CONTINUOUS FIELDS OF C*-ALGEBRAS OVER FINITE DIMENSIONAL SPACES

MARIUS DADARLAT

ABSTRACT. Let X be a finite dimensional compact metrizable space. We study a technique which employs semiprojectivity as a tool to produce approximations of C(X)-algebras by C(X)-subalgebras with controlled complexity. The following applications are given. All unital separable continuous fields of C*-algebras over X with fibers isomorphic to a fixed Cuntz algebra \mathcal{O}_n , $n \in \{2,3,...,\infty\}$ are locally trivial. They are trivial if n=2 or $n=\infty$. For finite $n\geq 3$, such a field is trivial if and only if $(n-1)[1_A]=0$ in $K_0(A)$, where A is the C*-algebra of continuous sections of the field. In a more general context, we show that a separable unital continuous field over X with fibers isomorphic to a KK-semiprojective Kirchberg C*-algebra is trivial if and only if it satisfies a global K-theoretical Fell-type condition. We also show that if each fiber of a separable continuous field of C*-algebras over X is nuclear and KK-equivalent to a commutative C*-algebra, then the C*-algebra of continuous sections of the field is KK-equivalent to a commutative C*-algebra.

1. Introduction

Gelfand's characterization of commutative C*-algebras has suggested the problem of representing non-commutative C*-algebras as sections of bundles. This led to the notion of (upper semi-) continuous fields of C*-algebras as illustrated by the work of Fell [18] and Dauns and Hofmann [15]. The continuous fields of C*-algebras (which we identify with the continuous C(X)-algebras) form a vast class of C*-algebras which includes the separable C*-algebras with Hausdorff primitive spectrum along with many other fundamental examples [16]. The asymptotic morphisms of Connes and Higson [8] can also be described in terms of continuous fields over [0, 1] which are trivial over [0, 1).

The goal of this paper is to study a technique which uses semiprojectivity as a tool to produce approximations of C(X)-algebras by C(X)-subalgebras with controlled complexity for a finite dimensional metrizable space X and then to explore some of its applications. Our study is motivated by the problem of extending the classification theory of Kirchberg and Phillips [22], [32], [33] to continuous C(X)-algebras whose fibers are Kirchberg algebras and by the problem of describing the structure of general separable nuclear continuous C(X)-algebras, at least at K-theoretical level. The two problems are related, and as evidence for that, we show that any separable nuclear continuous C(X)-algebra is $KK_{C(X)}$ -equivalent to a C(X)-algebra whose fibers are Kirchberg algebras (Theorem 7.4). By a Kirchberg algebra we mean a purely infinite simple nuclear separable C*-algebra [33]. Notable examples include the simple Cuntz-Krieger algebras [10]. The following theorem illustrates our results and offers further motivation for our investigation.

Date: October 28, 2005.

Theorem 1.1. Any separable unital C(X)-algebra A over a finite dimensional metrizable compact space X with fibers isomorphic to a fixed Cuntz algebra \mathcal{O}_n with $n \in \{2, 3, ..., \infty\}$ is locally trivial. If n = 2 or $n = \infty$, then $A \cong C(X) \otimes \mathcal{O}_n$. If $3 \leq n < \infty$, then A is isomorphic to $C(X) \otimes \mathcal{O}_n$ if and only if $(n-1)[1_A] = 0$ in $K_0(A)$.

The proof of Theorem 1.1 also yields a new proof for the triviality of C(X)-algebras with fibers isomorphic to the Cuntz algebra \mathcal{O}_2 , proved by Kirchberg by different methods. We also compute the homotopy groups

$$\pi_m(\operatorname{Aut}(\mathcal{O}_n)) = \begin{cases}
\mathbb{Z}/(n-1)\mathbb{Z}, & \text{if } m \text{ is odd,} \\
0, & \text{if } m \text{ is even,}
\end{cases}$$

(with the convention that $\mathbb{Z}/\infty \mathbb{Z} = 0$, see Theorem 6.10) and conclude that there are locally trivial unital $C(S^{2k})$ -algebras A with fiber \mathcal{O}_n such that $A \ncong C(S^{2k}) \otimes \mathcal{O}_n$ for $n \neq 2, \infty$ and $k \geq 1$.

To put our results in perspective, let us recall that none of the general basic properties of a continuous field implies any kind of local triviality. This is emphasized in [13, Ex. 8.4] by an example of a continuous field A of Kirchberg algebras over [0,1] whose fibers are abstractly mutually isomorphic, yet A is not locally trivial at any point. Examples with similar properties in the realm of nonexact C*-algebras were exhibited by S. Wassermann. Our next result explains and generalizes Theorem 1.1 by showing that the *only obstruction* to local or global triviality for a continuous field of Kirchberg algebras (in a rather large class) is of purely K-theoretical nature.

Theorem 1.2. Let X be a finite dimensional compact metrizable space. Let A be a separable unital C(X)-algebra the fibers of which are Kirchberg algebras and let D be a unital KK-semiprojective Kirchberg algebra. Then A is isomorphic to $C(X) \otimes D$ if and only if there is $\sigma \in KK(D,A)$ such that $K_0(\sigma)[1_D] = [1_A]$ and $\sigma_x \in KK(D,A(x))^{-1}$ for all $x \in X$. For each such σ there is a C(X)-linear isomorphism $\phi : C(X) \otimes D \to A$ such that $KK(\Phi|_D) = \sigma$.

The existence of σ may be viewed as a KK-theoretical analog of the classical Fell's condition which implies local triviality for fields of compact operators. A key feature of this condition is that it is a priori much weaker than the condition that A is $KK_{C(X)}$ -equivalent to $C(X) \otimes D$. In particular it is almost trivial to verify it for the C(X)-algebras with fiber \mathcal{O}_n and hence to derive Theorem 1.1. A separable C*-algebra D is KK-semiprojective if and only if the functor KK(D, -) is continuous. We show that any KK-semiprojective Kirchberg algebra must be weakly semiprojective and KK-stable (Theorem 3.9), and these are exactly the technical ingredients needed in the proof of Theorem 1.2. One can further simplify the matters if one assumes that D is KK-equivalent to a commutative algebra, or equivalently, if D satisfies the universal coefficient theorem in KK-theory (abbreviated UCT) [34]. In this case D is KK-semiprojective if and only if $K_*(D)$ is finitely generated. As a corollary we obtain a simple K-theory criterion for triviality of fields.

Theorem 1.3. Let X be a finite dimensional compact metrizable space and let A be a separable unital C(X)-algebra the fibers of which are Kirchberg algebras satisfying the UCT. Let D be a unital Kirchberg algebra satisfying the UCT and such that $K_*(D)$ is finitely generated. Then A is isomorphic to $C(X) \otimes D$ if and only if there is a graded group

homomorphism $\theta: K_*(D) \to K_*(A)$ such that $\theta[1_D] = [1_A]$ and $\theta_x: K_*(D) \to K_*(A(x))$ is bijective for all $x \in X$.

The proofs of the results stated above rely on Theorem 4.5 which plays a central role in our approach, as it produces approximations of C(X)-algebras by pullbacks of n locally trivial C(X)-algebras, where $n \leq \dim(X)$. Its proof generalizes and refines a technique that was pioneered for fields over zero dimensional spaces in joint work with Pasnicu [14] and for fields over an interval in joint work with G. Elliott [13]. As another application of our approximation methods we exhibit a new permanence property for the class of nuclear C*-algebras which satisfy the UCT.

Theorem 1.4. If A is a separable nuclear continuous C(X)-algebra over a finite dimensional metrizable space such that all its fibers satisfy the UCT, then A satisfies the UCT.

A striking isomorphism result for non-simple separable nuclear purely infinite stable C*-algebras, based on a suitable generalization of Kasparov's $KK_{C(X)}$ -theory, was announced by Kirchberg in [23]. In view of Kirchberg's result, the problem of finding a universal coefficient theorem for the $KK_{C(X)}$ -groups becomes very important and its solution should have a huge impact in the classification of continuous fields. While the results of the present paper follow from a different approach, they could be regarded as evidence towards the existence of a UCT for $KK_{C(X)}$ -groups.

In this paper we rely heavily on the classification theorem (and related results) of Kirchberg and Phillips [33], and on the work on non-simple nuclear purely infinite C*-algebras of Blanchard and Kirchberg [7], [6] and Kirchberg and Rørdam [25], [26]. The embedding theorem of Blanchard [5] is used in the proof of Theorem 1.4.

The author is grateful to Chris Phillips for useful discussions on the homotopy theory of the automorphism groups of stable Kirchberg algebras.

2.
$$C(X)$$
-ALGEBRAS

Let X be a compact Hausdorff space. A C(X)-algebra is a C^* -algebra A endowed with a *-monomorphism θ from C(X) to the center of the multiplier algebra of A such that C(X)A is dense in A; see [21], [4]. We write fa rather than $\theta(f)a$ for $f \in C(X)$ and $a \in A$. With the exception of Section 7, we will only consider unital C(X)-algebras with $\theta(1) = 1$. If $Y \subseteq X$ is a closed subset, we let C(X,Y) denote the ideal of C(X) consisting of functions vanishing on Y. Then C(X,Y)A is a closed two-sided ideal of A (by Cohen factorization). The quotient of A by this ideal is a C(Y)-algebra denoted by A(Y) and is called the restriction of A = A(X) to Y. The quotient map is denoted by $\pi_Y : A(X) \to A(Y)$. If Z is a closed subset of Y we have a natural restriction map $\pi_Z^Y : A(Y) \to A(Z)$ and $\pi_Z = \pi_Z^Y \circ \pi_Y$. If Y reduces to a point x, we write A(x) for $A(\{x\})$ and π_x for $\pi_{\{x\}}$. The C*-algebra A(x) is called the fiber of A at x. The image $\pi_X(a) \in A(x)$ of $a \in A$ is denoted by a(x). A map $\eta : A \to B$ of C(X)-algebras induces a map $\eta_Y : A(Y) \to B(Y)$. If $Y = \emptyset$ then A(Y) is interpreted as the zero algebra.

Let A be a C*-algebra, $a \in A$ and $\mathcal{F}, \mathcal{G} \subseteq A$. If $\varepsilon > 0$, we write $a \in_{\varepsilon} \mathcal{F}$ if there is $b \in \mathcal{F}$ such that $||a - b|| < \varepsilon$. Similarly, we write $\mathcal{F} \subset_{\varepsilon} \mathcal{G}$ if $a \in_{\varepsilon} \mathcal{G}$ for every $a \in \mathcal{F}$. The following lemma collects some basic properties of C(X)-algebras.

Lemma 2.1. Let X be a compact space, let A be a C(X)-algebra and let $B \subset A$ be a C(X)-subalgebra. Let $a \in A$ and let Y be a closed subset of X.

- (i) The map $x \mapsto ||a(x)||$ is upper semi-continuous.
- (ii) $\|\pi_Y(a)\| = \max\{\|\pi_x(a)\| : x \in Y\}$
- (iii) If $a(x) \in \pi_x(B)$ for all $x \in X$, then $a \in B$.
- (iv) If $\delta > 0$ and $a(x) \in_{\delta} \pi_x(B)$ for all $x \in X$, then $a \in_{\delta} B$.
- (v) The restriction of $\pi: A \to A(x)$ to B induces an isomorphism $B(x) \cong \pi_x(B)$ for all $x \in X$.

Proof. (i), (ii) are proved in [4] and (iii) follows from (iv). (iv): By assumption, for each $x \in X$, there is $b_x \in B$ such that $\|\pi_x(a-b_x)\| < \delta$. Using the upper semi-continuity of the map $x \mapsto \|\pi_x(c)\|$, $c \in A$ and (ii), we find a closed neighborhood U_x of x such that $\|\pi_{U_x}(a-b_x)\| < \delta$. Since X is compact, there is a finite subcover (U_{x_i}) . Let (α_i) be a partition of unity subordinated to this cover. Setting $b = \sum_i \alpha_i b_{x_i} \in B$, one checks immediately that $\|\pi_x(a-b)\| \leq \sum_i \alpha_i(x) \|\pi_x(a-b_{x_i})\| < \delta$, for all $x \in X$. Thus

$$||a - b|| = \max\{||\pi_x(a - b)|| : x \in X\} < \delta.$$

(v): If $\iota: B \hookrightarrow A$ is the inclusion map, then $\pi_x(B)$ coincides with the image of $\iota_x: B/C(X,x)B \to A/C(X,x)A$. Thus it suffices to check that ι_x is injective. If $\iota_x(b+C(X,x)B) = \pi_x(b) = 0$ for some $b \in B$, then b = fa for some $f \in C(X,x)$ and some $a \in A$. If (f_λ) is an approximate unit of C(X,x), then $b = \lim_{\lambda} f_{\lambda} fa = \lim_{\lambda} f_{\lambda} b$ and hence $b \in C(X,x)B$.

A C(X)-algebra such that the map $x \mapsto ||a(x)||$ is continuous for all $a \in A$, is called a *continuous* C(X)-algebra or a C*-bundle [4], [27], [6]. A C*-algebra A is a continuous C(X)-algebra if and only if A is the C*-algebra of continuous sections of a continuous field of C*-algebras over X in the sense of [16, Def. 10.3.1], (see [4], [6], [31]).

Let $\eta: B \to E$ and $\psi: D \to E$ be *-homomorphisms. The pullback of these maps is

$$B \oplus_{n,\psi} D = \{(b,d) \in B \oplus D : \eta(b) = \psi(d)\}.$$

We are going to use pullbacks in the context of C(X)-algebras. Let X be a compact space and let Y, Z be closed subsets of X such that $X = Y \cup Z$. The following result is proved in [16, Prop. 10.1.13] for continuous C(X)-algebras.

Lemma 2.2. If A is a C(X)-algebra, then A is isomorphic to $A(Y) \oplus_{\pi,\pi} A(Z)$, the pullback of the restriction maps $\pi^Y_{Y \cap Z} : A(Y) \to A(Y \cap Z)$ and $\pi^Z_{Y \cap Z} : A(Z) \to A(Y \cap Z)$.

Proof. By the universal property of pullbacks, the maps π_Y and π_Z induce a map $\eta: A \to A(Y) \oplus_{\pi,\pi} A(Z)$, $\eta(a) = (\pi_Y(a), \pi_Z(a))$, which is injective by Lemma 2.1(ii). Thus it suffices to show that the range of η is dense. Let $b, c \in A$ such that $\pi_{Y \cap Z}(b-c) = 0$ and let $\varepsilon > 0$. We shall find $a \in A$ such that $\|\eta(a) - (\pi_Y(b), \pi_Z(c))\| < \varepsilon$. By Lemma 2.1(i)-(ii), there is an open neighborhood V of $Y \cap Z$ such that $\|\pi_x(b-c)\| < \varepsilon$ for all $x \in V$. Let $\{\lambda, \mu\}$ be a partition of unity on X subordinated to the open cover $\{Y \cup V, Z \cup V\}$. Then $a = \lambda b + \mu c$ is an element of A which has the desired property.

Recall that if B is a C(X)-subalgebra of A, then the fibers B(x) of B identifies with the C*-subalgebra $\pi_x(B)$ of A(x) by Lemma 2.1(v). Let $B(Y) \subset A(Y)$ and $D(Z) \subset A(Z)$

be C(X)-subalgebras such that $\pi_x(D) \subset \pi_x(B)$ for all $x \in Y \cap Z$. Then

$$B \oplus_{Y \cap Z} D = \{ a \in A : \pi_Y(a) \in B, \pi_Z(a) \in D \}$$

is a C(X)-subalgebra of A. As an immediate consequence of Lemma 2.2 we see that $B \oplus_{\pi_{Y \cap Z}^Z, \pi_{Y \cap Z}^Y} D \cong B \oplus_{Y \cap Z} D$.

Lemma 2.3. Under the previous assumptions,

$$\pi_x(B \oplus_{Y \cap Z} D) = \begin{cases} \pi_x(B), & \text{if } x \in X \setminus Z, \\ \pi_x(D), & \text{if } x \in Z, \end{cases}$$

and there is an exact sequence of C^* -algebras

$$(1) 0 \longrightarrow \{b \in B : \pi_{Y \cap Z}(b) = 0\} \longrightarrow B \oplus_{Y \cap Z} D \xrightarrow{\pi_Z} D \longrightarrow 0$$

Proof. Let $X \setminus Z$. The inclusion $\pi_x(B \oplus_{Y \cap Z} D) \subset \pi_x(B)$ is obvious by definition. Given $b \in B$, let us choose $f \in C(X)$ vanishing on Z and such that f(x) = 1. Then a = (fb, 0) is an element of A by Lemma 2.2. Moreover $a \in B \oplus_{Y \cap Z} D$ and $\pi_x(a) = \pi_x(b)$. We have $\pi_Z(B \oplus_{Y \cap Z} D) \subset D$, by definition. Conversely, given $d \in D$, let us observe that $\pi_{Y \cap Z}^Z(d) \in \pi_{Y \cap Z}^Y(B)$ (by assumption) and hence $\pi_{Y \cap Z}^Z(d) = \pi_{Y \cap Z}^Y(b)$ for some $b \in B$. Then a = (b, d) is an element of A by Lemma 2.2 and $\pi_Z(a) = d$. This completes the proof for the first part of the lemma and also it shows that the map π_Z from the sequence (1) is surjective. Its kernel is identified using Lemma 2.1(iii).

