XI Encontro de Física e Astronomia da UFSC

Introdução às redes neurais com Python e Keras

Prof. Dr. Robson da Silva Oliboni

Introdução às redes neurais com Python e Keras

Aspectos técnicos de redes profundas

Sumário

- 1. Funções de ativação
- 2. Problemas com gradientes
- 3. Outras funções de ativação
- 4. Inicialização de pesos
- 5. Aperfeiçoamento dos hiperparâmetros
- 6. Otimizadores mais rápidos
- 7. Aprendizado por transferência

Possíveis problemas com o treinamento de redes profundas

- Gradientes de fuga, dissipação de gradientes ou explosão de gradientes → Funções de ativação + algoritmos de inicialização;
- Tempo de treinamento → Cronogramas de aprendizado, melhores otimizadores;
- Quantidade de dados → Aprendizado por transferência; pré-treinamento nãosupervisionado.

Funções de ativação

Característica importante: contradomínio ou limites da função.

Função logística ou sigmóide: outputs entre 0 e 1 → útil para modelar probabilidades;

Função contínua e diferenciável.

Funções de ativação

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Função tangente hiperbólica: saídas (outputs) entre -1 e +1;

Assimétrica em relação a origem (melhor para treinamento).

Xavier Glorot e Yoshua Bengio identificaram que a combinação da função de ativação sigmoide logística e a técnica de inicialização de peso comumente utilizada (distribuição normal de 0 e desvio-padrão 1) levava a problemas no treinamento de redes profundas [https://homl.info/47].

Com essa função de ativação e esse esquema de inicialização, a variância das saídas de cada camada é bem maior que a variância de suas entradas. Ao avançar pela rede, a variância continua aumentando camada após camada, até que a função de ativação sature nas camadas superiores. Essa saturação ainda se agrava mais pelo fato de a função logística ter uma média de 0,5 e não 0 (como a *tanh*, que se comporta um tanto melhor)

Certas funções de ativação, como a sigmoide, espremem uma grande parte do espaço de inputs em uma pequena região entre 0 e 1. Portanto, uma grande mudança no input da sigmoide causará uma pequena mudança no output. Logo, a derivada torna-se pequena.

Função está saturada se $\lim_{|v| \to \infty} |\nabla f(v)| = 0$

https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-neural-networks-191358470c11

Função achata os valores de x; derivada zero quando |x| é grande.

Derivada da função custo = "velocidade" de mudança dos pesos na rede.

Em redes neurais profundas, camadas inferiores mudam os pesos mais 'lentamente'.

Diferença na 'velocidade' de aprendizado (frequência de mudança dos pesos) em duas camadas:

Diferença na 'velocidade' de aprendizado (frequência de mudança dos pesos) em quatro camadas:

Exemplo: 3 camadas ocultas, apenas um neurônio por camada:

Cada neurônio com peso w e bias b; custo = $C = a_4$.

Estimativa da derivada em relação ao primeiro peso: Produto dos pesos x ativações:

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \times w_2 \times \sigma'(z_2) \times w_3 \times \sigma'(z_3) \times w_4 \times \sigma'(z_4) \times \frac{\partial C}{\partial a_4}$$

Pesos normalmente inicializados com média 0 e desvio-padrão 1 \rightarrow | w_i | < 1.

$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \underbrace{w_2 \sigma'(z_2)}_{} \underbrace{w_3 \sigma'(z_3)}_{} \underbrace{w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}}_{}$$

$$\underbrace{\begin{array}{c} \frac{\partial C}{\partial b_3} = \sigma'(z_3) \underbrace{w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}}_{} \end{array}}_{}$$
common terms

Derivada atinge um máximo quando $\sigma'(0) = \frac{1}{4}$.

Os produtos são menores que ¼ ...

Funções de ativação de não saturação

Função ReLU (Rectified linear unit):

Mais usada atualmente para redes convolucionais e redes profundas.

Ativação esparsa; computacionalmente eficiente; melhor propagação de gradiente.

Contradomínio de 0 a infinito.

Dying ReLU... (especialmente para altos η)

Funções de ativação

 $leaky ReLU(z) = max(\alpha z, z)$

Comum: a = 0.01.

