Name:		_Centre/index No
Signature:	 	
P525/1	V 1972	
CHEMISTRY		
Paper 1		
Aug. 2023		
2 ¼ hours		

RUKUNGIRI DISTRICT SECONDARY SCHOOLS' JOINT MOCK EXAMINATIONS 2023

Uganda Advanced Certificate of Education

Chemistry

Paper 1

2 Hours 45 Minutes.

INSTRUCTIONS TO CANDIDATES.

- Answer all questions in section A and any six questions in section B.
- All questions must be answered in the spaces provided
- The periodic table, with relative atomic masses, is attached at the end of the paper.
- Non-programmable scientific electronic calculators may be used.
- Illustrate your answers with equations where applicable.
- Molar gas constant, R= 8.31Jk⁻¹mol⁻¹
- Molar volume of gas at s.t.p is 22.4 litres.

For Examiner's Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A (46 MARKS)

Answer all questions in this section.

1.	Complete the following reaction equations and write I.U.P.A.C names of the product in each case.	ne main
	(a) $+ H_2 - Pd$	(01 mark)
	Name of product	(½ mark)
	(b) $CH_2MgCl H_2O/H_{(aq)}^+$	(01 mark)
	Name of product	(½ mark)
	$CH_3 C = CHCH_3 \qquad Mn\overline{O}_{4(aq)} / \overline{O}H_{(aq)}$	(01mark)
2.	Name of product	
	mass in 48 days. Calculate the half life of the radioactive isotope.	(02marks)
	**	
	 (b)Complete the following nuclear reaction. (i) ²³³₉₁Pα β 	(03marks)
	(ii) ¹ ₁ H → ···································	
	(iii) \longrightarrow $\frac{234}{90}Th + \alpha + \gamma$	
	(c) What is meant by stability of a nucleus.	(01mark)

3.	State the	e conditions and equations for the reaction between water and	
	(a) Mag	mesium.	(03 ½ marks)
	•••••		•••••
			-
	***************************************		•••••
	(b) Chro	mium.	(02marks)
			•••••••••••••••••••••••••••••••••••••••
4.		rsis and hydrolysis of alkenes gave products which on analysis we sometimes structures. $\frac{O_3}{Zn/H_2O}$ $CH_3CH_2CCH_3 + CH_3CHO$ $CH_3CH_2CCH_3 + CH_3CHO$	re found to
	(i)	Write structural formula of A	(01mark)
	(ii)	Name A	(01mark)
	(b) B	$ \frac{O_3}{Zn/H_2O, \text{ heat}} \rightarrow CH_3CH_2 \overset{\bigcirc}{C}CH_3 + CH_3 \overset{\bigcirc}{C}CH_3 $	
	(i)	Write structural formula of B	(01mark)
			81
	(ii)	Name B	(01mark)
	(a) Magni	142cm ³ of a hydrocarbon P of molecular mass 58 was exploded and cooled to room temperature, the volume of the residue gas was dition of concentrated potassium hydroxide, the volume decreased the molecular formular of P.	694cm ³ . 1 to 126cm ³ . (04marks)
	· · · · · · · · · · · · · · · · · · ·		

(1	b) Name compound P and state the possible isomers of P.	(()2marks)
(a) Aluminium powder was added to sodium hydroxide solution. i) State what was observed.	(01mark)
(ii) Write equation for the reaction that took place.	(01 ½ marks)
	b)Sodium carbonate was added to a solution of aluminium chloride. i) State what was observed.	(01 mark)
	(ii) Write equation for the reaction that took place.	(01 ½ marks)
	Name one reagent that can be used to distinguish between each of the compounds. In each case, state what is observed if the reagent is separeach member of the pair. (a) CH ₃ CH ₂ COOH and HCOOH	following pairs of
	(a) 61136112 6 6 6 7 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	
	(b) $CH_3CH_2CH_2OH$ and $(CH_3)_3COH$.	(03marks)
	(a) Methane reacts with steam according to the following equation $CH_{4(g)} + 2H_2O_{(g)} = \sum CO_{2(g)} + 4H_{2(g)}$	
	The enthalpies are '76, '242 and '394KJmol' respectively. Calculate the change for the backward reaction.	ne enthalpy (04marks)
202	3 Rukungiri District Secondary Schools' Joint Mock Examinations	

	(b) What is meant by the term enthalpy of formation?	(01mark)
).	group two of the periodic table.	with beryllium in
	(a) State two chemical properties in which aluminium and beryllium	
	show similarities.	(02marks)
		* 12
	(b) Give a reason why aluminium shows some similarities in properties	with
	beryllium,	(01 marks)
	SECTION (54MARKS)	1.00
Λ	Answer any six questions from this section.	
V.	(a)(i) What is meant by the term soap as used in organic chemistry?	(01 mark)
	(ii)Name two sources of animal fat used in manufacture of soap.	•••••••••••••••••••••••••••••••••••••••
	Control of the contro	
	(b)Discuss the cleansing action of soap.	(03marks)
		······································
	(c) A sample of soap was prepared from 12g of a vegetable oil containing	ng an ester of
	hexadecanoic acid $(C_{15}H_{31}COOH)$. Calculate the mass of soap form	

