

Years of accumulated experience have shown that Allen-Bradley hot-molded resistors are unequalled for uniformity, predictable performance, appearance, and freedom from catastrophic failure.

Allen-Bradley resistors are made by an exclusive hot-molding process on automatic machines — developed, built, and used only by Allen-Bradley. There is such complete uniformity from one resistor to the next — million after million — that long term in-circuit performance can be predicted with usable accuracy.

When used according to published ratings and recommendations, Allen-Bradley hot-molded fixed resistors will not open circuit nor exhibit erratic changes of resistance value. They are probably the most reliable of all electronic components.

OUTSTANDING FEATURES

UNIFORM QUALITY — Consistent performance for over 35 years, no difference in quality regardless of value, rating, or tolerance purchased: One grade — the finest.

RELIABLE — Recognized as the most reliable of all electronic components, Allen-Bradley hot-molded resistors provide freedom from catastrophic failure when used within ratings.

PREDICTABLE PERFORMANCE — Because of their outstanding uniformity, A-B hot-molded resistors exhibit consistent responses to environment and loading.

CONSERVATIVE RATINGS — All performance specifications are based on extensive testing and massive field experience.

TRACKING — Allen-Bradley resistors exhibit extremely uniform tracking characteristics. For example, in flip-flop circuits, resistors used in pairs which are drawn from the same package or reel (a normal mass production practice) will track with each other throughout changes of temperature, humidity, and load. This assures reliable circuit performance throughout the design life of the equipment.

WIDE RANGE OF VALUES — Available in standard preferred number values from 1 ohm to 100 megohms. Special values available on request. HIGH RESISTANCE VALUES – Resistance values from 100 megohms to 1 million megohms and above are available on special order.

RUGGED CONSTRUCTION — The solid, integral structure, combining leads, insulation, and resistance material in the exclusive A-B hot-molding process provides exceptional strength and resistance to damage in automatic handling machinery.

SOLDERABLE/WELDABLE LEADS — Hot solder coated leads remain easy to solder even after long periods in stock. The oxygen-free copper leads are readily weldable and allow considerable weld-schedule latitude. Stocking of resistors with two different lead materials is unnecessary.

DURABLE COLOR CODING — Baked-on color code paints are resistant to solvents, and also resist the abrasion and chipping associated with automatic handling. They remain bright and easily readable even after long periods of use.

TEMPERATURE STABLE — Between 0°C and 85°C, A-B hot-molded resistors exhibit a very low temperature characteristic, typically less than two percent deviation from room temperature values, less in low resistance values.

GENERAL CHARACTERISTICS

All measurements made at room temperature except during Temperature Characteristics Test and Load Life Test

For specific conditions such as mounting, test procedures, sequence of tests, etc., refer to Allen-Bradley Publication 5050. Applicable test procedure numbers are listed in brackets [] below.

			Hot-	Molded Fixed Resist	DES	
	Characteristics	1/s Watt Type BB	1/4 Watt Type CB	1/2 Watt Type EB	1 Watt Type GB	2 Watt Type HB
Nominal Resist Standard El/	tance Range A & MIL (See table on Page 11)	2.7 ohms to 100 megohms	2.7 ohms to 100 megohms	1.0 ohm to 100 megohms	2.7 ohms to 100 megohms	10 ohms to 100 megohms
Standard Tole	rances	± 5%, ± 10%, ± 20%	± 5%, ± 10%, ± 20%	± 5%, ± 10%, ± 20%	± 5%, ± 10%, ± 20%	± 5%, ± 10%, ± 20%
	ontinuous rated watts at 70°C am- on Load Life Test [6.12]	0.125 watt	0.25 watt	0.5 watt	1.0 watt	2.0 watts
	ous Working Voltage (RCWV) ominal resistance (R) in ohms.	√0.125 x R or 150 volts, whichever is less.	√0.25 x R or 250 volts, whichever is less.	√0.5 x R or 350 volts, whichever is less.	√1.0 x R or 500 volts, whichever is less.	√2.0 x R or 750 volts, whichever is less.
	bient Temperature g derated linearly to zero at this	+ 130°C	+ 150°C	+ 150°C	+ 150°C	+ 150°C
Weight	Resistor with nominal length leads	0.077 gm	0.28 gm	0.61 gm	1.45 gm	2.80 gm
	Leads (per millimeter)	1,2 mg/mm	2,9 mg/mm	5,0 mg/mm	8,0 mg/mm	9,4 mg/mm

PERFORMANCE CHARACTERISTICS

					Hot-R	Molded Fixed Resistor	S	
	Characteristics			1/a Watt Type BB	1/4 Watt Type CB	½ Watt Type EB	1 Watt Type GB	2 Watt Type HB
Insulation Res Minimum	sistance [6.6]			10,000 megohms	10,000 megohms	10,000 megohms	10,000 megohms	10,000 megohms
Dielectric	@ Sea Level Atmo	spheric P	ress.	300 volts	500 volts	700 volts	1000 volts	1500 volts
Withstanding Voltage [6.5]	@ 3.4" (86,36mm) 50,000 ft. [15240			200 volts	325 volts	450 volts	625 volts	625 volts
Resistance-Vo	Itage Coefficient [6	.4] [10	OK.	-0.020%/volt	-0.015%/volt	-0.010%/volt	-0.007%/volt	-0.010%/volt
	instantaneous char e per volt based on Z		0K	-0.030	-0.020	-0.015	-0.012	-0.010
	1.0 -0.1) RCWV.		Vleg	-0.045	-0.025	0.020	-0.015	-0.015
	Nominal Resistance	10	Meg	-0.050	-0.030	-0.030	0.020	-0.020
	Nominal Resistance	22	Meg	-0.050	-0.035	-0.035	-0,020	-0.020
[100 Meg				-0.055	-0.035	-0.035	-0.025	-0.025
	2] operating at RCWV pient for duty cycle	Maxim	um	+ 4%	+ 4%	+ 4%	+ 4 ₀ / ₀	+ 4 - 6%
of 11/2 hour "	on", ½ hour "off". resistance change.	Typic	al	- 3%	- 3%	- 3%	- 3%	- 3%
1000 hours hour "off") per tempera chart on F	mperature-derated) (1½ hour "on", ½ at RCWV derated ature according to Page 4. Tested at as between 70°C	Maxim	um	+ 4 - 6%	+ 4 ₀ / _{- 6} / ₀	+ ⁴ / _{- 6} %	+ 4 - 6%	+ 4 _%
and maximum erature. Per change. [6.1 spect to worderscribed a	Туріс	al	- 4%	- 4%	- 4%	- 4%	- 4%	
Short-Time Overload [6.11] 5 seconds at 2½ times RCWV; voltage limit as stated. Maximum permanent resistance change.		Voltage	Limit	200 volts	400 volts	700 volts	1000 volts	1000 volts
		Maxim	um	± (2.5% + 0.05 ohm)	$\pm (2\% + 0.05 \text{ ohm})$	± (1% +0.05 ohm)	± (1% +0.05 ohm)	±(1%+0.05 ohm
		Туріс	al	+ 0.5%	+ 0.5%	+ 0.5%	+ 0.5%	+ 0.5%

