Devoir surveillé n°5 Version n°2

Durée : 3 heures, calculatrices et documents interdits

I. Étude d'une suite définie par récurrence.

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $u_0=1$ et, pour tout $n\in\mathbb{N}$,

$$u_{n+1} = u_n^2 + u_n.$$

- 1) Déterminer la nature de la suite $(u_n)_{n\in\mathbb{N}}$ et préciser, le cas échéant, sa limite.
- 2) Pour tout $n \in \mathbb{N}$, on pose,

$$v_n = \frac{1}{2^n} \ln u_n.$$

a) Prouver que pour tous $n, p \in \mathbb{N}$:

$$0 \leqslant v_{n+p+1} - v_{n+p} \leqslant \frac{1}{2^{n+p+1}} \ln \left(1 + \frac{1}{u_n} \right).$$

b) En déduire que pour tous $n, k \in \mathbb{N}$:

$$0 \leqslant v_{n+k+1} - v_n \leqslant \frac{1}{2^n} \ln \left(1 + \frac{1}{u_n} \right).$$

- c) En déduire la convergence de $(v_n)_{n\in\mathbb{N}}$ vers un réel, que l'on choisit d'écrire comme un logarithme, *i.e.* ln α avec $\alpha > 0$.
- 3) a) Déterminer un encadrement de $\ln \alpha v_n$ pour tout $n \in \mathbb{N}$.
 - **b)** En déduire que, pour tout $n \in \mathbb{N}$:

$$u_n \leqslant \alpha^{2^n} \leqslant u_n + 1.$$

c) Comparer α et 1.

- d) En déduire la limite $\lim_{n\to+\infty}\frac{u_n}{\alpha^{2^n}}$.
- **4)** Pour tout $n \in \mathbb{N}$ on pose $\delta_n = \alpha^{2^n} u_n$.
 - a) Montrer que la suite $(\delta_n)_{n\in\mathbb{N}}$ est bornée et que, pour tout $n\in\mathbb{N}$,

$$\delta_n = \frac{1}{2} + \frac{\delta_{n+1} + \delta_n^2 - \delta_n}{2} \alpha^{-2^n}.$$

- **b)** En déduire que, pour tout $n \in \mathbb{N}$, $\delta_n < 1$.
- c) En déduire que, pour tout $n \in \mathbb{N}$, $u_n = |\alpha^{2^n}|$.
- d) Montrer enfin que la suite $(\delta_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.

II. Le théorème de Šarkovskii

Dans tout le problème, I est un segment de \mathbb{R} non vide, non réduit à un point, et f est une fonction continue de I dans I.

Pour chaque $n \in \mathbb{N}^*$, on note la n^e itérée de f:

$$f^n = \underbrace{f \circ f \circ \dots \circ f}_{n \text{ fois}}.$$

On conviendra au besoin que $f^0 = \operatorname{Id}_I$.

Soit $n \ge 1$ un entier. Un point $x \in I$ est dit n-périodique si $f^n(x) = x$ et $f^p(x) \ne x$ pour tout entier p tel que $1 \le p < n$; l'entier n s'appelle la période de x. Un point $x \in I$ est périodique s'il est n-périodique pour un entier $n \ge 1$.

L'objectif de ce problème est de démontrer une version faible du Théorème de Šarkovskii (1964):

Théorème : Soient I un segment de \mathbb{R} et $f: I \to I$ une fonction continue. S'il existe un point de période 3, alors il existe un point de période n pour tout $n \ge 1$.

- 1) Montrer que f admet un point fixe dans I.
- 2) Soit J un segment non vide inclus dans I. Soit K un segment non vide inclus dans f(J). On se propose de montrer qu'il existe un segment L inclus dans J tel que K = f(L).

- a) On suppose K réduit à un point. Montrer l'existence de L.
- b) On suppose désormais $K = [\alpha, \beta]$, avec $\alpha < \beta$. Montrer l'existence de a, b dans J tels que $f(a) = \alpha$ et $f(b) = \beta$. Par symétrie, on suppose a < b.

