신호처리를 위한 행렬 계산 Programming Assignment 3

20180490 이재헌

1. Code implementation

a) LDL^T Factorization.

LDL decomposition에서 L과 D의 각 요소의 공식은 아래와 같다.

LDL decomposition [edit]

An alternative form, eliminating the need to take square roots when A is symmetric, is the symmetric indefinite factorization^[17]

The following recursive relations apply for the entries of ${\bf D}$ and ${\bf L}$:

$$D_{j} = A_{jj} - \sum_{k=1}^{j-1} L_{jk}^{2} D_{k}, \ L_{ij} = rac{1}{D_{i}} \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} D_{k}
ight) \quad ext{for } i > j.$$

This works as long as the generated diagonal elements in **D** stay non-zero. The decomposition is then **unique**. **D** and **L** are real if **A** is real.

이를 for문을 활용해 구현해주면 다음과 같은 코드로 완성할 수 있다.

공식에 해당하는 코드의 부분을 숫자로 표기하였다.

b) Cholesky Factorization(LL^T Factorization).

Cholesky decomposition에서 L의 각 요소의 공식은 아래와 같다.

The Cholesky-Banachiewicz and Cholesky-Crout algorithms

If we write out the equation

$$egin{aligned} \mathbf{A} &= \mathbf{L} \mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ &= egin{pmatrix} L_{11}^2 & & & & & & & & \\ L_{21}^2 & & & & & & & & \\ L_{21}L_{11} & L_{21}^2 + L_{22}^2 & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}, \end{aligned}$$

we obtain the following:

$$\mathbf{L} = egin{pmatrix} \sqrt{A_{11}} & 0 & 0 \ A_{21}/L_{11} & \sqrt{A_{22}-L_{21}^2} & 0 \ A_{31}/L_{11} & (A_{32}-L_{31}L_{21})/L_{22} & \sqrt{A_{33}-L_{31}^2-L_{32}^2} \end{pmatrix}$$

and therefore the following formulas for the entries of L

$$\begin{split} L_{j,j} &= (\pm) \underbrace{ \left(\frac{A_{j,j}}{A_{j,k}} - \sum_{k=1}^{j-1} L_{j,k}^2}_{L_{j,k}}, \right. \\ L_{i,j} &= \underbrace{\frac{1}{L_{i,j}}}_{\left(\frac{A_{i,j}}{A_{i,j}} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} \right)}_{\left(\frac{A_{i,j}}{A_{i,k}} - \sum_{k=1}^{j-1} L_{i,k} L_{j,k} \right)} \quad \text{for } i > j. \end{split}$$

이를 코드로 구현하면 아래와 같다.

마찬가지로 공식에 해당하는 코드의 부분을 숫자로 표시하였다.

c) LU decomposition with partial pivioting.

```
n = size(A,1);
Ak = A;
L = eye(n); % L is unit lower triangular
U = zeros(n);
P = eye(n);
for k = 1:n-1
   [-,r] = \max(abs(Ak(k:end,k))); % r = the index of the maximum of a part of column
   r = n-(n-k+1)+r; % consider the relative index
    Ak([k r],:) = Ak([r k],:); % exchange the row
   P([k r],:) = P([r k],:);
   L([k r],:) = L([r k],:);
    for i = k+1:n
       L(i,k) = Ak(i,k) / Ak(k,k); % get tau
        for j = 1:n
            U(k,j) = Ak(k,j);
            Ak(i,j) = Ak(i,j) - L(i,k)*Ak(k,j); % subtraction of the rows below the pivot
end
U(:,end) = Ak(:,end);
```

K를 증가시켜가며 pivot의 column의 값을 decreasing order로 정렬하기 위해 행들의 위치를 서로 바꿔준다. 이 행의 교환을 Ak, P, L에 모두 적용해주어야 된다. 그 후 pivot의 값을 이용해 Gaussian transformation을 하듯이 τ_k 의 값들을 구해 이를 pivot의 row에 곱해 각 row에서 빼주면 그 행이 0으로 맞춰지고, τ_k 는 L의 요소가 된다.