PERFORMANCE CHARACTERISTICS

			Hot-Molded Fixed Resistors										
Character	stics		1/s Watt Type BB	1/4 Watt Type CB	1/2 Watt Type EB	1 Watt Type GB	2 Watt Type HB						
Terminal Strength [6.13] 5 lb. (2,27 Kgm) Pull Te Test. Maximum permane	st. Three t	urn Twist	±(1% +0.05 ohm) (2lb. Pull Test) (0.91 Kgm)	±(1% +0.05 ohm)	±(1% +0.05 ohm)	±(1% +0.05 ohm)	±(1% +0.05 ohm)						
Effect of Solder Heat [6.14 Leads immersed to .125" 350°C solder for 3 second nent resistance change.	(3,18 mm)		±(2% +0.05 ohm) (250°C Solder)	±(2% +0.05 ohm)	±(3% +0.05 ohm)	±(3% +0.05 ohm)	±(3% +0.05 ohm)						
Vibration [6.17] 10-2000 Hz, 0.06 inch		nical or I Damage	No Damage	No Damage	No Damage	No Damage	No Damage						
(1,52 mm) peak-to-peak or 20G, whichever is less.		Permanent ce Change	±(1% +0.05 ohm)	±(1% +0.05 ohm)	±(1% +0.05 ohm)	±(1% +0.05 ohm)	$\pm (1\% + 0.05 \text{ ohm})$						
Shock [6.16] 100g, 6 ms, sawtooth,	shock [6.16] Mechan			No Damage	No Damage	No Damage	No Damage						
10 shocks, 2 planes.	10 shocks, Maximum Pe		±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)						
Moisture Resistance [6.9] Temporary resistance	Max	imum	+15 _%	+12/%	+14%	+8%	+7 -0%						
change See comment on Page 6	Ту	pical	+9%	+6%	+7%	+5%	+4%						
Humidity Characteristic (steady state) [6.10]	10	Maximum	+8%	+5 ₋₀ %	+4%	+3//	+3 _~						
240 hours @ +40°C and 95% relative	10	Typical	+4%	+3%	+2%	+2%	+1%						
humidity. Temporary resistance change.	1000	Maximum	+9%	+6%	+6%	+4%	+4%						
	1000	Typical	+5%	+4%	+4%	+2%	+2%						
Nominal Resistance	100K	Maximum	+11%	+9%	+8%	+5 ₋₀ %	+5 ₋₀ %						
(ohms)	1001	Typical	+8%	+6%	+6%	+3%	+2.5%						
	10 Meg.	Maximum	+13%	+10 _%	+9%	+5 ₋₀ %	+5%						
(100 Meg.	Typical	+9%	+8%	+7%	+3%	+2.5%						
Alter 1 11001 (a) -05, +0 -5 0,		Maximum	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)						
apply RCWV for 45 minutes. Re- move RCWV, return to room tem- perature. Resistance change meas- ured 24 hours after test.			+0.5%	+0.5%	+0.5%	+0.5%	+0.5%						
Temperature Cycling [6.8]		Maximum	±(2% +0.05 ohm)	±(2% +0.05 ohm)	±(2% +0.05 ohm)	$\pm (2\% + 0.05 \text{ ohm})$	±(2% +0.05 ohm)						
Limits: -55°C and +8 Resistance change after		Typical	+0.5%	+0.5%	+0.5%	+0.5%	+0.5%						

TEMPERATURE CHARACTERISTICS

In addition to the maximum values given in this table, typical curves of temporary resistance change due to temperature are illustrated at the top of the next page.

Resistance-	-55°C	-25°C	−15°C	0°C	+25°C	+55°C	+65°C	+85°C	+105°C
Temperature Characteristic [6.3]	Range (%)	Range (%)	Range (%)	Range (%)	Nominal Ohms	Range (%)	Range (%)	Range (%)	Range (%)
Maximum tem-	+0.2 to +2.6	-0.2 to $+1.3$	-0.2 to $+1.0$	-0.2 to $+0.6$	1	-0.4 to $+0.5$	-0.5 to $+0.7$	-0.5 to $+1.3$	-0.4 to $+2.0$
porary resistance	+0.2 to +3.8	-0.3 to $+2.0$	-0.3 to +1.5	-0.3 to $+0.9$	10	-0.6 to $+0.8$	-0.7 to $+1.1$	-0.8 to $+2.0$	-0.6 to $+3.0$
change from the +25°C initial re-	+0.3 to +5.1	-0.3 to $+2.7$	-0.4 to +2.0	-0.4 to $+1.1$	100	-0.8 to +1.0	-0.9 to $+1.5$	-1.0 to $+2.6$	-0.8 to $+4.0$
sistance value.	+0.3 to +6.4	-0.4 to $+3.4$	-0.5 to $+2.5$	-0.5 to $+1.4$	1000	-1.0 to $+1.3$	-1.2 to +1.8	-1.3 to $+3.3$	-1.0 to $+5.0$
Note-Linear in- terpolation ap-	+0.4 to +7.7	-0.5 to $+4.0$	-0.6 to +3.0	-0.6 to $+1.7$	10 K	-1.2 to $+1.5$	-1.4 to $+2.2$	-1.5 to $+3.9$	-1.2 to +6.0
proximates inter-	+0.5 to +8.9	-0.6 to $+4.7$	-0.7 to $+3.5$	-0.7 to $+2.0$	100 K	-1.4 to +1.8	-1.6 to $+2.6$	-1.8 to $+4.6$	-1.4 to $+7$.
mediate values.	+0.5 to $+10.2$	-0.7 to +5.4	-0.9 to $+4.0$	-0.8 to $+2.3$	1 Meg	-1.6 to $+2.0$	-1.9 to +3.0	-2.0 to $+5.2$	-1.6 to $+8.3$
	+0.6 to +11.5	-0.8 to $+6.0$	-0.9 to $+4.5$	-0.9 to $+2.6$	10 Meg	-1.8 to $+2.3$	-2.1 to $+3.3$	-2.3 to $+5.9$	-1.8 to $+9.$
	+0.6 to +11.9	-0.8 to +6.3	-0.9 to +4.7	-0.9 to $+2.6$	22 Meg	-1.9 to $+2.4$	-2.2 to +3.5	-2.4 to +6.1	-1.9 to +9.4
	+0.7 to +12.8		-1.0 to +5.0	-0.9 to $+2.8$	100 Meg	-2.0 to $+2.5$	-2.4 to +3.7	-2.5 to $+6.6$	-2.0 to $+10$.

