A Guide for HU Master Thesis Presentations

Johann Caro-Burnett

Hiroshima University

February 9, 2022

Motivation (one slide)

- ► These slides are meant as a guidance for a 15-minute presentation for master students.
- ► The goal of the motivation is to catch the attention of the audience. So, it should be on the first slide.
- You can use shocking or funny statements:
 - Student's presentation are boring and use too many slides
 - ► They spend too much time on irrelevant points
 - The methodology and the main result are often rushed at the end
 - Other small details also make the presentation tedious and difficult to follow

Background (one slide only if needed)

- Sometimes, the topic is new to the audience
- Only in those cases, one slide to explain the context of the topic is necessary and sufficient
- If you need more than one slide, then you are not doing a good job summarizing
- If the topic seems to be common knowledge, add one sentence regarding the background on next slide, which is the summary.
- ▶ You can also briefly mention relevant literature, if needed

Summary (one slide)

Use one slide to mention:

- ► The method: "I use RCT"
- ► The data / Experiment: "I randomly assigned X to N people, and measured Y"
- ▶ The results: "I found that X increases Y by β percent."

Data/Experiment Design/Method (one to two slides)

- Write the equation for your main specification
- ► If you use an "extravagant" method, describe it before the results
- ► If you use secondary data, mention what are the main variables and their source.
- If you ran an experiment, describe all the details
- Images help to describe your experiment/method and keep the audience interested

Data/Experiment Design (one to two slides)

On a second slide regarding your data, you can show a table with the summary of statistics, with large fonts and sample size

Table: My comments on a typical final examination day

Name	Comments
Student 1	Slow! Didn't show the main result by the 15 minutes mark
Student 2	Hard to follow and extremely boring
Student 3	Hard to follow and extremely boring
Student 4	Not interesting, too long
Student 5	Fonts too small, hard to follow
Student 6	Finally, a good presentation! Main result is misinterpreted
Student 7	Boring and hard to follow
Student 8	Boring
Student 9	P values suspiciously low!
N = 9	

Results (one to two slides)

Show your main/basic result first, and don't create a new slide to interpret your findings, just read them from this table!

Table: Y is the dependent variable

	specification 1	specification 2	specification 3
X1	1.497**	3.22**	1.205**
	(0.576)	(1.240)	(0.464)
X2	3.16**	2.773***	0.03*
	(1.218)	(1.067)	(0.014)
(X1× X2)	1.867*	2.009	1.92*
,	(0.718)	(0.773)	(0.739)
Covariates	3.014	2.460	1.495
	(1.159)	(0.946)	(0.575)
Mean dep. var.	1.6568	1.6568	1.6568
Observations	1500	1500	1500

Results (one to two slides)

In many cases, a subsample analysis, robustness check, or alternative approach are useful. Show those results only if pertinent.

Table: Y is the dependent variable

	specification 1	specification 2	specification 3
X1	1.497**	3.22**	1.205**
	(0.576)	(1.240)	(0.464)
X2	3.16**	2.773***	0.03*
	(1.218)	(1.067)	(0.014)
(X1× X2)	1.867*	2.009	1.92*
` ,	(0.718)	(0.773)	(0.739)
Covariates	3.014	2.460	1.495
	(1.159)	(0.946)	(0.575)
Mean dep. var.	1.6568	1.6568	1.6568
Observations	1500	1500	1500

Conclusions

- Did you find an effect?
- Explain why this result makes sense
- Mention limitations, shortcomings, potential ways to improve it and why you were not able to do so.

Excluding the title page, there should be about T/2(+/-1) slides, where T is the number of minutes you have to present.

If you still run late, there's usually no problem with skipping the conclusions.

If you finished early, but did a good job, the audience will surely ask questions, so that extra time will be used.

Appendix

Is it all that is needed? No!! Add an appendix with:

- Graphs of certain data characteristics
- Further robustness checks
- Maybe a less important method of how a variable was coded
- Information that may be asked to you, but can't fit on your main slides.