

CSC380: Principles of Data Science

Statistics 1

Credit:

- Jason Pacheco,
- Kwang-Sung Jun,
- Chicheng Zhang
- Xinchen yu

Probability and Statistics

Probability and Statistics

- Probability provides a mathematical formalism to reason about random events
 - Knowing the distribution (e.g., uniform), how can we compute probability of the event of interest? (e.g., two fair dice, $P(\text{sum} = 3 \mid X_1 = 1)$)
- Statistics is centered on <u>data</u>
 - Fitting models to data (estimation)
 - <u>E.g.,</u> I don't know the distribution, but I have samples drawn from it. Let's estimate what the distribution was! ⇒ reverse engineering!
 - Answering questions from data (statistical inference, hypothesis testing)
 - Interpretation of data
- Statistics uses probability to address these tasks

Probability and Statistics

Probability: Given a distribution, compute probabilities of data/events.

E.g., If $X_1, ..., X_{10}$ ~ Bernoulli(p=.1), what is the probability of $\sum_{i=1}^{10} X_i = 3$? e.g., data = outcome of coin flip

Statistics: Given data, compute/infer the distribution or its properties.

E.g., We observed $X_1 = 0, ..., X_{10} = 1$. What is the head probability?

[Source: Wasserman, L. 2004]

Intuition Check

Suppose that we toss a coin 100 times. We don't know if the coin is fair or biased...

Question 1 Suppose that out of 100 tosses we observed **73** heads and **27** tails. What is the coin bias?

Question 2 How might we estimate the bias of the coin with **73** heads and **27** tails?

Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable X,

$$X \sim \text{Bernoulli}(\pi) \Rightarrow p(X = x) = \pi^{x} (1 - \pi)^{1-x}$$

Recall that π is the coin bias (probability of heads) and that,

$$\mathbf{E}[X] = \pi \cdot 1 + (1 - \pi) \cdot 0 = \pi$$

Suppose we observe N coin flips x_1, \ldots, x_N , estimate π as,

$$\hat{\pi} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
e.g. $X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 1$

$$\hat{\pi} = \frac{1}{4} (1 + 1 + 0 + 1)$$

$$= \frac{3}{4} \times 1 + \frac{1}{4} \times 0 = \frac{3}{4}$$

This is called empirical mean or sample mean

Estimating Gaussian Parameters

Suppose we observe the heights of N students at UA, and we model them as Gaussian:

$$\{x_i\}_i^N \sim \mathcal{N}(\mu, \sigma^2)$$

(Property of Gaussian: $E[X] = \mu_x$, $Var[X] = \sigma_x^2$)

How can we estimate μ ?

$$\mu = \mathrm{E}[X] \approx \frac{1}{N} \sum_{i} x_{i}$$

Estimate μ using sample mean $\hat{\mu} = \frac{1}{N} \sum_i x_i$ (abbrev. \bar{x})

How can we estimate σ ?

$$\sigma^2 = \text{var}(X) = E[(X - \mu)^2] \approx \frac{1}{N} \sum_i (x_i - \mu)^2 \approx \frac{1}{N} \sum_i (x_i - \hat{\mu})^2$$

Estimate
$$\sigma$$
 using
$$\hat{\sigma} = \sqrt{\frac{1}{N} \sum_{i} (x_i - \hat{\mu})^2}$$

Limit Theorems: LLN and CLT

Probability tool: Law of Large Numbers (LLN)

Claim: sample mean converges to the true mean.

$$\mu = \mathrm{E}[X] \approx \frac{1}{N} \sum_{i} x_{i}$$

(Theorem) Let $X_1 ... X_N$ be drawn *independent identically* distributed (i.i.d.) from a distribution with mean μ .

Then,

$$\lim_{N\to\infty}\hat{\mu}_n=\mu$$

Average dice roll by number of rolls

Theoretical mean
Observed averages

1
0
200
400
600
800
1000
Number of trials

Limitation: it does not say how does each $\hat{\mu}_n$ pile up!

