On page 1, under the heading FIELD OF THE INVENTION, insert the following:

The present invention relates to regulating connectivity to and within communicability networks. More specifically, the present invention relates to a authenticating and establishing personalized network connectivity for local users of institutional communication networks.

On page 1, under the heading "BACKGROUND OF THE INVENTION", the first paragraph should read as follows:

Institutions are relying increasingly on their data communication network infrastructures for efficient communication and data transfer. With this increasing reliance on network computing has arisen a significant need for mechanisms to regulate connectivity and communicability to and within such networks. This need has been partially filled by interact protocol (IP) firewalls. IP firewalls typically restrict access to fixed sets of network resources by applying a set of protocol level filters on a packet-by-packet basis or by requiring prospective users to become authenticated before gaining access to the resources. Authentication has generally required users to supply certain signature information, such as a password. While this requirement of signature information has reduced the risk of unauthorized access to firewall-protected resources, firewalls have proven an imperfect and inflexible regulatory solution. Because firewalls are protocol-specific, firewalls have not provided a means for regulating network connectivity in a multi-protocol environment. Moreover, because firewalls regulate access to particular network resources, they have failed to provide a means for regulating access to sets of network resources which can vary as a function of user identity.

On page 3, the paragraph beginning on line 18 should read as follows:

Accordingly, there is a need for comprehensive services for regulating communicability in institutional networks which are not subject to the inflexibility of conventional user log-in mechanisms or the lack of consideration for user identity of conventional VLAN assignment techniques. There is also a need for services which authenticate local users of institutional networks before establishing network communicability. There is a further need for user authentication

services which provide collateral functionality, such as the ability to dynamically track the whereabouts of network users.

On page 4, paragraph 2, beginning on line 10, the paragraph should read as follows:

0,5

COESESSI CESTO

It is therefore one object of the present invention to provide a service which authenticates local users before establishing network communicability.

On page 4, last paragraph beginning on line 21 and continuing through page 5, line 16, should read:

These and other objects of the present invention are accomplished by a service which requires that local users be authenticated before gaining access to personalized sets of network resources. User identification information, time restrictions and authorized lists of resources for particular users are entered and stored in the network. Prior to authentication, packets from an end system being used by a prospective user of network resources are transmitted to an authentication agent operative on an intelligent edge ociated with the system. The agent relays log-in responses received from the system to a basic authentication server in the network for verification of the user. Verification is made by comparing log-in responses with the user identification information stored in the network and determining whether time restrictions associated with the user identification information are applicable. If the basic authentication server is able to verify from the log-in response that the user is an authorized user of network resources, and that the user is authorized to use the network resources at the time of the log-in attempt, the basic authentication server transmits to the agent the list of network resources for which the user is authorized, along with any time restrictions. The agent forwards the list of authorized network resources and time restrictions for storage and use on the edge device. The edge device uses the authorized list of resources and time restrictions to establish network communicability rules for the user. Preferably, the authorized list of network resources is a list of one or more VLANs.

Page 6, second paragraph should read as follows:

Page 12 should read as follows:

Agent 400 also includes RSR.C RLY means 460. Means 460 serves to forward for storage and use on device 10 authorized communicability information received from server 320 for authenticated users of systems 40, 50, 60. Authorized communicability information may advantageously be transmitted by server 320 to agent 400 in the same data packet as user status information. Authorized communicability information includes, for the particular one of the systems 40, 50, 60, a list of authorized network resources. Authorized communicability information may also include time restrictions, if any. Time restrictions preferably define times during which the particular user is authorized to use the network resources, such as the day of the week, the time of day, and the length of permitted access. The list of authorized network resources is preferably a list of VLAN identifiers. Authorized communicability information is preferably forwarded by agent 400 to management processor module 210 along with the authentication module identifier. Management processor module 210 preferably associates the authorized communicability information with a known address of the one of the systems 40, 50, 60 being used by the authenticated user and stores the pair in device records. The address is preferably a MAC address.

Page 13, second sub-paragraph numbered "2" and continuing to page 14, first two paragraphs should read as follows:

2. If the destination address is not the address of another one of systems 40, 50, 60 associated with device 10, resort is made to device records on device 10 to retrieve the VLAN identifiers associated with the source system. The VLAN identifiers are appended to the packet and the packet is transmitted by

backbone module 220 for transmission on backbone network 30. When the packet arrives on the edge device (e.g., 15) associated with the destination system (e.g., 45), resort is made to device records on the edge device to verify that the source and destination systems share a common VLAN. If a VLAN is shared, the packet is forwarded to the destination system. If a VLAN is not shared, the packet is dropped.

Packets addressed to unauthenticated systems in network 1 continue to be dropped. The foregoing rules may be implemented using various known protocols. It will be appreciated that any addressable core, edge, or end devices, stations and systems in network 1 which are not subject to authentication requirements may be treated as authenticated systems for purposes of transmitting and receiving packets under the foregoing rules.

Agent 400 also includes ID TERM means 470. Means 470 serves, upon receipt of log-off commands from authenticated users, or upon expiration of the authorized communicability period, or when one of authenticated systems 40, 50, 60 is physically disconnected from network l, or when one of authenticated systems 40, 50, 60 fails to send traffic for a prescribed length of time, or upon receipt of instruction from server 320, to deactivate the established network communicability. Means 460 forwards to management processor module 2 l0 a request to remove from device records the address-authorized connectivity information entry for the user whose connectivity is to be deactivated. Upon receipt of such a request, management processor module 210 preferably removes the entry from device records and the authenticated one of systems 40, 50, 60 reverts to the unauthenticated state.

