Chapter 3. (Part 2)

Dynamic Programming

경북대학교 배준현 교수

(joonion@knu.ac.kr)

Contents

- 3.1 The Binomial Coefficient
- 3.2 Floyd's Algorithm for Shortest Paths
- 3.3 Dynamic Programming and Optimization Problem
- 3.4 Chained Matrix Multiplication
- 3.5 Optimal Binary Search Trees
- 3.6 The Traveling Salesperson Problem

Dynamic Programming

카탈랑 수: Catalan number

경우의 수를 구하는 여러 조합 문제에서 자주 등장하는 카탈랑 수를 통해 비슷한 DP를 연습해보자.

카탈랑 수가 등장하는 조합 문제:

- 괄호 문제: 괄호를 올바르게 짝을 맞추는 경우의 수 문제
- BST 문제: 이진 검색 트리의 경우의 수 문제
- 스택 순열 문제: 스택을 통과하여 만들 수 있는 순열의 경우의 수 문제
- 연쇄 행렬 곱셈 문제: 행렬의 곱셈 순서를 만들 수 있는 경우의 수 문제
- 삼각형 분할 문제: n+2개의 정점으로 이루어진 다각형을 삼각형으로 분할하는 방법의 수

Dynamic Programming

$$C_0 = 1$$

$$C_n = \sum_{i=0}^{n-1} C_i \times C_{n-1-i}$$
, $n \ge 1$

카탈랑 수 C_n 을 1,000,000,007로 나눈 값을 구하시오.

- 1. 재귀로 풀기
- 2. 메모이제이션 적용하기
- 3. 태뷸레이션 적용하기
- 4. 일반항 찾아보기

$$C_0 = 1$$
 $C_1 = C_0 \times C_0 = 1$
 $C_2 = C_0 \times C_1 + C_1 \times C_0 = 2$
 $C_3 = C_0 \times C_2 + C_1 \times C_1 + C_2 \times C_0 = 5$
 $C_4 = C_0 \times C_3 + C_1 \times C_2 + C_2 \times C_1 + C_3 \times C_0 = 14$
 $C_5 = 42$

. . .

$$C_{10} = 16,796$$

• • •

$$C_{20} = 6,564,120,420$$

• • •

$$C_{50} = 1,978,261,657,756,160,653,623,774,456$$

• • •

- The *Multiplication* of *Chained Matrices*:
 - Suppose we want to multiply a 2×3 matrix and a 3×4 matrix:

$$-\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 29 & 35 & 41 & 38 \\ 74 & 89 & 104 & 83 \end{bmatrix}$$

- The resultant matrix is a 2×4 matrix.
- If we use the standard method of multiplying matrices
 - it takes *three* elementary *multiplications*.
 - For 29 in the product: 3 multiplications $(1 \times 7 + 2 \times 2 + 3 \times 6)$.
- Because there $2 \times 4 = 8$ entries in the product,
 - the *total number* of elementary multiplication is $2 \times 3 \times 4 = 24$.

- The number of *elementary multiplications*:
 - In general, to multiply an $i \times j$ matrix with a $j \times k$ matrix,
 - the number of elementary multiplications is $i \times j \times k$.
 - Consider the multiplication of the following four matrices:

```
- A \times B \times C \times D
-(20 \times 2) (2 \times 30) (30 \times 12) (12 \times 8)
```

- Matrix multiplication is an associative operation,
 - meaning the *order* in which we multiply *does not matter*.
 - for example, A(B(CD)) = (AB)(CD).

- The number of elementary multiplications:
 - There are *five different orders* with different number multiplications.

```
- A(B(CD)): 3,680
```

-(AB)(CD): 8,880

- A((BC)D): 1,232 (optimal order)

-((AB)C)D: 10,320

-(A(BC))D: 3,120

- *Our goal* is to develop an algorithm that
 - determines the *optimal order* for multiplying *n* chained matrices.

- The *Brute-Force* Approach:
 - Consider *all possible orders* and *take* the *minimum*.
 - We will show that this algorithm is at least exponential-time.
 - For a given n matrices: A_1, A_2, \dots, A_n ,
 - let t_n be the number of different orders.
 - Then, $t_n \ge t_{n-1} + t_{n-1} = 2t_{n-1}$, and $t_2 = 1$.
 - Therefore, $t_n \ge 2^{n-2}$. (at least exponential)

- Does the *principle of optimality* apply?
 - Show that the *optimal order* for multiplying *n* matrices includes
 - the *optimal order* for multiplying any *subset* of the *n* matrices.
 - Then, we can use dynamic programming to construct a solution.

$$A_1\left(\left(\left(\frac{(A_2A_3)A_4}{A_5}\right)A_5\right)A_6\right)$$

- If this order is *optimal* for multiplying $A_1A_2A_3A_4A_5A_6$,
- then the *optimal order* for multiplying $A_2A_3A_4$ is this.

$$\left((A_2 A_3) A_4 \right)$$

- Multiplying A_{k-1} times A_k :
 - The number of columns in A_{k-1}
 - must equal to the number of rows in A_k .
 - If we let d_0 be the number of rows in A_1
 - and d_k be the number of columns in A_k for $1 \le k \le n$,
 - then, the dimension of A_k is $d_{k-1} \times d_k$.

