FCC Test Report

Application Purpose : Original grant

Applicant Name: : Artex Computer LLC

FCC ID : 2AIBY-AL2206Q

Equipment Type : Tablet PC

Model Name : AL2206Q

Report Number: FCC17030226A-2

Standard(S) : FCC Part 15 Subpart C

Date Of Receipt : March 30, 2017

Date Of Issue : April 20, 2017

Test By :

(Dekun Liu)

Reviewed By

Sol 621

(Sol Qin)

Authorized by :

(Michal Ling)

Prepared by

QTC Certification & Testing Co., Ltd.

2nd Floor,B1 Buiding,Fengyeyuan Industrial Plant,,Liuxian

2st.Road,Xin'an Street,Bao'an District,,Shenzhen, 518000China. **Registration Number: 588523**

Page 2 of 71

REPORT REVISE RECORD

NEI ONI NEI VOE				
Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	April 20, 2017	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	5
2. TEST DESCRIPTION	7
2.1 MEASUREMENT UNCERTAINTY	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 CONFIGURATION OF SYSTEM UNDER TEST	9
2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS 5.1.2 TEST PROCEDURE	12 13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP	13
5.1.5 EUT OPERATING CONDITIONS	13
5.1.6 TEST RESULTS	14
5.2 RADIATED EMISSION MEASUREMENT 5.2.1 RADIATED EMISSION LIMITS	16 16
5.2.2 TEST PROCEDURE	16
5.2.3 DEVIATION FROM TEST STANDARD	17
5.2.4 TEST SETUP 5.2.5 EUT OPERATING CONDITIONS	18
5.2.5.1 RESULTS (BELOW 30 MHZ)	19 20
5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	21
5.2.5.3 TEST RESULTS (1GHZ TO 25GHZ)	23
6. ANTENNA APPLICATION	28
7.0. 6DB BANDWIDTH MEASUREMENT	29
7.1 TEST SETUP	29
7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT	29
7.3 TEST PROCEDURE	29
8.0. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	36
8.1 TEST SETUP	36
8.2 LIMITS OF MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	36
8.3 TEST PROCEDURE	36

Page 4 of 71

Table of Contents	Page
9. POWER SPECTRAL DENSITY MEASUREMENT	43
9.1 TEST SETUP	43
9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	43
9.3 TEST PROCEDURE	43
9.4 TEST RESULT	44
10. OUT OF BAND MEASUREMENT	50
10.1 TEST SETUP FOR BAND EDGE	50
10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT	50
10.4 TEST RESULT	50
11. EUT TEST PHOTO	61
12. PHOTOGRAPHS OF EUT	63

1. GENERAL INFORMATION

GENERAL DESCRIPTION OF EUT

NERAL DESCRIP	TOTAL EDI
Test Model	AL2206Q
Applicant	Artex Computer LLC
Address	2874 NW 72 AVE, Miami FI 33122 USA
Manufacturer	Artex Computer LLC
Address	2874 NW 72 AVE, Miami FI 33122 USA
Equipment Type	Tablet PC
Brand Name	Artex
Hardware version:	AX3-751B_V3.0
Software version:	Android 6.0
Extreme Temp. Tolerance	-10℃ to +55℃
Battery information:	Li-Polymer Battery : P306799 Voltage: 3.7V Capacity: 2400mAh Limited Charge Voltage: 4.2V
Adapter Information:	Adapter: K-T10A Input: AC 100~240V 50/60Hz 0.35A Output: DC 5V 2000mA
Operating Frequency	2412-2462MHz
Channels	11
Channel Spacing	5MHz
Modulation Type	CCK for IEEE 802.11b OFDM for IEEE 802.11g/n HT-20
Antenna Type:	Integral Antenna
Antenna gain:	2.1dBi
Data of receipt	March 30, 2017
Date of test	March 30, 2017 to April 18, 2017
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:
All measurement facilities used to collect the measurement data are located at QTC Certification &
Testing Co., Ltd.
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.10-2013. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart C. ALL the testing were referenced KDB NO.558074V03R05 The offset factor to the measurement is conducted as the average. The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	802.11b
Mode 2	802.11g
Mode 3	802.11n20

