CS 2601 Linear and Convex Optimization 12. Newton's method for equality constrained problems

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Equality constrained convex QP

Newton's method

1

Equality constrained convex QP

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{g}^T \mathbf{x} + c$$
s.t. $A\mathbf{x} = \mathbf{b}$ (QP)

where $Q \in \mathbb{R}^n$, $Q \succeq O$, $A \in \mathbb{R}^{k \times n}$, rank A = k.

• The Lagrange/KKT conditions $\nabla \mathcal{L}(x^*, \lambda^*) = \mathbf{0}$ gives the KKT system of the problem,

$$\begin{cases} \nabla_{x} \mathcal{L}(x^{*}, \boldsymbol{\lambda}^{*}) = \boldsymbol{Q} x^{*} + \boldsymbol{g} + \boldsymbol{A}^{T} \boldsymbol{\lambda}^{*} = \boldsymbol{0} \\ \nabla_{\lambda} \mathcal{L}(x^{*}, \boldsymbol{\lambda}^{*}) = \boldsymbol{A} x^{*} - \boldsymbol{b} = \boldsymbol{0} \end{cases} \quad \text{or} \quad \begin{bmatrix} \boldsymbol{Q} & \boldsymbol{A}^{T} \\ \boldsymbol{A} & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}^{*} \\ \boldsymbol{\lambda}^{*} \end{bmatrix} = \begin{bmatrix} -\boldsymbol{g} \\ \boldsymbol{b} \end{bmatrix}$$

The coefficient matrix $\mathbf{K} = \begin{bmatrix} \mathbf{Q} & \mathbf{A}^T \\ \mathbf{A} & \mathbf{O} \end{bmatrix}$ is called the KKT matrix.

• Any solution to the KKT system gives an optimal solution x^* with corresponding Lagrange multiplier λ^* .

Question. When is the KKT system solvable?

Lemma.

$$\operatorname{Null}(\textit{\textbf{K}}) = \left\{ egin{bmatrix} \textit{\textbf{d}} \\ \textit{\textbf{0}} \end{bmatrix} : \textit{\textbf{d}} \in \operatorname{Null}(\textit{\textbf{A}}) \cap \operatorname{Null}(\textit{\textbf{Q}})
ight\}$$

Proof. Denote the RHS by S. It is trivial that $S \subset \operatorname{Null}(K)$. To show $\operatorname{Null}(K) \subset S$. Let $\begin{bmatrix} d \\ \lambda \end{bmatrix} \in \operatorname{Null}(K)$, i.e. $Qd + A^T\lambda = 0$, Ad = 0. Then

$$d^{T}Qd = d^{T}(-A^{T}\lambda) = -(Ad)^{T}\lambda = -\mathbf{0}^{T}\lambda = 0$$

Since $Q \succeq O$, Qd = 0¹, so $d \in \text{Null}(A) \cap \text{Null}(Q)$ and $A^T \lambda = 0$. Since A^T has full column rank, $\lambda = 0$. Thus $\text{Null}(K) \subset S$.

$$0 = \mathbf{d}^T \mathbf{Q} \mathbf{d} = \mathbf{d}^T \left(\sum_{i=1}^n \alpha_i \beta_i \mathbf{v}_i \right) = \sum_{i=1}^n \alpha_i \beta_i \mathbf{d}^T \mathbf{v}_i = \sum_{i=1}^{n-1} \alpha_i \beta_i^2 \implies \alpha_i \beta_i^2 = 0, \forall i$$

so $\alpha_i \beta_i = 0$ for all i, and $\mathbf{Qd} = \sum_{i=1}^n \alpha_i \beta_i \mathbf{v}_i = \mathbf{0}$.

¹Proof. Let v_1, \ldots, v_n be an orthonormal eigenbasis of Q and $Qv_i = \alpha_i v_i$. Note $\alpha_i \geq 0$, since $Q \succeq O$. Expand d in the eigenbasis, $d = \sum_{i=1}^n \beta_i v_i$. Then $Qd = \sum_{i=1}^n \beta_i \alpha_i v_i$.

