Fizika 2 - Képletgyűjtemény

Nabla operátor:
$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \\ \frac{\partial}{\partial y} \\ \\ \frac{\partial}{\partial z} \end{pmatrix}$$

Coulomb-törvény:
$$\mathbf{F}_{1,2} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{\mathbf{r}}$$

Elektromos erőtér:
$$\mathbf{F} = q_0 \cdot \mathbf{E}$$

Elektromos tölrtéssűrűség:
$$\rho(\mathbf{r}_i) = \frac{q_i}{\Delta V}$$
 vagy $\rho = \frac{dq}{dV}$

Elektromos flusxus:
$$\Phi_E = \iint_S \mathbf{E} \, d\mathbf{A}$$

Térszög:
$$\Omega = \frac{A}{r^2}$$

Gauss-Osztrogradszkij-tétel:
$$\mathop{\#}\limits_{S}\mathbf{F}\,d\mathbf{A}=\mathop{\iiint}\limits_{V}(\nabla\cdot\mathbf{F})\,dV$$

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$

Elektromos tér munkája:
$$W = q \int\limits_A^B \mathbf{E} \, d$$

Elektromos potenciál különbség:
$$U = -\int_{A}^{B} \mathbf{E} \, d\mathbf{l}$$

Elektromos potenciál
$$A$$
 pontban: $V = -\int_{-\infty}^{A} \mathbf{E} dt$

Elektromos tér és a potenciál kapcsolata:
$$\mathbf{E} = -\nabla V$$

Poisson-egyenlet:
$$\Delta V = -\frac{\rho}{\varepsilon_0}$$

Ponttöltés elektromos potenciálja:
$$V(r) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$$

Elektromos áram:
$$I = \frac{dQ}{dt}$$

Ellektromos driftsebesség:
$$v_d = \frac{I}{v_{ee} A}$$

Ohm-törvény:
$$I = \frac{U}{R}$$

Anyag elenállása:
$$R = \frac{\rho_{\Omega} \cdot l}{A}$$

Fajlagos vezetőképesség:
$$\sigma = \frac{1}{g_0}$$

Elektromos áram teljesítménye:
$$P = U \cdot I$$

Felületi áramsűrűség:
$$j = \frac{I}{A}$$

Differenciális Ohm-törvény:
$$\mathbf{j} = \sigma \mathbf{E}$$

Huroktörvény:
$$\sum_{i=1}^{n} U_i = 0$$

Csomóponti törvény:
$$\sum_{i=1}^{n} I_i = 0$$

Kapacitás:
$$C = \frac{q}{U}$$

RC áramkör töltése bekapcsolás után:

$$q(t) = C\mathcal{E} \left(1 - e^{-t/RC} \right)$$

RC időállandó:
$$\tau = R \cdot C$$

Mágneses indukcióvektor definíciója:
$$\mathbf{F} = q \mathbf{v} \times \mathbf{B}$$

Centrifugális erő:
$$F_{cf} = m \frac{v^2}{R}$$

Ciklotronpálya sugara:
$$R = \frac{mv_{\perp}}{aB}$$

Áramvezetőre ható erő mágneses térben:
$$d\mathbf{F} = I d\mathbf{l} \times \mathbf{B}$$

Forgatónyomaték:
$$\mathbf{M} = \mathbf{r} \times \mathbf{F}$$

Mágneses dipólmomentum:
$$\mu = I \cdot \mathbf{A} \ (\mathbf{M} = \mu \times \mathbf{B})$$

Mégneses fluxus:
$$\Phi_B = \iint_S \mathbf{B} \, d\mathbf{A}$$

Biot-Savart törvény:
$$d\mathbf{B} = \frac{\mu_0}{4\pi} \cdot \frac{I \, d\mathbf{l} \times \hat{\mathbf{r}}}{r^2}$$

Mágneses tér vezető rúd körül:
$$B = \frac{\mu_0 I}{2\pi d}$$

Ampère-törvény:
$$\oint \mathbf{B} d\mathbf{l} = \mu_0 I$$

Stokes-tétel:
$$\oint \mathbf{F} d\mathbf{l} = \iint (\nabla \times \mathbf{F}) d\mathbf{A}$$

