Exploratory Data Analysis Starter

Import packages

```
In [1]: import matplotlib.pyplot as plt import seaborn as sns import pandas as pd

# Shows plots in jupyter notebook
%matplotlib inline

# Set plot style
sns.set(color_codes=True)
```

Loading data with Pandas

We need to load client_data.csv and price_data.csv into individual dataframes so that we can work with them in Python. For this notebook and all further notebooks, it will be assumed that the CSV files will the placed in the same file location as the notebook. If they are not, please adjust the directory within the read_csv method accordingly.

```
In [2]: client_df = pd.read_csv('./client_data.csv')
price_df = pd.read_csv('./price_data.csv')
```

```
You can view the first 3 rows of a dataframe using the head method. Similarly, if you wanted to see the last 3, you can use tail(3)
In [3]: client_df.head(3)
Out[3]:
                                             id
                                                                channel sales cons 12m cons gas 12m cons last month date activ date end date modif prod date renewal forecast cons 12m
                                                                                                                                      2016-06-
15
                                                                                                                            2013-06-
15
                                                                                                                        0
           0 24011ae4ebbe3035111d65fa7c15bc57 foosdfpfkusacimwkcsosbicdxkicaua
                                                                                       0
                                                                                                  54946
                                                                                                                                                      2015-11-01
                                                                                                                                                                   2015-06-23
                                                                                                                                                                                            0.00
                                                                                                                            2009-08-
                                                                                                                                      2016-08-
           1 d29c2c54acc38ff3c0614d0a653813dd
                                                                     MISSING
                                                                                    4660
                                                                                                      0
                                                                                                                                                     2009-08-21
                                                                                                                                                                   2015-08-31
                                                                                                                                                                                           189.95 ..
                                                                                                                            2010-04-
16
           2 764c75f661154dac3a6c254cd082ea7d foosdfpfkusacimwkcsosbicdxkicaua
                                                                                     544
                                                                                                                                                      2010-04-16
                                                                                                                                                                   2015-04-17
                                                                                                                                                                                           47.96 ..
          3 rows x 26 columns
In [4]: price_df.head(3)
Out[4]:
                                             id price_date price_off_peak_var price_peak_var price_mid_peak_var price_off_peak_fix price_peak_fix price_mid_peak_fix
           0 038af19179925da21a25619c5a24b745 2015-01-01
                                                                     0.151367
                                                                                         0.0
                                                                                                              0.0
                                                                                                                          44 266031
                                                                                                                                               0.0
                                                                                                                                                                  0.0
           1 038af19179925da21a25619c5a24b745 2015-02-01
                                                                     0.151367
                                                                                         0.0
                                                                                                              0.0
                                                                                                                          44 266931
                                                                                                                                               0.0
                                                                                                                                                                  0.0
           2 038af19179925da21a25619c5a24b745 2015-03-01
                                                                     0.151367
                                                                                                                          44.266931
                                                                                         0.0
                                                                                                              0.0
                                                                                                                                               0.0
                                                                                                                                                                  0.0
```

Descriptive statistics of data

Data types

It is useful to first understand the data that you're dealing with along with the data types of each column. The data types may dictate how you transform and engineer features.

To get an overview of the data types within a data frame, use the info() method

```
In [5]: client_df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 14606 entries, 0 to 14605
Data columns (total 26 columns):
          #
            Column
                                                   Non-Null Count Dtype
          0
              id
                                                   14606 non-null
                                                                     object
               channel_sales
                                                   14606 non-null
                                                                     object
               cons 12m
                                                   14606 non-null
                                                                     int64
                                                   14606 non-null
               cons_gas_12m
                                                                     int64
```

cons_last_month date_activ 14606 non-null int64 14606 non-null object date_end date_modif_prod 14606 non-null object object 14606 non-null object float64 date renewal 14606 non-null forecast_cons_12m 14606 non-null 10 forecast cons year 14606 non-null int64 forecast_discount_energy 14606 non-null forecast_meter_rent_12m
forecast_price_energy_off_peak 12 14606 non-null float64 14606 non-null 14 forecast_price_energy_peak forecast_price_pow_off_peak 14606 non-null float64 14606 non-null 16 has gas 14606 non-null object 17 18 imp_cons 14606 non-null margin_gross_pow_ele
margin_net_pow_ele 14606 non-null float64 14606 non-null 20 nb prod act 14606 non-null int64 net_margin 14606 non-null float64 22 num years antig 14606 non-null int64 object float64 23 origin_up 14606 non-null 14606 non-null pow max churn 14606 non-null int64 dtypes: float64(11), int64(7), object(8)

memory usage: 2.9+ MB

```
In [6]: price_df.info()
```

Statistics

Now let's look at some statistics about the datasets. We can do this by using the $\ensuremath{\mathsf{describe}}$ () $\ensuremath{\mathsf{method}}$.

