

# 2. THERMOPHYSICAL PROPERTIES

Thomas F. Irvine Jr.

State University of New York at Stony Brook

When organizing a chapter of thermophysical properties with limited space, some difficult decisions have to be made. Since this is a handbook for heat transfer practitioners, emphasis has been placed on transport rather than thermodynamic properties. The primary exception has been the inclusion of densities and isobaric specific heats, which are needed for the calculation of Prandtl numbers and thermal diffusivities.

In the spirit of today's computer usage, a number of gas properties are given in equation rather than tabular form. However, they are accompanied by skeleton tables to allow for program checks.

Because new refrigerants are being considered and used in technical applications, a number of transport and thermodynamic property tables are included for these substances.

Whenever possible, the properties in this chapter are divided into those for gases, liquids, and solids. There are unavoidable overlaps to this arrangement when the tables account for phase changes such as in the case of water.

### 2.1. CONVERSION FACTORS

Table 2.1 Conversion Factors for Units of Density

|                                  | kg/m <sup>3</sup> | lb <sub>m</sub> /ft <sup>3</sup> | lb <sub>m</sub> /(U.K.<br>gal) | lb <sub>m</sub> /(U.S.<br>gal) | slug/ft <sup>3</sup> | g/cm <sup>3</sup> | t/m³    | U.K.<br>ton/yd <sup>3</sup> | U.S.<br>ton/yd <sup>3</sup> |
|----------------------------------|-------------------|----------------------------------|--------------------------------|--------------------------------|----------------------|-------------------|---------|-----------------------------|-----------------------------|
| kg/m³                            | 1                 | 0.06243                          | 0.01002                        | 8.34543                        | 1.94033              | 0.001             | 0.001   | 7.52484                     | 8.42784                     |
| lb <sub>m</sub> /ft <sup>3</sup> | 16.0185           | 1                                | 0.16054                        | 0.13368                        | 0.03108              | 0.01602           | 0.01602 | 1.20542                     | 1.35002                     |
| lb <sub>m</sub> /(U.K.<br>gal)   | 99.7763           | 6.22884                          | 1                              | 0.83268                        | 0.19360              | 0.09976           | 0.09976 | 7.50802                     | 8.40902                     |
| lb <sub>m</sub> /(U.S.<br>gal)   | 119.826           | 7.48052                          | 1.20094                        | 1                              | 0.2325               | 0.11983           | 0.11983 | 9.01672                     | 1.00991                     |
| slug/ft <sup>3</sup>             | 515.38            | 32.1740                          | 5.1653                         | 4.3011                         | 1                    | 0.51538           | 0.51538 | 0.43435                     | 0.43435                     |
| g/cm <sup>3</sup>                | 1000              | 62.428                           | 10.0224                        | 8.34540                        | 1.9403               | 1                 | 1       | 0.75250                     | 0.84280                     |
| t/m³                             | 1000              | 62.428                           | 10.0224                        | 8.34540                        | 1.9403               | 1                 | 1       | 0.75250                     | 0.84280                     |
| U.K.<br>ton/yd <sup>3</sup>      | 1328.94           | 82.963                           | 13.319                         | 11.0905                        | 2.5785               | 1.3289            | 1.3289  | 1                           | 1.120                       |
| U.S.<br>ton/yd <sup>3</sup>      | 1186.5            | 74.075                           | 11.892                         | 9.9022                         | 2.3023               | 1.1865            | 1.1865  | 0.89286                     | 1                           |

The notation 8.3454.-3 signifies  $8.3454 \times 10^{-3}$ .



Table 2.2 Conversion Factors for Units of Energy

|                    | joule (J) | ft·lb <sub>f</sub> | cal <sub>th</sub> | cal <sub>IT</sub> | liter-atm      | kJ               | Btu       | hp∙h    | kWh     |
|--------------------|-----------|--------------------|-------------------|-------------------|----------------|------------------|-----------|---------|---------|
| joule (J)          | 1         | 0.73756            | 0.23901           | 0.23885           | 9.86903        | 10 <sup>-3</sup> | 9.47834   | 3.72517 | 2.77737 |
| ft·lb <sub>f</sub> | 1.35582   | 1                  | 0.32405           | 0.32384           | 1.33205.<br>-2 | 1.35583          | 1.28513   | 5.05057 | 3.76557 |
| cal <sub>th</sub>  | 4.184     | 3.08596            | 1                 | 0.99934           | 0.04129        | 4.1843           | 3.96573   | 1.55866 | 1.16206 |
| cal <sub>IT</sub>  | 4.1868    | 3.08798            | 1.00066           | 1                 | 0.04132        | 4.18683          | 3.96833   | 1.55966 | 1.16286 |
| liter∙atm          | 101.328   | 74.735             | 24.218            | 24.202            | 1              | 0.10325          | 9.60412   | 3.77455 | 2.81425 |
| kJ                 | 1000      | 737.56             | 239.01            | 238.85            | 9.86896        | 1                | 0.94783   | 3.72514 | 2.77734 |
| Btu                | 1055.05   | 778.16             | 252.16            | 252.00            | 10.4122        | 1.05505          | 1         | 3.93014 | 2.93024 |
| hp∙h               | 2.6845.+6 | 1.98.+6            | 641,617           | 641,197           | 26,494         | 2684.52          | 2544.5    | 1       | 0.74558 |
| kWh                | 3.600.+6  | 2.6557.+6          | 860,564           | 8.6.+5            | 35,534         | 3600             | 3412.8    | 1.34125 | 1       |
| thermie            | 4.184.+6  | 3.087.+6           | 10 <sup>6</sup>   | 9.9934.+5         | 4.129.+3       | 4.184.+3         | 3.9657.+3 | 1.5586  | 1.1620  |

Table 2.3 Conversion Factors for Units of Mass

| g               | lb <sub>m</sub>                                                | kg                                                                                     | slug                                                                                                                                                                                          | U.S. ton (short ton)                                                                                                                                                                                                                                            | t (metric ton)                                                                                                                                                                                                                                                                                                                                                                             | U.K. ton (long ton)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | 2.20463                                                        | 0.001                                                                                  | 6.85225                                                                                                                                                                                       | 1.10236                                                                                                                                                                                                                                                         | 10 <sup>-6</sup>                                                                                                                                                                                                                                                                                                                                                                           | 9.84217                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 453.592         | 1                                                              | 0.45359                                                                                | 0.031081                                                                                                                                                                                      | 0.0005                                                                                                                                                                                                                                                          | 4.53594                                                                                                                                                                                                                                                                                                                                                                                    | 4.46434                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1000            | 2.20462                                                        | 1                                                                                      | 0.06852                                                                                                                                                                                       | 1.10233                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                      | 9.84214                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14,593.9        | 32.1740                                                        | 14.5939                                                                                | 1                                                                                                                                                                                             | 0.01609                                                                                                                                                                                                                                                         | 0.01459                                                                                                                                                                                                                                                                                                                                                                                    | 0.01436                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 907,185         | 2000                                                           | 907.185                                                                                | 62.162                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                               | 0.90719                                                                                                                                                                                                                                                                                                                                                                                    | 0.89286                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10 <sup>6</sup> | 2204.62                                                        | 1000                                                                                   | 68.5218                                                                                                                                                                                       | 1.10231                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                          | 0.98421                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1,016,047       | 2240                                                           | 1016.05                                                                                | 69.621                                                                                                                                                                                        | 1.12                                                                                                                                                                                                                                                            | 1.01604                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 1<br>453.592<br>1000<br>14,593.9<br>907,185<br>10 <sup>6</sup> | 1 2.20463 453.592 1 1000 2.20462 14,593.9 32.1740 907,185 2000 10 <sup>6</sup> 2204.62 | 1     2.20463     0.001       453.592     1     0.45359       1000     2.20462     1       14,593.9     32.1740     14.5939       907,185     2000     907.185       106     2204.62     1000 | 1     2.20463     0.001     6.85225       453.592     1     0.45359     0.031081       1000     2.20462     1     0.06852       14,593.9     32.1740     14.5939     1       907,185     2000     907.185     62.162       106     2204.62     1000     68.5218 | 1       2.20463       0.001       6.85225       1.10236         453.592       1       0.45359       0.031081       0.0005         1000       2.20462       1       0.06852       1.10233         14,593.9       32.1740       14.5939       1       0.01609         907,185       2000       907.185       62.162       1         106       2204.62       1000       68.5218       1.10231 | 1       2.20463       0.001       6.85225       1.10236       10 <sup>-6</sup> 453.592       1       0.45359       0.031081       0.0005       4.53594         1000       2.20462       1       0.06852       1.10233       0.001         14,593.9       32.1740       14.5939       1       0.01609       0.01459         907,185       2000       907.185       62.162       1       0.90719         10 <sup>6</sup> 2204.62       1000       68.5218       1.10231       1 |

The notation 2.2046.-3 signifies  $2.2046 \times 10^{-3}$ .

Source: National Bureau of Standards Letter Circular 1071, 7 pp., 1976.

Table 2.4 Conversion Factors for Units of Pressure

|                                  | dyn/cm²<br>*    | N/m² =<br>Pa    | lb <sub>f</sub> /ft <sup>2</sup> | mmHg          | in (H <sub>2</sub> O) | in (Hg)       | lb <sub>f</sub> /in <sup>2</sup> | kg/cm <sup>2</sup> | bar              | atm           |
|----------------------------------|-----------------|-----------------|----------------------------------|---------------|-----------------------|---------------|----------------------------------|--------------------|------------------|---------------|
| dyn/cm <sup>2</sup>              | 1               | 0.1             | 2.0886.<br>-3                    | 7.5006.<br>-4 | 4.0148.<br>-4         | 2.9530.<br>-5 | 1.4504.<br>-5                    | 1.0197.<br>-6      | 10 <sup>-6</sup> | 9.8692.<br>-7 |
| N/m <sup>2</sup>                 | 10              | 1               | 2.0886.<br>-2                    | 7.5006.<br>-3 | 4.0148.<br>-3         | 2.9530.<br>-4 | 1.4504.<br>-4                    | 1.0197.<br>-5      | 10 <sup>-5</sup> | 9.8692.<br>-6 |
| lb <sub>f</sub> /ft <sup>2</sup> | 478.79          | 47.879          | 1                                | 0.35913       | 0.19221               | 1.4138.<br>-2 | 6.9444.<br>-3                    | 4.8824.<br>-4      | 4.7880.<br>-4    | 4.7254.<br>-4 |
| mmHg                             | 1333.22         | 133.32          | 2.7845                           | 1             | 0.53526               | 0.03937       | 0.01934                          | 1.3595.<br>-3      | 1.3332.<br>-3    | 1.3158.<br>-3 |
| in (H <sub>2</sub> 0)            | 2490.8          | 249.08          | 5.2023                           | 1.8683        | 1                     | 0.07355       | 0.03613                          | 2.5399.<br>-3      | 2.4908.<br>-3    | 2.4585.<br>-3 |
| in (Hg)                          | 33864           | 3386.4          | 70.727                           | 25.400        | 13.596                | 1             | 0.49116                          | 0.03453            | 0.03386          | 0.03342       |
| lb <sub>f</sub> /in <sup>2</sup> | 68,947          | 6894.7          | 144                              | 51.715        | 27.680                | 2.03601       | 1                                | 0.07031            | 0.06895          | 0.06805       |
| kg/cm <sup>2</sup>               | 980,665         | 98,067          | 2048.2                           | 735.57        | 393.71                | 28.959        | 14.223                           | 1                  | 0.98067          | 0.96784       |
| bar                              | 10 <sup>6</sup> | 10 <sup>5</sup> | 2088.5                           | 750.06        | 401.47                | 29.530        | 14.504                           | 1.01972            | 1                | 0.98692       |
| atm                              | 1,013,25<br>0   | 101,325         | 2116.2                           | 760           | 406.79                | 29.921        | 14.696                           | 1.03323            | 1.01325          | 1             |

<sup>\* 1</sup>  $dyn/cm^2 = 1$  microbar.

The notation 2.0886.-3 signifies  $2.0886 \times 10^{-3}$ .

Table 2.5 Conversion Factors for Units of Specific Energy

|                                     | ft·lb <sub>f</sub> /lb <sub>m</sub> | J/g    | Btu/lb <sub>m</sub> | cal/g  |
|-------------------------------------|-------------------------------------|--------|---------------------|--------|
| ft·lb <sub>f</sub> /lb <sub>m</sub> | 1                                   | 2.9893 | 1.2853              | 7.1434 |
| J/g                                 | 334.54                              | 1      | 0.4299              | 0.2388 |
| Btu/lb <sub>m</sub>                 | 778.16                              | 2.326  | 1                   | 0.5556 |
| cal/g                               | 1400                                | 4.184  | 1.8                 | 1      |



#### Table 2.6 Conversion Factors for Units of Specific Energy per Degree

|                                          | J/(g·K) | Btu <sub>th</sub> /(lb⋅°F) | cal <sub>th</sub> /(g·°C) | Btu <sub>IT</sub> /(lb <sub>m</sub> ·°F) | cal <sub>lT</sub> /(g⋅°C) |
|------------------------------------------|---------|----------------------------|---------------------------|------------------------------------------|---------------------------|
| J/(g·K)                                  | 1       | 0.23901                    | 0.23901                   | 0.23885                                  | 0.23885                   |
| Btu <sub>th</sub> /(Ib <sub>m</sub> ·°F) | 4.184   | 1                          | 1                         | 0.99933                                  | 0.99933                   |
| cal <sub>th</sub> /(g·°C)                | 4.184   | 1                          | 1                         | 0.99933                                  | 0.99933                   |
| Btu <sub>IT</sub> /(lb <sub>m</sub> ·°F) | 4.1868  | 1.00067                    | 1.00067                   | 1                                        | 1                         |
| cal <sub>IT</sub> /(g·°C)                | 4.1868  | 1.00067                    | 1.00067                   | 1                                        | 1                         |

Table 2.7 Conversion Factors for Units of Thermal Conductivity

|                       | Btu·in/(h·ft <sup>2</sup> ·°<br>F) | W/(m·K)                    | kcal/(h·m·°C) | Btu/(h·ft·°F) | W/(cm·K) | cal/(s·cm·°C) | Btu·in/(s·ft²·°F<br>) |
|-----------------------|------------------------------------|----------------------------|---------------|---------------|----------|---------------|-----------------------|
| Btu·in/(h·ft²·°<br>F) | 1                                  | 0.1441                     | 0.1240        | 0.08333       | 1.4413   | 3.4454        | 2.7774                |
| W/(m·K)               | 6.938                              | 1                          | 0.8604        | 0.5782        | 0.01     | 2.3903        | 1.9263                |
| kcal/(h·m·°C)         | 8.064                              | 1.162                      | 1             | 0.6720        | 0.01162  | 2.7783        | 2.2403                |
| Btu/(h·ft·°F)         | 12                                 | 1.730                      | 1.488         | 1             | 0.01730  | 4.1343        | 3.3333                |
| W/(cm·K)              | 694                                | 100                        | 86.04         | 57.82         | 1        | 0.2390        | 0.1926                |
| cal/(s·cm·°C)         | 2903                               | 418.4                      | 360           | 241.9         | 4.184    | 1             | 0.8063                |
| Btu·in/(s·ft²·°<br>F) | 3600                               | 519.2                      | 446.7         | 300           | 5.192    | 1.2402        | 1                     |
| The notation 1        | .4413 signifies                    | 1.441 × 10 <sup>-3</sup> . |               |               |          |               |                       |



Table 2.8 Conversion Factors for Units of Dynamic Viscosity

|                                    | micropois<br>e  | lb <sub>m</sub> /(ft·h) | centipoise       | slug/(ft·h) | poise (P)        | N·s/m²           | Pa·s             | lb <sub>m</sub> /(s·ft) | lb <sub>f</sub> ·s/ft² |
|------------------------------------|-----------------|-------------------------|------------------|-------------|------------------|------------------|------------------|-------------------------|------------------------|
| micropois<br>e                     | 1               | 2.41914                 | 10 <sup>-4</sup> | 7.51886     | 10 <sup>-6</sup> | 10 <sup>-7</sup> | 10 <sup>-7</sup> | 6.71978                 | 2.08859                |
| lb <sub>m</sub> /(ft⋅h)            | 4134            | 1                       | 0.4134           | 3.10812     | 4.13383          | 4.13384          | 4.13384          | 2.77784                 | 8.63366                |
| centipoise                         | 104             | 2.4191                  | 1                | 7.51882     | 0.01             | 0.001            | 0.001            | 6.71974                 | 2.08855                |
| slug/(ft·h)                        | 1.3300.+5       | 32.174                  | 13.300           | 1           | 0.1330           | 1.33002          | 1.33002          | 8.93723                 | 2.77784                |
| poise (P)                          | 10 <sup>6</sup> | 241.91                  | 100              | 7.5188      | 1                | 0.1              | 0.1              | 6.71972                 | 2.08353                |
| N·s/m <sup>2</sup>                 | 10 <sup>7</sup> | 2419.1                  | 1000             | 75.188      | 10               | 1                | 1                | 0.6720                  | 2.08852                |
| Pa·s                               | 10 <sup>7</sup> | 2419.1                  | 1000             | 75.188      | 10               | 1                | 1                | 0.6720                  | 2.08852                |
| lb <sub>m</sub> /(ft⋅s)            | 1.4882.+7       | 3600                    | 1488.2           | 111.89      | 14.882           | 1.4882           | 1.4882           | 1                       | 0.03108                |
| lb <sub>f</sub> ·s/ft <sup>2</sup> | 4.7880.+8       | 1.1583.+5               | 4.7880.+4        | 3600        | 478.80           | 47.880           | 47.880           | 32.174                  | 1                      |

 $<sup>1 \</sup>text{ lb}_{\text{m}}/(\text{ft}\cdot\text{h}) = 1 \text{ poundal}\cdot\text{h}/\text{ft}^2$ ;  $1 \text{ P} = 1 \text{ g}/(\text{cm}\cdot\text{s})$ .

The notation 2.4191.-4, 1.4882.+7 signifies  $2.4191 \times 10^{-4}$ ,  $1.4882 \times 10^{7}$ .

Table 2.9 Conversion Factors for Units of Kinematic Viscosity

|                    | ft²/h   | stokes (St) | m²/h   | ft²/s   | m²/s             |
|--------------------|---------|-------------|--------|---------|------------------|
| ft²/h              | 1       | 0.2581      | 0.0929 | 2.7784  | 2.5815           |
| stokes (St)        | 3.8750  | 1           | 0.36   | 1.0763  | 10 <sup>-4</sup> |
| m²/h               | 10.7639 | 2.7778      | 1      | 2.9903  | 2.7784           |
| ft <sup>2</sup> /s | 3.600   | 929.03      | 334.45 | 1       | 0.09290          |
| m²/s               | 38,750  | 10,000      | 3600   | 10.7639 | 1                |

The notation 2.581.-5 signifies  $2.581 \times 10^{-5}$ .

1 stoke =  $1 \text{ cm}^2/\text{s}$ .

# 2.2. THERMOPHYSICAL PROPERTIES OF GASES

Table 2.10 treats the specific heats, dynamic viscosities, and thermal conductivities as functions of temperature only. To obtain the density of a gas, the perfect gas law may be used, i.e.,

$$P = \rho RT$$



Table 2.10 Thermophysical Properties of Thirteen Common Gases Using Computer Equations

|                                                                                                          |                                                              | A                | ir                                                                                                       |                                                                           |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Gas consta                                                                                               | (kg/mol): 28.966<br>ant (kJ/kg K): .2870<br>rmula: (mixture) | 40               | Critical temperature (K): 132.6<br>Critical pressure (MPa): 3.77                                         |                                                                           |  |  |
| $c_p = \sum [A$                                                                                          | $A(N)T^N$                                                    |                  | $k = \sum$                                                                                               | $[C(N)T^N]$                                                               |  |  |
| ` '                                                                                                      | 2848870E-3                                                   |                  | Temperature range: 25 Coefficients:                                                                      | $50 \le T \le 1050 \text{ K}$                                             |  |  |
| ` '                                                                                                      | 816818E-6<br>4970786E-9<br>077024E-12                        |                  | C(0) = -2.276501E-3<br>C(1) = 1.2598485E-4<br>C(2) = -1.4815235E-7<br>C(3) = 1.73550646E-10              |                                                                           |  |  |
|                                                                                                          |                                                              | $\mu = \sum [B]$ | $B(N)T^N$                                                                                                |                                                                           |  |  |
| Temperature range: 250 ≤                                                                                 | ≤ T < 600 K                                                  |                  | Temperature range: 60                                                                                    | 00 ≤ T ≤ 1050 K                                                           |  |  |
| Coefficients:<br>B(0) = -9.8601E-1<br>B(1) = 9.080125E-2<br>B(2) = -1.17635575E-4<br>B(3) = 1.2349703E-7 | B(4) = -5.797129 $B(5) = 0.0$ $B(6) = 0.0$                   | 9E-11            | Coefficients:<br>B(0) = 4.8856745<br>B(1) = 5.43232E-2<br>B(2) = -2.4261775E-5<br>B(3) = 7.9306E-9       | B(4) = -1.10398E-12<br>B(5) = 0.0<br>B(6) = 0.0                           |  |  |
|                                                                                                          |                                                              | Skeleto          | on table                                                                                                 |                                                                           |  |  |
| $T(\mathbf{K})$                                                                                          | $c_p  (kJ/kg  K)$                                            |                  | $\mu~(Ns/m^2)~E6$                                                                                        | k (W/m K) E3                                                              |  |  |
| 300<br>500<br>1000                                                                                       | 1.0064<br>1.0317<br>1.1415                                   |                  | 18.53<br>26.82<br>41.77                                                                                  | 26.07<br>39.48<br>67.21                                                   |  |  |
|                                                                                                          |                                                              | Ar               | gon                                                                                                      |                                                                           |  |  |
|                                                                                                          | g/mol): 39.948<br>(kJ/kg K): .208129<br>ıla: Ar              |                  | Critical temperature (K): 150.8<br>Critical pressure (MPa): 4.87<br>Sat temp at one atmosphere (K): 87.5 |                                                                           |  |  |
| $c_p = \sum [A(N)]^2$                                                                                    | $T^N$ ]                                                      |                  | $k = \sum [C(N)T^N]$                                                                                     |                                                                           |  |  |
| Temperature range: 200 ≤                                                                                 | ≤ T ≤ 1600 K                                                 | Tempe            | rature range: 200 ≤ T ≤ 1                                                                                | 000 K                                                                     |  |  |
| Coefficients:<br>A(0) = 0.52034<br>A(1) = 0.0<br>A(2) = 0.0<br>A(3) = 0.0                                | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                       | C(1) = C(2) =    | cients:<br>-5.2839462E-4<br>7.60706705E-5<br>-6.4749393E-8<br>5.41874502E-11                             | C(4) = -3.22024235E-14<br>C(5) = 1.17962552E-17<br>C(6) = -1.86231745E-21 |  |  |
|                                                                                                          |                                                              | $\mu = \sum [B]$ | $B(N)T^N$                                                                                                |                                                                           |  |  |
| Temperature range: 200 ≤                                                                                 | ≤ T < 540 K                                                  |                  | Temperature range: 54                                                                                    | 40 ≤ T ≤ 1000 K                                                           |  |  |
| Coefficients:<br>B(0) = 1.22573<br>B(1) = 5.9456964E-2<br>B(2) = 1.897011E-4<br>B(3) = -8.171242E-7      | B(4) = 1.2939183<br>B(5) = -7.502744<br>B(6) = 0.0           | 2E-13            | Coefficients:<br>B(0) = 4.03764<br>B(1) = 7.3665688E-2<br>B(2) = -3.3867E-5<br>B(3) = 1.127158E-8        | B(4) = -1.585569E-12 $B(5) = 0.0$ $B(6) = 0.0$                            |  |  |
| T(V)                                                                                                     | o (leI/lea V)                                                | SKCICK           | on table<br>μ (Ns/m²) E6                                                                                 | k (W/m K) E3                                                              |  |  |
| T (K)<br>300<br>500<br>1000                                                                              | c <sub>p</sub> (kJ/kg K)<br>0.5203<br>0.5203<br>0.5203       |                  | 22.73<br>33.66<br>53.52                                                                                  | 17.69<br>26.42<br>42.71                                                   |  |  |





|                                                                                                                | n-B                                                            | utane                                                                                                         |                                                           |  |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
| At/mol wt (kg<br>Gas constant (<br>At/mol formu                                                                | (kJ/kg K): .143044                                             | Critical temperature (K<br>Critical pressure (MPa)<br>Sat temp at one atmosp                                  | : 3.65                                                    |  |  |
|                                                                                                                | $c_p = \sum [$                                                 | $A(N)T^N$ ]                                                                                                   |                                                           |  |  |
| Temperature range: 280 ≤                                                                                       | T < 755 K                                                      | Temperature range: 755                                                                                        | ≤ T ≤ 1080 K                                              |  |  |
| Coefficients:<br>A(0) = 2.3665134E-1<br>A(1) = 5.10573E-3<br>A(2) = -4.16089E-7<br>A(3) = -1.1450804E-9        | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                         | Coefficients:<br>A(0) = 4.40126486<br>A(1) = -1.390866545E-2<br>A(2) = 3.471109E-5<br>A(3) = -3.45278E-8      | A(4) = 1.619382E-11<br>A(5) = -2.966666E-15<br>A(6) = 0.0 |  |  |
| $\mu = \sum [E]$                                                                                               | $B(N)T^N$                                                      | $k = \sum$                                                                                                    | $C(N)T^N$                                                 |  |  |
| Temperature range: 270 ≤                                                                                       |                                                                | Temperature range: 280                                                                                        |                                                           |  |  |
| Coefficients:<br>B(0) = -1.099487E-2<br>B(1) = 2.634504E-2<br>B(2) = -3.54700854E-6<br>B(3) = 0.0              | B(4) = 0.0<br>B(5) = 0.0<br>B(6) = 0.0                         | Coefficients:<br>C(0) = 3.79912E-3<br>C(1) = -3.38011396E-5<br>C(2) = 3.15886537E-7<br>C(3) = -2.25600514E-10 | C(4) = 0.0<br>C(5) = 0.0<br>C(6) = 0.0                    |  |  |
|                                                                                                                | Skelet                                                         | on table                                                                                                      |                                                           |  |  |
| $T(\mathbf{K})$                                                                                                | c <sub>p</sub> (kJ/kg K)                                       | μ (Ns/m²) E6                                                                                                  | k (W/m K) E3                                              |  |  |
| 300<br>500<br>1000                                                                                             | 1.700<br>2.542<br>3.903                                        | 7.573<br>12.27                                                                                                | 16.00<br>37.67<br>—                                       |  |  |
|                                                                                                                | Carbor                                                         | ı dioxide                                                                                                     |                                                           |  |  |
| At/mol wt (kg<br>Gas constant (<br>At/mol formu                                                                | (kJ/kg K): .188919                                             | Critical temperature (K): 304.1<br>Critical pressure (MPa): 7.38<br>Sat temp at one atmosphere (K): 194.7     |                                                           |  |  |
| $c_p = \sum [A$                                                                                                | $\Lambda(N)T^N$                                                | $\mu = \sum$                                                                                                  | $B(N)T^N$                                                 |  |  |
| Temperature range: 200 ≤                                                                                       |                                                                | Temperature range: $200 \le T \le 1000 \text{ K}$                                                             |                                                           |  |  |
| Coefficients:<br>A(0) = 4.5386462E-1<br>A(1) = 1.5334795E-3<br>A(2) = -4.195556E-7<br>A(3) = -1.871946E-9      | A(4) = 2.862388E-12 $A(5) = -1.6962E-15$ $A(6) = 3.717285E-19$ | Coefficients:<br>B(0) = -8.095191E-1<br>B(1) = 6.0395329E-2<br>B(2) = -2.824853E-5<br>B(3) = 9.843776E-9      | B(4) = -1.47315277E-12 $B(5) = 0.0$ $B(6) = 0.0$          |  |  |
|                                                                                                                | $k = \sum [e]$                                                 | $C(N)T^N$ ]                                                                                                   |                                                           |  |  |
| Temperature range: 200 ≤                                                                                       |                                                                | Temperature range: 600                                                                                        | ≤ T ≤ 1000 K                                              |  |  |
| Coefficients:<br>C(0) = 2.971488E-3<br>C(1) = -1.33471677E-5<br>C(2) = 3.14443715E-7<br>C(3) = -4.75106178E-10 | C(4) = 2.68500151E-13<br>C(5) = 0.0<br>C(6) = 0.0              | Coefficients:<br>C(0) = 6.085375E-2<br>C(1) = -3.63680275E-4<br>C(2) = 1.0134366E-6<br>C(3) = -9.7042356E-10  | C(4) = 3.27864115E-13<br>C(5) = 0.0<br>C(6) = 0.0         |  |  |
|                                                                                                                | Skelet                                                         | on table                                                                                                      |                                                           |  |  |
| T(K)                                                                                                           | $c_p  (\mathrm{kJ/kg  K})$                                     | $\mu~(Ns/m^2)~E6$                                                                                             | k (W/m K) E3                                              |  |  |
| 300<br>500<br>1000                                                                                             | 0.845<br>1.013<br>1.234                                        | 15.02<br>23.46<br>39.71                                                                                       | 16.61<br>32.30<br>68.05                                   |  |  |



