1 Vector Calculus

1.1 Preliminary ideas and some revision of vectors

1.1.1 The Einstein summation convention

In any product of terms, if we have a repeated suffix, then that quantity is considered to be summed over (from 1 to 3, since we will usually be working in three dimensions). For example

$$a_i x_i$$
 is shorthand for $\sum_{i=1}^3 a_i x_i$.

1.1.2 The Kronecker delta

This is the quantity δ_{ij} and is defined such that

$$\delta_{ij} = \left\{ \begin{array}{ll} 1, & i = j; \\ 0, & i \neq j. \end{array} \right.$$

Example

$$\delta_{ij}a_j = \sum_{j=1}^3 \delta_{ij}a_j = \delta_{i1}a_1 + \delta_{i2}a_2 + \delta_{i3}a_3$$

= a_i .

Note that the left-hand-side had two different subscripts, while the right-hand-side ends up with only one subscript - this is known as a **contraction**.

1.1.3 The permutation symbol

This is the quantity ε_{ijk} , defined as

$$\varepsilon_{ijk} = \left\{ \begin{array}{ll} 0, & \text{if any two of } i,j,k \text{ are the same;} \\ 1, & \text{if } i,j,k \text{ is a cyclic permutation of } 1,2,3; \\ -1, & \text{if } i,j,k \text{ is an acyclic permutation of } 1,2,3. \end{array} \right.$$

For example $\varepsilon_{123} = 1, \varepsilon_{321} = -1, \varepsilon_{133} = 0$. We can show, by considering the various cases, that the Kronecker delta and the permutation symbol are connected by the formula

$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{im} - \delta_{im}\delta_{il}.$$

(I will put a proof on blackboard). The quantities δ_{ij} and ε_{ijk} are known as **tensors**.

Exercise: Show this can be rewritten in the alternative form

$$\varepsilon_{ijk}\varepsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}.$$

1.1.4 Vector product

Recall that this is the multiplication of two vectors which results in a third vector, perpendicular to the first two. It can be written in the form of a determinant as

$$\mathbf{a} imes \mathbf{b} = \left| egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{array}
ight|.$$

If $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ then the two vectors are parallel. Recall that $(\mathbf{a} \times \mathbf{b}) = -(\mathbf{b} \times \mathbf{a})$. If we just consider the first component of this vector we can write this as

$$a_2b_3 - a_3b_2 = \varepsilon_{123}a_2b_3 + \varepsilon_{132}a_3b_2$$
$$= \varepsilon_{1jk}a_jb_k,$$

since $\varepsilon_{123} = 1$, $\varepsilon_{132} = -1$, and $\varepsilon_{1ij} = 0$ for all other i and j. In general we can write the ith component of $a \times b$ as

$$[a \times b]_i = \varepsilon_{ijk} a_j b_k.$$

1.1.5 Scalar product

This is defined as

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
$$= a_i b_i,$$

using the summation convention. Recall that if $\mathbf{a} \cdot \mathbf{b} = 0$ then the vectors \mathbf{a} and \mathbf{b} are orthogonal.

1.1.6 Triple scalar product

This is the quantity

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = a_i [\mathbf{b} \times \mathbf{c}]_i$$
$$= \varepsilon_{ijk} a_i b_j c_k.$$

If this quantity is zero then the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are coplanar. A useful property of the triple scalar product is that the dot and cross can be swapped without changing the answer, provided the order of the vectors remains unchanged, i.e.

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}.$$

1.1.7 Triple vector product

This is defined as

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}).$$

Since $\mathbf{b} \times \mathbf{c}$ is a vector normal to the plane of \mathbf{b} and \mathbf{c} , and $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is normal to $\mathbf{b} \times \mathbf{c}$, it follows that the triple vector product must lie in the plane of \mathbf{b} and \mathbf{c} . In component notation

$$\begin{aligned} [\mathbf{a} \times (\mathbf{b} \times \mathbf{c})]_i &= & \varepsilon_{ijk} a_j [\mathbf{b} \times \mathbf{c}]_k \\ &= & \varepsilon_{ijk} a_j \varepsilon_{klm} b_l c_m \\ &= & (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) a_j b_l c_m \\ &= & a_j b_i c_j - a_j b_j c_i \\ &= & b_i (\mathbf{a} \cdot \mathbf{c}) - c_i (\mathbf{a} \cdot \mathbf{b}), \end{aligned}$$

and so we conclude that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},$$

which confirms explicitly that the triple vector product indeed lies in the plane of ${\bf b}$ and ${\bf c}$.

Figure 1: The surface $\phi = \text{constant through two neighbouring points}$.

1.2 Gradient

Let ϕ be a differentiable scalar function of position in three dimensions. If P is a general point, ϕ will depend on the position of P, so we may write $\phi = \phi(P)$. The position of P is defined by reference to a coordinate system e.g. if we consider Cartesian coordinates, then P depends on (x, y, z) and hence $\phi = \phi(x, y, z)$, while if we consider cylindrical polar coordinates (r, θ, z) then $\phi = \phi(r, \theta, z)$.

The equation $\phi =$ constant defines a surface in three dimensions. Varying the constant, we can define a family of surfaces called 'level surfaces' or 'equi- ϕ surfaces'. For example, if ϕ represents pressure, then $\phi =$ constant defines a family of surfaces over which the pressure is constant. The surface through a **specific point** P is $\phi = \phi(P)$. Let Q be a neighbouring point. (See figure 1). The equation of the level surface through Q is $\phi = \phi(Q)$. We draw the normal to $\phi = \phi(P)$ at P. Suppose that it intersects $\phi = \phi(Q)$ at the point P. Since P is on P is on P is on P introduce unit vectors P and P in those directions. We define P in the directional derivative of P in the direction P in the direction P in the direction P is the directional derivative of P in the direction P in the direction

$$\begin{split} \frac{\partial \phi}{\partial s} &= \lim_{PQ \to 0} \left(\frac{\phi(Q) - \phi(P)}{PQ} \right) \\ &= \lim_{Q \to P} \left(\frac{\phi(N) - \phi(P)}{PN} \cdot \frac{PN}{PQ} \right) \\ &= \lim_{N \to P} \left(\frac{\phi(N) - \phi(P)}{NP} \right) \lim_{Q \to P} \left(\frac{PN}{PQ} \right) \\ &= \frac{\partial \phi}{\partial n} \cos \theta \\ &= \frac{\partial \phi}{\partial n} (\widehat{\mathbf{n}} \cdot \widehat{\mathbf{s}}). \end{split}$$

Since $\cos \theta \leq 1$, the maximum directional derivative at P occurs along the normal to $\phi = \phi(P)$ at P. The vector $\hat{\mathbf{n}} \partial \phi / \partial n$ is called the **gradient** of ϕ at P. We write it as $\operatorname{grad} \phi$ or $\nabla \phi$. The operator $\operatorname{gradient}$ or ∇ is known as the **vector gradient operator**. We have

$$\frac{\partial \phi}{\partial s} = \widehat{\mathbf{s}} \cdot \nabla \phi.$$

1.2.1 Cartesian components of $\nabla \phi$

If $\nabla \phi = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$ then $\mathbf{i} \cdot \nabla \phi = A_1$. But, by definition, $\mathbf{i} \cdot \nabla \phi = \partial \phi / \partial x$. Hence $A_1 = \partial \phi / \partial x$. Similarly we find $A_2 = \partial \phi / \partial y$, $A_3 = \partial \phi / \partial z$ and so we have the result:

$$\nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}.$$

Figure 2: Sketch showing a point P represented by Cartesian coordinates (x, y, z) and cylindrical polar coordinates (r, θ, z) .

Example

If $\phi = axy^2 + byz + cx^3z^2$, where a, b, c are constants, find $\nabla \phi$. Also find the directional derivative of ϕ at the point (1, 4, 2) in the direction towards the point (2, 0, -1).

1.2.2 Cylindrical polar components of $\nabla \phi$

The set-up is as shown in figure 2. We write $\nabla \phi = A_1 \hat{\mathbf{r}} + A_2 \hat{\theta} + A_3 \mathbf{k}$. Then it follows that

$$\begin{split} A_1 &= \widehat{\mathbf{r}} \cdot \nabla \phi \\ &= \widehat{\mathbf{r}} \cdot (\frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}) \\ &= \cos \theta \frac{\partial \phi}{\partial x} + \sin \theta \frac{\partial \phi}{\partial y} \\ &= \frac{\partial x}{\partial r} \frac{\partial \phi}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial \phi}{\partial y} \\ &= \frac{\partial \phi}{\partial r}. \end{split}$$

Similarly, we find

$$A_{2} = = \widehat{\theta} \cdot \nabla \phi$$

$$= \widehat{\theta} \cdot (\frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k})$$

$$= -\sin \theta \frac{\partial \phi}{\partial x} + \cos \theta \frac{\partial \phi}{\partial y}$$

$$= \frac{1}{r} \frac{\partial x}{\partial \theta} \frac{\partial \phi}{\partial x} + \frac{1}{r} \frac{\partial y}{\partial \theta} \frac{\partial \phi}{\partial y}$$

$$= \frac{1}{r} \frac{\partial \phi}{\partial \theta},$$

while $A_3 = \mathbf{k} \cdot \nabla \phi = \partial \phi / \partial z$. Hence

$$\nabla \phi = \widehat{\mathbf{r}} \frac{\partial \phi}{\partial r} + \frac{\widehat{\theta}}{r} \frac{\partial \phi}{\partial \theta} + \mathbf{k} \frac{\partial \phi}{\partial z}.$$

1.2.3 Equation of a tangent plane to $\phi = \phi(P)$

We have that $(\nabla \phi)_P$ is normal to $\phi = \phi(P)$ at P. The equation of the tangent plane is therefore

$$(\mathbf{r} - \mathbf{r}_P) \cdot (\nabla \phi)_P = 0,$$

i.e.

$$\left(\frac{\partial \phi}{\partial x}\right)_{P}(x-x_{P}) + \left(\frac{\partial \phi}{\partial y}\right)_{P}(y-y_{P}) + \left(\frac{\partial \phi}{\partial z}\right)_{P}(z-z_{P}) = 0.$$

Example

Find the tangent plane to the surface

$$z = e^{-(x^2 + y^2)^{1/2}}$$

at the point x = -1, y = 0.

1.3 Divergence and Curl

In this section we will assume that A is a vector function of position in three dimensions, with continuous first partial derivatives.

Since ∇ is a vector operator, we can define formally a scalar product $\nabla \cdot \mathbf{A}$. This is called the **divergence** of the vector \mathbf{A} . We can also define the vector product $\nabla \times \mathbf{A}$, which is called the **curl** of \mathbf{A} . So to summarize we have

$$\operatorname{div} \mathbf{A} = \nabla \cdot \mathbf{A}, \ \operatorname{curl} \mathbf{A} = \nabla \times \mathbf{A}.$$

1.3.1 Cartesian form

$$\operatorname{div} \mathbf{A} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \cdot \left(A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k} \right)$$

$$= \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z}.$$

$$\operatorname{curl} \mathbf{A} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ A_1 & A_2 & A_3 \end{vmatrix}$$

$$= \mathbf{i} \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) - \mathbf{j} \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_1}{\partial z} \right) + \mathbf{k} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right).$$

Note that these simple forms for div and curl arise because i, j, k are **constant** vectors: this is not so in other coordinate systems.

Example

If

$$\mathbf{A} = (y^2 \cos x + z^3)\mathbf{i} + (2y \sin x - 4)\mathbf{i} + (3xz^2 + 2)\mathbf{k}$$

find $\operatorname{div} \mathbf{A}$ and $\operatorname{curl} \mathbf{A}$.

Example

Find div **u** and curl **u** when (i) $\mathbf{u} = \mathbf{r}$; (ii) $\mathbf{u} = \boldsymbol{\omega} \times \mathbf{r}$, where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and $\boldsymbol{\omega} = \Omega \mathbf{k}$ with Ω constant.

