第17讲 频率特性,滤波器,谐振

- 1 频率特性
- 2 滤波器
- 3 谐振

本节课堂要用计算器

重点:

定性画频率特性 求谐振频率 求谐振入端电阻

1 频率特性

课前预习

电路的频率响应

电路的频率特性

改变电路激励的频率 (维持其幅值不变)对电路造成的影响。

阻抗

阻抗频率特性

电抗频率特性

支路电压电流

电压频率特性

电流频率特性

输入输出关系

网络函数/传递函数

$$X_L = \omega L$$
 $\dot{I} = \frac{U_S}{\sqrt{R^2 + (\frac{1}{\omega C})^2}} \angle (\varphi + \arctan \frac{1}{\omega RC})$ $H = \frac{\dot{\varphi} \dot{\omega}}{\dot{\chi} \dot{\chi} \dot{\chi}}$

$$H = \frac{1}{\sqrt{1 + (\omega RC)^2}} \angle -\arctan(\omega RC)$$

对于正弦激励下的纯电阻电路, 只改变电路激励的频率, 不会影响电路中某支路量的幅值和初相角

- A 正确
- B 错误

R

$$H(\omega) = |H| \angle \varphi = \frac{1}{\sqrt{1 + (\omega CR)^2}} \angle -\arctan(\omega CR)$$

设 RC=1

ω/(rad/s)	H	$\varphi^{(0)}$
0	1	0
1	0.707	-45
5	0.196	-78.7
10	0.1	-84.3
20	0.05	-87.1
100	0.01	-89.4

(2) 用频率特性来分析 ——MOSFET小信号放大器的增益

MOSFET放大器的小信号相量电路模型

$$\Delta \dot{I}_{DS_{1}} = g_{m} \Delta \dot{U}_{G_{1}S_{1}} \qquad \Delta \dot{I}_{DS_{2}} = g_{m} \Delta \dot{U}_{G_{2}S_{2}}$$

$$+ \Delta \dot{I}_{DS_{1}} \qquad \Delta \dot{I}_{DS_{1}} \qquad \Delta \dot{I}_{DS_{2}} \qquad + \Delta \dot{U}_{O}$$

$$- \qquad S_{1} \qquad S_{2} \qquad S_{2} \qquad - S_{2}$$

$$\Delta \dot{U}_{\mathrm{O}} = -\Delta \dot{I}_{\mathrm{DS}_{2}} R_{\mathrm{L}} = -g_{\mathrm{m}} \Delta \dot{U}_{\mathrm{G}_{2}\mathrm{S}_{2}} R_{\mathrm{L}}$$

$$\Delta \dot{U}_{G_2S_2} = -\frac{R_L \times \frac{1}{j\omega C_{GS_2}}}{R_L + \frac{1}{j\omega C_{GS_2}}} \times \Delta \dot{I}_{DS_1} = -\frac{R_L}{1 + j\omega C_{GS_2}} \times \Delta \dot{I}_{DS_1}$$

$$R_L + \frac{\sigma^2 R_L^2}{r^2} \times \Delta \dot{I}_{DS_1} = -\frac{R_L}{r^2} \times \Delta \dot{I}_{DS_1} = -\frac{R_L}{r^$$

$$\Delta \dot{U}_{O} = g_{m}R_{L} \times \frac{R_{L}}{1 + j\omega C_{GS_{2}}R_{L}} \times \Delta \dot{I}_{DS_{1}} = \frac{g_{m}^{2}R_{L}^{2}}{1 + j\omega C_{GS_{2}}R_{L}} \times \Delta \dot{U}_{G_{1}S_{1}}$$

$$A = \left| \frac{\Delta \dot{U}_{O}}{\Delta \dot{U}_{i}} \right| = \frac{g_{m}^{2} R_{L}^{2}}{\sqrt{1 + \left(\omega C_{GS_{2}} R_{L}\right)^{2}}}$$

结论:

由于存在寄生电容, MOSFET 小信号放大器的增益随着频率 增加而减小。

实际应用中, 经常会出现

阻抗、电压电流、传递函数

$$10^{-4} < |H| < 10^{+3}$$

1mHz~1GHz

见仿真

幅值/相位频率特性的波形特点被掩盖

见仿真

$$H_{\rm dB} = 20 \lg |H|$$

dB的由来和好处

- 声音的功率与声压平方成正比
- 好处
 - 从容地表示大比例
 - 对>1和<1区分明显

Bell

$$\eta = \lg \frac{A}{B} (Bell)$$

$$dB = 10\lg \frac{A}{B}$$

$$dB = 10\lg \frac{P_2}{P_1}$$

$$dB = 10 \lg \frac{U_2^2}{U_1^2} = 20 \lg \frac{U_2}{U_1}$$

2 滤波器(Filter)

噪声是无处不在的

去除噪声的装置称 为滤波器

假设信号与噪声 的频带不重合

估计信号特征, 从而提高信噪比

经典滤波器

现代滤波器

用模拟系统实现

用数字系统实现

现代信号处理

模拟滤波器

数字滤波器

用无源元件实现

用有源元件实现

数字信号处理

无源滤波器

有源滤波器

电路与系统

模拟电子技术基础

电力电子技术基础

模拟滤波器

从功能上分类

低通(LP) 高通(HP) 带通(BP) 带阻(BS, Notch) 全通(FP)

从实现方式上分类

无源滤波器

有源滤波器

RC

LC

Op Amp

电力电子器件

用无源元件实现

用有源元件实现

如设计得当,图示滤波器的组合可用作:

- A 带通滤波器
- B 全通滤波器
- c 带阻滤波器
- D 以上均有可能

前述考虑了 C_{GS} 的MOSFET小信号放大器,可视作哪种滤波器?

- A 高通
- B 低通
- C 带通
- D 带阻

$$A = \left| \frac{\Delta \dot{U}_{O}}{\Delta \dot{U}_{i}} \right| = \frac{g_{m}^{2} R_{L}^{2}}{\sqrt{1 + \left(\omega C_{GS_{2}} R_{L}\right)^{2}}}$$

$$H(\omega) = |H| \angle \varphi = \frac{1}{\sqrt{1 + (\omega CR)^2}} \angle - \arctan(\omega CR)$$

Principles of Electric Circuits Lecture 17 Tsinghua University 2018

近似积分器

Principles of Electric Circuits Lecture 17 Tsinghua University 2018

3 谐振

resonance

The increase in amplitude of oscillation of an electric or mechanical system exposed to a periodic force whose frequency is equal or very close to the natural undamped frequency of the system.

19世纪的 垮桥悲剧 法、德、俄

Principles of Electric Circuits Lecture 17 Tsinghua University 2018

Tacoma大桥垮塌事件

Washington, USA 1980 # % July 1, 1940 \sim November 7, 1940

(1) 电路中谐振的定义

当00, L, C 满足一定条件,恰好使一端口网络的端口电压、电流出现同相位。一端口网络的这种状态称为谐振。

RLC并联

并联谐振

$$Y = G + \mathbf{j}(\omega C - \frac{1}{\omega L})$$

$$\omega C > \frac{1}{\omega L}$$
 容性

$$\omega C < \frac{1}{\omega L}$$
 感性

$$\omega C = \frac{1}{\omega L}$$
 阻性

(1) RLC串联谐振

(a) 串联谐振的谐振条件和谐振时端口入端电阻

$$Z_0 = R$$
 谐振时端口入端阻抗(入端电阻)

②电源频率不变,改变L或C(常改变C),使 $X_L=|X_C|$ 。

(b) 串联谐振时的电压和电流

$$\dot{U}_{R} = R\dot{I} = \dot{U}_{S} \qquad \dot{I} = \frac{U_{S}}{R}$$

$$\dot{U}_{L} = \mathbf{j}\omega_{0}L\dot{I} = \mathbf{j}\frac{\omega_{0}L}{R}\dot{U}_{S}$$

$$\dot{U}_{C} = \frac{\dot{I}}{\mathbf{j}\omega_{0}C} = -\mathbf{j}\frac{1}{\omega_{0}CR}\dot{U}_{S}$$

$$\omega_{0}L = \frac{1}{\sqrt{LC}}L = \sqrt{\frac{L}{C}} = \frac{1}{\omega_{0}C}$$