|                                                                                                       | Carbo                                                                                           | n monoxide                                                                                                      |                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                                                                                                       | (kg/mol): 28.011<br>nt (kJ/kg K): .296828                                                       | Critical temperature (<br>Critical pressure (MPa<br>Sat temp at one atmos                                       | n): 3.5                                                                 |  |  |
|                                                                                                       | $c_p = \sum$                                                                                    | $[A(N)T^N]$                                                                                                     |                                                                         |  |  |
|                                                                                                       | Temperature range: 250                                                                          | $\leq T \leq 1050 \text{ K}$                                                                                    |                                                                         |  |  |
|                                                                                                       | Coefficients:<br>A(0) = 1.020802<br>A(1) = 3.82075E-4<br>A(2) = -2.4945E-6<br>A(3) = 6.81145E-9 | A(4) = -7.93722E-12<br>A(5) = 4.291972E-15<br>A(6) = -8.903274E-1                                               |                                                                         |  |  |
| $\mu = \sum$                                                                                          | $[B(N)T^N]$                                                                                     | $k = \sum$                                                                                                      | $[C(N)T^N]$                                                             |  |  |
| Temperature range: 250                                                                                | 0 ≤ T ≤ 1050 K                                                                                  | Temperature range: 250                                                                                          | ) ≤ T ≤ 1050 K                                                          |  |  |
| Coefficients:<br>B(0) = -5.24575E-1<br>B(1) = 7.9606E-2<br>B(2) = -7.82295E-5<br>B(3) = 6.2821488E-8  | B(4) = -2.83747E-11 $B(5) = 5.317831E-15$ $B(6) = 0.0$                                          |                                                                                                                 | C(4) = 3.65528473E-14<br>C(5) = -1.2427179E-17<br>C(6) = 0.0            |  |  |
|                                                                                                       | Skele                                                                                           | eton table                                                                                                      |                                                                         |  |  |
| T(K)                                                                                                  | c <sub>p</sub> (kJ/kg K)                                                                        | μ (Ns/m²) E6                                                                                                    | k (W/m K) E3                                                            |  |  |
| 300<br>500<br>1000                                                                                    | 1.040<br>1.064<br>1.184                                                                         | 17.80<br>25.97<br>40.62                                                                                         | 25.21<br>38.60<br>64.44                                                 |  |  |
|                                                                                                       | E                                                                                               | Ethane                                                                                                          |                                                                         |  |  |
|                                                                                                       | kg/mol): 30.07<br>it (kJ/kg K): .276498<br>nula: C <sub>2</sub> H <sub>6</sub>                  | Critical temperature (I<br>Critical pressure (MPa<br>Sat temp at one atmos                                      | ): 4.88                                                                 |  |  |
|                                                                                                       | $c_p = \sum$                                                                                    | $[A(N)T^N]$                                                                                                     |                                                                         |  |  |
| Temperature range: 280                                                                                | 0 ≤ T < 755 K                                                                                   | Temperature range: 755                                                                                          | 5 ≤ T ≤ 1080 K                                                          |  |  |
| Coefficients:<br>A(0) = 5.319795E-1<br>A(1) = 3.755877E-3<br>A(2) = 1.789289E-6<br>A(3) = -2.13225E-9 | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                                                          | Coefficients:<br>A(0) = 3.7183729<br>A(1) = -1.0891558E-2<br>A(2) = 2.95115E-5<br>A(3) = -2.95597E-8            | A(4) = 1.382794E-11<br>A(5) = -2.52553E-15<br>A(6) = 0.0                |  |  |
| $\mu = \sum [B]$                                                                                      | $(N)T^N$                                                                                        | $k = \sum [C(N)T^N]$                                                                                            |                                                                         |  |  |
| Temperature range: 200                                                                                |                                                                                                 | Temperature range: 200 ≤ 7                                                                                      | . , -                                                                   |  |  |
| Coefficients:<br>B(0) = -5.107728E-1<br>B(1) = 3.76582E-2<br>B(2) = -1.59412113E-5<br>B(3) = 3.906E-9 | B(4) = 0.0<br>B(5) = 0.0                                                                        | Coefficients:<br>C(0) = -3.83815197E-2<br>C(1) = 5.47282126E-4<br>C(2) = -2.80760648E-6<br>C(3) = 8.74854603E-9 | C(4) = -1.369896E-11<br>C(5) = 1.05765043E-14<br>C(6) = -3.16347435E-18 |  |  |
|                                                                                                       | Skele                                                                                           | eton table                                                                                                      |                                                                         |  |  |
| T (K)                                                                                                 | c <sub>p</sub> (kJ/kg K)                                                                        | μ (Ns/m²) E6                                                                                                    | k (W/m K) E3                                                            |  |  |
| 300<br>500<br>1000                                                                                    | 1.762<br>2.591<br>4.081                                                                         | 9.457<br>14.82<br>25.11                                                                                         | 21.76<br>51.83<br>163.9                                                 |  |  |



|                                                                                                                                         | Н                                                                                                            | elium                                                                                                                  |                                          |             |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|--|--|--|--|--|
|                                                                                                                                         | (kg/mol): 4.003<br>ant (kJ/kg K): 2.077022<br>mula: He                                                       | Critical temperature (K): 5.189<br>Critical pressure (MPa): .23<br>Sat temp at one atmosphere (K): 4.3                 |                                          |             |  |  |  |  |  |
|                                                                                                                                         | $c_n = \sum$                                                                                                 | $[A(N)T^N]$                                                                                                            |                                          |             |  |  |  |  |  |
| Temperature ran                                                                                                                         | ge: 250 ≤ T ≤ 1050 K                                                                                         |                                                                                                                        |                                          |             |  |  |  |  |  |
| Coefficients:<br>A(0) = 5.1931<br>A(1) = 0.0                                                                                            | A(2) = 0.0<br>A(3) = 0.0                                                                                     | A(4) = 0.0 $A(6) = 0.0A(5) = 0.0$                                                                                      |                                          |             |  |  |  |  |  |
|                                                                                                                                         | $u = \Sigma$                                                                                                 | $[B(N)T^N]$                                                                                                            |                                          |             |  |  |  |  |  |
| Temperature range: 25                                                                                                                   |                                                                                                              | - , , -                                                                                                                | range: 500 ≤ T ≤ 10                      | 50 K        |  |  |  |  |  |
| Coefficients:<br>B(0) = 3.9414E-1<br>B(1) = 1.7213335E-1<br>B(2) = -1.38733E-3<br>B(3) = 8.020045E-6                                    | B(4) = -2.4278655E-8<br>B(5) = 3.641644E-11<br>B(6) = -2.14117E-14                                           | Coefficients:<br>B(0) = 7.442412 $B(4) = B(1) = 4.6649873E-2$ $B(5) = B(2) = -1.0385665E-5$ $B(6) = B(3) = 1.35269E-9$ |                                          |             |  |  |  |  |  |
|                                                                                                                                         | $k = \sum$                                                                                                   | $[C(N)T^N]$                                                                                                            |                                          |             |  |  |  |  |  |
|                                                                                                                                         | Temperature range: 250 ≤                                                                                     | T < 300 K                                                                                                              |                                          |             |  |  |  |  |  |
|                                                                                                                                         | Coefficients:<br>C(0) = 1.028793E-2<br>C(1) = 8.51625139E-4<br>C(2) = -3.14258034E-6<br>C(3) = 1.02188556E-8 | C(4) = -1.34772<br>C(5) = 0.0<br>C(6) = 0.0                                                                            | 236E-11                                  |             |  |  |  |  |  |
| Temperature range: 30                                                                                                                   | 00 ≤ T < 500 K                                                                                               | Temperature range: 50                                                                                                  | 0 ≤ T ≤ 1050 K                           |             |  |  |  |  |  |
| Coefficients:<br>C(0) = -7.761491E-3 $C(4) = 0.0C(1) = 8.66192033E-4$ $C(5) = 0.0C(2) = -1.5559338E-6$ $C(6) = 0.0C(3) = 1.40150565E-9$ |                                                                                                              | Coefficients:<br>C(0) = -9.0656E-2<br>C(1) = 9.37593087E-4<br>C(2) = -9.13347535E-7<br>C(3) = 5.55037072E-10           | C(4) = -1.2i<br>C(5) = 0.0<br>C(6) = 0.0 | 6457196E-13 |  |  |  |  |  |
|                                                                                                                                         | Skele                                                                                                        | eton table                                                                                                             |                                          |             |  |  |  |  |  |
| T (K)                                                                                                                                   | c <sub>p</sub> (kJ/kg K)                                                                                     | μ (Ns/m²) E6                                                                                                           | k (W/m K) E3                             | 3           |  |  |  |  |  |
| 300<br>500<br>1000                                                                                                                      | 5.193<br>5.193<br>5.193                                                                                      | 19.94<br>28.17<br>45.06                                                                                                | 149.7<br>211.5<br>362.2                  |             |  |  |  |  |  |



|                                                                                                           | Hyd                                                                                                       | rogen                                                                                                         |                                                   |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                           | (kg/mol): 2.016<br>nt (kJ/kg K): 4.124289<br>nula: H <sub>2</sub>                                         | Critical temperature (<br>Critical pressure (MP<br>Sat temp at one atmo                                       | Pa): 1.3                                          |
|                                                                                                           | $c_p = \sum [$                                                                                            | $A(N)T^N$ ]                                                                                                   |                                                   |
|                                                                                                           | Temperature range: 250 ≤ T                                                                                | < 425 K                                                                                                       |                                                   |
|                                                                                                           | Coefficients:<br>A(0) = 5.0066253<br>A(1) = 1.01569422E-1<br>A(2) = -6.02891517E-4<br>A(3) = 2.7375894E-6 | A(4) = -8.4758275I $A(5) = 1.43800374I$ $A(6) = -9.8072403I$                                                  | E-11                                              |
| Temperature range: 42                                                                                     | 25 ≤ T < 490 K                                                                                            | Temperature range: 490                                                                                        | 0 ≤ T ≤ 1050 K                                    |
| Coefficients:<br>A(0) = 1.44947E+1<br>A(1) = 0.0<br>A(2) = 0.0<br>A(3) = 0.0                              | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                                                                    | Coefficients:<br>A(0) = 1.4920082E+1<br>A(1) = -1.996917584E-1<br>A(2) = 2.540615E-6<br>A(3) = -4.7588954E-10 | A(6) = 0.0                                        |
|                                                                                                           | $\mu = \sum [$                                                                                            | $B(N)T^N$                                                                                                     |                                                   |
| Temperature range: 25                                                                                     | $50 \le T < 500 \text{ K}$                                                                                | Temperature range: 500                                                                                        | $0 \le T \le 1050 \text{ K}$                      |
| Coefficients:<br>B(0) = -1.35666E-1<br>B(1) = 6.84115878E-2<br>B(2) = -3.928747E-4<br>B(3) = 1.8996E-6    | B(4) = -5.23104E-9<br>B(5) = 7.4490972E-12<br>B(6) = -4.250937E-15                                        | Coefficients:<br>B(0) = 2.72941<br>B(1) = 2.3224377E-2<br>B(2) = -7.6287854E-6<br>B(3) = 2.92585E-9           | B(4) = -5.2889938E-13<br>B(5) = 0.0<br>B(6) = 0.0 |
|                                                                                                           | $k = \sum [e]$                                                                                            | $C(N)T^N$ ]                                                                                                   |                                                   |
| Temperature range: 25                                                                                     | 50 ≤ T < 500 K                                                                                            | Temperature range: 500                                                                                        | 0 ≤ T ≤ 1050 K                                    |
| Coefficients:<br>C(0) = 2.009705E-2<br>C(1) = 3.234622E-4<br>C(2) = 2.1637249E-6<br>C(3) = -6.49151204E-9 | C(4) = 5.52407932E-12<br>C(5) = 0.0<br>C(6) = 0.0                                                         | Coefficients:<br>C(0) = 1.083105E-1<br>C(1) = 2.21163789E-4<br>C(2) = 2.26380948E-7<br>C(3) = -1.74258636E-16 | C(4) = 4.6468625E-14<br>C(5) = 0.0<br>C(6) = 0.0  |
|                                                                                                           | Skelet                                                                                                    | on table                                                                                                      |                                                   |
| T(K)                                                                                                      | c <sub>p</sub> (kJ/kg K)                                                                                  | $\mu$ (Ns/m <sup>2</sup> ) E6                                                                                 | k (W/m K) E3                                      |
| 300<br>500<br>1000                                                                                        | 14.27<br>14.50<br>14.99                                                                                   | 8.949<br>12.72<br>20.72                                                                                       | 181.3<br>256.6<br>428.1                           |





|                                                                                                        | Met                                                         | thane                                                                                                                                                                   |                                                               |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
| At/mol wt (kg<br>Gas constant<br>At/mol formu                                                          | (kJ/kg K): .518251                                          | Critical temperature (K): 190.5<br>Critical pressure (MPa): 4.6<br>Sat temp at one atmosphere (K): 111.5                                                                |                                                               |  |  |  |  |  |
|                                                                                                        | $c_p = \sum [$ .                                            | $[A(N)T^N]$                                                                                                                                                             |                                                               |  |  |  |  |  |
| Temperature range: 280:                                                                                | ≤ T < 755 K                                                 | Temperature range: 755                                                                                                                                                  | $\leq T \leq 1080 \text{ K}$                                  |  |  |  |  |  |
| Coefficients:<br>A(0) = 1.9165258<br>A(1) = -1.09269E-3<br>A(2) = 8.696605E-6<br>A(3) = -5.2291144E-9  | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                      | Coefficients:<br>A(0) = 1.04356E+1 $A(4) = 3.9030203E-1A(1) = -4.2025284E-2$ $A(5) = -7.1345169E-1A(3) = -8.4304566E-8$ $A(6) = 0.0$                                    |                                                               |  |  |  |  |  |
| $\mu = \sum [i]$                                                                                       | $B(N)T^N$ ]                                                 | $k = \sum$ [                                                                                                                                                            | $C(N)T^N$ ]                                                   |  |  |  |  |  |
| Temperature range: 200 :                                                                               | ≤ T ≤ 1000 K                                                | Temperature range: 200                                                                                                                                                  | ≤ T ≤ 1000 K                                                  |  |  |  |  |  |
| Coefficients:<br>B(0) = 2.968267E-1<br>B(1) = 3.711201E-2<br>B(2) = 1.218298E-5<br>B(3) = -7.02426E-8  | B(4) = 7.543269E-11<br>B(5) = -2.7237166E-14<br>B(6) = 0.0  | Coefficients:<br>C(0) = -1.3401499E-2 $C(4) = -9.1405505E-1C(1) = 3.6630706E-4$ $C(5) = 6.7896889E-15C(2) = -1.82248608E-6$ $C(6) = -1.95048736E-1C(3) = 5.93987998E-9$ |                                                               |  |  |  |  |  |
|                                                                                                        | Skelet                                                      | on table                                                                                                                                                                |                                                               |  |  |  |  |  |
| T(K)                                                                                                   | c <sub>p</sub> (kJ/kg K)                                    | μ (Ns/m²) Ε6                                                                                                                                                            | k (W/m K) E3                                                  |  |  |  |  |  |
| 300<br>500<br>1000                                                                                     | 2.230<br>2.891<br>4.491                                     | 11.18<br>16.98<br>27.54                                                                                                                                                 | 33.88<br>67.03<br>169.0                                       |  |  |  |  |  |
|                                                                                                        | Niti                                                        | ogen                                                                                                                                                                    |                                                               |  |  |  |  |  |
|                                                                                                        | g/mol): 28.013<br>(kJ/kg K): .296798<br>ula: N <sub>2</sub> | Critical temperature (I<br>Critical pressure (MPa<br>Sat temp at one atmos                                                                                              | ): 3.4                                                        |  |  |  |  |  |
|                                                                                                        | $c_p = \sum [$                                              | $A(N)T^N$ ]                                                                                                                                                             |                                                               |  |  |  |  |  |
| Temperature range: 280:                                                                                | ≤ T < 590 K                                                 | Temperature range: 590                                                                                                                                                  | ≤ T ≤ 1080 K                                                  |  |  |  |  |  |
| Coefficients:<br>A(0) = 1.088047<br>A(1) = -3.55968E-4<br>A(2) = 7.2907605E-7<br>A(3) = -2.8861556E-10 | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                      | Coefficients:<br>A(0) = 1.4055077<br>A(1) = -2.1894566E-3<br>A(2) = 4.7852898E-6<br>A(3) = -4.540166E-9                                                                 | A(4) = 2.08491259E-12<br>A(5) = -3.7903033E-16<br>A(6) = 0.0  |  |  |  |  |  |
| $\mu = \sum [A]$                                                                                       | $B(N)T^N$                                                   | $k = \sum$ [                                                                                                                                                            | $C(N)T^N$ ]                                                   |  |  |  |  |  |
| Temperature range: 250 :                                                                               | ≤ T ≤ 1050 K                                                | Temperature range: 250                                                                                                                                                  | ≤ T ≤ 1050 K                                                  |  |  |  |  |  |
| Coefficients:<br>B(0) = 2.5465E-2<br>B(1) = 7.5336535E-2<br>B(2) = -6.51566245E-5<br>B(3) = 4.34945E-8 | B(4) = -1.5622457E-11<br>B(5) = 2.249666E-15<br>B(6) = 0.0  | Coefficients:<br>C(0) = -1.5231785E-3<br>C(1) = 1.18879965E-4<br>C(2) = -1.2092845E-7<br>C(3) = 1.15567802E-10                                                          | C(4) = -6.36537349E-14<br>C(5) = 1.47167023E-17<br>C(6) = 0.0 |  |  |  |  |  |
|                                                                                                        | Skelet                                                      | on table                                                                                                                                                                |                                                               |  |  |  |  |  |
| T(K)                                                                                                   | $c_p  (kJ/kg  K)$                                           | $\mu$ (Ns/m <sup>2</sup> ) E6                                                                                                                                           | k (W/m K) E3                                                  |  |  |  |  |  |
| 300<br>500<br>1000                                                                                     | 1.039<br>1.056<br>1.167                                     | 17.82 25.90<br>25.94 38.61<br>40.33 63.06                                                                                                                               |                                                               |  |  |  |  |  |



|                                                                                                                 |                                                                                                       | Newson                                                                                                |                                |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                 | (kg/mol): 31.999<br>nt (kJ/kg K): .259832                                                             | Oxygen  Critical temperat  Critical pressure  Sat temp at one a                                       |                                |
|                                                                                                                 | $c_v = \sum$                                                                                          | $\mathbb{E}[A(N)T^N]$                                                                                 |                                |
| Temperature range: 250                                                                                          |                                                                                                       | Temperature range                                                                                     | : 590 ≤ T ≤ 1050 K             |
| Coefficients:<br>A(0) = 9.29247E-1<br>A(1) = -3.220603E-4<br>A(2) = 1.166523E-6<br>A(3) = -7.1157865E-10        | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                                                                | Coefficients:<br>A(0) = 5.977293E-1<br>A(1) = 1.183704E-3<br>A(2) = -1.156226E<br>A(3) = 5.82171E-10  | A(5) = 0.0<br>-6 $A(6) = 0.0$  |
|                                                                                                                 | μ = ∑                                                                                                 | $E[B(N)T^N]$                                                                                          |                                |
|                                                                                                                 | Temperature range: 250                                                                                | $\leq T \leq 1050 \text{ K}$                                                                          |                                |
|                                                                                                                 | Coefficients:<br>B(0) = -3.97863E-1<br>B(1) = 8.7605894E-2<br>B(2) = -7.064124E-5<br>B(3) = 4.6287E-8 | B(4) = -1.69043<br>B(5) = 2.534147<br>B(6) = 0.0                                                      |                                |
|                                                                                                                 | k = ∑                                                                                                 | $[C(N)T^N]$                                                                                           |                                |
| Temperature range: 250                                                                                          |                                                                                                       |                                                                                                       | : 1000 ≤ T ≤ 1050 K            |
| Coefficients:<br>C(0) = -7.6727798E-4<br>C(1) = 1.03560076E-4<br>C(2) = -4.62034365E-8<br>C(3) = 1.51980292E-11 | C(4) = 0.0<br>C(5) = 0.0<br>C(6) = 0.0                                                                | Coefficients:<br>C(0) = -1.8654526E<br>C(1) = 7.05649428E<br>C(2) = -7.71025034<br>C(3) = 4.02143777E | C(5) = 0.0<br>E-7 $C(6) = 0.0$ |
|                                                                                                                 |                                                                                                       | eton table                                                                                            |                                |
| T (K)                                                                                                           | c <sub>p</sub> (kJ/kg K)                                                                              | μ (Ns/m²) E6                                                                                          | k (W/m K) E3                   |
| 300<br>500<br>1000                                                                                              | 0.918<br>0.970<br>1.090                                                                               | 20.65<br>30.55<br>48.48                                                                               | 26.55<br>41.36<br>71.79        |





|                                                                                                           | Pro                                                                                            | pane                                                                                                      |                                                            |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
|                                                                                                           | (g/mol): 44.097<br>t (kJ/kg K): 0.207519                                                       | Critical temperature (K): 369.8<br>Critical pressure (MPa): 4.26<br>Sat temp at one atmosphere (K): 231.1 |                                                            |  |  |  |  |  |
|                                                                                                           | $c_p = \sum [$                                                                                 | $A(N)T^N$ ]                                                                                               |                                                            |  |  |  |  |  |
| Temperature range: 280                                                                                    |                                                                                                | Temperature range: 755 ≤ T ≤ 1080 K                                                                       |                                                            |  |  |  |  |  |
| Coefficients:<br>A(0) = 8.41607E-2<br>A(1) = 5.7701407E-3<br>A(2) = -1.292127E-6<br>A(3) = -6.9945925E-10 | A(4) = 0.0<br>A(5) = 0.0<br>A(6) = 0.0                                                         | Coefficients:<br>A(0) = 3.47456<br>A(1) = -9.4956207E-3<br>A(2) = 2.643558E-5<br>A(3) = -2.6640384E-8     | A(4) = 1.2466175E-11<br>A(5) = -2.271073E-15<br>A(6) = 0.0 |  |  |  |  |  |
| $\mu = \sum$                                                                                              | $[B(N)T^N]$                                                                                    | $k = \sum$ [                                                                                              | $C(N)T^N$ ]                                                |  |  |  |  |  |
| Temperature range: 270                                                                                    |                                                                                                | Temperature range: 270                                                                                    | ≤ T ≤ 500 K                                                |  |  |  |  |  |
| Coefficients:<br>B(0) = -3.543711E-1<br>B(1) = 3.080096E-2<br>B(2) = -6.99723E-6<br>B(3) = 0.0            | B(4) = 0.0<br>B(5) = 0.0<br>B(6) = 0.0                                                         | Coefficients:<br>C(0) = -1.07682209E-2<br>C(1) = 8.38590352E-5<br>C(2) = 4.22059864E-8<br>C(3) = 0.0      | C(4) = 0.0<br>C(5) = 0.0<br>C(6) = 0.0                     |  |  |  |  |  |
|                                                                                                           | Skelete                                                                                        | on table                                                                                                  |                                                            |  |  |  |  |  |
| T(K)                                                                                                      | c <sub>p</sub> (kJ/kg K)                                                                       | μ (Ns/m²) Ε6                                                                                              | k (W/m K) E3                                               |  |  |  |  |  |
| 300<br>500<br>1000                                                                                        | 1.680<br>2.559<br>3.969                                                                        | 8.256<br>13.30                                                                                            | 18.19<br>41.71<br>—                                        |  |  |  |  |  |
|                                                                                                           | Sulfur                                                                                         | dioxide                                                                                                   |                                                            |  |  |  |  |  |
|                                                                                                           | kg/mol): 64.063<br>nt (kJ/kg K): .129784<br>nula: SO <sub>2</sub>                              | Critical temperature (K<br>Critical pressure (MPa)<br>Sat temp at one atmosp                              | 7.88                                                       |  |  |  |  |  |
| $c_n = \sum$                                                                                              | $[A(N)T^N]$                                                                                    | $\mu = \sum$                                                                                              | $B(N)T^N$ ]                                                |  |  |  |  |  |
| Temperature range: 300                                                                                    | - , , -                                                                                        | Temperature range: 300                                                                                    |                                                            |  |  |  |  |  |
| Coefficients:<br>A(0) = 4.32805E-1<br>A(1) = 5.9994156E-4<br>A(2) = 4.593367E-7<br>A(3) = -1.433024E-9    | A(4) = 1.0409341E-12<br>A(5) = -2.5313735E-16<br>A(6) = 0.0                                    | Coefficients:<br>B(0) = -1.141748<br>B(1) = 5.1281456E-2<br>B(2) = -1.3886282E-5<br>B(3) = 2.15266E-9     | B(4) = 0.0<br>B(5) = 0.0<br>B(6) = 0.0                     |  |  |  |  |  |
|                                                                                                           | $k = \sum [6]$                                                                                 | $C(N)T^N$ ]                                                                                               |                                                            |  |  |  |  |  |
|                                                                                                           | Temperature range: 300 ≤ T :<br>Coefficients:                                                  | ≤900 K                                                                                                    |                                                            |  |  |  |  |  |
|                                                                                                           | C(0) = -1.86270694E-2<br>C(1) = 3.19110134E-4<br>C(2) = -1.73644245E-6<br>C(3) = 5.09847985E-9 | C(4) = -7.53585825E<br>C(5) = 5.48078289E-<br>C(6) = -1.56355469E                                         | 15                                                         |  |  |  |  |  |
|                                                                                                           | Skelete                                                                                        | on table                                                                                                  |                                                            |  |  |  |  |  |
| T(K)                                                                                                      | c <sub>p</sub> (kJ/kg K)                                                                       | $\mu$ (Ns/m <sup>2</sup> ) E6                                                                             | k (W/m K) E3                                               |  |  |  |  |  |
| 300<br>500<br>900                                                                                         | 0.623<br>0.726<br>0.834                                                                        | 13.05<br>21.30<br>35.33                                                                                   | 9.623<br>19.98<br>39.98                                    |  |  |  |  |  |



From the specific heat and density and using other given properties, the thermal diffusivity and Prandtl number may be calculated.

For each gas, skeleton tables of the properties are given at several temperatures so that computer program checks can be made.

Table 2.11 Compressibility Factors



|      |         |        |           |        | Co     | mpressi  | bility fac  | tor Z of  | air*              |          |        |        |        |        |
|------|---------|--------|-----------|--------|--------|----------|-------------|-----------|-------------------|----------|--------|--------|--------|--------|
|      |         |        |           |        |        | •        | Pressu      |           |                   |          |        |        |        |        |
| T(K) | 1       | 5      | 10        | 20     | 40     | 60       | 80          | 100       | 150               | 200      | 250    | 300    | 400    | 500    |
| 75   | 0.0052  | 0.0260 | 0.0519    | 0.1036 |        | 0.3082   |             | 0.5099    | 0.7581            | 1.0025   | _      | _      | _      | _      |
| 80   | _       | 0.0250 |           |        |        | 0.2958   |             | 0.4887    |                   |          | 1.1931 | 1.4139 | _      | _      |
| 90   |         | 0.0236 |           |        |        | 0.2781   |             | 0.4581    |                   |          | 1.1098 | 1.3110 |        | 2.1105 |
| 100  |         | 0.8872 |           |        |        | 0.2635   |             | 0.4337    |                   |          | 1.0395 | 1.2227 | 1.5937 | 1.9536 |
| 120  | 0.9880  | 0.9373 | 0.8660    | 0.6730 | 0.1778 | 0.2557   | 0.3371      | 0.4132    | 0.5964            | 0.7720   | 0.9530 | 1.1076 | 1.5091 | 1.7366 |
| 140  | 0.9927  | 0.9614 | 0.9205    | 0.8297 | 0.5856 | 0.3313   | 0.3737      | 0.4340    | 0.5909            | 0.7699   | 0.9114 | 1.0393 | 1.3202 | 1.5903 |
| 160  | 0.9951  | 0.9748 | 0.9489    |        |        | 0.6603   |             | 0.5489    | 0.6340            | 0.7564   | 0.8840 | 1.0105 | 1.2585 | 1.4970 |
| 180  | 0.9967  | 0.9832 | 0.9660    | 0.9314 | 0.8625 | 0.7977   | 0.7432      | 0.7084    | 0.7180            | 0.7986   | 0.9000 | 1.0068 | 1.2232 | 1.4361 |
| 200  | 0.9978  | 0.9886 | 0.9767    | 0.9539 | 0.9100 | 0.8701   | 0.8374      | 0.8142    | 0.8061            | 0.8549   | 0.9311 | 1.0185 | 1.2054 | 1.3944 |
| 250  | 0.9992  | 0.9957 | 0.9911    | 0.9822 | 0.9671 | 0.9549   | 0.9463      | 0.9411    | 0.9450            | 0.9713   | 1.0152 | 1.0702 | 1.1990 | 1.3392 |
| 300  | 0.9999  | 0.9987 | 0.9974    | 0.9950 | 0.9917 | 0.9901   | 0.9903      | 0.9930    | 1.0074            | 1.0326   | 1.0669 | 1.1089 | 1.2073 | 1.3163 |
| 350  | 1.0000  | 1.0002 | 1.0004    | 1.0014 |        | 1.0075   |             | 1.0183    |                   | 1.0635   |        | 1.1303 | 1.2116 | 1.3015 |
| 400  |         | 1.0012 | 1.0025    |        |        |          | 1.0229      |           |                   | 1.0795   |        | 1.1411 | 1.2117 | 1.2890 |
| 450  |         | 1.0016 | 1.0034    |        |        |          | 1.0287      |           |                   | 1.0913   |        | 1.1463 | 1.2090 | 1.2778 |
| 500  | 1.0003  | 1.0020 | 1.0034    | 1.0074 | 1.0151 | 1.0234   | 1.0323      | 1.0410    | 1.0650            | 1.0913   | 1.1183 | 1.1463 | 1.2051 | 1.2667 |
| 600  | 1.0004  | 1.0022 | 1.0039    | 1.0081 | 1.0164 | 1.0253   | 1.0340      | 1.0434    | 1.0678            | 1.0920   | 1.1172 | 1.1427 | 1.1947 | 1.2475 |
| 800  |         |        | 1.0038    | 1.0077 | 1.0157 | 1.0240   |             |           | 1.0621            | 1.0844   | 1.1061 | 1.1283 | 1.1720 | 1.2150 |
| 1000 |         | 1.0018 | 1.0037    | 1.0068 |        |          | 1.0290      |           |                   |          |        | 1.1131 |        | 1.1889 |
|      |         |        |           |        | Con    | npressib | ility facto | or Z of a | rgon <sup>†</sup> |          |        |        |        |        |
|      |         |        |           |        |        |          | Press       | ure, bar  |                   |          |        |        |        |        |
| T(K) | Sat. li | quid   | Sat. vapo | or 1   | 1      | 50       | 100         | 150       | 200               | 25       | 0 3    | 300    | 400    | 500    |
| 85   | 0.00    | )31    | 0.9706    | 0.0    | 040    | _        | _           | _         | _                 | _        | -      | _      | _      | _      |
| 90   | 0.00    | )52    | 0.9579    | 0.9    | 684 0. | .1919    | 0.3801      | 0.5648    | 0.746             | 7 0.92   | 260    | _      | _      | _      |
| 95   | 0.00    | 080    | 0.9415    | 0.9    |        | .1859    | 0.3675      | 0.5456    | 0.720             | 5 0.89   | 028 1. | 0625   | 1.3959 | _      |
| 100  | 0.01    |        | 0.9220    | 0.9    | 773 0. | .1807    | 0.3567      | 0.5288    | 0.697             | 5 0.86   | 534 1. | 0267   | 1.3470 | 1.6932 |
| 120  | 0.04    | 118    | 0.8112    | 0.9    | 866 0. | .1683    | 0.3280      | 0.4818    | 0.631             | 1 0.77   | 70 0.  | 9197   | 1.1981 | 1.4978 |
| 140  | 0.11    | 53     | 0.6144    | 0.99   | 915 0. | .1737    | 0.3230      | 0.4636    | 0.598             | 5 0.72   | 294 0. | 8568   | 1.1040 | 1.3699 |
| 160  | _       | _      | _         | 0.99   |        |          | 0.3610      | 0.4766    | 0.595             |          |        |        | 1.0478 | 1.2866 |
| 180  | _       | -      | _         | 0.99   | 962 0. | .7754    | 0.5432      | 0.5405    | 0.624             | 6 0.70   | 0.4    | 8200   | 1.0165 | 1.2321 |
| 200  | _       | -      | _         | 0.99   | 972 0. | .8509    | 0.7121      | 0.6540    | 0.687             | 0 0.75   | 555 0. | 8360   | 1.0051 | 1.1982 |
| 250  | _       | -      | _         | 0.99   | 988 0  | .9374    | 0.8877      | 0.8602    | 0.859             | 1 0.88   | 312 0. | 9208   | 1.0263 | 1.1713 |
| 300  | _       | _      | _         | 0.99   | 995 0  | .9730    | 0.9552      | 0.9482    | 0.953             | 3 0.96   | 594 0. | 9950   | 1.0673 | 1.1786 |
| 350  | _       | -      | _         | 0.99   | 998 0. | .9911    | 0.9880      | 0.9915    | 0.998             | 7 1.01   | 79 1.  | 0399   | 1.0971 | 1.1902 |
| 400  | _       | -      | _         | 1.00   | 001 1  | .0006    | 1.0056      | 1.0148    | 1.028             | 0 1.04   | 50 1.  | 0656   | 1.1157 | 1.1976 |
| 450  | _       | -      | _         | 1.00   | 001 1  | .0063    | 1.0154      | 1.0276    | 1.042             | 7 - 1.06 | 502 1. | 0804   | 1.1258 | 1.2002 |
| 500  | _       | -      | _         | 1.00   | 002 1  | .0090    | 1.0205      | 1.0342    | 1.050             | 1 1.06   | 578 1. | 0874   | 1.1301 | 1.1997 |
| 600  | _       | -      | _         | 1.00   | 003 1  | .0118    | 1.0250      | 1.0394    | 1.055             | 3 1.07   | 23 1.  | 0904   | 1.1291 | 1.1933 |
| 700  | _       | -      | _         | 1.00   | 003 1  | .0128    | 1.0261      | 1.0399    | 1.055             | 1 1.07   | 09 1.  | 0874   | 1.1224 | 1.1821 |
| 800  | _       | -      | _         | 1.00   |        | .0126    | 1.0258      | 1.0396    | 1.053             |          | 578 1. | 0830   | 1.1147 | 1.1707 |
| 900  | _       | -      | _         | 1.00   |        | .0122    | 1.0250      | 1.0378    | 1.050             |          |        |        | 1.1068 | 1.1596 |
| 1000 |         | -      | _         | 1.00   | 002 1  | .0119    | 1.0239      | 1.0364    | 1.048             | 4 1.06   | 508 1. | 0736   | 1.0999 | 1.1497 |

