

Universidade do Minho Escola de Engenharia

Aprendizagem e Decisão Inteligentes

Relatório Trabalho Prático LEI - 3º Ano - 2º Semestre

Braga, 19 de fevereiro de 2025

Lucas Oliveira A
98695

Mike Pinto A89292

Rafael Gomes A96208

Conteúdo

1	Inti	rodução	4
2	Tar	efa 1: Músicas Spotify	5
	2.1	Dataset	5
	2.2	Estudo do Negócio	5
	2.3	Estudo dos Dados	5
		2.3.1 Análise de Cada Atributo	6
	2.4	Preparação dos Dados	9
		2.4.1 Análise Prévia ao Tratamento de Dados	9
		2.4.2 Tratamento Geral dos Dados	10
		2.4.3 Análise Posterior ao Tratamento de Dados	11
	2.5	Modelação	12
		2.5.1 Modelação com Todos os Atributos	12
		2.5.2 Modelação com Seleção dos Melhores Atributos	13
		2.5.3 Modelação com o Objetivo de Regressão	13
	2.6	Avaliação	14
3		efa 2: Liver Disease	15
	3.1	Dataset	15
	3.2	Estudo do Negócio	15
	3.3	Estudo dos Dados	15
		3.3.1 Análise de Cada Atributo	16
	3.4	Preparação dos Dados	18
		3.4.1 Análise Prévia ao Tratamento de Dados	18
		3.4.2 Tratamento Geral dos Dados	21
		3.4.3 Análise Posterior ao Tratamento de Dados	22
	3.5	Modelação	24
		3.5.1 Modelação com Todos os Atributos	24
		3.5.2 Modelação com Seleção dos Melhores Atributos	25
		3.5.3 Modelação com Clustering	25
		$3.5.4~$ Modelação com Separação entre MALE e $\mathit{FEMALE}~$	26
		3.5.5 Modelação com o Objetivo de Regressão	26
		3.5.6 Modelação com Redes Neuronais	26
	3.6	Avaliação	27
4	Cor	nclusão	28

Lista de Figuras

2.1	Scatter plot das médias dos tempos relativamente à popularidade	8
2.2	Visualização de um atributo através da utilização do DataExplorer.	9
2.3	Box Plot	9
2.4	Line Plot	10
2.5	Tratamento de Dados	10
2.6	Box Plot	11
2.7	Line Plot	12
2.8	Exemplo de um dos métodos de previsão	12
2.9	Resultado do Gradient Boosted Tree Leraner (Regression)	13
2.10	Modelação com o uso do Feature Selection	13
2.11	Melhor resultado do uso do Feature Selection	13
3.1	Gráfico de barras dos géneros com doença e sem doença	17
3.2	Média de todas as análises de doentes e não doentes	18
3.3	Análise Prévia dos Dados	19
3.4	Data Explorer	19
3.5	Box Plot	20
3.6	Line Plot	20
3.7	Linear Correlation	21
3.8	Tratamento de Dados	21
3.9	Box Plot	23
3.10		23
3.11	Linear Correlation	24
	Pie Chart (JavaScript)	24
	Modelos Clustering utilizados	25
	Melhores resultados obtidos entre Homens e Mulheres	26
	Modelos de Redes Neuronais	26

Lista de Tabelas

Capítulo 1

Introdução

Este relatório visa documentar o trabalho desenvolvido no âmbito da Unidade Curricular de Aprendizagem e Decisão Inteligente do 2.º semestre do 3.º ano do curso de Engenharia Informática da Universidade do Minho.

Neste contexto, o trabalho desenvolvido abrange a exploração e análise detalhada de ambos os conjuntos de dados, destacando os aspetos relevantes e as estratégias de pré-processamento adotadas. Além disso, são apresentados os modelos de Machine Learning elaborados para cada *dataset*, explicando as decisões tomadas durante o processo de desenvolvimento.

Este relatório propõe-se a oferecer uma visão abrangente do trabalho realizado, contribuindo assim para o entendimento e aprofundamento dos conceitos abordados na disciplina.

Capítulo 2

Tarefa 1: Músicas Spotify

2.1 Dataset

O dataset escolhido pelo grupo consiste num conjunto de dados sobre músicas do Spotify, que contem 49986 linhas e 18 atributos.

Optou-se por este *dataset* devido a ser um tema interessante e à oportunidade de testar um modelo de regressão. Sendo que a equipa docente focou-se no de classificação, decidimos explorar a outra vertente.

A metodologia utilizada nesta tarefa para a resolução do problema é o CRISP-DM, que consiste nestas 6 fases seguintes:

- Estudo do Negócio
- Estudo dos Dados
- Preparação dos Dados
- Modelação
- Avaliação
- Desenvolvimento

Sendo que a última fase não será explorada, por não se enquadrar nos conteúdos lecionados.

2.2 Estudo do Negócio

O objetivo é prever a popularidade de uma música e identificar os atributos que contribuem para a tornar popular.

2.3 Estudo dos Dados

Os atributos presentes no conjunto de dados são os seguintes:

• id: Código de identificação de cada música.

- artist_name: Nome do artista.
- track_name: Nome da música.
- popularity: Indica a popularidade da música, entre 0 e 99.
- acousticness: Indica a presença de elementos acústicos na música, entre 0 e 1.
- danceability: Indica o quão adequada uma música é para dançar, entre 0 e 1
- duration_ms: Duração da música em milissegundos.
- energy: Indica o nível de energia na música, entre 0 e 1.
- instrumentalness: Indica a quantidade de vozes presentes na música, entre 0 e 1.
- key: Tonalidade da música.
- liveness: Indica a presença de audiência durante a gravação da música, entre 0 e 1.
- loudness: Indica o volume médio da música em decibéis, entre 0 e 1.
- mode: Indica caso a música seja Major ou Minor.
- speechiness: Indica a presença de palvras referidas numa música, entre 0 e 1.
- tempo: Indica o ritmo da música em batidas por minuto.
- obtained-date: Indica a data em que a música foi obtida.
- valence: Indica a positividade da música, entre 0 e 1.
- genre: Indica o género da música.

2.3.1 Análise de Cada Atributo

artist_name: As músicas onde o nome do artista, em média, possui mais popularidade é o "Duki" com 82, já com menor média é o "O Rappa" e o "Jorma Kaukonen" com 1. O que indica que o nome do artista pode ter uma boa influência na popularidade de uma música.

track_name: Ao analisar o atributo, não se conseguiu concluir a sua influência relativamente à popularidade, pois cada música possui um nome diferente, portanto considerou-se irrelevante para a resolução do problema.

acousticness: Para analisar este atributo, foi feita uma subdivisão em grupos de intervalos de 0.1, em que calculou-se a média de cada grupo para poder visualizar a influência na popularidade, sendo que a com menor média é a acousticness de 0 que possui uma média de 23 de popularidade, já a com maior média é a acousticness de 0.2 (valores entre 0.11 até 0.2) com uma média de 52.47 de

popularidade, também observou-se que a correlação entre os dois atributos tem um valor de -0.29. Então com isso chegou-se à conclusão que seria um atributo a considerar para a previsão da popularidade.

danceability: Para analisar este atributo, foi feito o mesmo processo que o atributo anterior, onde vimos que a com menor média é a danceability de 0.1 que contém uma média de 36 de popularidade, já com maior média é a danceability de 1 com uma média de 59 de popularidade, ou seja, quanto maior for a danceability, maior será a popularidade da música, concluindo assim, que este atributo possui uma grande influência na popularidade.

duration_ms: Ao analisar este atributo, observou-se que quando a música passa de uma média de 250000ms (4.2 minutos), a popularidade tende a piorar. Levando então este atributo em consideração para a previsão da popularidade.

energy: Analisando este atributo foi usado o mesmo processo que o acousticness, onde vimos que a energia da música com menor média foi a energy de 0.1 com uma média de 37 de popularidade, já a com maior média é a energy de 0.6 com uma média de 53 de popularidade, o que também assimilou-se, é que, quando a energia de música é muito alta ou muito baixa, a popularidade tende a ser pior do que quando a energia é moderada. Concluindo que este atributo também ajuda-nos a prever a popularidade da música.

