위성강우와 분포형 모형을 이용한 유역 홍수 유출 해석

2020.10.10

한국건설기술연구원 ㈜헤르메시스

- 목 차 -

1.	서론	·· 1
2.	GRM 모형	2
3.	위성강우를 이용한 유출해석	16
4.	침수해석 모델(G2D)에 사용될 유량 경계조건 자료 출력	17
5.	메콩강 유역의 유출모의	19
참	고문헌	37
부	록1. GRM 프로젝트 파일(.gmp)의 상세사항	39

1. 서론

- 유역의 홍수 유출 해석을 위해서는 다양한 수문학적 모형을 이용할 수 있으며, 그 모형은 크게 집중형 모형과 격자 기반의 분포형 모형으로 구분할 수 있음
- □ 집중형 모형은 유역의 평균강우량을 이용하여 유출해석을 하므로, 원시 강우 자료를 유역 평균 강우량으로 환산하는 과정이 선행 되어야 함
- 격자 기반의 분포형 모형은 유역의 평균강우량과 격자 형식의 강우량을 모두이용할 수 있으며, 원시 강우자료의 형식에 따라 선택적으로 사용할 수 있음
- 본 기술 보고서는 세계적으로 다수 분포하고 있는 미계측 지역의 홍수 유출 해석을 위한 방법을 제시하고 있으며, 이때 사용되는 자료는 전 지구를 대상 으로 위성자료를 이용해서 생산되는 강우자료를 사용할 수 있음
- 위성강우 자료는 정형 사각형 격자의 래스터 형식을 가지며, 이에 따라 정형사각 격자 기반의 분포형 홍수 유출 모형을 이용하는 것이 이점이 있음
- □ 본 기술보고서에서는 격자 기반의 물리적 분포형 강우-유출 모형인 GRM (Grid based Rainfall-runoff Model)(최윤석과 김경탁, 2019)을 이용하여 위성강우 자료를 적용한 홍수 유출 해석에 대해서 기술함
- □ GRM 모형의 이론, 매개변수, 입출력 자료 등에 대한 상세 사항은 GRM 매뉴얼 (최윤석과 김경탁, 2019)을 참고할 수 있음

2. GRM 모형

1) GRM 모형의 개요

- □ GRM(Grid based Rainfall-runoff Model)은 강우-유출 사상을 모의하기 위한 물리적 기반의 분포형 강우-유출 모형임
- " 지표면 유출과 하도 유출의 해석을 위해서 운동파 모형을 이용하고 있으며, 침투량 산정은 Green-Ampt 모형을 이용함
- 주요 모의 수문성분은 토양으로의 침투와 침누, 복귀류, 지표면 유출, 지표하 유출, 기저 유출, 하천 유출 등이며, 댐과 같이 하천상에 있는 흐름제어 시설 물의 영향을 유출모의에 반영할 수 있음
- □ 강우자료는 유역 평균 강우량 혹은 격자 형식의 래스터 강우 시계열 자료를 선택적으로 적용할 수 있음

그림 2.1 GRM의 수문성분 유출과정

2) 지배방정식

- □ GRM은 운동파 모형을 이용해서 유출을 해석함
- □ 지표면 흐름에서의 연속방정식은 식 (1)과 같고, 하도 흐름에서의 연속방정식은 식 (2)를 적용

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = r - f + \frac{q_r}{\Delta y} \tag{1}$$

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = r\Delta y + q_L + q_{ss} + q_b \tag{2}$$

여기서 q : 단위 폭당 유량(q=uh), u : x 방향 유속, r : 강우강도, f : 침투율, q_r : 복귀류, A : x 방향에 직각인 흐름 단면적, Q : 유량, h : 수심, q_L : 지표면 흐름에 의한 측방유입, q_{ss} : 하도로 유입되는 지표하 유출, q_b : 기저유출, t : 시간

□ GRM은 토양을 두 개의 층으로 모의하며, 첫 번째 토양층(Layer A)으로의 침투는 Green-Ampt 모형을 이용해서 계산함

$$F(t) = Kt + \Delta\theta\psi \ln(1 + \frac{F(t)}{\Delta\theta\psi})$$
(3)

$$f(t) = K \left(\frac{\psi \Delta \theta}{F(t)} + 1 \right) \tag{4}$$

여기서 F(t) : t 시간에서의 누가침투량, f(t) : t 시간에서의 침투율, $\Delta\theta$: 토양수분함량변화($\Delta\theta=(1-S_e)\theta_e$), S_e : 유효포화도($S_e=(\theta-\theta_r)/(\eta-\theta_r)$), θ : 수분함량($\theta_r\leq\theta\leq\eta$), θ_r : 잔류 수분함량($\theta_r=\eta-\theta_e$), η : 공극율, θ_e : 유효공극율, ψ : 습윤전선흡인수두, K : 수리전도도

□ 토양 Layer A에서는 횡방향의 지표하 흐름을 모의하며, 다음의 식을 적용

$$q_{ss} = KD_s \sin(S_a) \tag{5}$$

여기서 q_{ss} : 지표하 유출, D_{s} : 포화된 토양 깊이, S_{a} : 지면의 경사각

□ 토양 Layer B로의 침누는 다음의 식을 이용해서 계산

$$p = K_{B_0} \times \Delta t \tag{6}$$

여기서 $K_{\!B\!v}$: B 층에서의 연직 투수계수, p : Δt 시간 동안의 침누량

□ 토양 Layer B에서의 횡방향 유량은 다음의 식을 이용해서 계산

$$q_{Bh} = K_{Bh} D_B \frac{dz_B}{dx} \tag{7}$$

$$q_{Bh} = K_{Bh} D_B \sin(S_a) \tag{8}$$

여기서 z_B : B 층의 수위, K_{Bh} : B 층의 횡방향 투수계수, D_B : B 층의 수심, q_{Bh} : B 층의 단위폭당 횡방향 유량

□ 비피압대수층(Layer B)과 하천과의 유량 교환은 다음의 식을 이용해서 계산

$$q_b = K_{Bh} \frac{h_B - h_{ch}}{h_{ch}} b$$
 (for $h_B > h_{ch}$) (9)

$$q_b = K_{Bh}(h_B - h_{ch})$$
 (for $h_B < h_{ch}$) (10)

여기서 h_B : 비피압대수층의 수심, h_{ch} : 하도 수심, b : 하폭, q_b : 제어체적 단위 길이 당 기저유량

3) 흐름제어 시설물 모의 기법

▫ GRM은 댐과 같이 하천상에서 흐름을 제어할 수 있는 시설물을 모의할 수 있음

□ 흐름제어 시설물 모의는 임의 격자에 'Reservoir outflow', 'Inlet', 'Reservoir operation', 'Sink/source flow' 옵션을 지정해서 모의하며, 각각의 특징은 아래의 표와 같음

표 2.1 흐름제어 시설물 모의 기법

 구분	설명
Reservoir outflow	지정된 격자의 상류와 하류를 분리해서 모의하며, 하류의 모의에서는 대상 격자에서 입력된 저수지 유출 수문곡선을 상류단 경계조건으로 적용함
Inlet	지정된 격자의 상류와 하류를 분리하고 하류만 모의함. 하류 모의에서는 대상 격자에서 입력된 저수지 유출 수문곡선을 상류단 경계조건으로 적용함
Reservoir operation	지정된 격자의 상류와 하류를 분리해서 모의하며, 하류의 모의에서는 대상 격자에서 지정된 저수지 운영 규칙을 이용해서 계산된 유량을 상류단 경계조건으로 적용함
Sink/source flow	지정된 격자에 추가되는 유량 혹은 배제되는 유량을 입력하고, 이를 유출해석에 반영함

4) 매개변수

- □ GRM의 매개변수는 격자별로 부여되는 물리적인 매개변수와 사용자에 의해서 추정되는 매개변수로 구분
- □ 격자별로 부여되는 물리적인 매개변수는 GRM의 입력자료인 유역 영역, 하천망 등과 같은 유역의 지형자료와, 토지피복도, 토양도 등을 이용해서 설정됨
- 사용자에 의해서 추정되는 매개변수는 GRM 모형의 보정을 위해서 수정되는 매개변수로 주로 토양, 토지피복, 하폭, 초기포화도, 최소경사, 매개변수 보정계수 등이 있음

□ 토양 매개변수

토양과 관련된 매개변수는 침투 계산에 사용되는 Green-Ampt 방정식의 매개변수, 토양심 정보, 그리고 침누 계산에 사용되는 불포화 투수계수 산정 매개변수임

