Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 1 of 61

<u>FIG. 1</u>

<u>1/61</u>

Richard M. WALMSLEY et al.
Genotoxicity Testing
EV 667 735 685 US
61 Drawing Sheets; Sheet 2 of 61

<u>2/61</u>

<u>FIG.2</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 3 of 61

<u>3/61</u>

nogan & martson 81926.0000 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 4 of 61

<u>4/61</u>

FIG. 4

Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 5 of 61

<u>5/61</u>

FIG. 5

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 6 of 61

<u>6/61</u>

FIG. 6

nogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 7 of 61

<u>7/61</u>

<u>FIG. 7</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 8 of 61

<u>8/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 9 of 61

<u>9/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 10 of 61

<u>10/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 11 of 61

11/61

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 12 of 61

<u>12/61</u>

FIG. 12

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 13 of 61

13/61

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 14 of 61

<u>14/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 15 of 61

<u>15/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 16 of 61

16/61

FIG. 16

Key:

 ${\it HO}$ sequence RAD54 Promoter ${\it yEGFP}$ KanMX sequence AmpR REP 2μ sequence URA3

GATCCAAGCTATCTACTGAGATTTCTGGCTCTTTTGTTGTACTGTCACCTAACCACAGACCAAGCATCCAA GCCATACTTTTTACAGCAGGAGTTACAAGGTCACTACGTCCAGTGAGAAATTTAGATAAAACACCATTTCC CTTCAATGTCAAAGTTGAAATATTCTCCTTTAGAGCGCTCCATTTCTTCTATGAAGCGTTTTGCGGCAAACCTGACATTGCTGCAGATTTCTCCATCTCACTTTATATTTGGTGGCATTTCTACCACTTTTTTCCAACAGTGGTTTGGTAGGGACCCTGACTGACAATTTATGACCTGCAGTACATTGTAATGCAAGACGCTGATAAACTGTT CTACGCCTGGGATCTAACCTACCAGGTTCACCTTCAAAAGCTCTGTGTTTTGGTTTTTTGCTGTATATTATA GATTTTCTGATAGCCCTGTGTGACATTTATGACGCGGGCAGCGGAGCCATCTGCGCACATAACGTAAGAGT $TAGCCGTGACGTTTGCGATGTCTTTAATTTCACCGTTAGCCATCAGAATAGTCGTGTTTTCAGAAAGCAT{\color{red}T}$ **TTGATCC**GACATACGATGACCTCAATGATTTAGATTATGTGTTGCACTTTTATAGACCTACCAAAAATCCA CTTTGCCGAGATCACAAACCTACTATGACGAAAAAGCTTGAAGTTTAGATGAGTAAGGAAAATACAAGTGA CGCTTTTATATGGTGCAAGGAACAAAAACTAAAAAACAACAAGGCAAATGTGGATCTGTCATGTATGGCAAC GACAGCAGGATGGCTCACAAAAAAAGACAAAAAAAACTAAGGCAAAAGAACAAAGCTCCTCCTGCTCAA GAAACGTATTGTTGAAAAACCACCGTCGTAAGAAAGTTTTTCTGTGACCTATAATGGTTTAAAATCGGCCC ATTTTTTTCCCTCTTTTGTGGTCCAGTCTTTCTCATACTCGAGGGAAATTCGACACAAACAGCGGAGAAG TGTGGCTAAACCGGCAAGTGCCTGCAAGATCCACAGAACTAACCGCACGAACTGGCGGTCAGAAAAGAGCC TGTTCCGGAAAGAGAAACAGAGAAACGATCATGATGGGAAAGCGGGGATTCGGCGAAGAACGAGACTGG AAAGGGAAAAAGAGAAATACTGGTGGAAGTATTCGGACCTTTGGCGAAGTCCGAACCCTTGAAACCCAAAG ATGATCGATGATTCATTTTCAATGCGCTACGGTTCCTGCCGCTCGTGGGAACCCCACGCAAAACATATTA TTCGCTTCTCTGCTGACAACTCCGGTTTACGTTATACCGTATTAGGATCACTATAAGGGTTCCTTCGGG AGGAGGGGGGGGGAAGAATGTACATCGTCATAAGGCCTTTATGGTGTGAAGTGGGTTTTGCGTGGAAAA TTCGTTTTCAATGATATAGAGCCCACGCATATACGTACATACTAGTGGCCAAAAGCGTGGGGTGGGCGGAC AAAGCTACACTGGTAAAATACAGGATTCTATGAACAATAACAACCAGCTCACGTTGCTGAACAGCCGA TGGTGCGTGGTTCCAGCTTCATGTGCTTGCATGTGATGTCCTGCAGATGGTAAGAAGATTCTGAAAGCCGC GCTAGGAGAAAAATATTCTGCTCGAAGATCTGTCCTCTTAAGTAGAAAGCGTGAAATTGTTGCGTTCTTGC ATTACTACTCAACGCGTACGCAAATGCGTCTACTGCACCTGCATGATAAAGCTTATGTATCAAAAATTTAA CATCTTGAAAATACACAAGTGGTGCAAAGATGTGTCACGTTCTGGACCTGAGTGGTGCCATGTATGCTATT TAACATGCAAAGGGGAAGACCCTTCCGCCTTACTGCAATAATAAAAAGTATTTTACGCGTTACCCAATATA ATCTAACTGAAGCGAAGGCCAAAACTCTTCTCACTTGACGTAATAGCCGATACAAAATCTAGAGCAGCAAC TTTTCTCTTTCTTCACTAAAGCTGCTACGAAAGTATAGAAAAATCAAACGCTCAGAACTTAGCTCTATTTC AAGGTACCATATATATTCCTTATAACTGATGTTAATTAACTCTAAAGGTGAAGAATTATTCACTGGTGTT TGATGCTACTTACGGTAAATTGACCTTAAAATTTATTTGTACTACTGGTAAATTGCCAGTTCCATGGCCAA CCTTAGTCACTTTCGGTTATGGTGTTCAATGTTTTTGCGAGATACCCAGATCATATGAAACAACATGACTTTTTCAAGTCTGCCATGCCAGAAGGTTATGTTCAAGAAGAACTATTTTTTTCAAAGATGACGGTAACTA ${\it CAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTTAATAGAATCGAATTAAAAAGGTATTGATT}$ TTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAACTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTTGTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGACCACATGGTCTTGTTAGAATTTGTT

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 17 of 61

17/61

Figure 16 continued

ACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAACTGCAGGGCGCCCCCCTTCTAAATAA AAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTTGCTTT $\tt CTCAGGTATAGTATGAGGTCGCTCTTATTGACCACACCTCTACCGGCAGATCCGCTAGGGATAACAGGGTA$ ATATAGATCTGCCCGCCGGGAAGGCGAACCCGATCGGATGCATCCTCTCTGCTGCCATGATGCTGAAGTTG AACGGGCGACCTGCTCGGCTCGAGCTCCACTTCGGAGGTTGGCGACGCCATTGCGCTTGCAGTTAAGGAAG CCTTGCGCAGGCAATCCGCAGCTGGTCTGAGCTAGCCTCGAGGACCCTTCTCTTTAGACTATTCTACTCTT ATGCACGTAAAAAATTCTAGGAAATATGTATTAACTAGGAGTAAAATAACCGGCTAGTGGCATTCATATAG CCGTCTGTTTACATCTACATCACACATTTCGAGTGTATATCTCGCAACGTTGGCGTTAAATAGGCAGTCAA TGGCCCGACCATTCTATGGTGTTTAGGTCGATGCCATCTTTGTACGTTTAGCTTATCGATGATAAGCTGTC AAACATGAGAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAAT AATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCT AAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGG AAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTT TGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCG AACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCCGAAGAACGTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCAT ACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAG GGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGA ACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGT GATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGC CGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTA TCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTG ATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGT TTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAG GCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCT GCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTC GGGCTGAACGGGGGGTTCGTGCACACACCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTAC AGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGG GTCGGAACAGGAGAGCGCACGAGGGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTT TCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCA GCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCC GCGCAGCGAGTCAGTGAGCGAAGAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCG GTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACA CTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCGCCAACACCCGCTGACGCCCTGA CGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAG GTTTTCACCGTCATCACCGAAACGCGCGAGGCAGAGCTTTGAAGAAAAATGCGCCTTATTCAATCTTTGCT GGAGTTGACTAATGTTGTGGGAAATTTGGAGCGATAAGCGTGCTTCTGCCGTGGCCAGGACAACGTATACTC ATCAGATAACAGCAATACCTGATCACTACTTCGCACTAGTTTCTCGGTACTATGCATATGATCCAATATCA AAGGAAATGATAGCATTGAAGGATGAGACTAATCCAATTGAGGAGTGGCAGCATATAGAACAGCTAAAGGG TAGTGCTGAAGGAAGCATACGATACCCCGCATGGAATGGGATAATATCACAGGAGGTACTAGACTACCTTT

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 18 of 61

18/61

CATCCTACATAAATAGACGCATATAAGTACGCATTTAAGCATAAACACGCACTATGCCGTTCTTCATGT ATATATATATACAGGCAACACGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAGCTCGCGT TGCATTTTCGGAAGCGCTCGTTTTCGGAAACGCTTTGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAA GTATAGGAACTTCAGAGCGCTTTTGAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAAACCAAAAACG CACCGGACTGTAACGAGCTACTAAAATATTGCGAATACCGCTTCCACAAACATTGCTCAAAAGTATCTCTT TGCTATATATCTCTGTGCTATATCCCTATATAACCTACCCATCCACCTTTCGCTCCTTGAACTTGCATCTA AACTCGACCTCTACATTTTTTATGTTTATCTCTAGTATTACTCTTTAGACAAAAAATTGTAGTAAGAACT ATTCATAGAGTGAATCGAAAACAATACGAAAATGTAAACATTCCTATACGTAGTATATAGAGACAAAATA GAAGAAACCGTTCATAATTTTCTGACCAATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTATG CGCAATCCACATCGGTATAGAATATAATCGGGGATGCCTTTATCTTGAAAAAATGCACCCGCAGCTTCGCT AGTAATCAGTAAACGCGGGAAGTGGAGTCAGGCTTTTTTTATGGAAGAGAAATAGACACCAAAGTAGCCT TCTTCTAACCTTAACGGACCTACAGTGCAAAAAGTTATCAAGAGACTGCATTATAGAGCGCACAAAGGAGA AAAAAAGTAATCTAAGATGCTTTGTTAGAAAAATAGCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAGA AGTATAGATTCTTTGTTGGTAAAATAGCGCTCTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGAT TCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTTTACAAAAATGAAGCACAGATTCTTCGTT AGCGCTCTCGCGTTGCATTTTTGTTCTACAAAATGAAGCACAGATGCTTCGTTCTGCGGTAAAGCTCATCA GCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAG CGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCT CCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTCACGATACGG GTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCG GGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTA GCCAGCAGCATCCTGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTT TACGAAACACGGAAACCGAAGACCATTCATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCT TCACGTTCGCTCGCGTATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCC TTCCAATTTTTTTTTTTCGTCATTATAGAAATCATTACGACCGAGATTCCCGGGTAATAACTGATATAAT TAAATTGAAGCTCTAATTTGTGAGTTTAGTATACATGCATTTACTTATAATACAGTTTTTTAGTTTTGCTG GCCGCATCTTCTCAAATATGCTTCCCAGCCTGCTTTTCTGTAACGTTCACCCTCTACCTTAGCATCCCTTC CCTTTGCAAATAGTCCTCTTCCAACAATAATAATGTCAGGATCCTGTAGAGACCACATCATCCACGGTTCTA TACTGTTGACCCAATGCGTCTCCCTTGTCATCTAAACCCACACCGGGTGTCATAATCAACCAATCGTAACC TTCATCTCTCCACCCATGTCTCTTTGAGCAATAAAGCCGATAACAAAATCTTTGTCGCTCTTCGCAATGT ${\tt CAACAGTACCCTTAGTATATTCTCCAGTAGCTAGGGAGCCCTTGCATGACAATTCTGCTAACATCAAAAGG}$ $\verb| CCTCTAGGTTCCTTTGTTACTTCTTCCGCCGCCTGCTTCAAACCGCTAACAATACCTGGGCCCACCACACCC| \\$ GTGTGCATTCGTAATGTCTGCCCATTCTGCTATTCTGTATACACCCGCAGAGTACTGCAATTTGACTGTAT TACCAATGTCAGCAAATTTTCTGTCTTCGAAGAGTAAAAAATTGTACTTGGCGGATAATGCCTTTAGCGGC TTAACTGTGCCCTCCATGGAAAAATCAGTCAAGATATCCACATGTGTTTTTAGTAAACAAATTTTGGGACC TTTCGTGCATGATATTAAATAGCTTGGCAGCAACAGGACTAGGATGAGTAGCAGCACGTTCCTTATATGTA GCTTTCGACATGATTTATCTTCGTTTCCTGCAGGTTTTTGTTCTGTGCAGTTGGGTTAAGAATACTGGGCA AAAAGATGAATTGAAACCCCCCCCCCCCCGATGCGCCGCGTGCGGCTGCTGGAGATGGCGGACGCGATGG GTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAGGTCGAGGTGGCCCGGCTCCATGCACCGCGA CGCAACGCGGGGAGGCAGACAAGGTATAGGGCGGCGCCTACAATCCATGCCAACCCGTTCCATGTGCTCGC CGAGGCGCATAAATCGCCGTGACGATCAGCGGTCCAGTGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCG ATGCCGCCGGAAGCGAAGAATCATAATGGGGAAGGCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGAC GTAGCCCAGCGCGTCGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGGAC CAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCGATCATCGTCGCG CTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGAT

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 19 of 61

<u>19/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 20 of 61

<u>20/61</u>

1	GATCCAAGCT	ATCTACTGAG	ATTTCTGGCT	CTTTTGTTGT	ACTGTCACCT
51	AACCACAGAC	CAAGCATCCA	AGCCATACTT	TTTACAGCAG	GAGTTACAAG
101	GTCACTACGT	CCAGTGAGAA	ATTTAGATAA	AACACCATTT	CCTGCGAGTA
151				TCAATTGAGC	
201				AAATATTCTC	
251	CTCCATTTCT			AAACTCACCT	
301				TTATTATTAT	
351				CTCACTTTAT	
401				GGTAGGGACC	
451	ATTTATGACC			GACGCTGATA	
501				TCAAAAGCTC	
551				GCCCTGTGTG	
601				CGTAAGAGTT	
651				ATCAGAATAG	
701				CTCAATGATT	
751				AGTGCGTACA	
801				GATCGGCAAA	
851				CGAAAAAGCT	
901				ATATGGTGCA	
951				TCATGTATGG	
1001				CTAAGGCAAA	
1051				AAAACCACCG	
1101				CGGCCCATTT	
1151				GGAAATTCGA	
1201				GCAAGATCCA	
1251				TTCCGGAAAG	
1301				CGGCGAAGAA	
1351				TTCGGACCTT	
1401				ATTCATTTTT	
1451				AAAACATATT	
1501				CGTATTAGGA	
1551				AATGTACATC	
1601				AAATTCGTTT	
1651				GCCAAAAGCG	
1701				TCTATGAACA	
1751				GCCGATGCAA	
1801				GTAGGTTTAC	
1851				GATGTCCTGC	
1901				TATTCTGCTC	
1951				GTTCTTGCAT	
2001				ATGATAAAGC	
2051				GTGCAAAGAT	
2101				TAACATGCAA	
2151					
				TTTTACGCGT	
2201				AAACAATTAC	
2251				GAAGCGAAGG	
2301				CTAGAGCAGC	
2351				GAAAAATCAA	
2401				TTCCTTATAA	
2451				GTGTTGTCCC	
2501	GAMIIAGAIG	GIGAIGTTAA	IGGICACAAA	TTTTCTGTCT	CCGGTGAAGG