Let X, Y, Z and A be as above. Let $\eta: B(Y) \hookrightarrow A(Y)$ be a C(Y)-linear *-monomorphism and let $\psi: D(Z) \hookrightarrow A(Z)$ be a C(Z)-linear *-monomorphism. Assume that

(2)
$$\pi_{Y \cap Z}^{Z}(\psi(D)) \subseteq \pi_{Y \cap Z}^{Y}(\eta(B)).$$

This gives a map $\eta_{Y\cap Z}^{-1}\psi_{Y\cap Z}:D(Y\cap Z)\to B(Y\cap Z).$

Lemma 2.4. (a) Under the previous assumptions, there are isomorphisms of C(X)-algebras:

$$B \oplus_{\pi,\eta^{-1}\psi\pi} D \cong B \oplus_{\pi\eta,\pi\psi} D \cong \eta(B) \oplus_{Y \cap Z} \psi(D),$$

where the latter isomorphism is given by the map $\chi: B \oplus_{\pi\eta,\pi\psi} D \to A$ induced by the pair (η,ψ) . Its components χ_x identify with ψ_x for $x \in Z$ and with η_x for $x \in X \setminus Z$.

- (b) Condition (2) is equivalent to $\psi(D) \subset \pi_Z(A \oplus_Y \eta(B))$.
- (c) If \mathcal{F} is a finite subset of A such that $\pi_Y(\mathcal{F}) \subset_{\varepsilon} \eta(B)$ and $\pi_Z(\mathcal{F}) \subset_{\varepsilon} \psi(D)$, then $\mathcal{F} \subset_{\varepsilon} \eta(B) \oplus_{Y \cap Z} \psi(D) = \chi(B \oplus_{\pi\eta,\pi\psi} D)$.

Proof. This is an immediate corollary of Lemmas 2.1, 2.2, 2.3. For illustration, let us verify (c). By assumption $\pi_x(\mathcal{F}) \subset_{\varepsilon} \eta_x(B)$ for all $x \in X \setminus Z$ and $\pi_z(\mathcal{F}) \subset_{\varepsilon} \psi_z(D)$ for all $z \in Z$. We deduce from Lemma 2.3 that $\pi_x(\mathcal{F}) \subset_{\varepsilon} \pi_x(\eta(B) \oplus_{Y \cap Z} \psi(D))$ for all $x \in X$. Therefore $\mathcal{F} \subset_{\varepsilon} \eta(B) \oplus_{Y \cap Z} \psi(D)$ by Lemma 2.1(iv).

Definition 2.5. Let \mathcal{C} be a class of unital C*-algebras. A C(Z)-algebra E is called elementary (relative to the class \mathcal{C}) or \mathcal{C} -elementary if there is a finite partition of X into disjoint non-empty closed subsets Z_1, \ldots, Z_r $(r \geq 1)$ and there exist C*-algebras D_1, \ldots, D_r in \mathcal{C} such that $E = \bigoplus_{i=1}^r C(Z_i) \otimes D_i$. The notion of category of a unital C(X)-algebra

with respect to a class \mathcal{C} is defined inductively: if A is elementary relative to \mathcal{C} then $\operatorname{cat}_{\mathcal{C}}(A)=0$; $\operatorname{cat}_{\mathcal{C}}(A)\leq n$ if there are closed nonempty subsets Y and Z of X, with $X=Y\cup Z$ and there exist a unital C(Y)-algebra B, a \mathcal{C} -elementary unital C(Z)-algebra E and a unital *-monomorphism of $C(Y\cap Z)$ -algebras, $\gamma:E(Y\cap Z)\to B(Y\cap Z)$, such that $\operatorname{cat}_{\mathcal{C}}(B)\leq n-1$, and A is isomorphic to

$$B \oplus_{\pi,\gamma\pi} D = \{(b,d) \in B \oplus D : \pi^Y_{Y \cap Z}(b) = \gamma \pi^Z_{Y \cap Z}(d)\}.$$

By definition $\operatorname{cat}_{\mathcal{C}}(A) = n$ if n is the smallest number with the property that $\operatorname{cat}_{\mathcal{C}}(A) \leq n$. If the no such n exists, then $\operatorname{cat}_{\mathcal{C}}(A) = \infty$.

Definition 2.6. Let \mathcal{C} be a class of unital C*-algebras. Let A be a unital C(X)-algebra. An n-fibered \mathcal{C} -morphism into A consists of (n+1) unital *-monomorphisms (ψ_0, \ldots, ψ_n) with the following properties. There exist closed nonempty subsets Y_0, \ldots, Y_n of X, and \mathcal{C} -elementary $C(Y_i)$ -algebras, E_0, \ldots, E_n such that each $\psi_i : E_i \to A(Y_i)$ is $C(Y_i)$ -linear and

(3)
$$\pi_{Y_i \cap Y_i}^{Y_i} \psi_i(E_i) \subseteq \pi_{Y_i \cap Y_i}^{Y_j} \psi_j(E_j), \quad \text{for all } i \leq j.$$

Given an *n*-fibered morphism into A we have an associated C(X)-algebra defined as the pullback the maps ψ_i :

(4)
$$A(\psi_0, \ldots, \psi_n) = \{(d_0, \ldots, d_n) : d_i \in E_i, \pi_{Y_i \cap Y_j}^{Y_i} \psi_i(d_i) = \pi_{Y_i \cap Y_j}^{Y_j} \psi_j(d_j) \text{ for all } i, j\}$$
 and an induced $C(X)$ -homomorphism

$$\eta = \eta_{(\psi_0,\dots,\psi_n)} : A(\psi_0,\dots,\psi_n) \to A \subset \bigoplus_{i=0}^n A(Y_i),$$

$$\eta(d_0,\ldots d_n) = (\psi_0(d_0),\ldots,\psi_n(d_n)).$$

There are natural projection maps $p_i: A(\psi_0, \ldots, \psi_n) \to E_i$, $p_i(d_0, \ldots, d_n) = d_i$. Let us set $X_k = Y_k \cup \cdots \cup Y_n$. Then, (ψ_k, \ldots, ψ_n) is an (n-k)-fibered morphism into $A(X_k)$. Let $\eta_k: A(X_k)(\psi_k, \ldots, \psi_n) \to A(X_k)$ be the induced map and let $B_k = A(X_k)(\psi_k, \ldots, \psi_n)$. There exist natural $C(X_{k-1})$ -isomorphisms

$$B_{k-1} \cong B_k \oplus_{\pi \eta_k, \pi \psi_{k-1}} E_{k-1} \cong B_k \oplus_{\pi, \eta_k^{-1} \psi_{k-1} \pi} E_{k-1}.$$

This shows that $cat_{\mathcal{C}}(A(\psi_0,\ldots,\psi_n)) \leq n$.

3. Semiprojectivity

Let A and B be C*-algebras. Two *-homomorphisms $\varphi, \psi: A \to B$ are approximately unitarily equivalent, written $\varphi \approx_u \psi$, if for every finite subset \mathcal{F} of A and any $\varepsilon > 0$ there is a unitary u in C*-algebra $B^+ = B + \mathbb{C}1$ obtained by adjoining a unit to B, such that $\|u\varphi(a)u^* - \psi(a)\| < \varepsilon$ for all $a \in \mathcal{F}$. We say that φ and ψ are asymptotically unitarily equivalent, written $\varphi \approx_{uh} \psi$, if there is a norm continuous unitary valued map $t \to u_t \in B^+$, $t \in [0,1)$, such that $\lim_{t\to 1} \|u_t\varphi(a)u_t^* - \psi(a)\| = 0$ for all $a \in A$. We shall use several times Kirchberg's Theorem [33, Thm. 8.3.3] and the following theorem of Phillips [32].

Theorem 3.1. Let A, B be unital separable C^* -algebras such that A is simple and nuclear and $B \cong B \otimes \mathcal{O}_{\infty}$. For any $\sigma \in KK(A,B)$ such that $K_0(\sigma)[1_A] = [1_B]$ there is a unital *-homomorphism $\varphi : A \to B$ such that $KK(\varphi) = \sigma$. If $\psi : A \to B$ is another unital *-homomorphism such that $KK(\psi) = KK(\varphi)$, then $\varphi \approx_{uh} \psi$.

Theorem 3.1 does not appear in this form in [32] but it is an immediate consequence of [32, Thm. 4.1.1]. Indeed, if σ is given, [32, Thm. 4.1.1] gives a full *-homomorphism $\varphi: A \to B \otimes \mathcal{K}$ such that $KK(\varphi) = \sigma$. Let $e \in \mathcal{K}$ be a rank-one projection. Then $[\varphi(1_A)] = [1_B] = [1_B \otimes e]$ in $K_0(B)$. Since both $\varphi(1_A)$ and $1_B \otimes e$ are full projections and $B \cong B \otimes \mathcal{O}_{\infty}$, it follows by [32, Lemma 2.1.6] that $u\varphi(1_A)u^* = 1_B \otimes e$ for some unitary in $(B \otimes \mathcal{K})^+$. Replacing φ by $u\varphi u^*$ we can arrange that $KK(\varphi) = \sigma$ and φ is unital. For the second part of the theorem let us note that any unital *-homomorphism $\varphi: A \to B$ is full and if two unital *-homomorphisms $\varphi, \psi: A \to B$ are asymptotically unitarily equivalent when regarded as maps into $B \otimes \mathcal{K}$, then $\varphi \approx_{uh} \psi$ when regarded as maps into B, by an argument from the proof of [32, Thm. 4.1.4].

A separable unital C*-algebra D is weakly semiprojective (see [17]) if for any finite subset $\mathcal{F} \subset D$ and any $\varepsilon > 0$, any separable C*-algebra A, any increasing sequence (J_n) of two-sided closed ideals of A with $J = \overline{\bigcup_n J_n}$, and any *-homomorphism $\varphi : D \to A/J$, there is a *-homomorphism $\psi : D \to A/J_n$ (for some n) such that $\|\pi_n \psi(c) - \varphi(c)\| < \varepsilon$ for all $c \in \mathcal{F}$ (where $\pi_n : A/J_n \to A/J$ is the natural map). If we require that there is a *-homomorphism $\psi : D \to A/J_n$ (for some n) such that $\pi_n \psi = \varphi$ then A is called semiprojective (see [3]). We shall use (weak) semiprojectivity in the following context. Let A be a C(X)-algebra, let $x \in X$ and let $U_n = \{y \in X : d(y,x) \le 1/n\}$. Then $J_n = C(X, U_n)A$ is an increasing sequence of ideals of A such that J = C(X, x)A, $A/J_n \cong A(U_n)$ and $A/J \cong A(x)$.

Examples 3.2. We shall consider various classes C consisting of unital separable weakly semiprojective simple C*-algebras. The main examples are the class of simple finite dimensional C*-algebras and the class of unital Kirchberg algebras satisfying the UCT and having finitely generated K-theory groups. The C*-algebras in the latter class are known to be weakly semiprojective by work of Neubüser [30], H. Lin [28] and Spielberg [35]. This also follows from Theorem 3.9 and Corollary 3.11 below. These C*-algebras are semiprojective if they have torsion free K_1 -groups by a result of Spielberg [36] which extended the foundational work of Blackadar [3] and Szymanski [37].

We need the following generalizations of two results of Loring [29]; see [13].

Proposition 3.3. Let D be a separable semiprojective C^* -algebra. For any finite subset $\mathcal{F} \subset D$ and any $\varepsilon > 0$, there exist a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ with the following property. Let $\pi : A \to B$ be a surjective *-homomorphism, and let $\sigma : D \to B$ and $\gamma : D \to A$ be *-homomorphisms such that $\|\pi\gamma(d) - \sigma(d)\| < \delta$ for all $d \in \mathcal{G}$. Then there is a *-homomorphism $\psi : D \to A$ such that $\pi\psi = \sigma$ and $\|\gamma(c) - \psi(c)\| < \varepsilon$ for all $c \in \mathcal{F}$.

Proposition 3.4. Let D be a separable semiprojective C^* -algebra. For any finite subset $\mathcal{F} \subset D$ and any $\varepsilon > 0$, there exist a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ with the following property. For any two *-homomorphisms $\varphi, \psi: D \to B$ such that $\|\varphi(d) - \psi(d)\| < \delta$ for all $d \in \mathcal{G}$, there is a homotopy $\chi: D \to B[0,1]$ of *-homomorphisms from φ to ψ that satisfies $\|\varphi(c) - \chi_t(c)\| < \varepsilon$ for all $c \in \mathcal{F}$.

Definition 3.5. (a) A separable unital C*-algebra D is called KK-semiprojective if for any separable C*-algebra A and any sequence of increasing ideals (J_n) of A with $J = \overline{\bigcup_n J_n}$, the natural map $\lim_{n \to \infty} KK(D, A/J_n) \to KK(D, A/J)$ is surjective.

(b) We say that the functor KK(D, -) is *continuous* if for any inductive system $B_1 \to B_2 \to ...$ of separable C*-algebras, the induced map $\varinjlim KK(D, B_i) \to KK(D, \varinjlim B_i)$ is bijective.

Definition 3.6. A separable C*-algebra D is KK-stable i.e. there is a finite set $\mathcal{G} \subset D$ and there is $\delta > 0$ with the property that for any two *-homomorphisms $\varphi, \psi : D \to A$ such that $\|\varphi(a) - \psi(a)\| < \delta$ for all $a \in \mathcal{G}$, one has $KK(\varphi) = KK(\psi)$.

Corollary 3.7. Any unital separable semiprojective C^* -algebra is weakly semiprojective and KK-stable.

Proof. This follows from Proposition 3.4.

Proposition 3.8. If a separable C^* -algebra D is KK-semiprojective, then D is KK-stable.

Proof. We shall prove the statement by contradiction. Let (\mathcal{G}_n) be an increasing sequence of finite subsets of D whose union is dense in D. If the statement is not true, then there are sequences of *-homomorphisms $\varphi_n, \psi_n : D \to A_n$ such that $\|\varphi_n(d) - \psi_n(d)\| < 1/n$ for all $d \in \mathcal{G}_n$ and yet $KK(\varphi_n) \neq KK(\psi_n)$ for all $n \geq 1$. Set $B_i = \prod_{n \geq i} A_n$ and let $\nu_i : B_i \to B_{i+1}$ be the natural projection. Let us define $\Phi_i, \Psi_i : D \to B_i$ by $\Phi_i(d) = (\varphi_i(d), \varphi_{i+1}(d), \dots)$ and $\Psi_i(d) = (\psi_i(d), \psi_{i+1}(d), \dots)$, for all d in D. Let B_i' be the separable C*-subalgebra of B_i generated by the images of Φ_i and Ψ_i . Then $\nu_i(B_i') \subset B_{i+1}'$ and ones verifies immediately that $\varinjlim \Phi_i = \varinjlim \Psi_i : D \to \varinjlim (B_i', \nu_i)$. Since D is KK-semiprojective, we deduce that $KK(\Phi_i) = KK(\Psi_i)$ for some i and hence $KK(\varphi_n) = KK(\psi_n)$ for all $n \geq i$. This gives a contradiction.

Theorem 3.9. For a separable C^* -algebra D consider the following properties:

- (i) D is KK-semiprojective.
- (ii) The functor KK(D, -) is continuous.
- (iii) D is weakly semiprojective and KK-stable.

Then $(i) \Leftrightarrow (ii)$. Moreover, $(iii) \Rightarrow (i)$ if D is nuclear and $(i) \Rightarrow (iii)$ if D is a unital Kirchberg algebra. Thus $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$ for unital Kirchberg algebras.

Proof. The implication (ii) \Rightarrow (i) is obvious. (i) \Rightarrow (ii): Let $(B_n, \gamma_{n,n+1})$ be an inductive system with inductive limit B and let $\gamma_n: B_n \to B$ be the canonical maps. We have an induced map $\beta: \varinjlim KK(D, B_n) \to KK(D, B)$. First we show that β is surjective. The mapping telescope construction of Larry Brown (as described in the proof of [3, Thm. 3.1]) produces an inductive system of C*-algebras $(T_n, \eta_{n,n+1})$ with inductive limit B such that each $\eta_{n,n+1}$ is surjective, and each canonical map $\eta_n: T_n \to B$ is homotopic to $\gamma_n \alpha_n$ for some *-homomorphism $\alpha_n: T_n \to B_n$. In particular $KK(\eta_n) = KK(\gamma_n)KK(\alpha_n)$. Let $x \in KK(D,B)$. By (i) there is n and $y \in KK(D,T_n)$ such that $KK(\eta_n)y = x$ and hence $KK(\gamma_n)KK(\alpha_n)y = x$. Thus $z = KK(\alpha_n)y \in KK(D,B_n)$ is a lifting of x. Let us show now that the map β is injective. We shall use Cuntz' picture of KK-theory in terms of homotopy classes of *-homomorphisms: $KK(D,B) \cong [qD,B \otimes K]$. Since β is surjective, qD is (stably) homotopy semiprojective in the sense of Effros and Kaminker [1], and as

shown in their work, the surjectivity of $\beta : \varinjlim [qD, B_i \otimes \mathcal{K}] \to [qD, B \otimes \mathcal{K}]$ (for all inductive systems (B_i)), implies the injectivity of β (see also [29, 15.1.3]).