□ Green-Ampt 방정식의 매개변수는 토성(soil texture)에 대해서 부여되어 있으며, 아래의 표와 같음(Rawls 등, 1983; Chow 등, 1988). 유출해석에 사용하는 토양자료가 토성이 아닌 다른 속성으로 설정되어 있으면, 각 속성을 토성과 대응 시켜 주는 과정이 필요함

표 2.2 토성에 따른 Green-Ampt 모형의 침투 매개변수

Soil Texture	Porosity (η)	Effective porosity (θ_e)	Residual moisture content $(\theta_r = \eta - \theta_e)$	Wetting front soil suction head (ψ_f) [cm]	Hydraulic conduct. (<i>K</i>) [cm/hr]
Sand (사토)	0.437 (0.374-0.5)	0.417 (0.354-0.479)	0.02	4.95 (0.97-25.35)	11.78
Loamy sand (양질사토)	0.437 (0.363-0.505)	0.401 (0.329-0.472)	0.036	6.13 (1.35-27.93)	2.99
Sandy Ioam (사양토)	0.453 (0.351-0.554)	0.412 (0.283-0.54)	0.041	11.01 (2.67-45.46)	1.09
Loam (양토)	0.463 (0.375-0.55)	0.434 (0.334-0.533)	0.029	8.89 (1.33-59.37)	0.34
Silt loam (미사질양토)	0.501 (0.42-0.581)	0.486 (0.394-0.577)	0.015	16.68 (2.92-95.38)	0.65
Sandy clay loam (사질식양토)	0.398 (0.332-0.463)	0.33 (0.235-0.424)	0.068	21.85 (4.42-108.1)	0.15
Clay loam (식양토)	0.464 (0.409-0.518)	0.309 (0.279-0.5)	0.155	20.88 (4.79-91.9)	0.1
Silty clay loam (미사질식양토)	0.471 (0.418-0.523)	0.432 (0.347-0.516)	0.039	27.3 (5.67-131.49)	0.1
Sandy clay (사질식토)	0.43 (0.37-0.489)	0.321 (0.207-0.434)	0.109	23.9 (4.08-140.1)	0.06
Silty clay (미사질식토)	0.479 (0.425-0.532)	0.423 (0.334-0.511)	0.056	29.22 (6.13-139.3)	0.05
Clay (식토)	0.475 (0.427-0.522)	0.385 (0.269-0.5)	0.09	31.63 (6.39-156.4)	0.03

[□] 토양심은 토양의 포화정도를 판단하는데 사용되며, 미농무성의 토양심과 우리나 라의 토양조사사업의 성과에서 제시하고 있는 토양심은 아래의 표와 같음(농업 기술연구소, 1992).

표 2.3 토양심 분류

드아시 브로		토잉	·심[cm]
토양심 분류 	-	미농무성	정밀토양조사
Very shallow	매우얕음	0 - 10	0 - 20
Shallow	얕음	10 - 30	20 - 50
Moderately deep or Moderately shallow	보통	35 - 50	50 - 100
Deep	깊음	50 - 60	100 - 150
Very Deep	매우깊음	> 60	> 150

- □ GRM은 토양층 A에서 토양층 B로의 침누시 불포화투수계수를 사용함
- Predlund et al.(1994)은 아래의 Averjanov(1950)가 제시한 불포화투수계수 산정식에서 n 값으로 3.5를 제시하였으며, Noh et al.(2015)에서는 장기간의 연속형 모의에서 n 값으로 12를 사용한바 있음. GRM에서는 강우-유출 사상의 모의를 위한 n 값으로 6.4를 기본값으로 설정함

$$K_u = K_s S_r^n \tag{11}$$

여기서 K_u : 불포화투수계수, K_s : 포화투수계수, S_r : 토양의 포화도 $\{=(\theta-\theta_r)/(\theta_s-\theta_r)\},~\theta_r$: 잔류 수분함량, θ_s : 포화 수분함량, n : 계수

 $^{\circ}$ GRM은 위의 식과 함께 다음의 식을 선택해서 사용할 수 있으며, 이 식에서 GRM은 n의 기본값으로 0.2, m의 기본값으로 0.1을 설정함

$$K_{u} = nK_{s}S_{r} \tag{12}$$

$$K_{u} = mK_{s} \tag{13}$$

□ 토지피복 매개변수

- 유역의 토지피복에 의한 매개변수는 지표면의 조도계수와 불투수율임
- □ 토지피복에 따른 조도계수는 Engman(1986), Vieux(2004) 등에 의해서 제안 다음 표의 값을 참고할 수 있음. 환경부 토지피복도 대분류 이외의 토지피복속 성은 그에 대한 조도계수를 별도로 설정할 수 있음

표 2.4 토지피복 속성별 조도계수

토	지피복도 대분류(환경부)	조도계수
속성 값	<u></u> 속성	立 エ 州 十
100	시가화/건조지역	0.015
200	농업지역	0.035
300	산림지역	0.1
400	초지	0.15
500	습지	0.07
600	나지	0.02
700	수역	0.03

- □ 토지피복에 따른 불투수율은 토양으로의 침투 가능 영역을 결정하는데 사용됨
- □ 불투수율은 0~1의 범위를 가지며, 불투수율이 "1"인 경우 해당 토지피복 속 성을 가지는 격자는 모두 불투수 영역으로 설정됨
- □ 수역과 습지에서의 토양은 항상 포화된 것으로 볼 수 있으므로, 강우에 의한 침투가 발생하지 않는 것으로 가정하고 불투수율을 "1"로 설정함
- □ 사공호상(2003)의 연구 결과 중 환경부의 토지피복도 대분류 속성에 대응하는 항목에 대한 불투수율을 참고할 수 있음

표 2.5 토지피복도 속성별 불투수율

토지피복 속성	토지이용 속성 -	불투수	율
포시피국 극 6	포시에는 극이	값의 범위	평균
시가화/건조지역	상업지역	0.641-0.947	0.853
	논	0.107-0.456	
농업지역	밭	0.053-0.504	0.391
	비닐하우스	0.422-0.842	
산림지역	개발제한구역, 비시가화지역, 산림	0.001-0.05	0.025
초지	초지	0.14-0.86	0.44
수역	-	-	1
나지	나지	0.12-0.81	0.442
습지	-	-	1

□ 하폭

- 하폭은 하도 유출시 통수단면적을 결정하는데 이용됨
- □ GRM에서는 사다리꼴 비대칭 복단면을 모의할 수 있음
- 하천은 불규칙적인 복단면과 하폭을 형성하고 있으며, 이러한 다양한 하도의 형상을 모든 하천 격자에 대해서 입력하는 것은 매우 어려운 일임. 그러므로 홍수 유출모의를 위해서는 객관성 있는 매개변수를 이용하여 모든 하천 격자 에서 일관성 있는 모의결과를 얻을 수 있도록 하폭을 입력하는 것이 중요함 (오경두, 2009)
- GRM에서는 하천격자별로 하폭이 설정된 래스터 파일을 적용하는 방법, 격자에서의 흐름누적수를 이용하는 방법, 계획하폭 공식을 이용하는 방법을 적용할수 있음
- □ 흐름누적수를 이용하는 방법

유역 격자에서 흐름누적수는 하류에 있는 격자 일수록 크며, 일반적으로 하폭 또한 하류의 하폭이 상류에 비해서 넓음. 흐름누적수를 이용하는 방법은 이러한 현상을 반영하여 흐름누적수에 비례하여 하폭을 설정하는 방법임. 임의 제 어체적(CV_i)에서의 하폭은 아래의 식을 이용해서 계산됨

$$b_i = \frac{FA_i \times b_{max}}{FA_{max}} \tag{14}$$

여기서 b_i : CV_i 에서의 하폭, FA_{max} : 최하류 제어체적의 흐름누적수, FA_i : CV_i 에서의 흐름누적수, b_{max} : 최하류 제어체적에서의 하폭

□ 계획하폭 공식을 이용하는 방법

건설교통부(2005)에서는 하도계획 수립시 계획홍수량에 따른 계획하폭의 설정을 위해서 경사, 유역 면적과 같은 지형적 특성을 이용한 경험공식을 아래와 같이 제안함.

$$B = 1.698 \frac{A_w^{0.318}}{S_0^{0.5}}$$
 : 남부지방(호남, 영남) (15)

$$B = 1.303 \frac{A_w^{0.318}}{S_0^{0.5}}$$
 : 중부지방(경기, 강원, 충남북) (16)

