t ... n2

Polinomios de aproximación numérica

Giovanni Ramírez García, PhD

Escuela de Ciencias Físicas y Matemáticas Universidad de San Carlos de Guatemala

Guatemala, 2 de marzo de 2021

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. –John von Neumann

Veproximación do oscilacións Pequeñas Sino≈O ¥ OKX

Introducción

Polinomio de aproximación de Lagrange

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermite

Polinomios de aproximación por splines (segmento)

$$Q(x_3) \wedge \{ \text{tilture} \}$$

 $Q(x_5) \times \{ \text{tilture} \}$

Introducción

Polinomio de aproximación de Lagrange

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermite

Polinomios de aproximación por splines

¿Por qué hacer aproximaciones con polinomios?

- ▶ Polinomios: de las formas mejor conocidas para mapear $\mathbb{R} \to \mathbb{R}$.
- Sea f una función definida y continua en [a, b], consideremos el polinomio de orden n > 0

$$P_n(x) \equiv a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i,$$

como una aproximación de f donde a_0, \ldots, a_n son constantes reales

• es decir $f(x) \approx P_n(x)$, con un error dado por el teorema de Weierstraß

$$|f(x) - P_n(x)| < \epsilon, \forall x \in [a, b], \epsilon > 0.$$

Polinomio de Taylor

- Continues

01 =1

- \triangleright Supongamos que la función f es continua y tiene n derivadas continuas en [a, b], que existe la (n + 1) derivada y que es continua en [a, b] y que $x_0 \in [a, b]$.
- ▶ Para cada $x \in [a, b]$, existe un número $\xi(x) \in [x_0, x]$ tal que

$$f(x) \equiv P_n(x) + R_n(x),$$

▶ donde $P_n(x)$ es el Polinomio de Taylor de orden n alrededor de x_0

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

 $ightharpoonup v R_n(x)$ el error de truncamiento (o remainder term) es G &(x)?

$$R_n(x) = \frac{\binom{n}{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}.$$

Introducción

Polinomio de aproximación de Lagrange

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermite

Polinomios de aproximación por splines

Polinomio lineal

- Consideremos el problema de determinar un polinomio de orden uno que pasa por los puntos (x_0, y_0) y (x_1, y_1) .
- Si tomamos $f(x_0) = y_0$ y $f(x_1) = y_1$, podemos definir las funciones

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}, \quad y \quad L_1(x) = \frac{x - x_0}{x_1 - x_0},$$

así que

$$P_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1),$$

será un <u>único polinomio</u> de grado uno que pasa por los puntos (x_0, y_0) y (x_1, y_1) .

▶ En otras palabras, si $x = x_i$, $L_i(x) = 1$, pero $L_i(x) = 0$ con $j \neq i$.

Polinomios de orden superior

- Ahora consideremos los puntos $\{(x_0, f(x_0)), \dots, (x_n, f(x_n))\}.$
- Un polinomio de <u>orden superior</u> también debe cumplir con $L_{n,k}(x) = 0$ si $i \neq k$ y con $L_{n,k}(x_k) = 1$.
- ▶ El polinomio de orden *n* de interpolación de Lagrange es

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x),$$

con

$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i},$$

Error de aproximación

Supongamos ahora que los números $\{x_0, \ldots, x_n\}$ son distintos y que están en [a, b]. Entonces, para cada $x \in [a, b]$, existe un número $\xi(x)$ tal que

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{i=0}^n (x - x_i),$$

donde $P_n(x)$ es el polinomio de orden n de interpolación de Lagrange.

▶ Entonces, el error de aproximación es $R_n(x) = f(x) - P_n(x)$.

Ejemplo (I)

(2,1/2)

Usar los nodos $x_0 = 2$, $x_1 = 2.75$ y $x_2 = 4$, para encontrar el polinomio de Lagrange de segundo orden para f(x) = 1/x. Aproximar f(3). Encontrar el error máximo para $x \in [2, 4]$.

1. Calcular los coeficientes polinomiales

alcular los coeficientes polinomiales
$$L_{2,0}(x) = \frac{(x-2.75)(x-4)}{(2-2.75)(2-4)} = \frac{2}{3}(x-2.75)(x-4),$$

$$L_{2,1}(x) = \frac{(x-2)(x-4)}{(2.75-2)(2.75-4)} = -\frac{16}{15}(x-2)(x-4),$$

$$L_{2,2}(x) = \frac{(x-2)(x-2.75)}{(4-2)(4-2.7)} = \frac{2}{5}(x-2)(x-2.75).$$

2. Calcular los valores de $f(x_0)$, $f(x_1)$ y $f(x_2)$

$$f(x_0) = f(2) = 1/2,$$
 $f(x_1) = f(2.75) = 4/11,$ y $f(x_2) = f(4) = 1/4.$

Ejemplo (II)

3. Calcular el polinomio P(x)

$$P(x) = \sum_{k=0}^{2} f(x_{k}) L_{n,k}(x) = f(x_{0}) L_{20}(x) + f(x_{0}) L_{21}(x) + f(x_{0}) L_{22}(x)$$

$$= \frac{(x - 2.75)(x - 4)}{3} - \frac{64(x - 2)(x - 4)}{165} + \frac{(x - 2)(x - 2.75)}{10}$$

$$F_{2}(x) = \frac{1}{22}x^{2} - \frac{35}{88}x + \frac{49}{44}.$$

$$f(x) = \frac{1}{2}x^{2} - \frac{35}{88}x + \frac{49}{44}.$$

4. Calcular f(3)

Calcular
$$f(3)$$

$$f(3) \approx P(3) = \frac{29}{88} \approx 0.32955,$$
con un error $|f(x) - P(x)| \le 4 \cdot 10^{-3}$.

