Last name	
D	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 14 Linear independence, Bases, Dimension.

Concepts & Notation

- (Sec. 2.1) vector, vector space, linear combination.
- (Sec. 2.2) subspace, subspace spanned by a set of vectors, span.
- (Sec. 2.3) linearly dependent/independent set of vectors, basis, dimension.
- (Sec. 2.4) ordered basis, coordinates, coordinate matrix, $[\alpha]_{\mathcal{B}}$.

A vector space V with a finite basis is **finite dimensional**.

We showed: If if V is a finite-dimensional vector space, then every basis has the same number of elements.

The **dimension** of a finite-dimensional vector space V is the number of elements in any basis of V and is denoted dim V.

We showed: Let S be a linearly independent subset of a vector space V. If β is not in the subspace spanned by S then the set obtained by adding β to S is linearly independent.

1. Claim: Any linearly independent set in a finite-dimensional vector space V is part of (can be extended to) a (finite) basis for V.

Coordinates!

- 2. $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(1, 0), (0, 1)\}$ is a basis for \mathbb{R}^2 . Let $\alpha = (2, 3)$. Find x_1, x_2 such that $\alpha = x_1\alpha_1 + x_2\alpha_2$.
- 3. Argue that x_1 and x_2 are unique.
- 4. $\mathcal{B}' = \{\alpha'_1, \alpha'_2\} = \{(1, 0), (1, 1)\}$ is a basis for \mathbb{R}^2 . Let $\alpha = (2, 3)$. Find x'_1, x'_2 such that $\alpha = x'_1 \alpha'_1 + x'_2 \alpha'_2$.

- 5. What are the *coordinates* of a vector α in a vector space V with respect to an ordered basis $\mathcal{B} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$? What is the *coordinate matrix* $[\alpha]_{\mathcal{B}}$?
- 6. $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(1, 0), (0, 1)\}$ is a basis for \mathbb{R}^2 . Let $\alpha = (2, 3)$. Find $[\alpha]_{\mathcal{B}}$.
- 7. $\mathcal{B}' = \{\alpha_1', \alpha_2'\} = \{(1, 0), (1, 1)\}$ is a basis for \mathbb{R}^2 . Let $\alpha = (2, 3)$. Find $[\alpha]_{\mathcal{B}'}$.

Claim: There is an invertible matrix P such that $[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$. We will find P.

- 8. Find the coordinates for α'_1 in terms of basis $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(1, 0), (0, 1)\}$, that is, find $[\alpha'_1]_{\mathcal{B}}$.
- 9. Find the coordinates for α'_2 in terms of basis $\mathcal{B} = \{\alpha_1, \alpha_2\} = \{(1, 0), (0, 1)\}$, that is, find $[\alpha'_2]_{\mathcal{B}}$.
- 10. Let P be the matrix whose columns are $[\alpha'_1]_{\mathcal{B}}$ and $[\alpha'_2]_{\mathcal{B}}$. Check that $[\alpha]_{\mathcal{B}} = P[\alpha]_{\mathcal{B}'}$.
- 11. Why does that construction work?
- 12. Argue that P is invertible.