Содержание

1	Метрические пространства	2
	Топология $\mathbb{R}^n,d(x,y)=\sqrt{\sum_j^n x_j-y_j ^2}$	5
	Топологические св-ва	5
	Ограниченность	6
	Принцип выбора Больцано-Вейерштрасса	6
2	$\mathbf K$ омпатные множества в $\mathbb R^n$	7
3	${f O}$ тображения в ${\Bbb R}^n$	12
	Непрерывные отображения	13
	Локальные свойства непрерывности	15
4	Глобальные св-ва непрерывности	16
	Диф-ние композиции	29
5	Частные производные композиции (в усл. теоремы)	30
	Геометрические св-ва градиента	31
	5.1 Непрерывно дифференцируемые отображения	33
	Лемма о среднем	33
	Т. о непр. диф. отображении в точке	34
	5.2 Непрерывно дифференцируемые отображения	34
6	Теория функций компл. переменного	37
	6.1 Комплексное дифференциирование	49

2019-09-04

1 Метрические пространства

$$M$$
 - мн-во, $d: M \times M \to [0; +\infty)$ - метрика

Теорема

Аксиомы метрики:

1.
$$d(x,y) \ge 0$$

$$2. d(x,y) = 0 \Leftrightarrow x = y$$

3.
$$d(x,y) = d(y,x)$$

4.
$$d(x, y) \le d(x, z) + d(z, y)$$

Примеры

1.
$$M = \mathbb{R}^n$$
 $x \in M$ $x = (x_1, ..., x_n)$

$$d_{\infty}(x, y) = \max_{1 \le i \le n} |x_i - y_i|$$

$$2. M = \mathbb{R}^n,$$

$$d_p(x,y) = \sqrt[p]{\sum |x_j - y_j|_{j=1}^n}$$

В частн.
$$d_2(x,y) = \sqrt{\sum_{j=1}^{n} |x_j - y_j|^2}$$

3.
$$M = C[0, 1]$$

$$f, g \in M$$

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$$

4.
$$M = C[-1,1]$$
 $d(f,g) = \int_{-1}^{1} |f-g|$

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

$$\max_{1\leqslant j\leqslant n}|x_j-y_j|\leqslant \sqrt{\sum_{j=1}^n|x_j-y_j|^2}\leqslant n\cdot \max_{1\leqslant j\leqslant n}|x_j-y_j|$$

$$d_{\infty}(x,y) \leqslant d_2(x,y) \leqslant n \cdot d_{\infty}(x,y)$$

Опр

$$x^{(m)} \in M$$

$$\lim_{m \to \infty} x^{(m)} = x \Leftrightarrow d(x^{(m)}, x) \underset{m \to \infty}{\to} 0$$

Пример

1.
$$M = C[0,1]$$
 $d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|$

$$f^{(m)} \underset{d}{\longrightarrow} f \Leftrightarrow f^{(m)} \underset{[0,1]}{\Longrightarrow} f$$

2.
$$M = \mathbb{R}^n$$
, $d_2(x, y)$ $x^{(m)} = (x_1^{(m)}, ..., x_n^{(m)})$
 $x^{(m)} \xrightarrow[d_2]{} x \Leftrightarrow x_j^{(m)} \to x_j \quad \forall j = 1, ...n$

T.о сходимостьть по метрике d_2 в \mathbb{R}^n равносильна покоординатной сх-ти

Теорема (Критерий Коши)

$$(\mathbb{R}^n,d_2)$$
 $x^{(m)}\underset{m\to\infty}{\to}x\Leftrightarrow \forall \mathcal{E}>0 \exists N: \forall n,k\geqslant N$ $d_2(x^{(n)},x^{(k)})<\mathcal{E}$ (упр. доказывается покоординатно)

Замечание

Аналогичн. Т. Верна не для всех метрич. пр

Пример

$$M = C[-1, 1]$$
 $d(f, g) = \int_{-1}^{1} |f - g|$

$$\{f_n\}$$
 - сх. в себе:

$$\forall \mathcal{E} > 0 \exists N : \forall n > N \ \forall p > 0 \quad d(f_n, f_{n+p}) < \mathcal{E}$$

$$d(f_n, f_{n+p}) = \int_{-1}^{1} |f_n - f_{n+p}| = \frac{1}{n} - \frac{1}{n+p} \leqslant \frac{1}{n} \to 0$$

$$\Rightarrow \forall \mathcal{E} \quad \exists N : \forall n > N, p > 0 \ d(f_n, f_{n+p}) < \mathcal{E}$$

Усл. Коши удовл. (сх в себе)

Есть ли $\lim_{n\to\infty} f_n$?

 $g(x) = \operatorname{sign} x$ - поточечный предел

$$\lim_{n \to \infty} \int_{-1}^{1} |f_b - g| = 0$$
, но $g \not\in C[-1, 1]$

Предположим, что $\exists f \in C[-1,1]: \lim f_n = f$, т.е $\int |f_n - f| \to 0$

$$0 \leqslant \int_{-1}^{1} |f - g| \leqslant \int_{-1}^{1} |f_n - f| + \int_{-1}^{1} |f_n - g| \underset{n \to \infty}{\to} 0$$

$$\int_{-1}^{1} |f - g| = 0$$

$$= \int_{-1}^{0} |f - g| + \int_{0}^{1} |f - g| \to \begin{cases} f(x) = 1 & \forall x > 0 \\ f(x) = -1 & \forall x < 0 \end{cases}$$

- неустранимый разрыв в точке $x=0\Rightarrow \lim f_n$ не существует

Упр

$$C[0,1]$$
 $d(f,g) = \sup_{1 \le x \le u} |f(x) - g(x)|$

Выполняется ли Т. Коши?

Топология
$$\mathbb{R}^n$$
, $d(x,y) = \sqrt{\sum_{j=1}^n |x_j - y_j|^2}$ $B(a,r) = \{x \in \mathbb{R}^n : d(a,x) < r\}$

$$X \subset \mathbb{R}^n$$
 X - откр, если $\forall a \in X \quad \exists B_a : B_a \subset X$

X - замкнуто $\Leftrightarrow X^C$ - открыто

Теорема (св-ва)

1.
$$U_{\alpha}$$
 - откр $\forall \alpha \in A \Rightarrow \bigcup_{\alpha \in A} U_{\alpha}$ - откр.

2.
$$\{U_k\}_{k=1}^N$$
 - откр $\Rightarrow \bigcap_{k=1}^n U_k$ - откр

3.
$$F_{\alpha}$$
 - замк $\forall \alpha \in A \Rightarrow \bigcap_{\alpha \in A} F_{\alpha}$

4.
$$F_k$$
 - замкн $\Rightarrow \bigcup_{k=1}^N F_k$ - замк

Опр

Окрестность т. а:

$$U$$
 - откр: $a \in U$

 δ -окр. т. а:

$$U_a(\delta) = B(a, \delta)$$

Прокол. δ -окр. т а:

$$\overset{\circ}{U_a}(\delta) = B(a,\delta) \setminus \{a\}$$

Внутренность $X \subset \mathbb{R}^n$:

$$int(X) = \{ a \in X : \exists B_a \subset X \}$$

Внешность $X \subset \mathbb{R}^n$:

$$\operatorname{ext}(X) = \operatorname{int}(X^c) = \{ b \in X^c : \exists B_b \subset X^c \}$$

Замыкание:

$$Cl(X) = (ext(X))^c$$

Граница:

$$\partial X = \operatorname{Cl}(x) \setminus \operatorname{int}(X) = \mathbb{R}^n \setminus (\operatorname{int} X \cup \operatorname{ext} X)$$

Примеры

$$X = B(0,1)$$
 int $X = B(0,1)$ ext $X = \{x : d(0,x) > 1\}$ Cl $X = \overline{B}(0,1) = \{x : d(0,x) \leqslant 1\}$

Рисунок шарика

$$\partial X = S(0,1) = \{x : d(0,x) = 1\}$$

Упр

Доказать или опровергнуть

- 1. int(int X) = int X
- 2. $\partial(\partial X) = \partial X$
- 3. Cl(Cl X) = Cl X

y_{TB}

$$X$$
 - замкн $\Leftrightarrow ClX = X$

Док-во

$$U$$
 - откр $\operatorname{int} U=U$ $\Rightarrow X$ - замкн $\Leftrightarrow X^c$ - откр. $\Leftrightarrow \operatorname{ext} X=\operatorname{int}(X^c)=X^c\Leftrightarrow$ $\operatorname{Cl} X=(\operatorname{ext} X)^c=X^{cc}=X$

Опр

Ограниченность:

$$X\subset\mathbb{R}^n,\quad {
m diam}\,X=\sup_{x,y\in X}d(x,y)$$
 X - огр. если ${
m diam}\,X<\infty\Leftrightarrow \exists R>0:X\subset B(0,R)$ (УПР)

Теорема (принцип выбора Больцано-Вейерштр.)

 \forall огр. послед. $\{X^{(m)}\}\subset\mathbb{R}^n$ можно выделить сх. подпослед.

$\mathbf{2}$ Компатные множества в \mathbb{R}^n

Опр

 $K\subset\mathbb{R}^n$ - компактное мн-во $\ \Leftrightarrow\ \forall$ откр. покр. можно выделить конеч. подпокр.

Т.е. если
$$U_{\alpha}$$
 — откр. $\forall \alpha \in A : K \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_1, ..., \alpha_n \in A :$

$$K \subset \bigcup_{k=1}^{N} U_{\alpha}$$

Примеры

1. $[a,b] \subset \mathbb{R}$ - компакт.

