AI-POWERED NUTRITION ANALYZER FOR FITNESS ENTHUSIASTS

A project report

Team ID:PNT2022TMID50788

Team Members

Faculty Mentor

R.Arumuga Gomathi - 953219106005 DR.A.Mookambika

E.Karthika - 953219106013

J.Maria Joselin Teena - 953219106018

C.Narmatha Devi - 953219106022

N.Poongulazhi - 953219106025

In the partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING
UNIVERSITY VOC COLLEGE OF ENGINEERING, THOOTHUKUDI
ANNA UNIVERSITY: CHENNAI- 600025

NOV-2022

Table of Contents

- 1. INTRODUCTION
 - 1.1 Project Overview
 - 1.2 Purpose
- 2. LITERATURE SURVEY
 - 2.1 Existing problem
 - 2.2 Reference
 - 2.3 Problem Statement Definition
- 3.IDEATION & PROPOSED SOLUTION
 - 3.1 Empathy Map Canvas
 - 3.2 Ideation & Brainstorming
 - 3.3 Proposed Solution
 - 3.4 Problem Solution Fit
- 4. REQUIREMENT ANALYSIS
 - 4.1 Functional requirements
 - 4.2 Non-Functional requirements
- 5. PROJECT DESIGN
 - 5.1 Data Flow Diagrams
 - 5.2 Solution & Technical Architecture
 - 5.3 User Stories
- 6. PROJECT PLANNING &SCHEDULING
 - 6.1 Sprint Planning & Estimation
 - 6.2 Sprint Delivery Schedule
 - 6.3 Reports from JIRA
- 7.CODING & SOLUTIONING (Explain the features added in the project along with code)
 - 7.1 Feature 1
 - 7.2 Feature 2
 - 7.3 Database Scheme (if applicable)
- 8.TESTING
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9.RESULT
 - 9.1 Performance Metrics

10.ADVANTAGES &DISADVANTAGES 11.CONCLUSION 12.FUTURE SCOPE 13.APPENDIX

1. INTRODUCTION

1.1 Project Overview

Artificial intelligence (AI) is a rapidly evolving area which offers unparalleled oppurtunities of progress and applications in many healthcare fields. In this review, we provide an overview of the main and latest applications of AI in nutrition research and identify gaps to address to potentialize this emerging field. AI algorithms may help better understanding and to predict complex and non-linear interactions between nutrition-related data and health outcomes, particularly when large amounts of data need to be structured and integrated auch as in metabolomics. AI-based approaches, including image recognition, may also improve dietary assessment by maximizing efficiency and addressing systematic and random errors associated with self-reported measurements of dietary intake

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

1.2 Purpose

The purpose of this project is by using this web application users(fitness enthusiasts and commoners) will be able to keep track on their nutritional intake of the fruits like apple,banana,orange,watermelon,pineapple.One of the most basic functions of it is to guide its users towards a healthy diet and assist them to achieve their health goals.etc.).It classify an object with higher degree of accuracy by fine tuning the parameters of the network.The main motto is to reduce the training time and compute complexity of the network by adding a sub layer after each convolution layer.

2. LITERATURE SURVEY

2.1 Existing Problem

There is no proper guidance regarding how to the track nutrition content in the intake on daily basis for fitness enthusiasts in this rapidly changing environment. A number of studies have been conducted on image categorization. Veggie - Vision was an initial attempt to develop a produce recognition system for use in supermarkets. The system could analyze color, texture and density, and thus was unable to obtain more information. Density was calculated by dividing weight with the area of the fruit. The reported accuracy was approximately 95% when color and texture features were combined. Faria et al. presented a framework for classifier fusion for the automatic recognition of produce in supermarkets. They combined lowcost classifiers trained for specific classes of interest to enhance the recognition rate. Chowdhury et al. recognized 10 different vegetables using color histogram and statistical texture features. They obtained a classification accuracy upto 96.55% using neural network as a classifier. Dubey proosed a framework for recognizing and classifying images of 15 different types produce. The approach involves segmenting an image to extract the region of interest, and then calculating the features from that segmented region, which is further used in training and classification by a multi-class support vector machine. Moreover, they proosed an improved sum and difference hisogram(ISADH)texture for this kind of problem. Fruit deytection greatly affects the robots harvesting efficiency because it is an unstructured environment with changing lighting conditions. Bulanon et al. enhanced the portion occupied by fruit in images using a red chromacity coefficient and adopted a circle detection method or classifying individual fruits. Jimenez et al, developed a method that can identify spherical fruits in the natural environment in which difficult situations are present:occulations, shadows, bright areas and over-lapping fruits. Range and attenuation data are sensed by a laser range-finder sensor, and 3D position of the fruit with radius and reflectance are obtained after the recognition steps.

2.2 References

BOOK / JOURNALS	AUTHOR'S NAME	INFERENCE
Artificial intelligence-	Naimoonisa Begum,	This Chapter proposes a
based Food calories	Ankur Goyal, Sachin	review of various Al-based
estimation methods in	Sharma	food calorie estimation

diet assessment		methodologies in diet
research		assessment which are
		suggested to help the normal
		people and patients so that
		normal people and doctors
		could succeed to fight against
		diet-based health conditions.
Sport Nutrigenomics:	Nancy Guest,	This Article review the science
personalized nutrition for	Justine Keathley,	of genetic modifiers of various
athletic performance	Shelly M. Vanderhout,	dietary factors that impact an
	Ahmed El-Sohemy	athlete's nutritional status,
		body composition and
		ultimately athletic
		performance.
Artificial Intelligence	İzzet Ülker, Feride	The main ideology of this
Applications In Nutrition	Ayyıldız	paper is many researches
And Dietetics		faced difficulties of evaluating
		the food preferences and
		dietary intake that is,
		remembering the frequency or
		amount of intake in
		assessment of dietary intake.
		To overcome this the apps
		facilitate the work of
		researchers and provide more
		reliable results than traditional
		methods.
An Artificial Intelligence-	Ya Lu,	This paper propose a novel
basedsystem for Nutrient	Maria Vasiloglou,Zeno	system based on artificial
intake assessment of	Stanga	intelligence to accurately
hospitalized patients		estimate nutrient intake, by
		simply processing RGB depth
		image pairs captured before
		and after a meal consumption.
		It permitted fully automatic
		estimation of nutrient intake
		for each food type with a 15%

		estimation error.
Artificial Intelligence in	Michael E. Matheny,	The Promise of artificial
Health Care: A Report	Daniel Whicher, Sonoo	intelligence in health care
From the National	Thadaney Israni.	offers substantial
Academy of Medicine	Thadaney Islam.	opportunities to improve
Academy of Medicine		
		patient and clinical term
		outcomes, reduced costs, and
		influence population health.
		Current data generation greatly
		exceeds human cognitive
		capacity to efficiently manage
		information, and this article
		shows the likeliness AI to have
		an important and
		complementary role to human
		cognition to support delivery of
		personalized health care
Use of Artificial	Maria Helena Lopes,	This chapter provides a
intelligence in precision	Danton D. Ferreira	discussion about the
nutrition and fitness		importance of nutrition and
		fitness for health and well-
		being ; what is precision
		medicine, AI, precision
		nutrition and precision fitness;
		how AI could help with
		precision nutrition and
		precision fitness; decision-
		making algorithm for
		nutritional meal planning/
		dietary menu planning; Al-
		based diet and supplements;
		Al used in genetic tests for
		precision nutrition and fitness;
		Al approach to nutritional meal
		planning for cancer,
		cardiovascular disease,
		obesity, T2D patients; Al-based
		nutrition and fitness support
		systems and apps and some
		of otterno and appo and some

		challenges and future	
		perspectives.	
Nutri-Educ, nutrition	Jean-Christophe Buisson	Nutri-Educ is a nutrition	
software application for		software application. It aims at	
balancing meals, using		helping any person to balance	
fuzzy arithmetic and		their meals. More specifically,	
heuristic search		its main goal is to enable a	
algorithms		user to describe a meal and	
		assess its content, and in most	
		cases to find a small set of	
		acceptable actions which	
		make it well-balanced and in	
		accordance to the user's	
		energetic needs	