(iii) \Rightarrow (i): Let A, (J_n) and J be as in Definition 3.5. Using the five-lemma and the split exact sequence

$$0 \to KK(D, A) \to KK(D, A^+) \to KK(D, \mathbb{C}) \to 0,$$

we reduce the proof to the case when A is unital. Let $x \in KK(D, A/J)$. By [33, Thm. 8.3.3], since D is nuclear, there is a *-homomorphism $\varphi: D \to A/J \otimes \mathcal{O}_{\infty} \otimes \mathcal{K}$ such that $KK(\varphi) = x$. Since D is weakly semiprojective, there is n and a *-homomorphism $\psi: D \to A/J_n \otimes \mathcal{O}_{\infty} \otimes \mathcal{K}$ such that $\|\pi_n \psi(d) - \varphi(d)\| < \delta$ for all $d \in \mathcal{G}$, where \mathcal{G} and δ are as in the definition of KK-stability. Therefore $KK(\pi_n \psi) = KK(\varphi)$ and hence $KK(\psi)$ is a lifting of x to $KK(D, A/J_n)$.

(i) \Rightarrow (iii): D is KK-stable by Proposition 3.8. It remains to show that A is weakly semiprojective. Let A, (J_n) and $\pi_n: A \to A/J$ be as in the definition of weak semiprojectivity. By [3, Cor. 2.15], we may assume that A and the *-homomorphism $\varphi: D \to A$ (that we want to lift approximately) are unital. In particular φ is injective since D is simple. Let $\varepsilon > 0$ and $\mathcal{F} \subset D$ (a finite set) be given. Let $v \in D$ be a non-unitary isometry and set $p = vv^*$ and q = 1 - p. Since [q] = 0 in $K_0(D)$, by Kirchberg's embedding theorem, there is a unital *-homomorphism $\theta: D \to \mathcal{O}_2 \subset qDq$ as in [33, Prop. 4.2.3]. Define $\gamma: D \to pDp$ by $\gamma(d) = vdv^*$. Since $KK(\theta) = 0$, $KK(\gamma + \theta) = KK(\gamma) = KK(\mathrm{id}_D)$. Consider the maps $\alpha = \varphi \gamma$ and $\beta = \varphi \theta$ and view them as unital *-homomorphisms $\alpha: D \to PA/JP$ and $\beta: D \to QA/JQ$, where $P = \varphi(p)$ and $Q = \varphi(q)$ are orthogonal projections with P+Q=1. Since $\mathbb{C}\oplus\mathbb{C}$ is semiprojective, there exist k and nonzero projections $P_n, Q_n \in A/J_n$ $(n \geq k)$ which are successive liftings of P and Q and such that $P_n + Q_n = 1$. Since \mathcal{O}_2 is semiprojective, and since β factors through \mathcal{O}_2 , there exist $m \geq k$ and a unital *-homomorphism $\xi: D \to Q_m A/J_m Q_m$ such that $\pi_m \xi = \beta$. Set $B_n = P_n A/J_n P_n$ and let us observe that since $\pi_n(P_n) = P$ is properly infinite, it follows by [3, Propositions 2.18 and 2.33] that P_n is a properly infinite projection, for all sufficiently large n. Since D is KK-semiprojective, there exist $n \geq m$ and an element $x \in KK(D, B_n)$ which lifts $KK(\alpha)$ and such that $K_0(x)[1] = [P_n]$. By [33, Thm. 8.3.3], there is a full *homomorphism $\eta: D \to B_n \otimes \mathcal{K}$ such that $KK(\eta) = x$. By [33, Prop. 4.1.4], since both $\eta(1)$ and P_n are full projections in $B_n \otimes \mathcal{K}$, there is a partial isometry $w \in B_n \otimes \mathcal{K}$ such that $w^*w = \eta(1)$ and $ww^* = P_n$. Replacing η by $w\eta(-)w^*$, we may assume that $\eta: D \to B_n$ is unital. Then $KK(\pi_n \eta) = KK(\pi_n)x = KK(\alpha)$. Therefore

$$KK(\pi_n(\eta + \xi)) = KK(\alpha + \beta) = KK(\varphi(\gamma + \theta)) = KK(\varphi).$$

By [33, Thm. 8.3.3], if we set $\psi = \eta + \xi$, then $\pi_n \psi \approx_{uh} \varphi$, and so there is a unitary $u \in A/J$ such that $\|u\pi_n\psi(d)u^* - \varphi(d)\| < \varepsilon$ for all $d \in \mathcal{F}$. Since $C(\mathbb{T})$ is semiprojective, after increasing n if necessary, we find a unitary $U \in A/J_n$ which lifts u. Then $\Phi = U\psi(-)U^*$ is an approximate lifting of φ such that $\|\pi_n\Phi(d) - \varphi(d)\| < \varepsilon$ for all $d \in \mathcal{F}$.

Corollary 3.10. Any separable nuclear semiprojective C^* -algebra is KK-semiprojective.

Proof. This is very similar to the proof of the implication (iii) \Rightarrow (i) of Theorem 3.9. Alternately, the statement follows from Corollary 3.7 and Theorem 3.9.

Blackadar has shown that a semiprojective Kirchberg algebra satisfying the UCT has finitely generated K-theory groups [33, Prop. 8.4.15]. This extends as follows.

Corollary 3.11. Let D be a nuclear separable C^* -algebra satisfying the UCT. Then D is KK-semiprojective if and only $K_*(D)$ is finitely generated.

Proof. If $K_*(D)$ is finitely generated, then D is KK-semiprojective by [34]. Conversely, assume that D is KK-semiprojective. Since D satisfies the UCT, we infer that if $G = K_i(D)$ (i = 0, 1), then G is semiprojective in the category of countable abelian groups, in the sense that if $H_1 \to H_2 \to \cdots$ is an inductive system of countable abelian groups with inductive limit H, then the natural map $\varinjlim \operatorname{Hom}(G, H_n) \to \operatorname{Hom}(G, H)$ is surjective. This implies that G is finitely generated. Indeed, taking H = G, we see that id_G lifts to $\operatorname{Hom}(G, H_n)$ for some finitely generated subgroup H_n of G and hence G is a quotient of H_n .

Proposition 3.12. Let D be a separable weakly semiprojective C^* -algebra. For any finite subset $\mathcal{F} \subset D$ and any $\varepsilon > 0$ there exist a finite subset $\mathcal{G} \subset D$ and $\delta > 0$ such that for any C^* -algebras $B \subset A$ and any \ast -homomorphism $\varphi : D \to A$ with $\varphi(\mathcal{G}) \subset_{\delta} B$, there is a \ast -homomorphism $\psi : D \to B$ such that $\|\varphi(a) - \psi(a)\| < \varepsilon$ for all $a \in \mathcal{F}$. If in addition D is KK-stable, then we can choose \mathcal{G} and δ such that we also have $KK(\psi) = KK(\varphi)$.

Proof. This follows from [17, Thms. 3.1, 4.6]. Let us review the crux of the argument. Fix \mathcal{F} and ε . Let (\mathcal{G}_n) be an increasing sequence of finite subsets of D whose union is dense in D. If the statement is not true, then there are sequences of C^* -algebras $C_n \subset A_n$ and *-homomorphisms $\varphi_n : D \to A_n$ satisfying $\varphi_n(\mathcal{G}_n) \subset_{1/n} C_n$ and with the property that for any $n \geq 1$ there is no *-homomorphism $\psi_n : D \to C_n$ such that $\|\varphi_n(c) - \psi_n(c)\| < \varepsilon$ for all $c \in \mathcal{F}$. Set $B_i = \prod_{n \geq i} A_n$ and $E_i = \prod_{n \geq i} C_n \subset B_i$. If $\nu_i : B_i \to B_{i+1}$ is the natural projection, then $\nu_i(C_i) \subset C_{i+1}$. Let us observe that if we define $\Phi_i : D \to B_i$ by $\Phi_i(d) = (\varphi_i(d), \varphi_{i+1}(d), \ldots)$, then the image of $\Phi = \varinjlim \Phi_i : D \to \varinjlim (B_i, \nu_i)$ is contained in $\varinjlim (E_i, \nu_i)$. Since D is weakly semiprojective, there is i and a *-homomorphism $\Psi_i : D \to E_i$, of the form $\Psi_i(d) = (\psi_i(d), \psi_{i+1}(d), \ldots)$ such that $\|\Phi_i(c) - \Psi_i(c)\| < \varepsilon$ for all $c \in \mathcal{F}$. Therefore $\|\varphi_i(c) - \psi_i(c)\| < \varepsilon$ for all $c \in \mathcal{F}$ which gives a contradiction. \square

4. Approximation of C(X)-algebras

A sequence (A_n) of subalgebras of a C*-algebra A is called *exhaustive* if for any finite subset \mathcal{F} of A and any $\varepsilon > 0$ there is n such that $\mathcal{F} \subset_{\varepsilon} A_n$.

Lemma 4.1. Let C be a class of separable unital simple weakly semiprojective C^* -algebras. Let X be a compact metrizable space and let A be a unital C(X)-algebra. Let $\mathcal{F} \subset A$ be a finite subset and let $\varepsilon > 0$. Let $x \in X$ and assume that A(x) admits an exhaustive sequence of C^* -algebras isomorphic to C^* -algebras in C. Then there is a C^* -algebra D in the class C and there exist a compact neighborhood D of C and a unital C-homomorphism C: C and C such that C be a class C and C and C and C such that C be a class C and C and C be a class C and C and C and C and C are a class C and C and C are a class C and C are a

Proof. By hypothesis there is $D \in \mathcal{C}$ and a unital *-homomorphism $\iota: D \to A(x)$ such that $\pi_x(\mathcal{F}) \subset_{\varepsilon/2} \iota(D)$. Therefore if $\mathcal{F} = \{a_1, \ldots, a_r\}$, then there is $\{c_1, \ldots, c_r\} \subset D$

such that $\|\pi_x(a_i) - \iota(c_i)\| < \varepsilon/2$, for all i. Fix a metric d for the topology of X and set $U_n = \{y \in X : d(x,y) \leq 1/n\}$. Since D is weakly semiprojective, there is a unital *-homomorphism $\varphi: D \to A(U_n)$ (for some n) such that $\|\pi_x \varphi(c_i) - \iota(c_i)\| < \varepsilon/2$ for all i=1,...,r, and hence

$$\|\pi_x\varphi(c_i) - \pi_x(a_i)\| \le \|\pi_x\varphi(c_i) - \iota(c_i)\| + \|\pi_x(a_i) - \iota(c_i)\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

By Lemma 2.1(i), after increasing n and setting $U = U_n$ and $\varphi = \pi_U \varphi$, we have

$$\|\varphi(c_i) - \pi_U(a_i)\| = \|\pi_U(\varphi(c_i) - a_i)\| < \varepsilon,$$

for all i = 1, ..., r. This shows that $\pi_U(\mathcal{F}) \subset_{\varepsilon} \varphi(D)$.

Lemma 4.2. Let X be a compact metrizable space and let A be a unital C(X)-algebra the fibers of which are unital Kirchberg algebras. Let D be a unital Kirchberg algebra and suppose that $\varphi: D \to A$ is a unital *-homomorphism such that $KK(\varphi_x) \in KK(D, A(x))^{-1}$ for some $x \in X$. Let $\mathcal{F} \subset A$ be a finite subset and let $\varepsilon > 0$. Then there is a closed neighborhood U of x and there exists a unital *-homomorphism $\psi: D \to A(U)$ satisfying $KK(\psi) = KK(\pi_U \varphi)$ and such that $\pi_U(\mathcal{F}) \subset_{\varepsilon} \psi(D)$.

Proof. By [33, Thm. 8.4.1] there is an isomorphism $\varphi_0: D \to A(x)$ such that $KK(\varphi_0) =$ $KK(\varphi_x)$. Let $\mathcal{H} \subset D$ be such that $\varphi_0(\mathcal{H}) = \pi_x(\mathcal{F})$. By Theorem 3.1 there is a unitary $u_0 \in A(x)$ such that $\|\varphi_0(a) - u_0\varphi_x(a)u_0^*\| < \varepsilon$ for all $a \in \mathcal{H}$. Fix a metric d for the topology of X and set $U_n = \{y \in X : d(x,y) \le 1/n\}$. Since $C(\mathbb{T})$ is semiprojective, there is n and a unitary $u \in A(U_n)$ such that $\pi_x(u) = u_0$. Since $\pi_x(\mathcal{F}) \subset_{\varepsilon} \pi_x(u\pi_{U_n}\varphi(\mathcal{H})u^*)$, there is $r \geq n$ such that $\pi_{U_r}(\mathcal{F}) \subset_{\varepsilon} \pi_{U_r}(u\pi_{U_n}\varphi(\mathcal{H})u^*)$, by Lemma 2.1(i). Setting $v = \pi_{U_r}(u)$, we have that $U = U_r$ and $\psi = v(\pi_U \varphi)v^*$ satisfy the conclusion of the lemma.

The following lemma is useful for the construction of fibered morphisms.

Lemma 4.3. Let C be a class of separable unital simple weakly semiprojective C^* -algebras. Let $(D_j)_{j\in J}$ be a finite family of C^* -algebras in C. For each $j\in J$, let $\mathcal{H}_j\subset D_j$ be a finite set and let $\varepsilon > 0$. Let $\mathcal{G}_i \subset D_i$ (a finite set) and $\delta_i > 0$ be given by Proposition 3.12 applied to D_i , \mathcal{H}_i and $\varepsilon/2$. Let X be a compact metrizable space, let $(Z_i)_{i\in J}$ be a finite family of mutually disjoint nonempty closed subsets of X and let Y be a closed nonempty subset of X such that $X = Y \cup (\cup_i Z_i)$. Let A be a unital C(X)-algebra and let \mathcal{F} be a finite subset of A. Let $\eta: B(Y) \hookrightarrow A(Y)$ be a unital C(Y)-subalgebra and let $\varphi_j: D_j \to A(Z_j)$ be unital *-homomorphisms satisfying

- $\begin{array}{l} \text{(i)} \ \pi_{Z_j}(\mathcal{F}) \subset_{\varepsilon/2} \varphi_j(\mathcal{H}_j), \ \textit{for all} \ j \in J, \\ \text{(ii)} \ \pi_Y(\mathcal{F}) \subset_{\varepsilon} \eta(B), \\ \text{(iii)} \ \pi_{Y \cap Z_j}^{Z_j} \varphi_j(\mathcal{G}_j) \subset_{\delta_j} \pi_{Y \cap Z_j}^Y \eta(B), \ \textit{for all} \ j \in J. \end{array}$

Then, there are $C(Z_i)$ -linear unital *-homomorphisms $\psi_i: C(Z_i) \otimes D_i \to A(Z_i)$, satisfying

(5)
$$\|\varphi_j(a) - \psi_j(a)\| < \varepsilon/2, \text{ for all } a \in \mathcal{H}_j, \text{ and } j \in J,$$

and such that if we set $E = \bigoplus_{i} C(Z_i) \otimes D_i$, $Z = \bigcup_{i} Z_i$, and $\psi : E \to A(Z) = \bigoplus_{i} A(Z_i)$, $\psi = \bigoplus_j \psi_j$, then $\pi_{Y \cap Z}^Z(\psi(E)) \subseteq \pi_{Y \cap Z}^Y(\eta(B))$, $\pi_Z(\mathcal{F}) \subset_{\varepsilon} \psi(E)$ and

$$\mathcal{F} \subset_{\varepsilon} \eta(B) \oplus_{Y \cap Z} \psi(E) = \chi(B \oplus_{\pi\eta,\pi\psi} E),$$

where χ is the isomorphism induced by the pair (η, ψ) . If we assume that each D_j is KK-stable, then we also have $KK(\varphi_j) = KK(\psi_j|_{D_j})$ for all $j \in J$.

