Chapter 2. FINITE AUTOMATA

Example Design a "sequential lock". The lock has 1-bit sequential input. Initially the lock is closed. If the lock is closed it will open when the last three input signals are "1", "0", "1", and then remains open.

— state (transition) diagram

— state (or transition) table

state set: $\{0, 1, 2, 3\}$

input alphabet : $\{0, 1\}$

Transition function: $\delta(0,0) = 0$, $\delta(0,1) = 1$, ...

Start state: 0

Final state set: $\{3\}$

Deterministic Finite Automata (DFA)

 $M = (Q, \Sigma, \delta, s, F)$ where

Q is a finite nonempty set of states

 Σ is the input alphabet

 $\delta: Q \times \Sigma \to Q$ transition function

s start state

 $F \subseteq Q$ final state set

A computer is a finite state system (i.e. FA) which has millions of states.

There are many examples of <u>FINITE</u> <u>STATE SYSTEMS</u>. A finite automaton is an <u>ABSTRACTION</u> of them.

View a DFA as a machine

$\frac{\textbf{Specifying }\delta}{\textbf{1)}}$

State diagram (Transition diagram)

Start state

Final state

2)

Configurations

a word in $Q\Sigma^*$

px

where p is the present state, and x is the remaining input

Example:

0aa ... 1a ... 2 (start configuration) (final configuration)

Moves of a DFA

 $0aa \vdash 1a$ $px \vdash qy$ $1a \vdash 2$ **if** x = ay **and** $\delta(p, a) = q$

Configuration sequence

$$0aa \vdash 1a \vdash 2$$

 \vdash^+ and \vdash^*

 \vdash is a binary relation over $Q\Sigma^*$.

 \vdash^+ : transitive closure of \vdash .

 \vdash^* : reflexive transitive closure of \vdash .

$$0aa \vdash^{+} 2$$

 $0aa \vdash^{*} 2$
 $0aa \vdash^{*} 0aa$
 $0aa \vdash^{2} 2$

$$\mathbf{if} \ px \vdash^{k} qy$$

$$\underbrace{\vdash \ p_{i_{1}}x_{i_{1}} \vdash p_{i_{2}}x_{i_{2}} \vdash \dots}_{k \ \mathbf{steps}} \vdash \ qy$$

Accepting Configuration Sequence

$$0aa \vdash 1a \vdash 2$$

⊢ can also be viewed as a <u>function</u>

$$\vdash: Q\Sigma^* \to Q\Sigma^*,$$

since the next configuration is determined uniquely for a given configuration.

The DFA stops when:

- (i) we have no more input,
- or (ii) the next configuration is undefined.

A word x is said to be accepted by a DFA M if $sx \vdash^* f$, $f \in F$.

The <u>language</u> of a DFA M, L(M), is defined as:

$$\underline{L(M) = \{x \mid sx \ \vdash^* \ f, \ \mathbf{for \ some} \ f \in F\}}$$

Examples

$$L(M) =$$

$$L(N) =$$

DFA membership problem

DFA MEMBERSHIP

INSTANCE: A DFA, $M = (Q, \Sigma, \delta, s, F)$

and a word $x \in \Sigma^*$.

QUESTION: Is x in L(M)?

Run the DFA M with input x.

In at most |x| steps it accepts, rejects or aborts.

Examples

Checking for words that contain <u>aba</u> as subword.

Check: ababba abbaabbaab

Let L denote any letter of English alphabet and D any decimal digit; the form of PASCAL IDENTIFIERS can be specified by

Recognizing comments that may go over several lines.

 Δ : symbols other than "*" and "/"

A DFA which has a total δ is said to be <u>complete</u>; if δ is nontotal it is incomplete.

Theorem. Every incomplete DFA M can be "completed" by adding one new state ("sink") to give DFA M' such that L(M') = L(M).

Example:

L(M) is the set of all words that do not contain two consecutive a's.

 \triangle Two DFA M_1 and M_2 are <u>equivalent</u> if $L(M_1) = L(M_2)$.

 \triangle The collection of languages accepted by DFA's is denoted by

$$\mathcal{L}_{DFA}$$
.

