

8 BIT SIPO SHIFT REGISTER

- HIGH SPEED
 - $t_{PD} = 14 \text{ ns} (TYP.) AT V_{CC} = 5 \text{ V}$
- LOW POWER DISSIPATION I_{CC} = 4 μA (MAX.) AT T_A = 25 °C 6 V
- HIGH NOISE IMMUNITY

 VNIH = VNIL = 28 % VCC (MIN.)
- OUTPUT DRIVE CAPABILITY

 10 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE | IOH | = I_{OL} = 4 mA (MIN.)
- BALANCED PROPAGATION DELAYS

 tplh = tphl
- WIDE OPERATING VOLTAGE RANGE Vcc (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS251

DESCRIPTION

The M54/74HC251 is a high speed CMOS 8-CHANNEL MULTIPLEXER (3-STATE) fabricated in silicon gate C²MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption. This multiplexer features both true (Y) and complement (W) outputs as well as STROBE input. The STROBE must be a low logic level to enable this device. When the STROBE input is high, both outputs are in the high impedance state. When enabled, address information on the data select inputs determines which data input is routed to Y and W. All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

February 1993 1/11

TRUTH TABLE

	INP	OUTPUS			
			STROBE	v	w
С	В	Α	s	I	VV
Х	X	X	Н	Z	Z
L	L	L	L	D0	D0
L	L	Н	L	D1	D1
L	Н	L	L	D2	D2
L	Н	Н	L	D3	D3
Н	L	L	L	D4	D4
Н	L	Н	L	D5	D5
Н	Н	L	L	D6	D6
Н	Н	Н	L	D7	D7

X: Don't Care Z: HIGH Impedance

LOGIC DIAGRAM

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	D0 to D7	Multiplexer Inputs
5	Υ	Multiplexer Output
6	W	Complementary Multiplexer Output
7	STROBE	3 State Output Enable Input
11, 10, 9	A, B, C	Select Inputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

(*) 500 mW: ≡ 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C
t _r , t _f	Input Rise and Fall Time	V _{CC} = 2 V	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

		Test Conditions			Value							
Symbol	Parameter	Vcc			$T_A = 25$ °C 54HC and 74HC			-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit
		(V)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input	2.0			1.5			1.5		1.5		
	Voltage	4.5			3.15			3.15		3.15		V
		6.0			4.2			4.2		4.2		
V_{IL}	Low Level Input	2.0					0.5		0.5		0.5	
	Voltage	4.5					1.35		1.35		1.35	V
		6.0					1.8		1.8		1.8	
V_{OH}	High Level	2.0	Vı =		1.9	2.0		1.9		1.9		
	Output Voltage	4.5	VI – VIH	I _O =-20 μA	4.4	4.5		4.4		4.4		.,
		6.0	or		5.9	6.0		5.9		5.9		V
		4.5	V _{IL}	I _O =-4.0 mA	4.18	4.31		4.13		4.10		
		6.0		I _O =-5.2 mA	5.68	5.8		5.63		5.60		
V_{OL}	Low Level Output	2.0	V _I =			0.0	0.1		0.1		0.1	
	Voltage	4.5	V _I –	I _O = 20 μA		0.0	0.1		0.1		0.1	.,
		6.0	or			0.0	0.1		0.1		0.1	V
		4.5	VIL	I _O = 4.0 mA		0.17	0.26		0.33		0.40	
		6.0		I _O = 5.2 mA		0.18	0.26		0.33		0.40	
lı	Input Leakage Current	6.0	Vı = '	Vcc or GND			±0.1		±1		±1	μΑ
l _{OZ}	3 State Output Off State Current	6.0	1	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.5		±5.0		±10	μΑ
I _{CC}	Quiescent Supply Current	6.0		V _{CC} or GND			4		40		80	μΑ

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Те	st Conditions	Value							
Symbol Parameter		V _{CC}		1	_A = 25 ^c C and 7			85 °C HC		125 °C HC	Unit
		(۷)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t_{TLH}	Output Transition	2.0			30	75		95		110	
t _{THL}	Time	4.5			8	15		19		22	ns
		6.0			7	13		16		19	
t _{PLH}	Propagation	2.0			64	130		165		195	
t _{PHL}	Delay Time	4.5			16	26		33		39	ns
	(D - Y, W)	6.0			14	22		28		33	
t _{PLH}	Propagation	2.0			80	160		200		240	
t _{PHL}	Delay Time	4.5			20	32		40		48	ns
	(A, B, C - Y, W)	6.0			17	27		34		41	
t_{PZL}	Output Enable	2.0			36	90		115		135	
t _{PZH}	Time	4.5	$R_L = 1 K\Omega$		11	18		23		27	ns
		6.0			9	15		20		23	
t _{PLZ}	Output Disable	2.0			26	85		105		130	
t _{PHZ}	t _{PHZ} Time	4.5	$R_L = 1 K\Omega$		13	17		21		26	ns
		6.0			11	14		18		22	
C _{IN}	Input Capacitance				5	10		10		10	pF
C _{PD} (*)	Power Dissipation Capacitance				62						pF

^(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}$

TEST WAVEFORM Icc (Opr.)

SWITCHING CHARACTERISTICS TEST WAVEFORM

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

