Correttezza e terminazione

Algoritmi e strutture dati

Ugo de'Liguoro, Andras Horvath

1

Sommario

- Obiettivi
 - introdurre l'analisi qualitativa degli algoritmi, basata su tecniche di verifica
- Argomenti
 - pre e post condizioni
 - induzione per verificare algoritmi ricorsivi
 - invarianti di ciclo per verificare algoritmi iterativi
 - terminazione

2

Bugs ed altri disastri

It has been just so in all of my inventions. The first step is an intuition, and comes with a burst, then difficulties arise — this thing gives out and [it is] then that "Bugs" — as such little faults and difficulties are called — show themselves and months of intense watching, study and labor are requisite before commercial success or failure is certainly reached. (T. Edison, da Wikipedia)

Bugs ed altri disastri

- 1962: la sonda Mariner 1 si schianta su Venere
- per un errore nel software di controllo del volo
 1981: una TV nel Quebec decreta la vittoria alle
 elezioni di un partito sconosciuto; usavano un
 software difettoso per la rilevazione dei risultati
- 1983: un sistema computerizzato sovietico rileva un attacco nucleare con cinque missili balistici inesistenti
- 1985: alcuni pazienti vengono irradiati con dosi eccessive di raggi X dal sistema Therac-25 a controllo software

4

Bugs ed altri disastri

- 1993: il processore Pentium, che incorpora il coprocessore aritmetico, sbaglia le divisioni in virgola mobile
- 1996: l'Ariane 5 esce dalla sua rotta e viene distrutto in volo a causa di un errore di conversione dei dati da 16 a 32 bit
- 1999: usando un nuovo sistema, le poste inglesi recapitano mezzo milione di nuovi passaporti ad indirizzi sbagliati o inesistenti
- 1999: Y2K è il celeberrimo millenium-bug
- (continua...)

5

TimSort

Timsort is a <u>hybrid stable sorting algorithm</u>, derived from <u>merge sort</u> and <u>insertion sort</u>, designed to perform well on many kinds of real-world data.

...

It was implemented by Tim Peters in 2002 for use in the $\underline{\text{Python programming language}}.$

Timsort has been Python's standard sorting algorithm since version 2.3. It is also used to sort arrays of non-primitive type in <u>Java SE 7</u>, on the <u>Android platform</u>, and in <u>GNU Octave</u>. (Wikipedia)

Il programma contiene un errore difficile da scoprire, perché si verifica con array di lunghezza > 2⁴⁹

8

Specifica di un algoritmo

- pre-condizioni: ipotesi sull'ingresso (come deve essere fatto l'input)
- post-condizioni: proprietà dell'uscita (un criterio stabilisce come deve essere fatto l'output)

Esempio, divisione intera:

 $\mathbf{Div}(a,\,b)$

Pre: $a \ge 0, b > 0$ numeri interi

Post: $q \in r$ tali che a = b q + r e $0 \le r < b$

Che cos'è la ricorsione?

Un algoritmo è ricorsivo se nella sua definizione utilizza direttamente o indirettamente sé stesso.

- Un problema si presta ad essere risolto con un algoritmo ricorsivo quando la soluzione con un certo input ha una relazione più o meno semplice con la soluzione del problema con uno o più input "diminuiti" in qualche maniera.
- fattoriale: $n! = f(n) = n \cdot f(n-1)$
- · massimo di un vettore:

 $mv(A[1..n]) = max(mv(A[1..n/2]), \ mv(A[n/2+1..n]))$

se n>1

(dove n/2 denota n diviso per due arrotondato per difetto)

10

Le torri di Hanoi (Lucas 1883)

Dati tre pioli (A, B e C) e una torre di n dischi di diametro decrescente sul piolo A, spostare la torre dal piolo A (sorgente) al piolo B (destinazione), sfruttando il piolo C (appoggio), muovendo un disco alla volta, senza mai sovrapporre un disco più grande ad uno più piccolo.

