

SoCLab Final Project Report

FPGA-based Instant Image Recognition on Convolutional Neural Network

D06943020 鄧傑方

R06943086 張奕凡

Advisor: Prof. An-Yeu Wu

Date: 2018/1/15

Background

- Neural networks have many breakthroughs in recent years
 - * Computer vision: image recognition, object detection
 - ❖ Speech domain: machine translation, chatbot
 - AlphaGo
- Bottleneck of deep neural network
 - **❖** Massive matrix multiplication
 - Long computation time
 - High energy consumption

Our Target

- Real-time object classification
 - One of the main techniques for self-driving cars

- Handwritten digits recognition
 - **Easier to implement**
 - Can be extended to more complex applications

Software/Hardware Co-design Overview [5]

HW: Neural Network

- Parameterized module
- Convolutional layer

•	Maxpooling	layer

- Dense layer
- * Relu layer

$$f(x) = \max(0, x)$$

- Softmax layer
 - Find biggest value

22	15	1	3	60
42	5	38	39	7
28	9	4	66	79
0	2	25	12	17
9	14	2	51	3

1	1	2	4		I
5	6	7	8	6	
3	2	1	0	3	İ
1	2	3	4		

HW: Single Port Block ROM [6-7]

- Store pre-trained MNIST model weight
 - Quantize to eight bit
 - Multiply 4: maintain accuracy and avoid overflow
 - Save to .coe and load into BRAM.

WRITE_FIRST Mode

HW: HDMI Output [8-10]

- FPGA
 - Insufficient time to make out how HDMI hardware works
- Embedded linux
 - Need HDMI driver
 - Hard to make HDMI hardware controllable
- Applicable tutorials and examples are few
 - Most are implemented in VGA
 - Many examples are no longer maintained
 - Bugs exist or version mismatch
- Replaced with seven-segment display and LED

SW: USB Camera Input [11-12]

- USB camera uses H.264 as video compression standard
- Enable USB camera drivers @ kernel configuration for Linaro
- Video4Linux (V4L) is a collection of device drivers and an API for supporting real-time video capture on Linux systems
 - Suitable for USB webcam
- Open /dev/video0
- VIDIOC QUERYCAP
- VIDIOC_REQBUFS
- V4L2_MEMORY_MMAP
- VIDIOC_STREAMON
- VIDIOC_DQBUF
- VIDIOC_STREAMOFF

SW: Image Preprocessing

- The image for MNIST is 28x28 pixel and value from 0 to 1
- The image from webcam is 120x160 pixel and color
 - Cut picture to 120x120
 - Down-sample to 28x28
 - Color map to 0~1

HW: Dual Port Block RAM (1/3) [13-15]

- The bridge for HW and SW
 - SW write images into BRAM
 - HW read images from BRAM
- Image size: 28x28 pixels, 8 bits for each pixel
- → Need 32 bits (Width) x 196 (Depth) dual port BRAM
- Protocol between HW and SW

BRAM PORTA ▶addra[31:0] **⊳**clka ▶dina[31:0] douta[31:0] ena rsta wea[3:0] BRAM PORTB ▶addrb[31:0] **▶**clkb ▶dinb[31:0] doutb[31:0] **enh** rstb web[3:0]

196

HW PARATE 0

HW: Dual Port Block RAM (2/3) [13-15]

HW: Dual Port Block RAM (3/3) [13-15]

- Test on standalone
 - Can't read the value written into BRAM, always get 0
 - ❖ Use LED[7:0] as debug tool...

Simulation Result

SW Write F

HW Calc

Predict Result3

Next Result 9

- Testbench performs ideally
 - Without pipeline, predict one image in about 8000 cycles

Conclusion

- * Hardware bug is every where
 - * Error messages are difficult to understand, FPGA bug, tool bug, version bug...
 - Experience-based
- ❖ Many thanks to TA奕達 & 俊棋學長

Reference (1/2)

- [1] Han, Song, et al. "EIE: efficient inference engine on compressed deep neural network." *Proceedings of the 43rd International Symposium on Computer Architecture*. IEEE Press, 2016.
- [2] Convolution Neural Network CNN Implementation on Altera FPGA using OpenCL: https://www.youtube.com/watch?v=78Qd5t-Mn0s
- [3] Farabet, Clément, et al. "Hardware accelerated convolutional neural networks for synthetic vision systems," *Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS)*, 2010.
- [4] Zhao, Wenlai, et al, "F-CNN: An FPGA-based framework for training Convolutional Neural Networks," 2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP), 2016.
- [5] Guo, Kaiyuan, *et al*, "Software-Hardware Codesign for Efficient Neural Network Acceleration," *IEEE Micro* 37.2 (2017): 18-25.
- [6] XILINX ROM 使用教程 http://cocdig.com/docs/show-post-43205.html
- [7] 7 Series FPGAs Memory Resources User Guide https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
- [8] Linux with HDMI video output on the ZED, ZC702 and ZC706 boards https://wiki.analog.com/resources/tools-software/linux-drivers/platforms/zyng
- [9] ZYNQ平台的HDMI驱动测试 http://blog.csdn.net/rzjmpb/article/details/50212875

Reference (2/2)

- [10] FMC-HDMI-CAM + PYTHON-1300-C Getting Started Design, Vivado 2014.4 http://picozed.org/content/fmc-hdmi-cam-python-1300-c-getting-started-design-vivado-20144
- [11] Interfacing a USB WebCam and Enable USB Tethering on ZYNQ-7000 AP SoC Running Linux https://medium.com/@chathura.abeyrathne.lk/interfacing-a-usb-webcam-and-enable-usb-tethering-on-zynq-7000-ap-soc-running-linux-1ba6d836749d
- [12] (原创)基于ZedBoard的Webcam设计(一): USB摄像头(V4L2接口)的图片采集 http://www.cnblogs.com/surpassal/archive/2012/12/19/zed_webcam_lab1.html
- [13] 双口BRAM的使用 http://blog.chinaaet.com/kevinc/p/5100051535
- [14] AXI Block RAM (BRAM) Controller v4.0 LogiCORE IP Product Guide https://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v4_0/pg078-axi-bram-ctrl.pdf
- [15] Block Memory Generator v8.3 LogiCORE IP Product Guide https://www.xilinx.com/support/documentation/ip_documentation/blk_mem_gen/v8_3/pg058-blk-mem-gen.pdf

Job Assignment

- ❖ 奕凡
 - Survey HDMI and try to fix bug
 - Image preprocessing to fit MNIST model
 - Slide (30%)
- ❖ 傑方
 - Neural network hardware
 - Train MNIST model and load weight to BRAM
 - Seven-segment display
 - USB camera driver on Linaro and software implement
 - Dual port block ram
 - ❖ Slide (70%)