same letter are not significantly different. t Grouping Mean N state	The mean of Florida differs significantly from those of CA, WA, and NY. The mean of NY differs significantly from those of FL, CA, and WA.
		linestable; run;	A 12.3881 67 FL	The means of CA and WA are statistically similar.
Domalo			B 11.4138 58 CA	
Pamela Mishaw			B 11.1282 39 WA	
			C 10.6452 62 NY	

STA5176: Spring 2023 Group 4 Alzheimer's Project

Name	Var	SAS Code	SAS Output Conclusion	n
	% Bachelor Degree	proc glm; class state; model Percent_with_B	Means with the same letter are not significantly different. significantly from CA, WA, and N	The means of Florida differs significantly from those of CA, WA, and NY. The means of WA, CA, and NY are
		achelors = state; means state /	t Grouping Mean N state statistically sin	
		lsd linestable; run;	A 25.777 62 NY	
		,	A	
			A 25.143 58 CA	
			A	
			A 23.759 39 WA	
			B 19.836 67 FL	
	Smoking	proc glm; class state; model smoking =	smoking t Grouping for Means of state (Alpha = 0.05) Means covered by the same but are not significantly different.	
		state;	state Estimate µNY ≠ µCA	
		means state/lsd lines;	FL 25.0030 μNY = μWA	
		run;	NY 21.7510 μει≠ μca	
			wa 20.8889 μ _{FL} ≠ μwa	
Prince			uca ≠ μwa	
Nhliziyo	Inactivity	proc glm; class state;	physical t Grouping for Means of state (Alpha = $\mu_{NY} \neq \mu_{FL}$ 0.05)	
		model physical = state;	Means covered by the same bar are not significantly different. state Estimate $\mu_{\text{NY}} \neq \mu_{\text{CA}}$	
		means state/Isd lines;	FL 25.9594 μNY ≠ μWA	
		run;	NY 23.8655	
			WA 20.0779 μ _{FL} ≠ μ _{WA}	
			μca ≠ μwa	

9. Compare the population means for each variable for Florida with the average for the other 3 states with an individual contrast. Does Florida have a significantly different mean than what is found in the other 3 states? Use significance level alpha=0.05.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
Brad	Cancer	$\underline{\mathbf{H}}_{0}$: L = 0 $\underline{\mathbf{H}}_{A}$: L \neq 0	proc glm; class state; model cancer=state; contrast 'FL vs CA NY WA' state -0.33 1 -0.33 -0.34; run;	Contrast DF Contrast SS Mean Square F Value Pr > F	The p-value is less than the significance level, which means that the results are statistically significant. Therefore, we can reject the null hypothesis and conclude that there is a difference between the two groups.
Lipson	Obesity	$\underline{\mathbf{H}}_{0}$: L = 0 $\underline{\mathbf{H}}_{A}$: L \neq 0	proc glm; class state; model obesity=stat e; contrast 'FL vs CA NY WA' state -0.33 1 -0.33 -0.34; run;	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs CA NY WA 1 362.0632714 362.0632714 25.48 < 0001	The p-value is close, which means that the probability of getting the observed results by chance is very low. Therefore, we can reject the null hypothesis and conclude that there is a difference between the two groups.
	Heart Disease	$ \underline{\mathbf{H}}_{\underline{0}}: \mathbf{L} \neq 0 $	<pre>proc glm; class state; model heart=state; contrast 'FL vs CA NY WA' state -1 3 -1 -1; run;</pre>	Contrast DF Contrast SS Mean Square F Value Pr > F	The p-value, 0.2028, is greater than alpha, 0.05. Therefore, we fail to reject the null hypothesis and conclude that there is sufficient evidence that L = 0.
Mary Morrow	Diabetes	$\underline{\mathbf{H}}_{\underline{0}}$: L = 0 $\underline{\mathbf{H}}_{\underline{A}}$: L \neq 0	proc glm; class state; model diabetes=sta te; contrast 'FL vs CA NY WA' state -1 3 -1 -1; run;	Contrast	The p-value, <.0001, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that there is sufficient evidence that $L \neq 0$.
Matthew	Mercury	$\underline{\mathbf{H}}_{0}$: L = 0 $\underline{\mathbf{H}}_{\underline{\Delta}}$: L \neq 0	proc glm; class State; model Mercury_TPY=Sta te; contrast 'FL vs CA NY WA' State -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs CA NY WA 1 0.00123452 0.00123452 0.23 0.8306	At alpha 0.05, and a p-value of 0.6306, we must not reject the null hypothesis, and conclude that FL does not have a significantly different mean level of mercury when contrasted against CA, NY, and WA.
McGehee	Lead		proc glm; class State; model Lead_TPY=State; contrast 'FL vs CA NY WA' State -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs CA NY WA 1 0.01984127 0.01984127 0.07 0.7956	At alpha 0.05, and a p-value of 0.7956, we must not reject the null hypothesis, and conclude that FL does not have a significantly different mean level of lead when contrasted against CA, NY, and WA.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
Pamela	Mental Distress	$\underline{\mathbf{H}}_{\mathbf{Q}} \colon L = 0$ $\underline{\mathbf{H}}_{A} \colon L \neq 0$	proc glm; class state; model mental_distress = state; contrast 'FL v CA, NY, and WA' state -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square FValue Pr > F FL v CA, NY, and WA 1 81.80770402 81.80770402 73.67 <.0001	At significance level 0.05, the p-value is less (<0.0001) so we reject the null hypothesis and conclude that FL does have a significantly different mean of mental distress levels than CA, NY, and WA.
Mishaw	% Bachelor Degree	$\underline{\mathbf{H}}_{\underline{0}}$: L = 0 $\underline{\mathbf{H}}_{\underline{\mathbf{A}}}$: L \neq 0	proc glm; class state; model Percent_with_B achelors = state; contrast 'FL v CA, NY, and WA' state -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F	At significance level 0.05, the p-value is less (0.0003) so we reject the null hypothesis and conclude that FL does have a significantly different mean of percentage of those who have bachelor's degrees than CA, NY, and WA.
Prince	Smoking	H ₀ : μ _F L= (μ _{CA+} μ _{WA+} μ _{NY})/3 H _A : μ _F ≠ (μ _{CA+} μ _{WA+} μ _{NY})/3	proc glm; class state; model smoking = state; means state; contrast 'FL vs rest' state -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F	Based on significance level 0.05, we reject the null hypothesis and conclude that FL has a significantly different mean compared to the other 3 states combined
Nhliziyo	Inactivity	H ₀ : μ _F L= (μ _{CA+} μ _{WA+} μ _{NY})/3 H _A : μ _F ≠ (μ _{CA+} μ _{WA+} μ _{NY})/3	proc glm; class state; model physical = state; means state; contrast 'FL vs rest' state -1 3 -1 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F	Based on significance level 0.05, we reject the null hypothesis and conclude that FL has a significantly different mean compared to the other 3 states combined

10. Use 3 contrasts with the Bonferroni method to separately compare Florida to each of the 3 other states for each variable at alpha=0.05. What can you conclude?

