Lecture Notes

Kyle Chui

2022-01-04

${\bf Contents}$

1	Lec	ture 1	1
	1.1	Introduction to Dynamical Systems	1
		1.1.1 Where Do "Dynamical Systems" Come From?	1
	1.2	Autonomous ODEs	1
2	Log	cture 2	2
4	2.1	Reducing ODEs to First Order Autonomous Systems	2
	2.1	2.1.1 Flows on the Line	3
		2.1.2 Fixed Points	3
		2.1.3 Stability	4
		2.1.9 Stability	4
3	Lec	eture 3	5
	3.1	Potentials	6
	_		_
4		eture 4	7
	4.1	Impossibility of Oscillations	7
	4.2	Numerical Methods	8
		4.2.1 Integral Equations	8
		4.2.2 Numerical Approximation	8
5	Lec	eture 5	10
0	5.1		10
	0.1		10
			11
			11
	5.2	· · · · · · · · · · · · · · · · · · ·	11
6	Lec		13
	6.1	±	13
		±	13
	6.2		14
		6.2.1 External Parameters	14
7	Too	eture 7	1 5
1	7.1		15 15
	7.1		15 15
	1.2	Identifying Diffications	10
8	Lec	eture 8	16
	8.1	Transcritical Bifurcations	16
9			17
	9.1		17
	9.2	1	17
	9.3		17
	9.4	Hysteresis	17
10	Loc	eture 10	18
τÛ			18
	10.1	·	18
			18
	10.2		19

11 Lecture 11	20
11.1 Normal Forms for Saddle-Node Bifurcations	20
11.2 Normal Forms for Transcritical Bifurcations	20

1 Lecture 1

1.1 Introduction to Dynamical Systems

Models of real-world phenomena can often be classified as either *static* or *dynamic*. Furthermore, these systems can either be *discrete* $(x_1, x_2, ...$ where $x_i \in \mathbb{R}$ for $i \geq 1$) or *continuous* (x = x(t)) where $t \geq 0$ and $x \in \mathbb{R}$, and $\dot{x} = f(x)$.

1.1.1 Where Do "Dynamical Systems" Come From?

- 1. Observed phenomena
- 2. Mathematical model
- 3. "Solve" the model
- 4. Make predictions

1.2 Autonomous ODEs

Definition. Autonomous ODEs

We say that an ordinary differential equation is autonomous if the right-hand side does not depend on t.

• The SIR (susceptible, infected, recovered) model is an example of a *first order* system of *autonomous* ODEs.

$$\begin{cases} \dot{x}_1 = f_1(x_1, \dots, x_n) \\ \vdots \\ \dot{x}_n = f_1(x_1, \dots, x_n) \end{cases}$$

• We will refer to n as the *dimension* of the system.

2 Lecture 2

2.1 Reducing ODEs to First Order Autonomous Systems

Consider the set of differential equations given by

$$\begin{cases} \dot{x} = -\kappa(t)xy, \\ \dot{y} = \kappa(t)xy - \delta y, \\ \dot{z} = \delta y. \end{cases}$$

Introduce a new variable, i.e. $\tau = \tau(t) = t$. Then we may rewrite the above as

$$\begin{cases} \dot{x} = -\kappa(\tau)xy, \\ \dot{y} = \kappa(\tau)xy - \delta y, \\ \dot{z} = \delta y, \\ \dot{\tau} = 1. \end{cases}$$

Note that the above system is now autonomous.

Example. The Pendulum

We can model the angle θ of a pendulum of length L > 0 by

$$\ddot{\theta} + \frac{g}{L}\sin\theta = 0.$$

Applying Newton's Second Law, we can get the equations

$$mL\ddot{\theta} = -mg\sin\theta$$
$$\theta = \theta(t).$$

Observe that if we let $x = \theta$ and $y = \dot{\theta}$, then we get

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{L}\sin\theta. \end{cases}$$

Example. Pendulum with an external force

If we add an external force to our pendulum, then we get

$$\ddot{\theta} + \frac{g}{L}\sin\theta = \frac{1}{m}F(t).$$

Thus if we let $x = \theta$, $y = \dot{\theta}$, and z = t, then we get

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{L}\sin x + \frac{1}{m}F(z) \\ \dot{z} = 1. \end{cases}$$

