Вкажіть алгоритми, які будують кістякове дерево графа.

\checkmark	алгоритм Прима	~
	алгоритм Дейкстри	
	пошук в ширину	
	пошук в глибину	
	алгоритм Беллмана-Форда	
\checkmark	алгоритм Крускала	~
	алгоритм Флойда-Уоршелла	
Прав	ильный ответ	
~	пошук в глибину	
\checkmark	пошук в ширину	
\checkmark	алгоритм Прима	
	алгоритм Крускала	

/	Вкажіть алгоритми, які		
	дозволяють визначити в графі		
	наявність циклів з від'ємною		
	вагою.		
	алгоритм Дейкстри		
\checkmark	алгоритм Беллмана-Форда	~	
	жоден з вказаних		
	алгоритм Флойда-Уоршелла		
\checkmark	алгоритм Джонсона	/	

Комментарий

Про це на лекціях не згадувалося, але за матрицею алгоритму Флойда-Воршелла теж можна виявити наявність від'ємного циклу. Зазначення цього варіанту допустиме, але окремо враховуватися не буде.

✓	Вкажіть алгоритми, які дозволяють знайти найкоротші шляхи в графі.		
\checkmark	пошук в ширину	✓	
	алгоритм Прима		
\checkmark	алгоритм Беллмана-Форда		
\checkmark	алгоритм Дейкстри		
	алгоритм Крускала		
\checkmark	алгоритм Флойда-Уоршелла	✓	
	пошук в глибину		
✓	Вкажіть алгоритми, які використовують жадібну стратегію.		
	пошук в ширину		
\checkmark	алгоритм Крускала	✓	
	алгоритм Флойда-Уоршелла		
	пошук в глибину		
\checkmark	алгоритм Прима	/	
	алгоритм Беллмана-Форда		
V	алгоритм Дейкстри	/	

/	Вкажіть алгоритми, які		
	використовують жадібну		
	стратегію.		
	пошук в ширину		
\checkmark	алгоритм Крускала	/	
	алгоритм Флойда-Уоршелла		
	пошук в глибину		
\checkmark	алгоритм Прима	✓	
	алгоритм Беллмана-Форда		
\checkmark	алгоритм Дейкстри	~	

 Вкажіть результат ослаблення ребра (u,v) (у вершинах стоять оцінки найкоротших шляхів).

6

Комментарий

3+5 > 6, тому оцінка найкоротшого шляху не змінюється.

🗙 Вкажіть типи ребер, які НЕ			
можуть зустрітися при пошу			
в ширину в орієнтованому чи			
	неорієнтованому графі.		
	прямі ребра		
~	ребра дерева	×	
	перехресні ребра		
~	зворотні ребра	×	
Прав	вильный ответ		
/	прямі ребра		

У Чому дорівнює найкоротший шлях із а до d?

- 0 5
- () 10
- +нескінченність (недосяжна вершина)
- --нескінченність (не існує найкоротшого шляху)
- інша відповідь

Правильный ответ

--нескінченність (не існує найкоротшого шляху)

За масивом вершинпопередників prev відтворіть зворотний шлях до заданої вершини 6 з джерела 1 (верхній рядок – індекси масиву):

prev 1 2 3 4 5 6 -1 1 1 5 3 4

6:-1 5:4 4:6 3:5 2:1 1:3

Правильные ответы

6-4-5-3-1

64531

64531

1-3-5-4-6

13546

13546

6,4,5,3,1

1,3,5,4,6

Ж Вкажіть алгоритми, які можна результативно (= отримати значення всіх найкоротших шляхів) застосувати до зображеного графа при пошуку найкоротших шляхів.

- алгоритм Флойда-Уоршелла
- жоден з вказаних
- алгоритм Дейкстри
- 🗸 алгоритм Беллмана-Форда

Правильный ответ

🗸 жоден з вказаних

✓	Вкажіть типи ребер, що можуть зустрітися при пошуку в глибину в неорієнтованому графі.		
\checkmark	ребра дерева	/	
	прямі ребра		
	перехресні ребра		
\checkmark	зворотні ребра	/	
×	Вкажіть алгоритми, в основі яких лежить метод динамічного програмування.		
\checkmark	алгоритм Флойда-Уоршелла 🗸	/	
	алгоритм Крускала		
	пошук в глибину		
	алгоритм Прима		
	пошук в ширину		
~	алгоритм для орієнтованих > ациклічних графів через топологічне сортування	<	
	алгоритм Дейкстри		
Пра	вильный ответ		

Для заданого орграфа перелічіть його компоненти сильної зв'язності.

BF, ADE

X

Правильный ответ

AED, BF, C

Ж Вкажіть алгоритми, які можна результативно (= отримати значення всіх найкоротших шляхів) застосувати до зображеного графа при пошуку найкоротших шляхів.

- алгоритм Флойда-Уоршелла
- алгоритм Дейкстри

алгоритм Беллмана-Форда

Правильный ответ

- 🔽 алгоритм Флойда-Уоршелла
- 🗸 алгоритм Беллмана-Форда

Нехай для заданого графа здійснено зображений пошук в глибину (біля вершин - мітки часу). Класифікуйте вказані ребра.

Ребро дерева Пряме Зворотне Пер

DA	0	0	0
FE	0	0	0
ВС	•	0	0

Зворотне Перехресне

Правильные ответы

Ребро дерева Пряме Зворотне Пер

Нехай для заданого графа здійснено зображений пошук в глибину (біля вершин - мітки часу). Вкажіть послідовність вершин в порядку топологічного сортування.

Правильный ответ

A, B, F, E, D, C

✓ Чому дорівнює найкоротший шлях із а до f?

- 0 5
- 0 10
- +нескінченність (недосяжна вершина)
- —нескінченність (не існує найкоротшого шляху)
- 🔵 інша відповідь