Proof. Let $\mathcal{F} = \{a_1, \ldots, a_r\} \subset A$ be as in the statement. By (i) we find $\{c_1^{(j)}, \ldots, c_r^{(j)}\} \subseteq \mathcal{H}_j$ such that $\|\varphi_j(c_i^{(j)}) - \pi_{Z_j}(a_i)\| < \varepsilon/2$ for all i. Consider the C(X)-algebra $A \oplus_Y \eta(B) \subset A$. From (iii), Lemma 2.1 (vi) and Lemma 2.3 we obtain

$$\varphi_i(\mathcal{G}_i) \subset_{\delta_i} \pi_{Z_i}(A \oplus_Y \eta(B)).$$

Applying Proposition 3.12 we perturb φ_j to a *-monomorphism $\psi_j: D_j \to \pi_{Z_j}(A \oplus_Y \eta(B))$ satisfying (5), and hence such that $\|\varphi_j(c_i^{(j)}) - \psi_j(c_i^{(j)})\| < \varepsilon/2$, for all i, j. Therefore

$$\|\psi_j(c_i^{(j)}) - \pi_{Z_j}(a_i)\| \le \|\psi_j(c_i^{(j)}) - \varphi_j(c_i^{(j)})\| + \|\varphi_j(c_i^{(j)}) - \pi_{Z_j}(a_i)\| < \varepsilon.$$

This shows that $\pi_{Z_j}(\mathcal{F}) \subset_{\varepsilon} \psi_j(D_j)$. Extending ψ_j to a $C(Z_j)$ -linear unital *-homomorphism, $\psi_j : C(Z_j) \otimes D_j \to \pi_{Z_j}(A \oplus_Y \eta(B))$, and defining E and ψ as in the statement and setting $Z = \bigcup_j Z_j$, we obtain that $\psi : E \to (A \oplus_Y \eta(B))(Z) \subset A(Z)$ satisfies

(6)
$$\pi_Z(\mathcal{F}) \subset_{\varepsilon} \psi(E).$$

The property $\psi(E) \subset (A \oplus_Y \eta(B))(Z)$ is equivalent to $\pi^Z_{Y \cap Z}(\psi(E)) \subseteq \pi^Y_{Y \cap Z}(\eta(B))$ by Lemma 2.4(b). Finally from (ii), (6) and Lemma 2.1 (iv) we get $\mathcal{F} \subset_{\varepsilon} \eta(B) \oplus_{Y \cap Z} \psi(E)$. \square

Let A be a unital C(X)-algebra. Let $\mathcal{F} \subset A$ be a finite subset and let $\varepsilon > 0$. Let \mathcal{C} be a class of separable unital simple weakly semiprojective C*-algebras. An $(\mathcal{F}, \varepsilon, \mathcal{C})$ -approximation of A is a family

(7)
$$\alpha = \{ \mathcal{F}, \varepsilon, \{ U_i, \varphi_i : D_i \to A(U_i), \mathcal{H}_i, \mathcal{G}_i, \delta_i \}_{i \in I} \},$$

with the following properties. $(U_i)_{i\in I}$ a finite family of closed subsets of X, whose interiors cover X. $(D_i)_{i\in I}$ is a finite family of C*-algebras in \mathcal{C} . For each $i\in I$, $\varphi_i:D_i\to A(U_i)$ is a unital *-monomorphism, and $\mathcal{H}_i\subset D_i$ is a finite set such that

$$\pi_{U_i}(\mathcal{F}) \subset_{\varepsilon/2} \varphi_i(\mathcal{H}_i).$$

For each $i \in I$, $\mathcal{G}_i \subset D_i$ and $\delta_i > 0$ are given by Proposition 3.12 applied to the weakly semiprojective C*-algebra D_i for the input data \mathcal{H}_i and $\varepsilon/2$. If D_i is KK-stable, then \mathcal{G}_i and δ_i are chosen such that the second part of Proposition 3.12 also applies.

Lemma 4.4. Let A and C be as above. Suppose that for each $x \in X$, A(x) admits an exhaustive sequence of C^* -algebras isomorphic to C^* -algebras in C. Then for any finite subset F of A and any $\varepsilon > 0$ there is an (F, ε, C) -approximation of A. Moreover, if A, D and φ are as in Lemma 4.2 and $KK(\varphi_x) \in KK(D, A(x))^{-1}$ for all $x \in X$, then there is an (F, ε, D) -approximation of A such that $KK(\varphi_i) = KK(\pi_{U_i}\varphi)$ for all $i \in I$.

Proof. Since X is compact, this is an immediate consequence of Lemmas 4.1, 4.2 and Proposition 3.12.

It is useful to consider the following operation of restriction. Assume that Y is a closed subspace of X, and let $(V_j)_{j\in J}$ be a finite family of closed subsets of Y which refines the

family $(Y \cap U_i)_{i \in I}$ and such that the interiors of $V_i's$ form a cover of Y. Let $\iota: J \to I$ be a map such that $V_i \subseteq Y \cap U_{\iota(i)}$. Define

$$\iota^*(\alpha) = \{ \pi_Y(\mathcal{F}), \varepsilon, \{ V_j, \pi_{V_j} \varphi_{\iota(j)} : D_{\iota(j)} \to A(V_j), \mathcal{H}_{\iota(j)}, \mathcal{G}_{\iota(j)}, \delta_{\iota(j)} \}_{j \in J} \}.$$

It is obvious that $\iota^*(\alpha)$ is a $(\pi_Y(\mathcal{F}), \varepsilon, \mathcal{C})$ -approximation of A(Y). The operation $\alpha \mapsto \iota^*(\alpha)$ is useful even in the case X = Y. Indeed, by applying this procedure, we can refine the cover of X that appears in a given $(\mathcal{F}, \varepsilon, \mathcal{C})$ -approximation of A.

An $(\mathcal{F}, \varepsilon, \mathcal{C})$ -approximation of $A, \alpha = \{\mathcal{F}, \varepsilon, \{U_i, \varphi_i : D_i \to A(U_i), \mathcal{H}_i, \mathcal{G}_i, \delta_i\}_{i \in I}\}$ is subordinated to an $(\mathcal{F}', \varepsilon', \mathcal{C})$ -approximation of A, $\alpha' = \{\mathcal{F}', \varepsilon', \{U_{i'}, \varphi_{i'} : D_{i'} \to A(U_{i'}), \mathcal{H}_{i'}, \mathcal{G}_{i'}, \delta_{i'}\}_{i' \in I''}\}$, written $\alpha \prec \alpha'$, if

- (i) $\mathcal{F} \subset \mathcal{F}'$,
- (ii) $\varphi_i(\overline{\mathcal{G}}_i) \subseteq \pi_{U_i}(\mathcal{F}')$ for all $i \in I$, and (iii) $\varepsilon' < \min \{\{\varepsilon\} \cup \{\delta_i, i \in I\}\}$.

It is clear that with notation as above, and $\iota': I' \to J'$, we have $\iota^*(\alpha) \prec \iota'^*(\alpha')$ whenever $\alpha \prec \alpha'$ and Y = Y'.

The following theorem in the crucial technical result of our paper. It provides an approximation of C(X)-algebras by subalgebras of category $\leq \dim(X)$.

Theorem 4.5. Let C be a class of separable simple unital weakly semiprojective C^* algebras. Let X be a finite dimensional compact metrizable space and suppose that A is a unital C(X)-algebra the fibers of which admit exhaustive sequences of C^* -algebras isomorphic to C^* -algebras in \mathcal{C} . Then for any finite set $\mathcal{F} \subset A$ and any $\varepsilon > 0$, there is a unital n-fibered C-morphism into A, (ψ_0, \ldots, ψ_n) , such that $\mathcal{F} \subset_{\varepsilon} \eta(A(\psi_0, \ldots, \psi_n))$, where $n \leq \dim(X)$ and η is induced by (ψ_0, \dots, ψ_n) .

Proof. By Lemma 4.4, for any finite set $\mathcal{F} \subset A$ and any $\varepsilon > 0$, there is an $(\mathcal{F}, \varepsilon, \mathcal{C})$ approximation of A. Moreover, for any finite set $\mathcal{F} \subset A$, any $\varepsilon > 0$ and any n, there is a sequence $\{\alpha_k : 0 \le k \le n\}$ of $(\mathcal{F}_k, \varepsilon_k, \mathcal{C})$ -approximations of A such that $(\mathcal{F}_0, \varepsilon_0) = (\mathcal{F}, \varepsilon)$ and α_k is subordinated to α_{k+1} :

$$\alpha_0 \prec \alpha_1 \prec \cdots \prec \alpha_n$$
.

Indeed, assume that α_k was constructed. Let us choose a finite set \mathcal{F}_{k+1} which contains \mathcal{F}_k and liftings to A of all the elements in $\cup_{i_k \in I_k} \varphi_{i_k}(\mathcal{G}_{i_k})$. This choice takes care of the conditions (i) and (ii). Next we choose ε_{k+1} sufficiently small such that (iii) is satisfied. Let α_{k+1} be an $(\mathcal{F}_{k+1}, \varepsilon_{k+1}, \mathcal{C})$ -approximation of A given by Lemma 4.4. Then obviously $\alpha_k \prec \alpha_{k+1}$.

Since X is a compact Hausdorff space of dimension $\leq n$, by [6, Lemma 3.2], for every open cover \mathcal{V} of X there is a finite open cover \mathcal{U} which refines \mathcal{V} and such that the set \mathcal{U} can be partitioned into n+1 subsets consisting of elements with pairwise disjoint closures. Since we can refine simultaneously the covers that appear in a finite family $\{\alpha_k: 0 \leq k \leq n\}$ of approximations while preserving subordinations, we may arrange not only that all α_k share the same cover $(U_i)_{\in I}$, but moreover, that the cover $(U_i)_{\in I}$ can be partitioned into n+1 subsets $\mathcal{U}_0,\ldots,\mathcal{U}_n$ consisting of mutually disjoints elements, by [6, Lemma 3.2]. For definiteness, let us write $\mathcal{U}_k = \{U_{i_k} : i_k \in I_k\}$. Now for each k we

consider the closed subset of X

$$Y_k = \bigcup_{i_k \in I_k} U_{i_k},$$

the map $\iota_k: I_k \to I$ and the $(\pi_{Y_k}(\mathcal{F}_k), \varepsilon_k, \mathcal{C})$ -approximation of $A(Y_k)$, induced by α_k , which is of the form

$$\iota_k^*(\alpha_k) = \{ \pi_{Y_k}(\mathcal{F}_k), \varepsilon, \{ U_{i_k}, \varphi_{i_k} : D_{i_k} \to A(U_{i_k}), \mathcal{H}_{i_k}, \mathcal{G}_{i_k}, \delta_{i_k} \}_{i_k \in I_k} \},$$

with each U_{i_k} is nonempty. We have

(8)
$$\pi_{U_{i_k}}(\mathcal{F}_k) \subset_{\varepsilon_k/2} \varphi_{i_k}(\mathcal{H}_{i_k}),$$

by construction. Since $\alpha_k \prec \alpha_{k+1}$ we obtain

$$(9) \mathcal{F}_k \subseteq \mathcal{F}_{k+1},$$

(10)
$$\varphi_{i_k}(\mathcal{G}_{i_k}) \subseteq \pi_{U_{i_k}}(\mathcal{F}_{k+1}), \text{ for all } i_k \in I_k,$$

(11)
$$\varepsilon_{k+1} < \min\left(\{\varepsilon_k\} \cup \{\delta_{i_k}, i_k \in I_k\}.\right)$$

Set $X_k = Y_k \cup \cdots \cup Y_n$ and $D_k = \bigoplus_{i_k} C(U_{i_k}) \otimes D_{i_k}$ for $0 \leq k \leq n$. We construct by induction on decreasing k, a sequence ψ_n, \ldots, ψ_0 of unital *-monomorphisms, such that $\psi_k : D_k \to A(Y_k)$ is $C(Y_k)$ -linear and such that (ψ_k, \ldots, ψ_n) is an (n-k)-fibered morphism into $A(X_k)$. Each map

$$\psi_k = \bigoplus_{i_k} \psi_{i_k} : D_k \to A(Y_k) = \bigoplus_{i_k} A(U_{i_k})$$

will have components $\psi_{i_k}: C(U_{i_k}) \otimes D_{i_k} \to A(U_{i_k})$ whose restrictions to D_{i_k} will be perturbations of $\varphi_{i_k}: D_{i_k} \to A(U_{i_k})$, $i_k \in I_k$. We will construct the maps ψ_k recursively, such that if $B_k = A(X_k)(\psi_k, \dots, \psi_n)$ and $\eta_k: B_k \to A(X_k)$ is the map induced by the (n-k)-fibered morphism (ψ_k, \dots, ψ_n) , then

(12)
$$\pi_{X_{k+1} \cap U_{i_k}} (\psi_{i_k}(D_{i_k})) \subset \pi_{X_{k+1} \cap U_{i_k}} (\eta_{k+1}(B_{k+1})), \forall i_k \in I_k,$$

and

(13)
$$\pi_{X_k}(\mathcal{F}_k) \subset_{\varepsilon_k} \eta_k(B_k).$$

Note that (12) implies that

(14)
$$\pi_{X_{k+1}\cap Y_k}(\psi_k(D_k)) \subset \pi_{X_{k+1}\cap Y_k}(\eta_{k+1}(B_{k+1})).$$

For the first step of induction, k = n, we choose $\psi_n = \widetilde{\varphi}_n$, where $\widetilde{\varphi}_n = \bigoplus_{i_n} \widetilde{\varphi}_{i_n}$ and $\widetilde{\varphi}_{i_n} : C(U_{i_n}) \otimes D_{i_n} \to A(U_{i_n})$ are $C(U_{i_n})$ -linear extensions of the original φ_{i_n} . Then $B_n = D_n$ and $\eta_n = \psi_n$. Assume that $\psi_n, \ldots, \psi_{k+1}$ were constructed and that they have the desired properties. We shall construct now ψ_k . Condition (13) formulated for k+1 becomes

(15)
$$\pi_{X_{k+1}}(\mathcal{F}_{k+1}) \subset_{\varepsilon_{k+1}} \eta_{k+1}(B_{k+1}).$$

Since $\varepsilon_{k+1} < \delta_{i_k}$, by using (10) and (15) we obtain

(16)
$$\pi_{X_{k+1}\cap U_{i_k}}(\varphi_{i_k}(\mathcal{G}_{i_k})) \subset_{\delta_{i_k}} \pi_{X_{k+1}\cap U_{i_k}}(\eta_{k+1}(B_{k+1})), \text{ for all } i_k \in I_k.$$

Since $\mathcal{F}_k \subseteq \mathcal{F}_{k+1}$ and $\varepsilon_{k+1} < \varepsilon_k$, we derive from (15) that

(17)
$$\pi_{X_{k+1}}(\mathcal{F}_k) \subset_{\varepsilon_k} \eta_{k+1}(B_{k+1}).$$

The conditions (8), (16) and (17) enable us to apply Lemma 4.3 and perturb φ_{i_k} to a unital *-homomorphism ψ_{i_k} satisfying (12) and (13) and

(18)
$$KK(\psi_{i_k}) = KK(\varphi_{i_k}).$$

if the algebras in \mathcal{C} are assumed to be KK-stable. Then we extend each ψ_{i_k} to a $C(U_{i_k})$ -linear *-homomorphism, $\psi_{i_k}: C(U_{i_k}) \otimes D_{i_k} \to A(U_{i_k})$ and define $\psi_k = \bigoplus_{i_k} \psi_{i_k}$. This completes the construction of (ψ_0, \ldots, ψ_n) . Condition (13) for k = 0 gives $\mathcal{F} \subset_{\varepsilon} \eta_0(B_0) = \eta_0(A(\psi_0, \ldots, \psi_n))$. Thus (ψ_0, \ldots, ψ_n) satisfies the conclusion of the theorem and $cat_{\mathcal{C}}(B_0) \leq n$.

Theorem 4.6. Let X be a finite dimensional compact metrizable space and let A be a separable unital C(X)-algebra the fibers of which are Kirchberg algebras. Let D be a unital KK-semiprojective Kirchberg algebra and suppose that there exists $\sigma \in KK(D,A)$ such that $\sigma_x \in KK(D,A(x))^{-1}$ for all $x \in X$. Then there is unital *-homomorphism $\varphi: D \to A$ such that $KK(\varphi) = \sigma$. Moreover, for any finite subset \mathcal{F} of A and any $\varepsilon > 0$, there is a unital n-fibered $\{D\}$ -morphism into A, (ψ_0,\ldots,ψ_n) , where $n \leq \dim(X)$, such that $\psi_i: C(Y_i) \otimes D \to A(Y_i)$ satisfy $KK(\psi_i) = KK(\pi_{Y_i}\widetilde{\varphi})$ for all $i = 0,\ldots,n$. Moreover if $\eta: A(\psi_0,\ldots,\psi_n) \to A$ is the corresponding induced map, then $\mathcal{F} \subset_{\varepsilon} \eta(A(\psi_0,\ldots,\psi_n))$, and $KK(\eta_x)$ is a KK-equivalence for each $x \in X$.

Proof. A is isomorphic to $A \otimes \mathcal{O}_{\infty}$ by [7] and [26], as explained in [14, Lemma 3.4]. Therefore σ lifts to a unital *-homomorphism $\varphi: D \to A$ by Theorem 3.1. Its C(X)-linear extension is denoted by $\widetilde{\varphi}$. We repeat the proof of Theorem 4.5 while using only $(\mathcal{F}_i, \varepsilon_i, D)$ -approximations of A provided by the second part of Lemma 4.4. The outcome will be a unital n-fibered $\{D\}$ -morphism into A, (ψ_0, \dots, ψ_n) such that $\mathcal{F} \subset_{\varepsilon} A(\psi_0, \dots, \psi_n)$. Moreover we can arrange that $KK(\psi_i) = KK(\pi_{Y_i}\widetilde{\varphi})$ for all $i = 0, \dots, n$, by (18), since $KK(\varphi_{i_k}) = KK(\pi_{U_{i_k}}\varphi)$ by Lemma 4.4. For each $x \in X$, $\eta_x = (\psi_i)_x$ for some i, and hence $KK(\eta_x) = KK(\varphi_x)$.

