CLAIMS

What is claimed is:

1	1. A method for deploying configuration instructions to security devices in order to
2	implement a security policy in a network, the method comprising the computer-implemented
3	steps of:
4	detecting that implementing a security policy will cause an address translation
5	alteration in a packet communicated between a management source and a
6	plurality of security devices for implementing the security policy on the
7	network;
. 8	identifying, from among the plurality of security devices, one or more sets of security
9	devices that have one or more configuration dependencies as a result of the
10	address translation alteration if the security policy is implemented; and
11	sending one or more configuration instructions from the management source to each
12	of the one or more sets of security devices using an order that is determined
13	based on the one or more configuration dependencies, resulting in
14	implementing the security policy on the network

12

13

14

15

1	2. A method as recited in Claim 1, wherein sending configuration instructions from the				
2	management source to the one or more sets of security devices includes sending				
3	configuration instructions to multiple sets of security devices in parallel, wherein each of the				
4	multiple sets of security devices includes one or more configuration dependencies.				
5	3. A method as recited in Claim 2, wherein:				
6	identifying one or more sets of security devices that would each have one or more				
7	configuration dependencies as a result of the address translation alteration includes				
8	identifying a first network path that interconnects the management source and a first				
9 -	set of the one or more security devices in series, and a second network path that				
10	interconnects the management source and a second set of the one or more security				

sending configuration instructions to multiple sets of security devices in parallel includes sending configuration instructions to one or more security devices on the first network path and on the second network path concurrently, and independently of one another, using the order determined by the one or more configuration dependencies.

devices in series; and

12

13

14

15

16

1

and

1	4.	A method as recited in Claim 1, wherein:

2	identifying one or more sets of security devices that would each have one or more
3	configuration dependencies as a result of the address translation alteration includes
4	identifying a first network path that interconnects the management source and a first
5	set of the one or more security devices in series, and a second network path that
6	interconnects the management source and a second set of the one or more security
7	devices in series;
8	sending configuration instructions from the management source to each of the one or more
9	sets of security devices includes sending configuration instructions to one or more
10	security devices on the first network path and on the second network path in parallel;

sending configuration instructions to one or more security devices on the first network path includes sending configuration instructions to at least some of the security devices on the first network path sequentially, beginning with a first security device on the first network path that is ordered to be a last one of the security devices on the first network path to receive communications from the management source.

5. A method as recited in Claim 1, wherein:

detecting that implementing the security policy will cause an address translation alteration
between a management source and a plurality of security devices includes detecting
that implementing the security policy will cause a natural address translation between
the management source and one of the plurality of security devices.

1	6.	The method as recited in Claim 1, wherein:
---	----	--

- 2 detecting that implementing the security policy will cause an address translation alteration
- 3 between a management source and a plurality of security devices includes detecting
- 4 that implementing the security policy will cause a static address translation between
- 5 the management source and one of the plurality of security devices.
- 1 7. A method as recited in Claim 1, wherein:
- 2 detecting that implementing the security policy will cause an address translation alteration
- 3 between a management source and a plurality of security devices includes detecting
- 4 that implementing the security policy will cause a tunneling translation between the
- 5 management source and one of the plurality of security devices

8.	A method as recited in Claim 1, wherein:
detect	ing that implementing the security policy will cause an address translation alteration
	between a management source and a plurality of security devices includes detecting
	that implementing the security policy will cause a natural address translation;
identit	ying one or more sets of security devices that would each have one or more
	configuration dependencies as a result of the address translation alteration includes
	identifying a first network path that interconnects the management source and a first
	set of the one or more security devices in series; and
sendin	g configuration instructions from the management source to one or more sets of
	security devices includes sending configuration instructions to at least some of the
	security devices on the first network sequentially, beginning with a first security
	device on the first network path that is ordered to be a last one of the security devices
	on the first network path to receive communications from the management source.

1	9. A method as recited in Claim 1, wherein:
2	detecting that implementing the security policy will cause an address translation alteration
3	between a management source and a plurality of security devices includes detecting
4	that implementing the security policy will cause a static address translation on the first
5	network path; and
6	identifying one or more sets of security devices that would each have one or more
7	configuration dependencies as a result of the address translation alteration includes
8	identifying a first network path that interconnects the management source and a first
9	set of the one or more security devices in series;
10	sending configuration instructions from the management source to one or more sets of
11	security devices includes sending configuration instructions to one or more security
12	devices on the first network path using the order of either (i) sending configuration
13	instructions to each security device of the first network path that is ordered in series
14	between the management source and the static address translation before sending
15	configuration instructions from the management source to any of the other security
16	devices that are ordered in series after the static address translation, or (ii) sending
17	configuration instructions to all of the other security devices that are ordered in series
18	after the static address translation before sending configuration instructions from the
19	management source to each security device that is ordered between the management

source and the static address translation.

