Neural Network Classifier – Part 1

Dr. Kalidas Y., IIT Tirupati

By the end of this lecture, you will understand the principles of a neural network based classification algorithm

Brief timelines

- Biological experiments
 - Alexander Bain 1873 Memory
 - William James 1890 Memory and Actions
 - Sherrington 1898 Experiments on rats
 - Donald Hebb 1940 Neural learning
- Computational experiments
 - McCulloth and Pitts 1943 Theoretical model
 - Farley and Clark 1954 Experiment on electrical circuits
- Algorithms
 - Rosenblatt 1958 Linear model
 - Minsky and Pepert 1969 Non linear issues
 - Rumelhart and McClelland 1986 Texts
- Deep networks
 - Rina Dechter 1986
 - Igor Aizenberg 2000
 - Geoff Hinton 2006...

84) key phrase... "Neural Network"

Binary Logistic Regression

•
$$y_i \in \{+1, -1\}$$

•
$$F(w) = \frac{1}{1 + e^{-y_i(w \cdot x_i)}}$$

• In general if we can define Loss Function Per Point, that would do!

Summarizing Multi Class Logistic Regression...

- 1. Input xi is m-dimensional data point
- 2. Output yi is k-dimensional data point
 - 1. k-class classification problem
 - 2. One hot encoded representation
- 3. Model, $f(x) = softmax(W \times x)$
 - 1. $W_{k\times m}$ is a kxm matrix (that needs to be learnt)
- 4. Data set, $D = \{(x_1, y_1), ... (x_N, y_N)\}$
- 5. Loss function, $L(W) = \sum_{i=1}^{i=N} l_i$
 - l_i is the choice of sub-loss function between two arrays of numbers
 - Squared Error, $l_i = \sum_{j=1}^{j=k} (y_i[j] \widehat{y}_i[j])^2$
 - Absolute Error, $l_i = \sum_{j=1}^{j=k} |y_i[j] \widehat{y}_i[j]|$
 - Cross Entropy Loss, $l_i = -\sum_{j=1}^{j=k} y_i[j] * \log(\widehat{y}_i[j])$ (Popular choice!)

Neuron <u>Transformation Function</u>

xi is m dimensional vector w0 is a m dimensional vector

Called activation function, a(x)

85) key phrase... "Sigmoid Function"

xi is m dimensional vector w0 is a m dimensional vector

Called activation function, a(x)

86) key phrase... "Rectified Linear Unit"

xi is m dimensional vector w0 is a m dimensional vector

Called activation function, a(x)

Several Activation Functions...

- Identity, a(z)=z• Binary step, $a(z)=\begin{cases} 0 \ (\forall z<0) \\ 1 \ (\forall z\geq 1) \end{cases}$ (for example, approx. $a(z)=\frac{1}{1+e^{-2000*z}}$)
- Sigmoid, $a(z) = \frac{1}{1+e^{-z}}$ Tanh, $a(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$

- Rectified Linear Unit (ReLU), $a(z) = \max(0, z)$ Leaky ReLU, $a(z) = \begin{cases} 0.01 * z \ (\forall z < 0) \\ z \ (\forall z \ge 0) \end{cases}$ Parametric ReLu, $a(z) = \begin{cases} \alpha * z \ (\forall z < 0) \\ z \ (\forall z \ge 0) \end{cases}$
- Several other...

Which one to take??? It's a hyper parameter search or common norm or intuition based... On a funny note, you will find people talking a lot about these, don't worry.. it's usual b**t!

87) key phrase... "Neural Network"

xi is m dimensional vector w0, w1 are a m dimensional vectors

Can we have k Neurons???

1.
$$y_i[0] = a(w_0 \cdot x_i)$$

2.
$$y_i[1] = a(w_1 \cdot x_i)$$

3.
$$y_i[2] = a(w_2 \cdot x_i)$$

- *4.* ...
- 5. $y_i[k-1] = a(w_{k-1} \cdot x_i)$

1.
$$y_i[0] = a(w_0 \cdot x_i)$$

2.
$$y_i[1] = a(w_1 \cdot x_i)$$

3.
$$y_i[2] = a(w_2 \cdot x_i)$$

5.
$$y_i[k-1] = a(w_{k-1} \cdot x_i)$$

Let,
$$W_{k \times m} = \begin{bmatrix} w_{0,0}, \dots, w_{0,m-1} \\ w_{1,0}, \dots, w_{1,m-1} \\ \dots \\ w_{k-1,0}, \dots, w_{k-1,m-1} \end{bmatrix}$$

$$1. \quad y_i[\mathbf{0}] = a(w_\mathbf{0} \cdot x_i)$$

2.
$$y_i[1] = a(w_1 \cdot x_i)$$

3.
$$y_i[2] = a(w_2 \cdot x_i)$$

5.
$$y_i[k-1] = a(w_{k-1} \cdot x_i)$$
 Let, $x_i' = W \times x_i$ Let, $x_i'' = a(x_i')$

