Lecture 8:

Decision Trees and Inductive Learning

11 February 2020

- Look ahead *d* moves
- Compute h of all leaves
- Inductively compute values for internal nodes from values of children
 - Max Step (agent's turn): Set values to be max value of children
 - Min Step (opponent's turn): Set value to min value of children
- Select child of root that has highest value
 - This is the action the agent should make

- Expand noes in depth first ordering
- Expand action c₁ and get 2
- What can you say about about state C and action a₂?
 - At state C opponent will be able to get to a state with a value ≤ 2
 - Already know that a₁ gives you a value of 3
 - Never want to take action a₂
- Don't even need to consider other children of C

- Nodes are states
 - At each state you need to make a decision specific to that state
 - Edge for each choice
 - Edge leads to state obtained by selecting choice
- Effectively, actions are choices
 - Different from other examples because actions are different for each state
- Example navigating a road map
 - At intersection of Main and Oak
 - Turn right on Oak
 - Turn Left on Oak
 - Stay on Main Street
 - Options available different for different intersections

Building Decision Trees: Example

- Problem
 - Given a list of choices construct a decision tree
 - Given a list of restaurants
 - Construct a decision tree
 - Decide what type of restaurant to go to

	Туре	Price	Crowded	Time
McDonald's	Fast Food	\$	Yes	< 10 min
Burger King	Fast Food	\$	Yes	< 10 min
Chipotle	Mexican	\$\$	Yes	< 10 min
Jennie's	Diner	\$\$\$	Yes	< 10 min
Fred's Fried Fish	Seafood	\$	No	< 10 min
Captain John's	Seafood	\$\$\$	No	20 min
Henri's	French	\$\$\$	No	30 min
Pinocchio's	Italian	\$\$	Yes	20 min
Taste of Italy	Italian	\$\$	No	20 min

What is a good attribute?

- We want to grow a simple tree
 - → a good attribute prefers attributes that split the data so that each successor node is as *pure* as posssible
 - i.e., the distribution of examples in each node is so that it mostly contains examples of a single class
- In other words:
 - We want a measure that prefers attributes that have a high degree of "order":
 - Maximum order: All examples are of the same class
 - Minimum order: All classes are equally likely
 - → Entropy is a measure for (un-)orderedness
 - Another interpretation:
 - Entropy is the amount of information that is contained
 - all examples of the same class → no information

Entropy for Binary Classification

- S is a set of examples
- p_⊕ is the proportion of examples in class ⊕
- p_⊕ = 1 − p_⊕ is the proportion of examples in class ⊕

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

Entropy Computation Example

• Outlook = sunny: 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Note: this is normally undefined. Here: = 0

Outlook = rainy: 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5} \log \left(\frac{3}{5} \right) - \frac{2}{5} \log \left(\frac{2}{5} \right) = 0.971$$

For a complex (non-binary) set Entropy is given by the following

$$\mathsf{E}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

Problem:

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Solution:

- Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

• Example:

Average entropy for attribute *Outlook*:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S

Information Gain for Attribute A

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

- The attribute that maximizes the difference is selected
 - i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A

- Greedy approach
 - Recursively select trait that maximizes information gain.

Build_Decision_Tree(S, Attributes)

- If S is monotone (all same type) or Attributes = {}
 - return
- //Find best attribute
- $-IG_{hest}=-1$
- for all attributes a
 - S' = set of subsets from dividing S by a
 - if $IG(S') > IG_{best}$
 - $IG_{hest} = IG(S)$
 - a_{hest} = a
- S' = set of subsets from dividing S by a
- For all S' in
 - Build_Decision_Tree(S', Attributes \ a_{best})

Building Decision Trees: Example

Recursively subdivide using attribute that maximizes information gain

$$E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

$$\mathsf{E}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

Intuitively, which division looks the best?

	Type	Price	Crowded	Time
McDonald's	Fast Food	\$	Yes	< 10 min
Burger King	Fast Food	\$	Yes	< 10 min
Chipotle	Mexican	\$\$	Yes	< 10 min
Jennie's	Diner	\$\$\$	Yes	< 10 min
Fred's Fried Fish	Seafood	\$	No	< 10 min
Captain John's	Seafood	\$\$\$	No	20 min
Henri's	French	\$\$\$	No	30 min
Pinocchio's	Italian	\$\$	Yes	20 min
Taste of Italy	Italian	\$\$	No	20 min

Building Decision Trees: Example

$$E(S) - \sum_{i} \frac{\left|S_{i}\right|}{\left|S\right|} \cdot E(S_{i})$$

where

$$\mathsf{E}(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

After divide by price

	Туре	Crowded	Time
McDonald's	Fast Food	Yes	< 10 min
Burger King	Fast Food	Yes	< 10 min
Fred's Fried Fish	Seafood	No	< 10 min
Chipotle	Mexican	Yes	< 10 min
Pinocchio's	Italian	Yes	20 min
Taste of Italy	Italian	No	20 min
Jennie's	Diner	Yes	< 10 min
Captain John's	Seafood	No	20 min
Henri's	French	No	30 min

Decision Making Example

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

Candidate Decision Tree

- also explains all of the training data
- will it generalize well to new data?

Which attribute should go first?

$$Gain (S, Humidity)$$
 $Gain (S, Wind)$
= .940 - (7/14).985 - (7/14).592 = .940 - (8/14).811 - (6/14)1.0 = .048
 $Gain(S, Outlook) = 0.246$ $Gain(S, Temperature) = 0.029$

$$Gain (S, Humidity)$$
 $Gain (S, Wind)$
= .940 - (7/14).985 - (7/14).592 = .940 - (8/14).811 - (6/14)1.0 = .048
 $Gain(S, Outlook) = 0.246$ $Gain(S, Temperature) = 0.029$

$$Gain (S, Humidity)$$
 $Gain (S, Wind)$
= .940 - (7/14).985 - (7/14).592 = .940 - (8/14).811 - (6/14)1.0 = .048
 $Gain(S, Outlook) = 0.246$ $Gain(S, Temperature) = 0.029$

Decision Tree

- Entropy can be easily generalized for n > 2 classes
 - p_i is the proportion of examples in S that belong to the *i*-th class

$$E(S) = -p_1 \log p_1 - p_2 \log p_2 \dots - p_n \log p_n = -\sum_{i=1}^{n} p_i \log p_i$$