Discrete Mathematics

Tutorial sheet

Topic-9

Relations

Question 1.

Let S be a set and R be a relation on S. Explain what it means (you are expected to give mathematical definitions.) to say that R is:

- 1. reflexive;
- 2. symmetric;
- 3. anti-symmetric;
- 4. transitive;
- 5. an equivalence relation;
- 6. a partial order.

In each case give an example of a relation which has the given property and another relation which does not have it.

Question 2.

Let $S = \{a, b, c\}$ and $A = \{(c, c), (a, b), (b, b), (b, c), (c, b)\}$. Define a relation R on S by "x is related to y whenever $(x, y) \in A$ ".

- 1. Draw the relationship digraph.
- 2. The relation R is not reflexive. What pair (x, y) should be added to A to make R reflexive?
- 3. The relation R is not symmetric. What pair (x, y) should be added to A to make R symmetric?
- 4. The relation R is not anti-symmetric. What pair (x, y) should be removed to make R anti-symmetric?
- 5. The relation R is not transitive. What pair (x, y) should be added to A to make R transitive?

Question 3.

The following relations are defined on a set $S = \{a, b, c\}$.

 R_1 is the relation given by $\{(a,a),(a,b),(a,c),(b,a),(b,b),(c,a),(c,c)\}$

 R_2 is given by $\{(a,a),(a,b),(b,a),(b,b),((c,c))\}$

 R_3 is given by $\{(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)\}$

 R_4 is given by $\{(a,a),(a,b),(a,c),((b,b),(b,c),(c,c)\}$

Complete the table below. If the relation is an equivalence relation give the equivalence classes. Also state whether any of the relations is a partial order, justifying your answer.

	reflexive	symmetric	antisymmetric	transitive	equivalence rel.	
\mathcal{R}_1						
\mathcal{R}_2						
\mathcal{R}_3						
\mathcal{R}_4						

Question 4.

Let $\mathcal{S} = \{1,2,3,4,5,6,7,8,9\}$ and let \mathcal{P} be the partition on \mathcal{S} given by

$$\{\{1,4,7\},\{2,5,8\},\{3,6,9\}\}.$$

Define \mathcal{R} to be the equivalence relation associated to \mathcal{P} .

- 1. Give two conditions for \mathcal{P} to be a partition.
- 2. Draw the relationship digraph.
- 3. Write down the equivalence class [5] as a set.

Question 5.

Let $S = \mathbb{Z} \times \mathbb{N}^+$ and Let \mathbb{R} be relation on S defined as follows:

$$(a,b) \mathcal{R} (c,d)$$
 whenever $ad = bc$

- 1. Show that \mathcal{R} is an equivalence relation
- 2. Define the equivalence class generated by (a,b), for $a \in \mathbb{Z}$ and $b \in \mathbb{N}^+$

Question 6.

Let A and B be two sets where:

 $A = \{France, Germany, Switzerland, England, Morocco\}$ and

 $B = \{French, German, English, Arabic\}$. Let \mathcal{R} be relation defined from A to B, given by $a\mathcal{R}b$ when b is a national language of a. The national language

of of each of these countries is as follows: French for France, German for Germany, English for England, Arabic for Morocco, whereas, Switzerland has two national languages, French and German. Find the logical matrix for the relation $\mathcal R$.

Question 7.

For each of the following relations on the set of all people, state if i is an equivalence relation. Explain your answer.

- 1. $\mathcal{R}_1 = \{(x, y) | x \text{ and } y \text{ are the same height } \}.$
- 2. $\mathcal{R}_2 = \{(x,y)|x \text{ and } y \text{ have, at some time, lived in the same country}\}.$
- 3. $\mathcal{R}_3 = \{(x,y)|x \text{ and } y \text{ have the same first name}\}.$
- 4. $\mathcal{R}_4 = \{(x,y)|x \text{ is taller than } y\}.$
- 5. $\mathcal{R}_5 = \{(x, y) | x \text{ and } y \text{ have the same colour hair} \}.$

Question 8.

Let $S = \{\{1\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}, \{1,2,3,4,5\}\}$. Define a relation \mathcal{R} between the elements of S by

X is related to Y whenever $X \subseteq Y$.

- 1. Draw the relationship digraph.
- 2. Determine whether or not \mathcal{R} is reflexive, symmetric, antisymmetric or transitive. Give a brief justification for each of your answers.
- 3. State, with reasons, whether or not \mathcal{R} is an equivalence relation, whether or not it is a partial order and whether or not it is a total order.

Question 9.

Let $\mathcal{S} = \{a,b,c,d\}$ and let $A \subseteq \mathcal{S} \times \mathcal{S}$ be given by

$$\{(a, a), (a, c).(b, b), (b, d), (c, a), (c, c), (d, b), (d, d)\}.$$

A relation \mathcal{R} on \mathcal{S} is defined by

x is related to y whenever $(x, y) \in A$.