11

Le torri di Hanoi (Lucas 1883)

n = 3

20

Le torri di Hanoi (Lucas 1883)

- 1. Sposta n-1 dischi da A a C usando B
- 2. Sposta il disco in A su B

22

Le torri di Hanoi (Lucas 1883)

- Sposta n − 1 dischi da A a C usando B
- 2. Sposta il disco in A su B
- 3. Sposta n-1 dischi da C su B usando A

23

Le torri di Hanoi (Lucas 1883)

- Sposta n − 1 dischi da A a C usando B
- 2. Sposta il disco in A su B
- 3. Sposta n-1 dischi da C su B usando A

Le torri di Hanoi (Lucas 1883)

Hanoi (n. sorgente, destinazione, appoggio)

Pre: $n \cdot 0$ & la base degli n dischi più in alto di sorgente ha un diametro più piccolo del disco più in alto sia di destinazione che di appoggio & la situazione attuale rispetta le regole

Post: la torre di *n* dischi più in alto su *sorgente* è spostata su *destinazione*

if n=1 then

sposta un disco da sorgente a destinazione

else

Hanoi (n-1, sorgente, appoggio, destinazione) sposta un disco da sorgente a destinazione Hanoi (n-1, appoggio, destinazione, sorgente)

25

Lo schema dell'induzione

- 1. Il caso di base: P(1)
- Il passo induttivo: P(m) ⇒ P(m+1). L'ipotesi P(m) si chiama ipotesi induttiva.
- 3. 1. e 2. implicano che $\forall n \ge 1.P(n)$

(se il caso base è P(k) allora la conclusione diventa $\forall n \ge k.P(n)$)

26

Lo schema dell'induzione

La regola di inferenza (con caso base P(0)):

$$\frac{P(0) \qquad \forall m. P(m) \Rightarrow P(m+1)}{\forall n. P(n)}$$

(sopra la linea ci sono le premesse e sotto c'è la conclusione)

Induzione per le torri

- P(1): l'algoritmo è corretto se il numero di dischi è 1
- $P(m) \Rightarrow P(m+1)$: se l'algoritmo è corretto con m dischi allora è corretto con m+1 dischi

Dimostrazione:

- all'inizio i numeri di dischi sono: a + m + 1, b, c
- dopo **Hanoi** (m, sorgente, appoggio, destinazione) grazie all'ipotesi induttiva: a+1,b,c+m
- dopo sposta l'unico disco di cui è fatta sorgente su destinazione: a,b+1,c+m
- dopo **Hanoi** (m, appoggio, destinazione, sorgente) grazie all'ipotesi induttiva: a,b+m+1,c
- quindi l'algoritmo è corretto per qualunque m

28

Divisione intera

Problema della divisione intera:

 $\mathbf{Div}(a, b)$

Pre: $a \ge 0, b > 0$ numeri interi

Post: $q \in r$ tali che a = b q + r e $0 \le r < b$

Sviluppiamo un algoritmo ricorsivo per trovare la soluzione e verifichiamo la sua correttezza.

29

Divisione intera

Esempio:

con input a=53, b=5

l'output corretto è q=10 e r=3 con cui

 $53 = 5 \cdot 10 + 3$

che può essere scritto anche come

 $53 - 5 \cdot 10 = 3$

— · · ·			
Divisione	Intoro	rioc	\rai\ /a
LUNISIONE	mueia	1111.7	มรเงส

$$0 \le a - \underbrace{b - b - \dots - b}_{a} = r < b$$

Divisione intera ricorsiva

$$0 \le a - \underbrace{b - b - \dots - b}_{q} = r < b$$

32

Divisione intera ricorsiva

$$0 \le a - b - b - \dots - b = r < b$$

$$0 \le (a - b) - b - \dots - b = r < b$$

 $a - b = b \ q' + r$ ossia q' = q-1, r sono quoziente e resto di a - b diviso b $con \ a - b < a$ perché b > 0

Divisione intera ricorsiva

Quale sarà il caso base?

