公式的逻辑等价

命题逻辑

公式的分类和逻辑等价

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

Example

Lijie Wang

命题公式的分类

公式的逻辑等价

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下面一组命题公式的真值表:

$$G_1 = \neg(P \rightarrow Q) \rightarrow P$$

$$G_2 = (P \rightarrow Q) \wedge P$$

$$G_3 = \neg(P \land \neg Q) \leftrightarrow \neg(P \to Q)$$

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下面一组命题公式的真值表:

$$G_1 = \neg(P \rightarrow Q) \rightarrow P$$

$$G_2 = (P \rightarrow Q) \wedge P$$

$$G_3 = \neg(P \land \neg Q) \leftrightarrow \neg(P \to Q)$$

P	Q	G_1	G_2	G_3
0	0	1	0	0
0	1	1	0	0
1	0	1	0	0
1	1	1	1	0

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下面一组命题公式的真值表:

$$G_1 = \neg(P \rightarrow Q) \rightarrow P$$

$$G_2 = (P \rightarrow Q) \wedge P$$

$$G_3 = \neg(P \land \neg Q) \leftrightarrow \neg(P \to Q)$$

P	Q	G_1	G_2	G_3
0	0	1	0	0
0	1	1	0	0
1	0	1	0	0
1	1	1	1	0

全为真

有真有假

全为假

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

三种特殊公式之间的关系

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等位

Definition

• 公式 G 称为永真公式(重言式,tautology), 如果在它的所有解释之下其真值都为 "真"。

☞ 三种特殊公式之间的关系

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

- 公式 G 称为永真公式(重言式,tautology), 如果在它的所有解释之下其真值都为 "真"。
- 公式 G 称为永假公式(矛盾式,contradiction),如果在它的所有解释之下其真值都为"假"。有时也称永假公式为不可满足公式。

☞ 三种特殊公式之间的关系

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

- 公式 G 称为永真公式(重言式,tautology), 如果在它的所有解释之下其真值都为 "真"。
- 公式 G 称为<mark>永假公式(矛盾式</mark>,contradiction),如果在它的所有解释之下其真值都为"假"。 有时也称永假公式为不可满足公式。
- 公式 G 称为可满足公式(satisfiable), 如果它不是永假的。

■ 三种特殊公式之间的关系

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

- 公式 G 称为 永真公式(重言式, tautology) , 如果在它的所有解释之下其真值都为 "真"。
- 公式 G 称为永假公式(矛盾式,contradiction),如果在它的所有解释之下其真值都为"假"。 有时也称永假公式为不可满足公式。
- 公式 G 称为可满足公式(satisfiable), 如果它不是永假的。
 - 三种特殊公式之间的关系
 - ① G 是永真的当旦仅当 ¬G 是永假的;

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

- 公式 G 称为永真公式(重言式,tautology), 如果在它的所有解释之下其真值都为 "真"。
- 公式 G 称为<mark>永假公式(矛盾式,contradiction),如果在它的所有解释之下其真值都为"假"。</mark> 有时也称永假公式为不可满足公式。
- 公式 G 称为可满足公式(satisfiable), 如果它不是永假的。

☞ 三种特殊公式之间的关系

- ① G 是永真的当旦仅当 ¬G 是永假的;
- ② G是可满足的当且仅当至少有一个解释 I, 使 G在 I下为真。

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Definition

- 公式 G 称为永真公式(重言式,tautology), 如果在它的所有解释之下其真值都为 "真"。
- 公式 G 称为永假公式(矛盾式,contradiction),如果在它的所有解释之下其真值都为"假"。 有时也称永假公式为不可满足公式。
- 公式 G 称为可满足公式(satisfiable), 如果它不是永假的。

☞ 三种特殊公式之间的关系

- ① G 是永真的当旦仅当 ¬G 是永假的;
- ② G是可满足的当且仅当至少有一个解释 I, 使 G在 I下为真。
- ③ 若 G 是永真式,则 G 一定是可满足式,但反之可满足公式不一定是永真式;

