Universidade Federal de Minas Gerais

Departamento de Matemática - Seminário de Álgebra

Tópicos em Equações Diofantinas

Wodson Mendson

1 Introdução

Sejam k um corpo e $F(X_1,...,X_n) \in k[X_1,...,X_n]$ homogêneo de grau d. Denote por $X_F(k)$ o conjunto dos k - pontos de F, exceto o trivial, i.e. conjunto dos pontos $(0,...,0) \neq (\alpha_1,...\alpha_n) \in k^n$ tal que $F(\alpha) = 0$. Surgem naturalmente as seguintes perguntas:

- $\#X_F(k) \neq 0$?
- $X_F(k)$ é finito?

Responder as questões acima é uma tarefa um tanto pouco "complicada". De fato, isso depende da natureza do corpo k e do polinômio F em questão. Por exemplo, se fixarmos $k=\mathbb{Q}$ e considerarmos a equação $F=X^2+Y^2-3Z^2$ é fácil verificar, via redução módulo primo, que $\#X_F(k)=0$. Agora, se $G=X^2+Y^2-Z^2$ notemos que $(1,0,1)\in X_G(k)$ de modo que $\#X_G(k)\geq 1$. Ainda, se tomarmos $F=X^4+Y^4+Z^4$ notamos que $\#X_F(\mathbb{R})=0$ enquanto $X_F(\mathbb{C})$ é um conjunto infinito.

O objetivo do texto consiste em estudar uma classe de corpos que possuem a seguinte propriedade: Se $F(X_1,...,X_n) \in k[X_1,...,X_n]$ é homogêneo com n "grande" se comparado ao grau então $\#X_F(k) \ge 1$.

2 Caso em que k é algebricamente fechado

Em todo o texto, a palavra anel significa anel comutativo com unidade.

Sejam k um corpo algebricamente fechado e $\mathbb{A}^n_k := \{(\alpha_1,...,\alpha_n) \mid \alpha_i \in k\}$ o n-espaço afim sobre k. Podemos equipar \mathbb{A}^n_k com uma topologia (ver proposição abaixo) dizendo que um subconjunto X é fechado se existe um ideal $I \subset k[X_1,...,X_n]$ tal que $X = Z(I) := \{(\alpha_1,...,\alpha_n) \in \mathbb{A}^n_k \mid F(\alpha_1,...,\alpha_n) = 0 \quad \forall F \in I\}$. Tal topologia é chamada de **topologia de Zariski**. Dado um conjunto arbitrário $S \subset \mathbb{A}^n_k$ temos associado o ideal $\mathcal{I}(S) := \{f \in k[X_1,...,X_n] \mid f(P) = 0 \quad \forall P \in S\}$.

Exemplo 1. Suponha que $S \subset \mathbb{A}^n_k$ é um conjunto arbitrário. Denote por \overline{S} o fecho de S em \mathbb{A}^n_k . $Então, \overline{S} = Z(\mathcal{I}(S))$.

Exemplo 2. Seja X um fechado de \mathbb{A}^1_k não trivial i.e. $X \neq \emptyset, \mathbb{A}^1_k$. Então, X é finito.

Proposição 1. Sejam X = Z(I) e Y = Z(J) fechados em \mathbb{A}^n_k . Então,

- (i) $X \subset Y \iff \mathcal{I}(Y) \subset \mathcal{I}(X)$.
- (ii) $\bigcap_{\alpha \in T} Z(I_{\alpha}) = Z(\sum_{\alpha} I_{\alpha}).$
- (iii) $X \cup Y = Z(I) \cup Z(J) = Z(IJ)$.
- (iv) $Z(1) = \emptyset$ $e Z(0) = \mathbb{A}_h^n$.

