Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1649JXM

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
NEWS
        Dec 17
                 The CA Lexicon available in the CAPLUS and CA files
NEWS
         Feb 06
                 Engineering Information Encompass files have new names
     3
NEWS
         Feb 16
                 TOXLINE no longer being updated
NEWS 5
         Apr 23
                 Search Derwent WPINDEX by chemical structure
                 PRE-1967 REFERENCES NOW SEARCHABLE IN CAPLUS AND CA
NEWS
         Apr 23
         May 07
NEWS
                 DGENE Reload
NEWS 8
         Jun 20
                 Published patent applications (A1) are now in USPATFULL
NEWS 9
         JUL 13
                 New SDI alert frequency now available in Derwent's
                 DWPI and DPCI
NEWS 10
        Aug 23
                 In-process records and more frequent updates now in
                 MEDLINE
                 PAGE IMAGES FOR 1947-1966 RECORDS IN CAPLUS AND CA
NEWS 11
        Aug 23
NEWS 12
                 Adis Newsletters (ADISNEWS) now available on STN
         Aug 23
NEWS 13
        Sep 17
                 IMSworld Pharmaceutical Company Directory name change
                 to PHARMASEARCH
                 Korean abstracts now included in Derwent World Patents
        Oct 09
NEWS 14
                 Index
NEWS 15 Oct 09
                Number of Derwent World Patents Index updates increased
NEWS 16 Oct 15
                Calculated properties now in the REGISTRY/ZREGISTRY File
NEWS 17 Oct 22 Over 1 million reactions added to CASREACT
NEWS 18
        Oct 22
                DGENE GETSIM has been improved
NEWS 19 Oct 29 AAASD no longer available
NEWS EXPRESS August 15 CURRENT WINDOWS VERSION IS V6.0c,
              CURRENT MACINTOSH VERSION IS V6.0 (ENG) AND V6.0J (JP),
              AND CURRENT DISCOVER FILE IS DATED 07 AUGUST 2001
NEWS HOURS
              STN Operating Hours Plus Help Desk Availability
NEWS INTER
              General Internet Information
NEWS LOGIN
              Welcome Banner and News Items
NEWS PHONE
              Direct Dial and Telecommunication Network Access to STN
NEWS WWW
              CAS World Wide Web Site (general information)
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 08:11:42 ON 07 NOV 2001

=> file medline biosis embase caplus uspatfull

COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'MEDLINE' ENTERED AT 08:12:01 ON 07 NOV 2001

FILE 'BIOSIS' ENTERED AT 08:12:01 ON 07 NOV 2001 COPYRIGHT (C) 2001 BIOSIS(R)

FILE 'EMBASE' ENTERED AT 08:12:01 ON 07 NOV 2001 COPYRIGHT (C) 2001 Elsevier Science B.V. All rights reserved.

FILE 'CAPLUS' ENTERED AT 08:12:01 ON 07 NOV 2001 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPATFULL' ENTERED AT 08:12:01 ON 07 NOV 2001 CA INDEXING COPYRIGHT (C) 2001 AMERICAN CHEMICAL SOCIETY (ACS)

=> s (nucl; ear (a) receptor) ligand (p) screen? (p) reporter

UNMATCHED LEFT PARENTHESIS '(NUCL'
COMMAND STACK INTERRUPTED. ENTER "DISPLAY HISTORY"
TO SEE WHICH COMMANDS WERE EXECUTED.

The number of right parentheses in a query must be equal to the number of left parentheses.

=> s (nuclear (a) receptor) ligand (p) screen? (p) reporter

MISSING OPERATOR RECEPTOR) LIGAND
The search profile that was entered contains terms or nested terms that are not separated by a logical operator.

=> s (nuclear (a) receptor) (p) ligand (p) screen? (p) reporter

L1 75 (NUCLEAR (A) RECEPTOR) (P) LIGAND (P) SCREEN? (P) REPORTER

=> dup rem l1

PROCESSING COMPLETED FOR L1

L2 34 DUP REM L1 (41 DUPLICATES REMOVED)

=> s (nuclear (a) receptor)(p) gene (p) screen? (p) reporter

4 FILES SEARCHED...

L3 80 (NUCLEAR (A) RECEPTOR) (P) GENE (P) SCREEN? (P) REPORTER

=> dup rem 13

PROCESSING COMPLETED FOR L3

L4 35 DUP REM L3 (45 DUPLICATES REMOVED)

=> s 12 and 14

L5 27 L2 AND L4

=> dup rem 15

```
42 L2 OR L4
=> dup rem 17
PROCESSING COMPLETED FOR L7
            42 DUP REM L7 (0 DUPLICATES REMOVED)
=> d 18 total ibib kwic
     ANSWER 1 OF 42 CAPLUS COPYRIGHT 2001 ACS
L8
ACCESSION NUMBER:
                       2001:618285 CAPLUS
DOCUMENT NUMBER:
                       135:176717
TITLE:
                       A ligand dependent nuclear receptors transactivation
                       system for screening insecticidal compds
INVENTOR (S):
                       Tran, Hiep Tuan; Askari, Hossein; Schwartz, Michael;
                       Butt, Tauseef
PATENT ASSIGNEE(S):
                       Lifesensors, Inc., USA
SOURCE:
                       PCT Int. Appl., 84 pp.
                       CODEN: PIXXD2
DOCUMENT TYPE:
                       Patent
LANGUAGE:
                       English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
     PATENT NO.
                   KIND DATE
                                       APPLICATION NO. DATE
     ----
                          -----
                                        -----
                                       WO 2001-US5429 20010220
                    A1 20010823
     WO 2001061350
        US 2000-183393
PRIORITY APPLN. INFO.:
                                                     P 20000218
REFERENCE COUNT:
                        (1) Dela, C; Journal of Molecular Endocrinology 2000,
REFERENCE(S):
                           V24, P183
                        (2) Evans; US 5747661 A 1998 CAPLUS
                        (3) Heinrich; US 6110698 A 2000 CAPLUS
                        (4) Torchia, J; Nature 1997, V387, P677 CAPLUS
                        (6) Wang, S; The Journal of Biological Chemistry
1998,
                           V273(42), P27531 CAPLUS
                       ALL CITATIONS AVAILABLE IN THE RE FORMAT
AB
    A yeast-based system is provided for identifying new mols. which activate
    nuclear receptors in a ligand-dependent
    fashion. A ligand dependent transactivation system for
    screening insecticidal compds. comprises: (a) a first DNA
    construct having a nucleic acid mol. encoding an altered ecdysone
receptor
    operably linked to a promoter; (b) a second DNA construct having a
nucleic
    acid mol. encoding a receptor, which heterodimerizes with said ecdysone
    receptor upon transactivation, said nucleic acid being operably linked to
    a promoter; (c) a third DNA construct comprising a promoter contg. a
    plurality of ecdysone response elements, said promoter being operably
    linked to a reporter gene; (d) a fourth DNA construct
```

PROCESSING COMPLETED FOR L5

=> s 12 or 14

27 DUP REM L5 (0 DUPLICATES REMOVED)

encoding a co-activator mol., said co-activator mol. being operably

to a promoter sequence; and (e) a host cell comprising said first, second,

third and fourth DNA constructs, expression of said reporter gene being dependent upon ligand dependent

transactivation effectuated by said insecticidal compds. In a preferred embodiment, a method is provided utilizing ecdysone receptor, USP and GRIP

I encoding expression vectors which may be used to advantage for screening new and useful insecticidal compds., detecting insecticidal residues as well as to regulate expression of a gene of interest in a host in a ligand-dependent manner.

IT Ecdysteroid receptors

Nuclear receptors

Promoter (genetic element)

Reporter gene

RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)

(ligand dependent nuclear receptors transactivation system for screening insecticidal compds comprising)

ANSWER 2 OF 42 USPATFULL

ACCESSION NUMBER:

2001:190920 USPATFULL

TITLE:

Use of modified tethers in screening compound

libraries

INVENTOR(S):

Dower, William J., Menlo Park, CA, United States Gates, Christian M., Santa Cruz, CA, United States Heinkel, Gregory L., San Jose, CA, United States Lalonde, Guy, Woodside, CA, United States

Mattheakis, Larry C., Cupertino, CA, United States Paddon, Christopher J., Pacifica, CA, United States Schatz, Peter J., Mountain View, CA, United States Glaxo Wellcome Inc., Research Triangle Park, NC,

PATENT ASSIGNEE(S):

United

States (U.S. corporation)

	NUMBER	KIND	DATE		
PATENT INFORMATION:	US 6309842	B1	20011030		
APPLICATION INFO.:	US 1997-977378		19971124	(8)	
RELATED APPLN. INFO.:	Continuation-in-	-part of	Ser. No.	US 1996-758307,	filed
	on 3 Dec 1996, r	now pater	nted, Pat.	No. US 5958703	
DOCUMENT TYPE:	Utility	-			
FILE SEGMENT:	GRANTED				

Ponnaluri, Padmashri PRIMARY EXAMINER: Townsend & Townsend & Crew LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: 4 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 14 Drawing Figure(s); 13 Drawing Page(s)

LINE COUNT: 3151

DETD The regulatory sequences depend on the target receptor. For example, to screen for activators of 7TM receptors, the recombinase is placed under the transcriptional control of a promoter which responds

to . promoter composed of repeating cyclic AMP response

elements, or the Fusl promoter if the 7TM receptor is expressed in yeast

reporter cells. As a further example, to screen for activation of a T-cell receptor, the recombinase can be linked to an NFAT promoter. In a further variation, the. . . target receptor,

such that the recombinase is inactive in the fusion protein unless the fusion

protein is bound to a ligand, which causes steric changes that

activate the recombinase. Activation of recombinases fused to ligand binding domains of nuclear receptors

on ligand binding has been reported. See Logie & Stewart,

Proc. Natl. Acad. Sci. USA 92, 5940-5944 (1995); Metzger et al., Proc. Natl. Acad. Sci. USA 92, 6991-6995 (1995); U.S. Ser. No. 08/901,540.

Suitable nuclear receptors include estrogen,

glucocorticoid and androgen receptors.

L8 ANSWER 3 OF 42 USPATFULL

ACCESSION NUMBER: 2001:67659 USPATFULL

TITLE: Synthesis and use of retinoid compounds having

negative

hormone and/or antagonist activities

INVENTOR(S): Klein, Elliott S., Marina del Rey, CA, United States

Johnson, Alan T., Rancho Santa Margarita, CA, United

States

Standeven, Andrew M., Corona del Mar, CA, United

States

Beard, Richard L., Newport Beach, CA, United States Gillett, Samuel J., Albany, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States

Teng, Min, Aliso Viejo, CA, United States

Chandraratna, Roshantha A., Mission Viejo, CA, United

States

PATENT ASSIGNEE(S): Allergan, Inc., Irvine, CA, United States (U.S.

corporation)

NUMBER KIND DATE

PATENT INFORMATION: APPLICATION INFO.:

US 6228848 B1 20010508 US 1999-447082 19991122 (9)

RELATED APPLN. INFO.:

Division of Ser. No. US 1998-222983, filed on 30 Dec 1998, now patented, Pat. No. US 6008204 Division of

Ser. No. US 1997-871093, filed on 9 Jun 1997, now patented, Pat. No. US 5952345 Division of Ser. No. US 1996-613863, filed on 11 Mar 1996, now patented, Pat. No. US 5776699 And Ser. No. US 1995-522778, filed on 1 Sep 1995 And Ser. No. US 1995-522779, filed on 1 Sep

1995

NUMBER DATE

PRIORITY INFORMATION:

US 1995-19015 19950901 (60) US 1995-64853 19951013 (60)

DOCUMENT TYPE: FILE SEGMENT:

Utility Granted

PRIMARY EXAMINER:

Shah, Mukund J. Rao, Deepak R.

ASSISTANT EXAMINER: LEGAL REPRESENTATIVE:

Szekeres, Gabor L., Baran, Robert J., Voet, Martin A.

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

14

NUMBER OF DRAWINGS:

30 Drawing Figure(s); 15 Drawing Page(s)

LINE COUNT:

6462

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD Our method of RAR negative hormone **screening** based on the use of CV-1 cells co-transfected with the ERE-tk-Luc luciferase

reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16
 receptor expression plasmids can be adapted generally such that the
 RAR-.gamma. moiety of the. . . to that of peroxisome

proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily

nuclear receptor capable of heterodimerizing with RXR.

CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. **Ligands** capable of binding the

ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity. DETD For steroid superfamily nuclear receptors that do not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other reporter gene. An essential feature of a generalized negative hormone screening assay is the inclusion of at least the ligand binding domain of the particular nuclear receptor for which inverse agonists are to be screened and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a reporter gene which is under control of a DNA regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the nuclear receptor for which inverse agonists are to be screened would express this nuclear receptor as a fusion protein containing a constitutive activation domain, such as the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist. ANSWER 4 OF 42 USPATFULL ACCESSION NUMBER: 2001:55705 USPATFULL TITLE: Methods of identifying compounds having nuclear receptor negative hormone and/or antagonist activities INVENTOR(S): Klein, Elliott S., Marina Del Rey, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Chandraratna, Roshantha A., Mission Viejo, CA, United States PATENT ASSIGNEE(S): Allergan Sales, Inc., Irvine, CA, United States (U.S. corporation) NUMBER KIND DATE -----US 6218128 B1 20010417 PATENT INFORMATION: APPLICATION INFO.: US 1998-42943 19980317 Continuation-in-part of Ser. No. US 1997-928552, filed RELATED APPLN. INFO.: on 12 Sep 1997, now abandoned DOCUMENT TYPE: Utility FILE SEGMENT: Granted PRIMARY EXAMINER: Ulm, John LEGAL REPRESENTATIVE: Fisher, Carlos A., Baran, Robert J., Voet, Martin A. NUMBER OF CLAIMS: 21 EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 30 Drawing Figure(s); 20 Drawing Page(s) LINE COUNT: 7525 CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use DETD of CV-1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16

receptor expression plasmids can be adapted generally such that the

proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily

RAR-.gamma. moiety of the. . . to that of peroxisome

```
nuclear receptor capable of heterodimerizing with RXR.
       CV-1 cells co-transfected with such plasmids would express high basal
       levels of luciferase activity. Ligands capable of binding the
     ligand binding domain of the receptor substituted for the
       RAR-.gamma. moiety can be easily screened for negative hormone
       activity by measuring their ability to repress luciferase activity.
       For steroid superfamily nuclear receptors that do
       not heterodimerize with RXR (e.g., glucocorticoid and estrogen
       receptors) the same end result can be achieved using GR-VP-16 or
       ER-VP-16 receptors and a luciferase reporter plasmid
       consisting of the appropriate glucocorticoid or estrogen response
       element fused to a heterologous promoter element and luciferase or
     reporter gene. An essential feature of a generalized
       negative hormone screening assay is the inclusion of at least
       the ligand binding domain of the particular nuclear
     receptor for which inverse agonists are to be screened
       and a method for localizing the nuclear receptor
     ligand binding domain to the promoter of a reporter
     gene. This could be achieved using the receptors's natural DNA
       binding site, or alternatively by construction of a chimeric receptor
       having a heterologous DNA binding domain and corresponding use of a
     reporter gene which is under control of a DNA
       regulatory element which is recognized by the heterologous DNA binding
       domain. In a preferred embodiment, the plasmid expressing the
     nuclear receptor for which inverse agonists are to be
     screened would express this nuclear receptor
       as a fusion protein containing a constitutive activation domain, such
as
       the HSV VP-16 activation domain, in order to provide allow high basal
       activity. This high basal activity would effectively increase assay
       sensitivity, thereby allowing analysis of nuclear
     receptor ligands which repress basal transcriptional
       activity in the absence of added nuclear receptor
       agonist.
     ANSWER 5 OF 42 USPATFULL
ACCESSION NUMBER:
                       2001:18502 USPATFULL
                       Methods and compositions for use in modulating
TITLE:
                       expression of matrix metalloproteinase genes
INVENTOR(S):
                       Basset, Paul, Strasbourg, France
                       Anglard, Patrick, Strasbourg, France
                       Guerin, Eric, Strasbourg, France
PATENT ASSIGNEE(S):
                       Institut National de la Sante de la Recherche
Medicale,
                       Paris, France (non-U.S. corporation)
                       Centre National de la Recherche Scientifique, Paris,
                       France (non-U.S. corporation)
                       Universite Louis Pasteur, Strasbourg, France (non-U.S.
                       corporation)
                       Bristol-Myers Squibb Company, Princeton, NJ, United
                       States (U.S. corporation)
                            NUMBER
                                        KIND DATE
                       -----
                       US 6184256 B1 20010206
US 1998-65904 19980424
PATENT INFORMATION:
APPLICATION INFO.:
                                               19980424 (9)
                             NUMBER
                                           DATE
                       -----
                       US 1997-44258 19970424 (60)
PRIORITY INFORMATION:
DOCUMENT TYPE:
                       Utility
```

FILE SEGMENT: Granted
PRIMARY EXAMINER: Schwartzman, Robert A.
LEGAL PEPPESENTATIVE: Sterne Kessler Golds

LEGAL REPRESENTATIVE: Sterne, Kessler, Goldstein & Fox, P.L.L.C.

NUMBER OF CLAIMS: 23

```
EXEMPLARY CLAIM:
NUMBER OF DRAWINGS:
                        10 Drawing Figure(s); 10 Drawing Page(s)
LINE COUNT:
                        2099
CAS INDEXING IS AVAILABLE FOR THIS PATENT.
             . more of the compositions to be assayed for its ability to
DETD
       differentially modulate the expression of the two or more genes
       in the cell, while the second mammalian cell is incubated in parallel
       with the first cell but in the absence. .
                                                   . the second mammalian
cell
       serves as a "control" cell to indicate the levels of expression of the
       two or more genes typically seen in that particular cell type
       in the absence of the compositions to be assayed, and provides a
       reference for determining the effects of the compositions on
     gene expression. As an alternative to using normal, diseased or
       established cells, transfected cell lines may be constructed and used
in
       the methods of the invention. For example, in Chen et al., EMBO J.
       14(6):1187-1197 (1995), three `reporter` cell lines have been used to characterize a number of RAR.alpha.-, RAR.beta.-, or
       RAR.gamma.-specific dissociating synthetic retinoids that selectively
       induce the AF-2 activation function present in the ligand
       -binding domain (LBD) of RAR.beta. (.beta.AF-2). These cell lines
stably
       express chimeric proteins containing the DNA binding domain of the
              . . (which contain that LBD and the AF-2 activation function)
       of RAR.alpha. (GAL-RAR.alpha.), RAR.beta. (GAL-RAR.beta.) or RAR.gamma.
       (GAL-RAR.gamma.), and a luciferase reporter gene
       driven by a pentamer of the GAL4 recognition sequence ("17 m") in front
       of the .beta.-globin promoter (17 m) 5-GAL-Luc). In these cell lines,
       the RAR ligands thus induce luciferase activity that can be
       measured in the intact cells using a single-photon-counting camera.
This
     reporter system is insensitive to endogenous receptors which
       cannot recognize the GAL4 binding site. Using analogous
     screening assays, these synthetic retinoids, like RA, have been
       reported to inhibit the anchorage-independent growth of
       oncogene-transformed 3T3 cells, while the promoter of the human
       interleukin-6 (IL-6) gene, whose product is involved in the
       regulation of hematopoiesis, immune responses and inflammation
       (Kishimoto, T. et al., Science 258:593-597 (1992)),. . . a similar
       manner, RXR agonists have been identified using cell lines that express
       a RXR receptor linked to a TREpal-tk reporter gene
       which is activated by both RAR-RXR heterodimers and RXR homodimers
       (Lehmann, J. M., et al., Science 258:1944-1946 (1992)). Thus,
     reporter cell lines that are easily constructed, by methods
       routine to one of ordinary skill, may be used to distinguish not only
       the specific RAR or RXR types to which a candidate ligand will
       bind, but also whether that binding induces an activating or inhibiting
       (i.e., agonistic or antagonistic) effect. Although the above-referenced
     reporter cell lines comprised the luciferase or thymidine kinase
     genes as reporters, other reporters such as
       Neo, CAT, .beta.-galactosidase or Green Fluorescent Protein are well
       known in the art and may be used in a similar fashion to carry our the
       present invention. For example, the use of CAT reporters to
       measure retinoic acid inhibition of stromelysin-1 gene
       expression has been reported (Nicholson, R. C., et al., EMBO J.
       9(13):4443-4454 (1990)), and CAT reporters have been used in
       the methods of the present invention to examine RAR and RXR modulation
       of MMP gene expression, particularly of stromelysin-3
     gene expression, as shown below in Example 4. Other references
       disclosing reporter plasmids containing a reporter
     gene and expression vectors encoding a LBD of a nuclear
     receptor include Meyer et al., Cell 57:433-442 (1989); Meyer et
```

al., EMBO J. 9(12):3923-3932 (1990); Tasset et al., Cell 62:1177-1187

(1990);.

ANSWER 6 OF 42 MEDLINE

ACCESSION NUMBER: 2001409905 MEDLINE

DOCUMENT NUMBER: 21197982 PubMed ID: 11301062

Binding of prostaglandins to human PPARgamma: tool TITLE:

assessment and new natural ligands.

Ferry G; Bruneau V; Beauverger P; Goussard M; Rodriguez M; AUTHOR: Lamamy V; Dromaint S; Canet E; Galizzi J P; Boutin J A

Division de Pharmacologie Moleculaire et Cellulaire,

CORPORATE SOURCE:

Institut de Recherches Servier, 125 Chemin de Ronde, 78

290, Croissy-sur-Seine, France.

SOURCE: EUROPEAN JOURNAL OF PHARMACOLOGY, (2001 Apr 6) 417 (1-2)

77-89.

Journal code: EN6; 1254354. ISSN: 0014-2999.

PUB. COUNTRY: Netherlands

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

Priority Journals FILE SEGMENT:

ENTRY MONTH: 200107

ENTRY DATE: Entered STN: 20010723

> Last Updated on STN: 20010723 Entered Medline: 20010719

AB The peroxisome proliferator-activated receptors (PPAR) form a family of nuclear receptors with a wide variety of biological roles from adipogenesis to carcinogenesis. More ligands (agonist and antagonist) are needed to explore the multiple functions of PPAR, particularly PPARgamma. In order to complete such ligand screening, a binding test should be assessed versus the classical transactivation reporter gene assay. In the present work, the full-length human PPARgamma protein as well as its ligand binding domain portion were expressed in Escherichia coli. Bacterial membrane preparations expressing those constructs were characterized using a classical binding. . . measured with a new alternative method. The systems were assessed using a series of reference PPAR (alpha, beta and gamma) ligands. The full-length human PPARgamma fused to glutathione-S-transferase, expressed in E. coli and tested as a bacterial membrane-bound protein led to. . . the most accurate results when compared to the literature. Furthermore, in an attempt to complete the panel of natural PPARgamma ligands, 29 commercially available prostaglandins were screened in the binding assay. Prostaglandins H(1) and H(2) were found to be modest ligands, however as potent as 15Delta(12-14) prostaglandin J(2). These results were confirmed in the classical transactivation assay. The fact that these three prostaglandins were equally potent, suggests new

ANSWER 7 OF 42 USPATFULL

ACCESSION NUMBER: 2000:134897 USPATFULL

TITLE: Therapeutic combinations of RAR antagonists and RXR

agonists and use thereof

INVENTOR(S): Chambon, Pierre, Blaesheim, France

pathways of PPARgamma-linked gene activation.

Gronemeyer, Hinrich, Oberkirch, Germany, Federal

Republic of

Reczek, Peter R., East Amherst, NY, United States Ostrowski, Jacek, Getzville, NY, United States

Institut National de la Sante et de la Recherche PATENT ASSIGNEE(S):

Medicale, Paris, France (non-U.S. corporation)

Centre National de la Recherche Scientifiques, Paris,

France (non-U.S. corporation)

Universite Louis Pasteur, Straasbourg, France

(non-U.S.

corporation)

Bristols-Myers Squibb Company, Princeton, NJ, United States (U.S. corporation)

NUMBER KIND DATE

PATENT INFORMATION: US 6130230 20001010 APPLICATION INFO.: US 1997-919318 19970828 (8)

NUMBER DATE

PRIORITY INFORMATION: US 1996-24772 19960828 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: Granted

PRIMARY EXAMINER: Jones, Dwayne C.

LEGAL REPRESENTATIVE: Sterne, Kessler Goldstein & Fox, P.L.L.C.

NUMBER OF CLAIMS: 38 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 6 Drawing Figure(s); 9 Drawing Page(s)

LINE COUNT: 1818

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD A number of methods for **screening** candidate RAR antagonists and RXR agonists, generated by rational design or computer modeling as described above, are well-known in the. . . is useful in the methods of the present invention. For example, in Chen et al., EMBO J. 14(6):1187-1197 (1995), three `reporter` cell lines have been used to characterize a number of RAR.alpha.-, RAR.beta.-, or RAR.gamma.-specific dissociating synthetic retinoids that selectively induce. . . (which contain that LBD and the AF-2 activation

function)

of RAR.alpha. (GAL-RAR.alpha.), RAR.beta. (GAL-RAR.beta.) or RAR.gamma. (GAL-RAR.gamma.), and a luciferase reporter gene driven by a pentamer of the GAL4 recognition sequence (`17m`) in front of the .beta.-globin promoter (17m)5-GAL-Luc). In these cell lines, the RAR ligands thus induce luciferase activity that can be

measured in the intact cells using a single-photon-counting camera.