instrumentalness: Repetindo o mesmo processo anterior, vimos que a com menor média é a *instrumentalness* de 1 com uma média de 38 de popularidade, já a com maior é a *instrumentalness* de 0 com uma média de 65 de popularidade, ou seja, quanto mais vozes presentes na música, pior a popularidade dela. Concluindo assim, que devemos também considerar este atributo.

key: Analisando este atributo, vimos que não iria possuir grande influência relativamente à popularidade, pois a key com maior popularidade é a $\mathbf{C}\#$ com uma média de 61 de popularidade, já a menor é a $\mathbf{D}\#$ com uma média de 55.2 de popularidade, sendo a diferença entre a maior e a menor apenas de 6 valores de popularidade e também ao analisar a correlação entre as duas e vermos que não existia correlação entre elas, conclui-se que este atributo é irrelevante para a análise do problema.

liveness: Repetindo o processo habitual, observou-se que com menor média é a *liveness* de 1 com a popularidade de 41.5, já com maior média é a *liveness* de 0.2 com a popularidade de 52, ou seja, quanto mais presença de público na música, pior a popularidade. O que levou também a considerar este atributo.

loudness: Analisando este atributo, vimos que quanto menor os decibéis de uma música pior a popularidade, já quanto maior os decibéis, maior a popularidade. Considerando assim, este atributo.

mode: Explorando este atributo, observou-se que não possui grande influência relativamente à popularidade, pois o *mode* **Major** possui uma popularidade média de 65 e o *mode* **Minor** possui uma popularidade média de 63.3, sendo a diferença muito minima e vendo que a correlação entre os dois atributos não

exisitia, considerou-se irrelevante para a previsão.

speechiness: Repetindo o processo habitual, observou-se que o speechiness com menor média foi o 1 com uma média de 46 de popularidade, já com maior foi o 0.5 com uma média de 55.5 de popularidade, ou seja, tanto muita ou pouca presença de palavras referidas numa música piora a popularidade, já quando é moderada, tende a ser melhor a popularidade. Levando assim também em consideração este atributo para a previsão.

tempo: Averiguando este atributo, inicialmente considerou-se que iria ter influência na popularidade, mas após observar a figura 2.1, verificou-se que poderia induzir em erro os modelos de previsão, pois entre os tempos 120 e 135 existe uma variância grande entre as popularidades, o que poderia levar a um erro para nos modelos. Sendo então essa a razão, não se considerou o tempo para a previsão da popularidade.

Figura 2.1: Scatter plot das médias dos tempos relativamente à popularidade

obtained-date: Analisando este atributo, verificamos que não iria ter grande influência para a popularidade de uma música.

valence: Repetindo o processo, observou-se que o valence com menor média foi o valor 0 com uma média de 46 de popularidade, já com maior foi o valor 0.5 com uma média de 51 de popularidade, e analisando melhor averiguou-se que normalmente quando o valence é superior a 0.3, a popularidade é maior do que quando é inferior a 0.3. Concluindo assim, que este atributo também será considerado para a previsão da popularidade.

genre: Por fim, antes de analisar-se este atributo, já considerou-se que iria influenciar pelos conhecimentos sobre o assunto, e após executar a análise, verificou-

se que existiam 3 géneros que normalmente têm uma popularidade considerável, sendo esses Rock, Rap e $Hip ext{-}Hop$ que possuem uma média de popularidade entre 64 e 69, já pelo contrário existem 2 géneros que normalmente têm uma popularidade tão boa, sendo esses Anime e Classical que possuem uma média de popularidade entre 42 e 45, os restantes géneros que são Jazz, Blues, Electronic, Alternative e Country possuem uma média de popularidade entre 51 e 57. Concluindo então que este atributo também influencia bastante na popularidade de uma música.

2.4 Preparação dos Dados

2.4.1 Análise Prévia ao Tratamento de Dados

Para iniciar a análise, utilizou-se o nodo "Data Explorer" para verificar a presença de missing values. Observou-se que todas as variáveis do conjunto de dados apresentam 5 valores em falta, o que indica a necessidade de tratamento desses valores ausentes. Além disso, identificou-se a necessidade de converter o tipo de dados de algumas variáveis, conforme apresentado na figura 2.2.

Figura 2.2: Visualização de um atributo através da utilização do DataExplorer.

