Foreword 1

Author: Anderson Chau

Disclaimer: This notes is written only for my own memorization purpose after

I have studied online lecture notes and blogs.

2 K-Means Clustering

Simple Description: Identify clusters by finding the centroid of data points

Algorithm:

1. Initialize $\mu_1, \mu_2, \dots, \mu_k$ randomly (k is hyper-parameter)

2. Repeated until converge:

(i) $c^{(i)} := \arg\min_j ||x^{(i)} - \mu_j||^2, j \in [1:k]$, (i.e. $c^{(i)}$ denote which μ the $x^{(i)}$ is linked to. Link each data point to nearest μ_j . If $x^{(i)}$ is nearest to μ_s , then $c^{(i)} = j$. Thus, k partitions are created.)

(ii) $\mu_j:=\frac{\sum_{i=1}^m 1\{c^{(i)}=j\}x^{(i)}}{\sum_{i=1}^m 1\{c^{(i)}=j\}}$, (i.e. For each data point in each partition from (i), find the new centroid and assign to μ_k

Proof of convergence of the algorithm: consider

$$J(c,\mu) = \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

 $J(c,\mu)=\sum_{i=1}^m||x^{(i)}-\mu_{c^{(i)}}||^2$ Observation : J must be monotonically decreasing. It is because for step (i) It is adjusting $c^{(i)}$ to reduce J, for step (ii) we are adjusting μ_i to reduce J

- 3 Linear Regression(MSE approach)
- 4 Linear Regression(MLE approach)
- 5 Logistic Regression
- 6 Logistic Regression(MLE approach)
- 7 Softmax Regression(Multi-Class Logistic)
- 8 Loss function in Classification(Binary) Problem - General treatment

General Hypothesis : $h_{\theta}(x) = x^T \theta$

Adjustment for binary classification :

$$\operatorname{sign}(h_{\theta}(x)) = \operatorname{sign}(\theta^{T} x) = \operatorname{sign}(t) = \begin{cases} 1 & \text{if } t > 0 \\ 0 & \text{if } t = 0 \\ -1 & \text{if } t < 0 \end{cases}$$

Measure of confidence : $h_{\theta}(x) = x^T \theta$ gives larger value, more confident

Margin ($yx^T\theta$) : (i) if $h_{\theta}(x)$ classify correctly, margin is positive, otherwise negative.

(ii) Therefore our objective is to maximize the margin (we want both correct classification and be confident)

Consider the following loss function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \phi\left(y^{(i)} \theta^{T} x^{(i)}\right)$$

We want penalize wrong classification and encourage correct one , we design ϕ as $\phi(z) \to 0$ as $z \to \infty$, while $\phi(z) \to \infty$ as $z \to -\infty$ where $z = yx^T\theta$, and examples are :

logistic loss: $\phi_{\text{logistic}}(z) = \log(1 + e^{-z})$, used in logistic regression

hinge loss : $\phi_{\text{hinge}}(z) = [1 - z]_{+} = \max 1 - z, 0$, used in SVM

Exponential loss $\phi_{\text{exp}}(z) = e^{-z}$, used in boosting