Байесовский дистилляция разнородных моделей глубокого обучения

Декабрь 2020

1 Формальная постановка задачи

Задача: Рассматривается задача многоклассовой классификации.

1. Моделью глубокого обучения будем называть дифференцируемую по параметрам w функцию f(w,x) из множества признаковых описаний объекта во множество меток:

$$f: \mathbb{W} \times \mathbb{X} \to \mathbb{Y}$$

Где \mathbb{W} - это пространство параметров функции f

2. Модели глубокого обучения f и g называются **неоднородными**, если число скрытых слоев этих моделей или число нейронов в них не эквивалентны друг другу.

Имеются две неоднородные модели глубокого обучения $f(w_t, x)$ и $g(w_s, x)$, именуемые "модель учитель пространство параметров которой является заранее оптимизированным, и "модель студент"с неоптимальным элементом из пространства собственных параметров соответсвенно.

- 3. Задано параметрическое распределение q_t , моделирующеее выходы промежуточных слоев или их скрытые представления "модели учителя включая логиты данной сети
- 4. Задано параметрическое распределение q_s , моделирующее выходы промежуточных слоев или их скрытые представления модели студента включая логиты данной сети
- 5. Задана параметрическая модель классификации \mathbb{D}_{θ} , где θ это элемент пространства параметров дискриминатора, призванного разделять скрытые представления двух заданных неоднородных моделей (в частности, логиты этих сетей).

Ставится задача двухуровневая задача оптмизации:

$$\theta^* = \arg\min_{\theta} (\mathbb{E}_{t \sim q_t(x, w_t)} \log \mathbb{D}_{\theta}(t(x, w_t)) + \mathbb{E}_{s \sim q_s(x, w_s)} \log(1 - \mathbb{D}_{\theta}(s(x, w_s))))$$

$$w_s^* = \arg\max_{w_s} \mathbb{E}_{s \sim q_s(x, w_s)} \mathbb{D}_{\theta^*}(s(x, w_s)) - \sum_{k} \mathcal{L}(y_k | g(w_s, x_k))$$

Рис. 1: Вероятность логитов "студента" и "учителя" при адверсариальном обучении

Рис. 2: Точность "студента"предсказаний на трейне и валидации

Где $\mathcal{L}(y_k|g(w_s,x_k))$ - это ошибка модели на объекте x_k .

Цель: Обучить "модель студент"для задачи многоклассовой классификации при помощи минимизации кросс-энтропии между предсказанными метками $\hat{\mathbb{Y}}$ "моделью студентом"и действительными метками \mathbb{Y} на тех же объектах \sim и обучения дискриминатора \mathbb{D}_{θ} , который должен быть способен различать семплы из распределения q_t и q_s , либо их скрытые представления z_t и z_s соответственно.

"Модель студент" представляет собой генератор, поскольку именно она генерирует распределения q_s в каждом слое, которые дискриминатор \mathbb{D}_{θ} должен определять как "фейковые".

Процесс обучения:

1. Берем батч объектов $x_{batch}=\{x_1,...,x_B\}$, где B размер батча 2. Получаем выход из функции "модели учителя" $f(\psi,x_{batch})$ как логиты $\mathbb{L}(x_{batch},\psi)$ 3. Получаем выход из функции "модели студента" $g(\phi,x_{batch})$ как логиты $\hat{\mathbb{L}}(x_{batch},\phi)$ 4.Минимизируя следующую функцию потерь по парметрам дискриминатора, находим оптимальные:

$$\theta^* = \arg\min_{\theta} (\mathbb{E}_{t \sim q_t(x, w_t)} \log \mathbb{D}_{\theta}(t(x, w_t)) + \mathbb{E}_{s \sim q_s(x, w_s)} \log(1 - \mathbb{D}_{\theta}(s(x, w_s))))$$

5. На втором шаге мы минимизуруем кросс энтропию между параметрическими распределениями промежуточных слоев "модели студента"и "модели учителя"по параметрам первого, чтобы найти оптимальные:

$$w_s^* = \arg\max_{w_s} \mathbb{E}_{s \sim q_s(x, w_s)} \mathbb{D}_{\theta^*}(s(x, w_s)) - \sum_k \mathcal{L}(y_k | g(w_s, x_k))$$

И так далее

2 Численные эксперименты на MNIST

Описание эксперимента появится чуть позже. Результаты приведенны на изображениях 1 и 2.