Practice Midterm 2	Problem 1	2
Dylan Hu	Problem 2	3
Professor Zhuolun Yang APMA 0360 — Partial Differential Equations	Problem 3	5
	Problem 4	7
April 9, 2024	Problem 5	9
	Problem 6	10
	Problem 7	11

Problem 1. Compute the Fourier sine series of $x^2 + 1$ on $[0, \pi]$.

Solution.

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} (x^{2} + 1) \sin(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} (x^{2} + 1) \frac{\partial}{\partial x} \left(-\frac{\cos(nx)}{n} \right) dx$$

$$= \frac{2}{\pi} \left[(x^{2} + 1) \left(-\frac{\cos(nx)}{n} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{\cos(nx)}{n} \right) \frac{\partial}{\partial x} (x^{2} + 1) dx \right]$$

$$= \frac{2}{\pi} \left[(\pi^{2} + 1) \left(-\frac{\cos(n\pi)}{n} \right) - \left(-\frac{\cos(0)}{n} \right) \right] - \frac{2}{\pi} \int_{0}^{\pi} \left(-\frac{\cos(nx)}{n} \right) 2x dx$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) + \frac{4}{n\pi} \int_{0}^{\pi} x \cos(nx) dx$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) + \frac{4}{n\pi} \left[x \left(\frac{\sin(nx)}{n} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin(nx)}{n} dx \right]$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) - \frac{4}{n^{2}\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) - \frac{4}{n^{2}\pi} \left[-\frac{\cos(nx)}{n} \Big|_{0}^{\pi} \right]$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) - \frac{4}{n^{2}\pi} \left(-\frac{(-1)^{n} - 1}{n} \right)$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) - \frac{4}{n^{2}\pi} \left(-\frac{(-1)^{n} - 1}{n} \right)$$

$$= \frac{2}{n\pi} \left(1 - (\pi^{2} + 1)(-1)^{n} \right) - \frac{4}{n^{2}\pi} \left(-\frac{(-1)^{n} - 1}{n} \right)$$

The Fourier sine series of $x^2 + 1$ on $[0, \pi]$ is then

$$\sum_{n=1}^{\infty} a_n \sin(nx).$$

We can check that the Fourier series approximates $x^2 + 1$ in $[0, \pi]$:

Figure 1: https://www.desmos.com/calculator/a7wlsqmh2f

Problem 2. Compute the Fourier sine series of $\cos(x)$ on $[0, \pi]$. Does it converge to $\cos(x)$ pointwise on $[0, \pi]$? If not, at which points does it not converge?

Solution.

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} \cos(x) \sin(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \cos(x) \frac{\partial}{\partial x} \left(-\frac{\cos(nx)}{n} \right) dx$$

$$= \frac{2}{\pi} \left[\cos(x) \left(-\frac{\cos(nx)}{n} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{\cos(nx)}{n} \right) \frac{\partial}{\partial x} \cos(x) dx \right]$$

$$= \frac{2}{n\pi} (-\cos(\pi) \cos(n\pi) + \cos(0) \cos(0)) - \frac{2}{n\pi} \int_{0}^{\pi} \cos(nx) \sin(x) dx$$

$$= \frac{2}{n\pi} ((-1)^{n} + 1) - \frac{2}{n\pi} \int_{0}^{\pi} \sin(x) \frac{\partial}{\partial x} \left(\frac{\sin(nx)}{n} \right) dx$$

$$= \frac{2}{n\pi} ((-1)^{n} + 1) - \frac{2}{n\pi} \left[\sin(x) \left(\frac{\sin(nx)}{n} \right) \Big|_{0}^{\pi} - \int_{0}^{\pi} \frac{\sin(nx)}{n} \cos(x) dx \right]$$

$$= \frac{2}{n\pi} ((-1)^{n} + 1) + \frac{2}{n^{2}\pi} \int_{0}^{\pi} \cos(x) \sin(nx) dx$$

$$= \frac{2}{n\pi} ((-1)^{n} + 1) + \frac{1}{n^{2}} a_{n}$$

$$n^{2} a_{n} = \frac{2n}{\pi} ((-1)^{n} + 1) + a_{n}$$

$$(n^{2} - 1) a_{n} = \frac{2n}{\pi} ((-1)^{n} + 1)$$

$$a_{n} = \frac{2n((-1)^{n} + 1)}{\pi(n^{2} - 1)}$$

We can handle the special case of n = 1 separately:

$$a_1 = \frac{2}{\pi} \int_0^{\pi} \cos(x) \sin(x) \, \mathrm{d}x$$

We can use the fact that $\sin(x)$ and $\cos(x)$ are orthogonal, so $\langle \cos(x), \sin(x) \rangle = \int \cos(x) \sin(x) dx = 0$. Therefore, $a_1 = 0$.

