IITB-RISC Pipelined-CPU

Final Project Report

EE309: Microprocessors

TEAM ID: 6

Anshu Arora (22B1207)

Sachi Deshmukh (22B1213)

Abhineet Agarwal (22B1219)

Garima Goplani (22B3958)

Under the guidance of

Prof. Virendra Singh

Department of Electrical Engineering,

Indian Institute of Technology, Bombay

Contributions by Individual Team Members

<u>Contribution</u>	<u>Member</u>
Flowchart for instructions	Sachi, Anshu
Designing a pipeline structure	Sachi, Garima, Anshu
Creating datapath	Sachi, Garima, Anshu
Verification of pipeline hardware	Abhineet
Identifying where to add MUXs and de-MUXs	Garima
MUX tables and control signals	Sachi, Garima
Tabulating the control signals for each instruction	Sachi, Garima, Anshu
Ideation of implementing hazard control	Abhineet, Sachi, Garima, Anshu
Circuit for hazard implementation	Abhineet, Anshu
Writing of code	Abhineet
Debugging of code	Abhineet, Garima
Report formation	Sachi, Anshu

1. Fetch instruction and IP update

Fetch

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2 —> ALU1-B	IP-W
ALU1-C> IP	

Controls

2. Understand instruction

IR----> IR-ID

IP----> IP-ID

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T ₁ -W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₂ > ALU2-B	T ₃ -W
ALU2-C> T ₃	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

<u>ADC</u>

1. Fetch instruction and IP update

Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2 —> ALU1-B	IP-W
ALU1-C -> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch	Controls
-------	----------

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T ₁ -W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

Fetch	Controls

T ₂ > ALU2-B	T ₃ -W
ALU2-C> T ₃	
ALU2-CARRY —> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back (If carry == 1)

Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If carry == 0)

Then we do not write into any register.

<u>ADZ</u>

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T ₁ -W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₁ —>ALU2-A	ALU2_CONTROL ADD
T ₂ > ALU2-B	T ₃ -W

ALU2-C> T ₃	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ >T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back (If zero == 1)

Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If zero == 0)

Then we do not write into any register.

AWC

1. Fetch instruction and IP update

Fetch	Controls
-------	----------

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₁ —>ALU3-A	ALU2_CONTROL ADD
CARRY—> ALU3-B	ALU3_CONTROL ADD
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T2 —> ALU2-B	
ALU2-C> T3	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ >T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

1. Fetch instruction and IP update

Fetch	Controls
-------	----------

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL ADD
ALU3-C> T ₄	T ₃ -W

T4—> ALU2-A	T₄-W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-CARRY —> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
IR-MR> IR-WB	
T ₃ —>T20	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-MR ₃₋₅ > RF-A ₃	

ACC

1. Fetch instruction and IP update

Fetch	Controls
-------	----------

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL ADD
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

(If carry == 1)

Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If carry == 0)

Then we do not write into any register.

<u>ACZ</u>

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL ADD
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ >T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back (If zero == 1)

Fetch Controls

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ —> RF-A ₃	

(If zero == 0)

Then we do not write into any register.

ACW

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL ADD
ALU3-C> T ₄	ALU4_CONTROL ADD

T4 —> ALU4-A	T ₃ -W
CARRY —> ALU4-B	T4-W
ALU4-C> T5	T5-W
T1—> ALU2-A	
T5—> ALU2-B	
ALU2-C> T3	
ALU2-CARRY> CARRY	CARRY-W
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch Controls

T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

<u>ADI</u>

1. Fetch instruction and IP update.

Fetch	Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand and operand fetch

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T ₁ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4.. Execute

T ₁ —> ALU2-A	ALU2_CONTROL_ADD
IR-EX ₀₋₅ —> SE[6] —> ALU2-B	T ₃ -W
ALU2-C —> T ₃	
ALU2-CARRY> CARRY	CARRY-W

ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	
5. Memory read Fetch	Controls
T ₃ >T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write back

T ₂₀ —> RF-D ₃	RF-W
IR-WB ₆₋₈ —> RF-A ₃	

<u>NDU</u>

1. Fetch instruction and IP update

Fetch	Controls
Fetch	Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₁ —>ALU2-A	ALU2_CONTROL NAND
T ₂ > ALU2-B	T ₃ -W
ALU2-C> T ₃	

ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

NDC

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₁ —>ALU2-A	ALU2_CONTROL NAND
T ₂ > ALU2-B	T ₃ -W
ALU2-C> T ₃	
ALU2-Z> Z	ZERO-W

IR-EX> IR-MR	
IP-EX> IP-MR	
5. Memory read Fetch	Controls
IR-MR> IR-WB	
T ₃ —>T20	
IP-MR> IP-WB	
6. Write Back (If carry == 1)	
Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If carry == 0)

Then we do not write into any register.

