Cycles and p-competition graphs

Suh-Ryung KIM * Boram PARK †‡

Department of Mathematics Education, Seoul National University, Seoul 151-742, Korea.

Yoshio SANO §

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.

May 2009

Abstract

The notion of p-competition graphs of digraphs was introduced by S-R. Kim, T. A. McKee, F. R. McMorris, and F. S. Roberts [p-competition graphs, $Linear\ Algebra\ Appl.\ 217\ (1995)\ 167–178]$ as a generalization of the competition graphs of digraphs. Let p be a positive integer. The p-competition graph $C_p(D)$ of a digraph D=(V,A) is a (simple undirected) graph which has the same vertex set V and has an edge between distinct vertices x and y if and only if there exist p distinct vertices $v_1,\ldots,v_p\in V$ such that $(x,v_i),(y,v_i)$ are arcs of the digraph D for each $i=1,\ldots,p$.

In this paper, given a cycle of length n, we compute exact values of p in terms of n such that it is a p-competition graph, which generalizes the results obtained by Kim $et\ al.$. We also find values of p in terms of n so that its complement is a p-competition graph.

Keywords: p-competition graph; p-edge clique cover; cycle

^{*}This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2008-531-C00004).

[†]The author was supported by Seoul Fellowship.

 $^{^{\}ddagger} \mbox{Corresponding}$ author. $\mbox{\it E-mail address:}$ kawa22@snu.ac.kr ; boram-park22@gmail.com

[§]The author was supported by JSPS Research Fellowships for Young Scientists. The author was also supported partly by Global COE program "Fostering Top Leaders in Mathematics".

1 Introduction

Cohen [1] introduced the notion of a competition graph in connection with a problem in ecology (also see [2]). Let D=(V,A) be a digraph that corresponds to a food web. A vertex in the digraph D stands for a species in the food web, and an arc $(x,v) \in A$ in D means that the species x preys on the species v. For vertices $x,v \in V$, we call v a prey of x if there is an arc $(x,v) \in A$. If two species x and y have a common prey v, they will compete for the prey v. Cohen defined a graph which represents the competition among the species in the food web. The competition graph C(D) of a digraph D = (V,A) is a simple undirected graph G = (V,E) which has the same vertex set V and has an edge between two distinct vertices $x,y \in V$ if there exists a vertex $v \in V$ such that $(x,v),(y,v) \in A$. We say that a graph G is a competition graph if there exists a digraph D such that C(D) = G.

Kim et al. [5] introduced p-competition graphs as a generalization of competition graphs. Let p be a positive integer. The p-competition graph $C_p(D)$ of a digraph D = (V, A) is a simple undirected graph G = (V, E) which has same vertex set V and has an edge between two distinct vertices $x, y \in V$ if there exist p distinct vertices $v_1, ..., v_p \in V$ such that $(x, v_i), (y, v_i) \in A$ for each i = 1, ..., p. Note that the 1-competition graph $C_1(D)$ of a digraph D coincides with the competition graph C(D) of the digraph C(D) and C(D) of the digraph C(D) such that C(D) is called a C(D) such that C(D) such that C(D) such that C(D) is called a C(D) such that C(D) such that C(D) is called a C(D) such that C(D) such tha

Competition graphs are closely related to edge clique covers and the edge clique cover numbers of graphs. A clique of a graph G is a subset of the vertex set of G such that its induced subgraph of G is a complete graph. We regard an empty set also as a clique of G for convenience. An edge clique cover of a graph G is a family of cliques of G such that the endpoints of each edge of G are contained in some clique in the family. The minimum size of an edge clique cover of G is called the edge clique cover number of the graph G, and is denoted by $\theta_e(G)$.

