Formalism, Three Dimensions, Linear Algebra

He Yingqiu

April 23, 2022

Contents

1	For	malism	ı 3				
	1.1	Hilber	t Space				
	1.2	Obser	vables				
		1.2.1	Hermitian Operators				
		1.2.2	Determinate State				
	1.3	Eigenf	fuctions of a Hermitain Operator				
		1.3.1	Discrete Spectra				
		1.3.2	Continuous Spectra				
	1.4	Gener	alized Statistical Interpretation				
	1.5	The U	Incertainty Principle				
		1.5.1	Proof of the Generalized Uncertainty Principle				
		1.5.2	The Minimum-Uncertainty Wave Packet				
		1.5.3	The Energy-Time Uncertainty Principle				
	1.6	Vector	rs and Operators				
		1.6.1	Bases in Hillbert Space				
		1.6.2	Dirac Notation				
		1.6.3	Changing Bases in Dirac Notation				
	1.7	Functions in Position and Momentum Space(Addition) 8					
		1.7.1	Position-Space Wave Function				
		1.7.2	Momentum Operator in the Position Basis				
		1.7.3	Momentum-Space Wave Function				
2	Quantum Mechanics in Three Dimensions						
	2.1	The S	chroding Equation				
		2.1.1	Cartesian Coordinates				
		2.1.2	Spherical Coordinates				
		2.1.3	The Angular Equation				
		2.1.4	The Radial Equation				
	2.2	The H	[ydrogen Atom				
		2.2.1	The Radial Wave Function				
		2.2.2	The Spectrum of Hydrogen				
	2.3	Angul	<mark>ar Momentum</mark>				
		2.3.1	Eigenvalues				
		2.3.2	Eigenfunctions				
	2.4	Spin					

		2.4.1	Spin $1/2$	11		
		2.4.2	Electron in a Magnetic Field	11		
	2.5	Electromagnetic Interactions				
		2.5.1	Minimal Coupling	11		
		2.5.2	The Aharonov-Bohm Effect	11		
3	Linear Algebra					
	3.1	Vector	°S	12		
	3.2	Inner l	Product	12		
	3.3	Matrix	<u>«</u>	12		

1 Formalism

1.1 Hilbert Space

Contructs:

• state: wave function

• observables: operators

• vectors: defining conditions

• linear transformation: the operators act on vectors

• linear algebra: the natural language of Quantum Mechanics

Properties:

1. wave function live in

2. complete inner product space

3. squre-integrable

Definition 1 Inner product of two function

$$\langle f|g\rangle \equiv \int_a^b f(x)^* g(x) \mathrm{d}x$$

Discussion:

• Schwarz inequality:

$$\left| \int_a^b f(x)^* g(x) dx \right| \le \sqrt{\int_a^b |f(x)|^2 dx \int_a^b |g(x)|^2 dx}$$

• $\langle g|f\rangle = \langle f|g\rangle^*$

• normalized $\langle f|f\rangle=1$

• orthonormal $\langle f_m | f_n = \delta_{mn} \rangle$

• complete and orthonormal $f(x) = \sum_{n=1}^{\infty} c_n f_n(x), c_n = \langle f_n | f \rangle$

1.2 Observables

1.2.1 Hermitian Operators

Definition 2 Hermitian Operators

$$\langle f|\hat{Q}g\rangle = \langle \hat{Q}f|g\rangle$$
 for all $f(x)$ and $g(x)$

3

Discussion:

• Observables are represented by hermitian operators

• hermitian conjugate $\hat{Q}^{\dagger} = \hat{Q}$

1.2.2 Determinate State

$$\sigma^{2} = \left\langle (Q - \langle Q \rangle)^{2} \right\rangle = \left\langle (\Psi | (\hat{Q} - q)^{2} \Psi \right\rangle = \left\langle ((\hat{Q} - q) \Psi | (\hat{Q} - q) \Psi \right\rangle = 0$$

$$\downarrow \downarrow$$

$$\hat{Q} \Psi = q \Psi$$

Discussion:

- This is eigenvalue equation for \hat{Q}
- Ψ if an eigenfuction of \hat{Q} , and q is the corresponding eigenvalue
- Determinate state of Q are eigenfuction of \hat{Q}
- spectrum: the collection of all the eigenvalues of an operator
- degenerate: linearly independent eigenfuctions share the same eigenvalue

1.3 Eigenfuctions of a Hermitain Operator

1.3.1 Discrete Spectra

- the eigenvalues are separated from another
- the eigenfuctions lie in Hilbert space and constitute physically realizable states