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
		b n			
	Cancer	$\underline{\mathbf{H}}_{\underline{0}}$: L = 0 $\underline{\mathbf{H}}_{\underline{A}}$: L \neq 0	<pre>proc glm; class state; model cancer=state; contrast 'FL vs. CA' state -1 1 0 0; contrast 'FL vs. NY' state</pre>	Contrast DF Contrast SS Mean Square F Value Pr ≻ F FL vs. CA 1 16822.10505 16822.10505 33.56 <0001	 The p-values for all three comparisons are less than 0.05, which means that the null hypothesis can be rejected. In other words, there is a statistically significant difference between the average values of L in the four states.
			0 1 -1 0; contrast 'FL vs. WA' state 0 1 0 -1; run;		2. For FL vs. CA, the p-value is <0.0001, which means that there is less than a 0.0001% chance that the observed difference in average values could have occurred by chance. This suggests that there is a significant difference in the average values of L between Florida and California.
Brad					3. For FL vs. NY, the p-value is 0.0278, which means that there is a 2.78% chance that the observed difference in average values could have occurred by chance. This is a less significant result than the FL vs. CA comparison, but it is still statistically significant. This suggests that there is a real difference in the average values of L between Florida and New York, but it is not as large as the difference between Florida and California.
Lipson					4. For FL vs. WA, the p-value is 0.6182, which means that there is a 61.82% chance that the observed difference in average values could have occurred by chance. This is not a statistically significant result, so we cannot reject the null hypothesis. In conclusion, there are statistically significant differences between the average values of L in Florida and California, Florida and New York, but not between Florida and Washington.

Name	Var	Hypothese b n	SAS Code	SAS Output	Conclusion
	Obesity	$ \underline{\mathbf{H}}_{\underline{0}} $: $\mathbf{L} = 0$ $ \underline{\mathbf{H}}_{\underline{A}} $: $\mathbf{L} \neq 0$	proc glm; class state; model obesity=state; contrast 'FL vs. CA' state -1 1 0 0; contrast 'FL vs. NY' state 0 1 -1 0; contrast 'FL vs. WA' state 0 1 0 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr> F FL vs. CA 1 936.8320535 936.8320535 65.93 < 0001	The p-value is the probability of getting a result at least as extreme as the one observed, assuming that the null hypothesis is true. In this case, the null hypothesis is that there is no difference in the mean between the two groups. The p-values for FL vs. CA and FL vs. NY are both less than 0.05, which means that the probability of getting a difference at least as extreme as the one observed is less than 5%. This is considered to be statistically significant, so we can reject the null hypothesis and conclude that there is a difference in the mean between the two groups. The p-value for FL vs. WA is greater than 0.05, which means that the probability of getting a difference at least as extreme as the one observed is greater than 5%. This is not considered to be statistically significant, so we cannot reject the null hypothesis and conclude that there is no difference in the mean between the two groups. There is a statistically significant difference in the mean between FL and CA, and between FL and NY. However, there is no statistically significant difference in the mean between FL and WA
Mary Morrow	Heart Disease	$ \underline{H}_{0}$: L = 0 $ \underline{H}_{A}$: L \neq 0	<pre>proc glm; class state; model heart=state; contrast 'FL vs. CA' state -1 1 0 0; contrast 'FL vs. NY' state 0 1 -1 0; contrast 'FL vs. WA' state 0 1 0 -1; run;</pre>	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs. CA 1 6122.561735 6122.561735 7.39 0.0071 FL vs. NY 1 8940.267605 8940.267605 10.79 0.0012 FL vs. WA 1 8710.514200 8710.514200 10.51 0.0014	Based on the figure provided in the SAS output: 1. FL vs. CA: The p-value, 0.0071, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that L ≠ 0. 2. Fl vs. NY: The p-value, 0.0012, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that L ≠ 0. 3. FL vs. WA: The p-value, 0.0014, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that L ≠ 0.

Name	Var	Hypothese b n	SAS Code	SAS Output	Conclusion
	Diabetes	<u>H</u> ₂ : L = 0 <u>H</u> _A : L ≠ 0	<pre>proc glm; class state; model diabetes=state ; contrast 'FL vs. CA' state -1 1 0 0; contrast 'FL vs. NY' state 0 1 -1 0; contrast 'FL vs. WA' state 0 1 0 -1; run;</pre>	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs. CA 1 192.8044888 192.8044888 141.60 <0001 FL vs. NY 1 81.3545160 81.3545160 59.75 <0001 FL vs. WA 1 71.2328870 71.2328870 52.32 <0001	Based on the figure provided in the SAS output: 1. FL vs. CA: The p-value,
Matthew	Mercury	$ \underline{\mathbf{H}}_{\underline{0}}: \mathbf{L} = 0 $ $ \underline{\mathbf{H}}_{\underline{a}}: \mathbf{L} \neq 0 $	proc glm; class State; model Mercury_TPY=Stat e; contrast 'FL vs CA' State -1 1 0 0; contrast 'FL vs NY' State 0 1 -1 0; contrast 'FL vs WA' State 0 1 0 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs CA 1 0.02594372 0.02594372 4.87 0.0283 FL vs NY 1 0.00038212 0.00038212 0.07 0.7890 FL vs WA 1 0.00246217 0.00246217 0.48 0.4972	This lines up with all of our earlier tests from Tukey and SNK. The only state that is significantly different from Florida is California. With a p value of 0.0283, using alpha 0.05, we must reject the null hypothesis of equal means, and conclude that the mean level of mercury is significantly different than Florida's.
McGehee	Lead	<u>H</u> ₂ : L = 0 <u>H</u> ₆ : L ≠ 0	proc glm; class State; model Lead_TPY=State; contrast 'FL vs CA' State -1 1 0 0; contrast 'FL vs NY' State 0 1 -1 0; contrast 'FL vs WA' State 0 1 0 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F FL vs CA 1 1.26114887 1.26114897 4.27 0.0399 FL vs NY 1 0.95072922 0.95072922 3.22 0.0740 FL vs WA 1 0.20648542 0.20648542 0.70 0.4037	This lines up with all of our earlier tests from Tukey, SNK, and Fisher. The only state that is significantly different from Florida is California. With a p value of 0.0399, using alpha 0.05, we must reject the null hypothesis of equal means, and conclude that the mean level of lead is significantly different than Florida's.
Pamela Mishaw	Mental Distress	\underline{H}_0 : L = 0 \underline{H}_A : L \neq 0	proc glm; class state; model mental_distress = state; means state/bon; contrast 'FL v CA' state -1 1 0 0; contrast 'FL v NY' state 0 1 -1 0; contrast 'FL v WA' state 0 1 0 -1; run;	The SAS System The GLM Procedure Dependent Variable: mental_distress Contrast DF Contrast SS Mean Square F Value Pr > F FL v CA 1 29.50858672 29.50858672 26.57 < .0001 FL v NY 1 97.81848447 97.81848447 88.08 < .0001 FL v WA 1 39.12680429 39.12680429 35.23 < .0001	Since the p-values of all three contrasts are less than the significance level of 0.05, we reject the null hypothesis and conclude that the mean level of mental distress in FL is not equal to those of CA, NY, or WA.

