Inferência Estatística I

Estimação Pontual

Prof. Paulo Cerqueira Jr Faculdade de Estatística - FAEST Instituto de Ciências Exatas e Naturais - ICEN

https://github.com/paulocerqueirajr (7)

Modelos Estatísticos

Modelos Estatísticos

- Nosso ponto de partida será um estudo empírico (pode ser experimental ou observacional) que irá fornecer certo conjunto de dados (amostra) que denotamos por \mathbf{x} . Nos casos mais simples, $\mathbf{x} = (x_1, x_2, \dots, x_n)'$.
- Suposição fundamental: considere ${\bf x}$ como um valor obtido de uma vetor aleatório X.
- Nosso objetivo é usar ${\bf x}$ para tirar conclusões sobre a distribuição desconhecida $F(\cdot)$ de X.
- Nossas conclusões sobre $F(\cdot)$ estão sujeitas à incerteza dado a aleatoriedade governando X (que irá produzir ${\bf x}$). Devemos certificar que:
 - lacktriangle O nível de incerteza é o menor possível, considerando a aleatoriedade de X.
 - Somos capazes de avaliar o nível de incerteza em nossas conclusões.

Modelos Estatísticos

- A natureza física do fenômeno que gera \mathbf{x} , o esquema de amostragem, e outras informações, irão colocar limites no conjunto de possíveis escolhas para $F(\cdot)$. Este conjunto (denotado por \mathcal{F}) é chamado de modelo estatístico.
- É intuitivo pensar que nossa inferênias serão mais precisas de formos capazes de selecionar o conjunto $\mathcal F$ menor possível, sob o requerimento de que $F\in\mathcal F$.
- Em alguns casos, podemos assumir que X é uma a. a. com componentes independentes e identicamentes distribuídos. Neste caso, dizemos que \mathbf{x} é uma a.a. simples de X.

- A princípio, \mathcal{F} pode ser qualquer conjunto de funções de distribuições, mas existe uma categoria de tais conjuntos que possui importante papel, tanto do ponto de vista teórico quando aplicado.
- Este caso ocorre todos os elementos de $\mathcal F$ são funções com a mesma formulação matemática, identificadas apenas pelas diferentes especificações de θ , que varia em $\Theta \in \mathbb R^k$,

$$\mathcal{F} = \{F(\cdot \mid heta) : heta \in \Theta \subseteq \mathbb{R}^k\}$$

- Na grande maioria dos casos (em todos os casos que iremos considerar neste curso), toda a função de distribuição menbro de ${\cal F}$ refere-se a v.a. discretas ou contínuas.
- ullet Então ${\cal F}$ pode ser definida usandoas f.p. ou f.d. correspondentes.
- ullet Podemos definir um modelo estatístico ${\mathcal F}$ (caso contínuo) como um conjunto de f.d's

$$\mathcal{F} = \{f(\cdot \mid heta) : heta \in \Theta \subseteq \mathbb{R}^k\}$$

 θ : parâmetro.

 Θ : espaço paramétrico.

• \mathcal{F} , indicado acima, é chamado de classe paramétrica ou modelo paramétrico.

- Portanto, os elementos de $\mathcal F$ estão associados aos elementos de Θ .
- Em particular, existe um valor $\theta_* \in \Theta$, associado a $F(\cdot)$, chamado de **valor real** do parâmetro, e nossas inferências serão sobre θ_*

Espaço amostral: é o conjunto \mathcal{X} de todos os possíveis resultados x compatíveis com o modelo paramétrico dado.

- Formalmente denotado por $\mathcal{X}_{ heta}$ o suporte (domínio) da densidade $f(\cdot; heta)$, o espaço amostral é dado por $\mathcal{X} = \bigcup_{ heta \in \Theta} \mathcal{X}_{ heta}$.
- Frequentemente, entretanto, \mathcal{X}_{θ} é o mesmo que as possíveis escolhas de θ , e este conjunto coincidirá com \mathcal{X} .

Exemplo: Se dois valores são amostrados independentemente da $N(\theta,1)$, então $\mathbf{y}=(y_1,y_2)^ op$ onde $y_i\in\mathbb{R}\;(i=1,2),$

$$\mathcal{Y} = \mathbb{R} imes \mathbb{R}, \quad Y \sim N \left[rac{ heta}{ heta}, I_2
ight],$$

em que,

$$f(y; \theta) = \phi(y_1 - \theta)\phi(y_2 - \theta)$$

- Se não houver qualquer restrição para heta, temos $\Theta = \mathbb{R}$.
- Se existir restrição (ex. sabemos que heta > 0)

- Aqui discutiremos três técnicas para construir famílias de distribuições.
- As famílias resultantes possuem interpretações físicas diretas que as tornam úteis para modelagem, além de apresentarem propriedades matemáticas convenientes. Considere apenas o caso contínuo.
- Os 3 tipos de famílias são: (i) locação, (ii) escala e (iii) locação e escala.
- Cada família é construída pela especificação de uma f.d f(x) chamada de densidade padrão da família.
- Todas as outras densidades da família podem ser geradas pela transformação da densidade padrão.

