Algorithms for Data Science CSOR W4246

Eleni Drinea
Computer Science Department

Columbia University

Insertion sort, efficient algorithms

Outline

- 1 Overview
- 2 A first algorithm: insertion sort
- 3 Analysis of algorithms
- 4 Efficiency of algorithms

Today Algorithms

- 1 Overview
- 2 A first algorithm: insertion sort
- 3 Analysis of algorithms
- 4 Efficiency of algorithms

- ▶ An algorithm is a well-defined computational procedure that transforms the input (a set of values) into the output (a new set of values).
- ▶ The desired input/output relationship is specified by the statement of the **computational problem** for which the algorithm is designed.
- ▶ An algorithm is correct if, for every input, it halts with the correct output.

- ► In this course we are interested in algorithms that are correct and efficient.
- ► Efficiency is related to the resources an algorithm uses: time, space
 - ► How much time/space are used?
 - ► How do they scale as the input size grows?

We will primarily focus on efficiency in running time.

Running time = number of primitive computational steps performed; typically these are

- 1. arithmetic operations: add, subtract, multiply, divide fixed-size integers
- 2. data movement operations: load, store, copy
- 3. control operations: branching, subroutine call and return

We will use pseudocode for our algorithm descriptions.

Today

- 1 Overview
- 2 A first algorithm: insertion sort
- 3 Analysis of algorithms
- 4 Efficiency of algorithms

Sorting

- ▶ **Input:** A list A of n integers x_1, \ldots, x_n .
- ▶ Output: A permutation x'_1, x'_2, \ldots, x'_n of the *n* integers where they are sorted in non-decreasing order, i.e., $x'_1 \leq x'_2 \leq \ldots \leq x'_n$

- ▶ **Input:** A list A of n integers x_1, \ldots, x_n .
- ▶ **Output:** A permutation x'_1, x'_2, \ldots, x'_n of the *n* integers where they are sorted in non-decreasing order, i.e., $x'_1 \leq x'_2 \leq \ldots \leq x'_n$

Example

▶ Input: n = 6, $A = \{9, 3, 2, 6, 8, 5\}$

Sorting

- ▶ **Input:** A list A of n integers $x_1, ..., x_n$.
- ▶ Output: A permutation x'_1, x'_2, \ldots, x'_n of the *n* integers where they are sorted in non-decreasing order, i.e., $x'_1 \leq x'_2 \leq \ldots \leq x'_n$

Example

- ▶ Input: n = 6, $A = \{9, 3, 2, 6, 8, 5\}$
- Output: $A = \{2, 3, 5, 6, 8, 9\}$

What data structure should we use to represent the list?

Array: collection of items of the same data type

- ightharpoonup allows for $random\ access$
- ▶ "zero" indexed in C++ and Java

▶ **Input:** A list A of n integers x_1, \ldots, x_n .

▶ **Output:** A permutation x'_1, x'_2, \ldots, x'_n of the *n* integers where they are sorted in non-decreasing order, i.e., $x'_1 \leq x'_2 \leq \ldots \leq x'_n$

Example

- ▶ Input: n = 6, $A = \{9, 3, 2, 6, 8, 5\}$
- Output: $A = \{2, 3, 5, 6, 8, 9\}$

What data structure should we use to represent the list?

Main idea of insertion sort

1. Start with a (trivially) sorted subarray of size 1 consisting of A[1].

Main idea of insertion sort

sorted unsorted key 1 i-1 i n

- 1. Start with a (trivially) sorted subarray of size 1 consisting of A[1].
- 2. Increase the size of the sorted subarray by 1, by inserting the next element of A, call it key, in the **correct** position in the **sorted** subarray to its left. How?

Main idea of insertion sort

- 1. Start with a (trivially) sorted subarray of size 1 consisting of A[1].
- 2. Increase the size of the sorted subarray by 1, by inserting the next element of A, call it key, in the **correct** position in the **sorted** subarray to its left. *How?*
 - ightharpoonup Compare key with every element x in the sorted subarray to the left of key, starting from the right.
 - ▶ If x > key, move x one position to the right.
 - ▶ If $x \le \text{key}$, insert key after x.

Main idea of insertion sort

- 1. Start with a (trivially) sorted subarray of size 1 consisting of A[1].
- 2. Increase the size of the sorted subarray by 1, by inserting the next element of A, call it key, in the **correct** position in the **sorted** subarray to its left. *How?*
 - ► Compare key with every element x in the sorted subarray to the left of key, starting from the right.
 - If x > key, move x one position to the right.
 - If $x \leq \text{key}$, insert key after x.
- 3. Repeat Step 2. until the sorted subarray has size n.

