/ Reparametrization Trick del 14.12.18 $F = f(z) \rightarrow max$ p(x,210) log p(x10) >, ELBO (0, X) = E (21X) (logp(x, 210)-- log q(z/X)) -max VAE, Policy Gradient, Actor-Critic E $p(T|\Theta)$ $R(T) \rightarrow max$ $p(S) = \pi(a|S|\Theta)$ $R(a|S|\Theta)$ $R(a|S|\Theta)$ $\nabla_{x} \underbrace{E}_{q(z|\lambda)} f(z) = \nabla_{x} \underbrace{E}_{q(e)} f(\bar{s}(e|\lambda)) = \underbrace{E}_{q(e)} \nabla_{x} f(\bar{s}(e|\lambda)) = \underbrace{E}$ $= \frac{|E|}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1 \times m}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1 \times m}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \qquad |\nabla_{x} s^{2}(\varepsilon|x)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{z} f(z)| \approx \frac{1}{q(\varepsilon)} |\nabla_{x} f(z)| \approx \frac{1}{m = d \cdot m \cdot x}$ $= \frac{1}{q(\varepsilon)} |\nabla_{x} f(z)| \approx \frac{1}{$ $\simeq 2$ ≤ 2 ≤ 1 ≤ 2 ≤ 3 ≤ 3 ZER, F(21)= E, E~ R[0,2] ZEIR , [F(Z, 1x), F(Z, 1Z, x), ..., F(Z) Zd-1...Z) = cmangapmajypmee = [E, ... Ea], E, ~ R[0, 2] pacupegenence FA houck ofpamma op-un?

Implicit RT $\nabla_{\lambda} \mathcal{E}_{q(z|\lambda)} f(z) = \mathcal{E}_{q(e)} \nabla_{z} f(z) | \nabla_{\lambda} s^{2}(e|\lambda) = \mathcal{E}_{q(z|\lambda)}$ $= E \qquad \nabla_2 f(2) \nabla_2 Z \left\{ \nabla_1 Z = \nabla_2 S^2(\epsilon | \lambda) \right|_{\epsilon = S(2|\lambda)}$ $S(z|\lambda) = e | \forall \lambda$ $\{z = z(\lambda)\}$ 02 s(2/x) = 2 + 5 s(2/x)=0 Pewehne CNAY 02 2 = - (\(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) $d \times d$ Ilpunep I 9(2/x)=N(2/m,62),2ER S(21, 0) = 2 - N(E10,1) RT: 52(Elm, 6) = M+ 6E Dy 52 (8/m,6) = 2, 7,52 (8/m,62) = 8 = 2-m IRT: $P_{Z} = -\frac{P_{Z}S(z|_{Y},6)}{P_{Z}S(z|_{Y},6)} = -\frac{1}{7}\frac{1}{6} = 1$ $\nabla_{\delta} Z = -\frac{\nabla_{\delta} S(2|\mu, 6)}{\nabla_{2} S(2|\mu, 6)} = -\frac{Z-\mu}{6}$

Thumber I $Z \in \mathbb{R}$, $S(Z|X) = F(Z|X) = \varepsilon \sim R(0, Z)$ $P_{X} Z = -\frac{P_{X} F(Z|X)}{9(Z|X)}$

1 ERT	IRT
Typolog bring $\mathcal{E} \sim q(\mathcal{E})$ If $f(z)$ $Z = S^{-2}(\mathcal{E} \lambda)$ $f(z \lambda)$	$Z \sim q(z \lambda)$ $f(z)$
Typning major $\nabla_{\lambda} Z = \nabla_{\lambda} S^{2}(\epsilon \lambda)$ $\nabla_{\lambda} I = \nabla_{z} f(z) \nabla_{\lambda} Z$ $q(z \lambda)$	$\nabla_{\lambda} Z = -\left(\nabla_{2} S(2 \lambda)\right)^{2} \nabla_{\lambda} S(2 \lambda)$ $\nabla_{\lambda} f = \nabla_{2} f(2) \nabla_{\lambda} Z$
Mpunep! ramma-painpegenenne Gamma $(x a,b) = \frac{b^{\alpha}}{f(a)} x^{\alpha-2} \exp(-bx)$, x70 $f(a)$	
rla	$y \sim Gamma (y a, 1)$ $x = \frac{y}{8} \sim Gamma (y a, 8)$
$F(y a) = \int_{r(a)}^{\infty} \frac{1}{f(a)} dt$ exp(-t) dt	
y = np.exp(x)	$dx = 2$ $y = np.e \times p(x)$
z = y+x refurnz	$dy = y \cdot dx$ $Z = y + x$

pacien upsuzbognoù hponogom brepèg

return z, dz

dz = dy + dx

9 (Pd 1x) = Diz (Po 1 NN(Wd, X)) 1 (9,2)= 1 (0) 1 (2)? p(02/wa, B, L) Eman gerann panome repez VI] Penapanempujangua gucupemnux pacup-ū $1 \dots K$ $\sum_{i=2}^{K} \pi_i = 1, \pi_i = 0$ $\pi_i \dots \pi_k \qquad i=2$ Z~ (at (2171): (i ~ Exp(1) = exp(-(i), (i 70 Z = argmin $\frac{Ci}{\pi i} = argmax (log \pi_i - log Ci) \bigcirc$ $z \in i \leq k$ π_i $z \in i \leq k$ $F(c) = \int e \times p(-t) dt = -e \times p(-t) \Big|_{0}^{c} = 1 - e \times p(-c) = \varepsilon$ $= \gamma \quad c = -\log(n-\varepsilon)$ $= \gamma \quad c = -\log(n-\varepsilon)$ $= \gamma \quad C = -\log (n - \varepsilon)$ $C = -\log \varepsilon \quad \mathcal{E} \sim R(0, 2)$ 8: =- log (= - log (- log E:) ~ Cumbel (8/0,1) (arymax (log Ti+ di), Gumbel-Max trick $1 \le i \le k$ Gumbel - SoftMax: $Z = Softmax_{T} (log \Pi + \delta) = \begin{cases} e \times p \left(\frac{log \Pi_{i} + \delta_{i}}{T} \right) \\ E \times p \left(\frac{log \Pi_{i} + \delta_{i}}{T} \right) \end{cases}$ $Z = Softmax_{T} (log \Pi + \delta) = \begin{cases} E \times p \left(\frac{log \Pi_{i} + \delta_{i}}{T} \right) \\ E \times p \left(\frac{log \Pi_{i} + \delta_{i}}{T} \right) \end{cases}$ $= \sum_{i=2}^{K} e \times p \left(\frac{log \Pi_{i} + \delta_{i}}{T} \right)$ $= \sum_{i=2}^{K} (log \Pi_{i} + \delta_{i})$ $= \sum_{i=2}^{K} (log \Pi_{i} + \delta_{i})$ $T = cnsf, T = 2, T \rightarrow 0$