Topic(s): linear transformations

A function $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ is called

- a linear function or a linear transformation if there is an $m \times n$ matrix for which $\mathbf{f}(\mathbf{x}) = A\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$. Recall that this implies that the *j*th column of A is $A\mathbf{e}_i = f(\mathbf{e}_i)$.
- an affine function or an affine transformation if there is an $m \times n$ matrix A and a vector $\mathbf{b} \in \mathbb{R}^m$ for which $\mathbf{f}(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$.

Let us try to visualize the effect of the linear transformation $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ associated with $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, where the two column vectors are not scalar multiples of each other. Let $S = \{(x,y): 0 \le x,y \le 1\}$ be the unit square in \mathbb{R}^2 . We can think of \mathbb{R}^2 is tiled by copies of S laid out in all directions. Let $\mathbf{f}(S)$ denote the output of \mathbf{f} on S (the collection of points $\mathbf{f}(\mathbf{s})$ for $\mathbf{s} \in S$), called the **image** of S under \mathbf{f} . The image $\mathbf{f}(S)$ is a paralleologram; two principles that help us visualize the effect of \mathbf{f} on \mathbb{R}^2 are

- Linearity Principle. For $c_1, c_2 \in \mathbb{R}$ and $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$, we have $\mathbf{f}(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = c_1\mathbf{f}(\mathbf{v}_1) + c_2\mathbf{f}(\mathbf{v}_2)$.
- Tiling Principle. f transforms the tiling of \mathbb{R}^2 by copies of S into a tiling of \mathbb{R}^2 by copies of f(S).

Theorem 14.2.1. A function $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ is linear precisely when it respects the vector operations

- $\mathbf{g}(c\mathbf{x}) = c\mathbf{g}(\mathbf{x})$, and (scalar multiplication)
- g(x + y) = g(x) + g(y) (vector addition)

for all scalars $c \in \mathbb{R}$ and vector $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Equivalently, \mathbf{g} is linear if, for all scalars a, b and vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\mathbf{g}(a\mathbf{x} + b\mathbf{y}) = a\mathbf{g}(\mathbf{x}) + b\mathbf{g}(\mathbf{y}).$$

If $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{h}: \mathbb{R}^p \to \mathbb{R}^n$ are linear, the composition $\mathbf{g} \circ \mathbf{h}: \mathbb{R}^p \to \mathbb{R}^m$ is linear also.

Example 1. For any non-zero linear subspace V of \mathbb{R}^n , the projection function $\mathbf{Proj}_V : \mathbb{R}^n \to \mathbb{R}^n$ is a linear function.

Suppose $\{\vec{v}_1, \dots, \vec{v}_k\}$ is an orthogonal basis for V. Vector addition: For $\vec{w}_i, \vec{u} \in \mathbb{R}^n$.

$$Proj_{\vec{v}}(\vec{\omega} + \vec{u}) = Proj_{\vec{v}}(\vec{\omega} + \vec{u}) + Proj_{\vec{v}}(\vec{\omega} + \vec{u}) + \cdots + Proj_{\vec{v}}(\vec{\omega} + \vec{u})$$

$$= (Proj_{\vec{v}}(\vec{\omega}) + Proj_{\vec{v}}(\vec{\omega}) + \cdots + Proj_{\vec{v}}(\vec{\omega}))$$

$$+ (Proj_{\vec{v}}(\vec{u}) + Proj_{\vec{v}}(\vec{u}) + \cdots + Proj_{\vec{v}}(\vec{u}))$$

$$= Proj_{\vec{v}}(\vec{\omega}) + Proj_{\vec{v}}(\vec{u}).$$

Scalar multiplication: For it = R" and c=R,

Hence, Proju is linear.