For Conducted Emission		
Final Test Mode	Description	
Mode 1	802.11b	

For Radiated Emission		
Final Test Mode	Description	
Mode 1	802.11b	
Mode 2	802.11g	
Mode 3	802.11n20	

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT use new battery.
- (3)The data rate was set in 1Mbps, 6 Mbps, 6.5 Mbps and 13.5M for radiated emission due to the highest RF output power.
- (4) Record the worst case of each test item in this report.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of DSSS/OFDM

Test software Version	N/A
Test program	*#3646633#*

Frequency(802.11b/g/n20) 2412 MHz 2437 MHz 2462 MHz

2.4 CONFIGURATION OF SYSTEM UNDER TEST

(EUT: Tablet PC)

I/O Port of EUT			
I/O Port Type	Q'TY	Cable	Tested with
USB port	1	1m USB cable, unshielded	1
Power	1	1m	1

2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	K-T10A	/	/
2	Earphone	/	N/A	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length_]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission Test	PASS	Complies	
15.247(a)(2) Limit	Spectrum bandwidth of a Orthogonal Frequency Division Multiplex System Limit: 6dB bandwidth>500kHz	PASS	Complies	
15.247(b)	Maximum peak outputpower Limit: max. 30dBm	PASS	Complies	
15.109,15.205 & 15.209	Transmitter Radiated Emission Limit: Table 15.209	PASS	Complies	
15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Complies	
15.247(d)	Band edge Limit: 30dB less than Reference level Restricted band limit: Table 15.209	PASS	Complies	

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibratio n Due.
EMI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	08/19/2016	08/18/2017
Coaxial cable	Megalon	LMR400	N/A	08/12/2016	08/11/2017
GPIB cable	Megalon	GPIB	N/A	08/12/2016	08/11/2017
Spectrum Analyzer	R&S	FSU	100114	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
Pre-Amplifier	CDSI	PAP-1G18-38		10/13/2016	10/12/2017
Bi-log Antenna	SUNOL Sciences	JB3	A021907	09/13/2016	09/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017
Horn Antenna	COMPLIANCE ENGINEERING	CE18000		09/13/2016	09/12/2017
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	08/23/2016	08/22/2017
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	04/25/2016	04/24/2017
System-Controller	ccs	N/A	N/A	N.C.R	N.C.R
Turn Table	ccs	N/A	N/A	N.C.R	N.C.R
Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	-	08/21/2016	08/20/2017
Loop Antenna	EMCO	6502	00042960	08/22/2016	08/21/2017
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	08/19/2016	08/18/2017
Power meter	Anritsu	ML2487A	6K00003613	08/23/2016	08/22/2017
Power sensor	Anritsu	MX248XD		08/19/2016	08/18/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Conducted limit (dBµV)	
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS

EUT	Tablet PC	Model Name	AL2206Q
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	L
Test Date	March 13, 2017	Test Mode	Mode 1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1620	28.02	11.74	39.76	55.36	-15.60	AVG
2		0.1700	43.75	11.62	55.37	64.96	-9.59	QP
3		0.1819	26.72	11.46	38.18	54.39	-16.21	AVG
4		0.2100	43.57	11.19	54.76	63.20	-8.44	QP
5		0.2660	39.43	11.11	50.54	61.24	-10.70	QP
6		0.5180	35.79	10.80	46.59	56.00	-9.41	QP
7		0.5180	26.41	10.80	37.21	46.00	-8.79	AVG
8	*	1.0820	38.79	10.63	49.42	56.00	-6.58	QP
9		1.1860	18.13	10.62	28.75	46.00	-17.25	AVG
10		1.9820	36.37	10.59	46.96	56.00	-9.04	QP
11	-	10.4660	15.32	10.59	25.91	50.00	-24.09	AVG
12	2	21.7139	16.49	10.61	27.10	50.00	-22.90	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

