

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA Departamento de Ciência da Computação Tecnólogo em Análise e Desenvolvimento de Sistemas

Projeto e implementação de software

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Projeto e implementação de software

- Estágio do processo no qual um sistema de software executável é desenvolvido
 - Projeto: "como resolver um problema"
 - o Implementação: "como concretizar a solução do problema"
- Existem varias técnicas de projeto de sistemas, cada uma mais adequada para um paradigma de programação específico
 - Ex: Diagramas de Classes UML (orientação a objetos),
 Diagramas de eventos UML (orientação a eventos)

Projeto orientado a objetos com UML

 Envolve o projeto de sistemas baseados em classes, objetos e os relacionamentos entre essas classes

Projeto orientado a objetos com UML

- Classes: definem os objetos interativos do sistema
 - Inclui propriedades (dados) e métodos (funções)
- Objetos: definem instancias de classe, com estados locais
 - Cada objeto possui um estado local
 - **Estado**: dados armazenados nas propriedades (atributos) do objeto, em um dado instante de tempo
 - Objetos são criados dinamicamente a partir das classes

Porque orientação à objetos?

- Os objetos podem ser entendidos e modificados como entidades autônomas
 - Objetos incluem os dados e as operações para manipulá-los
 - Alterar a implementação de um objeto ou adicionar serviços não deve afetar outros objetos do sistema
 - Encapsulamento: O estado de um objeto é privado e não pode ser acessado diretamente, de fora do objeto

Porque orientação à objetos?

- Muitas vezes existe um mapeamento claro entre entidades do mundo real (como componentes de hardware) e objetos
 - Ex: cadeiras, casas, pessoas, etc
- Esse mapeamento
 - Melhora a inteligibilidade do código do sistema
 - Consequentemente, melhora a manutenibilidade do projeto

Processo de projeto orientado a objetos

- Composto pelas seguintes atividades:
 - Definição do contexto e interações externas do sistema
 - Projeto da arquitetura do sistema
 - Identificação dos principais objetos
 - Desenvolvimento dos modelos de projeto
 - Especificação das interfaces

Definição do contexto e interações do sistema

- Esta atividade é responsável por
 - Descrever como oferecer as funcionalidades requeridas
 - Estruturar como o sistema se comunicará com o ambiente externo
 - Estabelecer os limites do sistema
 - Quais recursos serão implementados no sistema
 - Quais recursos estão em outros sistemas associados

Definição do contexto e interações do sistema

- Para esta atividade, precisamos de modelos que apresentam visões complementares dos relacionamentos entre o sistema e o ambiente
 - Modelos de contexto (estruturais ou estáticos)
 - Modelos <u>estruturais</u> do sistema e do ambiente
 - Modelos de interação (ou dinâmicos)
 - Modelos <u>dinâmicos</u> que mostram como o sistema (em execução) interage com seu ambiente

Considerando o projeto e implementação de software, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I O projeto orientado a objetos com UML utiliza somente diagramas de classes UML para modelagem do sistema.
- II No projeto orientado a objetos, objetos podem ser entendidos como entidades autônomas.
- III O encapsulamento define que objetos tem estados que podem ser acessados diretamente por outros objetos.
- IV A especificação das interfaces é a ultima atividade do processo de projeto orientado a objetos.

0	Somente I e III.
0	Somente II.
0	Somente II e IV.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

Considerando o projeto e implementação de software, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

I - O projeto orientado a objetos com UML utiliza somente diagramas de classes UML para modelagem do sistema.

 II - No projeto orientado a objetos, objetos podem ser entendidos como entidades autônomas.

III - O encapsulamento define que objetos tem estados que podem ser acessados diretamente por outros objetos.

 IV - A especificação das interfaces é a ultima atividade do processo de projeto orientado a objetos.

0	Somente I e III.
0	Somente II.
0	Somente II e IV.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

Considerando o projeto e implementação de software, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I O projeto orientado a objetos com UML utiliza somente diagramas de classes UML para modelagem do sistema.
- II No projeto orientado a objetos, objetos podem ser entendidos como entidades autônomas.
- III O encapsulamento define que objetos tem estados que podem ser acessados diretamente por outros objetos.
- IV A especificação das interfaces é a ultima atividade do processo de projeto orientado a objetos.

Somente I e III.
Somente II.
Somente II e IV.
Somente IV.
Nenhuma das alternativas anteriores.

Considerando o projeto e implementação de software, marque a alternativa que contém somente as assertivas VERDADEIRAS. I - O projeto orientado a objetos com UML utiliza somente diagramas de classes UML para modelagem do sistema. II - No projeto orientado a objetos, objetos podem ser entendidos como entidades autônomas. III - O encapsulamento define que objetos tem estados que podem ser acessados diretamente por outros objetos. IV - A especificação das interfaces é a ultima atividade do processo de projeto orientado a objetos.

