บทที่ 3 ตัวกลางการเชื่อมต่อเครือข่ายและโปรโตคอล

1. ตัวกลางการเชื่อมต่อ

ใช้สำหรับติดตั้งภายในอาคารฝังใต้ดินแต่ละประเภทมีข้อควรพิจารณาในการเลือกใช้งานลักษณะการเชื่อมโยงเครือข่าย ระยะทางใช้สัญญาณ เนื่องจากความยาวของสายสัญญาณ มีผลต่อกำลังในการส่งข้อมูลข่าวสารด้วย

1.1 สายคู่ตีเกลียว (Twisted pair)

เป็นสายสัญญาณที่มีการไขว้สายตัวนำเป็นจำนวนรอบที่แน่นอนเพื่อลดผลกระทบจากการรบกวนและสัญญาณรบกวน จากสายสัญญาณอื่นโดยสายไฟภายในสายสัญญาณจำนวน 4 คู่รวมเป็นจำนวน 8 เส้นนำสายคู่บิดเกลียวมาใช้เชื่อมต่อกับ อุปกรณ์ในเครือข่ายจะใช้หัวเชื่อมแบบ RJ-45 สายที่ออกแบบมาเพื่อใช้เฉพาะภายในอาคารเท่านั้นทั้งที่สายคู่ตีเกลียวแบ่ง ออกเป็น 2 ประเภทคือ

1) แบบไม่มีฉนวนหุ้ม (<mark>Un</mark>shielded Twisted pair)

นิยมใช้ในระบบเครือข่าย Lan ขนาดเล็กนอกจากสะดวกในการติดตั้งและราคาถูกใช้ในการเชื่อมโยงสามารถ ยาวได้ประมาณ 100 เมตรเพียงสายพลาสติกทนต่อสัญญาณรบกวนได้น้อย

มาตรฐาน	ความเร็ว	ระยะทาง	คุณสมบัติ
CAT5e	100/1000MB	100 เมตร	ใช้กลับเครือข่ายแลน ที่มีความเร็ว ปานกลาง และ
			ความเร็วสูง รองรับการส่งข้อมูลแบบ Full-Duplex
CAT6	1,000/10,000MB	100 เมตร	ใช้กลับเครือข่ายแลน ที่มีความเร็ว สูง 10Gbps แบนด์
			วิดท์ 250MHz (ราคาแพงกว่า CAT5e)
CAT7	มากกว่า 1,000MB	100 เมตร	ใช้กลับเครือข่ายแลน ที่มีความเร็ว สูง 10Gbps แบนด์
			วิดท์ 600MHz สามารถส่งข้อมูลได้หลายประเภทใน
			สายสัญญาณเส้นเดียว เช่น Voice data (มีราคาแพง)

2) แบบมีฉนวนหุ้ม (shielded Twisted pair)

มีฉนวนที่ใช้หุ้มอลูมิเนียมฟอยล์ สายแต่ละคู่ไว้ชั้นและมัดรวมด้วย Metallic Braid ช่วยลดการรบกวนของ สัญญาณไฟฟ้าจึงทำให้ความต้านทานต่อการรบกวนได้ดีกว่าเป็นสายสัญญาณประเภทติดตั้งภายนอกอาคารมากกว่าและมีราคา แพงกว่า

1.2 สายโคแอกเซียล (Coaxial)

สายที่มีลวดตัวนำทองแดงเป็นแกนกลาง แล้วหุ้มด้วยฉนวนฟอยล์โลหะถักสาน เพื่อช่วยลดสัญญาณรบกวนทางไฟฟ้า จากภายนอกและลดการแพร่กระจายคลื่นรบกวนสายสัญญาเอง ปัจจุบันนิยมนำมาเชื่อมต่อกับเสาอากาศโทรทัศน์

1) สายโคแอกเซียล แบบหนา (Thick Coaxial Cable)

เป็นสายที่มีขนาดใหญ่สามารถใช้รับ-ส่งข้อมูลได้ในระยะทางสูงสุด 500 เมตร ทนต่อสัญญาณรบกวนได้ดี รองรับความเร็ว 10Mbps ปัจจุบันไม่ได้รับความนิยม

2) สายโคแอกเซียล แบบบาง (Thin Coaxial Cable)

เป็นสายที่มีขนาดเล็กกว่าแบบหนาง่ายต่อการติดตั้งมีขนาดเล็กและมีความยืดหยุ่นสูงสามารถใช้รับส่งข้อมูลได้ ในระยะทางสูงสุดคือ 185 เมตรรองรับความเร็ว 10Mbps ใช้กับเครือข่าย Lan

1.3 สายใยแก้วนำแสง (Fiber optic)

เป็นสื่อกลางในการส่งข้อมูลแบบสายที่มีความเร็วสูงที่สุดเนื่องจากใช้ส่งสัญญาณแสงแทนการใช้สัญญาณไฟฟ้าซึ่งแสง เดินทางเร็วกว่าไฟฟ้าอีกทั้งยังสามารถทนต่อสัญญาณรบกวนได้ดีกว่าและรองรับการส่งข้อมูลด้วยความเร็วสูงกว่าระยะทางใน การส่งข้อมูลก็สูงกว่าสายทองแดงมีแบนด์วิดธ์สูงกว่า 10 Gbps ด้วยเหตุนี้สายใยแก้วนำแสงจึงสามารถส่งข้อมูลได้ไกลหลาย กิโลเมตรโดยไม่ต้องอาศัยอุปกรณ์ทวนสัญญาณ

แกนกลางจะเรียกว่า Core แล้วล้อมด้วย Cladding ซึ่ง Cladding จะห่อหุ้มด้วยบัฟเฟอร์และสุดท้ายวัสดุห่อหุ้ม ภายนอกเรียกว่า Outer jacket วิธีการส่งข้อมูลจากแปลงสัญญาณข้อมูลจากรูปแบบสัญญาณไฟฟ้าให้เป็นสัญญาณแสง จึงทำ ให้การส่งสัญญาณไม่ถูกรบกวนจากสนามแม่เหล็กไฟฟ้า อีกทั้งยังทำให้สามารถส่งสัญญาณได้ไกลและปริมาณมากได้ดีกว่า โดย มักนิยมใช้เป็นแกนหลักของระบบ (Backbone) แทนสายโคแอกเชียล สายใยแก้วนำแสงมีอยู่หลายชนิดด้วยกัน หากแบ่งตาม ความสามารถในการนำแสงจะแบ่งออกเป็น 2 ชนิด คือ

1) ชนิดโหมดเดี่ยว (Single-Mode Optical Fiber: SM)

มีขนาดเส้นผ่าศูนย์กลางของ Cladding ประมาณ 125 ไมครอนและขนาดของเส้นผ่านศูนย์กลางของ Core ประมาณ 5-10 ไมครอน Core ที่มีขนาดเล็กทำให้แสงเดินทางออกมาเพียงโหมดเดียว มีการแตกกระจายของสัญญาณเกิดขึ้นได้ ยากทำให้มี Bandwidth ที่กว้างแสงจะส่งตรงไปตามท่อแก้วเพียงเส้นเดียว ทำให้เดินทางได้ด้วยความเร็วสูงสุด เหมาะที่จะใช้ กับระยะทางไกล เช่น ระหว่างเมือง ระหว่างประเทศ เป็นต้น

2) ชนิดหลายโหมด (Multi-Mode Optical Fiber: MM)

มีขนาดเส้นผ่าศูนย์กลางของ Cladding ประมาณ 125 ไมครอนและขนาดของเส้นผ่านศูนย์กลางของ Core ประมาณ 50 ไมครอน Core