Class09

Tim

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedri	icewafer
100 Grand		1	0	1		0	0	_	1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	C)	0.732	0	.860	66.97173	
3 Musketeers	0	1	C)	0.604	0	.511	67.60294	
One dime	0	0	C)	0.011	0	.116	32.26109	
One quarter	0	0	C)	0.011	0	.511 4	46.11650	
Air Heads	0	0	C)	0.906	0	.511	52.34146	
Almond Joy	0	1	C)	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset? #85

```
nrow(candy)
```

[1] 85

Q2. How many fruity can dy types are in the dataset? #38

table(candy[,2]) 0 1 47 38 table(candy\$fruity) 0 1 47 38 Q3. What is your favorite candy in the dataset and what is it's winpercent value? #73.09956 candy["Milky Way",]\$winpercent [1] 73.09956 Q4. What is the winpercent value for "Kit Kat"? #76.7686candy["Kit Kat",]\$winpercent [1] 76.7686 Q5. What is the winpercent value for "Tootsie Roll Snack Bars"? #49.6535 candy["Tootsie Roll Snack",]\$winpercent [1] 49.6535 library(dplyr)

Attaching package: 'dplyr'

```
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
candy |>
  filter(rownames(candy) %in% c("Kit Kat", "Milky Way")) |>
  select(winpercent)
          winpercent
Kit Kat
            76.76860
            73.09956
Milky Way
the %in% operator used to check the intervention of two vectors.
candy |>
  filter(winpercent > 75) |>
  filter(pricepercent < 0.5)</pre>
                   chocolate fruity caramel peanutyalmondy nougat
Reese's Miniatures
                            1
                   crispedricewafer hard bar pluribus sugarpercent pricepercent
                                   0
                                        0
                                          0
                                                     0
                                                             0.034
                                                                            0.279
Reese's Miniatures
                   winpercent
Reese's Miniatures 81.86626
library("skimr")
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	

numeric 12
Group variables None

Variable type: numeric

skim_variable n_	_missingcom _]	plete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? #the winpercent data is so high since the data was not scaled

Q7. What do you think a zero and one represent for the candy\$chocolate column? # they are False = 0 and True = 1, which shows if the individual candy has these items in it or not

Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins=10) +
  theme_bw()
```


summary(candy\$winpercent)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 22.45 39.14 47.83 50.32 59.86 84.18
```

- Q9. Is the distribution of winpercent values symmetrical? #NO
- Q10. Is the center of the distribution above or below 50%? #little above 50
- Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
inds <- as.logical(candy$chocolate)
candy[inds,]$winpercent</pre>
```

- [1] 66.97173 67.60294 50.34755 56.91455 38.97504 55.37545 62.28448 56.49050
- [9] 59.23612 57.21925 76.76860 71.46505 66.57458 55.06407 73.09956 60.80070
- [17] 64.35334 47.82975 54.52645 70.73564 66.47068 69.48379 81.86626 84.18029
- [25] 73.43499 72.88790 65.71629 34.72200 37.88719 76.67378 59.52925 48.98265
- [33] 43.06890 45.73675 49.65350 81.64291 49.52411

```
candy |>
  filter(chocolate == 1) |>
  select(winpercent)
```

	winpercent
100 Grand	66.97173
3 Musketeers	67.60294
Almond Joy	50.34755
Baby Ruth	56.91455
Charleston Chew	38.97504
Hershey's Kisses	55.37545
Hershey's Krackel	62.28448
Hershey's Milk Chocolate	56.49050
Hershey's Special Dark	59.23612
Junior Mints	57.21925
Kit Kat	76.76860
Peanut butter M&M's	71.46505
M&M's	66.57458
Milk Duds	55.06407
Milky Way	73.09956
Milky Way Midnight	60.80070
Milky Way Simply Caramel	64.35334
Mounds	47.82975
Mr Good Bar	54.52645
Nestle Butterfinger	70.73564
Nestle Crunch	66.47068
Peanut M&Ms	69.48379
Reese's Miniatures	81.86626
Reese's Peanut Butter cup	84.18029
Reese's pieces	73.43499
Reese's stuffed with pieces	72.88790
Rolo	65.71629
Sixlets	34.72200
Nestle Smarties	37.88719
Snickers	76.67378
Snickers Crisper	59.52925
Tootsie Pop	48.98265
Tootsie Roll Juniors	43.06890
Tootsie Roll Midgies	45.73675
Tootsie Roll Snack Bars	49.65350
Twix	81.64291
Whoppers	49.52411

```
inds <- candy$fruity ==1
fruit.win <- candy[inds,]$winpercent

inds <- as.logical(candy$chocolate)
choc.win <- candy[inds,]$winpercent

summary(choc.win)

Min. 1st Qu. Median Mean 3rd Qu. Max.
34.72 50.35 60.80 60.92 70.74 84.18

summary(fruit.win)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
```