Properties of normalizable eigenfuctions of a hermitian operator:

- 1. Their eigenvalues are real
- 2. Eigenfuctions belonging to distinct eigenvalues are orthognal

1.3.2 Continuous Spectra

- the eigenvalues fill out an entire range
- the eigenfuctions are not normalizable and do not represent possible wave functions

The eigenfuctions and eigenvalues of the momentum operator (on the interval $(-\infty < x < \infty)$:

$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} f_p(x) = p f_p(x) \quad \Rightarrow \quad f_p(x) = A e^{ipx/\hbar}$$

$$\downarrow$$

$$\int_{-\infty}^{\infty} f_{p'}^*(x) f_p(x) \mathrm{d}x = |A|^2 \int_{-\infty}^{\infty} e^{i(p-p')/\hbar} \mathrm{d}x = |A|^2 2\pi \hbar \delta(p-p')$$

$$\downarrow$$

$$f_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$

• Dirac orthonormality: $\langle f_{p'}|f_p\rangle=\delta(p-p')$

• Complete:

$$f(x) = \int_{-\infty}^{\infty} c(p) f_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} c(p) e^{ipx/\hbar} dp$$
$$\langle f_{p'}|f\rangle = \int_{-\infty}^{\infty} c(p) \langle f_{p'}|f\rangle dp = \int_{-\infty}^{\infty} c(p) \delta(p - p') dp = c(p')$$

The eigenfuctions and eigenvalues of the position operator:

$$\hat{x}g_y(x) = g_y x \quad \Rightarrow \quad g_y(x) = A\delta(x - y)$$

$$\downarrow$$

$$\int_{-\infty}^{\infty} g_{y'}^* g_y(x) dx = |A|^2 \int_{-\infty}^{\infty} \delta(x - y') \delta(x - y) dx = |A|^2 \delta(y - y')$$

$$\downarrow$$

$$g_y(x) = \delta(x - y)$$

1.4 Generalized Statistical Interpretation

Observable: Q(x, p)

State: $\Psi(x,t)$

One of eigenvalues: $\hat{Q}(x - i\hbar d/dx)$

The probablility of getting eigenvalues(orthonormal):

1. Discrete spectrum

$$|c_n|^2$$
, where $c_n = \langle f_n | \Psi \rangle$

Complete:

$$\Psi(x,t) = \sum_{n} c_n(t) f_n(x)$$
$$c_n(t) = \langle f_n | \Psi \rangle = \int f_n(x)^* \Psi(x,t) dx$$
$$\sum_{n} |c_n|^2 = 1$$

The expectation value of Q:

$$\langle Q \rangle = \left\langle \Psi | \hat{Q} \Psi \right\rangle = \sum_{n} q_n |c_n|^2$$

2. Continuous spectrum

$$|c(z)|^2 dz$$
, where $c(z) = \langle f_z | \Psi \rangle$

For position measurements:

$$c(y) = \langle g_y | \Psi \rangle = \int_{-\infty}^{\infty} \delta(x - y) \Psi(x, t) dx = \Psi(y, t)$$

For momentum measurements:

$$c(p) = \langle f_p | \Psi \rangle = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x, t) dx$$

Fourier transformation:

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) dx$$
$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{ipx/\hbar} \Phi(p,t) dp$$

Expectation:

$$\langle Q(x,p,t)\rangle = \begin{cases} \int \Psi^* \hat{Q}\left(x,-i\hbar\frac{\partial}{\partial x},t\right)\Psi\,\mathrm{d}x, & \text{in position space} \\ \int \Phi^* \hat{Q}\left(i\hbar\frac{\partial}{\partial p},p,t\right)\Phi\,\mathrm{d}p, & \text{in momentum space} \end{cases}$$

1.5 The Uncertainty Principle

1.5.1 Proof of the Generalized Uncertainty Principle

$$f \equiv \left(\hat{A} - \langle A \rangle\right) \Psi \quad \rightarrow \quad \sigma_A^2 \sigma_B^2 = \langle f | f \rangle \langle f | g \rangle \ge |\langle f | g \rangle|^2$$
$$|z|^2 \ge [\operatorname{Im}(z)]^2 = \left[\frac{1}{2i}(z - z^*)\right]^2 \quad \Rightarrow \quad \sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i}\left[\langle f | g \rangle - \langle g | f \rangle\right]\right)^2$$
$$\langle f | g \rangle = \langle \hat{A} | \hat{B} \rangle - \langle A \rangle \langle B \rangle$$
$$\downarrow \qquad \qquad \downarrow$$
$$\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i}\left\langle\left[\hat{A}, \hat{B}\right]\right\rangle\right)^2$$