NDZ

1. Fetch instruction and IP update

Fetch	Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch	Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

T ₁ —>ALU2-A	ALU2_CONTROL NAND
T ₂ > ALU2-B	T ₃ -W
ALU2-C> T ₃	
ALU2-Z> Z	ZERO-W

IR-EX> IR-MR	
IP-EX> IP-MR	
5. Memory read Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	
6. Write Back (If zero == 1)	
Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ —> RF-A ₃	

(If zero == 0)

Then we do not write into any register.

<u>NCU</u>

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL NAND
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ >T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

NCC

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL NAND
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back

(If carry == 1)

Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If carry == 0)

Then we do not write into any register.

NCZ

1. Fetch instruction and IP update

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Execute

'1111111111111111' —>ALU3-A	ALU3_CONTROL SUB
T2> ALU3-B	ALU2_CONTROL ADD
ALU3-C> T ₄	T ₃ -W

T4 —> ALU2-A	T ₄ -W
T1 —> ALU2-B	
ALU2-C> T3	
ALU2-Z> Z	ZERO-W
IR-EX> IR-MR	
IP-EX> IP-MR	

Fetch	Controls
T ₃ —>T20	
IR-MR> IR-WB	
IP-MR> IP-WB	

6. Write Back (If zero == 1)

Fetch	Controls
T ₂₀ —>RF-D ₃	RF-W
IR-WB ₃₋₅ > RF-A ₃	

(If zero == 0)

Then we do not write into any register.

<u>LLI</u>

1. Fetch instruction and IP update IF

Total medical and in apadic in	
Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR—>IR-ID	
IP> IP-ID	
	<u> </u>
2. ID— Fetch	Controls
IR-ID—>IR-RR	
IP-ID> IP-RR	
	•
Register read— Fetch	Controls
IR-RR—>IR-EX	
IP-RR> IP-EX	
4. Execute— Fetch	Controls
IR-EX—>IR-MR	
IP-EX> IP-MR	
5. Memory read Fetch	Controls
IR-MR—>IR-WB	
IP-MR> IP-WB	

6. Update result onto Register.

IR-WB ₀₋₈ > SE[9]> RF-D3	RF-W
IR-WB ₉₋₁₁ > RF-A ₃	

LW

1. Fetch instruction and IP update.

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR—>IR-ID	
IP> IP-ID	

2. Understand INSTRUCTION

Fetch Controls

IR-ID ₆₋₈ —>RF-A ₁	
IR-ID—>IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T ₁ -W
IR-RR—>IR-EX	
IP-RR> IP-EX	

3. Compute Address

T ₁ > ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₅ —> SE[6] —> ALU2-B	T ₃ -W
ALU2-C> T ₃	

ALU2-Z> Z	ZERO-W
IR-EX—>IR-MR	
IP-EX> IP-MR	

4. Read Memory)

Fetch Controls

T ₃ —> Memory Address	Mem-Read
Memory Data —> T ₂₅	T ₂₅ -W
T3—>T20	
IR-MR—>IR-WB	
IP-MR> IP-WB	

5. Update Register

T ₂₅ —> RF-D ₃	RF-W
IR-WB ₉₋₁₁ —> RF-A ₃	

<u>SW</u>

1. Fetch instruction and IP update

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR> IR-EX	
IP-RR> IP-EX	

4. Compute Address

T ₂ > ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₅ —> SE[6] —> ALU2-B	T ₃ -W
ALU2-C> T ₃	

