Aplicação de rede neural convolucional em dados de eletroencefalografia

Seidi Yonamine Yamauti

Objetivos

- Testar modelo estado da arte em classificação de dados de eletroencefalografia (EEG)
- Documentar, produzir e disponibilizar um código útil em python

EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces

Vernon J. Lawhern^{1,*}, Amelia J. Solon^{1,2}, Nicholas R. Waytowich^{1,3}, Stephen M. Gordon^{1,2}, Chou P. Hung^{1,4}, and Brent J. Lance¹

¹Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD
²DCS Corporation, Alexandria, VA
³Department of Biomedical Engineering, Columbia University, New York, NY
⁴Department of Neuroscience, Georgetown University, Washington, DC
*Corresponding Author

May 17, 2018

O artigo

- Desenvolvimento do modelo EEGNet [1]
 - Arquitetura de rede neural convolucional (CNN), compacta
 - O objetivo é generalizar para diversos paradigmas de interface cérebro-máquina (BCI)
 - Testado com resultados significativos (P300, ERN, MRCP e SMR)
 - Método de explicação de características selecionadas

Shallow Learning (Aprendizado de Máquina Clásico)

Deep Learning (Aprendizado Profundo)

- Um modelo para extração de características
- Um modelo para classificação
- Um modelo para extração de características e classificação

Ver referência [3] para mais detalhes

Machine Learning

Deep Learning

Ver referência [3] para mais

	Block	Layer	# filters	size	# params	Output	Activation	Options
Extração de características	1	Input				(C, T)		
		Reshape				(1, C, T)		
		Conv2D	F_1	(1, 64)	$64 * F_1$	(F_1, C, T)	Linear	mode = same
		BatchNorm			$2 * F_1$	(F_1, C, T)		
		DepthwiseConv2D	$D * F_1$	(C, 1)	$C*D*F_1$	$(D * F_1, 1, T)$	Linear	mode = valid, depth = D, max norm = 1
		BatchNorm			$2 * D * F_1$	$(D * F_1, 1, T)$		
		Activation				$(D * F_1, 1, T)$	ELU	
		AveragePool2D		(1, 4)		$(D * F_1, 1, T // 4)$		
		Dropout*				$(D * F_1, 1, T // 4)$		p = 0.25 or p = 0.5
	2	SeparableConv2D	F_2	(1, 16)	$16 * D * F_1 + F_2 * (D * F_1)$	$(F_2, 1, T // 4)$	Linear	mode = same
		BatchNorm			$2 * F_2$	$(F_2, 1, T // 4)$		
EX		Activation				$(F_2, 1, T // 4)$	ELU	
		AveragePool2D		(1, 8)		$(F_2, 1, T // 32)$		
		Dropout*				$(F_2, 1, T // 32)$		p = 0.25 or p = 0.5
		Flatten				$(F_2 * (T // 32))$		
0	Classifier	Dense	$N * (F_2 * T // 32)$			N	Softmax	$\max \text{ norm} = 0.25$
Classificação								

Pacotes python

pyRiemann

Dados escolhidos

EEGBCI motor imagery

- Dados obtidos do banco de dados PhysioNet
- Já em formato EDF (MNE)
- Composto por sinais EEG de imagética motora, contendo 64 eletrodos/canais, 109 sujeitos, 14 sessões
- Dados cabíveis a paraplegia
 - melhorar classificação de imagética motora
 - exploração/entendimento de características

Resultados esperados (até 02/10)

- Pipeline de processamento dos dados escolhidos usando a EEGNet
- Comparação com resultados de outros estudos
- Código, apresentação e abstract disponibilizados

Referências

- Lawhern, Vernon J., et al. "EEGNet: a compact convolutional neural network for EEG-based brain—computer interfaces." Journal of neural engineering 15.5 (2018): 056013.
- 2. https://github.com/vlawhern/arl-eegmodels
- 3. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444.

Email: seidi.yamauti@edu.isd.org.br

Github: https://github.com/seidikun