Utilizamos o *Box Plot* para visualizar a distribuição dos dados e identificar possíveis valores discrepantes. Observamos a presença de valores muito altos que exigem correção.

Figura 2.3: Box Plot

Por meio do *Line Plot*, também analisou-se a distribuição dos dados ao longo do tempo. Observou-se uma inclinação irregular tanto para o lado positivo quanto negativo, o que sugere um desequilíbrio na distribuição dos dados.

Figura 2.4: Line Plot

2.4.2 Tratamento Geral dos Dados

Figura 2.5: Tratamento de Dados

Conversão do atributo "tempo" para Numeric

Inicialmente, realizou-se a conversão do atributo "tempo" para o formato numérico, facilitando assim, a sua manipulação e análise.

Tratamento de Missing Values

Corrigiu-se os valores ausentes utilizando a estratégia "Most Frequent Value", através do nodo "Missing Value".

Remoção de Linhas Duplicadas e com Valores Nulos

Eliminaram-se as linhas duplicadas do conjunto de dados para evitar redundâncias e inconsistências. Além disso, excluíram-se as linhas que possuíam duração ou popularidade igual a zero, pois esses valores podem afetar negativamente a qualidade da análise.

Filtragem de Colunas

Foram removidas as colunas "id", "obtained_date", "track_name", "key", "mode" e "tempo", pois foram consideradas como irrelevantes.

Remoção de Linhas com o Valor de empty-field

Foram eliminadas todas as linhas que possuíam o valor "empty-field" no atributo "artist_name".

Correção de Outliers

Foram corrigidos os valores exponenciais que representavam *outliers*, substituindoos pelo valor mais próximo permitido.

Conversão de Atributos para Numérico

Converteram-se os atributos "artist_name" e "genre" para valores numéricos, e posteriormente as suas colunas de origem foram filtradas.

2.4.3 Análise Posterior ao Tratamento de Dados

Após o tratamento de dados, realizou-se uma verificação abrangente para avaliar a qualidade do conjunto de dados. Sendo feitas as seguintes observações:

Todos os valores ausentes foram corrigidos durante o tratamento de dados, garantindo que não haja *missing values* no *dataset*. Os valores atípicos identificados anteriormente foram tratados e normalizados, garantindo a não distorção dos dados, como apresentado na figura 2.6.

Figura 2.6: Box Plot

Ao analisar a assimetria dos dados usando a medida estatística "Skewness", observou-se uma melhoria relativamente à irregularidade detetada anteriormente. Sugerindo assim, uma distribuição mais balanceada e adequada dos dados, como resultado na figura 2.7.

Figura 2.7: Line Plot

2.5 Modelação

2.5.1 Modelação com Todos os Atributos

Inicialmente, criamos um modelo de previsão que considerava todos os atributos disponíveis. Dividimos a previsão de dados em duas partes: uma com dados sem nenhuma alteração e outra com os dados normalizados. Em cada parte, aplicamos dois métodos de particionamento diferentes: um com o nodo "X-Partitioner" e outro com o nodo "Partitioning". Posteriormente, em cada partição, utilizamos três algoritmos de aprendizagem: Linear Regression Learner, Simple Regression Tree Learner e Gradient Boosted Tree Learner (Regression.

Figura 2.8: Exemplo de um dos métodos de previsão

Sendo que o algoritmo que teve o melhor valor foi o *Gradient Boosted Tree Learner (Regression)*, normalizado e com uso do nodo "*Partitioning*", com o resultado apresentado na figura 2.9.

Figura 2.9: Resultado do Gradient Boosted Tree Leraner (Regression)

2.5.2 Modelação com Seleção dos Melhores Atributos

Para identificar os atributos mais significativos, aplicamos uma estratégia de Feature Selection, apresentado na figura 2.10. Após a análise detalhada, foram selecionados os seguintes atributos: acousticness, danceability, duration_ms, instrumentalness, valence, artist_name e genre.

Figura 2.10: Modelação com o uso do Feature Selection

Ao analisar o \mathbb{R}^2 , observou-se que o seu valor foi 0,669. Embora haja uma melhoria mínima relativamente ao modelo anterior, não se notou grande alteração.