It is called the family of DFA languages and it is defined as:

$$\mathcal{L}_{DFA} = \{L \mid L = L(M) \text{ for some DFA } M \}$$

$$\triangle$$
 $K = \{a^ib^i \mid i \ge 1\}$ is not accepted by any DFA.

Proof: Use contradiction and Pigeonhole principle.

Assume K = L(M), for some DFA

$$M = (Q, \{a, b\}, \delta, s, F).$$

Let n = #Q. Consider the accepting configuration sequence for a^nb^n ,

$$s_0a^nb^n \vdash s_1a^{n-1}b^n \vdash \ldots \vdash s_nb^n \vdash \ldots \vdash s_{2n}$$

where $s_0 = s$ and $s_{2n} \in F$. Now n + 1 states appear during the reading of a^n , but there are only n distinct states in Q. By Pigeonhole principle at least one state must appear at least twice during the reading of a's.

Assume $s_i = s_j, 0 \le i < j \le n$. Then

$$s_0 a^{n-(j-i)} b^n \vdash \ldots \vdash s_i a^{n-j} b^n s_j a^{n-j} b^n \vdash \ldots \vdash s_n b^n \vdash \ldots \vdash \vdash s_{2n}$$

Therefore $a^{n-(j-i)}b^n \in K$.

This is a contradiction.

$$\triangle L_i = \{a^i b^i\}, i \ge 1.$$

For any $i \ge 1$, is L_i a DFA language?

 $\triangle K_j = \{a^i b^i : 0 \le i \le j\}, j \ge 1.$

For any $j \ge 1$, is K_j a DFA language?

Nondeterministic Finite Automata (NFA)

 $M = (Q, \Sigma, \delta, s, F)$

same as a DFA except

$$\delta \subseteq Q \times \Sigma \times Q.$$

 δ is a finite transition relation.

In a DFA

 δ is a transition function:

 $\delta: Q \times \Sigma \to Q$

It can be viewed as a relation

 $\delta: Q \times \Sigma \times Q$

In a NFA, δ can be be viewed as a function:

$$\delta: Q \times \Sigma \to 2^Q$$

Examples:

NFA for words in $\{a,b\}^*$ that contain three consecutive a's.

Both (0, a, 1) and (0, a, 3) are in δ .

We define <u>acceptance</u> by <u>existence</u> of a computation that leads to a final state.

Conversely, we define <u>rejection</u> by the <u>nonexistence</u> of <u>any</u> computation that leads to a final <u>state</u>.

The <u>language</u> of an NFA $M=(Q,\Sigma,\delta,s,F)$ is defined by

$$L(M) = \{x \mid sx \vdash^* f, \text{ for some } f \text{ in } F \}.$$

The family of NFA languages \mathcal{L}_{NFA} is defined by:

$$\mathcal{L}_{NFA} = \{L \mid L = L(M), \text{ for some NFA } M \}.$$

Two NFAs M_1 , and M_2 are <u>equivalent</u> if $L(M_1) = L(M_2)$.

Why NFA?

- (i) easy to construct;
- (ii) useful theoretically;
- (iii) are of same power as DFA.

Note:

configurations are defined in the same way Transition (move)

$$px \vdash qy$$

if x = ay, for some $a \in \Sigma$, and $(p, a, q) \in \delta$.

Transforming NFA to DFA

Consider the NFA M_1 again

There are only limited number of choices. For example:

$$0\underline{a}ab \vdash 1ab \vdash 1b \vdash 2$$
$$0aab \vdash 3ab \vdash 3b$$
$$\{0\}aab \vdash \{1, 3\}ab \vdash \{1, 3\}b \vdash \{2\}$$

Why <u>limited</u> number of choices?

The state set is finite.

We summarize the choices at each step by combining all configuration sequences into one "super-conf. sequence".

$$\{0\}aab \vdash \{1,3\}ab \vdash \{1,3\}b \vdash \{2\}.$$

We now have a set of all possible states at each step. From this point of view the computation of the NFA on an input word is <u>deterministic</u>.

A super-configuration has the form

where $K \subseteq Q$ and $x \in \Sigma^*$.

Note that $\underline{\emptyset}x$ is a super-conf., it means that the NFA cannot be in any state at that point, i.e., an abort has occurred.

