FINAL SUBMITTAL

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

LIMITED ENERGY STUDY

WATERVLIET ARSENAL

WATERVLIET, NEW YORK

VOLUME II

APPENDICES

19971016 261

CONTRACT NO. DACA65-91-C-0072

PREPARED FOR:

U.S. ARMY CORPS OF ENGINEERS NORFOLK, VIRGINIA

PREPARED BY:

ENERGY AND ENVIRONMENTAL SERVICES DEPARTMENT REYNOLDS, SMITH AND HILLS, INC.
P.O. BOX 4850
JACKSONVILLE, FLORIDA 32201

RS&H PROJECT NO. 2900379002

AUGUST 1992

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLYTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakef**l**eld,

Librarian Engineering

VOLUME II

TABLE OF CONTENTS

Appendix A - Prenegotiation Minutes and Scope of Work

Appendix B - Backup Data, Calculations and Cost Estimates

APPENDIX A

PRENEGOTIATION MINUTES
AND
SCOPE OF WORK

18 December 1990

CENAO-EN-MP (415-10e)

MEMORANDUM THRU Chiefs, Special Projects Seminatory Programs Br

FOR Contract File

SUBJECT: Record of Preliminary Negotiations with Reynolds, Smith & Hills, Inc., Jacksonville, FL for A-E Services in Connection with Preparation of the Limited Energy Study (LES) for Energy Engineering Analysis Program (EEAP), Watervliet Arsenal, NY; DACA-65-91-C-004811

- 1. Authority to perform subject work is contained in CESAM-EN-CC memo dated 15 Aug 1990, Subject: Energy Engineering Analysis Program (EEAP), FY91 Program for Norfolk District, which authorizes an EEAP LES at Watervliet Arsenal.
- 2. The scope of work consists of reviewing the previously completed Energy Engineering Analysis Program (EEAP) study which applies to the specific building, system, or energy conservation opportunity (ECOS) covered by this study; performing a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOS included in this study; reevaluating the specific project or ECO from the previous study to determine its economic feasibility based on revised criteria, current site conditions, and technical applicability; evaluating specific ECOS to determine their energy savings potential and economic feasibility; providing project documentation for recommended ECOS; and preparing a comprehensive report to document all work performed, the results, and the recommendations. The scope of work and services to be performed are further described in enclosed Scope of Work for an LES at Watervliet Arsenal.
- 3. The project scope of work and proposed A-E services were discussed in detail at a preliminary negotiations meeting and site visit held at Watervliet Arsenalin Building 120 on 6 December 1990 at 0830 among the following:

Participant
Paul Hutchins
Bill Face
Frank Mercuric
Timpy Uppal
Bryant Wilkins

Representing RSH SMCWV-EHE SMCWV-EHE SMSWV-ODP-IO CENAO-EN-MS 4. The following schedule for the project was agreed to, subject to timely receipt of additional Government furnished information which is essential to the performance of the A-E contract. The periods of time for A-E services are obligatory. Deviations in the schedule by the Government will in no way abrogate the time periods for the A-E:

Start effort immediately after award of of the contract such that effort will be Complete & Approved not later than 365 days after award of the contract.

- 5. The quantities of documents required at the various submissions are as shown in enclosed detailed scope of work.
- 6. The A-E was requested to expedite preparation of the proposal.

Enclosure

BRYANT WILKINS Project Manager

Special Projects Section

Syant Wilkens

James N. Thomasson, P.E. Chief, Engineering Division

The preceding Record of Preliminary Negotiations adequately describes my understanding of the scope of the proposed A-E contract and the work to be performed by our firm. I am familiar with Clause (Responsibilities of the Architect-Engineer).

The Hutchin

Authorized Representative of Reynolds, Smith & Hills, Inc.

PRENEGOTIATION MEETING--WATERVLIET ARSENAL LIMITED ENERGY STUDY ADDITIONAL NOTES

- o Power factor correction is desired.
- o Architectural modifications are difficult on many buildings due to historical value.
- o Project has been designed for heat exchanger on Building 125 exhaust system. WVA is looking at a completely new system with make-up air.
- o Exhaust heat recovery is possible in Building 25.
- o Reduce OSA intake in Building 44.
- o Cogeneration is popular.
- o Niagra Mohawk is the utility.
- o Evaluating switch from No. 6 fuel oil to natural gas.
- o Five boilers, 135 psia, two 50 k#/hr, two 100 k#/hr, one 25 k#/hr.
- o Natural gas used in donkey boiler, Selas Furnace and some heat treat.
- o Steam used for space heating in all buildings except Building 10, where it is converted to hot water.
- o Largest energy users--Tocco induction furnace, rotary forge.
- o Air compressors have cooling towers; others for heat treat, Selas furnace and Tocco furnace.
- o Only significant space cooling is in Building 40, Benet Labs, two 750-ton chillers.
- o Donkey boiler is used only for process steam in Building 35 during the summer--25 k#/hr.
- o Weatherization; none except Building 22, Building 4 (second floor) and Building 10 (unit 4/5).
- o Metering ~30 electric, five natural gas and a few steam.
- o Condensate is not returned from chrome plating in Building 35. Could be used to preheat boiler make-up water.

GENERAL SCOPE OF WORK

FOR A

LIMITED ENERGY STUDY

WATERVLIET ARSENAL

WATERVLIET, NY

DACA-65-91-C-0072

Performed as part of the

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

BASIC CONTRACT - INDUSTRIAL FACILITIES AT WVAD

OPTION - ANCILL ARY FACILITIES AT WVAD

SCOPE OF WORK FOR A LIMITED ENERGY STUDY WATERVLIET ARSENAL

TABLE OF CONTENTS

1.	BRIEF DESCRIPTION OF WORK	:
2.	GENERAL	:
3.	PROJECT MANAGEMENT	2
4.	SERVICES AND MATERIALS	4
5.	PROJECT DOCUMENTATION	4
	5.1 ECIP Projects5.2 Non-ECIP Projects5.3 Nonfeasible ECOs	4 5 5
6.	DETAILED SCOPE OF WORK	6
7.	WORK TO BE ACCOMPLISHED	6
	7.1 Review Previous Studies 7.2 Perform a Limited Site Survey 7.3 Reevaluate Selected Projects 7.4 Evaluate Selected ECOs 7.5 Combine ECOs into Recommended Projects 7.6 Submittals, Presentations and Reviews	6 6 6 7 7

ANNEXES

- A DETAILED SCOPE OF WORK
- B EXECUTIVE SUMMARY GUIDELINE

- 1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:
- 1.1 Review the previously completed Energy Engineering Analysis Program (EEAP) study which applies to the specific building, system, or energy conservation opportunity (ECO) covered by this study.
- 1.2 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 1.3 Reevaluate the specific project or ECO from the previous study to determine its economic feasibility based on revised criteria, current site conditions and technical applicability.
- 1.4 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 1.5 Provide project documentation for recommended ECOs as detailed herein.
- 1.6 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

- 2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.
- 2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.
- 2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.
- 2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.
- 2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from CEHSC-FU, dated 25 April 1988 and the latest revision from CEHSC-FU establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced

in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance. The output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

- Computer modeling will be used to determine the energy savings of ECOs which would replace or significantly change an existing heating, ventilating, and air-conditioning (HVAC) system. The requirement to use computer modeling applies only to heated and air-conditioned or air-conditioned-only buildings which exceed 8,000 square feet or heated-only buildings in excess of 20,000 square feet. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex A, will list programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.
- 2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to the installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP, MCA, or PCIP funding. However, preparation of programming documents such as DD Forms 1391, Project Development Brochures, or DA Forms 5108-R will not be required.
- 2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).
- 2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.
- 2.7.3 At some installations Energy Conservation and Management (ECAM) funding will be used instead of ECIP funding.' The criteria for each program is the same. The Director of Engineering and Housing will indicate which program is used at this installation. This Scope of Work mentions only ECIP, however, ECAM is also meant.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the

individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

- 3.2 <u>Installation Assistance</u>. The Commanding Officer or authorized representative at the installation will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the installation representative.
- 3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.
- 3.4 Meetings. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.
- 3.5 <u>Site Visits. Inspections.</u> and <u>Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

- 3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.
- 3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall

forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.

- 3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Director of Engineering and Housing before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance.
- 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:
 - a. Schedules.
 - b. Names of energy analysts who will be conducting the site survey.
 - c. Proposed working hours.
 - d. Support requirements from the Director of Engineering and Housing.
- 3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Director of Engineering and Housing.
- 4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), plant, labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.
- 5. <u>PROJECT DOCUMENTATION</u>. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:
- 5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$200,000, a Savings to Investment Ratio greater than one and a simple payback period of less than four years. For ECAM projects, the \$200,000 limitation may not apply; in such cases, the AE shall check with the installation for guidance. The overall project and each discrete part of the project shall have an SIR greater than one. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and provided with the following documentation: life cycle cost analysis (LCCA) summary sheet, description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must

take into account the synergistic effects of the individual ECOs. [For projects and ECOs reevaluated from previous studies, the backup data shall consist of copies of the original calculations and analysis, with new pages revising the original calculations and analysis. In addition, the backup data shall include as much of the following as is available: the increment of work under which the project or ECO was developed in the previous study, title(s) of the project(s), the energy to cost (E/C) ratio, the benefit to cost (B/C) ratio, the current working estimate (CWE), and the payback period. The purpose of this information is to provide a means to prevent duplication of projects in any future reports.]

- 5.2 Non-ECIP Projects. Projects which do not meet ECIP criteria with regard to cost estimate, payback period, or nonenergy (75%) qualification test, but which have an SIR greater than one shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition, these projects shall be grouped as required by the Government's representative, for one of the following categories:
- a. Quick Return on Investment Program (QRIP). This program is for projects which have a total cost not over \$100,000 and a simple payback period of two years or less.
- b. OSD Productivity Investment Funding (OSD PIF). This program is for projects which have a total cost of more than \$100,000 and a simple payback period of four years or less.
- c. Productivity Enhancing Capital Investment Program (PECIP). This program is for projects which have a total cost of more than \$3,000 and a simple payback period of four years or less.

The above programs are all described in detail in AR 5-4, Change No. 1.

- d. Regular Military Construction Army (MCA) Program. This program is for projects which have a total cost greater than \$200,000 and a simple payback period of four to twenty-five years.
- e. Low Cost/No Cost Projects. These are projects which the Director of Engineering and Housing can perform using his resources.
- 5.3 Nonfeasible ECOs. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.

6. <u>DETAILED SCOPE OF WORK</u>. The Detailed Scope of Work is contained in Annex A.

7. WORK TO BE ACCOMPLISHED.

- 7.1 Review Previous Studies. Review the previous EEAP study which applies to the specific building, system, or ECO covered by this study. This review should acquaint the AE with the work that has been performed previously. Much of the information the AE may need to develop the ECOs in this study may be contained in the previous study.
- 7.2 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. However, the AE is encouraged to use any data that may have been documented in a previous study. The AE shall document his site survey on forms developed for the survey, or standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.
- Reevaluate Selected Projects. The AE shall reevaluate the projects and ECOs listed in Annex A. These are projects and ECOs that the previous study has identified but that have not been accomplished or only parts have been accomplished. If the project or ECO is acceptable as is, that is, there are no changes to the basic project or ECO, the energy savings shown in the previous project may be accepted as accurate but the energy cost and construction cost estimates shall be updated based on the most current data available. With the above information the project shall then be analyzed based on current ECIP criteria. If the project or ECO is basically acceptable but some of the buildings in the original project have been deleted or new buildings can be added, the necessary changes shall be made to the energy savings, the energy costs and construction costs shall be updated, and the revised project or ECO shall then be analyzed using current ECIP guidance. If the original project or ECO has had numerous changes made to it so that all of the numbers are suspected of being inaccurate, but the project or ECO is still considered feasible, the AE shall develop the project from the beginning and analyze it with the current ECIP guidance. These projects shall be separately listed in the report.
- 7.4 Evaluate Selected ECOs. The AE shall analyze the ECOs listed in Annex A. These ECOs shall be analyzed in detail to determine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall

be prepared for each ECO and included as part of the supporting data.

- 7.5 Combine ECOs Into Recommended Projects. During the Interim Review Conference, as outlined in paragraph [7.6.1], the AE will be advised of the DEH's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par [7.6.2].
- 7.6 <u>Submittals</u>, <u>Presentations</u> and <u>Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the Director of Engineering and Housing, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.
- 7.6.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:
- a. All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.
- b. All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order

of descending SIR. These lists may be subdivided by building or area as appropriate for the study.

The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submittal and Review Conference, Government's and AE's representatives shall coordinate with the Director of Engineering and Housing to provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submit-They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

- Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph [7.6.1] shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:
- a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).
- b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.
- c. Documentation for the recommended projects (includes LCCA Summary Sheets).
 - d. Appendices to include as a minimum:
 - 1) Energy cost development and backup data
 - 2) Detailed calculations
 - Cost estimates
 - Computer printouts (where applicable)
 - 5) Scope of Work

ANNEX A

DETAIL SCOPE OF WORK LIMITED ENERGY STUDY WATERVLIET ARSENAL

TABLE OF CONTENTS

Areas/Buildings to be Audited	A-2
Specific ECOs	A-3
ECOs to be Updated	A-4
Schedule of Activities	A-6
Submittal Distribution List	A-7,8
Special Requirements and Information	A-9

BUILDINGS TO BE AUDITED AND GENERAL ECOS BASIC INDUSTRIAL FACILITIES Description

Building No.

35	Med. Caliber Tube Bldg.
110 (South end)	Heavy Caliber Tube Bldg.
125	Breech Comp. & Weld Shop Bldg.
135	Heavy Caliber Tube Shop

General ECOs

- a. Waste heat recovery from industrial processes
- b. Industrial process ventilation and exhaust systems
- c. Industrial process controls
- d. Energy-efficient motors and variable frequency drives

OPTION 1 - ANCILLARY FACILITIES

Number	Building Number	Description
-		
1	10	Campbell Hall
2	15	Garage (Motor Pool)
3	20	Major Component Building
4	21	O'Keefe Hall
5	22	Fire Station
6	23	Operations Office
7	24	Operations Office
8	25	Minor Comp. Bldg. & Op. Offices
9	38	Storehouse and Museum
10	40	Benet Labs & Others
11	44	Dalliba Hall/Product Assurance
12	110	(Remainder) Heavy Caliber Tube Bldg.
13	115	Maggs Research Center
14	120	Facilities Offices and Shops
15	130	Storehouse/Processing Bldg.
16	136	Boiler Plant
17	145	Warehouse & Property Disposal

GENERAL ECOS

- a. Steam distribution and condensate return systems
- b. Building ventilation and exhaust systems
- c. Radiant heating
- d. Space heating controls
- e. Energy-efficient lighting
- f. Energy-efficient ballasts
- g. Lighting controls (including occupancy sensors, photocells, separate switching)
- h. Fluorescent fixture reflectors

SPECIFIC ECOS

- Power factor correction for electrical system
- Fuel switch from FSR to Natural Gas (Building #136)
- Congeneration
- Reduce heat loss in dip tank operation (Building #35)
- Electrical demand peak reduction
- Improve steam distribution and condensate return system.

ECOs TO BE UPDATED

- None -

SCHEDULE OF ACTIVITIES

Activity	Calendar Days (NTP Plus)			
NTP	0			
Interim Submittal	145			
Interim Review Conference	195			
Prefinal Submittal	235			
Prefinal Review Conference	270			
Prefinal (Corrected)/Final Submittal	305			

SUBMITTAL DISTRIBUTION LIST

Address	Interim 60%	Final 100%
Commander		
U.S. Army Engineer Division, North Atlantic		
ATTN: CENAD-EN-MM		
90 Church Street	•	
New York, NY 10007	2 cys	2 cys
Commander		
Office of Chief of Engineerg ATTN: CEEC-EE (McCarty)		
Pulaski Building	Promitica	
Washington, DC 20314	Executive S 1 cy	ummary Onl 1 cy
Commander		
U.S. Army Engineer District, Norfolk		
Attn: CENAO-EN-MP (Wilkins) 303 Front Street		
Norfolk, VA 23510		
101101K, VA 2351U	2 cys	2 cys
army Energy Office		
TTN: DALO-LEP (Keath)		
lew Cumberland Army Depot	Executive Su	ummary Only
ew Cumberland, PA 17070	1 cy	i cy
ommander		•
atervliet Arsenal		
TTN: SMCWV-FE (Bill Face)		
uilding 120	2 cys	2 cys
atervliet, NY 12189	5 5/2	2 Cys
ommander		
SAMC Installations & Services Activity (TTN: AMXEN B (G. Badtram)		
ailding 60, 2nd Floor	1	•
ock Island, IL 61299-7190	1 cy	1 cy
	9	9

GOVERNMENT FURNISHED CRITERIA

- 1. Building information schedule (manual).
- 2. Production equipment schedule.
- 3. Utility procurement records (including reimburseable).
- 4. Facilities engineering technical data support.
- 5. Equipment modernization/acquisition plan.
- 6. Basic utility systems information maps.
- Equipment layout and utilization records.
- 8. Final reports of previously completed studies performed under the Energy Engineering Analysis Program (EEAP). Only portions pertaining to the industrial facilities, if any, need to be made available.
- 9. Latest copies of any other energy studies performed since the previous EEAP study. Only portions pertaining to the industrial facilities, if any, need to be made available.
 - 10. Energy Resources Management Plan.
- 11. ETLs 1110-3-282, Energy Conservation; 1110-3-318, Procedures for Programming Energy Monitoring and Control Systems (EMCS) Funded Through the MCA Program; 1110-3-332, Economic Studies; and 1110-3-354, Direct Digital Control of Heating, Ventilation and Air Conditioning (HVAC) Systems.
 - 12. Architectural and engineering instructions.
- 13. Energy Conservation Investment Program (ECIP) Guidance, dated 25 April 1988 and revision dated 15 June 1989.
- 14. Information on Existing EMCS Studies, Designs, Construction Contracts, or Operating Systems.
- 15. TM 5-785, Engineering Weather Data; TM 5-800-2, General Criteria Preparation of Cost Estimation; TM 5-800-3, Project Development Brochure; and TM 5-815-2, Energy Monitoring and Control Systems (EMCS).
- 16. AR 415-15, Military Construction Army (MCA) Program Development; AR 415-17, Cost Estimating for Military Programming; AR 415-20, Construction, Project Development and Design Approval; AR 415-28, Department of the Army Facility Classes and Construction Categories; AR 415-35, Construction, Minor

- Construction; AR 420-10, General Provisions, Organization, Functions and Personnel; AR 11-27, Army Energy Program; and AR 5-4, Change Number 1, Department of the Army Productivity Improvement Program.
- 17. HNDSP-84-076-ED-ME, Preliminary Survey and Feasibility Study for Energy Monitoring and Control Systems.
- 18. NCEL CR 82.030, Standardized EMCS Energy Savings Calculations. (Only if needed for this study.)
- 19. HNDSP88-207-ED-ME, HNDSP88-208-ED-ME, HNDSP88-209-ED-ME and HNDSP88-210-ED-ME, EMCS Cost Estimating Guides.
- 20. The latest applicable Engineer Improvement Recommendation System (EIRS) bulletin.
- 21. An example of a correctly completed programming document for an ECIP/ECAM project.
 - 22. Production data.
 - 23. EEAP PRC (11/84)
 - 24. Energy Management Proposal, Niagra-Mohawk (10/90)

SPECIAL REQUIREMENTS AND INFORMATION

1. Point of contact at Watervliet Arsenal and liaison for all work required under this contract is:

Bill Face Watervliet Arsenal ATTN: SMCWV-FE Building 120 Watervliet, NY Phone: (518) 266-4225

- 2. The fiscal year to which all ECIP projects should be estimated to and programming or implementation documents prepared for is FY TBD. Depending on project packaging, the Installation Commander may determine different program years for the final report. Remaining projects shall be escalated to a FY TBD.
- 3. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. The computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977. AE shall indicate in writing what program will be used.
- 4. Consolidated review comments will be provided to AE by Project Manager about 14 days prior to review conferences. AE will review each comment and provide consolidated proposed responses to Project Manager 48 hours prior to conference.
- 5. AE will provide cover letter with all submittals noting a review is required and that a Review Conference is scheduled approximately 45 days hence. Letter will also inform recipients of letter to follow from Norfolk District COE setting exact conference date.
- 6. Acceptable programs for computer modeling of building energy systems are:
 - a. BLAST*
 - b. DOE 2.1B*
 - c. Carrier E20 or HAP**
 - d. TRACE**

*Very accurate, but requires a lot of time for input; therefore, rather expensive for straightforward projects.

**Adequate for load determination, equipment selection, and energy performance for most projects.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - O Total Annual Energy Used.
 - O Source Energy Consumption.

Electricity - KWH, Dollars, BTU
Fuel Oil - GALS, Dollars, BTU
Natural Gas - THERMS, Dollars, BTU
Propane - GALS, Dollars, BTU
Other - QTY, Dollars, BTU

- Reevaluated Projects Results.
- Energy Conservation Analysis.
 - ECOs Investigated.
 - ECOs Recommended.
 - ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list)*
 - O Non-ECIP Projects Developed. (Provide list)*
 - Operational or Policy Change Recommendations.
- * Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.
- Energy and Cost Savings.
 - Total Potential Energy and Cost Savings.
 - Percentage of Energy Conserved.
 - o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

APPENDIX B

BACKUP DATA AND CALCULATIONS

APPENDIX B BACKUP DATA, CALCULATIONS AND COST ESTIMATES

TABLE OF CONTENTS

			<u>Page</u>
I	ENERGY PRICES, DATA, PARAMETERS	, BASIC ASSUMPTIONS AND ECONOMIC	I-1
ΙΙ	ECO CALCULATIONS AND) COST ESTIMATES	
	ECO #2 Natural ECO #3 Cogenera ECO #4 Dip Tank ECO #5 Electric ECO #6 Plating ECO #8 High-Eff ECO #9 Not Used ECO #10 High-Eff ECO #11 Boiler O ECO #12 Natural ECO #13 Air Flow ECO #14 High-Eff ECO #15 EMCS ECO #16 Return A ECO #17 Double-F ECO #18 Storm Wi	cal Demand Peak Reduction Area Condensate Return System ficiency Fluorescent Lighting ficiency Electric Motors Trim Controls Gas Boilers W Reduction ficiency Chiller Air System Pane Windows	1-1 2-1 3-1 4-1 5-1 6-1 8-1 10-1 11-1 12-1 13-1 14-1 15-1 16-1 17-1 18-1
III	OTHER BACKUP CALCULA	ATIONS	
	Operations and Maint ECIPHigh-Efficienc Energy Plan	cenance Energy Savings cy Lighting	0M-1 E-1 FP-1

ENERGY PRICES, DATA, BASIC ASSUMPTIONS, ECONOMIC PARAMETERS

WATERVLIET ARSENAL

ENERGY PRICES AND ECONOMIC PARAMETERS

ENERGY PRICES:

Electricity: 3,413 Btu/kwh, \$0.06945/kwh or \$20.35/MBtu (average)

Customer Charge: \$305.17 per month

On-Peak Energy Charge: \$0.0605/kwh, \$17.73/MBtu

(0800-2200 hrs M-F)

Off-Peak Energy Charge: \$0.045 kwh, \$13.18/MBtu

Demand Charge: \$5.77/kw/month (on-peak)

Power Factor Charge: \$0.873/kva of lagging reactive demand (KVAR)

Source: Niagara Mohawk Electric Bill (July 1991)

Natural Gas: 100,000 Btu/therm,

Firm: \$0.416/therm or \$4.16/MBtu (average)

Spot and Transportation = \$2.99 + \$0.44 = \$3.43/MBtu

Source: Watervliet Arsenal Engineering

Fuel Oil No. 2: 138,690 Btu/gallon, \$0.69/gallon, \$5.00/MBtu

Source: Watervliet Arsenal Engineering (FY 92 rates)

Fuel Oil No. 6: 149,690 Btu/gallon, \$0.66/gallon, \$4.40/MBtu

Source: Watervliet Arsenal Engineering (FY 92 rates)

BASIS FOR COST ESTIMATES:

Adjustment	Labor	Material	Comments
Sales Tax	N.A.	N.A.	WVA is tax exempt
FICA/Insurance	20.0%	N.A.	
Overhead	15.0%	%	
Profit	10.0%	%	
Performance Bond	1.0%	%	
Contingency	10.0%	%	
SIOH	6.0%	%	Input by LCCID Program
Design Fees	6.0%	%	Input by LCCID Program

ADDS REPORT: PROD - AEO MACOMDB REPORT

RUN ON : 06/28/91 08:56:18 FOR : W16H1F WATERVLIET ARSENAL

UTILITIES CONSUMPTION -- TOTAL FACILITY

PRODUCT/PRODUCT GROUP

	(\$000)	CONSUMPTION (MBTUS)	(MBTUS)	CONSUMPTION (MBTUS)	FY90 CONSUMPTION (MBTUS)	CHANGE	\$/MBTU
UTI	LITY			171,257	172,574	-2.80	19.12
NA6	310	58,318	84,136	200,697	65,675	-12.fb	4.72
	,		- 260,840	371,954	238,249	-5.33	15.15
FSD	ROLEUM 50	6,570	8,079	7,613	12,320	-87.52	4.04
FSR	983	318,306	301,751	275,371	277,616	12.78	3.54
		324,876	309,830	282,984	289,936	10.75	3.56
* *	TOTAL # 4,643	551,063	570,670	654,938	528, 185	4.15	8.79

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM OCT89 THRU SEP90
RUN ON : 06/28/91 08:48:24
FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD			BUILDING	PROCESS	F. HOUSING	MSE	TOTAL
CODE	FY	MONTH	CONSUMED	CONSUMED	CONSUMED	CONSUMED	CONSUMED
ELC	90	OCT 89	13642	0	201	0	13843
		NOV 89	14365	0	253	0	14618
		DEC 89	13823	0	235	0	14058
		JAN 90	. 14212	0	270	0	14482
		FEB 90	13495	0	246	0	13741
		MAR 90	15341	0	23 9	0	15580
		APR 90	13928	0	218	0	14146
		MAY 90	13867	0	225	0	14092
		JUN 90	15058	0	218	0	15276
		JUL 90	14273	0	215	0	14488
		AUG 90	12700	0	229	0	12929
		SEP 90	15099	0	222	0	15321
	÷		169803	0	2771	0	172574

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM SEP89 THRU SEP90
RUN ON : 06/28/91 08:51:12
FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD Code	FY	HONTH	BUILDING Consumed	PROCESS Consumed	F. HOUSING CONSUMED	MSE Consumed	TOTAL CONSUMED
NAG	90	OCT 89	5477	0	0	0	5477
		NOV 89	4262	0	5	0	4267
		DEC 89	5645	0	5	0	5650
		JAN 90	6183	Û	22	0	6205
		FEB 90	4037	0	. 22	0	4059
		MAR 90	5175	0	14	0	5189
		APR 90	5508	0	14	0	5522
		MAY 90	9006	0	13	0	9019
		JUN 90	8117	0	0	0	8117
		JUL 90	4024	0	3	0	4027
		AUG 90	3196	0	0	0	3196
		SEP 90	4945	0	2	0	4947
	ŧ		65575	0	100	0	65675

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM OCT89 THRU SEP90
RUN ON : 06/28/91 08:52:40
FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD Code	FY	HONTH	BUILDING CONSUMED	PROCESS CONSUMED	F. HOUSING CONSUMED	MSE Consumed	TOTAL CONSUMED
FSR	90	OCT 89	22262	0	692	0	22954
	••	NOV 89	38558	0	1088	0	39646
		DEC 89	54024	Û	1855	0	55879
		JAN 90	42066	0	2207	0	44273
		FE8 90	52830	. 0	1685	0	54515
		MAR 90	36012	Û	0	0	36012
		APR 90	14209	Û	666	0	14875
		MAY 90	9462	0	0	0	9462
	ŧ		269423	0	8193	0	277616

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM OCT89 THRU SEP90 RUN ON : 06/28/91 08:53:41 FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD			BUILDING	PROCESS	F. HOUSING	MSE	TOTAL
CODE	FY	HTHOM	CONSUMED	CONSUMED	CONSUMED	CONSUMED	CONSUMED
FSD	90	OCT 89	70	0	367	0	437
		NOV 89	635	0	0	0	635
		DEC 89	431	0	0	0	431
		JAN 90	2149	0	0	0	2149
		FEB 90	967	0	0	0	967
		MAR 90	239	0	0	0	239
		APR 90	3926	Ú	0	Ü	3926
		HAY 90	2674	0	0	0	2674
		JUN 90	47	0	0	0	47
		JUL 90	58	0	0	0	58
		AUG 90	87	0	414	0	501
		SEP 90	256	0	Û	0	256
	ŧ		11539	0	781	0	12320

PAGE 1

ADDS REPORT: PROD - AED MACOMDB REPORT

RUN ON : 02/06/92 10:31:53 FOR : W16H1F WATERVLIET ARSENAL

UTILITIES CONSUMPTION -- TOTAL FACILITY

PRODUCT/PRODUCT GROUP

	FY91 CDST (\$000)	CONSUMPTION	FY89 CONSUMPTION (MBTUS)			91 VS 85 PER CENT CHANGE	\$/MBTU
UTIL	.ITY			***************************************			
ELC	3,671	167,869	171,257	172,574	104,997 1 6 2,203	37.45 8.54	31.% 20.15
NAG						•	
	355	58,318	-200,697 87, 410	-		-19,57 7 44.94	
. SU	BTOTAL :						
	4,026	226, 187	-371,95 4	238,249	•		
PETR FSD	OLEUM		258,66	1	266,13	0 11.72	
. ••	58	6,570	-7,813 6143	- 12,320 1393	7,853 2 00 7	- -19.53 69 .53	7.43
FSR	1,939	318,306	275,371	277,616 286,33	. 293,237 35 302,2	- 7.88 19 -5.04	6.61
FSX	0	N/A	N/A	N/A	- 500 -	N/A	0.00
* SU	BTOTAL #	.					
, -			282, 984 282,114	289,936 293,728	301,590 304,26	7.17 31 -6.34	6.62
* *	TOTAL #		-654,938				12.65
	0,027	001,000	540,18	531,97	1 571,0	11 3.62	12140

^{*} Obvious errors in DEIS data were corrected for FYB9, 90 & 91 using information supplied by WVA engineering.

PAGE 1

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM OCT90 THRU SEP91
RUN ON : 02/06/92 10:36:24
FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD Code	FY	HONTH	BUILDING CONSUMED	PROCESS CONSUMED	F. HOUSING CONSUMED		TOTAL CONSUMED	
ELC	91	OCT 90	15096	Ò	198	0	-1599d->	14,163
CLU	31	NOV 90	15782	Ó	253	Ů	-16035 >	
		DEC 90	14604	0	249	0	-14853	14,727
		JAN 91	14492	Ŏ	242	Ŏ	14734-	14,628
		FEB 91	5976	0	253	Ö	5229	16,178
		MAR 91	5341	Ŏ	253	Ŏ	- 5594	15,450
		APR 91	6655	Ŏ	25 9	Ŏ	-6914	14,359
		MAY 91	6498	Ů	232	Ŏ	-6730	14,129
		JUN 91	6935	Ŏ	205	ŏ	-7140	
		JUL 91	4031	0	229	Ŏ	4260 -	
		AUG 91	2904	Û	184	0	- 2088	
		SEP 91	3887	Ŏ	239	Ő	-4126	
		0L1 71						
	ŧ		102201	0	2796	0	104997	181,177
FSD	91	OCT 90	76	0	553	0	629	
		NOV 90	64	0	0	0	64	
		DEC 90	431	0	1549	0	1980	
		JAN 91	361	Û	548	Ü	909	
		FEB 91	501	Û	845	0	1346	
		MAR 91	408	0	431	Û	839	
		APR 91	285	0	670	0	9 55	
		MAY 91	204	0	705	0	909	
		JUN 91	82	0	0	0	82	
		JUL 91	47	0	0	0	47	
		SEP 91	93	0	. 0	0	93	
	¥		2552	0	5301	0	7853	
FSR	91	DCT 90	15032	0	654	0	15686	
		NOV 90	33604	0	1320	0	34924	
		DEC 90	55074	0	1798	0	56872	_
		JAN 91	46216	0	2075	0	-48291-	57,300
		FEB 91	49466	0	1855	0	51321	
		MAR 91	40275	0	1364	0	41639	
		APR 91	33931	. 0	754	0	34685	
		MAY 91	6375	0	704	0	7079	
		JUN 91	1930	0	0	0	1930	
		AUG 91	163	Û	0	Û	163	
		SEP 91	648	0	0	0	648	
	ŧ		282714	0	10524	0	-293238 -	- 302,247
FSX	91	JAN 91	128	Ü	Û	Û	128	
	-•	FEB 91	124	0		Û	124	
		MAR 91	112	0	Ô	Û	112	
		APR 91	136	ů	_	0	136	

PAGE 2

ADDS REPORT: PROQUE - DEIS-II PRODUCT QUERY

INCLUDES : FROM OCT90 THRU SEP91
RUN ON : 02/06/92 10:37:13
FOR : W16H1F WATERVLIET ARSENAL

UNITS ARE : MBTUS

PROD CODE	FY 	HTMOM	BUILDING CONSUMED	PROCES Consum		F. HOUSING CONSUMED	MSE Consumed	TOTAL CONSUMED
	ŧ		500		0	0	Û	500
NAG	91	OCT 90	-9549	9600	0	0	0	9549
		NOV 90	4895	4900	0	11	0	4906
		DEC 90	4751	4700	0	0	0	4751
		JAN 91		4000	Û	32	0	4243
		FEB 91	5529	5300	0	0	0	5529
		MAR 91	- 5579 -	6100	0	0	0	5579
		APR 91	6186	5000	0	0	0	6186
		MAY 91	-6289-	6800	Û	12	0	6301
		JUN 91	-6186 -	10,900	0	0	0	6186
		JUL 91	-5155-	2300	0	2	0	5157
		AUG 91	-6186	1200	0	0	0	6186
		SEP 91	5155 -	10,700	0	2	0	5157
	¥		69671	84,500	0	59	0	69730

Note: Obvious errors in DEIS data were corrected for FYB9, 90 & 91 using information supplied to WVA engineering.

WEATHER DATA

	WINTER DESIGN DATA DEGREE HEATING DAYS	LOCATION Dry Bulb	Lat Long Elev 99% 97.5% Wind Speed Heating	° ° ° ° dir knots ann	N W 43 06 78 57 590 4 7 W 9 66i 44 41 75 28 297 -13 -8 W 8 77 43 28 76 33 300 1 7 E 7 67 44 39 73 28 235 -13 -8 NW 6 80 Co 41 38 73 53 165 0 6 NNE 6 58	Rochester/Monroe Co Aprt 43 07 77 40 547 1 5 WSW 11 67 Roslyn 40 41 73 36 100 12 15 NNW 13 50 Saint Albans NAVHOSP 43 01 73 46 50 12 15 WNW 14 51 Saratoga AFS 42 51 73 56 378 -4 1 WNW 8 71 Schenectady	Seneca Army Depot Suffolk Co/Westhampton Bch 40 51 72 38 67 7 10 NW 9 59 Syracuse/Hancock IAP 43 07 76 07 410 -3 2 N 7 67 Troy Utica/Oneida Co Aprt 43 09 75 23 742 -12 -6 NW 12 72	43 59 76 01 325 -11 -6 E 7 73 742 35 1 5 WNW 8 63 742 35 1 5 WNW 8 64 71 23 73 57 160 2 6 NNE 6 55 40 47 73 50 10 11 15 WNW 15 49	43 14 79 02 300 4 7 W 9 66	N W 35 26 82 32 2140 10 14 NNW 12 42 35 22 80 08 455 18 22 NNW 6 32 34 40 77 21 25 20 23 NNW 7 29 35 16 75 33 7 25 27 NNW 11 27 35 13 80 56 736 18 22 NNW 6 32	Cherry Point MCAS 34 54 76 53 29 20 24 N 8 28 Dare County 35 45 76 10 15 19 22 NW 8 32 Edenton Recovery Site 36 02 76 34 19 19 22 NW 8 30 Elizabeth City CGAS/MAP 36 16 76 11 12 19 22 NW 8 32 Fort Bragg/Simmons AAF 35 08 78 56 242 18 21 N 7 31
	H.S		ng 1% MCWB	lal % %	88 89 7. 77 88 7. 92 86 7. 44 86 7.	19 91 7 84 91 7 86 90 7 80 91 7 17 90 7	59 92 7 51 86 7 72 90 7 88 91 7 99 88 7	5393 91 7 5802 90 7 5753 93 7 4909 92 7	09 92 7 88 89 7	37 89 7 18 95 7 01 93 8 31 87 7 18 95 7	32 92 72 82 93 72 07 93 72 05 94 7
	SUN	Dry Bulb	/B 2.5% MCWB	30 30	4 86 72 3 85 71 3 83 71 0 83 69 4 89 74	3 88 71 4 88 73 3 87 72 2 89 71 3 87 72	3 88 71 3 83 71 3 87 71 3 88 72 3 85 71	3 83 71 5 87 73 4 90 74 4 89 73	4 89 73 4 86 72	3 87 72 4 93 74 0 90 79 8 86 77 4 93 74	8 90 78 8 91 77 8 91 77 6 92 76
	SUMMER DESIGN DATA AIR CONDITIONING	٩	Mean Daily Pvlg Range Wind	°F dir	23 SW 25 WSW 22 WSW 27 SE 27 SSW	26 WSW 19 SSW 17 SSW 25 S	24 SSW 118 SW 24 WNW 25 S	20 WSW 23 W 27 SSW 18 SW	18 SW 23 SW	27 NNW 23 SW 18 SW 112 SSW 23 SW	17 SSW 19 SW 19 SW 19 SW 21 WSW
	I DATA NING	-	5% MCWB	쇼 쇼	84 71 83 69 80 70 86 72	85 70 85 72 84 71 86 69 84 70	85 70 80 70 84 70 85 70 82 70	81 70 84 70 84 73 87 72 87 72	87 72 84 71	アファファ	88 77 89 76 89 76 89 76 89 75
		Wet Bulb	1% 2.5% 5%	36 36 36	76 74 73 75 73 71 75 73 72 73 72 70 77 75 74	75 73 72 77 76 74 76 75 74 74 73 71 75 74 72	75 73 72 76 74 73 75 73 72 75 74 72 75 73 71	75 73 72 75 74 72 77 75 74 77 75 74 76 75 74	76 75 74 76 74 73	5 74 7 7 76 7 1 80 7 0 79 7 7 76 7	80 79 78 80 78 78 80 78 78 80 78 78 78 77 76
	SUMMER AIR C	Dry Bulb	≥ 93°F ≥ 80°F	hrs hrs	4 350 2 266 1 141 3 171 26 490	15 414 21 476 8 383 18 470 12 368	20 463 2 174 8 412 16 417 7 251	1 222 17 387 13 376 41 578 25 602	25 602 4 350	6 53 7 111 0 102 7 111	600 000 000 000 000 000 000 000 000 000
)	ER CRITERIA DATA CONDITIONING	Wet	≥ 134 ≥	hrs	162 89 100 43 249 1	112 331 275 188 132	107 172 107 132 87	100 265 265 249 309	2 309 1 0 162	139 699 1481 1521 699	5 1342 2 1158 2 1158 2 1158 2 1 1158 2 0 846 2
	≝	Bulb	3₀19	FĘ	814 6655 035 035	738 284 222 662 775	745 991 745 775 604	665 775 092 035 243	243 814	48778	760 461 461 376

					WINTER	DESIGN	DATA	DEGREE			35	MARER AIR C	MMER DESIGN DAT Air conditioning	F DATA NING					SUMMER C	ANER CRITERIA DATA Air conditióning	DATA
STATE		LOCATION			Ory Bulb			- 1 · · · · · · · · · · · · · · · · · · 			Dry Br	Bulb				Wet	age Belp	Dry	y Bulb	3	Wet Bulb
Station	Ē	Long	_	Elev	99% 97	Pylg 7.5% Wind	Ig Mean nd Speed	Keating	1% MCWB		5% MCWB	Mean Daily 18 Range	Wind	35	RCW8	1% 21	5% 5% 5%		~ 80°£	. <= \ \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	≥ 67°F
			-	Ē	*	÷	knots	annual	* *	*	*	۴	ē	8	-	6	8-	hrs	hrs	ž	ž
NEW MEXICO (CONT) Sacramento Peak Sacramento Peak Truth or Consequences Tucumcari Walker AFB/Roswell White Sands Missile Range	2000000 2000000 244440	105 1003 1004 1064	34-16.00 00000	9240 48858 3676 4330	2138 2138 2138	258338 258388 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3345%	7968 3392 4047 3697 2526	81 54 97 63 100 66 199 66	⊢ 00000	9 54 7 66 7 66 7 64	220022 20081	SON	00000 200000	420084 80170	659 770 69 69 69 69	86 66 66 67 67 67 67	18 248 250 278	59 1374 1232 1560 1781	100	4188 1983 1983
Wingate Army Depot Zuni	35 35 0	1 108 6 108	35	6680 6440	-10	5 EN	ME 10	5915 5815	89 59 90 59	ထထ	9 58 58	34	MSM	8 8 8 6	57 58 6	64 6 64 6	2 61 2 61	400	512 616	00	
NEW YORK	5 ,4	5 73	¥	275	11	13	- 1 1	11	6	- 1	17	11	8	85		- 1 1	14	19	IH	m	17
Army Procurement Center Binghampton/Broome Co Aprt Brooklyn Navy Shipyard Buffalo IAP	4444 2004 4148		00004 44 44	1590 1590 705	1212	11 15 15 15 15 15 15 15 15 15 15 15 15 1	NW 15 NW 15 W 10	4909 7285 4909 6927	92 74 86 71 92 74 88 71	22030 22030 22030	5000 7000 7000	218128	NO MAN	887	6282	75 75 75 75 75 75 75	3525 3774 7764	, ⁶ 2260	346 346 346	3047 904 909 909 909	1243 1243 731
Camp Drum Dunkirk MAP Fort Hamilton Fort Tilden Fort Totten	44444 40000 000004	20048 20048 20048 20048	94 90 74 74	655 6922 10 35 35	44221	155 × 27 × 27 × 27 × 27 × 27 × 27 × 27 ×	SSW 10 WNW 14 WNW 15 WNW 15	7601 6851 5184 5184 4812	886 7 990 7 92 7	₩ ₩₩₩₩	97220	26 117 18 18	MSS MS	88888 08448 7448	9117 117 127	755 76 76 76 76 76	84888 7777 10444	288828	168 317 383 383 602	77 141 275 275 309	552 1222 1222 1222 1243
Fort Wadsworth Freeport Glen Falls/Warren Co Aprt Griffiss AFB/Rome Huntington	004444 00000 00000	36 74 38 73 20 73 14 75 52 73	332 337 252 252 252	135 15 328 514 100	22112	25.55 25.55 25.55	NW 14 NW 14 NW 13 NW 13	5184 5184 7270 7331 5084	98889 7777	88888	57 72 57 72 8 73 8 73	117 125 126 136 130	NSS SS	88888 5322 5322	126927	767 767 757 757	53337 63374 67114	73,300,000	383 277 306 476	275 275 80 84 331	1222 1222 591 611 1284
Ithaca/Tompkins Co Aprt Jamestown/Chautauqua Co Liverpool Lockport AFS Montauk AFS	44444 40000	29 76 09 79 07 76 08 78 04 71	20338	1099 1723 400 638 110	21542 2154 21	16-72-30 16-72-30	33233 88233	7052 6849 6678 6724 5771	888 988 7 899 7 82 7	40w40	5 70 6 70 6 72 9 70	122291	NAME OF THE PROPERTY OF THE PR	883 77 74	82288	744 748 748 748 748	84828 1777 11282	ι υ∺α40	352 305 350 520 52	73 107 162 93	625 627 745 814 873
New Rochelle New York/JFK IAP New York/La Guardia Aprt New York NB Newburgh/Stewart Aprt	44444 00001 00444	50 73 73 74 74 74	44%00 77400	70 113 40.		2222 2222	WNW 15 WNW 15 WNW 15 WNW 15	5161 5184 4909 6336	99999 777 777	4w44w \$ \$	97.998 67.777 89.882	338878	MSS MSS	844 87 87 85	22222	76 76 76 76 76 76	ังงังจัง 44774 4446	22 82 1725 1726 1726	60223 6022 6022 6022 6022 6022 6022	309 309 309 175	1243 1222 1243 1243 1243

YORK
NEW Y
ALBANY

ι		1								
	x υ:		75 73 71 68	66 64 61 57	725	48 43 38 30	25 20 16 11	2 -3 -13 -17	-23	
A.	Total Obsn		7 34 123 254	415 594 740 727	90	660 630 636 777	563 405 285 192 125	75 39 14 5	0	
TOTAL		17 24 24	0 28 73	140 222 271 252	236	214 205 205 205 251 262	191 130 96 65 38	22 9 4 0		
ANNOAL	Obsn Hour Gp	16 to 93	7 28 95 177	248 257 235 212	190	183 183 202 241 220	156 112 79 43 27	16 0 0		
A	FO TO	2 2 8	04	27 115 234 263		263 242 229 261 261	216 163 110 84 60	37 27 10 5	0	
-	E 0	└	63	60 57 55		45 42 38 30 30	25 20 16			
ŀ	Total Obsn		0 - 6	7 16 31 46	89	102 122 136 109 54	33 3			
밝	<u> </u>	2 2 2	0	2 11 16	52	36 45 36 16	103		•	
APRIL	Obsn Hour Gp	6 2 9	7 7 7	5 11 18 25	35	42 42 39 18	0 - 0			
	Ð 5	5 2 8		0 2 5	1	24 37 52 55 55	15 4 2			
	E U	3 00		57 55 54	4 6	45 41 37 30	25 20 15 11	2 -4 -8 -14		
	Total Obsn			0 7 7 7	2	23 47 90 145 172	112 73 35 17	4 - 0 0 0		
CH	유용	71 o 42		00	· "	8 115 31 54 59	38 22 10 2	- 0 0		
MARCH	Obsn Hour Gp	6 2 2		0 6	9	12 27 45 55 46	27 14 7 2 2	00		
	8 in	00 to 0				3 5 14 36 67	47 37 18 11	000		
	-				2 2	47 42 38 34 30	25 20 15 11	1 -3 -8 -13		
>-	Total P	3= 60			- -	6 112 35 95 95	110 90 67 49 35	19 16 2 1		
FEBRUARY	2 8	17 to 24				2 4 11 32 46	39 30 11	9 4 1		
FEB	Obsn Hour Gp	to t 16 2		•	o	3 7 18 42 46	36 26 19 7	0 0		
	9 P	01 00 10 08				1 1 21 36	35 34 24 21	8 11 5 2 1		
		3 80			5.4	49 45 39 30	25 20 16 11	2 -3 -8 -13	-23	
	E S	_	1	,	0 7	4 8 31 83	115 106 97 73 51	35 14 2 1	. 0	
JANUARY	2 5	7: 5 %			00	1 3 38 38	39 38 35 25	10 2 0		
IAN	Obsn Hour Gp		-		0 -	2 3 33 43	43 37 30 19	7 1 0 0		
	Obsn Hour G	01 09 to to	1		0 -	1 2 8 21 34	33 31 32 29	10 10 2	0	
	-		<u></u>		57	443 34 30	25 20 16 11	.3 .8 .12		
α	Total M				0 ~	13 23 42 103	126 99 73 50	17 17 19 19 19 19	ı	
DECEMBER	P 3	1	<u> </u>		7 0	5 7 7 112 112 50 115 150 150 150 150 150 150 150 150				
טבט	Obsn Hour Go	17 to 20	┪		0 F	5 111 20 43	39 32 22 10	4-0		
	obs.	1	1		0 ~	3 5 10 27 45	41 35 28 21	8 5 7 7 7	•	
	-	20 2 8	7	65	52	48 43 38 34	25 21 17	0		
	-	ບ 3× 60 	-			74 100 127 128		-		
9	Total		-		13	23 32 1 43 1 45 1				
	[] [] = 5	3 2 2 3		. oom						
2	usao		→		2 1			-		
	-	10 pt							-21	
	тетрега-	ture Range	95/99 90/94 85/89	75/79 70/74 65/69	60/64	50/54 45/49 40/44 35/39	25/29 20/24 15/19 10/14	5/9 0/4 -5/-1 -10/-6 -15/-11	-20/-16	
	Tem	Ra	1							

to a single that I de like the second of the second

ALBANY NEW YORK

LAT 42 45N LONG 73 48W ELEV 275 FT

MEAN FREQUENCY OF OCCURRENCE OF DRY BULB TEMPERATURE (DEGREES F) WITH MEAN COINCIDENT WET BULB TEMPERATURE (DEGREES F) FOR EACH DRY BULB TEMPERATURE RANGE

	Eυ	3 00	62	64 62 58 55	47 44 39 35	22 22
	Total Obsn		9.0	12 26 45 82 120	129 130 91 60 35	2 2
OCTOBER	10	2 0 2	00	1 7 13 27 27	48 47 17 10	-
OCT	Obsa Hour Gp	60 91 16 10	0 %	11 18 28 44 47	43 33 7	
	울	2 2 8		1 11 30	38 50 43 36 24	o n ⋈
	¥υ	34 00	5 5 E L	52 8 52 53	32 38 8 32 38 8	58
2	Total Obsn		1 1 1 2 2 3 3 3 3 3 3 3	46 83 106 131 120	92 62 7 7 8 7 8	•
SEPTEMBER		17 19 28	0075	14 28 34 47	34 20 7 0	
SEPI	Obsn Hour Gp	& 5 5	18	30 47 47 88	13	
	н	01 05 08	0	24 37 46	45 38 19 10 4	0
	t	3 00	75 73 17 69	66 63 59 55	51 47 43	
-	Total Obsn		1 7 26 67	108 146 157 119 68	33	
AUGUST		17 to 24	0 1 2 8	38 57 63 42 18	9 0	
A	Obsa Hour Gp	09 to 16	1 6 7 7 8	90 64 32 12 13		
	_	2 2 8	-	62 62 64 47	27	
	£υ	3 00	74 73 71 68	67 63 59 55	51 46 41	
>-	Total Obsn		4 18 49 84	120 153 160 90 43	18 3 0	
JULY		17 to	0 4 12 27	44 62 59 28 10	2	
	Obsn Hour Gp	8 2 3	4 14 37 55	64 47 21 4		
		2 2 8		12 80 80 32	16 0	
	x U	3 ≇ 00	76 73 70 68	65 63 61 57 53	49 45 41 37	
	Total Obsn		1 7 31 57	86 110 140 125 95	51 14 4 1	
JUNE	a	to 24	0 1 8 8 17	31 42 52 45 30	12 0 0	
,	Obsn Hour Gp	8 t 8	1 6 23 39	45 39 12 12	m	
		2 2 8	0	23 6 53 6 53 6 53 6	36	
	zυ	э х со	70 67 65	63 57 51 51	47 43 39 35 31	98
	Total Obsn		1 5 18	36 59 94 113 128	115 98 53 17	7
MAY		17 to 24	1 2 2	10 21 37 42 46	37 32 14 0	
	Obsn Hour Gp	8 5 7	1 4 13	25 35 45 42 38	26 14 5 0	
		2 5 8		1 12 29 44	52 34 14	
	Tempera- ture	Range	95/99 90/94 85/89 80/84	75/79 70/74 65/69 60/64 55/59	50/54 45/49 40/44 35/39 30/34	20/24

ALBANY NEW YORK

OUTSIDE AIR HEATING REQUIREMENTS

WATERVLIET ARSENAL LIMITED ENERGY STUDY

Room or Supply Air Conditions - Winter

Air Quantity (cfm)

-20

Totals

-16

Operation Hrs/Day =

8

68

1.08

86

	,									
Hour Frac	tions	1 AM - 9 9 AM - 5 5 PM - 1	5 PM				0.25 0.75 0			
Operation	Days Per	Week					5			
	Temp.	Hours (of Occurren	ıce	Total	Delta				Total
	Range	2-9	10-17	18-1	Hours	H or T	Const.	CFM	BTU/HR	BTU
70	 74	115	257	222	222	-4	1.08	1	0	0
65	69	234	235	271	235	1	1.08	1	1	254
60	64	263	212	252	225	6	1.08	i	6	1,456
55	59	274	190	236	211	11	1.08	1	12	2,507
50	54	263	183	214	203	16	1.08	1	17	3,508
45	49	242	183	205	198	21	1.08	1	23	4,485
40	44	229	202	205	209	26	1.08	i	28	5,862
35	39	261	241	251	246	31	1.08	1	33	8,236
30	34	295	220	262	239	36	1.08	i	39	9,283
25	29	216	156	191	171	41	1.08	1	44	7,572
20	24	163	112	130	125	46	1.08	i	50	6,198
15	19	110	79	96	87	51	1.08	1	55	4,778
10	14	84	43	65	53	56	1.08	i	60	3,221
5	9	60	27	38	35	61	1.08	1	66	2,322
0	4	37	16	22	21	66	1.08	1	71	1,515
-5	-1	27	3	9	9			1	77	690
-10	-6	10	0	4	3			1	82	205
-15	-11	5	0	0	. 1	81	1.08	1	87	109

Total Operation Hours While Heating
(and corrected for working days/week)

Avg outdoor temp while heating (F)

42.3

2359

2673

2492

2891

44,478

93

70

62,269

WATERVLIET ARSENAL LIMITED ENERGY STUDY

Total Operation Hours While Heating

Avg outdoor temp while heating (F)

(and corrected for working days/week)

Operation Hrs/Day =

Room or Su Air Quanti		Condition	s - Winter				68 1			
Hour Fract	tions	1 AM - 9 9 AM - 5 5 PM - 1	PM				0.375 1 0.625	-		
Operation	Days Per	Week					. 5			
	Temp. Range	Hours o	of Occurren	nce 18-1	Total Hours	Delta H or T	Const.	CFM	BTU/HR	Total BTU
70	74	115	257	222	439	-4	1.08	1	0	0
65	69	234	235	271	492	1	1.08	1	1	531
60	84	263	212	252	468	6	1.08	1	6	3,033
55	59	274	190	236	440	11	1.08	1	12	5,230
50	54	263	183	214	415	16	1.08	. 1	17	7,178
45	49	242	183	205	402	21		~ 1	23	9,115
40	44	229	202	205	416	26	1.08	1	28	11,681
35	39	261	241	251	496	31	1.08	1	33	16,598
30	34	295	220	262	494	36	1.08	i	39	19,221
25	29	216	156	191	356	41	1.08	1	44	15,780
20	24	163	112	130	254	46	1.08	1	50	12,637
15	19	110	79	96	180	51	1.08	1	55	9,928
10	14	84	43	65	115	56	1.08	1	60	6,963
5	9	60	27	38	73	61	1.08	1	66	4,826
0	4	37	16	22	44	66	1.08	1	71	3,110
-5	-1	27	3	9	19	71	1.08	1	77	1,438
-10	-6	10	0	4	6	76	1.08	1	82	513
-15	-11	5	0	0	2	81	1.08	1	87	164
-20	-16	3	0	0	1	86	1.08	1	93	104
Totals		2891	2359	2673	5114					128,051

91,465

3338

42.3

WATERVLIET ARSENAL LIMITED ENERGY STUDY

Operation Hrs/Day = 24

Room or Supply Air Air Quantity (cfm)	Conditions - Winter	68 1
Hour Fractions	1 AM - 9 AM 9 AM - 5 PM 5 PM - 1 AM	1 1 1

Operation Days Per Week

5
J

	Temp.	Hours (of Occurre	nce	Total	Delta				Total
	Range	2-9	10-17	18-1	Hours	H or T	Const.	CFM	BTU/HR	8TU
70	74	115	257	222	594	-4	1.08	1	0	0
65	69	234	235	271	740	1	1.08	1	i	799
60	64	263	212	252	727	8	1.08	1	6	4,711
55	59	274	190	236	700	11	1.08	1	12	8,316
50	54	263	183	214	660	16	1.08	i	17	11,405
45	49	242	183	205	630	21	1.08	1	23	14,288
40	44	229	202	205	636	26	1.08	1	28	17,859
35	39	261	241	251	753	31	1.08	1	33	25.210
30	34	295	220	262	777	36	1.08	i	39	30,210
25	29	216	156	191	563	41	1.08	1	44	24,930
20	24	163	112	130	405	46	1.08	1	50	20,120
15	19	110	79	96	285	51	1.08	1	55	15,698
10	14	84	43	65	192	56	1.08	1	60	11,612
5	9	60	27	38	125	61	1.08	1	66	8,235
0	4	37	16	22	75	66	1.08	i	71	5,346
-5	-1	27	3	9	39	71	1.08	1	77	2,991
-10	-6	10	Ò	4	14	76	1.08	1	82	1,149
-15	-11	5	0	0	5	81	1.08	1	87	437
-20	-16	3	0	0	3	86	1.08	1	93	279
Totals		2891	2359	2673	7923					203,595
	ration Hou rrected fo		Heating g days/wee	k)	5233					145,425
					10.0					

Avg outdoor temp while heating (F)

42.3

WATERVLIET ARSENAL LINITED ENERGY STUDY

Operation Hrs/Day = 24

Room or Supply Ai Air Quantity (cfa	ir Conditions - Winter n)	68 1
Hour Fractions	1 AM - 9 AM	1
	9 AM - 5 PM	1
	5 PM - 1 AM	1

Operation Days Per Week

Avg outdoor temp while heating (F)

Delta Total Total Temp. Hours of Occurrence BTU BTU/HR Range 2-9 10-17 18-1 Hours H or T Const. CFN 1.08 -4 i 1.08 1.08 4,711 8,316 1.08 11,405 1.08 14,288 1.08 17,859 1.08 25,210 1.08 30,210 1.08 24,930 1.08 20,120 1.08 15,698 1.08 11,612 1.08 8,235 1.08 5,346 1.08 i 2,991 -5 -1 1.08 1,149 -10 -6 1.08 i 1.08 -11 -15 1.08 -20 -16 203,595 Totals Total Operation Hours While Heating 203,595 (corrected for working days/week)

42.3

RSH.	
	ì

SUBJECT		AEP NO	AEP NO		
		SHEET	OF		
DESIGNER	Pittedelin	DATE			
CHECKER	BJOSL	DATE			

BOILER PLANT EFFICIENCIES

- Calculate Average Boiler Plant Efficiency

B106 136

Data from March and april '90 were used since Boiler #3, the primary boiler, was utilized extensively.

EFF =
$$(38,139,000+25,616,000)$$
* (1192-158) B+4/#
$$(309,436 + 205,867) gal * 150,000 Bm$$

$$= 0.83$$

BLDG 35

Using data from august 90

$$EFF = \frac{(3676,600) \# \# (1192-198) \# / \#}{46,329 \text{ ecf} \# 1031 Bm/cf} = 0.77$$

${\bf ECO} \ \ {\bf CALCULATIONS} \ \ {\bf AND} \ \ {\bf COST} \ \ {\bf ESTIMATES}$

TABLE OF CONTENTS

ECO #	Description	Page Nos.
1	Power factor improvement	1-1
2	Natural gas fuel switch	2-1
3	Cogeneration	3-1
4	Dip tank covers and variable-speed drives	4-1
5	Electrical demand peak reduction	5-1
6	Plating area condensate return system	6-1
7	Cooling tower variable speed drives	7-1
8	High-efficiency fluorescent lighting	8-1
9	Not used	
10	High-efficiency electric motors	10-1
11	Boiler O ₂ trim controls	11-1
12	Natural gas boilers	12-1
13	Air flow reduction	13-1
14	High-efficiency chiller	14-1
15	EMCS	15-1
16	Return air system	16-1
17	Double-pane windows	17-1
18	Storm windows	18-1
19	Occupancy sensors	19-1

REYNOLDS, SMITH AND HILLS ARCHITECTS · ENGINEERS · PLANNERS

SUBJECT Watervliet LES

AEP NO 290.0379.002

DESIGNER W.T. Todal

CHECKER P. Hutchins

DATE 8-16-91

ECO 1

Power Factor Improvement

Assumptions:

- 1. Motors selected for power factor improvement are operated on a regular basis.
- 2. The capacitors will be installed ahead of each piece of notor driven equipment.
- 3. Reactive Electric demand charge is \$0.865/KUAR.

Calculations:

Annual Cost Savings:

Motors For buildings 20,110 and 135 were tabulated by horsepower (details are located on pages 1-17 → 1-27.

Capacitor size recommendations were obtained from Consulting / Specifing Engineer, July 1988, Page 97, Table 3. (copy is located on page 1-14 of this appendix.

Savings = Capacitor KVAR x \$0.865/KVAR. Mo. x 12 Mo./yr.

Savings = Capacitor KVAR x \$10.38/KVAR. Year

Savings for the motors in each building were calculated on computer spreadsheets. These calculations are located on pages 1-8 through 1-10

REYNOLDS, SMITH AND HILLS ARCHITECTS • ENGINEERS • PLANNERS INCORPORATED

SUBJECT Watervliet LES	AEP NO 290-0379-002
	SHEETOF
DESIGNER W.T.T.	DATE
CHECKER	DATE

ECO 1 - Continued

The total savings for each building are:

Bldg. 20: \$3,724

Bldg. 110: \$11,325

Bldg. 135: #15,829

#30,878 = Total Annual Savings

Construction Cost:

A regression analysis was preformed to calculate a cost curve for the capocitors. Cost data was obtained from Means Electrical Cost Data, 1991. The regression ahalysis is located on page 1-7 of this appendix.

The bare material and labor costs are tabulated on pages 1-4 through 1-6.

Total Construction Cost = \$130,930 (see page 1-3 for details)

Simple Payback

$$\frac{\text{Cost}}{\text{Savings}} = \frac{\$130,930}{\$30,878/\text{yr}} = 4.2 \text{ years}$$

ECO Construction Cost Estimate Calculations

ECO Name: POWER FACTOR IMPROVEMENT

ECO #: 1

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$70,131 \$19.192
Subtotal bare costs	\$89,323
FICA Insurance (20% of Labor)	\$3,836
Sales Tax (Not Applicable For GOGO)	\$0
Subtotal	\$93,161
Overhead (15%)	\$13,974
Subtotal	\$107,135
Profit (10%)	\$10.714
Subtotal	\$117,849
Bond (1%)	\$1,178
Subtotal	\$119,027
Contingency (10%)	\$11,903
Subtotal (Construction Cost Input For LCCID *)	\$130,930
SIOH (6% of Construction Cost)	\$7,856
Subtotal	\$138,786
Design (6% of Construction Cost)	\$7,856
Total Project Cost	\$146,642

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST E	TAMITE	E		B/16/9	1	SHEET	OF	
ENERGY ENGINEERING ANALYSIS						OR ESTIMATE		
CCATION						CODE A (No design completed) CODE B (Preliminary design) CODE C (Final design)		
ARCHITECT ENGINEER ARCHITECT ENGINEER								
REYNOLDS, SMITH AND	HILLS	A.E.	P., I	NC.	°	THER (Specify)		
DRAWING NO.		ESTIM.	ATOR	Todd		P. Hu	leleins	
EAR + 1 Summer	QUANTI			LABOR		MATERIAL		
ECO#1 Summed by SUMMARY	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	TOTAL COST	
Bldg 20	22			2533		9074	11,607	
31de 110	55			6739		24,790	31,529	
Bldg 20 Bldg 110 Bldg 135	83			9920		36,767	46,137	
			-					
TOTAL	160			19,192		70,131	89,323	
		1	,					
					1			
•							·	
·				:				
				<u> </u>				
					-		· · · · · · · · · · · · · · · · · · ·	
					-			
		-			<u> </u>	 		
					-	<u></u>		
					-			
					· ·			
	<u> </u>							
					1			
	-	 						
					-			
		 						
			<u> </u>		-			
					+			
		 			1			
					1			

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* U.S. GOVERNMENT PRINTING OFFICE . 1959 0-\$16148

(TRANSLUCENT)

CONSTRUCTION COST	ESTIMA	TE		Aug. 8	, 199	SHEET OR ESTIMATE	OF
PROJECT ENERGY ENGINEERING	1	CODE A (No deal					
OCATION	Watervliet Arsenal Bldg. 20						
WOWLECL ENGINEER	∤ c	ODE & (Proliminary] CODE C (Final de THER (Spacity)	=				
REYNOLDS, SMITH AN	D HILLS		.P., [NC.		CHECKED BY	
NΑ	.			T. Todd		CHECKED 81	
CAPACITORS SUMMARY	QUANT	UNIT	PER	LABOR	PER	MATERIAL	TOTAL
	UNITS	MEAS.		TOTAL	UNIT	TOTAL	COST
Capacitors, 480 V, 3¢		<u> </u>			ļ		
4 KVAR	0	Ea.	90	-0-	266	-0-	
S KVAR	0	Ea.		-0-	277	-0-	
6 KVAR		Ea.	94	94	289	289	
7.5 KVAR	3	Ea.	97	291	307	921	
8 KVAR	3	Ea.	98	294	313	939	
15 KVAR	7	Ea.	112	784	395	2765	
17.5 KVAR	2	Ea.	117	234	424	848	
20 KVAR	2	Ea.	122	244	454	908	
25 KVAR	2	Ea,	133	266	513	1026	
30 KVAR	0	Ea.	143	-0-	571	-0-	
40 KVAR		Ea.	163	326	689	1378	
50 KVAR	0	Ea.	184	-0-	806	-0-	
180 KVAR	0	Eq.	450	-O -	2 3 34	-0-	
	•			# .			
Subtotals	22			#2,533		#9074	#11,607
						.•	
·							
	:			•			
(act c C ac t	1.						
Costs From equation	deriv	ex	trom	Means 9	91 E	ectrical	Cost Data
		\dashv					
		\dashv					
						†	. 1

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISERS

U.S. COVERNMENT PRINTING OFFICE . 1939 G-51614

CONSTRUCTION COST ESTIMATE			DATE PREPAREI	0 (0.0			
PROJECT			······································	1 Aug. 8	BASIS F	OR ESTIMAT	SHEET OF
ENERGY ENGINEERING	ANALY	SIS			l .		No design completed)
Watervliet A	trsen	a l	Blda.	110		ODE & (Prot	iminary design)
REYNOLDS, SMITH AND HILLS A.E.P., 1							
DRAWING NO.	O HILL		ATOR	NC.		CHECKED	
NA	·		W	T. Todd			
CAPACITORS SUMMARY	QUANT	TTY	PER	LABOR	ļ	MATERIAL	TOTAL
	UNITS	MEAS.	2	TOTAL	PER	TOTAL	
Capacitors, 480 V, 3\$							
4 KVAR	0	Ea.	90	-0-	266	-6	9-
5 KVAR	0	Ea.	92	-0-	277		9-
6 KVAR		Ea.	94	94	289		4
7.5 KVAR	9	Ea.	97	873	307	276	
8 KVAR	3	Ea.		294	313	93	
15 KVAR	4	Ea.	112	448	395	 	
17.5 XVAR	18	Ea.	117	2106	424	763	
20 KVAR	0	Ea.	122	0-	454	-0	 -
25 KVAR	12	Ea.	133	1596	513	615	
30 KVAR	3	Ea.	143	429	571	171	
40 KVAR	l	Ea.	163	163	689	68	
50 KUAR	4	Ea.	184	736	806	.327	
180 KVAR	0	Ea.	450	-0-	2334		
					7.551		
Subtotals	55			#6739	·	#24,70	90 #31,529
	,			 			· · · · · ·
					-		
				•			
Costs From equation	devive	d-	From	Meane	1991	Flore	cal Cost Data
				, , , _ , ,		- IEC (VI	<u> </u>
							
		7					
			1				
		1					
G FORM 150							

I AUG SP 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* W.S. GOVERNMENT PRINTING OFFICE . 1919 0-5161

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARE		SHEE	T 0F
PROJECT ENERGY ENGINEERING	ΔΝΔΙΥ	crc		Aug. 8	BASIS	FOR ESTIMATE	
LOCATION				· · · · · · · · · · · · · · · · · · ·		(CODE A (No de	
Waterviiet A	Arsen	al	<u>Bldg.</u>	135.		:00E B (Prelimina)	-
REYNOLDS, SMITH AND HILLS A.E.P., INC.						THER (Specify)	
DRAWING NO.			ATOR	T. Todd		CHECKED BY	
CADACITORS	QUANT	TITY		LABOR	ή	MATERIAL	
CAPACITORS SUMMARY	NO. UNITS	UNIT	4	TOTAL	PER	TOTAL	TOTAL
Capacitors, 480 V, 30					1		
4 KVAR	0	Ea.	90	-0-	266	-0-	
5 KVAR	0	Ea.	92	-0-	277	-0-	
6 KVAR	17	Ea.	94	1598	289	7	
7.5 KVAR	14	Ea.	97	1358	307	4298	
8 KVAR	8	Ea.	98	784	313	2504	
15 KVAR	10	Ea.	112	1120	395	3950	
17.5 XVAR	6	Ea.	117	702	424	2544	
20 KVAR	10	Ea.	122	1220	454	4540	
25 KVAR	9	Ea.	133	1197	513	4617	
30 KVAR	_5_	Ea.	143	. 715.	571	2855	
40 KVAR	2	Ea.	163	326	689	1378	
50 KVAR	O	Ea.	184	-0-	806	0-	
180 KVAR	2	Eq.	450	900	2334	4668	
Subtotals	B 3			#9,920		#36,267	#46,187
	·						
·							
acts F			 				
osts From equation	devil	jed	tron	1 Means	1991	Electrica	Cost Data
			$- \downarrow$			· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		-					
FORM 150	 -						

08/08/91

Power Factor Improvement
For Electric Motor Driven Equipment

Filename: CAP-COST

Regression Analysis Data

Capactitor	Bare Labor Cost	Bare Matl. Cost	Total
KVAR	From 1991 Means	From 1991 Means	Cost
5.0	\$100	\$276	\$376
7.5	\$100	\$295	\$395
10.0	\$100	\$345	\$445
15.0	\$100	\$405	\$505
20.0	\$125	\$450	\$575
30.0	\$135	\$560	\$695
40.0	\$170	\$710	\$880
50.0	\$185	\$795	\$980

Regression Analysis Output

	Labor	Material
Constant X Coefficient	81.4 2.050	218.7 11.754
Standard Error of Coefficient	0.176	0.304
Standard Error of Y Estimate	7.6	13.2
R Squared	0.958	0.996
Number of Observations	8	8
Degrees of Freedom	6	6

Capacitor Cost Equations:

Labor Cost = \$81.4 + \$2.050/KVAR * Capacitor KVAR

Material Cost = \$218.7 + \$11.754/KVAR * Capacitor KVAR

Power Factor Improvement - Building 20 For Electric Motor Driven Equipment

Filename: CAP-20R

Motor HP	Number Motors	Recommended KVAR (1)	Labor Cost (2)	Material Cost (2)	Annual Cost Savings (3)
111	1100010	1141111 (1)	0000 (2)	0000 (2)	00/1/190 (0/
800	0	180	0	0	0
700	0	170	0	0	0
600	0	150	0	0	0
500	0	120	0	0	0
450	0	90	0	0	0
400	0	80	0	0	0
350	0	75	0	0	0
300	0	70	0	0	0
250	0	60	0	0	0
200	0	50	0	0	0
150	2	40	327	1378	822
125	0	35	0	0	0
100	0	30	0	0	0
75	2	25	265	1025	514
60	2	20	245	908	411
50	2 7	17.5	235	849	360
40		15	785	2765	1079
30	3	8	293	938	247
25	3	7.5	290	921	231
20	1	6	94	289	62
Totals	. 22		2534	9072	3724
		11,606		0.40	V/ - \
Simpli	e payback	3,724	======================================	3.12	Year(s)

08/08/91

- (1) Consulting/Specifing Engineer, July 1988, page 97, Table 3 for 1800 rpm, 4 pole motors.
- (2) Cost curve derived from Means Electrical Cost Data, 1991 Refer to regression analysis in this section.
- (3) For a reactive electric demand charge of \$0.865 per KVAR.

Power Factor Improvement - Building 110
For Electric Motor Driven Equipment

•

Filename: CAP-110R

Motor HP	Number Motors	Recommended KVAR (1)	Labor Cost (2)	Material Cost (2)	Annual Cost Savings (3)
800	0	180	0	0	0
700	0	170	0	0	0
600	0	150	0	0	0
500	0	120	0	0	0
450	0	90	0	0	0
400	0	80	0	0	0
350	. 0	75	0	0	0
300	0	70	0	0	0
250	0	60 ·	0	0	0
200	4	50	736	3226	2054
150	1	40	163	689	411
125	0	35	0	0	0
100	3	30	429	1714	924
75	12	25	1592	6151	3082
60	0	20	0	0.	0
50	18	17.5	2111	7639	3236
40	4	15	449	1580	616
30	3	8	293	938	247
25	9	7.5	871	2762	693
20	1	6	94	289	62
Totals	55		6737	24987	11325
Simple	e payback	31,724	\$ =	2.80	Year(s)

08/08/91

(1) Consulting/Specifing Engineer, July 1988, page 97, Table 3 for 1800 rpm, 4 pole motors.

11,325 \$/yr

- (2) Cost curve derived from Means Electrical Cost Data, 1991 Refer to regression analysis in this section.
- (3) For a reactive electric demand charge of \$0.865 per KVAR.

Power Factor Improvement - Building 135 For Electric Motor Driven Equipment

Filename: CAP	-135R
---------------	-------

Motor HP	Number Motors	Recommended KVAR (1)	Labor Cost (2)	Material Cost (2)	Annual Cost Savings (3)
800	2	180	901	4669	3698
700	0	170	0	0	0
600	0	150	0	0	0
500	0	120	0	0	0
450	0	90	0	0	0
400	0	80	0	0	0
350	0	75	0	0	0
300	0	70	0	0	0
250	0	60	0	0	0
200	0	50	0	0	0
150	2	40	327	1378	822
125	0	35	0	0	0
100	5	30	715	2857	1541
75	9	25	1194	4613	2311
60	10	20	1224	4538	2054
50	6	17.5	704	2546	1079
40	10	15	1122	3950	1541 657
30	8	8	782	2502	
25	14	7,5	1355	4296 4917	1079 1048
20	17	6	1593	471/	1040
Totals	83		9915	362,65	15829
	, .	46,180	\$	2.02	Yaar(a)
Simple	e payback	15,829	\$/yr	2.92	Year(s)

08/08/91

- (1) Consulting/Specifing Engineer, July 1988, page 97, Table 3 for 1800 rpm, 4 pole motors.
- (2) Cost curve derived from Means Electrical Cost Data, 1991 Refer to regression analysis in this section.
- (3) For a reactive electric demand charge of \$0.865 per KVAR.

Power Factor Calculation

Filename: PFCALC Data For: Feb-91

Metered KVAR Billed KVAR

Cost Per KVAR

INPUTS

Metered On Peak KW 10432.3 KW 8448.0 KVAR 4992.0 KVAR 0.85551 \$/KVAR OUTPUTS

Current KVA 13423.9 KVA Current PF 0.777

Allowable KVA 10989.9 KVA Allowable PF 0.949 Allowable KVAR 3456.0 KVAR

4992.0 KVAR Billed KVAR Billed Amount \$4,270.71

 $KVA = (KW^2+KVAR^2)^0.5$

PF = KW/KVA

Source: WVA February 1991 Electric Bill

Power Factor Calculation

Filename: PFCALC Data For: Aug-90

INPUTS

Metered On Peak KW 11011.9 KW Metered KVAR 9120.0 KVAR Billed KVAR 5472.0 KVAR Cost Per KVAR 0.80851 \$/KVAR

OUTPUTS

14298.1 KVA Current KVA Current PF 0.770 Allowable KVA 11600.4 KVA Allowable PF 0.949 Allowable KVAR 3648.0 KVAR Billed KVAR 5472.0 KVAR Billed Amount \$4,424.17

 $KVA = (KW^2+KVAR^2)^0.5$

PF = KW/KVA

Source: WVA August 1990 Electric Bill

Power Factor Calculation

Filename: PFCALC Data For: Sep-90

INPUTS

OUTPUTS

Metered On Peak KW Metered KVAR Billed KVAR	11205.0 KW 8832.0 KVAR 5120.0 KVAR	Current KVA Current PF	14267.3 KVA 0.785
Cost Per KVAR	0.80851 \$/KVAR	Allowable KVA Allowable PF Allowable KVAR	11803.9 KVA 0.949 3712.0 KVAR
		Billed KVAR Billed Amount	5120.0 KVAR \$4,139.57

 $KVA = (KW^2+KVAR^2)^0.5$ PF = KW/KVA

Source: WVA September 1990 Electric Bill

TO: ODP-I MIKE MIZENKO

SMCWV-EHE

28 January 1986

MEMORANDUM FOR RECORD

SUBJECT: Strip Chart Readings

1. Strip Chart Readings taken during the weeks of 23 and 30 Dec 1985 indicate that some equipment is running significantly below the previously assumed load values.

BLDG NO.	EQUIPMENT	ASSUMED HP	READING HP	· <u>%</u>
25	OMN I 20	40	20	50
35	WOHLENBERG	125	32	25
135	RD&D H.S. LATHE, B, NORTH	200	60 (77 AM F	⁾ S) 30
135	RD&D LATHE, C. NORTH	200	42 (55 AMF	25) 21
135	HONE, B. SOUTH	100	35 (46ÅM	PS) 35
135	SWAGE	100	100 (124 AMP	S) 100
		/6.5	701	

2. Five of these machine readings indicate that additional testing under maximum load conditions is warranted.

BILL FACE

Engineering Division

MIKE,

THESE VALUES DO NOT REDUCE THE MFG. CONNECTION RATINGS, BUT WILL ALLOW MORE EQUIPMENT CONNECTIONS PER BUS DUCT THAN PREVIOUSLY CALCULATED.

TABLE 2

JUGGESTED MAXIMUM CAPACITOR RATINGS—"T-FRAME" NEMA "DESIGN B" MOTORS*

-	Bunder, of poles and servinal motor speed in ryse														
	:46	Section Section 1997	100		1,20	B rpm	-908		医 爱沙漠 1000 1000 1000 1000 1000 1000 1000 10	Q Ipm		12) rpm			
rating	Capacita	Carrel results recest	Capacine 105		Cassille	Current reduction percent	Capacitor Eval	Carrent reduction portent	Capaciter avar	Carrent . reduction process	Capacitor Avas	Current reduction percent			
2	1	14	1	24	1.5	30	2	42	2	40	3	50			
3	1.5	14	1.5	23	2	28	3	38	3	40	4	49			
5	2	14	2.5	22	3	26	4	31	4	40	5	49			
71/2	2.5	14	3	20	4	21	5	28	5	38	6	45			
10	4	14	4	18	5	21	6	27	7.5	36	8	38			
15	5	12	5	18	6	20	7.5	24	8	32	10	34			
20	6	12	6	17	7.5	19	9	23	10	29	12.5	30			
25	7.5	12	7.5	17	8	19	10	23	12.5	25	17.5	30			
30	8	11	8	16	10	19	15	22	15	24	20	30			
40	12.5	12	15	16	15	19	17.5	21	20	24	25	30			
50	15	12	17.5	15	20	19	22.5	21	22.5	24	30	30			
60	17.5	12	20	15	22.5	17	25	20	30	22	35	28			
75	20	12	25	14	25	15	30	17	35	21	40	19			
100	22.5	11	30	14	30	12	35	16	40	15	45	17			
125	25	10	35	12	35	12	40	14	45	15	50	17			
150	30	10	40	12	40	12	50	· 14	50	13	60	17			
200	35	10	50	11	50	11	70	14	70	13	90	17			
250	40	11	60	10	60	10	80	13	90	13	100	17			
300	45	11	70	10	75	12	100	14	100	13	120	17			
350	50	12	75	8	90	12	120	13	120	13	135	15			
400	75	10	80	8	100	12	130	13	140	13	150	15			
450	80	8	90	8	120	10	140	12	160	14	160	15			
500	100	8	120	9	150	12	160	12	180	13	180	15			

For use with 3-phase, 60 hertz NEMA Classification B Motors to raise full load power factor to approximately 95%

Courtesy of Commonwealth Sprague Capacitor Inc.

TABLE 3

MULTIPLIERS TO DETERMINE CAPACITOR KILOVARS REQUIRED
FOR POWER-FACTOR CORRECTION

					1.5	10.7	Acres 1 to 1 to 1 to 1	10.00		19 Mary 18 18 18 18 18 18 18 18 18 18 18 18 18	****	Course of the	7. ALT ALT AL	The second second							
	to			8.83	8.84				e de		0.90	0.91	(Cr	8.93	0.94	0.95	K.	0.97	8.98	0.99	1.0
0.50	0.982	1.008	1.034	1.060	1.086	1.112	1.139	1.165	1.192	1.220	1.248	1.276	1.306	1.337	1.369	1.403	1.440	1.481	1.529	1.589	1.732
0.51	0.937	0.962	0.989	1.015	1.041	1.067	1.094	1.120	1.147	1.175	1.203	1.231	1.261	1.292	1.324	1.358	1.395	1.436	1.484	1.544	1.687
0.52	0.893	0.919	0.945	0.971	0.997	1.023	1.050	1.076	1.103	1.131	1.159	1.187	1.217	1.248	1.280	1.314	1.351	1.392	1.440	1.500	1.643
0.53	0.850	0.876	0.902	0.928	0.954	0.980	1.007	1.033	1.060	1.088	1.116	1.144	1.174	1.205	1.237	1.271	1 308	1 349	1 397	1.457	l .
0.54	0.809	0.835	0.861	0.887	0.913	0.939	0.966	0.992	1.019	1.047	1.075	1.103	1.133	1 164	1.196	1.230	1.267	1.308	1.356	1.416	1.559
~~~~	~~~	····	····	····	····	~~~ ~~~	~~~ ~~~	~~~~	~~~~	~~~	~~~	~~~	~~~	••••	<b>~~~</b>	····	····	لسسا		····	····

~~~	$ ilde{\sim}$	$ ilde{}$	$\sim\sim$	imes	~~~	~~~	^^^															
0.79	0.026	0.052	0.078	0.104	0.130	0.156	0.183	0.209	0.236	0.264	0 292	0.320	0.350	0.381	0 413	0 447	0.484	0.525	0.573	0.633	0.776	
0.80	0.000	0.026	0.052	0.078	0 104	0.130	0.157	0.183	0.210	0.238	0.266	0.294	0.324	0.355	0.387	0.421	0.458	0 499	0.547	0.609	0.750	!
0.81		0.000	0.026	0.052	0.078	0.104	0.131	0.157	0.184	0.212	0.240	0.268	0.298	0.329	0 361	0.395	0.432	0 473	0.521	0.581	0 724	
0.82			0.000	0.026	0.052	0.078	0.105	0.131	0.158	0.186	0.214	0.242	0.272	0.303	0.335	0.369	0.406	0 447	0.495	0.555	0.698	
0.83	}			0.000	0.026	0.052	0.079	0.105	0.132	0.160	0.188	0.216	0.246	0.277	0 309	0.343	0.380	0.421	0.469	0.529	0.672	
0.84	1				0.000	0.026	0.053	0.079	0.106	0.134	0.162	0.190	0.220	0.251	0 283	0.317	0.354	0.395	0.443	0.503	0.646	
0.85						0.000	0.027	0.053	0.080	0.108	0.136	0.164	0.194	0.225	0 257	0.291	0.328	0.369	0.417	0.477	0.620	
0.86			:				0.000	0.026	0.053	0.081	0 109	0.137	0.167	0.198	0.230	0.264	0.301	0.342	0.390	0.450	0.593	
0.87								0.000	0.027	0.055	0 083	0.111	0 141	0 172	0 204	0 238	0.275	0.316	0.364	0.424	0.567	
0.88																				0.397	0.540	
0.89								j.	İ									0.261		0.369		
0.90											0 000	0.028	0 058	0 089	0 121	0.155	0.192	0.233	0.281	0 341	0.484	
0.91												0.000	0 030	0.061	1 1 1 1 1 1 1 1	0.127	0.164	0.205	0.253	0.313	0.456	
0.92																			0.223			
0.93	1																		0.192			
l												•								, ,	- 1	

Courtesy of Commonwealth Sprague Capacitor Inc.