2.3 PROBLEM STATEMENT

In day-to- today lifeeither insufficient or plentiful intake of nutrients results in nutritional imbalance in our health leading to various diseases. In India, because of unhealthy food, most young people are dying due to obesity, type 2 diabetes, heart disease, high blood pressure and stroke. Nutrition anlays ensures that the food has optimal requirement of vitamins and minerals wherein the examining of nutrition in food helps in understanding about the fat prportion, carbohydrate dilution, proteins, fiber, sugar etc.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION

In this project, CNN algorithm helps to extract the important features from the images and train according to them. These neural networks have proven to be successful in many different real-life case studies and applications like

- 1. Image classification, object detection, segmentation, face recognition.
- 2. Self driving cars that leverage CNN based vision systems.
- 3. Classification of crystal structure using a convolutional neural network.

This model involves 4 steps:

- 1. Convolution
- 2. Max pooling
- 3. Flattening
- 4. Full connection

And finally import the image using these packages to find the predictions:

(from keras.models import load_model

from keras.preprocessing import image)

The extension for saving the model is .h5 file.

- 1. Data Collection
- I. Download the dataset
- II. Load the dataset
- III. In this project, we have used 5 types of datasets namely:
- 1. Apple
- 2. Banana
- 3. Pineapple
- 4. Orange
- 5. Watermelon

1. Data Modelling

Convolution Neural Network (CNN) algorithm is applied to this model . This helps us to extract the important features from the images and train them.

- 1.In convolution operation, the input image is convoid with feature detector or filter to get a feature map. By applying convolution operation, the size of image is reduced we may lose some information but feature detector or filter will helps us to extract main features from image and remove unwanted features.
- 2.Max pooling is a technique which helps us to avoid over-fitting of data and helps us to avoid special ingredients and distortions in data.
- 3. Flattening layer converts multi dimension pooled feature map to single dimension pooled feature map. Flattening layer is the input

layer.Start initializing the parameters and finally train the model with Keras fit() function. The model trains for 20 epochs.Testing is similar to training, except that we don't need to compute gradients and training targets. Instead, we take the predictions from network output, and combine them to get the real detection output.Fit generator is used to find the training and validation accuracy.Image data generator is a class in keras.preprocessing package to apply some image processingto the images.

In this project the accuracy error is also good, so that the model is perfect.

S.No	Parameters	Discription
1	Problem Statement (Problem to be	People are not consuming
	solved)	sufficient amount of food
		to provide them with the
		necessary calories, fats,
		proteins, vitamins and
		minerals for them to
		maintain an optimal
		health. While on the other
		hand, a section of people
		consume food that's
		plentiful than needed for
		them.
2	Idea/Solution Description	The main aim of this
		Nutrition Analyzer is to
		determine the perfect
		amount of nutrition
		needed for the user and

		for doing so it gives
		precise measurements of
		the nutrient contents of
		the food they consume.
3	Novelty / Uniqueness	This is available as both
		webpage and as an
		application for users
		convenient with easy
		accessibility. It makes
		sure that the user's water
		intake is up to their
		requirement along with
		the nutrition intake.
4	Social Impact / Customer	Not every people can
	Satisfaction	afford a nutritionist, but
		this Analyzer gives them
		access to explore their
		nutrition journey. By
		monitoring the nutrition
		disorders related to it can
		be considerably reduced.
5	Business Model (Revenue Model)	The application can be
		deployed for access by
		the general public. The
		application would draw
		the attention of several
		users who are determined
		to lead a healthy lifestyle
		and wish to undergo a
		physical transformation.

