Problem:

Consider the Markov chain that takes values on $S = \{1, 2, 3, 4\}$. The transition probability from state j to state i is given by

1. Suppose the Markov chain is initialized at X0 = 1. What is the distribution of Xt may tend towards?

Starting with
$$x_0=1$$
, would result in a distribution of $\binom{6}{6}$ for a,5 ,0 and a,6 = 1 for x_4

2. Suppose the Markov chain is initialized at X0 = 3. What is the distribution of Xt may tend towards?

3. Characterize all the invariant measure

we know that starting with X=-7, we will stay in 1 and a since there is no connection between 1,2 and 3,4

$$-\frac{7}{2}$$
 × 1 + $\frac{3}{3}$ × 2 = 0

$$= \begin{pmatrix} x_{i_3} \\ x_{i_2} \end{pmatrix} \cdot 6 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 Starting with $x_0 \in \{1, 2\}$ would lead to a stationary of $(4x_1 + 3x_2)^T$ for x_1

Stationary of Paucinis: