Algortihmic complexity

How do we define what degree of complexity an algorithm has?

- Time complexity: running time of the algorithm
- Space complexity: how much memory is it using
- Size of input data: number of items, number of bits

Random access machine

- Arithmetic: addition, subtraction, multiplication
- Control: branch, subroutine call, return
- Data movement: load, store, copy
- data types: char, integer and floating point (decimal)

Analysis of insertion sort

```
for i=2 to n do

j = i-1;

t = A[i];

while j>0 \cdot t<A[j] do

A[j+1] = A[j];

j = j-1;

A[j+1] = t;
```

Execution of a line costs time. Each line has a cost of \mathbf{c} . This cost is multiplied by as many elements have to be processed by the algorithm. Inside loops, we use the notation \mathbf{t}_i . The sum of all multiplications between c, n and t_i gives as the exact running time of insertion sort.

Best, worst and average case

Considering insertion sort, our best case option is that the array is already sorted: $t_i=1$

$$T(n) = c_1 n + (c_2 + c_3 + c_4 + c_7)(n-1) = an + b$$

In the worst case, our array is reverse sorted: $t_i=i$

$$T(n) = c_1 n + (c_2 + c_3 + c_7) + c_4 (\frac{n(n+1)}{2} - 1) + (c_5 + c_6) \frac{(n-1)n}{2} = an^2 + bn + c_6 + c$$

We usually focus on the worst case running time, due to following reasons:

- It guaranted to not take longer
- It occurs fairly often
- The average case is often close to the worst case

Example: Binary search

```
i = 1;
while <= n and A[i] != v do i = i+1;
if i <= n then return i else return NIL;</pre>
```

- Worst case: n (The element we are looking for is at the end of the array A[1..n])
- Average case: n/2
- Best case: 0 (The element is not in the array)

Correctness

An algorithm is correct when:

- it produces the desired output for any legal input (partial correctness)
- it terminates (total correctness)
- Assertion: statement about the state before execution of the algorithm
- Preconditions: assertion about the input, must be valid before execution
- Postconditions: assertion about the output, must be valid after execution

Loop invariants

- Intialization: true before first iteration
- Maintainence: true before an iteration and then true after iteration
- Termination: show that algorithm is correct

Let's look at the **initialization** property. We can assume that the slice contains at least two elements since the loop wouldn't execute otherwise. (Nor is this needed since a slice with at most one element is sorted already.) Before executing the loop, the invariant states "A[0..0] contains the same elements as the original subarray A[0..0], but in sorted order". This is clearly true.

To verify the **maintenance** property, we need to take a closer look at the code. We can assume that the invariant holds before the loop, i.e. A[0..j-1] is sorted, and only need to check that the code inserts the element A[j] in the correct position. This is achieved by moving all elements A[j-1], A[j-2],... larger than A[j] one step to the right and then inserting A[j] in its proper position.

To achieve the **termination** property, the invariant should state that the array is sorted when the for loop terminates. Check.

Check here for more.

Asymptotic complexity

Asymptotic complexity helps us find out how the running time increases, with the size of the input.

- ullet Big O notation: Upper bound, used for worst case analysis.
- Big Ω notation: Lower bound, used for best-case analysis
- Big Θ notation: Tight bound (range between upper and lower bound), used for average-case analysis

different time complexity classes

					1 /				
low west									high
	$\log^2 n$	\sqrt{n}	n	$n \log n$	$n \log^2 n$	$n^{3/2}$	n^2	2^n	n!
3	9	3	10	30	90	30	100	1e4	4e6
6	36	10	100	600	3600	1000	1e4	1e30	9e157
9	81	31	1000	9000	8e5	3e4	1e6	1e301	∞
13	169	100	1e4	1e5	2e6	1e6	1e8	∞	∞
16	256	316	1e5	2e6	3e7	3e7	1e10	∞	∞
19	361	1000	1e6	2e7	4e8	1e9	1e12	∞	∞
binary			lin	ear					

Check here for more.

TODO: Add one-pager summaries for all algorithms showing their strengths and weaknesses, visual representation, optimized usage, big O analysis, code representation with links to HackerRank exercises.

Special case analysis