여기서 B : 하폭, A_w : 유역면적 $[km^2]$, S_0 : 하상경사

□ 초기포화도

- 호기포화도는 침투해석시 침투율, 최대 가능침투량 등을 계산할 때 사용되는매개변수로 유역에서의 직접유출량을 결정하는데 중요한 매개변수임
- □ 초기포화도는 유출해석 시점에서의 선행강우 등에 의한 토양의 포화도를 의미하며, 초기포화도는 모형 보정 과정에서 "0~1"의 범위에서 추정되고, 선행 강우가 클수록 1에 가까워 질 수 있음
- □ 격자별로 설정된 토양 포화도 래스터 파일이 있을 경우에는 사용자에 의해서 초기포화도를 추정하지 않고, 이 자료를 이용하여 유출해석을 할 수 있음

□ 최소경사

운동파 모형에서는 유속의 계산을 위해서 마찰경사로 지면의 경사를 사용하으며, 지면 경사가 '0'인 경우 흐름이 발생하지 않음

- GRM의 입력자료 작성을 위해서 사용되는 DEM은 flat area 보정 과정에서 매우
 작은 지면 경사 값을 가질 수 있음. 이와 같이 매우 작은 지면 경사를 운동파
 모형에 적용할 경우에는 유속과 유량이 "0"에 가까운 값으로 계산되는 문제가 있음
- 최소경사는 이러한 작은 경사 값이 모의에 적용되는 것을 제어하기 위한 매개 변수로, Ponce 등(1978), Woolhiser와 Liggett(1967) 등에서는 운동파 모형을 적용할 수 있는 경사의 최소값으로 0.0001 ~ 0.01의 범위를 제안한 바 있으며, Henderson(1966)과 ASCE(1996)는 0.002(10ft/mi) 이상의 하상경사를 가지는 하천에서 운동파 모형을 적용하는 것이 적절함을 제시한 바 있음
- 최소경사는 홍수추적에서 유속의 계산에 관여함으로써 유량과 홍수파의 도달시간에 영향을 미치게 됨. GRM은 지표면 최소경사와 하도 최소경사를 구분하고 있으며, 각각은 모형 보정과정에서 추정되는 매개변수임

□ 하도 조도계수

- 하도 조도계수는 하천 격자에서의 유속 계산에 이용되는 매개변수임
- Chow(1959)는 하도의 조도계수 선정에 대한 기존의 연구를 종합하여 다양한 하도 조건에 대한 조도계수를 제안하고, 아래 표와 같이 자연 하천에 대한 조 도계수를 제시함

표 2.6 자연 하천에서의 조도계수

		조도계수		
	T 正	최소	보통	최대
	Clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033
	Same as above, but more stones and weeds	0.030	0.035	0.040
	Clean, winding, some pools and shoals	0.033	0.040	0.045
	Same as above, but some weeds and stones((A))	0.035	0.045	0.050
Streams on plain	Same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
	Same as (A), but more stones	0.045	0.050	0.060
	Sluggish reaches, weedy, deep pools	0.050	0.070	0.080
	Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
Mountain streams, no vegetation in channel,	Bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050
banks usually steep, trees and brush along banks submerged at high stage	Bottom: cobbles with large boulders	0.040	0.050	0.070

□ 매개변수 보정계수

- □ 유출모의에 적용된 토지피복과 토양 속성에 의해서 격자별로 부여된 조도계수 와 Green-Ampt 모형의 매개변수를 일정한 비율로 보정하고자 할 경우에는 각 각의 매개변수에 대한 보정계수를 적용할 수 있음
- 매개변수 보정계수는 모의 대상 전체 격자에 대해서 각 매개변수에 곱해지는
 값으로 1을 입력할 경우 대상 매개변수는 초기에 설정된 값이 그대로 유출모
 의에 적용됨

5) 모형 보정

- GRM 모형은 호우사상의 유출모의를 목적으로 하고 있으므로 모형 보정은 첨두 유량, 첨두시간 및 총유출량에 대해서 실측 수문곡선을 재현하는 것을 주요 대상으로 함
- 계산된 수문곡선의 전체적인 형태가 관측수문곡선을 잘 재현하는지를 추가적으로 고려함
- 모형 보정시 수정되는 주요 매개변수는 초기포화도, 하도 최소경사, 하도 조도계수, 투수계수, 토양심 등과 같이 모든 셀에 대해서 관측값의 설정이 어렵고, 불확실성과 유출해석 민감도가 상대적으로 큰 매개변수를 대상함
- GRM 모형은 모의 대상 영역 내에서 다수의 지점을 대상으로 모형을 보정하고,
 이를 이용하여 전체 모의 대상 영역을 한번에 모의할 수 있는 기법(다지점 보정 기법)을 사용할 수 있음
- 모형의 보정은 유출모의시 일반적으로 적용되는 시행착오법을 비롯한 다양한 최적화 기법을 적용할 수 있음
- □ 모형의 적합도 평가는 첨두유량, 첨두시간, 총유출량에 대한 상대오차, 시계 열 자료의 평균제곱근오차(RMSE), 정규화된 평균제곱근오차(nRMSE), 평균상대 오차(MAPE), 상관계수(CC), 모형 효율계수(ME, Nash-Sutcliffe efficiency) 등 다양한 목적함수를 이용할 수 있음

6) 입력자료

- □ GRM은 프로젝트 단위로 실행됨. GRM 모형의 프로젝트 파일은 .gmp의 확장자를 가지며, xml 형식으로 저장됨(.gmp 파일의 세부 항목별 설명은 부록을 참조)
- □ GRM 프로젝트 파일에는 GRM 실행에 필요한 입력자료와 모의환경, 매개변수 등이 포함되어 있음
- GRM은 DEM, 토양도 및 토지피복도를 이용해서 생성된 지형 및 공간자료와 강
 우 래스터 파일 혹은 텍스트 형식의 강우 시계열 자료를 입력자료로 이용함
- 유역의 지형 공간자료 중 DEM 분석을 통해서 만들어지는 유역, 경사, 흐름방향, 흐름누적수, 하천망 파일은 수문학적 공간정보를 생성할 수 있는 GIS 도구를 이용해서 생성할 있음
- 입력자료 생성을 위한 GIS 도구는 HyGIS, ArcGIS, TauDEM, QGIS Drainage

plug-in 등과 같이 DEM 분석을 통한 수문학적 공간정보 생성 도구를 포함하고 있는 범용 S/W를 이용할 수 있음

□ GRM은 ASCII 래스터 포맷을 이용함. 그러므로 GIS 도구를 이용해서 생성된 다 양한 포맷의 데이터를 ASCII 포맷으로 변환하여 모형에 적용해야 함

표 2.7 GRM의 입력자료

 구분	자료의 종류	포맷	활용 가능한 원본 데이터	비고
지형	모의영역 (유역영역) 경사 흐름방향 흐름누적수 하천망 하폭	ASCII	DEM (수치 지형도, 원격탐사 영상)	하천망과 하폭 데이터는 선택적 입력
토지피복	토지피복도	래스터	토지피복도 원격탐사 영상	토지피복 속성별 GRM 매개변수는 환경부 대분류 토지피복 속성을 참조값으로 제공
토양	<u>토성</u> 토양심		정밀토양도 글로벌 토양정보	토양 속성별 GRM 매개변수는 Green-Ampt 모형의 매개변수를 사용
	강우	ASCII 래스터파일 텍스트	관측, 추정	래스터 형식의 분포형 강우 시계열 혹은 테스트 형식의 유역 평균강우량 시계열 자료 중 선택적 사용
수문	유량	텍스트 ASCII 래스터 파일	관측, 추정	텍스트는 flow control 모의를 위한 특정 격자에서의 유량 시계열, 보정지점에서의 초기 유량 ASCII 포맷 자료는 모든 하천 격자에서의 초기유량
	포화도	ASCII 래스터 파일	추정된 값	초기포화도 매개변수 대신, 유역내 모든 격자에서의 초기포화도를 ASCII 파일로 입력할 수 있음(선택적 적용)

7) 출력자료

- □ GRM에서의 모든 수문성분은 유역내 모든 격자에서 계산되며, 계산결과의 출력 은 ASCII 래스터 파일과 텍스트 형식의 시계열 자료임
- □ 사용자는 계산결과를 텍스트로 출력할 셀을 watch point로 지정해야 함
- 유역내 모든 격자에 대한 모의결과는 사용자 선택에 의해서 ASCII 파일 혹은 이미지 파일(png)로도 출력할 수 있음(gmp 파일에서 MakeIMGFile, MakeASCFile 옵션 이용).

