DISCOVERY THROUGH GOSSIP

MOHAMMAD MAHZOUN

February 20, 2020

CONTENTS

1	Introduction	2
	1.1 Notation	2
	1.2 Useful lemmas	2
2	Triangulation Results	3
	2.1 Upper Bound	
	2.2 Lower Bound	6
3	The Two-Hop Walk Results	6
	3.1 Upper Bound	6
	3.2 Lower Bound	7
	IST OF FIGURES gure 1 Discovery Methods	2
LI	IST OF TABLES	
Ta	ble 1 Table of Notations	2

Figure 1: Discovery Methods

1 INTRODUCTION

We want to study Gossip based discovery processes in both directed and undirected graphs using push discovery (triangulation) and pull discovery (two-hop walk process).

We are interested in studying the time taken by process to converge to the transitive closure of the graph.

1.1 Notation

Table 1: Table of Notations

Notation	Description
δ_{t}	Minimum degree of G _t
$N_t^i(\mathfrak{u})$	Set of nodes at distance i from $\mathfrak u$ in $\mathsf G_\mathsf t$
$d_t(u)$	Degree of u in G _t
$d_t(u, S)$	Degree induced on S

1.2 Useful lemmas

 $\textit{Lemma} \ \textbf{1.} \ |\cup_{i=1}^4 N_t^i(u)| \geqslant \text{min}\{2\delta_t, n-1\} \ \text{for all} \ u \in G_t.$

Proof. If $N_t^3 \neq \emptyset$, then $|\cup_{i=2}^4 N_t^i(u)| \geqslant \delta_t$ and $|N_t^1(u)| \geqslant \delta_t$. So $|\cup_{i=1}^4 N_t^i(u)| \geqslant 2\delta_t$ since the two sets are disjoint.

If
$$N_t^3 = \emptyset$$
, $N_t^1(u) \cup N_t^2(u) = n - 1$ since G_t is connected.

Lemma 2. Consider k Bernoulli experiments in which the success probability of the ith experiment is at least i/m where $m \ge k$. If X_i denotes the number of trials needed for experiment i to output a success and $X = \sum_{i=1}^k X_i$, then $\Pr[X > (c+1)m \ln m] < \frac{1}{m^c}$.

Proof. w.l.o.g assume that k=m. The problem can be seen as *coupon collector problem* where X_{m+i-1} is the number of steps to collect ith coupon. Consider the probability of not obtaining the ith coupon after $(c+1)m\ln m$ steps, we have: $(1-\frac{1}{m})^{(c+1)m\ln m} < e^{-(c+1)\ln m} = \frac{1}{m^{c+1}}$ By union bound, the probability that some coupon has not been collected after $(c+1)m\ln m$ steps is less than $\frac{1}{m^c}$.

2.1 Upper Bound

Theorem 3 (Upper bound for triangulation process). For any connected undirected graph, the triangulation process converges to a complete graph in $O(n \log^2 n)$ rounds with high probability.

In order to prove Theorem 3, we prove that the minimum degree of the graph increases by a constant factor (or equals to n-1) in $O(n \log n)$ steps. We say that a node ν is **weakly tied** to a set of nodes S if $d_t(\nu,S) < \delta_0/2$, and **strongly tied** to a set of nodes S if $d_t(\nu,S) > \delta_0/2$.

Lemma 4. If $d_t(u) < \min\{n-1, (1+\frac{1}{4}\delta_0)\}$ and $w \in N_t^1(u)$ has at least $\frac{\delta_0}{4}$ edges to $N_t^2(u)$, then the probability that u connects to a node in $N_t^2(u)$ through w in round t is at least $\frac{1}{6n}$.

