

COMP250: Artificial Intelligence

5: Game Tree Search

Game trees

State-action graphs

- We have already discussed state-action graphs
 - Nodes: environment states
 - Edges: actions, which cause transitions from one state to another
- ► Such graphs could contain cycles or transpositions
 - Cycle: a sequence of actions which takes us from a state s_0 back to the same state s_0
 - ► Transpositions: two different sequences of actions which both take us from a state s_1 to a state s_2

State-action trees

- Searching graphs with cycles and transpositions is tricky
- Compare with pathfinding needing to store a closed set of already searched nodes
- ► So we often use a **tree** representation instead
- Same state may appear multiple times in the tree
- However, there are guaranteed no cycles or transpositions

Example

Minimax search

Minimax

- ► Terminal game states have a **value**
 - ightharpoonup E.g. +1 for a win, -1 for a loss, 0 for a draw
- ▶ I want to **maximise** the value
- My opponent wants to minimise the value
- ► Therefore I want to **maximise** the **minimum** value my opponent can achieve
- This is generally only true for two-player zero-sum games

Minimax search

- Recursively defines a value for non-terminal game states
- Consider each possible "next state", i.e. each possible move
- If it's my turn, the value is the maximum value over next states
- If it's my opponent's turn, the value is the minimum value over next states

Minimax search – example

minimax.pptx

Minimax search pseudocode

```
procedure MINIMAX(state, currentPlayer)
   if state is terminal then
      return value of state
   else if currentPlayer = 1 then
      bestValue = -\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = Max(bestValue, v)
      return bestValue
   else if currentPlayer = 2 then
      bestValue = +\infty
      for each possible nextState do
         v = MINIMAX(nextState, 3 - currentPlayer)
         bestValue = MIN(bestValue, v)
      return bestValue
```

Stopping early

for each possible nextState do

```
v = Minimax(nextState, 3- currentPlayer)
bestValue = Max(bestValue, v)
```

- \blacktriangleright State values are always between -1 and +1
- ► So if we ever have bestValue = 1, we can stop early
- ightharpoonup Similarly when minimising if bestValue = -1

Using minimax search

- ► To decide what move to play next...
- Calculate the minimax value for each move
- ► Choose the move with the maximum score
- If there are several with the same score, choose one at random

Minimax and game theory

- For a two-player zero-sum game with perfect information and sequential moves
- ► Minimax search will always find a Nash equilibrium
- I.e. a minimax player plays perfectly
- ► But...

Minimax for larger games

- ► The game tree for noughts and crosses has only a few thousand states
- Most games are too large to search fully
 - ▶ Connect 4 has $\approx 10^{13}$ states
 - ► Chess has $\approx 10^{47}$ states

Heuristics for search

Depth limiting

- Standard minimax needs to search all the way to terminal (game over) states
- Depth limiting is a common technique to apply minimax to larger games
- \blacktriangleright Still evaluate terminal states as +1/0/-1
- ► For nonterminal states at depth *d*, apply a heuristic evaluation instead of searching deeper
- ► Evaluation is a number between -1 and +1, estimating the probable outcome of the game

1-ply search

- ► Case d = 1
- ► For each move, evaluate the state resulting from playing that move
- ► This is computationally fast
- Often easier to design a "which state is better" heuristic than to directly design a "which move to play" heuristic
- ► This is essentially a utility-based Al

Move ordering

- ► Minimax can stop early if it sees a value of +1 for maximising player or -1 for minimising player
- Modifications to minimax algorithm (e.g. alpha-beta pruning) lead to more of this
- Thus ordering moves from best to worst means faster search
- How do we know which moves are "best" and "worst"? Use a heuristic!

Designing heuristics

- ► The playing strength of depth limited minimax depends heavily on the design of the heuristic
- Good heuristic design requires in-depth knowledge of the tactics and strategy of the game
- ▶ What if we don't possess such knowledge?

Monte Carlo evaluation

Monte Carlo methods

- ▶ In computing, a Monte Carlo method is an algorithm based on averaging over random samples
- The average over a large number of samples is a good approximation of the expected value
- Used for quickly approximating quantities over large domains
- ► Generally designed to converge in the limit
 - An infinite number of samples would give an exact answer
 - As the number of samples increases, the accuracy of the answer improves
- Applications in physics, engineering, finance, weather forecasting, graphics, ...

