Πρόβλημα 1

Ως προς την ευρετική συνάρτηση dom_wdeg:

Εδώ χρησιμοποίησα την λογική που υπάρχει στο paper που δόθηκε για να υλοποιήσω την ευρετική και μετά από αυτό προσπάθησα να την κάνω όσο καλύτερη μπορούσα για να είναι πιο αποδοτική. Τα πράγματα που προσέθεσα είναι ότι υπολόγισα και τα αντίστροφα weights για το άθροισμα των weights μιας συγκεκριμένης μεταβλητής, σε περίπτωση που δεν υπάρχει το curr_domain (γιατί μπορεί να είναι στις πρώτες κλήσεις του αλγορίθμου) έχω χρησιμοποιήσει την λογική του mrv. Και τέλος για να υλοποιήσουμε την διαίρεση η οποία θα είναι και το μέτρο συγχώρησης μεταξύ των μεταβλητών έχω διαιρέσει το dom με το άθροισμα * το πλήθος των neighbors. Τέλος για την επιλογή της μεταβλητής σε περίπτωση που υπάρχουν πολλές τέτοιες μεταβλητές επιλέγω την τελευταία μεταβλητή που μπήκε στον πινάκα. Βγάζει αρκετά καλά αποτελέσματα, άλλα ως δεύτερη άποψη έχω το να παίρνει μια random μεταβλητή από τον πινάκα. Και τα δυο λειτουργούν καλά, παίρνοντας όμως την τελευταία μεταβλητή έχει λίγο καλύτερα αποτελέσματα και είναι πιο σταθερό.

Ως προς την FC_CBJ:

Πήρα την backtrack από το csp του AIMA και την μετέτρεψα σε backjumping συνάρτηση η οποία βρίσκει σε ποια μεταβλητή πρέπει να κάνει backjump με βάση το conf_set που δημιουργήθηκε από τον FC. Η υλοποίηση έγινε με βάση το paper που δόθηκε στο piazza αλλά και με την βοήθεια του βιβλίου, για το πως γεμίζω το conf_set χρησιμοποίησα κάτι που έλεγε το βιβλίο αλλά κάτι δεν έχω υλοποιήσει σωστά και δεν τρέχει για όλα τα instances. Τρέχει για το 2-f24 άλλα για τα υπόλοιπα βγάζει ή killed το process ή error για το conf_set. Λόγο των γιορτών και των υπολοίπων εργασιών δυστυχώς δεν είχα χρόνο να το υλοποιήσω 100%.

Στον παρακάτω πινάκα για τον αλγόριθμο MAC όλα βγήκαν με την χρήση του τελευταίου variable που μπήκε στον πινάκα (στην dom/wdeg) ενώ το 8-f11 δεν έβγαζε αποτέλεσμα γιαυτό το έτρεξα με το να επιλέγει random.

Επίσης στο FC δεν έβγαζε αποτέλεσμα με το τελευταίο variable όποτε όλο το έτρεξα με το να επιλέγει random variable από το array.

Τέλος, για το 7-w1-f4 με mac έτρεχε για παραπάνω από 5 ωρες και με τα δυο όποτε το διέκοψα.

