Divergence d'un champ électrique

On considère un champ électrique $\vec{E},$ s'écrivant en coordonnées sphériques sous la forme :

$$\vec{E} = \frac{\alpha \vec{r}}{r^{n+1}}$$

où $\vec{r}=x\vec{e}_x+y\vec{e}_y+z\vec{e}_z$ est le vecteur position et α une constante.

- * Calculer la divergence de \vec{E} .
- * Pour quelle valeur de n la divergence est nulle ? Á quelle situation physique (cad distribution de charge) correspond ce champ ?
- * Pour n tel que div $\vec{E}=0$, calculer le flux de \vec{E} à travers la surface d'une sphère de rayon R centrée en O. Le théorème de Green-Ostrogradski est-il valable ? Commenter.
- * Calculer le rotationnel de $\vec{E}.$ Ce champ est-il compatible avec les équations de Maxwell ?

Correction - Divergence d'un champ électrique

* En coordonnées carthésiennes :

$$\vec{E} = \alpha \frac{x\vec{e}_x + y\vec{e}_y + z\vec{e}_z}{(x^2 + y^2 + z^2)^{\frac{n+1}{2}}}$$

La dérivée par rapport à x donne :

$$\frac{\partial E_x}{\partial x} = \alpha \frac{x^2 + y^2 + z^2 - (n+1)x^2}{(x^2 + y^2 + z^2)^{\frac{n+3}{2}}}$$

La divergence donne donc :

$$\begin{split} \operatorname{div} \vec{E} &= \alpha \frac{3(x^2 + y^2 + z^2) - (n+1)(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{\frac{n+3}{2}}} \\ &= \alpha \frac{(2-n)(x^2 + y^2 + z^2)}{(x^2 + y^2 + z^2)^{\frac{n+3}{2}}} \\ &= \alpha \frac{(2-n)}{r^{n+1}} \end{split}$$

- * La divergence est nulle pour n=2. Cela correcpond à un champ en $\propto 1/r^2$, c'est-à-dire un champ Coulombien : une charge ponctuelle située en r=0.
- * Le flux de \vec{E} à travers la surface Σ demandée est tout simplement $4\pi\alpha$. Or, l'intégrale $\iiint_{\Sigma} \operatorname{div} \vec{E} \cdot d\tau = 0$. Le théorème de Green ici ne s'applique pas car \vec{E} n'est pas une fonction dérivable en $\vec{r} = \vec{0}$.
- * Calculons la composante suivant \vec{e}_x du rotationnel :

$$\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = \frac{\partial}{\partial y} \left(\frac{z}{(x^2 + y^2 + z^2)^{\frac{n+1}{2}}} \right) - \frac{\partial}{\partial z} \left(\frac{y}{(x^2 + y^2 + z^2)^{\frac{n+1}{2}}} \right) \\
= -\frac{(n+1)yz}{(x^2 + y^2 + z^2)^{\frac{n+3}{2}}} + \frac{(n+1)zy}{(x^2 + y^2 + z^2)^{\frac{n+3}{2}}} \\
= 0$$

Le calcul est similaire avec les autres composantes. Ce champ est donc compatible avec les équations de Maxwell, la densité de charge étant alors :

$$\rho(r) = \varepsilon_0 \alpha \frac{(2-n)}{r^{n+1}}$$

Rotationnel d'un champ magnétique

On considère un champ magnétique \vec{B} , s'écrivant en coordonnées cylindriques sous la forme :

$$\vec{B} = \beta \frac{\vec{e_{\theta}}}{r^n}$$

où $\vec{r} = r\vec{e_r} = x\vec{e_x} + y\vec{e_y}$ et β est une constante.

- \circlearrowleft Donner l'expression de \vec{B} en coordonnées carthésiennes.
- \circlearrowleft Calculer le rotationnel de \vec{B} .
- \circlearrowleft Pour quelle valeur de n le rotationnel est nul ? A quelle situation physique (cad distribution de courant) correspond ce champ ?
- \circlearrowleft Pour n tel que $\vec{\text{rot}}\vec{B}=0$, calculer la circulation de \vec{B} le long d'un cercle compris dans le plan (\vec{e}_x,\vec{e}_y) , de rayon r, centré en O. Le théorème de Kelvin-Stockes est-il valable ? Commenter.
- \circlearrowleft Calculer la divergence de \vec{B} . Ce champ est-il compatible avec les équations de Maxwell ?