TYPICAL RESISTANCE - TEMPERATURE CHARACTERISTICS

Percent Resistance Deviation From 25°C Value for Various Nominal Resistance Values and Temperatures.

DERATING WITH RESPECT TO AMBIENT TEMPERATURE

DERATING — For resistors operated in ambient temperatures above 70°C, the change in resistance after 1000 hours under conditions similar to the Load Life Test will be less than +4% to -6% when the load wattage is derated in accordance with the curve shown. The most significant factor in proper derating to achieve minimal permanent resistance change over long periods of operation is the resultant surface temperature of the resistor. (See note 7 under Application Information).

HOT-MOLDED FIXED RESISTORS

TYPICAL HIGH FREQUENCY CHARACTERISTICS

MEASUREMENT CONDITIONS — The curves above give typical values of impedance to DC resistance ratio from 100 KHz to 100 MHz. Care was taken in test fixture design to prevent distributed capacitance to ground along the length of the resistor from contributing to measured values. Lead length was held at one quarter inch to standardize the lead inductance contribution. User's circuit variations from test conditions in mounting position and lead length can have a significant effect on the high frequency characteristics.

RESISTOR TEST VOLTAGES — In measuring resistance, it is important to take into account the effects of heating due to voltage application and the "offset" of resistance due to its voltage coefficient. Maximum voltage coefficients are listed on Page 2 of this publication. The voltage used should be applied for as short a time as possible, to minimize the effect of heating. For reference purposes, the voltages listed below should be used.

Nominal Resistance Range	Voltage (D	
1.0 to 9.1 ohms	0.:	3 volt
10 to 91 ohms	1.0	0 volt
100 to 910 ohms	3.	0 volts
1000 to 9100 ohms	10	volts
10K to 91K ohms	30	volts
100K ohms and higher	100	volts

MOISTURE RESISTANCE TESTING — The results obtained from this test, defined in Publication 5050 paragraph 6.9 which parallels MIL-STD-202 Method 106 have been found to vary because of the involved equipment required, the inclusion of several destructive-type procedures, and the poor reproduceability of the test. Isolation of the effects of moisture on resistors can be better achieved using the Steady State Humidity Test, paragraph 6.10 in Publication 5050, paralleled by MIL-STD-202, Method 103. Maximum and typical values of resistance change for both tests are shown in the table on Page 3 of this publication.

SOLDERABILITY — Allen-Bradley hot-molded fixed resistors meet the solderability requirements of MIL-R-39008 and MIL-STD-202, Method 208.

RESISTANCE TO SOLVENTS — The color code remains legible after resistors are subjected to the Resistance To Solvents test of MIL-STD-202, Method 215. Also, the resistors will withstand the Color Code Solvent Resistance test described in Paragraph 6.20 of Publication 5050, which includes ultrasonically agitated liquids at elevated temperature.

MILITARY QUALIFICATION — The Allen-Bradley hotmolded fixed resistors meet or exceed all applicable military specifications including MIL-R-39008, Resistors, Fixed, Composition (Insulated), Established Reliability, and are fully qualified in all wattage sizes and all resistance values to the best reliability level, the "S" level, with a failure rate lower than 0.001% per 1000 hours.

resistance value is dependent upon the resistor temperature, the test voltage, and the degree of resistor dryness. Accurate correlation between repeated measurements, especially at different times, and different locations, requires that these three conditions be essentially the same.

Slight variations in resistor body temperature are not significant in room temperature measurements. However, the temperature of the resistor body may increase appreciably when tested at too high a voltage or when the voltage is applied for too long a time causing excessive heating.

The test voltage is very important and sometimes misunderstood or overlooked. This is because a tester is often unaware of the actual voltage that the instrument used is applying to the resistor under test. Commonly used instruments such as highly accurate resistance bridges or digital voltmeters employ relatively low voltages to make measurements, usually around 1 volt and seldom higher than 10 volts. This does not cause significant differences for low resistance values where the use of low test voltages is specified. However, for higher resistance values such as 100K ohms or higher, a test voltage of 90 or 100 volts is specified and use of a low voltage test instrument will result in substantial difference in readings.

It is important to recognize that apparent out-oftolerance on the + side can be caused by excessive moisture, and when such a condition is observed the test sample should then be conditioned in a dry oven as described in Publication 5050.

Since both moisture and too low test voltages make the resistance value appear higher than when tested under standard conditions, it can be easily seen how these two effects when combined together may produce a significant measurement difference.

OTHER A-B HOT-MOLDED RESISTOR PUBLICA-TIONS — Resistor Test Procedures — Publication 5050 covers resistor test procedures and contains a cross index of Allen-Bradley resistor test methods and the equivalent or near-equivalent methods specified in MIL-R-11, MIL-R-39008, MIL-STD-202 and EIA Specification RS-186.

