Problem 1: MDP Warm-up

Consider an MDP problem. There are four states $\{S_A, S_B, S_C, S_D\}$, at each of which two actions $\{+, -\}$ are available, and the state transition and reward have no randomness. All the (action, reward) pairs are described in Figure 1. Assume all the episodes have length 3 (e.g. $S_A \stackrel{\rightarrow}{\to} S_B \stackrel{\rightarrow}{\to} S_A \stackrel{\rightarrow}{\to} S_A)$.

Figure 1: MDP problem with (action, reward) pairs.

Problem 1a [2 points]

Find the optimal policy at the initial state S_A with discount factor $\gamma=0.001$. Justify your answer.

Problem 1b [2 points] 🌶

Find the optimal policy at the initial state S_A with discount factor $\gamma=0.999$. Justify your answer.

Problem 1c [2 points]

What is the optimal policy at the initial state S_B ? Explain your answer in terms of discount factor $\gamma \in (0,1)$.

Problem (a

$$\delta = 6.001 \implies \frac{2|(0.001)^2}{4} < \frac{20 + |0 \times 6.00| + 5(0.001)^2}{4} \text{ optimal policy} = -$$

Problem 16

$$\delta = 6.999 \Rightarrow \frac{2|(0.999)^2}{4} < \frac{20 + 10 \times 6.999 + 5(0.999)^2}{4} = \frac{20 + 10 \times 6.999 + 5(0.999)^2}{4} = \frac{20 + 10 \times 6.999 + 5(0.999)^2}{4} = \frac{20 + 10 \times 6.999 + 5(0.999)^2}{4}$$

 $325 > 105 + 53^{2}$ $\frac{3}{5} \Rightarrow 6(0.1) = \frac{105}{4} = \frac{32}{4} \Rightarrow \frac{32}{4} \Rightarrow \frac{34}{4} \Rightarrow \frac$