Note. In general, higher order ODEs of the form

$$\frac{\mathrm{d}^k x}{\mathrm{d}t^k} = f(x, \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}, \dots, \frac{\mathrm{d}^{k-1} x}{\mathrm{d}t^{k-1}})$$

can be converted into a first order system by taking

$$z_1 = x, z_2 = \frac{dx}{dt}, \dots, z_k = \frac{d^{k-1}x}{dt^{k-1}}.$$

We get the system

$$\begin{cases} \dot{z}_1 = \frac{\mathrm{d}x}{\mathrm{d}t} = z_2 \\ \dot{z}_2 = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = z_3 \\ \vdots \\ \dot{z}_k = f(z_1, z_2, \dots, z_k) \end{cases}$$

2.1.1 Flows on the Line

We will now consider systems of the form

$$\dot{x} = f(x)$$

where $f : \mathbb{R} \to \mathbb{R}$ is a smooth function.

Example. Consider the ODE given by

$$\dot{x} = x(x+1)(x-1)^2.$$

We could use separation of variables to solve this.

Note. Solutions to ODEs usually come in three different flavors:

- Analytic methods (separation of variables)
- Geometric methods (direction fields)
- Numerical methods (Euler's method)

Definition. Phase Space

To help us analyze these differential equations, we can plot \dot{x} against x on a graph, and see the behavior around zeroes. This is called a *phase space*. If some neighborhood of points around a zero x tend towards x, then x is called a *stable point*. If they tend to move away from x, then x is an *unstable point*. On a phase space graph, we denote stable points with \bullet , unstable points with \circ , and other points with a half-filled circle.

2.1.2 Fixed Points

Definition. Fixed Point

We say that x^* is a fixed point of the system

$$\dot{x} = f(x)$$

if $f(x^*) = 0$. If x^* is a fixed point then the system has a constant solution given by $x(t) = x^*$. These points are also known as equilibrium points, stationary points, rest points, critical points, and steady states.

2.1.3 Stability

Definition. Stability

Let x^* be a fixed point of the system

$$\dot{x} = f(x).$$

For now, we say that x^* is:

- Stable if solutions starting close to x^* approach x^* as $t \to \infty$.
- Unstable if solutions starting close to x^* diverge from x^* as $t \to \infty$.
- Half-stable if solutions starting close to x^* approach x^* from one side, but diverge from the other side.

3 Lecture 3

Question. Can we say more about what happens close to fixed points?

Example. Consider the equation given by

$$\dot{x} = x(x+1)(x-1)^2,$$

which has stable points at -1, 0, and 1.

We will use something called the *local method*. We define a new function $\eta(t) = x(t) + 1$, so $x(t) = \eta(t) - 1$. Hence $\dot{x}(t) = \dot{\eta}(t)$. Furthermore,

$$x(x+1)(x-1)^{2} = (\eta - 1)\eta(\eta - 2)^{2}$$

= $-4\eta + O(\eta^{2}),$ $(\eta \to 0)$

so $\dot{\eta} \approx -4\eta$. Near $x=-1, \eta=x+1$ and it satisfies $\dot{\eta}=-4\eta$, so $\eta(t)\approx Ce^{-4t}$. We can see that this approaches 0 as $t\to\infty$, so points around x=-1 will approach -1.

In general, we have the following method:

Assume that x^* is a fixed point of $\dot{x} = f(x)$, i.e. $f(x^*) = 0$. Let $\eta = x - x^*$. Then

$$\dot{\eta} = \dot{x}
= f(x)
= f(x^*) + f'(x^*)\eta + \frac{1}{2}f''(x^*)\eta^2 + \cdots
= f'(x^*)\eta + O(\eta^2).$$
($\eta \to 0$)

Hence the equation

$$\dot{\eta} = f'(x^*)\eta$$

is the linearization at $x = x^*$. We know that the solution to such a differential equation is

$$\eta(t) = Ce^{f'(x^*)t} = \begin{cases} 0, & f'(x^*) < 0 \\ \pm \infty, & f'(x^*) > 0 \end{cases}$$

as $t \to \infty$. In the first case, the terms near x^* will tend towards x^* , and in the latter they will diverge from x^* .

Theorem. Suppose that x^* is a fixed point of the system $\dot{x} = f(x)$. Then if

- $f'(x^*) < 0$, the fixed point x^* is stable.
- $f'(x^*) > 0$, the fixed point x^* is unstable.

