Модел на Нютон и модел на Каро за течение на кръв в артериите

Людмил Владимиров Йовков

Софийски университет "Св. Климент Охридски" Факултет по математика и информатика Катедра "Числени методи и алгоритми" Изчислителна математика и математическо моделиране, ФН 24248

21. 10. 2015

Въведение

- Досегашни изследвания
- Цели и методи на изследването

Постановка на задачата

• Диференциално уравнение

(1)
$$\rho \frac{\partial u}{\partial t} = -\frac{\partial p}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mu_{app} \frac{\partial u}{\partial r} \right)$$

• Гранични условия

$$(2) u(R, t) = 0$$

(3)
$$\frac{\partial u}{\partial r}(0, t) = 0.$$

Тук $r \in [0; R]$ и $t \in [0; T]$.

Градиент на налягането $\frac{\partial p}{\partial x}$

Два случая за градиента на налягането

- Нестационарно течение: $\frac{\partial p}{\partial x} = -A_{st} \cos(nt)$
- Стационарно течение: $\frac{\partial p}{\partial x} = -A_{st}$

Действителен вискозитет $\mu_{\it app}$

Формула за пресмятане:

$$\mu_{app} = \mu_{\infty} + (\mu_0 - \mu_{\infty}) \left[1 + \lambda^a \left(\frac{\partial u}{\partial r} \right)^a \right]^{\frac{n_c - 1}{a}}$$

- случаят $\mu_0 = \mu_\infty$
- случаят $\mu_0 \neq \mu_\infty$

Физични параметри

Таблица: Числени стойности на физичните параметри

Константа	Стойност
μ_0	0.056 Pa · s
μ_{∞}	0.00345 Pa · s
λ	3.313 s
n_c	0.3568
ho	1000 kg/m ³
$oldsymbol{\mathcal{A}_{st}}$	6000 Pa⋅s
R	0.0045 m
а	2

Стационарно уравнение с постоянен градиент на налягането. Обезразмеряване

Начин на обезразмеряване:

$$\begin{split} \overline{r} &= \frac{r}{R} \in [0; \, 1], \\ \overline{\mu}_{app} &= \frac{\mu_{app}}{\mu_{\infty}} = 1 + \left(\frac{\mu_0}{\mu_{\infty}} - 1\right) \left[1 + \left(\frac{\lambda}{R}\right)^a \left(\frac{\partial u}{\partial \overline{r}}\right)^a\right]^{\frac{n_c - 1}{a}}, \\ \overline{\mu}_{app} &\in \left[1; \, \frac{\mu_0}{\mu_{\infty}}\right]. \end{split}$$

Стационарно уравнение с постоянен градиент на налягането. Обезразмеряване

Безразмерна диференциална задача:

$$(4) \qquad \frac{1}{\overline{r}} \cdot \frac{\mathrm{d}}{\mathrm{d}\, \overline{r}} \left(\overline{r} \overline{\mu}_{\mathrm{app}} \frac{\mathrm{d}\, u}{\mathrm{d}\, \overline{r}} \right) = - \frac{R^2}{\mu_{\infty}} A_{\mathrm{st}}, \ \overline{r} \in (0;\ 1),$$

(5)
$$u(1) = 0$$
,

(6)
$$\frac{\mathrm{d}\,u}{\mathrm{d}\,\overline{r}}(0)=0.$$

• Обезразмерено аналитично решение

$$\overline{u}_{\text{\tiny TOЧHO}} = \frac{A_{st}R^2(1-\overline{r}^2)}{4\mu_{\infty}}$$

• Числено решение — солвър bvp4c

• Обемен дебит Q

$$Q = 2\pi \int_0^R r u(r) \, \mathrm{d} \, r \Leftrightarrow Q = 2\pi R^2 \int_0^1 \overline{r} u(\overline{r}) \, \mathrm{d} \, \overline{r}$$

Получаваме $Q \approx 0.00028005 \text{ m}^3/\text{s}.$

- ullet Диференчна схема стъпка h=0.001
 - О хомогенност
 - 2 консервативност
 - грешка на апроксимация

 \bullet Сравнение с модела на Нютон -10^{-6}

Фигура: Сравнение между точното и приближеното решение в стационарния модел на Каро при $\overline{\mu}_{app} = 1$

- Обемен дебит

 - ② $\mu_0 \neq \mu_{\infty} \Rightarrow Q \approx 0.00026873 \text{ m}^3/\text{s}$

$$\Psi_Q = |Q_{\mathrm{Carreau}} - Q_{\mathrm{Newton}}|; \max \Psi_Q = 0.00001$$

$$\Psi_y = |y_{
m Newton} - y_{
m Carreau}|$$
; max $\Psi_y = 0.4370$

Фигура: Сравнение между разпределението на скоростите в моделите на Нютон и на Каро