	The application could be
	built in such a way that
	features are progressively
	unlocked based on the
	subscription amount paid
	by the user starting from
	the generic nutrition
	analyzer feature to
	charting out personal
	plans for users.
Scalability of the Solution	The proposed application
	has several features. It
	can be further enhanced
	to integrate more features
	based on feedback from
	users and ratings.
	Scalability of the Solution

3.4 Problem Solution Fit

4. REQUIRMENTS ANALYSIS

4.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	FUNCTIONAL	Sub Requirement (Story)	Sub-
	REQUIREMENT(EPIC) Task)		
FR-1	User Registration	Registration through Mob	ile
		Number	
		Registration through Ema	il
		Registration through Soc	al-
		Media	
FR-2	User Confirmation	Confirmation via Email	
		Confirmation via OTP	
FR-3	User Login	Login using the registered	J
		credentials through brow	sers
		Like Google	
FR-4	Choose diet	Selection of desired/pres	cribed
	package/plan	package	
FR-5	Generate daily diet	Daily diet charts and exer	cise
	chart	schedules generated by	
		Dietician	
FR-6	Progress report	Gathering information fro	m
	management	database and generating	
		Report on period basis.	
FR-7	Query and Feedback	User can ask their doubts	. Can
		give Feedbacks and shar	
		their experience on this	
		platform.	

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Easy to use with interactive User Interface.
NFR-2	Security	User's data are accessible only by user allowed entities and not by other users.
NFR-3	Reliability	Maximum accuracy in the result shown.

NFR-4	Performance	Maximum waiting time be 10 sec. Relevant results in first try.	
NFR-5	Availability	The virtual dietician will be available 24/7. Available of some features in Offline too.	
NFR-6	Scalability	Can be logged in various devices at same time. Varieties of Food search results.	

5. PROJECT DESIGN

5.1 Data Flow Diagram

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirements	Story	Task	criteria		
	(EPIC)	Number				
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-1
(Mobile	and		can register	my account		
user)	login		for the	/		
			application	dashboard		
			by			
			entering my			
			email,			
			password,			
			and			
			confirming			
			my			
			password			
Customer	Registration	USN-2	As a user, I	I can receive	High	Sprint-1
(Web	and		will receive	confirmation		
user)	login		confirmation	email & click		
			email	confirm		
			once I have			
			registered			
			for the			
			application			

Common to	Web pages	USN-3		All can	High	Sprint-1
all	1 3		Easy user	access the		'
			experience	UI/Web		
			and interface	pages		
Customer	Prediction	USN-4	As a user, I	I can upload	High	Sprint-1
			can upload	picture from		
			pictures	my gallery		
			from the	and camera		
			camera and			
			also from			
			the device			
Customer	Monitoring	USN-5	As a user, I	I can get	Medium	Sprint-2
			can monitor	periodic		
			my daily	notifications		
			water intake	for water		
			as per my	intake		
			body weight,	reminder.		
			and get			
			periodic			
			reminders.			
Customer	Dashboard	USN-6	As a User I	I can	Low	Sprint-3
			can view the	monitor my		
			nutritional	daily		
			content of	nutrition		
			food taken	intake		
			for an day			
Administra	Dashboard	USN-7	As a	l can	Medium	Sprint-2
tor			Administrat	manage		
			or I can view	users and		
			and manage	contents in		
			users,	the		
			contents	application		
Common to	Feedback	USN-8	As a User I	I can give	Low	Sprint-3
all	page		can give	feedback on		
		Ì	Feedback	any		
l l			1 CCUDUCK	uny		
			recuback	content or		

5.2 Solution and technical architecture

S.No	Component	Description	Technology
1	User Interface	How user interacts	HTML, CSS
		with application e.g.	
		Web UI, Mobile App,	
		Chatbot etc.	
2	Application Logic-1	Logic for a process in	Python
		the application	
3	Application Logic-2	Logic for a process in	IBM Watson STT
		the application	service
4	Application Logic-3	Logic for a process in	IBM Watson
		the application	Assistant
5	Database	Data Type,	MySQL

		Configurations etc.	
6	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant etc.
7	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem
8	External API-1	Purpose of External API used in the application	IBM Weather API, etc.
9	External API-2	Purpose of External API used in the application	Rapid API
10	Machine Learning Model	Purpose of Machine Learning Model	Image Recognition Model
11	Infrastructure	Application Deployment on Cloud	IBM cloud.

