1° Lista de Matemática Básica

- 1. Esboce a tabela-verdade para as seguintes proposições:
 - a) $\sim (\sim p \land \sim q)$.
 - b) $\sim q \rightarrow \sim p$.
 - c) $p \lor (q \leftrightarrow r)$.
 - $d) \sim [(p \wedge q) \vee \sim r].$
- 2. Classifique as expressões abaixo em tautologia ou logicamente falsa:
 - a) $(p \land q) \land \sim (p \lor q)$
 - b) $p \lor \sim (p \land q)$
- 3. Sendo a proposição $p \to (r \lor s)$ falsa e a proposição $(q \land \sim s) \leftrightarrow p$ verdadeira, classifique em verdadeira ou falsa as proposições p, q, r e s.
- 4. Mostre que as proposições $\sim (p \vee q) \vee (\sim p \wedge q)$ e $\sim p$ são logicamente equivalentes:
- 5. Para a seguinte expressão

$$\forall x \in \mathbb{Z}, 2x \text{ \'e par}$$

responda:

- a) Escreva sua negação.
- b) Encontre o conjunto verdade para a proposição 2x é par cujo domínio é \mathbb{Z} .
- c) Classifique em verdadeira ou falsa a expressão.
- 6. Dê um contra-exemplo para as expressões abaixo:
 - a) $\nexists x \in \mathbb{R}, x^4 = 16.$
 - b) $\forall x \in \mathbb{R}, x^2 > 0$.
- 7. Dê a negação da proposições quantificadas da questão anterior.
- 8. Seja $U = \{1, 2, \dots, 9\}$ o conjunto universo dos conjuntos considerados

$$A = \{1, 2, 3, 4, 5\}, \quad B = \{4, 5, 6, 7\}, \quad C = \{5, 6, 7, 8, 9\}.$$

Dessa forma, determine:

- $a)A \cup B \in A \cap B$.
- b) $A \cup C$ e $A \cap C$.
- $c)B \cup C \in B \cap C$.
- $d)A^c$, $B^c \in C^c$.
- $e)A \setminus B$, $A \setminus C$, $B \setminus A$, $B \setminus C$, $C \setminus A$, $e \cap C \setminus B$.
- $f)A \oplus B$, $A \oplus C \in B \oplus C$.
- 9. Represente no diagrama de Venn os conjuntos abaixo:

$$a)A \cap B^c$$
 $b)(B \setminus A)^c$ $c)A^c \cup B$.

- 10. Mostre as seguintes igualdades:
 - a) $(A \setminus B) \cup (A \cap B) = A$.
 - b) $A \cup B = (B^c \cap A^c)^c$.
 - c) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.
 - d) $n(A \cup B) = n(A \setminus B) + n(B \setminus A) + n(A \cap B)$.
 - e) $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C) n(B \cap B)$
 - $C) + n(A \cap B \cap C.$
- 11. Prove as seguintes equivalências:
 - a) $A \subseteq B$ se e somente se $A \cap B^c = \emptyset$.
 - b) $A \subseteq B$ se e somente se $A^c \cup B^c = U$.
 - c) $A \subseteq B$ se e somente se $B^c \subseteq A^c$.
 - d) $A \subseteq B$ se e somente se $A \setminus B = \emptyset$.
- 12. Para o conjunto $A = \{1, 2, 3, 4, 5\}$, encontre:
 - a) Partes(A).
 - b) A classe Γ que contém exatamente três elementos de A.
 - c) Uma partição.
- 13. Usando o teorema da indução, mostre as igualdades abaixo:
 - a)Para $n \in \mathbb{N}$ temos $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$.
 - b) Para $n \in \mathbb{N}$ temos $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.