08/08/91

Power Factor Improvement

For Electric Motor Driven Equipment

Filename: CAPTABL2

Motor HP	Number Motors	Recommended KVAR (1)	Capacitor Cost (2)	Annual Cost Savings (3)	Simple Payback
800	1	180	4077	1849	2.2
700	1	170	3875	1746	2.2
600	1	150	3471	1541	2.3
500	1	120	2864	1233	2.3
450	1	90	2258	924	2.4
400	1	80	2056	822	2.5
350	1	75	1955	770	2.5
300	1	70	1854	719	2.6
250	1	60	1652	- 616	2.7
200	1	50	1450	514	2.8
150	1	40	1248	411	3.0
125	1	35	1147	360	3.2
100	1	30	1046	308	3.4
75	1	25	945	257	3.7
60	1	20	844	205	4.1
50	1	17.5	793	180	4.4
40	1	15	742	154	4.8
30	1	8	601	82	7.3
25	1	7 . 5 ′	591	77	7.7
20	1	6	561	62	9.1
15	1 .	5	540	51	10.5
10	1	4	520	41	12.7
7.5	1	3	500	31	16.2
5	1	2.5	490	. 26	19.1
3	1	1.5	470	15	30.5
2	1	1	460	10	44.7
Totals	26		37008	13004	2.8

- (1) Consulting/Specifing Engineer, July 1988, page 97, Table 3 for 1800 rpm, 4 pole motors.
- (2) Cost curve derived from Means Electrical Cost Data, 1991 Refer to regression analysis below. 46.4 % markup added.
- (3) For a reactive electric demand charge of \$0.865 per KVAR.

Regre	ssion Data		
Capact	 Cost From	Regression Output	
KVAR	Means	Constant Std Error of Y Estimate	300.1 15.4
5	376	R Squared	0.996
7.5	395	No. of Observations	8
10	445	Degrees of Freedom	6
15	505	X Coefficient	13.80
20	575	Std Err of Coefficient	0.356
30	695		
40	880		
50	980		

Industrial Applications

Application and Benefits

A low power factor means higher costs and reduced efficiency Chances are that power factor in your plant is low

Approximately one-half of all plants have a power factor below 85 percent. Low power factor wastes money directly in higher electric bills, and indirectly by reducing the efficiency of plant distribution systems and the productive equipment they serve.

ABB capacitors can benefit your power system in four major ways:

- 1. Raise power factor . . . you avoid premium charges and power-factor penalties on your electric bill.
- Dry dielectric system no free fluid
- Environmentally safe
- Reduced fire risk
- Reduced losses
- Self healing
- Sequential protection

In addition to improving power factor capacitors

• Improve voltage @ transformer due to capacitor addition:

- 2. Increase system capacity . . . you are able to operate more equipment without increasing the peak-demand charge.
- 3. Provide higher, more uniform voltage levels ... you have more effective lighting and improved motor performance.
- 4. Reduce line current . . . you lower the electric losses in lines and equipment between the power source and your capacitors.

DRI-VAR Power Capacitor 240, 480, 600 Volts

VAR-PAK **Var-Controlled Automatic Switched Capacitor Bank** 240, 480, 600 Volts

F ۲.

Two-Unit HWP 2400 and 4160 Volts 25-800 kVAR

HWP 2400 and 4160 Volts 25-800 kVAR

% voltage rise = kVAR of capacitors \times % reactance of transformer kVA of transformer

Reduce power losses in the distribution system due to capacitor addition:

% reduction of losses = 100 - 100

original power factor 12 improved power factor

Derating Capacitors

Reduce kVAR when operating 60 Hz unit @ 50 Hz

Actual kVAR = rated kVAR **50**\ = .83 rated kVAR

 Reduce kVAR when operating @ below rated voltage Actual kVAR = rated kVAR /operating voltage \2 rated voltage

240V @ 208 = .751 rated kVAR

Typical One-Line Diagram Showing Capacitor Locations

rvliet Arsenal Building 135 Motor List Filename: MOTORLST

WVA # -> No.Ea> No.Op>	11760 1 1	11700 1 1	12441 1 1	11770 1 1	12270 3 3	12111 5 3	12260 8 3	12177 6 3	11640 4 3	10277 3 1	12006 2 1	9390 1 1	11190 2 2	12289 4 3		
Motor HP				+	# Motors						ł	# Motors			TOTALS	
800		2													2	1
250															0	
200															0	
150		2													2	
125													-		0	
100				1						4					5	
75					1		1	1							3	
60		8	•										1		9	61
50						1								1	2	
40	1	6						1							8	
30		2		2					1			1			6	
25		4		2					2				1		. 9	
20	1	6		1				2	1						11	
15														.=-	0	
10	2			i					-				1	>	ل 4	
7.5		4					4	1	1	1					11	
5		5					1	1				1	1		9	
3 2 1.5	3	1		2	1		4	1	1				2		15	
2					2	2			1					1	6	
						1	2	2	1					1	7	
1	6	. 3					1		1			1	ì	4	17	
0.75	2				1			1			7	2		2	8	
0.5					4	I	1	2			7	4	1	4	24	
0.33					1			1	1				0		3	
0.25					1	l .	4	l					2	1	10	
0.125						1	4							1	6	
TOTALS	15	43	0	9	11	7	22	14	10	5	7	9	10	15	177	
IUIHLS	15	43	0	9	33	21	66	42	30	5	7	9	20	45	345	

Equipment List

By Process		By WV Number		
Equipment	WV Number	Equipment	WV Number	
Indu. Furnace	11760	Press	9390	
Rotary Forge	11700	Swage	10277	
Abrasive Saw	12441	Lathe	11190	
Selas Furnace	11770	Hone	11640	
Press	12270	Hone	11640	
Lathe	12111	Rotary Forge	11700	
Lathe	12260	Indu. Furnace	11760	
Lathe	12177	Selas Furnace	11770	
Hone	11640	Pit Furnace	12006	
Swage	10277	Lathe	12111	
Pit Furnace	12006	Lathe	12177	
Press	9390	Lathe	12260	
Lathe	11190	Press	12270	
Hone	11640	Lathe	12289	
Lathe	12289	Abrasive Saw	12441	

. Equipment List

By Process		By WV Number		
Equipment	WV Number	Equipment	WV Number	
* (=	44740	5	6000	
Indu. Furnace	11760	Press	9390	
Rotary Forge	11700	Swage	10277	
Abrasive Saw	12441	Lathe	11190	
Selas Furnace	11770	Hone	11640	
Press	12270	Hone	11640	
Lathe	12111	Rotary Forge	11700	
Lathe	12260	Indu. Furnace	11760	
Lathe	12177	Selas Furnace	11770	
Hone	11640	Pit Furnace	12006	
Swage	10277	Lathe	12111	
Pit Furnace	12006	Lathe	12177	
Press	9390	Lathe	12260	
Lathe	11190	Press	12270	
Hone	11640	Lathe	12289	
Lathe	12289	Abrasive Saw	12441	

WATERVLIET - BELG. 110 - Substation Lunding ASSOME PEAK PRODUCTION

11/15/84

!	SECTION	S	2 B1-A	480 V.A.C.
DITEM	LOAD (HP)	FLA	Demano @ ,8	
P.C. CRINDER	62 HP	75	60.6 A	
P.C. GRINDER	62	75	60.0	<u> </u>
ENGINE LATHE	50	65	52.0	
BIRING LATHE	66/3	80	64.0	
CONV. BORE	531/6	67	53.6	
SPOTTING LATHE	75	96	. 76.8	
ENCINE LATHE	75	96	. 76.8	
PRESS	363/4	46	36.8	
HORIZ HONES	182/2	230	184.0	
SWAGE	200	240	. 192-0	
RIFLER	57/2	58	46.4	
John Bore	52	66	. 52.8	
350 Bare	303	365	2920	
GUIDED BORE	303	365	792.0	
	I was Melling Sug	·	48013	

HORGE MICHINE SUB TUTAL 1538-8-AX TOOL = 1277 KW

+ 3 SMALL MACHINES @ 10HP QUE (14 KLAX 480 15 35 KW

+ BLOG. 121 390.0 390 KW

+ FRENCH LOTHE (12540 ASSUME) 150.0 5 150 KW

+ LTg., OUTLETS & MIKE. 100.0 100 KW

SMALL MACH.

DIVERSITY - - - 1562 KW + 30% Future Capacity - - - 469 KV

TOTAL

SUB-TOTAL

2031 KW

1952 KW

@ . 8 P.F.

7539 KUA-

Cotta Report

WATERVLIET - Bldg. 110 - Substation Londing Assume Peak PRODUCTION

SECTION 2BI

11/15/84 480 V.A.C.

	10000	ν, Δ	1054440	1
- OTEM	LOAD(HP)	pag.	DEMAND @ .8	
open				
HORIZ. HONE	25 HP	34	17.2. A.	
CONV BORE	7 ³ 4	11	8.8	
Heller M.LLING	(200AMPS)	200	160.0	
RIFLER	27/2	37	29.6	
RADIAL DRILL	1746	30	24.0	
RIFLER	275	37	29.6	
V	~			
ZANER MILLS	31/2	40	32.0	
		-		
DRILL PRESS RIVETER	43/4 2	10	8.0	
No. ac. termstation er. er.			<u> </u>	
		 	719.ZA x	trois - 310 km

LARGE MACHINE SUB-TUTOL 319.2 A X 1000 = 265 KW + 55 SMALL MOCHINES @ 1044 (14F40255:7700 4005) = 639 KW + LTG., OUTLETS, & MISC. 160.0 KW -2 100 KW + PIT FURNACE 600.0 KW -9 600 KW

SUB-TUTAL 1604 KW

SMALL MACH.

+30% Future CAPACITY -> 385 KW

TOTAL

1668 KW

@ ,8 P.F.

2085 KVA

646 report

1-19

11/15/84

÷	SEC.	MID	N 2A	12 400, s.c.
TEM	LOAD (HP)	FLA.	DEMANO @.8	
PLANER MILL	27 HP	36	28.8 A.	
PLANER MILL	41/2 1	52	41.6	
GRINDER	62	77	61.6	
BELT GRINDER	57	75	. 60.0	
ENGINE LATHE	75	96	76-8	
GRINDER	20	27	. 21.6	
RIFLER	55.	57	. 45.6	
Semula	57	58	46-4	
HONE, RIFLER	551/2,773/4	154_	. /33,2	
BORE	303	365	- 292.0	
BORE	303	365	. 292.0	
ENGINE LATHE	75	96	76.8	
GRINDER	26	35	28.0	
HONE	50	65	- 52.0	
ENGINE LATHE	75	96	768	
P.C. LATHE	574	.58	: 4C F	
LAI	ege Machine Subto	tal -	1369.6 AX	1005 = 1/37.0 Kw
	& Small Machine			
	TG., CUTLETS, M			- 100.0 KW
		Belg	108	100.0 Kw (Assumed)
		4.1	RS 1-6	100.0 KW (10)
		Q VALTER		50.0 KW (")
SMALL MACH.		Blog "	10 (2 Feeds)	300.0 KW ("
_66			Sub-total	2554 KW
	Dive	uit, x	- 6	2043 KW
	+ 30	16 Fai	two Capacity	1 613 KW
			Total	_2656 KW

Recommendation: Rophe 2A2 with double ended sub-Statio. rated at 2000 KVA la. Transformer.

-20 (G+G Report)

@ . 8 P.F. = 3320 KVA.

Waterviet - TSLLy 110 - Substation Loading.
ASSUME PEOLE PRIOUTION. 11/15/84 480 V.A.C. SECTION IA3 LOAD (HP) FLA Dunand @ .8 . SPIN. PC. LATHE 574, 53 16 HP 142 1/3.6 A. 96 IGINE LATHE 75 .76-8 75 96 . 76.8 JGINE LATHE 150 GRINDER, P.C. CRIND 62, 62 120.0 $RESS = 36^{34}$ 50 40.0 ALITY CONTROL -NO HOLDING PREIS . . . 5714 75 . 60.0 CATHE 574 60.0 C LATH E 75 57 60.0 RINDER 75 LARGE MACHINE SUBTOTAL 607.2A.X 1000 504, U KW + 14 SMOUL MOCHINES @ 10 HP ea. (14 FEA)= 1630 + D.C. EQUIPMENT (CRANES & COMPROGRAMS) 480,0 80.0 + SHRINK DIT I LATER & A ATTRE 200.0 this, outless emise. MALL MACH. 100.0 (Assumed) + Bldg 115 Computer RM. 14 200.0 + HI-BOY LTG. SUB-TOTAL -> 1727. KW 1382 DIVERSIT" @ .8 KW + 30 % Fetore copmity 415 KΨ ToTAL 1797 KW @ -8 P.F. = 2246 KVA.

G+G Report

Bldg 110 motor Data From 6+6 Rpt.

;	· · · · · · · · · · · · · · · · · · ·		
		HP	Assured Sizes
	Spindle	57.2 5	5227-
11	DC lathe	53.17	20 D E 1/2
4.	Engine lattre	75	75
	· · · · · · · · · · · · · · · · · · ·	75	75
:	PC Grinder	62	50,17,2.
:	ti ti	62	50,10,2
:	Press	36.75	30,5,1,34
	PC lathe	57,25	55 E, 2 ··
	PC lathe	57.25	50,5,2,14
	Grinder	57	5 5, 2
	14 Small Mach	~10 hp (each)	(10 x 14)
	Planer Will	27	25,2
	di to to to	41,5	40, 1, 1/2
	Grinder	62	30 ₁ 10 ₁ 2
:	• • • • • • • • • • • • • • • • • • • •	20	20
:	; ,, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	26	25, 1
,	Belt Grinder	57	50, 5, 2
	Engine lathe	75	75
	ν (τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	75	75
		75	75
	R:Fler	55	
	Carinder	57	53,5,0
	Hone	55,5	50,5, 1/2
	Rifler	77.75	75, 7.5, 4
	Bore	303	200, 75, 25, 3
	t t	303	1-22 200,75 05,4

Blog	110	Continued
------	-----	-----------

56 Hone 57,25 PC. lathe ~10 up (each) 66 Small Mach. Hortz. Hone 25 7.75 Conv. Bore Heller Milling 1150 hp Rifler 27.5 27,5 \times Radial Drill 17 Planer Mill 31,5 Drillpress 4,75 Riveter 10 hp (each) 55 sm Mach PC Grinder 62 62 50 Engine lathe 66,33 Boring lathe Conv. Bore 53,17 75 Spotting Lathe Engine Latte 75 Press 36.75 182.5 Horit, Hone 200 Swage Rifler 57.5 52 Conv. Bove Guided Bore 303

シオイト (10×66) 25 7, 7, 3 100,-0,5,3,3. 25, 2. 12 25, 2, 8

> 15, 2 30, 1, 1/2 (10 ×55 50,10,2

50,10, à 50

570,31,4 ピラッラ な

75

四月二十二

150, 25, 8, 2, 2

100,100

305,2,1/2

55, 2

200, 75, 25,3

1-23

303

+ 3 sm mach @ 10hp ea

Bldg 110 Motor Totals

HP	# motors
200	<u>u</u>
150	413
75	12
60	-0 -
50	18
40	4
30	. 3
25	9
20	1
15	
10	143

80% OF NAMEPLATE MACHING RUNING AT GA% DECATING AND A DEMAND FACTOR OF 80% FOR CONNECTED LUAD TO MAXINUM LOAT WATERVLIET WO. \$ / 1814 20 Eavipment head Density Calculation 1/30/55 Calculation based on Plant Layout of equipment in ones bordered by columns to of d. 5 and 9. Egupment looks provided by Plant Layout, consider to deversity and 80% demand factor. HP. FLA Horizontal Mill 20 LOAD WIT-OUT TWO LARGEST = 800/ 27 Radial and Doll = 665K/ 5 4 3 665 x .8 x .8 = 426 KVA Verticle Mill 15 21 17 PER 19, 2005. F. = 22.2 VA/S. F. Verticle Tunet Lathe 30 40 32 Aforgantal Gun Drill 30 40 32 Surface Grande 40 42 52 Hofronto Broach 42 52 42 Thead Will 34 とゲ 17 Thread Mill 34 25 27 Vertice Tweet Lette 45 60 48 Thread ynill كحك 34 27 Vertice Tunet Lathe 30 40 32 Duplex Yhll 7.5 11 Verticle Turnt buther 40 52 42 Surface Grider 15 21 17 Kessas Ventule Lathe New Eximp-now being installed 4000 DISC 320 256 Machining Center 15 21 17 Broach Colonal 256 3 20 Rotary Grande 40 4z 52 Rotary Granden 60 77 62 NC PROFILE MILL 65 50 5Z Vertice Tamet hathe 77 60 62 Ne. Profile Lather 50 65 5 Z Horisonle ! Brook 40 52 42 Got a Report Profile Mill 48 62 50 THE TOTAL 13/1 Anga. X 480 V3 X. & DIVERSITY = 870 KW (free: 120 x 160 = 19, 200 # for Equipment

•		
Bldg. 20 From G	E. G. Report	Assum of Sizes
1 20 Earla Mill	20	20
Loclial Arm Dvill	3	,3
Verticle Will	15	15
. Verticle Turret Lathe	30	30
Horize Gan Drill	30	30
Eurf, Guinder	40	40
Horiz. Proach	42	1012
Thread Will	25	25
 '	25	25
Verticle Turret Lathe	+5	-5,.5
i vi	30	30
	40	40
(t (t	60	60
Thread Will	25	25
: Duflex Wall	7.5	7.5
Surface Grinder	15	15
Hessap Verti Lathe	~ 240	150, 75, 10,5
Machining Center	15	15
. Rotary Grinder	40	40
M ft	60	60
NC Profile MIII	50	70
. Lathe	50	50
Horiz, Broach	40	40
Profile Unil	45	40 , I
Frouch Colonial	N 240	150,75,10,5

Blog 20 Motor totals

HP		# Motors
150		2
75		2
60		2
50		2
40		7
30		3
25		3
20		1
15		.3
10		2
	Total	27

1-27

SUBJECT	ECO# Z	AEP NO	290-0379-002
NGAS	Fuel Switch	SHEET	OF
DESIGNER	P. Hutchins	DATE	8/8/91
CHECKER	B. Todd	DATE	9/16/91

- Calculate dollar savings

	Fygo Use (MBTU)	FY91 Aug. Rate \$/MBtu	Est. Fy91
#6 Fuel Oil	278,000	#6.61	#1,837,580
Nad. Gas	278,000	\$4.66	# 1,295,480
Annual Savings			# 542,100

SUBJECT Natural Gas Pipeline	AEP NO 290-0379-002
ECO#2	SHEETOF
DESIGNER P. Hutchino	DATE
CHECKER	DATE

Natural Gas Pipeline

- Defermine pipe line size - Calculate the natural gas peak flow:

> Peak steam demand is ~ 120,000 #/br 120 psig (based on conversations with WVA personnel)

120,000 #/hr · (1192-118) Bta/lb = 161 MBM/hr

- Convert to MCF (thousands of ct)

161 x 10 B fn / hr x 1 mcf = 156 mcf 1030 Btu/cf x 1000cf hr

add 16 MBtu/hr for cogneration $\frac{16 \,\Xi 6}{1030} \cdot \frac{1}{1000} = 16 \, \text{mcf}$ Tw.

- Plus contingues (10%)

(156+14) * 1.1 = 190 mcf, pay 200 mcf

RS&H	_
	®

SUBJECT Nal Gas Line	AEP NO
	OF
DESIGNER P. Hutchin	DATE
CHECKER	DATE

- Calculate required pipe diameter

Fulet pressure minimum is 50 prig East pressure minimum is 10 prig

Maximum AP = 40 prig

Calculate AP through various pipe sizes

Use nomographs from Crave's, Flowof Fluids

Given:

Natural gas specific gravity = 0.75

Flow vate = 200,000 cfh

Pressure = 50 ping

Temp. = 60°F

Durit (roles) = 0.22 be/cf

Dursity (natgas) = 0.23 16s/cf

Flow = 46,000 16/hr

Deusity (air) = 0.335 lbs /cf

So = 0.69

- Convert to standard conditions:

Flow rate

 $\rho_1 V_1 = \rho_2 V_2$ $\rho_1 = 0.23 \# \text{cf} \quad \rho_2 = 0.053 \# \text{cf}$ $V_1 = 200,000 \text{ cfh}$ $\overline{\rho_2} = 0.23 (200,000) = 867,924 \text{ scfh}$

(2-2)

SUBJECT	Natibas Line	AEP NO	
)	OF	
DESIGNER	Buthur	DATE	

 $g_h' = 114.7 \sqrt{\frac{P_1'^2 - P_2'^2}{f Lm T S_2}} d^5$

 $\left(\frac{3n}{114.2}\right)^{2} = \frac{\left(p_{1}^{\prime 2} - p_{2}^{\prime 2}\right)d^{5}}{f \, \text{Lm TSq}}$

$$d^{5} = \frac{\left(\frac{3h}{114.2}\right)^{2} f Lm T S_{3}}{P_{1}^{2} - P_{2}^{2}}$$

- Find f

u (viscosity, centipolie) = 0.011 p. A-5 (voués

 $Re = 0.482 \frac{g'_{1}S_{2}}{g'_{1}S_{2}} \frac{f}{0.015} \frac{d(1)}{6.065} \frac{P_{1}peS_{1}}{6} \frac{Re}{4.3 E6}$ $\frac{d\mu}{0.0131} \frac{0.0131}{10.02} \frac{Re}{10} \frac{Re}{2.6 E6}$

Solving for d for various Ap's for

 $\frac{A!}{10} \frac{d(")}{9.3} \qquad \begin{array}{l} gh' = 870,000 \text{ cf/hr} \\ f = 0.014 \\ 20 \qquad 8.2 \qquad Lm = 1500 \text{ ft/5230f} = 0.28 \text{ mi.} \\ 30 \qquad 7.7 \qquad T = 520^{\circ} \text{ R} \\ 40 \qquad 7.4 \qquad Sg = 0.69 \\ P'_1 = 65 \text{ psia} \\ P'_2 = 25 - 55 \text{ psia} \end{array}$

SUBJECT Nat, Gas Line	AEP NO
DESIGNER PI Hutchius	DATE

$$P_{1}^{12} - P_{2}^{12} = \left(\frac{g_{h}^{18}}{114.2}\right)^{2} f lm T S_{3}$$

$$P_{2}^{1} = \sqrt{\frac{g_{1}^{12}}{114.2}} f lm T S_{3}$$

$$P_{1}^{12} - \left(\frac{g_{1}^{12}}{114.2}\right)^{2} f lm T S_{3}$$

$$Q_{3}^{5}$$

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARE	11/11/	91 SHEET	OF
ENERGY ENGINEERING ANALYSIS						OR ESTIMATE	
WATERVLIET ARSENAL-Albany, N				NY] CODE A (No deal)	
ARCHITECT ENGINEER						CODE C (Final de	e(gn)
REYNOLDS, SMITH AND	D HILLS		MATOR			CHECKED BY	
1/.1 0 4 1	QUANT		PH	utchins	1		1
Natural Gas Line SUMMARY	NO.	UNIT		TOTAL	PER	TOTAL	TOTAL
Steel pipe, SCH 40,8"d.	<u> </u>		Jan		- OATT		
tanconted & wropped	1500	LF	10.84	\$16,260	26.00	\$ 39,000	#55,260
Excavation - 16" x5'	1500		0.47		_		705
Horizontal boring							
Railroad work 24"d.	360	LF	32000	115,200	40.00	14,400	129,600
Backfill, dozier		<u> </u>					
Compacting Radio	300	CA	1.76	528	-		528
Bedding coushed stone	300	c >/	1120	1248	/2 0.	2000	
1.270.00	300	C Y	4,28	1290	12.90	3870	5118
				133,941		57, 270	191,211
Boiler Plant interconnect	1	ea	5000	5000	5000	5000	10,000
Metering Station		ea	5000	5000	5000	5000	10,000
				143,941		67,270	211,211
	- .					,	
						.•	
'Includes equipment o	osta						
200		\Box					
Ref: 1991 Means, Me	han	ical	7 P.	18-22			
		\dashv					
		\dashv					
		-					
			-+				
			_				
G FORM 150	<u> </u>	\Box					
U FURM see	-						

ECO Construction Cost Estimate Calculations

1991 ECO "bare" costs (from cost estimate sheet)

ECO Name: NATURAL GAS FUEL SWITCH

ECO #: 2

	Material Labor	\$67,270 \$143,941
	Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (6.5% of Material)	\$211,211 \$28,788 \$4,373
	Subtotal Overhead (15%)	\$244,372 \$36,656
	Subtotal Profit (10%)	\$281,028 \$28,103
	Subtotal Bond (1%)	\$309,131 \$3,091
	Subtotal Contingency (10%)	*312,222 *31,222
	Subtotal (Construction Cost Input For LCCID *)	1 \$343,444
	SIOH (6% of Construction Cost)	\$20.607
	Subtotal Design (6% of Construction Cost)	\$364,051 \$20,607
Total	Project Cost	\$384,658

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

SUBJECT_	ECO#3	AEP NO _	290 0379-002
	Cogerevation	SHEET	OF
DESIGNER	P. Hutchins	DATE	6/28/91
CHECKER _	B. Todd	DATE	9/16/91.

- Current fuel use - FY 90

MBTU

ELC 173,000 FSD 12,000 FSR 278,000 NGAS 65,000

- Calculate merzy savings

- Size and type of cogen equipment

Damand data from WVA (Figures 3-1 and 3-2) show a constant load of about 3MW at all times, a 9 MW load 0800 - 1500 hrs Monday through Friday and about 5 MW for 1500-0800, M-F.

Steam use is shown on a monthly basis in Figure 3-3. It shows a minimum average steam production of 6000 #/hr during non-space heating periods (this represents metal plating heat loads in Bldg 35) and varying loads up to 65,000 #/hr dependent upon the weather for space heating.

Figure 3-4 shows the steam production during the summer by day of week. It demonstrates a 1000 #/hr load Monday through Thursday.

SUBJECT ECO # 3 - Cogeneration	AEP NO
a	SHEETOF
DESIGNER P. Hutchins	DATE 7/8/91

Monthly Steam Use - Bldg 136 + 35

HTUOM

SUBJECT	ECO#	3 -	Cozenera	generation		
			V			
		T	Λ			

DESIGNER P. Hylchia

SHEET OF DATE 7/8/91

Building 35 Boiler Steam Production

		JUNE			A	16	AUG	·
	4-10	11- 17	18-24	6-12	13-19	20-26	DLY	Hec
M	224	179	167	140	161	176	175	1,3
T	205	169	169	140	117	206	163	7.0
ω	194	169	171	157	164	188	174	7.3
R	156	. 190	189	167	167	160	172	7.3
F	41	86	71	53	76	98	17	3.0
S	_	_			-		0	0
2	75	92	140	109	107	191	119	5.0

DAY OF WEEK

SUBJECT	AEP NO
Cogen	SHEETOF
DESIGNER	DATE 6/28/9/
CHECKER	DATE

The valio of the heat -to-electricity requirements determine which type of cogeneration equipment is preferred. This is shown in Figure 3.5. In general this figure slows the polowing preferences:

Heat/Electrical Output	Recommended Eguipment
24	Reciprocating Engine
74,610	Gas Turbine
> 10	Steam Turbine

To obtain maximum utilization of the eggen equipment and therefore, maximum benefit Calculate H/E based on 3 MW and 1000#/hr.

$$\frac{H}{E} = \frac{3000 \text{ kw}}{7000 \text{ t/m}} \cdot \frac{3413 \text{ Btnh/kw}}{1000 \text{ Btn/tt}} = \frac{1.46}{-}$$

This indicates that a reciprocaling ingine is the best match. The exception to this is a steam-injected gas turbine that utilizes some or all of the steam produced to fower a steam turbine mounted on the gas turbine shaft. This system will also be walketed.

REF: TECHNOLOGY ASSESSMENT OF MODULAR INTEGRATED UTILITY SYSTEMS, OAK RIDGE NAT'L LAB

SUBJECT ECO# 3	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

- Calculate reciprocating engine energy use

Ossumpliers: Steam vegiment - ~ 7000 # 1 hr 150 prig Elec. regiment - none, NIMO must buy all cogenerated

Because of the 150 paig requirement, heat cannot be recovered from the engine jacket cooling water. The engine exhaust gas is the only source.

Using the Caterpiller Model 3608 with Vapor phase heat recovery silencers and economizers:

200 F FEEDWATER

2.6 MBTU/hr 120 psig steam

To maximize the use of the cogeneration unit, two engines should be used.

1	7	Se	H	
	C T	_	4.4	E ®

SUBJECT	ECO #3	AEP NO	
	***	SHEET	OF
DESIGNER		DATE	
CHECKER		DATE	

The overall performance for two MODEL 3608 engine/generators (based on data bocated on pages 3-11:3-13) is:

annual energy savings:

Fuel Oil: 4.8 MBm/hr. 6000. \$ = 0.83 (p.I.1)= 23,100 MBth annual dollar savings due to electricity purchase by NIMO @ 64/kwh:

3030 kw. 6000 hrs.
$$\frac{40.06}{yr}$$
 = $\frac{1,090,800}{yr}$

SUBJECT ECO # 3	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

Other annual cost

Maintenance & 1.54/kwh

$$\frac{\#_{0,015,3030 \text{ kw. 6000 krs}}}{\text{kwh}} = \frac{\#_{273,000}}{\text{yr}}$$

Summary of energy use changes for total installation

Annual dollar pavings due to sales of electricity to NIMO =

Estimated paybocle = 10.5 yrs

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARE	9 7 l		SHEET	OF
PROJECT ENERGY ENGINEERING	ANAL YS	SIS			BASIS F	OR ESTIM	ATE	
WATERVLIET ARSENAL							(No deels	n completed)
ARCHITECT ENGINEER			· · · · · · · · · · · · · · · · · · ·		┤] cooe c	(Final de	
REYNOLDS, SMITH AND	HILLS			NC.		THER (Sp		
		ESTIM	Paul	Hutchi	4.5	CHECKE	O 8Y	
ECO#3- Cogen. SUMMARY	QUANT	ITY		LABOR	7	MATERIA	L .	
	NO. UNITS	UNIT MEAS,	PER	TOTAL	PER	TO	TAL	COST
CATERPILLAR SPARK-								
Ignited Engine Generators								
Model 3608-1515kw	2	EA			875k	1,75	0,000	1,750,000
(includes switchgear,								
utelete, breaker, main								
brioker)	· · · · · · · · · · · · · · · · · · ·	,	•					
Exhaust hoat recovery								
Economizers		EA			77.5k	15	5,000	155,000
Economizers	Z	EA			27.5k	5	5,000	55,000
					<u> </u>			
Quilit + ' = 'IA								
Substation switchgear					100 K	100	0.000	100,000
INSTALATION COSTS				850,000				262 00-
(@\$250/kw)				030,000				350,000
TOTALS				850,000		2.06	0,000	2,910,000
					·			1 / /
								,
								·
·								
					ł		+	i

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISTED

* U.S. GOVERNMENT PRINTING OFFICE . 1959 0-516148

RSH

Distribution:

Telephone Call Confirmation (904) 737-7750

	Project No. 290 - 05 19 - 00 2
ocal L.D	Placed Rec'd Date7/10/9/
_	Conversed With DAULD WOOD
of CATERPILLAR - RINGI	POWER Regarding Cozen - WV4
	MATERIAL
Three alternative	e: out out (125 psia) cost
- One Model 30	616 - 3MW ~ 5000 #/hr \$ 2.25 mill.
- Two Model 36	
- Four Model 35	
OŚW cort -	1.5¢/kwk
To la Mati	4 - 200-300 / KW
interestation Com	
T 1 1 2 '	·10 4.0.1 has be a second
includes: Engue,	owitchgean, utility breaker, main breaker
	Steam
If I change the	pressure how does that affect output
Dw is & faxing	performance sheets
- Wil	£
Soutworth Hart	ton Jang (518) 465-5255 New York
Cat. Dealer in	New York
	J

ž.

CATERPILLAR, INC. SPARK IGNITED ENGINE DIVISION

3608 SI PERFORMANCE DATA

ENGINE POWER		Heat Exch Cooled	Radiator <u>Cooled</u>
Electric Kilovatts	Ekv	1515	1430
Brake Horsepower	Bhp	2120	2000
BHEP	Psi	180	170
Speed	Rpm	900	900
FUEL CONSUMPTION			
BSFC	Btu/Bhp-Hr	6715	6715
Thermal Efficiency	•	37.9	37.9
EMISSIONS			3
BSNOx	G/Bhp-Hr	1.0	1.0
BSCO	G/Bhp-Hr	1.7	1.7
BSTHC ·	G/Bhp-Hr	5.0	5.0
BSNMHC	G/Bhp-Hr	0.6	0.6
FUEL TOLERANCE			
Fuel Range, LHV	Btu/CuFt	900-1200	900-1200
Methane Number Range	·	50-100	50-100
GENERAL	,		
AC/OG Water Temp	Deg F	90	130
Jacket Water Temp	Deg F	185	185
Air/Fuel Ratio	Vol/Vol	20	20
Timing	Deg BTDC	20	20
Air Flow	Lb/Hr	24050	22750
Exhaust Flow	Acfm	13250	12550
Stack Temp	Deg F	800	800
GENERATOR			
Stability	ISO Class	11	II
Response	ISO Class	II	II

ROTES

Page ten of Sample Quotation 3616-1

Subject to change without notic es/Jr@/Tech162.doc 4/19/5

^{1.} Ratings are based on SAE J1349 standard ambient conditions of 29.61 in Eg and 77 deg F. Variations in altitude, temperature and gas composition may require engine rating and performance adjustment. For these special applications, consult your Caterpillar

^{2.} Electrical rating based on 0.8 power factor and 95.5% generator efficiency.

VAPORPHASE ENGINEERING CONTROLS, INC.

July 12, 1991

Ring Power Company 8050 Phillips Highway Jacksonville, FL 32216

Attn: Mr. David Wood

Subject: RS & H

Our Proposal #7286

Dear Dave:

We offer the following equipment for (4) G-3516SITA-90 gas engines at 800 KW and 1200 RPM or for (2) G-3608SITA-90 gas engines at 1515 KW and 900 RPM.

(4) Caterpillar G-3516SITA-90 Rated 800 KW at 1200 RPM

- (4) Model RCXSV-4410 Bare fire tube exhaust only waste heat recovery silencers, ASME Code stamped for 150 PSIG to produce 125 PSIG steam with full steam trim, insulated. Anticipated recovery at full load, clean per engine: 1,025,994 BTU/HR or 974 #/HR of 125 PSIG steam with 200 Deg. F feed water. Unit weight: 7,843#
- (4) Model EDVP-14 Pneumatic internal exhaust diversion valves with pilots. Unit weight: 145#
- (1) Model BPB-2 Pneumatic back pressure valve and pilot. Unit weight: 110#
- (2) Caterpillar G-3608SITA-90 Rated 1515 KW at 900 RPM
- (2) Model ECXSV-5410 Bare fire tube exhaust only waste heat recovery silencers, ASME Code stamped for 150 PSIG to produce 125 PSIG steam with full steam trim, insulated. Anticipated recovery at full load, clean per engine: 2,393,243 BTU/HR or 2,272#/HR of 125 PSIG steam with 200 Deg. F feed water. Unit weight: 10,316#

ENGINEERING CONTROLS

Ring Power Company July 12, 1991 Page #2...

- (2) Model EDVP-20 Pneumatic internal exhaust diversion valves with pilots. Unit weight: 175#
- (1) Model BPB-2 Pneumatic back pressure valve and pilot. Unit weight: 110#

Should an economizer be added to either unit, performance would be improved by 10%.

The cost for the economizer on the ECXSV-4410 would be Each per unit.

The cost for the economizer on the ECXSV-5410 would be Each per unit.

Delivery is 14-16 weeks after receipt of approved submittal package.

We trust this gives you the information you require for now. Please feel free to contact us if we can be of any further assistance.

very truly yours,

Peter Euslin

PCE/rb

Enclosure

RSH	7
	➂

SUBJECT & CO#3	AEP NO		
Ger Turbine Option	SHEET	OF	
DESIGNER	DATE	10.11	
CHECKER	DATE		

- Calculate gas turbine evergy use

The block diagram below demontrates the

gas turbine engine/generator performance

for the SOLAR T 1500 (1130 kw) turbine

(based on data located on p. 3-18: 3-19)

Nat. Gas 15.5 WStyhr	Gas Turbine	>	1130	kω	
200° F Fredwater			8.4	MBM	125 psig steam

annual energy use

Nat Gas: 15.5 MBM/hr * 6000 hrs = 93,000 MBM

Jn

annual energy savings:

Not. Ges: 5,9 m3m. 6000 hrs. 4 =0.77 =

15,300 MBM

Fuel Oil: 5.9 Mrsm. 6000 hrs . 8 = 0.83:

28,400 MBM

Annual Electricity sales

1130kw. 6000 hrs, #0.06 = \$406,800/yr.

RSH	_
	®

SUBJECT <u>\$C0#3-</u>	AEP NO	
Goes Turking Option	SHEETOF	
DESIGNER P. Lautelina	DATE	
CHECKER	DATE	

annual maintenance costs = 1.04/kwh

Summary of energy use changes for total installation

Annual Use (MBtu)

	CURRENT	W/COGEN	SAVINGS
ELC	173,000	173,000	0
FSR	278,000	249,600	28,400
NGAS	65,000	142,700	(17,700)

annual dollar savings due to electricity sales
= \$\\$406,800

Estimated payback = initial cost : annual savings

ECO Construction Cost Estimate Calculations

ECO Name: COGENERATION

1991 ECO "bare" costs

ECO #: 3

Material Labor	\$672.927 \$168.232
Subtota FICA Insurance (20% of Labo Sales Tax (not applicable f	·
Subtota Overhead (15%)	\$874,805 \$131,221
Subtota Profit (10%)	\$1,006,026 \$100,603
Subtota Bond (1%)	\$1,106,629 \$11,066
Subtota Contingency (10%)	\$1,117,695 \$111,770
Subtotal (Construction Cost Inpu	
SIOH (6% of Construction Co	
Subtota Design (6% of Construction	· · · · · · · · · · · · · · · · · · ·
Total Project Cost	\$1,377,000

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	ESTIMA'	TE		B/14/9/	,	SHEET	OF	
ENERGY ENGINEERING ANALYSIS LOCATION WATERVLIET ARSEJAC					BASIS FOR ESTIMATE			
					CODE B (Preliminary design)			
ARCHITECT ENGINEER				NC .	_] CODE C (Final de THER (Specify)	e(gn)	
REYNOLDS, SMITH AND		ESTIM			<u> </u>	CHECKED BY		
ECO#3-Cogen Gas Tu								
SUMMARY	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	TOTAL COST	
Solar Gas Turbine								
Saturn T1500-1120KW		ea			750 K	750,000	750,000	
(includes generator								
and controls)								
Exhaust had recovery		ea			247K	247,000	2:17,000	
Liptem								
Substation switchgenr					100 K	100,000	100,000	
Installation costs				280,000			280,000	
(3 #250/kw)				230,000			230,000	
TOTAL				280,000		1,097,000	1,377,000	
IUCLUDES ALL								
MARKUPS	······						·	
			-					
			· · · · · · · · · · · · · · · · · · ·	•		 		
								
								
·			····					

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* 4.5. GOVERNMENT PRINTING OFFICE . 1959 G--\$16148

(TRANSLUCENT)

RSH

Telephone Call Confirmation (904) 731-773-

	Project No
al	✓ L.D. Placed ✓ Rec'd. Date 8/1/91
	P. Hutchins Conversed With Roger adkins
	Caterpillan Regarding Solar Turbines
	negarding
	N/ O Solandon in Ala Poro de Solan Tradonio
	Noel Schonmaker is the Poc for Solar Turbuies
	00 = 1: T C+D
	Solar Turbine Joe St. Pierre
`	Price & performance data
	Saturn 1130 kW T-1500 New voting
	and Fadet
	904°F exhaut # 750,000 materials anguir generators controls
	A se A. O.
	Congress
	•

VAPORPHASE ENGINEERING CONTROLS, INC.

August 14, 1991

Reynolds, Smith & Hill 4651 Salisbury Road Jacksonville, FL 32256

Attn: Mr. Paul Hutchins

Subject: Our Budget Proposal #7319

Dear Paul:

We offer the following equipment for (1) Solar T-1500 Gas Turbine rated 1120 KW.

- (1) Model ECXWTSE-4000-750 2-drum, natural circulation, high fin exhaust only waste heat recovery silencer with insulation and full steam trim per Drawing B-P-2481, Rev. 0. Unit includes the following:
 - (1) Economizer
 - (2) Stack
 - (3) Exhaust Diversion Valve
 - (4) Exhaust Diversion Valve Silencer
 - (5) Flexible Connections
 - (6) Duct and Platform

Approximate size: 7'-0" wide x 3'-6" high x 28'-0" long. Anticipated recovery of 125 PSIG steam with 220 Deg. F

feed water: 8,000 #/HR.

Unit weight: 25,000# Budget Price: \$247,100.00 Each

FOB St. Louis, MO. Terms are Net 30 Days. Progress payments would be required.

Delivery is 16 weeks after receipt of approved submittal package.

We trust this gives you the information you require for now. Please feel free to contact us if we can be of any further assistance.

Very truly yours

eter C. Enslin

PCE/rb

Enclosures

SUBJECT ECO#4 WVA	AEP NO 290-0379-002
DIPTANK	OFOF
DESIGNER P. Hadelins	DATE 7/22/9/
CHECKER B. Todd	DATE 9/16/91

ECO#4 Dip Tank Covers with Exhaust Fan Controllers

Assumptions:

- Room Temperature = 68°F

 Heat Load Factor (HLF) (Vol II, AppB. p I-8 thru I-10)

 HLF, = 0.145 Mrstn/yr/cfm (24h/d,5d/w)

 HLFz = 0.092 Mrstn/yr/cfm (16h/d,5d/w)

 HLFz = 0.044 Mrstn/yr/cfm (8h/d,5d/w)

 HLFz = 0.204 Mrstn/yr/cfm (24h/d,7d/w)
- Fan and motor efficiency = 0.5 - Steam Generation Efficiency Aug. = 0.80 (ECO #6) - Fan AP = 3 in. w.c.
- Leeleage with cover in place 10.70 of uncovered
- Calculate present energy use fuel oil for heating OSA replacing explacested air and electricity used by fan motors

 Fuel oil

 Eosa = CFM x 0.204 MBT u/yr/cfm

 57 EAM Gen. eff

- Calculate current fan energy use

Elec

Efen = hp * Btu/hp * 8760 hr/yr * 1M3m * 0.75

Where hp = cfm · Ap

6356 · yfan

assume fan/motor operate at 75% of roted hp

1	2	C	& /	r
			_	®

SUBJECT ECO#4	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

- Calculate everyy use with tauk covers and USD:

Plating operations are active for 1, 2 or 3 shifts five days per week

	H	3000 ST 27 V
# shifts	covered	uncovered
1 .	6240	2520
2	4600	4160
3	2080	6680

With covers in place it is estimated that the cfu will be reduced to 10% of the original flow Fuel Oil Energy Use = CFMC * HLFC + CFMUC * HLFUC 0.30

where the subscript a and we represent sourced and uncovered events

Elec

hyp variety with the cube of the flow $\frac{hp_2}{hp_1} = \left(\frac{cfm_2}{cfm_1}\right)^3 \qquad \frac{hp_2}{hp_1} = \left(\frac{cfm_1 * 0.10}{cfm_1}\right) = 0.00$

Therefore, if the flow is reduced to 10% of original the up is reduced to 0.001 times the original hp.

RSH	

SUBJECT ECO#4	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

Every use = hpc * 2545 * 0.75 * Hc + hpuc * 2545 * 0.75 * Huc

where H = hours

c = covered

uc = uncovered

hpue = hpc * 0.001

0.75 = fracture of valed hp for actual operation

- Savings asual the difference between the present energy use and use with proposed cours of USD:

The following spreadsheet implements these equations.

Small Parts Plating Exhaust Fans

	_	xhaust an ID	hp		Est. CFM	Supply Fan ID	hp	Tanks Served (IDs)	Type *
Line	1	103	60		47,670	?	?	3,7,8,9,11,15,16,21,22,23,24	PP
		106	10	##	7,945	103	10	14	PP
		107	10	Ħ	7,945	103	10	19	PP
		104	40	##	31,780	103	10	28,29,30	PP
		105	60		47,670	103	10	31,32,33	BL.
Line	2	101	25		19,863	101	1.5	3,5,13,16	PP
		102	40		31,780	102	2	19, 20, 21, 30, 31	PP
Line	3	108	60	##	47,670	104	?	2,3,4,5,6,7,8,9,10,11,12,13,14	PP
		109	40	##	31,780	-	-	19, 20, 25, 26	BL
Line	4	110	15	**	11,918	-	_	4,5	BL
		111	40	Ħ	31,780	-	-	6,7,8,9,11	BL
		112	10		7,945	-		10	BL

*Exhaust system
PP = push-pull
BL = bilateral pull only
**Estimated

				Presen	t Use(H	Btu/yr)	Propos	ed Use (1	Btu/yr	Saving	(MBtu/y	77)
	Exhaust Fan ID	# Shifts	Tanks	#6 F.O.	N Gas	Elec	#6 F.O.	N Gas	Elec	#6 F.O.	N Gas	Elec
Line 1	103	3	11	12,156	0	1,003	8,987	0	767	3,168	0	236
	106	3	i	2,026	0	167	1,498	0	128	528	0	39
	107	3	1	2,026	0	167	1,498	0	128	528	0	39
	104	3	3	8,104	0	669	5,992	0	512	2,112	0	157
	105	3	3	12,156	0	1,003	8,987	0	767	3,168	0	236
Line 2	101	2	4	5,065	0	418	3,745	0	201	1,320	0	217
	102	2	5	8,104	0	669	5,992	0	321	2,112	0	348
Line 3	108	1	13	12,156	0	1,003	8,987	0	296	3,168	0	707
	109	1	4	8,104	0	669	5,992	0	197	2,112	0	472
Line 4	110	3	2	3,039	0	251	2,247	0	192	792	0	59
	111	3	5	8,104	0	669	5,992	0	512	2,112	0	157
	112	3	. 1	2,026	0	167	1,498	0	128	528	0	39
Totals			53	83,065	0	6,855	61,415	0	4,148	21,650	0	2,707

RS&H	_
	®

SUBJECT TECO #4	AEP NO
	OF
DESIGNER	DATE
CHECKER	DATE

Additional O & m :

Covers should be replaced every five years. On an annual basis assume 1/5 th are replaced every year

Aunual cost = 1/5 \$800 x53 = \$8480/yr

QRIP/030 PIF CALC'S

Present Cost of Energy

Fuel oil =
$$83.065 \times 4.40 = $365.486$$

Elec. = $6855 \times 20.35 = \frac{139,499}{504,985}$

Proposed

Frel Oil = 61,415 * 4.40 = # 270,226
Elec = 4148 * 20.35 =
$$\frac{84,412}{354,638}$$

Saurige

CONSTRUCTION COST	TE		DATE PREPAR	ا ۾ ا	SHEET	OF	
PROJECT			!	0/6		OR ESTIMATE	<u> </u>
ENERGY ENGINEERING						CODE A (No dealg	
WATERVLIET	ARSE	NAC				DDE 8 (Proliminary o	
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS	NC.		THER (Specify)			
DRAWING NO.	-	utchis		CHECKED BY			
Family tit	QUANT		r. H	LABOR		MATERIAL	
ECO#4 DIOTALE SUMMARY	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	TOTAL COST
EXHAUST FAN Controllers	34113		JATT.		- Juni		
EXM MUSI FAD CONTROLLERS		 					
Dip Tank Cover	1	FA	300	300	500	500	300
W MOVEABLE MOUNT		EV	300	300	1 300	500	00
100 MONKHING INCOMI		1	<u> </u>				
FAN AP		 					_
TRANSDUCER	1	EA	100	100) 450	400	500
CONTROLLER			100	100	- 1	550	650
	<u> </u>				1		
FAN MOTOR VARIABLE	1	EA	300	300	2800	2800	3100
SPEED DRIVE							
			=				
TOTALS				800)	4250	5050
				·		·	
	· .						•
			 	•	·		
·							
				· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·		_		
· · · · · · · · · · · · · · · · · · ·					-		
<u> </u>							
		1 1		L	[1	

ENG FORM 150

PREVIOUS EDITION MAY BE LISED (TO A MEL LISE

(ER 1110-345-730))

CONSTRUCTION COST E	1	SHI	EET	OF					
PROJECT	BASIS FOR ESTIMATE								
ENERGY ENGINEERING			1-		CODE & (No design completed) CODE & (Preliminary design)				
WATERULIE- ARCHITECT ENGINEER	TAR	SEN	KC			CODE C (FI	nal deel	ρυ .	
REYNOLDS, SMITH AND	HILLS	A.E.	P., I	₹C.		CHECKED B			
DRAWING NO.	Ì	CHECKED B.	Υ						
E154.1	QUANT	·		WTCHIUS LABOR	l H	IATERIAL		TOTAL	
ECO#4 - SUMMARY SUMMARY	HO. UNITS	UNIT	PER	TOTAL	PER	TOTAL		COST	
JUNG WITHOUT									
DID Tank Covers	53	ea	300	15,900	500	26,50	0	42,400	
w/ moveable mount						,			
we we was a way on a									
Fan AP									
TRANSDUCER	12	ea	100	1200	400	48	00	6000.	
CONTROLLER	12	ea	100	1200	550	606	00	7500	
					<u> </u>				
the motor Variable		·			1				
Speed Drive									
10 Hp	3	ea	300	,900	3200	96		10,500	
15 Hp	1	ea	300	300	4000	40	00	4300	
25 Hp	1	ea	300	300	5000	 	000	5300	
40 ltp	4	lea	300		6400	 		26,300	
60 Hp	3	lea	300	900	9200	27,6	200	28,500	
		 				/ 3 0 =	• .	121 / 20	
TOTALS		 		21,900	 	1.03,1	00	131,600	
		-	 	<u> </u>	 			•	
		-	ļ	 	ļ				
	<u> </u>	-	-		-				
	<u> </u>	-	<u> </u>	 	 	 			
		-	 		+	 			
		-	 	 	 				
·		+	 	 	+	 			
	<u> </u>	+-	 		+				
		+	 -			 			
	 	+	+		+				
	 	+			1				
	 	+-	1		1				

ENG FORM 150

* U.S. GOVERNMENT PRINTING OFFICE . 1959 0-514148

PREVIOUS EDITION MAY BE LISTE

(ER 1110-345-730))

BEBBB ST

OE OMEGA

⊃ An OMEGA Technologies Company ∈

LOW PRESSURE DIFFERENTIAL TRANSDUCERS PX150/154 Series 0-1" to 0-25" H₂0

MADE IN

- Weatherproof NEMA-4 **Enclosure or Electrical Conduit Enclosure**
- Zero and Span Controls Are Provided For Easy Field Adjustment

From \$305

SPECIFICATIONS

Excitation: 24 Vdc (18 to 30 Vdc) Output: 4 to 20 mA, 2 wire system Maximum Loop Resistance: 400 ohms @ 18 Vdc, 700 ohms @ 24 Vdc,

1000 ohms @ 30 Vdc

Accuracy: (linearity & hysteresis) PX154 0.1% FS; PX150 2.0% FS

Zero and Span Adjustments: ±10% **Compensated Temperature Range: 32** to 122°F (0 to 50°C)

Zero and Span Thermal Effects: PX154 (.311/FS range) % FS/°F; PX150 (3.9/FS

range) % FS/°F

Proof Pressure: PX150 3 PSI:

PX154 15 PSI

Burst Pressure: PX150 5 PSI;

PX154 20 PSI

Gages: Solid state piezoresistive Cover Material: PX150 PVC-1" electrical access enclosure: PX154 NEMA-4 gasketed steel enclosure with enamel

Pressure Port: PX150 0.187" diameter tube fitting ports; PX154 1/8" NPT female Electrical Connection: Internal screw

terminations

Media Compatibility

PX150

Low: Dry gases only

High: Liquids or gases, except highly

ionic solutions (acids, lye, etc.)

PX154

P1 P2: Non-corrosive, non-aqueous

liquids or gases

PX 155 : SLIGHTLY CORROSIVE

HOU IDS OR GASES

נפנינט מ	हिन्द्रसम् अन्		102N
RANGE Inches of H₂O	MODEL	PRICE	COMPATIBLE METER
NEMA-4 Enc	losure Model	S	
0 to 1"	PX154-001DI	\$305	DP100R8, DP2000P9, TX81
0 to 3"	PX154-003DI	305	DP100R8, DP2000P9, TX81
0 to 5"	PX154-005DI	305	DP100R8, DP2000P9, TX81
0 to 10"	PX154-010DI	305	DP100R8, DP2000P9, TX81
0 to 25"	PX154-025DI	305	DP100R8, DP2000P8, TX81
Conduit Enc	losure Models	S	
0 to 1"	PX150-001DI	315	DP100R8, DP2000P9, TX81
0 to 3"	PX150-003DI	315	DP100R8, DP2000P9, TX81
0 to 5"	PX150-005DI	315	DP100R8, DP2000P9, TX81
0 to 10"	PX150-010DI	315	DP100R8, DP2000P9, TX81
0 to 25"	PX150-025DI	315	DP100R8, DP2000P8, TX81

- For Millivo ' yelt ar. ا Milliamp آن : squçers
- RS-232 and RS-422
 Communication for Remote
 Control through a Computer
 System
- Wide Variety of Output and Alarm Options Available

Features ----

- PID Control
- User Friendly Tuning Via Front Keypad
- Continuous Indication of Output, Alarm, and Operating Status
- Comprehensive Manual Included

Ta Order	ទី១៥៤វីរូប	nggel number		
Model No.	Price	1st Output and Mode	2nd Output and Mode	Alarms
CN2001 (*)	\$415			
CN2002 (*)	445	1A SSR	1 A SSR, ON/OFF	None
CN2001A (*)	465	PID		
CN2002A (*)	505		1A SSR, ON/OFF	Dual

^{*}Insert input code. Price includes range premiums.

INPUT TYPES

Coc	Gange	tine and
mA	4-20 mA	Current
mV	0-100 mV dc	Voltage
V5	0-5 V dc	Voltage
V10	0-10 V dc	Voltage

Units factory scaled for 0-100% display. Zero and span field selectable. Max. display is 3200 counts.

OUTPUT OPTIONS

Cicenne Sunt	Gis	Oescipion
-F1	N/C	4-20mA, output 1, reverse
-F2	N/C	4-20mA, output 2, direct
-DC1	N/C	0-5 Vdc, output 1, reverse
-DC2	N/C	0-5 Vdc, output 2, direct

EXCITATION OPTIONS*

*Not Available with Options D2-D6 or Model CN2000A.						
5 V dc X5 V \$50 5 V dc @ 40 mA 10 V dc X10 V 50 10 V dc @ 100 mA						

COMMUNICATION OPTIONS

Gife	Giet.	Detainon
D1	\$ 50	remote analog setpoint (n/a with 2000A)
D2	195	non-isolated RS-232C
D3	195	isolated RS-232C
D4	195	non-isolated RS-422
D5	195	isolated RS-422
D6	195	isolated 20 mA loop
D7	50	remote start/stop (N/A with 2000A)

Also Available Auto/Manual Output Control. To Order, Add Suffix AM to Model No., and Add \$50 to Price.

D-59 4-11

GORTITE Shade Roller Covers

PROTECT WAYS AGAINST CHIPS AND COOLANTS

GORTITE SHADE ROLLERS AND COVERS ARE AVAILABLE FOR ALL APPLICATIONS THAT REQUIRE PROTECTION FROM CHIPS, ABRASIVES, OIL AND COOLANTS WITHOUT THE SEAL OF A BELLOWS COVER. VARIOUS DIAMETER SPRING LOADED METAL ROLLERS ARE AVAILABLE WITH COVER MATERIALS TO SUIT THE SIZE AND SEVERITY OF THE APPLICATION.

- DESCRIPTION OF COVER MATERIALS

COVER MATERIALS *

DESCRIPTION

18NN

.018 GAUGE NEOPRENE COATED NYLON - FOR LIGHT DUTY PROTECTION AGAINST COOL-

ANTS AND CHIPS

33NN

.033 GAUGE NEOPRENE COATED NYLON - FOR MODERATE DUTY PROTECTION AGAINST

COOLANTS AND CHIPS

60HN

.060 GAUGE HYPALON COATED NYLON - HEAVY DUTY PROTECTION AGAINST ABRASION,

COOLANT, AND CHIPS INCLUDING MODERATE HOT CHIP LOADS

STANDARD DUTY
STEELFLEX

CONTINUOUS STAINLESS STEEL TOP SURFACE WITH SUPPORTING ALUMINUM RIBS. FOR HEAVY DUTY PROTECTION AGAINST LARGE CHIP LOADS, COOLANT, HOT CHIPS, ETC.

^{*}SPECIAL MATERIALS AVAILABLE UPON REQUEST.

STANDARD DUTY STEELFLEX ON SPRING LOADED ROLLER

--- ROLLER DIMENSIONS AND COVER MATERIALS --

ROLLER DIAMETER	TIP TO	CENTERLINE OF MTG. HOLES				/AILABLE DIAMETERS
А	F	G	18NN	33NN	60HN	STD. DUTY STEELFLEX
1-1/2"	C + 1-1/8"	C + 1/8"	х			
2" HD	C + 1-5/16"	C + 5/16"	×	×	×	
3" HD	C + 1-1/2"	C-11/4", C + 1/2"	×	×	×	x

— DIMENSIONS OF ROLLER MOUNTING BRACKETS —

1-1/2" DIAMETER ROLLER

2" DIAMETER ROLLER

---- HOW TO ORDER ----

TO ORDER OR FOR QUOTATION, PLEASE SPECIFY THE FOLLOWING DIMENSIONS AND INFORMATION.

- A ROLLER DIAMETER

 B COVER WIDTH
 (WAY WIDTH + 2" RECOMMENDED)

 C ROLLER WIDTH
- (COVER + 1/2" RECOMMENDED)

MAX, MACHINE TRAVEL	SPEED	IN./MIN.
COVER MATERIAL PROCES	1050	

COTE	V MOVIEWINE LE	EFERRED	
	18NN_	33NN	60HN
	STANDARD	DUTY STEELFLEX	OTHER
	WITH	WITHOUT MOUNTING	BRACKETS

QUANTITY REQUIR	ED		
DATE REQUIRED			
ORDER NUMBER			
COMPANY NAME			
ADDRESS			
CITY	STATE	ZIP	<u>.</u>
ATTENITION			

DATE _____FOR QUOTATION ONLY_

PLEASE BE SURE YOU HAVE FILLED IN AS MUCH OF THE REQUESTED INFORMATION AS IS AVAILABLE.

A and A Manufacturing Company

2300 So. Calhoun Rd., New Berlin, Wis. 53151 • Phone 414-786-1500

STEELFLEX

CONSTRUCTION

signed to provide a complete system for covering all types of tanks. Steelflex covers are made of continuous stainless steel surface reinforced with aluminum, steel or stainless steel support ribs which allow personnel to walk on the cover. The support ribs are bonded to top for strong, durable construction. Stainless steel or aluminum guide channels can be provided for the sides of the tank to contain the cover. Tank covers can be furnished stainless steel side on top or bottom. Any tank width or length can be accommodated.

Contain Dangerous Fumes

Steelflex Tank Covers are supplied with electric motor drive and take-up mechanism with electrical control for forward, reverse and stop.

A and A Manufacturing Co. Inc.

2300 South Calhoun Road New Berlin, WI 53151 Phone 414-786-1500

TANK COVERS DATA SHEET

HOW TO ORDER

TO ORDER OR FOR QUOTATION, PLEASE SPECIFY THE FOLLOWING DIMENSIONS AND INFORMATION.

Α.	OVERALL TANK WIDTH		DATEFOR QUOTATION ONLY		
В.	INSIDE TANK WIDTH		QUANTITY REQUIRED		
C.	OVERALL TANK LENGTH (INSIDE)		DATE REQUIRED		
D.	. COVER WIDTH		ORDER NUMBER		
Ε.	. TANK HEIGHT ABOVE FLOOR		COMPANY NAME		
	SUBSTANCE BEING COVERED		ADDRESS		
	TAKE-UP & DRIVE MOTOR LOCATION		CITY		
	RIGHT SIDELEFT SIDE		STATE		ZIP
	MOTOR STARTER VOLTAGE REQUIRED		ATTENTION		
\	VOLT	PHASE	TELEPHON	E	

A and A Manufacturing Co. Inc.

2300 South Calhoun Road New Berlin, WI 53151 Phone 414-786-1500 PLEASE BE SURE YOU HAVE FILLED IN AS MUCH OF THE REQUESTED INFORMATION AS IS AVAILABLE.

SUBJECT Water VII LES

AEP NO 290-0379-002

HILLS

DESIGNER W. T. Todd
CHECKER P. Hutchium

DATE 3-16-91

ECO 5

Electrical Demand Peak Reduction

Assumptions:

INCORPORATED

- 1. Electric motors driving the process equipment are operating at 65% of full load.
- 2. The average motor efficiency is 88 %
- 3. The electric heating elements of the Selas Furnace draw about 500 KW.
- 4. Only one Vertical Furnace (in Bldg, 135) operates each day.
- 5. Only one of the Wellman Furnaces operates at any one time.
- 6. The equipment kw draws and operating times are:

Stage 1 Stage 2

Tocco Furnace 1250 kw, .33 hr 625 kw, 1.17 hr

Rotary Forge 1650 kw, .33 hr NA

Selas Furnace 636 kw, 24hr NA

Wellman Furnace 1000 Kw, 1 hr 500 kw, 7 hr

Swage 227 kw, 0.5 hr NA

Vertical Furnace 471 kw, 3hr 202kw, 8hr

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEEL	RS • PL	ANNERS
10	CORPORATE	ED	

SUBJECT Wateruliet LES	AEP NO 290 - 0379 - 002
	SHEETOF
designer W. T. Todd	DATE 8-9-91

ECO 5-continued

The motor kw was calculated on a computer spread sheet. The results are located on page 5-4 of this appendix.

The total equipment kw was input into a spreadsheet, scheduled at random.

The results show a maximum kw draw of 4,465 kw at about 10:30 am. See page 5-5 for details.

The same pieces of equipment were then scheduled for various times during the day and input on the same spreadsheet.

The results show a maximum Kw draw of 2286 Kw (Say 2285) when the loads are properly scheduled. See page 5-6 for details.

KW savings = Unscheduled KW - Scheduled KW

Savings = 4465 KW/mo - 2285 KW/mo = 2180 KW/mo

Cost Savings:

2180 KW/mo x 12 mo/yr x \$5.53/KW = \$144,665/yr

REYNOLDS,	SMITH	AND	HILLS
ARCHITECTS .	ENGINEE	RS • PL	ANNERS
!!	NCORPORATE	ED	

SUBJECT Wateruliet LES	AEP NO 290-0379-002
	SHEET OF
DESIGNER W. T.T.	DATE 8-9-91
HECKER	DATE

ECD 5 - Continued

Construction Costs:

There are no direct installation cost for this project. It requires some industrial engineering and cooperation from the production staff.

Scheduled Process Equipment

Filename: EQUIP

Equipment

08/09/91

Equipment Description	Tocco	Forge	Selas	Wellman	Swage	V.Furn
Number of Machines	5	1	1	2	3	2
Operating Machines	1	1	1	. 1	1	1
Parts per Day	5	5	5	5	5	5
Hours per Part	1.5	0.3	13.1	8.0	0.5	12.0
Hours per Day	7.5	1.3	24.0	8.0	2.5	12.0
HP/Machine	0.0	2961.0	246.0	0.0	407.5	3.5
Total Horsepower	0.0	2961.0	246.0	0.0	407.5	3.5
Motor KW	0.0	1631.6	135.6	0.0	224.8	1.9
Heating KW	1250	0	500	1000	2	469
Total KW	1250	1632	636	1000	227	471

Assumptions:

- 1. Motors are operating at 65% of full load 2. Average motor efficiency is 88%
- 3. Selas furnace electric heat is 500 KW

Watervliet Operation Scheduling For Demand Reduction

Filename: OPSCHED

Daily Demand (KW) Load - Not Scheduled

Time	Selas	V. Furn	Tocco	Forge	Swage	Wellman	Total
0	636 636 636	471 471 471 471 202					1107 1107 1107 1107 838
2	636 636 636	202 202 202 202					838 838 838
4	636 636 636	202 202 202			·		838 838 838
6	636 636 636 636	202 202 202 202				1000 1000	838 838 1838 1838
8	636 636 636	202 202 202 202	1250 625 625 1250	1650	227	500 500 500 500	2588 1963 2190 4238
10	636 636 636	202 202 202 202	625 625 1250	1650	227 227	500 500 500	2190 1963 4465
12	636 636 636 636		625 625 1250 625	1650	227 227	500 500 500 500	1761 1988 4036 1988
14	636 636 636		625 1250 625	1650		500 500 500	1761 4036 1761 1261
16	636 636 636		625	1650			2286 636 636
18	636 636 636						636 636 636 636
	636 636 636						636 636 636
20	636 636 636						636 636 636 636
22	636 636 636 636	471 471					636 636 1107 1107
Maximums	6 36	471	1250	1650	227	1000	4465

08/09/91

Watervliet Operation Scheduling For Demand Reduction

Filename: OPSCHED

Daily Demand (KW) Load - Scheduled

Time	Selas	V. Furn	Tocco	Forge	Swage	Wellman	Total
0	636	202				500	1338
•	636	202				500	1338
	636	202					838
	636	202					838
2	636	202					838
_	636	202					838
	636	202					838
	636	202					838
4	636	202					838
·	636	202					838
	636	202				•	838
	636	202					838
6	636						636
	636		1250				1886
	636		625		227		1488
	636		625				1261
8	636		•	1650			2286
	636		1250			÷	1886
	636		625		227		1488
	636		625				1261
10	636			1650			2286
	636		1250				1886
	636		625		227		1488
	636		625				1261
12	636			1650			2286
	636		1250				1886
	636		625		227		1488
	636		625				1261
14	636			1650			2286
	636		1250				1886
	636		625		227		1488
	636		625				1261
16	636			1650			2286
	636						636
	636					1000	1636
	636					1000	1636
18	636	471				500	1607
	636	471				500	1607
	636	471				500	1607
	636	471				500	1607
20	636	471				500	1607
	636	471				500	1607
	636	202				500 500	1338
30	636	202					1338
22	636 434	202				500 500	1338
	636 636	202 202				500	1338 1338
	636	202				500	1338
	000	202				300	1 220
Maximums	636	471	1250	1650	227	1000	2286

Watervliet Electric Demand Data Filename: KWDATA

Month	Year	Billed KW	Billed Amount	Demand Charge
6 7	1990 1990	10818.7 11205.0	\$53,270.03 \$55,172.13	\$4.92 \$4.92
8	1990	11011.9	\$54,942.35	\$4.99
9	1990	11205.0	\$55,905.80	\$4.99
10	1990	11591.4	\$57,833.69	\$4.99
11	1990	10818.7	\$53 , 978.41	\$4.99
12	1990	11591.4	\$57 , 833.69	\$4.99
1	1991	10239.1	\$56 , 079.04	\$5.48
2	1991	10432.3	\$57 , 736.85	\$5.53
3	1991	10142.5	\$56,132.97	\$5.53
4	1991	10915.3	\$60,409.98	\$5.53
5	1991 .	11108.4	\$61,478.68	\$5.53
Maximum		11591.4	\$61,478.68	\$5.53
Average		10923.3	\$56,731.14	\$5.20
Total			\$680,773.62	

Watervliet Demand And Power Factor Data Filename: ELECDATA

			6/13	/90		
Hour	Metered KW	Demand KW	Metered KVAR	Reactive KVAR	KVA	PF
0	191	5500.8	135	4665.6	7212.9	0.763
	192	5529.6	139	4803.8	7324.8	0.755
	194	5587.2	141	4873.0	7413.7	0.754
1	192	5529.6	142	4907.5	7393.3	0.748
	193	5558.4	141	4873.0	7392.0	0.752
	194	5587.2	141	4873.0	7413.7	0.754
	195	5616.0	146	5045.8	7549.8	0.744
2	194	5587.2	144	4976.6	7482.2	0.747
	192	5529.6	142	4907.5	7393.3	0.748
	193	5558.4	143	4942.1	7437.7	0.747
3	192	5529.6	144	4976.6	7439.3	0.743
	198	5702.4	146 .	5045.8	7614.3	0.749
	195	5616.0	145	5011.2	7526.7	0.746
	195	5616.0	144	4976.6	7503.8	0.748
4	193	5558.4	143	4942.1	7437.7	0.747
	189	5443.2	139	4803.8	7259.8	0.750
	186	5356.8	137	4734.7	7149.3	0.749
5	184	5299.2	136	4700.2	7083.3	0.748
	184	5299.2	135	4665.6	7060.4	0.751
	186	5356.8	137	4734.7	7149.3	0.749
	188	5414.4	140	4838.4	7261.3	0.746
5	188	5414.4	139	4803.8	7238.3	0.748
	188	5414.4	137	4734.7	7192.6	0.753
	194	5587.2	139	4803.8	7368.4	0.758
6	196	5644.8	138	4769.3	7389.8	0.764
	196	5644.8	138	4769.3	7389.8	0.764
	198	5702.4	136	4700.2	7389.8	0.772
7	204	5875.2	133	4596.5	7459.6	0.788
	211	6076.8	132	4561.9	7598.6	0.800
	243	6998.4	132	4561.9	8354.0	0.838
	275	7920.0	154	5322.2	9542.2	0.830
8	304	8755.2	176	6082.6	10660.7	0.821
	315	9072.0	184	6359.0	11078.7	0.819
	313	9014.4	187	6462.7	11091.7	0.813
	312	8985.6	181	6255.4	10948.5	0.821
9	310	8928.0	186	6428.2	11001.4	0.812
	308	8870.4	185	6393.6	10934.4	0.811
	306	8812.8	189	6531.8	10969.5	0.803
	311	8956.8	199	6877.4	11292.6	0.793
10	322	9273.6	210	7257.6	11775.9	0.788
	320	9216.0	207	7153.9	11666.8	0.790
	337	9705.6	214	7395.8	12202.3	0.795
	327	9417.6	213	7361.3	11953.2	0.788
11	318	9158.4	211	7292.2	11706.9	0.782
	319	9187.2	212	7326.7	11751.0	0.782
	319	9187.2	202	6981.1	11538.7	0.796
	305	8784.0	192	6635.5	11008.6	0.798
12	293 298 319	8438.4 8582.4 9187.2	191 202 218 5	6601.0 6981.1	10713.5 11063.2 11881.4	0.788 0.776 0.773

	332	9561.6	- 219	7568.6	12194.6	0.784
	328	9446.4	218	7534.1	12082.9	0.782
13	317	9129.6	213	7361.3	11727.7	0.778
	325	9360.0	212	7326.7	11886.6	0.787
	319	9187.2	213	7361.3	11772.6	0.780
	335	9648.0	221	7637.8	12305.3	0.784
14	324	9331.2	217	7499.5	11971.4	0.779
- ,	318	9158.4	220	7603.2	11903.1	0.769
	292	8409.6	203	7015.7	10951.8	0.768
	275	7920.0	186	6428.2	10200.4	0.776
15	270	7776.0	182	6289.9	10001.5	0.777
10	268	7718.4	179	6186.2	9891.6	0.780
	258	7430.4	165	5702.4	9366.3	0.793
	241	6940.8	155	5356.8	8767.6	0.773
16	233	6710.4	155	5356.8	8586.3	0.782
10	238	6854.4	167	5771.5	8960.6	0.765
	237	6825.6	171	5909.8	9028.5	0.756
	237	6825.6	172	5944.3	9051.2	0.754
17	234	6739.2	170	5875.2	8940.6	0.754
17	234	6854.4	174	6013.4	9118.3	0.752
	238	6854.4	173	5978.9	9095.6	0.754
	235	6768.0	170	5875.2	8962.4	0.755
18	240	6912.0	169	5840.6	9049.2	0.764
10	242	6969.6	169	5840.6	9093.3	0.766
	256	7372.8	177	6117.1	9580.0	0.770
	234	6739.2	164	5667.8	8805.7	0.765
19	244	7027.2	170	5875.2	9159.7	0.767
1 /	228	6566.4	158	5460.5	8540.2	0.769
	222	6393.6	153	5287.7	8296.8	0.771
	218	6278.4	153	5287.7	8208.4	0.765
20	219	6307.2	152	5253.1	8208.3	0.768
	214	6163.2	150	5184.0	8053.5	0.765
	221	6364.8	157	5425.9	8363.7	0.761
	222	6393.6	160	5529.6	8453.1	0.756
21	224	6451.2	161	5564.2	8519.3	0.757
-	219	6307.2	161	5564.2	8410.7	0.750
	221	6364.8	161	5564.2	8454.0	0.753
	220	6336.0	162	5598.7	8455.2	0.749
22	215	6192.0	160	5529.6	8301.6	0.746
	218	6278.4	160	5529.6	8366.3	0.750
	213	6134.4	157	5425.9	8189.7	0.749
	211	6076.8	154	5322.2	8078.0	0.752
23	209	6019.2	153	5287.7	8011.9	0.751
	204	5875.2	151	5218.6	7858.2	0.748
	204	5875.2	147	5080.3	7767.1	0.756
	200	5760.0	146	5045.8	7657.5	0.752

Watervliet Demand And Power Factor Data

Filename: ELECDATA

			6/14	/90		
Hour	Metered KW	Demand KW	Metered KVAR	Reactive KVAR	KVA	PF
0	201	5788.8	147	5080.3	7701.9	0.752
	198	5702.4	145	5011.2	7591.4	0.751
	197	5673.6	144	4976.6	7547.0	0.752
1	200	5760.0	149	5149.4	7726.2	0.746
	1 <i>9</i> 9	5731.2	151	5218.6	7751.1	0.739
	200	5760.0	152	5253.1	7795.7	0.739
	200	5760.0	154	5322.2	7842.4	0.734
	203	5846.4	158	5460.5	7999.8	0.731
2	200	5760.0	153	5287.7	7819.0	0.737
	195	5616.0	151	5218.6	7666.3	0.733
	195 194	5616.0	152	5253.1	7689.9	0.730
3	191	5587.2 5500.8	152 151	5253.1 5218.6	7668.9 7582.4	0.729 0.725
	195	5616.0	154	5322.2	7737.3	0.726
	19 3	5558.4	152	5253.1	7647.9	0.727
4	195 188	5616.0	151	5218.6	7666.3	0.733
4	185	5414.4 5328.0	148 144	5114.9 4976.6	7448.3 7290.7	0.727 0.731
	187	5385.6	144	4976.6	7332.9	0.734
	189	5443.2	147	5080.3	7445.7	0.731
5	189	5443.2	147	5080.3	7445.7	0.731
	190	5472.0	149	5149.4	7514.0	0.728
	196	5644.8	150	5184.0	7664.0	0.737
6	199	5731.2	148	5114.9	7681.7	0.746
	206	5932.8	150	5184.0	7878.6	0.753
	227	6537.6	150	5184.0	8343.5	0.784
	233	6710.4	147	5080.3	8416.6	0.797
	235	6768.0	152	5253.1	8567.4	0.790
7	265	7632.0	154	5322.2	9304.5	0.820
	275	7920.0	154	5322.2	9542.2	0.830
	294	8467.2	164	5667.8	10189.1	0.831
	309	8899.2	183	6324.5	10917.6	0.815
8	322	9273.6	207	7153.9	11712.3	0.792
	313	9014.4	214	7395.8	11660.1	0.773
	335	9648.0	217	7499.5	12219.9	0.790
9	327	9417.6	216	7465.0	12017.4	0.784
	316	9100.8	216	7465.0	11770.7	0.773
	318	9158.4	216	7465.0	11815.3	0.775
	304	8755.2	211	7292.2	11394.3	0.768
4.0	325	9360.0	221	7637.8	12080.8	0.775
10	339	9763.2	223	7706.9	12438.5	0.785
	336	9676.8	223	7706.9	12370.8	0.782
	347	9993.6	233	8052.5	12834.1	0.779
	364	10483.2	238	8225.3	13324.9	0.787
1 1	375	10800.0	232	8017.9	13450.9	0.803
	328	9446.4	210	7257.6	11912.5	0.793
	305	8784.0	198	6842.9	11134.8	0.789
12	310 317	8928.0 9129.6	200	6912.0 7430.4	11290.9 11771.2	0.791 0.776
	320	9216.0	5-10 221	7637.8	11969.5	0.770

	337	9705.6	220	7603.2	12329.1	0.787 .
	334	9619.2	222	7672.3	12304.2	0.782
13	328	9446.4	219	7568.6	12104.5	0.780
	300	8640.0	208	7188.5	11239.4	0.769
	311	8956.8	209	7223.0	11506.4	0.778
	317	9129.6	217	7499.5	11814.9	0.773
14	315	9072.0	216	7465.0	11748.5	0.772
	297	8553.6	211	7292.2	11240.1	0.761
	302	8697.6	207	7153.9	11261.7	0.772
	280	8064.0	185	6393.6	10291.1	0.784
15	271	7804.8	179	6186.2	9959.1	0.784
	265	7632.0	175	6048.0	9737.9	0.784
	251	7228.8	161	5564.2	9122.2	0.792
	238	6854.4	149	5149.4	8573.2	0.800
16	228	6566.4	152	5253.1	8409.1	0.781
	233	6710.4	159	5495.0	8673.2	0.774
	230	6624.0	160	5529.6	8628.7	0.768
	227	6537.6	159	5495.0	8540.2	0.766
17	239	6883.2	168	5806.1	9004.9	0.764
	230	6624.0	168	5806.1	8808.4	0.752
	249	7171.2	176	6082.6	9403.4	0.763
	233	6710.4	165	5702.4	8806.1	0.762
18	222	6393.6	160	5529.6	8453.1	0.756
	222	6393.6	160	5529.6	8453.1	0.756
	219	6307.2	159	5495.0	8365.2	0.754
	220	6336.0	160	5529.6	8409.6	0.753
19	219	6307.2	156	5391.4	8297.4	0.760
	214	6163.2	155	5356.8	8165.8	0.755
	214	6163.2	146	5045.8	7965.2	0.774
00	215	6192.0	144	4976.6	7944.0	0.779
20	211	6076.8	140	4838.4	7767.7	0.782
	211	6076.8	142	4907.5	7811.0	0.778
	214	6163.2 6192.0	142	4907.5 5080.3	7878.4 8009.4	0.782 0.773
21	215 215		147 148	5114.9	8031.4	0.773
21	215	6192.0 6220.8	150	5184.0	8097.7	0.771
	217	6249.6	153	5287.7	8186.4	0.763
	217	6192.0	153	5287.7	8142.5	0.760
22	213	6134.4	151	5218.6	8053.8	0.762
22	214	6163.2	153	5287.7	8120.6	0.759
	213	6134.4	153	5287.7	8098.8	0.757
	206	5932.8	148	5114.9	7833.3	0.757
23	203	5875.2	145	5011.2	7722.1	0.761
	200	5760.0	142	4907.5	7567.1	0.761
	200	5760.0	137	4734.7	7456.2	0.773
	197	5673.6	134	4631.0	7323.7	0.775
		,	'			J

SUBJECT ECO #6 - Plating	AEP NO 290-0379-002
area Condensate Return	SHEETOF
DESIGNER P. Hutchius	DATE 7/11/91
CHECKER B, Todd	DATE 9/16/91

ECO#6 - PLATING AREA CONDENSATE RETURN

- Estimate existing energy use for making steam

Fy 90

BLDG 35

BLDG 136 - 278,000 msm fsr

29,500 MBTh

N6.45

- Calculate total steam generated Str = FUEL USE * BLR EFF (App B, p. I. 11)

BLREFF WISTU # BLDG 136 0.83 230,700 232,/33,000 BLDG 35 0.77 22,700 22,852,000

- Estimate condensate to be returned from plating areas

Since Bldg 35 boiler supplies only the plating areas and no endensate is returned, the steam production during the summer moreths will be a good approximation for year-round use:

Overage Ateam production for aug and Sept '90 (3,676,600 + 3,983,500) /2 = 3,830,000 #/mon.

Platring area > 3,830,000 x 12 = 45,960,000 #/yr annual steam > = 46,000 MBTa/yr

RSH.	
)

SUBJECT ECO #6	AEP NO
	SHEETOF
DESIGNER	DATE 4/1/9/
CHECKER	DATE

Calculate energy savings by returning plating area condensate

assume 90% is returned at 180°F to Bldg 35 and 150°F to Bldg 136.

Fuel = condensate amount * (cond. temp Energy = make -up temp.)
Saved

BOILER EFF

Bldg 35 => 72,852,000# x (180-60)°F x 1 Bty x 0.9

= 3205 MB+n Natural gas

Bldg 136 => (45,960,000 - 22,852,000) * (150-60) * 0.9

= 2255 MBM #6 Fuel Oil

RSH.

SUBJECT	EC0#6	AEP NO			
		SHEET	OF		
DESIGNER		DATE			
CHECKER		DATE			

QRIP (ale.s

- Calculate present, proposed and savings costs

Present annual energy use to Bldg, 35 plating is estimated using natural gas use at double, boiler in Bldg #35

•	STEAM		Not. Go	35	
	(16s)	(MB9U)	(MCF)	_	
June '90	4,110,000	4110	51,373	5291	
July '90	2,572,000	2572	32,494	3347	
aug. '90	3,676,000	3676	46,329	4772	
Sept. 190	3,984,000	3984	49,696	5119	
Oct. 10	3,155,000	3155	37,780	3891	

Using Day and Sept as aug., menthly use is: skam = 3676 + 3984 = 3830 MBM/mion.

annual Ngas = 4946 MBM * 5 mos * \$4.16 = \$102,900

annuel Fuel Oil = 3830 Metry : 0.83 * 7 mos * 4.40 = \$142,100 mos m

TOTAL ENERGY COST

RSH	-
	Ð

SUBJECT ECO # 6	AEP NO
T	SHEETOF
DESIGNER	DATE
CHECKER	DATE

NGes =
$$(4946 \times 5 - 3205) \times 4,16 = $\frac{4}{89,500}$$$$

#6 FuelOil - $(3830 \times 7 - 2255) \times 4,40 = $\frac{4}{132,200}$$$
Total \$\frac{221,700}{221,700}\$

AEP NO	
SHEET	OF

Pittutchins DESIGNER

DATE DATE_

CHECKER

RSH.