Example of insertion sort: $n = 6, A = \{9, 3, 2, 6, 8, 5\}$

Pseudocode

Today

```
Let A be an array of n integers. 

insertion-sort(A)

for i=2 to n do 

key = A[i]

//Insert A[i] into the sorted subarray A[1,i-1]

j=i-1

while j>0 and A[j]> key do 

A[j+1]=A[j]

j=j-1

end while 

A[j+1]= key end for
```

- 1 Overview
- 2 A first algorithm: insertion sor
- 3 Analysis of algorithms
- 4 Efficiency of algorithms

Analysis of algorithm

- ► Correctness
- ► Running time
- Space

Analysis of algorithms

- ► Correctness: formal proof often by induction
- ▶ Running time: number of primitive computational steps
 - ▶ Not the same as **time** it takes to execute the algorithm.
 - ▶ We want a measure that is independent of hardware.
 - ▶ We want to know how running time scales with the size of the input.
- ▶ **Space:** how much space is required by the algorithm

Analysis of insertion sort

Example of induction

Notation: A[i, j] is the subarray of A that starts at position i and ends at position j.

- ▶ Correctness: follows from the key observation that after loop i, the subarray A[1, i] is sorted
- ▶ Running time: number of primitive computational steps
- \triangleright Space: in place algorithm (at most a constant number of elements of A are stored outside A at any time)

Fact 1.

For all $n \ge 1$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Example of induction

Fact 1.

For all $n \ge 1$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Proof

- ▶ Base case: n = 1
- ▶ Inductive hypothesis: Assume that the statement is true for $n \ge 1$, that is, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- ▶ **Inductive step:** We show that the statement is true for n+1. That is, $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$. (Show this!)
- ▶ Conclusion: It follows that the statement is true for all n since we can apply the inductive step for n = 2, 3, ...

Correctness of insertion-sort

Notation: A[i, j] is the subarray of A that starts at position i and ends at position j.

Minor change in the pseudocode: in line 1, start from i = 1 rather than i = 2. How does this change affect the algorithm?

Claim 1.

Let $n \ge 1$ be a positive integer. For all $1 \le i \le n$, after the *i*-th loop, the subarray A[1,i] is sorted.

Correctness of insertion-sort follows if we show Claim 1 (why?).

Visual proof of the inductive step

By induction on i.

- ▶ Base case: i = 1, trivial.
- ▶ Induction hypothesis: assume that the statement is true for some $1 \le i < n$.
- ▶ **Inductive step:** Show it true for i + 1.

In loop i + 1, element key = A[i + 1] is inserted into A[1, i]. By the induction hypothesis, A[1, i] is sorted. Since

- 1. key is inserted after the last element $A[\ell]$ such that $0 \le \ell \le i$ and $A[\ell] \le \text{key}$;
- 2. all elements in $A[\ell+1,j]$ are shifted one position to the right with their order preserved,

s the statement is true for i + 1.

Running time T(n) of insertion-sort

$\begin{aligned} &\text{for } i=2 \text{ to } n \text{ do} \\ &\text{key} = A[i] \\ & //\text{Insert } A[i] \text{ into the sorted subarray } A[1,i-1] \\ &j=i-1 \\ &\text{while } j>0 \text{ and } A[j]>\text{key do} \\ &A[j+1]=A[j] \\ &j=j-1 \\ &\text{end while} \\ &A[j+1]=\text{key} \end{aligned}$

- ► How many primitive computational steps are executed by the algorithm?
- Equivalently, what is the running time T(n)? Bounds on T(n)?

Running time T(n) of insertion-sort

```
for i = 2 to n do
                                        line 1
                                        line 2
    key = A[i]
    //Insert A[i] into the sorted subarray A[1, i-1]
    i = i - 1
                                         line 3
   while j > 0 and A[j] > \text{key do}
                                         line 4
      A[j+1] = A[j]
                                         line 5
       j = j - 1
                                         line 6
   end while
    A[j+1] = \text{key}
                                         line 7
end for
```

▶ For $2 \le i \le n$, let $t_i = \#$ times line 4 is executed.

Running time T(n) of insertion-sort

for i = 2 to n do line 1 key = A[i]line 2 //Insert A[i] into the sorted subarray A[1, i-1]j = i - 1line 3 while j > 0 and A[j] > key doline 4 A[j+1] = A[j]line 5 j = j - 1line 6 end while A[j+1] = keyline 7 end for

$$T(n) = n + 3(n-1) + \sum_{i=2}^{n} t_i + 2\sum_{i=2}^{n} (t_i - 1) = 3\sum_{i=2}^{n} t_i + 2n - 1$$

- ▶ Which input yields the smallest (best-case) running time?
- ► Which input yields the largest (worst-case) running time?

▶ For $2 \le i \le n$, let $t_i = \#$ times line 4 is executed. Then

Definition 2.

Worst-case running time: largest possible running time of the algorithm over all inputs of a given size n.

