Integer linear programming

- a few basic facts
- branch-and-bound

Definitions

integer linear program (ILP)

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \in \mathbf{Z}^n \end{array}$$

mixed integer linear program: only some of the variables are integer

0-1 (Boolean) linear program: variables take values 0 or 1

Example: facility location problem

- n potential facility locations, m clients
- c_i : cost of opening a facility at location i
- d_{ij} : cost of serving client i from location j

Boolean LP formulation

minimize
$$\sum_{j=1}^n c_j y_j + \sum_{i=1}^m \sum_{j=1}^n d_{ij} x_{ij}$$
 subject to
$$\sum_{j=1}^n x_{ij} = 1, \quad i=1,\ldots,m$$

$$x_{ij} \leq y_j, \quad i=1,\ldots,m, \quad j=1,\ldots,n$$

$$x_{ij}, y_j \in \{0,1\}$$

variables y_j , x_{ij} :

$$y_j=1$$
 location j is selected $x_{ij}=1$ location j serves client i $y_j=0$ otherwise $x_{ij}=0$ otherwise

Linear programming relaxation

relaxation: remove the constraints $x \in \mathbf{Z}^n$

- provides a lower bound on the optimal value of the integer LP
- if solution of relaxation is integer, then it solves the integer LP

equivalent ILP formulations can have different LP relaxations

Branch-and-bound algorithm

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & x \in \mathcal{P} \end{array}$$

where \mathcal{P} is a finite set

general idea

ullet recursively partition ${\mathcal P}$ in smaller sets ${\mathcal P}_i$ and solve subproblems

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & x \in \mathcal{P}_i \end{array}$$

• use LP relaxations to discard subproblems that don't lead to a solution

Example

minimize
$$-2x_1 - 3x_2$$
 subject to $(x_1, x_2) \in \mathcal{P}$

where

$$\mathcal{P} = \{ x \in \mathbf{Z}_{+}^{2} \mid \frac{2}{9}x_{1} + \frac{1}{4}x_{2} \le 1, \quad \frac{1}{7}x_{1} + \frac{1}{3}x_{2} \le 1 \}$$

optimal point: (2,2)

tree of subproblems and results of LP relaxations

	x^{\star}	p^{\star}
P_0	(2.17, 2.07)	-10.56
P_1	(2.00, 2.14)	-10.43
P_2	(3.00, 1.33)	-10.00
P_3	(2.00, 2.00)	-10.00
P_4	(0.00, 3.00)	-9.00
P_5	(3.38, 1.00)	-9.75
P_6		$+\infty$
P_7	(3.00, 1.00)	-9.00
P_8	(4.00, 0.44)	-9.33
P_9	(4.50, 0.00)	-9.00
P_{10}		$+\infty$
P_{11}	(4.00, 0.00)	-8.00
P_{12}	,	$+\infty$

conclusions from relaxed subproblems

- P_2 : minimize $c^T x$ subject to $x \in \mathcal{P}$, $x_1 \ge 3$ optimal value of subproblem is greater than or equal to -10.00
- P_3 : minimize $c^T x$ subject to $x \in \mathcal{P}$, $x_1 \leq 2$, $x_2 \leq 2$ solution of subproblem is x = (2, 2)
- P_6 : minimize $c^T x$, subject to $x \in \mathcal{P}$, $x_1 \leq 3$, $x_2 \geq 2$ subproblem is infeasible

after solving the relaxations for subproblems

$$P_0$$
, P_1 , P_2 , P_3 , P_4

we can conclude that (2,2) is the optimal solution of the integer LP