METAL CLAD FIXED RESISTORS

The Allen-Bradley Type GM and HM resistors are insulated Type GB and HB fixed composition resistors fitted with metal clamps which surround the major portion of the resistor. The metal clamps provide rigid mounting and efficient heat transfer from the resistors to the metal chassis or panels on which they are mounted.

It has been well established that Allen-Bradley fixed composition resistors exhibit superior reliability. When used according to published ratings and recommendations they do not open circuit nor exhibit large erratic changes of resistance value. The standard units are available up to and including 2 watt ratings.

Type GM and HM resistors make this same reliable performance AVAILABLE UP TO AND INCLUDING 5 WATTS.

PERFORMANCE CHARACTERISTICS — The performance characteristics for Types GM and HM are the same as for Types GB and HB respectively, as shown in the tables on pages 2 and 3, with the following exceptions.

Nominal Resistance Range -

Type GM - 2.7 ohms to 22 megohms Type HM - 10 ohms to 22 megohms

Standard Tolerances - ±5%, ±10%

Power Rating — When mounted on the equivalent of a steel panel 4 inches (101,60 mm) square and 0.05 inch (1.27 mm) thick

Type	70°C Ambient	40°C Ambient
GM	3 watts	4 watts
HM	4 watts	5 watts

Rated Continuous Working Voltage (RCWV) -

Type GM $\sqrt{3.0 \times R}$ or 500 volts, whichever is less Type HM $\sqrt{4.0 \times R}$ or 750 volts, whichever is less

Weight - Approximate, with nominal length leads

Type GM 4.7 gm

Type HM 8.0 gm

Insulation Resistance — 100,000 megohms minimum between resistor leads and metal clamp

Dielectric Withstanding Voltage — At sea level, 1500 volts

Short Time Overload - ±(2.5% + 0.05 ohm), maximum

Capacitance — between resistor leads and metal clamp
Type GM 5.6 pF, approximately

Type HM 9.0 pF, approximately

REEL PACKAGED RESISTORS

REEL PACKAGED — Allen-Bradley hot-molded fixed resistors may be obtained reel packaged for use directly on automatic assembly equipment.

36-INCH LEADER — A minimum of 36 inches (914,40 mm) of free tape are provided at each end of the reel for splicing purposes on lead tape reels. For body tape, a 12-inch (30,48 mm) leader at the core and a 36-inch (914,40 mm) leader on the outside end.

HEAVY DUTY REEL CONSTRUCTION — The octagonal reels are made from corrugated fiberboard sides glued to a heavy fiberwound core. The reel is provided with metal bearings having a .562 inch (14,29 mm) hole.

EXPENDABLE — Since these reels are intended to be used as one-time dispensers of resistors, there are no storage problems, no returns.

Note: Long term storage of adhesive taped reel-packaged resistors is not recommended due to normal adhesive aging.

REEL PACKAGING DIMENSIONS

LEAD TAPE

BODY TAPE

						Across Hubs	Across Flanges	Across Points	Across Flats	Resistor Spacing	Tape Spacing	Between Hub Holes	Tape Width
	A-B Type	MIL- R-11 Style	MIL-R -39008 Style	Rating (Watts)	Standard Quantity (per reel)	A Max. (in.)	AA Approx. (in.)	B Max. (in.)	BB Max. (in.)	C (in.)	D (in.) ±.062 (1,59)	Approx. (in.)	F (in.)
	ВВ	RC05	RCR05	1/8	1000	2.468 (62,69)	2.406 (61,12)	4.062 (103,19)	3.750 (95,25)	.076 max.		1.593 (40,46)	.125
	BB	RC05	RCR05	1/8	4000	2.468 (62,69)	2.406 (61,12)	6.500 (165,10)	6.000 (152,40)	.076 max. (1,93)		1.593 (40,46)	.125
Dadu	СВ	RC07	RCR07	1/4	2500	3.625 (92,08)	3.562 (90,49)	6.500 (165,10)	6.000 (152,40)	.120 max. (3,05)		2.750 (69,85)	.188
Body Tape	EB	RC20	RCR20	1/2	2500	3.812 (96,84)	3.750 (95,25)	9.750 (247,65)	9.000 (228,60)	.170 max. (4,32)		2.938 (74,61)	.250 (6,35)
	EB	RC20	RCR20	1/2	5000	3,812 (96,84)	3.750 (95,25)	13.188 (334,96)	12.188 (309,56)	.170 max. (4,32)		2.938 (74,61)	.250 (6,35)
	GB	RC32	RCR32	1	2000	4.062 (103,19)	4.000 (101,60)	13.188 (334,96)	12.188 (309,56)	.270 max. (6,86)		3.188 (80,96)	.375 (9,53)
	нв	RC42	RCR42	2	1000	4.062 (103,19)	4.000	13.188 (334,96)	12.188 (309,56)	.385 max. (9,78)		3.188 (80,96)	.375 (9,53)
	BB	RC05	RCR05	1/8	500	2.688 (68,26)	2.625 (66,68)	4.062 (103,19)	3.750 (95,25)	.200±.015 (5,08±0,38)	1.812 (46,04)	1.812 (46,04)	.250 (6,35)
	BB	RC05	RCR05	1/8	2000	2.688 (68,26)	2.625 (66,68)	6.500 (165,10)	6.000 (152,40)	.200±.015 (5,08±0,38)	1.812 (46,04)	1.812 (46,04)	.250 (6,35)
Double Lead	СВ	RC07	RCR07	1/4	2500	3.625 (92,08)	3.562 (90,49)	9.750 (247,65)	9.000 (228,60)	.200±.015 (5,08±0,38)	2.062 (52,39)	2.750 (69,85)	.250 (6,35)
Tape	EB	RC20	RCR20	1/2	2500	3,812 (96,84)	3.750 (95,25)	9.750 (247,65)	9.000 (228,60)	.200±.015 (5,08±0,38)	2.062 (52,39)	2.938 (74,61)	.250 (6,35)
	GB	RC32	RCR32	1	2000	4.062 (103,19)	4.000 (101,60)	13.188 (334,96)	12.188 (309,56)	.375±.015 (9,53±0,38)	2.875 (73,03)	3.188 (80,96)	.250 (6,35)
	нв	RC42	RCR42	2	1000	4.062 (103,19)	4.000 (101,60)	13.188 (334,96)	12.188 (309,56)	.375±.015 (9,53±0,38)	2.875 (73,03)	3.188 (80,96)	.250 (6,35)

[■] Kraft paper is wound between layers of Types BB and CB for full length of tape.