Let A be an $m \times n$ matrix and B an $n \times p$ matrix defined by

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdot & a_{1n} \\ a_{21} & a_{22} & \cdot \cdot \cdot & a_{2n} \\ \vdots & \vdots & \cdot \cdot & \vdots \\ a_{m1} & a_{m2} & \cdot \cdot \cdot & a_{mn} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdot \cdot \cdot & b_{1p} \\ b_{21} & b_{22} & \cdot \cdot \cdot & b_{2p} \\ \vdots & \vdots & \cdot \cdot & \vdots \\ b_{n1} & b_{n2} & \cdot \cdot \cdot & b_{np} \end{bmatrix}.$$

Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ and $T_B : \mathbb{R}^p \to \mathbb{R}^n$ be the linear transformations defined by $T_A(\mathbf{x}) = A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$ and $T_B(\mathbf{y}) = B\mathbf{y}$ for $\mathbf{y} \in \mathbb{R}^p$. Then, the composition $T_A \circ T_B : \mathbb{R}^p \to \mathbb{R}^m$ is a linear transformation, and the associated matrix is AB, the **matrix product** of A and B.

Theorem 14.3.2. The entries of AB are the dot products of the rows of A and the columns of B. If we write

$$A = \begin{bmatrix} - & \mathbf{a}_1 & - \\ - & \mathbf{a}_2 & - \\ & \vdots \\ - & \mathbf{a}_m & - \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \\ | & | & | \end{bmatrix},$$

then we have

$$AB = \begin{bmatrix} \mathbf{a}_1 \cdot \mathbf{b}_1 & \mathbf{a}_1 \cdot \mathbf{b}_2 & \cdots & \mathbf{a}_1 \cdot \mathbf{b}_p \\ \mathbf{a}_2 \cdot \mathbf{b}_1 & \mathbf{a}_2 \cdot \mathbf{b}_2 & \cdots & \mathbf{a}_2 \cdot \mathbf{b}_p \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_m \cdot \mathbf{b}_1 & \mathbf{a}_m \cdot \mathbf{b}_2 & \cdots & \mathbf{a}_m \cdot \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \\ & & & & & \end{vmatrix} \\ \end{bmatrix}.$$

More explicitly, the ij-entry of AB is

$$\sum_{k=1}^{n} a_{ik} b_{kj},$$

the dot product of \mathbf{a}_i and \mathbf{b}_i .

Example 2. Let $A = \begin{bmatrix} 2 & 5 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix}$. Compute AB.

$$AB = \begin{bmatrix} 2 & 5 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 3 & 0 \end{bmatrix}.$$

Let
$$C = \begin{bmatrix} 2 & 1 \\ 5 & 1 \end{bmatrix}$$
. Compute $C^2 = CC$.

$$C^2 = \begin{bmatrix} 2 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 15 & 6 \end{bmatrix}.$$

Example 3. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. What does T_A and T_B do, respectively? Compute AB and BA. What does T_{AB} and T_{BA} do respectively?

$$\mathsf{T}_{\mathsf{A}} : \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

TA stretches horizontally by a factor of 2.

$$\mathsf{T}_{\mathsf{B}} \colon \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

To stretches vertically by a factor of 2.

$$AB = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

$$BA = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

The and Ten both stretch horizontally and vertically by a factor of 2, i.e. doubles everything.

Example 4. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. What does T_A and T_B do, respectively? Compute AB and BA. What does T_{AB} and T_{BA} do respectively?

 T_{AB} (= $T_A \circ T_B$) rotates 90° clockwise, then stretches horizontally by a factor of 2. T_{BA} (= $T_B \circ T_A$) stretches horizontally by a factor of 2, then rotates 90° doctowise.

Example 5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$. Compute AB and BA .

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 5 & 14 \\ 0 & 8 & 23 \\ 0 & 0 & 18 \end{bmatrix}$$

In general, AB ≠ BA.

$$BA = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 14 \\ 0 & 8 & 22 \\ 0 & 0 & 18 \end{bmatrix}$$

Example 6. Let $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Compute AB and BA.

$$AB = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

In \mathbb{R}^2 , if you rotate $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ counterclockwise by θ , you get $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ and $\begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$, respectively. Hence, if we consider the map R_{θ} , which rotates a 2-vector counterclockwise by θ , the associated matrix would be

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

In other words, $R_{\theta}(\mathbf{x}) = A_{\theta}\mathbf{x}$. The rotation map R_{θ} is linear.

