Statistik och Dataanalys I

Föreläsning 13 - Betingade sannolikheter och Bayes sats

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- **■** Betingad sannolikhet
- Lagen om total sannolikhet
- Bayes sats

Betingad sannolikhet

- Covid:
 - $ightharpoonup A = \{positivt hemtest\}. B = \{har covid\}.$
 - ▶ Intresse: P(B|A) = P(har covid|positivt hemtest)
- Tecknet | läses 'givet' eller betingat på.
- Sannolikheten för att A inträffar givet att B har inträffat.

Betingad sannolikhet - världen krymper

Betingad sannolikhet

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

- Betinga på A innebär att blå cirkeln blir vårt nya utfallsrum.
- Inget utanför blå cirkeln kan längre inträffa. "A is the new S".

Korstabeller och sannolikheter

Antal

	Gender			
		Female	Male	Total
	Has cats	3412	2388	5800
Pets	Has dogs	3431	3587	7018
Pe	Has both	897	577	1474
	Total	7740	6552	14,292

Snittsannolikheter (Table %)

	Gender			
		Female	Male	Total
	Has cats	23.9%	16.7%	40.6%
ts	Has dogs	24.0%	25.1%	49.1%
Pets	Has both	6.3%	4.0%	10.3%
	Total	54.2%	45.8%	100%

Betingat på kön (Column %)

		Gender		
		Female	Male	Total
	Has cats	44.1%	36.4%	40.6%
Pets	Has dogs	44.3%	54.8%	49.1%
Pe	Has both	11.6%	8.8%	10.3%
	Total	100%	100%	100%

Betingat på husdjur (Row %)

		Gender		
		Female	Male	Total
	Has cats	58.8%	41.2%	100%
Pets	Has dogs	48.9%	51.1%	100%
	Has both	60.9%	39.1%	100%
	Total	54.2%	45.8%	100%

Korstabell och mosaic-plott

	Gender				
		Female	Male	Total	
	Has cats	23.9%	16.7%	40.6%	
Pets	Has dogs	24.0%	25.1%	49.1%	
Pe	Has both	6.3%	4.0%	10.3%	
	Total	54.2%	45.8%	100%	

Venn-diagram

Korstabell och betingad sannolikhet

	Gender			
		Female	Male	Total
	Has cats	44.1%	36.4%	40.6%
Pets	Has dogs	44.3%	54.8%	49.1%
Pe	Has both	11.6%	8.8%	10.3%
	Total	100%	100%	100%

Korstabell och betingad sannolikhet

Allmänna multiplikationsregeln

Allmänna multiplikationsregeln. För händelser A och B

$$P(A \cap B) = P(A)P(B|A)$$

■ Oberoende händelser A och B är oberoende

$$P(A \cap B) = P(A)P(B)$$

Oberoende händelser - variant.

A och B är oberoende om (och endast om)

$$P(B|A) = P(B)$$

- Oberoende händelser vetskapen om att A har inträffat påverkar inte sannolikheten för B.
- Oberoende ≠ Disjunkta. Disjunkta händelser kan ju inte inträffa samtidigt!

Betingade sannolikheter bäst i form av träd

Snitt- och marginella sannolikheter bäst i tabell

Bayes sats

Allmänna multiplikationsregeln

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

Betingad sannolikhet

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

■ Bayes sats **②**

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bayes vänder betingningar: beräkna P(B|A) från P(A|B).

Känna igen handskrivna siffror

Förenkling: skilja på enbart 0:or och 1:or

 $A = \{ \text{vit pixel i mitten} \} \text{ och } B = \{ \text{siffran ar en nolla} \}$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

$$P(B) = \frac{\text{antal bilder med nollor}}{\text{totalt antal bilder}}$$

$$P(A) = \frac{\text{antal bilder med vit pixel i mitten}}{\text{totalt antal bilder}}$$

$$P(A|B) = \frac{\text{antal bilder med nolla som också har vit pixel i mitten}}{\text{antal bilder med nollor}}$$

Lagen om total sannolikhet

■ Sannolikheten för varje händelse A kan delas upp som:

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

Allmänna multiplikationsregeln:

$$P(A \cap B) = P(A|B)P(B)$$
 och $P(A \cap B^c) = P(A|B^c)P(B^c)$

Lagen om total sannolikhet

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

Bayes sats - via lagen om total sannolikhet

■ Lagen om total sannolikhet

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

Bayes sats

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bayes sats med lagen om total sannolikhet

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

Fungerar hemtest för Covid?

Bayes sats

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

Covid: $A = \{pos\}$. $B = \{covid\}$

$$P(\mathsf{covid}|\mathsf{pos}) = \frac{P(\mathsf{pos}|\mathsf{covid})P(\mathsf{covid})}{P(\mathsf{pos}|\mathsf{covid})P(\mathsf{covid}) + P(\mathsf{pos}|\mathsf{inte}\;\mathsf{covid})P(\mathsf{inte}\;\mathsf{covid})}$$

- Notera: P(neg|inte covid) = 1 P(pos|inte covid).
 - **Prevalens**: P(covid) andel med covid i populationen.
 - Sensitivitet: P(pos|covid) hur känsligt är testet för att upptäcka covid?
- **Specificitet**: P(neg|inte covid) är testet **specifikt** för covid, eller reagerar det även på annat?

Fungerar hemtest för covid?

antigentest för detektering av Covid-19 är ett CE-certifierat test för självprovtagning som kan indikera pågående infektion av coronavirus. Snabbtest som utförs genom nästopsning i främre näsan. Med hög specificitet på 99,20 % samt hög sensitivitet på 96,77 % Passar för screening av symptomfria individer exempelvis på arbetsplatser.

- Sensitivitet: P(pos test|covid) = 0.9677
- Specificitet: P(neg test|inte covid) = 0.9920

Bayes sats

Den här widgeten låter dig undersöka hur tillförlitliga hemtest för Covid är genom att beräkna den betingade sannolikheten P(covid | positivt test) med hjälp av Bayes sats. Du kan också använda widgeten till andra problem, genom att ge händelserna covid och pos andra namn.

Event A:	cov	
Event B:	pos	
$P(pos \mid cov)$	0.9677	
$P(\mathrm{not}\;\mathrm{pos}\; \;\mathrm{not}\;\mathrm{cov})$	0.992	
P(cov)	0.05	

 $P(\text{cov} \mid \text{pos}) = 0.8642$

Mattias Villani Baves' theorem for events

O Observable

Lagen om total sannolikhet - allmän version

$$P(A) = \sum_{j=1}^{K} P(A|B_j) p(B_j)$$

Bayes sats - allmän version

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{j=1}^{K} P(A|B_j)p(B_j)}$$

- Exempel: handskrivna siffor:
 - $ightharpoonup B_0 = \{ nolla \}, B_1 = \{ etta \}, B_2 = \{ tvåa \}, \dots, B_9 = \{ nia \}.$
 - ▶ A = {vit pixel i mitten}