심추신경망

- 심층 신경망(DNN: Deep Neural Networks) = MLP + 은닉층 개수를 증가
- 은닉층을 하나만 사용하는 것이 아니고 여러 개를 사용
- 컴퓨터 시각, 음성 인식, 자연어 처리, 소셜 네트워크 필터링, 기계 번역 등에 적용되어서 인간 전문가에 필적하는 결과를 얻고 있다.

MLP의 문제점 해결

- 은닉층이 많아지면 출력층에서 계산된 그래디언트가 역전파되다가 값이 점점
 점 작아져서 없어지는 문제점 -> 해결
- 훈련 데이터가 충분하지 못하면, 과잉 적합(over fitting)이 될 가능성도 높 아진다 -> 해결
- 2012년, AlexNet이 다른 머신러닝 방법들을 큰 차이로 물리치고 ImageNet 경진대회에서 우승

- DNN의 학습 속도는 상당히 느리고 계산 집약적이기 때문에 학습에 시간과 자원이 많이 소모.
- 최근 GPU(Graphic Processor) 기술이 엄청나게 발전하면서 GPU가 제공하는 데이터 처리 기능을 딥러닝에 사용

CPU와 GPU의 성능비교

- 한 개의 은닉층으로는 충분한 특징을 추출할 수 없다.
- DNN에서는 여러 개의 은닉층 중에서 앞단은 경계선(에지)과 같은 저급 특징들을 추출하고 뒷단은 코너와 같은 고급 특징들을 추출한다.

MLP vs DNN

MLP에서는 인간이 영상의 특징을 추출. 그러나 DNN에서는 학습으로 수행.

그래디언트 소실 문제

• 심층 신경망에서 그래디언트가 전달되다가 점점 0에 가까워지는 현상

그래디언트 소실 문제

- 원인은 시그모이드 활성화 함수
- 시그모이드 함수의 특성상, 아주 큰 양수나 음수가 들어오면 출력이 포화되어서 기울기가 거의 0이 된다. 그래디언트가 너무 작아지면 학습이 효과적으로 수행되지 못한다. 즉 가중치와 바이어스 값들이 업데이트 되지 못한다.

그림 8-5 시그모이드 함수와 그래디언트 소실

새로운 활성화 함수

- ReLU 함수 사용
- 장점:계산이 간단. 빠르게 계산. 그래디언트 소실문제가 완화된다.

$$f(x) = \begin{cases} x & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

그림 8-7 ReLU 함수

https://playground.tensorflow.org

손실 함수 선택 문제

• 회귀 문제 - 평균 제곱 오차(Mean Squared Error: MSE) 사용

$$E = \frac{1}{m} \sum (y_i - \hat{y}_i)^2$$

• 분류 문제 - 교차 엔트로피 함수 사용 - 뒤에서 소개

소프트맥스(softmax) 활성화 함수

전체 값을 합하면 1.0이 되는 확률값을 사용하는 함수

교차 엔트로피 손실 함수

- 2개의 확률 분포 p, q 간의 거리를 측정한 것(p는 목표 출력, q는 실제 출력)
- 목표 출력의 확률 분포는 원-핫 인코딩(one-hot encoding)을 사용

$$H(p,q) = -\sum_{x} p(x) \log_{n} q(x)$$

실제 출력이 얼마나 목표값에 가까운지를 알 수 있다.

$$H(p,q) = -\sum_{x} p(x) \log_{n} q(x)$$

$$= -(1.0 * \log 0.7 + 0.0 * \log 0.2 + 0.0 * \log 0.1)$$

$$= 0.154901$$

완벽하게 일치한다면

목표 출력과 실제 출력이 완벽하게 일치한다면 교차 엔트로피는 0

그림 8-9 교차 엔트로피 함수

$$H(p,q) = -\sum_{x} p(x) \log_{n} q(x)$$

$$= -(1.0 * \log 1.0 + 0.0 * \log 0.0 + 0.0 * \log 0.0)$$

$$= 0$$

입력 샘플	실제 출력			목표 출력		
샘플 #1	0.1	0.3	0.6	0	0	1
샘플 #2	0.2	0.6	0.2	0	1	0
샘플 #3	0.3	0.4	0.3	1	0	0

