A generalization of the Lexis surface

Jonas Schöley March 31, 2017

The Lexis surface¹ is a tool for working with time scales which are linearly dependent on each other, e.g. the two points in time "current period" and "birth cohort" are related by their difference – the "current age". This relationship can be generalized to n points in time and the m durations between any pair of points. We show that the Lexis diagram, the Lexis' marriage diagram and the APCTDL space are instances of such a generalized Lexis diagram. We start by formalizing the notions of points in time p and durations d between these points.

Definition 1: Let **p** be a vector with n elements where $n \geq 2$ and elements $p_{i=1} \dots p_n \in \mathbb{R}$. Let **d** be a vector with m elements such that $\mathbf{d}_{ij} = p_i - p_j$ for all i and $j = 1, \dots, n$ where i > j.²

Theorem 1: The number of elements in **d** is m = n(n-1)/2.

Proof: Because d_{ij} must satisfy i > j it can be thought of as all the elements below the subdiagonal of a $n \times n$ matrix of which there are m = n(n-1)/2.

Corollary 1.1: The sum of the number of elements in \mathbf{p} and \mathbf{d} is the number of edges on a n+1-polytype.

Proof: The sum of the number of elements in p and d is n + m = n + n(n-1)/2 which is the number of edges on an n+1-polytype.

Instead of a particular choice of n-points in time we now consider the set P of all possible choices of n points in time.

Definition 2: Let $P = \mathbb{R}^n$ be the standard basis vector-space spanning all **p**.

Theorem 2: The linear transformation $T_{\mathbf{A}}: P \to D$ where $D = \mathbb{R}^{n(n-1)/2}$ and $\mathbf{A}_T \mathbf{p} = \mathbf{d}$ is given by $\mathbf{a}_T \mathbf{p} = \mathbf{d}$

$$\begin{bmatrix}
-\mathbf{I}_{1} & \mathbf{1}_{1} & \mathbf{0}_{1\times n-2} \\
-\mathbf{I}_{2} & \mathbf{1}_{2} & \mathbf{0}_{2\times n-3} \\
\vdots & \vdots & \vdots \\
-\mathbf{I}_{n-1} & \mathbf{1}_{n-1} & \mathbf{0}_{n-1\times 0}
\end{bmatrix} \times \underbrace{\begin{bmatrix} p_{1} \\ \vdots \\ p_{n} \end{bmatrix}}_{\mathbf{p}} = \underbrace{\begin{bmatrix} d_{1} \\ \vdots \\ d_{n(n-1)/2} \end{bmatrix}}_{\mathbf{d}}.$$

Given any n points in time it is always possible to calculate the durations between any pair of these points. This calculation can be understood as a linear transformation of the point-space P to the duration-space D.

Proof: A_T is a simple consequence of the definition of \mathbf{d} .

Corollary 2.1: There exists no linear map $T_{\mathbf{A}}^{-1}: D \to P$.

¹We understand the "Lexis-surface" as the Lexis diagram without the notion of life-lines. While life-lines may be added to the generalized Lexis surface they are not part of our definition - e.g. a period-age Lexis surface featuring a life-line with clearly marked "death cohort" does not constitute an extension of the Lexis surface by death-cohort. Such an extension is only achieved by adding an orthogonal axis to the period-age plane featuring all possible death-cohorts.

by adding an orthogonal axis to the period-age plane reaturing an possible death-conords.
²Equivalently **d** can be expressed as $\operatorname{vech}(\mathbf{p} \times \mathbf{1}_n^\mathsf{T} - \mathbf{1}_n \times \mathbf{p}^\mathsf{T})$. For ease of notation we use double indices to index each element of the vector **d**. The indices ij of the k^{th} element of **d** are given by $d_{ij} = d_k = p_{i=\lfloor \frac{1}{2} + \sqrt{2k} \rfloor + 1} - p_{j=k-C}(\lfloor \frac{1 + \sqrt{8k}}{2} \rfloor)$

with C[f(k)] being the binomial coefficient $\binom{f(k)}{2}$.

³ \mathbf{I}_n is the $n \times n$ identity matrix; $\mathbf{1}_n$ is a vector with n elements where each element is 1; $\mathbf{0}_{m \times n}$ is a $m \times n$ matrix where each element is 0. For notational convenience we allow for a matrix with 0 columns, written $(\mathbf{0}_{n\times 0})$.

Given only a set of m durations it is impossible to identify a single set of n points in time marking the endpoints of the durations, e.g. given only age one can not derive birth cohort and period.

Proof: $T_{\mathbf{A}}^{-1}$ exists if and only if \mathbf{A}_T^{-1} exists. \mathbf{A}_T has no inverse since the columns of \mathbf{A}_T are always linearly dependent on each other, i.e. the last element in each row of \mathbf{A}_T is always the negation of the sum of all the other row elements. Therefore $T_{\mathbf{A}}^{-1}$ does not exist.

Theorem 3: (Work in progess) Something that states that you can transform $P^n \leftrightarrow M^n$ where the basis vectors of M are a mixture of point dimensions and duration dimensions.

Theorem 4: (Work in progess) There are b = ? many ways to choose n elements out of $\{p_{i=1,...,n}, d_{k=1,...,m}\}$ whoose linear combination yields one or more remaining elements of $\{p_{i=1,...,n}, d_{k=1,...,m}\}$.

Example 1: The Lexis surface

Let **p** have two elements. Then, following definition 1, **d** is defined as

$$d_1 = p_2 - p_1.$$

Interpreting d_1 as age, p_2 as period and p_1 as birth cohort yields the classic APC identities. The Lexis surface as the plane of all possible combinations between age and period with cohorts as diagonals results from the transformation $P^2 \to M^2$ as shown to be possible in theorem 3.

Example 2: Lexis' marriage identity

Along with his well known 2-dimensional diagram Lexis (1875) also published a 3-dimensional extension which he applies to marriage and separation processes.

Let \mathbf{p} have three elements. Then \mathbf{d} is defined as

$$d_1 = p_2 - p_1 d_2 = p_3 - p_1. d_3 = p_3 - p_2$$

Interpreting p_1 as birth cohort, p_2 as marriage cohort and p_3 as separation cohort yields the durations age at marriage (d_1) , age at separation (d_2) , and duration of marriage (d_3) . Lexis' "marriage space" is reconstructed by transforming $P^3 \to M^3$ where M has three orthogonal basis vectors corresponding to (p_1, d_1, d_3) .

Example 3: Adding death cohort to the Lexis surface

Equivalent to example 2 we start with a three element vector \mathbf{p} yielding the very same identities as shown above.

Interpreting p_1 as birth cohort, p_2 as period and p_3 as death cohort yields the durations age (d_1) , lifespan (d_2) , and time until death (d_3) . This vector space P^3 contains the Lexis surface as a sub-space.