GISC 7365: Advanced Remote Sensing

Analyzing forest fires using Active Forest Fire Detection Algorithm from Landsat 8 OLI/TRS Data – A case study of Thomas Fire occurred in Santa Barbara, Ventura Counties CA.

May 1st 2018

Rohit Venkat Gandhi Mendadhala MS GIS rxm160030@utdallas.edu

Contents

- Background, Idea and Motivation
- Objectives
- Introduction
- Study Area
- Data Acquisition & Conversion
- Methodology and Analysis
- Results
- Conclusions and Future Findings

Background:

Forest Fires

- Most common hazard in forests.
- As old as forests themselves.
- Analyzing forest fire help us to determine many important
- 2017 wild fire assessment More than 40,000 acres burnt.
- Dangerous spread rate.
- Affects environment, human health.
- Recent Thomas fire loss \$123,836,000.
- It is essential to monitor and control their vast spread

Fire Report for United States 1 Jan 2017 - 30 Apr 2018

During this time period, there were 222,430

GREATEST NUMBER OF FIRE ALERTS BY STATE 1 JAN 2017 - 30 APR 2018

S	tate	#	
(alifornia	20536	•
٨	lontana	16542	•
(ieorgia	15795	•
T	exas	15401	•
F	lorida	14503	•
C	klahoma	14213	•
C	regon	10852	•
K	ansas	10604	•
10	daho	9367	•
A	labama	8174	•

Major Causes:

- Naturally Caused:
 - Combustion of dry fuel
 - Can be due to sandust and leaves.
 - Majority of Burnt Area
 - Not that easy to stop or control.
- Human Caused:
 - Smoking
 - Recreation
 - Equipment generated
 - Miscellaneous
 - Detected early by fire-fighters

How Remote Sensing and GIS can be used to control this?

Remote Sensing and GIS in Forest Fire Management

Remotely sensed data and GIS analysis may be used in all phases of a fire management programme.

✓ Forest Fire Management related Remote Sensing (and GIS) applications

Pre-fire planning

- Vegetation dryness mapping and monitoring
- Fire tower visibility analysis etc.
- Fuel type mapping (eg. ArcFuel)

During fire (assist operations)

Fire Suppression

Post-fire impact assessment

- o Burned area mapping
- o Operational Burned Area Mapping at National Level
- Burn Severity mapping
- Short and long term damage assessment

Major Objectives:

- Analyzing Thomas Fire Occurrences.
- Applying decision rules based on literature for identifying fire pixels.
- Automating Batch Composite Imagery Generation for Image Analysis.
- Generating burn severity map post Thomas fire using NBR.
- Comparison of obtained fire pixels with Modis Data.

Thomas Fire Statistics and Brief Introduction:

- Massive wild fire which affected Santa Barbara and Ventura Counties
- December 4th 2017 to January 12th 2018.
- Largest blaze in the history of CA.
- Nearly 282k acres burnt area. (> Dallas + Miami)
- More than 1000 structures destroyed.
- Cause still under investigation.
- One of the multiple wild fires which has ignited California in 2017.
- Other fires
 - Rye Fire
 - Creek Fire.

MODIS Aqua

M

Data Acquired:

- Landsat 8 (OLI/TRS) Level II data was acquired from USGS Earth Explorer.
- County level data was obtained
- Foot Prints were taken carefully.
- Dates Acquired
 - Before Fire: 23rd Nov
 - During Fire: 9th Dec, 25th Dec, 10th Jan
 - After Fire: 26th Jan
- WRS Path and Row: 42 and 36
- Projection System: UTM, Zone 11
- Datum: WGS 1984

Timeline and History of Landsat Missions

Landsat Band Acquisitions

Table 1. Display and comparison of the bands and wavelengths of each Landsat sensor. Instrument-specific relative spectral response functions can be viewed and compared using the U.S. Geological Survey Spectral Viewer tool: https://landsat.usgs.gov/spectral-characteristics-viewer.

[OLI, Operational Land Imager; TIRS, Thermal Infrared Sensor; ETM+, Enhanced Thematic Mapper Plus; TM, Thematic Mapper; MSS, Multispectral Scanner; --, not applicable]

Band designations Coastal/Aerosol	Landsat band wavelength comparisons All bands 30-meter resolution unless noted									
	L8 OLI/TIRS		L7 ETM+		L4-5 TM		L4-5 MSS*		L1-3 MSS*	
	Band 1	0.43-0.45								
Blue	Band 2	0.45-0.51	Band 1	0.45-0.52	Band 1	0.45-0.52				
Green	Band 3	0.53-0.59	Band 2	0.52-0.60	Band 2	0.52-0.60	Band 1	0.5-0.6 *	Band 4	0.5-0.6 *
Panchromatic	Band 8**	0.50-0.68	Band 8 **	0.52-0.90						
Red	Band 4	0.64-0.67	Band 3	0.63-0.69	Band 3	0.63-0.69	Band 2	0.6-0.7 *	Band 5	0.6-0.7 *
Near-Infrared	Band 5	0.85-0.88	Band 4	0.77-0.90	Band 4	0.76-0.90	Band 3	0.7-0.8 *	Band 6	0.7-0.8 *
Near-Infrared							Band 4	0.8-1.1 *	Band 7	0.8-1.1*
Cirrus	Band 9	1.36-1.38					* Acquired at 79 meters, resampled to 60 meters ** 15-meter (panchromatic)			
Shortwave Infrared-1	Band 6	1.57–1.65	Band 5	1.55–1.75	Band 5	1.55–1.75				
Shortwave Infrared-2	Band 7	2.11–2.29	Band 7	2.09–2.35	Band 7	2.08-2.35	T1 = Thermal (acquired at 100 meters, resampled to 30 meters) T2 = Thermal (acquired at 120 meters, resampled to 30 meters)			
Thermal	Band 10 T1	10.60-11.19	Band 6 T2	10.40-12.50	Band 6 T2	10.40-12.50				
Thermal	Band 11 T1	11.50-12.51								

Landsat Band Usage

Table 2. The bands of each Landsat satellite and descriptions of how each band is best used.

