Group 15 - LAB 3

Einar Lennelöv | Mustafa Al-Janabi

3.1 Convergence and attractors

Simple 8bit data

- The three input patterns are stable
- 2 / 3 slightly noisy patterns converged correctly
- No heavily noisy patterns converged correctly
- 11 attractors in total

3.2 Sequential Update

Recovery with distorted pattern

Recovery with distorted pattern, sequential updates

A reference of all the predictions

When trained only on the first three patterns the network appears to have four attractors

Energies for different images

The last two distorted patterns converge to the correct attractor while P9 converges to a different attractor of the system.

Random weights

Higher energy level and when weight matrix is non-symmetric it is not possible to define a Lyapunov function of the system

3.4 Distortion Resistance

Distortion resistance analysis Average over 100 trials

A few attractors

3.5 Capacity

Storage capacity

Storage capacity with random, unbiased samples

Storage capacity with zero diagonal

Stability and convergence analysis with zero-diagonal (biased patterns) 30% negative

3.6 Sparse Patterns

The bias-sparsity effect

The higher the bias the more patterns are required to achieve higher accuracy. Thus, performance is degraded

The bias-sparsity effect

The lower the sparsity the less the performance is degraded.