2

Use of N-phenyl-2-pyrimidine-amine protein kinase C inhibitors - for treatment of tumours, bacterial infections, atherosclerosis, AIDs, and immune, cardiovascular and CNS disorders

Patent Assignee: CIBA GEIGY AG; NOVARTIS AG; NOVARTIS-ERFINDUNGEN

VERWALTUNGS GMBH; CIBA GEIGY CORP Inventors: CARAVATTI G; ZIMMERMANN J

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
EP 588762	Al	19940323	EP 93810595	A	19930823	199412	В
JP 6184116	A	19940705	JP 93211387	A	19930826	199431	
US 5516775	A	19960514	US 93103493	A	19930806	199625	

Priority Applications (Number Kind Date): CH 922729 A (19920831)

Cited Patents: EP 164204; EP 233461; EP 453731

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
EP 588762	A 1	G	13	A61K-031/505	
Designated States	(Region	al): AT BE CH	DE DK	ES FR GB GR IE IT	LI LU NL PT SE
JP 6184116	A		8	C07D-239/42	
US 5516775	A		6	A61K-031/505	

Abstract:

EP 588762 A

Use of N-phenyl-2-pyrimidineamine of formula (I) and it's salts for protein kinase C (PKC) inhibition (except in treatment of asthma, allergies, inflammation and diabetes) and treatment of tumours in mammals, including human beings. R1, R2 = H or 1-3C alkyl; R3 = 2-, 3- or 4-pyridyl or corresp. Noxide; 2- or 4- methyl-3-pyridyl; 2-furyl; 5-methyl-2-furyl; 2,5-dimethyl-3-furyl; 2- or 3-thienyl; 5-methyl-2-thienyl; 2-phenothiazinyl; 4-pyrazinyl; 2-benzofuryl; 1H-indol-(2 or 3)-yl; 1-methyl-1H-pyrrol-2-yl; 4-quinolinyl; 1-methyl-pyridinium-4-yl iodide; dimethylaminophenyl; or N-acetyl-N-methyl aminophenyl; R4 = H; 1-3C alkyl; -CO-CO-OC2H5; or dimethylaminoethyl; R5-R8 = H; 1-6C alkyl; 1-3C alkoxy; Cl, Br; I; CF3; OH; phenyl; NH2 opt. mono- or di-substd. by 1-3C alkyl; 2-4C alkanoyl; propenyloxy; COOH; HOOC-CH2-O-; EtOOC-CH2-O; sulphanilamido opt. N,N-di-substd. by 1-3C alkyl; N-methylpiperazinyl; piperidinyl; 1H-imidazol-1-yl; 1H-triazol-1-yl; 1H-benzimidazol-2-yl; 1-naphthyl; cyclopentyl; 3,4-dimethylbenzyl; -CO2R; -NH-C(O)R; -N(R)-C(O)R; -O-CH2)n-N(R)R; -C(O)-NH-(CH2)n-N(R)R; -CH(CH3)-NH-CHO; -C(CH3)=N-OH; -C(CH3)=N-OCH3; -C(CH3)-NH2; -NH-CH2-C(O)-N(R)R; -(CH2)m-R10; -X-(CH2)m-R10; or a gp. or formula (i) or (ii), provided that at least 1 of R5-R8 is other than H; R = 1-3C alkyl; X = O or S; m = 1-3; n = 2 or 3; R9 = H; 1-3C alkyl, 1-3 alkoxy; Cl, Br; I; or CF3; R10 = 1H-imidazol-1-yl; or morpholinyl; r11 = 1-3C alkyl; or

phenyl opt. mono-substd. by 1-3C alkyl, halo or CF3. (I) are known from EP 233461 and US 4876252.

USE/ADVANTAGE - (I) are used to treat tumours (e.g. bladder tumours), irrespective of whether or not PKC inhibition is implicated, immune disorders, bacterial infections, atherosclerosis, AIDS, and cardiovascular and CNS disorders. Daily dose for mammals weighing 70 kg is 1-200 mg, pref. 50-2500 mg and esp. 500-2000 mg (e.g. 500-1000 mg). Cpds. (I) are selective PKC inhibitors. Their IC50 is 1-30 mcmol/l, with 100 times higher concentrations being required for protein kinase A and protein phosphorylase kinase inhibition. Further, when used in cancer therapy together with other chemotherapeutics cpds. (I) prevent multidrug resistance.

Dwg.0/0

US 5516775 A

Treatment of warm-blooded animals suffering from a protein kinase C dependent tumoral disease, which comprises treating warm-blooded animals in need of such treatment with an effective tumour-inhibiting amount of a compound of formula (I) or a pharmaceutically acceptable salt. In (I), R1 is H or 1-3C alkyl; R2 is hydrogen or 1-3C alkyl, R3 is e.g. 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-methyl-3-pyridyl, 4-methyl-3-pyridyl, 2-furyl, 5-methyl-2-furyl, 2,5-dimethyl-3-furyl, 2-thienyl etc.; R4 is H, 1-3C alkyl, -CO-CO-O-Et or N,N-dimethylaminoethyl; at least one of R5, R6, R7 and R8 is e.g. 1-6C alkyl, 1-3C alkoxy, chloro, bromo, iodo, trifluoromethyl, hydroxy, phenyl, amino etc.; and the other substituents R5, R6, R7 and R8 are H.

Dwg.0/0

Derwent World Patents Index © 2002 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 9814454 (12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93810595.4

(51) Int. CI.5: A61K 31/505

(22) Anmeldetag: 23.08.93

(30) Priorität: 31.08.92 CH 2729/92

(43) Veröffentlichungstag der Anmeldung : 23.03.94 Patentblatt 94/12

84 Benannte Vertragsstaaten : AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

(1) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel (CH) (72) Erfinder: Zimmermann, Jürg Dr. Weldenpark 1 CH-4313 Möhlin (CH)

Erfinder: Caravatti, Glorgio Dr. Baselmattweg 145/c CH-4123 Allschwil (CH)

(54) Verwendung von Pyrimidinderivaten als Proteinkinase C-inhibitoren und Antitumormittei.

57 Die Erfindung betrifft die Verwendung bekannter N-Phenyl-2-pyrimidinamin-derivate der Formel I zur Hemmung der Proteinkinase C in Warmblütern, d.h. z.B. als Antitumormittel.

Die Substituenten in Formel I haben die in Anspruch 1 angegebenen Bedeutungen.

