ELECTRIC DIPOLE AND ENERGY DENSITY

Electric Dipole

- An electric dipole is formed when two point charges of equal magnitude but opposite sign are separated by a small distance
- Example is the formation of dipoles in dielectric materials in the presence of an electric field
- ➤ Dipole moment is a measure of system's overall polarity
- The distance between the point charges is small compared to the distance to the point *P* at which we want to know the electric potential and potential fields

Electric Dipole

Figure below shows an electric dipole:

Potential due to Electric Dipole

The potential at point $P(r, \theta, \emptyset)$ is given by:

$$V = \frac{Q}{4\pi\varepsilon_{o}} \left[\frac{1}{r_{1}} - \frac{1}{r_{2}} \right] = \frac{Q}{4\pi\varepsilon_{o}} \left[\frac{r_{2} - r_{1}}{r_{1}r_{2}} \right]$$

- where r_1 and r_2 are the distances between P and +Q and P and -Q respectively
- If $r \gg d$, $r_2 r_1 \approx d \cos \theta$, $r_1 r_2 \cong r^2$, the above becomes:

$$V = \frac{Q}{4\pi\varepsilon_0} \frac{d\cos\theta}{r^2}$$

Potential due to Electric Dipole

Since $d \cos \theta = \mathbf{d} \cdot \mathbf{a_r}$, where $\mathbf{d} = d\mathbf{a_z}$, if we define:

$$\mathbf{p} = Q\mathbf{d}$$

>as the dipole moment, the equation for potential becomes:

$$V = \frac{\mathbf{p} \cdot \mathbf{a}_r}{4\pi \varepsilon_0 r^2}$$

- Note that the dipole moment p is directed from -Q to +Q
- If the dipole center is not at the origin but at r', the above equation becomes:

$$V(\mathbf{r}) = \frac{\mathbf{p} \cdot (\mathbf{r} - \mathbf{r}')}{4\pi \varepsilon_{o} |\mathbf{r} - \mathbf{r}'|^{3}}$$

Electric Field due to Electric Dipole

➤ The electric field due to the dipole with center at the origin, can be obtained readily as:

$$\mathbf{E} = -\nabla V = -\left[\frac{\partial V}{\partial r}\mathbf{a}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\mathbf{a}_\theta\right]$$

$$= \frac{Qd\cos\theta}{2\pi\varepsilon_0 r^3} \mathbf{a}_r + \frac{Qd\sin\theta}{4\pi\varepsilon_0 r^3} \mathbf{a}_\theta$$

$$\mathbf{E} = \frac{p}{4\pi\varepsilon_0 r^3} (2\cos\theta \,\mathbf{a}_r + \sin\theta \,\mathbf{a}_\theta)$$

where
$$p = |\mathbf{p}| = Qd$$

Electric Dipole

- ➤ Notice that a point charge is a monopole and its electric field varies inversely as r² while its potential field varies inversely as r
- From the equations for electric dipole, we notice that the electric field due to a dipole varies inversely as r³ while its potential varies inversely as r²
- The electric fields due to successive higher-order multi-poles (such as a *quadrupole* consisting of two dipoles or an *octupole* consisting of two quadrupoles) vary inversely as r⁴, r⁵, r⁶,.... while their corresponding potentials vary inversely as r³, r⁴, r⁵,....

Electric Flux Lines

The idea of electric flux lines (or electric lines of force as they are sometimes called) was introduced by Michael Faraday in his experimental investigation as a way of visualizing the electric field

>An electric flux line is an imaginary path or line drawn in such a way that its direction at any point is the direction of the electric field at that point

Equipotential Surfaces

- Any surface on which the potential is the same throughout is known as an equipotential surface
- The intersection of an equipotential surface and a plane results in a path or line known as an equipotential line (surface would be like a sphere)
- No work is done in moving a charge from one point to another along an equipotential line or surface $(V_A V_B = 0)$ and hence:

$$\int \mathbf{E} \cdot d\mathbf{l} = 0$$

From the above equation, we may conclude that the lines of force or flux lines (or the direction of **E**) are always normal to equipotential surfaces

Equipotential Surfaces

Examples of equipotential surfaces for point charge and a dipole are shown in figure (a) and (b), respectively

- ➤ To determine the energy present in an assembly of charges, we must first determine the amount of work necessary to assemble them
- Suppose we wish to position three point charges Q_1 , Q_2 , and Q_3 in an initially empty space shown shaded in figure below

- \triangleright No work is required to transfer Q₁ from infinity to P₁ because the space is initially charge free and there is no electric field
- The work done in transferring Q_2 from infinity to P_2 is equal to the product of Q_2 and the potential V_{21} at P_2 due to Q_1
- Similarly, the work done in positioning Q_3 at P_3 is equal to $Q_3(V_{32} + V_{31})$, where V_{32} and V_{31} are the potentials at P_3 due to Q_2 and Q_1 , respectively
- >Hence the total work done in positioning the three charges is:

$$W_E = W_1 + W_2 + W_3$$

= 0 + $Q_2V_{21} + Q_3(V_{31} + V_{32})$

If the charges were positioned in reverse order, we get:

$$W_E = W_3 + W_2 + W_1$$

= 0 + $Q_2V_{23} + Q_1(V_{12} + V_{13})$

- where V_{23} is the potential at P_2 due to Q_3 , V_{12} and V_{13} are, respectively, the potentials at P_1 due to Q_2 and Q_3
- >Adding the two equations above, we get:

$$2W_E = Q_1(V_{12} + V_{13}) + Q_2(V_{21} + V_{23}) + Q_3(V_{31} + V_{32})$$

= $Q_1V_1 + Q_2V_2 + Q_3V_3$

≻Or

$$W_E = \frac{1}{2} \left(Q_1 V_1 + Q_2 V_2 + Q_3 V_3 \right)$$

 \triangleright where V_1 , V_2 , and V_3 are total potentials at P_1 , P_2 , and P_3 , respectively

 \triangleright In general, if there are *n* point charges, we have:

$$W_E = \frac{1}{2} \sum_{k=1}^n Q_k V_k$$

▶If, instead of point charges, the region has a continuous charge distribution, the summation in previous equation becomes integration; that is:

$$W_E = \frac{1}{2} \int \rho_L V \, dl$$
 (line charge) $W_E = \frac{1}{2} \int \rho_S V \, dS$ (surface charge) $W_E = \frac{1}{2} \int \rho_v V \, dv$ (volume charge)

As $\rho_v = \nabla \cdot \mathbf{D}$, the volume charge equation may be written as:

$$W_E = \frac{1}{2} \int_{v} (\nabla \cdot \mathbf{D}) \, V \, dv$$

▶By using vector identity, we get:

$$W_E = -\frac{1}{2} \int_{v} (\mathbf{D} \cdot \nabla V) dv = \frac{1}{2} \int_{v} (\mathbf{D} \cdot \mathbf{E}) dv$$

► Since $\mathbf{E} = -\nabla V$ and $\mathbf{D} = \varepsilon_o \mathbf{E}$, therefore:

$$W_E = \frac{1}{2} \int \mathbf{D} \cdot \mathbf{E} \, dv = \frac{1}{2} \int \varepsilon_0 E^2 \, dv$$

Problem-1

⇒Point charges $Q_1 = 1$ nC, $Q_2 = -2$ nC, $Q_3 = 3$ nC, and $Q_4 = -4$ nC are positioned one at a time and in that order at (0,0,0), (1,0,0), (0,0,-1), and (0,0,1), respectively. Calculate the energy in the system after each charge is positioned