0	Somente I e III.
0	Somente II.
0	Somente II e IV.
0	Somente IV.
0	Nenhuma das alternativas anteriores.

Modelos de Contexto (estruturais ou estáticos)

- Descrevem a estrutura de um sistema
 - Diagrama de Entidade-Relacionamento (E-R)
 - Diagrama de Classe
 - Modelo de Pacotes
 - Outros diagramas

Descrevem o sistema através de entidades e associações entre elas

Exemplo de Diagrama de Entidade-Relacionamento (E-R)

Diagrama de Classes UML

- Descreve a estrutura do sistema a partir de classes
 - Cada classe instancia um objeto, que:
 - Interage com o sistema
 - Possui estado

Exemplo de Diagrama de Classes UML

Exemplo de Diagrama de Classes UML

Exemplo de Diagrama de Classes UML

Considerando as atividades do processo de projeto orientado a objetos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I A definição do contexto e interações do sistema é responsável por estabelecer os limites do sistema em relação aos recursos implementados.
- II A definição do contexto e interações do sistema é responsável por estruturar como as comunicações com ambiente externo serão realizadas pelo sistema.
- III A definição do contexto e interações do sistema utiliza modelos de interação contextual para identificar os relacionamentos entre o sistema e o ambiente.

IV - Modelos estáticos descrevem a estrutura do sistema.

0	Somente I e II.
0	Somente I, II e III.
0	Somente II e IV.
0	Somente IV.
_	21/1 de 1/21 1975 1921 15 1724

Considerando as atividades do processo de projeto orientado a objetos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I A definição do contexto e interações do sistema é responsável por estabelecer os limites do sistema em relação aos recursos implementados.
- II A definição do contexto e interações do sistema é responsável por estruturar como as comunicações com ambiente externo serão realizadas pelo sistema.
- III A definição do contexto e interações do sistema utiliza modelos de interação contextual para identificar os relacionamentos entre o sistema e o ambiente.
- IV Modelos estáticos descrevem a estrutura do sistema.

- Somente I e II.
- Somente I, II e III.
- O Somente II e IV.
- O Somente IV.
 - Nenhuma das alternativas anteriores.

Considerando as atividades do processo de projeto orientado a objetos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I A definição do contexto e interações do sistema é responsável por estabelecer os limites do sistema em relação aos recursos implementados.
- II A definição do contexto e interações do sistema é responsável por estruturar como as comunicações com ambiente externo serão realizadas pelo sistema.
- III A definição do contexto e interações do sistema utiliza modelos de interação contextual para identificar os relacionamentos entre o sistema e o ambiente.

IV - Modelos estáticos descrevem a estrutura do sistema.

Somente I e II.
Somente I, II e III.
Somente II e IV.
Somente IV.

Nenhuma das alternativas anteriores.

Considerando as atividades do processo de projeto orientado a objetos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I A definição do contexto e interações do sistema é responsável por estabelecer os limites do sistema em relação aos recursos implementados.
- II A definição do contexto e interações do sistema é responsável por estruturar como as comunicações com ambiente externo serão realizadas pelo sistema.
- III A definição do contexto e interações do sistema utiliza modelos de interação contextual para identificar os relacionamentos entre o sistema e o ambiente.

IV - Modelos estáticos descrevem a estrutura do sistema.

Somente I e II.
Somente I, II e III.
Somente II e IV.
Somente IV.

Nenhuma das alternativas anteriores.

Considerando as atividades do processo de projeto orientado a objetos, marque a Somente I e II. alternativa que contém somente as assertivas VERDADEIRAS. Somente I, II e III. I - A definição do contexto e interações do sistema é responsável por estabelecer os Somente II e IV. limites do sistema em relação aos recursos implementados. Somente IV. II - A definição do contexto e interações do sistema é responsável por estruturar como as comunicações com ambiente externo serão realizadas pelo sistema. Nenhuma das alternativas anteriores. III - A definição do contexto e interações do sistema utiliza modelos de interação contextual para identificar os relacionamentos entre o sistema e o ambiente. 🗲 IV - Modelos estáticos descrevem a estrutura do sistema.

