

Dean's Office, Faculty of Science

2003 TEST AND ANSWERS (ANSWER SHEET,

FORM CC1

SECTION C : ANSWERS

INSTRUCTIONS USE 28 PENCILS ONLY

Suggested answers to each question are given in the question paper. Choose an answer and shade the corresponding circle.

EXAMPLES OF SHADING CORRECT INCORRECT

0

1

SECTION A STUDENT'S NAME

MAISOS

MODULE:

YEAR/SEMESTER:

SECTION B MATRICULATION NUMBER

DATE

000000000000 0000000000000 QX\$Q**@**Z\$QQ@@

.Now SHADE the

Write your matriculation

corresponding circle in the grid for each digit or letter.

→ > → > → 0 - (**>**) N N ON ON ® ~ ® ~ ® ~ ® ~ ® ~ ® ~ ® ~ ® 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 24 23 22 28 27 26 25 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 (m) 51 (m ట్ ω 36 35 - B - B - B - B - B - B - B -4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 (m) 51 (m 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 (m) or (m) or

8 C 0	1 2 3 4 1 2 3 4 1 2 3 4	56 A B C D E 1 2 3 4 5 57 A B C D E	1 2 3 4 A B C D 1 2 3 4	A B C D A B C D	1 2 3 4 A B C D 1 2 3 4	1 2 3 4 A B C D
1 2 3 4 A B C D	1 2 3 4 1 2 3 4 1 2 3 4	66 (A) B) C) D) E) 67 (A) B) C) D) E)	1 2 3 4 A B C D 1 2 3 4	A B C D A B C D	1 2 3 4 A B C D 1 2 3 4	1 2 3 4 A B C D
8 C D) 2	76 A B C D E 1 2 3 4 5 77 A B C D E	2 3 4 2 3 4 2 3 4	8 C 0 0 4 0	2 3 4 2 0 0 2 3 4	2 3 4 B C D
A B C D	1 2 3 4 1 2 3 4 1 2 3 4	86 (Å (B) (D) (E) 1 2 3 4 5 87 (Å (B) (D) (E)	1 2 3 4 A B C D 1 2 3 4	A B C D A B C D	1 2 3 4 A B C D 1 2 3 4	1 2 3 4 A B C D
A B C D	A B C 3 4 B A A	96 A B C O E 1 2 3 4 5 97 A B C O E	1 2 3 4 A B C D 1 2 3 4	A B C D A B C D	1 2 3 4 A B C D 1 2 3 4	1 2 3 4 A B C D

1.
$$\lim_{z \to 2} \frac{f(x) - f(-z)}{x - (-z)} = \lim_{x \to -2} \frac{(-x)^{5} - (-z)^{3}}{x - (-z)} = \frac{1}{dx} (-x^{5})\Big|_{x = -2} = -12$$

2. $f'(x) = 9(x^{3} - 2x^{3} + 3x + 5)^{8}(3x^{2} + 4x + 3)$

$$f''(z) = 72(x^{3} - 2x^{3} + 3x + 5)^{7}(3x^{2} - 4x + 3)^{2} + 9(x^{5} - 2x^{3} + 3x + 5)^{8}(6x - 4)$$

$$f''(-1) = -7200 - 90 = -7290$$
3. $32xy + 16x^{2}y' = (\sec^{2}(x - 2y))(1 - 2y')$

$$at(\frac{\pi}{4}, 0), 16(\frac{\pi}{16})y' = \frac{1}{4x^{3}}\frac{\pi}{4}$$
4. $f'(x) = -\frac{(x + 1)^{3} - 2}{(x^{3} + 1)^{3}} = 0 \Rightarrow x = -1 \pm \sqrt{2}$

$$f(1) = 1, f(\frac{1}{5}) = \frac{1}{15}, f(\sqrt{2} - 1) = \frac{1}{2(\sqrt{2} - 1)}, f(0) + f(\frac{1}{5}) + f(\frac{1}{5}) = \frac{1}{2}$$
5. $\lim_{x \to \frac{\pi}{2}} \frac{1 + \sin 3x}{1 + \tan 2x} = \lim_{x \to \frac{\pi}{2}} \frac{3 \cos 3x}{-2 \sin 2x} = \lim_{x \to \frac{\pi}{2}} \frac{-9 \sin 3x}{-4 \cos 2x} = \frac{-9(-1)}{-4(-1)}$
6. $\ln y = x \ln x \Rightarrow y' = y(1 + \ln x) \Rightarrow y'' = y'(1 + \ln x) + y(\frac{1}{x})$

$$y'' = y \left[(1 + \ln x)^{2} + \frac{1}{x^{2}} \right] = x^{2} \left[(1 + \ln x)^{2} + \frac{1}{x^{2}} \right] > 0 \text{ if } x > 0$$
7. $\int \frac{1}{x^{2}} \tan \frac{1}{x} \sec^{2} \frac{1}{x} dx = -\int \tan \frac{1}{x} \sec^{2} \frac{1}{x} d(\frac{1}{x})$

$$= -\int \tan \frac{1}{x} d(\tan \frac{1}{x}) = -\frac{1}{2} + \tan^{2} \frac{1}{x} + C$$
8. $\frac{1}{6(x)} \int_{x}^{x} (\ln t)^{2} dt d(\frac{1}{x}) = -\frac{1}{2} + 1 dx = -(\frac{1}{2}x^{2} + x) \Big|_{x}^{-1} + \frac{1}{2}x^{2} dx$

