

Network Security

CS6823 – Lesson 2 Network Reconnaissance

> Phillip Mak pmak@nyu.edu

Exploiting Systems – Why Teach?

- Much controversy over teaching "how to hack"
- Why should we learn this?
- You have to know how networks are attacked in order mount an effective defense.
- "Know your enemy"
- However, with this knowledge comes responsibility.
- Much like if you learn how to fire a weapon you only do it at the pistol range not in the middle of the street.
- Likewise, skills taught here are to only be used in the confines of a controlled computer security research lab.
- If you go out and do something stupid you will end up in jail.

Some Additional Words of Caution

- General Assumption = Bypassing a protection is illegal
- Penetration testing is bypassing protections with explicit written PERMISSION from the owner of the system.
- However, in Germany and France and some other EMEA countries place the development or possession of "attack" tools as illegal.
- Legal advice is critical (this slide is not legal advice)

Lesson Objectives

- Understand the six steps of the Network Reconnaissance
- Enumerate and describe methods, both technical and nontechnical, to collect information from public sources
- Understand and apply whois and DNS Reconnaissance methods, including how DNS works (DNS Zone Transfers and DNS Brute Forcing, and Split DNS)
- Understand the fields in a IP, TCP, UDP, and ICMP header
- Describe the method and possible responses for port scanning with TCP and UDP packets
- Describe all nmap scan types, purposes, and advantages and disadvantages of each type

Types of Attacks and Computer Crimes

- Denial of Service
- Destruction of Information
- Dumpster Diving
- EmanationEavesdropping
- Embezzlement
- Espionage
- Fraud
- Information Warfare
- Illegal Content or

Material

- Malicious Code
- Masquerading
- Social Engineering
- Software Piracy
- IP Address Spoofing
- Terrorism
- Theft of Passwords
- Use of exploit scripts
- Network Intrusions

See notes section for definitions

Why?

Fame

Not so much anymore (more on this with Trends)

Money

The root of all evil...

War

A battlefront just as real as the air, land, and sea

Mar 20, 2013 - The computer networks of three major South Korean banks and three television networks went offline nearly simultaneously at 2pm Seoul time on Wednesday, according to South Korea's National Police Agency. The government confirmed that malware was used to bring the networks down, and it is looking into whether North Korea is behind the attack.

US Federal Computer Crime Laws (consult legal council for official advice)

Note: The following slides on laws is to facilitate discussion only. There is no need to memorize any of these details. Will not be tested.

- 1970 US Fair Credit Reporting Act (FCRA) Regulates the collection, dissemination and use of consumer credit information, amended several times
- 1970 US Racketeer Influenced and Corrupt Organization Act (RICO) extends criminal and civil penalties for acts performed as part of a criminal organization
- 1973 Code of Fair Information Practices. Five underlying principals:
 - 1. No personal data recordkeeping systems whose existence is secret. (transparency)
 - 2. Must be a way for a person to find out what information about them is in a record and how it is used. (individual participation)
 - 3. There must be a way for a person to prevent information obtained for a specific purpose from being used for another purpose without the subjects consent. (purpose limitation)
 - 4. There must be a way for a person to correct a record of information about them. (integrity)
 - 5. Any organization creating, maintaining, using or disseminating records of personal data must assure the reliability of the data and take prudent measures to protect this data. (integrity)

US Federal Laws (cont)

- 1974 US Privacy Act Who is allowed to have access to information that contains identifying info (education, criminal, medical records – but no limited to)
- 1978 Foreign Intelligence Surveillance Act (FISA) Covers electronic surveillance of foreign intelligence organizations.
- 1986 US Computer Fraud and Abuse Act (amended in 1996) covers malicious threats, attacks and unauthorized access to computer systems. Penalties increases with Patriot Act.1987

US Federal Laws (cont)

- 1996 Health Insurance and Portability Accountability
 Act (HIPPA Amended in 2000) Protecting personal
 information in the health insurance industry.
- 1996 Title 1, Economic Espionage Act Make theft of trade secrets a crime
- 1998 US Digital Millennium Copyright Act (DMCA) prohibits the manufacturing, trading or selling of any technology, device or service design to circumvent copy protection mechanisms

US Federal Laws (cont)

- US Uniform Computers Information Transactions Act (UCITA)

 covers software licensing, online access and other transaction between computer systems. Validates "shrink wrapped licensing"
- 2000 US Congress Electronic Signatures in Global and National Commerce Act (ESIGN) – legal foundation for electronic signatures and records
- 2001 USA Provide Appropriate Tools Required to Intercept and Obstruct Terrorism (PATRIOT) Act – Extends the ability of law enforcement to search electronic records.
- 2002 E-Govt Act Federal Information Security Management Act (FISMA) – improve security of computer networks in the federal government.