실제출력은 소프트 맥스 함수, 목표 출력은 원-핫 인코딩사용

$$H(p,q) = -\sum_{x} p(x) \log_n q(x)$$
 p=목표 출력, q=실제 출력

▷ 첫 번째 샘플에 대하여 교차 엔트로피를 계산해보자. -(log(0.1) * 0 + log(0.3) * 0 + log(0.6) * 1) = -(0 + 0 - 0.51) = 0.51이 된다.

▷ 두 번째 샘플의 교차 엔트로피는 -(log(0,2) * 0 + log(0,6) * 1 + log(0,2) * 0) = -(0 - 0,51 + 0) = 0,51이다.

▷ 세 번째 샘플의 교차 엔트로피는 -(log(0.3) * 1 + log(0.4) * 0 + log(0.3) * 0) = -(-1.2 + 0 + 0) = 1.20이다.

▷ 따라서 3개 샘플의 평균 교차 엔트로피 오류는 (0.51 + 0.51 + 1.20) / 3 = 0.74가 된다.

목표 값에 해당하는 실제 출력이 얼마나 목표값에 가까운지를 알 수 있다.

1. BinaryCrossentropy

- 이진 분류 문제를 해결하는 데 사용되는 손실 함수
- 예측값이 실제 레이블(0 또는 1)에서 얼마나 멀리 떨어져 있는지 측정

1 → 강아지 0 → 강아지 아님

$$BCE = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log_n(\hat{y}_i) + (1 - y_i) \log_n(1 - \hat{y}_i))$$

- · n: 샘플의 개수이다.
- y: 샘플의 실제 레이블, 0 또는 1만 가능하다.
- ŷ : 샘플의 예측값, 0에서 1 사이의 값, 신경망이 예측하는 값이다.

실제 레이블 y	1	0	0	1
예측 값 ŷ	0.8	0.3	0.5	0.9

샘플 1:
$$BCE1 = -(1 \cdot \log(0.8) + (1-1) \cdot \log(1-0.8))$$

샘플 2:
$$BCE2 = -(0 \cdot \log(0.3) + (1-0) \cdot \log(1-0.3))$$

샘플 3:
$$BCE3 = -(0 \cdot \log(0.5) + (1-0) \cdot \log(1-0.5))$$

샘플 4:
$$BCE4 = -(1 \cdot \log(0.9) + (1-1) \cdot \log(1-0.9))$$

$$BCE = \frac{BCE1 + BCE2 + BCE3 + BCE4}{4} \approx 0.345$$

2. CategoricalCrossentropy

- 다중 분류 문제에서 사용
- 정답 레이블은 원-핫 인코딩으로 제공(예. 입력 이미지를 "강아지(1,0,0)", "고양이(0,1,0)", "호랑이(0,0,1)" 중의 하나로 분류)


```
y_true = [[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]] # 고양이, 호랑이, 강아지
y_pred = [[0.6, 0.3, 0.1], [0.3, 0.6, 0.1], [0.1, 0.7, 0.2]]
cce = tf.keras.losses.CategoricalCrossentropy ()
print(cce(y_true, y_pred).numpy ())
```

1.936381

3. SparseCategoricalCrossentropy

- 마찬가지로 다중 분류 문제에서 사용
- 정답 레이블이 원-핫 인코딩이 아니고 정수로 제공(예. 정답 레이블을 0(강아지), 1(고양이), 2(호랑이)로 표시)