$$= -\left[-\frac{1}{2} - (-(2 - 2))\right] + \frac{1}{2} + 1 - \left(-\frac{1}{2} - 1\right) = \frac{1}{2} + 2 = \frac{5}{2}$$
10. $\int \frac{\ln x}{2} dx = (\ln x)(-\frac{1}{x}) - \int (-\frac{1}{x})(\frac{1}{x}) dx = -\frac{1}{x} \ln x - \frac{1}{x} + C$
11. $y = (1 - \sqrt{x})^{2} \ge 0$, $y = 0$ if and only if $x = 1$

$$A = 0$$

$$A = 0$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 + x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x - 2\sqrt{x} dx = x - 1$$

$$1 - x -$$

Area = $\int_{0}^{1} (1-Jz)^{2} dz = \int_{0}^{1+\chi-2Jz} dz = \frac{\chi+\frac{1}{2}\chi-2\chi-\frac{1}{3}}{3}$ 12. $Volume = \int_{0}^{1} \pi (\chi-0)^{2} dy = \int_{0}^{1} \pi y^{\frac{2}{3}} dy$ $= \pi (\frac{3}{5}y^{\frac{5}{3}})|_{0}^{1} = \frac{3}{5}\pi$

- 1. Let $f(x) = |x|^3$. Then f'(-2) =
 - (A) ∞
 - (B) 12
 - (\mathbf{C}) 0
 - (D) -12
 - (\mathbf{E}) $-\infty$
- 2. Let $f(x) = (x^3 2x^2 + 3x + 5)^9$. Then f''(-1) =
 - (A) -7290
 - (B) -7200
 - (C) -6390
 - (D) -6300
 - (E) -4590
- 3. Find the slope of the tangent line to the curve $1+16x^2y=\tan{(x-2y)}$ at the point $(\frac{\pi}{4},0)$.
 - (A)
 - (B) $\frac{2}{\pi^2+4}$
 - (C) $\frac{-1}{\pi^2+4}$ (D) $\frac{-2}{\pi^2}$

 - (E)

4. Let f(x) be a function defined by

$$f\left(x\right) = \frac{x+1}{x^2+1}$$

where $x \in \begin{bmatrix} \frac{1}{5}, 1 \end{bmatrix}$. Let M and m denote the absolute maximum value and absolute minimum value respectively of f in this interval. Then

- (A) $M = \frac{1}{2(\sqrt{2}-1)}$, $m = -\frac{1}{2(\sqrt{2}+1)}$
- **(B)** $M = \frac{1}{2(\sqrt{2}-1)}, m = 1$
- (C) M = 1, $m = -\frac{1}{2(\sqrt{2}+1)}$
- (D) $M = \frac{1}{2(\sqrt{2}-1)}$, $m = \frac{15}{13}$
- (E) $M = \frac{15}{13}$, $m = -\frac{1}{2(\sqrt{2}+1)}$
- 5. Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{1+\sin 3x}{1+\cos 2x}$.
 - (A) The limit does not exist

 - (B) $\frac{3}{4}$ (C) $\frac{9}{4}$ (D) $-\frac{3}{4}$ (E) $-\frac{9}{4}$
- 6. For the function $y = x^x$, $x \in (0, \infty)$, its second derivative $\frac{d^2y}{dx^2}$
 - (A) is always positive
 - (B) is always negative
 - (C) has exactly one zero at x = 1
 - (D) has exactly one zero at x = e
 - (\mathbf{E}) has more than one zeros

7. $\int \frac{1}{x^2} \tan \frac{1}{x} \sec^2 \frac{1}{x} dx =$

- (A) $-\frac{1}{2}\tan\frac{1}{x}\sec\frac{1}{x} + C$
- (B) $-\frac{1}{2}\sec\frac{1}{x} + C$
- (C) $\frac{1}{2} \sec^2 \frac{1}{x} + C$
- (D) $-\frac{1}{2}\tan\frac{1}{x} + C$
- (E) $-\frac{1}{2}\tan^2\frac{1}{x} + C$

8. If x > 0, then $\frac{d}{dx} \int_{2}^{x^{2}} (\ln t)^{2} dt =$

- (A) $4x (\ln x)$
- **(B)** $4x (\ln x)^2$
- (C) $4(x \ln x)^2$
- (D) $8x \left(\ln x\right)^2$
- **(E)** $8(x \ln x)^2$

9. $\int_{-2}^{1} \sqrt{(x+1)^2} dx =$

- (A) $-\frac{3}{2}$
- (B) $\frac{15}{4}$
- (C) $\frac{3}{2}$
- (D) $\frac{3}{4}$
- (E) $\frac{5}{2}$

- $10. \int \frac{\ln x}{x^2} \, \mathrm{d}x =$
 - (A) $\frac{1}{x}(1 + \ln x) + C$
 - (B) $-\frac{1}{x}(-1 + \ln x) + C$
 - (C) $-\frac{1}{x}(1+\ln x)+C$
 - (D) $\frac{1}{x^2} (1 \ln x) + C$
 - (E) $-\frac{1}{x^2}(1+\ln x)+C$
- 11. Find the area of the region in the first quadrant bounded by the x-axis, the y-axis and the curve $\sqrt{x} + \sqrt{y} = 1$.
 - (A) $\frac{1}{6}$
 - (B) $\frac{2}{5}$
 - (C) $\frac{1}{3}$
 - (D) $\frac{3}{4}$
 - (E) $\frac{5}{8}$
- 12. Let R denote the region in the first quadrant bounded by $y=x^3$, y=1 and x=0. Find the volume generated by revolving the region R about the y-axis.
 - (A) $\frac{4\pi}{3}$
 - (B) $\frac{3\pi}{5}$
 - (C) $\frac{2\pi}{3}$
 - (D) $\frac{5\pi}{6}$
 - (E) $\frac{3\pi}{2}$

END OF PAPER