Modelos de Interação (ou dinâmicos)

- Descreve as interações de um sistema com seu ambiente
 - Diagrama de Objetos
 - Diagrama de Casos de Uso
 - Diagrama de Sequencia
 - Diagrama de Máquina de Estados
 - Diagrama temporal
 - Outros diagramas UML

Modelos mais usados

Diagrama de Objetos UML

Para representamos instancias de uma classe usamos **diagramas de objeto** (**modelo de interação** – foco na representação do estado das instâncias)

Diagrama de Objetos UML

Cada objeto tem suas próprias instâncias de atributos ("objetos diferentes podem ter valores diferentes")

Diagrama (ou modelo) de Casos de Uso

Modelo de Casos de Uso

Modelo de Casos de Uso

Exemplo de descrição de caso de uso "Relatar clima"

Caso de uso: Relatar clima

Atores: Sistema de informações meteorológicas, estação meteorológica

Dados: A estação meteorológica envia um resumo dos dados meteorológicos coletados a partir dos instrumentos, no período de coleta, para o sistema de informações meteorológicas. Os dados enviados são o máximo, mínimo e médio das temperaturas de solo e de ar; a máxima, mínima e média da pressão do ar; a velocidade máxima, mínima e média do vento; a precipitação de chuva total e a direção do vento, amostrados a cada cinco minutos.

Estímulo: O sistema de informações meteorológicas estabelece um link de comunicação via satélite com a estação e solicita a transmissão dos dados.

Resposta: Os dados resumidos são enviados para o sistema de informações meteorológicas.

Comentários: Geralmente, solicita-se que as estações meteorológicas enviem relatórios a cada hora, mas essa frequência pode diferir de uma estação para a outra e pode ser modificada no futuro.

Diagrama de Sequencia

 Descreve o comportamento de um grupo de objetos interagindo uns com os outros

Diagrama de Máquina de Estados

- Descreve o comportamento de um objeto ou de um subsistema em resposta à mensagens e eventos
 - Mostra a mudança de estado, dependendo das mensagens recebidas

Exemplo de Diagrama de Máquina de Estados

Projeto da arquitetura do sistema

- Utiliza os modelos de contexto e de interação para
 - Identificar casos, cenários de uso e ambiente de execução do sistema
 - Identificar os principais componentes do sistema e suas interações
 - Organizar os componentes usando um padrão de arquitetura conhecido
 - **Ex**: Arquitetura cliente-servidor, modelo em camadas

Considerando o processo de projeto orientado a objetos, marque a alternativa que contém **somente** as assertivas VERDADEIRAS.

- I O diagrama de objetos representa o estado de instancias de entidades.
- II Os diagramas de objetos, casos de uso e de sequencia são exemplos de modelos de interação.
- III Objetos diferentes compartilham instancias de atributos.
- IV No modelo de casos de uso, cada elipse representa um ator que interage com os casos de uso, representados por "bonecos palito".

- Somente I e II.

 Somente II.
- O Somente II, III e IV.
- O Somente IV.
 - Nenhuma das alternativas anteriores.

casos de uso, representados por "bonecos palito".

Considerando o processo de projeto orientado a objetos, marque a alternativa que Somente I e II. contém somente as assertivas VERDADEIRAS. Somente II. I - O diagrama de objetos representa o estado de instancias de entidades. Somente II, III e IV. II - Os diagramas de objetos, casos de uso e de sequencia são exemplos de modelos de interação. Somente IV. III - Objetos diferentes compartilham instancias de atributos. Nenhuma das alternativas anteriores.

IV - No modelo de casos de uso, cada elipse representa um ator que interage com os

casos de uso, representados por "bonecos palito".

Considerando o processo de projeto orientado a objetos, marque a alternativa que contém somente as assertivas VERDADEIRAS.

I - O diagrama de objetos representa o estado de instancias de entidades.

II - Os diagramas de objetos, casos de uso e de sequencia são exemplos de modelos de interação.

III - Objetos diferentes compartilham instancias de atributos.

Somente I e II.

Somente II, III e IV.

Somente IV.

Nenhuma das alternativas anteriores.

IV - No modelo de casos de uso, cada elipse representa um ator que interage com os

casos de uso, representados por "bonecos palito".

IV - No modelo de casos de uso, cada elipse representa um ator que interage com os

casos de uso, representados por "bonecos palito".

