Greedy Algorithms

- Making decisions on the basis of information immediately at hand without worrying about the effect these decisions may have in the future
- A family of algorithms typically used to solve optimization problems
 - Knapsack
 - Scheduling
 - MST: minimum spanning tree
 - Single source shortest path

Formal description: Fractional Knapsack

- Given W; w_i , v_i
- Find an array x_i , $1 \le i \le n$, $0 \le x_i \le 1$, to
 - Maximize $\sum_{i=1}^{n} x_i v_i$
 - And be subject to $\sum_{i=1}^{n} x_i w_i \leq W$

The knapsack problem

- Given
 - n objects numbered from 1 to n. Object i has a positive weight w_i and a positive value v_i
 - a knapsack that can carry a weight not exceeding W
- Problem
 - Fill the knapsack in a way that maximize the value of the included objects, while respecting the capacity constraints
 - Fractional Knapsack Problem
 - the objects can be broken into small pieces
 - 0-1Knapsack Problem:
 - An object cannot be broken into pieces
 - · Either choose it or not

A greedy algorithm

```
Knapsack(w[], v[], W)
for (i=1; i<=n; i++)
  x[i] = 0;
weight = 0;
                                                  The key is
                                                  which object
 while (weight < W) {
                                                  to select
   i = select the best remaining object; *
   if (weight + w[i] < W)
     x[i] = 1;
                                             fill the largest
   else
                                             portion possible
     x[i] = (W-weight)/w[i];
 return x:
```

Selection methods

- 1. Choose the most valuable remaining object
- 2. Choose the lightest remaining object
- 3. Choose the object with the highest value per weight unit.

n=5, W=100

W	10	20	30	40	50	
v	20	30	66	40	60	
v/w	2.0	1.5	2.2	1.0	1.2	
Method 1			1	3	2	146
Method 2	1	2	3	4		156
Method 3	2	3	1		4	164

Scheduling: an activity selection problem

- A set $S = \{a_1, a_2, ..., a_n\}$ activities wish to use a resource
 - The resource can be used by one activity at a time
 - Each activity has a start time s_i and a finish time f_i with $0 \le s_i \le f_i$
 - If selected, activity take place at an half-open interval $[s_i, f_i)$.
 - Activities a_p a_j are compatible if their intervals do not overlap: $s_i >= f_i || s_j >= f_i$
- The activity selection problem
 - Select a maximum-size subset of mutually compatible activities

Optimality of method 3

- Theorem:
 - If the objects are selected in order of decreasing v_i/w_i then the algorithm knapsack finds an optimal solution
- Observation:
 - After choose a part of or the whole object i, what left is still an optimization problem:
 - Fill the remaining knapsack using the remaining objects
 - Prove that the selected object/part object at each step is safe
 - It is always a part of some optimal solution
- Prove: the largest possible portion of the object with the "highest value per weight unit" must be in some optimal solution

An example

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- Compatible set
 - $-\{a_3, a_9, a_{11}\}$
 - $-\{a_1, a_4, a_8, a_{11}\}$
 - $-\{a_2, a_4, a_8, a_{11}\}$

Some definitions

- Define S_{ij} as a subset of activities in that can start after a_i finishes and finish before a_i starts
 - $S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le a_i \}$
- For simplicity
 - Assume all activities are sorted by their finish times
 - S_{ii} is empty when $i \ge j$
 - Add two fictitious activities S_0 and S_{n+1}
 - $f_i = 0$
 - S_{n+1} = ∞
 - $-S = S_{0,n+1}$

The optimal structure

- Theorem: Consider any nonempty subproblem S_{ij} and let a_m be the activity in S_{ij} with the earliest finish time
 - Activity a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}
 - The subproblem S_{im} is empty, so that leaves the subproblem S_{mi} as the only one that may be nonempty

The algorithm

Summary: Greedy strategy

- Typical Steps
 - Cast the problem as one in which we make a choice and are left with one subproblem to solve
 - Optional:
 - Prove that there is always an optimal solution to the original problem, so that the greedy choice is always safe
 - Demonstrate that: an optimal solution to the subproblem combined with the greedy choice we have made is an optimal solution to the original problem