2.
$$I := \prod_{j=1}^{n} [a_j, b_j] \subset \mathbb{R}^n$$

$$\begin{split} I_0 \supset I_1 \supset I_2 \supset \dots \supset I_n \\ \operatorname{diam} I_n &= \frac{\operatorname{diam} I}{2^n} \to 0 \\ I_n \text{ - 3amk} \\ I_k &= \prod_{j=1}^n [a_j^{(k)}, b_j^{(k)}] \qquad \bigcap_{k \in \mathbb{N}} [a_j^{(k)}, b_j^{(k)}] = \{c_j\} \forall j \\ [a_j^{(k)}, b_j^{(k)}] \supset [a_j^{(k+1)}], b_j^{(k+1)} \\ x^* \in \bigcap_{k \in \mathbb{N}} I_k \end{split}$$

Если
$$y^* \in \bigcap_{k \in \mathbb{N}} I_k \Rightarrow d(x^*, y^*) \leqslant \operatorname{diam} I_k \to 0$$

 $\Rightarrow d(x^*, y^*) = 0 \Rightarrow x^* = y^*$

$$x^* = \bigcap_{k=1}^{\infty} I_k$$

$$x^* \in I \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow$$

$$\exists \alpha^* : x^* \in U_{\alpha^*} - \text{otkp}$$

$$\exists B(x^*, \delta) \subset U_{\alpha^*}$$

$$\Rightarrow \exists N \in \mathbb{N} : I_N \subset U_{\alpha^*}$$

2019-09-11

Лемма

 $K\subset \mathbb{R}^n$ - компакт, тогда:

- 1. К замкн
- 2. К огр
- 3. $\forall D \subset K$ D замк $\rightarrow D$ комп

Док-во

1)
$$K^c \ni a$$

$$\forall x \in K \quad d(a, x) > 0$$

$$r_x = \frac{1}{3}d(x, a)$$

$$\forall x \in K$$

$$B(x,r_x)$$
 - откр

$$K \subset \bigcup_{x \in K} B(x, r_x)$$
 - откр. покр. компакта K

$$\exists x_1, ..., x_N \in K : K \subset \bigcup_{j=1}^N B(x_j, r_{x_j})$$

$$a \in \bigcap_{k=1}^{N} B(a, r_{x_k}) = B(a, r_{\min})$$

$$r=\min(r_x,r_{x_N})>0$$
 причем $\bigcap_1^N B(a,r_{x_k})$ не имеет общих точек $\bigcup_1^N B(x_k,r_{x_k})\supset K$ $\exists B(a,e_{mn})\subset K^c\to K^c$ - откр \to K - замкн

2) комп -
$$K\subset\bigcup_{k=1}^\infty B(0,k)$$
 - откр. покр
$$\Rightarrow \exists k_1,...,k_n$$

$$K\subset\bigcup_{j=1}^N B(0,k_j)=B(0,\max_{1\leqslant j\leqslant N}(k_j))\Rightarrow K\text{ - orp}$$

3) замкн - $D \subset K$ - комп

Пусть откр. покр

$$D\subset\bigcup_{\alpha\in A}U_{\alpha}$$

$$U^*=D^c\text{ - откр - добавим к покр. }\mathrm{K}\{U_{\alpha}\}_{\alpha\in A}$$

$$\Rightarrow \text{ выд. конечн. подпокрытие }K\quad \{U_{\alpha_j}\}_{j=1}^N\cup\{U^*\}$$

$$D\subset\bigcup_{i=1}^NU_{\alpha}$$

Теорема (След. усл. равносильны)

- 1. К компакт.
- 2. К замк. и огр.

3.
$$\forall \{x_m\}_{m=1}^{\infty} \ x_m \in K$$
 \exists подпосл $x_{m_k} \to x \in K$

$$(1 \Rightarrow 2)$$
 было $(2 \Rightarrow 1)$

т.к.
$$K$$
 - огр $\Rightarrow \exists I = \prod_{j=1}^n [a_j, b_j]$

замкн - $K\subset I$ - комп

$$\Rightarrow$$
 (лемма) K - комп

 $(2 \Rightarrow 3)$

$$x_m \in K$$
 - замк и огр

$$\Rightarrow \exists x_{m_k}$$
 - cx (пр. выб. Б-В)

$$x_{m_k} \to x$$
 предпол $x \not\in K$

$$x \in K^c$$
 - откр $\Rightarrow \exists B_x \subset K^c$

Ho
$$K \ni d(x_{m_k}, x) \to 0$$
 противореч $x \in K$

 $(3 \rightarrow 2)$

а) предп.K не явл. огр.

$$\forall n \in \mathbb{N} \quad \exists x_n \in K : d(0, x_n) > n$$

 $\{x_n\}$ не огр \Rightarrow не сх.

$$\Rightarrow K$$
 - огр

б) предп., что K - не явл. замкн

 K^c - не откр

$$\exists a \in K^c : \forall \delta > 0 \ B(a, \delta) \cap K \neq \emptyset$$

$$\exists x_n \in B(a, \frac{1}{n}) \cap K$$

$$x_n \in K$$

$$0 \leqslant d(x_n, a) < \frac{1}{n} \to 0 \quad x_n \to a; \ x_{n_k} \to x \in K$$

Упр

$$K_1 \supset K_2 \supset \dots$$

д-ть
$$\bigcap_{j\in\mathbb{N}}K_j\neq\varnothing$$

3 Отображения в \mathbb{R}^n

Опр

$$E \subset \mathbb{R}^n, \quad f: E \to \mathbb{R}^m$$
 - отобр-е (вект. ф-я)
$$(m=1 - \text{ф-я})$$

$$f(x) = (f_1(x),...,f_m(x))$$
 $x=(x_1,...,x_n) \quad f_j: E \to \mathbb{R}$ коорд. функ-ия

Опр

$$a\in\mathbb{R}^n$$
 a - пред. т. Е, если $orall \delta>0 \quad U()(a,\delta)\cap E\neq arnothing$

Опр

$$f:E o\mathbb{R}^m,a$$
 - пред. т Е
$$\lim_{x\to a}f(x)=L,\ \mathrm{ec}$$
 (Коши) $\forall \mathcal{E}>0\quad\exists \delta>0: \forall x\in E$
$$0< d(x,a)<\delta\to d(f(x),L)<\mathcal{E}$$
 (Гейне) $\forall \{x_k\}_{k=1}^\infty\quad x_k\in E\setminus \{a\}x_k\to_{k\to\infty} a\to F(x_k)\to_{k\to\infty} L$

Упр

Эквивалентность определений

Упр

Сходимость ⇔ покоординатная сходимость

Пример

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Повторные пределы

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 0$$

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0$$

$$f(\delta, \delta) = \frac{1}{2} \underset{\delta \to 0}{\longrightarrow} \frac{1}{2}$$

$$f(\delta, -\delta) = -\frac{1}{2}$$

т.е
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 не сущ.

Теорема (предел композиции)

$$E \subset \mathbb{R}^n$$
, $F \subset \mathbb{R}^m$ $\mathbb{R}^n \ni a$ - пред т. Е $F \ni b$ - пред. т. F

$$f: E \to F; \quad g: F \to \mathbb{R}^l$$

$$\lim_{x \to a} f(x) = b; \quad \lim_{x \to b} g(x) = g(b)$$

Тогда
$$\lim_{x \to a} g \circ f = g(b)$$

Теорема (Крит. Коши)

a - пред т. E

f(x) имеет предел в т.a

$$\Leftrightarrow \forall \mathcal{E} > 0 \exists \delta > 0 : \forall x, y \in \overset{\circ}{U}(a, \delta) \cap E \to d(f(x), f(y)) < \mathcal{E}$$

Опр (непрерывные отображения)

$$a \in E$$
 $f: E \to \mathbb{R}^m$

Если a - изол $\to f$ - непр в a, если a - пред, то f - непр в т. $a \Leftrightarrow$

$$\Leftrightarrow \lim_{x \to a} f(x) = f(a)$$

f - непр в т. $a \Leftrightarrow f_j$ - непр. в т $a \ \forall 1 \leqslant j \leqslant m$

f - непр в т. a;g - непр в $f(a) \Leftrightarrow g \circ f$ - непр в т a

непр сохр. при +, умн. на число

f - непр на $E \Leftrightarrow$ непр $\forall a \in E$

Теорема (эквивалентность определений непрерывности)

$$f: E \to \mathbb{R}^m$$

$$f$$
 - непр на $E \Leftrightarrow \forall G \subset \mathbb{R}^m \quad G$ - откр $\ \to f^{-1}(G)$ - откр в E

Док-во

$${\cal G}$$
 - откр.

$$f^{-1}(G)$$
 - откр ?

$$a \in f^{-1}(G)$$

$$f(a) \in G$$
 - откр $\to \exists U(f(a), \mathcal{E}) \subset G$

рисунок

т.к
$$f$$
 непр в т. a
$$\exists \delta: d(a,x) < \delta \to d(f(a),f(x)) < \mathcal{E}$$

$$f(B(a,\delta)) \subset B(f(a),\mathcal{E}) \subset G$$

$$\to B(a,\delta) \subset f^{-1}(G)$$
 $\leftarrow a \in E \to ?f$ - непр в т. а (рисунок)

$$\forall \mathcal{E}>0B(f(a),\mathcal{E})\text{ - откр в }\mathbb{R}^m$$

$$\to f^{-1}(B(f(a),\mathcal{E})\text{ - откр.}\to\exists \delta:B(a,\delta)\subset f^{-1}(B(f(a),\mathcal{E}))\to f\text{ - непр. в т }a$$

Теорема (локальные свойства непр. функций)

(дописать)

- 1. непрерывна в т. а \Rightarrow найдетс
- 2. f непр в т. a; g непр в а, $f \circ g$ непр в а.
- 3. f непр в т. a, g непр в $f(a) \Rightarrow$

$$f:E o\mathbb{R}^1$$
 - непр. в x_0 если $f(x^0)>0 o$

4 Глобальные св-ва непрерывности

Теорема (непрерывный образ компатка)

$$f\in C(E,\mathbb{R}^m)\Leftrightarrow f:E o\mathbb{R}^m$$
 - непр. в E K - компакт $K\subset\mathbb{R}^n$ $f\in C(K,\mathbb{R}^m)$ Тогда $f(K)$ - компакт рисунок 1 Пусть $\{U_\alpha\}_{\alpha\in A}$ - откр. покр $f(K)$ $f(K)\subset\bigcup_{\alpha\in A}U_\alpha$ o $f^{-1}(U_\alpha)$ - откр. причем $K\subset\bigcup_{\alpha\in A}f^{-1}(U_\alpha)$ - откр. покр. комп o $\exists f^{-1}(U_{\alpha 1})...f^{-1}(U_{\alpha N})$ $K\subset\bigcup_{k=1}^Nf^{-1}(U_{\alpha k})\to$ $f(K)\subset\bigcup_{k=1}^NU_{\alpha k}$ - выделили конечное подпокрытие $f(K)$ - компакт

Теорема (Вейерштрасс)

$$K$$
 - компакт; $f \in C(K, \mathbb{R}^m)$

Тогда

- 1. f огр.
- 2. Если m = 1, то f достигает sup и inf на K

$$f: K \to \mathbb{R}^m \text{ - огр} \Leftrightarrow \exists M: \forall x \in K \quad d(f(x), 0) < M$$
1. $f(k)$ - комп \to огр
2. $f: K \to \mathbb{R} \to M = \sup_{x \in K} f(x) < +\infty$ рисунок 2
$$\forall k \in \mathbb{N} \quad \exists x^k \in K:$$

$$M - \frac{1}{k} < f(x^k) \leqslant M \to f(x^k) \underset{k \to \infty}{\to} M$$

$$f(x^k) \in f(K) \text{ - компакт } \to \text{ замнг}$$

Теорема (Кантор)

 $M \in f(K)$

 $f \in C(K, \mathbb{R}^m)$ $K \subset \mathbb{R}^n$ - компакт $\to f$ - равном. непр на K

Док-во

рисунок
$$3$$
 $\{B_x(\delta_x)\}_{x\in K}$ - откр. покрытие K - комп. выделим конечное поддпокр. $K\subset\bigcup_{j=1}^N B_{x_j}(\delta_{x_j})$ $\delta=\min_{1\leqslant j\leqslant N}\delta_{x_j}$ - то, что надо Пусть $d(\widetilde{x},\widetilde{\widetilde{x}})<\delta$ $\widetilde{x}\in K\to\exists x_l:\widetilde{x}\in B(x_l,\delta_{x_l})$ $d(\widetilde{\widetilde{x}},x_l)\leqslant d(\widetilde{\widetilde{x}},\widetilde{x})+d(\widetilde{x},x_l)<\delta+\delta_{x_l}<2\delta_{x_l}$ $\to d(f(\widetilde{\widetilde{x}}),f(x_l))<\frac{\mathcal{E}}{2}$ и $d(f(\widetilde{x}),f(x_l))<\frac{\mathcal{E}}{2}$ $d(f(\widetilde{x}),f(x_l))<\mathcal{E}$

f - непр \rightarrow непр. $\forall x \in K \quad \forall \mathcal{E} > 0 \exists \delta_x$:

 $\forall x' \in K \quad d(x',x) < 2\delta_x \to d(f(x'),f(x)) < \frac{\mathcal{E}}{2}$

 \mathbb{R}^n как лин. пр-во

Опр

Норма в
$$\mathbb{R}^n$$
: $||\cdot||:\mathbb{R}^n\to[0,+\infty)$

Аксиомы нормы

- 1. $||x|| \ge 0$
- $2. ||x|| = 0 \Leftrightarrow x = 0$
- 3. $||k \cdot x|| = |k| \cdot ||x||$
- 4. $||x + y|| \le ||x|| + ||y||$

Стандартная норма в \mathbb{R}^n

$$||x|| = d(x,0) = \sqrt{\sum_{k=1}^{n} |x_k|^2}$$

$$||x + y|| = d(x + y, 0) = d(x, -y) \le d(x, 0) + d(0, -y) = ||x|| + ||y||$$

Бывают другие нормы

УПР.1 пусть $||| \cdot |||$ - другая норма в \mathbb{R}^n Тогда $\exists c, C > 0$:

$$c \cdot ||x|| \leqslant |||x||| \leqslant C \cdot ||x|| \quad \forall x \in \mathbb{R}^n$$

УПР.2 \forall норма непр в \mathbb{R}^n

 \mathbb{R}^n - пр-во со скал. пр-нием

Опр

$$x, y \in \mathbb{R}^n$$

$$x \cdot y = (x; y) = \sum_{j=1}^{n} x_j y_j$$

$$||x||^2 = (x;x)$$

н-во К-Б

$$(x,y)^2 \le ||x||^2 \cdot ||y||^2$$

Линейные операторы в \mathbb{R}^n

Опр

$$LL(\mathbb{R}^n,\mathbb{R}^m)$$
 - лин. операторы $L\in LL(\mathbb{R}^n,\mathbb{R}^m)$: $\forall x,t\in\mathbb{R}^n; \quad \forall a,b\in\mathbb{R}$: $L(ax+by)=aL(x)+bL(y)$ пишут Lx вместо $L(x)$ $LL(\mathbb{R}^n,\mathbb{R}^m)$ - лин. пр-во: если $A,B\in LL(\mathbb{R}^n,\mathbb{R}^m)$, то $(A+B)(x)=Ax+Bx$ $A+B\in LL(\mathbb{R}^n,\mathbb{R}^m)$ $\forall k\in\mathbb{R}$ $(kA)(x):k\cdot Ax$ kA - тоже лин. оператор Кроме того $A\in LL(\mathbb{R}^n,\mathbb{R}^m)$ $B\in LL(\mathbb{R}^k,\mathbb{R}^n)$ $AB=A\circ B\in LL(\mathbb{R}^k,\mathbb{R}^m)$ Пусть $\{e_j\}_{j=1}^n$ - базис (ортонорм) в \mathbb{R}^n ; $\{e_j^*\}_{j=1}^m$ - базис в \mathbb{R}^m Тогда \forall лин. оператору соотв. $Mat(A)$ $Ae_j=\sum_{k=1}^m ae_k^* \qquad Mat(A)=\begin{pmatrix} a_{11} & a_{1j} & \dots & a_{1n} \\ \dots & a_{m1} & a_{mj} & \dots & a_{mn} \end{pmatrix}$ $LL(\mathbb{R}^n,\mathbb{R}^m)\simeq Mat_{\mathbb{R}}(m\times n)\simeq \mathbb{R}^{mn}$ $Mat(A\cdot B)=Mat(A)\cdot Mat(B)$ - матричное произв.

Теорема

$$LL(\mathbb{R}^n, \mathbb{R}^m) \subset C(\mathbb{R}^n, \mathbb{R}^m)$$

 $A \in LL(\mathbb{R}^n, \mathbb{R}^m) \quad B \in LL(\mathbb{R}^k, \mathbb{R}^n)$

$$d(x,y) = ||x-y||$$
 $A: \mathbb{R}^n \to \mathbb{R}^m$ - лин. оператор
$$||Ax - Ay|| = || \underset{A(\sum_{j=1}^n (x_j - y_j)e_j)}{A(\sum_{j=1}^n (x_j - y_j)e_j)}|| = || \underset{j=1}{\sum} (x_j - y_j) \cdot Ae_j|| \leqslant$$

$$\leqslant \underset{1\leqslant j\leqslant n}{\sum} |x_j - y_j| \cdot ||Ae_j|| \leqslant M\sqrt{n}||x-y||$$
 $M = \underset{1\leqslant j\leqslant n}{\max} ||Ae_j|| \quad \forall \mathcal{E} > 0 \quad \exists \delta = \frac{\mathcal{E}}{M\sqrt{n}}$

$$B_0(1) = \{x \in \mathbb{R}^n : ||x|| < 1\} \text{ - компакт}$$
 $A \in LL(\mathbb{R}^n, \mathbb{R}^m)$ - непр на $B_0(1)$
 \to огр.
$$||Ax|| \text{ - нерп } \mathbb{R}^n \to \mathbb{R}$$
 $\to \text{ достигает наиб. знач. на комп. } B_0(1)$

Следствие

$$\sup_{||x|| \le 1} ||Ax|| = \max_{||x|| \le 1} ||A_x|| < \infty$$

Опр

$$A \in LL(\mathbb{R}^n, \mathbb{R}^m)$$

Норма лин. оператора A

$$||A|| = \max_{|x| \leqslant 1} ||A_x||$$

Теорема

$$||A|| = \max_{||x||=1} ||Ax|| = \sup_{||x||\neq 0} \frac{||A_x||}{||x||}$$

t.e. $\forall x \in \mathbb{R}^n \quad ||A_x|| \leqslant ||A|| \cdot ||x||$

Если
$$A \equiv 0$$
 - очев. $(||A|| = 0)$
Пусть $A \not\equiv 0 \rightarrow$
 $\exists x^* \in \mathbb{R}^n \setminus \{0\} : ||Ax^*|| \not= 0$
 $0 \not= \frac{||Ax^*||}{||x^*||} = ||A \frac{x^*}{||x^*||}_{=y^* \in \phi_1 \subset B_0}$
 $\rightarrow ||A|| > 0$

Пусть тах достигается внутри ед. шара:

$$||A|| = ||A\widetilde{x}||$$
 где $||\widetilde{x}|| < 1$ Рассм. $\widetilde{y} = \frac{\widetilde{x}}{||x||}$

рисунок5?

$$||A\widetilde{y}|| = \frac{||A\widetilde{x}||}{||\widetilde{x}||} > ||A\widetilde{x}||$$
T.e. $||A\widetilde{x}||$ He max!

T.e. ||Ax|| He max:

$$ightarrow \max ||Ax||$$
 в $||x|| \leqslant 1$ — достиг. на сфере $||x|| = 1$ $||A|| = \max_{||x||=1} ||A_x||$

$$||A|| = \max_{||x||=1} ||Ax|| = \sup_{||x||=1} \frac{||Ax||}{||x||} \leqslant \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}$$

$$\sup_{||x|| \neq 0} \frac{||Ax||}{||x||} = \sup_{||x|| \neq 0} ||A\frac{x}{||x||}|| \leqslant \max_{||y|| = 1} ||Ay|| = ||A||$$

Теорема

- 1. Норма оператора действительно норма
- 2. $||A \cdot B|| \le ||A|| \cdot ||B||$

1. проверим аксиомы нормы

(1)
$$||A|| \ge 0$$
 - очев

(2)
$$||A|| = 0 \Leftrightarrow A = 0$$
 (начало предыдущей теоремы)

(3)
$$||k \cdot A|| = \max_{||x||=1} ||(k \cdot A)x|| = \max_{||x||=1} |k| \cdot ||Ax|| = |k| \cdot ||A||$$

$$(4) \quad ||A+B|| = \max_{||x||=1} ||Ax+Bx|| \leqslant \max_{||x||=1} (||Ax|| + ||Bx||) \leqslant$$

$$\leqslant ||A|| + ||B||$$

2.
$$||(AB)x|| = ||A(Bx)|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||$$

$$\sup_{||x|| \neq 0} \frac{||ABx||}{||x||} \le ||A|| \cdot ||B||$$

$$\sup_{||AB|| \neq 0} ||AB||$$

Теорема (оценка нормы лин. оператора)

$$A \in LL(\mathbb{R}^n, \mathbb{R}^m) \quad Mat(A) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$||A||^2 \leqslant \sum_{i=1}^n \sum_{j=1}^m |a_{ij}|^2 = ||A||_{HS}^2 - \text{ норма } \Gamma \text{ильберта } \text{IIIмидта}$$

$$y = Ax = A(\sum_{j=1}^n \cdot x_j \cdot e_j) = \sum_{j=1}^n x_j \cdot Ae_j$$

$$y_k = \sum_{j=1}^n x_j (Ae_j)_k - \text{ K-Я координата}$$

$$1 \leqslant k \leqslant m$$

$$|y_k|^2 = |\sum_{j=1}^n x_j (Ae_j)_k|^2 \leqslant \sum_{j=1}^n |x_j|^2 \cdot \sum_{j=1}^n (Ae_j)_k^2 =$$

$$= ||x||^2 \sum_{j=1}^n |a_{kj}|$$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$||y||^2 = ||Ax||^2 = \sum_{k=1}^m |y_k|^2 \leqslant ||x||^2 \cdot \sum_{k=1}^m \sum_{j=1}^n |a_{kj}|^2$$

$$||A|| = \sup_{||x|| \neq 0} \frac{||Ax||}{||x||} \leqslant \sqrt{\sum_{k=1}^m \sum_{j=1}^n |a_{kj}|}$$

$$\forall \Pi P \ ||A||_{HS} \leqslant \sqrt{n} \cdot ||A||$$

Дифференцирование

Опр

рисунок 7

 $f(a+th) = f(a) + \underbrace{L(th)}_{-t, I, h} + o(th)$

$$E \subset \mathbb{R}^n, \quad E$$
 - откр. $a \in E$ $f: E \to \mathbb{R}^m$ f - дифф-мо в т. a , если $\exists L \in LL(\mathbb{R}^n, \mathbb{R}^m)$ $f(a+h) = f(a) + Lh + o(||h||) \qquad ||h|| \to 0$ рисунок 6 $(h: a+h \in E)$ $\alpha(h) = o(||h||) = o(h) \Leftrightarrow \lim_{\|h\| \to 0} \frac{||\alpha(h)||}{||h||} = 0$ $f(a+h) = f(a) + Lh + o(||h||) \Leftrightarrow \lim_{\|h\| \to 0} \frac{||f(a+h) - f(a) - Lh||}{||h||} = 0$ Если такой L \exists то он ед. Пусть $h \in \mathbb{R}^n: ||h|| = 1$ $a+t\cdot h$

$$||th|| \to 0$$

$$\frac{f(a+th)f(a)}{t} = Lh + \frac{o(th)}{t} \underset{t\to 0}{\to} 0$$

$$Lh = \lim_{t\to 0} \frac{f(a+th)-f(a)}{t}$$
 $\forall h: ||h|| = 1$ L опеределен однозначно $\to \forall x \neq 0$
$$Lx = ||x|| \cdot L\frac{x}{||x||}$$
 L - дифференциал. f в т. а $d_a f = L \in LL(\mathbb{R}^n, \mathbb{R}^m)$ $h \in \mathbb{R}^n$ $d_a f(h) \in \mathbb{R}^m$

Примеры

$$lim_{||h|| \to 0} \frac{||f(a+h) - f(a) - Lh||}{||h||} = 0$$

1.
$$f = const \rightarrow d_a f = 0$$

2.
$$f \in LL(\mathbb{R}^n, \mathbb{R}^m) = f(a+h) - f(a) = f(h) \to Lh = f(h)$$
 $d_a f = f(\text{если f линеен})$

3. если
$$f,g:\mathbb{R}^n \to \mathbb{R}^m$$
 - диф. в т. а, то
$$d_a(f+g) = d_af + d_ag$$

$$\lim_{||h||\to 0} \frac{||(f+g)(a+h) - (f+g)(a) - d_af(h) - d_ag(h)||}{||h||} =$$
 $\leqslant \lim \frac{||f(a+h) = f(a) - d_af(h)|| + ||g(a+h) - g(a) - d_ag(h)||}{||h||} = 0$

4.
$$d_a(kf) = kd_af$$

Производная по направлению

Опр

Пусть
$$||e|| = 1$$
, $e \in \mathbb{R}^n$ $f: E \to \mathbb{R}^m$ $a \in E$
$$\frac{\partial f}{\partial e}(a) = \lim_{t \to 0} \frac{f(a+te) - f(a)}{t}$$

Теорема (о производной по напр.)

$$f:E o\mathbb{R}^m$$
 - дифф. в т. a $rac{\partial f}{\partial e}(a)=d_af(e)$ рисунок 7 $z=f(x,y)$ $f:E o\mathbb{R}^1$ $E\subset\mathbb{R}^2$

Док-во

$$f(a+te) - f(a) = d_a f(te) + o(te) \quad ||te|| \to 0 \qquad ||te|| = |t|$$

$$\frac{\partial f}{\partial e}(a) = \lim_{t \to 0} \frac{f(a+te) - f(a)}{t} = d_a f(e)$$

Опр

Частные производные $\{e_k\}_{k=1}^n$ - базис \mathbb{R}^n

$$f: E \to \mathbb{R}^m \qquad E \subset \mathbb{R}^n \quad a \in E$$

$$\frac{\partial f}{\partial x_k}(a) = f'_{x_k}(a) = \frac{\partial t}{\partial e_k}(a)$$

Матрица Якоби

Опр

Пусть f - диф. в т. $a \in E$

Временно веримеся к обозначению $L=d_af$

Mat(L) - матрица Якоби

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \quad j$$
 - й столбец - координаты вектора
$$d_a f(e_j) = \frac{\partial f}{\partial e}(a) = \frac{\partial f}{\partial x_j}(a) \qquad 1\leqslant j \leqslant n$$

$$a_{kj} = \frac{\partial f_k}{\partial x_j}(a)$$

$$Mat(d_a f) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \dots & & & \\ \frac{\partial f_n}{\partial x} & & & & \end{pmatrix}$$

2019-09-18

Напоминание

$$f:U\to\mathbb{R}^m,\quad a\in U,\quad f$$
 - диф в т $a\Rightarrow$ $U\subset\mathbb{R}^n$
$$\mathrm{Mat}\ (d_af)=\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \dots & & & \\ \frac{\partial f_m}{\partial x_n}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{pmatrix}$$

Якобиан - определитель матр. Якоби

Пример

$$f_1(\rho, \phi)$$

$$f(\rho, \phi) = (\rho \cos \phi; \rho \sin \phi)$$

$$f: [0, +\infty) \times \mathbb{R} \to \mathbb{R}^2$$

$$J = d_{(\rho, \phi)} f = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \rho \cos \phi \end{pmatrix}$$

$$\det(J) = \rho$$

Замечание

Но! из существования частной произв. (в общем случае) не следует дифсть!

Пример

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq 0\\ 0, & (x,y) = 0 \end{cases}$$

Частн. пр-ые в т. (0,0)

$$f'_x = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0, 0)}{\Delta x} = 0$$

$$f'_y = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0, 0)}{\Delta y} = 0$$

Если бы f - диф. в т. (0,0), то

$$f(x,y) = f(0,0) + (0,0) {x \choose y} + o(\sqrt{x^2 + y^2})$$

$$\lim_{(x,y)\to(0,0)} \frac{||f(x,y)-f(0,0)-(0,0)\begin{pmatrix} x\\y \end{pmatrix}||}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{x^2|y|}{\sqrt{x^2+y^2}}$$
 При $(x,y)=(t,t)$
$$\frac{x^2|y|}{\sqrt{x^2+y^2}} \to \frac{1}{2\sqrt{2}} \neq 0$$

2)

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4y^2} & (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) & \end{cases}$$

частн. произв. \exists во всех т., но f разрывна в (0,0) 3)

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f(x_1, x_2) = \begin{pmatrix} x_1 \cdot x_2 \\ x_1 + 2x_2 \end{pmatrix}$$

$$a = (1, -1)$$

$$\frac{\partial f_1}{\partial x_1} = x_2 \qquad \frac{\partial f_1}{\partial x_2} = x_1$$

$$\frac{\partial f_2}{\partial x_1} = 1 \qquad \frac{\partial f_2}{\partial x_2} = 2$$

$$\operatorname{Mat}(d_a f) = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix}$$

$$h = \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} - \operatorname{прирощениe}$$

$$d_n f(h) = \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 8 \end{pmatrix}$$

$$f(a+h) = f(a) + d_a f(h) + o(||h||)$$

Опр

Пусть
$$m=1$$

$$f:U\to \mathbb{R}^1\quad U\subset \mathbb{R}^n,\quad f$$
 - диф. в a
$$d_af\in LL(\mathbb{R}^n,\mathbb{R}^1)$$
 - лин. ф

$$\mathrm{Mat}(d_af)=(rac{\partial f}{\partial x_1};rac{\partial f}{\partial x_2}...rac{\partial f}{\partial x_n})(a)$$
 $abla$ - "набла"
Градиент f в т. а (f диф в т. а)

$$\partial f = \partial f = \partial f$$

$$\operatorname{grad}_{a} f = \nabla_{a} f = \left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, ..., \frac{\partial f}{\partial x_{n}}\right)(a)$$

$$d_a f(h) = (\nabla_a f; h) = \sum_{k=1}^n \frac{\partial f}{\partial x_k} \cdot h_k$$

Теорема (Диф-ние композиции)

$$f:U o\mathbb{R}^m;\quad U\subset\mathbb{R}^n\qquad f(U)\subset V\subset\mathbb{R}^m$$
 $g:V o\mathbb{R}^k\qquad U,V$ - откр. f - диф. в т. $a\in U$ g - диф. в т. $f(a)=b$ Тогда $h=g\circ f$ - диф. в т. a , причем $d_ah=d_{f(a)}g\circ d_af\in LL(\mathbb{R}^n,\mathbb{R}^k)$

Док-во

$$A = d_a f; \quad B = d_b g \qquad f(x) = f(a) + A(x - a) + o||x - a|| \quad x \to a$$

$$r_f(x) = f(x) - f(a) - A(x - a) = o||x - a|| \quad (x \to a)$$

$$r_g(y) = g(y) - g(b) - B(y - b) = o||y - b|| \quad (y \to b)$$
...
$$r_h(x) = h(x) - h(a) - BA(x - a)? = ?o||x - a|| \quad (x \to a)$$

$$g(f(a)) = h(a)$$

Хотим показать, что

$$\begin{split} r_h(x) &= o(||x-a||) \quad x \to a \\ r_h(x) &= g(f(x)) - g(b) - B(f(x)-b) + B(f(x)-b) - BA(x-a) = \\ &= r_g(f(x)) \\ &= r_g(f(x)) + B(f(x) - f(a) - A(x-a)) \\ &= r_f(x) \\ r_h(x) &= r_g(f(x)) + B(r_f(x)) \qquad ||Ax|| \leqslant ||A|| \cdot ||x|| \\ ||r_h(x)|| &\leqslant ||r_g(f(x))|| + ||B|| \cdot ||r_f(x)|| \\ \Pi\text{VCTb } \mathcal{E} &> 0 \end{split}$$

1. (Из дф-сти g) $\exists \delta > 0$:

$$\forall y : ||y - b|| < \delta \Rightarrow$$

 $r_a(y) < \mathcal{E} \cdot ||y - b||$

- $2. \exists \alpha :$
 - (a) (Из диф-сти f в т. а) $||r_f(x)|| < \mathcal{E}||x-a|| \forall x: ||x-a|| < \alpha$

(b)
$$\forall x: ||x-a|| < \alpha$$

$$||f(x)-f(a)|| < \delta \text{ (т.к. f непр в т. a)} \qquad f(a)=b$$

Возьмем
$$x: ||x-a|| < \alpha \stackrel{26}{\Rightarrow} ||f(x)-b|| < \delta \stackrel{(1)}{\Rightarrow} ||r_g(f(x))|| < \mathcal{E} \cdot ||f(x)-b||$$

$$||f(x)-b|| = ||r_j(x)+A(x-a)|| \leqslant ||r_f(x)|| + ||A|| \cdot ||x-a|| \leqslant$$

$$< \mathcal{E} \cdot ||x-a|| + ||A|| \cdot ||x-a||$$

$$||r_h(x)|| \leqslant ||r_g(f(x))|| + ||B|| \cdot ||r_f(x)|| < \mathcal{E}(\mathcal{E}||x-a|| + ||A|| \cdot ||x-a||) + ||B|| \cdot \mathcal{E}||x-a|| =$$

$$= (\mathcal{E}^2 + ||A||\mathcal{E} + ||B||\mathcal{E}) \cdot ||x-a||$$

5 Частные производные композиции (в усл. теоремы)

Теорема

$$\begin{split} \frac{\partial (g \circ g)_i}{\partial x_j} &= \sum_{i=1}^m \frac{\partial g_l}{\partial y_i}(b) \frac{\partial f_i}{\partial x_j}(a) \\ d_a g \circ f &= d_{f(a)} g \circ d_a f \qquad \text{комп.} \ \leftrightarrow \text{пр-ие матриц} \\ \begin{pmatrix} \frac{\partial g_1}{\partial y_1} & \dots & \frac{\partial g_1}{\partial y_m} \\ \dots & & \\ \frac{\partial g_k}{\partial y_1} & \dots & \frac{\partial g_k}{\partial g_m} \end{pmatrix} \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & & \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} \end{split}$$

Следствие (2)

1. Пусть
$$f=g$$
 d_af^2
$$\phi(t)=t^2 \qquad d_t\phi(h)=2t\cdot h$$

$$d_af^2=d_a\phi\circ f=d_{f(a)}\phi\circ d_af$$

$$=2f(a)\cdot d_af$$

2.
$$d_a(f \cdot g) = d_a(\frac{1}{4}[(f+g)^2 - (f-g)^2]) =$$

$$= \frac{1}{4}[2(f(a) + g(a))d_a(f+g) - 2(f(a) - g(a))d_a(f-g)]$$

$$f(a)d_ag + g(a)d_af$$

Следствие (3)

$$f,g:U o\mathbb{R}^n,\quad U\subset\mathbb{R}^m$$
 f,g - диф. в т. $a\in U$ $(f;g)$ - ск. пр-ие: Тогда $d_a(f,g)=(f(a);d_ag)+(d_af;g(a))$

Опр

Вернемся к градиенту

$$f:U o\mathbb{R}^1$$
 $U\subset\mathbb{R}^n$ f - диф. в т $a\in U$ $d_af(h)=(
abla_af;h)$ $abla_af=(rac{\partial f}{\partial x_1}(a),...,rac{\partial f}{\partial x_n}(a))$

Свойства (геометрич. св-ва градиента)

 $\stackrel{0 < t < \delta}{\Rightarrow} f(a + th) > f(a)$

1. f возрастает в напр. h в т. a, если $(\nabla_a f; h) > 0$ и убывает, если $(\nabla_a f; h) < 0$ рисунок 1 $f(a+t\cdot h) = f(a) + (\nabla_a f; th) + o(||th||) \qquad o(||t-h||) = o(t)$ Пусть t>0 $\frac{f(a+th)-f(a)}{t} = \frac{t\cdot (\nabla_a f, h)}{t} + \frac{o(t)}{t} > 0$ начиная c нек. числа $(\forall 0 < t < \delta)$

2. (Экстремальное св-во градиента) Если $\nabla_a f \neq 0$, то направление наибольшего возрастания f совпадает с направлением градиента

$$||e|| = 1$$

$$|\frac{\partial f}{\partial e}(a)| = |d_a f(e)| = |(\overrightarrow{\nabla}_a f; \overrightarrow{e})| \le$$

$$\le ||\nabla_a f|| \cdot ||e|| = ||\nabla_a f||$$

Если
$$e=rac{
abla_a f}{||
abla_a f||}$$
 то $|rac{\partial f}{\partial e}(a)|=||
abla_a f||$

3. $f:U\to\mathbb{R}$ f - диф в т. $a\in U$ $U\subset\mathbb{R}^n$ Если а - т. локального экстремума f \Rightarrow

$$\overrightarrow{\nabla}_a f = \overrightarrow{0}$$

4. Пусть
$$\Gamma_a = \{x \in U : f(x) - f(a)\}$$

Тогда $\nabla_a f \perp \Gamma_a$

Т.е. \forall Гладкой кривой $\gamma:[-1,1] \to \Gamma_a,$

проход. через т. а $(\gamma(0) = a)$

$$\gamma(t)' = \begin{pmatrix} \gamma_1'(t) \\ \vdots \\ \gamma_n'(t) \end{pmatrix}$$
 - касат. вектор к Γ_a в т. а

Говорят, что \overrightarrow{v} - ортог. Γ_a в т. а

Если $\overrightarrow{v} \perp \gamma'(0) \quad \forall$ гладкой кривой $\gamma : \gamma(0) = a$

Пример

$$f(x, y, z) = x^2 + y^2 + z^2$$

$$\nabla_{(x,y,z)}f = (2x; 2y; 2z) = 2(x,y,z)$$

Опр

$$f:U\to\mathbb{R};\quad a\in U$$
 - т. лок. макс. (минимума)

Если
$$\exists V_a : \forall x \in V_a$$

$$f(x) \leqslant f(a) \quad (f(x) \geqslant f(a))$$

Пример (К свойствам)

$$f(x, y, z) = x^{2} + y^{2} + z^{2}$$

$$a(1, 1, 1)$$

$$\Gamma_{a} = \{(x, y, z) : x^{2} + y^{2} + z^{2} = 3\}$$

$$\nabla_{a} f = 2(a1, a2, a3) = (2, 2, 2)$$

Док-во

$$\Gamma_{a} = \{x \in U \quad f(x) = f(a)\}$$

$$\gamma : [-1, 1] \to \Gamma_{a} \quad \gamma(0) = a$$

$$f(\gamma(t)) = f(a) \quad \forall t \in [-1, 1]$$
обычная ф-я 1 перем
$$0 = d_{0}(\gamma(t)) = d_{\gamma(0)}f \circ d_{0}\gamma = d_{a}f \circ \gamma'(0) =$$

$$= \nabla_{a}f \cdot \gamma'(0) \Rightarrow \nabla_{a}f \perp \gamma'(0)$$

5.1 Непрерывно дифференцируемые отображения Опр

$$f:U \to \mathbb{R}^m \quad U \subset \mathbb{R}^n \quad a \in U$$
 f - непр. диф в т. a , если

- 1. Все частные производные определены в некоторой окрестности т. а
- 2. Непр. в т. а

Говорят, что f - непр. диф. на U, если она непр. диф. в каждой точке $f \in C^1(U)$

<u>Лемма</u> (т. о среднем)

$$f:U o\mathbb{R}\quad a\in U\subset\mathbb{R}^n$$
, Все частные пр-е определены в $V_a\subset U$ $\Box h:a+h\in V_a$ Тогда $\exists c^1,c^2,...,c^k:$ $f(a+h)-f(a)=\sum_{k=1}^n rac{\partial f}{\partial x_k}(c^k)\cdot h_k$

Док-во Рисунок 2 (куб и система коорд.)

$$F_k(t) = f(a^{k-1} + t \cdot h_k e_k)$$

$$a^{k-1} - \text{T. pefpa } (a^{k-1}; a^k) \qquad o \leqslant t \leqslant 1$$

$$F'_k(t) = f'_{x_k} (a^{k-1} + t \cdot h_k \cdot e_k)$$

$$= a_1 + h_1, a_2 + h_2, \dots, a_{k-1} + h_{k-1}, a_k + th_k$$

По т. Лагранжа $\exists \xi^k \in (0,1)$

$$F_{k}(1) - F_{k}(0) = F'_{k}(\xi^{k})(1 - 0) = \frac{\partial f}{\partial x_{k}}(a^{k-1} + \xi^{k}h_{k}e_{k})$$

$$c^{k} \in V_{a}$$

$$f(a + h) - f(a - 1) = \sum_{k=1}^{n} f(a^{k}) - f(a^{k-1}) = \sum_{k=1}^{n} F_{k}(1) - F_{k}(0) = \sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}(c_{k})h_{k}$$

Теорема (О непр. диф. отобр. в точке)

$$f:U \to \mathbb{R}^n$$
 $U \in \mathbb{R}^n$ $a \in U$ f - непр. диф в т. а Тогда

- 1. f непр в V_a
- 2. f диф в т. а

НЕОЖИДАННО ТО ЧТО ПИСАЛ ПАША

5.2 Непрерывно дифференцируемые отображения Опр

 $f:U\to \mathbb{R}^m, U\subset \mathbb{R}^n, a\in U,$ f - непр диф в т. а., если все ч.п. определены в некоторой окр. V_a и непрерывны в т. а

Опр

Говорят, что f - непр дифферецируема на U, если она непр дифф в каждой точке. Оозначают $f \in C^1(U)$

Лемма (теорема о среднем)

 $f:U\to\mathbb{R},\ a\in U\subset\mathbb{R}^n$, все частные производные опр. в $V_a\subset U$, пусть $h:h+a\in V_a$ Тогда $\exists c^1,c^2,...,c^k:f(a+h)-f(a)=\sum\limits_{k=1}^n rac{\partial f}{\partial x_k}(c^k0h_k)$