Name	Var	Hypothese b n	SAS Code	SAS Output	Conclusion
	% Bachelor Degree	$\underline{\mathbf{H}}_{\mathbf{Q}}$: L = 0 $\underline{\mathbf{H}}_{\mathbf{A}}$: L \neq 0	proc glm; class state; model Percent_with_Ba chelors = state; means state/bon; contrast 'FL v CA' state -1 1 0 0; contrast 'FL v NY' state 0 1 -1 0; contrast 'FL v WA' state 0 1 0 -1; run;	The SAS System The GLM Procedure Dependent Variable: Percent_with_Bachelors Contrast DF Contrast SS Mean Square F Value Pr > F FL v CA 1 875.663409 875.663409 9.84 0.0019 FL v NY 1 1136.798203 1136.798203 12.78 0.0004 FL v WA 1 379.405951 379.405951 4.27 0.0401	The p-values of the three contrasts are less than the significance level 0.05 and so we reject the null hypothesis for these cases and conclude that the mean percentage of those with bachelor's degrees differs significantly from the means of CA, NY, and WA.
Prince	Smoking	H_0 : L = 0 $H_{\underline{A}}$: L \neq 0	proc glm; class state; model smoking = state; means state/bon; contrast 'FL vs CA' state -1 1 0 0; contrast 'FL vs NY' state 0 1 -1 0; contrast 'FL vs WA' state 0 1 0 -1; run;	Contrast DF Contrast SS Mean Square FValue Pr > F	Based on the p-values, the conclusion was:: FL vs CA: significant FL vs NY: significant FL vs WA:significant
Nhliziyo	Inactivity	H_0 : L = 0 H_A : L \neq 0	proc glm; class state; model physical = state; means state/bon; contrast 'FL vs CA' state -1 1 0 0; contrast 'FL vs NY' state 0 1 -1 0; contrast 'FL vs WA' state 0 1 0 -1; run;	Contrast DF Contrast SS Mean Square F Value Pr > F	Based on the p-values, the conclusion was: FL vs CA: significant FL vs NY: significant FL vs WA:significant

11. Calculate the linear regression between Alzheimer's and (variable 1) or (variable 2). What can you conclude regarding the association between these two variables? Use all values in the experiment and not for each state separately.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
Brad	Cancer	Null hypothesis is that there is no association between cancer and Alzheimer's disease The alternative hypothesis would be that there is an association between cancer and Alzheimer's disease.	proc reg; model alz_ageadj_rate=ca ncer/ lackfit; run;	Analysis of Variance Source DF Squares Square FValue Pr > F	The results of the analysis show that there is no significant relationship between cancer and Alzheimer's disease. The p-value for the cancer variable is 0.8355, which is greater than 0.05, the standard threshold for statistical significance. This means that there is not enough evidence to conclude that cancer is associated with Alzheimer's disease.
Lipson	Obesity	Null hypothesis is that there is no association between obesity and Alzheimer's disease The alternative hypothesis would be that there is an association between obesity and Alzheimer's disease.	proc reg; model alz_ageadj_rate=ob esity_age_adj/ lackfit; run;	Analysis of Variance Source DF Square Square Square Square Fvalue Pr > F	The results of the analysis show that there is no significant relationship between obesity and Alzheimer's disease. The p-value for the obesity variable is 0.9684, which is greater than 0.05, the standard threshold for statistical significance.
Mary Morrow	Heart Disease	H0: true slope is zero (no association between heart disease and alzheimer's rate) H1: true slope is not zero (association between heart disease and alzheimer's rate)	<pre>proc reg; model alz=heart; run;</pre>	Note Source Source Source DF Squares Square Square Square F Value Pr > F	The p-value, 0.0002, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that there is a significant association between heart disease and Alzheimer's rate (true slope is not zero). The slope of the linear regression of Alzheimer's on heart disease is -0.00338. This means that we expect Alzheimer's rate to decrease 0.00338 units if we increase heart disease rate by one unit. The intercept of the linear regression of Alzheimer's on heart disease is 1.35738. This means that we expect Alzheimer's rate to be 1.35738 units when the heart disease rate is 0 units. The coefficient of determination, R-Square, is 0.0588. This means that only 5.88% of the variability in Alzheimer's is explained by the regression model Alzheimer's on heart disease.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
	Diabetes	H0: true slope is zero (no association between diabetes and alzheimer's rate) H1: true slope is not zero (association between diabetes and alzheimer's rate)	<pre>proc reg; model alz=diabetes; run;</pre>	Note Note	The p-value, 0.2527, is greater than alpha, 0.05. Therefore, we fail to reject the null hypothesis and conclude that there is not a significant association between diabetes and Alzheimer's rate (true slope is zero). The slope of the linear regression of Alzheimer's on diabetes is -0.02239. This means that we expect Alzheimer's rate to decrease 0.02239 units if we increase diabetes rate by one unit. The intercept of the linear regression of Alzheimer's on diabetes is 1.14450. This means that we expect Alzheimer's rate to be 1.4450 units when the diabetes rate is 0 units.
					The coefficient of determination, R-Square, is 0.0058. This means that only 0.58% of the variability in Alzheimer's is explained by the regression model Alzheimer's on diabetes.
Matthew	Mercury	H0: β1 = 0 No statistically significant relationship exists between mercury levels and Alzheimer's HA: β1 ≠ 0 A relationship does exist between the two.	proc reg data=group4data; model alz=Mercury_TPY/ lackfit; run;	Analysis of Variance Source DF Square Square Square P Value Pr > F	The p-value is 0.087. Using a significance level of 0.05, we would not reject the null hypothesis of a zero slope, and conclude that there is not a statistically significant association between mercury and alz. The r-square value was 0.0130, which tells us that only 1.3% of the observed alz observations in the regression model can be explained by the coexistence of mercury pollutants, even if no direct association exists.
McGehee	Lead	H0: β1 = 0 No statistically significant relationship exists between lead levels and Alzheimer's HA: β1 ≠ 0 A relationship does exist	proc reg data=group4data; model alz=Lead_TPY/ lackfit; run;	Analysis of Variance Source DF Square Square Square F Value Pr > F	The p-value is 0.0156. Using a significance level of 0.05, we would reject the null hypothesis of a zero slope, and conclude that there is a statistically significant association between lead and alz. The r-square value was 0.0258, which tells us that only 2.58% of the observed alz observations in the regression model can be explained by the lead.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
Pamela Mishaw	Mental Distress		proc reg; model alz=mental_distres s/lackfit; run;	Analysis of Variance	The F-value for the linear regression model is 7.28 and is statistically significant since the p-value is relatively small (0.0075) which suggests that we reject the null hypothesis and conclude that there is a significant relationship between the mental distress level and Alzheimer's rate. The R-Square value (coefficient of determination) is not close to 1.0 at a value of 0.0315 which indicates that very little (about 3.15%) of the variation in Alzheimer's disease rates is influenced by mental distress level The intercept indicates that at a mental distress level of zero, the Alzheimer's rate is 1.66957. The p-value is <0.0001 which suggests this is significant. The slope value indicates that as the mental distress level increases by one unit, the rate of Alzheimer's disease decreases by 0.06268. The p-value is 0.0075 so this parameter is statistically significant. The MSE is small (0.43448) which suggests a spread of data that follows the model relatively well though the data points on the fit plot visually do not seem to fit the linear regression model closely.