Solution of KKT system

Let $Ax_0 = b$ and $x = x_0 + d$. The problem QP is equivalent to

$$\min_{\boldsymbol{d}} f(\boldsymbol{x}_0 + \boldsymbol{d}) = f(\boldsymbol{x}_0) + \boldsymbol{g}^T \boldsymbol{d} + \boldsymbol{x}_0^T \boldsymbol{Q} \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \boldsymbol{Q} \boldsymbol{d}$$

s.t. $A\boldsymbol{d} = \boldsymbol{0}$

If $d_0 \in \text{Null}(A) \cap \text{Null}(Q)$, then d_0 is a feasible direction along which f reduces to an affine function

$$f(\boldsymbol{x}_0 + t\boldsymbol{d}_0) = f(\boldsymbol{x}_0) + t\boldsymbol{g}^T \boldsymbol{d}_0$$

- 1. $Null(A) \cap Null(Q) = \{0\} \implies K$ nonsingular & unique solution.
- 2. $Null(A) \cap Null(Q) \neq \{0\} \implies K \text{ singular.}$
 - 2.1 $g \perp \text{Null}(A) \cap \text{Null}(Q) \implies \text{infinitely many solutions.}$
 - **2.2** $g \not\perp \text{Null}(A) \cap \text{Null}(Q) \implies \text{no solution and } f^* = -\infty.$

Note. When A = O, this reduces to the unconstrained case (cf. slide 10 of $\S 5$ part 2).

Unconstrained vs constrained problems

unique solution

 $Null(Q) \cap Null(A) = \{0\}$ unique solution

Unsolvable KKT system (case 2.2)

Example.

$$\min_{x_1, x_2} f(x_1, x_2) = \frac{1}{2}x_2^2 + x_1$$
s.t. $x_2 = 0$

The KKT system is

$$Q = diag\{0,1\}, g = (1,0)^T, A = (0,1), b = 0$$

This is a convex QP with

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \lambda \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

which has no solution, since $0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot \lambda \neq -1$.

Note $f^* = -\infty$, and $e_1 = (1,0)^T \in \text{Null}(A) \cap \text{Null}(Q)$ and $g^T e_1 \neq 0$, i.e. there is a feasible direction along which the linear term dominates.

Unsolvable KKT system (cont'd)

If the KKT system has no solution, then the problem (QP) is either infeasible (impossible when rank A = k) or unbounded below.

KKT system has no solution iff

$$\begin{bmatrix} -\mathbf{g} \\ \mathbf{b} \end{bmatrix} \notin \operatorname{Range}(\mathbf{K}) = \operatorname{Range}(\mathbf{K}^T) = \operatorname{Null}(\mathbf{K})^{\perp}$$

- There exists $\begin{bmatrix} \mathbf{v} \\ \mathbf{\lambda} \end{bmatrix} \in \text{Null}(\mathbf{K}) \text{ s.t. } \begin{bmatrix} -\mathbf{g} \\ \mathbf{b} \end{bmatrix}^T \begin{bmatrix} \mathbf{v} \\ \mathbf{\lambda} \end{bmatrix} \neq 0, \text{ i.e. } \mathbf{g}^T \mathbf{v} \neq \mathbf{b}^T \mathbf{\lambda}.$
- By the previous lemma, Av = 0, Qv = 0, $\lambda = 0$. So $g^Tv \neq 0$.
- If x_0 is feasible, then $x_0 + tv$ is feasible for any $t \in \mathbb{R}$, since Av = 0. Since Qv = 0,

$$f(\mathbf{x}_0 + t\mathbf{v}) = f(\mathbf{x}_0) + t(\mathbf{Q}\mathbf{x}_0 + \mathbf{g})^T\mathbf{v} + \frac{1}{2}t^2\mathbf{v}^T\mathbf{Q}\mathbf{v} = f(\mathbf{x}_0) + t(\mathbf{g}^T\mathbf{v})$$

which goes to $-\infty$, as $t \to -\operatorname{sgn}(\mathbf{g}^T \mathbf{v}) \cdot \infty$.

