Instructions for phase 2 Demo

Jeremy Case, Xinhua Fan, Teodor Georgiev, Julie Yu

Part 1 - Test Program 1

Deliverable description:

Demonstration that Program 1 works.

Demo Steps:

- 1. Click on "Test Program 1"
- 2. Randomly enter 21 numbers between 0 and 36767, such as 10, 20, 13, 5, 1, 2, 6, 9, 11, 34, 15, 7, 16, 18, 30, 100, 36, 19, 22, 50, 101

[Expected Result] - Output "The closest number input to the 21st number was 100" in the console field.

Part 2 - Demonstrate instructions through GUI

Deliverable description:

Demonstrate that individual instructions work.

Your user interface, e.g., operator's console should be used to test instructions, etc.

Demo Steps:

- 1. HLT/RESUME
 - s1. Click on "HALT"

[Expected Result] -> ALU stops working, no more instructions will be executed.

Machine is stopping work now...please press down RESUME button if you want to get it back to work!

s2. Click on "RESUME"

[Expected Result] -> ALU gets back to work.

Machine is getting back to work!

2. LDR

Case 1 - IX = 0, I = 0 -> EA = address

- s1. input 10 to memory location -> accept
- s2. input 100 to memory location's value -> accept

Welholy 10 Accept 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1 100 Accept
s3. select relevant values for LDR (IX = 0; GPR = 3; $I = 0$; Address = 10) in manual input part -> accept manual word instruction
Manual Instructions LDR \$\display\$ No \$\display\$ GPR3 \$\display\$ IA \$\display\$ 10 \$\display\$ 0, 0, 0, 0, 0, 1] [0, 0] [1, 1] [0] [0, 1, 0, 1, 0] Accept Manual Word Instruction
[Expected Result] -> GPR3 is populated with 100
GPR3 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0] 100 Accept
Case 2 - IX != 0, I = 1 -> EA = address + $c(IR)$ s1. input 20 to memory location -> accept s2. input 100 to memory location's value -> accept Memory 20 Accept [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0] 100 Accept
s3. input 5 to IX1
IX1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1] 5 Accept
s4. select relevant values for LDR (IX = 1; GPR = 3; I = 1; Address = 15) in manual input part -> accept manual word instruction
[Expected Result] -> GPR3 is populated with 100
GPR3 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0] 100 Accept

3. STR

Case 1 - IX = 0, I = 0 -> EA = address

s1. input 100 to GPR3 -> accept

4. LDA

Case 1 - IX = 0, I = 0 -> EA = address

s1. select relevant values for LDA (IX = 0; GPR = 3; I = 0; Address = 20) in manual input part -> accept manual word instruction

Manual Instructions	L ‡	No *	GPR3 ‡	IA ‡	20 ‡
	0, 0, 0, 0, 1, 1]	[0, 0]	[1, 1]	[0]	[1, 0, 1, 0, 0]
		Accept	Manual Word In	struction	

[Expected Result] -> GPR3 is populated with 20

GPR3	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	Accept
------	---	----	--------

Case 2 - IX
$$!= 0$$
, $I = 1 -> EA = address + c(IR)$

s1. input 5 to IX1 -> accept

IX1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]	5	Accept

s2. select relevant values for LDA (IX = 1; GPR = 3; I = 1; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] -> GPR3 is populated with 25

		10000	
GPR3	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]	25	Accept

5. LDX

s1. input 10 to memory location -> accept

s2. input 100 to memory location's value -> accept

Memory	10	Accept	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accer
VICINOI y	10	Accept	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	

s3. select relevant values for LDX (IX = 1; GPR = 3; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> IX1 is populated with 100 (please only check the binary part). Please note that the text input fields here are only used to accept input data when we use Index Register to represent GPR in the operations between registers. We are not intending to display the decimal number here for LDX.

