

Projekt z przedmiotu:

Modelowanie statystyczne i data mining w R

Michał Górnik, Michał Muzykant

24 kwietnia 2022 r.

Spis treści

Wprowadzenie	1
Opis Danych	1
Zależności między zmiennymi	2
Korelacje zmiennych:	2
Test sferyczności Barletta	2
Kryterium Kaisera-Meyera-Olkina	2
Analiza PCA	3
Wybór składowych	3
Interpretacja składowych	4
Analiza skupień	5
Grupowanie hierarchiczne	5
Grupowanie k-średnich	6
Wykres osypiska	6
Kryterium Calińskiego-Harabasza	7
Kryterium średniej sylwetki	8
Porównanie grup	8
Dadeumawania	11

Wprowadzenie

Celem naszego projektu jest analiza danych dotyczących 27 krajów Unii Europejskiej przy pomocy analizy składowych głównych i algorytmu grupowania w programie R Studio.

Opis Danych

Zmienne, które posłużyły nam do stworzenia projektu:

- Dzienne spożycie owoców i warzyw zmienna "jedzenie"
 https://ec.europa.eu/eurostat/databrowser/view/HLTH_EHIS_FV3E_custom_2544306/defa_ult/table?lang=en&fbclid=lwAR1A0c06k3BWzDo0k_f1ojqFhm2Ip-7JaPgGHzNKc3WQa873TRtspm4RFNk
- Procentowy udział w tworzeniu PKB w stosunku do średniej krajów Unii Europejskiej –
 zmienna "PKD"
 https://ec.europa.eu/eurostat/databrowser/view/NAMA 10 PC custom 2565194/default /table?lang=en
- Oczekiwana długość życia zmienna "zycie"
 https://ec.europa.eu/eurostat/databrowser/view/DEMO_MLEXPEC_custom_2544020/defa_ult/table?lang=en&fbclid=IwAR33GHqA1EXUdd0z168fqLsFeFK7UyUq6-CrHQdR5udsMeCvDF3ODKqD1Zk
- Procentowy udział ludności danego kraju w nauce lub kształceniu się w ostatnich 4
 tygodniach zmienna "education"
 https://ec.europa.eu/eurostat/databrowser/view/TRNG LFS 02 custom 2565159/default/
 table?lang=en
- Odsetek osób, które nie uprawiają sportu zmienna "activity"
 https://ec.europa.eu/eurostat/databrowser/view/HLTH_EHIS_PE2E_custom_2539561/defa_ult/table?lang=en&fbclid=lwAR0Se5u3jmfJQtVeLVU96X9nVeusIAC38moFLsA0BFP3v8k432O8_SvV-HO8
- Odsetek osób w danym kraju, które nie są w stanie zaspokoić swoich potrzeb materialnych –
 zmienna "status"
 https://ec.europa.eu/eurostat/databrowser/view/ILC_MDDD11 custom 2565067/default/
 table?lang=en&fbclid=IwAR1kWNA4ugdW_XDKXPXCuZUkJI81C_zaaHv0ZrC4SnK_FBI9WIS_9aQM5o

Skróty, które zostały zastosowane w projekcie:

(AT) Austria	(EE) Estonia	(LV) Łotwa	(RO) Rumunia
(BE) Belgia	(FI) Finlandia	(LU) Luksemburg	(SK) Słowacja
(BG) Bułgaria	(FR) Francja	(MT) Malta	(SI) Słowenia
(HR) Chorwacja	(EL) Grecja	(NL) Holandia	(SE) Szwecja
(CY) Cypr	(ES) Hiszpania	(DE) Niemcy	(HU) Węgry
(CZ) Czechy	(IE) Irlandia	(PL) Polska	(IT) Włochy
(DK) Dania	(LT) Litwa	(PT) Portugalia	

Zależności między zmiennymi

Korelacje zmiennych:

Rysunek 1 Wykres korelacji zmiennych

Zmienne status, PKD, education i activity są ze sobą mocno skorelowane dodatnio. Natomiast zmienna "food" jest słabo skorelowana z resztą zmiennych.

Test sferyczności Barletta

```
$chisq
[1] 87.769
$p.value
[1] 2.581145e-12
$df
[1] 15
```

P-value jest bliskie zero, więc można odrzucić hipotezę, że macierz korelacji jest macierzą jednostkową i można uznać, że pomiędzy zmiennymi występują pewne korelacje.

Kryterium Kaisera-Meyera-Olkina

```
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = cor(BZ[, 3:8]))
Overall MSA = 0.78
MSA for each item =
food PKD life education activity status
0.92 0.79 0.68 0.87 0.70 0.81
```

Kryterium KMO jest równe 0,78 co oznacza, że jest większe od 0,5. Analiza PCA jest dopuszczalna.

Analiza PCA

Wybór składowych

Rysunek 2 Wykres Osypiska – analiza PCA

Wykres osypiska wskazuje na wybranie dwóch składowych.

