MaLo		Marc Ludevid	405401
SS 2021	Übungsblatt 09	Andrés Montoya	405409
27. Juni 2021	G	Til Mohr	405959

E-Test

Aufgabe 2

Idee: Wähle $A_m \in K$ und $B_m \notin K$ sodass für belibiges $m \in \mathbb{N}$ $G_m(A_m, B_m)$ von der Duplikatorin gewinnbar ist.

 A_m hat zwei Kreise mit jeweils 2^m und 2^m+1 Knoten. A_m ist offensichtlich in K weil beide Zusammenhangskomponenten unterschiedliche Knotenanzahl haben. Nenne den Kreis mit 2^m Knoten AI und den mit 2^m+1 Knoten AII. B_m hat hingegen zwei Kreise mit jeweils 2^m Knoten. B_m ist offensichtlich nicht in K weil beide Zusammenhangskomponente 2^m Knoten haben. B_m hat ebenfalls zwei Kreise BI und BII.

Da das Spiel nur m Schritte hat kann der Herausforderer nie einen Kreis schliessen. Somit ist es möglich immer alle Schritte des Herausforderers zu imitieren ohne nie eien Widerspruch zu führchten solange immer Knoten aus BI gewählt werden wenn ein Knoten aus AI gewählt wurde und einen aus BII wenn ein Knoten aus AII genommen wurde. Das gleiche gilt in die andere Richtung.

Da alle Blätter Axiome sind, ist die Sequenz gültig.

- (a) (i) Egal wie f definiert ist, können wir das x aus der Konklusion so wählen, dass es fxy für ein x und y aus der Prämisse entspricht. Somit gilt die Konklusion immer.
 - (ii) Da g nicht in $\Gamma \cup \Delta \cup \{\varphi\}$ vorkommt, kann man g so wählen, dass g(x) genau dem g aus der Konklusion entspricht. Gilt die Prämisse, so folglich auch die Konklusion, da wir g mit dem g(x) "ersetzen" können.
- (b) (i)
 - (ii)

(a) (i) Damit \sim eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$ ist, muss sie reflexiv, symmetrisch und transitiv sein.

Für jedes $A \in \mathcal{P}(\mathbb{N})$ gilt offensichtlich $A \sim A$, da |A| = |A|. \sim ist also reflexiv.

Seien $A, B \in \mathcal{P}(\mathbb{N})$. Angenommen es gilt $A \sim B$. Dann gilt |A| = |B|, welches äquivalent ist zu |B| = |A|. Folglich ist \sim symmetrisch.

Seien $A, B, C \in \mathcal{P}(\mathbb{N})$. Angenommen es gilt sowohl $A \sim B$ als auch $B \sim C$. Dann muss ja gelten, dass |A| = |B| und |B| = |C|. Insbesondere gilt dann auch |A| = |C|. Folglich muss dann auch $A \sim C$ gelten. \sim ist also transitiv.

Damit ist \sim eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$.

(ii) Damit \sim auf ${\mathfrak A}$ eine Kongruenz
relation ist, muss unter anderem \cup mit
 \sim verträglich sein.

Seien
$$A_1 := \{1, 2\}, A_2 := \{3, 4\}, B_1 := \{5, 6\}, B_2 := \{6, 7\}.$$

Es gilt offensichtlich $A_1 \sim B_1$ und $A_2 \sim B_2$. Jedoch gilt $A_1 \cup A_2 \sim B_1 \cup B_2$
nicht, da $|A_1 \cup A_2| = |\{1, 2, 3, 4\}| = 4 \neq 3 = |\{5, 6, 7\}| = |B_1 \cup B_2|$.

Damit ist \sim keine Kongruenzrelation auf \mathfrak{A} .

(b) (i) Seien $A_1, A_2, B_1, B_2 \in \mathcal{P}(\mathbb{N})$ und gelte $A_1 \sim_2 B_1, A_2 \sim_2 B_2$. Wir müssen nun zeigen, dass \cup und \cap mit \sim_2 verträglich sind.

Es gelte $A_1 \cup A_2 \sim_2 B_1 \cup B_2$, denn:

$$((A_1 \cup A_2) \cap 2\mathbb{N}) = (A_1 \cap 2\mathbb{N}) \cup (A_2 \cap 2\mathbb{N})$$

$$\stackrel{*}{=} (B_1 \cap 2\mathbb{N}) \cup (B_2 \cap 2\mathbb{N})$$

$$= ((B_1 \cup B_2) \cap 2\mathbb{N})$$

* gilt, da eben $A_1 \sim_2 B_1, A_2 \sim_2 B_2$. Folglich ist \cup mit \sim_2 verträglich.

Es gelte $A_1 \cap A_2 \sim_2 B_1 \cap B_2$, denn:

$$((A_1 \cap A_2) \cap 2\mathbb{N}) \stackrel{*}{=} (A_1 \cap A_2 \cap 2\mathbb{N} \cap 2\mathbb{N})$$

$$= (A_1 \cap 2\mathbb{N}) \cap (A_2 \cap 2\mathbb{N})$$

$$\stackrel{**}{=} (B_1 \cap 2\mathbb{N}) \cap (B_2 \cap 2\mathbb{N})$$

$$= (B_1 \cap B_2 \cap 2\mathbb{N} \cap 2\mathbb{N})$$

$$\stackrel{*}{=} ((B_1 \cap B_2) \cap 2\mathbb{N})$$

* gilt, da offensichtlich für jede Menge X gilt: $X = X \cap X$. ** gilt, da eben $A_1 \sim_2 B_1, A_2 \sim_2 B_2$. Folglich ist \cap mit \sim_2 verträglich.

Also ist \sim_2 eine Kongruenzrelation auf \mathfrak{A} .

- (ii) $\pi(M) = \{2i \mid i \in M\}$ Bijektion:
 - Surjektiv: Für jedes Element x aus \mathfrak{A}/\sim_2 kann ein Element y aus \mathfrak{A} gefunden werden sodass $\pi(x)=y$, für $x=\{i/2\mid i\in y\}$
 - Injektiv: Für zwei Elemente x und y aus \mathfrak{A} gilt immer: $\pi(x) \neq \pi(y)$, da andernfalls alle Elemente in $\pi(x)$ und $\pi(y)$ gleich sein würden und somit auch die Elemente von x und y da man einfach alle Werte durch 2 teilt.

z.z.:
$$\pi(a) \cap \pi(b) = \pi(a \cap b)$$
: $\pi(a) \cap \pi(b) = \{2i \mid i \in a\} \cap \{2i \mid i \in b\} = \{2i \mid i \in a \land i \in b\} = \{2i \mid i \in a \cap b\} = \pi(a \cap b)$

z.z.: $\pi(a) \cup \pi(b) = \pi(a \cup b)$: $\pi(a) \cup \pi(b) = \{2i \mid i \in a\} \cup \{2i \mid i \in b\} = \{2i \mid i \in a \lor i \in b\} = \{2i \mid i \in a \cup b\} = \pi(a \cup b)$