강아지이면 0 고양이이면 1 호랑이이면 2

케라스가 자동으로 원-핫 인코딩으로 변환한다.

```
y_true = [1, 2, 0] # 고양이, 호랑이, 강아지
y_pred = [[0.6, 0.3, 0.1], [0.3, 0.6, 0.1], [0.1, 0.7, 0.2]]
scce = tf.keras.losses.SparseCategoricalCrossentropy()
print(scce(y_true, y_pred).numpy())
```

1.936381

가중치 초기화 문제

- 가중치를 0으로 시작하면 > 오차 역전파가 제대로 되지 않는다.
- 가중치를 모두 같은 값으로 두면 → 역전파되는 오차가 동일하게 되어 모든 가중치가 동일하게 변경된다. 모든 노드가 같은 일을 하게 되는 셈.
- 너무 큰 가중치는 → 그래디언트 폭발을 발생하여 학습이 수렴하지 않고 발산.

그림 8-10 가중치가 동일할 때의 문제점

• 그래서, 가중치의 초기값은 <u>작은 난수로</u>해야 한다.

케라스에서 가중치 초기화 방법

• 이니셜라이즈 이용. kernel_initializer, bias_initialize

• 문자열로 내장 이니셜라이저 사용도 가능

```
layer = layers.Dense(
    units=64,
    kernel_initializer='random_normal',
    bias_initializer='zeros'
)
```

Lab: 가중치 초기화 실험

• https://www.deeplearning.ai/ai-notes/initialization/에 가보면 다양한 초 기값을 가지고 오차가 얼마나 빨리 줄어드는지를 볼 수 있다.

법주형 데이터 처리

• 신경망은 숫자만 받을 수 있다. 문자열은 숫자로 바꾸어야 한다.

• 'male'과 'female'처럼 간단한 경우에는 직접 코딩하여 변경

```
for ix in train.index:

if train.loc[ix, 'Sex']=="male":

train.loc[ix, 'Sex']=1

else:

train.loc[ix, 'Sex']=0
```

일반적인 범주형 데이터 변한 방법

- 범주형(카테고리형) 변수: 레이블 값을 가지는 변수(예.'red','green','blue')
- 머신러닝 알고리즘에서는 입력 및 출력 변수가 모두 숫자여야 한다.
- 범주형 변수를 숫자로 인코딩하는 3가지 방법
 - 정수 인코딩(Integer Encoding) : 각 레이블이 정수로 매핑.
 - 원-핫 인코딩(One Hot Encoding) : 각 레이블이 이진 벡터에 매핑.
 - 임베딩(Embedding): 범주의 분산된 표현이 학습되는 경우 자연어 처리에서 설명

sklearn 라이브러리가 제공하는 Label Encoder 클래스를 사용

```
[['2 '44' '7200']
['1' '27' '4800']
['0' '30' '6100']]
```

 단점. 바뀐 0, 1, 2값이 어떤 순서가 있는 것으로 오해할 수도 → 이 문제를 해결하려면 원-핫 인코딩

원-학 인택(sklearn 사용)

- 단 하나의 값만 1이고 나머지는 모두 0인 인코딩 -> 아주 많이 사용
- Sklearn 라이브러리의 OneHotEncoder 클래스를 사용

Country	Age	Salary		Korea	Japan	China	Age	Salary
Korea	38	7200		1	0	0	38	7200
Japan	27	4800		0	1	0	27	4800
China	30	3100		0	0	1/	30	3100
			-					

언 인코딩(케라스 사용)

• 케라스의 to_categorical() 호출 사용

```
class_vector =[2, 6, 6, 1]
from tensorflow.keras.utils import to_categorical
output = to_categorical(class_vector, num_classes = 7, dtype ="int32")
print(output)
```

```
[[0 0 1 0 0 0 0]
[0 0 0 0 0 0 1]
[0 0 0 0 0 0 1]
[0 1 0 0 0 0 0]]
```


 입력 x1과 x2의 서로 다른 경우(예. X1은 0~10.0, x2는 0~1.0)에는 입력과 관계되는 매개 변수도 서로 다른 범위를 가지면서 학습되기 때문에 발산하기 쉽다.

