

LA TRIBOLOGIE

Par le Groupe 21

MEMBRES DU GROUPE

Members

AKUZWE MWEZE Joel
DANIELLA KAWALI
KULE WA-KANGITSI Robert
MUNYI RUBAMBURA Charles

Contenue

LA TRIBOLOGIE

- 1. introduction à la tribologie
- 2. surface solide de contact
- 3. frottement
- 4. Dissipation
- 5.Usure
- 6. Lubrification
- 7. Equation de Reynold

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

LA TRIBOLOGIE

- 1. introduction à la tribologie
- 2. surface solide de contact
- 3. frottement
- 4. Dissipation
- 5.Usure
- 6. Lubrification
- 7. Equation de Reynold

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

INTRODUCTION À LA TRIBOLOGIE

Le mot <u>tribologie</u> a été proposé par <u>Peter Jost</u> en 1966 et est basé sur le mot grec "<u>tribos</u>" qui signifie <u>frotter</u>.

La tribologie est donc la science qui étudie les interactions de deux surfaces en mouvement l'une par rapport à l'autre.

L'objectif principal de la tribologie est d'améliorer l'efficacité et la durabilité des systèmes mécaniques en minimisant les pertes d'énergie, en prolongeant la durée de vie des composants et en réduisant les coûts de maintenance.

Le but de cette science est de regrouper sous une seule terminologie l'ensemble des sciences du frottement.

INTRODUCTION LES SURFACES LE FROTTEMENT L'USURE

LUBRIFICATION

INTRODUCTION À LA TRIBOLOGIE

Le but de cette science est de regrouper sous une seule terminologie l'ensemble des sciences du frottement.

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

INTRODUCTION À LA TRIBOLOGIE

On trouve les applications de la tribologie partout où il y a mouvement relatif entre deux éléments.

- Paliers lisses
- Roulements
- Engrenages

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

INTRODUCTION À LA TRIBOLOGIE

Optimisation du système tribologique

Cette optimisation passe par trois types d'adaptations :

- 1. Diminution des contacts
- 2. Diminution des efforts
- 3. Changements structurels du système

LE FROTTEMENT

LES SURFACES

L'USURE

LUBRIFICATION

SURFACE SOLIDE DE CONTACT

SURFACE SOLIDE DE CONTACT

Une surface solide est l'interface entre un solide et un deuxième milieu qui peut être un autre solide, un gaz ou un liquide.

Les solides présentent des propriétés physiques différentes en surface et de celle de cœur de matériau. Un atome situé à l'intérieur de la matière est en équilibre sous l'action des forces exercées par ses voisins.

SURFACE SOLIDE DE CONTACT

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

Atome de cœur

atome de surface

Différentes couches du matériau

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

Gaz adsorbés (0.3~3nm): gaz, vapeur d'eau, oxygène

Couche d'oxyde (10 ~100 nm): réaction chimique avec l'oxygène

Couche de Beilby (1~100nm) : structure cristalline différente du matériau

Couche déformée (1~100µm) contrainte résiduelle

Matériau de base

Topographie des surfaces

On peut classer les défauts en fonction de leur longueur d'onde λ .

- * Si λ est de l'ordre de la taille de la surface c'est « Défaut de forme »
- * Si 0.001m < λ < 0.01m c'est « Défaut d'ondulation »
- * Si le défaut de longueur est inférieur, c'est « Rugosité »

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Duretés des surfaces

La dureté caractérise la capacité d'un matériau (surface) à résister à la déformation.

Selon la forme du poinçon, on distingue différents types de dureté :

- * Dureté Brinell avec une bille (HB)
- * Dureté Vickers avec une pyramide (HV)
- * Dureté Rockwell avec un cône (HRC) ou bille (HRB)
- * Dureté Shore (Matériau mous)

Figure Mesure de la dureté

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

La dureté Vickers s'exprime à partir de la diagonale d de

l'empreinte laissée :

$$HV(MPa) \cong 0.189 \frac{F(N)}{d(mm)^2}$$

la dureté Vickers est liée à la limite élastique Re:

 $0.3R_{e}(MPa) \sim = HV$ avec H la dureté

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

matériau	HV (MPa)
Acier en carbone	55-120
Acier inox	140
Alumine AL2O3	1800
Diamant	10 000

Tableau : Dureté des matériaux

Energie de la surface (γ)

Plus cette énergie est élevée plus la surface use facilement, les valeurs de y sont faibles mais leur impact n'est pas négligeable.

Tableau : Energie de surface

matériau	γ (mJ/m²)
Métaux	800-3000
Céramique	50-120
Polymères	10-30

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Contact des solides

Contact localisé

la zone de contact est un point ou une ligne

Contact élastique

En 1881, Heinrich Hertz a proposé une théorie, bien connue en mécanique du contact, qui permet de calculer les caractéristiques d'un contact localisé élastique.

