FINAL SUBMITTAL

ENERGY ENGINEERING ANALYSIS PROGRAM
LIGHTING SURVEY OF SELECTED BUILDINGS
PINE BLUFF ARSENAL
PINE BLUFF, ARKANSAS

VOLUME IID

APPENDICES

CONTRACT NO. DACA01-94-D-0038 DELIVERY ORDER NO. 0001

PREPARED FOR:

U.S. ARMY CORPS OF ENGINEERS LITTLE ROCK, ARKANSAS

PREPARED BY:

REYNOLDS, SMITH AND HILLS, INC. ENERGY SERVICES DEPARTMENT P.O. BOX 4850 JACKSONVILLE, FLORIDA 32201

PROJECT NO. 6941331001

DiStacks balls by Me college Distribution Unbarity

JUNE 1995

Carlos S. Warren, PhD, PE Project Manager

19971017 258

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakef eld,

Librarian Engineering

VOLUME IID TABLE OF CONTENTS

APPENDIX B (CONT'D)

DETAIL CALCULATIONS

BLDGS 44-100

51-420

51-430

53-160

60-020

60-060

60-070

60-090

60-630

Bldg 44-100 Summary

		ļ										
Replacement System	Number	Fixtures	10	198	3	13	22	11	2			259
Replaceme	Watts/	Fixture	34	69	99	61	69	29	29			
	Fixture	Type	R	F8	FB	FR	<u>ه</u>	W2	W8			Totals
	Total	Watts	12,300	8,840	372	7,134	1,536	1,824	164	675	1,800	34,645
tem	Number	Fixtures	75	65	က	87	16	19	2	6	24	300
Present System	Watts/	Fixture	164	136	124	82	96	96	82	75	75	
	Fixture	Tvoe	L	Ĭ.	F2	1 0	5 -	M4	N V	×	×	Totals

Watts 340 11,682 793 793 649 649

Total

15,048

Prepared by: C. Warren

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100 Type: Indoor

Luminaire Fixture Schedule /RESENT

Project name: Lighting survey
Prepared for: Corps of Engineers

Project #6941331
Date: 3-Jan-95
UPD: 1.4W/Sq.Ft

V/W QTY REMARKS LAMP/BALLAST DESCRIPTION TYPE √ 75 000 F40CW 2'X4' 4L STATIC GRID TROFFER F LENS- .125" NOM PRISMATIC A12 ESB 164 COLUMBIA 2SG440-EXA.125NOM √ 65 2'X4' 3L STATIC GRID TROFFER 000 F40CW F1 LENS- .156" THK PRISMATIC A19 ESB 136 COLUMBIA 2SG340-FH 000 F40CW/U/3 2X2 3L FLUSH STATIC TROFFER F2 LENS-PRISMATIC ACRYLIC PATT-12 ESB 124 COLUMBIA 5PS2*-52-223U √ 87 000 2'X4' 2L STATIC GRID TROFFER F40CW G LENS- .125" THK PRISMATIC A12 ESB 82 COLUMBIA 2SG240-EXA.125NOM **\ 16** 000 7"X4' 2L WET LOCATION WRAP F40CW J STD LENS- PRISMATIC BOTTOM & SIDES 96 COLUMBIA LUN240-WL V 19 000 9"X4' 2L SURFACE TURRET STRIP F40CW M4 OPEN BOTTOM- NO SHIELDING STD 96 COLUMBIA K240-T $\sqrt{2}$ 000 F40CW 5"X4"X4' 2L WALL CORRIDOR WRAP W1 LENS- SMOOTH WHITE ACRYLIC 82 COLUMBIA W240-A 000 75A19/SW 8" PENDANT CYLINDER DOWNLIGHT X OPEN- BLACK BAFFLE 75 PRESCOLITE 1128-930 **\ 24** 000 75A19/SW 8" PENDANT CYLINDER DOWNLIGHT .1 NA OPEN- BLACK BAFFLE 75 PRESCOLITE 1128-930

44-100 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: Lighting survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 13-Mar-95 UPD: 0.6W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	YTQ	REMARKS
 CF	8"1L(VERT)RECESS ROUND DOWNLTE OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE CF123526-462	F26DTT/27K STD	000 - 34 	8	20 w screwins
58	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	154	
FB	2X2 2L FLUSH STATIC TROFFER LENS125"THK PRISMATIC A12 COLUMBIA 5PS2*-52.125-222-EO	FBO31/35K EOCT	000 - 56	3	
FR	2X4 ACRYLIC LENSED TROFFER SILVER ECONOMY REFLECTOR METALOPTICS 24EKSO42EP11	FO32/35K EOCT	000 - 61	13	
J8	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	FO32/35K EOCT	000 - 59	8	
W2	10"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WC240-A	F032/35K EOCT	000	8	
W8	5"X4"X4' 2L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W240-A	FO32/35K EOCT	000	2	

NOTES:

44-100A Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100A Type: Indoor

Luminaire Fixture Schedule /PROPOSED

Project name: Lighting survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 13-Mar-95 UPD: 0.7W/Sq.Ft

	DESCRIPTION	LAMP/BALLAST	V/W	YTQ	REMARKS
CF	8"1L(VERT)RECESS ROUND DOWNLTE OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE CF123526-462	F26DTT/27K STD	000	2	
8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59 	44	
J8	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	FO32/35K EOCT	000 - 59 	14	
W2	10"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WC240-A	FO32/35K EOCT	000 - 59	3	

NOTES:

44-100 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 44-100 Type: Indoor

Project Area Summary

Project name: Lighting survey Prepared for: Corps of Engineers
Prepared by: C. Warren

|Project #6941331 Date: 13-Mar-95 UPD: 0.9W/Sq.Ft

AREA NAME	DIMENSIONS	LUN	MINAIRES	W/SQ.FT	QTY
CAFETERIA	60x109x9Ft	(64)	Type F1 Type F2	1.4	1
CAFETERIA-N	60x109x9Ft	(54)	Type F8 Type FB	0.5	1
FETERIA OFC	20x16x8Ft	(8)	Туре F	4.1	1
CAFETERIA OFC-N	20x16x8Ft	(6)	Type F8	1.1	1
CAFETERIA CONF	20x12x8Ft	(4)	Type F	2.7	1
CAFET. CONF-N	20x12x8Ft	(2)	Type F8	0.5	1
CAFETERIA OFC	12x20x8Ft	(3)	Type F Type F1	2.6	1
CAFETERIA OFC-N	12x20x8Ft	(3)	Туре F8	0.7	1
HALL, RESTROOMS	-	(5)	Туре Х	1.6	1
HALL, RESTRMS-N	12x19x9Ft	(5)	Туре СҒ	0.7	1
ENG/PM OFFICE	12x10x8Ft	(2)	Type F	2.7	2
ENG/PM OFFICE-N	12x10x8Ft	(2)	Type FR	1.0	2
ADMIN AREA	19x30x8Ft	(9)	Type F	2.6	1
ADMIN AREA-N	19x30x8Ft	(9)	Type F8	0.9	1
IRECTOR OFFICE	12x20x8Ft	(4)	Type F	2.7	1
DIRECTOR OFFC-N	12x20x8Ft	(4)	Type F8	1.0]
COFFEE ROOM	13x12x8Ft	(2)	Type F	2.1	

Page 2

4-100 Areas FFEE ROOM-N	13x12x8Ft	(2) Type F8	0.8	1
CAD OFFICE	13x10x8Ft	(2) Type F	2.5	1
	13x10x8Ft	(2) Type F8	0.9	1
 OFFICE 1	14x11x8Ft	(3) Type F	3.2	1
 OFFICE 1-N	 14x11x8Ft	(3) Type FR	1.2	1
OFFICE 2/STAT	10x11x8Ft	(2) Type F	3.0	2
OFFICE 2/STAT-N	10x11x8Ft	(2) Type F8	1.1	2
OFFICE HALL	22x4x8Ft	(2) Type F	3.7	1
OFFICE HALL-N	22x4x8Ft	(2) Type F8	1.3	1
MAIN HALL	59x54x9Ft	(7) Type G (1) Type X	0.2	1
MAIN HALL-N	59x54x9Ft	(1) Type CF (7) Type F8	0.1	1
MAIN OFFICE	15x30x8Ft	(6) Type G	1.1	1
IN OFFICE-N	15x30x8Ft	(6) Type FR	0.8	1
MAIN RESTROOMS	5x7x9Ft	(1) Type X	2.1	2
MAIN RESTROOM-N	5x7x9Ft	(1) Type CF	1.0	2
OFFICE 3	12x30x8Ft	(5) Type F	2.3	1
OFFICE 3-N	12x30x8Ft	(5) Type F8	0.8]
MEN'S NEW LR		(13) Type G	0.6	1
MEN'S NEW LR-N	40x42x8Ft	(13) Type F8	0.5	1
LR ALCOVE	6x11x8Ft	(1) Type G	1.2	
LR ALCOVE-N	6x11x8Ft	(1) Type F8	0.9	
MEN'S NEW SHWR	18x30x8Ft	(5) Type G (2) Type W1	1.1	
MENS NEW SHWR-N	18x30x8Ft	(4) Type F8 (2) Type W8	0.7	
MEN'S OLD LR	60x49x8Ft	(36) Type G	1.0	
L.EN'S OLD LR-N	60x49x8Ft	(36) Type F8	0.7	
LOCKER HALL	60x9x8Ft	(8) Type M4 (1) Type X	1.6	

Page 3 44-100 Areas

44-100 Aleas					
LOCKER RESTROOM	30x16x8Ft	(8)	Type M4	1.6	1
LOCKER RESTRM-N	30x16x8Ft	(4)	Type W2	0.5	1
MEN'S OLD SHWR	28x11x8Ft	(4)	Type J	1.2	2
MENS OLD SHWR-N	28x11x8Ft	(4)	Туре Ј8	0.8	2

NOTES:

44-100A Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100A Type: Indoor

Project Area Summary

Project name: Lighting survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 13-Mar-95 UPD: 1.2W/Sq.Ft

 AREA NAME	DIMENSIONS	LUM	INAIRES	W/SQ.FT	QTY
WOMEN'S LR	32x4x8Ft	(8)	Туре Ј	6.0	1
WOMEN'S LR-N	32x4x8Ft	(6)	Туре Ј8	2.8	1
WOMEN'S SHWR 1	29x10x8Ft	(14)	Type X1	3.6	1
JMENS SHWR 1-N	29x10x8Ft	(5)	Туре Ј8	1.0	1
WOMEN'S SHWR 2	31x11x8Ft	(10)	Type X1	2.2	1
WOMENS SHWR 2-N	31x11x8Ft	(2)	Type CF Type J8	0.7	1
WOMEN'S LOUNGE	20x18x8Ft	(4)	Type G	0.9	1
WOMENS LOUNGE-N	20x18x8Ft	(4)	Type F8	0.7	1
LOUNGE RESTRM	32x12x8Ft	(3)	Type M4	0.8	1
LOUNGE RESTRM-N	32x12x8Ft	(3)	Type W2	0.5	1
SUPPLY STORAGE	29x17x8Ft	(8)	Туре G	1.3	1
SUPPLY STORN	29x17x8Ft	(8)	Type F8	1.0	1
SUPPLY FILING	60x41x8Ft	(23)	Туре F	1.5	1
SUPPLY FILING-N	60x41x8Ft	(23)	Type F8	0.6	1
SUPPLY OFFICE	30x20x8Ft	(2)	Type F Type G	1.5	1
UPPLY OFFICE-N	30x20x8Ft	(9)	Type F8	0.9	1

44-100 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100 Type: Indoor

Project Calculation Summary

Project name: Lighting survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 13-Mar-95 UPD: 0.9W/Sq.Ft

AREA NAME	ME DIMENSIONS GRID NAME		AVE		MAX	MIN
CAFETERIA	60x109x9Ft	Ceiling	<+>	48.6	104.8	15.5
CAFETERIA-N	60x109x9Ft	Ceiling	<+>	32.0	76.7	0.0
AFETERIA OFC	20x16x8Ft	Ceiling	<+>	133.9	191.5	62.4
CAFETERIA OFC-N	20x16x8Ft	Ceiling	<+>	51.5	67.6	27.7
CAFETERIA CONF	20x12x8Ft	Ceiling	<+>	89.8	165.6	31.1
CAFET. CONF-N	20x12x8Ft	Ceiling	<+>	23.6	46.0	6.4
CAFETERIA OFC	12x20x8Ft	Ceiling	<+>	82.3	161.5	21.8
CAFETERIA OFC-N	12x20x8Ft	Ceiling	<+>	34.5	59.0	11.8
HALL, RESTROOMS	12x19x9Ft	Ceiling	<+>	16.1	97.2	0.0
HALL, RESTRMS-N	12x19x9Ft	Ceiling C.U. CALC	<+>	6.4	13.8	0.1
ENG/PM OFFICE	12x10x8Ft	Ceiling	<+>	63.7	98.2	36.2
ENG/PM OFFICE-N	12x10x8Ft	Ceiling	<+>	37.6	57.7	21.7
ADMIN AREA	19x30x8Ft	Ceiling	<+>	74.7	113.8	10.5
ADMIN AREA-N	19x30x8Ft	Ceiling	<+>	38.7	58.7	5.3
DIRECTOR OFFICE	12x20x8Ft	Ceiling	<+>	78.8	145.7	24.9
IRECTOR OFFC-N	12x20x8Ft	Ceiling	<+>	41.1	76.5	12.8
COFFEE ROOM	13x12x8Ft	Ceiling	<+>	52.9	93.8	20.4

Page 2

4-100 Calculations FFEE ROOM-N	13x12x8Ft	Ceiling	<+>	27.7	50.0	10.7
CAD OFFICE	13x10x8Ft	Ceiling	<+>	59.4	98.4	28.9
CAD OFFICE CAD OFFICE-N	13x10x8Ft	Ceiling	- -	31.1	52.5	15.1
office 1	14x11x8Ft	Ceiling	<+>	75.4	146.1	24.6
OFFICE 1-N	14x11x8Ft	Ceiling	<+>	44.3	83.8	15.5
OFFICE 2/STAT	10x11x8Ft	Ceiling	<+>	66.7	118.8	29.0
OFFICE 2/STAT-N		Ceiling	<+>	35.1	62.2	15.1
OFFICE HALL		Ceiling	<+>	56.1	78.1	27.4
OFFICE HALL-N	22x4x8Ft	Ceiling	<+>	29.1	40.5	14.3
MAIN HALL	59x54x9Ft	Ceiling	<+>	4.9	113.9	0.0
MAIN HALL-N	59x54x9Ft	Ceiling	<+>	4.4	49.5	0.0
MAIN OFFICE	15x30x8Ft	Ceiling	<+>	38.2	52.7	22.4
AIN OFFICE-N	15x30x8Ft	Ceiling	<+>	40.9	57.3	23.7
MAIN RESTROOMS	5x7x9Ft	Ceiling	<+>	15.8	87.2	0.6
MAIN RESTROOM-N	5x7x9Ft	Ceiling	<+>	7.3	13.7	4.7
OFFICE 3	12x30x8Ft	Ceiling	<+>	72.7	108.7	35.2
OFFICE 3-N	12x30x8Ft	Ceiling	<+>	37.4	55.9	17.8
MEN'S NEW LR	40x42x8Ft	Ceiling	<+>	25.8	44.8	9.2
MEN'S NEW LR-N	40x42x8Ft	Ceiling	<+>	23.5	43.0	7.3
LR ALCOVE	6x11x8Ft	Ceiling	<+>	29.8	45.7	16.6
LR ALCOVE-N	6x11x8Ft	Ceiling	<+>	28.1	43.9	15.3
MEN'S NEW SHWR	18x30x8Ft	Ceiling	<+>	29.6	80.3	0.0
MENS NEW SHWR-N	18x30x8Ft	Ceiling	<+>	22.1	50.1	0.0
MEN'S OLD LR	60x49x8Ft	Ceiling	<+>	42.8	57.9	10.4
MEN'S OLD LR-N	60x49x8Ft	Ceiling	<+>	39.0	52.1	9.0
OCKER HALL	60x9x8Ft	Ceiling	<+>	27.4	92.6	0.0
LOCKER HALL-N	60x9x8Ft	Ceiling	<+>	12.4	30.2	0.0
LOCKER RESTROOM	30x16x8Ft	Ceiling	<+>	36.7	53.2	15.9

Page 3 44-100 Calculations CKER RESTRM-N	30x16x8Ft 	Ceiling	<+>	18.2	38.7	4.1
MEN'S OLD SHWR	28x11x8Ft	Ceiling	<+>	22.6	36.2	12.2
MENS OLD SHWR-N	28x11x8Ft	Ceiling	<+>	20.2	32.3	10.9
NOTES:						

11 July 14

44-100A Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 44-100A Type: Indoor

Project Calculation Summary

Project name: Lighting survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 13-Mar-95

UPD: 1.2W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	'E	MAX	MIN
	32x4x8Ft	Ceiling	 <+>	63.6	73.8	47.8
WOMEN'S LR		Ceiling	 	41.1	49.5	31.9
WOMEN'S LR-N	32x4x8Ft	Ceiling	 <+>	12.5	17.2	8.9
OMEN'S SHWR 1	29x10x8Ft					
WOMENS SHWR 1-N	29x10x8Ft	Ceiling	<+>	18.4	31.2	9.0
WOMEN'S SHWR 2	31x11x8Ft	Ceiling	<+>	10.1	96.6	0.0
WOMENS SHWR 2-N	31x11x8Ft	Ceiling	<+>	13.1	27.7	0.1
WOMEN'S LOUNGE	20x18x8Ft	Ceiling	<+>	24.1	70.0	0.0
WOMENS LOUNGE-N	20x18x8Ft	Ceiling	<+>	22.3	65.2	0.0
LOUNGE RESTRM	32x12x8Ft	Ceiling	<+>	16.8	26.2	8.1
LOUNGE RESTRM-N	32x12x8Ft	Ceiling	<+>	16.4	30.1	5.0
SUPPLY STORAGE	29x17x8Ft	Ceiling	<+>	45.6	58.5	28.3
SUPPLY STORN	29x17x8Ft	Ceiling	<+>	42.0	52.9	25.9
SUPPLY FILING	60x41x8Ft	Ceiling	<+>	54.0	90.1	4.9
SUPPLY FILING-N	60x41x8Ft	Ceiling	<+>	27 . 7	46.6	2.2
SUPPLY OFFICE	30x20x8Ft	Ceiling	<+>	49.4	168.0	3.9
UPPLY OFFICE-N	30x20x8Ft	Ceiling	<+>	39.2	97.2	3.1

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:06 30-Dec-94 PROJECT: 44-100 AREA: CAFETERIA GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.5 MAX=105. AUE=48.6 AUE/MIN= 3.13 MAX/MIN= 6.75

F1 $\langle 64 \rangle$ = K8839 COLUMBIA 2SG340-FH, (3) F40CW, LLF= 0.68 F2 $\langle 3 \rangle$ = 9209 COLUMBIA 5PS2*-52-223U, (3) F40CW/U/3, LLF= 0.68

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:33 13-Mar-95 PROJECT: 44-100 AREA: CAFETERIA-N GRID: Ceiling Values are FC, SCALE: 1 IN= 20.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=76.7 AUE=32.0 AUE/MIN=N/A MAX/MIN=N/A

F8 $\langle 54 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 FB $\langle 3 \rangle$ = L11164 COLUMBIA 5PS2*-52.125-222-E0, (2) FB031/35K, LLF= 0.66

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0 Y-AXIS 105.5 101.5 97.5 93.5 89.5 85.5 81.5 77.5 73.5 69.5 65.5 61.5 57.5 53.5 49.5 15.5 41.5 FB 伄 37.5 33.5 F8 f 8 29.5 25.5 21.5 17.5 13.5 9.5 5.5

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:43 30-Dec-94 DROJECT: 44-100 AREA: CAFETERIA OFC GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ SRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.07 2.15 MAX/MIN= AUE/MIN= AUE = 134.MAX=191. + MIN=62.4

- <8> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

1.0 5.0 9.0 13.0 17.0 19.0 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:41 13-Mar-95 PROJECT: 44-100 AREA: CAFETERIA OFC-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.44 1.86 MAX/MIN= AUE/MIN= AUE=51.5 MAX=67.6 + MIN=27.7 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 <9> 84

1.0 5.0 9.0 13.0 17.0 19.0 3.0 x-AXIS

USI'S LITE*PRO U2.27E Point-By-Point Numeric Output 15:47 30-Dec-94 PROJECT: 44-100 AREA: CAFETERIA CONF GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE=89.8 AUE/MIN= 2.88 MAX/MIN= + MIN=31.1 MAX=166.

r <4> = K7952 COLUMBIA 2SG440-EXA.125NOM, <4> F40CW, LLF= 0.68

₹++>

31.1	51.1	70.1	, to .	51.	33 +
+2.4	+ 7.5	1 3+	143. 70.1	77.5	42.4
51.9 51.9	99.4 77.5 51.1	14+ TT	- 12	109. 99.4 77.5 51.1	51.9
+ 50	+ 601	- 1	+ 19	, 109.	56.7
42.4 51.9 56.7 58.6 58.6 56.7 51.9 42.4	112.	165 - 7	166	112.	1 42.4 51.9 56.7 58.6 58.6 56.7 51.9 42.4 31.1
58.6	+ 217	1 5 + 6	166.	77.5 99.4 109. 112.	58.6
+ 56.7	109, 112.	161	- 1	, 00 109	56.7
+ ;;	+ 67	* 2 .	+ 6	4.60	51.9
+ 12.4	77.5 99.4	133	·	+7.5	+2.4
31.1 4	51.1	70.1	70.1	51.1	31.1
0:	0.0	0.7	0.0	0 0	0.1
-	,	,	•		

1.0 5.0 9.0 11.0 15.0 19.0 19.0 x-AXIS

4.7.5

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:45 13-Mar-95 PROJECT: 44-100 AREA: CAFET. CONF-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

7.18 3.67 MAX/MIN= AUE/MIN= AUE=23.6 MAX=46.0 + MIN=6.41 F8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

3.0 (a, 4) 10.8 14.8 15.7 14.2 14.2 15.7 14.8 10.8 6.41 3.0 (a, 7) 20.6 29.6 30.9 27.2 27.2 30.9 29.6 20.6 9.71 7.0 13.3 29.7 444 46.0 39.8 39.8 46 μ 44.7 29.7 13.3 5.0 13.3 29.7 444 46.0 39.8 39.8 46 μ 45.7 13.3 3.0 (a, 7) 20.6 29.6 30.9 27.2 27.2 30.9 29.6 20.6 9.71 1.0 (a, 4) 10.8 14.8 15.7 14.2 14.2 15.7 14.8 10.8 6.41 1.0 5.0 9.0 13.0 17.0 19.0 x-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:14 30-Dec-94 PROJECT: 44-100 AREA: CAFETERIA OFC GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $(x,y) \stackrel{\mathrm{def}}{\to} (x,y) \stackrel{\mathrm{d$

+ MIN=21.8 MAX=162. AUE=82.3 AUE/MIN= 3.77 MAX/MIN= 7.41

F $\langle 3 \rangle$ = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68 F1 $\langle 1 \rangle$ = K8839 COLUMBIA 2SG340-FH, (3) F40CW, LLF= 0.68

Y-AXIS

4 " 1884 - NO 11

19.0	+ 47.3	82.7	118. _F	118.	+ 82.7	+ 47.3
17.0	+ 54.7	+ 102.	150.	150.	+ 102.	+ 54.7
15.0	+ 57.6	110.	162. _F	162.	+ 110.	+ 57.6
13.0	+ 57.2	+ 109.	161.	161.	+ 109.	+ 57.2
11.0	+ 54.3	+ 103.	151. _F	151	+ 103.	+ 54.3
9.0	+ 48.1	89.8	132.	132.	+ 89.7	+ 48.0
7.0	+ 42.2	+ 77.1	110.	+ 109.	+ 76.7	+ 42.0
5.0	+ 35.7	64.7	93.9	193.6	+ 64.1	+ 35.4
3.0	29.7	51.4	+ 72.7	72.4	51.0	+ 29.4
1.0	+ 22.0	+ 34.6	4 45.9	+ 45.7	1 34.3	21.8
	1.0	3.0	5.0 X-A		9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:50 13-Mar-95 PROJECT: 44-100 AREA: CAFETERIA OFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

·马克斯特别,第1990年

+ MIN=11.8 MAX=59.0 AUE=34.5 AUE/MIN= 2.93 MAX/MIN= 5.01

F8 $\langle 3 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:29 30-Dec-94 PROJECT: 44-100 AREA: HALL, RESTROOMS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.02 MAX=97.2 AUE=16.1 AUE/MIN= 628.97 MAX/MIN=3802.21

X (5) = B1073A PRESCOLITE 1128-930, (1) 75A19/SW, LLF = 0.77

Y-AXIS						
18.5	+ 0.41	10.2	+ 5.70	+ 0.38	0.25	+ 0.24
16.5	+ 3.00	+ (x) 97.2) + 61.4	+ 0.34	+ 4.29	+ 3.45
14.5	+ 0.43	+ 9.15	+ 5.01	+	70. EX	60.5
12.5	0.33	+ 20.9	+ 11.3	0.31	+ 26.4	21.5
10.5	+ 3.25	+ € 95.3) + 54.1	+ 0.28	+ 0.55	+ 0.49
8.5	+ 0.28	+ 8.05	+ 4.92	+	+ 0.46	+ 0.47
6.5	0.03	+ 0.03	+	+	+ 2.20	+ 1.35
4.5	0.37	_	+ 12.2	+ 0.31	+ 62.&	+ •) 48.8
2.5	3.51	+ (x) 95.1) 51.7	+ 0.33	+ 38.5	+ 28.3
0.5	+	+ 7.42	+ 4.29	+	+ 0.46	+ 0.40
	1.0	3.0	5.0 X-6	<i>7.</i> 0 AXIS	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:55 13-Mar-95 PROJECT: 44-100 AREA: HALL, RESTRMS-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0F1, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.05 MAX=13.8 AUE=6.35 AUE/MIN= 124.33 MAX/MIN= 269.83

CF (5) = B1777A PRESCOLITE CF123526-462, (1) F26DTT/27K, LLF= 0.50

Y-AXIS

18.5	+ 4.71	+ 7.43	+ 6.78	+ 3.73	+ 2.74	+ 2.69
16.5	+ 5.67	+ (f) 13.8	+ 11.6	+ 4.81	+ 5.74	+ 5.64
14.5	+ 4.69	+ 7.34	+ 6.67	+ 4.12	12.6I	11.8
12.5	i .	+ 8.33			l	į
10.5	+ 5.42	+ 🗭 13.4	+ 10.9	+ 4.56	+ 5.33	+ 5.27
8.5	+ 4.11	+ 6.25	+ 5.70	+ 3.52	+ 4.28	+ 4.17
6.5	0.05	0.06	+ 0.05	+ 0.05	+ 6.08	+ 5.85
4.5	4.70	* 8.55	+ 7.32	+ 3.97	+ 12. %	+
2.5	+ 5.52	+ Œ 13.4	10.8	+ 4.47	+ 10.3	+ 9.55
0.5	4.19	+ 6.11	+ 5.56	+ 3.26	4.60	+ 4.56
	1.0	3.0	5.0 X-6	2. 0	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:40 30-Dec-94 PROJECT: 44-100 AREA: ENG/PM OFFICES GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=36.2 MAX=98.2 AUE=63.7 AUE/MIN= 1.76 MAX/MIN= 2.71

F (4) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:02 13-Mar-95 PROJECT: 44-100 AREA: ENG/PM OFFICE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.66 1.73 MAX/MIN= AUE/MIN= AUE=37.6 MAX=57.7 + MIN=21.7

FR <4> = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:50 30-Dec-94 PROJECT: 44-100 AREA: ADMIN AREA GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.5 MAX=114. AUE=74.7 AUE/MIN= 7.09 MAX/MIN= 10.81

F (9) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS 3.4 80.9 90.3 5.6 60.8 66.1 84.4 88.5 67.4 1.7 94.1 105. 87.9 70.2 76.7 98.4 103. 78.2 45. 6.4 101. 413. 94.6 76.0 82.8 106. 410. \$3.8 48. 21.0 7.1 102. 114. 95.4 76.5 83.2 106. 111. 84.0 48. 19.0 7.4 102. 114. \$5.0 75.3 80.4 102. 106. \$0.1 46. 7.1 102. 113. 93.9 72.5 74.1 91.5 94.7 71.4 41 13.0 48.0 101. 111. 92.9 69.2 65.3 75.4 75.8 58.5 34. 6.2 101. 111. 90.7 66.0 62.0 69.2 68.1 52.2 30. 5.4 99.4 110. 90.3 67.8 68.0 79.3 78 6 58.2 32. 4.6 97.1 107. 89.2 68.3 69.7 84.3 84.4 60.9 32. 9.6 91.6 102. \$2.3 60.3 59.0 68.0 67.0 49.3 26. 0.9 77.8 86.1 68.7 47.2 40.4 41.8 39.7 30.4 17. 0.5 4.5 8.5 12.5 16.5 2.5 6.5 10.5 14.5 18.5 x-axis USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:05 13-Mar-95 PROJECT: 44-100 AREA: ADMIN AREA-N GRID: Ceiling Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=5.29 MAX=58.7 AUE=38.7 AUE/MIN= 7.31 MAX/MIN= 11.11

F8 $\langle 9 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:53 30-Dec-94 PROJECT: 44-100 AREA: DIRECTOR OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6-24-34

+ MIN=24.9 MAX=146. AUE=78.8 AUE/MIN= 3.16 MAX/MIN= 5.85

F < 4 > = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:09 13-Mar-95 PROJECT: 44-100 AREA: DIRECTOR OFFC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

ing the factors of

+ MIN=12.8 MAX=76.5 AUE=41.1 AUE/MIN= 3.21 MAX/MIN= 5.98

F8 $\langle 4 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:59 30-Dec-94 PROJECT: 44-100 AREA: COFFEE ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $\tau_{k}(R_{k+j}, \tau_{k}) = \rho(\overline{\tau})$

+ MIN=20.4 MAX=93.8 AUE=52.9 AUE/MIN= 2.59 MAX/MIN= 4.60

F <2> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:11 13-Mar-95 PROJECT: 44-100 AREA: COFFEE ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.7 MAX=50.0 AUE=27.7 AUE/MIN= 2.60 MAX/MIN= 4.70

F8 $\langle 2 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

 $\mathcal{I} = (\nabla \mathcal{A}^{*} \otimes \partial_{\Sigma} \mathcal{A} \otimes \partial_{\Sigma} - \mathcal{I}) + (\mathcal{I}^{*} \otimes \mathcal{A}^{*})^{-1}$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:03 30-Dec-94 PROJECT: 44-100 AREA: CAD OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.9 MAX=98.4 AUE=59.4 AUE/MIN= 2.06 MAX/MIN= 3.41

F $\langle 2 \rangle$ = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:13 13-Mar-95 PROJECT: 44-100 AREA: CAD OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.1

MAX=52.5

AUE=31.1

AUE/MIN= 2.06 MAX/MIN=

3.48

F8 $\langle 2 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:10 30-Dec-94 PROJECT: 44-100 AREA: OFFICÉ 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.93 3.06 MAX/MIN= AUE/MIN= AUE=75.4 MAX=146. + MIN=24.6

F (3) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:21 13-Mar-95 PROJECT: 44-100 AREA: OFFICE 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Linguist of A

\$ 10 mm

+ MIN=15.5 MAX=83.8 AUE=44.3 AUE/MIN= 2.86 MAX/MIN= 5.41

FR $\langle 3 \rangle$ = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:15 30-Dec-94 PROJECT: 44-100 AREA: OFFICE 2/STAT GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=29.0 MAX=119. AUE=66.7 AUE/MIN= 2.30 MAX/MIN= 4.09

F (4) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:24 13-Mar-95 PROJECT: 44-100 AREA: OFFICE 2/STAT-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.1 MAX=62.2 AUE=35.1 AUE/MIN= 2.32 MAX/MIN= 4.10

F8 $\langle 4 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS 10.5 15.1 20.2 23.2 20.2 15.1 8.5 39.3 43.7 39.3 27.6 6.5 38.9 62.2 38.9 4.5 38.9 2.5 43.7 39.3 27.6 39.3 27.6 0.5 20.2 20. Z 23.2 9.0 5.0 1.0 3.0 2.0 X-AXIS

. White and the

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:21 30-Dec-94 PROJECT: 44-100 AREA: OFFICE HALL GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 2.85 2.05 MAX/MIN= AUE/MIN= AUE=56.1 MAX=78.1 - MIN=27.4

F <2> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

g. *.

Y-AXIS

21.0 19.0 1.7.0 15.0 13.0 X-AXIS O တ 7,0 0 3.0 1.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:30 13-Mar-95 PROJECT: 44-100 AREA: OFFICE HALL-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.84

2.04 MAX/MIN=

AUE/MIN=

AUE=29.1

MAX=40.5

+ MIN=14.3

F8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

SIXH->

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:59 3-Jan-95 Ualues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= PROJECT: 44-100 AREA: MAIN HALL GRID: Ceiling Computed in accordance with IES recommendations

+ MIN=0.00 MAX=114, AUE=4.93 AUE>MIN=NA MAX/MIN=NA

G <7> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68 X <1> = B1073A PRESCOLITE 1128-930, (1) 75A19/SW, LLF= 0.77

مقومهد مقم بقم بقم بقم بقم تقم تقم يقم يقم يقم مقم مقم مام دام داه داه علم دام علم علم علم المدام المدارة والمدارة والمد مَنُه مَمْنَ مِيْنَا مِيْنَ مِيْنَ مِيْنَ مِيْنَ مِيْنَ مِيْنَ مِيْنَ مِيْنَ مِيْنَا مِيْنَا مِيْنَ مِيْنَا مَيْنَا مِيْنَا مِيْنَ مقم مقم مده مده موقع موقع مقم وهم مقمة مقم مقم المقاد مناه مناء مناء مناء مته مته مته مته دغه دغه دغه دغه المنح الوكافة ومده אסם שסם נים מום נום גום בנים נים אום פנים נים שום סבם ובם בבם אבם בבם שבם כבם פכם סכם כדם מבם סבם סם. שבו יצו יאו מים פים מום זום בנום אום פום מנה בנה מלב בלה מלא פה מה אלם הלה מנה הלה בלה הלה פנה מנה מנה מנה בלה ולה בניה ולה פור מ 25.0 6. 33.0 9. 23.0 0.6 21.0 13.0 15.0

∪alues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 16:01 13-Mar-95 USI's LITE*PRO U2.27E Point-By-Point Numeric Output GRID: Celling Computed in accordance with IES recommendations PROJECT: 44-100 AREA: MAIN HALL-N

+ MIN=0.00 MAX=49.5 AUE=4.43 AUE/MIN=N/A MAX/MIN=N/A

CF <1> = B1777A PRESCOLITE CF123526-462, (1) F26DT1/27K, LLF= 0.50 F8 <7> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

الأواقية الأواقية والمواقية والمواقية والمواقية المواقية والمواقية وأن دياء وأواقية الأواقية وأواقية وأواقية وأ وأن المقال الأواقية والمواقية والمواقية والمواقية والمواقية والمواقية والمواقية والمواقية والمواقية وأواقية وا وأن وأواقية وأواقية وأواقية والمواقية والمواقية والمواقية والمواقية والمواقية المواقية والمواقية is a signal and control of the care the care of the ca ואין ואין ואין ואין בינים בינים כינים כינים כינים בינים ביני השנים הלה שלהם הלם הלה מלהם הלהם הלהם היום השים השום המהם וצהם המהם המהם הצהם הצהם הצהם הלה הלה בלה נו אות שלב הצלב הצלב נום קום צום נה הזה בלם מכם מנם מכם מנם מבם מנה מים וים כהם כלים להל מים מים מים מים וים והם מכם מכן היני כני בני בני תי פאס אנה פאס ביום בונה בונה בנה מור הבונה מונה מונה מונה מונה מבה מבה בלה בלה מבה כבה בלה בלה בלה בלה בלה בלה מ ונה זו או הונה בונה בונה בונה בנה אותה אותה בלה מבה בלה מבה בלה מבה מבה מבה בלה בלה בלה בלה בלה בלה בלה בלה מו ישם מסם פנים נום בום בום יום פום פום פום פנם בכם בכם בכם בכם בכם בכם מכם ככם ככם ככם נכם ככם וכם בכם בלם ספם פניו פנו אלו אנו ופו הבה וום גום אום בנה כמה בהה בכה בכה בכה בכה בכה מכה מבה מנה מנה בכה בכה בלה בלה בלה בלה בכה בכה בלה בלה בלה בלה 13.0 9.0 23.0 0.11 5.5 0.5 - · 37.0 38.0 37.0 0.10 29.0 9: 0.6

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:08 3-Jan-95 PROJECT: 44-100 AREA: MAIN OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=22.4 MAX=52.7 AUE=38.2 AUE/MIN= 1.70 MAX/MIN= 2.35

G <6> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:08 13-Mar-95 PROJECT: 44-100 AREA: MAIN OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Control of Military

+ MIN=23.7 MAX=57.3 AUE=40.9 AUE/MIN= 1.72 MAX/MIN= 2.42

FR (6) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:14 3-Jan-95 PROJECT: 44-100 AREA: OFFICE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4. 16 4. 3. W.