In [7]: client_df.describe()

Out[7]:

	cons_12m	cons_gas_12m	cons_last_month	forecast_cons_12m	forecast_cons_year	forecast_discount_energy	forecast_meter_rent_12m	forecast_price_energy_off_peak	forecast_price
count	1.460600e+04	1.460600e+04	14606.000000	14606.000000	14606.000000	14606.000000	14606.000000	14606.000000	
mean	1.592203e+05	2.809238e+04	16090.269752	1868.614880	1399.762906	0.966726	63.086871	0.137283	
std	5.734653e+05	1.629731e+05	64364.196422	2387.571531	3247.786255	5.108289	66.165783	0.024623	
min	0.000000e+00	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	5.674750e+03	0.000000e+00	0.000000	494.995000	0.000000	0.000000	16.180000	0.116340	
50%	1.411550e+04	0.000000e+00	792.500000	1112.875000	314.000000	0.000000	18.795000	0.143166	
75%	4.076375e+04	0.000000e+00	3383.000000	2401.790000	1745.750000	0.000000	131.030000	0.146348	
max	6.207104e+06	4.154590e+06	771203.000000	82902.830000	175375.000000	30.000000	599.310000	0.273963	
4									>

In [8]: price_df.describe()

Out[8]:

	price_off_peak_var	price_peak_var	price_mid_peak_var	price_off_peak_fix	price_peak_fix	price_mid_peak_fix
count	193002.000000	193002.000000	193002.000000	193002.000000	193002.000000	193002.000000
mean	0.141027	0.054630	0.030496	43.334477	10.622875	6.409984
std	0.025032	0.049924	0.036298	5.410297	12.841895	7.773592
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.125976	0.000000	0.000000	40.728885	0.000000	0.000000
50%	0.146033	0.085483	0.000000	44.266930	0.000000	0.000000
75%	0.151635	0.101673	0.072558	44.444710	24.339581	16.226389
max	0.280700	0.229788	0.114102	59.444710	36.490692	17.458221

Data visualization

If you're working in Python, two of the most popular packages for visualization are matplotlib and seaborn. We highly recommend you use these, or at least be familiar with them because they are ubiquitous!

Below are some functions that you can use to get started with visualizations.

```
In [9]: def plot_stacked_bars(dataframe, title_, size_=(18, 10), rot_=0, legend_="upper right"):
                Plot stacked bars with annotations
                ax = dataframe.plot(
                      kind="bar",
stacked=True,
                      figsize=size_,
                      rot=rot
                      title=title_
                # Annotate bars
                 annotate_stacked_bars(ax, textsize=14)
                plt.legend(["Retention", "Churn"], loc=legend_)
                plt.ylabel("Company base (%)")
                plt.show()
            def annotate_stacked_bars(ax, pad=0.99, colour="white", textsize=13):
                \label{eq:Add_problem} \mbox{Add value annotations to the bars}
                 # Iterate over the plotted rectanges/bars
                 for p in ax.patches:
                      value = str(round(p.get_height(),1))
# If value is 0 do not annotate
if value == '0.0':
                            continue
                      ax.annotate(
                            ((p.\mathsf{get\_x}()+\ p.\mathsf{get\_width}()/2)*\mathsf{pad-0.05},\ (p.\mathsf{get\_y}()+p.\mathsf{get\_height}()/2)*\mathsf{pad}),
                            color=colour,
size=textsize
            def plot_distribution(dataframe, column, ax, bins_=50):
                Plot variable distirbution in a stacked histogram of churned or retained company
                # Create a temporal dataframe with the data to be plot
temp = pd.DataFrame({"Retention": dataframe[dataframe["churn"]==0][column],
    "Churn":dataframe[dataframe["churn"]==1][column]})
# Plot the histogram
                temp[["Retention","Churn"]].plot(kind='hist', bins=bins_, ax=ax, stacked=True)
# X-axis Label
                ax.set_xlabel(column)
# Change the x-axis to plain style
ax.ticklabel_format(style='plain', axis='x')
```

