РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>5</u>

дисциплина: Архитектура компьютера

Студент: Парчиев Султан Багаудинович

Группа: НММ бд-03-24

МОСКВА 2024 г.

Содержание

1 Цель работы	4
2 Задание	5
3 Теоретическое введение	6
4 Выполнение лабораторной работы	7
5 Выводы	16
Список литературы	17

Список иллюстраций

4.1 Открытый тс	7
4.2 Перемещение между директориями	8
4.3 Создание каталога	8
4.4 Перемещение между директориями	9
4.5 Созданный файл	9
4.6 Открытие файла для редактирования	9
4.7 Редактирование файла	10
4.8 Открытие файла для просмотра	10
4.9 Копирование файла	11
4.10 Редактирование файла	12
4.11 Исполнение файла	12
4.12 Исполнение файла	13
4.13 Копирование файла	13
4.14 Отредактированный файл	14
4.15 Исполнение файла	14
4.16 Отредактированный файл	15
4.17 Исполнение файла	15

1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DQ (define quad word) определяет переменную размером в 8 байт (учетве- рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике. mov dst, src 6 Здесь операнд dst приёмник, а src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти (memory) и непосредственные значения (const). Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером. int n Здесь п — номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

4 Выполнение лабораторной работы

4.1 Основы работы с тс

Открываю Midnight Commander, введя в терминал mc (рис. 4.1).

Рис. 4.1: Открытый тс

Перехожу в каталог ~/work/study/2024-2025/Архитектура Компьютера/arch-pc, используя файловый менеджер mc (рис. 4.2)

```
\dots5/Архитектура компьютера/arch-pc -.[^]>
          Имя
                         Размер
                                Время правки
                         -BBEPX- ноя 9 09:54
/.git
                            4096 ноя 9 10:03
/config
                            4096 ноя
                                      1 11:32
'labs
                            4096 ноя
                                     9 09:54
/presentation
                            4096 ноя 9 09:54
/template
                            4096 ноя
                                      1 11:32
.gitattributes
                            1765 ноя 1 11:32
.gitignore
                            4637 ноя 1 11:32
.gitmodules
                            278 ноя 1 11:32
                            4786 ноя 1 11:32
COURSE
                               8 ноя 9 09:55
LICENSE
                           18657 ноя 1 11:32
Makefile
                            980 ноя 1 11:32
                            152 ноя 1 11:32
                            5653 ноя 1 11:32
                            4304 ноя 1 11:32
                                      9 09:54
ргераге
                               0 ноя
```

Рис. 4.2: Перемещение между директориями

С помощью функциональной клавиши F7 создаю каталог lab05 (рис. 4.3).

```
Создать новый каталог
Введите имя каталога:
Lab05
[< Хорошо >] [ Отмена ]
```

Перехожу в созданный каталог (рис. 4.4).

Рис. 4.4: Перемещение между директориями

В строке ввода прописываю команду touch lab05-1.asm, чтобы создать файл, в котором буду работать (рис. 4.5).

Рис. 4.5: Созданный файл

4.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 открываю созданный файл для редактирования в редакторе nano (рис. 4.6)

Рис. 4.6: Открытие файла для редактирования

Ввожу в файл код программы для запроса строки у пользователя (рис. 4.7). Далее выхожу из файла, сохраняя изменения.

```
mc [sultan@sultan-BOHB-WAX9]:~/work/study/2024-2025/Архитектура компьютера/arch-pc/...
  /home/sultan/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05/lab05-1.asm *
           data ; Секция инициированных данных
         'Введите строку:',10 ; сообщение плюс
  символ перевода строки
             J $-msg ; Длина переменной 'msg'
         .bss ; Секция не инициированных данных 
ESB 80 ; Буфер размером 80 байт
          .text ; Код программы
        _start ; Начало программы
         ; Точка входа в программу
 nov eax,4 ; Системный вызов для записи (sys_write)
 nov ebx,1 ; Описатель файла 1 - стандартный вывод
nov ecx,msg ; Адрес строки 'msg' в 'ecx'
nov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
nov eax, 3 ; Системный вызов для чтения (sys_read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
nov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys_exit)
 nov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
 .nt 80h ; Вызов ядра
```

Рис. 4.7: Редактирование файла

С помощью функциональной клавиши F3 открываю файл для просмотра, чтобы проверить, содержит ли файл текст программы (рис. 4.8).

Рис. 4.8: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab05-1.asm. Создался объектный файл lab05-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab05-1 lab05-1.o. Создался исполняемый файл lab05-1.

Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу.

4.3 Подключение внешнего файла

Скачиваю файл in_out.asm со страницы курса в ТУИС. С помощью функциональной клавиши F5 копирую файл in_out.asm из каталога Загрузки в созданный

lab05 (рис.

☐ mc [sultan@sultan-BOHB-WAX9]:~/work/study/2024-2025/A					
Левая панель	Файл	Команд	ца	Настройн	
<тектура ко	мпьютера	/arch-pc/	/lab05	−.[^]> ₇	
.и Имя		Размер	Время	правки	
/		-BBEPX-	ноя 🤉	9 11:31	
in_out.asm		3942	ноя 9	9 08:53	
*lab05-1		8748	ноя !	9 12:08	
lab05-1.asm		1315	ноя 9	9 11:55	
lab05-1.o		752	ноя 🤉	9 12:05	

Рис. 4.9: Копирование файла

С помощью функциональной клавиши F5 копирую файл lab6-1 в тот же каталог, но с другим именем, для этого в появившемся окне mc прописываю имя для копии файла.