CONDENSATE RETURN SYSTEM SCHEMATIC

late late Smoot auts plate pate	→ p	DONKAY BOILER BLOG 35
NEW COND RECR BLDG 35 BLDG 35 Gum tube Chrome plate avea HEATING 150 150 150 150 150 150 150 150 150 150	EXISTAX, COND. RCR. BLDG, 35	TO RUDG 136 BOILERS
During HEATING SEASON Du Du HE	EXISTING COND. RCR. BLOG 35	TO RLDS 136 BOLERS
Jun Tube Chrome Plating Blds 35 Plating Plating Blds 35 Blds 35 Blds 35	C-controller WASTE	· Existing septem flows · New System consist of - 2 cond. rev. tanks - 2 waywal 3-way values - 2 pH seusors and controls for Emptorized 3-way values

ECO Construction Cost Estimate Calculations

ECO Name: PLATING AREA STEAM CONDENSATE RETURN

ECO #: 6

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$6,370 \$4,040
Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (not applicable for GOGO)	\$10,410 \$808 \$0
Subtotal Overhead (15%)	\$11,218 \$1,683
Subtotal Profit (10%)	\$12,901 \$1,290
Subtotal Bond (1%)	\$14,191 \$142
Subtotal Contingency (10%)	\$14,333 \$1,433
Subtotal (Construction Cost Input For LCCID *)	\$15,766
SIOH (6% of Construction Cost)	\$946
Subtotal Design (6% of Construction Cost)	\$16,712 \$946
Total Project Cost	\$17,658

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	ESTIMA	TE		BATE PREPARED			SHEET	OF
				OR ESTIMA	TE			
LOCATION] CODE A (
WATERULIET ARSENAL .					∫ ``⊏] cook c (Final deal	
REYNOLDS, SMITH AN	D HILLS			NC.	°	THER (Spec		
- Additional Rose		ESTIM	P. H	utchins		CHECKED	84	
ECO#6	QUANT			LABOR	1	MATERIAL		TOTAL
CONDENSATE RETURN	NO. ETINU	UNIT MEAS.	PER	TOTAL	PER	TOTA		COST
1" steel pipe,	800	4+	3.84	3070	1.49	11	90	4260
throoded, black, with	<u> </u>							
hangars 10' O.C								
nangars 10' O.C								
0-10-11-21-0		<u> </u>	·					
Condensate Return Sys.	2	ea	365	730	955	19	10	2640
Simpley motor, float								
switch controls, cast						· · · · · · · · · · · · · · · · · · ·		
Iron receiver								
ptl Controllers	2	ea	25	50	650	13	00	1350
Electrodes (sensors)	2	ea	25	50	250		00	550
3-WAY VALVE WITH		3,1						
ACTUATOR	2	ea	25	50	600	12	00	1250
3-WAY VALVE, MANUAL	2	ea	25	50	125	Z	50	270
WIRING	2	CLF	20	40	10	.•	20	60
				. 40.40		63	70	10,380
·								
						· · · · · · · · · · · · · · · · · · ·		

(ER 1110-345-730))

1 AUG 59

PREVIOUS EDITION MAY ME LISERS

* U.S. GOVERNMENT PRINTING OFFICE , 1959 Q-5161

SUBJECT ECO # 6	AEP NO	
COST ESTIMATE BACKUA	SHEETOF	
DESIGNER	DATE	
ALIE ALIE A		

Non. Summer Operation - Condousate return to Bldg 136

EXISTING SYSTEMS

The proposed system will require piping between the existing plating system condensate lines and the condensate pit, a motorized value, pH sensor and associated controls. The pH sensor is used to divert the condensate to waste when the pH drops below a preset value.

6-9

SUBJECT	ECO #6	AEP NO	
···		SHEET	F
DESIGNER		DATE	
CHECKER		DATE	

Summer Operation - Condensate return to Bldg 35 boiler

Since the Bldg. 35 boiler has no condensate return system, it will require all items mentioned earlier for Bldg 136 concleusate return plus:

- condemate pit
- condensate pump
- pit/pump controls
- piping from pit pump to boiler

SUBJECT	 RUCO	#	<u> </u>	

AEP NO	
--------	--

DESIGNER_P. Hutchins

DATE 3/7/9/

DATE

- Determine condensate return vozuirements for donkey boiler from Bldg 35 plating areas

- Calculate condensate veturn pipe size

Ref.: Flew of Fluids, Crane, 1979, p. 3-6,7

- Resemble velocities are:

Boler Feed Command Service 8 to 15 fps 4 to 10 fps

The steam flow is ~ 7000 ibs/hr

The water density @ 200F is 60.1 165/cf

 $\frac{1000 \text{ lbs}}{\text{hr}} \cdot \frac{\text{cf}}{6001155} \cdot \frac{\text{kr}}{360050e} = \frac{0.032 \text{ cf}}{360050e}$

To keep the flow around 10 fps the pipe diameter should be

0.032 ft 3.7.5gol.60s = 14.4gpm Sec 7+3 mm

Q = VA A = Q/U $A = \pi D^2/4$ $\pi D^2/z = Q/U$

 $D = \sqrt{\frac{40}{\pi }} = \sqrt{\frac{4(0.032 \text{ Sec})}{3.14 \times 10 \text{ ft}}}$

= 0.064ft = 0.77 inches

3/4" pipe

RSH	

SUBJECT	ACO #6	AEP NO	
	· · · · · · · · · · · · · · · · · · ·	SHEET	OF
DESIGNER		DATE	
CHECKER		DATE	

- Calculate condensate veture pump size Using Bernoulli's Egn.

Pumping will be from the gen take chrome plate area condensate tank to the pony boiler located due east of this area and outside of the building.

P₁ = P₂ = atmospheric pressure (pumping from one tank to another) V₁ = V₂ = 0

$$H = 2z - 2_1 + h_f$$

$$h_f = f \frac{L}{D} \frac{v^2}{2g}$$

DCoII	
	,

SUBJECT ECO#6	AEP NO
	SHEETOF
DESIGNER	DATE

- Calculate f, friction factor f is read from the Moody friction factor chart

knowing the Reynolds number and ϵ/δ where $\epsilon = 0.0002$ for steel pipe $\epsilon/\delta = \frac{0.0002}{0.0687} = 0.0029$

NRE = DV = 0.0687ft-10 ft/sec = 0.3416-5 ft2/sec

= 2.01E5

For E/D = 0.0029 and NRE = 2.0185, F= 0.0265

 $h_f = 0.0265 = \frac{300 \text{ ft}}{0.0687 \text{ft}} = \frac{(10 \text{ ft/sec})^2}{2(32.2 \text{ ft/sec}^2)}$

hf = 180 feet

22 = -30 feet

H = -30+ 180 = 150 ft

thp = QH 3760 7p

where Q = gal/min It = had in ft np = pumpeff

6-13

RS&H	_
	❿

SUBJECT	ECO # 6	AEP NO	
		SHEET	OF
DESIGNER		DATE	
CHECKER		DATE	

For return from the small parts plating area

$$H = Z_{z} - Z_{1} + hf$$

$$Z_{z} - Z_{1} = 0$$

$$hf = f \stackrel{!}{=} \frac{V^{z}}{D} = 0.0265 \frac{300}{0.0687} \frac{10^{z}}{2.32.2}$$

$$hf = 180 ff$$

$$bhr = \frac{14.4.180}{3960 (.7)} = 0.9 hp \text{ use } 1 hp \text{ pump}$$

Summary

Use 1" schedule 40 pipe - 600 ft due to sensor requirements and 2, 1 hp paris

RSH.	

SUBJECT	20#6	AEP NO	
		SHEET	OF
DESIGNER		DATE	
CHECKER	•	DATE	

- Delevnine equipment veguirements for returning andensate from Bldg 35 plating arees to the Main Boiler Plant

Since condensate from the steam space heating system is already verturned, the only requirements will be piping from the proposed reservers for returning endensate to the denten boiler

Include 100' of 3/4" pipe plus values

- Summarize total system requirements

The schematic on the following page shows the proposed condensate return system pH sousors are use to divert andensate to waite drain if pH sells below a preset level indicating acid andamination from plating areas. Otherwise, and stages to Bldg 136 during heating season and Bldg 35 donkey boiler during non-heating times.

QUOTATION

TO: REYNOLDS SMITH + HILLS JACKSONVILLE, FL

DATE: 8/9/9/

YOUR INQUIRY: CONDENSATE DIVERTING

VAZVES

Ath MR PAUL HUTCHINS

GENTLEMEN:

WE HEREBY SUBMIT OUR QUOTATION WHICH IS SUBJECT TO IMMEDIATE ACCEPTANCE.

ITEM No.	QUANTITY	DESCRIPTION	NET UNIT	TOTAL
		FOR CONDENSATE SERVICE AT 25 PSIG		
		* 200°F.		
A		1" WORCESTER #D-446TTSEVI DIVERTING	602	
		BALL VALLE CS BOOG 1"NPT (f), 316 TRIM,		-
		TERON SEATS + SEMS, CO 10, ASSEMBLED WIT	ц	
		RCS #MBRZS-10-4 ELECTRIC ACTUATOR		
		N7, 115VAC, 0.75AMP LOCKED ROTOR		
		DRAW, 2 EXTRA SWITCHES		
3	2	1" WORCESTER "D- 446TT SEVI DIVERT	J6	
<u>.</u>		BALL VALUE S/A- FRONE EXCEPT		
_			12370	
				_

DELIVERY: 3 US/es F.O.B. PHILA

HERMAN GOLDNER CO., INC.

PRICES IN EFFECT AT TIME OF SHIPMENT WILL APPLY.

6-16

SPEC SHEET

From \$625

- ✓ Compact NEMA-4X Polycarbonate Enclosure
- ✓ Two independently Adjustable Alarm Contacts with Adjustable Deadband
- ✓ Choice of 4-20 mA dc or **RS232C Output**
- Auto Calibration, Dual Point or "Grab Sample"
- 10 Self Diagnostic Functions
- ✓ Direct or Reverse Analog Output with Span From 0.1 to 20 pH Units
- CSA Approved

The OMEGA PHCN-28 microprocessor pH controller features auto buffering, solution temperature compensation, self-diagnostics and communication capabilities. Designed with the end-user in mind, this controller is user friendly and easy to operate. Four tactile membrane keypads allow for the selection and input of set-up parameters, input of calibration data and alarm setpoint adjustments. The two 5 A, 230 Vac relays can be -configured as high/low, high/high or low/low.

The PHCN-28 is offered with a choice of an isolated 4-20 or 0-20 mA dc output (field selectable) or an RS232C interface with a non-isolated 0-5 V analog output. The analog output is flexible enough to be used as either a proportional control output or recorder output. The self-diagnostics of the PHCN-28 can alert the user to such conditions as Internal circuitry malfunction, pH out of range, pH slope out of normal range, ATC short or open, or electrode failure to stabilize in buffer.

OMEGA ENGINEERING, INC. One Omega Drive, Box 4047, Stamford, CT 06907

THE BOSADA CADIO OMEGA EASYLINK: 62968934

1-800-82-66342 1-800-TC OMEGA

In CT Dial (203) 359-1660 24 Hour FAX: (203) 359-7700

OCOPYRIGHT 1990, OMEGA ENGINEERING, INC. ALL RIGHTE RESERVED, PRINTED IN USA

PHCN-28 Versatile Microprocessor-Based pH Controller

The PHCN-28 has an integral pre-amplifier and is designed for use with the PHE-2800 gel filled, double junction combination electrode with ATC. For locations where the electrode and controller must be separated by more than 50 ft, the PHCN-28-PA external pre-amplifier should be considered. The unit features a rugged NEMA-4X polycarbonate enclosure. If an application requires an electrode other than the PHE-2800, then the PHCN-28-PA must be used. In this case a Pt100 is necessary for ATC.

SPECIFICATIONS

Ranges: -4 to 16 pH, -100 to 200°C

Resolution: 0.01 pH, 0.1°C

Temperature Compensation:

Automatic

0 to 100°C, Pt100 ohm RTD

pH Accuracy: ±0.02 pH over range,

-4 to 16 pH

Temp Accuracy: ±0.25°C over 0 to

Stability: ±0.01 pH, ±1 mV ORP over 30 days non-cumulative Sensitivity: ±0.01 pH, ±1 mV ORP Repeatibility: ±0.01 pH, ±1 mV ORP

Ambient Temperature Coefficient: ±0.002 pH/°C

Power Input: 120 V 50/60 Hz 8 Watts, 240 V 50/60 Hz 8 Watts, jumper selectable (requires fuse change)

Outputs: 4-20 mA dc isolated, RS232C with 0-5 V non-isolated

Output Span: Any 0.1 to 20 pH span (0.1 pH increments) selectable reverse or direct acting

Alarms: 2 SPST electromechanical relays rated 5 A 230 Vac, resistive load; supplied as normally open; alarms can be configured H/H, H/L L/L; alarm deadband fully adjustable over pH span

Dimensions: 4.45"H × 5.75"W × 6.95"D (113 x 146 x 177 mm)

Weight: 3 lbs (1.35 kg)

Model No. PHCN-28650	8(5)	pH controller w/isolated 4-20 or 0-20 mA dc output
PHCN-28-D	730	pH controller w/RS232C interface and 0-5 V analog output (software available)
PHE-2800	हाँड 23ड 250	Combination gel filled, double junction electrode w/ATC (integral Pt100); Kynar body construction; 1" MNPT connections at both ends for insertion or submersion, max pressure 100 PSIG at 65°C. Overall electrode length 5.67", insertion length 2.52"
PHCN-28-PA	365	Pre-amplifier for distances > 50 ft or for use wielectrodes other than PHE-2800; NEMA-4X enclosure (8.94" × 5.25" × 3.25")

OMEGACARE™Extended Warranty: not available for this product.

								INCTALLATION	200													
	FACILITIES ENGINEERING OPERATING LOG Boiler Plant	SENGINI	ERING	DPERATI	NG LOG	Boiler Plan	73		5					P. CAN	· =		8LDG. NO.	•	MONTH			
٠	For use of ti	For use of this form, see AR 420-49; the proponent agency is USACE.	AR 420-4	3; the propo	nent agency	is USACE	\	7/1/	JATERIN	_	dock,	141		73	HER	PLANT	136	٧	Mar		06-	
		STI	STEAM PRODUCED	UCED		FEED	1 .	4	or reside	- 1	FEEDWATER HEATER	TER	*	-i I	FLUE	FLUE GAS TEMPERATURE	ERATURE	ELUE	1-1	KE.		!
#	, N	# W	*	*	TOTAL	MATER TO TO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TEMP.	PRESS.	TEMP.	MAKEUP GAL.	2 -	AS 3	-	BORLER	6	TEMP 4	TEMP 1	THE E	EFF,	/WIT.
1000 18	15.22 B.	1,000 LB.	1,000 LB.	1,000 LB.	1,000 LB.	1,000 LB.	0/6		y.i		H	₩ /090	H	\vdash	H	\vdash	¥					1
	ε	Ð	ð	₹ (<u>s</u>	799/B) X		æ ?.		T		_	13	2 I	7	<u> </u>	81	Ē		4	8	100
324.5				722.7	87.8	27.6	102.6	13.7	2000	1		1777	7	10	255	25	-		55	2.6.8	010	74
1456				2000	77.10	Ц.,	_			†		2 0	1	00	262	1 0	1		_	-	63.	777
211.2				1387.1	60000	_1	77.7	┰	02,0	T	-+-	3.00	4	4:0	2,0	1	-		-	1	7.00	77
2/4:3				271.6	603.4		2000	┿		4		107	4,	1	100	1,	_		_	1	10.2	77 77
276.5				12/1/2	3/4.5		205	1	4.77	†	_	77.7	9	37.00	200	-	1			1	45.7	17/1
				3/8/6	_1.		3055	7	3,0	\dagger		3,64	1	\ \ \ \ \	7	+	-			_L	1.7	1,1
31.0				3744		7	6153	+		+		43.5	7	7:0	360		1		4.80 3	-	x-1-x	1
	703.2				13.2		5555	Y		9		40.5	1	+	1	439			"	-+	23.3	HH
	630.5				630.5		15004	4	68.3	9	230 4	43.1		-	-	457	7		"	-+	83.9	HH
	1,012				610,1	5/2	7/8/2	-15,5		<u>ر</u>	-	- 5//	-	$\frac{1}{2}$	-	4,00			7	-	2.6	4720
	300.7				300,7	140	12317	16.0	51.5	v	230 1	18.5	-			470		-	7	40.0	85.4	RH
								_								_	_					
	_													-	_		_					
	L															_						
	_														_	_	_					
															-							
												-	-		-					-		
											+			-	-	-	-			+		
	-									1	+	+	+	+	+	-	-	_		+		
										1	+	+	1	-	+	-	-			+		
											+	+	+	+	+	+	-	-				
										+	 	-	-	+	-	+	4	1		1		
							1			1	†	+	+	1	-	-	-	-		+		
								_				+		+		-	-	_		+		
							-	1			1	+	+	+	1	-	-			+	!	
						_		-		+	+	+	+	+	+					+		
								-			+	+	+	+	+	-	-	-		+		
	-						-	1			+	+	-	1	-	-	-	-		-		
												-	-		-	-	-	L				
				_			3					-	·				-			-		
15 L TOTAL	7791.4			2011.7	4726.2	5627	M55474	/	1915.4	77	2530	49.8	/	1.61	7474	-	1.5	_	-	412.9	5063	
574 MAXIMUM	-			1262	1.58	407			68.2	و	-	435	7	۶.۶	36		6		_	405	84.8	
MINIMUM	<u> </u>			274.4	-	240	2317	14.5	47.7	Ü	230	13.5	~	٥٠٤	346	6 400	0		-	34.0	77.1	
74. AVERAGE	15533			2873	611.5	5///5	15043	15.4		5	-	78.5		2.7		3 413	-		477	37.5	82.7	
	EVAPORATION LB. STEAM PER LB. STD. FUEL	M PER LB. SI	ro. Fuel.		FUEL USED	DURING M	FUEL USED DURING MONTH (STANDARD	DARD TONSI				REMARKS 🖟		total madudies		17,300 0.4	4 420:1	ري الريخ الماح الاص الماح الماح الما الما الما الماح الماح الما الما	1387	4 27 4	1000	
	SEE .	SEE REVERSE SIDE FOR INSTRUCTIONS			PRESARED &	***	9			DATE	a ch	APPROVED BY	>.			DATE		POST ENGINEER	SINEER			DATE
)	121	in											-				_

Ć		2	C C C	PERATI	CACH THES ENGINEERING OPERATING LOG Mailer Plant	Railer Plant								_								
F	, use of this	is form, see	AR 420-49;	the propor	ACILITIES LIVE TO THE TOTAL SECOND STREET AND THE PROPONENT AGENCY IS USACE	is USACE.		WATE	TERVIN	<i>F</i>	Jecen!	4		200	Boiler	PLANT	ER PLANT 35	:	JUNE	90		
		STE	STEAM PRODUCED	JCED		\vdash	GAS		1_	FEEDWA	FEEDWATER HEATER	ER	*	×602	FLUE	SAS TEMP	ERATURE	TEMP		ł		
	STEAM		BOLER			WATER	FUE.		۳	PRESS.	TEMP.	KEUP	108	BOILER		BOILER		X.Y.	TUBES PRE	PREVENT		
DATE	PRESSURE	9	2 81001	3	TOTAL	$\neg \top$	LB. M.C.F. GAL.	E F	P	9	¥.	CAL.	7		-0 h	~ 4	m y.		OF TIMES CHE		EFF	TINI
+	7		a	3	9	193	ε	2	6	20.	E	+-	(13)	40 (15)	-	E	181	EE.	<u>1</u>	(12)		g
-	1	1384			128 d		1021	~	867	╁╴	to	21.2 4	47	_	363						92.3	J. H
-		23.4			123.7		1221		3	\vdash	١	-	\ \ \	_	360	0				Ľ	マルん	77 8
		13			12.3.9		18:00	17,0	270	2	120	0,5 11	١.	_	27.2	7				1.7	なから	な汗
	V	200			223 4		7777		378		۔ ا	75.50	. 10	-	37,					,	61/16	7/00
	. اـ	L 1700			2/2/1		7 410 7	2	3%	1					376	7				2	5175	70
1	√,	-17			167 6		7332	<u>, -</u>	280	1		÷	r		270					5	5,76	ナヨ
+	1,	大学			1		1001	V	777	†		1.5	7:0		2/2	~				0:	2,79	7 2
T	1	†			7/20/		6//	·	700	Ť	1	1	1,	-		-				1	.! >	75
7		1			1		3/		20/	1/2	+	4′	1,		1				-	1	٦.	
4	水	林			本作				100		L	17.61		-	777				-	ľ	072	S S
7	7	75.4			75.7		1000		22	\dagger	-1	-+-	×		7						2 2 2	- \frac{7}{5}
11	7	17841	 		ニュ・ユ		1816		280	T	-	-	2, 20	+	767					1	45.5	
7	_	8 62	_		1693		2,82	- 1	28	9	-	-4	9.0		3,7	7				1	10.5	
	135 1	66/			259/		2010	7.4	280	(م	225 2	7000	ŗ	-	370	0					<i>چچ</i>	<u>ر</u> د
		1900			0061		7307	•	180	2	225 2	77	41,70		ר, 32	_				5	93.4	2
	1	17/8			17.76		6801		787	┢	1356	7,5	C, 7		328	Q.				-	56.6	SU2
+	17/	1			1		1	1	1/	r										-		
f	$^{+}$	6			7 00		0/7/	1.3	280	,	2203	33.3	77		320	2			_	7	6.5.2	ľ
+	\top	1			111		2800		200	T.	500	<u>. </u>	2		347	7				-	7.06	'ה'דו
t	1	20,7			1.6%		2/2	0.11	200	1	220	<u> </u>	100	-	07:	0				7	90.00	44.
T	+-	17/17			77/1	-	5110		280	Г		16	4.5		356	٧				_	01.7	カガ
i i	20	1000			199.2		2299		286	-	230 2	7 00	4.8		33	_					93.3	D.X
Z	75	71.7			171.2	(939	1	280	9		2,7 5	2.7	-	360	2				-	85.9	P X
n	1/1				1		1	7	1													
F	35	1390	-		1390		1752	_	780	9	11058	19 17 18	4.0		360	0				_	4.06	Уd
	١.	C15			7,212		2558	17.7	5,0)		308 4	۲۱ ، (۵		1370) [_	94.3	کج
	4	202.0			202.0		7434	-	280			30,3 4	4,0		368	8					1.66	#6
H	ļ.	20/4			2014		2446	175	282	6 6		-	7.2		367	7					93.4	45
	L	197 (2)			2.61		2.22	_	277		_) 4	1,3		368	8				_	8.26	#LD
8	ソペ	100			10/		5#21		283				0.0	_	340					_	70.4	745
R	13.5	7			7,30		1251	15.0	285	7	1301	12:31	7.7		35	. 5					61.2	PA
ñ											- 											
TOTAL 4	4050	4110.0			41100		51373	453.1	7553	11.2 1			137,7	-	19695	λι	_			۲	2416.0	
2		2234			2234		2666		587	9	_	-	817		37,	1/2					5.1.6	
MINIMUM	20	407			40.7		663		270	9	225		3,3		330	0					62,3	
1	٠. [1525			152.2		19027	73:21	1757	. ·	-		5.7		350	0				_	5150	
EVAPORATION LB. STEAM PER LB. STD. FUEL	LB. STEAM	A PER LB. STE	5. FUEL		FUEL USED	DURING MOR	FUEL USED DURING MONTH (STANDARD	(SNOT Q)			<u>«</u>	REMARKS										
	SEE RE	SEE REVENSE SIDE			PREPARED B	7			0	DATE//		APPROVED BY	-			DATE		POST ENGINEER	INEER			DATE
•	FORIN	STRUCTIONS								•											-	

6-19

ċ

•	ACILITIES	FACILITIES ENGINEERING OPERATING LOG (Boiler Plant)	ERING C	PERATII	NG LOG	Poiler Plans)								5	_		BLDG. NO.	ند	H			
	For use of th	For use of this form, see AR 420-49; the proponent agency is USACE.	AR 420-49	the propa	ent agency i	. USACE.		WATE	ATERVLI	Ta Ta	ARSE	SNAL		130,	VER F.	YANT	W	10	July 90	190		
		STE	STEAM PRODUCED	UCED			GAS	-		3	ER HEATI	ER	% ® 05	7	FLUE GAS TEMPERATURE	AS TEMP	ERATURE) !	1		
	STEAM		BOILER			WATER TO	USED C			PRESS. TE	TEMP.	dila	BOILER	l		BOILER		H K	TUBES	PREVENT		
3	PRESSURE	9	100018	1,0001	TOTAL	·	LB. M.C.F. GAL.	E.Z	0			GAL	9	F)	او		3		NUMBER OF TIMES	MAINT. CHECK	i I	
	E	+-	ē	3	3	9	E	_	1	+	\ 	- -	80	95	8	¥ E	ų į	- 1	į	+	CFF	1///
-	135	6'5//			115.4		165/	1	L			1.	╀	+	Т	+	9	2	3		ĝ	§ 3
2	135	/53,3			/53.3		1881	12.7	283	200	230 2	22.7 6.7	12	+	24.0						9,00	± :
-	U~'	1020			0.00	ľ	1201	т	Ļ	1		1	1 -	-	17.0						75.6	T V
	135	6.74			126.9	-	2//5	τ	1				1 -	+	200					+	26.0	¥ .
,	7.67	200			2001		901	7	1	1	1	300	4	1	250	1					04.5.7	1,4
, ,	12/	7,0,7			7/0/2	+	2000		1	ı	i		2,6		201						92.8	7 8
٦	4	100			861	+	7001	7	1	1	1	12.5 3,	7		765	1			1	1	53.0	PK
	136	170.0			17001		15.57		L	Т	15	0	(3	-						
,	14.	322	1		1,000	†	1,250		_	Т			-		2/2	-					92.7	PK
, ,	1,1	133.1			7,55,	+	50/		0 0 0	\top	250	3.0			365						15.68	ρ'n
2:		1		T	1,1,1	T	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Т	? . ?	رو و	امد	1	7,65						89.4	PK
= :	17:	760.0			1500		707			Т	30 2,	0,	9	-	760						876	PK
2 :	1	1277			15,7/1		2117			Т	30 26	٥	4	-	365						45.4	PK
2	†	× 5.5			176,8		1/84		_1		30 23	6.5	h	_	365	1				_	93.1	PF
2	135	1540			15.66		/903		_1		23 23		9		165	1				-	1.16	77/74
5	7	743.7			140.7		1281				9/ 02	0.9	٥	_	765	_					シャン	777
2	.]	1.5.1	_		165,1	-	2055				70 2/	ئە	0		765	<u> </u>				\dagger	2 30	1777
=		765.3			/65.3	٧	2053	į			25,05	7 5.	2		365	_					3	70
	135	156.9	_		156.9		1965	_	L		32 OS	5.5			377					+	100	2
2	W	123.4			h'521		1651	-		622 8	l va	17 5.8	00		27.2						0 6	
ล	135	55.63			らって		477	-			£.5.	0	1,7		7.0					-	1000	ן ני
23	١	1	- V :- "	1						_	-	l	-	_	-					 		
z									<u></u>		_			-					1	\dagger		
я								- -		-		-		-	-					-		
7.			_	_		-																
82								-			-		-		_					+		
8		L						-	<u></u>	<u> </u>	<u> </u> _	-	-	-	-							
z,							-	-				-		_						\mid		
20			_				-	-				-	-	-	-				†	+		
Ø.		-						-			<u> </u>	-		-						+		
8					-		 		-	_			-	-	-				1	+		
ā		-						_	-		-		-	<u> </u>	1	-				+		
TOTAL	<u> </u>	5713			257.9		50.32.03	3.5	70h2	-	2447	17 115	15	-	1507				1	1	0,0	
MAXIMUM	-	2 : 1			- 34.	 '	-	7.7	\$ 600		Т	4	1		200	-			\mid		-11	
MINIMUM					0:		124.	17.5	280	11.0	\ \ \	N	1	+	270	-			\dagger	+		
AVERAGE	<u> </u>	17.251			71:		0.0.) o	+	11/2	3	\perp	1	+	200	1				+	5	
EVAPORATION LB.		STEAM PER LB. STO.	FUEL		FUEL USED DURING MONTH (STANDARD	IRING MONT	H (STANDAR	TONS	-	1	+	REMARKS			200						7.7.	
	SEE REI	SEE REVERSE SIDE FOR INSTRUCTIONS		-	PREPARED BY	1			DATE	1 / / / / / / / / / / / / / / / / / / /		APPROVED BY				DATE		POST ENGINEER	NEER			DATE
						111111111111111111111111111111111111111	*				-					-						_

6-20

							f	INSTALLATION	×					PLANT		ſ	BLDG. NO.		HTM			
	ACILITIE	S ENGIN	EERING (DERATII	FACILITIES ENGINEERING OPERATING LOG (Boiler Plant)	Boiler Plant)		•										-				
	For use of t	this form, see	3 AR 420.45); the propor	For use of this form, see AR 420.49; the proponent agency is USACE.	s USACE.		14/4	ATT FILL	11:11	il.	N.	11.01	Bi	LEFE D.	+1750	17 17		7	0	0	
		STI	STEAM PRODUCED	UCED			State	-		ĭ≹ŀ	R HEATER	Н	%C03		FLUE GA	FLUE GAS TEMPERATURE			-	_		
DATE.	STEAM		BO"LER		TOTAL	WATER 10	SED		Ha N	s	WAKEUP		ă	-	Į.	BOILER	T	N.W. SUPPLY	CLEANED PR	PREVENT MAINT.		
	1833016	,C 8	100018	100018	10001	T	<u>ک</u>		EED LO	ř	T	<u>a</u>	2	-	4 و	74 Y	- ¥	*	F TIMES C		ע כי ני	ト
	III	63	Ð	3	ŝ	89	6	8	PA9-45 11	(11)	(12)	(13)	(14)	œ:	(16)	ĽΩ	95	(61)	8	(21)	(2)	(2)
-					,			+	-			-		_								
7						7	17/00	-	-	+	+	-	_	_				+		1		
•	,					-	-	L	L	+		-	-	+				1			1	ļ
-	12.7	7				-	0.01	- 1	4	۲.		-	_	1	360			+		٥		DK
S	125	6:71			1141.3		1.70	-+	_	1		-			707			1	-	٩	20.0	نر د کر
6	75.5	0.65/			(X 'O' !		11551		-	1	24.4	7.2 7			360					0	00.4	77.7
7	155	129,5			139.5		17601	3.5%	0000	1320	5.55	2 6.0	2		15.56					<u></u>	6.65	¥ 7,
8	7.3.5	1.551			1221		1 640		3 366		677C O	27.74	٠, ٢		C95		-			U	1.10	T.
6	Y.0.	1/27.			1.62.	 '	クソンと	-	0 286			-	(らんり		-			0	01.7	74.7
2	1251	7.5.			7.07	_	77.5	-	300		1	ᆫ	V		12/2					1	77.2	44
=	アチリ	1. 1. 1. I	3					-	_	_		L	-									
2	200	100	1		100,		1901	3 2	0000	280	クソ・ク	7	0		27.0				-		070	17
	1				7		2	- L-		T		_	1		100		1		+	-		
2	135	1.0 %			.00/	1	1007	_	4	†	_1_	-		\downarrow	101			1	1	1	10.1]
=	135	5.5.5			1/6.5		1240	-1	-	•	-+	-1			クタッ	-	1	1			841.3	1
15	125	16-21			1001		0.500		8 27:	7	-	ᅴ			1,62						30.00	
16	125	16:17			1777		2000		-	1	25.5	0.5.0			200						7,70	.1 ::
11	221				<		960	76.7	267 8	250	C 13.0	5.5	¥:		26.7			_			V.65	1.
81	5401	100	1				1					٠.			\				_			
61	135				106.9		1329 11	2,1 3	_	_	_	-	٠		270				_		91.1	シば
8	581	176.3			172.3		2/52 1	17.4 2	_	0 230	_	9/1/6	7		326					0	93.7	1216
٦	5 % 7	205,5			1305	•	_	_	ski	GE7 8		-	0		326			-			88	س ران
n		187.6			7781		1 0822	7.5		_		4.9	6		1328		_			-	93.3	KL
ß		1,60.2			160.2		-	17.0 (L	230	5 26.5	-	_		2/5		-	-		3	1	710
z	13.5	0.66			730	,	2001			Val.	1	5.12	2		36.2		-			Ĺ	 .;	1 :4
я	1110	T DOWN	101			-											-					
ж	725	5.051			57.75		25.	7.50	0.30	6:0 8		: 17 S	87		12:				_	-	10	1
12	135	174.3			174.3		1727		}	C: 7		5.5	_		~ ~						1.16	2/4
28	135	7.5.3			15.3 6	<u> </u>	292		L		0 29.1	11.7	_		3570			-		3	200	730
Я	13	1913			6761		2353		L	2.00	1	+-			365-						71.7	7/4
8	35	17.9			121.9		2239 1		L	Г	7.87 €	┿			3620						0	1
5	135	1384			130.0		120		L	522 8	i .	-	_	<u>_</u>	3620						116	1/2
TOTAL		2.76.15			17.00.00	7	7 62297	21.7	L.		\vdash	121	۲,		6147				r	cl	1 00 1	
MAXIMUM		304.5			13.75.51	 	2590		5.7 8	550		7.			307					 -	24.9	
MINIMOM					ン/(B)		765	14.5	5 625			2 42	-		カボビ				-	-	77.5	
AVERAGE		1.62.			1.62.1	-	1853 1		<u>L</u>	10 mg	0.45	0 5.3			5(7)						1 TO 12	
EVAPORAT	ON LB. STEA	EVAPORATION LB. STEAM PER LB. STD. FUEL	D. FUEL		FUEL USED (FUEL USED DURING MONTH (STANDARD	H (STANDAR	D TONS			REMA	RKS										
					A CSEA 4389	,			TAG	1	APPR	APPROVED BY				DATE		POST ENGINEES	023			24.40
	FOR	SEE REVERSE SIDE FOR INSTRUCTIONS			S S	K	'		16	15/90	i						-	150	יַנָּנֵץ			¥
2003					1				1	1							1					

DA FORM 3967 REPLACES DA FORM 588 1 JUN 59, WHICH WILL BE USED.

							MSTALLAT	NOS				Ī	PLANT		BLDG. NO.	Ö	MONTH			
FACILI	ITIES EN	IGINEERI	NG OPERA	FACILITIES ENGINEERING OPERATING LOG (Boiler Plant)	(Boiler Plant)	y	7		7	. 976			Buler	PLAN	R PLANT 35	35	SEPI	. 90		
FOr US	of this fo	rm, see AR	420-49; the pr	For use of this form, see AR 420-49; the proponent agency is USACE.			WATE	1.1	FEDWATE	FEEDWATER HEATER		% € 03		LUE GAS T	EMPERATU		TUBES	TUSTO		
-		STEAM	STEAM PRODUCED						PRESS, TEMP.			BOILER		ļ	55	SUPPLY	CLEANED	MAINT.		
STEAM	NA WA	90	E.	TOTAL	TO BOILER	USED LB. M.C.F.	9.5		+-	Ser.	9	7	-	او	ر د د	*	OF TIMES		EFF	1////
DATE	i	\dashv	╁	a i w	T				-	_			9,	+	+	E	Ą	(11)	(2)	(Z)
e	+	9	1,000.1	+	(g)	6	8	Ш	(11) (01)		E .	2	1	1	╁	\vdash			68.6	0X
=		+	+	7 20		191		200	_	0 43.5	+			-	-					
1 135	2 44.7	1		-				- 1		_	+			375					933	7/4
2	+			1/23		1326			`		3			26.25		-			Z Z	
3 135		13.2		1000		1792			9 23		1			25.00		-			87.3	
13		142.0		1,7%		1277					5.2			1	-				010	
\$ 1135		110,6	+	20/2		200		250	Н	띡	4			100/5	-				93.7	
, 135		7	-	100	-	10/6/		750	Ÿ	20 19.1	9			3	-	-	-		6.57	1.
7 11.35		108.3	1	100	-	253		250	ر د	320 111	×				-	-			941.3	_i
8	-	42.6		12.0	-	- "		757	-	4	4			, ,					5.2.6	1, 1,
9 12	$\overline{}$	47.7	+	200		2204			7		4			十、 - -	-	-	_		49.2	1
27 01		272	-	1		011				120 22	7			1000	-				0.1.0	į Д
		176.3				1,10		L	Г	120 27.2	-			1	1		_		0.00	; ! . !
		175.2		7 707 /		77100		L		570 1:5	-			10,	-	-	-			
	Г	17.8.7		765	7			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Г	2.77	_			5	-		-	ŀ		
-	-	27/2	_	27.6						_					-	-			44.2	オワ
T	-					1/57.		230	t	5911056	5.5			260		+	-		7/6	7/1
-	75 //	//×.2	_	1/8.2	-			_	T	230 25,0	-			762		-	-		97.7	ガン
+	1	10/U		151.5	-	\(\frac{1}{2}\)			+		+-	_		763		-	+		11/6	17.
7		72.21		153.4	7.	1888		31	00	370 25.0		_		363	-	1			2/6	7
7		1000		5/55/	h	17/5			1		_	,		368	-	1			1000	77.4
+	1	17.7	-	157.2	7	1943			8	3000	1		_	263			-		٠,	2
7	+	11/1	-	121	t	2181		250	7	230 661	21/2	1	-	36.23					97. /	7
1	/35 /			1430	1	1800		250	γ α	-+	+	+	-	37.0					90.3	1215
-		14/3.2		1,100	\ \ \ \ \	1861	L	250	~ ~	-+	+	+	-	0 / 0	-		_	_	23.6	777
n 135		148.3		0000	10	1755		- 1	%	-	_	+		787	+		_		40.06	2/5
24 135		38.8	-	X:3 C	xi:	1967				250 16.0	_		-	いた	-	-			3116	D/C
N N		154,9	-			1770		250		230 17.1			1	36	+	-			92.6	12/2
56/ ×		(66.3		166.5		1000				230 17.3	3 35			3,7	+			-	92.2	ドン
		867	-	8 6/1	0 (1000	-			230 28.	7		-	36.5		-			7 . 6	17.01
	5	5.71		7.77	7	17.10	1	253		230 31.6	511.9	\ \	-	3			1	-	1.	12.61
	-	17.8		<u>ጃ 'ርር/</u>) Ju	7/17	-	200		230 24.4	7			360,	+	+		-	4	
		4.02.		178.7		27/2	-		-	_	H		_		+	+	+	+	7 497. 9	-
\dagger						10,00	1	12039		7517.3	7.0811	1/1	_	10/37		+	+		6 20	-
TOTAL	1	35835		3983	3	01000	1	970		31.6	8 2		_	> > >		1	-	-	10.	
TI INIAN		180.3		180.3	2.2	4406	1	250		(1)	1,5 /	7		325					100	-
1	+	297		27.7	7.7	1617	-	17.6	+	220	۲	1,0		3/02		-		4	₩/X	-
MINIMOM	+	0011	-	142.2	7.2	1775		_	1	REM	9									
SVAPORATION I B. STEAM PER LB. STD. FUEL	I B. STEAM	PER LB. STD.	FUEL	FUEL U	FUEL USED DURING MONTH (STANDARD 10%	MONTH (STAN)	DARD 10N	ā												DATE
		'							DATE / /	APP	APPROVED BY				DATE	<u>.</u>	POST ENGINEER			
	SEE AE	SEE REVERSE SIDE		PREPA	PREPAGE BY	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			10/5/4	190						-				
				1					•											
FORM	7000		1	3M 85 0000	WHICH WILL BE USED.	: USED.														

FORM 2057

6-22

																-	200	2	:			-
							=	INSTALLATION	2					Š		-	,	_	}	(
		201010	0 0 0 0 0	SITAGOO	9010	Roiler Plant	-				•	•			; ;	1	ナルバ	_	100	2		
ŭ.	FACILITIES ENGINEERING OPERATING LO	ENGINE	משבים	FERAIN				1.07.67	John John		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7.		1000	BOLLES FLAN		?	7				
	or use of thi	is form, see J	AR 420.49;	the propon	For use of this form, see AR 420-49; the proponent agency is USAUE.	S USACE.	7	12		C	R HEATE	-	*C03	1	FLUE GAS TEMPERATURE	TEMPERA	_		PFS -			
1		STEA	STEAM PRODUCED	JCED					- ['			-	BOILER		•	BOILER	¥ ;	N.W.	ANED MAINT	=-		
	CTCAN.		BO'LER		1	E O	L SEC	ن ج اون	TEMP. PRESS.	SS.	AKE Stee	2 a	+	3	9	H			OF TIMES CHEC	 	1,1,1	ŀ
DATE	PRESSURE	×	2		101	7			1	╁	X 1003	L	-		¥	-	+	+	+		+	
	9		1,000 LB.	1,000.1	1,00 LB	-180 LB	6	E	1	33	Г	ET.	(14)	(13)	8	Ē	8	ē.	127	100	70	
		Ø	Ē	(g)	(S)	ē	1,3,0	1	1	0	2300 266	6 40	0		368	+	1	+	-	18	1	[
-	2	173.2			173.2		4000		020	Т	15 37	┡	Ó		320=			+	1	12:1	4	
	Ì	2770			256.6		10×3	_ I	+	T	00000000	╀	につ		576		-	-		27.5		
,		2001			183.5		_	+	+		3	+-			0.70	-	_	!		٠,		
	27	25.2							7	: د	1000			-	1		-	_				,
-	Т						-				, 2-1	•	1		1	-	-	-		_		
s	125	:					ᅩ		- -			_	-	-	+	+	-	-	-			
9							+			L		_			1		+	+	-	00	-	בר
-								+-	1	\vdash	1 2.0	1	1:		7		+	1		5 17	-	
	1.	5 75			•		_	4.	┸	11	+	_		_	37.5	-	-	+	-	7	1	
۰	Τ.	13.			5,500			6 0	4	†				-	777.6					3 / 1,	i -	i.
,	1	1			i)			4	-1.	+		╌		-	1			_			1	<u>.</u>
2	Т	13 / 1			1- 250		2047	-1	_1	1		+		-	. !		_				+	
=	4				10 00 C		1000		ンイバッ	1		+		-	1000		-	_		N U	C	1. (1.
12	1 2 1	77/27			i		12/		アバブ			22.8		+	+	+		-		20.00	47:	.1
5	125	17501					11.00	<u> </u>	ــ	i)	0.00			_		1	+	\dagger	-	3	-	
7	34	5000					1 2 2	╄	1_	1	101 01	11 11	i,	_	22.0		+	+		1.30		a.
5	10.01	3.7.6			3-7-5				╀	Γ	120 040	りにした	2	-	11	1	+	+	-	3,03	-	1
وِ	11 11	27.45					1	4	┝	Τ			Ł.		375		-	+	1		-	
=	, A	2,000			7.5.7		3	4	+			-	-		-			+			+	
92								+	+	-	-	_	-					+	+	-		
61								+	-	-	-	-			_		1	+	$\frac{1}{1}$	-	-	
8	-							1	+	+	\mid	-	-		_						+	
=	-			_					-	+	-	-	-					1			1	
; ;					_				+	+	+	-	-	-							+	
1				-		_			-	+	+	1	+	1								
a l											+	1	1	+					-	_		
*				-	-					_	-	-	-	1								
И				 -					-			-	-	-	-			+	-	-		
я					-	-			-	-	- 		_	_			1	1	+	-		
u												_							+	-		
81											-		-						+			
R		-	<u>_</u>						1	+	-			_						+	-	
۶		-							+	+	\mid	-	-	-	_					-	•	
1	-	-								-	11 20/72		(× 2.	-	5/22					1.67	-(,	
TOTAL	+	13773	-		31550		22750	1305	1/10	7	12.7	7 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5/2/	-	276					7.8	28.6	
MAXIMUM	 +-	2744	-	_	324.4		3724	18.5	350	>0	12.0		100		358					68.5	7	
	-	32.7	_	_	32.7	-	377		17.7	1	1000	+	200		368				-	75	3	
ANGENIMON	_	1/2 3	_		210.3		2519	17.2	250	7	_	⊣ տ		-								
APORA	SVAPORATION IR STEAM PER LB. STD. FUEL	AM PER LB. S	TD. FUEL		FUEL USE	FUEL USED DURING MONTH ISTANDARD TONS	ONTH (STAND	ARD TONS)							_						1	,
										DATE.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	APPROVED BY	>			DATE		POST ENGINEER	INEER		- DA	
	SEE	SEE REVERSE SIDE			PREPARED B)	JAM.	\			1/1///	10											
	į	A JASTACCATOR	,		\ \\\	11/1/1	17.			-												

DA FORM 3967 REPLACES OF FORM 5-98.1 JUN 59, WHICH WILL BE USED.

SUBJECT EOD#7-Cooling	AEP NO 290-0379-00	2_
Tower Fan USD	OFOF	
DESIGNER P. Hutchina	DATE 8/8/91	
CHECKER B. Todd	DATE 9/17/9/	

- Calculate current energy me for the cooling tower fant in the gun tube chrome plating area

There are two cells, each with to hip centrifugal, forward-curve fans. One cell fan handles the load for all but the hotlest days. The fan operates continuously at a constant speed, five days per week, 50 weeks per year. assume the fon lood is 85% of capacity.

E = 40 hp x 0,746 kw. 5da, 24 hr, 50 wf. 3413 Btm. 0,85

Calculate reduced energy use due to installation of variable special drive and controls.

The diagram on the following page describes the glycol cooling system operation.

The calculation table following the diagram. Ahous an energy use of 112 mBtn/yr using the USD. The guation used for calculations are based on for laws: $\frac{hp_2}{hp_1} = \left(\frac{Q_2}{Q_1}\right)^3$

SUBJECT E(0 # 7

LEAD SHEET OF

DESIGNER P, Hutchis DATE 8/5/91

CHECKER DATE

GLYCOL

- GLYCOL IS DIVERTED TO THE FRESH AIR WAKE UP SYSTEM DURING THE HEATING SEASON
- · ONE COOLING TOWER FAN OPERATES CONTINUOUSLY
- THE SECOND OPERATES ONLY WHEN THE RETURN

 GLYCOL TEMPERATURE EXCREDS THE SETPOINT
- · PIT EXHAUST AND FUME EXHAUST FAN MOTORS AKE 100 Hp each

WATERVLIET ARSENAL LIMITED ENERGY STUDY Cooling Tower Variable Speed Drive Energy Calculation Operation Hrs/Day = 24

Hour Fractions

1 AM - 9 AM

9 AM - 5 PM

5 PM - 1 AM

1

Operation Days Per Week

7

0	Û	(3)	(4)	(3)	(0	<u>(3)</u>	(9)	(19)	<u>(ii)</u>
						Percent				
						Full Load	t t			
	Temp.	Hours (of Occurren	ice	Total	CFM	hp			
	Range	2-9	10-17	18-1	Hours	Required	Required	k₩	kBtu/hr	MBtu
95	99	0	7	0	7	110	53.2	39.7	135.6	0.9
90	94	0	28	6	34	105	46.3	34.5	117.9	4.0
85	89	0	95	28	123	100	40.0	29.8	101.8	12.5
80	84	4	177	- 73	254	95	34.3	25.6	87.3	22.2
75	79	27	248	140	415	90	29.2	21.8	74.2	30.8
70	74	115	257	222	594	85	24.6	18.3	62.5	37.2
65	69	234	235	271	740	75	16.9	12.6	43.0	31.8
60	64	263	212	252	727	65	11.0	8.2	28.0	20.3
55	59	274	190	236	700	55	6.7	5.0	16.9	11.9
50	54	263	183	214	660	45	3.6	2.7	9.3	6.1
45	49	242	183	205	630	35	1.7	1.3	4.4	2.8
40	44	229	202	205	636	25	0.6	0.5	1.6	1.0
35	39	261	241	251	753	20	0.3	0.2	0.8	0.6
30	34	295	220	262	777	10	0.0	0.0	0.1	0.1
25	29	216	156	191	563	0	0.0	0.0	0.0	0.0
20	24	163	112	130	405	0	0.0	0.0	0.0	0.0
15	19	110	79	96	285	0	0.0	0.0	0.0	0.0
10	14	84	43	65	192	0	0.0	0.0	0.0	0.0
5	9	60	27	38	125	0	0.0	0.0	0.0	0.0
0	4	37	16	22	75	0	0.0	0.0	0.0	0.0
-5	-1	27	3	9	39	0	0.0	0.0	0.0	0.0
-10	-6	10	0	4	14	. 0	0.0	0.0	0.0	0.0
-15	-11	5	0	0	5	Û	0.0	0.0	0.0	0.0
-20	-16	3	0	0	3	0	0.0	0.0	0.0	0.0
Totals		2922	2914	2920	8756					-== === 112

Total adjusted for work week

SUBJECT	Eco #7	AEP NO		
	LEAD	SHEET	OF	
DESIGNER _		DATE		
CHECKER		DATE		

- Columna O through 3 are weather data from Engineering Weather Data, TM 5-785 for albany, N.Y.
- Column 6 = 3 + 4 + 5
- D is based on engineering judgment
- 8 = (3) * 40 hp
- 9 = 8 * 0.746 kw/hp
- (10) = (9) * 3413 Btu/kw = 1Eb
- (ii) = (ii) * (i)

Energy savings => MBty/yr

519 Current method

- 112 New method

407 MBty/yr electricity

There are three gun tube plating areas. One is to be removed.

Total savings = 407 * 2 = 814 MBAN/yr ELEC.

SUBJECT ECO # 7	AEP NO _	290-0379-002
QRIP Cale's	SHEET	OF
DESIGNER Hutchins	DATE	3/20/92
CHECKER	DATE	•

QRIP CALCULATIONS

TRESENT METHOD

519 MBT4/yr * 2 towers * \$ 20.35 / MBT4 = \$ 21, 123

PROPOSED METHOD

112 * 2 * 20.35

= 4558

5 AUINGS

16,565

SUBJECT	ELO #7	AEP NO	
	LEAD	SHEET	OF
DESIGNER		DATE	
CHECKER		DATE	

PROPOSED ADDITION OF WARLAGUE SPEED DRIVE

- FOR ALL EXCEPT THE COLDEST DAYS THE BY-PASS
 3-WAY VALVE IS INOPERATIVE, ALLOWING FULL
 FLOW TO THE COOLING TOWER. IN THIS MODE
 THE USD MODULATES THE FAN SPEED TO MAINTAIN
 THE LEAVING GLYCOL TEMPERATURE.
- WHEN THE AMBIENT TEMP. IS LESS THAN, SAY ZO'F, OR OTHER VALUE DETERMINED IN ACTUAL OPERATION, THE GLYCOL LEAVING TEMPERATURE 13 CONTROLLED BY THE BYPHS VALVE. IN THIS MODE THE COOLING TOWER FANS ARE INOPERATIVE.

ECO Construction Cost Estimate Calculations

ECO Name: COOLING TOWER VARIABLE SPEED DRIVE

ECO #: 7

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$15,300 \$1,650
Subtotal bare costs	\$16,950
FICA Insurance (20% of Labor)	\$330
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$17,280
Overhead (15%)	\$2,592
Subtotal	\$19,872
Profit (10%)	\$1,987
Subtotal	\$21,859
Bond (1%)	\$219
Subtotal	\$22,078
Contingency (10%)	\$2,208
Subtotal (Construction Cost Input For LCCID *)	\$24,286
SIOH (6.0% of Construction Cost)	\$1,457
Subtotal	\$25,743
Design (6% of Construction Cost)	\$1,457
Total Project Cost	\$27,200

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARED	8/9/	91 SHEET	OF
PROJECT ENERGY ENGINEERING			····			OR ESTIMATE	
LOCATION						CODE A (No deel	
WATER VLIET	HKS	ENT	<u> </u>			CODE C (Final di	
REYNOLDS, SMITH AN	D HILLS	A.E	.P., II	NC.		THER (Specify)	
MOTOR VSD	FAN	ESTIN	P. Hu	ATCHINS		CHECKED BY	
ECO # 7 SUMMARY	QUANT	T		LABOR		MATERIAL	TOTAL
	NO. UNITS	MEAS.	PER	TOTAL	PER	TOTAL	COST
VAR, SPEED DRIVE - 40hp	1	ea	400	400	6400	6400	6800
PID CONTROLLER	<u>l</u> .	ea	100	100	400	400	500
Type T Thermocouple	2	ea	25	50	50	100	150
Type T thermocouple	1	.cf	25	25	50	50	75
ON-OFF CONTROLLER	1				. /	<u> </u>	
Solid State Relays	<u> </u>	ea	100	100	400	400	500
Misec Maucon -			25	50	50	100	150
wiring, connectors,		ea · ·	100	100	200	200	300
piping Ts							
BANK LOSIS TOTHLS				825		7650	8475
FOR 2 UNITS				1650		15300	16960
						.•	
·							
				• • •			
· · · · · · · · · · · · · · · · · · ·							
						ł	I

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LIKED

* U.S. GOVERNMENT PRINTING OFFICE . 1959 0-\$16148

(TRANSLUCENT)

RSH

Telephone Call Confirmation

	Project	No	79 - 002
onal I D Placed			/ /
P. Hutching Cor	wersed With	New Shaver	
of Shaver & Assoc	Pagarding (on line Tower	Motor VSD
(Balt. Coil Rep.)	negarding	T. T	
(2001: 000(1007:)			
USD requires			
USD requires			
- transmitter			
- PID (Propor		17 . 4:01	C. A
- PID (tropor	ional triteg	ral Derivalute)	Controller

(0001146)			
Tower	<u> </u>		
	•, >		<u></u>
IVSU-	→ ↑ ↑		
Pip			
Cost of V3D for to hp for includes types to use	in motor	-\$6400	
includes to one to use	in conjunct	in the exist	time starter
The second of th	our conjuctor	-ore con the section	
		/	
Distribution:			

RSH

Telephone Call Confirmation (203) 359-1660

aal	Project No. 278 - 0379-802 L.D Placed Rec'd Date 8/14/91
cai.	P. Hutchins Conversed With Tom
	Omega Regarding USD Controller
	, 10 ga cm g
	Programmable
	Tom recommends the CN2001 T-F1 (autroller - 395
	with a type T thermocouple, 4-20 ma output Type T thermocouple - #50 Type T thermocouple wiring - #50
	Type T thermocouple - #50
-	Type T thermocouple wiring - \$50
	J
	•

7-9

Temperature/Process Controller

Wedel CV2000

Shown Larger than Actual Size

Model CN2002A Shown

Reliable and Accurate Microprocessor-Based Control

- For Thermocouple, RTD, Voltage and Current Inputs RS-232 and RS-422 Communication for Remote Control through a Computer System
- Wide Variety of Output and Alarm Options Available

For Use With

- Plastics Processing
- ✓ Heat Treating Furnaces
- ✓ Environmental Chambers
- Laboratories
- ✓ Food Processing
- ✓ Chemical Processing

See Section A for Industrial Thermocouple Probes

2.7 7-10

Microprocessor Accuracy

Prices Start At

\$470

, Includes Complete ∈ Manual

Shown Larger than Actual Size

Features

PID Control
User Friendly Tuning Via
Front Keypad
Continuous Indication of
Output, Alarm, and
Operating Status
0.1° Resolution for RTD
Inputs

The OMEGA CN 2000 microprocessor based controllers utilize the latest technology to improve reliability, accuracy, and control. Inputs can be either thermocouple with 1° resolution, RTD with either 1° or 0.1° resolution, and current or voltage with a scalable display. For the analog inputs, the display is scalable for zero and span over the entire ±3200 count range, CN 2000 controllers can be used with pressure and flow transducers, or with virtually any process transducer. The CN 2000 controllers feature full 3-mode Proportioning, Integral (reset), Derivative (rate) control (PID). A unique multicolored display with vacuum fluorescent alphanumeric characters allow for easy, user friendly tuning with continuous indication of output, alarm, and operating status. The environmentally sealed touch panel is the operator interface to the N 2000 and the precision, fine hing controls allow accurate djustment of process parameters. The versatility of this controller makes it ideal for both laboratory and industrial uses.

Key Functions: Front Keypad is the operator interface. There are no internal pots, switches, or jumpers to set or adjust. Security key codes are required to access certain programs.

TUNE-RETURN

Calls up TUNE routine. Also RETURN program to normal operation

UP-YES

Drives set point to increase in value. Positive response to displayed question.

DISPLAY PARAM

Advances display in programmed sequence.

DOWN-NO

Drives set point to decrease in value. Negative response to displayed question.

START-STOP

Shuts off or turns on outputs. Not a power switch.

LAST

Recalls previous step to display.
A backup key.

SUBJECT ENERGY - EFFICIENT	AEP NO 290-0379-002
FLUORESCENT LAMPS/TBALLASTS	SHEET / OF
DESIGNER C. WARREN	DATE 3 26 92
CHECKER	DATE

Eco 8 -

REPLACEMENT OF STANDARD FLUORESCENT LAMPS AND/OR BALLASTS WITH ENERGY - EFFICIENT TYPES

1/ Survey of BUILDINGS ON WVA TABULATED IN TABLES 8-1 and 8-2, SHOWING TYPES OF FLUORESCENT LAMPS, NUMBERS OF LAMPS AND FIX TURES; WATTS AND KWH/YR, Vespectively.

ASSUMPTIONS - PRODUCTION AREAS ENERGIZE LICITS

24 HRS/DAY X 5 DAYS/WK X 50 WKS/YR

= 6000 HRS/YR

NON-PRODUCTION AREAS

11 HRYDAX 5 DAYS/WK X 50 WKS/YR

= 2,750 HRS/YR

STANDARD FIXTURE POWER DRAWS TAKEN FROM LIGHTING TEXTS - SURVEY NOTES CONTAIN DATA FOR EACH BUILDING THAT IS SUMMAPLED IN TABLES 8-1, 8-2.

TREDOMINANT TYPES $F40T1Z = 1,134,612/6,140,625 \quad |KWH/YR = 18.5\%$ $F96T1Z = 3,528,527/6,140,625 \quad |KWH/YR = 57.5\%$ $F90T1Z = 1,156,800/6,40,625 \quad |KWH/YR = 18.8\%$

SUBJECT ENERGY LAWRS/BALLASTS	AEP NO <u>290 - 0379 - 002</u> SHEET <u>2</u> OF
DESIGNER C. WARREN	DATE 3/26/92
CHECKER	DATE

CONSIDER FAOTIZ & F96TIZ FOR REPLACEMENT - F90TIZ IS
REPLACEMENT FOR F90TI7 AND IS ENERGY- EFFICIENT.

REPLACEMENTS FOR FACTIZ LAMPS

- O 34 w
- 2 32 W T-B SYSTEM REQUIRES ELECTRONIC BALLAST

BALLASTS FOR F40

- 1 ENERGY ELECTROMAGNETIC
- (2) ELECTRONIC

REPLACEMENTS FOR F96TIZ LAMPS

1 60 W

BALLASTS - ELECTRONIC

SPECIFICATIONS AND PRICES TABLES 8-3 AND 8-4, resp.

3/ PERFORM CALCULATIONS TO DETERMINE INPUT DATA
FOR LICUID CALCULATIONS

CASES CONSIDERED -

8 A. REPLACE 40-W LAMPS IN PRODUCTION AREAS WITH 34W LAMPS
LAMPS 308 (TABLE 8-1) 300 IN 100 FIXTURES

8 IN 4 FIXTURES

EXISTING 3-TUBE FIXTURES DRAW 144 W/FIXTURE

1 2-TUBE FIXTURES DRAW 96 W/FIXTURE

REPLACING W/34 WATT TUBES

144 W/FIX => 120 W/FIX

15.9% DROP IN LUMENS

96 W/FIX => 80 W/FIX

SUBJECT ENERGY LAWAS/BALLASTS	AEP NO 240-0379-002
	SHEET 3 OF
DESIGNER (L. WARREN)	DATE 3/26/92
CHECKER	DATE

8B. SAME AS A; REPLACE BALLASTS WITH ENERGY-EFFICIENT ELECTROMAGNETIC BALLASTS

1 BALLAST / 2 LAMPS (WVA ELECT. DEPT.)

152 BALLASTS

3-TUBE FIXTURES FROM 144W/FIX => 95 W/FIX
2-TUBE FIXTURES FROM 96W/FIX => 66 W/FIX

BC. REPLACE 40 W LAMPS & BALLASTS WITH FLOTS LAMPS (32 W)

and ELECTRONIC BALLASTS \$ 7.9% DROP IN LUMENS FROM EXISTING

3 TUBE FIXTURES USE | BALLAST / FIXTURE

DRAW: BB W/FIXTURE

2 TUBE FIXTURES / IBALLAST

DRAW 58 W/FIXTURE

8D. SAME AS A ; MIXTURE OF 2, 3, 4 TUBE FIXTURES

ALL USE I BALLAST / 2 TUBES - NON PRODUCTION BLDGS

BE. SAME AS BY NON-PRODUCTION BLOWS

8 E . SAME AS C, except 1 HALLAST/2 LAMPS; NON-PRODUCTION BLDGS

BG REPLACE 75 W F96TIZ LAMPS WITH 60 W F96TIZ LAMPS

PRODUCTION BUILDINGS = 10.6% DROP IN LUMENS

175 W/FIXTURE => 163 W/FIXTURE

BH. SAME AS G, WITH BALLAST REPLACEMENT (ELECTRONIC)

| BALLAST / Z LAMPS

| 175 W / FIXTURE => 105 W / FIXTURE

(MAJORITY OF LAMPS IN BLOG 25 WITH 3.9 W/SF - LOSS OF LUMENS SHOULD NOT AFFECT WORK)

SUBJECT	ENERGY	LAMIS/BALLASTS	AEP NO	290-0	379-002
	ı		SHEET	4	OF
DESIGNER_	C. WARREN		DATE	3/26	92
CHECKER _			DATE	•	

8I. SAME AS 6; NON , PRODUCTION BLDGS

BJ. SAME AS H; NON . PRODUCTION BLDGS

LABOR AND MATERIAL COSTS / CONSTRUCTION COSTS
SHOWN ON FOLLOWING COST ESTIMATE SHEETS

REPLACEMENT COSTS

ASSUMPTIONS - 20,000 HES LIFETIME FOR ALL LAMPS

NO BALLAST REPLACEMENTS

25 YR PROJECT LIFETIME

LARGE COSTS ARE SAME FOR STD VS ENERGY RAMPS

AUG LAMP REPLACEMENTS PER YR

120,000 HRS/YR = 3.33 YRS LAMP

308 LAMPS = 92.4 REPLACEMENTS/YR

2) NON- PRODUCTION F 40/F96 $\frac{20,000}{2750} = 7.27 \text{ yrs/Lamp}$ $\frac{7845}{7.27} = 1079 \text{ LAMPS/YR REPLACED}$

SUBJECT ENTERBY LAMPS BALLASTS	AEP NO 290-0379-002
	SHEET OF
DESIGNER C. WARREN	DATE 3 26 42
CHECKER	DATE

- 3) PRODUCTION AREAS F96 LAMPS

 6248 LAMPS = 1,876 REPL/YR

 3.33 YRS
- 1032 = 142 REPL/YR

REPLACEMENT LAMP COSTS -

	# REPLACEMENTS LYR	LAMP PRICE (EA)	TOTAL
PRODUCTION AREAS		•	•
FAOTIZ (STA)	92	1.05	97
F40TIZ/WM	92	1 80	166
F32TB	92	2.10	193
F96T12 (500)	1876	2.60	4872
F96T12/WM	1876	3.95	7410
NON- PRODUCTION AREAS			
F40TIZ (STO)	1079	1.05	1133
F40 TIZ/WM	1079	1-80	1942
F32T8	1079	2.10	2266
F96TIZ (STD)) 142	7.60	369
F96TIZ/WM	142	3.95	560

Summary of Saurings for EACH ECO - PROJECT Summary DATA FOLLOW ON PAGES 8-10 Huru 8-14

17,953 8,267 864 2,800 52**4** 96 **FXTRS** 9,285 010'1 ,048 ,678 282 302 114 1,471 1,728 89918 1,148 F96PG17 T0TAL LTS 12 12 21 0 **★** FXTRS FLUORESCENT LIGHTING INVENTORY 24 24 24 F96P617 **\$ LTS** 8 ೫ e F72P617 8 9 8 0 F72PG17 Ξ 126 Ξ # FXTRS 0 F90T17 282 22 252 AVG F40112 F40112 F96112 F96112 F96112H0 F96112H0 F90112 F90112 F90117 W/SF # LTS # FXTRS # LTS # FXTRS # LTS # LTS # LTS # LTS # LTS 1-00 0 964 8 964 864 TAPLE 1,928 1,928 1,728 200 113 21 7 25 25 226 **2†** 2 184 184 3,640 81 115 516 2 2 2 2 2 3,124 2,800 7,280 1,032 162 230 158 158 158 2 6,248 8 2,600 648 3,367 3,263 98 38 88 377 91 31 124 62 430 598 176 20 92 7 1.4 8,153 7,845 360 72 76 ,512 980 154.1 9 9 9 308 62 FLUORESCENT LIGHTING S PR0JECT # 290-0379-00 DATES: 15 OCT 91 - 18 OFFICES/LABS WATERULIET ARSENAL OFF I CES/LABS TOTAL OTHER TOTAL WVA TANUF/SPLY CLEANING MAREHOUSE WAREHOUSE TOTAL MANUF MTR POOL CAFETERIA FIRE STA **OFFICES** OFF ICES OFFICES OFF ICES STORAGE OFF ICES LABS OFF ICES OFF ICES SHOPS AREA MANUF HANUF **FASS** MANUF MANUF MANUF 81.06 25 35 11 12 13 13 13

124 62

57 57 524 537 608 131 126 181 505

33

FLUORESCENT LIGHTING SURVEY - SUMMARY WATERVLIET ARSENAL DATES: 15 OCT 91 - 18 OCT 91 PROJECT \$ 290-0379-002

FLUORESCENT LIGHTING TABLE 8-2 CURKENT EJERBY USE

	KWH/YR WAT	WATTS KWH/YR	WATTS	KWH/YR WAT	WATTS KWH/YR	WATTS	KWH/YR
172,800	1,036,800					172,800	1,036,800
20,000	120,000	•				91,100 23,844 0	
46,700 3,280,200 23,460 140,760 192,800 1,156,800 0 0 0 0 0 0 0 0 777,744	1,156,800	0 0	0	0	0 0	777,744 4,666,464	4,666,464
						50,366	138,507
						980'6	24,987
						2,976	8,184
						17,856	49,104
						3,737 0	ر 10 در 10
						18.021	800.09
						5,472	15,048
						57,730	158,758
						87,101	239,528
						71,398	196,345
						18,817	51,747
	27,	27,090 74,498				27,090	74,4
						17,71	48,870
			11,385	31,309		56,985	156,709
32,130					5,520 33,120	10,875	65,250
		`				17.280	47.520
		1,935 5,321				19,566	53,806
	_					25,063	68,924
32,130 0	0	ii	11.385		ii	519.435	1 474 161
	32,130	2,130 0 0 3	1,290 2,130 0 0 30,315 8	1,290 2,130 0 30,315	1,290 3,548 2,130 0 0 30,315 83,367 11,385 31,309	1,290 3,548 2,130 0 0 30,315 83,367 11,385 31,309 5,520	25,063 2,130 0 0 30,315 83,367 11,385 31,309 5,520 33,120 519,435

33,120 1,297,179 6,140,625

31,309 5,520

11,385

172,890 192,800 1,156,800 30,315 83,367

1.5 391,344 1,134,612 637,000 3,528,527 28,815

TOTAL WVA

TABLE 8-3

FLUORESCENT LAMP SPECIFICATIONS WVA - \$290-0379-002 10-Feb-92

	BULB				LIFE (HRS)		CURRENT	
LAMP(1)	DIAM *		WATTS	BASE	12-HR START	LUMENS	(MA)	PRICE (\$)
F40CW(GE)	1.5	STD	40	BIPIN	20000	3050	425	
F40CW(P)	1.5	STD	40	BIPIN	20000	3150	425	
F40CW/RS/WM(GE)	1.5	ENERGY	34	BIPIN	20000	2650	425	\$1.80
F40CW/RS/EW-II(P)	1.5	ENERGY	34	BIPIN	20000	2775	425	
F40/CW/EW-PH(P)	1.5	ENERGY	34	BIPIN	15000	2850	425	
F40CW/RS/WMP(GE)	1.5	ENERGY	32	BIPIN	15000	2525	425	\$2.10
F40T8(GE)	1.0	STD	40	BIPIN	20000	3600	265	-
F40T8(P)	1.0	STD	40	BIPIN	20000	3650	265	
F32T8(P)	1.0	ENERGY	32	BIPIN	20000	2900	265	\$2.10
F040T8(S)	1.0	STD	40	BIPIN	20000	3650	265	
F032T8(S)	1.0	ENERGY	32	8IPIN	20000	2900	265	
F72PG17(GE)	2.125	STD	165	RDC	15000	11000	1500	
F96T12/CW(GE)	1.5	STO	75	SINGLE	18000	6150	425	
F96T12/CW(P)	1.5	STD	75	SINGLE	12000	6300	425	
F96T12/CW/WM(GE)	1.5	ENERGY	60	SINGLE	18000	5500	425	\$3.95
F96T12/CW/EW(P)	1.5	ENERGY	60	SINGLE	12000	5600	425	
F96T12/CW/H0(GE)	1.5	STD	105	RDC	18000	8900	800	
F96T12/CW/H0(P)	1.5	STD	105	RDC	12000	9200	800	
F96T12/CW/HO/WM(GE)	1.5	ENERGY	95	RDC	18000	8000	800	\$5.30
F96T12/CW/H0/EW(P)	1.5	ENERGY	95	RDC	12000	8300	800	
F96PG17/CW(GE)	2.125	STD	215	RDC	15000	15300	1500	
F96PG17/CW/WM(GE)	2.125	ENERGY	185	RDC	15000	13500	1500	\$11.45
F90T17/CW(GE)	2.125	STD	90	MOG BIP	15000	6000	425	
F90T17/CW/WM(GE)	2.125	ENERGY	82	MOG BIP	15000	5750	425	\$9.00
F90T12/CW/60/EW(P) (REPLACES F90T17/CW)	1.5	ENERGY	84	MOG BIP	9000	6250	425	\$9.00

⁽¹⁾ GENERAL ELECTRIC (GE) PHILIPS (P) SYLVANIA (S)

Sources: SPECIFICATIONS FROM MANUF. CATALOGS

PRICE QUOTES FROM VENDORS

FLUORESCENT BALLAST SPECIFICATIONS WVA - \$290-0379-002 12-Feb-92

LAMPS	WATTS	BALLASTS	BALLAST INPUT (#)	PRICE (\$)		
F40T12/RS	40	ADV MARK IV	 80	\$20.00		
STD	,,	EBT ELECTRONIC	71		•	
310		GE OPTIMISER	71			
		GE PERFORMANCE SS				
		STANDARD	96			•
F40T12/RS	34	ADV MARK IV	66	\$20.00		
ENERGY		EBT ELECTRONIC	59	\$25.20		
		GE OPTIMISER	59			
F40T12/RS Energy	32	GE MAXI-MISER II	72			
F40T8/IS STO	40	EBT ELECTRONIC	70			
F32T8/IS	32	EBT ELECTRONIC	58	\$26.90		
ENERGY		T8 MAGNETIC	66			
F96T12/IS	75	GE MAXI-MISER II	158			
STD		EBT ELECTRONIC	130			
		STANDARD	175			
F96T12/IS	60	GE MAXI-MISER II	136			
ENERGY		EBT ELECTRONIC	105	\$35.00		
F96T12/H0	105	GE WATT-MISER	237			
STD		GE MAXI-MISER II	254			
		STANDARD	255			
		EBT ELECTRONIC	190			
F96T12/H0	95	GE MAXI-MISER II	212			
ENERGY		EBT ELECTRONIC	160	\$44.00		
F96PG17						
STD	215	STANDARD	460			
ENERGY	185	STANDARD	400			
F90T17					Sources:	SPECIFICATIONS FROM WANUF. CATALOGS
STD	90	STANDARD	215			MANUF. CATALOGS
ENERGY	82		200			
F90T12	84	STANDARD	200			PRICES FROM VENDOI

PROJECT SUMMARY DATA WATERVLIET ARSENAL

PROJECT: ECO #8

ENERGY EFFICIENT FLUORESCENT LAMPS AND BALLASTS

8A Replace 40-Watt Fluorescents with 34-Watt Lamps Production Areas

-	Existing F40T12 Std. Bal.	Proposed F40T12/WM Std. Bal.	Savings
Number Lamps	308.0	308.0	0.0
Number Fixtures	104.0	104.0	0.0
Number Ballasts	152.0	152.0	0.0
Load, kW	14.8	12.4	2.5
Use, Hrs/yr	0.000	0.000	0.0
Use MBtu/yr	303.7	253.1	50.6
Lamp Repl Cost, \$/yr	97.0	166.0	-69.0
Rebate Amt., \$	0.0	-123.2	123.2

8B Replace 40-Watt Fluorescents with 34-Watt Lamps Replace Standard Ballasts with Energy ~ Efficient Electromagnetic Ballasts Production Areas

	Existing F40T12 Std. Bal.	Proposed F40T12/WM EM Bal.	Savings
Number Lamps	308.0	308.0	0.0
Number Fixtures	104.0	104.0	0.0
Number Ballasts	152.0	152.0	0.0
Load, kW	14.8	9.8	5.0
Use, Hrs/yr	0.000	0.000	0.0
Use MBtu/yr	302.7	200.4	102.4
Lamp Repl Cost, \$/yr	97.0	166.0	-69.0
Rebate Amt., \$	0.0	-3163.2	3163.2

PROJECT SUMMARY DATA WATERVLIET ARSENAL

PROJECT: ECO #8

ENERGY EFFICIENT FLUORESCENT LAMPS AND BALLASTS

8C Replace 40-Watt Lamps and Ballasts with T8 System Production Areas

F40T12 Std. Bal.	Proposed F40T8 Elect. Bal.	Savings
308.0	308.0	0.0
104.0	104.0	0.0
152.0	102.0	50.0
14.8	9.1	5 <i>.7</i>
0.000	0.000	0.0
302.7	185.6	117.1
97.0	193.0	-96.0
0.0	-2203.2	2203.2
	F40T12 Std. Bal. 308.0 104.0 152.0 14.8 6000.0 302.7 97.0	Std. Bal. Elect. Bal. 308.0 308.0 104.0 104.0 152.0 102.0 14.8 9.1 6000.0 6000.0 302.7 185.6 97.0 193.0

8D Replace 40-Watt Fluorescents with 34-Watt Lamps Non-Production Areas

_	Existing F40T12 Std. Bal.	Proposed F4OT12/WM Std. Bal.	Savings
Number Lamps	7845.0	7845.0	0.0
Number Fixtures	3263.0	3263.0	0.0
Number Ballasts	3923.0	3923.0	0.0
Load, kW	376.6	313.8	62.7
Use, Hrs/yr	2750.0	2750.0	0.0
Use MBtu/yr	3534.3	2945.6	588.7
Lamp Repl Cost, \$/yr	1133.0	1942.0	-809.0
Rebate Amt., \$	0.0	-3138.0	3138.0

PROJECT SUMMARY DATA WATERVLIET ARSENAL

PROJECT: ECO #8

ENERGY EFFICIENT FLUORESCENT LAMPS AND BALLASTS

8E Replace 40-Watt Fluorescents with 34-Watt Lamps Replace Standard Ballasts with Energy - Efficient Electromagnetic Ballasts Non-Production Areas

-	Existing F40T12 Std. Bal.	Proposed F4OT12/WM EM Bal.	Savings
Number Lamps	7845.0	7845.0	0.0
Number Fixtures	3263.0	3263.0	0.0
Number Ballasts .	3923.0	3923.0	0.0
Load, kW	376.6	258.9	117.6
Use, Hrs/yr	2750.0	2750.0	0.0
Use MBtu/yr	3534.3	2430.1	1104.2
Lamp Repl Cost, \$/yr	1133.0	1942.0	-809.0
Rebate Amt., \$	0.0	-81598.0	81598.0

8F Replace 40-Watt Lamps and Ballasts with T8 System Non-Production Areas

Existing F40T12 Std. Bal.	Proposed F40T8 Elect. Bal.	Savings
7845.0	7845.0	0.0
3263.0	3263.0	0.0
3923.0	3923.0	0.0
376.6	227.5	149.0
2750.0	2750.0	0.0
3534.3	2135.6	1398.7
1133.0	2266.0	-1133.0
0.0	-81598.0	81598.0
	F40T12 Std. Bal. 7845.0 3263.0 3923.0 376.6 2750.0 3534.3 1133.0	F40T12 F40T8 Std. Bal. Elect. Bal. 7845.0 7845.0 3263.0 3263.0 3923.0 3923.0 376.6 227.5 2750.0 2750.0 3534.3 2135.6 1133.0 2266.0

PROJECT SUMMARY DATA WATERVLIET ARSENAL

PROJECT: ECO #8

ENERGY EFFICIENT FLUORESCENT LAMPS AND BALLASTS

8G Replace 75-Watt Fluorescents with 60-Watt Lamps Production Areas

	Existing F96T12 Std. Bal.	Proposed F96T12/WM Std. Bal.	Savings
Number Lamps	6248.0	6248.0	0.0
Number Fixtures	3124.0	3124.0	0.0
Number Ballasts	3124.0	3124.0	0.0
Load, kW	546.7	509.2	37.5
Use, Hrs/yr	0.000	0.000	0.0
Use MBtu/yr	11195.3	10427.4	767.9
Lamp Repl Cost, \$/yr	4878.0	7410.0	-2532.0
Rebate Amt., \$	0.0	-2499.2	2499.2

8H Replace 75-Watt Fluorescents with 60-Watt Lamps Replace Standard Ballasts with Energy - Efficient Electronic Ballasts Production Areas

	Existing F96T12 Std. Bal.	Proposed F96T12/WM Elect. Bal.	Savings
Number Lamps	6248.0	6248.0	0.0
Number Fixtures	3124.0	3124.0	0.0
Number Ballasts	3124.0	3124.0	0.0
Load, kW	546.7	328.0	218.7
Use, Hrs/yr	6,000	0.000	0.0
Use MBtu/yr	11195.3	6717.2	4478.1
Lamp Repl Cost, \$/yr	4878.0	7410.0	-2532.0
Rebate Amt., \$	0.0	-64979.2	64979.2

PROJECT SUMMARY DATA WATERVLIET ARSENAL

PROJECT: ECO #8

ENERGY EFFICIENT FLUORESCENT LAMPS AND BALLASTS

8I Replace 75-Watt Fluorescents with 60-Watt Lamps Non-Production Areas

F96T12 Std. Bal.	Proposed F96T12/WM Std. Bal.	Savings
1032.0	1032.0	0.0
516.0	516.0	0.0
516.0	516.0	0.0
90.3	84.1	. 6.2
2750.0	2750.0	0.0
847.5	789.3	58.2
369.0	560.0	-191.0
0.0	-412.8	412.8
	F96T12 Std. Bal. 1032.0 516.0 516.0 90.3 2750.0 847.5 369.0	F96T12 F96T12/WM Std. Bal. Std. Bal. 1032.0 1032.0 516.0 516.0 516.0 516.0 90.3 84.1 2750.0 2750.0 847.5 789.3 369.0 560.0

8J Replace 75-Watt Fluorescents with 60-Watt Lamps Replace Standard Ballasts with Energy - Efficient Electronic Ballasts Non-Production Areas

	Existing F96T12 Std. Bal.	Proposed F96T12/WM Elect. Bal.	Savings
Number Lamps	1032.0	1032.0	0.0
Number Fixtures	516.0	516.0	0.0
Number Ballasts	516.0	516.0	0.0
Load, kW	90.3	54.2	36.1
Use, Hrs/yr	2750.0	2750.0	0.0
Use MBtu/yr	847.5	508.5	339.0
Lamp Repl Cost, \$/yr	369.0	560.0	-191.0
Rebate Amt., \$	0.0	-10732.8	10732.8

ECO Name: Replace 40-Watt Fluorescents With 34-Watt Lamps

Production Areas

ECO #: 8A

1991 ECO "bare" costs (fi Material Labor	om cost estimate sheet) \$554 \$693
Subto FICA Insurance (20% of La Sales Tax (not applicable	
Subto Overhead (15%)	otal \$1,386 \$208
Subto	otal \$1,594 . \$159
Subto Bond (1%)	otal \$1,753 \$18
Subto Contingency (10%)	stal \$1,771 \$177
Subtotal (Construction Cost I	nput For LCCID *) \$1,948
SIOH (6% of Construction	Cost) \$117
Subto Design (6% of Construction	•
Total Project Cost	\$2,182

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 40-Watt Fluorescents With 34-Watt Lamps

Replace Standard Ballasts With Energy EM Ballasts

1991 ECO "bare" costs (from cost estimate sheet)

Production Areas

ECO #: 8B

Material	\$3,594
Labor	\$3,885
Subtotal bare costs	\$7,479
FICA Insurance (20% of Labor)	\$777
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$8,256
Overhead (15%)	\$1,238
Subtotal	\$9,494
Profit (10%)	\$949
Subtotal	\$10,443
Bond (1%)	\$104
Subtotal	\$10,547
Contingency (10%)	\$1,055
Subtotal (Construction Cost Input For LCCID *)	\$11,602
SIOH (6% of Construction Cost)	\$696
Subtotal	\$12,298
Design (6% of Construction Cost)	\$696
Total Project Cost	\$12,994

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 40-Watt Fluorescents With 32-Watt Lamps

Replace Standard Ballasts With Electronic Ballasts

Production Areas

ECO #: 8C

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$3,639 \$2,835
Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (not applicable for GOGO)	\$6,474 \$567 \$0
Subtotal Overhead (15%)	\$7,041 \$1,056
Subtotal Profit (10%)	\$8,097 \$810
Subtotal Bond (1%)	\$8,907 \$89
Subtotal Contingency (10%)	\$8,996 \$900
Subtotal (Construction Cost Input For LCCID *)	\$9,896
SIOH (6% of Construction Cost)	\$594
Subtotal Design (6% of Construction Cost)	\$10,490 \$594
Total Project Cost	\$11,084

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

1991 ECO "bare" costs (from cost estimate sheet)

ECO Name: Replace 40-Watt Fluorescents With 34-Watt Lamps

Non-Production Areas

ECO #: 8D

Material	\$14,121
Labor	\$17,651
Subtotal bare costs	\$31,772
FICA Insurance (20% of Labor)	\$3,530
Sales Tax (not applicable for GOGO)	\$0
Subtotal Overhead (15%)	\$35,302 \$5,295
Subtotal	\$40,597
Profit (10%)	\$4,060
Subtotal	\$44,657
Bond (1%)	\$447
Subtotal	\$45,104
Contingency (10%)	\$4,510
Subtotal (Construction Cost Input For LCCID *)	\$49,614
SIOH (6% of Construction Cost)	\$2,977
Subtotal	\$52,591
Design (6% of Construction Cost)	\$2,977
Total Project Cost	\$55,568

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 40-Watt Fluorescents With 34-Watt Lamps

Replace Standard Ballasts With Energy EM Ballasts

1991 ECO "bare" costs (from cost estimate sheet)

Non-Production Areas

ECO #: 8E

Material	\$92,581
Labor	\$100,034.
Subtotal bare costs	\$192,615
FICA Insurance (20% of Labor)	\$20,007
Sales Tax (not applicable for GOGO)	\$0
Subtotal Overhead (15%)	\$212,622 \$31,893
Subtotal	\$244,515
Profit (10%)	\$24,452
Subtotal	\$268,967
Bond (1%)	\$2,690
Subtotal	\$271,657
Contingency (10%)	\$27,166
Subtotal (Construction Cost Input For LCCID *)	\$298,823
SIOH (6% of Construction Cost)	\$17,929
Subtotal	\$316,752
Design (6% of Construction Cost)	\$17,929
Total Project Cost	\$334,681

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 40-Watt Fluorescents With 32-Watt Lamps

Replace Standard Ballasts With Electronic Ballasts

Non-Production Areas

ECO #: 8F

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$122,395 \$100,034
Subtotal bare costs	\$22,429
FICA Insurance (20% of Labor)	\$20,007
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$242,436
Overhead (15%)	\$36,365
Subtotal	\$278,801
. Profit (10%)	\$27,880
Subtotal	\$306,681
Bond (1%)	\$3,067
Subtotal Contingency (10%)	\$309,748 \$30,975
Subtotal (Construction Cost Input For LCCID *)	\$340,723
SIOH (6% of Construction Cost)	\$20,443
Subtotal	\$361,166
Design (6% of Construction Cost)	\$20,443
Total Project Cost	\$381,609

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 75-Watt Fluorescents With 60-Watt Lamps

Production Areas

ECO #: 8G

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$24,680 \$15,620
Subtotal bare costs	\$40,300
FICA Insurance (20% of Labor)	\$3,124
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$43,424
Overhead (15%)	\$6,514
Subtotal	\$49,938
Profit (10%)	\$4,994
Subtotal	\$54,932
Bond (1%)	\$549
Subtotal	\$55,481
Contingency (10%)	\$5,548
Subtotal (Construction Cost Input For LCCID *)	\$61,029
SIOH (6% of Construction Cost)	\$3,662
Subtotal	\$64,691
Design (6% of Construction Cost)	\$3,662
Total Project Cost	\$68,353

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 75-Watt Fluorescents With 60-Watt Lamps

Replace Standard Ballasts With Electronic Ballasts

1991 ECO "bare" costs (from cost estimate sheet)

Production Areas

ECO #: 8H

Material Labor	•	\$134,020 \$93,720
FICA Insurance (20% Sales Tax (not appl:		\$227,740 \$18,744 \$0
Overhead (15%)	Subtotal	\$246,484 \$36,973
Profit (10%)	Subtotal .	\$283,457 \$28,346
Bond (1%)	Subtotal	\$311,803 \$3,118
Contingency (10%)	Subtotal	\$314,921 \$31,492
Subtotal (Construction Co	ost Input For LCCID *)	\$346,413
SIOH (6% of Constru	ction Cost)	\$20 , 785
Design (6% of Const	Subtotal ruction Cost)	\$367,198 \$20,785
Total Project Cost		\$387,983

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 75-Watt Fluorescents With 60-Watt Lamps

Non-Production Areas

ECO #: 8I

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$4,076 \$2,580
Subtotal bare costs	\$6,656
FICA Insurance (20% of Labor)	\$516
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$7,172
Overhead (15%)	\$1,076
Subtotal	\$8,248
Profit (10%)	\$825
Subtotal	\$9,073
Bond (1%)	\$91
Subtotal	\$9,164
Contingency (10%)	\$916
Subtotal (Construction Cost Input For LCCID *)	\$10,080
SIOH (6% of Construction Cost)	\$605
Subtotal	\$10,685
Design (6% of Construction Cost)	\$605
Total Project Cost	\$11,290

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ECO Name: Replace 75-Watt Fluorescents With 60-Watt Lamps

Replace Standard Ballasts With Electronic Ballasts

Non-Production Areas

ECO #: 8J

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$22,136 \$15,480
Subtotal bare costs	\$37,616
FICA Insurance (20% of Labor)	\$3,096
Sales Tax (not applicable for GOGO)	\$0
Subtotal Overhead (15%)	\$40,712 \$6,107
Subtotal	\$46,819
Profit (10%)	\$4,682
Subtotal	\$51,501
Bond (1%)	\$515
Subtotal	\$52,016
Contingency (10%)	\$5,202
Subtotal (Construction Cost Input For LCCID *)	\$57,218
SIOH (6% of Construction Cost)	\$3,433
Subtotal	\$60,651
Design (6% of Construction Cost)	\$3,433
Total Project Cost	\$64,084

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	TECTIU	ATE		DATE PREPAR					
PROJECT	A16	2 13	19Z:	BASIS FOR ESTIMATE					
ENERGY ENGINEERING ANALYSIS									
LOCATION CODE & (Proliminary design)									
ARCHITECT ENGINEER					→ ``c	COOK C (Final			
REYNOLDS, SMITH AIDRAWING NO.	ND HILL			NC.		THER (Specify)			
			L. WAR	OF N		P. Hutchis			
ECOB	QUAN		J. WAR	LABOR		MATERIAL	- Cons		
SUMMARY	NO.	UNI		TOTAL	PER	TOTAL	TOTAL		
FAOTIZ LAMP REPLACEMEN	ik.		1						
& BALLAST REPLACEMENTS		1	1		 				
PRODUCTION AREAS		1							
BA 34 W LAMPS	308	EA	2.25	693	1.80	554	170-		
NO BALLAST REPLACEMENTS		1		<u> </u>	1.30	737	1,247		
		1.							
BB 34 W LAMPS	308	FΑ	2.25	693	1.80	554	1,247		
ENERGY EM BALLATS	152	EA	21.00		20.00				
		.		3,885	1 20.00	3,040	6,232		
8C 32 W LAMPS (TB)	308	EA	2.25	693	2.10	647	1,340		
ELECTRONIC BALLASTS	102	EA	21.00	2,142	29.33	2992			
,				2,835	1-7.22	3639	5,134 6,474		
NON-PRODUCTION AREAS						3031	0, 117		
BD 34 W LAMPS	7845	EA	2.25	17.651	180	14,121	31,772		
NO BALLAST REPLACEMENT					1,00		1 31,112		
BE 34 W LAMPS	7845	EA	2.25	17,651	1.80	14,121	2, 777		
ENERGY EM BALLASTS	3923			87,383	20,00		31,772		
				100; 034	120.00	78,460 92,581	160, 843		
				100,057	1	76,381	192,615		
BF 32 W LAMPS (TB)	7845	EA	2.25	17,651	210	11 2 7 1	21 12-		
ELECTRONIC BALLASTS	3923		21.00	87.383	1 1	16,474	34,125 188,304		
				100,034	2 1,00	122,395			
				-, -, -, r		11 313	222,429		
									
					 				
		$\neg \uparrow$					 		
					 				
					 -				
					 -				
G FORM									

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE HISED

* V.S. GOVERNMENT PRINTING OFFICE , 1959 Q-\$16148

CONSTRUCTION COST				DATE PREPARE	0			
CONSTRUCTION COST	2 13		BASIS FOR ESTIMATE					
ENERGY ENGINEERING		1						
LOCATION CODE A (No deelign completed)								
WVA ARCHITECT ENGINEER				<u> </u>		coo€ c		
REYNOLDS, SMITH AN	D HILLS	S A.E	E.P., I	NC.	0 •	THER (Sp.	city)	
DRAWING NO.		EST	MATOR			CHECKED BY		
	QUANT		C. W.	ARREN	т	<u> </u>		T
ECO 8 SUMMARY	NO.	UNI		TOTAL	PER	MATERIA		TOTAL
	UNITS	MEAS	UNIT	1072	UNIT	701	T A L.	COST
F96TIZ LAMP &	ļ		<u> </u>	ļ				
BALLAST REPLACEMENTS								<u> </u>
						İ		
PRODUCTION AREAS								
							·	
86 60 W LAMPS	6248	EA	750	15,620	3.95	24,		40,300
NO BALLAST REPLACE	30,0		12.00	13,620	3.75	24,	600	70, 508
		†	 		 	 		
8H GO W LAMPS	6248	 	7-		1			
		1	1		3.95	1		40,300
ELECTRONIC BALLASTS	3124	EA	25.00	78,100	35.00			187,440
		-	 	93,720	 	134,	020	227,740
Hou man		-		•	 			
NON-PRODUCTION AREAS	· · · · · · · · · · · · · · · · · · ·	ļ	ļ					
CT.					ļ			
BI GO W LAMPS	1032	EŁ	2.50	2,580	3.95	4,07	16	6,656
NO BALLAST REPLACE								
	•					.•	• .	
BJ 60 W LAMPS	1032	EA	2.50	2,500	3.95	4,0	76	6,656
ELECTRONIC BALLASTI	516	Ę	S2 00	•	35.00			30, 960
·				15,480		22,13		37,616
								.,, 0
								·
						·		
						 		
· · · · · · · · · · · · · · · · · · ·								

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* W.S. GOVERNMENT PRINTING OFFICE . 1918 G-\$1816

23904 279 2491

RS&H

2001

RSH.