We say that

$$Kx \vdash Ny$$

if x = ay, for some $a \in \Sigma$, and $N = \{q \mid (p, a, q) \in \delta$, for some $p \in K\}$

More examples on super-configurations

M: L(M) is the set of all words that have "ba" as a subword.

The super-configuration sequence on input word "abbaa" is as follows:

$$\{0\}abbaa \vdash \{0\}bbaa \vdash \{0,1\}baa \vdash \{0,1\}aa \\ \vdash \{0,2\}a \vdash \{0,2\}$$

Notice that given a set $K \subseteq Q$ and an input symbol $a \in \Sigma$, the set $N \subseteq Q$ s.t. $Ka \vdash N$ is uniquely determined.

Lemma (2.3.1) (Determinism Lemma) Let $M = (Q, \Sigma, \delta, s, F)$ be an NFA. Then for all words \underline{x} in Σ^* and for all $\underline{K} \subseteq Q$.

 $Kx \vdash^* N$ and $Kx \vdash^* P$

implies

P = N.

Lemma (2.3.2) Let $M=(Q,\Sigma,\delta,s,F)$ be an NFA. Then for all words \underline{x} in Σ^* and for all \underline{q} in Q,

 $qx \vdash^* p$

iff $\{q\}x \vdash^* P$, for some P with p in P.

Example (Transformation of an NFA to a DFA)

$$M = (Q, \Sigma, \delta, s, F)$$
 where

$$Q = 0, 1, 2, \qquad \Sigma = a, b$$

 $s = 0, \qquad F = \{2\}$

$$M' = (Q', \Sigma, \delta', s', F') \ \mathbf{where}$$

$$Q' = 2^Q = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

5':	input symbol							
<i>.</i>	(current y state	a	Ь				
	0	φ	φ	ø				
	۸ ·	10}	{0}	10,13				
	2	{1}	123	ø				
	3	{2}	{2}	123				
	4	fo, 1}	10,2}	10,13				
	5	10,2}	10,23	10,1,2}				
	6	1,23	123	12}				
	7	10,1,2}	10, 2}	10,1,23				

$$\underline{\delta'(P,a) = \{q \mid (p,a,q) \in \delta \text{ and } p \in P\}}$$

$$s' = \{0\}$$
$$F' = \{$$

Algorithm NFA to DFA

—The Subset Construction

On entry: An NFA $M = (Q, \Sigma, \delta, s, F)$.

On exit: A DFA $M' = (Q', \Sigma, \delta', s', F')$ satisfying L(M) = L(M').

begin Let $Q'=2^Q, s'=\{s\}$ and $F'=\{K\mid K\in Q', \text{ and } K\cap F\neq\emptyset\}$ We define $\delta':Q'\times\Sigma\to Q'$ by For all $K\in Q'$ and for all $a\in\Sigma$, $\delta'(K,a)=N, \text{ if } Ka\vdash N \text{ in } M.$

end of Algorithm

if
$$N = \{q \mid (p, a, q) \in \delta \text{ and } p \in K\}$$

$$s' = \{0\}$$

input symbol	·				a	16
state		<u>b</u> .		0	101	10, 11
_	10}	_		1	12]	\$
	{0,2}		•	0.00	123	
₹0, 2}	10,23	{0,1,2}		_	1-2	1 5 3
10,1,23	10,23	10,1,23				

Algorithm NFA to DFA 2

—<u>The Iterative Subset Construction</u>

Theorem Given an NFA $M=(Q,\Sigma,\delta,s,F)$, then the DFA $M'=(Q',\Sigma',\delta',s',F')$ obtained by either subset construction satisfies L(M')=L(M).

Proof:

By Lemma 2.3.2, for all $x \in \Sigma^*$ in M $sx \vdash^* p$, iff $\{s\}x \vdash^* P$ for some P with $p \in P$

By the construction of M', $\{s\}x \vdash^* P \text{ in } M \text{ iff}$ $\{s\}x \vdash^* P \text{ in } M'.$

$$x \in L(M) \Leftrightarrow sx \vdash^* f$$
, for some $f \in F$
 $\Leftrightarrow \{s\}x \vdash^* P$, $f \in P$, in M
 $\Leftrightarrow \{s\}x \vdash^* P$, in M' and $P \cap F \neq \emptyset$
 $\Leftrightarrow s'x \vdash^* P$, $P \in F$
 $\Leftrightarrow x \in L(M')$

Theorem

Every NFA Language is a DFA language and conversely.

$$(\mathcal{L}_{NFA} = \mathcal{L}_{DFA})$$

Example

Every finite language is accepted by a DFA.

