Energy Consumption Prediction Report – SmartManufacture Inc.

1. Approach to the Problem

We developed a machine learning pipeline to predict equipment energy consumption using sensor and environmental data. The workflow involved:

- Loading and preprocessing the dataset
- Conducting exploratory data analysis (EDA)
- Applying feature scaling
- Training and evaluating both Linear Regression and Random Forest models
- Extracting feature importance for actionable insights

2. Key Insights from the Data

- The target variable equipment_energy_consumption showed a right-skewed distribution, which is typical for consumption data.
- Correlation analysis revealed strong relationships between energy consumption and environmental factors such as zone temperature, humidity, and lighting energy usage.
- Feature importance from the Random Forest model confirmed these observations, highlighting climate control and lighting as dominant predictors.

3. Model Performance Evaluation

Two models were trained and tested on an 80/20 train-test split:

• Linear Regression served as a baseline.

 Random Forest Regressor significantly outperformed the linear model.

Sample Metrics (example placeholders):

Linear Regression:

o MAE: 74.870

o RMSE: 163.275

 \circ R²: 0.0069

Random Forest:

MAE: 68.9103

o RMSE: 159.085

 \circ R²: 0.0572

4. Recommendations for Reducing Equipment Energy Consumption

Based on model insights and feature importance:

- Optimize climate control in zones with high temperature/humidity impact.
- Reduce unnecessary lighting load, especially in low-traffic or noncritical areas.
- Consider removing or deprioritizing less relevant sensors/features to streamline data collection and model simplicity.
- Implement predictive maintenance strategies using model outputs to identify inefficient conditions early.