- 1. True False The value of a convergent two sided improper integral $\int_{-\infty}^{\infty} f(x)dx$ depends on where we split the integral as a sum of one sided integrals $\int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$.
- 2. True False For any odd function, we have $\int_{-\infty}^{\infty} f(x)dx = 0$.
- 3. True False If $0 \le f(x) \le g(x)$, then $\int_1^\infty \frac{1}{g(x)} dx \le \int_1^\infty \frac{1}{f(x)} dx$.
- 4. Find the following integrals or say how they diverge:
 - (a) $\int_{5}^{\infty} \frac{1}{x^3} dx.$
 - (b) $\int_0^\infty e^{-x} dx$
 - (c) $\int_{\pi}^{\infty} \cos(x) dx.$
 - (d) $\int_{-\infty}^{1} \frac{1}{x} dx.$
 - (e) $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx.$
- 5. Use the comparison test to determine whether $\int_0^\infty \frac{1}{1+e^x} dx$ converges.
- 6. True False To use partial fractions, we write $\frac{x^2}{(x-1)(x+1)}$ as $\frac{A}{x-1} + \frac{B}{x+1}$.
- 7. Use partial fractions to calculate each integral:
 - (a) $\int \frac{10}{(x+1)(x^2-1)} dx$.
 - (b) $\int \frac{2x+1}{x^2-5x+6} dx$.
 - (c) $\int \frac{x-1}{x^2+2x+1} dx$.
- 8. Set up the partial fractions decomposition of $\frac{1}{(x^2-1)(x^2+1)^2}$. You do not need to solve for the coefficients.