Exercise 1: Simplex Method (2.5 pts).

Solution:

Answer to Q1:

	x1	x2	х3	x4	x5	
x2	0.50	1.00	-1.50	0.50	0.00	2.50
x5	1.50	0.00	-2.50	-0.50	1.00	4.50
obj	-4.25	0.00	-0.25	-0.25	0.00	-1.25

The optimal solution is

 $x_1 = 0,$ $x_2 = 2.5,$ $x_3 = 0,$ $x_4 = 0,$

 $x_5 = 4.5.$

Answer to Q2:

The infinite family of feasible solutions with unbounded objective value is given by

 $x_1 = 0.0t + 0.0$

 $x_2 = 1.5t + 2.5$

 $x_3 = 1.0t + 0.0$

 $x_4 = 0.0t + 0.0$

 $x_5 = 2.5t + 4.5.$

Answer to Q3:

 $\alpha = 11/3 = 3.66...$

Justification: If we repeat the calculations with the generic initial last row $[3-2\alpha,\alpha-3,-1,0,0,0]$ we see that, in the interval [3.5,4.0], the only positive entry is the second. After pivoting on it, the last row becomes $[-2.5\alpha+4.5,0,1.5\alpha-5.5,-0.5\alpha+1.5,0,-2.5\alpha+7.5]$. In the interval [3.5,4.0], all these quantities are negative except $1.5\alpha-5.5$, which is positive if and only if $\alpha>5.5/1.5=11/3$.