Algorithm	.txt	run time mo	assign mo	contstraints mo	SAT/UNSA
MAC/LCV/d	lom/wdeg	seconds		1	
	2-f24	0.15	201	155601	TRUE
	2-f25	135.5	57550	104173384	FALSE
	3-f10	0.71	450	712473	TRUE
	3-f11	32.03	8264	26927802	FALSE
	6-w2	0.08	42	89468	FALSE
	7-w1-f4	>5		İ	
	7-w1-f5	18.15	11897	26870032	FALSE
	8-f10	62.47	24378	36716031	TRUE
	8-f11	0.69	168	399734	FALSE
	11	13.61	4188	8817776	TRUE
	14-f27	6.85	4042	1512685	TRUE
	14-f28	15.22	4568	4907318	FALSE
FC/LCV/don	n/wdeg			1	
~~~~~	2-f24	0.08	230	25458	TRUE
	2-f25	52.76	202699	35072849	FALSE
	3-f10	1.68	5022	788769	TRUE
	3-f11	75.13	249370	39464241	FALSE
	6-w2	0.06	366	45295	FALSE
	7-w1-f4	5.62	59321	2382499	TRUE
	7-w1-f5	23.22	12033	41027819	FALSE
	8-f10	60.72	19055	36954266	TRUE
	8-f11	1.14	291	730838	FALSE
	11	13.84	4351	9070889	TRUE
	14-f27	11.65	7579	2979808	TRUE
	14-f28	20.94	6721	6856966	FALSE
Min-conflicts	6			 	
WIII PCOI IIIICE	2-f24	173.54	100200	292335698	FALSE
	2-f25	176.11	100200	300449665	FALSE
	3-f10	363.8	100400	604370808	FALSE
	3-f11	383.7	100400	630280577	FALSE
	6-w2	113.64	100200	169079122	FALSE
	7-w1-f4	125.9	100400	150286275	FALSE
	7-w1-14 7-w1-f5	121.95	100400	147263608	FALSE
	8-f10	630.58	100400	803475738	FALSE
	8-f11	518.23	100680	800793178	FALSE
	11		100680	945968959	
		684.15			FALSE
	14-f27	649.14	100916	9490351549	FALSE
	14-f28	605.67	100916	946494347	FALSE

Χρησιμοποιήθηκαν αυτά τα κριτήρια σύγκρισης επειδή μπορούμε εύκολα να διαπιστώσουμε αν κάνουμε επιπλέον άσκοπες πράξεις για να βρούμε το αποτέλεσμα. Αυτό ήταν πολύ χρήσιμο σε εύκολα προβλήματα όπως το 2-f24 επειδή με μια σωστή ευρετική dom/wdeg δεν θα έχουμε κανένα άσκοπο assignment και αντίστοιχα κανένα άσκοπο constraint. Για κάθε αλγόριθμο και κάθε πρόβλημα έχω τρέξει το πρόγραμμα 5 φορές και έχω βγάλει έναν μέσο ορο(κυρίως για τον χρόνο, όπως προ ανέφερα δεν έχω χρησιμοποιήσει την λογική του random αλλά πήρα το τελευταίο variable που μπήκε στο array). Στο Min conflicts έβγαλε σε όλα unsat και το πρόγραμμα έτρεξε σε υπερβολικά πολύ μεγάλο χρόνο, δεν πρόλαβα να πειραματιστώ με τις max_steps τιμες όποτε όλα είναι με default. Επειδή στο min conflicts δεν υπάρχει καμιά random δεν το έτρεξα 5 φορές. Δεν υπάρχει πινάκας για το FC_CBJ επειδή όπως αναφέρθηκε παραπάνω δεν πρόλαβα να διορθώσω κάποια μικρά προβλήματα άλλα για το 2-f24 έβγαλε αυτά τα αποτελέσματα: 0.06, 206, 24006 True

## Πρόβλημα 2:

CSP:

μεταβλητές:

κρεβάτι, γραφείο, καρεκλά γραφείου, καναπές

#### Domain:

Για κάθε μεταβλητή έχει δυο τιμές, το πλάτος και το μήκος, κάθε τιμή παίρνει ως value το που στο δωμάτιο είναι. περιορισμοί:

- 1. το πλάτος των τοποθετημένων επίπλων πρέπει να είναι <= 300cm
- 2. το μήκος των τοποθετημένων επίπλων πρέπει να είναι <= 400cm
- 3. δεν γίνεται το ένα πάνω στο άλλο άρα κάθε φορά που προσθέτουμε στον κόσμο μια μεταβλητή πρέπει να το προσθέτουμε και στα αθροίσματα(στο συνολικό πλάτος και μήκος)
- 4.το γραφείο πρέπει να είναι διπλά στην μπαλκονόπορτα(σε απόσταση 1cm)

το πρόβλημα έχει λύσεις, μια από αυτές είναι:

πρώτα πρέπει να διευκρινιστεί ότι σαν πηγή φωτός έχουμε MONO την μπαλκονόπορτα και ότι η πόρτα δωματίου χρειάζεται 100cm βάθος για να ανοίξει. Επίσης ότι το ύψος δεν μας ενδιαφέρει γιατί όλα είναι λιγότερα από το μέγιστο 230. Δηλαδή με τον περιορισμό ότι δεν γίνεται να είναι το ένα πάνω στο άλλο αυτό ισχύει. Τέλος, θεωρούμε ως δεδομένο (δεν έχει αναφερθεί κάπου διαφορετικά) ότι τα έπιπλα μπορούν να κάνουν περιστροφή 90μοιρες.

Εφόσον η πόρτα χρειάζεται 100cm βάθος, τότε στο πλάτος του χώρου διπλά από την πόρτα χωράει ακριβώς το κρεβάτι. Δηλαδή στο κάτω μέρος του δωματίου έχουμε την πόρτα με πλάτος 100cm, μήκος 100cm και διπλά έχουμε το κρεβάτι με πλάτος 100cm και μήκος 200cm.

Μέτα βάζουμε στην πάνω αριστερά γωνιά του δωματίου τον καναπέ, δηλαδή το πάνω μέρος του δωματίου έχει (ξεκινώντας από την αριστερή μεριά) τον καναπέ με πλάτος 103cm, "αέρα" για 97cm και 100cm μπαλκονόπορτα. Ως προς το μήκος στην αριστερή μεριά το δωμάτιο έχει (ξεκινώντας από πανό) 221cm καναπέ μήκος, "αέρα" για 79cm και μετά 100cm πόρτα δωματίου.

Μέτα από αυτό μπορούμε να προσθέσουμε το γραφείο στην πάνω μεριά του δωματίου διπλά από την μπαλκονόπορτα. Εφόσον ο ελεύθερος χώρος ως προς το μήκος είναι 300cm(400cm ο ολόκληρος χορός μείον 100cm που είναι το πλάτος του κρεβατιού) και ο ελεύθερος χώρος ως προς το πλάτος είναι 97cm(103cm το πλάτος του καναπέ, 100cm το πλάτος της μπαλκονόπορτας). Άρα με βάση αυτά μπορούμε να τοποθετήσουμε το γραφείο διπλά από την μπαλκονόπορτα και να έχει απόσταση από τον καναπέ 17cm και απόσταση από το κρεβάτι/πόρτα δωματίου 140cm.

# Πρόβλημα 3:

1)

Μεταβλητές:

A1,A2,A3,A4,A5

domain:

D1... D5 =  $\{9, 10, 11\}$ 

περιορισμοί:

1. Α1 πρέπει να αρχίσει μετά την Α3

2.Α3 πρέπει να αρχίσει πριν την Α4 και μετά την Α5

3.Α2 δεν μπορεί να εκτελείται ταυτόχρονα με την Α1 ή την Α4

4.Α4 δεν μπορεί να αρχίσει στις 10:00

2)



3)

έστω ότι τις μεταβλητές τις παίρνουμε στην σειρά και έστω ότι ισχύουν και οι αντίστροφοι περιορισμοί δηλαδή πχ για τον πρώτο περιορισμό ισχύει επίσης ότι η A3 πρέπει να είναι πριν την A1. Επίσης παίρνουμε ως δεδομένο ότι το domain της A4 είναι {9, 11} λόγου του περιορισμού 4.

Α1 παίρνει την τιμή 9

 $D3 = {}$ ,  $D2 = {}$ 10, 11 ${}$  incosistent για A3 άρα αλλάζουμε τιμή

Α1 παίρνει την τιμή 10

D3 = {9}, D2= {9, 11} και ελέγχουμε τις ακμές: (A3, A4), (A3, A5), (A2, A4)

(A3, A4) -> OK

(Α3, Α5) -> ΝΟΤ ΟΚ οπότε αλλάζουμε τιμή στο Α1

Α1 παίρνει την τιμή 11

 $D3= {9, 10}, D2 = {9, 10}$  και ελέγχουμε τις ακμής (A3, A4), (A3, A5), (A2, A4)

(A3, A4) -> OK

(A3, A5) -> OK

(A2, A4) -> OK

Α2 παίρνει την τιμή 9

D4 = {10, 11} και ελέγχουμε τις ακμές (A4, A3)

(A4, A3) -> OK

Α3 παίρνει την τιμή 9

D4 = {10, 11}, D5 = {} incosistent για A5 άρα αλλάζουμε τιμή

Α3 παίρνει την τιμή 10

 $D4 = \{11\}, D5 = \{9\}$  και δεν υπάρχει κάποιος περιορισμός που πρέπει να ελέγξουμε για αυτές τις μεταβλητές

Α4 παίρνει την τιμή 11

Α5 παίρνει την τιμή 9

οπότε η λύση είναι : A1 = 11, A2 = 9, A3 = 10, A4 = 11, A5 = 9

το οποίο είναι συνεπές.

A5 = 9

A2 = 9

A3 = 10

A4 = 11

A1 = 11