Erő két vezető szál között:
$$\frac{dF}{dl} = \frac{\mu_0 I^2}{2\pi d}$$

Áramhurok mágneses tere:
$$B = \frac{\mu_0 I}{2R}$$

Szolenoid mágneses tere:
$$B = \frac{\mu_0 NI}{L} = \mu_0 nI$$

Faraday-törvény:
$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

Elektromotors erő:
$$\oint \mathbf{E} d\mathbf{l} = \mathcal{E}$$

Induktivitás:
$$\mathcal{E}_L = -L \frac{dI}{dt}$$

Szolenoid induktivitása:
$$L = \frac{\mu_0 N^2 A}{L}$$

RL áramkör bekapcsolás után:
$$I(t) = \frac{\mathcal{E}}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

Váltóáramú R
 áramkör:
$$I(t) = \frac{U_0}{R}\cos(\omega t)$$

Váltóáramú C áramkör:
$$I(t) = \frac{U_0}{\mathcal{X}_C} \cos(\omega t), \, \mathcal{X}_c = \frac{1}{\omega C}$$

Váltóáramú L
 áramkör:
$$I(t) = \tfrac{U_0}{\mathcal{X}_L} \cos(\omega t), \, \mathcal{X}_L = \omega L$$

Váltóáramú RLC áramkör:

$$I(t) = \frac{U_0}{Z}\cos(\omega t - \phi) + I_T(t),$$

$$Z = \sqrt{R^2 + (\mathcal{X}_L - \mathcal{X}_C)^2}$$

Váltóáram teljesítménye: $\langle P \rangle = \frac{1}{2}I^2R$

Effektív áram: $I_{eff} = \frac{I_0}{\sqrt{2}}$

Transzformátor feszültség eloszlása: $\frac{N_2}{N_1} = \frac{U_2}{U_1}$

Mágneses tér anyag jelenlétében: $\mathbf{B} = \mu_0(1 + \chi_B)\mathbf{H}$

Mágneses permeabilitás: $\mu = \mu_0 \mu_r$

Mágnesezettség: $\mathbf{M} = \chi_B \mathbf{H}$

Elektromos dipólus: $\mathbf{p} = q\mathbf{d}$

Elektromos polarizáció: $\mathbf{P} = \frac{d\mathbf{p}}{dV} = \varepsilon_0 \chi_E \mathbf{E}$

Elektromos eltolás vektor: $\mathbf{D} = \varepsilon_0 (1 + \chi_E) \mathbf{E}$

Elektromos permittivitás: $\varepsilon = \varepsilon_0 \varepsilon_r$

Gauss-törvény dielektrikumban: $\oiint \mathbf{P} d\mathbf{A} = -Q_k$

Eltolási áram: $I_D = \varepsilon_0 \frac{d\phi_E}{dt}$

Általános hullámegyenlet: $\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$

Fázissebesség: $\frac{\omega}{k} = v_f = c$

Vektortér rotációjának rotációja:

 $\nabla \times (\nabla \times \mathbf{E}) = \nabla \cdot (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}$

Poynting vektor: $\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}$

Snellius-Descartes-törvény: $\frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1} = n_{2,1}$

Határszög: $\sin \alpha_h = n_{2,1}$

Leképezési törvény: $\frac{1}{t} + \frac{1}{k} = \frac{1}{f}$

Bikonvex lencse fókusztávolsága:

$$\frac{1}{f} = (n_{1,2} - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

Dioptria: $D = \frac{1}{f}$

Maximumhelyek kétréses interferenciánál:

$$y_{max} = m\lambda \frac{D}{d}$$

Minimumhelyek kétréses interferenciánál:

$$y_{min} = \left(m + \frac{1}{2}\right) \lambda \frac{D}{d}$$

Fraunhofer diffrakció minimumhelyei: $m\lambda = d\sin\theta$

Rayleigh kritérium: $\theta_R = 1.22 \frac{\lambda}{D}$