Vector addition:

Example 7. Consider the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

(a) Describe geometrically what A does to each of the coordinate axes.

$$\overrightarrow{Ae}_{2} = \overrightarrow{e}_{1}$$
 The y-component volates to the x-axis.

$$A\vec{e}_3 = \vec{e}_2$$
 The z-component notates to the y-axis.

(b) Calculate A^3 in two ways: the geometric viewpoint of linear transformations and algebraically by multiplying matrices.

Geometrically:

$$A\vec{e}_1 = \vec{o}$$
 $A^2\vec{e}_1 = A\vec{o} = \vec{o}$ $A^3\vec{e}_1 = A\vec{o} = \vec{o}$

$$A\vec{e}_1 = \vec{o}$$
 $A^2\vec{e}_1 = A\vec{o} = \vec{o}$ $A^3\vec{e}_1 = A\vec{o} = \vec{o}$
 $A\vec{e}_2 = \vec{e}_1$ $A^2\vec{e}_2 = A\vec{e}_1 = \vec{o}$ $A^3\vec{e}_2 = A\vec{o} = \vec{o}$

$$A\vec{e}_3 = \vec{e}_2$$
 $A^2\vec{e}_3 = A\vec{e}_1 = \vec{e}_1$ $A^3\vec{e}_3 = A\vec{e}_1 = \vec{o}$

Hence, A3 = 0.

Algebraically:

$$A^{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad A^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Example 8. Recall that $\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n$. Define a function $f_{\mathbf{1}} : \mathbb{R}^n \to \mathbb{R}$ by $f_{\mathbf{1}}(\mathbf{x}) = \mathbf{x} \cdot \mathbf{1}$.

(a) Show that f_1 is linear by checking that it interacts well with vector addition and scalar multiplication.

Vector addition:

$$f_3(\vec{u} + \vec{\omega}) = (\vec{u} + \vec{\omega}) \cdot \vec{1} = \vec{u} \cdot \vec{1} + \vec{\omega} \cdot \vec{1} = f_3(\vec{u}) + f_3(\vec{\omega})$$

Scalar multiplication:

$$f_{\vec{x}}(c\vec{u}) = (c\vec{u}) \cdot \vec{1} = c(\vec{u} \cdot \vec{1}) = c f_{\vec{x}}(\vec{u})$$

Hence, fi is linear.

(b) Find the $1 \times n$ matrix representation of f_1 (the matrix entries will be in terms of the v_i 's).

$$A_{f_{2}} = [f_{3}(\vec{e}_{1}) \ f_{3}(\vec{e}_{2}) \ \cdots \ f_{4}(\vec{e}_{n})]$$

$$= [\vec{e}_{1} \cdot \vec{1} \ \vec{e}_{2} \cdot \vec{1} \ \cdots \ \vec{e}_{n} \cdot \vec{1}]$$

$$= [1 \ 1 \ \cdots \ 1]$$

Example 9. Find a 3×3 matrix A for which A^3 acts on \mathbb{R}^3 as the identity function (carrying each 3-vector to itself) but A and A^2 are not the identity function. (There are many possible answers.) Hint: think geometrically, and try to solve the analogous problem on \mathbb{R}^2 for 2×2 matrices first.

We can think about rotating 120° counterclockwise on the 24-plane. Then,

$$A\vec{e}_1 = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}, \quad A\vec{e}_2 = \begin{bmatrix} -\frac{13}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}, \quad \text{and} \quad A\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

and so,
$$A = \begin{bmatrix} -\frac{1}{2} & -\frac{15}{2} & O \\ \frac{15}{2} & -\frac{1}{2} & O \\ O & O & 1 \end{bmatrix}$$
.

Indeed,
$$A^2 = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & O \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & O \\ O & O & 1 \end{bmatrix}$$
 and $A^3 = \begin{bmatrix} 1 & O & O \\ O & 1 & O \\ O & O & 1 \end{bmatrix}$.