Contradomínio de – infty a infty

ReLU vs Leaky ReLU

ELU_{$$\alpha$$}= $\alpha(\exp(z)-1), z<1$
ELU _{α} = $z, z \ge 1$

Model = keras.models.Sequential([
[...]
Keras.layers.Dense(10, activation="selu",
kernel_initializer="lecun_normal")
....

)]

Funções de ativação de não saturação

SELU > ELU > leaky ReLU > ReLU > tanh > logística

Name	Plot	Equation	Derivative
Identity	_/_	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tanii		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ÅrcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Prática comum: Pesos com média zero, desvio-padrão 1.

$$z = \sum_{j} w_{j} X_{j}$$

$$X \approx N (\mu_{X}, \sigma_{X}^{2})$$

$$Y \approx N (\mu_{Y}, \sigma_{Y}^{2})$$

$$Z \approx N (\mu_{X} + \mu_{Y}, \sigma_{X}^{2} + \sigma_{Y}^{2})$$

Supondo 1000 neurônios, 500 ativados (=1), com bias: desvio-padrão da saída $\sqrt{(501)}$ ~ 22.4:

Logo, a saída z também é uma gaussiana com desvio padrão bastante amplo (Gaussiana achatada); provavelmente |z| alto; como os outputs são 0 ou 1, a derivada/gradiente é baixo!

Alternativa: Iniciar os pesos com desvio padrão $\sqrt{(n_{\rm in})}$, sendo $n_{\rm in}$ os neurônios de pesos de entrada.

Alternativa: Pesos com média zero, desvio-padrão $\sqrt{(n_{in})}$.

Supondo 1000 neurônios, 500 ativados (=1), com bias: desvio padrão da saída $\sqrt{(3/2)}$: Agora a saída corresponde a uma Gaussiana com um desvio padrão bem menor.

Inicialização de Glorot ou de Xavier (*padrão no *Keras*)

Distribuição uniforme entre
$$-r$$
 e + r com: $r = \pm \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}$

Acima, os gradientes utilizando a inicialização normal; abaixo, com a inicialização de Glorot.

Exemplo em:

https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79

Inicialização de He ou de Kaiming

Keras.layers.Dense(10, activation='relu', kernel_initializer='he_normal')

Table 11-1. Initialization parameters for each type of activation function

Initialization	Activation functions	σ² (Normal)
Glorot	None, tanh, logistic, softmax	1 / fan _{avg}
Не	ReLU and variants	2 / fan _{in}
LeCun	SELU	1 / fan _{in}

 $fan_{in} = n_{in} = n$ úmero de entradas; $fan_{out} = n_{i+1} = n$ úmero de saídas do neurônio.

Dying gradients – Normalização em batch (BN)

Embora o uso da inicialização He junto com a ELU (ou qualquer variante da ReLU) possa reduzir significativamente o risco de problemas com gradiente no início do treinamento, isso não garante que eles não retornem *durante* o treinamento das redes profundas.

A técnica BN consiste em adicionar uma operação no modelo logo antes ou depois da função de ativação de cada camada oculta.

Essa operação simplesmente centraliza em zero e normaliza cada entrada, em seguida escalona e modifica o resultado usando dois novos vetores de parâmetros por camada: um para o escalonamento e outro para o deslocamento.

[https://homl.info/51]

Estimativa da média e do desvio-padrão da entrada é realizada em relação ao minibatch atual *B*:

$$\mu_{B} = \frac{1}{m_{B}} \sum_{i=1}^{m_{B}} x^{(i)} \qquad \qquad \hat{x}^{(i)} = \frac{x^{(i)} - \mu_{B}}{\sqrt{\sigma_{b}^{2} + \epsilon}} \qquad \qquad \text{Model = keras.models.Sequential([} \\ \text{Keras.layers.Flatten(input_shape=[28,28],} \\ \text{Keras.layers.Dense(300, activation='elu'),} \\ \sigma_{B}^{2} = \frac{1}{m_{B}} \sum_{i=1}^{m_{B}} (x^{(i)} - \mu_{B})^{2} \qquad \qquad z^{(i)} = \gamma \otimes \hat{x}^{(i)} + \beta \qquad \qquad \text{Keras.layers.BatchNormalization(),} \\ [\dots])]$$

Dying gradients – Normalização em batch (BN)

[https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-b18919692739]

Parâmetros γ e β estimados durante o treinamento, e μ e σ ao final do treinamento; cada camada BN adiciona quatro parâmetros por entrada em cada camada.

