Machine Learning for Official Statistics and **SDGs**

Classification

Introduction

•00000000

What is a classification problem?

▶ The goal is to understand why an observation belongs to a certain category

Introduction

•00000000

- ► The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural

Introduction

•00000000

- ► The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ightharpoonup Some variables xs may explain why y belongs to a particular category

Introduction

•00000000

- ► The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ightharpoonup Some variables xs may explain why y belongs to a particular category

Introduction

•00000000

What is a classification problem?

- ► The goal is to understand why an observation belongs to a certain category
- ▶ *y* takes discrete values: 0/1, high school/primary school/no education; urban/rural
- ► Some variables xs may explain why y belongs to a particular category

A **classifier** is a tool that provides a classification for y using (or not) additional information from other variables

00000000

Logit

00000000

[SUPERVISED *vs* UNSUPERVISED CLASSIFICATION]

► In **supervised** classification, we **observe** the category for each observation

00000000

[SUPERVISED *vs* UNSUPERVISED CLASSIFICATION]

► In **supervised** classification, we **observe** the category for each observation

One may learn and estimate the impact of other variables on that classification (e.g. logit regression)

00000000

- ► In **supervised** classification, we **observe** the category for each observation
 - One may learn and estimate the impact of other variables on that *classification* (e.g. logit regression)
- ▶ In **unsupervised** classification, we **ignore** the category (if any) of each observation

- ► In **supervised** classification, we **observe** the category for each observation
 - One may learn and estimate the impact of other variables on that *classification* (e.g. logit regression)
- ▶ In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - *The goal is to classify observations from those variables* (clustering) without having any information of what a category means.

00000000

- ► In **supervised** classification, we **observe** the category for each observation
 - One may learn and estimate the impact of other variables on that *classification* (e.g. logit regression)
- ▶ In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - *The goal is to classify observations from those variables* (clustering) without having any information of what a category means.

- ► In **supervised** classification, we **observe** the category for each observation
 - One may learn and estimate the impact of other variables on that *classification* (e.g. logit regression)
- ▶ In **unsupervised** classification, we **ignore** the category (if any) of each observation
 - *The goal is to classify observations from those variables* (clustering) without having any information of what a category means.
- ► We'll focus on **supervised** classification

Logit

[CLASSIFICATION: AN EXAMPLE]

Logit

Best classifier

[CLASSIFICATION: AN EXAMPLE]

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): Education.

Introduction

00000000

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): Education.

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): *Education*.

► A classifier determines the value of *Education* that separate "Rural" from "Urban"

Introduction

00000000

▶ You observe households that are either in *Urban* or *Rural* areas (colors) and one variable (feature): *Education*.

► A classifier determines the value of *Education* that separate "Rural" from "Urban"

Typically with a threshold rule: "if $x \ge t$ then category is *Urban*"

000000000

► You observe households in *Urban* or *Rural* areas and **two** variables (features): Education and Income

► You observe households in *Urban* or *Rural* areas and **two** variables (features): Education and Income

► You observe households in *Urban* or *Rural* areas and **two** variables (features): Education and Income

Logit

Introduction

[CLASSIFICATION: A 2-D EXAMPLE]

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► A classifier will determine a **boundary** using both Education and Income to separate "Rural" from "Urban"

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► A classifier will determine a **boundary** using both Education and Income to separate "Rural" from "Urban"

000000000

[CLASSIFICATION: A 2-D EXAMPLE]

► A classifier will determine a **boundary** using both Education and Income to separate "Rural" from "Urban"

► The rule can be based on a linear relationship between Education and Income or can be non linear.

Logit

[CLASSIFICATION: A 2-D EXAMPLE]

Logit

[CLASSIFICATION: A 2-D EXAMPLE]

► Example of a linear classifier

► Example of a linear classifier

Introduction

000000000

► Example of a linear classifier

Introduction

000000000

▶ The separation rule is $x'\beta \ge T_0$ with T_0 a known threshold

► Example of a linear classifier

Introduction

000000000

▶ The separation rule is $x'\beta \ge T_0$ with T_0 a known threshold

e.g.
$$\beta_0 + \beta_1 Education + \beta_2 Income \geq T_0 \Leftrightarrow Urban$$

Introduction

000000000

Introduction

000000000

► Example of non-linear classifier

Introduction

000000000

► Example of non-linear classifier

Introduction

000000000

► Example of non-linear classifier

▶ The rule that separated the two classes is non linear in the variables Education and Income

Logit

[CLASSIFIERS EXAMPLES]

Logit

[CLASSIFIERS EXAMPLES]

► Another non-linear example

Introduction

000000000

► Another non-linear example

Introduction

000000000

► Another non-linear example

▶ The boundary is complex and uses *Education* and *Income* features.

