Modellierung eines verallgemeinterten SEIR-Modells mit prävalenzabhängigen Kontaktraten

Mansur Daschaew, Janina Rastetter und Maren Raus

14. Februar 2022

- SEIR-Modell
 - ODEs
 - Simulation
- Simulation eines Lockdowns
 - Auswirkungen auf den Epidemieverlauf
 - mehrstufiger Lockdown
 - Lockdown anhand von Fallzahlen
- Fallbeispiel Xi'an
 - Vorgehen
 - Daten
 - Parameter
 - Schätzung von δ
 - Anfangswerte
 - Simulationen

Differentialgleichungen

SEIR-Modell:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dE}{dt} = \beta \frac{SI}{N} - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \gamma I - \delta I$$

$$\frac{dD}{dt} = \delta I - \gamma D$$

$$\frac{dR}{dt} = \gamma I + \gamma D$$

Parameter

Übergangsrate α : Transmissionsrate β :

Kehrwert der mittlere Latenzzeit Übertragungen pro S-I Kontakt pro Zeit

Erholungsrate γ :

Kehrwert der mittleren infektiösen Zeit

Testrate δ :

Testrate für positive Individuen

imes Rate der positiven Testergebnisse

Schätzung für Transmissionsrate (zu Beginn der Epidemie):

$$\beta = \frac{R_0}{\gamma}$$

 $(R_0 \text{ Reproduktionszahl})$

Simulation

Startwerte:

- Populationsgröße N
- S = N-1, I = 1, E = R = 0

Simulation eines Lockdowns

Simulation eines Lockdowns

- Kontaktrate verändert sich nicht kontinuierlich, sondern abrupt
- Zeitpunkt ist von der Inzidenz abhängig
- Bedingung an β : $\beta(t)=\begin{cases} \phi\beta_0 \text{ falls } I(t)>\tau N\\ \beta_0 \text{ sonst} \end{cases}$, wobei $\phi\in(0,1)$ und $\tau\in(0,1)$

Auswirkungen auf den Epidemieverlauf

mehrstufiger Lockdown

Lockdown anhand von tatsächlichen Fallzahlen

- Einsetzen der Reduktion der Kontaktrate nach Werten von D(t) (detected)
- niedrigere Werte, kleinere Schranke

(a) Fallzahlen (detected cases D) mit Schranke D(t) > 0.01N

(b) Epidemieverlauf

Diskussion

- Schranke τN muss passend gewählt werden
- Zeitspanne zwischen Beginn des Lockdown und Peak

Fallbeispiel Xi'an

China...

strikte Null-Covid-Strategie in der Coronapandemie

Number of Daily Cases

Data Sources: Cases and deaths data from JHU CSSE; testing and vaccine data from JHU CCI; and hospitalization data from the U.S. Department of Health and Human Services.

China...

strikte Null-Covid-Strategie in der Coronapandemie
 ⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an

China...

- strikte Null-Covid-Strategie in der Coronapandemie
 - ⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an
 - ⇒ reale Daten

China...

- strikte Null-Covid-Strategie in der Coronapandemie
 - ⇒ aktuelles Beispiel: Lockdown in der chinesischen Stadt Xi'an
 - \Rightarrow reale Daten
- Impfquote von 87.88%, aber bei verwendeter Vakzine kaum Schutz vor Delta
 - ⇒ Annahme: nicht immunisierte Bevölkerung

Vorgehen

- Recherche (Daten zur Infektionslage in Xi'an und zur Deltavariante)
- Berechnung der Parameter
- **Schätzung des Parameters** δ (verantwortlich für die Identifikation infizierter Individuen)
- Berechnung der Anfangswerte
- Simulation verschiedener Szenerien mit dem Ziel, die Epidemie möglichst schnell ohne Durchseuchung stoppen

Dünne Datenlage

- 9. Dezember 2021: erster Fall
- In den Folgetagen: steigende Infektionszahlen
- 22. Dezember 2021 (+ 13 Tage): 63 Fälle
- 23. Dezember 2021: Lockdown
- 28. Dezember 2021 (+ 19 Tage): 175 Fälle
- 24. Januar 2022: Ende des Lockdowns (nach 32 Tagen), insgesamt ca.
 2000 Fälle

Parameter

- R-Wert ≈ 5.5
- $\alpha=1/2$ (mittlere Inkubationszeit ≈ 4 , ansteckend etwa zwei Tag vor Auftreten von Symptomen)
- $\gamma = 1/12$
- $\beta \approx \gamma \cdot R = 5.5/12 = 0.468$
- $\phi \approx \gamma/\beta = 1/5.5$

Beobachtung: Schlechter Fit mit recherchierten Werten

Konsequenz: Erlaube Abweichungen $\Rightarrow \delta = 0.01$

Fallzahlen nach Teststrategie und -qualität

Anfangswerte (gerundet)

- t = 36
- S = 12996450
- E = 1097
- I = 1731
- D = 56
- R = 666

Verlauf ohne Intervention

Verlauf ohne Intervention

Tabelle: Verlauf ohne Intervention

Kompartment	Maximum	Zeitpunkt des Maximums	
I	5076922	80	
E	1437318	74	
D	433135.2	89	

- Verbleibende S: 99439.98 (0.7649229%)
 - \Rightarrow Durchseuchung
- Schritte, bis E und I kleiner 1: 260 (ca. 9 Monate)

