3. CLASSIFICATION _ Thi Tinh Lo (22236226)

2023-08-19

CLASSIFICATION:

- 1. LOGISTIC REGRESSION
- 2. DECISION TREE
- 3. RANDOM FOREST
- 4. NEUTRAL NETWORK

Read data

```
setwd('C:/Users/tinhl/OneDrive/Documents')
data <- read.csv(file ='data_processed.csv')</pre>
```

summary(data)

```
##
       State
                     Response
                                     Coverage
                                                    Education
   Min.
         :1.000
                  Min. :0.0000
                                  Min. :1.000
                                                  Min. :1.000
##
   1st Qu.:2.000
                  1st Qu.:0.0000
                                  1st Qu.:2.000
                                                 1st Qu.:3.000
  Median :2.000
                  Median :0.0000
                                  Median :3.000
                                                 Median :4.000
## Mean
         :2.742
                  Mean :0.1432
                                  Mean :2.519
                                                 Mean :3.712
   3rd Qu.:4.000
                  3rd Qu.:0.0000
                                   3rd Qu.:3.000
                                                  3rd Qu.:5.000
##
## Max.
        :5.000
                  Max.
                         :1.0000
                                  Max.
                                        :3.000
                                                 Max. :5.000
## EmploymentStatus
                                 Location Code
                                                 Marital Status Policy Type
                       Gender
## Min. :1.000
                   Min. :1.00
                                 Min. :1.000
                                                 Min. :1.00
                                                               Min. :1.000
  1st Qu.:2.000
                   1st Qu.:1.00
                                 1st Qu.:2.000
                                                 1st Qu.:2.00
                                                               1st Qu.:2.000
## Median :2.000
                   Median :1.00
                                 Median :2.000
                                                 Median :2.00
                                                               Median :3.000
## Mean
         :2.826
                   Mean
                         :1.49
                                 Mean
                                       :2.021
                                                 Mean
                                                      :2.12
                                                               Mean
                                                                     :2.702
##
  3rd Qu.:5.000
                   3rd Qu.:2.00
                                  3rd Qu.:2.000
                                                 3rd Qu.:3.00
                                                               3rd Qu.:3.000
##
   Max.
          :5.000
                   Max.
                         :2.00
                                 Max.
                                        :3.000
                                                 Max.
                                                       :3.00
                                                               Max.
##
       Policy
                  Renew_Offer_Type Sales_Channel
                                                 Vehicle_Class
          :1.000
                  Min. :1.00
                                  Min. :1.000
                                                 Min.
                                                        :1.000
  Min.
  1st Qu.:6.000
                  1st Qu.:1.00
                                  1st Qu.:1.000
                                                  1st Qu.:1.000
## Median :8.000
                  Median:2.00
                                  Median :2.000
                                                 Median :1.000
## Mean
         :7.425
                  Mean
                       :1.97
                                  Mean
                                         :2.103
                                                  Mean
                                                        :3.036
## 3rd Qu.:9.000
                  3rd Qu.:3.00
                                  3rd Qu.:3.000
                                                  3rd Qu.:5.000
                                         :4.000
## Max.
          :9.000
                 Max.
                         :4.00
                                  {\tt Max.}
                                                  Max.
                                                         :6.000
   Vehicle_Size Customer_Lifetime_Value
##
                                            Income
                                                         Monthly_Premium_Auto
          :1.00
## Min.
                 Min. :-0.8888
                                 Min. :-1.2395
                                                       Min. :-0.9364
## 1st Qu.:2.00
                 1st Qu.:-0.5837
                                       1st Qu.:-1.2395
                                                         1st Qu.:-0.7329
```

```
Median :2.00 Median :-0.3238
                                       Median :-0.1240
                                                       Median :-0.2970
                                                       Mean : 0.0000
## Mean :1.91 Mean : 0.0000
                                       Mean : 0.0000
## 3rd Qu.:2.00 3rd Qu.: 0.1393
                                       3rd Qu.: 0.8118
                                                       3rd Qu.: 0.4586
          :3.00 Max. :10.9621
                                             : 2.0515
## Max.
                                       Max.
                                                       Max. : 5.9515
## Months_Since_Last_Claim Months_Since_Policy_Inception
         :-1.4987
                         Min.
                                :-1.722376
## Min.
## 1st Qu.:-0.9031
                         1st Qu.:-0.862345
## Median :-0.1089
                       Median :-0.002315
                       Mean : 0.000000
## Mean : 0.0000
## 3rd Qu.: 0.7846
                         3rd Qu.: 0.821881
## Max. : 1.9758
                         Max. : 1.825250
## Number_of_Open_Complaints Number_of_Policies Total_Claim_Amount
                           Min. :-0.8226
        :-0.4222
## Min.
                                            Min.
                                                  :-1.4939
## 1st Qu.:-0.4222
                           1st Qu.:-0.8226
                                            1st Qu.:-0.5571
## Median :-0.4222
                           Median :-0.4042
                                            Median :-0.1726
## Mean : 0.0000
                           Mean : 0.0000
                                            Mean : 0.0000
## 3rd Qu.:-0.4222
                           3rd Qu.: 0.4325
                                            3rd Qu.: 0.3905
## Max. : 5.0700
                           Max. : 2.5244
                                            Max. : 8.4652
```

