$$Q:(a) \geq ?$$
 λ ? ϕ ?

Solution: Odefinition of
$$\geq$$

 $\geq = \frac{1}{n} \times X^{T}$

2 definition of
$$\lambda$$
 and ϕ
 $\Sigma \phi_i = \lambda_i \phi_i$

3 Show projected variance
$$\sigma_i^2$$
 equals to λi project training data to ϕ_i is produce operation $y_i = \not b x_i$

variance σ_i^2 definition $\sigma_i^2 = \frac{1}{n} \sum_{i=1}^{n} y_i^2$

$$= \frac{1}{n} \sum_{i=1}^{n} \phi_i^{T} x_i x_i^{T} \phi_i$$

$$= \phi_i^{\mathsf{T}} \left(\frac{1}{N} \sum_{i=1}^{N} \chi_i \chi_i^{\mathsf{T}} \right) \phi_i$$

$$=\phi_i^{\tau} \geq \phi_i$$

$$-\phi_i^{\dagger} \lambda_i \phi_i$$

$$=\lambda i \phi_i^{\dagger} \phi_i$$

 $m \left[\begin{array}{c|c} X & \overline{X_1} & \overline{X_2} & \cdots & \overline{X_n} \end{array} \right]$

from unit-length eigenvector
$$\phi_i^7 \phi_i = 1$$

So $\sigma_i^2 = \lambda_i$

(3)
$$y_k = p_k X$$
 $y_j = p_j X$

$$\nabla k_j^2 = h y_k y_j T$$

$$= h (p_k X)(p_j X) T$$

$$= h k_j X X p_j$$

$$= p_k Z p_j$$

$$= p$$