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 21 of 61

<u>21/61</u>

			<u> 21/01</u>		
Fig 1	7 continued				
2551	TGAAGGTGAT	GCTACTTACG	GTAAATTGAC	CTTAAAATTT	ATTTGTACTA
2601	CTGGTAAATT			TAGTCACTAC	TTTCGGTTAT
2651	GGTGTTCAAT	GTTTTGCGAG	ATACCCAGAT	CATATGAAAC	AACATGACTT
2701	TTTCAAGTCT				ACTATTTTT
2751	TCAAAGATGA				
2801	GATACCTTAG				TTAAAGAAGA
2851	TGGTAACATT		AATTGGAATA		TCTCACAATG
2901	TTTACATCAT	GGCTGACAAA			TAACTTCAAA
2951		ACATTGAAGA			ACCATTATCA
3001	ACAAAATACT	CCAATTGGTG		CTTGTTACCA	
3051	ACTTATCCAC	TCAATCTGCC	TTATCCAAAG		AAAGAGAGAC
3101	CACATGGTCT	TGTTAGAATT	TGTTACTGCT	GCTGGTATTA	
3151	GGATGAATTG	TACAAATAAC	TGCAGGGCGC		AATAAGCGAA
3201	TTTCTTATGA	TTTATGATTT	TTATTATTAA		AAAAAAATAA
3251		ATTTTAAAGT	GACTCTTAGG		AAAAAATTCTTA
3301	TTCTTGAGTA		GTAGGTCAGG		
3351	TGAGGTCGCT				AGGTATAGTA
3401		CTTATTGACC	ACACCTCTAC	CGGCAGATCC	GCTAGGGATA ATCGGATGCA
	ACAGGGTAAT	ATAGATCTGC	CCGCCGGGAA		
3451	TCCTCTCTGC	TGCCATGATG	CTGAAGTTGT	CGTTGAACAT	GGTTGCTGCC
3501	GGCGAGGCGG	TCGAGCAGGC	AGTGCAGGAG	GTGTTGGACT	CGGGAGTCAG
3551	AACGGGCGAC	CTGCTCGGCT	CGAGCTCCAC	TTCGGAGGTT	GGCGACGCCA
3601	TTGCGCTTGC	AGTTAAGGAA		GGCAATCCGC	AGCTGGTCTG
3651	AGCTAGCCTC	GAGGACCCTT	CTCTTTAGAC	TATTCTACTC	TTATGCACGT
3701	AAAAAATTCT	AGGAAATATG	TATTAACTAG	GAGTAAAATA	ACCGGCTAGT
3751	GGCATTCATA	TAGCCGTCTG	TTTACATCTA	CATCACACAT	TTCGAGTGTA
3801	TATCTCGCAA		AAATAGGCAG	TCAATGGCCC	GACCATTCTA
3851	TGGTGTTTAG	GTCGATGCCA	TCTTTGTACG	TTTAGCTTAT	CGATGATAAG
3901	CTGTCAAACA	TGAGAATTCT	TGAAGACGAA	AGGGCCTCGT	GATACGCCTA
3951	TTTTTATAGG	TTAATGTCAT	GATAATAATG	GTTTCTTAGA	CGTCAGGTGG
4001	CACTTTTCGG	GGAAATGTGC	GCGGAACCCC	TATTTGTTTA	TTTTTCTAAA
4051	TACATTCAAA	TATGTATCCG	CTCATGAGAC	AATAACCCTG	ATAAATGCTT
4101	CAATAATATT	GAAAAAGGAA	GAGTATGAGT	ATTCAACATT	TCCGTGTCGC
4151	CCTTATTCCC	TTTTTTGCGG	CATTTTGCCT	TCCTGTTTTT	GCTCACCCAG
4201	AAACGCTGGT	GAAAGTAAAA	GATGCTGAAG	ATCAGTTGGG	TGCACGAGTG
4251	GGTTACATCG	AACTGGATCT	CAACAGCGGT	AAGATCCTTG	AGAGTTTTCG
4301	CCCCGAAGAA	CGTTTTCCAA	TGATGAGCAC	TTTTAAAGTT	CTGCTATGTG
4351	GCGCGGTATT	ATCCCGTGTT	GACGCCGGGC	AAGAGCAACT	CGGTCGCCGC
4401	ATACACTATT	CTCAGAATGA		TACTCACCAG	TCACAGAAAA
4451	GCATCTTACG	GATGGCATGA			GCTGCCATAA
4501	CCATGAGTGA	TAACACTGCG		TTCTGACAAC	GATCGGAGGA
4551	CCGAAGGAGC	TAACCGCTTT		ATGGGGGATC	
4601	CCTTGATCGT			AGCCATACCA	
4651				CAACGTTGCG	
4701				CAACAATTAA	
4751				GCGCTCGGCC	
4801				GTGAGCGTGG	
4851				CCCTCCCGTA	
4901				TGAACGAAAT	
4951				GGTAACTGTC	
5001				CTTCATTTTT	
5051				CATGACCAAA	
5101				CCGTAGAAAA	
5151				ATCTGCTGCT	
5201	AAAACCACCG	CTACCAGCGG	TGGTTTGTTT	GCCGGATCAA	GAGCTACCAA

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 22 of 61

22/61

Fig 17 continued

5	17 con	tinued				
	5251	CTCTTTTTCC	GAAGGTAACT	GGCTTCAGCA	GAGCGCAGAT	ACCAAATACT
	5301	GTCCTTCTAG	TGTAGCCGTA	GTTAGGCCAC	CACTTCAAGA	ACTCTGTAGC
	5351	ACCGCCTACA	TACCTCGCTC	TGCTAATCCT	GTTACCAGTG	GCTGCTGCCA
	5401	GTGGCGATAA	GTCGTGTCTT		ACTCAAGACG	ATAGTTACCG
	5451	GATAAGGCGC	AGCGGTCGGG			CACAGCCCAG
	5501			CCGAACTGAG		
	5551		CACGCTTCCC		AGGCGGACAG	
	5601			AGAGCGCACG		
	5651			CTGTCGGGTT		
	5701		GTGATGCTCG			GAAAAACGCC
	5751					CTTTTGCTCA
	5801					CGTATTACCG
	5851		AGCTGATACC			CGAGCGCAGC
	5901		GCGAGGAAGC			ATTTTCTCCT
	5951	TACGCATCTG		CACACCGCAT		
	6001		TGCCGCATAG			CTATCGCTAC
	6051			CCCCGACACC		
	6101			CCCGGCATCC		
	6151			GTCAGAGGTT		TCACCGAAAC
	6201			GAAAAATGCG		
	6251			ACATTGGAAG		
	6301			GAGTTGACTA		
	6351			GGCCAGGACA		
	6401			TCGCACTAGT		
	6451			ATAGCATTGA		
	6501			ACAGCTAAAG		
	6551			GGATAATATC		
	6601			CGCATATAAG		
	6651			ATGTATATAT		
	6701			TGAGCTGTAT		
	6751			GGAAACGCTT		
	6801	TCCTATTCTC		AGGAACTTCA		
	6851			TCAAAAAACC		
	6901			AATACCGCTT		TGCTCAAAAG
	6951			CTGTGCTATA		ACCTACCCAT
	7001			TTGCATCTAA		
	7051			TCTTTAGACA		
	7101	ATTCATAGAG		ACAATACGAA		
	7151			AGAAGAAACC		TTCTGACCAA
	7201			CACTTTCTGT		
	7251		AGAATATAAT		TTTATCTTGA	
	7301			AGTAAACGCG		
	7351			CACCAAAGTA		
	7401			ATCAAGAGAC		
	7451			GATGCTTTGT		
	7501			AAAAGAAGTA		
	7551			TCTGTTCTGT		
	7601			CTCGCGTTGC		
	7651			TAAAATAGCG		
	7701			ATTCTTTGTT		
	7751			AATGAAGCAC		
	7801			GAAGCGATTC		
	7851			TTCTCCAGAA		
				GGCGGTTTTT		

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 23 of 61

Figure 17 continued 23/61

_	continued		25/01		
7951					CCGATGAAAC
8001		GCTCACGATA			
8051	CTGGAACGTT	GTGAGGGTAA	ACAACTGGCG	GTATGGATGC	GGCGGGACCA
8101		ACTCAGGGTC			
8151	GTGTTCCACA	GGGTAGCCAG	CAGCATCCTG	CGATGCAGAT	CCGGAACATA
8201	ATGGTGCAGG	GCGCTGACTT	CCGCGTTTCC	AGACTTTACG	AAACACGGAA
8251		ATTCATGTTG			
8301					CTAACCAGTA
8351		GCCAGCCTAG			
8401		GGCCAGGACC			
8451	TCCAATTTTT		CATTATAGAA		
8501		CTGATATAAT			
8551		TTACTTATAA			
8601		GCTTCCCAGC			
8651		TCCCTTTGCA			
8701		AGACCACATC			
8751					GACCCAATGC
		TCATCTAAAC			
8801		TCTTCCACCC			
8851		CGCTCTTCGC			
8901		GAGCCCTTGC			AAAAGGCCTC
8951	TAGGTTCCTT		TCCGCCGCCT		
9001		CCACACCGTG			
9051		CCCGCAGAGT			
9101		GTCTTCGAAG			
9151		TAACTGTGCC			
9201		AGTAAACAAA			
9251	GTAATTCCTT	GGTGGTACGA	ACATCCAATG	AAGCACACAA	GTTTGTTTGC
9301	TTTTCGTGCA	TGATATTAAA	TAGCTTGGCA	GCAACAGGAC	TAGGATGAGT
9351	AGCAGCACGT	TCCTTATATG	TAGCTTTCGA	CATGATTTAT	CTTCGTTTCC
9401	TGCAGGTTTT	TGTTCTGTGC	AGTTGGGTTA	AGAATACTGG	GCAATTTCAT
9451	GTTTCTTCAA	CACCACATAT	GCGTATATAT	ACCAATCTAA	GTCTGTGCTC
9501		TCTTCCTTCT		TACCGAATCA	
9551	AAAGAAACCG	GAATCAAAAA	AAAGAACAAA		
9601		CCCCGATGC			
9651		GTTCTGCCAA			
9701		TGGCTCCAAT			TAGCGAGGTG
9751		CCATTCAGGT			
9801		AGGCAGACAA			
9851		TGTGCTCGCC			GACGATCAGC
9901		TCGAAGTTAG			
9951			CTACCTGCCT		
10001		GATGCCGCCG			GGGGAAGGCC
10051		GCGTCGCGAA			
10101		GCGATAATGG			
10151		GAAGGCTTGA			
10201		CGATCATCGT			
10251		AGCGCTGCCG			
10301	AGACAGTCAT	AAGTGCGGCG	ACGATAGTCA	TGCCCCGCGC	CCACCGGAAG
10351		GGTTGAAGGC			
10401		TGCATTAGGA			
10451		CGCAAGGAAT			
10501		CGGGGCCTGC			
10551		TGGCGAGCCC			
10601		AACCGCACCT	GTGGCGCCGG	TGATGCCGGC	CACGATGCGT
10651	CCGGCGTAGA	G			

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 24 of 61

24/61

FIG. 18

Cytotoxicity Profile:

Genotoxicity Profile:

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 25 of 61

25/61

FIG. 19

Cytotoxicity Profile:

Test Compound Concentration / ug ml⁻¹

Genotoxicity Profile:

Test Compound Concentration / ug ml⁻¹

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 26 of 61

			GREEN SCREEN RESULTS	N RESULTS						ALTER	ALTERNATIVE TEST DATA	r DATA					
TEST COMPOUND	CAS 110.	Cytotoxicity	1 FC / no mr.*	Test Range	Test Range	Test Range GonTO1 Strain		Test Range	Test Range	FP Card	Carcinegenicity	Amea	Z.	Umuc	MNT	MAY	Chem
2-Acetamidafluorene	63-96-3	_	4—	118	2 S	Genoloxicity	LEC / µg ıml"	ng mL	With			Test	Test	Tost	th vilro		Alle
Acetylsallcylic Acid	50.70-2		9.03	233	750			115	0,52		+	+/- (MA)	Г	+ (MA)	+	_	+
Actnomycin D	. 6076-0		62.5	200	10.4	•		867	4.81					İ	1.	1	7
Acycloguanusine	59777.09.3		6.3		0,40			200	0.40	-	+		+		T	1,7	,
9-Anthosoldine	80-45-9	Ľ	2,00	1,43	2	•		112.5	0.50								
2-Ardinoanthracenė	613-13-8		14.76	82	i i	•		128	0.55				+	+			(3)
2-Artino-4-nilrophenol	0-25-66		40.25	1 6	200	• :		25	0.29			+ (MA)	+ (MA)	+ (MA)	÷		1
4-Arrinophenol	123-30-0		23.0	3	3	ţ	9.6	4	0.50		+	+/:(MA)	+	-			+
3-Artino-1,2,4-Triazole	81.03.8			900	4.07	•		204	4.62		-		+			,	
Arrotefflo (Na salt)	200		040	840	66'6	+	. 840	.840	66'6		-/-	,	į.	\dagger	\dagger	Ì	
The soul	69/52/3			0000	22.0	•		88	22.9		<u> </u>	1		†	†	Ì	
	62-53-3	‡	2553	20420	218.3			20420	2403		+	•	•	7	1		
o-Ansibine	90-04-0	‡	14.2	437	3.66			100	200		†		•	1		+	÷
AphidicoIn	30956-21-1	+	20	20	900		;	101	979	1	•	+/- (MA)	÷	•			+
	147-94-4			14.00			3	8	90'0	1		•	+		_		
5-Azacylidina	320-07-2		Aca	1				1400	5.76	-	•		+	<u> </u>	+	+	
	30516.07.1		200	007	21.5	‡	625	1260	5.12		-/-	+	+	†-	1.	,	1
Benzaldehvde			2000	250	27.5	•		7350	27.5	_	-	 -	1	\dagger	+		1
Benzolahuran	J-26-001		2020	5220	49.2	+	1313	5220	49.2		7	1.	1	\dagger		+	
Berraid Chicada	50-32-8	1		28	0.10	+		20	0,40		\dagger	3				1	+
Riomark Cultafa	198-06		1516	12120	86.22	+	304	12120.	88.22		1	-	TWIN I	* WW.	+ (MA)	÷	+
al consta	9041-93-4		2	9	0.0036	‡	2.5	9	0,0035		-	. ;	1	1		1	+
Carling Chalde	10100-64-2		2	2	0.041	-		~	0.011			+		+	+	+	+
College	50-00-3		266	634	2.73			53.	2.73				1	+	+	- -	+
	120-00-8	‡	177	080	7,89	‡	599	88	7.89		1	1		$\cdot \mid$	1	+	+
all respond	64485-03-4		238	230	0.50	‡	238	238	S. C		+	+	+	+	1		1
Chieramouch	305-03-3	-	125	250	0.82			250	66		-	†	1	1	1		
Chloramphenicol	66-76-7	+	162	162	0.50	‡	10.1	o cat	0.00		-		1	1		+	+
Съфтотусіл Аз	7059-24-7	٠		9	0,0085	-		2 5	2000		+	•	+	•	1	•	
Cinetdine	51401-61-9	+	125	125	0.50	ļ	3,13		Concin	-	+	1	1				
Cisplatin (without DMSO)	15663-27-1	‡	2.34	130	0.50	+	215	2	0.50	+	,		.		_		
Colchicine	64-00-9	,		833	2.44	+	2	27.0	0.12		+	÷		+			
Crotonaldehyde	4170-30-3	‡	28.5	1692		- -	17/	3	2.14	1	+		•	_	+	- +	
Cumene Hydroperoxide	U0-15-9	‡	65.4	510	1 2	+	10.7	8	2.41		+	+			+		
Cyclohexinide	6-61-8	‡	500	-	36000			ğ	0.68	-		+	_	+			
Daunorubidin	23541-50-6	7	2		2000	•		1450	5.15	_			+		-	+	
3,5-Dichlorophend	591-35-5		125	37 2	0.44	*	0.25	0.5	6,000,0	+		+		+		-	
Olcumyl Peraside	0.00		2	8	0.15			52	0.1534		_		-	+	1	l	T
	200	+	6.3	0.3	0.0011	•		0.3.	0.0011			-	+	\dagger		+	1
Diethyfantino-4-mellydenimerth	1777	•	19.8	39.6	0.10			39.6	0,10	‡	-			 	1	1,	1
1 2-Directive discharation tool	11-44-1	:	59	118	0.51			£	0.51		-	1	+	+		+	
Granatal Shale	306-37-6	‡	330	1330	10.00	‡	999	1330	10.00	*		+	+	+	1	-	
LIN AIG	24169-02-6	‡	25	99	0.11	‡	2.6	9	0.011			+	+	1	 - -	+	
4 2 7	519-23-3	‡	4.30	562	2.28	‡	12.5	9	2 280	-	+	+	 -		÷		
, c-epoxyquiane	106-68-7	+	8370	16740	232	+	16740	16740	1	-	1	+	<u> </u>	1	1	1	
Curonum erginade	1239-45-8	٠		12.5	0.032	‡	6.28	2, 2, 2	703	+	1		7	+	-		T
u(marin n	31005-02:4	•		129	9,68	‡	32.3	25	9100		7	+/- (MA)	+ +	+ (MA)	+	+	+
Ciny Adyaje	140-88-5	‡	4605	18420	164.0			10420	403.00			1	-				П
Einyersedipitine 3	· 107-15-3	•	224.0	450	7.48		-	, F.	7.40	+	+	-	+	1	1	-	+
							-	3	- 25	-	<u>.</u>		-	-	_	L	ſ