Cyber Kill Chain

With 'Hands on Keyboard' access, intruders accomplish their original goals

Lockheed Martin

Reconnaissance	Resource Development	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command and Control	Exfiltration	Impact
10 techniques	7 techniques	9 techniques	13 techniques	19 techniques	13 techniques	42 techniques	17 techniques	30 techniques	9 techniques	17 techniques	16 techniques	9 techniques	13 techniques
Active Scanning (3)	Acquire Infrastructure (7)	Drive-by Compromise	Command and Scripting	Account Manipulation (5)	Abuse Elevation Control	Abuse Elevation Control Mechanism (4)	Adversary-in- the-Middle (3)	Account Discovery (4)	Exploitation of Remote Services	Adversary-in- the-Middle (3)	Application Layer	Automated Exfiltration (1)	Account Access Removal
Gather Victim Host Information (4)	Compromise Accounts (3)	Exploit Public- Facing Application	Interpreter (8) Container	BITS Jobs	Mechanism (4) Access Token	Access Token Manipulation (5)	Brute Force (4)	Application Window Discovery	Internal Spearphishing	Archive II Collected	Protocol (4) Communication	Data Transfer Size Limits	Data Destruction
Gather Victim Identity Information (3)	Compromise	External Remote	Administration Command	Boot or Logon II Autostart	Manipulation (5)	BITS Jobs	Credentials II from Password	Browser Bookmark Discovery	Lateral Tool	Data (3)	Through Removable Media	Exfiltration	Data Encrypted for Impact
Gather Victim Network Information (6)	Infrastructure (7) Develop	Services Hardware	Deploy Container	Execution (14) Boot or Logon	Boot or Logon Autostart Execution (14)	Build Image on Host	Stores (5) Exploitation for	Cloud Infrastructure Discovery	Transfer Remote	Audio Capture Automated	Data Encoding (2)	Over Alternative Protocol (3)	Data Manipulation (3)
Gather Victim Org	Capabilities (4) Establish	Additions Phishing (3)	Exploitation for Client Execution	II Initialization Scripts (5)	Boot or Logon	Debugger Evasion Deobfuscate/Decode	Credential Access	Cloud Service Dashboard	Service Session	Collection Browser Session	Data	Exfiltration Over	Defacement (2)
Information (4) Phishing for	Accounts (3)	Replication	Inter-Process Communication (3)	Browser Extensions		Files or Information	Forced Authentication	Cloud Service Discovery	Hijacking ₍₂₎	Hijacking	Dynamic	C2 Channel Exfiltration	II Disk Wipe (2)
Information (3)	Obtain Capabilities (6)	Through	(5)	Compromise Client	Create or Modify System	1, 1, 1, 1	Forge Web Credentials (2)	Cloud Storage Object Discovery	Services (6)	Clipboard Data	Resolution (3)	Over Other Network	Endpoint Denial of Service (4)
Search Closed Sources (2)	Stage Capabilities (6)	Supply Chain Compromise (3)	Scheduled Task/Job (5)	Software Binary Create	Process (4) Domain Policy	Direct Volume Access Domain Policy	Input Capture (4)	Container and Resource	Replication Through Removable Media	Data from Cloud Storage	Encrypted Channel (2)	Medium (1) Exfiltration	Firmware Corruption
Search Open II Technical	Capabilities (6)	Trusted	Serverless Execution	Account (3)	Modification (2)	Modification (2)	Modify	Debugger Evasion	Software	Data from II Configuration	Fallback Channels	Over Physical Medium (1)	Inhibit System
Databases (5)		Relationship	Shared Modules	Create or Modify System	_	Exploitation for Defense	Authentication Process (7)	Domain Trust Discovery	Deployment Tools Taint Shared	Repository (2) Data from	Ingress Tool Transfer	Exfiltration	Recovery Network Denial
Search Open Websites/Domains (3)		Accounts (4)	Software Deployment Tools	Process (4) Event Triggered	33	Evasion	Multi-Factor Authentication	File and Directory Discovery	Content	Information Repositories (3)	Multi-Stage Channels	Over Web Service (2)	of Service (2)
Search Victim-Owned Websites			II System Services (2)	Execution (16)	Exploitation for Privilege	File and Directory Permissions	Interception	Group Policy Discovery	Use Alternate Authentication	Data from Local	Non-Application	Scheduled Transfer	Resource Hijacking
			User Execution (3)	External Remote Services Hijack Execution	Modification (2) Hide Artifacts (10)	Multi-Factor - Authentication Request	Network Service Discovery	Material (4)	System Data from	•	Transfer Data to Cloud Account	Service Stop System	
			Windows Management	Hijack Execution Flow (12)	Flow (12)	Hijack Execution	Generation	Network Share Discovery		Network Shared Drive	Port	Oloda Account	Shutdown/Reboot
			Instrumentation	Implant Internal	Process Injection (12)	Flow (12) Impair Defenses (9)	Network Sniffing OS Credential	Network Sniffing		Data from Removable Media	Protocol Tunneling		
				Image Modify	Scheduled Task/Job (5)	II Indicator Removal (9)	Dumping (8)	Password Policy Discovery		II Data Staged (2)	Proxy (4)		
				Authentication Process (7)	Valid Accounts (4)	Indirect Command Execution	Steal Application Access Token	Peripheral Device		Email Collection (3)	Remote Access Software		
				Office II Application	(4)	II Masquerading (7)	Steal or Forge Authentication Certificates	Permission Groups		II Input Capture (4)	Traffic Signaling ₍₂₎		
				Startup (6) II Pre-OS Boot (5)		Modify Authentication Process (7)	Steal or Forge	Discovery (3) Process Discovery		Screen Capture	Web Service (3)		
				Scheduled		Modify Cloud Compute	Kerberos Tickets (4)	Query Registry		Video Capture			

RECONNAISSANCE - INFORMATION GATHERING

Harvesting email addresses, conference information, etc.