Proof. The probability that u connects to a node in $N_t^2(u)$ through w in round t is:

$$\frac{\frac{d_{t}(w,N_{t}^{2}(u))}{D_{t}(w)} \times \frac{1}{d_{t}(w)} \geqslant \frac{d_{t}(w,N_{t}^{2}(u))}{D_{t}(w)} \times \frac{1}{n} \geqslant \frac{d_{t}(w,N_{t}^{2}(u))}{|N_{t}^{1}(u)| + d_{t}(w,N_{t}^{2}(u))} \times \frac{1}{n} \geqslant \frac{d_{t}(w,N_{t}^{2}(u))}{(1 + \frac{1}{4})\delta_{0} + d_{t}(w,N_{t}^{2}(u))} \times \frac{1}{n} \geqslant \frac{\frac{\delta_{0}}{4}}{(1 + \frac{1}{4})\delta_{0} + \frac{\delta_{0}}{4}} \times \frac{1}{n} = \frac{1}{6n}$$

Lemma 5. If $d_t(u) < \min\{n-1, (1+\frac{1}{4}\delta_0)\}$ and $w \in N_t^1(u)$ is weakly tied to $N_t^2(u)$, and $v \in N_0^1(u) \cap N_0^1(w)$, then u connects to v through w in round t with probability at least $\frac{1}{4\delta_2^2}$.

Proof. Since w is weakly tied to $N_t^2(u)$ and $d_t(w)$ is at most $|N_t^1(u)| + d_t(w, N_t^2(u))$, we obtain that $d_t(w)$ is at most $(1+\frac{1}{4})\delta_0 + \frac{\delta_0}{2}$. Therefore, the probability that u connects to v through w in round t equals:

$$\tfrac{1}{d_t(w)^2} \geqslant \tfrac{1}{((1+\tfrac{1}{4})\delta_0 + \tfrac{\delta_0}{2})^2} \geqslant \tfrac{1}{\tfrac{7\delta_0}{4}^2} \geqslant \tfrac{1}{4\delta_0^2}.$$

To analyze the growth in the degree of a node u, we consider two overlapping cases. The first case is when more than $\delta_0/4$ nodes of $N_t^1(u)$ are strongly tied to $N_t^2(u)$, and the second is when less than $\delta_0/3$ nodes of $N_t^1(u)$ are strongly tied to $N_t^2(u)$.

Lemma 6 (Several nodes are strongly tied to two-hop neighbors). There exists a $T = O(n \log n)$ such that if more than $\frac{\delta_0}{4}$ nodes in $N_t^1(u)$ each have at least $\frac{\delta_0}{4}$ edges to $N_t^2(u)$ for all t < T, then with probability at least $1 - \frac{1}{n^2}$ it holds that $d_T(u) \ge \min\{n-1, (1+\frac{1}{4})\delta_0\}$.

Proof. We assume that $d_t(u) < \min\{n-1, (1+\frac{1}{4})\delta_0\}$ for all t < T. (Otherwise there is nothing to prove). Let $w \in N_t^1(u)$ be a node that has at least $\frac{\delta_0}{4}$ edges to $N_t^2(u)$. By Lemma 4 we know that:

 $Pr[u \text{ connects to a node in } N_t^2(u) \text{ through } w \text{ in round } t] \geqslant \frac{1}{6\pi}$

There are more than $\frac{\delta_0}{4}$ such w's in $N_t^1(u)$, each of which independently executes a triangulation step in any given round. Consider $T = \frac{72\pi \ln n}{\delta_0}$. We have $18\pi \ln n$ chances to add an edge between u and a node in $N_t^2(u)$. Thus,

$$\begin{array}{l} \text{Pr}[\text{u connects to a node in $N_t^2(u)$ after T rounds}] \geqslant 1 - (1 - \frac{1}{6\pi})^{18\pi \ln n} \\ \geqslant 1 - e^{-3\ln n} = 1 - \frac{1}{n^3}. \end{array}$$

If a node that is two hops away from u becomes a neighbor of u by round t, it is no longer in $N_t^2(u)$. Therefore, in $T=T_1\frac{\delta_0}{4}=O(n\log n)$ rounds, u will connect to at least $\frac{\delta_0}{4}$ new nodes with probability at least $1-\frac{1}{n^2}$ and $d_T(u)\geqslant (1+\frac{1}{4})\delta_0$

Lemma 7 (Few neighbors are strongly tied to two-hop neighbors). There exists T = $O(n \log n)$ such that if less than $\frac{\delta_0}{3}$ nodes in $N_t^1(u)$ are strongly tied to $N_t^2(u)$ for all t < T, and there exists a node $v_0 \in N_0^1(u)$ that is strongly tied to $N_0^2(u)$, then $d_T(u) \ge \min\{n-1, (1+\frac{1}{8})\delta_0\}$ with probability at least $1-\frac{1}{n^2}$.

