

Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh

Bulletin 05 Ecosystem Services Valuation Forest Economics Division

Government of the People's Republic of Bangladesh

Bangladesh Forest Research Institute

Chattogram
December 2020

Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh

Bulletin 05 Ecosystem Services Valuation Forest Economics Division

Md. Abul Hasnat Shah Jalal
Dr. Rafiqul Haider
Md. Melon
Md. Motiar Rahman
Syedul Alam
S.M. Rabiul Alam
Dr. Mohammed Kamal Hossain
Md. Akhter Hossain

Government of the People's Republic of Bangladesh

Bangladesh Forest Research Institute

Chattogram
December 2020

Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh

The report is based on the findings of a study titled "Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh" funded by Bangladesh Forest Research Institute and conducted by the Forest Economics Division of BFRI

Copyright

© 2020 Bangladesh Forest Research Institute, Chattogram, Bangladesh

Citation: Jalal, M.A.H.S., Haider, M.R., Melon, M., Rahman, M.M., Alam, S., Alam, S.M.R., Hossain, M.K. and Hossain, M.A. 2020. Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh, Bangladesh Forest Research Institute, Chattogram. Bulletin 05, Forest Economics Division, xii+90 pp.

Front cover photograph

Ecosystem services from trees adapted from "Biodiversity and human health diagram developed by World Health Organization and Conservation of Biological Diversity.

Printed by

Rimini Internatinol 291/B, Fokerapool, Dhaka-1000 Mob: 01882 400087, 01819 201658 E-mail: rimini.int2012@gmail.com

Foreword

Now-a-days, the scientists and policy makers are making the increasing use of the concept of ecosystem services to describe the mix of productive and non-productive benefits that society obtains directly or indirectly from our environment. The key messages is that holding on to all of these benefits depends very much on how well we look after our unique native plants and animals and the ecological systems that support them. After all, these ecosystem services support us. The concept of ecosystem services has become part of our approach to effectively manage the Protected Areas by intervening the biodiversity, water, primary industries, human settlements, regional planning and climate change. It is also reshaping thinking around sustainable environmental management and stimulating new ideas for managing landscape resilience. The idea of ecosystem services has been well developed scientifically, but we have scarce information in Bangladesh.

The Bangladesh Forestry Master Plan 2017–2036 underlined the importance of conducting ecosystem services valuation to inform decision making. Despite a growing attention to ecosystem services in policy documents in recent years, scientific literature on ecosystem services valuation remains limited in Bangladesh. The importance of forest-based ecosystem services was also highlighted in many other policies and plans such as the draft National Forest Policy, the Bangladesh Climate Change Strategy and Action Plan, the National Adaptation Plan, the Coastal Zone Policy, the Nationally Appropriate Plan of Action, and the Land Use Policy. The importance of ecosystem services valuation for monitoring the progress and the impacts of such programmatic decisions on ecosystems is likely to grow in the future Bangladesh. Baraiyadhala National Park is a familiar Protected Area and biodiversity hotspots of Bangladesh because of the species richness, beautiful landscape crisscrossed by attractive streams and water falls. Baraiyadhala National park is the abode of *Cycas pectinata* an endangered gymnosperm found in Bangladesh. People living surrounding the national park are directly and indirectly benefitted from it's numerous ecosystem services.

Valuation of Ecosystem Services in Baraiyadhala National Park, Bangladesh is the first of it's kind in the valuation of services from a prominent Protected Area. This valuation study is conducted by Bangladesh Forest Research Institute (BFRI) will broaden the stakeholders understanding on the economic value of the services received from a Protected Area. It is intended to reach the policy makers, researchers and practitioners for better management of the protected areas of Bangladesh. BFRI is appropriately pioneering the valuation of Baraiyadhala National Park (BDNP) and I hope it reaches far and wide. This report makes an important contribution to the forestry sector of Bangladesh.

Dr.M. Masudur Rahman Director Bangladesh Forest Research Institute Chattogram

Acknowledgement

All praises and gratitude goes to Almighty Allah, the most gracious, benevolent and merciful, who gave us energy and sound health to endure the rigor of this tedious job of assessing the economic value of the ecosystem services of Baraiyadhala National Park, Chittagong North Forest Division, Bangladesh.

The study team highly acknowledges the support of officials and field stuffs of Bangladesh Forest Department especially the Divisional Forest Officer Mr. Baktiar Nur Siddiqui in the field during data collection as well as providing valuable information. We are thankful to the Baraiyadhala, Khoiyachora and Wahedpur union parishad for providing demographic information of the respective unions. We express our pleasure to the officials of Bangladesh Bureau of Statistics, Department of Agricultural Extension and Assistant Commissioner of Land from Mirsharai upazila for providing important information for successful completion of the study. The study team is also grateful to the members of Co-management Committee of Baraiyadhala National Park for providing information during the study.

We are highly grateful to Dr. Sepul Kanti Barua for reviewing the report and providing valuable comments and suggestions which significantly improved the robustness and completeness of the report.

We would like to express our profound sense of gratitude to Dr. Masudur Rahman, Director, Bangladesh Forest research Institute and officials from MoEFCC for funding the Research program as well as extending necessary logistic support to conduct the research.

We believe, this study is made possible with help of all your supports and the findings of the study will significantly contribute to the scientific communities as well as policy makers.

Md. Abul Hasnat Shah Jalal
Dr. Rafiqul Haider
Md. Melon
Md. Motiar Rahman
Syedul Alam
S.M. Rabiul Alam
Dr. Mohammed Kamal Hossain
Md. Akhter Hossain
October 2020

List of acronyms and abbreviations

AGB	Above Ground Biomass		Food and Agriculture Organization
BBS	Bangladesh Bureau of Statistics		of the United Nations
BDT	Bangladeshi Taka	GBH	Girth at Breast Height
BFD	Bangladesh Forest Department	GFV	Gross Financial Value
BFRI		ha	Hectare
		НН	Households
BDNP	Baraiyadhala National Park	MEA	Millennium Ecosystem Assessment
BGB	Below Ground Biomass	MoEFC	C Ministry of Environment, Forest and
CBD	Convention on Biological Diversity		Climate Change
CI	Cash Income	NFV	Net Financial Value
CICES	S The Common International	PAs	Protected Areas
	Classification of Ecosystem Services	PES	Payment of Ecosystem Services
CST	Total Cost of Production	SOC	Soil Organic Carbon
DBH	Diameter at Breast Height	TCM	Travel Cost Method
ECTS	EU Carbon Trading Scheme	TGF	Trip Generating Function
ЕРНН	Expected Number of Households	TQE	Total Quantity Extracted
ES	Ecosystem Service	ZTCM	Zonal Travel Cost Method

Executive Summary

Eliciting the economic benefits provided by Protected Areas (PAs) is important in order to ensure that they are properly considered in policy and decision making. There are relatively few studies that provide a comprehensive overview of the economic benefits provided by the forest ecosystems of Bangladesh, in spite of the large share of forest resources in the protected area system. An economic valuation of the selected ecosystem services supplied by the Baraiyadhala National Park (BDNP) located in the Chattogram district of Bangladesh is the outcome of the study. The National Park forest is one of the well-known protected areas in the country. The study estimated the economic values of 11 ecosystem services under four ecosystem service categories (i.e. provisioning, cultural, regulating and supporting), and examines the policy implications for financing protected area management. The services are fuelwood, bamboo, broom grass, sungrass, medicinal plants, potential timber harvests, groundwater recharge, carbon sequestration, air filtration, tourism, and biodiversity. Data collection was conducted through forest survey, household and tourist interview, and key informant interview during the period of July 2019 to June 2020.

The methods of valuing the ecosystem services varied with the nature of the services. Direct market valuation method is used for valuing the provisioning services; zonal travel cost method is applied for tourism; and value transfer method was applied for the other services. A conservative estimate of the total economic benefits generated by the National Park is around 2,43,113 BDT/ha/yr (USD 2,860 per ha/yr; 1 USD = 85 BDT), whereas the total economic value is 561.36 million BDT/yr (USD 6.60 million/yr). This study provides a comparatively higher value of ecosystem services per unit area than that's of similar forests reported by some other studies from Bangladesh. It might be due to the number of ecosystem services considered in this study and popularity of BDNP as an ecotourism site. The study indicates a necessity of indepth research for developing reference values for a number of key ecosystem services. The findings would help the policy makers to understand the direct and indirect economic contributions of a forest ecosystem like BDNP. It will also help draw more attention and fundings for better management of the PA to improve and maintain a sustainable flow of ecosystem services.

Table of Contents

Lis	st of acronyms and abbreviations	\mathbf{V}
Ex	ecutive Summary	vii
1.	Introduction	1
	1.1 Objectives of the study	3
2.	Baraiyadhala National Park (BDNP)	3
	2.1 Location	4
	2.2 Area	5
	2.3 Surrounded localities of Baraiyadhala National Park	5
	2.4 Hydrology	6
	2.5 Topography and soil	6
	2.6 Climate	6
	2.7 Demography	7
3.	Materials and Methods	7
	3.1 Identification of the ecosystem services for valuation	7
	3.2 Data collection	8
	3.2.1 Key informant interview	8
	3.2.2 Forest survey	8
	3.2.3 Household survey	9
	3.2.4 Tourist survey	10
	3.2.5 Market survey	11
	3.2.6 Secondary data collection	11
	3.2.7 Literature survey	11
	3.3 Classification of the ecosystem services	12
	3.4 Data analysis	13
	3.4.1 Provisioning services	13
	3.4.1.1 Tree volume estimation	13
	3.4.1.2 Estimating the collection of provisioning services	13
	3.4.1.3 Valuation of the provisioning services	13
	3.4.1.4 Valuation of potential timber harvests	13
	3.4.2 Cultural services	16
	3.4.2.1 Application of travel cost method	16

	3.4.2.2 Visitation rate estimation	16
	3.4.2.3 Travel cost calculation	17
	3.4.2.4 Regressing for trip generating function development	17
	3.4.2.5 Valuation of tourism	18
	3.4.2.6 Assumptions of travel cost value estimation	18
	3.4.3 Regulatory services	19
	3.4.3.1 Biomass estimation	19
	3.4.3.2 Carbon sequestration estimation	19
	3.4.3.3 Valuation of carbon sequestration	19
	3.4.3.4 Groundwater infiltration	21
	3.4.3.5 Air pollution removal	22
	3.4.4 Supporting services valuation	24
	3.4.4.1 Biodiversity	24
	3.4.5 Adjustments for inflation rate	24
4.	Results and Discussion	25
	4.1 Socio-economic features of the local stakeholders	25
	4.1.1 Family size	25
	4.1.2 Educational level	25
	4.1.3 Occupation of the respondents	26
	4.1.4 Households income	26
	4.1.5 Land ownership	27
	4.1.6 Value of the provisioning services	28
	4.2 Cultural services	30
	4.2.1 Visitor's general information	30
	4.2.1.1 Sample size and gender breakdown	30
	4.2.1.2 Education level of the visitors	30
	4.2.1.3 Age groups	30
	4.2.1.4 Occupation	31
	4.2.1.5 Marital status	32
	4.2.1.6 Monthly income	32
	4.2.1.7 Nature of tourists	32
	4.2.1.8 Number of tourists' visits to BDNP	33
	4.2.1.0 Magns of traval	33

4.2.1.10 Travel distance	33
4.2.2 Desired improvements	34
4.2.3 Visitor expenses	34
4.2.3.1 Transport	35
4.2.3.2 Spending on food	35
4.2.3.3 Additional spending	35
4.2.4 Distribution of tourists in different spots	36
4.2.5 Monthly distribution of tourists	37
4.2.6 Valuation of tourism	38
4.3 Regulatory services	40
4.3.1 Carbon sequestration	40
4.3.2 Ground water infiltration	41
4.3.3 Air pollution removal	41
4.4 Supporting services	42
4.4.1 Biodiversity	42
4.4.1.1 Floral and faunal composition	42
4.4.1.2 Value of Biodiversity	45
4.4.2 Total economic value of BDNP	46
4.5 Discussion	47
4.6 Recommendations	47
5. Conclusion	48
References	48
Appendices	55
List of Tables	
Table 1: Distribution of land area of Baraiyadhala National Park under different	
forest beats	5
Table 2: Ecosystem services identified for valuation in BDNP	7
Table 3: The classification of ecosystem services according to the Millennium	
Ecosystem Assessment	13
Table 4: Visitation rate of BDNP	17
Table 5: Linear regression coefficients	17

Table 6: Occupation of the household heads	26
Table 7: Land ownership of the households living in the vicinity of BDNP	27
Table 8: Monetary values of the major provisioning services extracted annually	
from Baraiyadhala National Park (2019-2020)	29
Table 9: Education level of the tourists	30
Table 10: Monthly income of the tourists of BDNP	32
Table 11: Number of visits to the tourist spots of B	33
Table 12: Distance traveled by the tourists	34
Table 13: Types of improvements suggested by visitors	34
Table 14: Cost of tourists for transportation purpose to reach the BDNP	35
Table 15: Expenses by the tourists for food during the travel to and from BDNP	35
Table 16: Estimated demand schedule for BDNP	38
Table 17: The annual value of tourism as a cultural ecosystem service in BDNP	
(2019-2020)	39
Table 18: Carbon sequestration and it's monetary value in BDNP	40
Table 19: Amount of groundwater recharge in BDNP	41
Table 20. Avoided cost of illness through air pollution removal by BDNP	41
List of Figures	
Figure 1: Forests of Baraiyadhala National Park	3
Figure 2: Location map of Baraiyadhala National Park	4
Figure 3: Baraiyadhala National Park indications from the Dhaka-Chittagong highway	5
Figure 4: Forest survey- a) tree data collection from the sample plots, and b)	
litter sample collection	9
Figure 5: a) Key informant interview (KII) in the Baraiyadhala Range Office, and	
b) household interview	10
Figure 6: a) Forest resource extraction from Baraiyadhala National Park- a)	
fuelwood collection, and b) bamboo collection	10
Figure 7: a) Irrigation into agricultural field from the streams flown from BDNP,	
b) cultivation of vegetables largely depends on irrigation water, c & d)	
bamboo sticks used in the agricultural fields adjacent to the BDNP	22

Figure 8: Family size of the households living in the impact area of BDNP	25
Figure 9: Household head's education level	26
Figure 10: Monthly income of the households	27
Figure 11: Age group distribution of the visitors of BDNP	31
Figure 12: Occupation of the visitors from BDNP	31
Figure 13: Marital status of the visitors	32
Figure 14: Nature of tourists visiting the BDNP	32
Figure 15: Means of travel by the tourists	33
Figure 16: Waterfalls in Baraiyadhala National Park- a) Napittyachora, b) Rupasichora,	
c) Khoiyachora in holidays, d) Khoiyachora in dry seasons	36
Figure 17: Percentage distribution of tourist in different spots of BDNP	37
Figure 18: Distribution of tourists by months in BDNP	37
Figure 19: Demand curve for tourist of BDNP	39
Figure 20: A few representative wildlife of Baraiyadhala National Park in	
photographs i.e. a) Leopard cat, b) Common moorhen, c) Blue	
Whistling Thrush, d) Long-tailed Shrike, e) Spangled Drongo,	
and f) Spotted litter shink.	44
Figure 21: A few representative wildlife of Baraiyadhala National Park in	
photographs i.e. a) Scaly breasted munia, b) Assamese Macaque,	
c) Indian Crested Porcupine, and d) Wild boar	45
List of Appendices	
Appendix 1: Tree species recorded from BDNP	55
Appendix 2: Shrubs and woody climbers recorded from BDNP	65
Appendix 3: Herbs and herbaceous climbers (dicots) of Baraiyadhala National Park	72
Appendix 4: Amphibia/Amphibians in Baraiyadhala National Park	82
Appendix 5: Reptilia/Reptiles in Baraiyadhala National Park	83
Appendix 6: Aves of Baraiyadhala National Park	84
Appendix 7: Mammals of Baraiyadhala National Park	89

1. Introduction

Bangladesh is exceptionally rich in biodiversity, but the natural resources particularly the forest coverage of Bangladesh are degrading at an alarming rate (Alam et al., 2008). As a consequence, the tangible and intangible ecosystem services from forests are declining proportionately with the reduction of the forest health (Bourguignon, 2015). Forests provide myriads of visible and invisible services in both direct and indirect ways (Hein, 2011). Local people living in and around the forests especially in the impact zone of a certain forest ecosystem are the major beneficiaries of that ecosystem (Jannat et al., 2018). Any disruption of the ecosystem functions causes reduction of the services from a forest which severely affects the associated communities and overall environment (Secretariat of the Convention on Biological Diversity, 2001). Every year the amount of harvestable resources from forests, the flow of stream water from forest ecosystem, and the amount of carbon sequestration is diminishing worldwide which not only directly harms local livelihoods and agriculture but also exerts numerous indirect damaging effects on human civilization (Millennium Ecosystem Assessment, 2005).

The world community is now conscious about the intrinsic value of biodiversity and of the ecological, genetic, social, economic, scientific, educational, cultural, recreational and aesthetic values of ecosystems and its components (MoEF 2007). Some of the major values of forest ES are, i) Environmental value, ii) Social value, iii) Ecosystem services, iv) Economic value, v) Consumptive use value, vi) Productive use value, vii) Ethical and moral value, and viii) Aesthetic value. Biodiversity of an ecosystem is the most precious gift of nature and mankind is blessed with it. As all the organisms in an ecosystem are interlinked and interdependent, the value of biodiversity in the life of all the organisms including humans is enormous. Direct use values (goods) are food, medicine, building material, fiber, fuel etc. Indirect use values (services) are atmospheric and climate regulation, pollination, nutrient recycling, cultural, spiritual and aesthetic etc. Non-use values include potential or option value (future value either as a good or service), existence value (value of knowing something exists), and bequest value, i.e. value of knowing that something will be there for future generations. In fact, most of the environmental or ecological services are non-marketed and hence does not have a market price. Even if a market price for a resource exists, market complexity structure often does not reflect the true 'opportunity cost' of resources (Haque and Aich, 2014).

Millennium Ecosystem Assessment (2005) defined the ecosystem services conceptually

based on four pillars, e.g., support, regulatory, provisional and cultural services. The ecological services of Bangladesh Sundarbans including 9 support, 7 regulatory, 5 provisional, 3 cultural plus waste treatment etc value ranges from US\$ 105.07-840.59 per ha per year (Haque and Aich, 2014). Similar valuation of ecosystems including the biodiversity is getting preferences in a number of ecosystems of the world. The conservation priority may be given to the ecosystems, if the proper valuations of the natural resources are done.

In Bangladesh, forest ecosystem is degrading due to the anthropogenic causes which may be checked for upholding the ecosystem health by undertaking measures for protection and conservation of forests and socio-economic development of local people (Alcamo et al., 2003). Undertaking the necessary and adequate measures for retaining and further upgrading the ecosystem health requires significant policy attention. Since, the policy decisions are mostly driven by the economic interests, so valuation of ecosystem services may help drawing attention of policy makers for making sufficient allocation of funds, logistic and administrative supports for conservation of the ecosystems (Huq et al., 2017). Moreover, valuation of ecosystem services of forest ecosystem is crucial for understanding the significance of the contributions of the concerned ecosystems to the human society (Adekola et al., 2008; Hossain, 2019). The ecosystems services are tagged as provisioning, supporting, cultural and regulatory services which are characterized by use values and non-use values (Alcamo et al., 2003). However, to help the valuation, a range of methodologies have been proposed by the ecologists and economists many of which are well recognized and used widely (McDonough et al., 2017).

The government of Bangladesh, so far, declared 45 Protected Areas (PAs) including the terrestrial and marine PAs which covers 4.31% of the total area of Bangladesh. Declaration and management of protected areas is one of the efforts from the government side to tackle the loss of forest resources, especially the biodiversity. But unfortunately, none of these PAs were valued economically for their ecosystem services as a result of which there is great dearth of information about the value of ecosystem services of the PAs in Bangladesh. Baraiyadhala National Park (BDNP) is one of the 18 National Parks and the only national park located in Chattogram district out of these 45 PAs. Considering the above-mentioned contexts, BDNP has been considered for ecosystem services valuation in the present study for understanding the value of the PAs. Findings of the study are believed to be useful to the scientific community, commitments to the international conventions and treaties, Bangladesh Forest Department (BFD) and respective policy makers for sustainable PA management.

1.1 Objectives of the study

The aim was to assess the economic value of the selected ecosystem services of Baraiyadhala National Park. Specific objectives of the present research are to-

- i. Assess the economic value of selected provisioning, supporting, cultural and regulatory ecosystem services from BDNP,
- ii. Understand the significance of the ecosystem services to the local beneficiaries of BDNP, and
- iii. Recommend the necessary measures for conservation of the BDNP, to sustain the ecosystem services.

2. Baraiyadhala National Park

The Baraiyadhala National Park is featured by tropical semi-evergreen, tropical wet evergreen, tropical moist deciduous, bamboo thickets, and plantations (Fig. 1). It was declared as National Park on 6th April, 2010 by the Ministry of Environment and Forest (MoEF) by gazette notification no. MoEF/For-Sec-02/02 National Park /11/2010/210 dated 06/04/2010 applying the authority given under section 23(3) of Bangladesh Wildlife (Preservation) (Amendment) Act 1974.

Figure 1. Forests of Baraiyadhala National Park

2.1 Location

Baraiyadhala National Park is located in Sitakunda-Mirsharai Upazilla of Chattogram district. The national park is located approximately 207 km East-Southeast of Dhaka and 40 km North of Chattogram in both Mirsharai and Sitakunda upazilla under Chattogram district. Geographically, the area lies between 22°39' - 22°47' N latitude and 91°35' - 91°41' E longitude (Fig. 2). It is under the jurisdiction of Baraiyadhala range of Chittagong North Forest Division. The park is surrounded by Gobania block of Gobania beat, Mirsharai Range on North; Jungle Sitakunda mouza of Sitakunda block and beat on South; Ramgarh-Sitakunda reserve forests, Balukhali beat, Fatikchari beat, Hazarikhil beat and Baromasia beat on East and Gobania mouza, East Mogadia, East Khoiyar chara, Wahedpur, Baro Kamaldah on West. There are signboards and indications about the location of Baraiyadhala National Park on the Dhaka-Chittagong Highways so that tourists can find their destination easily (Fig. 3).