Teorema 11: Seja f(x) qualquer f.d. e considere μ e $\sigma>0$ como constantes conhecidas.

Então, a função
$$g(x|\mu,\sigma)=rac{1}{\sigma}f\left(rac{x-\mu}{\sigma}
ight)$$
 é uma f.d.

Prova: Para verificar que a transformação produziu um f.d. legítima, precisamos verificar que

$$\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$$
 é: i) não negativa e ii) integra 1.

i.
$$f(x)$$
 é uma f.d. $\Rightarrow f(x)>0, \forall x$, então $\dfrac{1}{\sigma}f\left(\dfrac{x-\mu}{\sigma}\right)>0$, para todos os valores de x,μ e σ .

ii.

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) dx, \qquad y = \frac{x-\mu}{\sigma} \ \mathrm{e} \ dy = \frac{1}{\sigma}.$$

Logo,

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f(y) \, \sigma dy = \int_{-\infty}^{\infty} f(y) \, dy = 1.$$

Definição 8: Seja f(x) qualquer f.d., então a família de densidades $f(x-\mu)$ indexada pelo parâmetro real μ é chamada de **família de locação (localização)** com densidade padrão f(x). O μ é conhecido como **parâmetro de localização da família**.

• O parâmetro μ simplesmente desloca a densidade f(x) de maneira que o formato do gráfico não é alterado, mas o ponto do gráfico de f(x) que estava acima de x=0, estará agora acima de $x=\mu$ para $f(x-\mu)$.

Exemplo: Se $\sigma>0$ é especificado e definimos

$$f(x) = (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2} (x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x),$$

então a família de localização com densidade padrão f(x) é o conjunto de distribuições Normais com média μ desconhecida e variância σ^2 conhecida.

- A família Cauchy com σ (conhecido) e μ (desconhecido) é outro exemplo de família de locação.
- O ponto principal da Definição 8 é que podemos iniciar com qualquer densidade f(x) e gerar uma família de densidades com a introdução do parâmetro de localização.
- Se X é uma variável aleatória com densidade $f(x-\mu)$, então X pode ser representada como $X=Z+\mu$, onde Z é variável aleatória com densidade f(z).

Exemplo: Família de locação exponencial

Seja $f(x) = e^{-x}$ para todo $x \geq 0$ e f(x) = 0 para x < 0.

Para formar uma família de locação devemos substituir x po $x-\mu$

$$f(x) = egin{cases} e^{-(x-\mu)} & x-\mu \geq 0 \ 0 & x-\mu < 0 \end{cases} = egin{cases} e^{-(x-\mu)} & x \geq \mu \ 0 & x < \mu \end{cases}$$

Definição 9: Seja f(x) qualquer f.d., então para qualquer $\sigma>0$, a família de densidades $1/\sigma f[x/\sigma]$ indexada pelo parâmetro σ é chamada de **família de escala** com densidade padrão f(x) e parâmetro de escala σ .

• O efeito de introduzir σ é tanto esticar ($\sigma>1$) quanto contrair ($\sigma<1$) o gráfico f(x) a forma básica é mantida.

Exemplo: $Ga\left(\alpha,\beta=\frac{1}{\sigma}\right)$ com α conhecido e $\beta=\frac{1}{\sigma}$ onde σ é desconhecido.

A densidade padrão Ga(lpha,eta=1)

$$f(x|lpha,eta=1)=rac{1}{\Gamma\left(lpha
ight)}x^{lpha-1}\exp\{-x\}I_{(-\infty,\infty)}(x).$$

Logo,

$$f(x/\sigma) = rac{1}{\Gamma\left(lpha
ight)}rac{x^{lpha-1}}{\sigma^{lpha-1}}\mathrm{exp}\Big\{-rac{x}{\sigma}\Big\}I_{(-\infty,\infty)}(x) \ 1/\sigma f(x/\sigma) = rac{1}{\sigma^{lpha}}rac{1}{\Gamma\left(lpha
ight)}x^{lpha-1}\,\mathrm{exp}\Big\{-rac{x}{\sigma}\Big\}I_{(-\infty,\infty)}(x)$$

Exemplo: Família Normal com $\mu=0$ e σ^2 desconhecido.

A densidade padrão N(0,1)

$$f(x) = 1*(2\pi)^{-1/2} \expiggl\{ -rac{1}{2(1)} x^2 iggr\} I_{(-\infty,\infty)}(x),$$

Logo,

$$egin{align} f(x/\sigma) &= & (2\pi)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2}(x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x) \ &1/\sigma f(x/\sigma) = & (2\pi\sigma^2)^{-1/2} \expiggl\{ -rac{1}{2\sigma^2}(x-\mu)^2 iggr\} I_{(-\infty,\infty)}(x) \ & \end{aligned}$$

Definição 10: Seja f(x) qualquer f.d., então para qualquer μ real e qualquer $\sigma>0$ a família de densidades

$$\frac{1}{\sigma}f\left[\frac{(x-\mu)}{\sigma}\right],$$

indexadas pelos parâmetros (μ, σ) , é chamada de família de locação e escala com densidade padrão f(x). Neste caso, μ é o parâmetro de localização e σ é o parâmetro de escala.

