微信化学计算工具·使用说明 (XRD 与络合/掩蔽估算补充)

本说明文档介绍小程序中新加入的两项功能:XRD 计算组合包与络合/掩蔽稳定常数快速估算。数值与公式用于教学/快速估算;真实体系受温度、离子强度、pH、活度系数、混合物效应等影响,可能与实际有偏差。

一、XRD 计算组合包

功能包含:

• 收藏/自定义条目 (本地保存、可复制分享)

靶材	λ (Å)		
Cu Kα	1.5406		
Co Κα	1.7890		
Μο Κα	0.7093		

提示:不同仪器/设置 (Κα1/Κα合并、单色器、β滤波等)会产生细小差异;本工具用于近似换算与快速预判。

2. d(hkl) 计算 (晶胞几何)

• 立方: $1/d^2 = (h^2 + k^2 + l^2)/a^2$

• 四方: 1/d² = (h² + k²)/a² + l²/c² 以上与小程序 utils/xrd.js 中的实现一致。

二、络合/掩蔽稳定常数快速估算

1. 模型与公式

总体稳定常数: β = 10^{logβ}

● 配比: n 表示配体数 (如 [Cu(NH₃)₄]²+ 则 n = 4)

条件稳定常数近似: K* = β · [L]^n

• 估算结果 (简化):

络合分数 ≈ K*/(1 + K*)

 \circ [M]_free \approx [M]₀/(1 + K*)

 \circ [ML] \approx [M]₀ - [M]_free

说明:该模型忽略了活度系数、逐步平衡($log K_{1}$ ~)、竞争反应(酸碱、其他配体/金属)、电荷与离子强度效应,适用于课堂演示与实验前快速预估。

2. 输入参数

• 配体 (Ligand): 从下拉列表中选择

• 金属 (Metal): 随配体变化的可用金属列表

[L]:自由配体浓度(M)[M]。:金属总浓度(M)

3. 代表性数据简表

以下为工具预置的若干典型组合(25 °C 代表性数量级),供估算参考。n 为配体数;logβ 为总体稳定常数的对数值。

注:不同来源的数据、离子强度条件、温度等会导致显著差异;本表仅作数量级参考。

配体	金属	n	logβ	示例/备注
EDTA	Fe³+	1	25.1	强螯合,常用于掩蔽高价金属
EDTA	Cu ²⁺	1	18.8	经典强配位
EDTA	Ni ²⁺	1	18.6	经典强配位
EDTA	Zn ²⁺	1	16.5	经典强配位
EDTA	Pb ²⁺	1	18.0	经典强配位
EDTA	Ca ²⁺	1	10.7	硬酸硬碱配位
EDTA	Mg ²⁺	1	8.7	_
EDTA	Fe ²⁺	1	14.3	_
EDTA	Co ²⁺	1	16.3	_
EDTA	Al ³⁺	1	16.1	_
EDTA	Zr ⁴⁺	1	29.0	极强 (注意条件依赖)
NH₃	Cu ²⁺	4	13.0	[Cu(NH ₃) ₄] ²⁺
NH ₃	Ni ²⁺	6	8.6	_
NH₃	Zn ²⁺	4	9.0	_
NH₃	Ag⁺	2	7.0	$[Ag(NH_3)_2]^+$
en (乙二胺)	Cu ²⁺	2	11.0	双齿配体
en (乙二胺)	Ni ²⁺	3	18.0	_
en (乙二胺)	Fe ²⁺	3	17.0	_
bpy (联吡啶)	Cu ²⁺	2	12.0	平面芳香双齿
bpy (联吡啶)	Fe ²⁺	3	17.6	_
C ₂ O ₄ ²⁻ (草酸根)	Fe³+	3	20.0	双齿,多配位
C ₂ O ₄ ²⁻ (草酸根)	Ni ²⁺	3	12.0	_
C ₂ O ₄ ²⁻ (草酸根)	Cu ²⁺	2	9.0	_
C ₂ O ₄ ²⁻ (草酸根)	Ca ²⁺	1	3.0	_
	Fe³+	1	12.0	多齿配体
	Ca ²⁺	1	4.0	_

