Der Hauptsatz der Differential- und Integralrechnung nach Lebesgue 2

Funktionen beschränkter Variation

Manuel Hinz

22.06.2022

Definition 1. Eine Funktion $g:[a,b] \to \mathbb{R}$ heißt von beschränkter Variation (v.b.V.) auf [a,b], wenn ein M>0 existiert, s.d. für jede Zerlegung $Z=\{x_k\}_{k=0}^n$ von [a,b] stets Folgendes gilt:

$$V(g,Z) := \sum_{k=1}^{n} |g(x_k) - g(x_{k-1})| \le M$$

Sei

$$V_a^b(g) \coloneqq \sup_{Z \text{ Zerlegung von } [a,b]} V(g,Z)$$

die **Totalvariation von** g **auf** [a,b] und außerdem $\mathbf{BV}[a,b]$ die Menge der Funktionen von beschränkter Variation auf [a,b].

Satz 2. BV[a,b] ist eine Unteralgebra von der Menge der beschränkten Funktionen B[a,b] und für $\forall f,g \in BV[a,b]$ gilt:

- 1. $||f||_{\infty} \leq |f(a)| + V_a^b(f)$
- 2. $V_a^b(f+g) \le V_a^b(f) + V_a^b(g)$
- 3. $V_a^b(f \cdot g) \le ||f||_{\infty} V_a^b(g) + ||g||_{\infty} V_a^b(f)$

Beweis. Sei $x \in [a,b]$. Per Definition gilt $f(a)-f(x) \leq V_a^b(f)$. Da außerdem $|f(x)|-|f(a)| \leq |f(a)-f(x)|$ gilt, folgt $|f(x)| \leq |f(a)|+V_a^b(f)$ und damit $\mathrm{BV}[a,b] \subset B[a,b]$. Aus der Linearität folgt, dass außerdem $\forall c \in \mathbb{R} : c \cdot f \in \mathrm{BV}[a,b]$ und $V_a^b(c \cdot g) = |c|V_a^b(g)$. Sei $Z = \{x_k\}_{k=0}^n$ eine beliebige Zerlegung des Intervals. Dann gilt folgende Abschätzung:

$$\sum_{k=1}^{n} |(f+g)(x_k) - (f+g)(x_{k-1})| \le \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| + \sum_{k=1}^{n} |g(x_k) - g(x_{k-1})|$$

$$\le V_a^b(f) + V_a^b(g) \implies f + g \in BV[a, b]$$

Diese Rechnung zeigt insb. auch (2.).

Betrachten wir nun das Produkt fg zweier Funktionen von beschränkter Variation:

$$|f(x_k)g(x_k) - f(x_{k-1})g(x_{k-1})| = |f(x_k)g(x_k)\underbrace{-f(x_k)g(x_{k-1}) + f(x_k)g(x_{k-1})}_{=0} - f(x_{k-1})g(x_{k-1})|$$

 $|f(x_k)| \cdot |g(x_k) - g(x_{k-1})| + |g(x_{k-1})| \cdot |f(x_k) - f(x_{k-1})| \le ||f||_{\infty} |g(x_k) - g(x_{k-1})| + ||g||_{\infty} |f(x_k) - f(x_{k-1})|$ Es folgt

$$\sum_{k=1}^{n} |f(x_k)g(x_k) - f(x_{k-1})g(x_{k-1})| \le ||f||_{\infty} (g(x_k) - g(x_{k-1})) + ||g||_{\infty} (f(x_k) - f(x_{k-1})).$$

Daher folgt (3.) und $fg \in BV[a, b]$.

Bemerkung. Aus dem obigen Beweis folgt, dass $||f||_{BV} := V_a^b f$ eine Halbnorm auf BV ist. Insb. ist es eine Norm auf $\{f \in BV[a,b] : f(a) = 0\}$, da nun $||\cdot||_{BV}$ auch die Definitheit erfüllt.

Beispiele auf [0,1]

Beispiel. Polynome sind in BV[0,1]

Beispiel.

$$f(x) := \begin{cases} 0 & x = 0\\ x \sin(\frac{1}{x}) & x \neq 0 \end{cases}$$

ist nicht in BV[0,1].