Architecture. Engineering and Planning

Reynolds, Smith and Hills, Inc. 4651 Salsour Rose Jacobrose, Feren 32256

FACSIMILE TRANSMITTAL LETTER

DATE 2 10 92 (313) 28 67157 ELECTRONIC BALLAGT TECHNOLOGY-SWANSON4CO. (PARIOS WARREN, PE (213) 534-8214 FAX NO. PTAC NUMBER 599361 PROJECT NUMBER: TASK NO: SENDERS DEPARTMENT NUMBER WE ARE TRANSMITTING L PAGES INCLUDING COVER IF YOU DO NOT RECEIVE ALL PAGES PLEASE TELEPHONE: 904-296-2000 IF YOU WISH TO TRANSMIT FAX COPY TO US PLEASE TELEPHONE: 904-279-2491 I NEED PRICE QUOTES FOR COMMENTS: OF FOLLOWING BALLASTS 25.20ea. SSBI -120- 2/40 UH 5531 - 277 - 2/96 HO LH 3537 - 120 - 2196 IS LIT 5581 - 120 - 296 HO LH 5562 - 120 - 2/32 IS PLEASE QUOTE AGAP -120-3/32 IS LIY 55132 29.33

13012348514 E'B'L' INC.

		0.44	SIVENCENTAL	THE CHAPTER OF THE CH	L.
	1 - 1 - 1	MATLOAT	UNIT	CNIT	
STOCK NUMBER	NOMENCLATURE			1	
624@@@@@@@22	LAMF, INDICATOR, #CM7-7632	-	ЕА	\$ 1.52	
6240000726127	LAMP, INDICATOR, G.E. #253X	۰	ЕA	\$ 3,34	
6240005191152	LAMP, INSIDE FROSI, 50 WATT, 250 VOLT, A19 BULB, MEDIUM BASE, G.E. #50A	-	. EA	\$ 1.16	•
6240010978687	LAMP, LOW FRESSURE SODIUM, CLEAR, T-12 BULB, BASE BTZZD, 90 WATT	-	EA	\$ 31.38	
6240010978686	LAMP, LOW PRESSURE SODIUM, CLEAR, T-17 BULB, BASE BY22D, 55 WATT	F	EA	\$ 21.95	
6240008856852	LAMP, MERCURY, 400 WATTS, E-37 BULB, MOGUL BASE, DELUXE WHITE G.E. #H-400DX33-1	÷	EA	\$ 10.34	
624@@@X@@@@@1	LAMP, QUARTZ, 85 WATTS, 13.8 VOLTS	-	EA	\$ 12.26	
624@@9516643	LAMP, REFRIGERATOR, G.E. #15 S11/AO2	-	EA	96. \$	
6240001863264	LAMP, SHOWCASE, CLEAR, G.E. #40-T10	F	EA	\$ 1.13	
624@@5@425@7	LAMP, SHOWCASE, G.E. #25T6-1/2IF	۰	EA	\$. 4	
624@@9855239	LAMP,40 WATT BULB,NO.T-10,BASE,4-FIN, [?.t.] COOL WHITE,RAFID START,16"DIA., G.E.,#FC16T10/CW/RS	H	EA.	\$ 4.00	
6240001520000	LAMP,40 WATT, 115/125 VOLTS,INSIDE FROST STANDARD BASE.COLOR:RED	. -	Я	£8. ₩	
BE INC. I Space C. T.			ЕA	\$ 1.05	
> 62499898421	LAME, FLOURESCENT, 75 WATTS, T-12 PULE STNGLE PIN BASE, 525 MA, LENGTH 96" F96T127CW	⊢	EA	* 2.60	
624000XB00002	LAMP, FLOURESENT, TUBE, F6T5	- -	EA	# 5°.30	
>624000973823 2	TAME FLUORESCENT 110 VOLTS BULB #T12 BASE RECESS PC, MAX OVERALL LENGTH INCHES F96712/CW/HO HIGH DUTPUT	-	EA	\$ 1.94	
> 6240002477348		⊢	EA	\$ 6.99	

ii C	ļ			7759645266627
± 1.50	EA	F	, amphol ber. BRASS, PULLCHAIN, MED. BASE	
\$ 1.50	ЕА	-	LAMPHOLDER THREE GANG COVER ONLY	6250006906155
	ЕА	-	LAMP, WHITE 7-1/2 WATTS, 120 VOLTS	6240006171713
\$ 5.88	EA	-	LAMP, U SHAPED FLL	>624@@XB1@@@3
æ.	E.A.	-	. LAMP.TRAFFIC SIGNAL,CLEAR,60 WATTS,120 VOLTS,BULB A21	6240005003643
\$ 7.5 <i>0</i>	ЕA	⊢	LAMP,STREET LIGHTING,6000 LUMENEARS RULB 6.6,MOGUL BASE,CLEAR	6240007818372
8 0° 08	EA	-	LAMP,REFLECTOR,INFRE-RED,RED BOWL,250 WATTS,125 VOLTS,OR 120 VOLTS	6240007123090
± 2.26	EA	-	LAMP, INDICATOR, CLEAR, CANDLEABRA BASE 10 WATTS 230 VOLTS, G.E. 1056-10	6240001558001
* .16	EA	-	LAMF,INDICATOR,6 WATTS,110 VOLTS, CLEAR G.E. #656	6240001433049
\$ 4.67	EA .	⊢	LAMF, INCANDESCENT CLEAR, 1/4 WATT, 105-125 VOLT CANDLE BASE	624®®2239®97
® ™ •	EA	-	LAMF, INCANDESCENT 60 WATT, 120 VOLTS MED. SCREW BASE, INSIDE FROSTED, A-19 BULB	6240006354480
4.92	EA	⊢	>6240000671021 LAME FILUDRSCENT TUBE, SFOOT, POWER GROOVE "POWER, SFOOT, POWER GROOVE SAUM. A. 165 WATTS FZ TZAGE	>624øøøø671ø21
98.0	ЕA	 -	LAMP, FLUORESCENT, WATT 14, BULB T-12, MED. BI-PIN BASE, WARM WHITE	6240008200470
4. 00	ЕА	—	LAMP,FLUORESCENT,WATTS 32,BULB NO.T-10 BASE,4-PIN,COOL WHITE,RAPID START,12"DIA	6240005190445
=	EA	-	2400075220BL LAMP, FLUDRESCENT, FOWER GROOVE F96PB17/CW	X2400075220BL
PRICE	ISSUE	MAT-CAT	NOMENCLATURE	STOCK NUMBER
<u> </u>			WALE SELF-SEI BUPFLY CENTER TO SUPPLIES - REPAIR & UTILITY	TIME Ø8:42
GRQ!	HØSDXXLØ14L	I	INDERA TO POTON	

8-30

PAGE

SELF-SERVICE SUPPLY CENTER
- MASTER LIST OF SUPPLIES
- REPAIR & UTILITY

I NO

UNIT TOO TAN

UNIT

· Carrelator

HAMBOXXLMIAL

2.25

₩

ΕA

LAMFHOLDER, FLOODLIGHT, WITHOUT COVER-PLATE

6250002996327 6250006906165

MAK

TIME \$8142

_
36
AF

15.65E

1 the 98:42	WATERUTT DRSEMAL SELF-SERVIT PELY CENTER - MASTER LIST SUPPLIFS - REPAIR A UTILITY	-	HeSpaxice 14t		e form
STOCK NUMBER	NONEMCLATURE	NA Federal	H0581		PRICE
473@@X879@@9	ADAPTER,MALE COPPER SWEAT TO PIPE THREAD 1-1/2"	⊢` •	EA		1.47
8040002254548	ADMESIVE SEALANT, WHITE SILICOME RUBBER CAULKING, F.T.V.	: -	EA	ti` .	2.29
951 <i>@</i> @@X83@@@2	ALL THREADED ROD, 1/4" X 6' LENGHI	-	EA	ŧĤ	9.
5975000001985	ANCHOR, SCREW, PLASTIC, 1"LONG FOR #12X1" SHEET METAL SCREW	÷	ЕА	UI	8. 19.
5340005402270	ANCHOR, WOOD SCREW MULTI SIZE FOR USE WITH #1Ø TO #14 WOOD SCREW, 1-1/2" LONG	⊱	EA	ti	. 06
5975@@69@RB9@	ANCHOR,WOOD SCREW,MULTI SIZE,FOR USE WITH #10 TO #14 WOOD SCREW,1" LONG, DIAMOND #5316	:	EA	U	9 3
81@5@@2811158	BAG, BROWN PAPER 2 LB.	i	풑	űl	3.90
81@5@@5592561	BAG, BROWN PAPER GRUCERS TYPE #1	;	36	(f	5
8105002811163	BAG,GROCERS,35 LB WT,POPULAR WEIGHT,5 LB 500 EACH PACKAGE, 3000 EACH PER BALE	⊢	Ť Ž	tî	3.90
	> 6250006906030 BALLAST, 118 VOLT, 1.55 AMP, G.E.CAT. 761011	-	EA	til	11.76
6250008259422	BALLAST,ADVANCE, 1-14, 15, 20 OR 22 WATT FLOURESCENT, RLQ-120	⊢	ЕĤ	바	5.86
V.625@@@XBB9@34	BALLAST, ELECTRONIC, LIGHTING FOR TWO F927277 VOLT FLOURESCENT CAMPS, SINGLE PIN, MODEL #US-800SS	⊢	EA	Vì	19.10
> 625@@@69@6125	BALLAST, FOR USE WITH TWO, 40 WATT, RAPLD START LAMPS IN SERIES (REF, ADVANCE CAT: ROM 2540) NO SUBSITUTE	⊢	EA	#	7.75
482000X889012	BALLCOCK, FLUIDWASTERR, 400A SERIES	-	ЕA	₩.	7.48
5920006915304	BASE, FUSE CUTOUT, SINGLE POLE, FOR TYPE BRS FUSES, 600 VOLTS FORCELAIN	⊢	ЕA	#	1.54

76:80 AUTI

I FIRM

r -

.

TL' 80 Series Fluorescent Lamps Electrical, Technical and Ordering Data (Subject to change without notice)

Product Number 046677-	Description	Nominal Watts	Bulb	Base	Std Pkg Qty	Lamp Current (Amps)	Color Temp (Kelvin)	Color Rendering (CRI)	Nominal Length (Feet)	Rated Average Life (Hrs) ⁽¹⁾	Approx. Initial Lumens	Design Lumens ⁽²⁾
31980-6	F17T8/TL830	17	T-8	Md. Bipin	25	0.265	3000	85	2	20,000	1400	1300
32304-8	F17T8/TL835	17	T-8	Md. Bipin	25	0.265	3500	85	2	20,000	1400	1300
31983-0	F17T8/TL841	17	T-8	Md. Bipin	25	0.265	4100	85	2	20,000	1400	1300
31984-8	F25T8/TL830	25	T-8	Md. Bipin	25	0.265	3000	85	3	20,000	2250	2100
25798-0	F25T8/TL835	25	T-8	Md. Bipin	25	0.265	3500	85	3	20,000	2250	2100
31989-7	F25T8/TL841	25	T-8	Md. Bipin	25	0.265	4100	85	3	20,000	2250	2100
31991-3	F32T8/TL830	32	T-8	Md. Bipin	25	0.265	3000	85	4	20,000	3050	2850
31993-9	F32T8/TL835	32	T-8	Md. Bipin	25	0.265	3500	85	4	20,000	3050	2850
31994-7	F32T8/TL841	32	T-8	Md. Bipin	25	0.265	4100	85	4	20,000	3050	2850
31996-2	F40T8/TL830	40	T-8	Md. Bipin	25	0.265	3000	85	5	20,000	3800	3550
25799-8	F40T8/TL835	40	T-8	Md. Bipin	25	0.265	3500	85	5	20,000	3800	3550
31998-8	F40T8/TL841	40	T-8	Md. Bipin	25	0.265	4100	85	5	20,000	3800	3550

Average life under specified test conditions with lamps turned off and restarted no more than once every 3 operating hours. Approximate lumens at 40% of rated average life (8000 Hours).

For maximum lumen maintenance, TL 80 Series lamps feature an "electrode guard" around each electrode to effectively reduce lamp darkening and retain a clean appearance for thousands of hours.

Philips Lighting specialists are ready to help.

Philips Lighting has a team of specialists dedicated to commercial/office and retail lighting applications. They can provide a free lighting analysis which demonstrates how Philips TL 80 Series lamps can reduce energy costs in your building and improve the quality of light at the same time.

Call your Philips Lighting representative for a free fluorescent lighting analysis today: 1-800-631-1259.

TL 80 System – lamp specification

"Lamps shall be Philips TL 80 Series lamps having:

- Color rendering index of 85
- T-8 diameter bulb
- Medium bi-pin bases
- · Color temperature of (3000, 3500 or 4100)
- · Initial lumens of (1400, 2250, 3050 or 3800)
- Nominal wattage of __ (17, 25, 32, 40)
- Powered by electronic ballasts designed for 265ma T-8 lamps
- An electrode guard."

Because the 32-watt, T8 lamp would not operate properly on existing forty-watt, 430 ma. ballasts, design of the Octron lamp system was accomplished without the constraints of existing fluorescent systems. The goal was to optimize total system performance to the F40T12 system in a luminaire while reducing wattage significantly. The result is the most efficient full light output energy-saving fluorescent lighting system.

In designing the Octron lamp system, a number of factors did have to be taken into consideration. One was the ballast factor (ratio of light output when operated on commercially-available ballasts as compared to a reference circuit.) The ballast factor of the Octron magnetic ballast was set at nominal .95; rated lumens and lamp wattage were then established.

Other factors considered were the thermal effects, i.e. 2900 rated lumens of the Octron lamp versus the 3050 lumen rating of F40CW lamps, versus the lumen output of the same lamps when operated in a stabilized condition in the luminaire. Then there were the optical effects to be considered, i.e. better lighting control, and the trapping of less light by the fixture walls and bulb itself.

The true metric for comparison of the fluorescent lamps is their actual performance in a lighting system. The data shown in Figure 7 are the result of the systems approach to lamp design taking into consideration all of the above mentioned factors. In these tests, each fluorescent system was operated in the same 4-lamp recessed lensed troffer, in a room ambient temperature of 77°F. The plenum was allowed to stabilize prior to collection of system wattage and relative lumen output data. The F40CW/standard magnetic ballast was used as the base system, and set at 100% Relative Light Output. As Figure 8 illustrates, data were collected concerning watts, Relative Light Output and RLO/watt for each lamp type and ballast tested.

*Results show that Octron lamps operated on magnetic ballasts deliver system efficiency equal to T12 34-watt energy-saving lamps operated on electronic ballasts. Furthermore, the tests show that Octron lamps operated on T8 electronic ballasts provide the highest system efficiency — 166 RLO/watt.

(FIGURE 7)

FIXTURE COMPARISON DATA (77º TEST ROOM - 4-LAMP RECESSED TROFFER, PLASTIC LENS)

LAMP TYPE	BALLAST	BALLAST Factor ¹	WATTS	RELATIVE LIGHT OUTPUT (RLO) ²	RLO/W
SYLVANIA F40CW SYLVANIA 34W	STD. MAGNETIC	.95	174	100	100
SUPERSAVER® D841 SYLVANIA 32W	STD. MAGNETIC	.90	155	95	107
SUPERSAVER PLUS D841	STD. MAGNETIC	.90	144	93	113
SYLVANIA F40CW SYLVANIA 34W	ENERGY SAVING MAGNETIC	.95	162	101	108
SUPERSAVER D841 SYLVANIA 32W	ENERGY SAVING MAGNETIC	.88	139	93	116
SUPERSAVER PLUS D841	ENERGY SAVING MAGNETIC	.88	131	91	122
SYLVANIA 34W SUPERSAVER D841	ELECTRONIC	.75	119	93	136
SYLVANIA FO32 OCTRON®	T8 MAGNETIC	.95	132	104	137
SYLVANIA FO32 OCTRON® 3	T8 ELECTRONIC	.92	106	101	166

- 1 DATA IN TEST NORMALIZED TO BALLAST FACTORS SHOWN IN THIS COLUMN FOR MAGNETIC BALLASTS. FACTORS SHOWN FOR ELECTRONIC BALLASTS ARE MEASURED VALUES OF SAMPLE.
- 2 RELATIVE LIGHT OUTPUT BASED ON INITIAL (100 HOUR) RATED LAMP LUMEN OUTPUT AS OF 8/22/83.
- 3 LIFE RATED AT 15,000 HOURS. ALL OTHER SYSTEMS SHOWN ARE RATED AT 20,000 HOURS.

OCTRON CURVALUME LAMPS

An Octron Curvalume family has been introduced to provide greater lighting design, flexibility and higher efficiency than conventional U-lamp systems having T-12 bulbs. These lamps are available in 16-, 24- and 31-watt sizes and are designed to operate on Octron ballasts available for the 2-, 3-, and 4-foot straight lamps respectively. Their medium bipin bases will fit existing sockets designed for ordinary T-12 Curvalume lamps.

The new size of the Octron Curvalume family allows for the design of more compact luminaires for a wide variety of applications. The tight-bend U-lamps have a center to center leg spacing of $15/_8$ " and have overall lengths of $101/_2$ " for the 16-watt, $161/_2$ " for the 24-watt and $221/_2$ " for the 31-watt lamps. When operated on rapid start magnetic ballasts, the Octron Curvalume lamps have an average rated life of 20,000 hours.

Available in the three standard Octron colors of 3100K, 3500K and 4100K, these lamps may be used in conjunction with other members of the Octron family to fit the varied requirements of a lighting installation. Octron Curvalume lamps also have a color rendering index of 75, common to other Octron lamp types. Table 2, in this bulletin describes the physical, electrical, and photometric performance data for the Octron Curvalume family of lamps.

OCTRON CURVALUME LAMP COLOR & PERFORMANCE DATA

	FE	3016 (16 wa	itt)	FB024 (24 watt)			
Ordering Abbreviation	FB016/31K	FB016/35K	FB016/41K	FB024/31K	FB024/35K	FB024/41K	
Sylvania Item Number	21801	21800	21802	21803	21810	21804	
Correlated Color Temp.	3100K	3500K	4100K	3100K	3500K	4100K	
Color Rendering Index	75	75	75	75	75	75	
Initial Lumens	1250	1250	1250	2050	2050	2050	

FB031 (31 watt)									
Ordering Abbreviation	FB031/31K	FB031/35K	FB031/41K						
Sylvania Item Number	21805	21807	21806						
Correlated Color Temp.	3100K	3500K	4100K						
Color Rendering Index	75	75	75						
Initial Lumens	2800	2800	2800						

EFFECT OF BURNING PERIODS ON LAMP LIFE

Due to slight variations in the lamp making process, it is impossible to have each lamp operate for exactly the life for which it was designed. For this reason, lamp life is rated as the average life of a large group of lamps, operated under controlled laboratory conditions. Average rated life is the point at which approximately 50 percent of the lamps in a large test group have burned out and 50 percent remain burning as shown in Figure 8.

During the operation of a fluorescent lamp, the emissive material is gradually depleted from the cathodes. The normal end of life is reached when there is insufficient emissive material remaining on either cathode to strike the arc. Since published average rated life figures are based on a three hour burning cycle, these ratings reflect the effects of both starting and operating. Changes in the burning cycle will affect life in service. Shorter burning cycles (more frequent starts) shorten lamp life and extended burning cycles (less frequent starts) increase lamp life. Figure 9 lists the average life in hours for Octron fluorescent lamps at various burning cycles. Data is provided for Octron lamps operated at 60Hz. in the rapid start mode as well as for high frequency operation in the instant start mode.

STRAIGHT OCTRON PERFORMANCE DATA

(TABLE I)

	F017	F025	F032	F040	
I. Physical Characteristics Overall Length (A) Face to Face (B) Face to End of	Min. Max.	Min. Max.	Min. Max.	Min. Max.	
	23.67" 23.78"	35.67" 35.78"	47.67" 47.78"	59.50" 59.61"	
	23.22"	35.22"	47.22"	59.05"	
Opposite Pin (C) Bulb Diameter (D) Base Type	23.41" 23.50"	35.41" 35.50"	47.41" 47.50"	59.24" 59.33"	
	.94" 1.1"	.94" 1.10"	.94" 1.10"	.94" 1.10"	
	medium bipin	medium bipin	medium bipin	medium bipin	
II. Electrical Characteristics 60 Hz Rapid Start Lamp					
Rated Power Lumens per Watt Lamp Current Lamp Voltage Lamp Life (3 hrs./start)	17 watts	25 watts	32 watts	40 watts	
	79 LPW	86 LPW	90.6 LPW	91.3 LPW	
	265 ma.	265 ma.	265 ma.	265 ma.	
	73 v.	106 v.	139 v.	172 v.	
	20,000 hrs.	20,000 hrs.	20,000 hrs.	20,000 hrs.	
Ballast Requirements (2-lamp) Starting Time Open Circuit Voltage ¹ Starting Aid Voltage ¹ (peak) Filament Voltage ¹	0.75-2.0 sec.	0.75-2.0 sec.	0.75-2.0 sec.	0.75-2.0 sec.	
	210 -	260	300	385	
	350	350	290	350	
Dummy Load (11 ohms) Operational Lamp Current Crest Factor	3.4-4.5 v.	3.4-4.5 v.	3.4-4.5 v.	3.4-4.5 v.	
	2.5-4.0 v.	2.5-4.0 v.	2.5-4.3 v.	2.5-4.0 v.	
	1.7 max.	1.7 max.	1.7 max.	1.7 max.	
III. Electrical Characteristics 25 KHz Instant Start Lamp					
Rated Power Lumens per Watt Lamp Current Lamp Voltage Lamp Life (3 hrs./start)	14 watts	21 watts	28 watts	35 watts	
	97 LPW	102 LPW	103.6 LPW	104 LPW	
	210 ma.	210 ma.	210 ma.	210 ma.	
	66 v.	101 v.	136 v.	172 v.	
	15,000 hrs.	15,000 hrs.	15,000 hrs.	15,000 hrs.	
Ballast Requirements Open Circuit Voltage Starting Time Current Crest Factor	425 v. min.⁴	425 v. min.⁴	500 v. min.4	575 v. min.4	
	50 ms. max.	50 ms. max.	50 ms. max.	50 ms. max.	
	1.7 max.	1.7 max.	1.7 max.	1.7 max.	
IV. Photometric Characteristics Ordering Abbreviation Sylvania Item Number Correlated Color Temp. Color Rendering Index Initial Lumens Mean Lumens (8000 Hrs) ² Mean Lumens (6000 Hrs) ³	F017/31K F017/41K	F025/31K F025/41K	F032/31K F032/41K	F040/31K F040/41K	
	21830 21831	21828 21829	21825 21824	21826 21827	
	3100K 4100K	3100K 4100K	3100K 4100K	3100K 4100K	
	75 75	75 75	75 75	75 75	
	1350 1350	2150 2150	2900 2900	3650 3650	
	1215 1215	1935 1935	2600 2600	3285 3285	
	1235 1235	1965 1965	2650 2650	3335 3335	

^{1.} For Starting at 50° F and above

^{2.} Mean Lumens at 40% of 20,000 Hr rated Life-Rapid Start Operation

^{3.} Mean Lumens at 40% of 15,000 Hr rated Life—Instant Start Operation—High Frequency Single lamp requirement

OCTRON CURVALUME PERFORMANCE DATA

(TABLE II)

	FB016	FB024	FB031		
I. Physical Characteristics Base face to Outside of glass bend (E) Center to Center of bases (F) Bulb Diameter (G) Base Type	Min. Max. 10.25" 10.60" 1.50" 1.75" .94" 1.10" medium bipin	Min. Max. 16.25" 16.60" 1.50" 1.75" .94" 1.10" medium bipin	Min. Max. 22.25" 22.60" 1.50" 1.75" .94" 1.10" medium bipin		
II. Electrical Characteristics 60 Hz Rapid Start Lamp Rated Power Lumens per Watt Lamp Current Lamp Voltage Lamp Life (3 hrs./start)	16 watts	24 watts	31 watts		
	78 LPW	85 LPW	90 LPW		
	265 ma.	265 ma.	265 ma.		
	67 v.	100 v.	133 v.		
	20,000 hrs.	20,000 hrs.	20,000 hrs.		
Ballast Requirements (2-lamp) Starting Time Open Circuit Voltage¹ Starting Aid Voltage¹ (peak) Filament Voltage¹ Dummy Load (11 ohms) Operational Lamp Current Crest Factor	.75-2.0 sec.	.75-2.0 sec.	.75-2.0 sec.		
	210	260	300		
	350	350	290		
	3.4-4.5 v.	3.4-4.5 v.	3.4-4.5 v.		
	2.5-4.0 v.	2.5-4.0 v.	2.5-4.0 v.		
	1.7 max.	1.7 max.	1.7 max.		
III. Electrical Characteristics 25 KHz Instant Start Lamp Rated Power Lumens per Watt Lamp Current Lamp Voltage Lamp Life (3 hrs./start) Ballast Requirements Open Circuit Voltage Starting Time	13 watts	20 watts	27 watts		
	97 LPW	102 LPW	104 LPW		
	210 ma.	210 ma.	210 ma.		
	61 v.	96 v.	131 v.		
	15,000 hrs.	15,000 hrs.	15,000 hrs.		
	425 v. min. ⁴	500 v. min. ⁴	575 v. min.4		
	50 ms. max.	50 ms. max.	50 ms. max.		
Current Crest Factor IV. Photometric Characteristics Ordering Abbreviation Sylvania Item Number Correlated Color Temp. Color Rendering Index Initial Lumens Mean Lumens (8000 Hrs) ² Mean Lumens (6000 Hrs) ³	1.7 max. FB016/31K FB016/41K 21801 21802 3100K 4100K 75 75 1250 1250 1125 1125	1.7 max. FB024/31K FB024/41K 21803 21804 3100K 4100K 75 75 2050 2050 1845 1845	1.7 max. FB031/31K FB031/41K 21805 21806 3100K 4100K 75 75 2800 2800 2520 2520		

^{1.} For Starting at 50° F and above

^{2.} Mean Lumens at 40% of 20,000 Hr rated Life—Rapid Start Operation
3. Mean Lumens at 40% of 15,000 Hr rated Life—Instant Start Operation—High Frequency

^{4.} Single lamp requirement

Sales Offices

Atlanta, Georgia

2115 Sylvan Road, S.W. Atlanta, Georgia 30344 404-762-1781 Fax: 404-761-7861

Boston, Massachusetts

(Salem-Danvers) 60 Boston Street Salem, Massachusetts 01970 508-777-1900 Fax: 508-741-9528

Buffalo, New York

25 Dewberry Lane Gardenville Ind. Park Buffalo, New York 14224 716-668-7555 Fax: 716-668-8171

Charlotte, North Carolina

3811 North Davidson Street P.O. Box 5246 Charlotte, North Carolina 28225 704-334-4671

Fax: 704-331-9862

Chicago, Illinois (Elk Grove Village) 800 Devon Avenue

Elk Grove Village, Illinois 60007

708-593-3400 Fax: 708-952-1228

Cincinnati, Ohio

5480 Creek Road Cincinnati, Ohio 45242 513-793-6440

Fax: 513-793-1522

Cleveland, Ohio

4848 West 130th Street Cleveland, Ohio 44135 216-267-6800

Fax: 216-267-9791

Dallas, Texas

(Carrollton)
2040 McKenzie Drive
PO. Box 5018
Carrollton, Texas 75011-5018

214-247-7800 Fax: 214-247-4364

Denver, Colorado

4675 Holly Street Denver, Colorado 80216 303-399-1760

Fax: 303-320-0613

Detroit, Michigan

(Dearborn) 10800 Ford Road Dearborn, Michigan 48126 313-582-8754 Fax: 313-581-5422

Hartford, Connecticut

100 Constitution Plaza Hartford, Connecticut 06103

203-249-5823

Honolulu, Hawaii 94-158 Leoole St. Waipahu, HI 96797 808-676-1402

Fax: 808-677-9644

Houston, Texas

1440 Greengrass Drive Houston, Texas 77008 713-869-8671

Fax: 713-869-4574

Kansas City, Kansas

450 Funston Road P.O. Box 2910 Kansas City, Kansas 66115 913-371-3773

Fax: 913-371-2353

Los Angeles, California

6505 East Gayhart Street P.O. Box 2795 Los Angeles, California 90051 213-726-1666

Fax: 213-726-1954

Minneapolis, Minnesota

(Fridley) 5330 Industrial Blvd., N.E. Fridley, Minnesota 55421 612-571-9400

Fax: 612-571-5233

New Orleans, Louisiana

5510 Jefferson Highway New Orleans, Louisiana 70183

504-733-6970 Fax: 504-734-9221

New York, New York

237 Park Avenue, 9th Floor New York, New York 10017

212-503-1000 Fax: 212-972-7371 Orlando, Florida

7492 Chancellor Drive P.O. Box 590327 Orlando, Florida 32859 407-859-6220

Fax: 407-857-6562

Philadelphia, Pennsylvania

(Devon) 465 Devon Park Drive P.O. Box 500 Devon, Pennsylvania 19333

215-293-9330 Fax: 215-687-1440

Pittsburgh, Pennsylvania

450 Butler Street P.O. Box 9544 Pittsburgh, Pennsylvania 15223 412-781-4533 Fax: 412-781-9366

St. Louis, Missouri

(Hazelwood) 5656 Campus Parkway Hazelwood, Missouri 63042 314-731-5515 Fax: 314-731-3334

San Francisco, California

(Hayward) 1455 Crocker Avenue Hayward, California 94544 415-475-6800

Fax: 415-475-6834

Seattle, Washington

750 South Michigan Street Seattle, Washington 98108 206-763-2660

Fax: 206-762-3986

Teterboro, New Jersey

1000 Huyler Street Teterboro, New Jersey 07608 201-288-9484 Fax: 201-288-5605

Washington, D.C.

(Springfield, Va.) 6610 Electronic Drive Springfield, Virginia 22151 703-354-3100

Fax: 703-642-5834

O-362,0390

SYLVANIA LIGHTING SERVICES FIXTURE CONVERSION DATA

	LVANIA LIGITI	ing services	FIXIURE CUI	NVERSION DAI
Fixtures that are "Convertible" to the Octron System	Typical Wattages after Conversion to Octron System	Typical Pre- Conversion T12 System Wattages ¹	Estimated Change in Fixture Wattage with Conversion ²	Estimated Change in Light Output with Conversion ³
1-F20 (2' Fixture) 2-F20 (2' Fixture)	24 Watts w/Mag Ballast	32 Watts w/Std lamp	Down 25%	Up 7 – 10%
	43 Watts w/Mag Ballast	50 Watts w/Std lamps	Down 14%	Up 7 – 10%
3-F20 (2' Fixture)	51 Watts w/Elec Ballasts (67 Watts w/Mag Ballast)	82 Watts w/Std lamps	Down 38%	Up 7 – 10%
	57 Watts w/Elec Ballast (86 Watts w/Mag Ballasts)	100 Watts w/Std lamps	Down 43%	Up 7 – 10%
1-F30 (3' Fixture)	29 Watts w/Mag Ballast	43 Watts w/Std lamp 36 Watts w/SS lamp	Down 33% Down 20%	No Change Up 7 – 10%
2-F30 (3' Fixture)	48 Watts w/Elec Ballast (55 Watts w/Mag Ballast)	75 Watts w/Std lamps 61 Watts w/SS lamps	Down 36% Down 21% -	No Change Up 7 – 10%
-F30 (3' Fixture)	64 Watts w/Elec Ballast (84 Watts w/Mag Ballasts)	118 Watts w/Std lamps 97 Watts w/SS lamps	Down 46% Down 34%	No Change Up 7 – 10%
	84 Watts w/Elec Ballast	150 Watts w/Std lamps 122 Watts w/SS lamps	Down 44% Down 31%	No Change Up 7 – 10%
1-F40 (4' Fixture)	(110 Watts w/Mag Ballasts) 35 Watts w/Mag Ballast	55 Watts w/Std lamp 48 Watts w/SS lamp	Down 36% Down 27%	No Change Up 10 – 14%
2-F40 (4' Fixture) 2-F40 (4' Fixture) 3-F40 (4' Fixture)	62 Watts w/Elec Ballast (67 Watts w/Mag Ballast)	92 Watts w/Std lamps 78 Watts w/SS lamps	Down 33% Down 21%	No Change Up 10 – 14%
4-F40 (4' Fixture)	84 Watts w/Elec Ballast (102 Watts w/Mag Ballasts)	147 Watts w/Std lamps 126 Watts w/SS lamps	Down 43% Down 33%	No Change Up 10 – 14%
	106 Watts w/Elec Ballast	174 Watts w/Std lamps 156 Watts w/SS lamps	Down 39% Down 32%	No Change Up 10 – 14%
2-FB40 (2' x 2' Fixture)	(133 Watts w/Mag Ballasts) 60 Watts w/Elec Ballast (65 Watts w/Mag Ballast)	92 Watts w/Std lamps 78 Watts w/SS lamps	Down 35% Down 23%	No Change Up 10 – 14%
	1	1 Cotimoto in branch		

SYLVANIA

2. Compared to lowest wattage Octron system

Assumes same age of both old & new systems (4100K vs. CW). Does not consider immediate light level improvement provided by relamping.

A Solid Choice for Many Applications

Papidly rising electrical power costs are a concern almost ywhere. And some locations face the added problem of limited power availability. The energy-saving ADVANCE PowrKut Mark IV ballast is an answer for both. What's more, it lets you maintain the basic lighting performance levels for which your present lighting system was originally designed.

By taking advantage of the extensive utility rebate programs available throughout many areas, your acquisition cost may be greatly reduced, too. Making for one of the fastest overall paybacks in ballasting today. Indeed, choosing the new PowrKut Mark IV may be the most logical move you've ever made — it's truly an "all-gain / no-pain" proposition.

ADVANCE® PowrKut Mark IV™ Ballast for Two 4-ft. F-40 Rapid Start Lamps—60 Hz

Lamp Dat	a	Min.							Dimensions (Inches)		No. of	Wt.		
Description	Nom. Watts	Starting Temp. (°F)	Ballast Input Watts	Line Current (Amps)	Circuit (Volts)	Catalog Number (Class P)	Ballast Efficacy Factor	Sound Rating	Length	Width	Height	Mounting	Units Per Std. Ctn.	Std. Ctn. (Lbs.)
(2) F40 (2) F40/U Energy Savers	34	60°	66	.57 .26	120 277	RK-2S40-TPE VK-2S40-TPE	1.33		S giv	2%	172	8 ²⁹ / ₃₂ 4	10	38.
(2) F40T12, (2) F40T10, (2) FB40T12	40	50°	80	.69 .31	120 277	RK-2S40-TP® VK-2S40-TP®	1.16							

ETL verification of performance to specifications in ETL Procedure B30.0 test methods per ANSI Standard C82.2.

Specifications—ADVANCE PowrKut Mark IV Hybrid Electromagnetic Ballast

The ballast shall be ADVANCE PowrKut Mark IV hybrid electromagnetic design incorporating special circuitry to cut off cathode voltage to lamp filaments after the lamps are lit. It shall have an average input of 80 watts when operating 2, F40T12 (40W) rapid start lamps with ballast factor of .95 and average input of 66 watts when operating 2, F40T12 (34W) energy saving rapid start lamps with ballast factor of .88. Performance verified by ETL Laboratories to specifications in ETL Procedural Guide B30.0, using Test Methods of ANSI C82.2.

When operating 2, F40Tl2 (40W) rapid start lamps, Ballast Efficacy, Factor (B.E.F.) shall meet or exceed 1.16; lamp current crest factor shall not exceed 1.6. Ballast shall have a 3-year warranty; design shall provide full rated 20,000 hour lamp life.

Wiring Diagram

O'HARE INTERNATIONAL CENTER 10275 WEST HIGGINS ROAD ROSEMONT, ILLINOIS 60018 TELEPHONE: 708/390-5000 FAX: 708/390-5109 TELEX: 25-4305

A DIVISION OF NORTH AMERICAN PHILIPS CORPORATION

EBT LOW HARMONIC BALLAST GUIDE

RAPID START BALLAST (SERIES CONNECTION)

LAMPS	LAMP TYPE	LAMP LENGTH	LAMP WATTS	INPUT VOLTAGE	LINE AMPS	INPUT WATTS	ORDERING CODE
			34	-120	0.27	31	SSB1-120-1/40 LH
4	F40T12/RS	41	40	44-44	0.33	38	
***	140112/13	7	34	277	0.12	- 31	SSB1-277-1/40 LH
"静脉"			40 :	21 J	0.14	38	30B1-277-1740 E11
	E40T10/D6	144 T.W.	34	100	0.50	59	SSB1-120-2/40 LH
		40T10/DC 4'	40	120	0.60	71	33B1-120-2/40 LN
2	F40T12/RS	* * * * * * * * * * * * * * * * * * *	34	277	0.22	59	SSB1-277-2/40 LH
			40		0.26	71	3361-211-2/40 LM
Northwest Co.		4'	34	400	0.77	90	SSB1-120-3/40 LH
	F40T40/D0		40	-120	0.89	105	SSB1-120-3/40 LH
3	F40T12/RS		34	077	0.33	90	SSB1-277-3/40 LH
			40	277	0.39	105	33B1-277-3/40 LF1
			95	100	1.36	160	SSB1-120-2/96 HO LH
_	F00T40/110	12/HO 8'	110	120	1.62	190	33D1-120-2/90 HO LH
2	F96T12/HO		95	077	0.59	160	SSB1-277-2/96 HO LH
			110	277	0.70	190	3361-211-2/96 HU LH

INSTANT START BALLAST (PARALLEL CONNECTION)

7. F. F. W.			32	331202 5	メ 李0.26 ティ	*42 P 30 P 24	SSB2=120=1/32 IS EH
	FO32T8	7 60	32.3	* 277. July	÷ 11.0 ≤ 5	30x 🦠	SSB2-27751/32 IS EHE
12.16	::FO32T8 🖫	4'	32 ∗	120	0.49	58	SSB2-120-2/32 IS LH
	FO40T8	5'	40 🗒	120	. 0.59	70	33DZ 120 2/32 I3 E I
	FO32T8	4'	32 -	• 277	0.21	58	SSB2-277-2/32 IS LH
	FO40T8	5'	÷ 40		. ∓ ∓ 0.26	70	0002-211-2/32-10-01
3	FO32T8	4'	32	120	0.75	88	SSB2-120-3/32 IS LH
**	FO32T8	4'	32	277	0.32	88	SSB2-277-3/32 IS LH
	#UE03218	9-63 (Care of	32	120	20,90,9	106	SSB24204V824S446
	11:03/21:04/2	28 SZ 12 SE		198277#SS	0.39	106	# \$\$\\\ B2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	4 4 2 4 4		60	120	0.89	105	SSB2-120-2/96 IS LH
2	F96T12/IS	8'	75	. 120	1.11	130	33D2-120-2/90 13 Li 1
*****	F90112/13	0	60	277	0.39	105	SSB2-277-2/96 IS LH
			75	211	0.48	130	33B2-277-2790 13 LA
2	. 40W	22.5"	40 🐍	120 👭	0.55∌	′ ∂65 ∓∖	SSB2-120-2/40 IS LH TT
	(TWIN TUBE)	22.5"	40 🐔	** 277 x	>♥ 0.24	65	SSB2-277-2/40 IS LH TT
	(0)7/	77.4		1/28	1:	100	18/35/64/2018/2018/2019
	er fevigi vanal a ia		19.			0.0	MODERN SELECTION OF THE SECURITY

- * ALSO COMPATIBLE WITH FO25T8 LAMPS
- ** ALSO COMPATIBLE WITH FO40T8 LAMPS
- *** ALSO COMPATIBLE WITH F30T12, OR F25T12 LAMPS
- **** ALSO COMPATIBLE WITH F72T12/HO OR F84T12/HO LAMPS
- ***** ALSO COMPATIBLE WITH F60T12, F70T12 OR F84T12 LAMPS

EBT SPECIAL PRODUCT GUIDE

LAMPS	LAMP TYPE	LAMP LENGTH	LAMP WATTS	INPUT VOLTAGE	LINE AMPS	INPUT WATTS	ORDERING CODE
			34	100	0.53	59	SSB1-120-2/40 MINI
	E40T10/DC	4'	40	120	0.64	71	33B1-120-2/40 WIINI
2	F40T12/RS	4	34	277	0.23	59	SSB1-277-2/40 MINI
			40	277	0.28	71	33B1-277-2/40 WIINI
2	FOOOTO/DC	4'	32	120	0.58	64	SSB1-120-2/32 MINI
**	F032T8/RS	4	32	277	0.25	64	SSB1-277-2/32 MINI
2	FOOOTO/DC	4'	32	120	0.53	62	SSB1-120-2/32 LH
**	F032T8/RS	4	32	277	0.23	62	SSB1-277-2/32 LH
	E000T0/D0	4'	32	120	0.80	94	SSB1-120-3/32 LH
3	F032T8/RS	4	32	277	0.35	94	SSB1-277-3/32 LH
	E017T0/DC	2'	17	120	0.29	34	SSB2-120-2/17 IS
2	F017T8/RS	2	17	277	0.12	34	SSB2-277-2/17 IS
			34	100	0.60	71	SSB1-120-2/40MPX LH
	E40T40/DC	4'	40	120	0.73	86	33B1-120-2/40MFX LIT
2	F40T12/RS	4	34	277	0.26	71	SSB1-277-2/40MPX LH
			40	211	0.32	86	33B1-277-2740WIFX LIT
			34	120	0.56	66	SSB1-120-2/40 LH 100%
١,	F40T40/DC	1	40	120	0.68	80	33B1-120-2/40 E11 100 /0
2	F40T12/RS	4'	34	277	0.24	66	SSB1-277-2/40 LH 100%
*			40 277	0.29	80	33B1-211-2/40 LH 100%	

^{*} ALSO COMPATIBLE WITH F40T12/32W, F30T12, F25T12, 3" AND 6" "U" TUBE LAMPS

The ballast total harmonic distortion level may not be less than 20% when used with the above compatible lamps.

^{**} ALSO COMPATIBLE WITH F025T8, F032T8 LAMPS

RSH.

SUBJECT ECO 10

ENERGY EFFICIENT MOTORS

DESIGNER O LUAPPEN

CHECKER Z.HITLING

BLDG 35

Replace motors in small parts plating line and medium. tube plating line up energy-efficient ones.

ASSUMPTIONS :

- D Consider motors for fans, pumps, blowers >> 3 1412
- 2) Motors rum 24 He/DA, 7 DA/WIK, 52 WIK/YT, MED TURE PLATINGE \$8760 HRS/YR

RUN 24 HR/DA, 5 DA, WK, 52 WK/YR, SMALL PARTS PLATING \$6240 HRS/YR

3 Labor charges are doubled to account for old motor removal time

Preliminary screening calculation using spreadsheat on following page (10-2). Material costs from Reliance 1991 catalog - labor from 1991 Means

=> Consider motors & 100 HP ONLY

ECO #10 - WATERVLIET ARSENAL INSTALL ENERGY EFFICIENT MOTORS

FILENAME: REPEEM

DATE: 29 AUG 91 OPERATING HOURS =

6000

	LIST PRICE	CONTRACTOR	LABOR	MAT'L & LABOR	EFFICIEN	ICES			
MOTOR SIZE (HP)	ENERGY-EFF. ENCLOSED	ENCLOSED	INSTALL MOTOR	PRICE W/ MARKUPS (1991\$)	STD MOTOR	ENERGY-EFF.	SAUTNES		PAYBACK
3	395	296	45	609	77.0%	87 5%		142	
5	478	359	45	703	81.3%				
8		477	48		82.0%				
10	795	596	50	1079	84.0%				
15	1042	782	63	1406	84.8%				
20	1345		77	1799	85.8%				
25	1608		80	2107	86.3%				
30	1905		84	2457	88.0%		7737		3.7
40	2563	1922	100	3259	88.0%				
50	3207	2405	125	4077		93.3%			
60	4487	3365	145	5596	89.3%				
75	5820	4365	170	7193	90.3%				
100	7140	5355	225	8884	90.6%				
125	9275	6956	285	11514	92.3%				
150	10942	8207	335	13579	91.7%			•	
200	12961	9721	400	16096	93.0%				
250	16652	12489	450	20448	93.6%				
300	17748	13311	500	21868	94.1%				13.4
					71.10	JJ•U6	22370	1517	14.4

ASSUMPTIONS: CONTRACTORS DISCOUNT FACTOR = 0.65 FOR STANDARD DUTY, 0.75 FOR ENERGY EFFICIENT

MOTORS ARE TOTALLY ENCLOSED, T-FRAME, 1800 RPM, 460 VOLT, 3 PHASE SAVINGS = HP * 0.746*[(1/ST EFF)-(1/EN EFF)] * HRS/YR * ELECOST

OPERATING TIMES:

24 HR/DA

5 DA/

6000 HRS/YR

ELECTRICITY COST: AVERAGE OF ENERGY & DEMAND CHARGES

\$0.0678 /KWH

SUBJECT ECO 10	AEP NO	190-0379-002
Energy Efficient Motors	SHEET_	OF
DESIGNER 1 2 Worren	DATE	1 7.
CHECKER	DATE	

- Motor list taken from WVA Froperty Records

 WV 12110 Email parts plating

 WV 12050- Medium tube plating
- = KW (SAULIGS) = HP * 1.746 * (1/STO EFFICIENCY /ENERGY EFFICIENCY)
- AUG ELECT COST = \$ 20.35 / MEta

WATERVLIET ARSENAL ECO#10 - INSTALL ENERGY EFFICIENT MOTORS

WV 12110 SMALL PARTS PLATING

				PRESENT MET	HOO		FUTURE ME	THOD		
	NO. HP			ENERGY U	ISE		ENERGY I	JSE	- Savin	GS .
NO.		ь Нь	(KH)	(MBTU/YR)	(\$/YR)	(K₩)	(M8TU/YR)	(\$/YR)	(MBTU/YR)	(\$/YR)
3	3	9	8.7	186	\$3,779	7.7	163	\$3,326	22	\$453
3	5	15	13.8	293	\$5,969	12.6	269	\$5,480	24	\$489
3	7.5	22.5	20.5	436	\$8,871	18.7	398	•		\$771
11	10	110	97.7	2,081	\$42,339	91.0	1,938	•		\$2,910
1	15	15	13.2	281	\$5,722	12.3	262	-		\$387
1	20	20	17.4	371	\$7,541	16.3	347	\$7,052	24	\$489
4	25	100	86.5	1,842	\$37,486	80.8	1,721	\$35,029	121	\$2,457
2	30	60	50.9	1,083	\$22,044	48.3	1,028	\$20,926	55	\$1,118
5	40	200	169.5	3,611	\$73,480	159.9	3,406	\$69,306	205	\$4,174
2	60	120	100.3	2,136	\$43,471	96.2	2,048	\$41,673	88	\$1,798
35		672	578.5	12,320	\$250,702	543.7	11,580	\$235,656	739	\$15,046

WV 12050 MEDIUM TUBE PLATING

				PRESENT MET	HOD		FUTURE ME	THOD		
		 LATOT		ENERGY U	ISE		ENERGY I	SAVINGS		
NO.	НЬ	TOTAL - HP	(KW)	(MBTU/YR)	(\$/YR)	(KW)	(MBTU/YR)	(\$/YR)	(MBTU/YR)	(\$/YR)
4	3	12	8.7	261	\$5,305	7.7	229	\$4,669	31	\$637
6	5	30	27.5	824	\$16,759		756	-		\$1,373
4	7.5	30	27.3	816	\$16,605		745			\$1,442
2	15	30	26.4	790	\$16,067			\$14,980		\$1,087
12	20	240	208.8	5,242	\$127,034	195.2		\$118,792		\$8,243
3	40	120	101.7	3,041	\$61,893	95.9	-	\$58,377		\$3,516
1	60	60	50.2	1,499	\$30,513	48.1	•	\$29,251		\$1,262
32		522	450.6	13,473	\$274,176	421.8	12,610	\$256,617	863	\$17,559
TOTALS	;									
67	7	1193.5	1,029	25,793	\$524,879	96 6	24,190	\$ 492,273	1,602	\$32,605

ELECTRICITY PRICE = \$20.35 /MBTU

OPERATING HOURS PER YEAR MEDIUM TUBE PLATING = 8760

SMALL PARTS PLATING = 3240

ECO Name: ENERGY EFFICIENT MOTORS

ECO #: 10

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$63,817 \$9,038
Subtotal bare costs	\$72,855
FICA Insurance (20% of Labor)	\$1,808
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$74,663
Overhead (15%)	\$11,199
Subtotal	\$85,862
Profit (10%)	\$8,586
Subtotal	\$94,448
Bond (1%)	\$944
Subtotal	\$95,392
Contingency (10%)	\$9,539
Subtotal (Construction Cost Input For LCCID *)	\$104,931
SIOH (6% of Construction Cost)	\$6,296
Subtotal	\$111,227
Design (6% of Construction Cost)	\$6,296
Total Project Cost	\$117,523

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST ESTIMATE				DATE PREPAR	eo -91:		SHEET	/ or	
ENERGY ENGINEERIN	G ANALYS	SIS			BASIS F	OR ESTIM	ATE		
LOCATION WVA ARCHITECT ENGINEER						CODE & (No deelign completed) CODE & (Preliminary deelign) CODE C (Final deelign)			
REYNOLDS, SMITH A	ND HILLS	A.E	.P., 1	INC.		THER (Spi			
DRAWING NO.	ESTIMATOR (). W)A			ARREN	CHECKED BY			hicis	
MOTORS WV12110 SUMMARY	QUANT	TITY LABOR			MATERIAL				
SMALL DARTS PLATING	HO. UNITS	UNIT MEAS.	1	TOTAL	PER	701	AL	COST	
<u>HP</u>	ļ								
3 .	3	<u> </u>	90	270	296	884	î	1159	
5	3	<u> </u>	90	270	359	107	6	1346	
. 7.5	3	ļ	96	288	477	143	<u> </u>	1719	
10	11		100	1100	596	655	9	7659	
15	1 1	•	126	126	782	78	32	903	
20	1		154	154	1009	100	29	1163	
25	4		160	640	1706	48	24	5464	
<u> </u>	Z	·	[68	336	1429	<u> 78:</u>		3194	
40	5		200	1000	1922	96	11	10611	
60	2		290	580	3365	67		7311	
	35			4764		357	168	210,532	
UV 12050				<u> </u>					
MED, TUBE PLATING									
3	4		90	360	296	/18	4	1544	
5	6		90	540	359	-215		2694	
7.5	4		96	384	477	190		2292	
15	2		126	· 252:	78Z	156	\	1816	
20	12.		154	1848	1009	1210		13956	
40	3		200	600	1922	576	م د	6366	
60			290	290	3365	334	5	3655	
	32			4274		780	19	37323	
TOTALS -	67			9,038	·	63,8	/7	72,855	

FORM 150								····	

I AUG SP 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE HIGH

* U.S. GOVERNMENT PRINTING OFFICE . 1919 0-416148

RSH
®

SUBJECT WVA - Bldgs. 40,44 : 125	AEP NO 290-0379-002
Replace Electric Boilers	SHEETOF
DESIGNER W.T. Todd	DATE 1-31-92
CHECKED	DATE

巨00 出12

Replace Electric Boilers with Natural Gas Boilers

·The electric boilers located in Buildings 40,44, 125N and 125s are used for humidification purposes. The boiler sizes are 90 KW, 210 KW, 58 KW and 58 KW, respectively.

By replacing these boilers with boilers that utilize natural gas the cost for energy to humidify this building will be reduced by over \$15 per mbtu.

The annual hours that humidification is required was calculated by a spreadsheet computer program. the results are shown on page 3. Assuming an operating diversity of 0.30, the boilers will operate":

5862 hrs/yr x 0.30 = 1759 hrs/year

Current energy use (Electricity):

416 KW × 1759 Hrs = 731,744 KWH/year

731,744 KWH/yr x 3413 Btuh x 1 mBtu = 2497.4 mtu/yr

Future energy use (Northral Coas):

2497.4 mRty :0.80 (eff.) = 3121.8 mBtn/yr

SUBJECT WVA - 12/dgs. 40,44 : 125	AEP NO _
Replace Electric Boilers	SHEET
DESIGNER W.T. Todd	DATE

AEP NO	290-0379-002
SHEET _	OF
DATE	1-31-92
DATE	

The Future energy use calculation assumes the same output will be required and the efficiency of the N.G. boiler is 80%.

Energy Savings = Current energy use - Future energy use

Electricity Savings = 2497.4 mBtn - 0 = 2497.4 mRtn.

Natural Gas Savings = $O - 3121.8 \frac{mBtn}{yr} = \frac{(3121.8) \frac{mBtn}{yr}}{}$

Total Savings:

Energy: 2497.4 mBth/yr-3121.8 meth/yr = (624.4) meth/yr

Project Implementation Cost:

Total Project Cost = \$49,944

See Cost Estimate Sheets For details

RSH.

SUBJECT ECO #12	AEP NO
	OF
DESIGNER	DATE
CHECKER	DATE

QRIP Calculations

Present Method

Proposed Method

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY

01/31/92

IMPUTC.	• \	David Barri Hart HIAO Carrieta	7 Davis Wash
INPUISE	1)	Days Per Week That HVAC Operates	7 Days/Week
	2)	Summer Room Dry Bulb Temperature	75 ' F (db)
		Room Wet Bulb Temperature	63 °F (wb)
	3)	Winter Room Dry Bulb Temperature	68 ' F (db)
		If RH Controlled, wb Temp.	57 °F (wb)
		and Ground Water Temperature	50 ' F
	4)	Outside Air Quantity (cfm)	1 cfm
	5)	HVAC Oper. Hrs/Shft: 12 M -> 8 AM	8 Hrs/Shift
		8 AM -> 4 PM	8 Hrs/Shift
		4 PM -> 12 M	8 Hrs/Shift

Temp	Temperature		mperatures		Hours	of Occu	rrence	Total	Total Outside Air Load (MBtu/Oper.			
db-R	ange	wb	00-08	08-16	16-24	Hours	Cooling	Dehumid	Heating	Humid.		
120	124					0	0.0000	0.0000	0.0000	0.0000		
115	119					0	0.0000	0.0000	0.0000	0.0000		
110	114					0	0.0000	0.0000	0.0000	0.0000		
105	109					0	0.0000	0.0000	0.0000	0.0000		
100	104					0	0.0000	0.0000	0.0000	0.0000		
95	99	75	0	7	0	. 7	0.0002	0.0001	0.0000	0.0000		
90	94	72	0	28	6	34	0.0006	0.0004	0.0000	0.0000		
85	89	71	0	95	28	123	0.0016	0.0018	0.0000	0.0000		
80	84	88	4	177	73	254	0.0020	0.0024	0.0000	0.0000		
75	79	66	27	248	140	415	0.0009	0.0032	0.0000	0.0000		
70	74	64	115	257	222	594	0.0000	0.0039	0.0000	0.0000		
65	69	61	234	235	271	740	0.0000	0.0019	0.0000	0.0000		
60	64	57	263	212	252	727	0.0000	0.0000	0.0048	0.0000		
55	59	52	274	190	236	700	0.0000	0.0000	0.0085	0.0009		
50	54	48	263	183	214	660	0.0000	0.0000	0.0116	0.0036		
45	49	43	242	183	205	630	0.0000	0.0000	0.0146	0.0069		
40	44	38	229	202	205	636	0.0000	0.0000	0.0182	0.0099		
35	39	34	261	241	251	753	0.0000	0.0000	0.0257	0.0133		
30	34	30	295	220	262	777	0.0000	0.0000	0.0308	0.0152		
25	29	25	216	156	191	563	0.0000	0.0000	0.0254	0.0128		
20	24	20	163	112	130	405	0.0000	0.0000	0.0205	0.0103		
15	19	16	110	79	96	285	0.0000	0.0000	0.0160	0.0074		
10	14	11	84	43	65	192	0.0000	0.0000	0.0118	0.0053		
5	9	6	60	27	38	125	0.0000	0.0000	0.0084	0.0036		
0	4	2	37	16	22	75	0.0000	0.0000	0.0054	0.0022		
-5	-1	-3	27	3	9	3 9	0.0000	0.0000	0.0030	0.0012		
-10	-6	-8	10	0	4	14	0.0000	0.0000	0.0012	0.0004		
-15	-11	-13	5	0	0	5	0.0000	0.0000	0.0004	0.0002		
-20	-16	-17	3	0	0	3	0.0000	0.0000	0.0003	0.0001		
-25	-21					0	0.0000	0.0000	0.0000	0.0000		
-30	-26					0	0.0000	0.0000	0.0000	0.0000		
-35	-31					0	0.0000	0.0000	0.0000	0.0000		
-40	-36					0	0.0000	0.0000	0.0000	0.0000		
-45	-41					0	0.0000	0.0000	0.0000	0.0000		
	Total	s	2922	2914	2920	8756	0.0053	0.0138	0.2066	0.0935		
Total	oper	ating	hours for	each sy	stem		833	2167	6589	5862		

DATE PREPARED 1-31-92 SHEET CONSTRUCTION COST ESTIMATE BASIS FOR ESTIMATE PROJECT ENERGY ENGINEERING ANALYSIS CODE A (No design completed) LOCATION CODE & (Preliminary deelgn) WATERVLIET ARSENAL CODE C (Final design) ARCHITECT ENGINEER OTHER (Specify) REYNOLDS, SMITH AND HILLS CHECKED BY ESTIMATOR DRAWING NO. W. T. Todd MATERIAL QUANTITY LABOR REPlace Ele. Boiler SUMMARY TOTAL PER NO. COST TOTAL TOTAL UNIT Bldas. 40 & 125 UNITS 2640 1125 2640 3765 EA 1125 320 MBH Gas-fired Boiler 3680 5410 2 EA 865 1730 1840 203 mBH Gas-Fired Boiler 354 405 Automatic Flue Damper 51 118 EA 3 17 184m (1) 1098 5,00 450 6" & Gal. Steel Flue Chimne 648 90 VLF 7.20 Sch. 40 Rlack Steel Pipe 3.98 3354 300 7.20 2160 1194 Electric Switching 273 485 1455 1723 EA 91 63 9 27 36 6" Roof Flashing 3 EA 12 -0--0-1200 3 EA Remove Exist. 400 1200 1223 1167 56 389 EA 18.55 Pressure Regulator #10.967 #7279 18246 Subtotal (ost Data Means Machanical Cost 20% added for fitting includes rain 0% added flow Fittinds #25 parhoud for

ENG FORM 150 1 AUG 59

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* U.S. GOVERNMENT PRINTING OFFICE . 1958 0-\$18148

(TRANSLUCENT)

151 M

158 M

38 M

162 E

135 m

201 m

		CONSTRUCTION COST E	STIMAT	E.		DATE PREPARED	92	SHEET	5 of
		PROJECT						R ESTIMATE	
		ENERGY ENGINEERING ANALYSIS					1 –	CODE A (No deels	1
	i	WATERVLIET ARSENAL					. —	CODE C (Final de	
		ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS				00	THER (Specify)	
		DRAWING NO.		ESTIM	ATOR	T. Todd		CHECKED BY	
			QUANTI	TY	٧٧.	LABOR		MATERIAL	
		Replace Elec. Boilersummary	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	TOTAL	COST
V 151		Building 44 765 MBH Gas-Fired Roiler	1	EA	1725	1725	5740	5740	7465
n 158		Automatic Flue Damper	i	EA	18	18	128		146
1184			30	VLF	8.28	249	8.21	247	496
n 88		Sch. 40 Blk. Steel Pipe	50	LF	7.20	360	3.98	199	559
1101		Pressure Regulator	1	EA	18.55	19	389	399	403
1185		B'd Roof Flashing	1	EA	13.85	14	12.40	13	27
: 162		Electric Switching	1	EA	91	91	485	435	576
	(3)	Remove Exist. Roiler	l	EA		400	-0-	-0-	400
MIS	. •	Excavate & Backfill Trench, 8"	150	LF	0.21	32	0.17	26	58
m22	(2)	Sch. 40 Stell, Coated Pipe	l .	LF	3.34	518	4.21	653	1171
MZa		Crushed Stone Bedding, 6"	2	CY	3.01	6	14-17	29	35
)	1 '					ļ		#
•		Subtotal		<u> </u>		#3432		#7909	\$11,341
				ļ			ļ		
					ļ		<u> </u>		
					ļ		 		-
				-					
				 			<u> </u>		
			<u> </u>	╂	 -				
			<u> </u>	-	ļ.,,		10		
		Source: Means N					1	191	
1		Means E	ectri	cal	LOS	t Bata, 1	791		
				 					
		(s) 0 = 00 1 F	C.4	4			1.	- 0	
		(1) 20 % added for	TIT	ying	15 , (ncinaes	rain	I Cap	
		(2) + 1 (1)	2 2		000	nd C	111.	1.	
•		(2) Includes Hangars	1, 40	10_	naa	au tos t	T CCI	ng s	
		(3) 2 men at \$25 /	100	1		7 1.	-		
	}	(3) 2 men at \$25 /	Jev V	TOUV	7 +01	Lacys	-		

ENG FORM 150 1 AUG 59

MIS

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

(TRANSLUCENT)

02/05/92

ECO Construction Cost Estimate Calculations

ECO Name: Replace Electric Boilers with Natural Gas Boilers

ECO #:

1991 ECO "bare" co Material Labor	sts (from cost estimate sheet)	\$18,876 \$10,711
FICA Insurance (20 Sales Tax (Not App		\$29,587 \$2,142 \$0
Overhead (15%)	Subtotal	\$31,729 \$4,759
Profit (10%)	Subtotal	\$36,488 \$3,649
Bond (1%)	Subtotal	\$40,137 \$401
Contingency (10%)	Subtotal	\$40,538 \$4,054
Subtotal (Construction	Cost Input For LCCID *)	\$44,592
SIOH (6.0% of Cons	truction Cost)	\$2,676
Design (6.0% of Co	Subtotal onstruction Cost)	\$47,268 \$2,676
Total Project Cost	-	\$49,944

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

RSH	_
	B

SUBJECT _	WVA - Building 120
Red	uce Air Flow-AHU1
DESIGNER	W. T. Todd

AEP NO 290-0379-002

SHEET 0F 8

DATE 12-24-91

ECO#13

Reduce Air Flow from AHU 1

The design air flow based on the "As Built" drawings is 6250 cfm, with a minimum of 930 cfm of outdoor air.

Measurements were taken on the supply air clucts. The calculations to determine the air flow were done on a spreadsheet and the results are displayed on page 13-4. The results indicate the total supply air flow for AHUI to be approximately 8230 cfm, an increase of 1980 cfm over the design value.

It is assumed that the minimum outdoor air flow is now higher than the design amount by the same percentage:

$$\frac{\text{Min. O.A.}}{8250 \text{ CFm}} = \frac{930 \text{ CFm}}{6250 \text{ CFm}} = 0.149$$

Min. O.A. = 1225 cfm

The excess O.A. must be heated in the winter and cooled in the summer. The energy required to do this was calculated using a spreadsheet computer program with bin temperatures and the following equation:

$$Q_s(MBtu/y_r) = \frac{Hrs}{y_r} * 1.10 * 0.A. Cfm * \Delta T$$

$$Q_L(M6tu/y_r) = \frac{Hrs}{y_r} * 0.69 * 0.A. Cfm * \Delta W$$

$$\frac{1/3-17}{1/3-17}$$

RSH.

SUBJECT WVA - BIda, 120	AEP
Reduce Air Flow	SHE
DESIGNER W.T. Todd	DAT

The results are shown on pages 13-5 and 13-6.

Current energy use (using COP= 3.23, Boiler eff = 0.80):

Cooling: 11.83 meta x 0.31 = 3.7 Meta/yr, Electricity

Heating: 82.49 meth : 0.80 = 103.1 moth/yr, Fuel. Oil #6

Fan: 7.0 A × 480 V × 1.47 × 1 kw = 4.9 kw

4.9 KW × 3125 h/ × 0.003413 meta = 52.3 mBtu / Electricity

Future energy use:

Cooling: 8.98 meta x 0.31 = 2.8 meta; Electricity

Heating: 62.62 msta : 0.80 = 78.3 msta, Fuel Oil #6

Fan: $\frac{Cfm_1}{Cfm_2} = \frac{rpm_1}{rpm_2} \Rightarrow \frac{6250}{8320} = \frac{Rpm_1}{997} \Rightarrow Rpm_1 = 749$

$$\frac{\rho_1}{\rho_2} = \left(\frac{r\rho m_1}{r\rho m_2}\right)^3 \Rightarrow \frac{\rho_1}{7A} = \left(\frac{749}{997}\right)^3 \Rightarrow \rho_1 = 3.0 A$$

3.0 A × 480 V × 1.47 × TKW = 2.1 KW

2.1 kw × 3125 hr/yr × 0.003413 m8th = 22.4 meta Flectricity

Energy Savings = Current energy use - Future energy use

RSH	7
	®

SUBJECT ECO # 13	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

QRIP Calculations.

Present Method Cost

Proposed Wethod Cost

Efec =
$$(2.8+22.4) \times 20.35$$
 = $\# 513$
 $\# 6F.0.$ = 783×4.4 = 345
TOTAL $\# 860$

SUBJECT WVA - Plag. 120	AEP NO 290-0379-002
Reduce Air Flow	SHEET3OF
DESIGNER W. T. Todd	DATE
CHECKED	DATE

Electrictity Savings:

Project Implementation Cost:

12/24/91

Watervliet Arsenal - Energy Study Filename: B120AHU1.WQ1

Building 120 AHU 1 Analysis

Zone	Measured P(v)	Velocity FPM	Duct in >		Area SqFt	Measured CFM	Design CFM	CFM Diff.
1	0.1007	1271	14	14	1.36	1730	1240	490
2	0.0467	865	14	16	1.56	1346	1200	146
3	0.1039	1291	10	18	1.25	1614	1000	614
4	0.0162	510	10	14	0.97	496	600	-104
5	0.0294	687	10	14	0.97	668	700	-32
6	0.1167	1368	8	10	0.56	760	450	310
7	0.1542	1573	8	10	0.56	874	360	514
8	0.0343	742	12	12	1.00	742	700	42
				Ţ	otals	8230	6250	1980

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY

01/31/92

INPUTS:	1)	Days Per Week That HVAC Operates	5 Days/Week
	2)	Summer Room Dry Bulb Temperature	75 °F (db)
		Room Wet Bulb Temperature	63 °F (wb)
	3)	Winter Room Dry Bulb Temperature	68 °F (db)
		If RH Controlled, wb Temp	· 'F (wb)
		and Ground Water Temperature	<u> </u>
	4)	Outside Air Quantity (cfm)	1225 cfm
	5)	HVAC Oper. Hrs/Shft: 12 M -> 8 AM	2 Hrs/Shift
		8 AM -> 4 PM	8 Hrs/Shift
		∆ PM -) 12 M	2 Hrs/Shift

Temp	eratu	res	Hours	of Occu	rrence	Total	Outside Air Load (MBtu/Yr)		r)	
db-R	ange	wb	00-08	08-16	16-24	Oper. Hours	Cooling	Dehumid	Heating	Humid.
120	124					0	0.0000	0.0000	0.0000	0.0000
115	119					0	0.0000	0.0000	0.0000	0.0000
110	114					0	0.0000	0.0000	0.0000	0.0000
105	109					0	0.0000	0.0000	0.0000	0.0000
100	104					0	0.0000	0.0000	0.0000	0.0000
95	99	75	0	7	0	5	0.1482	0.1213	0.0000	0.0000
90	94	72	0	28	6	21	0.4827	0.3402	0.0000	0.0000
85	89	71	0	95	28	73	1.1781	1.3278	0.0000	0.0000
80	84	68	4	177	73	140	1.3222	1.5936	0.0000	0.0000
75	79	66	27	248	140	207	0.5578	. 1.9769	0.0000	0.0000
70	74	64	115	257	222	244	0.0000	1.9728	0.0000	0.0000
65	69	61	234	235	271	258	0.0000	0.8036	0.0000	0.0000
60	64	57	263	212	252	243	0.0000	0.0000	1.9678	0.0000
55	59	52	274	190	236	227	0.0000	0.0000	3.3615	0.0000
50	54	48	263	183	214	216	0.0000	0.0000	4.6547	0.0000
45	49	43	242	183	205	211	0.0000	0.0000	5.9576	0.0000
40	44	38	229	202	205	222	0.0000	0.0000	7.7703	0.0000
35	39	34	261	241	251	264	0.0000	0.0000	11.0100	0.0000
30	34	30	295	220	262	257	0.0000	0.0000	12.4480	0.0000
25	29	25	216	156	191	184	0.0000	0.0000	10.1715	0.0000
20	24	20	163	112	130	132	0.0000	0.0000	8.2019	0.0000
15	19	16	110	79	96	93	0.0000	0.0000	6.4059	0.0000
10	14	11	84	43	65	57	0.0000	0.0000	4.3255	0.0000
5	9	6	60	27	38	37	0.0000	0.0000	3.0237	0.0000
0	4	2	37	16	22	22	0.0000	0.0000	1.9534	0.0000
-5	-1	-3	27	3	9	9	0.0000	0.0000	0.8201	0.0000
-10	-6	-8	10	0	4	3	0.0000	0.0000	0.2560	0.0000
-15	-11	-13	5	0	0	1	0.0000	0.0000	0.0975	0.0000
-20	-16	-17	3	0	0	1	0.0000	0.0000	0.0621	0.0000
-25	-21					0	0.0000	0.0000	0.0000	0.0000
-30	-26					0	0.0000	0.0000	0.0000	0.0000
-35	-31					0	0.0000	0.0000	0.0000	0.0000
-40	-36					0	0.0000	0.0000	0.0000	0.0000
-45	-41					0	0.0000	0.0000	0.0000	0.0000
	Total	s	2922	2914	2920	3125	3.6890	8.1363	82.4875	0.0000
otal	oper	ating h	nours for	each sy	⁄stem		446	948	2177	C

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY 01/31/92

INDUTC	1.1	Days Per Week That HVAC Operates	5 Days/Week
INPUTS:		·	
	2)	Summer Room Dry Bulb Temperature	75 ' F (db)
		Room Wet Bulb Temperature	63 °F (wb)
	3)	Winter Room Dry Bulb Temperature	68 ° F (db)
		If RH Controlled, wb Temp	' F (wb)
		and Ground Water Temperature	·F
	4)	Outside Air Quantity (cfm)	7930 cfm
	5)	HVAC Oper. Hrs/Shft: 12 M → 8 AM	2 Hrs/Shift
		8 AM -> 4 PM	8 Hrs/Shift
		4 PM → 12 M	2°Hrs/Shift

Temperati	ıres	Hours	of Occu	rrence	Total Oper.	Outside Air Load (MBtu/Yr)		r)	
db-Range	wb	00-08	08-16	16-24	Hours	Cooling	Dehumid	Heating	Humid.
120 124					0	0.0000	0.0000	0.0000	0.0000
115 119					0	0.0000	0.0000	0.0000	0.0000
110 114					0	0.0000	0.0000	0.0000	0.0000
105 109					0	0.0000	0.0000	0.0000	0.0000
100 104					0	0.0000	0.0000	0.0000	0.0000
95 99	75	0	7	0	5	0.1125	0.0921	0.0000	0.0000
90 94	72	0	28	6	21	0.3665	0.2583	0.0000	0.0000
85 89	71	0	95	28	73	0.8944	1.0080	0.0000	0.0000
80 84	86	4	177	73	140	1.0038	1.2099	0.0000	0.0000
75 79	66	27	248	140	207	0.4234	1.5008	0.0000	0.0000
70 74	64	115	257	222	244	0.0000	1.4977	0.0000	0.0000
65 69		234	235	271	258	0.0000	0.6101	0.0000	0.0000
60 64	57	263	212	252	243	0.0000	0.0000	1.4939	0.0000
55 59		274	190	236	227	0.0000.	0.0000	2.5520	0.0000
50 54		263	183	214	216	0.0000	0.0000	3.5337	0.0000
45 49		242	183	205	211	0.0000	0.0000	4.5229	0.0000
40 44		229	202	205	222	0.0000	0.0000	5.8991	0.0000
35 39		261	241	251	264	0.0000	0.0000	8.3586	0.0000
30 34		295	220	262	257	0.0000	0.0000	9.4503	0.0000
25 29		216	156	191	184	0.0000	0.0000	7.7220	0.0000
20 24		163	112	130	132	0.0000	0.0000	6.2268	0.0000
15 19		110	79	96	93	0.0000	0.0000	4.8633	0.0000
10 14		84	43	65	57	0.0000	0.0000	3.2838	0.0000
5 9		60	27	38	37	0.0000	0.0000	2.2955	0.0000
0 4		37	16	22	22	0.0000	0.0000	1.4830	0.0000
-5 -1	-	27	3	9	9	0.0000	0.0000	0.6226	0.0000
-10 -6		10	0	4	3	0.0000	0.0000	0.1944	0.0000
-15 -11		5	0	0	1	0.0000	0.0000	0.0740	0.0000
-20 -16		3	0	0	1	0.0000	0.0000	0.0471	0.0000
-25 -21					0	0.0000	0.0000	0.0000	0.0000
-30 -26					0	0.0000	0.0000	0.0000	0.0000
-35 -31					0	0.0000	0.0000	0.0000	0.0000
-40 -36					0	0.0000	0.0000	0.0000	0.0000
-45 -41					0	0.0000	0.0000	0.0000	0.0000
Tota	ıls	2922	2914	2920	3125	2.8006	6.1769	62.6231	0.0000
Total ope	rating	hours for	each s	ystem		446	948	2177	0

CONSTRUCTION COST ESTIMATE DATE PREPARED 2 - 3					1-91	SHEET	7 of
PROJECT ENERGY ENGINEERING	ANAL VC	10				R ESTIMATE	
LOCATION	CODE A (No design completed)						
WATERVLIET AR	. —	CODE C (Finel de	1				
ARCHITECT ENGINEER REYNOLDS, SMITH AND	HILLS				°	THER (Specily)	
DRAWING NO.		ESTIM		Todd		CHECKED BY	1
	QUANT	1		LABOR *		MATERIAL *	
Reduce Air Flow SUMMARY	NO. UNITS	UNIT	PER	TOTAL	PER	TOTAL	COST
·							
Balance Air For							
multizone A/c and							
heating unit	1	Ea.	174	174	44	44	218
Meach vig	· •						•
Balance air for							
7 additional zones	7	Ea.	39	273	10	70	343
Subtotal				447		114	# 561
					<u> </u>		
					ļ		
					ļ		
		<u> </u>					
		ļ			<u> </u>		
					<u> </u>		
		<u> </u>			<u> </u>		
Source: Means M Page 2	chan	ca	Cos	t Data	1,19	3 9 <i>1</i>	
Page 2	63	 71	15	601 2500	9 = 2	2600	
۸. ۸	ļ.,	+	 		 		ļ.,
* Assumi	ng L	abo	VI	\$ 80 % <u>.</u>	bt >	total co	\$t
							0
* Costs	ave	rea	uce	by 13	16 to	or Overn	Cad
and	PY 1	7	b +	ola trotit	to	obtain	oare" costs
		-	-		-		
	 	╁	 				
	<u> </u>	 			-		
		+	 		1		
	 	+-			+		
			<u> </u>			1	أدب والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف والمناف وا

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

* U.S. GOVERNMENT PRINTING OFFICE . 1959 Q--\$16146

(TRANSLUCENT)

02/05/92

ECO Construction Cost Estimate . Calculations

ECO Name: Reduce Air Flow, AHU 1, Building 120

ECO #: TBD

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$114 \$447
Subtotal bare costs	\$561
FICA Insurance (20% of Labor)	\$89
Sales Tax (Not Applicable For GOGO)	\$0
Subtotal	\$650
Overhead (15%)	\$98
Subtotal Profit (10%)	\$748 \$75
Subtotal	\$823
Bond (1%)	\$8
Subtotal	\$831
Contingency (10%)	\$83
Subtotal (Construction Cost Input For LCCID *)	\$914
SIOH (6.0% of Construction Cost)	\$55
Subtotal	\$969
Design (6.0% of Construction Cost)	\$55
Total Project Cost	\$1,024

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

SUBJECT _	WVA - Building 115
Rep	lace old Cent. Chiller
DESIGNER	W. T. Todd
CUECKED	

FCC0 #14

Replace Old Electric Centrifugal Chiller

The centrifugal chillers in Building 115 are about 20 years old. The efficiencies of chillers at that time was approximately 1.0 to 1.2 KW/ton. Through the years technology has improved the efficiency of centrifugal chillers to about 0.7 KW/ton.

