Programming Languages and Computation

Week 7: Proof by Induction & Operational Semantics

1 Proof by Induction

* 1. Consider the exponential function for natural numbers with the following recursive definition:

$$x^0 = 1$$
$$x^{n+1} = x \cdot x^n$$

Prove by induction that $(x \cdot y)^z = x^z \cdot y^z$ for any $x, y, z \in \mathbb{N}$. You may assume that multiplication satisfies the usual laws of associativity and commutativity.

Solution

We shall prove that $(x \cdot y)^z = x^z \cdot y^z$ for any $x, y, z \in \mathbb{N}$ by induction over $z \in \mathbb{N}$.

- In the base case, we have that $(x \cdot y)^0 = 1$ and $x^0 \cdot y^0 = 1 \cdot 1 = 1$. Therefore, $(x \cdot y)^0 = x^0 \cdot y^0$ as required.
- Let us suppose $(x \cdot y)^z = x^z \cdot y^z$ holds for some $z \in \mathbb{N}$. We must show that $(x \cdot y)^{z+1} = x^{z+1} \cdot y^{z+1}$ holds. By definition, $(x \cdot y)^{z+1} = (x \cdot y) \cdot (x \cdot y)^z$. It then follows from our induction hypothesis that $(x \cdot y)^{z+1} = (x \cdot y) \cdot x^z \cdot y^z$. Therefore, $(x \cdot y)^{z+1} = x^{z+1} \cdot y^{z+1}$ as required.
- ** 2. The *height* of an arithmetic expression is defined recursively as follows:

$$\begin{array}{ll} \operatorname{height}(n) &= 1 \\ \operatorname{height}(x) &= 1 \\ \operatorname{height}(e_1 + e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \\ \operatorname{height}(e_1 - e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \\ \operatorname{height}(e_1 * e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \end{array}$$

- (a) Prove by structural induction over arithmetic expressions that height(e) > 0 for all arithmetic expressions $e \in A$.
- (b) Prove by structural induction over arithmetic expressions that $2^{\text{height}(e)-1} \ge \#\text{FV}(e)$ for all arithmetic expressions $e \in \mathcal{A}$ where #FV(e) is the number of free variables appearing in that expression.

Hint: Try using the facts that, if $x \ge 2y$, 2z, then $x \ge y + z$, and that $\#A + \#B \ge \#(A \cup B)$.

- (a) We shall prove that height(e) > 0 for all arithmetic expressions $e \in A$ by induction as follows:
 - In the case of a variable or a numeric literal, the height is clearly greater than 0.
 - In the inductive cases, we have that induction hypotheses $\text{height}(e_1)$, $\text{height}(e_2) > 0$. It then follows that $1 + \max\{\text{height}(e_1), \text{height}(e_2)\} > 0$ as required.
- (b) We shall prove that $2^{\text{height}(e)-1} \ge \#FV(e)$ for all arithmetic expressions $e \in A$ by induction as follows:
 - In the case of a variable $x \in Var$, the height is 1 and #FV(x) = 1. Therefore, $2^{\text{height}(x)-1} = 2^0 = 1$ and thus $2^{\text{height}(x)-1} \ge 1$ as required.
 - Similarly, in the case of a numeric literal $n \in \mathbb{Z}$, the height is 1 and #FV(x) = 0. Therefore, $2^{\text{height}(n)-1} = 2^0 = 1$ and thus $2^{\text{height}(n)-1} \ge 0$ as required.
 - Now consider an expression of the form $e_1 + e_2$ where, inductively, we know that $2^{\text{height}(e_1)-1} \ge \#\text{FV}(e_1)$ and $2^{\text{height}(e_2)-1} \ge \#\text{FV}(e_2)$. By definition, $\text{height}(e_1 + e_2)$ is equal to $1 + \max\{\text{height}(e_1), \text{height}(e_2)\}$. Therefore, $2^{\text{height}(e_1+e_2)-1}$ is at least as large as both $2^{\text{height}(e_1)}$ and $2^{\text{height}(e_2)}$. It then follows from the induction hypotheses, that $2^{\text{height}(e_1+e_2)-1}$ is at least as large as both $2 \cdot \#\text{FV}(e_1)$ and $2 \cdot \#\text{FV}(e_2)$. Finally, as $\#\text{FV}(e_1) + \#\text{FV}(e_2) \ge \#\text{FV}(e_1+e_2)$, we have that $2^{\text{height}(e_1+e_2)-1} \ge \#\text{FV}(e_1+e_2)$ as required.
 - The cases for subtraction and multiplication are analogous to that of addition.
- ** 3. If x is a variable and e_1 and e_2 are arithmetic expressions, then we write $e_1[x \mapsto e_2]$ for the expression that results from *substituting* e_2 for x in the expression e_1 . Formally, this operation it is defined by recursion over the expression e_1 as follows:

$$n[x \mapsto e] = n$$

$$y[x \mapsto e] = \begin{cases} e & \text{if } x = y \\ y & \text{otherwise} \end{cases}$$

$$(e_1 + e_2)[x \mapsto e] = e_1[x \mapsto e] + e_2[x \mapsto e]$$

$$(e_1 - e_2)[x \mapsto e] = e_1[x \mapsto e] - e_2[x \mapsto e]$$

$$(e_1 * e_2)[x \mapsto e] = e_1[x \mapsto e] * e_2[x \mapsto e]$$

- (a) Compute the value of the expression $(y-x)[x \mapsto z]$ in the state $[x \mapsto 1, y \mapsto 2, z \mapsto 3]$.
- (b) Find a state σ such that $[y-x]_{\mathcal{A}}(\sigma)$ evaluates to the same answer you got in part (a). What is the relationship between this state and the state $[x \mapsto 1, y \mapsto 2, z \mapsto 3]$?
- (c) Prove by structural induction over expressions, for any state $\sigma \in \mathsf{State}$, any pair of arithmetic expressions $e_1, e_2 \in A$ and any variable $x \in \mathsf{Var}$, we have that:

$$\llbracket e_1[x \mapsto e_2] \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma[x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)]).$$

Remember that e_1 may be an *arbitrary* variable.

- (a) The expression $(y-x)[x \mapsto z]$ is by definition equal to y-z. Therefore, evaluating in the state $[x \mapsto 1, y \mapsto 2, z \mapsto 3]$ leads to the value -1.
- (b) Under the state $[x \mapsto 3, y \mapsto 2, z \mapsto 3]$, the expression y x evaluates to -1. This state is derived by replacing the value for x with the value for z, thus capturing the behaviour of the substitution $[x \mapsto z]$.
- (c) We shall prove by structural induction that:

$$[\![e_1[x \mapsto e_2]]\!]_A(\sigma) = [\![e_1]\!]_A(\sigma[x \mapsto [\![e_2]\!]_A(\sigma)]).$$

for any state $\sigma \in \mathsf{State}$, any pair of arithmetic expressions $e_1, e_2 \in A$ and any variable $x \in \mathsf{Var}$ by structural induction over e_1 .

