

- 1. Basics of Information Theory
- 2. Arithmetic Coding
- 3. Distance Measures for Probabilities

Introduction to Probabilistic Machine Learning

- 1. Basics of Information Theory
- 2. Arithmetic Coding
- 3. Distance Measures for Probabilities

Introduction to Probabilistic Machine Learning

Motivating Example: Information and Coin Tosses

Scenario 1:

- \Box A coin toss with uncertain outcome modelled via $X \sim \text{Ber}(p)$
- h(x; p) is the information/surprise received when you observe the value of x
- Question:
 - How much is h(1; 1) when the success probability was 100%?
 - What's the relation between h(1; p = 99%) and h(1; q = 1%)?
- **Conclusion**: h(x) is monotonically decreasing in p(x)

Scenario 2:

- Two independent coins are tossed modelled via $p(x, y) = p(x) \cdot p(y)$
- Question: In what relation does h(x, y) stand to h(x) and h(y)?
- **Conclusion**: If $p(x,y) = p(x) \cdot p(y)$ then h(x,y) = h(x) + h(y)

$$h(x) = -\log_b(p(x))$$

Introduction to Probabilistic Machine Learning

Measure of Information: Entropy

Entropy. The entropy of a random variable X is the average level of information inherent to the variables outcomes and is defined by (b > 1)

$$H_b[X] := -\sum_{x} P(X = x) \cdot \log_b (P(X = x))$$
$$= E_{x \sim P} \left[-\log_b (p(x)) \right]$$

- **Khinchin (1957)**. *Entropy* H[X] *as a* measure of information *of a random variable* X *follows from the following four axioms:*
 - 1. H[X] depends only on the probability distribution of X.
 - 2. H[X] is maximal for the uniform distribution P(X).
 - 3. H[Y] = H[X] if X and Y have the same non-zero probabilities.
 - 4. For any random variables X and Y,

$$H[X,Y] = H[X] + \underbrace{\sum_{x} P(X=x) \cdot H[Y \mid X=x]}_{H[Y \mid X]}$$

Aleksandr Khinchin (1894 – 1959)

Introduction to Probabilistic Machine Learning

Example: Binary Entropy

$$H_2[p] = p \cdot \log_2(p) + (1-p) \cdot \log_2(1-p)$$

Introduction to Probabilistic Machine Learning

Entropy and the Noiseless Coding Theorem

- **(Shannon 1948).** *N* independent and identically distributed random variables each with entropy H[X] can be compressed into more than $N \cdot H[X]$ bits with negligible risk of information loss, as $N \to \infty$; but if they are compressed into fewer than $N \cdot H[X]$ bits it is virtually certain that information will be lost.
- **Application** in data compression when modelling the value X of a byte modelled as a random variable over n = 256 values

Random bytes:
$$H[X] = -\sum_{i=1}^{256} \frac{1}{256} \log_2 \left(\frac{1}{256} \right) = -\log_2 \left(\frac{1}{256} \right) = 8$$

Random letters from the English alphabet:

$$H = 4.48917$$

Claude Shannon (1913 – 2001)

Introduction to Probabilistic Machine Learning

Noiseless Coding Theorem: An Example

- **Scenario**: We have 8 class labels with probabilities $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right\}$
- Naïve Encoding: We use a uniform distribution with 3 bits per symbol

$$H\left[\left\{\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right\}\right] = 3$$

However, the entropy is 2 bits!

$$H[X] = 2$$

- Prefix Code: Unique binary prefix of consecutive 1's for each unique probability
- Decode: 110011110

$$C_3$$
 C_1 C_4

Class	Code	P(C)	Length	E[Length]
1	0	1/2	1	16/32
2	10	1/4	2	16/32
3	110	1/8	3	12/32
4	1110	1/16	4	8/32
5	111100	1/64	6	3/32
6	111101	1/64	6	3/32
7	111110	1/64	6	3/32
8	111111	1/64	6	3/32

Introduction to
Probabilistic Machine
Learning

- 1. Basics of Information Theory
- 2. Arithmetic Coding
- 3. Distance Measures for Probabilities

Introduction to Probabilistic Machine Learning

Arithmetic Coding

■ **Binary Encoding of Probability**: A binary string $b \in \{0,1\}^n$ encodes the number in [0,1) via

$$N(\mathbf{b}) = b_1 \cdot \frac{1}{2} + b_2 \cdot \frac{1}{4} + \dots + b_n \cdot \frac{1}{2^n} = \sum_{i=1}^n b_i \cdot 2^{-i}$$