Thhe first function plot_stacked_bars is used to plot a stacked bar chart. An example of how you could use this is shown below:

9.6% of customers have churned

The second function annotate_bars is used by the first function, but the third function plot_distribution helps you to plot the distribution of a numeric column. An example of how it can be used is given below:

Consumption

```
In [19]: consumption = client_df[['id', 'cons_12m', 'cons_gas_12m', 'cons_last_month', 'imp_cons', 'has_gas', 'churn']]
fig, axs = plt.subplots(nrows=4, figsize=(15, 35))
plot_distribution(consumption, 'cons_12m', axs[0])
plot_distribution(consumption, 'cons_gas_12m', axs[1])
plot_distribution(consumption, 'cons_last_month', axs[2])
plot_distribution(consumption, 'imp_cons', axs[3])
plt.show()
```



```
In [22]: consumption = client_df[['id', 'cons_12m', 'cons_gas_12m', 'cons_last_month', 'imp_cons', 'has_gas', 'churn']]
fig, axs = plt.subplots(nrows=4, figsize=(18, 35))
sns.boxplot(consumption.cons_12m,ax= axs[0])
sns.boxplot(consumption.cons_gas_12m, ax=axs[1])
sns.boxplot(consumption.cons_last_month, ax=axs[2])
sns.boxplot(consumption.imp_cons, ax=axs[3])
```

Out[22]: <AxesSubplot:xlabel='imp_cons'>


```
In [23]: consumption = client_df[['id', 'cons_12m', 'cons_gas_12m', 'cons_last_month', 'imp_cons', 'has_gas', 'churn']]
    fig, axs = plt.subplots(nrows=4, figsize=(18, 35))
    sns.boxplot(consumption.cons_12m, ax= axs[0])
    sns.boxplot(consumption.cons_gas_12m, ax=axs[1])
    sns.boxplot(consumption.cons_last_month, ax=axs[2])
    sns.boxplot(consumption.imp_cons, ax=axs[3])

for ax in axs:
    ax.ticklabel_format(style='plain', axis='x')
    # Set x-axis limit
    axs[0].set_xlim(-200000, 2000000)
    axs[1].set_xlim(0, 500000)
    axs[2].set_xlim(-20000, 100000)
    plt.show()
```


Forecast

30 forecast_price_pow_off_peak

10

50

```
In [26]: fig, axs = plt.subplots(nrows=3, figsize=(18,50))
# Plot histogram
plot_distribution(client_df, "margin_gross_pow_ele", axs[0])
plot_distribution(client_df, "margin_net_pow_ele", axs[1])
plot_distribution(client_df, "net_margin", axs[2])
```



```
In [27]: fig, axs = plt.subplots(nrows=3, figsize=(18, 35))
sns.boxplot(client_df["margin_gross_pow_ele"],ax= axs[0])
sns.boxplot(client_df["margin_net_pow_ele"], ax=axs[1])
sns.boxplot(client_df["net_margin"], ax=axs[2])
```

Out[27]: <AxesSubplot:xlabel='net_margin'>

plot the heatmap

```
In [33]: corr = client_df.corr()
plt.figure(figsize=(15,10))
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, annot=True, cmap='Blues',fmt=".2f" )
```