Figure 2. Location map of Baraiyadhala National Park

2.2 Area

As per the administrative structure of Bangladesh Forest Department, Baraiyadhala National Park is composed of Baraiyadhala and Wahedpur blocks of Baraiyadhala Sadar beat and Kunderhat block of Bartakia forest beat under the Baraiyadhala range. The national park covers an area of 2,933.61 hectare (Table 1) which is consisted of the forests from Sadar beat and Bartakia beat.

		•	
Range	Beat	Block	Area (hectare)
Baraiyadhala	Sadar	Baraiyadhala	644.78
		Wahedpur	1110.93
	Bartakia	Kunderhat	1157.90
Total	<u> </u>		2933.61

Table 1. Distribution of land area of Baraiyadhala National Park under different forest beats

2.3 Surrounded localities of Baraiyadhala National Park

The Baraiyadhala National Park is surrounded by a number of villages of Baraiyadhala union under Sitakunda upazila as well as two unions and a municipality of Mirsarai upazila. The villages are Rahmatnagar, Sahebdi nagar, Fulgazipura from Baraiyadhala union. On the other hand, south, middle and north Wahedpur, Jumma para and Khoiyachara para are from Wahedpur union of Mirsarai upazila. A number of large industries are also located in the vicinity of BDNP.

Figure 3. Baraiyadhala National Park indications from the Dhaka-Chittagong highway

2.4 Hydrology

The forest valleys of BDNP comprising sandy bedded streams (chara), canals and lakes contain and carry the water to the Bay of Bengal. The national park is crisscrossed by more than 10 streams most of which developed from the hills located in the middle of the BDNP. The small streams enable drainage water stagnation in the depressions and valleys in the hilly landscape, which serve as important habitat for flora and fauna, as well as provide drinking water for both human and animal populations. These streams are associated with a beautiful landscape and charming natural waterfalls. Water flows through some of the steams round the year keeping the waterfalls active and attractive to people while the remaining steams flow sufficient water only in the monsoon season.

2.5 Topography and soil

The topography of BDNP is very undulating consisted of a linear hill range stretching North to South reaching an altitude up to 350 m. The soils in this area are clay to clayey loam in the valleys and sandy loam to coarse sand in hilly areas. The clayey and sandy loams are fertile, and the sandy soil is often impregnated with iron resulting in red or yellowish tinge. Hilly soils contain unconsolidated rocks, sandstones, shale and siltstones. Moderately well to excessively well drainage capacity and high depth of the soil made it highly suitable for plant growth. The soil of high hills is, sometimes, yellowish-brown or strong brown.

2.6 Climate

BDNP has a tropical monsoon climate, characterized by basically four seasons, e.g. winter (December-February), summer (March-May), monsoon (June-September) and autumn (October-November). The south-west monsoon provides the majority of the annual rainfall. An average annual rainfall of the areas is 3,000 mm with a range of 1,611 - 3,878 mm. On average highest rainfall occurs in July (727 mm) and the lowest rainfall in January was 5 - 6 mm. Monthly average minimum and maximum temperature of the area ranges from 14.5°C to 32.4°C (Khatun et al., 2016), whereas yearly minimum and maximum humidity ranges from 73 - 80% (mean 78.04%).

BDNP is frequently affected by monsoonal heavy rainfall and cyclones during May and October. Pre-monsoon north-westerly and cyclonic storms are accompanied by high-speed winds and rains, which do significant damage to property and biotic life.

The International Disaster Database lists 157 cyclones between 1900 and 2009 for Bangladesh, with the five most devastating ones occurring in 1960, 1970, 1991, 1994 and 1997. Floods and cyclones have both direct and indirect repercussions for the forests and forest resources. Extensive damage of this forest took place in the cyclone of 1991, 1994 and 1997.

2.7 Demography

Localities are situated all along the western part of the park as the other three sides are surrounded by reserved forests. The direct and indirect dependence of local peoples on the forests is very high. Other than extracting resources, the local peoples earn their livelihood through farming, daily wage earning, service in the city or nearby industry, automobile driving and small business.

3. Materials and Methods

3.1 Identification of the ecosystem services for valuation

All major ecosystem services received from BDNP are considered for valuation in this study. The major ecosystem services were identified through interviews of the key informants i.e., park management and local stakeholders. Table 2 presents the ecosystem services considered in this valuation study. Extraction of any resources from the protected areas is banned but local people collect timber, fuelwood, bamboo, broom grass and Sungrass. Since, the collection by local people is illegal, it is a highly likely that the people interviewed underreported their collection of provisioning services, and thus the economic value of them are an underestimate. The research team collected data about extraction of these provisioning services to assess their value.

Table 2. Ecosystem services identified for valuation in BDNP

SN	Service types	Specific services accrued at regular basis	
1	Provisioning	Timber, Fuelwood, broom grass, bamboo, Sungras medicinal plants	
2	Cultural	Tourism, education and spiritual value	
3	Regulatory	Carbon sequestration, ground water infiltration, air pollution control, regeneration	
4	Supporting	Biodiversity	

3.2 Data collection

For valuation of the identified ecosystem services, data has been collected through forest, household and tourist survey. The forest survey was conducted within the boundary of BDNP whereas systematically selected households and randomly selected tourists were interviewed from the surrounding localities and tourist sites of the PA respectively. Moreover, key informant interview and extensive literature survey were conducted for gathering relevant information and meeting gaps in field data.

3.2.1 Key informant interview

Respective officials of BFD, entrepreneurs conducting small business in the tourist spots, and conscious local stakeholders were interviewed as key informant for exploring overall socio-economic condition of the local people, adjacent villages of BDNP, forest health, forest dependency of the local people, tourist spots, and heterogeneity of the population etc.

3.2.2 Forest survey

Woody plants having DBH \geq 5 cm (GBH 15.7 cm) has been measured from 67 square sample plots (10 m × 10 m) selected following random sampling method (Fig. 4). Moreover, woody plants of DBH \geq 2 cm and DBH < 5 cm were sampled as sapling from 3 m × 3 m sized square plot nested in the center of the 10 m × 10 m plot. Regeneration of tree species also sampled from the same plots. All seedlings having DBH <2 cm (GBH 6.3 cm) were considered as regeneration. Number of sample plots was adjusted to achieve a sampling intensity of 0.05%. Total height, DBH and name of the tree species occurred in the sample plots were measured and recorded. In case of surveying the regeneration plot, the species and number of individuals per species were counted and recorded. Coordinate and land cover type were recorded for each plot. In addition, soil samples were collected from each plot from 0-15 cm, 15-30 cm and 30-50 cm soil depths.

Figure 4. Forest survey- a) tree data collection from the sample plots, and b) litter sample collection.

3.2.3 Household survey

A semi-structured questionnaire was used to interview the households from the impact area of BDNP. A total of 126 households were interviewed to cover 1.5% of all households from the impact area. The BDNP is surrounded by another protected area and reserve forests in three sides (i.e., south, east and north), human localities are only in the western side. We considered the villages between BDNP and the Dhaka-Chattogram highways as the impact areas. This area constituted almost half of the three unions (i.e., Baraiyadhala, Wahedpur and Khaiyachhara) and 5 wards (i.e., Ward no. 3, 4, 6, 7 and 9) of Mirsharai municipality. So, we assumed that population of the impact zone constitute approximately half of the total number of households in these three unions and 5 wards of Mirsharai municipality. Total number of households in the impact areas is 8,629 whereas the populations are approximately 43,019 (BBS, 2015). In order to select households for interview, firstly, the existing village roads were identified as walking trails through the villages of the impact area. Then, a house is selected for interview after each two houses through the identified walking trail. A total of 6 households were interviewed from each of the selected trails. Immediately next household was selected for interview in case a selected household couldn't be interviewed. In total 126 households were interviewed from 21 village walking trails (Fig. 5). Data was collected about the extraction of forest resources, cost of collection and income from sale of resources along with basic family variables (Fig. 6).

Figure 5. a) Key informant interview (KII) in the Baraiyadhala Range Office, and b) household interview

Figure 6. Forest resource extraction from Baraiyadhala National Parka) fuelwood collection, and b) bamboo collection

3.2.4 Tourist survey

Tourist survey was conducted through interview of the tourists guided by a semi-structured questionnaire from July 2019 to June 2020. Information about the origin of the tourist, distance travelled, means of travel, total costs of travel, number of previous visits, nature of tourist (single or group), impression on the visited sites, other spots in the list of visit and basic visitor information (i.e. age, occupation, gender, family size, education level etc.) was collected during the interview. Moreover, visitors' perceptions about improvement needed in the visited sites of BDNP has been discussed and recorded. The total number of tourists surveyed was 77originating from 10

administrative districts under 7 administrative divisions of Bangladesh. Most of the tourist came from Chattogram (47) followed by Dhaka (17). The divisions have been considered here as zone to calculate the visitation rate. This number of visitors has been used for calculation of the visitation rate (dependent variable in the regression analysis) from each zone.

As there is no entry fee for any of the spots, so record of the number of tourists per annum or any other time frame doesn't exist. Moreover, a few ways are used by the tourist to enter in the spots that's why it is very difficult to count the number of tourists. The study has collected information on the number of tourists visiting the sites in different months on the year from the key informants. The key informant survey indicated that, in total 62,553 tourists visited the tourist spots of BDNP during July 2018 to June 2019.

3.2.5 Market survey

Market survey was conducted to estimate the unit prices of the timber timber of different commercially important species in the adjacent areas of BDNP through visiting the nearby sawmills and timber markets.

3.2.6 Secondary data collection

Secondary data has been collected from a number of sources to meet the necessary data gaps i.e., zonal population from BBS (2015), local population from BBS (2019) and respective union parishads, litter carbon sequestration rate from Hossain et al. (2019) etc. Previous recorded about floristic composition of BDNP has been collected from Hossain (2015) and Harun-ur-Rashid et al. (2018). Faunal diversity of the BDNP has been collected from a study of Bangladesh Forest Research Institute (BFRI) titled "Status of Wildlife in Baraiyadhala National Park". This study was conducted through transect survey and camera trapping during the period of 2014 to 2017. Many other data (i.e., value of carbon, annual rate of above ground carbon sequestration in the hill forests etc.) have been collected for valuation of ecosystem services from multiple sources which were mentioned in relevant section of this document.

3.2.7 Literature survey

Extensive literature survey has been made to explore the previous studies; establish the scientific basis and validate the methods used in this study. The literatures

include research article, books, reports, manuals etc. Information also collected from the Forest Working Plans of the Forest Department and the Management Plan of Hazarikhil Wildlife Sanctuary and Baraiyadhala National Park (Hossain, 2015). Most of these literatures have been sourced from libraries of BFRI and different websites through internet.

3.3 Classification of the ecosystem services

The classification of ESs has been debated widely in recent years (Boyd and Banzhaf, 2006; Costanza, 2008; de Groot et al., 2002; Fisher et al., 2008; Wallace, 2007), and many classification schemes have been proposed. A globally recognized scheme was introduced in Millennium Ecosystem Assessment which is adopted in several studies and initiatives (Millennium Ecosystem Assessment, 2005). The Common International Classification of Ecosystem Services (CICES) classified and defined the contributions of the ecosystems for human well-being which is also regarded as the most elaborate classification (Haines-Young and Potschin-Young, 2018). MEA defined four ecosystem service (ES) categories are described below (Table 3).

- **1. Provisioning** products and materials obtained from ecosystems, such as food, fibres, building materials, fresh water, energy, biochemicals and genetic resources.
- **2. Regulating** benefits obtained from the regulation of ecosystem processes and the environment, such as climate regulation, disease regulation, water regulation, water purification, pollination, soil protection, carbon sequestration, and protection against natural hazards and extreme events.
- **3.** Cultural nonmaterial benefits obtained from ecosystems that enrich lives, such as spiritual and religious values, recreation and tourism, aesthetic value and landscape, inspirational value, education, research, sense of place, and cultural heritage.
- **4. Supporting** underpinning services that enable other services to function, such as soil formation, nutrient cycling and primary production.

Table 3. The classification of ecosystem services according to the Millennium Ecosystem Assessment (Millennium Ecosystem Assessment, 2005)

Provisioning Services	Regulating Services	Cultural Services	Supporting Services	
Products obtained from ecosystems	Benefits obtained from regulation of ecosystem processes	Nonmaterial benefits obtained from ecosystems that enrich lives	Underpinning services that enable other services to function	
Example- • Food • Fresh water • Fuel wood • Fibre • Biochemicals • Genetic resource	Example-	Example- • Spiritual & religious • Recreation & ecotourism • Aesthetic • Inspirational • Educational • Sense of place • Cultural heritage	Example-	

3.4 Data analysis

Analysis of data for assessment and valuation of provisioning, cultural, regulatory and supporting services is discussed under the respective ecosystem services.

3.4.1 Provisioning services

3.4.1.1 Tree volume estimation

The tree data collected through the forest survey was used for estimation of standing timber volume. Gross volume was estimated using species specific total volume models from BFD (2007) to determine the timber and bamboo volume. In cases of the unavailability of volume model quarter girth formula along with appropriate average form factor (from factor 0.693) following Hossain et al. (2019) has been used for estimation of the gross tree volume. The gross timber volume is presented as the current growing stock in BDNP.

3.4.1.2 Estimating the collection of provisioning services

The extraction of provisioning services (i.e., timber, fuelwood, broom grass, sungrass, medicinal plants etc.) by the surrounding communities is estimated using the data from household survey. Quantities expressed by respondents in local units were converted to

standard units, while monetary values were expressed by respondents in Bangladeshi Taka (BDT). The 'expected' number of households participating in a specific production activity (EPHH) (e.g., timber, fuelwood, bamboo and broom grass collection etc.) and the total annual quantity extracted (TQE) were used to compute for GFV and NFV (Eq. 1).

$$EPHH_i = \frac{m}{n} \times N$$
(Eq. 1)

Where, m is the number of households participating in the activity in the sample, n the total number of sampled households (n = 126) and N the total number of households in the population (N = 8629).

TQE (i.e., for extraction of ith resources) was computed from the average annual quantity collected per sample household, multiplied by the 'expected' number of households participating in that specific production activity (EPHH).

3.4.1.3 Valuation of the provisioning services

The values of the BDNP provisioning services were estimated and expressed as annual values using three economic indicators: the gross financial value (GFV – economic worth of total quantity extracted), the net financial value (NFV – the total subsistence plus cash value to households net of input costs but not household labor costs) and CI (economic worth of quantity sold). GFV captures the total monetary value of the services. This indicator is appropriate for services that are used for subsistence. On the other hand, NFV is an acceptable indicator of the potential market values that could be received, if the ecosystem service would be sold on markets and if the costs of collection involve the direct financial costs made. In other words, it gives a good indication of the profit made. CI is an appropriate indicator for the actual cash generated from the sale of ecosystem services. This indicator measures cash generated from sale of ecosystem services and used for other household livelihood activities.

GFV was computed as follows (Eq. 2)-

$$GFV_i = TQE_i \times P_i$$
(Eq. 2)

Where, P is the average price per unit at which a product is sold in Sitakunda and Mirsharai area (April 2019 to March 2020).

NFV was computed as follows (Eq. 3)-

$$NFV_i = GFV_i - CST_i$$
(Eq. 3)

Where, CST is the total costs of collection/production, including cost of family labor and travel. The cost of family labor was taken into account as the opportunity cost was considered valuable in the context of needs of labor for farming and industrial activities. By using GFV and NFV as indicators we are able to assess the level of financial investment needed to derive benefits from the BDNP. Finally, the CI is the monetary monetary value of quantity sold estimated by multiplying the total quantity of product sold (QSD) and selling price of the resources. CI is different from GFV in that it is an indication of the total local market value of the quantity sold out of the total harvest.

Gross financial value (GFV) of the extracted forest resources per unit area of BDNP is estimated using the following formula (Eq. 4).

$$P_i = \frac{GFV_i}{A}$$
(Eq. 4)

here, P_i = Gross Financial Value of the i^{th} extracted resource per ha (BDT/ha); GFV_i = Gross Financial Value of the i^{th} resource (BDT); and A = Area of BDNP (ha). Eq. 5 is used to estimate the value of all forest resources (P_T) per unit area of BDNP.

$$P_{\rm T} = \sum_{i=1}^{n} P_i$$
(Eq. 5)

3.4.1.4 Valuation of potential timber harvests

Timber is one of the provisioning ecosystem services. Harvesting timber is prohibited from BDNP as it is a Protected Area. However, illegal logging is reported sometimes from the study area (personal communication with BFD, 2020). Timber seized from illegal loggers is just a small part of the potential timber supply from BDNP, and thus cannot be considered as an ecosystem service. That's why economic value of the potential timber harvest is estimated based on the net annual increment of the growing stock. Since, estimantion of the timber yield rate for a seconday natural forest ecosystem like BDNP is beyond the scope of the present study, that's why we used the net annual increment of the growing stock (2.91 m³/ha/yr; FAO (2014)) for estimating the total annual growing stock. Then we have used the average market price (BDT 13141 ± 1411 per m³ or BDT 372 ± 39 per cft) of the timber irrespective of species based on a timber market survey for valuing the potential harvests.

3.4.2 Cultural services

3.4.2.1 Application of travel cost method

The team assessed the cultural services (tourism) using the Travel Cost Method (TCM), a revealed preference method, which was developed from a suggestion made by Harold Hotelling in 1947. The TCM is predominantly used to estimate the value of environmental and recreational sties. Two main advantages of TCM are, i) it is based on market prices that directly reveal people's preferences for a good or services, and ii) it has been used to value a range of cultural goods and services and compare those values (O'Brien, 2010). TCM is a relatively simple and inexpensive method to use and the results are easy to interpret. In this process the data can be collected easily and the value estimation is based on a simple assumption that the value of a recreation option depends on and is inversely related to the travel cost. The method applies demand theory to estimate and explain the value of a recreation choice (Prayaga et al., 2006). However, it is to be noted that TCM is not able to estimate the values of people having travelled to the site in question by foot or other "free" means of travel. Considering the overall context of our tourist survey data and nature of tourism in BDNP, among the two types of TCM, we used zonal TCM (ZTCM) in this study following Clawson and Knetsch (1966).

3.4.2.2 Visitation rate estimation

The visitation rate from each zone is calculated by dividing the total number of visitors in the sample from a particular zone (V_i) were with the total number of visitors in the sample (V_s) (individuals who attended the festival and were surveyed). This gives the proportion of festival visitors from each zone. This proportion was then multiplied by total number of visitors to the festival and further divided by the population (population data was collected from (BBS, 2019) of the Zone i. This is summarized in Eq. 6 and the resultant visitation rate is presented in Table 4.

$$v_i = \frac{\left[\frac{V_i}{V_S} \times V\right]}{N_i} \qquad (Eq. 6)$$

where, v_i is the visitation rate for zone i, V is the total number of visitors per year and Ni is the populations from the ith zone. Here, we have computed the visitation rate per 1000.

Table 4. Visitation rate of BDNP

Zone	Number of visitors sampled (Vi)	Population of the zone (Ni)	Visitation rate (vi) per 1000	Total travel cost/trip
Chattogram	39	28423019	1.11	682.6
Dhaka	23	47424418	0.39	1794.1
Rajshahi	6	18484858	0.26	2941.7
Rangpur	3	15787758	0.15	3175.0
Barisal	2	8325666	0.20	3375.0
Sylhet	3	9910219	0.25	3006.7
Khulna	1	15687759	0.05	4140.0

3.4.2.3 Travel cost calculation

As there was no entry fee, the total cost of travel includes the transportation cost, food cost and any other expenditure made in the tourist spots. The average round-trip travel cost is computed for each zone in BDT per trip per person. The average travel cost indicated that the distant travelers incurred higher amount of cost than those of nearer zones.

3.4.2.4 Regressing for trip generating function development

To obtain the trip generation function the visit rate is regressed against the travel cost and income. Through the regression analysis (Table 5), the equation that relates visits per capita to travel cost and income has been prepared.

Table 5. Linear regression coefficients

Model	Coefficients			Test statistic		
	Constant** Travel cost** Income**		F***	Generalized R ²		
Linear	1.196 (0.0002)	-0.00031 (0.0008)	-	51.86 (0.0008)	0.912	
Linear	1.104 (0.002)	-0.00032 (0.00017)	2.9×10 ⁻⁶ (0.321)	28.01 (0.0044)	0.933	
Logarithmic	4.9253 (0.00)	-0.5863 (0.00)	-	559.52 (0.00)	0.991	

^{**}P-value in the parenthesis.

The regression indicated that income doesn't influence the visitation rate significantly but travel cost does. With the increase of travel cost the visitation rate reduced significantly. This may depend on the fact that in Bangladesh the disparity of average

^{***} Significance F value in the parenthesis.

income between the zones is not that high and hence there is not enough variation in this variable. The logarithmic model showed comparatively higher significance influence of the natural log of travel cost on the vigitation rate. Thus, the regression provides the following Trip Generating Function (TGF) for estimating the demand curve (Eq. 7).

```
Visitation rate = 4.9253 - 0.5863 LN(TC) ----- (Eq. 7) Here, TC = Travel cost (BDT).
```

3.4.2.5 Valuation of tourism

Travel cost methods and hedonic pricing methods are usually classified as revealed preference methods. The travel cost method for valuing outdoor recreational assets was originally suggested by Harold Hotelling (1947). It was developed by Clawson (1959) and Knetsch (1963) and was followed up in Clawson and Knetsch (1966). Basically, it involves using the travel costs incurred by travelers to a natural area plus any entry fee paid as a proxy for their effective price for visiting the area. Those travelling longer distances to visit the natural area will usually incur greater travel cost. Therefore, the effective price or cost of a visit is higher than for those who live closer to the natural area. Other things equal, a lower relative frequency of visits would be expected from residents living more distant from the natural attraction than those closer by, given that the demand for visits is a normal economic good.

Problems for this method also arise when there are substitute sites, if visitors visit several sites on the one trip, and if individuals have limited knowledge of the site to be visited or if the site covers a large area (Tisdell and Wilson, 2002).

3.4.2.6 Assumptions of travel cost value estimation

The cost of the travel and of the time spent to reach and stay at the site are a proxy for the value of the recreational experience. Use value is assessed taking into account the number of homogeneous visits to the sites among respondents. This method of travel cost valuation assume that tourists take a trip for single purpose- to visit a specific site, thus it avoids visitors who in one day visit several sites. That means environmental quality of the site affects the number of visits to the site. The weak complementarity

assumption allows us to identify how the variation in the quality of an environmental good affects the behavior of a person (to visit/not to visit/how many times). The opportunity cost of the time spent travelling the site is not estimated to avoid the complexity of defining and measuring the opportunity cost. Thus the present study may provide an underestimation of the cultural value as the opportunity cost of time is not added to the travel cost.

