Tokovni transformator z elektronskim ojačevalnikom

Tokovni transformator se sestoji iz primarnega navitja skozi katerga teče merjeni tok in sekundarnega navitja. Na sekundarno navitje je priklopljen merilni upor s kompleksno impedanco Z. Shema realnega transformatorja

Slika 1:

sestoji iz idealnega transformatorja z napetostnim in tokovnim prestavnim razmerjem

$$U_{2} = U_{1} \frac{N_{2}}{N_{1}} \ , \ I_{2} = I_{1} \frac{N_{1}}{N_{2}}$$

in elementov realnega transformatorja. R_1 in R_2 sta upornosti primarnega in sekundarnega navitja, medtem ko sta X_1 in X_2 admitanci navitij zaradi stresanega polja. Upornost R_0 podaja Joulske izgube v jedru transformatorja (vrtinčne izgube), X_0 pa določa velikost induktivne komponente magnetilnega toka.

Shema realnega transformatorja postane preglednejša, če predpostavimo enakost primarnih in sekundarnih ovojev, oz. če reduciramo primarno stran vezja na sekundarno (ali obratno, če je to priročnejše).

$$U_1^{"} = U_1 \frac{N_2}{N_1}$$
, $I_1^{"} = I_1 \frac{N_1}{N_2}$, $R_1^{"} = R_1 (\frac{N_2}{N_1})^2$

Iz sheme se zlahka opazi, da razmerje U_1/U_2 napetosti realnega transformatorja ni enako razmerju ovojev N_1/N_2 . Napetosti poleg tega tudi nista v fazi. Razlog temu je padec napetosti na elementih R_1 , X_1 , R_2 in X_2 . Delovanju idealnega transformatorja se približamo čimmanjša je obremenitev transformatorja tj. v praznem teku.

Podobno velja tudi za tokovno razmerje I_1/I_2 , ki odstopa od razmerja ovojev N_2/N_1 in sicer zaradi tokov i_g in i_μ . Odstopanje je tem manjše čimbolj se transformator približa stanju popolnega kratkega stika (kratek stik sekundarnih sponk). Tokovni in fazni pogrešek tokovnega transformatorja sta tedaj najmanjša, saj je tok magnetiziranja enak nič (idealno).

To je lepo razvidno iz kazalčnega diagrama.

Slika 2: Kazalčni diagram tokovnega transformatorja

Sekundarni tok I_2 povzroča na nadomestni upornosti in stresani induktivnosti sekundarnega navitja in priključenem bremenu (Z=R+jX) padec napetosti, ki je enak inducirani napetosti v sekundarnem navitju

$$U_i'' = I_2(R_2 + jX_2 + Z)$$

Inducirana napetost je proporcionalna spremembi magnetnega pretoka, ki se zaključuje skozi primarno in sekundarno navitje

$$U_{i}^{"} = -N_{2} \frac{d\Phi}{dt}$$

V fazi z magnetnim pretokom je komponenta I_{μ} " magnetilnega toka I_0 ", medtem ko je njegova delovna komponenta v fazi z U_i ". Vektorska vsota tokov I_2 in I_0 " je enaka primarnemu toku I_1 " reduciranem na sekundarno stran. Ker se I_1 " in I_2 razlikujeta tako po amplitudi kot tudi po fazi govorimo o tokovnem in faznem pogrešku tokovnega transformatorja.

Če predpostavimo, da je nazivno transformatorsko razmerje K_N enako razmerju ovojev N_2/N_1 , potem je tokovni pogrešek enak

$$p_{i} = \frac{K_{N}I_{2} - I_{1}}{I_{1}} 100 \, [\%] = \frac{I_{2} - I_{1}^{"}}{I_{1}^{"}} 100 \, [\%] \quad \text{oziroma}$$

$$p_{i} = -\frac{I_{0}^{"}}{I_{1}^{"}} 100 \, [\%],$$

medtem ko fazni pogrešek podajamo kot

$$\sin \delta_i = \frac{I_0''}{I_1''} \sin(\beta_0 - \beta_s).$$

Vidimo, da sta oba pogreška odvisna od razmerja I_0 "/ I_1 ". Ker je magnetilni tok pri tokovnih transformatorjih relativno majhen (teži se namreč, da je U_i " čim manša) lahko namesto I_0 " nadomestimo zgolj z njegovo osnovno harmonsko komponento $I_{0(1)}$ ". Dobimo razmerje tokov, ki je podrobneje izpeljano v []

$$\frac{I_{0(1)}^{"}}{I_{1}^{"}} = \frac{P_{i}}{\sqrt{2}\pi f V_{FE} \, \theta_{1}^{2} \mu_{\sigma}}.$$

