AdaPT: A New Class of Ordered Testing Procedures

Lihua Lei and William Fithian

Department of Statistics, UC Berkeley

JSM 2016, Chicago

Table of Contents

Setup

2 Existing Methods

3 Adaptive P-value Thresholding (AdaPT)

Table of Contents

Setup

2 Existing Methods

3 Adaptive P-value Thresholding (AdaPT)

Multiple Testing Problem with FDR Control

- General setup: a sequence of hypotheses H_1, H_2, \dots, H_n ;
- $\mathcal{H}_0 = \{i : H_i \text{ is true}\}\$ be the set of *null* hypotheses;
- $S = \{i : H_i \text{ is rejected}\}\$ be the set of *discoveries*;
- FDP = $\frac{V}{R \vee 1}$ be the False Discovery Proportion with $V = |\mathcal{S}|$ and $R = |\mathcal{S} \cap \mathcal{H}_0|$;
- FDR = EFDP be the *False Discovery Rate*, the target that a procedure should control.
- A procedure that control FDR at level 0.1 produces a rejection set ${\cal S}$ with roughly 90% being the true discoveries.

Ordered Hypothesis Testing

- Domain knowledge might be used to indicate which hypothesis is more "promising", i.e. likely to be rejected;
- Heuristically, more focus should be put on "promising" hypotheses;
- Sort H_1, \ldots, H_n from most "promising" to least "promising" via the prior knowledge;
- A procedure that takes advantage of the ordering is called an ordered hypothesis testing procedure.

Example: GEOquery Data

- GEOquery data¹[LB15] consists of gene expression measurements in response to estrogen in breast cancer cells;
- Consists of n = 22283 genes and two groups (a treatment group and a control group) with 5 trials in each;
- Test H_i : $F_{0i} = F_{1i}$, where F_{0i} and F_{1i} are the distributions of gene expression of gene i in the control group and the treatment group, respectively;
- H_1, \ldots, H_n are ordered by auxiliary data.

¹http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2324 ← ■ → ◆ ■ ◆ ◆ ◆ ◆ ◆

Example: GEOquery Data

Original ordering

AdaPT: A New Class of Ordered Testing Procedures

Table of Contents

Setup

2 Existing Methods

3 Adaptive P-value Thresholding (AdaPT)

Existing Methods Revisited: Accumulation Test

$$\widehat{\text{FDP}}_{AT} = \frac{C + \sum_{i=1}^{k} h(p_i)}{k+1}$$

- $h \in [0, C], \int_0^1 h(x) dx = 1;$
- Find the maximum k such that $\widehat{\text{FDP}}_{AT} \leq q$;
- ForwardStop[GWCT15]:

$$h(x) = -\log(1-x);$$

Seqstep[BC15]:

$$h(x) = \frac{I(x > \lambda)}{1 - \lambda};$$

• HingeExp[LB15]:

$$h(x) = -\frac{I(x > \lambda)}{1 - \lambda} \log(\frac{1 - x}{1 - \lambda}).$$

Existing Methods Revisited: Selective Segstep

$$\widehat{\text{FDP}}_{SS} = \frac{ks}{R(k;s) \vee 1} \cdot \frac{A(k;s) + 1}{k(1-s)} \bullet R(k;s) = |\{i \leq k : p_i \leq s\}|;$$
$$\bullet A(k;s) = |\{i \leq k : p_i > s\}|;$$

- s is pre-fixed;
- Find the maximum k such that $FDP_{SS} < q$.
- Turns out that the blue term should be an approximation of $\pi_{0,k}$,

$$\pi_{0,k} = \frac{|\{1,\ldots,k\} \cap \mathcal{H}_0|}{k};$$

Too conservative for small s.

Existing Methods Revisited: Adaptive Segstep

$$\widehat{\text{FDP}}_{AS} = \frac{ks}{R(k;s) \vee 1} \cdot \frac{A(k;\lambda) + 1}{k(1-\lambda)} \bullet R(k;s) = |\{i \leq k : p_i \leq s\}|; \\ \bullet A(k;\lambda) = |\{i \leq k : p_i > \lambda\}|;$$

Index

- s and λ are is pre-fixed;
- Find the maximum k such that $FDP_{\Delta S} < q$:
- Much less conservative if a large λ , say 0.5, is used.