Seja R um anel e $S \subset R$ um sistema multiplicativo i.e. $1 \in S$ e $x, y \in S \Longrightarrow xy \in S$. Defina

$$S^{-1}R := \{(a, s) \mid a \in R \in S\} / \sim.$$

onde declaramos $(a,s) \sim (b,t)$ se e só se existir $u \in S$ tal que u(at-bs)=0. Denotaremos por $\frac{a}{s}$ a classe de equivalência de (a,s). É rotineiro verificar, que $S^{-1}R$ é um anel comutativo com 1 munido das operações:

$$\frac{a}{s} + \frac{b}{t} := \frac{at + bs}{st}$$
 e $\frac{a}{s} \frac{b}{t} := \frac{ab}{st}$.

Chamamos $S^{-1}R$ de a localização de R pelo sistema multiplicativo S. Existe um homomorfismo natural

$$i_S: R \longrightarrow S^{-1}R \qquad a \mapsto \frac{a}{1}.$$

Se R é um dominio temos que i_S é injetivo, mas em geral i_S não é injetivo.

Seja $P \subset R$ um ideal primo e considere S := R - P. Como P é primo temos que S é multiplicativo. Nesse caso, denotamos $S^{-1}R$ por R_P . Observe que R_P é um anel local com ideal maximal PR_P , o ideal gerado por $i_S(P)$. Para ver isso seja $u \in R - PR_P$. Então, temos u = a/s com $a \notin P$. Em particular, a/1 é unidade em R_P . Assim, $R_P^* = R_P - PR_P$.

Definição 1. Seja R um anel.

- $Spec(R) := \{ P \subset R \mid P \text{ \'e um ideal primo } \}.$
- $Spec_m(R) := \{ P \in Spec(R) \mid P \text{ \'e um ideal maximal } \}.$
- dim $R := Sup\{n \in \mathbb{N} \mid existe \ uma \ cadeia \ de \ primos \ p_0 \subset p_1 \subset \cdots \subset p_n\}$
- altura de um ideal primo $P \in Spec(R)$: $ht(P) := \dim R_P$.

Proposição 2. Existe uma bijeção

$$\{\ P \in Spec(R) \mid com\ S \cap P = \varnothing\ \} \cong Spec(S^{-1}R).$$

Demonstração. A bijeção é dada pelo mapa i_S . Mais precisamente, se $Q \in S^{-1}R$ é ideal primo então temos $P = i_S^{-1}(Q)$ um ideal primo com $P \cap S = \emptyset$. Dado $P \in Spec(R)$ com $P \cap S = \emptyset$ temos $Q = i_S(P)S^{-1}R$ um ideal primo. Mais detalhes podem ser encontrados no cap 3 de [2].

Relembramos alguns resultados importantes de algebra comutativa:

Nullstelensatz Fraco. Seja k corpo algebricamente fechado. Então, todo ideal \mathcal{M} maximal de $k[X_1,...,X_n]$ é da forma

$$\mathcal{M} = (X_1 - u_1, ..., X_n - u_n)$$

por alguns $u_1, ..., u_n \in k$.

Sejam R um anel e $I \subset R$ um ideal. O radical de I consiste no seguinte conjunto

$$\sqrt{I} := \{ f \in I \mid f^n \in I \}.$$

Pode-se mostrar que \sqrt{I} é um ideal.

¹lembre-se: A é local com ideal único ideal maximal \mathcal{M} se e somente se $A^* = A - \mathcal{M}$.

Nullstelensatz. Seja $X \subset \mathbb{A}^n_k$ um fechado descrito por um ideal I. Então,

$$\sqrt{I} = \mathcal{I}(X)$$

Demonstração. Observe que a inclusão ⊂ é trivial. Para a outra inclusão consulte [1].

Seja R um anel local noetheriano com ideal maximal \mathcal{M} e corpo residual k. Defina $e(R) := \mathbf{Min}\{n \in \mathbb{N} \mid \exists a_1, ..., a_n \in R \text{ tal que } \sqrt{(a_1, ..., a_n)} = \mathcal{M}\}$. Se $a_1, ..., a_n \in R$ são tais que $\sqrt{(a_1, ..., a_n)} = \mathcal{M}$ dizemos que $a_1, ..., a_n$ formam um sistema de parâmetros para R.