표 2.8 GRM의 모의결과 파일

Simulation Type	출력파일	내용
	[Project name]Discharge.out	모든 watch point에서의 유량 계산결과, 유역 평균강우량, 소요된 계산시간
	[Project name]FCData.out	모든 flow control grid에서의 Flow control 유량 자료 (flow control을 모의한 경우에만 출력됨)
SingleEvent	[Project name]FCStorage.out	모든 watch point에서의 저수지 저류량 (flow control을 모의하고, ROM이 적용된 경우에만 기록됨)
	[Project name]WP [watch point name].out	대상 watch point에서 출력되는 모든 계산결과 (유량, 하천 셀의 경우 기저유량 수심, 토양수분함량, 토양포화도, 격자 강우량, watch point 상류 평균강우량, Flow control 자료, 저류량) (Watch point마다 파일 하나씩 생성)
RealTme	[Project name]RealTime [watch point name].out	해당 watch point에서의 상류 유역평균 강우량, 유량 계산결과
Kearrine -	DB 저장	해당 watch point에서의 상류 유역평균 강우량, 유량 계산결과
	ASCII file	유량, 토양포화도, 강우, 누적강우의 분포를 ASCII 파일로 저장
	lmage file	유량, 토양포화도, 강우, 누적강우의 분포를 png 파일로 저장

3. 위성강우를 이용한 유출해석

1) 개요

- □ GRM은 ASCII 래스터 형식의 강우량 파일의 시계열 자료 혹은 텍스트 형식의 유역 평균강우량 시계열 자료를 이용해서 유출해석을 할 수 있음
- □ 위성강우 자료는 래스터 형식의 자료이므로 이를 ASCII 래스터 형식으로 변환 해서 적용해야 함

2) GRM 모형의 옵션

- □ GRM에서 강우자료의 입력을 위한 옵션은 GRM 프로젝트 파일(.gmp) 중 ProjectSettings 테이블에서 RainfallDataType, RainfallInterval, RainfallDataFile 3개의 요소(field, element)에서 설정(부록 1 참조)
- □ ASCII 래스터 형식의 강우량 자료를 적용하기 위해서는 RainfallDataType 필드에는 'TextFileASCgrid'를 입력하고, RainfallInterval에는 강우자료의시간 간격(분), RainfallDataFile에는 강우량 ASCII 래스터 파일의 경로와 이름의 목록이 저장된 텍스트 파일을 지정해야함

표 3.1 ASCII 래스터 형식의 강우자료 목록 파일

강우자료 ASCII 래스터 파일의 경로와 이름1 강우자료 ASCII 래스터 파일의 경로와 이름2 강우자료 ASCII 래스터 파일의 경로와 이름3

•

□ 이때 강우량 ASCII 래스터 파일의 해상도와 영역(행과 열의 개수)은 GRM 모형의 입력자료로 이용된 유역 래스터 파일(모의 영역, 흐름방향 등)과 같아야 함

4. 침수해석 모델(G2D)에 사용될 유량 경계조건 자료 출력

1) 개요

- □ G2D 모형은 유량, 수위, 수심 등을 경계조건으로 사용하여 침수해석을 수행함
- GRM 모형의 중요한 모의결과인 유량은 침수해석 모형인 G2D(Grid based
 2-Dimensional land surface flood model) 모형의 경계조건으로 사용될 수 있음
- □ G2D 모형은 유량의 시계열 값이 저장된 텍스트 파일과 경계조건을 부여할 격 자의 열과 행의 번호(x, y)를 경계조건 설정시 지정함
- □ 그러므로 GRM 모형의 계산 결과 유량을 G2D 모형의 입력자료로 사용하기 위해 서는, G2D 모형의 경계조건이 부여될 위치에 있는 격자에서의 계산된 유량을 아래와 같은 G2D 모형의 유량 경계조건 파일의 형식으로 저장해야 함

표 4.1 G2D 모형의 유량 경계조건 파일의 형식

유량 값 1 유량 값 2 유량 값 3

.

2) GRM 모형 옵션

- Watch point 지정
- ·G2D 모형의 경계조건이 부여될 위치에서 GRM 모형의 계산 유량을 출력하기 위해서 는 우선 GRM 모형에서 대상 격자를 watch point로 지정해야함
- GRM 모형의 watch point는 GRM의 프로젝트 파일(.gmp)에 있는 Watchpoint 테이블에서 지정할 수 있음(부록 1 참조)
- Watchpoint 테이블은 Name, Colx, Rowy의 필드를 가지며, 각각 watch point의 이름, 열 번호, 행 번호를 나타냄
- •이때 watch point의 열과 행의 번호는 모의 영역(유역) 래스터 파일의 좌상단을 (0,0)으로 해서 우측과 아래 방향으로 진행하면서 부여되는 일련번호임

- 계산결과 출력 옵션
- · GRM 모형은 계산결과의 시계열 자료 출력시 3가지 옵션을 제공함
- ·계산결과의 출력 옵션은 GRM의 프로젝트 파일(.gmp)에 있는 ProjectSettings 테이블의 PrintOption에서 아래 표와 같이 지정할 수 있음(부록 1 참조)

표 4.2 GRM 모형의 PrintOption 값

옵션	설명
All	모든 모의 결과 출력
DischargeFileQ	*Discharge.out 파일만 생성하고, 유량 값 만 출력(설명문, 시간, 항목이름 등 출력하지 않음)
AllQ	*Discharge.out 파일과 watch point 별 모의 결과 파일을 생성하고, 유량 값만 출력(설명문, 시간, 항목이름 등 출력하지 않음)

- G2D에서는 대상 격자의 유량 값만 저장된 시계열 자료를 경계조건으로 입력 받으므로, GRM 모의시 DischargeFileQ 혹은 AllQ 옵션을 선택해서 실행하면 됨
- GRM의 모의 결과를 출력할 격자(watch point 격자)가 경계조건 대상 격자 하나 뿐일 경우에는 DischargeFileQ 옵션을 지정하여 대상 격자 하나에 대해서만 출력하면 됨
- GRM의 모의 결과를 출력할 격자(watch point 격자)가 경계조건 대상 격자를 포함하여 여러 개일 경우에는 AllQ 옵션을 지정하여 모든 watch point에 대해서 유량 만을 출력하고, 이 중 경계조건으로 사용할 계산 결과가 출력된 watch point에 대한 유량 파일을 G2D 모형의 경계조건으로 적용하면 됨

5. 메콩강 유역의 유출모의

1) 기본 자료

- □ DEM
- HydroSHEDs((Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales)에서 제공되는 DEM 적용(https://www.hydrosheds.org/)
- ·수평 해상도 : 15 arc-seconds

그림 5.1 HydroSHEDs DEM

- 토지피복도
- · Global Land Cover by National Mapping Organizations (GLCNMO)의 전지구 토지피 복도인 Global Map v.3 적용(https://globalmaps.github.io/glcnmo.html)
- · 수평 해상도 : 500m

그림 5.2 Global Map 토지피복도

- □ 토양도
- HWSD(Harmonized World Soil Database) 적용

 (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/)
- · 수평 해상도 : 1,000m

그림 5.3 HWSD 토양도

- □ 강우
- ·위성영상으로부터 유도된 강우자료 사용(2006년 6월 1일)
- ·정형 사각 격자 래스터 형식의 자료 사용

2) 메콩강 유출모의를 위한 기본 자료 처리

▫ 대상 영역에 대한 자료 구축 순서

* 모든 ASCII 파일은 좌표계 정보 파일(*.prj)이 함께 있어야 함

□ 영역 box 구축

- ·메콩강 유역을 포함하는 지역 box 구축
 - 메콩강 유역을 충분히 포함하도록 폴리곤 shp 파일 box를 준비함(좌표계는 원본 좌표계인 EPSG 4326)(mk region box 4326.shp)
 - 모든 원본 자료를 이 영역에 맞게 클리핑 해서 원시자료의 영역을 작게 하고, 메콩강 지역의 좌표계(EPSG 32648)를 적용할 수 있도록 영역을 제한함
- · GRM 모의 영역 box 구축
 - 강우자료의 좌표계(EPSG 32648)와 영역에 맞게 래스터 포맷의 box를 준비함 (mk_GRM_grid_box_32648.asc)
 - * 벡터 box를 이용하여 자료를 클리핑할 경우, 원하는 해상도, 영역과 불일치 될 수 있으므로, 가능한 적용하고자 하는 래스터 box를 이용해서 자료 구축
 - 모든 자료를 이 영역에 맞추어서 가공하여 최종 자료 구축
 - GRM의 입력 래스터 자료는 x 방향과 y 방향의 격자 크기가 서로 같아야 함