Satz 3. 1. $\mathcal{T}[a,b] \subset BV[a,b]$

- 2. Jede monotone Funktion $f:[a,b] \to \mathbb{R}$ ist in BV[a,b]
- 3. Sei $f \in \mathcal{L}^1[a,b]$ und $F(x) := \int_a^x f(t)dt$. Dann ist $F \in BV[a,b]$ und es gilt

$$V_a^b F = \int_a^b |f(t)| dt.$$

Beweis. 1.:

Nach dem vorherigen Satz reicht es zu zeigen, dass Indikatorfunktionen in BV[a, b] sind. Für diese gilt:

$$V_a^b(\mathbf{1}_{[c,d]}) \le 2.$$

2.:

Für eine Zerlegung $\{x_k\}_{k=0}^n$ von [a,b] gilt für eine monoton (o.B.d.A. wachsende) Funktion f:

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} f(x_k) - f(x_{k-1}) = f(b) - f(a) < \infty$$

3.1: $V_a^b F \leq \int_a^b |f| dt$:

$$\sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| = \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f(t) dt \right| \le \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t)| dt = \int_{a}^{b} |f(t)| dt$$

3.2: Gleichheit für $f \in C^0[a,b]$:

Sei $f \in C^0[a, b]$. Dann gilt:

$$\sum_{k=1}^{n} |F(x_k) - F(x_{k-1})| \stackrel{\text{Mittelwertsatz}}{=} \sum_{k=1}^{n} |f(\zeta_k)(x_k - x_{k-1})|$$

Für $|x_j - x_{j-1}| \to 0$:

$$\rightarrow \int_a^b |f(x)| dx$$

3.3: Gleichheit im Allgemeinen:

Sei nun $f \in \mathcal{L}^1[a,b]$: Für jedes $\epsilon > 0$ wählen wir ein $g \in C^0[a,b]$ mit

$$||f - g||_{L^1} < \epsilon/2.$$

Dies funktioniert, da $C^0[a,b]$ dicht in $\mathcal{L}^1[a,b]$ ist. Sei nun $G(x) \coloneqq \int_a^x g(t)dt$.

$$\left| V_a^b F - \int_a^b |f| dt \right| \stackrel{\pm V_a^b G \text{ und } \Delta}{\leq} \left| V_a^b F - V_a^b G \right| + |\|g\|_{L^1} - \|f\|_{L^1}|$$

Dann folgt mit der inversen Dreiecksungleichung:

$$\leq V_a^b(F-G) + \|g-f\|_{L^1} \stackrel{3.1}{\leq} \int_a^b |f(x) - g(x)| \, dx + \epsilon/2 = \epsilon$$

Beweis. Polynome sind auf [0,1] v.b.V.

Sei $p(x) = \sum_{k=0}^{n} a_k x^k$. Dann ist $p \in BV[a, b]$ und

$$V_0^1(p) = \int_0^1 |p'(x)dx| \le 1 \cdot ||p'||_{\infty} < \infty$$

 $x\sin(\frac{1}{x})$ ist auf [0,1] nicht v.b.V.

$$V_0^1(f) \ge V(f, Z_n) = \sum_{k=1}^n \frac{1}{k\pi + \frac{\pi}{2}} + \frac{1}{k\pi - \frac{\pi}{2}}$$

Übung. Für welche $a,b \in \mathbb{R}_+$ ist $x^a \sin(x^{-b}) \in BV[0,1]$?

Satz 4. Sei $f \in BV[a,b]$ und a < c < b. Dann sind $f|_{[a,c]}, f|_{[c,b]}$ von beschränkter Variation und

$$V_a^b f = V_a^c f + V_c^b f$$

Beweis. Sei $Z\coloneqq (x_k)_{k=0}^n$ eine Zerlegung von [a,b]und o.B.d.A. $c=x_r\in Z.$ Dann gilt:

$$\sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{r} |f(x_k) - f(x_{k-1})| + \sum_{k=r+1}^{n} |f(x_k) - f(x_{k-1})| \le V_a^c f + V_c^b f$$

Ebenso existieren Zerlegungen $Z_1 \coloneqq (x_k)_{k=0}^{n_1}$ von [a,c] und $Z_2 \coloneqq (y_k)_{k=0}^{n_2}$ von [c,b] s.d.:

$$\sum_{k=1}^{n_1} |f(x_k) - f(x_{k-1})| > V_a^c f - \epsilon/2$$

und

$$\sum_{k=1}^{n_2} |f(y_k) - f(y_{k-1})| > V_c^b f - \epsilon/2$$

Daher gilt dann für $Z := Z_1 \cup Z_2$

$$\sum_{k=1}^{n_1+n_2} |f(x_k) - f(x_{k-1})| \ge V_a^c f + V_c^b f - \epsilon \implies V_a^b f \ge V_a^c f + V_c^b f$$

Insb. folgt, dass $V_a^c f, V_c^b f$ endlich sind.