1.4 Operations with the gradient operator

1.4.1 Important sum and product formulae

Note that ∇ is a linear operator, and so:

(i)
$$\nabla(\phi_1 + \phi_2) = \nabla \phi_1 + \nabla \phi_2$$
,
(ii) $\operatorname{div}(\mathbf{A} + \mathbf{B}) = \operatorname{div} \mathbf{A} + \operatorname{div} \mathbf{B}$,
(iii) $\operatorname{curl}(\mathbf{A} + \mathbf{B}) = \operatorname{curl} \mathbf{A} + \operatorname{curl} \mathbf{B}$.

The proofs of these results follow immediately from the definition of ∇ . Other key results are:

$$(iv) \nabla(\phi \psi) = \phi \nabla \psi + \psi \nabla \phi,$$

$$(v) \operatorname{div}(\phi \mathbf{A}) = \phi \operatorname{div} \mathbf{A} + \nabla \phi \cdot \mathbf{A}.$$

Proof of (v)

$$\operatorname{div}(\phi \mathbf{A}) = \left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}\right) \cdot (\phi A_1 \mathbf{i} + \phi A_2 \mathbf{j} + \phi A_3 \mathbf{k})$$
$$= \frac{\partial}{\partial x}(\phi A_1) + \frac{\partial}{\partial y}(\phi A_2) + \frac{\partial}{\partial z}(\phi A_3)$$
$$= \phi \operatorname{div} \mathbf{A} + \nabla \phi \cdot \mathbf{A}.$$

In writing out these proofs it is easier to use the **summation convention** that we introduced earlier. Rather than write (x, y, z) for Cartesian components, we write (x_1, x_2, x_3) and in place of $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ we write $(\mathbf{\hat{e}}_1, \mathbf{\hat{e}}_2, \mathbf{\hat{e}}_3)$. Then we saw earlier that

$$\mathbf{A} \cdot \mathbf{B} = A_i B_i,$$

$$\mathbf{A} \times \mathbf{B} = \varepsilon_{ijk} \widehat{\mathbf{e}}_i A_i B_k$$

Also recall the useful result that

$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}.$$

Thus, under the summation convention:

$$\operatorname{div} \mathbf{A} = \frac{\partial A_i}{\partial x_i},$$
$$[\nabla \phi]_i = \frac{\partial \phi}{\partial x_i}$$
$$[\operatorname{curl} \mathbf{A}]_i = \varepsilon_{ijk} \frac{\partial A_k}{\partial x_j}$$

where $[\]_i$ indicates the ith component. Using this approach, the proof of (v) takes the form

$$\operatorname{div}(\phi \mathbf{A}) = \frac{\partial}{\partial x_i}(\phi A_i) = \phi \frac{\partial A_i}{\partial x_i} + A_i \frac{\partial \phi}{\partial x_i}$$
$$= \phi \operatorname{div} \mathbf{A} + \mathbf{A} \cdot \nabla \phi.$$

Other important results are:

$$\begin{aligned} &(\mathrm{vi})\operatorname{curl}\left(\phi\mathbf{A}\right) &= &\phi\operatorname{curl}\mathbf{A} + \nabla\phi\times\mathbf{A}, \\ &(\mathrm{vii})\operatorname{div}(\mathbf{A}\times\mathbf{B}) &= &\mathbf{B}\cdot\operatorname{curl}\mathbf{A} - \mathbf{A}\cdot\operatorname{curl}\mathbf{B}, \\ &(\mathrm{viii})\operatorname{curl}\left(\mathbf{A}\times\mathbf{B}\right) &= &(\mathbf{B}\cdot\nabla)\mathbf{A} - \mathbf{B}\operatorname{div}\mathbf{A} - (\mathbf{A}\cdot\nabla)\mathbf{B} + \mathbf{A}\operatorname{div}\mathbf{B}, \\ &(\mathrm{ix})\nabla(\mathbf{A}\cdot\mathbf{B}) &= &(\mathbf{B}\cdot\nabla)\mathbf{A} + (\mathbf{A}\cdot\nabla)\mathbf{B} + \mathbf{B}\times\operatorname{curl}\mathbf{A} + \mathbf{A}\times\operatorname{curl}\mathbf{B}. \end{aligned}$$

Example

Prove relation (ix) above. If we work on the RHS we can write

$$[(\mathbf{B} \cdot \nabla)\mathbf{A} + (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{B} \times \operatorname{curl} \mathbf{A} + \mathbf{A} \times \operatorname{curl} \mathbf{B}]_{i}$$

$$= B_{j} \frac{\partial A_{i}}{\partial x_{j}} + A_{j} \frac{\partial B_{i}}{\partial x_{j}} + \varepsilon_{ijk} B_{j} (\operatorname{curl} \mathbf{A})_{k} + \varepsilon_{ijk} A_{j} (\operatorname{curl} \mathbf{B})_{k}$$

$$= B_{j} \frac{\partial A_{i}}{\partial x_{j}} + A_{j} \frac{\partial B_{i}}{\partial x_{j}} + \varepsilon_{ijk} \left(B_{j} \varepsilon_{klm} \frac{\partial A_{m}}{\partial x_{l}} + A_{j} \varepsilon_{klm} \frac{\partial B_{m}}{\partial x_{l}} \right)$$

$$= B_{j} \frac{\partial A_{i}}{\partial x_{j}} + A_{j} \frac{\partial B_{i}}{\partial x_{j}} + (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \left(B_{j} \frac{\partial A_{m}}{\partial x_{l}} + A_{j} \frac{\partial B_{m}}{\partial x_{l}} \right)$$

$$= B_{j} \frac{\partial A_{i}}{\partial x_{j}} + A_{j} \frac{\partial B_{i}}{\partial x_{j}} + B_{j} \left(\frac{\partial A_{j}}{\partial x_{i}} - \frac{\partial A_{i}}{\partial x_{j}} \right) + A_{j} \left(\frac{\partial B_{j}}{\partial x_{i}} - \frac{\partial B_{i}}{\partial x_{j}} \right)$$

$$= B_{j} \frac{\partial A_{j}}{\partial x_{i}} + A_{j} \frac{\partial B_{j}}{\partial x_{i}}$$

$$= \frac{\partial}{\partial x_{i}} (A_{j} B_{j})$$

$$= [\nabla(\mathbf{A} \cdot \mathbf{B})]_{i},$$

as required.

Note: In the following sections we will assume that our scalar and vector functions possess continuous second derivatives.

1.4.2 The divergence of a gradient: the Laplacian

Consider the operation

$$\operatorname{div}(\nabla \phi) = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) \cdot \left(\frac{\partial \phi}{\partial x} \mathbf{i} + \frac{\partial \phi}{\partial y} \mathbf{j} + \frac{\partial \phi}{\partial z} \mathbf{k}\right)$$
$$= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}$$
$$\equiv \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2}$$
in tensor notation.

This is to be read as 'del squared ϕ ' or the Laplacian of ϕ . The operator ∇^2 is known as the Laplacian operator. We also define the Laplacian of a vector as

$$\nabla^2 \mathbf{A} \equiv \frac{\partial^2 \mathbf{A}}{\partial x^2} + \frac{\partial^2 \mathbf{A}}{\partial y^2} + \frac{\partial^2 \mathbf{A}}{\partial z^2}$$

in Cartesian coordinates, and the equation $\nabla^2 \phi = 0$ is known as **Laplace's equation**, which we will see more of in the chapter on partial differential equations.

Example

If
$$\phi = x^2 + y^2$$
, find $\nabla^2 \phi$.

1.4.3 The curl of a gradient

Consider the operation

$$\operatorname{curl}\left(\nabla\phi\right) = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ \partial\phi/\partial x & \partial\phi/\partial y & \partial\phi/\partial z \end{array} \right| \equiv (0,0,0).$$

(This result can also be established by using tensor notation).

Example

Consider $\phi = axy^2 + byz + cx^3z^2$ and show explicitly that curl $\nabla \phi = 0$.

1.4.4 The divergence of a curl

This is also always zero, as can be seen from the following argument:

$$\operatorname{div}(\operatorname{curl} \mathbf{A}) = \frac{\partial}{\partial x_i} (\operatorname{curl} \mathbf{A})_i = \varepsilon_{ijk} \frac{\partial}{\partial x_i} \left(\frac{\partial A_k}{\partial x_j} \right) \equiv \frac{1}{2} \varepsilon_{ijk} \frac{\partial}{\partial x_i} \left(\frac{\partial A_k}{\partial x_j} \right) + \frac{1}{2} \varepsilon_{jik} \frac{\partial}{\partial x_i} \left(\frac{\partial A_k}{\partial x_i} \right)$$
$$= \frac{1}{2} \varepsilon_{ijk} \left[\frac{\partial}{\partial x_i} \left(\frac{\partial A_k}{\partial x_j} \right) - \frac{\partial}{\partial x_j} \left(\frac{\partial A_k}{\partial x_i} \right) \right] = 0.$$

Example

Verify that $\operatorname{div}(\operatorname{curl} \mathbf{A}) = 0$ for the quantity $\mathbf{A} = y e^x \mathbf{i} + (x^2 + z) \mathbf{j} + y^3 \cos(zx) \mathbf{k}$.

1.4.5 The curl of a curl

This is the vector quantity

$$\operatorname{curl}(\operatorname{curl} \mathbf{A}).$$

Using tensor notation and the summation convention we can show that

$$\operatorname{curl}(\operatorname{curl} \mathbf{A}) = \nabla(\operatorname{div} \mathbf{A}) - \nabla^2 \mathbf{A}.$$

Proof

$$[\operatorname{curl}(\operatorname{curl}\mathbf{A})]_{i} = \varepsilon_{ijk} \frac{\partial}{\partial x_{j}} (\operatorname{curl}\mathbf{A})_{k}$$

$$= \varepsilon_{ijk} \frac{\partial}{\partial x_{j}} \left(\varepsilon_{klm} \frac{\partial}{\partial x_{l}} A_{m} \right)$$

$$= \left(\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl} \right) \left(\frac{\partial^{2} A_{m}}{\partial x_{j} \partial x_{l}} \right)$$

$$= \frac{\partial^{2} A_{j}}{\partial x_{j} \partial x_{i}} - \frac{\partial^{2} A_{i}}{\partial x_{j} \partial x_{j}}$$

$$= \frac{\partial}{\partial x_{i}} \left(\frac{\partial A_{j}}{\partial x_{j}} \right) - \frac{\partial^{2} A_{i}}{\partial x_{j}^{2}}$$

$$= [\nabla(\operatorname{div}\mathbf{A})]_{i} - [\nabla^{2}\mathbf{A}]_{i}.$$

Exercise

Calculate curl (curl **A**), ∇ (div **A**) and ∇^2 **A** for $\mathbf{A} = y e^x \mathbf{i} + (x^2 + z) \mathbf{j} + y^3 \cos(zx) \mathbf{k}$.

1.4.6 Scalar and vector fields

If, at each point of a region V of space, a scalar function ϕ is defined, we say that ϕ is a **scalar field** over the region V. Similarly, if a vector function \mathbf{A} is also defined at all points of V, then \mathbf{A} is a vector field over V. If $\operatorname{curl} \mathbf{A} = \mathbf{0}$ we say that A is an **irrotational** vector field. If $\operatorname{div} \mathbf{A} = \mathbf{0}$ we say \mathbf{A} is a **solenoidal** vector field. An obvious example of a vector field is the position vector \mathbf{r} of a point in space.

Figure 3: A curve γ joining A to B and divided into N sections.

In three dimensions:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k},$$

$$\Rightarrow \operatorname{div} \mathbf{r} = 3, \operatorname{curl} \mathbf{r} = 0,$$

$$|\mathbf{r}| = r = (x^2 + y^2 + z^2)^{1/2}$$

$$\Rightarrow \nabla r = \nabla (x^2 + y^2 + z^2)^{1/2}$$

$$= \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) (x^2 + y^2 + z^2)^{1/2}$$

$$= \frac{1}{(x^2 + y^2 + z^2)^{1/2}} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$$

$$= \frac{\mathbf{r}}{r}$$

$$= \hat{\mathbf{r}}.$$

Example

Find

$$\nabla^2(1/r)$$
.