Note: Dimensions shown in Italics are in Millimeters.

² Available upon request.

APPLICATION INFORMATION

The following information has been compiled to aid in the everyday selection and application of Allen-Bradley hot-molded resistors. The statements on this page should be helpful in evaluating the use of all types of A-B hotmolded resistors in broad general terms, and are not to be interpreted as precise. A comprehensive list is made of the standard nominal resistance values in their available tolerance categories, the rated continuous working voltages for all hot-molded types, the part numbers, and color codes—all information provided for all values from 1 ohm to 100 megohms, taking into account the available range of values for each type as of the date of this publication.

- Low-value resistors exhibit less change due to humidity, temperature and voltage than high-value resistors.
- Resistance changes due to increase in moisture content are always positive.
- Resistance changes due to humidity are temporary, and, in the case of Allen-Bradley resistors, are reversible.
- Change of resistance which has occurred due to humidity may be essentially eliminated by conditioning the resistor at 100°C or by dry storage.
- The effects of humidity may be minimized by operating the resistor with as little as 1/10 rated wattage load.
- Resistance change due to load life is permanent and ultimately negative.
- 7. Resistance change due to load life can be minimized 1% to 2% in many thousands of hours by 50% derating. This same result can be attained by limiting the maximum operating surface temperature of the resistor under load to 100°C. Permanent resistance changes as the result of storage at temperatures below 100°C are negligible, even for extended time periods.
- Resistance change due to soldering is positive and may be permanent if the resistor has moisture present in its body. It can be greatly minimized if resistors are dry at the time of soldering.
- The temperature characteristic of Allen-Bradley resistors is positive above +80° and below -10°C.
- The temperature characteristic of the Allen-Bradley resistor is negligible from -10°C to +80°C.
- 11. The voltage characteristic (negative) and the temperature characteristic (positive) tend to cancel one another in an Allen-Bradley resistor under average operating conditions, where both significant voltage and elevated temperature are present.
- The heat sink to which a resistor is connected affects its rating. Resistors operated in multiple should be derated unless adequate heat sinks are provided.
- The quality and reliability of Allen-Bradley resistors is the same for, and independent of, any resistance tolerances shown on the resistor.

