Social Network Analysis: Node and Graph Level Statistics Part 1

EPIC - SNA, Columbia University

Zack W Almquist

June 13th, 2018

University of Minnesota

Graph Level Indicies

References and Places for More Information

Introduction to classic Social Network Metrics (Positional or Node-level indices)

- Node-level index: a real- valued function of a graph and a vertex
 - Purely structural NLIs depend only on unlabeled graph properties
 - I.e., f(v, G) → ℜ
 - Invariant to node relabeling
 - Covariate-based NLIs use both structural and covariate properties
 - I.e., $f(v, G, X) \rightarrow \Re$
 - Not labeling invariant

- Primary uses:
 - Quantify properties of individual positions
 - Describe local neighborhood
- Several common families:
 - Centrality
 - Ego-net structure
 - Alter covariate indices
- Centrality is the most prominent, and our focus today/lecture

Centrality

- Returning to the core question: how do individual positions vary?
- One manner in which positions vary is the extent to which they are "central" in the network
 - Important concern of social scientists (and junior high school students)
- Many distinct concepts
 - No one way to be central in a network many different kinds of centrality!
 - Different types of centrality aid/hinder different kinds of actions
 - Being highly central in one respect doesn't always mean being central in other respects (although the measures generally correlate)

Types of Centrality Measures

- One attempted classification by Koschutzki et al. (2005):
 - Reach: Centrality based on ability of ego to reach other vertices
 - Degree, closeness
 - Flow Mediation: Centrality based on quantity/weight of walks passing through ego
 - Stress, betweenness
 - Vitality: Centrality based on effect of removing ego from the network
 - Flow betweenness (oddly), cutpoint status
 - <u>Feedback</u>: Centrality of ego defined as a recursive function of alter centralities
 - Eigenvector centrality, Bonacich Power

Degree

- Degree: number of direct ties
 - Overall activity or extent of involvement in relation
 - High degree positions are influential, but also may be subject to a great deal of influence from others
- Formulas:
 - Degree (undirected):

$$d(i,Y) = \sum_{j=1}^{N} Y_{ij}$$

Indegree: $d_i(i, Y) = \sum_{j=1}^N Y_{ji}$ Outdegree: $d_o(i, Y) = \sum_{j=1}^N Y_{ij}$

Review: Shortest Paths

- A shortest path from i to j is called an i, j geodesic
 - Can have more than one (but all same length, obviously)
 - The length of an i, j geodesic is called the geodesic distance from i to j

Directed Network
3 5
4

	1	2	3	4	5
1	0.00	2.00	1.00	2.00	2.00
2	2.00	0.00	1.00	1.00	2.00
3	1.00	1.00	0.00	1.00	1.00
4	2.00	1.00	1.00	0.00	2.00
5	2.00	2.00	1.00	2.00	0.00

Betweenness

- Betweenness: tendency of ego to reside on shortest paths between third parties
 - Quantifies extent to which position serves as a bridge
 - High betweenness positions are associated with "broker" or "gatekeeper" roles; may be able to "firewall" information flow
- Formula

$$b(i, Y) = \sum_{j \neq i} \sum_{k \neq l} \frac{g'(j, k, l)}{g(j, k)}$$

Where g(j, k) is the number of j, k geodesics, g'(j, k, i) is the number of j, k geodesics including i

Closeness

- Closeness: ratio of minimum distance to other nodes to observed distance to other nodes
 - Extent to which position has short paths to other positions
 - High closeness positions can quickly distribute information, but may have limited direct influence
 - Limitation: not useful on disconnected graphs (may need to symmetrize directed graphs, too)
- Formula

$$c(i, Y) = \frac{N-1}{\sum_{j=1}^{N} D(i, j)}$$

Where D(I,j) is the distance from i to j

 $\begin{array}{ll} \text{Carter Butts. Social Network Methods. University of California, Irvine.} & 10 \end{array}$

Classic Centrality Measures Compared

Top 3 by Degree

- 1: Node 3
- 2: Nodes 4 and 6
 - 3: Nodes 2 and 5

Top 3 by Closeness

- 1: Nodes 4 and 6
- 2: Nodes 3 and 8
- 3: Nodes 2 and 5

Top 3 by Betweenness

- 1: Node 8
- 2: Nodes 4 and 6
- 3: Node 9

Classic Centrality Measures Compared

Relatedness of Centrality Indices

- Centrality indices are strongly correlated in practice
- Simple example: total degree versus "complex" NLIs
 - Squared correlations for sample UCINET data sets
 - Some diversity, but usually accounts for majority of variance
 - Theoretical insight: if you can capture degree, you can capture many other aspects of social position

Carter Butts. Social Network Methods. University California, Irvine.