Question. What happens if $f'(x^*) = 0$? Anything can happen/the test is inconclusive.

- Consider the equation $\dot{x} = x^3$. We see that $x^* = 0$ is a critical point, and that $f'(x) = 3x^2$, so $f'(x^*) = 0$. Using our usual graphical methods, we can see that points to the left of x^* will approach x^* , and so will points to the right, and so $x^* = 0$ is a stable point.
- If we use the equation $\dot{x} = -x^3$, we get the direct opposite, that is $x^* = 0$ is unstable despite having the same critical point.
- If we look at the behavior of $\dot{x}=x^2$, then we get that the critical point at $x^*=0$ is half-stable.
- If we consider the equation $\dot{x} = 0$, then every number on the real line is a critical point, and so the solutions don't move at all.

3.1 Potentials

• Let $f \colon \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = f(x).$$

• A function $V : \mathbb{R} \to \mathbb{R}$ so that

$$f(x) = -V'(x)$$

is called a potential for f.

• Our system can be written as a gradient flow

$$\dot{x} = -V'(x).$$

Note. Potential functions are not unique, since you can always add a constant.

4 Lecture 4

Example. Consider the differential equation $\dot{x} = x - x^3$. Since we have $\dot{x} = -V'(x)$, we have

$$V(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 = \frac{1}{4}(x^2 - 1)^2 - \frac{1}{4}.$$

When we look at the graph of V'(x), we may pretend that there is a ball rolling down a hill from every point, which tells us how to find the stability of points. Each point will settle in the first "well" that it meets.

Theorem. Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

Then the potential energy V(x(t)) is non-increasing (as a function of time). Furthermore, if x(t) is not a fixed point for all $t \in (T_1, T_2)$, then the potential energy is strictly decreasing on (T_1, T_2) .

Proof. Observe that

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) = V'(x(t)) \cdot \dot{x}(t)$$
$$= -V'(x(t))^{2}.$$

Hence the potential energy is non-increasing, as its derivative is always non-positive. Thus if $V'(x_1) = 0$, then x_1 is a critical point!

Corollary. Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

If x^* is an isolated critical point of V then

- If it is a local minima of V, it is a stable fixed point.
- If it is a local maxima of V, it is a unstable fixed point.
- If it is an inflection point of V, it is a half-stable fixed point.

Proof. If we imagine the ball analogy again, we can see that if x^* is a local minima then points around it will tend towards x^* , and so it is stable. The opposite happens for divergence near a local maxima, and the analogy still holds for the half-stableness when x^* is an inflection point.

Note. Every one dimensional system is a gradient flow, because if f is smooth, then we can take the integral and define

$$V(x) := -\int_0^x f(s) \, \mathrm{d}s.$$

4.1 Impossibility of Oscillations

Definition. Periodic Functions

If there exists a constant p > 0 so that for all t we have

$$x(t+p) = x(t)$$
.

then we say that p is periodic.

Note. All constant functions are periodic.

Theorem. There are no non-constant periodic solutions of the system

$$\dot{x} = f(x).$$

Proof. Suppose that x is a periodic solution, with period p > 0. If $0 \le t \le p$ then, as the potential energy is non-increasing,

$$V[x(p)] \le V[x(t)] \le V(x(0)).$$

Since x(p) = x(0), we have V[x(t)] is constant. Hence x(t) is constant.

4.2 Numerical Methods

4.2.1 Integral Equations

We want to find a solution of the equation

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

Observe that

$$\dot{x} = f(x)$$

$$\int_0^t \frac{\mathrm{d}x(s)}{\mathrm{d}s} \, \mathrm{d}s = \int_0^t f(x(s)) \, \mathrm{d}s$$

$$x(t) - x(0) = \int_0^t f(x(s)) \, \mathrm{d}s$$

$$x(t) = x_0 + \int_0^t f(x(s)) \, \mathrm{d}s.$$

We call this an *integral equation*, because the unknown now appears in the integral.

Example. Write the equation

$$\begin{cases} \dot{x} = \sin x \\ x(0) = 1 \end{cases}$$

as an integral equation.

