Leandro Vendramin

Brazas y soluciones conjuntistas de la ecuación de Yang-Baxter

- Notas -

27 de julio de 2019

Índice general

1.		ces	
		Definitions	
	1.	Ideals and quotients	3
	1.	Exercises	4
2.	Ani	llos radicales	7
3.			9
4.	Pro	ducto semidirecto	11
5.	Cla	sificación de brazas	15
Ref	eren	cias	17
Índ	ice a	lfahético	10

Capítulo 1 Braces

1. Definitions

Braces were introduced by Rump in [?] to study set-theoretical involutive solutions of the Yang–Baxter equation. The following definition generalizes braces to the non-commutative setting.

Definición 1.1. A *skew brace* is a pair (A, λ) , where A is a group and $\lambda : A \to Aut(A)$ is a map such that

$$\lambda_{a\lambda_a(b)} = \lambda_a\lambda_b$$

for all $a, b \in A$.

Of course Rump's left braces are examples of skew braces. These are braces where the group *A* is abelian.

Definición 1.2. A *homomorphism* between two skew left braces A and B is a group homomorphism $f: A \to B$ such that $f\lambda_a = \lambda_{f(a)} f$ for all $a \in A$. The *kernel* of f is

$$\ker f = \{ a \in A : f(a) = 1 \}.$$

lemma:adjoint

Lema 1.3.

Definición 1.4. Let (A, λ) be a skew brace. The group (A, \circ) of Lemma 1.3 is called the *adjoint group* of (A, λ) .

lem:basic

Lema 1.5. Let A be a skew left brace. Then the following properties hold:

- 1) $1 = 1_{\circ}$, where 1_{\circ} denotes the unit of the group (A, \circ) .
- 2) $a \circ (b^{-1}c) = a(a \circ b)^{-1}(a \circ c)$ for all $a, b, c \in A$.
- 3) $a \circ (bc^{-1}) = (a \circ b)(a \circ c)^{-1}a$ for all $a, b, c \in A$.

Demostración.

2 1 Braces

rem:formulas

Observación 1.6. Let A be a skew left brace. For each $a \in A$ the map

$$\lambda_a: A \to A, \quad b \mapsto a^{-1}(a \circ b),$$

is bijective with inverse $\lambda_a^{-1}: A \to A, b \mapsto \overline{a} \circ (ab)$, where \overline{a} is the inverse of a with respect to \circ . It follows that

$$a \circ b = a\lambda_a(b), \quad ab = a \circ \lambda_a^{-1}(b)$$

hold for all $a, b \in A$.

pro:GI

Proposición 1.7. Let A be a set and assume that A has two operations such that (A, \cdot) and (A, \circ) are groups. Assume that $\lambda : A \to \mathbb{S}_A$, $a \mapsto \lambda_a$, is given by $\lambda_a(b) = a^{-1}(a \circ b)$. The following are equivalent:

- 1) A is a skew left brace.
- 2) $\lambda_{a \circ b}(c) = \lambda_a \lambda_b(c)$ for all $a, b, c \in A$.
- 3) $\lambda_a(bc) = \lambda_a(b)\lambda_a(c)$ for all $a, b, c \in A$.

Demostración. Let us first prove that $(1) \Longrightarrow (2)$. Let $a,b,c \in A$. Since A is a brace and $a \circ b^{-1} = a(a \circ b)^{-1}a$ by Lemma 1.5,

$$\lambda_a \lambda_b(c) = a^{-1}(a \circ \lambda_b(c)) = a^{-1}(a \circ (b^{-1}(b \circ c)))$$

= $a^{-1}(a \circ b^{-1})a^{-1}(a \circ b \circ c) = (a \circ b)^{-1}(a \circ b \circ c) = \lambda_{a \circ b}(c).$

Now we prove (2) \Longrightarrow (3). Since $ab = a \circ \lambda_a^{-1}(b)$ for all $a, b \in A$,

$$\begin{split} \lambda_a(bc) &= \lambda_a(b \circ \lambda_b^{-1}(c)) = a^{-1}(a \circ b \circ \lambda_b^{-1}(c)) \\ &= a^{-1}(a \circ b)(a \circ b)^{-1}(a \circ b \circ \lambda_b^{-1}(c)) \\ &= \lambda_a(b)\lambda_{a \circ b}\lambda_b^{-1}(c) = \lambda_a(b)\lambda_a\lambda_b\lambda_b^{-1}(c) = \lambda_a(b)\lambda_a(c). \end{split}$$