Reconnaissance

- "Casing the joint"
- Gather as much information as possible about the target from open sources
- Bank robbers will typically perform reconnaissance on the branch. Will observe times when the branch is busy with customers, guard shift changes, location of cameras, etc.
- This is the same first step performed in computer network attacks.

What are we trying to get?

- IP addresses
- Network Topology
- Domain Names
- User Account Names
- Operating systems and software being used
- Security Policies: password complexity requirements, change policy
- Physical security systems
- Home addresses of employees
- Frequent hangouts of employees
- And more

1- Collect Public Information

Collecting Information from Public Sources

- Public Information Sources
 Public Databases
- Dumpster Diving Shred your documents
- Social Engineering
 Educate your users about giving out sensitive or confidential information over the phone. Caller-id DOES NOT provide authentication
- Domain name system (DNS) or searching services (i.e., traceroute.com)
- Physical Break Ins
 You can have the best, multimillion dollar security system on
 the market but it will be useless if you don't lock the front door.

Changing Caller-ID is Easy

- There are legitimate reasons to do this.
 For example, I work from home often. When I call business associates from home I would like my "work" number displayed.
- Has been around for a long time but used to require dedicated PRI lines and expensive equipment
- Now can setup Asterisk server (free and open source) and signup for a very low cost VoIP trunking provider. Just need a spare PC and broadband connection.

about 1 hour ago from twitterfeed

CS 6823 - NETWORK SECURITY

Or even easier:

Useful Google Searches

- "site:" directive searches only within a given domain site:poly.edu
- "intitle:" shows pages whose title matches the search criteria.
- "inurl:" shows pages whose URL matches the search string
- "related:" shows similar pages.

Google search of: filetype:sql "insert into jos users values" md5

Google Recon Automated

- Performing reconnaissance using google can be easily automated with known searches
- Google Hacking Database (https://www.exploit-db.com/google-hacking-database)

Edgar Database – <u>www.sec.gov</u>

If the company is public traded the Edgar database can be a valuable resource

Maltego

 Information gathering tool which visually displays the relationship between information.

Domain Names

Whois Information

DNS Names

Netblocks

IP Addresses

Also allow for the enumeration of people

Email addresses

Web sites associated with a person

Phone numbers associated with a person's name

Social groups that are associated with a person

Companies and organizations associated with a person

Maltego

Individual – Social Network Profile

- Metadata Leakage
- Tone
- Frequency
- Location Awareness
- Social Media Presense

- Cree.py is an open source intelligence gathering application.
- Can gather from Twitter.

Cree.py can gather any geolocation data from flickr, twitpic.com, yfrog.com, img.ly, plixi.com, twitrpix.com, foleext.com, shozu.com, pickhur.com, moby.to, twitsnaps.com and twitgoo.com.

2 - Determine the Network Range (Scanning and Enumeration)

Whois Database

- •Many website and domain registrars offer this service through the web.
- •Can also use the built in "whois" command on many Unix systems.
- •First looks up the target in InterNIC to determine the registrar: http://www.internic.net/whois.html
- •Then go to the registrar for detailed records:
 - Ex. http://www.networksolutions.com/whois/index.jsp

DNS is a Treasure Trove of Info

- When you register a domain name with an authorized registrar you must provide a valid name, address and phone number of the person responsible for the domain.
- This information can be used against you in an attack

Also Get Registered IP Blocks

- Based on geographical location:
 - ARIN (American Registry for Internet Numbers)
 - •www.arin.net (https://ws.arin.net/whois/)
 - RIPE (Reseaux IP Europeans Network Coordination Centre)
 - www.ripe.net
 - APNIC (Asia Pacific Network Information Center)
 - www.apnic.net
 - LACNIC (Latin American and Caribbean NIC)
 - www.lacnic.net
 - AFRINIC (Africa's NIC)
 - •www.afrinic.net
 - DoDNIC (Department of Defense NIC)
 - www.nic.mil
 not open to the outside
 - Other useful sites:
 - www.allwhois.comwww.uwhois.com

Poly.edu WHOIS Reconnaissance

This Registry database contains ONLY .EDU domains. The data in the EDUCAUSE Whois database is provided by EDUCAUSE for information purposes in order to assist in the process of obtaining information about or related to .edu domain registration records.

The EDUCAUSE Whois database is authoritative for the .EDU domain.

