TRIGONOMETRY

Chapter 01

2nd secondary

SISTEMAS DE MEDICIÓN ANGULAR I

SISTEMA SEXAGESIMAL

Fuente: YT El Show de aprender

ÁNGULO TRIGONOMÉTRICO

Es aquel ángulo que se genera por la rotación de un rayo alrededor de un punto fijo llamado vértice, desde una posición inicial hasta otra posición final.

¡ Interesante!

- Al punto O se le denomina <mark>vértice</mark>.
- Al rayo en posición inicial se le denomina lado inicial.
- Al rayo en posición final se le denomina lado final.

TRIGONOMETRÍA

CARACTERÍSTICAS DEL ÁNGULO TRIGONOMÉTRICO

Su medida es positiva si el giro se efectúa en sentido antihorario ($\alpha > 0$)

Su medida es negativa si el giro se efectúa en sentido horario (\beta < 0)

TRIGONOMETRÍA SACO OLIVEROS

SISTEMAS DE MEDICIÓN ANGULAR

SEXAGESIMAL (inglés)

Unidades de medida:

Segundo:

Equivalencias:

$$1^{\circ} = 60'$$

$$1' = 60''$$

$$1^{\circ} = 3600''$$

Nota:

$$\mathbf{a}^{\circ}\mathbf{b}'\mathbf{c}'' = \mathbf{a}^{\circ} + \mathbf{b}' + \mathbf{c}''$$

Donde: b, c < 60

$$180^{\circ} = 179^{\circ} + 59' + 60''$$

$$180^{\circ} = 179^{\circ} 59' 60''$$

REGLAS DE CONVERSIÓN

Para convertir medidas angulares sexagesimales de una unidad a otra, se utiliza :

TRIGONOMETRÍA SACO OLIVEROS

Convierte los siguientes ángulos a minutos sexagesimales:

RESOLUCIÓN

Recordar:

Multiplicamos por 60 a cada valor numérico angular :

I)
$$12^{\circ} = 12(60') = 720'$$

II)
$$25^{\circ} = 25(60') = 1500'$$

III)
$$31^{\circ} = 31(60') = 1860'$$

Convierte los siguientes ángulos a grados sexagesimales:

RESOLUCIÓN

Recordar:

Dividimos cada valor numérico angular entre 60:

I)
$$480' = \left(\frac{480}{60}\right)^0 = 8^\circ$$

II)
$$540' = \left(\frac{540}{60}\right)^0 = 9^\circ$$

III)
$$720' = \left(\frac{720}{60}\right)^0 = 12^\circ$$

Convierte los siguientes ángulos a minutos sexagesimales:

$$\alpha = 5^{\circ} 20'$$
 $\beta = 12^{\circ} 15'$

RESOLUCIÓN

Recordar:

En el sistema sexagesimal :

$$lpha = 5^{\circ} 20' = 5^{\circ} + 20'$$

$$= 5(60') + 20'$$

$$= 300' + 20'$$

$$\alpha = 320'$$

$$eta = 12^{\circ} 15' = 12^{\circ} + 15'$$

$$= 12(60') + 15'$$

$$= 720' + 15'$$

$$\beta = 735'$$

Calcule
$$\alpha$$
 + β , si $\alpha = 32^{\circ} 23' 46''$
$$\beta = 13^{\circ} 45' 22''$$

Importante: Primero operamos por separado los grados, minutos y segundos sexagesimales.

Recordar:

$$60'' = 1'$$

$$60' = 1^{\circ}$$

RESOLUCIÓN

$$\alpha = 32^{\circ} 23' 46'' + \beta = 13^{\circ} 45' 22''$$

$$\alpha + \beta = 45^{\circ} 68' 68'' + 1' - 60'' + 1^{\circ} - 60'$$

$$\alpha + \beta = 46^{\circ} 9' 8''$$

Efectúe:

$$\mathbf{E} = \frac{\mathbf{1}^{\circ} \, \mathbf{2}'}{\mathbf{2}'} + \frac{\mathbf{2}^{\circ} \, \mathbf{3}'}{\mathbf{3}'} + \frac{\mathbf{3}^{\circ} \, \mathbf{4}'}{\mathbf{4}'}$$

RESOLUCIÓN

$$E = \frac{1^{\circ} \, 2'}{2'} + \frac{2^{\circ} \, 3'}{3'} + \frac{3^{\circ} \, 4'}{4'}$$
 Convertimos todo a minutos sexagesimales :
$$E = \frac{1(60') + 2'}{2'} + \frac{2(60') + 3'}{3'} + \frac{3(60') + 4'}{4'}$$

$$E = \frac{60' + 2'}{2'} + \frac{120' + 3'}{3'} + \frac{180' + 4'}{4'}$$

Recordar:

En el sistema sexagesimal :

x 60

MINUTOS

$$E = \frac{62'}{2'} + \frac{123'}{3'} + \frac{184'}{4'}$$

$$E = 31 + 41 + 46$$

$$E = 118$$

Luis tiene dos relojes de pared, los cuales se han detenido a diferentes horas del día, tal como muestra la figura.

$$\beta = 84^{\circ}24'$$

¿Cuál es la suma de dichos ángulos ?

RESOLUCIÓN

Recordar:

En el Sistema Sexagesimal:

Sumamos α con β :

$$\alpha = 62^{\circ} 36' + \beta = 84^{\circ} 24'$$

$$\alpha + \beta = 146^{\circ}60'$$

$$\alpha + \beta = 146^{\circ} + 1^{\circ}$$

$$\therefore \alpha + \beta = 147^{\circ}$$

Un profesor ha planteado un reto a cuatro alumnos : Jesús, Daniel, Ana y Elizabeth.

El reto consiste en calcular

m – 2n + p , si a partir del gráfico la medida del ángulo α equivale a m° n' p"

Los alumnos contestaron:

> Jesús: 31

➤ Daniel : -11

> Ana: 32

➤ Elizabeth : -10

¿Quién contestó correctamente?

RESOLUCIÓN

Según la figura:

$$\alpha + 45^{\circ} 30' 30'' + 56^{\circ} 40' 40'' = 180^{\circ}$$
 $\alpha + 101^{\circ} 70' 70'' = 180^{\circ}$
 $+ 1' - 60''$
 $+ 1^{\circ} - 60'$

$$\alpha + 102^{\circ} 11' 10'' = 180^{\circ}$$

$$\alpha = 180^{\circ} - 102^{\circ} 11' 10''$$

Recordar:

$$180^{\circ} = 179^{\circ} \, 59' \, 60''$$

$$\alpha = 179^{\circ} 59' 60'' - 102^{\circ} 11' 10''$$
 $\alpha = 77^{\circ} 48' 50'' = m^{\circ} n' p''$

Luego:

$$m - 2n + p = 77 - 2 (48) + 50$$

 $m - 2n + p = 77 - 96 + 50$
 $m - 2n + p = 31$

: Jesús contestó correctamente.