+ MIN=35.2 MAX=109. AUE=72.7 AUE/MIN= 2.07 MAX/MIN= 3.09

F (5) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS 29.0 35.2 56.4 *7*5.6 *7*5.6 56.4 35.2 40.4 68.8 96.0 96.0 68.8 40.4 27.0 25.0 23.0 45.1 77.3 106. 106. 77.3 45.1 21.0 19.0 46.2 78.7 108. 108. 78.7 46.2 17.0 45.6 77.9 109. 109. 77.9 45.6 13.0 46.2 78.7 108. 108. 78.7 46.2 46.1 78.6 108. 108. 78.6 46.1 11.0 45.2 77.3 108. 108. 77.3 45.2 9.0 7.0 45.1 *77*.3 106. 106. *77*.3 45.1 5.0 43.8 75.3 103. 103. 75.3 43.8 35.2 56.4 75.6 75.6 56.4 USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:12 13-Mar-95 PROJECT: 44-100 AREA: OFFICE 3-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=17.8 MAX=55.9 AUE=37.4 AUE/MIN= 2.10 MAX/MIN= 3.13

F8 (5) = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:22 3-Jan-95 PROJECT: 44-100 AREA: MAIN RESTROOMS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.61 MAX=87.2 AUE=15.8 AUE/MIN= 25.67 MAX/MIN= 141.99

 $X \langle 2 \rangle = B1073A \text{ PRESCOLITE } 1128-930, (1) 75A19/SW, LLF= 0.77$

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:16 13-Mar-95 PROJECT: 44-100 AREA: MAIN RESTROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=4.72 MAX=13.7 AUE=7.35 AUE/MIN= 1.56 MAX/MIN= 2.90

 $CF \langle 2 \rangle = B1777A \text{ PRESCOLITE } CF123526-462, (1) F26DTT/27K, LLF= 0.50$

Y-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:41 3-Jan-95 PROJECT: 44-100 AREA: MEN'S NEW LR GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.24 MAX=44.8 AUE=25.8 AUE/MIN= 2.79 MAX/MIN= 4.85

G <13> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

Y-AXIS 18.8 24.3 24.3 18.7 12.4 9.27 9.24 12.4 18.7 24.3 24.3 18.7 12.4 9.24 9.27 12.4 18.7 24.3 18.8 27.2 36.6 36.7 27.4 17.2 11.9 11.9 17.2 27.4 36.7 36.7 27.4 17.2 11.9 11.9 17.2 27.4 36.7 36.6 27.2 39.0 30.7 + 3.0 + 3.1 + 31.5 + 3137.0 27.5 37.2 37.8 29.8 21.8 18.4 18.5 22.0 30.1 38.4 38.4 30.1 22.0 18.5 18.4 21.8 29.8 37.8 37.2 27.5 35.0 19.5 25.6 27.0 25.1 25.2 27.7 27.8 25.5 25.5 28.0 28.0 25.5 25.5 27.8 27.7 25.2 25.1 27.0 25.6 19.5 33.0 12.2 15.4 18.0 22.1 30.3 38.6 38.6 30.6 22.8 19.6 19.6 22.8 30.6 38.6 38.6 30.3 22.1 18.0 15.4 12.2 31.0 10.1 12.7 15.6 21.3 32.7 14.5 14.6 33.1 22.2 17.7 17.7 22.2 33.1 14.6 14.4 32.7 21.3 15.6 12.7 10.1 29.0 12.1 15.4 18.0 22.2 30.4 38.8 38.9 30.8 23.0 19.8 19.8 23.0 30.8 38.9 38.8 30.4 22.2 18.0 15.4 12.1 27.0 19.1 25.5 27.1 25.3 25.7 28.2 28.3 26.0 26.0 28.5 28.5 26.0 28.3 28.2 25.7 25.3 27.1 25.5 19.1 25.0 27.2 37.1 38.1 30.4 22.8 19.7 19.8 23.1 30.9 39.1 39.1 30.9 23.1 19.8 19.7 22.8 30.4 38.1 37.1 27.2 23.0 30.5 43. 8 44.0 32.8 22.1 17.7 17.8 22.4 33.3 44.8 44.8 33.3 22.4 17.8 17.7 22.1 32.8 44.6 43.3 30.5 21.0 27.2 37.1 38.1 30.4 22.8 19.7 19.8 23.1 30.9 39.1 39.1 30.9 23.1 19.8 19.7 22.8 30.4 38.1 37.1 27.2 19.0 19.1 25.5 27.1 25.3 25.7 28.2 28.3 26.0 26.0 28.5 28.5 26.0 28.3 28.2 25.7 25.3 27.1 25.5 19.1 17.0 12.1 15.4 18.0 22.2 30.4 3<u>8.8 38.9</u> 30.8 23.0 19.8 19.8 23.0 30.8 <u>38.9 38.8</u> 30.4 22.2 18.0 15.4 12.1 15.0 10.1 12.7 15.6 21.3 32.7 44.6 44.6 33.1 22.2 17.7 17.7 22.2 33.1 44.6 44.4 32.7 21.3 15.6 12.7 10.1 12.2 15.4 18.0 22.1 30.3 38.6 38.6 30.6 22.8 19.6 19.6 22.8 30.6 38.6 38.6 30.3 22.1 18.0 15.4 12.2 11.0 19.5 25.6 27.0 25.1 25.2 27.7 27.8 25.5 25.5 28.0 28.0 25.5 25.5 27.8 27.7 25.2 25.1 27.0 25.6 19.5 9.0 27.5 37.2 37.8 29.8 21.8 18.4 18.5 22.0 30.1 38.4 38.4 30.1 22.0 18.5 18.4 21.8 29.8 37.8 37.2 27.5 2.0 13. G 43. 1 31. 5 19. 9 14. 7 14. 7 20. 0 31. 6 43. 6 43. 6 31. 6 20. 0 14. 7 14. 7 19. 9 31. 5 43. 6 43. 1 30. 7 5.0 27.2 36.6 36.7 27.4 17.2 11.9 11.9 17.2 27.4 36.7 36.7 27.4 17.2 11.9 11.9 17.2 27.4 36.7 36.6 27.2 3.0 18.8 24.3 24.3 18.7 12.4 9.27 9.24 12.4 18.7 24.3 24.3 18.7 12.4 9.24 9.27 12.4 18.7 24.3 24.3 18.8

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:19 13-Mar-95 PROJECT: 44-100 AREA: MEN'S NEW LR-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

304-339

+ MIN=7.35 MAX=43.0 AUE=23.5 AUE/MIN= 3.20 MAX/MIN= 5.85

F8 <13> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:45 3-Jan-95 PROJECT: 44-100 AREA: LR ALCOVE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=16.6 MAX=45.7 AUE=29.8 AUE/MIN= 1.79 MAX/MIN= 2.75

G <1> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

Y-AXIS 10.5 16.8 18.0 16.6 8.5 30.8 27.7 28.1 + 6.5 39.6 44.5 38.9 G 4.5 45.7 39.8 2.5 33.2 29.7 30.1 0.5 18.3 19.8 18.5 5.0 1.0 3.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:21 13-Mar-95 PROJECT: 44-100 AREA: LR ALCOVE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.3 MAX=43.9 AUE=28.1 AUE/MIN= 1.84 MAX/MIN= 2.87

 $F8 \langle 1 \rangle = 9868 \text{ COLUMBIA } T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66$

Y-AXIS 10.5 15.5 16.8 15.3 8.5 25.9 26.4 29.4 + 6.5 37.3 42.7 36.5 F8 4.5 43.9 38.3 2.5 31.6 27.8 28.3 0.5 18.6 5.0 1.0 3.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 12:01 3-Jan-95 PROJECT: 44-100 AREA: MEN'S NEW SHWR GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HÓRZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE/MIN=N/A MAX/MIN=N/A AUE=29.6 MAX = 80.3+ MIN=0.00

G <5> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68 W1 (2) = K8957 COLUMBIA W240-A, (2) F40CW, LLF= 0.60

Y-AXIS 29.0 4.80 8.18 16.8 30.2 41.0 4 .1 30.5 17.6 9.61 27.0 4.83 8.66 18.9 34.5 47.3 47.2 34.6 19.6 10.4 25.0 3.70 7.26 18.4 35.2 46.2 45.9 34.8 19.6 10.9 23.0 0.00 1.00 0.00 39.8 50.4 19.5 37.2 20.9 11.8 21.0 19.0 21.0 23.4 19.5 49.6 63 17.0 19.9 21.7 18.3 59.1 74.6 16.9 20.5 28.5 63.1 86.2 7 .7 56.3 29.9 15.0 15.0 18.1 25.5 63.9 80<u>.0 z</u>. 6 56.2 29.9 15 13.0 11.0 15.1 16.3 13.7 60.5 75.4 72.4 52.2 28.2 14.5 17.3 18.8 16.0 51.8 65.5 62.9 45.6 25.1 13.5 9.0 0.00 0.00 0.00 43.9 55.7 54.4 40.7 22.6 12.3 7.0 4.26 8.32 20.9 39.3 57.6 52.0 38.4 21.6 11.7 5.0 4.93 9.10 19.4 34.9 47.8 47.5 34.9 20.1 11.1 4.97 7.95 15.1 26.2 34.8 35.1 27.0 16.4 9.97

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:26 13-Mar-95 PROJECT: 44-100 AREA: MENS NEW SHWR-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=50.1 AUE=22.1 AUE/MIN=N/A MAX/MIN=N/A

F8 $\langle 4 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 W8 $\langle 2 \rangle$ = K8957 COLUMBIA W240-A, (2) F032/35K, LLF= 0.58

Jalues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 13:31 3-Jan-95 USI's LITE*PRO U2.27E Point-By-Point Numeric Output DROJECT: 44-100 AREA: MEN'S OLD LR GRID: Ceiling Johputed in accordance with IES recommendations

5.54 4.10 MAX/MIN= AUE/MIN= AUE=42.8 MAX=57.9 MIN=10.4

Wya West Car

3 <36> = K7965 COLUMBIA 2SG240-EXA.125NOM, <2> F40CW, LLF= 0.68

360 (175 - 175) 361 (175 - 175) 362 (175 - 175) 362 (175 - 175) 362 (175 - 175) 362 (175 - 175) 363 (1 the last the same see that the rest and the same and the take the same and the take the same see the last the the ne experigent and representation of the properties and properties and the properties and 25.5 (15.5 - 15. na stanesty sta transmission on an analyse of the state of the state and the state of the state are the transition of the the the the transition of the transition of the transition of the transition of the transition : 5.5 5.5 13.5 33.5 6.16 27.5 23.5 ě 13.5 ÷. 35.5 33.5 25.5

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:29 13-Mar-95 PROJECT: 44-100 AREA: MEN'S OLD LR-N GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

\$ 95 " 1 W -

5.82 4.35 MAX/MIN= AUE/MIN= AUE=39.0 MAX=52.1 + M!N=8.96 F8 <36> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

8 EBABIC BERNECE œ \odot $\underline{\alpha}$ 0 5:X4-1 39.5 37.5 33.5 5.5 53.5 3.5 \$ 2

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0

Jaines are FC, SCALE: 1 IN= 8.0FT, HGRZ GRID (U), HORZ CALC, Z= 2.5 13:47 3-Jan-95 JSI's LITE*PRO J2.27E Point-By-Point Numeric Output PROJECT: 44-100 AREA: LOCKER HALL GRID: Ceiling Computed in accordance with IES recommendations

* MIN=0.00 MAX=92.6 AUE=27.4 AUE_MIN=N_A MAX_MIN=N_A

4. 25 (63)

%4 <8> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.73 X <1> = B1073A PRESCOLITE 1128-930, (1) 75A19/SW, LLF= 0.77

25.8 35.2 43.9 49.2 51.8 53.0 53.4 53.4 52.9 52.1 50.4 47.2 40.8 31.5 22.4 1.21 2.29 13.6 10.1 1.93 1.64 17.5 23.7 25.1 23.3 23.8 25.8 23.1 16.6 11.0 25.3 33.7 41.5 46.6 49.1 50.2 50.6 50.5 50.1 49.3 47.6 44,4 38.3 29.3 19.3 11.3 6.70 4.73 2.91 2.33 1.99 14.9 18.1 16.7 0. po 14.7 19.7 18.4 13.6 9.25 23.8 29.1 34.0 37.4 39.3 40.6 40.4 39.9 39.2 37.8 35.4 31.3 25.7 19.4 9.30 5.82 4.08 2.94 2.41 2.07 9.73 11.0 10.6 0.0 9.86 11.6 11.2 9.22 6.84 55.0 33.0 37.0 41.0 45.0 47.0 49.0 51.0 53.0 35.0 SIXE-X ه. ت 2.5 8 17 4. ئ

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:36 13-Mar-95 PROJECT: 44-100 AREA: LOCKER HALL-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

17,5,6

+ MIN=0.60 MAX=30.2 AUE=12.4 AUE/MIN=N/A MAX/MIN=N/A

W2 <4> = KA9513 COLUMBIA WC240-A, <2> F032/35K, LLF= 0.66

*** PAXIS **** A Comparisor Control of the control	+	3.68 2.27	5.28 2.99	6.14 3.34	5.69 3.34	+ 1	57.0	59.0	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0	1	2 12.0 7.30	4 19.8 11.4	0 23.7 13.3] + + + B 20.0 11.7	+	53.0	.0 55.0	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		22 0.po 14.3	79 0.00 24	72 23.2 29.	+ 1.1 19.6 23.	+	.80 I 2.5 I 4.	7.0 51.	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		0.68 0.86 0.	1.51 1.55 2	1.85 3.80 8	+ + + c c	+ + + +	/ 1:78 3:71 / 45 0	43.0 4	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		1,6 13.6 9.23	TB 21.0 13.0	+ + +	+ 5	+ + + +	5.2 13.3 9.00	39.0	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		9.51 13.8 15	13.3 21.2 3	+ 40 0 4	+ + + + + + + + + + + + + + + + + + + +	12.4 20.8 2.	28.67 13.21	33.0 35.0) 35.0	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		78 6.73 6.55	+ + + + + + + + + + + + + + + + + + +	+ 0 00 00 00 00 00 00 00 00 00 00 00 00	+ + + +	2.7 6.52 6.20		29.0 7.0 31.0	X-AXIS
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		+ + + + 1 9.	1 to C	43.5 4.5 C.13 C.15	30.57 7.05	25.2 21.1 1	15.7.13.79	23.0 25.0	
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		+ + +	+ + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	19 13.4 21.5	91 15.2 25.2	13 13.4 21.4	+ + + + 53.5	0.12 0.7	1
4.04 5.54 9.14 13.7 15.7 1 4.24 6.65 12.7 21.1 23.0 4.34 7.21 14.4 24.7 36.0 4.23 6.64 12.7 21.0 25.0 3 4.03 5.53 9.13 13.7 15.7 1.0 3.0 7.0 7.0		+ '	9,65 +	13.3 8.16 8.	15.1 8.89 8.	13.3 8.12 8.	3.60 6.60 6	13.0	2
6.5 4.24 6.55 12.7 21 4.5 4.34 7.21 14.4 2. 2.5 4.23 6.54 12.7 2 2.5 4.23 6.54 12.7 2 4.03 6.54 12.7 2 1.0 3.0 5.0 7		+ (1.7 15.7 13.9 + 14. 14. +	1 25.0 21.3 + 15 +	1.7 300 25.0	1.0 25.0 21.3	+ + + + + 3.5 3.7 15.7 13.9	9.0	=
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8		+	5.54 9.14 13	6.65 12.7 21	7.21 14.4 24	6.64 12.7 2.	+ + + + 5.53.3.13.1.	0.0 1	0.0
		+ HXIS	8.5 4.00 4	6.5	4.5	2.5 4.23	0.5	1.0	

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:58 3-Jan-95 PROJECT: 44-100 AREA: LOCKER RESTROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations 3.35 2.31 MAX/MIN= AUE,MIN≐ AUE=36.7 MAX=53.2 + MIN=15.9

M4 <8> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.73

15.9 20.4 26.6 31.0 31.3 27.9 23.3 21.0 23.4 28.1 31.6 31.3 26.7 20.5 15.9 26.3 34.8 45.4 52.5 53.2 47.5 35.3 35.4 35.2 47.4 53.1 52.4 45.4 34.8 26.2 24,8 32.2 41.1 47.2 47.7 42.8 36.3 33.1 36.2 42.7 47.6 47.1 41.0 32.1 24.8 22.9 30.7 39.7 45.9 46.2 41.2 34.5 31.3 34.4 41.1 46.0 45.6 39.4 30.5 22.8 21.8 30.3 40.9 40.9 40.9 40.2 40.9 33.8 42.9 40.9 40.3 47.9 40.2 30.1 21.7 26.7 35.0 45 4 21.3 52.8 4 7.4 33.9 36.2 39.8 4 7.4 52.2 52.9 45.2 35.1 26.7 19,2 27,1 36,7 43,3 43,7 38,1 30,2 26,6 30,3 38,2 43,9 43,5 36,8 27,1 19,7 5.0 3.0 1.0 SIXU-A 15.0 13.0 9.0 7.0

1.0 5.0 23.0 23.0 23.0 23.0 29.0 29.0 x-Axis

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:39 13-Mar-95 PROJECT: 44-100 AREA: LOCKER RESTRM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 9.43 4.42 MAX/MIN= AUE/MIN= AUE = 18.2MAX=38.7 + MIN=4.11

W2 <4> = KA9513 COLUMBIA WC240-A, <2> F032/35K, LLF= 0.66

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:22 3-Jan-95 PROJECT: 44-100 AREA: MEN'S OLD SHWR GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.97 AUE,MIN= 1.86 MAX,MIN= AUE=22.6 MAX=36.2 + MIN=12.2

j <8> = K9801X COLUMBIA LUN240-WL, <2> F40CW, LLF= 0.68

SIXE-Y

THE RESERVE OF

2, +	+ 4. 10.	+ ^0;	+ 0	+ 4.	+ 7.3	27.0
15.0 1	20.0 25.0 27.4 26.9 23.8 20.6 20.5 23.7 26.8 27.5 25.1 20.1 14.5	+	25.2	20.3	+ 10	25.0
17.4	+ 25.1	+ 8 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	32.9	+ 100	+ 17.6	23.0
18.9	27.5	+	36.2	27.8	13.1	21.0
19.0	4 26.8	+ 8	32 + 32 +	+ 27.2	+ 61	19.0
17.8	23.7	29.5	29.6	24.0	+ 18.1	1,7.0
16.7	20.5	23.7	23.+	20.7	16.9	13.0 0 15.0 X-AXIS
+ 16.7	+ 20.6	23.8	23.9	20.7	+ 16.9	13.0 X-A
17.9	23.8	+ 57	29.7	+ 5	+ 8	11.0
19.0	4 26.9	+ 8 + 1	34.0	+ 27.1	+ 13.2	0.6
18.9	+ 27.4	+ 4	36.0	4 27.6	+ 61	7.0
+ 7.4	25.0	+ 32.6	32.7	25.2	+ 1 1.5	5.0
+ 4.0	20.0	+ 42	72.0	20.1	+ 5.	3.0
12.2	+ + 14.4 20.0	+ 9 1 6.4	+ 6	+ 4-	+ 1 2.2	1.0
(O	თ	5,5	4. رن	5	ر ري	

Significant,

The second second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:42 13-Mar-95 PROJECT: 44-100 AREA: MENS OLD SHWR-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.97 AUE,MIN= 1.86 MAX,MIN= AUE=20.2MAX=32.3 + MIN=10.9

J8 <8> = K9801X COLUMBIA LUN240-WL, <2> F032/35K, LLF= 0.66

10.9	12,9	+ + 1	14.7	13.0	+ -	27.0
13.4	17.9	+ 4	4 22.4	18.1	13.5	25.0
15.6	+ 22.4	+ 5	+ 6	22.6	+ 131	23.0
16.9	+ 5 24.5	+	32.3	24.8	+ 1.	21.0
14.9 15.9 16.9 16.9	+ + + + + + + 21.1 23.9 24.5 22.4	+ + + + + + + + + + + + + + + + + + +	31.2	22.5 24.7 24.2 21.4 18.5 18.5 21.4 24.3 24.8 22.6	+ + +	19.0
15.9	21.1	76.3	+ 26.4	+ 21.4	+ 16.1	1.7.0
+ 4 0	+ &	21.2	21.3	+ & 10	+ 131	3.0 15.0 X-AXIS
+ 4 0	π + œ	21.3	+ 21.3	18 + 5	+ + +	13.0 ×-A
15.9	+ 1.2	+ 97	+ %	4 + 21.4	+ 16.1	11.0
16.9	+ 24.0	4 + 1 + 1 + 1 + 1 + 1 + 1 + 1	31.2	+ 24.2	+ 1.	0.0
16.8	+ 4.	+ + 32 0 31.8	+ 32.1	+ 24.7	+ 1	2.0
رن دن دن	22.0	+ 64	29.	22.5	++	
+ m	17.8	7 + 2 - 5	22.3	17.9	+ + + 10.9 13.4	3.0
+ =	12.8 17.8	+ + .	+ 4 + 6	12.9	+ 0	
D	œ س	6.5	4. R.	2,5	5	

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:33 3-Jan-95 PROJECT: 44-100 AREA: WOMEN'S LR GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE=63.6 AUE/MIN= 1.33 MAX/MIN=

+ MIN=47.8 MAX=73.8

J <8> = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:48 13-Mar-95 DROJECT: 44-100A AREA: WOMEN'S LR-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 1.29 MAX,MIN=

AUE=41.1

MAX=49.5

+ MIN=31.9

J8 <6> = K9801X COLUMBIA LUN240-WL, (2) F032/35K, LLF= 0.66

SIXH-Y

3.0 (3.3 49.0 49.5 40.3 32.6 31.9 39.0 48.4 38.4 39.0 31.9 32.6 40.3 49.5 49.0 38.3

0.1

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:13 13-Mar-95 PROJECT: 44-100A AREA: WOMEN'S SHWR 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 1.41 MAX,MIN=

AUE=12.5

MAX=17.2

+ MIN=8.89

XI <14> = B1491A PRESCOLITE 90HF-3, <1> F032/35K, LLF= 0.73

45 gSS NA

.5 16.5 20.5 24.5 28.5 x + AXIS 4.4 158 16.4 11.8 13.2 17.2 13.4 11.5 13.5 17.1 12.9 11.6 16.3 18.7 14. 9.0 | 1.8 KH 1.0 | 8.05 KH 1.0 | 10.6 KH 0.10.6 | 0.8 KH 1.8.55 | 0.3 KH 1.2 | 7.0 | 3.8 | 5.0 | 1.8 | 0.1 | 1.3 | 3.4 | 1.5 | 1.5 | 1.5 | 3.3 | 3.0 | 9.98 | 1.8 | 5.0 | 3.3 | 1.0 (2.8 KH) 1 + KH 1 10 1 10.5 (0.5 10.5 10.6 KH) 8.89 10.3 KH3 12. 3.0 | 3.8 | 16.0 | 11.8 | 10.1 | 13.1 | 13.2 | 12.4 | 11.3 | 12.4 | 3.1 | 12.9 | 9.92 | 1.8 | 16.0 | 13. 0.6

1.3% (製) 福

17:17 13-Mar-95 2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:17 13-Mar pROJECT: 44-100A AREA: WOMENS SHWR 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z=Computed in accordance with IES recommendations 3.48 2.05 MAX/MIN= AUE,MIN= AUE=18.4 MAX=31.2 + MIN=8.98

= K9801X COLUMBIA LUN240-WL, (2) F032/35K, LLF= 0.66 38 (5)

1300

5 20.5 24.5 28.5 18.5 22.5 26.5 10 0 38.2 30,1 31.1 38.9 29.5 30.2 38.2 29.5 29.8 38.5 29.6 29.3 28.7 23. 10.7 10.4 10.8 11.3 10.1 9.50 12.0 11.0 8.58 11.2 13.5 13. 3.1 22.6 16.4 20.3 22.9 16.8 13.7 24.2 17.2 3.5 24.1 17.8 7.9 24.5 13. 3.1 22.6 16.4 20.3 20.9 16.8 15.7 21.2 17.2 | 4.5 21.1 17.8 | 5.8 14.3 10.5 10.7 10.4 10.8 11.3 10.1 9.90 2.0 11.0 8.98 7.0 0.0 9.0 3.0 1.0

.5 16.5 14.5 18 X-AXIS 12.5 8.5 6.5 ზ.

and Cale a.

Z = 2.5USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:01 3-Jan-95 PROJECT: 44-100 AREA: WOMEN'S SHWR 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Computed in accordance with IES recommendations AUE,MIN= 205.43 MAX,MIN=1971.13 AUE = 10.1MAX=96.6 + MIN=0.04

" 平均超域。

x1 <10> = B1073A PRESCOLITE 1128-930, <1) 75A197SW, LLF= 0.39

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:24 13-Mar-95 PROJECT: 44-100A AREA: WOMENS SHWR 2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE_MIN= 131.99 MAX_MIN= 279.22 AUE = 13.1MAX=27.7 + MIN=0.09

CF <2> = B1777A PRESCOLITE CF123526-462, (1) F26DTT/27K, LLF= 0.50 J8 <3> = K9801X COLUMBIA LUN240-WL, (2) F032/35K, LLF= 0.66

100

Z = 2.5USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:18 3-Jan-95 PROJECT: 44-100 AREA: WOMEN'S LOUNGE GRID: Ceiling values are fC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HÓRZ CALC, Computed in accordance with IES recommendations

·

+ MIN=0,00 MAX=70.0 AUE=24.1 AUE>MIN=N/A MAX/MIN=N/A

G <4> = K7965 COLUMBIA 286240-EXA.125NOM, (2) F40CW, LLF= 0.68

V-PX:S

15.0 41. \$\frac{5}{5}\frac{6}{3}\frac{3}{5}\frac{1}{5}\frac{1}{3}\frac{1}{5}\frac{1}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1

and the hand of the

1.6 5.0 5.0 11.0 13.0 17.0 19.0 x - AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:27 13-Mar-95 PROJECT: 44-100A AREA: WOMENS LOUNGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=65.2 AUE=22.3 AUE/MIN=N/A MAX/MIN=N/A

akitrka

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, <2> F032/31K, LLF= 0.66

81x6-7

17.0	27.1 32.4 30.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15.0	38.5 48.8 441 0.50 0.50 0.50 0.00 0.00 0.00 0.00
13.0	47.2 59.4 54.0 0.00 0.00 0.00 0.00 0.00 0.00 0.
11.0	51.1 62.0 56.7 0.50 0.00 0.00 0.00 0.00 0.00 0.00
9.0	51. B 6 £. 8 5 \$ 5 0. 50 0.00 0.00 0.00 0.00 0.00 0.
7.0	53,7 65,2 58,5 0. <u>bo 0.00 0.00 0.00 0.00 0.00 0.00 0.00</u>
5.0	52.9 63.7 57.5 41.9 27.3 32.9 38.6 35.0 24.6 14.6
3.0	46.9 57.8 50,7 37.5 32.4 37.8 45.8 41.2 27.4 15.3
1.0	37.0 43.2 39.5 31.0 28.4 33.7 39.3 35.5 24.6 14.5

0 5.0 9.0 13.0 15.0 17.0 19.0 x-AXIS

Jaines are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:22 3-Jan-95 PROJECT: 44-100 AREA: LOUNGE RESTRM GRID: Ceiling

My May 12

+ MIN=8.10 MAX=26.2 AUE=16.8 AUE_MIN= 2.07 MAX_MIN=

74 (3) = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.73

9.0 | 1.7 | 15.9 | 18.7 | 18.0 | 15.5 | 14.0 | 15.1 | 15.2 | 14.5 | 14.0 | 14.1 | 14.0 | 12.6 | 10.3 | 8.10 |
11.0	10.2	12.4	13.8	13.7	12.9	12.9	14.0	15.1	15.2	14.5	14.0	14.1	14.0	12.6	10.3	8.10																																				
11.7	15.9	18.7	18.0	15.5	14.8	17.0	15.8	15.9	17.8	16.9	18.3	15.1	16.5	12.1	18.5																																					
13.4	20.0	24.6	22.5	23.7	18.2	16.8	20.6	25.6	20.4	15.9	20.3	23.7	25.9	20.7	14.4	9.19																																				
5.0	13.7	20.6	25.5	23.7	18.6	17.1	21.0	26.2	26.1	21.9	20.3	23.7	25.9	21.7	14.4	9.19																																				
3.0	12.1	16.7	19.9	19.0	16.1	15.2	17.7	20.7	20.8	18.4	17.5	19.2	20.2	17.4	12.5	8.67																																				
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																					
1.0	10.6	13.1	14.7	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																				
1.0	10.6	13.1	14.7	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																				
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																					
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																					
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																					
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.8	14.8	13.3	10.7	8.31																																						
1.0	10.6	13.1	14.5	13.5	13.4	14.5	15.8	16.0	15.1	14.6	14.8	14.8	13.3	10.7	8.31																																					
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0																																			
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

The state of the s

1.0 5.0 5.0 9.0 13.0 17.0 21.0 25.0 25.0 31.0 $\times -9.0$ $\times -9.0$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:29 13-Mar-95 pROJECT: 44-100A AREA: LOUNGE RESTRM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6.05 3.29 MAX/MIN= AUE/MIN= AUE=16.4 MAX=30.1 + MIN=4.98

" "不知的第三人

W2 <3> = KA9513 COLUMBIA WC240-A, <2> F032/35K, LLF= 0.66

Y-AXIS

11.0 6.75 8.88 10.3 9.96 8.81 8.56 9.64 11.0 11.1 10.1 9.68 10.2 10.5 9.16 6.93 4.98

9.0 10.5 15.8 19.2 18.1 14.7 13.6 16.5 20.0 20.2 17.5 16.5 18.5 19.7 16.8 11.3 6.80

7.0 14.0 22.7 28.7 26.2 25.0 18.1 22.8 29.9 24.8 23.1 22.6 26.5 29.3 24.3 15.3 8.41

5.0 14.4 23.4 29.6 27.0 20.5 18.5 23.2 29.8 29.9 24.8 23.1 27.2 30.1 25.0 15.6 8.57

3.0 11.4 17.4 21.2 19.9 15.9 14.5 17.6 21.5 21.7 18.7 17.7 20.1 21.5 18.2 12.1 7.16

1.0 2.42 9.99 11.7 11.2 9.73 9.30 10.5 12.1 12.2 11.1 10.6 11.4 11.8 10.3 7.58 5.31

1.0 5.0 9.0 13.0 17.0 21.0 25.0 - 29.0 3.0 3.0 - 20.0 = 11.0 - 15.0 = 19.0 = 10.0 = 10.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:30 3-Jan-95 PROJECT: 44-100 AREA: SUPPLY STORAGE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE,MIN= 1.61 MAX,MIN= AUE=45.6 MAX=58.5 + MIN=28.3

G <8> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

THY IN

12.5 14.5 20.5 22.5 24.5 28.5 10.5 x-AXIS 0.5 28.3 32.1 31.2 29.7 31.6 33.3 31.7 30.0 31.7 33.3 31.6 29.7 31.2 32.1 28.2 1.9 52.5 50.7 47.8 51.4 54.7 51.5 48.1 51.5 54.7 51.4 47.8 50.7 52.5 44. 5.7 54.0 52.1 49.4 52.8 56.4 53.0 49.7 53.0 56.4 52.8 49.4 52.1 54.0 45. 6.5 45,7 54,0 52,1 49.4 52,8 56,4 53.0 49.7 53,0 56.4 52.8 49.4 52,1 54.0 45, 8.3 32.1 31.2 29.7 31.6 33.3 31.7 30.0 31.7 33.3 31.6 29.7 31.2 32.1 28. 13.8 46.6 45.0 42.7 45.6 48.5 45.7 43.0 45.7 48.5 45.6 42.7 45.0 46.6 39. 8.5 6.5 ٠. دن 12.5 10.5 14.5 51X0-4 16.5

F Color

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:32 13-Mar-95 PROJECT: 44-100A AREA: SUPPLY STOR.-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

model has a saile or

2.04 1.62 MAX/MIN= AUE/MIN= AUE=42.0 MAX=52.9 + MIN=25.9

F8 <8> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Z = 2.517:00 3-Jan-95 Jalues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output project: 44-100 AREA: SUPPLY FILING GRID: Ceiling Computed in accordance with IES recommendations

After 1

+ MIN=4.87

AUE=54.0

MAX=90.1

18.51

AUE,MIN= 11.09 MAX,MIN=

The second secon The rise of the site of the control C. 12. C. हड़ कि क्षेत्र होते को के कि को कि को की को को को को को उन्हें हुन होते हैं। को क भार को क्रिक्ट कर उन्हें के उन्हें के उन्हें के उन्हें के उन्हें के जोते होते होते होते होते हैं। उन्हें के उन 10.5 | 20 1.45 284 405 971 962 285 962 962 962 962 963 963 963 614 615 615 615 615 615 616 618 603 956 995 295 995 753 218 الله 19 مئو 19 مئو 19 مئو 19 من ا 13.8 26.8 37.4 40.6 37.0 29.1 22.2 :5.2 27.5 24.5 28.5 6.5 6.9

- - 1 x

F <23> = K7952 COLUMBIA 2S6440-EXA.125NOM, <4> F40CW, LLF= 0.68

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:36 13-Mar-95 PROJECT: 44-100A AREA: SUPPLY FILING-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 20.95 AUE,MIN= 12.47 MAX,MIN= AUE=27.7 MAX=46.6 + MIN=2.22 F8 <23> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

、、機械網絡器10-107

43.34 AUE,MIN= 12.75 MAX,MIN= AUE=49.4 MAX=168. + MIN=3.88

r <2> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68 3 <7> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

TERMINE OF STREET

23,3 43,1 68.0 78.7 54.7 35.6 21.1 12.6 8,70 6.15 62.0 114. 143. 110. 58.0 23.9 44.3 70.2 81.3 67.1 41.4 23.1 16.3 17.9 29.6 54.6 84.9 97.7 80.0 50.4 (2.9 42.0 65.0 88.3 102. 84.7 53.2 (2.9 42.0 65.0 88.3 102. 84.7 53.2 16.6.26.9 38.9 44.0 37.4 25.4 16.3 12.9 14.2 21.3 36.9 58.3 68.4 58.5 39.5 19.9 34.9 54.3 53.1 32.9 19.7 14.9 16.7 26.8 48.9 77.0 90.0 37.5 48.4 13.6 34.2 53.3 60.8 50.5 31.1 17.0 9.80 6.40 4.94 66.0 126. 159. 123. 63.6 24,4 45,2 74,7 81.8 67,6 41,9 23,2 15,6 16,2 25,4 46,7 74.0 60,2 45,8 42.1 16.5 27.2 39.2 44.3 37.0 24.3 14.3 8.03 4.79 3.88 48.9 91.0 117. 92.3 51.5 22.4 40.9 63.0 72.5 60.2 37.3 19.6 11.0 7.30 5.66 71.6 134...168..150. 67.5 24.1 44.6 69.9 80.9 66.7 41.1 22.4 14.3 13.4 14.7 47.0 77.1 92.9 74.9 44.8 11.0 ပ ဝ Y-AXIS 15.0 о О 1.0 17.0

1.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 3.0 x-Axis

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:39 13-Mar-95 PROJECT: 44-100A AREA: SUPPLY OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $\mathcal{J}^{k_{\mathrm{pr}}} = \mathcal{J}^{k_{\mathrm{pr}}} = \mathcal{J}^{k_{\mathrm{$

AUE,MIN= 12.62 MAX,MIN= AUE=39.2 MAX=97.2 + MIN=3.10 F8 (9) = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

SIXE-Y

17.3 31.6 50 0 6205 47.3 28.7 15.0 7.82 4.94 3.80 34.5 66.8 88.8 64.9 32.9 21.9 41.4 65.2 75.7 62.2 38.4 20.7 13.2 13.7 22.9 43.1 65.9 178 5 30.8 38.5 21.4 41.0 66.0 77.0 63.0 38.2 20.5 13.7 15.2 26.8 51.1 80.5 95.1 75.7 46.8 56.6 38.7 60.9 69.4 57.7 36.3 20.0 13.4 15.1 27.1 52.6 83.7 97.2 80.0 48.5 12.6 32.2 51.0 53.8 48.8 30.3 17.3 12.2 13.8 24.0 45.2 73.0 848-30.4 44.6 20.1 37.6 58.1 66.9 55.5 34.3 17.6 9.31 6.01 4.58 37.6 71,1 00.5 68.7 35.2 14.5 23.9 34.5 39.1 33.3 22.7 14.4 11.1 12.2 18.9 33.5 53.4 62.9 53.4 35.5 14.5 24.1 34.9 39.4 33.1 21.8 12.5 6.74 3.92 3.10 25.3 47.5 59.2 47.1 26.3 20.9 39.7 63.7 743.45.6 36.5 18.9 10.8 7.24 5.03 31.9 58.4 74.7 57.3 29.7 21.6 40.9 64.3 74.5 61.3 37.7 20.1 12.4 11.6 12.9 Z4.1 39.6 47.4 38.4 ZZ. 19.0 17.0 15.0 11.0 0.6 7.0 5.0 3.0 0.7 13.0

1.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 3.0 3.0 7.0 11.0 15.0 19.0 23.0 27.0 X-AXIS

Bldg 51-420 Summary

	Total	Watts	6,313	295	177	177		i	6,962
int System	Number	Fixtures	107	2	3	3			118
Replacement System	Watts/	Fixture	69	29	29	29			
	Fixture	Type	F8	8f	87	8M			Totals
	Total	Watts	19,560	640	306	72	246		20,824
em	Number	Fixtures	120	8	2	-	ဒ		134
Present System	Watts/	Fixture	163	80	153	72	82		
	Fixture	Туре	ட	J2	2	ല	M		Totals

parally supported

51-420 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420 Type: Indoor

Luminaire Fixture Schedule PRESENT

Project name: Lighting Survey Prepared for: Corps of Engineers

ा , ज्यू क्रीस्ट्रिक

Date: 30-Dec-94 UPD: 2.8W/Sq.Ft

Project #6941331

Prepared by: C. Warren

V/W QTY LAMP/BALLAST REMARKS TYPE | DESCRIPTION 000 F40CW N-120 2X4 4L FLUSH STATIC TROFFER LENS- .125" POLARIZED PATT.12 ESB 163 COLUMBIA 4PS2*-87-244 F40CW 000 7"X4' 2L WET LOCATION WRAP J2 LENS- PRISMATIC BOTTOM & SIDES ESB 80 COLUMBIA LUN240-WL F40CW 000 L2 1X4 3L SOLID REFL.INDUSTRIAL STD OPEN - NO SHIELDING 153 COLUMBIA KL340-SOLID F40CW/WM 000 11"X4' 2L INDUSTRIAL L3 ESB OPEN BOTTOM- NO SHIELDING 72 COLUMBIA CSR240 **** 3 5"X4"X4' 2L WALL CORRIDOR WRAP F30T12/WW/RS 000 LENS- SMOOTH WHITE ACRYLIC ESB COLUMBIA W240-A 82

NOTES:

51-420 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 10-Mar-95 UPD: 1.0W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
F8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	701	
8	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	FO32/35K EOCT	000 - 59	5	
L8	11"X4' 2L INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA CSR240	FO32/35K EOCT	000 - 59	3	
W8	5"X4"X4' 2L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W240-A	FO32/35K EOCT	000	3	