The Fourier sine series of cos(x) on $[0, \pi]$ is then

$$\sum_{n=2}^{\infty} a_n \sin(nx)$$

where

$$a_n = \frac{2n((-1)^n + 1)}{\pi(n^2 - 1)}.$$

We can determine the pointwise convergence of the Fourier series by only checking the convergence of the series at the endpoints of the interval, as cos(x) is continuous everywhere:

$$\lim_{n \to \infty} \cos(0) = 1 \neq 0 = \lim_{n \to \infty} \sum_{n=2}^{\infty} a_n \sin(nx)$$

$$\lim_{n\to\infty}\cos(\pi) = -1 \neq 0 = \lim_{n\to\infty}\sum_{n=2}^{\infty}a_n\sin(nx)$$

Therefore, the Fourier series does not converge to cos(x) pointwise on $[0, \pi]$, as it does not converge at x = 0 and $x = \pi$.

Problem 3. Solve

$$\begin{cases} u_t = tu_{xx}, & 0 < x < \pi, \quad t > 0, \\ u(0,t) = 0, & t > 0, \\ u(\pi,t) = 0, & t > 0, \\ u(x,0) = x, & 0 < x < \pi \end{cases}$$

using separation of variables.

Solution. Let u(x,t) = X(x)T(t). Then

$$u_t = tu_{xx} \implies X(x)T'(t) = tX''(x)T(t) \implies \frac{X''(x)}{X(x)} = \frac{1}{t}\frac{T'(t)}{T(t)} = \lambda$$

We recall that a solution for the homogeneous Dirichlet boundary conditions is

$$X(x) = c \sin(nx)$$

for a constant c, n = 1, 2, 3, ..., and $\lambda = -n^2$. We can then solve the ODE in T(t):

$$\frac{1}{t}\frac{T'(t)}{T(t)} = -n^2$$

$$\frac{T'(t)}{T(t)} = -n^2t$$

$$\frac{d}{dt}\ln T(t) = -n^2t$$

$$\ln T(t) = -\frac{n^2}{2}t^2 + c$$

$$T(t) = e^{-\frac{n^2}{2}t^2 + c} = Ce^{-\frac{n^2}{2}t^2}$$

The general solution is then

$$u(x,t) = \sum_{n=1}^{\infty} a_n e^{-\frac{n^2}{2}t^2} \sin(nx)$$

We can determine the coefficients a_n by using the initial condition:

$$u(x,0) = \sum_{n=1}^{\infty} a_n \sin(nx) = x$$

Recall from lecture that the Fourier sine series of x on $[0, \pi]$ is

$$x \stackrel{L^2}{=} \sum_{n=1}^{\infty} a_n \sin(nx)$$

where

$$a_n = (-1)^{n+1} \frac{2}{n}.$$

Therefore, the solution to the PDE is

$$u(x,t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{n} e^{-\frac{n^2}{2}t^2} \sin(nx).$$

Problem 4. Solve

$$\begin{cases} u_{tt} = 4u_{xx}, & 0 < x < \pi, \quad t > 0, \\ u(0,t) = 0, & t > 0, \\ u(\pi,t) = 0, & t > 0, \\ u(x,0) = x, & 0 < x < \pi, \\ u_t(x,0) = \sin(4x) + 5\sin(5x) & 0 < x < \pi \end{cases}$$

using separation of variables.

Solution. Let u(x,t) = X(x)T(t). Then

$$u_{tt} = 4u_{xx} \implies X(x)T''(t) = 4X''(x)T(t) \implies \frac{X''(x)}{X(x)} = \frac{1}{4}\frac{T''(t)}{T(t)} = \lambda$$

We recall that a solution for the homogeneous Dirichlet boundary conditions is

$$X(x) = c \sin(nx)$$

for a constant c, n = 1, 2, 3, ..., and $\lambda = -n^2$. We can then solve the ODE in T(t):

$$\frac{1}{4}\frac{T''(t)}{T(t)} = -n^2$$

$$T''(t) = -4n^2T(t)$$

We recall that the general solution to this ODE is

$$T(t) = c_1 \cos(2nt) + c_2 \sin(2nt)$$

The general solution is then

$$u(x,t) = \sum_{n=1}^{\infty} \left(a_n \cos(2nt) + b_n \sin(2nt) \right) \sin(nx)$$

