Machine Learning for Big Data: Constrained Optimization

Lionel Fillatre

fillatre@unice.fr

Topics

- Introduction
- Convexity
- Conditions of optimality

Conclusion

1 Introduction

Examples of machine learning optimization problems

Linear Classification

$$\arg\min_{w} \sum_{i=1}^{n} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$

s.t.
$$1 - y_{i} x_{i}^{T} w \leq \xi_{i}$$

$$\xi_{i} \geq 0$$

K-Means

$$\arg \min_{\mu_1, \mu_2, \dots, \mu_k} J(\mu) = \sum_{j=1}^k \sum_{i \in C_j} ||x_i - \mu_j||^2$$

Constrained optimization

A Production Problem

Weekly supply of raw materials:

8 Small Bricks

6 Large Bricks

Products:

Profit = \$20/Table

Chair Profit = \$15/Chair

Linear Programming

 Linear programming uses a mathematical model to find the best allocation of scarce resources to various activities so as to maximize profit or minimize cost.

```
Maximize (\$15)Chairs + (\$20)Tables
subject to
Large Bricks: Chairs + 2Tables \le 6
Small Bricks: 2Chairs + 2Tables \le 8
and
Chairs \ge 0, Tables \ge 0.
```

Constrained Optimization

$$f(x): \mathbb{R}^n \to \mathbb{R}$$

$$x^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x)$$

Subject to:

- Equality constraints defined over \mathbb{R}^n : $a_i(x) = 0, i = 1, 2, ..., p$
- Nonequality constraints defined over \mathbb{R}^n : $c_j(x) \ge 0, j = 1, 2, ..., q$
- Constraints define a feasible region $x \in \mathcal{F} \subset \mathbb{R}^n$, which should be nonempty.
- An inequality $c_i(x) \le 0$ is equivalent to $-c_i(x) \ge 0$
- The idea is to convert it to an unconstrained optimization.

2 Karush-Kuhn-Tucker conditions

Equality constraints

- Minimize f(x) subject to: $a_i(x) = 0$ for i = 1, 2, ..., p
- Main result (necessary condition): the gradient of f(x) at a local minimizer x^* is equal to the linear combination of the gradients of $a_i(\mathbf{x})$ with Lagrange multipliers λ_i^* as the coefficients

$$\nabla f(\mathbf{x}^*) = \sum_{i=1}^p \lambda_i^* \nabla a_i(\mathbf{x}^*)$$

Geometric interpretation

 $\nabla f(\mathbf{x}^*)$ $\nabla a(\mathbf{x}^*)$ $a(\mathbf{x}) = 0$

$$f_3 > f_2 > f_1$$

 $\tilde{\mathbf{x}}$ is not a minimizer

 x^* is a minimizer, $\lambda^*>0$

$$f_3 > f_2 > f_1$$

Inequality constraints

- Minimize f(x) subject to: $c_j(x) \ge 0$ for j = 1, 2, ..., q
- Main result (necessary condition): the gradient of f(x) at a local minimizer x^* is equal to the linear combination of the gradients of $c_j(x)$ which are active $(c_j(x)=0 \text{ for all } j \in A \subset \{1,2,...,q\})$ with KKT multipliers $\mu_j^* \geq 0$ as the coefficients

$$\nabla f(\mathbf{x}^*) = \sum_{j \in A} \mu_j^* \nabla c_j(\mathbf{x}^*)$$

Geometric interpretation

No active constraints at x^* ,

$$\nabla f(x^*) = 0$$

x* is a minimizer

$$f_3 > f_2 > f_1$$

 x^* is not a minimizer, μ <0

 x^* is a minimizer, $\mu > 0$

Lagrangian funtion and KKT

We can introduce the Lagrangian function

$$L(x,\lambda,\mu) = f(x) - \sum_{i=1}^{p} \lambda_i a_i(x) - \sum_{i=1}^{q} \mu_j c_j(x)$$

- The necessary conditions for the local minimizer $x^* \in \mathcal{F}$ are
 - 1. $\nabla_{x} L(x^*, \lambda, \mu) = 0$
 - 2. $a_i(x^*) = 0$ for all i = 1, ..., p
 - 3. $\mu_j c_j(x^*) = 0$ for all j = 1, ..., q
- These are Karush-Kuhn-Tucker conditions (KKT)

KKT: sufficient conditions

• If the objective f(x) is convex, the inequality constraints $c_j(x)$ are convex and the equality constraints $a_i(x)$ are affine, the KKT conditions are sufficient.