NOTES:

51-420 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420 Type: Indoor

Project Area Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95 UPD: 2.0W/Sq.Ft

LUMINAIRES W/SQ.FT **DIMENSIONS** AREA NAME 1 Type F (6) 20x15x8Ft ROOM 34 0.6 1 Type F8 20x15x8Ft ROOM 34-N 1 (4)Type F 13x15x8Ft ROOM 35 1 (4)Type F8 13x15x8Ft JOM 35-N 2.9 Type F ROOM 33 Type F8 15x15x8Ft ROOM 33-N 1 Type F 4.1 16x15x8Ft ROOM 31 1 1.0 (4)Type F8 16x15x8Ft ROOM 31-N 1 Туре F 3.6 ROOM 29 12x15x8Ft Type F8 1 (4)12x15x8Ft ROOM 29-N 1 2.1 (5)Type J2 ROOM 32 15x15x8Ft Type W (1)1 Type J8 (3)15x15x8Ft ROOM 32-N (1)Type W8 1 (3) Type J2 1.4 15x15x8Ft ROOM 30 Type W (1)0.8 1 (2) Type J8 15x15x8Ft ROOM 30-N Type W8 Type F (4)JOM 27 1.0 1 (4)Type F8 15x15x8Ft ROOM 27-N 2.9 (4)Type F 15x15x8Ft ROOM 21

Page 2 <u>51</u>-420 Areas

ROOM 21-N	11-420 Aleas		.			
ROOM 25-N	ROOM 21-N	15x15x8Ft	(4)	Type F8	1.0	1
ROOM 22	ROOM 25	14x15x8Ft	(4)	Туре F	3.1	1
ROOM 22-N	ROOM 25-N	14x15x8Ft	(4)	Type F8	1.1	1
ROOM 23 16x15x8Ft (4) Type F 2.7 ROOM 23-N 16x15x8Ft (4) Type F8 1.0 ROOM 20/24 10x15x8Ft (4) Type F 4.3 ROOM 20/24-N 10x15x8Ft (3) Type F8 1.2 ROOM 26 13x15x8Ft (4) Type F 3.3 ROOM 26-N 13x15x8Ft (4) Type F8 1.2 ROOM 28-N 18x15x8Ft (4) Type F8 0.9 MEN'S ROOM 14x12x8Ft (4) Type F8 0.7 WOMEN'S ROOM-N 14x12x8Ft (2) Type F8 0.7 WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 0.7 WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 0.7 COPIER ROOM 10x15x8Ft (2) Type L8 0.7 COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft	ROOM 22	14x15x8Ft	(4)	Type F	3.1	1
ROOM 23-N 16x15x8Ft (4) Type F8 1.0 ROOM 20/24 10x15x8Ft (4) Type F 4.3 ROOM 20/24-N 10x15x8Ft (3) Type F8 1.2 ROOM 26 13x15x8Ft (4) Type F 3.3 ROOM 26-N 13x15x8Ft (4) Type F 2.4 ROOM 28 18x15x8Ft (4) Type F 2.4 ROOM 28-N 18x15x8Ft (4) Type F 2.4 ROOM 28-N 18x15x8Ft (4) Type F 3.9 MEN'S ROOM 14x12x8Ft (4) Type F 3.9 MEN'S ROOM 14x12x8Ft (2) Type F 6.1 WOMEN'S ROOM 14x19x8Ft (2) Type F 6.1 WOMEN'S ROOM 14x19x8Ft (1) Type L8 (1) Type L8 (1) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L8 (2) Type L8 (3) Type F8 (4) Type F8 (5) Type F8 (6) Type F (7) Type L8 (8) Type F8 (9) Type F8 (10) Type B8 (11) Type W8 COPIER ROOM 10x15x8Ft (2) Type L8 (3) Type L8 (4) Type F8 (5) Type F8 (6) Type F8 (7) Type F8 (8) Type F8 (9) Type F8 (9) Type F8 (10) Type F8 (11) Type F8 (12) Type L8 (13) Type L8 (24) Type L8 (35) Type L8 (36) Type F8 (40) Type F	ROOM 22-N	14x15x8Ft	(4)	Type F8	1.1	1
ROOM 20/24 10x15x8Ft (4) Type F 4.3 ROOM 20/24-N 10x15x8Ft (3) Type F8 1.2 ROOM 26 13x15x8Ft (4) Type F 3.3 ROOM 26-N 13x15x8Ft (4) Type F8 1.2 ROOM 28 18x15x8Ft (4) Type F 2.4 JOM 28-N 18x15x8Ft (4) Type F8 0.9 MEN'S ROOM 14x12x8Ft (2) Type F8 0.7 WOMEN'S ROOM-N 14x12x8Ft (2) Type F 1.8 (1) Type W (1) Type W 0.7 WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 0.7 (1) Type W (2) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L2 2.0 COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	ROOM 23	16x15x8Ft	(4)	Type F	2.7	1
ROOM 20/24-N	ROOM 23-N	16x15x8Ft	(4)	Type F8	1.0	1
ROOM 26	ROOM 20/24	10x15x8Ft	(4)	Type F	4.3	1
ROOM 26-N	ROOM 20/24-N	10x15x8Ft	(3)	Type F8	1.2	1
ROOM 28	ROOM 26	13x15x8Ft	(4)	Type F	3.3	1
MEN'S ROOM	ROOM 26-N	13x15x8Ft	(4)	Type F8	1.2	1
MEN'S ROOM 14x12x8Ft (4) Type F 3.9 MEN'S ROOM-N 14x12x8Ft (2) Type F8 0.7 WOMEN'S ROOM 14x19x8Ft (2) Type F 1.8 (1) Type L3 (1) Type W 0.7 WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 0.7 (1) Type L8 (1) Type L8 0.7 (1) Type W8 (2) Type L2 2.0 COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	ROOM 28	18x15x8Ft	(4)	Type F	2.4	1
MEN'S ROOM-N 14x12x8Ft (2) Type F8 0.7 WOMEN'S ROOM 14x19x8Ft (1) Type L3 (1) Type W WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 (1) Type L8 (1) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L2 2.0 COPIER ROOM-N 10x15x8Ft (2) Type L2 2.0 COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	OM 28-N	18x15x8Ft	(4)	Type F8	0.9	1
WOMEN'S ROOM 14x19x8Ft (2) Type F (1) Type L3 (1) Type W WOMEN'S ROOM-N 14x19x8Ft (1) Type F8 (1) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L2 2.0 COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	MEN'S ROOM	14x12x8Ft	(4)	Type F	3.9	1
(1) Type L3 (1) Type W	MEN'S ROOM-N	14x12x8Ft	(2)	Type F8	0.7	1
(1) Type L8 (1) Type W8 COPIER ROOM 10x15x8Ft (2) Type L2 2.0	WOMEN'S ROOM	14x19x8Ft	(1)	Type L3	1.8	1
COPIER ROOM-N 10x15x8Ft (2) Type L8 0.8 ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	WOMEN'S ROOM-N	14x19x8Ft	(1)	Type L8	0.7	1
ROOM 5 20x15x8Ft (6) Type F 3.3 ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	COPIER ROOM	10x15x8Ft	(2)	Type L2	2.0	1
ROOM 5-N 20x15x8Ft (6) Type F8 1.2 ROOM 3 19x15x8Ft (6) Type F 3.4	COPIER ROOM-N	10x15x8Ft	(2)	Type L8	0.8	1
ROOM 3 19x15x8Ft (6) Type F 3.4	ROOM 5	20x15x8Ft	(6)	Type F	3.3	1
	ROOM 5-N	20x15x8Ft	(6)	Type F8	1.2	1
OOM 3-N 19x15x8Ft (4) Type F8 0.8	ROOM 3	19x15x8Ft	(6)	Type F	3.4	1
	OOM 3-N	19x15x8Ft	(4)	Type F8	0.8	1
OOM 1 20x15x8Ft (6) Type F 3.3	JOM 1	20x15x8Ft	(6)	Туре F	3.3	1
ROOM 1-N 20x15x8Ft (6) Type F8 1.2	ROOM 1-N	20x15x8Ft	(6)	Type F8	1.2	1

51-420A Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420A Type: Indoor

Project Area Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95 UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	LUI	MINAIRES	W/SQ.FT	QTY
ROOM 2	13x15x8Ft	(2)	Type F -	1.7	1
ROOM 2-N	13x15x8Ft	(2)	Type F8	0.6	1
ROOM 4	19x15x8Ft	(6)	Туре F	3.4	1
OM 4-N	19x15x8Ft	(4)	Type F8	0.8	1
ROOMS 6/8/10	15x15x8Ft	(4)	Type F	2.9	3
ROOMS 6/8/10-N	15x15x8Ft	(4)	Type F8	1.0	3
ROOM 9	13x15x8Ft	(2)	Type F	1.7	1
ROOM 9-N	13x15x8Ft	(2)	Type F8	0.6	1
ROOM 12	18x15x8Ft	(4)	Type F	2.4	1
ROOM 12-N	18x15x8Ft	(4)	Type F8	0.9	1
ROOM 11	17x15x8Ft	(4)	Type F	2.6	1
ROOM 11-N	17x15x8Ft	(4)	Type F8	0.9	1
ROOM 14	27x15x8Ft	(6)	Туре F	2.4	1
ROOM 14-N	27x15x8Ft	(6)	Type F8	0.9	1
ROOM 13	20x15x8Ft	(4)	Туре F	2.2	1
 COOM 13-N	20x15x8Ft	(4)	Type F8	0.8	1

51-420A Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420A Type: Indoor

Project Calculation Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 10-Mar-95 UPD: 1.7W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AVE		MAX	MIN
ROOM 2	13x15x8Ft	Ceiling	<+>	39.4	81.9	13.0
ROOM 2-N	13x15x8Ft	Ceiling	<+>	25.2	54.3	7.7
	19x15x8Ft	Ceiling	<+>	83.1	120.8	38.2
ROOM 4-N	19x15x8Ft	Ceiling	<+>	36.1	60.2	12.5
ROOMS 6/8/10	15x15x8Ft	Ceiling	<+>	68.7	109.7	27.8
ROOMS 6/8/10-N	15x15x8Ft	Ceiling	<+>	43.8	73.2	17.4
ROOM 9	13x15x8Ft	Ceiling	<+>	39.4	81.9	13.3
ROOM 9-N	13x15x8Ft	Ceiling	<+>	25.2	54.3	7.9
ROOM 12	18x15x8Ft	Ceiling	<+>	60.7	92.1	25.6
ROOM 12-N		Ceiling	<+>	38.8	60.5	16.1
ROOM 11		Ceiling	<+>	61.5	92.9	27.0
ROOM 11-N	17x15x8Ft	Ceiling	<+>	39.2	60.9	16.9
ROOM 14	27x15x8Ft	Ceiling	<+>	61.9	96.6	22.0
ROOM 14-N	27x15x8Ft	Ceiling	<+>	39.4	63.3	13.3
ROOM 13	20x15x8Ft	Ceiling	<+>	55.9	90.8	20.2
OOM 13-N	20x15x8Ft	Ceiling	<+>	35.7	59.9	12.3

51-420 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

The Control of the Co

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-420 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95

UPD: 2.0W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	ΑV	/E	MAX	MIN
		Ceiling	<+>	82.8	144.5	26.5
 ROOM 34-N	20x15x8Ft	Ceiling	<+>	26.9	56.9	7.0
 ROOM 35	13x15x8Ft	Ceiling	<+>	77.2	135.0	29.8
ROOM 35-N	13x15x8Ft	Ceiling C.U. CALC	<+>	49.1 45.3	90.3	18.3
 ROOM 33	15x15x8Ft	Ceiling	<+>	68.2	115.7	27.5
 ROOM 33-N	15x15x8Ft	Ceiling	<+>	43.4	71.4	17.2
 ROOM 31	16x15x8Ft	Ceiling	<+>	96.9	150.2	59.3
 ROOM 31-N	16x15x8Ft	Ceiling	<+>	43.3	72.6	17.
 ROOM 29	12x15x8Ft	Ceiling	<+>	83.3	118.7	48.
 ROOM 29-N	12x15x8Ft	Ceiling	<+>	52.9	73.1	30.
 ROOM 32	15x15x8Ft	Ceiling	<+>	34.3	63.7	0.
ROOM 32-N	15x15x8Ft	Ceiling	<+>	21.4	43.2	0.
ROOM 30	15x15x8Ft	Ceiling	<+>	20.6	46.4	0.
ROOM 30-N	15x15x8Ft	Ceiling	<+>	13.8	32.4	0.
 ROOM 27	15x15x8Ft	Ceiling	<+>	69.8	132.6	23.
 .JOM 27-N	15x15x8Ft	Ceiling	<+>	44.5	88.4	14.
ROOM 21	15x15x8Ft	Ceiling	<+>	69.8	132.6	23.

Page 2	2
--------	---

Page 2						
51-420 Calculations OM 21-N	15x15x8Ft	Ceiling	<+>	44.5	88.4	14.1
ROOM 25	14x15x8Ft	Ceiling	<+>	76.5	136.6	28.8
ROOM 25-N	14x15x8Ft	Ceiling	<+>	47.5	74.1	22.2
ROOM 22	14x15x8Ft	Ceiling	<+>	76.5	136.6	28.8
ROOM 22-N	14x15x8Ft	Ceiling	<+>	47.5	74.1	22.2
ROOM 23	16x15x8Ft	Ceiling	<+>	68.8	132.3	21.3
ROOM 23-N	16x15x8Ft	Ceiling	<+>	43.3	72.6	17.2
ROOM 20/24	10x15x8Ft	Ceiling	<+>	95.9	144.1	44.6
ROOM 20/24-N	10x15x8Ft	Ceiling	<+>	45.1	61.2	31.1
ROOM 26	13x15x8Ft	Ceiling	<+>	83.5	137.1	33.9
ROOM 26-N	13x15x8Ft	Ceiling	<+>	50.9	75.0	25.1
ROOM 28		Ceiling	<+>	60.7	92.2	25.3
OOM 28-N	 18x15x8Ft	Ceiling	<+>	38.8	60.6	15.8
MEN'S ROOM	-	Ceiling	<+>	91.2	141.3	42.9
MEN'S ROOM-N	- 14x12x8Ft	Ceiling	<+>	29.5	55.3	11.4
WOMEN'S ROOM	14x19x8Ft	Ceiling	<+>	37.0	108.5	0.0
WOMEN'S ROOM-N	14x19x8Ft	Ceiling	<+>	21.1	41.5	0.0
COPIER ROOM	10x15x8Ft	Ceiling	<+>	23.1	31.9	15.4
COPIER ROOM-N	10x15x8Ft	Ceiling	<+>	30.4	41.3	21.1
ROOM 5	20x15x8Ft	Ceiling	<+>	81.9	119.9	36.9
ROOM 5-N	20x15x8Ft	Ceiling	<+>	52.2	79.1	23.4
ROOM 3	19x15x8Ft	Ceiling	<+>	82.1	121.1	28.0
ROOM 3-N	19x15x8Ft	Ceiling	<+>	35.7	60.6	8.3
ROOM 1	20x15x8Ft	Ceiling	<+>	81.9	119.9	36.9
ROOM 1-N	20x15x8Ft	Ceiling	<+>	52.2	79.1	23.4
—						

Sec. 18. 18.

Mark Control

OTES:

11.7 22

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:28 29-Dec-94 PROJECT: 51-420 AREA: ROOM 34 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AND THE PROPERTY OF THE PARTY O

+ MIN=26.5 MAX=145. AUE=82.8 AUE/MIN= 3.13 MAX/MIN= 5.46

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

S. G. Andrews Street, 1985

Y-AXIS 14.5 41.7 38.7 33.4 44.3 43.6 43.5 44.4 40.2 34.4 26.5 12.5 65.9 53.0 74.3 75.3 74.1 71.3 75.7 69.9 39.0 57.0 + 10.5 75.9 99.7 115. 108. 114. 112. 107. 112. 86.7 4. ł + + 8.5 88.2 120. 142. 143. 139. 134. 139. 76.5 111. + + 6.5 135. 115. 81.3 145. 143. 140. 134. 140. 84.5 118. 4.5 91.4 1111. 118. 116. 120. 116. 74.8 1()1. 111. 2.5 79.5 77.8 73.5 60.7 78.5 80.4 68.2 74.8 0.5 46.U 42.6 47.5 9,013.0 5.0 1.0 19.0 11,() 11.0 2.0 3.0

X GHE I

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:37 10-Mar-95 PROJECT: 51-420 AREA: RDOM 34-N GRID: Cetling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A STATE OF THE STA

+ M[N=7.02 MAX=56.9 AUE=26.9 AUE/MIN= 3.83 MAX/MIN= 8.11

rg (3) = 9868 CCLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

· Salahan ware

1.C 3.0 5.0 9.0 13.0 17.0 19.0 x-AXIS

A TONE OF THE SECOND

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:34 29-Dec-94 PROJECT: 51-420 AREA: ROOM 35 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=29.8 MAX=135. AUE=77.2 AUE/MIN= 2.59 MAX/MIN= 4.53

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 37.3 29.8 42.9 41.6 41.6 12.5 63.6 63.6 71.7 73.2 71.7 10.5 110. 8.5 **8**2.8 6.5 82.8 135. 134. 118. \$2.8 4.5 69. 110. 2.5 63.6 21.2 23.2 46. 0.5 12.5 8.5 4.5 0.514.5 6.5 2.5 X - AXIS

USI's LITE*DRO U2.27E Point-By-Point Numeric Output 14:40 10-Mar-95 PROJECT: 51-420 AREA: ROOM 35-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.93 2.68 MAX/MIN= AUE/MIN= AUE=49.1 MAX=90.3 + MIN=18.3

anger 1,5;

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

0.5 4.5 6.5 10.5 x-AXIS

• • ...

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:45 29-Dec-94 PROJECT: 51-420 AREA: ROOM 33 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.48 MAX/MIN= 4.20 AUE/MIN= AUE=68.2 + MIN = 27.5MAX=116.

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

1. 115 MAN STATE OF LOT

Y-AXIS 14.5 36.1 34.6 34.6 36.1 34.0 34.0 12.5 62.0 58.9 10.5 8.5 99.9 99.9 116. 1111. 6.5 99.9 99.9 4.5 2.5 58.9 62.0 56.4 58.9 62.0 0.5 34.6 36.1 36.1 34.6 12.58.5 4.5 0.5 14.5 10.5 6.5

X-AXIS

2.5

Substitution of the

USI'S LITE*PRO U2.27E Point-By-Point Numeric Output 14:44 10-Mar-95 PROJECT: 51-420 AREA: ROOM 33-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=17.2 MAX=71.4 AUE=43.4 AUE/MIN= 2.52 MAX/MIN= 4.16

F8 <4> = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

0.5 4.5 8.5 10.5 14.5 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:53 29-Dec-94 PROJECT: 51-420 AREA: ROOM 31 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $(s_{i})^{2}(\mathfrak{A}_{i})=s_{i}$

+ MIN=59.1 MAX=150. AUE=96.9 AUE/MIN= 1.64 MAX/MIN= 2.54

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

14.5	+ 59.2	+ 78.0	83.5	+ 78.0	+ 78.0	+ 83.5	+ 78.0	59.1
12.5	+ 69.1	+ F 97.1	+> 108.	+ 104.	+ 104.	+ F 108.	+ > 97.0	69.0
10.5	+ 69.2	+ 101.	+ 123.	+ 129.	+ 129.	+ 122.	101.	69.0
8.5	+ 63.8	+ 97.9	+ 131.	148	148. F	130.	+ 97.6	+ 63.6
6.5	+ 64.1	+ 98.8	132.	150.	150.	132.	98.6	+ 64.0
4.5	+ 70.0	103.	126.	+ 133.	+ 133.	+ 126.	103.	69.9
2.5	+ 69.8	+ F 98.5	+>	+ 107.	+ 102.	+ f	+> 98.5	+ 69.8
0.5	+ 59.6	+ 78.7	+ 84.5	+ 79.3	+ 79.3	+ 84.5	+ 78.7	+ 59.6
	1.0	3.0	5.0	7.0 X-6		11.0	13.0	15.0

 $L_{\mathcal{F}}(\mathcal{S}_{n-1})^{2}$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:48 10-Mar-95 PROJECT: 51-420 AREA: ROOM 31-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.22 2.51 MAX/MIN= AUE,MIN= AUE=43.3 MAX=72.6 + MIN=17.2 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <4>

1.0 5.0 9.0 13.0 15.0 x-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:58 29-Dec-94 PROJECT: 51-420 AREA: ROOM 29 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=48.3 MAX=119. AUE=83.3 AUE/MIN= 1.73 MAX/MIN= 2.46

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

"我,我说"

Y-AXIS 14.5 48.3 67.0 81.8 81.9 67.2 48.5 12.5 62.9 10.5 66.2 119. 119. 97.5 8.5 103. 86.0 60.6 60.3 85.8 103. 6.5 103. 86.0 60.6 60.3 85.8 103. 4.5 65.9 2.5 93.2 114. 114. 93.5 63.2 62.9 0.5 48.5 81.8 67.0 81.9 67.2 5.0 9.0 1.0 11.0 2.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:51 10-Mar-95 PROJECT: 51-420 AREA: ROOM 29-N GRID: Ceiling Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=30.7 MAX=73.1 AUE=52.9 AUE/MIN= 1.72 MAX/MIN=

2.38

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

 $\int_{\mathbb{R}^{n}} dt \int_{\mathbb{R}^{n}} dt \int_{\mathbb{R}^{n}}$

3.0 5.0 9.0 11.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:18 30-Dec-94 PROJECT: 51-420 AREA: ROOM 32 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.39 MAX=63.7 AUE=34.3 AUE/MIN= 87.69 MAX/MIN= 162.85

J2 $\langle 5 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68 W $\langle 1 \rangle$ = K8957 COLUMBIA W240-A, (2) F30T12/WW/RS, LLF= 0.60

Y-AXIS 14.5 20.2 24.4 25.5 35.1 28.9 83.8 37.0 12.5 10.5 30. 8.5 6.5 41.9 4.5 47. 0.59 0.54 2.5 45. 0.54 0.540.5 0.51 0.40 30.3 45.2 12.5 4.5 8.5 0.5 10.5 14.5 6.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:57 10-Mar-95 PROJECT: 51-420 AREA: ROOM 32-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE,MIN= 84.48 MAX,MIN= 170.48 AUE = 21.4MAX=43.2 + MIN=0.25

J8 <3> = K9801X COLUMBIA LUN240-WL, <2> F032/35K, LLF= 0.66 W8 <1> = K8957 COLUMBIA W240-A, <2> F032/35K, LLF= 0.58

STATE OF THE STATE

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:05 30-Dec-94 PROJECT: 51-420 AREA: ROOM 30 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

心气性 经

+ MIN=0.15 MAX=46.4 AUE=20.6 AUE/MIN= 129.47 MAX/MIN= 292.00

J2 $\langle 3 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68 W $\langle 1 \rangle$ = K8957 COLUMBIA W240-A, (2) F30T12/WW/RS, LLF= 0.60

Y-AXIS 14.5 0.18 0.23 0.22 30.9 32.4 29.5 21.0 12.5 29.6 10.5 8.5 34.5 27. 0.22 0.23 39.0 39.5 6.5 20.2 33.2 4.5 31.2 14.6 16.6 + 4. 1 2.5 27.6 8.51 10.1 0.5 8.43 11.2 23.8 18.1 4.75 12.5 8.5 4.5 0.5 14.5 10.5 6.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:00 10-Mar-95 PROJECT: 51-420 AREA: ROOM 30-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE_MIN= 183.11 MAX_MIN= 428.63 AUE = 13.8MAX=32.4 + MIN=0.07

J8 <2> = K9801X COLUMBIA LUN240-WL, <2> F032/35K, LLF= 0.66 W8 <1> = K8957 COLUMBIA W240-A, <2> F032/35K, LLF= 0.58

0.10 0.1

and the second

+ + + + + + 0.11 0.11 0.11 0.11 0.10 0.10 0.1 23.9 11.9 11.4 12.1 15.8 6.74 8.81 12.9 20.1 10.5 19.6 13.8 + o بة. X-AXIS 14.0 19.7 6.5 - 6 + 2 - 6 25.6 22.1 4،5 2.5 15.1 + 応 4 ω + ω 0.5 Y-AXIS 7. 2.5 0. د 12.5 о С 10.5 α Ω 14.5

14.5

12.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:31 30-Dec-94 PROJECT: 51-420 AREA: ROOM 27 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=23.2 MAX=133. AUE=69.8 AUE/MIN= 3.01 MAX/MIN= 5.72

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

The second of the second

Y-AXIS 14.5 50.4 59.8 59.9 50.7 35.3 23.6 34.9 12.5 54.0 31.9 98.1 98.4 80.7 53.4 80.2 10.5 67.0 38.6 8.5 107. 132. 133. 108. 71.4 70.6 6.5 132. 133. 108. 71.4 41.3 70.6 107. 4.5 38.5 + 2.5 80.0 53.6 31.. 79.5 97.3 97.5 53.1 0.5 50.0 58.9 59.1 34.6 49.8 12.5 8.5 4.5 0.5 14.5 10.5 2.5 6.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:03 10-Mar-95 PROJECT: 51-420 AREA: ROOM 27-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Ş

+ MIN=14.1 MAX=88.4 AUE=44.5 AUE>MIN= 3.17 MAX>MIN=

F8 <4> = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

e i spijepperio

0.5 4.5 8.5 10.5 14.5 x-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:36 30-Dec-94 PROJECT: 51-420 AREA: ROOM 25 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=28.8 MAX=137. AUE=76.5 AUE/MIN= 2.65 MAX/MIN= 4.74

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

· Statement Control

Y-AXIS 31.2 44.3 57.1 61.6 55.5 41.7 28.8 14.5 + 12.5 90.0 65.5 93.0 101. 70.1 10.5 49.4 8.5 93.9 126. 137. 121. 58.5 6.5 87.5 53.0 126. 137. 121. 93.9 4.5 2.5 44.5 /0.1 93.0 101. 90.0 65.5 40.6 0.5 55.5 41.7 28.8 61.6 57.1 44.3 9.0 13.0 5.0 1.0 11.0 2.0 3.0 X AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:10 10-Mar-95 PROJECT: 51-420 AREA: ROOM 25-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=22.2 MAX=74.1 AUE=47.5 AUE/MIN= 2.13 MAX/MIN= 3.33

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, <2> F032/31K, LLF= 0.66

Y-AXIS

22.2	31.8	39.3	+ 4 5.	+ 4 3.5	39.3	31.8	+ 22.2	13.0
29.5	43.8	56.3	+62.7	+ 62.7	56.3	43.8	79.5	11.0
33.4	50.7	+ F8 65.0	72.3	72.3	+ F8 65.0	50.7	33.4	9.0
+ 4° 4°	52.1	65.5	74.1	74.1	65.5	+ 52.1	+ 4.4	7.0 X-AXIS
4 . 88	50,7	65.0	72.3	72.3	35.0 55.0	50.7	33.4	0
29.5	43.8	+ F8 56.3	+ 62.7	+ 62.7	+ F8 56.3	+ 3 8 8	+ 73.5	0.6
22.2	31.8	39,3	+ 4. C.	44.5	39,3	31.8	+ 77.77	1.0
4. ت	2.5	0.5	8.5	6.5	4.5	2.5	0.5	
-	-	←						

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:40 30-Dec-94 PROJECT: 51-420 AREA: ROOM 23 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=21.3 MAX=132. AUE=68.8 AUE/MIN= 3.24 MAX/MIN= 6.22

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

一つは一個の場合を表示している。

Y-AXIS

 $(a_{i},b_{k}^{2})_{i,j} = b_{i,j}^{2}, \quad (a_{i},b_{k}^{2})_{i}$

14.5	+ 25.3	+ 38.1	+ 53.6	+ 65.2	+ 64.6	52.0	+ 36.3	23.9
12.5	+ 33.4		+ 85.1	11				
10.5	+ 38.8	+ 68.6	+ F 105.	128.	+ F -127.	102.	+ 64.9	+ 36.3
8.5	+ 41.1	+ 72.1	+ 109.	+ 132.	131.	+ 105.	⁺ 68.2	+ 38.5
6.5	+ 40.7		+	1				1
4.5	+ 37.3	+ 66.0	+ F	123.	+ F 122.	-97.7	+ 62.4	+ 34.9
2.5	+ 30.6	+ 51.2	+ 75.7	+ 91.6	+ 90.7	+ 23.4	+ 48.6	+ 28.8
0.5	+ 22.3	+ 32.5	+ 44.6	+ 53.6	+ 53.2	+ 43.4	+ 31.1	+ 21.3
	1.0	3.0	5.0	7.0 X-6		11.0	13.0	15.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:12 10-Mar-95 PROJECT: 51-420 AREA: ROOM 23-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.22 2.51 MAX/MIN= AUE/MIN= AUE=43.3 MAX=72.6 + MIN=17.2 F8 <4> = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

A CONTRACTOR OF THE CONTRACTOR

Y-AXIS

17.2	+ 24.3	29.1	33.0	33.0	29.1	24.3	+ 1	15.0
25.1	36.9	¥4 ₹.	52.6	52.6	44	36.9	+ 72.1	13.0
30.8	+ 47.1	FB -	4, 67.5	4, 67.5	FB -	+ 47.1	30.8	11.0
33.4	50.8	4	72.6	72.6	44	50.8	33.4	9.0
33.4	- 20°- 50°-8	¥2	72.6	72.6	¥4.	50.8	33.4	9 7.0 X-AXI
30.8	+ 47.1	FB -	67.5	67.5	FB -	4 . 1	30.8	5.0
4+ 25.1	36.9	40-5-	52.6	52.6	+6.5	36.9	4 + 25.1	3.0
+ 17.2	24.3	29.1	- 0. - 0. - 0. - 0.	33.0	+ 29.1	+ 5 E . 3	+ 7.71	0.
رن ا	ന	U]	r.	īл.	ις.	ري د	 .n	
4	1.2	<u> </u>	ω	9.	4	2.	\Box	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:02 30-Dec-94 PROJECT: 51-420 AREA: ROOM 21 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=23.2 MAX=133. AUE=69.8 AUE/MIN= 3.01 MAX/MIN= 5.72

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 35.3 59.9 50.7 34.9 50.4 59.8 12.5 54.0 31.\$ 80.7 98.1 98.4 53.4 80.2 10.5 66.2 8.5 108. 107. 132. 133. 70.6 6.5 133. 108. 132. 70.6 107. 4.5 38.5 66.8 66.0 2.5 53.6 97.3 97.5 80.0 79.5 53.1 0.5 50.Ü 49.8 58.9 34.6 8.5 12.5 4.5 0.5 14.5 10.5 6.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:04 10-Mar-95 PROJECT: 51-420 AREA: ROOM 21-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=14.1 MAX=88.4 AUE=44.5 AUE>MIN= 3.17 MAX-MIN= 6

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

14.5

10.5

6.5 X-AXIS

12.5

8. 57

4.5

0.5

. വ 2.5

 $Y_{ij} = -i (\hat{y} - 2\hat{y})^{\dagger} \hat{Y}_{ij}^{ij}.$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:05 30-Dec-94 PROJECT: 51-420 AREA: ROOM 22 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

人名英格兰

+ MIN=28.8 MAX=137. AUE=76.5 AUE/MIN= 2.65 MAX/MIN= 4.74

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Section 1

Y-AXIS 14.5 31.2 44.3 57.1 61.6 55.5 41.7 28.8 12.5 40.6 93.0 101. 90.0 70.1 10.5 49.4 8.5 126. 137. 121. 93.9 6.5 87.5 53.0 137. 121. 93.9 126. 4.5 49.4 2.5 70.1 93.0 101. 90.0 65.5 40.6 0.5 57.1 61.6 55.5 41.7 9.0 13.0 5.0 1.0 11.0 2.0 3.0 X-AXIS

USI's LITE*2RO J2.27E Point-By-Point Numeric Output 15:15 10-Mar-95 pROJECT: 51-420 AREA: ROOM 22-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.13 MAX/MIN= MAX=74.1 AUE=47.5 AUE.MIN= + MIN=22.2

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

三、解析的"2015年

Y-AXIS

+ 22.2	31.8	39.3	+ 4 . 5	+ + + 5	39.3	31.8	+ + 77.7	13.0
29.5	43.8	56.3	4 + 62.7	62.7	8 + 3	43.8	79.5	11.0
33.4	50.7	+ F8	72.3	72.3	+ F8	50.7	33.4	9.0 S
4.4	52.1	65.5	74.1	74.1	65.5	52.1	34.4	7.0 X-AXI9
4 88.4	50.7	8 65.0	72.3	72.3	8	50.7	33.4	0.0
29.5	+ 4 9.8	56.3 ¢	4+	4 + 52.7	+ F8	4 % + &	+ 29.5	3.0
22.2	31.8	39.3	4 + 4 Ω)	+ 4 Մ.	39.3	+ ::	+ 7.22	1.0
4. ات	2.5	ن. ت	8.5	٠. ت	٠. ت	ر. س	0.5	
÷	-							

. 2 Whi in USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:09 30-Dec-94 PROJECT: 51-420 AREA: ROOM 20/24 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

"我,你还是更是。"

+ MIN=44.6 MAX=144. AUE=95.9 AUE/MIN= 2.15 MAX/MIN= 3.23

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 45.0 55.2 59.0 54.9 44.6 12.5 99.5 90.8 69.2 91.4 10.5 8.5 131. 144. 131. 99.4 101. 6.5 99.7 144. 131. 132. 4.5 + + 2.5 103. 78.4 79.4 104. 113. 0.5 53.9 72.5 67.1 9.0 5.0 1.0 7.0 3.0 X-AXIS

USI's LITE*DRO U2.27E Point-By-Point Numeric Output 15:17 10-Mar-95 PROJECT: 51-420 AREA: ROOM 20/24-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE.MIN= 1.45 MAX.MIN= 1.97 AUE=45.1 MAX=61.2 + MIN=31.1 F8 <3> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

SIXB-Y

	31.1	4.88	35.0	34.0	34.0	35.0	33.4	+ 3	9.0
	† **	 50.9	52.7	+ 100	51.9	52.7	† B	44.8	7
	5187	60.09	+ 60.7	4182-	61.2	+ 60.7	080	51.7	5.0
	+ 4 + 8	50.9	52.7	9.	51.9	52.7	000		C
	31.1 1.1	4.88	35.0	34.0	34.0	35.0	+ & 4.	+	1.0
Y-5710	7. D.	12.5	10.5	ю Г	6.5	4. 10.	2.5	0.5	

X-AXIS

A STATE OF

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:16 30-Dec-94 PROJECT: 51-420 AREA: ROOM 26 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· porting

+ MIN=33.9 MAX=137. AUE=83.5 AUE/MIN= 2.46 MAX/MIN= 4.04

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

18 12 15 TO

Service in the con-

Y-AXIS 14.5 59.2 61.9 53.8 40.7 33.9 47.1 + 12.5 87.6 62.5 75.1 96.2 101. 49.0 10.5 8.2 8.5 118. 64.9 101. 130. 137. 6.5 118. 83.4 130. 137. 64.9 101. 4.5 2.5 49.2 75.4 96.6 102. 88.0 62.7 0.5 54.1 41.0 59.6 62.3 13.0 9.0 5.0 1.0 11.0 2.0 3.0 X-AXIS

B Company

USI's LITE*DRO U2.27E Point-By-Point Numeric Output 15:20 10-Mar-95 PROJECT: 51-420 AREA: ROOM 26-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

MAX=75.0 AUE=50.9 AUE/MIN= 2.03 MAX/MIN= + MIN=25.1 F8 <4> = 9858 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

A STATE OF THE STA

() X U - >

[13.0
	28.7	+ 1.9	53.4 4	59.9	59.9	₹ 23 4	+ 41.9	7.87	11.0
	33.2	+ 20.4	64.8 64.8	71.7	71.7	64 #8 84 8	+ 20.4	33.2	0.6
	35.0	52.8	+ 99	75.0	75.0	+ 99	52.8	35.0	7.0 X-AXIS
	34.5	52.0	\$65.B	74.0	74.0	\$66.33	52.0	34.5	5.0 ×
	31.5	47.0	50.78	57.1	4+	60.59	+47.0	31.5	3.0
	25.1	ب ين م	+ 4-	50.8	50.4 81	+ 4	35. 9.0	+ 23.1	0.
) (4.5	12.5	.O.5	დ ე	6.5	4. رئ	2.5	O	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:38 30-Dec-94 PROJECT: 51-420 AREA: ROOM 28 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.3 MAX=92.2 AUE=60.7 AUE/MIN= 2.40 MAX/MIN= 3.65

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

17.15で発酵激のは、

Y-AXIS 25.3 35.0 41.9 41.5 39.5 41.4 42.1 35.5 25.8 14.5 12.5 68.3 56.6 68.1 65.6 60.9 65.3 55.8 10.5 92.0 88.1 81.2 87.7 92.2 76.0 8.5 6.5 81.3 87.7 92.2 76.0 92.0 88.1 4.5 56.3 68.6 66.1 61.4 65.8 68.8 57.1 2.5 32.5 0.5 41.9 42.6 35.9 26.U 40.0 42.0 42.5 13.0 12.0 9.0 5.0 1.0 15.0 11.0 7.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:21 10-Mar-95 PROJECT: 51-420 AREA: ROOM 28-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.82 2.45 MAX/MIN= AUE/MIN= AUE=38.8 MAX=60.6 + MIN=15.8 F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2E0CT, (2) F032/31K, LLF= 0.66

1.0 5.0 5.0 9.0 13.0 17.0 17.0 X-AXIS

1 15 781 4

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:44 30-Dec-94 PROJECT: 51-420 AREA: MEN'S ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=42.9 MAX=141. AUE=91.2 AUE/MIN= 2.13 MAX/MIN= 3.30

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

in making w

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:25 10-Mar-95 PROJECT: 51-420 AREA: MEN'S ROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $1 - i \sin(\rho^{1/2})^2$

4.83 2.58 MAX/MIN= AUE/MIN= AUE=29.5 MAX=55.3 + MIN=11.4

F8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

21.2 11.4	41.8 25.7 13.4	28.8 46.6 55.3 46.6 28.8 14.9	14.9	13.4	+ + + + +
21.2	25.7	28.8	28.8	41.8 25.7	+
33.4	<u></u>	+ 46.6	46.6		+
39.0	50.5 50.3	55.3	55.3	F8 50.3	+
33.3 39.0 33.3	41 FB -	+ 6.6	46.6 55.3 46.6 28.8	+ 11	+-
21.2	13.4 25.7	28.8	+ + + 14.9 28.8	+ + FB - 13.4 25.7 41 B 50.3	+
+ ;	+ K	+ 4: D	+ 4- Q.	13.4	+
0.	٠ 0	7.0	ص. 0	3.0	

1.0 5.0 9.0 13.0 x-AXIS

Section of the second

, A.