Finally we prove that (3) \implies (1). Let $a, b, c \in A$. Then

$$a^{-1}(a \circ (bc)) = \lambda_a(bc) = \lambda_a(b)\lambda_a(c) = a^{-1}(a \circ b)a^{-1}(a \circ c),$$

and hence $a \circ (bc) = (a \circ b)a^{-1}(a \circ c)$.

cor:lambda

Corolario 1.8. Let A be a skew left brace and

$$\lambda: (A, \circ) \to \operatorname{Aut}(A, \cdot), \quad a \mapsto \lambda_a(b) = a^{-1}(a \circ b).$$

Then λ is a group homomorphism.

Demostración. It follows immediately from Proposition 1.7.

Let A and G be groups and assume that $G \times A \to A$, $(g,a) \mapsto g \cdot a$, is a left action of G on A by automorphisms. A *bijective* 1-cocyle is a bijective map $\pi \colon G \to A$ such that

$$\pi(gh) = \pi(g)(g \cdot \pi(h))$$
 (1.1) eq:1cocycle

for all $g, h \in G$.

pro:1cocycle

Proposición 1.9. Over any group (A, \cdot) the following data are equivalent:

- *1)* A group G and a bijective 1-cocycle $\pi: G \to A$.
- 2) A skew left brace structure over A.

Demostración. Consider on A a second group structure given by

$$a \circ b = \pi(\pi^{-1}(a)\pi^{-1}(b))$$

for all $a, b \in A$. Since π is a 1-cocycle and G acts on A by automorphisms,

$$a \circ (bc) = \pi(\pi^{-1}(a)\pi^{-1}(bc)) = a(\pi^{-1}(a) \cdot (bc))$$
$$= a((\pi^{-1}(a) \cdot b)(\pi^{-1}(a) \cdot c)) = (a \circ b)a^{-1}(a \circ c)$$

holds for all $a, b, c \in A$.

Conversely, assume that A is a skew left brace. Set G = A with the multiplication $(a,b) \mapsto a \circ b$ and $\pi = \mathrm{id}$. By Corollary 1.8, $a \mapsto \lambda_a$, is a group homomorphism and hence G acts on A by automorphisms. Then (1.1) holds and therefore $\pi \colon G \to A$ is a bijective 1-cocycle.

Observación 1.10. The construction of Proposition 1.9 is categorical.

1. Ideals and quotients

ideals

Definición 1.1. Let A be a skew brace. A *left ideal* of A is a subgroup I of A such that $\lambda_a(I) \subseteq I$ for all $a \in A$.

Definición 1.2. A normal subgroup I of (A, \circ) is said to be an *ideal* of A if Ia = aI and $\lambda_a(I) \subseteq I$ for all $a \in A$.

Ejemplo 1.3. Let $f: A \to B$ be a skew brace homomorphism. Then ker f is an ideal of A since

$$f(\lambda_a(x)) = \lambda_{f(a)}(f(x)) = 1$$

for all $x \in \ker f$ and $a \in A$.

Lema 1.4. Let A be a skew left brace and $I \subseteq A$ be an ideal. Then the following properties hold:

- 1) I is a normal subgroup of (A, \cdot) .
- **2)** $a \circ I = aI$ for all $a \in A$.
- 3) I and A/I are skew braces.

4 1 Braces

Demostración. Let $a, b \in I$. Then $a^{-1}b = \lambda_a(\overline{a} \circ b) \in I$ and hence I is a subgroup of (A, \cdot) . Remark 1.6 implies

$$aI = a \circ I = I \circ a = Ia$$

for all $a \in A$. Thus I is a normal subgroup of (A, \cdot) and hence it follows that I is a skew left brace. Since the quotient groups A/I for both operations are the same, A/Iis a skew left brace.

Definición 1.5. Let (A, λ) be a skew brace. The subgroup $Soc(A) = \ker \lambda \cap Z(A)$ is the *socle* of *A*.

lem:socle

Lema 1.6. Let A be a skew left brace. Then Soc(A) is an ideal of A contained in the center of (A, \cdot) .