Introduction

00000000

Introduction

00000000

► Other examples can be very non linear

Introduction

00000000

► Other examples can be very non linear

Introduction

00000000

► Other examples can be very non linear

▶ It is hard to understand how the two classes are built using Education and Income

Logit

[HOW TO SELECT THE RIGHT MODEL?]

Logit

► What is the goal?

[HOW TO SELECT THE RIGHT MODEL?]

▶ What is the goal? Have the "best" classification

[How to select the right model?]

- ► What is the goal? Have the "best" classification
- → Need for a criterion to determine what is a good classifier

[HOW TO SELECT THE RIGHT MODEL?]

- ► What is the goal? Have the "best" classification
- → Need for a criterion to determine what is a good classifier
- ► Measures of fit in classification are different and specific

Logit

► Accuracy

- ► Accuracy
- ► Confusion matrix

[MEASURES OF FIT IN CLASSIFICATION]

There are several popular measures of fit, differing in their spirit and their goal

- ► Accuracy
- ► Confusion matrix
- ► Sensitivity & Specificity

- Accuracy
- ► Confusion matrix
- Sensitivity & Specificity
- ► Kappa

[MEASURES OF FIT IN CLASSIFICATION]

There are several popular measures of fit, differing in their spirit and their goal

- Accuracy
- ► Confusion matrix
- Sensitivity & Specificity
- ► Kappa

- Accuracy
- ► Confusion matrix
- Sensitivity & Specificity
- ► Kappa

Each criterion answers to a different question

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

Logit

 \blacktriangleright where $\widehat{f}(\cdot)$ is the classifier.

Introduction

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- \blacktriangleright where $\widehat{f}(\cdot)$ is the classifier.
- \hookrightarrow We want the maximum possible accuracy.

[ACCURACY AND CONFUSION MATRIX]

Accuracy corresponds to the probability of being "accurate"

$$\Pr\left[y_0 = \widehat{f}(x_0)\right]$$

- \blacktriangleright where $\widehat{f}(\cdot)$ is the classifier.
- \hookrightarrow We want the maximum possible accuracy.
- ▶ Equivalently, we may want to minimize the *error rate* or misclassification rate

$$\Pr\left[y_0 \neq \widehat{f}(x_0)\right]$$

A classifier predicts in which class each observation should be:

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Table: Confusion Matrix

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Table: Confusion Matrix

► Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{TruePositives + TrueNegatives}{N}$$

[CONFUSION MATRIX & ACCURACY]

A classifier predicts in which class each observation should be:

	Observed (True)		
	TP	FP	
Predicted	(True Positive)	(False Positive)	
	FN	TN	
	(False Negative)	(True Negative)	

Table: Confusion Matrix

► Accuracy is then the ratio:

$$Acuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
$$= \frac{TruePositives + TrueNegatives}{N}$$

► It is the proportion of accurate predictions

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Logit

Table: Confusion Matrix

► Here *Urban* is the "positive" class

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ► Here *Urban* is the "positive" class
- ► Accuracy is then the ratio:

$$Accuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

[CONFUSION MATRIX & ACCURACY]

In practice, with a classifier we have:

Introduction

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

- ► Here *Urban* is the "positive" class
- Accuracy is then the ratio:

$$Accuracy = \frac{87 + 69}{87 + 69 + 28 + 24}$$
$$= \frac{156}{208} = 0.75$$

▶ We have an accurate prediction in 75% of the cases.

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

▶ One may be more interested in **correctly** predicting a particular outcome!

Accuracy is not the panacea and may be misleading

- One may be more interested in correctly predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ

[PROBLEM 1: ACCURACY IS ONE NUMBER]

Accuracy is not the panacea and may be misleading

- ► One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
- One may need other measures, focused on one particular outcome

[Problem 1: Accuracy is one number]

Accuracy is not the panacea and may be misleading

- ► One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
- One may need other measures, focused on one particular outcome
- ► Compute *Sensitivity & Specificity* from the confusion matrix

[Problem 1: Accuracy is one number]

Accuracy is not the panacea and may be misleading

- ► One may be more interested in **correctly** predicting a particular outcome!
- \hookrightarrow This is often the case if the **cost** of being wrong differ
- ▶ One may need other measures, focused on one particular outcome
- ► Compute *Sensitivity & Specificity* from the confusion matrix
- ► They may go in different directions

Introduction

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
1 Tealclea	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Logit

[SENSITIVITY OR True Positive Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Logit

► *Sensitivity* focuses on "positives" (here *Urban*), *i.e.* on predicted positives vs the observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24} = 0.78$

[SENSITIVITY OR True Positive Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► *Sensitivity* focuses on "positives" (here *Urban*), *i.e.* on predicted positives vs the observed positives

Sensitivity =
$$\frac{TP}{TP + FN}$$

= $\frac{87}{87 + 24}$ = 0.78

▶ On *Urban*, we correctly predict in 78% of the cases

Introduction

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

Logit

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Logit

Table: Confusion Matrix

► Sensitivity focuses on negatives (Rural), i.e. on predicted negatives vs the observed negatives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

[Specificity or True Negative Rate]

		Observed (True)	
		Urban	Rural
Predicted	Urban	87 (TP)	28 (FP)
Tredicted	Rural	24 (FN)	69 (TN)

Table: Confusion Matrix

► Sensitivity focuses on negatives (Rural), i.e. on predicted negatives vs the observed negatives

Specificity =
$$\frac{TN}{TN + FP}$$

= $\frac{69}{69 + 28} = 0.71$

▶ On *Rural*, we predict correctly in **only** 71% of the cases

Imagine you observe much more Urban than Rural

Observed (True)

Logit

Urban	Rural
95	5

Introduction

Imagine you observe much more Urban than Rural

Observed (True)

Logit

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

Imagine you observe much more Urban than Rural

Observed (True)

Logit

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
Tredicted	Rural	(FN)	0 (TN)

Introduction

[PROBLEM 2: IMBALANCED OUTCOMES]

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "*stupid*" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
Tredicted	Rural	(FN)	0 (TN)

· · · would have a very good Accuracy and Sensitivity

[Problem 2: Imbalanced outcomes]

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "*stupid*" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
	Rural	(FN)	0 (TN)

· · · would have a very good Accuracy and Sensitivity Accuracy = (TP + TN) / 100 = 95 %

[Problem 2: Imbalanced outcomes]

Imagine you observe much more Urban than Rural

Observed (True)

Urban	Rural
95	5

► A "stupid" classifier predicting only *Urban* · · ·

		Observed (True)	
		Urban	Rural
Predicted	Urban	95 (TP)	5 (FP)
	Rural	(FN)	0 (TN)

· · · would have a very good Accuracy and Sensitivity

Accuracy =
$$(TP + TN) / 100 = 95 \%$$

Sensitivity =
$$TP/(TP + FN) = 95/95 = 100 \%$$

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

Logit

Introduction

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e P_e is the **accuracy of an uniformed classifier** that would operate purely by chance, using no information.

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e

 P_e is the accuracy of an uniformed classifier that would operate purely by chance, using no information.

NB: P_0 is simple accuracy while P_e is more complex to compute.

Kappa (κ) is defined to measure the accuracy with imbalanced classes

Its formal definition is given by

$$\kappa = \frac{P_o - P_e}{1 - P_e}$$

 P_o is the **current classifier accuracy** which is compared here with the accuracy of an uniformed classifier P_e P_e is the accuracy of an uniformed classifier that would operate purely by chance, using no information.

NB: P_0 is simple accuracy while P_e is more complex to compute.

▶ The larger κ is, the better the model for a given distribution of classes in a data set

[QUIZ TIME]

Introduction

Logit

Introduction

► In classification, the **Confusion matrix** is important

Logit

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.

- ▶ In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.

Logit

Sensitivity is accuracy restricted to the positives.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.

Logit

- Sensitivity is accuracy restricted to the positives.
- ► *Specificity* is accuracy restricted to the negatives.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: **accuracy**, **sensitivity** and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: **accuracy**, **sensitivity** and specificity.
 - *Sensitivity* is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.

[LOGIT AS YOU KNOW IT]

[LOGIT AS YOU KNOW IT]

y is discrete, so no *direct* linear relationship between y and the explanatory variables *x* (*i.e. Education, Income*)

Logit •0000000000 Introduction

y is discrete, so no *direct* linear relationship between y and the explanatory variables *x* (*i.e. Education, Income*)

Logit

•0000000000

▶ Logit estimates the probabilities π (\in [0, 1])

$$\pi = Probablity[y = 1]$$

[LOGIT AS YOU KNOW IT]

y is discrete, so no *direct* linear relationship between y and the explanatory variables *x* (*i.e. Education, Income*)

Logit

•0000000000

▶ Logit estimates the probabilities π (∈ [0, 1])

$$\pi = Probablity[y = 1]$$

► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

[LOGIT AS YOU KNOW IT]

y is discrete, so no *direct* linear relationship between y and the explanatory variables *x* (*i.e. Education, Income*)