Proof. Let $T, T_1, T_2 = O(n \log n)$. We assume $d_t(u) < \min\{n-1, (1+\frac{1}{8})\delta_0\}$ for all t < T. Let S_t^0 denote the set of v_0 's neighbors in $N_t^2(u)$ which are strongly tied to $N_t^1(\mathfrak{u})$ at round t and W_t^0 denote the set of v_0 's neighbors in $N_t^2(\mathfrak{u})$ which are weakly tied to $N_t^1(u)$ at round t.

Consider $\nu \in S^0_t$. Less than $\frac{\delta_0}{3}$ nodes in $N^1_t(u)$ are strongly tied to $N^2_t(u)$ (hype), thus more than $\frac{\delta_0}{2} - \frac{\delta_0}{3} = \frac{\delta_0}{6}$ neighbors of ν in $N_t^1(u)$ are weakly tied to $N_t^2(u)$. Let w be such node. By Lemma 5, the probability that u connects to v through w in round t is at least $\frac{1}{4\delta_a^2}$. We have at least $\frac{\delta_0}{6}$ choices for w, each of which executes a triangulation step each round. Consider $T_1 = 72\delta_0 \ln n$ rounds of the process. Then the probability that u connects to v in T_1 rounds is at least:

$$1 - (1 - \frac{1}{4\delta_0^2})^{12\delta_0^2 \ln n} \geqslant 1 - e^{-3\ln n} = 1 - \frac{1}{n^3}.$$

Thus if there exists $t < T_2$ such that $|S_t^0| \ge \frac{\delta_0}{8}$, then in $T_1 + T_2$ rounds, $d_{T_1 + T_2}(u) \ge$ $(1+\frac{1}{8})\delta_0$ with probability at least $1-\frac{1}{n^2}$. This implies the claim of the lemma if we set $T = T_1 + T_2$.

Therefore, let $S_t^0 < \frac{\delta_0}{8}$ for all $t \leq T_2$. Define $R_t^0 = R_{t-1}^0 \cup W_t^0$, $R_0^0 = W_0^0$. If at least $\frac{\delta_0}{8}$ nodes in R_t^0 are connected to u at any time $t \leq T_2$, then the claim of the lemma holds. Consider $|R_t^0 \cap N_t^1(u)| < \delta_0/8$ for all $t \leqslant T_2$. Consider any round $t \leqslant T_2$. From the definition of R_t^0 , we have:

$$|R_t^0| \geqslant |W_t^0| = d_t(v_0, N_t^2(u)) - |S_t^0| \geqslant d_t(v_0, N_t^2(u)) - \frac{\delta_0}{8}$$

At round 0, v_0 is strongly tied to $N_0^2(u)$, i.e., $d_0(v_0, N_0^2(u)) \ge \frac{\delta_0}{2}$. Since $\delta_0 \le d_t(u) < 0$ $(1+1/8)\delta_0$, we have:

$$d_t(\nu_0,N_t^2(u))\geqslant d_t(\nu_0,N_0^2(u))-\delta_0/8\geqslant 3\delta_0/8.$$

let e_1 denote the event [u connect to a node in $R_t^0 \setminus N_t^1(u)$ through v_0 in round t].

