

Understanding shapes-III special types of quadrilaterals Ex 17.1 Q9 **Answer**:

Given that one angle of the parallelogram is 70°.

Since opposite angles have same value, if one is 70° , then the one directly opposite will also be 70° .

So, let one angle be x°.

 $x^{\circ} + 70^{\circ} = 180^{\circ}$ (the sum of adjacent angles of a parallelogram is 180°)

$$\mathbf{x}^{\circ} = 180^{\circ} - 70^{\circ}$$

 $x^{\circ} = 110^{\circ}$

Thus, the remaining angles are 110°, 110° and 70°.

Understanding shapes-III special types of quadrilaterals Ex 17.1 Q10 Answer:

Let the angle be A and B.

The angles are in the ratio of 1:2.

M easures of $\angle A$ and $\angle B$ are x° and $2x^{\circ}$.

Then, $\angle C = \angle A$ and $\angle D = \angle B$ (opposite angles of a parallelogram are congruent)

As we know that the sum of adjacent angles of a parallelogram is 180° .

$$\therefore \angle \mathbf{A} + \angle \mathbf{B} = 180^{\circ}$$

$$\Rightarrow$$
 $\mathbf{x}^{\circ} + 2\mathbf{x}^{\circ} = 180^{\circ}$

$$\Rightarrow 3x^{\circ} = 180^{\circ}$$

$$\Rightarrow \mathbf{x}^{\circ} = \frac{180^{\circ}}{2} = 60^{\circ}$$

Thus, measure of $\angle A = 60^{\circ}$, $\angle B = 120^{\circ}$, $\angle C = 60^{\circ}$ and $\angle D = 120^{\circ}$.

Understanding shapes-III special types of quadrilaterals Ex 17.1 Q11 **Answer:**

In a parallelogram, opposite angles have the same value.

$$\therefore \angle D = \angle B$$

$$=135°$$

Also, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$

 $\angle A + \angle D = 180^{\circ}$ (opposite angles have the same value)

$$\angle A = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

$$\angle A = 45^{\circ}$$

********* END *******