

K-means

Parallel Computing Course

Antonio Castellucci Michela Crulli

1. Introduction

- What is K-means
- What we have done

2. Implementation

- ImagesHandler
- C++ implementation
- OpenMP implementation
- CUDA implementations

3. Dataset

4. Results

- Test platform
- Tests

5. Conclusions

In this project, we realize a program which do **k-means** clustering with three different approaches:

- a sequential implementation
 - **C++**
- three parallel implementation
 - OpenMP
 - CUDA naive
 - CUDA with reduction

• What is K-means?

K-means clustering aims to **partition** input data into **k cluster** in which each data belongs to the cluster with the **nearest mean**.

Steps:

- Decide number of clusters
- 2. Distance from each point to each centroids
- 3. Re-calculate of each centroid with the minimization of:

$$J = \sum_{i=1}^{k} \sum_{x \in S_{i}} ||x - \mu_{i}||^{2}$$

4. Iterate from step two until in two iteration clusters don't change

What we have done

K-means applied to images to have a better and immediate view

Input output structure

scriptable programs with unique interface between three versions

car.jpg carCLUSTERIZED.jpg

ImagesHandler

What is? It's a common class that define interfaces for pixels values acquisition

and processed data handling

 Why? For the separation of concerns and code reusability

ImagesHandler - numberOfClusters: int - iterations: int - columns: int - columns: int - rows: int - filename: std::string - mode: std::string - dispImage: std::string + inputParamAcquisition(char **argi): std::vector<int> + dataAcquisition(std::vector<float> &h_x, std::vector<float> &h_y, std::vector<float> &h_z):void + disp(int* assignedPixels,std::vector<int> clusterColorR, std::vector<int> clusterColorG, std::vector<int> clusterColorG, std::vector<int> clusterColorG,

C++ implementation

Algorithm 1 c++

```
1: Input: data, number_of_cluster, number_of_iterations
   Output: means, data.assignments
   for i=0 to number of cluster
       centroids population in means[i]
 5: end for
   for iteration = 0 to number of iterations
       for point = 0 to data.size()
           best\_distance = d(data[point], means[0])
 8:
           best\_cluster = 0
9:
           for cluster = 1 to number_of_cluster
10:
               dist = d(data[point], means[cluster])
11:
               if dist < best_distance
12:
                  best\_distance = dist
13:
                  best\_cluster = cluster
14:
               end if
15:
           end for
16:
           data.assignments[point] = best\_cluster
17:
       end for
18:
```

```
for point = 0 to data.size()
19:
          cluster = data.assignments[point]
20:
          new[cluster].x + = data[point].x
21:
          new[cluster].y + = data[point].y
22:
          new[cluster].z+=data[point].z
23:
          counts[cluster] + = 1
24:
       end for
25:
       for cluster = 0 to number of cluster
26:
          count = counts[cluster]
27:
          means[cluster].x = new[cluster].x/count
28:
          means[cluster].y = new[cluster].y/count
29:
          means[cluster].z = new[cluster].z/count
30:
       end for
31:
32: end for
```

OpenMP implementation

Algorithm 2 openMP

```
1: Input: data, number_of_cluster, number_of_iterations
2: Output: means, data.assignments
   for i=0 to number of cluster
       centroids population in means[i]
5: end for
   for iteration = 0 to number_of_iterations
       #pragma omp parallel for
 7:
       for point = 0 to data.size()
 8:
           best\_distance = d(data[point], means[0])
           best\ cluster = 0
10:
           for cluster = 0 to number of cluster
11:
              dist = d(data[point], means[cluster])
12:
              if dist < best distance
13:
                  best \ distance = dist
14:
                  best\_cluster = cluster
15:
              end if
16:
           end for
17:
           data.assignments[point] = best\_cluster
18:
       end for
19:
```

```
for point = 0 to data.size()
20:
          cluster = data.assignments[point]
21:
          new[cluster].x + = data[point].x
22:
          new[cluster].y+=data[point].y
23:
          new[cluster].z+=data[point].z
24:
          counts[cluster] + = 1
25:
      end for
26:
      #pragma omp parallel for
27:
       for cluster = 0 to number of cluster
28:
          count = counts[cluster]
29:
          means[cluster].x = new[cluster].x/count
30:
          means[cluster].y = new[cluster].y/count
31:
          means[cluster].z = new[cluster].z/count
32:
       end for
33:
34: end for
```


CUDA Naive implementation

Algorithm 3 cudaKmeans

- 1: Input: data, k=number_of_cluster,number_of_iterations
- 2: Output: means, data.assignments
- 3: **for** i=0 to k
- 4: centroids population in means[i]
- 5: end for
- 6: **for** iteration = 0 to number_of_iterations
- 7: $assign_cluster(data, means, k, new_sums)$
- 8: cudaDeviceSynchronize()
- 9: $compute_new_means(means, new_sums)$
- 10: cudaDeviceSynchronize()
- 11: end for

Algorithm 5 assign_cluster

- 1: Input: data, means, new_sums, k
- 2: Output: data
- 3: index = blockIdx.x * blockDim.x + threadIdx.x
- 4: **if** index > data_size return
- 5: end if
- 6: best_distance = d(data[index],means[0])
- 7: best_cluster = 0
- 8: **for** cluster = 1 to k
- 9: distance = d(data[index], means[cluster])
- 10: **if** distance < best_distance
- 11: $best_distance = distance$
- 12: $best_cluster = cluster$
- 13: **end if**
- 14: end for
- 15: data.assignments[index]=best_cluster
- 16: atomicAdd(new_sums.x[best_cluster],data.x[point])
- 17: atomicAdd(new_sums.y[best_cluster], data.y[point])
- 18: atomicAdd(new_sums.z[best_cluster], data.z[point])
- 19: atomicAdd(counts[best_cluster], 1)

