

UNIVERSITY OF COLOMBO, SRI LANKA FACULTY OF SCIENCE

LEVEL I EXAMINATION IN SCIENCE (SEMESTER I) - 2014

AM 1001 DIFFERENTIAL EQUATIONS -I (Two Hours)

Answer all questions

No. of pages: 10 No. Of Questions:04

Important Instructions to the Candidates

- Check the number of question and number of pages. If a page or a part of this question paper is not printed, please inform the Supervisor immediately.
- Enter your Index Number on all pages of the answer scripts and also in the box provided in the MCQ answer sheet.
- MCQ TYPE: In each of these multiple choice questions mark the correct response on the given MCQ answer sheet with a pen. Write down the question paper code number in the space provided on the MCQ answer sheet.
- STRUCTURED TYPE: Write the answers in the space provided in the question paper.
- ESSAY TYPE: Write the answers to these questions on the booklet provided.
- Attach the MCQ answer sheet and the structured type question together with the answers to the essay type question and hand it over to the supervisor. Do not attach the MCQ question paper and essay type question to the answer scripts.

Problem 1:

1. The ordinary differential equation $2x^2\frac{dy}{dx}=x^2+y^2$ can be transformed into the separable form

(a)
$$2x\frac{dv}{dx} = v^2 - 2v + 1$$

(b)
$$2x\frac{dv}{dx} = \frac{1}{2}v^2 - 2v + 1$$

(c)
$$2x\frac{dv}{dx} = v^2 + 2v + 1$$

(d)
$$2x\frac{dv}{dx} = v^2 + 2v - 1$$

(e) n on of the above

2. At a singular point of $y' = f(x, y), x, x_0 \in [a, b], y(x_0) = y_0,$

- (a) the solution y(x) is not defined.
- (b) f(x,y) tends to infinity.
- (c) f(x,y) is not defined.
- (d) y(x) tends to infinity.
- (e) n on of the above.

3. Differential equation of the following isocline plot is given by

- (a) $y' = \sin(x)$
- (b) y' = cos(x)
- (c) y' = 2x
- (d) $y' = e^x$
- (e) y' = 1/x

- 4. The minimum requirement to exists a solution for the initial value question $y'=f(x,y),\ x,x_0\in [a,b],y(x_0)=y_0$
 - (a) f(x,y) is Lipschitz continuous.
 - (b) f(x,y) is continuous.
 - (c) f(x, y) is differentiable.
 - (d) f(x,y) is bounded.
 - (e) N on of the above.
- 5. The orthogonal trajectories of the family of curves $y=cx^2$, where c is an arbitrary constant, is given by
 - (a) $y^2 = x^2 + k$
 - (b) $y^2 = -\frac{1}{2}x^2 + k$
 - (c) $y^2 = -2x^2 + k$
 - (d) $2y^2 = x^2 + k$,
 - (e) n on of the above where k is a constant.
- 6. All the singular points of the differential equation

$$(y^2 - 1)\frac{dy}{dx} = x(x^2 + 1)$$

are

- (a) (0,1), (0,-1)
- (b) (1,-1),(1,0)
- (c) (-1,0),(1,-1)
- (d) (1,1), (-1,-1)
- (e) n on of the above
- 7. An integrating factor of the differential equation $x^2 \frac{dy}{dx} 2xy = 4x^4 3x^2y$ is
 - (a) $\frac{1}{x^2}$
 - (b) e^{2x}
 - (c) e^{-2x}
 - (d) $\frac{e^{3x}}{x^2}$
 - (e) n on of the above

8. A solution of the differential equation

$$2x^2\frac{d^2y}{dx^2} + 3y\frac{dy}{dx} + \frac{1}{2}y = 3$$

is

- (a) $y = x^2$
- (b) $y = (2x+1)^3$
- (c) $y = \sqrt{x}$
- (d) $y = \frac{1}{\sqrt{x}}$
- (e) n on of the above
- 9. Existence and uniqueness theorem guarantees the existence of unique solution for the initial value question $y' = 1 + 2y^2$, y(0) = 0 and $R = \{(x,y)||x| < 5, |y| < 3\}$ in the interval
 - (a) -5/19 < x < 5/19
 - (b) -5/26 < x < 5/26
 - (c) -3/7 < x < 3/7
 - (d) -3/19 < x < 3/19
 - (e) -8/19 < x < 8/19
- 10. The order and the degree of the differential equation

$$5\frac{d^2y}{dx^2} + 3x^2 \left(\frac{dy}{dx}\right)^2 + x^4y = \sin(x)$$

are respectively

- (a) 2 and 2
- (b) 2 and 1
- (c) 1 and 2
- (d) 1 and 4
- (e) 4 and 1

Problem 2:

1. The initial value question

$$(x^2 - 4)\frac{dy}{dx} = (y - 1)x, \ y(2) = 3, x \in \mathbb{R}$$

- (a) has no solution.
- (b) has an infinitely many solutions.
- (c) has a unique solution
- (d) has some insufficient initial data.
- (e) has only the trivial solution y(x) = 0.