This

reporter system is insensitive to endogenous receptors which
 cannot recognize the GAL4 binding site. Using analogous
screening assays, these synthetic retinoids, like RA, have been
 reported to inhibit the anchorage-independent growth of
 oncogene-transformed 3T3 cells, while the promoter of the human
 interleukin-6 (IL-6) gene, whose product is involved in the
 regulation of hematopoiesis, immune responses and inflammation
 (Kishimoto, T. et al., Science 258:593-597 (1992)),. . . a similar
 manner, RXR agonists have been identified using cell lines that express
 a RXR receptor linked to a TREpal-tk reporter gene
 which is activated by both RAR-RXR heterodimers and RXR homodimers
 (Lehmann, J. M., et al., Science 258:1944-1946 (1992)). Thus,

reporter cell lines that are easily constructed, by methods routine to one of ordinary skill, may be used to distinguish not only the specific RAR or RXR types to which a candidate ligand will bind, but also whether that binding induces an activating (i.e., agonistic) or repressive (i.e., antagonistic) effect. Although the above-referenced reporter cell lines comprised the luciferase or thymidine kinase genes as reporters, other

reporters such as Neo, CAT, .beta.-galactosidase or Green
Fluorescent Protein are well known in the art and may be used in a similar fashion to carry out the present invention. For example, references disclosing reporter plasmids containing a

reporter gene and expression vectors encoding a LBD of a nuclear receptor include Meyer et al., Cell

57:433-442 (1989); Meyer et al., EMBO J. 9(12):3923-3932 (1990); Tasset et al., Cell 62:1177-1187 (1990);. . .

L8 ANSWER 8 OF 42 USPATFULL

ACCESSION NUMBER: 2000:121281 USPATFULL

TITLE: Methods to screen for transcription factor-coactivator

interactions

INVENTOR(S): Kushner, Peter J., San Francisco, CA, United States

Webb, Paul, San Francisco, CA, United States

Uht, Rosalie M., San Francisco, CA, United States

PATENT ASSIGNEE(S): The Regents of the University of California, Oakland,

CA, United States (U.S. corporation)

NUMBER DATE

PRIORITY INFORMATION: US 1997-43059 19970404 (60)

DOCUMENT TYPE: Utility FILE SEGMENT: Granted

PRIMARY EXAMINER: McKelvey, Terry

LEGAL REPRESENTATIVE: Skjerven, Morrill, MacPherson, Franklin & Friel, LLP,

Hunter, Esq., Tom

NUMBER OF CLAIMS: 14 EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 15 Drawing Figure(s); 10 Drawing Page(s)

LINE COUNT: 1364

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD The invention also provides methods for identifying previously unknown coactivators that are involved in nuclear receptor

-mediated transcriptional regulation. An expression library of cDNA molecules is prepared from mRNA obtained from a cell in which a gene of interest is expressed. Expression screening is

described in, for example, Ausubel, supra. The expression vector used for the library includes a DNA binding domain coding. . . a host cell

with a transcription factor polypeptide, which can also be provided by means of expression of a heterologous **gene**. A hormone or analog that binds to the transcription factor polypeptide is also introduced into the cells, thus activating the transcription factor polypeptide. In a preferred embodiment, the host cells also contain a

reporter gene that is operably linked to a response element that corresponds to the DNA binding domain encoded by the expression vector. Clones that encode an activation domain of a coactivator will trigger expression of genes that are operably linked to the response element.

L8 ANSWER 9 OF 42 USPATFULL

ACCESSION NUMBER: 2000:91965 USPATFULL

TITLE: Synthesis and use of retinoid compounds having

negative

hormone and/or antagonist activities

INVENTOR(S): Klein, Elliott S., Marina del Rey, CA, United States

Johnson, Alan T., Rancho Santa Margarita, CA, United

States

Standeven, Andrew M., Corona del Mar, CA, United

States

Beard, Richard L., Newport Beach, CA, United States Gillett, Samuel J., Albany, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States

Teng, Min, Aliso Viejo, CA, United States

Chandraratna, Roshantha A., Mission Viejo, CA, United

States

PATENT ASSIGNEE(S): Allergan Sales, Inc., Irvine, CA, United States (U.S.

corporation)

RELATED APPLN. INFO.: Division of Ser. No. US 1997-871093, filed on 9 Jun

1997, now patented, Pat. No. US 5952345 which is a

division of Ser. No. US 1996-613863, filed on 11 Mar 1996, now patented, Pat. No. US 5776699

NUMBER DATE US 1995-19015 19950901 (60) US 1995-64853 19951013 (60) PRIORITY INFORMATION: DOCUMENT TYPE: Utility FILE SEGMENT: Granted PRIMARY EXAMINER: Raymond, Richard L. ASSISTANT EXAMINER: Rao, Deepak R. Szekeres, Gabor L., Baran, Robert J., Voet, Martin A. LEGAL REPRESENTATIVE: NUMBER OF CLAIMS: EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 20 Drawing Figure(s); 15 Drawing Page(s) LINE COUNT: 7116 CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use DETD of CV-1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear receptor capable of heterodimerizing with RXR. CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. Ligands capable of binding the ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity. DETD For steroid superfamily nuclear receptors that do not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other reporter gene. An essential feature of a generalized negative hormone screening assay is the inclusion of at least the ligand binding domain of the particular nuclear receptor for which inverse agonists are to be screened and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a reporter gene which is under control of a DNA regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the nuclear receptor for which inverse agonists are to be screened would express this nuclear receptor as a fusion protein containing a constitutive activation domain, such as the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor

ANSWER 10 OF 42 MEDLINE

agonist.

ACCESSION NUMBER: 2000136063 MEDLINE

DOCUMENT NUMBER: 20136063 PubMed ID: 10669760

TITLE: Mouse Zacl, a transcriptional coactivator and repressor

for

nuclear receptors.

AUTHOR: Huang S M; Stallcup M R

CORPORATE SOURCE: Departments of Pathology and of Biochemistry and Molecular

Biology, University of Southern California, Los Angeles,

California 90089, USA.

CONTRACT NUMBER: DK 55274 (NIDDK)

SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (2000 Mar) 20 (5) 1855-67.

Journal code: NGY; 8109087. ISSN: 0270-7306.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200003

ENTRY DATE: Entered STN: 20000327

Last Updated on STN: 20000327 Entered Medline: 20000316

AB Transcriptional activation by nuclear hormone receptors is mediated by

the

160-kDa family of nuclear receptor coactivators. These coactivators associate with DNA-bound nuclear receptors

and transmit activating signals to the transcription machinery through

two

activation domains. In screening for mammalian proteins that bind the C-terminal activation domain of the nuclear receptor coactivator GRIP1, we identified a new variant of mouse Zacl which we call mZaclb. Zacl was previously discovered as a. yeast two-hybrid assays and in vitro, mZaclb bound to GRIP1, to CREB-binding protein (CBP) and p300 (which are coactivators for nuclear receptors and other transcriptional activators), and to nuclear receptors themselves in a hormone-independent manner. In transient-transfection assays mZaclb exhibited a transcriptional activation activity when fused with the Gal4 . binding domain fused to GRIP1 or CBP fragments. More importantly, mZac1b was a powerful coactivator for the hormone-dependent activity of nuclear receptors, including androgen, estrogen, glucocorticoid, and thyroid hormone receptors. However, with some reporter genes and in some cell lines mZac1b acted as a repressor rather than a coactivator of nuclear receptor activity. Thus, mZaclb can interact with nuclear receptors and their coactivators and play both positive and negative roles in regulating nuclear receptor function.

L8 ANSWER 11 OF 42 MEDLINE

ACCESSION NUMBER: 2000158851 MEDLINE

DOCUMENT NUMBER: 20158851 PubMed ID: 10692587

TITLE: Cloning of a mouse glucocorticoid modulatory element

hinding protein a new member of the KDWK family

binding protein, a new member of the KDWK family.

AUTHOR: Jimenez-Lara A M; Heine M J; Gronemeyer H

CORPORATE SOURCE: Institut de Genetique et de Biologie Moleculaire et

Cellulaire, CNRS/INSERM/ULP, P.O. Box 163, 67404,

Illkirch,

France.

SOURCE: FEBS LETTERS, (2000 Feb 25) 468 (2-3) 203-10.

Journal code: EUH; 0155157. ISSN: 0014-5793.

PUB. COUNTRY: Netherlands

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200004

ENTRY DATE: Entered STN: 20000413

Last Updated on STN: 20000413 Entered Medline: 20000403

AB A mouse cDNA that encodes a nuclear DNA binding protein was identified by yeast two-hybrid screening using the activation domain 2 of the nuclear receptor coactivator TIF2 as a bait. BLAST

analysis revealed that the identified cDNA encodes a KDWK domain and contains sequences almost. . . mGMEB-1 bound specifically to GME oligonucleotides, either alone or as a heterodimer with rGMEB-2.

Transient

transfection experiments with TAT promoter reporter genes suggest a potential role for mGMEB-1 as a transcriptional regulator of the TAT promoter.

L8 ANSWER 12 OF 42 MEDLINE

ACCESSION NUMBER: 2001060564 MEDLINE

DOCUMENT NUMBER: 20519379 PubMed ID: 11064149

TITLE: Apparent coactivation due to interference of expression

constructs with nuclear receptor expression.

AUTHOR: Hofman K; Swinnen J V; Claessens F; Verhoeven G; Heyns W

CORPORATE SOURCE: Laboratory for Experimental Medicine and Endocrinology,

Faculty of Medicine, Catholic University of Leuven,

B-3000,

Leuven, Belgium.

SOURCE: MOLECULAR AND CELLULAR ENDOCRINOLOGY, (2000 Oct 25) 168

(1-2) 21-9.

Journal code: E69. ISSN: 0303-7207.

PUB. COUNTRY: Ireland

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200012

ENTRY DATE: Entered STN: 20010322

Last Updated on STN: 20010322 Entered Medline: 20001222

AB . . . in COS-7 cells, a standard approach to demonstrate coactivation, was used to study the coactivation properties of NuRIP183, a new

nuclear receptor interacting protein of 183 kDa,

isolated by a yeast two-hybrid screening. Transfection with a NuRIP183 expression construct strongly increased the ligand

-dependent response of reporter constructs for several nuclear receptors when compared to transfection with the

empty expression vector. A more detailed study, however, revealed major changes in the expression level of the nuclear receptors

in cotransfection experiments, indicating that the observed changes in receptor activity were not due to coactivation but to differences in.

. (FuGENE-6 and calcium phosphate) and different expression vectors (pSG5, pcDNA1.1 and pIRESneo). These data cast some doubt on coactivation of nuclear receptors based on similar cotransfection

experiments without measurement of receptor concentration. Moreover, it

is recommended to limit the amounts of (co)transfected. . .

L8 ANSWER 13 OF 42 MEDLINE

ACCESSION NUMBER: 2000092325 MEDLINE

DOCUMENT NUMBER: 20092325 PubMed ID: 10628744

TITLE: Protein inhibitor of activated

Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription-1) is a nuclear receptor

coregulator expressed in human testis.

AUTHOR: Tan J; Hall S H; Hamil K G; Grossman G; Petrusz P; Liao J;

Shuai K; French F S

CORPORATE SOURCE: Department of Pediatrics, University of North Carolina

School of Medicine, Chapel Hill 27599-7500, USA.

CONTRACT NUMBER: AI 43438 (NIAID)

R37 HD-04466 (NICHD) T32 HD-07315 (NICHD)

+

SOURCE: MOLECULAR ENDOCRINOLOGY, (2000 Jan) 14 (1) 14-26.

Journal code: NGZ; 8801431. ISSN: 0888-8809.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-AF167160

ENTRY MONTH:

200001 Entered STN: 20000204 ENTRY DATE:

Last Updated on STN: 20000204

Entered Medline: 20000124

AB An androgen receptor (AR) interacting protein was isolated from a HeLa cell cDNA library by two-hybrid screening in yeast using the AR DNA+ligand binding domains as bait. The protein has sequence identity with human protein inhibitor of activated signal transducer and activator of transcription (PIAS1) and human Gu RNA helicase II binding protein (GBP). Binding of PIAS1 to human AR DNA+ligand binding domains was androgen dependent in the yeast liquid beta-galactosidase assay. Activation of binding by dihydrotestosterone was greater than testosterone. . . matrix assays. In transient cotransfection assays using CV1 cells with full-length human AR and a mouse mammary tumor virus luciferase reporter vector, there was an androgen-dependent 3to 5-fold greater increase in luciferase activity with PIAS1 over that . . Leydig cells. In addition, PIAS1 was expressed obtained with an.

in

spermatogenic cells. The results suggest that PIAS1 functions in testis

as

a nuclear receptor transcriptional coregulator and may have a role in AR initiation and maintenance of spermatogenesis.