Normalização do input |x|

Dying gradients – Clipping do gradiente

Garante que o vetor gradiente não tenha norma maior que $c: g \leftarrow c \frac{g}{|g|}$

Técnica utilizada para 'recortar' os gradientes durante a retropropagação, de modo que eles nunca excedam algum limiar.

Usada mais em redes neurais recorrentes, onde a normalização em batch é mais difícil.

$$[0.9, 1000] \rightarrow \text{clipvalue} \rightarrow [0.9, 1.0]$$

 $[0.9, 1000] \rightarrow \text{clipnorm} \rightarrow [0.00899964, 0.9999595]$

Optimizer = keras.optimizers.SGD(clipvalue=1.0) Model.compile(loss='mse', optimizer=optimizer)

Aperfeiçoamento de hiperparâmetros das redes

O *hiperparâmetro* é um parâmetro de um algoritmo de aprendizado (não do modelo). Como tal, não é afetado pelo próprio algoritmo de aprendizado; deve ser definido antes do treinamento e permanecer constante ao longo dele.

Escolha "automática" de hiperparâmetros, através de algoritmos evolutivos: [https://homl.info/automlpost]

- Número de camadas ocultas

Os dados do mundo real costumam ser estruturados de forma hierárquica e as redes profundas usam esse fato em seu proveito: as camadas ocultas inferiores modelam as estruturas de baixo nível; as camadas ocultas intermediárias combinam essas estruturas de baixo nível para modelar as estruturas de nível intermediário; e, por sua vez, as camadas ocultas superiores e a camada de saída combinam essas estruturas intermediárias para modelar estruturas de alto nível.

Essa arquitetura hierárquica não apenas ajuda as DNNs a convergirem mais rápido para uma boa solução, como também melhora a capacidade de generalização para conjuntos de dados novos.

Aperfeiçoamento de hiperparâmetros das redes

- Número de neurônios por camada oculta

Normalmente, é mais simples e eficiente escolher um modelo com mais camadas e neurônios do que você de fato precisa e, em seguida, usar técnicas de ajuste para impedir que o modelo se sobreajuste.

Em geral, você tem uma relação custo-benefício maior aumentando o número de camadas em vez do número de neurônios por camada.

Tamanho do batch

Tamanho de batch preferível de até 32 instâncias [https://homl.info/smallbatch]; com outras técnicas mais refinadas, é possível treinar redes profundas com maiores valores de batch [https://homl.info/largebatch; https://homl.info/largebatch2]

Escolha de hiperparâmetros: Taxa de aprendizado, η

Figure 11-8. Learning curves for various learning rates n

Convergência: Função custo diminuir menos de 10^{-3} em uma iteração: ...,0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Cronogramas de aprendizado: Power scheduling

Optimizer = keras.optimizer.SGD(lr=0.01, decay=1e-4)

$$\eta(t) = \frac{\eta_0}{(1+t/s)^c}$$

Decay = 1/s; Keras: c=1.

Otimizadores mais rápidos são necessários para treinamento de redes profundas: Otimização momentum, gradiente acelerado de Nesterov, AdaGrad, RMSProp e otimização Adam e Nadam.

Gradiente descendente:
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta)$$

Atualização dos pesos depende do valor local (atual) do gradiente; caso esteja em uma região plana no hiperespaço de parâmetros, variação será pequena.

Otimização momentum

Na otimização momentum, o gradiente ganhará "momento" à medida que desce em direção a um mínimo no hiperespaço de parâmetros [https://homl.info/54].

A otimização momentum se importa bastante com os gradientes anteriores: a cada iteração, subtrai o gradiente local do vetor *momentum* **m** e atualiza os pesos somando esse vetor *momentum*; o gradiente é usado para aceleração, não velocidade.

$$m \leftarrow \beta m - \eta \nabla_{\theta} J(\theta)$$
$$\theta \leftarrow \theta + m$$

A otimização momentum é importante para redes profundas em que não utilizam normalizam em batch, pois entradas superiores acabam tendo entradas com escalas muito diferentes. Esta otimização também ajuda a passar por mínimos locais.