Name	Var	Hypothese	SAS Code	SAS Output	Conclusion
	% Bachelor Degree	H ₀ : β1 = 0; there is no association between the percentage of those holding a bachelor's degree and Alzheimer's disease rate. H _Δ : β1 ≠ 0; there is an association between the percentage of those holding a bachelor's degree and Alzheimer's disease rate.	proc reg; model alz=Percent_with _Bachelors/lackfi t; run;	National Parameter Nation	The F-value for the linear regression model is relatively small (2.55) and is not statistically significant since the p-value is relatively large (0.1120) which suggests that we fail to reject the null hypothesis and conclude that there isn't a significant relationship between the percentage of those who have earned a bachelor's degree and Alzheimer's rate. The R-Square value (coefficient of determination) is not close to 1.0 at a value of 0.0112 which indicates that very little (about 1.12%) of the variation in Alzheimer's disease rates is influenced by the percentage of those with a bachelor's degree. The intercept indicates that at a bachelor's degree percentage of zero, the Alzheimer's rate is 0.83914. The p-value is <0.0001 which suggests this is significant. The slope value indicates that as the percentage of bachelor's degree holders increases by one unit, the rate of Alzheimer's disease increases by 0.00482. The p-value is 0.112 so this parameter is not statistically significant. The MSE is small (0.19272) which suggests a spread of data that follows the model relatively well though the data points on the fit plot visually do not seem to fit the linear regression model closely.
Prince Nhliziyo	Smoking	H ₀ : A significant relationship does not exist between alz and smoking rate. H _A : A significant relationship exists between alz and smoking rate.	proc reg; model alz=smoking/ lackfit; run;	Analysis of Variance	The p-value is 0.0005 which means that we reject the null hypothesis (based on a significance level of 0.05) and conclude that there is a relationship between alzheimer's disease and smoking rate. The coefficient of determination (R-square) is 0.0523 which indicates that only 5.23% of the variation in alzheimer's disease can be explained by smoking rate.

Name	Var	Hypothese	SAS Code	SAS Output Conclusion
	Inactivity	H ₀ : A significant relationship does not exist between alz and physical inactivity. H _A : A significant relationship exists between alz and physical inactivity.	proc reg; model alz=physical/ lackfit; run;	Source DF Square Square F Value Pr > F Model 1 3.25024 3.25024 18.02 < 0001 Error 224 40.40901 0.18040 Lack of Fit 201 33.61813 0.16725 0.57 0.9795 Pure Error 23 6.79087 0.29526 Corrected Total 225 43.65924 Root MSE 0.42473 R-Square 0.0744 Dependent Mean 0.95241 Adj R-Sq 0.0703 Coeff Var 44.59560 Parameter Estimates Variable DF Parameter Standard Error t Value Pr > t Intercept 1 1.51755 0.13611 11.15 < 0.001 physical 1 -0.02550 0.00601 -4.24 < 0.0011 The p-value is <0.001 which means that we reject the null hypothesis (based on a significance level of 0.05) and conclude that there is a relationship between alzheimer's disease and physical inactivity. The coefficient of determination (R-square) is 0.0703 which indicates that only 7.03% of the variation in alzheimer's disease can be explained by physical inactivity.

12. What can we conclude on the basis of the data that (variable 1) or (variable 2) come from different samples (Test for Homogeneity)?

Name	Var	Hypotheses	SAS Code	SAS	Οι	tput	t					Conclusion							
Brad Lipson	Cancer	H ₀ : The distribution of cancer rate is the same for the states of CA,FL, NY and WA. H _A : The distribution of cancer rate differs for the states of CA, FL, NY, WA.	proc univariate; var cancer; run; if cancer le 158.428 then can=1; if cancer gt 158.429 and cancer le 171.542 then can=2; if cancer gt 171.543 and cancer le 184.359 then can=3; if cancer gt 184.36 then can=4;	state CA FL NY WA	2 2 14.2 13.26 14.2 13.26 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	1 2 3 188 188 188 188 188 188 188 188 188 1	can 3 5 14.25 6.0044 7 8.93 12 16.75 1.347 15.26 17.91 14.286 13.39 9 9.057 4.02 23.877 4.02 24.87 24.87 25.08 26.08 27.87 27.88 27	29 18.75 8.969 12.95 43.28 51.79 12 15.25 0.8928 5.38 19.87 21.43 9 9.75 0.0577 4.02 23.08 18.07	Total 57 25.45 67 29.91 61 27.23 39 17.41 100.00			The table shows that California and Florida had the highest number of cancer cases, followed by New York and Washington. The results show that there is a significant relationship between state and cancer and the distribution varies by state Therefore, we would have to conclude that the levels of Cancer are not homogenous across the four states at significance level 0.05.							
				Sta	tistic				DF	Value	Prob								
				Chi	-Squ	a re			9	59.3539	<.0001								
				Lik	eliho	od Rat	io Chi	-S qua	ne 9	55.9802	<.0001								
				Ma	nte I-l	lae ns z	el Chi	-Squa	re 1	10.2368	0.0014								
											Phi	Coe	ficie n				0.5148		
						ency C	oe ffici	ent		0.4577									
				Cra	mer	s V				0.2972									