Figura 2.11: Melhor resultado do uso do Feature Selection

2.5.3 Modelação com o Objetivo de Regressão

Com o intuito de converter este problema de regressão num problema de classificação, através do nodo "Rule Engine", foi feita uma conversão da populari-

dade para um "Star_Rating". Sendo essa nova variável, delimitada entre 1 a 5 estrelas. Em seguida, foram aplicados os seguintes algoritmos: Decision Tree Learner, Random Forest Learner e Gradient Boosted Trees Learner. Sendo o Gradient Boosted Trees Learner o que apresenta uma melhor accuracy de 66.07%.

2.6 Avaliação

De um modo geral, foram identificados os atributos com mais influência para a previsão dos dados mediante uma análise cuidadosa dos mesmos. O estudo e tratamento dos dados provenientes do *dataset* foi minuciosamente pensado, para a melhor previsão possível. Embora os modelos não tenham alcançado valores altos de precisão, considerou-se que os resultados foram razoáveis, dadas as circunstâncias. É importante notar a dimensão do conjunto de dados e a medida da popularidade possui uma escala considerável, o que pode influenciar os resultados obtidos.

Capítulo 3

Tarefa 2: Liver Disease

3.1 Dataset

O conjunto de dados atribuído para a nossa análise possui 583 linhas e 17 atributos, abrangendo informações sobre a presença ou ausência de doenças hepáticas em indivíduos. Este conjunto contém dados relevantes para a investigação e análise de condições relacionadas ao fígado, permitindo-nos explorar padrões e tendências que possam estar associados a essas doenças.

A metodologia utilizada para a resolução desta tarefa foi novamente o método CRISP-DM.

3.2 Estudo do Negócio

O objetivo principal do estudo é desenvolver um modelo capaz de prever se uma pessoa possui doença hepática. Além disso, procuramos identificar quais atributos do conjunto de dados que podem ter maior influência para contrair a doença.

3.3 Estudo dos Dados

• id_code: Código de identificação do paciente.

• Age: Idade do paciente.

• birth_year: Ano de nascimento do paciente.

• birth_month: Mês de nascimento do paciente.

• birth_date: Data de nascimento do paciente.

• Gender: Género do paciente.

• TB: Bilirrubina total.

• **DB:** Bilirrubina direta.

• Alphos: Fosfatase alcalina.

• Sgpt: Alanina aminotransferase (ALT).

• Sgot: Aspartato aminotransferase (AST).

• **TB**(#1): Bilirrubina total (#1).

• ALB: Albumina.

• CHOL: Colesterol.

• AG_Ratio: Proporção entre albumina e globulina.

• Bilmg: Bilirrubina em miligramas.

• Selector: Indicador de presença ou ausência de doença hepática.

3.3.1 Análise de Cada Atributo

Selector: Antes de analisar os outros atributos, verificamos que o Selector tinha 3 classificações, sendo que duas delas consideramos que seriam idênticas, que foi o caso de "2=no liver disease" e "3=without liver disease", então decidimos utilizar o nodo "Rule Engine", para redefinir a coluna "Selector" para representar apenas dois valores: "YES" para casos de doença hepática e "NO" para ausência de doença hepática. Em seguida, renomeamos a coluna "Selector" para "Liver Disease" para maior clareza e melhor análise dos atributos seguintes.

Age: Ao analisar o atributo idade, observamos uma tendência significativa numa certa faixa etária ser mais propensa a contrair a doença, que abrange pessoas entre os 25 e os 65 anos. Essa descoberta sugere que a idade pode ser um atributo importante na identificação de indivíduos com maior risco de desenvolver a doença.

bith_year, birth_month, birth_data: Ao analisar os atributos, observamos que a única informação relevante que poderíamos extrair deles é a idade. No entanto, como já temos o atributo "Age" que fornece essa informação de maneira mais direta e precisa, consideramos esses atributos irrelevantes para o problema proposto.

Gender: Analisando este atributo, apesar de no nosso conjunto de dados, existirem mais homens do que mulheres, observamos que os homens tendem a contrair mais a doença do que as mulheres, como podemos ver na figura 3.1, o que indica que este atributo tem uma relevância grande para a nossa previsão.