Create the training and test data

```
set.seed(42)
n= nrow(data)
trainIndex = sample(1:n, size= round(0.7*n), replace=FALSE)
train = data[trainIndex,]
test = data[-trainIndex,]
```

Rows of training data and test data

```
nrow(train)
## [1] 6394
nrow(test)
```

[1] 2740

1. LOGISTIC REGRESSION

Build model

Estimates a logistic regression model using the glm

```
set.seed(42)
model <- glm(Response ~ ., data = train, family = "binomial")
summary(model)</pre>
```

```
##
## Call:
## glm(formula = Response ~ ., family = "binomial", data = train)
## Deviance Residuals:
##
                   Median
      Min
                1Q
                                 3Q
                                         Max
## -1.2581 -0.6210 -0.4769 -0.3207
##
## Coefficients:
##
                                Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                0.536327
                                          0.391540 1.370 0.17075
                                          0.028537 -0.502 0.61549
                               -0.014333
## State
## Coverage
                               0.035270
                                         0.063974
                                                    0.551 0.58141
## Education
                               -0.095212
                                          0.033858 -2.812 0.00492 **
                              -0.016092
                                          0.040050 -0.402 0.68784
## EmploymentStatus
## Gender
                               0.003229
                                          0.073719
                                                     0.044 0.96506
                                                    0.644 0.51976
## Location_Code
                               0.041637
                                          0.064683
## Marital Status
                              -0.452459
                                          0.058533 -7.730 1.08e-14 ***
                                          0.157612 -0.789 0.43004
                              -0.124376
## Policy_Type
                               0.006627
                                                    0.140 0.88895
## Policy
                                          0.047463
                              -0.575076  0.045859 -12.540 < 2e-16 ***
## Renew_Offer_Type
## Sales Channel
                              ## Vehicle_Class
                               0.013449
                                          0.017328
                                                   0.776 0.43766
## Vehicle Size
                                          0.067903
                                                    4.122 3.76e-05 ***
                               0.279868
## Customer_Lifetime_Value
                                          0.041290 -1.655 0.09796 .
                              -0.068328
## Income
                               0.116835
                                          0.054228 2.155 0.03120 *
## Monthly_Premium_Auto
                               -0.152651
                                          0.060331 -2.530 0.01140 *
                               -0.068249 0.037157 -1.837 0.06624 .
## Months_Since_Last_Claim
## Months_Since_Policy_Inception -0.015504
                                          0.036538 -0.424 0.67133
## Number_of_Open_Complaints
                               -0.055188
                                          0.037563 -1.469 0.14177
                                          0.037483 -2.122 0.03386 *
## Number_of_Policies
                               -0.079527
## Total_Claim_Amount
                                0.255875
                                          0.057674
                                                    4.437 9.14e-06 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 5310.7 on 6393 degrees of freedom
## Residual deviance: 4963.2 on 6372 degrees of freedom
## AIC: 5007.2
##
## Number of Fisher Scoring iterations: 5
Coefficient
coef_df <- as.data.frame(summary(model)$coefficients)</pre>
coef_df$Variable <- rownames(coef_df)</pre>
coef_df
                                   Estimate Std. Error
                                                                      Pr(>|z|)
##
                                                           z value
## (Intercept)
                               0.536326749 0.39154018
                                                       1.36978725 1.707533e-01
## State
                               -0.014332795 0.02853706 -0.50225189 6.154903e-01
                                0.035270029 0.06397387
                                                        0.55131926 5.814148e-01
## Coverage
```

```
## Education
                                 -0.095211822 0.03385833 -2.81206458 4.922462e-03
## EmploymentStatus
                                 -0.016091667 0.04004989 -0.40179057 6.878382e-01
                                 0.003229210 0.07371925
                                                           0.04380415 9.650605e-01
## Gender
## Location_Code
                                  0.041637265 0.06468329 0.64370979 5.197636e-01
## Marital_Status
                                 -0.452459425 0.05853304 -7.72998321 1.075608e-14
## Policy Type
                                 -0.124376480 0.15761237 -0.78912894 4.300367e-01
## Policy
                                 0.006627466 0.04746276
                                                           0.13963508 8.889483e-01
## Renew_Offer_Type
                                 -0.575076293 0.04585896 -12.54010630 4.503910e-36
## Sales Channel
                                 -0.195313445 0.03648695 -5.35296773 8.652328e-08
## Vehicle_Class
                                                           0.77615685 4.376564e-01
                                  0.013449376 0.01732817
## Vehicle_Size
                                  0.279868113 0.06790348
                                                           4.12155763 3.763193e-05
## Customer_Lifetime_Value
                                 -0.068328444 0.04129007 -1.65483971 9.795702e-02
## Income
                                  0.116835378 0.05422773
                                                           2.15453194 3.119848e-02
## Monthly_Premium_Auto
                                 -0.152650512 0.06033083 -2.53022408 1.139897e-02
## Months_Since_Last_Claim
                                 -0.068248866 0.03715682
                                                          -1.83677907 6.624252e-02
## Months_Since_Policy_Inception -0.015504278 0.03653847
                                                          -0.42432745 6.713270e-01
## Number_of_Open_Complaints
                                 -0.055187914 0.03756252
                                                          -1.46922815 1.417709e-01
## Number of Policies
                                 -0.079527422 0.03748276
                                                          -2.12170687 3.386236e-02
## Total_Claim_Amount
                                  0.255874573 0.05767430
                                                           4.43654408 9.141462e-06
                                                      Variable
## (Intercept)
                                                   (Intercept)
## State
                                                         State
## Coverage
                                                      Coverage
## Education
                                                     Education
## EmploymentStatus
                                              EmploymentStatus
## Gender
                                                        Gender
## Location_Code
                                                 Location_Code
## Marital_Status
                                                Marital_Status
## Policy_Type
                                                   Policy_Type
## Policy
                                                        Policy
## Renew_Offer_Type
                                              Renew_Offer_Type
## Sales_Channel
                                                 Sales_Channel
## Vehicle_Class
                                                 Vehicle_Class
## Vehicle_Size
                                                  Vehicle_Size
## Customer_Lifetime_Value
                                      Customer_Lifetime_Value
## Income
                                                        Income
## Monthly Premium Auto
                                          Monthly Premium Auto
## Months_Since_Last_Claim
                                       Months_Since_Last_Claim
## Months_Since_Policy_Inception Months_Since_Policy_Inception
## Number_of_Open_Complaints
                                     Number_of_Open_Complaints
## Number of Policies
                                           Number of Policies
## Total Claim Amount
                                            Total_Claim_Amount
ggplot(coef_df, aes(x = reorder(Variable, Estimate), y = Estimate)) +
  geom bar(stat = "identity") +
  geom_errorbar(aes(ymin = Estimate - 1.96 * Pr(>|z|), ymax = Estimate + 1.96 * Pr(>|z|), width = 9
  coord flip() +
  labs(title = "Coefficient Plot", x = "Predictor Variables", y = "Coefficient Estimate")
```

