Prediction Customer Behaviour: SVM and Neural Network

Yuhao Ding, Bilal Munawar, Kenton Blacutt May 2019

Viewing the dataset

Unbalanced Dataset:
1-2% of customers

Viewing the dataset

- Unbalanced Dataset:
 - 1-2% of customers
- A focus on the dataset:
 - Demographics
 - **Account Balance**
 - Change in Account Balance
 - **TMD Expiration Date**
 - **Previous Wealth Purchases**

First Step:

Identifying Pairwise Connections

Intuition:

Some of the features, might be the key factor of determining wealth purchases.

Expectation:

We expect that some of the factors may be positively deterministic and some are vice versa.

For example, it may be of high probability that a person travelling abroad will buy insurance.

Age, gender and Purchases?

Age and Purchases?

 We use random rescaling to remove the unbalance

Age and Purchases?

We use random rescaling to remove the unbalance

Age and Purchases?

Intuition: Key areas

Finally,

- People who purchased
- People who did not purchase

Male:

Number of people

Female:

Similarly, we can identify these relations

between other pairwise features

People who did not purchase

People who purchased

Credit card

People who did not purchase

People who purchased

Credit card

Not very helpful

- People who did not purchase
- People who purchased

- People who did not purchase
- People who purchased

Account Balance

whether they purchased (0/1)

Intuition:

 People with a negative balance are unlikely to purchase a wealth product.

Change in Account Balance

whether they purchased (0/1)

Intuition:

 People with a relatively constant balance are the likeliest to make wealth purchases.

TMD Expiration

Intuition:

- Of the 4,000
 customers whose
 TMD expired, only
 about 5% purchase a
 wealth product within
 the next three months.
- Not useful

TMD Expiration - how about next year?

Intuition:

- Of the 4,000
 customers whose
 TMD expired, only
 about 20% purchase a
 wealth product within
 the next year.
- Not useful also

More insights in resubscription

Why do only 20% of customers reinvest in HSBC?

market value of previous insurance

Market Value of Customer's Insurance & Investment a month prior to resubscription.

More insights in resubscription

Why do only 20% of customers reinvest in HSBC?

market value of previous insurance

Market Value of Customer's Insurance & Investment a month prior to not resubscribing.

More insights in resubscription

Why do only 20% of customers reinvest in HSBC?

So now we have gained some useful intuitions in pairwise features, it's time to train a neural network.....

Before that, we are taking into account the data with the strongest correlation: previous purchases

The best measure we could find of whether someone is going to purchase a wealth product is if they purchased one in the past. Leveraging this data we can probably get a far better prediction.

Finally, a neural network

age gender

account balance

change

TMD Expiration

bought in **2017/9**

•

bought in 2018/4

Finally, a neural network

Finally, a neural network

Training

We provide the randomly rescaled training set to avoid problem of unbalanced data.

Training

Test error

We provide the randomly rescaled training set to avoid problem of unbalanced data. The best case validation accuracy is 56%.

The model will provide around 0.6% of predictions of 1.

In our testset, 473 are accurately predicted with the correct amount to be 2769

What the problem might be?

Future Improvements

- As we do find some very useful pairwise connection with people who purchased and not, we believe a model with promising accuracy is highly possible
- More dimensions of data
- A bigger network
 - or possibly, a better network

Final Prediction

- Our final prediction is based on the previous neural network which generates around 2000 customers
- We change the threshold a bit lower, which enlarges our final prediction to around 3000.
- Finally, we use pairwise connections to eliminate around 300 customers (eliminate people who have had high market values in wealth purchases)

Thank You!