Remark 4.7. Let us point out that we can strengthen the conclusion of Theorems 4.5 and 4.6 as follows. Fix a metric d for the topology of X. Then we may arrange that there is a closed cover $\{Y'_0,...,Y'_n\}$ of X and a number $\ell>0$ such that $\{x:d(x,Y'_i)\leq\ell\}\subset Y_i$ for i=0,...,n. Indeed, when we choose the finite closed cover $\mathcal{U}=(U_i)_{i\in I}$ of X in the proof of Theorem 4.5 which can be partitioned into n+1 subsets $\mathcal{U}_0,\ldots,\mathcal{U}_n$ consisting of mutually disjoints elements, as given by [6, Lemma 3.2], and which refines all the covers $\mathcal{U}(\alpha_0),...,\mathcal{U}(\alpha_n)$ corresponding to $\alpha_0,...,\alpha_n$, we may assume that \mathcal{U} also refines the covers given by the interiors of the elements of $\mathcal{U}(\alpha_0),...,\mathcal{U}(\alpha_n)$. Since each U_i is compact and I is finite, there is $\ell>0$ such that if $V_i=\{x:d(x,U_i)\leq\ell\}$, then the cover $\mathcal{V}=(V_i)_{i\in I}$ refines all of $\mathcal{U}(\alpha_0),...,\mathcal{U}(\alpha_n)$ and moreover the elements of $\mathcal{V}_k=\{V_i:U_i\in\mathcal{U}_k\}$, are disjoint for each i=0,...,n. We shall use the cover \mathcal{V} rather than \mathcal{U} in the proof of the two theorems and observe that $Y'_k=\cup_{i_k\in I_k}U_{i_k}\subset\cup_{i_k\in I_k}V_{i_k}=Y_k$ has the desired property.

5. Representing C(X)-algebras as inductive limits

Theorem 4.5 separable produces exhaustive sequences for certain algebras C(X)-algebras. In this section we show how to pass from an exhaustive sequence to a nested exhaustive

sequence using semiprojectivity. The remainder of the paper does not depend on this section.

Proposition 5.1. Let X be a compact metrizable space and let A be a unital C(X)-algebra. Let C be a class of separable unital simple semiprojective C^* -algebras. Let (ψ_0, \ldots, ψ_n) be a unital n-fibered C-morphism into A, where $\psi_i : D_i \to A(Y_i)$. Let F be a finite subset of $A(\psi_0, \ldots, \psi_n)$ and let $\varepsilon > 0$. Then there are finite sets $G_i \subset D_i$, and numbers $\delta_i > 0$, $i = 0, \ldots, n$, such that for any unital C(X)-subalgebra $E \subset A$ which satisfies $\psi_i(G_i) \subset \delta_i$ $E(Y_i)$, $i = 0, \ldots, n$, there is a unital n-fibered morphism $(\psi'_0, \ldots, \psi'_n)$ into E, with $\psi'_i : D_i \to E(Y_i)$, and such that

- (i) $\|\psi_i(a) \psi_i'(a)\| < \varepsilon$ for all $a \in p_i(\mathcal{F})$ and all $i \in \{0, ..., n\}$, where $p_i : A(\psi_0, ..., \psi_n) \to D_i$ is the natural projection map,
 - (ii) $(\psi_j)_x^{-1}(\psi_i)_x = (\psi'_j)_x^{-1}(\psi'_i)_x$ for all $x \in Y_i \cap Y_j$ and $0 \le i \le j \le n$.

It follows that $A(\psi_0, \ldots, \psi_n) = A(\psi'_0, \ldots, \psi'_n)$ and $\|\eta(a) - \eta'(a)\| < \varepsilon$ for all $a \in \mathcal{F}$, where η and η' are the maps from $A(\psi_0, \ldots, \psi_n)$ to A, and respectively to E, induced by (ψ_0, \ldots, ψ_n) and $(\psi'_0, \ldots, \psi'_n)$.

Proof. We argue by induction on n. If n=0, the statement follows from Proposition 3.12. Assume now that the statement is true for n-1, and let \mathcal{F} and ε be given. The algebra D_0 is of the form $D_0 = \bigoplus_{i_0} C(U_{i_0}) \otimes D_{i_0}$, where we use the same notation as in the proof of Theorem 4.5. Let $D = \bigoplus_{i_0} D_{i_0}$. Since we work with morphisms on D_0 whose components are $C(U_{i_0})$ -linear, we may assume without any loss of generality, that $\mathcal{F}_0 := p_0(\mathcal{F}) \subset D$. Let \mathcal{G} and δ be given by applying Proposition 3.3 to the C*-algebra D, for the input data \mathcal{F}_0 and $\varepsilon/2$. We may assume that $\mathcal{F}_0 \subset \mathcal{G}$ and $\delta < \varepsilon$. We will use the notation from Definition 2.6. Set $B_1 = A(X_1)(\psi_1, \ldots, \psi_n)$ and let $\mathcal{H} \subset B_1$ be a finite set such that

(19)
$$\pi_{X_1}(\mathcal{F}) \subset \mathcal{H}$$
, and

(20)
$$\eta_1^{-1} \pi_{X_1 \cap Y_0}^{Y_0} \psi_0(\mathcal{G}) \subset \pi_{X_1 \cap Y_0}^{X_1}(\mathcal{H}).$$

Note that the existence of \mathcal{H} is assured, since the image of η_1 restricted to $X_1 \cap Y_0$ contains the restriction to the same set of $\psi_0(D_0)$, as a consequence of (3). Let (ψ_0, \ldots, ψ_n) and E be as above. Let $\mathcal{G}_1, \ldots, \mathcal{G}_n$ and $\delta_1, \ldots, \delta_n$ be given by the inductive assumption for n-1 applied to $A(X_1)$, (ψ_1, \ldots, ψ_n) , \mathcal{H} and $\delta/2$. After this preparation, we are ready to chose \mathcal{G}_0 and δ_0 . Specifically, they are given by Proposition 3.12 applied to D for the input data \mathcal{G} and $\delta/2$. We need to show that $\mathcal{G}_0, \mathcal{G}_1, \ldots, \mathcal{G}_n$ and $\delta_0, \delta_1, \ldots, \delta_n$ satisfy the statement. By the inductive assumption, there exists a unital (n-1)-fibered morphism $(\psi'_1, \ldots, \psi'_n)$ into $E(X_1)$, such that

- (a) $\|\psi_i(a) \psi_i'(a)\| < \delta/2 < \varepsilon$ for all $a \in p_i(\mathcal{H})$ and all $i \in \{1, \dots, n\}$
- (b) $(\psi_j)_x^{-1}(\psi_i)_x = (\psi_j')_x^{-1}(\psi_i')_x$ for all $x \in Y_i \cap Y_j$ and $1 \le i \le j$.
- (c) $\|\eta_1(a) \eta_1'(a)\| < \delta/2$ for all $a \in \mathcal{H}$.

It remains to construct $\psi'_0: D_0 \to E(Y_0)$ such that $\|\psi_0(a) - \psi'_0(a)\| < \varepsilon$ for all $a \in \mathcal{F}_0$ and such that (b) holds for i = 0 and $j \in \{1, \ldots, n\}$. The latter condition is readily seen to be equivalent to the equation $\eta'_1 \eta_1^{-1} \pi_0 \psi_0 = \pi_0 \psi'_0$, where π_0 denotes the restriction map

to $X_1 \cap Y_0$. The setup is illustrated by the following diagram:

$$B_{1} \xrightarrow{\pi} B_{1}(X_{1} \cap Y_{0}) \overset{\eta_{1}^{-1}\pi_{0}\psi_{0}}{\longleftarrow} D_{0}$$

$$\downarrow \eta'_{1} \qquad \qquad \downarrow \eta'_{1} \qquad \qquad \downarrow \psi'_{0}$$

$$E(X_{1}) \xrightarrow{\pi} E(X_{1} \cap Y_{0}) \overset{\pi_{0}}{\longleftarrow} E(Y_{0})$$

By assumption, $\psi_0(\mathcal{G}_0) \subset_{\delta_0} E(Y_0)$. By Proposition 3.12 there is a unital *-homomorphism $\gamma_0: D \to E(Y_0)$ with components $\gamma_{i_0}: D_{i_0} \to E(Y_{i_0})$ such that

(21)
$$\|\gamma_0(d) - \psi_0(d)\| < \delta/2$$

for all $d \in \mathcal{G}$. Let us verify that the $C(Y_0)$ -linear extension of γ_0 to D_0 is an approximate lifting of $\eta'_1\eta_1^{-1}\pi_0\psi_0$. If $d \in \mathcal{G}$, then by (20), $\eta_1^{-1}\pi_0\psi_0(d) = \pi_0(a)$, for some $a \in \mathcal{H}$. From (c) and (21) we have

$$\|\eta_1'\eta_1^{-1}\pi_0\psi_0(d) - \pi_0\gamma_0(d)\| \le \|\eta_1'\pi_0(a) - \eta_1\pi_0(a)\| + \|\pi_0\psi_0(d) - \pi_0\gamma_0(d)\| < \delta$$

for all $d \in \mathcal{G}$. By Proposition 3.3, there is a *-homomorphism $\psi'_0: D \to E(Y_0)$ such that $\pi_0 \psi'_0 = \eta'_1 \eta_1^{-1} \pi_0 \psi_0$ and $\|\psi'_0(c) - \gamma_0(c)\| < \varepsilon/2$ for all $c \in \mathcal{F}_0$. Since $\mathcal{F}_0 \subset \mathcal{G}$ and $\delta < \varepsilon$, by combining the last estimate with (21), we obtain $\|\psi_0(a) - \psi'_0(a)\| < \varepsilon$ for all $a \in \mathcal{F}_0$. \square

The following result gives an inductive limit representation for C(X)-algebras whose fibers are inductive limits of simple semiprojective C*-algebras. For example the fibers can be UHF-algebras or unital Kirchberg algebras D satisfying the UCT and such that $K_1(D)$ is torsion free. Indeed, by [33, Prop. 8.4.13], D can be written as the inductive limit of a sequence of unital Kirchberg algebras (D_n) with finitely generated K-theory groups and torsion free K_1 -groups. The algebras D_n are semiprojective by [36].

Theorem 5.2. Let C be a class of unital simple semiprojective C^* -algebras. Let X be a finite dimensional compact metrizable space and let A be a separable unital C(X)-algebra such that all its fibers admit exhaustive sequences consisting C*-algebras isomorphic to C^* -algebras in C. Then A is isomorphic to the inductive limit of a sequence of unital C(X)-algebras A_k such that $\operatorname{cat}_{\mathcal{C}}(A_k) \leq \dim(X)$.

Proof. By Theorem 4.5 and Proposition 5.1 we find a sequence of *n*-fibered morphisms into A, denoted $(\psi_0^{(k)},...,\psi_n^{(k)})$, with induced unital *-monomorphisms $\eta^{(k)}:A_k=A(\psi_0^{(k)},...,\psi_n^{(k)})\to A$ A with the following properties. There is a sequence of finite sets $\mathcal{F}_k \subset A_k$ and a sequence of C(X)-linear unital *-monomorphisms $\mu_k: A_k \to A_{k+1}$ such that

- (i) $\|\eta^{(k+1)}\mu_k(a) \eta^{(k)}(a)\| < 2^{-k}$ for all $a \in \mathcal{F}_k$ and all $k \ge 1$,
- (ii) $\mu_k(\mathcal{F}_k) \subset \mathcal{F}_{k+1}$ for all $k \geq 1$,
- (iii) $\bigcup_{j=k}^{\infty} (\mu_j \circ \cdots \circ \mu_k)^{-1}(\mathcal{F}_j)$ is dense in A_k and $\bigcup_{j=k}^{\infty} \eta^{(j)}(\mathcal{F}_j)$ is dense in A for all $k \geq 1$.

Arguing as in the proof of [33, Prop. 2.3.2], one verifies that

$$\varphi_k(a) = \lim_{j \to \infty} \eta^{(j)} \circ (\mu_j \circ \cdots \circ \mu_k)(a)$$

defines a sequence of *-monomorphisms $\varphi_k:A_k\to A$ such that $\varphi_{k+1}\mu_k=\varphi_k$ and the induced map $\varphi: \underline{\lim}_k (A_k, \mu_k) \to A$ is an isomorphism of C(X)-algebras.

6. When is a C(X)-algebra (locally) trivial

For unital C*-algebras A, B we endow the space $\operatorname{Hom}(A, B)$ of unital *-homomorphisms with the topology of the point-norm convergence. If X is a compact metric space, then $\operatorname{Hom}(A,C(X)\otimes B)$ is homeomorphic to the space of continuous maps from X to $\operatorname{Hom}(A,B)$ endowed with the compact-open topology. We shall identify a *-homomorphism $\varphi\in \operatorname{Hom}(A,C(X)\otimes B)$ with the corresponding continuous map $X\to\operatorname{Hom}(A,B), \ x\mapsto \varphi_x,$ $\varphi_x(a)=\varphi(a)(x)$ for all $x\in X$ and $a\in A$. Let D be a C*-algebra and let A be a C(X)-algebra. If $\alpha:D\to A$ is a *-homomorphism, let us denote by $\widetilde{\alpha}:C(X)\otimes D\to A$ its (unique) C(X)-linear extension and write $\widetilde{\alpha}\in\operatorname{Hom}_{C(X)}(C(X)\otimes D,A)$. For C*-algebras D,B we shall make without further comment the following identifications

$$\operatorname{Hom}_{C(X)}(C(X) \otimes D, C(X) \otimes B) \equiv \operatorname{Hom}(D, C(X) \otimes B) \equiv C(X, \operatorname{Hom}(D, B)).$$

For a unital C*-algebra D we denote by $\operatorname{End}(D)$ the unital *-endomorphisms of D and by $\operatorname{End}(D)^0$ the path component of id_D in $\operatorname{End}(D)$. Let us consider

$$\operatorname{End}(D)^* = \{ \gamma \in \operatorname{End}(D) : KK(\gamma) \in KK(D, D)^{-1} \}.$$

Proposition 6.1. Let X be a compact metrizable space and let D be a unital KKsemiprojective Kirchberg algebra. Let $\alpha: D \to C(X) \otimes D$ be a unital *-homomorphism
such that $KK(\alpha_x) \in KK(D,D)^{-1}$ for all $x \in X$. Then there is a unital *-homomorphism $\Phi: D \to C(X \times [0,1]) \otimes D$ such that $\Phi_{(x,0)} = \alpha_x$ and $\Phi_{(x,t)} \in \operatorname{Aut}(D)$ for all $x \in X$ and $t \in (0,1]$. Moreover, if $\Phi_1: D \to C(X) \otimes D$ is defined by $\Phi_1(d)(x) = \Phi_{(x,1)}(d)$, for all $d \in D$ and $x \in X$, then $\alpha \approx_{uh} \Phi_1$.

Proof. Since X is a metrizable compact space, X is homomeorphic to the projective limit of a sequence of finite simplicial complexes (X_i) . Since D is KK-semiprojective, $KK(D, \lim C(X_i) \otimes D) = KK(D, C(X) \otimes D)$ by Theorem 3.9. By Theorem 3.1, there is i and a unital *-homomorphism $\varphi:D\to C(X_i)\otimes D$ whose KK-class maps onto $KK(\alpha) \in KK(D, C(X) \otimes D)$. To summarize, we have found a finite simplicial complex Y, a continuous map $h: X \to Y$ and a continuous map $y \mapsto \varphi_y \in \operatorname{End}(D)$, defined on Y, such that the unital *-homomorphism $h^*\varphi:D\to C(X)\otimes D$ corresponding to the continuous map $x \mapsto \varphi_{h(x)}$ satisfies $KK(h^*\varphi) = KK(\alpha)$. We may arrange that h(X)intersects all the path components of Y, by dropping the path components which are not intersected. Since $\alpha_x \in \text{End}(D)^*$ by hypothesis, and since $KK(\alpha_x) = KK(\varphi_{h(x)})$, we infer that $\varphi_y \in \text{End}(D)^*$ for all $y \in Y$. We shall find two continuous maps $y \mapsto \psi_y \in \text{End}(D)^*$, $y \mapsto \theta_y \in \operatorname{Aut}(D)$ defined on Y, such that the maps $y \mapsto \psi_y \theta_y \varphi_y$ and $y \mapsto \theta_y \varphi_y \psi_y$ are homotopic to the constant function that maps Y to id_D . It is clear that it suffices to deal with each path component of Y separately, so that for this part of the proof we may assume that Y is connected. Fix a point $z \in Y$. By [33, Thm. 8.4.1] there is $\nu \in \operatorname{Aut}(D)$ such that $KK(\nu^{-1}) = KK(\varphi_z)$ and hence $KK(\nu\varphi_z) = KK(\mathrm{id}_D)$. By Theorem 3.1, there is a unitary $u \in D$ such that $u\nu\alpha_z(-)u^*$ is homotopic to id_D . Let us set $\theta = u\nu(-)u^* \in \mathrm{Aut}(D)$ and observe that $\theta \varphi_z \in \text{End}(D)^0$. Since Y is path connected, it follows that the entire image of the map $y \mapsto \theta \varphi_y$ is contained in $\operatorname{End}(D)^0$. Since $\operatorname{End}(D)^0$ is a path connected H-space with unit element, it follows by [38, Thm. 2.4, p462] that the homotopy classes $[Y, \text{End}(D)^0]$ (with no condition on basepoints, since the action of the fundamental group $\pi_1(\operatorname{End}(D)^0, \operatorname{id}_D)$ is trivial by [19, p422]) form a group under the natural multiplication.

