Logaritmos, cents y MIDI: una pista básica

Edgar Delgado Vega

 $29~{\rm de~abril~de~2022}$ Compilado el 13 de septiembre de 2025, v.0.0.1

Resumen

Tratamos brevemente algo que tal vez te ha sido divertido: los cents. ¿Es el mejor nombre de la vida? Bueno, es una forma traslúcida de convertir la turbulenta relación multiplicativa de frecuencias en algo mucho más de barrio: una distancia aditiva. Al final, veremos cómo saltamos directamente a otras áreas, como los mels, los decibelios y las notas MIDI. No te preocupes, que esto viene tranco a tranco.

1. Una nada sobre logaritmos

El logaritmo natural ln(x) para x > 0 se define de forma un poco rara, pero bonita (como casi todo en matemáticas) mediante una integral:

Definición 1.1 (Logaritmo en su transformación súper integral).

$$\ln: \mathbb{R}^+ \to \mathbb{R}$$

$$\ln(x) = -\int_{x}^{1} t^{-1} dt = \int_{1}^{x} \frac{1}{t} dt,$$

y, en vez de ser una función aburrida, representa el área debajo de la curva $y = \frac{1}{t}$ desde 1 hasta x.

Observación 1.2. Cuidado, no te confundas, el eje horizontal es t, no x.

Y sí, también tiene propiedades clásicas, como la continuidad, la monotonicidad (si te suena a algo de control), y esa ley del producto que todo aquel interesado en morfismos de grupos alguna vez quiso:

$$\ln(xy) = \int_{1}^{x} \frac{1}{t} dt + \int_{1}^{y} \frac{1}{t} dt.$$

Lo que en cristiano es: $\ln(xy) = \ln(x) + \ln(y)$. Realmente no es tan raro.

Para desarrollar nuestro microsistema, necesitaremos otras bases. Dado un número real $b>0, b\neq 1$, el logaritmo en base b se define así:

$$\log_b(x) = \frac{\ln(x)}{\ln(b)} = \frac{1}{\ln(b)} \int_1^x \frac{1}{t} dt.$$

Esto simplemente es tomar el logaritmo natural y le pones tu salsa criolla.

2. Distancia de octavas y cents

En música, la distancia entre dos frecuencias f_1 y f_2 medidas en octavas se define como:

$$\Delta(f_1, f_2) = \log_2\left(\frac{f_1}{f_2}\right) = \frac{1}{\ln(2)} \int_1^{\frac{f_1}{f_2}} \frac{1}{t} dt.$$

¿De qué se trata esto? Básicamente, es una forma de medir cuántas veces una frecuencia f_1 es más grande que f_2 , pero usando logaritmos para hacerlo de forma más práctica.

La distancia en *cents* (que ya se volvió el estándar) es la octava subdividida en 1200 partes iguales:

Definición 2.1 (Los cents para tu consumo).

cents
$$(f_1, f_2) = 1200 \times |\Delta(f_1, f_2)|$$
.

Y lo mejor es que los cents respetan lo que nuestra oreja percibe de forma mucho más directa. Mientras que nuestra percepción se basa en la $nzón \frac{f_1}{f_2}$ y no en la diferencia $f_1 - f_2$, los cents nos dan una forma más intuitiva de comparar esas pequeñas distancias en frecuencias. Hilar y tejer con toda la fineza aquí será posible.

3. Generalizando hacia cualquier dupla

Ya estamos con la concentración suficiente para abrir un poco más el lente de nuestro teléfono. Si definimos una unidad arbitraria de interés musical Δ_b como el valor logarítmico en base b de la razón entre dos magnitudes, tenemos:

$$\Delta_b(X_1, X_2) = \frac{1}{\ln(b)} \int_1^{\frac{X_1}{X_2}} \frac{1}{t} dt.$$

Y si queremos ser aún más MADs, introducimos un factor de escalamiento κ , que es simplemente cómo de finitos quieres que sean tus intervalos. Así que podemos escribir la definición que veníamos a redescubrir (en rima para que suene afín):

Definición 3.1 (La fórmula en su esplendor).

$$\Delta_b^{\kappa}(X_1, X_2) = \frac{\kappa}{\ln(b)} \int_1^{\frac{X_1}{X_2}} \frac{1}{t} dt, \quad b > 0, \ b \neq 1, \ \kappa > 0.$$

Esta fórmula (3.1) es la que necesitábamos para darle paso a los ejemplos que vienen en un toque.