Les hypothèses utilisées sont les suivantes :

- → Les surfaces sont <u>continues</u>, lisses et non-conformes (c'est-à-dire que leurs rayons de courbure sont très différents);
- → Les déformations et les déplacements sont petits ;
- → Chaque solide est un demi-espace infini élastique linéaire ;
- ★ Le contact est sans frottement.

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Contact des solides

Contact élastique

Tout d'abord, le contact s'effectue sur un disque de rayon a qui s'exprime :

F la force supportée par le contact

E est le module d'élasticité équivalent des deux solides

$$a = \left(\frac{3FR}{2E'}\right)^{1/3}$$

$$E' = \frac{2}{\frac{1 - \nu_a^2}{E_a} + \frac{1 - \nu_b^2}{E_b}}$$

 E_i et v_i sont respectivement le module Young et le coefficient de Poisson solide i.

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Contact des solides

Contact élastique

En raison des déformations élastiques des solides, l'application de la force F conduit à une interpénétration ou interférence δ des solides :

$$\delta = \left(\frac{9F^2}{4RE'^2}\right)^{1/3}$$

La pression dans le contact entre les deux solides s'exprime en fonction de la distance r à l'axe :

$$p\left(r\right) = p_o \sqrt{1 - \frac{r^2}{a^2}}$$

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Adhésion

Les forces élastiques que nous venons d'analyser tendent à repousser les solides. En revanche, il existe également des forces d'attraction que nous appellerons forces d'adhésion.

Force de van der Waals

Les principales forces d'attraction qui agissent lorsque deux solides se rapprochent sont les forces de van der Waals.

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Adhésion

Force de van der Waals

Par exemple, pour la figure suivante, les forces d'attraction de van der Waals s'expriment

$$F_{vdW} = -S \frac{A}{6\pi h^3}$$

Forces de van der Waals entre deux surfaces planes

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

FROTTEMENT

Lorsque deux solides 1 et 2 sont mis en contact par une force F, une force tangentielle T apparaît naturellement si on cherche à déplacer les solides l'un par rapport à l'autre.

On identifie deux situations:

- Lorsque V ≠0, on parle de frottement dynamique et
 |T| = f |F|;
- Lorsque V = 0, on parle de frottement statique et |T| < f |F|.

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

FROTTEMENT

Pour un contact élastique surfacique, il existe une relation entre la force normale et l'aire réelle de contact :

$$\frac{F}{A} = \frac{E'}{2} \sqrt{\frac{\sigma}{2\pi R}}$$

D'où l'expression du frottement:

$$f_a = \tau_a \frac{2}{E'} \sqrt{\frac{2\pi R}{\sigma}}$$

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

FROTTEMENT

Le travail fourni peut être supposé égal au travail d'adhésion w_{ad} et la distance d approximée par le paramètre de maille des cristaux dans le cas d'un métal. On a alors:

$$au_a \propto rac{w_{ad}}{d}$$

Dans ce cas, le coefficient de frottement pour un contact élastique

peut être approché par :
$$f_a \propto \frac{w_{ad}}{d} \frac{2}{E'} \sqrt{\frac{2\pi R}{\sigma}}$$

Et pour un contact purement plastique :

$$f_a \propto \frac{w_{ad}}{dH}$$

FROTTEMENT

On définie aussi l'index de plasticité qui s'exprime :

$$\psi = \frac{E'}{2H} \sqrt{\frac{\sigma}{R}}$$

Le facteur de frottement pour un contact élastique peut alors

s'exprimer:
$$f_a = \frac{\tau_a \sqrt{2\pi}}{\psi H}$$

Comme ψ est inférieur à 1, le frottement est nécessairement plus élevé si le contact est élastique

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

FROTTEMENT

Contribution plastique au frottement

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

Figure : Frottement résultant de la déformation plastique d'un matériau.

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

FROTTEMENT

Le cas, où le rayon de contact a est petit devant le rayon R de la sphère,

$$f_p = \frac{A_t}{A_p} \approx \frac{4}{3\pi} \frac{a}{R}$$

Le rayon de contact a n'est pas une constante et dépend de la force

appliquée,
$$F$$
: $a = \sqrt{\frac{2F}{H\pi}}$

Le facteur de frottement s'exprime finalement :

$$f_p = \frac{A_t}{A_p} \approx \frac{4}{3\pi} \sqrt{\frac{2F}{R^2 H \pi}}$$

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

FROTTEMENT

Frottement statique

Le frottement statique repose sur les mêmes mécanismes que le frottement dynamique mais est généralement plus élevé.

