Лекция 4. Экспертные системы и системы поддержки принятия решений

- 1. Экспертные системы
- 2. Структура экспертной системы
- 3. Системы поддержки принятия решений

Основные понятия

Экспертная система - это интеллектуальная информационная система (ИИС), предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области.

Роль искусственного интеллекта в экспертных системах

Вместо последовательного программирования с заранее создаваемыми программами искусственный интеллект предполагает динамическое формирование программы из накопленных в памяти компьютера фактов, навыков и правил, которые машина применяет в конкретной ситуации.

При решении задач в ЭС используются методы:

- логического вывода, основанные на технике доказательств, называемой резолюцией и использующей опровержение отрицания (доказательство «от противного»);
- структурной индукции, основанные на построении дерева принятия решений для различения объектов из большого количества данных на входе;
- эвристических правил, основанных на перенимании опыта у экспертов-людей, а не на абстрактных правилах формальной логики;
- машинной аналогии, основанные на представлении информации о сравниваемых объектах в удобном виде, например в виде структур данных, называемых фреймами.

ОСНОВНЫЕ МЕХАНИЗМЫ ЛОГИЧЕСКОГО ВЫВОДА В ЭКСПЕРТНЫХ СИСТЕМАХ

Логический вывод имеет два аспекта:

- Использование рассуждений для нахождения разумных предположений, которые обусловлены имеющимися фактами и правилами (прямая цепочка рассуждений);
- Изучение заключений, которые представляют интерес и могут быть (а могут и не быть) истинными (обратная цепочка рассуждений).

Сферы применения ЭС:

- планирование и управление;
- управление проектированием, технологическими процессами и промышленным производством;
- логистика;
- сервисная деятельность, в том числе техническая диагностика и разработка рекомендаций по ремонту оборудования;
- анализ рисков в политике и экономике;
- интерпретация данных и планирование эксперимента в ходе научных исследований;
- медицинская диагностика и консультации по лечению;
- офисная деятельность.

Структура экспертной системы

Основные компоненты ЭС

- 1. Подсистема приобретения знаний. Совокупность программ, включающих в том числе интеллектуальный редактор, обеспечивающих сбор, передачу и преобразование опыта решения проблем из некоторых источников знаний в компьютерные программы.
- 2. База знаний (БЗ). Совокупность сред, хранящих знания различных типов, в том числе факты (данные) из предметной области и правила, которые управляют использованием фактов при решении проблем. Информация БЗ преобразуется в компьютерную программу в процессе представления знаний.

Основные компоненты ЭС

- 3. Подсистема выводов и расчетов. Комплекс программ, управляющих использованием системных знаний. Состоит из интерпретатора, который выполняет задачу, применяя соответствующие правила из Б3, и планировщика, который управляет процессом выполнения задачи, оценивая эффект применения различных правил с точки зрения приоритетов или других критериев.
- 4. Подсистема объяснения. Комплекс программ, позволяющих пользователю в интерактивном режиме получать ответы на вопросы: как была получена та или иная рекомендация, почему экспертная система приняла такое решение.
- 5. Интерфейс пользователя. Комплекс программ, реализующих диалог пользователя с ЭС на всех стадиях ее функционирования с помощью естественного языка, графики, многооконных меню и т.п.

Стадии разработки ЭС

стадия — описание проблемы и разработка концепции ЭС. Исследуются технические, программные, экономические предпосылки автоматизации решения проблемы с помощью ЭС, обсуждаются интерфейсы будущей системы (формы взаимодействия ЭC с различными категориями пользователей, с другими ЭС, проектируемой ЭС и внешней БД или оборудованием). Разрабатывается общая концепции ЭС: описывается структура БЗ и механизмы рассуждений, программные и технические средства реализации, способы переноса ЭС на реальное оборудование и в реальную рабочую среду, критерии оценки функционирования ЭС.

Стадии разработки ЭС

II стадия — разработка прототипа экспертной системы на основе концепции, разработанной на предыдущем этапе.

Стадии разработки ЭС

III стадия — внедрение. Создается промышленный прототип, опирающийся на реальную рабочую среду, прототип из среды разработки переносится в среду функционирования у заказчика.

3. Система поддержки принятия решений

интерактивная информационная система управления, использующая оборудование, программное обеспечение, данные, моделей и труд менеджеров в целях стадий принятия всех поддержки полуструктурированных И решений неструктурированных непосредственно пользователямименеджерами в процессе аналитического моделирования на основе предоставленного набора технологий.