Correction - Rotationnel d'un champ magnétique

 \circlearrowleft Il faut écrire le vecteur \vec{e}_{θ} en coordonnées carthésiennes : $\vec{e}_{\theta} = -y/\sqrt{x^2 + y^2}\vec{e}_x + x/\sqrt{x^2 + y^2}\vec{e}_y$. Alors :

$$\vec{B} = -\frac{\beta y}{(x^2 + y^2)^{\frac{n+1}{2}}} \vec{e}_x + \frac{\beta x}{(x^2 + y^2)^{\frac{n+1}{2}}} \vec{e}_y$$

 \circlearrowleft Les composantes suivant \vec{e}_x et \vec{e}_y du rotationnel sont nulles :

$$\frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} = 0$$
$$\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} = 0$$

La composante suivant \vec{e}_z donne :

$$\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} = \beta \frac{\partial}{\partial x} \left(\frac{x}{(x^2 + y^2)^{\frac{n+1}{2}}} \right) - \beta \frac{\partial}{\partial y} \left(\frac{y}{(x^2 + y^2)^{\frac{n+1}{2}}} \right)$$

$$= \beta \frac{x^2 + y^2 - (n+1)x^2}{(x^2 + y^2)^{\frac{n+3}{2}}} + \frac{x^2 + y^2 - (n+1)y^2}{(x^2 + y^2)^{\frac{n+3}{2}}}$$

$$= \beta \frac{(1-n)(x^2 + y^2)}{(x^2 + y^2)^{\frac{n+3}{2}}}$$

$$= \beta \frac{(1-n)}{(x^2 + y^2)^{\frac{n+1}{2}}}$$

$$= \beta \frac{(1-n)}{x^{n+1}}$$

- \circlearrowleft Le rotationnel est nul pour n=1. Cela correspond à la situation du champ magnétique créé par un fil infini suivant l'axe \vec{e}_z .
- \circlearrowleft La circulation de \vec{B} pour n=1 s'écrit $\oint_{\Gamma} \vec{B} \cdot d\vec{l} = 2\pi\beta$. Or le rotationnel de \vec{B} étant nul, le théorème de Stockes ne s'applique pas. En effet, le champ magnétique admet une singularité (non dérivable) en r=0, le théorème ne s'applique pas.
- \circlearrowleft On trouve facilement que div $\vec{B}=0$. Ce champ est donc compatible avec les équations de Maxwell, avec une densité volumique de courant :

$$\vec{j} = \beta \frac{(1-n)}{\mu_0 r^{n+1}} \vec{e}_z$$

Bille radioactive

Une bille radioactive initialement neutre de rayon $R \simeq 0$ émet de façon isotrope, à partir de t=0, N particules par seconde de charge e, avec une vitesse de norme v_0 . On note $\vec{j}(r,t) = j(r,t)\vec{e_r}$ le vecteur densité de courant et $\rho(r,t)$ la densité volumique de charges en un point M à la distance r=OM du centre O de la bille et à la date t.

- \odot Justifier de l'existence, à la date t, d'un rayon critique $r_c(t)$ et l'exprimer.
- \odot Déterminer la charge Q(t) de la bille à listant t.
- \odot En supposant que les particules se déplacent à une vitesse v_0 constante, exprimer j(r,t) et $\rho(r,t)$ pour $r < r_c(t)$.
- O Vérifier la conservation de la charge totale du système.
- Pourquoi l'hypothèse de la constance de la vitesse des particules est-elle discutable ?

Sphère radioactive

On considère une sphère de rayon R_0 constituée d'un matériau initialement neutre électriquement, devenant radioactif lorsqu'on le soumet à t=0 à un bombardement bref et intense de particules α . A partir de ce moment-là, la sphère émet de manière isotrope des particules chargées +e à la vitesse v_0 , que l'on supposera constante. On suppose que ces particules sont émises, à un instant t, au rythme de n(t) particules par unité de temps.

