Components of a data platform

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

Oliver Willekens

Data Engineer at Data Minded

Course contents

- ingest data using Singer
- apply common data cleaning operations
- gain insights by combining data with PySpark
- test your code automatically
- deploy Spark transformation pipelines
- => intro to data engineering pipelines

Data is valuable

Democratizing data increases insights

Genesis of the data

Operational data is stored in the landing zone

Cleaned data prevents rework

The business layer provides most insights

Pipelines move data from one zone to another

Let's reason!

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

Introduction to data ingestion with Singer

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

Oliver Willekens

Data Engineer at Data Minded

Singer's core concepts

Aim: "The open-source standard for writing scripts that move data"

Singer is a specification

- data exchange format: JSON
- extract and load with taps and targets
 - => language independent

Singer's core concepts

Aim: "The open-source standard for writing scripts that move data"

Singer is a specification

- data exchange format: JSON
- extract and load with taps and targets
 - => language independent
- communicate over streams:
 - schema (metadata)
 - state (process metadata)
 - record (data)

Singer's core concepts

Aim: "The open-source standard for writing scripts that move data"

Singer is a specification

- data exchange format: JSON
- extract and load with taps and targets
 - => language independent
- communicate over streams:
 - schema (metadata)
 - state (process metadata)
 - record (data)

Describing the data through its schema

```
columns = ("id", "name", "age", "has_children")
users = {(1, "Adrian", 32, False),
         (2, "Ruanne", 28, False),
         (3, "Hillary", 29, True)}
json_schema = {
    "properties": {"age": {"maximum": 130,
                           "minimum": 1,
                           "type": "integer"},
                   "has_children": {"type": "boolean"},
                   "id": {"type": "integer"},
                   "name": {"type": "string"}},
    "$id": "http://yourdomain.com/schemas/my_user_schema.json",
    "$schema": "http://json-schema.org/draft-07/schema#"}
```

Describing the data through its schema

```
{"type": "SCHEMA", "stream": "DC_employees", "schema": {"properties":
{"age": {"maximum": 130, "minimum": 1, "type": "integer"}, "has_children":
{"type": "boolean"}, "id": {"type": "integer"}, "name": {"type": "string"}},
"$id": "http://yourdomain.com/schemas/my_user_schema.json",
"$schema": "http://json-schema.org/draft-07/schema#"}, "key_properties": ["id"]}
```

Serializing JSON

```
import json
json.dumps(json_schema["properties"]["age"])
'{"maximum": 130, "minimum": 1, "type": "integer"}'
with open("foo.json", mode="w") as fh:
    json.dump(obj=json_schema, fp=fh) # writes the json-serialized object
                                       # to the open file handle
```

Let's practice!

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

Running an ingestion pipeline with Singer

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

Oliver Willekens

Data Engineer at Data Minded

Streaming record messages

```
columns = ("id", "name", "age", "has_children")
users = {(1, "Adrian", 32, False),
         (2, "Ruanne", 28, False),
         (3, "Hillary", 29, True)}
singer.write_record(stream_name="DC_employees",
                    record=dict(zip(columns, users.pop())))
{"type": "RECORD", "stream": "DC_employees", "record": {"id": 1, "name": "Adrian", "age": 32, "has_children": false}}
fixed_dict = {"type": "RECORD", "stream": "DC_employees"}
record_msg = {**fixed_dict, "record": dict(zip(columns, users.pop()))}
print(json.dumps(record_msg))
```


Chaining taps and targets

```
# Module: my_tap.py
import singer
singer.write_schema(stream_name="foo", schema=...)
singer.write_records(stream_name="foo", records=...)
```

Ingestion pipeline: **Pipe** the tap's output into a Singer target, using the **I** symbol (Linux & MacOS)

```
python my_tap.py | target-csv

python my_tap.py | target-csv --config userconfig.cfg

my-packaged-tap | target-csv --config userconfig.cfg
```

Modular ingestion pipelines

```
my-packaged-tap | target-csv
my-packaged-tap | target-google-sheets
my-packaged-tap | target-postgresql --config conf.json
```

```
tap-custom-google-scraper | target-postgresql --config headlines.json
```

Keeping track with state messages

Keeping track with state messages

id	name	last_updated_on
1	Adrian	2019-06-14T14:00:04.000+02:00
2	Ruanne	2019-06-16T18:33:21.000+02:00
3	Hillary	2019-06-14T10:05:12.000+02:00

```
singer.write_state(value={"max-last-updated-on": some_variable})
```

Run this tap-mydelta on 2019-06-14 at 12:00:00.000+02:00 (2nd row wasn't yet present then):

```
{"type": "STATE", "value": {"max-last-updated-on": "2019-06-14T10:05:12.000+02:00"}}
```

Let's practice!

BUILDING DATA ENGINEERING PIPELINES IN PYTHON