Logit

•0000000000

▶ Logit estimates the probabilities π (∈ [0, 1])

$$\pi = Probablity[y = 1]$$

► The definition of the logit model is:

$$\pi = Pr(y = 1) = F(x'\beta) = \frac{1}{1 + \exp(-x'\beta)}$$

► This can be transformed into:

$$\pi = \frac{exp(x'\beta)}{1 + exp(x'\beta)}$$

[LOGIT AS YOU **DON'T** KNOW IT]

[LOGIT AS YOU DON'T KNOW IT]

From this equation

$$\pi = \frac{exp(x'\beta)}{1 + exp(x'\beta)}$$

Logit

0000000000

[Logit as You **Don't** know it]

From this equation

$$\pi = \frac{exp(x'\beta)}{1 + exp(x'\beta)}$$

Logit 0000000000

one gets the linear nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

[LOGIT AS YOU **DON'T** KNOW IT]

From this equation

Introduction

$$\pi = \frac{exp(x'\beta)}{1 + exp(x'\beta)}$$

one gets the **linear** nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y = 1

[LOGIT AS YOU **DON'T** KNOW IT]

From this equation

$$\pi = \frac{exp(x'\beta)}{1 + exp(x'\beta)}$$

one gets the **linear** nature of the logit:

$$log(\frac{\pi}{1-\pi}) = x'\beta$$

where $\frac{\pi}{1-\pi}$ is the odd ratio $\in [0,\infty]$ with values indicating high or low probability that y = 1

 \hookrightarrow "The logit models log of odd ratios as linear in x"

[LOGIT AS A CLASSIFIER]

Introduction

[LOGIT AS A CLASSIFIER]

▶ Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

Logit

000000000

[LOGIT AS A CLASSIFIER]

▶ Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Logit 0000000000

[LOGIT AS A CLASSIFIER]

Introduction

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold probability, by default 1/2.

[LOGIT AS A CLASSIFIER]

Introduction

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Where t_0 is a threshold probability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

[LOGIT AS A CLASSIFIER]

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

Logit

000000000

Where t_0 is a threshold probability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

► If $t_0 \neq 1/2$:

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

[LOGIT AS A CLASSIFIER]

• Once estimated, $\hat{\pi}_i$ provide a simple rule for classification

$$\widehat{\pi}_i > t_0 \Leftrightarrow \widehat{y}_i = 1$$

0000000000

Where t_0 is a threshold probability, by default 1/2.

▶ If $t_0 = 1/2$ (default), then the rule is equivalent to:

$$x_i'\widehat{\beta} > 0 \Leftrightarrow \widehat{y}_i = 1$$

► If $t_0 \neq 1/2$:

$$x_i'\widehat{\beta} > T_0 \Leftrightarrow \widehat{y}_i = 1$$

→ The logit classifier depends on the linear combination of the x's

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

Logit 0000000000

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

▶ The rule $x'\beta \ge T_0$ defines the partition of the space

Logit

0000000000

ightharpoonup This partition is sensitive to the choice of the threshold T_0 (and the t_0)

▶ Changing t_0 will change the predictions & the classification

Introduction

[IMPORTANCE OF THE THRESHOLD]

ightharpoonup Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y = 1category (Urban)

ightharpoonup Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y = 1category (Urban)

Logit

A lower t_0 will allocate more observations to the y = 1category

- ightharpoonup Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y = 1category (Urban)
 - A lower t_0 will allocate more observations to the y=1category
- \blacktriangleright The choice of t_o should be done according to the data and observed classes repartition

ightharpoonup Changing t_0 will change the predictions & the classification A higher t_0 will allocate less observations to the y=1category (Urban)

Logit

- A lower t_0 will allocate more observations to the y=1category
- \blacktriangleright The choice of t_o should be done according to the data and observed classes repartition
- ightharpoonup Specificity and Sensitivity are affected by t_0

▶ We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)

Logit 00000000000

► We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)

Logit

00000000000

► The ROC curve help visualize the best choice

- ▶ We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)
- ► The ROC curve help visualize the best choice
- ► The ROC plots both Sensitivity and Specificity values for different thresholds

Logit

000000000000

Introduction

- ▶ We want the *Specificity* and *Sensitivity* to be both maximized (ideally both would be 1)
- ► The ROC curve help visualize the best choice
- ► The ROC plots both Sensitivity and Specificity values for different thresholds *Be careful of the axes*

Introduction

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

Introduction

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

Introduction

The ROC represents values of 1- Specificity = FPR vsSensitivity = TPR for many values of the threshold t_0

 \blacktriangleright (sometimes x is sensitivity with inverted x-axis)

Changing t_0 changes the classification

Changing t_0 changes the classification

► Optimally, the curve should touch top-left corner

Introduction

[THE ROC CURVE: HOW TO READ?]

