3. Кубический сплайн

Пусть функция f(x) определена и дважды непрерывно-дифференцируема на [a,b]. Введем сетку

$$\Delta: a = x_0 < x_1 < \ldots < x_N = b$$

и вычислим значения функции f(x) в узлах сетки $\Delta : f(x_j), j = \overline{0, N}$.

Определение. Функция s(x), $x \in [a,b]$ называется кубическим сплайном на сетке Δ , если

- **1)** s(x) многочлен третьей степени на каждой ячейке $\Delta_j = [x_{j-1}, x_j],$ $j = \overline{1, N};$
- **2)** s(x) дважеды непрерывно-дифференцируема на [a,b];
- **3)** $s(x_j) = f(x_j), j = \overline{0, N}.$

В данном случае узлы сплайна совпадают с узлами интерполяции.

Число параметров: 4N, общее число условий: 4N-2. Необходимо дополнительно задать два краевых условия аналогично параболическому случаю.

§6. Наилучшее приближение функций в классе полиномов

1. Наилучшее равномерное приближение (чебышевская аппроксимация)

Пусть функция $y = f(x), x \in [a, b]$ задана таблицей своих значений

$$y_i = f(x_i), \quad i = \overline{0, N} \tag{1}$$

в точках (узлах) x_0, x_1, \ldots, x_N , упорядоченных по возрастанию

$$a \le x_0 < x_1 < \ldots < x_N \le b.$$

Проведем аппроксимацию функции f(x) по таблице (1) в классе алгебраических полиномов $P_n(x,\alpha)$ степени не выше $n\ (n\leq N)$ с набором коэффициентов $\alpha=(a_0,a_1,\ldots,a_n)$

$$P_n(x,\alpha) = a_0 + a_1 x + \ldots + a_n x^n.$$

В качестве критерия аппроксимации выберем величину максимального от-

$$\varphi_n(\alpha) = \max_{0 \le i \le N} |y_i - P_n(x_i, \alpha)|.$$

Положим

$$\rho_n = \inf_{\{\alpha\}} \varphi_n(\alpha)$$

(точная нижняя грань по всем наборам коэффициентов).

Задача наилучшего приближения функции f(x) по таблице (1) (задача чебышевской аппроксимации) состоит в построении многочлена $P_n(x,\alpha^*)$, для которого

$$\varphi_n(\alpha^*) = \rho_n.$$

При этом $P_n(x, \alpha^*)$ – полином наилучшего приближения для функции f(x) по таблице (1).

Решение задачи наилучшего приближения существенно зависит от соотношения между n и N (при общем условии $n \leq N$).

Если n = N, то $P_n(x, \alpha^*)$ есть, очевидно, интерполяционный полином функции f(x) по таблице (1), удовлетворяющий условиям

$$P_n(x_i, \alpha^*) = y_i, \quad i = \overline{0, n}.$$

В этом случае $\rho_n = 0$, и задача о наилучшем приближении переходит в обыкновенную задачу интерполирования функции f(x) по таблице (1).

При n=N-1 задача о наилучшем приближении называется задачей чебышевской интерполяции. Сформулируем основной результат для этого случая.

Теорема 1. В случае n = N - 1 полином наилучшего приближения существует и является единственным. Для того, чтобы полином $P_n(x,\alpha)$ был полиномом наилучшего приближения необходимо и достаточно, чтобы для некоторого числа h выполнялись соотношения

$$y_i - P_n(x_i, \alpha) = (-1)^i h, \quad i = \overline{0, n+1}.$$
 (2)

На основании этой теоремы задача чебышевской интерполяции эквивалентна решению системы линейных алгебраических уравнений относительно неизвестных h, a_0, \ldots, a_n

$$h + a_0 + a_1 x_0 + \ldots + a_n x_0^n = y_0,$$

$$-h + a_0 + a_1 x_1 + \ldots + a_n x_1^n = y_1,$$

$$\ldots \ldots \ldots$$
(2')

$$(-1)^{n+1}h + a_0 + a_1x_{n+1} + \ldots + a_nx_{n+1}^n = y_{n+1}.$$

При этом $\rho_n = |h|$.

Рассмотрим общий случай, когда n < N-1. Справедливо следующее утверждение.

Теорема 2. В случае n < N-1 полином наилучшего приближения существует и является единственным. Для того, чтобы полином $P_n(x,\alpha)$ решал задачу о наилучшем приближении необходимо и достаточно, чтобы он осуществлял чебышевскую интерполяцию на некоторой совокупности из (n+2) узлов $x_{i_0} < x_{i_1} < \ldots < x_{i_{n+1}}$ исходного набора (x_0,x_1,\ldots,x_N) .