- **Observations**: Given a binary string $b \in \{0,1\}^n$ of length n, it encodes all values of probabilities $\left[N(b), N(b) + \frac{1}{2^n}\right)$
 - □ These are all the strings **b**c where $c \in \{0,1\}^k, k \in \mathbb{N}$
- **From Probabilities to Data**. If we map each symbol $x \in \mathcal{X}$ to an integer I(x) (e.g., ASCII code), then the cumulative distribution $P(I(x) \le k)$ covers the interval [0,1]

Class	Code	P(C)	N(Code)
1	0	1/2	$\frac{0}{64} = 0$
2	10	1/4	$\frac{32}{64} = \frac{1}{2}$
3	110	1/8	$\frac{48}{64} = \frac{3}{4}$
4	1110	1/16	$\frac{56}{64} = \frac{7}{8}$
5	111100	1/64	$\frac{60}{64} = \frac{15}{16}$
6	111101	1/64	$\frac{61}{64} = \frac{61}{64}$
7	111110	1/64	$\frac{62}{64} = \frac{31}{32}$
8	111111	1/64	$\frac{63}{64} = \frac{63}{64}$

Arithmetic Coding: Algorithm

Given:

- Data as a sequence of tokens with K values: $(x_1, x_2, ..., x_m) \in \{1, ..., K\}^m$
- □ A probability model for each token: $P(x_i|x_1, x_2, ..., x_{i-1}) \in [0,1)$
- **Idea**: Map a data stream $x = x_1, ..., x_m$ to a unique interval $[N(l), N(u)] \subseteq [0,1)$ that has a width of $P(x_1, x_2, ..., x_m)$
 - **Coding of** $x \in \{1, ..., K\}^m$: Start with l = 0 and u = 1. Successively iterate the following
 - 1. Compute $q_{lower} := P(X_j < x_j | x_1, x_2, ..., x_{j-1})$ and $q_{upper} := P(X_j \le x_j | x_1, x_2, ..., x_{j-1})$
 - 2. Update $l \leftarrow l + q_{lower} \cdot (u l)$ and $u \leftarrow l + q_{upper} \cdot (u l)$
 - After all data have been incorporated, compute $\boldsymbol{l} = N^{-1} \left(l + \frac{1}{4} (u l) \right)$ and $\boldsymbol{u} = N^{-1} \left(l + \frac{3}{4} (u l) \right)$ and return the first n bits of \boldsymbol{l} abd \boldsymbol{u} that are the same
 - Decoding of $b \in \{0, 1\}^n$: Successively iterate the following procedure
 - 1. Compute $q_k := P(X_j \le k | x_1, x_2, ..., x_{j-1})$ for k = 1, ..., K and $q_0 = 0$
 - 2. Pick $x_j = k^*$ if $N(b) \in [q_{k-1}, q_{k^*}]$

Jorma Rissanen (1932 – 2020)

Introduction to Probabilistic Machine Learning

Arithmetic Coding: An Example

0 1	
0	$P\left(x=(1,1)\right)$
$\frac{1}{4}$ $\frac{3}{8}$	$P\left(x=(1,2)\right)$
1 2	$P\left(x=(1,3)\right)$
2	

$$x = (1,2)$$

$$b = (0,1,0)$$

$$l = \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{8} = \frac{9}{32} = 0.01001_{2}$$

$$u = \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{8} = \frac{11}{32} = 0.01011_{2}$$

x = k	P(x=k)	$-\log_2 P(x=k)$
1	1/2	1
2	1/4	2
3	1/4	2

Introduction to Probabilistic Machine Learning

Arithmetic Coding: Optimal Code Length

• Question: How large will n be for a given data stream x?

$$-\log_2 P(x) \le n \le -\log_2 P(x) + 1$$

■ **Proof**. Assume that \boldsymbol{l} and \boldsymbol{u} differ first at bit n+1. Because $N(\boldsymbol{u})-N(\boldsymbol{l})=\frac{1}{2}P(\boldsymbol{x})$

$$\frac{1}{2}P(x) = \underbrace{\sum_{i=1}^{n} (u_i - l_i)2^{-i}}_{=0} + \underbrace{\sum_{i=n+1}^{n} (u_i - l_i) \cdot 2^{-i}}_{=0}$$

$$2^{-(n+1)} \le 2^{-1}P(x) \le 2^{-n}$$

$$-(n+1) \le \log_2 P(x) - 1 \le -n$$

$$n+1 \ge -\log_2 P(x) + 1 \ge n$$

Intuitively: Between 0 and 1 there are exactly $\frac{2}{P(x)}$ many intervals of length $\frac{1}{2}P(x)$ and one needs $\log_2 \frac{2}{P(x)} = -\log_2 P(x) + 1$ many bits to index them with a number.