Teorema da Dimensão. Seja (R, \mathcal{M}, k) um anel local noetheriano. Então,

$$\dim R = e(R).$$

Demonstração. Para uma prova, veja [2].

Observação 1. Sejam k um corpo e $F_1, ..., F_r \in k[X_1, ..., X_n]$ polinômios lineares i.e. $F_j = \sum_i A_{ij}X_i$ por alguns coeficientes $A_{ij} \in k$ com $1 \le i \le n$ e $1 \le j \le r < n$. Suponha que a matriz $(A_{ij}) \in \mathcal{M}_{rn}(k)$ tenha posto maximo, com as r-primeiras colunas l.i. Considere $X = Z(F_1, ..., F_r)^2$, o conjunto dos zeros em \mathbb{A}^n_k . Por meio de transformações elementares temos que $X = Z(X_1 - \sum_{p=r+1}^{n-r} B_{1p}X_p, ..., X_r - \sum_{p=r+1}^{n-r} B_{rp}X_p) \subset \mathbb{A}^n_k$ para alguns $B_{ip} \in k$. Em particular, X é um conjunto infinito. Agora, note que se $A \in \mathcal{M}_n(k)$ não é singular e $F_1, ..., F_n$ são polinômios lineares obtidos pelas linhas de A então $Z(F_1, ..., F_n) = \{(0, ..., 0)\}$.

Nessa direção, temos o seguinte

Teorema 1. Sejam k corpo algebricamente fechado e X = Z(I) um fechado em \mathbb{A}^n_k onde $I = (F_1, ..., F_r)$. Suponha que $F_1(\alpha) = \cdots = F_r(\alpha) = 0$ para algum $\alpha \in \mathbb{A}^n_k$. Se n > r então X é um conjunto infinito.

Para demonstrar o teorema acima, usaremos o seguinte

Teorema 2. (Ideal Principal de Krull) Seja A um anel noetheriano e $I = (a_1, ..., a_r) \subsetneq A$ um ideal. Seja $P \in Spec(A)$ um primo minimal sobre I. Então, $ht(P) \leq r$.

Demonstração. Considere o anel $R = A_P$ (localização sobre o sistema multiplicativo S = A - P). Por extensão, obtemos um ideal $IA_P \subset A_P$ que está contido no ideal maximal PA_P . Além disso, se Q é um ideal primo de R contendo IA_P por propriedades de localização, obtemos um primo em A que contem I e que está contido em P. Por minimalidade de P sobre I temos que Q = P. Assim, PA_P é o único primo contendo IA_P . Como $\sqrt{IA_P} = \bigcap_{P \in V(I)} P$ onde $V(I) = \{Q \in Spec(R) \mid Q \supset IA_P\}$ temos que $\sqrt{IA_P} = PA_P$. Aplicando o teorema da dimensão, vem $ht(P) = \dim A_P \leq r$.

Observação 2. Seja \mathcal{M} um ideal maximal de $k[X_1,...,X_n]$, com $k=\overline{k}$ (i.e k algebricamente fechado). Por Nullstelensatz, temos $\mathcal{M}=(X_1-\alpha,...,X_n-\alpha_n)$ para algum $(\alpha_1,...\alpha_n)\in k^n$. Em particular,

$$(0) \subset (X_1 - \alpha) \subset (X_1 - \alpha_1, X_2 - \alpha_2) \subset \cdots \subset (X_1 - \alpha_1, ..., X_n - \alpha_n).$$

Assim, $ht(\mathcal{M}) \geq n$. Pelo teorema acima concluímos que $ht(\mathcal{M}) = n$ para qualquer ideal maximal de $k[X_1, ..., X_n]$.

$$\overline{{}^{2}Z(F_{1},...,F_{r}) := \{\alpha \in k^{n} \mid F_{1}(\alpha) = \cdots = F_{r}(\alpha) = 0\}}$$