3.4.3 Regulatory services

Estimation and valuation of the regulatory services (i.e., carbon sequestration etc.) is described below.

3.4.3.1 Biomass estimation

Above Ground Biomass (AGB) was estimated using the data from forest survey applying the species specific allometric equation from Hossain *et al.* (2019), Khushi *et al.* (2018) and Mahmood et al. (2019). In cases, the species-specific equation is not available common equation for hill zone of Bangladesh was used from Hossain *et al.* (2018). Wood density data for the recorded species were sourced from different publications of BFRI to use in the allometric equations. An average wood density (0.6133782 g/cc) was used for some species as the species-specific density data was not available. The Below Ground Biomass (BGB) was estimated following Pearson et al. (2007) considering the overall context of BDNP.

3.4.3.2 Carbon sequestration estimation

Carbon estimation has been conducted in AGB and BGB along with litter and soil organic carbon (SOC) pools. Carbon in AGB and BGB is assumed to be 50% (Ragland et al., 1991). Carbon in all pools has been expressed for per unit area (hectare) and whole area of BDNP. Determination of soil organic carbon were carried out in the laboratory following Walkaly and Black (1934) wet oxidation method (Huq and Alam, 2005) using the soil samples collected during the forest survey.

3.4.3.3 Valuation of carbon sequestration

Carbon sequestration in above ground biomass, below ground biomass, soil and litter has been valued as a regulatory service. Carbon sequestration depends on the dynamics and management of the vegetation. It is generally high in young forests, and declining in mature forests. Management of the forest stands in the park follows more or less the guidelines of PA management. As BDNP is a PA, any kind of logging is banned. There is no precise information about the annual increment rate of the timber or other forest resources. The growth rate of Akashmoni (Acacia auriculiformis) is about 2.5 m³/ha/yr in the plantations of Bangladesh (Hossain, 2016). Khan and Millate-e- Mustafa (2001) reported that the productivity of the forests was around 1.5 - 2.5 m³/ha/yr. As per the FRA 2015, the net annual increment of the growing stock is 2.91 m³/ha/yr (FAO 2014). Taking this into account the total annual increment in the forests of the national park is therefore around 3,454.73 m³/year. Since, there is a ban on timber harvesting and no information is available about the illegal annual extraction, it is assumed that the total annual increase in biomass in the BDNP can therefore be estimated at 3,454 m³, i.e., 1,865.55 tonnes of wood per year, based on the average specific weight of 540 kg/m³. Bangladesh Forest Department is trying to increase the protection status of the PA through increasing patrolling, enhancing conservation program and involving local people in the forest management activities through co-management, that's why no significant decline in annual increment can be expected in the coming decade (Personal communication with the BFD 2019). The average carbon content of dry wood is assumed to be 50% (Ragland et al., 1991). Therefore, the total amount of CO₂ sequestered annually in the above ground biomass of the BDNP is currently 932.78 t C/yr, or 3,423.29 t CO₂/yr which amounts to 0.79 t C/ha/year.

Estimates for the economic value of a unit of carbon sequestered vary widely. Indications of the marginal value of sequestered carbon can be obtained from either price at which CO₂ is traded in existing carbon markets, or from damage cost assessments. There are two types of markets for selling carbon. One is the compliance market. A compliance carbon market can be defined as a marketplace where regulated entities can buy and sell carbon emission permits (allowance) or offsets in order to meet predetermined regulatory targets set by national, regional or local governments (Ecosystem Marketplace, 2020). The European Union Emissions Trading Scheme (EUETS) is one of the most prominent compliance carbon markets in the world. At the moment, forest carbon sequestration is not allowed to be sold in any compliance market.

The above means the only option for selling forest carbon sequestration is in voluntary

market. A voluntary carbon market consists of transactions of the carbon offsets which are purchased by various entities with the intention to re-sell or retire to meet carbon neutral or other environmental targets. The demand for carbon offsets in the voluntary markets is driven by companies and individuals that take responsibility for offsetting their own emissions and the entities that purchase pre-compliance offsets before emissions reductions are required by regulation (Ecosystem Marketplace, 2020) The largest carbon trading scheme is the European Emission Trading Scheme (EUCTS), which does not apply to forestry. According to Hamrick and Gallant (2017) prices ranged from less than \$0.50 / t CO₂ emission to more than \$50/ t CO₂ emission. The average price across all transactions was \$3.0/ t CO₂. Zhang (2000) suggests that, if there are no limitations placed on worldwide carbon trading, carbon credits will exchange at just under \$10 per t C. Forest Trends' Ecosystem Marketplace (2020) estimated an average price of USD 4.3 per t CO₂ sequestered through forestry and land-use practices for 2019. Further analysis of the price of carbon is beyond the scope of this report, for the purpose of analysis \$4.3 per t CO₂ is considered as a conservative estimate.

3.4.3.4 Groundwater infiltration

The forest of BDNP, serves as an important area for groundwater replenishment. Drinking water wells are located in the villages and sub-urban areas around the national park and supply water to the people living in the area, for some 43,019 people in total (BBS, 2015). Shamsudduha et al. (2011) reported that the average annual ground water recharge rate for Chattogram region is 1,080 mm/year. The ground water replenishment varies as a function of rainfall, vegetation cover, tree density, land use and land cover (Owuor et al., 2016). However, due to the unavailability of the more precise data for BDNP we used this recharge rate for estimation of the amount of water replenished in the whole area of BDNP.

Ground water recharge is linked with a number of ecosystem services i.e. drinking water supply, maintaining adequate stream flow, supplying irrigation water (Fig. 7), protecting soil from erosion by reducing surface run-off, supporting plants and animals with necessary water etc. Household survey indicated that 76% households living in the impact area of BDNP use water from stream for many purposes (i.e., daily household use, bathing, irrigation, washing dishes or cloths, water for cattle etc.).

Valuing all these services following a TEV approach is beyond the scope of this study. Value transfer approach is used for determining the approximate value of ground water recharge. WTP (US\$ 36.62 HH⁻¹yr⁻¹) reported by (Khanal et al., 2010) for receiving water supply related services from a community forest was applied thorugh inflation adjustment for valuing the groundwater infiltration by BDNP.

Figure 7. a) Irrigation into agricultural field from the streams flown from BDNP, b) cultivation of vegetables largely depends on irrigation water, c & d) bamboo sticks used in the agricultural fields adjacent to the BDNP.

3.4.3.5 Air pollution removal

Air pollution removal takes place through the interception of PM (particulate matter) by leaves (dry deposition). The total amount of particulate matter deposited on a certain

site can be estimated as a function of the area, deposition velocity, time period, and average ambient PM_{10} concentration (Beckett et al., 2000; Powe and Willis, 2004) which can be expressed as the following equation (Eq. 8).

$$F = V_{d} \times C_{d}$$
 ----- (Eq. 8)

Where, $F = \text{Pollution flux } (\mu g/\text{m2/s}), V_\text{d} = \text{deposition velocity } (\text{m/s}), C_\text{d} = \text{pollutants concentration } (\mu g/\text{m}^3)$. Finally, the particulate matter deposition is calculated using the Eq. 9.

$$PM_D = F \times A \times t$$
 ----- (Eq. 9)

Where, PM_D is the particulate matter deposition (μ g) in the area and time period under consideration, A = area of land considered (m^2), t = period of analysis (s). The area is calculated as a function of canopy cover and land area of the study area (Eq. 10).

$$A = C_{\rm C} \times A_{\rm P}$$
 ----- (Eq. 10)

The deposition velocity of PM10 depends on the vegetation type, air velocity, and in the absence of better data is assumed to correspond to the deposition velocities measured in England, which has generally comparable types of deciduous forest (Powe and Willis, 2004). The PM10 concentration (Cd) is assumed to be 117 μ g/m³, which is average concentration of the nearby PM10 monitoring station in Chattogram over the period 2010-2012 (Begum et al., 2014). The velocity of the PM10 is assumed to be 0.0064 ms¹ for growing season (7 months of a year) and 0.0014 ms¹ for the leaf-off season, a 50% resuspension rate for PM10 back to the atmosphere was assumed (Yang et al., 2005). Moreover, the canopy cover was assumed to be 60% based on the data of hill forests canopy cover from Bangladesh Forest Inventory.

A range of studies have shown that forests remove air pollution by means of dry deposition of pollutants to plant surfaces (Beckett et al., 2000; Nowak et al., 2014). The removal of particles from ambient air generates an economic benefit, related to increased well-being and reduced sickness due to air pollution (Hall et al., 1992). Health impacts of air pollution occur as a function of long-term exposure, and there is still significant uncertainty regarding these effects (Kunzli et al., 2000). Consequently, it is difficult to solicit people's willingness to pay for clean air, and data are not available for Bangladesh. This study estimates the value of the air filtration service by estimating the avoided marginal damage costs associated with one unit of PM₁₀ removal from the atmosphere. The cost is estimated using the inflation adjusted economic value of the benefits of per unit PM₁₀ removal from Hein, 2011.

3.4.4 Supporting services valuation

3.4.4.1 Biodiversity

The essence of the value of diversity is that it embodies the value of information and insurance (CBD 2001). The existing diversity embodies a stock of information and the diversity of living things also embodies characteristics that make them resilient to further 'natural' change. Biodiversity protects the entire range of goods and services, including information, provided by the diverse system. The informational value of forest diversity for pharmaceutical use is better studied. There are two distinct views-i) the implicit economic value is huge, and ii) it is very modest, at least when converted to economic values per unit of land area. The total value of biodiversity is clearly unbounded: without biodiversity there would be no human life and hence no economic value.

In this study we followed benefit transfer method to value the biodiversity. Studies estimated value of biodiversity in Bangladesh is scarce. For biodiversity hot spots in Western Ghats of India the WTP of pharmaceutical companies is US\$ 2,026 per hectare (Rausser and Small, 2000). In the same study the WTP of pharmaceutical companies for Eastern Himalayas was reported as US\$ 332 per ha. Considering the similarity of BDNP with the biodiversity of that region we used this value after necessary adjustment for inflation for valuation of biodiversity.

3.4.5 Adjustments for inflation rate

The economic valuation of the ecosystem services based on value transfer methods, converted all the values published in different years to values in 2020 constant USD. The consersion process used the inflation rate of USD from World Bank data bank. The pulication year was considered as the base for adjustments due to inflation unless stated otherwise.

$$V_{2020} = V_i \{ (1 + IR_{i+1})(1 + IR_{i+2}) \dots (1 + IR_{i+n=2017}) \}$$
 ----- (Eq. 11) where,

 V_i = Original value (i.e., value in USD per ha per year of an ecosystem service in the year i)

 V_{2020} = Value per ha per year of an ecosystem service in 2020 constant USD.

IR = USD inflation rate based on consumer price.

4. Results and Discussion

Results of the study is presented by categorizing as the socio-economics features of the respondents, value of provisioning, cultural, regulating and supporting services. It is to be noted that the value presented here is a conservative valuation. The real value of the services obviously will be much higher than the estimations here.

4.1 Socio-economic features of the local stakeholders

4.1.1 Family size

The household survey indicated that total number of members per family varied from as low as 2 to as much as 17. Families having 5 - 6 members are very common (48%) followed by families having ≤ 4 members (34%) (Fig. 8). However, large families are comparatively less common as we found more than 8 family members in only 4% households.

Figure 8. Family size of the households living in the impact area of BDNP

4.1.2 Educational level

It has been found that most of the respondents living in the impact area of BDNP are illiterate (61%) followed by primary level education (29%) and secondary level education (8%) (Fig. 9). The higher rate of illiteracy reduced their access to better professions. However, during the field work, we observed that people are conscious about the education of the children.

Table 6. Occupation of the household heads

Occupation	Percentage of t	he respondents
Occupation	Primary (%)	Secondary (%)
Business	7	13
Carpenter	2	0
Cook	1	0
Day labor	2	27
Farming	81	1
Service	5	2
Other	2	0
Total	100	43

Figure 9. Household head's education level

4.1.3 Occupation of the respondents

Farming, business, service and wage earning are the main professions of the local people living surrounding the BDNP. The household interview indicated that majority of the respondents were involved in farming (81%) whereas wage earing is the most common (27% respondents) secondary occupation (Table 6). In case of primary occupations, farming is followed by business (7%) and service (7%). On the other side, as a secondary occupation business (13%) and part time service (2%) are the second and third most common occupation after wage earning. The others category in Table 5 include minor occupations expatriate, driving etc.

4.1.4 Households income

Family income of the residents varied from BDT 4,000 - 51,800 per month. The share of households earning BDT 10,000 - 20,000 is maximum (48%) (Fig. 10). This range is followed by BDT 20,000 - 30,000 with 29% households. However, only one percent families have their monthly income more than BDT 50,000. Families involved in business, service and having expatriate family members have higher monthly income.

Figure 10. Monthly income of the households

4.1.5 Land ownership

A large number of households are landless in the impact area of BDNP. The survey indicated that there were more than 48% households having no land in their own. They are living in a rented house or government's temporary shelter houses. About 27% families have their own land of size ≤ 0.25 acres (Table 7). It is followed by 10.32% households who have 0.25 to ≤ 0.5 acres of land. There are some people own more than 1.25 acres of land including house and farms. However, a handsome percentage of households cultivate other peoples' agricultural lands in contract (borga or lease) basis.

Table 7. Land ownership of the households living in the vicinity of BDNP

Land ownership	Percentage of households (%) under different ownership categories		
Landless		48.41	
Land area (acre)	possess own land	Cultivate Borga ¹ land	Cultivate leased ² land
≤ 0.25	26.98	15.87	3.17
$0.25 \text{ to} \le 0.5$	10.32	18.25	0.79
$0.5 \text{ to} \le 1.0$	4.76	20.63	1.59
$1.0 \text{ to} \le 1.25$	4.76	3.17	0.00
≥ 1.25	4.76	5.56	3.17
Total	100	63.48	8.72

¹ Borga land means the land being cultivated by a farmer under an agreement of sharing a certain portion of the harvested crop with the owner. Here, the share of crop between the parties depends on the amount of harvest.

² Leased lands are the land being cultivated by a farmer under an agreement of paying a fixed amount of money for a certain period of cultivation. Here, the agreed amount doesn't depend on the amount of harvest.

4.1.6 Value of the provisioning services

The household survey showed that, though illegal, local people extract significant amount of fuelwood, broom grass, bamboo and medicinal plants and plant parts along with a limited quantity of sun grass. It was evident that 94% households collect fuel wood from BDNP whereas bamboo and broom grass collecting families constitute about 76% and 65% of the total number of families living in the impact area of BDNP (Table 8). Yearly fuelwood collection amounts 27,575 tonnes whereas per household collection is 3,404 kg per year. Along with household consumption, most of the families sell fuelwood for earning money. The study indicated that in total 25% of the collected fuelwood is sold each year. Gross financial value of fuelwood extracted from BDNP is maximum (BDT 23,688 per ha/yr) followed by broom grass (BDT 8,159 per ha/yr) and bamboo (BDT 23,248 per ha/yr). The total gross financial value of the provisioning services extracted by the local people per year is estimated as BDT 101.58 million from BDNP, whereas it is BDT 11,772 HH⁻¹ of the impact area and BDT 34,627 per ha of the national park.

It is relevant to mention here that the local people haven't mentioned about timber extraction as it is punishable offence by law. However, if there is any illegal timber extraction from BDNP, Forest Department immediately seizes those timber products. With permission from courts the BFD sell the seized timber through auction. Based on the last few years sell of timber through auction we found that the mean value of timber seized is BDT 224,079 per year. Moreover, the annual timber growth is 3,454.7 m³/ha as per the net annual increment of the growing stock reported by FAO (2014). It was considered as the potential timber harvest from BDNP and thus an ecosystem service of the PA. Taking the average market value of the timber irrespective of species into consideration, the total value of timber is estimated as BDT 45.39 million/yr. Including the value of potential timber harvests, the total value of provisioning services is BDT 146.98 million/yr and BDT 50,103 per ha/yr.

Table 8. Monetary values of the major provisioning services extracted annually from Baraiyadhala National Park (2019/2020)

Resources	Total number of resource extracting households (EPHH) (1)	Total extracted amount (TQH) (2)	Unit	Average quantity collected per participating household (3)	Extraction per ha	Percent sold (%)	Percent price in sold Taka (%) (BDT)	Gross financial value (GFV) (million BDT) (5)	Net financial value (NFV) (million BDT) (6)	Cash income (CI) (million BDT) (7)	GFV/ЕРНН (BDT)	GFV per ha (BDT/ha)
Fuelwood	8101	27575423	kg	3404	23227	25	2.52	69.49	58.86	17.37	31498.97	58533.2
Broom grass	5635	19780931	culm	3510	16662	23	1.21	23.93	20.86	5.54	5309.18	20161.0
Bamboo	6516	1468709	culm	225	1237	36	4.49	6.59	4.45	2.37	3097.18	5554.7
Sungrass	176	144	bundle	1	0.12	38	009	0.00	0.08	0.03	489.80	72.7
Medicinal plant or plant parts	656	30787	kg	32	26	78	48	1.48	1.33	1.15	1541.33	1244.8
Total product extraction (million BDT/yr)	ion (million BDT/yr)							101.58	85.59	26.47		
Average per househor	Average per household in the impact area (BDT/HH/yr)	T/HH/yr)						11772	9919	3068		

Notes: (1) Estimated from proportion of resource extracting households in the sample and total household number in the population.

- (2) Computed from average quantity extracted per participating household and total number of resource extracting households.
- (3) Estimated from surveyed households.
- 4) Unit prices were estimated from household survey and observation in local markets.
- (5) GFV is the economic worth of total quantity extracted.
- (6) NFV is GFV less cost of resource extraction. Here the cost of extraction is based on the time spent for collection of resources by the households.
 - (7) CI is the economic worth of quantity sold.

4.2 Cultural services

In general, for a natural ecosystem cultural values include aesthetic, artistic, educational, spiritual, and/or scientific values. Tourism is the only cultural ecosystem service considered from BDNP for valuation in this study.

4.2.1 Visitor's general information

4.2.1.1 Sample size and gender breakdown

The tourism valuation is based on a sample of 77 tourist composing mainly of male. Individuals were selected at random in locations where enumerators were most likely to encounter them. Thus, the survey was administered at the car parking located in the entrance of the Khoiyachora tourist spots of BDNP. Since, there was no car parking in case of other tourist spots and those are mainly seasonal, that's why the visitors were surveyed in suitable location from entrance to the way to target spot. Almost all the respondents were male and came from different parts of Bangladesh. There were no foreign visitors during the study period.

4.2.1.2 Education level of the visitors

The survey indicated that most of the tourist are educated from secondary to higher level. There was no illiterate tourist (Table 9). As the tourist sites of BDNP has long walking tracks (i.e. 1.5 to 3.5 km each) through rough terrain that's why most of the visitors are young and from different educational institutes i.e. colleges and universities. The findings indicated that education level of the 93% visitors ranged from secondary to higher level.

TC 11 0	T 1 ('	1 1	C /1 /	• ,
Inhia U). Education	LAVIAL AT	t tha talls	4CTC
Taul 7	. Fauucation	ICVCI O	г инс кош	1919

Level of education	Number %	Cumulative frequency
Illiterate	0	0
Primary	6	6
Secondary	31	38
Higher Secondary	32	70
Higher	30	100

4.2.1.3 *Age groups*

As mentioned earlier that most of the visitors are young, the age class distribution of the visitors indicated that 53% visitors age ranges between 21 to 30-year age groups followed by <20 years old with 40% visitors (Fig. 11). It is due to the physical

characteristics (i.e. rough and slippery terrain, long and risky walking track etc.) of the tourist site needing strength and capability to bear stress of walking in an uneven hilly terrain for long time.

Figure 11. Age group distribution of the visitors of BDNP

4.2.1.4 Occupation

The professional breakdown of the tourists of BDNP indicated that most of them were students (about 58%) followed by service (about 19%) and business (about 10%) (Fig. 12). However, a few proportions of visitors were also involved in teaching, craftsman, driving, masonry, tailoring etc.

Figure 12. Occupation of the visitors from BDNP

4.2.1.5 Marital status

About 82% of the tourists visiting BDNP were unmarried (Fig. 13). Most of the unmarried came in group with friends and colleagues while some of them came alone to visit the national park. On the other side, in most of the cases, the married visitors were accompanied by their family members.

Figure 13. Marital status of the visitors

4.2.1.6 Monthly income

Family income per month of the visitors varied from BDT 6,000 to 200,000. Family income of most of the visitors were between BDT 25,000 - 50,000 (60%) (Table 10). The study also indicated that family income of the 86% visitors were up to BDT 50,000, whereas it is up to BDT 100,000 for 92% visitors.

Table 10. Monthly income of the tourists of BDNP

SN	Income ranges (BDT)	Frequency %	Cumulative frequency
1	0-25,000	25.97	25.97
2	25,001-50,000	59.74	85.71
3	50,001-75,000	2.60	88.31
4	75,001-100,000	3.90	92.21
5	100,001-150,000	2.60	94.81
6	>150,000	5.19	100.00

4.2.1.7 Nature of tourists

There were single and grouped tourists visiting the tourist spots of BDNP. The single tourists were constituting the maximum proportion (48%) of the tourists (Fig. 14). The tourists coming in group were of two categories i.e. grouped with family members and grouped with friends. The tourists coming in group with friends were more (39%) whereas the family groups were 13%.

Figure 14. Nature of tourists visiting the BDNP

4.2.1.8 Number of tourists' visits to BDNP

It has been found that 77% of the tourists visiting the BDNP for the first time whereas 21% visited any of the spots of BDNP once before (Table 11). However, there were few tourists who visited the park twice before. It is mostly the local tourists who visited the park before.

SN	Number of visits	Frequency (%)	Cumulative frequency (%)
1	Never visited	76.62	76.62
2	Once	20.78	97.40
3	Twice	2.60	100.00

Table 11. Number of visits to the tourist spots of BDNP

4.2.1.9 Means of travel

Bus, car, train and taxi were the common vehicles used by the visitors. In many cases they had to use more than one vehicle to reach the tourist spot. The survey indicated that 42% of the tourists used only bus whereas 29% tourist used car to reach the tourist spots (Fig. 15). About 19% tourists used both train to reach the nearby railway station and taxi to reach the tourist spot from the railway station to tourist spots.