Док-во

$$F_k(t) = f(a^{k-1} + th_k e_k)$$
 т.ребра (a^{k-1}, a^k) $o \le t^2 \le 1$ $F'_k(t) = f'_{x_k}($ $a^{k-1} + th_k e_k$)
$$a_{1+h_1, a_2+h_2, \dots, a_{k-1}+h_{k-1}, a_k+th_k, a_{k+1}, \dots, a_n}$$
 По формуле Лагранжа: $\exists \xi^k \in (0, 1) : F_k(1) - F_k(0) = F'_k(\xi^k)(1-0) = \frac{\partial f}{\partial x_k}(\underbrace{a^{k-1} + \xi^k h_k e_k}_{e_k - \text{промеж. точка}}), e_k \in V_a$
$$f(\underline{a+h}) - f(\underline{a}) = \sum_{k=1}^n f(a^k) - f(a^{k-1}) = \sum_{k=1}^n F_k(1) - F_k(0) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(c_k)h_k$$

Теорема (о непр диф отображении в точке)

$$f: U \to \mathbb{R}^m, \ a \in U$$
 f - непр диф в точке а Тогда
1) f - непрерывна в V_a
2) f - дифф в точке а

Док-во

f - непр диф в точке а
$$\Leftrightarrow$$
 все ч.п. опр. в V_a и непр в т.а. Из лок св-ва непр ф-ий $\Rightarrow \exists$ окр $V_a(\delta)$: все ч.п. огр конст $M>0$
$$|\frac{\partial f}{\partial x_k}(x)| < M \ \forall x \in V_a(\delta)$$

$$|f(x+h)+f(x)| = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(c^k)h_k| \leqslant \sum_{k=1}^n |\frac{\partial f}{\partial x_k}(c^k)||h_k| \leqslant M \sum_{k=1}^n |h_k| \leqslant Mn||h||,$$
 если $||h|| \to 0 \Rightarrow |f(x+h)-f(x)| \to 0$

../../template/template

Пример

Экстремум кв. форму ны ед. сфере

$$A = egin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & & & \\ a_{n_1} & \dots & a_{nn} \end{pmatrix} \qquad a_{ij} = a_{ji}$$
 $f: \mathbb{R}^n o \mathbb{R} \qquad f(x) = (Ax, x) = \sum_{i,j=1}^n a_{ij} x_i x_j$ При условии $\sum_{j=1}^n x_j^2 = 1$

$$\Phi(x) = \sum_{j=1}^{n} x_j^2 - 1$$

Если в т. x^* - отн. экстремум, то

$$\exists \lambda \in \mathbb{R}^{n}$$

$$\begin{cases} \nabla f(x^{*}) - \lambda \nabla \Phi(x^{*}) = 0 \\ \Phi(x^{*}) = 0 \end{cases}$$

$$\nabla f = 2Ax$$

$$\nabla \Phi = 2x$$

$$\lambda \in \mathbb{R}$$

$$\begin{cases} Ax^{*} = \lambda x^{*} \\ \sum x^{*2} = 1 \end{cases} \Rightarrow \lambda - \text{c.q.} \quad x^{*} - \text{c.b cootb. } \lambda$$

$$\|x^{*}\| = 1$$

$$A\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \lambda \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

Ищем экстр. f(x) = (Ax, x)

$$\Rightarrow f(x^*) = (Ax^*, x^*) = (\lambda x^*, x^*) = \lambda (x^*, x^*) = \lambda$$

 \Rightarrow max и min знач. кв. ф. на ед. сфере равны max и min с.ч. A

Опр

$$L \in (\mathbb{R}^n, \mathbb{R}^n)$$
 $(x, Ly) = (L^*x, y)$
Норма $L : ||L|| = \max_{x \in S} ||L_x||$
 $f(x) = ||Lx||^2 = (Lx, Lx) = (L^*Lx, x)$
 $||L||^2 - \max$ с.ч. (L^*L)

6 Теория функций компл. переменного

Напоминание

$$z = x + iy \in \mathbb{C} \qquad x, y \in \mathbb{R}$$

$$i^2 = -1$$

$$z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2)$$

$$z_1 \cdot z_2 = x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1)$$

$$\overline{z} = x - iy \qquad |z| = \sqrt{x^2 + y^2}$$

$$\begin{aligned} z \cdot \overline{z} &= |z|^2 \\ \frac{z_1}{z_2} &= \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} \\ k \in \mathbb{R} \Rightarrow \frac{z}{k} &= \frac{x}{k} + i\frac{y}{k} \end{aligned}$$

Сложение действует как на векторах, что с умножением? Перейдем к полярной системе координат

$$z = |z| (\cos \varphi + i \sin \varphi)$$

$$\operatorname{Re} z = |z| \cos \varphi$$

$$\operatorname{Im} z = |z| \sin \varphi$$

$$z_1 = |z_1| (\cos \varphi_1 + i \sin \varphi_1)$$

$$z_2 = |z_2| (\cos \varphi_2 + i \sin \varphi_2)$$

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i(\cos \varphi_1 \sin \varphi_2 + \sin \varphi_1 \cos \varphi_2)) =$$

$$= |z_1| |z_2| (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

Теорема (Ф-ла Муавра)

$$z^{n} = |z|^{n} (\cos n\varphi + i \sin n\varphi)$$

Onp (н-во \triangle)

$$|z_1 + z_2| \leqslant |z_1| + |z_2|$$

Опр (н-во Коши)

$$z_j, w_j \in \mathbb{C}, \quad j = 1, ..., n$$

$$\left| \sum_{j=1}^{n} z_j \cdot w_j \right|^2 \leqslant \sum_{j=1}^{n} |z_j|^2 \cdot \sum_{j=1}^{n} |w_j|^2$$

Док-во

$$\overline{ab} = \overline{a} \cdot \overline{b} \qquad z + \overline{z} = 2 \operatorname{Re} z \qquad z - \overline{z} = 2i \operatorname{Im} z$$

$$0 \leqslant \sum_{j=1}^{n} |z_{j} - \lambda \overline{w}_{j}|^{2} = \sum |z_{j}|^{2} + |\lambda|^{2} \sum |w_{j}|^{2} - 2 \operatorname{Re} \left(\sum_{j=1}^{n} z_{j} \overline{\lambda} w_{j}\right)$$

$$\lambda = \frac{\sum z_{j} w_{j}}{\sum |w_{j}|^{2}}$$

$$0 \leqslant \sum |z_{j}|^{2} + \frac{|\sum z_{j} w_{j}|^{2}}{(\sum |w_{j}|^{2})^{2}} \cdot \sum |w_{j}|^{2} - 2 \operatorname{Re} \left[\frac{\sum \overline{z_{j}} \cdot \overline{w_{j}}}{\sum |w_{j}|^{2}} \sum_{j=1}^{n} z_{j} w_{j}\right]$$

$$\operatorname{hint:} \left[\ldots \right] \leqslant \frac{|\sum z_{j} w_{j}|^{2}}{\sum |w_{j}|^{2}}$$

$$0 \leqslant \sum |z_{j}|^{2} + \frac{|\sum z_{j} w_{j}|^{2}}{\sum |w_{j}|} - 2 \frac{|\sum z_{j} w_{j}|^{2}}{\sum |w_{j}|^{2}}$$

$$\left| \sum_{j=1}^{n} z_{j} w_{j} \right|^{2} \leqslant \sum_{j=1}^{n} |z_{j}|^{2} \cdot \sum_{j=1}^{n} |w_{j}|^{2}$$

Опр

Комплексная последовательность

$$c_n\in\mathbb{C}$$

$$c_n=a_n+ib_n,a_n,b_n\in\mathbb{R}$$

$$c_n\to c\in\mathbb{C}\Leftrightarrow |c_n-c|\to 0\Leftrightarrow \begin{cases} a_n\to a\\b_n\to b \end{cases} \Leftrightarrow \{c_n\}_{n\in\mathbb{N}}\text{ - cx. в себе}$$
 при $n\to\infty$ т.е
$$\operatorname*{Re} c_n\to\operatorname{Re} c$$

$$\operatorname*{Im} c_n\to\operatorname{Im} c$$

Примеры (функций к. п.)

1.
$$a\in\mathbb{C}$$
 $f(z)=z+a$ $f:\mathbb{C}\to\mathbb{C}$ парал. перенос вдоль вектора $\overline{a}=(\operatorname{Re} z,\operatorname{Im} a)$

2.
$$\lambda \in \mathbb{C}$$
 $|\lambda| = 1$ $\lambda = \cos \Theta + i \sin \Theta$ $z = |z| (\cos \varphi + i \sin \varphi)$
$$f(z) = \lambda z = |z| (\cos(\varphi + \Theta) + i \sin(\varphi + \Theta))$$

Поворот вокруг O на угол Θ против часовой стрелки

3.
$$k \in [0, +\infty)$$

$$f(z) = kz = k \cdot |z| (\cos \varphi + i \sin \varphi)$$
$$|f(z)| = k |z|$$

Гомотетия с коэф. k

5. Инверсия (относительно ед. окружности)

$$f(z) = \frac{1}{z}$$
 $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$
 $f(z) = \frac{\overline{z}}{|z|^2}$

Какие точки останутся неподвижными? Их ровно две -1 и 1 $\left(z=\frac{1}{z}\right)$

6. Дробно-линейные отобр-я (преобр Мёбиуса)

$$L(z) = \frac{az+b}{cz+d} \qquad (c,d) \neq (0,0)$$

Если $c=0,\;{\rm To}\;L$ - афинное преобразование, т.е композиция гомотетий, поворотов и пар. переносов

$$L:\mathbb{C}\setminus\{-rac{d}{c}\} o\mathbb{C}$$
 Если $egin{array}{c|c} a&b\\c&d \end{array}=0,\ {
m to}\ L(z)=const$ Доопр. инв. $f(z)=rac{1}{z}$ $f(0)=\infty$ $f(\infty)=0$

L - доопределим

z(cw - a) = b - dw

$$L(-rac{d}{c})$$
 $L(\infty)=rac{a}{c}$ Тогда $L:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ - вз. однозн., если $\begin{vmatrix} a & b \\ c & d \end{vmatrix}
eq 0$ $w=rac{az+b}{cz+d}$ $czw+dw=az+b$

$$z = \frac{b - dw}{cw - a} \qquad \begin{vmatrix} -d & b \\ c & -a \end{vmatrix} = ad - bc \neq 0$$

Сфера римана $\Leftrightarrow \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

y_{TB}

Если известно, что
$$L(z_1)=w_1$$
 $L(z_2)=w_2$ $L(z_3)=w_3$ \Rightarrow можно восстановить дробно-лин. отобр L $z_1\neq z_2\neq z_3$ $w_1\neq w_2\neq w_3$

Опр

Обобщенная окр-ть = окр-ть или прямая

Утв (круговое св-во)

Дробно-лин отобр. переводит обощенные окр. в обобщ. окр.

Док-во

Дробно-лин. отобр - композиция

- 1. гомотетий
- 2. пар. переносов.
- 3. поворотов
- 4. инверсий

$$1-3$$
 - переводят окр \rightarrow окр прямые \rightarrow прямые

Надо разобраться, что делает инверсия с окр

 $\alpha \cdot |z|^2 + \beta \operatorname{Re} z + \gamma \operatorname{Im} z + \delta = 0$

$$\begin{aligned} &\alpha,\beta,\gamma,\delta\in\mathbb{R}\\ &\alpha(x^2+y^2)+\beta x+\gamma y+\delta=0\\ &\alpha=0\text{ - прямые}\\ &\alpha\neq0\text{ - окружности}\\ &x^2+y^2+\frac{\beta}{\alpha}x+\frac{\gamma}{\alpha}y+\frac{\delta}{\alpha}=0\\ &\left(x+\frac{\beta}{2\alpha}\right)^2+\left(y+\frac{\gamma}{2\alpha}\right)^2+\frac{\delta}{\alpha}-\frac{\beta^2+\gamma^2}{4\alpha^2}=0\\ &4\alpha\delta\leqslant\beta^2+\gamma^2\\ &z\to\frac{1}{z}=\frac{\overline{z}}{|z|^2}=\frac{x-iy}{|z|^2}\\ &\alpha\cdot\frac{1}{|z|^2}+\beta\frac{\operatorname{Re}z}{|z|^2}-\gamma\frac{\operatorname{Im}z}{|z|^2}+\delta=0\\ &\alpha+\beta\operatorname{Re}z-\gamma\operatorname{Im}z+\delta|z|^2=0\\ &4\alpha\delta\leqslant\beta^2+\gamma^2 \end{aligned}$$

Опр (симметрия отн. окружности)

$$|z^* - z_0| \cdot |z - z_0| = R^2$$

 z^* - симметрична z отн окр. $|z-z_0|=R$

Рассмотрим

$$z^* = \frac{1}{|z|}(\cos\varphi + i\sin\varphi) = \frac{1}{|z|} \cdot \frac{z}{|z|}$$

$$L: \qquad L(y) = \frac{z+b}{cz+d}$$

$$L(0) = i \qquad L(0) = i = \frac{b}{d}$$

$$L(-1) = 0 \quad L(-1) = \frac{b-1}{d-c} = 0$$

$$L(1) = \infty \quad L(1) = \frac{1+b}{c+d} = \infty$$

$$b = 1 \qquad d = -i \qquad \frac{1+1}{c-i} = \infty \quad c = i$$

$$L(z) = \frac{z+1}{iz-i} = -i\frac{z+1}{z-1}$$

$$L(z) = -i\frac{z+1}{z-1}$$

$$L(z^*) = -i\frac{\frac{z}{|z|^2} + 1}{\frac{z}{|z|^2} - 1} = -i\frac{z + |z|^2}{z - |z|^2}$$

$$\overline{L(z)} = -i\frac{(\overline{z} + 1)^2 z}{(\overline{z} - 1)^2 z} = i\frac{|z|^2 + z}{|z|^2 - z} = L(z^*)$$

Пример

$$f(z)=e^z=e^{x+iy}=e^x(\cos y+i\sin y)$$
 (по ф. Эйлера)
$$e^{iy}=\cos y+i\sin y$$
 $e^{i\pi}=-1$ Замечательная формула, которая связывает 3 числа $(x,y)\stackrel{e^z}{\to}(e^x\cos y;\ e^x\sin y)$

$$\begin{cases} y = 0 & \stackrel{e^z}{\to} e^x(\cos 0 + i \sin 0) = e^x \geqslant 1 \\ 0 \leqslant x < \infty & \stackrel{e^z}{\to} e^0(\cos y + i \sin y) \end{cases}$$
$$\begin{cases} x = 0 \\ 0 \leqslant y \leqslant \pi & \stackrel{e^z}{\to} e^0(\cos y + i \sin y) \end{cases}$$
$$\begin{cases} y = \pi & \stackrel{e^z}{\to} e^x(\cos \pi + i \sin \pi) = -e^x \leqslant -1 \\ 0 \leqslant x < +\infty & \stackrel{e^z}{\to} e^x(\cos \pi + i \sin \pi) \end{cases}$$

hint: "для понимания можно представлять это как веер"

$$e^z = e^x(\cos y + i\sin y) = e^x(\cos(y + 2\pi k) + i\sin(y + 2\pi k)) =$$
 $= e^{x+i(y+2\pi k)} = e^{z+i\cdot 2\pi k}$
Период e^z $T = e\pi ki$

../../template/template

Опр (Функция Жуковского)

Опр (Аргумент комплексного числа)

$$z = x + iy; \quad |z| = \sqrt{x^2 + y^2}$$

$$z \to |z|$$
; угол φ $z = |z| (\cos \varphi + i \sin \varphi)$

Подходят все углы $\varphi + 2\pi k$, $k \in \mathbb{Z}$

$$\operatorname{Arg} z = \{ \varphi + 2\pi k, \quad k \in \mathbb{Z} \}$$
 - полное знач. арг.

Отображегие $\operatorname{Arg}:\mathbb{C}\to$

 $\forall z \in \mathbb{C}$ сопоставляет множество

Опр (Непрерывная ветвь аргемнта)

$$\Phi$$
-я $\alpha:\Omega\to\mathbb{R}$ $\Omega\subset\mathbb{C}$

Называется непр. ветвью аргумента z, если

$$\alpha \in C(\Omega)$$
 и $\forall z \in \Omega \quad \alpha(z) \in \text{Arg}z$

Пример

 $\Omega = \{|z| < 1\}$ здесь нельзя определить однозн. ветвь аргумента

$$\Omega = \mathbb{C} \setminus \{z = x; \quad x \in (-\infty, 0]\}$$

Главное значение аргумента

$$\begin{cases} \arg(z) \in \operatorname{Arg}(z) \\ \arg(z) \in (-\pi, \pi) \end{cases}$$

$$z = x < 0$$
 $\arg(z) = \pi$

$$Arg z = \{ arg z + 2\pi k, k \in \mathbb{Z} \}$$

 $Arg z = arg z + 2\pi k$

Пример (Некоторые многозначные функции)

$$w^n = z, \quad n \in \mathbb{N}$$

Уравнение имеет n решений

$$w = |w| \cdot e^{i\operatorname{Arg} w}$$
 $z = |z| \cdot e^{i\operatorname{Arg} z}$

$$\begin{cases} |w|^n = |z| \\ n \text{Arg } w = \text{Arg } z \end{cases}$$

$$|w| = \sqrt[n]{|z|} \qquad \sqrt[n]{x} = x^{\frac{1}{n}} \quad x \in \mathbb{R}$$

$$n \text{Arg } w = \text{arg } z + 2\pi k, \quad k \in \mathbb{Z}$$

$$\text{Arg } w = \left\{ \frac{\text{arg } z}{n} + \frac{2\pi k}{n}, \quad k \in \mathbb{Z} \right\}$$

$$w = \sqrt[n]{z} = \sqrt[n]{|z|} \cdot e^{i(\frac{\text{arg } z}{n} + \frac{2\pi k}{n})}$$

$$\forall z \in \mathbb{C} \setminus \{0\}$$

$$\sqrt[n]{z}$$
 принимает n разл. знач.

Опр (Комплексный логарифм)

$$e^w = z$$

$$w = u + iv$$

$$e^{u+iv} = e^u \cdot e^{iv} = |z| \cdot e^{i\operatorname{Arg}\,z}$$

$$\begin{cases} e^u = |z| & \left\{ u = \ln_{\mathbb{R}} |z| \\ v = \operatorname{Arg}\,z \right\} & \left\{ v = \operatorname{arg}\,z + 2\pi k \right\} \end{cases}$$

$$w = \ln_{\mathbb{R}} |z| + i(\operatorname{arg}\,z + 2\pi k) = \ln_{\mathbb{R}} |z| + i\operatorname{Arg}\,z$$

$$\ln z = \ln_{\mathbb{R}} |z| + i\operatorname{arg}\,z$$
Если $x > 0$, то $\operatorname{arg}\,x = 0$

$$\ln x = \ln x + i0$$

$$\operatorname{Ln}\,z = \ln|z| + i\operatorname{Arg}\,z$$

$$\operatorname{Ln}\,z = \ln z + 2\pi ki$$

$$a, b \in \mathbb{C} \quad a \neq 0$$

$$a^b = e^{(\operatorname{Ln}\,a)b}$$

$$i^i = e^{(\operatorname{Ln}\,i)i}$$

Ln $i = \ln|i| + i \text{Arg } i = 0 + i(\frac{\pi}{2} + 2\pi k)$

Опр (Обратные тригонометрические функции)

$$\begin{aligned} \cos w &= z \\ e^{iw} + e^{-iw} &= 2z \\ e^{iw} &= t & t^2 - 2t \cdot z + 1 = 0 \\ t &= z + \sqrt{z^2 - 1} = e^{iw} \\ iw &= \text{Ln } (z + \sqrt{z^2 - 1}) \\ \arccos z &= -i \cdot \text{Ln } (z = \sqrt{z^2 - 1}) \stackrel{*}{=} \\ z + \sqrt{z^2 - 1} &= \frac{1}{z - \sqrt{z^2 - 1}} \\ \stackrel{*}{=} i \text{Ln } (z - \sqrt{z^2 - 1}) \end{aligned}$$

Пример

Решим уравнение $\sin z = i$

$$\begin{split} e^{iz} - e^{-iz} &= 2i^2 = -2 \\ e^{iz} &= t \\ t^2 + 2t - 1 &= 0 \\ t &= -1 + \sqrt{\frac{1+1}{C}} = \pm \sqrt{\frac{2}{2}} - 1 \qquad \sqrt{2} - 1 = \frac{1}{\sqrt{2} + 1} \\ iz &= \operatorname{Ln}(\pm \sqrt{2} - 1) \\ \begin{bmatrix} iz &= \ln(\sqrt{2} - 1) + i(2\pi k) \\ iz &= \ln(-\sqrt{2} - 1) + i(\pi + 2\pi k) = \\ \end{bmatrix} \\ &= \ln(-\frac{1}{\sqrt{2} - 1}) + i(\pi + 2\pi k) = -\ln(\sqrt{2} - 1) + i2\pi k \end{split}$$