IR-EX> IR-MR	
IP-EX> IP-MR	
T1—>T21	

5. Memory read

IR-MR> IR-WB	
T3—>T20	
IP-MR> IP-WB	
T21—>T22	

6. . Write back

T ₂₀ —> Memory Address	Mem-Write
T ₂₂ —> Memory Data	

BEQ

1. Fetch instruction.

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	IR-W
IR—>IR-ID	
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID—>IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR—>IR-EX	
IP-RR> IP-EX	

4.Compute if $(R_1-R_2) = 0$

T ₁ —>ALU3-A	ALU3_CONTROL SUB
T ₂ > ALU3-B	
ALU3-Z—> Z	ZERO-W

ALU2_CONTROL ADD		
ALU4_CONTROL SUB		
T20_W		
6. Write back		
IP_W		

BLT

1. Fetch instruction.

IP —> Memory Address	Mem-Read
Memory Data —> IR	IR-W
IR—>IR-ID	
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID—>IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR—>IR-EX	
IP-RR> IP-EX	

4.Compute if $(R_1-R_2) = 0$

T ₁ —>ALU3-A	ALU3_CONTROL SUB
T ₂ > ALU3-B	
ALU3-Z—> Z	ZERO-W

ALU3-CARRY> CARRY	CARRY-W
IR-EX —>IR-MR	
IP-EX> IP-MR	
T1—>T21	

IP-EX—>ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₅ —> SE6 (MULTIPLY BY 2)—> ALU2-B	
ALU2-C> T3	
T3> ALU4-A	ALU4_CONTROL SUB
+2> ALU4-B	
ALU4-C>T5	

5. Memory read

IR-MR> IR-WB	
T3—>T20	T20_W
T5> T23	
IP-MR> IP-WB	

6. Write back

	IP_W
If (Z==0) AND (C == 0)	
If (Z==0) AND (C == 0) T23> IP Else	
IP-WB> IP	

BLE

1. Fetch instruction.

Fetch Controls

IP —> Memory Address	Mem-Read
Memory Data —> IR	IR-W
IR—>IR-ID	
IP> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IP> IP-ID	

2. Understand instruction

Fetch Controls

IR-ID ₉₋₁₁ —>RF-A ₁	
IR-ID ₆₋₈ —> RF-A ₂	
IR-ID—>IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch Controls

RF-D ₁ > T1	T₁-W
RF-D ₂ > T2	T ₂ -W
IR-RR—>IR-EX	
IP-RR> IP-EX	

4.Compute if $(R_1-R_2) = 0$

T ₁ —>ALU3-A	ALU3_CONTROL SUB
T ₂ > ALU3-B	
ALU3-Z> Z	ZERO-W

ALU3-CARRY> CARRY	CARRY-W
IR-EX —>IR-MR	
IP-EX> IP-MR	
T1—>T21	

IP-EX—>ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₅ —> SE6 (MULTIPLY BY 2)—> ALU2-B	
ALU2-C —> T3	
T3> ALU4-A	ALU4_CONTROL SUB
+2> ALU4-B	
ALU4-C>T5	

5. Memory read

IR-MR> IR-WB	
T3—>T20	T20_W
T5> T23	
IP-MR> IP-WB	

6. Write back

<u>JAL</u>

1. Fetch instruction

Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2 —> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	

2. Instruction decode

IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register Read

IR-RR> IR-EX	
IP-RR> IP-EX	

4. Compute Instruction pointer

IP-EX —> ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₈ —> SE[9] (MULTIPLY BY 2)—> ALU2-B	IP-W
ALU2-C> T3	ALU3_CONTROL SUB
T3> ALU3-A	
+2> ALU3-B	
ALU3-C> IP	
IP-EX> IP-MR	

IR-EX> IR-MR	
5. MEMORY READ	
IR-MR> IR-WB	
IP-MR> IP-WB	
6. WRITE BACK	

IR-WB 9-11 —> RF-A ₃	RF-W
IP-WB> RF-D3	

<u>JLR</u>

1. Fetch instruction

Fetch

IR-EX ---> IR-MR

IP-EX ----> IP-MR

T2 —> IP

Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	
IR> IR-ID	
IP> IP-ID	
2. Instruction decode	
IR-ID> IR-RR	
IP-ID> IP-RR	
IR-ID6-8> RF-A2	
3. Register Read	
IR-RR> IR-EX	
IP-RR> IP-EX	
RF-D2> T2	
Compute Instruction pointer	