2. Test.m Screenshot.

```
LDL factorization
1.
       L:
           1.0000
                      0
                                0
                                          0
           0.4749
                  1.0000
                                 0
                                          0
           0.7865
                  0.5143
                           1.0000
                                          0
                   0.8821
           0.6894
                            0.9700
                                     1.0000
       D:
           1.7177
                      0
                                 0
                                          0
               0
                   0.7643
                                          0
                                 0
                            0.4969
               0
                       0
                                          0
               0
                        0
                                0
                                     0.0057
       L * D * L':
           1.7177
                   0.8158
                            1.3509
                                     1.1841
                   1.1518
           0.8158
                            1.0347
                                     1.2366
           1.3509
                   1.0347
                            1.7615
                                     1.7600
           1.1841
                    1.2366
                            1.7600
                                     1.8842
       X
           1.7177
                    0.8159
                            1.3509
                                      1.1841
          0.8158
                   1.1518
                            1.0347
                                      1.2366
                             1.7615
                                       1.7600
           1.3509
                    1.0347
           1.1841
                    1.2366
                             1.7600
                                       1.8842
```

01 1			A	
-Cho I	PSKV	factor	1721	
01101	COLA	Tactor	IZat	101

L:				
	1.3106	0	0	0
	0.6225	0.8743	0	0
	1.0307	0.4496	0.7049	0
	0.9035	0.7712	0.6838	0.0753
L *	L':			
	1.7177	0.8158	1.3509	1.1841
	0.8158	1.1518	1.0347	1.2366
	1.3509	1.0347	1.7615	1.7600
	1.1841	1.2366	1.7600	1.8842
x:				
	1.7177	0.8159	1.3509	1.1841
	0.8158	1.1518	1.0347	1.2366
	1.3509	1.0347	1.7615	1.7600
	1.1841	1.2366	1.7600	1.8842

3.

LU factoriz	ation		
L:			
1.0000	0	0	0
0.4749	1.0000	0	0
0.7865	0.5142	1.0000	0
0.6894	0.8821	0.9700	1.0000
U:			
1.7177	0.8159	1.3509	1.1841
0	0.7643	0.3931	0.6742
0	-0.0000	0.4969	0.4820
0	0	0	0.0057
L * U:			
1.7177	0.8159	1.3509	1.1841
0.8158	1.1518	1.0347	1.2366
1.3509	1.0347	1.7615	1.7600
1.1841	1.2366	1.7600	1.8842
P * x:			
1.7177	0.8159	1.3509	1.1841
0.8158	1.1518	1.0347	1.2366
1.3509	1.0347	1.7615	1.7600
1.1841	1.2366	1.7600	1.8842

- 3. Uniqueness of LDL^T , LL^T
 - 1) LL^T

Cholesky Decomposition is unique up to the sign of its diagonal entries.

Pf) Assume $A = LL^T = MM^T$ are two Cholesky decompositions of A.

$$I = L^{-1}MM^{T}L^{-T} = (L^{-1}M)(L^{-1}M)^{T}$$

 $L^{-1}M$ is a lower triangular matrix and thus $(L^{-1}M)^T$ is an upper triangular matrix.

$$D \coloneqq L^{-1}M = (L^{-1}M)^T$$

D is both lower triangular and upper triangular. Therefore, D is diagonal.

$$D^{2} = I \rightarrow D = diag(\pm 1, \pm 1, \dots, \pm 1)$$

$$M = LD$$

L and D differ by the sign of their columns.

Therefore, if we restrict the diagonal entries of L to be positive, L is unique.

2) LDL^{T}

From the lecture, we know the following.

If $A \in \mathbb{R}^{n \times n}$ is symmetric, and $\det(A(1:k,1:k)) \neq 0$, for k = 1:n-1then there exist a **unique unit lower triangular** matrix L, and a **unique diagonal** matrix $D = \operatorname{diag}\{d_1, \dots, d_n\}$ such that $A = LDL^T$.

We can prove that D is unique.

suppose

$$A = L_1 D_1 L_1^* = L_2 D_2 L_2^*$$

where D_1 , D_2 are diagonal matrices and L_1 , L_2 are lower triangular with 1's on the diagonal.

$$D_2 = L_2^{-1} L_1 D_1 L_1^* (L_2^*)^{-1} = (L_2^{-1} L_1) D_1 (L_2^{-1} L_1)^*$$

$$= R^*D_1R$$

with $R := (L_2^{-1}L_1)^*$ which is upper triangular with ones on the diagonal

$$\implies D_2 R^{-1} = R^* D_1$$

the LHS is uppper triangular while the RHS is lower triangular, which in fact implies each side is diagonal. And since R has ones on the diagonal:

$$\implies D_2 = D_2 R^{-1} = R^* D_1 = D_1$$

alternatively, looking at $D_2R^{-1}=R^*D_1$ and examining component (k,k) of each side $\implies d_{k,k}^{(2)}\cdot 1=d_{k,k}^{(1)}\cdot 1\implies D_2=D_1$