44.12

42.97

Q12. Is this difference statistically significant? #yes becasue the P-value is below 0.5%

52.11

```
t.test(fruit.win, choc.win)
```

67.04

```
Welch Two Sample t-test
```

22.45 39.04

```
data: fruit.win and choc.win
t = -6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -22.15795 -11.44563
sample estimates:
mean of x mean of y
44.11974 60.92153
```

Two functions to use sort() and order()

```
play <- c(2,1,5,3)
order(play)</pre>
```

[1] 2 1 4 3

```
play <- c(2,1,5,3)
sort(play)</pre>
```

[1] 1 2 3 5

```
1 <- c("c", "a", "b")
sort(1)</pre>
```

[1] "a" "b" "c"

```
1 <- c("c", "a", "b")
order(1)</pre>
```

[1] 2 3 1

Q13. What are the five least liked can dy types in this set? #Nik L Nip, Boston Baked Beans, Chiclets, Super Bubble, Jaw busters

```
inds <- order(candy$winpercent)
head(candy[inds,])</pre>
```

	${\tt chocolate}$	fruity	carar	nel	peanutyalm	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
Root Beer Barrels	0	0		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
Root Beer Barrels		0	1	0	1		0.732	0.069
	winpercent	t						

Nik L Nip	22.44534
Boston Baked Beans	23.41782
Chiclets	24.52499
Super Bubble	27.30386
Jawbusters	28.12744
Root Beer Barrels	29.70369

Q14. What are the top 5 all time favorite candy types out of this set? #Reese's Peanut Butter cup, Reese's Miniatures, Twix, Kit Kat, Snickers

```
inds <- order(desc(candy$winpercent))
head(candy[inds,])</pre>
```

	chocolate	fruity	caran	nel j	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
Reese's pieces	1	0		0		1	0
	crispedric	ewafer	${\tt hard}$	bar	pluribus	sugar	percent
Reese's Peanut Butter cup	•	0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
Reese's pieces		0	0	0	1		0.406
	priceperce	nt winp	percer	nt			
Reese's Peanut Butter cup	0.6	51 84	1.1802	29			
Reese's Miniatures	0.2	.79 81	1.8662	26			
Twix	0.9	06 81	1.6429	91			
Kit Kat	0.5	11 76	3.7686	30			
Snickers	0.6	51 76	6.6737	78			
Reese's pieces	0.6	51 73	3.4349	99			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
ggplot(candy) +
aes(x=winpercent, y= rownames(candy)) +
geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(x=winpercent, y= reorder (rownames(candy), winpercent)) +
  geom_col()
```


I want to define my own colors I am start with a place-holder vector of colors all "black"

```
mycols <- rep("black", nrow(candy))
mycols[as.logical(candy$chocolate)] <- "chocolate"
mycols[as.logical(candy$bar)] <- "brown"
mycols[as.logical(candy$fruity)] <- "pink"
mycols[rownames(candy) == "Milky Way"] <- "yellow"</pre>
```

```
ggplot(candy) +
aes(x=winpercent, y= reorder (rownames(candy), winpercent)) +
geom_col(fill = mycols)
```



```
ggplot(candy) +
  aes(winpercent, pricepercent, label = rownames(candy)) +
  geom_point(col= mycols) +
  geom_text(col= mycols)
```


library(corrplot)

corrplot 0.95 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


#Principal Component Analysis

```
pca <- prcomp(candy, scale= TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                                   PC9
                           PC8
                                          PC10
                                                  PC11
                                                          PC12
                       0.74530\ 0.67824\ 0.62349\ 0.43974\ 0.39760
Standard deviation
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

plot(pca\$x[,1], pca\$x[,2], col=mycols, pch= 16)

pca\$rotation[,1]

peanutyalmondy	caramel	fruity	chocolate
-0.2407155	-0.2299709	0.3683883	-0.4019466
bar	hard	crispedricewafer	nougat
-0.3947433	0.2111587	-0.2215182	-0.2268102
winpercent	pricepercent	sugarpercent	pluribus
-0.3298035	-0.3207361	-0.1083088	0.2600041

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```