Razmerje tokov, ter s tem tudi tokovni in fazni pogrešek, raste s povečevanjem prenesene navidezne moči preko jedra ter pada z večanjem frekvence, volumnom jedra, permeabilnosti μ_{σ} in ν_1 . Pri tem je ν_1 vrednost primarne poljske jakosti

$$\mathcal{G}_1 = \frac{I_1 N_1}{l_{EE}}.$$

Na velikost tokovnega in faznega pogreška ima pri nekem danem transformatorju največji vpliv permeabilnost jedra, ki zavisi od velikosti merjenega toka in impedance merilnega upora. Značilno odvisnost permeabilnosti od merjenega toka pri konstantnem bremenu Z podaja spodnja slika.

Takšna odvisnost je posledica ukrivljenosti magnetilnice B-H (deviška krivulja). Pri majhnih tokovih je inducirana napetost U_i " majhna kar velja posledično tudi za $d\Phi$ in B. Ker se magnetilna točka tedaj nahaja blizu koordinatnega izhodišča B-H krivulje, kjer je permeabilnost jedra majhna, je pogrešek tokovnega transformatorja občutno večji kot pri nazivnem toku, kjer je permeabilnost mnogo večja.

Opisana odvisnost se lepo odrazi tudi na oblikovanju dopustnih mej pogreška tokovnega transformatorja.

Merilni tokovni transformatorji se po veljavnem predpisu umeščajo v šest točnostnih razredov.

Tabela 1: Dopustne vrednosti tokovnih in faznih pogreškov

razred	p _i [%]				$\delta_{i}[min]$			
	$0,1 I_{\rm N}$	$0,2~I_{ m N}$	1 <i>I</i> _N	1,2 <i>I</i> _N	$0,1 I_{\rm N}$	$0,2 I_{\mathrm{N}}$	$1 I_{ m N}$	$1,2 I_{\rm N}$
0,1	0,25	0,2	0,1	0,1	10	8	5	5
0,2	0,5	0,35	0,2	0,2	20	15	10	10
0,5	1	0,75	0,5	0,5	60	45	30	30
1	2	1,5	1	1	120	90	60	60
3	0,5 do 1,2 I _N : 3				meje niso predpisane			
5	0,5 do 1,2 <i>I</i> _N : 5				meje niso predpisane			

Oznaka točnostnega razreda je enaka absolutni vrednosti mejnega tokovnega pogreška (v procentih) pri nazivnem toku in nazivnem bremenu.

Zmanjšanje tokovnega in faznega pogreška s pomočjo elektronskega ojačevalnika

V elektronskih merilnih napravah srečamo pogosto tokovne transformatorje manjših moči, ki galvansko ločujejo občutljive elektronske sklope od merilnega tokokroga. Merjeni tok I_1 je v tem primeru transformiran v relativno majhen (normiran) tok (1 A do 5 A), ki na preciznem merilnem uporu R_2 povzroči padec napetosti I_2R_2 . Ta napetost se nato zajame (obdela) z elektronskim sklopom, ki ima veliko vhodno upornost.

Osnovno točnost takšnega transformatorja, ki je določena z () lahko občutno izboljšamo, če zmanjšamo sekundarni tok ob sočasnem povečanju upornosti R_2 . Tedaj je ob istem padcu napetosti na merilnem uporu prenesena moč transformatorja manjša. Vendar pa zmanjšanje sekundarnega toka zahteva povečanje števila sekundarnih ovojev, zaradi česar je možno točnost izboljšati le deloma, saj pri večjem številu ovojev (pri istih dimenzijah jedra) nastopijo dodatna odstopanja.