- Efeito da inclusão dos parâmetros:
 - μ irá deslocar o gráfico de maneira que o ponto que estava acima de 0, agora fica acima de μ .
 - lacksquare σ irá esticar ($\sigma>1$) ou contrair ($\sigma<1$) o gráfico de f(x).

• O seguinte teorema relaciona a transformação da f.d. f(x), que define uma família de locação e escala, com a transformação da variável aleatória Z com densidade f(z).

Teorema 12: Seja $f(\cdot)$ qualquer f.d. e considere $\mu\in\mathbb{R}$ e $\sigma\in\mathbb{R}^+$. Então X é uma v.a. com densidade $1/\sigma f[(x-\mu)/\sigma]$, se e somente se, existe uma v.a. Z com densidade f(z) e $X=\sigma Z+\mu$.

- No Teorema 12:
 - Se $\sigma=1$: família de locação (apenas).
 - Se $\mu=0$: família de escala (apenas).

• Fato importante a ser extraído do Teorema 12 é que $Z=rac{X-\mu}{\sigma},$ tem f.d.

$$f_Z(z)=rac{1}{1}f\left(rac{z-0}{1}
ight)=f(z),$$

isto é, a distribuição de Z é membro da família de locação escala com $\mu=0$ e $\sigma=1$.

• Frequentemente, cálculos são desenvolvidos para a v.a. padrão Z com f.d f(z) e então o resultado correspondente para a v.a. X com f.d. $1/\sigma f[(x-\mu)/\sigma]$ pode ser facilmente derivado.

Teorema 13: Seja Z uma v.a. com f.d. f(z). Suponha que E(Z) e Var(Z) existem. Se X é uma v.a. com densidade $1/\sigma f(x/\sigma)$, então,

$$E(X) = \sigma E(Z) + \mu \ \mathrm{e} \ Var(X) = \sigma^2 Var(Z)$$

•

- ullet Em particular, se E(Z)=0 e Var(Z)=1, então, $E(X)=\mu$ e $Var(X)=\sigma^2$.
- Probabilidades para qualquer membro da família de locação escala pode ser calculada em termos da variável padrão Z.

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right).$$

Estimação Pontual

Introdução

- ullet Na população temos uma característica que denotamos por X;
- E dentro da inferência paramétrica associamos uma $f(\cdot \mid \theta)$ (função densidade ou probabilidade);
- θ : é uma quantidade fixa e desconhecida;

O nosso maior interesse consiste em estimar o valor de θ .

Definições

Definição 1 O conjunto Θ em que θ toma valores é denominado Espaço paramétrico.

Exemplo 1 Seja (X_1, X_2, \ldots, X_n) uma a.a. de $X \sim N(\mu, \sigma^2)$.

1. se $\sigma^2=1$, então $heta=\mu$ é o parâmetro desconhecido.

$$\Theta = \{\mu : -\infty < \mu < \infty\} = \mathbb{R}.$$

2. se $\mu=0$, então $\theta=\sigma^2$ é o parâmetro desconhecido.

$$\Theta = \left\{\sigma^2: \sigma^2 > 0
ight\} = \mathbb{R}^+.$$

3. se σ^2 e μ são desconhecidos, então $heta=(\mu,\sigma^2)$ é o vetor de parâmetros desconhecido.

$$\Theta = \left\{ (\mu, \sigma^2) : -\infty < \mu < \infty \quad \mathrm{e} \quad \sigma^2 > 0 \right\}.$$

Definições importantes

Definição 2 Estimador para θ : $\hat{\theta}$.

• Qualquer estatística qual assuma valores em Θ é um estimador para θ .

Definição 3 Estimativas para θ : Usando $\hat{\theta}$.

As estimativas são dos valores obtidos pelos estimadores $\hat{ heta}$

Definição 4 Estimador para $g(\theta)$.

• Qualquer estatística que assuma valores apenas no conjunto dos possíveis valores de $g(\Theta)$ é um estimador para $g(\theta)$.

Exemplos de estimadores:

Estimador para a média amostral:

$$\hat{ heta}=\hat{\mu}=ar{X}=rac{1}{n}\sum_{i=1}^n X_i.$$

Estimador para a variância:

$$\hat{ heta} = \hat{S}^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

 $^{(i)}$ Estimador para a uma função $g(\theta)$:

$$g(\hat{\theta}) = \frac{\hat{\theta}}{1 - \hat{\theta}}.$$

Estimadores

- Como saber se nosso estimador é um bom estimador?
- Precisamos de ferramentas/propriedades matemáticas para avaliar a qualidade do mesmo.
- Algumas são:
 - Viés do estimador;
 - Variância do estimador;
 - Erro quadrático médio;
 - Consistência;
 - Eficiência.

