## Analysis Scope and Parameters



### **Analysis Period**

1 month of data



### **KPI**

Average Delivery time
Repeatability
Avg order value (\$)
Order per customer
No. of orders per driver



### **Stakeholders**

Customers

Restaurants

**Drivers** 

## Summary



### **Descriptive Analysis**

- High delay time between order placed by customer and order received by restaurant
- Higher delivery time in San Jose leading to lower repeatability even with higher discounts
- New restaurant should be onboarded in San Jose



### **Opportunity to Optimize Supply and Demand**

- Shortage of Driver's supply during peak hours (4pm to 7pm)
- Avg delivery time increase by 10% during peak hours
- Orders per driver increase to 12.71 during peak hours



### Clustering identifies Star and potential high growth Customers

- Star customers (High repeatability, no discounts)
- New customers (Low repeatability, order with high discount)
- Potential high growth customers (No discount, medium repeatability)
- Potential churn customers (No repeatability, medium discount)

### **KPIs**



### Average Delivery time

Time from order placed by customer to order delivered

### Repeatability

- Frequency of orders placed by customer in one month
- Customers with frequency >= 4 are considered repeatable

### Avg order value (\$)

Total order amount/count of orders per customer

### Order per customer

Total order count/total distinct customers

### No. of orders per driver

Total order count/total distinct drivers

## Demand by region and delivery type







- 31% orders (\$ amount) are asap orders
- 69% orders are scheduled (non-asap)

- San Jose has highest ratio of asap orders – 85% wrt to 69% region average
- Asap orders are higher than nonasap orders, with San Jose being highest at 85%.

- Palo Alto has highest order (\$ value)
   as well as order count
- More than 50% or region demand is coming from Palo Alto

### Top 20 Merchants by Order Value & Order Count



- Above is the chart for Top-20 restaurants based on order amount.
- Restaurant number 11 is among the top ones, but only caters non-asap orders, potential to be among top-3 by also considering asap orders as it has \$13k in non-asap which is third highest.

### Top 20 Customers by Order Value & Order Count



Top customers with highest order amount have non-asap orders. Looks like these are corporate orders or catering orders.

## Day of Week Seasonality: High demand during weekend



Order amount shows seasonality with Day of Week with higher trends in Yellow (assumed it to be Friday) and lower trends on Orange (Monday).

# Hour of Day Seasonality: Peak hours (4 pm to 7 pm)



- Above analysis is for ASAP orders
- During peak hours, total order value (\$) as well as order count is higher.

## Shortage of Driver's supply during peak hours (4pm to 7pm)



- Avg delivery time increase by 10% during peak hours
- Orders per driver increase to 12.71 during peak hours

## Higher delivery time in San Jose leading to lower repeatability even with higher discounts



- San Jose & Mountain View (MV) have same customer base (~1200)
- San Jose has highest avg. delivery time for asap orders
- ~6.5% more delivery time for San Jose than MV

- San Jose has highest avg refund amount
- San Jose has highest avg discount

San Jose has lowest orders per customer

**Hypothesis**- higher average delivery time in San Jose causing:

- Lower orders/customer
- More avg refund
- More avg discount

### New restaurants should be onboarded in San Jose



Hypothesis - Restaurants are situated far from San Jose causing higher delivery time:

- Avg total delivery time for San Jose is 53.3 during peak hour while order/driver is 8.8. However, both Palo Alto & Mountain View have much better delivery time for a higher order/driver rate. It implies driver have to drive longer for San Jose delivery.
- Recommendation to onboard new restaurants in the region.

## High Order processing time by app



- High app processing time and variability leading to overall variability in avg delivery time
- App processing time should be consistent and can be optimized to improve overall delivery time



## Customer segmentation: K-Means Clustering





Cluster 3 – Star customers (High repeatability, no discounts)

Cluster 2 – New customers (Low repeatability, order with high discount)

Cluster 0 - Potential high growth customers (No discount, medium repeatability)

Cluster 1 – Potential churn customers (No repeatability, medium discount)

Repeatability is customer loyalty to the platform using frequency of orders place in a month

## Understanding our Customers



Cluster 0 – Customers have a repeatability of 13.4% without any discount. These are high potential customers to be converted to star customers. Personalized notifications/emails as reminders should be sent to these customers.

Cluster 1 – Customers are on the verge of churn. Even with medium discount, there is no repeatability. We can run A/B test to quantify the impact of discount.

Cluster 2 – New customers with high discount offered to them (~\$44). 8.5% got converted to repeated customers. Our target is remaining 91%.

Cluster 3 – Customers have 4 or more orders in a month without any discount. These customers are loyal and very important to retain and hence should be closely monitored.

#### Average amount of discount per cluster



<sup>\*\*</sup> Repeat customers are those who ordered more than 4 times in a month

## Next Steps & Recommendations

#### Improvement in delivery time

- Reduction in order processing time
- Incentives to drivers during peak hours and peak days
- Onboard new restaurants in San Jose

#### Customer retention & growth

- Closely monitor star customers (red cluster) as they are loyal to the platform
- Send personalized notifications/emails & targeted coupons to cyan & green cluster customers as they are high potential growth customers
- Run A/B testing experiment to quantify the impact of discount for blue customers as they are likely to churn

### Additional Data for further improvement

- Forecasting will help us predict the customers demand and drivers supply to better optimize. More historical data required for this analysis
- Geographical data like restaurant location, customer location, etc. will further help us analyze & optimize the delivery time

## Thank You!