```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import plotly.express as px

df = pd.read_csv('/content/china_dept_trap - china_dept_trap.csv')

df.head()
```

	Expand All Collapse All	YEAR	AMOUNT	LENDER	BORROWER	SECTOR	SENSITIVE TERRITORY OVERLAP
0	"Lar Patriota" Infrastructure (Phase 1)	2011	\$50M	CDB	Government	Transport	None Known
1	10-Year Oil Supply Plan	2009	\$7.0B	CDB	Petrobras	Extraction,	None

df.tail()

	Expand All Collapse All	YEAR	AMOUNT	LENDER	BORROWER	SECTOR	SENSITIVE TERRITORY OVERLAP	Count
85	Zalingei-El Geneinah Road Construction	2009	\$120M	ExImBank	Government	Transport	None Known	Sud
	Zanzibar						None	
4								•

```
df.shape
```

(858, 8)

df.columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Title	858 non-null	object
1	YEAR	858 non-null	int64
2	AMOUNT	858 non-null	object
3	LENDER	858 non-null	object
4	BORROWER	857 non-null	object
5	SECTOR	858 non-null	object
6	SENSITIVE TERRITORY OVERLAP	858 non-null	object
7	Country	858 non-null	object

dtypes: int64(1), object(7)
memory usage: 53.8+ KB

df.describe()

1	YEAR	
	858.000000	count
	2013.268065	mean
	2.894155	std
	2008.000000	min
	2011.000000	25%
	2013.000000	50%
	2016.000000	75%
	2019.000000	max

df.isnull().sum()

Title	0
YEAR	0
AMOUNT	0
LENDER	0
BORROWER	1
SECTOR	0
SENSITIVE TERRITORY OVERLAP	0
Country	0
dtype: int64	

df.dropna(inplace = True)

df.nunique()

Title	827
YEAR	12
AMOUNT	346

```
LENDER 7
BORROWER 120
SECTOR 10
SENSITIVE TERRITORY OVERLAP 8
Country 94
dtype: int64
```

```
df['YEAR'].unique()
```

```
array([2011, 2009, 2012, 2016, 2015, 2017, 2018, 2014, 2008, 2010, 2013, 2019])
```

```
df['YEAR'].value_counts()
```

```
2016
        133
2011
         106
2013
          91
2012
          86
2015
          79
2017
          75
2014
          70
2009
          69
2010
          58
2018
          45
2008
          40
2019
           5
```

Name: YEAR, dtype: int64

```
plt.figure(figsize = (15,6))
sns.countplot('YEAR',data = df,palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```



```
fig1 = px.histogram(df,x = 'YEAR',color = 'YEAR')
fig1.show()
```



```
df['LENDER'].unique()
```

df['LENDER'].value_counts()

```
ExImBank 625
CDB 219
CDB, ExImBank 8
CDB, ICBC 2
BOC, CDB, ExImBank 1
CDB, others 1
CDB, Citic 1
Name: LENDER, dtype: int64
```

```
plt.figure(figsize = (15,6))
sns.countplot('LENDER',data = df,palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```



```
df['SECTOR'].unique()
     array(['Transport', 'Extraction, pipelines', 'Government', 'Power',
            'Mulit-sector/discretionary', 'Telecom', 'Other construction',
            'Agriculture, food', 'Manufacturing', 'fTransport'], dtype=object)
df['SECTOR'].value_counts()
```

Transport	316
Power	203
Government	138
Telecom	63
Extraction, pipelines	38
Mulit-sector/discretionary	30
Other construction	29
Agriculture, food	27
Manufacturing	12
fTransport	1
Name: SECTOR, dtype: int64	

plt.figure(figsize = (15,6)) sns.countplot('SECTOR',data = df,palette = 'hls') plt.xticks(rotation = 90) plt.show()


```
fig3 -= ·px.histogram(df, x -= · 'SECTOR', color ·= · 'SECTOR')
fig3.show()
```


df['SENSITIVE TERRITORY OVERLAP'].unique()

df['SENSITIVE TERRITORY OVERLAP'].value counts()

```
None Known
Within Critical Habitats
Within Critical Habitats\n Within National Protected Areas
Within Indigenous Peoples' Lands\n Within Critical Habitats
Within Indigenous Peoples' Lands
Within Indigenous Peoples' Lands\n Within Critical Habitats\n Within National Protect
Within National Protected Areas
Within Indigenous Peoples' Lands\n Within National Protected Areas
Name: SENSITIVE TERRITORY OVERLAP, dtype: int64
```

```
plt.figure(figsize = (15,6))
sns.countplot('SENSITIVE TERRITORY OVERLAP',data = df,palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


df['Country'].unique()

```
array(['Angola', 'Brazil', 'Suriname', 'Cambodia', 'Kenya',
       'Congo, Democratic Republic of the', 'Laos', 'Bangladesh',
       'Nigeria', 'Benin', 'Zambia', 'Bahamas', "Cote d'Ivoire",
       'Ethiopia', 'Djibouti', 'Indonesia', 'Togo', 'Philippines', 'Myanmar', 'Mozambique', 'Eritrea', 'Ukraine', 'South Sudan',
       'Sudan', 'Kyrgyz Republic', 'Uzbekistan', 'Ecuador', 'Mauritania',
       'Kazakhstan', 'Jordan', 'Niger', 'Mauritius', 'Pakistan', 'Mali',
       'Hungary', 'Serbia', 'Belarus', 'Morocco', 'Regional', 'Malawi',
       'Egypt', 'Tanzania', 'Congo, Republic of the', 'Fiji', 'Nepal',
       'Rwanda', 'Ghana', 'Senegal', 'Sri Lanka', 'Argentina', 'Guyana',
       'Trinidad and Tobago', 'Maldives', 'Bolivia', 'Vietnam', 'Gabon',
       'Montenegro', 'Papua New Guinea', 'Samoa', 'Iran', 'Cameroon',
       'Venezuela', 'Timor-Leste', 'Peru', 'Tajikistan', 'Malaysia',
       'Dominican Republic', 'Uganda', 'Russian Federation', 'Madagascar',
       'Turkmenistan', 'Jamaica', 'Gambia', 'Lesotho', 'Zimbabwe',
       'Mongolia', 'Cuba', 'Guinea', 'Macedonia', 'Vanuatu',
       'Equatorial Guinea', 'Grenada', 'South Africa', 'Namibia', 'Chad',
```

```
'Tonga', 'Barbados', 'Liberia', 'Costa Rica', 'Antigua & Barbuda', 'Comoros', 'Mexico', 'Tunisia', 'Bosnia & Herzegovina'], dtype=object)
```

df['Country'].value_counts()

Angola	115
Ethiopia	34
Cambodia	31
Sri Lanka	30
Indonesia	30
Malaysia	1
Peru	1
Hungary	1
Jordan	1
Bosnia & Herzegovina	1

Name: Country, Length: 94, dtype: int64

```
plt.figure(figsize = (15,6))
sns.countplot('Country',data = df,palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```



```
fig3 = px.histogram(df,x = 'Country',color = 'Country')
fig3.show()
```


fig4 = px.histogram(df,x = 'Country',color = 'SECTOR')
fig4.show()

✓ 0s completed at 6:15 PM

×