This proves the existence of the maps ψ and θ ; θ is constant on each path component of Y. Composing with h we obtain the maps $x \mapsto \theta_{h(x)}\varphi_{h(x)}\psi_{h(x)}$ and $x \mapsto \psi_{h(x)}\theta_{h(x)}\varphi_{h(x)}$ are homotopic to the constant function that maps X to id_D . By the homotopy invariance of KK-theory we obtain that

$$KK(\widetilde{h^*\theta}\widetilde{h^*\varphi}h^*\psi) = KK(\widetilde{h^*\psi}\widetilde{h^*\theta}h^*\varphi) = KK(\iota_D),$$

where $\widetilde{h^*\theta}$, $\widetilde{h^*\varphi}$ and $\widetilde{h^*\psi}$ denote the C(X)-linear extensions of the corresponding maps and $\iota_D: D \to C(X) \otimes D$ is defined by $\iota_D(d) = d$ for all $d \in D$. Set $\Theta = h^*\theta$ and $\Psi = h^*\psi$ and recall that $KK(h^*\varphi) = KK(\alpha)$ and hence $KK(\widetilde{h^*\varphi}) = KK(\widetilde{\alpha})$. Therefore

$$KK(\widetilde{\Theta}\widetilde{\alpha}\Psi) = KK(\widetilde{\Psi}\widetilde{\Theta}\alpha) = KK(\iota_D).$$

By Thm. 3.1, $\widetilde{\Theta}\widetilde{\alpha}\Psi \approx_u \iota_D$ and $\widetilde{\Psi}\widetilde{\Theta}\alpha \approx_u \iota_D$. Therefore $\widetilde{\Theta}\widetilde{\alpha}\widetilde{\Psi} \approx_u \operatorname{id}_{C(X)\otimes D}$ and $\widetilde{\Psi}\widetilde{\Theta}\widetilde{\alpha} \approx_u \operatorname{id}_{C(X)\otimes D}$. By [33, Cor. 2.3.4], there is an isomorphism $\Omega: C(X)\otimes D\to C(X)\otimes D$ such that $\Omega\approx_u\widetilde{\Theta}\widetilde{\alpha}$. Hence, if we set $\Gamma=\widetilde{\Theta}^{-1}\Omega$, then $\Gamma\approx_u\widetilde{\alpha}$. In particular Γ is C(X)-linear and $\Gamma_x\in\operatorname{Aut}(D)$ for all $x\in X$. Replacing Γ by $u\Gamma(\cdot)u^*$ for some unitary $u\in C(X)\otimes D$ we can arrange that $\Gamma|_D$ is close to α . Therefore $KK(\Gamma|_D)=KK(\alpha)$ since D is KK-stable. By Thm. 3.1 there is a continuous map $(0,1]\to U(C(X)\otimes D)$, $t\mapsto u_t$, with the property that

$$\lim_{t\to 0} \|u_t \Gamma(a) u_t^* - \alpha(a)\| = 0, \text{ for all } a \in D.$$

Therefore the equation

$$\Phi(x,t) = \begin{cases} u_t(x)\Gamma_x u_t(x)^*, & \text{if } t \in (0,1], \\ \alpha_x, & \text{if } t = 0, \end{cases}$$

defines a continuous map $\Phi: X \times [0,1] \to \operatorname{End}(D)^*$ which extends α and such that $\Phi(X \times (0,1]) \subset \operatorname{Aut}(D)$. Since α is homotopic to Φ_1 , we have that $\alpha \approx_{uh} \Phi_1$ by Theorem 3.1. \square

Proposition 6.2. Let X be a compact metrizable space and let D be a unital KKsemiprojective Kirchberg algebra. Let Y be a closed subset of X. Assume that a map $\gamma: Y \to \operatorname{End}(D)^*$ extends to a continuous map $\alpha: X \to \operatorname{End}(D)^*$. Then there is a
continuous extension $\eta: X \to \operatorname{End}(D)^*$ of γ , such that $\eta(X \setminus Y) \subset \operatorname{Aut}(D)$.

Proof. Since the map $x \to \alpha_x$ takes values in $\operatorname{End}(D)^*$, by Proposition 6.1 there exists a continuous map $\Phi: X \times [0,1] \to \operatorname{End}(D)^*$ which extends α and such that $\Phi(X \times (0,1]) \subset \operatorname{Aut}(D)$. Let d be a metric for the topology of X such that $\operatorname{diam}(X) \leq 1$. The equation $\eta(x) = \Phi(x, d(x, Y))$ defines a map on X that satisfies the conclusion of the proposition.

Proposition 6.3. Let X be a compact metrizable space and let D be a unital KKsemiprojective Kirchberg algebra. Let Y be a closed subset of X. Let $\alpha: Y \times [0,1] \cup X \times \{0\} \to \operatorname{End}(D)$ be a continuous map such that $\alpha_{(x,0)} \in \operatorname{End}(D)^*$ for all $x \in X$.
Suppose that there is an open set V in X which contains Y and such that α extends to a continuous map $\alpha_V: V \times [0,1] \cup X \times \{0\} \to \operatorname{End}(D)$. Then there is $\eta: X \times [0,1] \to \operatorname{End}(D)^*$ such that η extends α and $\eta_{(x,t)} \in \operatorname{Aut}(D)$ for all $x \in X \setminus Y$ and $t \in (0,1]$.

Proof. By Proposition 6.2 it suffices to find a continuous map $\widehat{\alpha}: X \times [0,1] \to \operatorname{End}(D)^*$ which extends α . Fix a metric d for the topology of X and define $\lambda: X \to [0,1]$ by $\lambda(x) = d(x, X \setminus V) \left(d(x, X \setminus V) + d(x, Y) \right)^{-1}$. Let us define $\widehat{\alpha}: X \times [0,1] \to \operatorname{End}(D)^*$ by $\widehat{\alpha}_{(x,t)} = \alpha_U(x, \lambda(x)t)$ and observe that $\widehat{\alpha}$ extends α . Finally, since $\widehat{\alpha}_{(x,t)}$ is homotopic to $\widehat{\alpha}_{(x,0)} = \alpha_{(x,0)}$, we conclude that the image of $\widehat{\alpha}$ in contained in $\operatorname{End}(D)^*$.

Proposition 6.4. Let X be a compact metrizable space and let D be a unital KKsemiprojective Kirchberg algebra. Let A be a separable unital C(X)-algebra which locally
isomorphic to $C(X) \otimes D$. Suppose that there is a unital *-homomorphism $\varphi : D \to A$ such that $KK(\varphi_x) \in KK(D, A(x))^{-1}$ for all $x \in X$. Then there is a unital isomorphism
of C(X)-algebras $\psi : C(X) \otimes D \to A$ such that ψ is homotopic to $\widetilde{\varphi}$, the C(X)-linear
extension of φ .

Proof. Let d be a metric for the topology of X. We denote by B(x,r) the closed ball of radius r centered at x. Using the compactness of X and the local triviality of A, we find points $x_1, \ldots, x_m \in X$ and numbers $r_1, \ldots, r_m > 0$ such that if we set $V_i = B(x_i, 2r_i)$, then there are $C(V_i)$ -linear isomorphisms $\nu_i : A(V_i) \to C(V_i) \otimes D$, $i = 1, \ldots, m$. The morphism $\varphi_i = \nu_i \pi_{V_i} \varphi : C(V_i) \otimes D \to C(V_i) \otimes D$ corresponds a map $\varphi_i : V_i \to \operatorname{End}(D)$ which takes values in $\operatorname{End}(D)^*$. For $i, k \in \{1, \ldots, m\}$ let us consider the sets: $V_i^{(k)} = B(x_i, 2r_i - r_i(k-1)/m)$,

$$S_i = V_1^{(i+1)} \cup V_2^{(i)} \cup \dots \cup V_i^{(2)},$$

$$T_i = V_1^{(i)} \cup V_2^{(i-1)} \cup \dots \cup V_i^{(1)}.$$

Let us observe that

$$V_i^{(n)} \subset V_i^{(n-1)} \subset \cdots \subset V_i^{(1)} = V_i,$$

$$S_i \subset T_i, \quad S_i \cup V_{i+1} = T_{i+1},$$

that T_i is a neighborhood of S_i and that $T_n = X$. This array of sets is needed in order to assure the existence of the local extension required by Proposition 6.3. We shall construct inductively a sequence of homotopies $H_i: D \to A(T_i) \otimes C[0,1]$, with components $(H_i)_{(x,t)}:$ $D \to A(x)$, such that the restriction of $H_{i+1}: D \to A(T_{i+1}) \otimes C[0,1]$ to S_i is equal to the restriction of H_i to S_i , i.e. $(H_{i+1})_{(x,t)} = (H_i)_{(x,t)}$ for all $x \in S_i$ and $t \in [0,1]$. Moreover, we shall also have that $(H_i)_{(x,0)} = \varphi_x$ and that $(H_i)_{(x,1)}$ is an isomorphism for each $x \in T_i$, $i=0,\ldots,m$. We start with i=1 and regard $\varphi_1=\nu_1\pi_{V_1}\varphi:D\to C(V_1)\otimes D$ as a continuous map $x \to (\varphi_1)_x = (\nu_1)_x \varphi_x \in \operatorname{End}(D)^*$ defined on V_1 . By Proposition 6.2 applied for $Y = V_1$, $X = V_1 \times [0,1]$, $\gamma = \varphi_1$ and $\alpha_{(x,t)} = (\varphi_1)_x$ there is a homotopy $\eta_1: V_1 \times [0,1] \to End(D)^*$ such that $(\eta_1)_{(x,0)} = (\varphi_1)_x$ and $(\eta_1)_{(x,1)} \in Aut(D)$. We set $(H_1)_{(x,t)} = (\nu_1)_x^{-1} \circ (\eta_1)_{(x,t)}$. Suppose now that H_1, \ldots, H_i were constructed. We shall construct H_{i+1} by restricting H_i to $S_i \times [0,1]$, and then by extending this restriction to $T_{i+1} \times [0,1] = (S_i \cup V_{i+1}) \times [0,1]$. Clearly it suffices to extend H_i from $(S_i \cap V_{i+1}) \times [0,1]$ to $V_{i+1} \times [0,1]$ and then set $(H_{i+1})_{(x,t)} = (H_i)_{(x,t)}$ for $x \in S_i \setminus V_{i+1}$ and $t \in [0,1]$. To this purpose we define a continuous map $\alpha: (T_i \cap V_{i+1}) \times [0,1] \cup V_{i+1} \times \{0\} \to \operatorname{End}(D)$ by $\alpha_{(x,t)} = (\nu_{i+1})_x \circ (H_i)_{(x,t)}$ for $x \in T_i \cap V_{i+1}$ and $t \in [0,1]$ and $\alpha_{(x,0)} = (\varphi_{i+1})_x$ for $x \in V_{i+1}$. Since $T_i \cap V_{i+1}$ is a neighborhood of $S_i \cap V_{i+1}$ in V_{i+1} and since $(\varphi_{i+1})_x \in \text{End}(D)^*$ for all $x \in V_{i+1}$, we can apply Proposition 6.3 to obtain a continuous map $\eta_{i+1}: V_{i+1} \times [0,1] \to V_{i+1}$

End(D)* such that η_{i+1} extends the restriction of α to $(S_i \cap V_{i+1}) \times [0,1] \cup V_{i+1} \times \{0\}$ and $(\eta_{i+1})_{(x,1)} \in \operatorname{Aut}(D)$ for all $x \in V_{i+1}$. We conclude the construction of H_{i+1} by defining $(H_{i+1})_{(x,t)} = (\nu_{i+1})_x^{-1} \circ (\eta_{i+1})_{(x,t)}$ for $x \in V_{i+1}$ and $t \in [0,1]$. Finally we observe that since $T_n = X$, $H_n : D \to C[0,1] \otimes A$ is a homotopy from φ to some unital *-homomorphism ψ such that $\psi_x \in \operatorname{Aut}(D)$ for all $x \in X$. Therefore $\widetilde{\psi} : C(X) \otimes D \to A$ is an isomorphism of C(X)-algebras homotopic to $\widetilde{\varphi}$.

Lemma 6.5. Let X be a compact metrizable space and let D be a unital KK-semiprojective Kirchberg algebra. Let Y, Z be closed subsets of X such that $X = Y \cup Z$ and $Y \cap Z \neq \emptyset$. Let $\gamma: D \to C(Y \cap Z) \otimes D$ be a unital *-homomorphism. Assume that there is a unital *-homomorphism $\alpha: D \to C(Y) \otimes D$ such that $\alpha_x \in KK(D,D)^{-1}$ for all $x \in Y$ and such that $\alpha_x = \gamma_x$ for all $x \in Y \cap Z$. Then the pullback $C(Y) \otimes D \oplus_{\pi_{Y \cap Z}, \widetilde{\gamma}\pi_{Y \cap Z}} C(Z) \otimes D$ is isomorphic to $C(X) \otimes D$.

Proof. By Prop. 6.2, there is a unital *-homomorphism $\eta: D \to C(Y) \otimes D$ such that $\eta_x = \gamma_x$ for $x \in Y \cap Z$ and such that $\eta_x \in \operatorname{Aut}(D)$ for $x \in Y \setminus Z$. One checks immediately that the pair $\widetilde{\eta}$, $\operatorname{id}_{C(Z)\otimes D}$ defines a C(X)-linear isomorphism $\theta: C(X) \otimes D = C(Y) \otimes D \oplus_{\pi_{Y \cap Z}, \pi_{Y \cap Z}} C(Z) \otimes D \to C(Y) \otimes D \oplus_{\pi_{Y \cap Z}, \widetilde{\gamma}\pi_{Y \cap Z}} C(Z) \otimes D$:

$$C(Y) \otimes D \xrightarrow{\pi} C(Y \cap Z) \otimes D \xleftarrow{\pi} C(Z) \otimes D$$

$$\tilde{\eta} \downarrow \qquad \qquad \qquad |\tilde{\gamma} \qquad \qquad |$$

$$C(Y) \otimes D \xrightarrow{\pi} C(Y \cap Z) \otimes D \xleftarrow{\tilde{\gamma}\pi} C(Z) \otimes D$$

Lemma 6.6. Let X be a compact metrizable space and let D be a unital KK-semiprojective Kirchberg algebra. Let Y,Y' and Z,Z' be closed subsets of X such that Y' is a neighborhood of Y, Z' is a neighborhood of Z, $X = Y \cup Z$ and $Y \cap Z \neq \emptyset$. Let A be a unital separable C(X)-algebra. Let B be a unital C(Y')-algebra locally isomorphic to $C(Y') \otimes D$ and let E be a unital C(Z')-algebra locally isomorphic to $C(Z') \otimes D$. Let $\varphi: B \to A(Y')$ and $\psi: E \to A(Z')$ unital morphisms of C(X)-algebras such that $\psi_x(E(x)) \subset \varphi_x(B(x))$ for all $x \in Y' \cap Z'$. Suppose that $KK(\varphi_x) \in KK(B(x), A(x))^{-1}$ and that $KK(\psi_x) \in KK(E(x), A(x))^{-1}$ for all $x \in Y' \cap Z'$. Then $B(X) \oplus_{\pi_{Y \cap Z} \varphi, \pi_{Y \cap Z} \psi} E(Y)$ is locally isomorphic to $C(X) \otimes D$. Moreover, if $\chi: B(X) \oplus_{\pi_{Y \cap Z} \varphi, \pi_{Y \cap Z} \psi} E(Y) \to A$ is the morphism induced by the pair φ, ψ , then $KK(\chi_x)$ is a KK-equivalence for all $x \in X$.