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]

6. STX

s1. input 100 to IX1 -> accept

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept

s2. select relevant values for STX (IX = 1; GPR = 3; I = 0; Address = 31) in manual input part -> accept manual word instruction

Manual Instructions	STX ‡	IX ‡	GPR3 ‡	[IA ‡]	31 ‡
	1, 0, 0, 0, 1, 0]	[0, 1]	[1, 1]	[0]	[1, 1, 1, 1, 1]
		Accept	Manual Word In:	struction	

[Expected Result] -> 100 is stored into memory location 31

Memory	31	Accept	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept
--------	----	--------	---	-----	--------

7. JZ

Case 1 - If
$$c(r) = 0$$
, then PC <- EA(address)

s1. select relevant values for JZ (IX = 0; GPR = 2; I = 0; Address = 15)

in manual input part -> accept manual word instruction

GPR2	0, 0, 0	0, 0, 0, 0, 0, 0, 0, 0, 0	, 0, 0, 0, 0, 0]	0	Accept	
Manual Ins	tructions	JZ 💠	No *	GPR2 ‡	[IA \$	[15 ‡]
		0, 0, 1, 0, 0, 0]	[0, 0]	[1, 0]	[0]	[0, 1, 1, 1, 1]
			Accept	Manual Word In	struction	

[Expected Result] -> PC is populated with address 15

Case 2 - If
$$c(r) != 0$$
, then $PC <- PC + 1$

s1. input 10 to GPR2

s2. PC is populated with 15

n.c.		
PC	[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]	15

s3. select relevant values for JZ (IX = 0; GPR = 2; I = 0; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> PC is populated with address 16

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]	16
10	[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]	10

8. JNE

Case 1 - If c(r) != 0, then $PC \leftarrow EA(address)$

s1. input 100 to GPR0

GPR0	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept

s2. select relevant values for JNZ (IX = 0; GPR = 0; I = 0; Address = 15) in manual input part \rightarrow accept manual word instruction

Manual Instructions	JNE ‡	No *	GPR0 *	[IA ‡]	15 ‡
	0, 0, 1, 0, 0, 1]	[0, 0]	[0, 0]	[0]	[0, 1, 1, 1, 1]
		Accept	Manual Word In	struction	

[Expected Result] -> PC is populated with address 15

Case 2 - If c(r) != 0, IX != 0 and I = 1 then PC < - address + c(IX) s1. input 100 to GPR0

s2. input 5 to IX1

s3. select relevant values for JNZ (IX = 1; GPR = 0; I = 1; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> PC is populated with address 20

The state of the s
20

Accept Manual Word Instruction

[Expected Result] -> PC is populated with 15

		1000	-
PC	[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]	15	

Case 2 - PC <- Address + c(IX), if I bit set

s1. input 5 to IX1

IX1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]	5	Accept

s2. select relevant values for JMA (IX = 1; GPR = 1; I = 1; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> PC is populated with 20

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20
10	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20

11. JSR

s1. input 20 to PC

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

s2. select relevant values for JSR (IX = 0; GPR = 3; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> GPR3 is populated with 21 (PC + 1), GPR0 is populated with 10 (address)

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	Accept
GPR1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	Accept
GPR2	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	Accept
GPR3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1]	21	Accept

- 12. RFS RO < -Immed; PC < -c(R3)
 - s1. input 20 to GPR3

PR3	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	Accept
-----	---	----	--------

s2. select relevant values for RFS (IX = 0; GPR = 3; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 is populated with 10, PC is populated with 20

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	Accept
PC	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

13. SOB

Case 1 - $r \le c(r) - 1$ If $c(r) \ge 0$, PC $\le EA(address)$

s1. input 10 to GPR0

			_
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	Accept

s2. select relevant values for SOB (IX = 0; GPR = 0; I = 0; Address = 10) in manual input part -> accept manual word instruction

Case 2 - r < -c(r) - 1 If c(r) > 0, PC <- Address + c(IX) if IX != 0 and I = 1 s1. input 10 to GPR0

s2. input 5 to IX1

s3. select relevant values for SOB (IX = 1; GPR = 0; I = 1; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 9; PC = 15

Case 3 - If c(r) = 0, PC <- PC + 1

s1. input 0 to GPR0

s2. input 20 to PC

s2. input 5 to IX1

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]	5

s3. select relevant values for JGE (IX = 1; GPR = 0; I = 1; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow PC = 15

PC [0, 0, 0, 0, 0, 0, 0, 0, 1, 1,	1, 1]	15
-----------------------------------	-------	----

15. AMR

- s1. input 20 to memory location -> accept
- s2. input 100 to memory location's value -> accept

s3. input 100 to GPR0

	Annual Control of the	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	

s4. select relevant values for AMR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

