Lab valeur propre 2 : Algorithmes des Puissances itérées

Théorème:

Soit $A \in M_n(R)$ une matrice, $\lambda_1, ... \lambda_n$ ses valeurs propres, et on suppose que $|\lambda_1| > \max(|\lambda_2|, ..., |\lambda_n|)$. Soit aussi v_1 un vecteur propre associé à λ_1 . Alors, si x_0 est un vecteur non orthogonal à v_1 , et si (x_n) est définie par la relation de récurrence $x_{n+1} = Ax_n$, alors :

$$\begin{cases} \frac{x_n}{||x_n||} & converge \ vers \ un \ multiple \ de \ v_1 \\ & \frac{{}^tx_nAx_n}{\big||x_n|\big|^2} \ converge \ vers \ \lambda_1 \end{cases}$$

A partir de ce theorème, essayer d'écrire une fonction python qui, donné une matrice A, retourne une approximation de sa valeur propre la plus grande (aussi appelée rayon spectral de A).