Tuming to Fig. 5, a functional diagram of basic authentication server 320 is shown. Server 320 includes RSRC AUTH means 510. Means 510 serves to enable network administrators to define, on an individualized basis, authorized communicability.....

Pages 16 and 17 are amended to read as follows:

Server 320 also includes ID VER means 530. Means 530 serves to subject to a verification process authentication information received from users via agent 400. Means 530, upon receipt of

authentication information from agent 400, determines if the log-in response matches the user identification information associated with a user-specific entry in user records 330. If a match is found, and there are time restrictions associated with the user-specific entry, means 530 determines from the time restrictions if the user is authorized to use network 1 at the particular time. If the user is time-authorized or there are no time restrictions, means 530 generates authorized communicability information. Means 530 retrieves the list of authorized network resources associated with the matching user identification information in the generation of authorized communicability information. Authorized communicability information may also include any time restrictions. Means 530 also generates user status information. User status information is information sufficient to communicate to agent 400 whether user identification information was successfully verified. User status information is preferably either a log-in valid or log-in invalid message. Means 530 transmits authorized communicability information and user status information to agent 400. Preferably, authorized communicability information and user status information are transmitted as part of the same data packet. If no match for user identification information is found, or if the user is not timeauthorized, means 530 generates and transmits to agent 400 user status information, preferably in the form of a log-in invalid message, but does not generate or transmit authorized communicability information. Although the above described means operative on server 320 are described to be interoperative in conjunction with agent 400, it will be appreciated that the means are fully interoperative with other authentication agents residing on edge devices in network 1.

Server 320 also includes ID STOR means 540. Means 540 serves to forward for storage and use by a network administrator user tracking information. User tracking information is preferably retained for all log-in attempts made by prospective users, whether successful or unsuccessful. User tracking information may include, for each log-in attempt, any information learned from one or more of the following: user identification information, authentication information, user status information, authorized communicability information. User tracking information also may include the time of day the log-in attempt was made. The time of day may be kept on and obtained from server 320. Server 320 preferably associates the user tracking information and stores the information as an entry in a

network activity database (not shown) that is accessible by or resides on station 20. Network activity database entries are accessible by a network administrator using interface 310.

Server 320 also includes NET MNTR means 550. Means 550 serves to enable a network administrator to access and use user tracking information. Means 550 supplies a textual or graphical display to interface 310 operative to display user tracking information. Means 550 also enables a network administrator to generate user tracking information reports consisting of related information from one or more user tracking information entries.

Client 360 further includes ID OFF means 640. Means 640 serves to initiate the log-off process by which authenticated users log-off the network 1. Means 640 supplies a textual or graphical display to user interface 350 operative to accept log-off commands. Means 640 transmits log-off commands to agent 400 for deactivation of established network connectivity.

The last paragraph on page 18 is amended to read as follows:

Referring to Fig. 7, a network 7 operating in accordance with an alternative embodiment of the present invention is shown. In the alternative embodiment, an enhanced authentication method is conducted before network communicability is granted.

The last paragraph beginning on page 20 and continuing through the last paragraph on page 21 should read as follows:

Server 800 also includes ENH ID VER means 830. Means 830 serves, upon verifying log-in responses received from a user and that the user is authorized to use the network 7 at the time of the log-in attempt, to initiate an enhanced authentication method, if indicated. Means 830, upon determining that the log-in response matches user identification information associated with a user-specific entry in user records, and upon determining that the user is time-authorized if time restrictions are indicated, checks whether there is an enhanced authentication method associated with the matching user-specific entry. If an enhanced authentication method is indicated, means 820, before transmitting authorized communicability information and user status information to the agent on the appropriate one of devices 7.10, 715, transmits a request to enhanced authentication server

air

Q12

Docket No. 41711/SAH/X2

770 to conduct an enhanced authentication session with the user. The enhanced authentication session is preferably conducted between enhanced server 770 and the user transparently to basic server 800. Enhanced server 770 instructs basic server 800 of the results of the enhanced authentication session. If the user was successfully authenticated, means 830 transmits to the agent authorized communicability information and user status information, preferably in the form of a log-in valid message. If the user was not successfully authenticated, means 830 transmits user status information, preferably a log-in invalid message, but no authorized communicability information. If an enhanced authentication method is not indicated when the check for an enhanced authentication method is performed, means 830 transmits to the agent authorized communicability information and user status information, in the form of a log-in valid message, without engaging server 770. If a matching entry for user identification information is not found in user records, or if the user is not time-authorized, means 830 transmits to the agent user status information, in the form of a log-in invalid message, without transmitting authorized communicability information.

The first paragraph on page 23 is amended as follows:

Accordingly, once a determination is made that the user is time-authorized (1005), basic server 800 checks whether there is an enhanced authentication method associated with the matching entry (1010). If an enhanced authentication method is indicated, server 800 transmits a request to enhanced authentication server 770 to conduct an enhanced authentication session with the user (1015). Enhanced server 770 informs basic server 800 of the results of the enhanced authentication session. If the session was successfully completed (1020), basic server 800 transmits authorized communicability information and user status information, in the form of a log-in valid message, to the agent (1030). If enhanced session was not successfully completed (1025), basic server 800 transmits a log-in invalid message to user and does not transmit authorized communicability information to agent. Agent also in that instance determines if user has made a configurable number of failed log-in attempts. The authentication session either continues or terminates as discussed depending on the outcome of that inquiry. If an enhanced authentication method is not indicated when the check for an enhanced authentication method is performed (1010), server 800 transmits