그림 8-11 데이터 정규화의 영향

 데이터 정규화(data normalization): 모든 입력을 같은 범위의 값으로 만드는 것. 평균이 0이 되도록 값의 범위를 대략 -1에서 1사이로 제한.

● 정규화 값 x'=(x-평균)/표준편차

30세의 정규화 값 = (30 - 40.0) / 8.12 = -1.23

사람의 나이, 성별, 연간 수입을 기준으로, 선호하는 자동차의 타입(세단 아니면 SUV)을 예측할 신경망을 만드는 경우.

sklearn의 데이터 정규화 방법

• MinMaxScaler 클래스 사용하여 0과 1사이에 있도록 변환

```
from sklearn.preprocessing import MinMaxScaler data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = MinMaxScaler() scaler.fit(data) # 최대값과 최소값을 알아낸다. print(scaler.transform(data)) # 데이터를 변환한다.
```

```
[[0. 0.]
[0.25 0.25]
[0.5 0.5]
[1. 1.]]
```

케라스의 데이터 정규화 방법

- Normalization 레이어를 중간에 넣어 정규화.
- adapt() 메서드로 평균과 분산을 계산

과잉 적합과 과소 적합

- 과잉 적합(over fitting)
 - 지나치게 훈련 데이터에 특화되어 실제 적용시 좋지 못한 결과가 나 오는 것
 - 신경망이 너무 복잡(매개변수, 은닉층, 뉴런이 많을 때)하면 발생
 - 교과서의 예제만 완벽하게 풀고 다양한 문제를 푸는 과정이 없는 경 우에 해당

- 과소 적합(under fitting)
 - 충분히 훈련되지 않거나 신경망 모델이 너무 단순할 때 발생

과잉 적합을 아는 방법

훈련이 계속되어도 검증 데이터의 손실 값이 감소하지 않는다.

자기 지합의 예

- IMDB: 영화에 대한 리뷰가 올라가 있는 사이트
- 영화 리뷰를 입력하면 리뷰가 긍정적(1)인지 부정적(0)인지를 파악하는 신 경망을 구현해보자

 영화 리뷰는 미리 전처리되어 정수 시퀀스로 제공되며 리뷰당 10,000 차원 벡터의 멀티-핫 인코딩으로 변환하여 입력으로 사용

가잉 적합 방지 전략

- 가장 좋은 방법 > 많은 훈련 데이터 사용
- 훈련 데이터를 많이 확보할 수 없는 경우에는 데이터 증강(data augmentation)이나 규제(regularization) 기법을 사용
- 조기 종료: 검증 손실이 증가하면 훈련을 조기에 종료한다.
- 가중치 규제 방법: 가중치의 절대값을 제한한다.
- 데이터 증강 방법: 데이터를 많이 만든다.
- 드롭아웃 방법: 몇 개의 뉴런을 쉬게 한다.

1. 조기종료

• 검증 손실이 더 이상 감소하지 않는 것처럼 보일 때마다 훈련을 중단

2. 가중치 규제

- 가중치의 값이 너무 크면 과잉 적합이 일어난다는 사실에 근거하여 신경망의 손실함수에 가중치가 커지면 불리하도록 비용을 추가한다.
- L1 규제 : 가중치의 절대값에 비례하는 비용을 손실 함수에 추가 $Loss = Cost + \lambda \sum |W|$
- L2 규제 : 가중치의 제곱에 비례하는 비용을 손실함수에 추가 $Loss = Cost + \lambda \sum W^{2}$

 p.325의 과잉적합을 가중치 규제를 적용하여 해소된 결과를 그래프로 확인할 수 있다.

```
# 신경망 모델 구축
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(16,
    kernel_regularizer=tf.keras.regularizers.l2(0.001),
    activation='relu', input_shape=(1000,)))
model.add(tf.keras.layers.Dense(16,
    kernel_regularizer=tf.keras.regularizers.l2(0.001), activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
```


아직도 과잉 적합이지만 규제를 적용한 모델이 덜 과잉 적합됨을 알 수 있습니다.

