Conjugate Probability Distribution and Sampling

OUTLINE:

- Questions Discussion: Probability Distribution
- Conjugate Distribution:
 - Beta-Binomial Distribution
 - Dirichlet-Multinomial Distribution
 - NormalGamma Distribution
- Sampling
 - Markov Chain
 - Markov Chain and Transition Matrix
 - Markov Chain Monte Carlo
 - Gibbs Sampling

Questions Discussion: Probability Distribution

- Example of Bernoulli and Binomial Distribution
- You ask a student at your school whether he or she voted for candidate A. If that person indeed voted for A, then you count it as a success. Otherwise, you count it as a failure. That's a Bernoulli experiment.
- Bernoulli trial = Bernoulli experiment
- Now you ask every person in your school whether they voted for A, and count the number of successes. That (asking all of the n students at your school) is a Binomial experiment*.
 *Assuming each person has the same probability of voting for A, and do it independently.

(Source: Quora)

Questions Discussion: Probability Distribution

Figure 1: Pdf of beta distribution for different values of alpha and beta

Questions Discussion: Probability Distribution

- Probability Axioms
- 1. (Nonnegativity) $P(A) \ge 0$ for every event A.
- 2. **(Additivity)** If A1, A2,... is a sequence of disjoint events then, the probability of their union satisfies:

$$P(A1 \cup A2 \cup ...) = P(A1) + P(A2) + ...$$

3. (Normalization) The probability of the entire sample space Ω is equal to 1, i.e, $P(\Omega) = 1$.

The probability distribution of pdf of 'X' is a function $f_X(x)$ such that for any two numbers 'a' and 'b' with $a \le b$, we have,

$$P(a \le X \le b) = \int_a^b f_X(x) dx$$

• $\int_{-\infty}^{\infty} f_X(x) \, dx = 1$

Figure 2: $P(a \le X \le b)$ = the area under the density curve between a and b

Discrete distribution

In case of discrete distribution, PMF = Probability

In case of continuous distribution, PDF ≠ Probability

Conjugate Distribution:

If the posterior distributions $p(\theta \mid x)$ are in the same probability distribution family as the prior probability distribution $p(\theta)$, the prior and posterior are then called conjugate distributions.

Example: Beta-binomial, Dirichlet-multinomial and so on.

Modelling coin toss

Beta-Binomial Distribution

Suppose you visit a coin factory, pick a coin at random if α,β are the shape parameters.

You flip a coin N times and see:

$$c = (c_1, c_2)$$

i.e, c_1 heads and c_2 tails with $N = c_1 + c_2$

What is the probability of c_1 heads and c_2 tails, i.e, $p(c|\alpha, \beta)$?

Modeling typical coins from coin factory

Using law of total probability,

$$p(c|\alpha, \beta) = \int p(c, \theta|\alpha, \beta) d\theta$$
$$= \int p(c|\theta)p(\theta|\alpha, \beta) d\theta$$
Binomial Beta prior Likelihood

Modeling typical coins from coin factory

$$p(c|\alpha,\beta) = \int \frac{N!}{c1! \, c2!} \theta^{c1} (1-\theta)^{c2} \frac{\tau(\alpha+\beta)}{\tau(\alpha)\tau(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta$$

$$= \frac{N!}{c1! c2!} \frac{\tau(\alpha+\beta)}{\tau(\alpha)\tau(\beta)} \int \theta^{c1+\alpha-1} (1-\theta)^{c2+\beta-1} d\theta$$

$$= \frac{N!}{c1! c2!} \frac{\tau(\alpha+\beta)}{\tau(\alpha)\tau(\beta)} \frac{\tau(c1+\alpha)\tau(c2+\beta)}{\tau(c1+c2+\alpha+\beta)}$$

Here, the coin parameter ' θ ' has been integrated out and hence no longer appears in the equation.