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
	Obesity	H _o : The distribution of obesity rate is the same for the states of CA,FL, NY and WA H _A : The distribution of obesity rate differs for the states of CA, FL, NY, WA.	proc univariate; var obesity run; if obesity le 18.56 then ob=1; if obesity gl 18.56 and obesity le 22.42 then ob=2; if obesity gt 22.42 and obesity le 24.88 then ob=3; if obesity gt 24.88 then ob=4;	Table of state by observed Table of state by observed Table Ta	The results show that there is a significant relationship between state and obesity and the distribution of obesity varies by state. In California, there are more people in the Q1 and Q4 quartiles than in the Q2 and Q3 quartiles. In Florida, there are more people in the Q2 and Q3 quartiles. In New York, there are more people in the Q1 and Q4 quartiles. In New York, there are more people in the Q1 and Q3 quartiles than in the Q2 quartile. And in Washington, there are more people in the Q1 and Q3 quartile than in the Q1 and Q3 quartile that in the Q1 and Q3 quartiles. These results suggest that there may be some factors that are unique to each state that are influencing the distribution of obesity. Therefore, we would have to conclude that the levels of obesity are not homogenous across the four states at significance level 0.05.

Name	Var	Hypotheses	SAS Code	SAS Output	Conclusion
Mary	Heart Disease	H0: Distribution for heart disease is the same for each state. H1: Distribution for heart disease is not the same for each state.	proc univariate; var heart; run; if heart le 99.8 then HD = 1; if heart gt 99.8 and heart le 116.1 then HD = 2; if heart gt 116.1 and heart le 136.3 then HD = 3; if heart gt 136.3 then HD = 4; proc freq; table state*HD/chi sq cellchi2 expected; run;	Frequency Expected Cell Chi-Square Percent Row Pct Col Pct CA 20 18 12 8 58 14 (628 14.372 14 628 14.29 13.50 32.14 21.05 14.29 14.29 FL	The p-value, <.0001, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that the distribution for heart disease is not the same for each state. There are two main take-aways from the output of SAS: 1. Washington (WA) had the highest percentage (51.28%) for the lowest heart disease rate. 2. New York (NY) had the highest percentage (45.16%) for the highest heart disease rate.
Morrow	Diabetes	H0: Distribution for diabetes is the same for each state. H1: Distribution for diabetes is not the same for each state.	proc univariate; var diabetes; run; if diabetes le 7.58 then DIA = 1; if diabetes gt 7.58 and heart le 8.36 then DIA = 2; if diabetes gt 8.36 and heart le 9.20 then DIA = 3; if diabetes gt 9.20 then DIA = 4; proc freq; table state*DIA/ch isq cellchi2 expected; run;	Frequency Expected Cell Chi-Square Percent Row Pet Col Pct	The p-value, <.0001, is less than alpha, 0.05. Therefore, we reject the null hypothesis and conclude that the distribution for diabetes is not the same for each state. There are two main take-aways from the output of SAS: 3. California (CA) had the highest percentage (56.90%) for the lowest diabetes rate. 4. Florida (NY) had the highest percentage (64.18%) for the highest diabetes rate.