$$\begin{split} \Pr[e_1] &= \frac{|R_t^0 \backslash N_t^1(u)|}{d_t(\nu_0)} \times \frac{1}{d_t(\nu_0)} = \frac{|R_t^0| - |R_t^0 \cap C_t^1(u)|}{d_t(\nu_0)} \times \frac{1}{d_t(\nu_0)} \geqslant \frac{|R_t^0| - |R_t^0 \cap C_t^1(u)|}{d_t(\nu_0)|} \times \frac{1}{n} \geqslant \\ & \frac{|R_t^0| - |R_t^0 \cap C_t^1(u)|}{|N_t^1(u)| + d_t(\nu_0, N_t^2(u))} \times \frac{1}{n} \geqslant \frac{|R_t^0| - \delta_0/8}{|N_t^1(u)| + d_t(\nu_0, N_t^2(u))} \times \frac{1}{n} \geqslant \\ & \frac{d_t(\nu_0, N_t^2(u)) - \delta_0/8 - \delta_0/8}{|N_t^1(u)| + d_t(\nu_0, N_t^2(u))} \times \frac{1}{n} \geqslant \frac{3\delta_0/8 - \delta_0/8}{|N_t^1(u)| + 3\delta_0/8} \times \frac{1}{n} \geqslant \frac{3\delta_0/8 - \delta_0/8}{(1 + 1/8)\delta_0 + 3\delta_0/8} \times \frac{1}{n} = \frac{1}{12n}. \end{split}$$

Let X_1 be the number of rounds it takes for e_1 to occur and let v_1 denote a witness for e_1 . Since v_1 is in $R_{X_1}^0$, it is also in $W_{t_1}^0$ for some $t_1 \leq X_1$. Therefore, v_1 is weakly tied to $N_{t_1}^1(u)$ and strongly tied to $N_{t_1}^2(u) \cup N_{t_1}^3(u)$ at the start of round t_1 . Thus, at the start of round t_1, ν_1 has at least $\delta_0/2$ neighbors that are not neighbors of u. If $d_t(v_1, N_t^2(u)) < 3\delta_0/8$ for any round $t X_1 \le t \le T_2$, then at least $\delta_0/2 - 3\delta_0/8 =$ $\delta_0/8$ neighbors of ν_1 that were not neighbors of u at the start of round t_1 became neighbors of u by the start of round t. This would imply that $d_t(u) \ge (1+1/8)\delta_0$ which violates the assumption at the start of the proof. So consider the case where $d_t(v_1, N_t^2(u)) \ge 3\delta_0/8$ for all $X_1 \le t \le T_2$. Let $S_t^1(W_t^1)$ denote the set of v_1 's neighbors in $N_t^2(u)$ that are strongly(weakly) tied to $N_t^1(u)$. If $|S_t^1| \ge \delta_0/8$ for any $t \leq T_2$, then as for the case $|S_t^0| \geq \delta_0/8$, in at most $T_1 + T_2$ rounds, the degree of u is at least $(1+1/8)\delta_0$ with probability at least $1-\frac{1}{n^2}$.

So assume that $|S_t^1| < \delta_0/8$ for all $t \leqslant T_2$. Consider a round t such that $X_1 \leqslant t \leqslant T_2$. Define $R_t^1 = R_{t-1}^1 \cup W_t^1, R_{t_1}^1 = W_{t_1}^1$. Let e_2 denote the event [u connect to a node

in $R_t^0 \setminus N_t^1(u)$ or $R_t^1 \setminus N_t^1(u)$ through v_0 or v_1 in round t]. By the same calculation as for v_0 , we have $Pr[e_2] \ge 2/12n$, as long as $T_2 \ge X_1 + X_2$. Similarly, we define $e_3,\dots,e_{\lceil\delta_0/8\rceil} \text{ and } X_3,\dots,X_{\lceil\delta_0/8\rceil}\text{, and obtain that } \Pr[i_2] \,\geqslant\, i/12n \text{ for } 1 \,\leqslant\, i \,\leqslant\,$ $\lceil \delta_0/8 \rceil$, as long as $T_2 \geqslant \sum_{j=1}^i X_j$. The total number of rounds for u to gain at least $\delta_0/8$ nodes as neighbors is given by $\sum_{i=1}^{\lceil \delta_0/8 \rceil} X_i$, which, according to Lemma 2, is bounded by $36n \ln n$ with probability at least $1 - \frac{1}{n^2}$. So setting $T_2 = 36n \ln n$ and $T = T_1 + T_2$ completes the proof.

