Corey Kipp (Student ID: 57723335)

kippc@uci.edu

CS 161

Homework 4

R-11.4

$$(a+bi)(c+di)$$

$$ac - bd + (ad + bc)i$$

$$A = ac - bd$$

$$B = ad + bc$$

$$S1 = ac$$
, $S2 = bd$, $S3 = (a+b)(c+d)$

Therefore A = S1 - S2 and B = S3 - S1 - S2

Meaning e = ac - bd and f = (a + b)(c + d) - ac - bd where e is the real part, and f is the imaginary part.

R-24.5

р	12	6	3	1	0
r	1	12	8	5	1

R-24.10

M	С
10	193
11	197
12	122
13	166
14	29

15	2
16	118
17	272
18	18
19	304
20	39

C-24.8

One could use Fermat's factorization method which is based on the representation of an odd integer as the difference of two squares: $n=a^2-b^2$. Which is factorable to (a+b)(a-b). And if neither factor equals one, it is a proper factorization of n.