Solving Schrödinger's Equation for Two Particles in

a Harmonic Oscillator **Potential**

https://en.wikipedia.org/wiki/Erwin Schr%C3%B6dinger

2/please-explain-the-following-graphs-that-describe a-quantum-mechanical-harmonic

May 3rd, 2017

Motivation

Two particles in a harmonic oscillator potential are not uncommon systems....

→ Qubits for quantum computing (trapped ions, electrons, quantum dots)

Theory

Schrödingers equation for two particle in a harmonic oscillator potential using COM coordinate and relative coordinate

Jacobi Rotation Algorithm

→Used to find the eigenvalues and eigenvectors of hermitian matrices

Similarity Transformation using orthogonal matrix S

$$S^T = S^{-1}$$

$$\mathbf{B} = \mathbf{S}^T \mathbf{A} \mathbf{S}$$

Goal: transform to a similar diagonal matrix

$$\begin{pmatrix} b_{kk} & 0 \\ 0 & b_{ll} \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} a_{kk} & a_{kl} \\ a_{lk} & a_{ll} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$$

Eigenvalues on diagonal of B & **eigenvectors** are the similarity transformed basis vectors from initial case

Implementation of the Jacobi Rotation Algorithm

It is not necessary or computationally friendly

to run the algorithm until all off-diagonal elements equal exactly zero

→Set a nonzero tolerance, ε, which for our purposes is approximately zero

If a matrix is sufficiently complicated or unsolvable, it may never get to an answer

→Set a max number of iterations

```
while ( fabs (max_offdiag) > epsilon && (double) iterations < max_number_iterations ) {
  max_offdiag = maxoffdiag( A, &k, &l, n );
  A = rotate ( A, R, k, l, n );
  iterations++;
}</pre>
```

Implementation of the Jacobi Rotation Algorithm

The sort() function (built-in Armadillo function) used to sort the eigenvalues does not sort the eigenvectors as well

Solution:

- Match the sorted eigenvalue matrix to the unsorted eigenvalue matrix to find the original indexed location

-Find the eigenvector at that indexed location in the eigenvector matrix and correctly order a new matrix

```
vec eigval = zeros<vec>(n);
for (int i=0;i<n;i++){
  eiqval(i) = A(i,i):
vec eigval2(n):
eigval2 = sort(eigval);
vec index(n):
for (int i=0;i<n;i++) {
  uvec test(n):
  test = find (eigval2 == eigval(i));
  index(i) = test(0):
mat eigvec = zeros<mat>(n,n);
for (int i=0:i<n:i++) {
  for (int j=0; j<n; j++) {
    eigvec(j,index(i))
                       = R(i,i):
```

Unit Tests

1) Orthogonality Preservation under Similarity Transformation

Consider an orthogonal vector **v**, such as our eigenvectors, and a hermitian matrix **U**, such as our similarity transformation matrix :

```
\left(\mathbf{U}\mathbf{v}_{j}\right)^{T}\left(\mathbf{U}\mathbf{v}_{i}\right)=\mathbf{v}_{j}^{T}\left(\mathbf{U}^{T}\mathbf{U}\right)\mathbf{v}_{i}=\mathbf{v}_{j}^{T}\mathbf{v}_{i}=\delta_{ij}
```

```
for (int i=0; i<n; i++) {
    B.col(i) = solve(rot, A.col(i));
}
vec identity2(n);
for (int i=0; i<n; i++) {
    identity2[i] = cdot(B.col(i), B.col(i));
}
cout<<"w^{T}*w: "<<identity2<<endl;</pre>
```

Unit Tests

1) Orthogonality Preservation under Similarity Transformation

Consider an orthogonal vector **v**, such as our eigenvectors, and a hermitian matrix **U**, such as our similarity transformation matrix :

$$\left(\mathbf{U}\mathbf{v}_{j}\right)^{T}\left(\mathbf{U}\mathbf{v}_{i}\right) = \mathbf{v}_{j}^{T}\left(\mathbf{U}^{T}\mathbf{U}\right)\mathbf{v}_{i} = \mathbf{v}_{j}^{T}\mathbf{v}_{i} = \delta_{ij}$$

2) Checking the result for a simple matrix

Hard code a matrix with known eigenvalues that requires a number of Jacobi rotations to reach these values, check the accuracy throughout changes to code

Comparison to Theory

M. Taut, Phys. Rev. A. 48, 5 (Nov 1993).

Interacting case for $\omega = 0.25$

First Eigenvalue:

Taut: 1.250

Jacobi Algorithm: 1.24879

Interacting case

Frequency	Algorithm	Eigenvalues		
0.01	Jacobi	0.105773	0.141504	0.178008
	Arma	0.105773	0.141504	0.178008
0.5	Jacobi	2.22507	4.11139	6.017
	Arma	2.22507	4.1139	6.017
1	Jacobi	4.0372	7.81445	11.5845
	Arma	4.0372	7.81445	11.5845
5	Jacobi	16.9105	34.4305	49.9979
	Arma	16.9105	34.4305	49.9979

Ground State Wavefunction

Jacobi Rotation

→Decreasing ω increases the prominence of the repulsive Coulomb potential

The oscillator potential disappears, so the particles will likely spread further apart - WHY so much repulsion??

→The Coulomb potential has an infinite range

Ground State Wavefunction

Jacobi Rotation

Armadillo Eigsym

Algorithm Efficiency

Arma Max: 4000 pts

Jacobi Max: 300 pts

Time for Arma Max ~ Time for Jacobi Max

Excited States

Algorithm: Jacobi Rotation

Mesh points: 200

-Highest amplitude peak for a state is furthest from origin, result of repulsion

-Scale of y-axis increases with increasing frequency →likelihood concentrated near the origin

Yukawa factor addition to Coloumb Potential $V = \frac{1}{2}m\omega^2r^2 + \frac{e^{-r}}{r}$

$$V = \frac{1}{2}m\omega^2 r^2 + \frac{e^{-r}}{r}$$

Conclusions

 Jacobi Rotation algorithm is producing accurate eigenvalues/eigenvectors

Jacobi algorithm is not the most efficient technique

 The Coulomb potential has an infinite range which can be suppressed with a Yukawa factor

Thanks for listening!

Thank you to Prof. Morten Hjorth-Jensen for teaching a great class!

Thanks to my partners Spencer Ammerman and Colin Gordon!

Non-interacting case

Frequency	Algorithm	Eigenvalues		
0.01	Jacobi	0.029998	0.0699903	0.109978
	Arma	0.029998	0.0699903	0.109978
0.5	Jacobi	1.4951	3.47541	5.43976
	Arma	1.4951	3.47541	5.43976
1	Jacobi	2.98033	6.9009	10.7562
	Arma	2.98033	6.9009	10.7562
5	Jacobi	14.4926	32.3417	48.0986
	Arma	14.4926	32.3417	48.0986

Algorithm Efficiency

Mesh points —	Arma Eigsym Time (s) — Jacobi Time (s)
50	0.0012	0.0642
100	0.0057	0.9587
200	0.0184	16.1497
300	0.0521	85.947
500	0.199	-
1000	1.564	-
2000	12.688	2
4000	102.179	-