Erro quadrático médio

Erro quadrático médio

Definição 5 (Erro Quadrático Médio (EQM)) O erro quadrático médio (EQM) de um estimador $\hat{\theta}$ do parâmetro θ é dado por

$$EQM(\hat{ heta}) = E\left[\left(\hat{ heta} - heta
ight)^2
ight].$$

Podemos mostrar que,

$$EQM(\hat{ heta}) = Var(\hat{ heta}) + B(\hat{ heta})^2,$$

em que $B(\hat{ heta}) = E(\hat{ heta}) - heta.$

Erro quadrático médio

- Algumas observações:
- 1. $B(\hat{\theta})$ é denominado de vício do estimador $\hat{\theta}$;
- 2. Dizemos que um estimador $\hat{\theta}$ é não viciado para θ se $E(\hat{\theta})=\theta$, para todo $\theta\in\Theta$, ou seja, se $B(\hat{\theta})=0$, para todo $\theta\in\Theta$;
- 3. Se $\lim_{n\to\infty}B(\hat{\theta})=0$, para todo $\theta\in\Theta$, dizemos que $\hat{\theta}$ é assintoticamente não viciado para θ .
- 4. Se $\hat{\theta}$ é um estimador não viciado para θ , temos que $EQM(\hat{\theta}) = Var(\hat{\theta})$.

Erro Quadrático médio

Exemplo 2 Seja (X_1,X_2,\ldots,X_n) uma a.a. de um população com variável X, com $E(X)=\mu$ e $Var(X)=\sigma^2$.

- 1. Tome $\hat{ heta}=ar{X}$, mostre que é um estimador não viciado para μ .
- 2. Tome $\hat{\theta} = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$, mostre que é um estimador viciado σ^2 .
- 3. Tome $\hat{ heta}=S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-ar{X})^2$, mostre que é um estimador não viciado σ^2 .

Comparação dos estimadores via EQM

- 1. $\hat{\theta}_1$ é melhor que $\hat{\theta}_2$ se $EQM(\hat{\theta}_1) \leq EQM(\hat{\theta}_2)$ para todo θ , com " \leq " substituído por "<" pelo menos para um valor de θ . Nesse caso, $\hat{\theta}_2$ é dito ser inadmissível.
- 2. Se existir um estimador $\hat{\theta}^*$ tal que para todo estimador $\hat{\theta}$ de θ , com $\hat{\theta} \neq \hat{\theta}^*$, o $EQM(\hat{\theta}^*) \leq EQM(\hat{\theta})$ para todo μ , com " \leq " substituído por "<" para pelo menos um valor de θ , então $\hat{\theta}^*$ é dito ser ótimo para θ .
- 3. Além disso, se em "2)" os estimadores são não viciados, então $\hat{\theta}^*$ é dito ser o estimador não viciado de variância uniformemente mínima (ENVVUM), pois teremos

$$Var\left(\hat{ heta}^*
ight) \leq Var\left(\hat{ heta}
ight)$$

para todo θ , com " \leq " substituído por "<" para pelo menos um valor de θ .

Erro Quadrático Médio

Exemplo 3 Seja (X_1,X_2,X_3) uma a.a. de um população com variável X, com $E(X)=\theta$ e Var(X)=1. Considere os estimadores:

$$\hat{ heta}_1 = ar{X} = rac{X_1 + X_2 + X_3}{n}$$
 e $\hat{ heta}_2 = rac{X_1}{2} + rac{X_2}{4} + rac{X_3}{4}$.

Em termos do EQM qual o melhor estimador?

Estimador linear

Exemplo 4 Seja (X_1, X_2, \ldots, X_n) uma a.a. de um população com variável X, com $E(X) = \theta$ e $Var(X) = \sigma^2$ (conhecido). Considere os estimadores lineares:

$$X_L = \sum_{i=1}^n l_i X_i,$$

 $\operatorname{com} l_i \geq 0, i=1,\ldots,n$ constantes conhecidas. Que valores devem ter os l_i para que X_L seja um estimador não viciado de variância mínima para θ ?

Exemplo 5 Seja (X_1, X_2, \ldots, X_n) uma a.a. de um população com variável $X \sim Ber(\theta)$, com $E(X) = \theta$ e $Var(X) = \sigma^2$ (conhecido). Considere os estimadores:

$$\hat{ heta}_1 = ar{X} = rac{Y}{n} \quad ext{e} \quad \hat{ heta}_2 = rac{Y + rac{\sqrt{n}}{2}}{n + \sqrt{n}},$$

com
$$Y = \sum_{i=1}^n X_i$$
. Obtenha $EQM(\hat{ heta}_1)$ e o $EQM(\hat{ heta}_2)$.

Consistência

Consistência

Definição 6 Uma sequência $\{\hat{\theta}_n, n=1,2\ldots,\}$ de estimadores de um parâmetro θ é consistente se, para todos $\epsilon>0$,

$$P\left(\left|\hat{ heta}_n - heta
ight| > \epsilon
ight) o 0, \quad ext{quando} \quad n o \infty.$$

De forma equivalente, $\{\hat{\theta}_n, n=1,2\dots,\}$ é uma sequência consistente de estimadores de θ se

- 1. $\lim_{n o \infty} E(\hat{ heta}) = heta$;
- 2. $\lim_{n o\infty} Var(\hat{ heta})=0.$

Consistência - Exemplos:

 $ar{X}_n$: estimador consistente da média populacional

1.
$$\lim_{n o \infty} E(ar{X}_n) = \lim_{n o \infty} \mu = \mu$$

2.
$$\lim_{n o\infty} Var(ar{X}_n) = \lim_{n o\infty} \sigma^2/n = 0$$

 \hat{p}_n : estimador consistente da proporção populacional.