- DEM

- 원본 DEM(HydroSHED 아시아 DEM, hsDEM_as_dem15s_4326.tif)을 메콩강 유역 범위를 포함하는 영역으로 클리핑(원본 좌표계 EPSG 4326) (hsDEM_mkRegion_4326.tif)
- •모의 대상 지역의 좌표계(UTM Z48, EPSG : 32648을 적용)로 변환 (hsDEM_mkRegion_32648.tif, hsDEM_mkRegion_32648.asc)
- · hsDEM_mkRegion_32648.asc 파일을 이용해서 GRM 모의 영역 래스터 box를 적용하여 유출해석 영역에 맞게 clipping, resampling 실행(hsDEM_GRMRegion_32648.asc)
 - 래스터 포맷의 box를 이용해서 큰 영역의 래스터 파일을 클리핑하고 리샘플링 하기 위해서는 GDAL 도구를 이용하는 것이 효율 적임
 - ALTEK (https://github.com/floodmodel/ALTEK) 에서는 텍스트 파일을 이용한 다양한 자료 처리 기능이 포함되어 있으며, GDAL 도구를 이용하여 ASCII 래스터 파일을 처 리할 수 있는 기능을 포함하고 있음
 - ALTEK에서는 ASCII 래스터 포맷을 기본으로 이용함
 - 본 실습에서는 ALTEK의 [Raster file converter > Clip/resample] 기능을 이용함
 - Base extent file로는 위성강우자료와 같은 해상도(2682.815m × 2682.815m)를 가지는 mk_GRM_grid_box_32648.asc 파일을 이용함
- ·만들어진 DEM 파일을

C:₩Mekong₩1_GRM₩watershed_work₩mk_DEM_GRM_ori_32648.tif (혹은 .asc 포맷)로 복사

- 토지피복도
- 원본 토지피복도(global map 토지피복도, gmlc_v312_4326.tif)를 메콩강 유역 범위를 포함하는 영역으로 클리핑(원본 좌표계 EPSG 4326) (gmlc_v312_mkRegion_4326.tif)
- 모의 대상 지역의 좌표계(UTM Z48, EPSG : 32648을 적용)로 변환 (gmlc_v312_mkRegion_32648.tif, gmlc_v312_mkRegion_32648.asc)
- gmlc_v312_mkRegion_32648.asc 파일을 이용해서 GRM 모의 영역 래스터 box를 적용 하여 유출해석 영역에 맞게 clipping, resampling 실행

(gmlc_v312_GRMRegion_32648.asc)

- ALTEK의 [Raster file converter > Clip/resample] 기능을 이용
- Base extent file로는 위성강우자료와 같은 해상도(2682.815m × 2682.815m)를 가지는 mk_GRM_grid_box_32648.asc 파일을 이용함
- •만들어진 토지피복도 파일을

C:₩Mekong₩1_GRM₩watershed₩mk_GMLC_32648.asc 로 복사

• 토지피복 속성 부여를 위한 VAT 파일은 토지피복도 래스터 값과 환경부 대분류 토지 피복 속성을 대응시켜서 작성

그림 5.5 토지피복도 VAT 파일 사례. VAT 파일의 이름은 ASCII 래스터 파일과 같아야 함

□ 토양도

- 원본 토양도(HWSD 토양도, hwsd_4326.tif)를 메콩강 유역 범위를 포함하는 영역으로 클리핑(원본 좌표계 EPSG 4326) (hwsd mkRegion 4326.tif)
- •모의 대상 지역의 좌표계(UTM Z48, EPSG : 32648을 적용)로 변환 (hwsd_mkRegion_32648.tif, hwsd_mkRegion_32648.asc)
- · hwsd_mkRegion_32648.asc 파일을 이용해서 GRM 모의 영역 래스터 box를 적용하여 유출해석 영역에 맞게 clipping, resampling 실행 (hwsd_GRMRegion_32648.asc)
 - ALTEK의 [Raster file converter > Clip/resample] 기능을 이용
 - Base extent file로는 위성강우자료와 같은 해상도(2682.815m × 2682.815m)를 가지는 mk_GRM_grid_box_32648.asc 파일을 이용함
- 만들어진 토양도 파일을 토성(soil texture) 파일과 토양심 파일을 구분해서 각각을 아 래와 같이 복사함
 - 토성 파일 : C:₩Mekong₩1_GRM₩watershed₩mk_HWSD_texture_32648.asc
 - 토양심 파일 : C:₩Mekong₩1 GRM₩watershed₩mk HWSD depth 32648.asc
- 토성 속성 부여를 위한 VAT 파일은 HWSD 데이터와 설명자료 (HWSD_Documentation.pdf, HWSD.mdb)를 이용해서 작성
 - 래스터 값은 HWSD.mdb의 HWSD_DATA 테이블에서 MU_GLOBAL 필드와 대응, 토성은 S_USDA_TEX_CLASS 필드와 대응. 토성 필드의 값과 속성의 대응은 D_USDA_TEX_CLASS 테이블에서 확인. 토성 래스터 파일의 값과 Green-Ampt 방법 제시하고 있는 토성을 대응 시켜서 VAT 파일 작성

그림 5.6 토성도 VAT 파일 사례. VAT 파일의 이름은 ASCII 래스터 파일과 같아야 함

- 토양심 속성 부여를 위한 VAT 파일은 HWSD 데이터와 설명자료 (HWSD_Documentation.pdf, HWSD.mdb)를 이용해서 작성
 - 래스터 값은 HWSD.mdb의 HWSD_DATA 테이블에서 MU_GLOBAL 필드와 대응, 토양 심은 명확하게 지정되어 있지 않으며, 아래의 순서대로 속성 부여
 - a. Obstacle to roots 값이 있으면, 그 깊이를 사용(HWSD_DATA 테이블에서 ROOTS 필드의 속성. ROOTS 필드의 속성은 D ROOTS 테이블에 있는 값과 대응)
 - b. Impermeable layer 값이 있으면, 그 값을 사용(HWSD_DATA 테이블에서 IL 필드속성. IL 필드의 속성은 D IL 테이블에 있는 값과 대응)
 - c. Reference soil depth에서 제시된 값을 사용(REF_DEPTH 필드의 값)
- 토양심 래스터 파일의 값과 GRM 토양심 분류 속성을 대응 시켜서 VAT 파일 작성

그림 5.7 토양심도 VAT 파일 사례. VAT 파일의 이름은 ASCII 래스터 파일과 같아야 함

□ 강우

- ·메콩강 유역의 유출해석 영역에 맞게 clipping 실행
- ·좌표계는 UTM Z48, EPSG : 32648을 적용
- · 강우자료의 공간해상도 해상도가 다른 공간자료와 다를 경우에는 다른 공간자료와 같 게 resampling 실행
- ·본 기술보고서에서는 공간해상도 2682.815m × 2682.815m 적용

3) DEM을 이용한 수문학적 공간정보 생성

- □ 메콩강 유역의 범위에 대해서 2682.815m × 2682.815m의 공간해상도로 구축된 ESRI ASCII 래스터 파일 포맷(혹은 GeoTIFF 포맷)의 DEM 사용
- □ QGIS의 Drainage plug-in 사용
- □ Drainage tool의 Batch Processor 실행
- · 하천망이 홍수해석에 적합할 정도로 조밀하게 형성될 수 있도록 Stream threshold를 반복적으로 수정해서 실행
- · GRM 모형의 입력파일 중 흐름방향, 흐름누적수, 경사, 하천망 래스터 파일이 만들어짐

그림 5.8 QGIS Drainage tool Batch Processor 실행

- 하천망 추출 결과가 실제 하천망과 큰 차이를 나타내어서 GRM watch point의 계산 유량에 큰 영향을 미칠 것으로 판단될 경우, 실제 하천망과 유사한 하천망이 만들어 질 수 있도록 '원시 DEM 수정과 Batch Processor 실행' 과정을 반복적으로 수행
- DEM 수정은 QGIS의 DEM Cell Editor plug-in 사용. DEM Cell Editor(GeoTIFF 포맷의 래스터 파일의 셀 값 수정)에서는 원본 DEM 값, fill sink 후의 Hydro DEM 값, 각 셀의 흐름방향을 직관적으로 판단할 수 있어서 Drainage 정보 추출을 위한 DEM 수정에 유용함

