Категорная модель модального лямбда-исчисления, основанного на интуиционистской эпистемической логике.

Даня Рогозин

Март, 2018

Мотивация. Функциональное программирование на языке Haskell.

- Обратимся в рамках мотивации к функциональному программированию на таких языках, как Haskell, Purescript, Elm или Idris;
- Без ограничения общности разделим типы в языке Haskell (или в любом другом из языков выше) на две части: простые типы и параметризованные;
- ▶ Простые типы (Int, String, Char, etc) это привычные типы данных;
- Параметризованные типы (List Int, Maybe Char, IO String) используются для вычислений в рамках оговоренного вычислительного контекста;
- Аналогично можно и разделить функции.

Мотивация. Функтор.

Класс типов Functor – это общий интерфейс для "выполнения действия над параметризованным типом, обобщение функции map на списках":

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b.
```

Конечная цель: аппликативные функторы.

Аппликативные функторы сильнее функторов и слабее монад:

```
class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
```

Используя аппликативный функтор, мы можем вложить значение в вычислительный контекст f с помощью pure и выполнить аппликацию внутри f применением f

Использование:

- Обобщение fmap для функции произвольной арности:
 liftAn = pure f <*> a1 <*> ... <*> an
- Парсинг;
- Монада в современном Haskell является наследником аппликатива.

Монадические вычисления в теории.

- 1) Eugenio Moggi. "Notions of computation and monads." Inf. Comput., 93(1): 55-92, 1991.
- 2) Frank Pfenning and Rowan Davies. "A judgmental reconstruction of modal logic." Mathematical. Structures in Comp. Sci. 11, 4 (August 2001), 511—540.
- 3) Bierman, G., and De Paiva, V.. On an Intuitionistic Modal Logic. Studia Logica: An International Journal for Symbolic Logic, 65(3), 2000. 383–416. etc...

Аппликативные функторы.

К сожалению, аппликативный функтор является далеко не самой известной концепцией за вне сообщества хаскеллистов. Возможная причина: аппликативные функторы рассмотрены с программистской точки зрения, без теоретического рассмотрения, то есть теоретико-доказательного построения синтаксиса и алгебраической (категорной) модели.

Пример нескольких работ:

- 1) Conor McBride and Ross Paterson. "Applicative Programming with Effects." Journal of Functional Programming 18:1 (2008), pages 1–13.
- 2) Ross Paterson. "Constructing Applicative Functors." Mathematics of Program Construction, Madrid, 2012, Lecture Notes in Computer Science vol. 7342, pp. 300–323, Springer, 2012.

Белое пятно: стоит рассмотреть модальное лямбда-исчисление, которые могло бы аксиоматизировать вычисления с аппликативным функтором и имело хорошую алгебраическую модель.

Интуиционистская эпистемическая логика IEL⁻.

Данную проблему удобно решать, если мы располагает некоторой конструктивной модальной логикой с хорошими аксиомами, по которой мы можем построить интересное нам модальное лямбда-исчисление:

Определение

Интуиционистская эпистемическая логика IEL-:

- 1) Аксиомы ІРС;
- 2) $\mathbf{K}(A \rightarrow B) \rightarrow (\mathbf{K}A \rightarrow \mathbf{K}B)$ (нормальность);
- *3) A* → **K**A (ко-рефлексия);

Правило: МР.

- 1) Artemov S., Protopopescu T. (2014, June). Intuitionistic epistemic logic. ArXiv, math.LO 1406 1582v1
- 2) Krupski V. N., Alexey Y. "Sequent calculus for intuitionistic epistemic logic IEL" // Logical Foundations of Computer Science Vol. 9537 of Lecture Notes in Computer Science. Springer, 2016. P. 187–201.

Harypa льный вывод для IEL^- .

Определение

Натуральное исчисление NIEL[—] для интуиционистской эпистемической логики IEL[—] – это расширение натурального исчисления для интуиционистской логики высказываний с добавлением следующих правил вывода для модальности:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \mathsf{K}A} \mathsf{K}_{I}$$

$$\underline{\Gamma \vdash \mathsf{K}A_{1}, \dots, \Gamma \vdash \mathsf{K}A_{n} \quad A_{1}, \dots, A_{n} \vdash B}$$

$$\Gamma \vdash \mathsf{K}B$$

Модальное лямбда-исчисление по IEL-

Определение

Модальное λ -исчисление, основанное на исчислении IEL^- :

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathbf{pure} \ M : \mathbf{K}A} \mathbf{K}_I$$

$$\frac{\Gamma \vdash \vec{M} : \mathbf{K}\vec{A} \qquad \vec{x} : \vec{A} \vdash N : B}{\Gamma \vdash \mathbf{let pure } \vec{x} = \vec{M} \mathbf{in } N : \mathbf{K}B} let_{\mathbf{K}}$$