First we calculate

$$\nabla(\frac{1}{r}) = -\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}} = -\frac{\mathbf{r}}{r^3} \quad (r \neq 0),$$

and it then follows that

$$\nabla^{2}(\frac{1}{r}) = -\left(\frac{\partial}{\partial x}\left(\frac{x}{(x^{2}+y^{2}+z^{2})^{3/2}}\right) + \frac{\partial}{\partial y}\left(\frac{y}{(x^{2}+y^{2}+z^{2})^{3/2}}\right) + \frac{\partial}{\partial z}\left(\frac{z}{(x^{2}+y^{2}+z^{2})^{3/2}}\right)\right) = \cdots = 0. \ (r \neq 0).$$

So we see that 1/r is a solution of Laplace's equation in three dimensions. In fact $1/(r-r_0)$ with r_0 constant is also a solution. This will be useful for the study of Green's functions later in the course.

1.5 Path Integrals

1.5.1 Definition

Consider a curve γ (not necessarily in the plane, and not necessarily smooth) joining the points A and B. (See figure 3). Suppose that the curve is divided into N sections: $AP_1, P_1P_2, \ldots, P_{N-1}B$. Let $AP_1 = \delta s_1, P_1P_2 = \delta s_2, \ldots, P_{N-1}B = \delta s_N$. Next, suppose a function f is defined along this curve γ . We compute the sum

$$f_1\delta s_1 + f_2\delta s_2 + \cdots + f_N\delta s_N$$

Figure 4: Diagram showing the tangent vector at a point P.

where $f_n = f(P_n)$. On increasing N indefinitely, while letting the maximum $\delta s_n \to 0$, the resulting limit of the sum, if it exists, is called the **path integral of** f **along** γ , and we write:

$$\int_{\gamma} f \, ds = \lim_{\substack{N \to \infty \\ \max \delta s_n \to 0}} \sum_{n=1}^{N} f_n \delta s_n.$$

The function f may be a scalar or a vector.

1.5.2 Path element

See figure 4. Let δs represent the arc PQ and suppose that the vector $\overrightarrow{PQ} = \delta \mathbf{r}$. We define the **tangent** vector

$$\widehat{\mathbf{t}} = \frac{d\mathbf{r}}{ds} = \lim_{\delta s \to 0} \frac{\delta \mathbf{r}}{\delta s},$$

and the path element

$$d\mathbf{r} = \hat{\mathbf{t}} ds.$$

Note that $\hat{\mathbf{t}}$ has length unity because $|\delta \mathbf{r}| \to \delta s$ as $\delta s \to 0$. We can then define the quantity

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} (\mathbf{F} \cdot \widehat{\mathbf{t}}) \, ds.$$

1.5.3 Conservative forces

Consider the special case where we have a vector ${\bf F}$ of the form

$$\mathbf{F} = \nabla \phi$$

with ϕ a differentiable scalar function. Consider the integral (with γ defined as in figure 3):

$$\begin{split} \int_{\gamma} \mathbf{F} \cdot d\mathbf{r} &= \int_{\gamma} (\widehat{\mathbf{t}} \cdot \nabla \phi) \, ds \\ &= \int_{\gamma} \frac{\partial \phi}{\partial s} \, ds \\ &= \left[\phi \right]_{A}^{B} \\ &\qquad \qquad \phi(B) - \phi(A). \end{split}$$

We note that the result is **independent of the path** γ joining A to B. In particular, if γ is a closed curve (i.e. $B \equiv A$), then we have $\oint_{\gamma} \mathbf{F} \cdot d\mathbf{r} = 0$, where we put a circle on the integral to denote the path is closed. We sometimes refer to such an integral as the **circulation** of \mathbf{F} around γ .

Figure 5: Two curves joining A to P. Q is a neighbouring point.

If a vector field \mathbf{F} has the property that $\oint_{\gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ for **any** closed curve γ , we say that \mathbf{F} is a **conservative field**. Thus, if $\mathbf{F} = \nabla \phi$, then \mathbf{F} is conservative. Conversely, if \mathbf{F} is conservative we can always find a differentiable scalar function ϕ such that $\mathbf{F} = \nabla \phi$. The function ϕ is called the **potential** of the field \mathbf{F} .

Proof of this last part

See figure 5. Let $\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$. Since we know that \mathbf{F} is conservative it must be the case that $\int_A^P \mathbf{F} \cdot d\mathbf{r}$ is independent of the path from A to P and hence

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r},$$

where C_1 and C_2 are any two curves drawn from A to P. Suppose that the point A is fixed. Then

$$\int_{A}^{P} \mathbf{F} \cdot d\mathbf{r} = G(P), \text{ say}$$
$$= G(x, y, z)$$

Let Q be the point $(x + \delta x, y, z)$ and let P be the point (x, y, z). Consider the quantity

$$G(x + \delta x, y, z) - G(x, y, z) \equiv \int_{A}^{Q} \mathbf{F} \cdot d\mathbf{r} - \int_{A}^{P} \mathbf{F} \cdot d\mathbf{r}$$

= $\int_{P}^{Q} \mathbf{F} \cdot d\mathbf{r}$.

But we can choose the path from P to Q so that only x varies, in which case $d\mathbf{r} = \mathbf{i} dx$. Thus

$$G(x+\delta x,y,z)-G(x,y,z)=\int_{x}^{x+\delta x}F_{1}\,dx,$$

and hence

$$\frac{\partial G}{\partial x} = \lim_{\delta x \to 0} \frac{G(x + \delta x, y, z) - G(x, y, z)}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{1}{\delta x} \int_{x}^{x + \delta x} F_{1} dx$$

$$= F_{1} \text{ (using L'Hopital's rule)}.$$

Similarly we can show that

$$F_2 = \frac{\partial G}{\partial y}, \ F_3 = \frac{\partial G}{\partial z}.$$

Thus, if **F** is conservative then a scalar function (G in this case) can be found such that $\mathbf{F} = \nabla G$.

Example

For the vector field

$$\mathbf{F} = (3x^2 + yz)\mathbf{i} + (6y^2 + xz)\mathbf{j} + (12z^2 + xy)\mathbf{k}$$

find a scalar function $\phi(x,y,z)$ such that $\mathbf{F} = \nabla \phi$. Hence calculate $\int_A^B \mathbf{F} \cdot d\mathbf{r}$ where A = (0,0,0) and B = (1,1,1).

1.5.4 Practical evaluation of path integrals

Suppose we wish to evaluate

$$I = \int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$$

explicitly, where **F** is a known function of (x, y, z) and γ is some known curve joining the points $A(x_0, y_0, z_0)$ and $B(x_1, y_1, z_1)$.

Along γ we can write

$$x = x(t), y = y(t), z = z(t)$$
 with $t_0 \le t \le t_1$.

Here, t is a parameter that takes us along γ with $x(t_0) = x_0, x(t_1) = x_1$ and similarly for y and z. Then we can write

$$d\mathbf{r} = \left(\frac{dx}{dt}\mathbf{i} + \frac{dy}{dt}\mathbf{j} + \frac{dz}{dt}\mathbf{k}\right)dt$$

and hence, with $\mathbf{F} = F_1(t)\mathbf{i} + F_2(t)\mathbf{j} + F_3(t)\mathbf{k}$:

$$I = \int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{t_0}^{t_1} \left(F_1 \frac{dx}{dt} + F_2 \frac{dy}{dt} + F_3 \frac{dz}{dt} \right) dt.$$

Example

Evaluate

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} \text{ with } \mathbf{F} = yz\mathbf{i} + xy\mathbf{j} + xz\mathbf{k}$$

when γ joins (0,0,0) to (1,1,1) along

- (i) $C_1 + C_2$ with C_1 the curve $x = y^2, z = 0$ from (0,0,0) to (1,1,0) and C_2 is the straight line joining (1,1,0) to (1,1,1);
 - (ii) C_3 is the straight line joining (0,0,0) to (1,1,1).

1.6 Surface integrals

1.6.1 Definition

To define a surface integral of f = f(P) over a surface S, we divide S into elements of area $\delta S_1, \delta S_2, \ldots, \delta S_N$. Let f_1, f_2, \ldots, f_N be the values of f at typical points P_1, P_2, \ldots, P_N of $\delta S_1, \delta S_2, \ldots, \delta S_N$ respectively. We calculate the quantity

$$\sum_{n=1}^{N} f_n \delta S_n.$$

We now let $N \to \infty$, max $\delta S_n \to 0$. The resulting limit, if it exists, is called the **surface integral of** f **over** S, and we write it as

$$\int_{S} f \, dS = \lim_{\substack{N \to \infty \\ \max \delta S_{-} \to 0}} \sum_{n=1}^{N} f_n \delta S_n.$$

As with the line integral, the function f may be a vector or a scalar.

Figure 6: Diagram to illustrate the evaluation of surface integrals.

1.6.2 Types of surfaces

Closed surface: this divides three-dimensional space into two non-connected regions - an interior region and an exterior region;

Simple closed surface: this is a closed surface which does not intersect itself;

Convex surface: this is a surface which is crossed by a straight line at most twice;

Open surface: this does not divide space into two non-connected regions - it has a boundary which can be represented by a closed curve. (A closed surface can be thought of as the sum of two open surfaces).

1.6.3 Evaluation of surface integrals for plane surfaces in the x-y plane

An **areal element** dS is an 'infinitesimally small' element of area of a surface. Even for closed surfaces it can be thought of as approximately plane. The **vector areal element** $d\mathbf{S}$ is the vector $\hat{\mathbf{n}} dS$ where $\hat{\mathbf{n}}$ is the unit vector normal to dS. For plane surfaces dS can be expressed in Cartesian coordinates (x, y) since we may choose the surface to lie in the plane z = 0. Thus we can write dS = dx dy. (See figure 6).

Let the rectangle x = a, b and y = c, d circumscribe S. We will assume for simplicity that S is convex. (If it isn't then we split S up into convex sub-regions). Let the equation of the boundary of S be denoted by

$$y = \begin{cases} F_1(x) & \text{upper half } ADB \\ F_2(x) & \text{lower half } ACB \end{cases}.$$

(n.b. we need to ensure these are single-valued functions, which they will be if S is convex). Then

$$S = \int_{S} dS = \int_{x=a}^{x=b} \int_{y=F_{2}(x)}^{y=F_{1}(x)} dy dx$$
$$= \int_{a}^{b} (F_{1}(x) - F_{2}(x)) dx.$$

If f(x,y) is any function of position:

$$\int_{S} f \, dS = \int_{x=a}^{b} \int_{y=F_{2}(x)}^{F_{1}(x)} f(x,y) \, dy \, dx.$$

In some situations it may be more convenient to do the x-integration first. If we want to do this we need to write the boundaries in terms of functions of y instead of x. In this case let the boundary be described by

$$x = \begin{cases} G_1(y) & \text{right half } CBD \\ G_2(y) & \text{left half } CAD \end{cases}.$$

Figure 7: Left: The projection of a plane area S onto the x-y plane. Right: The projection of a curved surface S onto the x-y plane.

Then

$$S = \int_{S} dS = \int_{y=c}^{y=d} \int_{x=G_{2}(y)}^{x=G_{1}(y)} dx \, dy$$
$$= \int_{c}^{d} (G_{1}(y) - G_{2}(y)) \, dy,$$

and

$$\int_{S} f \, dS = \int_{y=c}^{d} \int_{x=G_{2}(y)}^{G_{1}(y)} f(x,y) \, dx \, dy.$$

1.6.4 Example

Find the area of the circle $x^2 + y^2 = a^2$.

1.6.5 Projection of an area onto a plane

Consider first a plane area S (left hand diagram in figure 7). Suppose Σ is the projected area in the x-y plane. Then $\Sigma = S \cos \theta$, where $\cos \theta = |\widehat{\mathbf{n}} \cdot \mathbf{k}|$.

Now consider a curved surface. (Right hand diagram in figure 7). If we consider an areal element dS then this will be effectively plane, and so

$$dS = \frac{d\Sigma}{|\widehat{\mathbf{n}} \cdot \mathbf{k}|}.$$

1.6.6 The projection theorem

Let P denote a general point of a surface S which at no point is orthogonal to the direction \mathbf{k} . Then:

$$\int_{S} f(P) dS = \int_{\Sigma} f(P) \frac{dx dy}{|\widehat{\mathbf{n}} \cdot \mathbf{k}|},$$

where Σ is the projection of S onto the plane z=0, and $\hat{\mathbf{n}}$ is normal to S.