Note: See page 2.15 for footnotes.



|        |        |        |        | Compr  | essibility | factor Z c | f carbon  | dioxide‡ |        |        |        |        |
|--------|--------|--------|--------|--------|------------|------------|-----------|----------|--------|--------|--------|--------|
|        |        |        |        |        |            | Pressu     | ıre, bar  |          |        |        |        |        |
| T (°C) | 1      | 5      | 10     | 20     | 40         | 60         | 80        | 100      | 200    | 300    | 400    | 500    |
| 0      | 0.9933 | 0.9658 | 0.9294 | 0.8496 | _          | _          | _         | _        | _      | _      | _      | _      |
| 50     | 0.9964 | 0.9805 | 0.9607 | 0.9195 | 0.8300     | 0.7264     | 0.5981    | 0.4239   | _      | _      | _      | _      |
| 100    | 0.9977 | 0.9883 | 0.9764 | 0.9524 | 0.9034     | 0.8533     | 0.8022    | 0.7514   | 0.5891 | 0.6420 | _      | _      |
| 150    | 0.9985 | 0.9927 | 0.9853 | 0.9705 | 0.9416     | 0.9131     | 0.8854    | 0.8590   | 0.7651 | 0.7623 | 0.8235 | 0.9098 |
| 200    | 0.9991 | 0.9953 | 0.9908 | 0.9818 | 0.9640     | 0.9473     | 0.9313    | 0.9170   | 0.8649 | 0.8619 | 0.8995 | 0.9621 |
| 250    | 0.9994 | 0.9971 | 0.9943 | 0.9886 | 0.9783     | 0.9684     | 0.9593    | 0.9511   | 0.9253 | 0.9294 | 0.9508 | 1.0096 |
| 300    | 0.9996 | 0.9982 | 0.9967 | 0.9936 | 0.9875     | 0.9822     | 0.9773    | 0.9733   | 0.9640 | 0.9746 | 1.0030 | 1.0464 |
| 350    | 0.9998 | 0.9991 | 0.9983 | 0.9964 | 0.9938     | 0.9914     | 0.9896    | 0.9882   | 0.9895 | 1.0053 | 1.0340 | 1.0734 |
| 400    | 0.9999 | 0.9997 | 0.9994 | 0.9989 | 0.9982     | 0.9979     | 0.9979    | 0.9984   | 1.0073 | 1.0266 | 1.0559 | 1.0928 |
| 450    | 1.0000 | 1.0000 | 1.0003 | 1.0005 | 1.0013     | 1.0023     | 1.0038    | 1.0056   | 1.0170 | 1.0412 | 1.0709 | 1.1067 |
| 500    | 1.0000 | 1.0004 | 1.0008 | 1.0015 | 1.0035     | 1.0056     | 1.0079    | 1.0107   | 1.0282 | 1.0522 | 1.0820 | 1.1165 |
| 600    | 1.0000 | 1.0007 | 1.0013 | 1.0030 | 1.0062     | 1.0093     | 1.0129    | 1.0168   | 1.0386 | 1.0648 | 1.0948 | 1.1277 |
| 700    | 1.0003 | 1.0010 | 1.0017 | 1.0036 | 1.0073     | 1.0161     | 1.0155    | 1.0198   | 1.0436 | 1.0707 | 1.1000 | 1.1318 |
| 800    | 1.0002 | 1.0009 | 1.0019 | 1.0040 | 1.0082     | 1.0122     | 1.0168    | 1.0212   | 1.0458 | 1.0731 | 1.1016 | 1.1324 |
| 900    | 1.0002 | 1.0009 | 1.0020 | 1.0041 | 1.0083     | 1.0128     | 1.0171    | 1.0221   | 1.0463 | 1.0726 | 1.1012 | 1.1303 |
| 1000   | 1.0002 | 1.0009 | 1.0021 | 1.0042 | 1.0084     | 1.0128     | 1.0172    | 1.0218   | 1.0460 | 1.0725 | 1.0725 | 1.1274 |
|        |        |        |        | Con    | npressibil | ity factor | Z of meth | iane§    |        |        |        |        |
|        |        |        |        |        |            | Pressu     | re, bar   |          |        |        |        |        |
| T(K)   | 1      | 5      | 10     | 20     | 40         | 60         | 80        | 100      | 200    | 300    | 400    | 500    |
| 100    | 0.0044 | 0.0219 | 0.0437 | 0.0874 | 0.1741     | 0.2604     | 0.3459    | 0.4313   | 0.8498 | 1.2585 | 1.6579 | 2.0492 |
| 150    | 0.9856 | 0.9243 | 0.8333 | 0.0708 | 0.1401     | 0.2078     | 0.2748    | 0.3405   | 0.6573 | 0.9602 | 1.2519 | 1.5359 |
| 200    | 0.9937 | 0.9682 | 0.9350 | 0.8629 | 0.6858     | 0.3755     | 0.3218    | 0.3657   | 0.6148 | 0.8564 | 1.0894 | 1.3145 |
| 250    | 0.9972 | 0.9841 | 0.9678 | 0.9356 | 0.8694     | 0.8035     | 0.7403    | 0.6889   | 0.6953 | 0.8593 | 1.0383 | 1.2172 |
| 300    | 0.9982 | 0.9915 | 0.9828 | 0.9663 | 0.9342     | 0.9042     | 0.8773    | 0.8548   | 0.8280 | 0.9140 | 1.0417 | 1.1812 |
| 350    | 0.9988 | 0.9954 | 0.9905 | 0.9821 | 0.9657     | 0.9513     | 0.9390    | 0.9293   | 0.9226 | 0.9775 | 1.0678 | 1.1751 |
| 400    | 0.9995 | 0.9976 | 0.9957 | 0.9908 | 0.9833     | 0.9771     | 0.9721    | 0.9691   | 0.9783 | 1.0258 | 1.0968 | 1.1821 |
| 450    | 0.9999 | 0.9996 | 0.9991 | 0.9965 | 0.9941     | 0.9923     | 0.9917    | 0.9922   | 1.0128 | 1.0577 | 1.1195 | 1.1916 |
| 500    | 1.0000 | 1.0000 | 1.0000 | 1.0003 | 1.0009     | 1.0021     | 1.0043    | 1.0068   | 1.0335 | 1.0780 | 1.1347 | 1.1990 |
| 600    | 1.0002 | 1.0010 | 1.0021 | 1.0040 | 1.0083     | 1.0128     | 1.0175    | 1.0227   | 1.0555 | 1.0989 | 1.1495 | 1.2049 |
| 700    | 1.0003 | 1.0014 | 1.0028 | 1.0061 | 1.0116     | 1.0177     | 1.0237    | 1.0298   | 1.0646 | 1.1056 | 1.1522 | 1.2023 |
| 800    | 1.0003 | 1.0017 | 1.0034 | 1.0068 | 1.0130     | 1.0198     | 1.0264    | 1.0331   | 1.0680 | 1.1071 | 1.1500 | 1.1956 |
| 900    | 1.0004 | 1.0018 | 1.0036 | 1.0071 | 1.0137     | 1.0206     | 1.0274    | 1.0340   | 1.0680 | 1.1056 | 1.1457 | 1.1878 |
| 1000   | 1.0004 | 1.0014 | 1.0036 | 1.0072 | 1.0142     | 1.0208     | 1.0275    | 1.0342   | 1.0678 | 1.1033 | 1.1400 | 1.1790 |
| 1000   | 1.0004 | 1.0014 | 1.0036 | 1.0072 | 1.0142     | 1.0208     | 1.0275    | 1.0342   | 1.0678 | 1.1033 | 1.1400 | 1.1    |



|      | Compressibility factor $Z$ of nitrogen <sup><math>\mathbf{q}</math></sup> |        |        |        |            |            |           |        |        |        |        |        |
|------|---------------------------------------------------------------------------|--------|--------|--------|------------|------------|-----------|--------|--------|--------|--------|--------|
|      |                                                                           |        |        |        |            | Pressu     | re, bar   |        |        |        |        |        |
| T(K) | 1                                                                         | 5      | 10     | 20     | 40         | 60         | 80        | 100    | 200    | 300    | 400    | 500    |
| 70   | 0.0057                                                                    | 0.0287 | 0.0573 | 0.1143 | 0.2277     | 0.3400     | 0.4516    | 0.5623 | 1.1044 | 1.6308 | Solid  | Solid  |
| 80   | 0.9593                                                                    | 0.0264 | 0.0528 | 0.1053 | 0.2093     | 0.3122     | 0.4140    | 0.5148 | 1.0061 | 1.4797 | 1.9396 | 2.3879 |
| 90   | 0.9722                                                                    | 0.0251 | 0.0500 | 0.0996 | 0.1975     | 0.2938     | 0.3888    | 0.4826 | 0.9362 | 1.3700 | 1.7890 | 2.1962 |
| 100  | 0.9798                                                                    | 0.8910 | 0.0487 | 0.0966 | 0.1905     | 0.2823     | 0.3720    | 0.4605 | 0.8840 | 1.2852 | 1.6707 | 2.0441 |
| 120  | 0.9883                                                                    | 0.9397 | 0.8732 | 0.7059 | 0.1975     | 0.2822     | 0.3641    | 0.4438 | 0.8188 | 1.1684 | 1.5015 | 1.8223 |
| 140  | 0.9927                                                                    | 0.9635 | 0.9253 | 0.8433 | 0.6376     | 0.4251     | 0.4278    | 0.4799 | 0.7942 | 1.0996 | 1.3920 | 1.6726 |
| 160  | 0.9952                                                                    | 0.9766 | 0.9529 | 0.9042 | 0.8031     | 0.7017     | 0.6304    | 0.6134 | 0.8107 | 1.0708 | 1.3275 | 1.5762 |
| 180  | 0.9967                                                                    | 0.9846 | 0.9690 | 0.9381 | 0.8782     | 0.8125     | 0.7784    | 0.7530 | 0.8550 | 1.0669 | 1.2893 | 1.5105 |
| 200  | 0.9978                                                                    | 0.9897 | 0.9791 | 0.9592 | 0.9212     | 0.8882     | 0.8621    | 0.8455 | 0.9067 | 1.0760 | 1.2683 | 1.4631 |
| 250  | 0.9992                                                                    | 0.9960 | 0.9924 | 0.9857 | 0.9741     | 0.9655     | 0.9604    | 0.9589 | 1.0048 | 1.1143 | 1.2501 | 1.3962 |
| 300  | 0.9998                                                                    | 0.9990 | 0.9983 | 0.9971 | 0.9964     | 0.9973     | 1.0000    | 1.0052 | 1.0559 | 1.1422 | 1.2480 | 1.3629 |
| 350  | 1.0001                                                                    | 1.0007 | 1.0011 | 1.0029 | 1.0069     | 1.0125     | 1.0189    | 1.0271 | 1.0810 | 1.1560 | 1.2445 | 1.3405 |
| 400  | 1.0002                                                                    | 1.0011 | 1.0024 | 1.0057 | 1.0125     | 1.0199     | 1.0283    | 1.0377 | 1.0926 | 1.1609 | 1.2382 | 1.3216 |
| 450  | 1.0003                                                                    | 1.0018 | 1.0033 | 1.0073 | 1.0153     | 1.0238     | 1.0332    | 1.0430 | 1.0973 | 1.1606 | 1.2303 | 1.3043 |
| 500  | 1.0004                                                                    | 1.0020 | 1.0040 | 1.0081 | 1.0167     | 1.0257     | 1.0350    | 1.0451 | 1.0984 | 1.1575 | 1.2213 | 1.2881 |
| 600  | 1.0004                                                                    | 1.0021 | 1.0040 | 1.0084 | 1.0173     | 1.0263     | 1.0355    | 1.0450 | 1.0951 | 1.1540 | 1.2028 | 1.2657 |
| 800  | 1.0004                                                                    | 1.0017 | 1.0036 | 1.0074 | 1.0157     | 1.0237     | 1.0320    | 1.0402 | 1.0832 | 1.1264 | 1.1701 | 1.2140 |
| 1000 | 1.0003                                                                    | 1.0015 | 1.0034 | 1.0067 | 1.0136     | 1.0205     | 1.0275    | 1.0347 | 1.0714 | 1.1078 | 1.1449 | 1.1814 |
|      |                                                                           |        |        | Cor    | npressibil | ity factor | Z of oxyg | en**   |        |        |        |        |
|      |                                                                           |        |        |        |            | Pressu     | re, bar   |        |        |        |        |        |
| T(K) | 1                                                                         | 5      | 10     | 20     | 40         | 60         | 80        | 100    | 200    | 300    | 400    | 500    |
| 75   | 0.0043                                                                    | 0.0213 | 0.0425 | 0.0849 | 0.1693     | 0.2533     | 0.3368    | 0.4200 | 0.8301 | 1.2322 | 1.6278 | 2.0175 |
| 80   | 0.0041                                                                    | 0.0203 | 0.0406 | 0.0811 | 0.1616     | 0.2418     | 0.3214    | 0.4007 | 0.7912 | 1.1738 | 1.5495 | 1.9196 |
| 90   | 0.0038                                                                    | 0.0188 | 0.0376 | 0.0750 | 0.1494     | 0.2233     | 0.2966    | 0.3696 | 0.7281 | 1.0780 | 1.4211 | 1.7580 |
| 100  | 0.9757                                                                    | 0.0177 | 0.0354 | 0.0705 | 0.1404     | 0.2096     | 0.2783    | 0.3464 | 0.6798 | 1.0040 | 1.3206 | 1.6309 |
| 120  | 0.9855                                                                    | 0.9246 | 0.8367 | 0.0660 | 0.1302     | 0.1935     | 0.2558    | 0.3173 | 0.6148 | 0.8999 | 1.1762 | 1.4456 |
| 140  | 0.9911                                                                    | 0.9535 | 0.9034 | 0.7852 | 0.1334     | 0.1940     | 0.2527    | 0.3099 | 0.5815 | 0.8374 | 1.0832 | 1.3214 |
| 160  | 0.9939                                                                    | 0.9697 | 0.9379 | 0.8689 | 0.6991     | 0.3725     | 0.2969    | 0.3378 | 0.5766 | 0.8058 | 1.0249 | 1.2364 |
| 180  | 0.9960                                                                    | 0.9793 | 0.9579 | 0.9134 | 0.8167     | 0.7696     | 0.5954    | 0.5106 | 0.6043 | 0.8025 | 0.9990 | 1.1888 |
| 200  | 0.9970                                                                    | 0.9853 | 0.9705 | 0.9399 | 0.8768     | 0.8140     | 0.7534    | 0.6997 | 0.6720 | 0.8204 | 0.9907 | 1.1623 |
| 250  | 0.9987                                                                    | 0.9938 | 0.9870 | 0.9736 | 0.9477     | 0.9237     | 0.9030    | 0.8858 | 0.8563 | 0.9172 | 1.0222 | 1.1431 |
| 300  | 0.9994                                                                    | 0.9968 | 0.9941 | 0.9884 | 0.9771     | 0.9676     | 0.9597    | 0.9542 | 0.9560 | 0.9972 | 1.0689 | 1.1572 |
| 350  | 0.9998                                                                    | 0.9990 | 0.9979 | 0.9961 | 0.9919     | 0.9890     | 0.9870    | 0.9870 | 1.0049 | 1.0451 | 1.1023 | 1.1722 |
| 400  | 1.0000                                                                    | 1.0000 | 1.0000 | 1.0000 | 1.0003     | 1.0011     | 1.0022    | 1.0045 | 1.0305 | 1.0718 | 1.1227 | 1.1816 |
| 450  | 1.0002                                                                    | 1.0007 | 1.0005 | 1.0024 | 1.0048     | 1.0074     | 1.0106    | 1.0152 | 1.0445 | 1.0859 | 1.1334 | 1.1859 |
| 500  | 1.0002                                                                    | 1.0007 | 1.0013 | 1.0024 | 1.0046     | 1.0074     | 1.0161    | 1.0207 | 1.0523 | 1.0927 | 1.1334 | 1.1866 |
| 600  | 1.0003                                                                    | 1.0014 | 1.0024 | 1.0052 | 1.0102     | 1.0153     | 1.0207    | 1.0266 | 1.0582 | 1.0961 | 1.1374 | 1.1803 |
| 800  | 1.0003                                                                    | 1.0014 | 1.0024 | 1.0052 | 1.0102     | 1.0155     | 1.0219    | 1.0266 | 1.0565 | 1.0888 | 1.1231 | 1.1582 |
| 1000 | 1.0003                                                                    | 1.0014 | 1.0026 | 1.0053 | 1.0109     | 1.0164     | 1.0219    | 1.0271 | 1.0503 | 1.0783 | 1.1072 | 1.1362 |
| 1000 | 1.0003                                                                    | 1.0013 | 1.0020 | 1.0053 | 1.0101     | 1.0149     | 1.0198    | 1.0233 | 1.0307 | 1.0763 | 1.10/2 | 1.1309 |



|      |       |       |       | C     | ompressi | bility fac | tor $Z$ of $\mathfrak p$ | propylene | ; <sup>††</sup> |       |       |       |       |
|------|-------|-------|-------|-------|----------|------------|--------------------------|-----------|-----------------|-------|-------|-------|-------|
|      |       |       |       |       |          | P          | ressure, b               | ar        |                 |       |       |       |       |
| T(K) | 1     | 5     | 10    | 20    | 40       | 60         | 80                       | 100       | 200             | 400   | 600   | 800   | 1000  |
| 200  | 0.004 | 0.008 | 0.039 | 0.079 | 0.157    | 0.236      | _                        | _         | _               | _     | _     | _     | _     |
| 250  | 0.975 | 0.018 | 0.035 | 0.070 | 0.139    | 0.207      | _                        | _         | _               | _     | _     | _     | _     |
| 300  | 0.986 | 0.927 | 0.840 | 0.067 | 0.132    | 0.195      | _                        | _         | _               | _     | _     | _     | _     |
| 350  | 0.992 | 0.957 | 0.909 | 0.623 | 0.148    | 0.207      | _                        | _         | _               | _     | _     | _     | _     |
| 400  | 0.995 | 0.972 | 0.943 | 0.881 | 0.715    | 0.563      | 0.405                    | 0.399     | 0.611           | 1.058 | 1.478 | 1.878 | 2.265 |
| 450  | 0.996 | 0.979 | 0.962 | 0.922 | 0.829    | 0.759      | 0.678                    | 0.616     | 0.667           | 1.044 | 1.420 | 1.781 | 2.129 |

| Compressionity factor 2 of water substante | Compressibility | factor | Z of | water | substance |
|--------------------------------------------|-----------------|--------|------|-------|-----------|
|--------------------------------------------|-----------------|--------|------|-------|-----------|

|      |       |       |       |       | P     | ressure, ba | ır    |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|
| T(K) | 1     | 5     | 10    | 15    | 20    | 25          | 30    | 40    | 50    | 60    | 80    |
| 400  | 0.990 | 0.003 | 0.006 | 0.009 | 0.012 | 0.014       | 0.017 | 0.023 | 0.029 | 0.035 | 0.046 |
| 450  | 0.993 | 0.003 | 0.006 | 0.009 | 0.012 | 0.014       | 0.016 | 0.022 | 0.027 | 0.033 | 0.043 |
| 500  | 0.996 | 0.980 | 0.958 | 0.930 | 0.901 | 0.878       | 0.016 | 0.021 | 0.026 | 0.031 | 0.042 |
| 550  | 0.997 | 0.985 | 0.969 | 0.956 | 0.939 | 0.922       | 0.904 | 0.865 | 0.822 | 0.773 | 0.042 |
| 600  | 0.998 | 0.990 | 0.979 | 0.970 | 0.961 | 0.948       | 0.935 | 0.910 | 0.885 | 0.858 | 0.798 |
| 650  | 0.999 | 0.992 | 0.984 | 0.977 | 0.968 | 0.959       | 0.958 | 0.937 | 0.919 | 0.902 | 0.864 |
| 700  | 1.000 | 0.994 | 0.988 | 0.984 | 0.976 | 0.967       | 0.966 | 0.952 | 0.941 | 0.929 | 0.900 |
| 750  | 1.000 | 0.996 | 0.991 | 0.988 | 0.981 | 0.975       | 0.971 | 0.961 | 0.955 | 0.945 | 0.927 |
| 800  | 1.000 | 0.997 | 0.993 | 0.991 | 0.985 | 0.982       | 0.976 | 0.970 | 0.966 | 0.957 | 0.945 |
| 850  | 1.000 | 0.997 | 0.995 | 0.992 | 0.989 | 0.984       | 0.981 | 0.977 | 0.973 | 0.967 | 0.957 |
| 900  | 1.000 | 0.998 | 0.997 | 0.993 | 0.992 | 0.989       | 0.986 | 0.982 | 0.979 | 0.974 | 0.965 |
| 950  | 1.000 | 0.998 | 0.997 | 0.994 | 0.994 | 0.993       | 0.991 | 0.985 | 0.983 | 0.980 | 0.973 |
| 1000 | 1.000 | 0.999 | 0.998 | 0.995 | 0.995 | 0.994       | 0.993 | 0.990 | 0.987 | 0.985 | 0.978 |
| 1200 | 1.000 | 1.000 | 0.999 | 0.998 | 0.998 | 0.997       | 0.997 | 0.995 | 0.994 | 0.994 | 0.992 |
| 1400 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000       | 1.000 | 0.999 | 0.998 | 0.998 | 0.998 |
| 1600 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000       | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 1800 | 1.001 | 1.001 | 1.001 | 1.000 | 1.000 | 1.000       | 1.000 | 1.000 | 1.000 | 1.001 | 1.002 |
| 2000 | 1.003 | 1.002 | 1.002 | 1.002 | 1.002 | 1.002       | 1.002 | 1.002 | 1.002 | 1.003 | 1.003 |

<sup>\*</sup> Calculated from values of pressure, volume (or density), and temperature in A. A. Vasserman, Y. Z. Kazavchinskii, and V. A. Rabinovich, Thermophysical Properties of Air and Air Components, Nauka, Moscow, 1966, and NBS-NSF Trans. TT 70-50095, 1971; and A. A. Vasserman and V. A. Rabinovich, Thermophysical Properties of Liquid Air and Its Components, Moscow, 1968, and NBS-NSF Trans. 69-55092, 1970.

Table 2.12 Isobaric Specific Heats to High Temperatures

| т<br>(К) | Ar        | CCI<br><sub>2</sub> F <sub>2</sub> | CH₄       | CH₃<br>OH | со        | CO <sub>2</sub> | H <sub>2</sub> | H <sub>2</sub> 0 | He        | N <sub>2</sub> | NH <sub>3</sub> | NO        | N <sub>2</sub> O | 02        | SO <sub>2</sub> | Air*       | Т<br>(K) |
|----------|-----------|------------------------------------|-----------|-----------|-----------|-----------------|----------------|------------------|-----------|----------------|-----------------|-----------|------------------|-----------|-----------------|------------|----------|
| 100      | 2.5<br>00 | 4.7<br>80                          | 4.0<br>00 | 4.3<br>23 | 3.5<br>01 | 3.5<br>12       | -              | 4.0<br>06        | 2.5<br>00 | 3.5<br>00      | 4.0<br>03       | 3.8<br>86 | 3.5<br>30        | 3.5<br>01 | 4.0<br>32       | 3.5<br>824 | 100      |

Calculated from P-v-T values tabulated in A. A. Vasserman and V. A. Rabinovich, Thermophysical Properties of Liquid Air and Its Components, Israeli Program for Scientific Translations TT 69-55092, 235 pp., 1970; A. A. Vasserman, Y. Z. Kazavchinskii, and V. A. Rabinovich, Thermophysical Properties of Air and Air Components, IPST TT 70-50095, 383 pp., 1971.

<sup>\*</sup> Calculated from density-pressure-temperature data in Vukalovitch and Altunin, Thermophysical Properties of Carbon Dioxide, Atomizdat, Moscow, 1965, and Collet's, London, 1968, trans.

<sup>6</sup> Computed from pressure-volume-temperature tables in Zagoruchenko and Zhuravlev, Thermophysical Properties of Gaseous and Liquid Methane, Moscow, 1969, and NBS-NSF TT 70-50097, 1970 translation.

<sup>&</sup>lt;sup>1</sup> Computed from tables in A. A. Vasserman, Y. Z. Kazavchinskii, and V. A. Rabinovich, Thermophysical Properties of Air and Air Components, Nauka, Moscow, 1966, and NBS-NSF Trans. TT 70-50095, 1971.

<sup>\*\*</sup> Computed from tables in A. A. Vasserman, Y. Z. Kazavchinskii, and V. A. Rabinovich, Thermophysical Properties of Air and Air Components, Nauka, Moscow, 1966, and NBS-NSF Trans. TT 70-50095, 1971.

Calculated from P-v-T tables of D. M. Vashchenko, Y. F. Voinov, et al., Standartov, Moscow, Monograph 8, 1971; NBS IR 75-763, NTIS COM-75-11276, 203 pp., 1972; republished 1975.



| т<br>(К) | Ar        | CCI<br>F   | СН        | CH<br>OH   | со        | со        | н         | ΗО        | He        | N         | NH        | NO        | N O       | 0         | so        | Air*       | т<br>(К) |
|----------|-----------|------------|-----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|----------|
| 200      | 2.5<br>00 | 7.0<br>21  | 4.0<br>26 | 4.8<br>30  | 3.5<br>01 | 3.8<br>81 | _         | 4.0<br>10 | 2.5<br>00 | 3.5<br>01 | 4.0<br>58 | 3.6<br>59 | 4.0<br>43 | 3.5<br>03 | 4.3<br>75 | 3.5<br>062 | 200      |
| 300      | 2.5<br>00 | 8.7<br>21  | 4.2<br>95 | 5.5<br>31  | 3.5<br>05 | 4.4<br>60 | _         | 4.0<br>40 | 2.5<br>00 | 3.5<br>03 | 4.2<br>81 | 3.5<br>90 | 4.6<br>55 | 3.5<br>34 | 4.8<br>03 | 3.5<br>059 | 300      |
| 400      | 2.5<br>00 | 9.9<br>00  | 4.8<br>71 | 6.5<br>30  | 3.5<br>29 | 4.9<br>52 | _         | 4.1<br>20 | 2.5<br>00 | 3.5<br>18 | 4.6<br>22 | 3.6<br>02 | 5.1<br>34 | 3.6<br>21 | 5.2<br>29 | 3.5<br>333 | 400      |
| 500      | 2.5<br>00 | 10.<br>706 | 5.5<br>74 | 7.5<br>63  | 3.5<br>83 | 5.3<br>46 | 3.5<br>20 | 4.2<br>36 | 2.5<br>00 | 3.5<br>58 | 5.0<br>00 | 3.6<br>67 | 5.5<br>15 | 3.7<br>39 | 5.6<br>00 | 3.5<br>882 | 500      |
| 600      | 2.5<br>00 | 11.<br>258 | 6.2<br>82 | 8.5<br>02  | 3.6<br>61 | 5.6<br>69 | 3.5<br>27 | 4.3<br>68 | 2.5<br>00 | 3.6<br>21 | 5.3<br>76 | 3.7<br>58 | 5.8<br>28 | 3.8<br>60 | 5.8<br>97 | 3.6<br>626 | 600      |
| 700      | 2.5<br>00 | 11.<br>644 | 6.9<br>51 | 9.3<br>27  | 3.7<br>49 | 5.9<br>38 | 3.5<br>40 | 4.5<br>08 | 2.5<br>00 | 3.6<br>99 | 5.7<br>38 | 3.8<br>53 | 6.0<br>88 | 3.9<br>67 | 6.1<br>27 | 3.7<br>455 | 700      |
| 800      | 2.5<br>00 | 11.<br>920 | 7.5<br>69 | 10.<br>051 | 3.8<br>37 | 6.1<br>63 | 3.5<br>62 | 4.6<br>56 | 2.5<br>00 | 3.7<br>81 | 6.0<br>84 | 3.9<br>42 | 6.3<br>05 | 4.0<br>57 | 6.3<br>04 | 3.8<br>28  | 800      |
| 900      | 2.5<br>00 | 12.<br>122 | 8.1<br>31 | 10.<br>686 | 3.9<br>18 | 6.3<br>51 | 3.5<br>93 | 4.8<br>08 | 2.5<br>00 | 3.8<br>60 | 6.4<br>13 | 4.0<br>21 | 6.4<br>86 | 4.1<br>32 | 6.4<br>41 | 3.9<br>06  | 900      |
| 100      | 2.5       | 12.        | 8.6       | 11.        | 3.9       | 6.5       | 3.6       | 4.9       | 2.5       | 3.9       | 6.7       | 4.0       | 6.6       | 4.1       | 6.5       | 3.9        | 100      |
| 0        | 00        | 274        | 35        | 245        | 91        | 09        | 32        | 62        | 00        | 32        | 22        | 89        | 38        | 94        | 50        | 79         | 0        |
| 110      | 2.5       | 12.        | 9.0       | 11.        | 4.0       | 6.6       | 3.6       | 5.1       | 2.5       | 3.9       | 7.0       | 4.1       | 6.7       | 4.2       | 6.6       | 4.0        | 110      |
| 0        | 00        | 391        | 84        | 735        | 54        | 43        | 77        | 14        | 00        | 98        | 10        | 47        | 65        | 46        | 36        | 46         | 0        |
| 120      | 2.5       | 12.        | 9.4       | 12.        | 4.1       | 6.7       | 3.7       | 5.2       | 2.5       | 4.0       | 7.2       | 4.1       | 6.8       | 4.2       | 6.7       | 4.1        | 120      |
| 0        | 00        | 482        | 82        | 165        | 10        | 56        | 26        | 62        | 00        | 56        | 75        | 97        | 72        | 90        | 07        | 09         | 0        |
| 130      | 2.5       | 12.        | 9.8       | 12.        | 4.1       | 6.8       | 3.7       | 5.4       | 2.5       | 4.1       | 7.5       | 4.2       | 6.9       | 4.3       | 6.7       | 4.1        | 130      |
| 0        | 00        | 555        | 32        | 543        | 58        | 52        | 77        | 04        | 00        | 07        | 17        | 39        | 62        | 28        | 65        | 71         | 0        |
| 140      | 2.5       | 12.        | 10.       | 12.        | 4.1       | 6.9       | 3.8       | 5.5       | 2.5       | 4.1       | 7.7       | 4.2       | 7.0       | 4.3       | 6.8       | 4.2        | 140      |
| 0        | 00        | 613        | 140       | 875        | 99        | 34        | 29        | 38        | 00        | 51        | 37        | 75        | 40        | 63        | 14        | 30         | 0        |
| 150      | 2.5       | 12.        | 10.       | 13.        | 4.2       | 7.0       | 3.8       | 5.6       | 2.5       | 4.1       | 7.9       | 4.3       | 7.1       | 4.3       | 6.8       | 4.2        | 150      |
| 0        | 00        | 661        | 410       | 167        | 35        | 04        | 80        | 63        | 00        | 90        | 35        | 06        | 07        | 95        | 55        | 89         | 0        |
| 160      | 2.5       | 12.        | 10.       | 13.        | 4.2       | 7.0       | 3.9       | 5.7       | 2.5       | 4.2       | 8.1       | 4.3       | 7.1       | 4.4       | 6.8       | 4.3        | 160      |
| 0        | 00        | 700        | 649       | 424        | 66        | 65        | 31        | 80        | 00        | 24        | 13        | 33        | 64        | 26        | 91        | 52         | 0        |
| 170      | 2.5       | 12.        | 10.       | 13.        | 4.2       | 7.1       | 3.9       | 5.8       | 2.5       | 4.2       | 8.2       | 4.3       | 7.2       | 4.4       | 6.9       | 4.4        | 170      |
| 0        | 00        | 734        | 859       | 650        | 94        | 18        | 79        | 87        | 00        | 54        | 74        | 56        | 15        | 55        | 22        | 18         | 0        |
| 180      | 2.5       | 12.        | 11.       | 13.        | 4.3       | 7.1       | 4.0       | 5.9       | 2.5       | 4.2       | 8.4       | 4.3       | 7.2       | 4.4       | 6.9       | 4.4        | 180      |
| 0        | 00        | 762        | 044       | 851        | 18        | 64        | 26        | 87        | 00        | 81        | 19        | 77        | 60        | 83        | 50        | 87         | 0        |
| 190      | 2.5       | 12.        | 11.       | 14.        | 4.3       | 7.2       | 4.0       | 6.0       | 2.5       | 4.3       | 8.5       | 4.3       | 7.2       | 4.5       | 6.9       | 4.5        | 190      |
| 0        | 00        | 785        | 208       | 029        | 39        | 05        | 70        | 79        | 00        | 04        | 49        | 95        | 99        | 11        | 75        | 66         | 0        |
| 200      | 2.5       | 12.        | 11.       | 14.        | 4.3       | 7.2       | 4.1       | 6.1       | 2.5       | 4.3       | 8.6       | 4.4       | 7.3       | 4.5       | 6.9       | 4.6        | 200      |
| 0        | 00        | 806        | 354       | 187        | 58        | 42        | 12        | 64        | 00        | 25        | 67        | 11        | 35        | 39        | 97        | 62         | 0        |



