

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Câmpus de Ilha Solteira

Faculdade de Engenharia

TRABALHO DE MOTORES DE COMBUSTÃO INTERNA

Nome	RA
Alícia Ramos Modesto	181052725
Ednei Soares de Azevedo Júnior	191052566
Gabriel Duarte da Silva	182054047
Higor Balsarini	182055302
Matheus Henrique Panini	182053857
Yuri Fernando Oliveira Kazitani Cunha	231052669

Docente: Gabriel Coelho Rodrigues Alvares

Ilha Solteira – SP

Dezembro de 2023

LISTA DE ILUSTRAÇÕES

Figura 1 – Área de Cortina em uma Válvula	6
Figura 2 – Área de Garganta em uma Válvula	6
Figura 3 – Fluxo em Relação à Abertura da Válvula	10
Figura 4 – Área de Cortina em Relação à Abertura da Válvula	10
Figura 5 – Coeficiente de Descarga em Relação à Abertura da Válvula (Área de Garganta)	11
Figura 6 – Coeficiente de Descarga em Relação à Abertura da Válvula (Área Mínima).	11

LISTA DE TABELAS

Tabela 1 –	Parametros Geométricos das Válvulas de Escape e Admissão	9
Tabela 2 –	Dados Obtidos pela Bancada de Fluxo	9

SUMÁRIO

1	INTRODUÇÃO
2	METODOLOGIA
2.1	Revisão da Literatura
2.1.1	Áreas
2.1.2	Coeficiente de Descarga
2.1.3	Pressão Média
2.1.4	Carga Lateral
2.1.5	Velocidade do pistão
2.1.6	Número de Mach
2.2	Montagem Experimental
2.3	Procedimento Experimental
3	RESULTADOS
3.1	Resultados medidos
3.2	Resultados calculados
3.2.1	Ensaio de Fluxo no Cabeçote
3.2.2	Ensaio Dinamométrico
4	DISCUSSÃO E CONCLUSÃO 12
	Referências

1 INTRODUÇÃO

2 METODOLOGIA

2.1 Revisão da Literatura

Os conceitos teóricos explicados a seguir são baseados nas notas de aula, na obra de Heywood (2018), Ferguson e Kirkpatrick (2015).

2.1.1 Áreas

Parâmetros geométricos são de suma importância para o motor. Áreas relacionadas às válvulas são necessárias para a compreensão do desempenho do motor. Á área de cortina é a região ao redor da haste da válvula que é projetada para direcionar o fluxo de fluidos, como mostra a Fig. 1. A área de garganta representa..., como mostra a Fig. 2 influenciando a quantidade de massa fresca que entra na câmara de combustão.

Figura 1 – Área de Cortina em uma Válvula

Fonte: elaborado pelos autores.

Figura 2 – Área de Garganta em uma Válvula

Fonte: elaborado pelos autores.

A área de cortina é dada por:

$$A_c = \pi D_v L \tag{2.1}$$

onde D_v é o diâmetro da válvula e L é abertura da d válvula. A área de garganta é dada por:

$$A_g = \frac{\pi}{4} \left(D_v^2 - D_h^2 \right) \tag{2.2}$$

onde D_h é o diâmetro da haste da válvula.

2.1.2 Coeficiente de Descarga

O coeficiente de descarga é a razão entre o fluxo de ar que está passando através do componente durante o ensaio, pelo fluxo de ar que deveria passar pelo componente durante o ensaio caso o escoamento isentrópico e é dado por:

$$C_d = \frac{V_r}{V_t} \tag{2.3}$$

onde V_r o fluxo de massa real e V_t é o fluxo de massa caso o escoamento fosse isentrópico.

2.1.3 Pressão Média

A pressão média indicada (IMEP) é aquela determinada baseada na geometria do motor e considerando as transformações do ciclo como irreversiveis. A pressão média de atrito (FMEP) indica a pressão perdida devido ao atrito e o bombeamento. A pressão média efetiva (BMEP) é a pressão que o motor de fato tem trabalho líquido. A BMEP pode ser calculada como mostra a seguir:

$$BMEP = IMEP - FMEP = \frac{120\dot{W}_b}{nV_dN}$$
 (2.4)

onde \dot{W}_b e a potência, n é quantidade de cilindros do motor, V_d e o volume deslocado e N é a rotação do motor em RPM.

2.1.4 Carga Lateral

A carga lateral do pistão é obtida através da análise de forças no pistão a partir das leis da mecânica dos sólidos e é dada por:

$$F_L = \frac{\pi dP(R/L)\sin\alpha}{4\sqrt{1 - (R/L)^2\sin^2\alpha}}$$
(2.5)

onde d é o diâmetro do pistão, P é a pressão exercida, R é o comprimento da biela, L é o comprimento da manivela e α é o ângulo percorrido pela manivela a partir do ponto morto superior (PMS).