[--, not applicable]

Uses of Landsat bands						
Band name	L8 OLI/TIRS	L7 ETM+	L4-5 TM	L4-5 MSS	L1-3 MSS	Description of use
Coastal/Aerosol	Band 1					Coastal areas and shallow water observations; aerosol, dust, smoke detection studies.
Blue (B)	Band 2	Band 1	Band 1			Bathymetric mapping; soil/vegetation discrimination, forest type mapping, and identifying manmade features.
Green (G)	Band 3	Band 2	Band 2	Band 1	Band 4	Peak vegetation; plant vigor assessments.
Red (R)	Band 4	Band 3	Band 3	Band 2	Band 5	Vegetation type identification; soils and urban features.
Near-Infrared (NIR)	Band 5	Band 4	Band 4	Band 3	Band 6	Vegetation detection and analysis; shoreline mapping and
				Band 4	Band 7	biomass content.
Shortwave Infrared-1 (SWIR-1)	Band 6	Band 5	Band 5			Vegetation moisture content/drought analysis; burned and fireaffected areas; detection of active fires.
Shortwave Infrared-2 (SWIR-2)	Band 7	Band 7	Band 7			Additional detection of active fires (especially at night); plant moisture/drought analysis.
Panchromatic (PAN)	Band 8	Band 8				Sharpening multispectral imagery to higher resolution.
Cirrus	Band 9					Cirrus cloud detection.
Thermal (T)	Band 10	Band 6	Band 6			Ground temperature mapping and soil moisture estimations.
	Band 11					

Why SWIR is considered over TIR?

TIR:

- Thermal sensors detect warm object over a cool background.
- May not detect accurately because of high resolution 100m in Landsat 8.

SWIR:

- Provides high resolution (30m)
- Pin points sites of active burning.
- Detect hot spots and estimate where the fire is burning the hottest

Source: USGS

Data Prep: Making Batch Composites from Satellite Imagery Bands using ArcPy

Primary task for any Satellite Image Analysis

Landsat Imagery Band (7,5,2) Combination

Pre Fire Post Fire

Methodology:

- Top of Atmospheric reflectance conversions are performed in order to remove haze and atmospheric disturbances while satellite images are acquired.
- The main goal is to obtain imagery which represents solar radiation incident on the instrument independent of position of sun w.r.t earth.
- Main advantage of doing this is two TOA images can be compared which are acquired at a different dates.

$$\rho_{\lambda}' = M_{\rho}Q_{cal} + A_{\rho} \qquad \text{Eq 1}$$

$$\rho_{\lambda} = \frac{\rho_{\lambda'}}{\sin(\theta_{SE})} \qquad \text{Eq 2}$$

Fire Pixel Extraction Flow

Active Fire Pixel detection from Landsat 8 data - 9th Dec, 2017

Active Fire Pixel detection from Landsat 8 data - 25th Dec, 2017

Normalized Burn Ratio:

An Overview:

- Similar to NDVI except that it uses NIR and SWIR wavelengths
- Useful for highlighting the burned areas and estimate the fire intensity.
- Calculated as NBR = (NIR SWIR)/(NIR + SWIR)

Burn Severity:

- Imagery collected before a fire will have a very high infrared values and low mid infrared values, which is exactly inverse for the imagery collected after a fire.
- Normalized Burn Difference is given by

dNBR or ∆NBR = PrefireNBR - PostfireNBR

- Higher dNBR indicates more severe damage.
- But if we have areas with any negative dNBR values, it means there is an increased vegetation productivity after a fire.

Source: http://gsp.humboldt.edu

Burn Severity Difference (Pre and Post Thomas Fire)

Last Updated: 2018-04-29 01:12 GMT Version: VIIRS 375 m

Conclusions & Possible Future Findings:

- Active fire spots are identified using fire detection algorithm.
- Accuracy Assessment was performed manually using MODIS fire points with an accuracy of 70-80%
- Burn Severity Map is generated showing the Pre-Burn and Post Burn Scenario.
- Steady raise in Landsat class data may create new opportunities in the field of forest fire management activities
- With LandSAT 9 possible launch in 2020, better quality of imagery can obtained and analyzed using image processing techniques.
- With few more satellites launched the increase in temporal resolution can provide us with a better solution in detecting forest fires.

References (Links and Texts)

- Bastarrika. A.; Chuvieco, E. Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two phase algorithm: Balancing omission and commission errors. *Remote Sensing of Environment*. 2011. 105:1003-1012
- Wilfrid Schroeder, Patricia Oliva, Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment 185 (2016) 210–220
- http://www.harrisgeospatial.com/Learn/Blogs/Blog-Details/TabId/2716/ArtMID/10198/ArticleID/15691/The-Many-Band-Combinations-of-Landsat-8.aspx
- https://landsat.usgs.gov/using-usgs-landsat-8-product

Thank you for your time

Queries??