ECOM40006/ECOM90013 Econometrics 3 Department of Economics University of Melbourne

Week 6 Tutorial Exercise

Semester 1, 2025

- 1. Take the opportunity to ask any questions that you may have about the lecture material or previous tutorial questions.
- 2. An estimator $\hat{\theta}$ is said to be consistent for a parameter θ iff $\hat{\theta} \stackrel{p}{\to} \theta$. Let Y_1, Y_2, \dots, Y_n denote a simple random sample from a population with probability density function

$$f(y) = \begin{cases} \theta y^{\theta - 1}, & 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Show that the sample mean \overline{Y} is a consistent estimator of $\theta/(\theta+1)$.

Hint: First derive the mean of the population and then remember that laws of large numbers are your friends.

3. Let Y_1, Y_2, \ldots, Y_n denote a simple random sample of size n from a Normal population with mean μ and variance σ^2 . Assuming that n = 2k for some integer k, one possible estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{1}{2k} \sum_{j=1}^k (Y_{2j} - Y_{2j-1})^2.$$

- (a) Show that $\hat{\sigma}^2$ is an unbiased estimator for σ^2 .
- (b) Show that $\hat{\sigma}^2$ is a consistent estimator for σ^2 .
- 4. Let Y_1, Y_2, \ldots, Y_n be a sequence of independent random variables with $E[Y_i] = \mu$ and $Var[Y_i] = \sigma_i^2$. Notice that not all the σ_i^2 's need be equal.
 - (a) What is $E\left[\overline{Y}_n\right]$?
 - (b) What is $\operatorname{Var}\left[\overline{Y}_{n}\right]$?
 - (c) Under what condition (on the σ_i^2 's) can the following theorem be applied to show that \overline{Y}_n is a consistent estimator for μ ?

Theorem: An unbiased estimator $\hat{\theta}_n$ for θ is a consistent estimator of θ if

$$\lim_{n \to \infty} \operatorname{Var}\left[\hat{\theta}_n\right] = 0.$$

5. If Y_1, Y_2, \ldots, Y_n denote a simple random sample of size n from a population with a gamma distribution with parameters α and β , show that \overline{Y} converges in probability to some constant and find the constant, when

$$f(y \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} e^{-y/\beta}, \quad 0 < y < \infty.$$

Hint: Recall that

$$\int_0^\infty e^{-y/\beta} y^{\alpha-1} \, \mathrm{d}y = \beta^\alpha \Gamma(\alpha),$$

and explore the behaviour of $\mathrm{E}\left[Y\right]$ and $\mathrm{Var}\left[Y\right]$.