Secure Algorithms for Vertically Federated Multi-Task Representation Learn

2025 IEEE International Symposium on Information Theory

Ankit Pratap Singh, Namrata Vaswani

Department of Electrical and Computer Engineering lowa State University

Problem Setting: Multi-task linear representation learning

Learn a low rank $r \ll n, q$ matrix $\mathbf{\Theta}^* \in \Re^{n \times q}$ from noisy measurements of the form

$$\mathbf{y}_k := \mathbf{X}_k \theta_k^* + \mathbf{v}_k, k \in [q].$$

- $\mathbf{y}_k \in \mathbb{R}^m, \mathbf{X}_k \in \mathbb{R}^{m \times n}$ is the training data for task k.
- \mathbf{v}_k is the modeling error/noise.
- **X**_k are "random Gaussian" matrices which are independent and identically distributed (i.i.d.) over k.
- Noise \mathbf{v}_k is independent of \mathbf{X}_k and each entry of it is i.i.d. zero mean Gaussian with variance $\sigma_{\mathbf{v}}^2$.

Problem Setting

Because of the LR model, it is possible to recover Θ^* even with m < n.

$$\Theta^* = U^*B^*.$$

Where \mathbf{U}^* is an $n \times r$ matrix with orthonormal columns, and \mathbf{B}^* is an $r \times q$ matrix.

The learned representation in this case is an estimate of the column span of \mathbf{U}^* (equivalently of $\mathbf{\Theta}^*$).

Solving this problem requires solving

$$\min_{\substack{\mathbf{U} \in \Re^{n \times r} \\ \mathbf{B} \in \Re^{r \times q}}} f(\mathbf{U}, \mathbf{B}) := \min_{\substack{\mathbf{U} \in \Re^{n \times r} \\ \mathbf{B} \in \Re^{r \times q}}} \sum_{k} \|\mathbf{y}_k - \mathbf{X}_k \mathbf{U} \mathbf{b}_k - \mathbf{v}_k\|_2^2$$

Vertical Federation

- Different nodes contain data for different subsets of tasks.
- Assume there are a total of L nodes.
- Let $\mathcal{S}_\ell, \ell \in [L]$ be a partition of $[q] := \{1, 2, \dots, q\}$ such that $|\mathcal{S}_\ell| \geq q/L > r$ for all ℓ .
- Node ℓ has data $\mathbf{y}_k, \mathbf{X}_k$, for $k \in \mathcal{S}_{\ell}$.

Byzantine Attacks ¹

Byzantine attack is a "model update poisoning" attack where

- 1. It knows the full state of the center and every node (data and algorithm, including all algorithm parameters).
- 2. Different Byzantine adversaries can also collude.
- They cannot modify the outputs of the other (non-Byzantine) nodes or of the center, or delay communication.

Byzantine nodes can thus design the worst possible attacks at each algorithm iteration.

¹Mhamdi et al., The hidden vulnerability of distributed learning in byzantium, ICML, 2018

AltGDmin - intro

Assuming Right singular vectors' (RSV) incoherence² AltGDmin³, a fast and communication-efficient GD-based algorithm was introduced for solving the problem in no-noise, and no-attack setting.

²Assume that $\max_{k \in [q]} \|\mathbf{b}_k^*\| \le \mu \sqrt{r/q} \sigma_{\max}(\mathbf{\Theta}^*)$ for a constant $\mu \ge 1$.

³Nayer & Vaswani, Fast and sample-efficient federated low rank matrix recovery from column-wise linear and quadratic projections

AltGDmin - complete algorithm

$$f(\mathbf{U}, \mathbf{B}) := \sum_{k} \|\mathbf{y}_k - \mathbf{X}_k \mathbf{U} \mathbf{b}_k\|_2^2$$

 Initialization: Initialize U for the GD step as top r left singular vectors of Θ_{init} matrix.

AltGDmin - complete algorithm

$$f(\mathbf{U},\mathbf{B}) := \sum_k \|\mathbf{y}_k - \mathbf{X}_k \mathbf{U} \mathbf{b}_k\|_2^2$$

$$\mathbf{y}_k = \mathbf{X}_k \mathbf{\theta}_k = \mathbf{X}_k \mathbf{U} \mathbf{b}_k, k \in [q]$$

Alt-GD-Min (GD step): at each iteration $t \ge 1$, alternate b/w

• min for **B**: keeping **U** fixed, update **B** by solving min_B $f(\mathbf{U}, \mathbf{B})$. Clearly, this minimization decouples across columns, making it a cheap least squares problem of recovering q different r length vectors.

$$\mathbf{B} \leftarrow \arg\min_{\tilde{\mathbf{B}}} f(\mathbf{U}, \tilde{\mathbf{B}}) \Leftrightarrow \mathbf{b}_k = (\mathbf{X}_k \mathbf{U})^\dagger \mathbf{y}_k, \ k \in [q]$$

 projected GD for U: keeping B fixed, update U by a GD step followed by orthonormalizing its columns.

$$\mathbf{U}^+ \leftarrow \mathrm{QR}(\mathbf{U} - \eta \nabla_U f(\mathbf{U}, \mathbf{B}))$$

$$U \leftarrow U^+$$

Initialization

Estimate principal subspace $span(\mathbf{U}^*)$ of an unknown matrix $\mathbf{\Theta}^*$ in a federated setting, while being resilient to **Byzantine Attacks**.