Name	Var	Hypotheses	SAS Code	SAS	Outpu	ıt						Conclusion
	Mercury across all	H ₀ : Mercury levels are evenly	proc univariate; var Mercury TPY;	Freque Expect			Tal	ole of sta	te by Mer	cury		At significance level 0.05, we would have to conclude that
	4 states	distributed	run;		ii-Square	١			Mercury			the levels of mercury are not
	l states	between FL, CA,	,	Row Po	ct	cA	Q1 10	Q2 10	Q3 19	Q4 19	Total 58	homogenous across the four
		NY, and WA	if mercury_tpy le	Corpo			14.628 1.4644	14.372 1.3298	14.628 1.3065	14.372 1.4905		states.
			0.001903 then				4.42 17.24	4.42 17.24	8.41 32.76	8.41 32.76	25.66	
		H _A : Mercury levels	Mercury='Q1';				17.54	17.86	33.33	33.93		The true standout from the
		are not evenly distributed	if mercury_tpy gt 0.001903 and			FL	21 16.898	15 16.602	13 16.898	18 16.602	67	group was Washington, where 48.72% percent of the counties
		between FL, CA,	mercury_tpy le				0.9956 9.29	0.1545 6.64	0.8993 5.75	0.1178 7.98	29.65	reported in the lowest
		NY, and WA	0.004622 then				31.34 36.84	22.39 26.79	19.40 22.81	26.87 32.14		quartile. Of the four states,
			Mercury='Q2';			NY	7	24	14	17	62	California had the highest
			if mercury_tpy gt				15.637 4.7707	15.363 4.8559	15.637 0.1714	15.363 0.1745		percentage of counties
			0.004622 and				3.10 11.29	10.62 38.71	6.19 22.58	7.52 27.42	27.43	reporting in the top quartile.
			mercury_tpy le 0.019052 then				12.28	42.86	24.56	30.36		Altogether, over 65% of California's counties reported
			Mercury='Q3';			WA	9.8363	9.6637	9.8363	9.6637	39	higher than median levels.
			if mercury_tpy gt				8.5371 8.41	0.7342 3.10	0.1377 4.87	6.0776 0.88	17.26	-
			0.019052 then				48.72 33.33	17.95 12.50	28.21 19.30	5.13 3.57		
			Mercury='Q4';			Total	57 25.22	56 24.78	57 25.22	56 24.78	226 100.00	
			proc freq;				20.22	21.70	20.22	21.70	100.00	
			table state*Mercury/c		St	tatistics	for Table o	of state b	y Mercury			
			hisq cellchi2		Statistic			DF	Value	Prob		
			expected;		Chi-Squa		Chi-Square		33.2176	0.0001		
			run;				Chi-Square		35.0289 9.6555	<.0001		
					Phi Coeff	icient			0.3834			
Matthau					Continge Cramer's		fficient		0.3580			
Matthew					Cramers	V			0.2213			
McGehee	Lead across all	H ₀ : Lead levels are evenly	<pre>proc univariate; var Lead_TPY;</pre>	_			_					At significance level 0.05, we would have to conclude that
	4 states	distributed	run;	Freque Expect	ed		Т.	able of s	tate by Le Lead	ad		the levels of lead are not
		between FL, CA,		Percen		state	Q1	Q2	Q3	Q4	Total	homogenous across the four
		NY, and WA	if lead_tpy le	Col Pct		CA	5 14.885	15 14.372	14 14.372	24 14.372	58	states.
		<u>H</u> ₄: Lead levels	0.064255 then Lead='Q1':				6.5645 2.21	0.0275	0.0096	6.4505	25.66	However, looking at the table,
		are not evenly	if lead_tpy gt				8.62	25.86	24.14	41.38	25.00	we can see that California had
		distributed	0.064255 and			FL	8.62	26.79	25.00 20	42.86	67	41.38% of its sampled data in
		between FL, CA,	lead_tpy le				17.195 1.96	16.602 6.7702	16.602 0.6956	16.602 0.1178		the top quartile. Contrast that
		NY, and WA	0.175143 then Lead='Q2';				10.18 34.33	2.65 8.96	8.85 29.85	7.98 26.87	29.65	with Washington, where only 12.82% of the data accounted
			if lead_tpy gt				39.66	10.71	35.71	32.14		for high mortality rates. Most
			0.175143 and			NY		21 15.363			62	interesting was New York,
			lead_tpy le				2.3297 9.73	2.0685 9.29	1.872 4.42	2.6353 3.98	27.43	where 69.35% of the sample
			0.373396 then				35.48 37.93	33.87 37.50	16.13 17.86	14.52 16.07		exhibited levels in the bottom
			Lead='Q3'; if lead_tpy gt			WA	8 10.009	14 9.6637	12 9.6637	5 9.6637	39	half of the quartiles.
			0.373396 then				0.4032	1.9458	0.5648	2.2507	17.26	
			Lead='Q4';				20.51	35.90 25.00	30.77 21.43	12.82	17.20	
			proc freg;			Total	58	56	56	56	226	
			table				25.66	24.78	24.78	24.78	100.00	
			state*Lead/chisq			Statistics	s for Table	of state	by Lead			
			cellchi2			_1223110	.o. rable		-	Peck		
			expected;		Statistic Chi-Squa	re		DF 9	Value 36.6657	<.0001		
	<u> </u>		run;		- oquu							

Name	Var	Hypotheses	SAS Code	SAS Outpu	ıt						Conclusion
	Alzheime r's related mortality rates across FI, CA, WA, and NY	H ₀ :Alzheimer's related mortality rates are evenly distributed between FL, CA, NY, and WA H _A : Alzheimer's related mortality rates are not evenly distributed between FL, CA, NY, and WA	if alz le 0.583049 then Alzheimers='Q1'; if alz gt 0.583049 and alz le 0.847226 then Alzheimers='Q2'; if alz gt 0.847226 and alz le 1.245887 then Alzheimers='Q3'; if alz gt 1.245887 then Alzheimers='Q4';	Frequency Expected Cell Chi-Square Percent Row Pct Col Pct	state CA FL NY WA	Q1 10 14.628 1.4644 4.42 17.54 21 16.898 0.9956 0.9956 31.3468 10.18 37.10 37.10 40.35 39.8363 4.7513 1.33 7.699 5.26	92 9 14.372 2.0078 3.98 15.52 16.07 22 16.602 1.7553 32.84 39.29 22 15.363 2.8674 9.73 35.48 39.29 3 9.8637 4.595 1.33 7.69 9.536	Alzheimer Q3 17 14.628 0.3845 7.52 29.31 29.82 17 16.898 0.0006 7.52 25.37 29.82 11 9.8363 21.05 11 9.8363 0.1377 4.87 28.21 11 9.30	\$ Q4 122 14.372 4.049 1.040 1.	Total 58 25.66 67 29.65 62 27.43 39 17.26 226 100.00	At significance level 0.05, we would have to conclude that Alzheimer's related mortalities from individuals over the age of 65 are not homogenous across the four states. From the table, we can see that Washington, unfortunately, had the highest, at 56.41% of the counties reporting levels in the top 25% range. Only 15.38 % of the counties reported mortality rates in the lower 50%. Fortunately, for Florida, only 10.45% of the counties reported rates in the top 25%.
				Statistic Chi-Squa		or Table o	f state by DF	Value 55.6128	Prob <.0001		
Pamela Mishaw	Mental Distress	H ₀ : The distribution of mental distress level is equal in CA, FL, NY, and WA. H _A : The distribution of mental distress level is not equal in CA, FL, NY, and WA.	if mental_distress le 10 then m=1; if mental_distress gt 10 and mental_distress le 11 then m=2; if mental_distress gt 11 and mental_distress le 12 then m=3; if mental_distress gt 12 then m=4;	Frequency Expected Cell Chi-Square Percent Row Pct Col Pct	state CA FL NY WA Total	1 14 12.832 0.1063 6.19 24.14 28.00 1 14.823 12.89 0.44 1.49 2.00 26 13.717 10.999 11.50 41.94 52.00 9 8.6283 0.016 3.98 23.08 18.00 50 22.12	0.2551 7.96 31.03 22.78 13 23.42 4.6363 5.75 19.40 16.46 30 21.673 3.1997 13.27 48.39 37.97 18 13.633 1.3991 7.96 46.15 22.78	m 3 12 13.345 0.1356 5.31 20.69 23.08 26 15.416 7.2667 11.50 38.81 50.00 5 14.265 6.018 2.21 8.06 9.62 9 8.9735 0.0001 3.98 23.08 17.31 52 23.01	4 11.549 0.5203 6.19 24.14 31.11 27 13.341 11.985 11.95 60.00 1 12.345 10.426 0.44 1.61 2.22 2.7 2.7 4.5 10.426 10	Total 58 25.66 67 29.65 62 27.43 39 17.26 226 100.00	Since the p-value of the Chi-Square statistic is a small number (<0.0001) and less than the significance level of 0.05, we reject the null hypothesis and conclude that the distribution of mental distress levels is not equal among CA, FL, NY, and WA. Florida's distribution shows the highest percentage in the highest percentile group while New York shows a higher percentage in the lowest percentile group. This indicates higher rates of mental distress in Florida and lowest rates in New York in comparison to the other states analyzed. California's distribution is relatively similar among the four groups while Washington's seems to be concentrated in the second lowest quartile.
			run;	Statistic Chi-Square	tistics	tor lat	DI		lue	Prob	

Name	Var	Hypotheses	SAS Code	SAS Outpu	ıt						Conclusion
	% Bachelor Degree	H ₀ : The distribution of the percentage of	if Percent_with_Ba chelors le 16.5	Frequency Expected Cell Chi-Square Percent	state	1	Table of	state by	p 4	Total	Since the p-value of the Chi-Square statistic is a small number (0.0053) and less than
		those who hold a bachelor's degree is equal in CA, FL, NY, and WA.	then p=1; if Percent_with_Ba chelors gt 16.5 and Percent with Ba	Row Pct Col Pct	CA	14	14 14.372	10	20 14.115 2.4536 8.85 34.48 36.36	58	the significance level of 0.05, we reject the null hypothesis and conclude that the distribution of the percentage of those with a bachelor's degree is not equal among CA,
		distribution of the percentage of those who hold a bachelor's degree is not equal in CA,	chelors le 21.3 then p=2; if Percent_with_Ba chelors gt 21.3		FL	28 17.195	12	17 16.898 0.0006 7.52 25.37 29.82	10 16.305		FL, NY, and WA. Florida has the highest percentage (48.28%) of counties with the lowest
		FL, NY, and WA.	and Percent_with_Ba chelors le 29.7 then p=3; if		NY	6 15.912 6.174 2.65 9.68 10.34	20 15.363 1.3997 8.85 32.26 35.71	19 15.637 0.7232 8.41 30.65 33.33	17 15.088 0.2422 7.52 27.42 30.91		(<25%) quartile of percentage of those who hold bachelor's degrees while California has the highest percentage (36.6%) of counties with the highest
			Percent_with_Ba chelors gt 29.7 then p=4;		WA		10 9.6637 0.0117 4.42 25.64 17.86	9.8363 0.1377 4.87 28.21 19.30		39 17.26	(>75%) quartile of percentage of those who hold bachelor's degrees. So, Florida seems to have the higher rates of lesser formally educated people
					Total	58 25.66	56 24.78	57 25.22	55 24.34	226 100.00	while California has the relatively greatest rates compared to the other states
			proc freq; table state*p/chisq	Stat	istics	for Tab	le of s	tate by	p		analyzed. Washington's distribution of those with bachelor's degrees seems to
			cellchi2 expected; run;	Statistic Chi-Square			DI	F V a	onlue 1075 0	Prob 0.0053	be relatively similar among the percentile groups while New York has higher concentrations
			,								in the moderately educated groups.

Name	Var	Hypotheses	SAS Code	SAS Outpu	ıt						Conclusion
Prince Nhliziyo	Smoking	H ₀ : The distribution of smoking rate is the same for the states of CA,FL, NY and WA. H _A : The distribution of smoking rate differs for the states of CA, FL, NY, WA.	if smoking le 18.86 then smk = 1; if smoking gt 18.86 and smoking le 22.14 then smk = 2; if smoking gt 22.14 and smoking le 24.86 then smk = 3; if smoking gt 24.86 then smk = 4; proc freq; table state*smk/ chisq cellchi2 expected; run;	Frequency Expected Cell Chi-Square Percent Row Pct Col Pct	state CA FL NY	1 32 14.628 20.63 14.16 55.17 56.14 4 16.898 9.8451 1.77 5.97 7.02 11 15.637 1.3751 4.87 17.74 19.30	2 14 14.372 0.0096 6.19 24.14 25.00 7 16.602 5.5533 3.10 10.45 12.50 19 15.363 0.8611 8.41 30.65 33.93	0.0477 7.08 23.88 28.07 25 15.637	4 2 14.372 10.65 0.88 3.45 3.57 40 16.602 32.977 17.70 59.70 71.43 7 15.363 3.10 11.29 12.50	Total 58 25.66 67 29.65 62 27.43	The p-value is <0.001 which means that we reject the null hypothesis (based on significance level 0.05) and conclude that the distribution of smoking rate differs among the states of CA, FL, NY, and WA. CA had the highest percentage (55.17%) of counties in the first quartile of smoking rate. FL had the highest percentage (59.70%) of countries in the 4th quartile of smoking rate.
				Statistic Chi-Square		25.64 17.54 57 25.22 for Table	41.03 28.57 56 24.78 e of state	15.38 10.53 57 25.22	17.95 12.50 56 24.78	226 100.00	

Name	Var	Hypotheses	SAS Code	SAS Outpu	ıt						Conclusion
	Physical Inactivity	H ₀ : The distribution of physical inactivity is the same for	if physical le 18.56 then phy = 1;	Frequency Expected Cell Chi-Square Percent Row Pct	state	1	2	phy	4	Total	The p-value is <0.001 which means that we reject the null hypothesis (based on significance level 0.05) and
		the states of CA,FL, NY and WA.	if physical gt 18.56 and physical le 22.42 then phy = 2; if physical gt	Col Pct	CA			1 14.628 12.697 0.44 1.72 1.75	0 14.372 14.372 0.00 0.00 0.00	58 25.66	conclude that the distribution of physical inactivity differs among the states of CA, FL, NY, and WA.
		H _A : The distribution of physical inactivity differs for the	22.42 and physical le 24.88 then phy = 3; if physical gt 24.88 then phy =		FL	3 16.898 11.431 1.33 4.48 5.26	9 16.602 3.4808 3.98 13.43 16.07	19 16.898 0.2614 8.41 28.36 33.33	36 16.602 22.666 15.93 53.73 64.29	29.65	 CA had the highest percentage (68.97%) of counties in the first quartile of physical
		states of CA, FL, NY, WA.	proc freq; table state*phy/ chisq cellchi2		NY	1 15.637 13.701 0.44 1.61 1.75	13 15.363 0.3634 5.75 20.97 23.21	31 15.637 15.093 13.72 50.00 54.39	17 15.363 0.1745 7.52 27.42 30.36	62 27.43	inactivity. FL had the highest percentage (53.73%) of states in the fourth quartile of physical
			expected; run;		WA	13 9.8363 1.0176 5.75 33.33 22.81	17 9.6637 5.5694 7.52 43.59 30.36	6 9.8363 1.4962 2.65 15.38 10.53	3 9.6637 4.595 1.33 7.69 5.36	39 17.26	inactivity. CA had no counties in the fourth quartile of physical inactivity.
					Total	57 25.22	56 24.78	57 25.22	56 24.78	226 100.00	
				St	atistics	for Table	e of state	e by phy			
				Statistic			DF	Value	Prol	b	
				Chi-Square			9	151.403	<.000	1	