(A. $P^{*}| \le 5 \cdot 10^{-4}$)

arrow pure un punto

Ejemplo (III)

$$P_n(x) = h(x) g(x)$$

$$= \max_{x \in [2,4] \text{ es}} (g(x)) \max_{x \in [2,4] \text{ es}} (h(x))$$

5. La fórmula exacta del error para $x \in [2, 4]$ es

$$R_n(x) = \underbrace{f^{(3)}(\xi(x))}_{3!}(x - \underline{x_0})(x - \underline{x_1})(x - \underline{x_2}),$$

para $\xi(x) \in [2, 4]$. Pero no conocemos $\xi(x)$.

6. Por lo tanto, vamos a encontrar una cota de error

$$R_n(x) \leq \max_{[2,4]} \left| \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \right| \cdot \max_{[2,4]} \left| \prod_{k=0}^n (x-x_k) \right|.$$

7. Como $f'''(x) = -6x^{-4}$, el primer factor tiene la forma

$$\max_{[2,4]} \left| \frac{f^{(3)}(\xi(x))}{(3)!} \right| = \max_{[2,4]} \left| -\frac{6}{3!x^4} \right| = \frac{1}{16}.$$

Eiemplo (IV)

8. Ahora, si g(x) = (x-2)(x-2.75)(x-4), el segundo factor tiene la forma

$$\max_{[2,4]} \left| \prod_{k=0}^{n} (x - x_k) \right| = \max_{[2,4]} |g(x)|.$$

- 9. Entonces, hay que encontrar los puntos críticos de g(x), es decir aquellos que satisfacen g'(x) = 0.
- 10. Con g'(x) = (1/2)(3x 7)(2x 7), existen dos puntos críticos uno en x = 7/3 y el otro en x = 7/2.
- 11. Entonces, con x = 7/2

$$\max_{[2,4]} \left| \prod_{k=0}^{n} (x - x_k) \right| = \frac{9}{16}.$$

12. Finalmente, $R_n(x) \le (1/16)(9/16) \le 4 \cdot 10^{-2}$.

Introducción

Polinomio de aproximación de La range

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermit

Polinomios de aproximación por splines

EDP /

Diferencias divididas (I)

Si escribimos el polinomio de aproximación como $P_n = a_0^+$

$$(a_1)(x-x_0) + (a_2)(x-x_0)(x-x_1) + \cdots + (a_n)(x-x_0) \cdots (x-x_{n-1}),$$

con constantes reales a_0, \ldots, a_n .

Además, si tomamos $P_n(x_0) = f(x_0) = a_0$ y $P_n(x_1) = f(x_1) = f(x_0) + a_1(x_1 - x_0)$, entonces

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
, deference [x₀, X₁]

• o en general, tomando la diferencia dividida de orden cero respecto a x_i como $f[x_i] = f(x_i)$, la diferencia dividida de orden uno respecto a x_i y x_{i+1} sería

$$f[x_{i}, x_{i+1}] = \frac{f[x_{i+1}] - f[x_{i}]}{x_{i+1} - x_{i}}, = \frac{f(x_{i+1}) - f[x_{i}]}{x_{i+1} - x_{i}}$$

Diferencias divididas (II)

la diferencia dividida de orden dos sería

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i},$$

▶ y la diferencia dividida de orden *k* sería

$$f[x_{i}, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_{i}, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_{i}}.$$

ightharpoonup Por lo que, la diferencia dividida de orden n es

$$f[x_0,\ldots,x_n] = \frac{f[x_1,\ldots,x_n] - f[x_0,\ldots,x_{n-1}]}{x_n - x_0}.$$

Polinomio de diferencias divididas de Newton

▶ Usando $a_0 = f(x_0) = f[x_0], a_1 = f[x_0, x_1]$ y en general $a_k =$ $f[x_0,\ldots,x_k]$, podemos escribir el polinomio de diferencias divididas de Newton

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k](x - x_0) \cdots (x - x_{k-1}),$$

Tarea { (20, f(40)), (4, 5+12.)} ▶ donde el valor de $f[x_0, ..., x_k]$ es independiente del orden de los números x_0, \ldots, x_k .

$$7: \{ [x''x'] = \frac{x' - x^o}{+[x'] \cdot t[x^o]} = \frac{x' - x^o}{t(x') \cdot t(x')} : \text{ bengianje of }$$

$$(x) \cdot (x'' + (x')) \cdot (x'' + (x'')) \cdot (x'' + (x''))$$

Error de aproximación

$$f(x) = P_n(x) + \left[R_n(x) \right]$$

- ▶ Supongamos que los números $x_0, ..., x_n$ son distintos y $x_i \in [a, b] \forall i \in [0, n]$.
- ▶ Entonces, existe un número $\xi \in (a,b)$ tal que

$$f[x_0,\ldots,x_n]=\frac{f^{(n)}(\xi)}{n!},$$

si tomamos $g(x) = f(x) - P_n(x)$, una función con n+1 ceros en [a,b], el teorema generalizado de Rolle implica que $\exists \xi \in (a,b)$ tal que $g^{(n)}(\xi) = 0$.

$$g^{(n)}(\xi)=0$$

evas acotado

Diferencias divididas adelantadas (I)