By replacing the old chiller with a new one, the efficiency would increase by (1-1 km/ton-0.7 km/ton) = 0.4 km/ton.

According to the Bin Temperature Data for Albany, NY, the outside air temperature is above 570F for 3594 hours per year. Assuming an operating diversity of 0.40, the chiller will operate:

3594 hr/yr x 0.40 = 1438 hr/yr

Current Energy use (Electricity):

 $185 + cons \times 1.1 + \frac{K\omega}{Ton} \times 1438 + \frac{hv}{yv} = 292,633 + \frac{KwH}{yv}$

292,633 KWH × 3413 Rtn × 1 mBtn = 998.8 metu/yr

SUBJECT	WVA - Building 115
Re	place old Cent. Chiller
DESIGNER	W. T. Todd

AEP NO 290-0379-002

SHEET 2 OF DATE 2-4-92

$$185 \text{ ton} \times 0.7 \frac{\text{kw}}{\text{ton}} \times 1438 \frac{\text{h-}}{\text{yr}} = 186,221 \frac{\text{kwH/yr}}{\text{yr}}$$

Electricity Savings:

Project Implementation Cost:

Sec cost estimate sheets for details

CONSTRUCTION COST ESTIMATE Date prepared 2 - 4 -							SHEET	3 of	
PROJECT ENERGY ENGINEERING	BASIS FOR ESTIMATE								
LOCATION		-			,	CODE A (No design completed)			
WATERVLIET AF	COENA	<u></u>			-	CODE C	(Final des	(gn)	
REYNOLDS, SMITH AND	HILLS	ESTIM	ATOR			CHECKE			
DRAWING NO.		E311m		T. Todd	·				
Replace Chiller SUMMARY	QUANT	TY	PER	LASOR	PER	MATERIA		TOTAL	
- JUMMAN!	UNITS	MEAS.	UNIT	TOTAL	UNIT	10	TAL	COST	
200 ton Cout. Chiller	1	EA	20600	20600	64450	T T	4450	85050	
Remove Exist. Chiller		ΕA	3000	3000	2000		2000	5000	
				£22/00		\$11	6,450	\$90,050	
Subtotal				\$ 23,600		768	7,450	4 10 03 0	
		 							
		 							
				·				·	
_						ļ			
		ļ							
				·	-	-			
		-			-				
C	,	┼─			100	,	····		
Source: Means M	echau	Ca	Co	st Data	1) 199	1			
		 			+	+			
									
* 3 men @ \$25 per	hou	1 +	br.	sdays D	lus e	Ruip	ment	rental	
				, ,,	<u> </u>	1			
		_				ļ			
	-	-	ļ			-			
	ļ	-			<u> </u>	 			
	-	-	-		-	 			
	 	-	 		-	-			
1	1	ł	1			1		l	

ENG FORM 150

*

(ER 1110-345-730))

PREVIOUS EDITION MAY BE LISED

U.S. GOVERNMENT PRINTING OFFICE . 1959 Q-\$16148

(TRANSLUCENT)

02/05/92

ECO Construction Cost Estimate Calculations

ECO Name: Replace Old Centrifugal Chiller

ECO #:

1991 ECO "bare" cost: Material Labor	\$66,450 \$23,600	
Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (Not Applicable For GOGO)		\$90,050 \$4,720 \$0
Overhead (15%)	Subtotal	\$94,770 \$14,216
Profit (10%)	Subtotal	\$108,986 \$10,899
Subtotal Bond (1%)		\$119,885 \$1,199
Contingency (10%)	Subtotal	\$121,084 \$12,108
Subtotal (Construction Co	\$133,192	
SIOH (6.0% of Constr	\$7 , 992	
Design (6.0% of Cons	Subtotal truction Cost)	\$141,184 \$7,992
Total Project Cost	•	\$149,176

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

ALBANY NEW YORK

LAT 42 45N LONG 73 48W ELEV 275 FT

MEAN FREQUENCY OF OCCURRENCE OF DRY BULB TEMPERATURE (DEGREES F) WITH MEAN COINCIDENT WET BULB TEMPERATURE (DEGREES F) FOR EACH DRY BULB TEMPERATURE RANGE

	z 0 :	3 60	62	58 58 55 52	44 44 33 35 31	22 23
	Total Obsn		9 %	12 26 45 82 120	129 130 91 60 35	2 2
		2 2 2	00	1 13 27 43	48 47 17 10	-
1200120	Obsn Hour Gp	8 2 %	0 %	11 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14 14 14 14 14 14 14 14 14 14 14 14 14 1	
	2	2 2 8		3 11 4 1	2 36 45 56 28	σ N
T	E U	3 6	86 85 87 87	23 8 28 8	45 41 36 32	82
ڀٰ	Total Obsn		1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	46 83 106 131 120	92 12 8 4	•
SEPIEMBER		7: 0: 2	0 0 2 5	28 28 47 46 46	20 7 7 0	
	Obsu Hour Gp	60 16	1 6 81	06 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	61 4 0	
	¥	00 00 08	0	24 24 37 46	25 88 00 4	•
Ī	z 0	3 ¢	75 73 17 69	66 63 55 55	51 47 43	
_[Total Obsn		1 7 26 67	108 146 157 119 68	33 11	
AUGUST		7 2 2	2 2 2	38 57 63 18	9 0	
₹	Gosu Hour Gp	8 2 2	1 9 12 8	3 2 2 2 6		
	#	5 2 8	-	62 23 6	11 11	
		> 0	74 73 73 68	65 63 85 85 85	51 46 41	
رًا	Total		4 8 4 8	153 160 90 43	18 0	
╡		t 5 %	0 4 2 7 5	44 62 28 10	8	
	Obsn Hour Gp	8 2 2	14 37 55	217 21 4 4 1		
		2 2 8	7	24 80 32 32	92 % 0	
	æυ	3= a0	52 52 58 68	65 61 67 53	45 41 37	
	Tota] Obsn		53 37 7	86 110 140 125 95	51 14 4 1	
SINE NE	•	2 2 2	0 - 8 2	31 30 30 30	12 0	
,	Obsn Hour Gp	8 2 2	33.6.	45 39 12 12	er	
		5 £ 8	0 -	9.5 \$ 8.0 0.5 \$ 8.0 0.0	36 12 4 4	
	= 0	3 00	5. 6. 6. 6. 6.	53 54 51	43 39 35 31	
	Total Obsn		_ ~ ~ 82	36 59 94 113 128	115 98 53 17	-
MAY	æ	2 2 2	_]	10 37 42 46	32 32 34 0	
	Bour Gp	8 2 2	1 4 EI	25 35 45 38 38	26	_
		2 2 3	3	- E 21 2 4	22 24 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-
	Tempera- ture	Range	95/99 90/94 85/89 80/84	75/79 70/74 65/69 60/64 55/59	50/54 45/49 40/44 35/39 30/34	20/24

$\boldsymbol{\prec}$
=
뚱
é
\sim
_
-
_
岁
-
_
_
_
<u>~</u>
z ≽
≽
≽
≽
≽
≽
≽
ALBANY N
≽
≽

	ı		ı					
	E 0	Te 60	75 73 73 68	66 61 57 52	38 8 30 30 4 8	25 20 16 11 6	2 5 9 5 7 1	ε
Ą	<u> </u>		34 34 254 254	415 594 740 727	660 630 636 753	563 405 285 192 125	75 39 14 3	•
ANNUAL TOTAL	28	2 2 2	f	140 4 222 5 271 7 252 7 236 7	214 6 205 6 205 6 205 6 251 7 262 7	191 5 130 4 96 2 1 38 1	0 4 9	
UAL	Obsn Hour Gp	8 5 7	/ 8 s /	248 1 257 2 235 2 212 2 190 2	183 2 202 2 241 2 220 2	156 1 112 1 79 43	92 60 0	
A	8 3	2 2 2] [27 2 115 2: 234 2 263 2 274 1:	263 14 242 15 229 29 261 2 295 2	216 163 110 84 60	37 27 10 5 5	•
)° - °	888	55.55	33848	25 2 20 1 16 1 1		
	Total Obsn		0	7 16 31 46 68	102 122 136 109 54	85 a. s.		
RIL		7 0 2	0-	2 5 11 16 25	36 1 43 1 45 1 16 1	103		
APRIL	Obsn Hour Gp	8 5 7	1 0-~	5 11 18 25 32	2 2 6 8 8 5 5	0 - 0		
	5 ₹	2 2 8	1	2 2 11 5	24 37 52 55	2 4 2		
	z 0	> ∞		55 54 51 49	45 41 33 30	25 20 11 11	2 4 8 4 7	
	Total Obsn		1	0 - 7 4 0	23 47 90 145	112 73 35 17	4-000	
MARCH	- 0	2 2 2		3 1 1 0 0	8 115 33 54 59	22 38	-00	
Æ	Obsn Hour Gp	8 2 2	i	0 3 - 1 0	12 27 45 55	27 14 2	• •	
	£	2 2 8		-	3 14 67	47 37 11 5	m 000	
	E 0	3 60 ,		20 20	47 42 38 30	25 20 11 11	.13	
Ϋ́	Total Obsn			0 -	6 12 35 95	110 90 67 49 35	19 16 6	
FEBRUARY		z			2 4 11 4 2 46 33 32 46	39 30 24 16	9 4 1	
H	Obsn Hour Gp	8 5 3		0 -	E 7 8 4 8 4 8 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9	36 26 19 12	00 02	
	±	2 2 8			1 6 21 36	35 34 24 21 17	2 2 1	
	z 0	> ∞	1	56 54	33 33 30 30 30 30	25 20 11 16 11 6	2 .3 .13 .17	-23
Ϋ́	Total Obsn			0 0	4 8 31 83	115 106 97 73 51	35 14 2 2	0
JANUARY		to 24		00	1 3 38 38	33 35 25 16	0 6 8 0	
٦	Obsn Hour Gp	8 5 %		0 -	2 E 33 33 43 43 43 43 43 43 43 43 43 43 43	43 30 19 13	0 0 0	
		2 2 8			21 21 34	33 33 33 33 33 33 33 33 33 33 33 33 33	10 10 11 12 11 11 11 11 11 11 11 11 11 11 11	0
	z 0	3		57	48 38 30 30 30	25 20 16 11	2 -3 -8 -12	
BER	Total Obsn			0 7	13 23 42 103 146	126 99 73 80	3 3 1	
DECEMBER	9	∵ ≎ ¥		0 %	5 7 12 33 30 50	46 32 23 19 9	0 1 2 5	
٥	Obsn Hour Gp	& t &		0 m	5 111 20 43 43	39 32 22 10 6	4-0	
		2 2 8		0 %	10 27 27 45	41 35 28 21 21		
		3 as	64	65 59 50 52	48 38 34 30	25 21 17 12 8		
3ER	Total Obsn		0	0 0 5 17 38	74 100 127 128 116	71 30 10 1		
NOVEMBER		17 to 24		13	23 32 43 45 43	33 88 1		
ž	Obsn Hour Gp	8 5 5	0	0 0 81	34 46 48 28 38	= ~ - 0		
		10 th 80		7 2 1	17 26 38 40 45	35 20 1		
	Tempera- ture	Range	95/99 90/94 85/89 80/84	75/79 70/74 65/69 60/64 55/59	50/54 45/49 40/44 35/39 30/34	25/29 20/24 15/19 10/14 5/9	0/4 -5/-1 -10/-6 -15/-11 -20/-16	-25/-21

RSH

SUBJECT ECOTIS EMCS	AEP NO 290-0379-002
	SHEETOF
DESIGNER	DATE = 2/25/92
CHECKER	DATE

ECO #15 - EUCS

DUE TO THE LARGE SIZE OF THE BACKUP DATA FOR THE RUCS, A THELE OF CONTENT? 13 SHOWN HERE

TABLE OF CONTENTS - ECO#15 - EUCS

ENERGY SAVINGS CALCULATIONS 15-1a thru 15-20 COST ESTIMATE SHEETS SYSTEM BLOCK DIAGRAM COST ESTIMATE BACK UP DATA

15-20 thru 15-37 15-38 thru 15-39 15-40 thru 15-70

$RSH_{\scriptscriptstyle \otimes}$

SUBJECT WVA - 26 Buildings	AEP NO 290-0379-002
Install EMCS	SHEET OF
DESIGNER TOOD / Hutchius	DATE 3-18-92
•CHECKER	DATE

ECO # 15

Install Energy Monitoring and Control Systems

The EMCS can be used control various functions of a buildings energy using equipment. Of the many software programs available, only Day/Night Setback and Ventilation & Recirculation were judged to be technically and economically feasible. A black diagram of the system is shown on p

Current Energy Use

Virtually all of the steam generated by the boilers in Building 136 is used for space heating applications. These boilers burn approximately 280,000 mBtn/year of fuel oil #6 to heat about 2.15 million square feet of building Floor area. The 26 buildings that are included in this analysis have about 1.65 million square feet of Floor area (see next Page)

Using the square Footage values to estimate the heating energy required for the 26 buildings that will utilize the EMCS:

Total Heating Energy Use = $280,000 \frac{\text{MBtu}}{\text{Yr}} \times \frac{1.65 \times 10^6 \text{ Ft}^2}{2.15 \times 10^6 \text{ ft}^2}$ Current Energy Use = $280,000 \frac{\text{MBtu}}{\text{Yr}} \times \frac{1.65 \times 10^6 \text{ Ft}^2}{2.15 \times 10^6 \text{ ft}^2}$ Current Energy Use = $214,900 \frac{\text{MBtu}}{\text{Yr}} \text{ (F.O. ± 6)}$ Watervliet Arsenal EMCS Square Footage Calculation Filename: SQFTHEAT.WQ1 03/20/92

Building Number	Floor Area (SqFt)	Heated Area (SqFt)	Building Number	Floor Area (SqFt)	Heated Area (SqFt)
1	13666		107	289	
2	9828		108	2988	
3	9740		110	208574	208574
4	14000		111	146	
6	15970		112	2633	
8	11173		113	108	
9	4338		114	4597	4597
10	67790	67790	115	49926	49926
11	131		116	6082	6082
12	1320		118	1536	
15	22990	22990	119	3765	
16	219		120	101975	101975
17	7714	7714	121	6445	6445
18	1764		122	1552	
19	9208		123	8262	8262
20	107157	107157	124	13199	13199
21	17121	17121	125	119200	119200
22	9955		126	6614	6614
23	21527	21527	128	269	
24	11876	11876	129	3765	
25	185886	185886	130	30904	30904
29	210		132	2342	2342
35	372921	186461	133	7200	
36	6293		134	324	
38	29400	6100	135	191964	191964
40	192221	192221	136	28608	
41	5023		137	315	
42	218		138	600	
43	300		139	600	
44	61278	61278	140	600	
46	405		141	1708	
47	405		144	65	
48	1074		145	126720	7600
49	221		146	655	
50 102	1213 240		150	1840	فللتا فينك فلمة مين ينهي ملية الليان نسب الأوم سا
Subtotal	1214795	888121	Subtotal	936370	757684
Jubiolai	1214//0	000121	Subtotal	1214795	888121
			Totals	2151165	1645805

RSH.

SUBJECT	Eco#15 Eucs	AEP NO 2	0-0379-002
		SHEET	OF
DESIGNER _	P. HUTCHINS	DATE	
CHECKED		DATE	

EMCS FUNCTIONS SUMMARY

1. Scheduled Start/Stop ALREADY EXISTS Z. DUTY CYCLING LPS, IOM 3. DEMAND LIMITING INCLUDED 4. OPTIMUM START/STOP EVALUATED, LOW SAVINGS 5. OUTSIDE AIR LIMIT SHUTOFF 6 LPS 6. VENTILATION & RECIPC. INCLUDED 7. ECONOMIZER ALREADY EXISTS 8. DAY/NIGHT SETBACK INCLUDED 9. REHEAT COIL RESET NA 10. HOT DECK/COLD DECK TEMP. RESET LPS 11. HW OSA RESET NA - one boiler normally used 12. BOILER OPTIMIZATION 13. CHILLER OPTIMIZATION NA 14. CHILLER WATER TEMP. RESET EVALUATED, NOT RECOMMENDED 15. CONDENSER WATER TEMP. PESET EVALUATED, NOT RECOMMENDED 16. CHILLER DEWAND LIMIT NA, ONLY ONE CENTRIFUGAL CHILLER (1) 17. LIGHTING CONTROL NO APPROPRIATE AREAS IDENTIFIED

NOTEC: LPS - LOW POTENTIAL SAVINGS IM - INCREASED WAINTENANCE NA - not applicable (1) - Not recommended for recipi

SUBJECT #15-	EMCS	AEP NO
		SHEETOF
DESIGNER		DATE
CHECKER		DATE

ENERGY SAVILLAS SUMMARRY SHEET

emes	FUNCTION

DEMAND. LLMITING

DAY/NIGHT SETBACK

VENTILATION & RECIRCULATION

MAINTENANCE

TOTALS

#6 Fuel o'l

Other Dollars

SAUING S

5124/yr demand reduction

9164 MBTA/yr (#6 Fuel Oil)

637 MBTU/yr (#6 Fuel Oil)

\$ 1100/yr

9851 MBTa/y.

\$ 6224 /yr

RSH	

SUBJECT	ECO #15 - EWES	AEP NO 290 - 0	379-002
		SHEET	OF
DESIGNER _	Hut lines	DATE 3/2/	72
CHECKER		DATE	

EMCS - Demand Limiting

Evaluate savings sur to Demand Limiting

The following thillers can be de-energized for short periods of line to voduce peale demand. They serve administrative areas.

Bllg #	SIZE (tous)	OPERATION
19	447	year round
20 25 (1)	30 60 784	
75 (z) 40	90)	10
40	90	Summer only
115 120	185 425	ti
TOTAL	709	

KW SAVINGS = HPXLX (0.746 kw/hp) + 0.75

assume approximately IKW/ton for chillers

motor nameplate horsepower load factor = 0.8 (p. 35, CR 32-030) ratio of motor partial loading and efficiency Varies from 0,25 in writer to 0.50 in fall/opring to 0.80 in Dummer

15-36

DCeII	,
	0

SUBJECTFCO#15	AEP NO	
	SHEETOF	_
DESIGNER	DATE	
CHECKER	DATE	_

Year round caposity = 284 tons = 234 kw Summer only cap. = 425 tons

tw savings = 425 x 0.25 x 0.25 = 27 kw 425 x 0.50 x 0.25 = 53 kw 709 x 0.30 x 0.25 = 142 kw

Annual dollar savings =

27 kw x 5.77 \$/kw/mon x 4 mos + 53 kw x 5.77 \$/kw/mon x 4 mos + 142 kw x 5.77 \$/kw/mon x 4 mos =

\$5/24/yr.

8/92

, which is accompanied goods to the second section of the second section (x,y)

a Patrick Williams

and the second decomposition of the second second second

And the second of the second o

and the second of the second o

Company of the state of the sta

and the second s

DI.	CHILLER BLDG		HVAC S	YSTEM TYPE			
	‡ 	TYPE	SIZE (TONS)	AHU	PERIM	SUP FAN (HP)	EXH FAN - (HP)
10	(adm)	RC/DX/AC	44	VAV	HW/PR	15	_
	(cmp)	RC/DX/AC	25	SZ	-	7.5	-
	(rep)	RC/DX/AC	5	SZ	HW/PR	i	-
	(cap)	RC/DX/AC	5	SZ	-	1	-
15	(ada)	RC/DX/AC	8	SZ	ST/PR+UH	1	-
20	(adm)	RC/DX/AC	30	VVT	ST/PR	7.5	-
21	(caf)	-	-	SZ	ST/PR	-	-
23	(adm)	-	<u>.</u>	-	ST/PR	-	0.5
24	(adm)	RC/DX/AC	5,5	SZ	ST/PR	0.75	-
25	(adm)	RC/DX/AC	60,60	VAV	HW/PR	30,30	10,10
	(cmp)	RC/DX/AC	10,10	SZ	-	2	•
35	(cls)	RC/DX/AC	25	VAV	ST/PR	2	-
40	(ef)	RC/DX/AC	25	SZ	HW/PR	7.5	-
	(cd)	RC/DX/AC	30	SZ	HW/PR	7.5	-
	(adm)	RC/CW/AC	•	FC	HW/PR	-	
	(dft)	RC/DX/AC	5	SZ	HW/PR	1	-
	(ncf)	RC/DX/AC	11	SZ	HW/PR	2	-
	(scf)	RC/DX/AC	10	SZ	HW/PR	2	_
44	(ada)	RC/CW/AC	90	SZ	· ST/PR	25,5	-
	(lab)	RC/CW/AC	75	SZ	-	20	-
	(cap)	RC/DX/AC	90	SZ	-		-
	(bsm)	-	-	SZ	ST/UH	30	-
115			185,185(bu)	RH	FC	7.5,5,2,FC	-
		RC/DX/AC	28	SZ	-	7.5	-
120		RC/CW/AC	150	HZ	PR+FC	7.5	-
	(cwl)	RC/CW/AC	150	SZ	PR+FC	7.5,FC	-
	(el)	RC/CW/AC	40	-	PR+FC	FC	-

CHILLER TYPES

RC = reciprocating chiller

CC = centrifugal chiller

DX = direct expansion

CW = chilled water

AC = air cooled

WC = water cooled

HVAC TYPES

VAV = variable air volume

VVT = variable volume, temperature contol

SZ = single zone

RH = terminal reheat

AREAS

af = aicrofila

adm = administrative areas

lab = laboratory areas

bsm = basement areas

cd = CADD

dft = drafting room

ncf = north conference room

scf = south conference room

cap = computer room

cwl = central and west labs

el = east labs

rep = reproduction

MZ = multi zone

PERIMETER SYSTEMS

PR = perimeter radiation

UH = unit heater

FC = fan coils

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARE	92	SHEET	OF
ENERGY ENGINEERING			OR ESTIMATE				
WATERULIET		CODE A (No design completed)					
ANCHITECT ENGINEER				<u></u>	-	CODE C (Final de	
REYNOLDS, SMITH AN	O HILLS	_	ATOR			CHECKED BY	
ECO# 15 - EMCS			Pi t	tuachins			
DEMAND LIMITING SUMMARY	NO.	UNIT	PER	TOTAL	PER	TOTAL	TOTAL
CONTROL RELAY	В	ea	25	200	87	696	396
AUXILIARY CONTACT	В	ea	25	200	15	120	320
WATT TRANS DUCKN SET			-				360
3- PHASE	1	ea	23	23	425	425	448
120 Valt At Power Wiring - indoor Computer program	. 3	్రావ	~15	600	39	3)=	912
Worns - undvor	400'	1000	4150	180	510	204	384
Computer program	- 1	ea					2370
					1		# 5330
·							
		-+					
							
		\dashv					
						•	
					·		
		_					
FORM 150							

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY BE HIGH

* U.S. GOVERNMENT PRINTING OFFICE . 1958 0-\$16148

RSH	,
. &	,

SUBJECT	ECO#12-	EWCS	AEP NO	
			SHEETOF	
DESIGNER			DATE	
CHECKER			DATE	

Day Night Setback

Calculate savings due to Day/Night Setback
Ref: User Guide for Single Bldg Cantrollers (CR82.030 p. 51)

Savings = BTT * AZ * SD * (168-H) * WKW
HEFF = 1e6

where

AZ = avea of zone being served (ft²)

BTT = building thermal transmission

(BTU/hr°F-ft²)

SD = thermostat setdown for unoccupied

periods during heating season = 10°F

H = hours of operation during week

during which the normal setpoint appelies

WKW = length of winter heating season

HEFF = heating efficiency of system = 0.80

The heating energy savings due to day/night setback were calculated using a spread sheet computer program and the equation shown above.

The spreadsheet and all assumptions are given on the next 3 pages. The results are:

Setback Energy Savings = 9,164 mbtn (F.O. #6)

ECO #15 - EMCS

WATERVLIET ARSENAL EMCS SETBACK CALCULATION Filename: SETBK.WQ1 03/20/92

#	BLDG ♯	WALL AREA (SF)	WINDOW AREA (%)	WINDOW TYPE	ROOF AREA (SF)	Uo*Aw	Uo	HEATED FL AREA (SF)	VOLUME (CF)	INFIL. (CFM)	S/B ?	BTT	H (HR/WK)	HEATING SAVINGS (MBTU)
1	10	17,850	20	2	21,750	9,310	0.24	67,790	610,110	2,542	i	0.18	50	481
2	15	6,350	10	1	23,000	3,676	0.13	22,990	206,910	862	1	0.20	50	184
3	17	3,952	15	1	7,714	1,788	0.15	7,714	69,426	289	1	0.27	50	84
4	20(adm)	3,200	10	2	9,600	1,869	0.15	9,600	86,400	360	1	0.24	120	37
	20(shops)	7,200	15	1	48,779	6,209	0.11	97,557	878,013	3,658	1	0.59	120	940
5	21	5,120	30	2	17,100	4,049	0.18	17,121	154,089	642	1	0.28	120	77
6	22	4,490	15	2	9,955	2,523	0.17	9,955	89,595	373	0	0.00	168	0
7	23	9,240	25	1	4,940	3,354	0.24	21,527	193,743	807	1	0.20	50	169
8	24	5,170	30	1	3,670	2,034	0.23	11,876	106,884	445	1	0.21	50	100
9	25(adm)	12,070	10	2	66,100	9,590	0.12	66,100	594,900	2,479	1	0.19	50	490
10	25(shops)	24,140	15	1	0	6,916	0.29	119,786	1,078,074	4,492	1	0.10	120	191
11	35	43,968	1.5	1	372,921	44,295	0.11	186,461	1,678,145	6,992	1	0.28	120	842
12	38	6,440	25	1	6,100	2,563	0.20	6,100	54,900	229	1	0.46	50	112
13	40	51,700	25	2	88,900	31,468	0.22	192,221	1,729,989	7,208	1	0.20	50	1,567
14	44	8,040	15	2	61,300	8,213	0.12	61,278	551,502	2,298	1	0.17	50	427
15	110	71,488	25	1	208,574	40,426	0.14	208,574	1,877,166	7,822	1	0.23	120	793
16	114	2,589	15	2	4,597	1,358	0.19	4,597	41,373	172	1	0.34	50	62
17	115	16,960	10	2	32,840	8,371	0.17	49,926	449,334	1,872	1	0.21	50	415
18	116	2,978	15	1	6,082	1,370	0.15	6,082	54,738	228	1	0.27	50	65
19	120	24,240	10	1	30,800	9,187	0.17	975, 101	917,775	3,824	1	0.13	50	532
20	121	3,065	15	1	6,445	1,426	0.15	6,445	58,005	242	1	0.26		67
21	123	3,471	15	1	8,262	1,697	0.14	8,262	74,358	310	1	0.25		81
22	124	4,387	15	1	13,199	2,379	0.14	13,199	118,791	495	1	0.22		116
23	125	13,183	15	1	119,200	13,909	0.11	119,200	1,072,800	4,470	1	0.16		304
24	126	3,105	15	1	6,614	1,452	0.15	6,614	59,526	248	1	0.26		69
25	130	13,600	25	1	30,900	6,945	0.16	30,904	278,136	1,159	1	0.27		327
26	132	1,742	10	1	2342	671	0.16	2,342	21,078	88	1	0.33		31
27	135	16,730	20	1	191,964	21,369	0.10	191,964	1,727,676	7,199	1	0.15		473
28	145	9,600	0	1	7,600	2,950	0.17	7,600 	68,400	285 	1	0.43	50 	130

Totals 251,366 1,655,760 14,901,836 62,091 28 9,164

ASSUMPTIONS:

Wall U-value: 0.24 Btu/sf-F-hr Window U-value (1-pane) 1.13 Btu/sf-F-hr Window U-value (2-pane) 0.55 Btu/sf-F-hr Roof U-value: 0.085 Btu/sf-F-hr Average infiltration: 0.25 volumes/hour

BTT * AZ * SD * (168-H) * WKW

Heating savings = ----

HEFF / 1e6

where:

BTT = [(Uo * Aw) + (I * 1.08 Btu/cfm-F-hr)]/AF
Uo = overall wall U-value
Aw = wall area (sf)
I = infiltration (cfm)
AF, AZ = floor area (sf)
SD = thermostat set-down during heating season (10'F)
H = hours per week building is occupied
WKW = weeks of winter (see calcs on next page)
HEFF = 0.80

ECO #15 - EMCS.

WATERVLIET ARSENAL EMCS
WEEKS OF WINTER CALCULATION

Filename: SETBK.WQ1

Temper	side rature nge	Hours 2-9	of Occur 10-17	rence 18-1	Total Hours
50	54	221	193	202	616
45	49	218	193	206	617
40	44	237	236	239	712
35	39	289	246	286	821
30	34	304	194	258	756
25	29	184	106	152	442
20	24	124	65	90	279
15	19	75	32	57	164
10	14	54	13	26	93
5	9	18	3	9	30
0	4	9	0	2	11
- 5	-1	3	0	1	4
-10	-6	1	0	0	1
-15	-11	0	0	0	0
Totals		1737	1281	1528	4546

Total weeks of winter (WKW) = 4546 / 24 / 7 = 27

Data source : TM 5-785

RSH.	, 5
------	--------

SUBJECT	Eco#15- Eucs	AEP NO	
-		SHEETOF	
DESIGNER		DATE	
CHECKER	•	DATE	

Assumptions For Day/Night Setback Calculation:

BTT = [(40 * Aw) + (I * 1.08 Btn/cfm°F-hr)]/AF

No = combined U-factor for all exterior surfaces (Bty/ft?hr²f)

Aw = total area of exterior surfaces (ft²)

I = total infiltration for building (cfm)

AF = total floor area of building (ft²)

From ASHRAE Handbook, 1977 Fundamentala, Chapter 25.

Wall U-value for 4 in face brick, 8 in common brick with air space is 0,24

Uw = 0.24

Roof U-valué for Roof made of 4 in wood and

 $U_{R} = 0.085$

U-value for single-pane windows is 1.13, double or storm is 0.55

Uwi = 1.13 Uwz = 0.55

Infiltration in very difficult to calculate but it is known to vance from about 0.3 to 1.0 air changes per hour for residential buildings (ASHRAE 1981 Fundamentali, p. 22-8). Commercial buildings tend to be tighter than residential, so a value of 0.25 air changes per hour is assumed.

RSH.	
®	

SUBJECT	ECO #15	-Emcs	AEP NO	
			SHEET	OF
DESIGNER _			DATE	
CHECKER			DATE	•

Ventilation & Recirculation

The heating energy savings for this program were calculated using a spread sheet computer program and the Following equation:

Savings = CFM x POA x (WSP-AWT) x 1.08 x AND x (WH-0.25)

HEFF x | e 6 (Btu)

The assumptions and results of the calculations are shown on the following 2 pages.

The air handling unit cfm was obtained from shop drawings or estimated using the following equation:

CFM = Motor HP x 6356 x Efficiency Static Pressure (in. H20)

The results of the savings calculations are:

VER Energy Savings = 687 MBtn/yr (F.O. #6)

Total Energy Savings

Total Energy Savings = Setback Savings + ViR Savings

Total Energy Savings = 9,164 metu + 687 metu = 9,851 metu/r

ECO#15 - EMCS

WATERVLIET ARSENAL EMCS

03/20/92

VENTILATION & RECIRCULATION SAVINGS CALCULATION

Filename: V&REC.WQ1

			AHU Fan		UENT	WARM-UP VENT. VENT. SAVINGS	
#	BLDG #	(Area)	HP	#	CFM (1)	(MBTU)	
1	10	(adm)	15.0	1	18,000	53	
2 3		(cmp)					
		(rep)					
4		(cmp)					
5	15	(adm)					
6	20	(adm)	7.5	1	12,000	35	
6 7	21	(caf)					
8	23	(adm)					
9	24	(adm)					
10	25	(adm)	60.0	2	96,000	281	
11		(cmp)					
12	35	(cls)					
13	40	(mf)	7.5	1	12,000	35	
14		(cd)	7.5	1	12,000	35	
15		(adm)	15.0	2	24,000	70	
16		(dft)					
17		(ncf)					
18		(scf)					
19	44	(adm)	25.0	1	20,000	59	
20		(lab)					
21		(cmp)					
22		(bsm)	30.0	1	34,400	101	
23	115	(adm)					
24		(cmp)					
25	120	(adm)	7.5	1	6,250	18	
26		(cwl)					
27		(el)					
	 Tot	als	175.0	11	234,650	687	

(1) Ventilation CFM estimated based on motor horsepower

Where:

CFM = Varies = air handler capacity, in Cubic Feet per Minute

POA = 0.25 = minimum outside air (% of CFM)

WSP = 70 = winter thermostat setpoint ('F)

AWT = 42 = average winter OA temp. ('F, see App. B, p. I-8)

AND = 248 = annual days requiring warm-up (see next page)

WH = 1.5 = present warm-up hours (Hours/Day)

HEFF = 0.8 = boiler efficiency

WATERVLIET ARSENAL EMCS ANNUAL DAYS REQUIRING WARM-UP CALCULATION

Filename: V&REC.WQ1

Temper	side rature nge	Hours 1-8	of Occu 9–16	rrence 17-24	Total Hours
50	54	221	193	202	616
45	49	218	193	206	617
40	44	237	236	239	712
35	39	289	246	286	821
30	34	304	194	258	756
25	. 29	184	106	152	442
20	24	124.	65	90	279
15	19	75	32	57	164
10	14	54	13	26	93
5	9	18	3	9	30
0	4	9	0	2	11
-5	-1	3	0	1	4
-10	-6	1	0	0	1
-15	-11	. 0	0	0	0
Totals		1737	1281	 1528	4546

Total days requiring warm-up = 1737 / 7 = 248

Data source: TM 5-785

RSH	

SUBJECT _	ECO#15	EUCS	AEP NO	
			SHEET	OF
DESIGNER _			DATE	
CHECKER			DATE	

Optimum Start / Stop Evaluation

- Calculate energy savings

Currently air handlers in administrative areas experate from 0600-1800 and are energized by a time clock controller. The Optimum Start/Stop function would reduce the present warm-up time from 1.5 hours to a shorter time period based on the thermal characteristics of the building and its location glographically.

The calculations were made based on CR 82.030 methods and are shown in the table on the following page. Savings are too small \$\supersection(\pi^2\zoo/yr)\) warrant implementing this function.

WATERVLIET ARSENAL
OPTIMUM START/STOP SAVINGS CALCULATION

#	BLDG #		COOL-DOWN AUXILIARIES (HP)	Uo	ERT	SAVINGS	COOL-DOWN SAVINGS (MBTU)	SAVINGS
1	10	 15	15	0.24	370	0	2	2
2	15			0.13				
3	17			0.15	290			
4	20(adm)	7.5	7.5	0.15	275	i	1	2
5	20(shops)			0.11	230			
6	21			0.18	320			
7	22			0.17	310		•	
8	23		•	0.24	370			
9	24				. 370			
10	25(adm)	60	60	0.12	250	11	8	18
11	25(shops)			0.29	390			
12	35			0.11	215			
13	38			0.20	340			
14	40	7.5	7.5	0.22	350	Ů	1	1
15	44	60	60	0.12	230	12	Š	20 ·
16	110			0.14	275			
17	114			0.19	320			
18	115	14.5	14.5	0.17	300	2	2	3
19	116			0.15	290			
20	120	15	15	0.17	300	2	2	3
21	121			0.15	275			
22	123			0.14	275			
23	124			0.14	260			
24	125			0.11	215			
25	126			0.15	275			
26	130			0.16	290			
27	132			0.16	300			
28	135			0.10	215			
						27	23	50

WARM-UP SAVINGS =

HP X L X (0.746 KW/HP) X ((WH X AND) - ERT) X (DAY/7 DY/WK)

X 0.003413 (MBTU/KWH)

where

HP = motor horsepower

L = motor efficiency load factor (0.8)

WH = present warm-up time (estimate 1.5 hrs)

AND = annual number of days total that warmup is required (248 da/yr)

ERT = equipment run time total required for warm-up (hrs/yr)

DAY = equipment operation (dy/wk)

COOL-DOWN SAVINGS =

HP X L X (0.746 KW/HP) X ((CH - 0.75 HR/DA) X (365 DY/YR - AND)

X (DAY /7 DY/WK) X 0.003413 (MBTU/KWH)

where

CH = present cool-down time (estimate 1.5 hrs)

RSH

SUBJECT _	ECO#15	EMCS	AEP NO	
			SHEET	OF
DESIGNER	····		DATE	
CHECKER			DATE	

CHILLED WATER RESET FUNCTION

- Calculate energy sowings (ref. CR82.030 p. 58)

SAU = TON * CPT + CFLH * 2°F * REI

Where

TON = chiller capacity

CPT = evergy use per ton (kw/ton)

CFLH = equivalent full-load hours for ceoling (hrs/y)

REI = efficiency increase per F vicrease in

chilled water temp.

= 0.012 /°F for reciprocal

= 0.017 /°F for contrifugal

	09 to 16	DEGREE
	Hours of	Hours
MeanoF	OCCURRENCE	c (H-65)
97	7	224
92	28	756
87	95	2090
87	177	3009
17	248	2976
72	257	1799
67	235	470
		11,324 °F-hr

CFLH = 11,324 ÷ (Cooling derign temp. - 65°F) = 11324 ÷ (88-65) = 492 hr/yr.

RSH	•
	Ø

SUBJECT ECO#15 FUCS	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

SAUINGS = TON * CPT * CFLH * Z * REI

RECIP = TON * 0.98 * 492 * 2 * 0.012

RECIP = 11.57 * TON (kwh)

CENTRIF = TON * 0.73 * 492 * 2 * 0.017

CENTRIF = 12.21 * TON (kwh)

SAUINGS CALPULATION SAUWGS PER YEAR SIZE (TONS) LOCA TION # MBTY KW \$12 44 ADM 3.6 90 1041 4/57 115 ADM 185 7.7 2257 * # 580/yr #120 120 ADM 150 R 1736 5.9 # 120 120 LAB(W) 173b 5.9 150 R # 33 1.6 170 LAB(E) 40 463 R \$ 80 4,0 R 1157 40 ADM. 100 15-14/

WATERVLIET ARSENAL OPTIMUM START/STOP CALCULATION

5.1 F		CHIL	LER	HVAC S	YSTEM TYPE	OUD EAN	FVII F11		RATING SCH	IEDULE					
BLDG #		TYPE	SIZE (TONS)	AHU	PERIM	SUP FAN (HP)	EXH FAN (HP)	ON		DA/WK	ST	D۶	CR	WT	TOT
10	(adm)	RC/DX/AC	44	VAV	HW/PR	15	-	0600	1800	5	i	1	i		i 4
	(cmp)	RC/DX/AC	25	SZ	-	7.5	-	0000	2400	7	0				. 0
	(rep)	RC/DX/AC	5	SZ	HW/PR	1	-	0600	1800	5	1	1	1	. () 3
	(cmp)	RC/DX/AC	5	SZ	-	1	-	0000	2400	7	0				Ū
15	(adm)	RC/DX/AC	8	SZ	ST/PR+UH	i	-	0600	1800	5	1	1	1		3
20	(adm)	RC/DX/AC	30	VVT	ST/PR	7.5	-	0600	1800	5	1	1	1		3
21	(caf)	-	-	SZ	ST/PR	-	-	0600	1800	5	Û				Û
23	(adm)	_	-	-	ST/PR	-	0.5	0600	1800	5	Q.				Û
24	(adm)	RC/DX/AC	5,5	SZ	ST/PR	0.75	-	0600	1800	5	0				0
		RC/DX/AC	•	VAV	HW/PR	30.30	10,10	0600	1800	5	2	2	2	<u>;</u>	6
		RC/DX/AC	•	SZ		2	-	0000	2400	7	0				0
		RC/DX/AC	25	VAV	ST/PR	2 -	-	as	needed		0				Û
40	(mf)	RC/DX/AC	25	SZ	HW/PR	7.5	-	0600	1800	5	1	i	j		3
			30	SZ	HW/PR	7.5	-	0600	1800	5	1	1	1		ç
	(adm)	RC/CW/AC		FC	HW/PR	-	-	0600	1800	5	i	1	i		Ĵ
		RC/DX/AC	5	SZ	HW/PR	1	-	0600	1800	5	1	1	1		3
		RC/DX/AC	11	SZ	HW/PR	2	-	as	needed		0				0
	(scf)	RC/DX/AC	10	SZ	HW/PR	2	-	as	needed		0				(
44	(adm)	RC/CW/AC	90	SZ	ST/PR	25,5	-	0600	1800	5	i	1	1		3
	(lab)	RC/CW/AC	75	SZ	-	20	-	0000	2400	7	0				(
	(cmp)	RC/DX/AC		SZ	-		-	0000	2400	7	0				()
	(bsm)	-	-	SZ	ST/UH	30	-	0000	2400	7	i	1	:	l	Ş
15	(adm)	CC/CW/WC	185,185(bu)	RH	FC	7.5,5,2,FC	-	0600	1800	5	3	3	÷	}	9
	(cmp)	RC/DX/AC	28	57	· -	7.5	-	0000	2400	7	0				(
20	(adm)	RC/CW/AC	150	MZ	PR+FC	7.5	-	0600	1800	5	1	i	1	į	3
		RC/CW/AC		SZ	PR+FC	7.5.FC	-	0600	1800	5	1	1	i	Ĺ	Ĩ
		RC/CW/AC	40	_	PR+FC	FC	-	0600	1800	5	i	1	1	i	3

CHILLER TYPES

RC = reciprocating chiller

CC = centrifugal chiller

DX = direct expansion

CW = chilled water

AC = air cooled

WC = water cooled

HVAC TYPES

VAV = variable air volume

VVT = variable volume, temperature contol

SZ = single zone

RH = terminal reheat

AREAS

mf = microfilm

adm = administrative areas

lab = laboratory areas

bsm = basement areas

cd = CADD

dft = drafting room

ncf = north conference room

scf = south conference room

cmp = computer room

cwl = central and west labs

el = east labs

rep = reproduction

MZ = multi zone

PERIMETER SYSTEMS

PR = perimeter radiation

UH = unit heater

FC = fan coils

RSH.

SUBJECT	AEP NO
	SHEETOF
DESIGNER	DATE
CHECKER	DATE

ESTUMATE PAYBACK - CHILLED WATER RESET

COST ESTUMATE	UNIT
·	COST
· CHILLED WATER TEMP SENSOR	(6) \$\frac{143}{143} \text{858}
· CHILLED WATER TEMP. CONTROL POINT ADJ.	(6) 200 1200
· 054	-
· WIRING (1450/pt) zpts/CHRIER · Computer program	(6) 900 5400
· Computer program	(1) 1500 1500
	#3953
Mark-ups (~58%)	, 5196
	\$\frac{5196}{14,154}
	,

Paybock = 14,154 = 24 yrs.

Not Recommended.

" See detailed cost extrinate sheets in this section

RSH.

SUBJECT	E(0#15	EMCS	AEP NO	
			SHEET	OF
DESIGNER _			DATE	
CHECKER		•	DATE	

CONDENSER WATER RESET

- CALCULATE ENERGY SAVINGS (Ref. CR 82.030)

COOLING SWINGS = TON * CPT * CFLH * AEI

where TON = Chiller capacity (trus) CPT = efficiencey (kw/ton) CFLH = equivalent full-lood cooling hrs (hos/yr) AEI = adjusted eff. increase due to cond. reset

ARI = PRI +5,5 from Fig. 12 p. 61 and RCWI
100

REWT = PCWT-ACWT

where ACWT = achievable condenser water temp. PCWT = present RCWT = reduction in PEI = percent eff. increase

PEI = 6% from Fig 12, p61 for RCWT = 12.6°F and centrifugal chiller

 $AEI = \frac{6-5.5}{100} = 0.01$

SAUINGS = 185 tons & 0.73 kW/ton * 492 hrs/yr * 0.01

= 664 kwh/yr= 2.27 MBTN/gr=> #46/yr

SUBJECT _	ECO#15	- ENCS	AEP NO	
			SHEET	OF
DESIGNER_			DATE	
CHECKER			DATE	

ACWT	CHCULATION	0	
A	B	C	D
	COND.	09 TO 16	
MEAN	WATEK	Hours	TEMPO
COINCIDENT	TEMP	OF	HRS
WET BULB (OF	(A + 10°)	OCCUREENCE	(Bxc)
75	85	7	595
73	83	Z 8	2324
71	81	95	7695
68	78	177	13,806
66	76	248	18,848
64	74	257	19,018
61	71	235	16,685
57	67	212	14,204
52	62	190	11,780
		1449	104,955

ACWT = TOTAL OF D = TOTAL OF C 104,955 = 1449 = 72.4°F

RCWT = 85-72.4 = 12.6°F

RSH.

SUBJECT	ECO #15 - EMCS	AEP NO	
		SHEETOF	
DESIGNER _		DATE	_
CHECKER		DATE	_

- ESTIMATE PAYBACK - CONDENSER WATER RESET

To Implement this function requires:

Chilled water temp somor

Chiller water temp control point adj.

OSA temp sensor

Wiring (~#450/pt)

Computer program

MARK-up

1500
1334

Wot Recommended

" See detailed cost estimate sheets in this section

RS	Se III

SUBJECT	ECO	#15 -	EMCS	AEP NO		_
				SHEET	OF	-
DESIGNER _				DATE		-
CHECKER				DATE		_

Maintenance Savings

These calculations are based on DD Report Number CR 82.030, Standardized EMCS Energy Savings Calculations.

Run Time Recording (RTR) =

By scheduling maintenance based on actual operation, assume the EMES will save one man-visit per year to the system being monitored. Also assume each man-visit lasts 2 hours and a labor rate of \$25 per hour.

There are 11 AHU's that will be monitored.

RTR Labor Savings = 11 Visits x 2 Hr x #25/hr = \$550/yr

Safety Alarm (SA):

The EMCS can save time spent conveying alarm information and diagnosing problems. Assume a total of 2 hours per system per year.

SA Labor Savings = 11 syst. x 2 Hr x 25 # = \$550/yr

Total Labor Savings = RTR Savings + SA Savings

Total Labor Savings = \$550/yr + \$550/yr = \$1,100/yr

ECO Construction Cost Estimate Calculations

ECO Name: ENERGY MONITORING AND CONTROL SYSTEM

ECO #: 15

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$209,300 \$118,100
Subtotal bare costs	\$327,400
FICA Insurance (20% of Labor)	\$23,620
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$351,020
Overhead (15%)	\$52,653
Subtotal	\$403,673
Profit (10%)	\$40,367
Subtotal	\$444,040
Bond (1%)	\$4,440
Subtotal	\$448,480
Contingency (10%)	\$44,848
Subtotal (Construction Cost Input For LCCID *)	\$493,328
SIOH (6% of Construction Cost)	\$29,600
Subtotal	\$522,928
Design (6% of Construction Cost)	\$29,600
Total Project Cost	\$552,528

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

Units Meas Unit Total Cos 1. System Equipment Hardware - Complete** 1	Construction Cost Estimate	i			1,010			
Project EMCS Location WATERVLIET ARGENAL Schematic Design Preliminary Design Final Design Other (Specify) Other (Specify)	District	<u></u>	Date Pre	pared		<u> </u>		1 of 15
Project	DISCRICE			Bas	sis for	Estima	ate	
Project				<u> </u>	Schema	tic De	sign	
Note: Labor values shown are based on \$25.00/hour incl. fringes Systems Equipment, FIDs MUX's and Enclosures Summary No. Unit Unit Hardware - Complete** 1	Project Indage				Prelim	inary	Design	
Note: Labor values shown are based on \$25.00/hour incl. fringes Estimator No. Unit Per No. Unit Per Units Mux's and Enclosures Summary No. Unit Per Units Meas Unit				- -				
Dased on \$25.00/hour incl. fringes Systems Equipment, FIDs MUX's and Enclosures Summary Materia (S) Per Total Unit Per Units Meas. Unit Hardware - Complete** 1 LS 37,400 37,400 XX XX XX XX XX 37,400 XX XX XX XX XX XX XX	WATERVLIET HRSEN	JAC			- Collet	(Speci.		
No. Unit Unit No. Unit Unit No. Unit Unit Unit No. Unit		Estima	ator	0	Checke	d by		
MUX's and Enclosures Summary					(6)	Labo	- (e)	
1. System Equipment					- (9/		1	Total
Hardware - Complete**					<u>Total</u>	<u>Unit</u>	<u>Total</u>	Cost
Command Software				3,950	2,150		100	
2. Command Software 1		1	•					4050
3. Data Base Generation (Cost per Point) 4. Graphic Displays (per Diagram) 5. Applications Programs (From Work Sheet Table 2.11) 6. FID Hardware - Complete** 7. FID Software (One Time Charge) 8. MUX Hardware Complete** 7 EA 3. 725 26075 113 791 248 9. 120 Vac Power Circuit 41 EA 39 1599 88 3608 53 10. Data Terminal Cabinet 7 EA 450 3150 25 175 33 11. Remote Terminal Systems*** 1 EA 3000 300 300 300 300 300 300	(101 dual processor systems)*		(15)	102,2137				
Cost per Point Cost	2. Command Software	$\left \frac{1}{1} \right $	LS	37,400	37,400	XX	XX	37,400
Cost per Point Cost	3 Data Base Concretion							
4. Graphic Displays (per Diagram) 3 DIAG. XX XX 120 360 3 5. Applications Programs (From Work Sheet Table 2.11)		151	POINT	XX	_xx	18,50	2793	2793
5. Applications Programs (From Work Sheet Table 2.11) 6. FID Hardware - Complete** 7. FID Software (One Time Charge) 8. MUX Hardware Complete** 9. 120 Vac Power Circuit 10. Data Terminal Cabinet 7. EA 11. Remote Terminal Systems*** 11. Large NEMA 1 1&C Enclosures 12. Large NEMA 12 1&C Enclosures 13. Large NEMA 12 1&C Enclosures 14. Small NEMA 4 & 13 1&C Enclosures 15. Applications Programs 15. Ax 16. FID Hardware Programs 16. FID Hardware - Complete** 17. EA 18. 5.450 16250 213 639 169 18. 57.50 XX 19. 74. 24. 24. 24. 24. 24. 24. 24. 24. 24. 2		2						360
(From Work Sheet Table 2.11) I.S \$5120 \$270 XX XX<	4. Graphic Displays (per Diagram)	 3	DIAG.	<u>xx</u>	_ <u>XX</u>	120	-360	
(From Work Sheet Table 2.11) I.S. \$5120 \overline{5170} \overline{XX} X	5. Applications Programs	Ì	1					
7. FID Software (One Time Charge) 1 LS 5.750 5750 XX XX 57 8. MUX Hardware Complete** 7 EA 3.725 26075 113 791 269 9. 120 Vac Power Circuit 41 EA 39 1599 88 3608 57 10. Data Terminal Cabinet 7 EA 450 3150 25 175 33 11. Remote Terminal Systems*** 1 EA 3000 3000 50 50 30 12. Large NEMA 1 I&C Enclosures - EA 150 -0 23 -0 -0 13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 6 14. Small NEMA 4 & 13 I&C Enclosures - EA 50 -0 13 -0 -0			LS	5120	5120	XX	XX	5120
7. FID Software (One Time Charge) 1 LS 5.750 5750 XX XX 57 8. MUX Hardware Complete** 7 EA 3.725 26075 113 791 269 9. 120 Vac Power Circuit 41 EA 39 1599 88 3608 57 10. Data Terminal Cabinet 7 EA 450 3150 25 175 33 11. Remote Terminal Systems*** 1 EA 3000 3000 50 50 30 12. Large NEMA 1 I&C Enclosures - EA 150 -0 23 -0 -0 13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 6 14. Small NEMA 4 & 13 I&C Enclosures - EA 50 -0 13 -0 -0	6 FID Handrage Completed	7	 	5 /50	1/250	212	129	16989
8. MUX Hardware Complete** 7 EA 3,725 26075 113 791 269 9. 120 Vac Power Circuit 41 EA 39 1599 88 3608 52 10. Data Terminal Cabinet 7 EA 450 3150 25 175 33 11. Remote Terminal Systems*** 1 EA 3000 3000 50 50 30 12. Large NEMA 1 I&C Enclosures - EA 150 - 23 - - - - 13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 6 14. Small NEMA 4 & 13 I&C Enclosures - EA 50 -	o. rib nardware - Complete**		EA_		16330		- 65 (
9. 120 Vac Power Circuit 10. Data Terminal Cabinet 11. Remote Terminal Systems*** 12. Large NEMA 1 I&C Enclosures 13. Large NEMA 12 I&C Enclosures 14. Small NEMA 4 & 13 I&C Enclosures 15. The state of the st	7. FID Software (One Time Charge)		LS	5.750	5750	XX	_ <u>xx</u>	5750
9. 120 Vac Power Circuit 10. Data Terminal Cabinet 11. Remote Terminal Systems*** 12. Large NEMA 1 I&C Enclosures 13. Large NEMA 12 I&C Enclosures 14. Small NEMA 4 & 13 I&C Enclosures 15. The state of the st	9 MIV Handrage Completests	7	EA	2 725	26075	112	791	26866
10. Data Terminal Cabinet 7 EA 450 3150 25 175 33 11. Remote Terminal Systems*** 1 EA 3000 2000 50 50 30 12. Large NEMA 1 I&C Enclosures EA 150 -0 23 -0 -0 13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 6 14. Small NEMA 4 & 13 I&C Enclosures EA 50 -0 13 -0 -0	o. Mox hardware Complete**		<u> </u>	3.725				
11. Remote Terminal Systems*** Image: Remote Terminal Systems** Image: Remote Terminal Syst	9. 120 Vac Power Circuit	41	<u>EA</u>	39	1599	88	3608	5207
11. Remote Terminal Systems*** Image: Remote Terminal Systems** Image: Remote Terminal Syst	10 Data Tarminal Cabinet	7	FA	450	3150	25	175	3325
12. Large NEMA 1 I&C Enclosures 13. Large NEMA 12 I&C Enclosures 14. Small NEMA 4 & 13 I&C Enclosures 150	10. Data Terminal Captified							
13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 600	11. Remote Terminal Systems***	<u> </u>	<u>EA</u>	3000	2000	50_	50	3050
13. Large NEMA 12 I&C Enclosures 3 EA 200 600 23 69 6 14. Small NEMA 4 & 13 I&C Enclosures EA 50 50 13 -00	12. Large NEMA 1 I&C Enclosures	-	EA	150	- ^-	23	-0-	- 0 -
14. Small NEMA 4 & 13 I&C Enclosures EA 50		2			/		,,	110
14. Small NEMA 4 & 13 1&C Enclosures EA 30 18 70 19	13. Large NEMA 12 I&C Enclosures	<u> </u>	<u>EA</u>	200	660	23	69	669
15 FID Test Set 1 FA 18,718 18,718 200 200 18.	14. Small NEMA 4 & 13 I&C Enclosures		EA	50	<u> </u>	13_	-0-	-0-
AU A AU AU AU AU AU AU	15. FID Test Set	1	EA	18,718	18,718	200	200	18,918
		1	EΔ	7 500	7500	XX	XX	7500
10. PID TOTCABLE TESCET	IV. 11D TOICABLE TESTEL				50			12700-
PAGE TOTAL 129,212 8785 137,	PAGE TOTAL	.			127,212	<u> </u>	8/85	<u> 137,997</u>

- * Use the cost in parenthesis for larger systems requiring dual processing with failover. The single processor figure is less one processor unit and the failover controller.
- ** The cost listed for the System Equipment includes all hardware, accessories, and power line conditioning, plus system software supplied by the computer manufacturer. The cost listed for FIDs and MUXs includes a power line conditioner. The FID cost does not include a separate MUX (see Figures 1-1 and 1-2).
- *** The cost of remote CRTs and/or printers is the same as for those listed in Table 2.10. Assume a \$50 (2 manhours) installation and set-up for each remote terminal. Material and labor costs must also be added for one Modem at the printer and one at the CLT, and for wireline DTM to connect between the CLT and the printer. These costs should be added on Sheet 2 of these cost estimating forms.

Remote (CRT #1300)

Remote 700 } #3000

Terminal (Modem(Z) 1000)

Rogram Demand Limiting # 2270
Ventilitern = Kerincewation 1350
Day/Might Selback 1400

TOTAL # 5120

onstruction Cost Estimate	Da	te Prepa	red			2 of 15
District		T	Basis	for Esti	imate	
Project EMCS			Pre	nematic D eliminary nal Desig	y Design	1
Location WVA				her (Spec	cify) _	
Note: Labor values shown are based on \$25.00/hour incl. fringes		Todd		Checked		
		ntity	<u> Materia</u>	<u> 1 (\$) </u>	Labor	(\$)
Fiber Optic DTM* Summary	No. Units	Unit Meas.	Per Unit	Total	Per <u>Unit</u>	Total
Fiber Optic Cable - Aerial	_	1000'	910		1024	
Fiber Optic Cable - Direct Burial**	_	1000′	910		2081	
Fiber Optic Cable - Direct Burial (Chain Trencher)**		1000'	910		601	
Fiber Optic Cable - Existing Duct Bank	_	1000'	910		600	
Fiber Optic Cable - Indoor	_	1000'	910		450	
	_		_			
Subtotals for Cables	<u></u>	LS	<u>xx</u> _	-0-	XX	-0-
Fiber Optic Modem - (Receive and Transmit)		EA	300	,	100_	
Fiber Optic Repeater	_	EA_	250		50	
Transmitter Module	_	EA_	125_		25	
Receiver Module		EA	170	-	25	
Subtotals for Hardware	XX	LS	XX	-0-	XX	-3-
Page Totals	XX	XX	XX	-0 -	XX	-0-
PAGE COST SUM						

Notes: *The Fiber Optic Cable is 4-fiber loose tube construction.

**This cable installation is not tamped for vibratory plate compaction add \$253

per thousand linear feet (e.g. for direct burial w/chain trencher the total

cost will be \$854 per thousand linear feet)

onstruction Cost Estimate	Dat	e Prepar	red		Sheet	3 of 15
District				for Est		
Project EALCS Location AVA			Pre	nematic deliminary nal Designer (Spec	y Design gn	
Note: Labor values shown are based on \$25.00/hour incl. fringes	Estimato	Toda	\	Checked	by	
based on \$25.00/Hour Incr. Illinges		itity	Materia	1 (\$)	Labo	(\$)
Wireline DTM Summary	No. <u>Units</u>	Unit Meas.	Per Unit	Total	Per Unit	Total
Wireline Cable - Aerial		1000′	630	-0-	1024	0-
Wireline Cable - Direct Burial		1000′	650	O ~	2413	-0-
Wireline Cable - Direct Burial MAT (Chain Trencher)*	3.8 0.8	1000′	650	2470	601	<u>:</u> †81
Wireline Cable - Existing MAT Duct Bank LAG	37. <i>0</i> 20.4	1000′	510	18870	600	12240
Wireline Cable - Indoor LAE	37.2 8.9	1000′	510	18,972	450	4005
Subtotal for Cables	XX	LS	XX	40108	XX	16546
Modem	7	<u>EA</u>	500	2500	45	215
Line Driver		EA	225	-0-	40	- <i>0</i> -
Subtotal for Hardware	XX	LS	XX	3500	XX	315
Page Totals	XX	XX	XX	43312	XX	17,041
PAGE COST SUM	-				60,8	53

Note: *This cable installation is not tamped; for vibratory plate compaction add \$253 per thousand linear feet (e.g. for direct burial w/chain trencher the total cost will be \$854 per thousand linear feet).

	or	Score Fi	thematic Deliminary nal Designary	esign Design	
Quar	or	Pr Fi	eliminary nal Desig ther (Spec	Design	
Quar	or	Fi Ot	nal Desig ther (Spec	gn	
Quar	or	<u> </u> ot	her (Spec		
Quar	orl	Cţ		_	
Quar	Todd	ΙCξ			
Quar	100.00		ecked by		
	ntity	Materia	1 (\$)	Labor	(\$)
Units	Unit Meas.	Per Unit	Total	Per <u>Unit</u>	<u>Total</u>
	1000′	490		1024	
_		_			
_	1000'	490	-	2413	
	1000′	490		601	
	1000-	230		600	
	1000'	230		450	
XX	LS	xx		xx	- 3-
	EA_	610		150	
	- EA	650		100	
XX		XX	-0-	XX	:0 -
XX	XX	XX	-0-	xx	- 0
	XX	1000' 1000' 1000' 1000' XX LS EA EA XX LS	1000' 490 1000' 490 1000' 230 1000' 230 XX LS XX EA 610 EA 650 XX LS XX	1000' 490 1000' 490 1000' 230 1000' 230 XX LS XX	1000' 490 2413 1000' 490 601 1000' 230 600 XX LS XX XX XX EA 610 150 XX LS XX XX

Note: *This cable installation is not tamped; for vibratory plate compaction add \$253 per thousand linear feet (e.g., for direct burial w/chain trencher the total cost will be \$854 per thousand linear feet).

onstruction Cost Estimate	<u>D</u> a	te Prepa	red				5 of 15
District			Bas	is for	Estim	ate	
•					tic De		
Project CHACC					inary Design	Design	
Location Location						fy)	
ωv_{A}				<u> </u>	1 1		
Note: Labor values shown are	Estimate	Todd	<u>^</u>	Checke	ea by		
based on \$25,00/hour incl. fringes	Quan	ntity	Materia	1 (\$)	Labo	r (\$)	
Two-Way Radio DTM Summary	No. <u>Units</u>	Unit Meas.	Per <u>Unit</u>	<u>Total</u>	Per <u>Unit</u>	Total	Total Cost
Headend Transceiver		<u>EA</u>	5.145		13		
Headend Antenna		EA	585		25		
Radio Tower		<u>EA</u>	1.220		1,050	-	
Repeater		EA_	6.930		38	-\	
Duplexer		EA	775		38	_	
		EA	225		25	-	
9.5 dB Remote Antenna							
2,5 dB Remote Antenna		EA_	65		25_	_	,
Remote Transceiver		EA	725		13		
Page Total (Hardware)	xx	XX	XX	_m_	XX	<u></u>	_0-

NOTE:

Modems and Coaxial Cable will be required for a two-way radio system as illustrated in Figure 2-2. Add the Modems and the Coaxial Cable (for long runs) on Sheet 3 of these cost estimating forms.

If the antenna or towers are located within 100 feet of the headend transceiver, the cost of the coaxial cable may be ignored.

Construction Cost Estimate Date Prep							Sheet 6 of 15	
District			Bas	is for Schema				
Project EMCS				Final				
Location WVA				Other		fy)		
Note: Labor values shown are based on \$25,00/hour incl, fringes	_	Todd	<u> </u>	Checke				
Analog Inputs Summary	Ouar No. Units	utity Unit <u>Meas.</u>	Materia Per Unit	1 (\$) Total	Labo Per Unit	r (\$) Total	Total Cost	
1. Space Temperature: RTD and Transmitter	30	<u>EA</u>	125	<u> 3750</u>	35	1250	4800	
2. Outside Air Temperature: RTD and Transmitter	3	EA	130	<u> </u>	55	165	555	
Instrument Shelter	3_	<u>EA</u>	350	1050	45	135	1185	
3. Duct (Point) Temperature: RTD and Transmitter		EA_	130		55		-0-	
4. Liquid Temperature: RTD and Transmitter (Cu Thermowell: Add \$20 for Stainless Steel Thermowell)		EA	210		38		-0-	
5. Liquid Level Sensor		EA_	1.037		80	-	-0-	
6, Pos, Displacement Flowmeter		EA_	2,353		245	_	-2-	
7. Duct Average Temperature: RTD and Transmitter		<u>EA</u>	200		105	_	-0-	
8. Space or OA Relative Humidity: Sensor and Transmitter	_	EA_	450		35			
9. Duct Relative Humidity: Sensor and Transmitter	_	EA_	450	_	55_	_	- 0	
10. Gauge Pressure Transmitter (Liquid) (W/Pressure Tap)		<u>EA</u>	465		147		- 3 -	
Page Total				5190		1350	6540	

NOTE:

Each item cost includes the sensor, transmitter along with associated common costs (e.g., conduit, wiring, terminations) as stated previously in Paragraphs 3.1, 3.2, and 3.3.

onstruction Cost Estimate Date Prep			ared			Sheet	7 of 15
District				sis for			
Project DACS				Prelim	Design	Design	
Note: Labor values shown are based on \$25.00/hour incl. fringes	Estimat	. To ad		Checke	d by		
		antity	Materi	1 (\$)	Labo	r (\$)	
Analog Inputs Summary	No. <u>Units</u>	Unit Meas.	Per <u>Unit</u>	<u>Total</u>	Per Unit	<u>Total</u>	Total Cost
11. Differential Pressure Transmitter (Liquid) (incl. 2 Pressure Taps)		EA	670		260		-0-
12. 1-Phase Electric Power: (incl. CT, PT, Watt Transducer	_	EA	480		93		-0-
Set) with Split-Coil CT* 13. 3-Phase Electric Power: (CT, PT, Watt Transducer Set)		<u>EA</u>	750	1170	197	170	1340
with Split Coil CT's*	1	3-EA	1,170	1116	170		-9-
14. Current Transducer		3-EA	458		231	-	
15. Voltage Transducer		_ <u>2 - EA</u>	538		231	-	-0-
16. VAR Transducer (1 Phase)	· _	EA	818		231		- 0 -
17. VAR Transducer (3 Phase)	_	EA	1.048		283	-	
18. PF Transducer		EA	665		244	_	
19. Valve Position: Linear Potentiometer		EA	210		73	-	- 52
20. Damper Position: Rotary Potentiometer		<u>EA</u>	210	2210	73	303	2113
Page Total		xxx	XXX	3480	XXX	973	4453

NOTE:

Each item accounts for the sensor, transmitter/transducer and common costs (general costs are estimated on Sheets 12 and 13 of these cost estimating forms). See also paragraphs 3.1, 3.2, 3.3, and Appendix C.

* Use one case or the other as applicable; do not add.

onstruction Cost Estimate	Da	ite Prepa					8 of 15
District			Bas	is for	Estima	ate	
Project EMCS				Schema Prelim Final	inary l Design	Design	
Location WVA .				Other	(Speci:	fy)	
Note: Labor values shown are based on \$25,00/hour incl. fringes	Estimato .	Todd		Checke			
Digital Inputs Summary	Quan No. Units	Unit Meas.	Materia Per Unit	1 (\$) <u>Total</u>	Per	r (\$) Total	Total Cost
1. Space Temperature Switch		EA	105		38		-0-
2. Liquid Temperature Switch (Copper Thermowell: Add \$20 for Stainless Steel Thermowell)		EA	155		143		~O-
3. Gauge Pressure Switch (Liquid) (W/Pressure Tap)	2	<u>EA</u>	155	310	147	274	604
4. Differential Pressure (DP) Switch (Liquid) (W/Pressure Taps)		<u>EA</u>	225		260		-0-
5. Differential Pressure DP Switch (Air)	2	EA_	70	140	48	76	236
6. Liquid Flow Switch (W/Pipe Fittings)		EA_	145		113	-	<u>-0-</u>
7. Liquid Level Switch			636		80_		- 2 -
8. 1-Phase Electric Power (incl. CT, PT, Meter Socket) W/Split Coil CT* Meter W/Pulse Initiator, Add		EA EA	560 700 375		118 109 13		-0 -
9. 3-Phase Electric Power (CT, PT, Meter Socket) W/Split Coil CT's* Meter W/Pulse Initiator, Add			400 820 575	_	210 183 13		-0-
10. Motor Current Status (CT, Sensing Relay)	_		85 225		58 49		-0-
W/Split Coil CT* Page Total				450		390	840
1020 1000					1		1

^{*} Use one case or the other as applicable; do not add.

onstruction Cost Estimate	Da	te Prepa	ared			Sheet	9 of 15
District			Basis for Estimate				
Project				Prelim	tic De	Design	
Take Co			_		Design		
Location Wife				Other	(Speci	ty)	
Note: Labor values shown are based on \$25,00/hour incl. fringes	Estimato			Checke			
		ntity	<u>Materia</u> Per	1 (\$)	<u>Labo</u> Per	r (\$)	Total
<u>Digital Inputs</u> Summary	No. <u>Units</u>	Unit <u>Meas.</u>	Unit_	<u>Total</u>		Total	Cost
11. Status Monitoring Auxiliary Contacts (Limit)	<u>38</u>	<u>EA</u>	15_	<u>570</u>	25	950	1520
12. 3-Phase Electric Metering 12 KV Installation		<u>EA</u>	2.745		200		. 9 -
13. Adjust Material Cost For Actual Voltage (KV Difference)		KV EA	110			-	- ,) -
14. 3-Phase Electric Metering 34.5 KV Installation		EA_	4.360		367		-0-
15. Adjust Material Cost for Actual Voltage (KV Difference)	_	KV EA	275			-	-0-
				i i			
Page Total				570		950	1520

onstruction Cost Estimate	<u></u>					-	
	Da	te Prepa	ared				0 of 15
District			Bas	sis for	Estima	ate	
				Schema	tic De	sign	
Project 5000				Prelim	inary l	Design	
EMCS -					Design (Speci:		
Location WVA				Ocher	(Speci.	- <i>J</i> /	
Note: Labor values shown are based on \$25,00/hour incl. fringes	Estimate V	Toda		Checke			
		ntity	Materia	1 (\$)		<u>r (\$)</u>	
Analog Outputs Summary	No. <u>Units</u>	Unit Meas.	Per <u>Unit</u>	<u>Total</u>	Per <u>Unit</u>	<u>Total</u>	Total Cost
1. Control Point Adjustment Pneumatic CPA Controller (Fixed Failure Mode)*		EA	.130 .335		70		-)-
2. Position Adjustment(Fixed Failure Mode)*	_		205		25		۔ رہے
3. Damper Motor Actuator	11	EA	182	2002	25	275	2277
4. PID Controller		EA	400	4400	100	1100	5500
			-			-	
	_	-		<u> </u>		-	
	_	-	-	-		-	
	_			/1107		1375	7777
Page Total	_	_	_	640Z	.	- - 	l

- (1) "Fixed Failure Mode" includes high value, low value, and local loop. Since this function requires a failover EP valve, the same quantity must be added to the Digital Outputs estimating sheet to account for costs of the EP valve control output.
- (2) See the note on Sheet 7 of these cost estimating forms in reference to the addition of common costs.
- (3) Items 1 and 2 include I-P Converters, Control Relays, EP Valves, and Pressure Regulators.

lamaturation Cost Estimata							
Construction Cost Estimate Date Prepa							
District			Bas	sis for	Estim	ate	
Project [W(S				Prelim Final	atic De minary Design (Speci	Design	
$\mathcal{N} \vee \mathcal{A}$	1		l				
Note: Labor values shown are based on \$25,00/hour incl. fringes	Estimat	· Todd	<u> </u>	Checke	· · · · · · · · · · · · · · · · · · ·		
		ntity	Materia	al (\$)		r (\$)	Total
<u>Digital Outputs</u> Summary	No. <u>Units</u>	Unit Meas.	Per Unit	<u>Total</u>	Per <u>Unit</u>	<u>Total</u>	Cost_
1. Control Relay Output (CR)	12	EA_	87_	1044	25	300	1344
		_				.	-0-
2. Solenoid (EP Valve) Control (CR, EP Valve, Pr, Reg.)	20	EA	302	9060	<u>75</u>	2250	11,310
3. Contactor Control 60 Amp (Control Relay) W/100 Amps Contactor**		EA EA	412 557		75 60		-0-
4. Control Point Adjustment (Fail to last command)* (CR, Motorized Pot., Current Transducer, CPA Controller, and I-P Converter incl.)***	_		930		183		-0-
5. Steam Control Valve, 4" Flanged, Iron Body, Prenmotic Operated.	4	EA	2530	10120	120	480	10600
Page Total				20,224		3030	23,254

^{*} Although the CPA with "fail to last command" is listed on the I/O summary sheet as an analog output, it is often implemented by two (raise, lower) digital outputs. For this special case, the quantity must be multiplied by two.

^{**} Use one or the other as appropriate; do not add.

^{***} See the note on Sheet 7 of these cost estimating forms in reference to the addition of common costs.

onstruction Cost Estimate	Date Prepared	Sheet 12 or 15
District		r Estimate
Project EMCS Location WVA	Prelim Final	atic Design minary Design Design (Specify)
Estima	tor J. Todd Check	ed by
General Costs and Sales Taxes Summar	y Mat'L Total	Labor Total Total Cost
1. Equipment Cost Summary (Maintenance Cost System Equipment Hardware (Sheet 1 Ite FID Hardware (Sheet 1, Items 6, 15, & MUX Hardware (Sheet 1 Items 8 & 10) Data Transmission H/W (Sheets 2, 3, 4,	m 1) 3950 16) 42568 29225	100 4050 839 73407 966 30191 315 3815
Total Equipment Cost	79,243	2,220 81,463
(Material plus Labor) constru	6() Do not add this conction cost. This info	rmation shall be
3. Total Material Cost Summary (Sales Taxes Total Equipment Material Cost (From Item 1&C Enclosures (Sheet 1 Items thru 14 Data Transmission Cables (Sheets 2, 3, 6 120 Vac Power Circuits (Sheet 1, Item 9)	5) n 1 Above) 79,243 4) 600 403/2	2,220 81,463 69 669 16,726 57,038 3608 5207
Total Material Cost 4. Sales Taxes on Materials: ())% of Item 3 Mat'l Total	121,754	22,623 144,377 -0-
5. Employer's Burden: (20)% of Item 3 Labor Total Page Total		4525 148, 902

onstruction Cost Estimate	Date Prepa	red		t 13 of 15
District		Basis f	or Estimate	
Project EMCS Location WVA		Prel Fina	matic Design iminary Desi l Design r (Specify)	
10 V /A	Estimator V. Todo	Chec	ked by	
General Costs and Sales Taxes	Summary	Mat'L Total	Labor Total	Total Cost
6. Technical Data Packages (From Ta	15/ pts ble 2,1)		26,205	26,205
7. Testing* (From Table 2.2) 9	3 Analog Pts. 3 Digital Pts.		33,263	33,263
	0 students		20250	20250
Page Total		-0-	79,718	79,718

^{*} The estimator should determine the point mix (analog and digital) and make any necessary adjustments to the cost of the Contractor's Field Testing.

onstruction Cost Estimate	Date Prepa	red	Shee	t 14 of 15	
District			r Estimate		
Project EMCS		Preli	atic Design minary Desi Design		
Location WVA			(Specify)		
VO V /4	Estimator W. Todd	Check	ed by P.	Atchins	
Cost Summary	1	Mat'L Total	Labor Total	Total Cost	
 Total Installed Direct Cost of EM of page totals, sheets 1-11; she Items 4-8 	·='	209,340	118,137	327,477	
<pre>1A. Correction of EMCS Labor Costs for Project Location: Multiply Labor Cost by</pre>	209,340	/18, 1 37	327,477		
2. Contractor's Overhead at (15)()% of Item 1A.				
3. Contractor's Profit at (10) ()% of Item 1A.				
4. Performance Bond at (1) ()%	of Item 1A.				
5. S & A Allowance at (5.5) (6.0)	s of Item 1A.				
6. Contingencies at (10) ()% of	Item 1A.				
7. Design at 6.0% of Item 1A					
SEE PAGE 15-21 for	mark-ups				
EMCS Total Construction Cost					

^{*} To determine this factor, the estimator must first determine the prevailing local labor rate (whether Union or Davis-Bacon). If, for instance, the local rate is \$32, this factor is (\$32/\$25) = (1.28).

Construction Cost Estimate	Date Prepare	ed		15 of 15
District		1 1	r Estimate atic Design	
Project EMCS		Prelia Final	minary Design Design (Specify)	gn
Location WVA				
Note: Labor values shown are based on \$25,00/hour incl. fringes	N. Todd	Check	ed by	
Related Cost Summary		Mat'L Total	Labor Total	Total Cost
1. Associated General Construction Lump S (Sheet 14 total)	um Cost	-		
2. Electrical Equipment Modifications Lum Sum Cost*	np -	·		
3. Mechanical Equipment Modifications Lum Sum Cost*	np ————————————————————————————————————			
4. Existing Controls Repair Lump Sum Cost	=			
		F		
Total Costs				

^{*} The cost listed should include an additional allowance for Operations & Maintenance documentation. Present guidelines suggest 3% of construction cost be allocated for electrical and mechanical construction. For the EMCS itself, the cost of documentation is specifically addressed on Sheet 13 of these cost estimating forms (Item 6).

FIGURE 1-1 MEDIUM EMCS BLOCK DIAGRAM

TO LOCAL SYSTEMS CONTROLS AND INSTRUMENTATION (DATA ENVIRONMENT)

1 FID 2 MODEM 2 MUX 42 FID 8 Eldgs

1 FID 3 MODEM 3 MOX 37 Points 11 Eldgs

1 FID
2 MODEM
2 MUX
55 Points
7 Kilgs

RSH
®

SUBJECT	ECO #15 - EMCS	AEP NO
		SHEETOF
DESIGNER		DATE
CHECKER		DATE

Project Implementation Costs

The following sources were used to estimate the EMCS acquisition and installation costs:

- 1. EMCS, Large and Medium Configurations, Cost Estimating Guidelines, US Army Corps of Engineers, Huntsville Division, 12/90.
- 2. Means Mechanical Cost Data, 1991
- 3. Omega Engineering Catalog

All necessary control points are listed on the next 2 pages. The cost summary for these control points by function is contained on p. 15-43 and individually on p. 15-29 through 15-34.

Pages 15 through 30 contain the construction (ost estimate worksheets.

Watervliet Arsenal - EMCS System & Points Schedule File Name: EMSLIST.WQ1

Date: 03/02/92

vate:	03/02/92				OUTPUT				INPUT						Cantral	120 VAC
Bldg	Area	System	Control	Total Pts			DMA	PID	GPS	DPS	LIM	STS	POS	OAT	Control Valve	Power
10	Repro	AHU-SZ,DX		0												
10	ADPS	AHU-SZ,DX		0												
	Compu	AHU-SZ,DX		0												
	Admin N	AHU-VAV	VR	3	0	0	1	1	0	0	0	0	1	0		
	Admin S	Convert-HW	SBV&SBP	5	1	1	0	0	1	0	1	1	0	0	1	1
15	Admin	AHU-SZ,DX	0014001	0	•	-		-								
13	Shop	UnitHt-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
17	Grounds	Radiat-Stm	SB ·	3	0	i	Ŏ	0	0	0	1	1	0	0		1
20	Admin	AHU-VAV	VR	4	0	0	1	1	Ŏ	0	0	0	1	1		
20 .		Radiat-Stm	VIV.	0	V	V			v	v	v	v	•	•		
	Admin Chan		SB	3	0	i	0	0	0	0	1	1	0	0		1
0.1	Shop	Radiat-Stm	סס		U	1	U	U	v	v	•	•	V	•		•
21	Cafe	AHU-HV	cn.	0	۸	,	0	0	0	0	1	1	0	0		1
	Cafe	Radiat-Stm	SB	3	0	1	U	Ū	U	U	1	1	U	Ū		1
22	Fire Sta	Radiat-Stm	CDU	0	^		٨	Λ	٥	0	1	1	0	0	1	1
23	Admin 1st	Radiat-Stm	SBV	3	0	1	0	0	0	U	1	1	U	V	1	1
24	Admin	AHU-SZ,DX	0.0	0	^		^	٥	٥	٥		•	٥	٨		1
	Admin	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Compu	AHU-SZ,DX		0					^		^	٥		٥		
25	Admin	AHU-VAV	VRF	5	1	. 0	1	i	0	1	0	0	1	0		
	Admin	Radiat-Stm	SB	3	0	1	0	0	0	0	1	i	0	0		1
	Admin	AHU-VAV	VRF	5	1	0	1	1	0	1	0	9	1	0		
	Shop	Radiat-Stm	SB	3	0	1	0	0	0	0	i	1	0	0		I
	Compu	AHU-SZ,DX		0	,											
35	Shop	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Class Rm	AHU-SZ,DX		0												
38	Museum	Radiat-Stm	SBV	3	0	1	0	0	0	0	1	1	0	0	1	1
	Museum	AHU-SZ,DX		0												
40	MicroFilm	AHU-SZ,DX	۷R	3	0	0	1	1	0	0	0	0	1	0		
	CADD	AHU-SZ,DX	VR	3	0	0	1	1	0	0	0	0	1	0		
	Admin	Chiller-AC		0												
	Admin 1	AHU-SZ	VR	3	0	0	1	1	0	0	0	0	1	0		
	Admin 1	Convert-HW	SBP	2	1	0	0	0	1	0	0	0	0	0		
	Admin 2	AHU-SZ	VR	3	0	0	i	1	0	0	0	0	1	0		
	Draft	AHU-SZ,DX		0												
	N-Conf	AHU-SZ,DX		0												
	S-Conf	AHU-SZ,DX		0												
	Clinic	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Employ	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
44	Admin	AHU-SZ	VR	3	0	0	1	1	0	0	0	0	1	0		
• •	Admin	Chiller-AC		0												
	Admin E	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Admin W	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Labs	AHU-SZ	- -	0	-	-	-									
	Labs	Chiller-AC		0												
	Compu	AHU-SZ,DX		0												
	Basmt	AHU-HV	VR	3	0	0	1	1	0	0	0	0	1	0		
	Daomi	11110 111	***	·	•		-	-	•	-	-					

		Totals		134	4	30	11	11	2	2	30	30	11	3	4	30
145	Storage	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Office	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
135	Shop	Radiat-Stm	SB	3	0	1	0	0	0	0	1	i	0	0		1
132	Pest	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
130	Storage	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
126	Storage	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
125	Shop	Radiat-Stm	SB	4	0	1	0	0	0	0	1	1	0	1		1
124	Lab	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
123	Lab	Radiat-Stm	SB	3	0	i	0	0	0	0	1	1	0	0		1
121	Lab	Radiat-Stm	SB	3	0	i	0	0	0	0	1	1	0	0		1
	E Labs	Chiller-AC		0					,							
	E Labs	AHU-HV		0												
	C&W Labs	Chiller-AC		0												
	C&W Labs	AHU-SZ	•	0												
	Shop	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Admin	Chiller-AC		0												
120	Admin	AHU-MZ	VR	4	0	0	i	1	0	0	0	0	1	1		
116	POL	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
	Compu	AHU-SZ,DX		0												
	Admin	Radiat-Stm	SBV	3	0	1	0	0	0	0	1	1	0	0	1	1
	Admin	AHU-HV		0												
	Admin	AHU-HV		0												
115	Admin	AHU-SZ		0												
114	Lab	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1
110	Shop	Radiat-Stm	SB	3	0	1	0	0	0	0	1	1	0	0		1

Control Point Legend:

_____ CRO - Control Relay Output

SOL - Solenoid

DMA - Damper Motor Actuator

PID - PID Controller

GPS - Gage Pressure Switch

DPS - Differential Pressure Switch

LIM - End Limit Switch

STS - Space Temperature Sensor ('F)

POS - Damper Position Indicator

OAT - Outside Air Temp. Sensor ('F)

EMCS Function Legend:

SB - Day/Night Setback of Steam Valve

SBV - SB With New Control Valve

SBP - Setback Pump

VR - Ventilation/Recirculation

VRF - V/R With Exhaust Fan Control

Controlled System Legend:

AHU - Air Handling Unit

- AHU, Heating & Ventilating AHU-HV

- AHU, Multi-Zone AHU-MZ

- AHU, Single Zone AHU-SZ

AHU-SZ,DX - AHU, Single Zone, Direct Exp.