Die Erfindung betrifft die Verwendung bekannter N-Phenyl-2-pyrimidinamin-derivate zur Hemmung der Proteinkinase C und/oder als Antitumormittel sowie zur Herstellung von pharmazeutischen Präparaten zur Anwendung als Hemmer der Proteinkinase C und/oder als Antitumormittel in Warmblütern.

Die Europäische Patentanmeldung mit der Anmeldenummer 87100277.0, welche am 26. 8. 1987 unter der Veröffentlichungsnummer 0233461 veröffentlicht wurde, und die dem US Patent Nr. 4,876,252 teilweise äquivalent ist, beschreibt N-Phenyl-2-pyrimidinamin-derivate, deren Herstellung und ihre Verwendung als Antiasthmatika und Antiallergika aufgrund der Hemmung der Histaminausschüttung, sowie ihre Verwendung bei Entzündungen und Diabetes.

Erfindungsgemäss wurde nun gefunden, dass ein Teil der in der EP-A-0233461 beschriebenen N-Phenyl-2-pyrimidinamin-derivate selektiv das Enzym Proteinkinase C hemmen.

Die von Phospholipiden und Calcium abhängige Proteinkinase C kommt innerhalb der Zelle in mehreren Spezies (Verteilung der Spezies gewebespezifisch) vor und beteiligt sich an verschiedenen fundamentalen Vorgängen, wie Signalübertragung, Proliferation und Differenzierung, sowie auch Ausschüttung von Hormonen und Neurotransmittern. Die Aktivierung dieses Enzyms erfolgt entweder durch eine über Rezeptoren vermittelte Hydrolyse von Phospholipiden der Zellmembran oder durch eine direkte Interaktion mit gewissen Tumor-fördernden Wirkstoffen. Zelluläre Funktionen, die mit Hilfe der Proteinkinase C gesteuert werden, können durch die Modulation der Enzymaktivität von Proteinkinase C beeinflusst werden.

Die Erfindung betrifft die Verwendung von N-Phenyl-2-pyrimidinamin-derivaten der Formel I.

30

10

20

25

worin R_1 Wasserstoff oder C_1 - C_3 -Alkyl bedeutet, R_2 Wasserstoff oder C_1 - C_3 -Alkyl bedeutet, R_3 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Methyl-3-pyridyl, 4-Methyl-3-pyridyl, 2-Furyl, 5-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 2-Thienyl, 3-Thienyl, 5-Methyl-2-thienyl, 2-Phenothiazinyl, 4-Pyrazinyl, 2-Benzofuryl, N-Oxido-2-pyridyl, N-Oxido-3-pyridyl, N-Oxido-4-pyridyl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1-Methyl- 1H-pyrrol-2-yl, 4-Quinolinyl, 1-Methyl-pyridinium-4-yl-iodid, Dimethylamino-phenyl oder N-Acetyl-N-methyl-aminophenyl bedeutet, R_4 Wasserstoff, C_1 - C_3 -Alkyl, den Rest -CO-CO-O- C_2 + R_5 oder N,N-Dimethylaminoethyl bedeutet, mindestens einer der Reste R_5 , R_6 , R_7 und R_8 C_1 - C_8 -Alkyl, C_1 - C_3 -Alkoxy, Chlor, Brom, Iod, Trifluormethyl, Hydroxy, Phenyl, Amino, Mono- $(C_1$ - C_3 -alkyl)-amino, D- $(C_1$ - C_3 -alkyl)-benzyl oder einen Rest einer der Formeln:

45

50

55

 $-CO_2R, -NH-C(=O)-R, -N(R)-C(=O)-R, -O-(CH_2)_n-N(R)-R, -C(=O)-NH-(CH_2)_n-N(R)-R, -CH(CH_3)-NH-CHO, -C(CH_3)=N-O-CH_3, -C(CH_3)-NH_2, -NH-CH_2-C(=O)-N(R)-R, -C(CH_3)-NH_2-$

$$-N$$
 N R_9

-(CH₂)_m-R₁₀, -X-(CH₂)_m-R₁₀ oder

bedeutet, worin R für C₁-C₃-Alkyl steht, X für Sauerstoff oder Schwefel steht, m für 1, 2 oder 3 steht, n für 2

oder 3 steht, R₉ für Wasserstoff, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Chlor, Brom, lod oder Trifluormethyl steht, R₁₀ für 1H-Imidazol-1-yl oder Morpholinyl steht und R₁₁ für C₁-C₃-Alkyl oder unsubstituiertes oder durch C₁-C₃-Alkyl, Halogen oder Trifluormethyl monosubstituiertes Phenyl steht, und die übrigen der Reste R₅, R₆, R₇ und R₈ Wasserstoff bedeuten, oder von pharmazeutisch verwendbaren Salzen von solchen Verbindungen mit mindestens einer salzbildenden Gruppe zur Hemmung der Proteinkinase C und zur Herstellung von pharmazeutischen Präparaten zur Anwendung als Hemmer der Proteinkinase C in Warmblütern. Die erfindungsgemässe Verwendung als Hemmer der Proteinkinase C erstreckt sich nicht auf die vorbeschriebenen Verwendungen gegen Asthma, Allergien, Entzündung und Diabetes, selbst wenn die Wirkung gegen diese Krankheiten ursächlich auf die Hemmung der Proteinkinase C zurückzuführen sein sollte.

Die Verbindungen der Formel I und ihre Herstellung sind in der EP-A-0233461 und im US Patent 4,876,252 beschrieben.

Salzbildende Gruppen in einer Verbindung der Formel I sind Gruppen oder Reste mit basischen oder sauren Eigenschaften. Verbindungen mit mindestens einer basischen Gruppe oder mindestens einem basischen Rest, z. B. einer freien Aminogruppe oder einem Pyridylrest können Säureadditionssalze bilden, z.B. mit anorganischen Säuren, wie Salzsäure, Schwefelsäure oder einer Phosphorsäure, oder mit geeigneten organischen Carbon- oder Sulfonsäuren, z.B. aliphatischen Mono- oder Dicarbonsäuren, wie Trifluoressigsäure, Essigsäure, Propionsäure, Glykolsäure, Bernsteinsäure, Maleinsäure, Fumarsäure, Hydroxymaleinsäure, Aepfelsäure, Weinsäure, Zitronensäure, Oxalsäure oder Aminosäuren, wie Arginin oder Lysin, aromatischen Carbonsäuren, wie Benzoesäure, 2-Phenoxy-benzoesäure, 2-Acetoxy-benzoesäure, Salicylsäure, 4-Aminosalicylsäure, aromatisch-aliphatischen Carbonsäuren, wie Mandelsäure oder Zimtsäure, heteroaromatischen Carbonsäuren, wie Nicotinsäure oder Isonicotinsäure, aliphatischen Sulfonsäuren, wie Methan-, Ethan- oder 2-Hydroxy-ethan-sulfonsäure, oder aromatischen Sulfonsäuren, z.B. Benzol-, p-Toluol- oder Naphthalin-2-sulfonsäure. Bei Anwesenheit von mehreren basischen Gruppen können Mono- oder Polysäureadditionssalze gebildet werden.