- Suppose e_1 is a variable $y \in Var$. In order to correctly apply the substitution, we need to know whether the variable y is equal to the variable x. Therefore, there are two subcases to consider:
 - If y = x, then we have that $\llbracket y \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)$. On the other hand, $\llbracket y \rrbracket_{\mathcal{A}}(\sigma \llbracket x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma) \rrbracket)$ is by definition $\llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)$. Therefore, $\llbracket y \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket y \rrbracket_{\mathcal{A}}(\sigma \llbracket x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma) \rrbracket)$ as required.
 - Otherwise, let us suppose that $y \neq x$. In this case, $[y[x \mapsto e_2]]_{\mathcal{A}}(\sigma) = \sigma(y)$ as the expression y is unaffected by the substitution Likewise, $[y]_{\mathcal{A}}(\sigma[x \mapsto [e_2]]_{\mathcal{A}}(\sigma)]$ is equal to $\sigma(y)$ as both the states σ and $\sigma[x \mapsto [e_2]]_{\mathcal{A}}(\sigma)$ assign the same value to the variable y. Therefore, we have that $[y[x \mapsto e_2]]_{\mathcal{A}}(\sigma) = [y]_{\mathcal{A}}(\sigma[x \mapsto [e_2]]_{\mathcal{A}}(\sigma)]$ as required.
- Now let us suppose e_1 is a numeric literal $n \in \mathbb{Z}$. In this case, $[n[x \mapsto e_2]]_{\mathcal{A}}(\sigma) = n$ and, likewise, $[n]_{\mathcal{A}}(\sigma[x \mapsto [e_2]]) = n$. Therefore, $[n[x \mapsto e_2]]_{\mathcal{A}}(\sigma) = [n]_{\mathcal{A}}(\sigma[x \mapsto [e_2]])$ as required.
- Now let us suppose e_1 is of the form $e_3 + e_4$ for some arithmetic expressions e_3 , $e_4 \in \mathcal{A}$. Then $\llbracket (e_3 + e_4) \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_3 \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) + \llbracket e_4 \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma)$ by definition. Our induction hypotheses tell us that $\llbracket e_3 \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_3 \rrbracket_{\mathcal{A}}(\sigma \llbracket x \mapsto \llbracket e_2 \rrbracket \rrbracket)$ and likewise for e_4 . Therefore, we have that $\llbracket (e_3 + e_4) \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_3 \rrbracket_{\mathcal{A}}(\sigma \llbracket x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma) \rrbracket)$. It follows then that $\llbracket (e_3 + e_4) \llbracket x \mapsto e_2 \rrbracket \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_3 \rrbracket_{\mathcal{$
- The cases of subtraction and multiplication are analogous to that of addition.
- ** 4. Write down the induction principle for Boolean expressions. Try to generalise from the induction principle for arithmetic expressions as it appears in the reference notes (https://uob-coms20007.github.io/reference/semantics/induction.html).

Hint: the cases for Boolean expressions of the form $e_1 \le e_2$ and $e_1 = e_2$ are not inductive cases as the sub-expressions are not actually Boolean expressions.

Solution

The induction principle for Boolean expressions states that P(e) is true of all $e \in \mathcal{B}$ whenever:

- *P*(true) is true;
- P(false) is true;

- $P(e_1 \&\& e_2)$ is true for any $e_1, e_2 \in \mathcal{B}$ such that $P(e_1)$ and $P(e_2)$ is true;
- $P(e_1 \parallel e_2)$ is true for any $e_1, e_2 \in \mathcal{B}$ such that $P(e_1)$ and $P(e_2)$ is true;
- P(!e) is true for any $e \in \mathcal{B}$ such that P(e) is true;
- $P(e_1 = e_2)$ is true for any $e_1, e_2 \in A$;
- And, $P(e_1 \le e_2)$ is true for any $e_1, e_2 \in A$.
- ** 5. We extend the notion of *free variables* of an arithmetic expression to Boolean expressions. Formally, we define a function $FV : \mathcal{B} \to \mathcal{P}(Var)$ from Boolean expressions to sets of variables by recursion over the structure of expressions as follows:

$$FV(true) = \emptyset$$

$$FV(false) = \emptyset$$

$$FV(e_1 \le e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 = e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(!e) = FV(e)$$

$$FV(e_1 \&\& e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 \| e_2) = FV(e_1) \cup FV(e_2)$$

- (a) Find two Boolean expressions e_1 , $e_2 \in \mathcal{B}$ that are semantically equivalent, i.e. they evaluate to the same value on all states, but for which $\mathsf{FV}(e_1) \neq \mathsf{FV}(e_2)$.
- (b) Prove by induction that for *all* Boolean expressions $e \in \mathcal{B}$ and pair of states σ , $\sigma' \in \mathsf{State}$ that:

$$\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e \rrbracket_{\mathcal{B}}(\sigma')$$

where $\forall x \in FV(e)$. $\sigma(x) = \sigma'(x)$.

You may assume the fact that the analogous result holds for arithmetic expressions in your answer.

Solution

- (a) The Boolean expressions true and true $|| x \le y$ are semantically equivalent but have a different set of free variables.
- (b) We shall prove by induction that for all Boolean expressions $e \in \mathcal{B}$ and pair of states $\sigma, \sigma' \in \mathsf{State}$ that:

$$\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e \rrbracket_{\mathcal{B}}(\sigma')$$

where $\forall x \in FV(e)$. $\sigma(x) = \sigma'(x)$.