Нестационарно уравнение с периодичен градиент на налягането. Обезразмеряване

Начин на обезразмеряване:

$$0 \le r \le R \Rightarrow 0 \le \frac{r}{R} \le 1; \ \overline{r} = \frac{r}{R} \in [0; 1];$$
 $0 \le t \le \frac{2\pi}{n} \Rightarrow 0 \le tn \le 2\pi; \ \overline{t} = tn \in [0; 2\pi];$ $\overline{\mu}_{app} = \frac{\mu_{app}}{\mu_{\infty}} \in \left[1; \frac{\mu_{0}}{\mu_{\infty}}\right]$

Нестационарно безразмерно уравнение с периодичен градиент на налягането

Диференциална задача:

$$\begin{cases} \alpha^{2} \frac{\partial u}{\partial t} = \frac{1}{\overline{r}} \frac{\partial}{\partial \overline{r}} \left(\overline{\mu}_{app} \overline{r} \frac{\partial u}{\partial \overline{r}} \right) + BF(\overline{t}), \ \overline{r} \in (0; 1), \ \overline{t} \in (0; 2\pi), \\ \frac{\partial u}{\partial \overline{r}} (0, \overline{t}) = 0, \ \overline{t} \geq 0, \\ u(1, \overline{t}) = 0, \ \overline{t} \geq 0, \\ u(\overline{r}, 0) = \overline{u}_{\text{точно}}^{0}, \ \overline{r} \in [0; 1]. \end{cases}$$

Тук
$$\alpha^2 = \frac{R^2 n \rho}{\mu_{\infty}}$$
, $B = \frac{R^2 A_{st}}{\mu_{\infty}}$, $F(\bar{t}) = \cos \bar{t}$.

Начално условие: $u(\overline{r}, 0) = \overline{u}_{\text{точно}}^0$, където

$$\overline{u}_{\text{\tiny TOЧHO}} = \mathbb{RE}\left(\frac{iA_{st}e^{i\overline{t}}}{n\rho}\left[\frac{J_0(i^{\frac{3}{2}}\alpha\overline{r})}{J_0(i^{\frac{3}{2}}\alpha)} - 1\right]\right), \ i^2 = -1.$$

Диференчна схема

- хомогенна
- консервативна
- ullet двуслойна с тегло σ
- избор на стъпките h и τ Условие за положителност на коефициентите $\Rightarrow \tau \leq \frac{\mu_{\infty}\alpha^2h^2}{2\mu_0(1-\sigma)}$. Избираме $h = \frac{\overline{r}_N \overline{r}_0}{500} = 0.002, \ \tau = \frac{\mu_{\infty}\alpha^2h^2}{2\mu_0(1-\sigma)} = 0.0002.$
- намиране на решението
- грешка на схемата

$$\psi = |\overline{u} - y| = O(h^2 + \tau^2)$$

Фигура: Сравнение между точното и приближеното решение в нестационарния модел на Нютон

Обемен дебит

- начин на пресмятане
- чертеж по точките $\{(\overline{t}^j;\; Q^j)\}_{j=0}^M$

$$(\bar{t}_{\text{min}}; Q_{\text{min}}): (4.4; -4 \times 10^{-5}), (\bar{t}_{\text{max}}; Q_{\text{max}}): (1.3; 4 \times 10^{-5})$$

Фигура: Дебит на кръвния поток в нестационарния модел на Нютон

Диференчна схема

 параметри на изчислителния процес — тегло и стъпки:

$$\sigma = \frac{1}{2}, \ h = \frac{\overline{r}_N - \overline{r}_0}{200} = 0.005, \ \tau = \frac{\mu_\infty \alpha^2 h^2}{2\mu_0 (1 - \sigma)} = 0.0011$$

• приближено решение

Фигура: Повърхнина на решението *у* при нестационарно течение на не-Нютонов флуид

Обемен дебит

$$(\bar{t}_{\text{min}};\ \textit{Q}_{\text{min}}):\ (4.4;\ -4\times 10^5),\ (\bar{t}_{\text{max}};\ \textit{Q}_{\text{max}}):\ (1.3;\ 4\times 10^5)$$

Фигура: Дебит на кръвния поток в нестационарния модел на Каро

Сравнение между скоростите от нестационарните модели на Нютон и на Каро

Фигура: Сравнения за $\bar{t}=0.21\cdot 2\pi$ и $\bar{t}=0.46\cdot 2\pi$

Сравнение между скоростите от нестационарните модели на Нютон и на Каро

Фигура: Сравнения за $\bar{t}=0.64\cdot 2\pi$ и $\bar{t}=0.82\cdot 2\pi$

Сравнение между скоростите от нестационарните модели на Нютон и на Каро

Фигура: Сравнения за $\bar{t}=0.94\cdot 2\pi$ и $\bar{t}=2\pi$

Обобщени резултати

Таблица: Разлика между скоростите, пресметнати от модела на Нютон и от модела на Каро

