

COMPARISONS

Why

We want language and notation involving order.¹

Comparisons

A *comparison* is a statement (see Statements) involving a partial (which may or may not be total) order.

Notation

Let A be a set. We tend to denote an arbitrary partial order on A by \leq . So (A, \leq) is a partially ordered set.

As usual (see Relations), we write $a \leq b$ to mean $(a, b) \in A$. Alternatively, we write $b \succeq a$ to mean $a \leq b$. In other words, \succeq is the inverse relation (see Converse Relations) of \preceq .

Predecessors and successors

If $a \leq b$ and $a \neq b$, we write $a \prec b$ and say that a precedes b. In this case we call a the predecessor of b. Alternatively, under the same conditions, we write $b \succ a$ and we say that b succeeds a. In this case we call b the successor of a.

Induced partial orders

Of course, the object we have defined and denoted by \prec is a relation on A. It satisfies (i) for no elements x and y do $x \prec y$ and $y \prec x$ hold simultaneously and (ii) if $x \prec y$ and $y \prec z$, then $x \prec z$ (i.e., \prec is transitive). It is worthwhile to observe that if S is a relation satisfying (i) and (ii), then the relation R defined to mean $(a,b) \in S$ or a=b is a partial order on A.

¹In the present edition, this sheet can be thought of as an extended notation section for Orders.

Strict and weak relations

This connection between \leq and \prec can be generalized. The *strict relation* corresponding to a relation R on a set A is the relation S on A defined by $(a,b) \in S$ if $(a,b) \in R$ and $a \neq b$. The *weak relation* corresponding to a relation S' on a set A is the relation R' defined by $(a,b) \in R'$ if $(a,b) \in S'$ or a = b. For this reason, a relation is said to *partially order* a set if it is a partial order or if its corresponding weak relation is one.