- Para simplificar, consideremos puntos distribuidos <u>uniformemente</u> tal que $h = x_{i+1} x_i$, para i = 0, ..., n-1,
- de modo que $x = x_i + (s i)h$.
- ▶ Entonces, el polinomio de diferencias divididas de Newton es

$$P_n(x) = P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^n {s \choose k} k! h^k f[x_0, \dots, x_k],$$

$$\frac{1 - 1}{x_0} = \frac{1}{x_0}$$

$$\frac{1}{x_0} = \frac{1}{x_0}$$

Diferencias divididas adelantadas (II)

 usando la notación de Aitken, la primera y segunda diferencia dividida son

$$f[x_0, x_1] = \frac{1}{h} \Delta f(x_0),$$
 : when who $f[x_0, x_1, x_2] = \frac{1}{2h^2} \Delta^2 f(x_0),$. And we have

y en general

$$f[x_0,\ldots,x_k]=rac{1}{k!h^k}\Delta^k f(x_0).$$

 De modo que, el polinomio de diferencias divididas adelantadas de Newton es

$$P_n(x) = \underbrace{f(x_0)} + \sum_{k=1}^n \binom{s}{k} \underline{\Delta^k f(x_0)}.$$

Diferencias divididas atrasadas (I)

► También podemos escribir el polinomio de interpolación como

$$P_{n}(x) = f[x_{n}] + f[x_{n}, x_{n-1}](x - x_{n}) + f[x_{n}, x_{n-1}, x_{n-2}](x - x_{n})(x - x_{n-1}) + \cdots + f[x_{n}, \dots, x_{0}](x - x_{n})(x - x_{n-1}) \cdots (x - x_{1}),$$

▶ y usando puntos equiespaciados, $x = x_i + (s + n - i)h$, entonces

$$P_{n}(x) = P_{n}(x_{n} + sh)$$

$$= f[x_{n}] + shf[x_{n}, x_{n-1}] + s(s+1)h^{2}f[x_{n}, x_{n-1}, x_{n-2}] + \cdots$$

$$+ s(s+1)\cdots(s+n-1)h^{n}f[x_{n}, \dots, x_{0}].$$

Diferencias divididas atrasadas (II)

 ahora, usando la notación de Aitken atrasada para las diferencias de orden uno y dos

$$f[x_n, x_{n-1}] = \frac{1}{h} \Delta f(x_n),$$
 order Δ
 $f[x_n, x_{n-1}, x_{n-2}] = \frac{1}{2h^2} \Delta^2 f(x_n),$ order Δ

y en general

$$f[x_n, x_{n-1}, \dots, x_{n-k}] = \frac{1}{k! h^k} \Delta^k f(x_n)$$
. To reder k

► De modo que

$$P_n(x) = f[x_n] + \sum_{k=1}^n (-1)^k {\binom{-s}{k}} \Delta_k^k f(x_n).$$

► Nota: en algunos textos usan ∇ para no confundir estas diferencias con las diferencias divididas adelantadas.

Diferencias divididas centradas (I)

- Por otro lado, si el valor está cerca del <u>límite superior</u> del intervalo, es mejor usar el polinomio de diferencias atrasadas.
- Sin embargo, cuando el valor que se quiere aproximar está cerca del centro del intervalo es mejor usar el polinomio de diferencias centradas.
- ► Existen muchas formas de calcular las diferencias divididas, pero vamos a considerar solamente el Método de Stirling.

Diferencias divididas centradas (II)

- Consideremos que se elige x_0 cerca del punto que se quiere aproximar.
- Ahora los nodos cuyo valor sea menor que $\underline{x_0}$ son etiquetados usando x_{-1}, x_{-2}, \ldots , de modo que $\cdots < x_{-2} < x_{-1} < x_0$.
- Los nodos cuyo valor sea mayor que x_0 son etiquetados usando x_1, x_2, \ldots , de modo que $x_0 < x_1 < x_2 < \cdots$.
- Entonces si n es par, la fórmula de Stirling es $P_n(x) = P_{2m}(x)$, donde $P_{2m}(x) = f[x_0] + sh\left(\frac{f[x_{-1}, x_0] + f[x_0, x_1]}{2}\right) + s^2h^2f[x_{-1}, x_0, x_1] + s(s^2 1)h^3\left(\frac{f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2]}{2}\right) + \cdots + s^2(s^2 1)(s^2 4)\cdots(s^2 (m 1)^2)h^{2m}f[x_m, \dots, x_m].$

Diferencias divididas centradas (III)

► En el caso de que \underline{n} sea impar, la fórmula de Stirling es $P_n(x) = P_{2m+1}(x)$, donde

$$P_{2m+1}(x), \text{ double}$$

$$P_{2m+1}(x) = f[x_0] + sh\left(\frac{f[x_{-1}, x_0] + f[x_0, x_1]}{2}\right) + s^2h^2f[x_{-1}, x_0, x_1] + s(s^2 - 1)h^3\left(\frac{f[x_{-2}, x_{-1}, x_0, x_1] + f[x_{-1}, x_0, x_1, x_2]}{2}\right) + \cdots + s^2(s^2 - 1)(s^2 - 4)\cdots(s^2 - (m - 1)^2)h^{2m}f[x_m, \dots, x_m] + s(s^2 - 1)\cdots(s^2 - m^2)h^{2m+1}\left(\frac{f[x_{-m-1}, \dots, x_m] + f[x_{-m}, \dots, x_{m+1}]}{2}\right).$$

primedio

Ejemplo 1 (I)

1. Calcular las diferencias divididas para los nodos $\{x_0, \dots, x_3\}$ con f(x).

$$x f(x) 1a. DD 2a DD 3a DD$$
 $x_0 f[x_0] f[x_0] f[x_0, x_1] f[x_0, x_1, x_2] f[x_1, x_2] f[x_1, x_2] f[x_1, x_2] f[x_1, x_2, x_3]$
 $x_0 f[x_1] f[x_2, x_3] f[x_1, x_2, x_3]$

▶ donde
$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$
, $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$, y $f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$.

