Bandwidth

and Bandwidth Measurement

Prof. Dr.-Eng. habil. Steffen Lochmann

Prof. S. Lochmann

Bandwidth

Bitrate = Bandwidth?

NRZ:

$$B = \frac{1}{2\tau}$$

$$2B = BR$$

RZ:

$$B = \frac{1}{\tau}$$

$$B = BR$$

Gaussian Impuls:

$$B = \frac{0.2}{\tau_{\sigma}}$$

Bandwidth?

• ideal and real filters:

• apply rect pulse to ideal LPF:

Prof. S. Lochmann

Bandwidth

Bandwidth?

Principles of Bandwidth Measurement

A) Measurement with Spectrum Analyzer

DUT attenuates or amplifies frequencies

B) Measurement of Impulse Response

Prof. S. Lochmann

Bandwidth

Spectrum Analyzer

Spectrum Analyzer or Vector Netwerk Analyzer

DUT

Spectrum Analyzer

Prof. S. Lochmann

Bandwidth

(Vector) Network Analyzer

(Vector) Network Analyzer

Prof. S. Lochmann

Bandwidth

Measurement of Impulse Response

Measurement of Impulse Response

$$h_{meas}(t) = \delta(t) * h_{DUT}(t)$$

$$FFT$$

$$H_{meas}(f) = 1 \bullet H_{DUT}(f)$$

$$H_{DUT}(f) = H_{meas}(f)$$

$$H_{DUT}(f)[dB] = 20\log(H_{meas}(f))$$

Prof. S. Lochmann

Bandwidth

Measurement of Impulse Response

$$h_{meas}(t) = h_{source}(t) * h_{DUT}(t)$$

$$FFT$$

$$H_{meas}(f) \stackrel{\bullet}{=} H_{source}(f) \bullet H_{DUT}(f)$$

$$H_{DUT}(f) = H_{meas}(f) / H_{source}(f)$$

$$H_{DUT}(f)[dB] = 20\log(H_{meas}(f)) - 20\log(H_{source}(f))$$

Bandwidth

Prof. S. Lochmann

Bandwidth

Prof. S. Lochmann

Bandwidth

Prof. S. Lochmann

Bandwidth

Prof. S. Lochmann

Bandwidth

→ causing late events – low frequency impacts

Prof. S. Lochmann

Bandwidth

Measurement of Impulse Response

MSM-PD Bandwidth

Bandwidth depending of optical power

Bandwidth depending of bias voltage

Real Time Oscilloscope and

Sampling Oscilloscope

Prof. Dr.-Eng. habil. Steffen Lochmann

Real Time and Sampling Oscilloscopes

Real Time Oscilloscope: Sampling Oscilloscope:

- Suited for single signal recovery
- Internal triggering possible
- Usually lower bandwidth than sampling oscilloscopes
- Less suited for eye diagrams/error measurements
- Needs signal repetition
- Needs trigger
- Very high bandwidths possible
- Higher SNR
- Particularely suited for eye diagrams/error measurements