CLAIMS

		<u>CLAIMS</u>	
1	1.	(original) A method for processing audio signals, comprising:	
2	receiving a plurality of audio signals, each audio signal having been generated by a different		
3	sensor of a mi	crophone array; and	
4	decor	nposing the plurality of audio signals into a plurality of eigenbeam outputs, wherein each	
5	eigenbeam ou	tput corresponds to a different eigenbeam for the microphone array and at least one of the	
6	eigenbeams h	as an order of two or greater.	
1	2.	(original) The invention of claim 1, wherein the eigenbeams correspond to spheroidal	
2	harmonics based on a spherical, oblate, or prolate configuration of the sensors in the microphone array.		
1	3.	(original) The invention of claim 1, wherein at least one of the eigenbeams has an order	
2	of at least three.		
1	4.	(original) The invention of claim 1, wherein the microphone array comprises the	
2	plurality of se	nsors mounted on an acoustically rigid sphere.	
1	5.	(original) The invention of claim 4, wherein one or more of the sensors are pressure	
2	sensors.		
1	6.	(original) The invention of claim 5, wherein at least one pressure sensor comprises a	
2	patch sensor operating as a spatial low-pass filter to avoid spatial aliasing resulting from relatively hig		
3	frequency cor	nponents in the audio signals.	
1	7.	(original) The invention of claim 6, wherein at least one patch sensor comprises a	
2	number of proximally configured, individual pressure sensors, wherein, for each such patch sensor,		
3	analog signals generated by the number of individual pressure sensors are combined before sampling to		
4	generate a digital audio signal for that patch sensor.		
1	8.	(currently amended) The invention of claim 6, wherein the at least one pressure sensor	
2	further compr	ises a point sensor positioned below the patch sensor, wherein:	
3	the point sensor is used to generate relatively low frequency audio signals; and		
4	the pa	atch sensor is used to generate relatively high frequency audio signals.	

the patch sensor is used to generate relatively high frequency audio signals.

1	9.	(original) The invention of claim 4, wherein one or more of the sensors are elevated over	
2	the surface of	the sphere.	
1	10.	(original) The invention of claim 1, wherein the microphone array comprises the	
2	plurality of se	ensors mounted on an acoustically soft sphere.	
1	11.	(original) The invention of claim 10, wherein one or more of the sensors are cardioid	
2	sensors config	gured with their nulls pointing towards the center of the sphere.	
1	12.	(original) The invention of claim 1, wherein the number and positions of sensors in the	
2	microphone array enable representation of a beampattern as a series expansion involving at least		
3	second-order	spheroidal harmonics.	
1	13.	(original) The invention of claim 12, wherein the number of sensors is based on the	
2	highest-order	spheroidal harmonic in the series expansion.	
1	14.	(original) The invention of claim 1, wherein the arrangement of the sensors in the	
2	microphone a	rray satisfies a discrete orthogonality condition.	
1	15.	(original) The invention of claim 1, wherein decomposing the plurality of audio signals	
2	further compr	ises treating each sensor signal as a directional beam for relatively high frequency	
3	components i	n the audio signals.	
1	16.	(original) The invention of claim 1, further comprising generating an auditory scene	
2	based on the	eigenbeam outputs and their corresponding eigenbeams.	
1	17.	(original) The invention of claim 16, wherein generating the auditory scene comprises	
2	independently	generating two or more different auditory scenes based on the eigenbeam outputs and their	
3	corresponding	g eigenbeams.	
1	18.	(original) The invention of claim 16, wherein generating the auditory scene comprises:	
2	apply	ing a weighting value to each eigenbeam output to form a weighted eigenbeam; and	
3	comb	ining the weighted eigenbeams to generate the auditory scene.	

1	19. (original) The invention of claim 1, further comprising storing data corresponding to the	ie
2 eigenbeam outputs for subsequent processing.		
1	20. (original) The invention of claim 19, further comprising:	
2	recovering the eigenbeam outputs from the stored data; and	
3	generating an auditory scene based on the recovered eigenbeam outputs and their corresponding	5
4	eigenbeams.	
1	21. (original) The invention of claim 1, further comprising transmitting data corresponding	г >
2	to the eigenbeam outputs for remote receipt and processing.	
1	22. (original) The invention of claim 21, further comprising:	
2	recovering the eigenbeam outputs from the received data; and	
3	generating an auditory scene based on the recovered eigenbeam outputs and their corresponding	5
4	eigenbeams.	
1	23. (original) The invention of claim 1, further comprising applying an equalizer filter to	
2	each eigenbeam output to compensate for frequency dependence of the corresponding eigenbeam.	
1	24. (original) The invention of claim 1, wherein receiving the plurality of audio signals	
2	further comprises generating the plurality of audio signals using the microphone array.	
1	25. (original) The invention of claim 24, wherein receiving the plurality of audio signals	
2	further comprises calibrating each sensor of the microphone array based on measured data generated by	
3	the sensor.	
1	26. (original) The invention of claim 25, wherein receiving the plurality of audio signals	
2	comprises calibrating each sensor of the microphone array using a calibration module comprising a	
3	reference sensor and an acoustic source configured on an enclosure having an open side, wherein the op	en
4	side of the volume is held on top of the sensor in order to calibrate the sensor relative to the reference	

5

sensor.

