Забележка 4.1. Мерките μ^+ и μ^- , свързани с коя да е мярка μ , ще наричаме съответно положителна и отрицателна част на μ . Разлагането $\mu = \mu^+ - \mu^-$ на една мярка μ на положителна и отрицателна част (както и представянето на случайните величини във вида $\xi = \xi^+ - \xi^-$) е изключително полезно свойство, позволяващо редица твърдения за μ да се доказват чрез съответните твърдения за положителните мерки μ^+ и μ^- . Разбира се, и множеството (на Жордан-Хан) $\mathbf D$, свързано с мярката μ както в теорема 1, е съществена характеристика на μ , заедно с μ^+ и μ^- многократно ще се използува по-нататък.

Следствие 4.1. Мярката μ в (Ω, \mathbf{P}) е ограничена тогава и само тогава, когато $\mu(\Omega) < \infty$.

Доказателство. Според теорема 1 за всяко $A \in \mathfrak{F}$ имаме

$$-\infty \le -\mu^-(\Omega) \le -\mu^-(A) \le \mu(A) \le \mu^+(A) \le \mu^+(\Omega) \le +\infty,$$

където $\mu^+ = \mu(\Omega) + \mu^-(\Omega)$. Следователно, определението за ограниченост $\sup_{A \in \mathfrak{F}} |\mu(A)| < \infty$ е еквивалентно на $\mu^+(\Omega) < \infty$ и еквивалентно на $\mu(\Omega) < \infty$.

Определение 4.1. Ограничената мярка μ се нарича абсолютно непрекъсната ($\mu \ll \mathbf{P}$) относно вероятността \mathbf{P} в (Ω, \mathbf{P}), а ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че при $\mathbf{P}(A) \leq \delta$ имаме $|\mu(A)| \leq \varepsilon$, $A \in \mathfrak{F}$.

Определение 4.2. Положителната и ограничена мярка μ се нарича сингулярна ($\mu \perp \mathbf{P}$) относно вероятността \mathbf{P} в (Ω, \mathbf{P}) , ако съществува множество $\S \in \mathfrak{F}$ такова, че $\mu(\overline{S}) = \mathbf{P}(S) = 0$.

Следващата теорема показва, че всяка мярка в едно вероятностно пространство може да се разложи на абсолютно непрекъсната и сингулярна компонента.

Теорема 4.1 (Лебег). Нека $(\Omega, \mathfrak{F}, \mathbf{P})$ е вероятностно пространство и μ е ограничена (и положирелна) мярка в (Ω, \mathbf{P}) . Тогава

1) Съществува интегруема (и положителна) случайна величина ξ и **P**-нулево (**P**(N) = 0) подмножество N в ($\Omega, \mathfrak{F}, \mathbf{P}$), такива че

(4.12)
$$\mu(A) = \int_{A} \xi d\mathbf{P} + \mu(A \cap B), A \in \mathfrak{F}$$

- 2) Разлагането (4.12) на мярката μ като сума на неопределен интеграл по вероятността \mathbf{P} и мярка, сингулярна относно \mathbf{P} , е единствено.
- 3) Ако μ е положителна мярка, то ξ е най-голямата (с точност до \mathbf{P} -еквивалентсност) случайна величина, за която е изпълнено $\mathbf{I}_{\xi}(A) = \int_{A} \xi d\mathbf{P} \leq \mu(A), \ A \in \mathfrak{F}.$

Доказателство. Ключов момент в доказателството е 3), съпоставящо на всяка ограничена и положителна мярка енда неотрицателна случайна величина (клас от **P**-еквивалентни с.в.). Ще предполагаме, че μ е положителна ограничена мярка. С помощта на теорема 1 читателят сам ще се убеди, че изискването за положителност не е съществено.

А. Дефинираме класа

$$\mathscr{L} = \{ (\text{класове } \mathbf{P}\text{-еквивалентни}) \text{ с.в. } \eta \geq 0 : \mathbf{I}_{\eta}(A) \leq \mu(A), A \in \mathfrak{F} \}.$$

Класът \mathscr{L} има свойствата:

- (a) $0 \in \mathcal{L}$
- (6) Ako $\eta_1, \eta_2 \in \mathcal{L}$, to $sup(\eta_1, \eta_2) \in \mathcal{L}$.
- (в) Ако $\{\eta_n, n \geq 0\} \subseteq \mathcal{L}$ е **Р**-п.с. растяща редица от случайни величини, то $\eta = \uparrow \lim \eta_n \in \mathcal{L}$.

Наистина, (Aa) е очевидно, понеже μ е положителна мярка. Понататък, ако $B = \{\omega : \eta_1 \geq \eta_2\}$, то

$$\int_{A} \sup(\eta_{1}, \eta_{2}) d\mathbf{P} = \inf_{A \cap B} \eta_{1} d\mathbf{P} + \inf_{A \cap \overline{B}} \eta_{2} d\mathbf{P}$$

$$\leq \mu(A \cap B) + \mu(A \cap \overline{B}) = \mu(A), A \in \mathfrak{F},$$

което доказва (Аб). Най-после, свойство (Ав) следва от непрекъснатостта на лебеговия интеграл относно монотонна сходимост (вж. гл. 3).

