Example Suppose you know that line l is the perpendicular bisector of \overline{RS} .

What can you deduce if you also know that

a. *P* lies on *l*?

b. there is a point Q such that QR = 7 and QS = 7?

Solution

a. PR = PS (Theorem 4-5) **b.** Q lies on l. (Theorem 4-6)

The distance from a point to a line (or plane) is defined to be the length of the perpendicular segment from the point to the line (or plane). Since $\overline{RS} \perp t$, RS is the distance from R to line t.

In Exercises 16 and 17 you will prove the following theorems, which are similar to Theorems 4-5 and 4-6.

Theorem 4-7

If a point lies on the bisector of an angle, then the point is equidistant from the sides of the angle.

Given: \overrightarrow{BZ} bisects $\angle ABC$; P lies on \overrightarrow{BZ} ;

 $\overrightarrow{PX} \perp \overrightarrow{BA}; \overrightarrow{PY} \perp \overrightarrow{BC}$

Prove: PX = PY

Theorem 4-8

If a point is equidistant from the sides of an angle, then the point lies on the bisector of the angle.

Given: $\overrightarrow{PX} \perp \overrightarrow{BA}$; $\overrightarrow{PY} \perp \overrightarrow{BC}$;

PX = PY

Prove: $B\hat{P}$ bisects $\angle ABC$.

Theorem 4-5 and its converse, Theorem 4-6, can be combined into a single biconditional statement. The same is true for Theorems 4-7 and 4-8.

A point is on the perpendicular bisector of a segment if and only if it is equidistant from the endpoints of the segment.

A point is on the bisector of an angle if and only if it is equidistant from the sides of the angle.