FATIMA AKBAR	
elas : 'n	
Section: A	
Physics Ono1 Consider a sphere is rolling down the inclined	
Ono1	
translational and rotational motion.	
	1
$K.E_{tran} = \frac{1}{2}mv^2$	
k. Frot = L Iw2	
$I = \frac{2}{c}mi^2$	
$K \cdot E_{rot} = \frac{1}{2} \left(\frac{2}{5} m r^2 \right) \omega^2$	
$= \frac{1}{5} m r^2 \omega^2$	
$= \frac{1}{2} m(r\omega)^2$	
$=\frac{1}{5}mv^2$	
Total K.E = K.Etran + K.E rot => 1 mv + 1 mv =	
Total = I mv =	
kinetic 10 energy	1
Calculation for Speed: PEd=k	et al la
top top	

...

$$mgh = \frac{7}{10}gh^{2}$$
 $logh = \frac{7}{10}gh$
 $logh$

Find:

$$r_{0} = 3.8 \times 10^{-9}$$

Chiven:

 $r_{0} = 3.85 \times 10^{6} m$
 $r_{5} = 1.74 \times 10^{6} m$

Find:

Spin angular mom

Lo

Solution:

Ls = Is w;

Lo = Io wo

Ws = wo = w

Is = $\frac{\lambda}{2} mr_{s}^{2}$

To= mr_{o}^{2}

Ls = $\frac{1}{5} w_{s}$

Lo Io wo

 $mr_{o}^{2} w_{s}$

Ls = $\frac{1}{5} x_{s}$
 $mr_{o}^{2} w_{s}$

Ls = $\frac{1}{5} x_{s}$
 $mr_{o}^{2} w_{s}$

Ls = $\frac{1}{5} x_{s}$
 $x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

Ls = $\frac{2}{5} x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

Ls = $\frac{2}{5} x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

Ls = $\frac{2}{5} x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

Ls = $\frac{2}{5} x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

Ls = $\frac{2}{5} x_{s}^{2} = x_{s}^{2} (1.74 \times 10^{6})^{2}$

$$= 0.0817 \times 10^{12.16} = 0.0817 \times 10^{-9}$$

$$= 8.17 \times 10^{-6}$$

$$L_1 = 8.2 \times 10^{-6}$$

$$r = \left[\frac{GMT^2}{4\pi^2}\right]^{1/3}$$

$$T = 3.14$$