Recherche Opérationnelle 1A Programmation Linéaire Modèles classiques

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

Programmation Linéaire

Plan

- Modélisation,
- 2 Résolution : L'Algorithme du Simplexe,
- Dualité,
- Application : Jeux de stratégie.

C'est quoi la Programmation Linéaire ?

- Modéliser des problèmes par des Programmes Linéaires,
- ② Résoudre ces Programmes Linéaires.

C'est quoi un Programme Linéaire?

 Optimiser une Fonction Linéaire sur un domaine défini par des Contraintes Linéaires.

Programme Linéaire

Exemple,	Définitions	
$2x_1+1x_2\leq 8$		
$1x_1 + 2x_2 \le 7$	Contraintes d'inégalités	Solution
$x_2 \leq 3$		
$x_1, x_2 \ge 0$	Contraintes de non-négativité	Solution réalisable
$4x_1 + 5x_2 = z(max)$	Fonction Objectif	Solution optimale

Modélisation

Modèles classiques

- Problème de production,
- 2 Problème de transport,
- Problème d'alimentation.

Problème de production

Disponibilité Matières premières

Contenu

Produits Bénéfice

Modélisation

Modèles classiques

- 1 Problème de production,
- 2 Problème de transport,
- Problème d'alimentation.

Problème de transport

Disponibilité Usines

Coût de transport

Ateliers Besoin

Modélisation

Modèles classiques

- Problème de production,
- 2 Problème de transport,
- 3 Problème d'alimentation.

Problème d'alimentation

Dépense

Aliments

Contenu

Vitamines

Besoin

Problème de production

- Avant l'arrivage massif de nouveaux modèles, un vendeur de téléphones portables veut écouler rapidement son stock composé de
 - 8 appareils,
 - 4 kits "mains libres" et
 - 3 19 cartes avec des communications prépayées.
- Après une étude de marché, il sait très bien que, dans cette période de soldes, il peut proposer aux clients deux coffrets qui vont lui rapporter des profits nets :
 - ① Coffret 1 : 1 téléphone, 0 kit et 2 cartes, avec un profit net de 7€.
 - ② Coffret 2 : 1 téléphone, 1 kit et 3 cartes, avec un profit net de 9€.
- Il est assuré de pouvoir vendre tranquillement n'importe quelle quantité de ses offres dans la limite du stock disponible.
- Quelle quantité de chaque offre notre vendeur doit-il préparer pour maximiser son profit net?

Problème de production

Solution

■ Tableau de données :

Produit	Coffret I	Coffret II	En stock
Téléphone	1	1	8
Kit	0	1	4
Carte	2	3	19
Profit	7	9	? ?

X2.

Variables : x_i quantité du produit i;

- $x_1,$
- **3** Contraintes de disponibilité : Pour produire x_1 (x_2) Coffrets I (II),
 - ① on a besoin de $x_1 + x_2$ téléphones mais il y en a seulement 8,
 - 2 on a besoin de x_2 kits mais il y en a seulement 4,
 - 3 on a besoin de $2x_1 + 3x_2$ cartes mais il y en a seulement 19.
- **1** Contraintes de non-négativité : $x_1, x_2 \ge 0$.
- **5** Fonction Objectif: maximiser le profit: $7x_1 + 9x_2 = z(max)$.

Problème de production

Programme linéaire

$$1x_1 + 1x_2 \le 8$$

 $x_2 \le 4$ Contraintes d'inégalités
 $2x_1 + 3x_2 \le 19$

$$x_1, x_2 \ge 0$$
 Contraintes de non-négativité $7x_1 + 9x_2 = z(max)$ Fonction Objectif

Programme linéaire sous forme générale

$$Ax \leq b$$
 Contraintes d'inégalités $x \geq 0$ Contraintes de non-négativité $c^Tx = z(\max)$ Fonction Objectif

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 2 & 3 \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 4 \\ 19 \end{pmatrix}, c^T = \begin{pmatrix} 7 & 9 \end{pmatrix}.$$

Р	CI	C II	S
Т	1	1	8
K	0	1	4
С	2	3	19
Р	7	9	?

- Un modèle de voiture est assemblé dans un des trois ateliers situés dans les villes V_1 , V_2 et V_3 . Les besoins hebdomadaires des trois ateliers d'assemblage sont au moins $\mathbf{5}$, $\mathbf{4}$ et $\mathbf{3}$ moteurs.
- Le moteur qui équipe ce modèle est fourni par une des deux usines situées dans les villes U_1 et U_2 . Chaque usine peut fournir au plus **6** moteurs.
- Le seul souci pour la direction est de minimiser le coût total de transport des moteurs entre les deux lieux de fabrication et les trois ateliers d'assemblage.
- Le tableau suivant donne les coûts unitaires (par moteur transporté) pour tous les trajets envisageables.

	V_1	V_2	V_3
U_1	38	27	48
U_2	37	58	45

• Comment minimiser le coût total de transport en respectant l'offre et la demande ?