Let G = (V, E) be a graph and $\mathcal{F} = \{S_1, ..., S_r\}$ be a multifamily of subsets of the vertex set of G. The multifamily \mathcal{F} is called a p-edge clique cover if it satisfies the following:

- For any $J \in {[r] \choose p}$, the set $\bigcap_{j \in J} S_j$ is a clique of G,
- The family $\{\bigcap_{j\in J} S_j \mid J\in {r\choose p}\}$ is an edge clique cover of G,

where $\binom{[r]}{p}$ denotes the set of all *p*-subsets of an *r*-set $[r] := \{1, 2, ..., r\}$. The minimum size of a *p*-edge clique cover of *G* is called the *p*-edge clique cover number of *G*, and is denoted by $\theta_p^p(G)$.

Kim *et al.* [5] gave a characterization of *p*-competition graphs, a sufficient condition for graphs to be *p*-competition graphs, and a characterization of the *p*-competition graphs of acyclic digraphs as follows:

Theorem 1.1 ([5]). Let G be a graph with n vertices. Then G is a p-competition graph if and only if $\theta_e^p(G) \leq n$.

Theorem 1.2 ([5]). Let G be a graph with n vertices. If $\theta_e(G) \leq n-p+1$, then G is a p-competition graph.

Theorem 1.3 ([5]). Let G = (V, E) be a graph with n vertices. Then, G is the p-competition graph of an acyclic digraph if and only if there exist an ordering $v_1, ..., v_n$ of the vertices of G and a p-edge clique cover $\{S_1, ..., S_n\}$ of G such that $v_i \in S_j \Rightarrow i < j$.

In this paper, given a cycle of length n, we compute exact values of p in terms of n such that it is a p-competition graph, which generalizes the results obtained by Kim $et\ al.\ [5]$. We also find values of p in terms of n so that its complement is a p-competition graph. Throughout this paper, let C_n be a cycle with n vertices:

$$V(C_n) = \{v_0, ..., v_{n-1}\}, \quad E(C_n) = \{v_i v_{i+1} \mid i = 0, ..., n-1\},$$

and any subscripts are reduced to modulo n.

2 Main Results

Kim et al. [5] showed the following results:

Theorem 2.1 ([5]). C_4 is not a 2-competition graph.

Theorem 2.2 ([5]). For n > 4, C_n is a 2-competition graph.

The following theorem is a generalization of the above results.

Theorem 2.3. Let C_n be a cycle with n vertices and p be a positive integer. Then C_n is a p-competition graph if and only if $n \ge p + 3$.

Proof. First, we show the 'only if' part by contradiction. Suppose that the cycle C_n is a p-competition graph with a positive integer p such that $p \geq n-2$. By Theorem 1.1, there exists a p-edge clique cover \mathcal{F} of C_n which consists of n sets.

Suppose that v_i belongs to all the n sets in \mathcal{F} for some $i \in \{0, 1, \ldots, n-1\}$. Then, since v_{i+1} and v_{i+2} are adjacent, there exist p sets in \mathcal{F} which contain both v_{i+1} and v_{i+2} . Since those p sets contain v_i , the vertices v_i and v_{i+2} are adjacent, which is a contradiction. Thus, each vertex on C_n

belongs to at most n-1 sets in \mathcal{F} . Since v_i is adjacent to v_{i+1} and v_{i-1} , it must belong to at least p sets which contain v_{i+1} and at least p sets which contain v_{i-1} . On the other hand, since v_{i+1} and v_{i-1} are not adjacent, there are at most p-1 sets which contain both v_{i+1} and v_{i-1} . Thus v_i belongs to at least (p+p)-(p-1)=p+1 sets in \mathcal{F} . Therefore

$$p+1 \leq \text{(the number of sets in } \mathcal{F} \text{ containing } v_i) \leq n-1.$$

However, $p+1 \ge n-1$ by our assumption that $p \ge n-2$. Thus v_i belongs to exactly n-1 sets in \mathcal{F} . Since v_i was arbitrarily chosen, v_{i+2} also belongs to exactly n-1 sets in \mathcal{F} . Then v_i and v_{i+2} belong to at least n-2 sets together. However, since n-2=p, v_i and v_{i+2} are adjacent and we reach a contradiction. Hence $n \ge p+3$.