그림 5.9 QGIS Drainage tool Batch Processor 실행 결과

- □ 모의 영역 설정
- · GRM은 지정된 모의 영역에 대해서 유역 유출을 계산함
- •모의 영역은 ASCII 래스터 파일로 입력되며, ASCII 래스터 파일에서 0보다 큰 값을 가지는 셀에 대해서 유출이 계산됨
- •모의 영역 래스터 파일에 저장된 0보다 큰 값은, 같은 값을 가지는 셀은 같은 매개변 수군(model parameter group)이 적용되며, 각 영역은 다지점 보정시 구분되어 적용됨
- 일반적으로 유역 단위의 모의에서는 유역 범위를 적용하며, 유역의 구분 없이 모든 DEM 영역 혹은 임의 셀에 대해서 모의를 할 경우에는 그에 맞게 모의 영역 래스터 파일을 만들어야 함
- Drainage tool을 이용해서 유역을 추출하는 과정은 다음과 같다.
 - Create OutletPoint layer and Draw OutletPoint 매뉴 실행해서 outlet point 레이어 를 만들고, outlet point를 추가함
 - 본 기술보고서에서는 유역의 최하류 셀(529, 1018)과 침수모의시 상류단 경계조건으로 사용할 유량 계산 지점의 셀 2개(메콩강 본류 지점(518, 8920, 톤레삽 호수 하부 (448, 892))를 outlet point로 지정함.
 - Outlet point를 만들 때 입력한 ID 값은 watershed 래스터 파일의 격자 값으로 사용됨
 - 유역 영역은 QGIS Drainage plug-in에서 Watershed 메뉴를 실행해서 추출함

- 유역 내부에서 0보다 큰 정수 값을 가지는 래스터 파일이 만들어짐

그림 5.10 QGIS Drainage tool Watershed 실행

그림 5.11 QGIS Drainage tool Watershed 실행 결과

4) QGIS-GRM을 이용하여 GRM 모형 project 파일 만들기

- □ GRM 모형은 프로젝트 단위로 실행됨
- □ GRM 프로젝트 파일(.gmp)은 xml 형식으로 작성되며, 텍스트 에디터나 GRM 모 형의 QGIS plug-in GUI인 QGIS-GRM을 이용해서 작성할 수 있음
- " 대상 유역에 대해서 구축되는 모형이 복잡한 요소(다수의 watch point, 다수의 flow control, 다수의 유역, 여러 개의 속성으로 구성된 토양성도, 토양심도, 토지피복도 사용 등)로 구성될 경우에는 QGIS-GRM을 이용해서 프로젝트파일을 만드는 것이 효과적임

그림 5.12 QGIS-GRM과 GRM 모형 입력자료가 업로드된 QGIS 화면.

- □ GRM 모형의 입력 파일(.asc)을 QGIS에 레이어로 추가
- □ QGIS-GRM을 실행하고, [Project > New Project] 메뉴로 새 프로젝트 생성
- □ [Setup input data > Watershed] 메뉴를 실행하고 각 항목을 입력
- Flow direction index type은 흐름방향 레이어를 만드는 GIS S/W 마다 흐름방향 인덱 스가 다르므로 확인 후 선택(QGIS Drainage plug-in은 TauDEM index를 사용함)

- □ [Setup input data > Land cover / Soil] 메뉴를 실행하고 각 항목을 입력
- ·토지피복도, 토성도, 토양심도 래스터 파일을 이용할 경우에는 각 레스터 파일과 속성 지정 파일(.vat)를 입력
- •각 항목에 대한 매개변수의 수정은 우측 테이블의 행을 더블클릭해서 수정 가능

- □ [Setup input data > Rainfall] 메뉴를 실행하고 각 항목을 입력
- · 강우자료의 종류 선택
- · 강우자료의 시간간격 입력
- · Data type으로 ASCII grid files를 선택할 경우에는 ASCII 래스터 파일의 목록을 저장할 파일을 입력(예, C:/Mekong/1_GRM/GRM_Project₩mekong_RF.txt)

- □ [Run GRM > Setup / Run GRM] 메뉴를 실행하고 매개변수 설정 및 모델링 시작
- 좌측은 모델 매개변수 입력, 우측은 유역 지도 창이 표시됨
- · Watershed 레이어의 스타일이 저장된 qml 파일([watershed 레이어와 같은 파일 이름].qml)이 있으면, 유역 지도 창의 스타일이 QGIS 메인 맵 창에서와 같은 스타일로 보여짐
- [Simulation] 탭
 - 계산시간 간격(dt), 모의 시작 시간, 모의 기간, 출력시간 간격, 모의 수문성분 선택, 출력 옵션 등 입력
 - GRM 모의 결과를 G2D 모델의 경계조건으로 사용할 것이므로, 각 watch point 별 유량값만 출력되게 'ALLQ' 옵션 적용

- [Watch point] 탭
 - 유출량 계산 결과를 출력할 격자를 지정
 - G2D 모델의 상류단 경계조건이 설정되는 위치에서의 격자를 watch point로 추가함 (메콩강 본류(518,892), 톤레삽 강(448,892)))
 - 우측 유역 지도 창에서 대상 격자를 선택하고, 좌측에서 'Add selected cell' 버튼을 클릭해서 watch point를 추가
 - 우측 유역 지도 창에서 flow direction 표시를 활성화 시키면 각 소유역별 유출구 격 자를 찾을 수 있음

- [Channel cross section] 탭
 - 하폭, 제방 경사 설정
 - 최하류 지점에서의 최대 하폭을 이용하여 모든 하천 격자에서의 하폭을 자동 계산할 경우에는 실측값 혹은 영상 자료에서 얻어진 하폭 값 적용 가능

- [Watershed parameters] 탭
 - 유역 영역별로 모의 매개변수 설정
 - 다지점 보정 기법 적용 가능

- · Save project & Start simulation 실행
 - 설정된 매개변수를 gmp 파일에 저장하고 GRM 모델 실행
 - GRM 모델은 Windows console 창에서 실행됨
 - 모델링을 중지하고자 할 때는 console 창 우상단의 'X'를 클릭하여 창을 닫음

참고문헌

- 농업기술연구소. 1992. 증보 한국토양총설. 토양조사자료 13, 농촌진흥청, 283-290.
- 사공호상. 2003. IKONOS 위성영상을 이용한 불투수지표면 분석방법에 관한 실증연구. 한국 GIS 학회지, 11(4):509-518.
- 오경두. 2009. 분포형 모형 VfloTM에 의한 수문해석. 제20회 수공학 웍샵 교재, 한국수자원학회, 32-136.
- 최윤석, 김경탁. 2019. Grid based Rainfall-runoff Model User's Manual. 한국건설기술 연구원.
- ASCE. 1996. River hydraulics. Technical engineering and design guides as adapted form the US Army Corps of Engineers, no. 18, ASCE Press, New York, 58-61.
- Averjanov, S. F. 1950. About Permeability of Subsurface Soils in Case of Incomplete Saturation. Eng. Collect. 7, as Quoted by P. Ya. Polubarinova Kochina, The Theory of Ground Water Movement, English Translation by J.M. Roger De Wiest, 1962.
- Chow, V. T., D. R. Maidment, L. W. Mays. 1988. Applied hydrology. McGraw-Hill, 110-147.
- Engman, E.T. 1986. Roughness coefficients for routing surface runoff. Journal of Irrigation and Drainage Engineering, 112(1):pp. 39-53.
- Fredlund, D. G., A. Xing, S. Huang. 1994. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal, 31:533-546.
- Henderson, F. M. 1966. Open channel flow. Macmillan Publishing Co., Inc., New York, 355-383.
- Noh, S. J, H. An, S. H. Kim, H. J. Kim. 2015. Simulation of soil moisture on a hillslope using multiple hydrologic models in comparison to field measurements. Journal of Hydrology, 523: 342-355.
- Ponce, V. C., R. M. Li, D. B. Simons. 1978. Applicability of kinematic and diffusion

models. Journal of the Hydraulics Division, ASCE, 104(HY3): 353-360.

Rawls, W. J., D. L. Brakensiek, N. Miller. 1983. Green-Ampt infiltration parameters from soils data. Journal of Hydarulic Engineering, 109(1):62-70.

Vieux, B.E. 2004. Distributed Hydrologic Modeling Using GIS. Kluwer Academic Publishers.

Woolhiser, D. A., J. A. Liggett. 1967. Unsteady, one-dimensional flow over a plane - the rising hydrograph. Water Resources Research, 3(3):753-771.