4.2.1.10 Travel distance

Tourist came from a wide range of distances as indicated by the survey. 48% of the tourist came from a distance ranging from 51-100 km indicating the higher proportion of local tourists particularly from Chattogram and nearby areas (Table 12).

Figure 15. Means of travel by the tourists

Table 12. Distance traveled by the tourists

Distance range (km)	Number	Frequency (%)	Cumulative frequency %
0-50	5	6.49	6.49
51-100	37	48.05	54.55
101-150	13	16.88	71.43
151-200	12	15.58	87.01
201-300	5	6.49	93.51
>300	5	6.49	100.00

4.2.2 Desired improvements

Visitors were asked about the quality of services provided in the BDNP. Many expressed a wish for improvements in the transportation networks and security of the tourists visiting the spots of BDNP (Table 13). However, availability of first aid facility in the tourist spot was also demanded by a good number (16%) of tourists.

Table 13. Types of improvements suggested by visitors

SN	Improvements needed	Frequency (%)
1	Transportation network	76.62
2	Security of the tourists	36.36
3	First aid facility	15.58
4	Food shop	12.99
5	Cleanliness	10.39
6	Plantation	9.09
7	Tour guide	9.09
8	Public toilet	2.60
9	Safe walking track	2.60
10	Camping facility	1.30
11	Pure drinking water facility	1.30
12	Rest house	1.30
13	Vehicle parking	1.30
14	Washing and shower facility	1.30

4.2.3 Visitor expenses

Visitor expenses can be explained as expenses for transport, food and additional spending.

4.2.3.1 Transport

Transport ranged from BDT 80 to 2,600 per round trip of a tourist as they came from different parts of the country (Table 14). For most of the tourists (70%) the cost of transport is ranged between BDT 101-500.

Table 14. Cost of tourists for transportation purpose to reach the BDNP

SN	Cost of transportation (BDT/per tourist)	Frequency (%)	Cumulative frequency (%)
1	0-100	6.49	6.49
2	101-500	70.13	76.62
3	501-1000	16.88	93.51
4	1,001-1,500	5.19	98.70
5	> 1,500	1.30	100.00

4.2.3.2 Spending on food

Expenses for food by the tourists during the round trip were also significant proportion of the total travel cost. It was found that most of the tourist incurred BDT 101 - 300 for food per trip (Table 15). However, the cost of food for 53% of the tourists was up to BDT 300.

Table 15. Expenses by the tourists for food during the travel to and from BDNP

SN	Cost of transportation (BDT/per tourist)	Frequency (%)	Cumulative frequency (%)
1	≤ 100	7.79	7.79
2	101-300	45.45	53.25
3	301-500	28.57	81.82
4	501-700	7.79	89.61
5	701-900	2.60	92.21
6	901-1200	6.49	98.70
7	>1200	1.30	100.00

4.2.3.3 Additional spending

A total of 69% of the respondents haven't mentioned any expense other than travel and food. However, the remaining 31% tourist incur money on additional needs or crafts available in and around the tourist spots. The additional spending ranges from BDT 10 to 1,000 while the percentage of tourists spending up to 500 BDT is 25% and only a few spent an amount of money ranging from 500 to 1,000 BDT.

4.2.4 Distribution of tourists in different spots

The survey indicated that the number of tourists varies with the season. The main tourist attractions are the walking trail, waterfall, stream flow and wilderness. As per the opinion of the local stakeholder and the study team's field observation, there are 7 streams (i.e. Khoiyachora, Napittachora, Rupasi Jhorna, Sohosradhara, Bawachora, Sonaichara and Baraiyadhala Baro chora) more or less visited by the tourists seasonally or round the year (Fig. 16).

Figure 16. Waterfalls in Baraiyadhala National Park- a) Napittyachora, b) Rupasichora, c) Khoiyachora in holidays, d) Khoiyachora in dry seasons.

Besides these streams there are a few other streams named Moralichora and Garurdhala chora but not much attractive to the tourists. However, these streams contribute to the draining out of water from high hills of BDNP. Some of the streams (i.e. Bawachora and Sonaichari Jhorna) contain water only for 4-5 months of the year in the monsoon

season and get dried or flow very little amount of water during the dry season. Among the streams, Napittachora and Rupasi Jhorna have appealing water flows for about 8-9 months of the year. Khoiyachora and Sohosradhara are the two most popular waterfall having water flow in almost round the year (10-12 months). However, with the reduction of the flow of water in these streams the number of tourists decline proportionately. Overall, Khoiyachora, Sohosradhara, Napittachora and Rupasi Jhorna are major tourist attractions of which Koiyachora alone draws about 77% of total number of tourists (Fig. 17).

Figure 17. Percentage distribution of tourist in different spots of BDNP

4.2.5 Monthly distribution of tourists

November, December and January were the most popular months for tourists to visit the BDNP (Fig. 18). However, during the field data collection we came to know that during the Eid festival a huge number of tourists visits the spots to enjoy their festival vacations. Moreover, during the national holidays i.e. 16 December and 21 February a good number of tourists visits the spots. The number of young tourists is higher during the period of August – November as at that the level of water flow is comparatively higher and the spots are suitable for visiting. In the months of March-May the level of water is very low and very few tourists visits at that time. Again, during the monsoon season especially in the months of June-July the terrain is very dangerous and risky. That's why though the level of water is high, but the number of tourists is few at that time.

Figure 18. Distribution of tourists by months in BDNP

4.2.6 Valuation of tourism

The demand curve approach explained in the methodology part is applied for estimation of the value of tourism. To estimate the demand function, the travel cost per person was increased and sequentially added to the average cost for each zone. The visitation rates from each zone under these additional costs are predicted from the TGF, and the total expected number of visitors at each hypothetical entry price is computed. The total predicted visits for each level of additional entry fees (additional costs) are summarized in Table 16 and comprise the data for estimation of the demand function. To estimate the demand function, the number of estimated visits (Q) was regressed against the hypothetical increase in entry fee (P) using simple linear model which resulted in the following equation (Eq. 8).

Table 16. Estimated demand schedule for BDNP

Serial no.	Additional travel cost (BDT) per person/trip	Total expected number of visitors (person)
1	0	62553
2	250	52989
3	500	43849
4	750	36007
5	1000	29030
6	1250	22913
7	1500	17935
8	1750	14231
9	2000	10843
10	2250	7705
11	2500	5586
12	2750	4326
13	3000	3154
14	3250	2060
15	3500	1032
16	3750	65
17	3767	0

The regression resulted following model-

$$C = 3071.5 - 0.0587*LN (V)$$
 ----- Eq (8);

R square 0.8767 here, C = added cost (BDT), V = No. of visits.

The demand curve using this function and Table 16 is given below.

Figure 19. Demand curve for tourist of BDNP

Consumer surplus is calculated as the area under the demand curve (Fig. 19). The demand functions for BDNP were estimated in terms of the additional travel costs of visitors would be willing to incur and above the average travel costs they had already spent, so the entire area under the demand curve indicates the consumer surplus and this represents the value of tourism. It is relevant to mention here that the value is a conservative estimate whereas the true value should be much more than the estimate as indicated in the Table 17.

It results in a total estimate of economic benefits from recreational (tourism) services of the site of around BDT 70.74 million or around BDT 1,131 per visit and BDT 75,872 per ha (Table 17).

Table 17. The annual value of tourism as a cultural ecosystem service in BDNP (2019-2020)

SN	Parameter	Unit	Value
1	Total economic benefits from tourism	Million BDT	70.74
2	Marginal economic value	BDT/trip	1131
3	Economic value of tourism on forests	BDT/ha/yr	75872

4.3 Regulatory services

Carbon sequestration, groundwater infiltration and air pollution removal are the three regulatory services from BDNP considered for valuation under this study.

4.3.1 Carbon sequestration

Carbon in above ground biomass, below ground biomass, soil and litter has been estimated and presented in Table 18. The annual carbon sequestration varied with the type and density of forest, species and land use. Since, the annual sequestration rate of carbon in litter and soil was not available that's why the valuation was not possible for annual carbon sequestration. However, the value of present carbon stock for all the four pools were estimated as presented in Table 18. The total value of annual carbon sequestration is BDT 1202 per ha whereas the total value of carbon stock in all pools is BDT 2,94,092 million per ha. Since this estimate is based on yield rate of forests and the timber yield is very low in the natural forests of Bangladesh that's why the value of annual carbon sequestration is also low.

Table 18. Carbon sequestration and it's monetary value in BDNP

Parameters	Estimated carbon sequ		Value of carbon seq		Present carbon storage		Value of current carbon storage	
	tC/ha/yr	tC/yr	BDT/ha/yr	BDT/yr	tC/ha	tC	BDT/ha	Million BDT
Carbon in AGB	0.79	230.78	1054	309	146.43	173837.45	196416	233.18
Carbon in BGB	0.11	324.68	148	195822	26.56	31528.67	35624	42.29
Litter carbon	-	-	-	-	0.43	510.49	577	0.68
Soil organic carbon (up to 50 cm depth)	-	-	-	-	45.98	54587.10	61677	73.22
Total	0.90	2629.62	1202	1447035	219.39	260463.71	294293	349.38

4.3.2 Ground water infiltration

South-Eastern region of Bangladesh receives an abundant amount of rainfall every year. A higher proportion of the rainfall is infiltrated which is presented here as ground water infiltration. A number of services is linked with the ground water infiltration i.e., flow of water in the streams, irrigation in the agricultural fields, use of water by local people, withdrawal of water for irrigation or daily use. The valuation indicated that total value of ground water recharge accounts 24.08 million BDT/yr (Table 19).

Table 19. Amount of groundwater recharge in BDNP

SN	Parameter	Unit	Value
1	Groundwater recharge rate	mm/yr	1,080
2	Amount of groundwater recharge	million m ³ /year	12.82
3	WTP for forest water supply	BDT/HH/yr	3,672
4	Households using stream water	Number	6,558
5	Value of recharge	BDT/Ha/yr	8,209
6	TEV of groundwater recharge	million BDT/yr	24.08

4.3.3 Air pollution removal

Trees help deposition of air pollutants i.e., dust, particulate matter (PM) etc. PM_{10} deposition by vegetation is very important as it helps purifying air and relieves people from being affected by many air borne diseases. Forests reduce the cost of treatment due to illness and mortality by many ways among which air pollution removal is significant. The present study estimated total value of 195.81 million BDT/yr (Table 20).

Table 20. Avoided cost of illness through air pollution removal by BDNP

SN	Parameter	Unit	Value
1	PM ₁₀ deposition	t/yr	55.22
2	PM ₁₀ deposition	kg/ha/yr	46.51
3	Economic benefits related to deposition of PM ₁₀	million BDT/yr	195.81
4	Economic benefits related to	BDT/ha/yr	66,747
	deposition of PM ₁₀	J	

4.4 Supporting services

4.4.1 Biodiversity

4.4.1.1 Floral and faunal composition

The study assessed the floral and the faunal composition. Among the recorded plants, 204 species are trees (Appendix 1), followed by large shrub to trees (27 species), shrubs (71 species), climbers (45 species), herbs, epiphytes and parasites (205 specices) (Appendix 2 and Appendix 3). Of the recorded tree species, 77 are becoming rare followed by endangered (23 species), critically endangered (10 species), common (51 species) and cultivated/planted are 45 species. This agrees with the findings of Hossain (2015). Apart from this study Harun-Ur-Rashid et al. (2018) reported flora from all habit forms. According to that study there are 528 wild taxa belonging to 337 genera and 73 families in BDNP. Trees (179 species) and herbs (174 species) constitute the major categories of the plant community followed by shrubs (95 species), climbers (78 species), and two epiphytes. Status of occurrence of 165 (31.25%) species is rare, 23 (4.36%) is endangered, 12 (2.27%) is critically endangered and 4 species (0.76%) is vulnerable in the forest. Fabaceae is the dominant family represented by 75 taxa, followed by Rubiaceae (47 taxa), Malvaceae (28 species), Asteraceae (27 species) and Euphorbiaceae (24 species).

The faunal diversity of BDNP consisted of 102 species of birds, 27 species of mammals, 20 species of reptiles and 12 species of amphibians (Fig. 20-21, Appendix 4-7). Forest canopy and ground dwelling as well as wetland associated wildlife species are still available in the forest areas of Baraiyadhala. But, large wildlife species such as tiger, elephant, leopard, wild dog have disappeared from these PAs due to habitat degradation and hunting. Some other species like Sambar, Wild goat, Asian black bear, hollock gibbon are going to be extinct (Hossain 2015). The wildlife habitat of BDNP is characterized by 32 fruit bearing tree species providing food and support to the wildlife.

Cycas (Cycas pectinata): a native threatened taxon of BDNP

Cycas (Cycas pectinata), a very ancient genus of the Gymnosperm is often considered as living fossil. It is an evergreen palm-like tree globally distributed in India, Myanmar, Nepal and in Bangladesh. The species was first discovered in this region by William Griffith from Baroiyadhala forest of Chittagong in 1838 and is naturally confined to a few hills near Baroiyadhala in Sitakunda. Considering the richness of both flora and fauna, Baroiyadhala forests declared as National Park in 2010 with an area of 2,933.61 ha. But, the loss of this native gymnosperm from this forest is alarming. To conserve the Cycas species in Baroiyadhala National Park (BDNP), it is important to know the present status and the threats of the species in its natural ranges. It was found that the number of remnant Cycas individuals is decreasing gradually in Baroiyadhala due to illegal removal, land use change and forest fire. Study needs to assess the status of Cycas population in its native range, identify the drivers responsible for the loss of the species and need a comprehensive conservation plan for protection of the species.

Cycas naturally growing in BDNP

Illegal fire damages the Cycas in BDNP

Naturally grown Cycas in BDNP

BDNP is important for Forestry, Botany, Zoology and NaturalScience students

Figure 20. A few representative wildlife of Baraiyadhala National Park in photographs i.e. a) Leopard cat, b) Common moorhen, c) Blue Whistling Thrush, d) Long-tailed Shrike, e) Spangled Drongo, and f) Spotted litter shink.

Figure 21. A few representative wildlife of Baraiyadhala National Park in photographs i.e. a) Scaly breasted munia, b) Assamese Macaque, c) Indian Crested Porcupine, and d) Wild boar

4.4.1.2 Value of Biodiversity

Experts worldwide associated the value of biodiversity with the bio-prospecting value. Simply, the value largely depends on the scarcity of biological resources and availability of substitutes. The value of biodiversity increases with the higher abundance of genetic material and decline with the technological improvements and increased accessibility of cheaper substitutes. However, the value of biodiversity in BDNP based on the assumptions of Rousser and Small (2000) is presented in Table 21.

Table 21. Value of biodiversity

Description	Area (ha)	Value of biodiversity (BDT/ha)	Total value of Biodiversity (Million BDT)
Biodiversity	2,933.61	40,980	120.22

4.4.2 Total economic value of BDNP

Table 21 represents the total value of all the ecosystem services received directly or indirectly from BDNP per year. The provisioning (except timber) and cultural services are mainly based on the primary field data collected during the period of 2019-2020 whereas the other services are mainly based on the secondary data and reported values in existing literature on similar forests. The total economic value of the selected ecosystem services of BDNP is 561.36 million BDT/yr (USD 6.60 million per year; 1 USD = 85 BDT), whereas it is 2,43,113 BDT/ha/yr (USD 2,860 per ha/yr) (Table 22). The value is quite higher than that of Barua et al. (2020) where the available estimates indicate that forests of Bangladesh are worth US\$ 840 ha⁻¹yr⁻¹ on average and the hill forest average is 1,066 US\$ ha⁻¹.

Table 22. Economic value of all services regularly received by the surrounding people and the ssrelevant stakeholders from BDNP

SN	Services	BDT/ha/yr	Million BDT/yr
	Provisio	oning services	<u> </u>
1	Fuelwood	23,688	69.49
2	Broom grass	8,159	23.93
3	Bamboo	2,248	6.59
4	Sungrass	29	0.09
5	Medicinal plants and plant parts	504	1.48
6	Potential timber harvests	15,475	45.39
Subto	tal	50,103	146.98
	Cultu	ral services	
7	Tourism	75,872	70.74
	Regula	ting services	
8	Carbon sequestration	1,202	3.53
9	Groundwater infiltration	8,209	24.08
10	Air pollution removal	66,747	195.81
Subto	tal	76,158	223.42
	Suppor	ting services	
11	Biodiversity	40,980	120.22
Gran	d total	2,43,113	561.36
US\$		2,860	6.60

4.5 Discussion

The total economic valuation of the ecosystem services of any forest ecosystem is a tedious task as a myriad of services is linked with the forests. The study presents a conservative value of the selected ecosystem services among which the provisioning and cultural services are based on direct field measurement whereas the other services are based on secondary data. The net ecosystem benefits generated by the BDNP depend on a number of factors including the value of the various ecosystem services and the payments received from the society. In terms of managerial responsibility, the government manages the national park for its conservation through patrolling, community mobilization (co-management) and occasional plantations in the BDNP. These activities are conducted through the respective beat, range and division offices of BFD. The financial expenses of the government for sustainable management and conservation are very small compared to the benefits provided by the park to the surrounding community and associated environment.

Uddin et al. (2013) reported the provisioning and cultural services of Sundarbans. It was reported that the value of provisioning services is US\$ 744,000 (BDT 63.34 million) per year, whereas the value of cultural services (tourism) is US\$ 42,000 (BDT 3.57 million) per year. The value much lower than that's of the BDNP since this valuation is based on only the revenue received by the government.

4.6 Recommendations

The study shows how park management can influence the overall supply of ecosystem services, and that increasing the supply of a specific ecosystem service may lead to an increase or a decline in the provision of other services. For instance, coniferous trees have a relatively high capacity to filter air particles, but also have a relatively high evapotranspiration rate that reduces groundwater infiltration. Considering all the aspects following recommendations are made for sustainable management of BDNP.

- 1. There is no entry fee for the visitors to the tourist spots. An entry fee can be introduced for the tourist entering the national park for tourism. Prior to introducing the entry fee some infrastructural modifications would be necessary but it has to be ensured that natural setting of the tourist spots is not altered or harmed.
- 2. Though extraction of any forest resources is illegal, but the annual extraction of provisioning services accounts a significant amount. The bamboo collection along with collection of other resources should be controlled immediately to avoid the consequence of over extraction of bamboo culms from BDNP.

- 3. The local communities are benefitted from intangible services of the BDNP in a number of ways i.e., ground water infiltration, air pollution removal, carbon sequestration. Payment for the Ecosystem Services (PES) can be introduced through discussion with the local people for not harming the natural resources by any means of encroachments.
- 4. Further research should be conducted to assess the carrying capacity of tourists in BDNP in order to control the number of visitors in the park for sustaining it's scenic beauty.

5. Conclusion

This study shows high economic returns that were generated by protected forest ecosystems in moderately dense populated Sitakundar-Misharai upazia of Chattogram district. A conservative estimate of the economic benefits generated by the Baraiyadhala National Park (BDNP) is around BDT 561.36 million per year which is much higher the value generated by nearby agricultural land. Approximately 70% of this value is generated by only provisioning and cultural services. The benefits from nature conservation have not been quantified in monetary terms. The park is one of the well-known and most visited parks in the country. It is therefore able to generate significant income from entrance fees. In addition to the economic value of the generated ecosystem services, there are possibilities for generating additional income for park management through payment for ecosystem services. Park management authority should proactively communicate the economic benefits of Protected Areas to the public and policy makers in order to maintain support for protected area management.

References

Adekola, O., Morardetb, S., de Groota, R., Grelotc, F., 2008. The economic and livelihood value of provisioning services of the Ga-Mampa wetland, South Africa, In: 13th IWRA World Water Congress. HAL, Montpellier, France, p. 24.

Alam, M., Furukawa, Y., Sarker, S.K., Ahmed, R., 2008. Sustainability of Sal (*Shorea robusta*) forest in Bangladesh: past, present and future actions. *International Forestry Review* 10, 29–37. https://doi.org/10.1505/ifor.10.1.29

- Alcamo, J., Ash, N.J., Butler, C.D., Callicott, J.B., Capistrano, D., Carpenter, S.R., Castilla, J.C., Chambers, R., Chopra, K., Cropper, A., Daily, G.C., Dasgupta, P., de Groot, R., Dietz, T., Duraiappah, A.K., Gadgil, M., Hamilton, K., Hassan, R., Groot, R., Dietz, T., Duraiappah, A.K., Gadgil, M., Hamilton, K., Hassan, R., Lambin, E.F., Lebel, L., Leemans, R., Jiyuan, L., Malingreau, J.-P., May, R.M., McCalla, A.F., McMichael, T. (A. J.), Moldan, B., Mooney, H., Naeem, S., Nelson, G.C., Wen-Yuan, N., Noble, I., Zhiyun, O., Pagiola, S., Pauly, D., Percy, S., Pingali, P., Prescott-Allen, R., Reid, W. v., Ricketts, T.H., Samper, C., Scholes, R. (Bob), Simons, H., Toth, F.L., Turpie, J.K., Watson, R.T., Wilbanks, T.J., Williams, M., Wood, S., Shidong. Zhao, Zurek, M.B., Bennett, E.M., Biggs, R. (Oonsie), Choo, P.-S., Foley, J., Kumar, P., Lee, M.J., Moss, R.H., Petschel-Held, G., Porter, S., Schneider, S.H., 2003. Millennium Ecosystem Assessment: Ecosystems and human well-being: a framework for assessment. Island press, Washington DC.
- Barua, S.K., Boscolo, M., Animon, I., 2020. Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies. *Ecosystem Services* 42, 101069. https://doi.org/10.1016/j.ecoser.2020.101069
- BBS, 2019. Statistical Year Book Bangladesh 2018, 38th ed. Bangladesh Bureau of Statistics, Dhaka, Bangladesh.
- BBS, 2015. Population and housing census-2011, country report: Chittagong. Bangladesh Bureau of Statistics, Dhaka, Bangladesh.
- Beckett, K.P., Freer-Smith, P.H., Taylor, G., 2000. Particulate pollution capture by urban trees: effect of species and windspeed. *Global Change Biology* 6, 995–1003. https://doi.org/10.1046/j.1365-2486.2000.00376.x
- Begum, B.A., Saroar, G., Nasiruddin, M., Randal, S., Sivertsen, B., Hopke, P.K., 2014. Particulate Matter and Black Carbon Monitoring at Urban Environment in Bangladesh. *Nuclear Science and Applications* 23, 21–28.
- Bourguignon, D., 2015. Ecosystem Services Valuing Our Natural Capital, European Parliamentary Research Service.
- Boyd, J., Banzhaf, S., 2006. What Are Ecosystem Services? What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units. Washington, DC.