Ejemplo 1 (I)

1. Calcular las diferencias divididas para los nodos $\{x_0, \dots, x_3\}$ con f(x).

$$x f(x) 1a. DD 2a DD 3a DD$$
 $x_0 f[x_0] f[x_0] f[x_0, x_1] f[x_0, x_1, x_2] f[x_0, x_1, x_2] f[x_0, x_1, x_2, x_3] f[x_2 f[x_2, x_3] f[x_1, x_2, x_3] f[x_2, x_3] f[x_3] f[x_1, x_2, x_3] f[x_2, x_3] f[x_2, x_3] f[x_2, x_3] f[x_3] f[x_1, x_2, x_3] f[x_2, x_3]$

▶ donde
$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
,
y $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$.

Ejemplo 1 (I)

1. Calcular las diferencias divididas para los nodos $\{x_0, \dots, x_3\}$ con f(x).

▶ donde $f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$.

Ejemplo 1 (II)
$$P_n(x) = f[x_0] + \sum_{k=1}^n s(s-1) \cdots (s-k+1)h^k f[x_0, \dots, x_k]$$

2. Considere que $\{x_i\}$ son equiespaciados, $x_{i+1} = x_i + \underline{h}$. Calcular el polinomio de diferencias divididas adelantadas $P_3(x_0 + sh)$.

$$\frac{x}{x_0} = \begin{cases}
x & f(x) & \text{1a. DD} & \text{2a DD} & \text{3a DD} \\
x_0 & f[x_0] & & & \\
x_1 & f[x_1] & & & & \\
x_1 & f[x_1] & & & & f[x_0, x_1, x_2] \\
& & & f[x_1, x_2] & & f[x_0, x_1, x_2, x_3] \\
x_2 & f[x_2] & & & f[x_1, x_2, x_3] & & \\
& & & & f[x_2, x_3] & & \\
x_3 & f[x_3] & & & & &
\end{cases}$$

$$con \underline{x} = x_0 + sh, \ \underline{P_3(x)} = \overline{f[x_0]} + sh\overline{f[x_0, x_1]} + s(\underline{s-1})\underline{h^2}f[x_0, x_1, x_2] + \\ \underline{s(s-1)(s-2)}h^3f[x_0, x_1, x_2, x_3].$$

Ejemplo 1 (III)
$$\underline{P_n(x)} = \underline{f[x_n]} + s\nabla f(x_n) + \dots + \underbrace{\frac{s(s+1)\cdots(s+n-1)}{1}}_{n!} \underline{\nabla^n f(x_n)}$$

3. Considere que $\{x_i\}$ son equiespaciados, $x_n = x_i + (n-i)h$. Calcular el polinomio de diferencias divididas atrasadas $P_3(x_n + sh)$.

 $con \underbrace{x = x_3 + sh}_{s(x)}, P_3(x) = f[x_3] + shf[x_3, x_2] + s(s+1)h^2 f[x_3, x_2, x_1] + s(s+1)(s+2)h^3 f[x_3, x_2, x_1, x_0].$

Ejemplo 2 (I)

1. Obtenga el polinomio de diferencias divididas $P_4(1.1)$

X	ويمام	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
(5 1.0	0.7651977	-0.4837057			
1.3	0.6200860	-0.5489460	-0.1087339	0.0658784	
1.6	0.4554022	-0.5786120	-0.0494433	0.0680685	0.0018251
1.9	0.2818186	,	0.0118183	0.0000000	
2.2	0.1103623	-0.5715210			

N=D.3 X=1.1 X=X₀+5h

- ▶ Para $P_4(1.1)$ se tiene h = 0.3 y s = 1/3. ✓
- ► Entonces el polinomio de diferencias divididas adelantadas es

$$P_4(1.1) = 0.7651977 + \frac{1}{3}(0.3)(-0.4837057) + \frac{1}{3}\left(-\frac{2}{3}\right)(0.3)^2(-0.1087339) + \frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)(0.3)^3(0.0658784) + \frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)(0.3)^4(0.0018251) = 0.7196460.$$

Ejemplo 2 (II)

K= 2-0

2. Obtenga el polinomio de diferencias divididas $P_4(2.0)$

X	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
1.0	0.7651977				
1.3	0.6200860	-0.4837057 -0.5489460	-0.1087339	0.0658784	
1.6	0.4554022	0.5407400	-0.0494433	0.0030704	0.0018251
1.9	0.2818186	-0.5786120	0.0118183	0.0680685	
2,2	0.1103623	-0.5715210			

- ▶ Para $P_4(2.0)$ se tiene h = 0.3 y s = -2/3.

Entonces el polinomio de diferencias divididas atrasadas es
$$P_4(1.1) = 0.1103623 - \frac{2}{3}(0.3)(-0.5715210) - \frac{2}{3}\left(\frac{1}{3}\right)(0.3)^2(0.0118183) - \frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)(0.3)^3(0.0.0680685) - \frac{2}{3}\left(\frac{1}{3}\right)\left(\frac{4}{3}\right)\left(\frac{7}{3}\right)(0.3)^4(0.0018251) = 0.2238754.$$

