

Linear Regression Models

Segment 4 – Model Diagnostics

Topic 1 – In-Sample Estimation of Prediction Error

Sudarsan N.S. Acharya (sudarsan.acharya@manipal.edu)

Topics

- 1. Prediction error
- 2. Train-Test-Validation Split
- 3. Validation
- 4. Testing
- 5. Linear Regression Example

true population relationship $Y = f(X) + \varepsilon$,

true population relationship $Y=f(X)+\varepsilon,$ using data build approximation $Y\approx \hat{f}(X).$

true population relationship
$$Y=f(X)+\varepsilon,$$
 using data build approximation $Y\approx \hat{f}(X).$

true population relationship
$$Y=f(X)+\varepsilon,$$
 using data build approximation $Y\approx \hat{f}(X).$

squared error
$$\left(Y - \hat{f}(X)\right)^2$$
,

true population relationship
$$Y=f(X)+\varepsilon,$$
 using data build approximation $Y\approx \hat{f}(X).$

squared error
$$\left(Y-\hat{f}(X)\right)^2$$
, absolute deviation $\left|Y-\hat{f}(X)\right|$.

true population relationship
$$Y=f(X)+\varepsilon,$$
 using data build approximation $Y\approx \hat{f}(X).$

• Prediction error:

squared error
$$\left(Y-\hat{f}(X)\right)^2$$
 , absolute deviation $\left|Y-\hat{f}(X)\right|$.

• The fitted model \hat{f} should minimize the *expected* prediction error on new unseen data.

Prediction error

• Recall the prediction problem and the associated error:

true population relationship
$$Y=f(X)+\varepsilon,$$
 using data build approximation $Y\approx \hat{f}(X).$

squared error
$$\left(Y-\hat{f}(X)\right)^2$$
 , absolute deviation $\left|Y-\hat{f}(X)\right|$.

- The fitted model \hat{f} should minimize the *expected* prediction error on new unseen data.
- How do we calculate the expected prediction error?

• Split data into three groups:

• Split data into three groups: (1) train


```
data
```


$$\underbrace{\left[\frac{\left(\mathbf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathbf{x}^{(k)},y^{(k)}\right)}{\mathsf{train}}}\right]}_{\mathsf{data}}$$

$$\underbrace{\left[\frac{\left(\mathbf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathbf{x}^{(k)},y^{(k)}\right)}{\mathsf{train}}}_{\mathsf{train}} \underbrace{\left(\mathbf{x}^{(k+1)},y^{(k+1)}\right),\ldots,\left(\mathbf{x}^{(l)},y^{(l)}\right)}_{\mathsf{validation}}$$

data

$$\underbrace{\left[\frac{\left(\mathbf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathbf{x}^{(k)},y^{(k)}\right)}{\mathsf{train}}}_{\mathsf{train}} \quad \underbrace{\left(\mathbf{x}^{(k+1)},y^{(k+1)}\right),\ldots,\left(\mathbf{x}^{(l)},y^{(l)}\right)}_{\mathsf{validation}} \quad \underbrace{\left(\mathbf{x}^{(l+1)},y^{(l+1)}\right),\ldots,\left(\mathbf{x}^{(n)},y^{(n)}\right)}_{\mathsf{test}}\right]}_{\mathsf{test}}$$

data

• Split data into three groups: (1) train (2) validation (3) test:

$$\underbrace{\begin{bmatrix} \mathbf{x}^{(1)}, y^{(1)} \end{pmatrix}, \dots, \mathbf{x}^{(k)}, y^{(k)} \end{pmatrix}}_{\text{train}} \quad \underbrace{\begin{pmatrix} \mathbf{x}^{(k+1)}, y^{(k+1)} \end{pmatrix}, \dots, \mathbf{x}^{(k)}, y^{(l)} \end{pmatrix}}_{\text{validation}} \quad \underbrace{\begin{pmatrix} \mathbf{x}^{(l+1)}, y^{(l+1)} \end{pmatrix}, \dots, \mathbf{x}^{(k)}, y^{(n)} \end{pmatrix}}_{\text{test}} \\ \mathbf{data}$$

• Build different models (\hat{f}) using training data.

$$\underbrace{\left[\frac{\left(\mathbf{x}^{(1)},y^{(1)}\right),\ldots,\left(\mathbf{x}^{(k)},y^{(k)}\right)}{\text{train}}}_{\text{train}} \underbrace{\left(\mathbf{x}^{(k+1)},y^{(k+1)}\right),\ldots,\left(\mathbf{x}^{(l)},y^{(l)}\right)}_{\text{validation}} \underbrace{\left(\mathbf{x}^{(l+1)},y^{(l+1)}\right),\ldots,\left(\mathbf{x}^{(n)},y^{(n)}\right)}_{\text{test}}\right]}_{\text{test}}.$$

- Build different models (\hat{f}) using training data.
- Estimate prediction error for different models and pick the best one using validation data.

$$\underbrace{\begin{bmatrix} \left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(k)}, y^{(k)}\right)}_{\text{train}} \quad \underbrace{\left(\mathbf{x}^{(k+1)}, y^{(k+1)}\right), \dots, \left(\mathbf{x}^{(l)}, y^{(l)}\right)}_{\text{validation}} \quad \underbrace{\left(\mathbf{x}^{(l+1)}, y^{(l+1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)}_{\text{test}} \end{bmatrix}}_{\text{data}}.$$

- Build different models (\hat{f}) using training data.
- Estimate prediction error for different models and pick the best one using validation data.
- Finally, assess the best model's performance using test data.