We can determine the coefficients a_n and b_n by using the initial conditions:

$$u(x,0) = \sum_{n=1}^{\infty} a_n \sin(nx) = x$$

Recall from lecture that the Fourier sine series of x on $[0, \pi]$ is

$$x \stackrel{L^2}{=} \sum_{n=1}^{\infty} a_n \sin(nx)$$

where

$$a_n = (-1)^{n+1} \frac{2}{n}$$
.

Turning to the second initial condition:

$$u_t(x,t) = \sum_{n=1}^{\infty} 2n(-a_n \sin(2nt) + b_n \cos(2nt)) \sin(nx)$$

$$u_t(x,0) = \sum_{n=1}^{\infty} 2nb_n \sin(nx) = \sin(4x) + 5\sin(5x)$$

Comparing terms, we see that $b_4 = \frac{1}{8}$, $b_5 = \frac{1}{2}$, and $b_k = 0$ for $k \neq 4, 5$.

Therefore, the solution to the PDE is

$$u(x,t) = \frac{1}{8}\sin(8t)\sin(4x) + \frac{1}{2}\sin(10t)\sin(5x) + \sum_{n=1}^{\infty} (-1)^{n+1}\frac{2}{n}\cos(2nt)\sin(nx).$$

Problem 5. Use the energy method to show that the only solution to the heat-like equation with periodic boundary conditions

$$\begin{cases} u_t = 4u_{xx} - 3u, & 0 < x < \pi, & t > 0, \\ u(0,t) = u(\pi,t), & t > 0, \\ u_x(0,t) = u_x(\pi,t), & t > 0, \\ u(x,0) = 0, & 0 < x < \pi \end{cases}$$

is zero.

Solution. We can multiply the PDE by u and integrate over $[0, \pi]$:

$$\int_0^{\pi} u_t u \, dx = \int_0^{\pi} (4u_{xx} - 3u)u \, dx$$
$$\int_0^{\pi} \frac{\partial}{\partial t} \left(\frac{1}{2}u^2\right) dx = \int_0^{\pi} 4u_{xx}u \, dx - 3 \int_0^{\pi} u^2 \, dx$$
$$\frac{d}{dt} \int_0^{\pi} \frac{1}{2}u^2 \, dx = \int_0^{\pi} 4u_{xx}u \, dx - 3 \int_0^{\pi} u^2 \, dx$$

Let $E(t) = \int_0^{\pi} \frac{1}{2} u^2 dx \ge 0$. Then

$$\frac{dE}{dt} = 4 \int_0^{\pi} u_{xx} u \, dx - 3 \int_0^{\pi} u^2 \, dx$$

$$= 4 u_x u \Big|_0^{\pi} - 4 \int_0^{\pi} u_x^2 \, dx - 3 \int_0^{\pi} u^2 \, dx$$

$$= 4 \left[u_x (\pi, t) u(\pi, t) - u_x (0, t) u(0, t) \right] - 4 \int_0^{\pi} u_x^2 \, dx - 3 \int_0^{\pi} u^2 \, dx$$

$$= 0 - 4 \int_0^{\pi} u_x^2 \, dx - 3 \int_0^{\pi} u^2 \, dx$$

$$< 0$$

Then $0 \le E(t) \le E(0) = 0$, so E(t) = 0. Therefore, u(x, t) = 0.

Problem 6. Consider the system of equations

$$\begin{cases} u_t = 4u_{xx} - 3u_x - 5uv^2, \\ v_t = -3uv^2. \end{cases}$$

Find a system of ODEs for U and V, where U, V are the traveling wave profiles u(x,t) = U(z), v(x,t) = V(z), z = x - ct.