Verbindungen der Formel I mit sauren Gruppen, z.B. einer freien Carboxylgruppe, können Metall- oder Ammoniumsalze, wie Alkalimetall- oder Erdalkalimetallsalze bilden, z.B. Natrium-, Kalium-, Magnesium- oder Calciumsalze oder Ammoniumsalze mit Ammoniak oder geeigeten organischen Aminen, wie tertiären Monoaminen, z.B. Triethylamin oder Tri-(2-hydroxyethyl)-amin, oder heterocyclischen Basen, z.B. N-Ethyl-piperidin oder N,N'-Dimethyl-piperazin.

25

Wie erfindungsgemäss gefunden wurde, besitzen die Verbindungen der Formel I bisher noch unbekannte, wertvolle pharmakologische Eigenschaften, z.B. hemmen sie selektiv das Enzym Proteinkinase C.

Zur Bestimmung der Proteinkinase-C-Hemmwirkung verwendet man Proteinkinase C aus Schweinehirn. Die Bestimmung der Proteinkinase-C-Hemmwirkung der Verbindungen der Formel I erfolgt nach der Methodik von D. Fabbro et al. wie beschrieben im Beispiel 2. In diesem Test hemmen die Verbindungen der Formel I die Proteinkinase C bereits bei einer Konzentration IC₅₀ zwischen etwa 1 und 30 μMol/Liter.

Demgegenüber hemmen die Verbindungen der Formel I andere Enzyme, z.B. Proteinkinase A und Protein-Phosphorylase-Kinase, erst bei einer weitaus, z.B 100fach höheren Konzentration. Dies zeigt die Selektivität der Verbindungen der Formel I.

Aufgrund ihrer Hemmwirkung gegenüber Proteinkinase C können die Verbindungen der Formel I und ihre pharmazeutisch verwendbaren Salze als tumorhemmende, immunomodulierende und antibakterielle Wirkstoffe, ferner als Mittel gegen Atherosklerose, die Immunschwächekrankheit AIDS, sowie Krankheiten des kardiovaskulären Systems und des zentralen Nervensystems, verwendet werden.

Wie bereits aufgrund der obengeschilderten Hemmwirkung auf Proteinkinase C erwartet werden kann, weisen die Verbindungen der Formel I antiproliferative Eigenschaften auf, die sich unter anderem in dem im Beispiel 1 beschriebenen Versuch direkt demonstrieren lassen. Dabei wird die Hemmwirkung der Verbindungen der Formel I auf das Wachstum von menschlichen T24 Blasenkarzinomzellen bestimmt. Die so ermittelten IC₅₀-Werte liegen für die Verbindungen der Formel I zwischen etwa 1 und 10 μMol/Liter.

Auch in vivo lassen sich die antiproliferativen Eigenschaften demonstrieren, z.B. wie beschrieben im Beispiel 3. In dem im Beispiel 3 beschriebenen Versuch bewirken die Verbindungen der Formel I nach peroraler oder intraperitonealer Verabreichung eine Reduktion des Tumorvolumens auf etwa 35-70 % des Tumorvolumens bei mit Placebo behandelten Kontrolltieren.

Aufgrund der beschriebenen Eigenschaften können die Verbindungen der Formel I insbesondere als tumorhemmende Wirkstoffe verwendet werden, z.B zur Therapie von Tumoren der Blase. Die Erfindung betrifft diese Verwendung als Antitumormittel unabhängig davon, ob die Antitumorwirkung ursächlich auf die Hemmung der Proteinkinase C zurückgeht oder nicht, und unabhängig davon, ob nachgewiesen werden kann, dass die gefundene Antitumorwirkung ursächlich auf die Hemmung der Proteinkinase C zurückgeht.

Wenn die Verbindungen der Formel I bei d r Krebstherapie in Kombination mit anderen Chemotherapeutika verwendet werden, verhindern sie die Bildung von Resistenz (multidrug resistance) oder heben eine be-

reits gegenüber den anderen Chemotherapeutika vorhandene Resistenz auf. Ausserdem kommen die Verbindungen der Formel I für die oben für Proteinkinase C Modulatoren genannten weiteren Anwendungen in Betracht und können insbesondere zur Behandlung von Krankheiten verwendet werden, die auf eine Hemmung der Proteinkinase C ansprechen. Die Erfindung betrifft die Verwendung der Verbindungen der Formel I für die obengenannten Zwecke, mit Ausnahme der vorbeschriebenen Verwendung gegen Asthma, Allergien, Entzündung und Diabetes, und zur Herstellung von pharmazeutischen Präparaten zur Anwendung für diese Zwecke.

Bevorzugt verwendet man Verbindungen der Formel I, worin mindestens zwei der Reste R_6 , R_6 und R_8 je für Wasserstoff stehen, insbesondere solche Verbindungen, worin R_6 , R_6 und R_8 je für Wasserstoff stehen und die übrigen Substituenten jeweils die obengenannten Bedeutungen haben, und pharmazeutisch verwendbare Salze von solchen Verbindungen mit mindestens einer salzbildenden Gruppe.