Quando a < b la soluzione è triviale ed è q = 0, r = a.

Come sarà l'algoritmo?

Provate a scriverlo in pseudo-codice.

34

Divisione intera ricorsiva

```
\begin{split} & \text{DIV-REC}(a,b) \\ & \quad \triangleright \text{Pre: } a \geq 0, b > 0 \\ & \quad \triangleright \text{Post: ritorna } q, r \text{ tali che } a = b \ q + r \land 0 \leq r < b \end{split} if a < b then q, r \leftarrow 0, a else q', r \leftarrow \text{DIV-REC}(a - b, b) q \leftarrow q' + 1 end if return q, r
```

Come posso verificare la correttezza di Div-Rec?

35

Induzione completa vs induzione semplice

- nel caso dell'algoritmo Hanoi, si risolve il problema con *n* dischi richiamando l'algoritmo con *n-1* dischi (parametro diminuito di 1)
- verifica con induzione semplice con passo induttivo P(m) ⇒ P(m+1)
- per Div-Rec la soluzione con input (a,b) si trova richiamando l'algoritmo con input (a-b,b)
- parametro diminuito non di 1 ma di b: bisogna usare una forma diversa di induzione
- useremo induzione completa

Induzione completa in generale

Caso base: $\exists k \ge 0. P(0) \land P(1) \land \cdots \land P(k)$

Passo induttivo: $\forall m \geq k. P(0) \land P(1) \land \cdots \land P(m) \Longrightarrow P(m+1)$ Conclusione: caso base e passo induttivo implicano $\forall n \geq 0. P(n)$

$$P(n) \leftarrow \cdots \leftarrow P(k+3) \leftarrow P(k+2) \leftarrow P(k+1) \leftarrow P(0)$$

37

Induzione completa in generale

La regola di inferenza (con caso base $P(0) \land \cdots \land P(k)$):

 $\frac{P(0) \land \dots \land P(k) \qquad \forall m \geq k. \ P(0) \land \dots \land P(m) \Longrightarrow P(m+1)}{\forall n. P(n)}$

(sopra la linea ci sono le premesse e sotto c'è la conclusione)

38

Induzione per divisione intera

- input: $a \ge 0, b > 0$
- output: q e r, quoziente e resto di a diviso per b
- caso base: se a < b l'algoritmo restituisce q = 0, r = a che è chiaramente corretto
- passo induttivo: dobbiamo dimostrare che
 - se $a \ge b$ e l'algoritmo è corretto per a' = a b < a, b (ipotesi induttiva)
 - allora l'algoritmo è corretto per a, b

Induzione per divisione intera

- dimostrazione del passo induttivo del lucido precedente:
 - se per a' = a b, b l'algoritmo restituisce q', r' allora per a, b restituisce q = q' + 1, r = r'
 - secondo l'ipotesi induttiva la risposta q',r' con input a', b è corretta, quindi:

$$a-b \ \ = \ \ b\,q' + r \wedge 0 \leq r < b \quad \text{ipotesi ind.}$$

$$a = b q' + b + r$$

= $b(q' + 1) + r$

-e quindi a = bq + r con $0 \le r < b$ e quindi q, rè la risposta giusta per a, b

40

Divisione intera DIV-REC(a,b) $> a \ge 0, b > 0$ if a < b then $q, r \leftarrow 0, a$ else $> a \ge b$ $q', r \leftarrow \text{DIV-REC}(a - b, b)$ $> a - b = bq' + r \land 0 \le r < b$ return q, r q = q' + 1 q = q' + 1

