Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования «Московский технический университет связи и информатики» Кафедра «МКиИТ»

Лабораторная работа №1 (часть 2)

по дисциплине «Data mining»

О задании

Задание состоит из двух разделов, посвященных работе с табличными данными с помощью библиотеки pandas и визуализации с помощью matplotlib. В каждом разделе вам предлагается выполнить несколько заданий.

Задание направлено на освоение jupyter notebook (будет использоваться в дальнейших заданиях), библиотекам pandas и matplotlib.

0. Введение

Сейчас мы находимся в jupyter-ноутбуке (или ipython-ноутбуке). Это удобная среда для написания кода, проведения экспериментов, изучения данных, построения визуализаций и других нужд, не связанных с написаем production-кода.

Ноутбук состоит из ячеек, каждая из которых может быть либо ячейкой с кодом, либо ячейкой с текстом размеченным и неразмеченным. Текст поддерживает markdown-разметку и формулы в Latex.

Для работы с содержимым ячейки используется *режим редактирования* (*Edit mode*, включается нажатием клавиши **Enter** после выбора ячейки), а для навигации между ячейками искользуется *командный режим* (*Command mode*, включается нажатием клавиши **Esc**). Тип ячейки можно задать в командном режиме либо с помощью горячих клавиш (**y** to code, **m** to markdown, **r** to edit raw text), либо в меню *Cell -> Cell type*.

После заполнения ячейки нужно нажать Shift + Enter, эта команда обработает содержимое ячейки: проинтерпретирует код или сверстает размеченный текст.

```
In []: # ячейка с кодом, при выполнении которой появится output 2 + 2
```

А это **ячейка с текстом**.

Ячейка с неразмеченыным текстом.

Попробуйте создать свои ячейки, написать какой-нибудь код и текст какой-нибудь формулой.

```
In [ ]: # your code
```

Здесь находится небольшая заметка о используемом языке разметки Markdown. Он позволяет:

- 1. Составлять упорядоченные списки
- 2. #Делать ##заголовки ###разного уровня
- 3. Выделять *текст* при **необходимости**
- 4. Добавлять ссылки
- Составлять неупорядоченные списки

Делать вставки с помощью LaTex:

$$\left\{egin{aligned} x &= 16\sin^3(t) \ y &= 13\cos(t) - 5\cos(2t) - 2\cos(3t) - \cos(4t) \ t &\in [0,2\pi] \end{aligned}
ight.$$

1. Табличные данные и Pandas

Pandas — удобная библиотека для работы с табличными данными в Python, если данных не слишком много и они помещаются в оперативную память вашего компьютера. Несмотря на неэффективность реализации и некоторые проблемы, библиотека стала стандартом в анализе данных. С этой библиотекой мы сейчас и познакомимся.

Основной объект в pandas это DataFrame, представляющий собой таблицу с именованными колонками различных типов, индексом (может быть многоуровневым). DataFrame можно создавать, считывая таблицу из файла или задавая вручную из других объектов.

В этой части потребуется выполнить несколько небольших заданий. Можно пойти двумя путями: сначала изучить материалы, а потом приступить к заданиям, или же разбираться "по ходу". Выбирайте сами.

Материалы:

- 1. Pandas за 10 минут из официального руководства
- 2. Документация (стоит обращаться, если не понятно, как вызывать конкретный метод)
- 3. Примеры использования функционала

Многие из заданий можно выполнить несколькими способами. Не существуют единственно верного, но попробуйте максимально задействовать арсенал pandas и ориентируйтесь на простоту и понятность вашего кода. Мы не будем подсказывать, что нужно использовать для решения конкретной задачи, попробуйте находить необходимый функционал сами (название метода чаще всего очевидно). В помощь вам документация, поиск и stackoverflow.

```
In [81]: %matplotlib inline import pandas as pd
```

Данные можно скачать отсюда.

1. Откройте файл с таблицей (не забудьте про её формат). Выведите последние 10 строк.

Посмотрите на данные и скажите, что они из себя представляют, сколько в таблице строк, какие столбцы?

```
In [82]:
    data = pd.read_csv('./data.csv')
    data.tail(10)
```

Out[82]:		order_id	quantity	item_name	choice_description	item_price
	4612	1831	1	Carnitas Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	\$9.25

	order_id	quantity	item_name	choice_description	item_price
4613	1831	1	Chips	NaN	\$2.15
4614	1831	1	Bottled Water	NaN	\$1.50
4615	1832	1	Chicken Soft Tacos	[Fresh Tomato Salsa, [Rice, Cheese, Sour Cream]]	\$8.75
4616	1832	1	Chips and Guacamole	NaN	\$4.45
4617	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Sour	\$11.75
4618	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Sour Cream, Cheese	\$11.75
4619	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$11.25
4620	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	\$8.75
4621	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$8.75

2. [0.25 баллов] Ответьте на вопросы:

- 1. Сколько заказов попало в выборку?
- 2. Сколько уникальных категорий товара было куплено? (item_name)

```
In [83]: data['order_id'].tail(10).nunique()

Out[83]: 4

In [84]: data['item_name'].tail(10).nunique()

Out[84]: 7
```

3. [0.25 баллов] Есть ли в данных пропуски? В каких колонках?

```
In [85]:
          data.isnull().sum()
Out[85]: order_id
                                    0
                                    0
          quantity
          item_name
                                    0
          choice_description
                                 1246
          item_price
                                    0
          dtype: int64
         Заполните пропуски пустой строкой для строковых колонок и нулём для числовых.
In [86]:
          data.select dtypes(include=['int64']).fillna(0)
          data.select_dtypes(include=['object']).fillna('')
Out[86]:
                                   item_name
                                                                    choice_description item_price
```

Chips and Fresh Tomato Salsa

0

\$2.39

	item_name	choice_description	item_price
1	Izze	[Clementine]	\$3.39
2	Nantucket Nectar	[Apple]	\$3.39
3	Chips and Tomatillo-Green Chili Salsa		\$2.39
4	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	\$16.98
•••			
4617	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Sour	\$11.75
4618	Steak Burrito	[Fresh Tomato Salsa, [Rice, Sour Cream, Cheese	\$11.75
4619	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$11.25
4620	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	\$8.75
4621	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$8.75

4622 rows × 3 columns

4. [0.5 баллов] Посмотрите внимательнее на колонку с ценой товара. Какого она типа? Создайте новую колонку так, чтобы в ней цена была числом.

Для этого попробуйте применить функцию-преобразование к каждой строке вашей таблицы (для этого есть соответствующая функция).

In [87]:
 data['new_item_price'] = data['item_price'].replace('[\\$,]', '', regex=True).astype(
 data.tail(10)

[87]:		order_id	quantity	item_name	choice_description	item_price	new_item_price
	4612	1831	1	Carnitas Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	\$9.25	9.25
	4613	1831	1	Chips	NaN	\$2.15	2.15
	4614	1831	1	Bottled Water	NaN	\$1.50	1.50
	4615	1832	1	Chicken Soft Tacos	[Fresh Tomato Salsa, [Rice, Cheese, Sour Cream]]	\$8.75	8.75
	4616	1832	1	Chips and Guacamole	NaN	\$4.45	4.45
	4617	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Sour	\$11.75	11.75
	4618	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Sour Cream, Cheese	\$11.75	11.75
	4619	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$11.25	11.25
	4620	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	\$8.75	8.75
	4621	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$8.75	8.75

Какая средняя/минимальная/максимальная цена у товара?

```
In [88]:
    minimum = data['new_item_price'].min()
    average = data['new_item_price'].mean()
    maximum = data['new_item_price'].max()
    print(f"Минимальная - {minimum}, максимальная - {maximum}, средняя - {average}")
```

Минимальная - 1.09, максимальная - 44.25, средняя - 7.464335785374297 Удалите старую колонку с ценой.

```
In [89]:
    del data['item_price']
    data.tail(2)
```

Out[89]:		order_id	quantity	item_name	choice_description	new_item_price
	4620	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	8.75
	4621	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	8.75

5. [0.25 баллов] Какие 5 товаров были самыми дешёвыми и самыми дорогими? (по choice_description)

Для этого будет удобно избавиться от дубликатов и отсортировать товары. Не забудьте про количество товара.

```
data_copy = data
  data_copy['cost_per_one']=data_copy['new_item_price']/data_copy['quantity']
  data_copy.sort_values(['cost_per_one', 'item_name'], ascending=[True, True],inplace=
  data_copy.drop_duplicates(subset=['item_name'], keep='first').head(5)
```

Out[90]:		order_id	quantity	item_name	choice_description	new_item_price	cost_per_one
	34	17	1	Bottled Water	NaN	1.09	1.09
	18	9	2	Canned Soda	[Sprite]	2.18	1.09
	263	114	1	Canned Soft Drink	[Coke]	1.25	1.25
	6	3	1	Side of Chips	NaN	1.69	1.69
	4509	1793	1	Chips	NaN	1.99	1.99

```
In [91]: data_copy.drop_duplicates(subset=['item_name'], keep='last').tail(5)
```

Out[91]:		order_id	quantity	item_name	choice_description	new_item_price	cost_per_one
	4554	1810	1	Steak Crispy Tacos	[Roasted Chili Corn Salsa, [Fajita Vegetables,	11.75	11.75
	3710	1483	1	Steak Soft Tacos	[Fresh Tomato Salsa, Guacamole]	11.75	11.75
	3546	1426	1	Barbacoa Salad Bowl	[Fresh Tomato Salsa, Guacamole]	11.89	11.89
	4239	1692	1	Carnitas Salad Bowl	[Tomatillo Green Chili Salsa, [Black Beans, Ch	11.89	11.89

	order_id	quantity	item_name	choice_description	new_item_price	cost_per_one
4313	1720	1	Steak Salad Bowl	[Roasted Chili Corn Salsa, [Faiita Vegetables,	11.89	11.89

6. [0.5 баллов] Сколько раз клиенты покупали больше 1 Chicken Bowl (item_name)?

```
import numpy as np
np.sum((data['quantity'] > 1) & (data['item_name'] == "Chicken Bowl"))
```

Out[92]: 33

7. [0.5 баллов] Какой средний чек у заказа? Сколько в среднем товаров покупают?

