Лабиринты центра Интеллект

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Архитекторы центра Интеллект просто обожали лабиринты! Они настолько любили лабиринты, что засунули лабиринт в лабиринт. И во внутреннем лабиринте тоже лабиринт!

Представьте себе замок с n воротами. Внутри этого замка находится ещё k замков, каждый из которых является копией внешнего замка. Некоторые из ворот этих замков соединены между собой тропинками. Нарисуем эту схему:

Нарисуем на один уровень глубже:

Одни из ворот внешнего замка помечена как вход, а другая — выход. Считая, что каждая из тропинок имеет длину 1, найдите длину кратчайшего пути от входа до выхода.

Формат входных данных

В первой строке входного файла числа N ($2 \le N \le 20$) и K ($0 \le K \le 5$).

Следующая строка содержит M, число тропинок.

Следующие M строк содержат описание тропинок, по одному на строке.

Каждая тропа задаётся следующим образом:

<homep samka>.<homep bopot> - <homep samka>.<homep bopot>

Здесь левая и правая части описания обозначают соединяемые тропинками ворота (ворота описывается своим номером и номером замка, которому она принадлежит).

По каждой тропинке можно двигаться в обоих направлениях.

Номер внешнего замка -0, а внутренние нумеруются числами от 1 до K.

Ворота нумеруются, начиная с 0.

Никакие две тропинки не соединяют одну и ту же пару ворот. Никакая тропинка не соединяет ворота сами с собой.

В последней строке содержатся номера входа и выхода D_i и D_o . Эти числа могут совпадать.

Формат выходных данных

Выведите длину кратчайшего пути. Если пути не существует, выведите «no solution».

Примеры

стандартный ввод	стандартный вывод
12 1	11
11	
0.0 - 1.1	
0.1 - 0.2	
1.2 - 1.3	
0.3 - 0.4	
1.4 - 1.5	
0.5 - 0.6	
1.6 - 1.7	
0.7 - 0.8	
1.8 - 1.9	
0.9 - 0.10	
1.10 - 0.11	
0 11	