

Principais aplicações

- ✓ reconstrução de ligamentos e tendões
- √ fixação de implantes
- ✓ enxertos vasculares
- ✓ lentes de contacto
- √ dispositivos para libertação de fármacos
- ✓ suturas, tubos, cateteres, sacos, material diverso (material de circulação extra corpórea)
- ✓ suporte para crescimento celular (scaffolds)

Polímeros usados em medicina:

- ✓ Poliamidas (nylon e Kevlar)
- ✓ Polietileno (PE)
- ✓ Polipropileno (PP)
- ✓ Poliacrilatos (PMA, PMMA e p-HEMA)
- ✓ Polidimetilsiloxano (Silicone)
- ✓ Teflon® (PTFE)
- ✓ Dacron® (PET)
- ✓ Polímeros reabsorvíveis (PCL, PLA, PGA e PGLA)
- ✓ Polímeros naturais (ácido hialurónico, colagénio, fibroína, etc.)

Poliamidas

✓ Nylon

Nylon 66 (polyamide)

✓ Kevlar (polifenileno de tereftalato)

Propriedades das Poliamidas

Properties	66	610	6	11	Aramid*	Kevlar ^b
Density (g/cm³)	1.14	1.09	1.13	1.05	1.30	1.45
Tensile strength (MPa)	76	55	83	59	120	2700
Elongation (%)	90	100	300	120	<80	2.8
Modulus of elasticity (GPa)	2.8	1.8	2.1	1.2	>2.8	130
Softening temperature (°C)	265	220	215	185	275	72

- √ tubos e cateteres
- √ fios para suturas cirúrgicas
- √ componentes de diálise
- √ válvulas cardíacas, tendões artificiais

Polietileno de baixa densidade (PEBD ou LDPE)

- ✓ estrutura ramificada
- √ baixa cristalinidade e densidade
- √ baixa resistência mecânica (reduz as forças intermoleculares).

Polietileno de alta densidade (PEAD ou HDPE)

- ✓ estrutura pouco ramificada
- √ aumenta a cristalinidade e a densidade
- √ aumenta a resistência mecânica (maiores forças intermoleculares).

Polietileno de ultra alto peso molecular (PEUAPM ou UHMWPE)

- √ elevada cristalinidade
- ✓ elevada resistência mecânica (tensão de cedência, E)
- √ elevada resistência ao desgaste (baixo coeficiente de atrito)

Tipos de polietileno, PE: baixa densidade (LDPE), alta densidade (HDPE) e ultra alto peso molecular (UHMWPE).

Properties	Low density	High density	UHMWPE ^a
Molecular weight (g/mol)	$3\sim4\times10^{3}$	5 × 10 ⁵	2×10^{6}
Density (g/cm³)	0.90-0.92	0.92-0.96	0.93-0.94
Tensile strength (MPa)	7.6	23-40	> 27
Elongation (%)	150	400-500	200-250
Modulus of elasticity (MPa)	96-260	410-1,240	1100-2000
Crystallinity (%)	50-70	70-80	> 80

LDPE, HDPE

- √ tubos para drenos e cateteres
- ✓ sacos de sangue e soro fisiológico (PVC)
- ✓ embalagens para medicamentos e cosméticos

UHMWPE

- ✓ implantes ósseos: utilizado como componente acetabular em próteses para a substituição de articulações (joelho e anca)
- √ falta de interação celular

(elevada rigidez, resistência química, resistência à tração e resistência à fratura)

Properties	Values	
Density (g/cm³)	0.90-0.91	
Tensile strength (MPa)	28-36	
Elongation (%)	400-900	
Modulus of elasticity (GPa)	1.1-1.55	
Softening temperature (°C)	150	
	50 – 70%	

- √ vestuário médico;
- ✓ suturas e ligaduras de compressão;
- ✓ próteses para substituir articulações dos dedos

Poliacrilatos (PMA, PMMA e p-HEMA)

-(CH₂-C)_nCOOR₂

Grupos R_1 (H) e R_2 (CH₃) para PMA (polimetilacrilato)

Grupos R₁ (CH₃) e R₂ (CH₃) para PMMA (polimetil-metacrilato)

PMMA (resinas acrílicas)

- ✓ Excelentes propriedades (transparente e biocompatível)
- ✓ Lentes intra-oculares e lentes de contacto rígidas; lentes de contacto gelatinosas (p-HEMA)
- ✓ Fixação vertebral e de implantes (cimento ósseo)
- ✓ Dentes e próteses dentárias

✓ Não induz remodelação óssea e pode causar toxicidade!

Silicone (polidimetilsiloxano)

$$\begin{array}{ccc}
CH_3 & CH_3 \\
I & I \\
n HO-Si-OH \Rightarrow -(Si-O)_n - + n H_2O \\
I & I \\
CH_3 & CH_3
\end{array}$$

dimetil siloxano

"material que, à temperatura ambiente, pode ser esticado pelo menos duas vezes o seu comprimento original, e que, após libertada a tensão, retoma o comprimento original".

- ✓ resistente à agua e a temperaturas extremas, inerte, inodoro e não tóxico;
- √ excelente flexibilidade e estabilidade;
- ✓ cateteres, aplicações vasculares, pacemakers, cirurgia plástica e reconstrutiva, implantes mamários e faciais, substituição de cartilagem...

- √ sistema cardiovascular: válvulas cardíacas. e vasos sanguíneos artificiais
- √ tendões e ligamentos artificiais

válvula biológica (material xenógeno)

Dacron® (PET):
$$\left(-\cos -\frac{H}{c} - \frac{H}{c} - \frac{H}{c}\right)_n$$
 (politereftalato de etileno)

✓ Próteses vasculares (vasos sanguíneos, bypass) e suturas

Polímeros sintéticos reabsorvíveis

Ação de microrganismos (bactérias e fungos)

Ação enzimática

Hidrólise

poli(ε-caprolactona) (PCL)

poli(ácido glicólico) (PGA)

poli(ácido lático) (PLA)

poli(ácido glicólico-lático) (PGLA)

- √ Cápsulas para libertação de fármacos
- ✓ Scaffolds para proliferação celular

Polímeros naturais

- ácido hialurónico
- colagénio (condroitina e glucosamina)

sulfato de glucosamina

sulfato de condroitina

Hidrogéis – polímeros que absorvem grandes quantidades de água sem se dissolverem; consistência macia e elástica, baixa tensão superficial com os fluidos biológicos;

- ✓ Lubrificantes oftálmicos e ortopédicos;
- ✓ Cápsulas para medicamentos (ácido hialurónico);
- ✓ Bioadesivos;
- ✓ Pele artificial, preenchimento...

Vantagens/limitações dos materiais poliméricos

- nrocessamento sob diversas formas
- de elevada estabilidade em ambiente biológico
- propriedades mecânicas e físicas ajustáveis
- 🕠 falta de interação celular
- 🕠 libertação de subprodutos tóxicos (polímeros sintéticos)
- difícil esterilização