1.
$$\lim_{n o \infty} E(\hat{p}_n) = \lim_{n o \infty} \theta = \theta$$

2.
$$\lim_{n o \infty} Var(\hat{p}_n) = \lim_{n o \infty} heta(1- heta)/n = 0$$

Consistencia

Exemplo 6 Deseja-se estimar a proporção de moradores de um determinado bairro favoráveis a um projeto municipal. Para isso, coleta-se uma amostra de n moradores e registra-se sua opinião. Seja S o no total de moradores favoráveis na amostra, e considere os dois estimadores:

$$\hat{p}_1=rac{S}{n}$$
 e $\hat{p}_2=egin{cases} 1, & ext{se o prim. indivíduo da amostra \'e favorável} \ 0, & ext{caso contrário} \end{cases}$

Compare os dois estimadores. Por que \hat{p}_2 não é um bom estimador?

Exemplo 7 Foram sorteadas 15 famílias com filhos num certo bairro e observado o número de crianças de cada família, matriculadas na escola. Os dados foram: 1, 1, 2, 0, 2, 0, 2, 3, 4, 1, 1, 2, 0, 0 e 2. Obtenha as estimativas correspondentes aos seguintes estimadores do n^o médio de crianças na escola nesse bairro:

$$\hat{ heta}_1 = rac{X_{(1)} + X_{(n)}}{2}, \quad \hat{ heta}_1 = rac{X_1 + X_2}{2} \quad \hat{ heta}_3 = ar{X}.$$

Obtenha as 3 estimativas e discuta qual delas é a melhor.

Introdução

- Aprenderemos agora a noção de estimador eficiente.
- Tal estimador como sendo aquele que atinge o limite inferior da variância dos estimadores não viciados.
- Estimadores eficientes são obtidos apenas para distribuições que são membros de uma classe especial, que é a família exponencial de distribuições.

Definição 7 Chamamos de eficiência de um estimador $\hat{\theta}$, não viciado para o parâmetro θ , o quociente

$$e(\hat{ heta}) = rac{LI(heta)}{Var(\hat{ heta})},$$

onde $LI(\theta)$ é o limite inferior da variância dos estimadores não viciados de θ .

Notamos que:

- 1. $e(\hat{\theta})=1$, quando $LI(\theta)=Var(\hat{\theta})$ ou seja, quando a variância de $\hat{\theta}$ coincide com o limite inferior da variância dos estimadores não viciados de θ . Nesse caso, $\hat{\theta}$ é dito ser ;
- 2. Temos que,

$$LI(heta) = rac{1}{nE\left[\left(rac{\partial \log f(X\mid heta)}{\partial heta}
ight)^2
ight]}$$

quando certas condições de regularidade estão satisfeitas;

- 3. As condições de regularidade: que o suporte $A(x)=x, f(x|\theta)>0$ seja independente de $\hat{\theta}$; possível a troca das ordens das operações de derivação e de integração sob a distribuição da variável aleatória X;
- 4. a não ser que mencionado o contrário, todo logaritmo utilizado no texto é calculado na base e.

Exemplo 8 Sejam (X_1,\ldots,X_n) uma amostra aleatória da variável aleatória $X\sim N(\mu,\sigma^2)$, em que σ^2 é conhecido. Verifique se $\hat{\theta}=\bar{X}$ é um estimador eficiente para μ .

Definição 8 A quantidade

$$\frac{\partial \log f(X \mid \theta)}{\partial \theta}$$
,

é chamada de função escore.

Como resultado temos,

$$E\left[rac{\partial \log f(X\mid heta)}{\partial heta}
ight]=0.$$

Definição 9 A quantidade

$$I_F = E\left[\left(rac{\partial \log f(X\mid heta)}{\partial heta}
ight)^2
ight],$$

é denominada de informação de Fisher de θ .

Como resultado temos que,

$$I_F = Var \left[\left(rac{\partial \log f(X \mid heta)}{\partial heta}
ight)^2
ight],$$

uma vez que para uma variável aleatória X qualquer com $E[X]=0, Var[X]=E[X^2]$.