Figura 3.1: Gráfico de barras dos géneros com doença e sem doença

TB, DB, Alphos, Sgpt, Sgot, ALB, AG_Ratio, Bilmg: Analisando estes atributos, verificamos que grande parte deles teria boa influência para a previsão da doença, como podemos ver na figura 3.2.

Figura 3.2: Média de todas as análises de doentes e não doentes

TB#1, CHOL: Analisando estes dois atributos e olhando para a figura 3.2, verificamos que o CHOL não continha valores associados, portanto consideramos irrelevante, já o TB#1 decidimos também excluir da previsão, pois já contínhamos um atributo semelhante que é o TB e também analisando a figura 3.2 verificamos que não existia grande diferença nas médias dos valores entre o **YES** e **NO** nesse atributo.

3.4 Preparação dos Dados

3.4.1 Análise Prévia ao Tratamento de Dados

Segue-se então, uma análise abrangente do conjunto de dados atribuído, com o objetivo de examinar os valores contidos nele. Esta etapa crítica do processo de análise de dados é fundamental para garantir uma maior precisão no tratamento de dados. Ao examinar minuciosamente cada valor, iremos identificar eventuais inconsistências ou anomalias que necessitem de posteriormente de correção.

Figura 3.3: Análise Prévia dos Dados

Primeiramente, através do nodo "Data Explorer", identificamos que algumas variáveis estão classificadas como tipo "String" quando deveriam ser do tipo "Number". Além disso, observamos a presença de valores em falta em certos atributos, analisando estatísticas como média, desvio padrão, valores máximos e mínimos, como mostrado na figura 3.4.

Figura 3.4: Data Explorer

Utilizando os nodos "Box Plot" e "Line Plot", conseguimos visualizar a presença de valores atípicos em certas variáveis, figura 3.5, indicando a necessidade de atenção no tratamento de dados. Além disso, a análise do "Skewness" revelou uma clara inclinação positiva na distribuição dos dados, indicando uma assi-

metria para o lado positivo, sendo demonstrado mais especificamente na figura 3.6.

Figura 3.5: Box Plot

Figura 3.6: $Line\ Plot$

O uso do nodo "Linear Correlation" permitiu investigar a relação direta entre os atributos do dataset. Na qual se destacou, uma correlação positiva entre os atributos Sgot e Sgpt, como demonstrado na figura 3.8

Figura 3.7: Linear Correlation

3.4.2 Tratamento Geral dos Dados

Para o processo de tratamento de dados realizado no conjunto de dados em estudo. Identificamos e corrigimos várias questões, como colunas irrelevantes, valores em falta e erros de formatação.

Figura 3.8: Tratamento de Dados

Identificação e Remoção de Colunas

Inicialmente, procedemos à identificação e remoção de colunas com informações irrelevantes. As colunas " id_code ", " $birth_year$ ", " $birth_month$ ", " $birth_date$ ", "TB(#1)" e "CHOL" foram consideradas não significativas para a análise. A coluna "id_code" foi eliminada, uma vez que a informação de identificação já está disponível na coluna "RowID". As colunas relacionadas com a data de nascimento foram consideradas redundantes, sendo que o cálculo da idade foi verificado antes da sua remoção. Adicionalmente, foi investigada a diferença entre as colunas "TB" e "TB(#1)".

A coluna "CHOL" foi encontrada com todos os seus valores a 0.

Conversão de Dados e Tratamento de Valores em Falta

As colunas "TB", "DB", "ALB", "ALB_RATIO" e "BILmg" foram convertidas de formato de string para numérico através do nodo "String to Number". Foram detetados valores em falta nas colunas "AG_Ratio" e "BILmg", os quais foram substituídos pela média dos restantes valores das respetivas colunas, utilizando o nodo "Missing Value".

Normalização de Dados

Foram identificados erros na coluna *Gender*, os quais foram corrigidos utilizando o nodo "String Replacer" para uniformizar as identificações. Além disso, foram aplicadas transformações para garantir que os valores na coluna de género estivessem em maiúsculas, através do nodo "Case Converter".