| т<br>(K) | Ar  | CCI<br>F | СН  | CH<br>OH | со  | СО  | Н   | но  | He  | N   | NH  | NO  | N O | 0   | so  | Air* | т<br>(К) |
|----------|-----|----------|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|
| 210      | 2.5 | 12.      | 11. | 14.      | 4.3 | 7.2 | 4.1 | 6.2 | 2.5 | 4.3 | 8.7 | 4.4 | 7.3 | 4.5 | 7.0 | 4.7  | 210      |
| 0        | 00  | 823      | 483 | 328      | 75  | 74  | 52  | 42  | 00  | 44  | 73  | 25  | 67  | 67  | 17  | 81   | 0        |
| 220      | 2.5 | 12.      | 11. | 14.      | 4.3 | 7.3 | 4.1 | 6.3 | 2.5 | 4.3 | 8.8 | 4.4 | 7.3 | 4.5 | 7.0 | 4.9  | 220      |
| 0        | 00  | 839      | 599 | 454      | 90  | 03  | 89  | 14  | 00  | 60  | 69  | 38  | 95  | 94  | 36  | 47   | 0        |
| 230      | 2.5 | 12.      | 11. | 14.      | 4.4 | 7.3 | 4.2 | 6.3 | 2.5 | 4.3 | 8.9 | 4.4 | 7.4 | 4.6 | 7.0 | 5.1  | 230      |
| 0        | 00  | 852      | 703 | 567      | 04  | 29  | 24  | 81  | 00  | 75  | 56  | 50  | 22  | 21  | 53  | 79   | 0        |
| 240      | 2.5 | 12.      | 11. | 14.      | 4.4 | 7.3 | 4.2 | 6.4 | 2.5 | 4.3 | 9.0 | 4.4 | 7.4 | 4.6 | 7.0 | 5.4  | 240      |
| 0        | 00  | 864      | 796 | 668      | 16  | 53  | 57  | 43  | 00  | 89  | 35  | 61  | 46  | 47  | 69  | 84   | 0        |
| 250      | 2.5 | 12.      | 11. | 14.      | 4.4 | 7.3 | 4.2 | 6.5 | 2.5 | 4.4 | 9.1 | 4.4 | 7.4 | 4.6 | 7.0 | 5.8  | 250      |
| 0        | 00  | 875      | 880 | 760      | 27  | 75  | 88  | 00  | 00  | 01  | 07  | 71  | 68  | 73  | 84  | 82   | 0        |
| 260      | 2.5 | 12.      | 11. | 14.      | 4.4 | 7.3 | 4.3 | 6.5 | 2.5 | 4.4 | 9.1 | 4.4 | 7.4 | 4.6 | 7.0 | 6.4  | 260      |
| 0        | 00  | 884      | 955 | 843      | 37  | 95  | 18  | 53  | 00  | 13  | 72  | 80  | 88  | 99  | 99  | 0    | 0        |
| 270      | 2.5 | 12.      | 12. | 14.      | 4.4 | 7.4 | 4.3 | 6.6 | 2.5 | 4.4 | 9.2 | 4.4 | 7.5 | 4.7 | 7.1 | 7.0  | 270      |
| 0        | 00  | 892      | 024 | 918      | 47  | 13  | 46  | 03  | 00  | 23  | 32  | 89  | 08  | 24  | 12  | 6    | 0        |
| 280      | 2.5 | 12.      | 12. | 14.      | 4.4 | 7.4 | 4.3 | 6.6 | 2.5 | 4.4 | 9.2 | 4.4 | 7.5 | 4.7 | 7.1 | 7.8  | 280      |
| 0        | 00  | 900      | 086 | 987      | 56  | 30  | 72  | 49  | 00  | 33  | 87  | 97  | 26  | 48  | 25  | 7    | 0        |
| 290      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.4 | 4.3 | 6.6 | 2.5 | 4.4 | 9.3 | 4.5 | 7.5 | 4.7 | 7.1 | 8.8  | 290      |
| 0        | 00  | 906      | 143 | 049      | 64  | 45  | 97  | 92  | 00  | 42  | 38  | 04  | 42  | 71  | 37  | 6    | 0        |
| 300      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.4 | 4.4 | 6.7 | 2.5 | 4.4 | 9.3 | 4.5 | 7.5 | 4.7 | 7.1 | 9.9  | 300      |
| 0        | 00  | 913      | 194 | 106      | 71  | 60  | 21  | 33  | 00  | 50  | 84  | 11  | 58  | 94  | 49  | 6    | 0        |
| 310      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.4 | 4.4 | 6.7 | 2.5 | 4.4 | 9.4 | 4.5 | 7.5 | 4.8 | 7.1 | -    | 310      |
| 0        | 00  | 918      | 242 | 158      | 78  | 74  | 44  | 71  | 00  | 57  | 27  | 18  | 73  | 16  | 60  |      | 0        |
| 320      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.4 | 4.4 | 6.8 | 2.5 | 4.4 | 9.4 | 4.5 | 7.5 | 4.8 | 7.1 | -    | 320      |
| 0        | 00  | 923      | 285 | 206      | 85  | 86  | 65  | 07  | 00  | 64  | 67  | 24  | 88  | 37  | 71  |      | 0        |
| 330      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.4 | 4.4 | 6.8 | 2.5 | 4.4 | 9.5 | 4.5 | 7.6 | 4.8 | 7.1 | -    | 330      |
| 0        | 00  | 928      | 325 | 250      | 91  | 99  | 86  | 41  | 00  | 71  | 04  | 30  | 01  | 58  | 82  |      | 0        |
| 340      | 2.5 | 12.      | 12. | 15.      | 4.4 | 7.5 | 4.5 | 6.8 | 2.5 | 4.4 | 9.5 | 4.5 | 7.6 | 4.8 | 7.1 | -    | 340      |
| 0        | 00  | 932      | 361 | 290      | 97  | 10  | 05  | 73  | 00  | 77  | 38  | 35  | 14  | 77  | 92  |      | 0        |
| 350      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.5 | 6.9 | 2.5 | 4.4 | 9.5 | 4.5 | 7.6 | 4.8 | 7.2 | -    | 350      |
| 0        | 00  | 936      | 395 | 327      | 02  | 21  | 24  | 03  | 00  | 83  | 70  | 41  | 27  | 96  | 02  |      | 0        |
| 360      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.5 | 6.9 | 2.5 | 4.4 | 9.6 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 360      |
| 0        | 00  | 939      | 427 | 362      | 08  | 31  | 42  | 32  | 00  | 89  | 00  | 46  | 39  | 13  | 12  |      | 0        |
| 370      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.5 | 6.9 | 2.5 | 4.4 | 9.6 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 370      |
| 0        | 00  | 942      | 455 | 394      | 13  | 41  | 59  | 60  | 00  | 94  | 28  | 51  | 51  | 30  | 22  |      | 0        |
| 380      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.5 | 6.9 | 2.5 | 4.4 | 9.6 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 380      |
| 0        | 00  | 945      | 482 | 424      | 17  | 50  | 76  | 86  | 00  | 99  | 54  | 56  | 62  | 46  | 31  |      | 0        |
| 390      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.5 | 7.0 | 2.5 | 4.5 | 9.6 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 390      |
| 0        | 00  | 948      | 507 | 451      | 22  | 59  | 92  | 11  | 00  | 04  | 78  | 60  | 73  | 61  | 40  |      | 0        |



| Т<br>(К) | Ar  | CCI<br>F | СН  | CH<br>OH | со  | CO  | н   | н о | He  | N   | NH  | NO  | N O | 0   | S0  | Air* | т<br>(К) |
|----------|-----|----------|-----|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|----------|
| 400      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.6 | 7.0 | 2.5 | 4.5 | 9.7 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 400      |
| 0        | 00  | 951      | 530 | 477      | 26  | 68  | 08  | 35  | 00  | 08  | 01  | 65  | 83  | 76  | 50  |      | 0        |
| 410      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.6 | 7.0 | 2.5 | 4.5 | 9.7 | 4.5 | 7.6 | 4.9 | 7.2 | -    | 410      |
| 0        | 00  | 953      | 552 | 501      | 31  | 76  | 23  | 58  | 00  | 13  | 23  | 69  | 94  | 89  | 59  |      | 0        |
| 420      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.6 | 7.0 | 2.5 | 4.5 | 9.7 | 4.5 | 7.7 | 5.0 | 7.2 | -    | 420      |
| 0        | 00  | 955      | 572 | 523      | 35  | 84  | 37  | 80  | 00  | 17  | 43  | 73  | 04  | 02  | 67  |      | 0        |
| 430      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.6 | 7.1 | 2.5 | 4.5 | 9.7 | 4.5 | 7.7 | 5.0 | 7.2 | -    | 430      |
| 0        | 00  | 957      | 591 | 544      | 38  | 92  | 51  | 02  | 00  | 21  | 63  | 77  | 14  | 15  | 76  |      | 0        |
| 440      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.5 | 4.6 | 7.1 | 2.5 | 4.5 | 9.7 | 4.5 | 7.7 | 5.0 | 7.2 | -    | 440      |
| 0        | 00  | 959      | 609 | 564      | 42  | 99  | 65  | 22  | 00  | 25  | 81  | 81  | 23  | 26  | 85  |      | 0        |
| 450      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.6 | 7.1 | 2.5 | 4.5 | 9.7 | 4.5 | 7.7 | 5.0 | 7.2 | -    | 450      |
| 0        | 00  | 961      | 625 | 582      | 46  | 06  | 78  | 42  | 00  | 28  | 98  | 85  | 33  | 37  | 93  |      | 0        |
| 460      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.6 | 7.1 | 2.5 | 4.5 | 9.8 | 4.5 | 7.7 | 5.0 | 7.3 | -    | 460      |
| 0        | 00  | 963      | 641 | 599      | 49  | 14  | 91  | 61  | 00  | 32  | 15  | 89  | 42  | 48  | 02  |      | 0        |
| 470      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.7 | 7.1 | 2.5 | 4.5 | 9.8 | 4.5 | 7.7 | 5.0 | 7.3 | -    | 470      |
| 0        | 00  | 964      | 655 | 616      | 53  | 20  | 04  | 80  | 00  | 35  | 31  | 93  | 51  | 58  | 10  |      | 0        |
| 480      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.7 | 7.1 | 2.5 | 4.5 | 9.8 | 4.5 | 7.7 | 5.0 | 7.3 | -    | 480      |
| 0        | 00  | 966      | 669 | 631      | 56  | 27  | 17  | 98  | 00  | 39  | 45  | 96  | 60  | 68  | 19  |      | 0        |
| 490      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.7 | 7.2 | 2.5 | 4.5 | 9.8 | 4.6 | 7.7 | 5.0 | 7.3 | -    | 490      |
| 0        | 00  | 967      | 682 | 645      | 59  | 34  | 29  | 16  | 00  | 42  | 60  | 00  | 69  | 78  | 27  |      | 0        |
| 500      | 2.5 | 12.      | 12. | 15.      | 4.5 | 7.6 | 4.7 | 7.2 | 2.5 | 4.5 | 9.8 | 4.6 | 7.7 | 5.0 | 7.3 | -    | 500      |
| 0        | 00  | 968      | 694 | 659      | 63  | 40  | 40  | 33  | 00  | 45  | 73  | 04  | 78  | 87  | 35  |      | 0        |

All table values are for the dimensionless ratio  $c_p/R$ , where R is the gas constant. To obtain values of  $c_p$ , multiply the tabular values by the appropriate gas constant. Thus, for specific heats in units of kJ(kg mol)(K), multiply by 8.31434; for specific heats in Btu/(lb mol)(°R), multiply by 1.986, etc.

Source: R. A. Svehla, "Estimated Viscosities and Thermal Conductivities at High Temperatures," NASA Tech. Rep. R-132, 1962.

Table 2.13 Thermophysical Properties of Selected Gases

<sup>\*</sup> Data for air from "Tables of Thermal Properties of Gases," U.S. Department of Commerce, National Bureau of Standards, Circular 564, 1955.



|           |                                                                                                       |                                                                           |        |        |        |        |        |        | T (°    | C)      |         |         |          |          |          |
|-----------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|----------|----------|----------|
|           |                                                                                                       |                                                                           | -150   | -100   | -50    | 0      | 25     | 100    | 200     | 300     | 400     | 600     | 800      | 1 000    | 1 200    |
|           |                                                                                                       | Property                                                                  |        |        |        |        |        |        | T (I    | ζ)      |         |         |          |          |          |
| Substance | Data                                                                                                  | (at low pressure)                                                         | 123.15 | 173.15 | 223.15 | 273.15 | 298.15 | 373.15 | 473.15  | 573.15  | 673.15  | 873.15  | 1 073.15 | 1 273.15 | 1 473.15 |
| Acetone   | Chemical formula: C₃H₄O<br>Molecular weight: 58.08<br>Normal density (at 0°C,                         | Specific heat capacity $c_{pg}$ (kJ/kg K)                                 | S      | S      | L      | L      | L      | 1.557  | 1.838   | 2.093   | 2.311   | 2.659   | 2.906    | 3.098    | 3.006    |
|           | 101.3 kPa): 2.59 kg/m³<br>Boiling point: 56.1°C<br>Critical temperature:                              | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | L      | L      | L      | 0.018  | (0.027) | (0.038) | (0.051) | (0.076) | _        | _        | _        |
|           | 235.0°C<br>Critical pressure: 4.761 MPa                                                               | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | L      | L      | L      | 0.931  | 1.21    | 1.46    | 1.72    | 2.20    | 2.64     | 3.05     | 3.42     |
| Acetylene | Chemical formula: C <sub>2</sub> H <sub>2</sub><br>Molecular weight: 26.04<br>Normal density (at 0°C, | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S      | S      | 1.503  | 1.616  | 1.687  | 1.871  | 2.047   | 2.177   | 2.286   | 2.462   | 2.613    | 2.734    | 2.834    |
|           | 101.3 kPa): 1.17 kg/m³<br>Boiling point: -83.95°C<br>Critical temperature:                            | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | 0.013  | 0.018  | 0.021  | 0.030  | 0.042   | 0.053   | 0.066   | 0.087   | 0.107    | 0.125    | 0.143    |
|           | 35.55°C<br>Critical pressure: 6.24 MPa                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | 0.785  | 0.960  | 1.04   | 1.28   | 1.55    | 1.83    | 2.08    | 2.53    | 2.93     | 3.30     | 3.65     |
| Ammonia   | Chemical formula: NH <sub>3</sub><br>Molecular weight: 17.03<br>Normal density (at 0°C,               | Specific heat capacity $c_{pg}$ (kJ/kg K)                                 | S      | S      | L      | 2.056  | 2.093  | 2.219  | 2.366   | 2.516   | 2.663   | 2.805   | 3.538    | 4.099    | 4.509    |
|           | 101.3 kPa): 0.76 kg/m³ Boiling point: -33.4°C Critical temperature:                                   | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | L      | 0.022  | 0.024  | 0.033  | 0.047   | 0.067   | 0.088   | 0.109   | 0.209    | 0.304    | 0.388    |
|           | 132.4°C<br>Critical pressure: 11.29 MPa                                                               | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | L      | 0.930  | 1.00   | 1.28   | 1.65    | 1.99    | 2.34    | 2.67    | 4.16     | 5.40     | 6.49     |
| Benzene   | Chemical formula: C <sub>6</sub> H <sub>6</sub><br>Molecular weight: 78.11<br>Normal density (at 0°C, | Specific heat capacity $c_{pg}$ (kJ/kg K)                                 | S      | S      | S      | L      | L      | 1.336  | 1.679   | 1.959   | 2.186   | 2.525   | 2.767    | 2.943    | 3.077    |
|           | 101.3 kPa): 3.49 kg/m³ Boiling point: 80.1°C Critical temperature:                                    | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | S      | L      | L      | 0.020  | 0.030   | (0.036) | (0.047) | (0.070) | (0.092)  | (0.112)  | (0.130)  |
|           | 289.45°C<br>Critical pressure: 4.924 MPa                                                              | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> ) | S      | S      | S      | L      | L      | 0.951  | 1.20    | 1.45    | (1.65)  | (2.10)  | (2.53)   | (2.95)   | (3.35)   |

S, solid; L, liquid; values in parentheses are estimated values.



|                              |                                                                                                         |                                                               |        |        |        |        |        |        | T (°   | C)     |         |         |          |          |          |
|------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|----------|----------|----------|
|                              |                                                                                                         |                                                               | -150   | -100   | -50    | 0      | 25     | 100    | 200    | 300    | 400     | 600     | 800      | 1 000    | 1 200    |
|                              |                                                                                                         | Property                                                      |        |        |        |        |        |        | T (F   | ζ)     |         |         |          |          |          |
| Substance                    | Data                                                                                                    | (at low pressure)                                             | 123.15 | 173.15 | 223.15 | 273.15 | 298.15 | 373.15 | 473.15 | 573.15 | 673.15  | 873.15  | 1 073.15 | 1 273.15 | 1 473.15 |
| Bromine                      | Chemical formula: Br <sub>2</sub><br>Molecular weight: 159.81<br>Normal density (at 0°C,                | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | S      | S      | L      | L      | 0.227  | 0.229  | 0.230  | 0.231   | 0.232   | 0.234    | 0.235    | 0.237    |
|                              | 101.3 kPa): 7.13 kg/m³<br>Boiling point: 58.75°C<br>Critical temperature:                               | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | S      | S      | L      | L      | 0.006  | 0.007  | 0.009  | 0.011   | 0.013   | 0.021    | 0.026    | 0.032    |
|                              | 310.85°C<br>Critical pressure: 10.34 MPa                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | S      | S      | L      | L      | 1.88   | 2.37   | 2.92   | 3.40    | 3.87    | 5.98     | 7.73     | 9.25     |
| Carbon<br>Tetra-<br>chloride | Chemical formula: CCL <sub>4</sub><br>Molecular weight: 153.82<br>Normal density (at 0°C,               | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | S      | S      | L      | L      | 0.586  | 0.624  | 0.645  | 0.657   | 0.670   | 0.691    | 0.696    | 0.699    |
|                              | 101.3 kPa): 6.87 kg/m³<br>Boiling point: 76.7°C<br>Critical temperature:                                | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | S      | S      | L      | L      | 0.009  | 0.012  | 0.015  | 0.019   | 0.021   | 0.032    | 0.041    | 0.049    |
|                              | 283.2°C<br>Critical pressure: 4.56 MPa                                                                  | Dynamic viscosity<br>η <sub>g</sub> (10-5 Ns/m²)              | S      | S      | S      | L      | L      | 1.23   | 1.53   | 1.83   | 2.12    | 2.38    | 3.45     | 4.35     | 5.15     |
| Chlorine                     | Chemical formula: Cl <sub>2</sub><br>Molecular weight: 70.91<br>Normal density (at 0°C,                 | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | L      | L      | 0.473  | 0.477  | 0.494  | 0.507  | 0.515  | 0.523   | 0.528   | 0.536    | 0.544    | 0.548    |
|                              | 101.3 kPa): 3.16 kg/m³<br>Boiling point: -34.04°C<br>Critical temperature:                              | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | L      | L      | 0.008  | 0.009  | 0.012  | 0.015  | 0.018  | 0.021   | 0.024   | 0.035    | 0.045    | 0.054    |
|                              | 144.0°C<br>Critical pressure: 7.710 MPa                                                                 | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | L      | L      | 1.23   | 1.34   | 1.68   | 2.10   | 2.50   | 2.86    | 3.22    | 4.68     | 5.90     | 6.99     |
| Ethanol                      | Chemical formula: C <sub>2</sub> H <sub>6</sub> O<br>Molecular weight: 46.07<br>Normal density (at 0°C, | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | L      | L      | L      | L      | 1.825  | 2.114  | 2.370  | 2.596   | 2.964   | 3.245    | 3.458    | 3.622    |
|                              | 101.3 kPa): 2.06 kg/m³<br>Boiling point: 78.31°C<br>Critical temperature:                               | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | L      | L      | L      | L      | 0.023  | 0.039  | 0.047  | (0.059) | (0.079) | _        | _        | _        |
|                              | 243.1°C<br>Critical pressure: 6.39 MPa                                                                  | Dynamic viscosity<br>η <sub>g</sub> (10-5 Ns/m²)              | S      | L      | L      | L      | L      | 1.09   | 1.38   | 1.65   | 1.88    | 2.36    | 2.78     | 3.17     | 3.52     |



| Ethylene           | Chemical formula: C <sub>2</sub> H <sub>4</sub><br>Molecular weight: 28.05<br>Normal density (at 0°C,                | Specific heat capacity $c_{pg}$ (kJ/kg K)                     | L      | 1.654  | 1.319  | 1.461  | 1.553  | 1.830  | 2.177   | 2.479   | 2.738   | 3.157   | 3.475    | 3.722    | 3.910    |
|--------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|----------|----------|----------|
|                    | 101.3 kPa): 1.26 kg/m³<br>Boiling point: -103.72°C<br>Critical temperature:                                          | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | L      | 0.009  | 0.013  | 0.017  | 0.021  | 0.031  | 0.044   | 0.060   | 0.075   | 0.106   | 0.136    | 0.162    | 0.188    |
|                    | 9.50°C<br>Critical pressure: 5.06 MPa                                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | L      | 0.592  | 0.770  | 0.939  | 1.02   | 1.27   | 1.55    | 1.78    | 2.01    | 2.44    | 2.79     | 3.07     | 3.45     |
| Ethylene<br>Glycol | Chemical formula: C <sub>2</sub> H <sub>6</sub> O <sub>2</sub><br>Molecular weight: 62.07<br>Normal density (at 0°C, | Specific heat capacity $c_{Rg}$ (kJ/kg K)                     | S      | S      | S      | L      | L      | L      | (1.826) | (2.057) | (2.260) | (2.590) | _        | _        | _        |
|                    | 101.3 kPa): 2.77 kg/m³<br>Boiling point: 197.25°C<br>Critical temperature:                                           | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | S      | S      | L      | L      | L      | (0.029) | (0.040) | (0.052) | (0.076) | _        | _        | _        |
|                    | 371.85°C<br>Critical pressure: 7.7 MPa                                                                               | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | S      | S      | L      | L      | L      | (1.31)  | (1.59)  | (1.86)  | (2.35)  | -        | -        | -        |
|                    |                                                                                                                      |                                                               |        |        |        |        |        |        | T (°    | C)      |         |         |          |          |          |
|                    |                                                                                                                      |                                                               | -150   | -100   | -50    | 0      | 25     | 100    | 200     | 300     | 400     | 500     | 1 000    | 1 500    | 2 000    |
|                    |                                                                                                                      | Property                                                      |        |        |        |        |        |        | T (I    | ζ)      |         |         |          |          |          |
| Substance          | Data                                                                                                                 | (at low pressure)                                             | 123.15 | 173.15 | 223.15 | 273.15 | 298.15 | 373.15 | 473.15  | 573.15  | 673.15  | 773.15  | 1 273.15 | 1 773.15 | 2 273.15 |
| Fluorine           | Chemical formula: F <sub>2</sub><br>Molecular weight: 38.00<br>Normal density (at 0°C,                               | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | 0.766  | 0.755  | 0.795  | 0.816  | 0.825  | 0.862  | 0.904   | 0.921   | 0.938   | 0.950   | 0.988    | 1.001    | 1.009    |
|                    | 101.3 kPa): 1.70 kg/m³ Boiling point: –187.95°C Critical temperature:                                                | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | 0.010  | 0.015  | 0.020  | 0.024  | 0.027  | 0.033  | 0.040   | 0.047   | 0.053   | 0.060   | 0.091    | 0.115    | 0.137    |
|                    | -129.15°C<br>Critical pressure: 5.32 MPa                                                                             | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | 0.890  | 1.25   | 1.56   | 2.09   | 2.42   | 2.79   | 3.30    | 3.90    | 4.37    | 4.81    | 7.67     | 10.3     | 12.5     |
| Glycerol           | Chemical formula: C₃H₃O₃<br>Molecular weight: 92.09<br>Normal density (at 0°C,                                       | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | S      | S      | S      | L      | L      | L       | (2.15)  | (2.29)  | (2.53)  | _        | _        | _        |
|                    | 101.3 kPa): 4.11 kg/m³<br>Boiling point: 289.85°C<br>Critical temperature:                                           | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | S      | S      | S      | L      | L      | L       | (0.030) | (0.040) | (0.062) | _        | _        | -        |
|                    | 452.85°C<br>Critical pressure: 6.69 MPa                                                                              | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | S      | S      | S      | L      | L      | L       | (1.42)  | (1.66)  | (2.16)  | _        | _        | -        |

S, solid; L, liquid; values in parentheses are estimated values.