Coefficient Plot

TRAIN DATA

Predict train data

```
pred <- predict(model, newdata = train, type = "response")
pred_value <- ifelse(pred > 0.5, 1, 0)
result <- table(pred_value, train$Response)
result

##
## pred_value 0 1
## 0 5460 932
## 1 2 0</pre>
```

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy</pre>
```

```
## [1] 0.8539256
```

```
precision <- TP / (TP + FP)
precision

## [1] 0

recall <- TP / (TP + FN)
recall

## [1] 0

f1_score <- 2 * (precision * recall) / (precision + recall)
f1_score

## [1] NaN</pre>
```

-> (TP) value is 0, it means that the model did not correctly predict any positive instances. Both precision and recall will also be 0, and the F1 score cannot be calculated.

TEST DATA

Predict test data

[1] 0

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]

accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy
## [1] 0.8624088

precision <- TP / (TP + FP)
precision</pre>
```

```
recall <- TP / (TP + FN)
recall

## [1] 0

f1_score <- 2 * (precision * recall) / (precision + recall)
f1_score

## [1] NaN</pre>
```

```
# Create ROC curves for train and test data
roc_data <- roc(train$Response, pred)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

roc_data2 <- roc(test$Response, pred2)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

# Combine ROC curves into a single plot
plot(roc_data, col = "blue", main = "ROC Curve for Logistic Regression Model")
lines(roc_data2, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)</pre>
```


