Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 7

Number Theory

7.1 Ancient Greece

Definition 7.1 (Divisibility).

Given two integers $a, b \in \mathbb{Z}$, we say $a \mid b :\Leftrightarrow (\exists k \in \mathbb{Z})(ak = b)$. We read $a \mid b$ as a divides b, meaning $b/a \in \mathbb{Z}$.

Lemma 7.1 (Initial object).

If $x \in \mathbb{Z}$, then $1 \mid x$.

Proof. Let $x \in \mathbb{Z}$ and observe that $1 \cdot x = x$. Therefore, $1 \mid x$ by definition.

Lemma 7.2 (Terminal object).

If $x \in \mathbb{Z}$, then $x \mid 0$.

Proof. Let $x \in \mathbb{Z}$ and observe that $0 \cdot x = 0$. Therefore, $x \mid 0$ by definition.

Lemma 7.3 (Divisibility is a Partial Order).

The following statements hold for all $a, b, c \in \mathbb{Z}$:

I. $a \mid a$

Proof. Let $a \in \mathbb{Z}$ and observe that $1 \cdot a = a$. Therefore, $a \mid a$ by definition.

Q.E.D.

II.
$$((a \mid b) \land (b \mid a)) \Rightarrow |a| = |b|$$

Proof. Let $a, b \in \mathbb{Z}$ and suppose $a \mid b$ and $b \mid a$. Then, there exist $k_1, k_2 \in \mathbb{Z}$ such that $ak_1 = b$ and $bk_2 = a$ by definition. But then $bk_2 = (ak_1)k_2 = a$, so $ak_1k_2 = a$, yielding $k_1k_2 = 1$. Since the only integers with multiplicative inverses are 1 and -1, we have $\{k_1, k_2\} \subseteq \{1, -1\}$, so a = b or a = -b. Thus, |a| = |b|. Q.E.D.

III.
$$((a \mid b) \land (b \mid c)) \Rightarrow a \mid c$$

Proof. Let $a, b, c \in \mathbb{Z}$ and suppose $a \mid b$ and $b \mid c$. Then, there exist $k_1, k_2 \in \mathbb{Z}$ such that $ak_1 = b$ and $bk_2 = c$. This yields $ak_1k_2 = c$. Since $k_1, k_2 \in \mathbb{Z}$, we observe $k_1k_2 \in \mathbb{Z}$ and conclude $a \mid c$ by definition. Q.E.D.

Lemma 7.4 (Useful facts).

The following statements hold for all $a, b, c \in \mathbb{Z}$:

I.
$$((a \mid b) \land (a \mid c)) \Rightarrow a \mid b + c$$

II.
$$a \mid b \Rightarrow (\forall \ell \in \mathbb{Z})(a \mid b\ell)$$

III.
$$a \mid b \Rightarrow |a| \leqslant |b|$$

The proofs of the above lemmata are left as exercises to the reader.

2 / 3

┙

Corollary 7.1.

Given $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$, then $(\forall \ell_1, \ell_2 \in \mathbb{Z})(a \mid \ell_1 b + \ell_2 c)$.

Definition 7.2 (Primality).

We say that a natural number $p \in \mathbb{N}$ is $prime :\Leftrightarrow (p > 1)$ and $(\forall n \in \mathbb{N})(n \mid p \Rightarrow n \in \{1, p\})$.

We say $n \in \mathbb{N}$ is *composite* : $\Leftrightarrow n$ is not prime.

Lemma 7.5 (Fundamental Lemma of Arithmetic).

If $n \in \mathbb{N}$ and n > 1, then $(\exists p \in \mathbb{N})(p \text{ is prime } \land p \mid n)$.

Proof. TODO Q.E.D.

Theorem 7.1 (Fundamental Theorem of Arithmetic).

Every natural number greater than 1 has a unique prime factorization. Formally, for every natural number $n \in \mathbb{N}_{\geq 2}$ greater than 1, there exist unique, distinct primes $p_1, \dots p_\ell \in \mathbb{N}_+$ with unique exponents $k_1, \dots k_\ell \in \mathbb{N}_+$ such that

I.
$$(\forall i, j \in \{1, \dots \ell\}) (i \neq j \Rightarrow p_i \neq p_j)$$

II.
$$(\forall i \in \{1, \dots \ell\})(p_i \text{ is prime})$$

III.
$$n = p_1^{k_1} p_2^{k_2} \dots p_\ell^{k_\ell}$$
.

Theorem 7.2 (Euclid's Theorem).

There are infinitely-many prime numbers.

Proof. TODO Q.E.D.

Definition 7.3 (Greatest Common Divisor).

Given two integers $a, b \in \mathbb{Z}$, we say that $g \in \mathbb{Z}$ is the greatest common divisor (a.k.a. greatest common factor) of a and $b :\Leftrightarrow$

$$(g \mid a) \land (g \mid b) \land (\forall h \in \mathbb{Z}) \bigg(\Big(\big(h \mid a \big) \land \big(h \mid b \big) \Big) \implies h \mid g \bigg).$$

Notice that, since $(\forall x)(1 \mid x)$, every pair of integers shares a common factor. Since common factors of a and b are bounded above by $\min\{a,b\}$, that means the set of all common factors of a and b is nonempty and bounded above, so it has a maximal element. Therefore, the greatest common divisor of any two integers always exists.

Definition 7.4 (Co-Primality).

We say that two integers $a, b \in \mathbb{Z}$ are *co-prime* : \Leftrightarrow their greatest common divisor is 1.

Theorem 7.3 (Euclid's Division Theorem).

If $a, b \in \mathbb{Z}$, then there exist two unique integers $q, r \in \mathbb{Z}$ such that

$$a = bq + r$$
 and $0 \le r < b$.

Here, q is called the quotient when a is divided by b, and r is the remainder, as illustrated by a/b = q + r/b.