1.5.2 The Minimum-Uncertainty Wave Packet

$$g(x) = iaf(x)$$
, where a is real

$$\Rightarrow \left(-i\hbar \frac{\mathrm{d}}{\mathrm{d}x} - \langle p \rangle\right) \Psi = ia(x - \langle x \rangle) \Psi$$

$$\Rightarrow \Psi(x) = Ae^{-a(x - \langle x \rangle)^2/2\hbar} e^{i\langle p \rangle/\hbar}$$

1.5.3 The Energy-Time Uncertainty Principle

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \Psi | \hat{Q} \Psi \right\rangle \\ i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi, \quad \text{where} \quad H = \frac{p^2}{2m} + V \end{cases} \Rightarrow$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \langle Q \rangle = \frac{i}{\hbar} \left\langle \left[\hat{H}, \hat{Q} \right] \right\rangle + \left\langle \frac{\partial \hat{Q}}{\partial t} \right\rangle \end{cases}$$

Assume that Q does not depend explicity on t:

$$\sigma_H \sigma_Q^2 \ge \left(\frac{1}{2i} \left\langle \hat{H}, \hat{Q} \right\rangle \right)^2 = \left(\frac{\hbar}{2}\right)^2 \left(\frac{d\langle Q \rangle}{dt}\right)^2$$

$$\Delta E \equiv \sigma_H$$

$$\Delta t \equiv \frac{\sigma_Q}{|d\langle Q \rangle/dt|} \Rightarrow \Delta t \Delta E \ge \frac{\hbar}{2}$$

1.6 Vectors and Operators

1.6.1 Bases in Hillbert Space

$$\Psi(x,t) = \langle x|\mathcal{S}(t)\rangle
\Phi(p,t) = \langle p|\mathcal{S}(t)\rangle
c_n(t) = \langle n|\mathcal{S}(t)\rangle
|\mathcal{S}(t)\rangle \to \int \Psi(y,t)\delta(x-y) \,dy = \int \Phi(p,t)\frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \,dp
\sum c_n e^{-iE_nt/\hbar}\psi_n(x)$$

Schrodinger equation:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\mathcal{S}(t)\rangle = \hat{H} |\mathcal{S}(t)\rangle,$$
 Time-dependent $\hat{H}|s\rangle = E|s\rangle,$ Time-independent

Particular example of vectors:

$$\hat{x} \text{ (the position operator)} \rightarrow \begin{cases} x & \text{ (in positoin space)} \\ i\hbar\partial/\partial p & \text{ (in momentum space)} \end{cases}$$

$$\hat{p} \text{ (the momentum operator)} \rightarrow \begin{cases} -i\hbar\partial/\partial x & \text{ (in positoin space)} \\ p & \text{ (in momentum space)} \end{cases}$$

1.6.2 Dirac Notation

bra: $\langle \alpha |$ ket: $|\beta \rangle$

Orthonormal basis (complete):

• Discrete

$$\langle e_m | e_n \rangle = \delta_{mn} \qquad \rightarrow \qquad \sum_n |e_n \rangle \langle e_n| = 1$$

• Continuous

$$\langle e_z | e_{z'} \rangle = \delta(z - z')$$
 \rightarrow $\int |e_z\rangle \langle e_{z'}| dz = 1$

Baker-Campbell-Hausdrff formula:

$$e^{\hat{A}+\hat{B}}=e^{\hat{A}}e^{\hat{B}}e^{-\hat{C}/2}, \qquad \text{where} \qquad \hat{C}=\left[\hat{A},\hat{B}
ight]$$

1.6.3 Changing Bases in Dirac Notation

the position eigenstats :
$$|x\rangle$$

$$1 = \int dx \, |x\rangle \langle x|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \int dx \, |x\rangle \langle x| \mathcal{S}(t)\rangle \equiv \int \Psi(x,t) \, |x\rangle \, \mathrm{d}x$$
 the momentum eigenstats : $|p\rangle$
$$1 = \int dp \, |p\rangle \langle p|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \int dp \, |p\rangle \langle p| \mathcal{S}(t)\rangle \equiv \int \Phi(p,t) \, |p\rangle \, \mathrm{d}p$$
 the energy eigenstats : $|n\rangle$
$$1 = \sum |n\rangle \langle n|$$

$$\rightarrow |\mathcal{S}(t)\rangle = \sum_{n} |n\rangle \langle n| \mathcal{S}(t)\rangle \equiv \sum_{n} c_{n}(t) \, |n\rangle$$

