

Міністерство освіти і науки України

Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського»

Фізико-технічний інститут

Лабораторна робота із Криптографії №4

Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей

Виконав:

студент 3 курсу ФТІ

групи ФБ-74,ФБ-72

Скуратов Илья, Демиденко Дарья

Перевірили:

Чорний О.

Савчук М. М.

Завадська Л. О.

КРИПТОГРАФІЯ

КОМП'ЮТЕРНИЙ ПРАКТИКУМ №4

Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей

Мета роботи Ознайомлення з принципами побудови регістрів зсуву з лінійним зворотним зв'язком; практичне освоєння їх програмної реалізації; дослідження властивостей лінійних рекурентних послідовностей та їх залежності від властивостей характеристичного полінома регістра.

Порядок виконання роботи 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму. 1. Вибрати свій варіант завдання згідно зі списком. Варіанти завдань містяться у файлі Crypto_CP4 LFSR_Var. 2. За даними характеристичними многочленами p1(x), p2(x) скласти лінійні рекурентні співвідношення для ЛР3, що задаються цими характеристичними многочленами. 3. Написати програми роботи кожного з ЛР3 L1, L2. 4. За допомогою цих програм згенерувати імпульсні функції для кожного з ЛР3 і підрахувати їх періоди. 5. За отриманими результатами зробити висновки щодо влавстивостей кожного з характеристичних многочленів p1(x), p2(x): многочлен примітивний над F2; не примітивний, але може бути незвідним; звідний. 6. Для кожної з двох імпульсних функцій обчислити розподіл k-грам на періоді, $k \le ni$, де ni - степінь полінома fi(x), i=1,2 а також значення функції автокореляції A(d) для $0 \le d \le 10$. За результатами зробити висновки.

Варіант 15:

$$P1(X) = X23 + X20 + X17 + X16 + X14 + X12 + X10 + X9 + X8 + X7 + X3 + X + 1$$

$$P2(X) = X20 + X18 + X17 + X16 + X13 + X12 + X11 + X9 + X6 + X5 + 1$$

Довжини періодів:

T1 = 8388607

T2 = 349525

P1(x) - PRIMITIVE

P2(x) – NO PRIMITIVE, BUT REDUCIBLE

Розподіл К-грам полінома Р1:

2-грами:	3-грами	4-грами	5-грами
00 - 0.251783	000 - 0.124316	0000 - 0.0622559	00000 - 0.0313449
01 - 0.248024	001 - 0.12609	0001 - 0.0629569	00001 - 0.0304867
10 - 0.249655	010 - 0.124362	0010 - 0.0629283	00010 - 0.0303493
11 - 0.250539	011 - 0.123801	0011 - 0.0624133	00011 - 0.0303493
	100 - 0.125094	0100 - 0.0618554	00100 - 0.0328727
	101 - 0.126273	0101 - 0.0618268	00101 - 0.0325122
	110 - 0.124431	0110 - 0.063758	00110 - 0.0303665
	111 - 0.125632	0111 - 0.0617838	00111 - 0.0305725
		1000 - 0.0639153	01000 - 0.0313964
		1001 - 0.0635005	01001 - 0.0303665
		1010 - 0.0615407	01010 - 0.0301777
		1011 - 0.0626851	01011 - 0.0307785
		1100 - 0.0609542	01100 - 0.0319286
		1101 - 0.0621415	01101 - 0.0313964
		1110 - 0.0636006	01110 - 0.030212
		1111 - 0.061884	01111 - 0.0302978
			10000 - 0.0317226
			10001 - 0.0313621
			10010 - 0.0314994
			10011 - 0.0310016
			10100 - 0.0311905
			10101 - 0.030521
			10110 - 0.0324607 10111 - 0.0319801
			11000 - 0.0323749
			11000 - 0.0323749
			11001 - 0.0312070
			11010 - 0.0310711
			11100 - 0.0318771
			11100 - 0.0316771
			11110 - 0.0310337
			11111 - 0.0318599
			11111 0.03103//

Розподіл К-грам полінома Р2:

2-грами: 00 - 0.251783 01 - 0.248024 10 - 0.249655 11 - 0.250539	3-грами 000 - 0.124316 001 - 0.12609 010 - 0.124362 011 - 0.123801 100 - 0.125094 101 - 0.126273 110 - 0.124431 111 - 0.125632	4-грами 0000 - 0.0622559 0001 - 0.0629569 0010 - 0.0629283 0011 - 0.0624133 0100 - 0.0618554 0101 - 0.0618268 0110 - 0.063758 0111 - 0.0617838 1000 - 0.0639153 1001 - 0.0635005 1010 - 0.0615407 1011 - 0.0626851 1100 - 0.0609542 1101 - 0.0636006 1111 - 0.061884	5-грами 00000 - 0.0313449 00001 - 0.0304867 00010 - 0.0303493 00011 - 0.0303493 00100 - 0.0328727 00101 - 0.0325122 00110 - 0.0303665 00111 - 0.0305725 01000 - 0.0313964 01001 - 0.0301777 01011 - 0.0307785 01100 - 0.0319286 01101 - 0.0313964 01110 - 0.031226 10001 - 0.031226 10000 - 0.0317226 10001 - 0.0313621 10010 - 0.0314994
		1001 - 0.0635005 1010 - 0.0615407 1011 - 0.0626851 1100 - 0.0609542	01001 - 0.0303665 01010 - 0.0301777 01011 - 0.0307785 01100 - 0.0319286
		1110 - 0.0636006	01110 - 0.030212 01111 - 0.0302978 10000 - 0.0317226 10001 - 0.0313621
			10011 - 0.0310016 10100 - 0.0311905 10101 - 0.030521 10110 - 0.0324607
			10111 - 0.0319801 11000 - 0.0323749 11001 - 0.0312076 11010 - 0.0316711 11011 - 0.0313793
			11100 - 0.0318771 11101 - 0.0316539 11110 - 0.03083 11111 - 0.0318599