Algorithm 4 compute_new_means

- 1: Input: means, new_sums
- 2: Output: means
- 3: cluster = threadIdx.x
- 4: means.x[cluster] = new_sum.x[cluster] / counts[cluster]
- 5: means.y[cluster] = new_sum.y[cluster] / counts[cluster]
- 6: means.z[cluster] = new_sum.z[cluster] / counts[cluster]

Reduction

Mark Harris tricks:

- Unrolling loops
- Multiple adds/threads

fastCuda 1.0

Alg	orithm 6 fastCudaKmeans 1.0
1:	Input: data, k=number_of_cluster,number_of_iterations
2:	Output: processed data
3:	for i=0 to k
4:	centroids population in means[i]
5:	end for
6:	for iteration = 0 to number_of_iterations
7:	$assign_cluster(data, means, k)$
8:	cudaDeviceSynchronize()
9:	for cluster = 0 to k
10:	populate(data, cluster Data, cluster)
11:	cudaDeviceSynchronize()

assign_cluster(data, means, k)

fastCuda 1.0

Algorithm 6 fastCudaKmeans 1.0

- 1: **Input:** data, k=number_of_cluster,number_of_iterations
- 2: Output: processed data
- 3: **for** i=0 to k
- centroids population in means[i]
- 5: end for
- 6: **for** iteration = 0 to number_of_iterations
- 7: $assign_cluster(data, means, k)$
- 8: cudaDeviceSynchronize()
- 9: **for** cluster = 0 to k
- 10: populate(data, cluster Data, cluster)
- cudaDeviceSynchronize()

data: #Pixels

clusterData: #Pixels

255	255	200	200
255	255	200	200
255	255	200	200
0	0	1	1

populate

 255
 255
 0
 0

 255
 255
 0
 0

 255
 255
 0
 0

 1
 1
 0
 0

Cluster 0

Population step

ID

Cluster 0

fastCuda 1.0

```
Algorithm 6 fastCudaKmeans 1.0
 1: Input: data, k=number_of_cluster,number_of_iterations
   Output: processed data
   for i=0 to k
       centroids population in means[i]
 5: end for
   for iteration = 0 to number of iterations
       assign\_cluster(data, means, k)
 7:
       cudaDeviceSynchronize()
 8:
       for cluster = 0 to k
 9:
           populate(data, cluster Data, cluster)
10:
           cudaDeviceSynchronize()
11:
           n = number\_of\_pixels
12:
          do
13:
              blocksPerGrid = n/BLOCKSIZE
14:
              reduction(cluster Data, tmp, n)
15:
              cudaDeviceSynchronize()
16:
              clusterData = tmp
17:
              n = blocksPerGrid
18:
          while n > BLOCKSIZE
19:
```


fastCuda 1.0

```
Algorithm 6 fastCudaKmeans 1.0
                                                                  do
                                                        13:
                                                                      blocksPerGrid = n/BLOCKSIZE
 1: Input: data, k=number_of_cluster,number_of_iterations
                                                        14:
                                                                      reduction(cluster Data, tmp, n)
                                                        15:
   Output: processed data
                                                                      cudaDeviceSynchronize()
 3: for i=0 to k
                                                        16:
                                                                      clusterData = tmp
                                                        17:
       centroids population in means[i]
                                                                      n = blocksPerGrid
 5: end for
                                                        18:
                                                                  while n > BLOCKSIZE
   for iteration = 0 to number of iterations
                                                        19:
                                                                  reduction(tmp, tmp, n)
       assign\_cluster(data, means, k)
                                                        20:
                                                                  cudaDeviceSynchronize()
                                                        21:
       cudaDeviceSynchronize()
 8:
                                                                  divideStep(means, tmp, cluster, k)
       for cluster = 0 to k
                                                        22:
 9:
                                                                  cudaDeviceSynchronize()
                                                        23:
           populate(data, cluster Data, cluster)
10:
           cudaDeviceSynchronize()
                                                               end for
                                                        24:
11:
                                                        25: end for
           n = number\_of\_pixels
12:
```


divideStep(means,tmp,cluster,k)

populate 2.0 (data, clusterData, cluster)

We use images of different sizes:

100000 pixels

2 millions pixels

1 millions pixels

10 millions pixels

Test Platform

MSI GS65 with:

- i7-8750H 6 CORES 12 THREAD
- 16 GB 2400 MHz DDR4 RAM
- RTX 2060 6GB GDDR6

cudaKmeans Vs fastCudaKmeans 2.0 with 2 millions pixels, 100 iterations as the number of clusters changes

 All versions compared respect to input data size with 2 clusters and 200 iterations

 All versions compared respect to input data size with 7 clusters and 200 iterations

 C++ Vs OpenMP with 10 millions pixels compared respect to the number of clusters changes

- Understand CUDA performance characteristics
- Use peak performance metrics to guide optimization
- Understand parallel algorithm complexity theory, identify type of bottleneck e.g. memory, core computation, or instruction overhead
- Optimize the algorithm, then unroll loops
- Use template parameters to generate optimal code

Thanks for the attention!