Using the definition of beta function,

$$p(c|\alpha,\beta) = \frac{N!}{c!} \frac{B(c+\alpha,c+\beta)}{B(\alpha,\beta)}$$

Binomial Posterior Distribution under Beta Prior

From Bayes rule:
$$p(\theta \mid c, \alpha, \beta) = \frac{p(c|\theta, \alpha, \beta) p(\theta|\alpha, \beta)}{\int_0^1 p(c|\theta, \alpha, \beta) p(\theta|\alpha, \beta) d\theta}$$

Here, $p(c \mid \theta, \alpha, \beta) \rightarrow \text{Binomial Likelihood and } p(\theta \mid \alpha, \beta) \rightarrow \text{Beta Prior}$

$$p(\theta \mid c, \alpha, \beta) = \frac{\frac{N!}{c_1!c_2!}}{\int_0^1 \frac{N!}{c_1!c_2!}} \frac{\theta^{c_1}(1-\theta)^{c_2} \frac{\tau(\alpha+\beta)}{\tau(\alpha)\tau(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}}{\theta^{c_1}(1-\theta)^{c_2} \frac{\tau(\alpha+\beta)}{\tau(\alpha)\tau(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1} d\theta} = \frac{\theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1}}{\frac{\tau(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+c_2+\alpha+\beta)}} = \frac{\frac{\tau(c_1+c_2+\alpha+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}}{\frac{\tau(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{1}{\frac{\tau(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{1}{\frac{\theta(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{1}{\frac{\theta(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{1}{\frac{\theta(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{\theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1}}{\frac{\tau(c_1+\alpha)\tau(c_2+\beta)}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{\theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha-1}(1-\theta)^{c_2+\beta-1} = \frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\tau(c_1+\alpha)\tau(c_2+\beta)}} \theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}} = \frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac{\theta^{c_1+\alpha}(1-\theta)^{c_2+\beta-1}}{\frac$$

Thus, posterior of binomial (under beta) is beta with count added to the parameters.

Modelling dice roll

Dirichlet-Multinomial Distribution

As in case of modelling coin toss, suppose you go to a dice factory, pick a dice at random and roll it 'C' times, we will need dirichlet multinomial distribution to model this.

Posterior Multinomial under Dirichlet Prior

Suppose we observe counts $c = (c_1,...c_k)$ from a dice sampled from our factory and would like to predict the most likely parameters θ for this dice.

From Bayes rule:
$$p(\theta \mid c, \alpha) = \frac{p(c|\theta) p(\theta|\alpha)}{\int p(c|\theta) p(\theta|\alpha) d\theta}$$

Here, $p(c \mid \theta) \rightarrow \text{Multinomial Likelihood and } p(\theta \mid \alpha) \rightarrow \text{Dirichlet Prior}$

$$p(\theta \mid c, \alpha) = \frac{\frac{C!}{\prod_{i} c_{i}!} \prod_{i} \theta_{i}^{ci} \frac{\tau(A)}{\prod_{i} \tau(\alpha_{i})} \prod_{i} \theta_{i}^{\alpha i-1}}{\int_{i} p(c|\theta) p(\theta|\alpha) d\theta} = \frac{\frac{C!}{\prod_{i} c_{i}!} \frac{\tau(A)}{\prod_{i} \tau(\alpha_{i})} \prod_{i} \theta_{i}^{\alpha i+ci-1}}{\frac{\tau(A)}{\prod_{i} \tau(\alpha_{i})} \prod_{i} \theta_{i}^{\alpha i+ci-1} d\theta}$$
$$= \frac{\frac{\prod_{i} \theta_{i}^{ci+\alpha i-1}}{\prod_{i} \tau(ci+\alpha i)}}{\frac{\prod_{i} \tau(ci+\alpha i)}{\tau(C+A)}} = \frac{\tau(C+A)}{\prod_{i} \tau(ci+\alpha i)} \prod_{i} \theta_{i}^{ci} + \alpha i - 1 \sim Dir(c_{1} + \alpha i)$$

$$\alpha_1,\ldots,\alpha_k+\alpha_k$$

So, the shape of the posterior is exactly like that of the prior with counts added to the parameters.