• In this case, x^* is the solution of the constrained problem (global constrained minimizer)

Example of KKT

Let us solve

$$\min_{x \in \mathbb{R}} x^2$$

s.t. $x \ge 2$

- Lagrangian function: $L(x, \mu) = x^2 \mu(x 2)$
- KKT conditions:
 - $\nabla_x L(x^*, \mu^*) = 2x^* \mu^* = 0$ which yields $x^* = \frac{\mu^*}{2}$
 - $\mu^*(x^*-2) = 0$, which yields $(\mu^* = 0$, so $x^* = 0)$ or $(x^* = 2$, so $\mu^* = 4 \ge 0)$
- The solution is $x^* = 2$ because $x^* \ge 2$ and KKT conditions are sufficient in this case (convex problem).

3 Dual Lagrangian

Dual Lagrangian

• The Lagrange dual function $g: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}$ is defined as the minimum of the Lagrangian over x:

$$g(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \inf_{x \in \mathbb{R}^n} \left(f(x) - \sum_{i=1}^p \lambda_i a_i(x) - \sum_{i=1}^q \mu_j c_j(x) \right)$$

- Observe that:
 - the infimum is unconstrained (as opposed to the original constrained minimization problem)
 - *g* is concave regardless of original problem (infimum of affine functions)
 - g is defined oved a domain dom(g) which depends on the problem
 - g can take the value $-\infty$ for some λ , μ

Lower Bound of Dual Lagrangian

- Let $p^* = \inf_{x \in \mathcal{F}} f(x)$ the optimal value of the constrained problem
- We can show that

$$p^* = \min_{x \in \mathcal{F}} \max_{\mu \ge 0} L(x, \lambda, \mu)$$

• It is shown that, if $\mu_j \ge 0$ for all j = 1, ..., q, $g(\lambda, \mu) \le p^*$

for all λ_i , i = 1, ..., p

• The idea is to maximize $g(\lambda, \mu)$ with respect to the Lagragian multipliers.

Dual Lagrangian

The Dual Lagrangian problem is defined as

$$\max_{(\lambda,\mu) \in dom(g)} g(\lambda,\mu)$$

s.t. $\mu_j \ge 0$ for all $j = 1,...,q$

- This problem finds the best lower bound on p^* obtained from the dual function.
- It is a convex optimization (maximization of a concave function and linear constraints).
- The optimal value is denoted d^* .
- λ , μ are dual feasible if $\mu_j \ge 0$ for all j and $(\lambda, \mu) \in dom(g)$. In general, the latter implicit constraints can be made explicit in problem formulation.

Strong Duality

- Under certain assumptions (not studied in this course), strong duality holds: $d^* = p^*$
- It is very desirable because we can solve a difficult problem by solving the dual problem
- The strong duality does not hold in general
- The strong duality usually holds for convex problems
- Conditions that guarantee strong duality in convex problems are called constraint qualifications.

Comments on the dual approch

- This dual approach is not guaranteed to succeed. However, it does for a certain class of functions.
- In these cases it often leads to a simpler optimization problem.
- Particularly in the case when the dimension of *x* is much larger than the number of constraints.
- The expression of *x* in terms of the Lagrange multipliers may give some insight into the optimal solution.

Example of dual approach

Let us solve

$$\min_{x \in \mathbb{R}} x^2$$

s.t. $x \ge 2$

- Lagrangian function: $L(x, \mu) = x^2 \mu(x 2)$
- Dual Lagrangian function:

$$g(\mu) = \inf_{x \in \mathbb{R}} L(x, \mu) = \inf_{x \in \mathbb{R}} \left(\left(x - \frac{\mu}{2} \right)^2 - \frac{\mu^2}{4} + 2\mu \right) = -\frac{\mu^2}{4} + 2\mu,$$

i.e. $g(\mu) = L(x^*, \mu) = -\left(\frac{\mu}{2} - 2\right)^2 + 4$ for $x^* = \frac{\mu}{2}$

•
$$\max_{\mu \ge 0} g(\mu) = \max_{\mu \ge 0} \left(-\left(\frac{\mu}{2} - 2\right)^2 + 4\right) = 4 \text{ for } \mu^* = 4.$$

• The solution is $x^* = 2$.

8 Conclusion

Conclusion

 Constrained optimization is very important in machine learning to deal with constrained problems

A huge number of applications including classification with Support Vector Machine

Many extensions including regularization, sparsity, etc.