L和C上可能出现比端口电压更高的电压

谐振时的相量图

串联谐振又称电压谐振

(2) GCL并联谐振

$$\dot{I}_{G} = G\dot{U} = \dot{I}_{S} \qquad \dot{U} = \frac{I_{S}}{G}$$

$$\dot{I}_{L} = \frac{\dot{U}}{j\omega_{0}L} = -j\frac{1}{\omega_{0}LG}\dot{I}_{S}$$

$$\dot{I}_{C} = j\omega_{0}C\dot{U} = j\frac{\omega_{0}C}{G}\dot{I}_{S}$$

$$\vec{I}_{G} = \vec{I}_{S}$$

$$\vec{I}_{C} \quad \vec{U}$$

L和 C 上可能出现比端口电流更大的电流

并联谐振又称电流谐振

对于图示的GCL并联电路,电源为频率可变的正弦电流,L=0.25mH, $C=10\mu$ F。 其谐振频率为

D 1.59 kHz

(4) 谐振可视为某种滤波器

(5) LC谐振电路

(a) 串联谐振

$$\mathbf{j}X = \mathbf{j}(\omega L - \frac{1}{\omega C})$$

$$\omega = \omega_0$$
 时

$$\omega = \omega_0$$
 时 端口相当于短路

(b) 并联谐振

$$jB = \frac{1}{j\omega L} + j\omega C = j(\omega C - \frac{1}{\omega L})$$

$$\mathbf{j}X = \frac{1}{\mathbf{j}B} = \mathbf{j}(-\frac{1}{B})$$

LC并联谐振的端口电抗频率特性为

(b) 并联谐振

$$\mathbf{j}B = \frac{1}{\mathbf{j}\omega L} + \mathbf{j}\omega C = \mathbf{j}(\omega C - \frac{1}{\omega L})$$
 $\mathbf{j}X = \frac{1}{\mathbf{j}B} = \mathbf{j}(-\frac{1}{B})$

$$\mathbf{j}X = \frac{1}{\mathbf{j}B} = \mathbf{j}(-\frac{1}{B})$$

$$\omega = \omega_0$$
 时

 $\omega = \omega_0$ 时 端口相当于开路

(c) 混联谐振

$$\mathbf{j}X = \frac{1}{\mathbf{j}\omega C_3} + \mathbf{j}X_2 = \mathbf{j}(-\frac{1}{\omega C_3} + X_2)$$

 L_1 、 C_2 并联,在某一角频率 ω_2 下发生并联谐振。

 $\omega > \omega_2$ 时,并联部分呈容性, $\omega < \omega_2$ 时,并联部分呈感性,在某一角频率 ω_1 下可与 C_3 发生串联谐振。

定量分析

$$Z(\omega) = \frac{1}{\mathbf{j}\omega C_3} + \frac{\mathbf{j}\omega L_1 \frac{1}{\mathbf{j}\omega C_2}}{\mathbf{j}\omega L_1 + \frac{1}{\mathbf{j}\omega C_2}}$$
$$= \frac{1}{\mathbf{j}\omega C_3} + \frac{\mathbf{j}\omega L_1}{1 - \omega^2 L_1 C_2}$$
$$= -\mathbf{j}\frac{1 - \omega^2 L_1 (C_2 + C_3)}{\omega C_2 (1 - \omega^2 L_1 C_2)}$$

分别令分子、分母为零,可得:

$$\omega_1 = \frac{1}{\sqrt{L_1(C_2 + C_3)}}$$
 发生串联谐振 $Z_0 = 0$

$$\omega_2 = \frac{1}{\sqrt{L_1 C_2}}$$

发生并联谐振 $Z_0 = \infty$

对于图示电路, 当频 率为何值时, 会发生 串联谐振?

- 3.56 kHz
- B 5.03 kHz
- 22.4 kHz
- ^D 31.6 kHz

$$\omega_1 = \frac{1}{\sqrt{L_1(C_2 + C_3)}}$$

$$\omega_2 = \frac{1}{\sqrt{L_1 C_2}}$$

发生串联谐振

发生并联谐振

思考

此处可以有投稿

激励 $u_{\mathbf{I}}(t)$, 包含两个频率 ω_1 、 ω_2 分量 ($\omega_1 < \omega_2$):

$$u_1(t) = u_{11}(\omega_1) + u_{12}(\omega_2)$$

要求负载电压 $u_0(t)$ 只有 $u_{11}(\omega_1)$ 频率电压,(无 ω_2 频率电压)。 如何实现?

 ${\it \Xi}_{\alpha_1} > \omega_2$, 仍要只得到 ω_1 频率电压,如何设计电路?