Ejemplo 3

X2 6 X16 V0 6 X16 X2

1. Obtenga el polinomio de diferencias divididas centradas para $n=4,\ m=2$

adelantadox x-2	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
x-2	$f[x_{-2}]$	$f[x_{-2}, x_{-1}]$			
enhades x_1	$f[x_{-1}]$	$f[x_{-1},x_0]$	$f[x_{-2}, x_{-1}, x_0]$	$f[x_{-2}, x_{-1}, x_0, x_1]$	
<i>x</i> ₀	$f[x_0]$	$f[x_0,x_1]$	$f[x_{-1}, x_0, x_1]$	$f[x_{-1}, x_0, x_1, x_2]$	$f[x_{-2}, x_{-1}, x_0, x_1, x_2]$
mosder x	$f[x_1] = f[x_2]$	$f[x_1,x_2]$	$f[x_0, x_1, x_2]$		$ \frac{f[x_{-2}, x_{-1}, x_0, x_1, x_2]}{2} $
$P_{2m} =$	f[x ₀] -	$+ sh\left(\frac{f[x]}{x}\right)$	$\frac{1}{x_0} + f[$	$\left(\frac{x_0,x_1}{x_0}\right)+s^2$	$2h^2f[x_{-1}, x_0, x_1]$
	$s(s^2 -$	$-1)h^3\left(\frac{f}{-}\right)$	$[x_{-2}, x_{-1}, x_{0}]$	$\frac{(x_0, x_1)}{2} + f[x_{-1}]$	$\frac{0 + 2}{2h^2 f[x_{-1}, x_0, x_1]} + \frac{1}{1 + (x_0, x_1, x_2)} + \frac{1}{1 + (x_0, x_2, x_2)} + \frac{1}{1 + (x_0, x_2, x_2)} + \frac{1}{1 + (x_0, x_2,$
	$s(s^2 -$	$-1)(s^2 - 6)$	4) $h^4 f[x_{-2}, y]$	x_{-1}, x_0, x_1, x_2	2].
				ander 4	

Ejemplo 4

1. Obtenga el polinomio de diferencias divididas $P_4(1.5)$

	<i>x</i>	f(x)	First divided differences	Second divided differences	Third divided differences	Fourth divided differences
(/) 4	1.0	0.7651977	-0.4837057	-0.1087339		
1 k ~	1.6	0.4554022	3 .	∕ P	0.0658784	0.0018251
\	1.9	0.2818186	-0.5786120 -0.5715210	0.0118183	0.0080083	
	2.2	0.1103623				

▶ Para x = 1.5, se tiene h = 0.3 y s = -1/3 y el polinomio de diferencias divididas centradas es

$$P_{4}(1.1) = 0.4554022 + \left(-\frac{1}{3}\right)(0.3)\left(\frac{(-0.5489460) + (-0.5786120)}{260003}\right) + \left(-\frac{1}{3}\right)^{2}(0.3)^{2}(-0.0494433) + \left(-\frac{1}{3}\right)^{2}\left(\left(-\frac{1}{3}\right)^{2} - 1\right)(0.3)^{3}\left(\frac{0.0658784 + 0.0680685}{1 - 2^{2}}\right) + \left(\frac{1}{3}\right)^{2}\left(\left(-\frac{1}{3}\right)^{2} - 1\right)\left(\left(-\frac{1}{3}\right)^{2} - 2^{2}\right)(0.3)^{4}(0.0018251) = 0.5118200.$$

Introducción

$$f(x_i) = y_i \checkmark$$

$$f(x) \approx P_3(x) \checkmark$$

$$x_0 = x_1 + x_2 + x_3 = x$$

Polinomio de aproximación de Lagrange

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermite *

Polinomios de aproximación por splines

$$f'(x) \approx P_3'(x)$$

$$f''(x) \approx P_3'(x)$$

Polinomios osculantes

- Son una generalización de los polinomios de Taylor y de Lagrange.
- Suponga un conjunto de n+1 números distintos $\{x_0, \ldots, x_n, | x_i \in [a, b]\}$ y otro $\{m_0, \ldots, m_n | m_i > 0\}$ con $m = \max\{m_i\}_1^n$.
- ▶ Sea f una función continua y con m derivadas en [a, b].
- El polinomio osculante que aproxima a f es el polinomio de menor grado que tiene los mismos valores que f y todas sus derivadas de orden menor o igual que m_i en x_i .
- ► Entonces, el orden del polinomio es $M = \sum_{i=0}^{n} m_i + n$ y cumple con

$$\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k},$$

para i = 0, 1, ..., n y k = 0, 1, ..., m,

▶ para n = 0, se obtiene el polinomio de Taylor de orden m_0 , para $m_i = 0$ se obtiene el polinomio de Lagrange.

Polinomios de Hermite 2000 } (2, f(x0), ..., (1x1, f(xn))}

- ▶ Para $m_i = 1$ se obtienen los polinomios de Hermite.
- Sea f una función continua y con una derivada en [a, b], $x_0, \ldots, x_{\underline{n}} \in [a, b]$ son distintos, el único polinomio de menor grado que coincide con f y con f' en x_0, \ldots, x_n es

$$f(x) \approx H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x),$$

▶ donde

$$\begin{array}{c}
\downarrow \\
H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x), \\
\hat{H}_{n,j}(x) = (x - x_j)L^2_{n,j}(x),
\end{array}$$

y $L_{n,i}(x)$ son los j-ésimos coeficientes de Lagrange de grado n.

