Lab 4: Q4

Adam Omarali (1010132866)

October 31, 2024

4.1

a)

- b) The ODE is unstable and a source.
- c) The eigenvalues are $\lambda_1 = \frac{5+\sqrt{5}}{2}$ and $\lambda_2 = \frac{5-\sqrt{5}}{2}$. This corresponds to $\lambda_1 > \lambda_2 > 0$, which is an unstable source.

4.2

- b) The ODE is stable and a sink.
- c) The eigenvalues are $\lambda_1 = \frac{-5+\sqrt{5}}{2}$ and $\lambda_2 = \frac{-5-\sqrt{5}}{2}$. This corresponds to $\lambda_1 < \lambda_2 < 0$, which is a stable sink.

4.3

a)

b) The ODE is an unstable saddle point.

c) The eigenvalues are $\lambda_1=2$ and $\lambda_2=-1$. This corresponds to $\lambda_1>0>\lambda_2$, which is an unstable saddle point.

4.4

a)

- b) The ODE is an unstable saddle point.
- c) The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -2$. This corresponds to $\lambda_1 > 0 > \lambda_2$, which is an unstable saddle point.

4.5

- b) The ODE is a stable spiral point.
- c) The eigenvalues are $\lambda_1 = \lambda_2 = -2$. This corresponds to $\lambda_1 = \lambda_2 < 0$, which is a stable spiral point.

4.6

- b) The ODE is an unstable spiral point.
- c) The eigenvalues are $\lambda_1 = \lambda_2 = 2$. This corresponds to $\lambda_1 = \lambda_2 > 0$, which is an unstable spiral point.

a)

- b) The ODE is a stable center.
- c) The eigenvalues are $\lambda_1 = 2i$ and $\lambda_2 = -2i$. This corresponds to $\lambda_1 = -\lambda_2$, which is a stable center.

4.8

- b) The ODE is an stable center.
- c) The eigenvalues are $\lambda_1 = 2i$ and $\lambda_2 = -2i$. This corresponds to $\lambda_1 = -\lambda_2$, which is an stable center.

a)

- b) The ODE is a stable center.
- c) The eigenvalues are $\lambda_1 = i$ and $\lambda_2 = -i$. This corresponds to $\lambda_1 = -\lambda_2$, which is a stable center.

4.10

- b) The ODE is an stable center.
- c) The eigenvalues are $\lambda_1 = i$ and $\lambda_2 = -i$. This corresponds to $\lambda_1 = -\lambda_2$, which is a stable center.