Demostración. Let us first prove that Soc(A) is a subgroup of (A, \circ) . Clearly $1 \in$ Soc(A). Let $a, a' \in A$ and $b \in A$. Then $a \circ a' \in Soc(A)$ since

$$(a \circ a') \circ b = a \circ (a' \circ b) = a \circ (a'b) = a(a'b) = (aa')b = (a \circ a')b.$$

Now since $\overline{a} = a^{-1} \in Soc(A)$ and $b = (aa^{-1}) \circ b = a \circ (a^{-1} \circ b) = a(a^{-1} \circ b)$, it follows that $\overline{a}b = a^{-1}b = a^{-1} \circ b = \overline{a} \circ b$. Hence Soc(A) is a subgroup of (A, \circ) . A direct calculation proves that

$$\lambda_b(a) = b \circ a \circ \overline{b}$$
 for all $a \in \operatorname{Soc}(A)$ and $b \in A$. (1.2) eq:util

Then it follows that $Soc(A) \subseteq \{a \in A : a \circ b = ab, \lambda_b(a) \circ b = b \circ a \text{ for all } b \in A\}.$ Let $a \in Soc(A)$ and $b, c \in A$. Then

$$\lambda_c \lambda_b(a) = \lambda_{c \circ b}(a) = (c \circ b) \circ a \circ \overline{c \circ c} = c \circ \lambda_b(a) \circ \overline{c},$$

$$\lambda_b(a) c = b^{-1}(b \circ a) c = (b \circ a) b^{-1} c = b \circ (a(\overline{b} \circ c)) = b \circ a \circ \overline{b} \circ c = \lambda_b(a) \circ c.$$

Hence $\lambda_b(\operatorname{Soc}(A)) \subseteq \operatorname{Soc}(A)$ for all $b \in A$ and $\operatorname{Soc}(A)$ is a normal subgroup of (A, \circ) by (1.2).

Now we prove that Soc(A) is central in (A, \cdot) . Let $a \in Soc(A)$, $b \in A$ and $c = \overline{b}$. Since

$$c\circ (ba)=(c\circ b)c^{-1}(c\circ a)=c^{-1}(c\circ a)=(c\circ a)c^{-1}=c\circ (ab),$$

it follows that ba = ab.

Exercises

1.1. Let (A, λ^A) and (B, λ^B) be skew braces. Then A and B are isomorphic if and only if there is a group homomorphism $\alpha: A \to B$ such that $\alpha \lambda_a^A \alpha^{-1} = \lambda_{\alpha(a)}^B$ for all $a \in A$.

1 Exercises 5

- **1.2.** Let *A* be a skew brace.
- **1.3.** Let *A* be a cyclic brace, i.e. the additive group is cyclic.

Anillos radicales

Diremos que una braza es asociativa si la operación $(x,y) \mapsto x * y = \lambda_x(y) - y$ es asociativa. Recordemos que en toda braza vale la siguiente igualdad

$$(a+a*b+b)*c = (a \circ b)*c = a*(b*c)+b*c+a*c.$$
 (2.1) eq: (aob)*c

Lema 2.1. Si A es una braza de tipo abeliano asociativa, entonces

$$(-a)*b = -(a*b)$$

 $para\ todo\ a,b\in A.\ En\ particular,\ (-a)\circ b=2b-(a\circ b)\ para\ todo\ a,b\in A.$

Demostración. Por la igualdad (2.1) y la asociatividad,

$$(a*(-a))*b = (a*(-a)+a+(-a))*b$$
$$= a*((-a)*b)+(-a)*b+a*b$$
$$= (a*(-a))*b+(-a)*b+a*b,$$

lo que implica que (-a)*b=-(a*b). La segunda afirmación se obtiene entonces inmediatamente. \qed

Lema 2.2. Si A es una braza de tipo abeliano, valen las siguientes afirmaciones:

- 1) a*0=0*a=0,
- 2) a*(-b) = -(a*b),
- 3) a*(b-c) = a*b-a*c,
- **4)** $a*(b_1+\cdots+b_n)=a*b_1+\cdots+a*b_n$,