S.No	Characteristics	Description	Technology
1	Open-Source	Python open-source	Flask
	Frameworks	framework	
2	Security Implementations	To secure the data we use the given processes	Basic HTTP authentication/Encry ption
3	Scalable Architecture	Architecture is scalable when needed	IBM Cloud
4	Availability	Server should be available always,so to balance network traffic if any distributed servers are used	Application load balancer
5	Performance		Technology used Deep learning algorithm- CNN

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

6.2 Sprint Delivery Schedule

Sprint	Total	Duration	Sprint	Sprint	Story	Sprint
	Story		Starting	Ending	Points	Realea
	Points		Date	Date(PI	Complet	se
				anned)	ed (as	Date(Ac
					on	tual)
					Planned	
					End	
					Date)	
Sprint-1	2	2 Days	26 Oct	28 Oct	1	29 Oct
			2022	2022		2022
Sprint-2	3	4 Days	02 Nov	05 Nov	3	06 Nov
			2022	2022		2022
Sprint-3	5	4 Days	07 Nov	10 Nov	7	11 Nov
			2022	2022		2022
Sprint-4	4	6 Days	14 Nov	19 Nov	8	19 Nov
			2022	2022		2022
Sprint-5	8	5 Days	14 Nov	19 Nov	8	19 Nov
			2022	2022		2022

5.3 Reports from JIRA

BURN DOWN CHART

7. CODING & SOLUTIONING

7.1 Feature 1

Import the ImageDataGenerator library

from keras.preprocessing.image import ImageDataGenerator

Configure ImageDataGenerator Class

```
x train = train_datagen.flow_from_directory(
    r'/content/drive/MyDrive/Project/Dataset/TRAIN_SET',
    target_size=(64, 64),batch_size=32,color_mode='rgb',class_mode='categorical')
x_test = test_datagen.flow_from_directory(
    r'/content/drive/MyDrive/Project/Dataset/TEST_SET',
    target_size=(64, 64),batch_size=32,color_mode='rgb',class_mode='categorical')
Found 3838 images belonging to 5 classes.
     Found 280 images belonging to 5 classes.
    print(x_train.class_indices)
         {'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}
    print(x_test.class_indices)
         {'APPLE': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}
    from collections import Counter as c
    c(x_train .labels)
         Counter({0: 913, 1: 1306, 2: 964, 3: 240, 4: 415})
    from collections import Counter as c
    c(x_test .labels)
         Counter({0: 82, 1: 48, 2: 55, 3: 35, 4: 60})
```

7.2 Feature 2 Model building

```
from keras.preprocessing.image import ImageDataGenerator import numpy as np import tensorflow from tensorflow.keras.models import Sequential from tensorflow.keras import layers from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.layers import Conv2D, MaxPooling2D,Dropout from keras.preprocessing.image import ImageDataGenerator
```

```
Initializing The Model
```

```
model=Sequential()
```

Adding CNN Layers

```
classifier = Sequential()
classifier.add(Conv2D(32,(3, 3), input_shape=(64, 64, 3),activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Flatten())
```

Adding Dense Layers

```
classifier.add(Dense (units=128, activation='relu'))
classifier.add(Dense (units=5, activation='softmax'))
```

classifier.summary()

Model: "sequential_1"

_	Layer (type)	Output Shape	Param #	
-	conv2d (Conv2D)	(None, 62, 62, 32)	896	
	<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 31, 31, 32)	0	
	conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248	
max_ 2D)	pooling2d_1 (MaxPooling	(None, 14, 14, 32)	0	
flat	ten (Flatten)	(None, 6272)	0	
dens	e (Dense)	(None, 128)	802944	

```
dense_1 (Dense)
```