- In the case of the constant true, we have that $[true]_{\mathcal{B}}(\sigma) = \top$ regardless of σ . In particular, $[true]_{\mathcal{B}}(\sigma) = [true]_{\mathcal{B}}(\sigma')$ for any two states $\sigma, \sigma' \in \mathsf{State}$.
- The case of the constant false is analogous to that of true.

- Now consider a Boolean expression of the form $e_1 \leq e_2$ where $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$ are arithmetic expressions. Let $\sigma, \sigma' \in \mathsf{State}$ be states such that $\forall x \in \mathsf{FV}(e_1 \leq e_2). \sigma(x) = \sigma'(x)$. By definition, $\mathsf{FV}(e_1 \leq e_2) = \mathsf{FV}(e_1) \cup \mathsf{FV}(e_2)$. Therefore, we also know that $\forall x \in \mathsf{FV}(e_1). \sigma(x) = \sigma'(x)$ and likewise for e_2 . It then follows that $\llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma')$ and likewise for e_2 . Thus, $\llbracket e_1 \leq e_2 \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e_1 \leq e_2 \rrbracket_{\mathcal{B}}(\sigma')$ as required.
- The case of Boolean expressions of the form $e_1 = e_2$ is analogous to the preceding case.
- Now consider a Boolean expression of the form !e where, inductively, we know that $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e \rrbracket_{\mathcal{B}}(\sigma')$ whenever $\forall x \in \mathsf{FV}(e).\sigma(x) = \sigma'(x)$. Let $\sigma, \sigma' \in \mathsf{State}$ be states such that $\forall x \in \mathsf{FV}(!e).\sigma(x) = \sigma'(x)$. As $\mathsf{FV}(!e) = \mathsf{FV}(e)$, we have that $\forall x \in \mathsf{FV}(e).\sigma(x) = \sigma'(x)$. Therefore, the induction hypothesis applies. It then follows that:

$$[\![!e]\!]_{\mathcal{B}}(\sigma) = \neg [\![e]\!]_{\mathcal{B}}(\sigma)$$
$$= \neg [\![e]\!]_{\mathcal{B}}(\sigma')$$
$$= [\![!e]\!]_{\mathcal{B}}(\sigma')$$

as required.

• Now consider a Boolean expression of the form $e_1 \&\& e_2$ where, inductively, we know that $\llbracket e_1 \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e_1 \rrbracket_{\mathcal{B}}(\sigma')$ whenever $\forall x \in \mathsf{FV}(e_1). \, \sigma(x) = \sigma'(x)$ and likewise for e_2 . Let $\sigma, \sigma' \in \mathsf{State}$ be states such that $\forall x \in \mathsf{FV}(e_1 \&\& e_2). \, \sigma(x) = \sigma'(x)$. As $\mathsf{FV}(e_1 \&\& e_2) \supseteq \mathsf{FV}(e_1)$, $\mathsf{FV}(e_2)$, we have that $\forall x \in \mathsf{FV}(e_1). \, \sigma(x) = \sigma'(x)$ and likewise for e_2 . Therefore, the induction hypotheses apply. It then follows that:

$$[e_1 \&\& e_2]_{\mathcal{B}}(\sigma) = [e_1]_{\mathcal{B}}(\sigma) \wedge [e_2]_{\mathcal{B}}(\sigma)$$

$$= [e_1]_{\mathcal{B}}(\sigma') \wedge [e_2]_{\mathcal{B}}(\sigma')$$

$$= [e_1 \&\& e_2]_{\mathcal{B}}(\sigma')$$

as required.

- The case of Boolean expressions of the form $e_1 \parallel e_2$ is analogous to the preceding case.
- ** 6. The set of *contexts* is defined by the following grammar:

$$C \rightarrow \varepsilon |A+C|C+A|A-C|C-A|A*C|C*A$$

where A is an arbitrary arithmetic expression. We write C for the set of contexts.