Proof. Since we are dealing with a local property, we may assume that $B = C(Y') \otimes D$ and $E = C(Z') \otimes D$. If $\alpha : Y' \cap Z' \to \operatorname{End}(D)$ is defined by $\alpha_x = \varphi_x^{-1} \psi_x$, then $\alpha_x \in \operatorname{End}(D)^*$. The restriction of α to $Y \cap Z$ is denoted by γ . Let us denote by H the C(X)-algebra

$$C(Y) \oplus_{\pi\varphi,\pi\psi} C(Z) \cong C(Y) \oplus_{\pi,\pi\widetilde{\gamma}} C(Z),$$

(where π stands for $\pi_{Y \cap Z}$). We must show that H is locally trivial. Let $x \in X$. If $x \notin Y \cap Z$, then there is a closed neighborhood U of x which does not intersect $Y \cap Z$, and hence the restriction of H to U is isomorphic to $C(U) \otimes D$, as it follows immediately from the definition of H. It remains to consider the case when $x \in Y \cap Z$. Let us observe that

 $V = Y' \cap Z'$ is a neighborhood of $Y \cap Z$ in X. The restriction of H to V is isomorphic to

$$C(Y \cap V) \oplus_{\pi\varphi,\pi\psi} C(Z \cap V) \cong C(Y \cap V) \oplus_{\pi,\pi\widetilde{\gamma}} C(Z \cap V),$$

(where π stands for $\pi_{Y \cap Z \cap V}$). Since $\gamma : Y \cap Z \cap V \to \operatorname{End}(D)^*$ admits a continuous extension $\alpha : Y \cap V \to \operatorname{End}(D)^*$, it follows that H(V) is isomorphic to $C(V) \otimes D$ by Lemma 6.5. Since χ_x identifies with φ_x if $x \in X \setminus Z$ and with ψ_x if $x \in Z$, $KK(\chi_x)$ is a KK-equivalence.

Proposition 6.7. Let X, A, D and σ be as in Theorem 4.6. For any finite subset \mathcal{F} of A and any $\varepsilon > 0$ there is a unital C(X)-algebra B which is locally isomorphic to $C(X) \otimes D$ and there exists a unital C(X)-linear *-monomorphism $\eta : B \to A$ such that $\mathcal{F} \subset_{\varepsilon} \eta(B)$ and $KK(\eta_x) \in KK(B(x), A(x))^{-1}$ for all $x \in X$.

Proof. Let φ and $\psi_i: C(Y_i) \to A(Y_i), i = 0, ..., n$ be as in the conclusion of Theorem 4.6, but strengthen as in Remark 4.7. In particular we have

(22)
$$\pi_{Y_i}(\mathcal{F}) \subset_{\varepsilon} \psi_i(C(Y_i) \otimes D),$$

and $KK((\psi_i)_x) = KK(\varphi_x) \in KK(D, A(x))^{-1}$ for all $x \in Y_i$ and i = 0, ..., n. By Remark 4.7, for each $i \in \{0, ..., n\}$, we can find closed subsets $Y_i^{(n)} \subset Y_i^{(n-1)} \subset ... \subset Y_i^{(0)} = Y_i$ such that $Y_i^{(j-1)}$ is a neighborhood of $Y_i^{(j)}$ for all j = 1, ..., n, and such that the family $Y_0^{(n)}, ..., Y_n^{(n)}$ covers X. Let $\pi_i^{(k)} : A(X) \to A(Y_{i-1}^{(k)} \cap (Y_i^{(k)} \cup ... \cup Y_n^{(k)}))$ be the restriction map. Define

$$B_{n-1} = C(Y_n^{(1)}) \otimes D \oplus_{\pi_n^{(1)} \psi_n, \pi_n^{(1)} \psi_{n-1}} C(Y_{n-1}^{(1)}) \otimes D.$$

By Lemma 6.6, B_{n-1} is locally isomorphic to $C(Y_n^{(1)} \cup Y_{n-1}^{(1)}) \otimes D$ since ψ_n extends to $C(Y_n^{(0)}) \otimes D$, ψ_{n-1} extends to $C(Y_{n-1}^{(0)}) \otimes D$, the fiberwise components of these maps are KK-equivalences and $Y_i^{(0)}$ is a closed neighborhood of $Y_i^{(1)}$. The map $\eta_{n-1}: B_{n-1} \to A(Y_n^{(1)} \cup Y_{n-1}^{(1)})$ induced by the pair ψ_n, ψ_{n-1} is such that $KK((\eta_{n-1})_x)$ is a KK-equivalence for each $x \in Y_n^{(1)} \cup Y_{n-1}^{(1)}$. Moreover

(23)
$$\pi_{Y_n^{(1)} \cup Y_{n-1}^{(1)}}(\mathcal{F}) \subset_{\varepsilon} \eta_{n-1}(B_{n-1}),$$

by (22) and Lemma 2.1(iv). By applying Lemma 6.6 again, a similar reasoning, shows that if we define

$$B_{n-2} = B_{n-1}(Y_n^{(2)} \cup Y_{n-1}^{(2)}) \oplus_{\pi_{n-1}^{(2)} \eta_{n-1}, \pi_{n-1}^{(2)} \psi_{n-2}} C(Y_{n-2}^{(2)}) \otimes D,$$

then B_{n-2} is locally isomorphic to $C(Y_n^{(2)} \cup Y_{n-1}^{(2)} \cup Y_{n-2}^{(2)}) \otimes D$, (since both η_{n-1} and ψ_{n-2} extend to locally trivial fields supported on larger neighborhoods) and the map $\eta_{n-2}: B_{n-2} \to A(Y_n^{(2)} \cup Y_{n-1}^{(2)} \cup Y_{n-2}^{(2)})$, induced by the pair η_{n-1}, ψ_{n-2} is such that its fiberwise components are KK-equivalences. Moreover $\pi_{Y_n^{(2)} \cup Y_{n-1}^{(2)} \cup Y_{n-2}^{(2)}}(\mathcal{F}) \subset_{\varepsilon} \eta_{n-2}(B_{n-2})$ by (22), (23) and Lemma 2.1(iv). Arguing similarly, after n-steps we obtain a unital C(X)-algebra B_0 which is locally isomorphic to $C(X) \otimes D$ and a unital C(X)-linear map $\eta_0: B_0 \hookrightarrow A(Y_n^{(0)} \cup ... \cup Y_0^{(0)}) = A(X)$ such that $\mathcal{F} \subset_{\varepsilon} \eta_0(B_0)$ and $KK((\eta_0)_x) \in KK(B_0(x), A(x))^{-1}$ for all $x \in X$.

Proof of Theorem 1.2.

By Theorem 4.6 there is a unital *-homomorphism $\varphi: D \to A$ such that $KK(\varphi) = \sigma$. Since A is separable, by Proposition 6.4 there is also a sequence of unital C(X)-algebras $(A_k)_{k=1}^{\infty}$ and a sequence of unital C(X)-linear *-monomorphisms $(\eta^{(k)})_{k=1}^{\infty}, \, \eta^{(k)} : A_k \to A$, such that A_k is locally isomorphic to $C(X) \otimes D$, $KK(\eta_x^{(k)})$ is a KK-equivalence for each $x \in X$ and $(\eta^{(k)}(A_k))_{k=1}^{\infty}$ is an exhaustive sequence of C(X)-subalgebras of A. Since D is weakly semiprojective and KK-stable, after passing to a subsequence of $(A_k)_{k=1}^{\infty}$ if necessary, we find unital *-homomorphisms $\varphi^{(k)}: D \to A_k$ such that $\eta^{(k)}\varphi^{(k)}$ is close to φ and hence $KK(\eta^{(k)}\varphi^{(k)}) = KK(\varphi)$ for all $k \geq 1$. Since both $KK(\eta_x^{(k)})$ and $KK(\varphi_x)$ are KK-equivalences, we deduce that $KK(\varphi_x^{(k)}) \in KK(D, A_k(x))^{-1}$ for all $x \in X$. Let us set $B = C(X) \otimes D$. Since A_k is locally isomorphic to B by Proposition 6.7, we may apply Proposition 6.4 to find an isomorphism of C(X)-algebras $\Phi^{(k)}: B \to A_k$ whose restriction to D is homotopic to $\varphi^{(k)}$. Therefore if we set $\theta^{(k)} = \eta^{(k)} \Phi^{(k)}$, then $\theta^{(k)}$ is a unital C(X)linear *-monomorphism from B to A such that $KK(\theta^{(k)}) = KK(\widetilde{\varphi})$ and $(\theta^{(k)}(B))_{k=1}^{\infty}$ is an exhaustive sequence of C(X)-subalgebras of A. Using again the weak semiprojectivity and the KK-stability of D, after passing to a subsequence of $(\theta^{(k)})_{k=1}^{\infty}$ we construct a sequence of finite sets $\mathcal{F}_k \subset B$ and a sequence of C(X)-linear unital *-monomorphisms $\mu_k: B \to B$ such that

- (iii) $\mu_k(\mathcal{F}_k) \subset \mathcal{F}_{k+1}$ for all $k \geq 1$, (iv) $\bigcup_{j=k}^{\infty} (\mu_j \circ \cdots \circ \mu_k)^{-1}(\mathcal{F}_j)$ is dense in B and $\bigcup_{j=k}^{\infty} \theta^{(j)}(\mathcal{F}_j)$ is dense in A for all $k \geq 1$.

Arguing as in the proof of [33, Prop. 2.3.2], one verifies that

$$\Delta_k(a) = \lim_{j \to \infty} \theta^{(j)} \circ (\mu_j \circ \cdots \circ \mu_k)(a)$$

defines a sequence of *-monomorphisms $\Delta_k: A_k \to A$ such that $\Delta_{k+1}\mu_k = \Delta_k$ and the induced map $\Delta: \underline{\lim}_k(B,\mu_k) \to A$ is an isomorphism of C(X)-algebras. Let us show that $\lim_{k} (B, \mu_k)$ is isomorphic to B. To this purpose, in view of Elliott's intertwining argument, it suffices to show that each map μ_k is approximately unitarily equivalent to a C(X)-linear automorphism of B. Since each $KK(\theta_x^{(k)}) = KK(\varphi_x)$ for all $x \in X$ and since φ_x is a KK-equivalence, we deduce from (i) that $KK((\mu_k)_x) = KK(\mathrm{id}_D)$ for each $x \in X$. By Proposition 6.1, this property implies that each map μ_k is approximately unitarily equivalent to a C(X)-linear automorphism of B. We have a found an isomorphism of C(X)-algebras $\Delta: B \to A$. Let us show that we can arrange that $KK(\Delta) = KK(\widetilde{\varphi})$. Since $KK((\Delta^{-1}\varphi)_x) \in KK(D,D)^{-1}$, we can apply Proposition 6.1 to find $\Phi_1 \in \operatorname{Aut}_{C(X)}(B)$ such that $KK(\Phi_1) = KK(\Delta^{-1}\widetilde{\varphi})$. Then $\Phi = \Delta\Phi_1 : B \to A$ is an isomorphism such that $KK(\Phi) = KK(\widetilde{\varphi})$.

Proof of Theorem 1.3. Since D satisfies the UCT, θ lifts to some $\sigma \in KK(D,A)$. Since $K_*(\sigma_x) = K_*(\pi_x)\theta = \theta_x$ is bijective and since A(x) satisfies the UCT, it follows that $\sigma_x \in KK(D, A(x))^{-1}$ by [34]. We conclude by applying Theorem 1.2.

Theorem 6.8. Let X be a finite dimensional compact metrizable space, and let A be a separable unital C(X)-algebra with all fibers isomorphic to the Cuntz algebra \mathcal{O}_{∞} . Then $A \cong C(X) \otimes \mathcal{O}_{\infty}$.

Proof. It is known that \mathcal{O}_{∞} is semiprojective and it satisfies the UCT. Moreover $K_0(\mathcal{O}_{\infty}) \cong \mathbb{Z}$ is generated by the class of $1_{\mathcal{O}_{\infty}}$ and $K_1(\mathcal{O}_{\infty}) = 0$. Therefore the morphism $\theta : K_0(\mathcal{O}_{\infty}) \to K_0(A)$ defined by $\theta(k[1_{\mathcal{O}_{\infty}}]) = k[1_A]$ satisfies the assumptions of Theorem 1.3.

Theorem 6.9. Any separable unital C(X)-algebra A over a finite dimensional metrizable compact space with fibers isomorphic to a fixed Cuntz algebra \mathcal{O}_n is locally trivial. A is isomorphic to $C(X) \otimes \mathcal{O}_n$ if and only if $(n-1)[1_A] = 0$ in $K_0(A)$. This is always the case if n = 2.

Proof. We prove first the second part of the theorem. One implication follows easily since $(n-1)K_0(C(X)\otimes \mathcal{O}_n)=0$. Conversely, assume that $(n-1)[1_A]=0$. It is known that \mathcal{O}_n is semiprojective and it satisfies the UCT. Moreover $K_0(\mathcal{O}_n)\cong \mathbb{Z}/(n-1)\mathbb{Z}$ is generated by the class of $1_{\mathcal{O}_n}$ and $K_1(\mathcal{O}_\infty)=0$. Thus there is a morphism of groups $\theta:K_0(\mathcal{O}_n)\to K_0(A)$ which maps $[1_{\mathcal{O}_n}]$ to $[1_A]$ and which satisfies the assumptions of Theorem 1.3. Therefore $A\cong C(X)\otimes \mathcal{O}_n$. By the second part of the theorem, in order to prove the first part, it suffices to show that for any $x\in X$ there is a closed neighborhood V of x such that $(n-1)[1_{A(V)}]=0$ in $K_0(A(V))$. Let $V_k=\{y\in X:d(y,x)\leq 1/k\}$. Then $K_0(\mathcal{O}_n)\cong K_0(A(x))\cong \varinjlim_k K_0(A(V_k))$, and hence $(n-1)[1_{A(V_k)}]=0$ for some k and hence $A(V_k)\cong C(V_k)\otimes \mathcal{O}_n$.

It remains to show that if n=2 then we always have $[1_A]=0$ in $K_0(A)$. By what was already proven we know that A is locally isomorphic to $C(X)\otimes \mathcal{O}_2$. It follows that $K_0(A)=0$ by the Meyer-Vietoris sequence.

As a corollary of Theorem 6.8 we have that $[X, \operatorname{Aut}(\mathcal{O}_{\infty})]$ reduces to a point. Let v_1, \ldots, v_n be the canonical generators of \mathcal{O}_n , $2 \leq n < \infty$. The homotopy groups of the endomorphisms of the stable Cuntz-Krieger algebras were computed in [9].

Theorem 6.10. If X is a finite dimensional metric space, then there is a bijection $[X, \operatorname{Aut}(\mathcal{O}_n)] \to K_1(C(X) \otimes \mathcal{O}_n)$. The homotopy group $\pi_k(\operatorname{Aut}(\mathcal{O}_n))$ is isomorphic to $\mathbb{Z}/(n-1)\mathbb{Z}$ if k is odd and it vanishes if k is even. In particular $\pi_1(\operatorname{Aut}(\mathcal{O}_n))$ is generated by the class of the canonical action of \mathbb{T} on \mathcal{O}_n , $\lambda_z(v_i) = zv_i$.

Proof. Since \mathcal{O}_n satisfies the UCT, we deduce that $\operatorname{End}(\mathcal{O}_n)^* = \operatorname{End}(\mathcal{O}_n)$. An immediate application of Proposition 6.1 shows that the natural map $\operatorname{Aut}(\mathcal{O}_n) \hookrightarrow \operatorname{End}(\mathcal{O}_n)$ induces an isomorphism of groups $[X, \operatorname{Aut}(\mathcal{O}_n)] \cong [X, \operatorname{End}(\mathcal{O}_n)]$. Let $\iota : \mathcal{O}_n \to C(X) \otimes \mathcal{O}_n$ be defined by $\iota(v_i) = 1_{C(X)} \otimes v_i$, i = 1, ..., n. The map $\psi \mapsto u(\psi) = \psi(v_1)\iota(v_1)^* + \cdots + \psi(v_n)\iota(v_n)^*$ is known to be a homeomorphism from $\operatorname{Hom}(\mathcal{O}_n, C(X) \otimes \mathcal{O}_n)$ to the unitary group of $C(X) \otimes \mathcal{O}_n$. Its inverse maps a unitary u to the *-homomorphism ψ uniquely defined by $\psi(v_i) = uv_i$, i = 1, ..., n. Therefore

$$[X, \operatorname{Aut}(\mathcal{O}_n)] \cong [X, \operatorname{End}(\mathcal{O}_n)] \cong \pi_0(U(C(X) \otimes \mathcal{O}_n)) \cong K_1(C(X) \otimes \mathcal{O}_n).$$

The last isomorphism holds since $U(B)/U(B)_0 \cong K_1(B)$ if $B \cong B \otimes \mathcal{O}_{\infty}$, by [32, Lemma 2.1.7]. One verifies easily that if $\varphi \in \text{Hom}(\mathcal{O}_n, C(X) \otimes \mathcal{O}_n)$, then $u(\widetilde{\psi}\varphi) = 0$

 $\widetilde{\psi}(u(\varphi))u(\psi)$. Therefore the bijection $\chi:[X,\operatorname{End}(D)]\to K_1(C(X)\otimes\mathcal{O}_n)$ is an isomorphism of groups whenever $K_1(\widetilde{\psi})=\operatorname{id}$ for all $\psi\in\operatorname{Hom}(\mathcal{O}_n,C(X)\otimes\mathcal{O}_n)$. Using the C(X)-linearity of $\widetilde{\psi}$ one observes that this happens if the n-1 torsion of $K_0(C(X))$ reduces to $\{0\}$, since in that case the map $K_1(C(X))\to K_1(C(X)\otimes\mathcal{O}_n)$ is surjective by the Künneth formula.

Corollary 6.11. For any integers $n \geq 3$, $k \geq 1$ there are exactly (n-1) nonisomorphic separable unital $C(S^{2k})$ -algebras with all fibers isomorphic to \mathcal{O}_n .