Why worst-case analysis?

- ▶ It gives well-defined computable bounds.
- ▶ Average-case analysis can be tricky: how do we generate a "random" instance?

The worst-case running time of insertion-sort is quadratic. Is insertion-sort efficient?

Running time T(n) of insertion-sort

```
for i = 2 to n do
                                        line 1
    key = A[i]
                                        line 2
    //Insert A[i] into the sorted subarray A[1, i-1]
                                         line 3
    i = i - 1
   while j > 0 and A[j] > \text{key do}
                                         line 4
      A[j+1] = A[j]
                                         line 5
      j = j - 1
                                         line 6
   end while
    A[j+1] = \text{key}
                                         line 7
end for
```

▶ For $2 \le i \le n$, let $t_i = \#$ times line 4 is executed. Then

$$T(n) = 3\sum_{i=2}^{n} t_i + 2n - 1$$

- ▶ Best-case running time: 5n-4
- ▶ Worst-case running time: $\frac{3n^2}{2} + \frac{7n}{2} 4$

Today

- 4 Efficiency of algorithms

Efficiency of insertion-sort and the brute force solution

Efficiency of insertion-sort and the brute force solution

Compare to brute force solution:

- \triangleright At each step, generate a new permutation of the n integers.
- ▶ If sorted, stop and output the permutation.

Compare to brute force solution:

- \triangleright At each step, generate a new permutation of the n integers.
- ▶ If sorted, stop and output the permutation.

Worst-case analysis: generate n! permutations. Is brute force solution efficient?

Efficiency of insertion-sort and the brute force solution

Compare to brute force solution:

- \triangleright At each step, generate a new permutation of the n integers.
- ▶ If sorted, stop and output the permutation.

Worst-case analysis: generate n! permutations. Is brute force solution efficient?

- \triangleright Efficiency relates to the performance of the algorithm as n grows.
- ▶ Stirling's approximation formula: $n! \approx \left(\frac{n}{e}\right)^n$.
 - For n = 10, generate $3.67^{10} \ge 2^{10}$ permutations.
 - For n = 50, generate $18.3^{50} \ge 2^{200}$ permutations.
 - For n = 100, generate $36.7^{100} \ge 2^{700}$ permutations!
- \Rightarrow Brute force solution is **not** efficient.

Efficient algorithms –Attempt 1

Definition 3 (Attempt 1).

An algorithm is efficient if it achieves better worst-case performance than brute-force search.

Efficient algorithms –Attempt 1

Definition 3 (Attempt 1).

An algorithm is efficient if it achieves better worst-case performance than brute-force search.

Caveat: fails to discuss the scaling properties of the algorithm; if the input size grows by a constant factor, we would like the running time T(n) of the algorithm to increase by a constant factor as well.

Efficient algorithms –Attempt 1

Definition 3 (Attempt 1).

An algorithm is efficient if it achieves better worst-case performance than brute-force search.

Caveat: fails to discuss the scaling properties of the algorithm; if the input size grows by a constant factor, we would like the running time T(n) of the algorithm to increase by a constant factor as well.

Polynomial running times: on input of size n, T(n) is at most $c \cdot n^d$ for c, d > 0 constants.

- ▶ Polynomial running times scale well!
- ▶ The **smaller** the exponent of the polynomial the better.

Efficient algorithms

Definition 4.

An algorithm is efficient if it has a polynomial running time.

Caveat

▶ What about huge constants in front of the leading term or large exponents?

However

- ▶ Small degree polynomial running times exist for most problems that can be solved in polynomial time.
- ► Conversely, problems for which no polynomial-time algorithm is known tend to be very hard in practice.
- ► So we can distinguish between easy and hard problems.

Remark 1.

Today's big data: even low degree polynomials might be too slow!

Are we done with sorting?

Insertion sort is efficient. Are we done with sorting?

Are we done with sorting?

Running time in terms of # primitive steps

Insertion sort is efficient. Are we done with sorting?

- 1. Can we do better?
- 2. And what is better?
 - E.g., is $T(n) = n^2$ better than $\frac{3n^2}{2} + \frac{7n}{2} 4$?

Asymptotic notation

A framework that will allow us to compare the rate of growth of different running times as the input size n grows.

- We will express the running time as a function of the number of primitive steps, which is a function of the size of the input n.
- ► To compare functions expressing running times, we will ignore their low-order terms and focus solely on the highest-order term.

A faster algorithm for sorting using the divide-and-conquer principle.

To discuss this, we need a coarser classification of running times of algorithms; exact characterizations

- ► are too detailed;
- \triangleright do not reveal similarities between running times in an immediate way as n grows large;
- ▶ are often **meaningless**: pseudocode steps will **expand** by a constant factor that depends on the hardware.