- Clawson, M., 1959. Methods of measuring the demand for and value of outdoor recreation, Travel Research Bulletin. 1145 Nineteenth Street, N.W., Washington, D.C. https://doi.org/10.1177/004728757201000331
- Clawson, M., Knetsch, J.L., 1966. Economics of Outdoor Recreation. Hein Online.
- Costanza, R., 2008. Ecosystem services: Multiple classification systems are needed. Biological Conservation. https://doi.org/10.1016/j.biocon.2007.12.020
- de Groot, R.S., Wilson, M.A., Boumans, R.M.J., de Groot, R.S., Wilson, M.A., Boumans, R.M.J., 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. *Ecological Economics* 41, 393–408.
- Ecosystem Marketplace, 2020. Carbon Market: Overview [WWW Document]. Ecosystem Marketplace. URL https://www.ecosystem market place. com/market watch/carbon/ (accessed 10.23.20).
- FAO, 2014. Global forest resources assessment. Country report: Bangladesh. FAO.
- Fisher, B., Turner, K., Zylstra, M., Brouwer, R., de Groot, R., Farber, S., Ferraro, P., Green, R., Hadley, D., Harlow, J., Jefferiss, P., Kirkby, C., Morling, P., Mowatt, S., Naidoo, R., Paavola, J., Strassburg, B., Yu, D., Balmford, A., 2008. Ecosystem services and economic theory: Integration for policy-relevant research. *Ecological Applications* 18, 2050–2067. https://doi.org/10.1890/07-1537.1
- Forest Trends' Ecosystem Marketplace, 2020. Voluntary Carbon and the Post-Pandemic Recovery. State of Voluntary Carbon Markets Report, Special Climate Week NYC 2020 Installment. Washington, DC 20036.
- Haines-Young, R., Potschin-Young, M., 2018. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. *One Ecosystem* 3. https://doi.org/10.3897/oneeco.3.e27108
- Hall, J., Winer, A., Kleinman, M., Lurmann, F., Brajer, V., Colome, S., 1992. Valuing the health benefits of clean air. *Science* 255, 812–817. https://doi.org/10.1126/science.1536006
- Hamrick, K., Gallant, M., 2017. Unlocking Potential. State of the Voluntary Carbon Markets 2017. Forest Trends' Ecosystem Marketplace 2017.

- Haque, A.K.E., Aich, D., 2014. Economic valuation of ecosystem services, in: Hossain,
 M. Z. (Ed.), Bangladesh Sundarban Deltavision 2050: A First Step in Its
 Formulation—Document 2: Acompilation of Background Information.
 UCN-International Union for Conservation of Nature, Bangladesh Country office, Dhaka, Bangladesh, pp. 55–63.
 - Harun-Ur-Rashid, M., Islam, S., Kashem, S.B., 2018. Floristic diversity (Magnoliids and Eudicots) of Baraiyadhala National Park, Chittagong, Bangladesh. *Bangladesh Journal of Plant Taxonomy* 25, 273–288. https://doi.org/10.3329/bjpt.v25i2.39532
 - Hein, L., 2011. Economic benefits generated by protected areas: the case of the Hoge Veluwe forest, the Netherlands. *Ecology and Society* 16.
 - Hossain, M., Siddique, M.R.H., Islam, S.M.Z., Abdullah, S.M.R., Matieu, H., Iqbal, Md.Z., Akhter, M., 2018. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. *Journal of Forestry Research*. https://doi.org/https://doi.org/10.1007/s11676-019-00881-5
 - Hossain, M.A., Aziz, A., Chakma, N., Johnson, K., Henry, M., Jalal, R., Carrillo, O., Scott, C., Birigazzi, L., Akhter, M., Iqbal, Z., 2019. Estimation Procedures of Indicators and Variables of the Bangladesh Forest Inventory.
 - Hossain, M.K., 2016. Plantation Forestry: Paradigm to meet the demand of the forestry resources in Bangladesh, In: T.K. Nath, Patrick O'Reily (Eds.), Monoculture Farming- Global Practices, Ecological Impact and Benefits/Drawbacks. Nova publishers, New York, pp. 57–74.
 - Hossain, M.K., 2015. Protected Area Management Plan for Hazarikhil Wildlife Sanctuary and Baraiyadhala National Park for 2015-2025.
 - Hossain, M.M., 2019. Future importance of healthy oceans: Ecosystem functions and biodiversity, marine pollution, carbon sequestration, ecosystem goods and services. *Journal of Ocean and Coastal Economics* 6, undefined-34. https://doi.org/10.15351/2373-8456.1103
 - Hotelling, H., 1947. 'The Economics of Public Recreation: The Prewitt Report. Washington, D.C.

- Huq, N., Bruns, A., Ribbe, L., Huq, S., 2017. Mainstreaming Ecosystem Services Based Climate Change Adaptation (EbA) in Bangladesh: Status, Challenges and Opportunities. *Sustainability* 9, 926. https://doi.org/10.3390/su9060926
- Huq, S.M.I., Alam, M.D., 2005. A handbook on analyses of soil, plant and water. BACER-DU, University of Dhaka, Bangladesh 246.
- Jannat, M., Hossain, M.K., Uddin, M.M., Hossain, M.A., Kamruzzaman, M., 2018. People's dependency on forest resources and contributions of forests to the livelihoods: a case study in Chittagong Hill Tracts (CHT) of Bangladesh. International Journal of Sustainable Development and World Ecology 25. https://doi.org/10.1080/13504509.2018.1434571
- Khan, N.A., Millate-e-Mustafa M., 2001. The State of Forestry in Bangladesh. The Bangladesh Observer.
- Khanal, Y., Upadhyaya, C., Sharma, R., 2010. Economic valuation of water supply service from two community forests in Palpa district. *Banko Janakari* 20, 24–29. https://doi.org/10.3126/banko.v20i1.3505
- Khatun, M.A., Rashid, M.B., Hygen, H.O., 2016. Climate of Bangladesh. MET report 2387–4201.
- Khushi, L.R., Hossain, M., Abdullah, S.M.R., Saha, S., Siddique, M.R.H., 2018. Allometric models for estimation of aboveground biomass of *Gmelina arborea* Roxb. in pulpwood plantations of Bangladesh. Southern Forests 1–4. https://doi.org/https://doi.org/10.2989/20702620.2018. 1488209
- Knetsch, J.L., 1963. Outdoor Recreation Demands and Benefits. *Land Economics* 39, 387. https://doi.org/10.2307/3144843
- Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.-C., Sommer, H., 2000. Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet 356, 795–801. https://doi.org/10.1016/S0140-6736(00)02653-2
- Mahmood, H., Siddique, M., Costello, L., Birigazzi, L., Abdullah, S., Henry, M., Siddiqui, B., Aziz, T., Ali, S., Al Mamun, A., Forhad, M., Akhter, M., Iqbal, Z., Mondol, F., 2019. Allometric models for estimating biomass, carbon and nutrient stock in the Sal zone of Bangladesh. iForest Biogeosciences and Forestry 12, 69–75. https://doi.org/10.3832/ifor2758-011

- McDonough, K., Hutchinson, S., Moore, T., Hutchinson, J.M.S., 2017. Analysis of publication trends in ecosystem services research. *Ecosystem Services*. https://doi.org/10.1016/j.ecoser.2017.03.022
- Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Synthesis. Island press Washington, DC:
- Nowak, D.J., Hirabayashi, S., Bodine, A., Greenfield, E., 2014. Tree and forest effects on air quality and human health in the United States. *Environmental Pollution* 193, 119–129.
- O'Brien, D., 2010. Measuring the value of culture: A report to the Department for Culture, Media and Sport.
- Owuor, S.O., Butterbach-Bahl, K., Guzha, A.C., Rufino, M.C., Pelster, D.E., Díaz-Pinés, E., Breuer, L., 2016. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. *Ecological Processes* 5, 16. https://doi.org/10.1186/s13717-016-0060-6
- Pearson, T.R.H., Brown, S.L., Birdsey, R.A., 2007. Measurement guidelines for the sequestration of forest carbon. USDA Forest Service, Northern Research Station, USA.
- Powe, N.A., Willis, K.G., 2004. Mortality and morbidity benefits of air pollution (SO₂ and PM₁₀) absorption attributable to woodland in Britain. *Journal of Environmental Management* 70, 119–128. https://doi.org/10.1016/j.jenvman. 2003.11.003
- Prayaga, P., Rolfe, J., Sinden, J., 2006. A Travel Cost Analysis of the Value of Special Events: Gemfest in Central Queensland. *Tourism Economics* 12, 403–420. https://doi.org/10.5367/000000006778493592
- Ragland, K.W., Aerts, D.J., Baker, A.J., 1991. Properties of wood for combustion analysis. *Bioresource technology* 37, 161–168.
- Rausser, G.C., Small, A.A., 2000. Valuing Research leads: Bioprospecting and the Conservation of Genetic Resources. *Journal of Political Economy* 108, 173–206. https://doi.org/10.1086/262115
- Secretariat of the Convention on Biological Diversity, 2001. The value of forest ecosystems. CBD Technical Series No. 4. Montreal, Canada.

- Shamsudduha, M., Taylor, R.G., Ahmed, K.M., Zahid, A., 2011. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. *Hydrogeology Journal* 19, 901–916. https://doi.org/10.1007/s10040-011-0723-4
- Tisdell, C., Wilson, C., 2002. World Heritage Listing of Australian Natural Sites: Tourism Stimulus and Its Economic Value. *Economic Analysis and Policy* 32, 27–49. https://doi.org/10.1016/S0313-5926(02)50017-5
- Uddin, Md.S., de Ruyter van Steveninck, E., Stuip, M., Shah, M.A.R., 2013. Economic valuation of provisioning and cultural services of a protected mangrove ecosystem: A case study on Sundarbans Reserve Forest, Bangladesh. *Ecosystem Services* 5, 88–93. https://doi.org/10.1016/j.ecoser.2013.07.002
- Walkaly, A.J., Black, L.A., 1934. Estimation of soil organic carbon by the chronic acid titration method.
- Wallace, K.J., 2007. Classification of ecosystem services: Problems and solutions. Biological Conservation. https://doi.org/10.1016/j.biocon.2007.07.015
- Yang, J., McBride, J., Zhou, J., Sun, Z., 2005. The urban forest in Beijing and its role in air pollution reduction. *Urban Forestry & Urban Greening* 3, 65–78. https://doi.org/10.1016/j.ufug.2004.09.001

Appendices

Appendix 1. Tree species recorded from BDNP

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
1	Acacia auriculiformis A. Cunn.ex Beth.	Akashmoni	Mimosaceae	Tree	Cult.
2	Acacia caesia (L.) Willd.	-	Mimosaceae	Tree (Medium)	Cult.
3	Acacia mangium Willd	Mangium	Mimosaceae	Tree (Small)	Cult.
4	Acronychia padunculata (L) Miq.	Bon jamir	Rutaceae	Tree (Small)	Rare
5	Actinodaphne angustifolia Nees.	Tejmatan	Lauraceae	Tree	Common
6	Adenanther apavonina L.	Raktachandan	Mimosaceae	Tree	Rare
7	Aidia oppositifolia (Roxb.) Rahman & Das	Bhadi, Dalyaphul	Rubiaceae	Tree (Small)	Rare/ Endangered
8	Albizia lucidior (Steud.) Nielson. ex Hara	Sil-koroi	Mimosaceae	Tree	Rare/Cult.
9	Albizia chinensis (Osb.) Merr.	Chakuakoroi, Chakua	Mimosaceae	Tree	Cult.
10	Albizia lebbeck (L.) Benth.	Kalakoroi, Sirish	Mimosaceae	Tree	Cult.
11	Albizia odorssima (L.f.) Benth.	Tetuya, Koro	Mimosaceae	Tree	Cult.
12	Albizia procera (Roxb.) Benth.	Jath-koroi, Koroi	Mimosaceae	Tree	Cult.
13	Allophylus cobbe L. var. glaber	Chita	Sapindaceae	Tree (Small)	Common
14	Allophylus villosa (Roxb.) Blume	-	Sapindaceae	Tree (Small)	Common
15	Alnus nepalensis G. Don	-	Betulaceae	Tree	Rare/ Endangered
16	Alstonia nerifolia D. Don	Chatim	Apocynaceae	Tree	Rare
17	Alstonia scholaris (L.) R. Br.	Chatim	Apocynaceae	Tree	Common
18	Antidesma bunius (L.) Spreng.	Banshialbuka	Euphorbiaceae	Tree (Medium)	Rare
19	Antidesma ghaesembilla Gaer	Khudijam	Euphorbiaceae	Tree	Rare

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
20	Antidesma roxburghii Wall ex Tul.	-	Euphorbiaceae	Tree (Small)	Rare
21	Aporosa wallichii Hook.f.	Karullah, Kakra, Kechua	Euphorbiaceae	Tree	Rare
22	Aporusa aurea Hook.f.	Kechuan	Euphorbiaceae	Tree	Rare
23	Aporusa octandra (Buch Ham. ex D. Don) A. R. Vickery.	Patha-kharullah, Kechua, Ataligula	Euphorbiaceae	Tree	Rare
24	Ardisia colorata Roxb.	-	Myrsinaceae	Tree (Small)	Rare/ Endangered
25	Ardisia paniculata Roxb.	-	Myrsinaceae	Tree (Small)	Rare/ Endangered
26	Artocarpus chaplasa Roxb.	Chaplash, Capalish	Moraceae	Tree	Rare/Cult.
27	Artocarpus lakoocha Wall. ex Roxb.	Dewa, Dauphal	Moraceae	Tree	Rare
28	<i>Azadirachta indica</i> A. Juss.	Neem, Nim	Meliaceae	Tree	Cult.
29	Baccaurea ramiflora Lour.	Latka, Latkon, Harpata, Vaccum gola	Euphorbiaceae	Tree (Medium)	Rare
30	Baringtonia acutangula (L.) Gaertn.	Hijal, Kumia, Hidjal	Lecythidaceae	Tree (Medium)	Common
31	Bauhinia variegata L.	Rakta Kanchan, Lal-Kanchon	Caesalpiniaccae	Tree (Medium)	Rare
32	Bischofia javanica Blume	Kanjalbhadi	Euphorbiaceae	Tree	Common
33	Bixa orellana L.	Latkon, Harpara	Bixaceae	Tree (Small)	Rare
34	Boehmeria glomerulifera Miq.	Borthurthuri	Urticaceae	Tree (Small)	Common
35	Bombax ceiba L.	Simul, Tula	Bombacaceae	Tree	Rare/Cult.
36	Bombax insigne Wall.	Ban-simul, Pahari-simul	Bombacaceae	Tree (Large)	Rare
37	Bouea oppositifolia (Roxb.) Maessn.	Mailam, Miriam Uriam, Maillom	Anacardiaceae	Tree (Medium)	Critically Endangered
38	Brassaiopsis glomerulata (Blume) Regel	Kurila	Araliaceae	Tree (Small)	Common
39	Bridelia roxburghiana (Mull. Arg.) Gehrm.		Euphorbiaceae	Tree (Small)	Rare
40	Bridelia verrucosa Haines	_	Euphorbiaceae	Tree (Small)	Rare
41	Briedelia stipularis (L.) Blume	Pat khowi	Euphorbiaceae	Tree (Small)	Rare
42	Briedelia tomentosa Blume	Khoi	Euphorbiaceae	Tree (Small)	Rare

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
43	Brownlowia elata Roxb.	Mass, Masjot, Moos	Tiliaceae	Tree	Critically Endangered
44	Buchanania lancifolia Roxb.	Chikki	Anacardiaceae	Tree	Rare
45	Butea monosperma (Lam.) Kuntze	Palash	Fabaceae	Tree (Medium)	Cult.
46	Calliandra umbrosa (Wall.) Benth.	Chotto Betmara	Mimosaceae	Tree	Rare
47	Callicarpa arborea Roxb.	Barmala	Verbenaceae	Tree (Medium)	Common
48	Cassia fistula L.	Sonalu, Bandar-lati	Caesalpiniaccae	Tree	Cult.
49	Cassia javanica L. ssp. nodosa (BuchHam. ex Roxb.) K & S.Larson	Bander-lutia, Bon-sonalu	Caesalpiniaccae	Tree	Rare
50	Cassia siamea Lam.	Minjiri, Minjuri	Caesalpiniaccae	Tree	Cult.
51	Chaetocarpus castanicarpa (Roxb.) Thw.	Bulkakra	Euphorbiaceae	Tree (Medium)	Common
52	Chisochaeton paniculatus Hiern	Rata, Kalikora	Meliaceae	Tree	Rare
53	Chukrasia tabularis A. Juss.	Chickrassi	Meliaceae	Tree	Rare/Cult.
54	Cleistocalyx nervosum (DC.) Kosterm var. paniala (Roxb.) J. Parn. & P. Chantara	Bhutijam, Godajam	Myrtaceae	Tree	Rare
55	Cordia dichotoma G. Forst.	Bohal, Bohary	Boraginaceae	Tree	Rare/ Endangered
56	Cordia serrata Roxb.	-	Boraginaceae	Tree	Rare/ Endangered
57	Crateva manga (Lour.) DC.	Barun, Gotabaruna	Capparaceae	Tree (Small)	Common
58	Crypteronia paniculata Blume	Goru-mara, Nishamba	Crypteroniaceae	Tree (Large)	Common
59	Cycas pectinata Hamilton	Cycas, Jam chattar	Cycadaceae	Palm like Tree	Critically Endangered
	Dalbergia sericea G. Don	Sristi, Rebinea	Fabaceae	Tree	Rare
61	Dalbergia lanceolaria L. f.	Chakemdia	Fabaceae	Tree	Rare
62	Dalbergia malabarica Prain	-	Fabaceae	Tree	Rare

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
63	Dalbergia sissoo Roxb.	Sissoo gach	Fabaceae	Tree	Cult.
64	Dalbergia stipulacea Roxb.	Dadbari	Fabaceae	Tree (Small)	Rare
65	Dehaasia kurzii King ex Hook.f.	Modon Mostho	Lauraceae	Tree (Medium)	Rare/ Endangered
66	Dendrocnide sinuata (Blume) Chew	Bangaldandi, Laua-Chutra	Urticaceae	Tree (Small)	Common
67	Derris robusta (Roxb. ex DC) Benth.	Jangaria, Jamarja, Koroi	Fabaceae	Tree	Rare
68	Dillenia pentagyna Roxb.	Hargaza	Dilleniaceae	Tree	Critically Endangered
69	Dillenia indica L.	Chaltha, Chaillah	Dilleniaceae	Tree	Cult.
70	Diospyros malabarica (Desr.) Koste.	Gab, Deshi gab	Ebenaceae	Tree (Medium)	Rare
71	Diospyros racemosa Roxb.	Gab	Ebenaceae	Tree (Medium)	Rare/Endang ered
72	Dipterocarpus turbinatus Gaertn.	Kali garjan, Teli garjan, Kuroli	Dipterocarpaceae	Tree	Rare/Cult.
73	<i>Dipterocarpus alatus</i> Roxb. <i>ex</i> G. Don		Dipterocarpaceae	Tree	Rare/Cult
74	Dipterocarpus costatus Gaertn.f.	Garjan,	Dipterocarpaceae	Tree	Rare
75	Drimycarpus racemosus Hook.f.	Kodi-barele, Lau-barela, Nala-amshi	Anacardiaceae	Tree	Critically Endangered
76	Duabunga grandiflora (Roxb. ex DC.) Walp	Bandarhulla	Sonneratiaceae	Tree	Rare
77	Elaeocarpus floribundus Blume	1 / 1	Elaeocarpaceae	Tree (Large)	Cult.
78	Elaeocarpus tectorius (Lour.) Poir.	Chekio, Jalpai	Elaeocarpaceae	Tree	Rare
79	Engelhardia spicata Lechen ex Blume	Kichra-vhadi, Bolas, Dad, Jhumka-Vhadi	Juglandaceae	Tree	Rare
80	Erythrina indica L.	Palita, madar, Mandar	Fabaceae	Tree (Medium)	Cult.
81	Erythrina stricta Roxb.	Mandar	Fabaceae	Tree	Cult.
82	Euclalyptus citrodora Hook.	Eucalyptus	Myrtaceae	Tree	Cult.

