

SUPERVISED LEARNING IN R: REGRESSION

Categorical inputs

Nina Zumel and John Mount Win-Vector, LLC

Example: Effect of Diet on Weight Loss

> WtLoss24 ~ Diet + Age + BMI

Diet	Age	ВМІ	WtLoss24
Med	59	30.67	-6.7
Low-Carb	48	29.59	8.4
Low-Fat	52	32.9	6.3
Med	53	28.92	8.3
Low-Fat	47	30.20	6.3

model.matrix()

```
> model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)
```

- All numerical values
- Converts categorical variable with N levels into N 1 indicator variables

Indicator Variables to Represent Categories

Original Data

Diet	Age	
Med	59	•••
Low-Carb	48	
Low-Fat	52	
Med	53	
Low-Fat	47	

Model Matrix

(Intercept)	DietLow- Fat	DietMed	
1	0	1	
1	0	0	
1	1	0	
1	0	1	
1	1	0	

reference level: "Low-Carb"

Interpreting the Indicator Variables

Linear Model:

```
WtLoss24 = \beta_0 + \beta_{DietLowFat} x_{DietLowFat} + \beta_{DietMed} x_{DietMed} + \beta_{Age} x_{Age} + \beta_{BMI} x_{BMI}
```

```
> lm(WtLoss24 ~ Diet + Age + BMI, data = diet))

## Coefficients:
## (Intercept) DietLow-Fat DietMed
## -1.37149 -2.32130 -0.97883
## Age BMI
## 0.12648 0.01262
```


Issues with one-hot-encoding

- Too many levels can be a problem
 - Example: ZIP code (about 40,000 codes)
- Don't hash with geometric methods!

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Interactions

Nina Zumel and John Mount Win-Vector, LLC

Additive relationships

Example of an additive relationship:

```
> plant_height ~ bacteria + sun
```

- Change in height is the sum of the effects of bacteria and sunlight
 - Change in sunlight causes same change in height, independent of bacteria
 - Change in bacteria causes same change in height, independent of sunlight

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
> plant_height ~ bacteria + sun + bacteria:sun
```

- Change in height is more (or less) than the sum of the effects due to sun/bacteria
- At higher levels of sunlight, 1 unit change in bacteria causes more change in height

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

```
> plant_height ~ bacteria + sun + bacteria:sun
```

- sun: categorical {"sun", "shade"}
- In sun, 1 unit change in bacteria causes m units change in height
- In shade, 1 unit change in bacteria causes *n* units change in height

Like two separate models: one for sun, one for shade.

Example of no Interaction: Soybean Yield

> yield ~ Stress + S02 + 03

Example of an Interaction: Alcohol Metabolism

> Metabol ~ Gastric + Sex

Expressing Interactions in Formulae

• Interaction - Colon (:)

```
> y ~ a:b
```

Main effects and interaction - Asterisk (*)

```
> y ~ a*b
# Both mean the same
> y ~ a + b + a:b
```

Expressing the product of two variables - I

```
> y ~ I(a*b)
```


Finding the Correct Interaction Pattern

Formula	RMSE (cross validation)
Metabol ~ Gastric + Sex	1.46
Metabol ~ Gastric * Sex	1.48
Metabol ~ Gastric + Gastric:Sex	1.39

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming the response before modeling

Nina Zumel and John Mount Win-Vector, LLC

The Log Transform for Monetary Data

- Monetary values: lognormally distributed
- Long tail, wide dynamic range (60-700K)

Lognormal Distributions

- mean > median (~ 50K vs 39K)
- Predicting the mean will overpredict typical values

Back to the Normal Distribution

For a Normal Distribution:

- mean = median (here: 4.53 vs4.59)
- more reasonable dynamic range
 (1.8 5.8)

The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) \sim x, data = train)
```


The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) \sim x, data = train)
```

2. Make the predictions in log space

```
> logpred <- predict(model, data = test)</pre>
```


The Procedure

1. Log the outcome and fit a model

```
> model <- lm(log(y) ~ x, data = train)
```

2. Make the predictions in log space

```
> logpred <- predict(model, data = test)</pre>
```

3. Transform the predictions to outcome space

```
> pred <- exp(logpred)
```


Predicting Log-transformed Outcomes: Multiplicative Error

$$log(a) + log(b) = log(ab)$$

$$log(a) - log(b) = log(a/b)$$

- Multiplicative error: pred/y
- Relative error: $(pred y)/y = \frac{pred}{y} 1$

Reducing multiplicative error reduces relative error.

Root Mean Squared Relative Error

RMS-relative error =
$$\sqrt{(\frac{pred-y}{y})^2}$$

- Predicting log-outcome reduces RMS-relative error
- But the model will often have larger RMSE

Example: Model Income Directly

```
> modIncome <- lm(Income ~ AFQT + Educ, data = train)</pre>
```

- AFQT: Score on proficiency test 25 years before survey
- Educ: Years of education to time of survey
- Income: Income at time of survey

Model Performance

RMSE	RMS-relative error
36,819.39	3.295189

Model log(Income)

```
> modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)</pre>
```


Model Performance

RMSE	RMS-relative error
38,906.61	2.276865

Compare Errors

log(Income) model: smaller RMS-relative error, larger RMSE

Model	RMSE	RMS-relative error
On Income	36,819.39	3.295189
On log(Income)	38,906.61	2.276865

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming inputs before modeling

Nina Zumel and John Mount Win-Vector LLC

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence $\sim mass.brain/mass.body^{2/3}$

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence $\sim mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence $\sim mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative
 - y approximately linear in f(x) rather than in x

Example: Predicting Anxiety

Transforming the hassles variable

Different possible fits

Which is best?

- anx ~ I(hassles^2)
- anx ~ I(hassles^3)
- anx ~ I(hassles^2) + I(hassles^3)
- anx ~ exp(hassles)
- ...

I(): treat an expression literally (not as an interaction)

Compare different models

Linear, Quadratic, and Cubic models

```
> mod_lin <- lm(anx ~ hassles, hassleframe)
> summary(mod_lin)$r.squared
[1] 0.5334847

> mod_quad <- lm(anx ~ I(hassles^2), hassleframe)
> summary(mod_quad)$r.squared
[1] 0.6241029

> mod_tritic <- lm(anx ~ I(hassles^3), hassleframe)
> summary(mod_tritic)$r.squared
[1] 0.6474421
```


Compare different models

Use cross-validation to evaluate the models

Model	RMSE
Linear (hassles)	7.69
Quadratic ($hassles^2$)	6.89
Cubic ($hassles^3$)	6.70

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!