Значення автокореляції:

L1:	L2:
D = 1:4194304 D = 2:4194304 D = 3:4194304 D = 4:4194304 D = 5:4194304 D = 6:4194304 D = 7:4194304 D = 8:4194304 D = 9:4194304	D = 1 : 174592 D = 2 : 174592 D = 3 : 174592 D = 4 : 174592 D = 5 : 174592 D = 6 : 174592 D = 7 : 175104 D = 8 : 174592 D = 9 : 174592
D = 10:4194304	D = 10: 174592

Висновок:

В даному комп'ютерному практикумі було набуто навичок роботи з лінійними регістрами зсуву, а саме: їх програмна реалізація, дослідження властивостей характеристичного полінома регістра. Окрім цього було досліджено властивості лінійних рекурентних послідовностей

Кол:

```
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <math.h>
#include <map>
#include<string>
using namespace std;
//P1(X) = X23 + X20 + X17 + X16 + X14 + X12 + X10 + X9 + X8 + X7 + X3 + X + 1
//P2(X) = X20 + X18 + X17 + X16 + X13 + X12 + X11 + X9 + X6 + X5 + 1
vector <int> orig1 = {1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,0,1,1,0,0,1,0,0);
vector <int> orig2 = {1,0,0,0,0,1,1,0,0,1,0,1,1,1,0,0,1,1,1,0};
vector <int> buf1(90000000);
vector <int> buf2(90000000);
int sdvig(vector <int> koef_polynom, int kto, vector <int> skelet);
void kgram(vector <int> bufer, int shag);
int xop(vector <int> v, int shag, int per);
void polynom(int size, int per);
int period1 = 0;
int period2 = 0;
int main()
{
      period2 = sdvig(orig2,2,v2);
      period1 = sdvig(orig1, 1, v1);
      cout << "T1 = "<<period1<<endl;</pre>
      cout << "T2 = " << period2 << endl;</pre>
      cout << endl << "FIRST POLYNOM : " << endl<<endl;</pre>
      for (int i = 2; i < 6; i++)
      {
            cout << i << "-gramma :" << endl << endl;</pre>
            kgram(buf1, i);
            cout << endl;</pre>
```

```
}
       cout << endl << "SECOND POLYNOM : " << endl << endl;</pre>
       for (int i = 2; i < 6; i++)
       {
              cout << i << "-gramma :" << endl << endl;</pre>
              kgram(buf1, i);
              cout << endl;</pre>
       }
       cout << endl << "FIRST POLYNOM : " << endl << endl;</pre>
       for (int i = 1; i < 11; i++)
              xop(buf1, i,period1);
       cout << endl << "SECOND POLYNOM : " << endl << endl;</pre>
       for (int i = 1; i < 11; i++)
              xop(buf2, i,period2);
       }
       int size1 = orig1.size();
       int size2 = orig2.size();
       polynom(size1, period1);
       polynom(size2, period1);
       system ("pause");
       return 0;
}
int sdvig(vector <int> koef_polynom, int kto, vector <int> skelet)
       vector <int> copy ;
       int p = 0;
       int y = 0;
       int period = 0;
       copy = skelet;
       int sizee = koef_polynom.size();
       do
       {
              y = 0;
              p = 0;
              if (kto == 1) buf1[period] = skelet[0];
              if (kto == 2) buf2[period] = skelet[1];
              period++;
```

```
for (int i = 0; i < sizee; i++)</pre>
                     y += skelet[i] * koef_polynom[i];
              }
              for (int i = 0; i < sizee-1; i++)</pre>
                     skelet[i] = skelet[i + 1];
              skelet[sizee-1] = y % 2;
       while (skelet!= copy);
       return period;
}
void kgram (vector <int> bufer, int shag)
       map <string, double> kgram;
       string newgram;
       int schetchik = 0;
       int sizeq = bufer.size();
       for (int i = 0; i < period2; i += 1 + shag) {</pre>
              if (i + shag <= sizeq)</pre>
              for (int j = 0; j < shag; j++)
                     newgram+=(to_string(bufer[i + j]));
              if (kgram.count(newgram)) {
                     schetchik++;
                     kgram.at(newgram)++;
              else {
                     schetchik++;
                     kgram.emplace(newgram, 1);
              newgram.clear();
       }
       }
       for (auto it = kgram.cbegin(); it != kgram.cend(); it++)
```

```
string tt;
              double itog;
              tt = it->first;
              itog = it->second / schetchik;
        cout << tt << " - " << " " << itog << endl;</pre>
       }
}
int xop(vector <int> v, int shag, int per)
       int otvet = 0;
       for (int i = 0; i < per; i++)</pre>
              otvet += (v[i] + v[(i + shag)%per]) % 2;
       }
       cout << "D = " << shag << " : " << otvet<<endl;</pre>
       return 0;
}
void polynom( int size, int per)
```