Exemplo de arquitetura para o sistema de estação meteorológica

Exemplo de arquitetura para o sistema de estação meteorológica

Exemplo de diagrama de pacotes ou subsistemas (modelo de contexto)

Mostra os subsistemas e como eles se comunicam (interfaces)

Exemplo de arquitetura para o sistema de estação meteorológica

Detalhando o subsistema de coleta de dados:

Identificação dos principais objetos do sistema

- Consiste em identificar as classes e objetos do sistema através de:
 - Observação do ambiente real do usuário
 - Análise das interações do sistema (modelos de interação)
 - Concepção de objetos
 - Análise da estrutura do sistema (modelos de contexto)
 - Concepção de classes

Princípios de projeto de componentes

- Criar projetos mais fáceis de modificar, com menos efeitos colaterais
- Os principais princípios de projeto são:
 - Princípio Aberto-Fechado (OCP)
 - Princípio da Substituição de Liskov (LSP)
 - Princípio da Inversão da Dependência (DIP)
 - Princípio da Segregação de Interfaces (ISP)
 - Princípio do Fechamento Comum (CCP)

Princípios de projeto de componentes

Princípio aberto-fechado (OCP):

Classes (componentes) devem ser abertas para a extensão e fechada para modificações

Princípio da Substituição de Liskov (LSP):

Qualquer subclasse pode ser utilizada em qualquer parte do código que espera uma superclasse

Princípio da Substituição de Liskov (LSP):

Um sistema deve depender de abstrações e não de concretizações

Princípios da Segregação de Interfaces (ISP)

 É melhor usar várias interfaces específicas do cliente do que uma única interface de propósito geral

Princípio do Fechamento Comum (CCP)

- "Classes que mudam juntas, devem ficar juntas, em um mesmo pacote"
 - Cada pacote possui uma funcionalidade comum
 - Quando essa funcionalidade precisar mudar, é provável que apenas as classes contidas no pacote precisem ser modificadas

- O desenvolvimento de modelos é feito através de
 - Diferentes níveis de detalhe
 - Usando diferentes modelos de projeto
 - Deve-se minimizar o número de modelos produzidos para
 - Reduzir custos do projeto
 - Reduzir tempo necessário para completar o sistema

- Modelos: "ponte entre os requisitos e a implementação de um sistema"
 - Devem ser abstratos (ocultam detalhes desnecessários)
 - Incluem detalhes suficientes para que os programadores possam tomar decisões de implementação

- A UML suporta mais de 10 de tipos diferentes de modelos
 - Raramente todos são usados

- Modelos UML mais usados
 - Modelos de estruturais (de contexto)
 - Diagrama de classes
 - Diagrama de pacotes (ou de subsistemas)
 - Modelos dinâmicos (de interação)
 - Diagrama de sequencia
 - Diagramas de casos de uso

Especificação das interfaces

- As interfaces devem ser especificadas de forma que os objetos e os subsistemas possam ser projetados em paralelo
 - Desenvolvedores trabalham em seus componentes assumindo que
 - A interface será implementada
 - A interface funciona da forma que foi especificada

Estudo de caso - API REST (Web)

Uma interface **REST** permite desenvolvimento paralelo do frontend e backend

Desenvolvedor *Frontend*:

Assume que o servidor sempre responde da mesma forma, usando um arquivo padronizado (ex: JSON, XML, HTML, etc)

Desenvolvedor Backend:

Acessa DB e cria resposta em formato padronizado (ex: JSON, XML, HTML, etc)

Estudo de caso - API REST (Web)

HTTP Methods

Especificação das interfaces

- Define assinaturas e a semântica dos serviços fornecidos pelo objeto ou por um grupo de objetos
 - Assinatura: formato de resposta (JSON, XML, quantidade de variáveis, etc)
 - Semantica: o significado de cada informação, variável, função, etc
 - **Ex**: { id: 2, age: 18 }
 - Representa a idade do usuario de id "2" no sistema

Você não deve incluir detalhes sobre os tipos e estruturas de dados na interface (no entanto, você pode incluir funções)

Especificação das interfaces

- Porque n\u00e3o incluir a representa\u00e7\u00e3o de dados em uma interface?
 - Facilidade em alterar a representação de dados sem afetar os objetos que usam esses dados
 - Interface permanece a mesma
 - Ex: trocar um vetor de dados por uma lista encadeada
 - Facil manutenibilidade do sistema
 - Mudança na implementação não afeta a interface
 - Reduz dependência da implementação dos componentes

Representação de interfaces (<< interface >>)

Especificação das interfaces

• É possível ter mais de uma interface por objeto

• L possiver ter mais de uma interrac • Ex:

Atividade em sala

- Em grupo, discutir, construir e implementar o projeto, diagramas, interfaces e demais pendencias
 - Utilizem os conceitos apreendidos nesta aula para melhorar a arquitetura projeto do grupo
 - Construam diagramas e modelos conforme for necessário para fins de:
 - Documentação do código
 - Documentação do funcionamento do sistema

Referencial Bibliográfico

SOMMERVILLE, Ian. Engenharia de Software. 6. ed.
 São Paulo: Addison-Wesley, 2003.

 PRESSMAN, Roger S. Engenharia de Software. São Paulo: Makron Books, 1995.

JUNIOR, H. E. Engenharia de Software na Prática.
 Novatec, 2010.