6.1 Комплексное дифференциирование

Опр

$$\Omega \subset \mathbb{C}$$
 Ω - область, если

- 1. Ω откр.
- 2. $\forall a, b \in \Omega$ можно соед. ломанной (Ω связно)

Опр

$$f:\Omega \to \mathbb{C}$$
 $z_0 \in \mathbb{C}$ f - ди-ма (\mathbb{C} - диф-ма) в т. z_0 , если $\exists A \in \mathbb{C}: \quad f(z) = f(z_0) + A(z-z_0) + o(|z-z_0|) \quad z \to z_0$ $A = \int_{\text{произв } f}^{\prime} f(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$ $z - z_0 = \Delta z$

Предел не зависит от того, как $z \to 0$

Пример (1)

$$f(z)=\overline{z}$$
 $z_0=0$ $f'(0)=?\lim_{\Delta z \to 0} rac{\overline{\Delta z}-0}{\Delta z}=\lim_{\Delta \to 0} rac{\Delta x-i\Delta y}{\Delta x+i\Delta y}$ Если $\Delta z=\Delta x \to 0$, то $\lim_{\Delta z \to 0} rac{\overline{\Delta z}}{\Delta z}=1$ Если $\Delta z=i\Delta y \to 0$, то $\lim_{\Delta z \to 0} rac{\overline{\Delta z}}{\Delta z}=-1$

Пример (2)

$$\begin{split} f(z) &= z^n, \quad n \in \mathbb{N} \\ f'(z_0) &= \lim_{\Delta z \to 0} \frac{(z_0 + \Delta z)^n - z^n}{\Delta z} = \\ &= \lim_{\Delta z \to 0} \frac{z_0^n + n\Delta z z_0^{n-1} + C_n^2 \Delta z^2 z_0^{n-2} + \dots + \Delta z^n - z_0^n}{\Delta z} = n \cdot z_0^{n-1} \end{split}$$

Теорема (Основные правила диф-я)

1.
$$(f+g) = f' + g'$$

2.
$$(const \cdot f)' = const \cdot f'$$

3.
$$(f \cdot q)' = f'q + fq'$$

4.
$$[f(g(z))]' = f'(g(z)) \cdot g'(z)$$

$\mathbf{y}_{\mathbf{TB}}$

Если f - диф-ма в т z_0 , то она непр в z_0

Док-во

$$f(z) - f(z_0) = f'(z_0) \cdot (z - z_0) + o(|z - z_0|) \quad z \to z_0 \Rightarrow$$

$$\Rightarrow f(z) \to f(z_0) \quad z \to z_0$$

Опр

$$\Omega \subset \mathbb{C}$$
 $z = x + iy \in \mathbb{C} \Leftrightarrow (x, y) \in \mathbb{R}$ $f: \Omega \to \mathbb{C}$ $f(z) = u(x, y) + iv(x, y)$ $z \to (x, y) \to u(x, y) = \operatorname{Re} f(x + iy)$ $v(x, y) = \operatorname{Im} f(x + iy)$ $u: \Omega \to \mathbb{R}$ $v: \Omega \to \mathbb{R}$ $\begin{pmatrix} u \\ v \end{pmatrix}: \Omega \to \mathbb{R}^2$

Теорема (условие Коши-Римана (Эйлера - Даламбера))

$$\Omega \subset \mathbb{C}$$
 - область

$$f: \Omega \to \mathbb{C}$$
 $f(x+iy) = u(x,y) + iv(x,y)$

Следующие условия равносильны

1.
$$f$$
 - диф-ма ($\mathbb C$) в т. $z_0 \in \Omega$

2.
$$u, v$$
 - диф-мы в т. (x_0, y_0) $z_0 = x_0 + iy_0$

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$

Док-во

$$(1\Rightarrow 2) \quad \text{предпол, что } f \cdot \text{диф-ма в т. } z_0 \qquad \Delta z = z - z_0$$

$$f(z) = f(z_0) + f'(z_0) \cdot \Delta z + o(|\Delta z|) \qquad f(z) = u + iv$$

$$f'(z_0) = A = a + ib \qquad z = \Delta x + i\Delta y$$

$$o(|\Delta z|) = h(\Delta z) \cdot |\Delta z| = (\alpha(\Delta x, \Delta y) + i\beta(\Delta x, \Delta y)) |\Delta z|$$

$$u(x,y) + iv(x,y) = u(x_0,y_0) + iv(x_0,y_0) + (a + ib)(\Delta x + i\Delta y) + \\ (\alpha(\Delta x, \Delta y) + i\beta(\delta x, \delta y)) |\Delta z|$$

$$u(x,y) = u(x_0,y_0) + a \cdot \Delta x - b\Delta y + \alpha(\Delta x, \Delta y) \sqrt{\Delta x^2 + \Delta y^2}$$

$$u(x,y) = v(x_0,y_0) + b \cdot \Delta x - a\Delta y + \beta(\Delta x, \Delta y) \sqrt{\Delta x^2 + \Delta y^2}$$

$$\alpha,\beta \to 0 \qquad \sqrt{\Delta x^2 + \Delta y^2} \to 0$$

$$\text{T.0 } u,v \cdot \text{дифф-мы в т. } (x_0,y_0)$$

$$\frac{\partial u}{\partial x}(x_0,y_0) = a \qquad \frac{\partial u}{\partial y}(x_0,y_0) = -b$$

$$\frac{\partial v}{\partial x}(x_0,y_0) = v \qquad \frac{\partial v}{\partial y}(x_0,y_0) = a$$

$$\Rightarrow \begin{cases} \frac{\partial u}{\partial x}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0) \\ \frac{\partial u}{\partial y}(x_0,y_0) = -\frac{\partial v}{\partial x}(x_0,y_0) \end{cases}$$

$$\text{Условие K-P, Э-Д}$$

$$(2\Rightarrow 1) \quad \text{Пусть } u,v:\Omega\to\mathbb{R} \text{ диф-мы } (x_0,y_0)$$

$$u(x,y)=u(x_0,y_0)+\frac{\partial u}{\partial x}\Delta x+\frac{\partial u}{\partial y}(x_0,y_0)\Delta y+\alpha(\Delta x,\Delta y)\,|\Delta z| \qquad \Delta z\to 0$$

$$v(x,y)=v(x_0,y_0)+\frac{\partial v}{\partial x}(x_0,y_0)\Delta x+\frac{\partial v}{\partial y}(x_0,y_0)\Delta y+\beta(\Delta x,\Delta y)\,|\Delta z|$$

$$\frac{\partial u}{\partial x}(x_0,y_0)=\frac{\partial v}{\partial y}(x_0,y_0)=a\in\mathbb{R}$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0) = -b \in \mathbb{R}$$

$$f(z) = u(x, y) + iv(x, y) = f(z_0) + a\Delta x - b\Delta y + ib\Delta x + ia\Delta y + (\alpha + i\beta) |\Delta z|$$

$$\Delta z \to 0$$

$$f(z) = f(z_0) + (a + ib)\Delta x + i(a + ib)\Delta y + \mathcal{E}(\Delta z) |\Delta z|$$

$$(a + ib)\Delta z$$

Замечание

$$f'(z_0) = a + ib = u'_x(x_0, y_0) + iv'_x(x_0, y_0) = v'_y - iu'_y = u'x - iu'_y = v'_y + iv'_x$$

Теорема

$$\Omega \subset \mathbb{C}$$
 $f: \Omega \to \mathbb{C}$

Предположим, что f - диф-ма $\forall z \in \Omega$ и $f'(z) \in C(\Omega)$, тогда

- 1. Если $f'(z) = 0 \quad \forall z \in \Omega \Rightarrow f = const$
- 2. Если $\operatorname{Re} f(z) \equiv const \quad \forall z \in \Omega \Rightarrow f(z) \equiv const \quad \forall z \in \Omega$ $(\operatorname{Im} f = const \Rightarrow f = const)$
- 3. Если $|f(z)| \equiv const \Rightarrow f(z) \equiv const$
- 4. Если arg $f(z) \equiv const \Rightarrow f(z) \equiv const$

Напоминание (лемма(т. о среднем))

$$f: U \to \mathbb{R}$$

ч.пр f опр. $V_{x_0} \subset U$ $x \in V_{x_0}$

$$\exists c^1, c^2: \quad f(x) - f(x_0) = \frac{\partial f}{\partial x}(c^1)\Delta x + \frac{\partial f}{\partial y}(c^2)\Delta y$$

Док-во

1)
$$f'(z) = 0 = u'_x + iu'_y = v'_y + iv'_x$$

По лемме $f(z_2) = f(z_1) \quad \forall z_1, z_2 \in \Omega$

2) Re f = u(x, y) = const

$$\Rightarrow \begin{cases} \frac{\partial u}{\partial x}(x,y) = 0 \\ \frac{\partial u}{\partial y}(x,y) = 0 \end{cases} \quad \forall (x,y) \in \Omega \Rightarrow (+ \text{ K-P}) \begin{cases} \frac{\partial v}{\partial y} = 0 \\ -\frac{\partial v}{\partial x} = 0 \end{cases}$$

По лемме v = const в $\Omega \Rightarrow f(z) = const$

3)
$$|f| = const \Rightarrow |f|^2 = u^2 + v^2 = const$$

$$\begin{cases} 2u \cdot u_x' + 2vv_x' = 0 \\ 2u \cdot u_y' + 2vv_y' = 0 \end{cases} \qquad \begin{cases} u \cdot u'x - v \cdot u_y' = 0 \\ u \cdot u'y + v \cdot u_x' = 0 \end{cases}$$

Определитель системы л. ур

$$\begin{vmatrix} u & -v \\ v & u \end{vmatrix} = y^2 + v^2 \neq 0$$

Если $u^2 + v^2 \neq 0 \Rightarrow u'_x = 0, u'_y = 0 \Rightarrow u \equiv const \Rightarrow v \equiv const$

4)
$$\arg f(z) \equiv const \quad \forall z \in \Omega$$

Введем функцию
$$k = \frac{u}{v} \Rightarrow k = const$$

дифф
$$\forall z \in \Omega \quad (1+ik)f = (1+ik)(u+iv) = u+iku+iv-u$$

$$Re((1+ik)f) = 0 \Rightarrow (1+ik)f \equiv const$$