|           |                                                                                                         |                                                                           |        |        |        |         |         |         | T (°    | C)      |         |         |          |          |          |
|-----------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|--------|--------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|
|           |                                                                                                         |                                                                           | -150   | -100   | -50    | 0       | 25      | 100     | 200     | 300     | 400     | 500     | 1 000    | 1 500    | 2 000    |
|           |                                                                                                         | Property                                                                  |        |        |        |         |         |         | T (I    | ζ)      |         |         |          |          |          |
| Substance | Data                                                                                                    | (at low pressure)                                                         | 123.15 | 173.15 | 223.15 | 273.15  | 298.15  | 373.15  | 473.15  | 573.15  | 673.15  | 773.15  | 1 273.15 | 1 773.15 | 2 273.15 |
| Heptane   | Chemical formula: C <sub>7</sub> H <sub>16</sub><br>Molecular weight: 100.20<br>Normal density (at 0°C, | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S      | S      | L      | L       | L       | 2.026   | 2.437   | 2.793   | 3.070   | 3.571   | 3.936    | 4.212    | 4.417    |
|           | 101.3 kPa): 4.47 kg/m³<br>Boiling point: 98.45°C<br>Critical temperature:                               | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | L      | L       | L       | 0.017   | 0.029   | 0.041   | 0.054   | 0.080   | 0.104    | 0.124    | (0.142)  |
|           | 267.46°C<br>Critical pressure: 2.736 MPa                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | L      | L       | L       | 0.76    | 0.95    | 1.14    | 1.32    | 1.65    | 1.97     | 2.26     | (2.55)   |
| Hexane    | Chemical formula: C <sub>6</sub> H <sub>14</sub><br>Molecular weight: 86.18<br>Normal density (at 0°C,  | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S      | S      | L      | L       | L       | 2.026   | 2.441   | 2.801   | 3.120   | 3.583   | 3.957    | 4.237    | 4.446    |
|           | 101.3 kPa): 3.85 kg/m³<br>Boiling point: 68.73°C<br>Critical temperature:                               | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | L      | L       | L       | 0.019   | 0.030   | 0.043   | 0.056   | 0.084   | 0.109    | 0.132    | (0.152)  |
|           | 234.29°C<br>Critical pressure: 3.031 MPa                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | L      | L       | L       | 0.822   | 1.04    | 1.23    | 1.48    | 1.90    | 2.12     | 2.40     | 2.66     |
| Methanol  | Chemical formula: CH <sub>4</sub> O<br>Molecular weight: 32.04<br>Normal density (at 0°C,               | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S      | S      | L      | L       | L       | 1.595   | 1.823   | 2.064   | 2.273   | 2.629   | 3.01     | 3.23     | 3.40     |
|           | 101.3 kPa): 1.43 kg/m³<br>Boiling point: 64.7°C<br>Critical temperature:                                | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | S      | L      | L       | L       | 0.026   | 0.045   | 0.055   | 0.071   | 0.104   | 0.136    | 0.167    | 0.197    |
|           | 240°C<br>Critical pressure: 7.95 MPa                                                                    | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | S      | S      | L      | L       | L       | 1.22    | 1.56    | 1.89    | 2.20    | 2.79    | 3.33     | 3.82     | 4.28     |
|           |                                                                                                         |                                                                           |        |        |        |         |         |         | T (°    | C)      |         |         |          |          |          |
|           |                                                                                                         |                                                                           | -150   | -100   | -50    | 0       | 25      | 100     | 200     | 300     | 400     | 600     | 800      | 1 000    | 1 200    |
|           |                                                                                                         | Property                                                                  |        |        |        |         |         |         | T (I    | ζ)      |         |         |          |          |          |
| Substance | Data                                                                                                    | (at low pressure)                                                         | 123.15 | 173.15 | 223.15 | 273.15  | 298.15  | 373.15  | 473.15  | 573.15  | 673.15  | 873.15  | 1 073.15 | 1 273.15 | 1 473.15 |
| Ketene    | Chemical formula: C <sub>2</sub> H <sub>2</sub> O<br>Molecular weight: 42.04<br>Normal density (at 0°C, | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S      | L      | L      | 1.093   | 1.143   | 1.290   | 1.461   | 1.599   | 1.717   | 1.905   | 2.043    | 2.148    | 2.227    |
|           | 101.3 kPa): 1.88 kg/m³<br>Boiling point: -41.15°C<br>Critical temperature:                              | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S      | L      | L      | (0.015) | (0.017) | (0.024) | (0.034) | (0.045) | (0.055) | (0.070) | _        | _        | -        |
|           | 106.85°C<br>Critical pressure: 6.48 MPa                                                                 | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> ) | S      | L      | L      | (1.05)  | (1.15)  | (1.43)  | (1.78)  | (2.10)  | (2.40)  | (2.94)  | _        | _        | _        |



| Krypton             | Chemical formula: Kr<br>Molecular weight: 83.80<br>Normal density (at 0°C,                | Specific heat capacity $c_{Rg}$ (kJ/kg K)                                 | 0.247 | 0.247 | 0.247 | 0.247 | 0.247  | 0.247 | 0.247 | 0.247 | 0.247 | 0.247 | 0.247 | 0.247 | 0.247   |
|---------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|---------|
|                     | 101.3 kPa): 3.74 kg/m³<br>Boiling point: −153.35 °C<br>Critical temperature:              | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | 0.004 | 0.006 | 0.007 | 0.009 | 0.010  | 0.012 | 0.014 | 0.016 | 0.018 | 0.021 | 0.030 | 0.035 | 0.041   |
|                     | -63.755°C<br>Critical pressure: 5.502 MPa                                                 | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | 1.05  | 1.49  | 1.91  | 2.33  | 2.52   | 3.06  | 3.74  | 4.38  | 4.91  | 5.39  | 7.55  | 9.39  | 11.02   |
| Nitric<br>Oxide     | Chemical formula: NO<br>Molecular weight: 30.01<br>Normal density (at 0°C,                | Specific heat capacity $c_{P,g}$ (kJ/kg K)                                | 0.971 | 0.971 | 0.971 | 0.971 | 0.971  | 0.980 | 1.005 | 1.030 | 1.059 | 1.089 | 1.176 | 1.218 | 1.239   |
|                     | 101.3 kPa): 1.34 kg/m³<br>Boiling point: -151.75°C<br>Critical temperature:               | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | 0.013 | 0.018 | 0.021 | 0.024 | 0.026  | 0.031 | 0.038 | 0.046 | 0.053 | 0.059 | 0.088 | 0.113 | 0.135   |
|                     | -93.15°C<br>Critical pressure: 6.48 MPa                                                   | Dynamic viscosity $\eta_g (10^{-5} \ Ns/m^2)$                             | 0.85  | 1.21  | 1.49  | 1.79  | 1.92   | 2.27  | 2.68  | 3.12  | 3.47  | 3.85  | 5.29  | 6.55  | 7.72    |
| Nitrogen<br>Dioxide | Chemical formula: NO <sub>2</sub><br>Molecular weight: 46.01<br>Normal density (at 0°C,   | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | S     | S     | S     | L     | 0.808  | 0.858 | 0.929 | 0.984 | 1.034 | 1.080 | 1.193 | 1.256 | 1.281   |
|                     | 101.3 kPa): 2.05 kg/m³<br>Boiling point: 21.1°C<br>Critical temperature:                  | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | S     | S     | S     | L     | 1.18   | 0.065 | 0.033 | 0.040 | 0.047 | 0.055 | 0.085 | _     | _       |
|                     | 158.2°C<br>Critical pressure: 10.13 MPa                                                   | Dynamic viscosity $\eta_g (10^{-5} \text{ Ns/m}^2)$                       | S     | S     | S     | L     | (1.49) | 1.84  | 2.26  | 2.65  | 2.99  | 3.32  | 4.55  | _     | _       |
| Neon                | Chemical formula: Ne<br>Molecular weight: 20.18<br>Normal density (at 0°C,                | Specific heat capacity $c_{p,g}$ (kJ/kg K)                                | 1.030 | 1.030 | 1.030 | 1.030 | 1.030  | 1.030 | 1.030 | 1.030 | 1.030 | 1.030 | 1.030 | 1.030 | 1.030   |
|                     | 101.3 kPa): 0.90 kg/m³ Boiling point: -246.06°C Critical temperature:                     | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$             | 0.027 | 0.034 | 0.041 | 0.046 | 0.049  | 0.057 | 0.067 | 0.077 | 0.087 | 0.097 | 0.132 | 0.154 | 0.180   |
|                     | -228.75°C<br>Critical pressure: 2.654 MPa                                                 | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)              | 1.67  | 2.14  | 2.58  | 2.99  | 3.12   | 3.65  | 4.26  | 4.89  | 5.32  | 5.81  | 7.81  | 9.95  | 11.68   |
| Pentane             | Chemical formula: C₃H <sub>12</sub><br>Molecular weight: 72.15<br>Normal density (at 0°C, | Specific heat capacity $c_{P,g}$ (kJ/kg K)                                | S     | L     | L     | L     | L      | 2.026 | 2.445 | 2.809 | 3.115 | 3.613 | 3.990 | 4.275 | 4.488   |
|                     | 101.3 kPa): 3.22 kg/m³<br>Boiling point: 36.05°C<br>Critical temperature:                 | Thermal conductivity $\lambda_{g}\left[(W/m^{2})/(K/m)\right]$            | S     | L     | L     | L     | L      | 0.021 | 0.034 | 0.047 | 0.061 | 0.090 | 0.117 | 0.142 | (0.162) |
|                     | 196.45°C<br>Critical pressure: 3.369 MPa                                                  | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> ) | S     | L     | L     | L     | L      | 0.860 | 1.09  | 1.29  | 1.49  | 1.85  | 2.17  | 2.46  | 2.74    |

S, solid; L, liquid; values in parentheses are estimated values.



|           |                                                                                                       |                                                               |        |        |        |        |        |        | T (°   | C)     |         |         |          |          |          |
|-----------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|----------|----------|----------|
|           |                                                                                                       |                                                               | -150   | -100   | -50    | 0      | 25     | 100    | 200    | 300    | 400     | 600     | 800      | 1 000    | 1 200    |
|           |                                                                                                       | Property                                                      |        |        |        |        |        |        | T (F   | ζ)     |         |         |          |          |          |
| Substance | Data                                                                                                  | (at low pressure)                                             | 123.15 | 173.15 | 223.15 | 273.15 | 298.15 | 373.15 | 473.15 | 573.15 | 673.15  | 873.15  | 1 073.15 | 1 273.15 | 1 473.15 |
| Propylene | Chemical formula: C₃H₅<br>Molecular weight: 42.08<br>Normal density (at 0°C,                          | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | L      | L      | L      | 1.424  | 1.520  | 1.800  | 2.160  | 2.479  | 2.755   | 3.203   | 3.542    | 3.802    | 3.998    |
|           | 101.3 kPa): 1.90 kg/m³<br>Boiling point: -47.7°C<br>Critical temperature:                             | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | L      | L      | L      | 0.014  | 0.017  | 0.026  | 0.039  | 0.054  | 0.069   | 0.099   | 0.127    | 0.155    | 0.180    |
|           | 91.65°C<br>Critical pressure: 4.61 MPa                                                                | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | L      | L      | L      | 0.780  | 0.860  | 1.07   | 1.34   | 1.59   | 1.82    | 2.23    | 2.62     | 2.97     | 3.29     |
| Toluene   | Chemical formula: C <sub>7</sub> H <sub>8</sub><br>Molecular weight: 92.14<br>Normal density (at 0°C, | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | S      | L      | L      | L      | L      | 1.758  | 2.047  | 2.286   | 2.650   | 2.914    | 3.102    | 3.245    |
|           | 101.3 kPa): 4.11 kg/m³<br>Boiling point: 110.63°C<br>Critical temperature:                            | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | S      | L      | L      | L      | L      | 0.032  | 0.042  | (0.052) | (0.072) | (0.092)  | (0.112)  | (0.130)  |
|           | 320.85°C<br>Critical pressure: 4.05 MPa                                                               | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | S      | L      | L      | L      | L      | 1.12   | 1.33   | 1.545   | 1.95    | (2.33)   | (2.68)   | (3.01)   |
| Xenon     | Chemical formula: Xe<br>Molecular weight: 131.30<br>Normal density (at 0°C,                           | Specific heat capacity $c_{p,g}$ (kJ/kg K)                    | S      | 0.159  | 0.159  | 0.159  | 0.159  | 0.159  | 0.159  | 0.159  | 0.159   | 0.159   | 0.159    | 0.159    | 0.159    |
|           | 101.3 kPa): 5.86 kg/m³ Boiling point: -108.15°C Critical temperature:                                 | Thermal conductivity $\lambda_g \left[ (W/m^2)/(K/m) \right]$ | S      | 0.003  | 0.004  | 0.005  | 0.006  | 0.007  | 800.0  | 0.010  | 0.012   | 0.013   | 0.018    | 0.022    | 0.026    |
|           | 16.55°C<br>Critical pressure: 5.822 MPa                                                               | Dynamic viscosity<br>η <sub>g</sub> (10 <sup>-5</sup> Ns/m²)  | S      | 1.39   | 1.78   | 2.11   | 2.29   | 2.83   | 3.50   | 4.15   | 4.73    | 5.24    | 7.38     | 9.22     | 1.084    |

S, solid; L, liquid; values in parentheses are estimated values. **Source:** Ref. 5 with permission.

Table 2.14 Fickian Diffusion Coefficients  $[(m^2/s) \times 10^{-4}]$  at Atmospheric Pressure



| T (K)              | $D_{ij}$ | T (K)             | $D_{ij}$   | T (K)           | $D_{ij}$    | T(K)                       | $D_{ij}$ |
|--------------------|----------|-------------------|------------|-----------------|-------------|----------------------------|----------|
| Air–carbon dioxide | [20]     | Carbon dioxide-   | argon [20] | Water-carbon    | dioxide [4] | Neon-argon [15]            |          |
| 276.2              | 0.1420   | 276.2             | 0.1326     | 307.5           | 0.202       | 273.0                      | 0.276    |
| 317.2              | 0.1772   | 317.2             | 0.1652     | 328.6           | 0.211       | 288.0                      | 0.300    |
| Ammonia-helium [   | 221      | Nitrogen-nitrogen | , 171      | 352.4           | 0.245       | 303.0                      | 0.327    |
| 274.2              | 0.668    | 77.5              | 0.0168     |                 |             | 318.0                      | 0.357    |
| 308.2              | 0.783    | 194.5             | 0.104      | Water-helium [  | -           |                            |          |
|                    |          | 273               | 0.185      | 307.2           | 0.902       | Neon-neon [7]              |          |
| 331.1              | 0.881    | 298               | 0.103      | 328.5           | 1.011       | 77.5                       | 0.0492   |
| Ammonia-neon [23   | 3]       | 353               | 0.212      | 352.5           | 1.121       | 194.5                      | 0.255    |
| 274.2              | 0.298    |                   |            | Water builes as | 121         | 273                        | 0.452    |
| 308.4              | 0.378    | Nitrogen-xenon [  | 17]        | Water-hydroge   |             | 298                        | 0.516    |
| 333.1              | 0.419    | 242.2             | 0.0854     | 293.1           | 0.850       | 353                        | 0.703    |
| A 12               |          | 274.6             | 0.1070     | 322.7           | 1.012       |                            |          |
| Ammonia-xenon [2   |          | 303.45            | 0.1301     | 365.6           | 1.24        | Neon-xenon [14]            |          |
| 274.2              | 0.114    | 334.2             | 0.1549     | 365.6           | 1.26        | 273.0                      | 0.186    |
| 308.4              | 0.145    | Oxygen-argon [2   | 41         | 372.5           | 1.28        | 288.0                      | 0.202    |
| 333.1              | 0.173    | 293.2             | 0.200      | Hydrogen (trac  | ce)-        | 303.0                      | 0.221    |
| Argon-argon [7]    |          |                   |            | oxygen [2]      |             | 318.0                      | 0.244    |
| 77.5               | 0.0134   | Oxygen-argon [1   |            | 300             | 0.820       | AT:                        | 77       |
| 90                 | 0.0180   | 243.2             | 0.135      | 400             | 1.40        | Nitrogen-argon [17         | -        |
| 194.5              | 0.0830   | 274.7             | 0.168      |                 | I           | 244.2                      | 0.1348   |
| 273                | 0.156    | 304.5             | 0.202      | 500             | 2.10        | 274.6                      | 0.1689   |
| 295                | 0.178    | 334.0             | 0.239      | 600             | 2.89        | 303.55                     | 0.1999   |
| 353                | 0.249    | Oxygen-helium [   | 161        | 700             | 3.81        | 334.7                      | 0.2433   |
|                    | 0.249    | 244.2             | 0.536      | 800             | 4.74        | N: 1-1: []                 | 171      |
| Argon-argon [12]   |          | 274.0             | 0.640      | 900             | 5.74        | Nitrogen-helium [1         |          |
| 273                | 0.156    | 304.4             | 0.761      | Hydrogen-neor   | n [10]      | 243.2                      | 0.477    |
| 293                | 0.175    | 334.0             | 0.912      | 242.2           | 0.792       | 275.0                      | 0.596    |
| 303                | 0.186    |                   |            | 274.2           | 0.974       | 303.55                     | 0.719    |
| 318                | 0.204    | Oxygen-oxygen [   |            | 303.2           | 1.150       | 332.5                      | 0.811    |
| Argon-helium [11]  |          | 77.5              | 0.0153     | 341.2           | 1.405       | Helium-nitrogen            |          |
| 287.9              | 0.697    | 194.5             | 0.104      | 341.2           | 1.405       | (20% N <sub>2</sub> ) [27] |          |
| 354.0              | 0.979    | 273               | 0.187      | Hydrogen-xene   | on [10]     | 190                        | 0.305    |
| 418.0              | 1.398    | 298               | 0.232      | 242.2           | 0.410       | 298                        | 0.712    |
| 410.0              | 1.590    | 353               | 0.301      | 274.2           | 0.508       | l                          |          |
| Argon-helium [12]  |          | Oxygen-water [4]  | 1          | 303.9           | 0.612       | 300                        | 0.738    |
| 273.0              | 0.640    | 307.9             | 0.282      | 341.2           | 0.751       | 305                        | 0.747    |
| 288.0              | 0.701    | 328.8             | 0.318      |                 |             | 310                        | 0.740    |
| 303.0              | 0.760    | 352.2             | 0.352      | Methane-meth    |             | 320                        | 0.812    |
| 318.0              | 0.825    |                   |            | 90              | 0.0266      | 330                        | 0.857    |
| Argon-xenon [12]   |          | Oxygen-xenon [1   |            | 194.5           | 0.0992      | 340                        | 0.881    |
| 273.0              | 0.0943   | 242.2             | 0.084      | 273             | 0.206       | 350                        | 0.946    |
|                    |          | 274.75            | 0.100      | 298             | 0.240       | 360                        | 0.967    |
| 288.0              | 0.102    | 303.55            | 0.126      | 353             | 0.318       | 370                        | 1.035    |
| 303.0              | 0.114    | 333.6             | 0.149      |                 |             | 380                        | 1.051    |
| 318.0              | 0.128    | Water-air [3]     |            | Methane-meth    |             | 390                        | 1.107    |
| Argon-xenon [13]   |          | 289.9             | 0.244      | 298.2           | 0.235       | 400                        | 1.157    |
| 194.7              | 0.0508   | 365.6             | 0.357      | 353.6           | 0.315       | Helium-nitrogen            |          |
| 273.2              | 0.0962   | 372.5             | 0.377      | 382.6           | 0.360       |                            |          |
| 329.9              | 0.1366   |                   |            | Mathana         | . [41       | (50% N <sub>2</sub> ) [27] | 0.210    |
| 378.0              | 0.1759   | Water-carbon die  |            | Methane-water   |             | 190                        | 0.310    |
|                    |          | 296.1             | 0.164      | 307.5           | 0.292       | 298                        | 0.725    |
| Carbon dioxide-arg |          | 365.6             | 0.249      | 328.6           | 0.331       | 300                        | 0.751    |
| 293                | 0.139    | 372.6             | 0.259      | 352.1           | 0.356       | 305                        | 0.758    |

Note: See page 2.25 for footnotes and references.



| T(K)               | $D_{ij}$              | T (K)           | $D_{ij}$     | T (K)              | $D_{ij}$ | T (K)              | $D_{ij}$ |
|--------------------|-----------------------|-----------------|--------------|--------------------|----------|--------------------|----------|
| Helium-nitrogen    | (50% N <sub>2</sub> ) | Hydrogen (trace | )-argon [9]  | Helium-nitrogen    |          | Carbon dioxide-ox  | ygen     |
| [27] (Continued)   |                       | 295             | 0.83         | (trace) [18]       |          | (trace) [2]        |          |
| 310                | 0.759                 | 448             | 1.76         | 298                | 0.687    | 300                | 0.160    |
| 320                | 0.827                 | 628             | 3.21         | 323                | 0.766    | 400                | 0.270    |
| 330                | 0.879                 | 806             | 4.86         | 353                | 0.893    | 500                | 0.400    |
| 340                | 0.899                 | 958             | 6.81         | 383                | 1.077    | 600                | 0.565    |
| 350                | 0.966                 | 1069            | 8.10         | 413                | 1.200    | 700                | 0.740    |
| 360                | 0.985                 | 1005            | 0.10         | 443                | 1.289    | 800                | 0.928    |
| 370                | 1.058                 | Helium-argon (  | trace) [18]  | 473                | 1.569    | 900                | 1.14     |
| 380                | 1.068                 | 413             | 1.237        | 498                | 1.650    | 1000               | 1.39     |
| 390                | 1.144                 | 443             | 1.401        | 450                | 1.050    | 1000               | 1.07     |
| 400                | 1.180                 | 473             | 1.612        | Helium (trace)-    |          | Carbon monoxide-   | -        |
|                    |                       | 498             | 1.728        | nitrogen [1]       |          | carbon monoxide [  | 22]      |
| Helium-nitrogen    | $(100\% N_2)$         | 150             | 1.720        | 300                | 0.743    | 194.7              | 0.109    |
| extrapolated) [27] |                       | Helium (trace)- | argon [8]    | 400                | 1.21     | 273.2              | 0.190    |
| 190                | 0.317                 | 300             | 0.76         | 500                |          | 319.6              | 0.247    |
| 298                | 0.740                 | 400             | 1.26         | 600                | 1.76     | 373.0              | 0.323    |
| 300                | 0.766                 | 500             | 1.86         |                    | 2.40     |                    |          |
| 305                | 0.774                 | 600             | 2.56         | 700                | 3.11     | Carbon monoxide-   | -        |
| 310                | 0.775                 | 700             | 3.35         | 800                | 3.90     | nitrogen [22]      |          |
| 320                | 0.845                 | 800             | 4.23         | 900                | 4.76     | 194.7              | 0.105    |
| 330                | 0.902                 | 900             | 5.20         | 1000               | 5.69     | 273.2              | 0.186    |
| 340                | 0.921                 | 1000            | 6.25         | 1200               | 7.74     | 319.6              | 0.242    |
| 350                | 0.989                 | 1100            | 7.38         | 0 1 1 11 1         |          | 373.0              | 0.318    |
| 360                | 1.013                 | 1100            | 7.50         | Carbon dioxide-ni  | trogen   | C-1                |          |
| 370                | 1.086                 | Helium-carbon   | dioxide [20] | (trace) [1]        |          | Carbon monoxide    |          |
| 380                | 1.094                 | 276.2           | 0.5312       | 300                | 0.177    | (trace)-oxygen [2] | 0.212    |
| 390                | 1.168                 | 317.2           | 0.6607       | 400                | 0.300    | 300                | 0.212    |
| 400                | 1.210                 | 346.2           | 0.7646       | 500                | 0.445    | 400                | 0.376    |
| 400                | 1.210                 | 340.2           | 0.7040       | 600                | 0.610    | 500                | 0.552    |
| Helium-oxygen      |                       | Helium–carbon   | dioxide      | 700                | 0.798    | 600                | 0.746    |
| (trace) [18]       |                       | (trace) [18]    |              | 800                | 0.998    | 700                | 0.961    |
| 298                | 0.729                 | 298             | 0.612        | 900                | 1.22     | 800                | 1.22     |
| 323                | 0.809                 | 323             | 0.678        | 1000               | 1.47     | Helium-air [20]    |          |
| 353                | 0.987                 | 353             | 0.800        | 1100               | 1.70     | 276.2              | 0.6242   |
| 383                | 1.120                 | 583             | 0.884        |                    |          | 317.2              | 0.7652   |
| 413                | 1.245                 | 413             | 1.040        | Carbon dioxide–    |          |                    |          |
| 443                | 1.420                 | 443             | 1.133        | nitrogen [26]      |          | 346.2              | 0.9019   |
| 473                | 1.595                 | 473             | 1.279        | 295                | 0.159    | Helium-argon [20]  |          |
| 498                | 1.683                 | 498             |              | 1156               | 1.78     | 276.2              | 0.6460   |
|                    |                       | 498             | 1.414        | 1158               | 1.92     | 317.2              | 0.7968   |
| Helium-xenon [12   |                       | Helium–methyl   | alcohol      | 1286               | 2.34     | 346.2              | 0.9244   |
| 273.0              | 0.501                 | (trace) [18]    |              | 1333               | 2.26     |                    |          |
| 288.0              | 0.550                 | 423             | 1.032        | 1426               | 2.55     | Helium-argon       |          |
| 303.0              | 0.604                 | 443             | 1.135        | 1430               | 2.72     | (trace) [18]       |          |
| 318.0              | 0.655                 | 463             | 1.218        | 1469               | 2.85     | 298                | 0.729    |
| Hydrogen-argon     | [10]                  | 483             | 1.335        | 1490               | 2.92     | 323                | 0.809    |
| 242.2              | 0.562                 |                 |              |                    |          | 353                | 0.978    |
|                    |                       | 503             | 1.389        | 1653               | 3.32     | 383                | 1.122    |
| 274.2              | 0.698                 | 523             | 1.475        | Carbon dioxide-    |          | C 1 1: 11          |          |
| 303.9              | 0.830                 | Helium-neon [1  | 41           | nitrous oxide [19] |          | Carbon dioxide-    |          |
| 341.2              | 1.010                 | 273.0           | 0.906        |                    | 0.0504   | argon [26]         | 0.425    |
| Hydrogen-argon     | [11]                  | 288.0           | 0.986        | 194.8              | 0.0531   | 295                | 0.139    |
| 287.9              | 0.828                 |                 | I            | 273.2              | 0.0996   | 1181               | 1.88     |
| 354.2              | 1.111                 | 303.0           | 1.065        | 312.8              | 0.1280   | 1207               | 1.88     |
| 418.0              | 1.714                 | 318.0           | 1.158        | 362.6              | 0.1683   | 1315               | 2.38     |
|                    | 2.7.27                |                 |              |                    |          |                    |          |





| a II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oon dioxide- Carbon dioxide-                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| argon [26] (Continued)         carbon dioxide [19]         carbon dioxide [19]         carbon 296           1383         2.13         273.2         0.0970         298           1427         2.53         312.8         0.1248         1180           1445         2.66         362.6         0.1644         1218           1503         2.84         carbon dioxide—carbon dioxide [5]         233         0.0662           1538         3.08         253         0.0794         1445           266         3.21         274         0.0925         1487           274         0.0925         1487         1490           273         0.0907         363         0.1613         1576           298         0.113         393         0.1876         1580           353         0.153         423         0.2164         1665           453         0.2477         1680 | 1.84 2.04 328.6 1.121 352.7 1.200 2.38 2.80 Water-nitrogen [4] 2.86 307.6 0.256 2.56 328.6 0.303 2.88 352.2 0.359 2.98 2.78 3.12 273.2 0.0480 3.29 300.5 0.0576 |

All the  $D_{ij}$  values are in (m<sup>2</sup>/s) × 10<sup>-4</sup>. For example, at 276.2 K the interdiffusion coefficient for the air–carbon dioxide mixture is 1.420 × 10<sup>-5</sup> m<sup>2</sup>/s.

For an extensive review with formula fits but no data tables, see Marrero and Mason, *J. Phys. Chem. Ref. Data*, 1:3–118 (1972). Interpolation from a graph of  $\log D_{\theta}$  versus  $\log T$  is often simple.

References for Fickian interdiffusion coefficients

- R. E. Walker and A. A. Westenberg, "Molecular Diffusion Studies in Gases at High Temperatures. II. Interpretation of Results on the He-N<sub>2</sub> and CO<sub>2</sub>-N<sub>2</sub> Systems," J. Chem. Phys., 29:1147, 1958.
- 2. R. E. Walker and A. A. Westenberg, "Molecular Diffusion Studies in Gases at High Temperatures. IV. Results and Interpretation of the CO<sub>2</sub>·O<sub>2</sub>, CH<sub>4</sub>·O<sub>2</sub>, H<sub>2</sub>·O<sub>2</sub>, CO·O<sub>2</sub> and H<sub>2</sub>O·O<sub>2</sub> Systems," J. Chem. Phys., 32:436, 1960.
- M. Trautz and W. Müller, "Die Reibung, Wärmeleitung und Diffusion in Gasmischungen. XXXIII. Die Korrektion der bisher mit der Verdampfungsmethode gemessenen Diffusionskonstanten," Ann. Physik. 22:333, 1935.
- 4. F. A. Schwertz and J. E. Brow, "Diffusivity of Water Vapor in Some Common Gases," J. Chem. Phys., 19:640, 1951.
- K. Schäfer and P. Reinhard, "Zwischenmolekulare Kräfte und die Temperaturabhängigkeit der Selbstdiffusion von CO<sub>2</sub>," Z. Naturforsch, 18:187, 1963.
- 6. G. Ember, J. R. Ferron, and K. Wohl, "Self-Diffusion Coefficients of Carbon Dioxide at 1180°–1680°K," J. Chem. Phys., 37:891, 1962.
- E. B. Winn, "The Temperature Dependence of the Self-Diffusion Coefficients of Argon, Neon, Nitrogen, Oxygen, Carbon Dioxide, and Methane," *Phys. Rev.*, 80:1024, 1950.
- 8. R. E. Walker and A. A. Westenberg, "Molecular Diffusion Studies in Gases at High Temperature. III. Results and Interpretation of the He-A System," J. Chem. Phys., 31:319, 1959.
- A. A. Westenberg and G. Frazier, "Molecular Diffusion Studies in Gases at High Temperature. V. Results for the H₂-Ar System," J. Chem. Phys., 36:3499, 1962.
- R. Paul and I. B. Srivastava, "Mutual Diffusion of the Gas Pairs H<sub>2</sub>-Ne, H<sub>2</sub>-Ar, and H<sub>2</sub>-Xe at Different Temperatures," J. Chem. Phys., 35:1621, 1961.
- R. A. Strehlow, "The Temperature Dependence of the Mutual Diffusion Coefficient for Four Gaseous Systems," J. Chem. Phys., 21:2101, 1953.
  - 12. K. P. Srivastava, "Mutual Diffusion of Binary Mixtures of Helium,

Argon, and Xenon at Different Temperatures," Physica, 25:571, 1959.

- I. Amdur and T. F. Schatzki, "Diffusion Coefficients of the Systems Xe-Xe and A-Xe," J. Chem. Phys., 27:1049, 1957.
- K. P. Srivastava and A. K. Barua, "The Temperature Dependence of Interdiffusion Coefficient for Some Pairs of Rare Gases," *Indian J. Phys.*, 33:229, 1959.
- B. N. Srivastava and K. P. Srivastava, "Mutual Diffusion of Pairs of Rare Gases at Different Temperatures," J. Chem. Phys., 30:984, 1959.
- R. Paul and I. B. Srivastava, "Studies on Binary Diffusion of the Gas Pairs O<sub>2</sub>-A, O<sub>2</sub>-Xe, and O<sub>2</sub>-He," *Indian J. Phys.*, 35:465, 1961.
- R. Paul and I. B. Srivastava, "Studies on the Binary Diffusion of the Gas Pairs N<sub>2</sub>-A, N<sub>2</sub>-Xe, and N<sub>2</sub>-He," *Indian J. Phys.*, 35:523, 1961.
- S. L. Seager, L. R. Geertson, and J. C. Giddings, "Temperature Dependence of Gas and Vapor Diffusion Coefficients," J. Chem. Eng. Data, 8:168, 1963.
- I. Amdur, J. W. Irvine, Jr., E. A. Mason, and J. Ross, "Diffusion Coefficients of the Systems CO<sub>2</sub>-CO<sub>2</sub> and CO<sub>2</sub>-N<sub>2</sub>O," J. Chem. Phys., 20:436, 1952
- J. N. Holsen and M. R. Strunk, "Binary Diffusion Coefficients in Nonpolar Gases," Ind. Eng. Chem. Fund., 3:143, 1964.
- C. R. Mueller and R. W. Cahill, "Mass Spectrometric Measurement of Diffusion Coefficients," J. Chem. Phys., 40:651, 1964.
- I. Amdur and L. M. Shuler, "Diffusion Coefficients of the Systems CO-CO and CO-N<sub>2</sub>," J. Chem. Phys., 38:188, 1963.
- I. B. Srivastava, "Mutual Diffusion of Binary Mixtures of Ammonia with He, Ne and Xe," Indian J. Phys., 36:193, 1962.
- L. E. Boardman and N. E. Wild, "The Diffusion of Pairs of Gases with Molecules of Equal Mass," Proc. Royal Soc. A162:511, 1937.
- L. Waldmann, "Die Temperaturerscheinungen bei der Diffusion in ruhenden Gasen und ihre messtechnische Anwendung," Z. Phys., 124:2,1947.
- T. A. Pakurar and J. R. Ferron, "Measurement and Prediction of Diffusivities to 1700°K in Binary Systems Containing Carbon Dioxide," Univ. of Delaware Tech. Rept. DEL-14-P, 1964.
- J.-W. Yang, "A New Method of Measuring the Mass Diffusion Coefficient and Thermal Diffusion Factor in a Binary Gas System," doctoral dissertation, Univ. of Minnesota, 1966.
- R. E. Walker, L. Monchick, A. A. Westenberg, and S. Favin, "High Temperature Gaseous Diffusion Experiments and Intermolecular Potential Energy Functions," *Planet. Space Sci.*, 3:221, 1961.

# 2.3. THERMOPHYSICAL PROPERTIES OF LIQUIDS



Table 2.15 Thermophysical Properties of Saturated Water and Steam

|        |                     | Liqu  | id             |       |                   | Ste   | eam   |      |
|--------|---------------------|-------|----------------|-------|-------------------|-------|-------|------|
| T (°C) | η · 10 <sup>7</sup> | λ·10³ | c <sub>p</sub> | Pr    | η·10 <sup>7</sup> | λ·10³ | $c_p$ | Pr   |
| 0      | 17 525              | 569   | 4.217          | 12.99 | 80.4              | 17.6  | 1.864 | 0.85 |
| 10     | 12 992              | 586   | 4.193          | 9.30  | 84.5              | 18.2  | 1.868 | 0.87 |
| 20     | 10 015              | 602   | 4.182          | 6.96  | 88.5              | 18.8  | 1.874 | 0.88 |
| 30     | 7 970               | 617   | 4.179          | 5.40  | 92.6              | 19.4  | 1.883 | 0.90 |
| 40     | 6 513               | 630   | 4.179          | 4.32  | 96.6              | 20.1  | 1.894 | 0.91 |
| 50     | 5 440               | 643   | 4.181          | 3.54  | 100               | 20.9  | 1.907 | 0.92 |
| 60     | 4 630               | 653   | 4.185          | 2.97  | 105               | 21.6  | 1.924 | 0.94 |
| 70     | 4 005               | 662   | 4.190          | 2.54  | 109               | 22.3  | 1.944 | 0.95 |
| 80     | 3 510               | 669   | 4.197          | 2.20  | 113               | 23.1  | 1.969 | 0.96 |
| 90     | 3 113               | 675   | 4.205          | 1.94  | 117               | 23.9  | 1.999 | 0.98 |
| 100    | 2 790               | 680   | 4.216          | 1.73  | 121               | 24.8  | 2.034 | 0.99 |
| 110    | 2 522               | 683   | 4.229          | 1.56  | 124               | 25.8  | 2.075 | 1.00 |
| 120    | 2 300               | 685   | 4.245          | 1.43  | 128               | 26.7  | 2.124 | 1.02 |
| 130    | 2 110               | 687   | 4.263          | 1.31  | 132               | 27.8  | 2.180 | 1.04 |
| 140    | 1 950               | 687   | 4.285          | 1.22  | 135               | 28.8  | 2.245 | 1.05 |
| 150    | 1 810               | 686   | 4.310          | 1.14  | 139               | 30.0  | 2.320 | 1.08 |
| 160    | 1 690               | 684   | 4.339          | 1.07  | 142               | 31.3  | 2.406 | 1.09 |
| 170    | 1 585               | 681   | 4.371          | 1.02  | 146               | 32.6  | 2.504 | 1.12 |
| 180    | 1 493               | 676   | 4.408          | 0.97  | 149               | 34.1  | 2.615 | 1.14 |
| 190    | 1 412               | 671   | 4.449          | 0.94  | 153               | 35.7  | 2.741 | 1.17 |
| 200    | 1 338               | 664   | 4.497          | 0.91  | 156               | 37.5  | 2.883 | 1.20 |
| 210    | 1 273               | 657   | 4.551          | 0.88  | 160               | 39.4  | 3.043 | 1.24 |
| 220    | 1 215               | 648   | 4.614          | 0.86  | 163               | 41.5  | 3.223 | 1.27 |
| 230    | 1 162               | 639   | 4.686          | 0.85  | 167               | 43.9  | 3.426 | 1.30 |
| 240    | 1 114               | 629   | 4.770          | 0.85  | 171               | 46.5  | 3.656 | 1.34 |

|        |        | Liq  | uid   |      | Steam  |      |       |       |  |  |
|--------|--------|------|-------|------|--------|------|-------|-------|--|--|
| T (°C) | η · 10 | λ·10 | С     | Pr   | η · 10 | λ·10 | С     | Pr    |  |  |
| 250    | 1 070  | 617  | 4.869 | 0.84 | 174    | 49.5 | 3.918 | 1.38  |  |  |
| 260    | 1 030  | 604  | 4.985 | 0.85 | 178    | 52.8 | 4.221 | 1.42  |  |  |
| 270    | 994    | 589  | 5.13  | 0.86 | 182    | 56.6 | 4.574 | 1.47  |  |  |
| 280    | 961    | 573  | 5.30  | 0.89 | 187    | 60.9 | 4.996 | 1.53  |  |  |
| 290    | 930    | 557  | 5.51  | 0.92 | 193    | 66.0 | 5.51  | 1.61  |  |  |
| 300    | 901    | 540  | 5.77  | 0.96 | 198    | 71.9 | 6.14  | 1.69  |  |  |
| 310    | 865    | 522  | 6.12  | 1.01 | 205    | 79.1 | 6.96  | 1.80  |  |  |
| 320    | 830    | 503  | 6.59  | 1.09 | 214    | 87.8 | 8.05  | 1.96  |  |  |
| 330    | 790    | 482  | 7.25  | 1.19 | 225    | 98.9 | 9.59  | 2.18  |  |  |
| 340    | 748    | 460  | 8.27  | 1.34 | 238    | 113  | 11.92 | 2.51  |  |  |
| 350    | 700    | 435  | 10.08 | 1.62 | 256    | 130  | 15.95 | 3.14  |  |  |
| 360    | 644    | 401  | 14.99 | 2.41 | 282    | 150  | 26.79 | 5.04  |  |  |
| 370    | 564    | 338  | 53.9  | 8.99 | 335    | 183  | 112.9 | 20.66 |  |  |

Viscosity  $\eta$  (N·s/m<sup>2</sup>), thermal conductivity  $\lambda$  (W/m·deg), heat capacity  $c_p$  (kJ/kg·deg), Prandtl number Pr.

Source: Ref. 2 with permission.

Table 2.16 Thermophysical Properties of Water and Steam at Various Temperatures and Pressures

|        |                |             |             |             |             |             | T (K)       |             |             |             |             |             |             |
|--------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Pressi | ure, bar       | 300         | 350         | 400         | 450         | 500         | 550         | 600         | 650         | 700         | 800         | 900         | 1000        |
|        | μ              | 8.57.<br>-4 | 3.70.<br>-4 | 1.32.<br>-5 | 1.52.<br>-5 | 1.73.<br>-5 | 1.94.<br>-5 | 2.15.<br>-5 | 2.36.<br>-5 | 2.57.<br>-5 | 2.98.<br>-5 | 3.39.<br>-5 | 3.78.<br>-5 |
|        | c <sub>p</sub> | 4.18        | 4.19        | 1.99        | 1.97        | 1.98        | 2.00        | 2.02        | 2.06        | 2.09        | 2.15        | 2.22        | 2.29        |
| 1      | k              | 0.614       | 0.668       | 0.026<br>8  | 0.031<br>1  | 0.035<br>8  | 0.041<br>0  | 0.046<br>4  | 0.052<br>1  | 0.058<br>1  | 0.071<br>0  | 0.084<br>3  | 0.098<br>1  |
|        | Pr             | 5.81        | 2.32        | 0.980       | 0.967       | 0.955       | 0.945       | 0.936       | 0.928       | 0.920       | 0.906       | 0.891       | 0.881       |
|        | μ              | 8.57.<br>-4 | 3.70.<br>-4 | 2.17.<br>-4 | 1.49.<br>-5 | 1.72.<br>-5 | 1.93.<br>-5 | 2.15.<br>-5 | 2.36.<br>-5 | 2.57.<br>-5 | 2.98.<br>-5 | 3.39.<br>-5 | 3.78.<br>-5 |
|        | c <sub>p</sub> | 4.18        | 4.19        | 4.26        | 2.21        | 2.10        | 2.07        | 2.07        | 2.08        | 2.11        | 2.16        | 2.23        | 2.29        |



|       |                |             |             |             |             |             | <i>T</i> (K) |             |             |             |             |             |             |
|-------|----------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Press | ure, bar       | 300         | 350         | 400         | 450         | 500         | 550          | 600         | 650         | 700         | 800         | 900         | 1000        |
| 5     | k              | 0.614       | 0.668       | 0.689       | 0.033<br>5  | 0.036<br>9  | 0.041<br>6   | 0.046<br>9  | 0.052<br>6  | 0.058<br>5  | 0.071<br>3  | 0.084<br>6  | 0.098<br>4  |
|       | Pr             | 5.82        | 2.32        | 1.34        | 0.983       | 0.973       | 0.959        | 0.947       | 0.937       | 0.925       | 0.907       | 0.892       | 0.881       |
|       | μ              | 8.57.<br>-4 | 3.70.<br>-4 | 2.17.<br>-4 | 1.51.<br>-4 | 1.71.<br>-5 | 1.93.<br>-5  | 2.15.<br>-5 | 2.37.<br>-5 | 2.58.<br>-5 | 2.99.<br>-5 | 3.39.<br>-5 | 3.78.<br>-5 |
|       | c <sub>p</sub> | 4.18        | 4.19        | 4.25        | 4.39        | 2.29        | 2.17         | 2.13        | 2.13        | 2.13        | 2.18        | 2.24        | 2.30        |
| 10    | k              | 0.615       | 0.668       | 0.689       | 0.677       | 0.038       | 0.042<br>3   | 0.047<br>4  | 0.053<br>0  | 0.059<br>0  | 0.071<br>7  | 0.085<br>1  | 0.098<br>8  |
|       | Pr             | 5.82        | 2.32        | 1.34        | 0.981       | 1.028       | 0.988        | 0.963       | 0.949       | 0.931       | 0.908       | 0.892       | 0.881       |
|       | μ              | 8.56.<br>-4 | 3.71.<br>-4 | 2.18.<br>-4 | 1.51.<br>-4 | 1.68.<br>-5 | 1.92.<br>-5  | 2.15.<br>-5 | 2.38.<br>-5 | 2.59.<br>-5 | 3.00.<br>-5 | 3.40.<br>-5 | 3.79.<br>-5 |
|       | c <sub>p</sub> | 4.17        | 4.19        | 4.25        | 4.39        | 2.84        | 2.41         | 2.26        | 2.22        | 2.19        | 2.21        | 2.26        | 2.32        |
| 20    | k              | 0.616       | 0.669       | 0.689       | 0.679       | 0.040<br>2  | 0.043<br>5   | 0.048<br>5  | 0.053<br>9  | 0.059<br>9  | 0.072<br>6  | 0.085<br>9  | 0.099<br>6  |
|       | Pr             | 5.80        | 2.32        | 1.34        | 0.979       | 1.19        | 1.063        | 0.999       | 0.977       | 0.946       | 0.912       | 0.893       | 0.881       |
|       | μ              | 8.55.<br>-4 | 3.71.<br>-4 | 2.18.<br>-4 | 1.52.<br>-4 | 1.19.<br>-4 | 1.89.<br>-5  | 2.15.<br>-5 | 2.40.<br>-5 | 2.61.<br>-5 | 3.02.<br>-5 | 3.42.<br>-5 | 3.80.<br>-5 |
|       | c <sub>p</sub> | 4.17        | 4.19        | 4.25        | 4.38        | 4.65        | 3.18         | 2.60        | 2.42        | 2.32        | 2.28        | 2.30        | 2.34        |
| 40    | k              | 0.617       | 0.671       | 0.690       | 0.680       | 0.644       | 0.048<br>8   | 0.051<br>6  | 0.056<br>4  | 0.062<br>0  | 0.074<br>4  | 0.087<br>7  | 0.101       |
|       | Pr             | 5.78        | 2.31        | 1.34        | 0.977       | 0.862       | 1.23         | 1.08        | 1.031       | 0.975       | 0.924       | 0.895       | 0.881       |
|       | μ              | 8.54.<br>-4 | 3.72.<br>-4 | 2.19.<br>-4 | 1.53.<br>-4 | 1.20.<br>-4 | 9.84.<br>-5  | 2.14.<br>-5 | 2.43.<br>-5 | 2.63.<br>-5 | 3.04.<br>-5 | 3.43.<br>-5 | 3.82.<br>-5 |
|       | c <sub>p</sub> | 4.16        | 4.18        | 4.24        | 4.37        | 4.63        | 5.26         | 3.11        | 2.68        | 2.47        | 2.35        | 2.34        | 2.37        |
| 60    | k              | 0.619       | 0.672       | 0.692       | 0.682       | 0.646       | 0.579        | 0.056<br>1  | 0.059<br>4  | 0.064<br>5  | 0.076<br>4  | 0.089<br>5  | 0.103       |
|       | Pr             | 5.74        | 2.31        | 1.34        | 0.976       | 0.859       | 0.893        | 1.19        | 1.095       | 1.008       | 0.934       | 0.899       | 0.879       |
|       | μ              | 8.53.<br>-4 | 3.72.<br>-4 | 2.19.<br>-4 | 1.53.<br>-4 | 1.20.<br>-4 | 9.92.<br>-5  | 2.14.<br>-5 | 2.46.<br>-5 | 2.66.<br>-5 | 3.06.<br>-5 | 3.45.<br>-5 | 3.83.<br>-5 |
|       | c <sub>p</sub> | 4.16        | 4.18        | 4.24        | 4.36        | 4.62        | 5.21         | 3.88        | 3.00        | 2.65        | 2.43        | 2.39        | 2.40        |
| 80    | k              | 0.620       | 0.674       | 0.693       | 0.684       | 0.648       | 0.583        | 0.062<br>8  | 0.063<br>1  | 0.067<br>2  | 0.078<br>5  | 0.091<br>4  | 0.105       |

|         |                |             |             |                    |             |             | T (K)       |             |             |             |             |             |             |
|---------|----------------|-------------|-------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Pressi  | ure, bar       | 300         | 350         | 400                | 450         | 500         | 550         | 600         | 650         | 700         | 800         | 900         | 1000        |
|         | Pr             | 5.72        | 2.31        | 1.34               | 0.975       | 0.856       | 0.886       | 1.33        | 1.17        | 1.046       | 0.946       | 0.902       | 0.877       |
|         | μ              | 8.52.<br>-4 | 3.73.<br>-4 | 2.20.<br>-4        | 1.53.<br>-4 | 1.21.<br>-4 | 9.98.<br>-5 | 2.14.<br>-5 | 2.49.<br>-5 | 2.69.<br>-5 | 3.08.<br>-5 | 3.47.<br>-5 | 3.85.<br>-5 |
|         | c <sub>p</sub> | 4.15        | 4.17        | 4.23               | 4.35        | 4.60        | 5.17        | 5.22        | 3.42        | 2.85        | 2.52        | 2.44        | 2.44        |
| 100     | k              | 0.622       | 0.675       | 0.694              | 0.685       | 0.651       | 0.588       | 0.073<br>0  | 0.067<br>9  | 0.070<br>4  | 0.080<br>7  | 0.093<br>4  | 0.107       |
|         | Pr             | 5.69        | 2.31        | 1.34               | 0.975       | 0.853       | 0.879       | 1.74        | 1.25        | 1.088       | 0.960       | 0.905       | 0.876       |
| The not | tation 8.57    | 4 signif    | ies 8.57 ×  | 10 <sup>-4</sup> . |             |             |             |             |             |             |             |             |             |

Table 2.17 Isobaric Specific Heat for Water and Steam at Various Temperatures and Pressures

|        |       |       |       | Pressi | ure, bar |       |       |       |
|--------|-------|-------|-------|--------|----------|-------|-------|-------|
| T (°C) | 0.1   | . 1   | 10    | 20     | 40       | 60    | 80    | 100   |
| 0      | 4.218 | 4.217 | 4.212 | 4.207  | 4.196    | 4.186 | 4.176 | 4.165 |
| 50     | 1.929 | 4.181 | 4.179 | 4.176  | 4.172    | 4.167 | 4.163 | 4.158 |
| 100    | 1.910 | 2.038 | 4.214 | 4.211  | 4.207    | 4.202 | 4.198 | 4.194 |
| 120    | 1.913 | 2.007 | 4.243 | 4.240  | 4.235    | 4.230 | 4.226 | 4.221 |
| 140    | 1.918 | 1.984 | 4.283 | 4.280  | 4.275    | 4.269 | 4.263 | 4.258 |
| 160    | 1.926 | 1.977 | 4.337 | 4.334  | 4.327    | 4.320 | 4.313 | 4.307 |
| 180    | 1.933 | 1.974 | 2.613 | 4.403  | 4.395    | 4.386 | 4.378 | 4.370 |
| 200    | 1.944 | 1.975 | 2.433 | 4.494  | 4.483    | 4.472 | 4.461 | 4.450 |
| 220    | 1.954 | 1.979 | 2.316 | 2.939  | 4.601    | 4.586 | 4.571 | 4.557 |
| 240    | 1.964 | 1.985 | 2.242 | 2.674  | 4.763    | 4.741 | 4.720 | 4.700 |
| 260    | 1.976 | 1.993 | 2.194 | 2.505  | 3.582    | 4.964 | 4.932 | 4.902 |
| 280    | 1.987 | 2.001 | 2.163 | 2.395  | 3.116    | 4.514 | 5.25  | 5.20  |
| 300    | 1.999 | 2.010 | 2.141 | 2.321  | 2.834    | 3.679 | 5.31  | 5.70  |
| 320    | 2.011 | 2.021 | 2.126 | 2.268  | 2.649    | 3.217 | 4.118 | 5.79  |
| 340    | 2.024 | 2.032 | 2.122 | 2.239  | 2.536    | 2.943 | 3.526 | 4.412 |
| 350    | 2.030 | 2.038 | 2.125 | 2.235  | 2.504    | 2.861 | 3.350 | 4.043 |



|        |       |       |       | Pressi | ıre, bar |       |       |       |
|--------|-------|-------|-------|--------|----------|-------|-------|-------|
| T (°C) | 0.1   | 1     | 10    | 20     | 40       | 60    | 80    | 100   |
| 360    | 2.037 | 2.044 | 2.127 | 2.231  | 2.478    | 2.793 | 3.216 | 3.769 |
| 365    | 2.040 | 2.048 | 2.128 | 2.227  | 2.462    | 2.759 | 3.134 | 3.655 |
| 370    | 2.043 | 2.050 | 2.128 | 2.222  | 2.446    | 2.725 | 3.072 | 3.546 |
| 375    | 2.046 | 2.053 | 2.127 | 2.218  | 2.428    | 2.690 | 3.018 | 3.446 |
| 380    | 2.049 | 2.056 | 2.127 | 2.212  | 2.412    | 2.657 | 2.964 | 3.356 |
| 385    | 2.052 | 2.059 | 2.126 | 2.207  | 2.396    | 2.627 | 2.913 | 3.274 |
| 390    | 2.056 | 2.061 | 2.125 | 2.202  | 2.381    | 2.600 | 2.867 | 3.201 |
| 395    | 2.059 | 2.065 | 2.125 | 2.200  | 2.369    | 2.575 | 2.826 | 3.137 |
| 400    | 2.062 | 2.068 | 2.126 | 2.197  | 2.358    | 2.553 | 2.789 | 3.078 |
| 405    | 2.066 | 2.071 | 2.127 | 2.195  | 2.349    | 2.534 | 2.756 | 3.025 |
| 410    | 2.069 | 2.074 | 2.128 | 2.193  | 2.340    | 2.517 | 2.727 | 2.979 |
| 415    | 2.072 | 2.077 | 2.129 | 2.192  | 2.334    | 2.501 | 2.700 | 2.936 |
| 420    | 2.076 | 2.080 | 2.131 | 2.192  | 2.327    | 2.487 | 2.675 | 2.898 |
| 425    | 2.079 | 2.083 | 2.132 | 2.190  | 2.321    | 2.474 | 2.653 | 2.863 |
| 430    | 2.082 | 2.086 | 2.134 | 2.190  | 2.316    | 2.462 | 2.632 | 2.830 |
| 440    | 2.089 | 2.093 | 2.138 | 2.190  | 2.307    | 2.441 | 2.596 | 2.773 |
| 450    | 2.095 | 2.099 | 2.141 | 2.191  | 2.300    | 2.424 | 2.565 | 2.726 |
| 460    | 2.102 | 2.106 | 2.146 | 2.192  | 2.294    | 2.409 | 2.538 | 2.684 |
| 480    | 2.116 | 2.119 | 2.154 | 2.196  | 2.286    | 2.385 | 2.496 | 2.618 |
| 500    | 2.129 | 2.132 | 2.164 | 2.201  | 2.281    | 2.368 | 2.464 | 2.569 |
| 520    | 2.142 | 2.146 | 2.175 | 2.208  | 2.280    | 2.357 | 3.441 | 2.531 |
| 540    | 2.156 | 2.159 | 2.185 | 2.216  | 2.280    | 2.349 | 2.423 | 2.502 |
| 560    | 2.170 | 2.173 | 2.197 | 2.226  | 2.285    | 2.349 | 2.416 | 2.487 |
| 580    | 2.184 | 2.187 | 2.208 | 2.233  | 2.285    | 2.342 | 2.401 | 2.465 |
| 600    | 2.198 | 2.200 | 2.219 | 2.240  | 2.287    | 2.336 | 2.389 | 2.445 |
| 620    | 2.212 | 2.213 | 2.230 | 2.250  | 2.291    | 2.334 | 2.381 | 2.431 |



|        | Pressure, bar |       |       |       |          |       |       |       |  |  |  |
|--------|---------------|-------|-------|-------|----------|-------|-------|-------|--|--|--|
| T (°C) | 0.1           | 1     | 10    | 20    | 40       | 60    | 80    | 100   |  |  |  |
| 640    | 2.226         | 2.227 | 2.243 | 2.260 | 2.298    | 2.337 | 2.379 | 2.423 |  |  |  |
| 660    | 2.240         | 2.241 | 2.256 | 2.272 | 2.307    | 2.343 | 2.381 | 2.421 |  |  |  |
| 680    | 2.254         | 2.255 | 2.270 | 2.286 | 2.317    | 2.352 | 2.388 | 2.424 |  |  |  |
| 700    | 2.268         | 2.270 | 2.283 | 2.299 | 2.330    | 2.362 | 2.398 | 2.429 |  |  |  |
| 800    | 2.339         | 2.341 | 2.352 | 2.364 | 2.389    | 2.414 | 2.440 | 2.465 |  |  |  |
|        |               |       |       | Press | ure, bar |       |       |       |  |  |  |
| T (°C) | 150           | 175   | 200   | 210   | 220      | 225   | 230   | 240   |  |  |  |
| 0      | 4.141         | 4.129 | 4.117 | 4.113 | 4.108    | 4.106 | 4.103 | 4.099 |  |  |  |
| 50     | 4.148         | 4.142 | 4.137 | 4.135 | 4.133    | 4.132 | 4.131 | 4.129 |  |  |  |
| 100    | 4.183         | 4.178 | 4.173 | 4.171 | 4.169    | 4.168 | 4.167 | 4.165 |  |  |  |
| 120    | 4.209         | 4.204 | 4.198 | 4.196 | 4.194    | 4.193 | 4.192 | 4.189 |  |  |  |
| 140    | 4.245         | 4.238 | 4.232 | 4.229 | 4.227    | 4.226 | 4.224 | 4.222 |  |  |  |
| 160    | 4.291         | 4.283 | 4.276 | 4.273 | 4.270    | 4.268 | 4.267 | 4.264 |  |  |  |
| 180    | 4.350         | 4.340 | 4.331 | 4.328 | 4.324    | 4.322 | 4.320 | 4.317 |  |  |  |
| 200    | 4.425         | 4.413 | 4.402 | 4.397 | 4.393    | 4.390 | 4.388 | 4.384 |  |  |  |
| 220    | 4.523         | 4.508 | 4.492 | 4.486 | 4.481    | 4.478 | 4.475 | 4.469 |  |  |  |
| 240    | 4.653         | 4.632 | 4.611 | 4.603 | 4.595    | 4.591 | 4.588 | 4.580 |  |  |  |
| 260    | 4.832         | 4.801 | 4.772 | 4.760 | 4.749    | 4.744 | 4.738 | 4.728 |  |  |  |
| 280    | 5.09          | 5.04  | 4.997 | 4.979 | 4.963    | 4.955 | 4.947 | 4.931 |  |  |  |
| 300    | 5.50          | 5.41  | 5.33  | 5.31  | 5.28     | 5.26  | 5.25  | 5.23  |  |  |  |
| 320    | 6.23          | 6.05  | 5.89  | 5.84  | 5.79     | 5.76  | 5.74  | 5.69  |  |  |  |
| 340    | 8.14          | 7.45  | 7.01  | 6.87  | 6.74     | 6.68  | 6.63  | 6.53  |  |  |  |
| 350    | 8.68          | 9.27  | 9.10  | 7.81  | 7.56     | 7.45  | 7.35  | 7.17  |  |  |  |
| 360    | 6.86          | 12.57 | 11.37 | 10.18 | 9.40     | 9.10  | 8.84  | 8.41  |  |  |  |
| 365    | 6.15          | 9.84  | 19.72 | 13.77 | 11.62    | 10.94 | 10.40 | 9.58  |  |  |  |
| 370    | 5.69          | 8.36  | 18.38 | 75.67 | 18.38    | 15.56 | 13.84 | 11.79 |  |  |  |



|        |       |       |       | Pressu | ıre, bar |       |       |       |
|--------|-------|-------|-------|--------|----------|-------|-------|-------|
| T (°C) | 0.1   | 1     | 10    | 20     | 40       | 60    | 80    | 100   |
| 375    | 5.33  | 7.40  | 12.71 | 19.03  | 52.7     | 81.49 | 29.52 | 17.44 |
| 380    | 5.02  | 6.68  | 10.19 | 13.14  | 19.19    | 25.71 | 40.95 | 68.4  |
| 385    | 4.750 | 6.13  | 8.68  | 10.49  | 13.38    | 15.62 | 18.88 | 33.4  |
| 390    | 4.520 | 5.68  | 7.65  | 8.90   | 10.68    | 11.88 | 13.42 | 18.21 |
| 395    | 4.325 | 5.32  | 6.90  | 7.83   | 9.06     | 9.84  | 10.77 | 13.29 |
| 400    | 4.155 | 5.02  | 6.33  | 7.06   | 7.97     | 8.53  | 9.16  | 10.76 |
| 405    | 4.007 | 4.770 | 5.87  | 6.46   | 7.18     | 7.60  | 8.06  | 9.20  |
| 410    | 3.879 | 4.556 | 5.50  | 5.99   | 6.57     | 6.90  | 7.26  | 8.12  |
| 415    | 3.764 | 4.371 | 5.19  | 5.61   | 6.09     | 6.36  | 6.65  | 7.32  |
| 420    | 3.664 | 4.211 | 4.933 | 5.29   | 5.70     | 5.92  | 6.16  | 6.71  |
| 425    | 3.573 | 4.069 | 4.711 | 5.02   | 5.37     | 5.56  | 5.77  | 6.22  |
| 430    | 3.491 | 4.945 | 4.520 | 4.795  | 5.10     | 5.26  | 5.44  | 5.83  |
| 440    | 3.350 | 3.734 | 4.205 | 4.424  | 4.664    | 4.791 | 4.927 | 5.22  |
| 450    | 3.235 | 3.564 | 3.959 | 4.139  | 4.333    | 4.435 | 4.544 | 4.77  |
| 460    | 3.138 | 3.424 | 3.761 | 3.912  | 4.074    | 4.159 | 4.247 | 4.43  |
| 480    | 2.986 | 3.210 | 3.465 | 3.576  | 3.695    | 3.756 | 3.819 | 3.95  |
| 500    | 2.875 | 3.056 | 3.257 | 3.343  | 3.434    | 3.481 | 3.529 | 3.63  |
| 520    | 2.791 | 2.940 | 3.104 | 3.174  | 3.247    | 3.284 | 3.322 | 3.40  |
| 540    | 2.726 | 2.852 | 2.989 | 3.046  | 3.106    | 3.136 | 3.167 | 3.23  |
| 560    | 2.683 | 2.791 | 2.906 | 2.954  | 3.003    | 3.028 | 3.054 | 3.10  |
| 580    | 2.638 | 2.733 | 2.833 | 2.875  | 2.918    | 2.939 | 2.961 | 3.01  |
| 600    | 2.598 | 2.682 | 2.770 | 2.807  | 2.844    | 2.863 | 2.882 | 2.92  |
| 620    | 2.566 | 2.640 | 2.717 | 2.709  | 2.781    | 2.798 | 2.814 | 2.85  |
| 640    | 2.542 | 2.607 | 2.675 | 2.703  | 2.731    | 2.746 | 2.760 | 2.79  |
| 660    | 2.528 | 2.585 | 2.644 | 2.669  | 2.694    | 2.707 | 2.719 | 2.75  |
| 680    | 2.520 | 2.572 | 2.625 | 2.646  | 2.669    | 2.680 | 2.691 | 2.71  |



|        | Pressure, bar |       |       |        |          |       |       |       |  |
|--------|---------------|-------|-------|--------|----------|-------|-------|-------|--|
| T (°C) | 0.1           | 1     | 10    | 20     | 40       | 60    | 80    | 100   |  |
| 700    | 2.518         | 2.565 | 2.613 | 2.632  | 2.652    | 2.662 | 2.672 | 2.69  |  |
| 800    | 2.531         | 2.564 | 2.598 | 2.611  | 2.625    | 2.632 | 2.639 | 2.65  |  |
|        |               |       |       | Pressi | ure, bar |       |       |       |  |
| T (°C) | 250           | 270   | 300   | 400    | 500      | 600   | 800   | 1000  |  |
| 0      | 4.095         | 4.086 | 4.073 | 4.032  | 3.993    | 3.956 | 3.882 | 3.800 |  |
| 50     | 4.127         | 4.123 | 4.117 | 4.098  | 4.080    | 4.064 | 4.035 | 4.010 |  |
| 100    | 4.163         | 4.159 | 1.153 | 4.135  | 4.117    | 4.100 | 4.068 | 4.039 |  |
| 120    | 4.187         | 4.183 | 4.177 | 4.156  | 4.137    | 4.119 | 4.085 | 4.054 |  |
| 140    | 4.220         | 4.215 | 4.208 | 4.185  | 4.163    | 4.143 | 4.105 | 4.071 |  |
| 160    | 4.261         | 4.255 | 4.247 | 4.220  | 4.196    | 4.172 | 4.130 | 4.092 |  |
| 180    | 4.313         | 4.306 | 4.296 | 4.265  | 4.235    | 4.208 | 4.159 | 4.116 |  |
| 200    | 4.379         | 4.371 | 4.358 | 4.319  | 4.284    | 4.252 | 4.195 | 4.145 |  |
| 220    | 4.464         | 4.452 | 4.437 | 4.388  | 4.344    | 4.305 | 4.237 | 4.180 |  |
| 240    | 4.572         | 4.558 | 4.537 | 4.474  | 4.419    | 4.371 | 4.290 | 4.223 |  |
| 260    | 4.717         | 4.697 | 4.669 | 4.584  | 4.514    | 4.453 | 4.354 | 4.276 |  |
| 280    | 4.916         | 4.886 | 4.845 | 4.728  | 4.633    | 4.555 | 4.432 | 4.340 |  |
| 300    | 5.20          | 5.16  | 5.09  | 4.920  | 4.788    | 4.683 | 4.524 | 4.411 |  |
| 320    | 5.65          | 5.57  | 5.46  | 5.19   | 4.996    | 4.848 | 4.633 | 4.485 |  |
| 340    | 6.43          | 6.27  | 6.07  | 5.60   | 5.30     | 5.08  | 4.766 | 4.552 |  |
| 350    | 7.02          | 6.76  | 6.45  | 5.81   | 5.45     | 5.20  | 4.871 | 4.663 |  |
| 360    | 8.07          | 7.56  | 7.03  | 6.10   | 5.64     | 5.34  | 4.954 | 4.719 |  |
| 365    | 8.99          | 8.18  | 7.43  | 6.27   | 5.73     | 5.40  | 4.987 | 4.737 |  |
| 370    | 10.56         | 9.12  | 7.98  | 6.48   | 5.84     | 5.47  | 5.03  | 4.764 |  |
| 375    | 13.76         | 10.67 | 8.76  | 6.70   | 5.96     | 5.56  | 5.08  | 4.802 |  |
| 380    | 23.37         | 13.51 | 9.90  | 6.97   | 6.10     | 5.65  | 5.14  | 4.843 |  |
| 385    | 73.1          | 20.07 | 11.68 | 7.30   | 6.26     | 5.75  | 5.20  | 4.884 |  |



|        |       |       |       | Pres  | ssure, bar |       |       |       |
|--------|-------|-------|-------|-------|------------|-------|-------|-------|
| T (°C) | 0.1   | 1     | 10    | 20    | 40         | 60    | 80    | 100   |
| 390    | 28.04 | 38.02 | 14.60 | 7.71  | 6.43       | 5.84  | 5.25  | 4.919 |
| 395    | 17.31 | 33.71 | 19.68 | 8.19  | 6.61       | 5.94  | 5.30  | 4.949 |
| 400    | 13.02 | 21.11 | 25.71 | 8.78  | 6.81       | 6.05  | 5.34  | 4.974 |
| 405    | 10.67 | 15.32 | 24.85 | 9.47  | 7.04       | 6.16  | 5.38  | 4.996 |
| 410    | 9.17  | 12.22 | 19.59 | 10.25 | 7.29       | 6.27  | 5.42  | 5.02  |
| 415    | 8.12  | 10.30 | 15.45 | 11.12 | 7.57       | 6.40  | 5.46  | 5.04  |
| 420    | 7.35  | 8.99  | 12.70 | 12.00 | 7.87       | 6.54  | 5.51  | 5.06  |
| 425    | 6.74  | 8.04  | 10.83 | 12.73 | 8.18       | 6.69  | 5.56  | 5.08  |
| 430    | 6.26  | 7.32  | 9.49  | 13.13 | 8.50       | 6.84  | 5.61  | 5.10  |
| 440    | 5.54  | 6.28  | 7.73  | 12.54 | 9.08       | 7.17  | 5.72  | 5.15  |
| 450    | 5.02  | 5.58  | 6.62  | 10.89 | 9.48       | 7.47  | 5.84  | 5.20  |
| 460    | 4.631 | 5.08  | 5.87  | 9.28  | 9.52       | 7.71  | 5.97  | 5.26  |
| 480    | 4.089 | 4.389 | 4.902 | 7.08  | 8.55       | 7.87  | 6.19  | 5.40  |
| 500    | 3.731 | 3.951 | 4.316 | 5.81  | 7.20       | 7.48  | 6.31  | 5.51  |
| 520    | 3.481 | 3.650 | 3.926 | 5.02  | 6.13       | 6.76  | 6.28  | 5.58  |
| 540    | 3.295 | 3.431 | 3.650 | 4.487 | 5.37       | 6.03  | 6.10  | 5.56  |
| 560    | 3.158 | 3.268 | 3.442 | 4.095 | 4.796      | 5.38  | 5.75  | 5.43  |
| 580    | 3.051 | 3.144 | 3.290 | 3.823 | 4.387      | 5.890 | 5.39  | 5.28  |
| 600    | 2.960 | 3.040 | 3.165 | 3.614 | 4.082      | 4.510 | 5.03  | 5.08  |
| 620    | 2.882 | 2.952 | 3.060 | 3.446 | 3.845      | 4.216 | 4.724 | 4.871 |
| 640    | 2.819 | 2.880 | 2.974 | 3.308 | 3.654      | 3.981 | 4.465 | 4.669 |
| 660    | 2.771 | 2.824 | 2.906 | 3.197 | 3.500      | 3.791 | 4.249 | 4.485 |
| 680    | 2.736 | 2.783 | 2.855 | 3.110 | 3.376      | 3.637 | 4.068 | 4.322 |
| 700    | 2.713 | 2.755 | 2.819 | 3.044 | 3.279      | 3.513 | 3.916 | 4.178 |
| 800    | 2.666 | 2.694 | 2.736 | 2.879 | 3.024      | 3.168 | 3.441 | 3.669 |