Epoch 3/20

```
(None, 5)
```

645

```
Total params: 813,733
Trainable params: 813,733
Non-trainable params: 0
```

```
Epoch 4/20
   120/120 [============= ] - 30s 246ms/step - loss: 0.3574 - accuracy: 0.1
   120/120 [============ ] - 30s 248ms/step - loss: 0.3395 - accuracy: 0.1
   Epoch 7/20
   120/120 [============ ] - 31s 259ms/step - loss: 0.3226 - accuracy: 0.1
   Epoch 8/20
   120/120 [============ ] - 31s 261ms/step - loss: 0.2843 - accuracy: 0.1
   Epoch 9/20
   120/120 [============ ] - 32s 265ms/step - loss: 0.2841 - accuracy: 0.1
   Epoch 10/20
   120/120 [============= ] - 29s 243ms/step - loss: 0.2765 - accuracy: 0.1
   Epoch 11/20
   Epoch 12/20
   120/120 [============ ] - 32s 262ms/step - loss: 0.2460 - accuracy: 0.9
   Epoch 13/20
   120/120 [============ ] - 31s 259ms/step - loss: 0.2415 - accuracy: 0.9
   Epoch 14/20
   120/120 [============ ] - 29s 244ms/step - loss: 0.2496 - accuracy: 0.9
Configure The Learning Process
classifier.compile(optimizer='adam', loss='categorical_crossentropy',
              metrics=['accuracy'])
Train The Model
classifier.fit_generator(
   generator=x_train,steps_per_epoch = len(x_train),
  epochs=20,validation_data=x_test,validation_steps = len(x_test))
   /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: UserWarning: `Model.fit
     This is separate from the ipykernel package so we can avoid doing imports until
   Epoch 1/20
   120/120 [============ ] - 1251s 10s/step - loss: 0.8456 - accuracy: 0.0
   Epoch 2/20
   120/120 [============= ] - 30s 249ms/step - loss: 0.5028 - accuracy: 0.1
```

```
120/120 [============ ] - 32s 262ms/step - loss: 0.4244 - accuracy: 0.1
Epoch 4/20
Epoch 5/20
Epoch 6/20
120/120 [============ ] - 30s 248ms/step - loss: 0.3395 - accuracy: 0.1
Epoch 7/20
120/120 [============= ] - 31s 259ms/step - loss: 0.3226 - accuracy: 0.1
Epoch 8/20
120/120 [============= ] - 31s 261ms/step - loss: 0.2843 - accuracy: 0.8
Epoch 9/20
120/120 [============== ] - 32s 265ms/step - loss: 0.2841 - accuracy: 0.8
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
120/120 [============] - 29s 244ms/step - loss: 0.2496 - accuracy: 0.9
Epoch 15/20
Epoch 16/20
 Epoch 17/20
 Epoch 18/20
 120/120 [============ ] - 32s 266ms/step - loss: 0.1966 - accuracy: 0.9
 Epoch 19/20
 120/120 [=============== ] - 32s 265ms/step - loss: 0.1762 - accuracy: 0.9
 Epoch 20/20
 120/120 [============ ] - 30s 246ms/step - loss: 0.1792 - accuracy: 0.9
 <keras.callbacks.History at 0x7f6e00cf07d0>
```

Save The Model

classifier.save('nutrition.h5')

Test The Model

img

1/1 [======] - 0s 22ms/step

#test2
img_show('/content/drive/MyDrive/Project/Dataset/TEST_SET/BANANA/0SYXUU89Y8VZ.jpg')
testing('/content/drive/MyDrive/Project/Dataset/TEST_SET/BANANA/0SYXUU89Y8VZ.jpg')

10. Advantages and disadvantages

Advantages:

- 1. Classification of fruits is a needful exercise to differentiate the particular variety of fruits of the same family. Most of the case, the variety of fruits of the same family differ in the sense of colour and size only.
- 2. The use of image processing for the grading of fruits involves categorization of fruits, with consideration of the severity of the disease, defects, and contamination on fruits. Grading is an important step in the post-harvest process. Grading of fruits manually is a time taking and unreliable process. Therefore, it is needful to adapt the automated

faster system in this regard.

3. Some of the other associated benefits include speed operation, production consistent, greater product stability and safety.