HOT-MOLDED FIXED RESISTORS

STANDARD RESISTANCE VALUES

		e in Ohms		F	lated Co			ng Volta	ge (RC)	WV)			Resi Part N		Resistance Color Code			
TOLER	ANCE COL	OR CODE				DC	or RM	IS Volts				Туре	pe	Toler- ance				
					,	WAT	TAGE at	d TYPE				BB	Value	5=5% 1=10%	1st 2nd		3rd	
	4th BAND		1/8	1/4 2	1/2 2	12	2 2	3 2	4 3	4 2	5 3	EB etc.		2=20%	BAND	BAND	BAND Number o	
Gold ±5%	Silver ±10%	None ±20%	BB	CB	EB	GB	НВ	GM	GM	нм	нм	XX	000	X	1st digit	2nd digit	zeros afte 1st & 2nd digit	
1.0 1.1 1.2 1.3 1.5	1.0 1.2 1.5	1.0 — — — 1.5			0.707 0.742 0.775 0.806 0.866	1 1 1 1	11111		1111				10G 11G 12G 13G 15G		Brown Brown Brown Brown Brown	Black Brown Red Orange Green	Gold Gold Gold Gold Gold	
1.6 1.8 2.0 2.2 2.4	1.8		1111		0.894 0.949 1.00 1.05 1.10	1111			1111	-			16G 18G 20G 22G 24G		Brown Brown Red Red	Blue Gray Black Red	Gold Gold Gold Gold	
2.7 3.0 3.3 3.6 3.9	2.7 	3.3	0,581 0,612 0,642 0,671 0,698	0.822 0.866 0.908 0.949 0.987	1.16 1.22 1.28 1.34 1.40	1.64 1.73 1.82 1.90 1.97		2.85 3.00 3.15 3.29 3.42	3.29 3.46 3.63 3.79 3.95				27G 30G 33G 36G 39G		Red Orange Orange Orange Orange	Yellow Violet Black Orange Blue White	Gold Gold Gold Gold Gold Gold	
4.3 4.7 5.1 5.6 6.2	4.7 5.6	4.7	0.733 0.766 0.798 0.837 0.880	1.04 1.08 1.13 1.18 1.24	1.47 1.53 1.60 1.67 1.76	2.07 2.17 2.26 2.37 2.49	=	3.59 3.76 3.91 4.10 4.31	4.15 4.34 4.52 4.73 4.98				43G 47G 51G 56G 62G		Yellow Yellow Green Green Blue	Orange Violet Brown Blue Red	Gold Gold Gold Gold Gold	
6.8 7.5 8.2 9.1 10	6.8 - 8.2 - 10	6.8 — — 10	0.922 0.968 1.01 1.07 1.12	1.30 1.37 1.43 1.51 1.58	1.84 1.94 2.02 2.13 2.24	2.61 2.74 2.86 3.02 3.16	- - - 4.47	4.52 4.74 4.96 5.22 5.48	5.22 5.48 5.73 6.03 6.32	6.32			68G 75G 82G 91G 100		Blue Violet Gray White Brown	Gray Green Red Brown Black	Gold Gold Gold Gold Black	
11 12 13 15 16	12 15		1.17 1.22 1.28 1.37 1.41	1.66 1.73 1.80 1.94 2.00	2.34 2.45 2.55 2.74 2.83	3.32 3.46 3.61 3.87 4.00	4.69 4.90 5.10 5.48 5.66	5.74 6.00 6.24 6.71 6.93	6.63 6.93 7.21 7.75 8.00	6,63 6,93 7,21 7,75 8,00	7.42 7.75 8.06 8.66 8.94		110 120 130 150 160		Brown Brown Brown Brown Brown	Brown Red Orange Green Blue	Black Black Black Black Black	
18 20 22 24 27	18 22 27		1.50 1.58 1.66 1.73 1.84	2.12 2.24 2.34 2.45 2.60	3.00 3.16 3.32 3.46 3.67	4.24 4.47 4.69 4.90 5.20	6.00 6.32 6.63 6.93 7.35	7.35 7.75 8.12 8.48 9.00	8.48 8.94 9.38 9.80 10.4	8.48 8.94 9.38 9.80 10.4	9.49 10.0 10.5 11.0 11.6		180 200 220 240 270		Brown Red Red Red Red	Gray Black Red Yellow Violet	Black Black Black Black Black	
30 33 36 39 43	33 39	33 —	1.94 2.03 2.12 2.21 2.32	2.74 2.87 3.00 3.12 3.28	3.87 4.06 4.24 4.42 4.64	5.48 5.74 6.00 6.24 6.56	7.75 8.12 8.48 8.83 9.27	9.49 9.95 10.4 10.8 11.4	11.0 11.5 12.0 12.5 13.1	11.0 11.5 12.0 12.5 13.1	12.2 12.8 13.4 14.0 14.7		300 330 360 390 430		Orange Orange Orange Orange Yellow	Black Orange Blue White Orange	Black Black Black Black Black	
47 51 56 62 68	47 56 68	47 — — 68	2.42 2.52 2.65 2.78 2.92	3.43 3.57 3.74 3.94 4.12	4.85 5.05 5.29 5.57 5.83	6.86 7.14 7.48 7.87 8.25	9.70 10.1 10.6 11.1 11.7	11.9 12.4 13.0 13.6 14.3	13.7 14.3 15.0 15.7 16.5	13.7 14.3 15.0 15.7 16.5	15.3 16.0 16.7 17.6 18.4		470 510 560 620 680		Yellow Green Green Blue Blue	Violet Brown Blue Red Gray	Black Black Black Black Black	
75 82 91 100 110	82 100	100	3.06 3.20 3.37 3.54 3.71	4.33 4.53 4.77 5.00 5.24	6.12 6.40 6.74 7.07 7.42	8.66 9.06 9.54 10.0 10.5	12.2 12.8 13.5 14.1 14.8	15.0 15.7 16.5 17.3 18.2	17.3 18.1 19.1 20.0 21.0	17.3 18.1 19.1 20.0 21.0	19.4 20.2 21.3 22.4 23.5		750 820 910 101 111		Violet Gray White Brown Brown	Green Red Brown Black Brown	Black Black Black Brown Brown	
120 130 150 160 180	120 150 180	150	3.87 4.03 4.33 4.47 4.74	5.48 5.70 6.12 6.32 6.71	7.75 8.06 8.66 8.94 9.49	11.0 11.4 12.2 12.6 13.4	15.5 16.1 17.3 17.9 19.0	19.0 19.7 21.2 21.9 23.2	21.9 22.8 24.5 25.3 26.8	21.9 22.8 24.5 25.3 26.8	24.5 25.5 27.4 28.3 30.0		121 131 151 161 181		Brown Brown Brown Brown Brown	Red Orange Green Blue Gray	Brown Brown Brown Brown Brown	
200 220 240 270 300	220 270	220	5.00 5.24 5.48 5.81 6.12	7.07 7.42 7.75 8.22 8.66	10.0 10.5 11.0 11.6 12.2	14.1 14.8 15.5 16.4 17.3	20.0 21.0 21.9 23.2 24.5	24.5 25.7 26.8 28.5 30.0	28.3 29.7 31.0 32.9 34.6	28.3 29.7 31.0 32.9 34.6	31.6 33.2 34.6 36.7 38.7		201 221 241 271 301		Red Red Red Red Orange	Black Red Yellow Violet Black	Brown Brown Brown Brown Brown	
330 360 390 430 470	330 390 470	330 — — 470	6.42 6.71 6.98 7.33 7.66	9.08 9.49 9.87 10.4 10.8	12.8 13.4 14.0 14.7 15.3	18.2 19.0 19.7 20.7 21.7	25.7 26.8 27.9 29.3 30.7	31.5 32.9 34.2 35.9 37.6	36.3 37.9 39.5 41.5 43.4	36.3 37.9 39.5 41.5 43.4	40.6 42.4 44.2 46.4 48.5		331 361 391 431 471		Orange Orange Orange Yellow Yellow	Orange Blue White Orange Violet	Brown Brown Brown Brown Brown	

[■] Rating @ 70°C, derated to zero @ 130°C.

² Rating @ 70°C, derated to zero @ 150°C.