Error de aproximación

Sea f una función continua y con 2n + 2 derivadas en [a, b], entonces

$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x)),$$

para algún valor $\xi(x) \in (a, b)$.

mos pequemo

conocernos mos
mos portugues
sobre la función
(x;,f(x;))
(x;,j'(x;))

Usando los polinomios de Newton

 Los polinomios de Hermite también se pueden obtener usando el polinomio de Newton

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k](x - x_0) \cdots (x - x_{k-1}).$$

- Se usa la conexión que existe entre la diferencia dividida de orden n y la n-ésima derivada de f. $\{2_0, 2_1, \dots, 2_{2n+1}\}$
- ► Hay que definir una nueva secuencia de nodos z_0, \ldots, z_{2n+1} , con $z_{2i} = z_{2i+1} = x_i$. ✓
- ► Como $z_{2i} = z_{2i+1} = x_i$, no se puede definir $f[z_{2i}, z_{2i+1}]$ de la forma tradicional, se usa $f[z_{2i}, z_{2i+1}] = f'(z_{2i}) = f'(x_i)$.
- ► Entonces, se puede definir el polinomio de Hermite con

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0)(x-z_1) \cdots (x-z_{k-1}).$$

Ejemplo 1 (I)

Use el polinomio de Hermite para aproximar f(1.5) usando polinomios de Lagrange, tomando los datos

$$k$$
 x_k $f(x_k)$ $f'(x_k)$

0 1.3 0.6200860 -0.5220232

16/10 1 1.6 0.4554022 -0.5698959

19/10 2 1.9 0.2818186 -0.5811571

▶ Primero hay que calcular los polinomios de Lagrange $L_{n,k}(x)$

$$L_{2,0}^{1}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} = \frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}, \checkmark$$

$$L_{2,1}(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} = -\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}, \checkmark$$

$$L_{2,2}(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} = \frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}, \checkmark$$

Ejemplo 1 (II)

• y luego se calculan las derivadas $L'_{n,k}(x)$

$$L'_{2,0} = \frac{100}{9}x - \frac{175}{9}, \quad \checkmark$$

$$L'_{2,1} = -\frac{200}{9}x + \frac{320}{9}, \quad \checkmark$$

$$L'_{2,2} = \frac{100}{9}x - \frac{145}{9}. \quad \checkmark$$

► Con esto, se calculan los polinomios de Lagrange de orden n con $H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$

$$H_{2,0}(x) = \left[1 - 2(x - x_0)L'_{2,0}(x_0)\right]L^2_{2,0}(x)$$

$$= (10x - 12)\left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2, \checkmark$$

Ejemplo 1 (III)

$$H_{2,1}(x) = [1 - 2(x - x_1)L'_{2,1}(x_1)]L^2_{2,1}(x)$$

$$= \left(-\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9}\right)^2,$$

$$H_{2,2}(x) = [1 - 2(x - x_2)L'_{2,2}(x_2)]L^2_{2,2}(x)$$

$$= 10(2 - x)\left(\frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9}\right)^2.$$

Y también $\hat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x)$

$$\hat{H}_{2,0}(x) = (x - x_0)L_{2,0}^2(x)$$

$$= (x - 1.3) \left(\frac{50}{9}x^2 - \frac{175}{9}x + \frac{152}{9}\right)^2.$$

Ejemplo 1 (IV)

$$\hat{H}_{2,1}(x) = (x - x_1)L_{2,1}^2(x)$$

$$= (x - 1.6) \left(-\frac{100}{9}x^2 + \frac{320}{9}x - \frac{247}{9} \right)^2, \quad \checkmark$$

$$\hat{H}_{2,2}(x) = (x - x_2)L_{2,2}^2(x)$$

$$= (x - 1.9) \left(\frac{50}{9}x^2 - \frac{145}{9}x + \frac{104}{9} \right)^2. \quad \checkmark$$

► Finalmente, $H_5(x) = f(x_0)H_{2,0}(x) + f(x_1)H_{2,1}(x) + f(x_2)H_{2,2}(x) + f'(x_0)\hat{H}_{2,0}(x) + f'(x_1)\hat{H}_{2,1}(x) + f'(x_2)\hat{H}_{2,2}(x)$,

$$H_5(1.5) = 0.5118277.$$

Ejemplo 2 (I)

Dados los nodos $\{x_0, x_1, x_2\}$, obtenga el polinomio de Hermite usando los polinomios de diferencias divididas.

Los valores de z_i y las diferencias divididas se toman de la siguiente relación $z_{2i} = z_{2i+1} = x_i$, para cada i

z	f(z)	First divided differences	Second divided differences		
$z_0 = x_0$	$f[z_0] = f(x_0)$				
$z_1=x_0$	$f[z_1] = f(x_0)$	$f[z_0,z_1]=f'(x_0)$	$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$		
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	7	9	
$z_2=x_1$	$f[z_2] = f(x_1) /$	3	$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$		
$z_3=x_1$	$f[z_3] = f(x_1)$	$\underline{f[z_2,z_3]} = \underline{f'(x_1)}$	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$	7	
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$	$f(n_1, n_2) = f(n_1, n_2)$	*	
$z_4 = x_2$	$f[z_4] = f(x_2)$	$f[z_4, z_5] = f'(x_2)$	$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$		
$z_5=x_2$	$f[z_5] = f(x_2)$	7 (-2)			

Ejemplo 2 (II)

- Los valores de las diferencias divididas se calculan de la misma forma y finalmente se construye el polinomio H_{2n+1} .
- ▶ El polinomio de orden 2n + 1 es

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0)(x-z_1) \cdots (x-z_{k-1}).$$

Ejemplo 3 (I)

Use el polinomio de Hermite para aproximar f(1.5) usando polinomios de diferencias divididas, tomando los datos

k	x_k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

Primero hay que construir la tabla

Ejemplo 3 (II)