remperature 26 °C Relative Humidity 54% Pressure 1010hPa Phase N Test Date March 13, 2017 Test Mode Mode 1 80.0 dBuV Limit: AVG: —	EUT	Tablet PC		Мо	del Name	AL2	206Q	
No. Mk. Freq. Reading Correct Mary Factor Ment Limit Over	Temperature							
No. Mk. Freq. Reading Factor Measure—Factor Measure	Pressure				,			
No. Mk. Freq. Reading Level Factor Measure— Limit Over MHz dBuV dB dBuV dB Detector	Test Date		2017				e 1	
No. Mk. Freq. Reading Level Factor Measure Teacher Message 2 0.2180 23.92 11.18 35.10 52.89 -17.79 AVG 3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -7.20 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	80.0 dBuV	· ·						
No. Mk. Freq. Reading Level Factor Measure Limit Over								
No. Mk. Freq. Reading Level Correct Factor Measure ment Limit Over 1 0.1860 27.13 11.40 38.53 54.21 -15.68 AVG 2 0.2180 23.92 11.18 35.10 52.89 -17.79 AVG 3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940	40			lagaji Paul Magharyan ji ji	phony without my phony y	Market Market	official to the second	
No. Mk. Freq. Reading Level Correct Factor Measurement Measurement Limit Over 1 0.1860 27.13 11.40 38.53 54.21 -15.68 AVG 2 0.2180 23.92 11.18 35.10 52.89 -17.79 AVG 3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3		7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A THE ALTERNATION OF THE PERSON OF THE PERSO				about which the same of the sa	- Vadur
1 0.1860 27.13 11.40 38.53 54.21 -15.68 AVG 2 0.2180 23.92 11.18 35.10 52.89 -17.79 AVG 3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP				Correct	Measure-	-	Over	30.00
2 0.2180 23.92 11.18 35.10 52.89 -17.79 AVG 3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
3 0.2300 41.18 11.16 52.34 62.45 -10.11 QP 4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	1	0.1860	27.13	11.40	38.53	54.21	-15.68	AVG
4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	2	0.2180	23.92	11.18	35.10	52.89	-17.79	AVG
4 0.2980 38.97 11.07 50.04 60.30 -10.26 QP 5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	3	0.2300	41 18	11 16	52 34	62 45	-10 11	OP
5 0.4060 24.97 10.92 35.89 47.73 -11.84 AVG 6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP								
6 0.5180 37.73 10.80 48.53 56.00 -7.47 QP 7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP								
7 0.5220 29.41 10.80 40.21 46.00 -5.79 AVG 8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP								
8 0.8059 38.09 10.71 48.80 56.00 -7.20 QP 9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP		0.5180	37.73	10.80	48.53	56.00	-7.47	
9 * 1.0740 40.05 10.63 50.68 56.00 -5.32 QP 10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	7	0.5220	29.41	10.80	40.21	46.00	-5.79	AVG
10 1.3940 20.41 10.62 31.03 46.00 -14.97 AVG 11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	8	0.8059	38.09	10.71	48.80	56.00	-7.20	QP
11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	9 *	1.0740	40.05	10.63	50.68	56.00	-5.32	QP
11 2.2659 37.22 10.58 47.80 56.00 -8.20 QP	10	1.3940	20.41	10.62	31.03	46.00	-14.97	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDEOLIENCY (MUz)	Limit (dBu\	//m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	4 Mills / 4 Mills for Dock 4 Mills / 41 Is for Averence
band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

5.2.2 TEST PROCEDURE

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector

mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported **5.2.3 DEVIATION FROM TEST STANDARD** No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 RESULTS (BELOW 30 MHZ)

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization	
Test Mode	Mode 1	Test Date	March 13, 2017

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

QP

5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 1	Test Date	March 13, 2017

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.59

33.86

46.00

28.27

896.9965

Remark: All the modes have been investigated, and only worst mode is presented in this report.

5.2.5.3 TEST RESULTS (1GHZ TO 25GHZ)

EUT	Tablet PC	Model Name	AL2206Q
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	March 13, 2017	Frequency	2412MHz

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4824	V	60.07	39.50	74	54	-13.93	-14.50
7236	V	58.63	40.75	74	54	-15.37	-13.25
4824	Н	59.47	40.37	74	54	-14.53	-13.63
7236	Н	59.40	40.40	74	54	-14.60	-13.60

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	March 13, 2017	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)		·		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4874	V	60.93	41.50	74	54	-13.07	-12.50
7311	V	59.56	39.74	74	54	-14.44	-14.26
4874	Н	59.38	39.59	74	54	-14.62	-14.41
7311	Н	59.43	40.43	74	54	-14.57	-13.57

