

Visual Perception

Reconstruction from two views

Joaquim Salvi Universitat de Girona

Lecture 4

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

UdG 4.1 Shape from X

Techniques based on:

 Modifying the intrinsic camera parameters i.e. Depth from Focus/Defocus and Depth from Zooming

 Considering an addi lal squrce i.e. Shape from Struct Stereo

 Considering additional surface in Shape from Focus/Defocus i.e. Shape from Shading, Shape from Figure and onape nom

Geometric Constraints

 Multiple views i.e. Shape from Stereo and Shape from Motion

UdG 4.1 Shape from X

Techniques based on:

 Modifying the intrinsic camera parameters i.e. Depth from Focus/Defocus and Depth from Zooming

Considering an additional source of light onto the scene

i.e. Shape from Structured Light and Shape from Photometric

Stereo

 Considering addition i.e. Shape from Shading, Shape from Geometric Constraints

юm

Shape from Structured Light

Multiple views

i.e. Shape from Stereo and Shape from Motion

UdG 4.1 Shape from X

Techniques based on:

- Modifying the intrinsic camera parameters i.e. Depth from Focus/Defocus and Depth from Zooming
- Considering an additional source of light onto the scene i.e. Shape from Structured Light and Shape from Photometric Stereo
- Considering additional surface information

i.e. Shape from Shading, Shape from Texture and Shape from

Geometric Const

Multiple views

i.e. Shape from Stereo and Mape

Shape from Shading

om

UdG 4.1 Shape from X

Techniques based on:

 Modifying the intrinsic camera parameters i.e. Depth from Focus/Defocus and Depth from Zooming

 Considering an additional source of light onto the scene i.e. Shape from Structured Light and Shape from Photometric Stereo

 Considering additional surface in i.e. Shape from Shading, Shape from Geometric Constra

Shape from Stereo

Multiple views

i.e. Shape from Stereo and Shape from Motion

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

Lecture 4: Reconstruction from two views

4.2 Triangulation principle

$$P_w = P_u + m u$$

 $P_w = P'_u + m' v$

Steps:

$$1 - P_u + m u = P'_u + m' v$$

- 3 Get m and m'
- 4 Compute Pw

Lecture 4: Reconstruction from two views

UdG 4.2 Triangulation principle

Minimize the distance between points:

Min
$$|| P_b - P_a ||^2$$

Min $|| P_1 + m_{ua} (P_2 - P_1) - P_3 - m_{ub} (P_4 - P_3) ||^2$
Finding m_{ua} and m_{ub} once expanded to (x,y and z)

http://astronomy.swin.edu.au/~pbourke/geometry/lineline3d/

Compute the dot product between vectors:

$$(P_a - P_b)^T (P_2 - P_1) = 0$$

 $(P_a - P_b)^T (P_4 - P_3) = 0$

Because they are perpendicular.

Finding m_{ua} and m_{ub} once expanded to P_a, P_b and (x,y and z)

UdG 4.2 Triangulation principle

In practice we can use Least-Squares:

$$\begin{bmatrix} s_1 u_1 \\ s_1 v_1 \\ s_1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \qquad \begin{bmatrix} s_2 u_2 \\ s_2 v_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} s_2 u_2 \\ s_2 v_2 \\ s_2 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24} \\ B_{31} & B_{32} & B_{33} & B_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$C = QX \begin{bmatrix} A_{14} - A_{34}u_1 \\ A_{24} - A_{34}v_1 \\ B_{14} - B_{34}u_2 \\ B_{24} - B_{34}v_2 \end{bmatrix} = \begin{bmatrix} A_{31}u_1 - A_{11} & A_{32}u_1 - A_{12} & A_{33}u_1 - A_{13} \\ A_{31}v_1 - A_{21} & A_{32}v_1 - A_{22} & A_{33}v_1 - A_{23} \\ B_{31}u_2 - B_{11} & B_{32}u_2 - B_{12} & B_{33}u_2 - B_{13} \\ B_{31}v_2 - B_{21} & B_{32}v_2 - B_{22} & B_{33}v_2 - B_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Add additional rows if we have additional views of the same point

