3 逻辑门电路

- 3.1、逻辑门电路概述及电气特性
- 3.2、CMOS逻辑门电路(三态门、OD门)
- 3.3、TTL逻辑门电路
- 3.4*、BICMOS逻辑门电路
- 3.5、CMOS与TTL电路之间的接口问题

逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路。

逻辑门电路的分类

PRODUCT LIFE CYCLE


```
HSTL High-Speed Transceiver Logic
FCT Fast CMOS Technology
LV Low-Voltage CMOS Technology
LVC Low-Voltage CMOS Technology
AVC Advanced Very-Low-Voltage CMOS Logic
ALVC Advanced Low-Voltage CMOS Technology
ALB Advanced Low-Voltage BiCMOS
LVT Low-Voltage BiCMOS Technology
ALVT Advanced Low-Voltage BiCMOS Technology
AUC 1.8V Advanced Ultra-Low-Voltage CMOS Logic
ALS Advanced Low-Power Schottky Logic
HC High-Speed CMOS Logic
HCT High-Speed CMOS Logic
AHC Advanced High-Speed CMOS
AHCT Advanced High-Speed CMOS Technology
AC Advanced CMOS Logic
ACT Advanced CMOS Logic
BCT BiCMOS Technology
ABT Advanced BiCMOS Technology
ABTE Advanced BiCMOS Technology/Enhanced Transceive
```

LOGIC MIGRATION

高电平 $v_{\rm O}/{ m V}$ 输入和输出的高、低电平 v_{0} 不稳 定区 低电平 **驱动门** G₁ **负载门** G₂ $+V_{ m DD}$ 输出 高电平 $V_{ m OH(min)}$ 高电平 输入低电平的上限值 $V_{ m IH(min)}$ $V_{\rm IL(max)}$ 输入高电平的下限值 $V_{\rm IL(max)}$ $V_{\rm IL(min)}$ 输入 输出高电平的下限值 输出 OL(max) 低电平 低电平 $V_{\mathrm{OH(min)}}$

6

输出低电平的上限值

 $V_{\mathrm{OH(max)}}$

2、噪声容限:在输出电平不变的条件下,输入电平允许波动的范

围,表示门电路的抗干扰能力

负载门输入高电平时的噪声容限:

V_{NH} —当前级门输出高电平的最小值时允许负向噪声电压的最大值。

$$V_{\rm NH} = V_{\rm OH(min)} - V_{\rm IH(min)}$$

负载门输入低电平时的噪声容限:

V_{NL} —当前级门输出低电平的最大值时允许正向噪声电压的最大值

$$V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)}$$

3、传输延迟时间

表征门电路开关速度的参数,说明门电路在输入脉冲波形的作用下,其输出波形相对于输入波形延迟的时间长度。

类型 参数	74HC V _{DD} =5 V		74LVC $V_{\rm DD}$ =3.3V	
t_{PLH} 或 $t_{\mathrm{PHL}}(\mathrm{ns})$	7	8	2.1	0.9

4、功耗

静态功耗:指的是当电路没有状态转换时的功耗。

动态功耗:电路进行状态转换时的功耗。

TTL门电路:主要为静态功耗。

CMOS门电路:静态功耗非常低,其动态功耗为:

$$P_{\rm D} = FC_{\rm PD}V_{\rm DD}^2$$

5、延时-功耗积:是速度功耗综合性的指标.延时-功耗积,

用符号DP表示: $DP = T_{pd}P_{D}$

6、扇入与扇出数

扇入数:门电路输入端的个数。

扇出数:门电路正常工作情况下,所能驱动同类门电路的最大数目。驱动门的负载分为灌电流负载和拉电流负载。

(a) 带灌电流负载

(b) 带拉电流负载

$$N_{\mathrm{OH}} = \frac{I_{\mathrm{OH}}(驱动门)}{I_{\mathrm{IH}}(负载门)}$$

如NonNon则取两者的最小值为门的扇出系数

电路类型		电源电 压/V	传输延 迟时间 /ns	静态功耗 /mW	功耗一延迟 积/mW-ns	直流噪声容限		输出逻
						V _{NL} /V	$V_{ m NH}/ m V$	辑摆幅 /V
TTL	CT54/74	+5	10	15	150	1.2	2.2	3.5
	CT54LS/74LS	+5	7.5	2	15	0.4	0.5	3.5
	HTL	+15	85	30	2550	7	7.5	13
ECL	CE10K系列	-5.2	2	25	50	0.155	0.125	0.8
	CE100K系列	-4.5	0.75	40	30	0.135	0.130	0.8
CMOS	$V_{\rm DD}$ =5V	+5	45	5×10 ⁻³	225×10^{-3}	2.2	3.4	5
	$V_{\rm DD}$ =15V	+15	12	15×10 ⁻³	180×10^{-3}	6.5	9.0	15
高速CMOS		+5	8	1×10 ⁻³	8 × 10 ⁻³	1.0	1.5	5