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

https://www.geeksforgeeks.org/ml-momentum-based-gradient-optimizer-introduction/

Gradiente acelerado de Nesterov (NAG)

É uma pequena variação da otimização momentum. Utiliza o valor do gradiente não na posição local theta, mas um pouco à frente na direção do momentum, $\theta + \beta m$:

É mais rápido, possui menos oscilações durante a otimização.

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True)

AdaGrad

No AdaGrad, a taxa de aprendizado decai, porém é mais rápido em dimensões acentuadas do que em dimensões com declives mais suaves; a taxa de aprendizado é *adaptativa*.

Possui bom desempenho em problemas quadráticos simples, no entanto costuma parar muito cedo ao treinar redes neurais. A taxa de aprendizado é reduzida gradativamente, tanto que o algoritmo acaba parando completamente antes de atingir o mínimo global.

- RMSProp

O algoritmo RMSProp corrige o AdaGrad acumulando somente os gradientes das iterações mais recentes (em vez de todos os gradientes desde o início do treinamento). Isso é feito usando decaimento exponencial na primeira etapa.

[https://homl.info/57; https://homl.info/58]

$$s \leftarrow \beta s + (1 - \beta) \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$$
$$\theta \leftarrow \theta - \eta \nabla_{\theta} J(\theta) / \sqrt{s + \epsilon}$$

optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9)

Otimização Adam e Nadam

Adam, adaptative moment estimation, combina as ideias da otimização momentum e RMSProp: assim como a otimização momentum, registra uma média de decaimento exponencial dos gradientes anteriores; e, como o RMSProp, registra uma média de decaimento exponencial dos gradientes quadrados anteriores.

[https://homl.info/59]

1.
$$m \leftarrow \beta_1 m - (1 - \beta_1) \nabla_{\theta} J(\theta)$$

2.
$$s \leftarrow \beta_2 s + (1 - \beta_2) \nabla_{\theta} J(\theta) \otimes \nabla_{\theta} J(\theta)$$

$$\hat{\boldsymbol{m}} \leftarrow \frac{\boldsymbol{m}}{1 - \beta_1^T}$$

4.
$$\hat{s} \leftarrow \frac{s}{1 - \beta_n^T}$$
 *Keras: ϵ padrão:10⁻⁷

5.
$$\theta \leftarrow \theta + \eta \, \hat{m} / \sqrt{\hat{s} + \epsilon}$$

optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

*Nadam: Usa o truque de Nesterov [https://homl.info/nadam]

Escolha padrão para redes profundas: Métodos de aprendizado adaptativo (*Adam*, *Nadam*); caso falhem, *NAG* [https://homl.info/60].

Table 11-2 compares all the optimizers we've discussed so far (* is bad, ** is average, and *** is good).

Table 11-2. Optimizer comparison

Class	Convergence speed	Convergence quality
SGD	*	***
SGD(momentum=)	**	***
SGD(momentum=, nesterov=True)	**	***
Adagrad	***	* (stops too early)
RMSprop	***	** or ***
Adam	***	** or ***
Nadam	***	** or ***
AdaMax	***	** or ***

[1]

Quantidade de dados rotulados: Aprendizado por transferência

Também aplicável para pré-treinar redes profundas!

For layer in model_B_on_A.layers[:-1]: Layer.trainable = False

model_B_on_A.compile(loss="binary_crossentropy", optimizer="sgd", metrics=['accuracy'])

[https://keras.io/guides/transfer_learning/]

Quantidade de dados rotulados: Pré-treinamento não-supervisionado

Exemplo da técnica *greedy layer-wise pretraining*. No treinamento não-supervisionado, um modelo é treinado nos dados não rotulados (ou em todos os dados) usando uma técnica de aprendizado não supervisionado, e depois é ajustado para a tarefa final nos dados rotulados utilizando uma técnica de aprendizado supervisionado; a parte não supervisionada pode treinar uma camada por vez, ou pode treinar o modelo completo diretamente.

Diretrizes práticas

Table 11-2. Default DNN configuration

Initi ali zatio n	He initialization	
Activation function	ELU	
Normalization	Batch Normalization	
Regularization	Dropout	
Optimizer	Adam	
Learning rate schedule	None	[1]

- → Normalizar as características de entrada!
- Se precisar de um modelo esparso, usar a regularização l1;
- Caso precise de um modelo de baixa latência: Usar menos camadas, dobrar as camadas de normalização em batch e usar uma função de ativação rápida, como a leaky ELU ou ReLU.