Relating NLIs to Vertex Covariates

- Common question: are NLIs related to non-structural covariates?
 - Centrality to power or influence
 - Constraint to advancement
 - Diversity to attainment

"Linear" Permutation Tests

- Simple, nonparametric test of association between vectors
 - Sometimes called "linear" or "vector" permutation test (or monte carlo test)
 - Tests marginal association against exchangeability null (independence conditional on marginal distributions)
- Null interpretation: "musical chairs" model
 - If we randomly switched the positions of people in the network (leaving structure as-is), what is the chance of observing a similar degree of association?

- Simple, nonparametric test of
 Monte Carlo procedure:
 - Let $x_{obs} = (f(v_1, G), ..., f(v_N, G))$ be the observed NLI vector, w/covariate vector y
 - Let $t_{obs} = s(x_{obs}, y)$
 - For i in $1, \ldots, n$
 - Let $x^{(0)}$ be a random permutation of x_{obs}
 - Let $t^{(i)} = s(x^{(i),y})$
 - Estimated p-values:
 - One-seided
 - $\Pr(t^{(i)} \leq t_{obs}) \approx \sum_{i} I(t^{(i)} \leq t_{obs})/n$
 - $\Pr(t^{(i)} \geq t_{obs}) \approx \sum_{i} I(t^{(i)} \geq t_{obs})/n$
 - Two-sided
 - $\Pr(|t^{(i)}| \ge |t_{obs}|) \approx \sum_{i} I(|t^{(i)}| \ge |t_{obs}|)/n$

Understanding the Null Model

We Ask: "Is the observed relationship extreme compared to what we would expect to see, if assignment to positions were independent of the covariate?"

Texas SAR EMON Example

- Question: do organizations in constant communication w/many alters end up more/less prominent in the decision-making process?
 - Measure (s): correlation of decision rank score (y) with degree in confirmed "continuous communication" network (x_{obs})
 - Null: no relationship between degree and decision making
 - Alternative: decision making has linear marginal relationship w/degree

Results

• $t_{obs} = 0.86$; $\Pr(|t^{(i)}| \ge |t_{obs}|) \approx 3e - 5$

Carter Butts. Social Network Methods. University California, Irvine.

NLIs as Covariates

- NLIs can also be used as covariates (e.g., in regression analyses)
 - Modeling assumption: position properties predict properties of those who hold them
 - Conditioning on NLI values, so dependence doesn't matter (if no error in G)
 - NLIs as dependent variables are much more problematic; we'll revisit this problem when we discuss ERGs

- Things to keep in mind....
 - Make sure that your theory really posits a direct relationship w/the NLI
 - NLI distributions could be quite skewed or irregular; be sure this makes sense (e.g., via analysis of residuals)
 - Multiple NLIs may be strongly correlated; may not be able to distinguish among related measures in practice

Graph Level Indicies

Graph-Level Properties

- Earlier, we discussed the notion of node-level indices (mainly centrality)
 - Dealt with position of the individual within the network
- Today, we will focus on properties at the graph level
 - Graph-level index: $f(v, G) \rightarrow \Re$
 - Describes aggregate features of structure as a whole
- Provide complementary insight into social structure
 - Node-level properties tell you who's where, but graph-level properties provide the broader context

Review Density

- Density: fraction of possible edges which are present
 - Probability that a given graph edge is in the graph
- Formulas:

undirected <- rgraph(10, mode = "graph")

```
Undirected: \delta = \frac{2\sum_{i=1}^{N}\sum_{j=i}^{N}Y_{ij}}{N(N-1)}
Directed: \delta = \frac{2\sum_{i=1}^{N}\sum_{j=1}^{N}Y_{ij}}{N(N-1)}
```