1	10.	A method as recited in Claim I, wherein:
2	detect	ing that implementing the security policy will cause an address translation alteration
3		between a management source and a plurality of security devices includes detecting
4		that implementing the security policy will cause a tunneling translation on the first
5		network path; and
6	identii	fying one or more sets of security devices that would each have one or more
7		configuration dependencies as a result of the address translation alteration includes
8		identifying a first network path that interconnects the management source and a first
9		set of the one or more security devices in series;
10	sendin	g configuration instructions from the management source to one or more sets of
11		security devices includes sending configuration instructions to one or more security
12		devices on the first network path using the order of either (i) sending configuration
13		instructions to each security device of the first network path that is ordered in series
14		between the management source and the static address translation before sending
15		configuration instructions from the management source to any of the other security
16		devices that are ordered in series after the static translation, or (ii) sending
17		configuration instructions to all of the other security devices that are ordered in series
18		after the static translation before sending configuration instructions from the
19		management source to each security device that is ordered between the management
20		source and the tunneling translation.

1	11. A method for deploying configuration instructions to security devices in order to				
2	implement a security policy in a network, the method comprising the computer-implemented				
3	steps of:				
4	detecting that the security policy creates a change of one or more configuration				
5	dependencies as compared with an existing security policy, each configuration				
6	dependency corresponding to at least a first security device having to be				
7	configured before a second security device is configured in order for the first				
8	security device to receive its configuration instructions for implementing the				
9	security policy from a management source; and				
10	deploying configuration instructions to one or more security devices to implement the				
11	security policy according to an order determined by the one or more				
12	configuration dependencies.				
1	12. A method as recited in Claim 11, wherein deploying configuration instructions				
2	includes deploying, for a network path containing at least a first configuration dependency of				
3	the one or more configuration dependencies, configuration instructions to a first security				
4	device of the first configuration dependency before deploying configuration instructions to a				
5	second security device of the first configuration dependency, wherein the first security device				
6	has to be configured before the second security device in order for the first security device to				
7	receive its configuration instructions for implementing the security policy from the				

management source.

- 1 13. A method as recited in Claim 11, further comprising creating a schedule to implement
- the security policy to account for the change in the one or more configuration dependencies,
- 3 and wherein deploying configuration instructions to one or more security devices includes
- 4 using the schedule to deploy the configuration instructions.
- 1 14. A method as recited in Claim 13, wherein deploying configuration instructions
- 2 includes deploying in parallel the configuration instructions to each of the first security
- 3 devices in the one or more configuration dependencies.
- 1 15. A method as recited in Claim 11, wherein detecting that the security policy creates a
- 2 change of one or more configuration dependencies from an existing security policy includes
- 3 detecting the addition, deletion or modification of an address translation in a network path
- 4 between the one or more security devices and the policy manager.

1	16. A method as recited in Claim 14, further comprising detecting the addition, deletion				
2	or modification of the address translation selected from an address translation type consisting				
3	of a natural address translation type, a reverse address translation type, and a tunnel				
4	translation.				
5	17. A computer-readable medium for deploying configuration instructions to security				
6	devices in order to implement a security policy in a network, the computer-readable medium				
7	carrying instructions for implementing the steps of:				
8	detecting that implementing a security policy will cause an address translation				
9	alteration in a packet communicated between a management source and a				
10	plurality of security devices for implementing the security policy on the				
11	network;				
12	identifying, from among the plurality of security devices, one or more sets of security				
13	devices that have one or more configuration dependencies as a result of the				
14	address translation alteration if the security device is implemented; and				
15	sending one or more configuration instructions from the management source to each				
16	of the one or more sets of security devices using an order that is determined				
17	based on the one or more configuration dependencies, resulting in				

implementing the security policy on the network.

8

9

10

11

1	18. A computer-readable medium as recited in Claim 17, wherein instructions for sending
2	one or more configuration instructions from the management source to each of the one or
3	more sets of security devices include instructions for sending configuration instructions to
4	multiple sets of security devices in parallel, wherein each of the multiple sets of security
5	devices includes one or more configuration dependencies.
1	19. A computer-readable medium as recited in Claim 18, wherein:
2	instructions for identifying one or more sets of security devices that would each have one or
3	more configuration dependencies as a result of the address translation alteration
4	include instructions for identifying a first network path that interconnects the
5	management source and a first set of the one or more security devices in series, and a
6	second network path that interconnects the management source and a second set of

instructions for sending one or more configuration instructions to multiple sets of security devices in parallel include instructions for sending configuration instructions to one or more security devices on the first network path and on the second network path concurrently, and independently of one another.

the one or more security devices in series; and

9

10

11

12

13

14

15

1

1

20.	A computer-readable medium as	recited in	Claim 17	wherein:
-----	-------------------------------	------------	----------	----------

instructions for identifying one or more sets of security devices that would each have one or
more configuration dependencies as a result of the address translation alteration
include instructions for identifying a first network path that interconnects the
management source and a first set of the one or more security devices in series, and a
second network path that interconnects the management source and a second set of
the one or more security devices in series;

to each of the one or more sets of security devices 1 include sending configuration instructions to one or more security devices on the first network path and on the second network path in parallel, including for sending configuration instructions to at least some of the security devices on the first network path sequentially, beginning with a first security device on the first network path that is ordered to be a last one of the security devices on the first network path to receive communications from the management source.

