

Fawad Farooq Ashraf

AEROSPACE ENGINEER · RESEARCH ASSOCIATI

44000, Islamabad, Pakistan

□+92-312-9197452 | ☑ fawadf3@gmail.com | 🌠 fawadkhanf3.github.io | ☑ fawadkhanf3 | 🛅 fawadkhanf3

An Aerospace Engineer with interest in Flight Dynamics, Flight Vehicle Guidance - Navigation & Control, Nonlinear State Estimation & Filtering and Algorithm Design. A highly determined person in accepting the challenges positively and enhancing skills for personal development and commitment to the organization.

Education

IST (Institute of Space Technology)

Islamabad, Pakistan

October 15, 2014 - August 01, 2018

- BACHELOR OF SCIENCE IN AEROSPACE ENGINEERING
- CGPA: 3.63/4.0 (90.75%), Cum Laude
- Thesis: Iterative Guidance Scheme for Satellite Launch Vehicles
- Projects:
 - Iterative Guidance Scheme for Satellite Launch Vehicles (Final Year Project): This project included the implementation and analysis of Saturn V guidance algorithm IGM (Iterative Guidance Mode) in a 3DOF GNC Simulation. The algorithm was compared with a reference solution developed using Pontryagin's minimum principle from the Optimal Control Theory.
 - Conceptual Design of a Liquid Propellant Rocket Engine as part of semester course 'Space Propulsion'.
 - Orbit Design & Analysis under Atmospheric Drag Perturbations as part of semester course 'Spacecraft Dynamics and Control'.
 - Aircraft Autopilot Designs using Proportional (P), Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) Controllers as part of semester course 'Flight Control Systems'.
 - Conceptual Design of a Supersonic Bomber Aircraft as part of semester course 'Aero-Vehicle Design'.
 - CAD Modeling of Aircraft using CATIA as part of semester course 'Computer Aided Designing'.
 - 3D Wing Meshing on ANSYS as part of semester course 'Computational Fluid Dynamics'.
 - Performance analysis of Boeing B-52 Stratofortress Aircraft as part of semester course 'Aero-Vehicle Performance'.
 - Design of a Supersonic Nozzle Inlet with Maximum Pressure Recovery as part of semester course 'Compressible Aerodynamics'.
 - Automatic Light Switching using Light Dependent Resistor as part of semester course 'Aerospace Instrumentation'.
 - Speed Control of a DC Motor using Potentiometer, H-Bridge and a Micro-Controller as part of semester course 'Circuits and Electronics'.

AIAA (American Institute of Aeronautics and Astronautics) - Continuing Education

Online

Online Certificate Courses

- Design of Space Launch Vehicles by Professor Don Edberg (April 11, 2022 May 25, 2022; 30 classroom hours / 3.0 CEU)
- Flight Vehicle Guidance, Navigation and Control (GNC) Analysis & Design by Professor Bong Wie (September 20, 2022 October 13, 2022; 16 classroom hours / 1.6 CEU)

CUST (Capital University Of Science & Technology

Islamabad, Pakistan

CERTIFICATE COURSES

- Robust Control Systems (February 17, 2020 June 19, 2020)
- Nonlinear Control Systems (March 08, 2021 July 05, 2021)

IST (Institute of Space Technology)

Islamabad, Pakistan

Workshops

- Kalman Filtering Design & Practical Considerations (July 15, 2019 July 17, 2019)
- ANSYS Meshing (October 15, 2019 October 17, 2019)
- Robust Control Design in MATLAB (March 15, 2022 March 17, 2022)

Coursera Online

Online Certificate Courses

- Machine Learning (Stanford University; March 02, 2022)
- · Specialization: MATLAB Programming for Engineers & Scientists (Vanderbilt University)
 - Introduction to Programming with MATLAB (August 19, 2022)
 - Mastering Programming with MATLAB (October 06, 2022)
 - Introduction to Data, Signal & Image Analysis with MATLAB (October 20, 2022)

IEEE (Institute of Electrical and Electronics Engineers) XPLORE Continuing Education