ANSWER 14 OF 42 CAPLUS COPYRIGHT 2001 ACS

ACCESSION NUMBER:

1999:641077 CAPLUS

DOCUMENT NUMBER:

131:267023

TITLE:

Compositions and methods for detecting

ligand-dependent nuclear receptor and coactivator

interactions for drug screening

INVENTOR (S):

Northrop, Jeffrey Paul; Hart, Charles Praray; Schatz,

Peter Joseph

PATENT ASSIGNEE(S):

SOURCE:

Glaxo Group Ltd., UK PCT Int. Appl., 67 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

LANGUAGE:

IT

Reporter gene

Patent English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                     KIND DATE
                                                APPLICATION NO. DATE
      -----
                                                  -----
                         Al 19991007 WO 1999-US7168 19990401
      WO 9950664
          W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
               DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU,
               TJ, TM
          RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK,
               ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG,
               CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                        A1 19991018 AU 1999-35479 19990401
A1 20010124 EP 1999-917331 19990401
     AU 9935479
     EP 1070254
          R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
               IE, FI
PRIORITY APPLN. INFO.:
                                               US 1998-53611
                                                                 A1 19980401
                                               WO 1999-US7168 W 19990401
REFERENCE COUNT:
REFERENCE(S):
                             (1) Heery; Nature 1997, V387, P733 CAPLUS
                             (2) Le Douarin; Nucleic Acids Research 1995, V23(5),
                                  P876 CAPLUS
                             (3) Stahl; US 5470952 A 1995 CAPLUS
                             (4) Traish; Steroids 1996, V61(9), P549 CAPLUS
```

```
RL: ARG (Analytical reagent use); BPN (Biosynthetic preparation); BPR
      (Biological process); ANST (Analytical study); BIOL (Biological study);
     PREP (Preparation); PROC (Process); USES (Uses)
         (in nuclear receptor signal transduction system;
         compns. and methods for detecting ligand-dependent
      nuclear receptor and coactivator interactions for
         drug screening)
     9014-00-0P, Luciferase
     RL: ARG (Analytical reagent use); BPN (Biosynthetic preparation); BPR
      (Biological process); ANST (Analytical study); BIOL (Biological study);
     PREP (Preparation); PROC (Process); USES (Uses)
         (reporter; compns. and methods for detecting ligand
         -dependent nuclear receptor and coactivator
         interactions for drug screening)
     ANSWER 15 OF 42 CAPLUS COPYRIGHT 2001 ACS
ACCESSION NUMBER:
                            1999:626216 CAPLUS
DOCUMENT NUMBER:
                            131:267021
TITLE:
                            Orphan nuclear receptor binding CYP promoter for drug
                            screening
                            Kliewer, Steven Anthony; Willson, Timothy Mark
INVENTOR (S):
PATENT ASSIGNEE(S):
                            Glaxo Group Limited, UK
                            PCT Int. Appl., 70 pp.
SOURCE:
                            CODEN: PIXXD2
DOCUMENT TYPE:
                            Patent
LANGUAGE:
                            English
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION:
                    KIND DATE
                                               APPLICATION NO. DATE
     PATENT NO.
     -----
                                                -----
                                              WO 1999-US6737 19990326
     WO 9948915
                        A1 19990930
          W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ,
              MD, RU, TJ, TM
          RW: GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                                           AU 1999-32116
EP 1999-914221
     AU 9932116
                         A1
                              19991018
     EP 1066320
                         A1
                               20010110
                                                                    19990326
          R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
              IE, FI
PRIORITY APPLN. INFO.:
                                             US 1998-79593
                                                                A2 19980327
                                             WO 1999-US6737
                                                                W 19990326
OTHER SOURCE(S):
                            MARPAT 131:267021
REFERENCE COUNT:
                            1
REFERENCE(S):
                            (1) Bertilsson; Proc Natl Acad Sci USA 1998, V95,
                                P12208 CAPLUS
     Reporter gene
     RL: BPR (Biological process); PEP (Physical, engineering or chemical
     process); BIOL (Biological study); PROC (Process)
         (orphan nuclear receptor binding CYP promoter for
         drug screening)
     ANSWER 16 OF 42 CAPLUS COPYRIGHT 2001 ACS
                            1999:96372 CAPLUS
ACCESSION NUMBER:
DOCUMENT NUMBER:
                            130:163951
TITLE:
                            Cloning of cDNA for ligand-converting enzymes from
                            mice and human, and methods of screening nuclear
                            receptors-binding ligands or transcription factors
INVENTOR(S):
                            Kato, Shigeaki; Takeyama, Ken-ichi; Kitanaka, Sachiko
PATENT ASSIGNEE(S):
                            Chugai Seiyaku Kabushiki Kaisha, Japan
SOURCE:
                            PCT Int. Appl., 66 pp.
```

CODEN: PIXXD2

DOCUMENT TYPE:

Patent Japanese

LANGUAGE: FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

```
PATENT NO.
                    KIND DATE
                                     APPLICATION NO. DATE
                    A1 19990204 WO 1998-JP3280 19980722
     W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE,
             DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, KE, KG, KR,
             KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
             PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG,
             US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES,
             FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI,
             CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
                     A1 19990216 AU 1998-83564
                                                           19980722
                     A2 19990518 JP 1998-206786 19980722
A1 20000802 EP 1998-933895 19980722
     JP 11127871
     EP 1024193
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, FI
PRIORITY APPLN. INFO.:
                                       JP 1997-212624 A 19970722
                                       WO 1998-JP3280 W 19980722
REFERENCE COUNT:
                        14
REFERENCE(S):
                         (1) Cali, J; J Biol Chem 1991, V266(12), P7774 CAPLUS
                         (2) Cali, J; J Biol Chem 1991, V266(12), P7779 CAPLUS
                         (3) Fu, G; DNA Cell Biol 1997, V16(12), P1499 CAPLUS
                         (4) Fu, G; Mol Endocrinol 1997, V11(13), P1961 CAPLUS
                         (5) Guo, Y; Proc Natl Acad Sci USA 1993, V90(18),
                             P8668 CAPLUS
                        ALL CITATIONS AVAILABLE IN THE RE FORMAT
AR
     Described are transgenic cells to be used for screening enzyme
     proteins that convert ligand precursors into ligands,
     which bind to a nuclear receptor and induces the
     transcription of a reporter gene downstream and (2) a
     method of isolating the protein-encoding gene. The cells are
     transformed with a recombinant DNA encoding the DNA-binding domain of
     yeast GAL4, the ligand-binding domain of vitamin D receptor, and
     a reporter gene such as lacZ. The ligand
     -receptor-induced transcription system can be used for screening
     ligands and the enzymes capable of converting an inactive
     transcription-regulating factor into an active one. Cloning of cDNAs
     encoding 507-amino-acid CYPIAD, which converts inactive 25(OH)D3 into
     active 1.alpha., 25(OH) 2D3, from a mouse (Mus musculus) kidney cDNA
library
     and 508-amino-acid vitamin D 1.alpha.-hydroxylase from a human kidney
CDNA
     library was shown.
IT
     lacZ gene (microbial)
    RL: BPR (Biological process); BUU (Biological use, unclassified); BIOL
     (Biological study); PROC (Process); USES (Uses)
        (reporter; cloning of cDNA for ligand-converting
        enzymes from mice and human, and methods of screening
     nuclear receptors-binding ligands or
       transcription factors)
    ANSWER 17 OF 42 CAPLUS COPYRIGHT 2001 ACS
ACCESSION NUMBER:
                      1999:34993 CAPLUS
DOCUMENT NUMBER:
                        130:106061
TITLE:
                        Novel reporter plasmid vectors for
                      screening ligands that bind to
                      nuclear receptors and use for
```

screening drugs for cancer or autoimmune

Hagiya, Hiroshi; Minami, Masashi; Tajima, Hisao

diseases

INVENTOR(S):

PATENT ASSIGNEE(S): Ono Pharmaceutical Co., Ltd., Japan

PCT Int. Appl., 43 pp.

CODEN: PIXXD2

DOCUMENT TYPE: LANGUAGE:

SOURCE:

Patent Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

WO 9900491 A1 19990107 WO 1998-JP2785 19980623

W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG,

KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA,

UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM

RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG

AU 9880386 A1 19990119 AU 1998-80386 19980623 EP 1016714 A1 20000705 EP 1998-928625 19980623

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI

PRIORITY APPLN. INFO.:

JP 1997-171440 A 19970627 WO 1998-JP2785 W 19980623

REFERENCE COUNT: REFERENCE(S):

7

- (1) Kawaguchi, Y; Cancer Letters 1997, V116, P53 CAPLUS
- (2) Ono Pharmaceutical Co Ltd; JP 07316200 A 1995 CAPLUS
- (3) Salk Inst Biological Studies; WO 9640128 A 1996 CAPLUS
- (4) The Salk Institute For Biological Studies; EP 737314 A CAPLUS
- (5) The Salk Institute For Biological Studies; AU 9514366 A CAPLUS

ALL CITATIONS AVAILABLE IN THE RE FORMAT

- TI Novel reporter plasmid vectors for screening ligands that bind to nuclear receptors and use for screening drugs for cancer or autoimmune diseases
- AB Described are a plasmid vector encoding a reporter; a transgenic cell transformed by the plasmid and a plasmid expressing an effector protein-encoding gene; and a method of using the transgenic cell for screening ligands that bind the cognate

nuclear receptors. Prepn. of a reporter plasmid carrying the Gal4-responsive element, the TK promoter of herpes simplex virus, and the mouse Fas-encoding sequence; prepn. of an effector-expressing plasmid encoding a fusion protein of the DNA-binding domain of Gal4 and the ligand-binding domain of human peroxisome proliferator-activated receptor (PPAR) .gamma., .gamma. or .delta.; transformation of mouse fibroblasts L929 with reporter plasmid and the effector-expressing plasmid; and cultivation of the transgenic cells for selecting ligand-responsive clones using the PPAR.gamma. ligands CS-045 and BRL-49653 were demonstrated. The system is useful for screening ligands cognate to the nuclear receptors for use as therapeutic agents for

cancer or autoimmune diseases, which **ligands** induce apoptosis, .
Claimed are the **reporter** plasmids contg. the sequence encoding
136-305-Fas antigen of mice or 145-319-Fas antigen of human, with (out)

the

signal sequence; the effector plasmids contg. 167-468-PPAR-.alpha. of human or mice, 139-441-PPAR .delta. of human, 138-440-PPAR .delta. of mice, 176-478-PPAR .gamma.1 of human, 174-475-PPAR .gamma.1 of mice, 204-506-PPAR .gamma.2 of human, 204-505-PPAR .gamma.2 of mice, other defined nuclear receptors; and methods of using the transgenic cells for screening therapeutic agents for cancer or

