```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.linear_model import LogisticRegression
        from sklearn.model_selection import train_test_split, cross_val_score
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import (
            accuracy_score, precision_score, recall_score, f1_score,
            confusion_matrix, classification_report, roc_auc_score, roc_curve
        #Load Dataset
        df =pd.read_csv('C:/Users/sarve/OneDrive/Desktop/Logistick Regression Healthcare Pr
        #Preprocessing
        df['ScheduledDay'] = pd.to_datetime(df['ScheduledDay'])
        df['AppointmentDay'] = pd.to_datetime(df['AppointmentDay'])
        df['WaitTime'] = (df['AppointmentDay'] - df['ScheduledDay']).dt.days
        df['No-show'] = df['No-show'].map({'No': 0, 'Yes': 1})
        # data cleaning drop irrelivant columns
        df = df.drop(columns = ['PatientId', 'AppointmentID'])
        # Remove negative wait times
        df = df[df['WaitTime'] >= 0]
        # Encode categorical variables
        df = pd.get_dummies(df, columns=['Gender', 'Neighbourhood'], drop_first=True)
```

```
In [2]: df.head()
```

Out[2]:		ScheduledDay	AppointmentDay	Age	Scholarship	Hipertension	Diabetes	Alcoholism	
	5	2016-04-27 08:36:51+00:00	2016-04-29 00:00:00+00:00	76	0	1	0	C	
	6	2016-04-27 15:05:12+00:00	2016-04-29 00:00:00+00:00	23	0	0	0	C	
	7	2016-04-27 15:39:58+00:00	2016-04-29 00:00:00+00:00	39	0	0	0	C	
	9	2016-04-27 12:48:25+00:00	2016-04-29 00:00:00+00:00	19	0	0	0	C	
	10	2016-04-27 14:58:11+00:00	2016-04-29 00:00:00+00:00	30	0	0	0	C	
	5 rov	ws × 91 columns							
	4							•	
In [3]:	<pre>#Feature and Target X= df.drop(columns =['No-show', 'ScheduledDay', 'AppointmentDay']) y = df['No-show']</pre>								
In [4]:	<pre># Train and Test Split data X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2, random_sta</pre>								
	X_t	rain, X_test,	y_train, y_test =	trai	n_test_split	(X,y,test_siz	ze = 0.2,	random_sta	
In [5]:	<pre>#Feature scailing scaler =StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.fit_transform(X_test)</pre>								
In [6]:	<pre>#Model Training model = LogisticRegression(max_iter=1000) model.fit(X_train_scaled,y_train)</pre>								
Out[6]:	•	LogisticRe	gression	3					
	Log	isticRegressi	on(max_iter=1000	9)					
In []:	#Pr	edictions							
	у_р	red = model.pr	edict(X_test_scal	.ed)					
	<pre>y_prob = model.predict_proba(X_test_scaled)[:,1]</pre>								

Evaluating model performance

```
No_Show_Predictive_Model (3)
          print("Accuracy:", round(accuracy_score(y_test, y_pred), 4)) print("Precision:",
          round(precision_score(y_test,y_pred),4)) print("Recall:", round(recall_score(y_test, y_pred), 4))
          print("F1 Score:", round(f1 score(y test, y pred), 4)) print("ROC AUC:",
          round(roc_auc_score(y_test, y_prob), 4))
 In [8]: # Improving class imbalance with with class weights
          model =LogisticRegression(max_iter=1000, class_weight='balanced')
          model.fit(X_train_scaled,y_train)
 Out[8]:
                              LogisticRegression
         LogisticRegression(class_weight='balanced', max_iter=1000)
 In [9]: #Threshold Tuning
          threshold = 0.2 # example threshold, tune via validation
          y_pred_custom = (y_prob >= threshold).astype(int)
          print("Recall at threshold 0.2:", round(recall_score(y_test, y_pred_custom), 4))
          print("Precision at threshold 0.2:", round(precision_score(y_test, y_pred_custom),
          print("F1 Score at threshold 0.2:", round(f1_score(y_test, y_pred_custom), 4))
        Recall at threshold 0.2: 0.9276
        Precision at threshold 0.2: 0.2946
        F1 Score at threshold 0.2: 0.4472
In [10]: ## Over Sampling the minority class using SMOTE
         from imblearn.over sampling import SMOTE
In [11]: #using smote to resample the minority classes using synthetic resampling
          sm =SMOTE(random_state=42)
          #fit_resample function will perform synthetic resampling
          X_train_res, y_train_res = sm.fit_resample(X_train_scaled, y_train)
In [12]: ### Training model again after performing the SMOTE
          model =LogisticRegression(max_iter=1000)
          model.fit(X_train_res,y_train_res)
Out[12]:
                LogisticRegression
         LogisticRegression(max_iter=1000)
```

```
In [13]: ## model prediction
y_pred = model.predict(X_test_scaled)
y_proba = model.predict_proba(X_test_scaled)[:, 1]
```

```
In [14]: ## Evaluating Model predictions
print("Recall after SMOTE:", round(recall_score(y_test, y_pred), 4))
```

```
print("Precision after SMOTE:", round(precision_score(y_test, y_pred), 4))
print("F1 Score after SMOTE:", round(f1_score(y_test, y_pred), 4))
print("ROC AUC:", round(roc_auc_score(y_test, y_prob), 4))
```

Recall after SMOTE: 0.5691 Precision after SMOTE: 0.3421 F1 Score after SMOTE: 0.4273

ROC AUC: 0.5888

```
In [15]: ## Confision Matrix
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
    plt.title("Confusion Matrix")
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.show()
```


(O. - D.: -- /D. - I.t. -- /N. - Ol. -- - D. - II.t. -- M. - I.I. /O. I.t. -- I

Average CV ROC AUC: 0.575

```
In [19]: patient_results = X_test.copy()
In [20]: patient_results["Predicted_Probability"] = y_prob
In [21]: patient_results
```

Out[21]:

0	Age	Scholarship	Hipertension	Diabetes	Alcoholism	Handcap	SMS_received	Wa
7:	34 7	0	0	0	0	0	1	
796	59 77	0	0	0	0	0	1	
6068	87 34	0	0	0	0	0	0	
106	20 41	0	0	0	0	0	0	
4158	82 61	0	0	0	0	0	0	
	•••	•••	•••			•••	•••	
385	62 7	0	0	0	0	0	1	
276	60 55	0	1	1	0	0	1	
465	60 76	0	1	0	0	0	1	
9378	80 63	0	1	0	1	0	0	
320	00 59	0	1	0	0	0	1	

14392 rows × 89 columns

In [22]: y_preds = model.predict(X_test) # 0 or 1
patient_results["Predicted_Label"] = y_preds

c:\Users\sarve\anaconda3\Lib\site-packages\sklearn\utils\validation.py:2732: UserWar
ning: X has feature names, but LogisticRegression was fitted without feature names
warnings.warn(

In [23]: patient_results

Out[23]:

	Age	Scholarship	Hipertension	Diabetes	Alcoholism	Handcap	SMS_received	Wa
734	7	0	0	0	0	0	1	
79659	77	0	0	0	0	0	1	
60687	34	0	0	0	0	0	0	
10620	41	0	0	0	0	0	0	
41582	61	0	0	0	0	0	0	
•••								
38562	7	0	0	0	0	0	1	
27660	55	0	1	1	0	0	1	
46560	76	0	1	0	0	0	1	
93780	63	0	1	0	1	0	0	
3200	59	0	1	0	0	0	1	

14392 rows × 90 columns