Ejercicio 2.3. Demuestre que en toda braza de tipo abeliano vale que

$$a * \left(\sum_{i=1}^{n} b_i - \sum_{j=1}^{m} c_j\right) = \sum_{i=1}^{n} a * b_i - \sum_{j=1}^{m} a * c_j,$$

y que esta fórmula puede rescribirse como

8 2 Anillos radicales

$$a \circ \left(\sum_{i=1}^{n} b_{i} - \sum_{i=1}^{m} c_{j}\right) = \sum_{i=1}^{n} a \circ b_{i} - \sum_{i=1}^{m} a \circ c_{j} + (m-n+1)a.$$
 (2.2) [eq:Lau]

thm:Lau

Teorema 2.4. Si A es una braza de tipo abeliano asociativa, entonces A es un anillo radical.

Demostración. Necesitamos demostrar que A es una braza a derecha. Como A es asociativa, (a*b)*c = a*(b*c) para todo $a,b,c \in A$. Rescribimos la asociatividad entre $a, b, c \in A$ como

$$(a \circ b - a - b) \circ c - (a \circ b - a - b) - c = a \circ (b \circ c - b - c) - a - (b \circ c - b - c),$$

que es equivalente a la igualdad

$$a'\circ ((a\circ b-a-b)\circ c-a\circ b)=a'\circ (a\circ (b\circ c-b-c)-a-a-b\circ c+2c).$$

Si usamos la fórmula (2.2) en el miembro de la derecha con n = 1 y m = 2 y en el miembro izquierdo con n = m = 3,

$$a' \circ (a \circ b - a + (-b)) = b + a' \circ (-b)$$

La fórmula (2.2) ahora con n = 2 y m = 1 implica que la asociatividad de A es equivalente a la identidad

$$(b+a'\circ(-b))\circ c+c=b\circ c+a'\circ(-b)\circ c. \tag{2.3}$$

Sean $b, c \in A$. Si $d \in A$ existe $a \in a$ tal que $d = a' \circ (-b)$. La fórmula (2.3) implica entonces que

$$(b+d) \circ c + c = b \circ c + d \circ c$$
,

que es lo que queríamos demostrar.

Notas

El teorema 2.4 fue demostrado por Iván Lau en arXiv:1811.04894 e independientemente por Michael Kinyon. Responde a una pregunta hecha por Cedó, Gateva–Ivanova y Smoktunowicz en [1, Question 2.1(2)].

We will use the following theorem of Kegel and Wielandt:

Teorema 3.1 (Kegel-Wielandt).

Teorema 3.2. Let A be a finite skew left brace with nilpotent multiplicative group. Then A is of solvable type.

Demostración. ... □

Producto semidirecto

Si A y B son brazas, una acción de A en B se define como un morfismo de grupos $\sigma \colon (B, \circ) \to \operatorname{Aut}_{Br}(A)$.

Definición 4.1. Sean A y B brazas y supongamos que B actúa en A. Se define el producto semidirecto $A \rtimes_{\sigma} B$ como la estructura de braza en el producto cartesiano $A \times B$ dada por las operaciones

$$(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2),$$

 $(a_1,b_1)\circ(a_2,b_2)=(a_1\circ\sigma(b_1)(a_2),b_1\circ b_2),$

donde $a_1, a_2 \in A$ y $b_1, b_2 \in B$.

Un cálculo directo nos permite demostrar que

$$\lambda_{(a_1,b_1)}(a_2,b_2) = (\lambda_{a_1}(\sigma(b_1)(a_2)), \lambda_{b_1}(b_2)), \tag{4.1}$$

Ejercicio 4.2. Demuestre que en el producto semidirecto $A \rtimes_{\sigma} B$ vale

$$(a_1,b_1)*(a_2,b_2) = (\lambda_{a_1}(\sigma(b_1)(a_2)) - a_2,b_1*b_2).$$

Teorema 4.3. Sean A y B brazas. El producto semidirecto $A \rtimes_{\sigma} B$ es nilpotente a derecha si y sólo si A y B son nilpotentes a derecha.

