Decision Variables:

Let CB be the Number of Collegiate Bags

Let MB be the Number of Mini Bags

Let PR be the Total Profit/Objective Function

Objective Function:

The Maximize Profit be the PR (CB, MB)

=32CB+24MB

Non-Negativity:

 $0 \le CB \le 1000$ (Since we cannot have any negative Backpack)

 $0 \le MB \le 1200$ (Since we cannot have any negative Backpack)

Constraints:

There are 2 Constraints that are present in the problem.

1) Nylon Constraint

CB<- requires 3 sqft Nylon

MB<- requires 2 sqft Nylon

 $3CB+2MB \le 5000$

2)Labour Constraint

35*40=1400 Hours (Number of available Hours * Number of hours each Labour works)

Mathematical Formulation:

Maximizing Profit PR (CB, MB) is equal to 32CB+24MB

Let CB=Number of Collegiate Bags

Let MB= Number of Mini Bags

Let PR=Total Profit/Objective Function

Total Nylon given=5000 Sqft

Total Labour hours that are required=35*40=1400 hrs

Assume that

CB<- requires 3 sqft Nylon used by Collegiate

MB<- requires 2 sqft Nylon used by mini

3CB+2MB ≤ 5000

Which calculating labour costs of Collegiate:

Each labour unit takes around 45 minutes: 45/60= 3/4

Which calculating labour costs of Mini:

Each labour unit takes around 40 minutes:

40/60= 2/3

(3/4) CB+(2/3) MB ≤ 1400

2)

Decision Variables:

Let PLANT SIZES_{ij} be the number of units of plant sizes.

PLANT SIZES is the number of plant units

I be the number of plants (1,2,3)

J be number that holds the plant of sizes (Small(S), Medium(M), Large(L)).

M=Maximized value

Formulating the linear programming model:

Objective Function:

M=420(PLANT SIZES_{1L}+PLANT SIZES_{2L}+PLANT SIZES_{3L}) +360(PLANT SIZES_{1M}+PLANT SIZES_{2M}+PLANT SIZES_{3M}) +300(PLANT SIZES_{1S}+PLANT SIZES_{2S}+PLANT SIZES_{3S})

Constraints:

There are 3 Constraints that we can identify in this problem.

Sizes:

(PLANT SIZES_{1L}+PLANT SIZES_{2M}+PLANT SIZES_{3S})

≤750 (plant 1)

(PLANT SIZES_{2L}+PLANT SIZES_{2M}+PLANT SIZES_{3S})

≤900 (plant 2)

(PLANT SIZES_{1L}+PLANT SIZES_{2M}+PLANT SIZES_{3S})

≤450 (plant 3)

Storage Units:

20 PLANT SIZES_{1L}+15PLANT SIZES_{1M}+12PLANT

 $SIZES_{1S} \le 13000$

20 PLANT SIZES_{2L}+15PLANT SIZES_{2M}+12PLANT

 $SIZES_{2S} \le 12000$

20 PLANT SIZES_{3L}+15PLANT SIZES_{3M}+12PLANT SIZES_{3S} \leq 5000

Sales Forecast:

PLANT SIZES_{1L}+PLANT SIZES_{1M}+PLANT SIZES_{1S} ≤

900

PLANT SIZES_{2L}+PLANT SIZES_{2M}+PLANT SIZES_{2S} ≤

1200

PLANT SIZES_{3L}+PLANT SIZES_{3M}+PLANT SIZES_{3S} ≤

750

Percentage that is required to avoid the Layoff:

((PLANT SIZES_{1L}+PLANT SIZES_{1M}+PLANT

SIZES_{1S})/750) *100

((PLANT SIZES_{2L}+PLANT SIZES_{2M}+PLANT

SIZES_{2S})/900) *100

((PLANT SIZES_{3L}+PLANT SIZES_{3M}+PLANT

SIZES_{3S})/450) *100