- Creating a sequence of arrays:
 - For $1 \le i \le j \le n$, let

$$M[i][j] = \begin{cases} minimum \ number \ \text{of } multiplications \ \text{needed to multiply} \\ A_i \ \text{through } A_j, \ \text{if } i < j. \\ 0, \ \text{if } i = j. \end{cases}$$

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$$

(5 × 2) (2 × 3) (3 × 4) (4 × 6) (6 × 7) (7 × 8)
 $d_0 \ d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6$

- To multiply A_4 , A_5 , and A_6 , we have two orders:
 - $(A_4A_5)A_6$: $d_3d_4d_5 + d_3d_5d_6 = 392$
 - $A_4(A_5A_6)$: $d_4d_5d_6 + d_3d_4d_6 = 528$
- Therefore, M[4][6] = minimum(392, 528) = 392.

- Establish the recursive property:
 - The *optimal order* for multiplying *six* matrices
 - must have *one of these factorizations*:
 - 1. $(A_1)(A_2A_3A_4A_5A_6)$
 - $(A_1A_2)(A_3A_4A_5A_6)$
 - 3. $(A_1A_2A_3)(A_4A_5A_6)$
 - 4. $(A_1A_2A_3A_4)(A_5A_6)$
 - 5. $(A_1A_2A_3A_4A_5)(A_6)$
 - Of these *factorizations*,
 - the one that *yields* the *minimum* number of multiplications
 - must be the optimal one.

- Establish the recursive property:
 - The number of multiplications for the *k*th factorization
 - is the *minimum number* needed to *obtain each factor*
 - *plus* the *number* needed to *multiply two factors*.
 - that is, $M[1][k] + M[k+1][6] + d_0d_kd_6$.
 - We have established that
 - $M[1][6] = \min_{1 \le k \le 5} (M[1][k] + M[k+1][6] + d_0 d_k d_6).$
 - We can *generalize* this result into:
 - $M[i][j] = \min_{i \le k \le j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$, if i < j.
 - -M[i][i] = 0.


```
M[i][i] = 0 for 1 \le i \le 6
M[1][2] = \min_{1 \le k \le 1} (M[1][k] + M[k+1][2] + d_0 d_k d_2)
           = M[1][1] + M[2][2] + d_0d_1d_2 = 0 + 0 + 5 \times 2 \times 3 = 30.
M[1][3] = \min_{1 \le k \le 2} (M[1][k] + M[k+1][3] + d_0 d_k d_3)
           = minimum(M[1][1] + M[2][3] + d_0d_1d_3, M[1][2] + M[3][3] + d_0d_2d_3)
           = minimum(0 + 24 + 5 \times 2 \times 4, 30 + 0 + 5 \times 3 \times 4) = 64.
M[1][4] = \min_{1 \le k \le 3} (M[1][k] + M[k+1][4] + d_0 d_k d_4)
           = minimum(M[1][1] + M[2][4] + d_0d_1d_4, M[1][2] + M[3][4] + d_0d_2d_4, M[1][3] + M[4][4] + d_0d_3d_4)
           = minimum(0 + 72 + 5 \times 2 \times 6, 30 + 72 + 5 \times 3 \times 6, 64 + 0 + 5 \times 4 \times 6) = 132.
M[1][6] = 348.
```


ALGORITHM 3.6: Minimum Multiplications

```
int minmult(int n, int d[], int P[][], int M[][]) {
    int i, j, k, diagonal;
    for (i = 1; i <= n; i++)
        M[i][i] = 0;
    for (diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (i = 1; i <= n - diagonal; i++) {
             j = i + diagonal;
            M[i][j] = \min_{i < k < i-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j);
             P[i][j] = a value of k that gave the minimum;
    return M[1][n];
```



```
void minmult(int n, vector<int>& d, matrix t& M, matrix t& P)
    for (int i = 1; i <= n; i++)
        M[i][i] = 0;
    for (int diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (int i = 1; i <= n - diagonal; i++) {
            int j = i + diagonal, k;
            M[i][j] = minimum(i, j, k, d, M);
            P[i][j] = k;
```



```
int minimum(int i, int j, int& mink, vector<int>& d, matrix_t& M)
   int minValue = INF, value;
   for (int k = i; k \le j - 1; k++) {
       value = M[i][k] + M[k + 1][j] + d[i - 1] * d[k] * d[j];
        if (minValue > value) {
           minValue = value;
           mink = k;
   return minValue;
```


