Estudio comparativo entre los microcontroladores PIC16F887 y ATmega328P – pila, entradas y salidas, temporizador, interrupciones y memoria EEPROM

Julio Javier Schwendener Morales

Resumen

Se trabajó con los microcontroladores PIC16F887 y ATmega328P, el analizador lógico de Saleae y las guías de laboratorio del curso de Programación de Microcontroladores.

Antecedentes

- 1. Comparación realizada por Microchip sobre microcontroladores de 8 bits [1].
- 2. Comparación entre las familias PIC y AVR realizada por Limor Fried [2].

Justificación

- Los microcontroladores son fundamentales en el estudio de las ingenierías Electrónica, Mecatrónica y Biomédica.
- En la Universidad del Valle de Guatemala se utiliza el PIC16F887.
- El PIC16F887 podría no ser la opción más óptima para el aprendizaje de programación de microcontroladores.

Alcance

- El estudio abarca los módulos de pila, entradas y salidas, temporizadores, interrupciones y memoria EEPROM.
- La evaluación fue realizada con un analizador lógico

Objetivo general

Realizar un estudio comparativo entre los microcontroladores PIC16F887 y ATmega328P, de los módulos de pila, entradas y salidas, temporizador, interrupciones y memoria EEPROM, y evaluar los parámetros necesarios para determinar la mejor opción para la enseñanza de microcontroladores en la Universidad del Valle de Guatemala.

Objetivos específicos

- 1. Comparar el desempeño de cada microcontrolador con el uso de los analizadores lógicos disponibles en la Universidad del Valle de Guatemala, evaluando los módulos de pila, entradas y salidas, temporizador, interrupciones y memoria EEPROM.
- 2. Realizar los laboratorios y proyectos propuestos en el curso de Programación de Microcontroladores en ambas plataformas relacionados a los módulos a evaluar.

Diseño experimental y Resultados

Pila

Programa

Cuadros

Microcontrolador	Período (μs)	LED 1 encendida (μs)	LED 2 encendida (μs)
PIC16F887	4.5	3	1.5
ATMega328P	2	1.5	0.75

Microcontrolador	Llamado de funciones (μs)	Retorno de funciones (μs)
PIC16F887	1.5	1.5
ATMega328P	0.75	0.75

Entradas y salidas

Cuadros

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	15.25	56.25	269
ATMega328P	4	5.25	31

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	11	30.25	175
ATMega328P	3.5	4.5	29