Now we show the 'if' part. Let p be a positive integer such that $p+3 \le n$. Let

$$S_i := \{v_i, v_{i+1}, ..., v_{i+p}\} \quad (i = 0, ..., n-1).$$

Then we put $\mathcal{F} := \{S_0, S_1, \dots, S_{n-1}\}$. It is easy to check that for each i, j with i < j,

$$S_i, S_{i-1}, \ldots, S_{j-p}$$

are the sets containing both v_i and v_j . Thus there are p sets in \mathcal{F} containing both v_i and v_{i+1} , and there are at most p-1 sets in \mathcal{F} containing both v_i and v_j for i, j with $j-i \geq 2$. Thus \mathcal{F} is a p-edge clique cover of C_n . Hence $\theta_e^p(C_n) \leq n$. By Theorem 1.1, the cycle C_n is a p-competition graph. \square

In the rest of the paper, we give a sufficient condition for the complements of cycles to be p-competition graphs. We first study on the edge clique cover numbers of complements of cycles:

Theorem 2.4. Let $\overline{C_n}$ be the complement of a cycle with n vertices. Then the following are true:

(i)
$$\theta_e(\overline{C_5}) = 5$$
, $\theta_e(\overline{C_6}) = 5$, $\theta_e(\overline{C_7}) = 7$, $\theta_e(\overline{C_8}) = 6$.

- (ii) If $n \ (n \ge 9)$ is odd, then $\theta_e(\overline{C_n}) \le \frac{n+5}{2}$.
- (iii) If $n \ (n \ge 10)$ is even, then $\theta_e(\overline{C_n}) \le \frac{n}{2} + 1$.

Proof. (i) Since $\overline{C_5} \cong C_5$, we have $\theta_e(\overline{C_5}) = 5$.

For $\overline{C_6}$, any two edges of $\{v_0v_3, v_1v_4, v_2v_5, v_1v_5, v_2v_4\}$ cannot be covered by a clique as the set of their endpoints contains two consecutive vertices of C_6 . Thus $\theta_e(\overline{C_6}) \geq 5$. In addition, $\{v_0, v_2, v_4\}, \{v_1, v_3, v_5\}, \{v_2, v_5\}, \{v_1, v_4\}, \{v_0, v_3\}$ form an edge clique cover of $\overline{C_6}$, and so $\theta_e(\overline{C_6}) = 5$.

Figure 1: $\overline{C_8}$

For $\overline{C_7}$, any two edges of $\{v_0v_3, v_1v_4, v_2v_5, v_3v_6, v_4v_0, v_5v_1, v_6v_2\}$ cannot be covered by a clique and so $\theta_e(\overline{C_7}) \geq 7$. Since

 $\{v_0, v_2, v_5\}, \{v_1, v_3, v_6\}, \{v_2, v_0, v_4\}, \{v_3, v_1, v_5\}, \{v_4, v_2, v_6\}, \{v_0, v_3\}, \{v_1, v_4\}$ form an edge clique cover of $\overline{C_7}$, $\theta_e(\overline{C_7}) = 7$.

For $\overline{C_8}$, any two edges of $\{v_0v_2, v_0v_3, v_1v_3, v_1v_4, v_2v_7\}$ cannot be covered by same clique and so $\theta_e(\overline{C_8}) \geq 5$ (see Figure 1 for illustration). Suppose that there is an edge clique cover of $\overline{C_8}$ whose size is 5, say $\{S_1, S_2, S_3, S_4, S_5\}$. By the definition of an edge clique cover,

$$20 = |E(\overline{C_8})| \le \sum_{i=1}^{5} |E(S_i)|.$$

Without loss of generality, we may assume that $|S_i| \geq |S_{i+1}|$ for i=1,2,3,4. Since $\{v_0,v_2,v_4,v_6\}$ and $\{v_1,v_3,v_5,v_7\}$ are the only cliques of maximum size, we have $|S_i| \leq 3$ for i=3,4,5. If $|S_2| \leq 3$, then