Operators act on kets

$$\langle x|\hat{x}|\mathcal{S}(t)\rangle = \text{action of position operator in } x \text{ basis} = x\Psi(x,t)$$

 $\langle p|\hat{x}|\mathcal{S}(t)\rangle = \text{action of position operator in } p \text{ basis} = i\hbar\frac{\partial\Phi}{\partial p}$

Proof:

$$\langle p|\hat{x}|\mathcal{S}(t)\rangle = \left\langle p \left| \hat{x} \int dx |x\rangle \langle x| \right| \mathcal{S}(t) \right\rangle = \int \langle p|x|x\rangle \langle x|\mathcal{S}(t)\rangle dx = i\hbar \frac{\partial}{\partial p} \langle p|\mathcal{S}(t)\rangle$$

1.7 Wave Functions in Position and Momentum Space(Addition)

NOTE: x, f(x), p are operators, different form all above

1.7.1 Position-Space Wave Function

The base ket used are the position kets satisfying

$$x|x'\rangle = x'|x'\rangle$$
 $\langle x''|x'\rangle = \delta(x'' - x')$

A physical state can be expanded in terms of x'

$$|\alpha\rangle = \int dx' |x'\rangle \langle x'|\alpha\rangle$$
$$|\langle x'|\alpha\rangle|^2 dx' \quad \text{probablility}$$
$$\langle x'|\alpha\rangle \equiv \psi_{\alpha}(x') \quad \text{wave function}$$

Using the completness of $|x'\rangle$, we have

$$\langle \beta | \alpha \rangle = \int dx' \langle \beta | x' \rangle \langle x' | \alpha \rangle = \int dx' \psi_{\beta}^*(x') \psi_{\alpha}^*(x')$$

the probability amplitude for state $|\alpha\rangle$ to be found in state $|\beta\rangle$ f(x) is a function of x

$$\langle x'|f(x)|x''\rangle = (\langle x'|) \cdot (f(x'')|x'') = f(x')\delta(x' - x'')$$

$$\langle \beta|f(x)|\alpha\rangle = \int dx' \int dx'' \langle \beta|x'\rangle \langle x'|f(x)|x''\rangle \langle x''|\alpha\rangle$$

$$= \int dx' \,\psi_{\beta}^*(x')f(x')\psi_{\alpha}(x')$$

1.7.2 Momentum Operator in the Position Basis

$$p|\alpha\rangle = \int dx'|x'\rangle \left(-i\hbar \frac{\partial}{\partial x'} \langle x'|\alpha\rangle\right)$$
$$\Rightarrow \langle x'|p|\alpha\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|\alpha\rangle$$

Properties:

$$\langle x'|p^n|x''\rangle = (-i\hbar)^n \frac{\partial^n}{\partial x'^n} \delta(x' - x'')$$
$$\langle \beta|p^n|\alpha\rangle = \int dx' \,\psi_\beta^*(x') \left((-i\hbar)^n \frac{\partial^n}{\partial x'^n} \right) \psi_\alpha(x')$$

1.7.3 Momentum-Space Wave Function

The base eigenkets in the p-basis specify

$$p|p'\rangle = p'|p'\rangle$$
 $\langle p'|p''\rangle = \delta(p'-p'')$

Same way as $|x'\rangle$

$$|\alpha\rangle = \int dp'|p'\rangle\langle p'|\alpha\rangle$$
$$|\langle p'|\alpha\rangle|^2 dp' \quad \text{probablility}$$
$$\langle p'|\alpha\rangle \equiv \phi_{\alpha}(p') \quad \text{momentum-space wave function}$$

Transformation function from x to p: $\langle x'|p'\rangle$

$$\langle x'|p|p'\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|p'\rangle = p'\langle x'|p'\rangle$$

 $\Rightarrow \langle x'|p'\rangle = N \exp\left(\frac{ip'x'}{\hbar}\right)$

Discussion:

- the probability amplitude for $|p'\rangle$ specified by p' to be found at position x'
- the wave function for $|p'\rangle$, referred to as the momentum eigenfuction (still in the x-space)
- Nomalization: $N = \frac{1}{\sqrt{2\pi\hbar}}$