Table of Contents

Setup

2 Existing Methods

3 Adaptive P-value Thresholding (AdaPT)

$$\widehat{\text{FDP}}_{\text{AdaPT}} = \frac{A(k; \lambda) + 1}{R(k; s) \vee 1}$$

•
$$R(k; w) = |\{i : p_i \le w_i\}|;$$

• $A(k; w) = |\{i : p_i > 1 - w_i\}|;$

$$\widehat{\text{FDP}}_{\text{AdaPT}} = \frac{A(k; \lambda) + 1}{R(k; s) \vee 1}$$

AdaPT (Step 1)

- $R(k; w) = |\{i : p_i \leq w_i\}|;$
- $A(k; w) = |\{i : p_i > 1 w_i\}|;$
- Estimate next w by \tilde{p}_i :

$$ilde{p}_i = \left\{ egin{array}{ll} p_i & (p_i ext{ is black}) \ ext{NA} & (p_i ext{ is red or blue}) \end{array}
ight.$$

• Repeat until $\widehat{\mathrm{FDP}}_{\mathrm{AdaPT}} \leq q$.

$$\widehat{\text{FDP}}_{\text{AdaPT}} = \frac{A(k; \lambda) + 1}{R(k; s) \vee 1}$$

•
$$R(k; w) = |\{i : p_i \leq w_i\}|;$$

•
$$A(k; w) = |\{i : p_i > 1 - w_i\}|;$$

• Estimate next w by \tilde{p}_i :

$$ilde{p}_i = \left\{ egin{array}{ll} p_i & (p_i ext{ is black}) \ ext{NA} & (p_i ext{ is red or blue}) \end{array}
ight.$$

• Repeat until $\widehat{\mathrm{FDP}}_{\mathrm{AdaPT}} \leq q$.

$$\widehat{\text{FDP}}_{\text{AdaPT}} = \frac{A(k; \lambda) + 1}{R(k; s) \vee 1}$$

•
$$R(k; w) = |\{i : p_i \leq w_i\}|;$$

•
$$A(k; w) = |\{i : p_i > 1 - w_i\}|;$$

• Estimate next w by \tilde{p}_i :

$$ilde{p}_i = \left\{ egin{array}{ll} p_i & (p_i ext{ is black}) \ ext{NA} & (p_i ext{ is red or blue}) \end{array}
ight.$$

• Repeat until $\widehat{\mathrm{FDP}}_{\mathrm{AdaPT}} \leq q$.

$$\widehat{\text{FDP}}_{\text{AdaPT}} = \frac{A(k; \lambda) + 1}{R(k; s) \vee 1}$$

- $R(k; w) = |\{i : p_i \leq w_i\}|;$
- $A(k; w) = |\{i : p_i > 1 w_i\}|;$
- Estimate next w by \tilde{p}_i :

$$ilde{p}_i = \left\{ egin{array}{ll} p_i & (p_i ext{ is black}) \ ext{NA} & (p_i ext{ is red or blue}) \end{array}
ight.$$

• Repeat until $\widehat{\text{FDP}}_{AdaPT} \leq q$.

Theorem 1.

Assume that

- $\{p_i : i = 1, ..., n\}$ are independent;
- **2** $\{p_i : i \in \mathcal{H}_0\}$ are i.i.d. uniformly distributed on U[0,1].

Then AdaPT controls FDR at level q.

Theorem 1.

Assume that

- $\{p_i : i = 1, ..., n\}$ are independent;
- **2** $\{p_i : i \in \mathcal{H}_0\}$ are i.i.d. uniformly distributed on U[0,1].

Then AdaPT controls FDR at level q.

Any method to update w guarantees the FDR control!

Real Example: GEOquery Data

AdaPT: A New Class of Ordered Testing Procedures

References

Rina Foygel Barber and Emmanuel J Candès. Controlling the false discovery rate via knockoffs. The Annals of Statistics, 43(5):2055–2085, 2015.

Max Grazier G'Sell, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani.

Sequential selection procedures and false discovery rate control. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2015.

Ang Li and Rina Foygel Barber.

Accumulation tests for fdr control in ordered hypothesis testing. arXiv preprint arXiv:1505.07352, 2015.

THANK YOU!