EP3260: Machine Learning Over Networks Peer-review of CA3 of group 5

Stefanos Antaris*1, Amaru Cuba Gyllensten^{†1,2}, Martin Isaksson^{‡1,2,3}, Sarit Khirirat^{§1}, and Klas Segeljakt^{¶1,2}

¹KTH Royal Institute of Technology ²RISE AI ³Ericsson Research

February, 2019

Contents

1	Con	nputer assignment	1
	1.1	General comments	1
	1.2	1) Try to solve this optimization task with proper choices of size of decision	
		variables (matrix W_1 , matrix W_2 , and vector w_3) using GD, perturbed	
		GD, SGD, SVRG, and block coordinate descent. For the SGD method,	
		you may use the mini-batch version	2
	1.3	2) Compare these solvers in terms complexity of hyper-parameter tunning,	
		convergence time, convergence rate, and memory requirement	2

1 Computer assignment

1.1 General comments

• Good use of Python notebooks to make the solution and results easy to follow.

^{*}antaris@kth.se

[†]amaru.cuba.gyllensten@ri.se

[‡]martisak@kth.se

[§]sarit@kth.se

 $[\]P_{klasseg@kth.se}$

- Good that you not only solved the problem but also explored different implementations.
- Good that you separated the problem of cleaning and training into two notebooks.
- 1.2 1) Try to solve this optimization task with proper choices of size of decision variables (matrix W_1 , matrix W_2 , and vector w_3) using GD, perturbed GD, SGD, SVRG, and block coordinate descent. For the SGD method, you may use the mini-batch version.
 - GD, SGD, PGD, SVRG and BCD are all implemented correctly.
 - Good reuse of code for SGD, PGD, and BCD.
 - Is there a motivation behind the choice of hyperparameters? For example, why does SVRG have different layers than the rest?
- 1.3 2) Compare these solvers in terms complexity of hyper-parameter tunning, convergence time, convergence rate, and memory requirement
 - The solvers are all compared w.r.t the properties.
 - In general, there could be a bit more explanation, e.g., why does BCD have a low memory requirement?
 - Why does PGD require as expensive memory management as GD? In the code, the memory requirement of PGD appears to be equivalent to that of SGD.