Ведунов Пётр

- Остатки.
- Сравнения по модулю.
- Десятичная запись.
- НОД и НОК.
- Диофантовы уравнения.
- KTO.

Долгопольский Тимофей

- Остатки.
- Сравнения по модулю.
- Десятичная запись числа.

Казин Савелий

- Остатки.
- Сравнения по модулю.
- Десятичная запись числа.
- Диофантовы уравнения.
- KTO.
- Функция Эйлера.

Кривочеев Платон

- Остатки.
- Сравнения по модулю.
- Десятичная запись числа.
- Диофантовы уравнения.
- KTO.
- Функция Эйлера.

Тараканов Георгий

- Остатки.
- Сравнения по модулю.

- Десятичная запись числа.
- НОД и НОК.
- Диофантовы уравнения.
- OTA.
- KTO.

Титов Олег

- Остатки.
- Сравнения по модулю.
- НОД и НОК.
- Диофантовы уравнения.
- OTA.
- Функция Эйлера.

Шутова Дарья

• Сравнения по модулю.

Харченко Михаил

- Сравнения по модулю.
- Десятичная запись.
- НОД и НОК.
- OTA.
- Функция Эйлера.

Афанасьев Иван

- Сравнения по модулю.
- Десятичная запись числа.
- НОД и НОК.
- KTO.

Ильюшин Тимофей

- KTO.
- Функция Эйлера.

Рыбаков Иван

• KTO.

Теория делимости.

Допуск к экзамену.

Остатки.

Найдите остаток от деления на 17 числа $2^{1999} + 1$.

Сравнения по модулю.

Докажите, что $7^{7^{7^7}} - 7^{7^7}$: 10.

нод и нок.

На какие натуральные числа можно сократить дробь

$$\frac{3m-n}{5n+2m}, \text{ если } \gcd(m,n)=1?$$

Десятичная запись числа.

Докажите, что \overline{abcd} : 99 тогда и только тогда, когда \overline{ab} + \overline{cd} : 99.

Диофантовы уравнения

Решите в целых числах уравнение

$$34x - 21y = 1.$$

(Укажите все решения.)

Основная теорема арифметики.

Натуральное число n имеет два простых делителя, общее количество делителей числа равно 6, а их суина 28. Найдите само число.

Китайская теорема об остатках.

Укажите все целые числа х, удовлетворяющие системе

$$\begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 7 \pmod{17} \end{cases}$$

Функция Эйлера.

Докажите, что $(6^{147} + 1) : 7^3$.