Demonstração. (do teorema 2) Suponha que tal não ocorra i.e. suponha $X = Z(I) = \{P_1, ..., P_s\}$ com $P_i = (\alpha_1^{(i)}, ..., \alpha_n^{(i)})$ e $I = (F_1, ..., F_r)$. Considere $\mathcal{M}_i := (X_1 - \alpha_1^{(i)}, ..., X_n - \alpha_n^{(i)})$ o ideal maximal associado a P_i . Defina $\mathcal{M} = \prod_{i=1}^s \mathcal{M}_i$. Então, $Z(\mathcal{M}) = Z(\prod_i \mathcal{M}_i) = \{P_1, ..., P_s\}$. Pela proposição acima e por **Nullstelensatz** temos que $\sqrt{I} = \sqrt{\mathcal{M}}$. Seja $P \in k[X_1, ..., X_n]$ um primo minimal sobre I. Então, $P \supset \sqrt{I} = \sqrt{\mathcal{M}} = \prod \mathcal{M}_i \Longrightarrow P \supset \mathcal{M}_i$ por algum i. Por maximalidade $P = \mathcal{M}_i$ por algum i. Agora, pelo teorema do ideal principal de Krull, temos que para qualquer primo Q minimal sobre $I = (F_1, ..., F_r)$ temos $ht(Q) \leq r$. Em particular, $ht(P) \leq r < n$, o que é um absurdo.

Corolário 1. Sejam k um corpo algebricamente fechado e $F_1, ..., F_r \in k[X_1, ..., X_n]$ polinômios homogêneos com n > r. Então, o sistema

$$F_1 = F_2 = \dots = F_r = 0$$

tem uma solução não trivial em k.

3 Corpos de tipo C_i

Seja k um corpo e $F \in k[X_1,...,X_n]$ um polinômio sem termo constante. Definimos o conjunto dos k-pontos de F pondo

$$X_F(k) := \{(\alpha_1, ..., \alpha_n) \in k^n \mid F(\alpha_1, ..., \alpha_n) = 0\} - \{(0, ..., 0)\}.$$

Definição 2. Seja k um corpo e $i \in \mathbb{N}$. Dizemos que k \acute{e} do tipo C_i (ou \acute{e} C_i) se satisfaz a seguinte propriedade

• Para todo polinômio homogêneo $F \in k[X_1,...,X_n]$ de grau d com $n > d^i$ então $\#X_F(k) \ge 1$.

Observação 3. $k \in do tipo C_0$ se e somente se $\overline{k} = k$.

Lema 1. Seja $m \in \mathbb{N}$. Então,

(i)
$$q-1 \mid m \Longrightarrow \sum_{\alpha \in \mathbb{F}_q} \alpha^m = -1$$
.

(ii)
$$q-1 \nmid m \Longrightarrow \sum_{\alpha \in \mathbb{F}_a} \alpha^m = 0$$
.

Demonstração. Considere o mapa $\phi: \mathbb{F}_q^* \longrightarrow \mathbb{F}_q^*$ que associa $u \mapsto u^m$. Observe que ϕ é um mapa de grupos. Note que se $q-1 \nmid m$ e $g \in \mathbb{F}_q^*$ denota o gerador do grupo \mathbb{F}_q^* então $g^m \neq 1$. Nesse caso,

$$g^m \sum_{\alpha \in \mathbb{F}_q} \alpha^m = \sum_{\alpha \in \mathbb{F}_q} (g\alpha)^m = \sum_{\alpha \in \mathbb{F}_q} \alpha^m$$

e dai $\sum_{\alpha \in \mathbb{F}_q} \alpha = 0$. Agora, se $q-1 \mid m$ sabemos que

$$\sum_{\alpha \in \mathbb{F}_q} \alpha^m = \sum_{\alpha \in \mathbb{F}_q^*} \alpha^m = \sum_{\alpha \in \mathbb{F}_q^*} 1 = (q-1).1 = -1.$$

Nosso próximo objetivo consiste em mostrar que um corpo finito \mathbb{F}_q é do tipo C_1 . Para isso, demonstraremos um resultado mais forte.

