

2012/2013 - 1º Semestre

Problema

Conversores A/D e D/A 1 – Conversor D/A utilizando rede R-2R em escada

Considere o circuito representado na figura, em que as áreas da junção base-emissor dos transístores estão relacionadas da seguinte forma:

- a) Determine o valor de V_A.
- b) Considerando que os colectores de Q₁, Q₂ e Q₃ estão ligados à massa ou ao terminal de AMP₂, conforme o valor da palavra binária a codificar b₁, b₂ e b₃:

$$b_i = 0 \implies Colector \ de \ Q_i \ ligado \ à massa$$

$$b_i = 1 \implies Colector \ de \ Q_i \ ligado \ ao \ terminal - de \ AMP_2$$

Determine v_A em função de b₁, b₂ e b₃.

6)

Para AMPA
$$V^{+}=0$$
 (Massa Vintual) =) $i_{R0} = \frac{VR}{R0} = 0.5 \text{ mA}$

= I_{REF}

Commit de Cleuts, le Q_{0} $i_{C0} = I_{REF} = 0.5 \text{ mA}$

Commit de Cleuts, le Q_{0} $i_{C0} = I_{REF} = 0.5 \text{ mA}$

Come Q_{3} e Q_{4} são igual e $V_{EE_{3}} + 2R \frac{I_{3}}{2} = V_{EE_{4}} + 2R \frac{I_{4}}{2}$

=) $I_{3} = I_{41}$
 $V_{1} = I_{1}$
 $V_{1} = I_{2}$
 $V_{2} = I_{3}$
 $V_{3} = I_{3}$
 $V_{4} = I_{4}$
 $V_{4} = I_{4}$
 $V_{4} = I_{4}$
 $V_{5} = I_{5}$
 $V_{5} = I_{5}$