Dual of the Soft margin SVM (SVM $_{s1}$):

minimize
$$(\lambda^{\top} \quad \mu^{\top}) X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$

subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$

$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} = 1$$

$$0 \le \lambda_{i} \le K, \quad i = 1, \dots, p$$

$$0 \le \mu_{j} \le K, \quad j = 1, \dots, q.$$

The points u_i and v_j are naturally classified in terms of the values of λ_i and μ_j . The numbers of points in each category have a direct influence on the choice of the parameter K. Let us summarize some of the keys items from Definition 54.1.

The vectors u_i on the blue margin $H_{w,b+\delta}$ and the vectors v_j on the red margin $H_{w,b-\delta}$ are called *support vectors*. Support vectors correspond to vectors u_i for which $w^{\top}u_i - b - \delta = 0$ (which implies $\epsilon_i = 0$), and vectors v_j for which $w^{\top}v_j - b + \delta = 0$ (which implies $\xi_j = 0$). Support vectors u_i such that $0 < \lambda_i < K$ and support vectors v_j such that $0 < \mu_j < K$ are *support vectors of type 1*. Support vectors of type 1 play a special role so we denote the sets of indices associated with them by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid 0 < \lambda_i < K \}$$

$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid 0 < \mu_j < K \}.$$

We denote their cardinalities by $numsvl_1 = |I_{\lambda}|$ and $numsvm_1 = |I_{\mu}|$.

The vectors u_i for which $\lambda_i = K$ and the vectors v_j for which $\mu_j = K$ are said to *fail the margin*. The sets of indices associated with the vectors failing the margin are denoted by

$$K_{\lambda} = \{i \in \{1, \dots, p\} \mid \lambda_i = K\}$$

 $K_{\mu} = \{j \in \{1, \dots, q\} \mid \mu_j = K\}.$

We denote their cardinalities by $p_f = |K_{\lambda}|$ and $q_f = |K_{\mu}|$.

Vectors u_i such that $\lambda_i > 0$ and vectors v_j such that $\mu_j > 0$ are said to have margin at most δ . The sets of indices associated with these vectors are denoted by

$$I_{\lambda>0} = \{i \in \{1, \dots, p\} \mid \lambda_i > 0\}$$

$$I_{\mu>0} = \{j \in \{1, \dots, q\} \mid \mu_j > 0\}.$$