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:59 30-Dec-94 PROJECT: 51-420 AREA: WOMEN'S ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=109. AUE=37.0 AUE/MIN=N/A MAX/MIN=N/A

Service .

F $\langle 2 \rangle$ = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 L3 $\langle 1 \rangle$ = K7990 COLUMBIA CSR240, (2) F40CW/WM, LLF= 0.68 W $\langle 1 \rangle$ = K8957 COLUMBIA W240-A, (2) F30T12/WW/RS, LLF= 0.60

Y-AXIS							
18.5	25.1	30.0	30.4	+ 30.4	+ 28.5	± 22.8	
16.5	+ 25.2	+ 31.0	+ 34.6	+ 3 7.6 _	+ 36.4	+ _28.4	+ 19.2
14.5	+ 20.7	+ 25.8	+ 31.7	37.2	+ 37.1	→ 28.9	+ 18.7
12.5	+ 19.4	+ 21.0	+ 25.3	+ 29.8	+ 29.6	+ 24.1	+ 16.2
10.5	16.8	23.0	+ 37.9	+ 52.1	+ 59.8	+ 56.3	+ 42.4
8.5	+ 16.5	+ 31.5	+ 57. 4	+ 83.5	+ -96 ₁ 0	+ 90.1	+ - 70 ,3
6.5	+ 0.00	0.00	+ 66.4	.F 94.7	109.		79 .0
4.5	0.00	0.00	+ 53.4	+ 72.7	+ 82.8	+ 77.7	+ 59.9
2.5	+ 0.00	+ 0.00	+ 30.4	+ 40.4	+ 45.5	+ 43.1	+ 34.2
0.5	+ 0.00	+ 0.00	+	+ 20.7	+ 22.6	± 21.8	+ 18.9
	1.0	3.0	5.0	7.0 X-AXI		11.0	13.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:28 10-Mar-95 2.5 Values are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (V), HÓRZ CALC, Z= PROJECT: 51-420 AREA: WOMEN'S ROOM-N GRID: Ceiling Computed in accordance with IES recommendations

+ MIN=0.00 MAX=41.5 AUE=21.1 AUE.MIN=N/A MAX/MIN=N/A

9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 L8 <1> = K7990 COLUMBIA CSR240, (2) F032/35K, LLF= 0.66 W8 <1> = K8957 COLUMBIA W240-A, (2) F032/35K, LLF= 0.58 F8 < 1 > 84

13.0 0.60 0.00 17.0 27.1 33.2 29.1 19.0 0.00 0.00 10.3 17.0 20.8 18.4 11.9 e.64 6.95 11.6 18.5 22.6 20.0 12.5 9.16 17.1 28.2 34.8 30.4 19.9 35.6 22.5 29.5 35.0 34.4 33.4 30.9 24.5 18.2 29.4 35.8 39.1 41.3 39.4 30.6 20.6 23.3 29.2 35.3 40.7 40.1 31.1 20.1 5.21 7.14 8.21 7.57 + + FB 19.5 32.8 41.5 9.0 ∞ 16.7 23.2 28.2 32.7 5.0 0.00 00.00 6. ئى + ئى 1.0 4. ری 2.5 0.5 Y-AXIS 6.5 10.5 യ് 18.5 16.5 14.5 12.5

7.0 X-AXIS

3.0

CONTRACTOR OF

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:13 30-Dec-94

TOP STATE

Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=15.4 MAX=31.9 AUE=23.1 AUE/MIN= 1.50 MAX/MIN= 2.07

 $L2 \langle 2 \rangle = 10366$ COLUMBIA KL340-SOLID, (3) F40CW, LLF= 0.34

PROJECT: 51-420 AREA: COPIER ROOM GRID: Ceiling

Y-AXIS

apply a

14.5	+ 15.4	20.1	+ 22.7	+ 20.7	+ 16.1
12.5	+ 18.1	+ 25 <mark>.7</mark>	30,1	+ 26.5	+ 19.0
10.5	1			+ 28.1	
8.5	19.1	+ 25.7	+ 29.1	+ 26.3	+ 19.9
6.5	+ 19.1	+ 25.7	+ 29.1	+ 26.3	+ 19.9
4.5	19.3	+ 27 <mark>.3</mark>	+ 31.8 L2	+ - <u>28</u> . 1	+ 20.2
2.5	1			+ 26.6	
0.5	+ 15.5	+ 20.2	+ 22.8	+ 20.8	+ 16.1
	1.()	3.0	5.0		9.0
		J.U	x nxts		

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:31 10-Mar-95 PROJECT: 51-420 AREA: COPIER ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=21.1 MAX=41.3 AUE=30.4 AUE/MIN= 1.44 MAX/MIN=

and the son

L8 <2> = K7990 COLUMBIA CSR240, (2) F032/35K, LLF= 0.66

SIXH->

_									
	22.0	25.1	+ 26.5	26.2	+ 26.2	26.5	25.2	+ 22.1	9.0
	28.0	+ 🔄	36.6	+ 4° 5.	4.4	+	4.8 8.4	+ 28.1	L
	30.5	+ 65	41.3	38.1	38.1	+ + + + + + + + + + + + + + + + + + + +	39.2	30.7	5.0
	27.2	33.6	35.5	33.6	33.6	35.4	33.7	+ 4	c
	21.1	24.0	+ 52.4	25.2	25.2	, 4 25, 4	24.0	+ 7:12	0.1
7 < -	4. πυ	2.5	o.s	დ ი	6.5	4- ي	2.5	ر س	
_	,	← →	-						

X-AXIS

all the an

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:23 30-Dec-94 PROJECT: 51-420 AREA: ROOM 5 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

7. 7 388h

+ MIN=36.9 MAX=120. AUE=81.9 AUE/MIN= 2.22 MAX/MIN= 3.25

 $F \langle 6 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

49, 24, 20 6 1, 1

Y-AXIS

14.5	+ 36.9	+ 46.9	+ 52.6	+ 55.3	57.0	+ 57.0	+ 55.3	52.6	+ 46.9	36.9
12.5						- 1		ł	73.4	
10.5	+ 65.4	+ F 92.8	+> 106.	† 109.	+ F	+>	† 109.	+ F 106.	+ > 92.8	65.4
8.5	+ 69.7	+ 97.6	+ 112.	+ 116.	+ 120.	+ 120.	† 116.	112.	+ 97.6	69.7
6.5	+ 69.7	97.6	112.	+ 116.	120.	120.	+ 116.	112.	97.6	69.7
4.5	+ 65.4	+ F	+>	+ 109.	+ F	+->	+ 109.	+ F	+> 92.8	+ 65.4
2.5	+ 53.3	+ 73.4	+ 83.9	+ 86.9	+ 89.6	+ 89.6	+ 86.9	+ 83.9	+ 23.4	+ 53.3
0.5	+ 36.9	+ 46.9	+ 52.6	+ 55.3	+ 57.0	+ 57.0	+ 55.3	+ 52.6	+ 46.9	+ 36.9
	1.0	3.0	5.0	7.0	9.0 X-F	11.0	13.0	15.0	17.0	19.0

AND THE

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:37 10-Mar-95 PROJECT: 51-420 AREA: ROOM 5-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.23 MAX/MIN= AUE/MIN= AUE=52.2 MAX=79.1 + MIN=23.4

3.37

F8 <6> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

19.0

15.0

11.0 X-AXIS

3,0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:26 30-Dec-94 PROJECT: 51-420 AREA: ROOM 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

10 1 180 180 1 1 1 1 1

+ MIN=28.0 MAX=121. AUE=82.1 AUE/MIN= 2.93 MAX/MIN= 4.33

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Sandal Marie and A

Y-AXIS 38.8 48.5 54.1 56.3 57.7 57.6 56.3 53.6 47.5 28.0 14.5 12.5 43.1 90.3 87.8 84.7 90.7 88.0 56.9 76.1 10.5 114. 110. 111. 8.5 117. 121. 120. 117. 113. 101. 114. + + 6.5 96.9 57.4 117. 121. 120. 117. 113. 114. 101. 4.5 56.9 76.1 85.3 88.0 90.7 90.3 87.8 84.7 73.3 43.1 2.5 0.5 53.6 56.3 57.6 13.0 17.0 5.0 9.0 1.0 19.0 15.02.0 11.0 3.() X FIXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:40 10-Mar-95 PROJECT: 51-420 AREA: ROOM 3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

7.29 4.30 MAX/MIN= AUE/MIN= AUE=35.7 MAX=60.6 + MIN=8.31 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <4>

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:29 30-Dec-94 PROJECT: 51-420 AREA: ROOM 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=36.9 MAX=120. AUE=81.9 AUE/MIN= 2.22 MAX/MIN= 3.25

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 36.9 46.9 52.6 55.3 57.0 57.0 55.3 52.6 46.9 14.5 12.5 86.9 83.9 73.4 53.3 89.6 89.6 86.9 10.5 109. 109. 116. 112. 97.6 8.5 120. 120. 97.6 112. 116. + + + 6.5 112. 97.6 120. 120. 116. 97.6 112. 116. 4.5 109. 73.4 83.9 86.9 89.6 89.6 86.9 83.9 73.4 2.5 0.5 55.3 52.6 55.3 57.0 57.0 13.0 12.0 5.0 9.0 1.0 19.0 15.0 7.0 11.0 3.0 X AXIS

Alexander of

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:46 10-Mar-95 PROJECT: 51-420 AREA: ROOM 1-N GRID: Ceiling 2.5 Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations 3.37 2.23 MAX/MIN= AUE/MIN= AUE=52.2 MAX=79.1 + MIN=23.4 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <6>

如何是**没**受事人。

19.0 15.0 11.0 X-AXIS 3.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:35 30-Dec-94 PROJECT: 51-420 AREA: ROOM 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

"一点性情感的言"

+ MIN=13.0 MAX=81.9 AUE=39.4 AUE/MIN= 3.02 MAX/MIN= 6.28

F (2) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 31.1 36.5 31.5 21.0 13.5 3.3 20.6 12.5 50.8 60.8 10.5 40.1 21.# 39.1 8.5 81.9 69.1 68.1 6.5 69.1 81.9 68.1 4.5 39.9 2.5 49.9 59.7 50.6 31.9 17. 31.1 0.5 30.3 35.5 30.6 20.6 20.2 12.5 4.5 8.5 0.5 10.5 6.5 2.5 X-AXIS

all hard desired the first of the

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:59 10-Mar-95 PROJECT: 51-420A AREA: ROOM 2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HCRZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.26 MAX/MIN= 7.00 AUE=25.2 AUE/MIN= MAX=54.3 + MIN=7.75 F8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

ſ			+ ~	<u> </u>	+ 4.	+ ~:	+	+ 65	ហ
	+ ω.	+	133+	+ 4.	. 4	. (.)	←	\ \ \	12.
	13.5	20.6	25.3	+ 28.4	4 + 28.4	25.1	20.3	+ 13.2	10.5
	21.1	31.9	本 司	46.0	+ 15. 0.	1	31.4	20.5	8.5
	24.6	37.3	F8 -	54.3	54.2	48 88 88	36.7	+ 24.0	6.5 X-AXIS
	20.9	31.5	+0+	+ .0 4.0	+ 45 +	+04	31.0	+ 20.4	4. Ri
	13.2	20.1	4+24.7	27.7	27.6	24.5	19.9	+ 71	2.5
	+ 5.	+ 0	2+	+.2	+ 4.	2.8	+0.	+ 5.	O.
Y-MXIS	14.5	12.5	10.5	8.5	6.5	4. ቢ	2.5	0.5	

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:42 30-Dec-94 PROJECT: 51-420 AREA: ROOM 4 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=38.2 MAX=121. AUE=83.1 AUE/MIN= 2.17 MAX/MIN= 3.16

F (6) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

January States

Y-AXIS 14.5 48.0 53.7 56.2 57.7 57.7 56.2 53.7 48.0 38.2 12.5 90.5 85.0 74.7 87.8 90.5 87.8 85.0 10.5 67.**0** 114. 110. 110. 8.5 117. 113. 117. 121. 121. 99.1 113. + + + 6.5 117. 113. 117. 121. 121. 99.1 113. 4.5 110. 110. 2.5 87.8 85.0 74.7 90.5 85.0 82.8 90.5 0.5 48.Û 38.2 48.Û 53.7 56.2 57.7 16.5 8.5 12.5 0.5 4.5 14.5 18.5 2.5 6.5 10.5 X-AXIS

USI's LITE*PRO U2.27E Foint-By-Point Numeric Output 16:02 10-Mar-95 PROJECT: 51-420A AREA: ROOM 4-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.90 MAX/MIN= AUE=36.1 AUE/MIN= MAX=60.2 + MIN=12.5

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

- Maring

Y-AXIS

						<u> </u>	<u> </u>	<u></u>	Ŋ
	12.	17.	20.	23.	23.	20.	17.	+ 17	18.
	+ 60	28+ 58.5	35.3	+0+	+40.1	35. 35. 4	28.5	+ 65	16.5
	26.0	39.0	8 20 20 20 30 4	+ 56.4	+ 56.4	50.3	39.0	76.0	14. 5.
	28.0	41.8	54.D	60.2	4 60.2	+ F8 54.0.5	41.8	+ 78.0	12.5
	25.9	+ 88 4.	+8.0	55.2	55.2	+49.0	39.4	25.3	.5 10.5 X-AXIS
	25.9	4.88	+8.0	55.2	55.2	+8.0	4.68	+ 25.9	8.5 7-×
	28.0	+ 14.8	3 54.0	+ 60.2	4 60.2	58 + N	+ 1.8	78.0	6.5
	26.0	39.0	50 3	+ 95.	+ 52	50 + 37 +	39.0	+ 76.0	4.
	19.3	78.5	35.3	+0.1	+0+	35 + 35 +	78. 138.	+ 10.3	2.5
	7.5	+ <u>/</u>	+ 0.	+ %	+ 83.0	2 0.5	7.	+ 2	0.5
7	14.0	12.5	.0. 3.	യ	5.5	٠ .	2.5	0.5	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:54 30-Dec-94 PROJECT: 51-420 AREA: ROOMS 6/8/10 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $\rho = \sqrt{\epsilon_{\rm sol}} \cdot \epsilon_{\rm sol} \cdot \epsilon_{\rm sol}$

可能機能機能を行った。

+ MIN=27.8 MAX=110. AUE=68.7 AUE/MIN= 2.47 MAX/MIN= 3.94

F < 12 = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 38.8 48.1 51.1 51.1 38.8 27.8 48.1 12.5 39.6 81.7 76.9 76.9 81.7 60.9 10.5 49. 8.5 103. 110. 110. 81.4 103. 6.5 81.4 110. 110. 103. 103. 4.5 2.5 76.9 60.9 39.6 81.2 26.9 81.7 60.9 0.5 48.1 51.1 38.8 48.1 51.1 12.5 8.5 4.5 0.5 14.5 10.5 6.5 2.5 X-hXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:04 10-Mar-95 PROJECT: 51-420A AREA: ROOMS 6/8/10-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRIO (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.51 MAX/MIN= AUE=43.8 AUE/MIN= + MIN=17.4 MAX=73.2

e je sporto

F8 <12> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

		_ ^		Ф.					Ŋ
	17.	24.	30.	33.	33 +	30,	+ 24.	+	14.
	4+ 25.4	4.78	44.2	59.4 59.3	53. 3.	44	4.78	+ 25.4	12.5
	31.6	47.6	FB - 61.5	68.1	68.1	FB 6115	47.6	31.6	10.5
	33.8	51.3	65.0	73.2	73.2	4 650	51.3	33.8	8.5 AXIS
	33.8	- 12 1.3	+69	73.2	73.5	村頃	51.3	33.8	5.5 A-X
	31.6	+7.6	F8 -	+ 68.1	+ 68.1	618	+7.6	31.6	4.5
	+ 25.4	+ 5	4. + V	53.4 53.4	53.4 53.4	± Z Z	+ 78	75.4	2.5
	+ 7	+ 4.	+ °°	# m + m	+ % + %	+ 0	+ 4+	+ 1	0
) (14.5	12.5	10.5	φ ω	6.5	4. 10.	2.5	0.5	

- 148MA 140

化氯酸化物 化液

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:24 30-Dec-94 PROJECT: 51-420 AREA: ROOM 9 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=13.3 MAX=81.9 AUE=39.4 AUE/MIN= 2.97 MAX/MIN= 6.16

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

AND CONTRACTORS

Y-AXIS 14.5 3.3 20.6 30.9 36.0 30.9 20.6 13.3 12.5 60.2 50.7 50.7 31.8 10.5 39.5 21.0 39.5 8.5 81.9 68.6 42.2 6.5 68.6 81.9 68.6 4.5 39.5 2.5 60.2 50.7 31.8 17.6 31.8 50.7 0.5 36.0 30.9 20.6 30.9 20.6 12.5 4.5 8.5 0.5 6.5 10.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:05 10-Mar-95 PROJECT: 51-420A AREA: ROOM 9-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HCRZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.18 MAX/MIN= AUE=25.2 AUE/MIN= MAX=54.3 + MIN=7.93

F8 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

	ω_				- 21-				Ŋ
	+ 0.	+	13.	+ 4-	+ 4.	13.	11.	+ 0.	12.
	13.2	20.2	24.9	28.0	28.0	24.9	20.2	+	10.5
	20.8	+ 18 4.1	** ** ** ** ** ** ** **	42.6	+5.6	49.	+ 18	20.8	8 5.51
	24.3	37.0	FB 49.0	+ 4 +	54.3	F8 49.0	37.0	+ 47	6.5 X-AXI
	20.8	+ 1.8	+04	+2+65.6	+ 5.6	+04	31.4	+ 70.8	4. D.
	13.2	20.2	4.9	28.0	28.0	24.9	20.2	+ 13.2	2.5
	+ +	+ 1.0	+ %	+ 4	+ 4.	+ ਲ	+	++	0.5
01741	 4 ር	12.5	10.5		6.5	4. G.	2.5	0.5	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:33 30-Dec-94 PROJECT: 51-420 AREA: ROOM 12 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.6 MAX=92.1 AUE=60.7 AUE/MIN= 2.37 MAX/MIN= 3.59

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Kathalan ...

Y-AXIS

14.5	+ 25.6	+ 35.4	+ 42.3	+ 41.7	+ 39.8	+ 41.7	+ 42.3	+ 35.4	+ 25.6
12.5	+ 36.9	+ 56.5	+ 68.4	+ 65.7	+ 61.2	+ 65.7	68.4	+ 56.5	36.9
10.5	+ 44.9	71.6	₱ - 87.9	82.9	+ 76.0	82.9	₽ - 87.9	21.6	+ 44.9
8.5	+ 48.1	+ 75.5	92.1	+ 87.9	* 81.2	+ 87.9	92.1	+ 75.5	+ 48.1
6.5	+ 48.1	75.5	92.1	+ 87.9	* 81.2	+ 87.9	92.1	75 . 5	+ 48.1
4.5	+ 44.9	71.6	₽ 82.9	82.9	+ 76.0	82.9	f 82.9	21.6	+ 44.9
2.5	+ 36.9	+ 56.5	+ 68.4	+ 65.7	+ 61.2	+ 65. <i>7</i>	+ 68.4	+ 56.5	+ 36.9
0.5	± 25.6	+ 35.4	+ 42.3	+ 41.7	1 39.8			+ 35,4	+ 25.6
	1.0	3.0	5.0	7.0	9.0 X -AX19	11.0	13.0	15.0	17.0

a frequen

ę.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:07 10-Mar-95 PROJECT: 51-420A AREA: ROOM 12-N GRID: Ceiling 2.5 Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations

3.76 2.41 MAX/MIN= AUE/MIN= AUE=38.8 MAX=60.5 + MIN=16.1 = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <4>

The compared the particular section

15.0 11.0 X-AXIS 7.0 3.0

· 图1/2018年1月1日日本

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:37 30-Dec-94 PROJECT: 51-420 AREA: ROOM 11 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=27.0 MAX=92.9 AUE=61.5 AUE/MIN= 2.27 MAX/MIN= 3.44

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 14.5 36.7 42.6 41.9 40.0 41.9 42.6 36.7 27.0 12.5 38. 66.1 69.1 69.1 66.1 61.6 10.5 46.0 8.5 92.9 88.5 81.8 88.5 92.9 6.5 88.5 92.9 92.9 88.5 81.8 4.5 46.0 76.4 2.5 66.1 69.1 57.5 69.1 66.1 61.6 0.5 42.6 36.7 42.6 40.0 36.7 41.9 41.9 16.5 12.5 8.5 4.5 0.5 14.5 10.5 6.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:09 10-Mar-95 PROJECT: 51-420A AREA: ROOM 11-N GRID: Ceiling Values are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (V), HORZ CALC, Z= Computed in accordance with IES recommendations 3.61 2.32 MAX/MIN= AUE/MIN= AUE=39.2 MAX=60.9 MIN=16.9

A SAMPLES

大學的可能的

F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

16.5 35.3 42.3 41.3 39.5 41.3 42.3 35.3 23. 28. 54.8 52.3 48.5 52<u>13 54.8 44.5 28.</u> 2.4 50.3 50.9 58.6 54.7 58.6 50.9 50.3 32. 23.5 + 9 60.9 58.6 54.7 58.6 60.9 50.3 35.3 42.3 41.3 39.5 41.3 42.3 35.3 24.2 54.8 52.3 48.5 52.3 54.8 12.5 25.8 27.5 28.3 10.5 X-AXIS 8 2 6.5 27.5 28.3 4.5 50.3 24.2 4 4 ر 2.5 . 30 + e.9 . Ω + 0.5 0.5 V-AXIS 2.5 4.5 യ വ 6.5 10.5 12.5 14.5

ķ

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:43 30-Dec-94 DRDJECT: 51-420 AREA: ROOM 14 GRID: Ceiling Jalues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and Kindle Solding

2.81 MAX/MIN= AUE/MIN= AUE=61.9 MAX=96.6 + MIN=22.0

= 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 (9)

0.5 22.0 31.3 40.8 41.8 45.4 45.4 41.8 40.8 42.8 40.2 31.3 22.6 6.5 4.5 6.6 86.8 92.8 84.5 85.5 96.6 85.5 84.5 92.8 86.8 61.6 36. 2.5 29.0 47.1 64.8 69.1 63.5 64.3 72.1 72.1 64.3 63.5 69.1 64.8 47.1 29. 8.5 36.0 6.6 86.8 92.8 84.5 85.5 96.6 96.6 85.5 84.5 92.8 86.8 61.6 36. 4.3 56.3 18.2 18.2 1 79.3 80.3 19.5 12.3 80.3 79.3 18.5 18.3 34. 3-2 47.; 64.8 69.; 63.5 64.3 72.1 72.; 64.3 63.5 69.1 64.8 47.1 29. 22.5 6.5 10.5 14.5 18.5 20.5 ر. ان (S) 10.5 81 2 3 4 -> 3.4.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:11 10-Mar-95 PROJECT: 51-420A AREA: ROOM 14-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ SRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

MAX=63.3 - MIN=13.3

2.95 MAX/MIN=

AUE/MIN=

AUE=39.4

= 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <6>

on the depolar

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:49 30-Dec-94 PROJECT: 51-420 AREA: ROOM 13 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

State Company

+ MIN=20.2 MAX=90.8 AUE=55.9 AUE/MIN= 2.77 MAX/MIN= 4.49

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

egengeste, e.,

Y-AXIS 14.5 20.2 29.5 38.4 41.5 39.3 39.3 41.5 38.4 29.5 20.2 12.5 61.3 67.3 63.1 45.3 67.3 61.3 63.1 10.5 77.0 86.2 77.0 56.6 LB1 8.5 90.8 85.1 90.8 82.1 82.1 85.1 6.5 90.8 85.1 60.0 82.1 82.1 90.8 85.1 4.5 56.6 77.0 86.2 77.0 2.5 67.3 61.3 61.3 67.3 63.1 45.3 45.3 63.1 0.5 38.4 39.3 38.4 41.5 39.3 29.5 17.0 13.0 9.0 5.0 1.0 19.0 15.0 7.0 11.0 3.0 X-AXIS

4.89 2.91 MAX/MIN= AUE/MIN= AUE=35.7 MAX=59.9 + MIN=12.3 F8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Super Super

Bldg 51-430 Summary

	Total	Watts	1,003	840	92				1,935
Replacement System	Number	Fixtures	17	8	4			The second secon	29
	Watts/	Fixture	59	105	23				
	Fixture	Type	F8	8H	R				Totals
	Total	Watts	2,822	336	1,104	150	120		4,532
em	Number	Fixtures	17	4	8	2	2		33
Present System	Watts/	Fixture	166	84	138	75	09		
	Fixture	Type	- 14	9	I	×	X3		Totals

sam**aklada** kareda

51-430 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-430 Type: Indoor

Luminaire Fixture Schedule / PRESENT

Project name: Lighting Survey - PBA Bldg 51-430

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 6-Jan-95

UPD: 2.7W/Sq.Ft

2X4 4L FLUSH STATIC TROFFER	F40CW	1	. !	
LENS125" POLARIZED PATT.12 COLUMBIA 4PS2*-87-244	ESB	166		
2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242	F40CW ESB	000 - 84	4	
4"X8'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS296	F96T12/CW/WM STD	000 - 138	8	
5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	75A19/SW NA	000 - 75		
5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	60A19/IF NA	60	2	
- 2IO - 400 - 400 I	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242 4"X8'2L EMBOSSED SURFACE STRIP DPEN BOTTOM- NO SHIELDING COLUMBIA CS296 5"RECESS ROUND DOWNLIGHT, LOWER PRESCOLITE 1222-262 5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR OPEN- CLEAR ALZAK REFLECTOR	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242 4"X8'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS296 5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262 5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR OPEN- CLEAR ALZAK REFLECTOR NA 60A19/IF NA	COLUMBIA 4PS2*-87-244 EXA 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242 EVALUATE OF A COLUMBIA 4PS2*-52-242 EVALUATE OF A COLUMBIA CS296 EVALUATE OF A	COLUMBIA 4PS2*-87-244 EXA 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242 A"X8'2L EMBOSSED SURFACE STRIP DPEN BOTTOM- NO SHIELDING COLUMBIA CS296 5"RECESS ROUND DOWNLIGHT, LOWER PRESCOLITE 1222-262 5"RECESS ROUND DOWNLIGHT, LOWER DPEN- CLEAR ALZAK REFLECTOR DPEN- CLEAR ALZAK REFLECTOR DPEN- CLEAR ALZAK REFLECTOR DPEN- CLEAR ALZAK REFLECTOR 60A19/IF NA

51-430 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-430 Type: Indoor

Luminaire Fixture Schedule / PROPOSE D

Project name: Lighting Survey - PBA Bldg 51-430

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 10-Mar-95 UPD: 1.2W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
CF	8"1L(VERT) RECESS RND.DOWNLITE OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CF122518-B462	F18DTT/27K STD	000	4	
F8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	17	
H8	4"X8'2L EMBOSSED SURFACE STRIP OPEN BOTTOM- NO SHIELDING COLUMBIA CS296	F096/735 EOCT	000 - 105	8	

51-430 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Court topics

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-430 Type: Indoor

Project Area Summary

Project name: Lighting Survey - PBA Bldg 51-430

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331 |Date: 10-Mar-95

UPD: 1.9W/Sq.Ft

AKEA NAME	DIMENSIONS	; ±0	MINAIKES	W/SU.FT 	OFY
OFFICE 1	23x16x8Ft	(9)	Type F	4.1	
 OFFICE 1-N	23x16x8Ft	(8)	Type F8	1.3	
 OFFICE/SHOP	21x29x11Ft	(8)	Туре Н	1.8	
FFICE/SHOP-N	21x29x11Ft	(8)	Туре Н8	1.4	
RESTROOMS		(1)	Type X2	4.7	
 RESTROOMS-N	4x4x8Ft	(1)	Type CF	1.4	
CONFERENCE		(6)	Type F Type G	3.1	
COMPERENCE-N		(6)	Type F8	0.9	
OFFICE 3	19x12x8Ft	(2)	Type F Type G	1.8	
OFFICE 3-N	19x12x8Ft	(3)	Type F8	0.8	
OFFICE 3 RR	9x4x8Ft	(2)	Type X3	3.3	
OFFICE 3 RR-N	9x4x8Ft	(2)	Type CF	1.3	

51-430 Calculations

\$ \$4.00 m

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 51-430 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey PBA Bldg 51-430

C. M. A. C.

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331 |Date: 10-Mar-95 |UPD: 1.9W/Sq.Ft

AKEA WAME	t trimming time	t tektt/ MAMP.	. A	ys. :	(VI.A.A. !	ivi i ivi
OFFICE 1	23x16x8Ft	Ceiling	<+>	101.8	147.6	46.8
OFFICE 1-N	23x16x8Ft	Ceiling	<+>	53.6	77.7	25.1
OFFICE/SHOP	 21x29x11Ft	Ceiling	<+>	62.1	73.2	48.7
JFICE/SHOP-N	21x29x11Ft	Ceiling C.U. CALC	<+>	55.1 35.8	64.9	43.2
RESTROOMS	4x4x8Ft	Ceiling	<+>	14.9	16.9	13.1
RESTROOMS-N	-	 Ceiling	<+>	10.2	16.4	6.3
CONFERENCE	 14x29x8Ft	Ceiling	<+>	86.4	149.3	29.7
CONFERENCE-N		Ceiling	- <+>	39.8	61.1	11.2
OFFICE 3		Ceiling	<+>	42.6	79.6	0.2
OFFICE 3-N		Ceiling	- <+>	29.2	50.1	0.1
OFFICE 3 RR	9x4x8Ft	 Ceiling	- <+>	13.3	16.2	8.9
OFFICE 3 RR-N	9x4x8Ft	 Ceiling	<+>	12.1	19.6	5.7

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 11:44 6-Jan-95 PROJECT: 51-430 AREA: OFFICE 1 GRID: Ceiling =2 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Computed in accordance with IES recommendations

3,15 2.17 MAX/MIN= AUE/MIN= AUE = 102.MAX=148. + MIN=46.8

F <9> = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

2.5 6.5 10.5 14.5 18.5 20.5 X-AXIS

September 1

Street C

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:34 10-Mar-95 PROJECT: 51-430 AREA: OFFICE 1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.09 2.13 MAX/MIN= AUE/MIN= AUE=53.6 MAX=77.7 + MIN=25.1

= 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 F8 <8>

erand and

0.5 4.5 8.5 12.5 16.5 20.5 2.5 6.5 10.5 14.5 18.5 22.5 x-AXIS

1000000000

3.003.230 - 27.5

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 12:02 6-Jan-95 PROJECT: 51-430 AREA: OFFICE/SHOP GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=48.7 MAX=73.2 AUE=62.1 AUE/MIN= 1.28 MAX/MIN= 1.50

H (8) = K7994 COLUMBIA CS296, (2) F96T12/CW/WM, LLF= 0.72

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:38 10-Mar-95 PROJECT: 51-430 AREA: OFFICE/SHOP-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=43.2 MAX=64.9 AUE=55.1 AUE/MIN= 1.28 MAX/MIN= 1.50

H8 $\langle 8 \rangle$ = K7994 COLUMBIA CS296, (2) F096/735, LLF= 0.70

Y-AXIS 26.5 5.9 56.5 61.2 58.6 51.9 47.8 51.9 58.6 61.2 56.5 45. 18.5 9.0 59.9 64.9 62.6 56.0 52.1 56.0 62.6 64.9 59.9 49. 16.5 8.4 58.6 63.2 61.5 55.8 52.5 55.8 61.5 63.2 58.6 48. 10.5 9.0 59.9 64.9 62.6 56.0 52.1 56.0 62.6 64.9 59.9 49. 6.5 46.3 55.8 60.2 58.7 53.8 51.1 53.8 58.7 60.2 55.8 46. 4.5 \\ \delta_6.5 \, 56.8 \, 61.3 \, 59.4 \, 53.5 \, 50.2 \, 53.5 \, 59.4 \, 61.3 \, 56.8 \, 46 5.9 56.5 61.2 58.6 51.9 47.8 51.9 58.6 61.2 4.5 8.5 12.5 16.5 20.5 2.5 6.5 10.5 14.5 18.5 X-AXIS . 大作的特殊的"****(1)。*

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:31 6-Jan-95 PROJECT: 51-430 AREA: RESTROOMS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

100

+ MIN=13.1 MAX=16.9 AUE=14.9 AUE/MIN= 1.14 MAX/MIN= 1.29

X2 <2> = B1999A PRESCOLITE 1222-262, (1) 75A19/SW, LLF = 0.82

2.60

AUE,MIN= 1.62 MAX,MIN=

AUE = 10.2

MAX = 16.4

+ MIN=6.33

· OLYMPICATION

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:45 10-Mar-95 PROJECT: 51-430 AREA: RESTROOMS-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations CF <2> = B2125A PRESCOLITE CF122518-B462, (1) F18DTI/27K, LLF= 0.50

8.95 15.85.9 9.34 0.05 16.0 16.4 9.56 6,61 9.42 9.60 6.85 6.33 8.81 8.97 6.55 2.5 0.5 3.S 1.5

2.5 1.5 3.5 X-AXIS 0.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:41 6-Jan-95 PROJECT: 51-430 AREA: CONFERENCE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

"和"的

+ MIN=29.7 MAX=149. AUE=86.4 AUE/MIN= 2.91 MAX/MIN= 5.03

F $\langle 6 \rangle$ = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 G $\langle 3 \rangle$ = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS 46.2 <u>56.1 57.</u>5 52.7 46.5 38.9 29.7 28.5 51.7 66 4 73 6 77.2 75.7 62.8 43.3 26.5 48.7 64.5 80.7 99 0 167. 88.7 57.1 24.5 41.7 57.2 80.6 110. 124. 104. 66.8 22.5 20.5 38.6 55.7 82.2 114. 128. 197. 68.9 18.5 45.4 68.8 96.6 120. 124. 100. 65.3 56.0 88.9 120. 134. 125. 96.2 62.3 14.5 63.1 101. 134. 146. 132. 12.5 66.6 104. 136. 149. 135. 100. 62.5 10.5 68.5 1p6. 138. 1/48. 132. 97.6 61.8 68.1 105. 136. 116. 132. 38.1 62.1 8.5 65.4 93.9 119. 134. 128. 99.4 64.2 63.3 83.1 98.2 109. 110. 92.5 63.6 61.3 76.4 80.7 84.9 88.569.6 58.1 53.8 63.4 65.0 65.5 67.7 5.0 9.0 3.0 2.0 11.0 z-axis

But But Millery B.

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:48 10-Mar-95 PROJECT: 51-430 AREA: CONFERENCE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Sugar West

+ MIN=11.2 MAX=61.1 AUE=39.8 AUE/MIN= 3.54 MAX/MIN= 5.44

F8 $\langle 6 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

and the state of the same of

Definition

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:53 6-Jan-95 PROJECT: 51-430 AREA: OFFICE 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1 - \$1927(12) - 1 (no - 1

AUE/MIN= 236.94 MAX/MIN= 442.73 AUE=42.6 MAX=79.6 + MIN=0.18

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 G $\langle 1 \rangle$ = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

Y-AXIS

11.0 0.20 0.27 0.28 29.0 42.0 49.6 43.2 29.2 0.32 0.22 9.0
$$\frac{1}{10.18}$$
 0.24 0.28 36.7 49.5 56.6 50.2 37. 0.32 0.20 7.0 $\frac{1}{10.18}$ 30.1 41.1 47.1 52.9 58.5 57.8 47.7 32.7 16.0 5.0 32.9 51.0 63.9 63.2 58.4 62.7 70.6 66.6 47.9 28.9 39.5 63.9 79.6 73.3 60.8 64.3 78.7 788.9 57.4 33.2 1.0 $\frac{1}{10.18}$ $\frac{1}{$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:51 10-Mar-95 PROJECT: 51-430 AREA: OFFICE 3-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

E ANNOUNCE -

- 海州海南北京 >

+ MIN=0.10 MAX=50.1 AUE=29.2 AUE/MIN= 274.77 MAX/MIN= 471.27

F8 (3) = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:01 6-Jan-95 PROJECT: 51-430 AREA: OFFICE 3 RR GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=8.87 MAX=16.2 AUE=13.3 AUE/MIN= 1.50 MAX/MIN= 1.83

X3 (2) = B1999A PRESCOLITE 1222-262, (1) 60A19/IF, LLF= 0.81

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:53 10-Mar-95 PROJECT: 51-430 AREA: OFFICE 3 RR-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

小個的多种質物化

一种的数据的

+ MIN=5.73 MAX=19.6 AUE=12.1 AUE/MIN= 2.10 MAX/MIN= 3.42

CF (2) = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50

Y-AXIS

4.0

3.0

7.77 12.6 14.0 10.8 9.74 12.4 13.8 9.66 5.73

2.0

9.39 17. 15.5 13.3 11.4 16.7 15.6 12.8 6.55

1.0

8.03 13.3 14.8 11.2 10.1 13.4 15.1 10.4 5.94

0.0

0.5

1.5

2.5

3.5

X-0XIS

Bldg 53-160 Summary

٦			رم.		+	6	10	\neg		4
	Total	Watts	115	2,301	244	399	295			3,354
Replacement System	Number	Fixtures	3	39	4	7	5			09
Replaceme	Watts/	Fixture	23	69	61	57	59			
	Fixture	Type	R	F2	FR	G8	W8			Totals
	Total	Watts	5,542	756	574	75	150	200	410	7,707
tem	Number	Fixtures	34	6	7	-	2	2	5	09
Present System	Watts/	Fixture	163	84	82	75	75	100	82	
	Fixture	Tvpe	L	. (2 6	\$ \$	X5	9X	>	Totals

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 53-160 Type: Indoor

Luminaire Fixture Schedule / PRESENT

Project name: Lighting Survey - PBA Bldg 53-160

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 7-Jan-95 UPD: 2.0W/Sq.Ft

 TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
F	2X4 4L FLUSH STATIC TROFFER LENS125" POLARIZED PATT.12 COLUMBIA 4PS2*-87-244	F40CW ESB	000 - 163	34	:
G	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-12 COLUMBIA 4PS2*-52-242	F40CW ESB	000 - 84	9	
G1	1'X4' 2L STATIC GRID TROFFER LENS125" THK PRISMATIC A12 COLUMBIA J240-EXA.125NOM	F40CW ESB	000 - 82 	7	
X2	5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	75A19/SW NA	000 - 75	1	
x5	6" RECESSED ROUND SHOWER LIGHT LENS- DROP OPAL W/ WIDE TRIM PRESCOLITE PBX-TL30	75A19/IF NA	000 - 75	2	
X6	5"RECESS ROUND DOWNLIGHT, UPPER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	100A19/SW NA	100	2	
Y	4"X7"X4' 2L WALL MTD BEDLIGHT LENS- CLEAR PRISMATIC ACRYLIC COLUMBIA SA240-A	F40CW ESB	000	15	

53-160 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 53-160 Type: Indoor

Luminaire Fixture Schedule / PROPOSED

Project name: Lighting Survey - PBA Bldg 53-160

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 0.9W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
CF	8"1L(VERT) RECESS RND.DOWNLITE OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CF122518-B462	F18DTT/27K STD	000 - 23	5	
S ²	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	39	
FR	2X4 ACRYLIC LENSED TROFFER "E" SILVER ECONOMY REFLECTOR METALOPTICS 24EKSO42EP11	FO32/35K EOCT	000 - 61	4	
G8	1X4 2L FLUSH STATIC TROFFER LENS125" PRISMATIC A12 COLUMBIA 5PS2*-52.125-142-EO	FO32/35K EOCT	000 - 57	7	
W8	5"X4"X4' 2L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W240-A	FO32/35K ESB	000 - 59	5	

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc.

