Tension-Aware Path Planning for Tethered Robots on Extreme **Terrain Using** Reinforcement Learning

- Rahul Kumar

Problem Statement

Objective is to find a path from start state s to a goal state g while satisfying winding constraint angle denoted by θ s.t. $\theta > \theta$ d.

Goal-conditioned MDP (S,A,T,R, γ ,G)

State Space, S --> $(X, Y) / (X, Y, \theta)$

Action Space, A --> (L,R,U,D)

Reward Function

If θ a,t < θ d, then

If θ a,t > θ a,t-1, then Reward = 1

Else if θ a,t < θ a,t-1, then Reward = -0.8

Else Reward = -0.1

Else

Reward = - Euclidean distance to goal

Constant Exploration (Eps = 0.2)

State Space, $S \longrightarrow (X, Y)$

Gamma = 0.99, Step size = 0.3

Variable Exploration (Eps = 0.5 -> 0.01)

State Space, $S \longrightarrow (X, Y)$

Gamma = 0.99, Step size = 0.3

Variable Exploration (Eps = 0.5 -> 0.01)

State Space, S --> (X, Y, θ)

Gamma = 0.99, Step size = 0.3

Steps taken =44

Deep Q-learning

State Space, S --> (X, Y, θ)

Gamma = 0.99, Eps = 1 -> 0.01

Path Ahead

- Improving Deep Q-learning performance
- Extend the algorithm to more complex environment
- Implement other deep RL algorithms

Video -

https://drive.google.com/drive/folders/1-4UmNG38PIJ5w7TckJuNP7aKNrLOasnz?usp= drive_link

Code - https://github.com/k-rahul1/Reinforcement-Learning