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- Focal points, epipoles and epipolar lines
- e is defined by O_C, in {I}, e' is defined by O_C in {I'}
- m defines an epipolar line in {I'}; m' defines an epipolar line in {I}
- All epipolar lines intersect at the epipole

Lecture 4: Reconstruction from two views

epipole

- •The Epipolar Geometry concerns the problem of computing the plane Π .
 - a plane is defined by the cross product between two vectors
 - M is unknown, m and m' are knowns
 - {W} is located at {C} or {C'} and Π can be computed at {C} or {C'} → 4 solutions

- •The Epipolar Geometry concerns the problem of computing the plane Π .
 - a plane is defined by the cross product between two vectors
 - M is unknown, m and m' are knowns
 - {W} is located at {C} or {C'} and Π can be computed at {C} or {C'} → 4 solutions

Assume {W} at {C}

$$P = \begin{bmatrix} I & 0 \end{bmatrix}$$

$$K = \begin{bmatrix} R & t \end{bmatrix}$$

$$P' = PK = \begin{bmatrix} R & t \end{bmatrix}$$

$$e = P \begin{bmatrix} C' \\ 1 \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} = t$$

$$e' = P^{t-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} R^t & -R^t t \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -R^t t$$

Since epipolar lines are contained in the plane Π , we can define the line by a cross product of two vectors, obtaining the orthogonal vector of the line.

$$l'_{m} = e' \times P'^{-1} m = -R^{t} t \times R^{t} m = -R^{t} (t \times m) = -R^{t} [t]_{x} m$$
$$l_{m'} = e \times P' m' = t \times Rm' = [t]_{x} Rm'$$

The Fundamental matrix is defined by inner product of a point with its epipolar line.

$$l'_{m} = -R^{t} [t]_{x} m$$
$$l_{m'} = [t]_{x} Rm'$$

$$m' \cdot l'_{m} = m'^{t} l'_{m} = -m'^{t} R^{t} [t]_{x} m$$

$$m \cdot l_{m'} = m^{t} l_{m'} = m^{t} [t]_{x} Rm'$$

$$0 = m^t [t]_x Rm'$$

П

$$0 = -m^{t} R^{t} [t]_{x} m = (\mathbf{A}^{t-1} \widetilde{m}^{t})^{t} R^{t} [t]_{x} \mathbf{A}^{-1} \widetilde{m} = \widetilde{m}^{t} \mathbf{A}^{t-t} R^{t} [t]_{x} \mathbf{A}^{-1} \widetilde{m}$$

$$0 = m^{t} [t]_{x} R m^{t} = (\mathbf{A}^{-1} \widetilde{m})^{t} [t]_{x} R \mathbf{A}^{t-1} \widetilde{m}^{t} = \widetilde{m}^{t} \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{t-1} \widetilde{m}^{t}$$

$$F = \mathbf{A}^{t-t} R^{t} [t]_{x} \mathbf{A}^{-1} \qquad \widetilde{m}^{t} F \widetilde{m} = 0$$

$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{t-1} \qquad \widetilde{m}^{t} F' \widetilde{m}^{t} = 0$$

F and F' are related by a transpose. So,

$$F = F^{t}$$

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}$$

$$F' = F^{t}$$

$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}$$

Demonstration:

$$F^{t} = \left(\mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} R^{t} [t]_{x}\right)^{t} = \mathbf{A}^{-t} [t]_{x} \left(\mathbf{A}^{-t} R^{t}\right)^{t} = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1} = F'$$

$$F^{t} = \left(\mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}\right)^{t} = \mathbf{A}^{-t} \left(\mathbf{A}^{-t} [t]_{x} R\right)^{t} = \mathbf{A}^{-t} R^{t} \left(\mathbf{A}^{-t} [t]_{x}\right)^{t} = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1} = F'$$

The same dissertation can be made assuming the origin at {C'}, obtaining two more fundamental matrices that are also equivalent to F and F'.

The Essential Matrix is the calibrated case of the Fundamental matrix.