We have that

$$x(t) = 1 + \int_0^t \sin(x(s)) \, \mathrm{d}s.$$

4.2.2 Numerical Approximation

Suppose we have the equation

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

Let's take $\Delta t > 0$ small. Then we have

$$x(\Delta t) = x_0 + \int_0^{\Delta t} f(x(s)) ds.$$

We will approximate $x(s) \approx x_0$ on the interval $(0, \Delta t)$. Thus we have

$$x(\Delta t) = x_0 + \int_0^{\Delta t} f(x(s)) ds$$

$$= x_0 + \int_0^{\Delta t} f(x_0) ds$$

$$= x_0 + f(x_0) \Delta t. \qquad (x_1 := x_0 + f(x_0) \Delta t)$$

Euler's method is to repeat the above to get $x_2 \approx x(2\Delta t)$. We have

$$x_2 = x_1 + f(x_1)\Delta t,$$

$$x_3 = x_2 + f(x_2)\Delta t,$$

$$\dots$$

$$x_{n+1} = x_n + f(x_n)\Delta t.$$

5 Lecture 5

5.1 Euler's Method

• We want to approximate the solution of

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

• Given a time step Δt , for $n \geq 0$ define

$$x_{n+1} = x_n + f(x_n)\Delta t$$

• Thus we take x_n to be our approximation to $x(n\Delta t)$.

5.1.1 Truncation Error of a Numerical Method

- Let $x_n \approx x(n\Delta t)$.
- We define the *local truncation error* to be

$$e_1 = x(\Delta t) - x_1.$$

We will use Taylor's theorem with Lagrange residue to approximate the error:

$$x(\Delta t) = x(0) + x'(0)\Delta t + \frac{x''(\xi)}{2}(\Delta t)^{2}$$
 (\xi \in 1) (\xi \in 1), \text{Chain rule})
= x_0 + f(x_0)\Delta t + \frac{f'(\xi)f(\xi)}{2}(\Delta t)^{2}. (\xi = f, \text{Chain rule})

Thus if f and f' are bounded and continuous, then |Remainder| $\leq C(\Delta t)^2$. Substituting into our local truncation error definition, we have

$$e_1 = x(\Delta t) - x_1$$

= $x(\Delta t) - (x_0 + f(x_0)\Delta t)$
= $\frac{x''(\xi)}{2}(\Delta t)^2$.

Hence e_1 is bounded above by $C(\Delta t)^2$.

Note. If we decrease Δt , then we decrease our error as well.

Euler's method is of first order because $|e_1| \leq C(\Delta t)^2$. If we apply Euler's method n times over some interval, then we will get n errors:

$$|e_1| + |e_2| + \dots + |e_n| \le Cn(\Delta t)^2 = Cn\left(\frac{T}{n}\right)\Delta t = CT\Delta t.$$

How can we improve our results?

- Take smaller time steps Δt .
 - Unfortunately, this means that we need to perform more computations.
 - There will be more "round-off errors".
- Improve the approximation (see next section)

5.1.2 Improved Euler's Method

• We still want to approximate the solution of

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

- For $n \geq 0$:
 - We make our first approximation

$$\tilde{x}_{n+1} = x_n + f(x_n)\Delta t.$$

- Use this to make a better approximation

$$x_{n+1} = x_n + \frac{1}{2} (f(x_n) + f(\tilde{x}_{n+1})) \Delta t.$$

• Take x_n to be our approximation for $x(n\Delta t)$.

The local truncation error for the improved Euler's method is of the form $C(\Delta t)^3$, and the global error is $CT(\Delta t)^2$.

5.1.3 Runge-Kutta 4th Order Method

• We still want to approximate the solution of

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

• For $n \ge 0$, take:

$$-k_n^{(1)} = f(x_n)\Delta t$$

$$-k_n^{(2)} = f(x_n + \frac{1}{2}k_n^{(1)})\Delta t$$

$$-k_n^{(3)} = f(x_n + \frac{1}{2}k_n^{(2)})\Delta t$$

$$-k_n^{(4)} = f(x_n + \frac{1}{2}k_n^{(3)})\Delta t$$

• Then we may set

$$x_{n+1} = x_n + \frac{1}{6}(k_n^{(1)} + 2k_n^{(2)} + 2k_n^{(3)} + k_n^{(4)}).$$

• The local truncation error satisfies

$$|e_1| \leq C(\Delta t)^5$$
,

and the global error is 4th order, satisfying $CT(\Delta t)^4$.