4

Teorema 3. (Chevalley - Warning) Sejam \mathbb{F}_q corpo finito de característica p e $F_1, ..., F_t \in \mathbb{F}_q[X_1, ..., X_n]$. Defina $d_i := deg(F_i)$ (grau total) e suponha que

$$d := d_1 + \dots + d_t < n.$$

Denote $N := \#Z(F_1, ..., F_t)$. Então,

$$N \equiv 0 \mod p$$
.

Demonstração. Para cada $i \in \{1,...,t\}$ defina $G_i \in \mathbb{F}_q[X_1,...,X_n]$ pondo

$$G_i := 1 - F_i^{q-1}$$
.

Sejam $G := \prod_i G_i$ e $Z := Z(F_1, ..., F_t)$. Note que dado $P \in \mathbb{F}_q^n$

$$G(P) = \begin{cases} 0 & \text{se } P \notin Z. \\ 1 & \text{se } P \in Z. \end{cases}$$

Assim, $N=\sum_{P\in\mathbb{F}_q^n}G(P)$. Observe que G é um polinômio de grau d(q-1)< n(q-1). Seja $M=\beta X_1^{a_1}\cdots X_n^{a_n}$ um monômio ocorrendo em G. É suficiente mostrar que

$$\sum_{P \in \mathbb{F}_a^n} M(P) = 0 \text{ em } \mathbb{F}_q .$$

Agora, $\sum_{P \in \mathbb{F}_q^n} M(P) = \sum_{P \in \mathbb{F}_q^n} \prod_j x_j^{a_j} = \prod_{j=1}^n \sum_{x_j \in \mathbb{F}_q} x_j^{a_j}$. A condição d(q-1) < n(q-1) implica que q-1 não divide a_j , por algum j. Aplicando o lema acima, vemos que $\sum_{x_j \in \mathbb{F}_q} x_j^{a_j} = 0$ em \mathbb{F}_q . Assim, $\sum_{P \in \mathbb{F}_q^n} M(P) = 0$ em \mathbb{F}_q .

Observação 4. A cota n > d não pode ser "refinada". Mais precisamente, para cada $n \in \mathbb{N}$ existe uma forma $F \in \mathbb{F}_q[X_1,...,X_n]$ de grau n tal que #Z(F)=1. Com efeito, dado n tome \mathbb{F}_{q^n} e fixe $S:=\{w_1,...,w_n\}$ uma \mathbb{F}_q -base de \mathbb{F}_{q^n} . Sejam $X_1,...,X_n$ indeterminadas e considere

$$F(X_1,...,X_n) := \prod_{\sigma \in Gal(\mathbb{F}_{q^n}/\mathbb{F}_q)} (w_1^{\sigma} X_1 + \dots + w_n^{\sigma} X_n).$$

Por construção, $F \in \mathbb{F}_q[X_1,...,X_n]$. Se $0 \neq \alpha = \alpha_1 w_1 + \cdots + \alpha_n w_n \in \mathbb{F}_{q^n}$ temos que $N_{\mathbb{F}_{q^n}/\mathbb{F}_q}(\alpha) = F(\alpha)$. Assim, $F(\alpha) = 0 \iff \alpha = 0$.

Corolário 2. Seja $F \in \mathbb{F}_q[X_1,...,X_n]$ homogêneo de grau d com n > d. Denote N o inteiro como definido acima. Então, $N \ge 2$.

Demonstração. Pelo teorema acima, $N \equiv 0 \mod p$. Como F(0,...,0) = 0 e p > 1 temos $N \ge 2$.

Corolário 3. Seja k um corpo finito. Então, k é um corpo do tipo C_1 .

