www.eappc-beams2020.org

29 AUGUST - 02 SEPTEMBER

Muzzle Voltage Characteristics of Railguns

Nail Tosun (B.S., M.S.), Member IEEE

Middle East Technical University

Muzzle Voltage

- ASELSAN Inc. has been working on Electromagnetic launch technologies since 2014.
- EMFY-3 has a 50 × 75 mm rectangular bore and 6-m-length.
- 2.91 MJ muzzle energy is obtained up to now with an 8 MJ PPS (@ η =36.37%).

Why is it important?

It is a great diagnostic tools to investigate contact state. However, it should be decomposed to deliver meaningful data.

Muzzle Voltage Decomposition

$$U_{m} = \oint_{C_{1}} \vec{E}_{1} d\vec{l}_{1} + \oint_{C_{2}} \vec{E}_{2} d\vec{l}_{2} + \oint_{C_{3}} \vec{E}_{3} d\vec{l}_{3} + \frac{d\Phi}{dt}$$

$$U_m = I_r R_a + \left[L_m \frac{dI_r}{dt} \right] + (...)$$
 Mutual inductance term [1]

$$U_m = I_r R_a + L_m \frac{dI_r}{dt} + kI_r \sqrt{\frac{\mu_0 \rho_r v}{s}} \leftarrow \text{VSE term [2]}$$

$$U_{m} = I_{r}R_{a}^{04/12/2021} + L_{m}\frac{dI_{r}}{dt} + kI_{r}\sqrt{\frac{\mu_{0}\rho_{r}v}{s}} + \frac{1}{2}LI_{r}^{\text{EAPPC}}$$
Beams megagauss - Biarritz France Back-EMF [3]

Transformer analogy

VSE

Regions

Region 1

Armature velocity is little; velocity term is not expected

Region 2

 $\frac{dI_{rail}}{dt}$ is little; inductive term is not expected*

Region 3

 $\frac{dI_{rail}}{dt}$ < 0 , armature velocity is large

transition

Muzzle Voltage Decomposition

As the armature movement

In the first region, capacitive-based module are fired simultanously, the rail current is increased. As the friction kicks in armature movement is little, the linear transformer model is valid.

Muzzle Voltage Decomposition

 L_m is geometry dependent, can be calculated through 3-D FEM.

 R_a is the armature resistance which consists;

- 1) the material resistance, (can be calculated with FEM)
- 2) the electrical contact resistance (complex; pressure-phase-temperature dependent).

 I_r is the rail current (emprical).

Hypothesis I:

R increased due to thermal loading, No velocity term, L_m is constant, in the R_1

$$U_m = I_r R_a + L_m \frac{dI_r}{dt} + (...)$$

Initial value is determined by I_{rail} (purely inductive)

1) Muzzle voltage in the first half increased:

$$I_r$$
 R_a $\frac{dI_r}{dt}$ L_m

The resistive component is increased (as the contact temperature increased)

2) Muzzle voltage in the second half decreased:

$$I_r / / R_a ? \frac{dI_r}{dt}$$
 $L_m -$

R is constant as the contact forms stable liquid material. (inductive voltage is dominant, resistive contribution is constant)

$$\frac{dI_{rail}}{dt} \approx 0$$
 $\dot{v} = C$ \hat{I}_{rail} , and \dot{v} are different.

Hypothesis II:

No velocity or \dot{v} term (falsifiable) R is constant, if the contact is stable L_m is constant

Hypothesis II:

No velocity or \dot{v} term (falsifiable) R is constant, if the contact is stable

0.05

0.045

0.04

0.02

0.015

0.01

 R_c extraction

Hypothesis I:

R increased due to thermal loading,

No velocity term

 L_m is constant, in the R_1

Hypothesis II:

R is constant, if the contact is stable No velocity term

 L_m is constant, in the R_2

Results $(R_1 \& R_2)$

The Transition

 $\frac{dI_{rail}}{dt}$ < 0 increases R_c , may trigger transition The complete transition does not depend solely on v action integral, or I_{rail} .