Normal Gamma Distribution

- conjugate prior of a normal distribution
- unknown mean and variance

Derivation: Normal Gamma Distribution

Assume x is data point sampled using gaussian distribution then

•
$$p(x|\mu, \lambda) = \sqrt{\frac{\lambda}{2\pi}} e^{-(1/2) * \lambda * (x - \mu)^2}$$

= $\sqrt{\frac{1}{2\pi}} * \lambda^{(1/2)} * e^{-(1/2) * \lambda * (\mu^2 - 2\mu x + x^2)}$
• where μ , λ is mean and precision(inverse of sigma) of the Gaussian

- NormalGamma = $(u, \lambda \mid m, c, a, b)$ = $N(\mu \mid m, (c\lambda)^{-1}) * Gamma(\lambda \mid a, b)$ = $\sqrt{\frac{c\lambda}{2\pi}} e^{-(1/2) * c\lambda * (\mu - m)^2} * \frac{b^a}{\Gamma a} \lambda^{a-1} e^{-b\lambda}$ = $\sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \lambda^{a-(1/2)} e^{-(1/2) * \lambda * (c\mu^2 - 2mc\mu + cm^2 + 2b)}$
- · Hence NormalGamma can be used as conjuagte prior for Normal distribution
- Since NormalGamma itself is a pdf:

•
$$\iint \sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \lambda^{a - (1/2)} e^{-(1/2)} * \lambda * (c\mu^2 - 2mc\mu + cm^2 + 2b) d\mu d\sigma =$$

$$or, \iint \lambda^{a - (1/2)} e^{-(1/2)} * \lambda * (c\mu^2 - 2mc\mu + cm^2 + 2b) d\mu d\sigma = \frac{1}{\sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a}}$$

Normal Distribution under Normal gamma prior

•
$$p(u, \lambda \mid x_{1:n}) = \frac{p(u, \lambda) * p(x_{1:n} \mid u, \lambda)}{\iint p(u, \lambda) * p(x_{1:n} \mid u, \lambda) d\mu d\sigma}$$

•
$$p(u, \lambda) * p(x_{1:n} | u, \lambda)$$

= $\sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \sqrt{\frac{1}{2\pi}} * \lambda a - (1/2) e^{-(1/2) * \lambda * (c\mu^2 - 2mc\mu + cm^2 + 2b)} * \lambda^{n/2} *$
 $e^{-(1/2) * \lambda * (n\mu^2 - 2\mu \sum x_i + \sum x_i^2)}$
= $\sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \sqrt{\frac{1}{2\pi}} * \lambda (a + n/2) - (1/2) * e^{-(1/2) * \lambda * ((c+n)\mu^2 - 2\mu (cm + \sum x_i) + cm^2 + \sum x_i^2 + 2b)}$

· Now replacing:

•
$$A=a+(n/2)$$

 $C=c+n$
 $CM=cm+\sum x_i \ or \ M=\frac{cm+\sum x_i}{c+n}$
 $CM^2+2B=cm^2+2b+\sum x_i^2 \ or \ B=b+(1/2)*(cm^2-CM^2+\sum x_i^2)$
we get,

•
$$p(u, \lambda) * p(x_{1:n} | u, \lambda) = \sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \sqrt{\frac{1}{2\pi}} * \lambda^{A - (1/2)} * e^{-(1/2) * \lambda * (C\mu^2 - 2\mu CM + CM^2 + 2B)}$$