Given a context $C \in C$ and an arithmetic expression $e \in A$, we write $C[e] \in A$ for the arithmetic expression that is derived by replacing the " ε " in C with the expression e. For example, $(x + \varepsilon)[y]$ is the expression x + y. Formally, this operation is defined by recursion over contexts:

$$\varepsilon[e_1] = e_1$$

$$(e_2 + C)[e_1] = e_2 + C[e_1]$$

$$(C + e_2)[e_1] = C[e_1] + e_2$$

$$(e_2 - C)[e_1] = e_2 - C[e_1]$$

$$(C - e_2)[e_1] = C[e_1] - e_2$$

$$(e_2 * C)[e_1] = e_2 * C[e_1]$$

$$(C * e_2)[e_1] = C[e_1] * e_2$$

- (a) Consider the arithmetic expressions x + x and x * 2 and the context $y + \varepsilon$. Show that $(y + \varepsilon)[x + x]$ and $(y + \varepsilon)[x * 2]$ are semantically equivalent.
- (b) Now suppose e_1 and e_2 are arbitrary arithmetic expressions that are semantically equivalent. Show that $(y + \varepsilon)[e_1]$ and $(y + \varepsilon)[e_2]$ are semantically equivalent as well.
- (c) Prove by structural induction that, for any context $C \in \mathcal{C}$, and any two semantically equivalent arithmetic expressions $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$, that $C[e_1]$ and $C[e_2]$ are semantically equivalent.

Solution

- (a) The expression $(y + \varepsilon)[x + x]$ is equal to y + x + x and the expression $(y + \varepsilon)[x * 2]$ is equal to the expression y + (x * 2). Both these expressions denote the function that maps a state σ to the integer $\sigma(y) + 2\sigma(x)$. Therefore, they are semantically equivalent.
- (b) Let e_1 and e_2 be semantically equivalent arithmetic expressions. The expression $(y + \varepsilon)[e_1]$ maps a state σ to the value $\sigma(y) + \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma)$ and, likewise the expression $(y + \varepsilon)[e_2]$ maps a state σ to the value $\sigma(y) + \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)$. As e_1 and e_2 are semantically equivalent, we know that $\llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)$ for all states. It then follows that $(y + \varepsilon)[e_1]$ and $(y + \varepsilon)[e_2]$ are semantically equivalent as required.
- (c) We shall prove that, for any context $C \in \mathcal{C}$, and any two semantically equivalent arithmetic expressions $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$, that $C[e_1]$ and $C[e_2]$ are semantically equivalent by induction on the context:
 - In the base case with a context ε , we must show that $\varepsilon[e_1]$ is semantically equivalent to $\varepsilon[e_2]$ given that e_1 and e_2 are semantically equivalent. As the expression $\varepsilon[e_1]$ is equal to e_1 and likewise for e_2 , this case is trivial.
 - Now consider a context of the form $e_3 + C$. We must show that $(e_3 + C)[e_1]$ is semantically equivalent to $(e_3 + C)[e_2]$ given that e_1 and e_2 are semantically equivalent. By definition, $(e_3 + C)[e_1] = e_3 + C[e_1]$ and likewise $(e_3 + C)[e_2] = e_3 + C[e_2]$. By induction, we know that $C[e_1]$ is semantically equivalent to $C[e_2]$. It then follows that $e_3 + C[e_1]$ is semantically equivalent to $e_3 + C[e_2]$ and, therefore, that $(e_3 + C)[e_1]$ is semantically equivalent to $(e_3 + C)[e_2]$ as required.
 - The other cases are analogous to the preceding case.

*** 7. *Strong induction* is a variation on proof by induction where the induction hypothesis applies to *all* smaller values rather than just the predecessor or the subtrees. Formally, it can be stated as following principle:

In order to prove $\forall n \in \mathbb{N}$. P(n), prove:

- 1. P(0);
- 2. And, P(n+1) under the assumption that P(m) holds for all $m \le n$.

Prove that strong induction follows from standard induction. That is, given a property P of the natural numbers that satisfies the requirements (1) and (2), prove that P(n) is true for all $n \in \mathbb{N}$.

Hint: Try proving the property $P'(n) = \forall m \le n$. P(n) by induction.

