Antonios Tragoudaras

Ahttps://antragoudaras.github.io/ | Qantragoudaras | Antonios-Tony-Tragoudaras

Education ___

University of Amsterdam (UvA)

Amsterdam, Netherlands

MSc in Artificial Intelligence

Aug. 2023 - Present

GPA: 8.28/10 - In track to graduate with cum-laude (highest distinction). Thesis: Physics Plausible World Simulators for Embodied and Physical AI.

Thesis Fellowship: ELLIS MSc Honors Student program.

King Abdullah University of Science and Technology (KAUST)

Jeddah, Saudi Arabia

Visiting Student & Research Assistant in Electrical and Computer Engineering

Aug. 2022 - Aug. 2023

Research projects and publications in efficient AI, AutoML for interdisciplinary applications (e.g. Brain Signal Decoding), Visual Perception for Autonomous Applications.

University of Thessaly

Volos, Greece

BEng in Electrical & Computer Engineering (5-years studies; 300ECTS)

Sep. 2016 - Nov. 2021

GPA: 7.88/10, Thesis Grade: 10/10 (Excellent), Supervisor: Prof. George Stamoulis.

Research Experience _____

Physics Based Dynamics

University of Amsterdam (UvA)

Master thesis research project - ELLIS MSc Honors Student. Supervisor: Professor Efstratios Gavves.

Jan. 2025-Present

ELLIS co-advisor: Francesco Locatello.

Description/Goals:

- Leveraging insights from previous research experience, to address fundamental challenges in VGMs regarding physical consistency and physical parameter estimation.
- Design *Physically-controllable VGMs* that can be conditioned on an intermediate learned representations (similarly to recent Real2Sim methods), aiming at building a framework that can properly estimate the physical dynamics of the real world.
- Transforming Video Generative Models (VGMs) to reliable (World) Simulators capable of understanding real-world dynamics.
- Physics parameter identification through a neural pipeline, that can query differentiable physics engines, on a latter stage, for verification if needed.
- Test whether the proposed neural model can further improve robotics world models (like DreMa) and Vision-Language Action models, by enabling them to learn efficient representations from less-viewpoints.

Physical Reasoning of Video Generative Models (VGMs)

University of Amsterdam (UvA)

Research Project led by Associate Professor Efstratios Gavves - Benchmark for evaluating contemporary video generation models (VGMs), like SORA and Veo-2, in understanding real-world phenomena. Pre-print available in arXiv.

Jul.2024- Feb. 2025

Duties/Tasks:

- Real-world dataset & Benchmark: capturing simple physical phenomena (falling ball, projectile motion, holonomic/non-holonomic pendulums) under controlled laboratory conditions, with varying initial conditions per experiment.
- Evaluating recent developments in Video Generative Models (VGMs), with particular emphasis on assessing the physical reasoning and plausibility of contemporary methods such as COSMOS, which claims to be real-world simulators. The study also explores innovative hybrid approaches, including the integration of flow matching techniques with diffusion-based architectures as demonstrated in Pyramid Flow.
- Video Generation: Conditioned the sampling process of VGMs on initial frame(s) both in real-world videos and in-the-wild data.
 Combined different prompting approaches, while utilized textual prompt enhancers.
- Trajectory Extraction Pipeline: A key aspect is the pipeline to extract relevant physical information from both real and generated videos. This involves calculating the 3D trajectory of objects over time/frames, using self-supervised methods in a zero-shot fashion, building upon automated object segmentation SAM-2 and open-vocabulary trackers like DEVA.
- Going beyond mere pixel-to-pixel evaluation, with the introduction of dynamical and physical invariance scores, for deriving interpretable metrics and faithfully assess the physical reasoning and consistency of VGMs.

Key Findings:

- Current video generative models often fail to accurately represent physical laws, generating implausible behaviors despite visually realistic outputs
- This work serves as a stepping stone in understanding and addressing the domain gap, as to transform VGMs from capturing the mere visual and aesthetic cues of in-the-wild data, into simulators that can accurately model the physical parameters that govern our world.

Visual Perception for Autonomous Vehicles - Brightskies Inc.

External Collaboration

Remote Collaboration, monitored by Mahmoud Serour (Autonomous Driving Team Lead - CTO of BrightDrive) and

Mohamed Ezzat (Perception Engineer in Brightskies Inc.). Collaboration Initiated by Research Scientist Hakim Ghazzai

Mar.2023-Jun.2023

(AI Team Lead of our research group).