 The Intrinsic parameters are known: A and A' are known The problem is reduced to estimate E or E'.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}$$

$$E = R^{t} [t]_{x}$$

$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}$$

$$E' = [t]_{x} R$$

The monocular stereo is a symplified version of F where A = A', reducing the complexity of computing F.

$$F = \mathbf{A}^{-t} R^{t} [t]_{x} \mathbf{A}^{-1}$$
$$F' = \mathbf{A}^{-t} [t]_{x} R \mathbf{A}^{-1}$$

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

UdG 4.4 Epipolar Geometry – Calibration

The Eight Point Method

The epipolar geometry is defined as:

$$m^{T}\mathbf{F}'m'=0 \qquad \left[\begin{array}{ccc} x_{i} & y_{i} & 1 \end{array}\right]\mathbf{F}' \begin{vmatrix} x_{i}' \\ y_{i}' \\ 1 \end{vmatrix} = 0$$

Operating, we obtain:

$$U_{n}f = 0$$

$$U_{n} = (u_{1}, u_{2}, ..., u_{n})$$

$$u_{i} = (x'_{i}x_{i}, y'_{i}x_{i}, x_{i}, x'_{i}y_{i}, y'_{i}y_{i}, y_{i}, x'_{i}, y'_{i}, 1)$$

$$f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33})^{t}$$

Least-Squares

UdG 4.4 Epipolar Geometry – Calibration

The Eight Point Method with Least Squares

$$U_n f = 0$$

First solution is : f = 0 NOT WANTED

$$f = 0$$

F is defined up to a scale factor, so we can fix one of the component to 1. Let's fix $F_{33} = 1$.

$$U'_{n}f' = -1_{n}$$

$$U'_{n} = (u'_{1}, u'_{2}, ..., u'_{n})$$

$$u'_{i} = (x'_{i}x_{i}, y'_{i}x_{i}, x_{i}, x'_{i}y_{i}, y'_{i}y_{i}, y_{i}, x'_{i}, y'_{i})$$

$$f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32})^{t}$$

Then:

$$U_{n}^{\prime -1}U_{n}^{\prime}f^{\prime} = -U_{n}^{\prime -1}1_{n}$$

$$f^{\prime} = -U_{n}^{\prime -1}1_{n} \qquad \qquad f^{\prime} = -\left(U_{n}^{\prime t}U_{n}^{\prime}\right)^{-1}U_{n}^{\prime t}1_{n}$$

UdG 4.4 Epipolar Geometry – Calibration

The Eight Point Method with Eigen Analysis

$$U_n f = 0$$

First solution is : f = 0 NOT WANTED

$$f = 0$$

F has to be rank-2 because $[t_x]$ is rank-2.

$$F = \mathbf{A}^{-t} R^t [t]_x \mathbf{A}^{-1}$$

$$F = \mathbf{A}^{t-t} R^t [t]_x \mathbf{A}^{-1} \qquad [t]_x = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

Any system of equations:

$$U_n f = 0$$
 $f = (F_{11}, F_{12}, F_{13}, F_{21}, F_{22}, F_{23}, F_{31}, F_{32}, F_{33})^t$

can be solved by SVD so that f lies in the nullspace of $U_n = UDV^T$.

$$[U,D,V] = svd(U_n)$$

Hence f corresponds to a multiple of the column of V that belongs to the unique singular value of D equal to 0.

Note that f is only known up to a scaling factor.

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

UdG 4.5 Constraints in stereo vision

3D Reconstruction:

$$s^{I}m = {}^{I}A_{C}{}^{C}K_{W}{}^{W}M$$

$$s'''m' = {}^{I'}A'_{C'}{}^{C'}K'_{W'}{}^{W}M$$

 ${}^{I}A_{C}$; ${}^{I'}A'_{C'}$ Intrinsics: Optics & Internal Geometry

 ${}^{C}K_{\scriptscriptstyle W}$; ${}^{C'}K'_{\scriptscriptstyle W'}$ Extrinsics: Camera Pose

Constraints:

- The Correspondence Problem \rightarrow F/E matrix
- Stereo Configurations:
 - Calibrated Stereo: Intrinsics and Extrinsics known → Triangulation!
 - Uncalibrated Stereo: Intrinsics and Extrinsics unknown → F matrix
 - Calibrated Monocular: Intrinsics known, Extrinsics unknown → E matrix
 - Uncalibrated Monocular: Intrinsics and Extrinsics unknown → F matrix

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

4. Reconstruction from two views

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

^{UdG} 4.6 Experimental comparison – methods

		inear	Iterative	Robust	Optimisation	Rank-2
Seven point (7p)		Х				yes
Eight point (8p)		Х			LS or Eig.	no
Rank-2 constrain	nt	Х			LS	yes
Iterative Newton Raphson	1-		Х		LS	no
Linear iterative			Х		LS	no
Non-linear minimization in parameter space	e		Х		Eig.	yes
Gradient technique			V		LC or Fire	20
FNS		•		•		
CFNS				\rightarrow		. *
M-Estimato	•	\bigwedge		•		
LMedS			•			
RANSAC						
MLESAC		<u>, </u>			Approxima	te Maximum
MAPSAC	Least-so	quares	Eige	en Analysis	• •	lihood

LS: Least-Squares Eig: Eigen Analysis AML: Approximate Maximum Likelihood

4.6 Experimental comparison – Methodology

Linear methods: Good results if the points are well located and no outilers

Methods*	Linear							
	1	2	3	4				
$\sigma = 0.0$	14.250	0.000	0.000	1.920				
outliers 0%	13.840	0.000	0.000	1.143				
$\sigma = 0.0$	25.370	339.562	17.124	30.027				
outliers 10%	48.428	433.013	31.204	59.471				
$\sigma = 0.1$	135.775	1.331	0.107	0.120				
outliers 0%	104.671	0.788	0.088	0.091				
$\sigma = 0.1$	140.637	476.841	19.675	70.053				
outliers 10%	104.385	762.756	46.505	63.974				
$\sigma = 0.5$	163.839	5.548	0.538	0.642				
outliers 0%	178.222	3.386	0.362	0.528				
$\sigma = 0.5$	140.932	507.653	19.262	26.475				
outliers 10%	109.427	1340.808	49.243	54.067				
$\sigma = 1.0$	65.121	21.275	1.065	1.319				
outliers 0%	58.184	12.747	0.744	0.912				
$\sigma = 1.0$	128.919	429.326	21.264	61.206				
outliers 10%	100.005	633.019	53.481	64.583				

mean std

^{*} Mean and Std. in pixels

^{1.- 7-}Point; 2.- 8-Point with Least-Squares; Methods:

^{3.- 8-}Point with Eigen Analysis 4.- Rank-2 Constraint

Iterative methods: Can cope with noise but inefficient in the presence of outliers

Methods*	Iterative								
	5	6	7	8	9	10	11		
$\sigma = 0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
outliers 0%	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
$\sigma = 0.0$	161.684	20.445	∞	187.474	18.224	17.124	16.978		
outliers 10%	117.494	30.487	∞	197.049	36.141	31.204	29.015		
$\sigma = 0.1$	1.328	0.107	1.641	1.328	0.112	0.107	0.110		
outliers 0%	0.786	0.088	0.854	0.786	0.092	0.088	0.091		
$\sigma = 0.1$	158.961	32.765	146.955	183.961	15.807	14.003	14.897		
outliers 10%	124.202	67.308	94.323	137.294	40.301	38.485	39.388		
$\sigma = 0.5$	5.599	0.538	7.017	5.590	0.554	0.538	0.543		
outliers 0%	3.416	0.361	3.713	3.410	0.361	0.362	0.368		
$\sigma = 0.5$	161.210	31.740	∞	217.577	19.409	22.302	22.262		
outliers 10%	136.828	59.126	∞	368.061	51.154	59.048	59.162		
$\sigma = 1.0$	20.757	1.068	345.123	21.234	1.071	1.065	1.066		
outliers 0%	12.467	0.772	294.176	12.719	0.745	0.744	0.748		
$\sigma = 1.0$	158.849	37.480	∞	152.906	18.730	18.374	19.683		
outliers 10%	120.461	52.762	∞	120.827	38.644	39.993	42.112		

