Licence Fondamentale: SMI

S6

Année universitaire : 2017-2018

Réseaux II

TD1: Indications de correction

Solution Ex1.

- Classe C
- Le nombre de sous-réseau est 10. 10 en binaire est 1010 (4bits). On doit emprunter au minimum 4 bits de la partie hôte. Donc le nombre de bits Sous-Réseau est 4 bits et masque de 24, ce qui donne un total de 24 + 4 = 28.
- Les sous réseaux sont : 212.217.1.0/28, 212.217.1.16/28, 212.217.1.32/28, 212.217.1.48/28, ...,212.217.1.240/28
- Le nombre de machine par sous réseau est $2^{(32-28-4)} 2 = 16-2 = 14$ machines par SR.

Solution Ex2. VLSM

- L1:212.217.1.128/25

- L2:212.217.1.32/27

- L3:212.217.1.0/28

Solution Ex3.

Licence Fondamentale : SMI

S6

Année universitaire : 2017-2018

Réseaux II

Solution Ex. 4:

- On affecte un poids de 0 au nœud source A et infini aux autres nœuds.

A	В	С	D	E	F	Nœud sélectionné
0	infini	infini	Infini (temps)	infini	infini	

Etape 1:

Une fois un nœud est traité, on grise la colonne.

A	В	C	D	E	F	Nœud sélectionné
0	infini	infini	Infini (temps)	infini	infini	A(0)
	$2_{\rm A}$	5 _A	1_{A}	infini	infini	

On écrit les poids avec l'indice le nœud d'origine uniquement pour les voisines et les autres on garde infini.

Etape 2 : On choisit un nœud dont le poids est minimal (c'est D) et on remplit une nouvelle ligne. Les voisines de D sont A, B, C et E. La colonne de A est déjà grisée. B est adjacent à D, on a 1, on ajoute 1, donc 2.

A	В	C	D	E	F	Nœud sélectionné
0	infini	infini	Infini (temps)	infini	infini	A(0)
	2 _A	5 _A	1_{A}	infini	infini	D(1)
	$1+2=2_{D}$	4_{D}		$1+1=2_{D}$	infini	B(2)

Etape 3 : On choisit un nœud dont le poids est minimal (c'est B) et on remplit une nouvelle ligne.

A	В	С	D	E	F	Nœud sélectionné
0	infini	infini	Infini (temps)	infini	infini	A(0)
	2 _A	5 _A	1_{A}	infini	infini	D(1)
	2_{D}	4 _D		2 _D	infini	B(2)
		$3 + 2_D = 5_B$		2_{D}	infini	E(2)

Les voisines de B : C, D et A. Les colonnes de A et D sont déjà grisées.

Il reste un seul voisin C. E n'est pas voisin de B, donc on garde 2.

Etape 4 : On choisit un nœud dont le poids est minimal (c'est E) et on remplit une nouvelle ligne. Les voisines de E : C, D et F. La colonne de D est déjà grisée.

A	В	C	D	E	F	Nœud
						sélectionné

Licence Fondamentale: SMI

S6

Année universitaire : 2017-2018

Réseaux II

0	infini	infini	Infini	infini	infini	A(0)
			(temps)			
	2 _A	5 _A	$1_{\mathbf{A}}$	infini	infini	D(1)
	2_{D}	$4_{ m D}$		2_{D}	infini	B(2)
		$3+2_{\rm D}=5_{\rm B}$		2_{D}	infini	E(2)
		$2_{\rm D} + 1 = 3_{\rm E}$			4 <u>₽</u>	C(3)

Etape 5 : On choisit un nœud dont le poids est minimal (c'est E) et on remplit une nouvelle

ligne. Les voisines de C : B, D et F. Les colonnes de B et D sont déjà grisées.

A	В	C	D	E	F	Nœud sélectionné
0	infini	infini	Infini (temps)	infini	infini	A(0)
	2 _A	5 _A	1_{A}	infini	infini	D(1)
	2_{D}	$4_{ m D}$		2 _D	infini	B(2)
		$3 + 2_D = 5_B$		2_{D}	infini	E(2)
		$2_{\rm D} + 1 = 3_{\rm E}$			$2+2_{\rm D}=4_{\rm E}$	C(3)
					$5+3_{\rm E}=8_{\rm C}$	F(4)

F est le nœud final. Donc le cout minimal est 4 < 8 minutes en venant du chemin A->D->E->F.