La différence de valeur entre les coefficients de frottement statique f_s et dynamique f_d est à l'origine d'instabilités de frottement généralement appelées "stick-slip" au cours desquelles alternent des phases d'adhérence (stick) et de glissement (slip).

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

USURE

causes de l'usure

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

USURE

Usure adhésive

forces d'adhésion se développent entre les surfaces mises en contact. La rupture de ces liaisons adhésives nécessite d'exercer une contrainte de cisaillement τ_a , à l'origine du frottement. Elle peut s'exprimer : $\tau_a = f_{a*} p_m$

Où p_m est la pression moyenne de contact et f_a la contribution adhésive du coefficient de frottement.

Usure abrasive

Un solide rigide vient indenter et labourer un matériau qui se déforme plastiquement. autres exemples d'usures.

USURE

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Fatigue superficielle

Abrasion

Corrosion

LES SURFACES

LE FROTTEMENT

L'USURE

LUBRIFICATION

LES LUBRIFIANTS

Un lubrifiant est une substance qui va être déposée dans un contact pour assurer les fonctions suivantes :

- Permettre la séparation des surfaces. Cette fonction est essentiellement assurée par la viscosité du fluide comme nous le verrons dans les chapitres suivants. L'objectif de la séparation des surfaces est d'empêcher le contact direct des solides et donc le frottement puis l'usure
- Protéger les surfaces principalement contre des réactions chimiques avec l'environnement (corrosion, oxydation)
- Évacuer du contact les débris (particule d'usure ou autres), les polluants, la chaleur générée, etc.

Composition des lubrifiants

Un lubrifiant est composé d'une huile de base qui peut être minérale ou de synthèse et d'additifs.

Les huiles minerals : sont directement obtenues par distillation du pétrole.

Distillation du pétrole

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

INTRODUCTION LES SURFACES LE FROTTEMENT L'USURE LUBRIFICATION

LES LUBRIFIANTS

Fabrication des huiles minérales

Les huiles de synthèse : Leur obtention nécessite un processus chimique qui est généralement beaucoup plus coûteux que la distillation et le raffinage.

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Les additifs

Les performances des lubrifiants sont généralement améliorées grâce à l'ajout des additifs.

Leurs rôles est de :

- Protéger les surfaces
- Améliorer le lubrifiant
- Protéger le lubrifiant

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

EX:

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE

Additif	Rôle	Mode d'action	
Anti-usure,	Réduire l'usure et le	Ces additifs réagissent chimiquement avec la sur-	
extrême	frottement, prévenir du	face métallique pour former un film sacrificiel	
pression	grippage.	présentant une résistance au cisaillement plus faible que le métal.	
Anti- corrosion	Empêcher la corrosion des surfaces.	Formation d'un film adsorbé sur la surface qui protège de la corrosion. Dans certains cas, addi- tifs basiques pouvant neutraliser des acides cor- rosifs.	
Détergent	Empêcher l'attaque des surfaces par des pro- duits acides et limiter la formation de dépôt.	Forme une pellicule autour des particules les em- pêchant de se déposer. Réagit avec et neutralise les acides.	
Dispersant	Empêcher l'aggloméra- tion des particules.	Les longues chaînes hydrocarbonées des disper- sants maintiennent les particules en suspension dans l'huile.	
Anti-	Empêcher l'oxydation	Décompose les composants (hydroperoxydes)	
oxydation	du lubrifiant.	qui conduisent à l'oxydation des huiles.	
Anti-	Empêcher la formation	Réduit la tension de surface du lubrifiant pour	
mousse	de mousse dans le lubri- fiant.	faciliter le destruction des bulles d'air.	
Modificateur	Modifier le coefficient de	Forme un film adsorbé durable sur les surfaces	
de frotte-	frottement entre les sur-	qui réduit le frottement.	
ment	faces.		
Modificateur	Faciliter l'écoulement à	Empêche la formation de réseaux cristallins qui	
de point d'écoule-	basse température.	gênent l'écoulement du fluide.	
ment			
Modificateur	Minimiser la variation	S'associe aux molécules de lubrifiant lorsque	
de viscosité	de viscosité avec la tem-	la température augmente de façon à limiter la	
	pérature.	chute de viscosité.	

Viscosité

Viscosité	Sustème CGS	Système SI	Correspondance
Dynamique μ	Poise $(1Po = 1g/cm^2)$	Pa.s	1cPO = 1mPa.s
Cinématique $\nu = \frac{\mu}{\rho}$	Stokes $(1St = 1cm^2/s)$	m^2/s	$1cSt = 10^{-6}m^2/s = 1mm^2/s$

La viscosité est la résistance opposée par un fluide à tout glissement interne de ses molécules les unes par rapport aux autres.

INTRODUCTION

LES SURFACES

LE FROTTEMENT

L'USURE