Duties/Tasks:

- Combining methods for better Representation Learning and Early Fusion of the sensor data modalities used in autonomous cars, targeting to acquire better accuracy in downstream Computer Vision tasks.
- Multi-Task Learning Hydra network with multiple heads, each corresponding to a different downstream task, to achieve real-time
 performance on computationally constrained systems.

Neural Architecture Search, Meta-Heuristic Optimization, Transformers for Brain Signal Decoding

King Abdullah University of Science and Technology (KAUST)

Graduate Student in applied AI, supervised by Postdoc Fellow Charalampos Antoniadis.

Sep. 2022 - Feb.2023

Projects:

- Enhancing DNN models for EEG/ECoG BCI with a Novel Data-Driven Offline Optimization Method.
- · Data-Driven Offline Optimization of Deep CNN Models for EEG and ECoG Decoding (ISCAS'23)

AutoML, Efficient Deep Learning Techniques, and Voice Activity Detection

VSPR - KAUST

Visiting Student Research Intern, mentored by Postdoc Fellow Charalampos Antoniadis

Feb. 2022 - Jul. 2022

Projects:

- TinyML for EEG Decoding on Microcontrollers.
- Audio-visual Speaker Diarization: Improved Voice Activity Detection with CNN based Feature Extraction.

Accelerating Inference of Deep Neural Networks on FPGAs

University of Thessaly

Undergraduate Researcher, mentored by Prof. George Stamoulis and Postdoc Fellow George Floros

Jul. 2021 - Jan. 2022

Journal Publication:

 Design Space Exploration of a Sparse MobileNetV2 Using High-Level Synthesis and Sparse Matrix Techniques on FPGAs (MDPI Sensors'22)

Publications —

Full list is available at Google Scholar

- [1] C. Zhang, D. Cherniavskii, A. Zadaianchuk, A. Tragoudaras, et al. ... E. Gavves. "MORPHEUS: Benchmarking Physical Reasoning of Video Generative Models with Real Physical Experiments in arXiv 2504.02918.
- [2] Antonios Tragoudaras, Charalampos Antoniadis, Yehia Masoud. "Enhancing DNN models for EEG/ECoG BCI with a Novel Data-Driven Offline Optimization Method," in *IEEE Access, vol. 11, pp. 35888-35900, 2023*, doi: 10.1109/ACCESS.2023.3265040
- [3] Antonios Tragoudaras, Charalampos Antoniadis, Yehia Masoud. "TinyML for EEG Decoding on Microcontrollers," in
- [4] Konstantinos Fanaras, **Antonios Tragoudaras**, Charalampos Antoniadis, Yehia Masoud. "Audio-visual Speaker Diarization: Improved Voice Activity Detection with CNN based Feature Extraction," in 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS), Fukuoka, Japan, 2022, pp. 1-42023 IEEE 56th International Symposium on Circuits and Systems (ISCAS)]
- [5] Antonios Tragoudaras, Pavlos Stoikos, Konstantinos Fanaras, Athanasios Tziouvaras, George Floros, Georgios Dimitriou, Kostas Kolomvatsos, Georgios Stamoulis. "Design Space Exploration of a Sparse MobileNetV2 Using High-Level Synthesis and Sparse Matrix Techniques on FPGAs," in MDPI Sensors 22, no. 12: 4318]

Awards and Honors _

Dec. 2024 - Present their joint supervision of UvA ELLIS unit at an ELLIS partner institution outside of the Netherlands.

UvA IvI

Aug. 2022- Aug.

KAUST Graduate Fellowship: Full tuition support, living allowance, housing, and medical coverage.

KAUST

Teaching Experrience ____

Graduate Teaching Assistant at UvA's MSc AI Program

UvA, Amsterdam, Netherlands

Assisted in teaching graduate-level (first-year) courses by making sure students understood the material, answering their questions, creating assignments, giving feedback, and grading exams.

Aug. 2024 - Present

Courses:

- Computer Vision 1 (MSc AI) (Aug. 2024 Oct.2024)
- Deep Learning 1 (MSc AI) (Oct. 2024- Dec.2024)
- Fairness, Accountability, Confidentiality & Transparency in AI (MSc AI) (Jan. 2025 Feb. 2025)
- Information Retrieval 1 (MSc AI) (Feb.2025 Mar. 2025)