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下列公式的真值表并判定其公式类型。

$$G_1 = (P \to Q) \leftrightarrow (\neg P \lor Q)$$

$$G_2 = (P \leftrightarrow Q) \leftrightarrow (\neg(P \rightarrow Q) \lor \neg(Q \rightarrow P))$$

$$G_3 = (P \rightarrow \neg Q) \lor \neg Q$$

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下列公式的真值表并判定其公式类型。

$$G_1 = (P \to Q) \leftrightarrow (\neg P \lor Q)$$

$$G_2 = (P \leftrightarrow Q) \leftrightarrow (\neg (P \rightarrow Q) \lor \neg (Q \rightarrow P))$$

$$G_3 = (P \rightarrow \neg Q) \lor \neg Q$$

P	Q	G_1	G_2	G_3
0	0	1	0	1
0	1	1	0	1
1	0	1	0	1
1	1	1	0	0

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Example

写出下列公式的真值表并判定其公式类型。

$$G_1 = (P \to Q) \leftrightarrow (\neg P \lor Q)$$

$$G_2 = (P \leftrightarrow Q) \leftrightarrow (\neg (P \rightarrow Q) \lor \neg (Q \rightarrow P))$$

$$G_3 = (P \rightarrow \neg Q) \lor \neg Q$$

P	Q	G_1	G_2	G_3
0	0	1	0	1
0	1	1	0	1
1	0	1	0	1
1	1	1	0	0

重言式

矛盾式

可满足公式

公式的等价

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

考虑上一个例子中的永真公式 $G_1 = (P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$, 将这个公式拆开, 令

$$G = P
ightarrow Q$$
 , $H = \neg P \lor Q$,

从而 $G_1 = G \leftrightarrow H$,由于 G_1 是永真公式,根据等价联接词的定义可知 G,H 必同为真或者同为假。此时我们称公式 G,H 具有逻辑等价关系。

Definition

设 G , H 是两个命题公式 , P_1 , P_2 , P_3 , \cdots , P_n 是出现在 G , H 中所有的命题变元 , 如果对于 P_1 , P_2 , P_3 , \cdots , P_n 的 2^n 个解释 , G 与 H 的真值结果都相同 , 则称公式 G 与 H 是等价的 , 记作 G = H。 (或 $G \Leftrightarrow H$)

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Theorem

对于任意两个公式 G 和 H , G = H的充分必要条件是公式 $G \leftrightarrow H$ 是永真公式。

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Theorem

对于任意两个公式 G 和 H , G = H的充分必要条件是公式 $G \leftrightarrow H$ 是永真公式。

Proof.

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Theorem

对于任意两个公式 G 和 H , G = H的充分必要条件是公式 $G \leftrightarrow H$ 是永真公式。

Proof.

• 必要性:假定 G = H,则 G,H 在其任意解释 I 下或同为真或同为假,于是由" \leftrightarrow "的意义知,公式 $G \leftrightarrow H$ 在其任何的解释 I 下,其真值为"真",即 $G \leftrightarrow H$ 为永真公式。

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Theorem

对于任意两个公式 G 和 H , G = H的充分必要条件是公式 $G \leftrightarrow H$ 是永真公式。

Proof.

- 必要性:假定 G = H,则 G,H 在其任意解释 I 下或同为真或同为假,于是由" \leftrightarrow "的意义知,公式 $G \leftrightarrow H$ 在其任何的解释 I 下,其真值为"真",即 $G \leftrightarrow H$ 为永真公式。
- 充分性:假定公式 $G \leftrightarrow H$ 是永真公式, I 是它的任意解释, 在 I 下, $G \leftrightarrow H$ 为真, 因此, G, H 或同为真, 或同为假, 由于 I 的任意性, 故有 G = H。

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

Theorem

对于任意两个公式 G 和 H, G = H的充分必要条件是公式 $G \leftrightarrow H$ 是永真公式。

Proof.

- 充分性:假定公式 $G \leftrightarrow H$ 是永真公式, I 是它的任意解释, 在 I 下, $G \leftrightarrow H$ 为真, 因此, G, H 或同为真, 或同为假, 由于 I 的任意性, 故有 G = H.

☞ 命题公式的可判定性

可判定性:能否给出一个可行方法,完成对任意公式的判定类问题。(类型或等价判定)命题公式是可判定的。

命题逻辑

Lijie Wang

命题公式的分类

公式的逻辑等价

THE END, THANKS!