Teoría de Autómatas y Lenguajes Formales

Práctica 2: Autómata finito determinista

Álvaro, Luque Torres 29 de octubre de 2022

1. Autómata finito determinista

Un autómata finito determinista (AFD) es un sistema determinista, es decir, para cada estado en que se encuentre el autómata, y con cualquier símbolo del alfabeto leído, existe siempre no más de una transición posible desde ese estado y con ese símbolo

Definición 1.1 (*Autómata finito determinista*). Un autómata finito determinista (AFD) es una quintupla $(K, \Sigma, \Delta, s, F)$, donde

K es un conjunto no vacío de estados

 Σ es un alfabeto

 $s \in K$ es el estado inicial

 $F \subseteq K$ es un conjunto de estados finales

 $\Delta \subseteq K \times \Sigma^* \times K$ es una relacion de transicion

Ejemplo 1.1. Let $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_1, \{q_1\})$ be a AFD with:

$\delta(q,\sigma)$	a	b
q_0	q_1	q_2
q_1	q_2	q_2
q_2	q_2	q_2

Automata en JFLAP:

Describimos nuestros automata en el archivo JSON: