Cartesian Form

Rectification means the process of tinding length of curve whose eg is given between two given points

) Length of arc of carve given in Cartesian Form If curve is y = f(x) | If curve is x = g(y)Then length of curve | Then length of curve

 $S = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dn}\right)^2} \, dn \qquad \left[S = \int_{y_1}^{y_2} \left(\sqrt{1 + \left(\frac{dy}{dy}\right)^2} \right) \, dy \right]$

Find total length of curve x + y = 2/3 Sol The known is asteroid with distance a, as shown in figure.

Let S be the length of arc AB from A(a,0)

to B (o, a)

 $\frac{d_{1}47}{23} \frac{(1)^{3}}{3} + \frac{2}{3} \frac{1}{3} \frac{1}{3} \frac{dy}{dn} = 0 \implies \frac{dy}{dn} = -\frac{\frac{3}{3} \frac{1}{3}}{\frac{1}{3} \frac{1}{3}} = -\frac{\frac{y^{3}}{3}}{\frac{1}{3}}$

the toruna , $S = \int_{N_1}^{N_2} \int_{1+\frac{1}{2}}^{1+\frac{1}{2}} dn = \int_{0}^{\infty} \sqrt{\frac{\frac{1}{2}}{\frac{1}{3}}} dn = \int_{0}^{\infty} \sqrt{\frac{\frac{1}{2}}{\frac{1}{3}}} dn$ By the tormula,

 $S = \int \int \frac{\lambda^{3}}{x^{3}} dx = \int \frac{1}{3} \frac{\lambda^{3}}{x^{3}} dx = \int \frac{1}{3} \left(\frac{\lambda^{3}}{2/3} \right)^{0} dx$

 $S = -\frac{3}{2} a^{\frac{1}{3}} a^{\frac{2}{3}} = -\frac{3}{2} a^{\frac{2}{3}} a^{\frac{2}{3}} = -\frac{3}{2} a$

Total length of given curve = $45 = 4(\frac{3}{2}a) = 6a$

2) Find the length of parabola n= 4y which lies inside circle n+y= 6y

Solvi Consider eq of circle, $n^2 + y^2 - 6y + 9 = 9$ $\left[n^2 + (y-3)^2 = 3^2 \right] \text{ Hence cernter is } (0,3) \text{ &}$

$$\sqrt{x^2 + (y^{-3})^2} = 3^2$$
 Hence Cernter is $(0,3)$ &

Circle is touching naxis at origin

Parabola
$$\frac{2}{x^2-4y}$$
 is V symmetric about y axis upward & rotind point of intersection put x^2-4y $y^2-2y=0$, $y(y-2)=0$

$$y = 0$$
 & $y = 2$
 $y = 0$ $x = 0$ $x = 0$

$$4y + y^{2} = 6y$$
 $y - 2y = 0$, $y = 0$
 $y = 0$ & $y = 2$
 $y = 0$ $y = 0$ $y = 4(0)$ $y = 0$ $y = 0$
 $y = 0$ $y = 2$ $y = 4(2) = 8$ $y = 2$
 $y = 2$ $y = 2$ $y = 2$

Since
$$y = \frac{\chi^2}{4}$$
 on $\frac{dy}{dx} = \frac{2\chi}{4} = \frac{\chi}{2}$

$$S = \int_{\Lambda} \int \left(1 + \left(\frac{dy}{dn}\right)^2\right) dn$$

$$(2\sqrt{2},2)$$

$$(2\sqrt{2},2)$$

$$(2\sqrt{2},2)$$

$$(2\sqrt{2},2)$$

 $S = 2 \int \left(\frac{1 + x^2}{4} \right) dx$

$$S = \begin{cases} \frac{1}{2} \sqrt{1 + 4} + \frac{1}{2} \log(x + \sqrt{x^2 + 4}) \\ = \frac{2\sqrt{12}}{2} \sqrt{12 + 2} \log(2\sqrt{2} + \sqrt{12}) \\ = 2 \log 2 \end{cases}$$

$$S = 2 \left[\int_0^2 \int_0^2 dt + \int_0^2 \int_0^2 \int_0^2 dt + \int_0^2 \int_0$$

Since even powers of y are in eq.

