METODE TRANSPORTASI

- PENGERTIAN
- METODE STEPPING STONE
- METODE MODI
- METODE VOGELS APPROXIMATION (VAM)

PENGERTIAN

- Metode Transportasi merupakan suatu metode yang digunakan untuk mengatur distribusi dari sumber-sumber yang menyediakan produk yang sama, ke tempat-tempat yang membutuhkan secara optimal.
- Alokasi produk harus diatur sedemikian rupa karena terdapat perbedaan biayabiaya alokasi dari satu sumber ke tempat tujuan yang berbeda-beda dan dari beberapa sumber ke suatu tempat tujuan yang berbeda.

METODE STEPPING STONE

Langkah-langkah pemecahan masalah:

- 1.Penyusunan tabel alokasi
- 2.Prosedur alokasi
- 3. Mengubah alokasi secara trial and error

Contoh:

Suatu perusahaan memiliki 3 pabrik yang berada di W, H dan P. Sedangkan produk tersebut akan didistribusikan atau dialokasikan ke 3 gudang penjualan di A,B dan C. Kapasitas pabrik, kebutuhan gudang dan biaya pengangkutan dari tiap pabrik ke tiap gudang adalah sebagai berikut:

Tabel 1. Kapasitas Pabrik

Pabrik	Kapasitas Produksi tiap bulan
W	90 ton
Н	60 ton
Р	50 ton
Jumlah	200 ton

Tabel 2. Kebutuhan Gudang A,B dan C

Gudang	Kebutuhan tiap bulan
А	50 ton
В	110 ton
С	40 ton
Jumlah	200 ton

Tabel 3. Biaya Pengangkutan setiap ton dari Pabrik ke Gudang

Dari	Biaya tiap ton (000)				
	Ke Gudang A	Ke Gudang C			
Pabrik W	20	5	8		
Pabrik H	15	20	10		
Pabrik P	25	10	19		

Menyusun Tabel Alokasi

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	X ₁₁ 20	X ₁₂ 5	X ₁₃ 8	90
Pabrik H	X ₂₁ 15	X ₂₂ 20	X ₂₃ 10	60
Pabrik P	X ₃₁ 25	X ₃₂ 10	X ₃₃ 19	50
Kebutuhan Gudang	50	110	40	200

 X_{ij} = banyaknya alokasi dari sumber i ke tujuan j. Misal dari W ke A (sumber 1 ke tujuan pertama)

Nilai Xij inilah yang akan dicari

2. Prosedur Alokasi

Pedoman yang digunakan adalah:

Pedoman Sudut Barat Laut (Northwest corner rule)

Mulai dari sudut X₁₁ dialokasikan sejumlah maksimum produk dengan melihat kapasitas pabrik dan kebutuhan gudang.

Setelah itu bila Xij merupakan kotak terakhir yang dipilih dilanjutkan dengan mengalokasikan pada Xi,j+1 bila I mempunyai kapasitas yang tersisa. Bila tidak, alokasikan ke Xi+1,j dan seterusnya hingga semua kebutuhan terpenuhi

Segi empat yang terisi alokasi biasanya disebut segi empat batu, sedangkan yang kosong disebut segi empat air.

Jumlah rute yang dilalui = (jumlah kolom + jumlah baris) – 1

Contoh di atas, jumlah rute yang dilalui = (3 + 3) - 1 = 5

Jika jumlah rute kurang dari jumlah rute yang dilalui maka solusinya dinamakan dengan degenerate

Tabel Alokasi Pertama dengan Metode Stepping Stone

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	50	5	8	90
Pabrik H	15	60	10	60
Pabrik P	25	10	19 → 40	50
Kebutuhan Gudang	50	110	40	200

Biaya Pengangkutan untuk Alokasi Tahap pertama=

$$50(20) + 40(5) + 60(20) + 10(10) + 40(19) = 3260$$

3. Mengubah Alokasi secara Trial Error

Langkah-langkahnya:

- Pilih kotak/jalur yang tidak digunakan (WC,HA,HC,PA) untuk dievaluasi
- 2. Dengan dimulai dari jalur ini, telusuri jalur dengan jalur tertutup melewati jalur yang sebenarnya/terpakai
- Di jalur yang tidak terpakai, berilah tanda plus (+).
 Kemudian jalur selanjutnya tanda minus (-) dan seterusnya sesuai dengan jalur yang dikalkulasikan
- 4. Hitung *Improvement Index* dengan menambahkan unit cost sesuai jalur dengan tanda plus atau minus
- 5. Ulangi tahap 1-4 untuk tiap jalur kosong yang ada. Jika dihasilkan nilai sama atau lebih dari nol, maka solusi optimalnya dapat diketahui. Namun jika ada yang kurang dari nol maka memungkinkan untuk meningkatkan hasil sebelumnya dan mengurangi total biaya transportasi.