A Web interface for the .EDU EDUCAUSE Whois Server is available at: http://whois.educause.net

By submitting a Whois query, you agree that this information will not be used to allow, enable, or otherwise support the transmission of unsolicited commercial advertising or solicitations via e-mail. The use of electronic processes to harvest information from this server is generally prohibited except as reasonably necessary to register or modify .edu domain names.

You may use "%" as a wildcard in your search. For further information regarding the use of this WHOIS server, please type: help

Domain Name: POLY.EDU

Registrant: Polytechnic University 6 Metrotech Center Brooklyn, NY 11201 UNITED STATES

Administrative Contact:
Information Systems Department Polytechnic University
Polytechnic University
6 Metrotech Center
Brooklyn, NY 11201
UNITED STATES
(718) 260-3573
network@poly.edu

Technical Contact: Information Systems Department Polytechnic University Polytechnic University 6 Metrotech Center Brooklyn, NY 11201 UNITED STATES (718) 260-3573 network@poly.edu

Name Servers: GATEKEEPER.POLY.EDU 128.238.2.38 PHOTON.POLY.EDU 128.238.32.22

Domain record activated: 24-Jan-1995 Domain record last updated: 05-Jun-2006 Domain expires: 31-Jul-2010

DNS Record Types

A	ADDRESS RECORD. DESCRIBES THE IP ADDRESS THAT A GIVEN NODE HAS
MX	MAIL EXCHANGE. IP ADDRESS OF THE SERVER WHICH HANDLES MAIL FOR THE DOMAIN
NS	NAME SERVER. DOMAIN NAME SERVERS WHICH SERVE THIS DOMAIN NAME
CNAME	CANONICAL NAME. ALIASES FOR HOST NAMES
SOA	FIRST LINE OF DNS FILE. INDICATES THAT THIS SERVER IS THE BEST SOURCE OF INFORMATION FOR THIS DOMAIN
SRV	SERVICE RECORD. INFORMATION ABOUT AVAILABLE SERVICE IN THE DOMAIN. SIP AND XMPP USE THIS.
RP	RESPONSIBLE PERSON. ASSIGN AN EMAIL ADDRESS TO A SPECIFIC HOST
PTR	POINTER RECORD. ALLOWS FOR REVERSE DNS LOOKUP. TYPICALLY REQUIRED FOR MX HOSTS
TXT	ORIGINALLY FOR HUMAN READABLE INFORMATION. BUT NOW USED FOR THINGS SUCH AS DOMAIN- KEYS
HINFO	HOST INFO. SUPPLIES OS AND OTHER INFO ABOUT A HOST. GENERALLY NOT A GOOD IDEA.

32

Poly.edu DNS Reconnaissance

DNS Records

base	record	ecord name		ip reverse		route	as		
poly.edu a 20 hours old				128.238.1.62 poly-ad-vm-01.poly.edu		128.238.0.0/16 Proxy-registered route object	AS23329 OA631 Open Access Inc. (website: www.openaccessinc.com)		
				128.238.24.30 United States	(none)				
				128.238.24.40 United States					
				128.238.111.50 United States poly-ad-dr-vm-01.poly.edu					
	ns <u>qatekeeper.poly.edu</u> 268 days old			128.238.2.38 United States					
		photon.poly.edu 41 days old		128.238.32.22 United States					
	mx	20	mail.poly.edu 268 days old	128.238.2.92 United States	duke.poly.edu				
		2	poly.edu.s8a1.psmtp.com 5 days old	64.18.7.10 United States	s8a1.psmtp.com	64.18.7.0/24 LLNW cust	AS26910 Postini Network		
		4	poly.edu.s8a2.psmtp.com 268 days old	64.18.7.11 United States	s8a2.psmtp.com				
		6	poly.edu.s8b1.psmtp.com 268 days old	64.18.7.13 United States	s8b1.psmtp.com				
		8	poly.edu.s8b2.psmtp.com 268 days old	64.18.7.14 United States	s8b2.psmtp.com				
		10	duke.poly.edu 20 hours old	128.238.2.92 United States		128.238.0.0/16 Proxy-registered route object	AS23329 OA631 Open Access Inc. (website: www.openaccessinc.com)		
edu 2 hours old	ns	_	tid-servers.net hours old	192.5.6.30 United States		192.5.6.0/24 VeriSign Route	AS36621 VERISIGN-AS VeriSign, Inc		
			ours old	192.26.92.30 United States		192.26.92.0/24 VeriSign Route	AS36619 VERISIGN-AS VeriSign, Inc		
		_	tid-servers.net ours old	192.31.80.30 United States		192.31.80.0/24 VeriSign Route	AS36617 VERISIGN-AS VeriSign, Inc		
			tid-servers.net our old	192.12.94.30 United States		192.12.94.0/24 VeriSign Route	AS36629 VERISIGN-AS VeriSign, Inc		
		8 h	ours old	192.35.51.30 United States		192.35.51.0/24 VeriSign Route	AS36620 VERISIGN-AS VeriSign, Inc		
		1 da	tid-servers.net ay old	192.42.93.30 United States		192.42.93.0/24 VeriSign Route	AS36624 VERISIGN-AS VeriSign, Inc		
		23 hours old		192.41.162.30 United States		192.41.162.0/24 VeriSign Route	AS36628 VERISIGN-AS VeriSign, Inc		

net qtld-servers.net psmtp.com com edu.s8a2.psmtp.com edu.s8a1.psmtp.com edu.s8b1.psmtp.com edu.s8b2.psmtp.com