- * On considère une particule émise à l'instant t_0 . Où se situe t-elle à l'instant $t > t_0$? En déduire l'existence d'un rayon critique r_c . Donner le lien entre t_0 et t pour $r = R_0$, r quelconque et $r = r_c$.
- * Pour $R_0 < r < r_c$, déterminer la densité de charge $\rho(r,t)$. On pourra dénombrer le nombre de particules comprises dans le volume compris entre les sphères de rayon r et r + dr.
- * De la même façon, déterminer la densité volumique de courant $\vec{j}(r,t)$.
- * L'équation de conservation de la charge est-elle respectée ? On donne, en coordonnées sphériques, la divergence d'un vecteur : $\operatorname{div} \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A_r \right) + \dots$
- * Exprimer la charge Q(r,t) comprise dans une sphère de rayon $r < r_c$ à l'instant t, en fonction de $N(t) = \int_0^t dt_0 n(t_0)$, la quantité totale de particules +e émises depuis t = 0 jusqu'à t.
- * Donner l'expression du champ électrique $\vec{E}(r,t)$, puis celle du champ magnétique \vec{B} . On pourra utiliser les symétries du problème.
- * Exprimer le vecteur de Poynting, puis l'énergie du champ électromagnétique. Etablir un bilan d'énergie électromagnétique et conclure.
- * Bonus: La probabilité qu'un noyau atomique de la sphère émette une particule +e entre t et t+dt est constante et vaut $dP=dt/\tau$. En déduire n(t) et N(t), sachant qu'il y a, à t=0, N_0 noyaux susceptibles de se désintégrer.

Correction - Sphère radioactive

- * Une particule en r à l'instant t a été émise à t_0 en R_0 . On a donc $r R_0 = v_0(t t_0)$. En r = 0, on a donc $t = t_0$ (la particule vient juste d'être émise). Pour $t_0 = 0$, la particule a parcouru la plus grande distance possible (rien était émis avant), correspondant au rayon critique $r_c = v_0 t$
- * Il y a entre les sphères de rayon r et r + dr dN particules, qui ont été émises à $t_0 = t \frac{r R_0}{v_0}$ au rythme de $n(t_0)$ particules par unité de temps :

$$edN = 4\pi r^2 dr \rho(r,t) = en(t_0)dt$$

On a donc:

$$\rho(r,t) = \frac{e}{4\pi r^2 v_0} \times n \left(t - \frac{r - R_0}{v_0} \right)$$

* Façon facile : la définition de $\vec{j} = \rho \vec{v}$:

$$\vec{j}(r,t) = \frac{e}{4\pi r^2} \times n \left(t - \frac{r - R_0}{v_0} \right)$$

Version plus "compliquée" : on fait un bilan sur le nombre de particules entre les sphères de rayon r et r + dr pendant dt avec le flux \vec{j} .

* On a:

$$\begin{split} \frac{\partial \rho}{\partial t} &= \frac{e}{4\pi r^2 v_0} \times \frac{d}{dt} \left[n \left(t - \frac{r - R_0}{v_0} \right) \right] \\ &= \frac{e}{4\pi r^2 v_0} \times n' \left(t - \frac{r - R_0}{v_0} \right) \end{split}$$

D'autre part :

$$\operatorname{div} \vec{j}(r,t) = \frac{e}{4\pi r^2} \times \frac{d}{dr} \left[n \left(t - \frac{r - R_0}{v_0} \right) \right]$$
$$= -\frac{e}{4\pi r^2 v_0} \times n' \left(t - \frac{r - R_0}{v_0} \right)$$

L'équation de conservation est bel et bien respectée.

* On intègre d'abord la densité volumique de charge sur une boule de rayon r pour avoir la charge positive :

$$\begin{aligned} Q_{+}(r,t) = & 4\pi \int_{R_{0}}^{r} r'^{2} \rho(r',t) dr' \\ = & \frac{e}{v_{0}} \times \int_{R_{0}}^{r} dr' n \left(t - \frac{r - R_{0}}{v_{0}} \right) \end{aligned}$$

On effectue le changement de variable $r' \leftarrow t_0 = t - \frac{r - R_0}{v_0}$. Physiquement, cela correspond à intégrer non plus sur l'espace, mais sur le moment durant les particules ont été émises : intégrer de r' de R_0 à r correspond à intégrer sur le moment d'émission t_0 de t (la dernière particule émise se situe en R_0) à $t - \frac{r - R_0}{v_0}$ (la particule en r à l'instant t a été émise à $t - \frac{r - R_0}{v_0}$) :

$$\begin{split} Q_{+}(r,t) &= -v_{0}\frac{e}{v_{0}} \times \int_{t}^{t-\frac{r-R_{0}}{v_{0}}} dt_{0}n\left(t_{0}\right) \\ &= eN(t) - eN\left(t - \frac{r-R_{0}}{v_{0}}\right) \end{split}$$

C'est bien cohérent : $N\left(t-\frac{r-R_0}{v_0}\right)$ correspond aux charges dans le volume entre r et r_c .

