

INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DO MARANHÃO DEE - DEPARTAMENTO DE ELETROELETRÔNICA

CONVERSOR BUCK-BOOST

1. APRESENTAÇÃO

A seguinte pratica de laboratório tem como objetivo exercitar o conteúdo estudado, precisamente sobre o estudo de conversores **cc-cc** do tipo Buck-Boost. Em síntese, objetiva-se:

- Implementar moduladores de largura de pulso (PWM);
- Montar um conversor cc-cc Buck-Boost;
- Entender os princípios básicos de conversores cc-cc;
- Realizar medições no circuito;
- Observar as formas de onda sobre os elementos do circuito.

2. CIRCUITO

Monte na matriz de contatos o circuito mostrado abaixo. A tensão de entrada (Vi) será de 12V. O diodo será ideal e o indutor será de 500 μ H. Já o capacitor de saída será de 22 μ F. Conecte um resistor de carga de 20 Ω . O PWM está configurado para operar em 500 Hz.

Conversor cc-cc Buck-Boost

Anote os valores obtidos na tabela abaixo, respectivamente.

Parâmetro	Explicação	Valor Calculado	Valor Simulado
$V_{o(avg)}$	Tensão média na carga		
$V_{o(RMS)}$	Tensão eficaz na carga		
I _{o(RMS)}	Corrente eficaz na carga		
I _{o(avg)}	Corrente média na carga		
Po	Potência na saída		
I _{L1(max)}	Corrente máxima no indutor		
I _{L1(avg)}	Corrente média no indutor		
I _{L1(rms)}	Corrente eficaz no indutor		
I _{C1(max)}	Corrente máxima no capacitor		
I _{C1(rms)}	Corrente eficaz no capacitor		
V _{S1(max)}	Tensão máxima sobre a chave		
$V_{ extsf{D1(max)}}$	Tensão máxima sobre o diodo		

Utilize as fórmulas abaixo para fazer o que se pede na atividade:

$$Io = Io_{med} = Io_{rms} = Io_{pk} = \frac{Vo}{Ro} \quad I_{L1} = I_o \cdot \frac{1}{1 - D} \quad \Delta I_{L1} = \frac{Vo}{L_1 \cdot F_s} \cdot (1 - D) \mid I_{Co(max)} = I_{L1(max)} - Io$$

$$I_{Co(rms)} = \sqrt{\left(\frac{1}{2} \cdot \sqrt{\frac{(1 - D) \cdot \left(12 \cdot I_{L1}^2 + \Delta I_{L1}^2\right)}{3}}\right)^2 - I_o^2} \quad P_o = V_o \times I_o \mid I_{Li(max)} = I_{L1} + \frac{\Delta I_{L1}}{2}$$

$$I_{Li(rms)} = \sqrt{\left(\frac{\Delta I_{L1}}{2 \cdot I_{L1}^2}\right)^2 + I_{L1}^2} \quad V_o = V_i \cdot \frac{D}{(1 - D)} \quad V_{o(med)} = V_{o(rms)} = V_{o(pk)}$$

3. VERIFICAÇÃO

- 1) Os resultados obtidos na simulação condizem com os valores calculados?
- 2) Qual foi o rendimento obtido no circuito analisado?
- 3) Compare os valores medidos com os valores calculados no ensaio realizado e explique a razão das discrepâncias (erros de grande amplitude), caso tenham ocorrido.