Proof

$$\int_{S} f(P) dS = \lim_{\substack{N \to \infty \\ \max \delta S_r \to 0}} \sum_{r=1}^{N} f(P_r) \delta S_r$$

$$= \lim_{\substack{N \to \infty \\ \max \delta S_n \to 0}} \sum_{r=1}^{N} f(P_r) \left\{ \frac{\delta \Sigma_r}{\widehat{\mathbf{n}}_r \cdot \mathbf{k}} + \varepsilon_r \right\},$$

where $\varepsilon_r \to 0$ as $\delta S_r \to 0$. (Here $\hat{\mathbf{n}}_r$ is the unit vector normal to S at P_r and $\delta \Sigma_r$ is the projection of δS_r onto the plane z = 0. It therefore follows that

$$\int_{S} f(P) dS = \int_{\Sigma} f(P) \frac{d\Sigma}{|\widehat{\mathbf{n}} \cdot \mathbf{k}|},$$

as required. Note that f(P) is evaluated at P(x, y, z) on S in **both integrals**.

If, for example, the equation of S is $z = \phi(x, y)$ then the theorem gives

$$\int_{S} f(x, y, z) \, dS = \int_{\Sigma} f(x, y, \phi(x, y)) \frac{dx \, dy}{|\widehat{\mathbf{n}} \cdot \mathbf{k}|}.$$

Alternatively, we may choose to project the surface onto x = 0 or y = 0 to give:

$$\int_{S} f(P) dS = \int_{\Sigma_{x}} f(P) \frac{dy dz}{|\widehat{\mathbf{n}} \cdot \mathbf{i}|} = \int_{\Sigma_{y}} f(P) \frac{dx dz}{|\widehat{\mathbf{n}} \cdot \mathbf{j}|},$$

where Σ_x is the projection of S onto x=0 and Σ_y is the projection of S onto y=0.

Example

Evaluate

$$\int_{S} \mathbf{F} \cdot \widehat{\mathbf{n}} \, dS \text{ where } \mathbf{F} = 18z\mathbf{i} - 12\mathbf{j} + 3y\mathbf{k},$$

 $\hat{\mathbf{n}}$ is unit outward normal and S is the part of the plane 2x + 3y + 6z = 12 in the first octant $(x, y, z \ge 0)$.

1.7 Volume Integrals

1.7.1 Definition

Consider a volume τ and split it up into N subregions $\delta \tau_1, \delta \tau_2, \dots, \delta \tau_N$. Let P_1, P_2, \dots, P_N be typical points of $\delta \tau_1, \delta \tau_2, \dots, \delta \tau_N$.

Consider the sum

$$\sum_{i=1}^{N} f(P_i) \delta \tau_i.$$

Now let $N \to \infty$, max $\delta \tau_i \to 0$. If this sum tends to a limit we call it the volume integral of f over τ and write this as

$$\int_{\tau} f \, d\tau.$$

The function f may be a vector or a scalar.

Lemma

If f is a continuous function and $\int_{\tau^*} f \, d\tau = 0$ for all subregions τ^* of τ , then f = 0 at every point of τ .

Figure 8: Diagram for proof of Green's theorem.

Proof

Suppose f > 0 at P (in τ). Then it follows that f > 0 within a sufficiently small sphere τ_{ε} with centre P and radius ε . Clearly then,

$$\int_{\tau_{\varepsilon}} f \, d\tau > 0.$$

But τ_{ε} is a subregion of τ and so we must have $\int_{\tau_{\varepsilon}} f d\tau = 0$. We therefore have a contradiction and so f cannot be > 0 at P. Similarly it is not possible for f to be negative at P. Thus we conclude that f must be zero at P. Since P is an arbitrary point of τ we conclude that f = 0 at all points of τ .

1.7.2 Volume element

In Cartesian coordinates the volume element

$$d\tau = dx \, dy \, dz$$
.

Example

Evaluate

$$\int_{\tau} (2x+y) d\tau$$

when τ is the volume enclosed by the parabolic cylinder $z=4-x^2$ and the planes x=y=z=0 and y=2.

1.8 Results relating line, surface and volume integrals

1.8.1 Green's theorem in the plane

Suppose R is a closed plane region bounded by a simple plane closed convex curve in the x-y plane. Let L, M be continuous functions of x, y having continuous derivatives throughout R. Then:

$$\oint_C (L \, dx + M \, dy) = \int_R \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) \, dx \, dy,$$

where C is the boundary of R described in the counter-clockwise (positive) sense.

Proof

We draw a rectangle formed by the tangent lines x = a, b and y = e, f (figure 8). This rectangle circumscribes C. Let $x = X_1(y), x = X_2(y)$ be the equations of EAF and EBF respectively. We then

can write

$$\begin{split} \int_R \frac{\partial M}{\partial x} \, dx \, dy &= \int_e^f \left\{ \int_{X_1(y)}^{X_2(y)} \frac{\partial M}{\partial x} \, dx \right\} \, dy \\ &= \int_e^f M(X_2(y), y) - M(X_1(y), y) \, dy \\ &= \int_e^f M(X_2(y), y) \, dy + \int_f^e M(X_1(y), y) \, dy \\ &= \oint_C M \, dy. \end{split}$$

Now, let the equations of AEB and AFB be $y=Y_1(x),y=Y_2(x)$. Then

$$\int_{R} \frac{\partial L}{\partial y} dx dy = \int_{a}^{b} \left\{ \int_{Y_{1}(x)}^{Y_{2}(x)} \frac{\partial L}{\partial y} dy \right\} dx$$

$$= \int_{a}^{b} L(x, Y_{2}(x)) - L(x, Y_{1}(x)) dx$$

$$= -\int_{a}^{b} L(x, Y_{1}(x)) dx - \int_{b}^{a} L(x, Y_{2}(x)) dx$$

$$= -\oint_{C} L dx.$$

Hence we obtain the quoted result.

1.8.2 Vector form of Green's Theorem

(i) 2D Stokes theorem. Let $\mathbf{F} = L\mathbf{i} + M\mathbf{j}$, and $d\mathbf{r} = dx\mathbf{i} + dy\mathbf{j}$. Then

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial u}\right) \mathbf{k}.$$

Over the region R we can write dx dy = dS. Thus using Green's theorem:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_R \mathbf{k} \cdot \operatorname{curl} \mathbf{F} \, dS$$

$$= \int_R \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}.$$

This result can be generalized to three dimensions where it is known as **Stokes Theorem**.

(ii) (Divergence theorem in 2D). This time let $\mathbf{F} = M \mathbf{i} - L \mathbf{j}$. Then

$$\operatorname{div} \mathbf{F} = \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y}$$

and so Green's theorem can be rewritten as

$$\int_{B} \operatorname{div} \mathbf{F} \, dx \, dy = \oint_{C} F_{1} \, dy - F_{2} \, dx.$$

Now it can be shown (exercise) that

$$\hat{\mathbf{n}} ds = (dy \, \mathbf{i} - dx \, \mathbf{j})$$

where s is arclength along C, and $\hat{\mathbf{n}}$ is the unit normal to C. Therefore we can rewrite Green's theorem as

$$\int_{\mathcal{P}} \operatorname{div} \mathbf{F} \, dx \, dy = \oint_{C} \mathbf{F} \cdot \widehat{\mathbf{n}} \, ds.$$

This result also turns out to be true in three dimensions, where it is known as the **Divergence Theorem**.

Figure 9: A non-convex boundary.

Example

Show that the area enclosed by a simple closed curve with boundary C can be expressed as

$$\frac{1}{2} \oint_C x \, dy - y \, dx.$$

Use this result to calculate the area of an ellipse.

1.8.3 Extensions of Green's theorem in the plane

Green's theorem is true for more complicated geometries than that assumed in the proof given above. e.g. if C is not convex, but has the shape given in figure 9. We can join the points A, A' so as to form 2 (or more) simple convex closed curves C_1, C_2 enclosing R_1, R_2 where $R_1 + R_2 = R$. Then:

$$\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} + \oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{R_1} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} + \int_{R_2} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}
= \int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}.$$

Now

$$\oint_{C_1} = \int_{AXA'} + \int_{A'A} \text{and } \oint_{C_2} = \int_{A'YA} + \int_{AA'},$$

and so

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_R \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}.$$

We see therefore that the theorem still holds.

1.8.4 Green's theorem in multiply-connected regions

A region R is said to be **simply-connected** if any closed curve drawn in R can be shrunk to a point without leaving R. If we restrict ourselves to two dimensions then any region with a hole in it is not simply-connected (left-hand picture in figure 10). A region which is not simply-connected is said to be **multiply-connected**.

If R is multiply-connected, Green's theorem is still true provided C is now interpreted as the entire (outer and inner) boundary, with C described so that the region R is always on the left (right hand picture in figure 10).

For example if we have a doubly-connected region, we describe the outer boundary C_0 in an anticlockwise fashion and the inner boundary C_1 clockwise. We can then join the point A on C_0 to the point B on C_1 by the line AB. This line then divides R in such a way that it is a simply connected region bounded by the closed curve $C_0 + AB + C_1 + BA$. Then, by Green's theorem:

$$\int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \left(\oint_{C_0} + \int_{A}^{B} + \oint_{C_1} + \int_{B}^{A} \right) (\mathbf{F} \cdot d\mathbf{r})$$

Figure 10: Left: Examples of doubly- and triply-connected regions. Right: Green's theorem in a multiply-connected region.

and therefore it follows that

$$\int_{R} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \oint_{C} \mathbf{F} \cdot d\mathbf{r},$$

where $C = C_0 + C_1$.

1.8.5 Flux

If S is a surface then the flux of A across S is defined as

$$\int_{S} \mathbf{A} \cdot d\mathbf{S}.$$

If S is a closed surface then, by convention, we always draw the unit normal $\hat{\mathbf{n}}$ out of S.

1.8.6 The divergence theorem

If τ is the volume enclosed by a closed surface S and \mathbf{A} is a vector field with continuous derivatives throughout τ , then:

$$\int_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{\tau} \operatorname{div} \mathbf{A} \, d\tau.$$

Proof

We will assume that S is convex and that τ is simply connected, with no interior boundaries. Let $\mathbf{A} = (A_1, A_2, A_3)$ and $\hat{\mathbf{n}} = (l, m, n)$. We have to prove that

$$\int_{S} (lA_1 + mA_2 + nA_3) dS = \int_{\mathcal{T}} \left\{ \frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} \right\} dx dy dz.$$

Project S onto the plane z=0 (figure 11). The cylinder with normal cross-section Σ and generators parallel to the z-axis circumscribes S and it touches S along the curve C which divides S into two open

Figure 11: Diagram for the proof of the divergence theorem.

surfaces, S_1 (upper) and S_2 (lower). Both S_1 and S_2 have projection Σ in the plane z=0. Suppose the equations of S_1 and S_2 are $z=f_1(x,y)$ and $z=f_2(x,y)$ respectively. Then:

$$\int_{\tau} \frac{\partial A_3}{\partial z} dx dy dz = \int_{\tau} \frac{\partial A_3}{\partial z} dz dx dy$$
$$= \int_{\Sigma} A_3(x, y, f_1(x, y)) - A_3(x, y, f_2(x, y)) dx dy.$$

Now, using the projection theorem;

$$\begin{split} \int_{S_1} nA_3 \, dS &= \int_{\Sigma} (\widehat{\mathbf{n}} \cdot \mathbf{k}) A_3(x, y, f_1(x, y)) \, \frac{dx \, dy}{|\widehat{\mathbf{n}} \cdot \mathbf{k}|} \\ &= \int_{\Sigma} A_3(x, y, f_1(x, y)) \, dx \, dy. \end{split}$$

Similarly (with $|\widehat{\mathbf{n}} \cdot \mathbf{k}| = -(\widehat{\mathbf{n}} \cdot \mathbf{k})$):

$$\int_{S_2} nA_3 \, dS = \int_{\Sigma} -A_3(x, y, f_2(x, y)) \, dx \, dy$$

Thus:

$$\int_{S} nA_3 dS = \int_{\Sigma} \left\{ A_3(x, y, f_1(x, y)) - A_3(x, y, f_2(x, y)) \right\} dx dy,$$

and therefore

$$\int_{\tau} \frac{\partial A_3}{\partial z} \, d\tau = \int_{S} n A_3 \, dS.$$

Similarly, by projecting onto the planes x = 0 and y = 0:

$$\int_{\tau} \frac{\partial A_1}{\partial x} d\tau = \int_{S} lA_1 dS,$$

and

$$\int_{\tau} \frac{\partial A_2}{\partial y} \, d\tau = \int_{S} m A_2 \, dS,$$

and hence

$$\int_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{\tau} \operatorname{div} \mathbf{A} \, d\tau,$$

as required.