: Curve is symmetric about x axis, check for negative n, Then 3 ay is negative

if x7a curve is present on right of n=a point of intersection are (0,0) & (a,0)

Since it is symmetric

$$S = 2 \int_{0}^{a} \sqrt{1 + \left(\frac{4y}{an}\right)^{2}} dx$$

lanoth of Given Curve is

diff the given function

$$3ay^{2} = x(x-a)^{2}$$
 $6ay dy = (x-a)^{2} + x^{2}(x-a)$
 $dy = (x-a)^{2}(3x-a)$
 $dy = (x-a)^{2}(3$

length of Given Curre is $S = 2 \int_{0}^{\infty} \sqrt{\frac{(3n+a)^{2}}{(2an)}} dn$ $= \chi \int_{0}^{a} \frac{3x+a}{2\sqrt{3}} \int_{0}^{a} \int_{0}^{x}$ $= \frac{1}{\sqrt{3}a} \int_{3}^{a} (3 \sqrt{3} + \frac{a}{\sqrt{n}}) dn$ $= \frac{1}{\sqrt{3}a} \left(3 \sqrt{3} + \frac{a}{\sqrt{n}} \right) dn$ $= \frac{1}{\sqrt{3}a} \left(3 \sqrt{3} + \frac{a}{\sqrt{n}} \right) dn$ $= \frac{1}{\sqrt{3}a} \left(3 \sqrt{3} + \frac{a}{\sqrt{n}} \right) dn$ $= \frac{1}{\sqrt{3}a} \left(3 \sqrt{3} + \frac{a}{\sqrt{n}} \right) dn$ $= \int_{3a}^{3} \left[2 n^{2} + 2 a n^{2} \right]_{0}^{9}$ $S = \int_{3a}^{3a} \left[4 a^{2} + 0 \right] = \int_{8}^{4} a$ S = 4 a units

MW: 3) Find total length of loop of curve $9y^2 = (x+7)(x+4)^2$

(-7)

A) Find the length of parabola $y^2 = 4an$ cut off by the line 3y = 8nSol, To find points of intersection of line Sol, To find points of intersection of line 3y=8x [line passing through origin] J & parabola y² - tan $p_{ut} + 4n = \frac{3y}{2}, \quad y^2 = (4n)a = \left(\frac{3y}{2}\right)a$ $2y^2 - 3ay = 0 \Rightarrow y(2y - 3a) = 0$ $y = 0 & y = \frac{3}{2} \alpha$ 1 ... y=0, x=0

2/3/ = 2 a | S= 1 / y Ty2+ 4a2 + 4a2 ra

when y=0, x=0when $y=\frac{3}{2}a$, $x=\frac{3}{8}y=\frac{3}{8}(\frac{3}{2}a)=\frac{9}{16}a$ $S=\frac{1}{2}a\left(\frac{y}{2}\sqrt{y^2+4a^2}+\frac{4a^2}{2}\frac{3a}{2}\right)$ Consider $x=\frac{y^2}{4a}$: $\frac{dx}{dy}=\frac{2y}{4a}=\frac{y}{2a}$ length of curve is just by $S = \int_{y_1}^{y_2} \int_{1+\left(\frac{dy}{dy}\right)^2} dy = \int_{0}^{2} \int_{1+\left(\frac{y}{2a}\right)^2} dy$ $= \frac{3}{2}$ $S = \frac{1}{2a} \left(\frac{3a}{4} \int \frac{9a^2 + 4a^2}{4} + \frac{4a^2}{4} \log \left(\frac{3a}{2} + \int \frac{9a^2 + 4a^2}{4} \right) \right)$ $-0-2a^{2}\log(2a)$ $= \int_{2a}^{3/2} \int 4a^2 + y^2 dy$ $S = \frac{1}{2a} \left(\frac{3a}{4} \left(\frac{5a}{2} \right) + 2a^2 ly \left(\frac{3a}{2} + \frac{5a}{2} \right) \right)$ -2a ly (2a) -2a ly (2a) -2a ly (2a) -2a ly 2a -2a ly 2a -2a ly 2 -2a ly 2 -2a ly 2a [15 + log 2]