Out[33]: <AxesSubplot:>

																				- 1.0
cons_12m	1.00	0.49	0.97		0.17	-0.04	0.07	-0.01	0.15	-0.03	0.16	-0.01	-0.01	0.15	0.13	-0.00	0.08	-0.05		1.0
cons_gas_12m	0.49	1.00	0.51	0.08	0.08	-0.01	0.04	-0.02	0.07	-0.02	0.08	0.01	0.01	0.24	0.07	-0.01	0.05	-0.04		
cons_last_month	0.97	0.51	1.00	0.18		-0.04	0.06	-0.01	0.14	-0.02		-0.01	-0.01	0.17	0.12	-0.00	0.07	-0.05		0.8
forecast_cons_12m	0.19	0.08	0.18	1.00	0.65	0.06	0.31	-0.14	0.25	-0.02	0.63	-0.02	-0.02	0.06	0.77	0.02	0.39	0.01		
forecast_cons_year	0.17	0.08		0.65	1.00	0.01	0.28	-0.16	0.25	-0.04	0.97	-0.01	-0.01	0.04	0.46	0.05	0.31	-0.00		- 0.6
forecast_discount_energy	-0.04	-0.01	-0.04	0.06	0.01	1.00	-0.01	0.35	0.06	0.05	0.04	0.24	0.24	0.11	0.08	-0.07	-0.01	0.02		
forecast_meter_rent_12m	0.07	0.04	0.06	0.31	0.28	-0.01	1.00	-0.58	0.71	-0.20	0.22			0.02	0.28	0.07	0.62	0.04		- 0.4
forecast_price_energy_off_peak	-0.01	-0.02	-0.01	-0.14	-0.16	0.35	-0.58	1.00	-0.33	0.63	-0.09	0.09	0.09	0.04	-0.14	-0.17	-0.38	-0.01		0.4
forecast_price_energy_peak	0.15	0.07	0.14	0.25	0.25	0.06	0.71	-0.33	1.00	-0.24	0.21	0.17	0.17	0.04	0.23	0.08	0.41	0.03		
forecast_price_pow_off_peak	-0.03	-0.02	-0.02	-0.02	-0.04	0.05	-0.20	0.63	-0.24	1.00	-0.01	-0.06	-0.06	-0.01	-0.07	-0.12	-0.10	0.01	-	0.2
imp_cons	0.16	0.08		0.63	0.97	0.04	0.22	-0.09	0.21	-0.01	1.00	-0.00	-0.00	0.05	0.46	0.02	0.26	-0.00		
margin_gross_pow_ele	-0.01	0.01	-0.01	-0.02	-0.01	0.24		0.09	0.17	-0.06	-0.00	1.00	1.00	-0.01	0.03	-0.06	0.37	0.10	-	- 0.0
margin_net_pow_ele	-0.01	0.01	-0.01	-0.02	-0.01	0.24		0.09	0.17	-0.06	-0.00	1.00	1.00	-0.01	0.03	-0.06	0.37	0.10		
nb_prod_act	0.15	0.24	0.17	0.06	0.04	0.11	0.02	0.04	0.04	-0.01	0.05	-0.01	-0.01	1.00	0.05	0.01	0.01	-0.01		0.2
net_margin	0.13	0.07	0.12	0.77	0.46	0.08	0.28	-0.14	0.23	-0.07	0.46	0.03	0.03	0.05	1.00	-0.00	0.33	0.04		
num_years_antig	-0.00	-0.01	-0.00	0.02	0.05	-0.07	0.07	-0.17	0.08	-0.12	0.02	-0.06	-0.06	0.01	-0.00	1.00	0.06	-0.07		
pow_max	0.08	0.05	0.07	0.39	0.31	-0.01	0.62	-0.38	0.41	-0.10	0.26	0.37	0.37	0.01	0.33	0.06	1.00	0.03	-	0.4
churn	-0.05	-0.04	-0.05	0.01	-0.00	0.02	0.04	-0.01	0.03	0.01	-0.00	0.10	0.10	-0.01	0.04	-0.07	0.03	1.00		
	cons_12m	ons_gas_12m	cons_last_month	forecast_cons_12m	forecast_cons_year	forecast_discount_energy	forecast_meter_rent_12m	forecast_price_energy_off_peak	forecast_price_energy_peak	forecast_price_pow_off_peak	imp_cons	margin_gross_pow_ele	margin_net_pow_ele	nb_prod_act	net_margin	num_years_antig	pow_max	dhurn		

- cons_last_month and cons_12m has high correlation
- forecast_cons_year and forecoast_cons_12m has high correlation
- imp_cons and forecast_cons_year have high correlation
- forecoast_cons_12m and net_margin have high correlation

Findings:

- * Analyzed consumption, forecast, margin and power related columns from client data
- * We have highly positively skews data in almost all areas. This need to be properly handled before doing data modelling
- * Analysis shows that we have around 9.7% of customers have churned

Suggestions:

- * Churning is likely to happen when competitor has given good offers at the same price of here
- * We can ask customer feedback, to check for the suggestions/complaints from their side
- * We can provide extra benefits and offers for people who subscribed with the company for a long/specified period of time. This can help to reduce the churn percentage