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 27 of 61

Ethyl methodes dignosts		L	-														•
Eloposide	33410 42 0			100	0.81	‡	25	100	0.81		+	‡	+				
Furazolichne	67 15 0			126	0.21	+	126	125	0.21			ŀ	+				
Hexamelhylenetetramine	160-10		44.1	130	0.50	‡	28.2	113	0.50			+		1,		٠	
Hydrazine monohydrate	7003 57 0	F 7	.150.0	300.0	2.14	+	150	300	214			*		1			
Hydrogen Peraxida	7777 64.4		3.2	ģ	89.	‡	•	*	0.08		+	‡	+	+ (MA)			
Hydroquinone	124-41-0	Ļ	67.5	250	18.17	+	. 68.5	137.5	4.04		+	‡	+	+			1
9-1 lydroxygutnoline	148-24-3	T.	000	3	0.50			28	0.50		-/+	*	+		÷	÷	\cdot
Hydroxyurea	127-17-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cn i	0.0034	•		0,125	0.0009			+/- (MA	Ļ			-	
ICR191 Actidine Mulanen	17070.180		/BLL	18015	250.0	‡	593	19015	250.00		i		1	1			
Isotuly Nivib	0.64-0.01		1.56	12.5	0.028			12.5	0.020	e			<u>- </u>	+		•	+
Mechlorethamon HCI	200716	‡	127	208	3.90	•		508	3.90		4		1				
	7-00-65			1920	12	+	88	ä				+/- (MA)	+			+	
Mediapyrilene HCI	135-23-9	+	9.0	144	0.48	‡	F		0.62		+	÷				+	
Methyl Carbarnale	590-55-0			g	2			2	0.40	£	÷	•	+ (MA)	+		+	
Methyl Methacrytale	00-62-6	,						37.5	0.50		-/+	,	+			1	
Methyl nietheriesulfunate	66-27-3	+	18.75	326	200			94300	941.67	Đ.	•		+			T	
Methyl viologen	1910-42-5		200	475	OF I	ţ.	1.02	83	0.30		÷	‡	+	+	1	1	
Milamyaln C	50-02-7		3	142	0.65	+	ę	9	0.16		÷		+	1		-	•
. OHNIN	70.78.7	- 1	3	200	0.60	+	200	200	0.60		+	1			,	1	
Malidixic Acid	280.00 2		/6'0	F	0.50	‡	0.125	0.500	0.0034		+	+	. ,		-	•	1
1-Nachthylandne	2-00-505	: :	BG	116	0.50	‡	0.25	11,6	0.05	T	+/*	1		- -	-	•	;
Nelmosin	130-32-7	ŧ.	33.3	133	0.93	+	10	2	0.070			7, 7,		•		1	
Merim Red	10133-22-7	‡	15.8	250	0,50	‡	7.8	250	0.50	T		TI- IMA		,	•	÷	+
Nicolina	2-1/2-00		0.18	2.08	0.010	‡	0,72	2.88	0.010	T		A /85 A 1				1	
Milest	54-11-5	‡	5050	5050	31.1			5050	į	T		4					+
Miroferielle	98-85-3	•		12040	97.8-13	,		12040	97.6	\dagger	•						1
niu ota sutan	67-20-9	+	115	115	9,79			21.77		1	+				•		
4-Nitroguinoline-M-oxide	56-57-5	‡	0.13	0,4	0.005	‡	5 5		91.0	1	+	÷	+	+		,	+
M-Nitrosodimethylamine	62-75-9	++	6288	50300	678		2	0.1	0,005	1	+	+	+				Γ
IV-Ninosodiphenylamine	9-08-30-8			og d	2			20300	679		+/-	/+	+ (MA)	+ (MA)	+	<u>;</u>	T
N-Nitroso-N-ethyl urea	759-73-9	‡	1450	3000	200	. :		8	0.50		+/-	+/- (MA)			,		ŀ
N-Hilroso-M-rrethyl urea	604-93-5			0000	2	‡ :	127	203	1,73		+	+		Ì	1	1	
Noscapine	120.82-1			1	10.1	‡	62	ğ	1,01		+	+		1	1,	. ,	T
4.4-Oxydlanillae	101-80-4		2 5 6	0077	2.00		·	2250	6,00	- -				Ī	+	+	
Phenol	100.05-2		226	2	0.82			165	0.82		+	‡	1	1	1	1	
Phenymellylsulfonylluoride	320.99-6		255	0/6	4.99	•		470	4.99	-				1.	1	- ;	T
Phleomycln	11006-33-0	‡	3.13	12 42	NC'A	. ;		20	0.60						+	+	T
Phthalis acid, bls(2-ethylhaxyl) ester	117-81-7	+	08100	00400		‡ :	12.5	12.6						T		+	T
Proflavin Hemisulfale	653-30-0	‡	40	237.0	1 3	1	4905	98100	251		+			,			T
Psomlen	65-97-7			03.4	2 4	ţ.	-	2	0.008	6	+	+/- (MA)	+	T		T	T
Quercetin	117-39-5		50	100	ne d	+	93.1	93.1	0.500					+	+	t	T
Safrole	PA-59-7	‡		0,00	75.0	,		8	0.32		-/+	*	+ (MA)	+ (MA)+	1.	†	Ţ.
Sodium Azido	26628-22-0		51.3	200	3.36	‡	34	546	3.36	_	+		-	+	+	;	-
Sodium Selenile	10102-18-8	+	4:00	32.5	0.50	‡	0.66	6.3	0.082	-		T,	+	+	+	+	+
Skeplonigrin	3930-19.6	1	20 5	1000	6.78			1000	5.78	-		+	1	1	\dagger	1	+
Gullamethuxscule	773 46 5	: 1	0.39	32	0.040	‡	0.39	. 52	0,049			,	İ	1	+	1	
3uffaphen zzole	628-00.0	‡	0	8	90.0	‡	2.5	20	0.078	\vdash	+		1	+	\dagger	1	+
Sullisoxatche	127-69-5		19.4	35	0.49	•		ß	0.016	-		1	\dagger	\dagger	1	1	7
Taxol	33069-62-4		16.9	£ 3	0.51	•		10	0.037	-			1	†	+	+	1
Tetracycline HCI	64.75.6		9 1	58	.003			52	0.029				1	1	1	. .	
	1, 1, 1,	-	267	267	0.60			287	0.60	L	<u> </u>		\dagger	1	+	+	7
										1			•		_	_	+

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 28 of 61

	·	_	_	_	_	_	_	_	_	_	_	_		_	_	
									_		+				+	
•	-			4							+		:		+	
	ŀ	+								1	+					
		•														
				,								ľ				1
					1	÷					•		•		•	
	4		1	+				•		+						
	_		ŀ				L	_				_				
	7 23	1.50	766	2.7.4	000	0.20		1,55		15.60		- 00		0000	0.20	
	5000	2000	170		78.8	2		7/0		10300		152		252		
	1256				1.8		443	2		10200	Ì					
	‡		•		‡		77			+					*	
L	764		2.24		0.20		1 55	33.1		167		1,12		0.28		
	20100		179		78.8		572		00000	4000	15	2	,,,,,	3		
-	10050				3.6				10300	2000	24.24	61.50	313	25.0		
-					ţ				į		1		7.7			
	9-90-70	A LO COFOR	1-10-50151	2000	243-06-5	2 00 000	GU/-055L		9-0/-19		121-33-5		143-67-9			
Thiones	200000	Tilantium Dinylite		Trichloroscotopitalo	atini loropo lorigi.	Tribold Bhosphale	Diolytical income	Itralhana	· allerina io	10.20	Naniiin Naniiin Naniiin Naniiin Naniiin Naniiin Naniiin Naniin Naniiin Naniiin Naniiin Naniiin Naniiin Naniiin Naniiin Naniiin Naniii		.) Alubiastine			

	•	•		_	result.	ssuft.		
	Negative	Positive	Strong Positive	Results vary between reports	Metabolic activation required to obtain positive result.	Fluorescence polarisation used to reveal the result.	Polyploid problems increase agnificantly	•
(EY	r	+ :	+	-/ + .	, MA Lec	£ 3		

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 29 of 61

TEST COMPOUND	GSA	Ames	S9	TEST COMPOUND	GSA	Ames	89
2-Amino-4-nitrophenol	++	+	+	2-Acetamidofluorene	T -	+	+
Ethidium Bromide	++	+	+	2-Aminoanthracene	-	+	· +
Neutral Red	++	+	+	o-Anisidine	1 -	+	+
Proflavin Hemisulfate	++	+	+	8-Hydroxyquinoline	1-	+	+
5-Azacytidine	++	+	•	Isobutyl Nitrite	1	+	+
Bleomycin Sulfate	++	+	•	N-Nitrosodiphenylamine	† ·	÷	+
Crotonaldehyde	++.	+	•	9-Aminoacridine	1.	+	
Daunorubicin	++	+	•	Chlorambucil ;	1.	+	-
Ellipticine	++	+	•	Cumene Hydroperoxide	1 .	+	
Ethyl methanesulfonate	++	+	•	Hydroquinone	-	+	· .
Furazolidone	++	+	•	ICR191 Acridine Mutagen	1-	+	
Hydrazine monohydrate	++	+		Nitrofurantoin	-	+	
Hydroxyurea	++	+	-	N-Nitrosodimethylamine	1	+	
Methyl methanesulfonate	++	+	-	4,4-Oxydianiline	1	+	·
MNNG	++	+		Quercetin	1	+	
Nalidixic Acid	++	+		Sodium Selenite .	 _ ' 	+	
4-Nitroquinoline-N-oxide	++	+	-	Acetylsalicylic Acid	 _ 	-	
N-Nitroso-N-ethyl urea	++	+		Actinomycin D	-		
N-Nitroso-N-methyl urea	++	+		4-Aminophenol	1 - 1		
Sodium _. Azide	++	+		Ampicillin (Na salf)	- 1		
Streptonigrin	++	+	-	Aniline	-		
Trichloroacetonitrile	++	+	•	AraC	-		
Benzo(a)pyrene ·	+	+	÷	AZT ·	-	-	
1-Naphthylamine	+	+	+	Cadmium Chloride	-		
Benzoyl Chloride	+	+	-	Caffeine	-		
Cisplatin (without DMSQ)	+	+		Chromomycin A3	-		
1,2-Epoxybutane	. +	+	-	Cycloheximide	-		
Hexamethylenetetramine	+	+	-	3,5-Dichlorophenol	-	-	
Hydrogen Peroxide	+	+ .	-	Dicumyl Peroxide	-	-	
Mechlorethamine HCl	+	+	-	Dieldrin	-	-	
Mitomycin C	+	+	•	Diethylamino-4-methylcoumarin	- 1	- 1	$\neg \neg$
3-Amino-1,2,4-triazolė	+	-		Ethyl Acrylate	-	-	
Aphidicolin	+	-		Ethylenediamine	-	-	
Benzaldehyde .	+			Methyl Carbamate	-	-	
Colchicine	+	-		Methyl Methacrylate	-	-	\neg
Etoposide	+	· - T		Nicotine	-	-	
Methyl viologen	+	-		Nitrobenzene		-	
Psoralen	+	-		Phenol	•	-	
Catechol	++	-		Sulfisoxazole	-		\neg
Chloramphenicol	++	-		Taxol		-	-
1,2-Dimethylhydrazine HCl	++	-		Tetracycline HCI	-		- 1.
Econazole Nitrate	++.	-		Titanium Dioxide	-	-	
Methapyrilene HCI	++	-		Vanillin		- +	
Phthalic acid bis(2-ethylhexyl) ester	++	-		Vinblastine	-	-+	
Safrole	++	-	-				
Sulfamethoxazole	++	-		S9 column records requirement	for Amea	rpeult.	
Thiourea .	++	-		or column topolog requirement	or Villes	i ESUI(
ritolyl Phosphate	++	-		+ S9 required			
Jrethane ·	++	-	_	· S9 not required	7	able :	3

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 30 of 61

<u>30/61</u>

FIG. 22
Greenrack loading sequence

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 31 of 61

31/61

FIG. 23 Microplate layout

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 32 of 61

32/61

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 33 of 61

<u>33/61</u>

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 34 of 61

34/61

FIG. 26

pGenRNR2

GGATCCGTACCTTCCAGCATTGTCCTTCTGAGAAAACAAAAATGGAAGATGTTGTGAAAATGCAGTAAGTGA GGGGAGGTTCGAACTCTCGACCTTCAGATTATGAGACTGACGCTCTTCCTACTGAGCTACTGAGCACTATT TCTTGTTCCAACCGAGGAATAATACTAGACCTGTAGAAAAGTACCGCTTATCTAATATCCAACTTTTTCTTC TATCACCACCAATTGGCACGCTCGCAACGGTTTCGGGCCAGATTCATGGCCCTGTGGGGTAGAAGTGCCTAC AGACAAAAAACCGTTACGTCCCGCCTCACCAAGCATCGACACAAGCCCTCTCAACCTCCTTAATTTCTTT CGCCAGAAAGTGCGGTGTACTGGTGCAACCTTTTATCGATTTCTCATCATATCGCTATCGCAACGGGCATGG GCGACGAAAAAGCCAATCTAAAGCGTTGTCTTCCTCGTTCCTCGCGCACGCGATTTTGCGTTCTGCATAGGA AGGAAAATAAAATTCTCAACCACACAAACACATAAACACATACAAATACAAATACAAGCTTATTTACTTGAC AATCCGGAGCAACGGGCAACCGTTTGGGGAAAGACCACCCCACGCGCGATCGCCATGGCAACGAGGTCGCA CACGCCCCACACCCAGACCTCCCTGCGAGCGGGCATGGGTACAATGTCCCCGTTGCCACAGAGACCACTTCG TAGCACAGCGCAGAGCGTAGCGTGTTGTTGCTGCTGACAAAAGAAAATTTTTCTTAGCAAAGCAAAGGAGGG GAAGCACGGGCAGATAGCACCGTACCATACCCTTGGAAACTCGAAATGAACGAAGCAGGAAATGAGAGAATG TAAAGGTGAAGAATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGTCACAA TGGTAAATTGCCAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCGAGATA $\tt TTTTTTCAAAGATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTTAATAG$ AATCGAATTAAAAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAA CTCTCACAATGTTTACATCATGGCTGACAAACAAAAGAATGGTATCAAAGTTAACTTCAAAATTAGACACAA CATTGAAGATGGTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTT GTTACCAGACAACCATTACTTATCCACTCAATCTGCCTTATCCAAAGATCCAAACGAAAAGAGAGACCACAT GGTCTTGTTAGAATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAACTGCAGGG AGTGTATACAAATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTG TAGGTCAGGTTGCTTTCTCAGGTATAGTATGAGGTCGCTCTTATTGACCACACCTCTACCGGCAGATCCGCT AGGGATAACAGGGTAATATAGATCTGCCCGCCGGGAAGGCGAACCCGATCGGATGCATCCTCTCTGCTGCCA TGATGCTGAAGTTGTCGTTGAACATGGTTGCTGCCGGCGAGGCGGTCGAGCAGCAGTGCAGGAGGTGTTGG ACTCGGGAGTCAGAACGGGCGACCTGCTCGGCTCGAGCTCCACTTCGGAGGTTGGCGACGCCATTGCGCTTG CAGTTAAGGAAGCCTTGCGCAGGCAATCCGCAGCTGGTCTGAGCTAGCCTCGAGGACCCTTCTCTTTAGACT ATTCTACTCTTATGCACGTAAAAAATTCTAGGAAATATGTATTAACTAGGAGTAAAATAACCGGCTAGTGGC ATTCATATAGCCGTCTGTTTACATCTACATCACACATTTCGAGTGTATATCTCGCAACGTTGGCGTTAAATA GGCAGTCAATGGCCCGACCATTCTATGGTGTTTTAGGTCGATGCCATCTTTGTACAGCTTGCCTCGTCCCCGC CGGGTCACCCGGCCAGCGACATGGAGGCCCAGAATACCCTCCTTGACAGTCTTGACGTGCGCAGCTCAGGGG ${\tt CATGATGTGACTGTCGCCCGTACATTTAGAGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAA}$ ACGCTCCCCTCACAGACGCGTTGAATTGTCCCCACGCCGCCCCTGTAGAGAAATATAAAAGGTTAGGATT TGCCACTGAGGTTCTTCATATACTTCCTTTTAAAATCTTGCTAGGATACAGTTCTCACATCACATCCG AACATAAACAACCATGGGTAAGGAAAAGACTCACGTTTCGAGGCCGCGATTAAATTCCAACATGGATGCTGA TTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAA GCCCGATGCGCCAGAGTTGTTTC