 $[\]overline{\ ^3\text{Seja }K/k \text{ extensão finita galoisiana com }Gal(K/k) = \{\sigma_1,...\sigma_n\}. \text{ A norma de }\alpha \text{ \'e o determinante do mapa }T:K\longrightarrow K \quad \beta\mapsto\alpha\beta. \text{ Pode ser mostrado que tal determinante coincide com }\prod_j\sigma_j(\alpha).$

Definição 3. Sejam k um corpo e $P(X_1,...,X_n) \in k[X_1,...,X_n]$ homogêneo de grau d. Dizemos que F \acute{e} uma **forma nórmica de ordem** i se $n=d^i$ e $\#X_F(k)=0$ i.e. único zero de F \acute{e} o trivial (0,...,0). Se i=1 diremos, simplesmente que P \acute{e} uma forma nórmica.

A terminologia é explicada pela seguinte proposição

Proposição 3. Seja L/K uma extensão de corpos de grau n = [L : K] > 1. Então, existe $F \in K[X_1, ..., X_n]$ uma forma nórmica.

Demonstração. Sejam $S = \{e_1, ..., e_n\}$ uma K-base de L e $\alpha = X_1e_1 + \cdots + X_ne_n$ um elemento genérico de L. Considere o mapa K-linear $T: E \longrightarrow E$ dado pela multiplicação por α . Defina $P(X_1, ..., X_n) := det([T])$, onde [T] é a matriz associada ao mapa T (com respeito a base V). Temos que $P(Z_1, ..., Z_n) \in K[Z_1, ..., Z_n]$ é um polinômio homogêneo de grau n com (0, ..., 0), único zero em L i.e. é uma forma nórmica.

Proposição 4. Sejam k um corpo não algebricamente fechado. Então, existem formas normicas de grau arbitrariarmente grande.

Demonstração. Seja L/k uma extensão algébrica de grau n > 1 e considere $P \in k[X_1, ..., X_n]$ uma forma nórmica de ordem 1. Considere $P_1 := P(P, ..., P)$ e $P_2 = P_1(P, ..., P)$, onde em cada ocorrência de P introduzimos n-variáveis "novas". Note que P_1 é um polinômio homogêneo de grau $deg(P)^2$ e $deg(P_2) = deg(P_1)deg(P) = deg(P)^3$. Além disso, P_1 e P_2 são formas nórmicas. Repetindo o argumento, vemos que para cada $m \in \mathbb{N}$ construímos uma forma nórmica de grau $deg(P)^m$.

Teorema 4. (Nagata-Lang) Seja k um corpo C_i . Sejam $F_1, ..., F_r \in k[X_1, ..., X_n]$ homogêneos de grau d. Se $n > rd^i$ então $F_1, ..., F_r$ tem um zero não trivial.

Demonstração. Se k é algebricamente fechado (i.e. C_0) então o resultado é o teorema 1. Assim, podemos supor que k é não algebricamente fechado. Seja $N \in k[X_1, ..., X_e]$ uma forma nórmica de grau e (vide propo. 3).

Se k é do tipo C_1 defina

$$N_1 = N(F_1, ..., F_r \mid F_1, ..., F_r \mid \cdots \mid F_1, ..., F_r \mid 0, 0, ..., 0) \in k[X_1, ..., X_{n[\frac{e}{r}]}].$$

onde em cada bloco de tamanho r introduzimos n-variáveis "novas". Assim, temos que N_1 é um polinômio homogêneo de grau de com $n[\frac{e}{r}]$ variáveis 4 . Agora, note que $de \leq dr([e/r]+1)$. Suponha que e é escolhido de tal forma que $n[\frac{e}{r}] > dr([e/r]+1)$. Nesse caso, n[e/r] > de e dai segue que existe $(u_1, ..., u_{n[e/r]}) \in k^{n[e/r]}$ zero não trivial de N_1 . Como N é nórmico, temos $(u_{i_1}, ..., u_{i_n})$ um zero não trivial de $F_1, ..., F_r$, para alguns $i_1, ..., i_n \in \mathbb{N}$.