Solution

1 Tableau de données :

Villes	V_1	V_2	V_3	disponible
U_1	38	27	48	6
U_2	37	58	45	6
demande	5	4	3	

- **2** Variables : x_{ij} quantité de moteurs transportés de l'usine i à l'atelier j.
- 3 Contraintes de disponibilité : on veut transporter
 - $\mathbf{0}$ $x_{11} + x_{12} + x_{13}$ moteurs de l'usine 1 mais il y en a seulement $\mathbf{6}$,
 - 2 $x_{21} + x_{22} + x_{23}$ moteurs de l'usine 2 mais il y en a seulement 6,
- Contraintes de demande : on veut transporter
 - ① $x_{11} + x_{21}$ moteurs à l'atelier 1 mais il en faut 5,
 - 2 $x_{12} + x_{22}$ moteurs à l'atelier 2 mais il en faut 4,
 - $x_{13} + x_{23}$ moteurs à l'atelier 3 mais il en faut 3,
- **5** Contraintes de non-négativité : $x_{ij} \ge 0$.
- **5** Fonction Objectif: minimiser le coût des transports: $38x_{11} + 27x_{12} + 48x_{13} + 37x_{21} + 58x_{22} + 45x_{23} = w(min)$.

Programme linéaire

Programme linéaire

Programme linéaire

$$-x_{11} - x_{12} - x_{13} = -6$$

$$-x_{21} - x_{22} - x_{23} = -6$$

$$x_{11} + x_{21} = 5$$

$$x_{12} + x_{22} = 4$$

$$x_{13} + x_{23} = 3$$

$$x_{ij} \ge 0$$

$$38x_{11} + 27x_{12} + 48x_{13} + 37x_{21} + 58x_{22} + 45x_{23} = w(min)$$

Programme linéaire sous forme générale

Ax = b Contraintes d'inégalités

 $x \ge 0$ Contraintes de non-négativité

 $c^T x = w(\min)$ Fonction Objectif

$$A = \begin{pmatrix} -1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & -1 & -1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}, x = \begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ x_{23} \end{pmatrix}, b = \begin{pmatrix} -6 \\ -6 \\ 5 \\ 4 \\ 3 \end{pmatrix},$$

$$c^T = \begin{pmatrix} 38 & 27 & 48 & 37 & 58 & 45 \end{pmatrix}.$$

Remarque

A est la matrice d'incidence du graphe biparti orienté.

Problème d'alimentation

- Le régime nutritionnel d'un sportif devrait garantir au moins
 - 9 unités de vitamine A et
 - 19 unités de vitamine C par jour.
- On trouve sur le marché six produits (numérotés de 1 à 6) riches en ces vitamines. Un kilogramme de chacun de ces produits contient respectivement
 - 1, 0, 2, 2, 1, 2 unités de vitamine A et
 - 0, 1, 3, 1, 3, 2 unités de vitamine C et
 - coûte respectivement **35**, **30**, **58**, **50**, **27**, **22**€.
- Quels produits faut-il acheter, et en quelles quantités, pour se nourrir en minimisant les dépenses?

Problème d'alimentation

Solution

Tableau de données :

Produits	1	2	3	4	5	6	besoin
Α	1	0	2	2	1	2	9
С	0	1	3	1	3	2	19
Prix	35	30	58	50	27	22	?

- **2** Variables : x_i quantité (kg) du produit i à acheter.
- 3 Contraintes de demande : on aura

 - ② $x_2 + 3x_3 + x_4 + 3x_5 + 2x_6$ unités de vitamine C mais il en faut 19,
- **1** Contraintes de non-négativité : $x_i \ge 0$.
- **5** Fonction Objectif : minimiser la dépense : $35x_1 + 30x_2 + 58x_3 + 50x_4 + 27x_5 + 22x_6 = w(min)$.

Problème d'alimentation

Programme linéaire

Programme linéaire sous forme générale

$$Ax \ge b$$

$$x \ge 0$$

$$c^T x = w(\min)$$

Produits	1	2	3	4	5	6	besoin
Α	1	0	2	2	1	2	9
С	0	1	3	1	3	2	19
Prix	35	30	58	50	27	22	?

$$A = \begin{pmatrix} 1 & 0 & 2 & 2 & 1 & 2 \\ 0 & 1 & 3 & 1 & 3 & 2 \end{pmatrix}, b = \begin{pmatrix} 9 \\ 19 \end{pmatrix}, c^{T} = \begin{pmatrix} 35 & 30 & 58 & 50 & 27 & 22 \end{pmatrix}.$$

Formes Générales

Définition

Forme canonique

$$Ax \le b$$
$$x > 0$$

$$c^T x = z(\max)$$

Forme standard

$$Ax = b$$

$$x \ge 0$$

$$c^T x = z(\max)$$

Théorème

Tout programme linéaire admet

- 1 une forme canonique et
- une forme standard.

Formes Générales

Démonstration (pour la forme canonique)

$$a_{i} \cdot x \geq b_{i} \qquad \Longrightarrow \qquad (-a_{i}) \cdot x \leq (-b_{i}).$$

$$a_{i} \cdot x = b_{i} \qquad \Longrightarrow \qquad a_{i} \cdot x \leq b_{i}, (-a_{i}) \cdot x \leq (-b_{i}).$$

$$x_{i} \leq 0 \qquad \Longrightarrow \qquad x'_{i} = -x_{i} \geq 0.$$
The properties of a non-negativité $x = x' > 0$, $x'' > 0$, $x'' > 0$, $x'' > 0$, $x'' > 0$.

 x_i sans contrainte de non-négativité $\implies x_i' \ge 0, \ x_i'' \ge 0, \ x_i = x_i' - x_i''$. $c^T \cdot x = w(\min)$ $\implies (-c)^T \cdot x = z(\max).$

Démonstration (pour la forme standard)

$$a_i \cdot x \leq b_i$$

$$\Longrightarrow$$

$$\implies$$
 $a_i \cdot x + y_i = b_i, \ y_i \geq 0.$