Filename: 53-160 Type: Indoor

Project Area Summary

Project name: Lighting Survey - PBA Bldg 53-160

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331 Date: 11-Mar-95 UPD: 1.5W/Sq.Ft

AREA NAME	DIMENSIONS	LUI	MINAIRES	W/SQ.FT	QTY
 MAIN ADMIN	37x34x8Ft	(16)	Type F	2.1	1
 MAIN ADMIN-N	37x34x8Ft	(16)	Type F2	0.8	1
BREAK ROOM	24x22x10Ft	(9)	Type G	1.4	1
REAK ROOM-N	24x22x10Ft	(9)	Type F2	1.0]
WOMENS CHANGE	48x11x9Ft	(2) (4) (1) (2) (1) (1)	Type F Type G1 Type X2 Type X5 Type X6 Type Y	2.0]
WOMENS CHANGE-N	48x11x9Ft	(4) (2) (4) (1)	Type CF Type F2 Type G8 Type W8	0.9	_
OFFICE 3	14x24x8Ft	(4)	Type F	1.9	
OFFICE 3-N	14x24x8Ft	(4)	Type FR	0.7	
STORE ROOM	8x14x10Ft	(2)	Type F	2.9	
STORE ROOM-N	8x14x10Ft	(2)	Type F2	1.1	
MENS CHANGE	48x14x9Ft	(9) (1) (1) (2)	Type F Type G1 Type X6 Type Y	2.7	
MENS CHANGE-N	48x14x9Ft	(1) (9) (1) (2)	Type CF Type F2 Type G8 Type W8	1.1	-

Page 2 53-160 Areas

53-160 Areas					
RESTROOMS	11x11x8Ft	(1) (1)	Type G1 Type Y	1.4	2
RESTROOMS-N	11x11x8Ft	(1) (1)	Type G8 Type W8	1.0	2
HALLWAY	5x25x8Ft	(1)	Туре F	1.3	1
HALLWAY-N	5x25x8Ft	(1)	Type F2	0.5	1

53-160 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 53-160 Type: Indoor

Project Calculation Summary

Project name: Lighting Survey - PBA Bldg 53-160

19 75 1

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 1.5W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	Æ	MAX	MIN
MAIN ADMIN	37x34x8Ft	Ceiling	<+>	57.0	104.0	7.0
MAIN ADMIN-N	37x34x8Ft	Ceiling	<+>	34.4	63.6	3.8
BREAK ROOM	24x22x10Ft	Ceiling	<+>	44.1	52.8	30.3
TEREAK ROOM-N	24x22x10Ft	Ceiling	<+>	41.6	49.9	27.3
WOMENS CHANGE	48x11x9Ft	Ceiling	<+>	26.1	86.7	0.0
WOMENS CHANGE-N		Ceiling	<+>	21.2	55.5	0.0
OFFICE 3		Ceiling	<+>	51.8	78.4	28.7
OFFICE 3-N	-	Ceiling	<+>	36.4	53.1	21.0
STORE ROOM	8x14x10Ft	Ceiling	<+>	49.8	56.8	41.2
STORE ROOM-N	8x14x10Ft	Ceiling	<+>	30.1	34.2	25.0
MENS CHANGE	48x14x9Ft	Ceiling	<+>	48.0	109.7	0.0
MENS CHANGE-N	48x14x9Ft	Ceiling	<+>	30.2	71.7	0.0
RESTROOMS	11x11x8Ft	Ceiling	<+>	25.5	47.1	8.5
RESTROOMS-N		Ceiling	<+>	22.7	43.3	8.7
HALLWAY	5x25x8Ft	Ceiling	<+>	24.2	74.8	3.6
HALLWAY-N	5x25x8Ft	Ceiling	<+>	14.3	44.0	1.7

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:44 6-Jan-95 PROJECT: 53-160 AREA: MAIN ADMIN GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=7.00 MAX=104. AUE=57.0 AUE/MIN= 8.14 MAX/MIN= 14.86

F (16) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF = 0.68

Y-AXIS 33.0 5.8 67 882.0 83. 97. 8 51.2 \$2.3 \$78 81.7 55.1 59.5 \$60 58. 55.1 77 5 7 2 9.8 74 97 6 8. 6 43. 31.0 3.9 83 £ 192. 104 \$1.0 63.8 67.1 84.5 79.5 70.5 76.3 86.1 74.9 68.7 91.9 101. 97. £ 80.4 52.8 5.1 48.6 57.6 59.6 53.1 41.1 g2.5 76.6 74.9 68.2 72.8 78.0 68.1 42.9 53.3 59.1 57.7 49.5 35. 25.0 23.0 9.3 35.9 62.5 82.7 99.8 74.1 82.7 85.2 89.0 79.3 85.2 85.5 87.2 73.7 76.4 84.2 70.5 43.7 23.5 19.0 20.1 36.1 61.2 79.4 77.9 72.1 79.0 89.4 84.1 75.5 80.8 89.6 82.8 72.6 74.8 81.0 68.5 43.5 24.2 20.2 35.6 59.5 PERS 75.9 70.0 76.6 BEN B1.4 73.4 78.3 BEN B0.2 70.6 73.5 PERS 66.5 42.7 24.2 9.8 36.6 63.4 \$3.8 \$1.1 74.0 82.2 \$4.6 88.3 78.7 84.4 \$4.9 86.7 74.8 78.1 \$5.4 71.3 44.3 23. 11.0 1.6 22.4 35.4 45.5 48.3 52.0 65.1 76.0 73.6 66.9 71.2 76.7 69.3 55.0 48.8 47.0 39.2 26.2 15.7 9.0 0.8 15.0 21.0 26.5 32.1 13.9 61.1 791 76.7 63.1 73.8 FONT 70.3 19.4 34.6 28.0 22.8 16.8 12.0 5.0 8.89 11.0 13.9 12.4 24.1 40.4 66.0 85.0 80.2 71.5 72.0 86.1 73.3 47.3 27.5 18.9 14.9 12.0 9.62 1.0 7.66 8.81 10.9 15.1 24.6 37.1 45.4 44.8 41.4 43.6 46.2 40.4 28.1 17.0 11.8 9.43 8.13 7.40 0.5 4.5 8.5 12.5 16.5 20.5 **24.5** 28.5 32.5 36.5 2.5 6.5 10.5 14.5 18.5 22.5 26.5 30.5 34.5 x-axis USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:16 10-Mar-95 PROJECT: 53-160 AREA: MAIN ADMIN-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

ACTIVES.

18000

+ MIN=3.76 MAX=63.6 AUE=34.4 AUE/MIN= 9.14 MAX/MIN= 16.92

F2 $\langle 16 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:54 6-Jan-95 PROJECT: 53-160 AREA: BREAK ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=30.3 MAX=52.8 AUE=44.1 AUE/MIN= 1.45 MAX/MIN= 1.74

G (9) = 9975 COLUMBIA 4PS2*-52-242, (2) F40CW, LLF= 0.68

3. 网络基础的特别

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:19 10-Mar-95 PROJECT: 53-160 AREA: BREAK ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

123.75

+ MIN=27.3 MAX=49.9 AUE=41.6 AUE/MIN= 1.53 MAX/MIN= 1.83

F2 (9) = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS 27.3 32 134.5 38.3 38.9 38 9 38.9 38.9 38.3 36 5 32.4 27.3 21.0 30.8 37.4 42.4 43.9 44.5 45.1 44.5 43.9 42.4 37.4 30.8 19.0 32.5 39.0 44.0 46.6 47.3 46.9 46.9 47.3 46.6 44.0 39.0 32.5 17.0 33.8 40 145.6 48.3 49.1 48 6148.6 49.1 48.3 45 6140.4 33.8 13.0 34.0 +1 524.9 48.5 49.3 49524.9 49.3 48.5 44521.4 34.0 11.0 33.8 40.4 45.6 48.3 49.1 48.6 48.6 49.1 48.3 45.6 40.4 33.8 9.0 7.0 32.5 39 0 4 .0 46.6 47.3 44 9 44.9 47.3 46.6 44 0 34.0 32.5 5.0 3.0 32.4 36.5 38.3 38.9 38.9 38.9 38.9 38.3 36.5 32.4 3.0 5.0 9.0 13.0 17.0 21.0 3.0 7.0 11.0 15.0 19.0 23.0 X-AXIS

2.5 14:37 7-Jan-95 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= PROJECT: 53-160 AREA: WOMEN'S CHANGE GRID: Ceiling USI's LITE*PRO U2.27E Point-By-Point Numeric Output Computed in accordance with IES recommendations

AUE,MIN=N/A MAX/MIN=N/A AUE=26.1MAX=86.7 MIN=0.00 - (2) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 31 (4) = K7970K COLUMBIA J240-EXA.125NOM, (2) F40CW, LLF= 0.68 X2 (1) = 81999A PRESCUITE 1222-262, (1) 75A19/SW, LLF= 0.82 X5 (2) = 81397B PRESCUITE PSX-TL30, (1) 75A19/IF, LLF= 0.76 X6 (1) = 81971A PRESCUITE 1222-262, (1) 100A19/SW, LLF= 0.81 Y (1) = K8278 COLUMBIA SA240-A, (2) F40CW, LLF= 0.60

25.5 27.1 0.00 8.29 10.4 11.9 12.8 13.7 14.8 15.7 14.0 11.6 | 44.2 63.8 75.5 70.7 58.6 46.8 35.1 24.1 | 0.01 0.00 0.00 0.00 13.7 16.4 : 3.5 24.5 30.4 32.4 31.5 31.7 35.8 36.1 33.5 32.9 38.4 46.5 50.1 43.3 28.1 7.28 8.00 0.00 4.58 7.98 6.51 3.29 24.6 [8]. 2 0. 0 19.4 2 4 2 6.6 29.7 29.2 29.5 31.5 30.7 23.4 16.4 | 51.7 75.8 85.4 75.5 56.8 87.7 3.5 10.0 15.8 18.5 14.2 6.78 28. 5036, 6 0. 60 12. 8 15.9 19.0 19.8 3.5 20.3 19.8 15.9 11.6 51.3 75.1 85.7 78.7 62.9 47.5 34.0 21.2 14.9 13.3 9.65 4.00 19. + 22. 5. 25. 27. 3 32. 8 38. 4 35. 5 35. 8 38. 6 38. 6 34. 5 45. 6 46. 6 47. 2 71. 0 47. 4 42. 2 9. 75 82. 8 0. bo 9. + 0 15. 9 12. 8 6. 18 41.0 39.0 29.0 33.0 37.0 3 25.0 27.0 15.0 21.0 ص 0 7.0 (S) C) SIXETA 10.5 9. 13. 0 0 ه. ت ٠. ان

SIXH-X 13.0 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:31 10-Mar-95 PROJECT: 53-160 AREA: WOMENS CHANGE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUELMIN=N/A MAX/MIN=N/A AUE=21.2 MAX=55.5 + MIN=0.00

G8 <4> = L11167 COLUMBIA 5PS2*-52.125-142-E0, (2) F032/35K, LLF= 0.64 W8 <1> = K8957 COLUMBIA W240-A, (2) F032/35K, LLF= 0.58 CF (4) = B2125A PRESCOLITE CF122518-8462, (1) F18U11/2/K, LLF= U.5U F2 (2) = 9868 COLUMBIA T84PS2*-84-242-2EOCI, (2) F032/31K, LLF= 0.66 = 82125A PRESCOLITE CF122518-8462, (1) F18DTI/27K, LLF= 0.50

28. 5566.3 0. bo 15.6 25.0 24.1 26.25.4 20.9 15.0 15.7 10.7 33.1 47.4 55.5 56.8 47.1 33.7 23.6 18.5 10.8 2.27 4.57 1.95 25.7 26.9 0. bo 10.9 15.1 17.0 19.5 18.4 14.2 13.1 10.8 8.46 28.5 47.7 50.1 49.3 44.7 33.2 30.8 21.1 0.00 0.00 0.00 0.00 0.00 47.0 | 24.8 | 34.3 | 20.1 | 27.8 | 30.9 | 30.5 | 30.0 | 30.4 | 28.8 | 22.1 | 15.3 | 33.6 | 49.0 | 55.1 | 50.6 | 41.2 | 4.48 | 5.14 | 0.0 | 9.54 | 13.1 | 7.59 | 3.08 | 21.0 23.0 25.0 29.0 31.0 35.0 39.0 41.0 39.0 13.0 17.0 0.1 6.5 5.5 2.5 8.5 10.5

X-AXIS 9.0

 $s = (s_{i_1}, \ldots, s_{i_k})_{i_1, \ldots, i_k} \otimes s_{i_1} \otimes s_{i_2}$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:44 7-Jan-95 PROJECT: 53-160 AREA: OFFICÉ 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, -Z= 2.5 Computed in accordance with IES recommendations

- Millian Marie San

TOWNSON

1.81 MAX/MIN= 2.73 AUE/MIN= AUE=51.8 MAX = 78.4+ MIN=28.7

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS 28.7 31.0 30.2 29.0 30.2 31.0 28.7 23.0 21.0 47.7 54.9 52.1 48.4 52.1 54.9 47.7 19.0 65 5 78.1 22.5 65.7 72.5 78.1 65.5 17.0 65.4 78.4 73.0 66.2 73.0 78.4 65.4 47.0 56.2 54.2 50.8 54.2 56.2 47.0 31.3 36.4 36.7 35.7 36.7 36.4 31.3 13.0 31.3 36.4 36.7 35.7 36.7 36.4 31.3 11.0 9.0 47.0 56.2 54.2 50.8 54.2 56.2 47.0 7.0 65.4 78.4 23.0 66.2 73 0 78.4 65 5.0 65.5 28.1 22.5 65.2 22.5 28.1 65.5 47.7 54.9 52.1 48.4 52.1 54.9 42.7 28.7 31.0 30.2 29.0 30.2 31.0 28.7

(passing a

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:11 11-Mar-95 PROJECT: 53-160 AREA: OFFICE 3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.53 AUE,MIN= 1.74 MAX,MIN= AUE=36.4 MAX=53.1 + MIN=21.0

FR <4> = T10620 METALOPTICS 24EKS042EP11, <2> F032/35K, LLF= 0.69

HAMING MA

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0 T. T. P. A. 个企 Y-AXIS 3.0 0:1 15.0 7.0 23.0 21.0 19.0 12,0 13.0 11.0 9.0 5.0

1.0 5.0 9.0 13.0 X-AXIS

. The section of the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:48 7-Jan-95 PROJECT: 53-160 AREA: STORE ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Complete Comment

+ MIN=41.2 MAX=56.8 AUE=49.8 AUE/MIN= 1.21 MAX/MIN= 1.38

F (2) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

PARTIES

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:12 11-Mar-95 PROJECT: 53-160 AREA: STORE ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=25.0 MAX=34.2 AUE=30.1 AUE>MIN= 1.21 MAX/MIN= 1.37

F2 <2> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, <2) F032/31K, LLF= 0.66

Y-AXIS

25.0	28.5	29.9	30.1	29.9	28.5	25.0
3 28.3	F2 +	2 34.2	9 33.9	2/34.2	F2 + 0 33.0	3 28.3
+ 88 - 38	33.+	34.	33.9	+ 4 (1)	+ . .	7+ 78
25.0	28.5	29.9	30.1	29.9	28.5	, + 25.0
13.0	11.0	9.0	7.0	5.0	3.0	1.0

1.0 5.0 7.0 3.0 X-AXIS

erya. Try

Jaiwes are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 15:17 7-Jan-95 JSI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 53-160 AREA: MENS CHANGE GRID: Ceiling Computed in accordance with IES recommendations

34-563

MAX=110. AUE=48.0 AUE/MIN=N/A MAX/MIN=N/A

7 (9) = 9753 COLUMBIA 4PS2*-87-244, (4) 740CW, LLF= 0.68 31 (1) = K7970K COLUMBIA J240-EXA.125NOM, (2) F40CW, LLF= 0.68 X6 (1) = B1971A PRESCOLITE 1222-262, (1) 100A19/SW, LLF= 0.81 Y (2) = K8278 COLUMBIA SA240-A, (2) F40CJ, LLF= 0.60

47.3 61.8 64.7 53.4 0.00 36.1 47.2 54.2 55.5 60.5 75.6 83.4 85.8 82.1 85.1 98.0 97.6 87.8 67.8 8.57 0.00 0.00 0.00 0.00 46.6 61.3 65.1 54.3 0.00 36.9 48.2 55.7 54.1 50.9 52.4 56.9 55.7 50.8 1401. 1064 1055. 89.6 87.2 0.00 17.5 27.3 20.8 11.00 34.9 45.1 47.9 35.1 0.00 14.9 21.6 29.2 3810 442 43 43.5 43.3 38.0 28.1 59.6 72.0 76.9 73.9 65.1 51.4 13.9 15.4 14.8 8.40 43.9 \$6.7 F58.08 46.4 0.00 24.2 32.7 38.2 42.9 53.1 77.5 91.2 93.0 71.6 75.7 96.3 92.1 87.3 83.1 4.03 0.00 0.00 0.00 0.00 4 1.92 0.00 0.00 0.00 0.00 58.6 68.7 71.5 64.2 51. 33.8 42.5 43.9 35.4 0.00 13.5 18.6 23.1 28.4 39.3 56.6 72.3 72.2 58.6 က က် 3.0 0:: 13.0

g undergreen to the

47.0 19.0 21.0 23.0 25.0 29.0 31.0 35.0 35.0 39.0 41.0 13.0 17.0 9.0 7.0 ري ص

13:18 11-Mar-95 2.5 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, PROJECT: 53-160 AREA: MENS CHANGE-N GRID: Ceiling USI's LITE*PRO U2.27E Point-By-Point Numeric Output Computed in accordance with IES recommendations

A STATE OF THE STA

+ MIN=0.00 MAX=71.7 AUE=30.2 AUE/MIN=N/A MAX/MIN=N/A

CF <1> = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50 F2 <9> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 G8 <1> = L11167 COLUMBIA 5PS2*-52.125-142-E0, (2) F032/35K, LLF= 0.64 W8 <2> = K8957 COLUMBIA W240-A, (2) F032/35K. LLF= 0.58

12.6. 33.6. 38.8 0. bo 16.5 22.3 26.2 27.9 27.7 27.4 27.5 25.9 19.2 47.4 58.9 62.2 58.0 484,34.1.25.7 16.2 6.68 | 20.8 26.6 28.0 23.2 0.b0 9.36 13.9 18.0 216 28.7 2 2.4 2 4.5 49.0 49.7 47.2 40.3 10.0 9.03 7.56 4.43 26.9 38.3 40.6 34.1 0.50 22.9 29.5 34.1 33.6 32.8 34.2 36.5 35.5 33.0 64.6 68.9 68.6 67.6 ≨0.7 11 4 12.0 19.4 12.9 6.23 26.0 53.5 24.0 27.3 0.00 15.5 20.9 24.5 28.3 34.7 45.0 55.4 56.2 44.2 4553.34.3 55.1 14253.37.5 4.21 0.00 0.00 0.00 0.00 28.9 38.1 40.1 33.2 0.00 22.1 28.5 32.8 34.9 39.1 47.6 67. F 28.0 51.4 54.8 62.7 61.7 55.8 42. 9.06 0.00 0.00 0.00 0.00 30.3 38.7 40.6 36.4 31.3 30.0 31.8 37.1 37.6 42.7 48.8 49.5 68.0 71.7 69.7 69.7 59.1 43. 16.9 0.00 0.00 0.00 0.00 35.2 41.1 43.0 38.7 31.0 2.00 0.00 0.00 0.00 0.00 20.4 25.3 26.0 21.2 0.50 8.47 12.3 15.4 18.7 25.1 35.6 45.2 45.1 37.8 0 11.0 SIXA-> 13.0 o vi

心臟臟臟寒寒寒。

41.0 45.0 39.0 43.0 23.0 25.0 33.0 35.0 37.0 ×-AXIS 15.0 17.0 21.0 13.0 9.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:29 7-Jan-95 PROJECT: 53-160 AREA: RESTROOMS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

, $\tau \approx 10^{12} \cdot 10^{12} \, \mathrm{Mpc}^{B}$

+ MIN=8.54 MAX=47.1 AUE=25.5 AUE/MIN= 2.98 MAX/MIN= 5.52

G1 $\langle 2 \rangle$ = K7970K COLUMBIA J240-EXA.125NOM, (2) F40CW, LLF= 0.68 Y $\langle 2 \rangle$ = K8278 COLUMBIA SA240-A, (2) F40CW, LLF= 0.60

Y-AXIS 10.5 \$.54 11.1 13.4 13.4 11.1 8.5| 8.5 2.4 18.8 24.8 24.8 18.8 12. 6.5 4.5 34.0 47.1 47.1 33.9 20.# 2.5 42.8 42.7 31.0 31.1 0.5 8.5 4.5 0.5 -10.56.5 2.5 X-AXIS

 $^{i}|\psi_{\chi}$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:30 11-Mar-95 PROJECT: 53-160 AREA: RESTROOMS-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

G8 <2> = L11167 COLUMBIA 5PS2*-52.125-142-E0, (2) F032/35K, LLF= 0.64 W8 <2> = K8957 COLUMBIA W240-A, (2) F032/35K, LLF= 0.58

Y-AXIS

1					<u>~~</u>	P.	ιÖ
	+ 9	12.	17,	+ 6	16,	+ (2)	0,
	11.6	19.2	28 +	31.2	76.6	+ 6.5.1	ω ω
	14.2	25.2	+ 60 8	+ A 8.3	36.2	0.72	.5 6.5 X-AXIS
	14.2	25.2	39.4	+ %	36.3	10.72	4 Ω × π
	+ 11.6	19.2	28.5	31.3 31.3	76.6	+ 19.6	2.5
	+ 8	2.7	+ 7.	+ თ	+ 9	+ 7	្ន
)	10.5	യ	6. ت	4. D	2.5	o w	

1995.

Page 1/1

1. 分类类的 1.

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:34 7-Jan-95 PROJECT: 53-160 AREA: HALLWAY GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=3.57 MAX=74.8 AUE=24.2 AUE/MIN= 6.79 MAX/MIN= 20.96

 $F \langle 1 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

and with the same

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:32 11-Mar-95 PROJECT: 53-160 AREA: HALLWAY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=1.70 MAX=44.0 AUE=14.3 AUE/MIN= 8.39 MAX/MIN= 25.86

F2 (1) = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Bldg 60-020 Summary

	Total	Watts	172	7.00	444	220	1 220	507,1	1,037					3,612
int System	Number	Fixtures	2	,	0	2	č	7	17					58
Replacement System	Watts/	Fixture	86		69	110	Ç	6C	61					
	Fixture	Tvpe	F3	2	85	W4		W8	WB					Totals
	Total	Watts	115	2	1,539	1 968	2	492	6		1,920	1,380		7,806
Ę	Nimber	Fixtures	יאנים כם	2	_ ნ	10	1	9	V		10	15		58
Present System	Watte/	Fixture	PINIU	3	171	787	2	82	60	36	192	65		
_	\vdash	Tino	adkı	- L	ă	ב ב	L	9	5 -	ר	M3	Ms	2	Totals

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-020 Type: Indoor

Luminaire Fixture Schedule /

Project #6941331

Project name: PBA Lighting Survey - BLDG 60-020

Date: 2-Feb-95

Prepared for: Corps of Engineers

UPD: 0.9W/Sq.Ft Prepared by: C. Warren

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
A1	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F40CW ESB	000 - 83	5	
B1	15"X4'4L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW440-A	F40CW ESB	000 - 171 	V 9	
F	2'X4' 4L STATIC GRID TROFFER LENS125" NOM PRISMATIC A12 COLUMBIA 2SG440-EXA.125NOM	F40CW ESB	000 - 164 	. 12	
G	2'X4' 2L STATIC GRID TROFFER LENS125" THK PRISMATIC A12 COLUMBIA 2SG240-EXA.125NOM	F40CW ESB	000 - 82	6	
J	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	F40CW STD	92	1	
M3	9"X4' 4L SURFACE TURRET STRIP EGGCRATE LOUVERS COLUMBIA K440-T	F40CW STD	000 - 192	10	
M5	9"X4' 2L SURFACE TURRET STRIP EGGCRATE LOUVERS COLUMBIA K240-T	F40CW STD	92	\ 15	
XZ	6" RECESSED ROUND DOWNLIGHT OPEN- BL.BAFFLE W/ WIDE TRIM PRESCOLITE PBX-TB12	25A19/IF NA	000	1	

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-020

Luminaire Fixture Schedule PROPOSED

Project name: PBA Lighting Survey - BLDG 60-020

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 0.4W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
F3	2X4 3L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-243-3EOCT	FO32/31K EOCT	000 - 86	2	
CB	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	16	
W4	15"X4'4L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW440-A	F032/35K EOCT	000 - 110	2	
W8	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F032/35K EOCT	000 - 59	21	
WR	4' ACRYLIC WRAPAROUND SILVER TASK BEAM REFLECTOR METALOPTICS WRSN4STACLO42EP11	FO32/35K EOCT	000 - 61	1.7	
xz	6" RECESSED ROUND DOWNLIGHT OPEN- BL.BAFFLE W/ WIDE TRIM PRESCOLITE PBX-TB12	25A19/IF NA	000	1	

NOTES:

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-020 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - BLDG 60-020

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 0.7W/Sq.Ft

AREA NAME	DIMENSIONS	LUMINAIRES	W/SQ.FT	QTY
PROVOST MARSHAL	13x15x9Ft	(2) Type M3 (2) Type M5	2.9	1
PROV MARSHAL-N	13x15x9Ft	(4) Type W8	1.2	1
GECURITY SPEC	13x15x9Ft	(2) Type M3 (2) Type M5	2.9	1
SECURITY SPEC-N	13x15x9Ft	(4) Type W8	1.2	1
ROOM 103	9x15x9Ft	(2) Type M3	2.8	1
ROOM 103-N	9x15x9Ft	(2) Type W4	1.6	1
ROOM 105	15x15x9Ft	(4) Type A1	1.5	1
ROOM 105-N	15x15x9Ft	(4) Type WR	1.1	1
ROOM 105A	8x15x9Ft	(2) Type M5	1.5	1
ROOM 105A-N	8x15x9Ft	(2) Type WR	1.0	1
ROOM 107	12x15x9Ft	(2) Type M5	1.0	1
ROOM 107-N	12x15x9Ft	(2) Type WR	0.7	1
ROOM 102	16x15x9Ft	(4) Type M5	1.5	1
ROOM 102-N	16x15x9Ft	(4) Type WR	1.0	1
ROOM 104	9x15x9Ft	(1) Type M3 (1) Type M5	2.1	1
ROOM 104-N	9x15x9Ft	(2) Type WR	0.9]
BREAK ROOM	13x15x9Ft	(2) Type M5	0.9]

 $\psi_{\rho}(\lambda) \leq \psi_{\rho}(\zeta_{\rho}) + \psi_{\rho}(\zeta_{\rho})$

1-020 Areas EAK ROOM-N	13x15x9Ft	(2)	Type W8	0.6	1
COILETS	15x19x9Ft	(1)	Type Al Type J	0.6	1
 POILETS-N	15x19x9Ft	(2)	Туре W8	0.4	1 1
 HALLWAY	90x56x9Ft	(9)	Type B1 Type XZ	0.3	1
 HALLWAY-N	90x56x9Ft	(9) (1)	Type W8 Type XZ	0.1	1
 FRAINING	33x14x9Ft	(4)	Type G	0.7	1
 TRAINING-N	33x14x9Ft	(4)	Type G8	0.5	1
LOCKERROOM 1	18x14x9Ft	(2)	Туре F	1.3	
LOCKERROOM 1-N	18x14x9Ft	(2)	Type G8	0.5	
 FOYER	6x7x9Ft	(1)	Type G	2.0	
FOYER-N	6x7x9Ft	(1)	Type G8	1.4	:
 ροм 109	15x15x9Ft	(3)	Type M3	2.6	
ROOM 109-N	15x15x9Ft	(3)	Type WR	0.8	
ROOM 110	12x15x9Ft	(2)	Туре F	1.8	
ROOM 110-N	12x15x9Ft	(2)	Type F3	1.0	
RADIO ROOM	26x7x9Ft	(3)	Type F Type G	3.2	
RADIO ROOM-N	26x7x9Ft	(4)	Type G8	1.3	
LOCKER ROOM 2	31x15x9Ft	(5)	Type F	1.8	
LOCKER ROOM 2-N	31x15x9Ft	(5)	Type G8	0.6	

NOTES:

60-020 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-020 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - BLDG 60-020

Prepared for: Corps of Engineers
Prepared by: C. Warren

|Project #6941331 Date: 11-Mar-95

UPD: 0.7W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	/E	MAX	MIN
PROVOST MARSHAL	13x15x9Ft	Ceiling	<+>	48.1	66.6	29.0
PROV MARSHAL-N	13x15x9Ft	Ceiling	<+>	44.0	57.9	29.6
EECURITY SPEC	13x15x9Ft	Ceiling	<+>	47.3	62.0	29.5
SECURITY SPEC-N	13x15x9Ft	Ceiling	<+>	44.0	57.9	29.6
ROOM 103	9x15x9Ft	Ceiling	<+>	40.7	47.1	33.2
ROOM 103-N	9x15x9Ft	Ceiling	<+>	54.1	64.7	42.0
ROOM 105	15x15x9Ft	Ceiling	<+>	37.9	43.3	31.3
ROOM 105-N	15x15x9Ft	Ceiling	<+>	47.3	65.8	27.1
ROOM 105A	8x15x9Ft	Ceiling	<+>	19.6	22.3	16.1
ROOM 105A-N	8x15x9Ft	Ceiling	<+>	36.1	47.1	23.9
ROOM 107	12x15x9Ft	Ceiling	<+>	15.6	20.1	10.7
ROOM 107-N	12x15x9Ft	Ceiling	<+>	27.6	40.7	16.1
ROOM 102	16x15x9Ft	Ceiling	<+>	24.3	27.2	19.2
ROOM 102-N	16x15x9Ft	Ceiling	<+>	44.2	64.6	22.5
ROOM 104	9x15x9Ft	Ceiling	<+>	30.0	39.1	19.4
	9x15x9Ft	Ceiling	<+>	34.2	42.9	24.3
BREAK ROOM	13x15x9Ft	Ceiling	<+>	15.2	19.8	10.4
BREAK ROOM-N	13x15x9Ft	Ceiling	<+>	23.0	31.9	14.

Page 2

NOTES:

15x19x9Ft	Ceiling	<+>	10.9	27.7	0.1
	acilina	<+>	12.4	26.1	0.1
15x19x9Ft 				\·	
90x56x9Ft	Ceiling	<+>			0.0
90x56x9Ft	Ceiling	<+>	2.2	27.8	0.0
33x14x9Ft	Ceiling	<+>	25.8	42.0	11.7
33x14x9Ft	Ceiling	<+>	23.6	39.7	9.0
18x14x9Ft	Ceiling	<+>	39.7	70.3	18.1
18x14x9Ft	Ceiling	<+>	20.6	35.9	9.3
6x7x9Ft	Ceiling	<+>	38.4	44.8	35.5
6x7x9Ft	Ceiling	<+>	36.3	42.8	33.4
 15x15x9Ft	Ceiling	<+>	41.0	65.5	0.0
15x15x9Ft	Ceiling	<+>	33.5	59.8	0.0
 12x15x9Ft	Ceiling	<+>	52.7	75.7	29.8
12x15x9Ft	Ceiling	<+>	40.5	58.4	23.0
26x7x9Ft	Ceiling	<+>	80.2	134.6	27.2
26x7x9Ft	Ceiling	<+>	46.5	71.8	18.9
31x15x9Ft	Ceiling	<+>	58.2	82.7	14.1
31x15x9Ft	Ceiling	<+>	29.9	42.2	6.4
	15x19x9Ft 90x56x9Ft 90x56x9Ft 33x14x9Ft 33x14x9Ft 18x14x9Ft 6x7x9Ft 6x7x9Ft 15x15x9Ft 12x15x9Ft 12x15x9Ft 26x7x9Ft 26x7x9Ft 31x15x9Ft	15x19x9ft Ceiling 90x56x9ft Ceiling 33x14x9ft Ceiling 33x14x9ft Ceiling 18x14x9ft Ceiling 18x14x9ft Ceiling 6x7x9ft Ceiling 6x7x9ft Ceiling 15x15x9ft Ceiling 12x15x9ft Ceiling 12x15x9ft Ceiling 26x7x9ft Ceiling 12x15x9ft Ceiling	15x19x9Ft	15x19x9Ft	15x19x9Ft Ceiling Ceil

with other

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:55 2-Feb-95 PROJECT: 60-020 AREA: PROVOST MARSHAL GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

TO SAY MENTAL TO

+ MIN=29.0 MAX=66.6 AUE=48.1 AUE/MIN= 1.66 MAX/MIN= 2.30

M3 (2) = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.58 M5 (2) = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

13.5
$$33.8 42.3 47.8 45.8 37.5 29.0$$

11.5 $40.3 51.2 57.7 55.0 45.0 34.2$

9.5 $46.5 58.3 64.6 61.9 51.7 39.4$

7.5 $49.2 61.0 66.6 64.2 54.5 41.5$

5.5 $46.5 58.3 64.6 61.9 51.7 39.4$

3.5 $40.3 51.2 57.7 55.0 45.0 34.2$

1.5 $40.3 51.2 57.7 55.0 45.0 34.2$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:50 11-Mar-95 PROJECT: 60-020 AREA: PROV MARSHAL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=29.6 MAX=57.9 AUE=44.0 AUE/MIN= 1.49 MAX/MIN= 1.96

W8 (4) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.69

Market Contract

1

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:01 2-Feb-95 PROJECT: 60-020 AREA: SECURITY SPEC GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

eren er gregorieten.

+ MIN=29.5 MAX=62.0 AUE=47.3 AUE/MIN= 1.60 MAX/MIN= 2.10

M3 <2> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.58 M5 <2> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

13.5
$$29.5$$
 37.4 43.9 44.0 37.5 29.7

11.5 35.2 45.2 $52.91352.9$ 45.3 35.6

9.5 41.2 52.0 59.3 59.3 52.1 42.0

7.5 44.8 55.8 62.0 61.9 55.8 1545.9

5.5 43.8 54.8 61.7 61.7 54.9 44.7

3.5 38.8 49.7 $57.71352.7$ 49.8 39.4

1.5 33.0 42.3 50.2 50.2 42.5 33.3

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:52 11-Mar-95 PROJECT: 60-020 AREA: SECURITY SPEC-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

the Maria Committee of the

+ MIN=29.6 MAX=57.9 AUE=44.0 AUE/MIN= 1.49 MAX/MIN= 1.96

W8 (4) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.69

Property of the con-

Branch Charles

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:07 2-Feb-95 PROJECT: 60-020 AREA: ROOM 103 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=33.2 MAX=47.1 AUE=40.7 AUE/MIN= 1.22 MAX/MIN= 1.42

M3 $\langle 2 \rangle$ = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.58

Y-AXIS

13.5	+ + + + + 33.2 39.3 39.3 33.2
11.5	37.3 45.0 37.3
9.5	+ + + + + 39.4 47.0 47.0 39.4
7.5	+ + + + + 39.8 47.1 47.1 39.8
5.5	+ + + + + 39.4 47.0 47.0 39.4
3.5	+ + M3 + + + 37.3 45.0 45.0 37.3
1.5	33.2 39.3 39.3 33.2

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:01 11-Mar-95 PROJECT: 60-020 AREA: ROOM 103-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

85 50 WAS

+ MIN=42.0 MAX=64.7 AUE=54.1 AUE/MIN= 1.29 MAX/MIN= 1.54

W4 <2> = K9708 COLUMBIA WCW440-A, (4) F032/35K, LLF= 0.66

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:21 2-Feb-95 PROJECT: 60-020 AREA: ROOM 105 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $= \int_{\mathbb{R}^{N}} d^{2} \nabla f \int_{\mathbb{R}^{N}} d^{2} \nabla f \int_{\mathbb{R}^{N}} d^{2} \nabla f \int_{\mathbb{R}^{N}} d^{2} \int_{\mathbb{R}^{N}} d^{$

1.21 MAX/MIN= 1.38 AUE/MIN= AUE=37.9 MAX = 43.3+ MIN=31.3

A1 (4) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS

المعريراتين

13.5
$$32.6 34.6 32.7 31.3 32.7 34.6 32.6$$

11.5 $32.6 34.6 32.7 31.3 32.7 34.6 32.6$

9.5 $40.6 43.3 40.7 38.7 40.7 43.3 40.6$

7.5 $40.6 43.2 41.4 40.0 41.4 43.2 40.6$

5.5 $40.6 43.3 40.7 38.7 40.7 43.3 40.6$

1.5 $37.6 40.0 37.2 35.2 37.2 40.0 37.6$

1.5 $35.6 34.6 32.7 31.3 32.7 34.6 32.6$

1.5 $35.5 7.5 9.5 13.5 11.5$

X AXIS

3.5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:05 11-Mar-95 PROJECT: 60-020 AREA: ROOM 105-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

可指数设置 2000

+ MIN=27.1 MAX=65.8 AUE=47.3 AUE/MIN= 1.75 MAX/MIN= 2.43

WR $\langle 4 \rangle$ = T9939 METALOPTICS WRSN4STACLO42EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:27 2-Feb-95 PROJECT: 60-020 AREA: ROOM 105A GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Shipper in

+ MIN=16.1 MAX=22.3 AUE=19.6 AUE/MIN= 1.22 MAX/MIN= 1.39

M5 <2> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

to gran will will

13.5	16.1	+ 18.9	18.9	16.1
11.5	+ 18.4	+ M ^c 22.2	22.2	18.4
9.5	+ 18.7	+ 22.3	+ 22.3	18.7
7.5	+ 18.6	21.9	+ 21.9	+ 18.6
5.5	l .	+ 22.3		
3.5	18.4	22.2	5 2 22.2	18.4
1.5	16.1	+ 18.9	+ 18.9	+ 16.1
	1.0		5.0	7. ()

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:09 11-Mar-95 PROJECT: 60-020 AREA: ROOM 105A-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

HARRIOT CO.

