

# Evaluation of the Context-Free Path Querying Algorithm Based on Matrix Multiplication

#### Semyon Grigorev

JetBrains Research, Saint Petersburg University, Russia s.v.grigoriev@spbu.ru, Semen.Grigorev@jetbrains.com



# Context-Free Path Querying

Find paths which satisfy constraints in form of a formal language  $L = \{a^n b^n \mid n > 0\}$ 



Describe  $((a, a) \mid \exists a \text{ from } a \text{ to } a \text{ to } a) \in I)$ 

Result:  $\{(u, v) \mid \exists p \text{ from } u \text{ to } v : \text{word}(p) \in L\}$ 

# Matrix-Based Algorithm [1]

T is an adjacency matrix of the input graph. The grammar is in the normal form

$$T_{ij} = \{ N \mid N \stackrel{*}{\Rightarrow} \omega, \omega - \text{path bw } i \text{ and } j \}$$

$$T_{ik} \times T_{kj} = \{ A \mid B \in T_{ik}, C \in T_{kj}, A \to BC \}$$

$$T^{(i)} = T^{(i-1)} \cup (T^{(i-1)} \times T^{(i-1)})$$

- Can be formulated in terms of boolean matrices multiplication
- Easy to run in parallel environments: GPUs, multithreaded CPUs, clusters

### Results

- Dataset for CFPQ evaluation is collected and published
  - Contains both graphs and queries
  - Contains both real-world and synthetic graphs
- Several CFPQ algorithms implementations are created, evaluated and published

#### Future Research

- Create an open extensible platform for CFPQ algorithms evaluation
- Extend dataset with new data
- Implement and evaluate distributed matrix-based CFPQ algorithms
- Implement and evaluate sparse boolean matrix-based CFPQ algorithms

# Implementations

#### Our implementations [2]:

[Scipy] Matrix-based algorithm which uses sparse matrices from Scipy library (Python)

[M4RI] Matrix-based algorithm which uses dense matrices multiplication from  $\mathbf{m4ri}$  library (Method of Four Russians,  $\mathbf{C})$ 

[GPU] Matrix-based algorithm which uses our own implementation of the naïve boolean matrix multiplication in  $CUDA\ C$ 

#### Reference implementations:

[CuSprs] Matrix-based algorithm [1] which uses NVIDIA cuSPARSE library (CUDA C, GPGPU)

[CYK] CYK-based algorithm [3] implemented in Java (CPU)

#### We Need More Real-World Data

Graph: classical ontologies (RDFs)

Query: same-generation query over type and SubClassOf relations

Grammar:  $S \to scor S sco \mid tr S t \mid scor sco \mid tr t$ 

| RDF      |     |      | Algorithms        |                 |                   |                     |                   |  |  |
|----------|-----|------|-------------------|-----------------|-------------------|---------------------|-------------------|--|--|
| Name     | #V  | #E   | Scipy             | M4RI            | GPU               | CuSprs              | CYK               |  |  |
| atm-prim | 291 | 685  | 3 ms              | 2 ms            | 1 ms              | $269 \mathrm{ms}$   | 8.5 min           |  |  |
| biomed   | 341 | 711  | $3 \mathrm{\ ms}$ | $5~\mathrm{ms}$ | $1 \mathrm{\ ms}$ | $283 \mathrm{\ ms}$ | $7 \min$          |  |  |
| pizza    | 671 | 2604 | $6~\mathrm{ms}$   | $8 \mathrm{ms}$ | $1 \mathrm{\ ms}$ | $292~\mathrm{ms}$   | $54 \mathrm{min}$ |  |  |
| wine     | 733 | 2450 | $7 \mathrm{ms}$   | $6 \mathrm{ms}$ | $1 \mathrm{ms}$   | $294 \mathrm{ms}$   | 68 min            |  |  |

- 2019 (GPU) is 10<sup>6</sup> times faster than 2016 (CYK) on real-world data
  - Reasonable time even for CPU based implementations
- We should find bigger RDFs
- We should find other real-world cases for CFPQ
  - Both graphs and queries

# We Should Do More Research on the Algorithms Scaling

|                                             | Graph      | Scipy              | M4RI               | GPU                | CuSprs             |
|---------------------------------------------|------------|--------------------|--------------------|--------------------|--------------------|
| C.,                                         | G10k-0.001 | 37 s               | 2 s                | $0.2 \mathrm{\ s}$ | 35 s               |
| Sparse graphs are generated by GTgraph      | G10k-0.1   | $601 \mathrm{\ s}$ | 1 s                | $0.1 \mathrm{\ s}$ | $395 \mathrm{\ s}$ |
| Query: $S \rightarrow a \ S \ b \mid a \ b$ | G40k-0.001 | -                  | 97 s               | 8 s                | -                  |
|                                             | G80k-0.001 | -                  | 1142 s             | $65 \mathrm{s}$    | _                  |
| Craph is a smale                            | G25k       | _                  | 33 s               | 5 s                | -                  |
| Graph is a cycle                            | G50k       | -                  | $360 \mathrm{\ s}$ | 44 s               | -                  |
| Query: $S \to S S \mid a$                   | G80k       | _                  | 1292 s             | 190 s              | _                  |

• We can handle graphs with 80k vertices in a reasonable time by using GPGPU

- Technical bound: GPGPU RAM does not fit bigger graphs

- We should evaluate multi-GPU systems
- We should evaluate distributed solutions
- We should implement a sparse boolean matrices library for GPGPU

#### Contact Us

#### Our team:

- Semyon Grigorev: s.v.grigoriev@spbu.ru
- Nikita Mishin: mishinnikitam@gmail.com
- Iaroslav Sokolov: sokolov.yas@gmail.com
- Egor Spirin: egor@spirin.tech
- Egor Nemchinov: nemchegor@gmail.com
- Vladimir Kutuev: vladimir.kutuev@gmail.com
- Sergey Gorbatyuk: sergeygorbatyuk171@gmail.com

Both dataset and implementations are available on GitHub: https://github.com/SokolovYaroslav/CFPQ-on-GPGPU

#### References

- [1] Rustam Azimov and Semyon Grigorev. Context-free path querying by matrix multiplication. In Proceedings of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), GRADES-NDA '18, pages 5:1-5:10, 2018.
- [2] Nikita Mishin, Iaroslav Sokolov, Egor Spirin, Vladimir Kutuev, Egor Nemchinov, Sergey Gorbatyuk, and Semyon Grigorev. Evaluation of the context-free path querying algorithm based on matrix multiplication. In Proceedings of the 2Nd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA), GRADES-NDA'19, pages 12:1–12:5, New York, NY, USA, 2019. ACM.
- [3] Xiaowang Zhang, Zhiyong Feng, Xin Wang, Guozheng Rao, and Wenrui Wu. Context-free path queries on rdf graphs. In Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch, Freddy Lecue, Fabian Flöck, and Yolanda Gil, editors, *The Semantic Web ISWC 2016*, pages 632–648, Cham, 2016. Springer International Publishing.

#### Acknowledgments

The research is supported by the JetBrains Research grant and the Russian Science Foundation grant 18-11-00100