Online

Online Certificate Courses

- What is the Internet of Things? (02/05/2020; 0.3 CEU)
- Intelligent Control of Connected and Automated Vehicles (May 09, 2020; 0.3 CEU)
- 3G, 4G and 5G Fundamentals (May 09, 2020 May 10, 2020; 0.9 CEU)
- Radar Systems Engineering (May 13, 2020 May 17, 2020; 5.4 CEU)

November 12, 2022

ONLINE TRAINING CERTIFICATES

- · MATLAB Onramp (July 23, 2022)
- SIMULINK Onramp (July 29, 2022)
- Control Design Onramp with SIMULINK (September 24, 2022)

All Russian Space Festival

Online

April 12, 2020 - April 17, 2020

Online Certificate Course

Introduction to Rocket and Satellite Engineering

Work Experience

Institute of Space Technology

Islamabad, Pakistan

RESEARCH ASSOCIATE

August 2018 - ongoing

- Projects (Controls):
 - Robust, Optimal & Classical Control of an Inverted Pendulum on a Cart: Implemented \mathcal{H}_{∞} Loop Shaping, \mathcal{H}_{∞} Mixed Sensitivity, LQR & PID Controllers using MATLAB
 - Robust & Optimal Control of a Canard Configured Fighter Aircraft: Implemented \mathcal{H}_{∞} Loop Shaping, \mathcal{H}_{∞} Mixed Sensitivity, LQR, LQG & PID Controllers using MATLAB
 - Implementation of Exact Linearization Control of a Quadrotor via Dynamic Feedback: Implemented it as a benchmark example for Sensor-Fusion with Extended Kalman Filter and Nonlinear Set-Valued State Estimation & Fault Detection (Implemented using MATLAB & SIMULINK)
 - Implementation of LMI-based Full-State Feedback Linear, LPV & Piecewise Affine \mathcal{H}_{∞} Controllers: Tested on Inverted Pendulum with a Stationary Pivot Point & Inverted Pendulum on a Cart (Implemented using MATLAB & YALMIP)
 - Lipschitz Continuous Piecewise Affine Bounds of Nonlinear Systems (Based on Mesh-based Affine Abstraction Method): Applied on various Nonlinear Examples (Implemented using MATLAB & YALMIP)
 - Invariant & Reachability Set Computations (Based on Correct-by-Construction PCIS Approaches): Applied on Adaptive Cruise Control
 model for the design of MPC Controller (Implemented using MATLAB & MPT3)
- · Projects (Guidance):
 - Implementation of Iterative Guidance Mode algorithm for SLVs: Implemented in 2D & 3D Reference Coordinate Frames with extension to Multi-Stages. Improved the algorithm for Long Coasting Arcs (Implemented in MATLAB)
 - Implementation of Optimal Guidance algorithm for SLVs (Based on Indirect Methods from Optimal Control Theory): Both 2D & 3D with Multi-Stage extension using MATLAB. Developed as a benchmark reference to compare other SLV guidance algorithms
 - Implementation of Space Shuttle Guidance algorithm (PEG & UPFG): Implemented in 2D Reference Frame using MATLAB. Working on 3D implementation and multistage extension
 - Implementation of Lambert guidance, Kepler's propagator, Proportional Navigation, ZEM/ZEV, Delta & Q-guidance algorithms for flight vehicles using MATLAB
- Projects (Navigation):
 - Implementation of Strapdown Inertial Navigation: For a fixed wing UAV & a Quadrotor using MATLAB & SIMULINK
 - GNSS-INS Integration using Extended Kalman Filter & Constrained Kalman Filter based on Constrained Zonotopes (MATLAB, SIMULINK, MPT3 & CORA2020)
- · Projects (Optimization):
 - Implementation of Legendre-Gauss-Lobatto Pseudospectral Transcriptions (Based on Direct Optimal Control Methods): Applied on various optimization problems using MATLAB & GPOPS-I
 - Implementation of Collocation Methods for Optimal Control problems using MATLAB
 - $\,$ Optimal Weights selection for \mathcal{H}_{∞} Mixed Sensitivity using Particle Swarm Optimization
- Projects (State Estimation & Filtering):
 - Implementation of Kalman Filter, Extended Kalman Filter & Constrained Kalman Filter based on Polytopic Sets: Implemented using MATLAB, MPT3 & CORA2020
 - Linear & Nonlinear Set-Valued State Estimation using Direct (Polytopes, Polyhedrons) & Indirect (Zonotopes, Constrained Zonotopes, Zonotope Bundles) Polytopic Sets using MATLAB, MPT3 & CORA2020
 - Implementation of algorithms for conversion of Polytopes to Zonotope Bundles and vice versa using MATLAB & YALMIP
 - Implementation of Continuous & Discrete Interval Observers using MATLAB & YALMIP
- Projects (Fault Detection):
 - Implementation of Fault Detection scheme based on Set-Membership approach using Constrained Zonotopes (Linear & Nonlinear)
 - Implementation of Oscillatory Failure Case (OFC) detection scheme for Actuator Fault of an Aircraft (based on a Nonlinear Observer & IIR Filter)
 - OFC detection for Actuator Failure using Linear Predictive Coding (LPC) & Signal Spectrum Analysis: Implemented using MATLAB
- Projects (Miscellaneous):
 - Implementation of Numerical Integration Techniques with Adaptive Step-Size Features (Runge-Kutta Fehlberg, Runge-Kutta Dormand Prince and Bulirsch-Stoer with Richardson Extrapolation). Also Fixed-Step Methods such as Euler Method, Heun's Method (Modified Euler), Classical Fourth-Order Runge-Kutta
 - Implementation of Maximum Object Enclosing Rectangle Algorithm & Largest Inscribed Isothetic Rectangle Algorithm
 - Connect4 (a game) Al using Reinforcement Learning
 - SLV Trajectory Analysis and Animation using Systems Toolkit (STK)