λ -NFA

It is useful to loosen the definition of NFA even more by allowing the <u>read head</u> to remain over the same symbol of the input and read nothing.

Example

$$L_1 = \{a^i b^j \mid i \ge 0, \ j \ge 0\}$$

M:

$$L(M) = L_1$$

$$\begin{array}{cccc} \delta: & (0,a,0) \\ & & \underline{(0,\lambda,1)} & \lambda-transition \\ \hline (1,b,1) & \\ 0aab & \vdash & 0ab \; \vdash \; 0b \; \vdash \; 1b \; \vdash \; 1 \\ 0bb & \vdash & 1bb \; \vdash \; 1 \\ 0a & \vdash & 0 \; \vdash \; 1 \end{array}$$

Formally, a λ -NFA $M=(Q,\Sigma,\delta,s,F)$ where $Q,\ \Sigma,\ s,\ F$ are as before, but δ is a finite transition relation for which

$$\delta \subseteq Q \times (\Sigma \cup \{\lambda\}) \times Q$$

Configurations are as before.

 \vdash is defined by

$$px \vdash qy$$

 $\begin{array}{ll} \textbf{if either} \ \underline{x=ay} \ \textbf{for} \ a \in \Sigma \ \textbf{and} \ (p,a,q) \in \delta \\ \textbf{or} & \underline{x=y} \ \textbf{and} \ (p,\lambda,q) \in \delta \end{array}$

Example

Given FA M_1 and M_2 , construct a FA M_3 such that $L(M_3) = L(M_1) \cup L(M_2)$

Transforming λ -NFA to NFA

Two steps:

Step I: λ – completion

Step II: λ – transition removal

(I). λ -Completion

Given a λ -NFA $M = (Q, \Sigma, \delta, s, F)$ perform the following process:

For all $p,q,r\in Q$:

whenever $(p,\lambda,q),(q,\lambda,r)$ are in δ add (p,λ,r) to δ until no new transitions are added to δ and let this be $\underline{\delta'}$.

Let the new λ -NFA be $M' = (Q, \Sigma, \delta', s, F')$ where $F' = F \cup \{p \mid (p, \lambda, f) \in \delta \text{ and } f \in F\}$ and $\delta' = \delta \cup \{(p, \lambda, q) \mid p \vdash^+ q\}$

Example:

Claim 1: For any $p, q \in Q$,

 $p \vdash_{M}^{+} q \text{ if and only if } p \vdash_{M'} q$

Claim 2: For any $p, q \in Q, x \in \Sigma^*$,

 $px \vdash_M^* q \text{ if and only if } px \vdash_{M'}^* q$

Theorem: L(M') = L(M)

Example:

(II) λ -Transition Removal

Given a λ -completed λ -NFA

$$M = (Q, \Sigma, \delta, s, F),$$

perform the following process:

- $(0) \quad \delta' = \delta;$
- $\begin{array}{ll} (i) & \textbf{For all} \ p,q,r \in Q, \\ & \textbf{if} \ \underline{(p,\lambda,q)} \ \textbf{and} \ \underline{(q,a,r)} \ \textbf{in} \ \delta \\ & \textbf{then} \ \underline{\textbf{add}} \ (p,a,r) \ \textbf{to} \ \delta'; \end{array}$
- (ii) Delete all λ -transitions from δ' .

 $\begin{array}{l} \textbf{Now we got} \ M' = (Q, \ \Sigma, \ \delta', \ s, \ F) \\ \textbf{where} \ \delta' = (\delta \cup \{(p, a, r) \mid (p, \lambda, q), (q, a, r) \in \delta\}) \\ -\{(p, \lambda, q) \mid p, q \in Q\} \end{array}$

Example

Claim Whenever

$$sx \vdash_M^* f$$

for some $f \in F$, we have

$$sx \vdash_{M'}^* f$$

and vice versa.

$$\underline{\mathbf{Claim}}\ L(M') = L(M)$$

Theorem

$$\mathcal{L}_{\lambda-NFA} = \mathcal{L}_{NFA}$$