Question 4

• Consider compressive measurements of the form $\mathbf{y} = A\mathbf{x} + \mathbf{v}$ for sensing matrix \mathbf{A} , signal vector \mathbf{x} , noise vector \mathbf{v} and measurement vector \mathbf{y} . Consider the problem P1 done in class: Minimize $\|\mathbf{x}\|_1$ w.r.t. \mathbf{x} such that $\|\mathbf{y} - A\mathbf{x}\|_2 \leq e$. Also consider the problem Q1: Minimize $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2$ w.r.t. \mathbf{x} subject to the constraint $\|\mathbf{x}\|_1 \leq t$. Prove that if \mathbf{x} is a unique minimizer of P1 for some value $e \geq 0$, then there exists some value $t \geq 0$ for which \mathbf{x} is also a unique minimizer of Q1. Note that $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$ stand for the L1 and L2 norms of the vector \mathbf{x} respectively. [15 points] (Hint: Consider $t = \|\mathbf{x}\|_1$ and now consider another vector \mathbf{z} with L1 norm less than or equal to t).

Answer:

P1: $\underset{x}{minimize} \mathbf{x}_1$; s.t. $\mathbf{y}\text{-}\mathbf{A}\mathbf{x}_2 \leq e$

Q1: $\underset{x}{minimize}$ y-Ax₂; s.t. $\mathbf{x}_1 \leq t$

Now, consider **x** to be the unique minimizer for problem P1 for some $e \geq 0$

Let $t = \mathbf{x}_1$

Consider vector $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z} \neq \mathbf{x}$ such that $\mathbf{z}_1 \leq t$

Now since $\mathbf{z}_1 \leq \mathbf{x}_1 = t$ and x is unique minimizer of P1, \mathbf{z} should not satisfy the constraint of P1. Thus,

$$\mathbf{y} - \mathbf{A}\mathbf{z}_2 > e \ge \mathbf{y} - \mathbf{A}\mathbf{x}_2 \tag{1}$$

Above equation implies that \mathbf{x} is the unique minimizer of Q1 problem.

Hence it is proved that, if \mathbf{x} is a unique minimizer of P1 for some $e \geq 0$ then there exists $t \geq 0$ for which \mathbf{x} is also the unique minimizer of Q1