Relational Algebra

Basic Operation

Select σ

Project **∏**

Union []

Set different -

Product ×

Rename ρ

Division /

Example

- Select Relation a = b and $d > 5 = \sigma_{a=b \bigwedge d > 5}(R)$
- $\Pi_{f_name, l_name}(\sigma_{dno=4 \land salary>25000}(Employee))$
- Rename E. sid to $C = \rho(C(sid \rightarrow identity), E)$
- Condition Join = $R \bowtie_c S = \sigma_c(R \times S)$

SQL

Basic SQL Query

```
SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
```

• Equal Join with tables

```
SELECT S.sname
FROM Sailors S, Reserves R, Boat B
WHERE S.sid = R.sid AND R.bid = B.bid
```

• Regex in SQL

```
SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE 'B_%B'
```

LIKE for string matching," _ " means any characters," % " means arbitary

• **Set**-manipulation construction


```
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color='red'
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color='green'
```

```
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='red'
EXCEPT
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color='green'
```

Correlated Nested Query

```
SELECT S.sname
FROM Sailors S
WHERE EXISTS(SELECT * FROM Reserves R WHERE R.bid=103 AND S.sid=R.sid)
```

- EXISTS to test for nonempty
- IN operator specified **multiple values** in where clause

```
SELECT B.bname
FROM Boats B
WHERE B.color IN ('red', 'blue', 'green')
```

- **Set-comparison** operators
- ops ANY Or ops ALL

```
SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating FROM Sailors S2 WHERE
S2.sname='Horatio')
```

• Division in SQL

```
SELECT S.sname
2
  FROM Sailors S
  WHERE NOT EXISTS
3
        ((SELECT B.bid
5
          FROM Boats B)
          EXCEPT
6
7
          (SELECT R.bid
8
          FROM Reserves R
9
          WHERE R.sid=S.sid))
```

SQL Aggregate Operators	Description
COUNT (A)	Number of values in A column
SUM(A)	Sum of all values in A column
AVG(A)	Average of all values on A column
MAX (A)	Maximum value in the A column
MIN(A)	Minimum value in the A column

• Correct way to use the above operators

```
SELECT S.name
FROM Sailors S
WHERE S.age > (SELECT MAX (S2.age)
FROM Sailors S2
WHERE S2.rating = 10)
```

• GROUP BY similar as for-loop

```
SELECT S.rating, MIN(S.age)
FROM Sailors S
GROUP BY S.rating

For i = 1, 2, ..., 10:
    SELECT MIN(S.age)
    FROM Sailors S
WHERE S.rating = i
```

- Columns appeared in GROUP BY should use HAVING
- CREATE VIEW for creating virtula table based on result SQL statement

```
CREATE VIEW Temp AS

SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S

GROUP BY S.rating

DROP VIEW temp
```

Schema Refinement

Functional Dependencies

```
Let X and Y be nonempty sets of attributes in R
An instance r of R satisfies the FD X->Y if
If t1.X = t2.X, then t1.Y = t2.Y
```

Trivially Preserved

```
1 If any two row never have the same value for a in a->b
2 Then a->b is trivially preserved
```

Trivially Dependency

```
If right hand side of arrow is subset of that on left hand side a->b
Then a->b is a trivial dependency
```

Closure of set

ullet Given a set F, the set of all FDs implied is called the closure of F, denoted as F^+

Armstrong's Axioms and additional rules

```
 \begin{array}{l} \bullet \ \ \text{Reflexivity: } if \ Y \subseteq X, \ then \ X \to Y \\ \\ \text{Augmentation: } if \ X \to Y, \ then \ XZ \to YZ \\ \\ \text{Trasitivity: } if \ X \to Y \ and \ Y \to Z, \ then \ X \to Z \\ \\ \text{Union: } if \ X \to Y \ and \ X \to Z, \ then \ X \to YZ \\ \\ \text{Decomposition: } if \ X \to YZ, \ then \ X \to Y \ and \ X \to Z \\ \end{array}
```

Boyce-Codd Normal Form (BCNF)

```
R-a relation schema F- set of functional dependencies on R R is in BCNF if for any X 	o A in F,
```

• $X \rightarrow A$ is a trivial functional dependency, i.e. $A \subseteq X$

• X is a superkey for R

Third Normal Form

ullet If R is in BCNF, then it is also in 3NF since $3NF\subset BCNF$

 $R\,-\,a\,relation\,schema$

 $F-set\ of\ functional\ dependencies\ on\ R$

R is in 3NF if for any $X \rightarrow A$ in F,

- $ullet X
 ightarrow A \ is \ a \ trivial \ functional \ dependency, \ i. \ e. \ A \subseteq X$ OR
- X is a superkey for R

 OR
- A is part of some key for R

Decomposition

- 1. Remove the rule $X \rightarrow A$ that violates the condition from relation schema R
- 2. Create a new realtional schema XA

Lossless Join Decomposition

 $R-a\ relation\ schema$

 $F-set\ of\ functional\ dependencies\ on\ R$

The decomposition of R into relations with attribute sets R_1 , R_2 is lossless – join iff

$$(R_1 igcap R_2) o R_1 \in F^+$$

OR

$$(R_1 \cap R_2) \rightarrow R_2 \in F^+$$

 $R_1 \cap R_2$ is a superkey for R_1 or R_2

Dependency preserved

$$(F_1 igcup F_2)^+ = F^+$$

- ullet Possible to obtain lossless-join decomposition into collection of BCNF relation schemas non-BCNF
 ightarrow BCNF but **NOT** guaranteed dependency-preserving
- Always exists a dependency-preserving, lossless-join decomposition into collection of 3NF relation schemas

$$non-3NF
ightarrow 3NF$$

BCNF Decomposition

Suppose $X \rightarrow A$ is a FD that violates the BCNF condition

- 1. Decompose R into XA and R-A
- 2. Repeat until all relations become BCNF

Canonical Cover

• A minimal and equivalent set of functional dependency

Storage and Index

- Index on file speeds up selections on **search key fields**
- Search key can be any subset of fields of relation

Primary index	Contains primary key in search key
Secondary index	Does not contain primary key in search key
Clustered index	Order of data records close to order of data entries
Unclustered index	
Dense index	At least one data entry per search key value
Sparse index	Every sparse index is clustered

- Unclustered must be also in dense
 - \circ Primary: each data entry k^* points to **single record** that contains k
 - \circ Secondary: each data entry k^* points to **all records** that contains k
- Clustered must be also in sparse
 - Sort both data file and index file on search key
 - \circ Each data entry k^* points to the **first record** that contains k
 - Overflow pages may be needed for inserting, so the order is **closed to** sorted

Composite Search Keys

Equality query	Every field value is equal to a constant value
Range query	Some field value is not a constant

Tree-Structured Indexing

• Example of B+ tree with order 1

For root node, we require $1 \le n \le 2d$, where d is the order

For non - root node, we require $d \le n \le 2d$, where d is the order

Cost for searching in B+ tree

- Let h be the height of B+ tree, then we have to access h+1 pages to reach leaf node
- ullet Let $oldsymbol{f}$ be the average number of pointers in node (fanout for internal node)
 - Level 1 with height 0 = 1 page = f^0 page
 - Level 3 with height 2 = $f \times f$ page = f^2 page
- ullet Suppose there are d data entries, so there are $rac{d}{(f-1)}$ leaf nodes and $h=log_f(rac{d}{f-1})$
- Example for calculation
 - Typical order = 100, Typical fill-factor = 67%
 - \circ Average fanout f = $\frac{100}{67\%}$ = 133
 - \circ Given there are 10000000 data entries, $h = log_{133}(rac{10000000}{133-1}) < 4$
 - Therefore, the cost is 5 pages read

Extensible Hashing

- Given a search key value k_i , we can find the bucket where data entry k^* is stored
- The value of has function h(k) is address of desired bucket

Hash-based indexes are the best for **equality selections** and they do **NOT** support range searches

Static Hashing

• Long overflow chains can be developed and degraded performance

Extendsible Hashing

- To avoid re-hashing to re-organize file by doubling numbers of buckets, use directory of points to buckets
- Doubling here means increasing size of directories

Suppose we have a hash function h(r) and directory is array of size 4

To find the bucket for r, take last x bits of h(r) where x is number of global depth

• For inserting 20 in the above example, it will cause overflow and directory doubling is required

- Split Bucket A into 2 buckets and we compare 3rd bit from right in h(r) to decide A or A_2
- Other buckets will remain unchange and 2 directories are pointed to bucket for Global Depth > Local Depth
- Least siginificant bits are used in directory to allow for doubling via copying

Query Evaluation