Derivation: Posterior Normal Gamma Distribution

•
$$p(u, \lambda \mid x_{1:n}) = \frac{\sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \sqrt{\frac{1}{2\pi}} * \lambda^{A-(1/2)*} e^{-(1/2)* \lambda * (C\mu^2 - 2\mu CM + CM^2 + 2B)}}{\iint \sqrt{\frac{c}{2\pi}} \frac{b^a}{\Gamma a} * \sqrt{\frac{1}{2\pi}} * \lambda^{A-(1/2)*} e^{-(1/2)* \lambda * (C\mu^2 - 2\mu CM + CM^2 + 2B)} d\mu d\sigma}$$

$$= \frac{\lambda^{A-(1/2)*} e^{-(1/2)* \lambda * (C\mu^2 - 2\mu CM + CM^2 + 2B)}}{\sqrt{\frac{c}{2\pi}} \frac{BA}{\Gamma A}}$$

$$= \text{NormalGamma}(u, \lambda \mid M, C, A, B)$$
• where,
• $M = \frac{cm + \sum_{i=1}^{n} x_i}{c + n}$
 $C = c + n$

$$C = c + n$$

$$A = a + (n/2)$$

$$B = b + (1/2) * (cm2 - CM2 + \sum_{i=1}^{n} x_i^2)$$

Sampling

- Bayesians, and sometimes also frequentists, need to integrate over possibly high-dimensional probability distributions to make inference about model parameters or to make predictions.
- Bayesians need to integrate over the posterior distribution of model parameters given the data, and frequentists may need to integrate over the distribution of observables given parameter values.

Markov Chain

• The Markov property expresses the fact that at a given time step and knowing the current state, we won't get any additional information about the future by gathering information about the past.

i.e,
$$X_1=PX_0$$
 , where ${\rm X_1}$ is the next state
 P is the transition probability
 ${\rm X_0}$ is the initial state

Or,

The Markov property implies that:

$$P(X_{n+1} = s_{n+1} | X_n = s_n, X_{n-1} = s_{n-1}, X_{n-2} = s_{n-2}, \dots) = P(X_{n+1} = s_{n+1} | X_n = s_n)$$

Markov State Diagram

Figure 10: Markov State and the corresponding transition matrix

• From the transition matrix and initial state, we can solve markov equation until convergence.

Sampling: Markov Chain Monte Carlo

- Helps solve intractability in Bayesian Inference problem
- MCMC algorithms: Metropolis-Hasting and Gibbs Sampling
- Normalization factor becomes intractable in higher dimension
- Sampling approach: generates samples from a given probability distribution
- Named "Markov chain Monte Carlo" because we obtain samples using markov chain method

Estimate parameters using samples

Unnormalised distribution whose normalisation factor computation is intractable

Samplesthat can be obtained with MCMC and without proceeding to the normalisation

Statistics or estimationsthat can be computed based on
the generated samples

Sample states using MCMC

Build a Markov Chain whose stationary distribution is the distribution we want to sample from Generate a sequence from that Markov Chain long enough to reach the steady state Keep some well chosen states from that sequence as samples to be returned

Gibbs Sampling

- MCMC algorithm
- Assumes that the conditional distribution can be computed even if the joint probability is intractable.
- Conditional distribution converges to joint distribution on limit.

$$P(X_{i}|X_{1},...,X_{i-1},X_{i+1},...X_{n})$$

$$= \frac{P(X_{1},...X_{n})}{P(X_{1},...,X_{i-1},X_{i+1},...X_{n})} \alpha P(X_{1},...X_{n})$$

Key Takeaways

- We discussed some questions from probability distribution.
- We discussed about conjugate distribution: Beta-Binomial, Dirichlet-Multinomial, Normal Gamma
- We discussed about the basics of sampling
 - Markov Chain
 - Markov Chain and Transition Matrix
 - Markov Chain Monte Carlo
 - Gibbs Sampling

References:

- Manandhar Suresh. Bayesian ML: Posterior Distributions and Mixture Models Continuous Probability Density Function
- Bishop Christopher. Pattern Recognition and Machine Learning

Thank you