Методы, используемые в СППР

- информационный поиск,
- интеллектуальный анализ данных,
- имитационное моделирование,
- нейронные сети, генетические алгоритмы и др.

Структура СППР

Состав СППР

В составе СППР, как правило, имеются база данных, база знаний, средства общения с пользователем и широкий набор методов и моделей математического программирования, статистического анализа, теории игр, теории принятия решений, а также эвристических методов, обеспечивающих адаптивность системы и обучение. Большинство СППР работает с числовыми данными, аналитическими моделями и решает проблемы, которые предварительно описываются на языке таких моделей. Для этого в состав СППР входят СУБД и СУБЗ.

Отличия СППР от ЭС

- СППР используют для принятия решений не только знания и аналитические данные, но и оперативные данные, сопровождающие деятельность организации (предприятия), хранящиеся в БД АИС. В этом преимущество СППР.
- СППР призваны помочь человеку в решении стоящей перед ним проблемы, а ЭС заменить человека при решении проблемы.

В зависимости от характера решаемых задач выделяют:

- оперативные СППР. Предназначены для немедленного реагирования на изменения текущей ситуации в управлении финансово-хозяйственными процессами компании.
- стратегические СППР. Ориентированы на анализ больших объемов разнородной информации, собираемой из различных источников. Строятся на принципах многомерного представления и анализа данных. Важнейшей целью является поиск наиболее рациональных вариантов развития деятельности организации с учетом влияния различных факторов (конъюнктура целевых рынков, изменения финансовых рынков и рынков капиталов, изменения в законодательстве и др.).

Трехуровневая архитектура хранилища данных

- Нижний уровень: этот уровень содержит сервер базы данных, используемый для извлечения данных из множества различных источников, например, из транзакционных баз данных, используемых для интерфейсных приложений.
- Средний уровень: средний уровень содержит сервер OLAP, который преобразует данные в структуру, лучше подходящую для анализа и сложных запросов. Сервер OLAP может работать двумя способами: либо в качестве расширенной системы управления реляционными базами данных, которая отображает операции над многомерными данными в стандартные реляционные операции (Relational OLAP), либо с использованием многомерной модели OLAP, которая непосредственно реализует многомерные данные и операции.
- Верхний уровень: верхний уровень это уровень клиента. Этот уровень содержит инструменты, используемые для высокоуровневого анализа данных, создания отчетов и анализа данных.

Способы структурировать хранилище данных

тип "звезда"

тип "снежинка"

Способы загрузки данных в хранилище

ETL (Extract, Transform, Load)

ELT (Extract, Load, Transform)

Структура хранилища данных

Базовая структура

Хранилище с промежуточной областью

Хранилище с промежуточной областью и добавлением витрин

OLAP-куб (On-Line Analytical Processing)

Возьмем для примера таблицу Invoices1, которая содержит заказы фирмы. Поля в данной таблице будут следующие:

Дата Заказа Страна Город Название заказчика Компания-доставщик Название товара Количество товара Сумма заказа

- Какова суммарная стоимость заказов, сделанных клиентами из определенной страны?
- Какова суммарная стоимость заказов, сделанных клиентами из определенной страны и доставленных определенной компанией?
- Какова суммарная стоимость заказов, сделанных клиентами из определенной страны в заданном году и доставленных определенной компанией?

1997			
6 / / /			
	Federal Shipping	Speedy Express	United Package
Argentina	11806.28	9190.48	1263.9
Austria			4039.5
Belgium	1745.42	1207.28	14924.12
Brazil			5208.28
Canada	2952.4		
Denmark	1739.76	1376	
Finland	5470.98	3538.92	2328.46
France	11927.48	9823.43	11052.28
Germany	2208.62	1739.6	4681.16
Ireland		330.9	608
Italy	2139.1		1357.6
Mexico			786
Nerway	459		
Poland	1268.3	716.72	285.12
Portugal	236.5	220.3	2235.8
Spain	3021.23	2380	1488.8
Sweden	2490.5		1628.32
Switzerland	5094.88	1520.8	901.2
UK	11192.65	6347.52	14091.93
USA	3925.58	3171.92	
Venezuela	11806.28	9190.48	1263.9

Трехмерный набор агрегатных данных

MDX

```
select
[Territory].[Cities by Countries].[All].Children on rows from [invoices1]

select
{
    [Territory].[Cities by Countries].[All].[Russia],
    [Territory].[Cities by Countries].[All].[Ukrain]
} on rows
from [invoices1]

select
[Territory.Cities by Countries].[All].Children on rows
[Shipper].Members on columns
from [invoices1]
where
    ([Date].[2007])
```