МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №3

по дисциплине 'ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА'

Вариант №7

Выполнила: Конаныхина Антонина P3215 Преподаватель: Малышева Татьяна Алексеевна

Цель работы

Изучить численные методы интегрирования и реализовать три из них средствами программирования. Понять их сходства и различия.

Задание:

Программная реализация задачи:

- 1. Реализовать в программе методы по выбору пользователя, исходя из варианта:
 - Метод прямоугольников (3 модификации: левые, правые, средние)
 - Метод трапеций
 - Метод Симпсона
- 2. Методы должны быть оформлены в виде отдельной(ого) функции/класса.
- 2. Вычисление значений функции оформить в виде отдельной (ого) функции/класса.
- 3. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге.
 - 4. Предусмотреть вывод результатов: значение интеграла, число разбиения интеграла интегрирования для достижения требуемой точности.

Вычислительная реализация задачи:

- 1. Вычислить интеграл, приведенный в таблице 1 (столбец 3), точно.
- 2. Вычислить интеграл по формуле Ньютона Котеса при n = 6.
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=6.
- 4. Сравнить результаты с точным значением интеграла.
- 5. Определить относительную погрешность вычислений.
- 6. В отчете отразить последовательные вычисления.

Дополнительное задание:

- 1. Установить сходимость рассматриваемых несобственных интегралов 2 рода (2-3 функции). Если интеграл расходящийся, выводить сообщение: «Интеграл не существует».
- 2. Если интеграл сходящийся, реализовать в программе вычисление несобственных интегралов 2 рода (заданными численными методами).
- 3. Рассмотреть случаи, когда подынтегральная функция терпит бесконечный разрыв: 1) в точке а, 2) в точке b, 3) на отрезке интегрирования

Рабочие формулы используемых методов

Метод прямоугольников

Используется непосредственная замену определенного интеграла интегральной суммой. На каждом шаге интегрирования функция аппроксимируется полиномом нулевой степени – отрезком, параллельным оси абсцисс. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n- прямоугольников, далее считается их сумма.

Метод левых прямоугольников

Рабочая формула метода:

$$h = \frac{b-a}{n} = const$$

$$I = \int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} f(y_{i-1})$$

Визуализация метода левых:

Метод правых прямоугольников Рабочая формула метода:

$$h = \frac{b-a}{n} = const$$

$$I = \int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} f(y_i)$$

Визуализация метода правых:

Метод средних

Рабочая формула метода:

$$x_{i-\frac{1}{2}} = \frac{x_{i-1} + x_i}{2}$$

$$h = \frac{b-a}{n} = const$$

$$I = \int_{a}^{b} f(x) dx = h \sum_{i=1}^{n} f\left(x_{i-\frac{1}{2}}\right)$$

Визуализация метода средних:

Метод трапеций

Рабочая формула метода:

$$h = \frac{b-a}{n} = const$$

$$I = \int_{a}^{b} f(x) dx = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right)$$

Метод Симпсона

На каждом отрезке $[x_{i-2}; x_i]$ подынтегральную функцию заменим интерполяционным многочленом второй степени (параболой).

Рабочая формула метода:

$$I = \int_{a}^{b} f(x) dx = \frac{h}{3} \cdot (y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n)$$

4

Визуализация метода:

Вычисление заданного интеграла

Прямое вычисление интеграла:

$$\int_{0}^{2} (4x^{3} - 5x^{2} + 6x - 7) dx = \left(x^{4} - \frac{5}{3}x^{3} + 3x^{2} - 7x\right)\Big|_{0}^{2} = 16 - \frac{5 \cdot 8}{3} + 12 - 14 = \frac{2}{3}$$

Метод Ньютона-Котеса:

$$h = \frac{2+0}{6} = \frac{1}{3}$$

Ī	χ_i	0	1	2	1	4	5	2
	~ (3	3		3	3	
	$f(x_i)$	-7	-146	-109	-2	43	206	17
) ()		27	27		$\overline{27}$	27	

$$c_6^0 = c_6^6 = \frac{41 \cdot 2}{840} = \frac{41}{420}$$

$$c_6^1 = c_6^5 = \frac{9 \cdot 2}{35} = \frac{18}{35}$$

$$c_6^2 = c_6^4 = \frac{9 \cdot 2}{280} = \frac{9}{140}$$

$$c_6^3 = \frac{34 \cdot 2}{105} = \frac{68}{105}$$

$$I = \sum_{i=0}^{6} f(x_i) \cdot c_n^i = (-7) \cdot \frac{41}{420} - \frac{146 \cdot 18}{27 \cdot 35} - \frac{109 \cdot 9}{27 \cdot 140} - 2 \cdot \frac{68}{105} + \frac{43 \cdot 9}{27 \cdot 140} + \frac{206 \cdot 18}{27 \cdot 35} + 17 \cdot \frac{41}{420} = \frac{2}{3}$$

$$\Delta I = 0$$

Метод средних:

x_i	0	$\frac{1}{3}$	$\frac{2}{3}$	1	$\frac{4}{3}$	<u>5</u>	2
$f(x_i)$	-7	$\frac{-146}{27}$	$\frac{-109}{27}$	-2	$\frac{43}{27}$	$\frac{206}{27}$	17
$x_{i-\frac{1}{2}}$		$\frac{1}{6}$	$\frac{1}{2}$	<u>5</u>	$\frac{27}{6}$	9 - 6	$\frac{11}{6}$
$f\left(x_{i-\frac{1}{2}}\right)$		$\frac{-661}{108}$	$\frac{-19}{4}$	$\frac{-341}{108}$	$\frac{-49}{108}$	$\frac{17}{4}$	$\frac{1279}{108}$

$$I = \frac{1}{3} \cdot \sum_{i=1}^{6} f\left(x_{i-\frac{1}{2}}\right) = \frac{1}{3} \cdot \left(\frac{-661}{108} - \frac{19}{4} - \frac{341}{108} - \frac{49}{108} + \frac{17}{4} + \frac{1279}{108}\right) = \frac{29}{54} \approx 0,53704$$

$$\Delta I = 0.66667 - 0.53704 = 0.12963 (\sim 19.4 \%)$$

Метод трапеций:

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right) = \frac{1}{3} \cdot \left(\frac{-7 + 17}{2} + \frac{-146}{27} - \frac{109}{27} - 2 + \frac{43}{27} + \frac{206}{27}\right) = 0,9259$$

$$\Delta I = |0,6667 - 0,9259| = 0,2592 (\sim 39 \%)$$

Метод Симпсона:

$$I = \int_{a}^{b} f(x) dx = \frac{h}{3} \cdot (y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n)$$
$$= \frac{1}{9} \cdot \left(-7 + 4\left(\frac{-146}{27} - 2 + \frac{206}{27}\right) + 2\left(\frac{-109}{27} + \frac{43}{27}\right) + 17\right) = \frac{2}{3}$$

$$\Delta I = 0$$

Листинг программы

```
def squad method mid(func, a, b):
    return func((a + b) / 2) * (b - a)
    #подсчёт площади одного интервала методом среднего
def squad method left(func, a, b):
   return func(a) * (b - a)
    #методом левого
def squad_method_right(func, a, b):
   return func(b) * (b - a)
    #методом правого
def trapezoid method(func, a, b):
   return ((func(a) + func(b)) / 2) * (b - a)
    #методом трапеции
def simpson method(func, a, b):
    return (b - a) / 6 * (func(a) + 4 * func((a + b) / 2) + func(b))
def calc integral(func, method func, a, b, error, k):
    integral = -10
```

```
integral prev = error * 2
    while abs((integral_prev - integral) / (2 ** k - 1)) > error:
        integral_prev = integral
        integral = 0
        h = (abs(a - b)) / n
        for i in range(n):
            integral += method func(func, a + h * i, a + h * (i + 1))
        n *= 2
    return integral, n / 2, abs((integral prev - integral) / (2 ** k - 1))
def calc with 1st break(func, method func, a, b, br, err):
    if a <= br <= b:
        if a == br:
            return calc integral (func, method func, a + err, b, err, 4)[0]
        elif b == br:
            return calc integral (func, method func, a, b - err, err, 4)[0]
            return calc integral (func, method func, a, br - err, err, 4)[0] +
\
                   calc integral(func, method func, br + err, b, err, 4)[0]
    else:
        return calc integral(func, method func, a, b, err, 4)[0]
def calc with 2nd break(func, method func, a, b, br, err):
    if a <= br <= b:
        print("Интеграл не существует")
        exit()
    else:
        return calc integral (func, method func, a, b, err, 4)[0]
```

Результаты выполнения программы:

Ответ: 20.999999

```
Введите 1 для функций без разрыва, 2 для функций с разрывом: 1
1: x^3 + 2.28x^2 - 1.934x - 3.907
2: x^2 - 3x - 2
3: sin(x) - cos(x) + 0.2x
Выберите функцию: 1
Введите точку а: 0
Введите точку b: 1
Введите точность: 0.01
Введите 1 для метода прямоугольника левого, 2 для метода прямоугольника правого, 3 для метода прямоугольника среднего, 4 для метода трапеций: 4
Получен ответ -3.85415625, 8.0 разбиений
Введите 1 для функций без разрыва, 2 для функций с разрывом: 2
1: 1/x
2: x^2 при x < 2, 3x при x >= 2
3: sign(x)
Выберите функцию: 2
Введите точку а: -1
Введите точку b: 4
Введите 1 для метода прямоугольника левого, 2 для метода прямоугольника правого, 3 для метода прямоугольника среднего, 4 для метода трапеций,
```

Вывод:

В результате выполнения данной лабораторной работой были изучены численные методы интегрирования и реализован метод прямоугольников, метод трапеций и метод Симпсона, методы вычисления несобственных интегралов 2 рода на языке программирования Python.