Methods: 5.- Iterative Linear; 6.- Iterative Newton-Raphson;

7.- Minimization in parameter space;

8.- Gradient using LS; 9.- Gradient using Eigen;

10.- FNS; 11.- CFNS

^{*} Mean and Std. in pixels

Robust methods: Cope with both noise and outliers

Methods	Robust								
	12	13	14	15	16	17	18	19	
$\sigma = 0.0$	0.000	0.000	0.000	0.000	0.000	0.000	0.100	0.011	
outliers 0%	0.000	0.000	0.000	0.000	0.000	0.000	0.079	0.009	
$\sigma = 0.0$	273.403	4.909	4.714	0.000	0.000	16.457	19.375	0.115	
outliers 10%	360.443	4.493	2.994	0.000	0.000	26.923	70.160	0.115	
$\sigma = 0.1$	0.355	0.062	0.062	1.331	0.107	0.107	0.139	0.168	
outliers 0%	0.257	0.042	0.041	0.788	0.088	0.088	0.123	0.155	
$\sigma = 0.1$	73.354	4.876	4.130	0.449	0.098	2.389	21.784	0.701	
outliers 10%	59.072	4.808	2.997	0.271	0.077	5.763	97.396	0.740	
$\sigma = 0.5$	2.062	0.392	0.367	5.548	0.538	0.538	0.550	0.762	
outliers 0%	1.466	0.237	0.207	3.386	0.362	0.362	0.377	0.618	
$\sigma = 0.5$	143.442	3.887	3.147	47.418	0.586	18.942	23.859	0.629	
outliers 10%	111.694	3.969	2.883	29.912	0.434	53.098	79.890	0.452	
$\sigma = 1.0$	8.538	0.794	0.814	21.275	1.065	1.065	1.089	1.072	
outliers 0%	6.306	0.463	0.463	12.747	0.744	0.744	0.768	0.785	
$\sigma = 1.0$	120.012	3.921	4.089	25.759	1.052	14.076	19.298	1.041	
outliers 10%	122.436	3.752	4.326	15.217	0.803	30.274	65.149	0.822	

12.- M-Estimator using LS; 13.- M-Estimator using Eigen; Methods:

14.- M-Estimator proposed by Torr;

15.- LMedS using LS; 16.- LMedS using Eigen;

17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

^{*} Mean and Std. in pixels

- 1.- 7-Point; 2.- 8-Point with Least-Squares; 3.- 8-Point with Eigen Analysis; 4.- Rank-2 Constraint;
- 5.- Iterative Linear; 6.- Iterative Newton-Raphson; 7.- Minimization in parameter space; 8.- Gradient using LS;
- 9.- Gradient using Eigen; 10.- FNS; 11.- CFNS; 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;
- 14.- M-Estimator proposed by Torr; 15.- LMedS using LS; 16.- LMedS using Eigen; 17.- RANSAC;
- 18.- MLESAC: 19.- MAPSAC.

4.6 Experimental comparison – Real images

UdG 4.6 Experimental comparison – Real images

	Methods*	Robust							
		12	13	14	15	16	17	18	19
	Urban	1.668	0.309	0.279	1.724	0.319	0.440	0.449	0.440
2	Scene	0.935	0.228	0.189	1.159	0.269	0.334	0.373	0.348
	Mobile Robot	5.775	0.274	0.593	24.835	1.559	3.855	2.443	1.274
	Scene	50.701	0.192	0.524	38.434	2.715	6.141	5.629	2.036
	Underwater	0.557	0.650	0.475	2.439	0.847	1.725	3.678	1.000
	Scene	0.441	0.629	0.368	2.205	0.740	2.138	12.662	0.761
	Road	0.373	0.136	0.310	0.825	0.609	0.609	0.427	0.471
	Scene	0.635	0.113	0.256	1.144	0.734	0.734	0.410	0.403
	Aerial	0.099	0.085	0.161	0.179	0.149	0.149	0.216	0.257
	Scene	0.063	0.058	0.106	0.158	0.142	0.142	0.186	0.197
2	Kitchen	0.584	0.280	0.263	1.350	0.545	2.623	0.864	0.582
1	Scene	0.425	0.207	0.191	1.200	0.686	3.327	3.713	0.717