Hauptsächlich verwendet man Verbindungen der Formel I, worin R_1 , R_2 , R_4 , R_6 , R_6 und R_8 je für Wasserstoff stehen, R_3 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Methyl-3-pyridyl, 4-Methyl-3-pyridyl, 2-Furyl, 5-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 2-Thienyl, 3-Thienyl, 5-Methyl-2-thienyl, 2-Phenothiazinyl, 4-Pyrazinyl, 2-Benzofuryl, N-Oxido-3-pyridyl, N-Oxido-3-pyridyl, N-Oxido-4-pyridyl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1-Methyl-1H-pyrrol-2-yl, 4-Quinolinyl, 1-Methyl-pyridinium-4-yl-iodid, Dimethylaminophenyl oder N-Acetyl-N-methyl-amino-phenyl bedeutet, und R_7 C_1 - C_6 -Alkyl, C_1 - C_3 -Alkoxy, Chlor, Brom, lod, Trifluormethyl, Hydroxy, Phenyl, Amino, Mono-(C_1 - C_3 -alkyl)-amino, Di-(C_1 - C_3 -alkyl)-amino, C_2 - C_4 -Alkanoyl, Propenyloxy, Carboxy, Carboxymethoxy, Ethoxycarbonyl-methoxy, Sulfanilamido, N,N-Di-(C_1 - C_3 -alkyl)-sulfanilamido, N-Methyl-pi-perazinyl, Piperidinyl, 1H-Imidazol-1-yl, 1H-Triazol-1-yl, 1H-Benzimidazol-2-yl, 1-Naphthyl, Cyclopentyl, 3,4-Dimethyl-benzyl oder einen Rest einer der Formeln:

 $-CO_2R$, -NH-C(=0)-R, -N(R)-C(=0)-R, -O-(CH₂)_n-N(R)-R, -C(=0)-NH-(CH₂)_n-N(R)-R, -CH(CH₃)-NH-CHO, -C(CH₃)=N-OH, -C(CH₃)=N-O-CH₃, -C(CH₃)-NH₂, -NH-CH₂-C(=0)-N(R)-R,

$$-N$$
 N R_9 .

-(CH₂)_m-R₁₀, -X-(CH₂)_m-R₁₀ oder

25

35

40

bedeutet, worin R für C_1 - C_3 -Alkyl steht, X für Sauerstoff oder Schwefel steht, m für 1, 2 oder 3 steht, n für 2 oder 3 steht, R $_9$ für Wasserstoff, C_1 - C_3 -Alkyl, C_1 - C_3 -Alkyl, C $_1$ -C $_3$ -Alkyl, Oder Unsubstituiertes oder durch C_1 - C_3 -Alkyl, Halogen oder Trifluormethyl monosubstituiertes Phenyl steht, und pharmazeutisch verwendbare Salze von solchen Verbindungen mit mindestens einer salzbildenden Gruppe.

Besonders bevorzugt verwendet man Verbindungen der Formel I, worin R_1 , R_2 , R_4 , R_5 , R_6 und R_8 je für Wasserstoff stehen, R_3 3-Pyridyl bedeutet und R_7 1H-Imidazol-1-yl, Amino, Trifluormethyl, Chlor oder einen Rest der Formel -CO $_2$ R oder

C(=0)-NH-(CH₂)_n-N(R)-R bedeutet, worin R je für Wasserstoff oder Methyl und n für 3 stehen, und pharmazeutisch verwendbare Säureadditionssalze von solchen Verbindungen.

Am meisten bevorzugt verwendet man die in den Beispielen genannten Verbindungen der Formel I und pharmazeutisch verwendbare Säureadditionssalze von solchen Verbindungen.

Die Erfindung betrifft auch ein Verfahren zur Behandlung von Warmblütern, die an einer Tumorerkrankung leiden, wobel man Warmblütern, die einer solchen Behandlung bedürfen, eine wirksame tumorhemmende Menge einer Verbindung der Formel I oder eines pharmazeutisch verwendbaren Salzes davon verabreicht. Die Erfindung betrifft ausserdem die Verwendung einer Verbindung der Formel I oder eines pharmazeutisch verwendbaren Salzes davon zur Hemmung der Proteinkinase C bei Warmblütern oder zur Herstellung von pharmazeutischen Präparaten zur Anwendung zur therapeutischen Behandlung des menschlichen oder tierischen Körpers. Die Erfindung betrifft auch eine Methode zur Hemmung der Proteinkinase C in Warmblütern, wobei man Warmblütern, die einer solchen Behandlung bedürfen, eine wirksame Proteinkinase C hemmende Menge einer Verbindung der Formel I verabreicht. Dabei werden an einen Warmblüter von etwa 70 kg Körpergewicht je nach Spezies, Alter, individuellem Zustand, Applikationsweise und dem jeweiligen Krankheitsbild tägliche Dosen von etwa 1-2000 mg, insbesonder 50-2000 mg, hauptsächlich 500-2000 mg, z.B. 500-1000

mg, enteral oder parenteral verabreicht.

Die Erfindung betrifft auch die Verwendung einer Verbindung der Formel I oder eines pharmazeutisch verwendbaren Salzes davon zur Herstellung pharmazeutischer Präparate zur Anwendung zur Hemmung der Proteinkinase C, z.B. zur Behandlung von Tumorerkrankungen. Die genannten pharmazeutischen Präparate enthalten eine wirksame Menge, insbesondere eine zur Prophylaxe oder Therapie einer der obengenannten Krankheiten wirksame Menge, der Aktivsubstanz zusammen mit pharmazeutisch verwendbaren Trägerstoffen, die sich zur topischen, enteralen, z.B. oralen oder rektalen, oder parenteralen Verabreichung eignen, und anorganisch oder organisch, fest oder flüssig sein können. Zur oralen Verabreichung verwendet man insbesondere Tabletten oder Gelatinekapseln, welche den Wirkstoff zusammen mit Verdünnungsmitteln, z.B. Lactose, Dextrose, Sukrose, Mannitol, Sorbitol, Cellulose und/oder Glycerin, und/oder Schmiermitteln, z.B. Kieselerde, Talk, Stearinsäure oder Salze davon, wie Magnesium- oder Calciumstearat, und/oder Polyethylenglykol, enthalten. Tabletten können ebenfalls Bindemittel, z.B. Magnesiumaluminiumsilikat, Stärken, wie Mals-, Weizen- oder Reisstärke, Gelatine, Methylcellulose, Natriumcarboxymethylcellulose und/oder Polyvinylpyrrolidon, und, wenn erwünscht, Sprengmittel, z.B. Stärken, Agar, Alginsäure oder ein Salz davon, wie Natriumalginat, und/oder Brausemischungen, oder Adsorptionsmittel, Farbstoffe, Geschmacksstoffe und Süssmittel enthalten. Ferner kann man die pharmakologisch wirksamen Verbindungen der vorliegenden Erfindung in Form von parenteral verabreichbaren Präparaten oder von Infusionslösungen verwenden. Solche Lösungen sind vorzugsweise isotonische wässrige Lösungen oder Suspensionen, wobei diese z.B. bei lyophilisierten Praparaten, welche die Wirksubstanz allein oder zusammen mit einem Trägermaterial, z.B. Mannit, enthalten, vor Gebrauch hergestellt werden können. Die pharmazeutischen Präparate können sterilisiert sein und/oder Hiffsstoffe, z.B. Konservier-, Stabilisier-, Netz- und/oder Emulgiermittel, Löslichkeitsvermittler, Salze zur Regulierung des osmotischen Drucks und/oder Puffer enthalten. Die vorliegenden pharmazeutischen Präparate, die. wenn erwünscht, weitere pharmakologisch wirksame Stoffe, wie Antibiotika, enthalten können, werden in an sich bekannter Weise, z.B. mittels konventioneller Misch-, Granulier-, Dragier-, Lösungs- oder Lyophilisierungsverfahren, hergestellt und enthalten von etwa 1 % bis 100 %, insbesondere von etwa 1 % bis etwa 20 %, des bzw. der Aktivstoffe.