Lets dig into mail.poly.edu:

DNS Records

base	record	record name		ip reverse		route	as			
mail.poly.edu	a			128.238.2.92 United States	duke.poly.edu	128.238.0.0/16 Proxy-registered route object	AS23329 OA631 Open Access Inc. (website: www.openaccessinc.com)			
	mx	20	mail.poly.edu	128.238.2.92 United States	duke.poly.edu					
		2	mail.poly.edu.s8a1.psmtp.com 320 days old	64.18.7.10 United States	s8a1.psmtp.com	64.18.7.0/24 LLNW cust	AS26910 Postini Network			
		4	mail.poly.edu.s8a2.psmtp.com 320 days old	64.18.7.11 United States	s8a2.psmtp.com					
		6	mail.poly.edu.s8b1.psmtp.com 320 days old	64.18.7.13 United States	s8b1.psmtp.com					
		8	mail.poly.edu.s8b2.psmtp.com 320 days old	64.18.7.14 Sab2.psmtp.com						
	10 duke.poly.edu 20 hours old			128.238.2.92 United States 128.238.1.62		28.238.0.0/16 AS23329 roxy-registered route object OA631 Open Access Inc. (website				
poly.edu 20 hours old					(none)					
				128.238.1.63 United States						
				128.238.1.68 United States						
				128.238.24.30 United States						
				128.238.24.40 United States	!					
				128.238.111.5 United States	0					
	ns <u>qatekeeper.poly.edu</u> 268 days old			128.238.2.38 United States						
			ton.poly.edu days old	128.238.32.22 United States						
	mx	20	mail.poly.edu	128.238.2.92 United States	duke.poly.edu					
		2	poly.edu.s8a1.psmtp.com 5 days old	64.18.7.10 United States	s8a1.psmtp.com	64.18.7.0/24 LLNW cust	AS26910 Postini Network			
		4	poly.edu.s8a2.psmtp.com 268 days old	64.18.7.11 United States	s8a2.psmtp.com					
		6	poly.edu.s8b1.psmtp.com 268 days old	64.18.7.13 United States	s8b1.psmtp.com					
		8	poly.edu.s8b2.psmtp.com 268 days old	64.18.7.14 United States	s8b2.psmtp.com					
		10	duke.poly.edu 20 hours old	128.238.2.92 United States		128.238.0.0/16 Proxy-registered route object	AS23329 OA631 Open Access Inc. (website: www.openaccessinc.com)			

edu psmtp.com com edu.s8a2.psmtp.com edu.s8a1.psmtp.com edu.s8b1.psmtp.com edu.s8b2.psmtp.com

Map of mail.poly.edu

See: http://www.robtex.com

Gather Other Network Information

36

BGP "Looking Glass Servers"

This route server maintains peering sessions with several border routers within the tw telecom nation wide US network.

```
168.215.52.101 Atlanta, GA

168.215.52.9 Chicago, IL

168.215.52.192 Denver, CO

168.215.52.175 Los Angeles, CA

168.215.52.70 New York, NY

168.215.52.197 Oakland, CA

168.215.52.203 Seattle, WA
```

BGP "Looking Glass Servers" (cont)

```
route-server>sh ip route 128.238.0.0
Routing entry for 128.238.0.0/16
  Known via "bgp 4323", distance 200, metric 0
  Tag 7018, type internal
  Last update from 168.215.52.202 5d10h ago
  Routing Descriptor Blocks:
  * 168.215.52.202, from 168.215.52.203, 5d10h ago
      Route metric is 0, traffic share count is 1
     AS Hops 2
route-server>tracert 128.238.2.92
% Invalid input detected at '^' marker.
route-server>trace 128.238.2.92
Type escape sequence to abort.
Tracing the route to duke.poly.edu (128.238.2.92)
  1 ge-0-3-0-514.dnvr.twtelecom.net (66.162.47.57) 0 msec 0 msec 0 msec
  2 peer-01-so-1-0-0.dlfw.twtelecom.net (66.192.246.53) 16 msec 16 msec 16 msec
  3 cr2.dlstx.ip.att.net (12.122.138.18) [AS 7018] 52 msec 56 msec 52 msec
  4 cr1.attga.ip.att.net (12.122.28.173) [AS 7018] 56 msec 52 msec 56 msec
  5 cr2.wswdc.ip.att.net (12.122.1.174) [AS 7018] 56 msec 56 msec 56 msec
  6 cr2.n54ny.ip.att.net (12.122.3.37) [AS 7018] 56 msec 56 msec 56 msec
  7 gar2.nylny.ip.att.net (12.122.130.49) [AS 7018] 52 msec 56 msec 52 msec
  8 12.116.102.22 [AS 7018] 60 msec 56 msec 56 msec
  9 42ce7023.unknown.oainc.net (66.206.112.35) [AS 23329] 156 msec 56 msec 56 msec
 10 65.77.177.90 [AS 23329] 56 msec 56 msec 60 msec
 11 duke.poly.edu (128.238.2.92) [AS 23329] 60 msec 60 msec
 12 duke.poly.edu (128.238.2.92) [AS 23329] 60 msec 60 msec
```


Shodan

SHODAN ios 18	5.2		Search									
			*									
Services		83.69.76.12										
SNMP	918	CJSC Caucasus - Transtelekom	Cisco IOS Software, C2900 Software (C2900-UNIVERSALK9_NPE-M), Version 15.2(3)T, RELEASE SOFTWARE (fc1)									
	6	Added on 26.11.2012	Technical Support: http://www.cisco.com/techsupport									
SIP	U	_	Copyright (c) 1986-2012 by Cisco Systems, Inc.									
			Compiled Fri 23-Mar-12 16:57 by prod_rel_team									
Top Countries												
United States	198	200.179.206.65										
Italy	65	Embratel	Cisco IOS Software, C2900 Software (C2900-UNIVERSALK9-M), Version 15.2(3)T1, RELEASE SOFTWARE (fc1)									
Netherlands	61	Added on 26.11.2012	Technical Support: http://www.cisco.com/techsupport									
Russian Federation	60		Copyright (c) 1986-2012 by Cisco Systems, Inc.									
France	59		Compiled Wed 13-Jun-12 14:24 by prod_rel_team									
Top Cities		209.0.51.0										
Niteri	26	Level 3 Communications Added on 26.11.2012	Cisco IOS Software, C2900 Software (C2900-UNIVERSALK9-M), Version 15.2(4)M1, RELEASE SOFTWARE (fc1)									
Brest	24		Technical Support: http://www.cisco.com/techsupport									
Kenmare	18		Copyright (c) 1986-2012 by Cisco Systems, Inc.									
Moscow	11		Compiled Thu 26-Jul-12 20:54 by prod_rel_team									
	10											
Bangkok	10	150.101.171.249 Internode Professional Access	Cinca IOC Caferrage C1000 Caferrage (C1000 INIVERCAL VO M) Various 15 2(4) M1 DELEACE CONTINUADE (5-1)									
		Added on 26.11.2012	Cisco IOS Software, C1900 Software (C1900-UNIVERSALK9-M), Version 15.2(4)M1, RELEASE SOFTWARE (fc1)									
Top Organizations		Perth	Technical Support: http://www.cisco.com/techsupport									
Global Village Telecom	28		Copyright (c) 1986-2012 by Cisco Systems, Inc.									
SRT Telecomm	28		Compiled Thu 26-Jul-12 19:34 by prod_rel_team									
Level 3 Communications	21	04 400 00 0										
TELECOM Bretagne	17	81.163.32.8 Subnet LLC	C' - TOC C C - TOC VE C C - (DDC I DIDY TOCD ADVIDED VICE AND V - 15 4/4/2 DDI D C C									
IX Networks BV io	16	Added on 26.11.2012	Cisco IOS Software, IOS-XE Software (PPC_LINUX_IOSD-ADVIPSERVICES-M), Version 15.2(1)S, RELEASE SOFTWARE (fc1)									
		_	Technical Support: http://www.cisco.com/techsupport									
			Copyright (c) 1986-2011 by Cisco Systems, Inc.									

3- Host Discovery

Ping Sweep – IP Scanner

DNS Zone Transfer

- On Linux systems dig can be used to perform a zone transfer from a DNS server.
- Very useful in recon and identifying targets.
- •dig @[DNS_server_IP] {target_domain] -t AXFR

```
•kobrien@ubuntu-vm:~$ dig @10.1.1.3 example.org-t AXFR
•; <<>> DiG 9.6.1-P2 <<>> @10.1.1.3 example.org -t AXFR
•; (1 server found)
•;; global options: +cmd
•example.org.
                         38400
                                              SOA
                                                        ns.example.org.example.org.admin.example.org.example.org.
                                   ΙN
2008090354 10800 3600 604800 86400
•example.org.
                         38400
                                             NS
                                                        ns.example.org.
                                   ΙN
•smtp.example.org.
                         38400
                                              CNAME
                                                        winserver.example.org.
                                   ΙN
•switch.example.org.
                         38400
                                   ΙN
                                                        10.1.1.2
•linuxserv.example.org.
                         38400
                                   ΙN
                                                        10.1.1.67
•vmware.example.org.
                                                        10.1.1.25
                         38400
                                   IN
                                                        10.1.1.26
•winserver.example.org. 38400
                                   ΙN
•winserver-ca.example.org. 38400 INCNAME
                                             winserver.example.org.
•wireless.example.org. 38400
                                   ΙN
                                                        10.1.1.14
•example.org.
                         38400
                                              SOA
                                                        ns.example.org.example.org.admin.example.org.example.org.
                                   IN
2008090354 10800 3600 604800 86400
•;; Query time: 18 msec
•;; SERVER: 10.1.1.3#53(10.1.1.3)
•;; WHEN: Tue Jan 26 10:55:54 2010
•;; XFR size: 33 records (messages 1, bytes 840)
```