Време \overline{t}	$\max \Psi_y$
$\overline{t} = 0.21 \cdot 2\pi$	0.0301
$\overline{t} = 0.46 \cdot 2\pi$	0.0338
$\overline{t} = 0.64 \cdot 2\pi$	0.0511
$\overline{t} = 0.82 \cdot 2\pi$	0.0463
$\overline{t} = 0.94 \cdot 2\pi$	0.0193
$\overline{t} = 1.00 \cdot 2\pi$	0.0185

Нестационарно уравнение с произволна периодична функция за градиента на налягането

- \rm Идея
- ullet Ред на Фурие разлагане на $m{F}(ar{t})$

$$F(\bar{t}) = \sum_{m=1}^{6} \left(A_m \cos m\bar{t} + B_m \sin m\bar{t} \right)$$

Нестационарно уравнение с произволна периодична функция за градиента на налягането

Резултат:

$$F(\bar{t}) = \sum_{m=1}^{6} \left(A_m \cos m\bar{t} + B_m \sin m\bar{t} \right) =$$

 $0.8436\cos \bar{t} - 0.7137\sin \bar{t} + 0.5418\cos 2\bar{t} + 1.4326\sin 2\bar{t} - 0.7945\cos 3\bar{t} + 0.5508\sin 3\bar{t} - 0.2375\cos 4\bar{t} - 0.1589\sin 4\bar{t} + 0.0122\cos 5\bar{t} - 0.2818\sin 5\bar{t} - 0.1917\cos 6\bar{t} - 0.0167\sin 6\bar{t}.$

 $+0.0122\cos 5t - 0.2818\sin 5t - 0.1917\cos 6t - 0.0167\sin 6t$

Нестационарно уравнение с произволна периодична функция за градиента на налягането

Параметър	Модел на Нютон	Модел на Каро
R	0.0015 m	0.0015 m
μ_0	0.004 Pa·s	0.0207 Pa·s
μ_{∞}	0.004 Pa·s	0.004 Pa·s
n	$6\pi \text{ rad/s}$	$6\pi \text{ rad/s}$
ρ	1.05 g/ml	1.05 g/ml
A_{st}	13600 · 9.8 · 0.1 Pa · s	13600 · 9.8 · 0.1 Pa · s
λ	0.3327 s	0.3327 s
n _c	0.4505	0.4505
а	2	2

- Измервания на McDonald
- Формула на Womersley за дебита (1955)

$$(9) \\ Q(t) = 3.56 \sin(t + 71^{\circ}13') + 2.71 \sin(2t - 40^{\circ}10') - \\ -1.20 \sin(3t + 50^{\circ}33') - 0.28 \sin(4t - 20^{\circ}17') + \\ +0.22 \sin(5t + 99^{\circ}28') - 0.13 \sin(6t + 5^{\circ}47')$$

Пресмятане на решението — тегло и стъпки на изчислителния процес:

$$\sigma = \frac{1}{2}, \ h = \frac{\overline{r}_N - \overline{r}_0}{300} = 0.003, \ \tau = \frac{\mu_\infty \alpha^2 h^2}{2\mu_0 (1 - \sigma)} = 0.0001.$$

Начално условие $-u(\overline{r}, 0) = 0.$

Времеви интервал — [0; 2π].

Фигура: Сравнение между дебита от численото решение и от формулата на Womersley (9)

Времеви интервал — [0; 6π].

Фигура: Сравнение между дебита от численото решение и от формулата на Womersley (9)

Модел на Каро

Изчислителен процес

•
$$\sigma = \frac{1}{2}$$
, $h = 0.01$, $\tau = 0.006$

- ullet времеви интервал [0; 6π]
- начално условие $-u(\overline{r}, 0) = 0$

Фигура: Разпределение на скоростта в модела на Каро

Фигура: Разпределение на скоростта в модела на Нютон

$$\Psi_y = |y_{\mathsf{Newton}} - y_{\mathsf{Carreau}}|; \max \Psi_y = 0.1403$$

Обобщени резултати

Таблица: Разлика между скоростите, пресметнати от модела на Нютон и от модела на Каро при произволна периодична функция за градиента на налягането

Време \overline{t}	$\max \Psi_y$
$\overline{t} = 0.03 \cdot 2\pi$	0.004
$\overline{t} = 0.11 \cdot 2\pi$	0.02
$\overline{t} = 0.20 \cdot 2\pi$	0.06
$\overline{t} = 0.45 \cdot 2\pi$	0.03
$\overline{t} = 0.62 \cdot 2\pi$	0.0001
$\overline{t} = 0.88 \cdot 2\pi$	0.0002
$\overline{t} = 0.96 \cdot 2\pi$	0.0036

Обемен дебит — $\max \Psi_Q = 0.1591$

Фигура: Сравнение между дебита от модела на Каро и дебита от формулата на Womersley (9) за $\bar{t} \in [0; 6\pi]$

Край

Благодаря за вниманието!