Manual Instructions	A ‡	No *	GPR0 ‡	[IA ‡]	20 ‡
	0, 0, 0, 1, 0, 0]	[0, 0]	[0, 0]	[0]	[1, 0, 1, 0, 0]
		Accept	Manual Word In	struction	

[Expected Result] -> GPR0 = 200

16. SMR

s1. input 200 to GPR0

- s2. input 20 to memory location -> accept
- s3. input 100 to memory location's value -> accept

s4. select relevant values for SMR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 100

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	

17. AIR

Case 1 - r < -c(r) + Immed, do nothing if Immed = 0

s1. input 100 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 100

Case 2 - r < -c(r) + Immed, loads r with Immed, if c(r) = 0 s1. input 0 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 20

		CHOTH	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

Case 3 - r < -c(r) + Immed

s1. input 100 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 120

		5-6-6-11	-
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0]	120	

18. SIR

Case 1 - r < -c(r) - Immed, do nothing if Immed = 0 s1. input 100 to GPR0

s2. select relevant values for SIR (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 100

		F = 0.000	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	

Case 2 - r < -c(r) - Immed

s1. input 100 to GPR0

s2. select relevant values for SIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

		110000	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]	80	

19. MLT

(one General Purpose Register and one Index Register are used here)

Case 1 - no overflow

s1. input 20 to GPR0

s2. input 50 to IX1

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0]	50	

s3. select relevant values for MLT (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 1000

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0]	1000	
	[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0]	[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0]

Case 2 - overflow happens, set cc(0) to 1

s1. input 1000 to GPR0

[Expected Result] -> GPR0 = 20GPR0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0] 20 Case 2 - division by zero, set cc(2) to 1 s1. input 1000 to GPR0 GPR0 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0] 1000 s2. input 0 to IX1 IX1 0 s3. select relevant values for DVD (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction Manual Instructions D... ‡ IX... * GPR0 + IA ... ‡ [0, 0, 0, 0, 0]0, 1, 0, 0, 0, 1] [0, 1][0, 0][0] Accept Manual Word Instruction

21. TRR

Case 1 - If c(rx) = c(ry), set cc(3) < -1

(one General Purpose Register and one Index Register are used here)

s1. input 20 to GPR0

s2. input 20 to IX1

	32 32	
IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20
	*	

s3. select relevant values for TRR (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

Manual Instructions	TRR ‡	IX *	GPR0 ♣	[IA ‡	0 \$
	0, 1, 0, 0, 1, 0]	[0, 1]	[0, 0]	[0]	[0, 0, 0, 0, 0]
		Accept	Manual Word In	struction	

[Expected	Result]	-> cc(3) = 1

Case 2 - If c(rx) != c(ry), set cc(3) <- 0

(one General Purpose Register and one Index Register are used here)

[1, 0, 0, 0]

s1. input 20 to GPR0

CC

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

s2. input 10 to IX1

IX1	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10

s3. select relevant values for TRR (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> cc(3) = 0

CC	[0, 0, 0, 0]
CC	[0, 0, 0, 0]

22. AND

(one General Purpose Register and one Index Register are used here)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]

s3. select relevant values for AND (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

8

[Expected Result] -> GPR0 = 8

23. ORR

IX1

(one General Purpose Register and one Index Register are used here)

s1. input 0 to GPR0

s3. select relevant values for ORR (IX = 1; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 8

GPR0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]	8	
7.77			-

24. NOT

s1. input 8 to GPR0

s2. select relevant values for NOT (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = \sim 8

			-
GPR0	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1]	-9	

25. SRC

(Index Register is used to decide left/right shift, address value is used to decide the bits to shift)

Case 1 - left shift

s1. input 10 to GPR0

s2. input 1 to IX1

s3. select relevant values for SRC (IX = 1; GPR = 0; I = 0; Address = 1)

in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 20

Case 2 - right shift

s1. input 20 to GPR0

s2. select relevant values for SRC (IX = 0; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 10

26. RRC

(Index Register is used to decide left/right shift, address value is used to decide the bits to shift)

Case 1 - left shift

s1. input 10 to GPR0

11 22		
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]

s2. input 1 to IX1

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	1

s3. select relevant values for RRC (IX = 1; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 20

			-31
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

Case 2 - left shift

s1. input 10 to GPR0

s2. select relevant values for RRC (IX = 0; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 5

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]	5	

27. IN/OUT

Our test program 1 has covered these two instructions, so not intended to demonstrate them again through this step.

End of Document