2. DECISION TREE

Build model

```
set.seed(42)
data.tree = rpart(Response ~ .,data = train, method="class")
data.tree
## n= 6394
##
## node), split, n, loss, yval, (yprob)
##
         * denotes terminal node
##
     1) root 6394 932 0 (0.85423835 0.14576165)
##
##
       2) Renew_Offer_Type>=2.5 1736    19 0 (0.98905530 0.01094470) *
##
       3) Renew_Offer_Type< 2.5 4658 913 0 (0.80399313 0.19600687)
         6) Marital_Status>=1.5 3908 681 0 (0.82574207 0.17425793)
##
##
          12) Income < -0.900723 1117 107 0 (0.90420770 0.09579230) *
          13) Income>=-0.900723 2791 574 0 (0.79433895 0.20566105)
##
##
            26) EmploymentStatus< 3.5 2684 485 0 (0.81929955 0.18070045) *
##
            27) EmploymentStatus>=3.5 107 18 1 (0.16822430 0.83177570) *
##
         7) Marital Status< 1.5 750 232 0 (0.69066667 0.30933333)
          14) Income>=-0.3808399 438 89 0 (0.79680365 0.20319635) *
##
```

```
##
          15) Income< -0.3808399 312 143 0 (0.54166667 0.45833333)
##
            30) Months_Since_Last_Claim>=1.032735 39
                                                       2 0 (0.94871795 0.05128205) *
            31) Months Since Last Claim< 1.032735 273 132 1 (0.48351648 0.51648352)
##
              62) Total_Claim_Amount< -0.4598129 22
                                                       0 0 (1.00000000 0.00000000) *
##
              63) Total_Claim_Amount>=-0.4598129 251 110 1 (0.43824701 0.56175299)
##
               126) Income < -0.8519737 96 37 0 (0.61458333 0.38541667) *
##
               127) Income>=-0.8519737 155 51 1 (0.32903226 0.67096774)
##
##
                 254) EmploymentStatus < 3.5 98 47 1 (0.47959184 0.52040816)
##
                   508) Education>=3.5 32
                                            5 0 (0.84375000 0.15625000) *
##
                   509) Education< 3.5 66 20 1 (0.30303030 0.69696970) *
##
                 255) EmploymentStatus>=3.5 57
                                                  4 1 (0.07017544 0.92982456) *
summary(data.tree)
## Call:
## rpart(formula = Response ~ ., data = train, method = "class")
    n = 6394
##
##
##
             CP nsplit rel error
                                    xerror
                                                  xstd
                     0 1.0000000 1.0000000 0.03027482
## 1 0.01904506
## 2 0.01421674
                     4 0.9238197 0.9012876 0.02898280
## 3 0.01180258
                     8 0.8669528 0.8980687 0.02893881
## 4 0.01000000
                    10 0.8433476 0.8937768 0.02887997
##
## Variable importance
##
            EmploymentStatus
                                       Renew_Offer_Type
                                                                            Income
##
                          37
                                                     22
                                                                                15
##
              Marital_Status
                                                          Months_Since_Last_Claim
                                     Total_Claim_Amount
##
                           6
                                                                                 4
                                                      5
##
                   Education
                                Customer_Lifetime_Value
                                                                    Location_Code
##
                                                                                 2
##
  Number_of_Open_Complaints
                                  Monthly_Premium_Auto
##
##
## Node number 1: 6394 observations,
                                         complexity param=0.01904506
     predicted class=0 expected loss=0.1457617 P(node) =1
##
##
       class counts: 5462
                             932
##
      probabilities: 0.854 0.146
     left son=2 (1736 obs) right son=3 (4658 obs)
##
##
     Primary splits:
##
         Renew_Offer_Type
                            < 2.5
                                          to the right, improve=86.62472, (0 missing)
##
         Marital_Status
                            < 1.5
                                          to the right, improve=20.03729, (0 missing)
                                          to the right, improve=18.23999, (0 missing)
##
         Sales_Channel
                            < 1.5
##
         Total_Claim_Amount < -0.5269586 to the left, improve=15.55030, (0 missing)
##
         Income
                            < -0.900723 to the left, improve=14.07473, (0 missing)
##
     Surrogate splits:
##
         Income < 2.047492 to the right, agree=0.729, adj=0.001, (0 split)
##
  Node number 2: 1736 observations
     predicted class=0 expected loss=0.0109447 P(node) =0.2715045
##
##
       class counts: 1717
##
      probabilities: 0.989 0.011
## Node number 3: 4658 observations,
                                        complexity param=0.01904506
```

```
##
     predicted class=0 expected loss=0.1960069 P(node) =0.7284955
##
       class counts: 3745
                             913
      probabilities: 0.804 0.196
##
     left son=6 (3908 obs) right son=7 (750 obs)
##
##
     Primary splits:
                                         to the right, improve=22.96143, (0 missing)
##
         Marital Status
                            < 1.5
                            < -0.900723 to the left, improve=21.71285, (0 missing)
##
         Income
                                         to the right, improve=21.19408, (0 missing)
##
         EmploymentStatus
                            < 4.5
                                         to the right, improve=16.47464, (0 missing)
##
         Sales Channel
                            < 1.5
         Total_Claim_Amount < -0.4618456 to the left, improve=16.03380, (0 missing)
##
##
     Surrogate splits:
##
         Customer_Lifetime_Value < -0.8729307 to the right, agree=0.839, adj=0.001, (0 split)
##
##
  Node number 6: 3908 observations,
                                         complexity param=0.01904506
     predicted class=0 expected loss=0.1742579 P(node) =0.611198
##
##
       class counts: 3227
                             681
##
      probabilities: 0.826 0.174
##
     left son=12 (1117 obs) right son=13 (2791 obs)
##
     Primary splits:
##
         Income
                            < -0.900723 to the left, improve=19.25914, (0 missing)
##
         EmploymentStatus
                            < 4.5
                                         to the right, improve=18.79774, (0 missing)
##
         Renew_Offer_Type
                                         to the left, improve=16.86070, (0 missing)
                            < 1.5
                                         to the right, improve=12.97736, (0 missing)
##
         Sales_Channel
                            < 1.5