5.2 Existence and Uniqueness of Solutions

Theorem — Cauchy-Peano Existence Theorem

Let $f:(a,b)\to\mathbb{R}$ be continuous and $x_0\in(a,b)$. Then there exists some $\delta>0$ and a solution $x\colon[-\delta,\delta]\to\mathbb{R}$ of the IVP

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

Theorem — Picard–Lindelöf Existence and Uniqueness Theorem

Let $f:(a,b)\to\mathbb{R}$ be continuous and $x_0\in(a,b)$. If f is locally Lipschitz continuous, then there exists a unique local solution $\bar{x}\in C^1(I,\mathbb{R})$ of the IVP

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

where I is some interval around 0.

6 Lecture 6

6.1 Existence and Uniqueness

Definition. Locally Lipschitz Continuity

Let $f:(a,b)\to\mathbb{R}$. We call f locally Lipschitz continuous if for every $[d,c]\subseteq(a,b)$ there exists k>0 such that

$$|f(x) - f(y)| \le k |x - y|$$
. $\forall x, y \in [d, c]$

Definition. Global Lipschitz Continuity

A function $f:(a,b)\to\mathbb{R}$ is said to be global Lipschitz continuous if there exists L>0 such that

$$|f(x) - f(y)| \le L|x - y|$$
 $\forall x, y \in (a, b)$

Fact. Continuously differentiable functions are Lipschitz continuous, and so are continuous.

Example.

- The function $f(x) = \sqrt{|x|}$ is continuous but it is not Lipschitz continuous.
- The function g(x) = |x| is not differentiable but it is Lipschitz continuous on [-1, 1].

Note. In general, if it has a cusp, then it is not Lipschitz continuous.

6.1.1 Finite Time Blowup

Example. Does the solution of

$$\begin{cases} \dot{x} = x^2 \\ x(0) = 1 \end{cases}$$

blow up in finite time?

If we solve the differential equation, then we get $x(t) = \frac{1}{1-t}$ (which is not well defined for all t > 0).

Theorem. Let $f: \mathbb{R} \to \mathbb{R}$ be Lipschitz continuous. Then there exists a unique *global* solution $x: \mathbb{R} \to \mathbb{R}$ of

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0. \end{cases}$$

Theorem. Let $f \leq g$ be smooth and let $x_0 \leq y_0$. Suppose that x and y are solutions of the ODES

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases} \text{ and } \begin{cases} \dot{y} = g(y) \\ y(0) = y_0 \end{cases}$$

on an interval [0,T]. Then $x(t) \leq y(t)$ for all $t \in [0,T]$.

6.2 Bifurcations

6.2.1 External Parameters

• Consider the ODE

$$\dot{x} = f(x, r)$$

where r is a parameter of the model.

• Question. How do the dynamics vary as we vary r?

Example. Consider the differential equation $\dot{x} = r + x^2$. Depending on the value of r, we could have:

- 2 critical points, one of which is stable (when r < 0)
- 1 critical point, which is half-stable (when r = 0)
- 0 critical points, (when r > 0)

This change in behavior as r goes from negative to positive is called a *bifurcation*. We say that a bifurcation occurs at $(x^*, r^*) = (0, 0)$.

7 Lecture 7

7.1 Saddle-Node Bifurcations

Definition. Bifurcation

Consider the following autonomous system

$$\dot{x} = f(x, \lambda)$$

where $x \in \mathbb{R}$ and $\lambda \in \mathbb{R}$. A bifurcation occurs at parameter $\lambda = \lambda_0$ if there are parameter values λ_1 arbitrarily close to λ_0 with dynamics topologically inequivalent from those at λ_0 .

7.2 Identifying Bifurcations

If the system

$$\dot{x} = f(x, r)$$

has a bifurcation at $(x,r) = (x^*,r^*)$, then

$$f(x^*, r^*) = 0$$
 and $\frac{\partial f}{\partial x}(x^*, r^*) = 0$.

Note. The converse is *not* necessarily true! This helps us find *possible* bifurcation points, but we still need to perform further analysis in order to check whether these points are *actually* bifurcation points.

Proof. We define $\eta=x-x^*$, which implies that $\dot{\eta}=\frac{\partial f}{\partial x}(x^*,r^*)\eta$, which is stable if $\frac{\partial f}{\partial x}(x^*,r^*)<0$ and unstable if $\frac{\partial f}{\partial x}(x^*,r^*)>0$. Hence there is a change in stability when $\frac{\partial f}{\partial x}(x^*,r^*)=0$.