2.1.5 Velocidade do pistão

A partir de geometria simples, é possível determinar a posição do cilindro em relação ao ângulo de rotação da manivela. Sabendo que $\alpha = \omega t$, determina-se a velocidade através da derivada da posição do cilindro:

$$v(t) = R\omega \sin(\omega t) + \frac{R^2\omega \sin(\omega t)\cos(\omega t)}{L\sqrt{1 - \frac{R^2\sin^2(\omega t)}{L^2}}}$$
(2.6)

2.1.6 Número de Mach

O número de Mach é um termo adimensional definido pela seguinte expressão:

$$Ma = \frac{V}{c} = \frac{\text{velocidade do escoamento}}{\text{velocidade do som}}$$
 (2.7)

que descreve a velocidade do escoamento. Quando Ma = 1 o escoamento é considerado sônico; quando Ma < 1, subsônico; quando Ma > 1, supersônico e quando $Ma \gg 1$, hipersônico (CENGEL; CIMBALA, 2015).

- 2.2 Montagem Experimental
- 2.3 Procedimento Experimental

3 RESULTADOS

3.1 Resultados medidos

As condições iniciais proposta foram: (i) para o ensaio de fluxo no cabeçote do motor EA211 TSI, a pressão é de 25 pol $H_2O \approx 6,2271$ kPa, variando a abertura das válvulas entre 0 e 10 mm, com passo de 1 mm; (ii) para o ensaio dinamométrico, o motor avaliado é um John Deere 6068 Tier 3, com condição de carga de 75%.

Escape Admissão Medida D_{ν} D_h D_h D_g D_{ν} D_g (mm) (mm) (mm) (mm) (mm) (mm) 24,88 4,93 20,48 5,10 24,60 1 28,44 2 25,10 4,90 5,00 24,35 19,85 28,40 3 24,90 4,95 4,90 20,50 28,45 24,40 4 24,47 5,00 28,00 5,00 24,84 4,93 Média 20,28 28,33 5,01 24,45

Tabela 1 – Parametros Geométricos das Válvulas de Escape e Admissão

3.2 Resultados calculados

3.2.1 Ensaio de Fluxo no Cabeçote

Tabela 2 – Dados Obtidos pela Bancada de Fluxo. Os dados foram obtidos através do próprio software da bancada de fluxo Servitec WinSSFluxo. AVA: admissão na válvula de admissão; EVE: exaustão na válvula de escape; EVA: exaustão na válvula de admissão.

	AVA			EVE			EVA	
Pressão (pol H ₂ O)	Abertura (mm)	Fluxo (cfm)	Pressão (pol H ₂ O)	Abertura (mm)	Fluxo (cfm)	Pressão (pol H ₂ O)	Abertura (mm)	Fluxo (cfm)
25,00	0	0,00	25,00	0	0,00	25,00	0	0,00
25,03	1	29,11	25,01	1	25,97	25,01	1	24,12
25,03	2	54,12	25,02	2	53,92	25,01	2	49,43
25,02	3	74,55	25,02	3	75,77	25,02	3	72,81
25,04	4	87,17	25,01	4	91,36	25,02	4	87,03
25,03	5	94,37	25,02	5	105,32	25,02	5	92,68
25,04	6	98,87	25,04	6	115,26	25,02	6	94,28
25,04	7	101,04	25,03	7	119,16	25,02	7	95,16
25,02	8	102,35	25,02	8	120,74	25,02	8	95,86
24,99	9	103,70	24,92	9	121,74	25,02	9	96,33
25,01	10	104,07	25,04	10	121,68	25,01	10	96,74

Fonte: elaborado pelos autores.

Capítulo 3. Resultados

Figura 3 – Fluxo em Relação à Abertura da Válvula. Os dados foram obtidos através do próprio software da bancada de fluxo Servitec WinSSFluxo.

Fonte: elaborado pelos autores.

Áreas

Figura 4 – Área de Cortina em Relação à Abertura da Válvula. A área de cortina aumenta gradativamente conforme a abertura da válvula aumenta, pois ela é uma função da abertura.

Fonte: elaborado pelos autores.

Capítulo 3. Resultados

Figura 5 – Coeficiente de Descarga em Relação à Abertura da Válvula. Neste caso, a área considerada é a área de garganta.

Fonte: elaborado pelos autores.

Figura 6 – Coeficiente de Descarga em Relação à Abertura da Válvula. Neste caso, a área considerada é a área mínima quando compara-se a área de garganta e a área de cortina.

Fonte: elaborado pelos autores.

Coeficiente de descarga

3.2.2 Ensaio Dinamométrico

Pressão Média

Torque

Potência

Carga Lateral

4 DISCUSSÃO E CONCLUSÃO

REFERÊNCIAS

CENGEL, Yunus A; CIMBALA, John M. *Mecânica dos Fluidos: Fundamentos e Aplicações*. [S.l.]: AMGH Editora, 2015.

FERGUSON, Colin R; KIRKPATRICK, Allan T. *Internal combustion engines: applied thermosciences*. [S.l.]: John Wiley & Sons, 2015.

HEYWOOD, John B. *Internal combustion engine fundamentals*. [S.l.]: McGraw-Hill Education, 2018.