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1 TX
Test Date	March 13, 2017	Frequency	2462MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)		
(MHz)		·		3m(dB	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
4924	V	58.46	40.07	74	54	-15.54	-13.93	
7386	V	58.78	40.88	74	54	-15.22	-13.12	
4924	Н	58.28	39.78	74	54	-15.72	-14.22	
7386	Н	58.62	39.62	74	54	-15.38	-14.38	

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	12() (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode2 TX
Test Date	March 13, 2017	Frequency	2412MHz

Freq.	Ant. Pol.	Emission Limit 3m(dBuV/n		BuV/m)	Over(dB)		
(MHz)		Level(dBuV)	, ,			
	H/V	PK	AV	PK	AV	PK	AV
4824	V	58.69	39.97	74	54	-15.31	-14.03
7236	V	58.41	40.40	74	54	-15.59	-13.60
4824	Н	58.23	40.51	74	54	-15.77	-13.49
7236	Н	59.23	40.23	74	54	-14.77	-13.77

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	March 13, 2017	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV		Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
4874	V	60.44	40.54	74	54	-13.56	-13.46
7311	V	59.47	40.86	74	54	-14.53	-13.14
4874	Н	59.92	39.75	74	54	-14.08	-14.25
7311	Н	58.59	39.59	74	54	-15.41	-14.41

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2 TX
Test Date	March 13, 2017	Frequency	2462MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV)			Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4924	V	58.47	41.26	74	54	-15.53	-12.74	
7386	V	58.39	39.49	74	54	-15.61	-14.51	
4924	Н	59.84	39.44	74	54	-14.16	-14.56	
7386	Н	59.57	40.57	74	54	-14.43	-13.43	

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode3 TX
Test Date	March 13, 2017	Frequency	2412MHz

Freq.	Ant. Pol.	Emission		Limit		Over(dB)	
(MHz)		Level((dBuV)	3m(dBu)	V/m)		
	H/V	PK	AV	PK	PK AV		AV
4824	V	58.47	39.29	74	54	-15.53	-14.71
7236	V	59.16	39.40	74	54	-14.84	-14.60
4824	Н	59.89	40.79	74	54	-14.11	-13.21
7236	Н	59.13	40.13	74	54	-14.87	-13.87

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	March 13, 2017	Frequency	2437MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)					3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
4874	V	60.10	40.70	74	54	-13.90	-13.30
7311	V	58.29	40.50	74	54	-15.71	-13.50
4874	Н	59.46	40.75	74	54	-14.54	-13.25
7311	Н	59.98	40.98	74	54	-14.02	-13.02

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Tablet PC	Model Name	AL2206Q
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3 TX
Test Date	March 13, 2017	Frequency	2462MHz

Freq.	Ant.Pol.	Emission Level(dBuV)		Limit		Over(dB)	
(MHz)				3m(dBuV/m)			
	H/V	PK	AV	PK	PK AV		AV
4924	V	58.30	40.85	74	54	-15.70	-13.15
7386	V	58.70	40.42	74	54	-15.30	-13.58
4924	Н	59.07	40.15	74	54	-14.93	-13.85
7386	Н	58.84	39.84	74	54	-15.16	-14.16

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

6. ANTENNA APPLICATION

6.1 Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247

FCC part 15C section 15.247 requirements: Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. 6.2 Result The EUT's antenna integrated on PCB, The antenna's gain is 2.1dBi and meets the requirement.

7.0. 6DB BANDWIDTH MEASUREMENT

7.1 TEST SETUP

7.2 LIMITS OF 6DB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is >500 kHz

7.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two

outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured

in the fundamental emission.

7.4 TEST RESULT

6dB Occupied Bandwidth

o coapida Bariaman								
EUT		Table	et PC	Model		AL2	AL2206Q	
Mode		802.	11b	Humidity		56%	RH	
Temperat	ure	24 de	eg. C,		· ·			
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MHz	t	Pass/ Fail	
1	2412		1	9359.0	0.5		Pass	
6	2437		1	9615.4	0.5		Pass	
11	2462		1	9615.4	0.5		Pass	

EUT Table		et PC	Model		AL2	AL2206Q	
Mode 802.1		11g	Humidity 5		56%	56% RH	
Temperat	ure	24 de	eg. C,				
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	6 dB Bandwidth (kHz)	Minim Limi (MHz	t	Pass/ Fail
1	2412		6	16474.4	0.5		Pass
6	2437		6	16474.4	0.5	•	Pass
11	2462		6	16153.8	0.5		Pass

EUT	EUT Table		et PC	Model		AL2206Q		
Mode 80		802.11n20		Humidity		56%	56% RH	
Temperat	ure	24 de	eg. C,					
Channel	Channe Frequen (MHz)	су	Data Transfer Rate (Mbps)	fer 6 dB Bandwidth Lin (kHz)		t	Pass/ Fail	
1	2412		6.5	17628.2	0.5		Pass	
6	2437		6.5	17628.2	0.5		Pass	
11	2462		6.5				Pass	

802.11b at 1Mbps of CH1

Date: 13.APR.2017 14:30:49

802.11b at 1Mbps of CH6

Date: 13.APR.2017 14:32:36

802.11b at 1Mbps of CH11

Date: 13.APR.2017 14:33:59

802.11g at 6Mbps of CH1

Date: 13.APR.2017 14:38:35

802.11g at 6Mbps of CH6

Date: 13.APR.2017 14:40:21

802.11g at 6Mbps of CH11

Date: 13.APR.2017 14:43:57

802.11n at HT20 of CH1

Date: 13.APR.2017 15:04:21

802.11n at HT20 of CH6

Date: 13.APR.2017 15:07:13

Page 35 of 71

Date: 13.APR.2017 15:12:07

8.0. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

8.1 TEST SETUP

8.2 LIMITS OF MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

The Maximum Peak Output Power Measurement is 30dBm.

8.3 TEST PROCEDURE

The RF power output was measured with a spectrum analyzer connected to the RF Antenna connector measurement while EUT was operating in transmit mode at the appropriate centre frequency.

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW ≥ 3 x RBW.
- d) Number of points in sweep ≥ 2 span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

8.4 TEST RESULTS

EUT	Tablet PC	Model		AL2206Q
Mode	802.11b	Humidity		56% RH
Temperature	24 deg. C,			
Channel	Channel	(AVERAGE)	Power Limit	t Pass/ Fail
	Frequency	OUTPUT POWER	(dBm)	
	(MHz)	(dBm)		
1	2412	16.57	30	Pass
6	2437	16.75	30	Pass
11	2462	16.30	30	Pass

Note: 1. At finial test to get the worst-case emission at 1Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Power Output = Power Reading + Cable loss + Attenuator

3. The worse case was recorded

EUT	Tablet PC	Tablet PC		Model		206Q
Mode	802.11g	802.11g		Humidity		RH
Temperature	24 deg. C,	24 deg. C,				
Channel	Channel Frequency (MHz)	OUTPUT	(AVERAGE) OUTPUT POWER (dBm)		t	Pass/ Fail
1	2412	15.	11 30			Pass
6	2437	15.7	73	30		Pass
11	2462	15.4	40	30		Pass

Note: 1. At finial test to get the worst-case emission at 6 Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Power Output = Power Reading + Cable loss + Attenuator

3. The worse case was recorded

EUT	Tablet PC		Model		AL2	206Q
Mode	802.11n(HT20)	802.11n(HT20)		Humidity		RH
Temperature	24 deg. C,					
Channel	Channel	(AVEF	RAGE)	Power Limi	t	Pass/ Fail
	Frequency	OUTPUT	POWER	(dBm)		
	(MHz)	(dBm)				
1	2412	15	.65	30		Pass
6	2437	15	.10	30		Pass
11	2462	15	.61	30		Pass

Note: 1. At finial test to get the worst-case emission at 6.5Mbps for CH1, CH6 and CH11

2. The result basic equation calculation as follow:

Power Output = Power Reading + Cable loss + Attenuator

3. The worse case was recorded

Page 38 of 71

Date: 13.APR.2017 15:51:44

Date: 20.APR.2017 15:39:05

Page 39 of 71

Date: 13.APR.2017 15:50:01

802.11g at 6Mbps of CH1

Date: 13.APR.2017 15:55:25

Page 40 of 71

802.11g at 6Mbps of CH6

Date: 13.APR.2017 15:57:29

Date: 13.APR.2017 15:58:20

Page 41 of 71

Date: 13.APR.2017 16:03:09

802.11n HT-20 at 6.5Mbps of CH6

Date: 13.APR.2017 16:03:48

Page 42 of 71

802.11n HT-20 at 6.5Mbps of CH11

Date: 13.APR.2017 16:04:51

9. POWER SPECTRAL DENSITY MEASUREMENT

9.1 TEST SETUP

9.2 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum Power Spectral Density Measurement is 8dBm.