- 1. $\mathbf{U}_{n\times r}^*$ denotes the top r eigenvectors of $\mathbf{\Theta}^*$.
- 2. **Federated Setting:** Each node $\ell \in [L]$ can compute $(\Theta_{init})_{\ell}$ using the columns $k \in \mathcal{S}_{\ell}$ that it observes. This allows the node to estimate \mathbf{U}^* as \mathbf{U}_{ℓ} , which is formed by the top r eigenvectors of $(\Theta_{init})_{\ell}$.

Subspace-Median⁴

Subspace median a Byzantine-resilient subspace estimation algorithm which can be used for initialization part.

Theorem (Subspace-Median)

For a au < 0.4, suppose that, for at least (1- au)L \mathbf{U}_{ℓ} 's

$$\Pr(\mathsf{SD}_F(\mathsf{U}^*,\mathsf{U}_\ell) \leq \delta) \geq 1-p$$

then, with probability at least $1 - \exp(-L\psi(0.4 - \tau, p))$,

$$SD_F(U^*, U_{out}) \leq 23\delta$$
.

⁴Singh & Vaswani, Byzantine-resilient federated pca and low rank column-wise sensing, IEEE TIT, 2024

Dealing with attacks: Geometric Median

GM Theorem⁵: Let $\{\mathbf{z}_1,...,\mathbf{z}_L\}$ with each $\mathbf{z}_\ell \subseteq \Re^n$ denote L nodes output, and let \mathbf{z}_{gm} denote exact Geometric Median. For a $\tau < 0.4$, suppose that, at least $(1 - \tau)L$ \mathbf{z}_ℓ 's satisfy,

$$\|\mathbf{z}_{\ell} - \tilde{\mathbf{z}}\| \leq \epsilon$$

then,

$$\|\mathbf{z}_{gm} - \tilde{\mathbf{z}}\| \leq 6\epsilon$$

How it is handling Byzantine attacks? The rest τL , \mathbf{z}_{ℓ} 's can be of arbitrary value.

 $^{^5}$ Stanislav Minsker, Geometric median and robust estimation in Banach spaces, Bernoulli, 2015

Including probability argument: For a au < 0.4, suppose that, at least (1- au)L ${\bf z}_\ell$'s satisfy,

$$\Pr{\|\mathbf{z}_{\ell} - \tilde{\mathbf{z}}\| \le \epsilon} \ge 1 - p$$

Then, w.p. at least $1 - \exp(-L\psi(0.4 - \tau, p))$,

$$\|\mathbf{z}_{gm} - \tilde{\mathbf{z}}\| \leq 6\epsilon$$

Here

$$\psi(a,b) := (1-a)\log\frac{1-a}{1-b} + a\log\frac{a}{b}$$

The GM is defined for vectors whose distance can be measured using the vector l_2 norm. To use it for matrices we can use Frobenius norm.

$$\|\mathbf{M}\|_F = \|\mathrm{vec}(\mathbf{M})\|_2$$

General Statement

Fix an $\alpha \in (\tau, 1/2)$, $\tau = \frac{L_{byz}}{L}$, suppose that, at least $(1 - \tau)L$ \mathbf{z}_{ℓ} 's satisfy,

$$\Pr\{\|\mathbf{z}_{\ell} - \tilde{\mathbf{z}}\| \le \epsilon\} \ge 1 - p$$

Then, w.p. at least $1 - \exp(-L\psi(\alpha - \tau, p))$,

$$\|\mathbf{z}_{gm} - \tilde{\mathbf{z}}\| \leq C_{\alpha} \epsilon$$

Here

$$\psi(a,b) := (1-a)\log \frac{1-a}{1-b} + a\log \frac{a}{b},$$

and

$$C_{lpha}=(1-lpha)\sqrt{rac{1}{1-2lpha}}.$$

- For $\alpha = 0$, $C_{\alpha} = 1$
- For $\alpha \to \frac{1}{2}$, $C_{\alpha} \to \infty$