AHU-VAV - AHU, Variable Air Volume

Chiller-AC - Chiller, Air Cooled

Convert-HW - Converter, Steam to Hot Water

Radiat-Stm - Radiators, Steam

UnitHt-Stm - Unit Heater, Steam

CONSTRUCTION				DATE PREPARED						
LOUST KUCTION COST	ESTIMA	CONSTRUCTION COST ESTIMATE								
PROJECT FNEDGY ENGINEEDING	ENERGY ENGINEERING ANALYSIS									
LOCATION		CODE A (No design completed)								
WATERVLIET ARS	CODE & (Preliminary design)									
REYNOLDS, SMITH AN	D HILLS	A.E.	.P., II	₹C.		THER (Spedly)				
DRAWING HO.		ESTIM	ATOR -	T. Todd		CHECKED BY				
	QUANT	 		LABOR	T	MATERIAL				
EMCS SUMMARY	NO. UNITS	UNIT MEAS.	PER Unit	TOTAL	PER	TOTAL	TOTAL COST			
SETBACK - STEAM										
INPUT										
Space Temp. Sensor (A)	30	Ea.	35	1050	125	3750	4800			
End Limit Switch (b)	30	Ea.		750	15	450	1200			
OUTPUT										
Solenoid (D)	30	Ea.	75	2250	302	9060	11310.			
120 Volt AC Power	30	Ea.	88	2640	39	1170	3810			
Preumatic Steam Valve, 4"	4	Ea.	120	480	2530	10120	10600			
				7170		24550	31720			
VENTIL. & RECIRC.										
INPUT										
Differential Press. Switches	2	Ea.	48	96	70	140	236			
Damper Pos. Ind. (A)		Ea.	73	803	210	2310	3113			
OUTPUT										
Damper Motor Actuator(A)	11	Ea.	25	275	182	2002	2277			
Control Relay (D)	2	Ea.	25	50	87	174	224			
PID Controller	1 /	Ea.	100	1100	1100	11/120	~~~			
1 to con a offer	<u> </u>	<i>-</i> α.	100		400	4400	5500			
				2324		9026	11.350			
SETBACK - PUMP			-			1026	11 030			
INPUT										
Gage Pressure Switch (D)	2	Ea.	147	294	155	310	604			
OUTPUT										
Control Relay (0)	2	Ea.	25	50	87	174	224			
·				344		484	828			
•					•	1011				

ENG FORM 150

* V.S. GOVERNMENT PRINTING OFFICE , 1958 (

WVA - EMS Wire Line Distances (In Feet) Filename: EMSCABL2.W01

				CLT-FI	D	,	FID-MU	IX		MUX-PTS		MUX-PTS			MUX	OTAL
		Bldg	Duct	Bury	Bldg	Duct	Bury	Bldg		Bury		Points	Duct	Bury	Bldg	
FID	1	20	2600	0	200	0	0	0	0	0	300	7	0	0	2100	
1 10	•	25	0	0	0	0	0	0	300	-0	300	16	4800	0	4800	
		38	0	0	0	0	0	0	225	100	150	3	675	300	450	
MUX	1	35	0	0	0	1000	0	400	0	0	400	3	0	. 0	1200	
		23	0	0	0	0	0	0	0	0	400	3	0	0	1200	
		24	0	0	0	0	0	0	0	0	300	3	0	. 0	900	
MUX	2	40	0	0	0	875	0	400	0	0	400	20	0	0	8000	
	Su	btotal	2600	0	200	1875	0	800	525	100	2250	55	5475	300	18650	
FID	2	120	5300	0	250	0	0	0	0	0	200	7	0	0	1400	
		115	0	0	0	0	0	0	50	50	200	3	150	150	600	
MUX	1	17	0	0	0	1150	0	250	0	0	100	3	0	0	300	
		15	0	0	0	0	0	0	275	50	150	3	825	150	45 0	
		21	0	0	0	0	0	0	50	50	150	3	150	150	450	
		44	0	0	0	0	0	0	300	0	200	12	3600	0	2400	
MUX	2	110	0	0	0	375	0	300	0	0	400	3	0	0	1200	
		10	0	0	0	0	0	0	50	300	200	8	400	2400	1600	
	Su	btotal	5300	0	250	1525	0	550	725	450	1600	42	5125	2850	8400	
FID	3	125	875	0	300	0	0	0	0	0	350	4	0	0	1400	
		123	0	0	0	0	0	0	500	0	150	3	1500	0	450	
		124	0	0	0	0	0	0	325	0	150	3	975	0	450	
		126	0	0	0	0	0	0	325	0	150	3	975	0	450	
		135	0	0	0	0	0	0	625	0	300	. 6	3750	0	1800	
MUX	1	110	0	0	0	875	0	300	0	0	0	0	0	0	0	
		114	0	0	0	0	0	0	75	0	100	3	225	150	300	
		116 121	0	0	0 0	0	0	0 0	300 250	50 50	100 100	3 3	900 750	150 150	300 300	
MUX	2	132	0	0	0	1350	0	150	230	0	50	3	730	130	150	
HUA	Ĺ	130	0	0	0	0	0	0	300	100	150	3	900	300	450	
MUX	3	145	0	0	Ŏ	2050	0	200	0	0	300	3	0	0	900	
	Su	ıbtotal	875	0	300	4275	0	650	2700	200	1900	37	9975	600	6950	
		TOTAL	8775	0	750	7675	0	2000	3950	750	5750	134	20575	3750	34000	
						Mate				Labor						
		Existin	-			37025			20400							
		Direct	Buria:	l			Feet			Feet						
		Indoor				36750	Feet		8500	Feet						

WVA - EMCS Cable Distances

Existing Duct Banks Filename: EMSCABL2.WQ1

Run Number	Manhole From #	No.s To #	Plan Inches	Act. Feet
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	2 3 4 5 5 5 6 7 8 9 10 11 12 14 15 16 17 18 19 19 19 20 22 32 33 44 44 46 52 53 45 55 56 7 58 59 59	1 2 3 4 5 8 9 10 11 4 15 16 17 18 19 19 60 22 33 34 5 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5	1.125 0.875 0.750 0.500 1.000 1.125 0.875 1.375 1.125 0.750 0.375 1.250 0.750 1.000 1.000 1.000 1.500 1.000 1.500 1.500 1.500 1.125 1.500 0.750 0.125 1.250 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.875 1.375 0.750 0.125 1.500 0.125 1.500 0.125 1.625 1.125 1.500 1.375 1.500 1.375 1.500 1.375 1.500 1.750 1.750 1.750 1.750 1.750	225 175 150 100 200 225 175 275 225 150 200 200 75 175 200 200 200 175 275 150 200 200 175 275 150 200 200 200 200 205 175 275 275 275 275 275 275 275 275 275 2
46	60	59	1.750	350

		—	-	. 7/AM 74/	17141		=	J				_				7				П				
	Г	-	*	IBE NODE .	11173	\vdash	H	Ŧ	H	Н	Н	\vdash	Н	Н		Н			-	Н		H	\dashv	
	ļ					\vdash	Н					H	П							Н				Ħ
	1						М			Н			П						П		_			i I
			DRING CONTROL	LINOR METICE	REMOTE		М						П							П		П		
			10	INC CONTR	TICHI																			
			TIMIT	ER DEMAND	CHILL																			
	=	2		NSEK WATE																				
	0000000	2	RESET	ED WATER	THIT																			
	5	•	NOI	ER SELECT	CHILL																			
1	1			/ RESET																				
	=	2	R SELECTION				Ш											Ш		Ш				
<u>ا</u> س	ADDITCATION	5		BOILERS			Ш									_			L	Ш		Щ		
SOFTWARE	=	-		T COIL RE		_	Щ			Щ			L		L	Ц		\vdash	L	Ц		Щ	_	
1			IRCULATION	OFD DECK		┡	Н			Щ	_	_	L		<u> </u>			<u> </u>	L	Н	_	Н	_	1 1
S0		_	MOLTA HIDAL	NIZIA NO LIVI		ļ_	Н			Ш		_	L				_	_	L	Н	_	Н	_	
ŀ			¥0.1			┢			-	Н	Н		L	Н	_	Н		H	H	Н	_	Н	_	1
ľ	l			ICHT SETB		┢			_	Н		Н	H	Н	H	Н		_	-	-		Н	Н	1
l		-		D FIMILING		╁	Н		H	Н	\vdash	Н	\vdash	H	\vdash	Н		_	\vdash	Н	_	Н	_	il
			1010	UN START		┢		3	\vdash	Н		-	-	_	-	Н		_	H	Н	_	H	Н	
l	l	1		ULED STAR		-	H		\vdash	Н	_	H	H	H	H	Н	_	_	\vdash	Н	Н	-	-	
	h	H	401071		41.00	\vdash	-	_	-	H	-		\vdash	\vdash	Н	H		-	\vdash	Н	Н	Н	Н	
ļ	П	ANAL OC		781	BUN T	H	Н	•		H		 -	\vdash	-	Н	-	-	-	┝	Н	H	Н	Н	
	S	IV			1 MO1	 			•			H	H	Т	Н	Н		Н	┢	Н	_	Н		
Ì	ALARKS	*		11817			Ō		ŏ	Н	П	┢	H	Η	Т	П		Н			_	П		11
i	V	TAL							Ì	П		Г	Г			П			Г	П				
						Г	П			П														
		1910	3	CI CLOSURI	CONTA			•																
					FLOW																			
	l	90			FOSIT					Ш		L						L						
		ANAL OG			19189	┖		_	_	Щ		L	L	_	_	Ш		L	L	L	L		Ш	Ш
]	۲		VIINE HOM		┡	Ļ			Щ		L	_	_	L			ļ.,	<u> </u>	_	<u> </u>	Н		
	<u> </u> =	Н	(3 233803	RATURE (DI	14411	┡	•	Н		Н	H	H	H	\vdash	_	\vdash	L	┡	L	\vdash	H	Н	Н	P
	TUPKI	li	HOUM	S (TIWIT)	CND	╀	_	_	├		-	-	┝	┝	H	Н	H	├	H	⊢	-	H	Н	
	-	_	ti STite		35704	┢	H	H	⊢		H	┝	H	\vdash	-	_	_	┝	\vdash	┝	-	H	-	11
		ITA	131	IVEL CONT		┢	\vdash	H	┢	H	H	-	H	┝	┝	\vdash	┝	├	-	\vdash	_	H	Н	
<u> </u>	1	9		ZALLCH		╁		Ь—	┢	\vdash	┢	┢	 -	┢	H	\vdash	 	┢	-	H	_	\vdash	H	11
X			SOURE SWITCH	SENTIAL PRES	DILLER	 		_	┢		\vdash	一	一	Т	Н		_	┢	一		\vdash		Н	
HARDWA					PRESS	Τ						Г	Г	Г	Г	П	Г	Г	Г		_	Г		
≆		00																		Г		Г		
1	1	ANAL OC																						
	اــا	٧	TN3WT2ULGA	A THION TO	CONTR		lacksquare																	
İ	OUTPUT									Ш			L		L			L	L					
	3	TAI			0FF/A	L		_	_		L	L	L	L	L	L		_	L	L		L	L	11
		DICITAL		OFF\AUTO		┖	L		L		L	L	L	_	L	L	_	<u> </u>	L		L		Ц	11
		0			ROLEN	-			L		_	L	_	<u> </u>	_	L	L	L	L	_	L	L	_	11
<u> </u>	Ш	Ц		OF RELAY	CONTR	-	-		L		<u> </u>	<u> </u>	-	 	-	H	L	L	-	-	<u> </u>		<u> </u>	Н
			<u>~</u>			~				4							ŀ		1					
5	2		RT (> S	12				\$											Ī			
ŀ			IV E	<u>=</u>	DISPLAY	NE.			_	2											Ī			-
9	•		800	=	2 2	00			S	d			1											=
2	:		(S)	<u>ن</u>	1 1	HW CONVERTOR	7		3	3									1					AIR
=) H	A A	1=1	=	J P		Ľ	£							Ì							
UR 381011118	:		SYSTEM(S) Steam hw convertor	OCCUPANCY TIME	CRAPHIC POINT DE	STEAN	HW SUPPLY	PUMP	SPACE SENSOR	STEAM SUPPLY VALVE														OUTSIDE
L =	_		SI	8	2 5	2	Ξ	ੂ≅	ş	2	L	L	L	L		L			L					5
											_											_	_	

Table 4-20. I/O summary table for steam/HW converter.

4-37

		٠.		_				_														
			EVITORE NODE	L	0		N															
				L																		
				_	Ш	L										L	L	L				
			•	L											L	<u> </u>						il
			REBOTE BOILER MONITORING CONTROL	L																		il
			LIGHTING CONTROL	L											L							
	١.	_	CHIFFER DEWAND LIMIT																			
			CONDENSER WATER RESET																			
ļ	9	5	CHIFFED WATER RESET																			
	24 40 20 40	X .	CHIFFE SELECTION																			1 1
			HM OV RESET																			
	70.7	5	HOT WATER BOILER SELECTION																			
	=	•	STEAM BOILER SELECTION																			
SOFTWARE	=	1	REHEAT COIL RESET																			
M 1			HOI/COLD DECK RESET																			
SOF	-	•	VENTILATION/RECIRCULATION																			
			ECOHONIZER				lacksquare															1 1
			DAY/NICHT SETBACK		•		•															
			DENYAD FIRITING	Π	•			П										Г				
	ļ		DOLL CACTINE	Г							•					Г		Г				
	1		90T2\TAAT2 MUMIT90	Г	•						•				Г	Г	Г					H
			SCHEDULED START/STOP	T	•	Г		Г								Г	ऻ					
				Г		П									Г							l
		001	RUN TIME	Г	•												Г	Г				ıl
	2	ANAL	FOM FINIT		Г			•	•	•	•				Г		Г	Г	Г	П		
	ALARUS	٧	HICH FINIL	F	Г		_	•	•	•	•				Г	Г	Г	Г				
	7	ITAL			Г										Г							
		115		1		_			П		Г					Г						
		016	CONTACT CLOSURE	П	•	•						•			Г	Г		Г	Г			
			FLOW	Г					П						Г		Т	Г	Г			H
		30	POSITION - Damper	Г						_								Г	Г			ı
		ANAL	PSIC, PSIA, PSID	Г		-					_					Г	Г	┢	T			H
		Y	% RELATIVE HUNIDITY		Г					•		Г			Г	T		Г	Г			•
		ĺ	TEMPERATURE (DECREES F)					•	•	•	•		Г		Г	Г	Г					
	NPUT			T											Г	Г				П	Г	П
	Ξ			Т									Г		Г	Г		Г				l i
		14	3S7Nd	T						Т					Г	Г	T	Г	Г			
		1191	AUXILIARY CONTACT	t	Г	П	Г	Г	П	Г		Г	\vdash		Г	Г	Г			П		
<u>بر</u>	l	910	EFOM ZMILCH	t	П		Г	T			m	Г	Г		Г	Г		Г				
HARDWARE			DIETERENTIAL PRESSURE SWITCH	Т	•	•		Г			_	•			Г	Γ	Г	Г				
2			PRESSURE SWITCH	T							Т	<u> </u>	_	Г	Г	Т		Г				
≆		30	PID CONTROLLER	Π	Г	Г				<u> </u>	Г	Г			Г	Π	Г	Γ	Г		Г	П
		ANALOG	MOTOR ACTURTOR	Τ						Г		Г			Г	Π	Г	Γ	Г	П	Г	
		₹	CONTROL POINT ADJUSTMENT	Г	Г	Г	Г			Г		Г	Г	Г	Г	Г	П	Г				H
	TU T TUO	П		Г		Г	Г		Г	Г		Г	Г		Г		Г	Г	Г			
	5	=	OFF/AUTO		Г		•			Г	Г	Г	Г	Г		Г		Г	Π			
l	٦	DICITAL	OTUA\740\UNAH	Γ	L													Γ]
		آھا	SOFENOID	Γ			Г			Γ		Γ			Γ	Π	Γ	Π] [
L		L	CONTROL RELAY	Γ	•											Γ	Γ					
				Γ		Г	Г	Г	Г	Γ	Г	Г	Г		Γ	Π	Г	Γ	Π	П		П
1			▎ │				l			ĺ					1	1						H
		S		1						ĺ									1			M
_u	, 6	2	18 1 1d.	1			~							ĺ					1			-
5	ì .,	J -	L T E I	1	=	=	F	_	~	~			1									
2				_	=	٤	¥	=	=	¥		1	l		1							
	; ;	2		=		2	٦.	_	2		ł	2	1							1		اعًا
* ON 33 14 1118	:		SYSTEM(S) VARIABLE AIR VOLUME AHU OCCUPANCY TIME GRAPHIC DISPLAY	VAV ARU	SUPPLY FAN	RETURN FAM	O. A. DAMPER	MIXED AIR	SUPPLY AIR	RETURK	SPACE	FILTER				1			1			OUTSIDE AIR
L ≖	•		04	>	2	2	9	⋾	12	=	S	Ξ					1					티티
				_	_	_	_		_								****	~~~				

Note (1) - Outside Air temp. Seusor is for Bldg. 20 only.

Table 4-3. I/O summary table for variable air volume AHU.

								_				_,				_,							-т	_
		4	• • •	TORE NODE	FA	4	4	+	4	4	4	4	4	\dashv	-	\dashv	+	\dashv	4	\dashv	4	+	ᅱ	
		-				\dashv	+	+	-	\dashv	ᅱ	\dashv	\dashv	┥	-	┪	+	╅	\dashv	┪	┪	\dashv	\dashv	
		ŀ			-+	╅	╅	\dashv	┥	┥	┪	┪	┪	┪	┪	┪	┪	+	\dashv	7	\dashv	+	ᅥ	
1		╌	TOXING CARIXOL	INON #37108 310	N 7X	+	\dashv	+	ᅥ	┪	7	┪	_	+	┪	7	7	+	+	7	7	┪	┪	
		ŀ		HIINC CONTI		┪	+	十	ᅥ	┪	-	┪	\dashv	7	\dashv	┪	7	┪	┪	7	7	7	ᅥ	
		ŀ		LLER DEWAN		+	+	+	┪	┪	┪	7	┪	7	┪	7	┪	7	_	┪	┪	ヿ	╗	
	4	: t		IDENSER WAT		┪	\dashv	+	┪	┪	٦			7	ヿ		┪	7	7		┪	┪	ヿ	
	7 4	:		LLED WATER		十	十	7	┪	7		٦			コ	\neg	T	\neg	╛	╗			口	
	PPACPAUS	<u> </u>		ורבצ צבובכ	_	寸	7	寸	┪	╗						コ								
				OA RESET	AH	7	1	\exists												-			\Box	
	MDDIICATION	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ER SELECTION	WATER BOIL	TOH			П																ı
	1	: [PELECTION	YN BOILER	318																			
	-	: [IEAT COIL RE														_	_	_	_	_	_	
A R	8	= [RESET	VCOLD DECK	TOH	_	_	_	_							4	4	_	4	4	_	_	_	
=	◀	٠ [CIRCULATION	TILATION/RE		_	_	_	_							_	4	4	4	4	4	_	4	
SOFTWARE		ļ		MONIZER	_	4			_	_	Ц	_		Ц		4	4		4	4	4	4	긕	
		ļ		VALENT SET		_		4		_	\Box			Щ	_	_		4	4		4	-	\dashv	
			91	HAND LIMITIONAL		4	-	4	_	Н	\vdash	Н	Щ	Н	\dashv	-	-	-	-		\dashv	\dashv	\dashv	
		ŀ	1010	L CACFINE		-	-	\dashv	_	_	Н		_		Н	-	ᅱ	┥		┥	\dashv	\dashv	\dashv	
1		ŀ		INUM STARTA		-	+	┥	-			Н	_	\dashv		_	\dashv	┥		\dashv	\dashv	\dashv	H	
	Н	┌┤	8013/10	412 43 (1143)	103	-	┥	┥	-	Н	Н	Н	H	\vdash	-		\dashv	┪	-	\dashv	\dashv	Н	\dashv	
l		8		11 NE	עחע	-	-	+	-	_	Н	Н		Н	_	\dashv	\exists	\dashv	\exists	\dashv			П	
ŀ	_	ANAL OC		11817		+	ᅥ	ᆲ	-		Н	Н	Н	Н	_			┪			Н		П	1
1	3	₹		11811			ᅥ	ᆲ	-	_			_	H	_						П			
	ALARMS	1		21111111	" 	\dashv	┪	7	-	П	Τ		H	П	Т							П	П	
						\Box				П														il
ļ		19 TQ	3:	TACT CLOSUR	СОИ			П					Г											
	Г			A	LFO																			1 1
İ		8		MOITI							Ŀ	L	L							Ц	L			
1		ANAL OC	Q 1			Ш		Ц		L	<u> </u>	L	L		L		Ш	Щ		Ш		L	Ш	Н
		7		WUH BYITAJ3		Ц				<u> </u>	L	<u> </u>	L		_	_	L		L		-	\sqcup	Ш	Ы
	.		ECKEES E)	PERATURE (D	TEM	Н	Ц			_	L	ļ_	├-	L	L	-	_	Н	⊢	-	-	_	_	9
l	INPUT			(1:-17)	47	Н		Н		<u> </u>	┞	┞	┞	┞	┝	H	H	Н	┝	┝	\vdash	-	H	
1	=	_	нэті	AS (IIMIT)		Н		Н		⊢	┞	┞	┝	┝	├	┢	-	_	┝	┝	┝	-	┢╾	1
1	1	GITA	127	ILIARY CONT	104	Н		Н	⊢	┝	H	╁	╁	┝	┝	┝		Н	H	┝	┝	H	┢	1 1
Ì		_	104	A SAILCH		Н	Н	Н	_	H	\vdash	H	H	t	H	┢	Н	Н	一	H	-	H	┢	1
		0	220KE ZALLCH	ERENTIAL PRE		Н	Н	Н	┢	T	\vdash	t	T	T	Τ	T	Г		Г			Т	Г	1
HARDWARE	1			SEURE SWITC	PRE			П	Г	T		T	T	Т	T	Γ		Г	Г					1
2	\vdash	宫]
≨		ANALOC								Г	L					L		L						1
		Z	TNBUTZULGA	TROL POINT	COK							L		L	L	L		L	L		L	L	L	↓
	12	Γ							L			L	Ļ	L	L	L	L			<u> </u>	Ļ	Ļ	丄	1
1	DUTPUT	ΙΞ		0104/		L	_	L	L	L	<u> </u>	<u> </u>	L	Ļ	L	L	L	<u>L</u> .	<u> </u>	L	 	Ļ	╀	1
		DICITA		0/01/4/110/0		┞-		_	L	┞-	╀	╀	╀	╀	╄	╀	 	├-	┞	┞	ŀ	╄	₩	1
		5		EMOID	105	╀		-	L	╀	╀	╀	╄	╀	╀	╀	┝	⊢	┝	┞	┝	╁	╁	1
<u> </u>	_	L		IROL RELAY	NUU	-	-	H	\vdash	╀	╁	╁	╀	+	╁	╁	╁	\vdash	╁╴	+	\vdash	+	\vdash	H
1	_		_		퓍_	_	۳						1						I				Į	
\ \rac{1}{2}			13.1		ءِ ء	=	=										1							
			ŧΕΛ	I ME	訓=	Į¥]	1		ı						l								-
9	2		-	-	S = 2	1-	=		1			1									1			
9	ور		(S)	NC Y	C DISPLAY DESCRIPTIO	E	SUPPLY VALY			1														
			SYSTEM(S) Steam unit heater	OCCUPANCY TIME		J	=	1										l		1			ĺ	OUTSIDE AIR
:	=		YST	ກວວ	POINT	1	STEAM	SPACE	ı	1	1	1									1	Ī		5
	5		5 5	ő	0 2	12	∽	S	1	1	1		1	1		1	1	1		1	L			0

Table 4-10. I/O summary table for steam unit heater.

4-20

							HA	RDW	ARE																		s	OFT	WAR	l E									_	ļ
BUILDING NOŚ		_	00	TPU	1		Т	_	_			I NP	UT	_		_			AL				I^-					AP	PLI	CAT	! O N	PR	061	RAMS	;					
See list below	0	G	TA	ι	Al	IAL	90		_	GIT	AL	_	_	_^	MAL	06		1161	7	. A	NAL	06	١,	_		1	ГТ	_		т-	ΞĪ	1	Т	Т	П	Т		Т	П	_
SYSTEM(S)				T	ME NT			1					=									Ì						E E		5	ECTIO			SET	-		2000			
STEAM RADIATION					ADJUST WENT				DIFFERENTIAL PRESSURE SHILES	13		5	AFFERE	1								\cdot	1/510	OPTIMUM START/STOP		VCK.	$ \ $	VENTILATION/RECIRCULATION	RESET	STEAM BOILER SELECTION	HOT WATER BOILER SELECTION		8	CONDENSER WATER RESET	CHILLER DEMAND LIMIT	200	REBOTE BOILER HONITORING CONTROL			•
OCCUPANCY TIME	RELAY	1			POINT A			PRESSURE SWITCH		CONTACT		END (LIMIT) SWITCH	1		PSIG. PSIA, PSID			CONTACT CLOSURE					STAR	TART/	DUTY CYCLING	SETBACK	æ	ON/RE	× 1	LER E	9011	135	CHILLER SELECTION	MATER WATER	DENAN	LIGHTING CONTROL				MODE
			HAND/OFF/AUTO		2 2			S	BIFFERENTIAL	AUXILIARY		1	Tan Tan Tan Tan Tan Tan Tan Tan Tan Tan	4	S	5		5		HICH LINIT	LOW LINIT	<u>=</u>	03 100	N R	2 5	DAY/NIGHT	ECONONI ZER	1141		9 E	WATER	HW OA PESET	5	ENSE	ER	11.18	1100 3	١		FAILURE MODE
GRAPHIC DISPLAY	CONTROL	SOLENOL	V 10	011/10	CONTROL			RESS			PULSE	ON.			PSIC	POSITION	F1.0V	3		3	5	RUN T.WE	SCRE	1	In a		ECON	VENT		SIER	5	至	핆	3 3	E	1 5	3			FAL
POINT DESCRIPTION	비	<u>~ </u>	= '	٦_	۲	Ш	Щ	_	7	#	1	П	4	+	+	+	Н	+	┰	╁╴	Н	\dashv	+	Н	十	十	T	H	十	+	1	П	ヿ					T	\top	Г
STEAM RADIATION	Н	_	+	+	╄	-	Н	-+	+	╀	╁╌		+	╅	┿	╀	1	\dashv	┿	t	Н	\vdash	+	Н	_			П		T	Т			m I	\mathbf{I}				L	0
STEAM SUPPLY VALVE	1.	4	4	4-	╀	╂	Н	+	+	╁	╁╴		-	+	┿	┰	╁	\dashv	+				+-	П	\dashv		Г	П	\neg	T	Г	П			\perp	L	Ц		┸	L
SPACE	₩	-	+	+	┿	₽	Н	-		┿	╀	Н	-	-	┿	╁╌	╁╌	H	+-	۲	Ť	\vdash	\top	Н	\dashv	┰	Т	П	T	Т	Т	П	\Box	\perp	\mathbf{L}				1	L
	1-1	4	-	4	+	╂	Н	-	+	╫	+-	Н	\dashv	+	╁	╁	╁	\vdash	┰	†-	+	\vdash	+	П	_	1	1	П	\Box	Т		\Box			\perp	L	Ц	\perp	↓_	L
	4-4	\dashv	-	+	╀	╀	Н	\vdash	+	+	╁╌	₩	\dashv	╅	十	+	╁	H	+	†-	1	H	╅┈	П		T	1	П	П	\top	Τ.			\perp			Ц	┵	1	ļ
	1-1	-	4	+	+-	╄	Н	H	+	┿	┿	Н	+	-+	╅	┿	+-	H	_	t	Т	\vdash	十	1	П	T	Т	П		T	Τ					<u> </u>	Ш		1	L
	\sqcup	\dashv	+	4	4-	╀	Н	Н	-+	╫	╁	H	\dashv	-+	┿	╁	╁╴	Н		+-	╈	\vdash	十	✝	П	T	T	П	П	T	Т				\perp	L	Ш	\perp	┸	L
	11	\sqcup	4	4	+	╀	-	Н	ᅪ	+	╁	╁╌	⊢┼	-+	+-	┿	╁	H	十	十	\vdash	1	十	1	П	T	T	П	П		T			i			Ш			L
	+	Н	-	+	+	+	H	Н	-+	+	┿	╁	H	-+	╫	╁	┿	Н		+	十	Н	T	1	П	7	1	П	П	T	Τ.					L	Ш			l
	14	Н	-}	4	4-	╄	╀	Н	-+	╬	┿	╀	Н	-+	+	╁	╁╴	Н	+	+	T	\vdash	十	t	П	┪	T	Г	П		Т						Ц		\perp	Ţ
	44	Н	4	-	+	+	╀-	Н	+	+	╬	╀╌	Н	-	┿	┿	+	Н	十	+	+-	11	-	+	П	7	Τ	Τ	П	Т	Т	П	П	П	Ι				L	L
	11	Ц	4	4	4	╀	╄	Н	-+	+	+	╀	Н	-+	╅	┿	+-	Н	╅	+	+	† †	╅	+-	Н	\top	十	T	П		Τ	Т		П	Τ	L	П			L
	1	Ц	Ц	4	4	+	╄	Н	-		+	╄	H	-	+	╋	+-	Н		+	+	╅	+	†	Н	十	十	1	П		Т	T		П	Т	Т	П	\Box	1	L
	\perp	Ц	Ц	4	4	1	1-	Н	Н	-	╀	╀	Н		+	┿	╁	Н	+	┿	╁	1 1	+	+	Н	+	+	†	П	o	1	T	П	Т	Т	T	П			Ι
	_	Ш	Ш	4	4	4	╄	H	⊢⊦	+	+	╀	Н	-	+	╬	╁	Н	+	+	+	++	-+	+-	Н	\dashv	十	T	П	\sqcap	T	T	Г	П	Т	T			\perp	Ι
	┦	Ш	Ц	4	ᅪ	4	╄	1	$\vdash \downarrow$	+	┿	╀	Н	\dashv	+	+	+-	+-	\vdash	╅	十	H	+	╈	H	\vdash †	十	T	П	ΓŤ	┰	Τ	П	П	T	T			\perp	Ι
	┸	Ш	Ш	4	4	4	4	₽.	Н	4	+	╀	⊢	Н	+	+	+	Н	+	+	╫	╅┪	-+	╈	Н	\vdash	+	+-	П	\sqcap	_	1	Т	П	Т	T	П		T	Ι
	1	1 1	L	i	i	_	<u> </u>	1_	L	_1	上			Ш	_	ᆚ.	ᆚ	لــــــــــــــــــــــــــــــــــــــ		ㅗ		ب		ــــــــــــــــــــــــــــــــــــــ	_	_			•			٠.								

ONE MEASUREMENT FOR ENTIRE SYSTEM

ONE MEASUREMENT FOR ENTIRE SYSTEM

H - HIGH VALUE F - OFF (CLOSED)

ONE MEASUREMENT N - LOCAL LOOP

Table 4-13. I/O summary table for steam radiation.

Figure 4-13. Steam radiation schematic.

Applies	to t	he follow	wing Bo	ildings	:	
20 23 25 38	17 21 24	35 110 114 116	121 123 124 125	126 130 132 145	40 44 115 120	135

Note (1) - Outside air temp. sensor is for Bldg. 125 only

		-		. 3446 555	 1					_		_			+	_	-	_	т-	_			_
			•	• 300M 3AU.	FAII	\dashv	9	\dashv	-		\dashv	_	Н	\dashv	+	+	╀	+	╀	-	Н	-	
						\dashv			-	\dashv	\dashv	\dashv	Н		+	+	+	╁	╁	┝	Н	\dashv	
						-				\dashv	\dashv	-	Н	\dashv	十	+	+	╁	十	\vdash	Н	\dashv	
			ORING CONTROL	LINOR H37104 3	10438	\dashv	\neg	-	\neg	\dashv	\dashv		H		+	╅	\dagger	╅	+	┢	H	7	
				TING CONTR		\vdash		_			\dashv	_	\dashv		_	十	t	1	†	H	Н		
				TER DEMAND			П				7			\Box	\top	\top	†	十	1	T	П		
	ä	2		ENZER MYTE			П				┪	\neg			十	十	T	╅	T	Г	П		, !
	1	1		LED WATER												十	T	T	Т	Г	П		
	201000	2	HOI	TER SELECT	11113						\neg						T	T	Τ				
				V RESET	HA C										П	Т	T						
	3	AFFLICALIUM	R SELECTION	WATER BOILE	10H												I	$oxed{L}$					
	:	-	ELECTION	N BOIFEE 2	21EA												Ι						
SOFTWARE]	רו ר	132	AT COIL RE	REHE												I						
:1.	8	L		COLD DECK											\perp	\perp	\perp	\perp	L	L			
201	1	٩	IRCULATION	I LATION/REC											_	\perp	1	\perp	上	L			
	ĺ			MIZER		Ш		Ш	•						\dashv	\perp	1	\perp	_	L	Ц		}
	l			NICHI ZELB		Ш	Ď		•				•	Ц	4	+	\bot	1	┸	L	Ш	_	
	ļ		೨	NILINIT ON		Ш	•								-	4	4	_	+	L	Ш	\Box	
N.	ľ		10.10	CLCFING		Н		_	Ш			_	무	_	-	+	+	+	+-	_	Н	\dashv	
,				MUM START/		Н	2	_		Н	4			_	+	+	+	╀	+-	⊢	Н	-	
	\vdash	_	9013/1	8112 (3)110	31172	Н		Н	Н	\dashv	\dashv	Н	Н	Н	\dashv	┿	┿	┿	╁	╀	┞╌┤	\dashv	
		90		TIME	· wn w	H	•		Н	\dashv	\dashv			\vdash	\dashv	┿	+	╁	┿	┝	H		
		ANAL OC		11811		Н			H		•			-	+	┿	┿	+	+-	┢	Н	-	
	RE	₹		TIMIT		Н			H	_	3			Н	+	+	十	╁	╁	┢	Н	-	
	ALARUS	둫		11411	13111	H	H	H				_		Н	}	十	十	╁	╈	┢	Н		
		_		•		H		Н	Н				Н		十	十	╁	十	╅	╁╌	Н		
		510	3	VCL CFOZOR	COKL	П	•	•						0	\dashv	十	T	十	╈	T	П		
	Г		12,		FLOW	П	Ť						Г	П	\dashv	十	†	+	1	T	П	П	i
		30		HOIT	1204												T			Γ			
		NAL OC		29 , AIZ9 ,												\Box							
		=		MUH 3VITAJ								•	•			\perp							•
	_		ECREES F)	D) 38UTAR3	1ENP					•	lacksquare	lacksquare	•			\perp	⊥	\perp	丄				•
	MP UT							Ш			Ш		_	Ш		4	┵	\bot	1	L			
	=					$oxed{oxed}$	Щ	Ш		Ц	Ш		L	Ш		4	4	╀	1	L	<u> </u>	Щ	
		Ξ			SING	_	_	_			Ш	_		Н	\Box	4	+	+	╀	Ļ	L	Ц	
		191	134	LIARY CONT					_	Ц	Н	_	_	_	-	+	+	+	4	Ļ	-	Н	
HARDWARE		=	SERBE SALLOH	SWITCH	AUIS	-		•	L	Щ	Н		_			+	+	╀	╀	╀	┢	_	
2					PRES	-	_	_	_	_	Н		-	-	H	+	+	┿	╀	╀	╁	H	
I ₹	┝	2		CONTROLL	PID	H	H				Н	Н	H	H	\vdash	+	+	+	╫	╁	┞	H	
		ANAL OC	108	AUTOA AC	LOW	-	┝	_		Н	\vdash	_	┝	┝	\vdash	+	+	╅	╁	╁╌		\vdash	
İ		7	VOTRENT	ROL POINT	CONT	Г	H	┢	Г	П	Н	Г	Н		Ħ	十	†	+	十	t	Т	H	
	15	┢						Г			Н		T	Г	\dashv	-	十	十	十	T	T	T	l
	TU 9 TUO	7		OTUA	OLE\				•		П				П	\neg	1	1	\top	T	Т	Г	
	°	DICITAL		OFF/AUTO	GNYH												1	T	Τ	Τ			
		Ξ			3105													I	Ι				
				ROL RELAY	CONT		•									\Box	Ι						
						Γ		Γ	Γ				Γ			T	T	T		Γ	Γ	Γ	
20	3				_ 5															l			
,	1			=		1			ĺ				1		2		-						
0			<u>~</u>	Ξ	등	1	_		2						FAN	١	1						=
*			(S)	≿	2 2		3	Z	DAWPER	~	- X	=			1, 1		ļ				1		=
=			MC 5	N A	일	呈	_	=	5	A R	I 👡		1	_	[일						1	1	120
02 02 11 11 11 11 11 11 11 11 11 11 11 11 11	2		SYSTEM(S) Variable Volume ah	an C	GRAPHIC DISPLAY	VAV AHU	SUPPLY FAN	RETURN FAN	÷	E	SUPPLY	RETURN AIR	12	FILTER	EXHAUST	1						1	2
=			SYSTEM(S) VARIABLE AI VOLUME AHU	OCCUPANCY TIME	CRAPHIC DISPLA	\$	S	12	.	Q 3 X I M	S		SPACE	ΙΞ	M		1						OUTSIDE AIR
			1			ᆫ				تــا	丄	匚	L			L	L	_L		1_	丄	<u> </u>	

Table 4-3. I/O summary table for variable air volume AHU.

ONE REASUREMENT FOR EN

C - LAST COMMAND 0 -H - HIGH VALUE F --

					•	• 300	N 340.	3 V :		=	3												
				IBOF		CONTRO	TINC	H91	山	1													
		PPACPAUC	2		KEZEL	ATER R Water Emand	ENZEK	OND:		+													
				NO I I	0M 3 2E1EC		V KES	HA C	I	•													
SOFTWARE		APPLICATION	20	_	T3:		N B01	STENE STENE	1	ŧ													
1108		4		NOI	RCULAT	N/BECI B	ONIZE ILATIO	CON:							E		E						
							ND FI	YTU VM3	1	•	•			E		E							
	-	7				START				•	•												
		RWS	TAL ANALOG				TINIT TINIT TINIT	MO.	ī		•	•							E				
			DIGITAL			r o a n k E			\pm	 													
	1	╗	ANALOG D					M07.	-	‡													
			ANA	(3		E HNWI	141141	38 :	7	•		•											-
		Z Z	LYT					sin															
WARE			DIGITAL	нэті	as anns	L PRES	SWIT.	. F OA	-				_										
HARDWAR	ŀ	-	ANAL OC			SWITCH	SURE	BES	=	$\frac{1}{1}$											E		
		OUTPUT		183	NTSULO	A TH10	AUTO ROL PI			•													
		õ	DICITA				ROL RI	VKD	5	‡								E					
	40 +				RTOR	7113	14 148		7,	¥ D													f
				a	F CONVEI	7 11 ME		DISPLA	SCRIPTI	CONVE		SENSOR											9
	BUILDING NO.			SYSTEM(S)	STEAM HW CONVERTOR	OCCUPANCY TIME		GRAPHIC DISPLAY	POINT DESCRIPTION	SIEAN AN CONVENIOR	PUMP	I											AHTCIBE

Table 4-20. I/O summary table for steam/HW converter.

		\dashv	•	ME NODE .	FAILU	\sqcup	듸	Ţ	=[_	\Box		\Box									\Box	\Box	
		ļ				Н	4	4	4	_	_	4	4	_	_	_	Ц	_	Ц		\Box	_	_	
		-				\sqcup	4	4	4	_	_	_	_	_		_		_		Щ	\sqcup	\dashv	_	
		ļ	7841288	IIINA WATER	7,6674	Н	4	4	4	_	_	_	_		_	4	_	_			Ц	\dashv	ᅴ	
		ŀ	ORING CONTROL			\vdash	-	4	4	\dashv	4	-	\dashv	\dashv	_	_				_		_	괵	H
		- }		INC CONTR		Н	_	4	4	4	_	_	-	_							Щ	_	_	
	u	,		ER DEMAND		\vdash	\dashv	-	4	4	4			_					_		\dashv	_	_	
	7			HZEK AVIE		Н	4	4	4	_	_	_	_	_	_	Ш	Ш	Щ		_		_	_	
	SHYESVAG			ED WATER		Н	-	4	4	-	-		_		_						_	_		
	9 0		NO!	ER SELECT		Н	_	4	_	4	_		_								-	-	4	
			WA : (A3333A W	RESET		\sqcup		4	4	_	_	_		_	Щ			Ш				\dashv	4	
	MOLITATION		R SELECTION			\sqcup		4	_	_	_	_	\dashv	_	Ц							_	4	
<u></u>	1.0	5		BOILER S		\sqcup	_	4	4	\dashv	_			_	Ш						Ш	_	_	
SOFTWARE	=	;		T COIL RE		Ш	_	4	4	4	_											_	_	ll
Ξ	9	:		OF D DECK		\sqcup	_			4	_		_	Ц								4	_	ll
20		·	IRCULATION			\vdash				_	_	_	_	_	_						Ш		_	
		ļ	1101		ECONO	Н	ᅴ	-+	흿		_			_	_	Щ					_	\dashv	4	H
		ŀ		ICHI SELB		Н	뭐		믜			_		_						\vdash	Ш	_	4	
				D FIMILING		\sqcup	의	4	_	_	,									_	Щ	_	_	
		١		CLCLING		Ш	의	4	_		_		틧		Ц	Ц	Щ		Ш		Ц	Ц		
		١		VM START		\sqcup	흿	4	_		_	_		Щ	Щ		Ц	ļ		<u> </u>	Щ	Ц		
	Щ	_	9012/1	ULED STAR	SCHED	Ц	9	_	_								Ц				Ш		_	11
		ဗ				Ц		4	_		_		Ц				Ш		Ц	_	Ц	Ц		
		밁			RUNT	Ш	9	4	4	Ц	_		Ţ						_	Щ	Ш	Ш	_	
	S	ANAL			1 A01	Ш	_	4	4	•	•	•	Ò				$oxed{\Box}$			_	Ш	Ш		ll
	ALARKS			11417	HICH	Ц	_	_	_	•	•		•				Ь	_	L	L	ш	Ш		
	7	ITAL				Ц	_	4	_				_						_	L		Ц		
		1910				Ш	_	_	_					_	Ш	L		_	L	L				11
		9		CT CLOSURE		Ш	•	9	4				Ц	•			L		L	<u> </u>	_	Щ		1
					FLOW	Н	_	_		Щ			Щ			L	_	L	L	L	╙			ll
		301			11209	Н	_	_		_			Ш			L	L	<u> </u>	L	L	<u> </u>		Ш	
		ANAL		PSIA, PSI		Н	\vdash	-	_		_			_	┡	H	L	┡	┡	L	_	Щ		
		-		ALIVE HUNI		Н		-4	_			ŀ	•		-	L		L	L	L	H	Н		
	=	Н	(1 53165:	RATURE (DE	TEMPE	Н		-	-		•	•	_	H	<u> </u>	H	┝	┝	┝	-	-	Н		P
	NPUT					Н	-	-			Н	H		_	├-	┡	<u> </u>	⊢	├-	L	⊢	Н	_	
Ì	-				BNFZE	Н	\dashv	\dashv	_		Н	H	\vdash	⊢	⊢	├-	┝	┝	-	┝	⊢	Н		
		ITA	193	IARY CONTA		Н		\dashv	\dashv	\vdash	\vdash	\vdash	H	<u> </u>	┝	-	⊢	┝	┝	┝	⊢	Н		
		191	101	ALICH CONT.		Н	\dashv	\dashv		Н	-	_	Н		⊢	⊢	⊢	┝	<u> </u>	⊢	⊢	Н		łl
¥ ¥		0	SURE SWITCH	ENLINE FRES	EI VA	Н		ᅬ	_		-	_	H	6	┝	<u> </u>	┝	-	┝	┝	⊢	Н	_	1 1
HARDWAR	l			NE SMILCH		Н		픡	-	Н	_	_	H	۲	\vdash	┝	⊢	┝	┝	\vdash	⊢	Н	_	{
¥	 	3		SUTROLLE		\vdash	Н	\dashv		Н	\vdash	\vdash	\vdash	\vdash		-	┝	\vdash	H	\vdash	⊢	Н	-	1 I
		9		TAUTA 9		Н		_		_	-	_	-	┝	┝	┝	\vdash	┝	┝	┝	-	Н		1
		A NA L OG	THEMTSULO		CONTRI	\vdash		-		-	-	-	-	-	-	┝	├	\vdash	┝	┝	-	-		1
	5	Н	2320	. 1000	1011100	Н	\vdash	\dashv	\dashv	_	-	-	\vdash	-	H	\vdash	H	┝	⊢	\vdash	⊢	Н	Н	1 1
	FUGTE	_		010	OEE\V	Н	Н	\dashv		_	_	_	H	┝	┝	┝	-	┝	┝	┝	⊢	Н	_	1
	=	DICITA	· · · · · · · · · · · · · · · · · · ·	OFF/AUTO		\vdash		\dashv	_	_	\vdash		-	-	┝	┝	⊢	┝	⊢	⊢	⊢	H	-	1
		5			ROPEN	Н	Н		Н	_	┝	-	┝	-	H	\vdash	\vdash	H	H	┢	┢		_	1
			· · · · · · · · · · · · · · · · · · ·	DE RELAT	CONTR	H		-	-	-	┝	┝	-	-	\vdash	┢		H	H	H	┢	Н	-	1
	-	Н		T		H	4	\dashv		-	┝	H	H	\vdash	1	1	\vdash	t	1	Н	\vdash	H	\vdash	Н
ء ا	,		2		H_	AHU					l													
4	-		< -		- =	1 1														1				
l			ž	=		ă			اير			l							ĺ	1				-
\$:		7	-			_	_	=		_	_				1								
ء	•		(8)	<u>د</u> ا		2016	3	Z	Ţ	~	¥	7							۱ ٔ					<
. 2	:		נאנ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				اچ	7	4	_		_	2					l				1	틸
=				. =		1 = 1	_							_		•			•			. 1		
=			12. 34	្ត	<u> </u>	물	4	=	~	χĘ	4	2	12	=	l	1	1	1		Į į				
07 07 0			SYSTEM(S) SINGLE ZONE DX AHU	OCCUPANCY 1 I ME	GRAPHIC DISPLAY	SINGLE	SUPPLY	RETURN	O. A. DANPER	MIXED AIR	SUPPLY AIR	RETURN	SPACE	FILTER										OUTSIDE AIR

Table 4-5. I/O summary table for single zone DX-AC unit.

4-10

																									
			•	• 300K 38U	FAIL	Щ	0	Ц	Ξ		Ц											Ц			
							Щ	Н		Ц	Ц	Щ		Щ	Щ	Щ	Ц	Ц	_		Щ	Ц	_		
						Н	Щ	Щ	Ц	Щ		Щ	Щ	Щ	Щ	Н	Ш		_	Щ	Щ	Н	_		
			JUNIAU VAIAV	LINOR WATER	10074	Н	Н	Н	Н	\dashv	\dashv	Н	Н	Н	-	Н	Н	\dashv		Н	Н	\dashv	_		
				TING CONTR		Н	Н	Н	\vdash	_	Н	Н	_	_		_	\dashv	\dashv	_	_	Н	Н			
				LER DEMAND		Н	Н	Н	-	-	-	Н		-	-	_		\dashv	\dashv	_	H	Н	-		
	2	2		ENSER WATE		Н	Н	Н	Н	Н		Н		Н	-	Н	-	\dashv	-	-	Н	\dashv			
	1	5		LED WATER		Н	Н	Н	Н				=	Н		Н		\dashv	-	-	Н	\dashv			
	SULFACE MOLTANICOL	3		TER SELECT		\vdash	Н	Н		-	-	Н	Н	Н	-	Н	-	Н	-		Н	Н	_		
	9	ב	.,,,,	V RESET		H	Н				-	Н		Н	-							\exists			
	3	5	R SELECTION			Н	Н				-	-		-	-	Н		\dashv			Н	\dashv	_		
	1			N BOILER S		H		Н	Н						-							\exists			
RE		3		VI COIF BE		Н					_				_		Н					Н			
SOFTWARE	9	ן ו		COFD DECK		П			П					П											
10	3	<		1 LATION/REC										П											
S				ONIZER	ECOM									П											
			YCK	HICHI SEIB	/XYQ	П	•		•		П		•	П											
			9	ND LIMITIN	VM30		•																		
				CLCFINE	YTUG								•												
				NUM STARTS																					
			9012\1	DULED STAR	SCHE		•																		
		9																							
		ANAL OC		TIME		oxdot	•										Ш							1	
	SIN	/N Y		TIMIT		Ц			Ш	•	•	•	•			Ц	Ш				Ц				
	ALARMS			TIMIT	HICH	L	Н		Ц	•	•		•	Н		Ш	Ш	Ш			Ц	Щ	_		
	¥	111				_	Н	Н	_	Щ	_	Щ		Н	_	Н	Н	Н	_	_	Н	Щ			1
		1910	3	VC1 CFO2NE	11102	H			-		Н	Н	_		_	H	L	-		_	_	Н	_		
	-	9	3		LION	H	•	•		Н	Н	Н	_	_	_	H	_			_	_	Н	_		l
		30		NOIL		\vdash	Н	Н		_	-	-	-	H	_	\vdash	-	-		_	H	-	-		
		110	0.1	29 , AIZ9 ,		┝	H	Н		H	H	-		H		\vdash	Н	\vdash	_	\vdash		Н			
		ANAL		LATIVE HUN		┝		_	Н	_	Н			H	Н	Н		Н		\vdash	\vdash	Н			
l				ERATURE (D		\vdash	Н	_	H	•	•		ŏ	-	_	-	\vdash	Н			Н			ŏ	
	'n	┢				Т		_	Н		$\tilde{}$	1	Ť	H	П	H	<u> </u>				_				
	INPU			·		Г			П		П	П	Г	Г		Г	П	П				П			
		₹		3	SJNA	Г		П						Γ											
		3	104	LIARY CONT.	IXNV																				
7		٥		SWITCH																					
HARDWAR		l	SSURE SWITCH				lacksquare							•											
A A	L	L		SURE SWITCH		L		L									_					Ц	_		
=	l	2			वाव	L	_					_	L	L			L					Щ			
		ANAL OC			LOW	<u> </u>		L	_			L		_	_	_	L	Щ		L	L	Ш			
	<u> </u> =	1	ADJUSTMENT	THION 108	THOO	<u> </u>	_	L	Щ	Ш	L	<u> </u>	ļ	_	L	<u> </u>	<u> </u>	_		<u> </u>	L	Н			
	OUTPUI			0104	0FF/	⊢	H	L		\vdash	_	<u> </u>	-	Ļ	_	-	L	Н		┝	-	\vdash	H		l
	3	DICITAL		0TUA\770\		┝	H	H			_	-	_	L	H	-	-	\vdash	Н	┝	_	<u> </u>	\vdash		
		2			ZOFE	┝	H	┝	\vdash		H	H	┝	⊢	┝	\vdash	-	\vdash	-	┝	_	_			İ
		P		BOT BETVE	CONT	┝		┝	Н		H	┝	-	┞	┝	-	H	\vdash	_	-	┝	H	┝		İ
-	L	<u> </u>		X 130 100	INUU	⊢	-	┝	\vdash		-	-	_	┝	┝	┝		-	_	┝	-	\vdash	_	\vdash	ļ
					H_							ŀ				1									ŀ
			⊋			=								1											
	3	-	*	3	13/2	E			يم					1										-	
\$	3	Γ.	3	<u>-</u>	2 2	H	=	=	PE		~	-												A .	ĺ
4		++ 20+	(2)	λ Σ	S	2	[=	DAMPER	=	=	=													
ءً		F	E E	Z Z		1	_	₹]_	>	Z		2							1			Ē	
V 0% 3% 6 1 1 1 8			SYSTEM(S) SINGLE ZONE AHU	OCCUPANCY TIME	CRAPHIC DISPLAY	SINGLE ZONIS	SUPPLY FAN	RETURN FAN	0. A.	O X	SUPPLY AIR	RETURN AIR	SPACE	FILTER		1								OUTSIDE	
			is is	ō	2 2	8	Š	=	9	Ē	S	=	2	-		L	L		<u> </u>	L			L	ē	

Table 4-1. I/O summary table for single zone AHU.

ONE MEASUREMENT FC C - LAST COMMAND H - HIGH VALUE L - LOW VALUE

												_		_		_	_						 -	_
		4	1 1	THE WODE	1A1	4	익	+	*	+	+	\dashv	+	+	+	+	+	┩	-∤	-	4	+	4	1
. 1		ŀ		T		+	┥	╅	+	╅	╅	╅	\dashv	┪	+	+	+	┪	\dashv	\dashv	┪	+	┥	
		ŀ		···		\dashv	┪	+	+	+	+	十	┪	+	十	+	\dashv	1	-	┪	7	+	7	
		ŀ	OKINE CONTROL	IKON #37108 31	KENO	7	1	+	+	+	\dagger	┪	7	┪	十	7	┪	7	٦	ヿ	7	1	ヿ	
		Ì		HIING CONTE		1	7	7	ヿ	1	1	1	1	7	ヿ	7	7	ヿ	\neg					ľ
		ľ		TER DENYND						T					I								\Box	ļ
	3] [DENZEK MYTE		\Box		\Box		\Box		\Box	\Box		\Box	\perp						\Box		
	200	; [A3TAW G311		_	4	\perp	_	_	4	4	4	4	4	4	_	_	_	_	_	4	4	1
	SMAGDAG	2	HOI.	וונא צבונכו		4	4	4	4	4	4	4	4	4	+	-	_	4	4	4	-	4	\dashv	
			10.10777C V	OV RESET		4	4	4	4	+	+	+	+	+	\dashv	+	4	-	-	-	-	+	\dashv	
	APPLICATION	:	ER SELECTION			+	\dashv	+	+	+	+	┪	\dashv	┪	+	┪	┪	\dashv	-	-	\dashv	\dashv	┨	
2	7	5		VN BOIFEK 2 Evi coif ke	_	┪	┪	┥	╅	+	\dashv	┥	+	┪	十	\dashv	-	\dashv	Н	-		┪	ᅱ	
SOFTWARE	=	-		COLD DECK		1	┪	+	7	+	\dashv	寸	7	7	+	7	┪					7	┪	
150	٩	; }		ITYLION/BEC		7		٦		7	7	7	7	7	7	7	┪						ヿ	-1
S		ı		HOMIZER	003		•	T			7					T								
		ı	YCK	VAIGHT SETB	DAY		•					•			\Box									-
		[91	NI CIMILIN	M30																			ı
				CLCLING			•	4	4	_	_	의	_	4	4	4	_	_				Ц	4	-
i !				INUN START		_	의		4	4	4	9	4	4	4	4	_	Ш				_	\dashv	- 1
	_	4	901211	EDULED STAR	HOS	4	9	4	4	4	4	-	-	-	\dashv	4	_			Н		\dashv	\dashv	1
		100		3811	u n u	\dashv		4	4	-	+	\dashv	\dashv	-	+	\dashv	_			Н	H	\dashv	\dashv	
		ANAL		11817		\dashv	7	┪	┪			ᆲ	\dashv	\dashv	\dashv	┪			-	H	H	\dashv	-	
	ARMS	3		11017 1		\dashv	\dashv	┪	┪	_	ă	_	ᅥ	-	\dashv	┪				Н	Н		\dashv	
	1	111					_	7	1	Ť	Ť	Ĭ	┪	┪	寸	┪			Т					
		1310	3	LACT CLOSUR	COK			•					•											- 1
					FLOY					_				_				_	_	<u> </u>	<u> </u>	Ц	Ц	
		NAL OC		H011		Н				4	4	4			_	_	_	L	-	┡	_	Н	\vdash	
		YNY	91			Н		\dashv	-		\dashv	_	_	-	-		H	-	┝	┝	H	Н	$\vdash \vdash$	Н
		•		C SERNINE (D LATIVE HUM		Н		\dashv	\dashv				-	-	Н	_	-	┝	┝	\vdash	-	Н	H	
	5	Н	(1 233673	U / 30111431	1471	Н	-	\dashv	\dashv	۶					-	_	Т	Н	Н	\vdash	┢		П	H
	NPUT					Н		\dashv					П					一	\vdash				П	
	-	-		39	ENF:														Π	Γ				il
		GITAL	124	LIARY CONT																				ll
22		10		2MILCH													L		L	L	L	L	Ш	
HARDWAR			SSURE SWITCH	ERENTIAL PRE	3310	Ц	•			Ш							_	L	┞	Ļ	Ļ	L	Ш	
¥ .	L			SOME SAILC			_	Н		\dashv			Н	L			┡	┞	╀	}_	┞	┞	Н	
_		100	82		TOM 019	\vdash	_	Н				١	H	-	Н		├-	┝	┝	├	⊢	┝	Н	
		ANALOC	ADJUSTMENT	KOL POTNI	CONT		H	Н			H	H	\vdash	H	Н	_	\vdash	┝	┢	╁╴	H	┝	Н	
	1	H					_	H		П				┪			T	T	T	T	†-	<u> </u>		
	OUTPUT	₹		OIUA	01t\				•				Г											1
	0	DICITAL		OFUALTO	HYND																			
	١	5		NOID														L			L	L		
	L			ROL RELAY	CONT	L	•		L			L	_	L	Ľ	_	<u> </u>	┡	┡	╄	┞-	1	Ľ	Н
.	+					ĺ												1						
:	+		<u> </u>		_ =								1											
			I A	별	S E								ĺ	1										-
2	5		9.9	=	의=		_	_	P. R.		_									1		1		
	<u> </u>		S 4 = 1	یّ		Ē	٤	₹	DAMP	A .	- X													
3	E - 5		E WC	A M		-	>	롩			≥	_	2		1	İ								TSIDE AIR
02 02 02 02 02 02 02 02 02 02 02 02 02 0	<u>.</u>		SYSTEM(S) HEATING AAND VENTILATING UNI	OCCUPANCY TIME	GRAPHIC DISPLAY	H & V UKI	SUPPLY FAN	RETURN FAN	4	MIXED	SUPPLY	SPACE	FILTER									ļ	1	4
1 =	9		S #3	1 2	12 2	=	12	=	0	=	12	12	=	1	1	l			1	1	l	1		

Table 4-9. I/O summary table for heating and ventilating unit.

4-18

F			+	FAILURE MODE	7	0		=		7	-	1		1	1	1						7	
			-	SEROJE BOITES NOMIJOSING CONTROL	\pm										#								
		u	, <u> </u>	CHIFFER DEWAND CIMIT	\exists	1	_	\exists		\downarrow	1	\exists	1	+	+	1						_	
		PROCRAMS	·	CHILLED WATER RESET CHILLED WATER RESET	_		+	\dashv		\downarrow	1	1	1	#	#	1						コ	
				HA OV BEZET HOT WATER BOILER SELECTION	_		1	4	1	7	7	1	7	#	7	4						\dashv	
	ARE	APPLICATION		STEAM BOILER SELECTION STEAM COIL RESET	\exists		\exists			•			•	1	1							\exists	!
	SOFTWARE	ddY	}	HOT/COLD DECK RESET VENTILATION/RECIRCULATION ECONOMIZER							1		\downarrow	\downarrow	1								
\cdot			ŀ	DAY/NICHT SETBACK DEWAND LIWITING		9				\dashv		•	1	1	#								
			ŀ	OPTIMUM START/STOP DUTY CYCLING		<u>•</u>				\exists		•											
		Н	2	SCHEDULED START/STOP																			
		ALARNS	ANAL OC	HIGH LIMIT Low Limit Run Tiwe	H	_				9		•		1						F			
	,	ALA	16171																				
ŀ			٦	ELOW FLOW		•	•							9					L	L			
			ANAL OC	# RELATIVE HUMIDITY PSIC, PSIA, PSID POSITION	H						•	•							F				•
		MPUT	Н	TEMPERATURE (DEGREES F)					•		•												
		=	GITAL	PULSE AUXILIARY CONTACT			H									_	F			L	F		
	WARE		016	FLOW SWITCH BIFFERENTIAL PRESSURE SWITCH	H	•	•			F		F	H	•						F	F		
	HARDWARE	H	3	PID CONTROLLER PRESSURE SWITCH	E								E			E	E		E	E		E	
		15	ANAL OC	CONTROL POINT ADJUSTMENT MATOR ACTAUATOR		<u> </u>			L	•	F	L				F	F	F	F	F	F		1
		DUTPUT	DIGITAL	HAND/OFF/VOTO OTUA\710	F	F		•	F		F							F	-	H	+	Ė	1
			Ē	CONTROL RELAY	E	•	E	E							_			E		L		E	1
	17.0	27	i	M440 1011	OHV -																		
	l			POUR Y TIME	E HZ	- X	N V	DAWPER	~	A : A	A!R		VALVE										1
	-	BUILDING MU.		SYSTEM(S) FELTIME CHIEFE MULTI-ZOJE ALU OCCUPANCY IIME GRAPHIC DISPLAY	TERNINAL REHEAT	SUPPLY FAN	RETURN FAN	0. A. DA		١	1		!	FILTER									0110101

multi-Zone. Table 4-2. I/O summary table for temperatures AHU.

4_4

Figure 4-10. Steam unit heater schematic.

Figure 4–20. Steam/HW converter schematic.

Figure 4–3. Variable air volume AHU schematic.

Figure 4-9. Heating and ventilating unit schematic.

Ž.

4-11

Figure 4-1. Single zone AHU schematic.

Figure 4-2. Terminal reheat AHU schematic.

URNACE DRAFIGH-LOW DEM	TEMPERATURE CONTROLLER PRESSURE CONTROLLER	TOR STARTER	NSOR INSTALLED IN THERMOME	SENSOR INSTALLED IN DUCT OR PLENUM	Y A	EXHAUST AIR		Ē	E)		SIDE AIR	AIR DAWPE	IR DAW	MULII ZUNE DAMPER RELATIVE HUMIDITY
) (2)	SIR	 		CHA	A A		0 A	¥ i	æ æ	OAD	RAD	EAD	R H
ENCS SIGNAL TRANSMITTED TO EMCS EMCS SIGNAL TRANSMITTED FROM ENCS ALARM CONTACT SIGNAL		FLAME INDICATION	HUMIDIIT INDICATION PRESSURE INDICATION	V] LEVEL INDICATION] WETER	ON-OFF STATUS SIGNAL	B DIFFERENTIAL PRESSURE SWITCH	CONTROLLER RESET INTERFACE] START-STOP INTERFACE] TEWPERATURE INDICATION] VENTILATION/RECIRCULATION CONTROL	g Position	FLUE GAS ANALYSIS, OXYGEN] FLUE GAS ANALYSIS, CARBON MONOXIDE
† \[\]			=		2	0		æ	S		>	P P	0,	Ü

Table 4-30. Symbols and abbreviations.

CLAN ## 1258 1357/10 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10
4 3 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Northgate Elegance SP™ 386/25 or 33

- Intel® 80386DX, 25 or 33 MHz 1.2MB 5.25" and 1.44MB 3.5" Processor on Power Module
- · Fast, Affordable Upgrades -Simply Replace Power Module
- . +MB RAM (Expands to 32MB)
- . 106MB IDE Hard Drive with 17 ms Seek Time
- 6+K Cache Memory
- Desktop Case
- Floppy Drives
- Exclusive OmniKev® Keyboard
- VGA 1024 x 768 Card and Color Monitor
- Microsoft[®] Windows[™] 3.0 and Mouse
- MS-DOS® 3.3, +01 or 5
- · FCC Class B Certified

\$2899°%\$2999°°

Lease as low as \$100.31/\$103.77 per month*

Northgate Elegance SP 486SX™/20

1.2MB 5.25" and 1.+4MB 3.5"

Exclusive Omnikev Keyboard

VGA 1024 x 768 Card and

• Microsoft Windows 30

• MS-DOS 3.3, 4.01 or 5

· FCC Class B Certified

Floppy Drives

Color Monitor

and Mouse

- Intel 804865X™ 20 MHz Processor on Power Module
- Fast, Affordable Upgrades Simply Replace Power Module
- +MB RAM (Expands to 32MB)
- · 106MB IDE Hard Drive with
- 17 ms Seek Time • 64K Cache Memory
- Desktop Case

\$314900

Lease as low as \$10896 per month*

Northgate Elegance SP 486DX/33

- Intel 80486DX™ 33 MH= Processor on Power Module
- 4MB RAM (Expands to 64MB)
- 106MB IDE Hard Drive with 17 ms Seek Time
- 64K Cache Memory
- · Vertical Power Case

- · Exclusive OmniKey Keyboard VGA 1024x 768 Card and

Floppy Drives

1.2MB 5.25" and 1.44MB 3.5"

- Color Monitor • Microsoft Windows 3.0
- and Mouse
- MS-DOS 3.3, ±.01 or 5
- · FCC Class B Certified

\$334900

Lease as low as \$115.88 per month*

15.66

PC Magazine Feb. 25, 1992

RSH

Telephone Call Confirmation

			-	290-6379-	
al	L.D	Placed	Rec'd	Date	2/11/92
P.	Hutchins	Conversed W	lith Frank	Carlen	
Hun	Isuille Div. COE	Regardii	ng EMC	3	
			3-		
Mac	Deshago will	sud que	ula on	Catest su	doliner
10011	8			d	
Ne	elso said the	ETL vio	t allewine	Doc has	seen
	VOACIA Ded CA	of Cont 1	100 8		
<u>. </u>	vocas-acq as	4 ran a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
11.	Deshozo				
	<i>7</i> \	144 /			
	ID drives 16				
	lux can drive		1 - 1	Ero /	
<u> </u>	Mux's can be le operial driver	scared (00	jes away pr	m IID WA	2
	special driver	- even fru	ther with m	wden	
· · · · · ·					

RSH.

Telephone Call Confirmation

				Project No.	<u> 290-c</u>	379-002
Local	(L.D.	· >(Placed	Rec'd		Date 3-2-92
	B. Todd		Conversed W	Vith	Kief	(or Maruszcak)
Of	JVA - Con	munication	Regardi	ng Em	<u>cs.</u>	
	518) 266-					
Wi	IA Uses	"twisted	pairs" fo	r their	contra	ol wiring.
			,			<i>Y</i>
Co	ntrol win	ring for	Don Bros	ks EMCS	s" Cons	ists of
5	o twister	l Dairs,	Don Broc and they 112 (m:	are c	entrally	wived
4	would	Ruilding	1 112 (m:	d-Build	ina 110	,)
V	y s	1			7	
<u> </u>	her cur	rently do	not has	e eno	ugh e	xtra wives
+	e escla	Ruildin	on for a	an Em	c s	x bra wires
	rum	Darro			•	

		•				
-						
Distributi	ion:					

RSH

Telephone Call Confirmation

Project No. 290-0379-062
Local
B. Todd Conversed With Mr. Deshazo
Of Army COE, Huntsville Div. Regarding EMCS Configuration
(205) 895-3324
Our cost for the medium Emcs is over \$400,000.
That seems high for just 134 points.
Suggests we use a 16 bit or 32 bit IBM Compatable PC with 1 mB of RAM, an internal
Computable PC with 1 mB of RAM, an internal
clock, floppy disk drive, hard disk drive, a
dial-up modem and a CRT (monitor).
A printer is also required for data and
alarm printonts.
They have used a PC with 64 KB RAM to
drive an Emcs with 1000 points.
Distribution:

SUBJECT WVA - Ruilding 44	AEP NO 290 - 0379 - 002
Add Return Air to HV-:	OF
DESIGNER W. T. Todd	DATE 2-13-92
CHECKER	DATE

ECO#16

Reduce Outside Air/Add Return Air to HV-1

Heating and Ventilating unit HV-1 was designed to heat 100 % Outside air for ventiation of the basement. HV-1 operates 24 hours per day.

The current winter operating mode of HV-1 returns approximately 300% of the supply air through transfer grilles and an opening in the mechanical equipment room door. This mode of operation saves some heating energy but causer a large negative pressure on the basement area which increases the infiltration of outside air.

In 1981, Planning Research Corporation submitted a project to reduce the outside air intake of HV-1 by adding a return air system and controlling the exhaust Fans. This analysis is an update of the project submitted by Planning Research Corporation.

The existing and proposed new ventilation modes, and the proposed operating schedule are shown in the tables on the following page.

Current Energy Use:

The basement is maintained at 68°, 24 hours per day, 7 days per week. The heating energy required to heat the outside air was calculated using a

BASEMENT/HV-1 AIR FLOWS (CFM)

Fan No. & Location			ng Modes	New V	New Ventilation Modes			
			Closed	Min	Med	Max		
E1	East	0	4850	 0	0	4850		
E2	East	2430	2430	0	0	2430		
E3 or E6	East	1200	1200	1200	1200	1200		
E13	East	4850	4850	0	4850	4850		
E15	East	2430	2430	0	0	2430		
E18	East	200	200	200	200	200		
E7 or E5	Center	7520	11280	3760	7520	11280		
E16	Storage	827	827	827	827	827		
E4	West	9820	9820	0	0	9820		
Total Ex	naust Air	29277	37887	5987	14597	37887		
HV-1 Outs		24073	34390	5800	14272	34390		
	HV-1 Return Air			28590	20118	0		
HV-1 Supr		34390	34390	34390	34390	34390		
Net Air f		-5204	-3497	-187	-325	-3497		

HV-1 PROPOSED VENTILATION SCHEDULE

Daily	11	Hours of Operation						
Shift Hours	Vent. Mode	Mon	Tue	Wed	Thu	Fri	Sat	Sun
12M-8AM	Min Med Max	7 1 0	7 1 0	7 1 0	7 1 0	7 1 0	0 0	0 0
8AM4PM	Min Med Max	0 6 2	0 6 2	0 6 2	0 6 2	0 6 2	8 0 0	8 0 0
4PM-12M	Min Med Max	0 8 0	0 8 0	0 8 0	0 8 0	0 8 0	8 0 0	8 0 0

RSH.

SUBJECT WVA - Bldg. 44	AEP NO 290-0379-002
Add Return Air	SHEETOF
DESIGNER W. T. Todd	DATE 2-13-92
CHECKER	DATE

computer spreadsheet program. This program uses bin temperature data for Albany, NY and the following equation:

Q = O.A. Cfm x 1.1 x AT x hrs/yr

The results (see printout on pane 6) show that the energy required to heat outside air For HV-1 is:

Qc= 4972.3 metu/yr

Assuming a boiler efficiency of 0.80 and a steam to hot water converter efficiency of 0.95:

The fan For HV-1 will be adjusted to overcome the additional friction of the New return air system. The increased electricity use by this fan modor is expected to be offset by the reduced operating hours of the Various exhaust fans.

Future Energy Use:

Saving will be achieved reducing the amount of outside air to be heated and also by reducing the temperature during the third shift and during weekends.

The same computer spreadsheet program was used

SUBJECT WVA - Bldg. 44	AEP NO 290-0379-002
Add Return Air	SHEETOF
DESIGNER W. T. Todd	DATE 2-13-92
CHECKER	DATE

to calculate the future energy use in the various ventilation modes.

The results (see printouts on pages 7-10) are shown below:

* Min. Vent. w/ setback to 55°F:

3rd shift : Q3 = 172.3 mBtn/yv

Weekends = Qw = 194.4 metu/yr

* Medium vent. mode, 68 °F, shifts 1 & 2:

Qm = 1228.2 metu/yr

* Maximum vent. mode, 68°F, 2 hours during 1st shift:

Qmx = 349.1 mBtn/yr

The total heating energy required is: $Q_F = Q_{mx} + Q_m + Q_w + Q_3$ $Q_F = (349.1 + 1228.2 + 194.4 + 172.3)^{m6tu/yr}$ $Q_F = 1944.0 \text{ mBtu/yr}$

Applying the boiler and converter efficiencies:

QF (F.O.#6) = 1944,0 mater + 0.8 + 0.95 = 2557.9 mater/yr

RSH.

SUBJECT	ECO # 16	AEP NO	
		SHEET	OF
DESIGNER _	***************************************	DATE	
CHECKED	•	DATE	

QRIP Calculations

Present Method #6 F.O. = 6543 MBM * 4.40 = \$28,800 y- MBTU

Proposed Method #6 F.O. = 2558 MBM * 4.40 = \$11,300 Ju MBM = \$17,500 RSH.

SUBJECT WVA-Bldg. 44	AEP NO 290-0379-002
Add Return Air	SHEET
DESIGNER W. T. Todd	DATE 2-13-92
CHECKER	DATE

Fuel Oil #6 Savings:

Energy Savings = Current Energy Use - Future Energy Use

Savings = Qc-QF = 6542,5 mBtu/yr - 2557.9 mBtn

Yr

Energy Savings = 3984.6 mBtu/yr

Project Implementation Cost:

The original costs were estimated in 1980 dollars. The ENR Building Cost Index (BCI) is used to escalate the cost estimate to August 1991 dollars.

June 1980 ENR BCI = 1916 August 1991 ENR BCI = 2792

Escalation Factor = 2792/1916 = 1.46

1991 Bare costs: Labor(1): \$13549 x1.46 = \$19,782 Mater.(1): \$14313 x 1.46 = \$20,897

(1) Source: Planning Research Corp. Cost Estimate, p. 16-21

Total Project Cost = \$70,259

See cost estimate sheets for details

HV-1, Current operating mode

			•		ı	0			
PROJECT:	WATE	RVLIET ARSEN	IAL LIMI	TED ENER	RGY STUDY				02/12/92
INPUTS:	1)	Days Per We	ek That	: HVAC Op	erates	7 (Days/Week		
		Summer Room	Dry Bu	ılb Tempe	erature		F (db)		
	21			Temperat		68 '	'F (wb) 'E (db)		
	3)	Winter Room		led, wb 1			r(ub) 'F(wb)		
		and Gro	ound Wat	er Tempe	erature	•	'F		
		Outside Air				24073 (
	5)	HVAC Oper.	Hrs/Sni		1 -> 8 AM 1 -> 4 PM		⊣rs/Shift ⊣rs/Shift		
					1 -> 12 M		⊣rs/Shift		
Temperat	ures	Hours	of Occu	urrence		Out	tside Air l	_oad (MBtu/Y	r)
			00 11	1/ 0/	Oper.	Cooling		llosting	Llumid
db-Range	: wb	80-00	08-16	16-24 	Hours	Cooling	Dehumid	Heating	Humid.
120 124					0	0.00	0.00	0.00	0.00
115 119)				0	0.00	0.00	0.00	0.00
110 114	į				0	0.00	0.00	0.00	0.00
105 109)				0	0.00	0.00	0.00	0.00
100 104					0	0.00	0.00	0.00	0.00
95 99	75	0	7	0	7	0.00	0.00	0.00	0.00
90 94	72	0	28	6	34	0.00	0.00	0.00	0.00
85 89	71	0	95	28	123	0.00	0.00	0.00	0.00
80 84	68	4	177	73	254	0.00	0.00	0.00	0.00
75 79			248	140	415	0.00	0.00	0.00	0.00
70 74			257	222	594	0.00	0.00	0.00	0.00
65 69			235	271	740	0.00	0.00	0.00	0.00
60 - 64			212	252	727	0.00	0.00	115.51	0.00
55 59			190	236	700	0.00	0.00	203.90	0.00
50 54			183	214	660	0.00	0.00	279.63	0.00
45 49			183	205	630	0.00	0.00	350.33	0.00
40 44			202	205	636	0.00	0.00	437.88	0.00
35 39			241	251	753	0.00	0.00	618.13	0.00
30 34			220	262	777	0.00		740.71	0.00
			156	191	563	0.00	0.00	611.24	0.00
25 29 20 24			112	130	405	0.00	0.00	493.33	0.00
15 19			79	96	285	0.00	0.00	384.89	0.00
					283 192	0.00	0.00	284.72	0.00
10 14			43	65 20					0.00
5 9			27	38	125	0.00	0.00	201.91	
0 4			16	22	75	0.00	0.00	131.08	0.00
-5 -1			3	9	39	0.00	0.00	73.32	0.00
-10 -6			0	4	14	0.00	0.00	28.18	0.00
-15 -11			0	0	5	0.00	0.00	10.72	0.00
	5 -17	' 3	0	0	3	0.00	0.00	6.83	0.00
-25 -21					0	0.00	0.00	0.00	0.00
-30 -26					0	0.00	0.00	0.00	0.00
-35 -31					0	0.00	0.00	0.00	0.00
-40 -36	,				0	0.00	0.00	0.00	0.00
-45 -41	l				0	0.00	0.00	0.00	0.00
Tota	als	 2922	2914	2920	8756	0.00	0.00	4972.31	0.00
				.,	0, 0 0	J.00	0.00		-

Total operating hours for each system

6589

HV-1, Minimum ventilation mode with setback

PROJECT:	WATE	RVLIET	ARSEN	AL LIMI	TED ENER	GY STUDY			1	02/12/92
INPUTS:		•			HVAC Op lb Tempe		5 Days/Week 'F (db) 'F (wb)			
		Room Wet Bulb Temperature								
	3)						55 ' F (db)			
								F(wb) F		
	4.1						5800 (
	•					-> 8 AM		rs/Shift		
	3 /	114110 0	PCI.	711 07 0111		-> 4 PM		rs/Shift		
						I → 12 M	0 1	⊩s/Shift		
Temperatu	ıres	Н	lours	of Occu	rrence	Total	Out	side Air L	oad (MBtu/Y	r)
db-Range	wb	0	10-08	08-16	16-24	Oper. Hours	Cooling	Dehumid	Heating	Humid.
120 124				```		0	0.00	0.00	0.00	0.00
115 119						0	0.00	0.00	0.00	0.00
110 114						0	0.00	0.00	0.00	0.00
105 109						0	0.00	0.00	0.00	0.00
100 104				-		0	0.00	0.00	0.00	0.00
95 99			0	7	0	0	0.00	0.00	0.00	0.00
90 94			0	28	6	0	0.00	0.00	0.00 0.00	0.00
85 89			0.	95 177	28 73	0 3	0.00 0.00	0.00 0.00	0.00	0.00
80 84 75 79			4 27	248	140	17	0.00	0.00	0.00	0.00
70 74			115	257	222	72	0.00	0.00	0.00	0.00
65 69			234	235	271	146	0.00	0.00	0.00	0.00
60 64			263	212	252	164	0.00	0.00	0.00	0.00
55 59			274	190	236	171	0.00	0.00	0.00	0.00
50 54	48	}	263	183	214	164	0.00	0.00	0.00	0.00
45 49			242	183	205	151	0.00	0.00	7.72	0.00
40 44			229	202	205	143	0.00	0.00	11.87	0.00
35 39			261	241	251	163	0.00	0.00	18.73	0.00
30 34			295	220	262	184	0.00	0.00	27.06	0.00
25 29			216	156 112	191 130	135 102	0.00	0.00 0.00	24.12 21.45	0.00
20 24 15 19			163 110	79	96	69	0.00	0.00	16.67	0.00
10 14			84	43	65	53	0.00	0.00	14.40	0.00
5 9			60	27	38	38	0,00	0.00	11.48	0.00
0 4			37	16	22	23	0.00	0.00	7.82	0.00
-5 -1			27	3	9	17	0.00	0.00	6.24	0.00
-10 -6	-8	3	10	0	4	6	0.00	0.00	2.51	0.00
-15 -11	-13	3	5	0	0	3	0.00	0.00	1.36	0.00
-20 -16		7	3	0	0	2	0.00	0.00	0.87	0.00
-25 -21				٠		0	0.00	0.00	0.00	0.00
-30 -26						0	0.00	0.00	0.00	0.00
-35 -31						0	0.00	0.00 0.00	0.00 0.00	0.00
-40 -36 -45 -41						0 0	0.00 0.00	0.00	0.00	0.00
Tota	ıls		 2922	2914	2920	1 826	0.00	0.00	172.30	0.00
T 1 1			a F au	each s	votom	0	0	1089	0	

			+1V-1, V	Nediu	n ven	tilation	mode			
PROJE	CT:	WATE	RVLIET ARSEN	MAL LIMI	TED ENER	RGY STUDY			ı	02/12/92
INP	UTS:	1)	Days Per We	ek That	HVAC Or	perates	5 [5 Days/Week		
	- , -	2)	Summer Room				•	'F (db)		
				t Bulb				F(wb)		
		3)	Winter Room	•			68	F (db)		
				Controll				'F (wb) 'F		
		43		ound Wat			14272			
			Outside Air HVAC Oper.					Hrs/Shift		
		J)	nvac oper.	111 0/ 3111		1 -> 4 PM	6 Hrs/Shift			
						M → 12 M		Hrs/Shift		
Temp	eratu	ıres	Hours	of Occu	rrence	Total	Out	tside Air L	oad (MBtu/Y	r)
db-R	ange	wb	00-08	08-16	16-24	Oper. Hours	Cooling	Dehumid	Heating	Humid.
120	124					0	0.00	0.00	0.00	0.00
115	119					0	0.00	0.00	0.00	0.00
110	114					0	0.00	0.00	0.00	0.00
105	109					0	0.00	0.00	0.00	0.00
100	104					0	0.00	0.00	0.00	0.00
95	99	75	0	7	0	4	0.00	0.00	0.00	0.00
90	94	72	0	28	6	19	0.00	0.00	0.00	0.00
85	89	71	0	9 5	28	71	0.00	0.00	0.00	0.00
80	84	68	4	177	73	147	0.00	0.00	0.00	0.00
75	79	66	27	248	140	235	0.00	0.00	0.00	0.00
70	74	64	115	257	222	307	0.00	0.00	0.00	0.00
65	69	61	234	235	271	340	0.00	0.00	0.00	0.00
60	64	57	263	212	252	317	0.00	0.00	29.86	0.00
55	59	52	274	190	236	295	0.00	0.00	50.91	0.00
50	54	48	263	183	214	274	0.00	0.00	68.92	0.00
45	49	43	242	183	205	266	0.00	0.00	87.72	0.00
40	44	38	229	202	205	275	0.00	0.00	112.29	0.00
35	39	34	261	241	251	332	0.00	0.00	161.43	0.00
30	34	30		220	262	331	0.00	0.00	187.26	0.00
05		0.5		4.57	101	220	0.00	0.00	154 00	0.00

10 11 10	_	•		•				
-20 -16 -17	3	0	0	0	0.00	0.00	0.36	0.00
-25 -21				0	0.00	0.00	0.00	0.00
-30 -26				0	0.00	0.00	0.00	0.00
-35 -31				0	0.00	0.00	0.00	0.00
-40 -36 .				0	0.00	0.00	0.00	0.00
-45 -41				0	0.00	0.00	0.00	0.00
Totals	2922	2914	2920	3908	0.00	0.00	1228.24	0.00
Total operating	hours for	each sy	/st em		0	0	2784	0

239

167

121

77

47

28

10

4

0

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

154.02

120.90

96.65

67.66

44.98

28.59

11.64

4.47

0.57

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

25

20

15

10

5

0

-5

-10

-15

29

24

19

14

9

4

-1

-6

-11

25

20

16

11

6

2

-3

-8

-13

216

163

110

84

60

37

27

10

5

156

112

79

43

27

16

3

0

0

191

130

96

65

38

22

9

4

0

	tal		 2 9 22	2914	2 9 20	520	0.00	0.00	349.09	0.00	
-45 -						0	0.00	0.00	0.00	0.00	
	36					Ő	0.00	0.00	0.00	0.00	
	31					0	0.00	0.00	0.00	0.00	
	26					0	0.00	0.00	0.00	0.00	
	21	1,	J	V	v	0	0.00	0.00	0.00	0.00	
	16	-17		0	0	0	0.00	0.00	0.00	0.00	
	11	-13		0	0	0	0.00	0.00	0.00	0.00	
	-6	-8		0	4	0	0.00	0.00	0.00	0.00	
	-1	-3	27	3	9	1	0.00	0.00	1.44	0.00	
0	4	2	37	16	22	3	0.00	0.00	7.13	0.00	
5	9	11 6	84 60	4 3 27	38	8 5	0.00	0.00	11.13	0.00	
	19 14	16	110 84	7 9	96 65	14	0.00 0.00	0.00 0.00	27.22 16.27	0.00	
	24	20		112	130	20	0.00	0.00	34.80	0.00	
	29 24	25		156	191	28	0.00	0.00	43.21	0.00	
	34	30		220	262	39	0.00			0.00	
	39	34	261	241	251	43	0.00	0.00	50.47	0.00	
	44	38		202	205	36	0.00	0.00	35.48 50.47	0.00	
	49	43		183	205	33	0.00	0.00	25.96	0.00	
	54	48		183	214	33	0.00	0.00	19.78	0.00	
	59	52	274	190	236	34	0.00	0.00	14.12	0.00	
	64	57	263	212	252	38	0.00	0.00	8.59	0.00	
	69	61	234	235	271	42	0.00	0.00	0.00	0.00	
	74	64	115	257	222	46	0.00	0.00	0.00	0.00	
	79	66	27	248	140	44	0.00	0.00	0.00	0.00	
	84	68	4	177	73	32	0.00	0.00	0.00	0.00	
	89	71	0	95	28	17	0.00	0.00	0.00	0.00	
	94	72	0	28	6	5	0.00	0.00	0.00	0.00	
95	99	75	0	7	0	1	0.00	0.00	0.00	0.00	
	04					. 0	0.00	0.00	0.00	0.00	
	09					0	0.00	0.00	0.00	0.00	
	14					0	0.00	0.00	0.00	0.00	
	19					. 0	0.00	0.00	0.00	0.00	
120 13	24				•	0	0.00	0.00	0.00	0.00	
db-Ran	ge	wb	00-08	08-16	16-24	Hours	Cooling	Dehumid	Heating	Humid.	
Tempera	atur 	es	Hours	of Occu	rrence	Total Oper.	Ou1	tside Air L 	oad (MBtu/Yr) 		
	4 PM → 12 M							⊣rs/Shift			
						-> 4 PM		⊣rs/Shift			
								Hrs/Shift			
		4)			er Tempe tv (cfm)		34390 (°F ∼fm			
		0,	If RH C	ontroll	ed, wb T	emp.	1	F (wb)			
		3)	Winter Room		Temperat Ih Tempe		'F (wb) 68 'F (db)				
		2)	Summer Room		•						
			Days Per We)ays/Week 'F (db)			
INPUTS	3:	1)	Dave Der He	ale That	THE IAC OF	awataa	5.1	lave/l.laak			

PROJECT:	WATE	RVLIET ARSEN	NAL LIMI	TED ENE	RGY STUDY				02/12/92
INPUTS	2) 3) 4)	Summer Room Room We Winter Room If RH (and Gro	n Dry Bu et Bulb n Dry Bu Controll Dund Wat r Quanti	Ilb Tempera Tempera Ilb Temper	erature ture erature Temp. erature)	55 5 5800 c 8 F 8 F	Days/Week 'F (db) 'F (wb) 'F (wb) 'F (wb) 'F cfm Hrs/Shift Hrs/Shift		
Tempera					Total	Out	side Air	Load (MBtu/Y	r)
db-Rang	ge wb	00-08	08-16	16-24	Oper. Hours	Cooling	Dehumid	Heating	Humid.
90 8 85 8 80 8 75 70 7 65 60 6 55 50 8 40 40 4 35 30 3 25 20 15 10 5 10 5 -10 -15 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17	19 14 19 14 19 14 19 17 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 4 27 115 234 263 274 263 242 229 261 295 216 163 110 84 60 37 27	7 28 95 177 248 257 235 212 190 183 183 202 241 220 156 112 79 43 27 16 3 0	0 6 28 73 140 222 271 252 236 214 205 205 251 262 191 130 96 65 38 22 9	0 0 0 0 0 2 10 35 73 119 170 211 208 200 189 180 182 215 222 161 116 81 55 36 21 11 4 1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.19 15.07 24.71 32.58 28.74 24.36 19.74 15.05 10.94 7.25 4.12 1.61 0.62 0.40 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
-40 -3 -45 -4	36 41 				0 0 	0.00	0.00	0.00 0.00	0.00 0.00
	tals	2922	2914	2920	2502	0.00	0.00	194.36	0.00
Total of	peratin	ng hours for	each sy	/ste m		0	0	1286	0

02/13/92

ECO Construction Cost Estimate Calculations

ECO Name: Reduce Outside Air and Add Return Air to HV-1

ECO #: 180 16

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$20,897 \$19,782
Subtotal bare costs	\$40;679
FICA Insurance (20% of Labor)	\$3,956
Sales Tax (Not Applicable For GOGO)	\$0
Subtotal	\$44,635
Overhead (15%)	\$6,695
Subtotal	\$51,330
Profit (10%)	\$5,133
Subtotal	\$56,463
Bond (1%)	\$565
Subtotal	\$57,028
Contingency (10%)	\$5,703
Subtotal (Construction Cost Input For LCCID *)	\$62,731
SIOH (6.0% of Construction Cost)	\$3,764
Subtotal	\$66,495
Design (6.0% of Construction Cost)	\$3,764
Total Project Cost	\$70,259

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

11.1.2.2 Reduce Outside Air Intake.

11.1.2.2.1 Background. The ventilation system in the basement of building 44 is designed for 100 percent outside air (34,390 cfm) with no provisions for modulation or use of return air when maximum ventilation rate is not required. This results in heating an excessive amount of outside air during the heating season. Energy savings will result if a return air system is installed. Outside air and exhaust can be minimized and modulated incrementally to increase when additional ventilation is required. Return air would be modulated in inverse proportion to the outside air volume. In addition, room temperature could be set back during unoccupied hours.

11.1.2.2.2 Modification Recommended at Building 44. Modification of the outside air plenum for HV-1 will be required to make provisions for the addition of a return air plenum, and return air/outside air motorized mixing dampers. Two new return air ducts will be routed to the return air plenum. Belt and pulley replacements will be required to adjust the fan speed for HV-1 to maintain flow volume at increased pressure drop in the return air system. Refer to figure 11-3 for a sketch depicting the changes. Replacement of fan E12 with a two-speed fan and the elimination of the transfer grill through the inside wall is recommended. Mechanical equipment rooms will be ventilated with a maximum of outside air from the existing motorized damper in the outside wall of the air handler room or a minimum of outside air from the new damper in the outside wall of the heating equipment room. A new thermostat in the air handler room will control dampers and fan speed.

Medium Ventilation Mode. Exhaust fan controls will be modified to interlock the most strategic fans with HV-1 for normal daily operations. The recommended fans are E3/E6, E13, E18, E7/E5, and E16. Outside air and return air dampers will automatically be positioned to proportion the air volumes noted as the recommended medium ventilation mode in table 11-3.

<u>Maximum Vent Mode</u>. If additional ventilation is required, when operating in the medium ventilation mode, an adjustable timed switch (2 hours maximum) will be provided to start each of the other fans E1, E2, E15 and E4 individually. In

Table 11-3. Exhaust cfm from Basement

		l Desi	gn Mode	Recommend	ed Ventil	ation Modes
	Fan No./Location		per Pos. CLOSED	Minimum	Medium	Max imum
E18 -1	E1 East E2 East E3 or E6 East E13 East E15 East E7 or E5 Center E12 MER E16 Secure Storage E4 West Total Exhaust O/A Return Supply Excess Exhaust	0 2430 1200 4850 2430 200 3760/7520 6000 827 9820 39037 34390 × 0.7 0 134390 -4647 -5204	4850 2430 1200 4850 2430 200 3760/7520 0 827 9820 37887 34390 0 34390 -3497	0 0 1200/0 0 0 200 3760/0* 0** 827 0 5987 5800 -28950 7 34390 -187	0 0 1200/0 4850 0 200 3760/0* 827 0 10837 10512 23878 34390 -325	4850 2430 1200/0 4850 2430 200 3760/7520* 0** 827 9820 37887 34390 0 34390 -3497
	3.4:	390 × 0.3		28590		14272
	5 (this area has a separ	.1.0	7520	

O.A. intake

^{*} Either fan E5 or E7 can be selected to operate at slow speed, the other fan will stop in the minimum or medium mode; in the maximum mode one fan can operate fast while the other operates slow.

^{**} E12 does not exhaust air from basement rooms with recommended ventilation modes. Existing MER damper is removed and hole is used for return air duct or is blocked.

addition, a remote switch located near each fan can initiate a maximum of 2-hour runtime. Return and outside air dampers will modulate to admit more outside air and less return air incrementally as each fan is started.

Minimum Vent Mode (Setback). During nonoccupied hours, minimum exhaust is required, in addition, lower room temperature can be used during the heating season. Fans not required will be shut down during unoccupied hours then restarted prior to occupancy. Return and outlisde air would be modulated accordingly. This can be accomplished by the Energy Monitor and Control System if incorporated at Watervliet. For the purpose of economic analysis, costs include a timeclock system to reduce ventilation rate and a setback thermostat for room temperature reduction.

11.1.2.2.3 Analysis/Justification. Heat is provided to the coil in HV-1 during October through April (30 weeks). Energy and dollar savings will result from heating a reduced amount of cold outside air during a majority of the occupied hours. Additional savings will accrue during unoccupied hours when the outside air is further reduced and the room is maintained at a lower temperature. Heating degree hours have been used as noted in table 11-4 with the following basic equation to estimate energy use.

Btu = $cfm \times 1.1 \times Degree Hours$

Existing System Operation. Basement room temperature is maintained at 65° to 69°F. HV-1 was observed to operate with the outside air duct partially closed and the plenum access door partially open. Basement room air returns through the 48- by 24-inch transfer grill in the heating equipment room wall to HV-1. Outside air volume was estimated at 70 percent and return air at 30 percent of the supply air.

Energy required = $34,390 \times .7 \times 1.1 \times 152,102 = 4,027.707 \, MBtu/yr @ HV-1$

Table 11-4. Heating Degree Hours (Based on Albany Weather Data)

		Ref Temp	= 65°	Ref Temp = 50°			
	01 - 08	09 - 16	17 - 24	01 - 08	17 - 24		
Oct Nov Dec Jan Feb Mar Apr	4,884 6,872 10,157 11,158 9,844 9,049 5,744	2,212 5,113 8,746 9,711 8,104 6,920 3,242 44,084	3,521 6,150 9,338 10,346 8,898 7,834 4,223 50,310	1,657 3,394 6,442 7,448 6,501 5,342 2,359 33,143	320 1,899 5,072 6,017 4,772 3,347 790	837 2,735 5,672 6,643 5,512 4,163 1,347 26,909	
Grand Totals		152,102			82,269		

Recommended System Operation. After modifications to provide for outside/return air modulation during the medium, maximum, and minimum ventilation modes and to provide for temperature reduction during unoccupied hours, energy consumption will be reduced. The following operating schedule is recommended.

Operation During 30-Week Heating Season: The room is maintained at 65° 1 hour prior to and during occupied hours. This would occur during the last hour of the third shift, during the 8-hour dayshift for 5 days per week plus one Saturday per month, and during one second shift per month. It is estimated the medium ventilation mode will be used for 70 percent and the maximum ventilation mode will be used 30 percent of the occupied hours. During unoccupied hours, the room is maintained at 50° and the minimum ventilation rate is used, except the room temperature is increased to 65° 1 hour prior to occupancy.

Operation During the 22-Week Summer Season: Significant energy savings are not anticipated since all fans will probably be required to provide ventilation and temperature control.

Operating Hours (30 Week Heating Season):

% 3rd Shift Hrs =
$$\frac{1 \times 5 \times 30 + 1 \times 1 \times 1/4 \times 30}{8 \times 7 \times 30}$$
 × 100 = 9.375%

% Day Shift Hrs =
$$\frac{8 \times 5 \times 30 + 8 \times 1/4 \times 30}{8 \times 7 \times 30} \times 100 = 75\%$$

% 2nd Shift Hrs =
$$\frac{8 \times 1/4 \times 30}{8 \times 7 \times 30}$$
 × 100 = 3.57%

Room at 50°

% Day Shift Hrs =
$$100 - 75 = 25$$
%

$$%$$
 2nd Shift Hrs = 100 - 3.57 = 96.25%

Heat Required for Outside Air (Recommended System):

3rd Shift

Room 65°, med vent: $10,512 \times 1.1 \times 57,708 \times .09375 = 62.558$ Room 50°, min vent: $5,800 \times 1.1 \times 33,143 \times .90625 = 191.629$

Day Shift

7

Room 65°, med vent: $10,512 \times 1.1 \times 44,084 \times .75 \times .70 = 267.620$ Room 65°, max vent: $34,390 \times 1.1 \times 44,084 \times .75 \times .30 = 375.222$ Room 50°, min vent: $5,800 \times 1.1 \times 22,217 \times .25 = 35.436$

2nd Shift

Room 65°, med vent: 10,512 x 1.1 x 50,310 x .0357 x .70 = 14.538 Room 65°, max vent: 34,390 x 1.1 x 50,310 x .0357 x .30 = 20.383 Room 50°, min vent: 5,800 x 1.1 x 26,909 x .9625 = 165.241 1,132.627 MBtu/yr

Savings With Reduced Outside Air and Temperature Set Back: Heat Required (Existing) - Heat Required (Recommended) = Savings

> Heat Saved @ HV-1 = 4,027.707 - 1,132.627 = 2,895.08 MBtu/yr Heat Saved @ Boiler = $\frac{2,895.08}{.7}$ = 4,135.83 MBtu/yr Gallons No. 6 Oil = $\frac{4,125.16 \times 10^6}{149,690}$ = 27,629 Gal/yr

Maintenance and Operating Costs

Materials

Replacement Parts and Expendables 500

Labor

Periodic Checks and Replacements $\frac{1,200}{$1,700}$

11.1.2.2.4 ECIP Summary - Building 44 Outside Air Reduction. See ECIP and cost sheets for details; benefits are summarized as follows:

Energy Savings 4,135.83 MBtu/yr

Dollar Savings \$31,926/yr

Project Cost \$82,766

B/C 9.5

E/C 49.97

EC/CC 10.2

Payback 2.6 years

·ECIP Economic Analysis Summary

Location: Watervliet Arsenal, Building 44, Basement Project: Reduce Exhaust and Outside Air	FY 84
	ed by W.J. Spillman
COSTS 1. Non-recurring Initial Capital Costs: a. CWE b. Design .06 x 51,553 x (1.12) ^{2.75} c. d. Total BENEFITS	\$ 82,766 \$ 4,224 \$ 0 \$ 86,990
 Recurring Benefit/Cost Differential Other Than Energy: Annual Labor Decrease (+)/Increase (-) Annual Material Decrease (+)/Increase (-) Other Annual Decrease (+)/Increase (-) Total Costs 10% Discount Factor Discounted Recurring Cost (d x e) Recurring Energy Benefit/Costs: 	\$ -1,200/Yr. \$ -500/Yr. \$ 0 /Yr. \$ -1,700/Yr. \$ 9.524 \$ -16,191
a. Type of Fuel: No. 6 Fuel Oil (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (October 1, 1984) (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (10%) Factor (5) Discounted Dollar Decrease/Increase (3)x(4) b. Type of Fuel: (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate () Factor (5) Discounted Dollar Decrease/Increase ((3)x(4))	4,136 MBTU \$ 8.13/MBTU \$ 33,626/Yr. 25 \$ 840,650 MBTU \$ /MBTU \$ /Yr.
<pre>c. Type of Fuel: (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (3) Annual Dollar Decréase/Increase ((1)x(2)) (4) Differential Escalation Rate (_%) Factor (5) Discounted Dollar Decrease/Increase ((3)x(4)) d. Type of Fuel: (1) Annual Energy Decrease (+)/Increase (-) (2) Cost per MBTU (3) Annual Dollar Decrease/Increase ((1)x(2)) (4) Differential Escalation Rate (_%) Factor (5) Discounted Dollar Decrease/Increase ((3)x(4)) e. Discounted Energy Benefits (3a(5)+3b(5)+3c(5)+3d(5)) d. Total Benefits (Sum 2f+3e) Discounted Benefit/Cost Ratio (Line 4 + Line 1d) Total Annual Energy Savings (3a(1)+3b(1)+3c(1)+3d(1)) E/C Ratio (Line 6 + Line 1a/1000) Rannual \$ Savings (2d+3a(3)+3b(3)+3c(3)+3d(3))</pre>	MBTU /MBTU /Yr. MBTU /Yr. MBTU /MBTU /MBTU /Yr. S 840,642 824,459 9.5 4,136 49.97 S 31,926
9. Pay-back Period ((Line la - Salvage) + Line 8) 10. EC/CC = [Line 3a(3) + 3b(3)] x 25 + Line la	2.6

CONSTRUCTION COS	'81	STEET 1 OF 3							
REDUCE EXHAUST & OU		BASIS FOR ESTIMATE							
WATERVLIET BUILDING	, –		. (No deelge reliminary o	n completed) teetan)	••				
			 	· · · · · · · · · · · · · · · · · · ·	 	COOK 6	(Final dec		
ARCHITECT คืให้ที่ที่ที่ดี RESEARCH C					01	MER (Sp	• ci (y)	·····	
	1 45)F(DATE) 1/80			illman		CHECKE	Day		
1980 Means	QUANT			LABOR		AIRSTA	<u> </u>	707	AL
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UNITS	UMIT MEAS.	PER	TOTAL	PER	70	TAL	cos	57
Subtotals from Sht. 2 and	3								
Mechanical				10660		968	81		
Electrical				2454		43	47		
General (435		2	85		
Subtotals				13549		143	13)		
Joint Occupancy-Overtime	Labor X	30%	·	4065					
Subtotals				17614		143	13		
12%/yr in FL	1	ea	12%	2114		17	18		
J			15.0	19728	1 i	160	31		
									
. SUB-TOTAL	1/////	////		19728	111111	160	31	337	50
SALES TAX					0 %			////////	/////
SUB-TOTAL				19728		160	31		
PT&I			22 %						
SUB-TOTAL						160	31		
OVERHEAD & PROFIT			22 ²	24068 5295	22	35			
SUB-TOTAL				29363	111111	195			
GEOGRAPHIC			-7 _%		- 3				
SUB-TOTAL				27308	1////2	19	558 ‡	= 46866	
CONTINGENCY	10 %							4687	
CONSTRUCTION COST	11/1///							51553	
SIOH	5 ;							2578	
PROJECT COST (Jan 1981)	1/////							54131	
ESCALATION	52.9 .,							28635	
PROJECT COST (Oct 1981)								82766	
	*/////////////////////////////////////	/////							
		!	- <u>i</u>						
		<u>i</u>			 	·	<u> </u>		
HC FORM 150 @ 14.23; 1761	1 7.	<u></u>	1238 MH		1 1		!	· ··· ································	
ا 150 و عسر 150 و عسر	4 <u>•</u> 14.	دع ہے	11-53	10m mar 18 1 mm				-	
			16-				•		

CONSTRUCTION (COST	ES	MITE	ATE PATE	8/5/81	SHEET	2 cr 3	· · · · · · · · · · · · · · · · · · ·
REDUCE EXHAUST AND OUT					(CODE A (NO DE		ප)
ARCHITECT ENGINEER PLANNING RESEARCH CO		COOE C (FINAL THER (SPECIFY)						
ORAWING NO. COST AS. OF	(DATE)	ESTIM	ATOR W.	. J. Spillman		CHECKED BY		• •
1980 Means	CHAUD	י דויו		LABOR	×	ATERIAL		
(REFERENCES)	NOL	UNIT	PER	TOTAL	PER	TOTAL	COST	PAGE
(Mechanical)					<u> </u>			
Ductwork- R/A	2220	LB	1.25	2775	. 45	999	1.	159
R/A & O /A Plenum	975	LB	1.25	1219	. 45	439		159
Damper Motors	. 3	EA	35	105	198	594		Honeywel
Damper Linkage	. 3	EA	35	105	50	150		Honeywe1
Damper - RA	1	EA	140	140	632	632		Honeywe1
Damper - OA	1	EA	140	140	632	632		Honeywe1
Dampers - Vent Air	1	EA	70	70 ·	408	408		Honeywel
Ductwork - Vent Air	700	Lb.	1.25	875	.45	315		159
Exhaust Fan - Vent Air	1	EA	90	90	1450	1450		163
T-Stat-Ef/Dampers	. 1	EA	36	36	34	34		Honeywel
T-Stat (Set Back)	1	EA	36	36	114	114		Honeywel
Insulation 1 1/2 in.	1400	SF	1.57	2198	.98	1372		135
Belts (HV-1)	2	EA	9	18	6	12		Grange
Pulleys	2	EA	18	32	54	108		Grange
Masonry Removal	5	EA	70	350	10	50		WJS
Masonry Restoration	5	EA	140	700	50	250		WJS
Pipe & Equip.Relocation	1	Jop	500	500	500	500		WJS
Heating Coil Controls	1	EA	250 ·	250	1150	1150		151
Paint	500	SF	.23	115	.06	. 30		164
RA Registers	2	EA	21	42	71	142		156
Test and Balance	12	EA	72	864	25	300		148
Subtotal				10660		9681		
(General)			-				<u> </u>	
MOB/DEMOB	1	Job	300	300	-200	200		WJS
Clean Up	5	MSF	27	7.35	2	10		
Ladders/Scaffold	1	Job		-	75	75		3
Subtotal				435	1	285		
	 	-	1					
		-		11-54	-			

116-22

00107011071011	100		Y	ATC: DATE	POFAL	ED !			
CONSTRUCTION (JUS 1	ES	MIL	AIL 787	5/8	1 3	3 cr .	3	
REDUCE EXHAUST AND	OUTSID	E AIR			GASIS F	OR ESTIMATE:		·• /	
WATERVLIET BUILDIN	IC III DV	SEMEN	 Г			CODE A (NO DE DE B (PRILIMIN			
WATERVLIET BUILDIN	14 44 DA	JENEAN .		· · · · · · · · · · · · · · · · · · ·	1	COOE C (FINAL		·	
PLANNING RESEARCH						HER (SPECIFY)		·	
ORAWING NO. COST AS OF 1/1/80	(DATE)	ESTIM	ATOR	pillman		CHECKED BY			
	THAUD	٠	·	LABOR	M	ATERIAL		1	
1880 Means (AEFERENCES)	. NG.	UNIT	PER	TOTAL	PER	TOTAL	COST	REFER. PAGE	
· · · · · · · · · · · · · · · · · · ·					7711				
(Electrical)					1		1.	 	
Min - Med - Max Switch Sta	1	EA	21	21	67	67		210	
Conduit - 1 in.	450	LF	1.98	891	.88	396		172	
Wire #10 ThWN	1350	LF	.128	· 173	.09	122		192	
Relay .	12	EA	10.70	128	8.50	102		206	
Transformer	12	EA	10.70	128	32	384		207	
Conduit/Box Connectors	40	EA	1.43	57	.93	37		175	
Terminations	60	EA	1.13	68	.26	16		196	
Pullboxex	12	EA	1605	198	5	60		204	
RA/OA/Fan Controls	1	EA	790	790	3163	3163		151/152	
Subtotal				2454		4347			
					1,			 	
				·					
						.•			
						·			
						·			
	ļ	<u> </u>				·			
		<u> </u>		·					
	-								
	1	 							
	ļ	-							
	-	-							
		-			 				
· · · · · · · · · · · · · · · · · · ·	<u> </u>			·	1				
	 	-			<u> </u>				
		-			-				
	 	+			<u> </u>				
<u> </u>	1	+			<u> </u>				
		+	<u> </u>		+	1			
		 		11-55	-	1		.	
				1	1	1	j	ı	

16-23

RSH	
®	١

SUBJECT _	WVA - Window Retwfit	AEP NO _	290-0379-002
		SHEET	OF
DESIGNER	W.T. Toda	DATE	3-24-92
CHECKER _		DATE	

E(0 # 17

INSTALL DOUBLE-PANE WINDOWS

Many of the buildings at WVA have single pane windows. Energy savings can be acheived by replacing the existing windows with double-pane windows or by adding storm windows.

althoughthere are many different types and sizes of windows at WVA, one type of window will be used to evaluate the effectiveness of window retribit.

This analysis uses a standard Aluminum Frame, 21-8" x 6-8" opening to evaluate 2-Pane windows.

Current Energy Use:

Heating Load = Uw x Aw x (68°-0.A.T.) = QH

Cooling Load = Uw x Aw x (0.A.T. - 75°F) = Qc

For single glazed, Aluminum Franc: Uw = 1.31 Bt. Xr. SF. OF
Source = ASHRAE 1989 Fund. Handbook, Ag. 27.16

The load calculations were performed using a Spreadsheet computer program with bin temperatures for Albany, NY and the above equations. The results are shown on the following page and below.

 $Q_H = 4.374 \text{ metu/yr}$, Fuel Oil #6 $Q_C = 0.112 \text{ metu/yr}$, Electricity

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY Window Heating and Cooling Load Savings • WINDOW.WG								
INPUTS: 1) 2) 3) 4) 6) 7)	Days Per Week That Summer Room Dry Bu Winter Room Dry Bu Window Overall U-V Surface Area of Wi HVAC Oper. Hrs/Shi	75 68 6 1.31 E 17.8 9 8 F 8 F	Days/Week F (db) F (db) Btu/Hr*SF**F GqFt Hrs/Shift Hrs/Shift					
Temperatures	Hours of Occu			oad (Btu/Yr)				
db-Range w	00-08 08-16	Oper. 16-24 Hours		Heating				
0 4	2 0 28 1 0 95 1 0 95 2 4 177 2 48 4 115 257 1 234 235 7 263 212 2 274 190 2 263 183 3 242 183 3 242 183 3 242 183 3 242 183 6 229 202 4 261 241 0 295 220 5 216 156 0 163 112 6 110 79 1 84 43 6 60 27 2 37 16 3 27 3 8 10 0 3 5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 3,587 13,463 34,380 41,415 19,333 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 101,604 179,356 245,974 308,166 385,172 543,728 651,551 537,672 433,948 338,563 250,446 177,609 115,300 64,498 24,784 9,434 6,010 0 0				
Totals	2922 2914	2920 8756	112,179	4,373,813				
Total operati	ng hours for each sy	ystem	833	6589				
Average outside air temp. while cooling/heating 80.8								

RSH	-
	Ð

SUBJECT _	WVA - Window Retrofit	AEP NO 290-03	79.002
		SHEET 3	OF
DESIGNER	W.T. Todd	DATE	
CHECKER		DATE	

Current Heating Energy Use = QH = Boiler Eff.

Heating Energy = 4.374 moth = 0.80 = 5.47 meth (F.o.#6)

Current Cooling Energy Use = Qc × Cooling COP

Cooling Energy = 0.112 metu × 1.2 kw / 3413 etuh = 0.04 metu (Elcc)

Future Energy Use:

Use double glazed, Aluminum Frame w/-thornal Break: $U_{w} = 0.70 \text{ Ctu/Hr.Ft2.of}$

Source: ASHRAE, Fund. Handbook, Pg. 27.16.

The same spreadsheet computer program was used to calculate the heating and cooling loads. The results are shown on the following page and listed below:

 $Q_H = 2.337 \text{ mBtn/yr}$ $Q_C = 0.060 \text{ mBtn/yr}$

Future Heating Energy Use = QH = Boiler Eff.

Heating Energy = 2.337 metn : 0.8 = 2.92 metn (F.O. #6)

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY 03/25/92 Window Heating and Cooling Load Savings WINDOW.W01

INPUTS: 1) Days Per Week That HVAC Operates 7 Days/Week 2) Summer Room Dry Bulb Temperature 75 °F (db) 3) Winter Room Dry Bulb Temperature 68 °F (db) 4) Window Overall U-Value 0.70 Btu/Hr*SF**F

6) Surface Area of Window 17.8 SqFt

7) HVAC Oper. Hrs/Shift: 12 M - 8 AM 8 Hrs/Shift

8 AM - 4 PM 8 Hrs/Shift 4 PM - 12 M • 8 Hrs/Shift

80.8

39.5

				4 FII 12 II		0 11	11 37 31111 0	
Temperati	ıres	Hours	of Occu	rrence		otal	Window Lo	ad (Btu/Yr)
db-Range	nge wb 00-08 08-		08-16	16-24		er. ours	Cooling	Heating
120 124 115 119 110 114 105 109 100 104 95 99 90 94 85 89 80 84 75 79 70 74 65 69 60 64 55 59 50 54 45 49 40 44 35 39 30 34 25 29 20 24 15 19 10 14 5 9 0 4 -5 -1 -10 -6 -15 -11 -20 -16 -25 -21 -30 -26 -35 -31 -40 -36 -45 -41 Tota	75 72 71 68 66 64 61 57 52 48 43 38 34 30 25 20 16 11 6 2 -3 -8 -17	0 0 0 4 27 115 234 263 274 263 242 229 261 295 216 163 110 84 60 37 27 10 5 3	7 28 95 177 248 257 235 212 190 183 183 202 241 220 156 112 79 43 27 16 3 0 0	0 6 28 73 140 222 271 252 236 214 205 205 251 262 191 130 96 65 38 22 9 4 0 0		0 0 0 0 7 34 123 145 1594 140 153 160 160 175 175 175 175 175 175 175 175 175 175	0 0 0 0 1,917 7,194 18,371 22,130 10,331 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 54,292 95,839 131,436 164,669 205,817 290,542 348,157 287,305 231,881 180,912 133,826 94,905 61,611 34,465 13,243 5,041 3,211 0 0 0
		hours for			0,	, 50	833	6589
•			•					

17-4

Average outside air temp. while cooling/heating

RSH	•
	0

SUBJECT _	WVA - Window Retrofit	AEP NO 290-0379-002
		SHEETOF
DESIGNER	W.T. Todd	DATE
CHECKER	•	DATE

Energy Savinge:

Heating Energy Savings = Current - Future

Energy Savings =
$$(5.47 - 2.92) \frac{\text{mBtu}}{\text{Vr}} = 2.55 \frac{\text{mBtu}}{\text{Vr}}$$
, F.O.#6

Cooling Energy Savings:

Note: These Savings are on a per window basis.

Project Costs:

Construction Cost = #476 per Window

See Cost Estimate Sheets for details

03/25/92

ECO Construction Cost Estimate Calculations

ECO Name: Install Double-Pane Windows

ECO #:

	1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$248 \$76
٠	Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (Not Applicable For GOGO)	\$324 \$15 \$0
	Subtotal Overhead (15%)	\$339 \$51
	Subtotal Profit (10%)	\$390 \$39
	Subtotal Bond (1%)	\$429 \$4
	Subtotal Contingency (10%)	\$433 \$43
	Subtotal (Construction Cost Input For LCCID *)	\$476
	SIOH (6.0% of Construction Cost)	\$29
	Subtotal Design (6.0% of Construction Cost)	\$505 \$29
Total	Project Cost	\$534

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	3-25-92 SHEET 7 OF								
PROJECT ENERGY ENGINEERING	i -	OR ESTIMA	_	on completed)					
WATERVLIET ARS	CODE A (No deeign completed) CODE B (Preliminary deeign) CODE C (Final deeign)								
ARCHITECT ENGINEER REYNOLDS, SMITH AND	1	THER (Spe							
DRAWING NO. N/A		ESTIM	ATOR W.	T. Todal	CHECKED BY				
2-Pane Windows SUMMARY	QUANT			LABOR		MATERIAL			
TOUR COLUMN SUMMARY	NO. UNITS	UNIT MEAS.	PER	TOTAL	PER	707	AL	COST	
Aluminum Window, incl								ļ	
Double Glazing, Single									
Double Glazing, Single Hung, 2'-8" x 6'-8"		EΑ	48	48	248	2	248	29	6
. 3									
Install in Masonry, +5%		ĒΑ	3	3	-0-		-0-	-	3
									<u> </u>
Remove old Window	1	EA	25	25	-0-		-0-	7.5	
Subtotals				76		1	48	324	
-0320(41,3				, 0			-10		<u></u>
	į								
							· · ·		
							· · · · ·		
						· .•			
								•	
			·						
				· .					
·									
	<u> </u>					, 1)
Source: Means	Build	ing	(ou	struction.	(0)	+ 1	Jata	, 1991, 6	. 193
		-							
									

ENG FORM 150

(ER 1110-345-730)

PREVIOUS EDITION MAY ME LISTED

* U.S. GOVERNMENT PRINTING OFFICE . 1958 0-51014

(TRANSLUCENT)

RSH.

SUBJECT WVA - Window Fetrofit	AEP NO 290 - 0379 - 002
	SHEET 8 OF
DESIGNER W. T. Todd	DATE
CHECKER	DATE

ECO # 18

INSTALL STORM WINDOWS

This analysis uses a standard aluminum Frame, Double hung, 2'-6" x 5'-0" opening to evaluate Storm windows.

Current Energy Use:

The same spreadshet used for 2-fane windows was used for this analysis. The results are shown on the next page and listed below.

Future Energy Use:

Assume storm window combined with existing window is not quite as effective as a double pane window (Uw = 0.70 for 2-Pane).

Un = 0.80 Bt hr. ft2. 0 F

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY Window Heating and Cooling Load Savings WINDOW.WQ1								
INPUTS	: 1) 2) 3) 4) 6) 7)	Summer Room Winter Room Window Over Surface Are	Days Per Week That HVAC Operates Summer Room Dry Bulb Temperature Winter Room Dry Bulb Temperature Window Overall U-Value Surface Area of Window HVAC Oper. Hrs/Shift: 12 M - 8 AM 8 AM - 4 PM 8 Hrs/Shift 8 Hrs/Shift 8 Hrs/Shift 8 Hrs/Shift					
Temperat	tures	Hours	of Occu	irrence	Total Oper.	Window Lo	ad (Btu/Yr)	
db-Range	e wb	00-08	08-16	16-24	Hours	Cooling	Heating	
	9 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1	234 263 274 263 242 229 261 295 216 163 110 84 60 37 27 10	7 28 95 177 248 257 235 212 190 183 183 202 241 220 156 112 79 43 27 16 3 0	0 6 28 73 140 222 271 252 236 214 205 251 262 191 130 96 65 38 22 9 4 0	0 0 0 0 7 34 123 254 415 594 740 727 700 660 636 753 777 563 405 285 192 125 75 39 14 5	0 0 0 0 2,522 9,465 24,170 29,115 13,591 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 71,428 126,088 172,920 216,641 270,777 382,242 458,042 377,984 305,066 238,011 176,064 124,859 81,056 45,342 17,423 6,632 4,225 0 0	
Tot	als	2922	2914	2920	8756	78,862	3,074,799	
Total op	eratin	g hours for	each sy	vstem		833	6589	
Average outside air temp. while cooling/heating					80.8	39.5		

RSH.

SUBJECT	WVA - Window Retufit	AEP NO 290-0379-002
		SHEETOF
DESIGNER	W.T. Todd	DATE
CHECKED		DATE

The same spread sheet computer program was used to calculate the future heating and cooling Loads. The results are shown on the next page and listed below.

$$Q_{H} = 1.878 \text{ metn/yr}, F.o. #6$$

 $Q_{C} = 0.048 \text{ mBtn/yr}, Elect.$

Heating Energy =
$$(3.84-2.35)\frac{m8tn}{VV} = 1.49\frac{m8tn}{VV}$$
, F.O.#6
Cooling Energy = $(0.03-0.02)\frac{m8tn}{VV} = 0.01\frac{m8tn}{VV}$ | Electorial

Project Costs =

Construction Cost = \$101 per window

See Cost Estimate Sheets For details.

PROJECT: WATERVLIET ARSENAL LIMITED ENERGY STUDY Window Heating and Cooling Load Savings

03/25/92 WINDOW.WQ1

INPUTS:	1)	Days	Per	Week	That	HVAC	Operates
	~ \	~	_	_	_	1 · -	

- 2) Summer Room Dry Bulb Temperature
- 3) Winter Room Dry Bulb Temperature
- 4) Window Overall U-Value
- 6) Surface Area of Window

7) HVAC Oper. Hrs/Shift: 12 M - 8 AM

8 AM - 4 PM

4 PM - 12 M

7	Days/Week
/	DayS/Week
_	· - / - i - \

75 'F (db) 68 'F (db)

0.80 Btu/Hr*SF**F

12.5 SqFt

8 Hrs/Shift 8 Hrs/Shift

8 Hrs/Shift

*							
Temperatur	Temperatures Hours of Occurrence		Total	Window Loa	ad (Btu/Yr)		
db-Range	wb	00-08	08-16	16-24	Oper. Hours	Cooling	Heat ing
120 124 115 119 110 114 105 109 100 104 95 99 90 94 85 89 80 84 75 79 70 74 65 69 60 64 55 59 50 54 45 49 40 44 35 39 30 34 25 29 20 24 15 19 10 14 5 9 0 4 -5 -1 -10 -6 -15 -11 -20 -16 -25 -21 -30 -26 -35 -31 -40 -36	75 72 71 68 66 64 61 57 52 48 43 38 34 30 25 20 16 11 62 -3 -8 -17	0 0 0 4 27 115 234 263 274 263 242 229 261 295 216 163 110 84 60 37 27 10 5	7 28 95 177 248 257 235 212 190 183 183 202 241 220 156 112 79 43 27 16 3 0	0 6 28 73 140 222 271 252 236 214 205 205 251 262 191 130 96 65 38 22 9	0 0 0 0 7 34 123 254 415 594 740 727 700 660 630 636 753 777 563 405 285 192 125 75 39 14 5	0 0 0 1,540 5,780 14,760 17,780 8,300 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 43,620 77,000 105,600 132,300 165,360 233,430 279,720 230,830 186,300 145,350 107,520 76,250 49,500 27,690 10,640 4,050 2,580 0 0
-45 -41					0	0	0
Totals	3	2922	2914	2920	8756	48,160	1,877,740
Total opera	ating	hours for	each sy	⁄stem		833	6589

80.8

39.5

Average outside air temp. while cooling/heating

03/25/92

ECO Construction Cost Estimate Calculations

ECO Name: Install Storm Windows

ECO #:

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$56 \$13
Subtotal bare costs	\$69
FICA Insurance (20% of Labor)	\$3
Sales Tax (Not Applicable For GOGO)	\$0
Subtotal	\$72
Overhead (15%)	\$11
Subtotal	\$83
Profit (10%)	\$8
. Subtotal	\$91
Bond (1%)	\$1
Subtotal	\$92
Contingency (10%)	\$9
Subtotal (Construction Cost Input For LCCID *)	\$101
SIOH (6.0% of Construction Cost)	*+ \$6
Subtotal	\$107
Design (6.0% of Construction Cost)	\$6
Total Project Cost	\$113

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST ESTIMATE				DATE PREPARED	5-92		SHEET	13 or	
PROJECT ENERGY ENGINEERING ANALYSIS					1	BASIS FOR ESTIMATE CODE A (No design completed) CODE B (Preliminary design)			
WATER VLIET ARSENAL									
ARCHITECT ENGINEER REYNOLDS, SMITH AND HILLS A.E.P., INC.					1] CODE C		e(gn)	
DRAWING NO. N/A) HILLS		ATOR		1	CHECKE	D BY		
	QUANT	177	$\frac{\mathcal{W}}{\mathcal{W}}$	LABOR					
Storm Windows SUMMARY	NO. UNITS	UNIT MEAS.	PER Unit	TOTAL	PER	TO	ra _l	TOTAL COST	
Alumin. Storm Window,									
W/Screen, 2'-6"x51-0"	-	Ea	13	13	56		56	69	
7		<u> </u>							
						ļ			
		ļ							
		•	•			ļ			
i,									
	······································								
	·								
				·					
						· .•			
					-			•	
				· · · · · · · · · · · · · · · · · · ·					
									
Source = Means Build	ling	Con	stru	ction Cost	- Da	ta, 1	191	Pa 193	
	. '					1	1	0	
	1	- 1	ł	ł	ì		ł	ł	

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY ME LISERS

" U.S. GOVERNMENT PRINTING OFFICE . 1959 Q-61414

(TRANSLUCENT)

RSH.

SUBJECT ECO# 19	AEP NO 290-0379-002
Occupancy Sensors	SHEETOF
DESIGNER Hutchins	DATE 3/19/92
CHECKER •	DATE

Screening Cale: - Restroom

- Calculate saving for typical restroom

Assume lights are on from 0600 to 1800, 12 hrs five days per week - and are only needed 40% of the time

Estimate payback

Therefore, to ochieve a paybock less than 4 yvs., restrooms selected should average > 400 sf.

RSH	·®
KSH	®

SUBJECT ECO# 19 - Occupancy	AEP NO	
Seuror:	SHEET	OF
DESIGNER	DATE	
CHECKER	DATE	

Screening Cale: - Break room

- assume lights are on 50 % of the time from 0600 to 1800 or 6 ws/da. - they are needed for two breaks & lunch - a total time of 2 ws/da - savings are 67 %

- Estimate payback

RS&H	7
	®

SUBJECT_ ECO#	AEP NO
Occ. Seusors	SHEET OF
DESIGNER Hutchies	DATE
CHECKER	DATE •

Screening Cale's - Office

Calculate current energy use, savings, payback

```
Room size
                               = 15 \times 10' = 150 \text{ sf}.
                               = 192 wetts (2 F40 fixtures)
Lighting load
annual lighting hours
                                   2500 Wrs (10 W/da)
annual kwh
                                  480 kwh
                                   1.64 MBtu
annual MBth
annual sovings (%)
                                     25%
annual savings (MBM)
                                   # 0.4 WBM 8.3
Cennual cost savings (@#20/MBM)
                                     # 96
Installed cost
                                      12 yrs.
Paybock
```

Cost Extimate
FICA (20%)
SUBTOTAL
OTHER MARK UPS (358%)

53 # 6.25. \$ 53 # 7.50 \$ 60.50 \$ 35.09 \$ 95.59

(1) 5% of leit (2) 1/4 hr 3 \$25/hr.

SUBJECT	Eco #19	Occupancy	AEP NO	
	Seusor	1 0	SHEET	OF
DESIGNER _			DATE	
CHECKER			DATE	

Based en sareening calculations, restrooms and break voomes are recommended. Since our survey indicated that most break room areas lighting were turn off when not occupied. Rost vooms lights have a greaten toudency to be left on when unoccupied. RSH.

SUBJECT	巨00 #19	Occupancy	AEP NO		
	eusor	1 4	SHEET	OF	
DESIGNER _			DATE		
CHECKER			DATE		

QRIP/OSD PIF IMC.S

PRESENT METHOD FNERGY LAR

FROM p. 19-1 annual meth = 3.1 MBTH / 500sf

p. 19-6 bath sf = 34,136

FOR 34,136 sf => 34,136 * 5.1/500 = 348 MBTH/yr.

COST = 348 MBTH * 20.35/MBTH = \$\frac{4}{1080}/yr.

PROPOSED METHOD ENERGY USE From p. 19-1 (5.1-3.1) Mrtu/500 sf

> 34, 136 * 2.0 MBTU/500 Sf = 137 MBTU/yv. Cost = 92 * $\frac{4}{20.35}$ /MBTU = $\frac{4}{2790}$ /yz

SAULUGS

ENERGY = 348-137 = 211 MBTu/gr Cost = 7080-2790 =#4290/yr

WATERVLIET ARSENAL ECO #19 OCCUPANCY SENSORS

RESTROOM INVENTORY

BFD@ #	‡	DIMENSIONS	AREA (SF)	NOTES
10	3	10X16, 16X19, 14X19(2)	996	1ST FLOOR
	3	10116, 16119, 14119(2)	9 96	2ND FLOOR
	4	10X15(2),8X16,12X15	60 8	3RD FLOOR
	1	12X18	216	BASEMENT
15	1	13*32	416	
20	2	40X70	5600	
21	4	15X16(2),10X10(2)	680	
22	-	<u>.</u>	-	
23	-	-	•	
24	3	15X17,17X21(2)	969	
25	3	35X45	4725	LADIES' LOCKERS
	3	30X30	1800	MEN'S LOCKERS
35	2	40X50	4000	MAIN FLOOR MEN'S/LADY'S LOCKERS
	1	34X3B	1292	BASEMENT MEN'S LOCKER
40	2	20X30	1200	1ST FLOOR SOUTH-MOST WING
	2	20X30	1200	1ST FLOOR NORTH END
	2	15X20,10X30	600	1ST FLOOR NORTH-MOST WING
44	1	18X20	360	BASEMENT
	2	18X20(2)	720	1ST FLOOR WEST END
110	2	13X20,8X20	420	MAIN FLOOR
	1	15X20	300	NORTH END
	2	10X20,9X24	416	SOUTH END
115	2	15X15	450	
120	2	20X20	800	1ST FLOOR - SOUTH
	3	13X20(2),10X20	720	2ND FLOOR
124	-	-	-	
125	4	3/4(38X80),16X26,16X18(2)	3272	MAIN FLOOR - NORTH
130	-	-	-	
135	2	20X20	800	
145	2	10X18,20X20	580	
OTALS	 59	,	34,136	

LOCATIONS ARE FOUND ON FLOOR PLANS IN VOL. TITA

SUBJECT	ECO# 19 Overeparcy	AEP NO	
	Seusors	SHEET	OF
DESIGNER	The state of the s	DATE	
CHECKER	-	DATE	

- Calculate annual replacement costs

Life expectancy = 12 yrs.

Therefore all sensors will be replaced once of at the end of 12 years and the replacement will operate until the end of the 25 yr. study life

Cost of replacement (see p.19-1) #130 x 59 = #7670

No other mark up since you would be using installation labor

ECO Construction Cost Estimate Calculations

ECO Name: OCCUPANCY SENSORS

ECO #: 19

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$5,369 \$2,213
Subtotal bare costs	\$7,582
FICA Insurance (20% of Labor)	\$443
Sales Tax (not applicable for GOGO)	\$0
Subtotal	\$8,025
Overhead (15%)	\$1,204
Subtotal	\$9,229
Profit (10%)	\$923
Subtotal	\$10,152
Bond (1%)	\$102
Subtotal	\$10,254
Contingency (10%)	\$1,025
Subtotal (Construction Cost Input For LCCID *)	\$11,279
SIOH (6% of Construction Cost)	\$677
Subtotal	\$11,956
Design (6% of Construction Cost)	\$677
Total Project Cost	\$12,633

^{*} The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	ESTIUA"			DATE PREPARED	2	SHEET	or	
PROJECT CONTROCTION COST				313179		ESTIMATE		
ENERGY ENGINEERING ANALYSIS						CODE A (No design completed)		
WATER ULIET AREENAL					CODE & (Preliminary deelgn)			
ARCHITECT ENGINEER					1	CODE C (Pinal dea (Specify)		
REYNOLDS, SMITH AN	HILLS	A.E.	P., IN	ic.		HECKED BY		
DRAWING NO. 巨色〇世 19		E211W	P. Hu	TCHIUS		CHECKED BY		
	QUANT			LABOR	M	ATERIAL	TOTAL	
Occupancy SUMMARY SENSORS	NO. UNITS	UNIT MEAS.		TOTAL	PER	TOTAL	COST	
Occupancy Sensors	59	ea	37.50	22/3	69.00	4071	6284	
POWER/SWITCH PACK	59	ea	-	-	22.00	1298	1298	
SUCTOTAL				2213		5369	7582	
		 						
		 			1 1			
		╁╌	<u> </u>					
		 					· ·	
	ļ	 						
		 						
		ļ						
						<u></u>		
		1					·	
	 	1			1			
Compacition	 	+			1.			
Source: UEC		+	 	· · · · · ·	1			
	 	+		· · · · · · · · · · · · · · · · · · ·	 			
	<u> </u>	 	-					
·	ļ	 	ļ					
		 	<u> </u>					
	<u></u>	ļ		ļ ·	1			
		<u> </u>					<u></u>	
		1				****		
1	 	1	1					
	 	†						

SUBJECT ECO #19 Occupance	4AEP NO
Seusor	SHEETOF
DESIGNER Huthuis	DATE
CHECKER	DATE

ESIMATED LIGHTING INTENSITY IN RESTROOMS (W/SF)

RESTROOM LIGHTING DATA

		TOTAL	WATTS	FOOT-
EXAMPLES	518 £ (SF)	WATTS	PER SF	CANOLES
1	1080	576	0.5	15
2	196	192	40	30
\$	225	480	2.1	50
4	308	480	1.6	70
5	504	288	0,6	30
6	468	576	1.2	90
	516	672	1, 3	75
TOTAL	3297	3264	1.0	
AUG	471			

RSH

Telephone Call Confirmation

			Project NoX	10.0317.0	
cal.	L.D	Placed	Rec'd	Date <u>3</u>	19/92
	P. Hutchins	Conversed W			
	Whenco	Regardin	g Occupan	z - 1900	2
			(214) 44	2-1900	
4 2.44		Type	MA	COSE	Ln
	BATHROOM	OUERHEAD W/			er drop
	5/11/1000	C 600-R			? 50)
	Classroom	8 PIR OVERH	54N		
		•	OM 1209 240	1/2	iler.
		C 500. 2000			
	Hallway		3 x 108		
	ncl:	were-mount:	·		
	OFFICE	7.54WP ,	_		· · · · · · · · · · · · · · · · · · ·
	Rights min	16x25 50M- 34x34 50M-	500-A PIE		
	-EXTENDED	7.5	AMP		<u> </u>
	Breek room min	.34x34 SOM-	SITA 24-0001		~~~~
	Corpet affects	4/5			
		•			
	10 yr life	expectance			
	0 1	/			
	UNEALO É	uec are st	ur comai	Jy	
	DO NOT H	AVE PHOTOCK	CL RIGHT	VO61.	
	7				
	SUBTRACT	75%-10%			
tri	oution:	1.0 10 10 10		<u> </u>	

.anulacturers & Designers

of Sensible Controls

Switchomat[™]

The world's best investment in automatic light switchingwith a 9-year proven track record!

\$50 invested now will earn a \$500 return by 1999

Automatic Light Switch

Now you can replace your forgetful switches and have aesthetically pleasing, automatic switches by means of infrared occupancy sensors. Ultra safe, no heat generating components, installed in minutes. Total equipment cost is only \$48.00 in quantities of 250 and up. **Switchomat** controls an area up to 800 square feet and 1800 watts. Pay back is less than one year, based on 350 watt load at 8¢ per KWH. UEC is the leader and innovator in infrared and ultrasonic occupancy sensors for small, medium or large areas, including HVAC controls. All products are covered by a five year factory warranty and a 90 day money back guarantee.

65 65	PASSIVE INFRARED AUTOMATIC 2 WIRE LIGHT SWITCHES	WALL		3
	Switchomat [™]		(Mg) 1	
	Manual lights off switch with built-in safety neon night light. Occupancy sensor, up to 800 sq. ft. coverage. 120/277 Volt, 1000/1800 Watt switching capacity fluorescent or incandescent. Immediate activation when entering room.	1-23	24-95	96 & UP
del SOM-500-A		\$60.00	\$56.00	\$52.00
	Switchomat™			
Model SOM-1000-A	Occupancy sensor, up to 1000 sq. ft. coverage. 120/277 Volt, 1000/1800 Watt switching capacity fluorescent or incandescent, 180° coverage. Immediate activation when entering room.	64.00	60.00	56.00
(U)9 Model SOM-1000-A-2	Switchomat ™ 2 switches, 2 circuits. Occupancy sensor, up to 1000 sq. ft. coverage. 120/277 Volt, 1000/1800 Watt switching capacity on each circuit (2 wires) 180° coverage. Immediate activation when entering room. Heavy duty model with larger switching capacity available upon request.	70.00	66.00	62.00
(Ite) Model SOM-1000-B	5witchomat [™] Occupancy sensor, up to 1000 sq.ft. coverage. Single circuit heavy load capacity. Minimum 900 Watt to Maximum 2400 Watt at 120V ballast rating. Minimum 1800 Watt to Maximum 4500 Watt at 277V ballast rating, 180° coverage. Immediate activation when entering room.	71.00	67.00	63.00
	Switchomat Model Som-1200-2-HD, Specifically	Y DESIGNED	FOR CLASSE	ROOMS.
Model SOM-1200-2-HD	2 switches, 2 circuits, occupancy sensor, up to 4000 sq. ft. coverage, 120/277V, 2000/4000 Watt switching capacity on each circuit (2 wires) 180° coverage. Immediate activation when entering. Can be mounted in either a double or triple gang wall box or plaster ring.	96.00	92.00	88.00

MODEL C-600-H, Selected and modified for hallway installations. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL C-600-H, Selected and modified for hallway installations. For use with remote power switch packs, or can be mounted together with power switch packs. MODEL HMS-1, Room Occupancy sensor with built-in comfort cycle timer. 400 sq. ft. coverage for Hotel/Motel guest room HVAC control. For use with remote power switch packs, or can be mounted together with power switch packs, or can be mounted together with power switch packs, or can be mounted together with power switch packs.	1-23 \$62.00 69.00	24-95 \$58.00 65.00	96 & UP \$54.00 61.00
MODEL C-400, Occupancy sensor 400 sq. ft. coverage. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL C-600-H, Selected and modified for hallway installations. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL HMS-1, Room Occupancy sensor with built-in comfort cycle timer. 400 sq. ft. coverage for Hotel/Motel guest room HVAC control. For use with remote power switch packs, or can be mounted together with power	\$62.00 69.00	\$58.00	\$54.00
MODEL C-600-H, Selected and modified for hallway installations. For use with remote power switch packs, or can be mounted together with power switch packs, or can be mounted together with power switch packs. MODEL HMS-1, Room Occupancy sensor with built-in comfort cycle timer. 400 sq. ft. coverage for Hotel/Motel guest room HVAC control. For use with remote power switch packs, or can be mounted together with power	69.00		
MODEL HMS-1, Room Occupancy sensor with built-in comfort cycle timer. 400 sq. ft. coverage for Hotel/Motel guest room HVAC control. For use with remote power switch packs, or can be mounted together with power		65.00	61.00
guest room HVAC control. For use with remote power switch packs, or can be mounted together with power	:		
	78.00	73.00	69.00
MODEL C-600-R, Occupancy sensor 600 sq. ft. coverage equipped with versatile transmitter power slide switch feature for use in small rooms. For use with remote power switch packs, or can be mounted together with power switch pack.	69.00	65.00	61.00
MODEL C-1000, Occupancy sensor 1000 sq. ft. coverage or for multiple unit installation in large open offices. For use with remote power switch packs, or can be mounted together with power switch pack.	80.00	76.00	72.00
MODEL C-500-2000, Occupancy sensor, 2000 sq. ft. coverage or for multiple unit installations in large open offices. Also suitable for long hallways 100' x 15'. For use with remote power switch packs, or can be mounted together with power switch pack.	98.00	93.00	88.00
INTELLIGENT LIGHT FIXTURE Now you can make any light fixture, or even a bank of lights turn on and off automatically. By using the superbly engineered infrared sensor/power switch pack combination, it can be installed inside a fixture ballast channel in less than 15 minutes without disturbing the existing ceiling or wiring.			A Constitution of the Cons
Patent Pending	Call or w	vrite for free t analysis!	easiomy
REMOTE POWER/SWITCH PACKS			
MODEL 211, Power/Switch Pack, 120V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request.	1	20.00	18.00
MODEL 212, Power/Switch Pack, 208V/240V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request.	22.00	20.00	18.00
Icontacte 20 AMP Ballast rating, 40 Year lite expectancy	/1 ·	20.00	18.00
MODEL SRP1, Slave Relay Pack, 20 AMP Ballast rating. 40 year life expectancy rated at full load.	12.00	11.00	10.00
Affive Poort	feature for use in small rooms. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL C-1000, Occupancy sensor 1000 sq. ft. coverage or or multiple unit installation in large open offices. For use with remote power switch packs, or can be mounted ogether with power switch pack. MODEL C-500-2000, Occupancy sensor, 2000 sq. ft. coverage or for multiple unit installations in large open offices. Also suitable for long hallways 100'x 15'. For use with remote power switch packs, or can be mounted together with power switch packs, or can be mounted together with power switch packs, or can be mounted together with power switch pack. INTELLIGENT LIGHT FIXTURE Now you can make any light fixture, or even a bank of lights turn on and off automatically. By using the superbly engineered infrared sensor/power switch pack combination, it can be installed inside a fixture ballast channel in less than 15 minutes without disturbing the existing ceiling or wiring. Patent Pending REMOTE POWER/SWITCH PACKS MODEL 211, Power/Switch Pack, 120V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 212, Power/Switch Pack, 208V/240V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 213, Power/Switch Pack, 277V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL SRP1, Slave Relay Pack, 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request.	feature for use in small rooms. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL C-1000, Occupancy sensor 1000 sq. ft. coverage or or multiple unit installation in large open offices. For use with remote power switch packs, or can be mounted ogether with power switch packs, or can be mounted ogether with power switch packs, or can be mounted offices. Also suitable for long hallways 100' x 15'. For use with remote power switch packs, or can be mounted logether with power switch packs, or can be mounted logether with power switch pack. INTELLIGENT LIGHT FIXTURE Now you can make any light fixture, or even a bank of lights turn on and off automatically. By using the superbly engineered infrared sensor/power switch pack combination, it can be installed inside a fixture ballast channel in less than 15 minutes without disturbing the existing ceiling or wiring. Patent Pending REMOTE POWER/SWITCH PACKS MODEL 211, Power/Switch Pack, 120V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 213, Power/Switch Pack, 208V/240V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 213, Power/Switch Pack, 277V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL SRP1, Slave Relay Pack, 20 AMP Ballast rating. MODEL SRP1, Slave Relay Pack, 20 AMP Ballast rating. 12.00	feature for use in small rooms. For use with remote power switch packs, or can be mounted together with power switch pack. MODEL C-1000, Occupancy sensor 1000 sq. ft. coverage or or multiple unit installation in large open offices. For use with remote power switch packs, or can be mounted ogether with power switch packs, or can be mounted ogether with power switch pack. MODEL C-500-2000, Occupancy sensor, 2000 sq. ft. coverage or for multiple unit installations in large open offices. Also suitable for long hallways 100'x 15'. For use with remote power switch packs, or can be mounted logether with power switch packs, or can be mounted logether with power switch pack of lights turn on and off automatically. By using the superbly engineered infrared sensor/power switch pack combination, it can be installed inside a fixture ballast channel in less than 15 minutes without disturbing the existing ceiling or wiring. Patent Pending REMOTE POWER/SWITCH PACKS MODEL 211, Power/Switch Pack, 120V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 212, Power/Switch Pack, 208V/240V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL 213, Power/Switch Pack, 277V, with isolated relay contacts. 20 AMP Ballast rating. 40 year life expectancy rated at full load. Heavy duty power packs for motor loads available upon request. MODEL SRP1. Slave Relay Pack, 20 AMP Ballast rating. MODEL SRP1. Slave Relay Pack, 20 AMP Ballast rating.

Model SOM-500 Accessory

	1.00
1-23	24& Up
\$2.75	\$2.50

Model SOM-1000 Accessory

1-23	24&Up
\$2.75	\$2.50

CEILING MOUNTED PASSIVE INFRARED OCCUPANCY SENSORS

	<i>Conserver</i> ™	The state of the s		
	PIR-1000-P, self contained occupancy sensor, up to	1-23	24- 9 5	96 & UP
MODEL PIR-1000-P Size 3" x 4%" x 1%"	1000 sq. ft. coverage, 20 amp switching capacity. Specify voltage when ordering.	\$68.00	\$64.00	\$62.00
MODEL-PIR-1000-P-H Size 3" x 41/4" (1/9)	For long hallways and warehouses, specify type H-P, 16' x 80' coverage. Specify voltage when ordering.	75.00	71.00	67.00
MODEL PIR-2000-P Size 3" x 4%" x 1%"	For large areas of detection 45' x 45', specify PIR-2000-P. Specify voltage when ordering.	95.00	90.00	85.00
MODEL PIR-1000 Size 3" x 44/4" x 11/4"	Conserver PIR-1000, Occupancy sensor up to 1000 sq. ft. coverage. For use with remote power switch pack.	60.00	56.00	52.00
DEL PIR-1000-H Size 3" x 4%" x 1%"	For long hallways and warehouse specify type "H", 16' x 80' coverage.	65.00	61.00	57.00
MODEL PIR-2000 Size 3" x 4%" x 1%"	For large areas of detection 45' x 45', specify PIR-2000.	85.00	80.00	75.00

O&M ENERGY SAVINGS
BACK-UP CALCULATIONS

RSH.

SUBJECT OF M Savings	AEP NO 290-0379-0	04
34 Walt Fluorescents	OF	
DESIGNER P. Hutchin	DATE3/18/92	
CHECKER	DATE	

Upon failure replace 40-watt fluorescent Damps with 34-watt lamps.

Evergy savings: Non production area:

(40-34) watts * 1 kw * 2340 km = 14 kwh/y.

Production area

(40-34) * 8400 km = 1000 = 50 kwh/y.

Every Cost Savings

Von production: 14 * *0.068/kwh = #0.95/yr Production: 50 x **0.068/kwh = #3.40/yr

Material Cost Differential

#3.05-2.4= \$0.81 / lamp MEANS Electrical
Cost Duta 1991
p. 201

Paybach

Non-Production: 0.81: 0.95 - 0.9 years

Production : 0.81 = 3.40 = 0.25 years

OM-1

SUBJECT OEM Savings	AEP NO 290-0379-002
Energy Efficient Ballacts	SHEETOF
DESIGNER Hutchin	
CHECKER	DATE

Upon failure replace standard fluorescent ballast with energy efficient type

Rallast Data

ELECTRONIC

lamps

FOUR FOOT Fluorescents

FIX TURE (1) COST

TYPE (WATTS) GSA VENDOR

STANDARD 96 \$ 7.75

EEE (2) BO 10.30(3) \$ 20.00

71

13,00(3)

25,20

Eight Foot Fluorescents FIXTURE (4) COST TYPE GSA WATTS UENDOR STANDARD # 11.76 175 ERE (2) 158 # 19,10 35.00 ELECTRONIC 130 (1) 2-40 watt lamps (2) EEE = energy efficient electromagnetic ballast (3) estimated based on cost data on eight foot RSH.

SUBJECT OF M Saving	AEP NO
Fluorescent Ballests	SHEETOF
DESIGNER	DATE 3/3//92
CHECKER	DATE

Energy saving:

Production oreas: (watts = watts = 1 * 24h/da * 5 da/wk * 50 wk/yr.

Non Production: (Ws-WA) * 10 h/da * 5 dn/wk * 50 wk/yr.

ANNUAL PASBACK SAU 11/68 \$ AREA (MSTU) TYPE (yrs) EFE-4' 6,70 PROD 0.33 0.4 巴巴尼-4' NOW-PROD 0.14 2.80 1,0 ELRC-41 PROD 0.51 0.5 10,40 ELEC-4' NON- PROD 1. 2 0,21 4.30 ELEC-8' 0.4 PROD 0.92 18.75 EIRC-B' 2.80 1.0 NON-PROD 0.14

FLUORESCENT BALLAST SPECIFICATIONS WVA - #290-0379-002 12-Feb-92

			BALLAST	
LAMPS	WATTS	8ALLASTS	INPUT (W)	PRICE (\$)
F40T12/RS	40	ADV MARK IV	80	\$20.00
STD	-	EBT ELECTRONIC	71	
		GE OPTIMISER	71	
		GE PERFORMANCE SS	70	
		STANDARD	96	
F40T12/RS	34	ADV MARK IV	66	\$20.00
ENERGY		EBT ELECTRONIC	59	\$25.20
		GE OPTIMISER	59	
F40T12/RS Energy	32	GE MAXI-MISER II	72	
F40T8/IS ST0		EBT ELECTRONIC	70	
F32T8/IS	32	EBT ELECTRONIC	58	\$26.90
ENERGY		T8 MAGNETIC	66	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
F96T12/IS	75	GE MAXI-MISER II	158	
STD		EBT ELECTRONIC	130	
		STANDARD	175	
F96T12/IS	60	GE MAXI-MISER II	136	٠
ENERGY		EBT ELECTRONIC	105	\$35.00
F96T12/H0	105	GE WATT-MISER	237	
STD		GE MAXI-MISER II	254	
		STANDARD	255	
		EBT ELECTRONIC	190	
F96T12/H0	95	GE MAXI-MISER II	212	
ENERGY		EBT ELECTRONIC	160	\$44.00
F96PG17				
STD	215	STANDARD	460	
ENERGY	185	STANDARD	400	
F90T17				
STD	90	STANDARD	. 215	
ENERGY	82	STANDARD	200	
F90T12	84	STANDARD	200	

RSH.

SUBJECT OF M Sa	wing - Repair AEP NO	, 290-0379-002
Compressed De		OF
DESIGNER Hutchin	DATE _	3/18/92
CHECKER	DATE	

O&M Savings - Compressed air Leaks

From ASHRAK, a 1/32" hole warden #252/yr @ 4\$/kwh
For WVA: #252. 6.8\$ = #428/yr / leak

#428 : 6.8\$/kwh + 3413BM = 22 MBM / yr / leak

| 1.66

RSH.

SUBJECT INCREOSE CONDENSATE	AEP NO 290-0379-002
Return to B. 136	SHEET OF
DESIGNER P. Hutchins	DATE 11/15/91
CHECKER	DATE

- Calculate the energy savings due to increasing condensate return
- Calculate present energy use

For their analysis boiler Logs were collected and reviewed for the period June 1790 to May 1971. These were used in place of fiscal year data since the logs contain concurrent data on fuel use, steam generation and make-up water.

an analysis of this data is sknown on the following pose.

Present energy use = 301,700 MBtn #6 Fuel Di

Energy savings = 7100 MBM

Future evergy use = 294,600 MBAN

WATERVLIET ARSENAL
STEAM GENERATION, FUEL USE & CONDENSATE RETURN

FILENAME: STEAM.WQ1

18-Mar-92

ENERGY SAVINGS FOR INCREASING CONDENSATE RETURN EXCEPT FOR PLATING TANKS IN BLDG. 35

		_	STEAM GENE BLDG 136	RATED (MBTU)	AVG M-U	#6 FUEL . W/ PRI	CONSUMED OCESS	#6 FUEL CONSUMED W/O PROCESS	#6 FUEL CONSUMED W/O PROCESS & 10% MAKE-UP	SAVINGS
MON	}	/R	w/ PROCESS w/	o PROCESS	(%)	(GAL)	(MBTU)	(MBTU)	(MBTU)	(MBTU)
6	/ 9	 90	0	0	100	0	0	• 0	0	0
7			0	0	100	0	0	0	0	0
8			0	0	100	0	0	Ů	0	0
9			0	0	100	0	0	0	0	0
10			13,050	9,300	66	101,103	15,165	10,808	10,222	586
11			31,774	28,024	52	264,549	39,682	34,999	33,675	1,324
12			40,149	36,399	43	339,326	50,899	46,145	44,794	1,351
1	13	91	46,563	42,813	34	392,146	58,822	54,085	52,929	1,156
2			41,772	38,022	29	346,357	51,954	47,290	46,477	813
3			38,739	34,989	31	309,436	46,415	41,922	41,096	827
4			25,616	21,866	46	205,867	30,880	26,359	25,474	886
5			6,573	2,823	57	52,610	7,892	3,389	3,240	149
TOTALS			244,236	214,236		2,011,394	301,709	264,997	257,905	7,091

Make up energy use = (old make-up % - 10%) * steam gen'd (*) * 90 Btu/* / 0.80

1,									INSTALLATION	2		ľ			PLANT			BLDG. NO.		MONTH			
		FACILITIES ENGINEERING OPERATING LOG (Boiler Plant)	S ENGINE	ERING (OPERATI	NG LOG	(Boiler Plant)		-								Ç	j		4.6	9		
	•	For use of this form, see AR 420-49; the proponent agency is USACE.	his form, sea	AR 420-45	9; the propa	inent agency	is USACE.		4/1/12	HIERVLIET	IET ARSENA	RSEN	146	00.00		7537	TLANT.	BOILER FLANT 136	0	SUN N	Make		
_	,		ST	STEAM PRODUCED	OUCED					١,	FEEDWAT	ER HEAT	-		- 1		BOILER				,	EFF,	INIT.
1617	1#	*	4	77#	*	TOTAL	BOILER	CS ED	95	AV.		F. G.	MAKEUP	2 2	-	-	~	-		5 2			
<u>→</u>	97 000/	15.25 B.	1,000.1	1,000 LB.	1,000.18.	1,0001.8.			5	¥	H		X /600		95	¥- 6	¥ 5	- <u>B</u>	(61)	8	1211	ĝ	(23)
ئـــــــ		Ξ	23	Ð	3	(5)	779/U X	6	<u> </u>	+	ē.	- E	7	+	╁╌	!							
								+		-	+	+	-		-						-		
7							-		+	-	-	+	-								+		
m):									-	-		-								-	+		
1 -4										$ \cdot $		$\left \cdot \right $			-	_		_			+		
0												_	-		+		+	1			+		
1 0												-	-	-	+	+	-	-			-		
10											-	-	\dashv	-	+	1	+	-			+		
o v											-	-	1	+	-	+	-	+			+		
0		-							1	-	-	-	+	1	-	+	+	-			\mid		
=									+	+	-	+	+	+	+	-	-	-			-		
7										+		+	-	1	+	-	-	-			-		
13										+	+	+	+	-	-	-	+	1					
Ł					_				-	+	+	-	+	+	-	+	-						
15									+	+	-	- -	+	-		-	,						
2					-	-				+	-	-	-								1	1	
17		0 /2/				5 1017	_	2570	172	7.6.5	7	230 3	37.75			-	375	را		—⊢	100	7	1
20		186.7	-		375	+	-	-	₩-	1.87		_	22.93	17		+	\$				757	100	ן י
1		700 3			7761	-				45.5	6 2	}	_	7:12	-	+	0,74				1	2020	
i		1,67.3			132.4	_			16.5	365	3	-		7.7		+	100	+ :	-		+	1	1
in		1 /2/			8.11				_	0.50	7	-	- 1.		-	+	7.57		-		10		7
23		1.20.				\Box		7764		7	1		1	1	+	+	23.0	. 1	-	0.1	20.7	- 3	3,
7		7,27,5			2 0	1 -2/2 .		11	13 1	, ; ;	+	0	· [2,2	+	1	14:57	-	<u> </u>	chh	1.77	C.5.X	∓ .
32	டப		6.5		291.5				12.7	40.7	1	0000	0.00	50,	-	425	+		_		5/12		=t -
X	_				178.8	1.23.1				75.7	9					417	 '	7			5''		3
77	578.	7		-		1/0//		\neg	•	1000	9	27.	747	2.0	-	727	750	0		427	77:	٠,	せり
28	223.1	- 1		-	157.4	1,2001.7		1706		412	1	730 9		,		432	_	10			27.10	79.2	SH
75		7	7	-	-	12,06		_		47.7		230 //	_	· 1	_	42	-	7	_	- (, t, c	29.9	7
35				_	6/10			1,0%	14.0	442	T	2301	79.4	3,0	-	6/13	3 390		-		17	22.3	11/2
3		7		-	-	+		20,70	2200	_	C	2220 1318.R		172	_	25		ū			0775	5.70	
57.	31651	_		-	1,015,1	╅		1,7,7		1_	Γ	320 1	┝	27		452		2		-	73.9	36.5	_
χΨ	_	П.			7.74	5 7877	2	7576	_	C(3)		11.7.7	_	1,9		2/#	3 377	<u>N</u>	_	_	57.3	77.3	_
714	-1				200	1		727	1	49.9			728 0	2.9		1117	\neg		_	1377	27	85.5	
·;-	527.5	5 16 5 5	100	1 0 CT	112.8	+	FILE LISED DUBING MONTH ISTANDARD	NTH (STANDA	TONS			-	REMARKS										
	EVAPORA	EVAPORATION LB. STEAM FEN LB. STO. FOCE	AM TEN CO.	100													200		3 T308	TOO			DATE
		135	SEE REVERSE SIDE			PREPARED BY	₩. E.	,		u	DATE	- "	APPROVED BY	ž			5		3				<u> </u>
			A INSTRUCTION	÷.		<u>}</u>	1000	7		1	1/1/1/	4											

0m-8

757													PI ANT		-	BLOG NO.	HINON	*		
						-	INSTALLATION	-							<u> </u>	;				
/ FACIL	FACILITIES ENGINEERING OPEHATING LOG (Boiler Plant)	EERING (OPERATII	NG LOG A	Boiler Plant)		11/11	,	7	1005014	2		Poller		PLANT	136	×	NOV. 19	1990	
				À		1	77777	٦	FDWATE	FEEDWATER HEATER	\	% 6 02	1	FLUE GA:	FLUE GAS TEMPERATURE		FLUE FLUE)
,		SIEAM PRODUCED						OUTSIDE PRE	PRESS. TEMP.	#P.	917	BOILER			BOILER	72	12 21		EFF,	.////
#/ #2	# 3	<i>†</i> #	#5#	TOTAL	BOILER	La USED	- S		+-1	SAL.	- - -	2	13/2	- 1	~ ,	n 8	4 5	12		
1000 LB 1521B.	1,00018.	1.000 LB.	1,000 LB.	1,000.1	1,000 LB.		\dashv	+	+	X /000	00,	90	et)	36	E	╁	(52)	(1.2)	ĝ	Ð
10	ß	0	₹		799/01 X	+	1	e co	十	- 1	+	-	6	420		-	,	5 53 3	\sqcup	433
1.52.2				-+		1	1	4	\top	1 2 2 2	 -	-	2.0	0/>			43	30 57.7	4	2.45
1.86			56.5	667.6		+		1	T	33.5 17.6		-		617				14.0	75.7	33,7
200				5-17-5		_	, ,				 	-		293			_	70.3	74.5	ريخز
2.19.9		_		5:79.3		-+		5000	1	7.00		+	5.5	0/7	2		154		-	LES
5 671.2 156,2	٠, ٦	_	1374.1	1/0/.5		9457 1	-3	4	7	_	ارد	-		2017	290			172.5		160
51.7.4	5.	_		7/5:.3		30,00		H	1	2 50 25.8	ر مر	-	-	3,5	3/2			25.3	-	057
ļ	0.	Ŀ		13:18:3		10001	15,3 4	42.4	2		ào	-	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	1	-	3 1/2	17 30	1,0
1	1.608.8			1266.41		ったり	Je		7	-	5,		+	7/2		1	1.7	T	٠.	7.2
	┼~		332	17.2.2.		10.5		37.2 6	7		1/)		-			1/3	-	T	1	1.67
-	0 170	10		7 1151		7575	_		_	230 80.6	,	_	_			100	+	2/2	1	╁
	X 2/1/2	. 0	-	0 000		10/20	-	1		230 57	7					101	+	77.7		7,5
	1077			1,2,1		7777	1	200			7	_				4/3				1,74
	_	+		4-		Ji	Ţ		╁		٧	-		2/25	1/20	455	1.	456 35.6	. 77.5	7 7
7	69.6 556.4	17	57.8	-+			7	100	? ;; S \	30000	1	-	2 5	1/3	+	_	1	455 39.8V	151.0	7, ?
7	31.4		225.5	1501.3		17702			Τ	11	10.	-		-	+		``	1130 2011	1.	7.
7202 6025			7 2	-			,		╁			_	14	14	07.5	M	-	V.	72.5	
16 165.9 345.4			0.1.1	_		-	1		†	╌		-	-	-		17.7.4	-	53.2	_	T
_	1.6.2.	_	-	_		-+	4	_	†	+	<u> </u>	+	r.	-			1	ケェコ リンコ	├-	ı,
18	941.6	_	7-13	-		8008	-	1	†		7	+		+	C	(1)	,	-		はよ
19 5384 3510		6	1.9.5	1, 1, 1		1/202	-!	Ĺ	1		7. 7.	-		+	1			4.2.5	├-	7
21 67=3 65	7:329		_	1331.8		ÖL- /.	-	4	+		7.7.7	-	-	7.4.7	- -			4 7 7	0.0%	.1
9.959	7.3	_				13000	Çq	200	7		0.2.2	+	5 2	7,7,7	2/1		7	21/2 12/2	27	コー
6	230.4	_	133,2			8022	-	4	7	230 62	42.0	-	100	+				-	٠.	111
7.202	7.80%		114.3			11128	\neg	_	7		000		7.0	2/2	3			120 2011	1000	7
	1:		2796			7889	14.9	_	7		64.4	-	3	+	- -			10000	_L_	77
76.8	いいいか	-	1256.3			8037	11.6	16.41	6 2	1		-	2	-	-1-				L	, ,
4529	6 ,0			_		10735		41.8		_	64.3			027	+		+	× 4.0	-	1 7
500	1707			1122.7		9630		_	6	230 79	79.71			+	-	+			_L	
1,1,1	7.00.0	-	600	╁		4977	o		_		61.5		2.7	7			1	450 65.0	1	7
6,7,6	300	+	2	+-		5000	0	6/1/3		_	1.5		17.6		_		7		_	34,4
7,7,7	2 12	+	5	╁		10000		36.4	6	230 75	75.7	-		4/42	8		-	47.	1011	750
120 Cax.	×. /	-	-	/ K 34. /					Γ	Ţ	_						-		- 1	
	136,16	-	(134)	C 17711		117 6/25/76	~	175/	3 0%	61 0569	19051		9,5,6		_			-	330	1
TOTAL	₹.	<u>ا</u>	1000	Т		10,000	1	-	✝	22, 80	30.08		3.0	_		450	7.	49/ 19.3	4	
MAXIMUM	_		51/15	1,201.5		(CO),	3 %	上	T	1	1/2.6	-	2	-	-	_	<u>- 1</u>	-	-	-
	-		8.7	+		10/0/2	5 0	101	Τ	h	13.5		3	5.5.5	339.4	43.2	===	2144.4 51.6	5 727	
333 AVERAGE 53	237.8 754.8	من	18.6.8	7		17/2/8/58		27.5		+	REMARKS			1						
	EVAPORATION LB. STEAM PER LB. STD. FUEL	STD. FUEL		FUEL USEC	DOURING MC	FUEL USED DURING MONTH (STANDAND	AND LONSI		ļ											24.0
	SEE REVERSE SIDE	20		PREPARED BY	à l	\		à `	DATE /	/ : API	APPROVED BY				DATE		POST ENGINEER	.		<u>.</u>
	PON INSTAUCTION	2		ンと												_				

ow-J

1 # 80 AUD →	FACILITIE		CEBING	OPFRATI	FACILITIES ENGINEERING OPERATING LOG Boiler Plant	(Boiler Plant)		INSTALLATION		ľ			PLANT			Br.DG.		MONTH		
	FACILIE			4	מפ בספ	(Boiler Plant)	_											(
		SENGIN					_	10.		100			Ę,	Beile	Z 2.1	4	<u>-</u>	(-) (i)	0661 - 73	Ø
	10 000	A CT	STEAM PRODUCED	S: me probo	nent agency	is Usace.	4	(JHTEKVCIC)	/ FEED	EEDWATER HEATER	ATTER -	*	%€02	PLUE	FLUE GAS TEMPERATURE	ERATURE	61.15	FLYE MAKE	_	·
								EVAP. OUTSIDE LB. TEMP.	^	TEMP.	MAKEUP	36	BOILER		BOILER	-	Cz	TEMP UP	P. EFF.	1.N/1.
-1-	*2	# 100	*	#5	TOTAL		LB. M.C.F.		9	ñ.	CAL.	 	7	- "	╬	n 4	4	4	<u> </u>	
_	23	E) 000,	9	1,000.1			1	r ē	55	=	7 /200 121	611	140		E	. BT.	161)	(12)	i i	Į
2000	٦,	8	đ	<u>a</u>	(S)	799/(9) X	0///2 ///	- 4	L	٦,	1	╬	╁	1>	.[^	-		┪	6 77.3	120
_	- -			,	//01/0			بار		_	, ,	-	40	╅╾	1			410 55.7	<u> </u>	_
_	┪			0.40	10/2			5/6		2 4 6	3 5	-	1	┿	Т			┢	-	Г
4	П.				35%			37.6		7	100			347	1	-		47.	-	Γ
	7				123.2			ء ادّ		+	0 0	-	-			1		35	1	450
5 7.4.4	+			_}	1,455.0		-		9		1000	-	+	7,77	-1	-		20.50	-l-	7.0
74	-{				1422,5		?	H	1	_	2	-	-					, , , ,	יו	-
_					1321.7		7		3	_	7:17	+		7 5 5		7:		27.7		+
\neg	2				103601		3	٠,		5	97.5	+	-	25				100	10	
5553.	J				12144		3	کرا	1	-	20.00	+	+		-	-		20.7	10	+
10/22/	V.				0.0921		7	7	,	- [02.0	+	-	1577	2/2/5		-	1000	700	-
11 723,	y			123.3	1526.8		7	정	- 1	7	7:35	-	1	2, X	+	+	_			-
162 21	1.700 2.				1345,3		1122714	بر	9		27,3	+	+	25.2	+	7	1	35	0 '	1
13 622.	7				1347.4		77.0620	۶,	20	2::	58.1	1							4	!!!
	 `			N 6.0	(ZC Z'		41 0950	525 33	9	330	127.3		6	٥	-				37. N. C. C.	+
+-	!			477.5	155.7/		77	r.		000	7.4.	-	~	N	-+	-	_	1000		-
_	1			_	7797.7		7	×		3.50	1.6			1/3	0	_	-		4	+
	1			36.5	نا		17	1.8 37.4	_	23.0	\$ 7.9			7	-			4.75	_L	+
18/17	١				1309.5		11869 14	9 43 5	,	220	0.17	-	3	2 130	-+	7		7	0	-
	-				7705.		F 41601	O,	9	130	41.4	-	_		-	, n	-			
_	1 505 8 315			0.10/	14278		12916 14	ગ	_	230	1116		~	3.3 1457	7 41.3				4	+
				0	72005		_	1,6 1/5.4	_	730	65.6		۲-	3.0 460	707 0	_				-
+	╌			1	17.60		Τ.	1,0 31,3	L	233	20.05		7.	7. 0 4/5T	Ļ				57.9 72.5	7
_	7147			7/2	7777		Т.		L	230	4.12			\neg	-1	-			_	\dashv
	636 0 2/12			2.4.2	+		1	4 36.	_		53.5		2.	2.4 460	0///			439 43	-	+
				700	+-		_	14 29.	L	1.	63.3		2.	2.8 450		_		46041	_	コースギ
1 -	I			2534	+-		7	14.4 28.4	_	230	14.4		2		3 426			456 37	_	\dashv
77 557	1			7557	+		1		5	026	0.62	_	,	14)	-		_		1.0	7 44
-	1			2549	_			-	_	230	83.0		ķ					507 42	_	7
	1						1	112 41.7	2 6	230			-	433		0,		5	54.6 75,	7 750
_	S				0.25.0		9136 1	_	7	23.0			_	1	350	5	_		1	
	-			45.3	1,53		3	5)	2	·			7	27 65		.0,		200	10,0	7.20
O.S. CTOTAL	1-			3.51.51	140145		5:15	2	00	_	2026.8		40			7		6758 1/3	7.7	,,
	2	_		1358.7	$\overline{}$		~	5	_		0,53	+	7 0		460 455		+	507 5	\perp	0,
	MINIMUM 15.7			15.0	-		113 14	Ó	7		56.5		4.4	7		2			35.5 74.6	×
٠.	۲			121.3	₽		10946 14	ιć	2	220	65,3		97	1 145	0/10			14/50 14.	2.8 77.6	9
L		IM PER LB. S	TD. FUEL		FUEL USEC	DURING MO	FUEL USED DURING MONTH (STANDARD)	TONS			REMARKS									
					03040300	2			DATE	-	APPROVED BY	BY			DATE		POST EN	POST ENGINEER		DATE
	SEE .	SEE REVERSE SIDE			La Company	1	XX	١,	7	14/										