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 35 of 61

35/61

TGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAAT TTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCC CCGGCAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAG TGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCG CTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTG ATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAA TCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAAC GGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGT TTTTCTAATCAGTACTGACAATAAAAAGATTCTTGTTTTCAAGAACTTGTCATTTGTATAGTTTTTTTATAT TGCGAAGTTAAGTGCGCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATACTGCTGTC ATAGCAAGAGCGCCTTTGGCCTCTACGAGCCCTGCCACGGCTCTGCGCCCGATCTGCCCGCCGGGAAGGCGA ACCCGATCGGATGCATCCTCTCTGCTGCCATGATGCTGAAGTTGTCGTTGAACATGGTTGCTGCCGGCGAGG CGGTCGAGCAGGCAGTGCAGGAGGTGTTGGACTCGGGAGTCAGAACGGGCGACCTGCTCGGCTCGAGCTCCA CTTCGGAGGTTGGCGACGCCATTGCGCTTGCAGTTAAGGAAGCCTTGCGCAGGCAATCCGCAGCTGGTCTGA GCTAGCCTCGAGGACCCTTCTCTTTAGACTATTCTACTCTTATGCACGTAAAAAATTCTAGGAAATATGTAT TAACTAGGAGTAAAATAACCGGCTAGTGGCATTCATATAGCCGTCTGTTTACATCTACATCACACATTTCGA GTGTATATCTCGCAACGTTGGCGTTAAATAGGCAGTCAATGGCCCGACCATTCTATGGTGTTTAGGTCGATG CCATCTTTGTACGTTTAGCTTATCGATGATAAGCTGTCAAACATGAGAATTCTTGAAGACGAAAGGGCCTCG TGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGG GAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAAT AACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTA TTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTG AAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTC GCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTG ACGCCGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCA CAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACA CTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGG GGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATG GTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGA TTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAA TCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATC ATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTC TAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCC TGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGG ATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACGCCCAGCTTGGAGCGAACGACCTACACCG AACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATC CGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAAACGCCTGGTATCTTTATA GGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTC GAACGACCGAGCGAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGC ATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCC AGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCGACACCCCGCCAACACCCGCTGACGC GCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTG TCAGAGGTTTTCACCGTCA

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 36 of 61

36/61

TCACCGAAACGCGCGAGGCAGAGCTTTGAAGAAAATGCGCCTTATTCAATCTTTGCTATAAAAAATGGCCC TGTGGGAAATTGGAGCGATAAGCGTGCTTCTGCCGTGGCCAGGACAACGTATACTCATCAGATAACAGCAAT ACCTGATCACTACTTCGCACTAGTTTCTCGGTACTATGCATATGATCCAATATCAAAGGAAATGATAGCATT ACGATACCCCGCATGGAATGGGATAATATCACAGGAGGTACTAGACTACCTTTCATCCTACATAAATAGACG $\tt CGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAGCTCGCGTTGCATTTTCGGAAGCGCTCGT$ $\tt TTTCGGAAACGCTTTGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCAGAGCGCTT$ TTGAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAACCAAAAACGCACCGGACTGTAACGAGCTACTA AAATATTGCGAATACCGCTTCCACAAACATTGCTCAAAAGTATCTCTTTGCTATATATCTCTGTGCTATATC CCTATATAACCTACCCATCCACCTTTCGCTCCTTGAACTTGCATCTAAACTCGACCTCTACATTTTTTATGT TTATCTCTAGTATTACTCTTTAGACAAAAAATTGTAGTAAGAACTATTCATAGAGTGAATCGAAAACAATA CGAAAATGTAAACATTTCCTATACGTAGTATATAGAGACAAAATAGAAGAAACCGTTCATAATTTTCTGACC AATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTATGCGCAATCCACATCGGTATAGAATATAAT CGGGGATGCCTTTATCTTGAAAAATGCACCCGCAGCTTCGCTAGTAATCAGTAAACGCGGGAAGTGGAGTC AGGCTTTTTTTATGGAAGAAAATAGACACCAAAGTAGCCTTCTTCTAACCTTAACGGACCTACAGTGCAA AAAGTTATCAAGAGACTGCATTATAGAGCGCACAAAGGAGAAAAAAAGTAATCTAAGATGCTTTGTTAGAAA AATAGCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAGAAGTATAGATTCTTTGTTGGTAAAATAGCGCTC ATTTTTGTTTTACAAAAATGAAGCACAGATTCTTCGTTGGTAAAATAGCGCTTTCGCGTTGCATTTCTGTTC TGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTCTACAAAATG AAGCACAGATGCTTCGTTCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAGCGATTCACAGATGTCTGCCTGT TCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGTCTGGCTTCTGATAAAGCGGGCCATGTTA AGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATA ${\tt CCGATGAAACGAGAGGATGCTCACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGT}$ GAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTC GTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCATCCTGCGATGCAGATCCGGAACATAATGGTG CAGGGCGCTGACTTCCGGGTTTCCAGACTTTACGAAACACGGAAAACCGAAGACCATTCATGTTGTTGCTCAG AGGCAACCCGGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCACGATCATGCGCACCCGTGGCCAGGACCCA GATTCCCGGGTAATAACTGATATAATTAAATTGAAGCTCTAATTTGTGAGTTTAGTATACATGCATTTACTT ATAATACAGTTTTTTAGTTTTGCTGGCCGCATCTTCTCAAATATGCTTCCCAGCCTGCTTTTCTGTAACGTT CACCCTCTACCTTAGCATCCCTTCCCTTTGCAAATAGTCCTCTTCCAACAATAATAATGTCAGATCCTGTAG AGACCACATCATCCACGGTTCTATACTGTTGACCCAATGCGTCTCCCTTGTCATCTAAACCCACACCGGGTG TCATAATCAACCAATCGTAACCTTCATCTCTTCCACCCATGTCTCTTTGAGCAATAAAGCCGATAACAAAAT ATTCTGCTAACATCAAAAGGCCTCTAGGTTCCTTTGTTACTTCTTCCGCCGCCTGCTTCAAAACCGCTAACAA TACCTGGGCCCACCACCGTGTGCATTCGTAATGTCTGCCCATTCTGCTATTCTGTATACACCCGCAGAGT ACTGCAATTTGACTGTATTACCAATGTCAGCAAATTTTCTGTCTTCGAAGAGTAAAAAATTGTACTTGGCGG ATAATGCCTTTAGCGGCTTAACTGTGCCCTCCATGGAAAAATCAGTCAAGATATCCACATGTGTTTTTAGTA AACAAATTTTGGGACCTAATGCTTCAACTAACTCCAGTAATTCCTTGGTGGTACGAACATCCAATGAAGCAC ACAAGTTTGTTTGCTTTTCGTGCATGATATTAAATAGCTTGGCAGCAACAGGACTAGGATGAGTAGCAGCAC GTTCCTTATATGTAGCTTTCGACATGATTTATCTTCGTTTCCTGCAGGTTTTTGTTCTGTGCAGTTTGGGTTA ATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAGGTCGAGGTGGCCCGGCTCCATG TGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCGGTCCAGTGATCGAAGTTAGGCTGGTAAGAGCCG TCCCGATGCCGCCGGAAG

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 37 of 61

37/61

CGAGAAGAATCATAATGGGGAAGGCCATCCAGCCTCGCGTCGCGAACGCCAGCAAGACGTAGCCCAGCGCGT
CGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGTTTGGTGGCGGACCAGTGACGAAGGCTT
GAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGCCGATCATCGTCGCCGTCCAGCGAAAGCGGT
CCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAA
GTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCG
GTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCG
CCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGCCACCGGGCCTGCCACCATAC
CCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGTGATGTCGGCGATAT
AGGCGCCAGCAACCGCCCCCTGTGGCCCCCGGTGATGCCCCCGCCGTAGA

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 38 of 61

38/61

FIG. 27

PGenRNR3

AAGGCTTGTTTCAGTTTGAACTAGGTAGCAGAGCCAAGCCCTCGTTCTTGGCTGCTAATTTTCCTAAAGTAGT TTTTTTTTTTTCGTGGTTGTCGCAGCAACGACACCTAGGCGCTGCTCAAAGGGGCCAAAAAACCCGGTTGCCAT GGCGAGGACCAAACGACAAGATGGGAAAAAAACAATAGTCTATTGTTAAATCGTAATACTGTATTGTGAGAT GCTGACGCGTTTCGTTTTTCGTGTCAGCGTTCTTTATATTGTTTCGTGTTCTGCTGCAAAACGTATATAAAC AATTATTCACTGGTGTTGTCCCAATTTTGGTTGAATTAGATGGTGATGTTAATGGTCACAAATTTTCTGTCT CAGTTCCATGGCCAACCTTAGTCACTACTTTCGGTTATGGTGTTCAATGTTTTGCGAGATACCCAGATCATA ATGACGGTAACTACAAGACCAGAGCTGAAGTCAAGTTTGAAGGTGATACCTTAGTTAATAGAATCGAATTAA AAGGTATTGATTTTAAAGAAGATGGTAACATTTTAGGTCACAAATTGGAATACAACTATAACTCTCACAATG TTTACATCATGGCTGACAAACAAAGAATGGTATCAAAGTTAACTTCAAAATTAGACACAACATTGAAGATG GTTCTGTTCAATTAGCTGACCATTATCAACAAAATACTCCAATTGGTGATGGTCCAGTCTTGTTACCAGACA AATTTGTTACTGCTGCTGGTATTACCCATGGTATGGATGAATTGTACAAATAACTGCAGGGCGCCCACTTC ATTTTAAAGTGACTCTTAGGTTTTAAAACGAAAATTCTTATTCTTGAGTAACTCTTTCCTGTAGGTCAGGTT GCTTTCTCAGGTATAGTATGAGGTCGCTCTTATTGACCACACCTCTACCGGCAGATCCGCTAGGGATAACAG GGTAATATAGATCTGCCCGCCGGGAAGGCGAACCCGATCGGATGCATCCTCTCTGCTGCCATGATGCTGAAG AGAACGGGCGACCTGCTCGGCTCGAGCTCCACTTCGGAGGTTGGCGACGCCATTGCGCTTGCAGTTAAGGAA GCCTTGCGCAGGCAATCCGCAGCTGGTCTGAGCTAGCCTCGAGGACCCTTCTCTTTAGACTATTCTACTCTT ATGCACGTAAAAATTCTAGGAAATATGTATTAACTAGGAGTAAAATAACCGGCTAGTGGCATTCATATAGC CGTCTGTTTACATCTACATCACACATTTCGAGTGTATATCTCGCAACGTTGGCGTTAAATAGGCAGTCAATG GCCCGACCATTCTATGGTGTTTAGGTCGATGCCATCTTTGTACGTTTAGCTTATCGATGATAAGCTGTCAAA CATGAGAATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATG GTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATA CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCAC CCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTT CTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCT CAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA GAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAAT GAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTA $\tt CCACTTCTGCGCTCGGCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCT$ CGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGT CAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTG TCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTG AAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCC $\tt CCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTC$ AGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTA GCACCGCCTACATACCTCGCTC

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 39 of 61

39/61

TGCTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGAT AGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGA CCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGG ACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGT ATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGGC GGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA GCCGCAGCCGAACGACCGAGCGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTC TCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCAT AGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCCAACACC CGCTGACGCGCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAG CTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGAGCTTTGAAGAAAAATGCGCCTT TGAAGGGCCTAACGGAGTTGACTAATGTTGTGGGAAATTGGAGCGATAAGCGTGCTTCTGCCGTGGCCAGGA CAACGTATACTCATCAGATAACAGCAATACCTGATCACTACTTCGCACTAGTTTCTCGGTACTATGCATATG ATCCAATATCAAAGGAAATGATAGCATTGAAGGATGAGACTAATCCAATTGAGGAGTGGCAGCATATAGAAC AGCTAAAGGGTAGTGCTGAAGGAAGCATACGATACCCCGCATGGAATGGGATAATATCACAGGAGGTACTAG ACTACCTTCATCCTACATAAATAGACGCATATAAGTACGCATTTAAGCATAAACACGCACTATGCCGTTCT TCTCATGTATATATATACAGGCAACACGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAG CTCGCGTTGCATTTTCGGAAGCGCTCGTTTTCGGAAACGCTTTGAAGTTCCTATTCCGAAGTTCCTATTCTC TAGAAAGTATAGGAACTTCAGAGCGCTTTTGAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAACCAA AAACGCACCGGACTGTAACGAGCTACTAAAATATTGCGAATACCGCTTCCACAAACATTGCTCAAAAGTATC TCTTTGCTATATATCTCTGTGCTATATCCCTATATAACCTACCCATCCACCTTTCGCTCCTTGAACTTGCAT CTAAACTCGACCTCTACATTTTTTATGTTTATCTCTAGTATTACTCTTTAGACAAAAAAATTGTAGTAAGAA CTATTCATAGAGTGAATCGAAAACAATACGAAAATGTAAACATTTCCTATACGTAGTATATAGAGACAAAAT AGAAGAAACCGTTCATAATTTTCTGACCAATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTATG CGCAATCCACATCGGTATAGAATATAATCGGGGATGCCTTTATCTTGAAAAAATGCACCCGCAGCTTCGCTA GTAATCAGTAAACGCGGGAAGTGGAGTCAGGCTTTTTTTATGGAAGAGAAAATAGACACCAAAGTAGCCTTC TTCTAACCTTAACGGACCTACAGTGCAAAAAGTTATCAAGAGACTGCATTATAGAGCGCACAAAGGAGAAAA AAAGTAATCTAAGATGCTTTGTTAGAAAAATAGCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAAGAAGTA TAGATTCTTTGTTGGTAAAATAGCGCTCTCGCGTTGCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTT GTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTTTACAAAAATGAAGCACAGATTCTTCGTTGGTAAA TCGCGTTGCATTTTTGTTCTACAAAATGAAGCACAGATGCTTCGTTCTGCGGTAAAGCTCATCAGCGTGGTC GTGAAGCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAATGT $\tt CTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCTCCGTGTAAGG$ GGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGGATGCTCACGATACGGGTTACTGATGA TGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACTGGCGGTATGGATGCGGCGGGACCAGAGAAA AATCACTCAGGGTCAATGCCAGCGCTTCGTTAATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCC TGCGATGCAGATCCGGAACATAATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAA TATCGGTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGAGCAC TCGTCATTATAGAAATCATTACGACCGAGATTCCCGGGTAATAACTGATATAATTAAATTGAAGCTCTAATT TGTGAGTTTAGTATACATGCATTTACTTATAATACAGTTTTTTAGTTTTGCTGGCCGCATCTTCTCAAATAT GCTTCCCAGCCTGCTTTTCTGTAACGTTCACCCTCTACCTTAGCATCCCTTTCCCTTTGCAAATAGTCCTCTT CCAACAATAATAATGTCAGATCCTGTAGAGACCACATCATCCACGGTTCTATACTGTTGACCCAATGCGTCT CTTTGAGCAATAAAGCCGATAACAAAATCTTTGTCGCTCTTCGCAATGTCAACAGTACCCTTAGTATATTCT $\verb|CCAGTAGCTAGGGGGCCCTTGCATGACAATTCTGCTAACATCAAAAGGCCTCTAGGTTCCTTTGTTACTTCT|\\$ TCCGCCGCCTGCTTCAAACCGCTAACAATACCTGGGCCCACCACCACCGTGTGCATTCGTAATGTCTGCCCAT ${\tt TCTGCTATTCTGTATACACCCGCAGAGTACTGCAATTTGACTGTATTACCAATGTCAGCAAATTTTCTGTCT}$ TCGAAGAGTAAAAATTGTACTTGGCGGATAATGCCTTTAGCGGCTTAACTGTGCCCTCCATGGAAAAATCA **GTCAAGATATCCACATGT**

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 40 of 61

40/61

AATGAAGCACAAGTTTGTTTGCTTTTCGTGCATGATATTAAATAGCTTGGCAGCAACAGGACTAGGATGA GTAGCAGCACGTTCCTTATATGTAGCTTTCGACATGATTTATCTTCGTTTCCTGCAGGTTTTTGTTCTGTGC CTGTGCTCCTTCCTTCGTTCTTCCTCCTGCTCGGAGATTACCGAATCAAAAAAATTTCAAAGAAACCGGAAT ATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAGGTCGAGGTGGCC CGGCTCCATGCACCGCGACGCAACGCGGGGGGGCAGACAAGGTATAGGGCGGCGCCTACAATCCATGCCAAC CCGTTCCATGTGCTCGCCGAGGCGGCATAAATCGCCGTGACGATCAGCGGTCCAGTGATCGAAGTTAGGCTG AACGCGGCCATCCCGATGCCGCAGAGCGAGAAGAATCATAATGGGGAAGGCCATCCAGCCTCGCGTCGCG AACGCCAGCAGAGACGTAGCCCAGCGCGTCGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAACGT TTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCAAGCGACAGGCCG ATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAGCGCTGCCGGCACCTGTCCTACG AGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTG ACTGGGTTGAAGGCTCTCAAGGGCATCGGTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCC CCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCCGA TCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCCGGCCACG **ATGCGTCCGGCGTAGA**