부록1. GRM 프로젝트 파일(.gmp)의 상세사항

표 A1.1 프로젝트 xml 파일에서의 테이블 정의

테이블 명	설명	필수 여부
ProjectSettings	모형 실행을 위한 환경설정, 입력파일, 글로벌 매개변수	필수
SubWatershedSettings	소유역별로 설정된 매개변수	필수
WatchPoints	사용자 지정 출력 대상 격자 정보	필수
FlowControlGrid	사용자 지정 흐름조절 대상 격자, 흐름조절 형태, 자료의 특성, 저수지 제원, ROM 정보	필수
ChannelSettings	유역별 하도 형태 매개변수	필수
GreenAmptParameter	입력된 토성 자료 속성과 유출모의에 적용된 Green-Ampt 매개변수	필수
SoilDepth	입력된 토양심 자료 속성과 유출모의에 적용된 토양심 값	필수
LandCover	입력된 토지피복 자료 속성과 유출모의에 적용된 조도계수 및 불투수율	필수

표 A1.2 ProjectSettings 테이블 명세서

필드 명	설명	데이터 형식	필수 여부
GRMSimulationType	모델링 형식(SingleEvent 혹은 RealTme)	String	필수
DomainFile	유역 ASCII 파일 경로와 이름	String	필수
SlopeFile	경사 ASCII 파일 경로와 이름	String	필수
FlowDirectionFile	흐름방향 ASCII 파일 경로와 이름	String	필수
FlowAccumFile	흐름누적수 ASCII 파일 경로와 이름	String	필수
StreamFile	하천망 ASCII 파일 경로와 이름	String	필수
ChannelWidthFile	하폭 ASCII 파일 경로와 이름	String	선택
InitialSoilSaturationRatio- File	토양 초기포화도 ASCII 파일 경로와 이름	Single	선택
LandCoverDataType	토피지복 자료 형식(File 혹은 Constant)	String	필수
LandCoverFile	토피지복 ASCII 파일 경로와 이름 LandCoverDataType으로 File을 설정할 경우에만 사용	String	선택
LandCoverVATFile	토피지복 ASCII 파일 VAT 파일 경로와 이름 LandCoverDataType으로 File을 설정할 경우에만 사용(한글이 포함될 경우, UTF-8 포맷으로 저장)	String	선택
ConstantRoughnessCoeff	토지피복 조도계수 값 LandCoverDataType으로 Constant를 설정할 경우에만 사용	Single	선택
ConstantImperviousRatio	불투수율 값 LandCoverDataType으로 Constant를 설정할 경우에만 사용	Single	선택
SoilTextureDataType	토성 자료 형식(File 혹은 Constant)	String	필수
SoilTextureFile	토성 ASCII 파일 경로와 이름 SoilTextureDataType으로 File을 설정할 경우에만 사용	String	선택
SoilTextureVATFile	토성 ASCII 파일 VAT 파일 경로와 이름 SoilTextureDataType으로 File을 설정할 경우에만 사용(한글이 포함될 경우, UTF-8 포맷으로 저장)	String	선택
ConstantSoilPorosity	공극률 값 SoilTextureDataType으로 Constant를 설정할 경우에만 사용	Single	선택
ConstantSoilEffPorosity	유효 공극률 값 SoilTextureDataType으로 Constant를 설정할 경우에만 사용	Single	선택
ConstantSoilWetting- FrontSuctionHead	습윤전선 흡인수두 값 SoilTextureDataType으로 Constant를 설정할 경우에만 사용	Single	선택
ConstantSoilHydraulic- Conductivity	수리전도도 값 SoilTextureDataType으로 Constant를 설정할 경우에만 사용	Single	선택

<ProjectSettings 테이블 명세서(계속)>

 필드 명	정의	데이터 형식	필수 여부
SoilDepthDataType	토양심 자료 형식(File 혹은 Constant)	String	필수
SoilDepthFile	토양심 ASCII 파일 경로와 이름 SoilDepthDataType으로 File을 설정할 경우에만 사용(한글이 포함될 경우, UTF-8 포맷으로 저장)	String	선택
SoilDepthVATFile	토양심 ASCII 파일 VAT 파일 경로와 이름 SoilDepthDataType으로 File을 설정할 경우에만 사용	String	선택
ConstantSoilDepth	토양심 값 (cm) SoilDepthDataType으로 Constant를 설정할 경우에만 사용	Single	선택
InitialChannelFlowFile	초기 유량 ASCII 파일 경로와 이름 하천망 격자에 대해서만 값이 입력됨	Single	선택
RainfallDataType	강우자료 형식 (TextFileMAP 혹은 TextFileASCgrid)	String	필수
RainfallInterval	강우 자료의 시간 간격(분)	Integer	필수
RainfallDataFile	강우자료 파일의 경로와 이름	String	필수
FlowDirectionType	흐름방향 정보의 형식 StartsFromN, StartsFromNE, StartsFromE, StartsFromE_TauDEM 중 하나 선택	String	필수
IsParallel	병렬계산 여부(true 혹은 false) 설정하지 않을 경우에는 false가 적용 됨	String	선택
MaxDegreeOfParallelism	병렬화 개수1을 입력하거나, 설정하지 않을 경우에는 최대값이 설정됨.	Integer	선택
SimulStartingTime	모의기간 시점. 시간 포맷이 설정된 경우에는 DateTime format으로 입력(예, 2012-09-16 12:00). 그렇지 않을 때는 0을 사용	String	필수
SimulationDuration	모의 기간(시간)	Integer	필수
ComputationalTimeStep	계산시간 간격(분)	Integer	필수
IsFixedTimeStep	고정된 계산시간 간격 사용 여부 (true 혹은 false) 설정하지 않을 경우에는 true가 적용됨	String	선택
OutputTimeStep	출력시간 간격(분)	Integer	필수
SimulateInfiltration	침투 모의 여부(true 혹은 false)	Boolean	필수
SimulateSubsurfaceFlow	지표하 유출 모의 여부(true 혹은 false)	Boolean	필수
SimulateBaseFlow	기저유출 모의 여부(true 혹은 false)	String	필수
SimulateFlowControl	Flow control 모의 여부(true 혹은 false)	String	필수

<ProjectSettings 테이블 명세서(계속)>

필드 명	정의	데이터 형식	필수 여부
MakelMGFile	래스터 이미지 파일 생성 여부 (true 혹은 false)	String	필수
MakeASCFile	ASCII 래스터 파일 생성 여부 (true 혹은 false)	String	필수
MakeSoilSaturationDistFile	토양포화도 분포도 출력 여부 (true 혹은 false) (MakelMGFile 혹은 MakeASCFile 중 하나가 true여야 적용됨)	String	필수
MakeRfDistFile	강우 분포도 출력 여부 (true 혹은 false) (MakeIMGFile 혹은 MakeASCFile 중 하나가 true여야 적용됨)	String	필수
MakeRFaccDistFile	누적강우 분포도 출력 여부 (true 혹은 false) (MakeIMGFile 혹은 MakeASCFile 중 하나가 true여야 적용됨)	String	필수
MakeFlowDistFile	유량 분포도 출력 여부 (true 혹은 false) (MakeIMGFile 혹은 MakeASCFile 중 하나가 true여야 적용됨)	String	필수
PrintOption	모의 결과 텍스트 파일 출력 옵션 (All, DischargeFile, DischargeFileQ, AllQ 중 택 1) - All: 모든 모의 결과 출력 - DischargeFile: *Discharge.out 파일만 생성하고, 그 외의 다른 출력 파일을 생성하지 않음 - DischargeFileQ: *Discharge.out 파일만 생성하고, 유량 값 만 포함 - AllQ: 모든 모의 결과 파일을 생성하고, 유량 값만 포함	String	필수
WriteLog	로그파일 기록 여부(true 혹은 false) 이 필드가 없으면 false로 설정됨	String	선택
AboutThisProject	프로젝트 설명 사용자 입력	String	선택
AboutWatershed	유역 설명 사용자 입력	String	선택
AboutLandCoverMap	강우자료 설명 사용자 입력	String	선택
AboutSoilMap	토성도 설명 사용자 입력	String	선택
AboutSoilDepthMap	토양심도 설명 사용자 입력	String	선택
AboutRainfall	강우자료 설명 사용자 입력	String	선택