Criação de Novas Variáveis

Para facilitar a análise dos dados, foi criada uma nova coluna utilizando o nodo "Numeric Binner" para categorizar as pessoas com base na sua idade em quatro grupos:

• Criança : $]-\infty, 13$

• Jovem : [13 , 29 [

• Adulto: [29, 60]

• Sénior : $[60, +\infty]$

Remoção de Dados Duplicados e Valores Atípicos

Utilizamos o nodo "Duplicated Row Filter" para remover todas as linhas duplicadas e o nodo "Numeric Outliers" para lidar com valores atípicos nos conjuntos de dados numéricos, em que esses valores são substituídos pelo valor mais próximo permitido.

3.4.3 Análise Posterior ao Tratamento de Dados

Após a conclusão do tratamento de dados, procedemos a uma análise através dos mesmos métodos utilizados anteriormente ao tratamento geral.

Sendo que, verifica-se que não foram detetados valores em falta nas colunas existentes e ao converter variáveis do tipo *String* para *Number*, expandimos o leque de variáveis de estudo disponíveis para análise. Além disso, todas as variáveis foram normalizadas, garantindo uma representação consistente e comparável dos dados. Além disso, os valores atípicos (*oulayers*) foram identificados e posteriormente normalizados, como resultado na figura 3.10.

Figura 3.9: Box Plot

Ao analisar a assimetria dos dados utilizando o critério "Skewness", notou-se uma redução significativa no desvio em comparação com os dados originais, 3.9. Esta melhoria indica uma distribuição mais equilibrada e simétrica dos dados após o tratamento.

Figura 3.10: Line Plot

Uma vez que possuimos mais variáveis, conseguimos observar que existem relações que anteriormente nao conseguiamos verificar, tais como, um correlacao positiva com os pares TB-DB, TB-BILmg, DB-BILmg, e uma correlacao negativa com os pares AG_Ratio-TB, AG_Ratio-DB, AG_Ratio-BILmg e ALB-Age.

Com o aumento do número de variáveis disponíveis após a conversão, conseguimos identificar e analisar novas relações entre os dados. Observamos correlações que não eram evidentes anteriormente. Notavelmente, identificamos correlações positivas entre os pares de variáveis TB-DB, TB-BILmg e DB-BILmg. Além disso, observamos correlações negativas entre os pares de variáveis $AG_Ratio-TB$, $AG_Ratio-DB$, $AG_Ratio-BILmg$ e ALB-Age, sendo assim apresentado na figura 3.11

Figura 3.11: Linear Correlation

Começamos a análise comparando passo a passo as estatísticas entre homens e mulheres para entender melhor as diferenças. Inicialmente, examinamos o número de homens e mulheres no conjunto de dados para determinar a melhor abordagem de comparação. Dado o número relativamente maior de homens no conjunto de dados, como podemos observar na figura 3.12, optamos por utilizar médias para análise comparativa.

Figura 3.12: Pie Chart (JavaScript)

3.5 Modelação

3.5.1 Modelação com Todos os Atributos

Inicialmente, criamos um modelo de previsão que considerava todos os atributos disponíveis, utilizando o mesmo método de normalização e de partição do dataset da Tarefa 1. Sendo que os algoritmos aplicados foram os seguintes: Decision Tree Learner, Random Forest Learner e Gradient Boosted Trees Learner.

Sendo que o algoritmo que obteve o melhor desempenho foi o *Gradient Boosting*, através do "Partitioning" normalizado, alcançando uma accuracy de 87.72%.

3.5.2 Modelação com Seleção dos Melhores Atributos

Para identificar os atributos mais significativos, aplicamos novamente a estratégia de Feature Selection. Após a análise detalhada, foram selecionamos os seguintes atributos como os mais relevantes para a previsão dos dados: Age, Gender, TB, DB, Alkphos, Sgot, ALB, AG_Ratio e Age_Category. Com a utilização desses atributos selecionados, foi alcançada uma melhoria na precisão do modelo, com uma accuracy de 88.60%.

3.5.3 Modelação com *Clustering*

Figura 3.13: Modelos Clustering utilizados

Na modelação com *Clustering* foram utilizados três modelos, sendo eles o *K-Means*, o *K-Medoids* e o *SOTA*, em que em ambos os dois primeiros usamos 11 clusters para a previsão, sendo que no primeiro alcançou-se uma *accuracy* de 67.54%, no outro alcançou-se uma accuracy de 68.42%, já no *SOTA* obteve-se o melhor resultado com uma *accuracy* de 75.44%.

