Fisión Nuclear Química Nuclear

Martín Pérez Comisso

- Espontánea FISIÓN Inducida por neutrón

Características Fisión

 $\sigma = 1 / v_t$

Reacción en cadena Larga vida media de hijos y nietos Neutrones retardados

Distribución Asimétrica de energía cinética

- Colisión elástical

- Captura neutrónica

- Fisión

Número medio de Choque

 $<\xi> = 1 - \frac{(A-1)^2}{2A} \log \frac{A+1}{A}$

$$q = \frac{1}{\xi} log \frac{T_r}{T_t}$$

Moderador	ξ	q	σcol(b)	σa(b)	δ
H-1	1	18	44,8	0,664	0,76
H-2	0,725	25	10,4	10-3	0,958
C-12	0,158	115	4,7	$4,5x10^{-3}$	0,895

$$p = \frac{\sigma_a}{(\sigma_{col} + \sigma_a)} \qquad \delta = (1 - p)^q$$

Factor de Reproducción

$$k_{\infty} = \frac{N_n}{N_n - 1} = cte$$

k = 1 Crítico

k < 1 Subcrítico

k > 1 Supercrítico

Formula de los cuatro factores

$$k_{\infty} = \eta \epsilon p f$$

$k_{\infty} = \eta \epsilon p f P_f P_l$

Tamaño crítico

$$R = \frac{\pi L_m}{\sqrt{k_{\infty} - 1}}$$

$$L_m = \sqrt{l_s^2 + l_d^2}$$

Países Productores de Uranio 2010 (Fuente: OIEA)

33 ton de U

1 ton productos de fisión

387 kg Actinidos

14 kg Np 12 kg Am 1 Kg Cm