Brute Force Forward DNS

bt-netbook:/pentest/enumeration/dns/dnsmap# ./dnsmap example.org
dnsmap 0.22.2 - DNS Network Mapper by pagvac (gnucitizen.org)

[+] searching (sub)domains for obrienhome.org using built-in wordlist

firewall.example.org
IP address #1: 10.10.10.1

ftp.example.org
IP address #1: 10.10.10.3

sms.example.org
IP address #1: 10.10.10.10

vpn.example.org
IP address #1: 10.10.10.10

Split DNS

External DNS has info on DMZ servers.

Internal DNS has info on internal servers.

Prevents leakage of internal DNS information

4 – Service Discovery

War Dialing

War dialers dial a sequence of phone numbers searching for modems or open PBXs
Modems are still prevalent for remote management of network equipment and infrastructure
Often they are left unprotected

TCP Control Bits

SYN – Synchronize

ACK – Acknowledgement

FIN – End a connection

RESET – Tear down a connection

URG – Urgent data is included

PUSH – Data should be pushed through the TCP stack

Port Scanning

Port scanners send TCP and UDP packets to various ports to determine if a process is active

TCP 80 (web server)

TCP 23 (telnet server)

UDP 53 (DNS server)

TCP scanning based on 3 way handshake

HPING

Runs on all Unix-like systems. Also windows version. Completely scriptable using TCL. Can be used to write scripts implementing low level packet manipulation very quickly.

Example:

```
hping3 -I en1 -S 10.1.1.1 -p 443 (sends packet to port 443 with SYN flag)
```

Hping3 -1 en1 -S 10.1.1.1 -p ++79 (sends packet with SYN flag. Increments by 1 starting at 79.)

HPING Switches (selected – see - - help)

$$-w$$
 $--win$

HPING

Can also craft the payload of packets. Useful for testing IPS/IDS systems.

```
# cat /root/signature.sig ""BUFFER OVERFLOW"

# hping -2 -p 7 10.1.1.1 -d 50 -E /root/signature.sig

HPING 192.168.10.33 (eth0 192.168.10.33): udp mode set, 28 headers + 50 data bytes len=78 ip=192.168.10.33 seq=0 ttl=128 id=24842 rtt=4.9 ms len=78 ip=192.168.10.33 seq=1 ttl=128 id=24844 rtt=1.6 ms len=78 ip=192.168.10.33 seq=2 ttl=128 id=24846 rtt=1.0 ms len=78 ip=192.168.10.33 hping statistic ---
3 packets tramitted, 3 packets received, 0% packet loss round-trip min/avg/max = 1.0/2.5/4.9 ms
```

NMAP

Very popular port scanning tool

Written by "Fodor. http://insecure.org/nmap

Runs on Unix or Windows

GUI available (nmapfe)

Trinity Nmap Hack - Matrix Reloaded Port State Service 22/tcp open ssh No exact OS matches for host Nnap run completed -- 1 IP address (1 host up) scanneds sshnuke 10.2.2.2 -rootpu-"210H0101" Connecting to 10.2.2.2:ssh ... successful. Attempting to exploit SSHv1 CRC32 ... successful. Reseting root password to "210H0101". System open: Access Level (9) state of the state of the

NMAP – Scan Types

TCP Connect scan - This type of scan is the most reliable, although it is also the most detectable. It is easily logged and detected because a full connection is established. Open ports reply with a SYN/ACK, whereas closed ports respond with an RST/ACK. Uses standard connect() system call.

TCP SYN scan - This type of scan is known as half open because a full TCP three-way connection is not established. This type of scan was originally developed to be stealthy and evade IDS systems although most now detect it. Open ports reply with a SYN/ACK, whereas closed ports respond with a RST/ACK.

TCP FIN scan - This type of scan sends a FIN packet to the target port. Closed ports should send back an RST. This technique is usually effective only on UNIX devices.

TCP NULL scan - a NULL scan sends a packet with no flags set. If the OS has implemented TCP per RFC 793, closed ports will return an RST.

TCP ACK scan - This scan attempts to determine firewall access control list (ACL) rule sets or identify if stateless inspection is being used. If a RST packet returned, it means the port is ether open or closed. If an ICMP destination unreachable, communication administrative prohibited message is returned, the port is considered to be filtered.

NMAP Scan Types (cont)

TCP XMAS - port scan that has toggled on the FIN, URG, and PSH flags. Closed ports should return an RST.

FTP Proxy "bounce attack" scans – bounce an attack off a poorly configured FTP server

Version Scanning – tries to determine the version number of the program listening on the port

Fragmented Scans – can get around some router ACL packet filters that do not examine the port number in fragmented packets.