Loadings:						
_	PC1	PC2	PC3	PC4	PC5	PC6
food	0.589	0.701	0.361	0.178		
PKD	0.893		-0.100	-0.283	-0.274	-0.179
life	0.750	0.258	-0.581			0.159
education		-0.147	0.177	-0.187	0.364	
activity	0.839	-0.352	0.307		-0.135	0.237
status	0.806	-0.302	-0.126	0.482		-0.105
		PC1 I	PC2 PC	C3 PC4	4 PC5	PC6
ss loading						
Proportion						
Cumulative	var 0.	.639 0.7	772 0.8	75 0.939	9 0.978	1.000

Rysunek 3 pr\$loadings (nfactors = 6)

Pierwsza składowa wyjaśnia zmienność w 64% a druga w 13%. Łącznie wyjaśniają zmienność w około 77%.

Interpretacja składowych

```
Loadings:
                 PC2
food
           0.589
                  0.701
PKD
           0.893
1ife
           0.750
                  0.258
education
           0.878 -0.147
activity
           0.839 -0.352
           0.806 -0.302
status
ss loadings
               3.831 0.799
Proportion Var 0.639 0.133
Cumulative Var 0.639 0.772
```

Rysunek 4 pr\$loadings (nfactors = 2)

- Pierwsza składowa (PC1) jest silnie skorelowana ze zmienną PKD, life, education, activity, status. Najmocniej odpowiada zmiennej PKD, czyli "Procentowy udział w tworzeniu PKB w stosunku do średniej krajów Unii Europejskiej". Tą składową można nazwać jakość życia. Można wywnioskować, że w do tej grupy będą należeć kraje najlepiej rozwinięte na tle Unii Europejskiej.
- Druga składowa (PC2) jest najsilniej skorelowana ze zmienną food. Z pozostałymi zmiennymi jest słabo skorelowana. Można powiedzieć, że jest przeciwieństwem pierwszej składowej. Tą składową można nazwać jakość posiłków. Do tej grupy będą należeć kraje najsłabiej rozwinięte w Unii Europejskiej.

Analiza skupień

Grupowanie hierarchiczne

Metoda warda:

Cluster Dendrogram

E hclust (*, "ward.D2")

Rysunek 5 Dendrogram

Jak widać na załączonym dendrogramie, najrozsądniejszym rozwiązaniem jest podzielić obserwacje na dwie grupy.

Grupowanie k-średnich

Wykres osypiska

Rysunek 6 Wykres osypiska – Metoda k-średnich

Z wykresu osypiska wnioskujemy, że należy podzielić obserwacje na dwie grupy.

Rysunek 7 Wykres z kryterium Calińskiego-Harabasza

Według kryterium Calińskiego-Harabasza należy wybrać 2 grupy.

Rysunek 8 Wykres kryterium średniej sylwetki

Według kryterium średniej sylwetki należy wybrać podział na 2 grupy.

Wszystkie powyższe wykresy udowadniają racjonalność podziału na dwie grupy.

Porównanie grup

Rysunek 9 Liczebność grup

według kryterium Calinskiego-Harabasza i k średnich podział liczby zmiennych na grupy jest taki sam

Rysunek 10 Opis zmiennych według k-means

Rysunek 11 Opis zmiennych według hclust

W obu metodach grupowania pierwsza grupa wypada wyraźnie lepiej we wszystkich zmiennych.

Rysunek 12 Liczebność grup według obu metod

Podzial wg kmeans

Rysunek 13 Podział grupowania k-means według zmiennych

Rysunek 14 Podział grupowania hclust według zmiennych

Różnice w grupowaniach najbardziej widać przy zmiennych activity i life (jeśli kraje wypadają w tych zmiennych słabo to według metody hierarchicznej trafiają do gorszej grupy, natomiast przy metodzie k-średnich kraje gorzej radzące sobie w tych parametrach mogą trafić do pierwszej jak i drugiej grupy.

Podsumowanie

Rysunek 15 Grupowanie według hclust

Rysunek 16 Grupowanie według kmeans

- Na tle krajów Unii Europejskiej wyróżnia się Irlandia, której obywatele jedzą dużo owoców i warzyw oraz są krajem stosunkowo wysoko rozwiniętym.
- Szwecja i Finlandia cechuje się wysoką jakością życia a jej mieszkańcy jedzą najmniej warzyw i owoców w całej Unii Europejskiej.
- Najsłabszymi przedstawicielami Unii Europejskiej są zdecydowanie Bułgaria oraz Rumunia, gdyż ich średnie roczne PKB jest znacznie mniejsze od reszty krajów Unii Europejskiej.
- Polska na tle reszty krajów UE wypada bardzo przeciętnie pod względem obu zmiennych.

Spis rysunków:

Rysunek 1 Wykres korelacji zmiennych	2
Rysunek 2 Wykres Osypiska – analiza PCA	
Rysunek 3 pr\$loadings (nfactors = 6)	3
Rysunek 4 pr\$loadings (nfactors = 2)	4
Rysunek 5 Dendrogram	5
Rysunek 6 Wykres osypiska – Metoda k-średnich	6
Rysunek 7 Wykres z kryterium Calińskiego-Harabasza	7
Rysunek 8 Wykres kryterium średniej sylwetki	8
Rysunek 9 Liczebność grup	8
Rysunek 10 Opis zmiennych według k-means	
Rysunek 11 Opis zmiennych według hclust	9
Rysunek 12 Liczebność grup według obu metod	10
Rysunek 13 Podział grupowania k-means według zmiennych	10
Rysunek 14 Podział grupowania hclust według zmiennych	11
Rysunek 15 Grupowanie według hclust	
Rysunek 16 Grupowanie według kmeans	12