Temporizadores

Programa

				P	IC									PIC						Ctatus
1.000	DIFF1	2.000	DIFF2	3.000	DIFF3	4.000	DIFF4	5.000	DIFF5	1.000	DIFF1	2.000	DIFF2	3.000	DIFF3	4.000	DIFF4	5.000	DIFF5	Status
0.484	0.000	0.424	0.000	0.571	0.000	0.641	0.000	0.574	0.000	0.484	0.000	0.424	0.000	0.571	0.000	0.640	0.000	0.573	0.000	1
0.729	245.121	0.670	245.132	0.816	245.098	0.886	245.131	0.819	245.139	0.728	244.609	0.668	244.471	0.815	244.674	0.885	244.560	0.818	244.419	0
0.974	245.104	0.915	245.128	1.062	245.091	1.131	245.139	1.064	245.117	0.973	244.559	0.913	244.385	1.060	244.589	1.129	244.342	1.062	244.397	1
1.219	245.108	1.160	245.119	1.307	245.115	1.376	245.135	1.309	245.108	1.217	244.674	1.157	244.602	1.304	244.616	1.373	244.483	1.307	244.674	0
1.465	245.111	1.405	245.108	1.552	245.095	1.621	245.121	1.554	245.088	1.462	244.523	1.402	244.524	1.549	244.566	1.618	244.393	1.551	244.536	1
1.710	245.119	1.650	245.111	1.797	245.114	1.866	245.128	1.799	245.119	1.707	244.602	1.647	244.725	1.794	244.563	1.862	244.467	1.796	244.456	0
1.955	245.089	1.895	245.085	2.042	245.108	2.112	245.113	2.044	245.089	1.951	244.639	1.891	244.675	2.038	244.470	2.107	244.391	2.040	244.499	1
2.200	245.113	2.140	245.118	2.287	245.140	2.357	245.114	2.290	245.100	2.196	244.639	2.136	244.635	2.282	244.386	2.351	244.553	2.285	244.566	0
2.445	245.108	2.385	245.138	2.532	245.125	2.602	245.101	2.535	245.117	2.440	244.526	2.380	244.412	2.527	244.340	2.596	244.411	2.529	244.321	1
2.690	245.133	2.631	245.153	2.777	245.132	2.847	245.120	2.780	245.100	2.685	244.630	2.625	244.458	2.771	244.459	2.840	244.516	2.774	244.598	0
2.935	245.144	2.876	245.111	3.022	245.118	3.092	245.117	3.025	245.071	2.929	244.434	2.869	244.549	3.016	244.384	3.085	244.415	3.018	244.668	1
3.180	245.136	3.121	245.156	3.268	245.155	3.337	245.114	3.270	245.094	3.174	244.677	3.114	244.416	3.260	244.207	3.329	244.576	3.263	244.652	0
3.426	245.119	3.366	245.135	3.513	245.143	3.582	245.089	3.515	245.099	3.419	244.659	3.358	244.367	3.504	244.082	3.574	244.573	3.507	244.474	1
3.671	245.169	3.611	245.143	3.758	245.158	3.827	245.129	3.760	245.120	3.663	244.469	3.603	244.469	3.748	244.235	3.818	244.447	3.752	244.432	0
3.916	245.134	3.856	245.106	4.003	245.149	4.072	245.143	4.005	245.101	3.908	244.504	3.847	244.538	3.992	243.993	4.062	244.154	3.996	244.445	1
4.161	245.162	4.101	245.128	4.248	245.160	4.318	245.142	4.250	245.104	4.152	244.494	4.092	244.577	4.236	244.116	4.307	244.376	4.241	244.540	0
4.406	245.149	4.346	245.138	4.493	245.142	4.563	245.133	4.495	245.083	4.397	244.342	4.336	244.345	4.480	244.137	4.551	244.322	4.485	244.524	1
4.651	245.127	4.592	245.140	4.739	245.158	4.808	245.140	4.741	245.111	4.641	244.708	4.581	244.446	4.725	244.178	4.795	244.365	4.730	244.493	0

Cálculo de tiempo teórico

•
$$T = 1024 * (256 - 128) * \frac{1}{8MHz} * 15 =$$

• 0.24576s = 245.76ms

Cuadros

Microcontrolador	Promedio(ms)	Máximo(ms)	Minimo(ms)	Varianza(ms)	Desviación (ms)
PIC16F887	245.160	245.256	245.104	0.153	0.026
ATMega328P	244.928	245.234	244.545	0.689	0.095

Microcontrolador	Promedio (ms)	Porcentaje de error (%)
PIC16F887	245.160	0.24
ATMega328P	244.928	0.34

Gráficas de dispersión

Diagramas de caja y bigote

Interrupciones

Programa

Cuadros

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	4	9.25	131.25
ATMega328P	0.75	0.75	0

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	4.25	9.75	129.41
ATMega328P	1.75	1.75	0

Memoria EEPROM

Resultados

Cuadros

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	3578	3578	0
ATMega328P	1.5	2	33.33

Microcontrolador	Ensamblador (μs)	$C(\mu s)$	Diferencia porcentual (%)
PIC16F887	7.5	9.5	26.66
ATMega328P	1.5	2.25	50