• The validation data $(\mathbf{x}^{(k+1)}, y^{(k+1)}), \dots, (\mathbf{x}^{(l)}, y^{(l)})$ is used to estimate the generalization error of the different models and choose the best one.

- The validation data $(\mathbf{x}^{(k+1)}, y^{(k+1)}), \dots, (\mathbf{x}^{(l)}, y^{(l)})$ is used to estimate the generalization error of the different models and choose the best one.
- ullet Calculate estimated generalization error for each fitted model \hat{f} as

- The validation data $(\mathbf{x}^{(k+1)}, y^{(k+1)}), \dots, (\mathbf{x}^{(l)}, y^{(l)})$ is used to estimate the generalization error of the different models and choose the best one.
- ullet Calculate estimated generalization error for each fitted model \hat{f} as

$$\frac{1}{l-k} \sum_{j=k+1}^{l} \left[y^{(j)} - \hat{f}\left(\mathbf{x}^{(j)}\right) \right]^{2}.$$

- The validation data $(\mathbf{x}^{(k+1)}, y^{(k+1)}), \dots, (\mathbf{x}^{(l)}, y^{(l)})$ is used to estimate the generalization error of the different models and choose the best one.
- ullet Calculate estimated generalization error for each fitted model \hat{f} as

$$\frac{1}{l-k} \sum_{j=k+1}^{l} \left[y^{(j)} - \hat{f}\left(\mathbf{x}^{(j)}\right) \right]^{2}.$$

• Choose the model \hat{f}_{best} with the smallest estimated generalization error.

- The validation data $(\mathbf{x}^{(k+1)}, y^{(k+1)}), \dots, (\mathbf{x}^{(l)}, y^{(l)})$ is used to estimate the generalization error of the different models and choose the best one.
- ullet Calculate estimated generalization error for each fitted model \hat{f} as

$$\frac{1}{l-k} \sum_{j=k+1}^{l} \left[y^{(j)} - \hat{f}\left(\mathbf{x}^{(j)}\right) \right]^{2}.$$

- Choose the model \hat{f}_{best} with the smallest estimated generalization error.
- Once we have the best model \hat{f}_{best} , what is the need for the test data?

• The error corresponding to the best model \hat{f}_{best} is typically an underestimate of the true generalization error.

- The error corresponding to the best model \hat{f}_{best} is typically an underestimate of the true generalization error.
- We use the test data $(\mathbf{x}^{(l+1)}, y^{(l+1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$ to calculate an *unbiased* estimate of the true generalization error of the best model:

- The error corresponding to the best model \hat{f}_{best} is typically an underestimate of the true generalization error.
- We use the test data $(\mathbf{x}^{(l+1)}, y^{(l+1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$ to calculate an *unbiased* estimate of the true generalization error of the best model:

$$\frac{1}{n-l} \sum_{j=l+1}^{n} \left[y^{(j)} - \hat{f}_{\mathsf{best}} \left(\mathbf{x}^{(j)} \right) \right]^{2}.$$

Linear Regression Example

Linear Regression Example

• Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models:

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates,

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates, interaction between covariates,

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates, interaction between covariates, transformation of variables,

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates, interaction between covariates, transformation of variables, regularization etc.

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates, interaction between covariates, transformation of variables, regularization etc.
- The validation data is used to estimate the generalization error of the different models leading to the selection of the best model.

- Using the train, validation, and test split of the data, we can come up with a linear regression model with a small prediction error.
- The train data is used to build different linear regression models: different choice of covariates, interaction between covariates, transformation of variables, regularization etc.
- The validation data is used to estimate the generalization error of the different models leading to the selection of the best model.
- The test data is used to obtain an unbiased estimate of the generalization error of the best model and assess its performance.

• We will simulate a dataset with 1000 samples:

• We will simulate a dataset with 1000 samples: 750 train,

• We will simulate a dataset with 1000 samples: 750 train, 150 validation.

• We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon,$ where

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

Model	Train Error	Validation Error	Test Error
Y~X_1	10.9	10.6	11.0

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

Model	Train Error	Validation Error	Test Error
Y~X_1	10.9	10.6	11.0
Y~X_2	5.7	5.2	5.7

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

Model	Train Error	Validation Error	Test Error
Y~X_1	10.9	10.6	11.0
Y~X_2	5.7	5.2	5.7
Y~X_1+X_2	5.2	4.8	5.3

- We will simulate a dataset with 1000 samples: 750 train, 150 validation, and 100 test.
- The population model that we will simulate is $Y=1+2X_1+9X_2+\varepsilon$, where X_1 and X_2 are independent and standard normal random variables (mean 0, standard deviation 1), and $\varepsilon \sim N(0,5)$.

Model	Train Error	Validation Error	Test Error
Y~X_1	10.9	10.6	11.0
Y~X_2	5.7	5.2	5.7
Y~X_1+X_2	5.2	4.8	5.3
$Y \sim X_1 + X_2 + I(X_1^2) + I(X_2^2)$	5.2	4.8	5.3

Summary

Summary

 Describe how model performance can be studied using prediction error.

Summary

- Describe how model performance can be studied using prediction error.
- Differentiate between train, test, and validation parts of the data for assessing model performance