1	27.	(original) The invention of claim 1, wherein the plurality of sensors are arranged in two	
2	or more conce	ntric arrays of sensors, wherein each array is adapted for audio signals in a different	
3	frequency rang	ge.	
1	28.	(original) The invention of claim 27, wherein audio signals from different arrays are	
2		r to being decomposed into a plurality of eigenbeams.	
2	combined pric	r to being decomposed into a piuranty of eigenbeams.	
1	29.	(original) The invention of claim 1, wherein all of the sensors are used to process	
2	relatively low-	frequency signals, while only a subset of the sensors are used to process relatively	
3	high-frequenc	y signals.	
1	30.	(original) The invention of claim 29, wherein only one of the sensors is used to process	
2	the relatively high-frequency signals.		
1	31.	(original) A microphone, comprising a plurality of sensors mounted in an arrangement,	
2	wherein the number and positions of sensors in the arrangement enable representation of a beampattern		
3	for the microp	hone as a series expansion involving at least one second-order eigenbeam.	
1	32.	(original) The invention of claim 31, wherein the series expansion involves an	
2	eigenbeam hav	ving order of at least three.	
1	33.	(original) The invention of claim 31, wherein the arrangement is one of spherical, oblate	
2	or prolate.		
1	34.	(original) The invention of claim 31, wherein the plurality of sensors are mounted on an	
2	acoustically ri	gid sphere.	
1	35.	(original) The invention of claim 34, wherein the sensors are pressure sensors.	
1	36.	(original) The invention of claim 35, wherein at least one pressure sensor comprises a	

Serial No. 10/500,938 -5- 1053.001B

patch sensor operating as a spatial low-pass filter to avoid aliasing resulting from relatively high

frequency components in the audio signals.

2

3

1	37.	(original) The invention of claim 36, wherein at least one patch sensor comprises a	
2	number of pro	ximally configured, individual pressure sensors, wherein, for each such patch sensor,	
3	analog signals	generated by the number of individual pressure sensors are combined before sampling to	
4	generate a dig	ital audio signal for that patch sensor.	
1	38.	(currently amended) The invention of claim 36, wherein the at least one pressure sensor	
2	further compri	ises a point sensor positioned below the patch sensor, wherein:	
3	the point sensor is used to generate relatively low frequency audio signals; and		
4	the pa	tch sensor is used to generate relatively high frequency audio signals.	
1	39.	(original) The invention of claim 34, wherein one or more of the sensors are elevated	
2	over the surface of the sphere.		
1	40.	(original) The invention of claim 31, wherein the plurality of sensors are mounted on an	
2	acoustically so	oft sphere.	
1	41.	(original) The invention of claim 40, wherein the sensors are cardioid sensors configured	
2	with their null	s pointing towards the center of the sphere.	
1	42.	(original) The invention of claim 31, wherein the second-order eigenbeam corresponds	
2	to a second-or	der spheroidal harmonic.	
1	43.	(original) The invention of claim 42, wherein the number of sensors is based on the	
2	highest-order	spheroidal harmonic in the series expansion.	
1	44.	(original) The invention of claim 31, wherein the arrangement of the sensors satisfies a	
2	discrete orthog	gonality condition.	

Serial No. 10/500,938 -6- 1053.001B

decompose a plurality of audio signals generated by the sensors into a plurality of eigenbeam outputs,

wherein each eigenbeam output corresponds to a different eigenbeam for the microphone array and at

(original) The invention of claim 31, further comprising a processor configured to

1

2

3

4

45.

least one of the eigenbeams has an order of two or greater.

1	46. (original) The invention of claim 45, wherein the processor is further configured to		
2	generate an auditory scene based on the eigenbeam outputs and their corresponding eigenbeams.		
1	47. (original) The invention of claim 31, wherein the plurality of sensors are arranged in two		
2	or more concentric arrays of sensors, wherein each array is adapted for audio signals in a different		
3	frequency range.		
1	48. (original) The invention of claim 47, wherein the sensors in the different arrays are		
2	located at the same spherical coordinates.		
1	49. (original) The invention of claim 31, wherein all of the sensors are used to process		
2	relatively low-frequency signals, while only a subset of the sensors are used to process relatively		
3	high-frequency signals.		
1	50. (original) The invention of claim 49, wherein only one of the sensors is used to process		
2	the relatively high-frequency signals.		
1	51. (original) A method for generating an auditory scene, comprising:		
2	receiving eigenbeam outputs, the eigenbeam outputs having been generated by decomposing a		
3	plurality of audio signals, each audio signal having been generated by a different sensor of a microphone		
4	array, wherein each eigenbeam output corresponds to a different eigenbeam for the microphone array and		
5	at least one of the eigenbeam outputs corresponds to an eigenbeam having an order of two or greater; and		
5	generating the auditory scene based on the eigenbeam outputs and their corresponding		
7	eigenbeams.		
1	52. (original) The invention of claim 51, wherein generating the auditory scene comprises:		
2	applying a weighting value to each eigenbeam output to form a weighted eigenbeam; and		
3	combining the weighted eigenbeams to generate the auditory scene.		
1	53. (original) The invention of claim 51, wherein generating the auditory scene further		

comprises applying an equalizer filter to each eigenbeam output to compensate for frequency dependence

2

3

of the corresponding eigenbeam.