可以可能提供。

Service Services

+ MIN=23.9 MAX=47.1 AUE=36.1 AUE/MIN= 1.51 MAX/MIN= 1.97

WR (2) = T9939 METALOPTICS WRSN4STACL042EP11, (2) F032/35K, LLF= 0.69

Y-AXIS CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:30 2-Feb-95 PROJECT: 60-020 AREA: ROOM 107 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.45 MAX/MIN= 1.88 AUE/MIN= AUE=15.6 MAX = 20.1+ MIN=10.7

M5 (2) = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

4 445 May 8 4 5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:10 11-Mar-95 PROJECT: 60-020 AREA: ROOM 107-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=16.1 MAX=40.7 AUE=27.6 AUE/MIN= 1.71 MAX/MIN= 2.52

WR $\langle 2 \rangle$ = T9939 METALOPTICS WRSN4STACLO42EP11, (2) F032/35K, LLF= 0.69

Y-AXIS

[
13.5	+ 16.1	+ 23.8	+ 30.5	+ 30.5	+ 23.8	16.1
11.5	+ 19.5	30.9	+ +0.7	40.7	+ 30.9	19.5
9.5	+ 19.6	+ 29. <i>7</i>	+ 38.0	+ 38.0	+ 29.7	19.6
7.5	+ 18.9	+ 27.9	* 35.0	35.0	+ 27.9	+ 18.9
5.5	+ 19.6	+ 29.7	+ 38.0	+ 38.0	+ 29.7	+ 19.6
3.5	+ 19.5	+ 30.9	+ W 40.7	R → 40.7	30.9	+ 19.5
1.5	+ 16.1	+ 23.8	+ 30.5	+ 30.5	+ 23.8	16.1
	1.0	3.0	5.0 X-6	2.0	9.0	11.0

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:35 2-Feb-95 PROJECT: 60-020 AREA: ROOM 102 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=19.2 MAX=27.2 AUE=24.3 AUE/MIN= 1.26 MAX/MIN= 1.41

M5 <4> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:13 11-Mar-95 PROJECT: 60-020 AREA: ROOM 102-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $(x,y) = A_{\alpha \beta \beta \beta} A_{\alpha \beta \beta \beta} A_{\alpha \beta} A_$

Section Section

+ MIN=22.5 MAX=64.6 AUE=44.2 AUE/MIN= 1.97 MAX/MIN= 2.87

WR $\langle 4 \rangle$ = T9939 METALOPTICS WRSN4STACLO42EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:39 2-Feb-95 PROJECT: 60-020 AREA: ROOM 104 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=19.4 MAX=39.1 AUE=30.0 AUE/MIN= 1.55 MAX/MIN= 2.02

M3 <1> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.58 M5 <1> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

13.5	+ + + + + 29.2 34.5 34.2 28.5
11.5	32.2 39.1M3 38. 2 31.4
9.5	32.2 38.9 38.5 31.5
7.5	+ + + + + 29.8 35.2 34.9 29.2
5.5	+ + + + + 26.7 31.3 31.1 26.3
3.5	+ M5 + + 23.7 27.9 27.8 23.4
1.5	+ + + + + 19.6 22.6 22.5 19.4

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:15 11-Mar-95 PROJECT: 60-020 AREA: ROOM 104-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.00 page 5

STANGE V

+ MIN=24.3 MAX=42.9 AUE=34.2 AUE/MIN= 1.41 MAX/MIN= 1.77

WR $\langle 2 \rangle$ = T9939 METALOPTICS WRSN4STACL042EP11, (2) F032/35K, LLF= 0.69

Y-AXIS

13.5	+ + + + + 24.9 30.2 29.9 24.3
11.5	32.9 41.9 R 41.5 32.0
9.5	+ + + + + 33.3 41.5 41.1 32.4
7.5	+ + + + + 31.3 38.3 38.0 30.7
5.5	+ + + + + 32.7 40.7 40.4 32.2
3.5	+ + WR + + + 33.6 42.9 42.6 33.1
1.5	+ + + + + 26.2 32.2 32.0 25.8

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 10:50 2-Feb-95 PROJECT: 60-020 AREA: BREAK ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

与视频图象

+ MIN=10.4 MAX=19.8 AUE=15.2 AUE/MIN= 1.47 MAX/MIN= 1.91

M5 <2> = K7988K COLUMBIA K240-T, (2) F40CW, LLF= 0.58

Y-AXIS

13.5
$$10.4$$
 13.8 16.9 16.9 13.8 10.4
11.5 11.6 16.1 $19.8^{15}19.8$ 16.1 11.6
9.5 11.9 16.2 19.7 19.7 16.2 11.9
7.5 11.9 16.0 19.2 19.2 16.0 11.9
5.5 11.9 16.2 19.7 19.7 16.2 11.9
3.5 11.6 16.1 19.8 19.8 16.1 11.6
1.5 10.4 13.8 16.9 16.9 13.8 10.4

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:17 11-Mar-95 PROJECT: 60-020 AREA: BREAK ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=14.3 MAX=31.9 AUE=23.0 AUE/MIN= 1.61 MAX/MIN= 2.23

W8 (2) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.69

Y-AXIS

13.5	+ + + + + + + 14.3 20.1 25.2 25.2 20.1 14.3
11.5	16.0 23.1 29.5 23.1 16.0
9.5	+ + + + + + + + + + 17.6 25.5 31.9 31.9 25.5 17.6
7.5	18.2 25.8 31.6 31.6 25.8 18.2
5.5	17.6 25.5 31.9 31.9 25.5 17.6
3.5	+ + + + W8 + + + + + + + + + + + + + + +
1.5	14.3 20.1 25.2 25.2 20.1 14.3

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 11:18 2-Feb-95 PROJECT: 60-020 AREA: TOILETS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1. 医克克勒氏试验检尿

+ MIN=0.07 MAX=27.7 AUE=10.9 AUE/MIN= 156.35 MAX/MIN= 395.76

A1 (1) = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68 J (1) = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS 15.6 22.1 25.0 21.6 14.9 9.45 17.5 10.1 15.5 13.5 26.1 22.9 15.9 11.5 10.7 6.97 4.66 3.77 4.01 0.07 0.10 9.5 5.12 6.30 5.0 4.57 4.56 0.08 0.1 7.5 11.5 8.62 9.22 11.1 6.92 0.08 5.5 11.0 12.7 15.9 15.1 8.59 3.5 5.37 9.09 14.1 17.8 16.9 12.7 5.23 8.84 13.3 16.3 15.7 12.3 1.5

1.5 5.5 9.5 13.5 3.5 7.5 11.5 X AXIS

Service Services of the Control

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:19 11-Mar-95 PROJECT: 60-020 AREA: TOILETS-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.06 MAX=26.1 AUE=12.4 AUE/MIN= 188.84 MAX/MIN= 395.76

W8 (2) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.69

Catalogues .

Y-AXIS	
17.5	+ + + + + + + + + 9.49 14.7 20.8 23.5 20.4 14.1 8.90
15.5	9.90 15.9 22.9 26.1 22.3 15.1 9.24
13.5	9.18 14.9 21.6 24.6 20.9 13.9 8.45
11.5	0.06 0.09 3.89 4.78 3.44 10.1 6.57
9.5	0.07 0.10 6.33 8.58 9.44 4.30 4.29
<i>7</i> .5	+ + + + + + + + + + + + + + + + + + +
5.5	+ + + + + + + + + + + + + + + + + + +
3.5	+ + + + + + + + + + + + + + + + + + +
1.5	+ +
	1.5 5.5 9.5 13.5 3.5 /.5 11.5

 $X=\bigcup X \bigm[{}^{\perp},$

13:19 2-Feb-95 HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-020 AREA: HALLWÁY GRID: Ceiling Values are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), Computed in accordance with IES recommendations

+ MIN=0.00 MAX=62.4 AUE=4.76 AUE\MIN=N/A MAX/MIN=N/A

B1 <9> = K9708 COLUMBIA WCW440-A, (4) F40CW, LLF= 0.68 x2 <1> = B1401C PRESCOLITE PBX-TB12, (1) 25A19/IF, LLF= 0.76

14.0 4.03 0.05 0.05 0.05 0.05 0.05 0.00 23.1 25.9 0.36 0.34 0.31 0.27 0.22 0.19 0.17 0.08 0.05 0.04 0.03 0.02 0.02 0.02 0.05 . ôs o. ôs .00 0.00 0.00 0.00 0.00 45.4 38.0 26.0 18.0 42.0 34.0 50.0 46.0 22.0 , 30.0 54.0

A Charles September

2.5 14:34 11-Mar-95 =2 HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output Ualues are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), PROJECT: 60-020 AREA: HALLWAY-N GRID: Ceiling Computed in accordance with IES recommendations

+ MIN=0.00 MAX=27.8 AUE=2.18 AUE.MIN=N/A MAX/MIN=N/A

W8 <9> = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.69 X2 <1> = B1401C PRESCOLITE PBX-TB12, (1) 25A19/IF, LLF= 0.76

25 0.07 0.08 0.07 0.05 0.04 0.03 0.33 0.33 0.33 0.33 0.33 0.30 0.19 0.15 0.12 0.09 0.07 0.04 0.03 0.03 0.03 0.02 0.04 . to o. to o 2.0 14.0 30.0 38.0 26.0 22.0 18.0 50.0 Y-AXIS 54.0

77.0 49.0 57.0 65.0 45.0 53.0 61.0 41.0 33.0 13.0 21.0 o 0 ю О 0.1

10000

Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:28 2-Feb-95 PROJECT: 60-020 AREA: TRAINING GRID: Ceiling

Contraction Section

3.58 2.20 MAX/MIN= AUE/MIN= AUE=25.8 MAX=42.0 + MIN=11.7

G <4> = K7965 COLUMBIA 2SG240-EXA.125NOM, <2> F40CW, LLF= 0.68

7.0 | 12.4 | 21.2 | 32.5 | 42.6 | 41.8 | 32.1 | 20.9 | 13.7 | 13.9 | 13.7 | 20.9 | 32.1 | 41.8 | 44.2 | 32.6 | 21.2 | 12.1 | 13.0 | 12.1 | 23.5 | 42.6 | 40.8 | 32.2 | 20.9 | 13.7 | 13.7 | 20.9 | 32.1 | 41.8 | 44.2 | 32.6 | 21.2 | 12.4 | 21.2 | 22.5 | 40.9 | 40.8 | 32.3 | 21.0 | 13.9 | 21.0 | 32.3 | 40.8 | 40.9 | 32.5 | 20.7 | 12.1 | 20.7 | 32.5 | 40.9 | 40.8 | 32.3 | 21.0 | 13.9 | 13.7 | 38.7 | 38.7 | 38.7 | 31.7 | 20.4 | 13.7 | 13.7 | 20.4 | 31.7 | 38.7 | 38.7 | 31.7 | 13.9 | 11.7 | 33.9 | 11.7 | 33.9 | 21.0 | 32.3 | 40.8 | 40.9 | 32.5 | 20.7 | 12.1 | 33.0 | 12.4 | 21.2 | 32.6 | 42.6 | 42.8 | 32.1 | 20.9 | 32.1 | 32.9 | 32.1 | 32.8 | 32.

1.5 5.5 5.5 11.5 15.5 21.5 23.5 27.5 31.5 x-axis

USI's LÎTE*PRO U2.27E Point-By-Point Numeric Output 14:37 11-Mar-95 pROJECT: 60-020 AREA: TRAINING-N GRID: Ceiling 2.5 ∪alues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations 4.40 2.62 MAX/MIN= AUE/MIN= AUE=23.6 MAX=39.7 + MIN=9.02 G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

1.5 3.5 2.5 27.5 21.5 23.5 27.5 21.5 31.5 x-AKIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:34 2-Feb-95 PROJECT: 60-020 AREA: LOCKERROOM 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the second

空 物色器诗

+ MIN=18.1 MAX=70.3 AUE=39.7 AUE/MIN= 2.20 MAX/MIN= 3.89

F <2> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS									
13.0	+ 18.1	+ 21.8	+ 22.5	+ 20.5	+ 18.7	20.5	+ 22.5	± 21.8	18.1
11.0	+ 30.4	+ 38.3	+ 39.3	+ 34.8	30.8	+ 34.8	+ 39.3	+ 38.3	30.4
9.0	+ 45.4	58.7	60.0	+ 50.9	+ 45.0	+ 50.9	60.0	58.7	+ 45.4
7.0	+ 52.3	+ F 68.9	70.3	+ 58.3	51.3	+ 58.3	70.3	68.9	+ 52.3
5.0	+ 45.4	58.7	60.0	+ 50.9	+ 45.0	+ 50.9	60.0	₊ 58.7	+ 45.4
3.0	+ 30.4	+ 38.3	+ 39.3	+ 34.8	+ 30.8	+ 34.8	+ 39.3	* 38.3	+ 30.4
1.0	+ 18.1	+ 21.8	+ 22.5	+ 20.5	+ 18.7	+ 20.5	+ 22.5	21.8	18.1
	1.0	2.0	5.0	7 ∩	9.0	11.0	13.0	15.0	17.0
		3.0		7.0	X-AXI				

US!'s LITE*PRO U2.27E Point-By-Point Numeric Output 14:39 11-Mar-95 PROJECT: 60-020 AREA: LOCKERROOM 1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.86 2.22 MAX/MIN= AUE/MIN= AUE=20.6 MAX=35.9 + MIN=9.29

THE PARTY

68 <2> = 9868 COLUMBIA 184PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

1.0 5.0 9.0 13.0 17.0 x-AXIS

 $z^{n}_{i}(s) \overset{q^{n}_{i}(q)}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_{i}}}}{\overset{q^{n}_{i}}}{\overset{q^{n}_$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:38 2-Feb-95 PROJECT: 60-020 AREA: FOYER GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and and Market 16.

+ MIN=35.5 MAX=44.8 AUE=38.4 AUE/MIN= 1.08 MAX/MIN=

1.26

G <1> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

-0**48**039458

Y-AXIS

1.0 3.0 X-AXIS

a complete the second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:41 11-Mar-95 PROJECT: 60-020 AREA: FOYER-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· All All All Connections

1.28 1.09 MAX/MIN= AUE/MIN= AUE=36.3 MAX=42.8 + MIN=33.4

G8 <1> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

SIXE->

· 大大學等等

0.0 X-AXIS 3.0 1.0

ą,

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:47 2-Feb-95 PROJECT: 60-020 AREA: ROOM 109 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and about the first of the second

AUE/MIN=N/A MAX/MIN=N/A AUE=41.0 MAX=65.5 + MIN=0.00

M3 <3> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.58

Y-AXIS

13.5	26.8 37.2 48 .9 52.1 45 . 0.00 0.00	
11.5	29.5 41.3 54.7 60.5 54. 0.00 0.00	
9.5	+ + + + + + + + + + + + + + + + + + +	
7.5	+ + + + + + + + + + + + + + + + + + +	
5.5	+ + + + + + + + + + + + + + + + + + +	
3.5	+ + + + + + + + + + + + + + + + + + +	
1.5	+ + + + + + + + + + + + + + + + + + +	

882 - 1 125 S - 1 - 1

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:43 11-Mar-95 PROJECT: 60-020 AREA: ROOM 109-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Emilian Section 1

+ MIN=0.00 MAX=59.8 AUE=33.5 AUE/MIN=N/A MAX/MIN=N/A

 $(c_{ij}, W_i^{\mu} V_i^{\mu} V_i^{\mu} V_i^{\mu} V_i^{\mu} V_i^{\mu} V_i^{\mu}) = (c_{ij}, C_i^{\mu} V_i^{\mu} V_i^{\mu}$

WR $\langle 3 \rangle$ = T9939 METALOPTICS WRSN4STACLO42EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:50 2-Feb-95 PROJECT: 60-020 AREA: ROOM 110 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

30 AM

+ MIN=29.8 MAX=75.7 AUE=52.7 AUE/MIN= 1.77 MAX/MIN= 2.55

F (2) = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

Y-AXIS

100 100

13.5	+ 29.8	+ 48.2	64.01	t 64.0	+ 48.2	+ 29.8
11.5			75.7			
9.5	+ 34.7	+ 56.7	73.9	73.9	+ 56.7	+ 34.7
7.5	33.7	+ 55.1	+ 70.0	+ 70.0	+ 55.1	+ 33.7
5.5	+ 34.7	+ 56.7	73.9	73.9	+ 56.7	+ 34.7
3.5	+ 34.5	+ 56.7	75.7 F	75.7	+ 56.7	+ 34.5
1.5	+ 29.8	+ 48.2	64.0		+ 48.2	+ 29.8
	L					

1 grada in the

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:53 11-Mar-95 PROJECT: 60-020 AREA: ROOM 110-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

一种"智",都有为一个

+ MIN=23.0 MAX=58.4 AUE=40.5 AUE/MIN= 1.76 MAX/MIN= 2.54

F3 $\langle 2 \rangle$ = A9720 COLUMBIA T84PS2*-84-243-3EOCT, (3) F032/31K, LLF= 0.66

4,3976,60

į

8

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:59 2-Feb-95 PROJECT; 60-020 AREA: RADIO ROOM GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=27.2 MAX=135. AUE-80.2 AUE.MIN= 2.95 MAX.MIN= 4.9

A STATE OF THE STA

F <3> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68 G <1> = K7965 COLUMBIA 2SG240-EXA.125NOM, (2) F40CW, LLF= 0.68

Y-AXIS

25.0 21.0 19.0 17.0 15.0 0.6 7.0 0. 0 3.0 1.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:55 11-Mar-95 PROJECT: 60-020 AREA: RADIO ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

SALES SA

3.80 2.46 MAX/MIN= AUE/MIN= AUE=46.5 MAX=71.8 + MIN=18.9 G8 <4> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Spirit of

.

a contribution

2.5 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:09 2-Feb-95 PROJECT: 60-020 AREA: LOCKER ROOM 2 GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 5.85 4.12 MAX/MIN= AUE/MIN= AUE=58.2 MAX=82.7 + MIN=14.1

F <5> = K7952 COLUMBIA 2SG440-EXA.125NOM, (4) F40CW, LLF= 0.68

at state the spice

13.5 14.1 21.7 36.6 55.0 67.0 63.3 97.0 53.7 64.9 67.4 54.8 35.4 21.5 14.1 17.5 27.2 35.8 52.3 65.5 67.7 7.0 63.3 55.4 63.3 76.9 80.6 66.3 45.2 27.1 17.2 2.5 23.2 35.8 52.3 69.3 77.9 74.9 66.3 66.6 75.4 78.1 68.9 51.5 34.8 22.4 7.5 33.0 48.6 62.3 70.6 70.5 63.3 68.7 67.6 63.4 70.3 71.1 70.2 61.0 47.0 31.6 2.5 42.7 62.6 78.4 74.7 74.7 74.7 75.5 68.9 68.9 75.0 74.6 61.0 41.3 2.5 42.7 62.6 78.3 72.9 63.1 63.3 74.4 79.6 75.8 68.9 68.9 75.0 74.6 61.0 41.3 3.5 45.1 66.2 78.3 72.9 63.1 63.3 74.4 79.6 75.8 68.9 68.9 75.0 74.6 61.0 41.3 3.5 45.1 66.2 78.3 72.9 63.1 63.3 74.4 79.6 75.8 68.9 68.9 75.0 74.6 61.0 41.3 3.5 55.0 54.7 62.1 63.1 64.6 55.5 39.0 1.5 39.0 54.7 62.8 58.8 51.3 51.9 60.9 67.1 62.1 53.9 53.7 61.1 64.6 55.5 39.0

1.5 5.5 7.5 11.5 15.5 21.5 23.5 29.5 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:57 11-Mar-95 PROJECT: 60-020 AREA: LOCKER ROOM 2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

6.60 4.68 MAX/MIN= AUE/MIN= AUE=29.9 MAX=42.2 + MIN=6.39 = 9868 COLUMBIA T84PS2*-84-242-2EOCI, (2) F032/31K, LLF= 0.66 (68 (5)

21.5 23.5 13.5 15.5 11.5 x-AXIS ი ი 7.5 ເນ ເນ ა შ

Bldg 60-060 Summary

1

	Present System	tem			Replaceme	Replacement System	
Fixture	Watts/	Number	Total	Fixture	Watts/	Number	Total
) (Eixture	Fixtures	Watts	Type	Fixture	Fixtures	Watts
- ypc	2012	33	249	PP	23	က	69
ا ج	166	43	7 138	F2	69	8	472
_		2 "	180	FR	61	35	2,135
7 7	41 00	0	8	W2	29	က	177
²²	1	1		Z8	59	2	118
900		51	7.649	Totals		51	2,971
<u> </u>							

An interpretation

60-060 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-060

Luminaire Fixture Schedule /PRESENT Project #6941331 Project name: PBA lighting Survey - Bldg 60-060 Date: 25-Jan-95 UPD: 2.2W/Sq.Ft

Prepared for: Corps of Engineers

Prepared by: C. Warren

YTQ W\V REMARKS LAMP/BALLAST DESCRIPTION TYPE _/ 3 000 15"X4'2L CEILING MT.WRAPAROUND F40CW Α1 ESB LENS- PRISMATIC W/ GLOW ENDS 83 COLUMBIA WCW240-A ____ **V**43 000 2X4 4L FLUSH STATIC TROFFER F40CW LENS- .125" POLARIZED PATT.12 ESB 166 COLUMBIA 4PS2*-87-244 000 5"RECESS ROUND DOWNLIGHT, LOWER 60A19/IF Y1 OPEN- CLEAR ALZAK REFLECTOR 60 PRESCOLITE 1222-262 000 5"X4"X4' 2L WALL CORRIDOR WRAP F20T12/CW Z5 LENS- SMOOTH WHITE ACRYLIC ESB 41 COLUMBIA W240-A

NOTES:

60-060 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-060 Type: Indoor

Luminaire Fixture Schedule

Project name: PBA lighting Survey - Bldg 60-060

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 0.9W/Sq.Ft

 TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
CF	8"1L(VERT) RECESS RND.DOWNLITE OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CF122518-B462	F18DTT/27K STD	000 - 23	3	
?	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	8	
FR	2X4 ACRYLIC LENSED TROFFER ECONOMY SILVER BEAM REFLECTOR METALOPTICS 24EKSO42EP11	FO32/35K EOCT	000 - 61 	35	
W2	15"X4'2L CEILING MT.WRAPAROUND LENS- PRISMATIC W/ GLOW ENDS COLUMBIA WCW240-A	F032/35K EOCT	000 - 59	3	
 %& 25	5"X4"X4' 2L WALL CORRIDOR WRAP LENS- SMOOTH WHITE ACRYLIC COLUMBIA W240-A	FO32/35K EOCT FZ	000 - 41 59	2	

NOTES:

60-060 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-060 Type: Indoor

Project Area Summary

Project name: PBA lighting Survey - Bldg 60-060

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 11-Mar-95 UPD: 1.6W/Sq.Ft

AREA NAME	DIMENSIONS	LU	MINAIRES	W/SQ.FT	QTY
BREAK ROOM		(6)	Type F	2.1	1
BREAK ROOM-N		(6)	Type F2	0.7	1
HALLWAY		(1)	Type Al	2.1	1
LLWAY-N		(1)	Type W2	1.5	1
MENS RESTROOM	10x5x8Ft	(1)	Type F Type Y1	4.5	1
MENS RESTROOM-N	10x5x8Ft	(1)	Type CF Type F2	1.6	1
WOMENS ROOM	10x10x8Ft	(1)	Type F Type Z5	2.5	1
WOMENS ROOM-N	10x10x8Ft	(1)	Type F2 Type ጜ8 ጚና	1.8	1
JANITOR	4x4x8Ft	(1)	Type Y1	3.8	1
JANITOR-N		(1)	Type CF	1.4	1
ROOM 6	10x14x8Ft	(2)	Type F	2.4	1
ROOM 6-N	 10x14x8Ft	(2)	Type FR	0.9	1
OPEN OFFICE	28x22x8Ft	(9)	Type F	2.4]
OPEN OFFICE-N	28x22x8Ft	(9)	Type FR	0.9	1
OOM 5		(2)	Type F	1.8	
ROOM 5-N		(2)	Type FR	0.7	
ROOM 6 A		(2)	Type F	1.8	

Page 2 60-060 Areas

0-060 Areas					
ROOM 6-N	14x13x8Ft	(2)	Type FR	0.7	1
STORAGE	8x9x8Ft	(1)	Type Al	1.2	1
STORAGE-N	8x9x8Ft	(1)	Type W2	0.8	1
ROOM 3	16x18x8Ft	(4)	Туре Г	2.3	1
ROOM 3-N		(4)	Type FR	0.8	1
OPEN AREA 1		(9)	Type F	2.2	1
OPEN AREA 1-N		(9)	Type FR	0.8	1
ROOM 2	11x18x8Ft	(3)	Type F	2.5	1
ROOM 2-N		(3)	Type FR	0.9	1
ROOM 1		(4)	Type F	2.3	1
ROOM 1-N		(4)	Type FR	0.8	1
ENTRANCE HALL	5x18x8Ft	(1)	Type Al Type Yl	1.6	1
ENTRANCE HALL-N	5x18x8Ft	 (1) (1)	Type CF Type W2	0.9	1

. . . .

1 1981 511

NOTES:

60-060 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-060 Type: Indoor

Project Calculation Summary

Project name: PBA lighting Survey - Bldg 60-060

Prepared for: Corps of Engineers
Prepared by: C. Warren

|Project #6941331 Date: 11-Mar-95 UPD: 1.6W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	AV	Æ	MAX	MIN
BREAK ROOM		Ceiling	<+>	55.5	83.4	13.2
BREAK ROOM-N		Ceiling	<+>	35.1	50.8	7.2
LALLWAY	4x10x8Ft	Ceiling	<+>	32.8	42.9	24.1
HALLWAY-N	4x10x8Ft	Ceiling	<+>	29.3	38.3	21.5
MENS RESTROOM	10x5x8Ft	Ceiling	<+>	53.9	81.1	25.7
MENS RESTROOM-N	10x5x8Ft	Ceiling	<+>	35.1	50.5	16.2
WOMENS ROOM	10x10x8Ft	Ceiling	<+>	38.8	74.3	13.6
WOMENS ROOM-N	10x10x8Ft	Ceiling	<+>	33.2	53.4	14.9
JANITOR	4x4x8Ft	Ceiling	<+>	11.2	11.3	11.1
JANITOR-N	4x4x8Ft	Ceiling	<+>	10.3	10.7	10.0
ROOM 6	10x14x8Ft	Ceiling	<+>	53.4	78.4	30.1
ROOM 6-N	10x14x8Ft	Ceiling	<+>	39.0	56.8	22.6
OPEN OFFICE	28x22x8Ft	Ceiling	<+>	63.2	83.5	46.2
OPEN OFFICE-N	28x22x8Ft	Ceiling	<+>	48.2	65.2	22.3
ROOM 5	14x13x8Ft	Ceiling	<+>	45.8	84.5	17.6
OOM 5-N	14x13x8Ft	Ceiling	<+>	33.6	61.7	13.6
ROOM 6	 14x13x8Ft	Ceiling	<+>	45.2	86.5	0.4
ROOM 6-N		Ceiling	<+>	33.2	63.3	0.3
			-		I	1

Page 2 60-060 Calculations

nagingari.

00-060 Calculations CORAGE	8x9x8Ft	Ceiling	<+>	27.7	35.8	20.8
STORAGE-N	8x9x8Ft	Ceiling	<+>	24.7	31.9	18.6
ROOM 3	16x18x8Ft	Ceiling	<+>	58.0	87.3	16.6
ROOM 3-N	16x18x8Ft	Ceiling	<+>	42.7	63.9	13.0
OPEN AREA 1	40x17x8Ft	Ceiling	<+>	59.4	83.6	18.5
OPEN AREA 1-N	40x17x8Ft	Ceiling	<+>	43.8	59.4	14.5
ROOM 2	11x18x8Ft	Ceiling	<+>	56.6	90.2	12.1
ROOM 2-N	11x18x8Ft	Ceiling	<+>	41.7	64.8	9.5
ROOM 1	16x18x8Ft	Ceiling	<+>	56.6	75.9	35.1
ROOM 1-N	16x18x8Ft	Ceiling	<+>	41.6	54.4	27.1
ENTRANCE HALL	5x18x8Ft	Ceiling	<+>	21.1	39.9	6.0
ENTRANCE HALL-N	5x18x8Ft	Ceiling	\ 	18.4	35.6	4.0

MOTES:

elja ji **ji** me ke za

2.5 15:16 25-Jan-95 Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-060 AREA: BREAK ROOM GRID: Ceiling Computed in accordance with IES recommendations

+ MIN=13.2 MAX=83.4 AUE=55.5 AUE.MIN= 4.20 MAX.MIN=

6.31

- <6> = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

20.8 26.1 27.9 27.1 27.6 29.4 29.4 27.6 27.1 27.9 26.1 20.8 13.2 14.9 15.8 16.2 16.6 17.0 17.0 16.6 16.2 15.8 14.9 13.2 35.2 48.1 51.3 47.4 47.9 53.3 53.3 47.9 47.4 51.3 48.1 35.2 43.6 66.4 70.5 65.4 66.1 73.1 73.1 66.1 65.4 70.5 66.4 49.6 49.3 66.0 70.1 65.0 65.6 72.7 72.7 65.6 65.0 70.1 66.0 49.3 54.3 75.2,79.5 71.5 72.1 82.482.9 72.1 71.5 79.5,75.3 54.3 50.4 70.7 74.8 66.8 67.4 77.2 77.2 67.4 66.8 74.8 70.7 50.4 35.8 52.1 54.9 51.0 51.6 57.0 57.0 51.6 51.0 54.9 52.1 39.8 52.9 73.3-77.3 63.9 73.4.73.5 63.9 63.3 77.2.73.3 52.9 55.4 76.5 80.9 72.9 73.6 83.4 83.4 73.6 72.9 80.9 76.5 55.4 5.0 0.1 7.0 19.0 17.0 15.0 13.0 9 0 11.0 9.0 Y-PXIS

1.0 3.0 5.0 9.0 13.0 15.0 21.0 23.0 x-6xis

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:20 11-Mar-95 PROJECT: 60-060 AREA: BREAK ROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

W. MREWICE

7.02 4.85 MAX/MIN= AUE/MIN= AUE=35.1 MAX=50.8 + MIN=7.24 F2 <6> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

AND SECTION OF

1.0 5.0 9.0 13.0 17.0 21.0 23.0 x-AXIS

 $s \to \psi_{n} \cap \partial U_{n} \mathcal{L}$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:21 25-Jan-95 PROJECT: 60-060 AREA: HALLWAY GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=24.1 MAX=42.9 AUE=32.8 AUE/MIN= 1.36 MAX/MIN= 1.78

A1 <1> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS

350 87 87 C

1.0 3.0 X-AX[S USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:22 11-Mar-95 PROJECT: 60-060 AREA: HALLWAY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

小心感激症状

+ MIN=21.5 MAX=38.3 AUE=29.3 AUE/MIN= 1.36 MAX/MIN= 1.78

W2 (1) = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS

S. Danie

1.0 3.0 X-AXIS

33

Sold Age

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:03 25-Jan-95 PROJECT: 60-060 AREA: MENS RESTROOM GRID: Ceiling 2.5 Jalues are FC, SCALE: 1 IN= 4.0FT, HORZ 3RID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

3.15 2.10 MAX/MIN= AUE/MIN= AUE=53.9 MAX=81.1 + MIN=25.7

= <1> = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68 <1 <1> = 81999A PRESCOLITE 1222-262, (1) 60A19/IF, LLF= 0.81

and the

Y-AXIS

Marian

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:26 11-Mar-95 PROJECT: 60-060 AREA: MENS RESTROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.12 2.17 MAX/MIN= AUE=35.1 AUE/MIN= MAX=50.5 + MIN=16.2

CF <1> = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50 F2 <1> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS

y o party

 $G_{i,j}(\partial G_{i,j}^{p,q}) = G_{i,j}^{q,q}$

1

16:02 25-Jan-95 2.5 =2 JSI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:02 25-PROJECT: 60-060 AREA: WOMENS ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations 5.48 2.86 MAX/MIN= AUE/MIN= AUE=38.8 MAX=74.3 + MIN=13.6

F <1> = 9753 COLUMBIA 4PS2*-87-244, <4> F40CW, LLF= 0.68 25 <2> = K8957 COLUMBIA W240-A, <2> F20112/CW, LLF= 0.60

1. 不可能的情况如此的

Y-AXIS

softgarde

1.0 5.0 9.0 3.0 7.0 X-AXIS 36. A. 37. 88 80

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:29 11-Mar-95 pROJECT: 60-060 AREA: WOMENS ROOM-N GRID: Ceiling 2.5 Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

3.60 2.23 MAX/MIN= AUE/MIN= AUE=33.2 MAX=53.4 + MIN=14.9 F2 <1> = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66 28 <2> = K8957 COLUMBIA W240-A, (2) F032/35K, LLF= 0.58

Antalia attach

SIXU-A

1.0 5.0 9.0 3.0 7.0 X-AXIS USI's LITE*PRC V2.27E Point-By-Point Numeric Output 16:20 25-Jan-95 PROJECT: 60-060 AREA: JANITOR GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

MAX=11.3 + MIN=11.1

Y! <!> = B1999A PRESCOLITE 1222-262, <!> 60A19/IF, LLF= 0.81

1.02

1.01 MAX/MIN=

AUE/MIN=

AUE = 11.2

Y-AXIS

3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:31 11-Mar-95 PROJECT: 60-060 AREA: JANITOR-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

- Salas Barrell Ca.

+ MIN=9.96 MAX=10.7 AUE=10.3 AUE/MIN= 1.04 MAX/MIN=

1.07

CF <1> = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50

Y-AXIS

3.0 X-AXIS

The Salar Andrews The Salar Andrews

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:28 25-Jan-95 PROJECT: 60-060 AREA: ROOM 6 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

DAMESTON.

+ MIN=30.1 MAX=78.4 AUE=53.4 AUE/MIN= 1.78 MAX/MIN= 2.61

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

STRABLET ST.

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:36 11-Mar-95 PROJECT: 60-060 AREA: ROOM 6-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2世代被使为100

e galaxia april 100

+ MIN=22.6 MAX=56.8 AUE=39.0 AUE/MIN= 1.73 MAX/MIN= 2.52

FR (2) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

X-AXIS

16:33 25-Jan-95 2.5 HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-060 AREA: OPEN OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), Computed in accordance with IES recommendations

Activity in

1.81 1.37 MAX/MIN= AUE/MIN= AUE=63.2 MAX=83.5 + MIN=46.2

7 (9) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

an Supplied to

54.6 72.7 74.4 61.2 53.1 61.5 75.5 75.5 61.5 53.1 61.2 74.4 72.7 54.6 54.6 72.7 74.4 61.2 53.1 61.5 75.5 75.5 61.5 53.1 61.2 74.4 72.7 54.6 54.0 21.9 73.5 60.3 52.2 60.5 74.3 74.3 60.5 52.2 60.3 73.5 71.3 54.0 5.0 2<u>8.4 5.9 8</u> 63.0 53.1 63.1 80.2 83.1 53.1 63.0 23.6 28.6 3.0 50.1 55.4 67.0 56.4 49.5 56.7 67.9 67.9 56.7 49.5 56.4 67.0 65.4 50.1 4. 1. 65.3. 66.5 54.0 46.2 53.7 66.2 66.2 53.7 46.2 54.0 66.5 65.3 49.1 54.0 71.9 73.5 60.3 52.2 60.5 74.3 74.3 60.5 52.2 60.3 73.5 71.9 54.0 50.1 65.4 67.0 56.4 49.5 56.7 67.9 67.9 56.7 49.5 56.4 67.0 65.4 50.1 (49.) 65.3 66.5 54.0 46.2 53.7 66.2 65.2 63.7 46.2 54.0 66.5 65.3 49.1 0.1 3.0 13.0 11.0 9.0 7.0 Y-AXIS 0.6 15.0 21.0 17.0

1.0 3.0 5.0 7.0 11.0 15.0 19.0 23.0 25.0 $27.0 \times 10.0 \times 1$

79 m

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:40 11-Mar-95 PROJECT: 60-060 AREA: OPEN OFFICE-N GRID: Ceiling 2.5 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Computed in accordance with IES recommendations 2.92 2.16 MAX/MIN= AUE/MIN= AUE=48.2 MAX=65.2 + MIN=22.3

FR <9> = T10620 METALOPTICS 24EKS042EP11, <2> F032/35K, LLF= 0.69

市連續的形

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:36 25-Jan-95 PROJECT: 60-060 AREA: ROOM 5 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

とは必然を関い

+ MIN=17.6 MAX=84.5 AUE=45.8 AUE/MIN= 2.59 MAX/MIN= 4.79

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

1. 1. 1867 (1.5)

Section 1

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:42 11-Mar-95 PROJECT: 60-060 AREA: ROOM 5-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 5.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=13.6 MAX=61.7 AUE=33.6 AUE.MIN= 2.47 MAX.MIN=

4.54

明期的5.7

FF <2> = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

1.0 5.0 9.0 11.0 13.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:41 25-Jan-95 PROJECT: 60-060 AREA: ROOM 6 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A STATE OF THE STATE OF

+ MIN=0.42 MAX=86.5 AUE=45.2 AUE/MIN= 107.58 MAX/MIN= 205.61

 $F \langle 2 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

an internal and a second of the

Y-AXIS

11.5	+ 16.6	+ 29.5	+ 46.6	+ 55.1	+ 46.9	+ 29.8	+ 0.42
9.5	+ 20.5	+ 38.9	64.2	7 7. 5	6.6	39.1	+ 18.8
7.5	+ 22.9	+ 43.4	71.5	* 85.8	71.8	+ 43.4	+ 22.6
5.5	+ 23.3	+ 44.2	72.3	+ 86.5	+ 72.5	+ 44.2	+ 23.2
3.5	+ 21.6	+ 41.4	68.5	82.4	68.5	+ 41.3	+ 21.6
1.5	+ 18.4	+ 33.8	+ 54.6	+ 64.7	+ 54.5	+ 33.8	+ 18.4
	1.0	3.0		7.0			13.0
		0.0		X-AXIS			

E.