Conclusion

- 1. R_c is dynamic due to phase change in R_1 , and it can be modelled with a simple sigmoid function.
- 2. $L_{\rm m}$ is constant in R_1 , and R_2 , and it can be exploited with 3-D FEA.
- 3. Muzzle voltage is not depend on the armature velocity at R_1 , and R_2 .
- 4. At R_2 , R_c is constant as the sliding contact has stable liquid film (25 30 $\mu\Omega$).
- 5. $-\frac{dI_{rail}}{dt}$ enforces transition. However, there is no correlation % of I_{rail} .
- 6. The complete transition starting point does not depend on v, action integral or I_{rail} .

Discussion&Speculations

- Saying there is no velocity term in the muzzle voltage is big; contradicts with previous studied.
 - There can be still a velocity term but it can be negligible.
 - [1] has laminated steel containment, which can be amplified inductive term at VSE velocities.
 - EMFY-3 has non-conductive containment. (the difference)
- Saying there is no relation between $\frac{dI_{muzzle}}{dI_{rail}}$ and the transition contradicts with [4];
 - However we saw transition at 93% $\frac{dI_{muzzle}}{dI_{rail}}$.
- We said that there is sole correlation between transition point, and v, action integral, and $\frac{dI_{muzzle}}{dI_{rail}}$ but;
 - We saw a power correlation (Speculation!)

$$C = \Delta t_p (\Delta t_d)^{2.5}$$

Thank you for listening!

Any question?

Nail Tosun

Research Assistant, Msc. Candidate nail.tosun@metu.edu.tr http://nailtosun.me/

Middle East Technical University

MFTU Power Lab http://power.eee.metu.edu.tr/

Thesis Work

N. Tosun *et al.*, "A Hybrid Simulation Model for Electromagnetic Launchers Including the Transient Inductance and Electromotive Force," in *IEEE Transactions on Plasma Science*, vol. 48, no. 9, pp. 3220-3228, Sept. 2020, doi: 10.1109/TPS.2020.3016930.

N. Tosun *et al.*, "A Hybrid Simulation Model for Electromagnetic Launchers Including the Transient Inductance and Electromotive Force," in *IEEE Transactions on Plasma Science*, vol. 48, no. 9, pp. 3220-3228, Sept. 2020, doi: 10.1109/TPS.2020.3016930.

H. Polat, N. Tosun, D. Ceylan and O. Keysan, "Optimization of a Convex Rail Design for Electromagnetic Launchers," in *IEEE Transactions on Plasma Science*, vol. 48, no. 6, pp. 2266-2273, June 2020, doi: 10.1109/TPS.2020.2993785.

N. Tosun *et al.*, (2021): Bus Impact on the Inductance Distribution of Electromagnetic Launchers. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.15370881.v1

N. Tosun *et al.*, (2021): Inductance Gradient Calculations of EMFY-3 Electromagnetic Launcher. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.15372999.v1

N. Tosun *et al.* (2020): Electromagnetic Launcher Speed Control with a Multilevel Fast Triggering Time Algorithm (MFTTA). TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.13011512.v1

Other Work

N. Tosun, E. Sert, E. Ayaz, E. Yılmaz and M. Göl, "Solar Power Generation Analysis and Forecasting Real-World Data Using LSTM and Autoregressive CNN," *2020 International Conference on Smart Energy Systems and Technologies (SEST)*, 2020, pp. 1-6, doi: 10.1109/SEST48500.2020.9203124.

You have been invited to the thesis defend.

@ Tue 7 Sept 2021 13:40 - 16:30 (TRT)

Submitted to the IEEE Transactions on Plasma Science

- References

- [1] J. Parker, "Experimental observation of the rail resistance contribution to muzzle voltage [in railguns]," IEEE Transactions on Magnetics, vol. 35, no. 1, pp. 437–441, 1999.
- [2] Y. Dreizin and J. Barber, "On the origins of muzzle voltage," IEEE Transactions on Magnetics, vol. 31, no. 1, pp. 582–586, 1995.
- [3] L. Chen, J. He, Y. Pan, and Z. Xiao, "Muzzle voltage of railgun in zero velocity and launch experiments," in 2008 14th Symposium on Electromagnetic Launch Technology, 2008, pp. 1–5.
- [4] S. Satapathy and H. Vanicek, "Down-slope contact transition in railguns," IEEE Transactions on Magnetics, vol. 43, no. 1, pp. 402–407, 2007.