an Intensional Dependent Type Theory with Type-in-Type and Recursion

February 18, 2021

1 type soundness or blame

- 1.1 well formed
- 1.2 weakening
- 1.3 substitution
- 1.4 preservation
- 1.5 Canonical forms

1.6 Progress

 $\Diamond \vdash c : A$ implies that a is a value, there exists c' such that $c \leadsto c'$, or a static location can be blamed. and $\Diamond \vdash e : \overline{\star}$ implies that e is a value, there exists e' such that $e \leadsto e'$, or a static location can be blamed

By mutual induction on the typing derivations with the help of the canonical forms lemma

Explicitly:

- cast typing
 - -eq-ty-1 by **induction**
 - -eq-ty-2 by **induction**
- head typing
 - -c cannot be typed by the variable rule in the empty context
 - c is typed by type-in-type. a is \star , a value
 - -c is typed by Πty . a is a value
 - c is typed by Π fun ty. a is a value

- c is typed by $\Pi app ty$. Then c is b a, and there are derivations of $\Diamond \vdash b : \Pi x : A.B$, and $\Diamond \vdash a : A$ for some A and B. By **induction** a is a value, there exists a' such that $a \leadsto a'$, or blame and b is a value or there exists b' such that $b \leadsto b'$ or blame. (TODO jumping from one syntactic form to another)
 - * if b is a value and a is a value, then b is $b_h :: v_{eq}$.
 - · If all $A \in v_{eq}$ are in the form $\Pi x : A.B$ then $v_{eq} E lim_{\Pi}$ and $v_{eq} \downarrow$ is $\Pi x : A.B$ so b_h is $(\operatorname{fun} f. x.b')$ and the step is $((\operatorname{fun} f. x.b) :: v_{eq} v) :: v'_{eq} \leadsto (b :: e_B) [f := (\operatorname{fun} f. x.b) :: v_{eq}, x := v] :: v'_{eq}$
 - · otherwise, $v_{eq} \uparrow$ is $\Pi x : A.B$ but there is some $[\star =_{l,o} \Pi x : A.B] \in v$ and l,o can be blamed
 - * if b or a can construct blame then $b\,a$ can be used to construct blame
 - * if b is a value and $a \rightsquigarrow a'$ then $b a \rightsquigarrow b a'$
 - * if $b \leadsto b'$ then $b a \leadsto b' a$
- cast term typing
 - a is typed by type-in-type. a is \star , a value
 - a is typed by Πty . a is a value
 - -a is typed by the conversion rule, then by **induction**
 - -a is typed by the *apparent* rule, then by **induction**
- M is typed by Π -E. M is PN then exist some σ, τ for $\Diamond \vdash P : \Pi x : \sigma.\tau$ and $\Diamond \vdash N : \sigma$. By **induction** (on the P branch of the derivation) P is a value or there exists P' such that $P \leadsto P'$. By **induction** (on the N branch of the derivation) N is a value or there exists N' such that $N \leadsto N'$
 - if P is a value then by **canonical forms**, P isfun $f:(x.\tau).x:\sigma.P'$
 - * if N is a value then the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto P'[x\coloneqq N, f\coloneqq \operatorname{fun} f:(x.\tau).x:\sigma.M]$
 - * otherwise there exists N' such that $N \leadsto N'$, and the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto (\operatorname{fun} f:(x.\tau).x:\sigma.P')$ N'
 - otherwise, there exists P' such that $P\leadsto P'$ and the one step reduction is $P\:N\leadsto P'\:N$

1.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck" without blame. Either a final value will be reached, further reductions can be taken, or blame is omitted. This follows by iterating the progress and preservation lemmas.

2 elaboration embeds typing

- 1. $\vdash e: M$, elab(M, *) = M', and elab(e, M') = e' then $\vdash_c e': M'$.
- 3 computation resulting in blame cannot be typed in the surface lang
 - 1. $\vdash_c e': M'$ and $e' \downarrow blame$ then there is no $\vdash e: M$ such that $elab\,(M,*) = M', \, elab\,(e,M') = e'$
- 4 computation in the cast lang respects computation in the surface lang
 - 1. $\vdash_c e' : *$ and elab(e, *) = e' then
 - (a) if $e' \downarrow *$ then $e \downarrow *$
 - (b) if $e' \downarrow (x:M') \rightarrow N'$ then $e \downarrow (x:M) \rightarrow N$
 - (c) if $e' \downarrow TCon \overline{M'}$ then $e \downarrow TCon \overline{M}$