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	50	40(-)	(+) 8	90
Pabrik H	15	60	10	60
Pabrik P	25	10 (+)	40 (-)	50
Kebutuhan Gudang	50	110	40	200

Contoh:

Jalur 1:

+WC-WB+PB-PC = +8-5+10-19 = -6

Ke Dari	Gudang A	Gudang A Gudang B Gudan		Kapasitas Pabrik
Pabrik W	(-) 20	(+) 5	8	
	50	→ 40 T		90
Pabrik H	15	20	10	
	(+)	6 0 (-)		60
Pabrik P	25	10	19	
		10	40	50
Kebutuhan Gudang	50	110	40	200

Jalur 2:

$$+HA - HB + WB - WA = +15 - 20 + 5 - 20 = -20$$

Ke Dari	Gudang A		Gu	dang B	Gudang C		Kapasitas Pabrik
Pabrik W	(-)	20	(+)	5		8	
	50		-4 0	<u> </u>			90
Pabrik H		15		20		10	
			60				60
Pabrik P		25		10		19	
	(+)		10	(-)	40		50
Kebutuhan Gudang	50			110	4	0	200

Jalur 3:

$$+PA - PB + WB - WA = +25 - 10 + 5 - 20 = 0$$

Nilai improvement index:

- Jalur 1 = +WC-WB+PB-PC = +8-5+10-19 = -6
- Jalur 2 = +HA HB + WB WA = +15-20+5-20 = -20
- Jalur 3 = +PA PB + WB WA = +25 10 + 5 20 = 0

Dengan adanya nilai improvement index kurang dari nol (negatif), maka cost saving dapat dilakukan dari (HA). Jika terdapat lebih dari satu index yang bernilai negatif maka diambil nilai index negatif terbesar.

3. Mengubah alokasi secara trial error

Tabel Perbaikan pertama dengan trial error

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	5	8	
	50 (-)	(+) 40		90
Pabrik H	15	20	10	
	(+)	(-) 60		60
Pabrik P	25	10	19	
		10	40	50
Kebutuhan Gudang	50	110	40	200

Ke Dari	Gudang A		Gudang A Gudang B Gudang C		Kapasitas Pabrik		
Pabrik W	(-)	20	(+	5		8	
	50 50	=0		50=90			90
Pabrik H		15		20		10	
	(+)	-5 0	60-5	0=10			60
Pabrik P		25		10		19	
			10		40		50
Kebutuhan Gudang	5	50		110	4	0	200

Biaya Pengangkutan untuk Alokasi perbaikan pertama = 90 (5) + 50 (15) + 10 (20) + 10 (10) + 40 (19) = 2260

Perbaikan 2:

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	90 (-) 5	+ 8	90
Pabrik H	(-) 15	(+) 20	10	60
Pabrik P	+ 25	10 (+)	40 (-)	50
Kebutuhan Gudang	50	110	40	200

Jalur 1=
$$\longrightarrow$$
 = +PA – PB + HB – HA = +25-10+20-15 = 20
Jalur 2 = \Longrightarrow = +WC – WB + PB – PC = +8-5+10-19 = -6 \Longrightarrow yang dipilih

Jika jalur 1 yang dipilih hasil belum optimal. Bukti:

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	90	8	90
Pabrik H	(-) 15 50-10=40	(+) 20 10+10=20	10	60
Pabrik P	+ 10	10 10=0	19 40	50
Kebutuhan Gudang	50	110	40	200

Biaya Pengangkutan untuk Alokasi perbaikan kedua =

$$90(5) + 40(15) + 20(20) + 10(25) + 40(19) = 2460$$

Perbaikan ketiga – dengan segi empat yang tidak berdekatan yaitu WC Tabel Perbaikan ketiga

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	90 (-)	(+) 8	90
Pabrik H	15	20	10	
	50	10		60
Pabrik P	25	10	19	
		(+) ↓ 10	(-) 40	50
Kebutuhan Gudang	50	110	40	200

Perbaikan dengan masalah alokasi segi empat tidak berdekatan

Ke Dari	Guda	ng A	Guda	ang B	Guda	ang C	Kapasitas Pabrik
Pabrik W		20		5		8	
			90-40=	50	(+) 4	10	90
Pabrik H		15		20	1	10	
	50		10				60
Pabrik P		25		, 10		19	
			10+40=	=50	40-40	0=0	50
Kebutuhan Gudang	50	0	1	10	4	ŀO	200

Biaya Pengangkutan untuk Alokasi Tahap Kedua=

$$50(5) + 40(8) + 50(15) + 10(20) + 50(10) = 2020$$

Apakah ini sudah optimal?

Cek kembali dengan menghitung nilai indexnya

Ke Dari	Gudang A		Gudang B		Gudang C	Kapasitas Pabrik
Pabrik W		20	50 (+)	5	40 8 (-)	90
Pabrik H	50	15	10 (-)	20	+ 10	60
Pabrik P		25	50	10	19	50
Kebutuhan Gudang	50		,	110	40	200

Index:

$$+HC-WC+WB-HB = +10-8+5-20 = -13$$

Tabel Perbaikan:

Ke Dari	Gudang A	Gudang B	Gudang C	Kapasitas Pabrik
Pabrik W	20	50+10= 60	40-10= 8 30 (-)	90
Pabrik H	50	(-) 20 10-10=0	++10	60
Pabrik P	25	50	19	50
Kebutuhan Gudang	50	110	40	200

Hasil Perbaikan:

Ke Dari	Guda	ang A	Gu	dang B	Gud	ang C	Kapasitas Pabrik
Pabrik W	4	20		5		8	90
			60	4	30		90
Pabrik H		15	→	20		10	
	50				10		60
Pabrik P		25		10		19	
			50				50
Kebutuhan Gudang	5	0		110	2	40	200

Total Biaya Transportasi:

$$60(5) + 30(8) + 50(15) + 10(10) + 50(10) =$$

Soal:

Berikut adalah data mengenai biaya transportasi dari pabrik ke gudang barang jadi beserta kapasitasnya masing-masing.

Pabrik (Kapasitas)	Gudang tujuan (Kapasitas)					
	A (300)	B (200)	C (200)			
D (100)	5	4	3			
E (300)	8	4	3			
F (300)	9	7	5			

Tentukan biaya transportasi yang paling minimal yang dapat dipilih.