2. Which of the following differential equations is exact?

(a)
$$x\sin ydy + \frac{1}{2}x^2\cos ydx = 0$$

(b)
$$\frac{xy-1}{x^2y}dx - \frac{1}{xy^2}dy = 0$$

(c)
$$(2xy - 5x^3y)dx - (x^2 + y^2)dy = 0$$

(d)
$$(5x^2y - 3x^2y^3)dx + (3xy^2 - 5x^2y^2)dy = 0$$

(e)
$$(3x^4y^2 - x^2)dy + (4x^3y^3 + 2xy)dx = 0$$

3. General solution of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ is

(a)
$$y(x) = Ae^{-2x} + Be^{-x}$$

(b)
$$y(x) = Ae^{2x} + Be^{-x}$$

$$(c) \quad y(x) = Ae^{-2x} + Be^x$$

(d)
$$y(x) = Ae^{2x} + Be^x$$

(e)
$$y(x) = (A + 2Bx)e^x$$

4. The differential equation P(x,y)dx + Q(x,y)dy = 0 is said to be exact if

(a)
$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

(b)
$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$

(c) there exists u such that
$$du = Q(x, y)dx + P(x, y)dy$$

(d) there exists
$$u$$
 such that $\frac{\partial P}{\partial x} = \frac{\partial^2 u}{\partial x \partial y}$

(e) there exists
$$u$$
 such that $\frac{\partial Q}{\partial y} = \frac{\partial^2 u}{\partial y \partial x}$

Use the following information to answer the questions (iv),(v) and (vi).

The efficiency of engines of air planes depends on air pressure p(x) at height x and usually is maximum at 35,000ft. Experimentally it is verified that the rate of change of p(x) with respect to height x is proportional to the pressure p(x) at the height x. Let k be a positive proportionality constant. At the height of 18,000ft it is observed that the pressure is half of

its value $p(0) = p_0$ at sea level.

5. Which of the following differential equation best fit with above information

- (a) $\frac{dp}{dx} = -kp(x)$
- (b) $\frac{dp}{dx} = kp(x)$ (c) $\frac{dp}{dx} = \frac{-k}{p(x)}$
- (d) $\frac{dp}{dx} = -kxp(x)$
- n on of the above

6. value of the proportionality constant k is given by

- (a) $\frac{-1}{18} \ln(\frac{1}{2}) \times 10^3$
- (b) $\frac{1}{18} \ln(\frac{1}{2}) \times 10^{-3}$
- (c) $\frac{-1}{18} \ln(\frac{1}{2}) \times 10^{-3}$
- (d) $\frac{1}{18} \ln(\frac{1}{2}) \times 10^3$
- (e) n on of the above

7. Air pressure at 35000ft is given by

- (a) $p_0 e^{-\frac{18}{35}\ln(\frac{1}{2})}$
- (b) $p_0 e^{\frac{18}{35}\ln(\frac{1}{2})}$
- (c) $p_0 \left(\frac{1}{2}\right)^{-\frac{35}{18}}$
- (d) $p_0 \left(\frac{1}{2}\right)^{\frac{35}{18}}$
- n on of the above

8. An integrating factor of the equation $2\sin(y^2)dx + xy\cos(y^2)dy = 0$ is

- (a) -1/x
- x^3 (b)
- (c) x^2y
- (d) $-x^3$
- $1/x^2$ (e)