Note that the surface S need not necessarily be smooth - it could be, for example, a cube or a tetrahedron.

Figure 12: The divergence theorem applied to a non-convex surface.

Figure 13: Diagrams for the proof of the divergence theorem in (top): a simply-connected domain; (bottom): a multiply-connected region.

Example

Evaluate

$$\int_{S} \mathbf{A} \cdot d\mathbf{S} \text{ if } \mathbf{A} = 2x^{2}y \mathbf{i} - y^{2} \mathbf{j} + 4xz^{2} \mathbf{k},$$

and S is the surface of the region in the first octant bounded by $y^2 + z^2 = 9$, x = 2 and x = y = z = 0.

1.8.7 The divergence theorem in more-complicated geometries

(i) Non-convex surfaces

A non-convex surface S can be divided by surface(s) σ into two (or more) parts S_1 and S_2 which, together with σ , form convex surfaces $S_1 + \sigma$, $S_2 + \sigma$ (figure 12). We can then apply the divergence theorem to $S_1 + \sigma$, $S_2 + \sigma$ with τ_1 , τ_2 being the respective enclosed volumes, where $\tau_1 + \tau_2 = \tau$. On adding the results, the surface integrals over σ cancel out, and since $S = S_1 + S_2$ we have

$$\int_{S} \mathbf{A} \cdot d\mathbf{S} = \int_{\tau} \operatorname{div} \mathbf{A} \, d\tau$$

as before.

(ii) A region with internal boundaries

(a) Simply-connected regions (top diagram in figure 13)

For example this could be the space between concentric spheres. Suppose we have an interior surface S_i and outer surface S_o . Draw a plane Π that cuts both S_o and S_i . This divides S_o into two open surfaces $S_o^{(1)}, S_o^{(2)}$. S_i is similarly divided into $S_i^{(1)}, S_i^{(2)}$. We then apply the divergence theorem to the volume τ_1 which is bounded by the closed surface $S_o^{(1)} + S_i^{(1)} + \Pi$, and we then apply the divergence theorem to the volume τ_2 which is bounded by $S_o^{(2)} + S_i^{(2)} + \Pi$. We add these results together. The contributions over Π cancel, leaving the result:

$$\int_{S_o + S_i} \mathbf{A} \cdot d\mathbf{S} = \int_S \mathbf{A} \cdot d\mathbf{S} = \int_{\tau_1 + \tau_2} \operatorname{div} \mathbf{A} \, d\tau = \int_{\tau} \operatorname{div} \mathbf{A} \, d\tau,$$

with the normal to S_i drawn inwards, i.e. out of τ .

(b) Multiply-connected regions (bottom diagram in figure 13)

For example this could be the region between two cylinders. Again let S_o and S_i be the outer and inner surfaces, linked by the plane Π . Label the two sides of the plane 1 and 2. Consider the surface

$$S_i + \text{side 1 of } \Pi + S_o + \text{side 2 of } \Pi.$$

This is closed and encloses a simply-connected region τ . We then apply the divergence theorem to τ . The contributions along the two sides of Π cancel, giving

$$\int_{S_0 + S_i} \mathbf{A} \cdot d\mathbf{S} = \int_{\tau} \operatorname{div} \mathbf{A} \, d\tau.$$

1.8.8 Green's identities in 3D

Let ϕ and ψ be two scalar fields with continuous second derivatives. Consider the quantity

$$\mathbf{A} = \phi \nabla \psi$$
.

It follows that

div
$$\mathbf{A} = \phi \nabla^2 \psi + (\nabla \phi) \cdot (\nabla \psi)$$
, and $\hat{\mathbf{n}} \cdot \mathbf{A} = \phi \frac{\partial \psi}{\partial n}$.

Applying the divergence theorem we obtain

$$\int_{S} \left\{ \phi \frac{\partial \psi}{\partial n} \right\} dS = \int_{S} \left\{ \phi \nabla^{2} \psi + (\nabla \phi) \cdot (\nabla \psi) \right\} d\tau, \tag{1}$$

which is known as **Green's first identity**. Interchanging ϕ and ψ we have

$$\int_{S} \left\{ \psi \frac{\partial \phi}{\partial n} \right\} dS = \int_{\tau} \left\{ \psi \nabla^{2} \phi + (\nabla \psi) \cdot (\nabla \phi) \right\} d\tau, \tag{2}$$

Subtracting (2) from (1) we obtain

$$\int_{S} \left\{ \phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right\} dS = \int_{\tau} \left\{ \phi \nabla^{2} \psi - \psi \nabla^{2} \phi \right\} d\tau,$$

which is known as **Green's second identity**. We will use these identities when we analyze the 3D Laplace's equation in the final section of the course.

1.8.9 Green identities in 2D

If we use the divergence theorem in 2D derived in the first section of the notes:

$$\int_{R} \operatorname{div} \mathbf{F} \, dx \, dy = \oint_{C} \mathbf{F} \cdot \widehat{\mathbf{n}} \, ds.$$

Figure 14: Diagram for the proof of Gauss theorem with O interior to S.

then we can calculate down the corresponding Green identities. These are

$$\oint_C \phi \frac{\partial \psi}{\partial n} \, ds = \int_R \left[\phi \nabla^2 \psi + (\nabla \psi) \cdot (\nabla \phi) \right] \, dx \, dy$$

and

$$\oint_{C} \left[\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right] \, ds = \int_{R} \left[\phi \nabla^{2} \psi - \psi \nabla^{2} \phi \right] \, dx \, dy.$$

These formulae, (which are the generalisation of integration by parts to two dimensions), will prove useful when considering the 2D version of Laplace's equation later.

1.8.10 Gauss' flux theorem

Let S be a closed surface with outward unit normal $\hat{\mathbf{n}}$ and let \mathbf{r} represent position vector $(r = |\mathbf{r}|)$ with O the origin of the coordinate system. Then:

$$\int_{S} \frac{\hat{\mathbf{n}} \cdot \mathbf{r}}{r^{3}} dS = \begin{cases} 0, & \text{if } O \text{ is exterior to } S \\ 4\pi, & \text{if } O \text{ is interior to } S. \end{cases}$$

Proof

Suppose O is exterior to S and that S encloses a volume τ . Then we have $r \neq 0$ throughout τ . Applying the divergence theorem:

$$\int_{S} \frac{\widehat{\mathbf{n}} \cdot \mathbf{r}}{r^3} dS = \int_{\overline{\mathbf{r}}} \operatorname{div} \left(\frac{\mathbf{r}}{r^3} \right) d\tau,$$

But

$$\operatorname{div}\left(\frac{\mathbf{r}}{r^3}\right) = \frac{1}{r^3}\operatorname{div}\mathbf{r} + \mathbf{r}\cdot\nabla\left(\frac{1}{r^3}\right)$$
$$= \frac{3}{r^3} - \mathbf{r}\cdot\left(\frac{3\mathbf{r}}{r^5}\right) = 0.$$

Hence we have that

$$\int_{S} \frac{\hat{\mathbf{n}} \cdot \mathbf{r}}{r^3} dS = \int_{\sigma} \operatorname{div} \left(\frac{\mathbf{r}}{r^3} \right) d\tau = 0,$$

as required.

Now suppose O is interior to S (figure 14). We surround O with a small sphere radius ε , with surface S_{ε} , lying entirely within S. We consider the volume τ_{ε} enclosed between S and S_{ε} Then, applying the divergence theorem and proceeding as above we have

$$\int_{S+S_{\varepsilon}} \frac{\widehat{\mathbf{n}} \cdot \mathbf{r}}{r^3} dS = \int_{\tau_{\varepsilon}} \operatorname{div} \left(\frac{\mathbf{r}}{r^3} \right) d\tau = 0.$$

Figure 15: Diagram for the proof of Stokes' theorem.

Breaking up the surface integral into two parts:

$$0 = \int_{S+S_{\varepsilon}} \frac{\widehat{\mathbf{n}} \cdot \mathbf{r}}{r^3} dS = \int_{S} \frac{\widehat{\mathbf{n}} \cdot \mathbf{r}}{r^3} dS + \int_{S_{\varepsilon}} \frac{(-\widehat{\mathbf{r}}) \cdot \mathbf{r}}{r^3} dS.$$

However (since $r = \varepsilon$ on S_{ε}):

$$\int_{S_{\varepsilon}} \frac{\widehat{\mathbf{r}} \cdot \mathbf{r}}{r^3} dS = \frac{1}{\varepsilon^2} \int_{S_{\varepsilon}} dS = 4\pi.$$

Thus it follows that

$$\int_{S} \frac{\widehat{\mathbf{n}} \cdot \mathbf{r}}{r^3} \, dS = 4\pi.$$

1.8.11 Stokes theorem

Suppose S is an **open** surface with a simple closed curve γ as its boundary and let **A** be a vector field with continuous partial derivatives. Then:

$$\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = \int_{S} \operatorname{curl} \mathbf{A} \cdot d\mathbf{S},$$

where the direction of the unit normal to S and the sense of γ are related by a right-hand rule (i.e. $\hat{\mathbf{n}}$ is in the direction a right-handed screw moves when turned in the direction of γ).

Proof

Let $\mathbf{A} = A_1 \mathbf{i} + A_2 \mathbf{j} + A_3 \mathbf{k}$. Consider

$$\operatorname{curl}(A_1 \mathbf{i}) = \frac{\partial A_1}{\partial z} \mathbf{j} - \frac{\partial A_1}{\partial y} \mathbf{k}.$$

Then we have

$$\int_{S} \left[\operatorname{curl} \left(A_{1} \mathbf{i} \right) \right] \cdot d\mathbf{S} = \int_{S} \left[\widehat{\mathbf{n}} \cdot \operatorname{curl} \left(A_{1} \mathbf{i} \right) \right] dS
= \int_{S} \frac{\partial A_{1}}{\partial z} (\mathbf{j} \cdot \widehat{\mathbf{n}}) - \frac{\partial A_{1}}{\partial y} (\mathbf{k} \cdot \widehat{\mathbf{n}}) dS.$$

If we now project onto the x-y plane, S becomes Σ say, and γ becomes C (figure 15). Let the equation of S be z=f(x,y). Then we have

$$\widehat{\mathbf{n}} = \frac{\nabla (z - f(x, y))}{|\nabla (z - f(x, y))|} = \frac{-(\partial f/\partial x)\mathbf{i} - (\partial f/\partial y)\mathbf{j} + \mathbf{k}}{\left((\partial f/\partial x)^2 + (\partial f/\partial y)^2 + 1\right)^{1/2}}.$$

Figure 16: Two different open surfaces, both having the closed curve γ as their boundary.

Therefore, on S:

$$\mathbf{j}\cdot\widehat{\mathbf{n}} = -\frac{\partial f}{\partial y}(\mathbf{k}\cdot\widehat{\mathbf{n}}) = -\frac{\partial z}{\partial y}(\mathbf{k}\cdot\widehat{\mathbf{n}}).$$

Thus:

$$\int_{S} \left[\operatorname{curl} \left(A_{1} \mathbf{i} \right) \right] \cdot d\mathbf{S} = - \int_{S} \left\{ \frac{\partial A_{1}}{\partial y} + \frac{\partial A_{1}}{\partial z} \frac{\partial z}{\partial y} \right\} (\mathbf{k} \cdot \hat{\mathbf{n}}) dS$$

$$= - \int_{S} \left\{ \frac{\partial}{\partial y} A_{1}(x, y, f) \right\} (\mathbf{k} \cdot \hat{\mathbf{n}}) dS$$

$$= - \int_{\Sigma} \frac{\partial}{\partial y} A_{1}(x, y, f) dx dy$$

$$= \oint_{C} A_{1}(x, y, f) dx,$$

with the last line following by using Green's theorem. However on γ we have z=f and so

$$\oint_C A_1(x, y, f) dx = \oint_{\gamma} A_1(x, y, z) dx.$$

We have therefore established that

$$\int_{S} (\operatorname{curl} A_{1} \mathbf{i}) \cdot d\mathbf{S} = \oint_{\gamma} A_{1} \, dx.$$

In a similar way we can show that

$$\int_{S} (\operatorname{curl} A_{2} \mathbf{j}) \cdot d\mathbf{S} = \oint_{\gamma} A_{2} \, dy,$$

and

$$\int_{S} (\operatorname{curl} A_3 \mathbf{k}) \cdot d\mathbf{S} = \oint_{\gamma} A_3 \, dz,$$

and so the theorem is proved by adding all three results together.