Introduction to Probabilistic Machine Learning

Arithmetic Coding: Fixed Point Arithmetic

- Problem: Arbitrary precision multiplication and addition in binary numbers!
- Idea: Fixed point arithmetic with 32-bit registers and 64-bit addition/multiplication
 - 1. Instead of l and u, represent l and r = u l as as unsigned 32-bit integer
 - 2. When updating l and u, multiply them by two whenever the most significant bit of l and u are identical (because they cannot change anymore!)
 - 3. Represent the probabilities as fixed points to the basis 2^d (d = 16 typically)
- **Update**: If $q_{lower} \in \{0, ..., 2^d\}$ and $q_{upper} \in \{0, ..., 2^d\}$ then

$$l \leftarrow l + \text{UInt32}\left(\text{UInt64}(r) \cdot \frac{q_{\text{lower}}}{2^d}\right)$$
$$u \leftarrow l + \text{UInt32}\left(\text{UInt64}(r) \cdot \frac{q_{\text{upper}}}{2^d}\right)$$

Introduction to Probabilistic Machine Learning

Unit 11 – Information Theory

- Implement all multiplications and divisions by 2 via left-/right-shifts
- **Practical Considerations**: The decoder would never stop because even a $N(b) \in [q_{k^*}, q_{k^*+1}]$ is true for the most likely value k!
 - Add a special symbol that indicates end-of-stream and encode it to later stop the decoder.

14/19

- 1. Basics of Information Theory
- 2. Arithmetic Coding
- 3. Distance Measures for Probabilities

Introduction to Probabilistic Machine Learning

Relative Entropy: Kullback-Leibler Divergence

- **Approximation**. Assume we receive symbols (e.g., classes) from an unknown distribution p(x) but we use the approximate distribution q(x) for encoding each symbol x.
 - Each symbol x has an "information difference" of $-\log_2(q(x)) + \log_2(p(x))!$
- **Kullback-Leibler Divergence (1951)**. The Kullback-Leibler divergence of two distributions p and q is defined as

$$KL(p|q) := \sum_{x} p(x) \cdot \left[\log_2(p(x)) - \log_2(q(x)) \right]$$
$$= \sum_{x} p(x) \cdot \left[\log_2\left(\frac{p(x)}{q(x)}\right) \right]$$

- Two properties of Kullback-Leibler Divergence.
 - 1. In general, $KL(p|q) \neq KL(q|p)$
 - 2. KL(p|q) = 0 if and only if p = q

Solomon Kullback (1909 – 1994)

Richard Leibler (1914 - 2003)

Introduction to Probabilistic Machine Learning

Mutual Information

- **Motivation**: If we have a joint distribution p(x, y), how much information is conveyed by knowing a value of one of the variables about the other?
 - The minimal amount of information is achieved if p(x,y) = p(x)p(y) (in fact, this is zero information!)
- **Mutual Information**. The mutual information between two random variables X and Y is the Kullback-Leibler divergence of the joint distribution p(x, y) to a fully factorizing distribution $p(x) \cdot p(y)$

$$I[X,Y] := \mathrm{KL}(p(x,y)|p(x)\cdot p(y))$$

- Properties of Mutual Information
 - □ $I[X,Y] \ge 0$ for all probabilities p(x,y)
 - I[X,Y] = 0 if and only if X and Y are independent
 - I[X,Y] = H[X] H[X|Y] = H[Y] H[Y|X]

Introduction to Probabilistic Machine Learning

Summary

1. Information Theory

- Information theory measures the amount of uncertainty and only depends on probabilities.
- The information of each outcome of a probability distribution is $-\log_2(p(x))$ bits and entropy is the expected information across all outcomes.
- Entropy is the smallest size a file can be compressed to without loss (coding theory!)

2. Arithmetic Coding

- Compression algorithm that maps each sequence of tokens to its probability under a given probabilistic model
- Using fixed point arithmetic for arbitrary-precision numbers is key
- Achieves a near-optimal encoding/compression length (up to one bit!)

Introduction to Probabilistic Machine Learning

See you next week!