Demostración. Sea
$$P = A \rtimes_{\sigma} B$$
. Si $P^{(n)} = 0$ para algún n , entonces $A^{(n)} = 0$ y $B^{(n)} = 0$. Recíprocamente, si $A^{(k)} = 0$ y $B^{(l)} = 0$, entonces $P^{(k+l)} = 0$. FIXME

Para un subconjunto X del producto semidirecto $A \rtimes_{\sigma} B$, definimos

$$\pi_A(X) = \{ a \in A : (a,b) \in X \text{ para algún } b \in B \},$$

$$\pi_B(X) = \{ b \in B : (a,b) \in X \text{ para algún } a \in A \}.$$

Lema 4.4. Si I es un ideal del producto semidirecto $A \rtimes_{\sigma} B$, entonoces $\pi_{B}(I)$ es un ideal de B.

12 4 Producto semidirecto

Demostración. Veamos que $(\pi_B(I),+)$ es un subgrupo de (B,+). Como $(0,0) \in I$, entonces $0 \in \pi_B(I)$. Además si $b_1,b_2 \in B$, sean $a_1,a_2 \in A$ tales que $(a_j,b_j) \in I$, $j \in \{1,2\}$. Como entonces

$$(a_1,b_1)-(a_2,b_2)=(a_1-a_2,b_1-b_2)\in I,$$

y además $a_1 - a_2 \in A$, se concluye que $b_1 - b_2 \in \pi_B(I)$.

Veamos ahora que $(\pi_B(I),+)$ es normal en (B,+). Sean $b \in \pi_B(I)$ y $a \in A$ tal que $(a,b) \in I$. Si $y \in B$, entonces, como (I,+) es normal en $(A \rtimes_{\sigma} B,+)$, tenemos que

$$(0,y) + (a,b) - (0,y) = (a,y+b-y) \in I,$$

que implica que $y + b - y \in \pi_B(I)$.

Veamos que si $y \in B$, entonces $\lambda_y(\pi_B(I)) \subseteq \pi_B(I)$. Sea $b \in \pi_B(I)$ y sea $a \in A$ tal que $(a,b) \in I$. Entonces

$$(\sigma(y)(a), \lambda_y(b)) = (\lambda_0(\sigma(y)(a), \lambda_y(b)) = \lambda_{(0,y)}(a,b) \in I$$

pues $(a,b) \in I$ y sabemos que I es un ideal. Como $\sigma(y)(a) \in A$, se concluye que $\lambda_y(b) \in \pi_B(I)$.

Queda demostrar que $(\pi_B(I), \circ)$ es normal en (B, \circ) . Si $y \in B$ y $b \in \pi_B(I)$, sea $a \in A$ tal que $(a,b) \in I$. Sabemos que existe $x \in A$ tal que

$$(0,y)\circ(a,b)\circ(0,y)'=(x,y\circ b\circ y').$$

Como *I* es un ideal, $(x, y \circ b \circ y') \in I$ y luego $y \circ b \circ y' \in \pi_B(I)$.

Lema 4.5. Si I es un ideal del producto semidirecto $A \rtimes_{\sigma} B$ tal que $\pi_B(I) = 0$, entonces $\pi_A(I)$ es un ideal de A.

Demostración. Como hicimos en el lema anterior, vemos que $(\pi_A(I),+)$ es un subgrupo normal de (A,+). Si $x \in A$ y $a \in \pi_A(I)$, entonces

$$(\lambda_{x}(a),b) = (\lambda_{x}(\sigma(0)(a)),\lambda_{0}(b)) = \lambda_{(x,0)}(a,b) \in I$$

y luego $\lambda_x(a) \in \pi_A(I)$. Para ver que $(\pi_A(I), \circ)$ es normal en (A, \circ) basta observar que si $x \in A$ y $a \in \pi_A(I)$ entonces

$$(x,0) \circ (a,b) \circ (x,0)' = (x \circ a \circ x',b)$$

pues si $b \in B$ es tal que $(a,b) \in I$, entonces $x \circ a \circ x' \in \pi_A(I)$.

Definición 4.6. Sea A una braza. Diremos que A es **semiprima** si el único ideal I de A tal que I*I=0 es el ideal nulo.

Teorema 4.7. Si A y B son brazas semiprimas, entonces el producto semidirecto $A \rtimes_{\sigma} B$ es también una braza semiprima.