Changing t_0 changes the classification

▶ Optimally, the curve should touch top-left corner

Changing t_0 changes the classification

▶ Optimally, the curve should touch top-left corner

Logit 00000000000

▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*

Changing t_0 changes the classification

▶ Optimally, the curve should touch top-left corner

Logit

00000000000

- ▶ If t_0 \nearrow , more cases classified as *Negatives*, less *Positives*
- ▶ If t_0 \nearrow , specificity \nearrow and sensitivity \searrow

Logit ooooooo•oo

Introduction

[AUC AS A MEASURE OF FIT]

[AUC AS A MEASURE OF FIT]

A model that works well, whatever the threshold is certainly desirable

Logit

0000000000

[AUC AS A MEASURE OF FIT]

A model that works well, whatever the threshold is certainly desirable

Logit 0000000000

▶ Using the AUC is also a measure of fit of a model

[AUC AS A MEASURE OF FIT]

A model that works well, whatever the threshold is certainly desirable

Logit

00000000000

▶ Using the AUC is also a measure of fit of a model

[AUC AS A MEASURE OF FIT]

A model that works well, whatever the threshold is certainly desirable

Logit

00000000000

▶ Using the AUC is also a measure of fit of a model

► The greater the area, the better the model

Logit

0000000000

[COMPARING THE MEASURES]

► We have several measures at hand

- We have several measures at hand
- ► We should evaluate those models on their predictive performance on a new "unseen" data set

- We have several measures at hand
- ► We should evaluate those models on their predictive performance on a new "unseen" data set
- → This is what Cross-Validation can do

- We have several measures at hand
- We should evaluate those models on their predictive performance on a new "unseen" data set

Introduction

[COMPARING THE MEASURES]

► For any model, CV gives several classifications

Logit

0000000000

► For any model, CV gives several classifications

Logit 0000000000

► All the criteria derive from the confusion matrix

► For any model, CV gives several classifications

Logit 0000000000

- ► All the criteria derive from the confusion matrix
- \hookrightarrow Examine them all!

- ► For any model, CV gives several classifications
- ► All the criteria derive from the confusion matrix
- \hookrightarrow Examine them all!

[HOW TO CHOSE THE BEST MODEL?]

[HOW TO CHOSE THE BEST MODEL?]

► We have several criteria for one model

Introduction

[HOW TO CHOSE THE BEST MODEL?]

- ► We have several criteria for one model
- ► We should again evaluate the classifier based on "unseen" data set

Best classifier •000

Logit

[HOW TO CHOSE THE BEST MODEL?]

- ► We have several criteria for one model
- ► We should again evaluate the classifier based on "unseen" data set
- → Run Cross-Validation an all!

[HOW TO CHOSE THE BEST MODEL?]

- ► We have several criteria for one model
- ▶ We should again evaluate the classifier based on "unseen" data set
- → Run Cross-Validation an all!

[QUIZ TIME]

[QUIZ TIME]

► In classification, the **Confusion matrix** is important

Best classifier

0000

[TAKEAWAYS]

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - *Sensitivity* is accuracy restricted to the positives.

- ▶ In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - ► *Sensitivity* is accuracy restricted to the positives.
 - Specificity is accuracy restricted to the negatives.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - Specificity is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - Specificity is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- ▶ **Logit** is a benchmark parametric model for classification

- ► In classification, the **Confusion matrix** is important
- ► Many adjustment measures: accuracy, sensitivity and specificity.
 - Sensitivity is accuracy restricted to the positives.
 - ► *Specificity* is accuracy restricted to the negatives.
- ▶ When outcome is *imbalanced*, one may use **kappa** has a better measure for accuracy.
 - Which measure you should consider depends on the context and your goal.
- ▶ **Logit** is a benchmark parametric model for classification One may use the **ROC** to change the threshold parameter

Introduction

► Use Training-Validation set to **select** parameters within a model

- ► Use Training-Validation set to **select** parameters within a model
- ► Use Training-Validation set to **compare** models on the same criteria

► Use Training-Validation set to **select** parameters within a model

Logit

- ► Use Training-Validation set to **compare** models on the same criteria
- ► Several criteria / measures of fit / cost functions are available

► Use Training-Validation set to **select** parameters within a model

Logit

- ► Use Training-Validation set to **compare** models on the same criteria
- ► Several criteria / measures of fit / cost functions are available
- ► Time is the limit...