Решениие уравнения гармонического осцииллятора

20 ноября 2019 г.

Однородное уравнение гармонического осциллятора:

$$x'' + \omega^2 x = 0. \tag{1}$$

Это линейное однородное уравнение второго порядка. Запишем характеристическое уравнение:

$$\lambda^2 + \omega^2 = 0.$$

Корни характеристического уравнения: $\lambda_{1,2} = \pm i\omega$, вследствие чего, решение уравнения (1) запишется в виде

$$x(t) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$$

= $C_1(\cos \omega t + i\sin \omega t) + C_2(\cos \omega t - i\sin \omega t)$
= $(C_1 + C_2)\cos \omega t + i(C_1 - C_2)\sin \omega t$.

Здесь, коэффициенты $C_1,C_2\in\mathbb{C}$ – комплексные числа. При этом (!) если мы требуем, чтобы $x(t)\in\mathbb{R}$, то они комплексно-сопряжённые:

$$C_1 = a + ib,$$

$$C_2 = a - ib.$$

Сооответственно,

$$C_1 + C_2 = 2a \equiv A$$
$$C_1 - C_2 = 2ib \equiv iB,$$

и тогда

$$x(t) = A\cos\omega t - B\sin\omega t$$

= $A\cos\omega t + B_1\sin\omega t$. (2)

Замечание 1 (Доказательство комплексной сопряжённости C_1 и C_2). Если $x(t) \in \mathbb{R}$, то $x^*(t) = x(t)$ (комплексно-сопряжённое с собой). Тогда:

$$x^{*}(t) = C_{1}^{*}(e^{i\omega t})^{*} + C_{2}^{*}(e^{-i\omega t})^{*}$$
$$= C_{1}^{*}e^{-i\omega t} + C_{2}^{*}e^{i\omega t}$$
$$= C_{2}e^{-i\omega t} + C_{1}e^{i\omega t}.$$

Поскольку $e^{i\omega t} \perp e^{-i\omega t} \colon C_1^* = C_2$.