Aside: "randomness" in computing

- ▶ Digital computers are deterministic, so there's no such thing as true randomness
 - Cryptographically secure systems use an external source of randomness e.g. atmospheric noise, radioactive decay
- What we actually have are pseudo-random number generators (PRNGs)
- A PRNG is an algorithm which gives an unpredictable sequence of numbers based on a seed
- Sequence is uniformly distributed, i.e. all numbers have equal probability
- Seed is generally based on some source of entropy, e.g. system clock, mouse input, electronic noise

Monte Carlo evaluation in games

- ▶ Based on random rollouts
- while s is not terminal do
 let m be a random legal move from s
 update s by playing m
- ► The value of a rollout is the value of the terminal state it reaches (i.e. 1 for a win, -1 for a loss, 0 for a draw)
- ► Averaging gives the **expected value** of the initial state
- ▶ Higher expected value = more chance of winning

Monte Carlo search

- ► Flat Monte Carlo search: 1-ply search with Monte Carlo evaluation
- ► How about minimax with d > 1 and Monte Carlo evaluation?
 - Minimax assumes the evaluation is deterministic, but Monte Carlo is not
 - Not commonly used, mainly because there's something better...

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS)

- ► Like Monte Carlo evaluation, based on rollouts
- ► First few rollouts are random
- However, statistics from these rollouts are used to bias future rollouts
- ▶ Bias rollouts towards plausible lines of play, i.e. where each player is trying to play the best move

The MCTS algorithm

- ► MCTS builds a **subtree** of the game tree
- ▶ Initially, the tree consists of a single root node
- ► Each rollout has four stages:
 - Selection: Starting from the root, descend the tree by choosing moves. Continue until we reach a node which does not yet have children for all legal moves.
 - ► **Expansion**: Choose a random legal move for which the current node does not have a child node. Add this new node to the tree.
 - Simulation: Perform a Monte Carlo rollout, playing random moves until a terminal state is reached.
 - Backpropagation: For each node visited during selection and expansion, update the node's statistics based on the result of the simulation.
- Perform many rollouts, then use the statistics at the top level of the tree to choose the best move

The MCTS algorithm

Selection policy

- Selection must balance:
 - **Exploitation** of moves that are known to be good
 - Exploration of moves that have not often been tried
- This can be modelled as a multi-armed bandit problem

Multi-armed bandits

- ► We have a row of one-armed bandits (slot machines)
- We do not know the payout probabilities of any of them, and they're all different
- ► How to maximise our winnings?
- ► Again must balance
 - Exploitation of machines that are known to have a high expected payout
 - Exploration of machines that have not been tried often, to get a better estimate of their expected payout

Upper Confidence Bound (UCB)

- ► For each machine *m*, record:
 - \triangleright n_m : the number of plays of this machine
 - \triangleright V_m : the total winnings from playing this machine
 - $ho = \sum_{m} n_{m}$, total number of plays across all machines
- ► At each stage, play the machine for which

$$\frac{V_m}{n_m} + C\sqrt{\frac{\log n}{n_m}}$$

is largest

- $\frac{V_m}{n_m}$ is the **exploitation** part: average payout from this machine so far
- $ightharpoonup \sqrt{\frac{\log n}{n_m}}$ is the **exploration** part: large if n_m is small
- c is a parameter for adjusting the balance between exploitation and exploration

UCB demo

Upper Confidence Bound for Trees (UCT)

- ▶ Use UCB as the selection policy
- ▶ In each node x, record:
 - \triangleright n_x : the number of visits to this node
 - \triangleright V_x : the total value of rollouts through this node
- ▶ From node p, choose the child q such that

$$\frac{V_q}{n_q} + C\sqrt{\frac{\log n_p}{n_q}}$$

is largest

UCT demo

InteractiveDemo.exe

Benefits of MCTS

- "Vanilla" MCTS is game independent
- But if game-specific heuristics are available, they can be used to enhance MCTS
- ► MCTS is anytime
 - Can stop it after any amount of computation (within reason) and get a reasonably good answer
 - ► Compare with minimax: $O(e^d)$ for depth d
- ▶ Does not suffer from horizon effect
 - Minimax at depth d cannot "see" what happens d+1 moves in the future
 - MCTS can build the tree as deep as it likes
 - Selects which parts of the tree to expand more deeply