Točnost tokovnega transformatorja občutneje izboljšamo z uporabo elektronskega ojačevalnika. Takšen sklop tokovnega transformatorja in ojačevalnika pogosto imenujemo aktivni tokovnik.

Poleg primarnega in sekundarnega navitja ima transformator dodano še tretje t.i. indikacijsko navitje N_3 .

Slika: Aktivni tokovnik

Indikacijsko navitje je priključeno na vhod elektronskega ojačevalnika. Njegova vhodna napetost je enaka inducirani napetosti v indikacijskem navitju U_i ", saj je tok (ter s tem tudi padec napetosti v tem tokokrogu) zaradi velike vhodne upornosti ojačevalnika zanemarljiv.

Izhodni tok ojačevalnika teče skozi sekundarno navitje N_2 in merilni upor R. Če predpostavimo idealni ojačevalnik z neskončnim ojačenjem A potem vhodna napetost U_{vh} teži k vrednosti nič. To pa je mogoče le tedaj, ko velja enakost ampernih ovojev I_1N_1 in I_2N_2 .

V primeru realnega ojačevalnika z ojačenjem A bo njegova izhodna napetost enaka

$$U_{IZH} = I_2(R_2 + R + jX_2) - U_i^{""},$$

medtem ko je vhodna napetost

$$U_{VH} = \frac{U_{IZH}}{A}$$
.

Inducirana napetost v navitju N₂ zato znaša

$$U_{i}^{"} = U_{i}^{""} \frac{N_{2}}{N_{3}} = \frac{U_{IZH}}{A} \frac{N_{2}}{N_{3}} = \frac{I_{2}Z_{S} - U_{i}^{"}}{AN_{3} / N_{2}}$$

$$U_{i}^{"} = \frac{I_{2}Z_{S}}{1 + AN_{3} / N_{2}}$$

Inducirana napetost U_i " je pri velikem ojačenju A znatno manjša od I_2Z_S , kolikor znaša inducirana napetost brez uporabe ojačevalnika.

Na opisani način se posledično zmanjša tudi razmerje tokov () in sicer za $1+AN_3/N_2$ krat, če seveda predpostavimo konstantne ostale parametre.

Povzetek: Povezavo indikacijskega navitja in vhoda elektronskega ojačevalnika lahko smatramo kot precizni ničelni indikator, katerega odstopanje zazna in korigira ojačevalnik tako, da skozi sekundarno navitje vsili kompenzacijski tok. Rezultat je zmanjšanje vhodne napetosti ojačevalnika, ki teži k vrednosti nič. Enaka ugotovitev velja tudi za spremembo magnetnega pretoka Φ. Ker se delovna točka v magnetilni krivulji B-H tako nahaja blizu koordinatnega izhodišča, je presek jedra lahko manjši vendar pa mora biti pločevina kakovostnejša. Imeti mora večjo začetno permeabilnost.

Opisana izvedba tokovnega merilnika ni primerna za merjenje enosmernih tokov, saj je indikacijsko navitje občutljivo zgolj na spremembo magnetnega pretoka Φ . To pa pomeni, da tudi ojačevalnik ne sme imeti preostale izhodne napetosti (offset).

Offset bi bil sprejemljiv le tedaj, če bi ga lahko zanesljivo obvladovali in sicer s ciljem, da bi delovno točko premaknili v strmejši del magnetilne krivulje B-H.

Frekvenčna meja aktivnih tokovnikov zavisi predvsem od stresanih polj v sekundarnem navitju N2 ter frekvenčne meje uporabljenega ojačevalnika (slew rate). Tipične vrednosti sodobnega aktivnega tokovnika podaja spodnja tabela.

Tabela 2:

tokovno območje	1 A do 200 A
točnost	0,1 %
frekvenčno območje	10 Hz do 500 kHz

Poleg merilnih aplikacij, kjer se zahteva relativno velika točnost, so ti tokovni merilniki zanimivi tudi kot zaščitni transformatorji. Le-ti morajo točno izmeriti tudi nekajkratno povečano vrednost nazivnega toka. Za razliko od pasivnih transformatorjev pri katerih lahko tedaj pride do nasičenja jedra, je to pri aktivnem tokovniku ob dovolj zmogljivem ojačevalniku skoraj nemogoče.