配体	金属	n	logβ	示例/备注
柠檬酸根	Al ³⁺	1	8.0	_
CN⁻	Ag⁺	2	21.0	[Ag(CN) ₂] ⁻ : 强配体 (注意安全)
CN⁻	Fe³+	6	35.0	极强
CN⁻	Ni ²⁺	4	26.0	_
CN⁻	Cu ²⁺	4	25.0	_
SCN ⁻	Fe³+	6	9.0	软配体趋势
SCN ⁻	Cu ²⁺	4	8.0	_
SCN ⁻	Ag⁺	2	6.0	_
S ₂ O ₃ ²⁻	Ag⁺	2	13.0	定影/溶银思路相关
F ⁻	Fe³+	6	6.0	硬配体 (如 Zr ⁴⁺ 强)
F ⁻	Zr ⁴⁺	6	30.0	极强 (条件依赖)
F ⁻	Al ³⁺	6	12.0	_
Cl ⁻	Ag⁺	2	5.0	中等偏弱
Cl ⁻	Cu ²⁺	4	1.2	_
Cl ⁻	Fe³+	6	2.0	_
Br ⁻	Ag⁺	2	6.5	
Ι-	Ag⁺	2	8.0	软配体对软金属偏强

完整数据以小程序内置表为准,后续会不定期更新与微调。

4. 典型使用流程

- 1. 选择配体 → 选择金属 (列表会随配体变化)
- 2. 输入 [L] (自由配体浓度) 与 [M]。(金属总浓度) , 单位均为 M
- 3. 点击"估算", 查看 K*、络合分数、[M]_free 与 [ML], 可一键复制

三、常见问题 (FAQ)

- Q: 为什么和文献值有差异?
 - 。 A: 文献通常给出逐步稳定常数 (logK₁, logK₂, ...) 与实验条件; 本工具使用代表性的总体常数 (logβ) 并忽略离子强度/活度等, 故仅供估算。
- Q: XRD 计算的 2θ 与库中波长不完全一致怎么办?
 - 。 A: 不同设备/设置 (如 $K\alpha_1/K\alpha_2$ 分辨、单色器、滤波) 会略有差异。可作为初步判定与预估,再以实验数据为准。
- Q: 能否加入更多配体/金属或导出 CSV?
 - 。 A: 可以。欢迎提出需求清单,我会按优先级补充;也可考虑增加导出功能。

最后更新: 2025-09-27

四、谱学参考小表(XPS 与拉曼/IR)

本工具内置离线简表,便于快速参考与记录:

- XPS: 常见元素与价态的结合能 (eV), 如 C 1s 284.8、Au 4f7/2 84.0、Ti 2p3/2 (TiO2) ≈458.8 等。
- 振动光谱(拉曼/IR): 常见官能团与材料峰位,如 Si 520 cm⁻¹、C=O 1650–1750 cm⁻¹、Si-O-Si 1000–1150 cm⁻¹等。

使用方法:

- 1. 在"常用谱学参考小表"页签输入关键词(元素/能级/峰位/备注), XPS 与振动表将同步过滤。
- 2. 点击任意行"复制"可将该行摘要复制到剪贴板,方便粘贴到实验记录或沟通工具。
- 3. 表头支持横向滚动, 移动端采用紧凑布局, 数值列右对齐, 备注列可换行显示。

说明:数值仅作数量级参考,具体峰位/结合能会受材料组成、化学环境、仪器与测试条件影响。建议结合文献与标准样校准结果。

五、电极电位换算与 Nernst

支持将 E vs 参比 换算为 vs NHE/RHE,并按 Nernst 方程在给定条件下计算 E。

- 参比列表: Ag/AgCI (饱和/3 M) 、SCE、NHE、RHE (pH 依赖) 。
- 输入: 参比类型、温度 (°C) 、pH (用于 RHE) 、E vs 参比 (V) 。
- 输出: E vs NHE、E vs RHE; 可复制结果摘要。
- Nernst: 输入 EO (vs NHE) 、n、温度、Q, 输出 E。

注: 参比对 NHE 的位差采用 25 $^{\circ}$ C 代表值; RHE 校正按 2.303RT/F·pH (25 $^{\circ}$ C 约 0.05916·pH) 。不同盐桥/活度条件可能有细微差异。

六、Beer-Lambert (UV-Vis)

关系式 $A = \varepsilon I c$,任意已知两项可求第三项,支持多行批量:

- 输入:每行可填写 A、ε (L·mol⁻¹·cm⁻¹)、I (cm)、c (mol·L⁻¹) 中的任意两项或三项。
- 输出:自动求解缺项并汇总;支持复制。
- 单位建议: ε (L·mol⁻¹·cm⁻¹) 、I (cm) 、c (mol·L⁻¹) 。

示例: 若已知 A 与 ϵ 、I, 则 c = A/(ϵ I); 已知 ϵ 、I、c 则 A = ϵ Ic.