Erhöhung der Testungen

Tabelle: Verlauf mit verstärktem Testen

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{\it ur} \cdot 2^1$	1.252596	212 (+ 36)
$\delta_{\it ur} \cdot 2^2$	2.687945	196 (+ 36)
$\delta_{\it ur} \cdot 2^3$	7.447852	186 (+ 36)
$\delta_{\it ur} \cdot 2^4$	23.80182	211 (+ 36)
$\delta_{\it ur} \cdot 2^5$	76.87228	589 (+ 36)
$\delta_{\it ur} \cdot 2^6$	99.93514	60 (+ 36)

- \Rightarrow Erst ab einer Steigerung der Testeffizienz um Faktor 2^5 ist eine Eindämmung der Epidemie möglich
- \Rightarrow Bei einer Steigerung der Testeffizienz um Faktor 2^6 müssten "nur" zwei Monate lang vermehrt getestet werden

Verlauf mit verstärktem Testen: $\delta = 0.64$

Verlauf mit verstärktem Testen: $\delta = 0.64$

Tabelle: Verlauf mit verstärktem Testen: $\delta = 0.64$

Kompartment	Maximum	Zeitpunkt des Maximums
I	1731	0
E	1185.318	1
D	3016.812	9

Tabelle: Verlauf mit Kontaktreduktion

β	Verbleibende S (in %)	I und E kleiner 1, ab
$\frac{\beta_{ur} * 2^{-1}}{\beta_{ur} * 2^{-2}}$	11.3365 65.28979	338 (+ 36) 1184 (+ 36)
1/12	99.79345	898 (+ 36)

- \Rightarrow Kontaktreduktion verhindert Infektionen, zieht die Epidemie aber in die Länge
- \Rightarrow Um eine Durchseuchung zu verhindern, müssten die Kontakte etwa 2.5 Jahre lang reduziert werden

Verlauf mit Kontaktreduktion: $\beta = 1/12$

Verlauf mit Kontaktreduktion: $\beta = 1/12$

Tabelle: Verlauf mit Kontaktreduktion: $\beta = 1/12$

Kompartment	Maximum	Zeitpunkt des Maximums	
I	2288.959	5 (+36)	
E	1097	o (+36)	
D	228.0604	29 (+36)	

Erhöhung der Testungen und Kontaktreduktion: $\beta = 1/12$

Tabelle: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Verbleibende S (in %)	I und E kleiner 1, ab
$\delta_{\it ur} \cdot 2^1$	99.88242	456 (+ 36)
$\delta_{\it ur} \cdot 2^2$	99.92746	230 (+ 36)
$\delta_{\it ur} \cdot 2^3$	99.95006	117 (+ 36)
$\delta_{\it ur} \cdot 2^4$	99.96137	60 (+ 36)
$\delta_{\it ur} \cdot 2^5$	99.96703	33 (+ 36)
$\delta_{\it ur} \cdot 2^6$	99.96986	20 (+ 36)

- ⇒ Testeffizienz wirkt sich kaum auf die Anzahl der Infektionen aus, dafür aber sehr stark auf die erforderliche Dauer der Beschränkungen
- \Rightarrow Testeffizienz müsste mindestens um Faktor 2^4 gesteigert werden, um Einschränkungen auf ein bis zwei Monate zu beschränken

Verlauf mit Kontaktreduktion und verstärktem Testen: eta=1/12 und $\delta=0.32$

Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12, \delta=0.32$

Tabelle: Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12, \delta=0.32$

Kompartment	Maximum	Zeitpunkt des Maximums	
I	1731	0	
Ε	1097	O	
D	1627.685	7	

Verlauf mit Kontaktreduktion und verstärktem Testen: eta=1/12 und $\delta=0.64$

Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta = 1/12, \delta = 0.64$

Tabelle: Verlauf mit Kontaktreduktion und verstärktem Testen: $\beta=1/12, \delta=0.64$

Kompartment	Maximum	Zeitpunkt des Maximun	
I	1731	0	
E	1097	0	
D	1886.614	5	

Erhöhung der Testungen und Kontaktreduktion: $\delta=1/12$

Tabelle: Verlauf mit verstärktem Testen und Kontaktreduktion

δ	Fälle (gesamt)		
$ \frac{\delta_{ur} \cdot 2^{1}}{\delta_{ur} \cdot 2^{2}} $ $ \frac{\delta_{ur} \cdot 2^{3}}{\delta_{ur} \cdot 2^{4}} $ $ \frac{\delta_{ur} \cdot 2^{5}}{\delta_{ur} \cdot 2^{6}} $	34473.27 (+ 348.5105) 34566.07 (+ 348.5105) 34596.05 (+ 348.5105) 34584.94 (+ 348.5105) 33786.95 (+ 348.5105) 31079.05 (+ 348.5105)		
- ui –	31077103 (34013103)		

- ⇒ In Xi'an gab es insgesamt nur etwa 2000 Fälle... Fehler bei der Parameterwahl?
- ⇒ Vermutung zur Fehlerquelle: Mangel an Daten

Zusammenfassung

Tabelle: Zusammenfassung

Strategie	δ	β	Dauer	Verbleibende S (in %)
_	0.01	5.5/12	8.5 Monate	0.7649229
T	0.64	5.5/12	2 Monate	99.93514
K	0.01	1/12	2.5 Jahre	99.79345
K + T	0.32	1/12	1 Monat	99.96703
K + T	0.64	1/12	3 Wochen	99.96986