$$\sum_{i=1}^{5} |E(S_i)| \le 6 + 12 = 18,$$

which is a contradiction. Thus $|S_1| = |S_2| = 4$. Then we may assume that $S_1 = \{v_0, v_2, v_4, v_6\}$ and $S_2 = \{v_1, v_3, v_5, v_7\}$. No two of edges v_0v_3, v_1v_4, v_2v_7

belong to the same clique. Moreover none of them is covered by S_1 or S_2 . Thus they must be covered by S_3 , S_4 , S_5 . Without loss of generality, we may assume that $\{v_0, v_3\} \subseteq S_3$, $\{v_1, v_4\} \subseteq S_4$ and $\{v_2, v_7\} \subseteq S_5$. The edges v_3v_6 , v_1v_6 , v_0v_5 , v_2v_5 still need to be covered. The edge v_1v_6 cannot be covered by S_3 or S_5 and so must be covered by S_4 . Thus $S_4 = \{v_1, v_4, v_6\}$. Now the edge v_3v_6 must be covered by S_3 and so $S_3 = \{v_0, v_3, v_6\}$. Then v_0v_5 cannot be covered by any of S_1, \ldots, S_5 , which is a contradiction. Thus $\theta_e(\overline{C_8}) \geq 6$. Furthermore,

```
\{v_0, v_3, v_5\}, \{v_2, v_5, v_7\}, \{v_4, v_1, v_7\}, \{v_6, v_1, v_3\}, \{v_0, v_2, v_4, v_6\}, \{v_1, v_3, v_5, v_7\}
```

form an edge clique cover of $\overline{C_8}$, and so $\theta_e(\overline{C_8}) = 6$.

(ii) Let $n \ (n > 9)$ be an odd integer. We define the following sets:

```
\begin{split} S_1 &:= \{v_0, v_2, v_4, \dots, v_{n-3}\}; \\ S_2 &:= \{v_0, v_3, v_5, \dots, v_{n-2}\}; \\ S_3 &:= \{v_1, v_3, v_5, \dots, v_{n-2}\}; \\ T_1 &:= \{v_1, v_4, v_6, \dots, v_{n-1}\}; \\ T_3 &:= \{v_3, v_6, v_8, \dots, v_{n-1}\}; \\ T_5 &:= \{v_5, v_8, v_{10}, \dots, v_{n-1}, v_2\}; \\ T_i &:= \{v_i, v_2, v_4, \dots, v_{i-3}, v_{i+3}, v_{i+5}, \dots, v_{n-3}, v_{n-1}\} \quad (i = 7, \dots, n-2, i \colon \text{ odd }). \end{split}
```

It is easy to check that each of S_i (i = 1, 2, 3) and T_j (j = 1, 3, ..., n - 2) is a clique of $\overline{C_n}$. Take any edge $v_i v_j$ of $\overline{C_n}$ with i < j. We consider all the possible cases in the following:

- If both i and j are odd, then $v_i v_j$ is covered by S_3 .
- If i is odd and j is even, then $j i \ge 3$ and $v_i v_j$ is covered by T_i .
- Suppose that i is even and j is odd. Then $j i \ge 3$. If i = 0, then $v_i v_j$ is covered by S_2 . If $i \ne 0$, then $v_i v_j$ is covered by T_j .
- Suppose that both i and j are even. If $j \neq n-1$ then $v_i v_j$ is covered by S_1 . If j = n-1, then $i \neq 1$ and $v_i v_j$ is covered by T_1 or T_5 .

Therefore the family $\{S_1, S_2, S_3, T_1, T_3, T_5, \dots, T_{n-2}\}$ is an edge clique cover of $\overline{C_n}$, and so $\theta_e(\overline{C_n}) \leq 3 + \frac{n-1}{2} = \frac{n+5}{2}$.