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
83	Euonymus glaber Roxb.	-	Celastraceae	Tree (Small)	Rare
84	Eurya attenuata DC.	Lapet, Sagolerbori	Theaceae	Tree (Small)	Rare/ Endangered
85	Fagraea ceilanica Thunb.	-	Loganiaceae	Tree (Small)	Rare
86	Falconeria insignis Royle	Belua, Goma, Latmel	Euphorbiaceae	Tree	Rare
87	Ficus hispida L. f.	Dumur, Kakdumur, Dhungri, Thoska	Moraceae	Tree (Small)	Common
88	Ficus macrocarpa L.f.	Bot	Moraceae	Tree	Rare
89	Ficus bengalensis L.	Bot	Moraceae	Tree	Common
90	Ficus benjamiana L.	Pakur	Moraceae	Tree	Common
91	Ficus fistulosa Reinwdt.	-	Moraceae	Tree (Small)	Common
92	Ficus gibbosa Blume	Bot	Moraceae	Tree	Common
93	Ficus glomerata Roxb. var. ttenuat Roxb.	Bot	Moraceae	Tree (Small)	Common
94	Ficus racemosa L.	Jagya-dumur, Jog-dumur, Duir-gach	Moraceae	Tree	Common
95	Ficus religiosa L.	Ashwatha, Ashwath	Moraceae	Tree	Common
96	Flacourtia jangomas (Lour.) Racusch.	Paniala, Paniamala, Lukluki	Flacourtiaceae	Tree (Medium)	Rare/ Endangered
97	Garcinia cowa Roxb.	Kao-gola, Kau, Cowa, Kao, Kawa, Kaglichu	Clusiaceae	Tree (Medium)	Rare/ Endangered
98	Gardenia coronaria BuchHam.	Torgular, Koinar, Kanyariphul, Painnaphul	Rubiaceae	Tree (Medium)	Rare
99	Gliricidia sepium (Jacq.) Walp.	BashantaManjuri	Fabaceae	Tree (Small)	Rare
100	(Muell-Arg.) Hook.f.	-	Euphorbiaceae	Tree (Small)	Rare
101	Glochidion multiloculare (Roxb. ex Willd.) Muell. Arg.	Aniatori	Euphorbiaceae	Tree (Small)	Rare

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
102	Glochidion spherogynum Kurz	-	Euphorbiaceae	Tree (Medium)	Rare
103	Glochidon lanciolarium (Roxb.) Voigt.	Anguti, Bhauri, Kakra, Kechuan, Kechchua	Euphorbiaceae	Tree (Small)	Rare
104	Gmelina arborea Roxb.	Gamari	Verbenaceae	Tree	Cult.
105	<i>Grewia asiatica</i> L.	Pholsa	Tiliaceae	Tree (Small)	Common
106	Grewia disperma Roxtt.	Laonaassar, Dhaman	Tiliaceae	Tree (Medium)	Common
107	Grewia excels Vahl	-	Tiliaceae	Tree (Small)	Common
108	Grewia laevigata Vahl	-	Tiliaceae	Tree (Small)	Common
109	Grewia nervosa (Lour.) Panigr.	Assar, Pisla, Patka	Tiliaceae	Tree (Small)	Common
110	Haldina cordifolia (Roxb.) Ridsd.	Bangka, Kalakadam, Mala, Dhakudom, Haldu	Rubiaceae	Tree	Rare
111	Helicia excels (Roxb.) Blume	-	Proteaceae	Tree (Medium)	Rare
112	Holarhena antidysenterica (L.) Wall. ex DC.	Kurchi	Apocynaceae	Tree (Small)	Common
113	Holigarna longifolia Roxb.	Barola, Rakta- Barola	Anacardiaceae	Tree	Critically Endangered
114	Hopea odorata Roxb.	Telsur	Dipterocarpaceae	Tree (Large)	Rare/Cult.
115	Hydnocarpus kurzii (King) Warb.	Chaulmoogra	Flacourtiaceae	Tree	Rare
116	Ixora pavetta Andr.	Swetrangan, Gandhalrangan	Rubiaceae	Tree (Small)	Common
117	Ixora spectabilis Wall.	-	Rubiaceae	Tree (Small)	Common
118	Ixora nigricans R. Br. ex Wight &Arn.	Nikrangachuillya	Rubiaceae	Tree (Small)	Common
	Lagerstroemia parviflora Roxb. var. benghalensis C.B. Clarke	Baturi, Sidha	Lythraceae	Tree (Medium)	Rare
120	Lagerstroemia speciosa (L.) Pers.	Jarul, Kanta jarul, Pannya jarul	Lythraceae	Tree (Medium)	Cult.

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
121	Lannea coromandelica (Houtt.) Merr.	Jialbhadi, Jika, Jiga, Kapila, Bhadi	Anacardiaceae	Tree	Common
122	Lapisanthes rubiginosum (Roxb.) Leech.	Baraharina	Sapindaceae	Tree (Small)	Rare
123	Lapisanthes senegalensis (Pior.) Leenh.	Gotahorina, Amjam, Amjam, Kawajhijhi	Sapindaceae	Tree (Small)	Rare
124	<i>Leea macrophylla</i> Roxb. <i>ex</i> Hornem.		Leeaceae	Tree (Small)	Rare
125	Lithocarpus elegens (Blume) Hatus ex Soepadmo	Rai batna, Bara cakma, Bara batna	Fagaceae	Tree	Rare/Endang ered
126	Litsea glutinosa (Lour.) Robinson	Kukur-chita, Ratan garur, Karjiuki,Menda	Lauraceae	Tree (Medium)	Rare
127	Macaranga denticulata (Blume) MuellArg.	Burna, Bura-kochi Rata-bura, Bura gach	Euphorbiaceae	Tree (Medium)	Common
128	Macaranga peltata (Roxb) MuellArg.	-	Euphorbiaceae	Tree	Common
129	Maesa paniculata A. DC.	Noa-maricha	Myrsinaceae	Tree (Small)	Common
130	Mallotus philippensis (Lam.) MuellArg.	Kamalaguli	Euphorbiaceae	Tree (Small)	Rare
	Mallotus repandus (Willd.) Müll. Arg.	·	Euphorbiaceae	Tree (Small)	Rare
132	Mallotus roxburghianus MuellArg.	Nim puteli, Nunia kachi, Noon kochi	Euphorbiaceae	Tree (Small)	Rare
133	Mallotus tetracoccus (Roxb.) Kurz	Kumari-bura, Main bura	Euphorbiaceae	Tree (Medium)	Rare
134	Mangifera indica L.	Aam	Anacardiaceae	Tree	Cult.
135	Mangifera longipes Griff.	JangaliAam	Anacardiaceae	Tree	Critically Endangered
136	Mangifera sylvatica Roxb.	Uri Aam, Jangali Aam,	Anacardiaceae	Tree	Critically
137	<i>Melia azadirachta</i> L.	Gora nim, Kowa nim	Meliaceae	Tree (Medium)	Rare/Cult.
138	Meliosma pinnata (Roxb.) Maxim.	Bativa, Attalia	Sabiaceae	Tree (Medium)	Rare

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
139	<i>Mesua floribunda</i> (Wall.) Kosterm		Clusiaceae	Tree (Large)	Cult.
140	<i>Meyna spinosa</i> Roxb. <i>ex</i> Link	Maina, Mainakata	Rubiaceae	Tree (Small)	Rare
141	Michelia champaca L.	Champa, Chapa	Magnoliaceae	Tree	Cult.
142	Micromelum minutum Wight &Arn.	Koroiphula, Dulia	Rutaceae	Tree (Medium)	Common
143	Miliosa longiflora (Hook.f. & Thom.) Finet & Gagnep.	Phesicow, Horinagola, Roktagola	Annonaceae	Tree	Critically Endangered
144	Mimusops elengi L.	Bakul	Sapotacee	Tree	Cult.
145	Morinda angustifolia Roxb.	Rangash, Banamali, Harinarful, Holdiruk	Rubiaceae	Tree (Small)	Common
	Mussaenda roxburghii Hook.f.	Chauri-chaonri, Silchaonri, Silchauri	Rubiaceae	Tree (Small)	Common
147	Neolamarckia cadamba (Roxb.) Bosser	Kadam Bul-kadam	Rubiaceae	Tree	Common
148	Ochna wallichii Planch.	Champabaha	Ochnaceae	Tree (Small)	Rare/ Endangered
149	Oreocnide integrifolia (Gaudich.) Miq.	Horhuta	Urticaceae	Tree (Small)	Common
150	Oroxylum indicum (L.) Kurz	Thona	Bignoniaceae	Tree	Rare
151	Persea bombycina (King ex Hook.f.) Kosterm.	Machilus Nala-amsi	Lauraceae	Tree (Medium)	Rare
152	Phyllanthus emblica L.	Amloki, Ambolothi, Aonla	Euphorbiaceae	Tree	Cult.
153	Pithecellobium heterophyllum (Roxb.) Macbr.	Kuramaragach	Mimosaceae	Tree (Medium)	Rare/ Endangered
154	Protium serratum (Wall. ex Colebr.) Engl.	Chitrica, Hajna, Haliabhadi	Burseraceae	Tree	Rare
155	Pterospermum semisagittat um BuchHam. ex Roxb.	Laonaassar, Bara assar	Sterculiaceae	Tree	Rare/ Endangered
156	Quercus semiserrata Roxb.	Batna, Guijjabatna	Fagaceae	Tree	Rare/ Endangered
157	Samanea saman (Jacq.) Merr.	Belati-siris Bistigach Randi-koroi Ful-koroi	Mimosaceae	Tree	Cult.

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
158	Sapium indicum Willd	Hura, Batul, Bara mel	Euphorbiaceae	Tree (Small)	Rare
159	Sapium baccatum Roxb.	Chottomel, Champatha, Kala boil, Katagola	Euphorbiaceae	Tree	Rare
	Saraca asoca (Roxb.) de Wilde.	Ashok	Caesalpiniaccae	Tree	Rare
161	Saraca indica L.	Ashok	Caesalpiniaccae	Tree	Rare
162	Saurauia roxburghii Wall.	Dalup	Actinidiaceae	Tree (Small)	Rare
163	Semecarpus subpanduriformis Wall.	Hijal, Bhela, Beula	Anacardiaceae	Tree (Medium)	Rare
	Sesbania grandiflora (L.) Poir.	Bakful, Bagful, Agati	Fabaceae	Tree (Small)	Cult.
165	Spondias pinnata (L. f.) Kurz	Amra, Deshi- Amra, Pial, Piala	Anacardiaceae	Tree	Rare
166	Sterculia foetida L.	Udal	Sterculiaceae	Tree (Medium)	Rare/ Endangered
167	Sterculia hamiltonii (Kuntze) Adelb.		Sterculiaceae	Tree (Small)	Rare/ Endangered
168	Sterculia villosa Roxb. ex Smith	Udal, Chandal	Sterculiaceae	Tree (Medium)	Rare/ Endangered
169	Stereospermum colais (Bucb. Ham. ex Dillw.) Mabberley	Dharmara, Kamrang, Atkapali	Bignoniaceae	Tree	Rare
170	Streblus asper Lour.	Sheora, Arga	Moraceae	Tree	Common
171	Styrax serolatus Roxb.	Kanchuni, Fulkat	Styracaceae	Tree (Small)	Rare/ Endangered
172	Suregada multiflora (A. Juss.) Baill.	Ban-naranga, Ban-naringa	Euphorbiaceae	Tree (Medium)	Common
173	Swietenia mahagoni (L.) Jacq.	Mehogoni	Meliaceae	Tree	Cult.
174	Swintonia floribunda Griff.	Civit, Chundul, Am chundul	Anacardiaceae	Tree	Critically Endangered
175	Symplocos racemosa Roxb.	-	Symplocaceae	Tree (Medium)	Rare/ Endangered
176	Syzygium cumini (L.) Skeets	Jam, Kalajam	Myrtaceae	Tree	Cult.

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
177	Syzygium cymosum DC.	Khudijam, Khurijam, Jonkijam	Myrtaceae	Tree	Cult.
178	Syzygium formosum (Wall.) Masamune.	Paniya jam, Phul jam	Myrtaceae	Tree	Cult.
179	Syzygium fruticosum DC.	Banjam, Putijam, Khudijam	Myrtaceae	Tree (Small)	Rare
180	Syzygium macrocarpa (Roxb.) Balak.	Banjam, Chalta- jam	Myrtaceae	Tree (Medium)	Cult.
181	Syzygium fruticosum DC.	Banjam, Putijam, Khudijam	Myrtaceae	Tree (Small)	Rare
182	Syzygium macrocarpa (Roxb.) Balak.	Banjam, Chalta- jam	Myrtaceae	Tree (Medium)	Cult.
183	Syzygium praecox (Roxb.) Rathakr & N.C. Nair	Dholi jam, Poorajam	Myrtaceae	Tree (Small)	Cult.
184	Syzygium aqueum (Burm. F.) Alston	Jambo	Myrtaceae	Tree (Medium)	Cult.
185	Syzygium jambos (L.) Alston	Golapjam	Myrtaceae	Tree (Medium)	Cult.
186	Tarrenoidea wallichii (Hook.f.) Tirveng. &Sastre	-	Rubiaceae	Tree	Common
187	Tectona grandis L. f.	Shegun, Shegoon, Teak	Verbenaceae	Tree	Cult.
188	<i>Terminalia alata</i> Heyne <i>ex</i> Roth.	Asal,Asna, Hasna, Saj	Combretaceae	Tree (Large)	Rare
189	Terminalia bellerica (Gaertn.) Roxb.	Bohera, Boyra	Combretaceae	Tree	Cult.
190	Terminalia chebula Retz.	Haritaki, Gol horitaki	Combretaceae	Tree (Large)	Cult.
191	Tetrameles nodiflora R. Br.	Chundul, Maynakat	Datiscaceae	Tree (Large)	Rare/ Endangered
192	Toona ciliata J. Roem	Toon, Kuma, Poma, Tongi, Suri poma	Meliaceae	Tree	Rare
193	Trema orientalis (L.) Blume	Bonjiyal, Jiban, Dhalagar, Dhola	Ulmaceae	Tree (Small)	Common
194	Trevesia palmata (Roxb.) Vis.	Vombal, Kawhtebel	Araliaceae	Tree (Small)	Common

SN	Scientific name	Bangla Name	Family	Habit	Status of occur.
195	Trewia nudiflora L.	Pitali, Batal, Pitabara	Euphorbiaceae	Tree (Medium)	Rare
196	Vitex glabrata R. Br.	Goda, Horina, Aswal	Verbenaceae	Tree	Rare
197	Vitex negundo L.	Baranishinda, Nishinda	Verbenaceae	Tree (Small)	Common
198	Vitex peduncularis Wall. ex Schauer	Goda, Horina, Arswal	Verbenaceae	Tree	Rare
199	Wendlandia tinctoria DC. subsp. orientalis Cowan	Tulaload, Tulaladh	Rubiaceae	Tree (Small)	Common
200	Wrightia arborea (Dennst.) Mabb.	Dudh-koraiya	Apocynaceae	Tree	Common
201	Xanthophyllum flavescens Roxb.	Ajensak, Gabdi, Han sak	Polygalaceae	Tree	Common
202	Xerospermum laevigatum Radlk.	Muraillahlichu	Sapindaceae	Tree	Rare
203	Xylia dolabiformis craib & Hutch	Lohakat	Mimosaceae	Tree	Rare/ Endangered
204	Zizyphus mauritiana Lam.	Kul, Boroi	Rhamnaceae	Tree (Medium)	Common

Appendix 2. Shrubs and woody climbers recorded from BDNP

SN	Botanical name	Bangla Name	Family	Habit	Status of
					occur.
1	Abroma augusta (L.) L.f.	Ulatkambal,	Sterculiaceae	Large Shrub/	Common
		Tambol		Small tree	
2	Abrus precatorius L.	Kunch	Fabaceae	Woody	Rare
				twiner	
3	Abrus pulchellus Wall.	Not available	Fabaceae	Woody	Rare
				climber	
4	Actephila excelsa (Dalz.)	-	Euphorbiaceae	Large shrub	Rare
	MuellArg.				
5	Anodendron manubriatum	Dul	Apocynaceae	Woody	Rare/
	(Wall.) Merr.			climber	Endangered
6	Antidesma acidum Retz.	Multa, Khudi	Euphorbiaceae	Large shrub	Rare
		jam, Limtoa,			
		Elena			
7	Ardisia humilis Vahl	Chauldhoa	Myrsinaceae	Large Shrub/	Critically
				Small tree	Endangered

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
8	Ardisia solanacea Roxb.	Ban-jam	Myrsinaceae	Shrub	Rare/ Endangered
9	Argyreia splendens (Hornem.) Sweet	ChhotaRupatola	Convolvulaceae	Shrubby climber	Common
10	Artabotrys caudatus Wall ex Hook.f. & Thom.	Not available	Annonaceae	Woody climber	Endangered
11	Bauhinia acuminata L.	Shada-kanchon	Caesalpiniaccae	Shrub	Common
12	Bauhinia purpurea L.	Devakanchan	Caesalpiniaccae	Shrub	Common
13	Bauhinia scandens L.	Nagpat, Gendi- lata	Caesalpiniaccae	Woody climber	Rare
14	Breynia retusa (Dennst.) Alston.	Silpati	Euphorbiaceae	Shrub	Rare
15	Buddleja asiatica Lour.	Neemda, Badhota	Buddlejaceae	Shrub	Common
16	Byttneria pilosa Roxb.	Harjora-lata, Jumi, Harbanga-lata	Sterculiaceae	Shrubby climber	Common
17	Caesalpinia bonduc (L.) Roxb.	Nata, Natakaranga	Caesalpiniaccae	Scandent Shrub	Rare
18	Caesalpinia digyna Rottl.	Umulkuchi	Caesalpinaccae	Scandent Shrub	Common
19	Calotropis gigantea (L.) R. Br.	Akanda	Asclepiadaceae	Shrub	Common
20	Calycopteris floribunda (Roxb.) Lam.	Guichalata	Combretaceae	Scandent Shrub	Rare
21	Campanumoea lancifolia (Roxb.) Merr.	-	Campanulaceae	Undershrub	Rare
22	Canthium angustifolium Roxb.	Katamalli, KattalmaliKatal ichapa	Rubiaceae	Shrub	Common
23	Capparis spinosa L.	Kabia	Capparaceae	Trailing Shrub	Common
24	Cassia obtusifolia L.	Chakunda	Caesalpiniaccae	Undershrub	Common
25	Cassia sophera L.		Caesalpiniaccae	Shrub	Common
26	Chasalia curviflora (Wall.) Thw. var. ophioxyloodes (Wall.) Deb & Krishna	-	Rubiaceae	Shrub	Rare
27	Chonemorpha fragrans (Moon) Alston	Gar badero	Apocynaceae	Woody climber	Endangered

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
28	Clausena heptaphylla (Roxb.) Wight & Arn. ex Steud.	Karanphul, Panbahar	Rutaceae	large shrub	Common
29	Clerodendrum indicum (L.) Kuntze	Bamunhati	Verbenaceae	Shrub	Common
30	Clerodendru mviscosum Vent.	Bhant, Ghetuphul	Verbenaceae	Shrub	Common
31	Clerodendrum wallichii Merr.	Malbong, Dieng-julkah	Verbenaceae	Shrub	Rare
32	Cnesmone javanica Blume	Chottrapatha, Paharibichuti	Euphorbiaceae	Shrubby climber	Common
33	Combretum apetalum Wall. ex Kurz		Combretaceae	Scandent Shrub	Rare
34	Combretum decandram Roxb.	Kali gumuchi, Sadaguicha	Combretaceae	Scandent Shrub	Rare
35	Connarus paniculatus Roxb.	Katgular	Connaraceae	Woody climber	Rare
36	Crotalaria bracteata DC.	-	Fabaceae	Shrub	Common
37	Crotolaria verrucosa L.	Bansan, Jhanjhana	Fabaceae	Undershrub	Common
38	Croton caudatus Geisel.	Nanbhanti	Euphorbiaceae	Shrub	Common
39	Dalbergia spinosa Roxb.	Ananta, Ananta kantha	Fabaceae	Large Shrub	Common
40	Dalbergia volubilis Roxb.	Ankilata, Barusirkath	Fabaceae	Woody climber	Rare
41	Dendrolobium triangulare (Retz) Merr.	Bir Jarwar	Fabaceae	Shrub	Common
42	<i>Dendrophthoe pentandra</i> (L.) Miq.	-	Loranthaceae	Shrub	Rare
43	Derris scandens (Roxb.) Benth.	Amkurchi	Fabaceae	Woody climber	Common
44	Desmodium monotorium (Houtt.) Merr.	Gorachand, Lonchar, Telegraph plant		Undershrub	Common
45	Desmodium triquetrum (L.) DC.	-	Fabaceae	Undershrub	Common
46	Desmodium gangeticum (L.) DC.	Salpani	Fabaceae	Undershrub	Common
47	Desmodium heterocarpon (L.) DC.	-	Fabaceae	Undershrub	Common
48	Desmodium lexiflorum DC.	-	Fabaceae	Undershrub	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
49	Desmodium pulchellum (L.) Benth	Jatsalpani	Fabaceae	Shrub	Common
50	Desmos chinensis Lour.	-	Annonaceae	Scandent Shrub	Endangered
51	Desmos dumosus (Roxb.) Saff.	-	Annonaceae	Shrubby climber	Endangered
52	Duranta erecta L.	Durantha, Katamehedi	Verbenaceae	Large shrub	Common
53	Ecbolium ligustrinum (Vahl) Vollesen	Udajati	Acanthaceae	Shrub	Rare
54	Eranthemum pulchellum Andrews	-	Acanthaceae	Shrub	Common
55	Eranthimum paltiferum (Wall.) Nees	-	Acanthaceae	Shrub	Common
56	Euonymus attenuatus Wall. ex Laws.	-	Celastraceae	Shrub	Rare
57	Ficus heterophylla L.f.	-	Moraceae	Large Shrub/ Small tree	Common
58	Fissistigma rubiginosum (A. DC.) Merr.	-	Annonaceae	Shrubby climber	Endangered
59	Fissistigma wallichii (Hook.f. & Thom.) Merr.	-	Annonaceae	Woody climber	Endangered
60	Flemingia strobilifera (L.) R. Br.	Machipatha	Fabaceae	Shrub	Common
61	Glyocosmis pentaphylla (Retz.) Corr.	Datmajan, Matkila	Rutaceae	Shrub	Common
62	Gouanian apalensis Wall.	-	Rhamnaceae	Trailing Shrub	Rare/Endan gered
63	Gounia tiliaefolia Lam.	-	Rhamnaceae	Scandent Shrub	Rare/Endan gered
64	Gymnema acuminatum (Roxb.) Wall.	Kharalata	Asclepiadaceae	Woody twiner	Rare
65	Hyptianthera stricta (Roxb. ex Schult.) Wight & Arn.	TahiSeing	Rubiaceae	Large Shrub/ Small tree	Common
66	Hyptis brevipes Poir.	-	Lamiaceae	Shrub	Common
67	Ichnocarpus frutescens (L.) R. Br.	Dudhilata	Apocynaceae	Woody twiner	Common
68	Indigofera tinctoria L.	Nil	Fabaceae	Shrub	Cult.