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 41 of 61

41/61

FIG. 28

 \mathbf{A}

B

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 42 of 61

42/61

FIG. 29

A

B

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 43 of 61

Fig:30 Methyl methanesulfonate

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 44 of 61

Fig:31
1,2-Dimethylhydrazine (dihydrochloride)

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 45 of 61

 $\label{eq:Fig:32} \underline{Fig:32}$ Ethyl methanesulfonate

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 46 of 61

46/61

Fig:33

RNR3 sequence data downloaded from SGD, Chromosome IX:

1	AGATTCTGCG	CCAGCAAGTC	GTCTCCGAGG	GGGGGCCCAC	CGCTACCATA
51	CAGTCAAGGT	TTAACTACGC	ATGGGGGCTG	ATCAAATCCA	CTGACGTGAA
101	TGACGAAAGG	CTTGGTGTGA	AAATCCTCAC	AGACATTTAC	AAAGAGGCCG
151	AGTCCCGTAG	ACGAGAATGC	CTATATTATC	TGACCATAGG	TTGCTACAAA
201	CTCGGTGAAT	ACTCTATGGC	GAAGAGATAT	GTAGACACTT	TATTTGAGCA
251	TGAGCGTAAT	AACAAGCAGG	TGGGCGCTTT	GAAGAGTATG	GTAGAGGATA
301	AGATCCAGAA	GGAAACACTC	AAGGGTGTTG	TCGTCGCTGG	AGGCGTACTA
351	GCCGGCGCTG	TGGCCGTGGC	TAGTTTCTTC	TTAAGAAACA	AGAGAAGGTA
401	ACAAGCACAT	AAAAAATCAG	CACATACGTA	CATACATAAG	AATGAATCGC
451	ACGCACGCGT	AAACATTTAT	CATTTAATCT	TCAGTTGTTA	GATAAAAAAA
501	AAAAGAAAAG	AAAAGAAAGT	GAAGGCTTGT	TTCAGTTTGA	ACTAGGTAGC
551	AGAGCAAGCC	CTCGTTCTTG	GCTGCTAATT	TTCCTAAAGT	AGTAAAAAAA
601	GCCAAGTTAT	CTGCCTACGG	TTGTCACAGC	AACATTGCGT	GCCGTTGTTC
651	TTTTGTTTT	TTTTTTTTT	TTTTTTCGTG	GTTGTCGCAG	CAACGACACC
701	TAGGCGCTGC	TCAAAGGGGC	AAAAACCCGG	TTGCCATGGC	GAGGACCAAA
751	CGACAAGATG	GGAAAAAAAC	AATAGTCTAT	TGTTAAATCG	TAATACTGTA
801	TTGTGAGATG	CTGACGCGTT	TCGTTTTTCG	TGTCAGCGTT	CTTTATATTG
851	TTTCGTGTTC	TGCTGCAAAA	CGTATATAAA	CGCACTGCTA	TTTTGCCTTC
901	TTTTGCCTTC	TTCCTTGCCT	TTCTCTCATC	TCATATCCAA	GTTGAAATAA
951	ATATGACAAG	CAAGAATAGC	AGCAGCAATA	AATCAAATAC	TECEACACAA
1001	ATG TACGTTA	TTAAAAGAGA	CGGCCGCAAA	GAGCCCGTTC	AATTCGATAA
1051	AATTACCTCC	CGTATCACCC	GTTTGTCATA	CGGTTTAGAC	CCAAACCGTA
1101	TTGATGCTGT	TAAGGTAACC	CAACGTATTA	TTTCTGGTGT	GTACTCCGGT
1151	GTTACTACCG	TTGAGCTGGA	CAATCTTGCA	GCTGAAACAT	GTGCATACAT
1201	GACCACTGTG	CACCCTGATT	ATGCCACTCT	AGCCGCTAGA	ATCGCCATCT
1251	CTAACTTACA	TAAGCAAACC	ACAAAGCAAT	TCTCCAAAGT	TATTGAGGAT
1301	TTACACGACT	GGATTAACCC	AGCTACTGGA	AAGCATGCTC	CTATGATTTC
1351	GGACGAAATT	TACAACATTG	TCATGGAAAA	CAAAGATACT	TTGAACTCGG
1401	CCATCGTGTA	CGATAGGGAT	TTCCAGTATA	CGTATTTCGG	ATTCAAGACA
1451	CTGGAGCGTT	CGTACTTGCT	AAGACTGAAC	GGTGAAGTGG	CAGAACGTCC
1501	TCAGCATTTG	GTAATGCGTG	TGGCGCTAGG	TATCCATGGT	AGCGATATCG
1551	AATCTGTGCT	GAAGACTTAT	AATTTGATGT	CGTTAAGATA	CTTCACTCAC
1601	GCTTCCCCAA		CGCTGGTACG	CCACATCCTC	AAATGTCTTC
1651	ATGTTTCTTA	ATTGCCATGA	AGGATGACTC	TATCGAAGGT	ATTTATGATA
1701	CTTTGAAAGA	ATGTGCTATG	ATTTCCAAAA	CTGCAGGTGG	TGTTGGTCTT
1751	CATATCAACA	ACATCCGTTC	CACAGGTTCT	TATATCGCTG	GTACCAACGG
1801	TACTTCAAAC	GGGTTGATTC	CTATGATTCG	TGTTTTCAAT	AATACTGCCC
1851	GTTATGTGGA	CCAGGGTGGT	AACAAGAGAC	CTGGTGCTTT	CGCCCTTTTC
1901	TTGGAGCCAT	GGCATGCAGA	TATCTTCGAC	TTTGTCGATA	TCAGAAAAAC
1951	ACATGGTAAG	GAAGAAATTC	GTGCAAGAGA	TTTGTTCCCT	GCTCTATGGA
2001	TCCCTGATCT	TTTCATGAAA	CGTGTTCAAG	AGGATGGGCC	TTGGACTTTG
2051	TTTTCGCCCA	GTGCTGCCCC	AGGTTTAGAT	GATGTGTGGG	GTGATGAATT

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 47 of 61

<u>47/61</u>

2101	TGAAGAACTA	TATACTCGTT	ACGAAAGAGA	AGGTCGTGGT	AAAACAATTA
2151	AAGCCCAAAA	GTTGTGGTAT	GCCATTTTGC	AAGCACAGAC	AGAAACAGGT
2201	ACACCTTTCA	TGGTTTATAA	GGACGCATGT	AACAGGAAGA	CAAACCAACA
2251	GAACTTAGGT	ACTATCAAAT	CATCTAATTT	ATGTTGTGAA	ATCGTCGAAT
2301	ATTCCTCCCC	GGATGAAACT	GCAGTTTGTA	ATTTAGCTTC	TATTGCCCTA
2351	CCAGCATTCG	TTGAGGTTTC	AGAAGATGGT	AAAACTGCAA	GCTATAATTT
2401	CGAGAGATTA	CACGAGATTG	CTAAAGTCAT	TACTCACAAC	TTGAACAGAG
2451	TTATCGACCG	TAATTACTAT	CCAGTTCCCG	AGGCTAGAAA	TTCAAATATG
2501	AAGCATAGAC	CTATTGCTCT	TGGTGTCCAG	GGTTTGGCCG	ATACTTATAT
2551	GATGTTGCGT	CTACCCTTTG	AATCGGAAGA	AGCTCAAACT	CTAAACAAAC
2601	AAATCTTCGA	AACTATTTAC	CATGCTACTC	TTGAAGCCTC	CTGTGAATTG
2651	GCCCAAAAAG	AAGGTAAATA	TTCTACTTTT	GAAGGTTCTC	CAGCTTCTAA
2701	GGGTATTTTA	CAATTCGATA	TGTGGAACGC	TAAACCATTT	GGCATGTGGG
2751	ATTGGGAAAC	CTTAAGAAAG	GACATTGTTA	AACATGGGTT	AAGAAACTCT
2801	TTGACTATGG	CACCAATGCC	AACCGCCTCA	ACTTCCCAAA	TTCTTGGTTA
2851	TAATGAATGC	TTCGAACCAG	TGACCTCAAA	CATGTACTCT	CGTCGTGTCC
2901	TGTCTGGTGA	ATTCCAAGTT	GTTAATCCAT	ATTTACTACG	TGATTTAGTC
2951	GACCTGGGTA	TTTGGGATGA	TAGTATGAAA	CAATATCTAA	TTACACAAAA
3001	TGGTTCTATT	CAAGGCTTAC	CAAATGTGCC		AAGGAATTAT
3051	ACAAAACCGT	CTGGGAAATC	TCTCAAAAGA	CCATTATCAA	
3101	GATCGTGCCA	TCTACATCGA	TCAGTCTCAT	TCCTTGAATC	TTTTCTTGCA
3151	AGCACCATCA	ATGGGTAAGA	TTACTAGTAT	GCATTTCTAC	
3201	AGGGTTTAAA	AACTGGTATG	TACTACTTAA	GAACGCAAGC	CGCCTCCGCT
. 3251	GCTATTCAAT	TTACCATTGA	TCAAGAGGTT	GCCGATCAAG	CCGCTACACA
3301	TATTGCTTCC	GTCTCAGAAT	TGGATCGTCC	AGTTTATGTT	CCAAAGGGTA
3351	CAAAATTCTC	TGAACAAAAG	GCGGCATCTG		AAGCTCAGAT
3401	AATGAGAAGG	ATGCATCTCC	AGTTCCATCC	GAACAATCAT	CGGTGTCGAG
3451	TGCCATGTCA	AATGTGAAAT	TGGAAGATAG		GCAGTTCCAA
3501	CGGAAACAAT	AAAAGAAGAT	TCCGACGAGA		CATTTACAAT
3551	GAAAAGGTGA	TTGCTTGTAC	TGCTCCTACT	CCAGAAGCTT	GTGAGTCATG
3601	TTCCGGTTGA				

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 48 of 61

FIG:34

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 49 of 61

49/61

Fig:35

Fragment of HO sequence used in the integrating vector (pWDH443)

1	AAATTGTGAC	AGCTTTCCAG	AATGGATTAT	TTTTCCTCAA	ATTCCTTGTC
51	TTCCTGTTTT	CATCTGGACC	ATCTCCATAA	TGAAGCCTTA	CATGTTTGGC
101	ACGTAGCGGA	ACGTGATCGT	CACAAACCGT	AAGGTAGAGA	CCCCAGATTT
151	TCGCATTTTC	TCTTAAACTC	TCCATTAGCT	TAGGATCCAA	GCTATCTACT
201	GAGATTTCTG	GCTCTTTTGT	TGTACTGTCA	CCTAACCACA	GACCAAGCAT
251	CCAAGCCATA	CTTTTTACAG	CAGGAGTTAC	AAGGTCACTA	CGTCCAGTGA
301	GAAATTTAGA	TAAAACACCA	TTTCCTGCGA	GTACTGGACC	AAATCTTATG
351	CAGCTAGAAA	TTCTCAATTG	AGCATCAAGA	TAATCCAAAT	CTCTAACTTC
401	AATGTCAAAG	TTGAAATATT	CTCCTTTAGA	GCGCTCCATT	TCTTCTATGA
451	AGCGTTTTGC	GGCAAACTCA	CCTTCAACTG	TCATTGGGAA	TGTCTTATGA
501	TGGTTTTTTG	GAATTATTAT	TATCCTACCA	TCAAGCGTCT	GACATTGCTG
551	CAGATTTCTC	CATCTCACTT	TATATTTGGT	GGCATTTCTA	CCACTTTTTT
601	CCAACAGTGG	TTTGGTAGGG	ACCCTGACTG	ACAATTTATG	ACCTGCAGTA
651	CATTGTAATG	CAAGACGCTG	ATAAACTGTT	CTACGCCTGG	GATCTAACCT
701	ACCAGGTTCA	CCTTCAAAAG	CTCTGTGTTT	GGTTTTTTGC	TGTATATTAT
751	AGATTTTCTG	ATAGCCCTGT	GTGACATTTA	TGACGCGGGC	AGCGGAGCCA
801	TCTGCGCACA	TAACGTAAGA	GTTAGCCGTG	ACGTTTGCGA	TGTCTTTAAT
851	TTCACCGTTA	GCCATCAGAA	TAGTCGTGTT	TTCAGAAAGC	AT

Fig:36

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 50 of 61

50/61

Fig:37

rDNA sequence used in multiple copy rDNA integrating plasmids

```
GATCTGACGA TCACCTAGCG ACTCTCTCCA CCGTTTGACG AGGCCATTTA
     CAAAAACATA ACGAACGACA AGCCTACTCG AATTCGTTTC CAAACTCTTT
     TCGAACTTGT CTTCAACTGC TTTCGCATGA AGTACCTCCC AACTACTTTT
     CCTCACACTT GTACTCCATG ACTAAACCCC CCCTCCCATT ACAAACTAAA
     ATCTTACTTT TATTTTCTTT TGCCCTCTCT GTCGCTCTGC CTTAACTACG
 201
     TATTTCTCGC CGAGAAAAC TTCAATTTAA GCTATTCTCC AAAAATCTTA
 301
     GCGTATATTT TTTTTCCAAA GTGACAGGTG CCCCGGGTAA CCCAGTTCCT
     CACTATTTT TACTGCGGAA GCGGAAGCGG AAAATACGGA AACGCGCGGG
     AACATACAAA ACATACAAAA TATACCTTTC TCACACAAGA AATATATGCT
     ACTTGCAAAA TATCATACCA AAAAACTTTT CACAACCGAA ACCAAAACCA
 451
     ACGGATATCA TACATTACAC TACCACCATT CAAACTTTAC TACTATCCTC
 501
     CCTTCAGTTT CCCTTTTTCT GCCTTTTTCG GTGACGGAAA TACGCTTCAG
 601 AGACCCTAAA GGGAAATCCA TGCCATAACA GGAAAGTAAC ATCCCAATGC
 651 GGACTATACC ACCCCACCAC ACTCCTACCA ATAACGGTAA CTATTCTATG
     TTTTCTTACT CCTATGTCTA TTCATCTTTC ATCTGACTAC CTAATACTAT
     GCAAAAATGT AAAATCATCA CACAAAACAT AAACAATCAA AATCAGCCAT
     TTCCGCACCT TTTCCTCTGT CCACTTTCAA CCGTCCCTCC AAATGTAAAA
     TGGCCTATCG GAATACATTT TCTACATCCT AACTACTATA AAACAACCTT
     TAGACTTACG TTTGCTACTC TCATGGTCTC AATACTGCCG CCGACATTCT
     GTCCCACATA CTAAATCTCT TCCCGTCATT ATCGCCCGCA TCCGGTGCCG
 951
1001
     TAAATGCAAA ACAAATACCA TCTATGTCTT CCACACCATC ATTTTACTAT
     GCCTGCCACC ATCCATTTGT CTTTTGCACC ATATCTTCAT AACCTGTCAC
1051
     CTTGAAACTA CCTCTGCATG CCACCTACCG ACCAACTTTC ATGTTCTGTT
1101
     TCGACCTACC TCTTGTAAAT GACAAATCAC CTTTTTCATC GTATGCACCT
1151
     TATTCTCCAC ATCACAATGC ACTATTGCTT TTGCTTTTTC ACCTGTCATA
1201
     TCCTATTGCT ATTAGATGAA ATATAATAAA AATTGTCCTC CACCCATAAC
1251
     ACCTCTCACT CCCACCTACT GAACATGTCT GGACCCTGCC CTCATATCAC
1301
     CTGCGTTTCC GTTAAACTAT CGGTTGCGGC CATATCTACC AGAAAGCACC
1351
     GTTTCCCGTC CGATCAACTG TAGTTAAGCT GGTAAGAGCC TGACCGAGTA
1401
     GTGTAGTGGG TGACCATACG CGAAACTCAG GTGCTGCAAT CTTTATTTCT
1451
     TTTTTTTTT TTTTTTTTT TTTTTTTTT AGTTTCTTGG CTTCCTATGC
1501
     TAAATCCCAT AACTAACCTA CCATTCGATT CAGAAAAATT CGCACTATCC
1551
1601 AGCTGCACTC TTCTTCTGAA GAGTTAAGCA CTCCATTATG CTCATTGGGT
     TGCTACTACT TGATATGTAC AAACAATATT CTCCTCCGAT ATTCCTACAA
1701 AAAAAAAAA AAAAACACTC CGGTTTTGTT CTCTTCCCTC CATTTCCCTC
     TCTTCTACGG TTAATACTTT CCTCTTCGTC TTTTTCTACA CCCTCGTTTA
1751
     GTTGCTTCTT ATTCCTTCCC GCTTTCCTGC ACTAACATTT TGCCGCATTA
     CACTATATGA TCGTAGTACA TCTTACAACT CCGCATACCG CGTCGCCGCG
1851
     TCGCCGCGTC GCCAAAATT TACTTCGCCA ACCATTCCAT ATCTGTTAAG
1901
     TATACATGTA TATATTGCAC TGGCTATTCA TCTTGCACTT TTCCTCTTTC
1951
     TTCTTCCCAG TAGCCTCATC CTTTTACGCT GCCTCTCTGG AACTTGCCAT
2001
     CATCATTCCC TAGAAACTGC CATTTACTTA AAAAAAAAA AAAAAAAAA
2051
     ATGTCCCCAC TGTTCACTGT TCACTGTTCA CTTGTCTCTT ACATCTTTCT
2101
     TGGTAAAATC GTAGTTCGTA GTATTTTTTT TCATATCAAA GGCATGTCCT
2151
2201 GTTAACTATA GGAAATGAGC TTTTCTCAAT TCTCTAAACT TATACAAGCA
2251 CCTCATGTTT GCCGCTCTGA TGGTGCGGAA AAAACTGCTC CATGAAGCAA
2301 ACTGTCCGGG CAAATCCTTT CACGCTCGGG AAGCTTTGTG AAAGCCCTTC
     TCTTTCAACC CATCTTTGCA ACGAAAAAA AAAAAAAAA AAAAAAAAA
```