STANDARD RESISTANCE VALUES

Nomina	l Resistance	in Ohms		R	ated Cor		Workin		e (RCW	(V)			Resis		Resistance Color Code		
TOLER	ANCE COLO					DC	er RMS	Volts				Туре		Toler- ance			
2000				1		WATT	AGE and	TYPE	1			BB CB	CB Value 1 = 10%			2nd	3rd
	4th BAND		1/8	1/4 2	1/2 2	1 2	2.2	3 2	4 3	4 2	5 3	EB etc.	Code	2=20%	BAND	BAND	Number of
Gold ±5%	Silver ±10%	None ±20%	BB	CB	EB	GB	НВ	GM	GM	НМ	НМ	XX	000	Х	1st digit	2nd digit	zeros after 1st & 2nd digit
510 560 620 680 750	560 — 680	680	7.98 8.37 8.80 9.22 9.68	11.3 11.8 12.4 13.0 13.7	16.0 16.7 17.6 18.4 19.4	22.6 23.7 24.9 26.1 27.4	31.9 33.5 35.2 36.9 38.7	39 1 41.0 43.1 45.2 47.4	45.2 47.3 49.8 52.2 54.8	45.2 47.3 49.8 52.2 54.8	50 5 52.9 55.7 58.3 61.2		511 561 621 681 751		Green Green Blue Blue Violet	Brown Blue Red Gray Green	Brown Brown Brown Brown Brown
820 910 1000 1100 1200	820 1000 — 1200	1000	10.1 10.7 11.2 11.7 12.2	14.3 15.1 15.8 16.6 17.3	20.2 21.3 22.4 23.4 24.5	28.6 30.2 31.6 33.2 34.6	40.5 42.7 44.7 46.9 49.0	49.6 52.2 54.8 57.4 60.0	57.3 60.3 63.2 66.3 69.3	57.3 60 3 63.2 66.3 69.3	64.0 67.5 70.7 74.2 77.5		821 911 102 112 122		Gray White Brown Brown Brown	Red Brown Black Brown Red	Brown Brown Red Red Red
1300 1500 1600 1800 2000	1500 — 1800	1500 —	12.8 13.7 14.1 15.0 15.8	18.0 19.4 20.0 21.2 22.4	25.5 27.4 28.3 30.0 31.6	36.1 38.7 40.0 42.4 44.7	51.0 54.8 56.6 60.0 63.2	62 4 67 1 69.3 73.5 77.5	72.1 77.5 80.0 84.8 89.4	72.1 77.5 80.0 84 8 89 4	80.6 86.6 89.4 94 9 100		132 152 162 182 202		Brown Brown Brown Brown Red	Orange Green Blue Gray Black	Red Red Red Red Red
2200 2400 2700 3000 3300	2200 2700 3300	2200 — — 3300	16.6 17.3 18.4 19.4 20.3	23.4 24.5 26.0 27.4 28 /	33 2 34.6 36.7 38.7 40.6	46 9 49.0 52.0 54.8 57.4	66 3 69 3 73 5 77.5 81.2	81.2 84.8 90.0 94.9 99.5	93.8 98.0 104 110 115	93.8 98.0 104 110 115	105 110 116 122 128		222 242 272 302 332		Red Red Red Orange Orange	Red Yellow Violet Black Orange	Red Red Red Red Red
3600 3900 4300 4700 5100	3900 4700	4700	21.2 22.1 23.2 24.2 25.2	30.0 31.2 32.8 34.3 35.7	42.4 44.2 46.4 48.5 50.5	60.0 62.4 65.6 68.6 71.4	84.8 88.3 92.7 97.0 101.0	104 108 114 119 124	120 125 131 137 143	120 125 131 137 143	134 140 147 153 160		362 392 432 472 512		Orange Orange Yellow Yellow Green	Blue White Orange Violet Brown	Red Red Red Red Red
5600 6200 6800 7500 8200	5600 6800 8200	6800	26.5 27.8 29.2 30.6 32.0	37.4 39.4 41.2 43.3 45.3	52.9 55.7 58.3 61 2 64 0	74.8 78.7 82.5 86.6 90.6	106 111 117 122 128	130 136 143 150 157	150 157 165 173 181	150 157 165 173 181	167 176 184 194 202		562 622 682 752 822		Green Blue Blue Violet Gray	Blue Red Gray Green Red	Red Red Red Red Red
9100 10000 11000 12000 13000	10000 12000	10000	33.7 35.4 37.1 38.7 40.3	47 7 50 0 52.4 54.8 57.0	67.4 70.7 74.2 77.5 80.6	95.4 100.0 105 110 114	135 141 148 155 161	165 173 182 190 197	191 200 210 219 228	191 200 210 219 228	213 224 235 245 255		912 103 113 123 133		White Brown Brown Brown Brown	Brown Black Brown Red Orange	Red Orange Orange Orange Orange
15000 16000 18000 20000 22000	15000 18000 22000	15000 — — — 22000	43.3 44.7 47.4 50.0 52.4	61.2 63.2 67.1 70.7 74.2	86.6 89.4 94.9 100.0 105	122 126 134 141 148	173 179 190 200 210	212 219 232 245 257	245 253 268 283 297	245 253 268 283 297	274 283 300 316 332		153 163 183 203 223		Brown Brown Brown Red Red	Green Blue Gray Black Red	Orange Orange Orange Orange Orange
24000 27000 30000 33000 36000	27000 33000	33000	54.8 58.1 61.2 64.2 67.1	77.5 82.2 86.6 90.8 94.9	110 116 122 128 134	155 164 173 182 190	219 232 245 257 268	268 285 300 315 329	310 329 346 363 379	310 329 346 363 379	346 367 387 406 424		243 273 303 333 363		Red Red Orange Orange Orange	Yellow Violet Black Orange Blue	Orange Orange Orange Orange Orange
39000 43000 47000 51000 56000	39000 47000 56000	47000	69.8 73.3 76.6 79.8 83.7	98.7 104 108 113 118	140 147 153 160 167	197 207 217 226 237	279 293 307 319 335	342 359 376 391 410	395 415 434 452 473	395 415 434 452 473	442 464 485 505 529		393 433 473 513 563		Orange Yellow Yellow Green Green	White Orange Violet Brown Blue	Orange Orange Orange Orange Orange
62000 68000 75000 82000 91000	68000 82000	68000	88.0 92.2 96.8 101 107	124 130 137 143 151	176 184 194 202 213	249 261 274 286 302	352 369 387 405 427	431 452 474 496 500	498 500 500 500 500	498 522 548 573 603	557 583 612 640 675		623 683 753 823 913		Blue Blue Violet Gray White	Red Gray Green Red Brown	Orange Orange Orange Orange Orange
	Resistance i			150	204	1210	1447	500	E00	1.000	70.7		202		T 0	Di di	V-0
0.1 0.11 0.12 0.13 0.15	0.1 0.12 0.15	0.1 0.15	112 117 122 128 137	158 166 173 180 194	224 234 245 255 274	316 332 346 361 387	447 469 490 510 548	500 500 500 500 500	500 500 500 500 500	632 663 693 721 750	707 742 750 750 750		104 114 124 134 154		Brown Brown Brown Brown Brown	Black Brown Red Orange Green	Yellow Yellow Yellow Yellow Yellow
0.16 0.18 0.20 0.22 0.24	0.18 - 0.22	0.22	141 150 150 150 150	200 212 224 234 245	283 300 316 332 346	400 424 447 469 490	566 600 632 663 693	500 500 500 500 500	500 500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		164 184 204 224 244		Brown Brown Red Red Red	Blue Gray Black Red Yellow	Yellow Yellow Yellow Yellow Yellow

Rating @ 70°C, derated to zero @ 130°C.

Rating @ 70°C, derated to zero @ 150°C.

