Recap
Perceptron Convergence
Perceptron Learning in Non-separable Case
Gradient Descent and Delta Rule

Introduction to Machine Learning CSE474/574: Lecture 7

Varun Chandola <chandola@buffalo.edu>

9 Feb 2015

Outline

- Recap
- 2 Perceptron Convergence
- 3 Perceptron Learning in Non-separable Case
- 4 Gradient Descent and Delta Rule
 - Objective Function for Perceptron Learning
 - Machine Learning as Optimization
 - Convex Optimization
 - Gradient Descent
 - Issues with Gradient Descent
 - Stochastic Gradient Descent

Outline

- Recap
- 2 Perceptron Convergence
- 3 Perceptron Learning in Non-separable Case
- 4 Gradient Descent and Delta Rule
 - Objective Function for Perceptron Learning
 - Machine Learning as Optimization
 - Convex Optimization
 - Gradient Descent
 - Issues with Gradient Descent
 - Stochastic Gradient Descent

Questions about Winnow?

```
1: \Theta \leftarrow \frac{d}{2}
 2: w \leftarrow (1, 1, ..., 1)
 3: for i = 1, 2, \dots do
     if w^{\top}x^{(i)} > \Theta then
        c(x^{(i)}) = 1
       else
 6:
           c(x^{(i)}) = 0
 7:
        end if
 8.
        if c(x^{(i)}) \neq c_*(x^{(i)}) then
 g٠
            if c_*(x^{(i)}) = 1 then
10:
                \forall i: x_i^{(i)} = 1, w_i \leftarrow \alpha w_i
11.
             else
12.
                \forall j: x_i^{(i)} = 1, w_i \leftarrow 0
13.
             end if
14.
         end if
15:
```

16: end for

- Learns k-disjunctive concepts
- When do promotions happen?
 - What happens in a promotion?
- When do eliminations happen?
 - What happens in an elimination?

Outline

- Recap
- 2 Perceptron Convergence
- 3 Perceptron Learning in Non-separable Case
- 4 Gradient Descent and Delta Rule
 - Objective Function for Perceptron Learning
 - Machine Learning as Optimization
 - Convex Optimization
 - Gradient Descent
 - Issues with Gradient Descent
 - Stochastic Gradient Descent

Does Perceptron Training Converge?

Convergence Assumptions

- Linearly separable examples
- No errors
- |x| = 1
- **a** A positive δ gap exists that "contains" the target concept (hyperplane)
 - $(\exists \delta)(\exists \mathbf{v})$ such that $(\forall \mathbf{x})\mathbf{v}^{\top}\mathbf{x} > c_*(\mathbf{x})\delta$.

Perceptron Convergence Theorem

Theorem

For a set of unit length and linearly separable examples, the perceptron learning algorithm will converge after a finite number of mistakes (at most $\frac{1}{\lambda^2}$).

Proof discussed in Minsky's book [2].

Recap

Hypothesis Space, ${\cal H}$

- Conjunctive
- Disjunctive
 - Disjunctions of k attributes
- Linear hyperplanes
- $\mathbf{c}_* \in \mathcal{H}$
- $\bullet \ c_* \not \in \mathcal{H}$

Input Space, **x**

- $\mathbf{x} \in \{0,1\}^d$
- ullet $\mathbf{x}\in \Re^d$

Input Space, y

- $y \in \{0, 1\}$
- $y \in \{-1, +1\}$
- $y \in \Re$

Recap

Hypothesis Space, ${\cal H}$

- Conjunctive
- Disjunctive
 - Disjunctions of k attributes
- Linear hyperplanes
- $\mathbf{c}_* \in \mathcal{H}$
- $\bullet \ c_* \not \in \mathcal{H}$

Input Space, x

- $\mathbf{x} \in \{0,1\}^d$
- $\mathbf{x} \in \Re^d$

Input Space, y

- $y \in \{0, 1\}$
- $y \in \{-1, +1\}$
- $y \in \Re$

Outline

- 1 Recap
- 2 Perceptron Convergence
- 3 Perceptron Learning in Non-separable Case
- 4 Gradient Descent and Delta Rule
 - Objective Function for Perceptron Learning
 - Machine Learning as Optimization
 - Convex Optimization
 - Gradient Descent
 - Issues with Gradient Descent
 - Stochastic Gradient Descent

