Neural networks-based algorithms for option pricing

Jasper Rou

Delft University of Technology

November 4, 2022

Option pricing PDE

• Derivative u(t,S) with pay-off $\Phi(S)$ at maturity T

Option pricing PDE

- Derivative u(t,S) with pay-off $\Phi(S)$ at maturity T
- $u(t,S) = e^{-r(T-t)}\mathbb{E}\left[\Phi(S_T)|S_t = S\right]$

Option pricing PDE

- Derivative u(t,S) with pay-off $\Phi(S)$ at maturity T
- $u(t,S) = e^{-r(T-t)}\mathbb{E}\left[\Phi(S_T)|S_t = S\right]$
- Feynman-Kac formula:

$$\frac{\partial u}{\partial t} + \mathcal{A}u = 0$$
$$u(T) = \Phi(S_T)$$

1 Initialize θ_0

- 1 Initialize θ_0
- 2 For each training stage:

- 1 Initialize θ_0
- 2 For each training stage:
 - **1** Generate random inputs x^i

- 1 Initialize θ_0
- 2 For each training stage:
 - 1 Generate random inputs x^i
 - 2 Calculate the cost $L(\theta_n, x^i)$

- 1 Initialize θ_0
- 2 For each training stage:
 - 1 Generate random inputs x^i
 - 2 Calculate the cost $L(\theta_n, x^i)$
 - 3 Take step $\theta_{n+1} = \theta_n \alpha_n \nabla_{\theta} L(\theta_n, x^i)$

Deep Galerkin Method

$$\frac{\partial u}{\partial t} + \mathcal{A}u = 0$$
$$u(T) = \Phi(S_T)$$

Deep Galerkin Method

$$\frac{\partial u}{\partial t} + \mathcal{A}u = 0$$

$$u(T) = \Phi(S_T)$$

$$L(\theta_n, x^i) = \left\| \frac{\partial u}{\partial t} + \mathcal{A}u \right\|_{L^2([0,T];\Omega)}^2 + \|u(T) - \Phi(S_T)\|_{L^2(\Omega)}^2$$

Result

TUDelft

Neural networks-based algorithms for option pricing

Jasper Rou

Delft University of Technology

November 4, 2022

j.g.rou@tudelft.nl

www.jasperrou.nl