Note. Similar to slide 6, $v \in \text{Null}(A) \cap \text{Null}(Q)$ and $g^T v \neq 0$.

Nonsingularity of KKT matrix (case 1)

If the KKT matrix \mathbf{K} is nonsingular, then the KKT system has a unique solution, which is optimal.

Recall $Q \succeq O$ and rank A = k. The following conditions are equivalent

- 1. K is nonsingular
- 2. $\text{Null}(Q) \cap \text{Null}(A) = \{0\}$, i.e. Q and A have no nontrivial common nullspace, i.e. Ax = 0, Qx = 0 only have the trivial solution x = 0.
- 3. $Ax = \mathbf{0}, x \neq \mathbf{0} \implies x^T Qx > 0$, i.e. Q is positive definite on the nullspace of A.
- 4. $F^TQF \succ O$ for any $F \in \mathbb{R}^{n \times (n-k)}$ s.t. Range(F) = Null(A), i.e. the columns of F are linearly independent solutions of Ax = 0.

In particular, if $Q \succ O$, then K is nonsingular (by 3).

Proof

We show $1 \iff 2 \iff 3 \iff 4$.

• $(1 \Leftrightarrow 2)$. By the lemma on slide 4,

$$extbf{ extit{K}} ext{ nonsingular } \iff \operatorname{Null}(extbf{ extit{K}}) = \{ extbf{0} \} \iff \operatorname{Null}(extbf{A}) \cap \operatorname{Null}(extbf{ extit{Q}}) = \{ extbf{0} \}$$

• $(2 \Leftrightarrow 3.)$ Since $Q \succeq O$, $x^TQx = 0$ iff Qx = 0 (footnote on slide 4).

$$2 \iff Ax = \mathbf{0} \text{ and } Qx = \mathbf{0} \text{ implies } x = \mathbf{0}$$

 $\iff Ax = \mathbf{0} \text{ and } x^T Qx = 0 \text{ implies } x = \mathbf{0} \iff 3$

• $(3 \Leftrightarrow 4.)$ Note $x \in \text{Null}(A)$ iff x = Fz, and $Fz \neq 0$ iff $z \neq 0$,

$$3 \iff x^{T}Qx > 0 \text{ if } Ax = 0, x \neq 0$$

$$\iff x^{T}Qx > 0 \text{ if } x = Fz, z \neq 0$$

$$\iff z^{T}F^{T}QFz > 0 \text{ if } z \neq 0$$

$$\iff F^{T}QF \succ O$$

Example

$$\min_{x_1, x_2} f(x_1, x_2) = \frac{1}{2} x_2^2$$

s.t.
$$x_1 + 2x_2 = b$$

Trivial with solution $x_1^* = b, x_2^* = 0$.

But let's check the condition on slide 8.

$$Q = diag\{0,1\}, \quad A = (1,2)$$

Let
$$F = (2, -1)^T$$
. Then Range(F) = Null(A), and

$$F^TQF = [1] \succ O$$

By 4 of slide 8, the KKT matrix in nonsingular, so \exists a unique solution.

Note. The unconstrained problem $\min_{x} f(x)$ has infinitely many solutions. But this does not prevent the constrained problem from having a unique solution, as $Q \succ O$ on Null(A) (see 3 on slide 8).