Satz 5. Sei $f \in BV[a,b]$ und $V(x) \coloneqq \begin{cases} 0 & x = a \\ V_a^x f & a < x \le b \end{cases}$.

Ist f (links-, rechts-) stetig in x^* , so auch V.

Beweis. Sei δ s.d. $x^* - x < \delta \implies |f(x^*) - f(x)| \le \epsilon/2$. Für eine Zerlegung $Z := (x_k)_{k=0}^n$ s.d. $x_k - x_{k-1} < \delta$ und

$$V_a^{x*}(f) - \sum_{k=1}^n |f(x_k) - f(x_{k-1})| \le \epsilon/2$$

gilt:

$$V_a^{x^*} f - \sum_{k=1}^{n-1} |f(x_k) - f(x_{k-1})| < \epsilon \implies V(x^*) - V(x_{n-1}) < \epsilon$$

Den Fall $x^* < x$ beweist man analog und die Aussage folgt.

Satz 6. Genau dann ist $f:[a,b] \to \mathbb{R}$ v.b.V. wenn es monotone Funktionen $f_1, f_2:[a,b] \to \mathbb{R}$ gibt s.d.

$$f = f_1 - f_2$$
.

Ist f stetig, so können auch f_1, f_2 stetig gewählt werden.

Beweis. \Longrightarrow :

Sei $f \in BV[a, b]$ und $f_1(x) := V_a^x f$. Dann ist f_1 monoton, denn für $x_1 < x_2$ gilt:

$$V_a^b(f) = V_a^{x_1}(f) + V_{x_1}^{x_2}(f) + V_{x_2}^b(f)$$

$$\implies f_1(x_1) = V_a^{x_1}(f) \le V_a^{x_1}(f) + V_{x_1}^{x_2}(f) = V_a^{x_2}(f) = f_1(x_2)$$

Sei nun $f_2 := f_1 - f$:

$$f_2(x_2) - f_2(x_1) = f_1(x_2) - f(x_2) - f_1(x_1) + f(x_1) \ge 0,$$

da

$$\underbrace{V_a^{x_1}(f)}_{=f_1(x_1)} + f(x_2) - f(x_1) \le V_a^{x_1}(f) + |f(x_2) - f(x_1)| \le \underbrace{V_a^{x_2}(f)}_{=f_1(x_2)}$$

D.h. f, g sind monotone Funktionen und per Definition gilt $f_1 - f_2 = f_1 - (f_1 - f) = f$.

Seien o.B.d.A. f_1, f_2 monoton wachsend. Nach Satz 3 sind sie dann auch v.b.V. und daher nach Satz 2 auch $f_1 - f_2 = f$.

Die Stetigkeitsaussage folgt aus Satz 5.

Satz 7. Funktionen von beschränkter Variation sind integrierbar und fast überall differenzierbar.

Beweis. Nach Satz 6 lassen sich solche Funktionen als Differenz zweier monotoner Funktionen darstellen. Diese sind auf [a, b] integrierbar und nach Lebesgue f.ü. differenzierbar.

Satz 8 (Fatou). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge nicht-negativer Funktionen, welche auf einer Menge A μ -integrierbar sind und zusätzlich

$$\int_{A} f_n(x) d\mu \le M$$

erfüllen. Wenn diese Funktionen f.ü. gegen eine Funktion f konvergieren, so ist auch f μ -integrierbar auf A und

$$\int_{A} f(x)d\mu \le M$$

Beweis. Beweis in [KF70] im Kapitel Integration (Unterkapitel Further properties of the Lebesgue integral (Theorem 3)).

Satz 9. Sei $F:[a,b] \to \mathbb{R}$ monoton wachsend. Dann ist $F' \in \mathcal{L}^1[a,b]$ und es gilt

$$\int_{a}^{b} F'(t)dt \le F(b) - F(a)$$

Beweis. Sei

$$\Phi_n(t) := n \left(F \left(t + \frac{1}{n} \right) - F(t) \right)$$

dabei erweitern wir F s.d. für $b+1 \ge t > b$: F(t) = F(b). Per Definition gilt dann

$$F'(t) = \lim_{n \to \infty} \Phi_n(t)$$
 f.ü. auf $[a, b]$.

