哈尔滨工业大学(深圳)2025年春季学期

控制理论中的代数基础试题(A)

-,	Justify each answer: draw " \checkmark " if True and " \times " if False. (30 points)		
1.	The subset $S=\{(w_1,w_2)\in\mathbb{R}^2 w_1^2=w_2^2\}$ is a subspace of \mathbb{R}^2 .		
2.	\mathbb{R}^2 is a subspace of \mathbb{R}^5 .	()
3.	If U is a subspace of a finite-dimensional vector space V , then $\dim(U) \leqslant \dim(U)$	(V).	
		()
4.	V is a finite-dimensional vector space. If there exists a linearly dependent set $\{$ in V , then $\dim V\leqslant p$.		$v_p\}$
5.	Suppose that you have 2025 vectors $v_1,v_2,\cdots,v_{2025}\in\mathbb{R}^{2024}$. Each v_i is a combine other 2024 vectors.	oinatio (n of
6.	Every finite-dimensional vector space has a unique basis.	()
7.	Let $V = \operatorname{span}\left(\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}1\\-2\\1\end{bmatrix}, \begin{bmatrix}2\\-1\\2\end{bmatrix}\right)$ and $W = \operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix}, \begin{bmatrix}1\\-2\end{bmatrix}\right)$. The span $\left(\begin{bmatrix}1\\2\end{bmatrix}, \begin{bmatrix}1\\-2\end{bmatrix}\right)$ and $\left(\begin{bmatrix}1\\2\end{bmatrix}, \begin{bmatrix}1\\-2\end{bmatrix}\right)$.	The matrix	
	representing a linear transformation from V to W is a 2×3 matrix.	()
8.	A linear transformation to a larger dimensional space cannot be surjective.	()
9.	Suppose V is a real inner product space. If $u,v\in V$ have the same norm, the orthogonal to $u-v$.		v is
0.	Suppose $T \in \mathcal{L}(V)$ and $U \subseteq \operatorname{null} T$, then U is invariant under T .	()
1.	If A is a matrix with $m \times n$ dimension, then A^TA and AA^T have the same nonz values.	zero eiş	gen-
		()
2.	If W is a subspace of \mathbb{R}^n , then W and W^{\perp} have no vectors in common.	()
13.	If a 5×5 matrix A has fewer than 5 distinct eigenvalues, then A is not diagonal	lizable	.
		()
4.	The forward shift operator $T\in\mathcal{L}(\mathbb{F}^\infty)$ defined by $T(z_1,z_2,\cdots)=(0,z_1,z_2,$ eigenvalues.	···) has	s no
5.	If W is a linear space and $\{v_1,v_2,v_3\}$ is an orthogonal set in $W,$ then $\{v_1,v_2,v_3\}$	} is a b	asis
	for W .	()

\equiv (4 points)

Suppose v_1,\cdots,v_m is linearly independent in V and $w\in V$. Prove that if v_1-w,\cdots,v_p-w is linearly dependent, then $w\in \mathrm{span}(v_1,\cdots,v_p)$.

Ξ 、(6 points)

$$S = \{(x_1, x_2, x_3, x_4): x_1 + 2x_2 - x_4 = 0, x_2 - x_3 = 0\} \text{ is a subspace of } \mathbb{R}^4.$$

- (a) (3 points) Write a basis of S.
- (b) (3 points) Write a basis of a subspace W of \mathbb{R}^4 satisfying $\mathbb{R}^4 = S \oplus W$.

四、(8 points)

Let $A \in \mathbb{R}^{3 \times 4}$ with reduced row echelon form give by $R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. The first and

fourth columns of
$$A$$
 are $a_1=\begin{bmatrix}1\\2\\1\end{bmatrix}$ and $a_4=\begin{bmatrix}1\\0\\5\end{bmatrix}$.

- (a) (4 points) Find the bases for the four fundamental subspaces of A.
- (b) (4 points) Write down the fundamental theorem of linear algebra: Part 1 and Part 2, and verify them by the above four fundamental subspaces.

五、(10 points)

Compute.

- (a) (3 points) $T \in \mathcal{L}(\mathbb{R}^2)$ first performs a transformation that maps \mathbf{e}_1 into $2\mathbf{e}_2$ and maps \mathbf{e}_2 into $\mathbf{e}_1 3\mathbf{e}_2$ and then reflects points through the line $x_1 = 0$. Compute the standard matrix of T.
- (b) (3 points) For the linear transformation $T(x)=\begin{bmatrix}x_1-2x_2\\x_1\\x_1+x_2\end{bmatrix}$ with $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}$ from \mathbb{R}^2 to

 \mathbb{R}^3 , find the matrix representing T with respect to the ordered basis $E = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}$

and
$$F = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} \right\}.$$

(c) (4 points) Let U be the subspace of C[a,b] spanned by e^x, xe^x, x^2e^x . Let D be the differentiation operator on U. Find the matrix A representing D with respect to $[(2-x)e^x, -e^x, (x^2-2x)e^x]$.

六、(10 points)

Suppose V and W are both finite-dimensional vector spaces and $T_1,T_2\in\mathcal{L}(V,W).$

- (a) (4 points) For $T \in \mathcal{L}(V,W)$, write down the fundamental theorem of linear transformation.
- (b) (3 points) Use the above theorem to show that if $T \in \mathcal{L}(V, W)$ is injective, then $\dim V \leqslant \dim W$.
- (c) (3 points) Prove that range $T_1=\mathrm{range}\,T_2$ if and only if there exists an invertible operator $S\in\mathcal{L}(V)$ such that $T_1=T_2S$.

七、(8 points)

Find U, Σ, V in the Singular Value Decomposition $A = U\Sigma V^T$:

$$A = \left[\begin{array}{cc} 2 & 2 \\ -1 & 2 \\ 2 & -1 \end{array} \right].$$

八、(8 points)

Define
$$T \in \mathcal{L}(\mathbb{R}^2)$$
 by $T(x,y) = (41x + 7y, -20x + 74y)$.

- (a) (3 points) Please describe the matrix respect to the standard basis of \mathbb{R}^2 .
- (b) (5 points) Find a basis of \mathbb{R}^2 with respect to which T has a diagonal matrix.

九、(8 points)

Please solve the following 2th-order systems of linear differential equations

$$\ddot{x}_1 = -2x_1 + x_2$$

$$\ddot{x}_2 = x_1 - 2x_2$$

with initial condition $x_1(0)=x_2(0)=0$ and $x_1^\prime(0)=x_2^\prime(0)=2.$

+、(8 points)

Find $p(x) \in P_2(\mathbb{R})$ such that p'(0) = 0 and

$$\int_0^1 |x - p(x)|^2 \, \mathrm{d}x$$

is as small as possible.