- Time Complexity of Algorithm 3.6 (Every-Case)
 - Basic Operation: the *instructions* executed for each value of *k*.
 - Input Size: n, the number of matrices to be multiplied.
 - Since we have a nested loop,
 - the number of passes through the k loop is
 - j 1 i + 1 = i + diagonal 1 i + 1 = diagonal.
 - the total number of times that the basic operation is done equals

$$\sum_{\substack{diagonal=1}}^{n-1} [(n-diagonal) \times diagonal] = \frac{n(n-1)(n+1)}{6} \in \Theta(n^3)$$

• Obtaining the *Optimal Order* from the array P.

P	1	2	3	4	5	6	
1		1	1	1	1	1	
2			2	3	4	5	
3				3	4	5	
4					4	5	
5						5	
6							

- P[1][6] = 1: P[1][1] & P[2][6]
- P[2][6] = 5: P[2][5] & P[6][6]
- P[2][5] = 4: P[2][4] & P[5][5]
- P[2][4] = 3: P[2][3] & P[4][4]
- P[2][3] = 2: P[2][2] & P[3][3]

- $\bullet (A_1 A_2 A_3 A_4 A_5 A_6)$
- \bullet (A_1)($A_2A_3A_4A_5A_6$)
- $\bullet (A_1)((A_2A_3A_4A_5)A_6)$
- $\bullet (A_1) \left(\left((A_2 A_3 A_4) A_5 \right) A_6 \right)$
- $\bullet (A_1) \left(\left(((A_2 A_3) A_4) A_5 \right) A_6 \right)$

ALGORITHM 3.7: Print Optimal Order

```
void order(int i, int j, matrix_t& P, string& s)
   if (i == j)
        s += string("A") + to_string(i);
   else {
        int k = P[i][j];
        s += string("(");
        order(i, k, P, s);
        order(k + 1, j, P, s);
        s += string(")");
```


- A binary search tree (BST) is
 - a *binary tree* of items (*keys*) that come from an *ordered* set, such that
 - 1. Each node contains one unique key.
 - 2. The keys in the *left subtree* of a given node
 - are *less than* or *equal to* the key in that node.
 - 3. The keys in the *right subtree* of a given node
 - are *greater than* or *equal to* the key in that node.

- **Optimal** Binary Search Tree
 - Our goal is to organize the keys in a BST so that
 - the *average time* it takes to locate a key is *minimized*.
 - Optimal BST is a tree that is organized in this fashion.
 - This problem is not hard
 - if all keys have the *same probability* of being the *search key*.
 - We are concerned with the case
 - where the keys do **not** have the same probability.
 - We will discuss the case in which
 - it is known that the *search key is* **in** *the tree*.

ALGORITHM 3.8: Search Binary Tree

```
void search(node ptr tree, int keyin, node ptr& p)
    bool found;
    p = tree;
    found = false;
                                            typedef struct node *node ptr;
    while (!found) {
                                            typedef struct node {
        if (p->key == keyin)
                                                 int key;
            found = true;
                                                 node ptr left;
        else if (keyin < p->key)
                                                 node_ptr right;
            p = p \rightarrow left;
                                             } node t;
        else // keyin > p->key
            p = p->right;
```


- Evaluating the search time of a BST
 - The search time is the number of comparisons
 - done by procedure *search* to locate a key.
 - Our goal is to determine a binary search tree
 - for which the *average search time* is *minimal*.
 - Let K_1, K_2, \dots, K_n be the *n* keys in order,
 - and let p_i be the *probability* that K_i is the *search key*.
 - The average search time is $T_{avg} = \sum_{i=1}^{n} c_i p_i$
 - where c_i be the *number of comparisons* needed to find K_i in a given tree.

- An example:
 - n = 3, K = [10, 20, 30], p = [0.7, 0.2, 0.1]

- Finding an Optimal BST
 - by considering all binary search trees.
 - The number of different BSTs with a depth of n-1 is 2^{n-1} .
 - If a BST's depth is n-1,
 - a node can be either to the left or to the right of its parent.
 - It means there are two possibilities at each of those levels.
 - The time complexity of this brute-force approach is *exponential*.