Lemma 8 (All neighbors are weakly tied to two-hop neighbors). There exists a T = $O(n \log n)$ such that if all nodes in $N_t^1(u)$ are weakly tied to $N_t^2(u)$ for all t < T, then with probability at least $1 - \frac{1}{n^2}$ it holds that $d_T(u) \ge \min\{(1 + 1/8)\delta_0, n - 1\}$.

Proof. Assume $d_t(u) < \min\{(1+1/8)\delta_0, n-1\}$ for all t < T. We first show that any node $v \in N_0^2(u)$ will have at least $\delta_0/4$ edges to $N_{T_1}^1(u)$, where $T_1 = O(n \log n)$. After that, ν will connect to u in $T_2 = O(n \log n)$ rounds. Therefore, the total number of rounds for ν to connect to u is $T_3 = T_1 + T_2 = O(n \log n)$.

Node v at least connects to one node in $N_0^1(u)$. Call it w_1 . Because all nodes in $N_t^1(u)$ are weakly tied to $N_t^2(u)$, we are $d_t(w_1, N_t^1(u)) \ge \delta_0 - \delta_0/2 = \delta_0/2$. If $d_t(w_1, N_t^1(u)) \setminus N_t^1(v) < \delta_0/4$, then v already has $\delta_0/4$ edges to $N_t^1(u)$. So consider the case where $d_t(w_1, N_t^1(u) \setminus N_t^1(v)) \ge \delta_0/4$. Consider the event $e_1 = [v \text{ connects}]$ to a node in $N_t^1(u) \setminus N_t^1(v)$ through w_1] and obtain for its probability:

$$\begin{split} \Pr[e_1] &= \frac{d_t(w_1, N_t^1(u) \setminus N_t^1(v)}{d_t(w_1)} \times \frac{1}{d_t(w_1)} \geqslant \frac{d_t(w_1, N_t^1(u) \setminus N_t^1(v)}{|N_t^1(u)| + d_t(w_1, N_t^2(u))} \times \frac{1}{d_t(w_1)} \geqslant \\ &\qquad \qquad \frac{\delta_0/4}{(1 + 1/8)\delta_0 + \delta_0/2} \times \frac{1}{d_t(w_1)} \geqslant \frac{2}{13} \times \frac{1}{n} > \frac{1}{7n}. \end{split}$$

Let X_1 be the number of rounds needed for e_1 to happen and w_2 be the witness for it. By our choice, w_2 is also weakly tied to $N_t^2(u)$. With the same argument as above, we have $d_t(w_2, N_t^1(u) \setminus N_t^1(v)) \ge \delta_0/4$. Let e_2 denote the event [v connects to a node in $N_t^1(u)$ through w_1 or w_2]. We have $Pr[e_2] \ge 2/7n$. Let X_2 be the number of rounds needed for e_2 to occur. Similarly, define $e_3, X_3, \ldots, e_{\delta_0/4}, X_{\delta_0/4}$ and show that $Pr[e_i] \ge i/7n$. Let $T_1 = \sum_i X_i$, which is the bound on the number of rounds needed for ν to have at least $\delta_0/4$ neighbors in $N_t^1(u)$. By Lemma 5, the probability that u connects to ν through w_i in round t is at least $\frac{1}{4\delta_0^2}$. There are $\delta_0/4$ such w_i 's independently running a triangulation step each round. Consider $T_2 = 48\delta_0 \ln n$ rounds of the process, Then:

$$\text{Pr}[\text{u connects to ν in T_2 rounds}]\geqslant 1-(1-\frac{1}{4\delta_0^2})^{12\delta_0^2\ln n}\geqslant 1-\frac{1}{n^3}.$$

