Psychoinformatics & Neuroinformatics

Week 14

Audio, Speech,

& Language Processing

by Tsung-Ren (Tren) Huang 黄從仁

Topics for today

Audio Processing

Extraction of sound features

Speech Processing
Speech2Text & Text2Speech

Language Processing
Making (voice) chatbots

Topics for today

Audio Processing

Extraction of sound features

Speech Processing
Speech2Text & Text2Speech

Language Processing
Making (voice) chatbots

Case Study: Paralinguistic Features

Both visual and audio signals are informative of emotions:

Digital Signal Processing (1/3)

Original sound signals are in the time domain:

Digital Signal Processing (2/3)

Two-channel out-out-phase audio signals will cancel each other out when played by speakers:

Headphone screening to facilitate web-based auditory experiments

Kevin J. P. Woods 1,2 · Max H. Siegel · James Traer · Josh H. McDermott 1,2

Digital Signal Processing (3/3)

ICA can be used for speaker diarization:

Physical vs. Perceptual Dimensions

Instrument: Timbre:: Person: Voiceprint

Fourier Transform: Frequency Domain

$$y(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(2\pi k f_0 t) - b_k \sin(2\pi k f_0 t) \right]$$

Short-Time FT (STFT): Spectrogram

A series of Fourier Transforms for (sliding) time windows

"This is my voice"

Cepstrum: $C_p = |FT^{-1}\{log(|FT\{s(t)\}|^2)\}|^2$

Time domain: g(t)*v(t)=s(t)

Frequency domain: $G(f) \cdot V(f) = S(f)$

Log-frequency: log(G(f))+log(V(f))=log(S(f))

Mel Filters for nonuniform sampling

Human can only detect sounds of 20~20,000Hz, which covers male speech (85~155Hz) & female speech (165~255Hz).

Mel-scale Frequency Cepstral Coefficients

DCT, a real-valued FT, is used to decorrelate/compress log(p)

Various Feature Sets

openSMILE:) can help extract various features!

2.5 Default feature sets

For common tasks from the Music Information Retrieval and Speech Processing fields we provide some example configuration files in the config/ directory for the following frequently used feature sets. These also contain the baseline acoustic feature sets of the 2009–2013 INTERSPEECH challenges on affect and paralinguistics:

- Chroma features for key and chord recognition
- MFCC for speech recognition
- PLP for speech recognition
- Prosody (Pitch and loudness)
- The INTERSPEECH 2009 Emotion Challenge feature set
- The INTERSPEECH 2010 Paralinguistic Challenge feature set
- The INTERSPEECH 2011 Speaker State Challenge feature set
- The INTERSPEECH 2012 Speaker Trait Challenge feature set
- The INTERSPEECH 2013 ComParE feature set
- The MediaEval 2012 TUM feature set for violent scenes detection.

Acoustic LLDs								
Low-level Descriptors (LLDs)	Туре							
zero-crossing rate, log energy, probability of voicing, F_0	prosodic							
MFCC 0-12, spectral flux, spectral centroid, max, min, spectral bands 0-4 (0-9KHz), spectral roll-off (0.25, 0.5, 0.75, 0.9)	spectral							
Functionals applied to LLDs/\(\Delta\L\D\)s								
position of min/max, range, max — arithmetic mean, arithmetic mean — min	extremes							
linear regression slope, offset, error, centroid, quadratic error, quadratic regression a, b offset, linear error, quadratic error (contour & quadratic regression)	regression							
percentile range (25%, 50%, 75%), 3 inter-quartile ranges (25% - 50%, 50%-75%, 25%-75%)	percentiles							
mean value of peaks, distance between peaks, mean value of peaks — arithmetic mean	peaks							
arithmetic means, absolute value of arithmetic mean (original, non-zero values), quadratic mean (original, non-zero values), geometric mean (absolute values of non-zero values), number of non-zero values	means							
relative duration LLD above 25%, 50%, 75%, 95% range, relative duration LLD is rising/falling, relative duration LLD has left/right curvature	temporal							

Topics for today

Audio Processing

Extraction of sound features

Speech Processing
Speech2Text & Text2Speech

Language Processing
Making (voice) chatbots

Case Study: Number of Spoken Words

Mehl et al., 2007, *Science*

Sample	Year	Location	Duration	Age range (years)	Sample size (N)		Estimated average number (SD) of words spoken per day	
					Women	Men	Women	Men
1	2004	USA	7 days	18–29	56	56	18,443 (7460)	16,576 (7871)
2	2003	USA	4 days	17-23	42	37	14,297 (6441)	14,060 (9065)
3	2003	Mexico	4 days	17-25	31	20	14,704 (6215)	15,022 (7864)
4	2001	USA	2 days	17-22	47	49	16,177 (7520)	16,569 (9108)
5	2001	USA	10 days	18-26	7	4	15,761 (8985)	24,051 (10,211)
6	1998	USA	4 days	17–23	27	20	16,496 (7914)	12,867 (8343)
					Weighted average		16,215 (7301)	15,669 (8633)

Speech Recognition (1/4): Matching

Bottom-up: Matching each input to feature templates of words

Top-down: Contexts help to disambiguate (e.g., close vs. clothes)

Speech Recognition (2/4): HMM

acoustic model language model

Acoustic model

Lexicon

word sequence

E.g., present, desert, IKEA, etc.

calculated from emission probability calculated from transition probability $p(X) = \sum_{S} p(X,S) = \sum_{S} p(X|S) p(S)$ the observed events sum over all possible time sequences of internal states

Hidden Markov Model for the word "again"

Speech Recognition (3/4): CNN

Use CNN to recognize spectrogram/cepstrogram as an image

Speech Recognition (4/4): Summary

Speech recognition

Speech Synthesize (1/2): Concepts

Speech Synthesize (2/2): Apps

There are many apps available for text to speech

Topics for today

Audio Processing

Extraction of sound features

Speech Processing
Speech2Text & Text2Speech

Language Processing
Making (voice) chatbots

Case Study 1: Robot

Case Study 2: SimSensi

A voicebot is actually just a chatbot

Chatbot Services/Engines

You can design your Q&A or outsource to other chatbots(!)

Worldwide. 1/1/04 - 12/4/22. Web Search.

Worldwide. 1/1/04 - 12/4/22. Web Search.

State-of-the-art Chatbots

Task-oriented:

Non-task-oriented:

"Hey Cortana"

"Alexa"

"OK Google"

2014

2014

2016

Prompt Programming

This is the best we can do w/o fine-tuning a LM on our data:

Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Topics for today

Audio Processing

Extraction of sound features

Speech Processing
Speech2Text & Text2Speech

Language Processing
Making (voice) chatbots