Table 2.18 Dynamic Viscosity  $[\eta \cdot 10^7 \, (\text{N}\cdot\text{s}/\text{m}^2)]$  of Water and Steam at Various Temperatures and Pressures

|        | Pressure, bar |        |        |        |        |        |        |        |        |
|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
| T (°C) | 1             | 20     | 40     | 60     | 80     | 100    | 150    | 200    | 210    |
| 0      | 17,525        | 17,514 | 17,502 | 17,491 | 17,480 | 17,468 | 17,439 | 17,411 | 17,405 |
| 10     | 12,992        | 12,986 | 12,980 | 12,975 | 12,969 | 12,963 | 12,948 | 12,934 | 12,931 |
| 20     | 10,015        | 10,013 | 10,010 | 10,008 | 10,005 | 10,003 | 9,997  | 9,991  | 9,990  |
| 30     | 7,971         | 7,970  | 7,970  | 7,970  | 7,970  | 7,969  | 7,968  | 7,968  | 7,968  |
| 40     | 6,513         | 6,514  | 6,515  | 6,516  | 6,517  | 6,519  | 6,521  | 6,524  | 6,525  |
| 50     | 5,441         | 5,443  | 5,445  | 5,447  | 5,449  | 5,451  | 5,456  | 5,461  | 5,462  |
| 60     | 4,630         | 4,633  | 4,636  | 6,638  | 4,641  | 4,644  | 4,650  | 4,657  | 4,658  |
| 70     | 4,004         | 4,007  | 4,010  | 4,013  | 4,016  | 4,019  | 4,027  | 4,036  | 4,038  |
| 80     | 3,509         | 3,513  | 3,516  | 3,520  | 3,523  | 3,527  | 3,535  | 3,544  | 3,546  |
| 90     | 3,113         | 3,116  | 3,120  | 3,124  | 3,128  | 3,131  | 3,141  | 3,150  | 3,152  |
| 100    | 121           | 2,793  | 2,797  | 2,801  | 2,805  | 2,809  | 2,819  | 2,828  | 2,830  |
| 110    | 125           | 2,526  | 2,530  | 2,534  | 2,538  | 2,542  | 2,552  | 2,563  | 2,565  |
| 120    | 129           | 2,303  | 2,307  | 2,311  | 2,315  | 2,319  | 2,330  | 2,340  | 2,342  |
| 130    | 133           | 2,114  | 2,118  | 2,123  | 2,127  | 2,131  | 2,142  | 2,152  | 2,154  |
| 140    | 137           | 1,953  | 1,957  | 1,962  | 1,966  | 1,970  | 1,981  | 1,992  | 1,994  |
| 150    | 141           | 1,814  | 1,818  | 1,823  | 1,827  | 1,832  | 1,843  | 1,854  | 1,856  |
| 160    | 146           | 1,693  | 1,698  | 1,702  | 1,707  | 1,711  | 1,722  | 1,734  | 1,736  |
| 170    | 150           | 1,588  | 1,592  | 1,597  | 1,601  | 1,606  | 1,617  | 1,628  | 1,631  |
| 180    | 154           | 1,495  | 1,500  | 1,504  | 1,509  | 1,513  | 1,525  | 1,536  | 1,538  |
| 190    | 158           | 1,413  | 1,417  | 1,422  | 1,426  | 1,431  | 1,442  | 1,454  | 1,456  |
| 200    | 162           | 1,339  | 1,343  | 1,348  | 1,353  | 1,358  | 1,369  | 1,381  | 1,383  |
| 210    | 166           | 1,275  | 1,278  | 1,282  | 1,287  | 1,292  | 1,303  | 1,315  | 1,317  |
| 220    | 170           | 164    | 1,218  | 1,223  | 1,228  | 1,232  | 1,244  | 1,256  | 1,258  |
| 230    | 174           | 169    | 1,164  | 1,169  | 1,174  | 1,179  | 1,190  | 1,202  | 1,204  |
| 240    | 178           | 174    | 1,115  | 1,120  | 1,125  | 1,129  | 1,141  | 1,153  | 1,156  |



|        | Pressure, bar |     |       |       |       |       |       |       |       |
|--------|---------------|-----|-------|-------|-------|-------|-------|-------|-------|
| T (°C) | 1             | 20  | 40    | 60    | 80    | 100   | 150   | 200   | 210   |
| 250    | 182           | 179 | 1,070 | 1,075 | 1,080 | 1,084 | 1,096 | 1,108 | 1,111 |
| 260    | 186           | 183 | 180   | 1,033 | 1,039 | 1,043 | 1,055 | 1,067 | 1,069 |
| 270    | 190           | 188 | 185   | 995   | 1,000 | 1,005 | 1,017 | 1,029 | 1,031 |
| 280    | 194           | 193 | 191   | 189   | 964   | 969   | 981   | 993   | 996   |
| 290    | 198           | 197 | 196   | 194   | 931   | 936   | 948   | 960   | 963   |
| 300    | 202           | 202 | 201   | 200   | 199   | 904   | 917   | 929   | 932   |
| 310    | 207           | 206 | 206   | 206   | 206   | 866   | 881   | 895   | 898   |
| 320    | 211           | 211 | 211   | 212   | 212   | 213   | 843   | 859   | 862   |
| 330    | 215           | 216 | 216   | 218   | 219   | 221   | 800   | 820   | 824   |
| 340    | 219           | 220 | 222   | 224   | 226   | 229   | 749   | 777   | 782   |
| 350    | 223           | 225 | 227   | 229   | 232   | 236   | 248   | 727   | 734   |
| 360    | 227           | 229 | 231   | 234   | 237   | 241   | 255   | 661   | 673   |
| 370    | 231           | 233 | 236   | 239   | 243   | 246   | 259   | 298   | 335   |
| 380    | 235           | 238 | 240   | 243   | 246   | 250   | 263   | 288   | 297   |
| 390    | 239           | 242 | 244   | 247   | 250   | 254   | 266   | 286   | 292   |
| 400    | 243           | 246 | 248   | 251   | 254   | 258   | 268   | 286   | 290   |
| 410    | 247           | 250 | 252   | 255   | 258   | 261   | 272   | 287   | 291   |
| 420    | 251           | 254 | 256   | 259   | 262   | 265   | 275   | 288   | 292   |
| 430    | 255           | 258 | 260   | 263   | 266   | 269   | 278   | 290   | 294   |
| 440    | 260           | 262 | 264   | 267   | 269   | 272   | 281   | 293   | 296   |
| 450    | 264           | 266 | 268   | 270   | 273   | 276   | 285   | 296   | 298   |
| 460    | 268           | 270 | 272   | 274   | 277   | 280   | 288   | 298   | 301   |
| 470    | 272           | 274 | 276   | 278   | 281   | 284   | 292   | 301   | 304   |
| 480    | 276           | 278 | 280   | 282   | 285   | 288   | 295   | 304   | 307   |
| 490    | 280           | 282 | 284   | 286   | 289   | 291   | 299   | 308   | 310   |
| 500    | 284           | 286 | 288   | 290   | 293   | 295   | 302   | 311   | 313   |



|        | Pressure, bar |        |        |        |        |        |        |        |        |
|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|
| T (°C) | 1             | 20     | 40     | 60     | 80     | 100    | 150    | 200    | 210    |
| 520    | 292           | 294    | 296    | 298    | 301    | 303    | 310    | 318    | 320    |
| 540    | 300           | 302    | 304    | 306    | 308    | 311    | 317    | 324    | 326    |
| 560    | 308           | 310    | 312    | 314    | 316    | 319    | 325    | 332    | 333    |
| 580    | 316           | 318    | 320    | 322    | 324    | 326    | 332    | 339    | 340    |
| 600    | 325           | 326    | 328    | 330    | 332    | 334    | 340    | 346    | 347    |
| 620    | 333           | 334    | 336    | 338    | 340    | 342    | 348    | 353    | 355    |
| 640    | 341           | 342    | 344    | 346    | 348    | 350    | 355    | 361    | 362    |
| 660    | 349           | 351    | 352    | 354    | 356    | 358    | 363    | 368    | 370    |
| 680    | 357           | 359    | 360    | 362    | 364    | 366    | 371    | 376    | 377    |
| 700    | 365           | 367    | 368    | 370    | 372    | 374    | 378    | 384    | 385    |
| T (°C) | 220           | 230    | 240    | 250    | 300    | 400    | 500    | 600    | 800    |
| 0      | 17,399        | 17,394 | 17,388 | 17,382 | 17,353 | 17,296 | 17,239 | 17,182 | 17,067 |
| 10     | 12,928        | 12,925 | 12,922 | 12,919 | 12,905 | 12,875 | 12,846 | 12,817 | 12,759 |
| 20     | 9,988         | 9,987  | 9,986  | 9,985  | 9,979  | 9,967  | 9,954  | 9,942  | 9,918  |
| 30     | 7,967         | 7,967  | 7,967  | 7,967  | 7,966  | 7,965  | 7,963  | 7,962  | 7,959  |
| 40     | 6,225         | 6,526  | 6,526  | 6,527  | 6,529  | 6,535  | 6,540  | 6,546  | 6,557  |
| 50     | 5,463         | 5,464  | 5,465  | 5,466  | 5,471  | 5,481  | 5,491  | 5,502  | 5,522  |
| 60     | 4,660         | 4,661  | 4,662  | 4,664  | 4,670  | 4,684  | 4,697  | 4,711  | 4,737  |
| 70     | 4,038         | 4,040  | 4,041  | 4,043  | 4,051  | 4,066  | 4,082  | 4,098  | 4,129  |
| 80     | 3,548         | 3,549  | 3,551  | 3,553  | 3,561  | 3,579  | 3,596  | 3,614  | 3,648  |
| 90     | 3,154         | 3,155  | 3,157  | 3,159  | 3,168  | 3,187  | 3,206  | 3,224  | 3,261  |
| 100    | 2,832         | 2,834  | 2,836  | 2,838  | 2,848  | 2,867  | 2,887  | 2,906  | 2,945  |
| 110    | 2,567         | 2,569  | 2,571  | 2,573  | 2,583  | 2,603  | 2,623  | 2,644  | 2,684  |
| 120    | 2,344         | 2,347  | 2,349  | 2,351  | 2,361  | 2,382  | 2,403  | 2,424  | 2,465  |
| 130    | 2,157         | 2,159  | 2,161  | 2,163  | 2,174  | 2,195  | 2,216  | 2,237  | 2,280  |
| 140    | 1,996         | 1,998  | 2,000  | 2,003  | 2,013  | 2,035  | 2,057  | 2,078  | 2,122  |



|        |       |       |       |       | Pressure, bar |       |       |       |       |
|--------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|
| T (°C) | 1     | 20    | 40    | 60    | 80            | 100   | 150   | 200   | 210   |
| 150    | 1,858 | 1,860 | 1,862 | 1,865 | 1,876         | 1,898 | 1,920 | 1,941 | 1,985 |
| 160    | 1,738 | 1,740 | 1,742 | 1,745 | 1,756         | 1,778 | 1,800 | 1,822 | 1,867 |
| 170    | 1,633 | 1,635 | 1,637 | 1,640 | 1,651         | 1,674 | 1,696 | 1,718 | 1,763 |
| 180    | 1,540 | 1,543 | 1,545 | 1,547 | 1,559         | 1,581 | 1,604 | 1,627 | 1,672 |
| 190    | 1,458 | 1,461 | 1,463 | 1,465 | 1,477         | 1,500 | 1,523 | 1,546 | 1,591 |
| 200    | 1,385 | 1,388 | 1,390 | 1,392 | 1,404         | 1,427 | 1,450 | 1,473 | 1,519 |
| 210    | 1,320 | 1,322 | 1,324 | 1,327 | 1,338         | 1,362 | 1,385 | 1,408 | 1,455 |
| 220    | 1,261 | 1,263 | 1,265 | 1,268 | 1,279         | 1,303 | 1,326 | 1,350 | 1,397 |
| 230    | 1,207 | 1,209 | 1,212 | 1,214 | 1,226         | 1,249 | 1,273 | 1,297 | 1,344 |
| 240    | 1,158 | 1,160 | 1,163 | 1,165 | 1,177         | 1,201 | 1,225 | 1,248 | 1,296 |
| 250    | 1,113 | 1,116 | 1,118 | 1,120 | 1,132         | 1,156 | 1,180 | 1,204 | 1,252 |
| 260    | 1,072 | 1,074 | 1,077 | 1,079 | 1,091         | 1,115 | 1,140 | 1,164 | 1,212 |
| 270    | 1,034 | 1,036 | 1,038 | 1,041 | 1,053         | 1,077 | 1,102 | 1,126 | 1,175 |
| 280    | 998   | 1,001 | 1,003 | 1,006 | 1,018         | 1,042 | 1,067 | 1,091 | 1,140 |
| 290    | 965   | 968   | 970   | 972   | 985           | 1,009 | 1,034 | 1,059 | 1,108 |
| 300    | 934   | 937   | 939   | 941   | 954           | 978   | 1,004 | 1,028 | 1,078 |
| 310    | 901   | 904   | 906   | 909   | 922           | 948   | 972   | 997   | 1,045 |
| 320    | 865   | 868   | 871   | 874   | 888           | 915   | 940   | 964   | 1,012 |
| 330    | 827   | 831   | 834   | 837   | 853           | 881   | 908   | 932   | 980   |
| 340    | 786   | 790   | 794   | 798   | 817           | 848   | 876   | 901   | 949   |
| 350    | 740   | 745   | 751   | 756   | 779           | 815   | 845   | 871   | 920   |
| 360    | 683   | 692   | 700   | 707   | 738           | 781   | 814   | 842   | 891   |
| 370    | 596   | 617   | 633   | 646   | 692           | 746   | 784   | 813   | 864   |
| 380    | 311   | 340   | 468   | 537   | 630           | 703   | 748   | 783   | 840   |
| 390    | 300   | 310   | 324   | 348   | 561           | 667   | 721   | 759   | 817   |
| 400    | 296   | 303   | 311   | 321   | 458           | 627   | 692   | 735   | 797   |



|            |                 |          |     |     | Pressure, bar |     |     |     |     |
|------------|-----------------|----------|-----|-----|---------------|-----|-----|-----|-----|
| T (°C)     | 1               | 20       | 40  | 60  | 80            | 100 | 150 | 200 | 210 |
| 410        | 295             | 300      | 306 | 313 | 380           | 580 | 660 | 710 | 777 |
| 420        | 296             | 300      | 304 | 310 | 352           | 529 | 626 | 683 | 758 |
| 430        | 297             | 300      | 304 | 309 | 340           | 479 | 591 | 656 | 737 |
| 440        | 299             | 302      | 305 | 309 | 334           | 438 | 555 | 628 | 716 |
| 450        | 301             | 304      | 307 | 310 | 331           | 411 | 521 | 599 | 695 |
| 460        | 303             | 306      | 309 | 312 | 330           | 394 | 495 | 572 | 674 |
| 470        | 306             | 308      | 311 | 314 | 330           | 383 | 466 | 546 | 654 |
| 480        | 309             | 311      | 313 | 316 | 331           | 376 | 446 | 522 | 633 |
| 490        | 312             | 314      | 316 | 318 | 332           | 371 | 432 | 502 | 614 |
| 500        | 315             | 317      | 319 | 321 | 334           | 369 | 421 | 485 | 596 |
| 520        | 321             | 323      | 325 | 327 | 338           | 367 | 408 | 460 | 563 |
| 540        | 328             | 330      | 331 | 333 | 343           | 368 | 402 | 444 | 537 |
| 560        | 335             | 336      | 338 | 340 | 348           | 370 | 399 | 435 | 516 |
| 580        | 342             | 343      | 345 | 346 | 354           | 374 | 399 | 430 | 502 |
| 600        | 349             | 350      | 352 | 353 | 361           | 379 | 401 | 428 | 491 |
| 620        | 356             | 357      | 359 | 360 | 367           | 384 | 404 | 428 | 484 |
| 640        | 363             | 365      | 366 | 367 | 374           | 389 | 408 | 429 | 480 |
| 660        | 371             | 372      | 373 | 374 | 381           | 395 | 412 | 432 | 477 |
| 680        | 378             | 379      | 380 | 382 | 388           | 401 | 418 | 435 | 477 |
| 700        | 386             | 387      | 388 | 389 | 395           | 408 | 422 | 439 | 478 |
| Source: Re | ef. 2 with perm | nission. |     |     |               |     |     |     |     |

Table 2.19 Thermal Conductivity [ $\lambda \cdot 10^3$  (W/m·deg)] of Water and Steam at Various Temperatures and Pressures

|        | Pressure, bar |     |     |     |     |     |     |     |  |  |  |
|--------|---------------|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| T (°C) | 1             | 20  | 40  | 60  | 80  | 100 | 150 | 200 |  |  |  |
| 0      | 569           | 570 | 572 | 574 | 575 | 577 | 581 | 585 |  |  |  |
| 10     | 588           | 589 | 590 | 592 | 594 | 595 | 599 | 603 |  |  |  |



|        | Pressure, bar |      |      |     |     |     |     |     |  |
|--------|---------------|------|------|-----|-----|-----|-----|-----|--|
| T (°C) | 1             | 20   | 40   | 60  | 80  | 100 | 150 | 200 |  |
| 20     | 603           | 605  | 607  | 608 | 610 | 612 | 616 | 620 |  |
| 30     | 617           | 620  | 622  | 623 | 625 | 627 | 631 | 634 |  |
| 40     | 630           | 633  | 635  | 637 | 638 | 640 | 644 | 648 |  |
| 50     | 643           | 645  | 647  | 648 | 650 | 651 | 655 | 659 |  |
| 60     | 653           | 655  | 657  | 658 | 660 | 661 | 665 | 669 |  |
| 70     | 662           | 664  | 665  | 667 | 668 | 670 | 674 | 677 |  |
| 80     | 669           | 671  | 673  | 674 | 676 | 677 | 681 | 684 |  |
| 90     | 675           | 677  | 679  | 680 | 682 | 683 | 687 | 690 |  |
| 100    | 24.5          | 682  | 684  | 685 | 686 | 688 | 691 | 694 |  |
| 110    | 25.2          | 686  | 687  | 688 | 690 | 691 | 694 | 698 |  |
| 120    | 26.0          | 688  | 689  | 691 | 692 | 693 | 697 | 700 |  |
| 130    | 26.9          | 689  | 690  | 692 | 693 | 694 | 698 | 701 |  |
| 140    | 27.7          | 689  | 690  | 692 | 693 | 694 | 698 | 701 |  |
| 150    | 28.6          | 688  | 689  | 690 | 692 | 693 | 696 | 700 |  |
| 160    | 29.5          | 685  | 687  | 688 | 690 | 691 | 694 | 698 |  |
| 170    | 30.4          | 682  | 683  | 685 | 686 | 688 | 691 | 695 |  |
| 180    | 31.3          | 677  | 679  | 680 | 682 | 683 | 687 | 691 |  |
| 190    | 32.2          | 672  | 673  | 675 | 677 | 678 | 682 | 686 |  |
| 200    | 33.1          | 665  | 667  | 668 | 670 | 672 | 676 | 681 |  |
| 210    | 34.1          | 657  | 659  | 661 | 663 | 665 | 670 | 674 |  |
| 220    | 35.1          | 40.0 | 650  | 652 | 654 | 656 | 662 | 667 |  |
| 230    | 36.1          | 40.3 | 640  | 643 | 645 | 647 | 653 | 658 |  |
| 240    | 37.1          | 40.8 | 629  | 632 | 634 | 637 | 643 | 649 |  |
| 250    | 38.1          | 41.4 | 616  | 619 | 622 | 625 | 632 | 639 |  |
| 260    | 39.1          | 42.1 | 48.9 | 606 | 609 | 612 | 620 | 628 |  |
| 270    | 40.1          | 42.9 | 48.7 | 590 | 594 | 598 | 607 | 616 |  |



|        |      |      |      | Pressu | ıre, bar |      |      |      |
|--------|------|------|------|--------|----------|------|------|------|
| T (°C) | 1    | 20   | 40   | 60     | 80       | 100  | 150  | 200  |
| 280    | 41.2 | 43.8 | 48.8 | 58.1   | 578      | 582  | 593  | 602  |
| 290    | 42.3 | 44.7 | 49.1 | 56.8   | 560      | 565  | 577  | 587  |
| 300    | 43.3 | 45.7 | 49.6 | 56.1   | 66.9     | 545  | 559  | 571  |
| 310    | 44.4 | 46.7 | 50.3 | 55.8   | 64.7     | 523  | 539  | 553  |
| 320    | 45.5 | 47.7 | 51.0 | 55.9   | 63.3     | 75.2 | 516  | 532  |
| 330    | 46.7 | 48.8 | 51.8 | 56.2   | 62.5     | 72.0 | 491  | 509  |
| 340    | 47.8 | 49.9 | 52.7 | 56.7   | 62.1     | 69.9 | 462  | 483  |
| 350    | 49.0 | 51.0 | 53.7 | 57.3   | 62.1     | 68.8 | 104  | 454  |
| 360    | 50.1 | 52.1 | 54.7 | 58.0   | 62.3     | 68.1 | 94.8 | 420  |
| 370    | 51.3 | 53.2 | 55.7 | 58.8   | 62.7     | 67.8 | 89.3 | 163  |
| 380    | 52.5 | 54.4 | 56.7 | 59.7   | 63.3     | 67.8 | 85.9 | 129  |
| 390    | 53.6 | 55.5 | 57.8 | 60.6   | 64.0     | 68.1 | 83.6 | 115  |
| 400    | 54.8 | 56.7 | 58.9 | 61.6   | 64.7     | 68.6 | 82.2 | 107  |
| 410    | 56.0 | 57.9 | 60.1 | 62.6   | 65.6     | 69.1 | 81.2 | 102  |
| 420    | 57.3 | 59.1 | 61.2 | 63.7   | 66.5     | 69.8 | 80.8 | 98.3 |
| 430    | 58.5 | 60.3 | 62.4 | 64.8   | 67.5     | 70.6 | 80.6 | 95.7 |
| 440    | 59.7 | 61.5 | 63.6 | 65.9   | 68.5     | 71.4 | 80.6 | 94.1 |
| 450    | 61.0 | 62.8 | 64.8 | 67.0   | 69.5     | 72.4 | 81.0 | 93.3 |
| 460    | 62.2 | 64.0 | 66.0 | 68.2   | 70.6     | 73.3 | 81.5 | 92.4 |
| 470    | 63.5 | 65.3 | 67.2 | 69.4   | 71.7     | 74.3 | 82.0 | 92.1 |
| 480    | 64.8 | 66.5 | 68.5 | 70.6   | 72.9     | 75.4 | 82.7 | 92.1 |
| 490    | 66.0 | 67.8 | 69.7 | 71.8   | 74.0     | 76.5 | 83.5 | 92.2 |
| 500    | 67.3 | 69.1 | 71.0 | 73.0   | 75.2     | 77.6 | 84.3 | 92.6 |
| 520    | 69.9 | 71.7 | 73.5 | 75.5   | 77.6     | 79.9 | 86.2 | 93.7 |
| 540    | 72.5 | 74.3 | 76.1 | 78.1   | 80.1     | 82.3 | 88.2 | 95.2 |
| 560    | 75.2 | 76.9 | 78.7 | 80.6   | 82.7     | 84.7 | 90.4 | 96.9 |



|        |      |      |      | Pressu | ıre, bar |      |      |      |
|--------|------|------|------|--------|----------|------|------|------|
| T (°C) | 1    | 20   | 40   | 60     | 80       | 100  | 150  | 200  |
| 580    | 77.8 | 79.6 | 81.4 | 83.3   | 85.2     | 87.3 | 92.7 | 98.8 |
| 600    | 80.5 | 82.3 | 84.1 | 85.9   | 87.8     | 89.8 | 95.1 | 101  |
| 620    | 83.2 | 85.0 | 86.7 | 88.6   | 90.5     | 92.4 | 97.6 | 103  |
| 640    | 85.9 | 87.7 | 89.5 | 91.3   | 93.2     | 95.1 | 100  | 105  |
| 660    | 88.7 | 90.4 | 92.2 | 94.0   | 95.8     | 97.7 | 103  | 108  |
| 680    | 91.4 | 93.1 | 94.9 | 96.7   | 98.5     | 100  | 105  | 110  |
| 700    | 94.2 | 95.9 | 97.7 | 99.5   | 101      | 103  | 108  | 113  |
| T (°C) | 210  | 220  | 230  | 240    | 250      | 300  | 400  | 500  |
| 0      | 586  | 586  | 587  | 588    | 589      | 592  | 599  | 606  |
| 10     | 604  | 605  | 606  | 606    | 607      | 611  | 617  | 624  |
| 20     | 620  | 621  | 622  | 623    | 623      | 627  | 634  | 640  |
| 30     | 635  | 636  | 637  | 637    | 638      | 642  | 648  | 654  |
| 40     | 648  | 649  | 650  | 650    | 651      | 654  | 661  | 666  |
| 50     | 660  | 660  | 661  | 662    | 662      | 666  | 672  | 678  |
| 60     | 670  | 670  | 671  | 672    | 672      | 676  | 682  | 687  |
| 70     | 678  | 679  | 679  | 680    | 681      | 684  | 690  | 695  |
| 80     | 685  | 686  | 686  | 687    | 688      | 691  | 697  | 702  |
| 90     | 691  | 691  | 692  | 693    | 693      | 696  | 702  | 708  |
| 100    | 695  | 696  | 696  | 697    | 698      | 701  | 707  | 713  |
| 110    | 698  | 699  | 700  | 700    | 701      | 704  | 710  | 716  |
| 120    | 700  | 701  | 702  | 702    | 703      | 706  | 712  | 718  |
| 130    | 702  | 702  | 703  | 703    | 704      | 707  | 714  | 720  |
| 140    | 701  | 702  | 703  | 703    | 704      | 707  | 714  | 720  |
| 150    | 700  | 701  | 702  | 702    | 703      | 706  | 713  | 720  |
| 160    | 698  | 699  | 700  | 700    | 701      | 705  | 711  | 718  |
| 170    | 696  | 696  | 697  | 698    | 698      | 702  | 709  | 716  |



|        |      |     |     | Pressu | ıre, bar |     |     |     |
|--------|------|-----|-----|--------|----------|-----|-----|-----|
| T (°C) | 1    | 20  | 40  | 60     | 80       | 100 | 150 | 200 |
| 180    | 692  | 692 | 693 | 694    | 695      | 698 | 706 | 713 |
| 190    | 687  | 688 | 688 | 689    | 690      | 694 | 702 | 709 |
| 200    | 681  | 682 | 683 | 684    | 685      | 689 | 697 | 704 |
| 210    | 675  | 676 | 677 | 678    | 678      | 683 | 691 | 699 |
| 220    | 668  | 669 | 670 | 671    | 672      | 676 | 685 | 693 |
| 230    | 660  | 661 | 662 | 663    | 664      | 669 | 678 | 686 |
| 240    | 650  | 652 | 653 | 654    | 655      | 660 | 670 | 679 |
| 250    | 640  | 642 | 643 | 644    | 646      | 651 | 662 | 671 |
| 260    | 630  | 631 | 632 | 634    | 635      | 642 | 653 | 663 |
| 270    | 617  | 619 | 621 | 622    | 624      | 631 | 643 | 653 |
| 280    | 604  | 606 | 608 | 609    | 611      | 619 | 633 | 643 |
| 290    | 590  | 592 | 594 | 595    | 597      | 606 | 622 | 633 |
| 300    | 573  | 576 | 578 | 580    | 582      | 592 | 609 | 622 |
| 310    | 555  | 558 | 561 | 563    | 566      | 577 | 596 | 610 |
| 320    | 535  | 538 | 541 | 544    | 547      | 560 | 582 | 597 |
| 330    | 513  | 516 | 520 | 523    | 526      | 541 | 566 | 583 |
| 340    | 488  | 491 | 495 | 499    | 503      | 520 | 548 | 568 |
| 350    | 458  | 463 | 467 | 472    | 476      | 496 | 529 | 552 |
| 360    | 425  | 430 | 435 | 440    | 445      | 468 | 504 | 537 |
| 370    | 206  | 392 | 385 | 396    | 406      | 437 | 479 | 514 |
| 380    | 147  | 170 | 185 | 269    | 322      | 398 | 453 | 490 |
| 390    | 126  | 140 | 150 | 165    | 188      | 338 | 423 | 465 |
| 400    | 115  | 124 | 134 | 144    | 156      | 262 | 388 | 439 |
| 410    | 108  | 114 | 124 | 132    | 141      | 206 | 348 | 411 |
| 420    | 103  | 108 | 116 | 123    | 130      | 177 | 307 | 382 |
| 430    | 99.8 | 104 | 109 | 116    | 122      | 160 | 271 | 352 |



|        |      |      |      | Pressi | ure, bar |     |     |     |
|--------|------|------|------|--------|----------|-----|-----|-----|
| T (°C) | 1    | 20   | 40   | 60     | 80       | 100 | 150 | 200 |
| 440    | 97.6 | 101  | 105  | 110    | 116      | 148 | 241 | 323 |
| 450    | 96.0 | 99.2 | 103  | 106    | 111      | 139 | 217 | 297 |
| 460    | 95.0 | 97.9 | 101  | 104    | 108      | 131 | 198 | 274 |
| 470    | 94.5 | 97.0 | 99.7 | 103    | 106      | 125 | 184 | 253 |
| 480    | 94.2 | 96.5 | 99.0 | 102    | 104      | 120 | 172 | 236 |
| 490    | 94.2 | 96.4 | 98.7 | 101    | 103      | 118 | 163 | 220 |
| 500    | 94.4 | 96.4 | 98.5 | 101    | 103      | 116 | 155 | 207 |
| 520    | 95.3 | 97.1 | 98.9 | 101    | 103      | 113 | 142 | 186 |
| 540    | 96.6 | 98.2 | 99.8 | 102    | 103      | 112 | 136 | 170 |
| 560    | 98.3 | 99.7 | 101  | 103    | 104      | 112 | 133 | 159 |
| 580    | 100  | 101  | 103  | 104    | 106      | 113 | 131 | 153 |
| 600    | 102  | 103  | 105  | 106    | 107      | 114 | 130 | 149 |
| 620    | 104  | 105  | 107  | 108    | 109      | 116 | 130 | 147 |
| 640    | 106  | 108  | 109  | 110    | 111      | 117 | 131 | 147 |
| 660    | 109  | 110  | 111  | 112    | 113      | 119 | 132 | 146 |
| 680    | 111  | 112  | 113  | 115    | 116      | 121 | 133 | 147 |
| 700    | 114  | 115  | 116  | 117    | 118      | 124 | 135 | 148 |

Source: Ref. 2 with permission.