9.3 TEST PROCEDURE

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used todemonstrate compliance.
- 2. Set the RBW = 3 kHz.
- 3. Set the VBW =10 kHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be ≤ 8 dBm.

9.4 TEST RESULT

EUT	Tablet PC		Model		AL2206Q	
Mode	802.11b	802.11b		Humidity		RH
Temperature	24 deg. C,					
Channel	Channel	Final RF	F Power Maximum Lir		nit	Pass/ Fail
	Frequency	Level in	(dBm)	(dBm)		
	(MHz)					
		1	Mbps			
1	2412	-13.	.13	8		Pass
6	2437	-12.	.99	8	•	Pass
11	2462	-13.	.53	8		Pass

EUT	EUT Tablet PC		Model		AL2206Q	
Mode	802.11g		Humidity	Humidity		RH
Temperature	24 deg. C,					
Channel	Channel	Final R	F Power Maximum Lin		nit	Pass/ Fail
	Frequency	Level ir	n (dBm)	(dBm)		
	(MHz)					
		(6Mbps			
1	2412	-13	.74	8		Pass
6	2437	-13	.94	8	•	Pass
11	2462	-14	.54	8		Pass

EUT Tablet PC			Model		AL2206Q	
Mode 802.11n HT20			Humidity	56%		RH
Temperature	24 deg. C,					
Channel	Channel	Channel Final RF		Power Maximum Lim		Pass/ Fail
	Frequency	Level ir	n (dBm)	(dBm)		
	(MHz)					
		6	.5Mbps			
1	2412	-14	.01	8		Pass
6	2437	-14	.31	8		Pass
11	2462	-14	.59	8		Pass

Remark: All of the modes have been investigated, and only worst mode is presented in this report.

802.11b at 1Mbps of CH1

Date: 13.APR.2017 16:25:31

802.11b at 1Mbps at CH6

Date: 13.APR.2017 16:26:51

802.11b at 1Mbps of CH11

Date: 13.APR.2017 16:27:54

802.11g at 6Mbps of CH1

Date: 13.APR.2017 16:29:48

802.11g at 6Mbps of CH6

Date: 13.APR.2017 16:31:09

802.11g at 6Mbps of CH11

Date: 20.APR.2017 15:33:40

10. OUT OF BAND MEASUREMENT

10.1 TEST SETUP FOR BAND EDGE

The restricted band requirement based on radiated emission test; please see the clause 6 for the test setup

10.2 LIMITS OF OUT OF BAND EMISSIONS MEASUREMENT

- 1. Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

10.3 TEST PROCEDURE

For signals in the restricted bands above and below the 2.4-2.483GHz allocated band a measurement was made of radiated emission test.(Peak values with RBW=VBW=1MHz and PK detector. AV value with RBW=1MHz,VBW=10Hz and PK detector)

For bandage test, the spectrum set as follows: RBW=100 kHz, VBW=100 kHz. A conducted measurement used

10.4 TEST RESULT

Please see next pages

Note: This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

Radiated measurement:

802.11b

Indica	Indicated			Corr	ection Fa	ctor	FCC Part 15.247			
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result	result (PK/AV)	Dolar	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lo	w Channel	(2412MH	z)				
2390	30.69	AV	V	30.3	4.1	33.1	31.99	54	22.01	
2390	30.64	AV	Н	30.3	4.1	33.1	31.94	54	22.06	
2390	42.04	PK	V	30.3	4.1	33.1	43.34	74	30.66	
2390	39.43	PK	Н	30.3	4.1	33.1	40.73	74	33.27	
			Hi	gh Channel	(2462MH	lz)				
2483.5	31.97	AV	V	31	4.4	32.7	34.67	54	19.33	
2483.5	29.66	AV	Н	31	4.4	32.7	32.36	54	21.64	
2483.5	41.01	PK	V	31	4.4	32.7	43.71	74	30.29	
2483.5	40.39	PK	Н	31	4.4	32.7	43.09	74	30.91	