1. Draw the relationship digraph.

- 2. Determine whether or not \mathcal{R} is reflexive, symmetric, antisymmetric or transitive, giving a brief justification for your answer.
- 3. State, with reasons, whether or not \mathcal{R} is and equivalence relation, whether or not it is a partial order and whether or not it is a total order.

Question 10.

Let \mathcal{R} be a relation from a set A to a set B. The inverse of \mathcal{R} , denoted \mathcal{R}^{-1} , is the relation from B to A defined by $\mathcal{R}^{-1} = \{(y, x) : (x, y) \in \mathcal{R}\}$. Given a relation \mathcal{R} from $A = \{2, 3, 4\}$ to $B = \{3, 4, 5, 6, 7\}$ defined by $(x, y) \in \mathcal{R}$ if x divides y.

- 1. List the elements of of \mathcal{R} and write down the matrix, $M_{\mathcal{R}}$, of \mathcal{R} .
- 2. List the elements of of \mathcal{R}^{-1} and write down the matrix, $M_{\mathcal{R}^{-1}}$, of \mathcal{R} .

Question 11.

Let \mathcal{R}_1 and \mathcal{R}_2 be the relations on a set $S = \{1, 2, 3, 4\}$ given by: $\mathcal{R}_1 = \{(1, 1), (1, 2), (3, 4), (4, 2), (2.4)\}$ $\mathcal{R}_2 = \{(1, 1), (3, 2), (4, 4), (2, 2), (4, 2)\}.$

- 1. Find the matrix representation \mathcal{R}_1 and that of \mathcal{R}_2 .
- 2. Find the matrix of the intersection of both matrices in (1).
- 3. Find the matrix of the union both matrices in (1).
- 4. list the element of $\mathcal{R}_1 \cap \mathcal{R}_2$.
- 5. list the element of $\mathcal{R}_1 \cup \mathcal{R}_2$.

Question 12.

Let \mathcal{R} be a relation on set A.

- 1. How can we quickly determine whether a relation R is reflexive by examining the matrix of \mathcal{R} ?
- 2. How can we quickly determine whether a relation R is symmetric by examining the matrix of \mathcal{R} ?
- 3. How can we quickly determine whether a relation R is anti-symmetric by examining the matrix of \mathcal{R} ?

Question 13.

For each of following relations on a set $A = \{a, b, c\}$ defined by their corresponding Matrices, say wether is reflexive, symmetric or anti-symmetric.

1.
$$M_{\mathcal{R}_1} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ c & 0 & 1 & 0 \end{bmatrix}$$

2.
$$M_{\mathcal{R}_2} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$3. \ M_{\mathcal{R}_3} = \begin{bmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ c & 0 & 0 & 1 \end{bmatrix}$$

4.
$$M_{\mathcal{R}_4} = \begin{bmatrix} a & b & c \\ 1 & 1 & 0 \\ b & 1 & 1 & 1 \\ c & 0 & 1 & 1 \end{bmatrix}$$

Question 14.

Let $A = \{1, 2, ..., 10\}$ and let \mathcal{R} be a relation on A defined by $x\mathcal{R}y$ if 3 divides x - y.

- 1. Show that the relation \mathcal{R} is an equivalence relation on A.
- 2. List all the equivalence classes of \mathcal{R} .

Question 15.

Let $A = \{1, 2, ..., 10\}$ and let \mathcal{R} be a relation on A defined by $x\mathcal{R}y$ if $x \mod 2 = y \mod 2$.

- 1. Show that the relation \mathcal{R} is an equivalence relation on A.
- 2. List all the equivalence classes of \mathcal{R} .
- 3. is \mathcal{R} a partial or a total order?

Question 16.

Let $A = \{1, 2, ..., 10\}$ and let \mathcal{R} be a relation on A defined by $x\mathcal{R}y$ if $x + y \mod 2 = 0$.

1. Show that the relation \mathcal{R} is an equivalence relation on A.

- 2. List all the equivalence classes of \mathcal{R} .
- 3. is \mathcal{R} a partial or a total order?

Question 17.

Let \mathcal{R} be are relation on the set $A = \{1, 2, 3, 4, 5\}$ defined by the rule $x\mathcal{R}y$ if x = y - 1. Is this relation reflexive, symmetric, antisymmetric, transitive, equivalence, and/or a partial order?

Question 18.

Let $A = \{1, 2, ..., 10\}$ and let \mathcal{R} be a relation on $A \times A$ defined by $(a, b)\mathcal{R}(c, d)$ if a + d = b + c. Show that \mathcal{R} is an equivalence relation on $A \times A$.

Question 19.

Let $X = \{1, 2, 3, 4\}, Y = \{3, 4\},$ and $C = \{1, 3\}$ and let \mathcal{R} be a relation on $\mathcal{P}(X)$, the set of all subsets of X, defined as

$$\forall A, B \in \mathcal{P}(X), \quad A\mathcal{R}B \text{ if } A \cup Y = B \cup Y$$

- 1. Show that \mathcal{R} is an equivalence relation.
- 2. List the elements of [C], the equivalence class containing C.