- To apply the Dynamic Programming
 - Suppose that keys K_i through K_i are arranged in a tree
 - that minimizes $\sum_{m=1}^{J} c_m p_m$.
 - We will call such a tree **optimal** for those keys
 - and denote the *optimal value* by A[i][j].
 - Because it takes one comparison to locate a key containing one key,
 - $A[i][i] = p_i$.

- An example:
 - n = 3, K = [10, 20, 30], p = [0.7, 0.2, 0.1], then determine A[2][3].

- A[2][3] = 0.4
 - 1. $1 \times p_2 + 2 \times p_3 = 0.4$ (optimal)
 - 2. $2 \times p_2 + 1 \times p_3 = 0.5$

- Note that the *optimal tree* is
 - the *right subtree* of the optimal tree obtained from the previous tree.
- The *principle of optimality* applies:
 - Any subtree of an optimal tree must be *optimal* for the key in that subtree.

For each key, there is *one additional* comparison at the root.

- Establish the recursive property:
 - The average search time for tree k is
 - $-A[1][k-1]+A[k+1][n]+\sum_{m=1}^{n}p_{m}.$
 - The average search time for the *optimal tree* is given by
 - $A[1][n] = \min_{1 \le k \le n} (A[1][k-1] + A[k+1][n]) + \sum_{m=1}^{n} p_m,$
 - where A[1][0] and A[n+1][n] are defined to be 0.
 - In general,
 - $A[i][j] = minimum_{i \le k \le i} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m$, for i < j.
 - $-A[i][j] = p_i,$
 - -A[i][i-1] = A[i+1][j] = 0.

- Determining an Optimal BST:
 - We proceed by computing *in sequence* the values on *each diagonal*.
 - because A[i][j] is computed
 - from entries in the *i*th row but to the left of A[i][j],
 - and from entries in the jth column but beneath A[i][j].
 - Let an array *R* contain
 - the indices of the keys chosen for the root at each step.
 - R[i][j]: the index of the key in the root of an optimal tree
 - containing the *i*th through the *j*th keys.

ALGORITHM 3.9: Optimal Binary Search Tree

```
void optsearchtree(int n, float p[], float &minavg, int R[][MAX]) {
    int i, j, k, diagonal;
    float A[MAX][MAX];
    for (i = 1; i <= n; i++) {
        A[i][i] = p[i]; A[i][i - 1] = 0;
        R[i][i] = i; R[i][i - 1] = 0;
    A[n + 1][n] = 0;
    R[n + 1][n] = 0;
    for (diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (i = 1; i <= n - diagonal; i++) {
             j = i + diagonal;
            A[i][j] = minimum_{i \le k \le i} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m;
            R[i][j] = a value of k that gave the minimum;
    minavg = A[1][n];
```



```
void optsearchtree(int n, vector<int>& p, matrix t& A, matrix t& R)
    for (int i = 1; i <= n; i++) {
        A[i][i - 1] = 0; A[i][i] = p[i];
        R[i][i - 1] = 0; R[i][i] = i;
    A[n + 1][n] = R[n + 1][n] = 0;
    for (int diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (int i = 1; i <= n - diagonal; i++) {
            int j = i + diagonal;
            A[i][j] = minimum(i, j, k, p, A);
            R[i][j] = k;
```


ALGORITHM 3.10: Build Optimal Binary Search Tree

```
node ptr tree(int i, int j, vector<int>& keys, matrix t& R)
    int k = R[i][j];
   if (k == 0)
        return NULL;
    else {
        node ptr node = create node(keys[k]);
        node->left = tree(i, k - 1, keys, R);
        node->right = tree(k + 1, j, keys, R);
        return node;
```


• An example:

•
$$n = 4, K = [10, 20, 30, 40], p = [3, 3, 1, 1].$$

A	1		3		R	1	2	3	4
1	3	9	11	14	1	1	1	2	2
2		3	5	8	2		2	2	2
3			1	3	3			3	3
4				1	4				4

preorder: 20 10 30 40

inorder: 10 20 30 40

- Time Complexity of Algorithm 3.9:
 - Basic Operation: the instructions executed for *each value of k*.
 - They include a comparison to test for the minimum.
 - Input Size: *n*, the *number of keys*.
 - The control of this algorithm is almost *identical* to Algorithm 3.6.
 - The only difference is that,
 - the basic operation is done diagonal + 1 times.
 - Therefore,

$$T(n) = \frac{n(n-1)(n+4)}{6} \in \Theta(n^3)$$

Any Questions?