- 가장 효과적이고 널리 사용하는 기법
- 학습과정에서 몇 개의 노드를 쉬게하여 다른 노드가 그 역할을 대신하는 것
 국 동일한 특징을 검출하는 전문가가 많이 생기는 효과를 발생
- 훈련 단계에서만 사용. 테스트 단계에서는 모든 노드를 사용
- 케라스에서 Dropout 레이어를 이용해서 추가

그림 8-14 드롭아웃

데이터 증강 방법

- 데이터 증강(data augmentation) : 소량의 훈련 데이터에서 많은 훈 련 데이터를 뽑아내는 방법
- 이미지를 좌우로 확대하거나 회전시켜서 변형된 이미지 생성

그림 8-15 데이터 증강 방법

https://playground.tensorflow.org

でない。 ではいい。 ではい。 ではいい。 では、 にはい。 では、 にはいい。 ではいい。 にはいい。 にはいい。

- 여러 전문가를 동시에 훈련시키는 것
- 동일한 딥러닝 신경망을 N개를 만들어 각 신경망을 독립적으로 학습 시킨 후에 마지막에 합치는 것
- 약 2-5% 정도의 성능 향상

- 7장에서 MNIST 숫자를 <u>MLP로</u> 인식해본 경험이 있다.(p.266)
- 동일한 데이터 세트에 대하여 이번에는 심층 신경망을 사용해보자. 얼마나 정확도가 증가할까?

- 패션 MNIST 데이터셋 사용
- 70,000개의 이미지 중에서 60,000개는 훈련용, 10,000개는 테스트용
- 이미지 크기: 28x28. 픽셀 값: 0 ~ 255 사이
- 10개 범주

레이블	범주
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

예제: 타이타니 생존자 예측하기

- Passengerld : 각 승객의 고유 번호
- Survived : 생존 여부(종속 변수)
 - 0 = 사망
 - 1 = 생존
- Pclass: 객실 등급 승객의 사회적, 경제적 지위
 - 1위 = 상위
 - 2위 = 중간
 - 세 번째 = 낮음
- Name : 이름
- Sex : 성별
- Age : 나이
- SibSp : 동반한 Sibling(형제자매)와 Spouse(배우자)의 수
- Parch : 동반한 Parent(부모) Child(자식)의 수
- Ticket : 티켓의 고유넘버
- Fare : 티켓의 요금Cabin : 객실 번호
- Embarked : 승선한 항
 - C = 쉨부르
 - = 퀸스타운
 - S = 사우샘프턴

생존자를 예측해봅시다. 어떤 부류의 사람들의 생존률이 높았을까요? 우리는 어떤 속성을 이용하여 이것을 예측할 수 있을까요?

Crew

_	
L	

- 학습(예측) 정확도를 높이기 위한 노력이 핵심 Kaggle Competition
 - ① 속성(열) 선택을 추가하고 다양한 조합으로 도전
 - ② 학습모델 디자인을 변경

비교: 패션 아이템 분류, 타이타닉 생존자 예측하기

- 공통점 입력 데이터가 여러개 값
- 차이점 출력 개수
 - 1. 패션 아이템
 - 10개 중에 하나를 최종 선택
 - 마지막 출력: model.add(layers.Dense(10, activation='softmax'))
 - 손실함수 loss = 'sparse_categorical_crossentropy',

2. 타이타닉

- ▶ 1개(생존/사망)
- 마지막 출력: model.add(layers.Dense(1, activation='sigmoid'))
- 손실함수 loss = 'binary_crossentropy'