Then,

Let,
$$W_{k \times m} = \begin{bmatrix} w_{0,0}, \dots, w_{0,m-1} \\ w_{1,0}, \dots, w_{1,m-1} \\ \dots \\ w_{k-1,0}, \dots, w_{k-1,m-1} \end{bmatrix}$$

$$\widehat{y_i} = x_i^{"}$$
 (Regression) OR...
 $\widehat{y_i} = softmax(x_i^{"})$ (Classification)

1.
$$y_{i}[0] = a(w_{0} \cdot x_{i})$$

2. $y_{i}[1] = a(w_{1} \cdot x_{i})$ Let, $W_{k \times m} = \begin{bmatrix} w_{0,0}, \dots, w_{0,m-1} \\ w_{1,0}, \dots, w_{1,m-1} \\ \dots \\ w_{k-1,0}, \dots, w_{k-1,m-1} \end{bmatrix}$

- *4.* ...
- 5. $y_i[k-1] = a(w_{k-1} \cdot x_i)$

Squared Error Loss function,

$$L(W) = \frac{1}{2}(||\widehat{y}_i - y_i||)^2$$

Let, $x_i' = W \times x_i$ Let, $x_i'' = a(x_i')$ Then, $\widehat{y}_i = x_i'' \text{ OR...}$ $\widehat{y}_i = softmax(x_i'')$

88) key phrase... "Layers in a neural network"

A layer is an array of numbers

89) key phrase... "Input layer"

• Input xi m-dimensional data

90) key phrase... "Output layer"

• Output $\widehat{y_i}$ k-dimensional data

91) key phrase... "Hidden layer"

- An array of numbers after some vector operations or transformations before
- This array of numbers will under go transforms after as well

Two Layer Neural Network Regressor

- xi is m-dimensional data point (input layer input layer)
- yi is k-dimensional data point (output layer output layer)
 - k-class classification problem
 - one hot encoding

[There is no hidden layer]

- Data set, D={(xi,yi)} i=1..N is given
- Model, $f(x_i) = a(W \times x_i)$
- Loss function, $L(W) = \frac{(||f(x_i) y_i||)^2}{2}$

Three Layer Neural Network Regressor

- xi is m-dimensional data point
- yi is k-dimensional data point
 - k-class classification problem
 - one hot encoding
- There is 1 hidden layer (h-dimensional)
- Data set, D={(xi,yi)} i=1..N is given
- Model,
 - $x'_i = a_1(W_1 \times x_i)$ Note that W_1 is $h \times m$ matrix
 - $f(x_i) = a_2(W_2 \times x_i')$ Note that W_2 is $k \times h$ matrix
- Loss function, $L(W_1, W_2) = \frac{(||f(x_i) y_i||)^2}{2}$

Four Layer Neural Network Regressor

- xi is m-dimensional data point
- yi is k-dimensional data point
 - k-class classification problem
 - one hot encoding
- There are 2 hidden layers (h₁-dimensions and h₂-dimensions)
- Data set, D={(xi,yi)} i=1..N is given

- Model,
 - $x_i^{(1)} = a_1(W_1 \times x_i)$ Note that W_1 is $h_1 \times m$ matrix
 - $x_i^{(2)} = a_2 \left(W_2 \times x_i^{(1)} \right)$ Note that W_2 is $h_2 \times h_1$ matrix
 - $f(x_i) = a_3 \left(W_3 \times x_i^{(2)} \right)$ Note that W_3 is $k \times h_2$ matrix
- Loss function, $L(W_1, W_2, W_3) = \frac{(||f(x_i) y_i||)^2}{2}$

92) key phrase..." Multi Layer Neural Network Regressor"

- L+1 layer neural network
- xi is m-dimensional data point $x_i^{(0)}$ //0th layer (input layer $h_0 = m$)
- yi is k-dimensional data point $x_i^{(L)}$ //Lth layer (output layer $h_L = k$)
 - k-class classification problem
 - one hot encoding
- There are L-1 hidden layers (h; dimensions in ith layer)
- Data set, D={(xi,yi)} i=1..N is given
- Model,
 - $x_i^{(1)} = a_1 \left(W_1 \times x_i^{(0)} \right)$ Note that W_1 is $h_1 \times h_0$ matrix
 - ...
 - $x_i^{(l)} = a_l \left(W_l \times x_i^{(l-1)} \right)$ Note that W_l is $h_l \times h_{l-1}$ matrix
 - ...
 - $f(x_i) = x_i^{(L)} = a_L \left(W_L \times x_i^{(L-1)} \right)$
- Loss function, $L([W_1, ..., W_L]) = \frac{(||f(x_i) y_i||)^2}{2}$ (C) Dr. Kalidas Y., IIT Tirupati