41

Commenti

• nel caso dell'induzione semplice il passo induttivo può essere $P(m) \Longrightarrow P(m+1)$

ma anche

$$P(m-1) \Longrightarrow P(m)$$

• analogamente per l'induzione completa abbiamo due forme:

$$P(0) \land P(1) \dots \land P(m) \Longrightarrow P(m+1)$$

 $P(0) \land P(1) \dots \land P(m-1) \Longrightarrow P(m)$

43

Esercizio

• determinare cosa calcola il seguente algoritmo e verificare la sua correttezza

Rec-Calc(x)

Pre: $x \ge 0$

Post: ... if x=0

return 0

else

return Rec-Calc(x-1)+2x-1

44

Esercizio

• per capire cosa calcola l'algoritmo conviene simularlo:

con x=0 restituisce 0

con x=1 restituisce 1

con x=2 restituisce 4

con x=3 restituisce 9

 $\bullet\,$ sembra calcolare il quadrato di xma dobbiamo dimostrarlo

Esercizio

- procediamo con induzione semplice (parametro diminuisce di 1 in ogni giro)
- P(n): l'algoritmo è corretto quando il parametro è uguale a n
- caso base: P(0), cioè l'algoritmo restituisce correttamente il quadrato di 0
- passo induttivo: $P(n-1) \Rightarrow P(n)$, cioè se l'algoritmo restituisce correttamente il quadrato di n-1 (ipotesi induttiva) allora restituisce correttamente il quadrato di n

46

Esercizio

- · caso base: triviale
- passo induttivo:

abbiamo

Rec-Calc(n) = Rec-Calc(n-1)+2n - 1

dove, per ipotesi induttiva,

Rec-Calc(n-1)= $(n-1)^2 = n^2 - 2n + 1$

 $Rec-Calc(n) = n^2 - 2n + 1 + 2n - 1 = n^2$

 abbiamo dimostrato caso base e passo induttivo, dunque l'algoritmo è corretto

47

Divisione intera iterativa

Riprendiamo la relazione fra l'input e l'output per trovare un procedimento iterativo per risolvere il problema della divisione intera.

$$a = b q + r$$
 e $0 \le r < b$

cioè

$$0 \le a - b - b - \dots - b = r < b$$

Diminuendo $a \ q$ volte si ottiene r che deve soddisfare $0 \le r < b$.

Divisione iterativa $\begin{array}{c} r \leftarrow a \\ q \leftarrow 0 \end{array}$ $\begin{array}{c} r \leftarrow a \\ q \leftarrow 0 \end{array}$ $\begin{array}{c} r \leftarrow r - b \\ q \leftarrow q + 1 \end{array}$

49

Divisione iterativa

```
\begin{array}{c} \operatorname{Div-IT}(a,b) \\ \hspace{0.5cm} \triangleright \operatorname{Pre:} \ a \geq 0, b > 0 \\ \hspace{0.5cm} \triangleright \operatorname{Post:} \ \operatorname{ritorna} \ q, r \ \operatorname{tali} \ \operatorname{che} \ a = b \ q + r \wedge 0 \leq r < b \\ r \leftarrow a \\ q \leftarrow 0 \\ \hspace{0.5cm} \text{while} \ r \geq b \ \operatorname{do} \\ r \leftarrow r - b \\ q \leftarrow q + 1 \\ \hspace{0.5cm} \text{end while} \\ \hspace{0.5cm} \text{return} \ q, r \\ \end{array}
```

cicio?

50

Invariante di ciclo

- Un *invariante* è una proposizione che esprime una proprietà delle variabili che resta sempre vero in vari punti dell'algoritmo:
 - inizializzazione: la proposizione vale immediatamente prima di entrare nel ciclo
 - mantenimento: se la proposizione vale prima di eseguire il corpo del ciclo, allora vale anche dopo aver eseguito il corpo del ciclo
- l'invariante *deve essere utile*: insieme alle condizioni che si hanno all'uscita dal ciclo deve implicare qualcosa **per la correttezza** dell'algoritmo

