Let A be an $n \times n$ real matrix. The "Power Method" refers to the following iterative scheme

$$x_{n+1} = Ax_n/\|Ax_n\|_2$$
 starting with $x_0 \neq 0$

(assuming Ax_n never vanishes). The "QR Algorithm" refers to the following iterative scheme

$$A_{n+1} = R_n Q_n$$
 where $A_n = Q_n R_r$ starting with $A_0 = A$,

 Q_n is orthogonal and R_n is upper triangular.

Problem 1.

(a) By hand calculations find out what happens when you apply the Power Method and the QR Algorithm to the matrix

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] .$$

Briefly explain your results.

(b) By hand calculations find out what happens when you apply the Power Method and the QR Algorithm to the matrix

$$A = \left[\begin{array}{cc} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{array} \right] .$$

Briefly explain your results.

Problem 2.

- (a) Write a small program that implements the Power Method.
- (b) Write a small program that implements the QR Algorithm. For this task you may call a system routine that generates the QR decomposition of an $n \times n$ matrix.
- (c) Apply the programs you wrote in (a) and (b) to the symmetric, tridiagonal, 10×10 matrix A, given by $a_{ii} = 2$, i = 1, ..., 10 and $a_{ii-1} = -1$, i = 2, ..., 10.
- (d) Apply the programs you wrote in (a) and (b) to the symmetric, full, 10×10 matrix A, given by $a_{ii} = 2$, i = 1, ..., 10 and $a_{ij} = -1/(i+j)$ for all entries with $j \neq i$.
 - (e) Briefly describe the differences and similarities between the results in (c) and (d).