REPASO: FUNCIÓN PAR E IMPAR. PROPIEDADES

Función par

$$f$$
 es **par** en $[-L, L]$ si $f(-x) = f(x)$ para $-L \le x \le L$

Geométricamente, una función f es par si su gráfica es simétrica respecto del eje y.

Por lo tanto tiene la propiedad de que:

$$\int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$$

Función impar

$$f$$
 es **impar** en $[-L, L]$ si $f(-x) = -f(x)$ para $-L \le x \le L$

Geométricamente, una función f es impar si su gráfica es simétrica respecto del origen.

Por lo tanto tiene la propiedad de que:

$$\int_{-L}^{L} f(x) \, dx = 0$$

Si

f_p: función par

 f_i : función impar

se tienen las siguientes propiedades:

$$\bullet \ f_{p/i} \ \pm \ f_{p/i} = f_{p/i}$$

•
$$f_{p/i} \stackrel{\times}{\underset{\div}{\cdot}} f_{p/i} = f_p$$

•
$$f_{p/i} \stackrel{\times}{\cdot} f_{i/p} = f_i$$