TCP Sequence Prediction – useful in spoofing attacks

TCP SYN Scan

Client SYN → Server

Client ← SYN/ACK Server

Client RST → Server

- The server is ready but the client never completes the handshake.
- Somewhat stealthy since session handshake is not completed which keeps it out of some log files

Possible responses to a TCP SYN packet

- The server is ready but the client never completes the handshake.
- Somewhat stealthy since session handshake is not completed which keeps it out of some log files
- Filtered (ICMP unreachable)

Source port: 7609 Destination port: 7609

Destination unreachable (Port unreachable)

UDP Scan

Offsets	Octet	0								1								2								3							
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0		Source port													Destination port																	
4	32		Length													Checksum																	

- Much simpler as compared to TCP
- Connectionless
- Less reliable a response is not assured
- Much slower scanning
 - Some OS limit ICMP unreachable responses
 - Linux limits to 1 per second

Possible responses to a UDP packet

- Open
 - Some ICMP Response

- Closed
 - •ICMP Unreachable

- Open|Filtered (no response)
 - Not certain
 - •Packet got dropped?

- Service not responding? (improperly formatted packet)
- Firewall is blocking

NMAP – ACK Scanning

Some firewalls may allow for outgoing SYN connections and their incoming responses with the ACK bit set.

Stateful firewalls maintain the state of the SYN and ACK packets and will only allow an ACK inbound if there is an outstanding SYN packet.

Can be useful for network mapping

NMAP – FTP Bounce Scan

RFC 959 defines a "feature" in FTP which allows for FTP proxy connections.

Essentially I can connect to a FTP and request the server to send a file to a client.

This should be disabled on properly configured FTP servers.

Can be used on misconfigured FTP server to bounce a scan off the server thereby hiding the attackers location.

Use "port" command to try and list directory. If target is listening on the port it will respond with a 150 or 226 response

If the port is not listening or closed it will respond with "425 Can't build data connection: Connection refused."

Useful to get around firewalls if firewall allows connection to FTP server.

FTP Bounce Scan

Interlude: IP datagram format

nmap IDLE Scan (Hide the Scan Source)

Normal port scans send TCP SYN packets to the target and wait for a SYN-ACK

Problem with this is that the attacker is easily identified

If the attacker Spoofs their source IP address then the attacker doesn't't receive the results of the scan.

Use the IP Identification Field of the IP Header.

Normally used to group fragments of IP packets together

Most operating systems increment the IP Ident field by one for each packet sent.

IDLE Scan (cont)

Attacker first picks the machine which will be "framed" for the attack.

Attacker sends a SYN packet to the "framed" machine

Attacker gets back a SYN-ACK which will include the IP header with IP ID value of X which is remembered by the attacker.

Next step is the attacker selects the port to be scanned and sends a spoofed SYN packet to the target with the "framed" machine's ip.

If listening the target will send a SYN-ACK back to the framed machine

When the "framed" machine receives a SYN-ACK from the target which was never requested it will send a RESET. The IP ID field on the "framed" machine will be X+1

Attacker now "measures" the IP ID field on the "framed" machine. Sends SYN. If gets IP ID value of X+2 then port is open. If IP ID is X+1 then it is closed

IDLE Scan (cont)

Useful NMAP Command with OS Fingerprinting

```
nmap -sV -O -sC --top-ports 100 -T4 -oA [file] [address] nmap -sV -O -sC --top-ports 100 -T4 -oA out.txt 10.1.1.0/24
```

```
-sV -Probe open ports to determine service-/version info
-O -Enable OS detection
-sC -Enable Script scanning
--top-ports -Only scan "popular ports"
-T4 -Sets template for fast scans (0 slow – 5 fast)
-OA -Output file
```

CS 6823 - Network Security

Firewalk

Firewalk is a network scanning tool which attempts to determine which layer 3/4 ACLs are present on filtering routers and firewalls.

Sends out TCP and UDP packets with a TTL on greater than the targeted firewall. If the firewall allows the traffic it will forward to the internal host or next hop where it will expire and return an ICMP_TIME_EXCEEDED message. If the firewalls drops the traffic no response will be received.

```
firewalk -p [protocol] -d [destination port] -s [source port] [internal IP] [gateway IP]
root@fc4>firewalk -n -p tcp -s 80 -d 80 192.168.0.1 192.168.1.1
Firewalk 5.0 [gateway ACL scanner]
Firewalk state initialization completed successfully.
TCP-based scan.
Ramping phase source port: 80, destination port: 80
Hotfoot through 192.168.0.1 using 192.168.1.1 as a metric.
Ramping Phase:
expired [192.168.0.1]
Binding host reached.
Scan bound at 2 hops.
Scanning Phase:
A! open (port not listen) [192.168.1.1]
A! open (port listen) [192.168.1.1]
```

CS 6823 - Network Security 67

ZAP – Zed Attack Proxy

68

Summary

At this point we have performed complete reconnaisance on the target network and should have good understand of what is running in the network and how it is designed. Next step is scanning for vulnerabilities which we will cover in the next lecture

CS 6823 - Network Security 69