```
autoimmune diseases.
ΙT
     Apoptosis
        (Fas antigen-induced; novel plasmid vectors contg. a reporter
      gene for screening ligands that bind to
      nuclear receptors and use for screening
        drugs for cancer or autoimmune diseases)
IT
     Antitumor agents
     Autoimmune diseases
     Drug screening
     Plasmid vectors
        (novel plasmid vectors contg. a reporter gene for
      screening ligands that bind to nuclear
      receptors and use for screening drugs for cancer or
        autoimmune diseases)
     Fas antigen
     RL: BAC (Biological activity or effector, except adverse); BPR
(Biological
     process); BUU (Biological use, unclassified); BIOL (Biological study);
     PROC (Process); USES (Uses)
        (novel plasmid vectors contg. a reporter gene for
      screening ligands that bind to nuclear
      receptors and use for screening drugs for cancer or
        autoimmune diseases)
     Ligands
     RL: BAC (Biological activity or effector, except adverse); BPR
(Biological
     process); THU (Therapeutic use); BIOL (Biological study); PROC (Process);
     USES (Uses)
        (novel plasmid vectors contg. a reporter gene for
      screening ligands that bind to nuclear
      receptors and use for screening drugs for cancer or
        autoimmune diseases)
IT
     GAL4 transcription factor
     Nuclear receptors
     Retinoid receptors
     Thyroid hormone receptors
     Vitamin D receptors
     RL: BPR (Biological process); BUU (Biological use, unclassified); BIOL
     (Biological study); PROC (Process); USES (Uses)
        (novel plasmid vectors contg. a reporter gene for
      screening ligands that bind to nuclear
      receptors and use for screening drugs for cancer or
        autoimmune diseases)
IT
     Peroxisome proliferator-activated receptors
     RL: BPR (Biological process); BUU (Biological use, unclassified); BIOL
     (Biological study); PROC (Process); USES (Uses)
        (.alpha.; novel plasmid vectors contg. a reporter
      gene for screening ligands that bind to
      nuclear receptors and use for screening
        drugs for cancer or autoimmune diseases)
     Peroxisome proliferator-activated receptors
    RL: BPR (Biological process); BUU (Biological use, unclassified); BIOL
     (Biological study); PROC (Process); USES (Uses)
        (.gamma.; novel plasmid vectors contg. a reporter
      gene for screening ligands that bind to
      nuclear receptors and use for screening
        drugs for cancer or autoimmune diseases)
IT
    Peroxisome proliferator-activated receptors
    RL: BPR (Biological process); BUU (Biological use, unclassified); BIOL
     (Biological study); PROC (Process); USES (Uses)
        (.delta.; novel plasmid vectors contg. a reporter
      gene for screening ligands that bind to
      nuclear receptors and use for screening
        drugs for cancer or autoimmune diseases)
```

ACCESSION NUMBER: 1999:170596 USPATFULL TITLE: Synthesis and use of retinoid compounds having negative hormone and/or antagonist activities Klein, Elliott S., Marina del Rey, CA, United States INVENTOR(S): Johnson, Alan T., Rancho Santa Margarita, CA, United States Standeven, Andrew M., Corona del Mar, CA, United States Beard, Richard L., Newport Beach, CA, United States Gillett, Samuel J., Albany, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States Teng, Min, Aliso Viejo, CA, United States Chandraratna, Roshantha A., Mission Viejo, CA, United States Allergan Sales, Inc., Irvine, CA, United States (U.S. PATENT ASSIGNEE(S): corporation) NUMBER KIND DATE -----US 6008204 PATENT INFORMATION: US 6008204 19991228 US 1998-222983 19981230 (9) 19991228 APPLICATION INFO.: RELATED APPLN. INFO.: Division of Ser. No. US 1997-871093, filed on 9 Jun 1997 which is a division of Ser. No. US 1996-613863, filed on 11 Mar 1996, now patented, Pat. No. US 5776699 NUMBER DATE -----US 1995-19015 US 1995-64853 PRIORITY INFORMATION: 19950901 (60) 19951013 (60) DOCUMENT TYPE: Utility FILE SEGMENT: Granted PRIMARY EXAMINER: Shah, Mukund J. ASSISTANT EXAMINER: Rao, Deepak R. LEGAL REPRESENTATIVE: Szekeres, Gabor L., Baran, Robert J., Voet, Martin A. NUMBER OF CLAIMS: EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 30 Drawing Figure(s); 15 Drawing Page(s) LINE COUNT: 6383 CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use of CV- 1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear receptor capable of heterodimerizing with RXR.

CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. **Ligands** capable of binding the

ligand binding domain of the receptor substituted for the RAR-gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity.

activity by measuring their ability to repress luciferase activity.

DETD For steroid superfamily nuclear receptors that do
not heterodimerize with RXR (e.g., glucocorticoid and estrogen
receptors) the same end result can be achieved using GR-VP-16 or

receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase **reporter** plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or

other

reporter gene. An essential feature of a generalized
 negative hormone screening assay is the inclusion of at least
 the ligand binding domain of the particular nuclear

receptor for which inverse agonists are to be screened and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter

gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a

reporter gene which is under control of a DNA

regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the

nuclear receptor for which inverse agonists are to be screened would express this nuclear receptor

as a fusion protein containing a constitutive activation domain, such

as

the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist.

ANSWER 19 OF 42 USPATFULL

ACCESSION NUMBER:

1999:155937 USPATFULL

TITLE:

Activators of the nuclear orphan receptor peroxisome

proliferator-activated receptor gamma

INVENTOR (S):

Kliewer, Steven Anthony, Cary, NC, United States Lehmann, Jurgen M., Chapel Hill, NC, United States Willson, Timothy M., Durham, NC, United States

Glaxo Wellcome Inc., Research Triangle Park, NC,

PATENT ASSIGNEE(S): United

States (U.S. corporation)

NUMBER KIND DATE -----PATENT INFORMATION: US 5994554 19991130 APPLICATION INFO.: US 1998-207936 19981209 RELATED APPLN. INFO.: Division of Ser. No. US 1998-28988, filed on 25 Feb 1998, now patented, Pat. No. US 5902726 which is a continuation of Ser. No. US 1997-804310, filed on 21 Feb 1997, now abandoned which is a continuation of

Ser.

No. US 1995-386394, filed on 10 Feb 1995, now

abandoned

which is a continuation-in-part of Ser. No. US 1994-363482, filed on 23 Dec 1994, now abandoned

DOCUMENT TYPE: FILE SEGMENT:

Utility Granted

PRIMARY EXAMINER: ASSISTANT EXAMINER:

Shah, Mukund J. Sripada, Pavanaram K.

LEGAL REPRESENTATIVE:

Brink, Robert H.

NUMBER OF CLAIMS: EXEMPLARY CLAIM: LINE COUNT:

1 686

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A transient cotransfection assay was used to screen for activators of PPAR.gamma.. As mammalian cell lines contain endogenous nuclear receptors that can complicate interpretation

of the results, we used an established chimera system in which the ligand-binding domain of the murine PPAR.gamma. was fused to the DNA binding domain of the yeast transcription factor GAL4. The GAL4-PPAR.gamma. chimera was cotransfected into CV-1 cells with a

reporter construct containing five copies of the GAL4 binding site upstream of the thymidine kinase promoter driving secreted placental alkaline phosphatase (SPAP) as reporter. Data is seen in the table below.

1999:117525 USPATFULL ACCESSION NUMBER:

TITLE: Synthesis and use of retinoid compounds having

negative

hormone and/or antagonist activities

Klein, Elliott S., Marina del Rey, CA, United States INVENTOR(S):

Johnson, Alan T., Rancho Santa Margarita, CA, United

Standeven, Andrew M., Ventura, CA, United States Beard, Richard L., Newport Beach, CA, United States

Gillett, Samuel J., Albany, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States

Teng, Min, San Diego, CA, United States

Chandraratna, Roshantha A., Mission Viejo, CA, United

States

Allergan Sales, Inc., Irvine, CA, United States (U.S. PATENT ASSIGNEE(S):

corporation)

KIND NUMBER DATE -----

PATENT INFORMATION: APPLICATION INFO.:

US 1997-998319 Continu 19990928 19971224 (8)

RELATED APPLN. INFO.:

Continuation-in-part of Ser. No. US 1997-871093, filed

on 9 Jun 1997 which is a division of Ser. No. US 1996-613863, filed on 11 Mar 1996, now patented, Pat.

No. US 5776699

DATE NUMBER -----

US 1995-19015 US 1995-64853 PRIORITY INFORMATION: 19950901 (60)

19951013 (60)

DOCUMENT TYPE: FILE SEGMENT:

Utility Granted

Shah, Mukund J. PRIMARY EXAMINER: ASSISTANT EXAMINER: Rao, Deepak R.

LEGAL REPRESENTATIVE: Szekeres, Gabor L., Baran, Robert J., Voet, Martin A.

NUMBER OF CLAIMS: EXEMPLARY CLAIM:

NUMBER OF DRAWINGS: 31 Drawing Figure(s); 20 Drawing Page(s)

LINE COUNT: 8337

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD Our method of RAR negative hormone screening based on the use of CV-1 cells co-transfected with the ERE-tk-Luc luciferase

reporter plasmid and the ER-RXR-A and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear

receptor capable of heterodimerizing with RXR. CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. Ligands capable of binding the

ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity.

For steroid superfamily nuclear receptors that do DETD not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid

consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other

reporter gene. An essential feature of a generalized negative hormone screening assay is the inclusion of at least the ligand binding domain of the particular nuclear receptor for which inverse agonists are to be screened

and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a reporter gene which is under control of a DNA regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the nuclear receptor for which inverse agonists are to be screened would express this nuclear receptor as a fusion protein containing a constitutive activation domain, such the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist. ANSWER 21 OF 42 USPATFULL ACCESSION NUMBER: 1999:117275 USPATFULL TITLE: Use of modified tethers in screening compound libraries INVENTOR(S): Dower, William J., Menlo Park, CA, United States Heinkel, Gregory L., San Jose, CA, United States Mattheakis, Larry, Cupertino, CA, United States Schatz, Peter J., Mountain View, CA, United States Glaxo Group Limited, Greenford, United Kingdom PATENT ASSIGNEE(S): (non-U.S. corporation) NUMBER KIND DATE -----PATENT INFORMATION: US 5958703 19990928 APPLICATION INFO.: US 1996-758307 19961203 (8) DOCUMENT TYPE: Utility FILE SEGMENT: Granted PRIMARY EXAMINER: Achutamurthy, Ponnathapura ASSISTANT EXAMINER: Ricigliano, Joseph W LEGAL REPRESENTATIVE: Liebeschuetz, Joe, Stevens, Lauren L. NUMBER OF CLAIMS: 44 EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 10 Drawing Figure(s); 9 Drawing Page(s) LINE COUNT: 1915 CAS INDEXING IS AVAILABLE FOR THIS PATENT. DETD The regulatory sequences depend on the target receptor. For example, to screen for activators of 7TM receptors, the recombinase is placed under the transcriptional control of a promoter which responds 7TM. . . promoter composed of repeating cyclic AMP response elements, or the Fusl promoter if the 7TM receptor is expressed in yeast reporter cells. As a further example, to screen for activation of a T-cell receptor, the recombinase can be linked to an NFAT promoter. In a further variation, the. . . target receptor, such that the recombinase is inactive in the fusion protein unless the fusion protein is bound to a ligand, which causes steric changes that activate the recombinase. Activation of recombinases fused to ligand binding domains of nuclear receptors on ligand binding has been reported. See Logie & Stewart, Proc. Natl. Acad. Sci. USA 92, 5940-5944 (1995); Metzger et al., Proc. Natl. Acad. Sci. USA 92, 6991-6995 (1995). Suitable nuclear receptors include estrogen, glucocorticoid and androgen receptors.

as

to

ANSWER 22 OF 42 USPATFULL ACCESSION NUMBER: 1999:110335 USPATFULL Synthesis and use of retinoid compounds having TITLE: negative hormone and/or antagonist activities INVENTOR (S): Klein, Elliot S., Marina del Rey, CA, United States Johnson, Alan T., Rancho Santa Margarita, CA, United States Standeven, Andrew M., Corona del Mar, CA, United States Beard, Richard L., Newport Beach, CA, United States Gillett, Samuel J., Albany, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Lake Forest, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States Teng, Min, Aliso Viejo, CA, United States Chandraratna, Roshantha A., Mission Viejo, CA, United States PATENT ASSIGNEE(S): Allergan Sales, Inc., Irvine, CA, United States (U.S. corporation) KIND DATE NUMBER -----PATENT INFORMATION: US 5952345 19990914 APPLICATION INFO.: US 1997-871093 19970609 (8) Division of Ser. No. US 1996-613863, filed on 11 Mar RELATED APPLN. INFO.: 1996, now patented, Pat. No. US 5776699 NUMBER DATE -----US 1995-19015 19950901 (60) US 1995-64853 19951013 (60) PRIORITY INFORMATION: DOCUMENT TYPE: Utility FILE SEGMENT: Granted Raymond, Richard L. PRIMARY EXAMINER: Rao, Deepak R. ASSISTANT EXAMINER: LEGAL REPRESENTATIVE: Szekeres, Gabor L., Baran, Robert J., Voet, Martin A. NUMBER OF CLAIMS: 31 EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 20 Drawing Figure(s); 15 Drawing Page(s) 6600 LINE COUNT: CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use DETD of CV-1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear receptor capable of heterodimerizing with RXR. CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. Ligands capable of binding the ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity. DETD For steroid superfamily nuclear receptors that do not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other

