Arthur Lui

Introductio

Model

Exampl

Model Checking

The Indian Buffet Process

Arthur Lui

Department of Statistics Brigham Young University

10 December 2014

- One challenge in latent variable modelling is predetermining the number of latent variables generating the observations
- One type of latent variable model is the latent feature model, which consists of quantitative observations and binary latent variables
- The Indian Buffet Process offers a distribution for sparse infinite binary matrices, which can serve as a prior distribution for feature matrices in latent feature models

Exampl

Checking

Indian Buffet Process (IBP)

Figure 1: IBP(N=50,a=2)

Figure 2: IBP(N=50,a=10)

In the IBP, a customer (i) taking a dish (k) is analogous to an observation possessing a feature. This is indicated by setting the value of z_{ik} to 1 if the customer takes the dish, and 0 otherwise.

An IBP(α) for N observations can be simulate as follows:

- **1** The 1st customer takes Poisson(α) number of dishes
- **2** For customers i = 2 to N,
 - For each presiously sampled dish, customer i takes dish k with probability m_k/i
 - after sampling the last sampled dish, customer i samples Poisson(α/i) new dishes

$$\begin{array}{ccc} \mathbf{Z} & \sim & \mathsf{IBP}(\alpha), \text{ where } z_{ik} \in \{0,1\} \\ \Longrightarrow & \mathsf{P}(\mathbf{Z}) & = & \frac{\alpha^{K_+}}{N} exp\{-\alpha H_N\} \prod\limits_{k=1}^{K_+} \frac{(N-m_k)!(m_k-1)!}{N!}, \end{array}$$

where H_N is the harmonic number, $\sum_{i=1}^{N} i^{-1}$, K_+ is the number of non-zero columns in **Z**, m_k is the k^{th} column sum of **Z**, and $K_1^{(i)}$ is the "number of new dishes" sampled by customer i.

To draw from **Z** \sim IBP(α) using a **Gibbs** sampler,

- Start with an arbitrary binary matrix of N rows
- **2** For each row, *i*,
 - **1** For each column, k,
 - 2 if $m_{-i,k} = 0$, delete column k. Otherwise,
 - set z_{ik} to 0
 - set z_{ik} to 1 with probability $P(z_{ik}=1|\mathbf{z_{-i,k}})=m_{-i,k}/i$
 - 3 at the end of row i, add Poisson (α/N) columns of 1's
- 3 iterate step 2 a large number of times

We can use this sampling algorithm to sample from the posterior distribution $P(\mathbf{Z}|\mathbf{X})$ where $\mathbf{Z} \sim \mathit{IBP}(\alpha)$ by sampling from the complete conditional

$$P(z_{ik} = 1 | \mathbf{Z}_{-(ik)}, \mathbf{X}) \propto p(\mathbf{X} | \mathbf{Z}) P(z_{ik} = 1 | \mathbf{Z}_{-(ik)}). \tag{1}$$

Note that the conjugate prior for α is a Gamma distribution.

$$\mathbf{Z}|\alpha \sim \mathit{IBP}(\alpha)$$

 $\alpha \sim \mathit{Gamma}(a,b)$, where b is the scale parameter

$$p(\alpha|\mathbf{Z}) \propto p(\mathbf{Z}|\alpha)p(\alpha)$$

$$p(\alpha|\mathbf{Z}) \propto \alpha^{K_{+}}e^{-\alpha H_{N}}\alpha^{a-1}e^{-\alpha/b}$$

$$p(\alpha|\mathbf{Z}) \propto \alpha^{a+K_{+}-1}e^{-\alpha(1/b+H_{N})}$$

$$\alpha|\mathbf{Z} \sim Gamma(a+K_{+},(1/b+H_{N})^{-1})$$
(2)

Model Checking

Example: Linear-Gaussian Latent Feature Model with Binary Features

Suppose, we observe an $N \times D$ matrix **X**, and we believe

$$\begin{array}{rcl} \mathbf{X} & = & \mathbf{Z}\mathbf{A} + \mathbf{E}, \\ \\ \text{where} & \mathbf{Z}|\alpha & \sim & \mathsf{IBP}(\alpha), \\ & \mathbf{A}_i & \sim & \mathit{MVN}(\mathbf{0}, \sigma_A{}^2\mathbf{I}), \\ & \mathbf{E}_i & \sim & \mathit{MVN}(\mathbf{0}, \sigma_X{}^2\mathbf{I}), \\ & \alpha & \sim & \mathsf{Gamma}(a,b), \end{array}$$

Example: Linear-Gaussian Latent Feature Model with Binary Features

It can be shown that

$$\rho(\mathbf{X}|\mathbf{Z}) = \frac{1}{(2\pi)^{ND/2} \sigma_X^{(N-K)D} \sigma_A^{KD} |\mathbf{Z}^T \mathbf{Z} + (\frac{\sigma_X}{\sigma_A})^2 \mathbf{I}|^{D/2}}$$

$$\exp\{-\frac{1}{2\sigma_Y^2} tr(\mathbf{X}^T (\mathbf{I} - \mathbf{Z}(\mathbf{Z}^T \mathbf{Z} + (\frac{\sigma_X}{\sigma_A})^2 \mathbf{I})^{-1} \mathbf{Z}))\mathbf{X}\}$$
(3)

The Indian Buffet Process

Arthur Lui

Introductio

Mode

Example

Model Checkin

Example: Linear-Gaussian Latent Feature Model with Binary Features

We can now use equation (1) to implement a Gibbs sampler to draw from the posterior posterior $\mathbf{Z}|\mathbf{X},\alpha$.

Introduction

Model

 ${\sf Example}$

Checkin

Figure: One Observation Without Noise

Example

Figure: One Observation + N(0,.5) Noise

Data

Introduction

Introduction

Example

Figure: Data From Ten Stat666 Students + N(0,.5) Noise

Х

Example

Diagnostics

The Indian Buffet Process

Arthur Lui

Introduction

Introduction

Example

Lxampi

Checkin

Diagnostics

Posterior Distribution for Alpha (after 1000 Burn)

Arthur Lui

Introductio

N.A. - J.-1

Example

Checking

Posterior

Posterior Estimate for Z

Figure: The posterior mean for **Z** computed by summing across all the **Z** matrices drawn, then dividing by 4000, the the number of draws.

Posterior

Posterior Mean for A

Figure: The posterior mean for **A** was computed by calculating $E[\mathbf{A}|\mathbf{Z}] = (\mathbf{Z}^T\mathbf{Z} + \frac{\sigma_X^2}{\sigma_A^2}\mathbf{I})^{-1}\mathbf{Z}^T\mathbf{X}$

Introductio

....

Example

Model Checkin

Posterior

Figure: The latent features turned back into 6×6 images.

The Indian Buffet Process

Arthur Lui

Laborator at Laborator at

Introduction

Example

Model Checkin

Posterior

Figure: The latent features for each student $= PostMean(\mathbf{Z_iA})$.

Model Checking

Residuals

Residuals = PostMean(ZA) - X

Conclusions

- The IBP is flexible distribution on sparse binary matrices
- Number of latent features can be quickly learned, and latent features discovered in a Gaussian latent feature model
- Prior distributions can be set on σ_X and σ_A when the variance is unknown
- Distance information can be incorporated to enhance performance of the algorithm