Supplemental Materials

Multi-dimensional Scaling (MDS)

- given:
 - a set of n objects
 - the dissimilarities (distances) between them δ_{ij}

- find:
 - points on the plane whose distances d_{ij} are as close as possible to the δ_{ij}
- minimize:

$$STRESS = \left[\frac{\sum_{i,j} (d_{ij} - \delta_{ij})^2}{\sum_{i,j} \delta_{ij}^2}\right]^{1/2}$$
 [kruskal 1964]

Cosine Similarity, Cosine Distance

$$sim(A,B) = \cos(\theta) = \frac{A \cdot B}{||A|| \ ||B||}$$

$$dist(A, B) = 1 - sim(A, B)$$

Similar Vectors

Disimilar Vectors

In case of Correlation Matrix

0.9	0
0	0.6

0.3	0
0	0.2

$$cos dist = 0$$

euclid dist = 0.72

0.4	0.3
0.3	0.4

cos dist = 0.22euclid dist = 0.68

MDS Error Visualization

$$err_i = \sqrt{\sum_{j \in P} (d_{ij} - d'_{ij})^2}$$

 d_{ij} : distance from point i to j in the original space

 d_{ij}^{\prime} : distance from point i to j in the MDS space

 $\,P\,\,$: set of all points

Background color shows this error value

Hierarchical clustering: result

Example artificial network

Cut corresponds to one partition

Modularity

· Modularity:

$$M = Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta_{s_i, s_j}$$
Real link Probability of link in randomized version

- m: #links in the network
- A_{ii}: adjacency matrix, 1 if i and j are connected, 0 of not
- k_i: degree of node I
- $\delta_{\text{s1s2}}\!\!:$ 1 if in the same community, 0 if not
- High M → good division

Modularity