reporter gene. An essential feature of a generalized
 negative hormone screening assay is the inclusion of at least
 the ligand binding domain of the particular nuclear
receptor for which inverse agonists are to be screened

and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter

gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a reporter gene which is under control of a DNA

regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the nuclear receptor for which inverse agonists are to be

screened would express this nuclear receptor

as a fusion protein containing a constitutive activation domain, such

as

the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist.

ANSWER 23 OF 42 USPATFULL

ACCESSION NUMBER:

1999:56399 USPATFULL

TITLE:

Activators of the nuclear orphan receptor peroxisome

proliferator-activated receptor gamma

INVENTOR (S):

Kliewer, Steven Anthony, Cary, NC, United States Lehmann, Jurgen M., Chapel Hill, NC, United States Willson, Timothy M., Durham, NC, United States

Glaxo Wellcome Inc., Research Triangle Park, NC,

PATENT ASSIGNEE(S):

United

States (U.S. corporation)

NUMBER KIND DATE -----US 5902726 19990511 (9)

PATENT INFORMATION: APPLICATION INFO.:

US 1998-28988 19980225

RELATED APPLN. INFO.:

Continuation of Ser. No. US 1997-804310, filed on 21 Feb 1997, now abandoned which is a continuation of

Ser.

No. US 1995-386394, filed on 10 Feb 1995, now

abandoned

which is a continuation-in-part of Ser. No. US 1994-363482, filed on 23 Dec 1994, now abandoned

DOCUMENT TYPE:

Utility Granted

FILE SEGMENT: PRIMARY EXAMINER:

Gupta, Yogendra N.

LEGAL REPRESENTATIVE:

Brink, Robert H.

NUMBER OF CLAIMS:

EXEMPLARY CLAIM:

14

1

LINE COUNT:

791

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

A transient cotransfection assay was used to screen for activators of PPAR.gamma.. As mammalian cell lines contain endogenous nuclear receptors that can complicate interpretation

of the results, we used an established chimera system in which the ligand-binding domain of the murine PPAR.gamma. was fused to the DNA binding domain of the yeast transcription factor GAL4. The GAL4-PPAR.gamma. chimera was cotransfected into CV-1 cells with a

reporter construct containing five copies of the GAL4 binding site upstream of the thymidine kinase promoter driving secreted placental alkaline phosphatase (SPAP) as reporter. Data is seen in the table below.

ANSWER 24 OF 42 USPATFULL

ACCESSION NUMBER:

1999:27666 USPATFULL

TITLE:

Synthesis and use of retinoid compounds having

negative

hormone and/or antagonist activities

Klein, Elliott S., Marina del Rey, CA, United States INVENTOR (S): Johnson, Alan T., Rancho Santa Margarita, CA, United Standeven, Andrew M., Corona del Mar, CA, United States Beard, Richard L., Newport Beach, CA, United States Gillett, Samuel J., Oakland, CA, United States Duong, Tien T., Irvine, CA, United States Nagpal, Sunil, Irvine, CA, United States Vuligonda, Vidyasagar, Irvine, CA, United States Teng, Min, Aliso Viejo, CA, United States Chandraratna, Roshantha A., Mission Viejo, CA, United PATENT ASSIGNEE(S): Allergan Sales, Inc., Irvine, CA, United States (U.S. corporation) NUMBER KIND DATE -----US 1997-880823 PATENT INFORMATION: 19990302 APPLICATION INFO.: 19970624 (8) Continuation-in-part of Ser. No. US 1996-613863, filed RELATED APPLN. INFO.: on 11 Mar 1996, now patented, Pat. No. US 5776699 NUMBER DATE -----US 1995-19015 19950901 (60) US 1995-64853 19951013 (60) PRIORITY INFORMATION: DOCUMENT TYPE: Utility FILE SEGMENT: Granted Richter, Johann PRIMARY EXAMINER: ASSISTANT EXAMINER: Solola, Taofiq A. LEGAL REPRESENTATIVE: Szekeres, Garbor L., Baran, Robert J., Voet, Martin S. NUMBER OF CLAIMS: 34 EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 30 Drawing Figure(s); 15 Drawing Page(s) LINE COUNT: 6732 CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use of CV-1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear receptor capable of heterodimerizing with RXR. CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. Ligands capable of binding the ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity. DETD For steroid superfamily nuclear receptors that do not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other reporter gene. An essential feature of a generalized negative hormone screening assay is the inclusion of at least the ligand binding domain of the particular nuclear receptor for which inverse agonists are to be screened and a method for localizing the nuclear receptor

٠.

ligand binding domain to the promoter of a reporter gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a

reporter gene which is under control of a DNA

regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the

nuclear receptor for which inverse agonists are to be

screened would express this nuclear receptor

as a fusion protein containing a constitutive activation domain, such

as

the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist.

L8 ANSWER 25 OF 42 MEDLINE

ACCESSION NUMBER: 1999357798 MEDLINE

DOCUMENT NUMBER: 99357798 PubMed ID: 10428842

TITLE: Hormone-independent transcriptional activation and

coactivator binding by novel orphan nuclear receptor

ERR3.

AUTHOR: Hong H; Yang L; Stallcup M R

CORPORATE SOURCE: Department of Pathology, University of Southern

California,

Los Angeles, California 90033, USA.

SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1999 Aug 6) 274 (32)

22618-26.

Journal code: HIV; 2985121R. ISSN: 0021-9258.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF117254; GENBANK-AF117255

ENTRY MONTH: 199909

ENTRY DATE: Entered STN: 19990913

Last Updated on STN: 19990913 Entered Medline: 19990902

AB Orphan nuclear receptors share sequence homology with

members of the nuclear receptor superfamily, but ligands are unknown or unnecessary. A novel orphan receptor,

estrogen receptor-related protein 3 (ERR3), was identified by yeast

two-hybrid screening, using the transcriptional coactivator

glucocorticoid receptor interacting protein 1 (GRIP1) as bait. The

putative full-length mouse ERR3 contains 458 amino. . . has 68% amino acid identity with that of estrogen receptor. ERR3 bound specifically to

an estrogen response element and activated reporter

genes controlled by estrogen response elements, both in yeast and

in mammalian cells, in the absence of any added ligand. A

conserved AF-2 activation domain located in the hormone-binding domain of ERR3 was primarily responsible for transcriptional activation. The ERR3

AF-2 domain bound GRIP1 in a ligand-independent manner both in vitro and in vivo, through the LXXLL motifs of GRIP1, and GRIP1

functioned

as a transcriptional coactivator. . .

L8 ANSWER 26 OF 42 MEDLINE

ACCESSION NUMBER: 2000079622 MEDLINE

DOCUMENT NUMBER: 20079622 PubMed ID: 10611353

TITLE: Retina-specific nuclear receptor: A potential regulator of

cellular retinaldehyde-binding protein expressed in

retinal

pigment epithelium and Muller glial cells.

AUTHOR: Chen F; Figueroa D J; Marmorstein A D; Zhang Q; Petrukhin

K; Caskey C T; Austin C P

CORPORATE SOURCE: Department of Human Genetics, Merck Research Laboratories,

West Point, PA 19486, USA.. fang_chen@merck.com

SOURCE: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE

UNITED STATES OF AMERICA, (1999 Dec 21) 96 (26) 15149-54.

Journal code: PV3; 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

OTHER SOURCE: GENBANK-AF148128; GENBANK-AF148129

ENTRY MONTH: 200001

ENTRY DATE: Entered STN: 20000204

> Last Updated on STN: 20000204 Entered Medline: 20000127

AB In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published

photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata,

Κ.,

Taniwaki, M., Yasuda, K. & Umesono, K.. . demonstrates that RNR is expressed in the retinal pigment epithelium and in Muller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR.

ANSWER 27 OF 42 MEDLINE

2000027537 ACCESSION NUMBER: MEDLINE

DOCUMENT NUMBER: PubMed ID: 10557310 20027537

TITLE: Feedback-inducible nuclear-receptor-driven reporter gene

expression in transgenic mice.

Mata De Urquiza A; Solomin L; Perlmann T AUTHOR:

CORPORATE SOURCE: Ludwig Institute for Cancer Research, Karolinska

Institute,

S-171 77 Stockholm, Sweden.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE SOURCE:

UNITED STATES OF AMERICA, (1999 Nov 9) 96 (23) 13270-5.

Journal code: PV3; 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English FILE SEGMENT: Priority Journals

ENTRY MONTH: 199912

ENTRY DATE: Entered STN: 20000113

> Last Updated on STN: 20000113 Entered Medline: 19991213

AB Understanding nuclear receptor signaling in vivo would

be facilitated by an efficient methodology to determine where a

nuclear receptor is active. Herein, we present a

feedback-inducible expression system in transgenic mice to detect

activated nuclear receptor effector proteins by using

an inducible reporter gene. With this approach,

reporter gene induction is not limited to a particular

tissue, and, thus, this approach provides the opportunity for whole-animal

screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand -binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor -driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme.

These

data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.

L8 ANSWER 28 OF 42 MEDLINE

ACCESSION NUMBER: 1999421242 MEDLINE

DOCUMENT NUMBER: 99421242 PubMed ID: 10493499

TITLE: Two organochlorine pesticides, toxaphene and chlordane,

are

antagonists for estrogen-related receptor alpha-1 orphan

receptor.

AUTHOR: Yang C; Chen S

CORPORATE SOURCE: Division of Immunology, Beckman Research Institute of the

City of Hope, Duarte, California 91010, USA.

CONTRACT NUMBER: CA 65767 (NCI)

CA44735 (NCI) ES08258 (NIEHS)

SOURCE: CANCER RESEARCH, (1999 Sep 15) 59 (18) 4519-24.

Journal code: CNF; 2984705R. ISSN: 0008-5472.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199910

ENTRY DATE: Entered STN: 19991026

Last Updated on STN: 19991026 Entered Medline: 19991008

AB Estrogen-related receptor (ERR) alpha-1 shares a high amino acid sequence homology with estrogen receptor alpha. Although estrogens are not ligands of ERR alpha-1, our recent results suggest that toxaphene and chlordane, two organochlorine pesticides with estrogen-like activity, behave as antagonists for this orphan nuclear receptor.

The two compounds increased ERR alpha-1-mediated expression of the

. The two compounds increased ERR alpha-1-mediated expression of the reporter enzyme beta-galactosidase in a yeast-based assay. The screen was developed by expressing the hERR alpha-1-yeast Gal 4 activation domain fusion protein in yeast cells carrying the beta-galactosidase reporter plasmid, which contains an ERR alpha-1-binding element. In transfection experiments using mammalian cell lines, such as the SK-BR-3 breast cancer cell line, the compounds were found to have an antagonist activity against ERR alpha-1-mediated expression of the reporter chloramphenicol acetyltransferase. In contrast to the findings with ERR alpha-1, the two compounds were found

slightly induce the estrogen receptor a-mediated expression of chloramphenical acetyltransferase in SK-BR-3 cells. In a **ligand** -independent manner, the ERR alpha-1 activity in SK-BR-3 cells was

induced
 3-fold by cotransfection with the GRIP1 coactivator expression plasmid.
 Toxaphene. . .

L8 ANSWER 29 OF 42 MEDLINE

ACCESSION NUMBER: 2000045093 MEDLINE

DOCUMENT NUMBER: 20045093 PubMed ID: 10574783

TITLE: Expression of cre recombinase as a reporter of signal

transduction in mammalian cells.

AUTHOR: Mattheakis L C; Olivan S E; Dias J M; Northrop J P CORPORATE SOURCE: Affymax Research Institute, Palo Alto, CA 94304, USA..

larry mattheakis@affymax.com

SOURCE: CHEMISTRY AND BIOLOGY, (1999 Nov) 6 (11) 835-44.

Journal code: CNA; 9500160. ISSN: 1074-5521.

PUB. COUNTRY: ENGLAND: United Kingdom

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

200001

ENTRY DATE:

Entered STN: 20000209

Last Updated on STN: 20000209 Entered Medline: 20000131

AB BACKGROUND: Cell-based reporter assays, which rely on a reporter gene under the control of a regulated promoter,

are widely used to screen chemical libraries for novel receptor

ligands. Here, we describe a reporter system that is based on ligand-induced DNA recombination to express the

reporter gene. This system converts a transient

activation of a signal transduction pathway into an amplified,

constitutive and heritable expression of the reporter gene. RESULTS: We constructed gene fusions of Cre

recombinase and mammalian promoters regulated by calcium, nuclear

receptors or cyclic AMP. Reporter systems, comprising a

Cre gene fusion and a loxP/reporter gene,

were used to study the kinetics and dose responses to compounds that activate or inhibit the corresponding signal transduction pathway. We

compared these reporters with conventional reporter

systems in which the reporter gene is under the direct

control of the responsive promoter. Reporter gene

expression of the Cre reporters was greater than that of conventional reporters and could be measured more than a week after adding the stimulus. For all pathways studied here, the dose responses of the Cre reporters are nearly identical to those of conventional reporter systems. CONCLUSIONS: We have shown that Cre recombinase can be regulated by a variety of signal transduction

pathways. It should therefore be possible to use receptor ligands to induce phenotypic conversion of mammalian cells for use in a variety