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 51 of 61

<u>51/61</u>

2401	AAGACCAAAT	AGTAAATAGT	AACTTACATA	CATTAGTAAA	TGGTACACTC
2451	TTACACACTA	TCATCCTCAT	CGTATATTAT	AATAGATATA	TACAATACAT
2501	GTTTTTACCC	GGATCATAGA	ATTCTTAAGA	CAAATAAAAT	TTATAGAGAC
2551	TTGTTCAGTC	TACTTCTCTC	TAAACTAGGC	CCCGGCTCCT	GCCAGTACCC
2601	ACTTAGAAAG	AAATAAAAA	CAAATCAGAC	AACAAAGGCT	TAATCTCAGC
2651	AGATCGTAAC	AACAAGGCTA	CTCTACTGCT	TACAATACCC	CGTTGTACAT
2701	CTAAGTCGTA	TACAAATGAT	TTATCCCCAC	GCAAAATGAC	ATTGCAATTC
2751	GCCAGCAAGC	ACCCAAGGCC	TTTCCGCCAA	GTGCACCGTT	GCTAGCCTGC
2801	TATGGTTCAG	CGACGCCACA	AGGACGCCTT	ATTCGTATCC	ATCTATATTG
2851	TGTGGAGCAA	AGAAATCACC	GCGTTCTAGC	ATGGATTCTG	ACTTAGAGGC
2901	GTTCAGCCAT	AATCCAGCGG	ATGGTAGCTT	CGCGGCAATG	CCTGATCAGA
2951	CAGCCGCAAA	AACCAATTAT	CCGAATGAAC	TGTTCCTCTC	GTACTAAGTT
3001	CAATTACTAT	TGCGGTAACA	TTCATCAGTA	GGGTAAAACT	AACCTGTCTC
3051	ACGACGGTCT	AAACCCAGCT	CACGTTCCCT	ATTAGTGGGT	GAACAATCCA
3101	ACGCTTACCG	AATTCTGCTT	CGGTATGATA	GGAAGAGCCG	ACATCGAAGA
3151	ATCAAAAAGC	AATGTCGCTA	TGAACGCTTG	ACTGCCACAA	GCCAGTTATC
3201	CCTGTGGTAA	CTTTTCTGGC	ACCTCTAGCC	TCAAATTCCG	AGGGACTAAA
3251	GGATCGATAG	GCCACACTTT	CATGGTTTGT	ATTCACACTG	AAAATCAAAA
3301	TCAAGGGGGC	TTTTACCCTT	TTGTTCTACT	GGAGATTTCT	GTTCTCCATG
3351	AGCCCCCTT	AGGACATCTG	CGTTATCGTT	TAACAGATGT	GCCGCCCCAG
3401	CCAAACTCCC	CACCTGACAA	TGTCTTCAAC	CCGGATCAGC	CCCGAATGGG
3451	ACCTTGAATG	CTAGAACGTG	GAAAATGAAT	TCCAGCTCCG	CTTCATTGAA
3501	TAAGTAAAGA	AACTATAAAG	GTAGTGGTAT	TTCACTGGCG	CCGAAGCTCC
3551	CACTTATTCT	ACACCCTCTA	TGTCTCTTCA	CAATGTCAAA	CTAGAGTCAA
3601	GCTCAACAGG	GTCTTCTTTC	CCCGCTGATT	CTGCCAAGCC	CGTTCCCTTG
3651	GCTGTGGTTT	CGCTAGATAG	TAGATAGGGA	CAGTGGGAAT	CTCGTTAATC
3701	CATTCATGCG	CGTCACTAAT	TAGATGACGA	GGCATTTGGC	TACCTTAAGA
3751	GAGTCATAGT	TACTCCCGCC	GTTTACCCGC	${\tt GCTTGGTTGA}$	ATTTCTTCAC
3801	TTTGACATTC	AGAGCACTGG	GCAGAAATCA	CATTGCGTCA	ACATCACTTT
3851	CTGACCATCG	CAATGCTATG	TTTTAATTAG	ACAGTCAGAT	TCCCCTTGTC
3901	CGTACCAGTT	CTAAGTTGAT	CGTTAATTGT	AGCAAGCGAC	GGTCTACAAG
3951	AGACCTACCA	AGGCCGTCTA	CAACAAGGCA	CGCAAGTAGT	CCGCCTAGCA
4001	GAGCAAGCCC	CACCAAGCAG	TCCACAAGCA	CGCCCGCTGC	GTCTGACCAA
4051	GGCCCTCACT	ACCCGACCCT	TAGAGCCAAT	CCTTATCCCG	AAGTTACGGA
4101	TCTATTTTGC	CGACTTCCCT	TATCTACATT	ATTCTATCAA	CTAGAGGCTG
4151	TTCACCTTGG	AGACCTGCTG	CGGTTATCAG	TACGACCTGG	CATGAAAACT
4201	ATTCCTTCCT	GTGGATTTTC	ACGGGCCGTC	ACAAGCGCAC	CGGAGCCAGC
4251	AAAGGTGCTG	GCCTCTTCCA	GCCATAAGAC	CCCATCTCCG	GATAAACCAA
4301	TTCCGGGGTG	ATAAGCTGTT	AAGAAGAAAA	GATAACTCCT	CCCAGGGCTC
4351	GCGCCGACGT	CTCCACATTC	AGTTACGTTA	CCGTGAAGAA	TCCATATCCA
4401	GGTTCCGGAA	TCTTAACCGG	ATTCCCTTTC	GATGGTGGCC	TGCATAAAAT
4451	CAGGCCTTTG	AAACGGAGCT	TCCCCATCTC	TTAGGATCGA	CTAACCCACG
4501	TCCAACTGCT	GTTGACGTGG	AACCTTTCCC	CACTTCAGTC	TTCAAAGTTC
4551	TCATTTGAAT	ATTTGCTACT	ACCACCAAGA	TC	

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 52 of 61

Fig:38

Fig:39

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 53 of 61

<u>53/61</u>

Fig:40

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 54 of 61

<u>54/61</u>

Fig:41 pGenIn012 - 7515 bp

1	GAACGCGGCC	GCCAGCTGAA	GCTTCGTACG	CTGCAGGTCG	ACGGATCAAA
51	ATTGTGACAG	CTTTCCAGAA	TGGATTATTT	TTCCTCAAAT	TCCTTGTCTT
101	CCTGTTTTCA	TCTGGACCAT	CTCCATAATG	AAGCCTTACA	TGTTTGGCAC
151	GTAGCGGAAC	GTGATCGTCA	CAAACCGTAA	GGTAGAGACC	CCAGATTTTC
201	GCATTTTCTC	TTAAACTCTC	CATTAGCTTA	GGATCCAAGC	TATCTACTGA
251	GATTTCTGGC	TCTTTTGTTG	TACTGTCACC	TAACCACAGA	CCAAGCATCC
301	AAGCCATACT	TTTTACAGCA	GGAGTTACAA	GGTCACTACG	TCCAGTGAGA
351	AATTTAGATA	AAACACCATT	TCCTGCGAGT	ACTGGACCAA	ATCTTATGCA
401	GCTAGAAATT	CTCAATTGAG	CATCAAGATA	ATCCAAATCT	CTAACTTCAA
451	TGTCAAAGTT	GAAATATTCT	CCTTTAGAGC	GCTCCATTTC	TTCTATGAAG
501	CGTTTTGCGG	CAAACTCACC	TTCAACTGTC	ATTGGGAATG	TCTTATGATG
551	GTTTTTTGGA	ATTATTATTA	TCCTACCATC	AAGCGTCTGA	CATTGCTGCA
601	GATTTCTCCA	TCTCACTTTA	TATTTGGTGG	CATTTCTACC	ACTTTTTTCC
651	AACAGTGGTT	TGGTAGGGAC	CCTGACTGAC	AATTTATGAC	CTGCAGTACA
701	TTGTAATGCA	AGACGCTGAT	AAACTGTTCT	ACGCCTGGGA	TCTAACCTAC
751	CAGGTTCACC	TTCAAAAGCT	CTGTGTTTGG	TTTTTTGCTG	TATATTATAG
801	ATTTTCTGAT	AGCCCTGTGT	GACATTTATG	ACGCGGGCAG	CGGAGCCATC
851	TGCGCACATA	ACGTAAGAGT	TAGCCGTGAC	GTTTGCGATG	TCTTTAATTT
901	CACCGTTAGC	CATCAGAATA	GTCGTGTTTT	CAGAAAGCAT	TTTGATCCGA
951	CATACGATGA	CCTCAATGAT	TTAGATTATG	TGTTGCACTT	TTATAGACCT
1001	ACCAAAAATC	CAGTGCGTAC	ACTAATACTT	TCATAAAGAT	ACCTGAAACA
1051	ATAACCAGAA	AGATCGGCAA	AAAAATTTTT	TTTCTTTGCC	GAGATCACAA
1101	ACCTACTATG	ACGAAAAAGC	TTGAAGTTTA	GATGAGTAAG	GAAAATACAA
1151	GTGACGCTTT	TATATGGTGC	AAGGAACAAA	AACTAAAAAC	AACAAGGCAA
1201	ATGTGGATCT	GTCATGTATG	GCAACGACAG	CAGGATGGCT	CACAAAAAAA
1251	GACAAAAAAA	ACTAAGGCAA	AAGAACAAAG	CTCCTCTCCT	GCTCAAGAAA
1301	CGTATTGTTG	AAAAACCACC	GTCGTAAGAA	AGTTTTTCTG	TGACCTATAA
1351	TGGTTTAAAA	TCGGCCCATT	TTTTTTCCCT	CTTTTGTGGT	CCAGTCTTTC
1401	TCATACTCGA	GGGAAATTCG	ACACAAACAG	CGGAGAAGTG	TGGCTAAACC
1451	GGCAAGTGCC	TGCAAGATCC	ACAGAACTAA	CCGCACGAAC	TGGCGGTCAG
1501	AAAAGAGCCT	GTTCCGGAAA	GAGAGAAACA	GAGAAACGAT	CATGATGGGA
1551	AAGCGGGGAT	TCGGCGAAGA	ACGAGACTGG	AAAGGGAAAA	AGAGAAATAC
1601	TGGTGGAAGT	ATTCGGACCT	TTGGCGAAGT	CCGAACCCTT	GAAACCCAAA
1651	GATGATCGAT	GATTCATTTT	TCAATGCGCT	ACGGTTCCTG	CCGCTCGTGG
1701	GAACCCCACG	CAAAACATAT	TATTCGCTTC	TCTCTGCTGA	CAACTCCGGT
1751	TTACGTTATA	CCGTATTAGG	ATCACTATAA	GGGTTCCTTC	GGGAGGAGGG
1801	GGGAGGGGAA	GAATGTACAT	CGTCATAAGG	CCTTTATGGT	GTGAAGTGGG
1851	TTTTGCGTGG	AAAATTCGTT	TTCAATGATA	TAGAGCCCAC	GCATATACGT
1901	ACATACTAGT	GGCCAAAAGC	GTGGGGTGGG	CGGACAAAGC	TACACTGGTA
1951	AAATACAGGA	TTCTATGAAC	AATAACAACA	ACCAGCTCAC	GTTGCTGAAC
2001	AGCCGAGGTC	AGCCGATGCA	ACCGAGGTTT	CCAAAGTAGC	ATTTCTGTGC
2051	TAGCTATGTC	TGTAGGTTTA	CATTTAATGG	TGCGTGGTTC	CAGCTTCATG
2101	TGCTTGCATG	TGATGTCCTG	CAGATGGTAA	GAAGATTCTG	AAAGCCGCGC
2151		ATATTCTGCT	CGAAGATCTG	TCCTCTTAAG	TAGAAAGCGT
2201		CGTTCTTGCA			
2251		CATGATAAAG			
2301		GGTGCAAAGA			
2351		TTAACATGCA			
2401		ATTTTACGCG			
2451		AAAACAATTA			
2501	AAGATCTAAC	TGAAGCGAAG	GCCAAAACTC	TTCTCACTTG	ACGTAATAGC

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 55 of 61

<u>55/61</u>

2551	CGATACAAAA	TCTAGAGCAG	CAACTTTTCT	CTTTCTTCAC	TAAAGCTGCT
2601	ACGAAAGTAT	AGAAAAATCA	AACGCTCAGA	ACTTAGCTCT	ATTTCAAGGT
2651	ACCATATATA	TTTCCTTATA	ACTGATGTTA	ATTAACTCTA	AAGGTGAAGA
2701	ATTATTCACT	GGTGTTGTCC	CAATTTTGGT	TGAATTAGAT	GGTGATGTTA
2751	ATGGTCACAA	ATTTTCTGTC	TCCGGTGAAG	GTGAAGGTGA	TGCTACTTAC
2801	GGTAAATTGA	CCTTAAAATT	TATTTGTACT	ACTGGTAAAT	TGCCAGTTCC
2851	ATGGCCAACC	TTAGTCACTA	CTTTCGGTTA	TGGTGTTCAA	TGTTTTGCGA
2901	GATACCCAGA	TCATATGAAA	CAACATGACT	TTTTCAAGTC	TGCCATGCCA
2951	GAAGGTTATG	TTCAAGAAAG	AACTATTTT	TTCAAAGATG	ACGGTAACTA
3001	CAAGACCAGA	GCTGAAGTCA	AGTTTGAAGG	TGATACCTTA	GTTAATAGAA
3051	TCGAATTAAA	AGGTATTGAT	TTTAAAGAAG	ATGGTAACAT	TTTAGGTCAC
3101	AAATTGGAAT	ACAACTATAA	CTCTCACAAT	GTTTACATCA	TGGCTGACAA
3151	ACAAAAGAAT	GGTATCAAAG	TTAACTTCAA	AATTAGACAC	AACATTGAAG
3201	ATGGTTCTGT	TCAATTAGCT	GACCATTATC	AACAAAATAC	TCCAATTGGT
3251	GATGGTCCAG	TCTTGTTACC	AGACAACCAT	TACTTATCCA	CTCAATCTGC
3301	CTTATCCAAA			CCACATGGTC	TTGTTAGAAT
3351	TTGTTACTGC	TGCTGGTATT	ACCCATGGTA	TGGATGAATT	GTACAAATAA
3401	CTGCAGGGCG	CGCCACTTCT		ATTTCTTATG	ATTTATGATT
3451		AATAAGTTAT			AATTTTAAAG
3501	TGACTCTTAG	GTTTTAAAAC	GAAAATTCTT	ATTCTTGAGT	AACTCTTTCC
3551	TGTAGGTCAG	GTTGCTTTCT	CAGGTATAGT	ATGAGGTCGC	TCTTATTGAC
3601		CCGGCAGATC	CGCTAGGGAT	AACAGGGTAA	TATAGATCTG
3651	CCCGCCGGGA	AGGCGAACCC		ATCCTCTCTG	CTGCCATGAT
3701	GCTGAAGTTG	TCGTTGAACA	TGGTTGCTGC	CGGCGAGGCG	GTCGAGCAGG
3751	CAGTGCAGGA		TCGGGAGTCA		CCTGCTCGGC
3801	TCGAGCTCGA	ATTCATCGAT		CCACTAGTGG	CCTATGCGGC
3851	CGCGGATCTG	CCGGTCTCCC	TATAGTGAGT	CGTATTAATT	TCGATAAGCC
3901	AGGTTAACCT		ATCGGCCAAC	GCGCGGGGAG	AGGCGGTTTG
3951	CGTATTGGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT
4001	CGTTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT
4051	TATCCACAGA		AACGCAGGAA	AGAACATGTG	AGCAAAAGGC
4101	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA
4151	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC	TCAAGTCAGA
4201	GGTGGCGAAA		CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA
4251	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT
4301	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT
4351	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG
4401	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG
4451	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	GCAGCAGCCA
4501	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC
4551	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT
4601	CTGCGCTCTG	CTGAAGCCAG	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT
4651	GATCCGGCAA	ACAAACCACC	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG
4701	CAGCAGATTA	CGCGCAGAAA	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT
4751			AGTGGAACGA		
4801			AGGATCTTCA		
4851			CTAAAGTATA		
4901			GTGAGGCACC		
4951			TGACTCCCCG		
5001	CGGGAGGGCT	TACCATCTGG	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC
5051	ACGCTCACCG	GCTCCAGATT	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG
5101			GCAACTTTAT		
5151			AGTAAGTAGT		