R Code

```
directed <- rgraph(10, mode = "digraph")
gden(undirected, mode = "graph")
[1] 0.4222222
gden(directed, mode = "digraph")
```

[1] 0.5222222

Size, Density, and Mean Degree

- Important fact: size, density, and mean degree are intrinsically related
 - Formally, $d_m = \delta(N-1)$ [I.e., mean degree = density times size-1]
 - Also, $\delta = d_m/(N-1)$ [I.e., density = mean degree over size-1]
- Simple fact, with non-obvious implications
 - If mean degree fixed, density falls with 1/group size
 - To maintain density, have to increase degree linearly, but actors can only support so many ties!
 - Thus, growing networks become increasingly sparse over time
 - Durkheim, Parsons, etc: modern social order depends on/produces norms of generalized exchange, since only tiny fraction of person can be directly related

Illustration: Mean Degree Constancy and Density Decline

```
library(ggplot2)
library(gridExtra)
library(networkdata)
data(addhealth)
data <- data.frame(size = sapply(addhealth, network.size), density = sapply(addhealth, gden))
data$meandegree <- data$density * (data$size - 1)

p1 <- ggplot(data, aes(size, density)) + geom_point() + geom_smooth()
p2 <- ggplot(data, aes(size, meandegree)) + geom_point() + geom_smooth()
grid.arrange(p1, p2, ncol = 1)</pre>
```


Beyond Density: the Dyad Census

 Dyad census: a count of the number of mutual, asymmetric and null dyads in a network

- Mutual: (i,j) and (j,i)
- Asymmetric: (i,j) or (j,i), but not both
- Null: neither (i, j) nor (j, i)
- Traditionally written as (M, A, N)
- Used as "building block"
 - M + A + N = Number of dyads
 - 2M + A = Number of edges
 - (M + A/2)/(M + A + N) Density

Reciprocity

- Reciprocity: tendency for relations to be symmetric
- Several notions:
 - Dyadic: probability that any given dyad is symmetric (mutual or null)

$$\frac{M+N}{M+A+N}$$

 Edgewise: probability that any given edge is reciprocated

$$\frac{2M}{2M+A}$$

	Mut	Asym	Null
1	19.00	64.00	22.00

Reachability

- Reachability graph
 - Digraph, R, based on G such that (i, j) is an edge in R iff there exists an i, j path in G
 - If G is undirected or fully reciprocal, R will also be fully reciprocal
 - Intuitively, an edge in R connects vertices which are connected in G
 - Strong components of G
 (including cycles) form cliques
 in R

Carter Butts. Social Network Methods. University of Ca Irvine.

Hierarchy

- Hierarchy: tendency for structures to be asymmetric
- As with reciprocity, many notions; for instance...
 - Dyadic Hierarchy: 1- (Dyadic Reciprocity)
 - Intuition: extent to which dyads are asymmetric
 - Krackhard Hierarchy: 1 M/(M + A) in Reachability Graph
 - Intuition: for pairs which are in a contact, what fraction are asymmetric?

Reciprocity

0.15	Krackhardt

0.83

Centralization

- Centralization: extent to which centrality is concentrated on a single vertex
- Definition dut to Freeman (1979):

$$C(G) = \sum_{i=1}^{N} \left(\max_{v} c(v, G) - c(i, G) \right)$$

- Defined for any centrality measure
- Often used with degree, betweenness, closeness, etc.
- Most centralized structure usually star network
 - True for most centrality measures

RAHUUHI NELWUK

Centralization Versus Hierarchy

- Aren't centralization and hierarchy the same thing?
- No! Two very different ideas:
 - Hierarchy: asymmetry in interaction
 - Centralization: inequality in centrality
- Can have centralized mutual structures, hierarchical decentralized structures

Centralization and Team Performance

 Bavelas, Leavitt and others studied work teams with four structural forms:

- Performance generally highest in centralized groups
 - Star, "Y" took least time, made fewest errors, used fewest messages
- Satisfaction generally highest in decentralized groups
 - Circle>Chain>"Y">Star (but central persons had fun!)
- A lesson: optimal performance ≠ optimal satisfaction ...

References and Places for More

Information

References and Places for More Information i

Graph Level Indicies

References and Places for More Information