November 12, 2022 2

INTERNEE

• Exposure to various technologies being used in the aviation sector

Publications _____

Iterative Guidance Scheme for Satellite Launch Vehicles

16th IBCAST

- Presented at Conference Proceedings of 16th International Bhurban Conference on Applied Sciences and Technology
- DOI: 10.1109/IBCAST.2019.8667124

January 2019

Iterative Guidance Scheme for a Satellite Launch Vehicle along a Three Dimensional Trajectory

19th IBCAST

- Presented at Conference Proceedings of 19th International Bhurban Conference on Applied Sciences and Technology
- · DOI: pending..

August 2022

Feasibility Analysis of Numerical Integration Techniques in Onboard Flight Control Computer for Impact Point Prediction

19th IBCAST

- Presented at Conference Proceedings of 19th International Bhurban Conference on Applied Sciences and Technology
- August 2022

• DOI: pending..

\mathcal{H}_{∞} Control of Scalar Nonlinear Systems

IFAC World Congress 2023

• Submitted to the 22nd World Congress of the International Federation of Automatic Control

Detection of Oscillatory Failures in Hydraulic Actuators of Aircraft using Linear Predictive Coding and Signal Spectrum Analysis

IFAC World Congress 2023

· Submitted to the 22nd World Congress of the International Federation of Automatic Control

Honors & Awards _____

2018	Gold Medal, 1st Position in 2nd Academic Year of BS Aerospace Engineering	IST, Pakistan
2018	Certificate of Appreciation, 2nd Position in 1st Academic Year of BS Aerospace Engineering	IST, Pakistan
2018	Dean's List of Honors, Cum Laude Distinction	IST, Pakistan
2014	Shield of Appreciation, 1st Position in FSc Pre-Engineering	PCIT, Pakistan
2012	Shield of Appreciation, 1st Position in Matric (Science Group)	DPS&C, Pakistan
	Merit Scholarship, throughout Academic Career	

Skills____

Softwares MATLAB, Mathematica, ANSYS, CATIA, SolidWorks, LabView, Systems Toolkit (STK), MS Office, RDS, DATCOM, GPOPS-II

Programming MATLAB, c, c++, Python, LaTeX
Languages Urdu, English, Punjabi

References_

Dr. Jamshed Riaz (PhD Flight Mechanics) Adjunct Professor at Institute of Space Technology (jamshed54@hotmail.com)

Dr. XYZ (xyz@abc.com)

November 12, 2022 3