Linear regression with one variable

Gradient Descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0,θ_1 to reduce $J(\theta_0,\theta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := temp1$$

Linear regression with one variable

Gradient Descent Intuition

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \text{(simultaneously update } j = 0 \text{ and } j = 1) }
```

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

What happens If α is too small?

Gradient descent can be slow.

What if α is too large?

Gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$

As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time.

Linear regression with one variable

Gradient Descent for Linear Regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) = \frac{\partial}{\partial y} \left(\frac{1}{2m} \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} - \frac{\partial}{\partial y} \right)^2 \right)$$

$$j=0: \frac{\partial}{\partial \theta_0} J(\theta_0,\theta_1) =$$

$$j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=$$

$$j=0: \frac{\partial}{\partial \theta_0} J(\theta_0,\theta_1) =$$

$$= \frac{1}{2m} \sum_{i=1}^{m} ((\theta_{0} + \theta_{1} x^{i})^{2}) - (\theta_{0} + \theta_{1} x^{i})^{2} + \frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0}^{i})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} - \theta_{0}^{i}) \cdot (\frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0}^{i})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} - \theta_{0}^{i}) \cdot (\frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0}^{i})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} - \theta_{0}^{i}) \cdot (\frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0} + \frac{1}{2} \theta_{0}^{i})^{2}$$

$$j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=0$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{i} \chi^{i})^{1} \cdot \frac{\partial}{\partial \theta_{1}} (\theta_{0} + \theta_{1} \chi^{i}) \cdot \frac{\partial}{\partial \theta_{1}} (\theta_$$

Gradient descent algorithm

repeat until convergence { $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \quad \text{update} \\ \theta_0 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \quad \text{simultaneously}$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

What's Next

Two extensions:

- In $\min J(\theta_0,\theta_1)$, solve for θ_0,θ_1 exactly, without needing iterative algorithm (gradient descent).
- 2. Learn with larger number of features.

Size (feet²)	Price (\$1000)
2104	460
1416	232
1534	315
852	178

Two extensions:

- 1. In $\min J(\theta_0, \theta_1)$, solve for θ_0, θ_1 exactly, without needing iterative algorithm (gradient descent).
- Learn with larger number of features.

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
2104	5	1	45	460	
1416	3	2	40	232	
1534	3	2	30	315	
852	2	1	36	178	

Linear Algebra

Notation and set of the things you can do

with matrices and vectors.	

with ma	trices a	nd	vec	tors.		
Matrix:					Vector:	
	Γ2104	5	1	457		Γ460

$$X = \begin{bmatrix} 2104 & 5 & 1 & 45 \\ 1416 & 3 & 2 & 40 \\ 1534 & 3 & 2 & 30 \\ 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 172 \end{bmatrix}$$