THE REGULAR REPRESENTATION

ARPON RAKSIT

original: December 30, 2015 updated: December 30, 2015

1. Finite groups

Let G be a finite group. Let k be an algebraically closed field such that $\operatorname{char}(k)$ does not divide G. All vector spaces and representations in this section are over k.

1.1. Definition. Consider the vector space $\operatorname{Fun}(G)$ of functions from $\phi \colon G \to k$. This has the structure of a $G \times G$ -representation by letting $(g,h) \in G \times G$ act on $\phi \colon G \to k$ via the formula

$$((q,h)\cdot\phi)(x) = \phi(q^{-1}xh).$$

This is perhaps what should be called the *regular representation* associated to G. Well, note that it's a representation of $G \times G$, but it then naturally induces G-representation structures on $\operatorname{Fun}(G)$:

- (1.1.1) restricting in the map (id_G, 1): $G \to G \times G$ sending $g \mapsto (g, 1)$ gives us the left regular representation, where $(g \cdot \phi)(x) = \phi(g^{-1}x)$;
- (1.1.2) restricting in the map $(1, \mathrm{id}_G) : G \to G \times G$ sending $g \mapsto (1, g)$ gives us the right regular representation, where $(g \cdot \phi)(x) = \phi(xg)$.

Unless otherwise stated we consider Fun(G) as a G-representation using the left regular representation structure.

1.2. Lemma. Let V be a representation of G. Then there is a natural isomorphism (of vector spaces)

$$\operatorname{Hom}_G(V, \operatorname{Fun}(G)) \xrightarrow{\sim} V^{\vee},$$

given by sending $T: V \to \operatorname{Fun}(G)$ to the linear functional $v \mapsto T(v)(1)$.

Proof. Trivial.

1.3. Corollary. Let $\{V_i\}_{i\in I}$ be a set of representatives for the isomorphism classes of irreducible representations of G. Then there is an isomorphism of G-representations

$$\operatorname{Fun}(G) \simeq \bigoplus_{i \in I} V_i^{\vee} \otimes V_i$$

(where here V_i^{\vee} is viewed just as a vector space, i.e. a trivial G-representation). In particular, taking dimensions of each side, we get

$$|G| = \sum_{i \in I} \dim(V_i)^2.$$

Proof. For any representation V we have by semisimplicity and Schur's lemma that

$$V \simeq \bigoplus_{i \in I} \operatorname{Hom}_G(V_i, V) \otimes V_i.$$

The claim then follows from plugging in $V = \operatorname{Fun}(G)$ and applying (1.2).

2. Compact Lie groups

...