8 Lecture 8

8.1 Transcritical Bifurcations

We are analyzing differential equations of the form

$$\dot{x} = rx - x^2 = x(r - x).$$

We see that there are fixed points at x = 0, r. To find the bifurcations, we solve for when

$$f(x,r) = rx - x^2 = 0,$$

$$\frac{\partial f}{\partial x}(x,r) = r - 2x = 0.$$

Hence we have $2x^2 - x^2 = x^2 = 0$, so the only possible bifurcation occurs at x = r = 0.

9 Lecture 9

9.1 Subcritical Pitchfork

Look at the bifurcation diagram for

$$\dot{x} = rx + x^3.$$

9.2 Supercritical Pitchfork

Look at the bifurcation diagram for

$$\dot{x} = rx - x^3.$$

9.3 Symmetry

Note that the Saddle-node bifurcation $(\dot{x}=r+x^2)$ and the Transcritical bifurcation $(\dot{x}=rx-x^2)$ are not symmetric with respect to y=-x, i.e. $x\to -x$. For the Saddle-node bifurcation, we have

$$\dot{x} = r + x^{2}$$

$$-\dot{y} = r + x^{2}$$

$$\dot{y} = -r - y^{2},$$

and the Transcritical bifurcation yields

$$\dot{x} = rx - x^2$$

$$-\dot{y} = -ry - y^2$$

$$\dot{y} = ry + y^2.$$

However, for the subcritical pitchfork bifurcation, we have

$$\dot{x} = rx + x^3$$

$$-\dot{y} = -ry - y^3$$

$$\dot{y} = ry + y^3,$$

so it is symmetric.

9.4 Hysteresis

Consider the ODE given by

$$\dot{x} = rx + x^3 - x^5.$$

10 Lecture 10

Note. Hysteresis is a concept that appears due to the non-reversibility as the parameter r varies. If we look at the bifurcation diagram's stable branches, we take one path as we increase r past 0, but take a different path as we decrease r back below 0.

10.1 Taylor's Theorem

10.1.1 Single Variable

Let F(t) be continuous and $\frac{\mathrm{d}^n F}{\mathrm{d}t^n}$ is continuous for $1 \leq n \leq N+1$. Then we can write

$$F(t) = \sum_{n=0}^{N} \frac{1}{n!} \frac{\mathrm{d}^{n} F}{\mathrm{d} t^{n}} (0) t^{n} + R_{N}(t),$$

where
$$R_N(t) = \underbrace{\frac{1}{(N+1)!} \frac{\mathrm{d}^{N+1} F}{\mathrm{d} t^{N+1}} \left(\tilde{t}\right) t^{n+1}}_{\text{Lagrange form residue}}$$
 for some $\tilde{t} \in (0,t)$.

10.1.2 Multi Variable

Let f(x,r) be smooth (so $\frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial r^m} f$ is continuous for all $m,n \geq 1$). Then let F(t) = f(tx,tr) and apply Taylor's Theorem. We have

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}F(t) = \sum_{j=0}^n \binom{n}{j} \frac{\partial^n f}{\partial_x^{n-j}\partial_r^j}(tx,tr)x^{n-j}r^j.$$

When we take t = 1, we have

$$f(x,t) = F(1)$$

$$= \sum_{n=0}^{N} \frac{1}{n!} \frac{d^{n}F}{dt^{n}}(0) + R_{N}(0)$$

$$= \sum_{n=0}^{N} \sum_{j=0}^{n} \frac{1}{(n-j)!j!} \frac{\partial^{n}f}{\partial_{x}^{n-j}\partial r^{j}}(0,0)x^{n-j}r^{j} + R_{N}(0)$$

Theorem — Taylor's Theorem

Suppose all partial derivatives of f(x,r) up to order N+1 are continuous. Then,

$$f(x,r) = \sum_{n=0}^{N} \sum_{j=0}^{n} \frac{1}{(n-j)!j!} \frac{\partial^{n} f}{\partial x^{n-j} \partial r^{j}} (0,0) x^{n-j} r^{j} + R_{N}(x,r),$$

where the remainder term can be written as

$$R_N(x,r) = \sum_{j=0}^{N+1} \frac{1}{(N+1-j)!j!} \frac{\partial^{N+1} f}{\partial x^{N+1-j} \partial r^j} (tx, tr) x^{N+1-j} r^j,$$

for some 0 < t < 1.