Outline

Equality constrained convex QP

Newton's method

Newton direction for equality constrained problem

Consider the second-order Taylor approximation for f at a feasible x_k ,

$$\min_{\boldsymbol{d}} h(\boldsymbol{d}) \triangleq \hat{f}(\boldsymbol{x}_k + \boldsymbol{d}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{d} + \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{d}$$

s.t. $A(\boldsymbol{x}_k + \boldsymbol{d}) = \boldsymbol{b}$

Using $Ax_k = b$,

$$\min_{\mathbf{d}} h(\mathbf{d}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T \nabla^2 f(\mathbf{x}_k) \mathbf{d}$$

s.t. $A\mathbf{d} = \mathbf{0}$

KKT system for this quadratic problem is

$$\begin{bmatrix} \nabla^2 f(\mathbf{x}_k) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}_k) \\ \mathbf{0} \end{bmatrix}$$

The Newton direction d_k is given by the solution to the KKT system. We will assume the KKT matrix is always nonsingular (cf. slides 4 & 8),

Newton's method for equality constrained problem

- 1: initialization $x \leftarrow x_0 \in X$ $\triangleright x_0$ is feasible, i.e. $Ax_0 = b$
- 2: repeat
- 3: Compute Newton's direction *d* by solving

$$\begin{bmatrix} \nabla^2 f(\mathbf{x}) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{d} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}) \\ \mathbf{0} \end{bmatrix}$$

- 4: $t \leftarrow 1$ \Rightarrow backtracking line search on lines 4-7
- 5: **while** $f(\mathbf{x} + t\mathbf{d}) > f(\mathbf{x}) + \alpha t \nabla f(\mathbf{x})^T \mathbf{d}$ **do** 6: $t \leftarrow \beta t$
- 7: end while
- 8: $x \leftarrow x + td$
- 9: **until** $||d|| \le \delta$
- 10: **return** *x*

Note. We cannot use $\|\nabla f(x)\| \le \delta$ as stopping criterion now, as $\nabla f(x^*) = \mathbf{0}$ no longer holds in general. [BV] uses $\sqrt{d^T \nabla^2 f(x)} d \le \delta$.

Note. This is called a feasible descent method, since all x_k are feasible and $f(x_{k+1}) < f(x_k)$ unless x_k is optimal.

Newton's method and constraint elimination

Let $F \in \mathbb{R}^{n \times (n-k)}$ be a matrix whose columns are linearly independent solutions to $Ax = \mathbf{0}$. Fix a feasible $\tilde{x} \in X$. Every $x \in X$ has a unique representation of the form $x = \tilde{x} + Fz$,

$$X = \{x : Ax = b\} = \{\tilde{x} + Fz : z \in \mathbb{R}^{n-k}\}\$$

Constrained problem reduces to unconstrained problem by $x = \tilde{x} + Fz$,

$$(C): \begin{cases} \min_{\mathbf{x}} & f(\mathbf{x}) \\ \text{s.t.} & A\mathbf{x} = \mathbf{b} \end{cases} \iff (U): \min_{\mathbf{z}} g(\mathbf{z}) = f(\tilde{\mathbf{x}} + \mathbf{F}\mathbf{z})$$

Applying Newton's method to (C) with initial point $x_0 = \tilde{x} + Fz_0$ is equivalent to applying Newton's method to (U) with initial point z_0 :

If $\{x_k\}$ and $\{z_k\}$ are the iterates for (C) and (U), respectively, then

$$x_k = \tilde{x} + Fz_k, \quad \forall k$$

Newton's method has same convergence properties for (C) and (U).

Proof

We only need to show $x_1 = \tilde{x} + Fz_1$ and then use induction.

Let Δx_0 and Δz_0 denote the Newton directions for (C) and (U), i.e. Δx_0 satisfies

$$\begin{bmatrix} \nabla^2 f(\boldsymbol{x}_0) & \boldsymbol{A}^T \\ \boldsymbol{A} & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x}_0 \\ \boldsymbol{\lambda}_0 \end{bmatrix} = \begin{bmatrix} -\nabla f(\boldsymbol{x}_0) \\ \boldsymbol{0} \end{bmatrix}$$

and Δz_0 satisfies

$$\nabla^2 g(z_0) \Delta z_0 = -\nabla g(z_0)$$

- 1. Both Δx_0 and Δz_0 are well-defined
- 2. $\Delta x_0 = F \Delta z_0$. This also shows $\Delta x_0 = \mathbf{0}$ iff $\Delta z_0 = \mathbf{0}$.
- 3. Backtracking line search gives the same step size t_0 in both cases
- 4. By 2 and 3,

$$x_1 = x_0 + t_0 \Delta x_0 = \tilde{x} + F z_0 + t_0 F \Delta z_0 = \tilde{x} + F (z_0 + t_0 \Delta z_0) = \tilde{x} + F z_1$$

Proof (cont'd)

More details.

1. Both Δx_0 and Δz_0 are well-defined. By the chain rule,

$$\nabla^2 g(\mathbf{z}_0) = \mathbf{F}^T \nabla^2 f(\mathbf{x}_0) \mathbf{F}, \quad \nabla g(\mathbf{z}_0) = \mathbf{F}^T \nabla f(\mathbf{x}_0)$$

Since we assume the KKT matrix of (C) is nonsingular, by 4 on slide 8, $\nabla^2 g(z_0) \succ \mathbf{O}$. Hence both Δx_0 and Δz_0 are well-defined.

- 2. $\Delta x_0 = \mathbf{F} \Delta z_0$.
 - ightharpoonup Pre-multiplying the first KKT equation by F^T ,

$$\mathbf{F}^T \nabla^2 f(\mathbf{x}_0) \Delta \mathbf{x}_0 + (\mathbf{A}\mathbf{F})^T \lambda_0 = -\mathbf{F}^T \nabla f(\mathbf{x}_0)$$

Since the columns of *F* are solutions to Ax = 0, AF = 0. Thus

$$\mathbf{F}^T \nabla^2 f(\mathbf{x}_0) \Delta \mathbf{x}_0 = -\mathbf{F}^T \nabla f(\mathbf{x}_0)$$

► $A\Delta x_0 = \mathbf{0}$ by the second KKT equation, so $\Delta x_0 = Fu$ for some u.

$$\mathbf{F}^T \nabla^2 f(\mathbf{x}_0) \mathbf{F} \mathbf{u} = -\mathbf{F}^T \nabla f(\mathbf{x}_0) \iff \nabla^2 g(\mathbf{z}_0) \mathbf{u} = -\nabla g(\mathbf{z}_0)$$

Thus
$$u = \Delta z_0$$
 and $\Delta x_0 = Fu = F\Delta z_0$

Proof (cont'd)

3. Backtracking line search gives the same step size t_0 .

Note

$$f(\mathbf{x}_0) = f(\tilde{\mathbf{x}} + \mathbf{F} z_0) = g(z_0)$$

$$f(\mathbf{x}_0 + t\Delta \mathbf{x}_0) = f(\tilde{\mathbf{x}} + \mathbf{F} (z_0 + t\Delta z_0)) = g(z_0 + t\Delta z_0)$$

$$\nabla f(\mathbf{x}_0)^T \Delta \mathbf{x}_0 = \nabla f(\mathbf{x}_0)^T \mathbf{F} \Delta z_0 = \nabla g(z_0)^T \Delta z_0$$

Thus the test condition in backtracking line search for f

$$f(\mathbf{x}_0 + t\Delta\mathbf{x}_0) > f(\mathbf{x}_0) + \alpha t \nabla f(\mathbf{x}_0)^T \Delta\mathbf{x}_0$$

is exactly the same as that for g,

$$g(\mathbf{z}_0 + t\Delta\mathbf{z}_0) > g(\mathbf{z}_0) + \alpha t \nabla g(\mathbf{x}_0)^T \Delta \mathbf{z}_0$$