Лабораторная работа 10.1 Электронный парамагнитный резонанс

Дещеня Владимир, группа Б02-825

Цель работы: исследовать парамагнитный резонанс в молекуле ДФПГ, определить g-фактор электрона, измерить ширину линии ЭПР

Теоретическая справка

Энергетический уровень электрона в присутствии магнитного поля с индукцией В расщепляется на, два подуровня, расстояние между которыми равно

$$\Delta E = 2\mu B \, (1)$$

Между этими двумя уровнями возможны переходы. Эти переходы могут возбуждаться внешним высокочастотным электромагнитным полем, если оно имеет нужную частоту. Резонансное значение частоты определяется из формулы

$$h\nu_0 = \Delta E = 2\mu B \, (2)$$

Поворот спина могут осуществлять только неспаренные электроны образца, поэтому ЭПР является важным методом исследования парамагнетиков. В данной работе исследуется свободный радикал ДФПГ, имеющий неспаренные электроны.

В присутствии резонансного поля между уровнями возникают индуцированные переходы, ведущие к тому, что заселенность верхнего уровня растет, а нижнего — падает. Восстановление теплового равновесия в заселенностях уровней осуществляется благодаря передаче энергии возбуждения другим степеням свободы тела. Ширина уровня связана со временем релаксации соотношением неопределённости

$$\Delta E \simeq \frac{h}{\tau} \to \Delta \nu \simeq \frac{1}{\tau}$$
 (3)

Связь между магнитным моментом и электрона и его механическим моментом М выражается через гиромагнитное отношение

$$\mu = \gamma M$$

Для проекций M и μ на любое выбранное направление тогда справедливо

$$\frac{\mu}{\mu_B} = \frac{gs\hbar}{\hbar}$$

где s = 1/2 - спин электрона, μ_B - магнетон Бора.

Тогда g-фактор выражается как
$$g=\frac{h\nu}{\mu_B B}$$
. (4)

Чисто спиновый характер магнетизма в ДФПГ (у него практически отсутствует орбитальный магнетизм) приводит к тому, что парамагнитный резонанс на неспаренных электронах происходит почти как на свободных частицах.

Экспериментальная установка

Для наблюдения электронного парамагнитного резонанса нужно поместить исследуемое вещество в магнитное поле и измерить поглощение электромагнитного излучения, частота которого удовлетворяет соотношению (2). Применяются устройства, сосредоточивающие энергию электромагнитного поля в объеме образца, например, колебательный контур, в катушку которого помещено исследуемое вещество. Наблюдение электронного парамагнитного резонанса состоит в сравнении добротности катушки в условиях резонанса и при расстройке, когда условие резонанса не выполняется. В нашей установке для наблюдения ЭПР применяется модуляция магнитного поля.

Основной частью радиоспектроскопа является колебательный контур, состоящий из катушки индуктивности и плоского конденсатора. Основное магнитное поле в образце создается с помощью двух соосно расположенных катушек, модулирующее поле создается с помощью дополнительных катушек. Общая ось основных и дополнительных катушек перпендикулярна оси катушки индуктивности контура. Электромагнитные колебания в контуре возбуждаются генератором радиочастотного диапазона. Сигнал с контура наблюдается на осциллографе.

Ход работы

1. Настройка резонансного поля

Резонансная частота $\nu_0 = 126 \pm 0.1$ МГц.

Частоты, при которых амплитуда понижается в 2 раза:

$$u_{+1/2} = 126.4 \pm 0.1 \,\mathrm{MF}$$
ц, $u_{-1/2} = 125.6 \pm 0.1 \,\mathrm{MF}$ ц

Погрешность частоты определяется из паспорта генератора ВЧ Г4-116[1]: 0.1% при измерении дольше 15ти минут.

Добротность определяется как $Q=\frac{\nu_0}{\nu_{+1/2}-\nu_{-1/2}}=94\pm21$, а ее погрешность рассчитана

по формуле
$$\sigma_Q = Q \sqrt{\frac{\sigma_{\nu_0}^2}{\nu_0^2} + \frac{\sigma_{\nu_{+1/2}}^2 + \sigma_{\nu_{-1/2}}^2}{(\nu_{+1/2} - \nu_{-1/2})^2}}$$

Напряжение на вольтметре, измеряющего падение напряжения на резисторе в цепи основных катушек $V_R=63.62\pm0.23\,\mathrm{mB}$.

Погрешность измерения напряжения определена из паспорта вольтметра GDM-8145[2]: 0.3% + 4ед младшего разряда

2. Определение амплитуды модуляции магнитного поля и ширины линии ЭПР.

$$A=(6.4\pm0.3)$$
 дел - размах резонансного пика в X – Y развертке $A_{1/2}=(1.8\pm0.3)$ дел - ширина на полувысоте

Погрешность рассчитывается как $\sigma_{\!A}=\sqrt{2}\sigma_{\!x},$ где $\sigma_{\!x}=0.2$ дел - погрешность определения точки на экране осциллографа.

Поднесем пробную катушку к образцу и определим ЭДС индукции ε , возникающую в ней. Параметры пробной катушки: $D=14.6\pm0.1$ мм, $N_k=46$ витков. Погрешности из [2].