Example. Special Case

Consider the case where N=2 for the Taylor expansion. Plugging that into the formula, we have that the quadratic expansion of f(x,r) at (0,0) is

$$\begin{split} f(x,r) &= f(0,0) + \frac{\partial f}{\partial x}(0,0) \cdot x + \frac{\partial f}{\partial r}(0,0) \cdot r \\ &+ \frac{\partial f}{\partial x \partial r}(0,0) \cdot xr + \frac{1}{2} \cdot \frac{\partial^2 f}{\partial x^2}(0,0) \cdot x^2 + \frac{1}{2} \cdot \frac{\partial^2 f}{\partial r^2}(0,0) \cdot r^2. \end{split}$$

10.2 Normal Forms

Consider the Taylor expansion for a saddle-node bifurcation about the point (x^*, r^*) :

$$\dot{x} = f(x,r) \\
= f(x^*,r^*) + \underbrace{\partial x f(x^*,r^*)}_{q_1}(x-x^*) + \underbrace{\partial r f(x^*,r^*)}_{p_1}(r-r^*) \\
+ \underbrace{\frac{1}{2}\partial_{xx} f(x^*,r^*)}_{q_2}(x-x^*)^2 + \underbrace{\partial_{xr} f(x^*,r^*)}_{p_2}(x-x^*)(r-r^*) \\
+ \underbrace{\frac{1}{2}\partial_{rr} f(x^*,r^*)}_{Q}(r-r^*)^2 + \text{higher order terms.}$$

Theorem. Suppose that $f(x^*, r^*) = 0$, $q_1 = 0$, $p_1 \neq 0$, $q_2 \neq 0$. Then $\dot{x} = f(x, r)$ undergoes a saddle-node bifurcation at (x^*, r^*) and

$$\dot{x} = \frac{\partial f}{\partial r}(x^*, r^*)(r - r^*) + \frac{1}{2}\partial_{xx}f(x^*, r^*)(x - x^*)^2 + \mathcal{O}(\varepsilon^3)$$

for $|r-r^*|<\varepsilon^2$ and $|x-x^*|<\varepsilon$. Moreover, there exists a change of variables

$$(t, x, r) \mapsto (s, y, R)$$

such that

$$\dot{x} = p_1(r - r^*) + q_2(x - x^*)^2 + \text{higher order terms}$$

takes the form

$$\frac{\mathrm{d}y}{\mathrm{d}s} = R + y^2 \tag{Saddle-node bifurcation}$$

near $(0,0) = (y(x^*), R(r^*)).$

11 Lecture 11

11.1 Normal Forms for Saddle-Node Bifurcations

Note. The mapping in the previous theorem basically just maps (x^*, r^*) to the origin in the yR-plane.

Example. Consider the ODE given by

$$\dot{x} = r + x - 1 - e^{x - 1}.$$

To find possible bifurcation points, we find where

$$r + x - 1 - e^{x-1} = 0,$$

$$1 - e^{x-1} = 0.$$

Hence the only possible bifurcation point occurs at (1,1). We now Taylor expand f about (1,1) to get

$$f(x,r) = r + x - 1 - \left(1 + (x-1) + \frac{1}{2}(x-1)^2 + \cdots\right)$$
$$= (r-1) - \frac{1}{2}(x-1)^2 + \mathcal{O}(|x-1|^3).$$

We can see that the above takes the form

$$\frac{\mathrm{d}y}{\mathrm{d}s} = R + y^2,$$

so wee have a saddle-node bifurcation.

11.2 Normal Forms for Transcritical Bifurcations

Theorem. Suppose that $\dot{x} = f(x,r)$ has a bifurcation at $(x,r) = (x^*,r^*)$. If

$$\begin{split} &\frac{\partial^n f}{\partial r^n}(x^*,r^*) = 0 \quad \text{for all } n \\ &\frac{\partial^2 f}{\partial x \partial r}(x^*,r^*) \neq 0 \\ &\frac{\partial^2 f}{\partial x^2}(x^*,r^*) \neq 0 \end{split}$$

Then (x^*, r^*) is a transcritical bifurcation.