Rewrite:

$$\begin{cases} \langle x'|\alpha\rangle = \int dp' \langle x'|p'\rangle \langle p'|\alpha\rangle \\ \langle p'|\alpha\rangle = \int dx' \langle p'|x'\rangle \langle x'|\alpha\rangle \end{cases} \Leftrightarrow \qquad \psi_{\alpha}(x') = \left[\frac{1}{\sqrt{2\pi\hbar}}\right] \int dp' \exp\left(\frac{ip'x'}{\hbar}\right) \phi_{\alpha}(p') \\ \phi_{\alpha}(p') = \left[\frac{1}{\sqrt{2\pi\hbar}}\right] \int dx' \exp\left(\frac{-ip'x'}{\hbar}\right) \psi_{\alpha}(x') \end{cases}$$

Quantum Mechanics in Three Dimensions $\mathbf{2}$

The Schroding Equation 2.1

2.1.1 Cartesian Coordinates

Laplacian

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Schroding's Equation

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi$$

Canonical commutation relations

$$[r_i, p_j] = i\hbar \delta_{ij}$$
 $[r_i, r_j] = [p_i, p_j] = 0$

Three-Dimensional of Ehrenfest's theorem

$$\frac{\mathrm{d}}{\mathrm{d}r}\langle\mathbf{r}\rangle = \frac{1}{m}\langle\mathbf{p}\rangle, \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t}\langle\mathbf{p}\rangle = \langle-\nabla V\rangle$$

Heisenberg's uncertainty principle

$$\sigma_{x,y,z}\sigma_{p_x,p_y,p_z} \ge \hbar/2$$

Spherical Coordinates 2.1.2

Time-independent Schrodinger equation

$$-\frac{\hbar^{2}}{2m} \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^{2} \sin \theta^{2}} \left(\frac{\partial^{2} \psi}{\partial \phi^{2}} \right) \right] + V \psi = E \psi$$

$$\psi(r, \theta, \phi) = R(r) Y(\theta, \phi) \qquad \Rightarrow \qquad \frac{\frac{1}{R} \frac{d}{dr} \left(r^{2} \frac{dR}{dr} \right) - \frac{2mr^{2}}{\hbar^{2}} [V(r) - E] = \ell(\ell + 1)}{\frac{1}{Y} \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}} \right\} = -\ell(\ell + 1)$$

The Angular Equation

.3 The Angular Equation
$$Y(\theta,\phi) = \Theta(\theta)\Phi(\phi) \qquad \Rightarrow \qquad \frac{1}{\Theta} \left[\sin\theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) \right] + \ell(\ell+1)\sin^2\theta = m^2$$
$$\frac{1}{\Phi} \frac{\mathrm{d}^2\Theta}{\mathrm{d}\theta^2} = -m^2$$

Spherical harmonics

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} e^{im\phi} P_{\ell}^{m}(\cos\theta)$$

• $\ell = 0, 1, 2 \cdots$

•
$$m = -\ell, -\ell + 1, \cdots, -1, 0, 1, \cdots, \ell - 1, \ell$$

2.1.4 The Radial Equation

$$u(r) \equiv rR(r)$$

$$\Rightarrow -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2} \right] u = Eu$$

Effective potential

$$V_{\text{eff}} = V + \frac{\hbar^2}{2m} \frac{\ell(\ell+1)}{r^2}$$

2.2 The Hydrogen Atom

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$

- 2.2.1 The Radial Wave Function
- 2.2.2 The Spectrum of Hydrogen
- 2.3 Angular Momentum

$$\mathbf{L} = \mathbf{r} \times \mathbf{p}$$

2.3.1 Eigenvalues

Fundamental commutation relations for angular momentum

$$[L_x, L_y] = i\hbar L_z \qquad [L^2, \mathbf{L}] = 0$$

- 2.3.2 Eigenfunctions
- 2.4 Spin
- 2.4.1 Spin 1/2
- 2.4.2 Electron in a Magnetic Field
- 2.5 Electromagnetic Interactions
- 2.5.1 Minimal Coupling
- 2.5.2 The Aharonov-Bohm Effect

3 Linear Algebra

3.1 Vectors

- (1) Addition
- (2) Scalar Multiplication

$$|\alpha\rangle \leftrightarrow (a_1, a_2, \cdot, a_n)$$

3.2 Inner Product

- 1. $\langle \beta | \alpha \rangle = a_1^* b_a + \dots + a_n^* b_n$
- 2. $\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle^*$
- 3. $||\alpha|| \equiv \sqrt{\langle \alpha | \alpha \rangle}$
- 4. orthonormal set: $\langle \alpha_i | \alpha_j \rangle = \delta_{jk}$
- 5. Schwarz inequality: $|\langle \beta | \alpha \rangle|^2 \le \langle \alpha | \alpha \rangle \langle \beta | \beta \rangle$

3.3 Matrix