Note that although S must be open, it is not necessarily smooth. For example it could be in the shape of a box without a lid.

The theorem is actually true for **any** open surface with γ as boundary. To see this consider figure 16. The normal to S_1 is $\widehat{\mathbf{n}}_1$ and to S_2 is $\widehat{\mathbf{n}}_2$. The surface $S_1 + S_2$ is closed: let it enclose a volume V. Applying the divergence theorem to curl \mathbf{A} over this region gives

$$\int_{S_1+S_2} \operatorname{curl} \mathbf{A} \cdot \widehat{\mathbf{n}} \, dS = \int_V \operatorname{div} \left(\operatorname{curl} \mathbf{A} \right) dV = 0.$$

Figure 17: The surfaces r = constant, $\theta = \text{constant}$, z = constant, for the cylindrical polar coordinate system, and the orientation of the unit vectors.

In the divergence theorem the normal must always point out of V and hence

$$0 = \int_{S_1 + S_2} \operatorname{curl} \mathbf{A} \cdot \widehat{\mathbf{n}} \, dS = \int_{S_1} \operatorname{curl} \mathbf{A} \cdot \widehat{\mathbf{n}}_1 \, dS + \int_{S_2} \operatorname{curl} \mathbf{A} \cdot (-\widehat{\mathbf{n}}_2) \, dS,$$

implying that

$$\int_{S_1} \operatorname{curl} \mathbf{A} \cdot \widehat{\mathbf{n}}_1 \, dS = \int_{S_2} \operatorname{curl} \mathbf{A} \cdot \widehat{\mathbf{n}}_2 \, dS.$$

Example

Verify Stokes theorem for the vector field $\mathbf{A} = (y, z, x)$ and the surface S given by $z = 1 - x^2 - y^2$ with z > 0

Theorem

A necessary and sufficient condition that $\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = 0$ for any closed curve γ is that curl $\mathbf{A} = 0$ throughout the region in which γ is drawn (assuming \mathbf{A} is continuously differentiable and the region is simply-connected).

Proof

We already know that if $\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = 0$ then there exists a potential ϕ such that $\mathbf{A} = \nabla \phi$. Therefore we see that curl $\mathbf{A} = 0$ since the curl of a gradient is always zero.

Conversely, if curl $\mathbf{A}=0$ then by Stokes' theorem we have $\oint_{\gamma} \mathbf{A} \cdot d\mathbf{r} = 0$ for any simple closed curve γ .

Example

Verify Stokes theorem for the vector field $\mathbf{A} = (y, z, x)$ and the surface S given by $z = 1 - x^2 - y^2$ with $z \ge 0$.

1.9 Curvilinear coordinates

1.9.1 Introduction & definition

Often it is more convenient, depending on the geometry of the problem under consideration, to use coordinates other than Cartesians. An example is cylindrical polar coordinates (r, θ, z) which are related

to Cartesian coordinates by

$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$ $(0 \le \theta \le 2\pi, r \ge 0)$,

from which we can deduce that

$$r^2 = x^2 + y^2$$
, $\tan \theta = y/x$.

The equation r= constant therefore defines a family of circular cylinders with axes along the z-axis, while the equation $\theta=$ constant defines a family of planes, as does the equation z= constant (figure 17). Cylindrical polar coordinates are an example of **curvilinear coordinates**. The unit vectors $\hat{\mathbf{r}}, \hat{\theta}, \hat{\mathbf{k}}$ at any point P are perpendicular to the surfaces r= constant, $\theta=$ constant, z= constant through P in the directions of increasing r, θ, z . Note that the direction of the unit vectors $\hat{\mathbf{r}}, \hat{\theta}$ vary from point to point, unlike the corresponding Cartesian unit vectors.

More generally now, let us suppose that our Cartesian coordinates $(x, y, z) \equiv (x_1, x_2, x_3)$ can be expressed as single-valued differentiable functions of the new coordinates (u_1, u_2, u_3) , i.e.

$$x_i = x_i(u_1, u_2, u_3)$$
 for $i = 1, 2, 3$.

We would like to know what the conditions are under which we can invert these expressions and write the u_i as single-valued differentiable functions of the x_i . First let's differentiate the above expression with respect to x_j :

$$\frac{\partial x_i}{\partial x_j} = \delta_{ij} = \frac{\partial x_i}{\partial u_1} \frac{\partial u_1}{\partial x_j} + \frac{\partial x_i}{\partial u_2} \frac{\partial u_2}{\partial x_j} + \frac{\partial x_i}{\partial u_3} \frac{\partial u_3}{\partial x_j}, \quad (j = 1, 2, 3).$$

Writing this out for each i and j we have the matrix equation

$$\begin{pmatrix} \partial x_1/\partial u_1 & \partial x_1/\partial u_2 & \partial x_1/\partial u_3 \\ \partial x_2/\partial u_1 & \partial x_2/\partial u_2 & \partial x_2/\partial u_3 \\ \partial x_3/\partial u_1 & \partial x_3/\partial u_2 & \partial x_3/\partial u_3 \end{pmatrix} \begin{pmatrix} \partial u_1/\partial x_1 & \partial u_1/\partial x_2 & \partial u_1/\partial x_3 \\ \partial u_2/\partial x_1 & \partial u_2/\partial x_2 & \partial u_2/\partial x_3 \\ \partial u_3/\partial x_1 & \partial u_3/\partial x_2 & \partial u_3/\partial x_3 \end{pmatrix} = I,$$

where I is the identity matrix. We can express this more succinctly as

$$J(x_u)J(u_x) = I,$$

where $J(x_u)$ is the **Jacobian matrix** for the (x_1, x_2, x_3) system and $J(u_x)$ is the corresponding Jacobian for (u_1, u_2, u_3) . We therefore see that $J(u_x)$ exists (i.e. the u_i are differentiable functions of the x_i provided $(J(x_u))^{-1}$ exists, i.e. we require

$$\det (J(x_u)) \neq 0.$$

It turns out that this condition is sufficient to guarantee that our transformation can be inverted. More precisely, the **inverse function theorem** states that around any point where $\det(J(x_u))$ is nonzero, there exists a neighbourhood in which the u_i can be expressed as single-valued differentiable functions of the x_i . There is more on this theorem in the M2AA1 course next term.

Note also that the result $J(x_u)J(u_x)=I$ implies that

$$\det(J(x_u)) = 1/\det(J(u_x)),$$

a useful result that we will exploit later when we consider the transformation of integrals. From now on we will assume we are in a region where $\det(J(x_u)) \neq 0$ and so our transformations can indeed be inverted.

Example

Consider cylindrical polar coordinates (r, θ, z) again. The Jacobian is

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \begin{pmatrix} \partial x/\partial r & \partial x/\partial \theta & \partial x/\partial z \\ \partial y/\partial r & \partial y/\partial \theta & \partial y/\partial z \\ \partial z/\partial r & \partial z/\partial \theta & \partial z/\partial z \end{pmatrix} = \begin{pmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and so the determinant is equal to $r(\cos^2 \theta + \sin^2 \theta) = r$. So provided $r \neq 0$, the transformation can be inverted.

Figure 18: Top: the intersection of the surfaces $u_i = u_i(P)$; bottom: P and Q are points on a curve along which only one component u_i varies.

Given that we can now write $u_i = u_i(x_1, x_2, x_3)$, the equations $u_1 = \text{constant}$, $u_2 = \text{constant}$, $u_3 = \text{constant}$ define three families of surfaces, and (u_1, u_2, u_3) is said to be a **curvilinear coordinate** system. Through each point $P(x_1, x_2, x_3)$ there passes one member of each family. Let $(\widehat{\mathbf{a}}_1, \widehat{\mathbf{a}}_2, \widehat{\mathbf{a}}_3)$ be unit vectors at P in the directions normal to $u_1 = u_1(P), u_2 = u_2(P), u_3 = u_3(P)$ respectively, such that u_1, u_2, u_3 increase in the directions $\widehat{\mathbf{a}}_1, \widehat{\mathbf{a}}_2, \widehat{\mathbf{a}}_3$. Clearly we must have

$$\widehat{\mathbf{a}}_i = \frac{\nabla u_i}{|\nabla u_i|}.$$

If $(\widehat{\mathbf{a}}_1, \widehat{\mathbf{a}}_2, \widehat{\mathbf{a}}_3)$ are mutually orthogonal, the coordinate system is said to be an **orthogonal curvilinear** coordinate system.

The surfaces $u_2 = u_2(P)$ and $u_3 = u_3(P)$ intersect in a curve, along which only u_1 varies. Let $\hat{\mathbf{e}}_1$ be the unit vector tangential to the curve at P. Let $\hat{\mathbf{e}}_2$, $\hat{\mathbf{e}}_3$ be unit vectors tangential to curves along which only u_2 , u_3 vary. For an orthogonal system we must have $\hat{\mathbf{e}}_i = \hat{\mathbf{a}}_i$ (top diagram in figure 18). Let Q be a neighbouring point to P on the curve along which only u_i varies (bottom diagram of figure 18). We have

$$\begin{split} \frac{\partial \mathbf{r}}{\partial u_i} &= \lim_{Q \to P} \frac{\mathbf{r}(Q) - \mathbf{r}(P)}{\delta u_i} \\ &= \lim_{Q \to P} \frac{\mathbf{r}(Q) - \mathbf{r}(P)}{PQ} \lim_{Q \to P} \frac{PQ}{\delta u_i} \\ &= \lim_{Q \to P} \frac{\overrightarrow{PQ}}{PQ} \lim_{Q \to P} \frac{PQ}{\delta u_i} \\ &= h_i \widehat{\mathbf{e}}_i, \end{split}$$

where we have defined $h_i = |\partial \mathbf{r}/\partial u_i|$. The quantities h_i are often known as the **length scales** for the coordinate system.

Figure 19: A volume element in an orthogonal curvilinear coordinate system.

1.9.2 Path element

Since $\mathbf{r} = \mathbf{r}(u_1, u_2, u_3)$, the **path element** $d\mathbf{r}$ is given by

$$d\mathbf{r} = \frac{\partial \mathbf{r}}{\partial u_1} du_1 + \frac{\partial \mathbf{r}}{\partial u_2} du_2 + \frac{\partial \mathbf{r}}{\partial u_3} du_3$$
$$= h_1 du_1 \hat{\mathbf{e}}_1 + h_2 du_2 \hat{\mathbf{e}}_2 + h_3 du_3 \hat{\mathbf{e}}_3$$

If the system is orthogonal then it follows that

$$(ds)^{2} = d\mathbf{r} \cdot d\mathbf{r} = h_{1}^{2}(du_{1})^{2} + h_{2}^{2}(du_{2})^{2} + h_{3}^{2}(du_{3})^{2}.$$

In what follows we will assume we have an orthogonal system so that

$$\widehat{\mathbf{e}}_i = \widehat{\mathbf{a}}_i = \frac{\partial \mathbf{r}/\partial u_i}{|\partial \mathbf{r}/\partial u_i|} = \frac{\nabla u_i}{|\nabla u_i|} \text{ for } i = 1, 2, 3.$$

In particular, path elements along curves of intersection of u_i surfaces have lengths $h_1du_1, h_2du_2, h_3du_3$ respectively.

1.9.3 Volume element

Since the volume element is approximately rectangular (figure 19) we can take

$$d\tau = (h_1 du_1) (h_2 du_2) (h_3 du_3)$$

= $h_1 h_2 h_3 du_1 du_2 du_3$.