 $\Gamma \vdash \vec{M} : \mathbf{K}\vec{A}$ – это синтаксический сахар для $\Gamma \vdash M_1 : \mathbf{K}A_1, \dots, \Gamma \vdash M_n : \mathbf{K}A_n$ и $\vec{x} : \vec{A} \vdash N : B$ – это краткая форма для $x_1 : A_1, \dots, x_n : A_n \vdash N : B$. **let pure** $\vec{x} = \vec{M}$ **in** N – это мгновенное локальное связывание в терме N. Мы будем использовать такую краткую форму вместо **let pure** $x_1, \dots, x_n = M_1, \dots, M_n$ **in** N.

Метатеоретические свойства системы

(Само определение редукции довольно сложное и длинное)

Теорема

Редукция субъекта

Если $\Gamma \vdash M : A$ и $M \twoheadrightarrow_{\beta\eta} N$, тогда $\Gamma \vdash N : A$

Теорема

Отношение $\twoheadrightarrow_{\beta}$ сильно нормализуемо;

Теорема

Отношение $\twoheadrightarrow_{\beta}$ конфлюентно.

Теорема

Нормальная форма λ_{K} со стратегией вычисления с вызовом по имени обладает свойством подформульности: если M в нормальной форме, то всего его подтермы также в нормальной форме.

Определение аппликативного функтора.

Определение

Аппликативный функтор – это тройка $\langle \mathcal{C}, \mathcal{K}, \eta \rangle$, где \mathcal{C} – это моноидальная категория, \mathcal{K} - это моноидальный эндофунктор и $\eta: \mathrm{Id}_{\mathcal{C}} \Rightarrow \mathcal{K}$ – это естественное преобразование с условиями когерентности для него.

Теоретико-категорная семантика.

Теорема

Корректность Пусть $\Gamma \vdash M : A$ и $M =_{\beta\eta} N$, тогда $[\![\Gamma \vdash M : A]\!] = [\![\Gamma \vdash N : A]\!]$ Интерпретация модальных правил:

$$\begin{split} & \llbracket \Gamma \vdash M : A \rrbracket = \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket \\ & \llbracket \Gamma \vdash \mathsf{pure} \ M : \mathsf{K} A \rrbracket := \llbracket \Gamma \rrbracket \xrightarrow{\llbracket M \rrbracket} \llbracket A \rrbracket \xrightarrow{\eta_{\llbracket A \rrbracket}} \mathcal{K} \llbracket A \rrbracket \end{split}$$

$$\llbracket \Gamma \vdash \vec{M} : \mathbf{K} \vec{A} \rrbracket = \langle \llbracket M_1 \rrbracket, \dots, \llbracket M_n \rrbracket \rangle : \llbracket \Gamma \rrbracket \to \prod_{i=1}^n \mathcal{K} \llbracket A_i \rrbracket \qquad \llbracket \vec{x} : \vec{A} \vdash N : B \rrbracket = \llbracket N \rrbracket : \prod_{i=1}^n \llbracket A_i \rrbracket \to \llbracket B \rrbracket$$

$$\llbracket \Gamma \vdash \mathsf{let} \ \mathsf{pure} \ \vec{x} = \vec{M} \ \mathsf{in} \ M : \mathsf{K}B \rrbracket = \mathcal{K}(\llbracket N \rrbracket) \circ \ast_{\llbracket A_1 \rrbracket, \dots, \llbracket A_n \rrbracket} \circ \langle \llbracket M_1 \rrbracket, \dots, \llbracket M_n \rrbracket \rangle : \llbracket \Gamma \rrbracket \to \mathcal{K}\llbracket B \rrbracket$$

Теоретико-категорная семантика.

Лемма

Интерпретация сохраняет подстановку.

$$[\![M[x_1 := M_1, \ldots, x_n := M_n]]\!] = [\![M]\!] \circ \langle [\![M_1]\!], \ldots, [\![M_n]\!] \rangle.$$

Лемма

Интерпретация сохраняет редукцию.

Пусть
$$\Gamma \vdash M : A$$
 и $M \twoheadrightarrow_{\beta\eta} N$, тогда $[\![\Gamma \vdash M : A]\!] = [\![\Gamma \vdash N : A]\!];$

Теоретико-категорная семантика. Полнота.

Определение

Эквивалетность на парах вида переменная-терм:

Определим такое бинарное отношение $\sim_{A,B}\subseteq \mathbb{V}\times \Lambda_{\mathbf{K}}$, что:

$$(x,M) \sim_{A,B} (y,N) \Leftrightarrow x:A \vdash M:B \& y:A \vdash N:A \& M =_{\beta\eta} N[y:=x].$$

Обозначим класс эквивалентности как $[x,M]_{A,B}=\{(y,N)\ |\ (x,M)\sim_{A,B}(y,N)\}$ (ниже мы будем опускать индексы).

Теоретико-категорная семантика. Полнота.

Определение

Категория $C(\lambda)$:

- $Hom_{\mathcal{C}(\lambda)}(\hat{A}, \hat{B}) = (\mathbb{V} \times \Lambda_{\mathbf{K}})/_{\sim_{A,B}};$
- ▶ Пусть $[x,M] \in Hom_{\mathcal{C}(\lambda)}(\hat{A},\hat{B})$ и $[y,N] \in Hom_{\mathcal{C}(\lambda)}(\hat{B},\hat{C})$, тогда $[y,M] \circ [x,M] = [x,N[y:=M]];$
- ▶ Тождественный морфизм $id_{\hat{A}} = [x,x] \in \mathit{Hom}_{\mathcal{C}(\lambda)(\hat{A})};$
- Терминальный объект 1;
- $\widehat{A \times B} = \widehat{A} \times \widehat{B};$
- Каноническая проекция: $[x, \pi_i x] \in Hom_{\mathcal{C}(\lambda)}(\hat{A_1} \times \hat{A_2}, \hat{A_i})$ for $i \in \{1, 2\}$;
- $\hat{A \to B} = \hat{B}^{\hat{A}};$
- ▶ Вычисляющая стрелка $\epsilon = [x, (\pi_2 x)(\pi_1 x)] \in \mathit{Hom}_{\mathcal{C}(\lambda)(\hat{\mathcal{B}}^{\hat{A}} \times \hat{A}, \hat{\mathcal{B}})}.$

Теоретико-категорная семантика. Полнота.

Необходимо показать, что **K** – это аппликативный функтор над декартово замкнутой категорией $\mathcal{C}(\lambda)$.

Теорема

 \mathbf{K} – это аппликативный функтор над $\mathcal{C}(\lambda)$.

Спасибо за внимание!

Черепашка ниндзя Донателло пишет представителя класса типов Applicative: