程式碼改變世界

Posts - 57, Articles - 5, Comments - 47, 查看 - 31萬 | Cnblogs | Dashboard | Login |

SEARCH

Change

SUCCESS BELONGS TO THE ONE WITH CLEAR AND LONG-TERM GOALS!

HOME CONTACT **GALLERY SUBSCRIBE**

BP神經網路演算法推導

2012-12-12 21:50 錢吉 閱讀(23129)評論(1)編輯 收藏 舉報

前言:自己動手推導了一下經典的前向回饋神經網路的演算法公式,記錄 一下。由於暫時沒有資料可以用作測試,程式沒有實現並驗證。以後找到比 較好的數據,再實現。

一:演算法推導

神經網路透過模擬人的神經元活動,來建構分類器。它的基本組成單元稱 為"神經元",離線情況下如果輸入大於某值時,設定神經元處於興奮狀態,產生輸出, 否則不響應。而這個輸入來自於所有其它的神經元。而神經元的反應函數有多種(需要滿 足可微,這種簡單的函數可以擬合任何非線性函數),本文選擇sigmod函數。關於基礎知 識在此不在多說,這裡主要介紹一下BP神經網絡,並推導出權值和閾值的更新公式。

BP網路透過前向回饋誤差來改變權值和閾值, 當網路的輸出與實際期望的輸出均方 誤差低於某個閾值或學習次數滿足某個條件時,訓練完成。首先給出輸出均方誤差的公 式:

About 暱稱: 錢吉 **園齡: 12年4個月** 粉絲: 70 追蹤: 37 +加關注

最新評論

Re: 尾遞歸和編譯器最佳化

Hi, 我寫了一篇關於遞歸的總結, 歡迎指教,

-- yiifburj

Re:求所有最大公共子序列的演算法實現

大佬的網盤連結8年了還在生效!佩服!

-- 菜鳥qiz

$$E_A = \frac{1}{2} \sum_{p=1}^{P} \sum_{i=0}^{m-1} (d_i^{(p)} - y_i^{(p)})^2$$

其中·m是輸出節點數,p是訓練樣本數。我們就是以最小化這個EA為目標更新網路參數。這裡以3層網路為例進行推導,即一個輸入層、隱含層、輸出層。最小化目標函數採用梯度下降的方法。

1.隱含層到輸出層的權值更新

K為隱含層節點數,i為輸出節點數。權值更新公式:

$$w_{ki} = w_{ki}' - \eta \nabla E(w_{ki})$$

Re:如何利用迴圈代替遞歸以防止棧溢位(譯)

5 替代過程的幾個簡單例子-線性遞歸-74行應該是returnVal = returnVal *1; -- 楊某某

Re:GetWindowRect和GetClientRect的差異詳解

謝謝分享,學習了。 -- 雪域迷影

Re:GetWindowRect和GetClientRect的差異詳解

謝謝~ -- 秦漢思源

			日曆				隨筆檔案	
<	< 2012年12月 >						2016年12月(1)	
日	_	=	Ξ	四	五	<u>, , , , , , , , , , , , , , , , , , , </u>	2014年7月(6)	
25	26	27	28	29	30	1	2014年6月(2)	
2	3	4	5	6	<u>7</u>	8	2014年3月(1)	
9	10	11	<u>12</u>	13	14	15	2013年12月(1)	
16	17	18	19	20	21	22	2013年11月(3)	
23	24	25	26	27	28	29	2013年8月(3)	
30	31	1	2	3	4	5	2013年7月(9)	
	我的標籤						2013年6月(5)	
		我	沿り 標	武			2013年5月(2)	
c/	C++ (19)					2013年4月(2)	
m	atlab	(8)					2013年3月(1)	
資	料結構	頻演	算法(7	7)			2012年12月(7)	
na	avigat	ion (4	!)				2012年11月(3)	
翻	譯(3)						2012年10月(9)	
基	礎演算	拿法(3))				更多	
W	'indov	vs (3)					1=+44+	
ba	at處理	(3)					IT雜談 ————————————————————————————————————	
雜	碎(2)						外刊IT評論網	
機	器學習	₹(2)					虎嗅網	

其中w ki表示第k個隱含節點到第i個輸出節點之間的權重, η為學習率,是一個使得解快

速收斂的學習因子,

$$abla EA$$
關於wki的梯度。即:

$$\nabla E(w_{ki}) = \frac{\partial E_A}{\partial w_{ki}} = \sum_{p=1}^{P} \frac{\partial E_A}{\partial y_i^{(p)}} \frac{\partial y_i^{(p)}}{\partial u_i^{(p)}} \frac{\partial u_i^{(p)}}{\partial w_{ki}}$$

因為:

$$u_{i}^{(p)} = \sum_{k=1}^{K} w_{ki} * x_{k}^{(p)}; y_{i}^{(p)} = \frac{1}{1 + e^{-u_{i}^{(p)}}}$$

,其中,激活函數

$$\frac{\partial E_A}{\partial w_{ki}} = -\sum_{p=1}^{p} (d_i^{(p)} - y_i^{(p)}) * y_i^{(p)} * (1 - y_i^{(p)}) * x_k^{(p)}$$

這就是wki的梯度值。記:

$$\Delta w_{ki} = -\eta \nabla E(w_{ki})$$

表示為權值的增量,則權值更新可寫成:

更多

隨筆分類

c/c++(21)

lua(1)

matlab(6)

perl(2)

windows(7)

車載導航(4)

累積(3)

設計模式(1)

資料結構與演算法(5)

語音辨識演算法(4)

職場感悟(1)

我的足跡

我的github

開源中國博客

chinaunix

csdn

學習站點

codeproject

stackoverflow

GitHub

Apache Hadoop

開源中國

Taiwan Hadoop Forum

高手博客

ifreecoding

Hawstein's blog(Cracking the coding interview-c++)

百度搜尋研發部博客

IBM developer

csdn-July演算法之道

劉未鵬

何海濤-程式設計師面試

董的部落格-大數據開發

Free Mind的博客

阿里核心團隊博客

資源

it-ebooks

積分與排名

積分- 94235

排名- 16060

酷殼

$$w_{ki} = w_{ki}' + \Delta w_{ki}$$

其中增量:

$$\Delta w_{ki} = \eta \sum_{p=1}^{p} (d_i^{(p)} - y_i^{(p)}) * y_i^{(p)} * (1 - y_i^{(p)}) * x_k^{(p)}$$

记
$$\xi_{ki} = (d_i^{(p)} - y_i^{(p)}) * y_i^{(p)} * (1 - y_i^{(p)})$$
,则

$$\Delta w_{ki} = \eta \sum_{p=1}^{P} \xi_{ki} * x_{k}^{(p)}, \quad w_{ki} = w_{ki}' + \eta \sum_{p=1}^{P} \xi_{ki} * x_{k}^{(p)}.$$

所以根據這個式子我們就可以更新權值了。

2.輸入層到隱含層的權值更新

同理,誤差關於權值的梯度可透過以下式子求解,與上面有點不同的是:輸入層與 隱含節點之間的權值將影響所有的隱含節點到輸出層之間的值,所以此時的權值梯度資 訊應該會對誤差在隱含層與輸出層之間產生累加效應。廢話不多說,直接上圖公式更明 了:

$$\nabla E(w_{kn}) = \frac{\partial E_A}{\partial w_{kn}} = \sum_{p=1}^{p} \sum_{i=1}^{m-1} \frac{\partial E^{(p)}}{\partial y_i^{(p)}} \frac{\partial y_i^{(p)}}{\partial u_i^{(p)}} \frac{\partial u_i^{(p)}}{\partial x_k^{(p)}} \frac{\partial x_k^{(p)}}{\partial u_k^{(p)}} \frac{\partial u_k^{(p)}}{\partial w_{kn}}$$

$$= -\sum_{p=1}^{p} \sum_{i=1}^{m-1} (d_i^{(p)} - y_i^{(p)}) * f'(u_i^{(p)}) * w_{ki} * u_k^{(p)} * (1 - u_k^{(p)}) * b_n^{(p)}$$

$$= -\sum_{p=1}^{p} \sum_{i=1}^{m-1} \xi_{ki}^{(p)} * w_{ki} * u_k^{(p)} (1 - u_k^{(p)}) * b_n^{(p)}$$

$$= -\sum_{p=1}^{p} \xi_{kn}^{(p)} * b_n^{(p)}$$

其中,

$$\xi_{kn} = \sum_{i=1}^{m-1} \xi_{ki}^{(p)} * w_{ki} * u_k^{(p)} * (1 - u_k^{(p)})$$

所以這一層的權值增量也可以寫成這樣的形式:

$$w_{kn} = w_{kn}' + \eta \sum_{p=1}^{p} \xi_{kn}^{(p)} * b_n^{(p)}$$

參考:

http://www.cnblogs.com/hellope/archive/2012/07/05/2577814.html

http://baike.baidu.com/view/1753676.htm

- 分類語音辨識演算法
- 標籤 機器學習

會員力量, 點亮園子希望

刷新頁面 返回頂部

登入後才能查看或發表評論,立即登入或 逛逛部落格園首頁

【推薦】超值煥新月,阿里雲2核2G雲端伺服器99元/年,立即搶購

【推薦】園子週邊第二季:更大的滑鼠墊,沒有logo的滑鼠墊

【推薦】阿里雲雲市場聯合博客園推出開發者商店, 歡迎關注

【推薦】會員力量,點亮園子希望,期待您升級成為園子會員

編輯推薦:

- ·程式設計師天天CURD, 怎麼才能成長, 職涯發展的思考?
- ·小程式中使用lottie 動畫| 踩坑經驗分享
- ·Windows下綁定執行緒到指定的CPU核心
- ·C++裡也有菱形運算子?
- · [Nano Framework ESP32篇] 使用LCD 螢幕

閱讀排行:

- · C#的基於.net framework的DII模組程式設計 (五) 程式手把手系列文章
- ·程式設計師天天CURD, 怎麼才能成長, 職業發展的思考?
- ·.Net 8.0 下的新RPC, IceRPC之試試的新玩法"打洞"
- ·.NET CORE 完美支援AOT 的ORM SqlSugar 教程
- · 開源文檔預覽項目kkFileView (9.9k star), 快速入門