Divisione iterativa

```
\text{Div-It}(a,b)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             invariante
                                                  \rhd \ a \geq 0, b > 0
       r \leftarrow a
q \leftarrow \overset{\circ}{0}
                                                     \triangleright a = bq + r \land 0 \le r
       while r \geq b do
                                                                               \begin{picture}(60,0)(0,0) \put(0,0){\line(0,0){10}} \pu
                                                  r \leftarrow r - b
                                              q \leftarrow q + 1
    a = b q + r \wedge 0 \le r 
end while
   \mathbf{return}\ q, r
```

52

Divisione iterativa

- l'invariante: $a = bq + r \land 0 \le r$
- inizializzazione:
 - prima di iniziare il ciclo r=a e q=0
 - visto che $a \ge 0$ e b > 0:

 $a = bq + r = b \cdot 0 + a = a \wedge 0 \le r = a$ è vero

- inizializzazione ok!

53

Divisione iterativa

- l'invariante: $a = bq + r \land 0 \le r$
- mantenimento:

 - $a=bq+r=b(q+1)+(r-b)=bq'+r'\wedge 0\leq r'=r-b$
 - è dunque il mantenimento è garantito!

Divisione iterativa

55

Terminazione

56

Indecidibilità dell'Halt

Non esiste alcun algoritmo che, data una procedura ed un ingresso, sia in grado di decidere se la procedura termini!

59

II problema 3n + 1

$$a_n = \begin{cases} \frac{1}{2} a_{n-1} & \text{se } a_{n-1} \text{ è pari} \\ 3 a_{n-1} + 1 & \text{altrimenti} \end{cases}$$

Dato a_0 (intero positivo) trova n tale che $a_n = 1$.

Esercizio: provare con $a_0=15$.

Risultato: 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Congettura di Collatz: per ogni scelta di a_0 (intero positivo) esiste n tale che a_n = 1.

Argomenti decrescenti

Nel fact l'argomento della chiamata ricorsiva è sempre minore del valore del parametro:

```
int fact(int n)
{    if (n == 0) return 1;
    else return n * fact(n - 1);}
```

Nel problema 3n+1in un caso è maggiore:

```
int Collatz(int n)
{
   if (n == 1) return 1;
   else if (n%2 == 0) return Collatz (n/2);
   else return Collatz (3*n + 1);}
```

61

Argomenti decrescenti

- · Per costruire una funzione ricorsiva terminante:
 - assicurarsi che qualcosa nel valore dei parametri e/o nella loro "dimensione" diminuisca
 - garantire che il valore dei parametri e/o la loro "dimensione" non può decrescere illimitatamente
 - contemplare casi minimali come caso base

62

Ancora il fattoriale

Proposizione. fact(n) termina per ogni n

Caso base: fact(0) termina (e uguale a 1).

Passo induttivo: se fact(n-1) termina allora fact(n) termina.

L'algoritmo ricorsivo che calcola il fattoriale termina per tutte le entrate (non negative).

Induzione sulla dimensione

Spesso, quando si definisce una funzione ricorsiva sugli array, si fa uso dell'induzione sull'ampiezza degli intervalli considerati, la loro dimensione:

A[0..n-1] sia un array di n elementi. $A[i..j] \stackrel{.}{\circ} l'array \ (A[i],A[i+1],\dots,A[j]) \ di \ j-i+1 \ elementi.$ Se i>j allora $A[i..j]=\varnothing$ (l'array con 0 elementi).

64

Ricerca dicotomica BINSEARCH-RIC(x,A,i,j) \triangleright Pre: A[i,j] ordinato \triangleright Post: true so $x \in A[i,j]$ if i > j then \triangleright $A[i,j] = \emptyset$ return falseelse $m \leftarrow \lfloor (i+j)/2 \rfloor$ if x = A[m] then return binsearch-Ric(x,A,i,m-1)else $i \notin x < A[m]$ then return Binsearch-Ric(x,A,i,m-1)else $i \notin A[m] < x$ return binsearch-Ric(x,A,i,m-1)end if end if