Demostración. Sea I un ideal de $A \rtimes_{\sigma} B$ tal que I *I = 0. Para ver que I = 0 basta con demostrar que $\pi_A(I) = 0$ y que $\pi_B(I) = 0$

Primero vamos a demostrar que $\pi_B(I) = 0$. Como $\pi_B(I)$ es un ideal de B, y B es semiprima, basta ver que $\pi_B(I) * \pi_B(I) = 0$. Sean $b_1, b_2 \in \pi_B(I)$ y sean $a_1, a_2 \in A$ tales que $(a_i, b_i) \in I$ para todo $j \in \{1, 2, \}$. Como

$$(x,b_1*b_2) = (a_1,b_1)*(a_2,b_2) \in I*I = 0$$

para algún $x \in A$, se tiene que $b_1 * b_2 = 0$.

Vamos a demostrar ahora que $\pi_A(I) = 0$. Como $\pi_B(I) = 0$, sabemos que $\pi_A(I)$ es un ideal de A. Como A es semiprimo, para ver que $\pi_A(I) = 0$ basta entonces ver que $\pi_A(I) * \pi_A(I) = 0$. Sean $a_1, a_2 \in \pi_A(I)$ y sean $b_1, b_2 \in B$ tales que $(a_j, b_j) \in I$ para todo $j \in \{1, 2\}$. Como $b_j \in \pi_B(I) = 0$ para todo j, se concluye que $(a_j, 0) \in I$ para todo j. Luego

$$(a_1 * a_2, 0) = (a_1, 0) * (a_2, 0) \in I * I = 0$$

y entonces $a_1 * a_2 = 0$.

Lema 4.8. Sean A y B brazas. Demuestre que

$$W = \{ f : B \to A \text{ tal que } | \{ b \in B : f(b) \neq 0 \} | < \infty \}$$

es una braza con las operaciones

$$(f_1+f_2)(b) = f_1(b)+f_2(b),$$

 $(f_1 \circ f_2)(b) = f_1(b) \circ f_2(b).$

Lema 4.9. If I is an ideal of W and $b \in B$, then

$$J_b = \{a \in A : f(b) = a \text{ for some } f \in I\}$$

is an ideal of A.

Demostración. Observemos que la función nula $0_W : B \to A$ pertenece a W. Es fácil ver que $(J_b, +)$ es un subgrupo de (W, +) pues $0_W \in W$ y además $a_1 - a_2 = (f_1 - f_2)(b)$ si $f_1(b) = a_1$ y $f_2(b) = a_2$.

Dado $x \in A$ definimos la función $\delta_x : B \to A$ como

$$\delta_x(y) = \begin{cases} x & \text{if } y = b, \\ 0 & \text{otherwise.} \end{cases}$$

Como $\delta_x(y) \neq 0$ si y sólo si y = b, se tiene que $\delta_x \in W$. Para ver que $(J_b, +)$ es normal en (W, +) basta obvervar que si $x \in A$ y $a \in J_b$, digamos con f(b) = a para algún cierto $f \in I$, entonces

$$x+a-x=(\alpha_x+f-\alpha_x)(b)\in J_b$$

pues $\alpha_x + f - \alpha_x \in I$. Similarmente $\lambda_x(J_b) \subseteq J_b$ pues

$$\lambda_{x}(a) = (-\alpha_{x} + \alpha_{x} \circ f)(b)$$

y sabemos que $-\alpha_x + \alpha_x \circ f \in I$ pues I es un ideal y $f \in I$. Por último, la normalidad de (J_b, \circ) en (W, \circ) es similar pues podemos escribir

$$x \circ a \circ x' = (\alpha_x \circ f \circ \alpha_x^{-1})(b)$$

y sabemos que $\alpha_x \circ f \alpha_x^{-1} \in I$.

Proposición 4.10. Si A es una braza semiprima, entonces W también es semiprima.

Demostración. Sea I un ideal de W tal que I*I=0. Sabemos que para cada $b \in B$, el conjunto J_b es un ideal de A. Para demostrar que I=0 alcanza con demostrar que todos los J_b son cero. Fijemos $b \in B$ y sean $a_1, a_2 \in J_b$. Entonces existen $f_1, f_2 \in I$ tales que $f_i(b) = a_i$ para todo $i \in \{1, 2\}$. Como

$$a_1 * a_2 = f_1(b) * f_2(b) = (f_1 * f_2)(b)$$

y $f_1 * f_2 \in I * I = 0$, se tiene que $J_b * J_b = 0$. Como A es semiprimo, $J_b = 0$. Veamos ahora que I = 0. Sea $f \in I$. Si $b \in B$, entonces $f(b) \in J_b = 0$.