Módulos en conjunto Reloj

Video demostrativo

enlace

Conclusiones

- Se mencionó que, para todos los casos, el ATMega328P resultó ser más eficiente al realizar llamados y retornos de funciones, por lo que, el ATMega328P es más rápido y eficiente en la manipulación del modulo de pila.
- Se demostró que, para el programa evaluado de entradas y salidas, el ATMega328P mostró resultados con menor tiempo de ejecución, por lo que, según las condiciones planteadas para la evaluación del módulo, el ATMega328P es más eficiente en la ejecución de operaciones en los pines de entrada y salida que el PIC16F887.
- Se discutió sobre el rendimiento de los temporizadores ambos microcontroladores. Se determinó que el rendimiento del PIC16F887 es más estable y aproximado al tiempo teórico esperado mostrado en la ecuación de teporizador, por lo que, el PIC16F887 tiene un mejor rendimiento bajo los parámetros de evaluación y condiciones de medición establecidos para el módulo de temporizadores.

- Se evaluó que el PIC16F887 requiere de una cantidad mayor de tiempo para la ejecución de entrada y salida de las interrupciones que el ATMega328P. También se comparó el aumento de tiempo dado por el cambio de lenguaje de ensamblador a C, cambio que al PIC16F887 le supone un aumento de más del 100 % tanto en entradas como en salidas de interrupciones, mientras que al ATMega328P no supone ninguna diferencia, por lo que, el ATMega328P, es más eficiente al entrar y salir de las interrupciones, requiriendo menos tiempo que el PIC16F887.
- Se comprobó la eficiencia de los microcontroladores evaluados al momento de escribir y leer datos de la memoria EEPROM. Se mostró que el tiempo requerido para la escritura y lectura de datos es considerablemente menor en el ATMega328P que en el PIC16F887, al utilizar las secuencias recomendadas por las hojas de datos de ambos microcontroladores, por lo que, bajo estos parámetros de evaluación, el ATMega328P es más eficiente para leer y escribir datos a la memoria EEPROM.

Recomendaciones

- El estudio comparativo se realizó empleando los osciladores internos de ambos microcontroladores. Se recomienda emplear osciladores externos para añadir otra capa de profundidad al estudio y observar posibles diferencias con los resultados mostrados en el presente trabajo.
- El estudio abarcó únicamente la comparación del tiempo de ejecución para diversos programas planteados en ambos microcontroladores. Se recomienda analizar otras capacidades de los microcontroladores estudiados, tales como manejo interno de memoria o rendimiento a distintas temperaturas.
- Se optó por utilizar la capacidad máxima de almacenamiento de pila del PIC16F887 tanto en ensamblador como en C. Se recomienda realizar las pruebas necesarias para comprobar los posibles efectos de usar más niveles de almacenamiento que los disponibles en el PIC16F887 y verificar, con programas similares, cuál puede llegar a ser un aproximado del máximo almacenamiento de pila en el ATMega328P.

- Se programaron los microcontroladores para hacer uso de un único puerto para ambos contadores binarios de 4 bits. Se recomienda aprovechar las capacidades físicas del PIC16F887, evaluando su rendimiento al usar más puertos para distribuir de mejor forma los contadores binarios y realizar un programa más óptimo en este microcontrolador.
- Se analizó únicamente uno de los temporizadores disponibles en ambos microcontroladores. Se recomienda realizar un estudio similar haciendo uso del resto de temporizadores disponibles en los microcontroladores con el fin de complementar la recopilación de datos realizada.
- Se utilizaron, únicamente, las secuencias recomendadas por las hojas de datos de ambos microcontroladores, tanto para la escritura como para la lectura de datos de la memoria EEPROM. Se recomienda evaluar el rendimiento del ATMega328P utilizando una secuencia similar a la recomendada en el PIC16F887, así como evaluar el uso de la memoria EEPROM por medio de interrupciones.

Referencias

[1] Microchip, "A comparison of 8-Bit Microcontrollers," 1997.

[2] L. Fried. "PIC vs. AVR: Ultimate fight!" (2012), dirección: http://www.ladyada.net/library/picvsavr.html