3.5.4 Modelação com Separação entre MALE e FEMALE

Devido à maior percentagem de homens no dataset, optou-se por realizar a previsão separadamente para cada género. Isso permitiu ajustar os modelos de previsão de forma mais específica e potencialmente obter valores mais precisos. Sendo que foi obtido uma accuracy de 94.19% para o dos homens e uma accuracy de 75% para as mulheres.

(a) Melhor accuracy Homens.

(b) Melhor accuracy Mulheres.

Figura 3.14: Melhores resultados obtidos entre Homens e Mulheres

3.5.5 Modelação com o Objetivo de Regressão

De modo a converter este problema de classificação para um problema de regressão, alteramos o objetivo da previsão para um valor numérico. Em seguida, aplicamos três algoritmos de regressão: Linear $Regression\ Learner,\ Simple\ Regression\ Tree\ Learner,\ Gradient\ Boosted\ Trees\ (Regression),\ sendo que os resultados obtidos não se enquadrarem com o que esperávamos, o melhor resultado obtido foi de <math>0.49$ no R^2 no modelo $Gradient\ Boosted\ Trees\ (Regression).$

3.5.6 Modelação com Redes Neuronais

Figura 3.15: Modelos de Redes Neuronais.

Na modelação com Redes Neuronais, antes de inserção dos dados nos modelos, é necessário normalizá-los para melhorar o seu desempenho e também garantir estabilidade no modelo. Sendo que então os modelos utilizados foram *RProp MLP Learner* e o *DL4J Feedforward Learner* (Classification) e com isso obtivemos no primeiro uma accuracy de 84.21%, já no outro obteve-se uma accuracy de 81.58%.

3.6 Avaliação

Após o estudo que se realizou no conjunto de dados, apesar de algum tratamento realizado, permitiu-nos garantir um bom estudo e previsão do problema.

Na modelação foram utilizados diferentes modelos, visando encontrar o melhor resultado e concluimos que a utilização de algoritmos de árvores de gradiente aumentado (Gradient Boosted Trees) com os dados normalizados, levaram-nos a melhores resultados tanto na inclusão das análises todas, mas também como a separação de géneros entre Homens e Mulheres, tendo sido nos Homens o melhor resultado obtido, pois também o datatset continha mais homens do que mulheres. No entanto, a utilização da técnica de Feature Selection, proporcionou-nos encontrar os melhores atributos para o problema, levando a uma melhoria ligeira em comparação com as análises todas. A seguir, a modelação com bons resultados também foi a das Redes Neuronais, o que também nos leva a conclusão que é uma boa forma de prever o problema. Por outro lado, a modelação por Clustering, apesar do melhor resultado não estar muito longe dos outros resultados, levou-nos à conclusão de que não será uma boa forma de prever este problema. Por fim, o pior modelo foi a modelação com objetivo de regressão, o que nos faz concluir que também não é o melhor caminho para obter uma previsão correta.

Capítulo 4

Conclusão

Durante a elaboração deste projeto, aplicaram-se os conceitos aprendidos nas aulas de forma a explorar e tratar os dados com sucesso. Embora a escolha do dataset, nao tenha sido a mais acertada, principalmente devido ao seu tamanho, conseguiu-se superar esses desafios com o avançar do projeto.

A exploração dos dados foi fundamental para compreender a natureza dos problemas e identificar os atributos relevantes para as suas respetivas análises. O tratamento dos dados, de uma forma geral, foi bem sucedido.

Apesar das dificuldades apresentadas, os modelos de aprendizagem foram construídos. As técnicas e algoritmos utilizados demonstraram resultados promissores na previsão e análise dos dados. No entanto, reconheceu-se a importância de refletir sobre as escolhas durante a realização do projeto, nomeadamente na seleção de datasets de estudo.

Em suma, o processo de exploração e tratamento de dados foi bem alcançado e os modelos de aprendizagem foram construídos de forma satisfatória, proporcionando uma boa análise e previsão dos dados.