4. Volviendo a ejemplos

Ahora, lo bueno: ejemplos. Si tomamos la distancia entre dos frecuencias f_1 y f_2 medida en octavas, podemos escribir fácilmente:

$$\Delta_2^{1200}(f_1, f_2) = \text{cents}(f_1, f_2).$$

Y también podemos ver algo más sabroso, como el mel, que se define así:

$$\Delta_{10}^{2595}(f) = \frac{2595}{\ln(10)} \int_{1}^{1 + \frac{f}{700}} \frac{1}{t} dt = \text{mel}(f).$$

Sí, es una forma divertida de medir la percepción del tono, y nos recuerda que no todo marcha por líneas.

Por último, en el búnker de la intensidad sonora, si tenemos I_1 en Watios por metro cuadrado, la relación en decibelios se expresa como:

$$\Delta_{10}^{10}(I_1) = \frac{10}{\ln(10)} \int_1^{\frac{I_1}{10^{-12} \frac{W}{m^2}}} \frac{1}{t} dt = L_{dB}.$$

Observación 4.1. Ten calma con las cosas adimensionales.

5. Ajá: ya vi el MIDI

Directo al asunto. Una fórmula práctica para calcular una nota MIDI desde una frecuencia f dada es la siguiente:

$$n(f) = 69 + 12\log_2\left(\frac{f}{440}\right).$$

Lo mejor es que también puedes reescribirlo en términos de la integral (3.1), y se ve bastante brutal:

$$\Delta_2^{12}(f, 440) + 69 = n(f) = 69 + \frac{12}{\ln 2} \cdot \int_1^{\frac{f}{440}} \frac{1}{t} dt.$$

Como puedes notar, solamente se le adiciona el número de nota MIDI que le toca a la frecuencia f.

¿Pero qué pasa si quieres cambiar la referencia de 440 Hz a otra frecuencia f_0 ? Solo debemos que mover el bote, es decir, la base f_0 en la fórmula. Entonces, la expresión se convierte en:

Definición 5.1 (El MIDI indeciso).

$$\Delta_2^{12}(f, f_0) + \beta = n_\beta(f, f_0) = \beta + \frac{12}{\ln 2} \cdot \int_1^{\frac{f}{f_0}} \frac{1}{t} dt.$$

Tenemos nueva nota MIDI n_{β} que queremos asignar a la frecuencia f_0 .

Ejemplo 5.2. Supongamos que queremos que la nota MIDI 60 se asigne a una frecuencia de 261,63 Hz (que es la frecuencia estándar de C4). Entonces, nos soltamos la siguiente frase:

$$n_{60}(f, 261, 63) = 60 + \frac{12}{\ln 2} \cdot \ln \left(\frac{f}{261, 63}\right)$$

En palabras simples y sencillas, puedes aplicar este truco con cualquier frecuencia base que te guste para armar el tonazo.

6. La última cuerda

Si damos un paso atrás y miramos con más calma, veremos que el espacio (\mathbb{R}^+,\cdot) , ese espacio donde todo se multiplica, se convierte en un espacio aditivo $(\mathbb{R},+)$ gracias al sabor del *logaritmo*. Este truco es útil en varias ideas. Te lo repito: las relaciones multiplicativas se convierten en intervalos aditivos que podemos medir y comparar con un toque mucho más sencillo.

Licencia Este documento está disponible bajo la licencia Creative Commons CC BY-NC-ND 4.0, que permite su distribución con fines no comerciales, siempre que se otorgue el crédito adecuado y no se realicen obras derivadas.