Die nachfolgenden Beispiele illustrieren die Erfindung, ohne sie in irgendeiner Form einzuschränken.

Abkürzungen:

10

25

30

35

40

Verbindung A = N-(3-1H-Imidazol-1-yl-phenyl)-4-(3-pyridyl)-2-pyrimidinamin (= Verbindung der Formel I, worin R_1 , R_2 , R_4 , R_5 , R_6 und R_8 je für Wasserstoff stehen, R_3 3-Pyridyl bedeutet und R_7 1H-Imidazol-1-yl ist.)

Verbindung B = N-(3-Trifluormethyl-phenyl)-4-(3-pyndyl)-2-pyrimidinamin

Verbindung C = N-(3-Chlor-phenyl)-4-(3-pyridyl)-2-pyrimidinamin

Verbindung D = N-(3-Amino-phenyl)-4-(3-pyridyl)-2-pyrimidinamin

Verbindung E = N-(3-Methoxycarbonyl-phenyl)-4-(3-pyridyl)-2-pyrimidinamin

Verbindung F = N-(3-[3-Amino-propylamino-carbonyl]-phenyl)-4-(3-pyridyl)-2-pyrimidinamin

Beispiel 1: Hemmung des Wachstums von menschlichen Blasenkarzinomzellen

Menschliche T24 Blasenkarrinomzellen werden in "Eagle's minimal essential medium", dem 5 % (V/V) fötales Kälberserum zugesetzt sind, in einem befeuchteten Inkubator bei 37°C und 5 Volumenprozent CO₂ in der Luft inkubiert. Die Karzinomzellen (1000-1500) werden in 96-Loch-Mikrotiterplatten überimpft und über Nacht unter den obengenannten Bedingungen inkubiert. Die Testsubstanz wird in seriellen Verdünnungen am Tag 1 hinzugefügt. Die Platten werden unter den obengenannten Bedingungen 5 Tage lang inkubiert. Während dieser Zeitspanne durchlaufen die Kontrollkulturen mindestens 4 Zellteilungen. Nach der Inkubation werden die Zellen mit 3,3%iger (G/V) wässriger Glutaraldehydlösung fixiert, mit Wasser gewaschen und mit 0,05%iger (Gewicht/Volumen) wässriger Methylenblaulösung gefärbt. Nach dem Waschen wird der Farbstoff mit 3%iger (G/V) wässniger Salzsäure eluiert. Danach wird die optische Dichte (OD) pro Loch, welche der Zellanzahl direkt proportional ist, mit einem Photometer (Titertek multiskan) bei 665 nm gemessen. Die IC₅₀-Werte werden mit einem Computersystem unter Verwendung der Formel

OD₆₆₅ (Test) minus OD₆₆₅ (Anfang) x 100

errechnet. Die IC₅₀-Werte sind als diejenige Wirkstoffkonzentration definiert, bei der die Anzahl der Zellen pro Loch am Ende der Inkubationszeit nur 50 % der Zellanzahl in den Kontrollkulturen beträgt. In dem beschriebenen Test werden für Verbindungen der Formel I die folgenden IC₅₀-Werte erhalten:

Verbindung	[µMol/Liter]
A	2,5
В	7,4
c ·	5,2
D	7,2

10

Beispiel 2: Bestimmung der Proteinkinase-C-Hemmwirkung

Zur Bestimmung der Proteinkinase-C-Hemmwirkung verwendet man Proteinkinase C aus Schweinehirn, welche gemäss der von T. Uchida und C.R. Filburn in J. Biol. Chem. <u>259</u>, 12311-4 (1984) beschriebenen Verfahrensweise gereinigt wird. Die Bestimmung der Proteinkinase-C-Hemmwirkung der Verbindungen der Formel I erfolgt nach der Methodik von D. Fabbro et al., Arch. Biochem. Biophys. <u>239</u>, 102-111 (1985). In dem beschriebenen Test werden für Verbindungen der Formel I die folgenden IC₅₀-Werte erhalten:

[µMol/Liter]

20

90

25

30

A 8,8
B 2,5
C 6,3
D 28
E 26
F 28

Verbindung

Beispiel 3: Antitumoraktivität in Mäusen

Am Tag 0 transplantiert man je ein etwa 25 mg schweres Stück eines menschlichen T24 Blasenkarzinoms mittels Trokar subkutan unter operabler "Forene"-Narkose auf je eine weibliche Balb/c nude Maus (Balb/c nu/nu, Bomholdgaard, Dänemark; sechs Mäuse pro Gruppe). Am Tag 6 nach der Tumortransplantation beträgt das mittlere Tumorvolumen 120-140 mm³ und man beginnt mit der Behandlung, die darin besteht, dass man einmal täglich während 15 aufeinanderfolgenden Tagen, d.h. insgesamt 15mal, 25 ml/kg der nachstehenden Formulierung peroral oder intraperitoneal verabreicht. Diese Formulierung wird folgendermassen hergestellt: 16 mg eines Wirkstoffs der Formel I werden in 0,4 ml Dimethylsulfoxid (100 %) gelöst.

Dazu fügt man 0,05 ml Tween 80 und mischt. Anschliessend fügt man 7,6 ml einer 0,9%igen wässerigen Natriumchloridlösung hinzu und mischt sofort gründlich. Diese Formulierung wird täglich frisch angesetzt. Die Kontrolltiere erhalten ein Placebo. Als Placebo verwendet man die gleiche Formulierung ohne Wirkstoff der Formel I.

24 Stunden nach der letzten Applikation wird das Tumorvolumen gemessen und das Verhältnis [%] des Tumorvolumens T/C bei den behandelten (T) und den mit Placebo behandelten Kontrolltieren (C) bestimmt, wobei das Tumorvolumen in den Kontrolltieren als 100 % definiert wird, d.h. je kleiner das Verhältnis T/C ist, desto wirksamer ist die verabreichte Formulierung.