• Outro resultado importante:

$$E\left[\left(rac{\partial \log f(X\mid heta)}{\partial heta}
ight)^2
ight] = -E\left[rac{\partial^2 \log f(X\mid heta)}{\partial heta^2}
ight]$$

- Uma outra propriedade importante estabelece que para uma amostra aleatória, X_1, \ldots, X_n , da variável aleatória X com f.d.p (ou f.p.) $f(x \mid \theta)$ e informação de Fisher $I_F(\theta)$;
- A informação total de Fisher de θ correspondente á amostra observada é a soma da informação de Fisher das n observações da amostra, ou seja, sendo

$$egin{aligned} E\left[\left(rac{\partial \log L(heta \mid \mathbf{X})}{\partial heta}
ight)^2
ight] &= -E\left[rac{\partial^2 \log L(heta \mid \mathbf{X})}{\partial heta^2}
ight] = -E\left[\sum_{i=1}^n rac{\partial^2 \log f(X_i \mid heta)}{\partial heta^2}
ight] = \ &= \sum_{i=1}^n E\left[-rac{\partial^2 \log f(X_i \mid heta)}{\partial heta^2}
ight] = nI_F(heta). \end{aligned}$$

Teorema 1 (Desigualdade da Informação ou Desigualdade de Cramér-Rao) Quando as condições de regularidade estão satisfeitas, a variância de qualquer estimador não viciado $\hat{\theta}$ do parâmetro θ satisfaz

$$Var(\hat{ heta}) \geq rac{1}{nI_F(heta)}.$$

Exemplo 9 Sejam (X_1,\ldots,X_n) uma a.a. da v.a. $X\sim Poisson(\theta)$. Obtenha um estimador eficiente para θ .

Estatísticas suficientes

Estatísticas suficientes

Estatísticas: resumir a informação trazida pelos dados sem perda de informação.

Definição 10 (Estatísticas suficientes) Dizemos que a estatística $T=T(X_1,X_2,\ldots,X_n)$ é suficiente para θ quando a distribuição condicional de X_1,X_2,\ldots,X_n , dado T, for independente de θ .

⁽ⁱ⁾ Nota

Uma estatística é suficiente para θ se ela condensa toda a informação sobre θ contida na amostra.

Exemplo 10 Sejam (X_1,\ldots,X_n) uma a.a. da v.a. $X\sim Ber(\theta)$. Verifique se $T=\sum_{i=1}^n X_i$ suficiente para θ .

Estatística suficientes

Um procedimento para a obtenção de estatísticas suficientes é o critério da fatoração.

Definição 11 (Critério da Fatoração de Neyman) Sejam X_1,\ldots,X_n uma amostra aleatória da distribuição da variável aleatória X com função de densidade (ou de probabilidade) $f(x|\hat{\theta})$ e função de verossimilhança $L(\theta\mid\mathbf{x})$. Temos, então, que a estatística $T=T(X_1,\ldots,X_n)$ é suficiente para θ , se e somente se pudermos escrever

$$L(\theta \mid \mathbf{x}) = h(x_1, \dots, x_n) g_{\theta} \left[T(x_1, \dots, x_n) \right],$$

onde $h(x_1,\ldots,x_n)$ é uma função que depende de x_1,\ldots,x_n e g_θ $[T(x_1,\ldots,x_n)]$ uma função que depende de θ e x_1,\ldots,x_n somente através de T.

Exemplo 11 Sejam (X_1,\ldots,X_n) uma a.a. da v.a. $X\sim Pois(\theta)$. Determine a estatística suficiente para θ

Exemplo 12 Sejam (X_1,\ldots,X_n) uma a.a. da v.a. $X\sim U(0,\theta)$. Determine a estatística suficiente para θ

Estatísticas conjuntamente suficientes e Família exponencial

Introdução

- Saímos de um cenário em que θ é uniparamétrico;
- Agora podemos ter situações em que $\theta=(\theta_1,\theta_2,\ldots,\theta_k)$ representando um vetor de parâmetros;
- Chamamos de caso multiparamétrico;
- Além disso podemos verificar se as distribuições de probabilidades pertencem a família de exponencial de distribuições;
- E as vantagens consistem em avaliar as propriedades já vistas.

Estatística conjuntamente suficientes

Teorema 2 (Critério da Fatoração para o Caso Multiparamétrico) Sejam X_1,\ldots,X_n uma amostra aleatória da distribuição da variável aleatória X com função de verossimilhança $L(\theta\mid\mathbf{x})$. Temos, então, que a estatística $\mathbf{T}=(T_1,\ldots,T_r),T_i=T_i(X_1,\ldots,X_n)$ é suficiente para θ , se e somente se pudermos escrever

$$L(\theta \mid \mathbf{x}) = h(x_1, \dots, x_n)g_{\theta} \left[T_1(\mathbf{x}), \dots, T_r(\mathbf{x})\right],$$

onde $h(x_1, \ldots, x_n)$ é uma função que depende de x_1, \ldots, x_n e $g_{\theta}[T_1(\mathbf{x}), \ldots, T_r(\mathbf{x})]$ uma função que depende de θ e x_1, \ldots, x_n somente através de \mathbf{T} .

Exemplo 13 Seja X_1,\ldots,X_n uma a.a. de $X\sim N(\mu,\sigma^2)$, onde μ e σ^2 s˜ao desconhecidos. Obtenha uma estatística conjuntamente suficiente para $\backslash \mathrm{bm}\theta=(\mu,\sigma^2)$.