13. Give a summary statement

Name	Var	Conclusion
	Cancer	
Brad		The cancer data for the four states of California, Florida, New York, and Washington has a distribution that is not normal. Also, they have at least one distinct mean as well as being statistically significant. Furthermore, it has a positive correlation with obesity, and at least one state has a distinct variance from the others. This means that some states have higher cancer rates than others.
Lipson	Obesity	The obesity data for the four states of California, Florida, New York, and Washington is not normally distributed. This suggests that the data is not evenly distributed and may be skewed or have outliers. Additionally, the data has at least one mean that is different from the others, meaning that the average obesity rates for the four states are not the same. Furthermore, the data has a significant and positive correlation with cancer, meaning that there is a positive relationship between obesity and cancer rates. Finally, at least one state has a different variance than the others, meaning that the spread of obesity rates is not the same for all four states
Mary	Heart Disease	The heart disease data for the four states chosen (CA, FL, NY, and WA) is not normally distributed, has at least one mean that is different, has a significant and positive correlation with diabetes, and that at least one state has a different variance than the others. When performing a linear regression of Alzheimer's rate on heart disease rate, we find that there is a significant association between the two and that 5.88% of the variability in Alzheimer's rate is explained by the model. When testing for homogeneity for heart disease, we found that the distribution is not the same for each state, Washington had the highest percentage for the lowest heart disease rate, and New York had the highest percentage for the highest heart disease rate.
Morrow	Diabetes	The diabetes data for the four states chosen (CA, FL, NY, and WA) is not normally distributed, has at least one mean that is different, has a significant and positive correlation with heart disease, and that at least one state has a different variance than the others. When performing a linear regression of Alzheimer's rate on diabetes rate, we find that there is not a significant association between the two and that 0.58% of the variability in Alzheimer's rate is explained by the model. When testing for homogeneity for diabetes, we found that the distribution is not the same for each state, California had the highest percentage for the lowest diabetes rate, and Florida had the highest percentage for the highest diabetes rate.
Matthew	Mercury	The mercury data measured in tons per year for the four states chosen (CA, FL, NY, and WA) is not normally distributed. If we consider an alpha of 0.05 for each test, we would conclude that at least one of the state's mean was significantly different, that mercury levels have a significant and positive correlation with lead, and that at least one state has a different variance than the others. Furthermore, the test for homogeneity shows us that the levels were not evenly distributed across the four states.
McGehee	Lead	The lead data measured in tons per year for the four states chosen (CA, FL, NY, and WA) is not normally distributed. If we consider an alpha of 0.05 for each test, we would conclude that at least one of the state's mean was significantly different, that lead levels have a significant and positive correlation with mercury, and that at least one state has a different variance than the others. Furthermore, the test for homogeneity shows us that the levels were not evenly distributed across the four states.

Var	Conclusion
Mental Distress	The data on mental distress levels are not normally distributed according to the results of the Shapiro Wilk test. At significance level 0.05, it was found that at least two of the state means of mental distress levels differ significantly. Mental distress and the percentage of the population that hold bachelor's degrees are strongly negatively correlated. At least two of the states have differing variances in mental distress level. Notably, Florida was found to have a significantly different mean from the other states. A simple linear regression model found that there is not a statistically significant influence of mental distress on Alzheimer's death rates. The Chi Square homogeneity test results suggest that Florida has the highest concentration of higher mental distress scores than the other states analyzed while New York appeared to have the lowest.
% Bachelor Degree	The data on the percentages of those with bachelor's degrees are not normally distributed according to the results of the Shapiro Wilk test. At significance level 0.05, it was found that at least two of the state means of percentages of those with bachelor's degrees differ significantly. Mental distress and the percentage of the population that hold bachelor's degrees are strongly negatively correlated. All of the states have statistically the same variances in percentages of those with bachelor's degrees. Notably, Florida was found to have a significantly different mean from the other states. A simple linear regression model found that there is not a statistically significant influence of the percentage of those with a bachelor's degree on Alzheimer's death rates. The Chi Square homogeneity test results suggest that Florida has the highest percentage of counties in the lowest quartile of percentage of those with a bachelor's degree while California had the highest percentage of counties in the highest quartile in comparison to the other states included in the analysis.
Smoking	The data on the four states was not normally distributed based on the results of the Shapiro-Wilks test. Based on the ANOVA tests, we concluded that at least one mean is significantly different for alpha levels 0.1 and 0.01. There is a strong positive correlation between smoking rate and physical inactivity. Based on the Brown-Forsythe test, we concluded that there was not enough evidence to suggest that at least two state variances were not equal. Based on the results of the linear regression model, there is enough evidence to suggest that alzheimer's is influenced by smoking rate. The test for homogeneity showed that the distribution of smoking rate differed among the states of CA, FL, NY, and WA. The data on the four states was not normally distributed based on the results of the Shapiro-Wilks test. Based on the ANOVA tests, we concluded that at least one mean is significantly different for alpha levels 0.1 and 0.01. There is a strong positive correlation between smoking rate and physical inactivity. Based on the Brown-Forsythe test, we concluded that at least two state variances were not equal. Based on the results of the linear regression model, there is enough evidence to suggest that alzheimer's is influenced by physical inactivity. The test for homogeneity showed that the distribution
	% Bachelor Degree

Our Shared Dataset:

alz4full.xlsx (shared under sheets - I just removed the first column of county names)

https://docs.google.com/spreadsheets/d/1pGyqof0WVoqUON6dcLPk aFjqHtxVZNFdJ9LgpzjjK2s/edit#gid=98690290

Initial Code (to set up data table in SAS on-demand):

FILENAME REFFILE '/home/u63032368/sasuser.v94/alz4full.xlsx';

PROC IMPORT DATAFILE=REFFILE DBMS=XLSX OUT=WORK.IMPORT5;

GETNAMES=YES;

RUN;

PROC CONTENTS DATA=WORK.IMPORT5;

RUN;

%web_open_table(WORK.IMPORT5);