Puissances

1. Puissances généralisées

a) <u>Définition</u>: on fixe a>0. On constate que $\forall n\in\mathbb{Z},\ \ln(a^n)=n\ln a$ d'où $a^n=e^{n\ln a}$. On pose donc naturellement pour tout **réel** x :

$$a^x = e^{x \ln a} \qquad (\text{ou } a^x = \exp(x \ln a)$$

généralisant ainsi la notion de "puissance naïve" : si $n \in \mathbb{N}, \ a^n = \underbrace{a \times a \cdots \times a}_{n \text{ fois}}$, étendue à $n \in \mathbb{Z}$: $a^{-n} = \frac{1}{a^n}$. *Exemple :* $2^{\pi} = e^{\pi \ln 2}$. On ne peut pas définir les puissances non naïves de -3.

Remarque 1: cela justifie la notation pour tout réel $x : \exp(x) = e^x$

Remarque 2 : pour tout réel $x : 1^x = 1$.

Remarque 3: $\forall a > 0, \ \forall x \in \mathbb{R}, \quad |a^x > 0|$

b) Propriétés: les propriétés des puissances (et celles de l'exponentielle) sont conservées par cette généralisation (i) $x \mapsto a^x$ a les mêmes propriétés algébriques que $x \mapsto e^x$: pour x, y réels,

$$a^{x+y} = a^x a^y$$

$$(a^x)^y = a^{xy}$$

$$a^{-x} = \frac{1}{a^x}$$

$$\boxed{a^{x+y} = a^x a^y} \qquad \boxed{\left(a^x\right)^y = a^{xy}} \qquad \boxed{a^{-x} = \frac{1}{a^x}}$$

- (ii) $\forall a > 0, \ \forall b > 0, \ \forall x \in \mathbb{R}, \quad (ab)^x = a^x b^x$
- (iii) <u>Dérivée</u>:

Remarque: on a la généralisation : $\forall x \in \mathbb{R}$, $\ln(a^x) = x \ln a$

c) Exponentielle de base a > 0: on note $\exp_a : x \mapsto a^x$. Cette fonction est définie sur \mathbb{R} , elle y est dérivable, et

$$\forall x \in \mathbb{R}, \ \frac{d}{dx}(a^x) = (\ln a) a^x$$

Exercice: en discutant les cas a < 1, a = 1, a > 1, construire le tableau de variation de \exp_a

Exemple: donner l'allure des courbes de $x \mapsto 2^x$ et $x \mapsto \left(\frac{1}{2}\right)^x$

d) Etude des fonctions de la forme u^v : on se donne deux fonctions u et v définies sur I, avec u strictement positive sur I, et on considère

$$f: x \mapsto u(x)^{v(x)}$$

Pour étudier f, on passe **SYSTEMATIQUEMENT** à la forme

$$\forall x \in I, \ f(x) = e^{v(x)\ln(u(x))}$$

1

Exemple 1: calculer $\lim_{x\to 0} (1+x)^{1/x}$

Exemple 2: calculer la dérivée sur $[0, +\infty[$ de la fonction $f: x \mapsto x^x$

2. Fonctions puissance

Soit $a \in \mathbb{R}$. On considère $f: x \mapsto x^a = e^{a \ln x}$

- a) Domaine de définition et prolongement : dans le cas général, f est définie sur $]0, +\infty[$
 - (i) Prolongement par continuité en 0: si a > 0 on peut prolonger f en posant f(0) = 0La nouvelle fonction ainsi définie est continue sur \mathbb{R}^+ (en particulier en 0)
 - (ii) Cas des puissances entières :
 - Si $n \in \mathbb{N}$, on a pour tout $x \in \mathbb{R}$, $x^n = x \times \cdots \times x$. On peut donc prolonger f à \mathbb{R} tout entier
 - Si $n\in\mathbb{N}^*$, on a pour tout $x\in\overline{\mathbb{R}^*}$, $x^{-n}=\frac{1}{x\times\cdots\times x}$. On peut donc prolonger f à \mathbb{R}^*

Exemples : tracer les courbes de $x \to x^3, \; x \to x^4, \; x \to x^{-1} = \frac{1}{x}, \; x \to x^{-2} = \frac{1}{x^2}$

b) Dérivée et variations : soit $a \in \mathbb{R}$. alors $\forall x > 0$

$$\boxed{\frac{d}{dx}\left(x^a\right) = ax^{a-1}}$$

Exercice: en déduire le tableau de variations de f en distinguant a > 0 et a < 0.

c) <u>Courbes</u>: remarquer que toutes les courbes passent par A(1,1). Tangente en A? Tangente en O?

