INSTITUTO SUPERIOR TÉCNICO

DEEC/ACE Teoria dos Circuitos e Fundamentos de Electrónica 2º TESTE

17 de Junho de 2009

Duração: 1h30 Sem consulta

Nº:	Nome:	Sala:

Questão	1	2	3	4	5	6	7	8 a)	8 b)	8 c)	9 a)	9 b)	9 c)
Cotação	1	1	1	1	1	1	1	3	2	2	2	2	2
RESPOSTA													
Classificação													
Ciassificação													

Das respostas às perguntas 1 a 7 (*inclusive*) apenas serão cotadas as assinaladas na tabela acima e a cada resposta errada desconta-se 25% da respectiva cotação.

1. Um amplificador operacional (ampop) é caracterizado por ter:

- a) Resistência de saída muito baixa e ganho de tensão muito baixo.
- b) Resistência de entrada muito elevada e resistência de saída muito baixa.
- c) Resistência de entrada muito baixa e ganho de tensão muito elevado.
- d) Nenhuma das respostas anteriores.

2. Para o circuito da figura escolha a afirmação verdadeira quando o sinal de entrada é sinusoidal e se considera como sinal de saída a corrente na bobine:

- a) A resposta em frequência é do tipo passa-banda de ganho R/L.
- b) A resposta em frequência é do tipo passa-baixo de ganho unitário.
- c) A resposta em frequência é do tipo passa-alto de ganho L/R.
- d) Nenhuma das respostas anteriores.

3. Para o circuito da figura escolha a afirmação verdadeira, admitindo que o amplificador operacional (ampop) é ideal e está alimentado com ± 15 V, R=10k Ω e C=10nF:

- **a**) Qualquer que seja o sinal de entrada, o ampop nunca satura porque o condensador bloqueia a componente DC.
- **b)** O sinal de saída é proporcional ao integral do sinal de entrada.
- c) O sinal de saída é proporcional à derivada do sinal de entrada.
- d) Nenhuma das respostas anteriores.

4. Para o circuito da figura escolha a afirmação verdadeira:

- a) Para V_B=0,5V o transístor está na zona activa directa.
- **b)** Para V_B=3V o transístor está cortado.
- c) Para V_B=5,5V o transístor está na zona de saturação.
- d) Nenhuma das respostas anteriores.

 $\beta=290 \\ V_{BEon}=0,6V \\ V_{CEsat}=0,1V$

 V_{CC} =10V R_{C} =4,7k Ω R_{E} =3,9k Ω

5. Para o circuito da figura escolha a afirmação verdadeira, considerando o díodo caracterizado por V_{D0} =0,6 V e um sinal de entrada sinusoidal de amplitude 6 V:

- a) O circuito é um rectificador de meia-onda positivo.
- **b)** O díodo conduz para $v_{IN} > 0.6 \text{ V}$.
- c) O circuito não permite limitar a tensão na saída.
- **d**) Nenhuma das respostas anteriores.

6. Para o circuito da figura escolha a afirmação verdadeira, admitindo que o amplificador operacional (ampop) é ideal e não está saturado:

a)
$$v_C = -\frac{R_C}{R_A} v_A + \left(1 + \frac{R_C}{R_A /\!/ R_B}\right) v_B$$
 b) $v_C = -\frac{R_C}{R_A /\!/ R_B} v_A$ se $v_B = 0$ $v_B \leftarrow V_A \leftarrow V$

b)
$$v_C = -\frac{R_C}{R_A //R_B} v_A$$
 se $v_B = 0$

$$V_{\rm B}$$
 $V_{\rm C}$
 $V_{\rm C}$

- $\mathbf{c}) \ v_C = \left(1 + \frac{R_A // R_B}{R_C}\right) v_B \ \text{se} \ v_A = 0$
- **d**) Nenhuma das respostas anteriores.
- 7. Escolha a afirmação verdadeira sabendo que os LEDs verde e amarelo são caracterizados por V_{D0}=1,5V e que o amplificador operacional (ampop) é ideal e está alimentado com ±15V:
- a) Para V_{IN}=+6V o LED amarelo acende e V_{OUT}=-10,5V
- **b**) Para V_{IN} =-6V o LED amarelo acende e V_{OUT} =-1,5V
- c) Para V_{IN}=+6V o LED verde acende e V_{OUT}=-10,5V
- d) Nenhuma das respostas anteriores.

NAS RESPOSTAS ÀS PERGUNTAS 8 E 9 JUSTIFIQUE SEMPRE OS SEUS RACIOCÍNIOS.

- 8. Considere o circuito da figura a funcionar à temperatura ambiente (V_T =25mV).
- a) Determine o PFR calculando V_C, V_B, V_E, I_C, I_E, I₁ e I₂ e diga em que região de funcionamento está o transístor.
- b) Calcule os parâmetros incrementais do transístor e apresente o esquema incremental do circuito, admitindo que o condensador e o LED se comportam como curtocircuitos.
- c) Considere um sinal de entrada sinusoidal de 1kHz com 10mV de amplitude e faça o gráfico dos sinais na base e no colector do transístor, tal como os veria no osciloscópio em modo AC. Qual é o ganho de tensão?

- 9. Considere o circuito da figura com R=22kΩ e C=68nF, o díodo caracterizado pelo modelo de díodo ideal e um sinal de entrada sinusoidal de 500Hz e 7V de amplitude.
- a) Para o interruptor aberto, explique o modo de funcionamento do circuito e desenhe as formas de onda dos sinais de entrada e de saída.
- **b)** Repita a alínea anterior para o interruptor fechado.
- c) Proponha um circuito de um filtro passa-baixo que permita diminuir significativamente a ondulação presente no sinal de saída.

SOLUÇÃO ABREVIADA

(não inclui gráficos nem circuitos que devem ser incluídos em algumas das respostas)

1-7

bbccdac

8a) Cálculo admitindo TJB na z.a.d. e que são válidas as aproximações: $I_1 \approx I_2 >> I_B$ e $I_C \approx I_E >> I_B$

I1=I2=1,94mA

VB = -0.86V

VE=-1,46V

IE=1,98mA

IB=7uA

IC=1,98mA

VC=1,49V

VCE=2,95V

8b) gm=79mS $r\pi=3.5k\Omega$ desenhar modelo incremental do circuito

8c) circuito amplificador inversor

$$Av = -RC/RE = -1,3$$

$$v_b(t) = 10\cos(2\pi \times 1000 \times t) \, mV \quad v_c(t) = -13\cos(2\pi \times 1000 \times t) \, mV$$

9a) rectificador de ½-onda positivo (explicar + desenhar formas de onda)

9b) detector de picos positivos (explicar + desenhar formas de onda)

Na descarga: τ≈1,5ms=3T/4 (63% da variação) e 5τ (100% da variação)

9c) Há várias soluções possíveis. Uma solução simples é considerar um circuito seguidor (para não haver efeito de carga) seguido de um filtro passa-baixo RC. A alimentação do ampop tem de permitir a amplitude do sinal de entrada. Escolher de R e C do filtro por forma a que frequência de corte seja inferior a fin.