Лекция 20. Эллиптические функции

Теория функций комплексного переменного

Что такое рациональная функция над **С**

- Отношение двух многочленов с комплексными коэффициентами.
- Элемент расширения $\mathbb{C}(x)$, полученного присоединением к полю \mathbb{C} трансцендентного элемента x.
- Мероморфная функция $f:\overline{\mathbb{C}} \to \overline{\mathbb{C}}$.
- Голоморфное отображение из сферы Римана в себя.

Степень рациональной функции

- Степень рациональной функции $f(z) = \frac{P(z)}{Q(z)}$ определяется как $d = \deg(f) = \max(\deg(P), \deg(Q))$.
- У f конечное число ($\leq 2d-2$) критических точек и критических значений.
- Если c не является критическим значением, то $|f^{-1}(c)| = d$.
- Гомоморфизм $f_*: \pi_2(\mathbb{S}^2) \to \pi_2(\mathbb{S}^2)$ является умножением на d.

Функция с полюсами во всех $n \in \mathbb{Z}$

- Наивная идея рассмотреть сумму ряда $f(z) = \sum_{n \in \mathbb{Z}} \frac{1}{z-n}$.
- Но этот ряд не является абсолютно $\left| \frac{1}{z-n} \right| \geqslant \frac{1}{2n}$ сходящимся:
- Поэтому рассмотрим поправленный ряд $f(z) = \frac{1}{z} + \sum_{n \in \mathbb{Z}}' \left(\frac{1}{z-n} + \frac{1}{n} \right)$
- Производная функции f является четной $f'(z) = -\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}.$
- Отсюда можно вывести, что сама функция f нечетная периода 1. $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 n^2}.$

$$f(1/2) = 2 + \sum_{n=1}^{\infty} \frac{1}{\frac{1}{4} - n^2} = 2 - 4 \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = 2 - 2 \sum_{n=1}^{\infty} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = 2 - 2 \cdot 1 = 0.$$

Полученная функция совпадает с π ${ m ctg}(\pi z)$

- Полюсы в тех же точках.
- Достаточно доказать, что разность ограниченна.
- Следствия: разложения для котангенса.

$$\operatorname{ctg} z = \frac{1}{z} + \sum_{n \in \mathbb{Z}}' \left(\frac{1}{z - \pi n} - \frac{1}{\pi n} \right), \quad \frac{2z}{z^2 - \pi^2 n^2} = -\frac{2z}{\pi^2 n^2} \cdot \frac{1}{1 - z^2/(\pi^2 n^2)} = -\frac{2z}{\pi^2 n^2} \left(1 + \frac{z^2}{\pi^2 n^2} + \frac{z^4}{\pi^4 n^4} + \ldots \right) = \\ = -\frac{2z}{\pi^2 n^2} - \frac{2z^3}{\pi^4 n^4} - \frac{2z^5}{\pi^6 n^6} - \ldots \quad (11.7)$$

$$\operatorname{ctg} z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - \pi^2 n^2}, \quad \operatorname{ctg} z = \frac{1}{z} - 2 \left(\frac{\sum_{n=1}^{\infty} \frac{1}{n^2}}{\pi^2} z + \frac{\sum_{n=1}^{\infty} \frac{1}{n^4}}{\pi^4} z^3 + \frac{\sum_{n=1}^{\infty} \frac{1}{n^6}}{\pi^6} z^5 + \dots \right).$$

Числа Бернулли B_n и формула Эйлера-Маклорена

- Экспоненциальная производящая функция $\frac{z}{e^z-1}=1+\sum_{n=1}^\infty \frac{B_n}{n!}z^n.$
- Оператор $D: f \mapsto f'$. Далее проделаем формальные манипуляции.
- По формуле Тейлора, $f(x+a) = \sum_{n=1}^{\infty} \frac{a^n D^n f(x)}{n!} = e^{aD} f$.
- Таким образом,

$$f(x) + f(x+1) + \dots + f(x+n) + \dots = (\sum e^{nD})f = \frac{1}{1 - e^{D}}f.$$