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 56 of 61

<u>56/61</u>

5201	CAACGTTGTT	GCCATTGCTA	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG
5251	GTATGGCTTC	ATTCAGCTCC	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA
5301	TCCCCCATGT	TGTGCAAAAA	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT
5351	TGTCAGAAGT	AAGTTGGCCG	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC
5401	TGCATAATTC	TCTTACTGTC	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT
5451	GGTGAGTACT	CAACCAAGTC	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG
5501	TTGCTCTTGC	CCGGCGTCAA	TACGGGATAA	TACCGCGCCA	CATAGCAGAA
5551	CTTTAAAAGT	GCTCATCATT	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA
5601	AGGATCTTAC	CGCTGTTGAG	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC
5651	CAACTGATCT	TCAGCATCTT	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA
5701	AAACAGGAAG	GCAAAATGCC	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA
5751	TGTTGAATAC	TCATACTCTT	CCTTTTTCAA	TATTATTGAA	GCATTTATCA
5801	GGGTTATTGT	CTCATGAGCG	GATACATATT	TGAATGTATT	TAGAAAAATA
5851	AACAAATAGG	GGTTCCGCGC	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC
5901	GAATATCATT	GAGAAGCTGC	ATTTTTTTT	TTTTTTTTT	TTTTTTTTT
5951	TATATATATT	TCAAGGATAT	ACCATTGTAA	TGTCTGCCCC	TAAGAAGATC
6001	GTCGTTTTGC	CAGGTGACCA	CGTTGGTCAA	GAAATCACAG	CCGAAGCCAT
6051	TAAGGTTCTT	AAAGCTATTT	CTGATGTTCG	TTCCAATGTC	AAGTTCGATT
6101	TCGAAAATCA	TTTAATTGGT	GGTGCTGCTA	TCGATGCTAC	AGGTGTTCCA
6151	CTTCCAGATG	AGGCGCTGGA	AGCCTCCAAG	AAGGCTGATG	CCGTTTTGTT
6201	AGGTGCTGTG	GGTGGTCCTA		CGGTAGTGTT	AGACCTGAAC
6251	AAGGTTTACT	AAAAATCCGT	AAAGAACTTC	AATTGTACGC	CAACTTAAGA
6301	CCATGTAACT	TTGCATCCGA	CTCTCTTTTA	GACTTATCTC	CAATCAAGCC
6351	ACAATTTGCT	AAAGGTACTG	ACTTCGTTGT	TGTCAGAGAA	TTAGTGGGAG
6401	GTATTTACTT	TGGTAAGAGA	AAGGAAGACG	ATGGTGATGG	TGTCGCTTGG
6451	GATAGTGAAC	AATACACCGT	TCCAGAAGTG	CAAAGAATCA	CAAGAATGGC
6501	CGCTTTCATG	GCCCTACAAC	ATGAGCCACC	ATTGCCTATT	TGGTCCTTGG
6551	ATAAAGCTAA	TGTTTTGGCC	TCTTCAAGAT	TATGGAGAAA	AACTGTGGAG
6601	GAAACCATCA	AGAACGAATT	CCCTACATTG	AAGGTTCAAC	ATCAATTGAT
6651	TGATTCTGCC	GCCATGATCC	TAGTTAAGAA	CCCAACCCAC	CTAAATGGTA
6701	TTATAATCAC	CAGCAACATG	TTTGGTGATA	TCATCTCCGA	TGAAGCCTCC
6751	GTTATCCCAG	GTTCCTTGGG	TTTGTTGCCA	TCTGCGTCCT	TGGCCTCTTT
6801	GCCAGACAAG	AACACCGCAT	TTGGTTTGTA	CGAACCATGC	CACGGTTCTG
6851	CTCCAGATTT	GCCAAAGAAT	AAGGTCAACC	CTATCGCCAC	TATCTTGTCT
6901	GCTGCAATGA	TGTTGAAATT	GTCATTGAAC	TTGCCTGAAG	AAGGTAAGGC
6951	CATTGAAGAT	GCAGTTAAAA	AGGTTTTGGA	TGCAGGTATC	AGAACTGGTG
7001	ATTTAGGTGG	TTCCAACAGT	ACCACCGAAG	TCGGTGATGC	TGTCGCCGAA
7051	GAAGTTAAGA	AAATCCTTGC	TTAAAAAGAT	TCTCTTTTTT	TATGATATTT
7101	GTACAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAA
7151	AAAATGCAGC	GTCACATCGG	ATAATAATGA	CGTCTAAGAA	ACCATTATTA
7201	TCATGACATT	AACCTATAAA	AATAGGCGTA	TCACGAGGCC	CTTTCGTCTC
7251	GCGCGTTTCG	GTGATGACGG	TGAAAACCTC	TGACACATGC	AGCTCCCGGA
7301	GACGGTCACA	GCTTGTCTGT	AAGCGGATGC	CGGGAGCAGA	CAAGCCCGTC
7351	AGGGCGCGTC	AGCGGGTGTT	GGCGGGTGTC	GGGGCTGGCT	TAACTATGCG
7401	GCATCAGAGC	AGATTGTACT	GAGAGTGCAC	CATATGGACA	TATTGTCGTT
7451	AGAACGCGGC	TACAATTAAT	ACATAACCTT	ATGTATCATA	CACATACGAT
7501	TTAGGTGACA	CTATA			

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 57 of 61

57/61

Fig:42 pGenIn022A - 12093 bp

```
1 GAACGCGGCC GCCAGCTGAA GCTTCGTACG CTGCAGGTCG ACGGATCAAA
  51 ATTGTGACAG CTTTCCAGAA TGGATTATTT TTCCTCAAAT TCCTTGTCTT
 101 CCTGTTTTCA TCTGGACCAT CTCCATAATG AAGCCTTACA TGTTTGGCAC
     GTAGCGGAAC GTGATCGTCA CAAACCGTAA GGTAGAGACC CCAGATTTTC
     GCATTTTCTC TTAAACTCTC CATTAGCTTA GGATCTGACG ATCACCTAGC
     GACTCTCTCC ACCGTTTGAC GAGGCCATTT ACAAAAACAT AACGAACGAC
     AAGCCTACTC GAATTCGTTT CCAAACTCTT TTCGAACTTG TCTTCAACTG
 351
     CTTTCGCATG AAGTACCTCC CAACTACTTT TCCTCACACT TGTACTCCAT
     GACTAAACCC CCCCTCCCAT TACAAACTAA AATCTTACTT TTATTTTCTT
 451
     TTGCCCTCTC TGTCGCTCTG CCTTAACTAC GTATTTCTCG CCGAGAAAAA
 501
     CTTCAATTTA AGCTATTCTC CAAAAATCTT AGCGTATATT TTTTTTCCAA
 551 AGTGACAGGT GCCCCGGGTA ACCCAGTTCC TCACTATTTT TTACTGCGGA
 601 AGCGGAAGCG GAAAATACGG AAACGCGCGG GAACATACAA AACATACAAA
 651 ATATACCTTT CTCACACAAG AAATATATGC TACTTGCAAA ATATCATACC
 701 AAAAAACTTT TCACAACCGA AACCAAAACC AACGGATATC ATACATTACA
 751 CTACCACCAT TCAAACTTTA CTACTATCCT CCCTTCAGTT TCCCTTTTTC
     TGCCTTTTC GGTGACGGAA ATACGCTTCA GAGACCCTAA AGGGAAATCC
 851 ATGCCATAAC AGGAAAGTAA CATCCCAATG CGGACTATAC CACCCCACCA
     CACTCCTACC AATAACGGTA ACTATTCTAT GTTTTCTTAC TCCTATGTCT
     ATTCATCTTT CATCTGACTA CCTAATACTA TGCAAAAATG TAAAATCATC
     ACACAAAACA TAAACAATCA AAATCAGCCA TTTCCGCACC TTTTCCTCTG
1001
     TCCACTTCA ACCGTCCCTC CAAATGTAAA ATGGCCTATC GGAATACATT
1051
     TTCTACATCC TAACTACTAT AAAACAACCT TTAGACTTAC GTTTGCTACT
1101
     CTCATGGTCT CAATACTGCC GCCGACATTC TGTCCCACAT ACTAAATCTC
1151
     TTCCCGTCAT TATCGCCCGC ATCCGGTGCC GTAAATGCAA AACAAATACC
1251 ATCTATGTCT TCCACACCAT CATTTTACTA TGCCTGCCAC CATCCATTTG
1301 TCTTTTGCAC CATATCTTCA TAACCTGTCA CCTTGAAACT ACCTCTGCAT
1351
     GCCACCTACC GACCAACTTT CATGTTCTGT TTCGACCTAC CTCTTGTAAA
1401
     TGACAAATCA CCTTTTTCAT CGTATGCACC TTATTCTCCA CATCACAATG
     CACTATTGCT TTTGCTTTTT CACCTGTCAT ATCCTATTGC TATTAGATGA
1451
     AATATAATAA AAATTGTCCT CCACCCATAA CACCTCTCAC TCCCACCTAC
1501
     TGAACATGTC TGGACCCTGC CCTCATATCA CCTGCGTTTC CGTTAAACTA
1551
     TCGGTTGCGG CCATATCTAC CAGAAAGCAC CGTTTCCCGT CCGATCAACT
1601
1651
     GTAGTTAAGC TGGTAAGAGC CTGACCGAGT AGTGTAGTGG GTGACCATAC
     1751 TTTTTTTTC TAGTTTCTTG GCTTCCTATG CTAAATCCCA TAACTAACCT
1801 ACCATTCGAT TCAGAAAAAT TCGCACTATC CAGCTGCACT CTTCTTCTGA
     AGAGTTAAGC ACTCCATTAT GCTCATTGGG TTGCTACTAC TTGATATGTA
     1951
     CCGGTTTTGT TCTCTTCCCT CCATTTCCCT CTCTTCTACG GTTAATACTT
     TCCTCTTCGT CTTTTTCTAC ACCCTCGTTT AGTTGCTTCT TATTCCTTCC
2001
     CGCTTTCCTG CACTAACATT TTGCCGCATT ACACTATATG ATCGTAGTAC
2051
2101 ATCTTACAAC TCCGCATACC GCGTCGCCGC GTCGCCGCGT CGCCAAAAAT
2151
     TTACTTCGCC AACCATTCCA TATCTGTTAA GTATACATGT ATATATTGCA
     CTGGCTATTC ATCTTGCACT TTTCCTCTTT CTTCTTCCCA GTAGCCTCAT
2251 CCTTTTACGC TGCCTCTCTG GAACTTGCCA TCATCATTCC CTAGAAACTG
2301 CCATTTACTT AAAAAAAAA AAAAAAAAA AATGTCCCCA CTGTTCACTG
2351
     TTCACTGTTC ACTTGTCTCT TACATCTTTC TTGGTAAAAT CGTAGTTCGT
2401 AGTATTTTT TTCATATCAA AGGCATGTCC TGTTAACTAT AGGAAATGAG
2451 CTTTTCTCAA TTCTCTAAAC TTATACAAGC ACCTCATGTT TGCCGCTCTG
```

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 58 of 61

<u>58/61</u>

2501	ATGGTGCGGA	AAAAACTGCT	CCATGAAGCA	AACTGTCCGG	GCAAATCCTT
2551	TCACGCTCGG	GAAGCTTTGT	GAAAGCCCTT	CTCTTTCAAC	CCATCTTTGC
2601	AACGAAAAA	AAAAAAAAA	TAAAAAATAA	AAAGACCAAA	TAGTAAATAG
2651	TAACTTACAT	ACATTAGTAA	ATGGTACACT	CTTACACACT	ATCATCCTCA
2701	TCGTATATTA	TAATAGATAT	ATACAATACA	TGTTTTTACC	CGGATCATAG
2751	AATTCTTAAG	ACAAATAAAA	TTTATAGAGA	CTTGTTCAGT	CTACTTCTCT
2801	CTAAACTAGG	CCCCGGCTCC	TGCCAGTACC	CACTTAGAAA	GAAATAAAAA
2851	ACAAATCAGA	CAACAAAGGC	TTAATCTCAG	CAGATCGTAA	CAACAAGGCT
2901	ACTCTACTGC	TTACAATACC	CCGTTGTACA	TCTAAGTCGT	ATACAAATGA
2951	TTTATCCCCA	CGCAAAATGA	CATTGCAATT	CGCCAGCAAG	CACCCAAGGC
3001	CTTTCCGCCA	AGTGCACCGT	TGCTAGCCTG	CTATGGTTCA	
3051	AAGGACGCCT	TATTCGTATC	CATCTATATT	GTGTGGAGCA	
3101	CGCGTTCTAG	CATGGATTCT	GACTTAGAGG	CGTTCAGCCA	TAATCCAGCG
3151	GATGGTAGCT	TCGCGGCAAT	GCCTGATCAG	ACAGCCGCAA	AAACCAATTA
3201	TCCGAATGAA	CTGTTCCTCT	CGTACTAAGT	TCAATTACTA	TTGCGGTAAC
3251	ATTCATCAGT	AGGGTAAAAC	TAACCTGTCT	CACGACGGTC	TAAACCCAGC
3301	TCACGTTCCC	TATTAGTGGG	TGAACAATCC	AACGCTTACC	GAATTCTGCT
3351	TCGGTATGAT	AGGAAGAGCC	GACATCGAAG	AATCAAAAAG	CAATGTCGCT
3401	ATGAACGCTT	GACTGCCACA	AGCCAGTTAT	CCCTGTGGTA	ACTTTTCTGG
3451	CACCTCTAGC	CTCAAATTCC	GAGGGACTAA	AGGATCGATA	GGCCACACTT
3501	TCATGGTTTG	TATTCACACT	GAAAATCAAA	ATCAAGGGGG	CTTTTACCCT
3551	TTTGTTCTAC	TGGAGATTTC	TGTTCTCCAT	GAGCCCCCCT	TAGGACATCT
3601	GCGTTATCGT	TTAACAGATG	TGCCGCCCCA	GCCAAACTCC	CCACCTGACA
3651	ATGTCTTCAA	CCCGGATCAG	CCCCGAATGG	GACCTTGAAT	GCTAGAACGT
3701	GGAAAATGAA	TTCCAGCTCC	GCTTCATTGA	ATAAGTAAAG	AAACTATAAA
3751	GGTAGTGGTA	TTTCACTGGC	GCCGAAGCTC	CCACTTATTC	TACACCCTCT
3801	ATGTCTCTTC		ACTAGAGTCA		GGTCTTCTTT
3851	CCCCGCTGAT	TCTGCCAAGC	CCGTTCCCTT	GGCTGTGGTT	TCGCTAGATA
3901	GTAGATAGGG	ACAGTGGGAA	TCTCGTTAAT	CCATTCATGC	GCGTCACTAA
3951	TTAGATGACG	AGGCATTTGG	CTACCTTAAG	AGAGTCATAG	TTACTCCCGC
4001	CGTTTACCCG	CGCTTGGTTG	AATTTCTTCA	CTTTGACATT	CAGAGCACTG
4051	GGCAGAAATC	ACATTGCGTC	AACATCACTT	TCTGACCATC	GCAATGCTAT
4101	GTTTTAATTA	GACAGTCAGA	TTCCCCTTGT	CCGTACCAGT	TCTAAGTTGA
4151	TCGTTAATTG	TAGCAAGCGA	CGGTCTACAA	GAGACCTACC	AAGGCCGTCT
4201	ACAACAAGGC	ACGCAAGTAG	TCCGCCTAGC	AGAGCAAGCC	CCACCAAGCA
4251	GTCCACAAGC	ACGCCCGCTG	CGTCTGACCA	AGGCCCTCAC	TACCCGACCC
4301	TTAGAGCCAA	TCCTTATCCC	GAAGTTACGG	ATCTATTTTG	CCGACTTCCC
4351	TTATCTACAT	TATTCTATCA	ACTAGAGGCT	GTTCACCTTG	GAGACCTGCT
4401	GCGGTTATCA	GTACGACCTG	GCATGAAAAC	TATTCCTTCC	TGTGGATTTT
4451	CACGGGCCGT	CACAAGCGCA	CCGGAGCCAG	CAAAGGTGCT	GGCCTCTTCC
4501	AGCCATAAGA	CCCCATCTCC	GGATAAACCA	ATTCCGGGGT	GATAAGCTGT
4551	TAAGAAGAAA	AGATAACTCC	TCCCAGGGCT	CGCGCCGACG	TCTCCACATT
4601	CAGTTACGTT	ACCGTGAAGA	ATCCATATCC	AGGTTCCGGA	ATCTTAACCG
4651	GATTCCCTTT	CGATGGTGGC	CTGCATAAAA	TCAGGCCTTT	GAAACGGAGC
4701				GTCCAACTGC	
4751	GAACCTTTCC	CCACTTCAGT	CTTCAAAGTT	CTCATTTGAA	TATTTGCTAC
4801				TTTCTGGCTC	
4851				GCCATACTTT	
4901				TTTAGATAAA	
4951				TAGAAATTCT	
5001				TCAAAGTTGA	
5051				TTTTGCGGCA	
5101	CAACTGTCAT	TGGGAATGTC	TTATGATGGT	TTTTTGGAAT	TATTATTATC