Multi Layer Neural Network Regressor (with bias)

- L+1 layer neural network
- xi is m-dimensional data point $x_i^{(0)}$ //0th layer (input layer $h_0 = m$)
- yi is k-dimensional data point $x_i^{(L)}$ //Lth layer (output layer $h_L = k$)
 - [Optional]
 - k-class classification problem
 - · one hot encoding
 - Its just a numeric vector in case of regression
- There are L-1 hidden layers (h; dimensions in ith layer)
- Data set, D={(xi,yi)} i=1..N is given
- Model,
 - $x_i^{(0)} = x_i^{(0)} \odot 1$
 - $x_i^{(1)} = a_1 (W_1 \times x_i^{(0)}) \odot 1$ Note that W_1 is $h_1 \times (h_0 + 1)$ matrix
 - ...
 - $x_i^{(l)} = a_i \left(W_l \times x_i^{(l-1)} \right) \odot 1$ Note that W_l is $h_l \times (h_{l-1} + 1)$ matrix
 - ...
 - $f(x_i) = x_i^{(L)} = a_L \left(W_L \times x_i^{(L-1)} \right)$
- Loss function, $L([W_1, ..., W_L]) = \frac{(f(x_i) y_i)^2}{2}$

Define concatenation term:

$$\begin{bmatrix} a \\ b \\ 1 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \odot 1$$

93) key phrase..." Multi Layer Neural Network Classifier"

$$\widehat{y_i} = softmax(x_i^{(L)})$$

Cross Entropy Loss,
$$l_i = -\sum_{j=1}^{j=k} y_i[j] * log(\widehat{y}_i[j])$$

Weight update equation

$$W_{(new)} = W_{(old)} - \eta \nabla L(W) \Big|_{W=W_{(old)}}$$

Weigh update for... a three Layer Neural Network Regressor

- xi is m-dimensional data point
- yi is k-dimensional data point
 - [Optional]
 - k-class classification problem
 - one hot encoding
 - Its just a numeric vector in case of regression
- There is 1 hidden layer (h-dimensional)
- Data set, D={(xi,yi)} i=1..N is given
- Model,
 - $x'_i = a_1(W_1 \times x_i)$ Note that W_1 is $h \times m$ matrix
 - $f(x_i) = a_2(W_2 \times x_i')$ Note that W_2 is $m \times h$ matrix
- Loss function, $L(W_1, W_2) = \frac{(||f(x_i) y_i||)^2}{2}$

Example of... weight update for a 3 layer neural network

•
$$L([W_1, W_2]) = \frac{1}{2} * (f(x_i) - y_i)^2$$

•
$$f(x_i') = a_2(W_2 \times x_i')$$

•
$$a_2(W_2 \times x_i') = \frac{1}{1 + e^{-W_2 \times x_i'}}$$

•
$$x_i' = a_1(W_1 \times x_i)$$

•
$$a_1(W_1 \times x_i) = \frac{1}{1 + e^{-W_1 \times x_i}}$$

•
$$L([W_1, W_2]) = \frac{1}{2} * \left(a_2 \left(W_2 \times \left(a_1 (W_1 \times x_i) \right) \right) - y_i \right)^2$$

•
$$\frac{\partial L}{\partial W_1[1,2]} = \frac{\partial L}{\partial a_2} \times \frac{\partial a_2}{\partial a_1} \times \frac{\partial a_1}{\partial (W_1 \times x_i)} \times \frac{\partial (W_1 \times x_i)}{\partial W_1[1,2]}$$

$$\frac{\partial L}{\partial a_2}$$
 $\frac{\partial a_2}{\partial a_1}$

Similarly, you have to differentiate ..for all elements of all W's!

$$\frac{\partial a_1}{\partial (W_1 \times x)} \qquad \frac{\partial (W_1 \times x)}{\partial W_1[1,2]}$$

$$= \frac{1}{2} * 2 * \left(a_2\left(W_2 \times \left(a_1(W_1 \times x_i)\right)\right) - y_i\right)^1 * a_2\left(W_2 \times a_1(W_1 \times x_i)\right) * \left(1 - a_2\left(W_2 \times a_1(W_1 \times x_i)\right)\right) * a_1(W_1 \times x_i) * \left(1 - a_1(W_1 \times x_i)\right) * x_{1,2}$$
(C) Dr. Kalidas Y., IIT Tirupati

94) key phrase... "Vanishing gradients"

95) key phrase... "Exploding gradients"

ReLU activation function solves this problem...

96) key phrase... "Automatic Differentiation"