## Parcial 1

# Fundamentos de Biología Computacional

Sergio Andrés Monsalve Castañeda Código: 201410029114



## **Profesores:**

Javier Correa Alejandro Rodríguez

Departamento de Informática y Sistemas Universidad EAFIT

Copyright ©

9 de marzo de 2014

- 1. Los siguientes son secuencias de anticodones que participaron en la síntesis de una proteína: UAC UAA CGC CCC AGA UCA. Derive:
  - La cadena de ARNm: AUG AUU GCG GGG UCU AGU
  - La cadena de ADN que sirvió de molde: En el sentido 3' 5' la cadena molde es: TAC TAA CGC CCC AGA TCA
  - Teniendo en cuenta en la siguiente tabla de codones, traduzca la secuencia de aminoácidos correspondiente: Met Ile Ala Gly Ser Ser
- 2. ¿Cuál es la Relación entre un alineamiento de secuencias y evolución?

**Respuesta:** Con el alineamiento de secuencias se puede encontrar un porcentaje de identidad que de muestra de la similitud entre organismos.

A medida que organismos con ancestros en común evolucionan, van acumulando mutaciones en el genoma, las cuales derivan en especies diferentes. De acuerdo a la cantidad de diferencias encontradas en el alineamiento, se puede deducir la cercanía o no entre especies.

Cuando el porcentaje de identidad sea igual al 100 % existe una alta probabilidad de que las secuencias correspondan al mismo organismo.

- 3. Según el modelo estadístico de Karlin-Altschul(1990), el cual hace referencia a la estimación del puntaje más alto(HSP) en un alineamiento de dos secuencias. ¿Cómo es argumentado este modelo y que aplicabilidad tiene en la búsqueda de homología de secuencias hoy en día?. Explique brevemente el modelo.
- 4. Represente como sería una matriz de alineamiento global para las siguientes dos proteínas. Asuma los valores estándar de puntuación que hay reportado en la literatura para aminoácidos.
  - a) SPAALKALAEAAGS
  - b) SGAALKALAEAAPS
- 5. Consulte qué tipo de algoritmos de alineamiento utilizan los programas de FASTA, CAP3, Bowtie. Compare los tres en términos de velocidad, capacidad de análisis sus principales limitaciones.

| Programa | Algoritmo | Velocidad | Capacidad de análisis | Limitaciones |
|----------|-----------|-----------|-----------------------|--------------|
| FASTA    | 1         | 2         | 3                     | 4            |
| CAP3     | 1         | 2         | 3                     | 4            |
| Bowtie   | 1         | 2         | 3                     | 4            |

#### **Limitaciones:**

FASTA:

CAP3:

#### Bowtie:

### 6. Scripting:

- *a*) Escribir un script en Perl (Python) donde, utilizando el módulo de BioPerl (BioPython), se pueda bajar una secuencia FASTA de genbank: EU856392
- b) Abra e imprima el archivo fasta
- c) Traduzca la secuencia a proteína
- d) Realice un blastp contra la base de datos de proteínas
- e) Imprima el Resultado del Blast