of applications. One such application is high-throughput screening, and we developed loxP/luciferase reporter genes that provide an amplified and sustained luminescent response.

ANSWER 30 OF 42 CAPLUS COPYRIGHT 2001 ACS

ACCESSION NUMBER:

2000:260882 CAPLUS

DOCUMENT NUMBER:

133:203715

TITLE:

Transcriptional regulation of the cholesterol

7.alpha.-hydroxylase gene (CYP7A) by nuclear hormone receptors bound to the bile acid response elements

(BARE)

AUTHOR (S):

Chiang, J. Y. L.; Stroup, D.; Crestani, M.;

Sadeghpour, A.

CORPORATE SOURCE:

Department of Biochemistry and Molecular Pathology,

Northeastern Ohio Universities College of Medicine,

Rootstown, OH, 44272-0095, USA

SOURCE:

Falk Symp. (1999), 108 (Bile Acids and Cholestasis),

51-58

CODEN: FASYDI; ISSN: 0161-5580

DOCUMENT TYPE:

Kluwer Academic Publishers

Journal English

LANGUAGE:

PUBLISHER:

REFERENCE COUNT:

REFERENCE(S): (1) Chiang, J; J Biol Chem 1994, V269, P17502 CAPLUS

(2) Crestani, M; J Lipid Res 1998, V39, P2192 CAPLUS

(3) Forman, B; Cell 1995, V81, P687 CAPLUS

(6) Peet, D; Cell 1998, V93, P693 CAPLUS

(8) Stroup, D; Am J Physiol 1997, V273, PG508 CAPLUS

ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB The aim of the study was to identify the transcription factors bound to regulatory elements in CYP7A gene by DNase I footprinting, transient transfection assays of promoter/reporter chimeric

genes, and EMSA assays. A human liver cDNA expression library was screened with an oligonucleotide probe contq. BARE-II for DNA binding proteins. DNA binding proteins were partially purified using DNA affinity column chromatog. It was found that orphan nuclear receptors COUP-TFII, HNF4 and LXR are able to bind to BARE sequences and regulate CYO7A gene transcription. Potential role of these nuclear receptors in down-regulation of CYP7A gene transcription by bile acids were also studied.

ANSWER 31 OF 42 CAPLUS COPYRIGHT 2001 ACS

ACCESSION NUMBER:

1999:617383 CAPLUS

TITLE:

Discovery of novel modulators of the peroxisome

proliferator-activated receptor g using combinatorial

chemistry.

AUTHOR (S):

Collins, Jon L.; Holmes, Christopher P.; Blanchard,

Steven G.; Cobb, Jeffery E.; Cooper, Joel P.;

Goreham,

Donna M.; Hull-Ryde, Emily A.; Kliewer, Steven A.; Lehmann, Jurgen M.; Lenhard, James M.; Miller, Ann

B.;

Mohr, Christopher P.; Moore, Linda B.; Oberfield, Jennifer L.; Parks, Derek J.; Plunket, Kelli D.; Xu,

Eric; Milburn, Michael V.; Willson, Timothy M. CORPORATE SOURCE: Glaxo Wellcome Research and Development, Research

Triangle Park, NC, 27709, USA

SOURCE:

Book of Abstracts, 218th ACS National Meeting, New Orleans, Aug. 22-26 (1999), MEDI-012. American

Chemical Society: Washington, D. C.

CODEN: 67ZJA5

DOCUMENT TYPE:

Conference; Meeting Abstract

LANGUAGE:

English

The peroxisome proliferator-activated receptors (PPARs) are ligand -activated transcription factors that belong to the nuclear receptor superfamily. PPARs regulate the expression of genes whose protein products are involved in glucose and lipid homeostasis. During our screening efforts directed towards the identification of novel ligands for the PPAR gamma subtype (PPARg), we discovered a partial agonist (GW8647) of PPARg from a combinatorial library of 9,760 thiazolidinones. Intriqued by the functional profile of GW8647, addnl. focused libraries were synthesized using solid-phase parallel array synthesis. From these libraries GW0072 was identified as a high affinity (K.ident.70 nM) PPARq ligand that shows low efficacy in a reporter gene assays, blocks the adipogenic activity of a full agonist of PPARq in cell

culture,

and displays a novel mechanism of nuclear receptor antagonism. The application of split-mix solid-phase chem., serial deconvolution, parallel array synthesis, and structure-based library design to the discovery of GW0072 will be discussed.

ANSWER 32 OF 42 USPATFULL

ACCESSION NUMBER:

1998:78949 USPATFULL

TITLE:

Method of identifying negative hormone and/or

INVENTOR(S):

antagonist activities Klein, Elliott S., Marina Del Rey, CA, United States

Nagpal, Sunil, Lake Forest, CA, United States

Chandraratna, Roshantha A., Mission Viejo, CA, United

States

PATENT ASSIGNEE(S):

Allergan, Inc., Irvine, CA, United States (U.S.

corporation)

NUMBER KIND DATE -----

PATENT INFORMATION: APPLICATION INFO.:

US 5776699 19980707 US 1996-613863 19960311 (8) US 5776699 19980707

DOCUMENT TYPE:

Utility

FILE SEGMENT: Granted Walsh, Stephen PRIMARY EXAMINER: ASSISTANT EXAMINER: Sorensen, Kenneth A. LEGAL REPRESENTATIVE: Knobbe, Martens, Olson & Bear NUMBER OF CLAIMS: EXEMPLARY CLAIM: NUMBER OF DRAWINGS: 30 Drawing Figure(s); 15 Drawing Page(s) LINE COUNT: 6510 CAS INDEXING IS AVAILABLE FOR THIS PATENT. Our method of RAR negative hormone screening based on the use of CV-1 cells co-transfected with the ERE-tk-Luc luciferase reporter plasmid and the ER-RXR-.alpha. and RAR-.gamma.-VP-16 receptor expression plasmids can be adapted generally such that the RAR-.gamma. moiety of the. . . to that of peroxisome proliferator-activated receptors (PPAR), vitamin D receptor (VDR), thyroid hormone receptor (T3R) or any other steroid superfamily nuclear receptor capable of heterodimerizing with RXR. CV-1 cells co-transfected with such plasmids would express high basal levels of luciferase activity. Ligands capable of binding the ligand binding domain of the receptor substituted for the RAR-.gamma. moiety can be easily screened for negative hormone activity by measuring their ability to repress luciferase activity. DETD For steroid superfamily nuclear receptors that do not heterodimerize with RXR (e.g., glucocorticoid and estrogen receptors) the same end result can be achieved using GR-VP-16 or ER-VP-16 receptors and a luciferase reporter plasmid consisting of the appropriate glucocorticoid or estrogen response element fused to a heterologous promoter element and luciferase or other reporter gene. An essential feature of a generalized negative hormone screening assay is the inclusion of at least the ligand binding domain of the particular nuclear receptor for which inverse agonists are to be screened and a method for localizing the nuclear receptor ligand binding domain to the promoter of a reporter gene. This could be achieved using the receptors's natural DNA binding site, or alternatively by construction of a chimeric receptor having a heterologous DNA binding domain and corresponding use of a reporter gene which is under control of a DNA regulatory element which is recognized by the heterologous DNA binding domain. In a preferred embodiment, the plasmid expressing the nuclear receptor for which inverse agonists are to be screened would express this nuclear receptor as a fusion protein containing a constitutive activation domain, such as the HSV VP-16 activation domain, in order to provide allow high basal activity. This high basal activity would effectively increase assay sensitivity, thereby allowing analysis of nuclear receptor ligands which repress basal transcriptional activity in the absence of added nuclear receptor agonist. ANSWER 33 OF 42 MEDLINE 1998409626 ACCESSION NUMBER: MEDLINE DOCUMENT NUMBER: 98409626 PubMed ID: 9736705 TITLE: Ciona intestinalis nuclear receptor 1: a member of steroid/thyroid hormone receptor family. AUTHOR: Carosa E; Fanelli A; Ulisse S; Di Lauro R; Rall J E; Jannini E A

CORPORATE SOURCE: Department of Experimental Medicine, University of

L'Aquila, 67100 L'Aquila, Italy.

SOURCE: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE

UNITED STATES OF AMERICA, (1998 Sep 15) 95 (19) 11152-7.

Journal code: PV3; 7505876. ISSN: 0027-8424.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals
OTHER SOURCE: GENBANK-AF077403

ENTRY MONTH:

199810

ENTRY DATE:

Entered STN: 19990106

Last Updated on STN: 19990106 Entered Medline: 19981026

AB Nuclear hormone receptors comprise a large family of zinc finger transcription factors, some with hydrophobic ligands, such as thyroid hormone, vitamin D, steroids, etc., and others for which no ligand has been found. Thyroid hormone receptors (TRs) generally are considered to be confined to the vertebrata that possess a thyroid.

hormone in their metamorphosis, but no data are available on TRs in this genus; hence, we have studied Ciona intestinalis. Screening of a Ciona library with the DNA binding domain of Xenopus laevis TR (xTR) resulted in the isolation of a nuclear hormone receptor, C. intestinalis nuclear receptor 1 (CiNR1). CiNR1 is similar to TRs of more evolved species with a conserved DNA binding domain whereas the ligand binding domain shows poor homology to vertebrate sequences. The C-terminal part of CiNR1 spans approximately 200 amino acids more . . AF2 transactivation domain, and is not able to bind triiodothyronine. Phylogenetically, CiNR1 appears to be close to the common ancestral gene of TRs. Expression of CiNR1 was limited to the developing embryo and the larval stage, which suggests a role during development and metamorphosis. In transfection experiments, CiNR1 down-regulated basal transcription of a reporter gene driven by the TR palindrome responsive element. When CiNR1 was cotransfected with chicken TRalpha, it attenuated the normal thyroid hormone.

L8 ANSWER 34 OF 42 MEDLINE

ACCESSION NUMBER: 1999081323 MEDLINE

DOCUMENT NUMBER: 99081323 PubMed ID: 9865725

TITLE:

Modulation of aromatase expression in the breast tissue by

ERR alpha-1 orphan receptor.

AUTHOR:

Yang C; Zhou D; Chen S

CORPORATE SOURCE:

Division of Immunology, Beckman Research Institute of the

City of Hope, Duarte, California 91010, USA.

CONTRACT NUMBER:

CA 65767 (NCI)

CA44735 (NCI)

SOURCE:

CANCER RESEARCH, (1998 Dec 15) 58 (24) 5695-700.

Journal code: CNF; 2984705R. ISSN: 0008-5472.

PUB. COUNTRY:

United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199901

ENTRY DATE:

Entered STN: 19990209

Last Updated on STN: 19990209 Entered Medline: 19990125

AB We have previously identified a silencer element (S1) that is situated between promoters I.3 and II of the human aromatase **gene** and that down-regulates the action of these promoters. We recently applied the

yeast one-hybrid approach to **screen** a human breast tissue hybrid cDNA expression library for **genes** encoding the proteins binding to the silencer region. Most proteins identified from this approach belong

to the nuclear receptor superfamily. Fifty % of the positive clones encode for ERR alpha-1, and other positive clones include EAR-2, EAR-3 (COUP-TF1), RAR. . . interacting with S1, we decided to examine the regulatory action of ERR alpha-1 on promoter I.3 of the human aromatase gene. Using a reporter plasmid that includes

the aromatase genomic fragment containing promoter I.3 and S1, ERR alpha-1

was found to have a positive. . . 96 and 107 bp relative to the transcriptional start site of promoter I.3. In addition, despite the fact that the nuclear receptor SF1 was shown previously to bind to the same site and to mediate a cAMP response in ovary, our yeast one-hybrid screening did not find any SF-1 clones. Gel mobility shift assays further revealed that SF-1 can bind to the silencer element. . . nuclear proteins interacting with S1 in breast cancer tissue. It is thought that the silencer element in the human aromatase gene may function differently in different tissues because of distinct expression patterns of transcription factors.

L8 ANSWER 35 OF 42 MEDLINE

ACCESSION NUMBER: 95198733 MEDLINE

DOCUMENT NUMBER: 95198733 PubMed ID: 7891708

TITLE: The orphan receptor hepatic nuclear factor 4 functions as

а

transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is

antagonized by EAR3/COUP-TF1.

AUTHOR: Galson D L; Tsuchiya T; Tendler D S; Huang L E; Ren Y;

Ogura T; Bunn H F

CORPORATE SOURCE: Department of Medicine, Brigham & Women's Hospital,

Boston,

CONTRACT NUMBER:

Massachusetts 02115. RO1-DK41234 (NIDDK)

RO1-GM26444 (NIGMS)

SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (1995 Apr) 15 (4) 2135-44.

Journal code: NGY; 8109087. ISSN: 0270-7306.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-L16588

ENTRY MONTH: 199504

ENTRY DATE: Entered STN: 19950427

Last Updated on STN: 19990129 Entered Medline: 19950420

AB The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 . Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA . . the DNA binding domain of HNF-4 but lacks the elements in. C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.

L8 ANSWER 36 OF 42 MEDLINE

ACCESSION NUMBER: 96192924 MEDLINE

DOCUMENT NUMBER: 96192924 PubMed ID: 8614404

TITLE: TOR: a new orphan receptor expressed in the thymus that

can

modulate retinoid and thyroid hormone signals.

Ortiz M A; Piedrafita F J; Pfahl M; Maki R AUTHOR:

CORPORATE SOURCE: La Jolla Cancer Research Foundation, California 92037,

USA.

SOURCE: MOLECULAR ENDOCRINOLOGY, (1995 Dec) 9 (12) 1679-91.

Journal code: NGZ; 8801431. ISSN: 0888-8809.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-U39071

ENTRY MONTH: 199606

ENTRY DATE: Entered STN: 19960613

Last Updated on STN: 19960805

Entered Medline: 19960603

. of vitamin A, retinoic acid, as well as vitamin D3 and thyroid hormones exert their actions by binding to specific nuclear

receptors that represent one subfamily of the steroid/thyroid hormone receptor superfamily. To identify new members of the

retinoid/thyroid hormone receptor subfamily that could play a role in the

immune system, a screening of a T cell cDNA library was

performed using a retinoid X receptor probe. A clone was isolated encoding

a novel nuclear receptor expressed mainly in the thymus and T cell line s. This new receptor, TOR (thymus orphan receptor),