七、溶度积 (Ksp) 与沉淀判断 + 离子强度/活度估算 (新)

本模块包含两部分:

1. Ksp 与沉淀判断 (针对二元盐):

• 数据:内置约 50 条常见盐的 Ksp(25 ℃ 代表值),如 AgCl、BaSO4、CaCO3、PbX2、金属硫化物/氢氧化物/草酸盐/磷酸盐等。

- 输入:
 - 盐 (下拉选择)
 - 。 温度 (℃, 用于 Debye-Hückel 系数 A 的简化温度修正)
 - 离子 1 和离子 2 的自由浓度 c (M)
- 输出:
 - 离子强度 I (M)
 - 活度系数 γ1、γ2 (Debye-Hückel 限定式, log10 γ = -A z² √I, A(25°C)≈0.509, 随温度简化修正)
 - ∘ 有效浓度 a1、a2 (a = cy)
 - 。 IAP 与 Ksp 的比较及"是否沉淀/近似饱和"判断
 - 。 在给定另一离子浓度时的"忽略活度"的饱和浓度快速估算(以及内在溶解度 s 的估算)
- 2. 自定义"离子强度/活度"批量估算(多离子场景):
- 输入: 任意多行离子条目, 每行包含标签、浓度 c (M)、电荷数 z。
- 输出:总离子强度 I (M);逐行给出 γ与 a=cγ的估算值;可复制汇总。

注意:

- Debye-Hückel 限定式在低离子强度下更适用;高 I、特定介质/温度、离子尺寸等条件会导致误差。
- Ksp 数据为代表性近似值;真实体系会受温度、离子强度、络合、酸碱/缓冲、共离子效应等影响,结果 仅供教学与快速预估。
- 饱和浓度"快速估算"忽略活度,作为初步判据;更精细的体系建议联动"络合估算"和 pH 平衡。

A. 浓度单位切换 (M ↔ mmol/L)

- 顶部可选择"浓度单位"为 M 或 mmol/L。
- 输入框随所选单位填写;内部计算统一按 M 进行,复制的结果默认以 M 展示。
- B. 活度模型选择 (Debye-Hückel / Davies)
 - 在"活度模型"中选择:
 - Debye-Hückel (限定式): log10 γ = -A z² √I
 - Davies: $log10 y = -A z^2 [\sqrt{I/(1+\sqrt{I})} 0.3 I]$
 - A(T) 采用与主程序一致的简化温度修正; Davies 在中等离子强度时通常较 DH 更稳健。
 - "自定义离子强度/活度批量"也使用当前选定模型进行 γ 与 a 的估算。

C. 反解另一离子浓度(含活度)

- 当已知其中一个离子的浓度、温度与活度模型后,可点击相邻的"反解离子1/反解离子2"按钮,数值求解 另一离子浓度使 IAP = Ksp。
- 算法采用区间扩展 + 二分法 (0-10 M 搜索) , 求解成功后自动写回输入框 (按所选单位显示) 。
- 若条件不产生可行解,会提示"未找到合适的解区间"。

示例 (思路演示):

- 以 AgCl (25 °C, Ksp≈1.8×10⁻¹⁰) 为例,若溶液中 [Cl⁻] = 1.0×10⁻³ M:
 - 忽略活度的粗略估算: c(Ag⁺) ≈ Ksp / [Cl⁻] ≈ 1.8×10⁻⁷ M;

。 在工具中选择模型(如 Davies),填写温度与 $[Cl^-]$,点击"反解离子1",得到考虑活度后的 $c(Ag^+)$ 精细值:

。 若需考察离子强度影响,可在"批量 $I/\gamma/a$ "中输入多种离子(含背景电解质)查看 I 与 γ 的变化。