• Теперь, если $F(x)=\int_x^\infty f(t)dt$, то сумма в левой части равна

$$\frac{D}{e^{D}-1}F = F + \sum_{n=1}^{\infty} \frac{B_{n}}{n!} D^{n}F.$$

Разложение Лорана для котангенса

n	1	2	4	6	8	10	12
B_n	$-\frac{1}{2}$	<u>1</u> 6	$-\frac{1}{30}$	$\frac{1}{42}$	$-\frac{1}{30}$	<u>5</u> 66	$-\frac{691}{2730}$

Предложение 11.7. Ряд Лорана для функции $z \mapsto \operatorname{ctg} z$ в нуле имеет вид

$$\operatorname{ctg} z = \frac{1}{z} + \sum_{m=1}^{\infty} (-1)^m \frac{2^{2m} B_{2m}}{(2m)!} z^{2m-1}.$$

Предложение 11.8. Для всякого натурального т имеем

$$1 + \frac{1}{2^{2m}} + \frac{1}{3^{2m}} + \dots + \frac{1}{n^{2m}} + \dots = (-1)^{m-1} \frac{2^{2m-1} B_{2m} \pi^{2m}}{(2m)!}.$$

В частности,
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ и т. д.

Эллиптические функции

Определение 11.9. Решеткой в \mathbb{C} называется подгруппа по сложению $\Gamma \subset \mathbb{C}$, порожденная двумя образующими $\omega_1, \omega_2 \in \mathbb{C}$, линейно независимыми над \mathbb{R} .

Иными словами, $\Gamma = \{m_1\omega_1 + m_2\omega_2 : m_1, m_2 \in \mathbb{Z}\}$, где ω_1 и ω_2 — ненулевые комплексные числа, отношение которых не лежит в \mathbb{R} .

Определение 11.10. Эллиптической функцией относительно решетки $\Gamma \subset \mathbb{C}$ называется мероморфная функция f на \mathbb{C} , для которой f(z+u)=f(z) при всех $z\in \mathbb{C}$ и $u\in \Gamma$.

• Построенная выше функция G доставляет пример эллиптической функции. Она получена обращением эллиптического интеграла.

Фундаментальный параллелограмм

Определение 11.11. Пусть $\Gamma \subset \mathbb{C}$ — решетка с образующими ω_1 и ω_2 . Фундаментальным параллелограммом этой решетки называется всякое множество вида $\{a+s\omega_1+t\omega_2\}$, где $a\in\mathbb{C}$ фиксировано, а s и t — произвольные действительные числа из интервала [0;1).

Свойства эллиптических функций

Предложение 11.12. Если эллиптическая функция не имеет полюсов, то она постоянна.

Предложение 11.13. Пусть f — эллиптическая функция относительно решетки Γ , и пусть Π — какой-нибудь фундаментальный параллелограмм относительно этой решетки. Тогда сумма кратностей нулей и полюсов функции f, содержащихся в Π , равна нулю (кратность полюса считаем отрицательной).

$$\sum_{z \in \Pi} \operatorname{ord}_{z}(f) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$

Функция Вейерштрасса

Предложение-определение 11.15. Ряд

$$\frac{1}{z^2} + \sum_{u \in \Gamma}' \left(\frac{1}{(z-u)^2} - \frac{1}{u^2} \right) \tag{11.10}$$

сходится в \mathbb{C} равномерно на компактах к мероморфной функции в смысле определения 11.1. Сумма этого ряда обозначается $\wp(z)$ и называется \wp -функцией Вейерштрасса.

• Функция \wp является четной эллиптической функцией с двойным полюсом в каждом фундаментальном параллелограмме.

$$\wp'(z) = -2\sum_{u \in \Gamma} \frac{1}{(z-u)^3}, \qquad \wp\left(-\frac{\omega_1}{2}\right) = \wp\left(\frac{\omega_1}{2}\right) = \wp\left(-\frac{\omega_1}{2} + \omega_1\right) = \wp\left(-\frac{\omega_1}{2}\right) + C$$

Как из тора сделать сферу

• Если в торе $\mathbb{R}^2/\mathbb{Z}^2$ склеить все пары противоположных точек x и -x, то полученное факторпространство гомеоморфно \mathbb{S}^2 .

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