So each $\nu \in N_0^2(\mathfrak{u})$ will connect to \mathfrak{u} in round $T_3=T_1+T_2$ with probability at least $1-\frac{1}{n^3}$. So in round T_3 , \mathfrak{u} will connect to all nodes in $N_0^2(\mathfrak{u})$ with probability at least $1-\frac{|N_0^2(\mathfrak{u})|}{n^3}$. Then, $N_0^2(\mathfrak{u})\subseteq N_{T_3}^1(\mathfrak{u}), N_0^3(\mathfrak{u})\subseteq N_{T_3}^1(\mathfrak{u})\cup N_{T_3}^2(\mathfrak{u}), N_0^4(\mathfrak{u})\subseteq N_1^2(\mathfrak{u})$ $N_{T_3}^1(u) \cup N_{T_3}^2(u) \cup N_{T_3}^3(u)$. We apply the above analysis twice, and obtain that in round $T=3T_3=O(n\log n), N_0^2(u)\cup N_0^3(u)\cup N_0^4(u)\subseteq N_T^1(u)$ with probability at least $1-\frac{1}{n^2}.$ By Lemma 1, $|N_0^2(u)\cup N_0^3(u)\cup N_0^4(u)|\geqslant min\{2\delta_0,n-1\}.$

Now we can prove Theorem 3.

Proof of Theorem 3. We show that in $O(n \log n)$ rounds, either the graph becomes complete or its minimum degree increases by a factor of at least 1/8. Then we apply this argument $O(\log n)$ times to complete the proof.

For each u where $d_0(u) < \min\{(1+1/8)\delta_0, n-1\}$, we consider two cases. Let S be the set of nodes in $N_0^1(u)$ that are strongly tied to $N_0^2(u)$. The first case is when $|S| > \delta_0/3$. By Lemma 6, there exists $T = O(n \log n)$ such that if at least $\delta_0/4$ nodes in $N_t^1(u)$ have each at least $\delta_0/4$ edges to $N_t^2(u)$ for all t < T, then $d_T(u) \geqslant (1+1/8)\delta_0$ with probability at least $1-\frac{1}{n^2}$. So if every node is S has at least $\delta_0/4$ edges to $N_t^2(\mathfrak{u})$ for all t < T, the desired claim of lemma holds. On the

other hand, if there is a node in S that has fewer than $\delta_0/4$ edges to $N_t^2(u)$ for some t < T, then u has gained at least $\delta_0/2 - \delta_0/4 = \delta_0/4$ new neighbors, giving the desired claim.

If $S < \delta_0/3$, we have two cases. If we remain in this case for $T = O(n \log n)$ rounds and fine a node $v_0 \in N_0^1(u)$ that is strongly tied to $N_T^2(u)$, then by Lemma 7, we have $d_T(u) \ge \min\{(1+1/8)\delta_0, n-1\}$ with probability at least $1-\frac{1}{n^2}$. Otherwise, by Lemma 8, $T = O(n \log n)$ exists such that if we remain in this case for T rounds, then $d_T(u) \ge \min\{(1+1/8)\delta_0, n-1\}$ with probability at least $1-\frac{1}{n^2}$. Using the union bound, we obtain $\delta_T \geqslant \min\{(1+1/8)\delta_0, n-1\}$ in $T = O(n\log n)$ rounds with probability at least 1 - 1/n. Apply the above argument $O(\log n)$ times to obtain the desired upper bound.

2.2 Lower Bound

Theorem 9 (Lower bound for triangulation process). For any connected undirected graph G that has $k \ge 1$ edges less than the complete graph, the triangulation process takes $\Omega(n \log k)$ steps to complete with probability at least $1 - O(e^{-k^{1/4}})$.

Proof. During the triangulation process, there is a time t when the number of missing edges is at least $m = \Omega(\sqrt{k})$ and the minimum degree is at least n/3. If K < 2n/3, then this is true initially and for larger k, this is true at the first time t the minimum degree is large enough. The second case follows since the degree of a node can at most double in each step guaranteeing that the minimum degree is not larger than 2n/3 at time t also implying that at least $n/3 = \Omega(k)$ edges are still missing.