Il faut aussi tenir compte du fait que la sphère radioactive a perdu des charges (elle était neutre à l'origine), plus précisément elle en a perdu eN(t). On a donc :

$$Q(t) = Q_{+}(r,t) - eN(t)$$
$$= -eN\left(t - \frac{r - R_0}{v_0}\right)$$

* On peut utiliser soit le théorème de Gauss, soit l'équation de Maxwell-Gauss (attention à la constante d'intégration). On trouve alors :

$$\vec{E}(r,t) = -\frac{e}{4\pi r^2 \varepsilon_0} N \left(t - \frac{r - R_0}{v_0} \right) \vec{e_r}$$

Par les symétries, on a nécessairement un champ magnétique nul :

$$\vec{B} = \vec{0}$$

* Le champ magnétique étant nul, on a :

$$\vec{\Pi} = \vec{0}$$

Il n'y a pas de propagation de l'énergie électromagnétique. Pour l'énergie électromagnétique, il n'y a uniquement le terme électrique :

$$\varepsilon_m = -\frac{e^2}{32\pi r^4 \varepsilon_0} N \left(t - \frac{r - R_0}{v_0} \right)^2$$

On peut alors vérifier que le bilan d'énergie électromagnétique est cohérent :

$$\frac{\partial \varepsilon_m}{\partial t} = -\frac{e^2}{16\pi r^4 \varepsilon_0} n \left(t - \frac{r - R_0}{v_0} \right) N \left(t - \frac{r - R_0}{v_0} \right)$$

On trouve bien que c'est égal au produit scalaire $-\vec{j}\cdot\vec{E}$. La variation de l'énergie électromagnétique se transmet intégralement aux charges.

Sphère radioactive

On considère une sphère composée d'aluminium de rayon R_0 , bombardée par un rayonnement de particules α très intense et bref. Sous le bombardement des particules α , l'aluminium se transforme en phosphore radioactif, qui se désintègre lui-même en silicium, avec l'émission d'un positron e^+ et d'un neutrino électronique ν_e :

$$^{30}_{15}P \longrightarrow ^{30}_{14} Si + e^{+} + \nu_{e}$$

Le temps caractéristique de cette désintégration est τ : la probabilité pour qu'un noyau de phosphore se désintègre entre t et t+dt est dt/τ^1 . Les positrons e^+ issus de la désintégration sont émis de manière isotrope à la vitesse v_0 . Ce sont des particules de charge +e. On suppose que juste après le bombardement, à t=0, il y a N_0 atomes de phosphore radioactifs dans la sphère d'aluminium.

Dans cet exercice, on cherche à déterminer l'expression du champ électromagnétique engendré par cet émission de particules chargées. Dans toute la suite, on ne s'intéressera qu'aux rayons $r > R_0$.

Densité de charge

 \spadesuit Montrer que le le nombre de positron +e émis par unité de temps par la sphère n(t) (ou taux de désintégration) s'écrit :

$$n(t) = \frac{N_0}{\tau} \exp\left(-\frac{t}{\tau}\right)$$

On pourra commencer par calculer le nombre de particule de phosphore $N_P(t)$ au cours du temps.

- \spadesuit Quelle est la densité de charge pour $r > v_0 t$? Pour $r \le v_0 t$, à quel instant les charges arrivant en à l'instant t en r sont elles parties de O? En déduire, $\forall r > R_0$, la densité de charge $\rho(r,t)$.
- \spadesuit Représenter l'allure des courbes de $\rho(r,t)$ en fonction de t pour r donné et en fonction de r pour t donné.

Champ électrique

- \spadesuit Déterminer le champ électrique $\vec{E}(r,t) \ \forall r > R_0$ à partir du théorème de Gauss.
- \spadesuit Retrouver ce résultat grâce à équation de Maxwell-Ampère. On donne, pour un vecteur n'ayant qu'une composante radiale a_r :

$$\operatorname{div}(a_r) = \frac{1}{r^2} \frac{\partial (r^2 a_r)}{\partial r}$$

Champ magnétique

- \spadesuit Déterminer la densité de courant $\vec{j}(r,t) \ \forall r > R_0$.
- \spadesuit En déduire le champ magnétique $\vec{B}(r,t)$. L'équation de Maxwell-Ampère est-elle vérifiée ?

Énergie électromagnétique

 \spadesuit Calculer la densité d'énergie électromagnétique $\varepsilon_m(r,t)$ et le vecteur de Poynting $\Pi(r,t)$ et la puissance volumique P fournie par le champ électromagnétique aux particules chargées. Conclure.

¹Le temps caractéristique τ est reliée à la demi-vie $\tau_{1/2}$ de la désintégration par la relation $\tau = \tau_{1/2}/\ln 2$. On mesure $\tau_{1/2} = 3 \min 15$ sec.