Estatísticas conjuntamente suficientes

(i) Observação:

Duas estatísticas T_1 e T_2 são equivalentes se T_1 puder ser obtida a partir de T_2 e viceversa. Nesse caso, se T_1 é suficiente para $\backslash bm\theta$, então T_2 também é suficiente para $\backslash bm\theta$.

No exemplo anterior, podemos verificar que $\mathbf{T}_1=(\sum_{i=1}^n X_i,\sum_{i=1}^n X_i^2)$ e $\mathbf{T}_2=(\bar{X},S^2)$ são equivalentes.

Exemplo 14 Seja X_1,\ldots,X_n uma a.a. de $X\sim Gama(\alpha,\gamma)$, onde μ e σ^2 s ao desconhecidos. Obtenha uma estatística conjuntamente suficiente para $\backslash bm\theta=(\alpha,\gamma)$.

Estatísticas suficientes mínimas

Definição 12 (Estatística Suficiente Mínima) Uma estatística conjuntamente suficiente é definida ser suficiente mínima se e somente se ela é uma função de todas as outras estatísticas suficientes.

Importante

A definição acima é de pouco uso prático para se obter estatísticas suficientes mínimas. Porém, se a densidade conjunta da amostra é corretamente fatorada, o critério da fatoração fornecerá estatísticas suficientes mínimas.

Família exponencial

Definição 13 Dizemos que a distribuição da v.a. X pertence à família exponencial unidimensional se pudermos escrever sua f.p. ou sua f.d.p. como

$$f(x \mid \theta) = \exp\{c(\theta)T(x) + d(\theta) + S(x)\}, \quad x \in A,$$

em que c e d são funções reais de θ , T e S são funções reais de x e A não depende de θ .

Exemplo 15 Verifique se $X \sim Ber(\theta)$, pertence à família exponencial.

Estatística conjuntamente suficientes

Amostras aleatórias de famílias exponenciais são também membros da família exponencial

Teorema 3 Sejam (X_1, \ldots, X_n) uma a.a. da v.a. X, que pertence à família exponencial unidimensional, ou seja,

$$f(x \mid \theta) = \exp\{c(\theta)T(x) + d(\theta) + S(x)\}, \quad x \in A.$$

Então, a função de verossimilhança é dada por,

$$L(heta \mid \mathbf{x}) = f(x_1, \dots, x_n \mid heta) = \expiggl\{c^*(heta) \sum_{i=1}^n T(x_i) + d^*(heta) + S^*(\mathbf{x})iggr\}$$

que também pertence à família exponencial com

$$T(\mathbf{x}) = \sum_{i=1}^n T(x_i), \;\; c^*(heta) = c(heta), \;\; d^*(heta) = nd(heta), \;\; S^*(\mathbf{x}) = \sum_{i=1}^n S(x_i)$$

Família exponencial e o critério da fatoração

Observe que pelo critério da fatoração de Neyman, temos,

$$L(\theta \mid \mathbf{x}) = h(x_1, \dots, x_n)g_{\theta} \left[T_1(\mathbf{x}), \dots, T_r(\mathbf{x})\right],$$

em que

$$h(x_1,\ldots,x_n)=\exp\{S^*(\mathbf{x})\}=\exp\left\{\sum_{i=1}^n S(x_i)
ight\}$$

e

$$g_{ heta}\left[T_1(\mathbf{x}),\ldots,T_r(\mathbf{x})
ight]=\exp\{c^*(heta)T(\mathbf{x})+d^*(heta)\}$$

Portanto, pelo Critério da Fatoração, a estatística $T(\mathbf{x})$ é suficiente para θ .

Exemplo 16 Seja X_1,\ldots,X_n uma a.a. de $X\sim Ber(\theta)$. Obtenha uma estatística suficiente para θ .

Família exponencial

Definição 14 Dizemos que a distribuição da v.a. X pertence à família exponencial de dimensão k se pudermos escrever sua f.p. ou sua f.d.p. como

$$f(x \mid ackslash \mathrm{bm} heta) = \expiggl\{ \sum_{j=1}^k c_j(heta) T_j(x) + d(ackslash \mathrm{bm} heta) + S(x) iggr\}, \quad x \in A,$$

em que $c_j,\ T_j,\ d$ e S são funções reais de $\theta,j=1,\ldots k$ e A não depende de $\theta.$

Família exponencial

Amostras de famílias exponenciais de dimensão k são também membros da família exponencial de dimensão k.

Para uma a.a. X_1,\ldots,X_n de uma v.a. com f.d.p (ou f.p) na família exponencial multiparamétrica, temos que $\left(T_1^*(\mathbf{x}),T_2^*(\mathbf{x}),\ldots,T_k^*(\mathbf{x})\right)$ é conjuntamente suficiente para $\backslash \mathrm{bm}\theta$, com

$$T_j^*(\mathbf{x}) = \sum_{i=1}^n T_j^*(x_i)$$

Exemplo 17 Seja X_1,\ldots,X_n uma a.a. de $X\sim N(\mu,\sigma^2)$. Verifique se X pertence à família exponencial bidimensional.