Verwendet man als Wirkstoff der Formel I die Verbindung B, so ermittelt man bei peroraler Verabreichung von 25 bzw. 50 mg Verbindung B im obigen Versuch ein Verhältnis T/C von 68 % bzw. 53 %. Bei intraperitonealer Verabreichung von 25 bzw. 50 mg Verbindung B wird im obigen Versuch ein Verhältnis T/C von 54 % bzw. 46 % ermittelt.

Beispiel 4:

55

Tabletten, enthaltend 20 mg an Wirkstoff, z.B. eine der in den Beispielen 1-2 genannten Verbindungen der Formel I, werden in folgender Zusammensetzung in üblicher Weise hergestellt:

Zusammensetzung:	
Wirkstoff	20 mg
Weizenstärke	60 mg
Milchzucker	50 mg
Kolloidale Kieselsäure	5 mg
Talk	• 9 mg
Magnesiumstearat	1 mg
	145 mg

15

20

10

Herstellung:

Der Wirkstoff wird mit einem Teil der Weizenstärke, mit Milchzucker und kolloidaler Kieselsäure gemischt und die Mischung durch ein Sieb getrieben. Ein weiterer Teil der Weizenstärke wird mit der 5fachen Menge Wasser auf dem Wasserbad verkleistert und die Pulvermischung mit diesem Kleister angeknetet, bis eine schwach plastische Masse entstanden ist.

Die plastische Masse wird durch ein Sleb von ca. 3 mm Maschenweite gedrückt, getrocknet und das erhaltene trockene Granulat nochmals durch ein Sieb getrieben. Darauf werden die restliche Weizenstärke, Talk und Magnesiumstearat zugemischt und die Mischung zu Tabletten von 145 mg Gewicht mit Bruchkerbe verpresst.

Beispiel 5:

Tabletten enthaltend 1 mg an Wirkstoff, z.B. eine der in den Beispielen 1-2 genanntenVerbindungen der Formel I, werden in folgender Zusammensetzung in üblicher Weise hergestellt:

Zusammensetzung:	
Wirkstoff	1 mg
Weizenstärke	60 mg
Milchzucker	50 mg
Kolloidale Kieselsäure	5 mg
Talk	9 mg
Magnesiumstearat	1 mg
	126 mg

45

35

40

Herstellung:

Der Wirkstoff wird mit einem Teil der Weizenstärke, mit Milchzucker und kolloidaler Kieselsäure gemischt und die Mischung durch ein Sieb getrieben. Ein weiterer Teil der Weizenstärke wird mit der 5fachen Menge Wasser auf dem Wasserbad verkleistert und die Pulvermischung mit diesem Kleister angeknetet, bis eine schwach plastische Masse entstanden ist

Die plastische Masse wird durch ein Sieb von ca. 3 mm Maschenweite gedrückt, getrocknet und das erhaltene trockene Granulat nochmals durch ein Sieb getrieben. Darauf werden die restliche Weizenstärke, Talk und Magnesiumstearat zugemischt und die Mischung zu Tabletten von 126 mg Gewicht mit Bruchkerbe verpresst.

Beispiel 6:

5

10

15

20

25

30

35

40

45

50

55

Kapseln, enthaltend 10 mg an Wirkstoff, z.B. eine der in den Beispielen 1-2 genannten Verbindungen der Formel I, werden wie folgt auf übliche Weise hergestellt:

Zusammensetzung:		
Wirkstoff	2500 mg	
Talkum	200 mg	
Kolloidale Kieselsäure	50 mg	

Herstellung:

Die aktive Substanz wird mit Talkum und kolloidaler Kieselsäure innig gemischt, das Gemisch durch ein Sieb mit 0,5 mm Maschenweite getrieben und dieses in Portionen von jeweils 11 mg in Hartgelatinekapseln geeigneter Grösse abgefüllt.

Patentansprüche

Verwendung von N-Phenyl-2-pyrimidinamin-derivaten der Formel I,

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_5
 R_6
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_6
 R_7
 R_8
 R_8

worin R_1 Wasserstoff oder C_1 – C_3 -Alkyl bedeutet, R_2 Wasserstoff oder C_1 – C_3 -Alkyl bedeutet, R_3 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Methyl-3-pyridyl, 4-Methyl-3-pyridyl, 2-Furyl, 5-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 2-Thienyl, 3-Thienyl, 5-Methyl-2-thienyl, 2-Phenothiazinyl, 4-Pyrazinyl, 2-Benzofuryl, N-Oxido-2-pyridyl, N-Oxido-3-pyridyl, N-Oxido-4-pyridyl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1-Methyl-1H-pyrrol-2-yl, 4-Quinolinyl, 1-Methyl-pyridinium-4-yl-iodid, Dimethylamino-phenyl oder N-Acetyl-N-methyl-aminophenyl bedeutet, R_4 Wasserstoff, C_1 – C_3 -Alkyl, den Rest –CO–CO– C_2 + C_5 oder N,N-Dimethylaminoethyl bedeutet, mindestens einer der Reste R_5 , R_6 , R_7 und R_8 C_1 – C_8 -Alkyl, C_1 - C_3 -Alkoxy, Chlor, Brom, Iod, Trifluormethyl, Hydroxy, Phenyl, Amino, Mono– $(C_1$ - C_3 -alkyl)-amino, Di– $(C_1$ - C_3 -alkyl)-amino, C_2 - C_4 -Alkanoyl, Propenyloxy, Carboxy, Carboxy-methoxy, Ethoxycarbonyl-methoxy, Sulfanilamido, N,N-Di– $(C_1$ - C_3 -alkyl)-sulfanilamido, N-Methyl-piperazinyl, Piperidinyl, 1H-Imidazol-1-yl, 1H-Triazol-1-yl, 1H-Benzimidazol-2-yl, 1-Naphthyl, Cyclopentyl, 3,4-Dimethyl-benzyl oder einen Rest einer der Formeln:

 $-CO_2R$, -NH-C(=0)-R, -N(R)-C(=0)-R, $-O-(CH_2)_n-N(R)-R$, $-C(=0)-NH-(CH_2)_n-N(R)-R$, $-CH(CH_3)-NH-CHO$, $-C(CH_3)=N-OH$, $-C(CH_3)=N-O-CH_3$, $-C(CH_3)-NH_2$, $-NH-CH_2-C(=0)-N(R)-R$,

$$-N$$
 N
 R_0

-(CH₂)_m-R₁₀, -X-(CH₂)_m-R₁₀ oder

bedeutet, worin R für C₁-C₃-Alkyl steht, X für Sauerstoff oder Schwefel steht, m für 1, 2 oder 3 steht, n für 2 oder 3 steht, R₉ für Wasserstoff, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Chlor, Brom, Iod oder Trifluormethyl steht, R₁₀ für 1H-Imidazol-1-yl oder Morpholinyl steht und R₁₁ für C₁-C₃-Alkyl oder unsubstituiertes oder durch C₁-C₃-Alkyl, Halogen oder Trifluormethyl monosubstituiertes Phenyl steht, und die übrigen der Reste R₅, R₆, R₇ und R₈ Wasserstoff bedeuten, oder von pharmazeutisch verwendbaren Salzen von solchen Verbindungen mit mindestens einer salzbildenden Gruppe zur Herstellung von pharmazeutischen Präparaten zur Anwendung als Hemmer der Proteinkinase C in Warmblütern einschliesslich des Menschen.

- Verwendung nach Anspruch 1 zur Herstellung von pharmazeutischen Präparaten zur Anwendung als Antitumormittel in Warmblütern einschliesslich des Menschen.
 - Verwendung nach Anspruch 1 mit Ausnahme einer etwaigen Verwendung gegen Asthma, Allergien, Entzündung und Diabetes.
- 4. Verwendung von N-Phenyl-2-pyrimidinamin-derivaten der Formel I,

$$\begin{array}{c}
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_6 \\
R_5
\end{array}$$

$$\begin{array}{c}
R_6 \\
R_5
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_2 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_4 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_6
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_6
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_6
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_7
\end{array}$$

$$\begin{array}{c}
R_7 \\
R_9
\end{array}$$

$$\begin{array}{c}
R_9 \\
R_9$$

$$\begin{array}{c}
R_9 \\
R_9
\end{array}$$

$$\begin{array}{c}
R_9 \\
R_9$$

$$\begin{array}{c}
R_9 \\
R_9
\end{array}$$

$$\begin{array}{c}
R_9 \\
R_9$$

$$\begin{array}{c}
R_9 \\
R_9
\end{array}$$

$$\begin{array}{c}
R_9 \\
R_9$$

$$\begin{array}{c}
R_9 \\
R_9
\end{array}$$

$$\begin{array}{c}
R_9 \\
R_9$$

worin R_1 Wasserstoff oder C_1 – C_3 -Alkyl bedeutet, R_2 Wasserstoff oder C_1 – C_3 -Alkyl bedeutet, R_3 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Methyl-3-pyridyl, 4-Methyl-3-pyridyl, 2-Furyl, 5-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 2-Thienyl, 3-Thienyl, 5-Methyl-2-thienyl, 2-Phenothiazinyl, 4-Pyrazinyl, 2-Benzofuryl, N-Oxido-2-pyridyl, N-Oxido-3-pyridyl, N-Oxido-4-pyridyl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1-Methyl-1H-pyrrol-2-yl, 4-Quinolinyl, 1-Methyl-pyridinium-4-yl-iodid, Dimethylamino-phenyl oder N-Acetyl-N-methyl-amino-phenyl bedeutet, R_4 Wasserstoff, C_1 – C_3 -Alkyl, den Rest -CO-CO-O-C $_2$ H $_5$ oder N,N-Dimethylaminoethyl bedeutet, mindestens einer der Reste R_5 , R_6 , R_7 und R_6 C_1 - C_6 -Alkyl, C_1 - C_3 -Alkoxy, Chlor, Brom, lod, Trifluormethyl, Hydroxy, Phenyl, Amino, Mono- (C_1 - C_3 -alkyl)-amino, Di-(C_1 - C_3 -alkyl)-amino, C_2 - C_4 -Alkanoyl, Propenyloxy, Carboxy, Carboxy-methoxy, Ethoxycarbonyl-methoxy, Sulfanilamido, N,N-Di-(C_1 - C_3 -alkyl)-sulfanilamido, N-Methyl-piperazinyl, Piperidinyl, 1H-Imidazol-1-yl, 1H-Triazol-1-yl, 1H-Benzimidazol-2-yl, 1-Naphthyl, Cyclopentyl, 3,4-Dimethyl-benzyl oder einen Rest einer der Formeln: $-CO_2R$, -NH--C(=O)-R, -N(R)--C(=O)-R, -C(CH $_2$), -N(R)-R, -C(=O)-NH-(CH $_2$), -N(R)-R, -C(CH $_3$)-NH-

$$-N$$

-(CH₂)_m-R₁₀, -X-(CH₂)_m-R₁₀ oder

55

10

15

20

25

30

35

40

45

50

bedeutet, worin R für C₁-C₃-Alkyl steht, X für Sauerstoff oder Schwefel steht, m für 1, 2 oder 3 steht, n für 2 oder 3 steht, R₉ für Wasserstoff, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Chlor, Brom, lod oder Trifluormethyl steht, R₁₀ für 1H-Imidazol-1-yl oder Morpholinyl steht und R₁₁ für C₁-C₃-Alkyl oder unsubstituiertes oder durch C₁-C₃-Alkyl, Halogen oder Trifluormethyl monosubstituiertes Phenyl steht, und die übrigen der Reste R₅, R₆, R₇ und R₈ Wasserstoff bedeuten, oder von pharmazeutisch verwendbaren Salzen von solchen Ver-

