

# IIC3670 Procesamiento de Lenguaje Natural

https://github.com/marcelomendoza/IIC3670

- GENERACIÓN DE TEXTO -

## Generación auto-regresiva



## Generación condicional

$$\hat{t}_{j+1} \sim p(t_{j+1} = k \mid \hat{t}_{1:j}).$$

Transducer RNN: 
$$p(t_{j+1} = k \mid \hat{t}_{1:j}) = f(\text{RNN}(\hat{t}_{1:j}))$$

$$p(t_{j+1} = k|\hat{t}_{1:j}) = f(O(h_{j+1}))$$

#### Generación condicional

$$\hat{t}_{j+1} \sim p(t_{j+1} = k \mid \hat{t}_{1:j}).$$
 Transducer RNN: 
$$p(t_{j+1} = k \mid \hat{t}_{1:j}) = f(\text{RNN}(\hat{t}_{1:j}))$$
 
$$p(t_{j+1} = k \mid \hat{t}_{1:j}) = f(O(h_{j+1}))$$
 vector de contexto Transducer RNN condicional: 
$$p(t_{j+1} = k \mid \hat{t}_{1:j}, c) = f(\text{RNN}(v_{1:j}))$$
 
$$v_i = [\hat{t}_i; c]$$
 
$$\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, c),$$

**c** puede representar un tema u otra sentencia

Transducer RNN condicional (generador):



Generación condicional (encoder-decoder)

Sequence to sequence: **c** es un vector que representa una secuencia de texto de entrada (encoder)

source sequence 
$$x_{1:n}$$
 target output  $t_{1:m}$ 

Encoder: RNN:  $c = \text{RNN}^{\text{enc}}(x_{1:n})$ .

Decoder:  $p(t_{j+1} = k \mid \hat{t}_{1:j}, c) = f(\text{RNN}(v_{1:j}))$ 
 $v_i = [\hat{t}_i; c]$ 
 $\hat{t}_j \sim p(t_j \mid \hat{t}_{1:j-1}, c),$ 





# Seq2seq

- Aplicación más conocida de la arquitectura: Machine translation



- Otras: QA (closed)



Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, https://arxiv.org/pdf/1609.08144.pdf, 2016

- GENERACIÓN CONDICIONAL CON ATENCIÓN -

## Generación condicional con atención

Idea: usar un mecanismo de atención en el **decoder**Largo de la sentencia de entrada (encoder)

attend $(c_{1:n}, \hat{t}_{1:j}) = c^j$  factores de atención

los factores se aprenden con una **softmax**  $\alpha^j = \operatorname{softmax}(\bar{\alpha}_{[1]}^j, \dots, \bar{\alpha}_{[n]}^j)$   $\bar{\alpha}_{[i]}^j = \operatorname{MLP}^{\operatorname{att}}([h_j; c_i])$ la **softmax** opera a la salida de una MLP que opera sobre  $h_j$  y  $c_i$ 

## Generación condicional con atención

#### encoder

decoder
$$\bar{\alpha}_{[i]}^{j} = \text{MLP}^{\text{att}}(h_{j}; c_{i}]) \longrightarrow \text{MLP}^{\text{att}}([h_{j}; c_{i}]) = v \tanh([h_{j}; c_{i}]U + b)$$

$$\alpha_{[i]}^{j} = \text{MLP}^{\text{att}}(h_{j}; c_{i}]) \longrightarrow \text{MLP}^{\text{att}}([h_{j}; c_{i}]) = v \tanh([h_{j}; c_{i}]U + b)$$

$$\alpha_{j}^{j} = \text{softmax}(\bar{\alpha}_{[1]}^{j}, \dots, \bar{\alpha}_{[n]}^{j})$$

$$c^{j} = \sum_{i=1}^{n} \alpha_{[i]}^{j} \cdot c_{i}$$

$$p(t_{j+1} = k \mid \hat{t}_{1:j}, x_{1:n}) = f(O_{\text{dec}}(h_{j+1}))$$

$$\text{decoder}$$

$$h_{j+1} = R_{\text{dec}}(h_{j}, [\hat{t}_{j}; c^{j}])$$

## Generación condicional con atención



- GENERACIÓN CONDICIONAL CON TRANSFORMERS -

# Generación condicional con atención (transformer seq2seq)



## Generación condicional con atención (transformer seq2seq)



## Generación condicional con atención (transformer seq2seq)



- UC - M. Mendoza -