Methods: 12.- M-Estimator using LS; 13.- M-Estimator using Eigen;

14.- M-Estimator proposed by Torr;

15.- LMedS using LS; 16.- LMedS using Eigen;

17.- RANSAC; 18.- MLESAC; 19.- MAPSAC.

^{*} Mean and Std. in pixels

UdG 4.6 Experimental comparison – Conclusions

- Survey of 15 methods of computing **F** and up to 19 different implementations
- Description of the estimators from an algorithmic point of view
- Conditions: Gaussian noise, outliers and real images
 - Linear methods: Good results if the points are well located and the correspondence problem previously solved (without outliers)
 - Iterative methods: Can cope with noise but inefficient in the presence of outliers
 - Robust methods: Cope with both noise and outliers
- Least-squares is worse than eigen analysis and approximate maximum likelihood
- Rank-2 matrices are preferred if a good geometry is required
- Better results when data are previously normalized

UdG 4.6 Experimental comparison – Conclusions

Publications

- X. Armangué and J. Salvi. Overall View Regarding Fundamental Matrix Estimation. Image and Vision Computing, IVC, pp. 205-220, Vol. 21, Issue 2, February 2003.
- J. Salvi. An approach to coded structured light to obtain three dimensional information. PhD Thesis. University of Girona, 1997. Chapter 3.
- J. Salvi, X. Armangué, J. Pagès. A survey addressing the fundamental matrix estimation problem. IEEE International Conference on Image Processing, ICIP 2001, Thessaloniki, Greece, October 2001.

More Information: http://eia.udg.es/~qsalvi/

4. Reconstruction from two views

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

4. Reconstruction from two views

- 4.1 Shape from X
- 4.2 Triangulation principle
- 4.3 Epipolar geometry Modelling
- 4.4 Epipolar geometry Calibration
- 4.5 Constraints in stereo vision
- 4.6 Experimental comparison of methods
- 4.7 Sample: Mobile robot performing 3D mapping

UdG 4.7 Sample: Mobile robot performing 3D mapping

- Building a 3D map from an unknown environment using a stereo camera system
- Localization of the robot in the map
- Providing a new useful sensor for the robot control architecture

GRILL Mobile robot with a stereo camera system

4.7 <u>3D mapping – Robot components</u>

Inside stereo vision system

Outside stereo vision system

M

GRILL Mobile Robot

UdG 4.7 3D mapping – Data flow diagram

Lecture 4: Reconstruction from two views

UdG 4.7 3D mapping – Data flow diagram

UdG 4.7 3D mapping – Data flow diagram

4.7 3D mapping – Input sequence

Trajectory

3D Map

- Cameras are calibrated
- Both stereo images are obtained simultaneously

UdG = 4.7 3D mapping – RGB to I

- Description
 - Converting a color image to an intensity image
- Input
 - Color image (RGB)
- Output
 - Intensity image

4.7 3D mapping – Remove Distortion

Trajectory

3D Map

- Description
 - Removing distortion of an image using camera calibration parameters
- Input

4.7 3D mapping – Corners

- Description
 - Detection of corners using a variant of Harris corners detector
- Input

4.7 3D mapping – Spatial Cross Correlation

4.7 3D mapping – Temporal Cross Correlation

4.7 3D mapping – Stereo Reconstruction

4.7 3D mapping – 3D Tracker

UdG 4.7 3D mapping – Outliers Detection

4.7 3D mapping – Local Localization

UdG 4.7 3D mapping – Global Localization

- Description
 - Computing the trajectory effect by the robot
- Input
 - Local position
- Output
 - Global position

4.7 3D mapping – Building 3D Map

4.7 3D mapping – Video