Algorithm 1 Byz-Fed-AltGDmin-Learn: Complete algorithm

- 1: **Nodes** $\ell = 1, ..., L$
- 2: Compute $\mathbf{U}_{0\ell}$ which is the matrix of top r left singular vectors of $(\mathbf{\Theta}_{init})_{\ell}$.
- 3: **Central Server** (implements Subspace Median on $\mathbf{U}_{0\ell}$, $\ell \in [L]$)
- 4: Orthonormalize: $\mathbf{U}_{0\ell} \leftarrow QR(\mathbf{U}_{0\ell}), \ \ell \in [L]$
- 5: Compute $\mathcal{P}_{\mathbf{U}_{0\ell}} \leftarrow \mathbf{U}_{0\ell} \mathbf{U}_{0\ell}^{\top}$, $\ell \in [L]$
- 6: Compute GM: $\mathcal{P}_{gm} \leftarrow \operatorname{GM} \{ \mathcal{P}_{\mathbf{U}_{0\ell}}, \ell \in [L] \}$
- 7: Find $\ell_{\textit{best}} = \arg\min_{\ell} \|\mathcal{P}_{\mathbf{U}_{0\ell}} \mathcal{P}_{\textit{gm}}\|_{F}$
- 8: Output $\mathbf{U}_0 = \mathbf{U}_{out} = \mathbf{U}_{\ell_{best}}$
- 9: for t = 1 to T do
- 10: **Nodes** $\ell = 1, ..., L$
- 11: Set $\mathbf{U} \leftarrow \mathbf{U}_{t-1}$
- 12: $\mathbf{b}_k \leftarrow (\mathbf{X}_k \mathbf{U})^{\dagger} \mathbf{y}_k, \ \forall \ k \in \mathcal{S}_{\ell}$
- 13: $\nabla_{\ell} \leftarrow \sum_{k \in \mathcal{S}_{\ell}} \mathbf{X}_{k}^{\top} (\mathbf{X}_{k} \mathbf{U} \mathbf{b}_{k} \mathbf{y}_{k}) \mathbf{b}_{k}^{\top}$
- 14: Central Server
- 15: $\nabla_{GM} \leftarrow GM(\nabla_{\ell}, \ell = 1, 2, \dots L).$
- 16: Compute $\mathbf{U}^+ \leftarrow QR(\mathbf{U}_{t-1} \eta \nabla_{GM})$
- 17: **return** Set $\mathbf{U}_t \leftarrow \mathbf{U}^+$. Push \mathbf{U}_t to nodes.
- 18: end for

Byzantine-resilient Vertically federated MTRL ⁶

Bounded heterogeneity: $\max_{\ell,\ell'\in[L]}\|\mathbf{B}_{\ell}^*-\mathbf{B}_{\ell'}^*\|_F^2 \leq G_B^2\sigma_{\max}^{*2}$

Theorem

(Byz-Fed-AltGDmin-Learn: Complete guarantee) Assume RSV incoherence, Bounded heterogeneity Assumption holds, and $\frac{L_{byz}}{L} < 0.4$. If

$$m\left(rac{q}{L}
ight)\gtrsim nr\cdot \max\left(r,\log\left(rac{1}{\epsilon}
ight),rac{\mathit{NSR}}{\epsilon^2}\log\left(rac{1}{\epsilon}
ight)
ight)$$

then, w.h.p. after $T = C\tilde{\kappa}^2 \log\left(\frac{1}{\epsilon}\right)$ iterations,

$$SD_F(U^*, U_T) \leq \max(\epsilon, 21C\tilde{\kappa}^2G_B)$$

Here NSR is the noise to signal ratio $\mathrm{NSR} := \frac{\widetilde{q}\sigma_v^2}{\sigma_{\min}^{*1/2}}$

 $^{^6} Singh, \, \& \,$ Vaswani, Secure Algorithms for Vertically Federated Multi-Task Representation Learni, ISIT, 2025

Challenges: Non Identical data

Since

$$\mathbb{E}[\nabla_{\ell}(\mathbf{U}_{t-1}, \mathbf{B}_{\ell})] = m(\mathbf{\Theta}_{\ell} - \mathbf{\Theta}^*_{\ell}) \mathbf{B}_{\ell}^{\top} = m(\mathbf{U} \mathbf{B}_{\ell} - \mathbf{U}^* \mathbf{B}^*_{\ell}) \mathbf{B}_{\ell}^{\top}$$

Therefore,

$$\mathbb{E}[\nabla_{\ell}(\textbf{U}_{t-1},\textbf{B}_{\ell})] \neq \mathbb{E}[\nabla_{\ell'}(\textbf{U}_{t-1},\textbf{B}_{\ell'})]$$

Bounded heterogeneity Assumption

$$\max_{\ell,\ell' \in [L]} \|\mathbf{B}_{\ell}^* - \mathbf{B}_{\ell'}^*\|_F^2 \leq G_B^2 \sigma_{\max}^{*2}$$

This assumption in turn implies that, for all $\ell, \ell' \in [L]$,

$$\|\boldsymbol{\Theta}^*_{\ell} - \boldsymbol{\Theta}^*_{\ell'}\|_F^2 = \|\mathbf{U}^*\mathbf{B}_{\ell}^* - \mathbf{U}^*\mathbf{B}_{\ell'}^*\|_F^2 \leq \mathit{G}_B^2\sigma_{\mathsf{max}}^{*2}$$

All past work for heterogeneous setting assumes a bound on the difference between gradients from different good nodes, at each algorithm iteration [Assumption 2]⁷, [Assumption 1]⁸.