Definición 4.11. Sean A y B brazas. Se define el **producto corona** $A \wr B$ como la braza dada por el producto semidirecto $W \rtimes_{\sigma} B$, donde $\sigma \colon B \to \operatorname{Aut}(W)$ está definido por

$$\sigma(b)(f)(y) = f(by)$$

para todo $y, b \in B$ y $f \in W$.

Teorema 4.12. Si A y B son brazas semiprimas, entonces A \ B es semiprima.

Demostración. Como A es semiprima, la braza W es también semiprima. El producto corona $A \wr B = W \rtimes_{\sigma} B$ es también una braza semiprima por ser producto semidirecto de brazas semiprimas.

Pregunta 4.1. Sean A y B brazas tales que el producto semidirecto $A \rtimes_{\sigma} B$ es semi-primo. ¿Es cierto que entonces A es una braza semiprima?

Clasificación de brazas

Si A es un grupo, el holomorfo de A se define como el producto semidirecto

$$Hol(A) = A \times Aut(A)$$

con la operación

$$(a,f)(b,g) = (a+f(b),fg), \quad a,b \in A, \quad f,g \in \operatorname{Aut}(A).$$

Todo subgrupo G de Hol(A) actúa en A con la operación

$$(x, f) \cdot a = \pi_1((x, f)(a, id)) = \pi_1(x + f(a), f) = x + f(a), \quad a, x \in A, \quad f \in Aut(A),$$

donde π_1 : Hol(A) $\rightarrow A$, (a, f) $\mapsto a$.

Ejercicio 5.1. Demuestre que Hol(A) actúa transitivamente en A y que el estabilizador de cualquier elemento $a \in A$ es isomorfo a Aut(A).

Un subgrupo G de $\operatorname{Hol}(A)$ se dirá **regular** cuando actúa regularmente en A, es decir si dados $a,b \in A$ existe un único $(x,f) \in G$ tal que

$$b = (x, f) \cdot a = x + f(a).$$

Lema 5.2. Si G es un subgrupo regular de Hol(A), entonces $\pi_1: G \to A$ es bijectiva.

Teorema 5.3. Si A es una braza, entonces $\{(a, \lambda_a) : a \in A\}$ es un subgrupo regular de Hol(A). Recúprocamente, si A es un grupo (escrito aditivamente) y G es un subgrupo regular de Hol(A), entonces A es una braza con

$$a \circ b = a + f(b)$$

donde $(\pi_1|_G)^{-1}(a) = (a, f) \in G$.

Demostración. □

16 5 Clasificación de brazas

lem:BNY

Lema 5.4.

Demostración. Dados $(g,b) \in \operatorname{Hol}(A)$ y G un subgrupo regular de $\operatorname{Hol}(A)$, sabemos que existe $(f,a) \in G$ tal que $a+f(b)=(f,a) \cdot b=0$. Como

$$(f,a)(g,b) = (fg,a+f(b)) = (fg,0) \in Aut(A) \times 0,$$

y además $(f,a) \in G$, entonces

$$\begin{split} (g,b)^{-1}G(g,b) &= (g,b)^{-1}(f,a)^{-1}G(f,a)(g,b) \\ &= ((f,a)(g,b))^{-1}G((f,a)(g,b)) = (fg,0)^{-1}G(fg,0). \end{split} \quad \Box$$

Notas

El lema 5.4 fue demostrado por Bardakov, Neshchadim y Yadav en arXiv:1907.08978.

Referencias

1. F. Cedó, T. Gateva-Ivanova, and A. Smoktunowicz. Braces and symmetric groups with special conditions. *J. Pure Appl. Algebra*, 222(12):3877–3890, 2018.

Índice alfabético

Adjoint group, 1

Braza

asociativa, 7

Holomorfo, 15 Homomorphism of braces, 1

Ideal

semiprimo, 12

Producto

corona de brazas, 14 semidirecto de brazas, 11

Skew brace, 1 Socle, 4

Subgrupo regular, 15