Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 8

- 1. Пусть $z = \frac{\sqrt{3}}{2} \frac{i}{2}$. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{1 \sqrt{3}i}$ имеет аргумент $\frac{23\pi}{18}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-12+11i) + y(-12-5i) = 144-251i \\ x(14-2i) + y(-6-11i) = 112+213i \end{cases}$$

- 3. Найти корни многочлена $-3x^6-36x^5-246x^4-1170x^3-5757x^2-14394x-9594$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=1-5i, x_2=-5+4i, x_3=-3$.
- 4. Даны 3 комплексных числа: -18-22i, -13-24i, 13+10i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}$, $z_2 = -3$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 6 + 6i| < 1\\ |arg(z + 5 + 5i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-5, 0, -2), b = (2, -8, -6), c = (-7, -6, -8). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(8,7,14) и плоскость P:32x+14y+18z+166=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки $A(4, -13, 2), M_1(-3, -10, 9), M_2(6, -1, 9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -26x - 28y - 14z + 178 = 0 \\ -20x - 14y - 17z + 53 = 0 \end{cases} \qquad L_2: \begin{cases} -6x - 14y + 3z - 1321 = 0 \\ -20x + 10y + 4z + 38 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.