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 59 of 61

<u>59/61</u>

5151	CTACCATCAA	GCGTCTGACA	TTGCTGCAGA	TTTCTCCATC	TCACTTTATA
5201	TTTGGTGGCA	TTTCTACCAC	TTTTTTCCAA		GTAGGGACCC
5251	TGACTGACAA	TTTATGACCT	GCAGTACATT	GTAATGCAAG	ACGCTGATAA
5301	ACTGTTCTAC	GCCTGGGATC	TAACCTACCA	GGTTCACCTT	CAAAAGCTCT
5351	GTGTTTGGTT	TTTTGCTGTA	TATTATAGAT	TTTCTGATAG	CCCTGTGTGA
5401	CATTTATGAC	GCGGGCAGCG	GAGCCATCTG	CGCACATAAC	GTAAGAGTTA
5451	GCCGTGACGT	TTGCGATGTC	TTTAATTTCA	CCGTTAGCCA	TCAGAATAGT
5501	CGTGTTTTCA	GAAAGCATTT	TGATCCGACA	TACGATGACC	TCAATGATTT
5551	AGATTATGTG	TTGCACTTTT	ATAGACCTAC	CAAAAATCCA	GTGCGTACAC
5601	TAATACTTTC	ATAAAGATAC	CTGAAACAAT	AACCAGAAAG	ATCGGCAAAA
5651	AAATTTTTT		GATCACAAAC	CTACTATGAC	GAAAAAGCTT
5701	GAAGTTTAGA	TGÁGTAAGGA		GACGCTTTTA	TATGGTGCAA
5751	GGAACAAAAA	CTAAAAACAA	CAAGGCAAAT	GTGGATCTGT	CATGTATGGC
5801	AACGACAGCA	GGATGGCTCA	CAAAAAAAAA	CAAAAAAAAC	TAAGGCAAAA
5851	GAACAAAGCT	CCTCTCCTGC	TCAAGAAACG		AAACCACCGT
5901	CGTAAGAAAG	TTTTTCTGTG	ACCTATAATG	GTTTAAAATC	GGCCCATTTT
5951	TTTTCCCTCT	TTTGTGGTCC	AGTCTTTCTC	ATACTCGAGG	GAAATTCGAC
6001	ACAAACAGCG	GAGAAGTGTG	GCTAAACCGG	CAAGTGCCTG	CAAGATCCAC
6051	AGAACTAACC	GCACGAACTG	GCGGTCAGAA	AAGAGCCTGT	TCCGGAAAGA
6101	GAGAAACAGA	GAAACGATCA	TGATGGGAAA		GGCGAAGAAC
6151		AGGGAAAAAG	AGAAATACTG	GTGGAAGTAT	TCGGACCTTT
6201	GGCGAAGTCC	GAACCCTTGA	*	TGATCGATGA	TTCATTTTTC
6251	AATGCGCTAC	GGTTCCTGCC		ACCCCACGCA	
6301	TTCGCTTCTC	TCTGCTGACA		ACGTTATACC	GTATTAGGAT
6351	CACTATAAGG	GTTCCTTCGG	GAGGAGGGG	GAGGGGAAGA	ATGTACATCG
6401	TCATAAGGCC	TTTATGGTGT	GAAGTGGGTT	TTGCGTGGAA	
6451		GAGCCCACGC	ATATACGTAC	ATACTAGTGG	CCAAAAGCGT
6501	GGGGTGGGCG	GACAAAGCTA		ATACAGGATT	CTATGAACAA
6551	TAACAACAAC	CAGCTCACGT	TGCTGAACAG	CCGAGGTCAG	CCGATGCAAC
6601		AAAGTAGCAT	TTCTGTGCTA		TAGGTTTACA
6651	TTTAATGGTG	CGTGGTTCCA		CTTGCATGTG	ATGTCCTGCA
6701		AGATTCTGAA	AGCCGCGCTA	GGAGAAAAAT	ATTCTGCTCG
6751	-	CTCTTAAGTA	GAAAGCGTGA		TTCTTGCATT
6801		GCGTACGCAA	=	TGCACCTGCA	TGATAAAGCT
6851		AAATTTAACA	TCTTGAAAAT	ACACAAGTGG	TGCAAAGATG
6901	TGTCACGTTC	TGGACCTGAG	TGGTGCCATG	TATGCTATTT	AACATGCAAA
6951	GGGGAAGACC	CTTCCGCCTT	ACTGCAATAA	TAAAAAGTAT	TTTACGCGTT
7001		GCAAAGTTTC	GCGCAAAAAA	AAAAATAAAA	AACAATTACA
7051		AAAAAAAGGA		GATCTAACTG	AAGCGAAGGC
7101	CAAAACTCTT	CTCACTTGAC	GTAATAGCCG	ATACAAAATC	TAGAGCAGCA
7151	ACTITICTCT		AAGCTGCTAC	GAAAGTATAG	AAAAATCAAA
7201	CGCTCAGAAC	TTAGCTCTAT	TTCAAGGTAC	CATATATATT	TCCTTATAAC
7251	TGATGTTAAT	TAACTCTAAA	GGTGAAGAAT	TATTCACTGG	TGTTGTCCCA
7301	ATTTTGGTTG	AATTAGATGG	TGATGTTAAT	GGTCACAAAT	TTTCTGTCTC
7351		GAAGGTGATG			
7401		TGGTAAATTG			
7451		GTGTTCAATG			
7501		TTCAAGTCTG			
7551		CAAAGATGAC			
7601		ATACCTTAGT			
7651		GGTAACATTT			
7701	CTCDCDDTCT	TTACATCATG	GCTGACAAAC	AAAAGAATGG	TATCAAAGTT
7751		TTAGACACAA			
7801		CAAAATACTC			
1001	CCALIATORA	CIMMINOIC	OLIMITOGION	1001001010	110111100110

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 60 of 61

<u>60/61</u>

7851	ACAACCATTA	CTTATCCACT	CAATCTGCCT	TATCCAAAGA	TCCAAACGAA
7901	AAGAGAGACC	ACATGGTCTT	GTTAGAATTI	GTTACTGCTG	CTGGTATTAC
7951	CCATGGTATG	GATGAATTGT	ACAAATAACT	GCAGGGCGCG	CCACTTCTAA
8001	ATAAGCGAAT	TTCTTATGAT	TTATGATTT		
8051	AAAAAATAAG	TGTATACAAA	TTTTAAAGTG	ACTCTTAGGT	
8101	AAATTCTTAT	TCTTGAGTAA			
8151	GGTATAGTAT	GAGGTCGCTC		CACCTCTACC	
8201	CTAGGGATAA	CAGGGTAATA			
8251	TCGGATGCAT	CCTCTCTGCT			
8301	GTTGCTGCCG	GCGAGGCGGT		GTGCAGGAGG	
8351	GGGAGTCAGA	ACGGGCGACC		GAGCTCGAAT	
8401	TATCAGATCC	ACTAGTGGCC		CGGATCTGCC	
8451	TAGTGAGTCG	TATTAATTTC		GTTAACCTGC	
8501	CGGCCAACGC	GCGGGGAGAG	GCGGTTTGCG	TATTGGGCGC	TCTTCCGCTT
8551	CCTCGCTCAC	TGACTCGCTG	CGCTCGGTCG	TTCGGCTGCG	
8601	TCAGCTCACT	CAAAGGCGGT	AATACGGTTA		CAGGGGATAA
8651	CGCAGGAAAG	AACATGTGAG	CAAAAGGCCA	GCAAAAGGCC	
8701	AAAAGGCCGC	GTTGCTGGCG		GGCTCCGCCC	
8751	CATCACAAAA	ATCGACGCTC			CGACAGGACT
8801		CAGGCGTTTC			CGCTCTCCTG
8851		GCCGCTTACC			CCCTTCGGGA
8901	AGCGTGGCGC			AGGTATCTCA	
8951	GGTCGTTCGC			CGAACCCCCC	
9001	ACCGCTGCGC	CTTATCCGGT	AACTATCGTC	TTGAGTCCAA	CCCGGTAAGA
9051	CACGACTTAT			GGTAACAGGA	
9101		GGCGGTGCTA	CAGAGTTCTT	GAAGTGGTGG	CCTAACTACG
9151	GCTACACTAG	AAGGACAGTA	TTTGGTATCT	GCGCTCTGCT	GAAGCCAGTT
9201		AAAGAGTTGG		TCCGGCAAAC	
9251		GGTTTTTTTG		GCAGATTACG	
9301		AGAAGATCCT		CTACGGGGTC	TGACGCTCAG
9351		ACTCACGTTA			TATCAAAAAG
9401	GATCTTCACC				AAATCAATCT
9451	AAAGTATATA			GTTACCAATG	CTTAATCAGT
9501	GAGGCACCTA			CGTTCATCCA	
9551	ACTCCCCGTC			GGAGGGCTTA	
9601		AATGATACCG		GCTCACCGGC	TCCAGATTTA
9651				GAGCGCAGAA	
9701	AACTTTATCC			TTGTTGCCGG	
9751	TAAGTAGTTC	GCCAGTTAAT		ACGTTGTTGC	
9801	GGCATCGTGG		GTCGTTTGGT		TCAGCTCCGG
9851	TTCCCAACGA	TCAAGGCGAG	TTACATGATC		TGCAAAAAAG
9901	CGGTTAGCTC	CTTCGGTCCT	CCGATCGTTG	TCAGAAGTAA	
9951		TCATGGTTAT		CATAATTCTC	
10001	GCCATCCGTA	AGATGCTTTT		TGAGTACTCA	
10051	TCTGAGAATA	GTGTATGCGG	CGACCGAGTT	GCTCTTGCCC	GGCGTCAATA
10101				TTAAAAGTGC	
10151	AAAACGTTCT	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	СТСТТСАСАТ
10201				ACTGATCTTC	
10251	ACTTTCACCA	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC	AAAATGCCGC
10301	AAAAAAGGGA	ATAAGGGCGA	CACGGAAATG	TTGAATACTC	ΔΤΔΟΤΟΘΟΟ
10351	TTTTTCAATA	TTATTGAAGC	ATTTATCAGG	GTTATTGTCT	CATGAGCGGA
10401				CAAATAGGGG	
				O. # # 11 MOGOG	11CCGCGCAC

Hogan & Hartson 81926.0006 Richard M. WALMSLEY et al. Genotoxicity Testing EV 667 735 685 US 61 Drawing Sheets; Sheet 61 of 61

<u>61/61</u>

10451	ATTTCCCCGA	AAAGTGCCAC	CTGACGTCGA	ATATCATTGA	GAAGCTGCAT
10501	TTTTTTTTT	TTTTTTTTT	TTTTTTTTTA	TATATATTTC	AAGGATATAC
10551	CATTGTAATG	TCTGCCCCTA	AGAAGATCGT	CGTTTTGCCA	GGTGACCACG
10601	TTGGTCAAGA	AATCACAGCC	GAAGCCATTA	AGGTTCTTAA	AGCTATTTCT
10651	GATGTTCGTT	CCAATGTCAA	GTTCGATTTC	GAAAATCATT	TAATTGGTGG
10701	TGCTGCTATC	GATGCTACAG	GTGTTCCACT	TCCAGATGAG	GCGCTGGAAG
10751	CCTCCAAGAA	GGCTGATGCC	GTTTTGTTAG	GTGCTGTGGG	TGGTCCTAAA
10801	TGGGGTACCG	GTAGTGTTAG	ACCTGAACAA	GGTTTACTAA	AAATCCGTAA
10851	AGAACTTCAA	TTGTACGCCA	ACTTAAGACC	ATGTAACTTT	GCATCCGACT
10901	CTCTTTTAGA	CTTATCTCCA	ATCAAGCCAC	AATTTGCTAA	AGGTACTGAC
10951	TTCGTTGTTG	TCAGAGAATT	AGTGGGAGGT	ATTTACTTTG	GTAAGAGAAA
11001	GGAAGACGAT	GGTGATGGTG	TCGCTTGGGA	TAGTGAACAA	TACACCGTTC
11051	CAGAAGTGCA	AAGAATCACA	AGAATGGCCG	CTTTCATGGC	CCTACAACAT
11101	GAGCCACCAT	TGCCTATTTG	GTCCTTGGAT	AAAGCTAATG	TTTTGGCCTC
11151	TTCAAGATTA	TGGAGAAAAA	CTGTGGAGGA	AACCATCAAG	AACGAATTCC
11201	CTACATTGAA	GGTTCAACAT	CAATTGATTG	ATTCTGCCGC	CATGATCCTA
11251	GTTAAGAACC	CAACCCACCT	AAATGGTATT	ATAATCACCA	GCAACATGTT
11301	TGGTGATATC	ATCTCCGATG	AAGCCTCCGT	TATCCCAGGT	TCCTTGGGTT
11351	TGTTGCCATC	TGCGTCCTTG	GCCTCTTTGC	CAGACAAGAA	CACCGCATTT
11401	GGTTTGTACG	AACCATGCCA	CGGTTCTGCT	CCAGATTTGC	CAAAGAATAA
11451	GGTCAACCCT	ATCGCCACTA	TCTTGTCTGC	TGCAATGATG	TTGAAATTGT
11501	CATTGAACTT	GCCTGAAGAA	GGTAAGGCCA	TTGAAGATGC	AGTTAAAAAG
11551	GTTTTGGATG	CAGGTATCAG	AACTGGTGAT	TTAGGTGGTT	CCAACAGTAC
11601	CACCGAAGTC	GGTGATGCTG		AGTTAAGAAA	
11651	AAAAAGATTC	TCTTTTTTA		ACAAAAAAA	
11701	AAAAAAAA	AAAAAAAAA	AAAAAAAAA	AATGCAGCGT	CACATCGGAT
11751	AATAATGACG	TCTAAGAAAC	CATTATTATC	ATGACATTAA	CCTATAAAAA
11801	TAGGCGTATC	ACGAGGCCCT	TTCGTCTCGC	GCGTTTCGGT	GATGACGGTG
11851	AAAACCTCTG	ACACATGCAG	CTCCCGGAGA		TTGTCTGTAA
11901		GGAGCAGACA	AGCCCGTCAG		CGGGTGTTGG
11951	CGGGTGTCGG	GGCTGGCTTA			
12001	GAGTGCACCA			AACGCGGCTA	
12051	ATAACCTTAT	GTATCATACA	CATACGATTT	AGGTGACACT	ATA