         Total Claim Amount < -0.5269586 to the left, improve=10.55279, (0 missing)
##
##
     Surrogate splits:
##
         EmploymentStatus
                                 < 4.5
                                               to the right, agree=0.998, adj=0.994, (0 split)
##
         Total_Claim_Amount
                                 < 0.9343285
                                              to the right, agree=0.751, adj=0.129, (0 split)
                                               to the right, agree=0.740, adj=0.090, (0 split)
##
         Marital_Status
                                 < 2.5
##
         Customer_Lifetime_Value < -0.8162598 to the left, agree=0.728, adj=0.047, (0 split)
##
## Node number 7: 750 observations,
                                       complexity param=0.01421674
##
     predicted class=0 expected loss=0.3093333 P(node) =0.1172975
##
       class counts:
                       518
                             232
##
      probabilities: 0.691 0.309
##
     left son=14 (438 obs) right son=15 (312 obs)
##
     Primary splits:
##
         Income
                                 < -0.3808399 to the right, improve=23.721620, (0 missing)
##
         EmploymentStatus
                                              to the left, improve=14.556200, (0 missing)
                                 < 3.5
                                 < -0.4255145 to the left, improve=12.664510, (0 missing)
##
         Total Claim Amount
##
         Customer_Lifetime_Value < -0.8157533 to the right, improve=10.373730, (0 missing)
                                 < -0.7765437 to the right, improve= 7.850406, (0 missing)
##
         Monthly Premium Auto
##
     Surrogate splits:
         EmploymentStatus
##
                                       < 2.5
                                                     to the left, agree=0.847, adj=0.631, (0 split)
##
         Total_Claim_Amount
                                       < 0.1364937 to the left, agree=0.656, adj=0.173, (0 split)
##
         Customer_Lifetime_Value
                                       < -0.810636 to the right, agree=0.625, adj=0.099, (0 split)
##
         Monthly_Premium_Auto
                                       < -0.8056067 to the right, agree=0.591, adj=0.016, (0 split)
##
         Months_Since_Policy_Inception < 1.55649</pre>
                                                     to the left, agree=0.588, adj=0.010, (0 split)
##
##
  Node number 12: 1117 observations
##
     predicted class=0 expected loss=0.0957923 P(node) =0.174695
##
       class counts: 1010
                             107
##
      probabilities: 0.904 0.096
##
## Node number 13: 2791 observations,
                                         complexity param=0.01904506
```

```
##
     predicted class=0 expected loss=0.2056611 P(node) =0.436503
##
       class counts: 2217
                             574
##
     probabilities: 0.794 0.206
     left son=26 (2684 obs) right son=27 (107 obs)
##
##
     Primary splits:
         EmploymentStatus
                                         to the left, improve=87.23662, (0 missing)
##
                            < 3.5
         Total Claim Amount < -0.5269586 to the left, improve=20.47424, (0 missing)
##
                                         to the right, improve=12.51777, (0 missing)
##
         Location Code
                            < 2.5
##
         Renew_Offer_Type
                            < 1.5
                                         to the left, improve=12.42603, (0 missing)
##
                                         to the right, improve=12.24559, (0 missing)
         Sales_Channel
                            < 1.5
##
     Surrogate splits:
##
                                 < -0.8884781 to the right, agree=0.965, adj=0.075, (0 split)
         Income
         Customer_Lifetime_Value < -0.8349271 to the right, agree=0.963, adj=0.028, (0 split)
##
##
  Node number 14: 438 observations
##
##
     predicted class=0 expected loss=0.2031963 P(node) =0.06850172
##
       class counts:
                       349
##
      probabilities: 0.797 0.203
##
## Node number 15: 312 observations,
                                        complexity param=0.01421674
##
     predicted class=0 expected loss=0.4583333 P(node) =0.04879575
       class counts: 169 143
##
##
     probabilities: 0.542 0.458
     left son=30 (39 obs) right son=31 (273 obs)
##
##
     Primary splits:
##
         Months_Since_Last_Claim < 1.032735
                                             to the right, improve=14.770150, (0 missing)
##
                                 < -0.8519737 to the left, improve=13.450730, (0 missing)
         Income
                                 < -0.4598129 to the left, improve=12.923710, (0 missing)
##
         Total_Claim_Amount
##
                                              to the right, improve=10.991790, (0 missing)
         EmploymentStatus
                                 < 4.5
##
         Customer_Lifetime_Value < 0.2840898 to the left, improve= 9.392127, (0 missing)
##
## Node number 26: 2684 observations
##
     predicted class=0 expected loss=0.1807004 P(node) =0.4197685
       class counts: 2199
##
                             485
##
      probabilities: 0.819 0.181
##
## Node number 27: 107 observations
##
     predicted class=1 expected loss=0.1682243 P(node) =0.01673444
##
       class counts:
                        18
                              89
##
      probabilities: 0.168 0.832
##
## Node number 30: 39 observations
    predicted class=0 expected loss=0.05128205 P(node) =0.006099468
##
##
       class counts:
                        37
##
      probabilities: 0.949 0.051
##
## Node number 31: 273 observations,
                                        complexity param=0.01421674
     predicted class=1 expected loss=0.4835165 P(node) =0.04269628
##
##
      class counts: 132
                             141
##
      probabilities: 0.484 0.516
##
     left son=62 (22 obs) right son=63 (251 obs)
##
     Primary splits:
##
         Total_Claim_Amount
                                 < -0.4598129 to the left, improve=12.765990, (0 missing)
                                 < -0.8519737 to the left, improve=12.549180, (0 missing)
##
         Income
```

```
##
         EmploymentStatus
                                 < 4.5
                                              to the right, improve=10.253690, (0 missing)
##
         Customer_Lifetime_Value < 0.2840898 to the left, improve= 8.864469, (0 missing)
##
         Location Code
                                 < 2.5
                                              to the right, improve= 6.696476, (0 missing)
##
     Surrogate splits:
##
         Location Code
                                 < 2.5
                                              to the right, agree=0.963, adj=0.545, (0 split)
