2014학년도 2학기 (중간고사)		학 과		감:	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수	

3. 구면좌표로 주어진 세 점

1번 - 10번은 단답형 문제(각 5점 만점)입니다. 풀 이과정은 쓸 필요 없고 답만 쓰면 됩니다.

 $P(0,0,0),\;Q(\sqrt{2},\frac{\pi}{2},\frac{3\pi}{4}),\;R(2,\frac{\pi}{6},\frac{3\pi}{4})$ 으로 이루어진 삼 1. 3차원 벡터 a,b,c 에 대하여, 다음 중에서 <u>틀린</u> 것을 <mark>각형의 넓이를 구하여라.</mark> 모두 고르시오.

- (1) $a \neq 0$, $a \cdot b = a \cdot c$ 이면 b = c이다.
- (2) $a \neq 0$, $a \times b = a \times c$ 이면 b = c이다.
- (3) $a \cdot (b \times c) = (a \times b) \cdot c$
- (4) $a \times (b \times c) = (a \times b) \times c$

답:

 $f(x,y,z) = x \cos y \sin z$ 의 방향도함수를 구하여라.

2. 점 $P(1,\pi,\frac{\pi}{4})$ 에서 $\pmb{v}=<2,1,4>$ 방향으로의 함수 4. 곡면 $z^2=xy+y^2$ 위의 점 $(1,1,\sqrt{2})$ 에서의 접평면의 방정식을 구하여라.

답:

답:

2014학년도 2학	학기 (중간고사)	학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수	

5 곡명	$x^3 + y^3 + z^3 = 3xyz$ 위의	하-	전	P(2 - 1 - 1)에서
		Ľ	Ц	1 (2, 1, 1)
$\frac{\partial z}{\partial x} _P \stackrel{\circ}{=}$	값을 구하여라.			

| 7. 점 O를 원점으로 하는 좌표공간에서 사면체 OABC가 있다. 삼각형 *OAB*, *OBC*, *OCA*, *ABC* 는 각각 네 평 면 x=0, z=0, x-2y=0, x+2y+z=4 위에 있을 때, 사면체 *OABC*의 부피를 구하여라.

답:

P(0,1,2)에서의 접평면과 수직이고 점 P(0,1,2)를 지나 이다. 이 타원을 z축으로 회전시켜 얻은 입체의 부피를 는 직선의 대칭방정식을 구하여라.

답:

6. 곡면 $f(x,y,z) = \cos \pi x - x^2 y + e^{xz} + yz = 4$ 위의 점 8. yz -평면에 주어진 타원 $\frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ 의 면적은 πab 구하여라.

답:

답:

2014학년도 2학기 (중간고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	공동	교수명	분 반		
시 혐 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수	

2014학년도 2학기 (중간고사)		학 과		감:	녹교수확인
과 목 명	일반수학 2	번 학			
출제교수명	공	교수명	분 반		
시 험 일 시	2014년 10월 22일 (오전 10:00-11:40)	명 성		점 수	
	_				·

9. 원점에서 곡면

 $z^2 = x^2y + 4$ 사이의 최소거리를 구하여라.

11번~15번은 서술형 문제(각 10점 만점)입니다. 풀 이과정을 모두 서술하여야 합니다.

11. 점 P(2,-1,1) 를 지나고 평면 $\alpha:3x-2y+2z=5$ 에 수직인 직선을 l이라고 하자. 점 A(-1,2,1) 에서 직 선 l에 내린 수선의 발을 B, 점 A에서 평면 lpha에 내린 수선의 발을 C 라고 할 때, 삼각형 $\triangle ABC$ 의 넓이를 구하여라.

답:

10. 점 A(1,2,3)에서 점 B(2,1,1) 방향으로 쏜 빛이 xy평면에 반사되어 나갔다. 반사된 빛의 방향벡터를 구하여 라. (단, 입사각과 반사각은 같다.)

답:

2014학년도 2학기 (중간고사)		학 과		감:	 독교수확인
2011 122 2 121 (822/1)					
과 목 명	일반수학 2	학 번			
출제교수명	공동	교수명	분 반		
시 혐 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수	

시 험 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수
12. $w(x,t) = f(x+ct)$ -을 보여라. (단, f,g 는 2계도함수를다.)	$+g(x-ct)$ 일 때, $\dfrac{\partial^2 w}{\partial t^2}=c$ 를 갖는 임의의 함수, c 는	$\frac{\partial^2 w}{\partial x^2}$ 임 는 상수이	$f(x,y)=egin{cases} x^2 an^{-1}rac{y}{x}-y^2 an^{-1}rac{x}{y} \ & & & & & & & & & & & & & & & & & & $	$\begin{array}{l} : x \neq 0 \text{ and } y \neq 0 \\ : x = 0 \text{ or } y = 0 \end{array} \circ]$

2014학년도 2학기 (중간고사)		학 과		감	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	공 동	교수명	분 반		
시 험 일 시	2014년 10월 22일 (오전 10:00-11:40)	성 명		점 수	

14. 함수 $f(x,y) = x^2 + 2y^2$ 의 $x^2 + y^2 \le 1$ 에서의	최댓값	15. 평면 $x+y+2z=2$ 는 포물면 $z=x^2+y^2$ 과 하나의
과 최솟값을 구하여라.		곡선에서 만난다. 원점에서 가장 가까운 곡선위의 점과
		가장 먼 곡선위의 점을 구하여라.