

Table of Content What will We Learn Today?

- 1. DBSCAN
- 2. Hierarchical Clustering

Supervised vs Unsupervised

- Supervised = Learn to predict the outcome.
 - We know the target label, so we make the model that try to predict the label.
- Unsupervised = Finding pattern/ characteristic from data.
 - · We do not know our target label, so we make model that try to group the data.

Types of clustering algorithms

- Connectivity models
 - Based on the notion that the data points closer in data space exhibit more similarity to each other than the data points lying farther away. Example: hierarchical clustering algorithm.
- Centroid models:
 - The notion of similarity is derived by the closeness of a data point to the centroid of the clusters. Example: K-means
- Distribution models
 - The notion of how probable is it that all data points in the cluster belong to the same distribution (For example: Normal, Gaussian).
- Density models
 - These models search the data space for areas of varied density of data points in the data space. Example: DBSCAN

DBSCAN

- Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
 - algorithm for density-based clustering
 - proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996

Why DBSCAN?

DBSCAN can cluster the data points correctly, and also detects noise

How DBSCAN works?

- Group objects in dense region
- Major features
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Density parameters
 - **Radius** ε : distance to determine the neighborhood
 - MinPts: Minimum number of points in neighborhood

Definitions

- Core object
 - \circ ε -neighborhood contains *MinPts* objects
- Directly density-reachable
 - p is directly density-reachable from q if
 q is a core object, and p is ε-neighborhood of q

$$\varepsilon = 10$$

MinPts = 5

Definitions

- Density-reachable
 - p is density-reachable from q if
 there are objects p₁, p₂, ... p_n, p₁ = q, p_n = p such that
 p_{i+1} is directly density-reachable from p_i
- Density-connected
 - p is density-connected to q if there is an object o such that
 p and q are density-reachable from o

DBSCAN

- A cluster a maximal set of density-connected points
- Discovers clusters of arbitrary shape in databases with noise
 - 1. Arbitrary select a point **p**
 - 2. Retrieve all ε -neighborhood of \boldsymbol{p}
 - 3. If **p** is a core object, a cluster is formed
 - 4. From each core object **p**, iteratively collects directly density-reachable objects (may merge clusters)
 - 5. Continue the process until no new points can be added
- Problem with DBSCAN
 - Selecting parameters ε and MinPts

DBSCAN

- There are 3 types of point
 - core point (red)
 - border points (blue)
 - noise points (grey)

How to determine MinPts and eps

- MinPts
 - Using domain knowledge
 - The larger the data set, the larger the value of MinPts should be
 - If the data set is noisier, choose a larger value of MinPts
 - Generally, MinPts should be greater than or equal to the dimensionality of the data set
 - For 2-dimensional data, use DBSCAN's default value of MinPts = 4 (Ester et al., 1996).
 - If your data has more than 2 dimensions, choose MinPts = 2*dim, where dim= the dimensions of your data set (Sander et al., 1998).
- Epsilon
 - sorted k-dist graph

Hierarchical Clustering

Hierarchical clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, ...)

Hierarchical clustering

- Two main types of hierarchical clustering
 - Agglomerative (bottom-up):
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive (top-down):
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Hierarchical clustering

https://www.geeksforgeeks.org/ml-hierarchical-clustering-agglomerative-and-divisive-clustering/

Lets Coding!

Thank YOU

