Improving Flow level Fairness and Interactivity in WLANs using Size-based Scheduling Policies

Authors by
Guillaume Urvoy-Keller and Andre-Luc Beylot
Institut Eurecom

Content

- Why slow Performance in 802.11?
- Size based scheduling in IP layer
- Experiment environment
- Evaluation & Comparison between FIFO,LAS,LASACK
- Conclusion

Another problem: TCP over WLAN (cont.)

- Wireless Station Bandwidth fluctuate over time
- Performance is below than the traditional Ethernet

- Wireless Station Bandwidth fluctuate over time
- Performance is below than the traditional Ethernet
- Competition takes place between Uploads (Data streams) and Downloads (ACK streams)

- Wireless Station Bandwidth fluctuate over time
- Performance is below than the traditional Ethernet
- Competition takes place between Uploads (Data streams) and Downloads (ACK streams)
- Unfairness in TCP connections (Shared medium and Limited Resources in AP)

- Wireless Station Bandwidth fluctuate over time
- Performance is below than the traditional Ethernet
- Competition takes place between Uploads (Data streams) and Downloads (ACK streams)
- Unfairness in TCP connections (Shared medium and Limited Resources in AP)

Solution

Resolve unfairness by introducing size based scheduling (LASACK) policies at the IP layer of the Access Point(AP)

Size Based Scheduling

- Flow Level Fairness and InteractivitY is abbreviated as FLF and IY
- FIFO FLF (Bad), IY (Bad) (non-size based scheduling)
- LAS FLF (Average) ,IY (Good)
- LASACK FLF (Good) ,IY (Good)
- Implemented in IP layer

Scheduling Policy

- LAS TCP data priority which is inversely proportional to the number of bytes sent so far by the corresponding connection
 - LAS is not good for 5%(large data) flow distributions
- LASACK TCP ack priority equal to the number of bytes acknowledged by this packet

Experiment

- 10 wired and wireless stations serviced by a single access point.
- Protocol in wireless IEEE 802.11b (11Mbps)
- RTS/CTS disabled because of Line of Sight
- Qualnet Simulator to measure performance

Upload, Download, Buffersize Reln

Figure 2: Ratio of upload to download throughputs w.r.t. buffer size at the Access point, under the FIFO policy

FIFO (CWnd,RTT)

Figure 1: Average RTTs (left) and Cwnd(right) w.r.t. buffer size at the Access point, under the FIFO policy

LAS (CWnd,RTT)

Figure 5: RTTs (left) and Cwnd(right) w.r.t. buffer size at the Access point, under LAS

LASACK (CWnd,RTT)

Figure 6: RTTs (left) and Cwnd(right) w.r.t. buffer size at the Access point, under LASACK

Upload/Download Competition

Figure 3: Ratio of upload to download throughputs w.r.t. buffer size at the Access point

Compare Aggregate throughputs

Figure 4: Aggregate throughputs w.r.t. buffer size at the Access point

Figure 13: Download traffic only - Input load of 2 Mbit/s

Figure 14: Download traffic only - Input load of 5 Mbit/s

Figure 19: LASACK vs FIFO for a total input load of 3 Mbits/s

Figure 20: LASACK vs FIFO for a total input load of 5 Mbits/s

Conclusion

- LASACK improve fairness under all scenarios
- LASACK fulfills interactivity in the load increase
- But this paper does not care about
 - > Hidden node problem
 - Mobility of users
 - Variations of channel quality due to the environment
- TCP flows are subject to wide variations in Ad-Hoc and Wireless mesh networks

Querries?