1	54. (original) The invention of claim 51, wherein the microphone array comprises a plurali		
2	of sensors mounted in a spheroidal arrangement.		
1	55. (original) The invention of claim 54, wherein the plurality of sensors are mounted on a		
2	acoustically rigid sphere.		
1	56. (original) The invention of claim 55, wherein the sensors are pressure sensors.		
1	57. (original) The invention of claim 56, wherein at least one pressure sensor comprises a		
2	patch sensor operating as a spatial low-pass filter to avoid aliasing resulting from relatively high		
3	frequency components in the audio signals.		
1	58. (original) The invention of claim 57, wherein at least one patch sensor comprises a		
2	number of proximally configured, individual pressure sensors, wherein, for each such patch sensor,		
3	analog signals generated by the number of individual pressure sensors are combined before sampling to		
4	generate a digital audio signal for that patch sensor.		
1	59. (currently amended) The invention of claim 57, wherein the at least one pressure senso		
2	further comprises a point sensor positioned below the patch sensor, wherein:		
3	the point sensor is used to generate relatively low frequency audio signals; and		
4	the patch sensor is used to generate relatively high frequency audio signals.		
1	60. (original) The invention of claim 55, wherein one or more of the sensors are elevated		
2	over the surface of the sphere.		
1	61. (original) The invention of claim 54, wherein the plurality of sensors are mounted on a		
2	acoustically soft sphere.		
1	62. (original) The invention of claim 61, wherein one or more of the sensors are cardioid		
2	sensors configured with their nulls pointing towards the center of the sphere.		
1	63. (original) The invention of claim 54, wherein the number and positions of sensors in th		
2	microphone array enable representation of a beampattern as a series expansion involving at least		

3

second-order spheroidal harmonics.

1	64.	(original) The invention of claim 63, wherein the number of sensors is based on the
2	highest-order	spheroidal harmonic in the series expansion.
1	65.	(original) The invention of claim 54, wherein the arrangement of the sensors satisfies a
2	discrete orthog	gonality condition.
1	66.	(original) The invention of claim 51, wherein generating the auditory scene further
2	comprises trea	ting each sensor signal as a directional beam for relatively high frequency components in
3	the audio sign	als.
1	67.	(original) The invention of claim 51, wherein receiving the eigenbeam outputs further
2	comprises rec	overing the eigenbeam outputs from data stored during previous processing.
1	68.	(original) The invention of claim 51, wherein receiving the eigenbeam outputs further
2	comprises rec	overing the eigenbeam outputs from data received after transmission from a remote node.
1	69.	(original) The invention of claim 51, wherein the number of higher-order eigenbeams
2	used in genera	ting the auditory scene is limited to maintain a minimum value of signal-to-noise ratio
3	(SNR).	
1	70.	(original) The invention of claim 69, wherein the SNR is characterized using white noise
2	gain.	
1	71.	(original) The invention of claim 51, wherein generating the auditory scene comprises
2	independently	generating two or more different auditory scenes based on the eigenbeam outputs and their
3	corresponding	eigenbeams.
1	72.	(original) The invention of claim 51, wherein the plurality of sensors are arranged in two
2	or more conce	entric patterns, each pattern having a plurality of sensors adapted to process signals in a
3	different frequency range.	

patterns are mounted on the surface of an acoustically rigid sphere.

(original) The invention of claim 72, wherein the sensors arranged in the innermost

different frequency range.

1 2

1		74.	(original) The invention of claim 51, wherein all of the sensors are used to process
2	relatively low-frequency signals, while only a subset of the sensors are used to process relatively		
3	high-f	requenc	ey signals.
1		75.	(original) The invention of claim 74, wherein only one of the sensors is used to process
2	the rel	latively	high-frequency signals.
1		76.	(new) The invention of claim 16, wherein:
2		the au	aditory scene is a second-order or higher directional beam steered in a specified direction;
3	and		
4		gener	rating the auditory scene comprises:
5			receiving the specified direction for the directional beam; and
6			generating the directional beam by combining the eigenbeam outputs based on the
7	specif	ied dire	ction.
1		77.	(new) The invention of claim 46, wherein:
2		the au	aditory scene is a second-order or higher directional beam steered in a specified direction;
3	and		
4		the pi	rocessor is further configured to generate the auditory scene by:
5			receiving the specified direction for the directional beam; and
6			generating the directional beam by combining the eigenbeam outputs based on the
7	specif	ied dire	ction.
1		78.	(new) The invention of claim 51, wherein:
2		the au	uditory scene is a second-order or higher directional beam steered in a specified direction;
3	and		
4		gener	rating the auditory scene comprises:
5		-	receiving the specified direction for the directional beam; and
6			generating the directional beam by combining the eigenbeam outputs based on the

7

specified direction.