Chapter 2 Numerical Differentiation

- Forward/Backward Difference
- Central Difference
- Richardson Extrapolation

• Definition

If the following limit exists

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \equiv f'(x) , \qquad (1)$$

then we call it the derivative of function f(x).

How to calculate f'(x) numerically with finite h?

• Naive Formula

$$D_h f(x) \equiv \frac{f(x+h) - f(x)}{h} ,$$

with small h.

Use Taylor expansion

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \cdots , \qquad (2)$$

$$f'(x) - D_h f(x) = -\frac{h}{2} (f''(x) + \cdots) = -\frac{h}{2} f''(c)$$
 (3)

So the error is proportional to h.

This is also called forward difference approximation.

By symmetry, we have $backward\ difference$ approximation

$$D_h f(x) \equiv \frac{f(x-h) - f(x)}{h} . \tag{4}$$

• Central Difference Formula

By Taylor expansion

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{iv}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{iv}(x) - \cdots$$
(6)

$$f(x+h) - f(x-h) = 2hf'(x) + 2\frac{h^3}{3!}f'''(x) + \cdots (7)$$

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2) . (8)$$

As a general rule, symmetric expressions are more accurate than nonsymmetric ones.

Similarly, we obtain

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} + O(h^2) . (9)$$

However,

$$f''(x) = \frac{f(x) - 2f(x+h) + f(x+2h)}{h^2} + O(h) . (10)$$

• Richardson Extrapolation

Again, let's write

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6}f'''(x) + \dots (11)$$

 $h \rightarrow 2h$

Do $4 \times \text{Eq.}$ (??) - Eq. (??), we get

$$f'(x) = \frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h},$$

with error

$$E(h) = \frac{h^4}{30} f^v(x) + \cdots$$

Similarly,

$$f''(x) = \frac{1}{12h^2} (-f(x-2h) + 16f(x-h) - 30f(x) + 16f(x+h) - f(x+2h)) + O(h^4).$$

:.

These expressions can become cumbersome!

Let $D_1(h)$ be the approximation to the derivative obtained from the 3-point central difference formula with step size h. Because the error is the order of h^2 , $D_1(2h)$ should have about 4 times the error of $D_1(h)$. Thus

$$-O(h^2) = \frac{D_1(2h) - D_1(h)}{2^2 - 1} . (13)$$

Construct a better approximation by subtracting $-O(h^2)$ from $D_1(h)$:

$$D_2(h) = D_1(h) - \frac{D_1(2h) - D_1(h)}{2^2 - 1}$$

$$= \frac{4D_1(h) - D_1(2h)}{2^2 - 1}$$
(14)

Similarly, $D_2(h)$ contains error of h^4 so $D_2(2h)$ contains 2^4 times as much error as $D_2(h)$, and we have

$$D_3(h) = D_2(h) - \frac{D_2(2h) - D_2(h)}{2^4 - 1}$$

$$= \frac{16D_2(h) - D_2(2h)}{2^4 - 1}$$
(15)

Continue this processes: $(f'(x) = \lim_{i \to \infty} D_i(h))$

$$D_{i+1}(h) = D_i(h) - \frac{D_i(2h) - D_i(h)}{2^{2i} - 1}$$

$$= \frac{2^{2i}D_i(h) - D_i(2h)}{2^{2i} - 1}$$
(16)

Example 1. f'(x) for $f(x) = \cos(x)$ at $x = \pi/6$. (Exact answer is $f'(\pi/6) = 0.5$)

h	$D_h f$	Error	Ratio	
0.1	-0.54243	0.04243		
0.05	-0.52144	0.02144	1.98	
0.025	-0.51077	0.01077	1.99	(forward)
0.0125	-0.50540	0.00540	1.99	
0.00625	-0.50270	0.00270	2.00	
0.003125	-0.50135	0.00135	2.00	

0.1	-0.49916708	0.0008329		•
0.05	-0.49979169	0.0002083	4.00	
0.025	-0.49994792	0.0000521	4.00	$(\mathit{central})$
0.0125	-0.49998698	0.0000130	4.00	
0.00625	-0.49999674	0.0000033	4.00	

Example 2. f''(x) for $f(x) = \cos(x)$ at $x = \pi/6$. (Exact answer is $f''(\pi/6) = -0.86602540$)

h	$D_h^{(2)}f$	Error	Ratio	
0.5	-0.84813289	-1.789E-2		•
0.25	-0.86152424	-4.501E-3	3.97	(central)
0.125	-0.86489835	-1.127E-3	3.99	(centrut)
0.0625	-0.86574353	-2.819E-4	4.00	
0.03125	-0.86595493	-7.048E-5	4.00	

Example 3. f'(x) for $f(x) = xe^x$ at x = 2. (Exact answer is $f'(2) = 3e^2 = 22.16176$ 82968.

h	D_1	D_2	D_3	D_4
0.4	23.16346 42931			_
0.2	$22.41416\ 06570$	$22.16439\ 27783$		
0.1	22.22878 68803	$22.16699\ 56214$	22.1671691443	
0.05	$22.18256\ 48578$	$22.16715 \ 75170$	22.16716 83100	$22.16716 \ 82968$

Example 2'. f''(x) for $f(x) = \cos(x)$ at $x = \pi/6$. (Exact answer is $f''(\pi/6) = -0.86602540$)

h	$D_h^{(2)}f$	Error	
0.5000000	-0.8481328	0.0178925	
0.2500000	-0.8615236	0.0045018	
0.1250000	-0.8648949	0.0011305	
0.0625000	-0.8657379	0.0002875	$(\mathit{central})$
0.0312500	-0.8659058	0.0001196	
0.0156250	-0.8659668	0.0000586	
0.0078125	-0.8662109	-0.0001855	
0.0039062	-0.8671875	-0.0011621	

• Effects of Error in Function Values

Recall

$$f''(x_1) = \frac{f(x_2) - 2f(x_1) + f(x_0)}{h^2} ,$$

for $x_2 = x_1 + h$ and $x_0 = x_1 - h$. There are errors in evaluating function values,

$$\epsilon_i = f(x_i) - \overline{f_i} , \quad i = 0, 1, 2 .$$

Thus (see Eq. (??))

$$f''(x_1) - \overline{f''(x_1)} = -\frac{h^2}{12}f^{(4)}(x_1) + \frac{\epsilon_2 - 2\epsilon_1 + \epsilon_0}{h^2}$$
.

What is the error bound and maximum steplength h?

Chapter 2 Review

Numerical Differentiation Could be Tricky!

- Forward/Backward/Central Difference
- Richardson Extrapolation
- Errors!

See example programs in the book.

• Partial Differentiation

E&M: Laplace's equation.

QM: Schödinger equation.