Da $F \in \mathcal{L}^1[a,b]$ ist auch Φ_n integrierbar, dann folgt:

$$\int_{a}^{b} \Phi_{n}(t)dt = n \int_{a}^{b} \left(F\left(t + \frac{1}{n}\right) - F(t) \right) dt = n \left(\int_{a + \frac{1}{b}}^{b + \frac{1}{n}} F(t)dt - \int_{a}^{b} F(t)dt \right)$$

Da F monoton wachsend ist und für t > b : F(t) = F(b) folgt:

$$= n \left(\int_b^{b+\frac{1}{n}} F(t)dt - \int_a^{a+\frac{1}{n}} F(t)dt \right) \le F(b) - F(a).$$

Die Aussage folgt dann aus Satz 8.

Beispiel (Cantorsche singuläre Funktionen: "Devil's staircase"). Sei $C_0 = [0, 1], C_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right]$ und sei C_n durch C_{n-1} so definiert, dass man für jedes Intervall von C_{n-1} das mittlere Drittel entfernt. Dann ist $C = \bigcap_{n \geq 0} C_n$ die Cantormenge und wir bemerken, dass die Länge der Intervalle von $C_n \left(\frac{2}{3}\right)^n$ ist. Sei dann

$$f_n(x) := \int_0^x \left(\frac{3}{2}\right)^n \cdot \mathbb{1}_{C_n}(t)dt.$$

Man sieht, dass für alle $n \in \mathbb{N}$: $f_n(0) = 0$ und $f_n(1) = 1$ gilt. Des Weiteren sind die f_n stetig, konstant auf $[0,1] \setminus C_n$ und affin auf C_n mit einer Steigung von $\left(\frac{2}{3}\right)^n$ und daher insb. monoton wachsend. Sei I eines der Intervalle von C_n . Dann ist

$$\int_{I} \left(\frac{3}{2}\right)^{n} \cdot \mathbb{1}_{C_{n}}(t)dt = \int_{I} \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t)dt = 2^{-n}.$$

Daher gilt $f_{n+1}(x) = f_n(x)$ für $x \notin C_n$. Da C abgeschlossen ist gibt es für $x \notin C$ ein offenes Intervall in $C^c = \bigcup_{n \geq 0} C_n^c$. Insb. gibt es ein $N \in \mathbb{N}$ s.d. für alle $n \geq N$ $x \in C_n^c$ und $f_n(x) = f_N(x)$. Die Folge konvergiert also punktweise auf C^c .

Außerdem gilt für b ein Endpunkt einer der Intervalle von C_n :

$$\int_0^b \left(\frac{3}{2}\right)^n \cdot \mathbb{1}_{C_n}(t)dt = \int_0^b \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t)dt.$$

Sei $I = [a, b] \ni x$ wieder ein Intervall in C_n . Dann folgt:

$$|f_{n}(x) - f_{n+1}(x)| = \left| \int_{0}^{x} \left(\frac{3}{2}\right)^{n} \cdot \mathbb{1}_{C_{n}}(t) - \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) dt \right| = \left| \int_{a}^{x} \left(\frac{3}{2}\right)^{n} \cdot \mathbb{1}_{C_{n}}(t) - \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) dt \right|$$

$$\leq \int_{a}^{x} \left| \left(\frac{3}{2}\right)^{n} \cdot \mathbb{1}_{C_{n}}(t) - \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) dt \right| dt \leq \int_{a}^{b} \left| \left(\frac{3}{2}\right)^{n} \cdot \mathbb{1}_{C_{n}}(t) - \left(\frac{3}{2}\right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) dt \right| dt$$

Nun ist für t aus dem ersten oder dritten Drittel von [a,b]

$$\left| \left(\frac{3}{2} \right)^n \cdot \mathbb{1}_{C_n}(t) - \left(\frac{3}{2} \right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) \right| = \left(\frac{3}{2} \right)^{n+1} - \left(\frac{3}{2} \right)^n$$

und für t aus dem zweiten Drittel

$$\left| \left(\frac{3}{2} \right)^n \cdot \mathbb{1}_{C_n}(t) - \left(\frac{3}{2} \right)^{n+1} \cdot \mathbb{1}_{C_{n+1}}(t) \right| = \left(\frac{3}{2} \right)^n.$$

Die Differenz auf dem Intervall (von Länge 3^{-n}) kann also gegen $\left(\frac{3}{2}\right)^{n+1}$ abgeschätzt werden und daher können wir das obige Integral durch $3^{-n}\left(\frac{3}{2}\right)^{n+1}$ abschätzen. Es folgt für $x \in C_n$:

$$|f_n(x) - f_{n+1}(x)| \le \frac{3}{2} \cdot 2^{-n} < 2^{-n+1}$$

Insb. gilt diese Abschätzung dann für alle $x \in [0,1]$ und f_n ist cauchy. Wir wissen also Folgendes über f:

•
$$f_n \stackrel{glm.}{\to} f$$

- f ist stetiq
- $\forall x \in C^c : f'(x) = 0$ und C ist eine Nullmenge bzgl. Lebesgue.
- f(0) = 0
- f(1) = 1

Insb. zeigt f also, dass im vorherigen Satz im Allgemeinen keine Gleichheit gilt!