Given the bound on the minimum degree, any missing edge $\{u,v\}$ is added by a fixed node w with probability at most $\frac{18}{n^2}$. Since there are n-2 such nodes, the probability that a missing edges get added is at most 18/n. Let X_i be the random variable counting the number of steps needed until the ith of m missing edges is added. We would like to analyze $\Pr[X_1 \leqslant T, \ldots, X_m \leqslant T]$ for an appropriate T. We have $\Pr[X_1 \leqslant T] \leqslant 1 - (1 - 18/n)^T \leqslant 1 - \frac{1}{\sqrt{m}}$ for $T = \Omega(n \log m)$. Thus:

$$\begin{split} \text{Pr}[X_1\leqslant T,\dots,X_m\leqslant T] &= \text{Pr}[X_1\leqslant T|X_2\leqslant T,\dots,X_m\leqslant T]\times\dots\times \text{Pr}[X_m\leqslant T]\leqslant\\ &(1-\frac{1}{\sqrt{m}})^m = O(e^{-\sqrt{m}}) = O(e^{-k^{1/4}}). \end{split}$$

This shows that the triangulation process takes with probability at least $1 - O(e^{-k^{1/4}})$ at least $\Omega(n \log m) = \Omega(n \log k)$ steps to complete.

THE TWO-HOP WALK RESULTS 3

Upper Bound

Lemma 10 (When two-hop neighborhood is not too large). If $N_t^2(u) < \delta_0/3$, there exists $T = O(n \log n)$ such that with probability at least $1 - 1/n^2$, we have $|N_T^2(u)| \ge 1$ $\delta_0/3 \text{ or } d_T(u) \ge \min\{2\delta_0, n-1\}.$

Proof. Omitted.
$$\Box$$

Lemma 11 (When two-hop neighborhood is not too small). If $N_t^2(u) \ge \delta_0/4$, there exists $T = O(n \log n)$ such that with probability at least $1 - 1/n^2$, we have $|N_T^2(u)| < 1$ $\delta_0/4 \text{ or } d_T(u) \geqslant \min\{(1+1/8)\delta_0, n-1\}.$

Theorem 12 (Upper bound for two-hop walk process). For connected undirected graphs, the two-hop walk process completes in $O(n \log^2 n)$ rounds with high probability.

Proof. In time $T = O(n \log n)$, the minimum degree of the graph increases by a factor of 1/8. For each u that $d_0(u) < \min\{(1+1/8)\delta_0, n-1\}$, we analyze by the two following cases. First, if $N_0^2(\mathfrak{u}) \geqslant \delta_0/2$, by Lemma 11 we know as long as $|N_t^2(\mathfrak{u})| \geqslant$ $\delta_0/4$ for all $t \ge 0$, $d_T(u) \ge \min\{(1+1/8)\delta_0, n-1\}$ with probability $1-1/n^2$ where $T = O(n \log n)$. If the condition is not satisfied, we know at least $\delta_0/4$ nodes in $N_0^2(u)$ have been moved to $N_T^1(u)$, which means that $d_T(u) \ge \min\{(1+1/8)\delta_0, n-1\}$

Second, If $N_0^2(u) < \delta_0/2$, by Lemma 10 we know as long as $|N_t^2(u)| < \delta_0/2$ for all $t \ge 0$, $d_T(u) \ge \min\{(1+1/8)\delta_0, n-1\}$ with probability $1-1/n^2$ where T= $O(n \log n)$. If the condition is not satisfied, we are back to analysis in the first case. So with probability 1 - 1/n the minimum degree of G will become at least $\min\{(1+1/8)\delta_0, n-1\}$. Now we apply the argument $O(\log n)$ times to show that the two-hop process completes in $O(n \log^2 n)$ steps with high probability.

3.2 Lower Bound

Theorem 13 (Lower bound for two-hop walk process). For any connected undirected graph G that has $k \ge 1$ edges less than the complete graph, the two-hop process takes $\Omega(n \log k)$ steps to complete with probability at least $1 - O(e^{-k^{1/4}})$.

Proof. Omitted. Same as the proof of Theorem 9.

REFERENCES