1.(a)(i) Write electronic configuration of iron.	(½ mark)
(ii) State the most oxidation state of iron.	(½ mark)
(b)Iron(III) chloride is an important reagent in distinguishing different cl compounds. Sate; (i) the classes.	asses of organic
(ii) what is observed with the above classes.	(02marks)
(i) State what is observed and write equation for the reaction between; (i) a solution of iron(II) ions and concentrated nitric acid and warm the mixture. observation	(02marks)
equation (ii) sulphur dioxide gas and a solution of iron(III) ions. observation	(02marks)
equation	
(a) (i) Sketch a graph of molar conductivity against square root of concentration.	(02marks)

	(ii)Explain the shape of your sketch graph in a(i).	(03marks)
	(b)(i)What is meant by the term electrolytic conductivity?	(01mark)
	(ii) A conductivity cell with resistance of 1.16Ω contains potassium chloride conductivity $1.29\Omega^{-1}m^{-1}$. The second electrolyte in the same cell was four resistance of 15Ω . Calculate the conductivity of the second electrolyte.	solution of
13.	(a)(i)Describe the extraction of nitric acid from catalytic oxidation of ammo	
	(ii)Give one use of nitric acid.	(½ mark)
	(b)Concentrated nitric acid is 50% weight per weight and has a density of 1. Calculate the molarity of concentrated nitric acid.	(02marks)
	(c)Write an equation for the reaction between ammonia and boron trichloride.	(1 ½ marks)

(a) C.H ₃ CH ₂ C	CH ₃ + NaHSO ₃ -—			
(b) CH ₃ COCl	+ <i>СН</i> ₃ <i>СН</i> ₂ <i>ОН</i> <u>Руг</u>	idine		
(c) CH ₃ CHCH	I_2OH conc. H_3P $360^{\circ}C$	<u>O</u> ₄	······	
CH_2	360° <i>€</i>			
3				
3				
3				
		er of reaction?		(02marks)
	eant by the term orde	er of reaction?		(02marks)
(a) What is me	eant by the term orde		onstant tamparatur	
(a) What is me	eant by the term orde	B were reacted at c		e. The table
(a) What is me (b) Various cor	eant by the term orden ncentration of A and he initial concentrati	B were reacted at c		e. The table
(a) What is me (b) Various con below shows t Experiment	eant by the term orde	B were reacted at co	their initial rates for	e. The table
(a) What is me (b) Various con below shows t Experiment	ncentration of A and he initial concentration [A] (moldm ⁻³	B were reacted at con of A and B and [B](moldm ⁻³)	their initial rates for initial rate (mole	e. The table
(a) What is me (b) Various cor below shows t Experiment	ncentration of A and he initial concentration [A] (moldm ⁻³	B were reacted at con of A and B and [B](moldm ⁻³) 0.4	their initial rates for initial rate (mole 5.6x10 ⁻³	e. The table
(a) What is me (b) Various con below shows t Experiment	ncentration of A and he initial concentration [A] (moldm ⁻³ 0.8 0.4	B were reacted at con of A and B and [B](moldm ⁻³) 0.4 0.4 0.2	initial rates for initial rate (mole 5.6x10 ⁻³ 1.4x10 ⁻³ 3.5x10 ⁻⁴	e. The table
(a) What is me (b) Various con below shows t Experiment	ncentration of A and he initial concentration [A] (moldm ⁻³ 0.8 0.4 0.2	B were reacted at con of A and B and [B](moldm ⁻³) 0.4 0.4 0.2	initial rates for initial rate (mole 5.6x10 ⁻³ 1.4x10 ⁻³ 3.5x10 ⁻⁴	e. The table the reaction dim ⁻³ s ⁻¹)
(a) What is me (b) Various cor below shows t Experiment	ncentration of A and he initial concentration [A] (moldm ⁻³ 0.8 0.4 0.2	B were reacted at con of A and B and [B](moldm ⁻³) 0.4 0.4 0.2	initial rates for initial rate (mole 5.6x10 ⁻³ 1.4x10 ⁻³ 3.5x10 ⁻⁴	e. The table the reaction dim ⁻³ s ⁻¹)

(iii) Determine the overall order of reaction.	(01mark)
(iv) Calculate the value of the rate constant for the reaction.	(02marks)
16. Write equations to show how the following compounds can be synth (a) From	
(b) $CH_3CH_2NH_2$ from CH_3CHO	(03marks)
(c) $NHN = C(CH_1)_1$ from $CH_3CH = CH_2$.	(03marks)
17. (a)(i) Write equation for the hydrolysis of sodium methenoate in aq solution.	queous (0 i mark)
(ii) Write an expression for the hydrolysis constant, K_h of sodium n	nethanoate. (01 mark)

······································	
(b) The pH of a 0.1M aqueous sodium ethanoate solution is 8.85. ca	
constant of the solution. $(K_w = 1x10^{-14} mol^2 dm^{-6})$	(04marks)
(c) The solubility of strontium hydroxide is 0.524g per 100cm ³ of wa	ter at 20°C.
Calculate the solubility product of strontium hydroxide at 20°C.	(03marks)

······································	

END

THE PERIODIC TABLE

1	2																
1												3	4	5	6	7	8
H 1.0		!											er er			1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 15.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3		T			2						13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Cs 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.7	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 ¥ 88.0	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 163	46 Pd 105	47 Ag 108	48 Cd 112	49 In 115	30 Sn 119	51 Sb 122	52 Te 128	53 I 127	34 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Rc 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Tl 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Re (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)												'			
			57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 152	63 Sm 150	64 Eu 152	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
		The state of the s	89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Es (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw

^{1.} H indicates Atomic number.

^{2.} H indicates relative Atomic mass.