Solution

Suppose P were a property of the natural numbers that satisfies (1) and (2). Let P'(n) be the property $\forall m \le n$. P(m). We shall prove that P'(n) holds for all $n \in \mathbb{N}$ by induction:

- In the base case, we must show that $\forall m \leq 0$. P(m) holds. This is equivalent to the requirement that P(0) holds, which we know to be true by (1).
- Now suppose P'(n) holds, and we must show that P'(n+1) holds. Therefore, consider some $m \in \mathbb{N}$ such that $m \le n+1$. If $m \le n$, then P'(n) already implies that P(m) holds as required. Otherwise, m = n+1. In this case, we may apply the fact that P(n+1) holds when P(m) holds for all $m \le n+1$ as given by (2). In other words, P'(n) implies P(n+1). Therefore, P(n+1) as required.

We have shown that $\forall n \in \mathbb{N}$. P'(n). To conclude that P(n) holds for all $n \in \mathbb{N}$ consider some such $n \in \mathbb{N}$. We have that P'(n) holds, i.e. $\forall m \le n$. P(m). In particular, P(n) holds as required. Thus, completing our proof.

2 Operational Semantics

This section is about the big-step operational semantics of While programs as given by the relation $\Downarrow \subseteq S \times S$ tate $\times S$ tate, which is defined inductively by these inference rules:

Figure 1: Inference rules for operational semantics.

* 8. Write down a derivation for the judgement $x \leftarrow 1$; $\{x \leftarrow 2; x \leftarrow 3\}$, $[] \Downarrow [x \mapsto 3]$ using the inference rules in Figure 1.

Solution

$$\begin{array}{c}
x \leftarrow 2, [x \mapsto 1] \downarrow [x \mapsto 2] & x \leftarrow 3, [x \mapsto 2] \downarrow [x \mapsto 3] \\
x \leftarrow 1, [] \downarrow [x \mapsto 1] & x \leftarrow 2; x \leftarrow 3, [x \mapsto 1] \downarrow [x \mapsto 3] \\
x \leftarrow 1; \{x \leftarrow 2; x \leftarrow 3\}, [] \downarrow [x \mapsto 3]
\end{array}$$

* 9. Write down a derivation for the judgement $\{x \leftarrow 1; x \leftarrow 2\}; x \leftarrow 3, [] \Downarrow [x \mapsto 3]$ using the inference rules in Figure 1.

Solution

* 10. Write down a derivation for the judgement $\{x \leftarrow 1; x \leftarrow 2\}; x \leftarrow 3, [] \Downarrow [x \mapsto 3]$ using the inference rules in Figure 1.

Solution

- * 11. Compute the final state for the program if $x \le y$ then $x \leftarrow y$ else $y \leftarrow x$ when executed in each of the following states:
 - []
 - $[x \mapsto 2, y \mapsto 3]$
 - $[x \mapsto 4, y \mapsto 2]$

Solution

- []
- $[x \mapsto 3, y \mapsto 3]$
- $[x \mapsto 4, y \mapsto 4]$
- * 12. Find a state σ such that $x \leftarrow 1$; $y \leftarrow x * 2$, [] $\psi \sigma$. You must also write down the derivation of the statement.

Solution

The state $[x \mapsto 1, y \mapsto 2]$ satisfies the requirement with the associated derivation:

$$x \leftarrow 1, [] \Downarrow [x \mapsto 1] \qquad y \leftarrow x * 2, [x \mapsto 1] \Downarrow [x \mapsto 1, y \mapsto 2] \\
x \leftarrow 1; y \leftarrow x * 2, [] \Downarrow [x \mapsto 1, y \mapsto 2]$$

* 13. Find a state $\sigma \in \text{State}$ for which there exists a derivation of the judgement while $!(x \le -1)$ do $x \leftarrow x + d$, $[d \mapsto -1] \Downarrow \sigma$. You should provide the derivation.

Solution

The state $[d \mapsto -1, x \mapsto -1]$ will satisfy the requirements. The associated derivation is:

$$x \leftarrow x + d, [d \mapsto -1] \Downarrow [d \mapsto -1, x \mapsto -1]$$
 while $!(x \le -1)$ do $x \leftarrow x + d, [d \mapsto -1, x \mapsto -1] \Downarrow [d \mapsto -1, x \mapsto -1]$ while $!(x \le -1)$ do $x \leftarrow x + d, [d \mapsto -1, x \mapsto -1]$

** 14. Find a state σ such that $x \leftarrow 2$; $y \leftarrow x * y$, $\sigma \Downarrow [x \mapsto 2, y \mapsto 4]$. You must write down the derivation of the statement.

