CSC341 Lab 1B

Havin Lim / Carter English

January/27/2024

1 Problem 1: Formal Proof

Claim 1

i

Let $x \in \Sigma^*$ be arbitrary. By the definition of Σ^* , we can fix $a_1, a_2, ..., a_n \in \Sigma$ such that $x = a_1 a_2 ... a_n$. Then $x \in a_1 a_2 ... a_n = x$, and $\epsilon x = a_1 a_2 ... a_n = x$. Thus ϵ is the identity under concatenation.

ii

Let $x, y, z \in \Sigma^*$ be arbitrary. By the definition of Σ^* , we can fix $a_1, a_2, ..., a_m, b_1, b_2, ..., b_n, c_1, c_2, ..., c_k$ such that $x = a_1 a_2 ... a_m, y = b_1 b_2 ... b_n$, and $z = c_1 c_2 ... c_k$. Then $xy = a_1 a_2 ... a_m b_1 b_2 ... b_n$, so $(xy)z = a_1 a_2 ... a_m b_1 b_2 ... b_n c_1 c_2 ... c_k$. Similarly, we have $yz = b_1 b_2 ... b_n c_1 c_2 ... c_k$, so $x(yz) = a_1 a_2 ... a_m b_1 b_2 ... b_n c_1 c_2 ... c_k$, so x(yz) = (xy)z. Thus concatenation is associative.

Claim 2

Let u, z be arbitrary identities of Σ^* . Because u is an identity, u + z = z. Furthermore, because z is an identity, u + z = u. Thus u = z because equality is transitive.

Claim 3

We first prove the following statement:

Lemma 1 For all strings a, b, we have |a| + |b| = |ab|.

Let $a = a_1 a_2 ... a_m$ and $b = b_1 b_2 ... b_n$ be arbitrary strings. Unpacking the definition of concatenation, $ab = a_1 a_2 ... a_m b_1 b_2 ... b_n$, so |ab| = m + n = |a| + |b|.

We now prove Claim 3. Let x, y be arbitrary strings. Because x is a prefix of y, we can fix a string z_1 such that $xz_1 = y$. Thus $|xz_1| = |y|$. By Lemma 1,

we have $|x| + |z_1| = |y|$, so $|x| \le |y|$ because $|z_1| \ge 0$ by the definition of length. Similarly, because y is a prefix of x, we can fix a string z_2 such that $yz_2 = x$, so $|yz_2| = |x|$ and $|y| \le |x|$. Therefore $|x| = |y| = |xz_1| = |x| + |z_1|$ by Lemma 1, so $|z_1| = 0$. Thus z_1 must be the empty string, so $xz_1 = x$. Because $xz_1 = y$, this implies x = y as desired.

1.1 Claim 4

First, for the base case when n = 0, $2^0 = 1$ at node level 0 for the tree holds true because there is always a single node at level 0.

Assuming there is an arbitrary level, k+1 and k, at level k+1, there will be exactly two children for each node at level k since the tree is complete. By the inductive hypothesis, there are 2^k nodes at level k, so this makes the number of nodes at level k+1 to be $2*2^k=2^{k+1}$.

Through structural induction, since we proved the base case and the inductive process, the claim is true for all levels of the complete and perfect binary tree.