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:44 11-Mar-95 PROJECT: 60-060 AREA: ROOM 6-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A STATE OF STATE

+ MIN=0.32 MAX=63.3 AUE=33.2 AUE/MIN= 100.68 MAX/MIN= 192.32

FP <2> = 710620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

SIXH-Y

0.32	14.4	17.3	17.3	16.5	25.1 14.2
+ 22.3	28.6	32.1	32.9	30.2	25.1
34.9	· ·	52.1	53.1	**************************************	40.0
4 .0 9.0	+ 5848	+ + 62.0 52.1	63.3	28.0 58.0	+ 47.5
+ 34.7 40.9	+5.6	51.9	53.0	+84	+0+
22.2	28 + 58 -51	32.1	32.9	30.2	25.2
+ Z	ا لا أ أ	+7.6	17.9	16.6	14.2
i.	ம ர்	ر. ري	ເນ ເນ	3.5	i.

1.0 5.0 9.0 13.0 x-AXIS

STATE OF STATE

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 16:44 25-Jan-95 PROJECT: 60-060 AREA: STORAGE GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=20.8 MAX=35.8 AUE=27.7 AUE.MIN= 1.33 MAX.MIN=

1.72

A1 <1> = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68

Y-AXIS

1.0 5.0 7.0 3.0 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:46 11-Mar-95 PROJECT: 60-060 AREA: STORAGE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 1.33 MAX,MIN= 1.72 AUE=24.7 MAX=31.9 + MIN=18.6

W2 <1> = K5604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

 $\left(\mathcal{F}_{i}^{\mathcal{M},\mathcal{M}} \right) \left(\mathcal{F}_{i}^{\mathcal{M},\mathcal{M}} \right) \left(\mathcal{F}_{i}^{\mathcal{M},\mathcal{M}} \right) = \mathcal{F}_{i}^{\mathcal{M}}$

Y-AXIS

1.0 5.0 7.0 3.0 X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 16:49 25-Jan-95 PROJECT: 60-060 AREA: ROOM 3 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=16.6 MAX=87.3 AUE=58.0 AUE/MIN= 3.50 MAX/MIN= 5.27

 $F \langle 4 \rangle = 9753$ COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

· "不不是你是我们的,

Y-AXIS 17.0 49.8 45.0 49.1 15.0 74.8 74.6 43.6 51.8 13.0 48.7 B7.3 85.9 60.7 \$2.6 11.0 74.3 78.1 74.0 62.6 76.4 58.1 9.0 59.3 46.5 31.6 67.5 65.7 65.8 7.0 73.8 5.0 66.4 40.9 83.9 84.3 83.6 3.0 20.2 76.2 76.8 1.0 27.0 16.6 13.0 9.0 5.0 1.0

2.0

X-AXIS

3.0

11.0

15.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:48 11-Mar-95 PROJECT: 60-060 AREA: ROOM 3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 6.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.92 3.29 MAX/MIN= AUE/MIN= AUE=42.7 MAX=63.9 + MIN=13.0

FR <4> = T10620 METALOPTICS 24EKS042EP11, <2> F032/35K, LLF= 0.69

 $d (\mathbb{Z}_{p_{i}}^{(1)})^{-1} d (\mathbb{Z}_{p_{i}}^{(2)})$

142.

1.0 5.0 9.0 13.0 15.0 x-AXIS

16:55 25-Jan-95 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT; 60-060 AREA: OPEN AREA I GRID: Ceiling Computed in accordance with IES recommendations

r politikalisti in

4.51 3.21 MAX/MIN= AUE/MIN= AUE=59.4 MAX=83.6 + MIN=18.5

7 (9) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

31x4-7

20.7 25.7 35.7 53.3 70.6 73.5 66.5 67.5 76.3 76.5 68.0 67.8 75.3 74.6 65.2 64.3 71.1 66.9 47.8 28.5 21.7 25.7 36.7 46.8 63.1 80.2 82.0 72.5 73.0 83.5 83.5 73.4 73.2 83.0 82.3 71.2 70.2 78.5 73.8 51.8 30.0 | 4.1 57.1 62.5 65.7 70.0 68.4 61.9 61.9 68.2 68.3 62.0 61.3 67.7 67.2 60.2 59.2 63.6 59.3 43.4 27.0 57. 7 76. 2 25. 1 65. 9 59. 0 54. 4 49. 9 49. 7 53. 1 53. 1 49. 6 49. 3 52. 6 52. 1 48. 0 47. 0 48. 7 45. 0 34. 5 23. 5 56.3 74.5 75.7 68.4 64.1 59.9 54.5 54.3 58.7 58.7 54.2 54.0 58.2 57.8 52.6 51.6 54.3 50.4 37.9 24.7 18.5 22.7 30.9 44.9 58.2 60.7 55.8 56.6 63.1 63.3 57.1 56.9 62.8 62.1 55.0 54.2 58.9 55.2 40.4 25.1 1.5 3.5 ري ص 5.5 13.5 11.5 ம ர் 7.53

1.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 33.0 37.0 39.0 3.0 3.0 39.0 39.0 3.0 2.0 31.0 35.0 39.0 X-AxIS

KAPANSAS.

2.5 15:50 11-Mar-95 USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:50 11-Mar PROJECT: 60-060 AREA: OPEN AREA 1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z=Computed in accordance with IES recommendations 4.10 3.03 MAX/MIN= AUE/MIN= AUE=43.8 MAX=59.4 + MIN=14.5

FR (9) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

or the first production

1.0 5.0 5.0 11.0 15.0 21.0 23.0 27.0 31.0 35.0 39.0 $x - \theta x | S = 0.0$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:00 25-Jan-95 PROJECT: 60-060 AREA: ROOM 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.1 MAX=90.2 AUE=56.6 AUE/MIN= 4.67 MAX/MIN= 7.44

F (3) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:52 11-Mar-95 PROJECT: 60-060 AREA: ROOM 2-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

 $\zeta = 0.45 T_{\rm c} = 0.05$

Expansion Spring

Y-AXIS

6.78 4.37 MAX/MIN= AUE/MIN= MAX=64.8 AUE=41.7 + MIN=9.55

FR (3) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

CONTOUR LEVELS: A= 60.0 B= 50.0 C= 40.0 D= 30.0 E= 20.0 17.0 15.0 13.0 11.0 9.0 7.0 FR 5.0 3.0 1.0

> 8.5 0.5 4.5 10.5 6.5 2.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 17:22 25-Jan-95 PROJECT: 60-060 AREA: ROOM 1 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=35.1 MAX=75.9 AUE=56.6 AUE/MIN= 1.61 MAX/MIN= 2.16

F (4) = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

Y-AXIS

:								
17.0	+ 38.7	+ 50.7	+ 53.4	+ 49.0	+ 49.0	+ 53.4	+ 50.7	+ 38.7
15.0		71.0 _F						
13.0	+ 51.5	72.0	75.9	+ 67.6	+ 67.6	75.9	72.0	+ 51.5
11.0	+ 41.6	+ 55.1	+ 58.6	+ 54.4	+ 54.4	+ 58.6	+ 55.1	+ 41.6
9.0	+ 35.1	+ 44.8	+ 47.7	+ 45.5	+ 45.5	+ 47.7	+ 44.8	35.1
7.0	41.6	55.1	+ 58.6	+ 54.4	+ 54.4	+ 58.6	+ 55.1	+ 41.6
5.0	51.5	72.0	75.8	+ 67.6	+ 67.6	75.9	72.0	+ 51.5
3.0	+ 51.1	71.0	* 74.7	+ 66.3	+ 66.3	74.7	71.0	51.1
1.0	+ 38.7	50.7	+ 53.4	+ 49.0	+ 49.0	+ 53.4	+ 50.7	+ 38.7
	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0
					PIXE			

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:54 11-Mar-95 PROJECT: 60-060 AREA: ROOM 1-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

推荐额的

+ MIN=27.1 MAX=54.4 AUE=41.6 AUE/MIN= 1.53 MAX/MIN= 2.01

FR (4) = T10620 METALOPTICS 24EKS042EP11, (2) F032/35K, LLF= 0.69

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 17:30 25-Jan-95 PROJECT: 60-060 AREA: ENTRANCE HALL GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=6.04 MAX=39.9 AUE=21.1 AUE/MIN= 3.50 MAX/MIN= 6.61

A1 $\langle 1 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F40CW, LLF= 0.68 Y1 $\langle 1 \rangle$ = B1999A PRESCOLITE 1222-262, (1) 60A19/IF, LLF= 0.81

Y-AXIS

S and

17.0		+ 2.0	+ 23.1	21.6
15.0	3	+ 1.1	34. 2	+ 30. ↑
13.0	3	+ 5.9	At 39.9	35.
11.0		+	33.5	+ 30.β
9.0		+ 20.8	+ 22.5	+ 20. †
7.0		+	+ 16.5	+ 14.
5.0		+ 3.0	+ 1 5 ,5	12.6
3.0		+	+ 12.7	+ 9.92
1.0	ı	+ 6.24	+ 7.42	+ 6.01
-		nς		45

Compared the state of the

0.5 4.5 2.5 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:56 11-Mar-95 PROJECT: 60-060 AREA: ENTRANCE HALL-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=3.97 MAX=35.6 AUE=18.4 AUE/MIN= 4.64 MAX/MIN= 8.95

CF $\langle 1 \rangle$ = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50 W2 $\langle 1 \rangle$ = K9604 COLUMBIA WCW240-A, (2) F032/35K, LLF= 0.66

Y-AXIS 17.0 19.3 20.6 15.0 27. IJ₽ 13.0 ₿2**.**0 35.4 31. 11.0 30.0 27. 9.0 19.5 17.\$ 7.0 12.8 11.0 5.0 9.43 3.0 6.92 1.0 0.5 4.5 2.5 X-AXIS

3.88 3 5 000

Bldg 60-070 Summary

. 67

	Total	Watts	210	220	1,020	3,363			4,813
ent System		Fixtures		1	17	22			22
Replacement System	Watts/	Fixture	105	220	09	29			
	Fixture	Type	Ω	83	8	8F			Totals
	Total	Watts	1,038	492	6,816				8,346
tem	Number	Fixtures	ဇ	2	71				92
Present System	Watts/	Fixture	346	246	96				
	Fixture	Type		2	-			-	Totals

60-070 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-070

Luminaire Fixture Schedule PRESENT

Project #6941331

Project name: PBA Lighting Survey - Bldg 60-070

Date: 25-Jan-95

Prepared for: Corps of Engineers

 $\{(0,0),\dots,(n-1)\}$

UPD: 1.7W/Sq.Ft

Prepared by: C. Warren

-		DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
-	TYPE			000		
		8'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP496	F96T12/CW STD	346		
	2	8'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP496	F96T12/CW/WM ESB	000 - 246 	~ 2	
	J	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	F40CW STD	000 - 96	71	

NOTES:

60-070 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-070

Luminaire Fixture Schedule / PROPOSED

Project name: PBA Lighting Survey - Bldg 60-070

· · · Value of the Company of the

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 12-Mar-95

UPD: 1.0W/Sq.Ft

- 	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
	 C1	1X8 2L APERTURED INDUSTRIAL OPEN - NO SHIELDING COLUMBIA KP296	F096/735 STD	000 - 105	2	
\ \ \	C8	8'4L APER.PORCELAIN INDUSTRIAL OPEN BOTTOM- NO SHIELDING COLUMBIA KP496	FO96/735 EOCT	000 - 220 	1	
	 I8	1X4 2L SOLID REFL.INDUSTRIAL OPEN- NO SHIELDING COLUMBIA CSR240-PAF-EOCT	F032/35K EOCT	000 - 60 	17	
	J8	8"X4' 2L DAMP LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-DMR	FO32/35K EOCT	000 - 59	57	

NOTES:

60-070 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-070

Project Area Summary

Project name: PBA Lighting Survey - Bldg 60-070 Prepared for: Corps of Engineers

Prepared by: C. Warren

Date: 12-Mar-95
UPD: 1.3W/Sq.Ft

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331

 AREA NAME	DIMENSIONS	LUM	INAIRES	W/SQ.FT	QTY
COTTON STORAGE	15x19x13Ft	(2)	Type C Type J	3.8	1
COTTON STORN	15x19x13Ft	(6)	Type I8	1.3	1
FFICE	8x18x13Ft	(2)	Туре Ј	1.3	2
FFICE-N	8x18x13Ft	(3)	Type I8	1.3	2
SHOWER AREAS	9x12x8Ft	(2)	Type J	1.8	2
SHOWER AREAS-N	9x12x8Ft	(2)	Туре Ј8	1.1	2
MEN'S LOCKER	9x19x13Ft	(2)	Туре Ј	1.1	1
MEN'S LOCKER-N	9x19x13Ft	(2)	Type I8	0.7	1
HALLWAY	27x8x13Ft	(2)	Type J	0.9	1
HALLWAY-N	27x8x13Ft	(2)	Type I8	0.6	1
MENS RESTROOM	8x10x8Ft	(2)	Type J	2.5	1
MENS RESTROOM-N	8x10x8Ft	(1)	Type I8	0.8	1
REPAIR STA	72x36x13Ft	(1) (2) (51)	Type C Type C2 Type J	2.2	1
REPAIR STA-N	72x36x13Ft	(2) (1) (51)	Type C1 Type C8 Type J8	1.3	1
CONTROL ROOM	40x28x8Ft	(2)	Type J	0.2	
CONTROL ROOM-N	40x28x8Ft	(2)	Туре Ј8	0.1	1

60-070 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

OWNER OF

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-070 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 60-070

The state of the s

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 12-Mar-95 UPD: 1.3W/Sq.Ft

AREA NAME	 DIMENSIONS	GRID NAME	A	ve	MAX	MIN
COTTON STORAGE	 15x19x13Ft	Ceiling	<+>	101.3	164.7	52.4
COTTON STORN	 15x19x13Ft	Ceiling	<+>	47.3	55.8	33.0
	8x18x13Ft	Ceiling	<+>	12.3	14.5	9.5
-AFICE-N	8x18x13Ft	Ceiling	<+>	37.4	43.9	29.8
SHOWER AREAS	9x12x8Ft	Ceiling	<+>	26.9	39.1	16.1
SHOWER AREAS-N	9x12x8Ft	Ceiling	<+>	24.0	34.9	14.4
MEN'S LOCKER	9x19x13Ft	Ceiling	<+>	12.1	14.2	9.4
MEN'S LOCKER-N	9x19x13Ft	Ceiling	<+>	25.3	30.8	17.4
HALLWAY	27x8x13Ft	Ceiling	<+>	7.6	14.8	0.1
HALLWAY-N	27x8x13Ft	Ceiling	<+>	11.9	22.9	0.1
MENS RESTROOM	8x10x8Ft	Ceiling	- -	30.9	39.4	18.1
MENS RESTROOM MENS RESTROOM-N	8x10x8Ft	Ceiling	 <+>	24.6	35.0	12.4
REPAIR STA	72x36x13Ft		-\ <+>	36.5	206.1	0.0
	72x36x13Ft 72x36x13Ft		- · <+>	29.2	106.9	0.0
REPAIR STA-N	/2x36x15FC 	Ceiling	- <+>	4.1	20.4	1.1
CONTROL ROOM		Ceiling		 3.7	18.2	1.0
CONTROL ROOM-N	40x28x8Ft	100111119			<u></u>	

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:47 24-Jan-95 PROJECT: 60-070 AREA: COTTON STORAGE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=52.4 MAX=165. AUE=101. AUE/MIN= 1.93 MAX/MIN= 3.15

C $\langle 2 \rangle$ = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67 J $\langle 4 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

17.5	54.0 M3.0 97.8 No. 97.6 7 6 53.5
15.5	62.6 88.7 122. 39. 122. 88.3 62.1
13.5	+ + + + + + + + + + + + + + + + + + +
11.5	+ + + + + + + + + + + + + + + + + + +
9.5	72.6 105. 145. 65. 144. 104. 71.9
7.5	+ + + + + + + + + + + + + + + + + + +
5.5	+
3.5	+ d2.0 87.6 120. 36. 119. 86.7 61.1
1.5	53.1 71.5 95.2 107. 94.6 70.6 52.4

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:35 12-Mar-95 PROJECT: 60-070 AREA: COTTON STOR.-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A Walle Same March

 $\boldsymbol{y}_{i+1}^{r+1}(\boldsymbol{y}_{i},\boldsymbol{y}_{i}) = \cdots, \boldsymbol{y}_{i-1}$

+ MIN=33.0 MAX=55.8 AUE=47.3 AUE/MIN= 1.43 MAX/MIN= 1.69

18 (6) = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:59 24-Jan-95 PROJECT: 60-070 AREA: OFFICE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

· 医黑霉性病 "小"

+ MIN=9.54 MAX=14.5 AUE=12.3 AUE/MIN= 1.29 MAX/MIN= 1.52

J $\langle 4 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

Bay is a

17.0	+ 9.54	10.2	+ 10.2	9.54
15.0	+ 11.2	12.1	12.1	+ 11.2
13.0	+ 12.5	+ J 13.6	+ 13.6	+ 12.5
11.0	+ 13.2	+ L 14.3	14.3	+ 13.2
9.0	+ 13.4	+ 14.5	+ 14.5	+ 13.4
7.0	13.2	14.3	14.3	13.2
5.0	12.5	13.6	13.6	+ 12.5
3.0	11.2	+ L 12.1	12.1	+ 11.2
1.0	+ 9.54	+ 10.2	+ 10.2	+ 9.54

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:38 12-Mar-95 PROJECT: 60-070 AREA: OFFICE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

as will be

t (4)

+ MIN=29.8 MAX=43.9 AUE=37.4 AUE/MIN= 1.26 MAX/MIN= 1.48

 $18 \ \langle 6 \rangle = 10331$ COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS 17.0 29.8 33.1 **B3.1** + 18 15.0 38.8 38.8 34.0 34.0 13.0 36.7 41.4 41.4 36.7 11.0 38.2 #3.0 18 9.0 **#3.9** 38.8 43.9 7.0 43.0 43.0 38.2 38.2 5.0 41.4 36.7 #1.4 + 18 + + 3.0 34.0 38.8 38.8 + 1.0 29.8 29.8 5.0 1.0 2.0 3.0

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:05 24-Jan-95 PROJECT: 60-070 AREA: SHOWER AREAS GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A THE STREET

+ MIN=16.1 MAX=39.1 AUE=26.9 AUE/MIN= 1.67 MAX/MIN= 2.43

J $\langle 4 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

11.0	+ 16.4	+ 17.8	+ 17.7	+ 16.1
9.0	+ 24.6	+ 27.6	+ 27.3	+ 24.0
7.0	33.7	+ 38.0	37.6	32.8
5.0	34.6	+ 39.1	38.8	33.9
3.0	+ 26.4	+ 29.8	+ 29.6	+ 26.1
1.0	17.8	19.5	19.4	17.7

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:46 12-Mar-95 PROJECT: 60-070 AREA: SHOWER AREAS-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

Section of Marketine Section

+ MIN=14.4 MAX=34.9 AUE=24.0 AUE/MIN= 1.67 MAX/MIN= 2.43

J8 (4) = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

Y-AXIS

+	+	+	+
14.6	15.9	15.8	14.4
22.0	+	+	+
	24.6	24.3	21.4
30.1	+ 33.9	33.5	+ 29.3
30.9	+	+	+
	34.9	34.7	30.2
23.5	+	+	+
	26.5	26.4	23.2
15.9	+ 17.4	17.3	+ 15.8
	22.0 + 30.1 30.1 8 + 30.9 + 23.5	22.0 24.6 + 1 + 30.1 33.9 + 30.9 34.9 + 23.5 26.5	18 + + + + 30.9 34.7 34.7 26.5 26.4 + + + + + + 1

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:25 24-Jan-95 PROJECT: 60-070 AREA: MEN'S LOCKER GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

小点翻写。

+ MIN=9.45 MAX=14.2 AUE=12.1 AUE/MIN= 1.28 MAX/MIN= 1.50

 $J \langle 2 \rangle = K9801X$ COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

Y-AXIS

ı	
17.5	+ + + + 9.92 10.8 10.8 9.85
15.5	+ + + + + 11.2 12.3 12.3 11.1
13.5	12.1 13.4 13.3 12.0
11.5	12.7 14.0 14.0 12.6
9.5	+ + + + 12.9 14.2 14.1 12.8
7.5	+ + + + + 12.6 13.9 13.8 12.5
5.5	+ + + + + + + + + + + + + + + + + + +
3.5	+ + + + + 10.8 11.9 11.9 10.7
1.5	9.51 10.3 10.3 9.45

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:48 12-Mar-95 PROJECT: 60-070 AREA: MEN'S LOCKER-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0F1, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

11.36 W Mr. 1.

+ MIN=17.4 MAX=30.8 AUE=25.3 AUE/MIN= 1.45 MAX/MIN= 1.77

 $18 \langle 2 \rangle = 10331$ COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

Y-AXIS

i	
17.5	+ + + + + 19.1 21.8 21.6 18.8
15.5	23.1 27.5 27.3 22.7
13.5	+ 18 + 25.7 30.7 30.5 25.2
11.5	+ + + + + 26.1 30.7 30.5 25.7
9.5	+ + + + + 25.9 29.9 29.7 25.4
7.5	+ + + + + 26.1 30.8 30.6 25.7
5.5	+ + 18 + + 25.1 30.2 30.0 24.6
3.5	+ + + + + 21.9 26.0 25.8 21.5
1.5	+ + + + + 17.7 20.0 19.9 17.4

A SOFT AND

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:42 24-Jan-95 PROJECT: 60-070 AREA: HALLWAY GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations AUE.MIN= 125.41 MAX.MIN= 244.63

AUE=7.60

MAX=14.8

+ MIN=0.06

. White

The state of the s

j <2> = κeβCix COLUMBiA LUN240-WL, (2) F40CW, LLF= 0.68

1.5 5.5 5.5 9.5 13.5 17.5 21.5 25.5 x-AXIS

Charles of

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:51 12-Mar-95 PROJECT: 60-070 AREA: HALLWAY-N GRID: Ceiling Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and housing a

AUE,MIN= 123.48 MAX,MIN= 238.47 AUE=11.9 MAX=22.9 # MIN=0.09

18 <2> = 10331 COLUMBIA CSR240-PAF-EOCT, (2) F032/35K, LLF= 0.66

\$0.124 e (**)

- 5

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:51 24-Jan-95 PROJECT: 60-070 AREA: MENS RESTROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=18.1 MAX=39.4 AUE=30.9 AUE/MIN= 1.70 MAX/MIN= 2.17

 $J \langle 2 \rangle = K9801X$ COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:54 12-Mar-95 PROJECT: 60-070 AREA: MENS RESTROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.82 1.98 MAX/MIN= AUE/MIN= AUE=24.6 MAX=35.0 + MIN = 12.4

18 <1> = 10331 COLUMBIA CSR240-PAF-EOCT, <2> F032/35K, LLF= 0.66

and the state of the state of the

Y-AXIS

7.0 5.0 X-AXIS 3.0 1:0

4017

ij.

18:00 24-Jan-95 Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (Ú), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PRCJECT: 60-070 AREA: REPAIR STA GRID: Ceiling Computed in accordance with IES recommendations

AUE,MIN=N/A MAX,MIN=N/A AUE=36.5 MAX=206. + MIN=0.00

C2 <2> = K7983M COLUMBIA KP496, (4) F96T12/CW/WM, LLF= 0.69 J $\langle 51 \rangle = K9801X$ COLUMBIA LUNZ $4\dot{0}$ -WL, $\langle 2 \rangle = 40$ CW, LLF= 0.68 C <1> = K7983M COLUMBIA KP496, (4) F96T12/CW, LLF= 0.67

 $g := \frac{2\pi k_1}{2} e^{-2\pi k_2} \left(\frac{1}{2} \left(x, \frac{1}{2} \frac{1}{2} \left(x, \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \right)\right)\right)$

69.0 1.2 36.4 31.2 27.7 26.2 25.1 24.9 24.6 25.0 25.6 27.4 32.3 40.8 L52.3 68.8 L67 31.1 28.1 21.8 24.3 21.3 23.0 21.8 23.2 21.0 28.2 35.5 46.9 = 59.9 471.9 = 73. 26. 58.3 35.5 28.2 25.6 28.1 23.6 28.0 22.8 28.2 22.0 22.0 21.9 20.1 0.00 65.0 17.9 17.6 16.3 15.2 0.00 61.0 57.0 53.0 49.0 45.0 8 34.9 28.9 27.8 32.1 41.0 18.7 37.0 X-AXIS 33.0 29.0 25.0 21.0 17.0 34.0 28.5 5 32.2 24.5 40.9 54.4 95.6 0. 0: . 0 Y-AXIS 0 13.0 29.0 25.0 21.0 17.0 33.0

and the same of

14:09 12-Mar-95 Values are FC, SCALE: 1 IN= 12.0FT, HORZ GRID (V), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-070 AREA: REPAIR STA-N GRID: Ceiling Computed in accordance with IES recommendations

+ MIN=0.00 MAX=107. AUE=29.2 AUE.MIN=N/A MAX/MIN=N/A

C1 <2> = 10242 COLUMBIA KP296, (2) F096/735, LLF= 0.66 C8 <1> = K7983M COLUMBIA KP496, (4) F096/735, LLF= 0.66 J8 <51> = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

28.7 2183 22.4 2183 20.9 2184 20.2 1187 19.5 1938 19.5 1838 0.00 69.0 3 m/8 29.3 2 m/8 24.3 2 m/2 23.0 2 m/7 22.9 2 m/7 23.3 25.1 27.2 12.5 0.0 0.00 65.0 14.7 31.0 27.0 24.3 23.1 22.2 22.1 21.8 22.3 22.8 24.4 28.8 36.4 46.6 61.2 61.0 57.0 53.0 6.0 24.3 49.0 16.0 39.7 33.1 33.2 40.0 29.2 39.9 32.4 30.8 35.3 45.0 4 25.6 30.9 23.0 31.1 25.8 24.8 28.6 16.6 16.1 41.0 37.0 X-AXIS 18.4 17.5 17.3 16.7 33.0 29.0 25.0 21.0 23.6 17.0 13.0 5.2 37.4 28.4 ი ი 4Z:8 23.0 28.7 о 9 86 1.0 5.0 0: 9.0 Y-AXIS 21.0 33.0 25.0 17.0 13.0 29.0

5.3Nº

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:41 25-Jan-95 DROJECT: 60-070 AREA: CONTROL ROOM GRID: Ceiling 2.5 Jaiwes are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations

٠ بر (ا 17.91 3.64 MAX/MIN= AUE/MIN= AUE=4.15 MAX=20.4 MIN=1.14

A STANSON

WHURTH !

J <2> = K9801X COLUMBIA LUN240-WL, (2) F400W, LLF= 0.68

.

1,68 1.67 1.68 1.67 1.65 1.67 1.65 1.63 1.61 1.63 1.72 1.87 2.05 2.20 2.26 2.19 2.02 1.80 1.59 1.42 1.41.135 1.33 1.30 1.29 1.32 1.35 1.41 1.43 1.46 1.52 1.61 1.70 1.80 1.84 1.80 1.71 1.59 1.47 1.36 4.23 6.81 12.1 18.8 2D.2 14.8 8.44 4.96 3.41 2.94 3.37 5.16 9.45 16.3 20.4 17.0 9.99 5.16 2.89 1.90 12.03 2.18 2.35 2.44 2.42 2.37 2.20 2.03 1.90 1.88 2.02 2.29 2.65 2.98 3.11 2.96 2.61 2.18 1.80 1.53 4.08 6.53 11.4 17.2 18.4 13.8 8.03 4.81 3.35 2.91 3.34 5.08 9.14 15.5 19.4 16.2 9.64 5.07 2.87 1.90 3.85 5.85 9.54 13.7 14.5 11.3 7.01 4.43 3.20 2.83 3.21 4.65 7.76 12.2 14.8 12.6 8.10 4.59 2.76 1.89 3.20 4.35 6.05 7.63 7.91 6.72 4.92 3.53 2.77 2.55 2.85 3.79 5.43 7.34 8.30 7.46 5.50 3.67 2.46 1.79 2.5+ 3.06 3.63 4.09 4.13 3.82 3.24 2.67 2.30 2.21 2.42 2.9* 3.70 4.46 4.81 4.47 3.67 2.79 2.11 1.66 2.54 3.72 4.88 5.87 6.02 5.29 4.15 3.14 2.56 2.40 2.69 3.50 4.82 6.28 6.99 6.35 4.85 3.38 2.34 1.73 3.54 5.22 8.06 11.1 11.6 9.33 6.16 4.07 3.03 2.73 3.10 4.41 7.05 10.7 12.7 11.0 7.29 4.33 2.66 1.85 1.48 1.46 1.46 1.47 1.42 1.45 1.46 1.46 1.47 1.51 1.59 1.72 1.87 2.00 2.05 1.99 1.85 1.67 1.50 1.35 1.79 1.88 1.97 2.01 1.99 1.99 1.90 1.80 1.73 1.74 1.87 2.10 2.40 2.66 2.76 2.64 2.36 2.00 1.69 1.46 2,23 2.59 2.56 3.22 3.24 3.07 2.72 2.35 2.10 2.05 2.25 2.68 3.30 3.89 4.15 3.89 3.26 2.55 1.98 1.59 1.26 1.20 1.18 1.15 1.14 1.17 1.22 1.29 1.32 1.36 1.42 1.49 1.58 1.66 1.69 1.66 1.59 1.49 1.39 1.30 21.0 19.0 15.0 9.0 O K <u>က</u> c) m 13.0 11.0 1:0 23.0 27.0 25.0 Y-AXIS

1.0 5.0 5.0 9.0 13.0 17.0 21.0 25.0 29.0 33.0 37.0 39.0 $3.0 \times 4.0 \times 1.0 \times 1.$

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:12 12-Mar-95 PROJECT: 60-070 AREA: CONTROL ROOM-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 3.64 MAX/MIN= 17.91 AUE/MIN= AUE=3.70 MAX=18.2 + MIN=1.02

W. Trans

J8 <2> = K9801 COLUMBIA LUN240-DMR, <2> F032/35K, LLF= 0.66

Bldg 60-090 Summary

Replacement System	Total	Watts	102	68	660	1,037			1,867
	Number	Fixtures	3	2	11	17			33
	Watts/	Fixture	34	34	09	61			
	Fixture	Type	C4	CF	81	HI			Totals
,									
Present System	Total	Watts	5,568	360	120				6,048
	Number	Fixtures	62	က	2				34
	Watts/	Fixture	192	120	09				
	Fixture	Type	M3	X	77				Totals

and the second

60-090 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-090

Luminaire Fixture Schedule / PRESENT

Project name: PBA Lighting Survey - Bldg 60-090

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331

Date: 26-Jan-95 UPD: 3.3W/Sq.Ft

-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
		9"X4' 4L SURFACE TURRET STRIP EGGCRATE LOUVERS COLUMBIA K440-T	F40CW STD	000 - 192 	ر ک 29	
	zx	8" RECESSED SQUARE DOWNLIGHT LENS- PRISMATIC PRESCOLITE 488HF-1	120ER40 NA	000 - 120 	3	
`	ZY	8" RECESSED SQUARE DOWNLIGHT LENS- PRISMATIC PRESCOLITE 488HF-1	60A19/IF NA	000 - 60	2	

60-090 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-090 Type: Indoor

Luminaire Fixture Schedule / PROPSED

Project name: PBA Lighting Survey - Bldg 60-090

Prepared for: Corps of Engineers

Prepared by: C. Warren

Project #6941331 Date: 12-Mar-95

UPD: 1.0W/Sq.Ft

TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
C4	8"1L(VERT)RECESS ROUND DOWNLTE OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE CF123526-462	F26DTT/27K STD	000 - 34 	3	
GF	6" 2L RECESSED ROUND DOWNLIGHT OPEN- CLEAR ALZAK W/ BL.BAFFLE PRESCOLITE PBX-TB94	F13DTT/27K STD	000 - 34 	2	
18	1X4 2L SOLID REFL. INDUSTRIAL EGGCRATE LOUVERS COLUMBIA KL240-PAF-EOCT-SOLID	FO32/35K EOCT	60	11	
IR	4' INDUSTRIAL/EGGCRATE LOUVERS SILVER SPREAD BEAM REFLECTOR METALOPTICS ISS04SSWWSO42EP11	FO32/35K EOCT	000 - 61	17	

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-090 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - Bldg 60-090

Prepared for: Corps of Engineers
Prepared by: C. Warren

|Project #6941331 Date: 12-Mar-95 UPD: 2.1W/Sq.Ft

AREA NAME	DIMENSIONS	LUI	MINAIRES	W/SQ.FT	QTY
MAIN/OFFICE1	29x23x11Ft	(12)	Type M3	3.5	1
MAIN/OFFICE1-N	29x23x11Ft	(12)	Type IR	1.1	
OFFICE 2	20x10x11Ft	(3)	Type M3	2.9	
FICE 2-N	20x10x11Ft	(3)	Type IR	0.9	
OFFICE 3	14x10x11Ft	(2)	Type M3	2.7	
OFFICE 3-N	14x10x11Ft	(2)	Type IR	0.9	
FILE STORAGE	28x14x11Ft	(7)	Туре М3	3.4	
FILE STORAGE-N	28x14x11Ft	(7)	Type I8	1.1	
KITCHEN	10x12x11Ft	(2)	Туре М3	3.2	
KITCHEN-N	10x12x11Ft	(2)	Type I8	1.0	
HALL/ENTRANCE	10x18x11Ft	(3)	Type M3	3.2	
HALL/ENTRANCE-N	10x18x11Ft	(2)	Type I8	0.7	
WOMENS TOILET	20x5x11Ft	(2)	Type ZX Type ZY	3.0	
WOMENS TOILET-N	20x5x11Ft	(2)	Type C4 Type CF	1.0	
MENS TOILET	9x6x11Ft	(1)	Type ZX Type ZY	3.3	
MENS TOILET-N	9x6x11Ft	(1)	Type C4 Type CF	1.3	

60-090 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-090 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 60-090

LANCE PROPERTY

Prepared for: Corps of Engineers
Prepared by: C. Warren

Project #6941331 Date: 12-Mar-95 UPD: 2.1W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	ΑV	E	MAX	MIN
MAIN/OFFICE1	29x23x11Ft	Ceiling	<+>	56.2	71.8	26.9
MAIN/OFFICE1-N	29x23x11Ft	Ceiling	<+>	45.8	62.2	23.2
OFFICE 2	20x10x11Ft	Ceiling	<+>	48.8	69.8	26.1
FFICE 2-N	20x10x11Ft	Ceiling	<+>	41.2	66.8	18.1
OFFICE 3	14x10x11Ft	Ceiling	<+>	41.5	49.4	32.9
OFFICE 3-N	14x10x11Ft	Ceiling	<+>	35.2	47.6	25.2
FILE STORAGE	28x14x11Ft	Ceiling	<+>	58.9	86.9	0.0
FILE STORAGE-N	28x14x11Ft	Ceiling	<+>	40.1	60.3	0.0
KITCHEN	10x12x11Ft	Ceiling	<+>	47.4	61.2	35.7
KITCHEN-N		Ceiling	<+>	34.5	45.3	25.2
HALL/ENTRANCE	10x18x11Ft	Ceiling	<+>	41.8	75.9	0.0
HALL/ENTRANCE-N	10x18x11Ft	Ceiling	<+>	21.8	37.8	0.0
WOMENS TOILET	20x5x11Ft	Ceiling	<+>	5.2	9.5	2.1
WOMENS TOILET-N	20x5x11Ft	Ceiling	<+>	6.5	13.2	2.4
MENS TOILET	9x6x11Ft	Ceiling	<+>	5.9	8.6	3.6
ENS TOILET-N	9x6x11Ft	Ceiling	<+>	7.4	12.7	4.3

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 09:16 26-Jan-95 PROJECT: 60-090 AREA: MAIN/OFFICE1 GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.67 2.09 MAX/MIN= AUE/MIN= AUE=56.2 MAX=71.8 + MIN=26.9

M3 <12> = K8965 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

Y-AXIS

13.5
1.5 + 4 + 4 + 7

1.5 5.5 9.5 13.5 17.5 21.5 25.5 27.5 3.5 27.5 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:06 12-Mar-95 PROJECT: 60-090 AREA: MAIN/OFFICE1-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

STATE OF STATE

+ MIN=23.2 MAX=62.2 AUE=45.8 AUE/MIN= 1.97 MAX/MIN=

2.68

IR <12> = T11272 METALOPTICS ISSO4SSWWSO42EP11, (2) F032/35K, LLF= 0.73

. "Wille

1.5 5.5 9.5 13.5 17.5 21.5 25.5 27.5 3.5 7.5 11.5 A-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output O9:23 26-Jan-95 PROJECT: 60-090 AREA: OFFICE 2 GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=26.1 MAX=69.8 AUE=48.8 AUE>MIN= 1.87 MAX>MIN= 2.

