Esercizi per la Terza Settimana

Esercizio 3.1 Siano r_1 ed r_2 le rette di equazioni parametriche

$$r_1: \left\{ \begin{array}{ll} x = 2t \\ y = t \\ z = -t + 1 \end{array} \right. \qquad r_2: \left\{ \begin{array}{ll} x = -4s \\ y = -2s \\ z = 2s + 1 \end{array} \right.$$

(i parametri sono rispettivamente t ed s). E' vero che r_1 coincide con r_2 ?

 $\bf Esercizio~3.2$ Studiare la posizione reciproca delle rette di equazioni parametriche

$$r_1:$$

$$\begin{cases} x=t-1\\ y=t\\ z=3t \end{cases} \qquad r_2:$$

$$\begin{cases} x=5s\\ y=3s+1\\ z=2s \end{cases}$$

Esercizio 3.3 Trovare equazioni parametriche per la retta r parallela alla retta

$$t: \begin{cases} x = 5t \\ y = 2t + 1 \\ z = t \end{cases}$$

e passante per il punto (1,1,1).

Esercizio 3.4 È vero che esiste un valore h tale per cui la retta di equazioni parametriche

$$r_h: \begin{cases} x = 2t \\ y = t + h \\ z = t + 1 \end{cases}$$

incontra l'asse x? (Il parametro per $r_h
i t$).

Esercizio 3.5 Sia $r_{h,k}$ la retta di equazioni

$$r_{h,k}: \begin{cases} x = t+1 \\ y = 2t+h \\ z = -t+k \end{cases}$$

(si consideri t come parametro per la retta). Esistono valori per h e k per i quali $r_{h,k}$ incontra sia l'asse x che l'asse z?

Esercizio 3.6 Trovare un equazione cartesiana per il piano che passa per il punto $P \equiv (2, 1, 2)$ ed è parallelo al piano $\pi : 5x + y - z = 0$.

Esercizio 3.7 Trovare per quali valori di h il piano π_h : 2x + hy + 2z = 0 è parallelo al piano σ : -x + 3y - z = 2.

Esercizio 3.8 I piani $\pi_1: 2x+5y-z=1$ e $\pi_2: x-y-z=0$ si intersecano secondo una retta oppure no?

Esercizio 3.9 Sapendo che i piani π_h : 2x + hy - 2z = 1 e σ : x + y - z = 0 hanno un punto in comune, cosa si puo' dedurre sul numero h?

Esercizio 3.10 Stabilire in quanti punti si incontrano i tre piani $\pi_1: 2x+y+z=6, \pi_2: x+2y-z=0$ e $\pi_3: x+3y+4z=1$.

Esercizio 3.11 Stabilire per quali valori di k i tre piani π : 2x + y - z = 2, σ_k : kx + y + z = 0 e τ : x + 2y + z = 1 si incontrano in un solo punto.

Esercizio 3.12 Le due rette

$$r: \begin{cases} x+y+z=0 \\ 2x-y-z=0 \end{cases} s: \begin{cases} x+2y+3z=0 \\ 2x+2y-3z=0 \end{cases}$$

sono complanari. Trovare un equazione cartesiana per il piano che le contiene.

Esercizio 3.13 Riferendosi all'esercizio precedente, trovare per quali valori di h la retta

$$t_h: \begin{cases} x = ht \\ y = t \\ z = t \end{cases}$$

è complanare con le rette r ed s.

Esercizio 3.14 Sia π il piano di equazione x + 5y - 3z = 0 ed r la retta

$$r: \begin{cases} x + 3y - z = 0 \\ x + y - z = 0 \end{cases}.$$

Trovare equazioni parametriche per la retta s proiezione ortogonale di r sul piano $\pi.$

Esercizio 3.15 È corretto affermare che "tre piani, le cui direzioni ortogonali non sono complanari, si incontrano sempre in un solo punto"?

Esercizio 3.16 È corretto affermare che "tre piani, le cui direzioni ortogonali sono complanari, si incontrano sempre secondo una retta"?

Esercizio 3.17 Siano r_h ed ℓ le rette di equazioni parametriche

$$r_h: \left\{ egin{array}{ll} x=ht+1 \ y=t+h \ z=t \end{array}
ight. \quad \ell: \left\{ egin{array}{ll} x=2s-1 \ y=2s \ z=2s+1 \end{array}
ight.
ight.$$

Determinare gli eventuali valori per h tali per cui r_h ed ℓ sono due rette complanari.

Esercizio 3.18 Dati i tre punti $P \equiv (1,0,1)$, $Q \equiv (3,1,1)$ ed $R_k \equiv (k,1,5)$, determinare per quali valori di k esiste un solo piano passante per P,Q ed R_k e trovarne l'equazione.

Esercizio 3.19 Si considerino le rette di equazioni parametriche date da

$$r_h: \left\{ \begin{array}{l} x=t-h \\ y=t+3h \\ z=t-h \end{array} \right. \quad \ell_{h,k}: \left\{ \begin{array}{l} x=-2s-h \\ y=-s+k \\ z=s-h \end{array} \right.$$

(i parametri per le rette sono t ed s, rispettivamente). Determinare la relazione che deve sussistere tra h e k affinchè r_h e $\ell_{h,k}$ siano complanari.

Esercizio 3.20 Trovare gli eventuali valori per h e k per i quali i piani $\pi_{h,k}$: x + ky + hz = 0 e $\sigma_{h,k}$: hx + 2hy + kz - 2 = 0 sono paralleli.

Esercizio 3.21 Trovare un'equazione per il piano che passa per $P \equiv (1, 1, 1)$ e che contiene la retta di equazioni parametriche

$$r: \begin{cases} x = t \\ y = t - 1 \\ z = t \end{cases}$$

Esercizio 3.22 Trovare gli eventuali valori di h e k per i quali la retta di equazioni parametriche

$$r_{h,k}:$$

$$\begin{cases}
x = 2t + h \\
y = kt \\
z = 3t
\end{cases}$$

giace sul piano π : x + 2y - z = 0.

Esercizio 3.23 Trovare equazioni parametriche per la retta data dall'intersezione dei piani π : x+2y-z=0 e σ : 3x-y+z=0.