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
69	<i>Ipomoea fistulosa</i> Mart. <i>ex</i> Choisy	Dholkalmi, Police lata, Amar gach	Convolvulaceae	Shrub	Common
70	Ixora athrorantha Bremek.	1	Rubiaceae	Large Shrub/ Small tree	Common
71	Ixora balakrishnanii Deb & Rout	Bhantjhara	Rubiaceae	Large Shrub/ Small tree	Common
72	Ixora pubirama Bremek.	Kaemosi, Chichainpa	Rubiaceae	Large Shrub/ Small tree	Common
73	<i>Ixora subsessilis</i> Wall. ex G. Don	Pool tree, Kondor, Rengchan	Rubiaceae	Shrub	Common
74	Ixora cuneifolia Roxb.	Beophul, KesuaGachh	Rubiaceae	Shrub	Rare
75	Jasminum sambac (L.) Aiton	Belphul, Beli	Oleaceae	Shrubby climber	Rare
76	Jasminum scandens Vahl	1	Oleaceae	Woody climber	Rare
77	Justicia adhatoda L.	Vasak, Bashak	Acanthaceae	Shrub	Common
78	Justicia gendarussa L.	Jagat mardan, Bishalla	Acanthaceae	Shrub	Common
79	Lantana camara L.	Lantana	Verbenaceae	Shrub	Common
80	Lasianthus hirsutus (Roxb.) Merr.	Kala long	Rubiaceae	Shrub	Common
81	Leea acuminata Wall.	Phupharia	Leeaceae	Shrub	Rare
82	Leea aequata L.	Kakjangha	Leeaceae	Shrub	Rare
83	Leea crispa L	Banchalita, Mach	Leeaceae	Shrub	Rare
84	Leea indica (Burm. F.) Merr.	Kurkurjihwa	Leeaceae	Large Shrub/ Small tree	Common
85	Ligustrum robustum (Roxb.) Blume	-	Oleaceae	Large Shrub/ Small tree	Rare
86	Lippia alba Mill. N. E. Br. ex Brit. & Wilson	Pichas-lakr	Verbenaceae	Shrub	Common
87	Macrosolen cochinchinensis (Lour.) Van Tiegh.	Chotabanda, Rema	Loranthaceae	Shrub	Rare
88	Maesa attenua A. DC.	Narichagach	Myrsinaceae	Large Shrub/ Small tree	Common
89	Maesa indica (Roxb.) DC.	Sesu, Sirkhi	Myrsinaceae	Large Shrub/ Small tree	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
90	Maesa ramantacea Wall.	Noa-maricha	Myrsinaceae	Large Shrub/ Small tree	Common
91	Melastoma malabathricum L.	Lutki, Datranga	Melastomataceae	Shrub	Common
92	Melodinus monogynus Roxb.	-	Apocynaceae	Woody twiner	Endangered
93	<i>Merremia vitifolia</i> (Burm. f.) Hallier f.	-	Convolvulaceae	Shrubby climber	Common
94	<i>Mimosa diplotricha</i> C.Wright	Ban Lajja-bati	Mimosaceae	Shrub	Rare
95	Mimosa himalayana Gamble	Jharua, Bara Lajjabati	Mimosaceae	Straggling Shrub	Rare
96	Mitragyna diversifolia (Wall. ex G. Don) Havil.	Phul-Kadam	Rubiaceae	Large Shrub/ Small tree	Common
97	Morinda citrifolia L.	Ach, Banach, Haldikachu, Hardi, Ronch	Rubiaceae	Large Shrub/ Small tree	Common
98	Morinda persicifolia BuchHam.	-	Rubiaceae	Shrub	Common
99	Mosanda sp.	Not available	Rubiaceae	Shrub	Common
100	Mucuna monosperma DC.	SoashGuri	Fabaceae	Shrubby climber	Common
101	Myxopyrum smilacifolium (Wall.) Blume		Oleaceae	Scandent Shrub	Rare/ Endangered
102	Oxyceros kunstleri (King & Gamble) Tirveng.	Mahish kanta, Maish kata, Manika gach	Rubiaceae	Shrub	Rare
103	Paramignya scandens (Griff.) Craib.	Bannebu, Karipa	Rutaceae	Large Shrub/ Small tree	Rare
104	Pavetta indica L.	Banamali	Rubiaceae	Large Shrub/ Small tree	Common
105	Phyllanthus attenuatus Poir	Panjuli	Euphorbiaceae	Shrub	Rare
106	Phyllanthus sikkimensis MuellArg.	-	Euphorbiaceae	Shrub	Rare
107	Pouzolzia sanguinea (Blume) Merr.	-	Urticaceae	Shrub	Common
108	Premna esculenta Roxb.	Lalana, Lalong	Verbenaceae	Shrub	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
109	Prismatomeris tetrandra (Roxb.) K. Schum.	Chinatita, Katmali	Rubiaceae	Large Shrub/ Small tree	Common
110	Psychotri acalocarpa Kurz	Ranga bhutta	Rubiaceae	Undershrub	Common
111	Psychotria monticola Kurz	Hatichotra	Rubiaceae	Shrub	Common
112	Psychotria adenophylla Wall.	Barosudma	Rubiaceae	Large Shrub/ Small tree	Common
113	<i>Psychotria symplocifolia</i> Kurz	-	Rubiaceae	Large Shrub/ Small tree	Common
114	Rhynchotoechum ellipticum (Wall. ex Diet.) DC.	-	Gesneriaceae	Undershrub	Common
115	Sarcochlamys pulcherrima Gaud.	Acila	Urticaceae	Large shrub	Common
116	Scurrula gracilifolia (Roxb. ex Schult.) Danser	Pargacha, Parul	Loranthaceae	Shrub	Rare
117	Scurrula parasitica L.	Parula	Loranthaceae	Shrub	Common
118	Senna alata (L.) Roxb.	Dadmordan	Caesalpiniaccae	Shrub	Common
119	Senna tora (L.) Roxb.	Teraj	Caesalpinaccae	Undershrub	Common
120	Sida acuta Burm. F.	Kureta	Malvaceae	Undershrub	Common
121	Sida cordifolia L.	Pitberela	Malvaceae	Undershrub	Common
122	Solanum torvum Sw.	Goth begun	Solanaceae	Shrub	Common
123	Spatholobus parviflorus (DC.) Kuntze	Goalialata	Fabaceae	Woody climber	Rare
124	Stephania glabra (Roxb.) Miers	Akanadi, Musaahanilata	Menispermacea e	Woody climber	Rare
125	Stephania japonica (Thunb.) Miers	Akanadi, Nimukha, Raj Pathda	Menispermacea e	Shrubby climber	Common
126	Strobilanthes auriculatus Nees	Kara,	Acanthaceae	Shrub	Rare
127	Strophanthus wallichii Decne	-	Apocynaceae	Shrubby climber	Endangered
128	<i>Tabernaemontana recurva</i> Roxb.	Chootakatwad ar, Rupa tola	Apocynaceae	Shrub	Rare
129	Tarenna companiflora (Hook.f.) Balakrishnan	Kakra, Rebek	Rubiaceae	Large Shrub/ Small tree	Common
130	Teprosia candida DC.	Bilakshani	Fabaceae	Shrub	Common
131	Tetrastigma leucostaphylum (Dennst.) Alston	Horinia-lata, Jarul lata	Vitaceae	Woody climber	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
132	Tinospora crispa (L.)	Gulancha	Menispermacea	Shrubby	Endangered
	Hook.f. & Thom.		e	climber	
133	Tylophora hirsuta	-	Asclepiadaceae	Shrubby climber	Endangered
134	Tylophora tenuissima (Roxb.) Wight &Arn.	ı	Asclepiadaceae	Shrubby climber	Endangered
135	Uraria rufescens (L.) Desv. ex DC.	Dieng-kha-riu	Fabaceae	Shrub	Common
136	<i>Urena lobata</i> L.	Banokra	Malvaceae	Undershrub	Common
137	Uvaria cordata (Dunal) Alston	-	Annonaceae	Woody climber	Endangered
138	Uvaria hamiltonii Hook.f. & Thom.	Latkan	Annonaceae	Woody climber	Endangered
139	()	Hadpur, Mali	Apocynaceae	Scandent	Critically
1.40	Kuntze	C1 + : 1 : 1	3.7 1	Shrub	Endangered
140	Vitex trifolia L.	Chotonishinda	Verbenaceae	Shrub	Common
141	<i>Woodfordia fruticosa</i> (L.) Kurz	Dhatriphul, Ragkat	Lythraceae	Shrub	Rare
142	Zizyphus glabrata Heyne ex Roth.	Pahari boroi	Rhamnaceae	Shrub	Rare
143	Zizyphus oenoplia (L.) Mill.	Boot boroi	Rhamnaceae	Large Shrub/ Small tree	Common

Appendix 3. Herbs and herbaceous climbers recorded from BDNP

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
1	Abelmoschus moschatus Medik.	Mushakdana, Kalokasturi	Malvaceae	Herb	Common
2	Abuliton indicum (L.) Sweet	Petari, Jhampi	Malvaceae	Herb	Rare
3	Achyranthes aspera L	Apang	Amaranthaceae	Herb	Common
4	Actinostemma tenerum Griff.	-	Cucurbitaceae	Herbaceous climber	Common
5	Adenia trilobata (Roxb.) Engl.	Akandaphal	Passifloraceae	Herbaceous climber	Common
6	Adenosma indianum (Lour.) Merr.	Barakesuti	Scrophulariaceae	Herb	Common
7	Adenostemma lavenia (L.) Kuntze	Baro-kesuti	Asteraceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
8	Aeginetia indica L.	-	Orobanchaceae	Herb	Common
9	Ageratum conyzoides L.	Fulkuri	Asteraceae	Herb	Common
10	Alternanthera sessilis	Chanchi	Amaranthaceae	Herb	Common
11	Alternanthera philoxeroides (Mart.) Griseb.	Helencha	Amaranthaceae	Herb	Common
12	Amaranthus spinosus L.	Kantanotey, KatamarisKant adenga	Amaranthaceae	Herb	Common
13	Amaranthus viridis L.	Notey, Nateyshak, Marissag	Amaranthaceae	Herb	Common
14	Ammannia multiflora Roxb	-	Lythraceae	Herb	Common
15	Ampelocissus barbata (Wall.) Planch.	Jarila-lahari	Vitaceae	Herbaceous climber	Common
16	Ampelygonum chinense (L.) Lindl.	Mohicharansak	Polygonaceae	Herb	Common
17	Andrographis laxiflora (Blume) Lindau.	-	Acanthaceae	Herb	Common
18	Andrographis paniculata (Burm. f.) Wall. ex Nees	Kalomegh	Acanthaceae	Herb	Common
19	Anisomeles indica (L.) Kuntze	Gubura	Lamiaceae	Herb	Common
20	Argyria argentea (Roxb.) Chosy.	Bara rupatola, Chotto-biztarak	Convolvulaceae	Herbaceous climber	Common
21	Argyria capitiformis (Poir.) van Cheek. Oostr.	-	Convolvulaceae	Herbaceous climber	Common
22	Aristolochi atagala Cham.	Ishwarmul	Aristolochiaceae	Herbaceous climber	Common
23	Aristolochia indica L.	Ishwarmul	Aristolochiaceae	Herbaceous climber	Rare
24	Asclepia scurassavica L.	Moricha	Asclepiadaceae	Herb	Rare
25	Barleria strigosa Willd.	Barleria	Acanthaceae	Herb	Common
26	Begonia sp.	-	Begoniaceae	Herb (succulent)	Endangered
27	Biophytum sensitivum (L.) DC.	-	Oxalidaceae	Herb	Common
28	Blumea fistulosa (Roxb.) Kurz	-	Asteraceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
29	Blumea lacera (Brum. F.) DC.	Kukursunga, Barakukshima	Asteraceae	Herb	Common
30	Blumea lanceolaria (Roxb.) Druce	-	Asteraceae	Herb	Common
31	Blumea virens DC.	-	Asteraceae	Herb	Common
32	Blumeopsis flava (DC.) Gagnep	-	Asteraceae	Herb	Common
33	Calystegia hederacea Wall.	-	Convolvulaceae	Herbaceous twiner	Common
34	Capsella bursa-pastoris (L.) Medik.	-	Brassicaceae	Herb	Common
35	Cardiospermum helicacabum L.	Phutka	Sapindaceae	Herbaceous climber	Common
36	Cayratia japonica (Thunb.) Gagnep.	-	Vitaceae	Herbaceous climber	Common
37	Cayratia trifolia (L.) Domin	Amallat, Amal lata	Vitaceae	Herbaceous climber	Common
38	Celosia argentea L.	Moraghphul	Amaranthaceae	Herb	Common
39	Centella asiatica (L.) Urban	Thankuni, Adamoni, Ada gongoni, Ada molki	Apiaceae	Herbaceous trailer	Common
40	Ceratophyllum demersum L.	Sheola	Ceratophyllaceae	Herb	Common
41	Chenopodium album L.	Betushak, Vathua-sak	Chenopodiaceae	Herb	Common
42	Chromolaena odorata (L.) King & Robinson	Barashialmati, Assamlata	Asteraceae	Herb	Common
43	Chrozophora rottleri (Geisel.) A. Juss. ex Spreng.	Khudi Okra	Euphorbiaceae	Herb	Common
44	Cissus assamica (Laws.) Craib	Amashalata	Vitaceae	Herbaceous climber	Rare
45	Cissus elongata Roxb.	Dhemna, Chemna	Vitaceae	Herbaceous climber	Common
46	Cissus javana DC.	Bichitralata	Vitaceae	Herbaceous climber	Rare
47	Cissus pentagona Roxb.	Sona-lota, Sona-tola	Vitaceae	Herbaceous climber	Rare
48	Citrullus colocynthis (L.) Schrad.	Indrayan	Cucurbitaceae	Herbaceous climber	Endangered

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
49	Cleome rutidosperma DC.	-	Capparaceae	Herb	Common
50	Cleome viscosa L.	Haldehurhure	Capparaceae	Herb	Common
51	Coccinia grandis (L.) Voigth	Kawajhinga, Telakucha, Kuchila	Cucurbitaceae	Herbaceous climber	Common
52	Cocculus hirsutus (L.) Theob.	Huyer	Menispermaceae	Herbaceous climber	Rare
53	Corchorus aestuans L.	Titapat	Tiliaceae	Herb	Rare
54	Crassocephalum crepidioides (Benth.) S. Moore	-	Asteraceae	Herb	Common
55	Crotalaria acicularis BuchHam. ex Benth	-	Fabaceae	Herb	Common
56	Crotalaria albida Roth	-	Fabaceae	Herb	Common
57	Crotalaria calycina Schrank	-	Fabaceae	Herb	Common
58	Crotalaria incana L.	Chotojhunjhuna	Fabaceae	Herb	Common
59	Crotalaria tetragona Roxb. ex Anders.	-	Fabaceae	Herb	Common
60	Crotolaria pallid Aiton	Jhunjhuni	Fabaceae	Herb	Common
61	Crotolaria dubia Graham ex Benth.	-	Fabaceae	Herb	Common
62	Crotolaria ferruginea Graham ex Benth.	-	Fabaceae	Herb	Common
63	Croton bonplandianus Bail	Dongalas	Euphorbiaceae	Herb	Common
64	Croton lobetus L.	-	Euphorbiaceae	Herb	Common
65	Curanga amara Juss.	-	Scrophulariaceae	Herb	Common
66	Cuscuta reflexa Roxb.	Sornalata, Jarbuti	Cuscutaceae	Herbaceous climber	Common
67	Cyathula prostata Blume	-	Amaranthaccae	Herb	Common
68	Dentella repens (L.) Forst. & G. Frost.	Bhuipat	Rubiaceae	Herb	Common
69	Desmodium heterophyllum (Willd.) DC.	-	Fabaceae	Herb	Common
70	Desmodium triflorum (L.) DC.	Kulalia, Kodalia	Fabaceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
71	Dicliptera chinensis (L.) Juss.	-	Acanthaceae	Herb	Common
72	Drosera burmannii Vahl	Surjasishir	Droceraceae	Herb	Critically Endangered
73	Eclipta alba (L.) Hassk.	Kesoraj, Kalokeshi, Keshute	Asteraceae	Herb	Common
74	Elephantopus scaber L.	Shamdalan, Gajiashak	Asteraceae	Herb	Common
75	Emilia sonchifolia (L.) DC.	Mechitra, Sadimudi	Asteraceae	Herb	Common
76	Eranthemum strictum Colebr. ex Roxb.	-	Acanthaceae	Herb	Common
77	Euphorbia hirta L.	Ghaopata, Barakeru, Dudhiya	Euphorbiaceae	Herb	Common
78	Euphorbia thymifolia L.	Dudhiya, Swetkan	Euphorbiaceae	Herb	Rare
79	Exacum tetragonum Roxb.	Kuchuri	Gentianaceae	Herb	Rare
80	Fioria vitifolia (L.) Mattei	Bon-karpas	Malvaceae	Herb	Rare
81	Flemingia macrophylla (Willd.) Merr.	Bara-salphan	Fabaceae	Herb	Common
82	Gomphrena celosioides Mart.	-	Amaranthaceae	Herb	Common
83	Grangeama deraspatana (L.) Poir.	Nemuti	Asteraceae	Herb	Common
84	Hedyotis auricularia L.	Mutialata	Rubiaceae	Herb	Common
85	Hedyotis corymbosa (L.) Lam.	Ketpapra, Panki	Rubiaceae	Herb	Common
86	Hedyotis diffusa Willd.	-	Rubiaceae	Herb	Common
87	Hedyotis neesiana Arn.	-	Rubiaceae	Herb	Common
88	Hedyotis scandens Roxb.	Kannayabata, Kumbhardhala	Rubiaceae	Herb (scandent)	Common
89	Helitropium indicun L	Hatisur	Boraginaceae	Herb	Common
90	Hemidesmus indicus (L.) R. Br.	Anantamul	Asclepiadaceae	Herb	Endangered
91	Hewittia sublobata (L. f.) Kuntze	-	Convolvulaceae	Herbaceous climber	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
92	Hodgsonia macrocarpa (Blume) Cogn.	Gular, Pathligular	Cucurbitaceae	Herbaceous climber	Critically Endangered
93	Hoya parasitica (Roxb) Wall. ex Wight	Pargacha	Asclepiadaceae	Herbaceous Epiphyte	Rare
94	<i>Hydrocotyle sibthorpioides</i> Lam.	-	Apiaceae	Herbaceous trailer	Common
95	<i>Hydrolea zeylanica</i> (L.) Vahl	Kasschara	Hydrophyllaceae	Herb	Rare
96	Hygrophila polysperma (Roxb.) T. Anders	ı	Acanthaceae	Herb	Common
97	Hygrophyl asalicifolia (Vahl) Nees	Kakmasha	Acanthaceae	Herb	Common
98	Hyptis capitata Jacq.	-	Lamiaceae	Herb	Common
99	Hyptis suaveolens Poir	Belatitulshi, Tokma	Lamiaceae	Herb	Common
100	Ipomoea attenua Forsk.	Kalmishak	Convolvulaceae	Herbaceous trailer	Common
101	Ipomoea alba L	Hal kalmi, Dudhia kalmi, Dudh kalmi	Convolvulaceae	Herbaceous climber	Common
102	<i>Ipomoea batatas</i> (L.) Lam.	Misti Aloo	Convolvulaceae	Herbaceous trailer	Common
103	Ipomoea hederifolia L.	-	Convolvulaceae	Herbaceous climber	Common
	Ipomoea littoralis Blume	-	Convolvulaceae	Herbaceous trailer	Rare
105	Ipomoea mauritiana Jacq.	Huffta Alu, BalaiKand	Convolvulaceae	Herbaceous Climber	Common
106	Ipomoea pes-tigridis L.	Langulilata	Convolvulaceae	Herbaceous climber	Common
107	Ipomoea pileata Roxb.	-	Convolvulaceae	Herbaceous climber	Common
108	Ipomoea yomae Kurz	-	Convolvulaceae	Herbaceousc limber	Common
109	Jacquemontia paniculata (Burm. f.) Hallier f.	-	Convolvulaceae	Herbaceous climber	Common
110	Knoxia sumatrensis (Retz) DC.	-	Rubiaceae	Herb	Common
111	Lapithogathi sincurva Buch.Ham. ex D. Don	-	Acanthaceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
112	Leonurus sibiricus L.	Roktodron	Lamiaceae	Herb	Rare
113	Leucas aspera (Willd) Link	Chotohalkusa	Lamiaceae	Herb	Common
114	Leucas indica (L.) R. Br. ex Vatke	Dondokalosh, Hal-kusa, Shetodron	Lamiaceae	Herb	Common
115	Leucas pulkenetii (Roth.) Spreng.	Shetodron, Dangalos	Lamiaceae	Herb	Common
116	<i>Lindernia antipoda</i> (L.) Alston	-	Scrophulariaceae	Herb	Common
117	Lindernia ocumina (Colsmann) Pennell	-	Scrophulariaceae	Herb	Common
118	Ludwigia hyssopifolia (G. Don.) Exell.	-	Onagraceae	Herb	Common
119	Ludwigia adscendens (L.) Hara	Keshardam	Onagraceae	Herb	Common
120	Merremia attenuata (L.) Halleer	Sadakalmi	Convolvulaceae	Herbaceous twiner	Common
121	Merremia umbellata (L.) Halleer	Sadakamni, Korma lata	Convolvulaceae	Herbaceous climber	Common
122	Mikania cordata (Burm. F.) Robinson	Tufanilata, Taralata, Shankunilata	Asteraceae	Herbaceous climber	Common
123	Mimosa pudica L.	Lajja-bati	Mimosaceae	Herbaceous trailer	Common
124	<i>Mitracarpus hirtus</i> (L.) DC.	-	Rubiaceae	Herb	Common
125	Mollugo pentaphylla L.	Khetpapra	Molluginaceae	Herb	Common
126	Mucana pruriens (L.) DC.	Al-kushi	Fabaceae	Herbaceous climber	Common
127	Nelsonia canescens (Lam.) Spreng.	Paramul	Acanthaceae	Herb	Common
128	Nicotiana plumbaginifolia Viv.	Ban Tamak	Solanaccae	Herb	Common
129	Nymphaea nouchali Brum. f.	SadaSapla	Nympheaceae	Herb (Aquatic)	Common
130	Nymphoides hydriphilla (Lour.) Kuntze	-	Menyanthaceae	Herb (aquatic)	Common
131	Ocimum americanum L.	Bon-tulshi	Lamiaceae	Herb	Common
132	Ocimum basilicum L.	-	Lamiaceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
133	Ocimum sanctum L.	Tulshi	Lamiaceae	Herb	Common
134	Operculina turpethum (L.) Marso.	DudhKalmi	Convolvulaceae	Herbaceous climber	Common
135	Ophiorrhiza mungos L.	Gandhanakuli	Rubiaceae	Herb	Common
136	Ophiorrhiza rugosa Wall. var. prostrata (D. Don) Deb & Mandal	Jari, Kalashona	Rubiaceae	Herb	Common
137	Oxalis corniculata L.	Amrul	Oxalidaceae	Herb	Common
	Paederia foetida L.	Gandha-badali, Baduli- badulia, Modhu-lata	Rubiaceae	Herbaceous climber	Common
139	Parabaena sagittata Miers.	Samanuia	Menispermaceae	Herbaceous climber	Rare
140	Passiflora foetida L.	Jomkalata	Passifloraceae	Herb	Common
141	Peperomia sp.	Peperomea	Piperaceae	Herb (succulent)	Common
142	Persicaria orientalis (L.) Spach.	Bara panimarich	Polygonaceae	Herb	Common
143	Persicaria hydropiper (L.) Spach.	Pakurmul	Polygonaceae	Herb	Common
144	<i>Persicaria viscosa</i> (BuchHam. <i>ex</i> D. Don) Nakia	Atala Biskatali	Polygonaceae	Herb	Common
145	Phaulopsis imbricata (Forssk.) Sweet	-	Acanthaceae	Herb	Common
146	Phyla nodiflora (L.) Greene	Bhuiokra, Karoghar	Verbenaceae	Herb	Common
147	Phyllanthus niruri L.	Bhuiamla	Euphorbiaceae	Herb	Common
148	Physalis angulata L.	Fotka	Solanaceae	Herb	Common
149	Physalis micrantha Link.	Bantipariya, Phuika, Terare	Solanaceae	Herb	Common
150	Physalis minima L.	Fotka	Solanaccae	Herb	Common
151	Piper longum L.	Pipul	Piperaceae	Herb	Common
152	Piper rhytidocarpum Hook. F.	-	Piperaceae	Herbaceous creeper	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
153	Piper sylvaticum Roxb.	Ban Pan	Piperaceae	Herbaceous creeper	Common
	Pogostemon auricularius (L.) Hassk.	1	Lamiaceae	Herb	Common
155	Portulaca oleracea L.	Bara Lunia	Portulacaceae	Herb	Common
156	Pouzolzia zeylanica (L.) Benn.	Kullaruki	Urticaceae	Herb	Common
157	Pseudelephantopus spicatus (B.Juss. ex Aubl.)	-	Asteraceae	Herb	Common
158	Pueraria subspicata (Benth.) Benth.	-	Fabaceae	Herbaceous climber	Common
159	Rauvolfia serpentina (L.) Benth. ex Kurz	Sarpagandha	Apocynaceae	Herb	Endangered
160	Rorippa indica (L.) Hiern	Bansarisha	Brassicaceae	Herb	Common
161	Rorippa palustris (L.) Besser	Panisarisha	Brassicaceae	Herb	Common
162	Ruellia acuminata L.	-	Acanthaceae	Herb	Common
163	Ruellia tuberosa L.	Chatpoti	Acanthaceae	Herb	Common
164	Rungia pectinata (L.) Nees	Pindi, Punaka- pundu, Birlongopark	Acanthaceae	Herb	Common
165	Salomonia ciliata (L.) DC.	-	Polygalaceae	Herb	Common
166	Scoparia dulcis L.	Bandhaney	Scrophulariaceae	Herb	Common
167	Senna occidentalis (L.) Link	Bara- Kalkasunda, Eski	Caesalpiniaccae	Herb	Common
	Sida cordata (Brum. f.) Borss.	Junka	Malvaceae	Herb	Common
169	Sida mysorensis Wight &Arn.	Chatehata	Malvaceae	Herb	Common
	Solanum nigrum L.	Gurkhi	Solanaceae	Herb	Common
171	Solanum sisymbrifolium Lam.	Kanta begun	Solanaceae	Herb	Common
	Solanum virginianum L.	Kantakari	Solanaceae	Herb	Common
	Sonchus wightianus DC.	-	Asteraceae	Herb	Common
	Spermacoce articularis L. f.	Ahtharogia	Rubiaceae	Herb	Common
175	Sphaeranthus africanus L.	-	Asteraceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
176	Sphaeranthus indicus L.	Murmuri	Asteraceae	Herb	Common
177	Sphaeranthus senegalensis DC.	-	Asteraceae	Herb	Common
178	Sphenoclea zeylanica Gaertn.	JhilMarich	Sphenocleaceae	Herb	Common
179	Spilanthes calva DC.	Marhata-tiga	Asteraceae	Herb	Common
180	Staurogyne argentea Wall.	-	Acanthaceae	Herb	Common
181	Staurogyne angustifolia T.Anders.		Acanthaceae	Herb	Common
182	Strobilanthes scaber Nees	-	Acanthaceae	Herb	Rare
183	Syndrella nodiflora (L.) Gaertn.	-	Asteraceae	Herb	Common
184	Tephrosia purpurea (L.) Pers.	Bon-neel	Fabaceae	Herb	Common
185	Tephrosia purpurea (L.) Pers.	Ban-nill	Fabaceae	Herb	Common
186	Tetrastigma angustifolia (Roxb.) Deb	Nekungriubi	Vitaceae	Herbaceous climber	Rare
187	Tetrastigma bracteolatum (Roxb.) Planch.	Golgotilata	Vitaceae	Herbaceous climber	Common
188	Thladiantha cordifolia (Blume) Cogn.	-	Cucurbitaceae	Herbaceous climber	Rare
189	<i>Thunbergia alata</i> Bojer <i>ex</i> Sims	-	Acanthaceae	Herbaceous climber	Rare
190	Thunbergia grandiflora Roxb.	-	Acanthaceae	Herbaceous climber	Common
191	Torenia asiatica L.	-	Scrophulariaceae	Herb	Common
192	Torenia diffusa D. Don	-	Scrophulariaceae	Herb	Common
193	Torenia flava Benth.	-	Scrophulariaceae	Herb	Common
194	Tragia allidrate L.	Bichuti, Chitta	Euphorbiaceae	Herb	Common
195	Trichosanthes cordata Roxb.	Bhuikakra	Cucurbitaceae	Herbaceous climber	Rare
196	<i>Trichosanthes tricuspidata</i> Lour.	Makal	Cucurbitaceae	Herbaceous climber	Rare
197	Tridax procumbens L.	Tridhara	Asteraceae	Herb	Common
198	Triumfetta pilosa Roth	-	Tiliaceae	Herb	Common
199	Triumfetta rhomboidea Jacq.	Ban-okra	Tiliaceae	Herb	Common