Le lecteur consciencieux vérifiera chez lui que le raisonnement est équivalent si b < a.

- c) Soit $A = \{x \in [a, b] \mid f(x) = \beta\}$. Justifier l'existence de $v = \min A$.
- d) Soit $B = \{x \in [a, v] \mid f(x) = \alpha\}$. Justifier l'existence de $u = \max B$. En déduire l'existence de L.
- 3) Soit K un segment non vide inclus dans I tel que $K \subset f(K)$. Montrer que f admet un point fixe dans K.

Indication: on pourra étudier étudier $g: x \mapsto f(x) - x$ sur K.

Soient I_1, I_2 deux segments inclus dans I. On dit que I_1 f-recouvre I_2 et on note $I_1 \to I_2$ si $f(I_1) \supset I_2$. On note $I_1 \to I_2 \to I_3$ si $f(I_1) \supset I_2$ et $f(I_2) \supset I_3$, et ainsi de suite...

- 4) On suppose qu'il existe n+1 segments non vides I_0, I_1, \ldots, I_n inclus dans I tels que, pour tout $0 \le k \le n-1$, $I_k \to I_{k+1}$. Montrer qu'il existe une suite $(J_k)_{0 \le k \le n-1}$ de n segments non vides tels que :
 - pour tout entier k tel que $0 \le k \le n-1, J_k \subset I_k$ et $f(J_k) = J_{k+1}$; $f(J_{n-1}) = I_n$.

Si $x_0 \in J_0$, que peut-on dire de $f^k(x_0)$ où $0 \le k \le n-1$?

5) On suppose qu'il existe un point 3-périodique x. On introduit les réels $x_0 = \min\{x, f(x), f^2(x)\}, x_1 = f(x_0)$ et $x_2 = f(x_1)$. À l'aide de x_0, x_1, x_2 , déterminer deux segments S_1 et S_2 inclus dans I ayant un seul point commun tels que $S_1 \to S_1$ et $S_1 \to S_2 \to S_1$. En déduire qu'il existe un point fixe et un point 2-périodique.

Indication: on pourra distinguer $x_1 < x_2$ et $x_2 < x_1$.

6) On suppose toujours que x est un point 3-périodique. Montrer qu'il existe un point n-périodique pour tout entier $n \ge 1$.

Indication : on cherchera une suite de la forme $S_1 \to S_2 \to S_2 \to \cdots \to S_2 \to S_1$.

7) Montrer que l'application $f:[0,1]\to [0,1]$ donnée par f(x)=4x(1-x) admet des points de période n pour tout $n\in\mathbb{N}^*$.

Indication: on pour utiliser les points particuliers 0, 1/2, 3/4, 1.

Pour conclure, énonçons le théorème de Šarkovskii : l'ordre de Šarkovskii sur \mathbb{N}^* est l'ordre total \succ défini comme suit :

$$3 \succ 5 \succ 7 \succ 9 \succ \cdots \succ 2 \times 3 \succ 2 \times 5 \succ 2 \times 7 \succ 2 \times 9 \succ \cdots$$

$$\cdots \succ 2^n \times 3 \succ 2^n \times 5 \succ \cdots \succ 2^{n+1} \times 3 \succ 2^{n+1} \times 5 \succ \cdots \succ 2^n \succ 2^{n-1} \succ \cdots 4 \succ 2 \succ 1.$$

Théorème : Soit I un segment et $f: I \to I$ une application continue ayant un point n-périodique. Alors il existe un point p-périodique pour tout entier p tel que $n \succ p$.

8) Écrire un programme ordre(a,b) en PYTHON qui prend en argument deux entiers a, b $\in \mathbb{N}^*$ et qui renvoie le booléen True si $a \succ b$ et False sinon

— FIN —