         Monthly Premium Auto
                                 < -0.8927959 to the left, agree=0.938, adj=0.227, (0 split)
##
         Customer Lifetime Value < -0.833638 to the left, agree=0.923, adj=0.045, (0 split)
##
##
##
  Node number 62: 22 observations
##
     predicted class=0 expected loss=0 P(node) =0.003440726
##
       class counts:
                        22
                               0
##
      probabilities: 1.000 0.000
##
## Node number 63: 251 observations,
                                         complexity param=0.01421674
     predicted class=1 expected loss=0.438247 P(node) =0.03925555
##
##
       class counts:
                       110
                             141
##
      probabilities: 0.438 0.562
##
     left son=126 (96 obs) right son=127 (155 obs)
##
     Primary splits:
##
         Income
                                 < -0.8519737 to the left, improve=9.667781, (0 missing)
##
         Customer_Lifetime_Value < -0.7443817 to the right, improve=8.763435, (0 missing)
##
         EmploymentStatus |
                                              to the right, improve=7.937910, (0 missing)
                                              to the right, improve=4.544674, (0 missing)
##
         Number_of_Policies
                                 < 2.315234
         Monthly Premium Auto
                                 < 0.2406626 to the right, improve=4.376346, (0 missing)
##
     Surrogate splits:
##
##
         EmploymentStatus
                                   < 4.5
                                                 to the right, agree=0.988, adj=0.969, (0 split)
##
         Vehicle_Size
                                   < 2.5
                                                 to the right, agree=0.673, adj=0.146, (0 split)
                                   < 0.9578242 to the right, agree=0.661, adj=0.115, (0 split)
##
         Customer_Lifetime_Value
##
         Number_of_Open_Complaints < 1.225431</pre>
                                                 to the right, agree=0.653, adj=0.094, (0 split)
##
         Education
                                   < 4.5
                                                 to the right, agree=0.637, adj=0.052, (0 split)
##
  Node number 126: 96 observations
     predicted class=0 expected loss=0.3854167 P(node) =0.01501408
##
##
       class counts:
                        59
                              37
##
      probabilities: 0.615 0.385
##
## Node number 127: 155 observations,
                                         complexity param=0.01180258
##
     predicted class=1 expected loss=0.3290323 P(node) =0.02424148
##
       class counts:
                        51
                             104
##
      probabilities: 0.329 0.671
     left son=254 (98 obs) right son=255 (57 obs)
##
##
     Primary splits:
         EmploymentStatus
                                                     to the left, improve=12.081750, (0 missing)
##
                                       < 3.5
##
                                                     to the right, improve= 6.600872, (0 missing)
         Number_of_Policies
                                       < 2.315234
                                       < -0.7877115 to the right, improve= 5.275323, (0 missing)
##
         Customer_Lifetime_Value
         Months_Since_Policy_Inception < -1.417781 to the left, improve= 4.610038, (0 missing)
##
                                                     to the right, improve= 4.585292, (0 missing)
##
         Vehicle Class
                                       < 5.5
     Surrogate splits:
##
##
         Number_of_Open_Complaints < 0.1269926 to the left, agree=0.671, adj=0.105, (0 split)
         Total_Claim_Amount
                                   < -0.3658708 to the right, agree=0.671, adj=0.105, (0 split)
##
##
         Months_Since_Last_Claim
                                   < 0.8838254 to the left, agree=0.665, adj=0.088, (0 split)
                                   < -0.8278004 to the right, agree=0.658, adj=0.070, (0 split)
##
         Customer Lifetime Value
##
         Education
                                   < 3.5
                                                 to the left, agree=0.652, adj=0.053, (0 split)
##
```

```
## Node number 254: 98 observations,
                                        complexity param=0.01180258
##
     predicted class=1 expected loss=0.4795918 P(node) =0.01532687
##
       class counts:
                        47
                              51
##
      probabilities: 0.480 0.520
##
     left son=508 (32 obs) right son=509 (66 obs)
##
     Primary splits:
##
         Education
                                                 to the right, improve=12.602080, (0 missing)
                                   < 3.5
         Number_of_Open_Complaints < 0.1269926 to the right, improve= 5.367806, (0 missing)
##
##
         Customer_Lifetime_Value
                                   < -0.7911586 to the right, improve= 4.860449, (0 missing)
##
         State
                                   < 4.5
                                                 to the right, improve= 4.083203, (0 missing)
##
         Income
                                   < -0.3898919 to the left, improve= 3.743864, (0 missing)
##
     Surrogate splits:
##
         Months_Since_Last_Claim
                                   < 0.7349162 to the right, agree=0.704, adj=0.094, (0 split)
##
         Number_of_Open_Complaints < 0.1269926 to the right, agree=0.704, adj=0.094, (0 split)
##
         Total_Claim_Amount
                                   < 3.150641
                                                 to the right, agree=0.694, adj=0.063, (0 split)
##
         Vehicle_Size
                                   < 2.5
                                                 to the right, agree=0.684, adj=0.031, (0 split)
##
         Customer_Lifetime_Value
                                  < 2.49875
                                                to the right, agree=0.684, adj=0.031, (0 split)
##
## Node number 255: 57 observations
##
     predicted class=1 expected loss=0.07017544 P(node) =0.008914607
##
       class counts:
                         4
                              53
##
      probabilities: 0.070 0.930
##
## Node number 508: 32 observations
     predicted class=0 expected loss=0.15625 P(node) =0.005004692
##
##
       class counts:
                        27
                               5
##
      probabilities: 0.844 0.156
##
## Node number 509: 66 observations
##
     predicted class=1 expected loss=0.3030303 P(node) =0.01032218
##
       class counts:
                        20
                              46
##
      probabilities: 0.303 0.697
plot tree
prp(data.tree, type = 2, extra = "auto", nn = TRUE, branch = 1, varlen = 0, yesno = 2)
```