Target concept $c_* \notin \mathcal{H}$

- Expand \mathcal{H} ?
- Lower expectations
 - Principle of good enough

Perceptron Learning in Non-separable Case

Perceptron Learning in Non-separable Case

Objective Function for Perceptron Learnin
Alachine Learning as Optimization
ionvex Optimization
iradient Descent
sues with Gradient Descent
tochastic Gradient Descent

Outline

- 1 Recap
- 2 Perceptron Convergence
- 3 Perceptron Learning in Non-separable Case
- 4 Gradient Descent and Delta Rule
 - Objective Function for Perceptron Learning
 - Machine Learning as Optimization
 - Convex Optimization
 - Gradient Descent
 - Issues with Gradient Descent
 - Stochastic Gradient Descent

Gradient Descent and Delta Rule

- Which hyperplane to choose?
- Gives best performance on training data
 - Pose as an optimization problem
 - Objective function?
 - Optimization procedure?

Objective Function for Perceptron Learning

• An unthresholded perceptron (a linear unit)

inputs weights

- Training Examples: $\langle \vec{\mathbf{x}}_i, y_i \rangle$
- Weight: $\vec{\mathbf{w}}$

$$E(\vec{\mathbf{w}}) = \frac{1}{2} \sum_{i} (y_i - \vec{\mathbf{w}}^{\top} \vec{\mathbf{x}}_i)^2$$

Machine Learning as Optimization Problem¹

- Learning is optimization
- Faster optimization methods for faster learning
- Let $w \in \mathbb{R}^d$ and $S \subset \mathbb{R}^d$ and $f_0(w), f_1(w), \dots, f_m(w)$ be real-valued functions.
- Standard optimization formulation is:

minimize
$$f_0(w)$$

subject to $f_i(w) \le 0, i = 1, ..., m$.

¹Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/ lectures/tutorial_optimization.pdf. Also see, http://www.stanford.edu/~boyd/cvxbook/ and http://scipy-lectures.github.io/advanced/mathematical_optimization/.

Objective Function for Perceptron Learnin Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

Solving Optimization Problems

- Methods for general optimization problems
 - Simulated annealing, genetic algorithms
- Exploiting structure in the optimization problem
 - Convexity, Lipschitz continuity, smoothness

Objective Function for Perceptron Learning Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

Convexity

Convex Optimization

Optimality Criterion

minimize
$$f_0(w)$$

subject to $f_i(w) \le 0, i = 1, ..., m$.

where all $f_i(w)$ are **convex functions**.

- w_0 is feasible if $w_0 \in Dom f_0$ and all constraints are satisfied
- A feasible w^* is optimal if $f_0(w^*) \le f_0(w)$ for all w satisfying the constraints

Gradient of a Function

 Denotes the direction of steepest ascent

$$\nabla E(\vec{\mathbf{w}}) = \begin{bmatrix} \frac{\partial E}{\partial w_0} \\ \frac{\partial E}{\partial w_1} \\ \vdots \\ \frac{\partial E}{\partial w_d} \end{bmatrix}$$

Objective Function for Perceptron Learning Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

Finding Extremes of a Single Variable Function

- Set derivative to 0
- Second derivative for minima or maxima

Finding Extremes of a Multiple Variable Function - Gradient Descent

- Start from any point in variable space
- Move along the direction of the steepest descent (or ascent)
 - By how much?
 - A learning rate (η)
 - What is the direction of steepest descent?
 - Gradient of E at $\vec{\mathbf{w}}$

Training Rule for Gradient Descent

$$\vec{\mathbf{w}} = \vec{\mathbf{w}} - \eta \nabla E(\vec{\mathbf{w}})$$

For each weight component:

$$w_i = w_i - \eta \frac{\partial E}{\partial w_i}$$

Convergence Guaranteed?

- Error surface contains only one global minimum
- Algorithm will converge
 - Examples need not be linearly separable
- η should be *small enough*
- Impact of too large η ?
- Too small η ?

Objective Function for Perceptron Learning Machine Learning as Optimization Convex Optimization Gradient Descent Issues with Gradient Descent Stochastic Gradient Descent

Issues with Gradient Descent

- Slow convergence
- Stuck in local minima

Stochastic Gradient Descent [1]

- Update weights after every training example.
- \bullet For sufficiently small η , closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after summing er-	Weights updated after examining
ror over all examples	each example
More computations per weight up-	Significantly lesser computations
date step	
Risk of local minima	Avoids local minima

References

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4):541-551, Dec. 1989.

M. L. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1969.