(iii) Let $n \ (n \ge 10)$ be an even integer. We define the following sets:

```
\begin{split} S &:= \{v_0, v_2, v_4, \dots, v_{n-2}\}; \\ T_0 &:= \{v_0, v_3, v_5, \dots, v_{n-5}, v_{n-3}\}; \\ T_2 &:= \{v_2, v_5, v_7, \dots, v_{n-3}, v_{n-1}\}; \\ T_i &:= \{v_i, v_1, \dots, v_{i-3}, v_{i+3}, v_{i+5}, \dots, v_{n-1}\} \quad (i = 4, 6, \dots, n-4); \\ T_{n-2} &:= \{v_{n-2}, v_1, v_3, \dots, v_{n-7}, v_{n-5}\}. \end{split}
```

It is easy to see that S and T_i for i = 0, 2, ..., n-2 are cliques of $\overline{C_n}$. Take an edge $v_i v_j$ of $\overline{C_n}$ with i < j. We consider all the possible cases in the following:

- If both i and j are even, then $v_i v_j$ is covered by S.
- If i is even (resp. odd) and j is odd (resp. even), then $j i \ge 3$ and $v_i v_j$ is covered by T_i (resp. T_j).
- Suppose that both i and j are odd. If j i = 2 or 4, then v_i and v_j both are adjacent to v_{j+3} since $n \ge 10$. If $j i \ge 6$, then v_i and v_j both are adjacent to v_{i+3} . Thus there is an even integer k such that both $v_i v_k$ and $v_j v_k$ are edges of $\overline{C_n}$. This implies that $v_i v_j$ is covered by T_k .

Therefore the family $\{S, T_0, T_2, T_4, \dots, T_{n-2}\}$ is an edge clique cover of $\overline{C_n}$, and so $\theta_e(\overline{C_n}) \leq \frac{n}{2} + 1$.

Now by Theorems 1.2 and 2.4, the following theorem immediately holds:

Theorem 2.5. Let $\overline{C_n}$ be the complement of a cycle with n vertices and p be a positive integer.

- (i) For $p \le 4$, $\overline{C_6}$ is a p-competition graph. For $p \le 1$, $\overline{C_7}$ is a p-competition graph. For $p \le 5$, $\overline{C_8}$ is a p-competition graph.
- (ii) If $n \geq 9$ is odd and $p \leq \frac{n-3}{2}$, then $\overline{C_n}$ is a p-competition graph.
- (iii) If $n \ge 10$ is even and $p \le \frac{n}{2}$, then $\overline{C_n}$ is a p-competition graph.

3 Concluding Remarks

In this note, we gave a necessary and sufficient condition for a cycle C_n with n vertices and a sufficient condition for the complement of a cycle to be a p-competition graph. It would be interesting to give a necessary condition for the complement of a cycle to be a p-competition graph.

References

- [1] J. E. Cohen: Interval graphs and food webs: a finding and a problem, *Document 17696-PR*, RAND Corporation, Santa Monica, CA (1968).
- [2] J. E. Cohen: Food webs and Niche space, Princeton University Press, Princeton, NJ (1978).

- [3] R. D. Dutton and R. C. Brigham: A characterization of competition graphs, *Discrete Appl. Math.*, **6** (1983) 315–317.
- [4] S. -R. Kim, T. A. McKee, F. R. McMorris, and F. S. Roberts: p-competition numbers, Discrete Appl. Math., 46 (1993) 87–92.
- [5] S. -R. Kim, T. A. McKee, F. R. McMorris, and F. S. Roberts: p-competition graphs, Linear Algebra Appl., 217 (1995) 167–178.
- [6] J. R. Lundgren and J. S. Maybee: A characterization of graphs of competition number m, Discrete Appl. Math., 6 (1983) 319–322.
- [7] R. J. Opsut: On the computation of the competition number of a graph, SIAM J. Algebraic Discrete Methods, 3 (1982) 420–428.
- [8] F. S. Roberts: Food webs, competition graphs, and the boxicity of ecological phase space, Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976) (1978) 477–490.
- [9] F. S. Roberts and J. E. Steif: A characterization of competition graphs of arbitrary digraphs, *Discrete Appl. Math.*, **6** (1983) 323–326.