21. A computer-readable medium as recited in Claim 17, wherein:

instructions for detecting that implementing the security policy will cause an address translation alteration between a management source and a plurality of security devices include instructions for detecting that implementing the security policy will cause a natural address translation between the management source and one of the plurality of security devices.

1	22.	The computer-readable medium as recited in Claim 17, wherein:
2	instru	ections for detecting that implementing the security policy will cause an address
3		translation alteration between a management source and a plurality of security devices
4		include instructions for detecting that implementing the security policy will cause a
5		static address translation between the management source and one of the plurality of
6		security devices.
1	23.	A computer-readable medium as recited in Claim 17, wherein:
2	instru	ctions for detecting that implementing the security policy will cause an address
3		translation alteration between a management source and a plurality of security devices
4		include instructions for detecting that implementing the security policy will cause a
5		tunneling translation between the management source and one of the plurality of

security devices

1	24. A computer-readable medium as recited in Claim 17, wherein:
2	instructions for detecting that implementing the security policy will cause an address
3	translation alteration between a management source and a plurality of security devices
4	include instructions for detecting that implementing the security policy will cause a
5	natural address translation;
6	instructions for identifying one or more sets of security devices that would each have one or
7	more configuration dependencies as a result of the address translation alteration
8	include instructions for identifying a first network path that interconnects the
9	management source and a first set of the one or more security devices in series; and
10	instructions for sending one or more configuration instructions from the management source
11	to one or more sets of security devices include instructions for sending configuration
12	instructions to at least some of the security devices on the first network sequentially,
13	beginning with a first security device on the first network path that is ordered to be a
14	last one of the security devices on the first network path to receive communications
15	from the management source.

1	25. A computer-readable medium as recited in Claim 17, wherein:
2	instructions for detecting that implementing the security policy will cause an address
3	translation alteration between a management source and a plurality of security devices
4	include instructions for detecting that implementing the security policy will cause a
5	static address translation on the first network path;
6	instructions for identifying one or more sets of security devices that would each have one or
7	more configuration dependencies as a result of the address translation alteration
8	include instructions for identifying a first network path that interconnects the
9	management source and a first set of the one or more security devices in series; and
10	instructions for sending configuration instructions from the management source to one or
11	more sets of security devices include instructions for sending configuration
12	instructions to one or more security devices on the first network path using the order
13	of either (i) sending configuration instructions to each security device of the first
14	network path that is ordered in series between the management source and the static
15	address translation before sending configuration instructions from the management
16	source to any of the other security devices that are ordered in series after the static
17	address translation, or (ii) sending configuration instructions to all of the other
18	security devices that are ordered in series after the static address translation before
19	sending configuration instructions from the management source to each security
20	device that is ordered between the management source and the static address
21	translation.

1	26. A computer-readable medium as recited in Claim 17, wherein:
2	instructions for detecting that implementing the security policy will cause an address
3	translation alteration between a management source and a plurality of security devices
4	include instructions for detecting that implementing the security policy will cause a
5	tunneling translation on the first network path;
6	instructions for identifying one or more sets of security devices that would each have one or
7	more configuration dependencies as a result of the address translation alteration
8	include instructions for identifying a first network path that interconnects the
9	management source and a first set of the one or more security devices in series; and
10	instructions for configuration instructions from the management source to one or more sets of
11	security devices include instructions for sending configuration instructions to one or
12	more security devices on the first network path using the order of either (i) sending
13	configuration instructions to each security device of the first network path that is
14	ordered in series between the management source and the static address translation
15	before sending configuration instructions from the management source to any of the
16	other security devices that are ordered in series after the static translation, or (ii)
17	sending configuration instructions to all of the other security devices that are ordered
18	in series after the static translation before sending configuration instructions from the
19	management source to each security device that is ordered between the management
20	source and the tunneling translation.

1	27. A computer system for deploying configuration instructions to security devices in
2	order to implement a security policy in a network, the computer system comprising:
3	means for detecting that implementing the security policy will cause an
4	address translation alteration between a management source and a
5	plurality of security devices for implementing the security device on
6	the network;
7	means for identifying, from the plurality of security devices, one or more sets
8	of security devices that would each have one or more configuration
9	dependencies as a result of the address translation alteration; and
10	means for sending configuration instructions from the management source to
11	each of the one or more sets of security devices in order to implement
12	the security policy.
1	28. A management device for deploying configuration instructions to a plurality of
2	security devices in order to implement a security policy on a network, the management
3	device comprising:
4	a processor configured to:
5	detect that implementing the security policy will cause an address translation
6	alteration between a management source and a plurality of security
7	devices for implementing the security device on the network;
8	identify, from the plurality of security devices, one or more sets of security
9	devices that would each have one or more configuration dependencies
10	as a result of the address translation alteration; and

11	send configuration instructions from the management source to each of the
12	one or more sets of security devices using an order that is determined
13	by the one or more configuration dependencies, so as to implement the
14	security policy on the network.