802.11g

Indica	Indicated		Antenna	Correction Factor			FCC Part 15.247		
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2412MHz)								
2390	30.22	AV	V	30.3	4.1	33.1	31.52	54	22.48
2390	29.78	AV	Н	30.3	4.1	33.1	31.08	54	22.92
2390	41.21	PK	V	30.3	4.1	33.1	42.51	74	31.49
2390	40.15	PK	Н	30.3	4.1	33.1	41.45	74	32.55
			Hi	gh Channel	(2462MH	lz)			
2483.5	31.88	AV	V	31	4.4	32.7	34.58	54	19.42
2483.5	31.01	AV	Н	31	4.4	32.7	33.71	54	20.29
2483.5	41.48	PK	V	31	4.4	32.7	44.18	74	29.82
2483.5	41.47	PK	Н	31	4.4	32.7	44.17	74	29.83

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

802.11n HT20

Indicated			Antenna	Corr	ection Fa	ctor	FCC Part 15.247			
Frequency (MHz)	Receiver Reading (dB _µ V/m)	result	result (PK/AV)	Polar (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre-Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2412MHz)									
2390	33.69	AV	V	30.3	4.1	33.1	34.99	54	19.01	
2390	33.85	AV	Н	30.3	4.1	33.1	35.15	54	18.85	
2390	50.72	PK	V	30.3	4.1	33.1	52.02	74	21.98	
2390	52.09	PK	Н	30.3	4.1	33.1	53.39	74	20.61	
			Hi	gh Channel	(2462MH	lz)				
2483.5	29.36	AV	V	31	4.4	32.7	32.06	54	21.94	
2483.5	29.69	AV	Н	31	4.4	32.7	32.39	54	21.61	
2483.5	39.79	PK	V	31	4.4	32.7	42.49	74	31.51	
2483.5	41.14	PK	Н	31	4.4	32.7	43.84	74	30.16	

Note: The BAND EDGE RESTRICTED BANDS emission is too low at least 20dB to the Fundamental.

Band Edges Measurement:

802.11b:

Low channel

Date: 13.APR.2017 17:13:24

High channel

Date: 13.APR.2017 17:15:00

Date: 13.APR.2017 17:17:23

Start 2.33 GHz

High channel

Stop 2.43 GHz

Date: 13.APR.2017 18:16:48

Page 55 of 71 802.11n HT20: Low channel **%** * RBW 100 kHz Marker 2 [T1] * VBW 100 kHz SWT 10 ms -23.92 dBm 2.399230769 GHz Ref 30 dBm Center 2.38 GHz Span 100 MHz Date: 13.APR.2017 17:19:20 High channel **%** * RBW 100 kHz * VBW 100 kHz SWT 10 ms Marker 2 [T1] -37.93 dBm 2.483974359 GHz Ref 30 dBm 30 dB

Date: 13.APR.2017 18:17:56

Conducted measurement: 802.11b: Low channel **%** Marker 2 [T1] -37.38 dBm 7.232884615 GHz * RBW 1 MHz * VBW 3 MHz SWT 145 ms 30 dBm * Att 30 dB , .10 dBr 1 PK VIEW war war and be sure and his hill be the same at the 2.497 GHz/ Stop 25 GHz Start 30 MHz Date: 13.APR.2017 18:37:00 Middle channel (R)(S) * RBW 1 MHz Marker 2 [T1] *VBW 3 MHz SWT 145 ms Ref 30 dBm * Att 30 dB 7.312916667 GHz 3DB Start 30 MHz 2.497 GHz/ Date: 13.APR.2017 18:43:28

Date: 13.APR.2017 18:44:24

802.11g:

Low channel

Date: 13.APR.2017 18:45:00

Page 58 of 71

Date: 13.APR.2017 18:45:42

High channel

Date: 13.APR.2017 18:46:42

Page 60 of 71

Date: 13.APR.2017 18:48:57

11. EUT TEST PHOTO

CONDUCTED EMISSION TEST

12. PHOTOGRAPHS OF EUT

Appearance photograph of EUT

Page 66 of 71

---END OF REPORT---