В. Ще покажем, че класът $\mathscr L$ има максимален лемент, т.е. , че съществува случайна величина $\xi \in \mathscr L$ със свойството

(4.13)
$$\xi \ge \eta \mathbf{P} - \text{n.c.}, \eta \in \mathcal{L}.$$

Б. а) На всяко **изброимо** семейство $\{\eta_j, j \in J\} \subseteq \mathscr{L}$ да съпоставим случайна величина $\eta_j = \sup_{j \in J} \eta_j \in \mathscr{L}$ (вж. свойство (Ав) по-горе). Нека $M = \sup_{J = \text{изброимо}} \mathbf{E} \eta_J \leq \mu(\Omega) < \infty$. Точната горна граница **М** се достига за някой елемент $\eta_{J_0} \in \mathscr{L}$. Действително, за всяко n > 1

съществува изброимо семейство $\{\eta_j, j \in J_n\}$, такова че $\mathbf{E}\eta_{J_n} \geq M - \frac{1}{n}$. Тогава семейството $\{\eta_j, j \in J_0\}, J_0 = \cup_{n \geq 1} J_n$ е също изброимо и за него имаме $\mathbf{E}\eta_{J_0} \geq \mathbf{E}\eta_{J_n} \geq M - \frac{1}{n}, n \geq 1$. Следователно, $\mathbf{E}\eta_{J_0} = M$.

Б. б) За случайната величина $\xi = \eta_{J_0}$ ще докажем свойството (4.13). Да допуснем, че съществува с.в. $\eta \in \mathcal{L}$, такава че събитието $A = A(\eta) = \{\omega : \eta > \xi\}$ има вероятност $\mathbf{P}(A) > 0$. Очевидно събитията $A_n = \{\omega : \eta \geq \xi + \frac{1}{n}\}, n \geq 1$, удовлетворяват $A_n \uparrow A$. Следователно, $\mathbf{P}(A_n) \uparrow \mathbf{P}(A) > 0$. Тогава случайната величина $\eta^* = \sup(\eta, \xi) \in \mathcal{L}$ има свойството

$$\mathbf{E}\eta^* = \int_{A_{n_0}} \eta d\mathbf{P} + \int_{A \setminus A_{n_0}} \eta d\mathbf{P} + \int_{\overline{A}} \xi d\mathbf{P}$$

$$\geq \int_{A_{n_0}} (\xi + \frac{1}{n_0}) d\mathbf{P} + \int_{A \setminus A_{n_0}} \xi d\mathbf{P} + \int_{\overline{A}} \xi d\mathbf{P}$$

$$= \frac{1}{n_0} \mathbf{P}(A_{n_0}) + \mathbf{E}\xi > M,$$

което противоречи на избора на М. Следователно $\mathbf{P}(A(\eta)) = 0$ за всяко $\eta \in \mathcal{L}$ и това доказва (4.13).

В. Полагаме

(4.14)
$$\mu'(A) = \mu(A) - \mathbf{I}_{\xi}(A), A \in \mathfrak{F}.$$

Мярката μ' е положителна, защото $\xi \in \mathscr{L}$. Ще покажем, че μ' е съсредоточена върху някое **P**-нулево множество.

В. а) Нека $D_n, n \ge 1$, е множество (на Жордан-Хан), съответствуващо на мярката $(\mu' - \frac{1}{n}\mathbf{P})$ в смисъла на теорема 1. По определение

$$\mu'(A \cap D_n) \ge \frac{1}{n} \mathbf{P}(A \cap D_n); \mu'(A \cap \overline{D}_n) \le \frac{1}{n} \mathbf{P}(A \cap \overline{D}_n)$$

т.е. случайната величина $\xi + \frac{1}{n}I(D_n) \in \mathscr{L}$. Понеже ξ има свойството (4.13), то $\mathbf{P}(D_n) = 0$. Събитието $N = \bigcup_{n \geq 1} D_n$ е също \mathbf{P} -нулево: $\mathbf{P}(N) = 0$.

В. б) За всяко $n \ge 1$ имаме неравенствате

$$\mu'(\overline{N}) \le \mu'(\overline{D}_n) \le \frac{1}{n} \mathbf{P}(\overline{D}_n) \le \frac{1}{n}$$

Те означават, че $\mu'(\overline{N})=0$, т.е. μ' е съсредоточена в множеството \mathbf{N} . Слетователно тъй като $(\mathbf{I}(N)=0)$,

$$\mu'(A) = \mu'(A \cap N) = \mu(A \cap N), A \in \mathfrak{F},$$

което заедно с (4.14) доказва (4.12).

 Γ . Остава да докажем,
единствеността на лебеговото представяне (4.12).

Нека

$$\mu(A) = \mathbf{I}_{\eta}(A) + \nu(A), A \in \mathfrak{F},$$

където ν е мярка в (Ω, \mathfrak{F}) , сингулярна относно \mathbf{P} , а η е интегруема с.в. От това веднага следва, че $\mathbf{I}_{\eta} \leq \mu(A), A \in \mathfrak{F}$, т.е. $\eta \in \mathscr{L}$, откъдето според (4.13) $\eta \leq \xi$ \mathbf{P} -п.с.

Определението 4.2 ни казва, че съществува множество $S \in \mathfrak{F}$.