DenGrid

Que tal...

Antes de prosseguirmos.. qual é o cenário atual na geração e distribuição de energia?

Setor Energético

Geração

Transmissão

Distribuição

Setor Energético

Geração

Novos players surgindo

Os quais geram, mas não recebem nada por isso, apenas deixam de perder

Setor Energético

Distribuição

Totalmente centralizada

Engessa o mercado para possíveis consumidores

Impossibilidade de lucrar com excedente

O sistema atual não permite que geradores de energia no ambiente de distribuição comercializem seu excedente

Dependência energética

O consumidor não tem opção senão comprar energia da central, que perde muito dinheiro pela distribuição centralizada

O que estamos criando...

Plataforma online e mobile que possibilita produtores e consumidores de energia realizarem transações de créditos de geração.

Compre energia

renovável e mais barata

IoT

receba dados precisos do seu consumo de energia

Data Science

otimiza a distribuição energética

Solução

Energia renovável

"Minera" **energia**

IOT + Tokenização de kwH

Transformamos kwH em tokens na **blockchain**

Consumidor

Adere ao consórcio escolhido comprando **tokens**

Distribuidores

Contabiliza energia gerada Disponibiliza a fatura de energia Abate o consumo

Vantagens Competitivas

Fonte de receita

- Corretagem por transação de créditos
- Taxa de retirada da ZNG (Token)
- Recorrência no serviço de Data Science

Custos de Implementação

- DEV
- Instalação Hardware IoT
- Custos fixos (luz, energia, aluguel)
- Time (Marketing, Sales...)

Validação de mercado

Crescimento do mercado fotovoltáico

2018 - 0.9GW gerados

2019 - 2.1GW gerados

2024 - +10GW gerados

Viabilização da Tecnologia

STAGE 3

Comércio de energia peer-to-peer & EV Charging

SNEAK PEEK

Python stack

Infura + Web3.py

Backend de comunicação com a Blockchain do Ethereum

Python – Cola tudo

SMART CONTRACT

```
//
Follow link (cmd + click)   Interface
// https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md
//
contract ERC20Interface {
   function totalSupply() public constant returns (uint);
   function balanceOf(address tokenOwner) public constant returns (uint balance);
   function allowance(address tokenOwner, address spender) public constant returns (uint remaining);
   function transfer(address to, uint tokens) public returns (bool success);
   function approve(address spender, uint tokens) public returns (bool success);
   function transferFrom(address from, address to, uint tokens) public returns (bool success);
   event Transfer(address indexed from, address indexed to, uint tokens);
   event Approval(address indexed tokenOwner, address indexed spender, uint tokens);
}
```

```
constructor() public {
    symbol = "ZNG";
    name = "ZNGToken";
    decimals = 9;
    _totalSupply = 1000000000000000;
    balances[0x134dC212f53e265402b38713478fb0857cce5991] = _totalSupply;
    emit Transfer(address(0), 0x134dC212f53e265402b38713478fb0857cce5991, _totalSupply);
}
```

THANKS

"Only the people that are crazy enough to think they can change the world are the ones that who do"

Steve Jobs