Proof. This follows from Theorem 6.9 and Proposition 6.10, since the locally trivial principal H-bundles over the sphere S^m are parameterized by $\pi_{m-1}(H)$ if H is a path connected group [20, Cor. 8.4]. We apply this result for $H = \operatorname{Aut}(\mathcal{O}_n)$.

7. Continuous fields and the Universal Coefficient Theorem

Kirchberg has shown that any nuclear separable C*-algebra is KK-equivalent to a Kirchberg algebra [33, Prop. 8.4.5]. This inspired us to extend the result in the context of continuous fields and $KK_{C(X)}$ -theory (see Theorem 7.4). The main application of this result is Theorem 1.4 which exhibits a new permanence property of the nuclear C*-algebras satisfying the UCT. We need the following lemma.

Lemma 7.1 ([24, Lemma 1.2]). Let X be a compact Hausdorff space and let A be a continuous C(X)-algebra. There is a split short exact sequence of C(X)-algebras

$$0 \longrightarrow A \longrightarrow A^{+} \underset{\alpha}{\longrightarrow} C(X) \longrightarrow 0$$

where A^+ is unital, α is C(X)-linear and $\alpha(1) = 1$.

Consider the category of separable C(X)-algebras such that the morphisms from A to B, are the elements of $KK_{C(X)}(A, B)$ with composition given by the Kasparov product. The isomorphisms in this category are the KK-invertible elements denoted by $KK_{C(X)}(A, B)^{-1}$. Two C(X)-algebras are $KK_{C(X)}$ -equivalent if they are isomorphic objects in this category. In the sequel we shall use twice the following elementary observation (valid in any category). If composition with $\gamma \in KK_{C(X)}(A, B)$ induces a bijection $KK_{C(X)}(B, C) \to KK_{C(X)}(A, C)$ for C = A and C = B, then $\gamma \in KK_{C(X)}(A, B)^{-1}$.

Lemma 7.2. Let A be a separable nuclear continuous C(X)-algebra. Then there exist a separable nuclear unital continuous C(X)-algebra A^{\flat} and two C(X)-linear *-monomorphisms $\alpha: C(X) \otimes \mathcal{O}_2 \to A^{\flat}$, and $\jmath: A \to A^{\flat}$ such that α is unital and $[\jmath] \in KK_{C(X)}(A, A^{\flat})^{-1}$.

Proof. Let $p \in \mathcal{O}_{\infty}$ be a non-zero projection with [p] = 0 in $K_0(\mathcal{O}_{\infty})$. Then there is a unital *-homomorphism $\mathcal{O}_2 \to p\mathcal{O}_{\infty}p$ which induces a C(X)-linear unital *-monomorphism $\mu: C(X) \otimes \mathcal{O}_2 \to C(X) \otimes p\mathcal{O}_{\infty}p$. We tensor the exact sequence (7.1) by $p\mathcal{O}_{\infty}p$ and then take the pullback by μ . This gives a split exact sequence of unital C(X)-algebras:

The map $A^{\flat} \to A^+ \otimes p\mathcal{O}_{\infty}p$ is a unital C(X)-linear *-monomorphism, so that A^{\flat} is a continuous C(X)-algebra. It is nuclear being an extension of nuclear C*-algebras. It follows by [21], [2, Thm. 5.4] that for any separable C(X)-algebra B we have an exact sequence of groups

$$0 \to KK_{C(X)}(C(X) \otimes \mathcal{O}_2, B) \longrightarrow KK_{C(X)}(A^{\flat}, B) \stackrel{j^*}{\longrightarrow} KK_{C(X)}(A \otimes p\mathcal{O}_{\infty}p, B) \to 0$$

Since the class identity map of $C(X) \otimes \mathcal{O}_2$ vanishes in $KK_{C(X)}$, $KK_{C(X)}(C(X) \otimes \mathcal{O}_2, B) = 0$ for any separable C(X)-algebra B. Therefore j^* is a $KK_{C(X)}$ -equivalence. We conclude the proof by observing that map, $A \to A \otimes p\mathcal{O}_{\infty}p$, $a \mapsto a \otimes p$, is also a $KK_{C(X)}$ -equivalence.

Proposition 7.3. Let (A_i, φ_i) be an inductive system of separable nuclear C(X)-algebras with injective connecting maps. If $\varphi_i \in KK_{C(X)}(A_i, A_{i+1})^{-1}$ for all i, and $\Phi: A_1 \to \varinjlim(A_i, \varphi_i) = A_{\infty}$ is the induced map, then $\Phi \in KK_{C(X)}(A_1, A_{\infty})^{-1}$.

Proof. We use Milnor's \varprojlim^1 -sequence for $KK_{C(X)}$ -theory. Its proof is essentially identical to the proof of the corresponding sequence for regular KK-theory (argue as in [34] using [2]).

$$0 \longrightarrow \varprojlim^{1} KK_{C(X)}(A_{i}, B) \longrightarrow KK_{C(X)}(A_{\infty}, B) \longrightarrow \varprojlim KK_{C(X)}(A_{i}, B) \longrightarrow 0$$

Since $\varprojlim^1(G_i, \lambda_i) = 0$ and $G_1 \cong \varprojlim (G_i, \lambda_i)$ for any sequence of abelian groups $(G_i)_{i=1}^{\infty}$ and group isomorphisms $\lambda_i : G_i \to G_{i+1}$, we obtain from (26) that for any separable C(X) algebra B, Φ induces a bijection $KK_{C(X)}(A_{\infty}, B) \to KK_{C(X)}(A, B)$. This implies that $[\Phi] \in KK(A, A_{\infty})^{-1}$.

We need the following C(X)-equivariant construction which parallels a construction of Kirchberg. We follow the exposition from [33]. A similar deformation technique has appeared earlier in [11].

Theorem 7.4. Let A be a separable nuclear continuous C(X)-algebra. Then there exist a separable nuclear continuous unital C(X)-algebra A^{\sharp} whose fibers are Kirchberg C^* -algebras and a C(X)-linear *-monomorphism $\Phi: A \to A^{\sharp}$ such that Φ is a $KK_{C(X)}$ -equivalence. For any $x \in X$ the map $\Phi_x: A(x) \hookrightarrow A^{\sharp}(x)$ is a KK-equivalence.

Proof. By Proposition 7.2 we may assume that there is a unital C(X)-linear *-monomorphism $\alpha: C(X) \otimes \mathcal{O}_2 \to A$. By [5, Thm. 2.5], there is a unital C(X)-linear *-monomorphism $\beta: A \to C(X) \otimes \mathcal{O}_2$. Let s_1, s_2 be the images in A under the map α of the canonical generators of $v_1, v_2 \in \mathcal{O}_2 \subset C(X) \otimes \mathcal{O}_2$. Let $\theta = \alpha \circ \beta: A \to A$ and define a C(X)-linear unital monomorphism $\varphi: A \to A$ by $\varphi(a) = s_1 a s_1^* + s_2 \theta(a) s_2^*$. The unital *-homomorphism $\varphi_x: A(x) \to A(x), \ \varphi_x(a) = s_1(x) a(x) s_1(x)^* + s_2(x) \theta_x(a) s_2(x)^*$, induced by φ , satisfies $\pi_x \varphi_x = \varphi \pi_x$. Moreover we have a factorization $\theta_x = \alpha_x \circ \beta_x:$, and hence θ_x factors through \mathcal{O}_2 . Let A^\sharp be the inductive limit of the inductive system

$$A \xrightarrow{\varphi} A \xrightarrow{\varphi} A \xrightarrow{\varphi} \cdots$$

and let $\Phi: A \to A^{\sharp}$ be the induced map. We have a commutative diagram

By the proof of [33, Prop. 8.4.5] the C*-algebra $A^{\sharp}(x)$ is a unital Kirchberg algebra for any $x \in X$. It remains to prove that the map $\Phi : A \to A^{\sharp}$ induces a $KK_{C(X)}$ -equivalence. In view of Proposition 7.3, it suffices to verify that $[\varphi] = [id] \in KK_{C(X)}(A, A)^{-1}$. However this follows from the equation $\varphi(a) = s_1 a s_1^* + s_2 \theta(a) s_2^*$, as $[\theta] = 0$, since it factors through $C(X) \otimes \mathcal{O}_2$.

Let \mathcal{C} denote the class of all unital Kirchberg algebras satisfying the UCT.

Lemma 7.5. Let X be a compact metrizable space and let A be a C(X)-algebra such that $\operatorname{cat}_{\mathcal{C}}(A) = n < \infty$. Then A satisfies the UCT.

Proof. We shall prove by induction on n that if $\operatorname{cat}_{\mathcal{C}}(A) \leq n$, then A satisfy the UCT. If n = 0, then $A \cong \bigoplus_i C(Z_i) \otimes D_i$ and all its ideals satisfy the UCT since each D_i is simple and satisfies the UCT. By a result of [34], if two out of three separable nuclear C*-algebras in a short exact sequence satisfy the UCT, then all three of them satisfy the UCT. For the inductive step we use the exact sequence (1), where B is elementary and $\operatorname{cat}_{\mathcal{C}}(D) \leq n - 1$.

Theorem 7.6. [12] Let A be a nuclear separable C^* -algebra. Assume that for any finite set $\mathcal{F} \subset A$ and any $\varepsilon > 0$ there is a C^* -subalgebra B of A satisfying the UCT and such that $\mathcal{F} \subset_{\varepsilon} B$. Then A satisfies the UCT.

Proof. For the convenience of the reader, assuming that B is nuclear, we sketch an alternate proof to the one in [12]. It is just this case that is needed in the sequel. By assumption, there is an exhaustive sequence (A_n) consisting of nuclear separable C*-algebras of A. We may assume that A is unital and its unit is contained in each A_n . After replacing the pair $A_n \subseteq A$ by $A_n \otimes p\mathcal{O}_{\infty}p \subseteq A \otimes p\mathcal{O}_{\infty}p$, we observe that the construction $A \mapsto A^{\sharp}$ is functorial with respect to subalgebras. Thus we obtain an exhaustive sequence of Kirchberg subalgebras A_n^{\sharp} of A^{\sharp} such that each A_n^{\sharp} is KK-equivalent to A_n and hence it satisfies the UCT. Since each A_n^{\sharp} can be written as an inductive limit of Kirchberg algebras satisfying the UCT and having finitely generated K-theory groups and since the latter algebras are weakly semiprojective, we have exhibited an exhaustive sequence for A^{\sharp} , (B_n) , such that B_n are weakly semiprojective C*-algebras satisfying the UCT. By a familiar perturbation argument A^{\sharp} is isomorphic to the inductive limit of a subsequence (B_{i_n}) of (B_n) . Therefore A^{\sharp} and hence A satisfy the UCT.

Proof of Theorem 1.4. By Theorem 7.4 we may assume that the fibers of A are Kirchberg C*-algebras satisfying the UCT. By Theorem 4.5, A admits an exhaustive sequence (A_k) of finite type C(X)-algebras. Each A_k satisfies the UCT by Lemma 7.5. We conclude the proof by applying Theorem 7.6.

Let us note that the above proof only requires a weaker version of Theorem 7.4 which asserts that $\Phi: A \to A^{\sharp}$ and each Φ_x are KK-equivalences. Its proof requires only the usual $\lim_{x\to\infty} 1$ -sequence for KK-theory.

References

- [1]
- [2] A. Bauval. RKK(X)-nucléarité (d'après G. Skandalis). K-Theory, 13(1):23-40, 1998.
- [3] B. Blackadar. Shape theory for C*-algebras. Math. Scand., 56(2):249-275, 1985.
- [4] É. Blanchard. Déformations de C*-algèbres de Hopf. Bull. Soc. Math. France, 124(1):141-215, 1996.
- [5] É. Blanchard. Subtriviality of continuous fields of nuclear C^* -algebras. J. Reine Angew. Math., 489:133–149, 1997.
- [6] É. Blanchard and E. Kirchberg. Global Glimm halving for C*-bundles. J. Oper. Theory, 52:385–420, 2004.
- [7] É. Blanchard and E. Kirchberg. Non-simple purely infinite C*-algebras: the Hausdorff case. *J. Funct. Anal.*, 207:461–513, 2004.
- [8] A. Connes and N. Higson. Déformations, morphismes asymptotiques et K-théorie bivariante. C. R. Acad. Sci. Paris Sér. I Math., 311(2):101–106, 1990.
- [9] J. Cuntz. On the homotopy groups of the space of endomorphisms of a C*-algebra (with applications to topological Markov chains). In Operator algebras and group representations, Vol. I (Neptun, 1980), volume 17 of Monogr. Stud. Math., pages 124–137. Pitman, Boston, MA, 1984.
- [10] J. Cuntz and W. Krieger. A class of C*-algebras and topological Markov chains. Invent. Math., 56:251–268, 1980.
- [11] M. Dadarlat. Residually finite-dimensional C*-algebras. In Operator algebras and operator theory (Shanghai, 1997), volume 228 of Contemp. Math., pages 45–50. Amer. Math. Soc., Providence, RI, 1998.
- [12] M. Dadarlat. Some remarks on the universal coefficient theorem in KK-theory. In Operator algebras and mathematical physics (Constanta, 2001), pages 65–74. Theta, Bucharest, 2003.
- [13] M. Dadarlat and G. A. Elliott. One-parameter Continuous Fields of Kirchberg algebras. Preprint 2005.
- [14] M. Dadarlat and C. Pasnicu. Continuous fields of Kirchberg C*-algebras. J. Funct. Anal., 226:429–451, 2005.
- [15] J. Dauns and K. H. Hofmann. Representation of rings by sections. Memoirs of the American Mathematical Society, No. 83. American Mathematical Society, Providence, R.I., 1968.
- [16] J. Dixmier. C^* -algebras. North Holland, Amsterdam, 1982.
- [17] S. Eilers and T. A. Loring. Computing contingencies for stable relations. *Internat. J. Math.*, 10(3):301–326, 1999.
- [18] J. M. G. Fell. The structure of algebras of operator fields. Acta Math., 106:233–280, 1961.
- [19] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- [20] D. Husemoller. Fibre Bundles. Number 20 in Graduate Texts in Mathematics. Springer Verlag, New York, 3rd. edition, 1966, 1994.
- [21] G. G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math., 91(1):147–201, 1988.
- [22] E. Kirchberg. The classification of purely infinite C*-algebras using Kasparov's theory, preprint, 1994.
- [23] E. Kirchberg. Das nicht-kommutative Michael-auswahlprinzip und die klassifikation nicht-einfacher algebren. In C^* -algebras, pages 92–141, Berlin, 2000. Springer. (Münster, 1999).
- [24] E. Kirchberg and N. C. Phillips. Embedding of continuous fields of C^* -algebras in the Cuntz algebra \mathcal{O}_2 . J. Reine Angew. Math., 525:55–94, 2000.
- [25] E. Kirchberg and M. Rørdam. Non-simple purely infinite C*-algebras. Amer. J. Math., 122(3):637–666, 2000.
- [26] E. Kirchberg and M. Rørdam. Infinite non-simple C^* -algebras: absorbing the Cuntz algebra O_{∞} . Advances in Math., 167(2):195–264, 2002.

- [27] E. Kirchberg and S. Wassermann. Operations on continuous bundles of C^* -algebras. Math. Ann., 303(4):677-697, 1995.
- [28] H. Lin. Weak semiprojectivity in purely infinite C*-algebras. preprint 2002.
- [29] T. Loring. Lifting Solutions to Perturbing Problems in C*-Algebras, volume 8 of Fields Institute Monographs. Amer. Math. Soc., Providence, Rhode Island, 1997.
- [30] B. Neubüser. Semiprojektivität und Realisierungen von rein unendlichen C*-Algebren. PhD thesis, Universität Münster, 2000. Preprintreihe des SFB 478 — Geometrische Strukturen in der Mathematik; Heft 118.
- [31] M. Nilsen. C^* -bundles and $C_0(X)$ -algebras. Indiana Univ. Math. J., 45(2):463–477, 1996.
- [32] N. C. Phillips. A classification theorem for nuclear purely infinite simple C^* -algebras. Documenta Math., (5):49–114, 2000.
- [33] M. Rørdam. Classification of nuclear, simple C*-algebras, volume 126 of Encyclopaedia Math. Sci. Springer, Berlin, 2002.
- [34] J. Rosenberg and C. Schochet. The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor. Duke Math. J., 55(2):431–474, 1987.
- [35] J. S. Spielberg. Weak semiprojectivity for purely infinite C*-algebras. arXiv:math.OA/0206185.
- [36] J. S. Spielberg. Semiprojectivity for certain purely infinite C^* -algebras. preprint, 2001.
- [37] W. Szymański. On semiprojectivity of C*-algebras of directed graphs. Proc. Amer. Math. Soc., 130(5):1391–1399, 2002.
- [38] G. W. Whitehead. *Elements of homotopy theory*, volume 61 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1978.

Department of Mathematics, Purdue University, West Lafayette IN 47907, U.S.A. $E\text{-}mail\ address:\ \mathtt{mdd@math.purdue.edu}$