FACILITIES ENGINEERING OPERATING LO For use of this form, see AR 420.49; the proponent see STEAM PRODUCED # # # # # # # # # # # # # # # TOTAL C76.7 G91.6 1,000.18 1,00	FACULTIES ENGINEERING OPERATING LOSS during the control of the con	FACILITIES ENGINEERING OPERATING LOG Giale from 1	, 4	ILITIES ENG	INEÉRING	OPERATI			INSTAL	CATION				ر	5				_	,	,	
FACILITIES EMERINING OF PREMIUM OF DATA MATERIAL	### FACULTIES IN STRUCTURE OF SALE MANUAL PROPERTY OF	Frontiers Frontiers Production Operating 106 above from the production of the prod	, 4	ILITIES ENG	NEFRING	COFFACTI								,			-					
	Column C	For any of the form, we therefore, where the form is a control of the first of the	- #	of this form				oder Plans)		_		-			þ	2	7000	136) AN .	141	
## 4.2 # 3 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4 # 4	## 4		, 7		see AR 420-	49; the propo	ment agency is	, USACE.	1	ATERY	151	HRSEA HESEA	77/	% 6	-1		S TEMPER	ATURE /	-	YE MAK	\ ! !). :
## # 2 # 3 # 4 # 4 most mins mi	## 4.2 # 3 # 4 # 5 # 10 # 1	## ## ## ## ## ## ## ## ## ## ## ## ##	· *	-	STEAM PRO	DUCED					POCCO	TEMP		BOILE	95.		BOILER	7	EMP TE		- 227,	
	Color Colo	Color Colo	-	#	*	*	TOTAL				+-1		IAL I	7	\sqcup	\sqcup	2 2	e A	+	+	1	
Color Colo	1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	1972 1972 1972 1972 1972 1972 1972 1973 1972	12	+	+	1,000,1	1,000.18.			Ц		- 1		+	+	F 9	3	. e	+	+	Н	ญิ
Color Cyt Cy	CAPA CAPA	CFC CFT	1_	\dagger	\vdash	3	3	Ш	-	-+	十	= ;	_ _	+	╁	1	120		-	-		150
10.0 10.0	The Decision of State 114	10 6.38 1 1 1 1 1 1 1 1 1	K	-		5.5	1373.2	3//	2	-	+		0,,	-	2.6	+-	413		7	-+	-	750
1972 1972	1.	1.25 6.5 c	4	1 86		6/11	14/00.0	//\$	₹	-+	1	-	7 .		2	\vdash	1/13		7	-	-+	10
Color Colo	Care Care	135.6 175.0 175.0 175.1 175.1 175.1 175.2 175.	10.0	60.00	-	43.7	1443.4	12.2	7	-+	+	1	7:0	-		+	+		,	_	-	3
13.0 13.0	135.0 135.	13.0 11.29 11.29 11.29 11.29 11.29 11.29 12.2 1	0 10 1	100	 	9.6.3	1-162.8	13	Ţ		+	+	1 5	+		1157	_			10.	-+	7
1962 1964	Act Act	13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 14.5 13.5 13.5 13.5 13.5 13.5 14.5 13.5	77.7	17.00	_		1323.0		7		7	-	7.7	+	+	1777	_			1.13.		10
19.5.2 19.5.0 19.5.0 19.5.0 19.5.4 1	17.2 17.5	13.2.2 13.5.0 13.5.0 13.5.0 14.1.0 13.0.0 14.1.0 13.0.0 15.0.0 1		20.0	-		1204.7	10.	14		7	7	7.7	+		1	_		-	3	77.	1
17.2 12.2 17.5	1985 1987	17.1.4 17.2.5. 17.2.	572.2	1000	135.0	-	15446	5	7			23.27	1 %	+		十	-1-	İ	-			1
17.14 15.5.0. 17.24 17.10 14.5.24 17.14 17.15	17.14 13.8 13.10 13.10 13.2	374 3.8 E	02.3	9:10	1779	-	1775.7	7/1	12		1	Т	2.7	$\frac{1}{1}$,	┿	+				. 1	į. Q
	17.2 17.2	17.0 12.1.2 12.1.2 12.2.2 12.	221/2	121	783.	<u> </u>	_	1	4	_	1	_	- 1	-		L	-		Н	-	-	1
	17.78 2.1.2 2.6.2 2.2.2 2.2.4 2.2.2 2.2.5 2.2.	12.1.2 12.1.2 12.2.2 12.2.2 12.2.2 12.2.3 12.2.2 12.2.3 1	1/1:0	3 : 2		-	-		1	-	1		 - x	+		╁	_		• 1	-1	_	r.
17.2 2.10 17.2	1,22, 2,3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	1,24, 2,19, 1,22, 1,24, 1,25, 1,24, 1,25, 1,24	1,57,5			264			_	-+	7		0.0	+	1	+	+-				-	I.
	1.22.2 2.2	122.7 247.2 122.8 122.4 122.4 122.4 122.5 122.	1,76.1	000		3.601	_	ς/		-1	9		7.5	+	+	1			-	_	_	7.1
1.2.2	LR ST 177.8 LACATE 140.5 LACATE C 25.0 LACATE C LACATE "><td>6.8.8.7.2 1.72.8 1.40.5 1.42.5 2.5.2 2.5.0 5.1.4 4.5.0 2.2.0 5.1.4 4.5.1 2.2.0 5.1.4 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.2.7 2.2.0 5.1.4 4.2.7 2.2.0 5.1.4 4.2.7 2.2.0 5.2.1 4.5.7 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 4.2.0 7.2.0 4.2.0</td><td>7///</td><td>17.77</td><td>-</td><td></td><td></td><td>(,2</td><td></td><td>-</td><td>٦</td><td>-</td><td>0.5</td><td>+</td><td>+</td><td>3</td><td></td><td></td><td></td><td>┢</td><td></td><td>71 72</td></t<>	6.8.8.7.2 1.72.8 1.40.5 1.42.5 2.5.2 2.5.0 5.1.4 4.5.0 2.2.0 5.1.4 4.5.1 2.2.0 5.1.4 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.5.7 2.2.0 5.1.4 4.2.7 2.2.0 5.1.4 4.2.7 2.2.0 5.1.4 4.2.7 2.2.0 5.2.1 4.5.7 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 2.2.0 7.2.0 4.2.7 4.2.0 7.2.0 4.2.0	7///	17.77	-			(,2		-	٦	-	0.5	+	+	3				┢		71 72
1985 1982	1982 1982 1984 14.5 1987 4. 20 1984 14.5 1987 4. 20 1984 14.5 1984 14.5 1984 14.5 1984 14.5 1984 14.5 1984 14.5 1984 14.5 1984 14.5 1884 1984 1884	12244 14.2 17.2 14.4 17.7 17.2 14.4 17.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2 14.7 17.2	7653	777.7		256-		7/	_			-	6	+	+	1			Ť	1.		エユ
CASE Total ASTALL TITLE 1916 2.3 G 57.0 Total 192 2.2 G 77.0 Total 192 Tot	Colored Colo	Control Cont	727.7	20,00	-	× -		2	L	_	7		27.00	1	01	1	-				i	7,7
Control Cont	1985 1982 1984 14.6 11.1 6 230 52.0 0 14.7 19.5	1985 1986 1982 1992	1256.7	8.8.7	+	100	. -	*	Ľ	-		-	470		^*	+						PK
1346 1342 11824 1412 1712 6 120 1524 173	Colored Colo	134, 14, 14, 14, 15,	4.72.2	356		7.5.	+-	2	1	├		230 1	1.9	-		1	7			34	ľ	DIC
1787 1775	12.00 12.00 12.00 11.00 11.00 11.00 12.00 15.00 10.0	6.34.3 124.74 111.38 145.0 6 250 56.4 5 7 15.2 15.3 15.0	636.9	9.950	-	+	07651	1	1	┿	7	230 5	0.63	1	c	7	_		+	35	I_	1210
1973 1974 1976	1975 1976		110.7	278.0	+	1	7		F	Г	9	230 !	26.4		s	T	+			130	١_	¥
1824 1824 1825 1824 1825 1824 1825 1824 1825 1824 1825 1824 1825 1824 1825	18.4 19.1 19.2 15.4		677.0	24.3	+	+	17.7.6	6	90	~	9	230	19.3	-	? (+		17.0	3,5	1_	772
1924.8 1	1824.8 1924.8 1	12.48 14.4	8.88	10/0	100	+	2000	15	1=	Ι.	9	230	57.2	_	<u>ر</u>		7			7,7	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	7,
1972 1972	17.1 17.1 17.1 17.2	1972 1979 1962 15.2 23.6 6 23.0 72.7 9 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0 49.0 42.0	4/9.26	448.2	521.	,	7.007	1	#	╁	9	230	73.1			-	-		424	27	+-	12/2
1825 1825 1822 1710 1722 1723 1725 1724 1725	18248 18748 18742 1345	1829 1829 1829 13612 144 315 6 230 76.8 740 420 440	22		1,417		1776		4	+	9		72.7				_		137	-+-	1	H-
12.0 256.2 112.6 155.2 1143.5 1143.5 1144.5 112.6 12.0 5.74 112.0 112.	10.0 10.0	12.9 697.2 112.6 155.8.7 14825 149 17.2 6 13.0 57.4 145.0 145.0 145.0 175.			1825		Т		+	+-		-	8.92	-	>	49			+		-	
12.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	172.9 380.5 1/84.3 1494.6 14.6 6 23.0 54.2 4/50 4/0 4/2 4/0 6 23.0 54.2 4/7 4/0 4/2 6/2 6/2 5/2 5/2 5/2 4/2 4/0 4/2 6/2 6/2 5/2 5/2 6/2 4/2 4/0 4/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6	386.1	362.8	697	4	Π,		7	1	1	+-	574	_		11/6	-			_	4-	
130 170 172 172 173 174 170	673.2	673.2		6.217	-	32.0			7	╁	L	┰	1.8.2			1/5	-			_	+	1 7
136 137 1387 1387 1538 141 1	126 1227 139.7 1538.2 14.1 14.7 15.8 14.1 14.0 14.2 14.0 14.2 14.0 14.2 14.0 14.2 14.0 14.2 14.0	126 < 722,7		673.2	-	376.			4	╅	4	220	542	_		1/51	_			_	+	1
1340, S 1340, S 1150 14,0 1	1340 1340	1340 1340 1340 1340 1340 1340 1340 1340 1340 1350	726 K	722.7		139.7			7		1		100			1470		_		7	4	1
675.1 608.2 675.1 608.2 113.5 1265.4 113.5 1266.4 113.	137.6 137.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 125.6 113.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.6 113.6 125.	675.1 608.2	8.489	655.7			1340.5		7	+-			65%	-		11/60		-		/2	+	7
13.5 1283.3 1283.3 1280.4 14.6	1283.3 10780 141 1400 15 141	185.1 128.3 12	6.287	2.885			1371.6		+	+			2		_	1180					+	1
113.5 150.4 1259.6 11.3 51.3 6 11.3 51.3 6 11.3 51.3 6 11.3 51.3 6 11.3 51.3 6 11.3 6	M.B. 2 In 3, C 11,3, C 1506.4 12596, III.3 20.3 6.2.5 16.3 3.24, 8.50 3.24, 8.50 3.24, 8.50 1.3.4, 8.50 1.3.4, 8.50 1.3.4, 8.50 1.3.4, 8.50 1.3.4, 8.50 1.3.4, 8.50 1.3.5<	7.40. 3 (452. C 7.43. C 7.43. C 7.44. C 7.50. 4 7.45. C 7.44. C 7.50. 7 (46. S 7.44. C 7.50. C 7.44. C 7.50. C	1.767	1.80%			/283.3	7	7	+	1	-	1.		_	7/4				-	+	1, 1,
17.55.6.7 17.16.7.4 2.6.7.5.4 2.410.4 4.5.5.3.5 4.72	175557 17483 6 176,3 6 2410.4 415,523 372 146 4534 17483 6 175,0 17483 6 175,0 17483 6 175,0 17483 6 175,0	178.56.57 774.83 747.83	240. 3	692.6		113.4	-		-		1		10/2	-	100	-	_		3241	-1	-1	
127.5 197.1 386.5 197.1 156.0 15.2 14.0 1.0	127.5 197.1 384.5 197.1 384.5 197.1 156.0 2 15.2 193.0 6. 27.0 15.4 15.7 17.5 1	727.5	7	174836	166	_	-4	-	~+		1	1	77.00	-	"	+	 		75%	-+	7	
36.218	36.218 1.35.0 5.5 1.204.7 14.6 30.4 6 23.7 14.8 14.7 17.0 33.6 1 6.43.2 1.64.8 141.7 1.50.2.3 1.30.4 6 23.7 14.8 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	36.2.8 125.0 5.5 1204.7 9858 14.1 11.0 6 2 2.0 4.5 2.1 458 2.7 145.2 14.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.2 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	765.3	727.5	161	-			_	7	4	+	27.7	-	16	 -	1	_	430		_	 -
124212	16-43-3 16-14-8 141.7 1522-5 16-50 14.6 30.4 6 15.0 REMARKS TOTAL USED DURING MONTH ISTANDARD TONS SEE REVERSE SIDE PREPARED BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE BARROWED BY THE PARE BY THE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE BY THE PARE BY THE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PARE BY THE PA	2043.コ 1.0.94 8 141.7 1.502.3 1.30.570 14.6 30.4 U	27/10	3678	124	_			4		+	0.00	2000	+	10	+	├	_	462	_	9	
TION LB. STEAM PER LB. STD. FUEL FUEL USED DURING MONTH ISTANDARD TONS! SEE REVERSESIONS PREPARED BY DATE POST ENGINEER 216.91 APPROVED BY APPROVED BY APPROVED BY	TION LB. STEAM PER LB. STO. FUEL FUEL USED DURING MONTH ISTANDARD TONS! SEE REVERSE STOR PREPARED BY APPROVED BY APPROVED BY APPROVED BY APPROVED BY APPROVED BY	TION LB. STEAM PER LB. STD. FUEL FUEL USED DURING MONTH ISTANDARD TONS [DATE / APPROVED BY	1,100	142.2	10 44	-	П	7	2650 14		6	1420	GEMERKS			1	1					•
PREPAPED BY DATE APPROVED BY DATE POST ENGINEER	PREPARED BY DATE DATE APPROVED BY DATE	DATE / APPROVED BY	EVAPORATIK	IN LB. STEAM PER	LB. STD. FUEL		FUEL USE	DURING MONTH	I (STANDARD T	GNS												0476
Rober 10 month 3461	Keekin M. Monde 2161	Legardina of the Control of the Cont					PREPARED	BY C			DATE		APPROVED B	<u>}</u>			DATE		POST ENC	INEER		
		Rushin Monde 3161	· · · · · · · · · · · · · · · · · · ·	SEE REVEAS FOR INSTRU	CTIONS		J.	Of in	Work!	.,\	3/6	16/2										
	2007	istructions Restrict Down 2001	PAATK FOR	SEAL PER PORTING TO MANAGEMENT AND M	135 1643 18 STD. FUEL 18 STD. FUEL	08		DURING MONTH	1858 14 3650 14 4 ISTANDARO T		-	230	42.1			+1			4/5. POST	C PR	470	470 33.6 NGINEER

ow-11

					•					٠								9	HINOM	Ę				-
									INSTALLATION	×		٦			PLANT			BLDG. NO.		1		•		
		2011	SMCINE	:EBING	PERATIF	NG LOG	C. C. ITIES ENGINEERING OPERATING LOG (Boiler Plant)	<u> </u>		ļ	•				ŧ	1	Q.	761		FE	0 / a	165		
	ב ^{ַ ע}	or use of th	is form, see	AR 420-45	ACILITIES ENGINEERING For use of this form, see AR 420-49; the proponent agency is USACE.	nent agency	, is USACE.		WATE	ATERVLIE	T A6	ABSEN1A	1	% 6 02	1001		FLUE GAS TEMPERATURE		FLUE FL	E	_		7.7.	
				OTOTOTO SECTION			-			- 1	١	HEALEN	+	9			BOILER	1	TEMP IE	TEMP UP	Crr.		-	
4	,	-		PAN PAG	7		WATER	55 80 80 80	EVAP F. F. F.	TEMP PRE	PRESS. TEMP.	P. MAKEUP GAL.	- 5	BOILER	9	-	-	П						
Ø .	#	4 4	#3	<i>5</i> #	#5	TOTAL	\neg	CAL.			3	T	ç			y.	* !	¥. [5	191	12	+	H	ij	
→	1000 LB	Carl B.	1,000 LB.	1,000 LB.	1,000.18	1,000,E	1,000 LB.	6	æ	+	(11)	H	(13)	(F)	žī.	91,	2		†	12	78.	3	27	
,		ε	8	đ	£ 1			+	5	26.1 6	230	_		-	1	1770	0//	-		1	Н	6	7 2	
`	1.00.1	621.7			327.3	78.49	5	100	3	37.8 6		_	7	_	1	7/3/	7001	-	1		Ľ	v	T	
7		43.3			25,4	7.552.6	35	6220	-	42,1	230	_	7	1	1	757	3		17		Ш	Ŋ	RH	
3	7	383./			٠ 	-+-	1	120	1	45.7	230	30 4/2 6	3	+	1	1,26	2 5	-		i i	7 79,	1	17/21	
7	-	4/19.0			209.3	1305		1000	12	7 5:35	230	-	٧	-		160	0/17	ľ	-	31	31.8 78.4		RH	
3	1,26.6	132/1			1	0.196		10000	1	50.0	6 230	0 46.5	57	+	-	75/	-		-	373		_	7 7	-
7	415.0	603.3				4/8.3	2	603/	6	L	50 9	220 45.6	9.	-	1	0/1	4-		-	1.0.1	0 0 1 1 0	-	.1	
1	736-5	6635				0.525		250	V	<u>L</u>		-	بو	_	+	27.66	1			1,1	25.9 78.0	\dashv	777	
00	6.64.9	_				1,77	-	7000.	Ja.	L		_	87	+	1	10.				5.7	_	\dashv	i- μ.	- _r
14	153.8	-+				(17.57		1405	8	Ш		134 056		+	+				-	27		c	HH	r-
0	<u>ا</u> ــٰـــٰ					-1-	1	763 51	1	_		-	9	+	+			2.77	-	520 26	254 BAL		1.	.: —
1	713.2		-+	-\;	100.7	+	36	0:00	1	L		33005	5.83	+	1	2	7			-	_	O.	H H	1
7/	5.512	520.9	502.2		763.7	-	 	2005	0	010	_	_	1,4	-	+	2.5	-		-	+-	28.7 79.9	_	17/2	. 1
0	35	1262.5			7967		1	12000	(_		_	52.3		-	0//5	_		-3	+-	┝		2.5	1
Ž	7119	1.889			اع.	-	3- /	1,000/)	+	2		3, (-	-	220			1000	\top	11.9 79.5	,	7,21	_
5	12	4.869			87.4	.T.	5,0	1 1 1	6	┼-	Γ.	1	2,1		-	4170	2720			+-	Ľ	-	シルと	
2	156,1	233.8		1.202	7002	7	1	67/07	9	32.2			ų.	-	+	1	_		100	150	₩.	75	514	
17	_			1708.7	7	1706.	7	1000	. 0	32.0		1	55.0			-	-		180	10	5 78.3	7	\ \ \	
18				1614.4	4	2.5	7,0	1270		514	Γ	230 62	Sè	-	-	-	1	727	170	2	35 0 79.41	,,	PK	1
19				1661.0		1661.0	3,0	1000	Т	25.5			8.	-	-	07/2		,	+-	37 (11/1)	1	r	せり	
ñ	-		54.7	831)	4	1390.2	2	17.70	Q	0,44	1	١ _	8.9%			463				17077	80 78.9	T	JH	
ñ	_	1,56.7			4.1	1.76/.0	Q ×	20.	× 7'	44.7		1	2.2			466	-+	1		_	26.2 78		34	
22	6.HH) 2	0.549		-	46.4	7	1	7777		24.0	6 2		21/15		-	470				1.	┸-	77.8	7.1	
23		_			2,44.8	7	1	1303	13	17.0			8.6%	-	-	4/12	-			1-	1	<u>├</u>	45	
77	7,704,2			-	220.7	-	20	67111	1	34.0			51.9	1	+	477	450	7377		7 00/1	├-	82.7	145	1
23	5 742.0	1,82.9	\neg	-	73.0	1/20/11	, "	170/3	15.5	33.1			51.5	+	+	200	_	- · -			29.7 77	17,4	ロエ	ı
X		609.	209.5		177	7	20	40001		6,75	6 2	230 51	57.2	-	+	150	-			5333	29.3 50.	9	T &	-
77	1 433.6	379.3	7	-	2 4.3	7/2010	٥١	17.		-		230 51	21.8	+	+	+	-	1		1	_			·
28	200		3/33/11	3	702	\top							1	1	+	+	+	-						1
प्र	-5		-	-		-						+	+	1	<u> -</u>	-	-	-		_	-			
33	0	1	+	+	+	-					-1	\neg	100/	+	+	11211	1.	812219	2432		1	2215.9		1
W,		_		2 2000	2 1000 5	457714	24	346357	7 416.2		2	П	14.00.7	+	-	1877	9617	-	507	553 3	-	82.7		1
ToTo	\sim r	_	50,0570	_+_		_	1,7	15764	\vdash	50.0	1	+	621.6	-	+	453	1	-	470		25.4 7	77.4		-
M.	_	1	_	1	77	1/18,4	h'	6117	14.5	ė		1	772	+	-	11/2	7 429	hhh	486	492 1	4	14.1		1
Z Ý	900	422	+	+	1>	1 1491.9	6.	12369	14.9	36.6	7	230	2/-//	-			1			-				
.c/.		ATION LB. S.	EAM PER LB.	STD. FUEL	1	FUEL U	FUEL USED DURING MONTH (STANDARD	AONTH (STAN	DARD TONS)	-													DATE	ı
											DATE,	Ā	APPROVED BY				DATE		POST ENGINEER	SINEER				
			SEE REVERSE SIDE FOR INSTRUCTIONS	<i>DE</i> 2v.5		A N	PHEPARED BY	nich			6/4/6						-							1
	I	İ								į														
•	۲ ت	FORM ARM	.		٠.																			

om - 12

	1.0.4	The ball of the Art	18 Just 2. 442.	The second	でないない	Literature Da	SN CARLEGE BERGER CONTRACTOR OF THE STATE OF THE CONTRACTOR OF THE STATE OF THE STA	MSTALLATIO	N. Take	の名はなる	中央水土产人	1.00	100000	PLANT	To the state of		BLDG. NO.		MONIN		Į,	
57.1 1	FACILITIES ENGINEERING OPERATING LOG (Boller Plan)	SENGINE	ERING C	PERATII	NG LOG B	loiler Plant)				7				, 6	7 07	ZANT.	136		MARCH	14 H		
	For use of the	as torm, see	AN 440-4	odord en '	For use of this form, see An 420-40; the proponent agency is curve.	Dawce.		MINITE		FEDWATE	FEEDWATER HEATER		×602	1		FLUE GAS TEMPERATURE	ATURE	307	Fuye M			!
.		516	STEAM PHODUCED	CED	T		FUE.		OUTSIDE	PRESS. TEMP.	1		BOILER			BOILER	7	TEMP I	d	UP EFF.		
*	*	# W	* *	*3	TOTAL	BOILER	USED W.C.F.	55 E		╀╾┼	3	-	7	6	-	7		7	5	J		
87 000/	ICAT B.	1,000 LB.	1,000,18.	1,00018.	1,000 LB.			\dashv	+	+	×	4		g.	+ 8	F	. 2	<u></u>	8	153	ß	Ź
	Γ	8	Ø	(4)	(2)	799/9) X	Б	_ L	4	E - 61	-+-	2	2	1			3	╁	V	L	7.7	トカ
	-	7-175		1361	1092.2		5.5	L	_	+	_			\downarrow			202	1	+-	× 17:15	43.0	Pm
		805.5	:	45771	805,57		638		_	7			1				2000	\dagger	4	1_	7.6	カシ
		1000			2,358		2143		16.7	2	280 371		1				†oz;	+	1	╀		0
7 7		1512		79.6	7,230,7		2526	15.7 4	41.3	7		_				7	7			4	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0
		1,071		1.74.1	1257.8		10/24		7 5.88		236 41.8	N					111	+	2000	+		110
6		10,0		172.2	12849		1005	-	46,3 C	7	230 16.9						7/1/2		+	4	-	17
100		2770	-	22/0	-		10578	_	_	5 3	230 52.2	C			400		4/13	1	560 3	4-	2:10	17.7
+-	\[\]	. 61%			-		1335/	_	2 6.86	,	230 521	_	_		440		4/7	+		l	0	7
		2,700		0.8 81	1394.2		6/8//	-	31.7 6		220 4P.9	C		_	110		700	1		1	× 5	E :1
		1.6,0,		200.9	12,512		7770,	-	31.4 6	7	3-1 44.5	5	-		390		500			+	12/0	77
Ļ		27.70			1.582.1		cuser		30.3 6	4	330 55.9	6	-	_	4.10		77.	+	9,	L	100	1
0 77 2	*	9570			トンイル		1861:		Ĺ	5: 2:	130 52.9	6			420		420		-	-	1	7
-		0770	-	27.2	13941		11339	_		6 3	_	Do			777		410	1		1000	+	20
; ;		0.12//		32.3.0	1298.0	-	11.123		-	11	230 488	0.	_				460	+		-	0000	
***		1020		1.07.5	170071		97/11		39.3 6	230							403	1		0 - 10	1	10/
(2				11.0			91.02		7 8.87	7	230 38.6	9	_	_			200	+	-	+	1	1 2
7/	1.0	× × × × × × ×		1/2/2		1.5.	3486	155	7: 07/1	7	236 37.2						00%		230 K		1000	1/0
77	-	022		11/2			9723	15.7		-		1					100		490 3	┪	1:00	()
18		7.00	- L	-	4	100	103/0	5:17	+	7	230 668				470	100	290	31.) :	550 3	٦,	+	1
12 4864	1630	07/55	- 1	4			1,000	+-	┡		230 45.0	0	_		160	430			_	+	1	
20612:1				_ 1_		7	2000	1	+-	/ 2	220 41.2			_	59/1	440	88	1		28.0 7		± り
2/ 527.7	443.7	28/.7			-	375	0,0		2010								4/10				83,7	7#
22		1025.5		7	13 4.0.4		03/0/	+	┿		707	70					43			_	83.7	7
23		1036.0			-		7,707	7:57	1	9 .	2 2 2 20 2	,	-	-		-	9//0		1854	29.2	84.	出に
74		0.950		164.7			7.27	9:51	7.7.	1			-	-		_	2//			_	1.68	h
25		998,7		290.4	- I		70203	1	7:42	3 (1 1	-	-			400				. H'CX	3.14
77		1991.7		9117	-+-		7774	-1-	977	9	2007		-	-			266		_	_	84.8	45
27	•	1075.5		12:	7		8474		24.7	1	101 057		-	-	-	.	252		-	Ľ	8.53	RA
28		\$113	:	-	5//8	ij	0270	0:37	\perp	T		3 4	-	-			4/3		160	-	3'64	12 1
25		1035, 3		32.3	-		21.2	ババ		1	2 50 140	3 4	-	-	-	-	202		7		11.13	RH
35		11823		46.3			28 67	12.5	1			200	\downarrow	╀	-	1	5 5		+-	V	84.3	H N
_		5.400		40.9			87/3		1		7.50 10.7	1	+	-	12%	1120	12246		╁	+-		
16TAL 38866	4 1220.2	29238		4394.2	-		287436	-	3	s	2/2/2/2	4.	+	1	17.00		200		-	+	5.3	
		7		371.4	1645.5		/335/	+	55.3	25	-1-	 	+	-	100	+-	+		_		77.3	
Ц.	_	12817		12.6			6387	. \	78.7	+	175 057	 	1	$\frac{1}{1}$	135	+-	7007		+	20.5	22.7	
AVG 788	7. 406.7	974.6		1.83.1	1249.6		19982		47.7	9		2	$\frac{1}{2}$		727	-1	170					
	EVAPORATION LB. STEAM PER LB. STD. FUEL	AM PER LB. S	TO. FUEL		FUEL USED	DURING MO	FUEL USED DURING MONTH (STANDAR	ARD TONS!			NEW YEAR	ر	Anclusers	ers out	jo to	arger	į					
•											1	7		1	1			POST ENGINEER	INEER			DATE
		2012 2222112 224			PREPARED BY	3⊀			à.	DATE	AFFR	APPROVED BT	•									_

om-13

#5 TOTAL BOTTON WATER TOTAL BOTTON WATER W	1.5		本情 はいけ		A	大地ではまれていることでいった		The same of				1													_
FACILITIES ENGINEERING OPERAL INVA LOU power, casts For use of this form, see Ast 420.49; the proposinit saincy to solid light of the casts of the control of the casts of th	- 1			1 1 2 2 2 2 2		7.	E	さい ではんない	The same of	NSTALLAT	8	では	Jic.		,			ign)						•	
For use of this form, see AM 120-35; ins proporting search of the first of the form, see AM 120-35; ins proporting search of the first		Œ.	ACILITIES	ENGINEE	RINGO	PERAIIN	ָב פרטיים פרטיים	Souter Flans		11/1		1	JOSENA	Ž		<u>8</u>	Bones	PLANT	130	او		\ 	77		1 "
#1 #2 #3 #4 #5 TOTAL BOULDS WARD USB			or use of this	form, see A	R 420-49:	the propone	nt agency i	1		4/10	_اڈ	FEEDWA	FEEDWATER HEATER	EH	*	1 1	FLUE	FLUE GAS TEMPERATURE	ERATURE	FLUE		7-	FFF	INIT.	
#1 #2 #3 #4 #5 TOTAL BOTES LANGE OF LANGES COLORAL COLORAL COLORAL LANGES COLORAL COLORAL COLORAL LANGES COLORAL COLOR	Į į	,	-	STEA	M PRODU	-			FUE.	ď.		PRESS. 1	TEMP.	KEUP	08	BOILER	-	BOILER	-	TEMY	TEM!	1 2 2			
10% 1,000 to 1,0		1	_			Л.	TOTAL		LB. M.C.F.				نو	3	-	3	+	7 3	2		T				1
10% 10%			†	٦.		-	1,00018	Т.	3	5	¥			× 1000 ×	20	9	- 2	+	138	(513)	8	ii.	623	Ē	4
11872 1004	`\	27	+	╁	9 8	+	20	799/B) X	ε	8	1	+	Ξ.	- 1	+	20	+	╀	01/1	├-	534	_		7	1
11373 11374 1187.6 9149 9257 1187.6 9149 9257 115.6 9145 915.6 915.6 915.6 915.7	1		=	+-	1 .	5,77	11111	-	8977	L	. 		230 4	0 671	2000	1 5		-	11,3		_	_	85.5	H &	1
1154 17.5 17.5 188.9 92.57 17.5	- 1				1	+-	187.6		6114	16.0		?	230 7		70	3 ,		-	420	7	7/80	32,9	84.6	# 2	ı
1733 1734 1735				275		+	6.68		9257	15.5	46.3	3	330 4		One of	8	3000		110		_	41.4	78.7	HH	1
1014.2 2900 4830 4830 501.4 4830 4830 501.4 4831 501.4 4831 501.4 4831 501.4 4831 501.2 501.4 4831 501.2 501.4 4831 501.2	٠,٢		1	1776		} —	923.9		7733		53.8	च	130 4	45.9	5		•	-	373		_	80.3	78.6	± T	1
1007.6 25.65.7 483.3 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.11 45.12 607.6 53.23 607.2 63.23 607.2 63.23 607.2 63.23 607.2 63.23 607.2 63.12 6			+	00/0		+-	27.77		5900	-	61.7	1		49.4	+	14	-	-	3,5	_	180	3	77.1	HH	1
1971 1971				1000		+-	565.7		4833	-	63.7	1	202	5.4	+	1	01	-	273		_	53.0	76.1	HH	1
COT.6 COT.6 COT.6 S123 CO3.7 CO3.7 CO3.2 CO3.7 CO3.2 S23.4 CO3.2 CO3.2 S23.4 CO5.2 CO5.2 S23.4 CO5.2 CO5.2 S23.4 CO5.2 CO5.2 S23.4 CO5.2 CO5.2 S23.4 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.2 CO5.3 CO5.4 CO5.4 CO5.4 CO5.4 CO5.4 CO5.5 CO5.4 CO5.4 CO5.6 CO5.6 CO5.6 CO5.7 CO5.6 CO5.6 CO5.7 CO5.6 CO5.6 CO5.7 CO5.6 CO5.6 CO5.7 CO5.6 CO5.6 CO5.7 C	L			7		-	41.43		4511	_	23.9			23.2	+	1	17	-	358	>		54.7	78.3	HH.	- (
CO.1.0 Co.2.7 Co.2.7 Co.2.3 Co.2.3 Co.2.5 C				1,10			607.6		5106	_	1/.6		2303	2.7	+	1	7:0	-	277	-			78.3	T	-
6925 6935 6935 6546 6516 6516 6516 6516 6517	٠.			00:00			6,53.7		5123	7.4.7	20.0		200	376	+	10	14	-	376	_		47.3	29.4	ĮĮ.	-1
1031.3 1031.3 1031.5 1923.3 1057.2 1	-			7.00			5925		5746	14.9	59.0	S	230 5	7,57	+	10	100	-	904	_		-	84.6	X Z	1
106.72	-			22.3			1031.3		8223	15.5	4.5.6	3	230 4	41.2	+	7	4-	-	804	_		L		/2/4	ł
105.0 17.78 17.7	-+-			01/0/			067.2	3.	8549	15.4	45.5	٥	230	7,27	+	2	1		1//3	-		32.8	83.2	10/1	ı
106.5 106.5 1778 178.6 1778 178.6				127.75			1051.0		8336	コ	47.2		230	1	+	73	17.7	-	402			32.9	83.2	1/1	ł
106.9 106.9 106.9 106.9 106.9 106.9 106.9 106.1 106.	_			911011			7.8/16		2478	15.6	3.6	Ť	250 7	2:		177	3	-	45,	2		34.5		せい	Д.
107al 176.2 175.0 176.2 175.0 176.2 176.				10/0/			1106,9		8755		20.0	Т	$\neg \Gamma$	1000	+	4	4.6	-	403	2		44.4	82.6		ł
1948.8 1948.8 1948.8 1941.1 1948.8 1941.1 1948.8 1948.8 1949.1 1944.2 1949.6 1949.1 1949.2 1949.1 1949.2 1949.1 1949.2 1949.1 1949.2 1949.1 1949.2 1				6.1.0			5013		583	-1	28.4		-7"	100	+	-2	77	_	103	3		41.2	83.1		.1
1048.8 1048.8 1048.8 1017 1	-		-	973.0			973,0		6927	15.6	24.0	1		770	+	13	4		421			40.9	51/8	27	ŀ
1978 878 878 7017 1741 5 5560 741 5 5560 741 5 5560 741 5 5560 756				0 870			1048.8		8451	15.3	21.0	1	200	100	+	3	4.7	-	0/4			2/3	821	7	1
14 5 24 5 55 0 66 2 66			1	8 28 8			878.8		7017	7	54.0	7	23.0	27.0	+	1	4.4	-	385	10		48.4	81.5		١,
144.2 929.9 929.5 6622 919.6 919.6 919.6 919.6 928.8 929.7 925.3 929.7 925.3 929.7 925.3 929.7 925.3 925.7 925.4 925.3 925.7 925.4 925.7 925.4 925.7 925.4 925.7 925.4 925.7 925.4 925.7 925.4 925.7 925.4 925.7				1/1/20			21/12		5960	4	57.8	9		12:	-	3	777	_	385	c.		42.2	82.1	7	- 1
1144,2 7017 7880 792,1				6568			67578		2209	15.4	25.5			14.1	+	7	× 7	-	432	7		77.4	24.7	† j	. L
19.6 12.80 19.6 12.80 19.6 12.80 19.6 19.80 19.6 19.80 19.6 19.80 19.6 19.80 19.6 19.80 19.6 19.80	-			1147			1144.2		126	7	4//4		┪.	1000	+	1	4.10	_	0//	5		40.3	83.4		. 1
192.7 636.3 192.7 636.3 192.7 636.3 192.7 636.4 192.7 636.4 192.7 636.4 192.7 636.4 192.7 636.4 192.	-			2010		:	9.616	ا	7280	-}-	7775	9	2 6 6	25.5	+	7	2	-	482	4		49.6	62.0	5 5	1_
125,1 155,7 584/8 136,	-			797.7			192.7		6363	7		4	7,	102	+	1	1.1	-	37	2			81.6	X	d.
136.8 136.8 136.9 5954 5084 141.3 5084 141.3 5084 141.3 5084 141.3 5084 141.3 5084 141.2 15.8 188.9 188.0 188.				7251			125,1		2/285			,	2 2 2 2	0 6/7	-	1-1	4.7	-	37	2		55,3		# 6	بار
C12.2 C12.2 S084	-			21/10			736.8		555		9	3) (17	1.7		366	بع	_	5.65			L I -
TOTAL 25.3742 7.41,3 52.45 TOTAL 25.3742 2.41,6 256/58 2058/21 MAXIMUM 521.4 3.5 5.19 45.1 AVERAGE 845.8 48.3 853,9 6.86.2 EVAPORATION UB. STEAM PER UB. ST. PUBL. SER REVENSE SIDE. PREPARED BY PREPARED BY			.	777			612.12	`.	5086	_	77.5			2.5	+	12	7	_	373	3		1.7.5	-	4	-,1-
Total Total Total Total SEAS SEAS Total Total Total Total Total SEAS Total	T			7111			(4//		524	7	X 173	Ľ		1			2.0		3%	0		55.7	81.0	4	ĸl.
TOTAL 253742 247.6 256/58 205862 2058	14			1,1,0			704/2		571.	-+		3	_	6	1	 	1 7		377			58.6	18	7	1
TOTAL 253742 241.6 256/59 2058/27 241.6 256/59 2058/27 241.4 25.6 21.4 45.3 5.21.4 45.7 45.7 6.86.2 46.2 5.5 21.4 48.3 853.9 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 5.21.4 6.86.2 6.8	. 1		-	12.0			7/5,8		5808	↤	-	9	250	20: 7	+	\dagger	1	-		_				1	- 1
TOTAL 253742 24/6 256/58 2058/21 MAXIMUM 11/44,2 73.6 1/88.9 92.57 MINIMUM 521.4 3.5 521.4 45/1 AVERAGE 245.8 48.3 853.9 686.2 EVAPORATION LB. STEAM PER LB. STO. FUEL FUEL USED DURING MONTH ISTANDA SER REVERSISION PREPARED BY	. I			4						-			10,	2000	+	+	4.01		I I	11788	24115	-	2443.5	-	1
11 44,2		4.04		152747		2416	25615	Ø.	20586	-	8/5/9/	4		25.68.5	+	1	77	-	1/2	0.	210	-			- 1
3.5 521.4 7.5.1 17.3 17.5 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5				2 11411		73.8	5.8811		925	-	_	10	430	27.5			2.8	<u> </u>	35	28	460		\perp	1	- 1
100 LB. STEAM PER LB. STO. FUEL STEAM PER LB. STO. FUEL USED DURING MONTH (STANDARD TONS) SEE REVENSE SIDE PREPARED BY			E -	4165		2.5	521.4		45//	-	43.5	q		11/1/1			7.7		39	397	483	45.7	87.5		1
FUEL USED DURING MONTH (STANDA		ALIMINIM A		8740		48.3	853.9		6862	75.5		8		REMARKS.			1								
		EVAPORA	TTON LB. STE	W PER LB. ST	TO. FUEL		FUEL USE	D DURING M	ONTH (STAN	DARD TONS	-										200			DATE	1
							PREPAREC) BY				DATE		APPROVED BY) BY			DATE	<u>u</u>	<u> </u>	ENGINEER	•			
FOR INSTRUCTIONS.			SEE FOR	SEE REVERSE SIDE FOR INSTRUCTIONS														-							

Oux-14

## Continue of the continue of	٢		トし	Property of the second	株のは大田の	13 EA - 1707	C. C. W.	Total Control	20.04.77.42		1		200		PLANT	l	10 Sec. 19.	LDG. NO.	ON	MONTH			.,
The state of the	2			0.010.0	TAGEOR	NG LOG	Baller Plant	ながれたの	WSTALLATIO	2				· ·				(1) (1) (2) (4) (4)	; ; ;	707	. (•	
1		FACILITIE	SENGINE	2007 BA		70000 2000	Is USACE.		11/0-	71110	1	アヘアハレ			186	~	LANT	136		<u>_</u>	1		
## 2 # 3 # 4 # 5 * ** ** ** ** ** ** ** ** ** ** ** **		וסו מווי	and June state		0301		. t	46.00	MAN		EEDWATE	RHEATER	_	%	1 1	FLUE GA	S TEMPER	ATURE		7	ωľ·	1,46.7	,
1		 ,	- -	TOUL MA						1-	SS. TEN	AP. MAKE	e e	BOILE	95		BOILER	Т			-1	: -	
Color Colo	· -	*	# 13	*	- 1					l I		1		2	-	- 4	7	m 4:	╁	\top	T	_	ļ
1			1,000.18.	1,0001.8	1,000.18.	1,000.6	1,000 LB.		_	+	-	- 1		+	+	29.	Œ	181	H	H	-	+	<u>و</u> ا.
1/12.5 30.77 1/12.1 1/12.5 30.77 30.77	lĺ	13	ß	8	€	2	799/(g) X	-+-	L_	L	1.		1_	╁	t	_		367		63,	-	7	ų ļ.
17.0-21		-	62.2			(12.2		-	-	4		ין קיין קיין קיין	10	-	1.5	,		28G			-	+	,
STALL STAL			770.5			1105			~	4		$\overline{}$	1	-	4.9			398		49,	_	+	.,].
STALL VIVE			503.2			903.3		十	-	1			<u> </u>	1	" "			359		58.	_	7	إ.
Secondary Seco		-	1.576.1			576.1		Т		1	1		70	-	7,7	-		356		55.	_	7	<u>,</u> .
\$\limins_{\alpha\columnum\columnum\columnum\columnum\column\colum			569.1			569.1			-+	1	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	5 7	-		368	-	57	_	-	7
62.2.4			8.77			8.449		-+	-	4	7		4.6	+	3	-		371		57	_	_	먇
			1356	<u>.</u>		635.5			-		*	_	6.3	+	9 7			0 7 5		3	<u> </u>	-	H
6424 5620 15.4 57.6 6 210 17.5 17.3 56.7 57.2 57.5			7,5			462.4			_		۲.	_	67	+	4:5	-		2 2 2		10	Ļ	-	Á
10 10 10 10 10 10 10 10		-	12697			1,92.5			ぺ		٠,		ري ا	-	27.3	-		70	+	1	╀	H	V,
SALIA Selian STID -9 STID 0 Mar.	1		1000			0000		2376		7.6	0 . 0	_	ų,	-	3.3			200	-	2	+	-	1
## STASS STA	1	-		-			1	10-0	1	1	-							-	+	1			
65.733	١	3		.[0000	ı	ĺ	١.	-		_	-									+	
### ### ### ### ### ### #### #########												-		-	_	_				-			
65733 57610 H9H 52835 60 2350 4758 475 3708 5645 79.64 635.7 5261 H9H 5281 6 230 242 475 3708 5645 79.64 635.7 5261 H9H 5281 6 230 242 475 3708 5645 79.64 635.7 5261 H9H 5281 6 230 242 442 377 5645 79.64 635.7 5261 H9H 5281 6 230 242 442 377 5645 79.64 635.7 5261 H9H 5281 6 230 242 442 377 5645 79.64 635.7 5261 H9H 5281 6 230 242 6 23									+	-	1	-	-	-							-	-	1
65733		-							+	+	1	-	-	+								-	- {
65733 52610 1494 5873 60 2300 4258 479 3708 63.0 81.0 2300 43.5 33.3 479 3708 63.0 81.0 81.0 2300 23.7 479 3708 63.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81									+	+	1	-		-		-	_					+	1
65733	١,								+	+	-	-	-	_	-		٠.		_				1
6573.3 526.10 149.4 5873 6.0 23.00 425.8 4.9 37.0 81.0 55.1 52.6 1 149.4 5873 6.0 23.0 32.5 3.3 4.9 35.2 59.0 4.9 59.1 52.1 6. 23.0 42.6 5.1 52.1 6. 23.0 42.6 5.1 52.1 6. 23.0 42.6 5.1 52.1 52.1 6. 23.0 42.6 5.1 52.1 52.1 6. 23.0 42.6 5.1 52.1 52.1 52.1 52.1 52.1 52.1 52.1										+		-		-	-		_					+	1
65733 5240 1494 5873 60 2300 425.8 4.9 750.8 63.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81		-				-				+	+	+	-	-	-		-			_			1
65733 52610 149-4 5873 6-0 2300 425-8 47.5 37.0 81.0 81.0 81.0 81.0 82.0 82.3 84.9 37.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81	L										-		+	1	-	+			-	_			1
65733 52610 1494 5873 60 2300 425.8 4.9 2708 564.5 796.4 4.9 503.1 526.1 14.9 52.1 6.2 20 42.1 5.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.3 5.0 6.3 5.0 5.0 6.3 5.0 5.0 5.0 5.0 6.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1					ļ. —						+	1	+	+	-	-				_		
65.73.3 5.2610 149.4 587.3 6.0 2.300 425.8 47.5 3.708 564.5 796.4 492. 75.1 52.00 149.4 587.3 6.0 2.300 425.8 47.5 3.708 564.5 796.4 593.2 741, 15.2 66.8 6 2.30 21.3 7.3 3.57.0 47.5 56.5 79.6 50.0 50.5 7.3 52.5 79.6 50.0 50.5 79.6 50.0 50.5 79.6 50.5 79.6 50.0 50.5 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6	1	-	-				•				-	_	1	-	+	1			+	+		-	
65733 52610 149.4 5873 6.0 2360 425.8 4.7 3708 56.0 81.0 82.0 1.3 2.3 1.3 4.7 3708 56.1 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81	I	1				: -	-				-	_	-	-	-	-	-		+			-	
6573.3 57610 149.4 587.3 6.0 2.3 6.0 4.2 5.8 4.9 7.5 7.9 81.0 81.0 81.0 82.0 7.5 7.9 81.0 81.0 82.0 82.0 7.5 7.9 81.0 81.0 82.0 82.0 7.5 7.9 7.9 81.0 82.0 82.0 82.0 82.0 82.0 82.0 82.0 82	-	+								-				-	-				+	-	-	-	
65733 52610 1494 5873 60 2300 4258 4.9 758 53.0 81.0 23.0 42.5 8 23.3 4.9 75.2 6.3 79.6 4 6 23.0 21.3 75.2 6.3 75.7 8 6.3 7.3 75.7 8 6.3 7.5 75.6 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	١				_	-	-				-								+			-	
6573.3 52610 149.4 587.3 60 2300 425.8 4.9 770.8 564.5 796.4 635.7 526.1 4.4 770.8 1.0 81.0 81.0 825.7 526.1 4.4 770.8 1.0 81.0 81.0 81.0 825.7 526.1 4.4 770.8 1.0 81.0 81.0 825.7 526.1 4.4 770.8 1.0 81.0 81.0 825.7 526.1 4.4 770.8 1.0 82.0 82.1 8.0 82.7 8.2 82.7 8.2 82.7 8.2 82.7 8.2 82.7 8.2 82.7 82.8 82.7 82.8 82.7 82.8 82.0 82.0 82.0 82.0 82.0 82.0 82.0	ı					-				-		-	_								-		
6573.3 52610 149.4 5873 60 2300 425.8 4.9 75 708 5645 796.4 79.0 5200 425.8 4.9 7.9 79.8 63.0 81.0 81.0 635.7 5261 14.9 58.7 6 230 21.3 75.7 75.7 75.8 63.0 81.0 82.0 635.7 5261 14.9 58.7 6 230 42.16 4.4 75.7 56.5 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6									+	+	-	-	-	-	_		_						1
	Ì										-		-		-	-	_			_			-
6573.3 52610 149.4 587.3 60 2.300 425.8 4.9 770.8 564.5 796.4 593.2 7411 155.2 66.8 6 2.30 57.3 7.3 7.3 7.0 81.0 81.0 81.0 635.7 526.1 14.9 58.7 6 2.30 42.16 4.4 7.7 7.7 7.7 56.5 79.6 4 1.6 1.050 DURING MONTH ISTANDARD TONS! REMARKS									1	+	+	-	-	+	-	-							
65733 52610 149.4 5873 60 2360 425.8 4.9 79.8 564.5 796.4 625.0 23.0 23.3 4.9 79.8 63.0 81.0 81.0 635.7 290.0 149.4 58.1 6 23.0 21.3 77.3 35.6 49.2 75.1 625.0 42.1c 4.4 79 79.8 63.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81										+	+		-	-	-		_					_	
65733 52610 1494 5873 60 2300 4258 4.9 3708 5645 796.4 59.0 2300 425.8 4.9 3708 5645 796.4 59.0 81.0 81.0 81.0 82.0 23.5 21.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	1		_						1	+	+	+	$\frac{1}{1}$	+	+	+	-			-	_		
6573.3 52610 149.4 587.3 60 2300 425.8 4.9 7.7 79.8 564.5 796.4 623.0 21.3 7.3 7.3 7.7 79.8 63.0 81.0 81.0 635.7 5261 14.9 58.1 6 230 21.3 7.3 7.3 7.7 79.6 79.6 14.4 79.5 79.6 14.4 79.6 14.9 79.6 14.4 79.6 15.0 79.6 14.4 79.6 15.0 79.6									+	+	1	+	+	+	$\frac{1}{1}$	+	+						
		_	_							- 1			-	+	112	1	1	27/2		75	L	4.0	1
\$\frac{90.31.2}{2.90.0}	١.	-	63573		L	6573	~	52610	149.4	- 1	- 1		75.X	+	7		+	200			L	C	
2900 2376 44, 52,4 6 230 21,3 3,3 3,5 3,5 3,5 79,6 635,7 62,0 42,6 4,4 37,6 37, 56,5 79,6 635,7 625,7 62,0 42,6 4,4 37,6 56,5 79,6 635,7 64,4 6	1	-	6,106		-	503,		1111	15.2	66.8	-	_	3.3	+	7		+	97.5		7 7		 - -	
635.7 5261 14.9 58.7 6 2.30 42.16 4.4 577 56.5 77.09 FUEL USED DURING MONTH ISTANDARD TONS PATE POST ENGINEER POST ENGINEER		+	2000		-	290.0	_	2376	11/1	52.4			1,3	-	5		-	255		7		1	
FUEL USED DURING MONTH ISTANDARD TONS! PREPARED BY DATE PREPARED BY DATE PREPARED BY DATE POST ENGINEER		+	4 70.0		-	7.7.7	1	5261	6.71	587	Г	_	2.6		4.4	_	_	725		3	4		
PREPARED BY DATE APPROVED BY DATE POST ENGINEER	18	TS 0 NOTES	CAL PERINS	TO FUEL		FUEL USE	D DURING MC	INTH (STANDA	TONS			RE	MARKS										
PREPARED BY DATE APPROVED BY DATE	Š											-					1		POCT ENG	Neco		DATE	۳,
			2012 2302020			PREPAREL	3.87			à	ATE	ď¥	PAOVED BY				DATE		1001				
	-										ļ												

OM - 15

ECIP 1--HIGH-EFFICIENCY LIGHTING

RSH.

SUBJECT ECIP # 1	AEP NO 200-0374-002
LAMPS /BALLASTS	SHEET 1 OF 1
DESIGNER C. Warren	DATE 4 1 92
CHECKER	DATE

SAUINGS CALCULATIONS

From ECO PROJECTS

Eco#	ANNUAL ELECT SAUINGS (WISTLE /YR)	DIFFERENTIAL LAMP REPL COSTS (\$/yr)	REPEATE AMT.
8C	. 117	. 96	2203
8_D	589	809	3138
8 H	4478	2530	64979
TOTAL	, 5,184	3,435	70,320

ECO Construction Cost Estimate Calculations

ECO Name: Energy Efficient Fluorescent Lights & Ballasts

ECO #: ECIP 1

1991 ECO "bare" costs (from cost estimate sheet) Material Labor	\$151,780 \$114,206
Subtotal bare costs FICA Insurance (20% of Labor) Sales Tax (not applicable for GOGO)	\$265,986 \$22,841 \$0
Subtotal Overhead (15%)	\$288,827 \$43,324
Subtotal Profit (10%)	\$332,151 \$33,215
Subtotal Bond (1%)	\$365,366 \$3,654
Subtotal Contingency (10%)	\$369,020 \$36,902
Subtotal (Construction Cost Input For LCCID *)	\$405,922
SIOH (6% of Construction Cost)	\$24,355
Subtotal Design (6% of Construction Cost)	\$430,277 \$24,355
Total Project Cost	\$454,632

 $[\]star$ The SIOH costs (6.0%) and Design costs (6.0%) are automatically added in the Life Cycle Cost In Design (LCCID) analysis program.

CONSTRUCTION COST	ESTIMA	TE		DATE PREPARE)		SHEET	. / OF / ·
PROJECT ENERGY ENGINEERING	ANALYS	IS		· .		OR ESTIMA	TE	
OCATION] CODE A (n completed) deelgn)
ARCHITECT ENGINEER	D 1171 1 C				1] CODE C (olgn)
REYNOLDS, SMITH AN	D HIFF?		.P., L	NC.		CHECKED		
			C. W	ARREN	, 	P,	HUTC	HIUS
ECIP 1 SUMMARY	QUANT NO.	UNIT	PER	LABOR	PER	MATERIAL		TOTAL
	UNITS	MEAS.	UNIT	TOTAL	UNIT	707/	<u> </u>	COST
5000	 	 			 			
ECO BC - PROD. AREAS	2					, ,		
32 W LAMPS (T-8)	102		2.25	693	Z.10	<u> </u>		1340
ELECTRONIC BALLASTS ECOBD - NON-PROD.	102	EA	21.00	2,142	29.33	2992	-	5 34
34 w LAMPS	1845	E 1	2.25	17.651	1.80	14,12	,	2.77
ECO BH - PROD AREAS	1075	EA	4.23	1,631	1. 80	14,16	-1	31772 .
60 W LAMPS	6248	EA	2.50	15,620	3.95	24,68	8 17	40,300
ELECTRONIC BUSTS	3124			18,100	35.00			187, 440
·				114,206		51,78	හා	265,986
							,	
CMCULATIONS FOR ECIP								
FICA (20%)			-					· .
	··					·		-
						.•		
				·				
				•				
·								
						· · · · · · · · · · · · · · · · · · ·		

ENG FORM 150

(ER 1110-345-730))

PREVIOUS EDITION MAY ME LISSED

* V.S. GOVERNMENT PRINTING OFFICE . 1918 0—4161

(TRANSLUCENT)

ECIP 1 - HIGH EFFICIENCY LIGHTING

ECIP COST ESTIMATE	CALCULA		MATERIAL				LABOR	MATERIAL	
32W TB LAMPS FICA (20% LAB)	308	\$693 \$139	\$647		32W TB BALLASTS FICA (20% LAB)	102	\$2,142 \$428	\$2,992	
SUBTOTAL OVERHEAD (15%)			\$647 \$97		SUBTOTAL OVERHEAD (15%)		\$2,570	\$2,992 \$449	
SUBTOTAL PROFIT (10%)		\$956 \$96	\$74		SUBTOTAL PROFIT (10%)		\$2,956 \$296	\$3,441 \$344	
SUBTOTAL BOND (12)		\$1,052	\$818 \$8		SUBTOTAL Bond (1%)		\$3,252		
SUBTOTAL		\$1,062	\$827		SUBTOTAL		\$3,284	\$3,823	
PER UNIT		\$3.45	\$2.68	\$6.13	PER UNIT		\$32.20	\$37.48	\$69.67
	1	LABOR	MATERIAL						
34W LAMPS FICA (20% LAB)	7845	\$17,651 \$3,530	•						
SUBTOTAL OVERHEAD (15%)		\$21,181 \$3,177	\$14,121						
SUBTOTAL PROFIT (10%)		\$24,358 \$2,436	\$16,239 \$1,624						
SUBTOTAL BOND (12)		\$26,794	\$17,863 \$179						
SUBTOTAL			\$18,042						
PER UNIT		\$3.45	\$2.30	\$5.75					
		LABOR	MATERIAL			•	LABOR	MATERIAL	_
60W LAMPS FICA (20% LAB)	6248	\$15,620 \$3,124	\$24,680		60W LAMP BALLASTS FICA (20% LAB)	3124	\$78,100 \$15,620	\$109,340	_
SUBTOTAL		•	\$24,680		SUBTOTAL			\$109,340	,
OVERHEAD (152)		\$2,812			OVERHEAD (15%)			\$16,401 	•
SUBTOTAL PROFIT (10%)		\$21,556 \$2,156	\$28,382 \$2,838		SUBTOTAL PROFIT (10%)		•	\$125,741 \$12,574	_
SUBTOTAL Bond (12)		\$237	\$31,220 \$312		SUBTOTAL BOND (12)		\$118,556 \$1,186	\$138,315 \$1,383	
SUBTOTAL	4498488		\$31,532	(E-4	SUBTOTAL.		\$119,741	\$139,698	
PER UNIT		\$3.83	\$5.05	\$8.88	PER UNIT		\$38.33	\$44.72	\$83.05

FORM 1391 - COST ESTIMATE

				•						
32W LAMPS	308	\$6.13	2	1,889	1,889	308	2.25	693	2.10	647
ELECT. BALL	102	\$69.67	7	7,107	7,107	102	21.00	2,142	29.33	2,992
34W LAMPS	7845	\$5.75	45	55,481	45, 104	7845	2.25	17,651	1.80	14,121
60W LAMPS	6248	\$8.88	56	45,104	55,481	6248	2.50	15,620	3.95	24,680
EL BALL	3124	\$83.05	259	259,440	259,440	3124	25.00	78,100	35.00	109,340
SUB			369	•	369,020			114,206		151,779
CONT (10%)			37		36,902			·		
TOT CONTRACT			406		405, 922					
SIOH (6%)			24		24,355					
TOTAL REQUEST			430	•	430,277					

ENERGY PLAN

ENERGY PLAN CALCULATIONS

	ELC FSD NAG		FSR -	TOT	ACTUAL	
FY91	182,203	2,002	84,527	302,279	571,011	571,011
ECD6	0	0	3,205	2,255	5,460	
EC012	2,497	0	(3, 122)	0	(625)	
EC04	2,707	0	. 0	21,650	24,357	
EC07	814	0	0	. 0	814	
ECO2	0	0	-278000	278000	0	
EC010	1,901	0	0	. 0	1,901	
	7,919	0	(277,917)	301,905	31,907	
FY93	174,284	2,002	362,444	0	538,730	538,730
EC08	5,184	0	0	0	5, 184	
EC015	0	0	9,851	0	9,851	
	5, 184	0	9,851	0	15,035	
FY96	169,100	2,002	352,593	0	523,695	523,695

	\$3,669,678	\$354,893	\$54,282	\$1,998,073	\$6,076,926	\$6,024,000
EC05	\$151,000	\$0	\$0	\$0	\$151,000	\$151,000
FY92	\$3,518,678	\$354,893	\$54,282	\$1,328,382	\$5,256,235	\$5,203,309
EC06	\$0	\$0	\$13,333	\$9,922	\$23,255	\$23,300
EC012	\$50,814	\$0	(\$12,988)	\$0	\$37,826	\$37,900
EC04	\$55,087	\$0	\$0	\$95,260	\$150,347	\$141,900
EC07	\$16,565	\$0	\$0	\$0	\$16,565	\$15,600
ECO2	\$0	\$0	(\$1,156,480)	\$1,223,200	\$66,720	-
EC010	\$38,685	\$0	\$0	\$0	\$38,685	
	\$161,152	\$0	(\$1,156,135)	\$1,328,382	\$333,399	\$318,420
FY93	\$3,357,526	\$354,893	\$1,210,417	\$0	\$4,922,836	\$4,884,889
EC08	\$105,494	\$0	\$0	\$0	\$105,494	\$104,900
EC015	\$0	\$0	\$40,980	\$0	\$40,980	\$44,400
	\$105,494	\$0	\$40,980	\$0	\$146,475	\$149,300
FY96	\$3,252,032	\$354.893	\$1,169,437	\$0	\$4,776,362	\$4,735,589
	,,	•	-,,			, ,
	,,	•	•	REDUCTIONS	•	
	,	,	•		(MBTU) (\$)	47,316 \$1,288,411
	ELC	FSD	•		(NBTU)	47,316
	ELC	FSD	NAG	REDUCTIONS FSR	(#BTU) (\$)	47,316 \$1,288,411
FY91	ELC 182,203	FSD 2,002	NAG 84,527	REDUCTIONS FSR 302,279	(MBTU) (\$) TOT 571,011	47,316 \$1,288,411
FY91 FY92	ELC 182, 203 182, 203	FSD 2,002 2,002	NAG 84,527 84,527	REDUCTIONS FSR	(MBTU) (\$) TOT 571,011 571,011	47,316 \$1,288,411
FY91 FY92 FY93	ELC 182, 203 182, 203 174, 284	FSD 2,002 2,002 2,002 2,002	NAG 84,527 84,527 362,444	FSR 302,279 302,279	(MBTU) (\$) TOT 571,011	47,316 \$1,288,411
FY91 FY92	ELC 182, 203 182, 203	FSD 2,002 2,002	NAG 84,527 84,527	FSR 302,279 302,279 0	(MBTU) (\$) TOT 571,011 571,011 538,730	47,316 \$1,288,411
FY91 FY92 FY93 FY94	ELC 182,203 182,203 174,284 174,284	FSD 2,002 2,002 2,002 2,002 2,002	NAG 84,527 84,527 362,444 362,444	FSR 302,279 302,279 0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730	47,316 \$1,288,411
FY91 FY92 FY93 FY94 FY95	ELC 182, 203 182, 203 174, 284 174, 284 174, 284	FSD 2,002 2,002 2,002 2,002 2,002 2,002	NAG 84,527 84,527 362,444 362,444	FSR 302,279 302,279 0 0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730	47,316 \$1,288,411 971691
FY91 FY92 FY93 FY94 FY95 FY96	ELC 182,203 182,203 174,284 174,284 174,284 169,100	FSD 2,002 2,002 2,002 2,002 2,002 2,002	NAG 84,527 84,527 362,444 362,444 352,593	FSR 302,279 302,279 0 0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730 523,695	47,316 \$1,288,411 971691
FY91 FY92 FY93 FY94 FY95 FY96	ELC 182,203 182,203 174,284 174,284 174,284 169,100	FSD 2,002 2,002 2,002 2,002 2,002 2,002 \$351,802	NAG 84,527 84,527 362,444 362,444 362,444 352,593	FSR 302,279 302,279 0 0 0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730 523,695	47,316 \$1,288,411 971691
FY91 FY92 FY93 FY94 FY95 FY96	ELC 182,203 182,203 174,284 174,284 174,284 169,100 \$3,637,718 \$3,637,718	FSD 2,002 2,002 2,002 2,002 2,002 2,002 \$351,802 \$351,802	84,527 84,527 362,444 362,444 362,444 352,593 \$53,809 \$53,809	FSR 302,279 302,279 0 0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730 523,695 \$6,024,000 \$5,220,711	47,316 \$1,288,411 971691
FY91 FY92 FY93 FY94 FY95 FY96	ELC 182,203 182,203 174,284 174,284 174,284 169,100 \$3,637,718 \$3,637,718 \$3,486,718 \$3,331,645	FSD 2,002 2,002 2,002 2,002 2,002 2,002 3351,802 \$351,802 \$352,157	NAG 84,527 84,527 362,444 362,444 362,444 352,593 \$53,809 \$53,809 \$1,201,086	FSR 302,279 302,279 0 0 0 \$1,980,671 \$1,328,382	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730 523,695 \$6,024,000 \$5,220,711 \$4,884,889	47,316 \$1,288,411 971691
FY91 FY92 FY93 FY94 FY95 FY96	ELC 182,203 182,203 174,284 174,284 174,284 169,100 \$3,637,718 \$3,637,718	FSD 2,002 2,002 2,002 2,002 2,002 2,002 3351,802 \$351,802 \$352,157 \$352,157	84,527 84,527 362,444 362,444 362,444 352,593 \$53,809 \$53,809	FSR 302,279 302,279 0 0 0 \$1,980,671 \$1,328,382 \$0	(MBTU) (\$) TOT 571,011 571,011 538,730 538,730 538,730 523,695 \$6,024,000 \$5,220,711	47,316 \$1,288,411 971691

WATERVLIET ARSENAL ENVIRONMENTAL IMPACT OF ENERGY SAVING PROJECTS

ENVIR. WO1

ENISSIONS IN LBS PER MBTU

	#6 FUEL OIL									
ENISSION	COAL	0.5%	iX	2%	NGAS	BACT				
S02	1.8	0.54	1.08	2.36	0	0				
NOx	0.061	0.36	0.29	0.36	0.25	0.04				
Particulates	0.15	0.06	0.09	0.17	0.003	0.0002				
C02	209	169	169	169	110	110				

ENISSIONS IN LBS PER KWH

	· ·	#6 FUEL OIL								
ENISSION	COAL	0.5%	17	2%	NGAS	BACT				
S02	0.019	0.006	0.012	0.025	0	0				
NOx	0.001	0.004	0.003	0.004	0.003	0.0004				
Particulates	0.002	0.001	0.001	0.002	3E-05	2E-06				
C02	2.23	1.80	1.80	1.80	1.17	1.17				

Source: Strategic Planning for Energy and the Environment,

Winter 1990-1991, p. 57

Environmental Costs of Electricity, DOE & New York State

Energy Research and Development Authority

EMISSIONS IN LBS PER MBTU

EMISSION	NGAS	COAL	OIL
CO2	115	200	170
S02	0.0005	2.67	0.95
NOx	0.39	1.12	0.48
CO	20	30	30
Hydrocarbons	3	10	5
Particulates	10	230	2540

Source: American Gas Association, Edison Electric Institute

WATERVLIET ARSENAL ENVIRONMENTAL AFFECTS OF ENERGY SAVING PROJECTS

NIAGRA-HOHAWK EMISSIONS ESTIMATE

Emissions (lbs/kwh)

	_				
Fuel Type	Percent	S02	NOX	Part.	CO2
Coal	42	0.019	0.001	0.002	2.23
Natural Gas	10	0	0.003	3E-05	1.17
Residual Oil	34	0.012	0.003	0.001	1.8
Nuclear	14	-	-	-	-
Hydro	-	-	-	-	-
Net Total		0.012	0.002	0.001	1.666

RSH	_
	®

SUBJECT ENVIRONMENTAL IMPACT	AEP NO	•
of Projects	SHEET	OF
DESIGNER P. Hutchins	DATE	
CHECKER	DATE	

Niseya Mohawk Generation Fuel Mig

1990

	GWH	70
Con	8678	42
Nat Gas	1950	10
Res. Oil	7109	34
Nuclear	2975	14
Hydro	55	***
7	20,767	100

\$5-64

State of New York Department of Public Service Office Services Unit Three Empire State Plaza Albany, NY 12223

TELECOPY COVER PAGE

FROM: S. A. TILARO Name Power Division/Office Sys Plng Section	Date: 3/20/92 Sender's Phone No.: (518) 474-192/
TO: Paul Hutchins Reynolds Smith + Hills Florida	Telecopier Phone No.: 904) 279-249/ Automatic Manual
From: (518) 474-7146 Back-up Number: (518) 474-6504 SPECIAL INSTRUCTIONS:	
Se	ent by Men

TO

MAR-20-1992

10:23

TABLE VI-1 FUEL REQUIREMENTS - HISTORICAL - Coal & Natural Gas

1990	957	<u> </u>	• • •	8 8 8	ა.	. 001160	62.69	119046	78707	22560 1671.7	293 23699		21570	577	3303		1930	19 2375		279	230	518	273 302 27:
	96 :	22	•	5 2	۲ <u>.</u>	180444	0100	91576	60007	27089	727		17220	400	2352	1 0 0 0 0	1315	41 1762		278	249	. 152	270 269 247
NATURAL GAS	# 64 #	20.	• • •	72	£,	147010	2179	81426	1	12018	11447		14103	174	2534	1020	1172	1111		232	ដ	. S1.	236 408 230
	7 8 0	2	• • •	3 '	S '	173393	6037	28773		14813	47	5	76601	522 8190	2650	1745	1385	1657		312	526	217	232 142 158
1986		S '	1 6 7	. · ·	<u>\$</u> '	131450	258	78799	, , ,	15897	26 9035	03460	66.57	7499	2308	127	1576	818		418	228	197	390
1990	370		2414	182) ·	12076	618		5403	99	ę ·	10679		2202	•	16211 8678	1612	,		502	165	25;	156
1969	370	• •	2414	391	; ·	12269	689	. 1	3499	88.6	979	31026	2	2292	1	9013	. 1263	;		192	. 126	153	151
1988 1770	366	1 1	2405	187	;	11166	994	. 1	,019 30%	(\$)) · 1	28523		1822	1 4	7894 7894	1090) I		192	. 53	155	161
1987	366	' 1	2386	199	•	9939	414	• •	5955 2805	145	3 1	25204		1087	1 2031	7185	347 1560	1		061	157	157	
1986	•	• •	2366	337	•	9116	•	• •	5327 2462	522	'	20652		• •	13104	6140	1316	•		• •	166	178	E,
installed Gen. Cap. (MM) New York Power Pool	Central Sudson	LUCO LUCO MYSEC	Niegaza Mohawk	Ozange 6 Rockland RG&E	AYPA	fuel Consumption(2)(6) Thousands of Tons Millions of Cubic Feet New York Power Pool	Central Rudson	TILCO	Madara Nobank	Urange & Rockland RG&E	нура	Generation (GWH)(1)(5) New York Power Pool		Con Ediaon	MYSEG	Niagaca Mohank	RGE NOCKIAND	NYPA	Fuel Cost Cents per Million BTU	Com Edison	NYSEG	Niagara Monawk Orange & Rockland	RGSE

TABLE VI-1 FUEL REQUIREMENTS - HISTORICAL - Residual Oil & Distillate Oil

1222 1288 1589 1592 1596 1586		7000	- 1	RESIDUAL OIL					DISTILLATE OIL		
11896 11765 11441 11344 11328 1470 1490 3445 3665 6155 546 6490 6490 6377 2794 2796 2796 2797 6155 2770 2771 2718 2729 2727 2718 2797 2794 2797 2794 7262 2772 2716 2786 2286 2777 2777 2797 7372 2772 2716 2789 2797 2794 2797 2797 7373 2794 2797 2794 2797 2794 2797 2797 7374 2797 2794 2797 2797 2796 2797 7374 2797 2797 2797 2797 2797 7374 2797 2797 2797 2797 2797 7375 2797 2797 2797 2797 2797 7376 2797 2797 2797 2797 2797 7376 2797 2797 2797 2797 2797 7376 2797 2797 2797 2797 2797 7376 2797 2797 2797 2797 2797 7377 2797 2797 2797 2797 7378 2797 2797 2797 2797 7379 2797 2797 2797 2797 7370 2797 2797 2797 2797 7370 2797 2797 2797 2797 7370 2797 2797 2797 7370 2797 2797 2797 7370 2797 2797 2797 7370 2797 2797 7370 2797 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 2797 7370 2797 7370 2797 2797 7370 7370 7370 7370 7370 7370 7370 7370 7370 7370 73	led Gen. Cap. [MW]	1860	1387	886	1989	1990	1986	1987	1988	1989	1990
State Stat	rk Power Pool	13896	13265	13431	13343	13298	3470	3490	3445	3685	3448
1,000 1,00	L Hudson	895 6138	546	480 6323	48 0 6323	537 6227	43 2046	43	38 2046	38	507
1,000		2693	2730	2731	2718	2730	1049	1069	1001	1359	1347
133 234 254 254 254 254 111 1206 1946 145	Hohawk 6 Rockland	2262 902	2272 507	2361	2286	2286	23,	22,	23,	230	- 1
1,21(6) 5,2346 5,0943 6,4345 5,1355 11111 1206 1946 14,99 1,999 15,96 1,945 1,995		173 833	204 833.	204	204 825	204 825	: 	: Z '	" 2 "	' 3 '	' *
1962 1966 19614 19225 1969 1966 19614	nsumption ds of SELS(2)(6) it Power Pool	52346	50943	63495	64714	\$3135	1111	1206	1946	3499	906
14842 17697 18626 18614 15730 738 683 1024 1851 2500 1742 1789 18614 15730 738 683 1029 1856 3120 1742 1948 2087 912 7 3 5 5 312 569 920 789 1640 2 6 45 1759 1973 2765 1293 1640 2 6 45 1759 1973 2765 1293 1640 2 6 6 1759 1973 2765 1293 1650 2 7 7 1759 1973 2764 2765 2763 2750 276 276 1759 1759 11584 11287 9660 277 277 1759 1759 1759 11584 11287 9660 277 277 1750 1750 276 276 276 276 276 1750 276 277 277 277 277 1750 276 277 277 277 1750 276 277 277 277 1750 276 277 277 277 1750 276 277 277 277 1750 277 277 277 1750 277 277 277 1750 277 277 277 1750 277 277 277 1750 277 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277 277 1750 277	Hudson son	5989	1596	3645	3892	1396	7 96	~ 5	*	53	•
2513 7159 11975 1154 1 1 1 1 1 1 1 1 1		14842	17697	16628	1981	15730	38.	683	1099	1951 1866	977 670
1759 1973 2767 1293 912 2 4 5 45 1759 1973 2765 1293 1640 2 4 6 4 5 1759 1973 2765 1293 1640 2 4 6 4 5 1759 1971 2765 1293 12640 12670 447 486 781 1420 1759 22163 2741 2533 2200 13 3 7 12 10206 10342 14225 16883 11576 3157 3164 471 487 581 10206 10342 14225 14225 1584 11267 9660 315 304 471 610 1759 1259 11584 11267 9660 315 304 471 610 1759 1259 1256 593 1 1 2 2 1759 1759 1756 593 1 1 2 1759 1759 1756 593 1 1 2 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1750 1759 1759 1759 1759 1750 1759 1759 1759 1759 1750 1759 1759 1759 1759 1750 1759 1759 1759 1759 1750 1759 1759 1759 1759 1750 1759 1759 1759 1750 1759 1759 1759 1750 1759 1759 1759 1750 1759 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1759 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750 1750	Mohawk C Boot 1	9613	7159	11975	10406	11554			 &	(-	٥,
1759 1913 2705 1293 1640	noch todio	312	595 7871	956 950	2087 789	216 6	ł 70		rvo	, 4	• -
01 31533 30946 38978 39704 32630 447 486 781 1420 10208 2283 22803 11579 127 177 299 561 10208 10582 14225 16883 11579 127 177 299 561 9083 11293 11584 11207 9660 115 279 561 5609 4254 7442 6468 7109 3 1 2 3 1428 1429 1442 7442 6468 7109 3 1 2 3 1428 147 465 529 3 1 1 2 3 1 2 3 1 4 7 3 1 4		1759	1933	2705	1293	1640	•	•	• •	٠,	• •
1769 2283 2341 2533 2200 1 1 3 7 12 12 150 10206 10592 14225 16893 11579 127 177 299 581 11297 9660 11584 11297 9660 1158 11297 9660 1158 11297 9660 1158 11297 9660 1158 11297 9660 1158 11297 11297 9660 1129 11297 11297 9660 1129 11297 11297 9660 11297 11297 9660 11297	ion (GMB) k Power Pool	31533	30946	38978	39704	32630	447	786	781	1420	353
\$600 11291 11291 1127 1127 1177 2599 561 \$600 4254 7442 6468 7109 3 1 1 2 304 471 610 \$600 4254 7442 6468 7109 3 1 1 2 3 3 4 471 \$1320 1078 1442 6468 7109 3 1 1 2 3 3 4 4 471 \$175 116 545 465 570 1 1 1 1 1 2 1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hudson	3769	2283	2343	2533	2200	-	•	^	12	
\$669 4254 7442 6468 7109 3 1 2 3 1 2 1 3 1 1 2 3 1 1 2 1 3 1 1 2 1 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 3 1 3 3 3 3		8063	11293	78511 67721	11207	11579 9660	127 315	70. 704	299 4 7]	561 610	78 277
## 1420 1078 1214 1276 7103 3 1 1 2 3 3 1 1 2 1 1 2 3 3 1 1 2 1 1 2 1 1 2 1 1 1 1	Mohavk	1 0049	1361	1777	1 4		. • •	•		1	, ,
175 316 545 465 529 1 1 2 14 1061 1138 1627 792 970 1 1 2 14 270 290 238 267 300 655 531 487 513 311 323 239 335 440 402 447 286 323 252 279 317 467 495 464 329 252 279 317 447 495 329 252 279 317 447 329 321 286 680 286 323 234 236 335 250 322 263 290 354 250 322 263 290 354 250 322 263 290 354 260 250 250 250 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270 270	Rock Land	1428	1078	1214	1276	583	-) (- ,	~ 1	m i	•
270 290 238 267 300 655 531 487 513 311 323 279 313 390 527 440 402 447 249 290 252 279 313 390 527 440 447 447 447 447 526		175	316 1138	545 1627	465 792	529 970	 1	- ·	fa 1	* *	,
2.70 2.38 2.67 300 655 531 487 513 2.49 2.90 2.52 2.79 313 390 527 440 402 447 2.49 2.90 2.52 2.79 3.26 408 402 447 2.86 3.23 2.87 3.17 447 495 464 468 3.23 3.44 2.86 3.13 3.55 - <td>at Hillion BTU</td> <td>ć</td> <td>Š</td> <td>Ş</td> <td>,</td> <td>}</td> <td>;</td> <td></td> <td></td> <td></td> <td></td>	at Hillion BTU	ć	Š	Ş	,	}	;				
249 290 277 315 350 400 402 447 472 266 256 256 256 256 257 279 326 408 403 162 526 256 256 257 279 317 447 495 484 488 250 322 266 313 317 461 430 431 600 250 322 263 290 354	20110	35	נכנ	330	267	9	655	531	487	\$13	619
286 323 252 287 317 447 595 680 680 123 252 287 317 447 595 484 688 680 123 323 344 286 313 317 461 410 600 250 322 263 290 354	•	249	290	252	1 C	326	527 408	9 (7 0 7	447	556
286 323 252 287 317 447 495 464 488 301 297 276 318 355 4 407 401 411 600 250 322 263 290 354 401 411 600		•	•	,	•	:	63		* a	976	Ç
323 344 286 313 317 461 430 431 600 250 322 263 290 354	Mohawk Rock Land	286 201	323	252	287	317	467	495	3	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
250 322 263 290 354	TOOL THE PER	ינכנ זכנ	157	2.76 2.86	25	355	1 4	' ;	• ;	• ;	1
		250	323	263	290	354	9	0 1	<u>.</u>	99 '	929

TO

Installed Cen. Can. (My)	1986	1987	1988	1989	0661	1986	1961	1988 198	1989	1990
Hew York Power Pool	1825	3842	1774	4162	4846	1101	4011	4017	4013	4057
Central Budson	, ,	' 6	66	65	26	\$	\$	5	ŧ	
0711		۲ ۲	194	194	919 194	• •	. ,	٠,		
MISEC	• ;	' ;	194	193	194	70	69	63	65	
niagata munawa Oranga & Rockland) (010	1054	443	1056	609	596	296	294	
RGEE	470	470	621	621	621	4.4	: :	4 6 4 6	* C	₹ ₹
MPA	1896	1913	1765	1765	1765	3206	3210	3218	3218	<i>m</i>
Fuel Consumption Billions of BYUS(2)(6) Mew York Power Pool	239373	245363	256240	247588	255747					
Central Mudson	, 600		3550	4319	4120					
777	1	6769C	7105	49461	36576 8845		•			
AKSEG	•	•	7099	8638	8240					
miagate modawa Oranda & Bockland	13294	48542	11641	19676	32657					
RGEE	38661	40538	1991	19660	\$305 \$					
	123425	97860	119641	117172	102285					
Generation (CMN) How York Power Rool	22086	78526	21652	23621	9636	Ş	4			i
		***	76554	17677	0.706.7) I (ar	02727	74657	24793	26588
Central Rudson Con Edison Litco	3794	5127	120 6043	386 446	5189		127	721	116	
NYSEG	1	ı * *	609	177	741	' e.c	280	246	. 002	
Hiagara Hobawk	3113	1615	1059	1762	2975	3477	2724	2494	1004	
Ofange & Rockland Sec.5	1 6	,	• ;	•	• ;	158	193	163	145	•
NYPA	11542	9019	1991	11124	4017 9634	235 25974	24732	169 23464	175 21061	245 22278
fuel Cost Cents per Million BTU					•					
Central Mudson	1;	9 1	145	95	601					
	۲ '	ę,	٥	0.00	6					
NYSEG	•	, ,	901	971		•				
Niagara Mohawk	64	65	Ħ	115	3					
Stange & Rockland RGES	' <u>a</u>	' 5	' 9	1 (1					