$arepsilon_i$, mB	0,936	0,935	0,929	0,943	0,929	0,941
$\sigma_{\!arepsilon_{\!i}}$, mB	0,007	0,007	0,007	0,007	0,007	0,007

Тогда $\varepsilon=0.935\pm0.008\,\mathrm{mB}$, где погрешность посчитана как корень суммы квадратов систематической и случайной погрешностей(N=6 - количество точек)

$$\sigma_{\varepsilon} = \sqrt{\sigma_{\text{CM}}^2 + \sigma_{\text{CMCT}}^2}, \quad \sigma_{\text{CM}} = \frac{1}{\sqrt{N(N-1)}} \sqrt{\sum_{i=1}^{N} \left(\varepsilon_i - \varepsilon\right)^2}, \quad \sigma_{\text{CMCT}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \sigma_{\varepsilon_i}^2}$$

Тогда амплитуда модулирующего поля $B_{mod}=rac{2\sqrt{2}\,arepsilon}{\pi^2D^2N_k
u}=0.547\pm0.016\,\mathrm{мTл},$ где $u=50\,\mathrm{\Gamma}$ ц -

частота модулирующего напряжения, а погрешность
$$\sigma_{B_{mod}} = B_{mod} \sqrt{4 \frac{\sigma_D^2}{D^2} + \frac{\sigma_{\varepsilon}^2}{\varepsilon^2} + \frac{\sigma_{\nu}^2}{\nu^2}}$$

Полуширина линии ЭПР: $\Delta B = \frac{A_{1/2}}{A} B_{mod} = 0.15 \pm 0.03$ мТл, где погрешность

$$\sigma_{\Delta B} = \Delta B \sqrt{\frac{\sigma_{B_{mod}}^2}{B_{mod}^2} + \frac{\sigma_{A_{1/2}}^2}{A_{1/2}^2} + \frac{\sigma_A^2}{A^2}}$$

3. Калибровка поля ЭМ

Найдем коэффициент пропорциональности k между падением напряжения на резисторе U_R и величиной ЭДС на пробной катушке U. Для контроля однородности поля будем делать измерения при вносе катушки спереди(U_1) и сзади(U_2) установки. Погрешности взяты из паспорта прибора[2].

U_{R} , mB	4,09	5,49	6,67	8,10	9,36	10,96
σ_{U_R} , mB	0,05	0,06	0,06	0,06	0,07	0,07
U_1 , ${\sf MB}$	0,774	0,937	1,131	1,501	1,705	1,986
σ_{U_1} , мВ	0,006	0,007	0,007	0,009	0,009	0,010
U_2 , MB	0,689	0,923	1,230	1,483	1,702	2,007
σ_{U_2} , мВ	0,008	0,009	0,010	0,010	0,011	0,012

Калибровочные прямые для пробной катушки

Используем МНК такой, что зависимость $U=k\cdot U_R$ проходит через ноль (так как

$$U|_{U_R=0}=0$$
): $k_i=rac{\left\langle U_iU_R
ight
angle}{\left\langle U_R^2
ight
angle}, \quad \sigma_{k_i}=rac{1}{\sqrt{N}}\sqrt{rac{\left\langle U_i^2
ight
angle}{\left\langle U_R^2
ight
angle}}-k^2$

Здесь N=6 - число точек. Коэффициенты наклона получившихся калибровочных прямых:

$$k_1 = 0.180 \pm 0.002$$

 $k_2 = 0.181 \pm 0.002$

Тогда $k = 0.180 \pm 0.002$

Индукция основного магнитного поля
$$B_0=\frac{4kV_R}{\pi\omega D^2N_k}=4.65\pm0.08\,\mathrm{mT}$$
л, где $\omega=2\pi\nu$ погрешность $\sigma_{B_0}=B_0\sqrt{\frac{\sigma_k^2}{k^2}+\frac{\sigma_{V_R}^2}{V_R^2}+4\frac{\sigma_D^2}{D^2}}$

Тогда g-фактор электрона
$$g=\frac{h\nu_0}{\mu_B B_0}=1.95\pm0.06$$
, где $\sigma_g=g\sqrt{\frac{\sigma_{\nu_0}^2}{\nu_0^2}+\frac{\sigma_{B_0}^2}{B_0^2}}$

Вывод

В ходе лабораторной работы было исследовано явление электронного парамагнитного резонанса. Резонанс был обнаружен на частоте $\nu_0=126\pm0.1\,$ МГц при значении индукции магнитного поля $B_0=4.65\pm0.08\,$ мТл. Рассчитанное значение спина электрона $g=1.95\pm0.06\,$ хорошо соотносится с теоретическим $g_{th}=2.0036\,$ [3].

Ссылки

- [1] http://www.spectr-sks.ru/product/25086
- [2] http://printsip.ru/radioizmeritelnye-pribory/voltmetry/voltmetry-universalnye-v7/item/gdm-8145
- [3] https://mipt.ru/upload/medialibrary/1f0/esr_description2016-2-opisanie.pdf