Resumo

População	Estatística Suficiente
$X \sim Ber(\theta)$	$T = \sum_{i=1}^n X_i$ é suficiente para $ heta$
$X \sim U(0, heta)$	$T = X_{(n)} = \max(X_1, \dots, X_n)$ é suficiente para $ heta$
$X \sim N(\mu,1)$	$T = \sum_{i=1}^n X_i$ é suficiente para μ
$X \sim N(0,\sigma^2)$	$T = \sum_{i=1}^n X_i^2$ é suficiente para σ^2
$X \sim N(\mu, \sigma^2)$	$T = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ é conjuntamente suficiente para
	$ackslash \mathrm{bm} heta=(\mu,\sigma^2)$
$X \sim Pois(\theta)$	$T = \sum_{i=1}^n X_i$ é suficiente para $ heta$
$X \sim Exp(\theta)$	$T = \sum_{i=1}^n X_i$ é suficiente para $ heta$
$X \sim Gama(lpha, \gamma)$	$T=(\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$ é conjuntamente suficiente para $ackslash \mathrm{bm} heta=(lpha,\gamma)$
$X \sim Be\overline{ta(a,b)}$	$T = (\prod_{i=1}^n X_i, \prod_{i=1}^n (1-X_i))$ é conjuntamente suficiente para $ackslash \mathrm{bm} heta = (a,b)$

Teorema 4 Sejam X_1,\ldots,X_n uma amostra aleatória da distribuição da variável aleatória X com função de densidade $f(x\mid\theta)$. Temos, então, $T=T(X_1,\ldots,X_n)$ uma estatística suficiente para θ , e S um estimador não viciado para θ que não é função de T. Seja $\hat{\theta}=E(S\mid T)$, então:

- 1. $\hat{\theta}$ é uma estatística e é função da estatística suficiente T;
- 2. $E(\hat{\theta}) = \theta$;
- 3. $Var(\hat{\theta}) \leq Var(S)$, para todo θ , e $Var(\hat{\theta}) < Var(S)$ para pelo menos um valor de θ , a menos que $S=\hat{\theta}$, com probabilidade um.

Interpretação: Dado um estimador não-viciado, podemos obter outro estimador não-viciado que é função de uma estatística suficiente, e ele terá variância menor.

Demonstração:

ii. $E(\hat{\theta}) = E(E(S \mid T)) = E(S) = \theta$ (Estimador não viciado!!) iii. $Var(S) = E(Var(S \mid T)) + Var(E(S \mid T)) = E(Var(S \mid T)) + Var(\hat{\theta})$.

Portanto, $Var(\hat{\theta}) \leq Var(S)$.

Exemplo 18 Sejam X_1,\ldots,X_n uma a.a. da v.a. $X\sim Ber(\theta)$. Vamos obter um estimador para θ que seja função de uma estatística suficiente.

Exemplo 19 Sejam X_1,\ldots,X_n uma a.a. da v.a. $X\sim Pois(\theta)$. Vamos obter um estimador para $P(X=0)=\exp\{-\theta\}$, que seja função de uma estatística suficiente.

- Através do Teorema de Rao-Blackwell conseguimos melhorar um estimador não-viciado.
- Qual a relação entre $\hat{ heta} = E(S \mid T)$ e o <code>ENVVUM</code>?

Estatísticas completas

Definição 15 Uma estatística $T=T(X_1,\ldots,X_n)$ é dita ser completa em relalção à família $f(x\mid\theta), \theta\in\Theta$, se a única função real g, definida no domínio de T, tal que E(g(T))=0 para todo θ é a função nula, isto é, g(T)=0 com probabilidade um.

• T é completa se, e somente se, E(g(T))=0, $heta\in\Theta$, implicar que

$$P(g(T)=0)=1,\; \theta\in\Theta$$

•

Exemplo 20 Sejam X_1,\ldots,X_n uma a.a. da v.a. $X\sim Ber(\theta)$. Considere as estatísticas $T_1=\sum_{i=1}^n X_i$ e $T_2=X_1-X_2$. Verifique se T_1 e T_2 são estatísticas completas.

Estatísticas completas pela família exponencial

Teorema 5 Suponha que X tenha distribuição na família exponencial k- dimensional. Então, a estatística

$$T(\mathbf{X}) = \left(\sum_{i=1}^n T_1(X_i), \ldots, \sum_{i=1}^n T_k(X_i)
ight),$$

é suficiente para θ . $T(\mathbf{X})$ será também completa desde que o domínio de variação de $(c_1(\theta),\ldots,c_k(\theta))$ contenha um retângulo k-dimensional.

Lehmann-Scheffé

Teorema 6 Seja T uma estatística suficiente e completa, e seja S um estimador não-viciado para θ . Então, $\hat{\theta} = E(S \mid T)$ é o único estimador não-viciado para θ , baseado em T, e é o Estimador não-viciado de variância uniformemente mínima (ENVVUM) para θ .

Exemplo 21 Sejam X_1,\ldots,X_n uma a.a. da v.a. $X\sim Pois(\theta)$. Obtenha um ENVVUM para θ .