Disadvantages:

- 1. Most of the research conducted by taking the one-side view of fruits. In addition, by considering the one-side image of fruit, it is challenging to evaluate the quality fruits.
- 2. It does not provide stable recognition in adverse imaging condition.

11. CONCLUSION

The efficient way of finding nutrition supplements in fruits using this website that is hosted on AI platform. To ensure the smooth functioning of the website operations. we have hosted the website on a cloud platform to make sure the operations are running successfully to deploy the application AI service. During this project, we had the option to investigate some portion of the profound learning algorithms and find qualities and shortcomings. We picked up information on deep learning, and we got a product that can perceive fruits from pictures. A new method for classifying fruits using convolutional neural network algorithm is proposed. The above listed results were obtained using 7 test samples taken out from the actual number of 2626 and 1050 images used for training and testing.

The above algorithm was coded and tested using anaconda software. Different fruits

varieties that had different backgrounds were taken for training and testing. The proposed algorithm gave 98% accuracy rate. This project explores a fruits classification based on CNN algorithm. The accuracy and loss curves were generated by using various combinations of hidden layers for five cases using fruits. CNN gave better performance to attain better fruit classification. We trust that the outcomes and strategies introduced in this project can be additionally extended to a greater task. From our perspective, one of the principal goals is to improve the precision of the neural system. This includes further exploring different avenues regarding the structure of the system.

12. Future scope

Hopefully, in the future, this project can be extended with a larger dataset having more categories of fruits & vegetables. We will also have the plan to implement some other CNN based models to compare the accuracy on the same dataset, can also work on some more features for grading and classification, which can identify types of disease and/or texture structure of fruits. All these are future direction.

APPENDIX:

```
Source Code:
from flask import Flask,render_template,request
# Flask-It is our framework which we are going to use to run/serve our application.
#request-for accessing file which was uploaded by the user on our application.
import os import numpy as np #used for numerical analysis
from tensorflow.keras.models import load_model#to load our trained model
from tensorflow.keras.preprocessing import image
import requests app = Flask( name ,template_folder="templates") # initializing a flask app
# Loading the model
model=load_model('nutrition.h5') print("Loaded model from disk")
@app.route('/')# route to display the home page
def home(): return render_template('home.html')
@app.route('/image1',methods=['GET','POST'])# routes to the index html def image1():
return render_template("image.html")
@app.route('/predict',methods=['GET', 'POST'])# route to show the predictions in a web UI
def launches():
if request.methods=='POST': f=request.files['file'] #requesting the file
basepath=os.path.dirname(' file ')#storing the file directory
filepath=os.path.join(basepath,"uploads",f.filename)#storing the file in uploads folder
f.save(filepath)#saving the file
img=image.load_img(filepath,target_size=(64,64)) #load and reshaping the image
x=image.img_to_array(img)#converting image to an array
x=np.expand_dims(x,axis=0)#changing the dimensions of the image
pred=np.argmax(model.predict(x), axis=1)
print("prediction",pred)#printing the prediction
index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON'] result=str(index[pred[0]])
x=result print(x)
result=nutrition(result)
print(result) r
eturn render_template("0.html",showcase=(result))
import http.client conn = http.client.HTTPSConnection("calorieninjas.p.rapidapi.com")
headers = { 'X-RapidAPI-Key': "e5805fbf62mshf8d7308c0600c2dp197087jsn93407e3cce35",
'X-RapidAPI-Host': "calorieninjas.p.rapidapi.com" } conn.request("GET",
"/v1/nutrition?query=Pineapple", headers=headers) res = conn.getresponse() data =
res.read() print(data.decode("utf-8"))
import requests url = "https://calorieninjas.p.rapidapi.com/v1/nutrition" querystring =
{"query":"Pineapple"} headers = { "X-RapidAPI-Key":
"e5805fbf62mshf8d7308c0600c2dp197087jsn93407e3cce35", "X-RapidAPI-Host":
```

"calorieninjas.p.rapidapi.com" } response = requests.request("GET", url, headers=headers,

params=querystring print(response.text) if name == " main ":

running the app app.run(debug=False)

