- 1) De realizar un intervalo del 95 % de confianza para μ se puede concluir:
 - a. Con una confianza del 95% el tiempo medio que un científico de la empresa emplea en tareas triviales está entre 7.848 y 12.772 horas a la semana.
 - b. Con una confianza del $95\,\%$ se puede considerar que el tiempo medio que un científico de la empresa emplea en tareas triviales es inferior a 9.6 horas a la semana.
 - Con una confianza del 95 % el tiempo medio que un científico de la empresa emplea en tareas triviales está entre 9.898 y 10.722 horas a la semana.
 - d. Ninguna de las anteriores.

$$J=10.31$$
, $S^{2}=2.25$, $N=750$ y $n=50$
 $T(. \overline{y} + \overline{t_{1-\frac{1}{2}}}, n-1 \le \overline{t}(\overline{y})$ $X=005=77-4/2=0.975$
 $S \ge (\overline{y}) = \sqrt{(1-\frac{n}{N})} \frac{S^{2}}{n} \sim 6.2049$
 $E_{0-975}, 49 = 2.0696$
 $E_{0-975}, 49 = 2.0696$
 $E_{0-975}, 49 = 2.0696$
 $E_{0-975}, 49 = 2.0696$

2) Estime el número total de horas que se pierden a la semana en las tareas insignificantes.

- 3) Construya un intervalo de confianza del 95 % para total de horas que se pierden a la semana en las tareas insignificantes. Según los resultados se puede concluir:
 - a. Con una confianza del $95\,\%$ el número de total de horas que se pierden en la empresa en tareas insignificantes está entre 7711.90 y 7753.10 horas a la semana.
 - b. Con una confianza del $95\,\%$ el número de total de horas que se pierden en la empresa en tareas insignificantes está entre 5886.20 y 9578.80 horas a la semana.
 - c. Con una confianza del $95\,\%$ el número de total de horas que se pierden en la empresa en tareas insignificantes está entre 7609.41 y 7855.59 horas a la semana.
 - d. Con una confianza del 95 % el número de total de horas que se pierden en la empresa en tareas insignificantes está entre 7423.55 y 8041.45 horas a la semana.

El PAPA cono MAE

Un estudiante ha visto L materias a la largo de su Vida universitaria, cada una con Ni créditos y calificación ci, i=n,...,L

Cada nateria es en estrato y la representación del rendiniento en dicha materia es su hota definitiva

PAPA = Machander Nacret Nacret

 $= \left(\frac{N_1}{N}\right) \left(1 + \left(\frac{N_1}{N}\right) \left(2 + \dots + \left(\frac{NL}{N}\right)\right) \left(L\right)$

Parámetro a estimar	Estimador puntual	Varianza estimada del estimador	Intervalo de confianza del $(1-lpha)100\%$	
μ	$ar{Y}_{st} = rac{1}{N} \sum_{i=1}^{L} N_i ar{Y}_i$	$\widehat{Var}\left(ar{Y}_{st} ight) = rac{1}{\mathit{N}^2} \sum_{i=1}^{\mathit{L}} \mathit{N}_i^2 \widehat{\mathit{Var}}\left(ar{Y}_i ight)$	$ar{ extsf{Y}}_{ extsf{st}} \pm t_{lpha/2,n-L} \sqrt{\widehat{ extsf{Var}}\left(ar{ extsf{Y}}_{ extsf{st}} ight)}$	
au	$\widehat{ au}_{st} = N \bar{Y}_{st} = \sum_{i=1}^{L} \widehat{ au}_i$	$\widehat{Var}\left(\widehat{ au}_{st}\right) = N^2 \widehat{Var}\left(\overline{Y}_{st}\right)$	$Nar{Y}_{ extsf{st}} \pm t_{lpha/2,n-L} N \sqrt{\widehat{Var}\left(ar{Y}_{ extsf{st}} ight)}$	
p	$\widehat{p}_{st} = \frac{1}{N} \sum_{i=1}^{L} N_i \widehat{p}_i$	$\widehat{Var}\left(\widehat{ ho}_{st} ight) = rac{1}{\mathit{N}^2} \sum_{i=1}^{\mathit{L}} \mathit{N}_i^2 \widehat{\mathit{Var}}\left(\widehat{ ho}_i ight)$	$\widehat{p}_{st} \pm t_{lpha/2,n-L} \sqrt{\widehat{Var}\left(\widehat{p}_{st}\right)}$	
Α	$\widehat{A}_{st} = N\widehat{p}_{st} = \sum_{i=1}^{L} \widehat{A}_{i}$	$\widehat{Var}\left(\widehat{A}_{st}\right) = N^2 \widehat{Var}\left(\widehat{p}_{st}\right)$	$\widehat{Np}_{st} \pm t_{\alpha/2,n-L} N \sqrt{\widehat{Var}\left(\widehat{p}_{st}\right)}$	

Donde:
$$\bar{Y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$$
, $\widehat{\rho}_i = \frac{a_i}{n_i}$, $S_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} \left(Y_{ij} - \bar{Y}_i \right)^2$ y $n - L = \sum_{i=1}^{L} (n_i - 1)$ $\widehat{Var} \left(\bar{Y}_i \right) = \left(\frac{N_i - n_i}{N_i} \right) \frac{S_i^2}{n_i}$, $\widehat{Var} \left(\widehat{\rho}_i \right) = \left(\frac{N_i - n_i}{N_i} \right) \frac{\widehat{\rho}_i}{n_i - 1}$

Observación: $\hat{V}(\bar{y}_{st}) = \hat{V}(\bar{y}_{st}) = \hat{V}(\bar{y}_{st}) = \hat{V}(\bar{y}_{st}) = \hat{V}(\bar{y}_{st}) = \hat{V}(\bar{y}_{st})$

es la del MAS

Tabla 1.	Número de	hectáreas	nlantadas	de árboles	nor estrato.
rabia r.	radificio de	nectareas	piantadas	de arbores	por cauato.