Get the number of nodes

```
num_nodes <- data.tree$n
num_nodes</pre>
```

[1] 4

Get variable importance

```
var_importance <- data.tree$variable.importance
var_importance</pre>
```

```
##
                 EmploymentStatus
                                                 Renew_Offer_Type
##
                      142.8005446
                                                        86.6247246
##
                            Income
                                                   Marital_Status
                       59.2207982
                                                        24.6856104
##
##
               Total_Claim_Amount
                                          Months_Since_Last_Claim
##
                       21.4138733
                                                        17.0113937
##
                        Education
                                          Customer_Lifetime_Value
##
                        13.7414911
                                                         8.6769706
##
                    Location_Code
                                        {\tt Number\_of\_Open\_Complaints}
##
                        6.9632678
                                                         3.3595621
##
             Monthly_Premium_Auto
                                                      Vehicle_Size
##
                                                         1.8036997
                        3.2815157
##
  Months_Since_Policy_Inception
                        0.2280925
##
```

Variable Importance in Decision Tree

TRAIN DATA Predict train data

```
pred = predict(data.tree, train, type = 'prob')
pred_value <- ifelse(pred[, "1"] > 0.5, 1, 0)
# accuracy train data
result = table(pred_value, train$Response)
result
```

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]</pre>
```

```
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy
## [1] 0.8770723
precision <- TP / (TP + FP)</pre>
precision
## [1] 0.2017167
recall <- TP / (TP + FN)
recall
## [1] 0.8173913
f1_score <- 2 * (precision * recall) / (precision + recall)</pre>
f1_score
## [1] 0.32358
TEST DATA
Predict test data
pred2 = predict(data.tree, test, type = 'prob')
pred_value2 <- ifelse(pred2[, "1"] > 0.5, 1, 0)
# accuracy test data
result = table(pred_value2, test$Response)
result
##
## pred_value2 0 1
     0 2340 312
```

Calculate accuracy, precision, recall, F1-score

64

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy</pre>
```

[1] 0.8773723

1

24

##

```
precision <- TP / (TP + FP)
precision

## [1] 0.1702128

recall <- TP / (TP + FN)
recall

## [1] 0.7272727

f1_score <- 2 * (precision * recall) / (precision + recall)

f1_score

## [1] 0.2758621</pre>
```

```
# Create ROC data
roc_data <- roc(train$Response, pred_value)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

roc_data2 <- roc(test$Response, pred_value2)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

# Combine ROC curves into a single plot
plot(roc_data, col = "blue", main = "ROC Curve for Decision Tree Model")
lines(roc_data2, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)</pre>
```

ROC Curve for Decision Tree Model

3. RANDOM FOREST

Build model

```
set.seed(42)
train$Response <- factor(train$Response)</pre>
model_rf <- randomForest(Response ~ ., data = train, ntree = 15, mtry = 7, importance = TRUE)</pre>
model_rf
##
## Call:
   randomForest(formula = Response ~ ., data = train, ntree = 15, mtry = 7, importance = TRUE)
##
                  Type of random forest: classification
##
                        Number of trees: 15
## No. of variables tried at each split: 7
##
##
           OOB estimate of error rate: 1.77%
## Confusion matrix:
        0
            1 class.error
## 0 5374 82 0.01502933
## 1
       31 901 0.03326180
summary(model_rf)
```

```
##
                 Length Class Mode
## call
                      6 -none- call
## type
                      1 -none- character
## predicted
                  6394 factor numeric
## err.rate
                    45
                        -none- numeric
## confusion
                     6 -none- numeric
                  12788 matrix numeric
## votes
                   6394 -none- numeric
## oob.times
## classes
                     2 -none- character
## importance
                    84 -none- numeric
## importanceSD
                     63 -none- numeric
## localImportance
                     O -none- NULL
## proximity
                     0
                        -none- NULL
## ntree
                        -none- numeric
## mtry
                     1 -none- numeric
## forest
                    14 -none- list
## y
                   6394 factor numeric
## test
                        -none- NULL
                        -none- NULL
## inbag
## terms
                        terms call
```

varImpPlot(model_rf)

model_rf

```
Renew Offer Type
Customer Lifetime Value
Months Since Last Claim
Months Since Policy Inception
M
```

```
library(randomForest)
tree_plot <- getTree(model_rf)
plot(tree_plot)</pre>
```