Suponha agora, que k é um corpo do tipo C_i (i>1) e $F_1,...,F_r \in k[X_1,...,X_n]$ com $n>rd^i$. Seja N uma forma nórmica de grau e e defina $N_1=N_1=N(F_1,...,F_r\mid F_1,...,F_r\mid \cdots \mid F_1,...,F_r\mid 0,0...,0)$ como acima, onde cada bloco possui um novo conjunto de n variáveis. Analogamente, defina $N_2=N_1(F_1,...,F_r\mid F_1,...,F_r\mid \cdots \mid F_1,...,F_r\mid 0,0...,0)$. Por recorrência podemos construir N_m pondo $N_m=N_{m-1}(F_1,...,F_r\mid F_1,...,F_r\mid \cdots \mid F_1,...,F_r\mid 0,0...,0)$. Defina $D_m:=deg(N_m)$ e $V_m:=\#$ de variáveis de N_m . Então, $D_m=dD_{m-1}$ e $V_m=n[V_{m-1}/r]$. Devemos mostrar que existe $m\in\mathbb{N}$ tal que $V_m>D_m^i$. Daí e do fato de que N_m é nórmico, seguirá que existe um zero não trivial para as equações $F_1=...=F_r=0$.

Seja $b \in \mathbb{R}$ tal que $d^i < b < n/r$. Escolha $e := deg(N_0) = deg(N)$ tal que $n[\frac{x}{r}] \ge bx$ para todo $x \in \mathbb{R}$ com $x \ge e$. Usando o fato de que $V_m = n[\frac{V_{m-1}}{r}]$ e $D_m = dD_{m-1} = d^mD_0$ obtemos

⁴dado $x \in \mathbb{R}$, [x] denota o maior inteiro $\leq x$

$$\frac{V_m}{D_m^i} = \frac{n[\frac{V_{m-1}}{r}]}{D_m^i} \ge \frac{b^m V_0}{d^{mi} D_0^i}.$$

Como $D_0=V_0=e$ temos $\frac{V_m}{D_m^i}\geq (\frac{b}{d^i})^me_0^{1-i}$. Escolhendo m grande vemos que $\frac{V_m}{D_m^i}>0$ e daí o resultado se segue.

Corolário 4. Seja k um corpo de tipo C_i e E/k uma extensão algébrica. Então, E é do tipo C_i .

Demonstração. Seja $F \in E[X_1,...,X_n]$ homogêneo de grau d com $n > d^i$. Devemos mostrar que existe $u = (u_1,...,u_n) \in E^n - \{0\}$ tal que F(u) = 0. Sem perda de generalidade podemos supor que $n = [E:k] < \infty$ (adjuntando coeficientes de F em k). Seja $\{e_1,...,e_n\}$ uma k-base de E e $\alpha_k = X_{k1}e_1 + \cdots + X_{kn}e_n \in E$ elementos genéricos com $1 \le k \le n$. Substituindo $\alpha = (\alpha_1,...,\alpha_n)$ em F e efetuando as devidas simplificações, obtemos uma expressão do tipo

$$F(\alpha) = f_1(X_{11}, ..., X_{nn})e_1 + \cdots + f_n(X_{11}, ..., X_{nn})e_n$$

onde $f_1(Z_{11},...,Z_{nn}),...,f_n(Z_{11},...,Z_{nn}) \in k[Z_{11},...,Z_{nn}]$ são homogêneos de grau d com n^2 -variáveis. Assim, temos n polinômios à n^2 variáveis de grau d. Pela condição $n>d^i$ concluímos que $n^2>nd^i$. Usando o fato de que k é C^i e aplicando o teorema de Nagata-Lang temos que existe $(\alpha_{11},...,\alpha_{nn}) \in k^{n^2} - \{0\}$ tais que

$$f_1(\alpha_{11},...,\alpha_{nn}) = \cdots = f_n(\alpha_{11},...,\alpha_{nn}) = 0.$$

Assim, $\alpha = (\alpha_{11}e_1 + \cdots + \alpha_{1n}e_n, ..., \alpha_{n1}e_1 + \cdots + \alpha_{nn}e_n) \in E^n$ é um zero não trivial de F.