- R₆, R₇ und R₈ Wasserstoff bedeuten, oder von pharmazeutisch verwendbaren Salzen von solchen Verbindungen mit mindestens einer salzbildenden Gruppe zur Herstellung von pharmazeutischen Präparaten zur Anwendung als Antitumormittel in Warmblütern einschliesslich des Menschen.
- Verwendung nach einem der Ansprüche 1-4, worin in der Verbindung der Formel I mindestens zwei der
 Reste R₅, R₆ und R₈ je für Wasserstoff stehen.
 - Verwendung nach einem der Ansprüche 1-4, worin in der Verbindung der Formel I R₈, R₆ und R₈ je für Wasserstoff stehen.
- Verwendung nach einem der Ansprüche 1-4, worin in der Verbindung der Formel I R₁, R₂, R₄, R₆, R₈ und R₈ je für Wasserstoff stehen, R₃ 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Methyl-3-pyridyl, 4-Methyl-3-pyridyl, 2-Furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 2-Thienyl, 3-Thienyl, 5-Methyl-2-thienyl, 2-Phenothiazinyl, 4-Pyrazinyl, 2-Benzofuryl, N-Oxido-2-pyridyl, N-Oxido-3-pyridyl, N-Oxido-4-pyridyl, 1H-Indol-2-yl, 1H-Indol-3-yl, 1-Methyl- 1H-pyrrol-2-yl, 4-Quinolinyl, 1-Methyl-pyridinium-4-yl-iodid, Dimethylamino-phenyl oder N-Acetyl-N-methyl-amino-phenyl bedeutet, und R₇ C₁-C₆-Alkyl, C₁-C₃-Alkoxy, Chlor, Brom, Iod, Trifluormethyl, Hydroxy, Phenyl, Amino, Mono-(C₁-C₃-alkyl)-amino, Di-(C₁-C₃-alkyl)-amino, C₂-C₄-Alkanoyl, Propenyloxy, Carboxy, Carboxy-methoxy, Ethoxycarbonyl-methoxy, Sulfanilamido, N,N-Di-(C₁-C₃-alkyl)-sulfanilamido, N-Methyl-piperazinyl, Piperidinyl, 1H-Imidazol-1-yl, 1H-Triazol-1-yl, 1H-Benzimidazol-2-yl, 1-Naphthyl, Cyclopentyl, 3,4-Dimethyl-benzyl oder einen Rest einer der Formeln:
 - $-CO_2R$, -NH-C(=0)-R, -N(R)-C(=0)-R, -O-(CH₂)_n-N(R)-R, C(=0)-NH-(CH₂)_n-N(R)-R, -CH(CH₃)-NH-CHO, -C(CH₃)=N-OH, -C(CH₃)=N-O-CH₃, -C(CH₃)-NH₂, -NH-CH₂-C(=0)-N(R)-R,

$$-N$$
 N
 R_0

-(CH₂)_m-R₁₀, -X-(CH₂)_m-R₁₀ oder

5

10

30

35

40

- bedeutet, worin R für C₁-C₃-Alkyl steht, X für Sauerstoff oder Schwefel steht, in für 1, 2 oder 3 steht, n für 2 oder 3 steht, R₉ für Wasserstoff, C₁-C₃-Alkyl, C₁-C₃-Alkoxy, Chlor, Brom, lod oder Trifluormethyl steht, R₁₀ für 1H-Imidazol-1-yl oder Morpholinyl steht und R₁₁ für C₁-C₃-Alkyl oder unsubstituiertes oder durch C₁-C₃-Alkyl, Halogen oder Trifluor methyl monosubstituiertes Phenyl steht.
- 8. Verwendung nach einem der Ansprüche 1-4, worin in der Verbindung der Formel i R₁, R₂, R₄, R₅, R₆ und R₆ je für Wasserstoff stehen, R₃ 3-Pyridyl bedeutet und R₇ 1H-Imidazol-1-yl, Amino, Trifluormethyl, Chlor oder einen Rest der Formel -CO₂R oder -C(=O)-NH-(CH₂)_n-N(R)-R bedeutet, worin R je für Wasserstoff oder Methyl und n für 3 stehen.
- Verwendung nach einem d r Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-1H-Imidazol-1-yl-phenyl)-4-(3-pyndyl)-2-pyrimidinamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.
 - 10. Verwendung nach einem der Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-Trifluorimethyl-

phenyl)4-(3-pyridyl)-2-pyrimidulamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.

- 11. Verwendung nach einem der Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-Chlor-phenyl)4-(3-pyridyl)-2-pyrimidinamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.
- 12. Verwendung nach einem der Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-Amino-phenyl)-4-(3-pyridyl)-2-pyrimidinamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.

5

10

15

20

25

30

35

40

45

50

55

- 13. Verwendung nach einem der Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-Methoxycarbonyl-phenyl)-4-(3-pyridyl)-2-pyrimidinamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.
- Verwendung nach einem der Ansprüche 1-4, worin man als Verbindung der Formel I N-(3-[3-Amino-propylamino-carbonyl]-phenyl)-4-(3-pyridyl)-2-pyrimidinamin oder ein pharmazeutisch verwendbares Salz davon einsetzt.

11

EUROPÄISCHER TEILRECHERCHENBERICHT Nummer der Anmeldung

der nach Regel 45 des Europäischen Patentübereinkommens für das weitere Verfahren als europäischer Recherchenbericht gält

EP 93 81 0595

		GE DOKUMENTE		
Kategorie	Kennzeichnung des Dokum der maßgeb	nents mit Angabe, soweit erforderlich lichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IALCLS)
D,A	EP-A-O 233 461 (AM 26. August 1987 * das ganze Dokume	ERICAN CYANAMID COMP.)	1-14	A61K31/505
A	EP-A-0 453 731 (AM 30. Oktober 1991 * das ganze Dokume	ERICAN CYANAMID COMPAN	Y) 1-14	
A	EP-A-0 164 204 (FI * das ganze Dokume	SONS) 11. Dezember 198 nt *	5 1-14	
				RECHERCHIERTE SACHGEBIETE (bs.C.5)
				A61K
UNVO	LLSTÄNDIGE RECH	IERCHE		
oung sen ist, sof de Tecknik d Volkständ Unvolkstä Nächt rec Grund fü	Vorschriften des Furossischen	che: he:		
1	Recharchement DEM 114.4.0	Abschlißbalen der Becherche		Prthr
	DEN HAAG	27. Dezember 19	193 Krai	utbauer, B
X : von t Y : von t ander A : techn	ATEGORIE DER GENANNTEN I besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung ren Verbffentlichung derselben Kate sologischer Hintergrund schriftliche Offenbarung	E : Elteres Patent tet nach den An g mit einer D : in der Annet gorie L : aus andem G	dokument, das jedoc meldedatum veröffen: tung angeführtes Do ründen angeführtes I	tlicht worden ist kument

TPO FORM 1543 GL82 (POICO)

EP 93 81 0595 -C-

UNVOLLSTÄNDIGE RECHERCHE

Vollständig recherchierte Patentansprüche : 9-14 Unvollständig recherchierte Patentansprüche : 1-8

Grund: Auf grund der Vielzahl an theoretisch denkbaren Substanzen, die sich aus der verwendeten Markush-Formel ergeben, musste die Recherche auf die in den Ansprüchen explizit genannten Substanzen sowie auf das allgemeine erfinderische Konzept beschränkt werden.