A Simplex based approach to Vertex Enumeration of Arrangements and Polyhedra

Tilman Hinnerichs

Seminar "Selected Topics in Logic and Verification" – TU Dresden

July 27, 2020

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra"

Authors: David Avis and Komei Fukuda

Publication year: 1992

Journal: Discrete & Computational Geometry

The paper

"A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra"

Authors: David Avis and Komei Fukuda

Publication year: 1992

Journal: Discrete & Computational Geometry Cited 751 times (according to Google Scholar)

Outline

1. The Vertex Enumeration Problem

2. Approaches to the VEP

3. The SIMPLEX Algorithm

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

The Vertex Enumeration Problem

Definition (Convex Polyhedron)

Given a matrix $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$.

A convex polyhedron P is defined as

$$P = \{x \in \mathbb{R}^n : Ax + b \ge 0\} \tag{1}$$

Definition (Polyhedron Vertex)

A point $x \in P$ is a *vertex* of P **iff**

it cannot be written as a convex combination of two other solutions **iff** it is the unique solution to a subset of m inequalities solved as equations.

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

¹Khachiyan et al. [2008]

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

Theorem¹

The VEP is NP-complete.

¹Khachiyan et al. [2008]

The Vertex Enumeration Problem (VEP)

Definition (Vertex Enumeration Problem)

For a given polytope/polyhedron, hyperplane arrangement P return all vertices of P.

Theorem¹

The VEP is NP-complete.

Goals:

- should be deterministic
- should be fast
- shouldn't use too much space

¹Khachiyan et al. [2008]

An Example Problem

Example: Meals for 1 Euro

Var	Food type	Energy	Protein	Calcium	Price	Maximum
		(kcal/100g)	(g)	(mg)	(Euro	
					cents)	
<i>x</i> ₁	Oatmeal ²	250	15	40	10	500g
<i>x</i> ₂	Milk ³	80	4	130	4	1000g
<i>x</i> ₃	DD Stollen ⁴	340	7	30	20	200g
	Min. daily	2000	55	800		

²Regular LIDL oatmeal

³Regular Bio LIDL milk

⁴https://fddb.info

Putting data into inequalities

Example: Meals for 1 Euro

$$A = \begin{bmatrix} 350 & 80 & 340 \\ 15 & 4 & 7 \\ 40 & 130 & 30 \\ -10 & -4 & -20 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 2000 \\ 55 \\ 800 \\ -100 \\ -5 \\ -10 \\ -2 \end{bmatrix}, \begin{pmatrix} Energy \\ Protein \\ Calcium \\ Price \\ x_1 Max \\ x_2 Max \\ x_3 Max \end{pmatrix}$$

Polytope visualized

Example: Meals for 1 Euro

Figure: The exact shape is unknown/expensive

An Example Problem

▶ Use convex combination to yield infinitely many food combinations

An Example Problem

▶ Use convex combination to yield infinitely many food combinations

Definition (Convex combination)

A convex combination is a linear combination of points.

Let x_1, x_2, \dots, x_n be a finite set of points. A convex combination is a point of the form

$$y = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

while $a_1, \ldots, a_n \in \mathbb{R}^+$, and

$$a_1+\cdots+a_n=1$$

Approaches to the VEP

- 1. Double-description/Motzkin-based method
- 2. Pivot-based methods
- 3. Newer methods

Linear optimization problems

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Linear optimization problems

Definition

Let $G \subseteq \mathbb{R}^n$ be a polyhedron and $c \in \mathbb{R}^n$. Then a problem of the form

$$z = f(x) = c^T \cdot x \rightarrow min$$
 with $x \in G$

is called a *linear* optimization problem.

Protein rich meals for 1 Euro

We are trying to maximize our protein intake:

$$c = \begin{bmatrix} 15 \\ 4 \\ 7 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$z = c^T x \rightarrow max$$

11 / 16

The SIMPLEX Algorithm

The SIMPLEX Algorithm

Figure: George Dantzig (1914 - 2005)

Algorithm 1 The SIMPLEX Algorithm

- 1: Find a first feasible vertex
- 2: Calculate the optimal vertex

A visual example

Example: From Avis' lecture notes

$$A = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, -b = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{cases} 1 - x_1 + x_3 \ge 0 \\ 1 - x_2 + x_3 \ge 0 \\ 1 + x_1 + x_3 \ge 0 \\ 1 + x_2 + x_3 \ge 0 \\ -x_3 \ge 0 \end{cases}$$

A visual example

Example

Example: From Avis' lecture notes

Figure: P is a regular pyramid

The SIMPLEX Algorithm

Example

A linear OP example content...

Sources

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating all vertices of a polyhedron is hard. Discrete and Computational Geometry, 39(1):174–190, 2008.