Seja E/k uma extensão de corpos. Se E/k é algébrica diremos que o grau de transcendência da extensão E/k é 0 e adotamos a notação: $tr.deg_k(E) = 0 \iff E/k$ é algébrica. Se E/k não é algébrica, considere

 $\mathcal{M} := \{S \mid S \subset E \text{ tal que S consiste de elementos algebricamente independentes sobre } k\}.$

Tal conjunto é parcialmente ordenado por inclusão e indutivo. Assim, pelo lema de Zorn, existem elementos maximais. Um elemento maximal $S \in \mathcal{M}$ é chamado uma base de transcendência de E sobre k. Pode-se mostrar que se S e S' são duas bases de transcendência então existe uma bijeção $S \cong S'$. Se S é finito chamamos E de um corpo de funções à #S variáveis sobre k e definimos o grau de transcendência pondo $tr.deg_k(E) := \#S$. Pela maximalidade, temos que E/k(S) é algébrica.

Teorema 5. Seja E um corpo de funções à j-variáveis sobre um corpo k. Se k é do tipo C_i então E é do tipo C_{i+j} .

Demonstração. Pelo corolário acima e por indução podemos supor E=k(T). Seja $F\in E[X_1,...,X_n]$ homogêneo de grau d com $n>d^{i+j}$. "Limpando" denominadores podemos supor que $F\in k[T][X_1,...,X_n]$. Introduza novas variáveis, X_{uv} para u=1,...,n e v=0,...,s (com s à ser determinado) e tome

$$X_u = X_{u0} + X_{u1}T + \dots + X_{us}T^s$$

Seja $M_i = \alpha_{i_1...i_n}(T)X_1^{i_1}\cdots X_n^{i_n}$ monômio ocorrendo em F de maior grau em T, digamos $e = deg(\alpha_{i_1...i_n}(T))$. Usando as novas variáveis obtemos

$$F = \sum_{i_1,\dots,i_n} \alpha_{i_1\dots i_n}(T) X_1^{i_1} \cdots X_n^{i_n} = \sum_{i_1,\dots,i_n} \alpha_{i_1\dots i_n}(T) (\sum_{j_1} X_{1j_1} T^{j_1})^{i_1} \cdots (\sum_{j_n} X_{nj_n} T^{j_n})^{i_n}$$
$$= F_0 + F_1 T^1 \cdots + F_{e+ds} T^{e+ds}.$$

onde $F_0, ..., F_{e+ds}$ são polinômios à coeficientes em k nas variáveis $\{X_{uv}\}$. Assim, $F_0, ..., F_{ds+e}$ possuem n(s+1) variáveis e são polinômios homogêneos de grau d. Procuramos s tal que $n(s+1) > (1+ds+e)d^i$. Isso equivale a encontrar s tal que $s(n-d^{i+1}) > ed^i + d^i - n$. Observe que como $n > d^{i+1}$ uma tal escolha é claramente possível.

Finalmente, pela condição C_i em k, obtemos um zero não trivial das equações $F_0 = ... = F_{e+ds} = 0$, o qual determina um zero não trivial para F.

Referências

- [1] Bump, Daniel. Algebraic geometry. World Scientific Publishing Co Inc, 1998.
- [2] Atiyah, M., Macdonald, I. G. (1969). Introduction to commutative algebra.
- [3] Greenberg, M. J. (1969). Lectures on forms in many variables (Vol. 31).
- [4] W. Aitken and F. Lemmermeyer, Simple Counterexamples to the Local-Global Principle.
- [5] Nagata, Masayoshi. "Note on a paper of Lang concerning quasi algebraic closure." Memoirs of the College of Science, University of Kyoto. Series A: Mathematics 30.3 (1957): 237-241.
- [6] Serre, Jean-Pierre. A course in arithmetic. Vol. 7. Springer.