Итак, общая задача о наилучшем приближении сводится к последовательности задач чебышевской интерполяции для всевозможных наборов $\{x_{i_0}, \ldots, x_{i_{n+1}}\}.$

Представим непрерывный вариант задачи о наилучшем приближении. Пусть f(x) – непрерывная функция, заданная на [a,b]. Проведем её аппроксимацию в классе алгебраических многочленов $P_n(x,\alpha)$ по критерию

$$\varphi_n(\alpha) = \max_{a \le x \le b} |f(x) - P_n(x, \alpha)|.$$

Положим $\rho_n = \inf_{\{\alpha\}} \varphi_n(\alpha)$.

Задача наилучшего равномерного приближения функции f(x) на [a,b] состоит в построении многочлена $P_n(x,\alpha^*)$, для которого $\varphi_n(\alpha^*) = \rho_n$. При этом $P_n(x,\alpha^*)$ – полином наилучшего равномерного приближения для функции f(x) на [a,b].

Решение задачи дается следующим утверждением.

Теорема 3. (П.Л. Чебышев) Полином наилучшего равномерного приближения для функции f(x) на [a,b] существует и является единственным. Для того, чтобы полином $P_n(x,\alpha)$ был полиномом наилучшего равномерного приближения необходимо и достаточно, чтобы он осуществлял чебышевскую интерполяцию на некотором наборе из (n+2) точек $x_0, x_1, \ldots, x_{n+1}$ отрезка [a,b].

Точки $x_0, x_1, \ldots, x_{n+1}$, удовлетворяющие условиям теоремы, называют точками чебышевского альтернанса.

2. Наилучшее среднеквадратичное приближение (метод наименьших квадратов)

Пусть для функции f(x), $x \in [a,b]$ вычислены её значения $f(x_i)$, $i = \overline{0,N}$ в точках x_0,\ldots,x_N отрезка [a,b]. В рамках этой информации поставим задачу аппроксимации функции f(x), $x \in [a,b]$ в классе алгебраических полиномов $P_n(x,\alpha)$ степени не выше n $(n \le N)$ по критерию среднеквадратичного отклонения

$$\varphi_n(\alpha) = \sum_{i=0}^{N} [f(x_i) - P_n(x_i, \alpha)]^2.$$

Задача наилучшего среднеквадратичного приближения состоит в отыскании набора коэффициентов $\alpha^* = (a_0^*, \dots, a_n^*)$, который минимизирует функцию $\varphi_n(\alpha)$

$$\varphi_n(\alpha^*) = \min_{\{\alpha\}} \varphi_n(\alpha).$$

Соответствующий многочлен $P_n(x, \alpha^*)$ называют многочленом наилучшего среднеквадратичного приближения по таблице значений. Такой способ аппроксимации называют методом наименьших квадратов.

Заметим, что при $n = N P_n(x, \alpha^*)$ есть интерполяционный полином для функции f(x) по заданной таблице, причем $\varphi_n(\alpha^*) = 0$.

Теорема 4. При n < N полином наилучшего среднеквадратичного приближения существует и является единственным. Для того, чтобы полином $P_n(x,\alpha)$ решал задачу о наилучшем среднеквадратичном приближении необходимо и достаточно, чтобы выполнялись соотношения

$$\sum_{i=0}^{N} [f(x_i) - P_n(x_i, \alpha)] x_i^k = 0, \quad k = \overline{0, n}.$$
 (3)

Таким образом, поставленная задача эквивалентна решению системы линейных алгебраических уравнений (3) относительно коэффициентов a_0 , ..., a_n искомого многочлена.

Заметим, что применительно к функции $\varphi_n(\alpha)$ соотношения (3) имеют смысл условий стационарности

$$\frac{1}{2} \frac{\partial \varphi_n(\alpha)}{\partial a_k} = 0, \quad k = \overline{0, n}.$$

Сохраняя терминологию, укажем набор соотношений, характеризующих непрерывную задачу о наилучшем среднеквадратичном приближении:

$$f(x), x \in [a, b]$$

– аппроксимируемая функция;

$$P_n(x,\alpha) = a_0 + a_1 x + \ldots + a_n x^n$$

аппроксимирующий многочлен;

$$\varphi_n(\alpha) = \int_a^b [f(x) - P_n(x, \alpha)]^2 dx$$

- критерий аппроксимации;

$$\varphi_n(\alpha^*) = \min_{\{\alpha\}} \varphi_n(\alpha)$$

- задача о наилучшем приближении;

$$\int_{a}^{b} [f(x) - P_n(x, \alpha)] x^k dx = 0, \quad k = \overline{0, n}$$

– необходимые и достаточные условия минимума.