Изменяю содержимое файла lab6-2.asm во встроенном редакторе nano (рис. 4.10), чтобы в программе использовались подпрограммы из внешнего файла in out.asm.

```
mc [sultan@sultan-BOHB-WAX9]:~/work/study/2024-2025/Архитектура ко
  /home/sultan/work/study/2024-2025/Архитектура компьютера
%include 'in_out.asm' ; подключение внешнего файла
        .data ; Секция инициированных данных
        'Введите строку: ',0h ; сообщение
        .bss ; Секция не инициированных данных
           80 ; Буфер размером 80 байт
        .text ; Код программы
       _start ; Начало программы
   :art: ; Точка входа в программу
mov eax, msg ; запись адреса выводимого сообщения в `EAX`
call sprintLF ; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в
mov edx, 80 ; запись длины вводимого сообщения в `EBX`
call sread ; вызов подпрограммы ввода сообщения
call quit ; вызов подпрограммы завершения
```

Рис. 4.10: Редактирование файла

Транслирую текст программы файла в объектный файл командой nasm -f elf lab05-2.asm. Создался объектный файл lab05-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab05-2 lab05-2.o Создался исполняемый файл lab05-2. Запускаю исполняемый файл (рис.4.11).

```
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f e lf lab05-2.asm
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf _i386 -o lab05-2 lab05-2.o
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab05-2
Введите строку:
Парчиев Султан Багаудинович
```

Рис. 4.11: Исполнение файла

Открываю файл lab6-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения. Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. 4.12).

```
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf
_i386 -o lab05-2-2 lab05-2.o
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab05-2
-2
Введите строку:
Парчиев Султан Багаудинович
```

Рис. 4.12: Исполнение файла

Разница между первым исполняемым файлом lab05-2 и вторым lab05-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

4.4 Выполнение заданий для самостоятельной работы

1. Создаю копию файла lab05-1.asm с именем lab05-1-1.asm с помощью функциональной клавиши F5 (рис. 4.13).

Ко	пирование ————			
Копировать файл "lab05-1.asm" с исходным шаблоном:				
*				
[x] Метасимволы shell				
в:				
ура компьютера/arch-pc/lab05/lab05-1-1.asm [^]				
[] Разыменовывать ссылки [x] Сохранять атрибуты	[] Внутрь подкаталога, если есть [] Изменять относительные ссылки			
[< Хорошо >] [В фоне] [Отмена]			

Рис. 4.13: Копирование файла

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.14).

```
mc [sultan@sultan-BOHB-WAX9]:~/work/study/2024-2025/Архите
/home/sultan/work/study/2024-2025/Архитектура компьн
        .data ; Секция инициированных данных
        'Введите строку:',10
           | $-msg ; Длина переменной 'msg'
       .bss ; Секция не инициированных данных
           80 ; Буфер размером 80 байт
      N .text ; Код программы
      _start ; Начало программы
 start: ; Точка входа в программу
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла 1 - стандартный вывод
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h ; Вызов ядра
mov eax, 3 ; Системный вызов для чтения (sys_read)
mov ebx, 0 ; Дескриптор файла 0 - стандартный ввод
mov ecx, buf1 ; Адрес буфера под вводимую строку
mov edx, 80 ; Длина вводимой строки
int 80h ; Вызов ядра
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла '1' - стандартный вывод
mov ecx,buf1 ; Адрес строки buf1 в есх
mov edx,buf1 ; Размер строки buf1
int 80h ; Вызов ядра
mov eax,1 ; Системный вызов для выхода (sys_exit)
mov ebx,0 ; Выход с кодом возврата 0 (без ошибок)
int 80h ; Вызов ядра
```

Рис. 4.14: Отредактированный файл

2. Создаю объектный файл lab05-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab05-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.15).

```
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f e lf lab05-1-1.asm

sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf _i386 -o lab05-1-1 lab05-1-1.o

sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab05-1-1

Введите строку:
Парчиев Султан Багаудинович
Парчиев Султан Багаудинович
```

Рис. 4.15: Исполнение файла

3. Создаю копию файла lab05-2.asm с именем lab05-2-1.asm с помощью функциональной клавиши F5. С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.16).

```
/home/sultan/work/study/2024-2025/Архитектура компьютера/а
%include 'in out.asm'
        .data ; Секция инициированных данных
        'Введите строку: ',0h ; сообщение
        .bss ; Секция не инициированных данных
           80 ; Буфер размером 80 байт
    ION .text ; Код программы
       start ; Начало программы
  tart: ; Точка входа в программу
mov eax, msg ; запись адреса выводимого сообщения в `EAX`
call sprint ; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в
mov edx, 80 ; запись длины вводимого сообщения в `EBX`
call sread ; вызов подпрограммы ввода сообщения
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1; Описатель файла '1' - стандартный вывод
mov ecx,buf1 ; Адрес строки buf1 в есх
int 80h ; Вызов ядра
call quit ; вызов подпрограммы завершения
```

Рис. 4.16: Отредактированный файл

4. Создаю объектный файл lab05-2-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab05-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее

```
прог
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ nasm -f e
lf lab05-2-1.asm
sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ld -m elf
_i386 -o lab05-2-1 lab05-2-1.o

sultan@sultan-BOHB-WAX9:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab05$ ./lab05-2
-1
Введите строку: Парчиев Султан Багаудинович
Парчиев Султан Багаудинович

введ
```

енные мною данные (рис. 4.17).

Рис. 4.17: Исполнение файла

5 Выводы

При выполнении данной лабораторной работы я приобрел практические навыки работы в Midnight Commander и освоил инструкции языка ассемблера mov и int

Список литературы

1. Архитекутра ЭВМ