1.9.4 Surface element

Also from figure 19, by looking at the areas of the faces of the volume element, we can see that the surface element for a surface with u_1 constant is

$$dS = h_2 h_3 \, du_2 \, du_3$$

and similarly for $u_2 = \text{constant}$, $u_3 = \text{constant}$.

1.9.5 Properties of various orthogonal coordinate systems

(i) Cartesian coordinates (x, y, z)

$$d\tau = dx dy dz, d\mathbf{r} = dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k},$$

$$(ds)^{2} = \mathbf{dr} \cdot \mathbf{dr} = (dx)^{2} + (dy)^{2} + (dz)^{2},$$

and so $h_1 = h_2 = h_3 = 1$ in this case.

Figure 20: An element of volume in cylindrical polar coordinates.

(ii) Cylindrical polar coordinates (r, ϕ, z)

See figure 20. The coordinates are related to Cartesians by

$$x = r \cos \phi, y = r \sin \phi, z = z.$$

To show that this is an orthogonal system we calculate

$$\begin{aligned}
\partial \mathbf{r}/\partial r &= (\partial x/\partial r)\mathbf{i} + (\partial y/\partial r)\mathbf{j} + (\partial z/\partial r)\mathbf{k} = (\cos\phi)\mathbf{i} + (\sin\phi)\mathbf{j}, \\
\partial \mathbf{r}/\partial \phi &= (\partial x/\partial\phi)\mathbf{i} + (\partial y/\partial\phi)\mathbf{j} + (\partial z/\partial\phi)\mathbf{k} = -(r\sin\phi)\mathbf{i} + (r\cos\phi)\mathbf{j}, \\
\partial \mathbf{r}/\partial z &= \mathbf{k}.
\end{aligned}$$

Orthogonality then follows from the fact that

$$(\partial \mathbf{r}/\partial r) \cdot (\partial \mathbf{r}/\partial \phi) = 0, \ (\partial \mathbf{r}/\partial r) \cdot (\partial \mathbf{r}/\partial z) = 0, \ (\partial \mathbf{r}/\partial \phi) \cdot (\partial \mathbf{r}/\partial z) = 0.$$

The lengthscales are

$$h_1 = |\partial \mathbf{r}/\partial r| = 1, h_2 = |\partial \mathbf{r}/\partial \phi| = r, h_3 = |\partial \mathbf{r}/\partial z| = 1,$$

and so the elements of length and volume are

$$(ds)^2 = (dr)^2 + r^2(d\phi)^2 + (dz)^2, d\tau = r dr d\phi dz.$$

The surface elements can also be calculated, e.g. an element of the surface along which r is constant (i.e. a cylinder) is

$$dS = h_2 h_3 du_2 du_3 = r d\phi dz.$$

(iii) Spherical polar coordinates (r, θ, ϕ)

See figure 21. In this case the relationship between the coordinates is

$$x = r \sin \theta \cos \phi, y = r \sin \theta \sin \phi, z = r \cos \theta \text{ with } 0 \le r < \infty, 0 \le \theta \le \pi, 0 \le \phi \le 2\pi.$$

Then

$$\begin{array}{lll} \partial \mathbf{r}/\partial r & = & \sin\theta\cos\phi\,\mathbf{i} + \sin\theta\sin\phi\,\mathbf{j} + \cos\theta\,\mathbf{k}, \\ \partial \mathbf{r}/\partial\theta & = & r\cos\theta\cos\phi\,\mathbf{i} + r\cos\theta\sin\phi\,\mathbf{j} - r\sin\theta\,\mathbf{k}, \\ \partial \mathbf{r}/\partial\phi & = & -r\sin\theta\sin\phi\,\mathbf{i} + r\sin\theta\cos\phi\,\mathbf{j} + 0\,\mathbf{k}. \end{array}$$

It can then be seen that

$$(\partial \mathbf{r}/\partial r) \cdot (\partial \mathbf{r}/\partial \theta) = r \sin \theta \cos \theta \cos^2 \phi + r \sin \theta \cos \theta \sin^2 \phi - r \sin \theta \cos \theta = 0.$$

Similarly:

$$(\partial \mathbf{r}/\partial r) \cdot (\partial \mathbf{r}/\partial \theta) = 0, \ (\partial \mathbf{r}/\partial \phi) \cdot (\partial \mathbf{r}/\partial \theta) = 0,$$

Figure 21: An element of volume in spherical polar coordinates.

and so the system is orthogonal. Then

$$h_1 = |\partial \mathbf{r}/\partial r| = \sqrt{(\sin^2 \theta \cos^2 \phi + \sin^2 \theta \sin^2 \phi + \cos^2 \theta)} = 1,$$

$$h_2 = |\partial \mathbf{r}/\partial \theta| = \sqrt{(r^2 \cos^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \sin^2 \phi + r^2 \sin^2 \theta)} = r,$$

$$h_3 = |\partial \mathbf{r}/\partial \phi| = \sqrt{(r^2 \sin^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \cos^2 \phi)} = r \sin \theta.$$

(We have assumed here that $\sin \theta > 0$, which is OK since the range of θ is 0 to π). The volume element is

$$d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi.$$

Also, an element of the surface r = constant = a (i.e. a sphere of radius a) is:

$$dS = h_2 h_3 du_2 du_3 = a^2 \sin \theta d\theta d\phi.$$

Example

Find the volume and surface area of a sphere of radius a, and also find the surface area of a cap of the sphere that subtends an angle 2α at the centre of the sphere.

1.9.6 Gradient in orthogonal curvilinear coordinates

Let

$$\nabla \Phi = \lambda_1 \widehat{\mathbf{e}}_1 + \lambda_2 \widehat{\mathbf{e}}_2 + \lambda_3 \widehat{\mathbf{e}}_3$$

in a general coordinate system, where $\lambda_1, \lambda_2, \lambda_3$ are to be found. Recall that the element of length is given by

$$d\mathbf{r} = h_1 du_1 \hat{\mathbf{e}}_1 + h_2 du_2 \hat{\mathbf{e}}_2 + h_3 du_3 \hat{\mathbf{e}}_3.$$

Now

$$d\Phi = \frac{\partial \Phi}{\partial u_1} du_1 + \frac{\partial \Phi}{\partial u_2} du_2 + \frac{\partial \Phi}{\partial u_3} du_3$$
$$= \frac{\partial \Phi}{\partial x} dx + \frac{\partial \Phi}{\partial y} dy + \frac{\partial \Phi}{\partial z} dz$$
$$= (\nabla \Phi) \cdot d\mathbf{r}.$$

But, using our expressions for $\nabla \Phi$ and $d\mathbf{r}$ above:

$$(\nabla \Phi) \cdot d\mathbf{r} = \lambda_1 h_1 du_1 + \lambda_2 h_2 du_2 + \lambda_3 h_3 du_3$$

and so we see that

$$h_i \lambda_i = \frac{\partial \Phi}{\partial u_i} \ (i = 1, 2, 3).$$

Thus we have the result that

$$\nabla \Phi = \frac{\widehat{\mathbf{e}}_1}{h_1} \frac{\partial \Phi}{\partial u_1} + \frac{\widehat{\mathbf{e}}_2}{h_2} \frac{\partial \Phi}{\partial u_2} + \frac{\widehat{\mathbf{e}}_3}{h_3} \frac{\partial \Phi}{\partial u_3}.$$

This result now allows us to write down ∇ easily for other coordinate systems.

(i) Cylindrical polars (r, ϕ, z)

Recall that $h_1 = 1, h_2 = r, h_3 = 1$. Thus

$$\nabla = \widehat{\mathbf{r}} \frac{\partial}{\partial r} + \frac{\widehat{\phi}}{r} \frac{\partial}{\partial \phi} + \widehat{\mathbf{z}} \frac{\partial}{\partial z}.$$

(ii) Spherical polars (r, θ, ϕ)

We have $h_1 = 1, h_2 = r, h_3 = r \sin \theta$, and so

$$\nabla = \widehat{\mathbf{r}} \frac{\partial}{\partial r} + \frac{\widehat{\theta}}{r} \frac{\partial}{\partial \theta} + \frac{\widehat{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}.$$

1.9.7 Expressions for unit vectors

From the expression for ∇ we have just derived it is easy to see that:

$$\hat{\mathbf{e}}_i = h_i \nabla u_i$$
.

Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can find the third from the relation

$$\hat{\mathbf{e}}_1 = \hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_3 = h_2 h_3 (\nabla u_2 \times \nabla u_3),$$

and similarly for the other components, by permuting in a cyclic fashion.

1.9.8 Divergence in orthogonal curvilinear coordinates

Suppose we have a vector field

$$\mathbf{A} = A_1 \widehat{\mathbf{e}}_1 + A_2 \widehat{\mathbf{e}}_2 + A_3 \widehat{\mathbf{e}}_3.$$

First consider

$$\nabla \cdot (A_1 \widehat{\mathbf{e}}_1) = \nabla \cdot [A_1 h_2 h_3 (\nabla u_2 \times \nabla u_3)]$$
$$= A_1 h_2 h_3 \nabla \cdot (\nabla u_2 \times \nabla u_3) + \nabla (A_1 h_2 h_3) \cdot \frac{\widehat{\mathbf{e}}_1}{h_2 h_3},$$

using the results established just above. Also we know that

$$\nabla \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot \operatorname{curl} \mathbf{B} - \mathbf{B} \cdot \operatorname{curl} \mathbf{C},$$

and so it follows that

$$\nabla \cdot (\nabla u_2 \times \nabla u_3) = (\nabla u_3) \cdot \operatorname{curl}(\nabla u_2) - (\nabla u_2) \cdot \operatorname{curl}(\nabla u_3) = 0,$$

since the curl of a gradient is always zero. Thus we are left with

$$\nabla \cdot (A_1 \widehat{\mathbf{e}}_1) = \nabla (A_1 h_2 h_3) \cdot \frac{\widehat{\mathbf{e}}_1}{h_2 h_3} = \frac{1}{h_1 h_2 h_3} \frac{\partial}{\partial u_1} (A_1 h_2 h_3).$$

We can proceed in a similar fashion for the other components, and establish that

$$\nabla \cdot \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_3 h_1 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right\}.$$

It is now easy to write down div in other coordinate systems.

(i) Cylindrical polars (r, ϕ, z)

Recall that $h_1 = 1, h_2 = r, h_3 = 1$. Thus using the above formula:

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \left\{ \frac{\partial}{\partial r} (rA_1) + \frac{\partial}{\partial \phi} (A_2) + \frac{\partial}{\partial z} (rA_3) \right\}$$
$$= \frac{\partial A_1}{\partial r} + \frac{A_1}{r} + \frac{1}{r} \frac{\partial A_2}{\partial \phi} + \frac{\partial A_3}{\partial z}.$$

(ii) Spherical polars (r, θ, ϕ)

We have $h_1 = 1, h_2 = r, h_3 = r \sin \theta$. Hence

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} (r^2 \sin \theta A_1) + \frac{\partial}{\partial \theta} (r \sin \theta A_2) + \frac{\partial}{\partial \phi} (r A_3) \right\}.$$

1.9.9 Curl in orthogonal curvilinear coordinates

Again just consider the curl of the first component of A:

$$\begin{split} \nabla \times \left(A_1 \widehat{\mathbf{e}}_1 \right) &= \nabla \times \left(A_1 h_1 \nabla u_1 \right) \\ &= A_1 h_1 \nabla \times \left(\nabla u_1 \right) + \nabla \left(A_1 h_1 \right) \times \nabla u_1 \\ &= 0 + \nabla \left(A_1 h_1 \right) \times \nabla u_1 \\ &= \left\{ \frac{\widehat{\mathbf{e}}_1}{h_1} \frac{\partial}{\partial u_1} (A_1 h_1) + \frac{\widehat{\mathbf{e}}_2}{h_2} \frac{\partial}{\partial u_2} (A_1 h_1) + \frac{\widehat{\mathbf{e}}_3}{h_3} \frac{\partial}{\partial u_3} (A_1 h_1) \right\} \times \frac{\widehat{\mathbf{e}}_1}{h_1} \\ &= \frac{\widehat{\mathbf{e}}_2}{h_1 h_3} \frac{\partial}{\partial u_3} (h_1 A_1) - \frac{\widehat{\mathbf{e}}_3}{h_1 h_2} \frac{\partial}{\partial u_2} (h_1 A_1), \end{split}$$

