Sampling and Filtering of Neural Machine Translation Distillation Data

Vilém Zouhar

NAACL-SRW 2021

Model {stealing, distillation}

- Transferring knowledge from large model (teacher) to smaller one (student)
- Filtering improves performance (German et. al.)
 - Model inferences have no additional features that imply the quality

Teacher (big model, big data)

Distillation (small model, small data)

Related Work

Most prevalent

- Take all the best decoder hypotheses
- Combine them with original (not teacher train) data
- Output: two translations per one sentence → Twice as much data

Related Work

More sophisticated

- Filter sentences which are suspicious
 - Not recognized by language recognizer (German et. al.)
 - More than / less than k*length of the reference /source
- Filter based on reference quality, e.g. TER (Freitag et. al.)
 - Not main topic of their work
- → TER is very arbitary, how do other metrics behave?
- → What about other sampling methods?
- → What about the combination of them?

Distillation

- Query teacher on source sentences
- Get 12 translations for every sentence
- Treat them w.r.t. their quality
 - Filter worse ones
 - Oversample better ones
- Quality measured by
 - Decoder score
 - Reference based metrics (BLEU, ChrF, TER, SP)

Figure 1. Scheme of an example of hypothesis sampling with BLEU metrics.

Experimental Setup

Process

- Create new data set (data sampling)
 - Use different sampling methods
- Train student on the new data
 - CS→EN, EN→CS, EN→DE
- Evaluate and see the effect of the chosen method

Data Sampling

Notation

- $F_{metrics}^{k_1, k_2, k_3, \dots}$
 - take top translation k_1 times, second one k_2 times, etc. ...

Data Sampling

Notation

- $-T_{metrics}^{n}$
 - Take \emph{n} top translation hypotheses according to $\emph{metrics}$ (equals $F^{1,1,1,...,1(n)}_{\emph{metrics}}$
- $G_{metrics}^m$
 - Take all sentence translations with *metrics*
 - At least **m**
- Dedup[X]
 - Deduplicate sentence pairs of X

Data Sampling

Notation

- Concatenation of sampling methods
- $T_{BLEU}^2 + G_{score}^{-10}$
 - Join the top 2 sentences measured by **BLEU**
 - Add them to hypotheses with *decoder score* at least **-10**

Results - Combination

Dataset	CS→EN	EN→CS	EN→DE
$T_{ m score}^1 + { m Original}$	44.4	36.4	28.3
$Dedup[T_{ m BLEU}^4 + T_{ m score}^4] + { m Original}$	43.7	35.3	29.1
$S_{ ext{score}}^{4,3,2,1} + 2 imes ext{Original}$	43.9	36.1	28.3
$S_{ m BLEU}^{4,3,2,1}+2 imes { m Original}$	45.5	37.3	28.8
$S_{\mathrm{BLEU}}^{4,3,2,1} + 4 \times \mathrm{Original}$	45.5 *	$\textbf{37.4} \star$	28.9
$T_{ m score}^4 + T^{12}$	41.6	33.2	28.3
$T_{ m BLEU}^4 + T^{12}$	42.6	33.9	28.7
$T_{ m BLEU}^4 + T_{ m score}^4$	43.3	33.2	28.9
$Dedup[\sum T_{ m metric}^2]$	43.6	34.7	29.1
$Dedup[\sum T_{ m metrics}^2] + T^{12}$	40.8	32.0	27.2
$Dedup[T_{ m BLEU}^4 + T_{ m score}^4] + T_{ m BLEU}^1 + T_{ m score}^1$	43.5	34.7	29.2
$Dedup[T_{\mathrm{BLEU}}^4 + T_{\mathrm{score}}^4] + Dedup[T_{\mathrm{BLEU}}^1 + T_{\mathrm{score}}^1]$	42.6	34.9	$29.6~\star$
$Dedup[T_{ m BLEU}^4 + T_{ m score}^4]$	43.5	35.0	29.3

Table 6: BLEU scores for students trained on datasets made of combination of sampling methods. \sum_{metric} sums over all used metrics (BLEU, ChrF, TER, SP, score).

Contributions

Meaning of results

- Smaller students
 - Improve results by 0.9 BLEU score
 - Not much, but orthogonal to other tricks
- Students with the same architecture like teacher
 - Improve results by 2.0 BLEU score

Conclusion

Although widely used:

- Taking only highest-scoring sentence & original → not the best results
- Combination of oversampled good hypotheses & original
- Choice of reference metric does not significantly influence results

Caveats:

- Evaluation on custom dataset, not standardized ones
 - Computation power limitations
- Oversampling vectors chosen at random
 - They are an independent variable as well
- Models very small

Future Work

Bigger models:

- Behavior on larger data & models
- Computationally expensive, but focus only on the best methods

Experiment with other ML domains:

Does distillation oversampling work in other ML domains as well?

More oversampling schemes

- Sampling parameters chosen arbitrarily