Solution

The state $[y \mapsto 2]$ will satisfy the requirements. The associated derivation is:

$$x \leftarrow 2, [y \mapsto 2] \Downarrow [x \mapsto 2, y \mapsto 2] \qquad y \leftarrow x * y, [x \mapsto 2, y \mapsto 2] \Downarrow [x \mapsto 2, y \mapsto 4] \\
x \leftarrow 1; y \leftarrow x * y, [y \mapsto 2] \Downarrow [x \mapsto 1, y \mapsto 4]$$

* 15. Suppose $e \in \mathcal{B}$ is a Boolean expression that is semantically equivalent to false. Prove that while e do S, $\sigma \downarrow \sigma$ for any state $\sigma \in \mathsf{State}$.

Solution

As $e \in \mathcal{B}$ is semantically equivalent to false. We have that $\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \bot$ for any state $\sigma \in \mathsf{State}$. Therefore, we have that while e do S, $\sigma \Downarrow \sigma$ for any state $\sigma \in \mathsf{State}$ as required.

** 16. Suppose $S_1, S_2 \in \mathcal{S}$ are two statements such that $S_1, \sigma \Downarrow \sigma'$ and $S_2, \sigma \Downarrow \sigma'$ for some states $\sigma, \sigma' \in \mathsf{State}$. Prove that if e then S_1 else $S_2, \sigma \Downarrow \sigma'$ for any Boolean expression $e \in \mathcal{B}$.

Solution

Let $e \in \mathcal{B}$ be some Boolean expression and σ , $\sigma' \in \mathsf{State}$ be two states. Let us consider two cases:

• Suppose $[e]_{\mathcal{B}}(\sigma)$ is true. Then we have the following derivation of the form:

$$\frac{S_1, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S_1 \text{ else } S_2, \sigma \Downarrow \sigma'}$$

• Suppose, otherwise, that $\llbracket e \rrbracket_{\mathcal{B}}(\sigma)$ is false. Then equally we have the following derivation of the form:

$$\frac{S_2, \, \sigma \Downarrow \sigma'}{\text{if } e \text{ then } S_1 \text{ else } S_2, \, \sigma \Downarrow \sigma'}$$

Warning: the following question has been changed due to typos (and very large derivations). It may not align your previous work.

** 17. Suppose we introduce a new language construct do S while e where $S \in \mathcal{S}$ is a statement and $e \in \mathcal{B}$ is a Boolean expression. The operational semantics for this construct is given by the following inference rules:

$$\frac{S, \, \sigma_1 \Downarrow \sigma_2}{\text{do } S \text{ while } e, \, \sigma_1 \Downarrow \sigma_2} \llbracket e \rrbracket_{\mathcal{B}}(\sigma_2) = \bot \quad \frac{S, \, \sigma_1 \Downarrow \sigma_2 \quad \text{do } S \text{ while } e, \, \sigma_2 \Downarrow \sigma_3}{\text{do } S \text{ while } e, \, \sigma_1 \Downarrow \sigma_3} \llbracket e \rrbracket_{\mathcal{B}}(\sigma_2) = \top$$

- (a) Find a state $\sigma \in$ State such that do $x \leftarrow x + 1$ while $x \le 1$, [] $\psi \sigma$ and give the associated derivation.
- (b) For a given statement $S \in \mathcal{S}$ and a Boolean expression $e \in \mathcal{B}$ find a While program that is equivalent to the program do S while e but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$S'$$
, $\sigma \Downarrow \sigma' \Leftrightarrow do S$ while e , $\sigma \Downarrow \sigma'$

You do not need to prove that your answer is correct but should provide a derivation of judgement S', $[] \Downarrow \sigma$ where S is given to be the statement $x \leftarrow x + 1$, e is given to be the expression $x \le 1$ and σ is the state from part (a).