Solution. We have the following system:

$$\begin{cases} u(x,t) = U(x-ct) &= U(z), \\ v(x,t) = V(x-ct) &= V(z). \end{cases} \implies \begin{cases} u_t = \frac{\mathrm{d}U}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}t} &= -cU'(z), \\ v_t = \frac{\mathrm{d}V}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}t} &= -cV'(z), \\ u_x = \frac{\mathrm{d}U}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}x} &= U'(z), \\ u_{xx} = \frac{\mathrm{d}U'}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}x} &= U''(z). \end{cases}$$

Now we can substitute these into the original system:

$$\begin{cases} -cU'(z) = 4U''(z) - 3U'(z) - 5UV^{2}, \\ -cV'(z) = -3UV^{2}. \end{cases}$$

Problem 7. *Use separation of variables to solve*

$$\begin{cases} u_{xx} + u_{yy} = 0, & 0 < x, y < \pi, \\ u(x, 0) = 0, & 0 < x < \pi, \\ u(x, \pi) = 0, & 0 < x < \pi, \\ u_x(0, y) = \sin(2y), & 0 < y < \pi, \\ u_x(\pi, y) = 0, & 0 < y < \pi, \end{cases}$$

Note: $(\cosh(x))' = \sinh(x)$, $(\sinh(x))' = \cosh(x)$. No negative signs for the derivatives of hyperbolic sine/cosine functions.

Solution. Let u(x, y) = X(x)Y(y). Then

$$u_{xx} + u_{yy} = 0 \implies X''Y + XY'' = 0 \implies -\frac{X''}{X} = \frac{Y''}{Y} = \lambda$$

We first solve the ODE in Y(y):

$$\begin{cases} Y''(y) = \lambda Y(y), \\ Y(0) = 0, \\ Y(\pi) = 0. \end{cases}$$

Recall that a solution to the homogeneous Dirichlet boundary conditions is

$$Y(y) = c\sin(ny)$$

for a constant c, n = 1, 2, 3, ..., and $\lambda = -n^2$. We can then solve the ODE in X(x):

$$X''(x) = -\lambda X(x) = n^2 X(x)$$

Recall the general solution

$$X(x) = Ae^{nx} + Be^{-nx}$$

which can be rewritten using the hyperbolic sine and cosine functions as

$$X(x) = \tilde{A}\sinh(nx) + \tilde{B}\cosh(nx).$$

The solution with the homogeneous Dirichlet boundary conditions is then

$$u(x,y) = \sum_{n=1}^{\infty} (a_n \sinh(nx) + b_n \cosh(nx)) \sin(ny).$$

We now determine the coefficients a_n and b_n with the other boundary conditions.

First, we compute the partial derivative of u with respect to x:

$$u_x(x, y) = \sum_{n=1}^{\infty} n(a_n \cosh(nx) + b_n \sinh(nx)) \sin(ny)$$

With the $u_x(0, y) = \sin(2y)$ boundary condition:

$$u_{\chi}(0,y) = \sum_{n=1}^{\infty} na_n \sin(ny) = \sin(2y)$$

Comparing terms, we see that $a_2 = \frac{1}{2}$ and $a_k = 0$ for $k \neq 2$.

With the $u_x(\pi, y) = 0$ boundary condition:

$$u_{\chi}(\pi, y) = \sum_{n=1}^{\infty} n \left(a_n \cosh(n\pi) + b_n \sinh(n\pi) \right) \sin(ny) = 0$$

We can let $c_n = n(a_n \cosh(n\pi) + b_n \sinh(n\pi))$ and rewrite it as

$$\sum_{n=1}^{\infty} c_n \sin(ny) = 0$$

which is a Fourier sine series that implies $c_n = 0$ for all n.

Now, we have

$$c_n = n(a_n \cosh(n\pi) + b_n \sinh(n\pi)) = 0$$

However, we know that n is strictly positive, so we must have

$$a_n \cosh(n\pi) + b_n \sinh(n\pi) = 0$$

From earlier, we recall that $a_2 = \frac{1}{2}$ and $a_k = 0$ for $k \neq 2$. Therefore, $b_k = 0$ for $k \neq 2$, and $b_2 < 0$. We can solve for b_2 :

$$\frac{1}{2}\cosh(2\pi) + b_2\sinh(2\pi) = 0$$

$$b_2 = -\frac{1}{2} \frac{\cosh(2\pi)}{\sinh(2\pi)} = -\frac{1}{2} \coth(2\pi)$$

Therefore, the solution to the PDE is

$$u(x,y) = \frac{1}{2}\sinh(2x) - \frac{1}{2}\frac{\cosh(2\pi)}{\sinh(2\pi)}\cosh(2x)\sin(2y)$$

= $\frac{1}{2}\sinh(2x) - \frac{1}{2}\coth(2\pi)\cosh(2x)\sin(2y)$.