9. Which of the following equation can be transformed into separable form using the transformation y = vx?

(a)
$$\frac{dy}{dx} = \frac{y - 2x}{4y + 3x}$$

(b)
$$\frac{dy}{dx} = \frac{(2x^2+3y^2-7)x}{(3x^2+2y^2-8)y}$$

(c)
$$\frac{dy}{dx} = \frac{2x^2 - 3y + 2}{2y^2 + 4x - 19}$$

(d)
$$\frac{dy}{dx} = \frac{3x - 3y^2 + 2}{2y + 4x^2 - 19}$$

(e)
$$\frac{dy}{dx} = \frac{x^2 - y^2}{x + y}$$

10. The orthogonal trajectories of the family of curves $x^2+y^2=c$,where c is a constant, is given by

(a)
$$y^2 = -\frac{x^2}{2} + c$$

(b)
$$y = cx$$

(c)
$$x^2 + y^2 = c^2$$

(d)
$$xy = c^2$$

(e)
$$x^2 - y^2 = c^2$$

Problem 3: Write the answers in the given booklet

1. Show that a particular integral of the differential equation

$$(aD^2 + bD + c)y = p(x)$$

, where p(x) is a polynomial and a, b, c are real constants, can be written as

$$\frac{1}{(D-\alpha)(D-\beta)}p(x)$$

, where α,β are roots of the quadratic equation $a\lambda^2+b\lambda+c=0$. Find complete primitives of the equations

(a)
$$(2D^2 - 3D - 2)y = x^2 + 4$$

(b)
$$(D^2 - 4D + 4)y = x\sin(2x)$$

Index No:....

a) D	Show that the equation $P(x,y)dx + Q(x,y)dy = 0$ is exact then $\frac{\partial P(x,y)}{\partial y}$					
-						
o) So	olve the equation $(y^2 + x^2 - 2x + 3)dx + (2xy - y^2 + 10)dy = 0$					
N/Marine						
Manager						
-						

Problem 4:

		-
	A green to a constitution of the constitution	
	· Call Marie and a second tribadition	
	1 00111	
water to a transmission of the second		
	is a sign - so the permanent of a	

UNIVERSITY OF COLOMBO, SRI LANKA FACULTY OF SCIENCE

Code No:4563723418

LEVEL I EXAMINATION IN SCIENCE (SEMESTER I) - 2014

AM 1001- DIFFERENTIAL EQUATIONS -I

MCQ Answer Sheet

	Code N	o:		Index	No					
2	Problem 1)		Prob	lem 2)	*					
	1.	a b c d	<u>e</u>	1.	(a) (b)	(c) (d)	e			
	2.	(a) (b) (c) (d)	e 2	2.	(a) (b)	(c) (d)	e			
	3.	a b c d	e	3.	(a) (b)	(c) (d)	e			
	4.	a b c d	e	4.	(a) (b)	(c) (d)	e			
	5.	(a) (b) (c) (d)	e	5.	(a) (b)	© (d)	e			
	6.	a b c d	e	6.	(a) (b)	© (d)	e			
	7.	a b c d	e	7.	(a) (b)	(c) (d)	e			
	8.	a b c d	e 8	8.	(a) (b)	© (d)	e			
	9.	a b c d	e ,	9.	(a) (b)	© (d)	e			
	10.	(a) (b) (c) (d)	e	10.	(a) (b)	(c) (d)	e			
	Guidelines for Answering									
	<u>Correct</u> way of shading the appropriate oval is given below. If the answer is c:									
		(a) (b) (d) (d)	e							
	(i), (ii) & (iii) which are given below are the <u>incorrect</u> way of shading the appropriate oval. If the answer is iii:									
(i)	(a) (b c d e	(ii)	a b		e				
(iii)	(a) (b c d e								

පාරිභාෂිත ශබ්ද මාලාව

Arbitrary Constant අභිමත නියතය Complete primitive පූර්ණ ආදාග Concentric circles ඒක කේන්දීය වෘත්ත Degree මානුය Dependent Variable පරායත්ත විවලාය **Direction Field** දිශා ක්ෂේතුය Exact සපිහි Existence පැවතීම Family of curves වනු කුලය **General Solution** සාධාරණ විසඳුම Independent solutions ස්වායත්ත විසදුම Independent Variable ස්වායත්ත විවලාය Initial Value Problem ආරම්භක අගය ගැටලුව Integrating factor අනුකලන සාධකය Necessary and Sufficient අනිවාර්ය සහ පුමාණවත් අවශානාව Order **Ordinary Differential Equations** සාමානාෳ අවකල සමීකරණ Orthogonal Trajectory පුලම්බ පරාවකුය Partial Differential Equation අාංශික අවකල සමීකරණය **Particular Solution** වායක්තික විසදුම Singular Point අපූර්ව ලක්ෂාය Uniqueness අනනානාව