El polinomio de Hermite es

$$H_{5}(x) = f[z_{0}] + f[z_{0}, z_{1}](x - z_{0}) + f[z_{0}, z_{1}, z_{0}](x - z_{0})(x - z_{1})$$

$$+ f[z_{0}, z_{1}, z_{2}, z_{3}](x - z_{0})(x - z_{1})(x - z_{2})$$

$$+ f[z_{0}, z_{1}, z_{2}, z_{3}, z_{4}](x - z_{0})(x - z_{1})(x - z_{2})(x - z_{3})$$

$$+ (f[z_{0}, z_{1}, z_{2}, z_{3}, z_{4}, z_{5}](x - z_{0})(x - z_{1})(x - z_{2})(x - z_{3})(x - z_{4}).$$

$$\begin{aligned} H_5(1.5) &= 0.6200860 + (-0.5220232)(0.2) + (-0.0897427)(0.2)^2 \\ &+ 0.0663657(0.2)^2(-0.1) + 0.0026663(0.2)^2(-0.1)^2 \\ &+ (-0.0027738)(0.2)^2(-0.1)^2(-0.4) \\ &= 0.5118277. \end{aligned}$$

Introducción

Polinomio de aproximación de Lagrange

Polinomios de aproximación de Newton

Polinomios de aproximación de Hermite

Polinomios de aproximación por splines o travadors

Splines o polinomios trazadores

es es orden a > 1 pueden oscila

- ► En algunos casos, los polinomios de orden $n \gg 1$ pueden oscilar erráticamente.
- Una pequeña fluctuación en un subconjunto del intervalo puede inducir fluctuaciones grandes en el intervalo completo.
- Para resolver este problema se pueden usar polinomios de orden menor en subintervalos del intervalo:
 - La forma más sencilla es usar polinomios lineales, aunque estos no son diferenciables en los extremos del subintervalo.
 - ► También se pueden hacer polinomios cuadráticos en $[x_0, x_1]$, $[x_1, x_2]$, etc., esto permitiría obtener polinomios derivables en $[x_0, x_n]$.
 - La opción más común es usar un polinomio cúbico, aunque no se asume que las derivadas del polinomio coincidan con las de la función.

Splines lineales o polinomios trazadores lineales

▶ Para un número n de puntos $(x_n, f(x_n))$, se construyen n-1 funciones de la forma

$$S_i(x) = ax + b,$$

con cada par de puntos.

Con esto se debe construir un polinomio de la forma

$$S(x) = \begin{cases} S_0(x), & x \in [x_0, x_1) \\ S_1(x), & x \in [x_1, x_2) \end{cases}$$

$$\vdots$$

$$S_{n-2}(x), & x \in [x_{n-2}, x_{n-1}) \\ S_{n-1}(x), & x \in [x_{n-1}, x_n) \end{cases}$$

Splines cuadráticos o polinomios trazadores cuadráticos

▶ Para un número n de puntos $(x_n, f(x_n))$, se construyen n-1 funciones de la forma

$$S_i(x) = ax^2 + bx + c.$$

Esta construcción tiene la ventaja de que S(x) es continua porque

- \triangleright $S_i(x)$ debe ser continua.
- La derivada en un punto siempre debe coincidir para ambos lados de la función.
- Por el número de parámetros que se usan, se necesita el valor de la derivada en algún punto del intervalo para resolver el sistema de ecuaciones.

Splines cúbicos o polinomios trazadores cúbicos (I)

▶ Se usa $S_i(x)$ con la forma de un polinomio cúbico, es decir

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

con cuatro constantes a_j , b_j , c_j y d_j .

- Esto permite que S(x) sea continuamente diferenciable en el intervalo hasta la segunda derivada.
- Sin embargo, no se debe asumir que las derivadas de S(x) coinciden con las de la función f(x).
- Hay que tomar en cuenta las condiciones de frontera: se pueden hacer polinomios naturales (o libres, o free) o polinomios sujetos (o clamped).

Splines cúbicos o polinomios trazadores cúbicos (II)

- ▶ Dada una función f definida en [a, b] y un conjunto de puntos $\{x_0, \dots, x_n\}$, el polinomio debe cumplir con estas condiciones
 - (a) S(x) es un polinomio cúbico, igual a $S_j(x)$ en el intervalo $[x_j, x_{j+1}]$ para j = 0, 1, ..., n-1.
 - (b) $S_j(x_j) = f(x_j)$, y $S_j(x_{j+1}) = f(x_{j+1})$.
 - (c) $S_{j+1}(x_{j+1}) = S_j(x_{j+1}).$
 - (d) $S'_{i+1}(x_{i+1}) = S'_i(x_{i+1})$.
 - (e) $S_{i+1}''(x_{i+1}) = S_i''(x_{i+1})$.
 - (f) Los splines naturales cumplen con $S''(x_0) = S''(x_n) = 0$, mientras que los splines sujetos cumplen con $S'(x_0) = f'(x_0)$ y con $S'(x_n) = f'(x_n)$.

Construcción de un spline cúbico (I)

- Un spline cúbico para n subintervalos requiere 4n constantes.
- Supongamos que tomamos

$$S_j(x) = \underbrace{a_j}_{j} + \underbrace{b_j}_{j}(x - x_j) + \underbrace{c_j}_{j}(x - x_j)^2 + \underbrace{d_j}_{j}(x - x_j)^3,$$
 para $j = 0, 1, \ldots, n-1$.

Como $S_j(x_j) = a_j = f(x_j)$, entonces por la condición (c), $a_{j+1} = S_{j+1}(x_{j+1}) = S_j(x_{j+1})$

$$\underline{a_{j+1}} = \underline{a_j} + b_j(x_{j+1} - x_j) + c_j(x_{j+1} - x_j)^2 + d_j(x_{j+1} - x_j)^3,$$

para $j = 0, 1, \dots, n - 2$.