표 A1.3 SubWatershedSettings 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
ID	유역 번호 유역 구분자로 0보다 큰 정수 입력	Integer	필수
IniSaturation	초기포화도 매개변수(0~1 사이의 값 입력) 토양포화도 ASCII 파일이 입력된 경우에는 이 매개변수는 유출해석에 사용되지 않음	Single	필수
MinSlopeOF	지표면흐름 최소 바닥 경사 조건 매개변수	Single	필수
UnsaturatedKType	불포화투수계수 계산 방법 선택 (Constant, Linear, Exponential 중 택 1) 값이 설정되지 않으면 'Linear'이 적용됨 'Constant'를 입력할 경우에는 Green-Ampt 매개변수에서 제시된 값에 계수가 곱해진 고정값으로 적용됨	String	필수
CoefUnsaturatedK	불포화투수계수 계산을 위한 계수 UnsaturatedKType이 'Linear'인 경우에는 0.2, 'Exponential'인 경우에는 6.4, 'Constant'인 경우에는 0.1이 기본값으로 적용됨	Single	필수
MinSlopeChBed	하도흐름 최소 바닥 경사 조건 매개변수	Single	필수
MinChBaseWidth	최소 하폭 조건 매개변수 (m)	Single	필수
ChRoughness	하도 조도계수 매개변수	Single	필수
DryStreamOrder	건천차수 조건 매개변수 하천 차수를 입력하며, 0을 입력한 경우에는 건천차수 적용하지 않음	Integer	필수
IniFlow	초기 유량 매개변수 (m³/s) 대상 유역 하천의 최하류 지점에서의 모의시작 시점에서의 관측유량 입력 초기유량 ASCII 파일이 입력된 경우에는 이 매개변수는 유출해석에 사용되지 않음	Single	필수
CalCoefLCRoughness	토지피복도에 의해 설정된 조도계수 보정 매개변수	Single	필수
CalCoefPorosity	토양 공극율 보정 매개변수	Single	필수
CalCoefWFSuctionHead	토양 습윤전선 흡인수두 보정 매개변수	Single	필수
CalCoefHydraulicK	토양 수리전도도 보정 매개변수	Single	필수
CalCoefSoilDepth	토양심 보정 매개변수	Single	필수
UserSet	현재 유역의 매개변수가 사용자에 의해서 설정된 매개변수인지 여부	Boolean	필수

표 A1.4 WatchPoints 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
Name	Watch point 이름	String	필수
ColX	Watch Point 격자의 위치. 열 번호 좌상단(0,0)으로 부터 번호 부여 (최대값은 열의 개수 – 1)	Integer	필수
RowY	Watch Point 격자의 위치. 행 번호 좌상단(0,0)으로 부터 번호 부여 (최대값은 행의 개수 – 1)	Integer	필수

표 A1.5 FlowControlGrid 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
ColX	Flow control 격자의 열 번호 WatchPoints 테이블의 ColX와 같은 방법으로 입력	Integer	필수
RowY	Flow control 격자의 행 번호 WatchPoints 테이블의 RowY와 같은 방법으로 입력	Integer	필수
Name	Flow control 격자의 이름	String	필수
ControlType	Flow control 종류 (ReservoirOutflow, Inlet, SinkFlow, SourceFlow, ReservoirOperation 중 택 1)	String	필수
DT	유량 자료의 시간간격(분)	Integer	필수
FlowDataFile	유량 자료의 파일 경로와 이름 ContolType이 ReservoirOperation 인 경우에는 'ReservoirOperation'을 입력	String	필수
IniStorage	저수지 초기 저류량(m3) ControlType이 Inlet이 아닌 경우만 사용	Single	선택
MaxStorage	저수지 최대 저류량(m3) ControlType이 Inlet이 아닌 경우만 사용 "0" 혹은 입력되지 않으면, 저류량 모의 안됨	Single	선택
MaxStorageR	저수지 최대 저류가능 비율 ControlType이 Inlet이 아닌 경우만 사용 "0" 혹은 입력되지 않으면, 저류량 모의 안됨	Single	선택
ROТуре	저수지 운영 방법 (AutoROM, RigidROM, ConstantQ 중 택1) ControlType이 Inlet이 아닌 경우만 사용 **저류량-방류량 관계식의 적용은 'SDEqation' 옵션으로 직접 코드로 씀	String	선택
ROConstQ	일정 방류량 (CMS) ControlType이 Inlet이 아닌 경우만 사용 ROType이 RigidROM 혹은 ConstantQ 인 경우에 적용	Single	선택
ROConstQDuration	일정 방류 기간(시간) ControlType이 Inlet이 아닌 경우만 사용 ROType이 ConstantQ 인 경우에 적용	Integer	선택

표 A1.6 ChannelSettings 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
WSID	최하류에 있는 소유역 ID(래스터 값). 0보다 큰 정수 입력	Integer	필수
CrossSectionType	하도 단면 형식 (CSSingle 혹은 CSCompound)	Single	필수
SingleCSChannel- WidthType	하폭 계산 방법 (CWGeneration 혹은 CWEquation)	String	필수
ChannelWidthEQc	하폭 계산식 계수 SingleCSChannelWidthType으로 CWEquation을 설정한 경우에만 사용	Single	선택
ChannelWidthEQd	하폭 계산식 계수 SingleCSChannelWidthType으로 CWEquation을 설정한 경우에만 사용	Single	선택
ChannelWidthEQe	하폭 계산식 계수 SingleCSChannelWidthType으로 CWEquation을 설정한 경우에만 사용	Single	선택
ChannelWidthMostDown- Stream	하천 최하류 지점의 하폭 (m) CrossSectionType으로 CSCompound를 설정한 경우에만 사용	Single	선택
LowerRegionHeight	하도 복단면에서 저수부 높이 CrossSectionType으로 CSCompound를 설정한 경우에만 사용	Single	선택
LowerRegionBaseWidth	하도 복단면에서 저수부 바닥 하폭 CrossSectionType으로 CSCompound를 설정한 경우에만 사용	Single	선택
UpperRegionBaseWidth	하도 복단면에서 고수부 바닥 하폭 CrossSectionType으로 CSCompound를 설정한 경우에만 사용	Single	선택
CompoundCSChannel- WidthLimit	복단면 하도를 적용할 하폭 제한 범위 (이 값 이하의 하폭을 가지는 하천 구간은 단단면 적용) CrossSectionType으로 CSCompound를 설정한 경우에만 사용	Single	선택
BankSideSlopeRight	우측 제방 경사	Single	필수
BankSideSlopeLeft	좌측 제방 경사	Single	필수

표 A1.7 GreenAmptParameter 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
GridValue	토성 래스터 파일에서의 셀 값	Integer	필수
USERSoil	사용자 지정 토성 속성 이름	String	선택
GRMCode	토성 코드 (Static DB의 GreenAmptSoilParameter 테이블에서 'GRMCode' 필드 값 참조)	String	필수
GRMTextureE	토성 영문 이름 (Static DB의 GreenAmptSoilParameter 테이블에서 'SoilTextureE' 필드 값 참조)	String	선택
GRMTextureK	토성 한글 이름 (Static DB의 GreenAmptSoilParameter 테이블에서 'SoilTextureK' 필드 값 참조)	String	선택
Porosity	공극율	Single	필수
EffectivePorosity	유효공극율	Single	필수
WFSoilSuctionHead	습윤전선 흡인수두	Single	필수
HydraulicConductivity	수리전도도	Single	필수

표 A1.8 SoilDepth 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
GridValue	토양심 래스터 파일에서의 셀 값	Integer	필수
UserDepthClass	사용자 지정 토양심 속성 이름	String	선택
GRMCode	토양심 코드 (Static DB의 SoilDepthParameter 테이블에서 'GRMCode' 필드 값 참조)	String	필수
SoilDepthClassE	토양심 영문 이름 (Static DB의 SoilDepthParameter 테이블에서 'SoilDepthClassE' 필드 값 참조)	String	선택
SoilDepthClassK	토양심 한글 이름 (Static DB의 SoilDepthParameter 테이블에서 'SoilDepthClassK' 필드 값 참조)	String	선택
SoilDepth_cm	토양심 값 (cm) ** GRM v2020.1까지는 "SoilDepth"를 사용 GRM v2020.5부터는 "SoilDepth_cm"를 사용	Single	필수

표 A1.9 LandCover 테이블 명세서

필드 명	정의	데이터 형식	필수 여부
GridValue	토지피복 래스터 파일에서의 셀 값	Integer	필수
UserLandCover	사용자 지정 토지피복 속성 이름	String	선택
GRMCode	토지피복 코드 (Static DB의 LandCoverParameter 테이블에서 'GRMCode' 필드 값 참조)	String	필수
GRMLandCoverE	토지피복 영문 이름 (Static DB의 LandCoverParameter 테이블에서 'LandCoverE' 필드 값 참조)	String	선택
GRMLandCoverK	토지피복 한글 이름 (Static DB의 LandCoverParameter 테이블에서 'LandCoverK' 필드 값 참조)	String	선택
RoughnessCoefficient	조도계수	Single	필수
ImperviousRatio	불투수률	Single	필수