Harnessing RNA-sequencing to study pH responses in the fungal pathogen Cryptococcus neoformans

Calla Telzrow

Alspaugh Laboratory

Duke University Department of Molecular Genetics & Microbiology
High-Throughput Sequencing Course

5/28/2019

Cryptococcosis remains a major problem in resource-limited regions

Cryptococcus neoformans

The Global Burden of Cryptococcal Meningitis

Cryptococcus neoformans is an environmental fungus

Fungal pathogens must adapt to their hosts

Cryptococcus neoformans is an environmental fungus

The Rim pathway is the only characterized alkaline pH-sensing pathway

In alkaline pH, cells undergo changes that cannot be attributed to the Rim pathway

Stains with mutations in genes not involved in the Rim pathway show alkaline pH sensitivity

What Rim-independent pathways regulate the alkaline pH response?

Random mutagenesis

Forward genetic screen to identify mutants with sensitivity to alkaline pH

SRE1

Hannah Brown

SRE1 is involved in sterol homeostasis in fungi

SRE1 is involved in sterol homeostasis in fungi

SRE1 plays a Rim-independent role in alkaline pH-sensing in C. neoformans

How does sterol homeostasis contribute to alkaline pH-sensing?

alkaline pH sensing/response

RNA extraction

RNA-sequencing can be used to identify and understand novel pH-sensing mechanisms

- Sterol and cell membrane synthases
- Polysaccharide and lipid metabolism
- Rim pathway components
- Genes we have not yet investigated
 - other transcription factors
 - cell surface receptors

Hypothesis generators!