 $^{^7}$ Data & Diggavi, Byzantine-resilient high-dimensional federated learning, IEEE TIT. 2023

⁸Allouah et al., Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity, AISTATS, 2023

Byzantine-resilient Vertically federated LRMC 9

Incoherence of \mathbf{U}^* : MTRL/LRCS problem, does not require incoherence of \mathbf{U}^* . In LRMC, we need to ensure incoherence of \mathbf{U} at every iteration. This is hard because \mathbf{U} is updated using possibly non-incoherent gradients from GM or Krum. To handle this, we introduce a filtering step.

Paper to be presented in ICML 2025

 $^{^9}$ Singh, Abbasi, & Vaswani, Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for Partly-Decoupled Low Rank Matrix Learning, ICML, 2025

Algorithm 2 Byz-AltGDmin-LRMC

- 1: AltGDmin Initialization:
- 2: **Nodes** $\ell = 1, ..., L$
- 3: Calculate and Push $\mathbf{U}_{0\ell}$ to center
- 4: Central Server
- 5: Define set $\mathcal{I}_0 = \{\}$
- 6: for $\ell=1$ to L do
- 7: **if** $\|\mathbf{u}_{0\ell}^j\| \leq 1.5\mu\sqrt{\frac{r}{n}}$ for all $j \in [n]$ **then**
 - **Add** ℓ to set \mathcal{I}_0
- 9: end for
- 10: $\mathbf{U}_0 \longleftarrow \mathrm{Byz} \mathrm{SubspaceEstimation}\{\mathbf{U}_{0\ell}\}_{\ell \in \mathcal{I}_0}$
- 11: Push \mathbf{U}_0 to nodes.

Algorithm 3 Byz-AltGDmin-LRMC

```
1: AltGDmin Iterations:
 2: for t=1 to T do
         Nodes \ell = 1, ..., L
 3:
      Calculate and Push \nabla_{\ell} to center
 4:
 5: Central Server
 6: Define set \mathcal{I}_t = \{\}
 7. for \ell = 1 to \ell do
             Compute \mathbf{U}_{temp} \leftarrow \mathbf{U}_{t-1} - \eta \nabla_{\ell}
 8.
            if \|\mathbf{u}_{temp}^{j}\| \leq (1 - \frac{0.4}{\pi^2})\|\mathbf{u}_{t-1}^{j}\| + 1.4\mu\sqrt{\frac{r}{n}} for all j \in [n] then
 g.
                  Add \ell to set \mathcal{I}_t
10.
        end for
11.
      \nabla_{Kr/GM} = \text{Krum/GM}\{\nabla_{\ell}\}_{\ell \in \mathcal{I}_{\tau}}
12:
        Compute \mathbf{U}_t \leftarrow QR(\mathbf{U}_{t-1} - \eta \nabla_{Kr/GM})
13
         Push \mathbf{U}_t to nodes.
14.
15 end for
16: Output U_T.
```

Notes on Robust Aggregators

- Compute cost for CWMed/CWTrim is smallest but its sample complexity is unreasonably high making it useless.
- Krum and GM have same sample complexity.
- GM compute cost using Accurate Median 10 is slightly less than Krum but it is an approximate algorithm i.e., we can compute GM with ϵ_{approx} error.
- However, Accurate Median is complex and to our best knowledge has no known experimental results.
- In practice, Weiszfeld's algorithm¹¹ is used to approximate GM.
 Weiszfeld's algorithm is known to converge, but the number of iterations is not specified.

¹⁰Cohen et al., Geometric median in nearly linear time

 $^{^{11}\}mathrm{Endre}$ Weiszfeld, Sur le point pour lequel la somme des distances den points donnés est minimum

Experiments

Figure 1: We compare Krum-AltGDmin, GM-AltGDmin, and CWMedian-AltGDmin for the different problems under the Reverse Gradient Attack.

Figure 2: Heterogeneity Effect: $SD_F(U_t, U^*)$ vs Iteration t with n=200, q=1000, r=4, L=10, $L_{byz}=2$, p=0.4, Reverse Gradient Attack and using Krum

Thank You!

Questions?