# Probability and Random Processes

Keivan Mallahi-Karai

9.11.2022

Jacobs University

## Joint probability density function of two random variables

#### **Definition**

The joint probability density function of two random continuous variables X and Y a non-negative  $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  such that

1. (version 1) For real values of s, t we have

$$\mathbb{P}(X \leq t)$$

$$\mathbb{P}[X \leq s, Y \leq t] = \int_{x=-\infty}^{s} \int_{y=-\infty}^{t} f(x, y) \, dxdy.$$



$$\mathbb{P}\left[a \leq X \leq b, c \leq Y \leq d\right] = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy.$$

3. (version 3) For all subsets  $B \subseteq \mathbb{R}$  we have

$$(X,T) \underset{\text{in } \mathbb{R}^2}{\text{Point}} \quad \mathbb{P}[X \notin B] = \iint_B f(x,y) \, dx \, dy.$$

## **Key properties**

$$f(x,y)\geq 0.$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx \ dy = 1.$$

Example: uniform distribution on a region in the plane:

Let  $\mathbf{A}$  be a subset of  $\mathbb{R}^2$ . Suppose that the joint probability density function of

X and Y is given by

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\operatorname{area}(\mathbf{A})} & \text{if } (x,y) \in \mathbf{A} \\ 0 & \text{otherwise} \end{cases}$$

A random point (X, Y) is chosen in the unit circle  $\mathbf{A} = \{(x, y) : x^2 + y^2 \le 1\}$ . Find the joint probability density function of X and Y and individual probability density functions of X and Y.

$$X^{2} + Y^{2} \le 1$$

$$P((X,Y) \in B) = \frac{\text{area } B}{\text{area } A}$$

# Independence

#### **Definition**

Continuous random variables X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Suppose X and Y are independent exponential random variables we parameters  $\alpha$  and  $\beta$ . Find the probability of the event that  $Y \leq X$ 

$$f_{\chi}(x) = \begin{cases} x e^{-\alpha x} & x > 0 \\ 0 & x < 0 \end{cases}$$

$$f_{\chi}(y) = \begin{cases} \beta e^{-\beta y} & y > 0 \\ 0 & x < 0 \end{cases}$$



$$f_{X,Y}(x,y) = f_{X}(x) f_{Y}(y) = \begin{cases} \alpha \beta e^{(\alpha x + \beta y)} \\ 0 \end{cases}$$

$$P(Y \le x)$$

$$= P((X,Y) \in \underline{\hspace{1cm}})$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dy dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha x + \beta y)} dx \right]$$

$$= \int_{x=0}^{\infty} \left[ (x,Y) e^{(\alpha$$

Suppose X and Y are independent exponentially distributed random variables with mean 1. Determine the joint probability density function of X and Y and use it to compute the probability distribution and probability density function of  $Z = \max(X, Y)$ .

Suppose that X and Y are chosen randomly and independently according to the uniform distribution from the interval (0,1). Define

$$Z = \frac{Y}{X}$$
.

Compute the probability distribution function of Z.

$$f_{x}(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & x \notin (0,1) \end{cases}$$

$$f_{y}(y) = \begin{cases} 1 & 0 < y < 1 \\ 0 & J \notin (0,4) \end{cases}$$

$$f_{x,y}(x,y) = f_{x}(x) f_{y}(y) = \begin{cases} 1 \\ 0 & 0 \end{cases}$$



4=x

Compute The Pdf of Z

$$F_{Z(t)} = \mathbb{P}(Z \leq t)$$

$$\mathbb{P}(Y_X \leq t)$$

$$= \mathbb{P}(Y \leq t \times)$$



t= 1/2

$$F(Z \leq t) = \begin{cases} \frac{t}{2} & t < 1 \\ 1 - \frac{1}{at} & t > 1 \end{cases}$$



Cano(1) tcl

$$F(2 \le t) = \iint \int dx dy$$



$$= \operatorname{areof} @ = \frac{t \cdot 1}{2} = \frac{t}{2}$$

Care(1) t71

$$F(2 \le t) = \iint 1 \, dx \, dy$$





$$= 1 - \frac{1}{at}$$

$$f_{Z}(t) = \begin{cases} \frac{1}{2} & + < 1 \\ \frac{1}{2t^2} & + > 1 \end{cases}$$

## joint probability density function for *n* random variables

#### **Definition**

Continuous random variables  $X_1, \ldots, X_n$  have the joint probability density function  $f(x_1, \ldots, x_n)$  if for every subset  $B \subseteq \mathbb{R}^n$  we have

$$\mathbb{P}\left[(X_1,\ldots,X_n)\in B
ight]=\iint_B f(x_1,\ldots,x_n)\ dx_1\ldots dx_n.$$

### Joint probability density function

#### **Definition**

Continuous random variables  $X_1, \ldots, X_n$  with the joint density function  $f_{X_1, \ldots, X_n}$  are *independent* if

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) \cdot \cdot \cdot f_{X_n}(x_n)$$

for all  $t_1, \ldots, t_n \in \mathbb{R}$ . Here  $f_{X_i}(t_i)$  is the marginal density function of  $X_i$ .

## **Conditional probability mass function**

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

#### **Definition**)

Let X and Y be discrete random variables. The conditional probability mass function of X given Y = y is defined by

$$p_{X|Y}(x|y) = \frac{\mathbb{P}[X = x, Y = y]}{\mathbb{P}[Y = y]} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}.$$

$$\mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(X = x \cap Y = y)}{\mathbb{P}(Y = y)}$$

Remark: This is only defined when  $p_Y(y) = \mathbb{P}[Y = y] > 0$ .

Let X and Y be chosen randomly from the set  $\{-1,0,1\}$  such that the joint probability mass function of X and Y is given by

|        | Y = -1 | Y = 0 | Y = 1 |      |
|--------|--------|-------|-------|------|
| X = -1 | 1/10   | 0     | 1/10  | 2/10 |
| X = 0  | 1/10   | 2/10  | 2/10  | 5/10 |
| X = 1  | 3/10   | 0     | 0     | 3/10 |
|        | 5/10   | 2/10  | 3/16  | , (0 |

Find the conditional probability mass functions of X given Y and Y given X.

|            | XLT  |     |     |     | YX   |      |     |     |
|------------|------|-----|-----|-----|------|------|-----|-----|
| Px, (x, y) |      |     | 7=0 | 7=1 |      | Y=-1 | 7=0 | 7=1 |
| ~/\        |      | Y5  |     | /3  | Xc-1 | 1/2  |     | 1/2 |
|            | X 20 | 45  | l   | 2/3 | X 20 | 75   | 2/5 | 3/5 |
|            | X=1  | 3/5 | 0   | O   | X=1  | 1    | 0   | 0   |

A fair coin is flipped three times. Let N denote the number of Heads and S denote the length of the longest streak of Heads. Determine the joint probability mass function of N given S and S given N.

N&S and whitel en of

SIN

HHH HHT HTH HTT
$$(3,3)$$
  $(2,2)$   $(2,1)$   $(1,1)$ 

THH THT TTH TTT
 $(2,2)$   $(1,1)$   $(1,1)$   $(0,0)$ 

Questes:

ig X are independent

$$\rho_{X|Y}(x|y) = \rho_{X}(x)$$

$$P_{X|Y}(x,y) = \frac{P_{X,Y}(x,y)}{P_{Y}(y)} = \frac{P_{X}(x) \cdot P_{Y}(y)}{P_{Y}(y)}$$

## **Connection to independence**

#### **Theorem**

Discrete random variable X and Y are independent if for all values y of Y we have

$$p_{X|Y}(x,y)=p_X(x).$$

$$P_{Y|X}(y,x) = P_{Y}(y)$$
.