Solution

(a) The state is $[x \mapsto 2]$ and the derivation is:

(b) The statement *S*; while *e* do *S* is equivalent.

*** 18. Suppose we introduce a new language construct for x do S where $S \in \mathcal{S}$ is a statement and $x \in Var$ is a variable The operational semantics for this construct is given by the following inference rules:

$$\frac{S,\,\sigma_1 \Downarrow \sigma_2 \quad \text{for } x \text{ do } S,\,\sigma_2[x \mapsto \sigma_2(x) - 1] \Downarrow \sigma_3}{\text{for } x \text{ do } S,\,\sigma_1 \Downarrow \sigma_3} \sigma_1(x) > 0$$

- (a) Find a state $\sigma \in$ State such that for x do $y \leftarrow y + x$; $x \leftarrow x 2$, $[x \mapsto 3] \Downarrow \sigma$ and give the associated derivation.
- (b) For a given statement $S \in \mathcal{S}$ and a variable $x \in Var$ find a While program that is equivalent to the program for x do S but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$S'$$
, $\sigma \parallel \sigma' \Leftrightarrow \text{for } x \text{ do } S$

You do not need to prove that your answer is correct but should provide a derivation of

judgement S', $[x \mapsto 3] \Downarrow \sigma$ where S is given to be the statement $y \leftarrow y + x$; $x \leftarrow x - 2$, x is given to be the variable x and σ is the state from part (a).

Solution

In the answers to this question we have used † and †† to decompose large derivations. When appearing as premise, they are to be understood as standing in for the derivation with the corresponding symbol to the left.

(a)

$$\frac{\dagger \text{ for } x \text{ do } y \leftarrow y + x; \ x \leftarrow x - 2, [x \mapsto 0, y \mapsto 3] \Downarrow [x \mapsto 0, y \mapsto 3]}{\text{ for } x \text{ do } y \leftarrow y + x; \ x \leftarrow x - 2, [x \mapsto 3] \Downarrow [x \mapsto 0, y \mapsto 3]}$$

$$\frac{}{} y \leftarrow y + x, [x \mapsto 3] \Downarrow [x \mapsto 3, y \mapsto 3] \qquad x \leftarrow x - 2, [x \mapsto 3, y \mapsto 3] \Downarrow [x \mapsto 1, y \mapsto 3]}{y \leftarrow y + x; \ x \leftarrow x - 2, [x \mapsto 3] \Downarrow [x \mapsto 1, y \mapsto 3]}$$

(b) The statement while $!(x \le 0)$ do S; $x \leftarrow x - 1$ is equivalent.

$$\frac{\dagger \quad \text{while } ! (x \leq 0) \text{ do } y \leftarrow y + x; \ x \leftarrow x - 2; \ x \leftarrow x - 1, \left[x \mapsto 0, y \mapsto 3 \right] \Downarrow \left[x \mapsto 0, y \mapsto 3 \right] }{ \text{while } ! (x \leq 0) \text{ do } y \leftarrow y + x; \ x \leftarrow x - 2; \ x \leftarrow x - 1, \left[x \mapsto 3 \right] \Downarrow \left[x \mapsto 0, y \mapsto 3 \right] }$$

$$\frac{}{ \uparrow \quad y \leftarrow y + x, \left[x \mapsto 3 \right] \Downarrow \left[x \mapsto 3, y \mapsto 3 \right] \quad \uparrow \uparrow \quad }{ y \leftarrow y + x; \ x \leftarrow x - 2; \ x \leftarrow x - 1, \left[x \mapsto 3 \right] \Downarrow \left[x \mapsto 0, y \mapsto 3 \right] }$$

$$\uparrow \quad \frac{}{ x \leftarrow x - 2, \left[x \mapsto 3, y \mapsto 3 \right] \Downarrow \left[x \mapsto 1, y \mapsto 3 \right] \quad x \leftarrow x - 1, \left[x \mapsto 1, y \mapsto 3 \right] \Downarrow \left[x \mapsto 0, y \mapsto 3 \right] }{ x \leftarrow x - 2; \ x \leftarrow x - 1, \left[x \mapsto 3, y \mapsto 3 \right] \Downarrow \left[x \mapsto 0, y \mapsto 3 \right] }$$