is most closely related in both its DNA-binding domain and ligand -binding domain, 90% and 53%, respectively, to ROR alpha/RZR alpha and clusters with these two receptors and RZR beta in a phylogenetic tree, when both the DNA-binding domain and the ligand-binding domain sequences of nuclear receptors are compared. Thus, TOR is part of a subgroup of receptors, one of which has recently been reported to be. . . binding sites for thyroid hormone (TR), and retinoic acid receptors (RAR). In transient transfection experiments TOR does not activate a reporter gene carrying these sequences in the absence or the presence of any known nuclear receptor ligands. TOR, however, is able to repress TR and RAR activity on DR-4-TREs or DR-5-RAREs, respectively. Therefore, our data suggest that.

ANSWER 37 OF 42 MEDLINE

ACCESSION NUMBER: 95166235 MEDLINE

DOCUMENT NUMBER: 95166235 PubMed ID: 7862143

TITLE:

Genetic dissection of thyroid hormone receptor beta:

identification of mutations that separate hormone binding

and transcriptional activation.

Uppaluri R; Towle H C AUTHOR:

CORPORATE SOURCE: Department of Biochemistry, University of Minnesota,

Minneapolis 55455.

CONTRACT NUMBER: 5T32-GM07323 (NIGMS)

DK39997 (NIDDK)

SOURCE: MOLECULAR AND CELLULAR BIOLOGY, (1995 Mar) 15 (3)

1499-512.

Journal code: NGY; 8109087. ISSN: 0270-7306.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199503

ENTRY DATE: Entered STN: 19950404

Last Updated on STN: 19950404 Entered Medline: 19950323

AΒ The thyroid hormone receptors (TR) are members of the nuclear receptor family of ligand-mediated transcription factors. The large region of TR that lies C-terminal to its DNA-binding domain subserves functions of ligand binding, dimerization, and transactivation. Little is known regarding the structural or functional

determinants of these processes. We have utilized genetic screening in the yeast Saccharomyces cerevisiae to identify residues involved in these functions. Random mutations of the rat TR beta 1 isoform between amino acid residues 179 and 456 were screened, and mutants with reduced hormone-dependent activation of reporter gene activity were isolated. In this paper we describe the characterization of a class of mutants that exhibit a dissociation between. . . binding and transcriptional activation. These mutants retained hormone binding (> 15% of the wild-type level) yet failed to transactivate a reporter gene. A number of these mutations occurred within the D region, which links the DNA-binding and ligand-binding domains of the receptor. One subset of these mutations abrogated DNA binding, supporting a role of the D region in. mutations localized to the carboxy-terminal portion of the receptor in a region which contains elements conserved across the superfamily of nuclear receptors. The hormone-dependent phenotype of these superactivator mutations suggests an important role of this segment in ligand-mediated transcriptional activation.

ANSWER 38 OF 42 MEDLINE

ACCESSION NUMBER: 96062010 MEDLINE

DOCUMENT NUMBER: PubMed ID: 7488247 96062010

TITLE: Functional analysis of aryl hydrocarbon receptor nuclear

translocator interactions with aryl hydrocarbon receptor

in

the yeast two-hybrid system.

Yamaguchi Y; Kuo M T AUTHOR:

CORPORATE SOURCE: Department of Molecular Pathology, University of Texas

M.D.

bHLH

Anderson Cancer Center, Houston 77030, USA.

CONTRACT NUMBER: CA55813 (NCI)

CA55846 (NCI)

BIOCHEMICAL PHARMACOLOGY, (1995 Oct 12) 50 (8) 1295-302. SOURCE:

Journal code: 9Z4; 0101032. ISSN: 0006-2952.

PUB. COUNTRY: ENGLAND: United Kingdom

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199512

Entered STN: 19960124 ENTRY DATE:

Last Updated on STN: 19970203 Entered Medline: 19951214

AB The aryl hydrocarbon receptor (AHR) mediates dioxin (2,3,7,8tetrachlorodibenzo-p-dioxin)-induced transcriptional activation of a battery of genes by interaction with a cofactor, called aryl hydrocarbon receptor nuclear translocator (ARNT) protein. Both AHR and ARNT belong to a family of proteins that includes the Drosophila circadian-rhythm protein and. . . yeast two-hybrid system with the N-terminal half of AHR as a probe, which contains the

and PAS regions, to screen cDNA libraries prepared from human lymphocytes and C57BL mouse liver for clones encoding proteins capable of binding to these regions,. . . containing the GAL4 DNA binding domain (DB) linked to the full-length AHR was not capable of activating expression of a reporter gene containing the GAL4 DNA binding site, suggesting that ligand-free AHR alone has no transactivating properties in yeast. However, the C-terminal portion (amino acid residues 580-797) of the AHR, including the Q-rich domain, could confer transactivation of the reporter gene expression in the same system, suggesting that the N-terminal portion of the AHR contains transcription repression properties. In contrast, GAL4 (DB) -ARNT fusion protein was able to activate expression of the same reporter gene. Deletion analysis of ARNT revealed that the C-terminal 75 amino acids, including the Q-rich domain, exhibited

full

transactivation function in.

ANSWER 39 OF 42 CAPLUS COPYRIGHT 2001 ACS

ACCESSION NUMBER: 1995:487761 CAPLUS

DOCUMENT NUMBER:

123:2402

TITLE:

AUTHOR (S):

Assignment of the human ubiquitous receptor gene

(UNR)

to 19q13.3 using fluorescence in situ hybridization Le Beau, Michelle M.; Song, Ching; Davis, Elizabeth

M.; Hiipakka, Richard A.; Kokontis, John M.; Liao,

Shutsung

CORPORATE SOURCE:

Dep. Med., Univ. Chicago, Chicago, IL, 60637, USA

SOURCE:

Genomics (1995), 26(1), 166-8

CODEN: GNMCEP; ISSN: 0888-7543

DOCUMENT TYPE:

Journal

LANGUAGE: English

We recently cloned the human and rat cDNAs for a new member of the nuclear receptor family, which we named ubiquitous

receptor (UR) because ofits expression in many tissues. The symbol for

this gene is UNR (ubiquitous nuclear receptor

). UR is a 50-kDa nuclear protein that belongs to the thyroid hormone/retinoic acid receptor subfamily of nuclear

receptors, based on the P-box amino acids of its DNA-binding domain and its ability to bind to AGGTCA direct repeats with

four-nucleotide (DR4) spacing as a heterodimer with RXR. In the absence of 9-cis-retinoic acid, coexpression of UR in combination with RXR in

COS-1 cells stimulated a reporter gene contg. a DH4

response element. It is not known whether a ligand is required for UR function. Coexpression of UR inhibited RAR and RXR activation of DR4-linked reporter gene expression, but not a

DR5-linked reporter gene, in the presence of

all-trans-retinoic acid. Since UR can modulate the retinoid and thyroid hormone signaling pathways, it may have an important role in normal growth

and differentiation. Human UNR cDNAs were used to screen a Lambda FIX II human male placenta genomic library (Stratagene). DNA

from clones hybridizing to UNR cDNA was characterized by Southern hybridization and restriction mapping, and two different clones (hG10 and hG12) with inserts of 15-20 kb were chosen for fluorescence in situ hybridization (FISH) anal. Biotin-labeled probes were prepd. from phage DNA by nick-translation using Bio-11-dUTP (Enzo Diagnostics). FISH was performed as described previously. Hybridization was detected with fluorescein-conjugated avidin (Vector Labs.), and chromosomes were identified by staining with 4,6-diamidino-2-phenylindole-dihydrochloride (DAPI). Hybridization of the UNR probe to normal human metaphase chromosomes resulted in specific labeling only of chromosome 19.

Specific

labeling of 19q13 was obsd. on four (14 cells), three (6 cells), two (4 cells), or one (1 cell) chromatid(s) of the chromosome 19 homologs in 25 cells examd. Of 85 signals obsd. (83 of 100 19q chromatids from 25 metaphase cells were labeled), 83 (97.6%) were located at 19q13.3. The remaining 2 signals were located at 17q25 (2.4%). Specific labeling of 19q13.3 was obtained in an addnl. hybridization expt. using the hG10 probe

and in other hybridizations using another probe (hG12) for this gene. These results indicate that the UNR gene is localized to chromosome 19q13.3.

ANSWER 40 OF 42 MEDLINE

ACCESSION NUMBER: 95140028 MEDLINE

DOCUMENT NUMBER: 95140028 PubMed ID: 7838156

TITLE: Identification of RVR, a novel orphan nuclear receptor

that

acts as a negative transcriptional regulator.

AUTHOR: Retnakaran R; Flock G; Giguere V

CORPORATE SOURCE: Division of Endocrinology, Hospital for Sick Children, Toronto, Canada.

SOURCE: MOLECULAR ENDOCRINOLOGY, (1994 Sep) 8 (9) 1234-44.

Journal code: NGZ; 8801431. ISSN: 0888-8809.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals OTHER SOURCE: GENBANK-U12142

ENTRY MONTH: 199502

ENTRY DATE: Entered STN: 19950314

> Last Updated on STN: 19950314 Entered Medline: 19950227

AB A novel member of the steroid/thyroid/retinoid superfamily of nuclear receptors has been isolated as part of a screen to identify genes related to the recently characterized orphan receptor ROR alpha. This new orphan receptor, cloned from a mouse brain cDNA library, is closely related to the rat Rev-ErbA alpha gene product (97% and 68% identity in the DNA- and ligand-binding domains, respectively) and referred to as RVR.

Northern blot analysis reveals that two RVR mRNA species are expressed during mouse. . . it binds the DNA sequence ATAACTAGGTCA, a hormone response element composed of a 6-base pair AT-rich sequence preceding a single nuclear receptor recognition half-site core

motif PuGGTCA. We show that RVR recognizes this hormone response element with a specificity similar to that. . . 2. However, cotransfection studies indicate that RVR does not activate transcription when this hormone response element is linked to a reporter gene

but rather acts as a potent competitive repressor of ROR alpha function. These results indicate the existence of an orphan nuclear receptor-based signaling pathway with the intrinsic ability to

regulate the expression of specific gene networks through competition between transcriptional activators and repressors for the

recognition site.

ANSWER 41 OF 42 MEDLINE

ACCESSION NUMBER: 93232045 MEDLINE

DOCUMENT NUMBER: 93232045 PubMed ID: 8473329

RNR-1, a nuclear receptor in the NGFI-B/Nur77 family that TITLE:

is rapidly induced in regenerating liver.

Scearce L M; Laz T M; Hazel T G; Lau L F; Taub R AUTHOR:

CORPORATE SOURCE: Department of Genetics, Howard Hughes Medical Institute,

University of Pennsylvania School of Medicine,

Philadelphia

same

19104-6145.

SOURCE: JOURNAL OF BIOLOGICAL CHEMISTRY, (1993 Apr 25) 268 (12)

8855-61.

Journal code: HIV; 2985121R. ISSN: 0021-9258.

PUB. COUNTRY:

United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT: Priority Journals GENBANK-L08595 OTHER SOURCE:

ENTRY MONTH:

199305

ENTRY DATE:

Entered STN: 19930604

Last Updated on STN: 19980206 Entered Medline: 19930514

AB . . hepatectomy provides one of the few systems for analysis of mitogenesis in the fully developed, intact animal. Immediate-early growth response genes, induced in the absence of prior protein synthesis, play an important regulatory role in the regenerative process. During screening of a subtracted cDNA library of immediate-early genes induced during liver regeneration, a novel member of the thyroid/steroid receptor superfamily, RNR-1 (regenerating liver nuclear receptor), was identified. This gene is not expressed in quiescent liver but is rapidly induced following

partial hepatectomy and is specific to hepatic growth as. . . in vitro translation in reticulocyte lysate. RNR-1 is highly homologous to r-NGFI-B/m-Nur77 particularly in the DNA binding (94%) and putative ligand binding (59%) domains. Using a mobility shift assay, we have shown that RNR-1 specifically binds to the NGFI-B DNA half-site. .

. A box region important in mediating half-site binding is 100% conserved

between r-NGFI-B/m-Nur77. Both RNR-1 and Nur77 strongly transactivate a reporter driven by a consensus r-NGFI-B/Nur77 binding site, and their effect together is additive. As both the RNR-1 and r-NGFI/m-nur77 genes are induced during liver regeneration, it is very possible that RNR-1 acts concomitantly with r-NGFI/m-Nur77 in regulating the expression of delayed-early genes during liver regeneration.

ANSWER 42 OF 42 BIOSIS COPYRIGHT 2001 BIOSIS

ACCESSION NUMBER: 1994:76103 BIOSIS

DOCUMENT NUMBER:

PREV199497089103

TITLE:

Genetic approaches to mammalian nuclear receptor function

in yeast.

AUTHOR(S):

Garabedian, Michael J.

CORPORATE SOURCE: SOURCE:

Dep. Microbiol., NYU Med. Cent., New York, NY 10016 USA Methods (Orlando), (1993) Vol. 5, No. 2, pp. 138-146.

ISSN: 1046-2023.

DOCUMENT TYPE:

Article

LANGUAGE: English

Mammalian nuclear receptor function can be faithfully reconstituted in yeast, enabling a wide variety of genetic approaches to be taken toward defining the mechanisms of signal transduction and transcriptional regulation. This report describes vectors for the expression of mammalian receptors in yeast, reporter genes, yeast host strains, and simple assays that monitor receptor transcriptional activity. Methods for the generation of receptors with distinct defects in particular functions, such as DNA or hormone binding, that couple random mutagenesis with phenotypic screens are outlined as well. In addition, strategies for the identification of nonreceptor components whose gene products may act on receptors are discussed. The experimental advantages of yeast invite a detailed genetic analysis of mammalian nuclear receptor functions sbd hormone and DNA binding, nuclear localization, and

interaction with nonreceptor factors sbd and should illuminate further

the

mechanisms.

=> log y

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 53.37 53.58 DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL ENTRY SESSION CA SUBSCRIBER PRICE -3.53 -3.53

STN INTERNATIONAL LOGOFF AT 08:16:12 ON 07 NOV 2001