New Splitting Approach for Adaptative Tile Coding

Course Project – Reinforcement Learning

Mathieu Nassif

McGill University

April 20, 2017

Problems of Tile Coding

- # of tilings?
- Size of each tile?

Propagation VS Generalization

- S. Whiteson, M. E. Taylor and P. Stone
 - Start with ONE very coarse tiling

- S. Whiteson, M. E. Taylor and P. Stone
 - Start with ONE very coarse tiling
 - ② When the updates stabilize, choose a tile to split

- S. Whiteson, M. E. Taylor and P. Stone
 - Start with ONE very coarse tiling
 - When the updates stabilize, choose a tile to split
 - 3 Split the tile along one dimension in half

- S. Whiteson, M. E. Taylor and P. Stone
 - Start with ONE very coarse tiling
 - When the updates stabilize, choose a tile to split
 - 3 Split the tile along one dimension in half
 - Repeat

New Splitting Approach

Objectives

- Find near-optimal split (not always in half)
- Keep constant memory usage per tile

New Splitting Approach

Objectives

- Find near-optimal split (not always in half)
- Keep constant memory usage per tile

New Strategy

- Analyze for each dimension
- Find the maximum and minimum rewards in each tile
- Find the middle value: 0.5 * (max + min)
- Estimate the position of the middle value
- Split at this position

Estimating the Position of the Middle Point

Challenge: Find middle point from a stream of data (no memory)

Estimating the Position of the Middle Point

Challenge: Find middle point from a stream of data (no memory)

Extremums: Keep a variable for the maximum and the minimum

Estimating the Position of the Middle Point

Challenge: Find middle point from a stream of data (no memory)

Extremums: Keep a variable for the maximum and the minimum

Middle Point: Use linear intrapolations for every new point, and average them.

Results