▶ Si $h_j \equiv x_{j+1} - x_j$, se tiene

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3,$$

para
$$i = 0, 1, ..., n - 2$$

Construcción de un spline cúbico (II)

▶ Ahora, con $b_n = S'(x_n)$ se tiene que

$$S'_j(x) = b_j + 2c_j(x - x_j) + 3d_j(x - x_j)^2,$$

que implica que $S_j'(x_j) = b_j$ para $j = 0, 1, \dots, n-1$.

Al aplicar la condición (d), $S'_{j+1}(x_{j+1}) = S'_j(x_{j+1})$, se tiene

$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2,$$

para j = 0, 1, ..., n - 2.

Ahora, con $c_n = S''(x_n)/2$ y aplicando la condición (e), $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$ tenemos $c_{j+1} = c_j + 3d_j h_j,$

para $j = 0, 1, \dots, n - 2$.

Construcción de un spline cúbico (III)

▶ Resolviendo para di en la ecuación anterior, se tiene

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}),$$

 $b_{j+1} = b_j + h_j (c_j + c_{j+1}),$

para $j = 0, 1, \dots, n - 2$.

La relación final, despejando b_i de la penúltima ecuación y sustituyéndola en la última ecuación genera el sistema de ecuaciones donde solamente se desconocen los c_i

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_j c_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}),$$

para
$$j = 0, 1, 2, \dots, n - 2$$
.

Construcción un spline cúbico (III)

- ▶ Del sistema de ecuaciones anterior se encuentran los valores de c_i.
- Conociendo los valores de c_j se pueden determinar los valores de b_j y de d_j.
- ▶ Conociendo los valores de c_j y b_j se pueden determinar los valores de a_j
- ▶ De modo que, cuando se han encontrado los 4n parámetros, ya es posible definir $S_j(x)$ en cada subintervalo y esto determina el valor del polinomio S(x) para todo el intervalo.

Ejemplo 1 (I)

Construya un spline cúbico natural que pase por los puntos (1,2), (2,3) y (3,5).

► El spline cúbico es

$$S(x) = \begin{cases} S_0(x), & x \in [1,2) \\ S_1(x), & x \in [2,3) \end{cases}$$

donde

$$S_0(x) = a_0 + b_0(x-1) + c_0(x-1)^2 + d_0(x-1)^3,$$

$$S_1(x) = a_1 + b_1(x-2) + c_1(x-2)^2 + d_1(x-2)^3.$$

► Es decir, ocho constantes que hay que determinar.

Ejemplo 1 (II)

 Cuatro condiciones aparecen porque los splines deben coincidir con los nodos, entonces

$$a_0 = f(1),$$
 $f(2) = a_0 + b_0 + c_0 + d_0,$
 $a_1 = f(2),$ $f(3) = a_1 + b_1 + c_1 + d_1.$

▶ Otras dos condiciones se obtienen porque $S_0'(2) = S_1'(2)$ y $S_0''(2) = S_1''(2)$, entonces

$$b_1 = b_0 + 2c_0 + 3d_0,$$

$$c_1 = c_0 + 3d_0.$$

Ejemplo 1 (III)

Las últimas dos condiciones se obtienen porque el spline es natural, $S_0''(1) = 0$ y $S_0''(3) = 0$, entonces

$$c_0 = 0,$$
 $c_1 + 3d_1 = 0.$

Así que

$$S(x) = \begin{cases} 2 + \frac{3}{4}(x-1) + \frac{1}{4}(x-1)^3, & x \in [1,2) \\ 3 + \frac{3}{2}(x-2) + \frac{3}{4}(x-2)^2 - \frac{1}{4}(x-2)^3, & x \in [2,3) \end{cases}$$

Ejemplo 2 (I)

Construya un spline cúbico sujeto que pase por los puntos (1,2), (2,3), (3,5) y que cumple con S'(1) = 2 y S'(3) = 1.

► El spline cúbico es

$$S(x) = \begin{cases} S_0(x), & x \in [1, 2) \\ S_1(x), & x \in [2, 3) \end{cases}$$

donde

$$S_0(x) = a_0 + b_0(x-1) + c_0(x-1)^2 + d_0(x-1)^3,$$

$$S_1(x) = a_1 + b_1(x-2) + c_1(x-2)^2 + d_1(x-2)^3.$$

► Es decir, ocho constantes que hay que determinar.

Ejemplo 2 (II)

 Cuatro condiciones aparecen porque los splines deben coincidir con los nodos, entonces

$$a_0 = f(1),$$
 $f(2) = a_0 + b_0 + c_0 + d_0,$
 $a_1 = f(2),$ $f(3) = a_1 + b_1 + c_1 + d_1.$

▶ Otras dos condiciones se obtienen porque $S_0'(2) = S_1'(2)$ y $S_0''(2) = S_1''(2)$, entonces

$$b_1 = b_0 + 2c_0 + 3d_0,$$

 $c_1 = c_0 + 3d_0.$

Ejemplo 2 (III)

Las últimas dos condiciones se obtienen porque el spline es sujeto, $S_0''(1) = 2$ y $S_0''(3) = 1$, entonces

$$b_0 = 2, \qquad b_1 + 2c_1 + 3d_1 = 1$$

Así que

$$S(x) = \begin{cases} 2 + 2(x - 1) - \frac{5}{2}(x - 1)^2 + \frac{3}{2}(x - 1)^3, & x \in [1, 2) \\ 3 + \frac{3}{2}(x - 2) + 2(x - 2)^2 - \frac{3}{2}(x - 2)^3, & x \in [2, 3) \end{cases}$$

¡Muchas gracias!

Contacto: Giovanni Ramírez García, PhD ramirez@ecfm.usac.edu.gt http://ecfm.usac.edu.gt/ramirez