Controls

5. MEMORY REA

IR-MR> IR-WB	
IP-MR> IP-WB	

6. WRITE BACK

IR-WB 9-11 —> RF-A₃	RF-W
IP-WB> RF-D3	

<u>JRI</u>

1. Fetch instruction.

Fetch	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	
IR> IR-ID	
IP> IP-ID	

2. Understand instruction

Fetch	Controls
IR ₉₋₁₁ —>RF-A ₁	
IR-ID> IR-RR	
IP-ID> IP-RR	

3. Register read

Fetch	Controls
RF-D ₁ > T1	T₁-W
IR-RR—> IR-EX	
IP-RR> IP-EX	

4.. Compute Address

Fetch	Controls
T ₁ > ALU2-A	ALU2_CONTROL ADD
IR-EX ₀₋₈ —> SE[9] (MULTIPLY BY 2) —> ALU2-B	T ₃ -W
ALU2-C> T ₃	
IR-EX -> IR-MR	
IP-EX> IP-MR	

5. Read Memory

Fetch Controls

T ₃ —> Memory Address	Mem-Read
Memory Data —> T ₂₅	T ₃ -W
IR-MR—-> IR-WB	
IP-MR> IP-WB	
T3> T20	

6. Writing back into IP

T ₂₅ —>IP	IP-W

LM

Load multiple registers whose address is given in the immediate field (one bit per register, R0 to R7 from left to right) in reverse order from right to left, i.e, registers from R7 to R0 if the corresponding bit is set. Memory address is given in reg A. Registers which are expected to be loaded from consecutive memory addresses

1. Fetch instruction and IP update.

Fetch Controls

1 61611	Controle
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2> ALU1-B	IP-W
ALU1-C> IP	

2. Understand INSTRUCTION

Fetch	Controls
IR ₉₋₁₁ —>RF-A ₁	

3. Register read

Fetch	Controls
RF-D ₁ > T1	T ₁ -W

4. Compute Addresses, for each register

Fetch	Controls
-------	----------

T1> ALU2-A	ALU2_CONTROL SUB
+2> ALU2-B	T ₁ -W
ALU2C> T1	

5. Read Memory —— WILL HAVE TO ADD 8 STALLS (MULTIPLE STALLS — DEFINE CONTROL SIGNALS FOR A STALL— GIVE CONTROL BASED ON IMMEDIATE BITS)

Put a mux before memory add with 8 inputs t1, t6 to t12
The input in every cycle will be decided by the control signal
Control signal will be the count.
One more demux for mem data
And another count_reg variable to count the bit number. This count_reg acts as the control for demux.

I GIGIT	Controls
T ₁ —> Memory Address	Mem-Read
Memory Data —> REG0	REG0-W
T ₆ —> Memory Address	Mem-Read
Memory Data —> REG1	REG1-W
T ₇ —> Memory Address	Mem-Read
Memory Data —> REG2	REG2-W
T ₈ —> Memory Address	Mem-Read
Memory Data —> REG3	REG3-W
T ₉ —> Memory Address	Mem-Read
Memory Data —> REG4	REG4-W
T ₁₀ —> Memory Address	Mem-Read
Memory Data —> REG5	REG5-W
T ₁₁ —> Memory Address	Mem-Read
Memory Data —> REG6	REG6-W
T ₁₂ —> Memory Address	Mem-Read
Memory Data —> REG7	REG7-W

<u>SM</u>

Store multiple registers whose address is given in the immediate field (one bit per register, R0 to R7 from left to right) in reverse order from right to left, i.e, registers from R7 to R0 if corresponding bit is set. Memory address is given in reg A. Registers which are expected to store must be stored to consecutive addresses.