STANDARD RESISTANCE VALUES

	esistance in NCE COLO	n Megohms R CODE		Maxim	ım Rate		nuous W or RMS		/oltage ((RCWV)	1	Туре	Resi Part Nu	Toler-	Resistance Color Code			
						WATI	'AGE and	TYPE				BB	В	5=5%				
	4th BAND		1/8	1/4 2	1/2 2	12	2 2	3 2	4 3	4 2	5 3	CB EB etc.	Value Code	1 = 10% 2 = 20%	1st BAND	2nd BAND	3rd BAND Number of	
Gold ±5%	Silver ±10%	None ±20%	88	CB	EB	GB	нв	GM	GM	НМ	НМ	XX	000	х	1st digit	2nd digit	zeros afte 1st & 2nd digit	
0.27 0.30 0.33 0.36 0.39	0.27 0.33 0.39	0.33 —	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350	500 500 500 500 500	735 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		274 304 334 364 394		Red Orange Orange Orange Orange	Violet Black Orange Blue White	Yellow Yellow Yellow Yellow Yellow	
0.43 0.47 0.51 0.56 0.62	0.47 0.56	0.47	150 150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350	500 500 500 500 500	750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		434 474 514 564 624		Yellow Yellow Green Green Blue	Orange Violet Brown Blue Red	Yellow Yellow Yellow Yellow Yellow	
0.68 0.75 0.82 0.91 1.0	0.68 0.82	0.68 — — — 1.0	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750		684 754 824 914 105		Blue Violet Gray White Brown	Gray Green Red Brown Black	Yellow Yellow Yellow Yellow Green	
1.1 1.2 1.3 1.5 1.6	1.2	1.5	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		115 125 135 155 165		Brown Brown Brown Brown Brown	Brown Red Orange Green Brue	Green Green Green Green Green	
1.8 2.0 2.2 2.4 2.7	1.8 - 2.2 - 2.7	2.2	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		185 205 225 245 275		Brown Red Red Red Red	Gray Black Red Yellow Violet	Green Green Green Green Green	
3.0 3.3 3.6 3.9 4.3	3.3	3.3	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		305 335 365 395 435		Orange Orange Orange Orange Yellow	Black Orange Blue White Orange	Green Green Green Green Green	
4.7 5.1 5.6 6.2 6.8	4.7 5.6 — 6.8	4.7 — — 6.8	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750	1	475 515 565 625 685		Yellow Green Green Blue Blue	Violet Brown Blue Red Gray	Green Green Greer Greer Greer	
7.5 8.2 9.1 10	8.2	10	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		755 825 915 106 116		Violet Gray White Brown Brown	Green Red Brown Black Brown	Greer Greer Blue Blue	
12 13 15 16 18	12 15 18	15	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		126 136 156 166 186		Brown Brown Brown Brown Brown	Red Orange Green Blue Gray	Blue Blue Blue Blue Blue	
20 22 24 27 30	22 27	22	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		206 226 246 276 306		Red Red Red Red Orange	Black Red Yellow V.olet Black	Blue Blue Blue Blue Blue	
33 36 39 43 47	33 39 47	33	150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		336 366 396 436 476		Orange Orange Orange Yellow Yellow	Orange Blue White Orange Violet	Blue Blue Blue Blue	
51 56 62 68 75	56 68	68	150 150 150 150 150 150	250 250 250 250 250 250	350 350 350 350 350 350	500 500 500 500 500	750 750 750 750 750 750	500 500 500 500 500 500	500 500 500 500 500	750 750 750 750 750 750	750 750 750 750 750 750		516 566 626 686 756		Green Green Blue Blue Violet	Brown Blue Red Gray Green	Blue Blue Blue Blue Blue	
82 91 100	82 100	100	150 150 150	250 250 250	350 350 350	500 500 500	750 750 750	500 500 500	500 500 500	750 750 750	750 750 750		826 916 107		Gray White Brown	Red Brown Black	Blue Blue Viole	

Rating @ 70°C, derated to zero @ 130°C.

Rating @ 70°C, derated to zero @ 150°C.

Rating @ 40°C, derated to zero @ 150°C.

EXPLANATION OF PART NUMBERS

All Allen-Bradley fixed composition resistors are identified by a Part Number which will provide information as to the type of resistor, resistance value, and tolerance. The Part Number is merely for identification on drawings, specifications, ordering, and other areas where it is convenient to use a Part Number to describe a particular resistor. The only markings that appear on the resistor are the Color Code bands.

INDUSTRIAL GRADE TYPE DESIGNATION ---- EB 5145

TYPE Fixed Composition Resistors, Insulated, Established Reliability

RESISTANCE

Expressed in ohms and identified by a three-digit number. First two digits represent significant figures. Last digit specifies the number of zeros to follow, except below 10 ohms (see below)

FOR VALUES BELOW 10 OHMS:

DESIGNATION	MIL DESIGNATION
The letter "G" is substituted in place of the third digit. The desired resistance value is then the first two digits multiplied by 0.1.	The letter "R" is substituted in place of a significant digit to represent the decimal point. The following digits represent

significant figures. EXAMPLE MIL Allen-Bradley Resistance Designation 27G 2.7 Ohm 2R7

RESISTANCE TOLERANCE

Allen- Bradley	Tolerance	MIL Designation
5	±5%	J
1	±10%	K
2	±20%	

FAILURE RATE LEVEL

At 50% rated wattage expressed in %/1000 hrs.

M = 1.0%

P = 0.1%

R = 0.01%

S = 0.001%

MIL-R-39008 TYPE DESIGNATION -- RCR 20 G 514 JS

MIL-R-11 TYPE DESIGNATION-

RC20 GF514J

MAXIMUM AMBIENT TEMPERATURE AND RESISTANCE TEMPERATURE CHARACTERISTIC (Refer to MIL-R-11 or MIL-R-39008 Specifications as Applicable)

Standard Color Code and Preferred Number Series

Pre	ferred	Nun	ber S	Series		
±5% Tolerance	10 11 12 13	15 16 18 20	22 24 27 30	33 36 39 43	47 51 56 62	68 75 82 91
±10% Tolerance	10 12	15 18	22 27	33 39	47 56	68 82
±20% Tolerance	10	15	22	33	47	68

Dimensions shown in ITALICS are in Millimeters.

