Curvature and Vector Fields

Lecture Notes of Loring W. Tu [1]

Zhenhao Huang

Last updated: September 27, 2025

Contents

Lecture	e 1–Riemannian manifold	1
1.1	Inner Products on a Vector Space	1
1.2	Representations of Inner Products by Symmetric Matrices	2
1.3	Riemannian Metrics	3
1.4	Existence of a Riemannian Metric	3
1.5	Problems	3

***** Lecture 1 (1/9)

1.1 Inner Products on a Vector Space

The **Euclidean inner product** on \mathbb{R}^n is defined by

$$\langle u, v \rangle = \sum_{1}^{n} u^{i} v^{i}, \tag{1}$$

and the length of a vector is

$$||u|| = \sqrt{\langle u, u \rangle},\tag{2}$$

the **angle** θ between two vectors is

$$\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|},\tag{3}$$

the **arc length** of a curve $c(t) \in \mathbb{R}^n$, $a \le t \le b$ is

$$s = \int_a^b \|c'(t)\| dt \tag{4}$$

Definition 1.1. An inner product in a real vector space V is a postive-definite, bilinear and symmetric map: $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ so that for $u, v, w \in V$ and $a, b \in \mathbb{R}$, satisfies

- (i) **Postive-definiteness** $\langle v, v \rangle = 0$ iff. v = 0
- (ii) **Symmetry** $\langle u, v \rangle = \langle v, u \rangle$
- (iii) **Bilinear** $\langle au + bv, w \rangle = a\langle u, w \rangle + b\langle v, w \rangle$

Proposition 1.2. If *W* is a subspace of *V*, then the restriction

$$\langle , \rangle_W := \langle , \rangle|_{W \times W} : W \times W \to \mathbb{R},$$
 (5)

of an inner product \langle , \rangle on V is also an inner product.

Proof. The subspace construction preserves the properites in Definition 1.1. □

Proposition 1.3. The **nonnegative linear combinition** of inner products \langle , \rangle_i on $V: \langle , \rangle := \sum_{i=1}^r a_i \langle , \rangle_i, a_i \geq 0$ is again an inner product on V.

Proof. The **nonnegativity** of a_i preserves condition (i) in Definition 1.1, the linearity makes condition (ii), (iii) hold.

1.2 Representations of Inner Products by Symmetric Matrices

Let e_1, \ldots, e_n be the basis of vector space V, each vector $x \in V$ can be represented as a column vector

$$x = \sum_{i=1}^{n} x^{i} e_{i} \leftrightarrow \mathbf{x} = \begin{bmatrix} x^{1} \\ \vdots \\ x^{n} \end{bmatrix}. \tag{6}$$

Let *A* be an $n \times n$ matrix whose entries $a_{ij} = \langle e_i, e_j \rangle$, the matrix form of an inner product on *V* is

$$\langle x, y \rangle = \sum_{ij} x^i y^j \langle e_i, e_j \rangle = \mathbf{x}^\top A \mathbf{y}.$$
 (7)

We find that, once a basis of V is chosen, the inner product on V determines a postive-definite symmetric matrix. Conversely, an $n \times n$ postive-definite symmetric matrix with a basis of V determines an inner product on V

It follows that there is an one-to-one correspondence

$$\left\{\begin{array}{c}
\text{inner product on a } n\text{-dimensional} \\
\text{vector space}
\right\} \leftrightarrow \left\{\begin{array}{c}
\text{An } n \times n \text{ postive-definite} \\
\text{symmetric matrix}
\end{array}\right\}. (8)$$

Let a basis of dual space $V^{\vee} := \operatorname{Hom}(V, \mathbb{R})$ be $\alpha^1, \dots, \alpha^n$ w.r.t. the basis e_1, \dots, e_n of V, an inner product \langle , \rangle of $x, y \in V$ is

$$\langle x, y \rangle = \sum_{i,j} a_{ij} x^i y^j = \sum_{i,j} a_{ij} \alpha^i(x) \alpha^j(y)$$
$$= \sum_{i,j} a_{ij} \alpha^i \otimes \alpha^j(x, y)$$

In terms of tensor product, an inner product on V may be written as

$$\langle , \rangle = \sum_{ij} a_{ij} \alpha^i \otimes \alpha^j \tag{9}$$

- 1.3 Riemannian Metrics
- 1.4 Existence of a Riemannian Metric
- 1.5 Problems

References

[1] L.W. Tu. An Introduction to Manifolds. Universitext. Springer New York.