Model Compression

Ivan Skorokhodov

June 19, 2020

Overview

- 1. Motivation
- 2. Pruning
 Pruning weights
 Pruning neurons
- 3. Hashing
 Simple hashing
 Multi-hashing
- 4. Quantization
- 5. Low-rank decomposition
- 6. Other techniques
- 7. Conclusion

- ► Accelerating inference or training
- ► Reducing memory footprint

► Theoretical curiosity

Pruning

- Pruning is removing weights/neurons in a model while preserving the accuracy
- ▶ It can be done at different stages:
 - before training
 - during training
 - after training
 - iteratively train/prune several times
- Pruning neurons speeds up a model, but:
 - [2] argues that training the pruned model from scratch would give the same performance
 - So the main value is in optimizing the architecture
- Pruning weights (theoretically) reduces the number of FLOPs, but:
 - Resulted sparse matrices are not "sparse enough" to provide practical benefits (sparse matrix-vector multiplications are usually based on non-parallel computations)
 - ▶ [1, 2] claim that modern SotA weight-pruning algorithms do not generalize on large datasets

Pruning weights

Simple strategies:

- ▶ Apply L₁-regularization during training
- ▶ Iterative Magnitude Pruning (IMP): prune weights

Lottery Ticket Hypothesis (LTH)

Synaptic Flow [3]

- Pruning algorithms remove weights based on score values associated with each weight
- ▶ These scores can usually be represented as

$$S(\theta) = \frac{\partial \mathcal{R}}{\partial \theta} \odot \theta \tag{1}$$

for some function $R(\theta)$

- Authors call this function $S(\theta)$ a synaptic saliency (importance) function
- ▶ Many pruning algorithms have a form similar to (1):
 - Magnitude Pruning:

$$\mathcal{R}(\theta) = \frac{1}{2} \|\theta\|_2^2 \Longrightarrow S(\theta_i) = \theta_i^2 \tag{2}$$

 \triangleright

Pruning neurons (structured pruning)

Knowledge distillation

pass

Conditional computation

pass

Architectural tricks

pass