1. Fetch instruction and IP update. (S₄₁)

i cton	Controls
IP —> Memory Address	Mem-Read
Memory Data —> IR	ALU1_CONTROL ADD
IP —> ALU1-A	IR-W
+2 —> ALU1-B	IP-W
ALU1-C —> IP	

2. Understand INSTRUCTION

Fetch	Controls

IR ₉₋₁₁ —>RF-A ₁			
--	--	--	--

3. Register read

Fetch	Controls

RF-D ₁ > T1	T₁-W

4. Compute Addresses, for each register

T1> ALU3-A	ALU3_CONTROL ADD
+2> ALU3-B	T ₆ -W
ALU3C> T6	
T6> ALU4-A	ALU4_CONTROL ADD
+2> ALU4-B	T ₇ -W
ALU4-C> T7	

T7> ALU5-A	ALU5_CONTROL ADD
+2> ALU5-B	T ₈ -W
ALU5-C> T8	
T8> ALU6-A	ALU6_CONTROL ADD
+2> ALU6-B	T ₉ -W
ALU6-C> T9	
T9> ALU7-A	ALU7_CONTROL ADD
+2> ALU7-B	T ₁₀ -W
ALU7-C> T10	
T10> ALU8-A	ALU8_CONTROL ADD
+2> ALU8-B	T ₁₁ -W
ALU8-C> T11	
T11> ALU9-A	ALU9_CONTROL ADD
+2> ALU9-B	T ₁₂ -W
ALU9-C> T12	

5. Read Memory —— WILL HAVE TO ADD 8 STALLS (MULTIPLE STALLS — DEFINE CONTROL SIGNALS FOR A STALL— GIVE CONTROL BASED ON IMMEDIATE BITS)

T ₁ —> Memory Address	Mem-Read
REG0 —> Memory Data	mem-W
T ₆ —> Memory Address	Mem-Read
REG1 —> Memory Data	mem-W
T ₇ —> Memory Address	Mem-Read
REG2 —> Memory Data	mem-W
T ₈ —> Memory Address	Mem-Read
REG3 —> Memory Data	mem-W
T ₉ —> Memory Address	Mem-Read
REG4 —> Memory Data	mem-W

T ₁₀ —> Memory Address	Mem-Read
REG5 —> Memory Data	mem-W
T ₁₁ —> Memory Address	Mem-Read
REG6 —> Memory Data	mem-W
T ₁₂ > Memory Address	Mem-Read
REG7 —> Memory Data	mem-W

Implementation of data forwarding

Say an instruction like ADA comes consecutively. Then if there is data dependency, the correct result wlll not be produced as the pipelined instructions' registers wont be updated faster than the speed at which the instructions are coming.

So for this we need to detect in the instructions where data dependency would be possible and then detect if actually there is a scope for data dependency

If first four bits of op-code are 00_01, 00_10 compareIR- EX3-5 with IR-RR8-8 and IR-RR9-11 If first four bits are 00_00, compare IR-EX6_8 with IR-RR8-8 and IR-RR9-11 If first four bits are 11_01, 11_00, 01_00, 01_01, 00_11 compare IR-EX9_11 with IR-RR8-8 and IR-RR9-11

We are using a comparator to check if the values are equal, and if they are equal then we are shorting T3 and T1 or T3 and T2 accordingly

Similarly we are also implementing data forwarding for when the data dependent instructions are not consecutive but two steps apart.

If first four bits of op-code are 00_01, 00_10 compare IR- MR3-5 with IR-RR8-8 and IR-RR9-11 If first four bits are 00_00, compare IR-MR6_8 with IR-RR8-8 and IR-RR9-11 If first four bits are 11 01, 11 00, 01 00, 01 01, 00 11 compare IR-MR9 11 with IR-RR8-8 and IR-RR9-11

Implementation of branch prediction

Lets say while encountering a branch instruction we make a prediction in the ID stage itself (based on some FSM- the most easy to implement is the history bit)

Now we must cross-check and calculate whether our prediction was true or false.

T5 and IP-RR must be the same if the prediction we have done is correct.

This will be done by using a comparator (subtractor) and checking the zero flag

Say the values are different, then we must make the three instructions that entered the pipeline null and void. We do this by setting the write signals of all temporary registers as 0.

Hence effectively, even though the three instructions are being executed, they are making no changes, hence it is like they dont have any impact

However, on making wrong predictions the effective CPI will be hit, so it is important to have a good branch prediction.

RTL Netlist (a portion of it)

ALU Control Signals-

ALU Controls

MUX Control Signals-

MUX Controls

Rough Datapath of CPU-