(since $\hat{\mathbf{e}}_1 \times \hat{\mathbf{e}}_1 = 0$, $\hat{\mathbf{e}}_2 \times \hat{\mathbf{e}}_1 = -\hat{\mathbf{e}}_3$, $\hat{\mathbf{e}}_3 \times \hat{\mathbf{e}}_1 = \hat{\mathbf{e}}_2$). We can obviously find $\operatorname{curl}(A_2\hat{\mathbf{e}}_2)$ and $\operatorname{curl}(A_3\hat{\mathbf{e}}_3)$ in a similar way. These can be shown to be

$$\nabla \times (A_2 \widehat{\mathbf{e}}_2) = \frac{\widehat{\mathbf{e}}_3}{h_2 h_1} \frac{\partial}{\partial u_1} (h_2 A_2) - \frac{\widehat{\mathbf{e}}_1}{h_2 h_3} \frac{\partial}{\partial u_3} (h_2 A_2),$$

$$\nabla \times (A_3 \widehat{\mathbf{e}}_3) = \frac{\widehat{\mathbf{e}}_1}{h_3 h_2} \frac{\partial}{\partial u_2} (h_3 A_3) - \frac{\widehat{\mathbf{e}}_2}{h_3 h_1} \frac{\partial}{\partial u_1} (h_3 A_3).$$

Adding the three contributions together, we find we can write this in the form of a determinant as

$$\operatorname{curl} \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left| \begin{array}{ccc} h_1 \widehat{\mathbf{e}}_1 & h_2 \widehat{\mathbf{e}}_2 & h_3 \widehat{\mathbf{e}}_3 \\ \partial / \partial u_1 & \partial / \partial u_2 & \partial / \partial u_3 \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{array} \right|,$$

in which form it is probably easiest remembered. It's then straightforward to write down curl in various orthogonal coordinate systems.

(i) Cylindrical polars

$$\operatorname{curl} \mathbf{A} = \frac{1}{r} \left| \begin{array}{ccc} \widehat{\mathbf{r}} & r\widehat{\phi} & \widehat{\mathbf{z}} \\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z \\ A_1 & rA_2 & A_3 \end{array} \right|.$$

(ii) Spherical polars

$$\operatorname{curl} \mathbf{A} = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \widehat{\mathbf{r}} & r\widehat{\theta} & r \sin \theta \, \widehat{\phi} \\ \partial/\partial r & \partial/\partial \theta & \partial/\partial \phi \\ A_1 & rA_2 & r \sin \theta A_3 \end{vmatrix}.$$

1.9.10 Alternative definitions for grad, div, curl

Let τ be a region enclosed by a surface S and let P be a general point of τ . We established earlier that

$$\int_{\tau} \nabla \phi \, d\tau = \int_{S} \widehat{\mathbf{n}} \, \phi \, dS.$$

(Problem Sheet 3). It follows that

$$\int_{\tau} \mathbf{i} \cdot \nabla \phi \, d\tau = \int_{S} (\mathbf{i} \cdot \widehat{\mathbf{n}}) \phi \, dS.$$

Now the left-hand-side above can be written as $\tau\{\overline{\mathbf{i}\cdot\nabla\phi}\}$ where the bar denotes the mean value of this quantity over τ . Since we are assuming that ϕ has continuous derivatives throughout τ , we can write

$$\{\overline{\mathbf{i}\cdot\nabla\phi}\}=\{\mathbf{i}\cdot\nabla\phi\}_Q$$

for some point Q of τ . Thus we have that

$$\{\mathbf{i} \cdot \nabla \phi\}_Q = \frac{1}{\tau} \int_S (\mathbf{i} \cdot \hat{\mathbf{n}}) \phi \, dS.$$

Now let $\tau \to 0$ about P. Then $P \to Q$ and we have that at any point P of τ :

$$\mathbf{i} \cdot \nabla \phi = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\mathbf{i} \cdot \widehat{\mathbf{n}}) \phi \, dS.$$

Similar results can be established for $\mathbf{j} \cdot \nabla \phi$ and $\mathbf{k} \cdot \nabla \phi$. Taken together, these imply that

$$\nabla \phi = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} \widehat{\mathbf{n}} \, \phi \, dS.$$

This can be regarded as an alternative way of defining $\nabla \phi$, rather than defining it as $(\partial \phi/\partial x)\mathbf{i} + (\partial \phi/\partial y)\mathbf{j} + (\partial \phi/\partial z)\mathbf{k}$.

We can similarly establish that

$$\operatorname{div} \mathbf{A} = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\widehat{\mathbf{n}} \cdot \mathbf{A}) \, dS,$$

$$\operatorname{curl} \mathbf{A} = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\widehat{\mathbf{n}} \times \mathbf{A}) \, dS,$$

which are alternative definitions of the divergence and curl, and are clearly independent of the choice of coordinates, which is one of the advantages of this approach. In particular we can see that the divergence is a measure of the flux of a quantity.

Equivalence of definitions

Let's show that the definition of divergence given here is consistent with the curvilinear formula given earlier. Consider $\delta\tau$ to be the volume of a curvilinear volume element located at the point P, with edges of length $h_1\delta u_1, h_2\delta u_2, h_3\delta u_3$, and unit vectors aligned as shown in the picture (figure 22). The volume of the element $\delta\tau \simeq h_1h_2h_3\delta u_1\delta u_2\delta u_3$. We start with our definition

$$\operatorname{div} \mathbf{A} = \lim_{\tau \to 0} \frac{1}{\tau} \int_{S} (\widehat{\mathbf{n}} \cdot \mathbf{A}) \, dS,$$

and aim to compute explicitly the right-hand-side. This involves calculating the contributions to \int_S arising from the six faces of the volume element. If we start with the contribution from the face PP'S'S, this is:

$$-(A_1h_2h_3)_P \delta u_2\delta u_3 + \text{ higher order terms.}$$

The contribution from the face QQ'R'R is

$$(A_1h_2h_3)_Q \, \delta u_2 \delta u_3 + \text{h.o.t.} = \left[(A_1h_2h_3) + \frac{\partial}{\partial u_1} (A_1h_2h_3)\delta u_1 \right]_P \delta u_2 \delta u_3 + \text{h.o.t.},$$

Figure 22: A curvilinear volume element.

using a Taylor series expansion. Adding together the contributions from these two faces we get

$$\left[\frac{\partial}{\partial u_1}(A_1h_2h_3)\right]_P \delta u_1 \delta u_2 \delta u_3 + \text{ h.o.t.}$$

Similarly, the sum of the contributions from the faces PSRQ, P'S'R'Q' is

$$\left[\frac{\partial}{\partial u_3}(A_3h_1h_2)\right]_P \delta u_1 \delta u_2 \delta u_3 + \text{ h.o.t.},$$

while the combined contributions from PQQ'P', SRR'S' is

$$\left[\frac{\partial}{\partial u_2}(A_2h_3h_1)\right]_P \delta u_1 \delta u_2 \delta u_3 + \text{ h.o.t.}.$$

If we then let $\delta au o 0$ we have that

$$\lim_{\delta\tau\to0}\frac{1}{\delta\tau}\int_{S}\widehat{\mathbf{n}}\cdot\mathbf{A}\,dS=\frac{1}{h_{1}h_{2}h_{3}}\left\{\frac{\partial}{\partial u_{1}}(A_{1}h_{2}h_{3})+\frac{\partial}{\partial u_{2}}(A_{2}h_{3}h_{1})+\frac{\partial}{\partial u_{3}}(A_{3}h_{1}h_{2})\right\},$$

and so we can see that the integral expression for $\operatorname{div} \mathbf{A}$ is consistent with the formula in curvilinear coordinates derived earlier.

1.9.11 The Laplacian in orthogonal curvilinear coordinates

From the formulae already established for grad and div, we can see that

$$\nabla^{2}\Phi = \nabla \cdot (\nabla \Phi)$$

$$= \frac{1}{h_{1}h_{2}h_{3}} \left\{ \frac{\partial}{\partial u_{1}} \left(h_{2}h_{3} \frac{1}{h_{1}} \frac{\partial \Phi}{\partial u_{1}} \right) + \frac{\partial}{\partial u_{2}} \left(h_{3}h_{1} \frac{1}{h_{2}} \frac{\partial \Phi}{\partial u_{2}} \right) + \frac{\partial}{\partial u_{3}} \left(h_{1}h_{2} \frac{1}{h_{3}} \frac{\partial \Phi}{\partial u_{3}} \right) \right\}.$$

This formula can then be used to calculate the Laplacian for various coordinate systems.

(i) Cylindrical polars (r, ϕ, z)

$$\begin{split} \nabla^2 \Phi &= \frac{1}{r} \left\{ \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(r \frac{\partial \Phi}{\partial z} \right) \right\} \\ &= \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2}. \end{split}$$

(ii) Spherical polars (r, θ, ϕ)

$$\begin{split} \nabla^2 \Phi &= \frac{1}{r^2 \sin \theta} \left\{ \frac{\partial}{\partial r} \left(r^2 \sin \theta \frac{\partial \Phi}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{\partial}{\partial \phi} \left(\frac{1}{\sin \theta} \frac{\partial \Phi}{\partial \phi} \right) \right\} \\ &= \frac{\partial^2 \Phi}{\partial r^2} + \frac{2}{r} \frac{\partial \Phi}{\partial r} + \frac{\cot \theta}{r^2} \frac{\partial \Phi}{\partial \theta} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Phi}{\partial \phi^2}. \end{split}$$

Figure 23: A surface S parameterized by u_1 and u_2 .

1.10 Changes of variable in surface integration

Suppose we have a surface S which is parameterized by the quantities u_1 , u_2 . We can therefore write that on S:

$$x = x(u_1, u_2), y = y(u_1, u_2) z = z(u_1, u_2).$$

[For example, if S is the surface of a sphere of unit radius we have $x = \sin \theta \cos \phi$, $y = \sin \theta \sin \phi$, $z = \cos \theta$ and so we can take $u_1 = \theta$, $u_2 = \phi$.]

We can consider the surface to be comprised of arbitrarily small parallelograms whose sides are obtained by keeping either u_1 or u_2 constant: see figure 23, i.e.

$$dS$$
 = Area of parallelogram with sides $\frac{\partial \mathbf{r}}{\partial u_1} du_1$ and $\frac{\partial \mathbf{r}}{\partial u_2} du_2$
 = $|\mathbf{J}| du_1 du_2$,

where the **vector Jacobian J** is given by

$$\mathbf{J} = \frac{\partial \mathbf{r}}{\partial u_1} \times \frac{\partial \mathbf{r}}{\partial u_2}$$

This result is particularly useful when using a substitution in a surface integral, as we can write

$$\int_{S} f(x, y, z) dS = \int_{S} F(u_1, u_2) |\mathbf{J}| du_1 du_2,$$

where $F(u_1, u_2) = f(x(u_1, u_2), y(u_1, u_2), z(u_1, u_2)).$

If S is a region R in the x-y plane, (i.e. z=0 on R), the result reduces to

$$\int_{R} f(x,y) \, dx \, dy = \int_{R} F(u_1, u_2) \, \left| \det(J(x_u)) \right| \, du_1 du_2,$$

where J is the Jacobian matrix we met earlier, i.e.

$$J(x_u) = \left| \begin{array}{cc} \partial x/\partial u_1 & \partial x/\partial u_2 \\ \partial y/\partial u_1 & \partial y/\partial u_2 \end{array} \right|.$$

Note that since $dx dy = |\det(J(x_u))| du_1 du_2$ it follows that $du_1 du_2 = (1/|\det(J(x_u))|) dx dy$, and hence

$$1/\left|\det(J(x_u))\right| = \left|\det(J(u_x))\right|,$$

which is a result found earlier by a different method. These formulae apply for both orthogonal and non-orthogonal transformations.

Figure 24: A section of a helicoid.

Example

Evaluate the integral

$$\int_{S} \sqrt{1 + x^2 + y^2} \, dS$$

where S is the surface of the helicoid (shown in figure 24):

$$x = u\cos v, \ y = u\sin v, \ z = v,$$

with $0 \le u \le 4$ and $0 \le v \le 4\pi$.