M3 <3> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

SIXU->

0.0	+ + + 37.0 42.1	+ 2, 1	+ 10 	+ 4.0	+ 46.3	+ + + + + + + + + + + + + + + + + + +	+ 4 3 3 3	39.3	33.1	26.1
7.0	+ 4 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6	10 10 10 10 10	+ 60.9	61.74 59.3	59.3	+ + + + 56.6 54.4 49.4	+ 4. 4.	+ 0 4	39.8	+ 29.4
J. 0	51 + 2	+ 51.2 62.3	+ 69.1	+ + 83 + + 65.4	+ 4 + 66.4	+ 62.3	62.3 59.8 54.3 42.7	M3 +	+ 2.7	30.6
3.0	47.6	57.0	63.0	+ 64.1	61.6	+ + + + + + + + + + + + + + + + + + +	55.8	50.6	+ 40.6	29.8
1.0	38 + 5	+ 4 4 2	48.2	+ 49.6	+ 84	38.5 44.2 48.2 49.6 48.9 47.6 45.4 40.9 34.2 26.8	+ 52 +	40.9	34.2	26.8

Employed the second

1.0 5.0 9.0 13.0 17.0 3.0 7.0 11.0 15.0 19.0 X-AXIS USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:08 12-Mar-95 PROJECT: 60-090 AREA: OFFICE 2-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

3.68 2.27 MAX/MIN= AUE/MIN= AUE=41.2 MAX=66.8 + MIN=18.1 IR <3> = T11272 METALOPTICS ISSO4SSWWSO42EP11, (2) F032/35K, LLF= 0.73

ent White

Land State of the

1.0 5.0 9.0 13.0 17.0 19.0 3.0 x-AXIS

PROJECT: 50-090 AREA: FILE STORAGE GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations 09:37 26-Jan-95 USI's LITE*PRO U2.27E Point-By-Point Numeric Output

+ MIN=0.00 MAX=86.9 AUE=58.9 AUE>MIN=N/A MAX/MIN=N/A

A 486 F7

M3 <7> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

13.0

0.30 0.27 0.50 34.9 45.7 51.6 54.5 56.6 57.8 57.1 55.1 53.1 43.5 43.1

11.0

0.36 0.33 0.50 0.43.2 56.6 64.7 67.0 68.9 70.9 69.7 66.9 65.3 61.0 51.2

9.0

0.37 0.34 0.50 51.6 65.9 74.6 76.1 78.0 80.8 73.3 57.7 74.4 83.5 57.2

7.0

0.32 0.34 0.50 61.7 72.7 79.7 81.5 83.3 85.8 84.4 80.9 79.1 73.5 60.9

5.0

0.00 0.00 42.7 67.2 75.8 81.7 83.4 85.0 86.9 85.6 82.4 80.2 74.3 62.1

3.0

40.6 57.3 63.4 63.8 67.4 73.1 76.7 75.7 80.0 78.4 74.9 73.5 63.5 63.9

1.0

41.5 57.4 63.8 67.4 73.1 76.7 75.7 80.0 78.4 74.9 73.5 63.2 57.9

1.0 5.0 9.0 13.0 17.0 21.0 25.0 27.0 3.0 2.0 23.0 27.0 x-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:12 12-Mar-95 PROJECT: 60-090 AREA: FILE STORAGE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

10.85 % 10.05

AUE,MIN=N/A MAX,MIN=N/A AUE=40.1 MAX=60.3 + MIN=0.00 = 10417 COLUMBIA KL240-PAF-EOCT-SOLID, (2) F032/35K, LLF= 0.66

<2> 8I

was almost

25.0 27.0 21.0 19.0 13.0 17.0 11.0 15.0 x-AXIS 9.0 7.0 9.0 3.0 1.0

6 9 2 C ...

USI's LITE*PRO U2.27E Point-By-Point Numeric Output O9:29 26-Jan-95 PROJECT: 60-090 AREA: OFFICE 3 GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

- MIN=32.9 MAX=49.4 AUE=41.5 AUE>MIN= 1.26 MAX/MIN= 1.

M3 <2> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

SIXE-Y

artigano -

					
	32.9	39.	43.0	39.8	32.9
	37.2	+ 5. 8	MB 49.4	+ 7. 8	37.2
	ო + ფ ო	+ 17. 8	48.8	4 50 8	38.3
	38+	+ 4 + 6	+ 46.8	+ 4 4 6	38.0
	38.3	4 + 17 &	48.8	+ 45.8	+ + 37.2 38.3
	37.2	4 + 12 0	49.4	4 4 0 8	4 37.2
	32.9	დ + თ ო	43.0	30° +	32.9
_	 	C.	٠ ر	3.0	1.0
	(i)	I N	(3)	. ,	

1.0 5.0 9.0 13.0 3.0 7.0 11.0 X-AXIS 海生 精力機工物 的潜伏 一

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:15 12-Mar-95 PROJECT: 60-090 AREA: OFFICE 3-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

1.89 1.40 MAX/MIN= AUE/MIN= AUE=35.2 MAX=47.6 + MIN=25.2 IR <2> = T11272 METALOPTICS ISSO4SSWWS042EP11, (2) F032/35K, LLF= 0.73

5.000 **建筑**

Contract of the Contract of th

1.0 5.0 9.0 13.0 3.0 7.0 11.0 X-AXIS USi's LITE*PRO U2.27E Point-By-Point Numeric Output O9:41 26-Jan-95 PROJECT: 60-090 AREA: KITCHEN GRID: Ceiling Uaines are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 1.33 MAX,MIN= 1.72 AUE=47.4 MAX=61.2 - MIN=35.7

M3 <2> = K8566 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

Y-AXIS

35.7	თ + თ ო	42.8	+42.8	39.9	35,7
4 + 7 4	51.9	5 5 1	55 + 1.1	51.9	+ 75 +
20 + 21	m3 57.9	+ 61.2	+ 61.2	73.9	50 +
+ R + R 4	51.0	55.1	+ 5.	510	+ 0 + 0.
% 30 + √	% % %	+ 2.8	+ 42.8	+ m + m	35.7
				-	
O.	<u>റ</u> ഗ	7.0	<u>ن</u> ت	e e	<u>()</u>
	+ + + + + + 35.7 45.4 50.8 45.4	35.7 45.4 50.8 45.4 + + + + + + + + + + + + + + + + + + +	35.7 45.4 50.8 45.4 + + + + + + + + + + + + + + + + + + +	35.7 45.4 50.8 45.4 39.9 51.9 57.9 51.9 42.8 55.1 61.2 55.1 42.8 55.1 61.2 55.1	35.7 45.4 50.8 45.4 39.9 51.9 57.9 51.9 42.8 55.1 61.2 55.1 42.8 55.1 61.2 55.1 42.8 55.1 61.2 55.1 42.8 55.1 61.2 55.1

A self-decor

0.6 7.0 X-AXIS 0 0 % 0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:17 12-Mar-95 PROJECT: 60-090 AREA: KITCHEN-N GRID: Ceiling 2.5 Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= Computed in accordance with IES recommendations

18 <2> = 10417 COLUMBIA KL240-PAF-EOCT-SOLID, <2> F032/35K, LLF= 0.66

三年。第15万年的15万年。 1

 $\mathcal{L}_{p_{1}}(\gamma_{1}\sqrt{2}) \approx \gamma_{1}+\gamma_{2}$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 09:55 26-Jan-95 PROJECT: 60-090 AREA: HALL/ENTRANCE GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4-10-6

+ MIN=0.00 MAX=75.9 AUE=41.8 AUE/MIN=N/A MAX/MIN=N/A

M3 <3> = K8966 COLUMBIA K440-T, (4) F40CW, LLF= 0.51

Y-AXIS					
17.0	+ 48.4	+ 53.5	+ 55.1	+ 52.2	+ 46.9
15.0				4 5.9	
13.0	1	1 1		M3 + 1.4	
11.0	+ 52.0	+ 58.9	+ 69.3	+ 66.5	+ 59.5
9.0	1			+ 59.6	1
7.0	0.00	0.00	1	54.7	
5.0	0.00	0.00	+ 44.9	M3 + 49.9	+ 48.1
3.0	0.00	0.00	+ 35.8	+ 39.2	+ 38.0
1.0	0.00	+ 0.00	+ 26.2	+ 28.4	+ 28.1
	1.0	3.0	5.0	2.0	9.0

 $X \cap XIS$

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 15:21 12-Mar-95 PROJECT: 60-090 AREA: HALL/ENTRANCE-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=37.8 AUE=21.8 AUE/MIN=N/A MAX/MIN=N/A

apaga.

11,197

- Marie Santa

I8 $\langle 2 \rangle$ = 10417 COLUMBIA KL240-PAF-EOCT-SOLID, (2) F032/35K, LLF= 0.66

CONTOUR LEVELS: A= 50.0 B= 40.0 C= 30.0 D= 20.0 E= 10.0 Y-AXIS 17.0 15.0 18 13.0 11.0 9.0 7.0 18 5.0 3.0 1.0 9.0 5.0 1.0 2.0 3.0

X-AXIS

-14)

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:08 26-Jan-95 ORQJECT: 60-090 AREA: WOMENS TOILET GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.47 2.46 MAX/MIN= AUE/MIN= AUE=5.24 MAX=9.51 + MIN=2.13

2x <2> = B2008A PRESCOLITE 488HF-1, <1> 120ER40, LLF= 0.73 2y <1> = B2008A PRESCOLITE 488HF-1, <1> 60A19/1F, LLF= 0.75

Y-AXIS

				-	-	-	-		+	+
+ m	0	+ 48	5.10	4.47	3.20 4.48 5.10 4.47 4.04 4.50 5.68 6.72 5.86 4.23	4.50	5.68	6.72	5.86	4.23
ന്	, 20 10 10 10 10 10 10 10 10 10 10 10 10 10		6.63 6.63	+ + 65	EXT + + + + + + + + + + + + + + + + + + +	+ 4	7.26	9 10	7 + 23	4.86
	+ 5	+ + + + + + 3.29 4.68 5.29	+ 2.29	3.73	+ + + + + + + + 1 3.73 2.13 4.05 7.09	+ 4.05	+ +	57 9.38	5.38 7.44 4.97	+.97
 1	0.	3.0	ري ص	7.0	0.6	9.0	13.0	15.0	1,7.0	19.0
					X-A	SIX				

15-4-51-25

and the second

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:28 12-Mar-95 PROJECT: 60-090 AREA: WOMENS TOILET-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

5.46 2.68 MAX/MIN= AUE/MIN= AUE=6.48 MAX = 13.2+ MIN=2.42

C4 <2> = B1777A PRESCOLITE CF123526-462, (1) F26DTT/27K, LLF= 0.50 CF <1> = B1756A PRESCOLITE PBX-T894, (2) F13DTT/27K, LLF= 0.63

Y-AXIS

4. TÜ	+ r. s.	3.54 5.28 6.51 5.29 4.87 5.50 7.02 8.93 7.32 5.23	6.51	5.29	+ 4.87	5.50	7.02	8.93	7.32	5.23
2.5	+ °°° + °° + °° + °°° + °°° + °°° + °°° + °°° + °°° + °°° + °°° + °°° + °°° +	+ + 6 3.94 7.46 9.99	96.99	5.70	5.70 3.13 5.44 8.94 13.2 9.91 6.03	+ 4. 4 4.	+ 8.94	13.2	9.91	4 + 9 .03
ن ئ	3.69	3.69 5.68 6.97 4.29 2.42 5.01 7.55	+ 4.97	4.29	+ 7.42	+ 5.01	+ 255	+ + + + + + + + + + + + + + + + + + +	+ 8.73	+ 0 +
	1.0	3.0	0.0	7.0	0.0 N-X	9.0 11.0 X-AXIS	13.0	15.0	17.0	19.0

MAG P.S

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 10:12 26-Jan-95 PROJECT: 60-090 AREA: MENS TOILET GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

2.41 1.66 MAX/MIN= AUE/MIN= AUE=5.93 MAX=8.60 + MIN=3.58

ZX <1> = B2008A PRESCOLITE 488HF-1, (1) 120ER40, LLF= 0.73 ZY <1> = B2008A PRESCOLITE 488HF-1, (1) 60A19/1F, LLF= 0.75

S XH->

...319

0.5 4.5 8.5 2.5 X-AXIS

20 Stage

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 15:30 12-Mar-95 PROJECT: 60-090 AREA: MENS TOILET-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

and the state of

2.93 1.72 MAX/MIN= AUE∠MIN≕ AUE=7.44 MAX=12.7 + MIN=4.34

C4 <1> = B1777A PRESCOLITE CF123526-462, <1) F26DTT/27K, LLF= 0.50 CF <1> = B1756A PRESCOLITE PBX-TB94, <2) F13DTT/27K, LLF= 0.63

Y-AXIS

4.5 8.5 2.5 6.5 X-AXIS

0.2

Bldg 60-630 Summary

	Total	Watts	23	118	1,416	3,510			5,067
nt System	Number	Fixtures	Ψ-	2	24	18			45
Replacement System	Watts/	Fixture	23	69	69	195			
	Fixture	Type	g	F8	H8	NA			Totals
	Total	Watts	384	864	3,510	1,350	75		6,183
em	Number	Fixtures	2	6	18	6	-		39
Present System	Watts/		192	96	195	150	75		
	Fixture	TVD 9	-) PG		AN	XP	OX.		Totals

A Section 1

 $c=\int_{-i\sigma}^{i\sigma} - \sigma(c_{i\sigma})$

127/200

60-630 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-630 Type: Indoor

Luminaire Fixture Schedule / PRESENT

Project name: PBA Lighting Survey - Bldg 60-630

Prepared for: Corps of Engineers
Prepared by: C. Warren

18,000

|Project #6941331 Date: 30-Jan-95 UPD: 0.7W/Sq.Ft

 TYF	E DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
F1	2X4 4L FLUSH STATIC TROFFER LENS125" POLARIZED PATT.12 COLUMBIA 4PS2*-87-244	F40CW STD	000 - 192	2	
J	7"X4' 2L WET LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-WL	F40CW STD	000 - 96	9	
NA	SC = 1.8 GE LIGHTING U1GA15S	LU-150 STD	000 - 195	18	
XP	SC = 3.4 GE LIGHTING H2*10M	150A21/IF	000	\\ 9	
XQ	5"RECESS ROUND DOWNLIGHT, LOWER OPEN- CLEAR ALZAK REFLECTOR PRESCOLITE 1222-262	75A19/SW NA	000	1	

60-630 Schedule

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

一种 澳巴西尔拉口

Luminaire Fixture Schedule Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Type: Indoor Filename: 60-630

Luminaire Fixture Schedule / PROPOSED

Project name: PBA Lighting Survey - Bldg 60-630

Prepared for: Corps of Engineers
Prepared by: C. Warren

right for a

Project #6941331 Date: 13-Mar-95 UPD: 0.6W/Sq.Ft

-	TYPE	DESCRIPTION	LAMP/BALLAST	V/W	QTY	REMARKS
	CQ	8"1L(VERT) RECESS RND.DOWNLITE OPEN - CLR.REFL. W/ BLK.BAFFLE PRESCOLITE CF122518-B462	F18DTT/27K STD	000 - 23	1	
	F8	2X4 2L FLUSH STATIC TROFFER LENS-PRISMATIC ACRYLIC PATT-19 COLUMBIA T84PS2*-84-242-2EOCT	FO32/31K EOCT	000 - 59	2	
	Н8	8"X4' 2L DAMP LOCATION WRAP LENS- PRISMATIC BOTTOM & SIDES COLUMBIA LUN240-DMR	FO32/35K EOCT	000 - 59	24	
	NA	SC = 1.8 GE LIGHTING U1GA15S	LU-150 STD	000 - 195	18	

60-630 Areas

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Area Summary Generated by LitePro V2.27E Provided and supported by USI Lighting, Inc. Filename: 60-630 Type: Indoor

Project Area Summary

Project name: PBA Lighting Survey - Bldg 60-630

Prepared for: Corps of Engineers Prepared by: C. Warren

|Project #6941331 Date: 13-Mar-95

UPD: 0.7W/Sq.Ft

AREA NAME	DIMENSIONS	LUN	MINAIRES	W/SQ.FT	QTY
WAREHOUSE	120x60x12Ft	(18)	Type NA	0.5	1
SHIPPING	41x24x10Ft	(9)	Type XP	1.4	1
SHIPPING-N	41x24x10Ft	(15)	Туре Н8	0.9	1
EAK ROOM	13x16x8Ft	(2)	Type F1	1.8	1
BREAK ROOM-N	13x16x8Ft	(2)	Type F8	0.6	1
WOMENS TOILET	13x16x9Ft	(2)	Type J	0.9	1
WOMENS TOILET-N	13x16x9Ft	(2)	Туре Н8	0.6	1
MENS CHANGE RM	13x18x9Ft	(3)	Type J Type XQ	1.6	1
MENS CHANG RM-N	13x18x9Ft	(1)	Type CQ Type H8	0.9	1
STORAGE	13x6x9Ft	(1)	Туре Ј	1.2	1
STORAGE-N	13x6x9Ft	(1)	Туре Н8	0.8	1
OFFICE	12x11x8Ft	(3)	Туре Ј	2.2	1
OFFICE-N	12x11x8Ft	(3)	Туре Н8	1.3	1

60-630 Calculations

Reynolds, Smith & Hills, Inc. 4651 Salisbury Road Jacksonville, FL 32256 Buildings Engineering

Project Calculation Summary
Generated by LitePro V2.27E
Provided and supported by USI Lighting, Inc.
Filename: 60-630 Type: Indoor

Project Calculation Summary

Project name: PBA Lighting Survey - Bldg 60-630

 $\mathcal{F}_{\mathcal{F}}(\mathcal{H},\mathcal{H},\mathcal{F}_{\mathcal{F}})$

Prepared for: Corps of Engineers

Prepared by: C. Warren

|Project #6941331

Date: 13-Mar-95 UPD: 0.7W/Sq.Ft

AREA NAME	DIMENSIONS	GRID NAME	7A	/E	MAX	MIN
WAREHOUSE	120x60x12Ft	Ceiling	<+>	13.2	24.7	0.0
SHIPPING	41x24x10Ft	Ceiling	<+>	10.9	12.4	9.6
HIPPING-N	41x24x10Ft	Ceiling	<+>	27.3	32.3	18.8
BREAK ROOM	13x16x8Ft	Ceiling	<+>	42.5	77.8	12.5
BREAK ROOM-N	13x16x8Ft	Ceiling	<+>	27.3	51.7	7.3
WOMENS TOILET	13x16x9Ft	Ceiling	<+>	14.4	39.0	0.1
WOMENS TOILET-N	13x16x9Ft	Ceiling	<+>	12.9	34.8	0.1
MENS CHANGE RM	13x18x9Ft	Ceiling	<+>	16.5	24.8	0.0
MENS CHANG RM-N	13x18x9Ft	Ceiling	<+>	14.2	22.1	0.0
STORAGE	13x6x9Ft	Ceiling	<+>	15.4	20.7	10.6
STORAGE-N	- 13x6x9Ft	Ceiling	<+>	13.7	18.5	9.5
OFFICE	-	Ceiling	<+>	34.4	45.3	19.5
OFFICE-N	12x11x8Ft	Ceiling	<+>	30.7	40.4	17.4

13:58 30-Jan-95 are FC, SCALE: 1 IN= 16.0FT, HORZ GRID (U), HORZ CALC, Z= USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-630 AREA: WAREHOUSE GRID: Ceiling Computed in accordance with IES recommendations

MIN=0.00 MAX=24.7 AUE=13.2 AUE.MIN=N/A MAX/MIN=N/A

vA <18> = GE8360 GE LIGHTING UIGA15S, (1) LU-150, LLF= 0.71

Y-AXIS

15.3 20 16.9 18.7 16.7 18.9 17.3 20 17.3 18.8 16.7 18.7 17.1 22.4 16.1 16.3 10.9 0.04 0.03 0.04 4.40 6.68 10.9 16.6 16.1 22.1 16.3 17.0 11.8 8.05 15.0 15.3 15.6 15.3 15.4 15.8 15.6 15.7 15.3 12.2 15.6 15.3 14.6 12.2 6.31 0.02 0.02 0.02 3.29 3.62 6.89 13.1 14.5 14.7 14.7 13.5 8.03 5.60 | 15.5 16.9 20.5 24.0 22.2 24.5 21.6 19.7 21.7 24.5 22.3 24.5 21.6 19.6 21.5 24.3 22.0 23.9 20.8 17.8 19.8 22.6 20.5 22.9 20.3 18.3 20.9 23.0 18.4 14.8 15.3 18.7 23.2 21.2 19.6 21.7 24.6 22.4 24.6 21.7 19.7 21.7 24.5 22.3 24.3 21.2 18.9 20.5 22.9 20.5 22.5 19.9 18.3 20.6 23.7 21.6 23.9 20.4 16.9 15.2 12.2 16.6 21.0 19.2 24.8 15.6 22.4 21.0 22.4 19.6 24.7 19.6 22.3 20.8 21.9 18.8 28.3 17.1 18.3 16.0 18.1 16.8 28.0 18.6 21.7 20.6 21.8 18.4 22.4 15.0 1.5 18.5 1.7 20.7 22.2 19.5 28.6 19.5 22.2 20.9 22.2 19.5 28.6 19.5 22.1 20.7 21.9 19.0 22.2 16.7 18.3 16.2 18.4 16.8 22.3 16.2 20.7 16.3 11.7 M. 14.1 13.4 15.7 19.6 23.4 21.7 23.9 21.0 19.0 21.1 24.0 21.9 24.0 21.1 19.0 21.1 24.0 22.0 24.1 15.6 15.5 15.6 15.2 12.2 15.3 15.6 15.4 15.1 23.3 18.5 14.8 12.0 16.2 21.3 19.7 18.2 20.3 23.0 20.7 23.0 20.7 23.0 20.4 18.5 20.4 23.0 20.7 23.0 20.5 19.2 0.<u>bg 0.09 0.10 0.10 0.11 0.11 0.10 0.09 0.08 0.08 0.08</u> 17.2 15.2 4.54 7.60 13.4 14.7 15.0 15.3 14.9 11.9 15.1 15.5 15.4 15.5 15.2 12.0 14.8 14.3 14.2 0.00 0.06 0.07 0.09 0.10 0.11 0.10 0.09 0.07 0.06 0.06 14.1 13.6 6.53 11.0 16.5 16.0 22.1 16.7 18.3 16.3 18.4 16.8 22.5 16.8 18.4 16.3 18.4 16.8 21.7 0.00 0.07 0.08 0.09 0.12 0.11 0.10 0.09 0.07 0.07 0.28 0.00 0. 14.0 10.0 30.0 6.0 54.0 42.0 34.0 58.0 50.0 46.0

66.0 74.0 82.0 80.0 98.0 106.0 110.0 118.0 70.0 78.0 86.0 94.0 102.0 110.0 118.0 58.0 66) 62.0 X-AXIS 30.0 38.0 46.0 50.0 54.0 22.0 18.0

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:09 30-Jan-95 pROJECT: 60-630 AREA: SHIPPING GRID: Ceiling 2.5 Ualues are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (U), HORZ CALC, Computed in accordance with IES recommendations

"我们的"

+ MIN=9.60 MAX=12.4 AUE=10.9 AUE/MIN= 1.14 MAX/MIN=

XP <9> = GE8323 GE LIGHTING H2*10M, <1> 150A21/IF, LLF = 0.73

SIXH-X

og garan

11.2 10 (F) 0.8 10.8 10.4 10.4 10.8 10.4 10.8 10.4 10.8 10.8 10.8 10.8 10.4 10.4 10.8 10.9 10 (F) 0.9 11.2 10.6 10.2 10.1 10.4 10.5 10.1 10.4 10.2 9.82 9.82 10.2 10.4 10.1 10.1 10.5 10.4 10.1 10.2 10.2 10.6 11.8 11 (A) 15 11.4 11.4 10.9 10.9 11.4 11.4 11.4 11.4 11.4 11.4 10.9 10.9 11.4 11.6 11 (A) 1.8 11.8 11.8 11.6 11.5 11.6 11.4 10.9 10.9 11.4 11.4 11.1 11.1 11.1 11.4 10.9 10.9 11.4 11.6 11.5 11.6 11.8 12.4 12.2 12.1 12.1 11.5 10.8 10.8 11.4 12.0 11.7 11.7 12.0 11.4 10.8 10.8 11.5 12.1 12.1 12.2 12.4 1.2.2 12.2 11.9 11.9 11.3 11.3 10.7 10.7 11.3 11.8 11.5 11.5 11.8 11.3 10.7 10.7 11.3 11.9 11.9 12.0 12.2 10.4 10.2 10.1 10.4 10.0 9.65 9.60 9.89 10.2 9.83 9.83 10.2 9.89 9.60 9.65 10.0 10.4 10.1 10.2 10.4 11.2 10.9 10.8 10.9 10.8 10.4 10.4 10.8 10.4 10.4 10.8 10.4 10.8 10.4 10.8 10.9 10.8 10.9 10.8 10.9 11.2 12.4 12.2 12.1 12.1 11.5 10.8 10.8 11.4 12.0 11.7 11.7 12.0 11.4 10.8 10.8 11.5 12.1 12.1 12.2 12.4 10.4 10.2 10.1 10.4 10.0 9.65 9.60 9.89 10.2 9.83 9.83 10.2 9.89 9.60 9.65 10.0 10.4 10.1 10.2 10.4 17.0 7.0 0.1 15.0 11.0 13.0 23.0 21.0

1.5 5.5 7.5 11.5 15.5 23.5 23.5 27.5 23.5 33.5 35.5 39.5 3.5 3.5 35.5 39.5 x-AXIS

2.5 13:35 13-Mar-95 Values are FC, SCALE: 1 IN= 8.0FT, HORZ GRID (V), HORZ CALC, USI's LITE*PRO U2.27E Point-By-Point Numeric Output PROJECT: 60-630 AREA: SHIPPING-N GRID: Ceiling Computed in accordance with IES recommendations 1.72 1.45 MAX/MIN= AUE/MIN= AUE=27.3 MAX=32.3 MIN=18.8

H8 <15> = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

21.5 24. 4 \$2.0 26.1 26.7 27.7 \$2.7 \$2.7 27.4 28. 4 \$8.2 27.4 27.4 27.4 \$27.5 26.7 26.7 26.1 26. 4 \$2.6 21.5 23.2 26.27.7.9 28.6 29.3 30.71.30.4 30.2 30.4 30.8 30.4 30.8 30.4 30.2 30.4 130.2 29.3 28.6 27.91.76.2 23.2 23.9 27.9 8 30.3 29.7 30.4 31.9 31.3 31.5 32.9 8 2.3 31.5 31.3 31.9 31.4 30.4 29.7 29.7 29.9 23.9 23.9 27.4 29.3 29.7 30.4 31.4 1 1 1 31.3 31.5 32.3 32.3 31.5 31.3 31.9 31.6 30.4 29.7 29.3 27.6 23.9 23.2 26.2 27.9 28.6 29.3 30.2 30.4 30.2 30.4 30.8 30.8 30.8 30.4 30.2 30.4 30.2 29.3 28.6 27.9 26.2 23.2 22.8 25.8 12.5 28.1 28.8 29.4 12.8 29.7 29.7 29.7 30.2 13.7 29.7 29.7 29.8 13.6 28.8 28.1 27.1 12.8 22.8 22.7 26.4 \$7.7 27.9 28.5 29.4 \$9.9 29.3 29.4 30.4 \$0.2 29.4 29.3 29.4 \$8.6 28.5 27.9 27.4 \$6.1 22.7 18.8 20.8 21.9 22,3 22,7 23,4 23.5 23,3 23,4 23,7 23,7 23,4 23,3 23,5 23,4 22,7 22,2 23,3 21,9 20.8 18.8 21.5 24. 9 8.0 26.1 26.7 27. 9 87.9 27.4 28. 9 8.2 27.4 27.4 27.9 27.2 26.7 26.1 26. 9 84.6 21.5 22.8 25.8 27.5 28.1 28.8 29.6 29.8 29.7 29.7 30.2 30.2 28.7 29.7 29.8 29.6 28.8 28.1 27.5 25.8 22.8 18.8 20.8 17.9 22.3 22.7 23.4 73.5 23.3 23.4 23.7 73.7 23.4 23.3 23.5 73.5 22.7 22.3 21.9 20.8 18.8 22.7. 26. 1 27. 2 27. 9 28. 5 29. 4 29. 3 29. 4 30. 2 30. 2 29. 4 29. 3 29. 9 29. 5 27. 9 27. 3 27. 3 29. 4 29. 5 29. 5 29. 9 28. 5 27. 9 27. 3 29. 9 20. 2 20. 4 29. 3 29. 9 29. 9 29. 9 20. 9 11.0 ល់ 0.1 0 0 15.0 13.0 တ 7.0 Y-FX:S 19.0 17.0 21.0

 $\ell = \frac{1}{L} \mathcal{P}(\mathcal{G}^{L})$

1.5 5.5 7.5 11.5 15.5 23.5 25.5 29.5 31.5 35.5 39.5 x-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:17 30-Jan-95 PROJECT: 60-630 AREA: BREAK ROOM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=12.5 MAX=77.8 AUE=42.5 AUE/MIN= 3.41 MAX/MIN= 6.24

F1 $\langle 2 \rangle$ = 9753 COLUMBIA 4PS2*-87-244, (4) F40CW, LLF= 0.68

· 不然的情况。

Y-AXIS

arrablement of only

15.0	+ 12.5 1	+ 7 . 9	+ 22 . 9	+ 22.9	+ 17.9	+ 12.5
13.0	+ 19.1 3	+ 32.2	+ 44.0	+ 44.0	* 32.2	+ 19.1
11.0	+ 26.0 ²	+ +7.1	67.1 _F	67.1	+ 47.1	+ 26.0
9.0	+ 29.8 5	+ 54.1	+ 77.2	77.2	+ 54.1	⁺ 29.8
7.0	+ 30.8 ⁵	+ 55.4	+ 77.8	+ 77.8	+ 55.4	30.8
5.0	+ 30.1	54.6	77.8 _F	77.8	+ 54.6	30.1
3.0	+ 26.8	+ 48.2	68.5	68.5	+ 48.2	+ 26.8
1.0	+ 20.3	+ 33.6	+ 46.6	+ 46.6	+ 33.6	20.3
	1.5	3.5	5.5	7.5	9.5	11.5

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:38 13-Mar-95 PROJECT: 60-630 AREA: BREAK ROOM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

THE WAY SHE Y

+ MIN=7.34 MAX=51.7 AUE=27.3 AUE/MIN= 3.72 MAX/MIN= 7.05

F8 $\langle 2 \rangle$ = 9868 COLUMBIA T84PS2*-84-242-2EOCT, (2) F032/31K, LLF= 0.66

Y-AXIS 15.0 15.5 11.4 7.34 15.5 11.4 13.0 28.2 28.2 21.0 21.0 12.2 11.0 9.0 50.2 50.2 34.9 19.1 7.0 51.7 51.7 20.5 37.5 20.5 5.0 35.2 3.0 29.8 41.9 41.9 29.8 1.0 21.8 29.7 29.7

1.5 5.5 9.5 3.5 7.5 11.5 X-AXIC USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:26 30-Jan-95 PROJECT: 60-630 AREA: WOMENS TOILET GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

一种能量是

+ MIN=0.12 MAX=39.0 AUE=14.4 AUE/MIN= 114.93 MAX/MIN= 310.31

J $\langle 2 \rangle$ = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

一个 海海南野沙

Y-AXIS						
15.0	35.6	J + 39.0	+ 27.9	+ 16.7	10.3	+ 7.36
13.0	+ 26.7	+ 29.3	+ 24.4	+ 17.3	12.0	+ 8.59
11.0	+ 18.5	+ 21.6	+ 21.8	+ 18.8	+ 14.1	+ 9.78
9.0	+ 14.4	+ 18.7	21.6	+ 20.4 J —>	+ 15.5	10.5
7.0				19.2		
5.0	9.80	13.1	+ 15.3	+ 15.0	+ 12.2	+ 8.85
3.0	+ 0.12	0.1	+ 10.4	+ 10.4	+ 9.05	+ 7.22
1.0	+ 0.13	+ 0.17	+ 7.54	+ 7.65	+ 6.93	+ 5.99
	1.5		5.5		9.5	

1.5 5.5 9.5 3.5 7.5 11.5 X-AXIS

The state of the state of

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:40 13-Mar-95 PROJECT: 60-630 AREA: WOMENS TOILET-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

A STATE OF STREET

AUE/MIN= 114.93 MAX/MIN= 310.31 AUE=12.9 MAX=34.8 + MIN=0.11

H8 <2> = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

Y-AXIS	
15.0	+ + + + + + + + + + + + + + + + + + +
13.0	+ + + + + + + + 23.8 26.1 21.7 15.5 10.7 7.66
11.0	+ + + + + + + 16.5 19.2 19.4 16.8 12.6 8.72
9.0	+ + + + + + + + + + + + + + + + + + +
7.0	10.7 14.5 17.6 17.1 13.2 9.06
5.0	8.74 11.7 13.6 13.4 10.9 7.89
3.0	0.11 0.15 9.25 9.32 8.07 6.44
1.0	+ + + + + + + 0.12 0.15 6.72 6.83 6.18 5.35
	1.5 5.5 9.5 3.5 7.5 11.5

X-AXIS

USI's LITE*PRO V2.27E Point-By-Point Numeric Output 14:36 30-Jan-95 PROJECT: 60-630 AREA: MENS CHANGE RM GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=0.00 MAX=24.8 AUE=16.5 AUE/MIN=N/A MAX/MIN=N/A

CONTROL OF THE

J < 3 > = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68 XQ < 1 > = B1999A PRESCOLITE 1222-262, (1) 75A19/SW, LLF= 0.82

Y-AXIS 17.0 18.2 17.4 15.0 20.5 21.0 22.3 20.3 23.0 13.0 24.8 23.8 21.7 11.0 22.5 20.5 18.6 19.5 9.0 0.00 0.00 20.6 0.00 7.0 5.63 7.19 6.39 21.9 18.9 21.5 5.0 10.63 8.82 20.2 7.63 + 3.0 19.1 7.11 1.0 5.83 18.2 4.43 14.6 9.5 5.5 1.5

1.5 5.5 9.5 3.5 7.5 11.5 X-AXIS USI's LITE*PRO V2.27E Point-By-Point Numeric Output 13:45 13-Mar-95 PROJECT: 60-630 AREA: MENS CHANG RM-N GRID: Ceiling Values are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

4.50

+ MIN=0.00 MAX=22.1 AUE=14.2 AUE/MIN=N/A MAX/MIN=N/A

10 m & 10 m

CQ (1) = B2125A PRESCOLITE CF122518-B462, (1) F18DTT/27K, LLF= 0.50 H8 (3) = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

Y-AXIS

17.0	+ + + 15.0 16.5 16.3	+ + + 15.5 15.5 15.9
15.0		+ + + + + 18.3 18.7 19.7
13.0	19.5 22.1 21.3	19.3 19.3 20.4
11.0	+ + + 18.9 20.9 20.1	+ + + 18.3 16.6 17.4
9.0	18.0 19.1 18.3	0.00 0.00 0.00
7.0	19.2 19.5 16.8	2.31 3.44 2.77
5.0	+ + + + 20.6 20.9 18.0	3.90 10(3) 6.22
3.0	20.0 20.1 17.0	3.31 7.66 4.84
1.0	+ + + 16.6 16.3 13.0	1.76 2.41 2.12

1.5 5.5 9.5 3.5 7.5 11.5 X-AXIS A CONTRACTOR OF THE PROPERTY O

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:47 30-Jan-95 PROJECT: 60-630 AREA: STORAGE GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=10.6 MAX=20.7 AUE=15.4 AUE\MIN= 1.45 MAX\MIN=

1.95

j <1> = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

V-AXIS

and Market Market

1.5 5.5 9.5 11. X-AXIS USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:47 13-Mar-95 PROJECT: 60-630 AREA: STORAGE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

+ MIN=9.47 MAX=18.5 AUE=13.7 AUE MIN= 1.45 MAX-MIN=

1.95

wasterdiza.

H8 <1> = K9801 COLUMBIA LUN240-DMR, <2> F032/35K, LLF= 0.66

Y-AXIS

Ç 1,¢Ω,

1.5 5.5 9.5 11.5 X-AXIS

USI's LITE*PRO U2.27E Point-By-Point Numeric Output 14:52 30-Jan-95 pROJECT: 60-630 AREA: OFFICE GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRID (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE=34.4 AUE.MIN= 1.77 MAX.MIN= 2.33 MAX=45.3 + MIN=19.5

j <3> = K9801X COLUMBIA LUN240-WL, (2) F40CW, LLF= 0.68

The State of the S

SIX6-x

# % H	32.5	29.1	23.7	+ Qi - Ci
38.1	+ 1.5	38.5	32.3	+ 26.2
+ 40.6	45.2	+ 4 8 8	40.2	32.6 26.2
+ 40.6	45.3	+ 5.0	40.3	32.8
+ 88	41.6	38.7	32.7	+ 26.4
+ 200	32.5	29.2	23.9	+ 0,
ന	7.5	رى ما	ო რ	 D

a straight of

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS USI's LITE*PRO U2.27E Point-By-Point Numeric Output 13:49 13-Mar-95 PROJECT: 60-630 AREA: OFFICE-N GRID: Ceiling Ualues are FC, SCALE: 1 IN= 4.0FT, HORZ GRIO (U), HORZ CALC, Z= 2.5 Computed in accordance with IES recommendations

AUE,MIN= 1.77 MAX,MIN= AUE=30.7 MAX=40.4 + MIN=17.4

H8 <3> = K9801 COLUMBIA LUN240-DMR, (2) F032/35K, LLF= 0.66

Y-AXIS

 $(X_{ij})_{i=1}^{m}(X_{ij})$

+ + + + + + + + + + + + + + + + + + +
28.9

and a tiple than a

1.0 5.0 9.0 3.0 7.0 11.0 X-AXIS $e^{i}j_{n}^{-1}(\mathbf{u})$

j