SN	Botanical name	Bangla Name	Family	Habit	Status of occur.
200	<i>Tylophora indica</i> (Burm. F.) Merr.	Antamul, Anantamul	Asclepiadaceae	Herbaceous twiner	Rare
201	Uncaria scandens (Smith) Hutch.	Vailfullata	Rubiaceae	Herbaceous climber	Rare
202	Vernonia cinerea (L.) Less.	Kukshim, Sahadebi, Shillata	Asteraceae	Herb	Common
203	Vicia sativa L.	Ankari, Hatka	Fabaceae	Herb	Common
204	Xanthium indicum Koenig	Lehra, Ghagra	Asteraceae	Herb	Common

Appendix 4. Amphibia/Amphibians in Baraiyadhala National Park

SN	Order	Family	Scientific Name	Common Eng. Name	Status	Local Name
1	Anura	Bufonidae	Duttaphrynus melanostictus	Common Toad	VC	Kuno Bang
2		Dicroglossidae	Euphlyctis cyanophlyctis	Skipper Frog	VC	Kotkoti Bang
3			Fejervarya asmati	Asmat's Cricket Frog	С	Asmater Jhi-jhiBang
4			Fejervarya cancrivora	Crab-eating Frog	С	Kakra bhuk Bang
5			Fejervarya pierrei	Pierre's Cricket Frog	С	Jhi-jhiBang
6			Fejervarya nepalensis	Nepal Cricket Frog	VC	Jhi-jhi Bang
7			Fejervarya syhadrensis	Syhadra Crickert Frog	VC	Jhi-jhi Bang
8		Microhylidae	Microhyla ornata	Ornate Microhylid	VC	Cheena Bang
9		Megophryidae	Hoplobatrachus tigerinus	Bull Frog	С	Bhawa Bang
10			Hoplobatrachus litoralis	Coastal Bull Frog	С	Upokulio Sona Bang
11		Rhacophoridae	Polypedates leucomystax	Six-lined Tree Frog	VC	Dorakata Gechho Bang
12			Polypedates maculatus	Maculated Tree Frog	R	Gechho Bang

[Here, VC = Very common species seen 80% to 100% of the field visits and in good number; C = common species seen during 50% - 79% of the visits; FC = fairly common/uncommon species seen during 20% - 49% of the visits; and R = rare-species observed less than 19% of the visits in very small number.]

Appendix 5. Reptilia/Reptiles in Baraiyadhala National Park

Sl. No.	Order	Family	Scientific Name	Common or English Name	Status	Local Name
1	Squamata	Gekkonidae	Gekko gecko	Tokkhak	VC	Shanda
2			Hemidactylus frenatus	Common House Gecko	VC	Tiktiki
3			Hemidactylus brookii	Spotted House Lizard	С	Tiktiki
4		Agamidae	Calotes versicolor	Garden Lizard	VC	Rokto Chusha
5		Lacertidae	Takydromus khasiensis	Long-tailed Lizard	R	Tiktiki
6		Scincidae	Eutropis carinata	Keeled Grass Shink	С	Anjon
7			Eutropis macularius	Bronze Grass Shink	VC	Ghash Anjon
8	Testudines	Testudinidae	Indotestudo elongata	Elongated Tortoise	R	Holud Pah
9	Serpentes	Varanidae	Varanus bengalensis	Bengal Monitor	С	Kala Gui
10			Varanus flavescens	Yellow Monitor	R	Sona Gui
11		Boidae	Python molurus	Rock Python	R	Ajogor
12		Elapidae	Najakaou kauthia	Monocellate Cobra	С	Gokhra Shap
13			Naja naja	Spectacled Cobra	С	Khoya Gokhr
14			Bungarus niger	Black Krait	R	Kal Keutey Shap
15			Enhydris enhydris	Smooth Water Snake	VC	Paina Shap
16			Bungarus fasciatus	Banded krait	С	Shonkhini Shap
17		Colubridae	Ptyas mucosa	Indian Rat Snake	С	Daraj Shap
18			Ahaetulla nasuta	Common Vine Snake	С	Laudoga Shap
19			Xenochropis piscator	Checkered Keel Dora	VC	Dora Shap
20			Lycodon aulicus	Common Wolf Snake	С	Gharginni Shap

[Here, VC = Very common species seen 80% to 100% of the field visits and in good number; C = common species seen during 50% - 79% of the visits; FC = fairly common/uncommon species seen during 20% - 49% of the visits; and <math>R = rare-species observed less than 19% of the visits in very small number.]

Appendix 6. Aves of Baraiyadhala National Park

SN	Order	Family	Scientific Name	Common Eng. Name	Status	Local name
1	Galliformes	Phasinidae	Gallus gallus	Red Junglefowl	С	Bon Morog
2			Lophura leucomelanos	Kalij Pheasant	R	Mothura
3			Polyplectron bicalcaratum	Grey Peacock Pheasant	R	Kath moyur
4	Charadriformes		Turnix suscitator	Barred Batton quail	R	
5	Piciformes	Picidae	Dendrocopos macei	Fulvous- breasted Woodpecker	С	Jarad Kaththokra
6			Dinopium javanense	Common Flame Back	VC	Kaththokra
7			Picus xanthopygaeus	Streak throated woodpecker	С	Sabujey Kaththokra
8			Dinopium benghalense	Black rumped Flameback	С	Sonali Kaththokra
9			Dendrocopos canicapillus	Gray Capped Pygmy woodpecker	R	Choto Kaththokra
10			Picumnus innominatus	Speckled Piculet	С	Khudey Kaththokra
11			Chrysocolaptes guttacristatus	Common Goldenback Woodpecker	R	Boro Kaththokra
12		Megalaimidae	Megalaima asiatica	Blue-throated Barbet	С	Bosonthoba uri
13			Megalaima lineata	Lineated Barbet	С	Bosontho bauri
14			Megalaima haemacephala	Coppersmith Barbet	С	Bosonthoba bauri
15			Megalaim australis	Blue-eared Barbet	R	Neelkan Boshonto
16	Bucerotiformes	Bucerotidae	Anthracoceros albirostis	Pied Hornbill	R	Kao Dhanesh
17	Upupiformes	Upupidae	Upapa epops	Common Hoope	С	Hudhud
18	Coraciformes	Alcedinidae	Halcyon smyrnensis	White-throated Kingfisher	VC	Manchranga
19			Halcyon atthis	Common Kingfisher	VC	Manchranga

SN	Order	Family	Scientific Name	Common Eng. Name	Status	Local Name
20			Halcyon capensis	Stork-Billed Kingfisher	R	Megh-Hou
21		Meropidae	Merops orientalis	Green Bee-eater	С	Suichura
22		-	Merops leschenaulti	Chestnut- headed Bee - eater	С	Suichura
23	Cuculiformes	Centropodidae	Centropus sinensis	Greater Coucal	VC	Kanakuka
24			Centropus bengalensis	Lesser Coucal	R	Kukka
25			Cuculus micropterus	Indian Cuckoo	С	Bau kotha kou
26			Eudynamyas sccolopacea	Asian Cuckoo	С	Kokil
27			Phaenicophaeus tristis	Green Billed Malkoha	FC	Sobuj Kokil
28			Hierococcyx varius	Common hawk Cuckoo	С	Chokgelo Pakhi
29			Cacomantis merulinuss	Plaintive Cucko	FC	Chatak
30	Psittaciformes	Psittacidae	Psittacula krameri	Rose Ringed Parakeet	R	Tia
31			Psittacula alexanderi	Red-breasted Parakeet	С	Tota
32	Apodiformes	Apopidae	Apus affinis	House Swift	VC	Ababil
33			Cypsiurus balasiensis	Asian Palm Swift	VC	Nakkati
34		Caprimulgidae	Caprimulgus macrurus	Long-tailed Indian Nightjar	R	Rat Chara Phakhi
35	Strigiformes	Strigidae	Athene brama	Spotted Owl	С	Khuruly Pencha
36			Glaucidium cuculoides	Asian Barred Owlet	R	Pencha
37	Culumbiformes	Culumbidae	Columba livia	Rock Pigeon	С	Jalali Kobutar
38			Streptopeliach chinensis	Spotted Dove	VC	Tila Ghughu
39			Treron phoenicoptera	Yellow footed Green Pigeo		Holudpa Horial
40	Ciconiiformes	Ralidae	Amaurornis phoenicurus		С	Dahuk
41		Jacanidae	Metopodius indicus	Bronze-winged Jacana	R	Jolpipi
42		Charadriidae	Vanellus indicus	Red Wattle Lawping Bird	С	Hot Ti-Ti

SN	Order	Family	Scientific Name	Common Eng. Name	Status	
			G .1 . 1 1	Eng. Name		Name
43		Accipitridae	Spilornis cheela	Crested Serpent Eagle	С	Tila Eagle
44			Milvus migrans	Black Kite	R	Bhuban Chil
45		Falacrocor- acidae	Falacrocorax niger	Little Cormorant	С	Pankouri
46		Ardeidae	Bubulcus ibis	Cattle Egret	VC	Go-Bok
47			Egretta garzetta	Little Egret	VC	Sada Bok
48			Ardeola grayii	Pond Heron	VC	Kani Bok
49			Amastomus Oscitans	Asian Openbill	R	Shamuk- Khol
50.	Passeriformes	Cisticolidae	Prinia inormata	Plain Prinia	FC	Shadharan buno tuni
51			Cisticola juncidis	Zitting Cisticola	С	Bhomra Soton
52		Irenidae	Chloropsis aurifrons	Golden-fronted Leaf Bird	R	Shonakopali Horbola
53		Sturnidae	Acridotheres tristis	Common Myna	VC	Bhat Shalik
54			A fuscus	Jungle Myna	VC	Jhuti Shalik
55			Sturnus contra	Pied Myna	VC	Gobrey Shalik
56			Sturnus malabaricus	Grey Hooded Myna	С	Kat Shalik
57		Corvidae	Corvus splendens	House Crow	VC	Pati Kak
58			Corvus macrorhynchos	Jungle Crow	С	Dar Kak
59			Dendrocitta vagabunda	Tree Pie	VC	Kutum Pakhi
60			Cissa chinensis	Common Green Magpie	R	Sobuj Harichacha
61		Dicruridae	Dicrurus macrocercus	Black Drongo	VC	Fingey
62			Dicrurus hottentottus	Spangled Drongo	С	Fingey
63			Dicrurus paradiseus	Racket Tail Drongo	FC	Fingey
64			Dicrurus aeneus	Bronzed Drongo	С	Fingey
65		Oriolidae	Oriolus xanthornus	Black-headed	VC	Holdey
				Oriole		Pakhi

SN	Order	Family	Scientific Name	Common Eng. Name	Status	Local Name
66			Oriolus oriolus	Eurasian Golden Oriole	R	Sona Bau
67		Aegithinidae	Aegithina tiphia	Common Iora	С	Fatikjol
68		Artamidae	Artamus fuscus	Ashy Woodswallow	С	Latora
69		Rhipiduridae	Rhipidura albicollis	White-throated Fantail	С	Lejnachani
70		Campephagid ae	Tephrodornis pondicerianus	Common Wood Shrike	С	Shudhuka/ Dukka
71		Pycnonotidae	Pycnonotus Jocosus	Red Whiskered Bulbul	С	Sipahi Bulbul
72			Pycnonotus cafer	Red-vented Bulbul	VC	Kalo Bulbul
73			Pycnonotus atriceps	Black Headed Bulbul	R	Kalo Bulbul
74			Alophoixus flaveolus	White-throated Bulbul	R	Sadabook Halud Bulbuli
75		Muscicapidae	Copsychus malabaricus	White rumped Shama	R	Shama
76			Copsyccus saularis	Magpie-Robin	VC	Doyel
77			Monticola solitarius	Blue Rock Thru	FC	Shiladama
78			Myophonus caeruleus	Blue whistling Thrush	FC	Nil- shiladama
79			Culicicapa iceylonenss	Grey-headed Canary Flycatcher	С	Metematha Choto-Chotok
80			Musicapa dauurica	Asian Brown Flycatcher	С	Ashio Khoiri Chotok
81			Zoothera citrina	Orange Headed Thrush	R	Komla Dama
82		Sylviidae	Orthotomus sutorius	Tailor Bird	VC	Tuntuni
83			Orthotomus cuculatus	Mountain Tailorbird	FC	Pahari Tuntuni
84		Timaliidae	Turdoides striata	Jungle Babbler	С	Satvaila
85			Garrulax pectoralis	Greater- necklaced Laug hingthrush	R	Panga

SN	Order	Family	Scientific Name	Common Eng. Name	Status	Local Name
86			Garrulax ruficolis	Rufous - necklaced Laughingthrush	R	Lalcheyghar -wala Panga
87			Garrulax galbanus	Yellow-throated Laughingthrush	R	Holdegola- Penga
88		Necterinidae	Necterinia sperata	Purple throated Sunbird	С	Begunibook Moutus
89			Nectarinia asiatica	Purple Sunbird	С	Niltuni
90			Aethopyga siparaja	Crimson Sunbird	R	Shindury Moutushi
91		Dicaeidae	Dicaeum cruentatum	Scarlet Backed Flowerpeacker	С	Lal Fuljhuri
92			Dicaeum erythrorhynchos	Pale-billed Flowerpecker	R	Metethot Fuljhuri
93			Dicaeum chrysorrheum	Yellow-vented Flowerpecker	R	Holde tola Fuljhuri
94			Dicaeum agile	Thick-billed Flowerpecker	R	Thotmota Fuljhuri
95		Paridae	Parus major	Great Tit	С	Tit Phakhi
96		Passeridae	Passer domesticus	Houses parrow	VC	Charui Pakhi
97		Ploceidae	Ploceus manyar	Baya Weaver	С	Babui
98		Motacillidae	Anthus rufulus	Paddy Field Pipit	С	Mat Chorai
99			Lonchura punctulata	Scaly-breasted Munia	С	Tila Munia
100			Motacilla alba	White Wagtail	R	Sada Khonjo
101			Motacilla cinerea	Gray Wagtail	R	Dhushar Khonjon
102			Motacilla flava	Yellow Wagtail	R	Holdey Khonjon

[Here, VC = Very common species seen 80% to 100% of the field visits and in good number; C = common species seen during 50% - 79% of the visits; FC = fairly common/uncommon species seen during 20% - 49% of the visits; and R = rare-species observed less than 19% of the visits in very small number.]

Appendix 7. Mammals of Baraiyadhala National Park

SN	Order	Family	Scientific Name	CommonE nglishName	Status	LocalN ame
1	Primates	Cercopithecidae	Масаса	Assamese	R	Assamese
			assamensis	Macaque		Bandor
2			Trachypithecus pileatus	Capped Langur	R	Lal Hanuman
3	Carnivora	Canidae	Canis aureus	Golden Jackal	С	Pati Sheal
4		Viverridae	Vivvera zibetha	Large Indian Civet	R	Bagdash
5			Vivericula indica	Small Indian Civet	R	Khatash
6		Herpestidae	Herpestes edwardsi	Common Indian Mongoose	С	Benji
7			Herpestes auropunctatus	Small Indian Mongoose	С	Chhoto Beji, Nakul
8		Felidae	Prionailurus viverrinus	Fishing cat	R	Mechho Biral
9			Felis chaus	Jungle cat	R	Bono Biral
10			Prionailurus bengalensis	Leopard Cat	R	Leopard Cat
11	Rodentia	Sciuridae	Callosciurus pygerythrus	Irrawaddy Squirrel	С	Badami Kat Birali
12		Hystricidae	Hystrix indica	Indian Crested Porcupine	FC	Shojaru
13		Muridae	Bandicota indica	Bandicoot Rat	С	Boro Indur
14			Mus musculus	House Mouse	VC	Nengti Indur
15			Mus booduga	Indian Field Mouse	С	Metto Indur
16			Rattus norvegicus	Brown Rat	VC	Indur
17			Rattus rattus	Common Indian Rat	VC	Indur

SN	Order	Family	Scientific Name	Common English Name	Status	Local Name
18	Artiodactyla	Suidae	Sus scrofa	Wild Boar	С	Shukor
19		Cervidae	Muntiacus muntjac	Barking Deer	FC	Maya Horin
20			Arctonyx collaris	Hog-Badger	R	Gor khodok
21	Logomorpha	Leporidae	Caprologus hispidus	Assam Rabbit	R	Khargosh
22	Insectivora	Soricidae	Suncus murinus	Grey musk Shrew	VC	Chika
23	Chiroptera	Pteropodida	Pteropus giganteus	Flying fox	С	Badur
24			Cynopterus spinx	Fruit Bat	C	Badur
25		Megadermatidae	Megaderma lyra	False Vampire Bat	FC	Badur
26		Pteropodidae	Rousettus leschenaulti	Fulvous Fruit Bat	С	Kolabadur
27		Vespertilionidae	Pipistrellus coromandra	Indian Pipistrelle	С	Cham Chika

[Here, VC = Verycommon speciesseen 80% to 100% of the field visits and in good number; C = common species seen during 50% - 79% of the visits; FC = fairly common/uncommon species seen during 20% - 49% of the visits; and R = rare-species observed less than 19% of the visits in very small number.]