Vorbereitung für den nächsten Vortrag

Satz 10. Sei X ein metrischer Raum. Dann sind äquivalent:

- 1. Es gibt eine abzählbare dichte Teilmenge $A \subset X$.
- 2. Es gibt abzählbar viele offene Teilmengen $U_n \subset X$ s.d. für $V \subset X$ offen und $x \in V$, ein n mit $x \in U_n \subset V$ existiert.

Beweis. $1 \implies 2$:

Wähle $U_{a,k} := B_a(\frac{1}{k})$ für $k \in \mathbb{N}$ und $a \in A$.

 $2 \implies 1$:

Wähle für $n \in \mathbb{N}$ ein bel. $a \in U_n$ und damit $A := \{a_n : n \in \mathbb{N}\}.$

Definition 11. Wenn ein metrischer Raum X eine der äquivalenten Bedingungen erfüllt, so heißt X **seperabel**. Manchmal werden auch die Formulierungen

- X hat eine abzählbare Basis der Topologie $((U_n)_{n\in\mathbb{N}})$
- X erfüllt das zweite Abzählbarkeitsaxiom

benutzt.

Beispiel. Beispiele für seperable Räume sind:

- Q
- \bullet \mathbb{R}^n
- $L^1(\mathbb{R})$

Satz 12. Sei X ein seperabler metrischer Raum und $Y \subset X$. Dann ist auch Y seperabel.

Beweis. Seien $(U_n)_{n\in\mathbb{N}}$ die Basis aus der zweiten Bedingung. Dann ist die Menge der $V_n := U_n \cap Y$ eine Basis von Y.

Definition 13. Ein metrischer Raum X heißt Lindelöf-Raum, wenn jede offene Überdeckung $(U_i)_{i\in I}$ von X eine abzählbare Teilüberdeckung besitzt.

Bemerkung. Jeder überdeckungskompakte Raum ist ein Lindelöf-Raum.

Satz 14. Jeder seperable metrische Raum ist ein Lindelöf-Raum.

Beweis. Sei $(U_n)_{n\in\mathbb{N}}$ wieder die Basis der Topologie von X und $(V_i)_{i\in I}$ eine offene Überdeckung. Sei $A:=\{n\in\mathbb{N}|\exists i_n\in I:U_n\subset V_{i_n}\}$. Dann ist $(V_{i_n})_{n\in A}$ eine abzählbare Teilüberdeckung, da es für $x\in X$ ein $k\in I$ mit $x\in V_k$ geben muss. Da V_k offen ist, muss es dann auch ein U_l mit

$$x \in U_l \subset V_k$$

geben. Doch dann ist $l \in A$ und damit $U_l \subset V_{i_l} \implies x \in V_{i_l}$. Damit wurde eine abzählbare Überdeckung gefunden.

Bemerkung. Damit ist also jede Teilmenge $Y \subset \mathbb{R}^n$ als metrischer Raum seperabel und ein Lindelöf-Raum.

Bemerkung. Die Struktur dieses Vortrags basiert auf [Les03]. Die Beweise stammen aus [Les03], [KF70] und [Kem] (Beweis und Konstruktion: Devil's staircase), wurden jedoch teilweise etwas ausführlicher aufgeschrieben. Für einen kurzen und anschaulichen Beweis der Übung verweise ich auf [zha].

Literatur

[Kem] Kemp, Todd: The Devil's Staircase

[KF70] KOLMOGOROV, A. N.; FOMIN, S. V.: Introductory real analysis. 1970

[Les03] Lesch, M.: Seminar zur Analysis, die Lebesqueschen Differentationssätze. 2003

[zha] ZHANG, jy (https://math.stackexchange.com/users/1047477/jy-zhang): When is $F(x) = x^a \sin(x^{-b})$ with F(0) = 0 of bounded variation on [0,1]? Mathematics Stack Exchange. https://math.stackexchange.com/q/4426619. - URL:https://math.stackexchange.com/q/4426619 (version: 2022-05-08)