Если необходимо провести вычисления в терминах заказов, то будет удобно сгруппировать строки по заказам и посчитать необходимые статистики.

```
In [93]: #Средний чек заказа data.loc[:, 'new_item_price'].mean()

Out[93]: 7.464335785374296

In [94]: #В среднем товаров data.loc[:,"quantity"].mean()

Out[94]: 1.0757247944612722
```

8. [0.25 баллов] Сколько заказов содержали ровно 1 товар?

```
In [95]: len(data.loc[data['quantity'] == 1])
Out[95]: 4355
```

9. [0.25 баллов] Какая самая популярная категория товара?

```
In [96]: data['item_name'].value_counts().idxmax()
Out[96]: 'Chicken Bowl'
```

13. [0.75 баллов] Создайте новый DateFrame из матрицы, созданной ниже. Назовите колонки index, column1, column2 и сделайте первую колонку индексом.

```
from pandas import DataFrame

data_rand = np.random.rand(10, 3)
   data_new = DataFrame(data_rand, columns = ['index','column1','column2'])
   data_new
```

Out[97]:

	index	column1	column2
0	0.639513	0.623736	0.444349
1	0.483852	0.415418	0.225489
2	0.563000	0.113881	0.760107
3	0.643455	0.953607	0.102741
4	0.097748	0.819078	0.065581
5	0.745732	0.182420	0.186830
6	0.475292	0.155890	0.067085
7	0.110152	0.828859	0.015541
8	0.504779	0.013305	0.858551
9	0.255829	0.674130	0.390525

Coxpaните DataFrame на диск в формате csv без индексов и названий столбцов.

```
In [98]:
```

```
data_new.to_csv("DataFrame.csv")
```

2. Визуализации и matplotlib

При работе с данными часто неудобно делать какие-то выводы, если смотреть на таблицу и числа в частности, поэтому важно уметь визуализировать данные. В этом разделе мы этим и займёмся.

У matplotlib, конечно, же есть документация с большим количеством примеров, но для начала достаточно знать про несколько основных типов графиков:

- plot обычный поточечный график, которым можно изображать кривые или отдельные точки;
- hist гистограмма, показывающая распределение некоторое величины;
- scatter график, показывающий взаимосвязь двух величин;
- bar столбцовый график, показывающий взаимосвязь количественной величины от категориальной.

В этом задании вы попробуете построить каждый из них. Не менее важно усвоить базовые принципы визуализаций:

- на графиках должны быть подписаны оси;
- у визуализации должно быть название;
- если изображено несколько графиков, то необходима поясняющая легенда;
- все линии на графиках должны быть чётко видны (нет похожих цветов или цветов, сливающихся с фоном);
- если отображена величина, имеющая очевидный диапазон значений (например, проценты могут быть от 0 до 100), то желательно масштабировать ось на весь диапазон значений (исключением является случай, когда вам необходимо показать малое отличие, которое незаметно в таких масштабах).

На самом деле мы уже импортировали matplotlib внутри %pylab inline в начале задания.

Работать мы будем с той же выборкой покупкок. Добавим новую колонку с датой покупки.

```
import datetime

start = datetime.datetime(2018, 1, 1)
end = datetime.datetime(2018, 1, 31)
delta_seconds = int((end - start).total_seconds())

dates = pd.DataFrame(index=data.order_id.unique())
dates['date'] = [
    (start + datetime.timedelta(seconds=random.randint(0, delta_seconds))).strftime(
    for _ in range(data.order_id.nunique())]

# ecsu DataFrame c nokynkamu us npowsozo заказа называется не df, замените на ваше н
data['date'] = data.order_id.map(dates['date'])
```

1. [1 балл] Постройте гистограмму распределения сумм покупок и гистограмму средних цен отдельных видов продуктов item_name.

Изображайте на двух соседних графиках. Для этого может быть полезен subplot.

2. [1 балл] Постройте график зависимости суммы покупок от дней.

3. [1 балл] Постройте график зависимости денег за товар от купленного количества (scatter plot).

```
In [111...
    quantity = data.groupby('order_id').sum()['quantity']
    price_item = data.groupby('order_id').sum()['new_item_price']

plt.scatter(quantity, price_item, color='purple')
    plt.title('Зависимость денег за товар от купленного количества')
    plt.xlabel('Количество купленного товара')
    plt.ylabel('Цена за товар')
    plt.show()
```


Сохраните график в формате pdf (так он останется векторизованным).

In [113...

plt.savefig("scatter.pdf")

<Figure size 432x288 with 0 Axes>

Кстати, существует надстройка над matplotlib под названием seaborn. Иногда удобнее и красивее делать визуализации через неё.