Law of Large Numbers (LLN): example

$$X = 0$$

$$X_1 \dots X_N \in \{0,1\}$$

$$\mu = 0.5$$

$$\lim_{N\to\infty}\hat{\mu}_n=\mu=0.5$$

1 ———

0.5

Probability tool: Central Limit Theorem (CLT)

Let X_1, \ldots, X_N be i.i.d. with mean μ and variance σ^2 . Then the sample mean \bar{X}_N approaches a Normal distribution

$$\lim_{N \to \infty} \bar{X}_N \to \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right)$$

Actually, a mathematically rigorous version is

$$\lim_{N \to \infty} \frac{\sqrt{N}}{\sigma} (\bar{X}_N - \mu) \to \mathcal{N} (0, 1)$$

i.i.d=
independent
and
identically
distributed

Comments

- LLN says estimates X_N "pile up" near true mean, CLT says how they pile up
- Pretty remarkable since we make no assumption about how X_i are distributed
- Variance of X_i must be finite, i.e. $\sigma^2 < \infty$

Central Limit Theorem (CLT): example

Generate 20 random numbers from 0 and 9. Find their average. Repeat 1000 times. The averages will approximate a normal distribution (bell curve) centered at 4.5.

Central Limit Theorem (CLT): sanity check

- Let $X_1 \dots, X_N$ be drawn i.i.d. from $\mathcal{N}(\mu, \sigma^2)$
- What's the distribution of \bar{X}_{N} ?

$$\overline{X_N} - \mu \sim N\left(0, \frac{\sigma^2}{N}\right)$$

$$\sqrt{N}(\overline{X_N} - \mu) \qquad \sqrt{N} \quad N \quad \sigma^2$$

$$\Rightarrow \sum_{i=1}^{N} X_i \sim \mathcal{N}(N\mu, N\sigma^2) \qquad \frac{\sqrt{N}(\overline{X_N} - \mu)}{\sigma} \sim N(\frac{\sqrt{N}}{\sigma}, \frac{N}{\sigma^2}, \frac{\sigma^2}{N})$$

$$\Rightarrow \bar{X}_N \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

$$\Leftrightarrow \frac{\sqrt{N}(\bar{X}_N - \mu)}{\sigma} \sim \mathcal{N}(0,1)$$

Recall: for normal distributions

• Closed under additivity:

$$X\sim\mathcal{N}(\mu_x,\sigma_x^2)$$
 $Y\sim\mathcal{N}(\mu_y,\sigma_y^2)$, $X\perp Y$ $X+Y\sim\mathcal{N}(\mu_x+\mu_y,\sigma_x^2+\sigma_y^2)$

• Closed under affine transformation (a and b constant): $aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$

Estimation: Classical Statistics

Parameter Estimation

We pose a model in the form of a probability distribution, with unknown parameters of interest θ ,

$$\mathcal{D}_{\theta}$$
 e.g., assume Gaussian: $\theta = (\mu, \sigma^2)$

Observe data, typically independent identically distributed (iid),

$$p(X_1=x_1,...,X_N=x_n)=p(X_1=x_1)\cdots p(X_N=x_N)$$

$$\chi_1,...,\chi_N\overset{\text{i.i.d}}{\sim}\mathcal{D}_\theta,$$
 Independent and identical dist.

Compute an estimator to estimate parameters of interest,

$$\hat{\theta}(\{x_i\}_i^N) \approx \theta$$

Many different types of estimators, each with different properties

Examples: I.I.D. and Non-I.I.D.

- Roll a die 10 times and record how many times the result is 1 (I.I.D).
 - each outcome of the die roll will not affect the next one (Independent).
 - each roll will have the same probability as each other roll (Identically distributed).

 Flip two coins A and B with different weights and record how many heads (Independent but Nonidentically distributed).

$$P(A = H) \neq P(B = H)$$

Examples: Non-I.I.D.

Dependent identical distribution

- First coin (A): fair coin
- Second coin (B):
 - if A=H, throw an <u>unfair</u> coin P(H) = $\frac{1}{4}$, P(T) = $\frac{3}{4}$
 - If A=T, throw an <u>unfair</u> coin $P(H) = \frac{3}{4}$, $P(T) = \frac{1}{4}$

	В=Н	B=T		(joint probability table
A=H	1/8	3/8	1/2	
A=T	3/8	1/8	1/2	
	1/2	1/2		

P(A=H)=P(B=H) but A and B are not independent (prove it!)

