Data Structures and Algorithms

ISI-Delhi

Instructor: Krishnendu Mukhopadhyaya

Problems Session 1

Asymptotic Notations

Problem 1

For each row i, indicate whether A_i is in \mathcal{O} , Ω , or Θ of B_i . Mark all that apply. The first two rows are examples.

A	В	O	Ω	Θ
5n	n	√	✓	√
5	n	√		
n^2	$2^{10}n$			
$(7/8)^n$	$(8/7)^n$			
8^n	4^n			
n^5	$32^{\log n}$			
n^{2025}	2025^n			
$n^{0.8}$	$(0.8)^n$			
$n^{\log 3}$	$3^{\log n}$			
$\log(n!)$	$\log(n^n)$			
$n^{1/\log n}$	1			
$\log^7 n$	$n^{0.7}$			
$\log \sqrt{n}$	$4^{\sqrt{n}}$			
$\log(\sqrt{n})$	$\sqrt{\log n}$			

Problem 2

Prove the following:

a)
$$3n^3 + 4n^2 = \mathcal{O}(n^3)$$

b)
$$16^n$$
 is not $\mathcal{O}(2^n)$

Problem 3

Use a recursion tree to determine a good asymptotic upper bound on the recurrence

$$T(n) = 3T(\lfloor \frac{n}{2} \rfloor) + n.$$

Then use the substitution method to verify your bound. Clearly state your final asymptotic result in Big-Theta notation.

Problem 4

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- a) f(n) = O(g(n)) implies g(n) = O(f(n)).
- **b)** $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c) f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- d) f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
- e) $f(n) = O((f(n))^2)$.
- f) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- g) $f(n) = \Theta(f(n/2))$.
- **h)** $f(n) + o(f(n)) = \Theta(f(n)).$

Problem 5

Let

$$p(n) = \sum_{i=0}^{d} a_i n^i,$$

where $a_d > 0$, be a degree-d polynomial in n, and let k be a constant. Use the definitions of the asymptotic notations to prove the following properties:

- a) If $k \ge d$, then $p(n) = O(n^k)$.
- **b)** If $k \leq d$, then $p(n) = \Omega(n^k)$.
- c) If k = d, then $p(n) = \Theta(n^k)$.
- **d)** If k > d, then $p(n) = o(n^k)$.
- e) If k < d, then $p(n) = \omega(n^k)$.