Problem 1): Let $x, y, e, x^{-1} \in \mathcal{G}$ where $e \in \mathcal{G}$ is the identity element of \mathcal{G} and x^{-1} is such that both $x x^{-1} = e = x^{-1} x$ and $y x^{-1} = e = x^{-1} y$ hold. Therefore we have

$$x x^{-1} = y x^{-1} (1.1)$$

$$x x^{-1} = x^{-1} y ag{1.2}$$

$$x^{-1} x = y x^{-1} ag{1.3}$$

$$x^{-1} x = x^{-1} y ag{1.4}$$

By applying the cancelation rule ($ab=ac \Rightarrow b=c$ for $a,b,c \in \mathbb{G}$ for any group \mathbb{G}) to the expression in 1.1 and 1.4, it is clear that we have

$$x = y \tag{1.5}$$

Since G is abelian, we may rewrite the expression in 1.2 as

$$x x^{-1} = x^{-1} x = x^{-1} y$$

or

$$x x^{-1} = y x^{-1} = x^{-1} y$$

From either expression, the application of the cancelation rule yields the same result as in expression 1.5. Similarly, we use the abelian property of \mathcal{G} to rewrite the expression in 1.3 as

$$x^{-1} x = x x^{-1} = y x^{-1}$$

or

$$x^{-1} x = x^{-1} y = y x^{-1}$$

Again, applyiong the cancelation rule to either expression yields the same result as in 1.5. Therefore, every element in an abelian group must have a unique inverse.

Problem 2): Let \mathcal{G} be a finite group and $g \in \mathcal{G}$. Now define $\langle g \rangle \equiv g^0, g^1, g^2, \dots, g^k, \dots$, where $k \in \mathbb{N}$. Next, let $m, n \in \mathbb{N}$ so that we have

$$g^m g^n = g^{m+n}$$

Since $m, n \in \mathbb{N}$ and \mathbb{N} is closed under addition, $(m+n) \in \mathbb{N}$, it is clear that $g^{m+n} \in \langle g \rangle$. Therefore, $\langle g \rangle$ is closed under its operation. From our definition of $\langle g \rangle$, we know that $g^0 \in \langle g \rangle$. Additionally, $g^0 \equiv e$; therefore $\langle g \rangle$ contains the identity element. Now, let $m \in \mathbb{Z}^+$ and write $g^{-m} g^m$. Using $g^{-m} \equiv (g^{-1})^m$, this yields

$$g^{-m} g^m = (g^{-1})^m g^m = (g^{-1} g)^m = (e)^m = e$$

which implies the existence of an inverse for each element in $\langle g \rangle$. Finally, let $m, n, k \in \mathbb{N}$, then we have

$$g^{m}(g^{n}g^{k}) = g^{m}(g^{n+k}) = g^{m+(n+k)}$$
 (2.1)

Since $\ensuremath{\mathbb{N}}$ is associative under addition, the expression in 2.1 may be rewritten as

$$g^{m+(n+k)} = g^{(m+n)+k} = (g^{m+n}) g^k = (g^m g^n) g^k$$

thereby demonstrating the associativity of operations in $\langle g \rangle$. Since \mathcal{G} is finite, it has order $m = |\mathcal{G}|$.

Therefore, the elements of $\langle g \rangle$ will be repeats of elements in \mathcal{G} starting with g^{m+1} . Moreover, this means that $\langle g \rangle \subseteq \mathcal{G}$, thus satisfying the last condition for $\langle g \rangle$ to be a sub-group of \mathcal{G} .