In general, i.i.d. is necessary to have estimators close to the true parameter

Definitions

A **statistic** is a function of the data that does not depend on any unknown parameter.

Examples

- Sample mean $\widehat{\mu}$
- Sample variance $\hat{\sigma}^2$
- Sample STDEV $\hat{\sigma}$
- Order statistics $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$

An **estimator** $\hat{\theta}(x)$ is a **statistic** used to infer the unknown parameters of a statistical model.

Q: Gaussian distribution with unknown mean and variance. Which of these are estimators?

A: $\widehat{\mu}$ and $\widehat{\sigma}$

Population and Sample

Population and Sample Sample Population

- Parameter: mean of weight in the population μ
- Statistic: mean of weight in the sample $\widehat{\mu}$
- Variable: value of weight of each person X
- Weights (kg) of people in a sample $X_1 = 80$, $X_2 = 60 \dots X_n = 100$
- We can use sample mean $\widehat{\mu}$ to estimate population mean μ
- Sample mean is an estimator

Intuition Check

Suppose that we toss a coin 100 times. We observe 52 heads and 48 tails...

Question 1 I define an estimator that is always $\hat{\theta} = 0$, regardless of the observation. Is this an estimator? Why or why not?

Question 2 Is the estimator above a **good** estimator? Why or why not?

Question 3 What are some properties that could define a **good** estimator?

Two Desirable Estimator Properties

Consistency Given enough data, the estimator converges to the true parameter value

$$\lim_{n\to\infty}\hat{\theta}(x_1,\ldots,x_n)\to\theta$$

Q: Is sample mean a consistent estimator for μ ?

$$\lim_{N \to \infty} \bar{X}_N \to \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right)$$

 $\lim_{N\to\infty} \bar{X}_N \to \mathcal{N}\left(\mu, \frac{\sigma^2}{N}\right) \qquad \text{Yes. The variance of sample mean \bar{X}_N decreases to 0 as we increase the sample size N.}$

> Efficiency It should have low error with finite n, e.g.

$$MSE(\hat{\theta}_n) = \mathbf{E}[(\hat{\theta}_n - \theta)^2] = \frac{1}{N} \sum_i (\hat{\theta}_i - \theta)^2$$

Mean Squared Error should be small

looks like variance but it's different! Q: spot the difference from $Var(\hat{\theta}_n)$?

MSE of an Estimator

Two Desirable Estimator Properties

Another Properties of estimators

- <u>Unbiasedness</u>: For any n, $\mathbf{E}[\hat{\theta}(X_1, ..., X_n)] = \theta$
 - E.g., sample mean is unbiased. If $X_1, ..., X_n \sim D$ with $\mathbf{E}_{X \sim D}[X] = \mu$

$$\mathbf{E}[\bar{X}_N] = \frac{1}{N} \sum_i \mathbf{E}[X_i] = \mu$$

- Traditionally, considered to be a good property.
- In modern statistics, <u>not a necessary condition</u> to be a good estimator.
 - An unbiased estimator may be <u>less efficient</u> compared to some other <u>biased</u> estimator.
- Biased estimators can still be <u>consistent</u>.

E.g., for some estimator
$$E[\hat{\theta}(X_1,...,X_n)]$$
 can be $\mu + \frac{1}{n}$

Expectation of the Sample Mean

Recall: An estimator $\hat{\theta}$ is a RV (Random Variable).

Example Let $X_1, \ldots, X_N \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$ and estimate \hat{p} be the *sample mean*,

$$\hat{p} = \frac{1}{N} \sum_{i} X_{i}$$

Notation: $X := (X_1, ..., X_N)$

$$\mathbf{E}[\hat{p}(X)] = \mathbf{E}\left[\frac{1}{N}\sum_{i}X_{i}\right] \stackrel{\text{(a)}}{=} \frac{1}{N}\sum_{i}\mathbf{E}\left[X_{i}\right] \stackrel{\text{(b)}}{=} \frac{1}{N}Np = p$$

(a) Linearity of Expectation Operator

(b) Mean of Bernoulli RV = p

Conclusion On average $\hat{p} = p$ (it is unbiased)