Tible 1. Pramero de necureas plantadas de arobres por estado.							
Estrato 1		Estrato 2		Estrato 3		Estrato 4	
0 – 200 hectáreas		201 – 400 hectáreas		401 – 600 hectáreas		Más de 600 hectáreas	
N ₁ =86		N ₂ =72		N ₃ =52		N ₄ =30	
n ₁ =14		n ₂ =12		n₃=9		n ₄ =5	
97	67	125	155	142	256	167	
42	125	67	96	310	440	220	
25	92	256	47	495	510	780	
105	86	310	326	320	396	655	
27	43	220	352	196	-	540	
45	59	142	190	-		-	
53	21		-	-		-	

4) Realice una estimación para el número promedio de hectáreas plantadas de árboles en los ranchos de los estratos 1 y 2, y realice su respectivo intervalo de confianza del 95 %. Concluya.

Solo hacer MAS en los estratos 1 y 2

Estrato 1

Estrato 2

- 5) Al realizar una estimación para el número promedio de hectáreas plantadas de árboles en los ranchos del estado, y su respectivo intervalo de confianza del 95 %, se obtiene:
 - a. 212.69 y (205.6, 312.8)
 - b. 207.4399 y (173.8382, 259.45)
 - c. 212.942 y (177.4371, 249.62)
 - **A**. Ninguna de las anteriores

$$N = \frac{4}{50} N_{50} - 240$$

$$\sqrt{50} = \frac{4}{50} N_{50} - \frac{86}{246} C_{3.5} + \frac{71}{240} 190.5 + \frac{52}{246} 346.56 + \frac{30}{240} 472.4$$

$$= \frac{4}{50} N_{50} - \frac{86}{246} C_{50} + \frac{30}{240} C_{50} + \frac{30}{240}$$

ICh: Yst 1 E0-975, n-L SE (Yst), n- 1/2 min, l- Hestrator 4

SE (Yst) = (Nin) V (Yin), V (Yin) = (n- mi/Ni) Sin Estrator Estrator Estrator Estrator (Tr) = 64.0935 $\mathcal{O}(Y_1) = 735.8649$ $\mathcal{O}(Y_2) = 1543.064$ $\mathcal{O}(Y_4) = 12062.7167$ $SE(VSE) - (\frac{86}{246})^{64.6935+} (\frac{71}{240})^{775.8649} + (\frac{52}{246})^{7543.064} + (\frac{30}{240})^{712061.7167}$ ~ 18.31327 Logas, 36 = 2.028094 AST et IC pour M es (175.549,249.831) 6) Encuentre un intervalo de confianza del 90 % para el total de hectáreas plantadas en los ranchos del estado. Hay que tener en cuenta que el aivel de configura no es 9.7. y por Eanto no se puede multiplicar por N el IC anterior EIIC Para C está dudo por N Vs. + togs, 3c NSE(Vs.) (0.75, 36 = 1.6883 =) (43625.72,58465.98)

П						
l		Estrato1	Estrato2	Estrato3.	Estrato4.	
1		Ovejas que tienen	e tienen Ovejas que tienen entre Ovejas que tienen entre Ovejas que tienen		Ovejas que tienen más	
l		hasta dos años	tres y cuatro años	cinco y seis años	de seis años	NI
	Número de ovejas	110	70	45	25	ー 1½
	Número de ovejas muestreadas	40	28	19	11 (الذيما
	Proporción de ovejas infectadas	15%	50%	52%	63% (-	Pi
1						1-0

- 7) Realice una estimación para la proporción de ovejas con Maedi en la explotación, así como su respectivo intervalo de confianza del $95\,\%$. De lo anterior se puede concluir.
- a. Con una confianza del 95 % la proporción de ovejas en la explotación con Maedi se encuentra entre 73,2481 y 108,0519.
- ∀. Con una confianza del 95 %, se puede afirmar que la proporción de ovejas con Maedi en la explotación se encuentra entre 0,293 y 0,432.
- c. Con una confianza del 95 % la proporción de ovejas en la explotación con Maedise encuentra entre $73{,}24\,\%$ y $108{,}05\,\%.$
- d. El porcentaje de ovejas en la explotación con Maedi se encuentra entre 0,0293 y 0,432, a un nivel de confianza del 95 %.

$$\hat{p} = \frac{4}{1-1} \left(\frac{N_{ij}}{N} \right) \hat{p}_{ij} = 0.3676 \quad \hat{se}(\hat{p}) = 0.35049$$

8) El encargado de la explotación asegura que el total de ovejas en la explotación que tienen menos de dos años y están infectadas con Maedi es de 43. ¿Tiene razón el encargado? Use $\alpha = 0.05$.

[| ch (argado Liene ratón (¿porquí?)