т:.	•	·	1 N	NT	i., 1.1
типе	: 1	mazwis	ko: ſ	numer	maeksu:

Egzamin z Rachunku Prawdopodobieństwa II* grupa I, 31 stycznia 2009

Część zadaniowa

Spośród poniższych zadań należy **wybrać pięć** i napisać ich pełne rozwiązanie. Każde zadanie będzie oceniane w skali 0–8 pkt.

- 1. Zmienne losowe X_n spełniają warunek sup $_n$ $\mathbf{E}e^{|X_n|}<\infty$. Wykaż, że X_n zbiega według rozkładu do X wtedy i tylko wtedy gdy $\lim_{n\to\infty}\mathbf{E}X_n^k=\mathbf{E}X^k$ dla $k=0,1,2\ldots$
- 2. Rzucamy kostką dopóki nie wypadną 3 szóstki pod rząd. Oblicz wartość oczekiwaną liczby wykonanych rzutów i sumy wyrzuconych oczek.
- 3. Niech $Y_n=X_1X_2\cdots X_n$, gdzie X_n są niezależnymi zmiennymi losowymi oraz X_n ma rozkład Poissona z parametrem n^2 .
 - a) Znajdź taki niezerowy ciąg (a_n) , że $(a_nY_n)_{n\geqslant 1}$ jest martyngałem względem sigma ciała generowanego przez (X_n) .
 - b) Czy martyngał z punktu a) jest zbieżny prawie na pewno?
 - c) Czy jest zbieżny w L^1 ?
- 4. Zmienne $X_1, Y_1, X_2, Y_2, \ldots$ są niezależne i mają rozkład jednostajny na [-1, 1]. Czy ciąg

$$T_n = \frac{\sum_{k=1}^{n} X_k Y_k}{\sqrt{\sum_{k=1}^{n} Y_k^2}}$$

jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?

5. Niech

$$\varphi(t) = \begin{cases} 1 & \text{dla } t = 0\\ \frac{1 - e^{-20t^2}}{20(1 - e^{-t^2})} & \text{dla } t \neq 0 \end{cases}$$

Wykaż, że istnieje zmienna losowa X taka, że $\varphi = \varphi_X$. Znajdź rozkład X.

6. Dany ustalonej liczby $p \in (0,1)$ rozpatrzmy łańcuch Markowa o przestrzeni stanów $E = \mathbb{Z}$ i macierzy przejścia takiej, że $p_{0,1} = p_{0,-1} = 1/2$ oraz $p_{k,k+1} = p_{-k,-k-1} = p$, $p_{k,k-1} = p_{-k,-k+1} = 1 - p$ dla $k = 1, 2, \ldots$ Zbadaj powracalność tego łańcucha Markowa.

Część testowa

- 1. (3pkt) Sformuluj Centralne Twierdzenie Graniczne Lindeberga-Levy'ego.
- 2. (2pkt) Uzupełnij stwierdzenie: Zmienne X_n mają rozkład jednostajny na $[a_n,b_n]$. Wówczas ciąg X_n jest ciasny wtedy i tylko wtedy gdy

- 3. (3pkt) Niech $X_n = \mathbf{E}(X|\mathcal{F}_n)$, gdzie X jest pewną zmienną o rozkładzie $\mathcal{N}(0,1)$ a $(\mathcal{F}_n)_{n\geqslant 0}$ pewną filtracją. Wynika stąd, że (podkreśl prawidłowe odpowiedzi): Ciąg X_n zbiega do X w L^1 , ciąg X_n jest zbieżny prawie na pewno, ciąg X_n jest zbieżny według rozkładu, ciąg (X_n^2) jest jednostajnie całkowalny.
- 4. (4pkt) Podaj wybrane dwie równoważne definicje wielowymiarowej zmiennej gaussowskiej.

- 5. (4pkt) $(W_t)_{t\geqslant 0}$ jest procesem Wienera. Wówczas dla 0< s< t $\mathbf{E}(W_tW_s)=$ $\mathbf{E}(W_t^2W_s^2)=$ $\mathbf{E}e^{5i(W_t-W_s)}=$ $\mathbf{E}e^{5i(W_t-W_s)}=$
- 6. (4pkt) Zmienna losowa Xma skończone wszystkie momenty. Wyraź za pomocą funkcji charakterystycznej Xnastępujące wielkości:

$$\mathbf{E}X = \dots$$

 $Var(X) = \dots$
 $Var(X^2) = \dots$

7. (4pkt) Niech X_n będzie łańcuchem Markowa o przestrzeni stanów $\{1,2\}$ i macierzy przejścia $P=\left(\begin{array}{cc} \frac{2}{5} & \frac{3}{5} \\ \frac{7}{7} & \frac{8}{7} \end{array}\right)$. Oblicz $\mathbf{P}(X_2=X_1|X_0=1){=}......$

$$P(X_2 = X_1 | X_0 = 1) = .$$

 $\lim_{n \to \infty} P^n =$

8. (3pkt)
$$(M_n, \mathcal{F}_n)_{n\geqslant 0}$$
 jest nieujemnym martyngałem takim, że $M_0=1$, a τ skończonym momentem zatrzymania. Wynika stąd, że (podkreśl właściwe odpowiedzi): $\mathbf{E}M_{\tau}=1$, $\mathbf{E}M_{\tau\wedge 100}=1$, $\mathbf{E}M_{\tau}^2\geqslant 1$, $\mathbf{E}\sqrt{M_{\tau}}\leqslant 1$.

9. (3pkt) Podaj definicję momentu zatrzymania τ względem filtracji \mathcal{F}_n oraz sigma ciała \mathcal{F}_{τ} .

Imi	. i	nazwie	ko: N	Viimer	indaken
TIIII	; 1	mazwis.	KO: 1	.vumer	maeksu

Egzamin z Rachunku Prawdopodobieństwa II* grupa II, 31 stycznia 2009

Część zadaniowa

Spośród poniższych zadań należy **wybrać pięć** i napisać ich pełne rozwiązanie. Każde zadanie będzie oceniane w skali 0–8 pkt.

- 1. Niech $Y_n = X_1 X_2 \cdots X_n$, gdzie X_n są niezależnymi zmiennymi losowymi oraz X_n ma rozkład Poissona z parametrem n^3 .
 - a) Znajdź taki niezerowy ciąg (a_n) , że $(a_nY_n)_{n\geqslant 1}$ jest martyngałem względem sigma ciała generowanego przez (X_n) .
 - b) Czy martyngał z punktu a) jest zbieżny prawie na pewno?
 - c) Czy jest zbieżny w L^1 ?
- 2. Niech

$$\varphi(t) = \begin{cases} 1 & \text{dla } t = 0\\ \frac{1 - e^{-20t^2}}{10(1 - e^{-2t^2})} & \text{dla } t \neq 0 \end{cases}$$

Wykaż, że istnieje zmienna losowa X taka, że $\varphi = \varphi_X$. Znajdź rozkład X.

- 3. Dany ustalonej liczby $p \in (0,1)$ rozpatrzmy łańcuch Markowa o przestrzeni stanów $E = \mathbb{Z}$ i macierzy przejścia takiej, że $p_{0,1} = p_{0,-1} = 1/2$ oraz $p_{k,k+1} = p_{-k,-k-1} = p$, $p_{k,k-1} = p_{-k,-k+1} = 1 p$ dla $k = 1, 2, \ldots$ Zbadaj powracalność tego łańcucha Markowa.
- 4. Rzucamy kostką dopóki nie wypadną 3 jedynki pod rząd. Oblicz wartość oczekiwaną liczby wykonanych rzutów i sumy wyrzuconych oczek.
- 5. Zmienne $X_1, Y_1, X_2, Y_2, \ldots$ są niezależne i mają rozkład jednostajny na [-2, 2]. Czy ciąg

$$T_n = \frac{\sum_{k=1}^{n} X_k Y_k}{\sqrt{\sum_{k=1}^{n} Y_k^2}}$$

jest zbieżny według rozkładu? Jeśli tak, to do jakiej granicy?

6. Zmienne losowe X_n spełniają warunek sup $_n$ $\mathbf{E}e^{|X_n|}<\infty$. Wykaż, że X_n zbiega według rozkładu do X wtedy i tylko wtedy gdy $\lim_{n\to\infty}\mathbf{E}X_n^k=\mathbf{E}X^k$ dla $k=0,1,2\ldots$

Część testowa

1. (3pkt) Podaj definicję momentu zatrzymania τ względem filtracji \mathcal{F}_n oraz sigma ciała \mathcal{F}_{τ} .

- 2. (4pkt) $(W_t)_{t\geqslant 0}$ jest procesem Wienera. Wówczas dla 0 < s < t $\mathbf{E}e^{3i(W_t-W_s)}=....$ $\mathbf{E}(W_tW_s)=...$ $\mathbf{E}(W_t^2W_s^2)=...$
- 3. (3pkt) Sformułuj Centralne Twierdzenie Graniczne Lindeberga-Levy'ego.

- 4. (3pkt) $(M_n, \mathcal{F}_n)_{n\geqslant 0}$ jest nieujemnym martyngałem takim, że $M_0=1$, a τ skończonym momentem zatrzymania. Wynika stąd, że (podkreśl właściwe odpowiedzi): $\mathbf{E}M_{\tau}^2\geqslant 1$, $\mathbf{E}M_{\tau}=1$, $\mathbf{E}M_{\tau \wedge 100}=1$, $\mathbf{E}\sqrt{M_{\tau}}\leqslant 1$.
- 5. (2pkt) Uzupełnij stwierdzenie: Zmienne X_n mają rozkład jednostajny na $[a_n, b_n]$. Wówczas ciąg X_n jest ciasny wtedy i tylko wtedy gdy
- 6. (3pkt) Niech $X_n = \mathbf{E}(X|\mathcal{F}_n)$, gdzie X jest pewną zmienną o rozkładzie $\mathcal{N}(0,1)$ a $(\mathcal{F}_n)_{n\geqslant 0}$ pewną filtracją. Wynika stąd, że (podkreśl prawidłowe odpowiedzi): Ciąg X_n jest zbieżny w L^1 , ciąg X_n jest zbieżny prawie na pewno do X, ciąg X_n jest zbieżny według rozkładu, ciąg (X_n^2) jest jednostajnie całkowalny.
- 7. (4pkt) Zmienna losowa Xma skończone wszystkie momenty. Wyraź za pomocą funkcji charakterystycznej Xnastępujące wielkości:

 $\mathbf{E}X = \dots$ $Var(X) = \dots$ $Var(X^2) = \dots$

- 8. (4pkt) Niech X_n będzie łańcuchem Markowa o przestrzeni stanów $\{1,2\}$ i macierzy przejścia $P=\left(\begin{array}{cc} \frac{1}{5} & \frac{4}{5} \\ \frac{7}{7} & \frac{7}{7} \end{array}\right)$. Oblicz $\mathbf{P}(X_2=X_1|X_0=1){=}.....$ $\lim_{n\to\infty}P^n={=}.......$
- 9. (4pkt) Podaj wybrane dwie równoważne definicje wielowymiarowej zmiennej gaussowskiej.