TRAIN DATA

Predicting on train set

```
pred <- predict(model_rf, train, type = "response")
# Checking classification accuracy
result = table(pred, train$Response)
result

##
## pred 0 1
## 0 5462 1
## 1 0 931</pre>
```

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy</pre>
```

```
## [1] 0.9998436

precision <- TP / (TP + FP)
precision

## [1] 0.998927

recall <- TP / (TP + FN)
recall

## [1] 1

f1_score <- 2 * (precision * recall) / (precision + recall)
f1_score</pre>
```

TEST DATA

[1] 0.9994632

Predicting on test set

Calculate accuracy, precision, recall, F1-score

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy
## [1] 0.989781
precision <- TP / (TP + FP)
precision</pre>
```

[1] 0.9680851

```
recall <- TP / (TP + FN)
recall

## [1] 0.9578947

f1_score <- 2 * (precision * recall) / (precision + recall)
f1_score

## [1] 0.962963</pre>
```

```
# Create a binary vector indicating if the predicted class is 1 or 0
pred_class <- as.numeric(pred == "1")
pred_class2 <- as.numeric(pred2 == "1")

# Create ROC data
roc_data <- roc(train$Response, pred_class)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases
roc_data2 <- roc(test$Response, pred_class2)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

## Combine ROC curves into a single plot
plot(roc_data, col = "blue", main = "ROC Curve for Random Forest Model")
lines(roc_data2, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)</pre>
```

ROC Curve for Random Forest Model

4. NEUTRAL NETWORK

Build model

```
set.seed(123)
model = neuralnet(Response ~ ., data=train, hidden=c(4,2),linear.output = FALSE, act.fct = "logistic")
summary(model)
```

```
##
                        Length Class
                                          Mode
## call
                             6 -none-
                                           call
## response
                         12788 -none-
                                          logical
## covariate
                        134274 -none-
                                          numeric
## model.list
                             2 -none-
                                          list
## err.fct
                             1 -none-
                                          function
## act.fct
                             1 -none-
                                          function
## linear.output
                             1 -none-
                                          logical
## data
                            22 data.frame list
## exclude
                             0 -none-
                                          NULL
## net.result
                             1 -none-
                                          list
## weights
                             1 -none-
                                          list
## generalized.weights
                             1 -none-
                                          list
## startweights
                             1 -none-
                                          list
## result.matrix
                          107 -none-
                                          numeric
```


TRAIN DATA

Predicting on train set

```
pred <- predict(model, newdata = train)
pred_class <- ifelse(pmax(pred) > 0.5, 1, 0)[,2]
result <- table(train$Response, pred_class)
result

## pred_class
## 0 1
## 0 5265 197
## 1 645 287</pre>
```

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]</pre>
```

```
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy

## [1] 0.868314

precision <- TP / (TP + FP)
precision

## [1] 0.5929752

recall <- TP / (TP + FN)
recall

## [1] 0.3079399

f1_score <- 2 * (precision * recall) / (precision + recall)

f1_score

## [1] 0.4053672
```

TEST DATA

Predicting on test set

1 265 111

##

```
pred2 <- predict(model, newdata = test)
pred_class <- ifelse(pmax(pred2) > 0.5, 1, 0)[,2]
result <- table(test$Response, pred_class)
result

## pred_class
## 0 1
## 0 2237 127</pre>
```

Calculate accuracy, precision, recall, F1-score

```
TN <- result[1, 1]
TP <- result[2, 2]
FP <- result[1, 2]
FN <- result[2, 1]
accuracy <- (TN + TP) / (TN + TP + FP + FN)
accuracy</pre>
```

[1] 0.8569343

```
precision <- TP / (TP + FP)
precision

## [1] 0.4663866

recall <- TP / (TP + FN)
recall

## [1] 0.2952128

f1_score <- 2 * (precision * recall) / (precision + recall)

f1_score

## [1] 0.3615635</pre>
```

```
# Create ROC curve
roc_data <- roc(train$Response, pred[,2])

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

roc_data2 <- roc(test$Response, pred2[,2])

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases

# Combine ROC curves into a single plot
plot(roc_data, col = "blue", main = "ROC Curve for Neural Network Model")
lines(roc_data2, col = "red")
legend("bottomright", legend = c("Train", "Test"), col = c("blue", "red"), lty = 1)</pre>
```