Table 2.20 Surface Tension [ $\sigma$  (dynes/cm)] of Water in Air

| T (°C)         | σ                | T (°C) | σ     | T (°C) | σ     | T (°C) | σ    |
|----------------|------------------|--------|-------|--------|-------|--------|------|
| 0              | 75.50            | 130    | 52.90 | 260    | 23.73 | 362    | 1.53 |
| 10             | 74.40            | 140    | 50.79 | 270    | 21.33 | 363    | 1.37 |
| 20             | 72.88            | 150    | 48.68 | 280    | 18.94 | 364    | 1.22 |
| 30             | 71.20            | 160    | 46.51 | 290    | 16.60 | 365    | 1.07 |
| 40             | 69.48            | 170    | 44.38 | 300    | 14.29 | 366    | 0.93 |
| 50             | 67.77            | 180    | 42.19 | 310    | 12.04 | 367    | 0.79 |
| 60             | 66.07            | 190    | 40.00 | 320    | 9.84  | 368    | 0.66 |
| 70             | 64.36            | 200    | 37.77 | 330    | 7.69  | 369    | 0.54 |
| 80             | 62.69            | 210    | 35.51 | 340    | 5.61  | 370    | 0.42 |
| 90             | 60.79            | 220    | 33.21 | 350    | 3.64  | 371    | 0.31 |
| 100            | 58.91            | 230    | 30.88 | 355    | 2.71  | 372    | 0.20 |
| 110            | 56.97            | 240    | 28.52 | 360    | 1.85  | 373    | 0.10 |
| 120            | 54.96            | 250    | 26.13 | 361    | 1.68  | 374.15 | 0    |
| Source: Ref. 2 | with permission. |        |       |        |       |        |      |

Table 2.21 Surface Tension (N/m) of Various Liquids

|               |        |        |        |        |        | <i>T</i> (K) |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|
| Substan<br>ce | 250    | 260    | 270    | 280    | 290    | 300          | 320    | 340    | 360    | 380    | 400    |
| Aceton<br>e   | 0.0292 | 0.0280 | 0.0267 | 0.0254 | 0.0241 | 0.0229       | 0.0203 | 0.0178 | 0.016  | 0.014  | 0.012  |
| Benzen<br>e   | _      | _      | 0.0321 | 0.0307 | 0.0293 | 0.0279       | 0.0253 | 0.0228 | 0.0204 | 0.0180 | 0.0156 |
| Bromin<br>e   | 0.047  | 0.046  | 0.045  | 0.044  | 0.0425 | 0.041        | 0.038  | 0.035  | 0.032  | 0.030  | 0.027  |
| Butane        | 0.0176 | 0.0164 | 0.0152 | 0.0140 | 0.0128 | 0.0116       | 0.0092 | 0.0069 | 0.0049 | 0.0031 | 0.0016 |
| Chlorin<br>e  | 0.0243 | 0.0227 | 0.0212 | 0.0197 | 0.0182 | 0.0167       | 0.0137 | 0.0107 | 0.0079 | 0.0051 | 0.0037 |
| Decane        | 0.0278 | 0.0269 | 0.0260 | 0.0251 | 0.0241 | 0.0233       | 0.0215 | 0.0196 | 0.0178 | 0.0161 | 0.0145 |



|               |        |        |        |        |        | <i>T</i> (K) |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|
| Substan<br>ce | 250    | 260    | 270    | 280    | 290    | 300          | 320    | 340    | 360    | 380    | 400    |
| Dipheny<br>I  | -      | _      | _      | _      | _      | 0.0416       | 0.0388 | 0.0362 | 0.0338 | 0.0316 | 0.0295 |
| Ethane        | 0.0061 | 0.0049 | 0.0037 | 0.0026 | 0.0015 | 0.0007       | _      | _      | -      | -      | _      |
| Ethanol       | _      | _      | 0.0247 | 0.0239 | 0.0231 | 0.0222       | 0.0204 | 0.0186 | 0.0167 | 0.0148 | 0.0126 |
| Ethylen<br>e  | 0.0033 | 0.0020 | 0.0009 | 0.0002 | _      | _            | -      | -      | _      | _      | _      |
| Heptan<br>e   | 0.0242 | 0.0233 | 0.0224 | 0.0214 | 0.0204 | 0.0194       | 0.0175 | 0.0156 | 0.0137 | 0.0118 | 0.0100 |
| Hexane        | 0.0230 | 0.0219 | 0.0207 | 0.0198 | 0.0187 | 0.0176       | 0.0154 | 0.0134 | 0.0116 | 0.0096 | 0.0077 |
| Methan<br>ol  | 0.0266 | 0.0257 | 0.0248 | 0.0238 | 0.0229 | 0.0221       | 0.0204 | 0.0187 | 0.0169 | 0.0150 | 0.0129 |
| Nonane        | 0.0270 | 0.0261 | 0.0251 | 0.0242 | 0.0232 | 0.0223       | 0.0204 | 0.0186 | 0.0167 | 0.0148 | 0.0129 |
| Octane        | 0.0256 | 0.0247 | 0.0237 | 0.0228 | 0.0219 | 0.0210       | 0.0191 | 0.0173 | 0.0155 | 0.0138 | 0.0123 |
| Pentan<br>e   | 0.0210 | 0.0198 | 0.0186 | 0.0175 | 0.0164 | 0.0153       | 0.0131 | 0.0108 | 0.0088 | 0.0069 | 0.0053 |
| Propan<br>e   | 0.0128 | 0.0114 | 0.0101 | 0.0088 | 0.0076 | 0.0064       | 0.0043 | 0.0025 | 0.0007 | _      | _      |
| Propan<br>ol  | 0.0274 | 0.0266 | 0.0258 | 0.0249 | 0.0241 | 0.0232       | 0.0214 | 0.0198 | 0.0182 | 0.0168 | 0.0155 |
| Propyle<br>ne | 0.0132 | 0.0119 | 0.0105 | 0.0090 | 0.0077 | 0.0064       | 0.0041 | 0.0022 | 0.0005 | -      | _      |
| R 12          | 0.0147 | 0.0134 | 0.0121 | 0.0108 | 0.0095 | 0.0082       | 0.0057 | 0.0034 | _      | _      | _      |
| Toluene       | 0.0345 | 0.0330 | 0.0315 | 0.0301 | 0.0288 | 0.0275       | 0.0251 | 0.0227 | 0.0205 | 0.0185 | 0.0165 |
| Water         | _      | _      | _      | 0.0747 | 0.0733 | 0.0717       | 0.0685 | 0.0651 | 0.0615 | 0.0576 | 0.0536 |



Table 2.22 Isobaric Expansion Coefficient of Water  $(\beta)$  at one bar

| T (°C) | β×10 <sup>4</sup> (1/ <i>K</i> ) | T (°C) | β×10 <sup>4</sup> (1/ <i>K</i> ) | T (°C) | β×10 <sup>4</sup> (1/ <i>K</i> ) | T (°C) | β×10 <sup>4</sup> (1/ <i>K</i> ) |
|--------|----------------------------------|--------|----------------------------------|--------|----------------------------------|--------|----------------------------------|
| 10     | 0.883                            | 35     | 3.47                             | 60     | 5.22                             | 85     | 6.69                             |
| 15     | 1.51                             | 40     | 3.86                             | 65     | 5.53                             | 90     | 6.96                             |
| 20     | 2.08                             | 45     | 4.23                             | 70     | 5.82                             | 95     | 7.22                             |
| 25     | 2.59                             | 50     | 4.57                             | 75     | 6.12                             | 99.63  | 7.46                             |
| 30     | 3.05                             | 55     | 4.90                             | 80     | 6.40                             |        |                                  |
|        |                                  |        | •                                | -      |                                  |        |                                  |

Calculated from data in Ref. 7.

Table 2.23 Heat Capacity of Seawater (kJ/kg K) at Various Temperatures and Salinities

|            |                |                |                |                |                |                |                | Salin          | ity, g/kg      |                |                |                |                |                |                |                |
|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| T (°C)     | 0              | 10             | 20             | 30             | 40             | 50             | 60             | 70             | 80             | 90             | 100            | 110            | 120            | 130            | 140            | 150            |
| 0          | 4.209          | 4.143          | 4.081          | 4.021          | 3.964          | 3.910          | 3.858          | 3.809          | 3.763          | 3.720          | 3.679          | 3.641          | 3.606          | 3.573          | 3.543          | 3.516          |
| 10         | 4.198          | 4.136          | 4.077          | 4.020          | 3.965          | 3.913          | 3.863          | 3.815          | 3.770          | 3.727          | 3.686          | 3.648          | 3.612          | 3.579          | 3.547          | 3.518          |
| 20         | 4.189          | 4.131          | 4.074          | 4.020          | 3.967          | 3.917          | 3.868          | 3.822          | 3.777          | 3.735          | 3.694          | 3.656          | 3.619          | 3.584          | 3.552          | 3.521          |
| 30<br>40   | 4.184<br>4.180 | 4.128<br>4.127 | 4.074<br>4.075 | 4.021<br>4.024 | 3.971<br>3.975 | 3.922<br>3.927 | 3.874<br>3.881 | 3.829<br>3.836 | 3.785<br>3.793 | 3.743<br>3.751 | 3.702<br>3.710 | 3.663<br>3.671 | 3.626<br>3.633 | 3.591<br>3.597 | 3.557<br>3.562 | 3.525<br>3.529 |
|            |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| 50<br>60   | 4.180<br>4.181 | 4.128<br>4.131 | 4.078<br>4.082 | 4.029<br>4.034 | 3.981<br>3.987 | 3.934<br>3.941 | 3.888<br>3.896 | 3.844<br>3.853 | 3.801<br>3.810 | 3.759<br>3.768 | 3.719<br>3.727 | 3.679<br>3.687 | 3.641<br>3.649 | 3.604<br>3.611 | 3.568<br>3.574 | 3.533<br>3.538 |
| 70         | 4.186          | 4.131          | 4.082          | 4.034          | 3.995          | 3.950          | 3.905          | 3.861          | 3.819          | 3.777          | 3.736          | 3.696          | 3.657          | 3.618          | 3.581          | 3.544          |
| 80         | 4.192          | 4.144          | 4.096          | 4.050          | 4.004          | 3.959          | 3.914          | 3.871          | 3.828          | 3.786          | 3.745          | 3.704          | 3.665          | 3.626          | 3.588          | 3.551          |
| 90         | 4.202          | 4.154          | 4.106          | 4.059          | 4.014          | 3.968          | 3.924          | 3.880          | 3.837          | 3.795          | 3.754          | 3.713          | 3.673          | 3.634          | 3.595          | 3.558          |
| 100        | 4.213          | 4.165          | 4.118          | 4.071          | 4.025          | 3.979          | 3.934          | 3.891          | 3.847          | 3.805          | 3.763          | 3.722          | 3.682          | 3.642          | 3.603          | 3.565          |
| 110        | 4.228          | 4.179          | 4.131          | 4.083          | 4.037          | 3.991          | 3.946          | 3.901          | 3.857          | 3.815          | 3.772          | 3.731          | 3.690          | 3.651          | 3.612          | 3.573          |
| 120        | 4.245          | 4.195          | 4.146          | 4.097          | 4.050          | 4.003          | 3.957          | 3.912          | 3.868          | 3.825          | 3.782          | 3.740          | 3.700          | 3.659          | 3.620          | 3.582          |
| 130<br>140 | 4.264<br>4.286 | 4.213          | 4.162          | 4.113<br>4.129 | 4.064<br>4.079 | 4.016<br>4.030 | 3.970<br>3.982 | 3.924<br>3.936 | 3.879<br>3.890 | 3.835<br>3.845 | 3.792<br>3.802 | 3.750<br>3.760 | 3.709<br>3.718 | 3.669<br>3.678 | 3.629<br>3.639 | 3.591          |
|            |                | 4.233          | 4.181          |                |                |                |                |                |                |                |                |                |                |                |                | 3.601          |
| 150        | 4.311          | 4.255          | 4.201          | 4.148          | 4.096          | 4.045          | 3.996          | 3.948          | 3.902          | 3.856          | 3.812          | 3.769          | 3.728          | 3.688          | 3.649          | 3.611          |
| 160<br>170 | 4.338<br>4.367 | 4.279<br>4.306 | 4.222<br>4.246 | 4.167<br>4.188 | 4.113<br>4.132 | 4.061<br>4.078 | 4.010<br>4.025 | 3.961<br>3.974 | 3.913<br>3.926 | 3.867<br>3.878 | 3.823<br>3.833 | 3.780<br>3.790 | 3.738<br>3.748 | 3.698<br>3.708 | 3.659<br>3.670 | 3.622<br>3.634 |
| 180        | 4.399          | 4.334          | 4.271          | 4.210          | 4.152          | 4.095          | 4.023          | 3.988          | 3.938          | 3.890          | 3.844          | 3.800          | 3.758          | 3.719          | 3.681          | 3.646          |
|            | 30             |                | 31             | 32             |                | 33             | 34             |                | 35             | 36             |                | 37             | 38             |                | 39             | 40             |
| 0          | 4.0            | 21             | 4.015          | 4.01           | 0              | 4.004          | 3.998          |                | 3.992          | 3.987          |                | 3.981          | 3.975          | 3.             | .970           | 3.964          |
| 10         | 4.0            | 20             | 4.014          | 4.00           | 9              | 4.003          | 3.998          |                | 3.992          | 3.987          |                | 3.981          | 3.976          | 3.             | .971           | 3.965          |
| 20         | 4.0            |                | 4.015          | 4.00           |                | 4.004          | 3.999          |                | 3.993          | 3.988          |                | 3.983          | 3.978          | 3.             | .973           | 3.967          |
| 30         | 4.0            |                | 4.016          | 4.01           |                | 4.006          | 4.001          |                | 3.996          | 3.991          |                | 3.986          | 3.981          | 3.             | .976           | 3.971          |
| 40         | 4.0            |                | 4.019          | 4.01           |                | 4.009          | 4.004          |                | 4.000          | 3.995          |                | 3.990          | 3.985          |                | .980           | 3.975          |
| 50         | 4.0            |                | 4.024          | 4.01           |                | 4.014          | 4.009          |                | 4.004          | 4.000          |                | 3.995          | 3.990          |                | .985           | 3.981          |
| 60         | 4.0<br>4.0     |                | 4.029<br>4.037 | 4.02<br>4.03   |                | 4.020<br>4.027 | 4.015<br>4.023 |                | 4.011<br>4.018 | 4.006<br>4.013 |                | 4.001<br>4.009 | 3.997<br>4.004 |                | .992<br>.000   | 3.987<br>3.995 |
| 70<br>80   | 4.0            |                | 4.037          | 4.03           |                | 4.027          | 4.023          |                | 4.016          | 4.013          |                | 4.009<br>4.017 | 4.004          |                | .008           | 4.004          |
| 90         | 4.0            |                | 4.055          | 4.05           | 0              | 4.046          | 4.041          |                | 4.036          | 4.032          |                | 4.027          | 4.023          | 4.             | .018           | 4.014          |
| 100        | 4.0            |                | 4.066          | 4.06           |                | 4.057          | 4.052          |                | 4.048          | 4.043          |                | 4.038          | 4.034          |                | .029           | 4.025          |
| 110        | 4.0            | 83             | 4.079          | 4.07           |                | 4.069          | 4.065          |                | 4.060          | 4.055          |                | 4.051          | 4.046          |                | .041           | 4.037          |
| 120        | 4.0            | 97             | 4.092          | 4.08           | 8              | 4.083          | 4.078          |                | 4.073          | 4.069          |                | 4.064          | 4.059          | 4.             | .054           | 4.050          |
| 130        | 4.1            |                | 4.108          | 4.10           |                | 4.098          | 4.093          |                | 4.088          | 4.083          |                | 4.078          | 4.074          |                | .069           | 4.064          |
| 140        | 4.1            | 29             | 4.124          | 4.11           | 9              | 4.114          | 4.109          |                | 4.104          | 4.099          |                | 4.094          | 4.089          | 4.             | .084           | 4.079          |
| 150        | 4.1            |                | 4.142          | 4.13           |                | 4.132          | 4.127          |                | 4.121          | 4.116          |                | 4.111          | 4.106          |                | 101            | 4.096          |
| 160        | 4.1            |                | 4.162          | 4.15           |                | 4.151          | 4.145          |                | 4.140          | 4.135          |                | 4.129          | 4.124          |                | 119            | 4.113          |
| 170<br>180 | 4.1<br>4.1     | 88<br>20       | 4.182<br>4.204 | 4.17<br>4.19   |                | 4.171<br>4.192 | 4.165<br>4.187 |                | 4.160<br>4.181 | 4.154<br>4.175 |                | 4.149<br>4.169 | 4.143<br>4.163 |                | .137<br>.157   | 4.132<br>4.152 |
| 100        | 4.1            | 20             | 4.204          | 4.19           | 0              | 4.192          | 4.10/          |                | 4.101          | 4.1/3          |                | 4.109          | 4.103          | 4.             | 137            | 4.132          |

Source: Ref. 3 with permission.



Table 2.24 Dynamic Viscosity of Seawater (10<sup>-3</sup> Ns/m<sup>2</sup>) at Various Temperatures and Salinities

|                                               |                                                             |                                                             |                                                             |                                                             |                                                             |                                                             |                                                             | Salin                                                       | ity, g/kg                                                   |                                                             |                                                             |                                                             |                                                             |                                                             |                                                             |                                                             |
|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| T (°C)                                        | 0                                                           | 10                                                          | 20                                                          | 30                                                          | 40                                                          | 50                                                          | 60                                                          | 70                                                          | 80                                                          | 90                                                          | 100                                                         | 110                                                         | 120                                                         | 130                                                         | 140                                                         | 150                                                         |
| 0<br>10<br>20<br>30                           | 1.775<br>1.304<br>1.002<br>0.797                            | 1.802<br>1.327<br>1.021<br>0.814                            | 1.831<br>1.350<br>1.041<br>0.830                            | 1.861<br>1.375<br>1.061<br>0.848                            | 1.893<br>1.401<br>1.083<br>0.866                            | 1.928<br>1.429<br>1.106<br>0.886                            | 1.965<br>1.459<br>1.131<br>0.906                            | 2.005<br>1.491<br>1.157<br>0.929                            | 2.049<br>1.526<br>1.185<br>0.952                            | 2.096<br>1.563<br>1.216<br>0.977                            | 2.147<br>1.603<br>1.248<br>1.004                            | 2.202<br>1.646<br>1.283<br>1.033                            | 2.261<br>1.693<br>1.321<br>1.064                            | 2.326<br>1.743<br>1.361<br>1.098                            | 2.395<br>1.797<br>1.404<br>1.133                            | 2.470<br>1.855<br>1.451<br>1.171                            |
| 40<br>50<br>60<br>70<br>80<br>90              | 0.653<br>0.546<br>0.466<br>0.404<br>0.355<br>0.315          | 0.667<br>0.559<br>0.477<br>0.414<br>0.364<br>0.323          | 0.681<br>0.571<br>0.488<br>0.424<br>0.373<br>0.331          | 0.696<br>0.585<br>0.500<br>0.434<br>0.382<br>0.340          | 0.712<br>0.599<br>0.512<br>0.445<br>0.392<br>0.349          | 0.729<br>0.613<br>0.525<br>0.457<br>0.402<br>0.358          | 0.747<br>0.629<br>0.539<br>0.469<br>0.413<br>0.368          | 0.765<br>0.645<br>0.553<br>0.481<br>0.424<br>0.378          | 0.786<br>0.662<br>0.568<br>0.495<br>0.436<br>0.389          | 0.807<br>0.681<br>0.584<br>0.509<br>0.449<br>0.400          | 0.830<br>0.700<br>0.602<br>0.524<br>0.463<br>0.412          | 0.854<br>0.721<br>0.620<br>0.540<br>0.477<br>0.425          | 0.880<br>0.744<br>0.639<br>0.558<br>0.492<br>0.439          | 0.908<br>0.768<br>0.660<br>0.576<br>0.508<br>0.453          | 0.938<br>0.793<br>0.682<br>0.595<br>0.525<br>0.469          | 0.970<br>0.821<br>0.706<br>0.616<br>0.544<br>0.485          |
| 100<br>110<br>120<br>130<br>140<br>150<br>160 | 0.282<br>0.255<br>0.232<br>0.213<br>0.196<br>0.181<br>0.169 | 0.290<br>0.262<br>0.239<br>0.219<br>0.201<br>0.187<br>0.173 | 0.297<br>0.269<br>0.245<br>0.225<br>0.207<br>0.192<br>0.178 | 0.305<br>0.276<br>0.252<br>0.231<br>0.213<br>0.197<br>0.183 | 0.313<br>0.284<br>0.259<br>0.237<br>0.219<br>0.203<br>0.189 | 0.322<br>0.291<br>0.266<br>0.244<br>0.225<br>0.208<br>0.194 | 0.331<br>0.300<br>0.273<br>0.251<br>0.231<br>0.214<br>0.200 | 0.340<br>0.308<br>0.281<br>0.258<br>0.238<br>0.221<br>0.205 | 0.350<br>0.317<br>0.289<br>0.266<br>0.245<br>0.227<br>0.211 | 0.360<br>0.326<br>0.298<br>0.273<br>0.252<br>0.234<br>0.218 | 0.371<br>0.336<br>0.307<br>0.282<br>0.260<br>0.241<br>0.224 | 0.383<br>0.347<br>0.317<br>0.291<br>0.268<br>0.249<br>0.231 | 0.395<br>0.358<br>0.327<br>0.300<br>0.277<br>0.256<br>0.239 | 0.408<br>0.370<br>0.337<br>0.310<br>0.286<br>0.265<br>0.246 | 0.422<br>0.382<br>0.349<br>0.320<br>0.295<br>0.273<br>0.254 | 0.436<br>0.395<br>0.361<br>0.331<br>0.305<br>0.283<br>0.263 |
| 170<br>180                                    | 0.157<br>0.147<br>3                                         |                                                             | 0.167<br>0.156<br>31                                        | 0.171<br>0.161<br>32<br>1.86                                |                                                             | 0.181<br>0.170<br>33<br>1.871                               | 0.186<br>0.175<br>34<br>1.874                               | 0.192<br>0.180                                              | 0.198<br>0.185<br>35<br>1.877                               | 0.203<br>0.191<br>36                                        | 0.210<br>0.196                                              | 0.216<br>0.202<br>37<br>1.883                               | 0.223<br>0.209<br>38                                        |                                                             | 0.237<br>0.222<br>39                                        | 0.245<br>0.230<br>40                                        |
| 0<br>10<br>20<br>30<br>40                     | 1.8<br>1.3<br>1.0<br>0.8<br>0.6                             | 75<br>61<br>48                                              | 1.864<br>1.377<br>1.063<br>0.850<br>0.698                   | 1.38<br>1.06<br>0.85<br>0.69                                | 0<br>5<br>1                                                 | 1.382<br>1.068<br>0.853<br>0.701                            | 1.874<br>1.365<br>1.070<br>0.855<br>0.702                   |                                                             | 1.877<br>1.388<br>1.072<br>0.857<br>0.704                   | 1.880<br>1.390<br>1.074<br>0.859<br>0.706                   | 1<br>1<br>(                                                 | 1.393<br>1.076<br>0.861<br>0.707                            | 1.887<br>1.396<br>1.078<br>0.862<br>0.709                   | 1.<br>1.<br>0.                                              | 890<br>398<br>081<br>864<br>710                             | 1.893<br>1.401<br>1.083<br>0.866<br>0.712                   |
| 50<br>60<br>70<br>80<br>90                    | 0.5<br>0.5<br>0.4<br>0.3<br>0.3                             | 000<br>34<br>82                                             | 0.586<br>0.501<br>0.435<br>0.383<br>0.341                   | 0.58<br>0.50<br>0.43<br>0.38<br>0.34                        | 3<br>7<br>4                                                 | 0.589<br>0.504<br>0.438<br>0.385<br>0.343                   | 0.590<br>0.505<br>0.439<br>0.386<br>0.343                   |                                                             | 0.592<br>0.506<br>0.440<br>0.387<br>0.344                   | 0.593<br>0.507<br>0.441<br>0.388<br>0.345                   | (                                                           | ).594<br>).509<br>).442<br>).389<br>).346                   | 0.596<br>0.510<br>0.443<br>0.390<br>0.347                   | 0.<br>0.<br>0.                                              | 597<br>511<br>444<br>391<br>348                             | 0.599<br>0.512<br>0.445<br>0.392<br>0.349                   |
| 100<br>110<br>120<br>130<br>140               | 0.3<br>0.2<br>0.2<br>0.2<br>0.2                             | 76<br>52<br>31<br>13                                        | 0.306<br>0.277<br>0.252<br>0.231<br>0.213                   | 0.30<br>0.27<br>0.25<br>0.23<br>0.21                        | 8<br>3<br>2<br>4                                            | 0.308<br>0.278<br>0.254<br>0.233<br>0.215                   | 0.308<br>0.279<br>0.254<br>0.233<br>0.215                   |                                                             | 0.309<br>0.280<br>0.255<br>0.234<br>0.216                   | 0.310<br>0.281<br>0.256<br>0.235<br>0.216                   | (<br>(<br>(                                                 | 0.311<br>0.281<br>0.257<br>0.235<br>0.217                   | 0.312<br>0.282<br>0.257<br>0.236<br>0.218                   | 0.<br>0.<br>0.                                              | 312<br>283<br>258<br>237<br>218                             | 0.313<br>0.284<br>0.259<br>0.237<br>0.219                   |
| 150<br>160<br>170<br>180                      | 0.1<br>0.1<br>0.1<br>0.1                                    | 83<br>71                                                    | 0.198<br>0.184<br>0.172<br>0.161                            | 0.19<br>0.18<br>0.17<br>0.16                                | 4                                                           | 0.199<br>0.185<br>0.173<br>0.162                            | 0.199<br>0.186<br>0.173<br>0.162                            |                                                             | 0.200<br>0.186<br>0.174<br>0.163                            | 0.200<br>0.187<br>0.174<br>0.163                            | (                                                           | ).201<br>).187<br>).175<br>).164                            | 0.202<br>0.188<br>0.175<br>0.164                            | 0.<br>0.                                                    | 202<br>188<br>176<br>165                                    | 0.203<br>0.189<br>0.176<br>0.165                            |

Source: Ref. 3 with permission.



Table 2.25 Thermal Conductivity of Seawater (mW/m K) at Various Temperatures and Salinities

|           |     |     |     |     |     |     |     | Sá  | alinity, g | ⁄kg |     |     |     |     |     |     |     |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Т<br>(°С) | 0   | 10  | 20  | 30  | 35* | 40  | 50  | 60  | 70         | 80  | 90  | 100 | 110 | 120 | 130 | 140 | 150 |
| 0         | 572 | 570 | 569 | 567 | 566 | 565 | 563 | 562 | 560        | 558 | 556 | 554 | 552 | 550 | 548 | 546 | 544 |
| 10        | 589 | 587 | 586 | 584 | 584 | 583 | 581 | 580 | 578        | 577 | 575 | 573 | 571 | 570 | 568 | 566 | 564 |
| 20        | 604 | 603 | 602 | 600 | 600 | 599 | 598 | 597 | 595        | 594 | 592 | 591 | 589 | 588 | 586 | 585 | 583 |
| 30        | 618 | 617 | 616 | 615 | 614 | 614 | 613 | 612 | 611        | 609 | 608 | 607 | 606 | 604 | 603 | 602 | 600 |
| 40        | 630 | 629 | 629 | 628 | 628 | 627 | 626 | 626 | 625        | 624 | 623 | 622 | 621 | 620 | 618 | 617 | 616 |
| 50        | 641 | 641 | 640 | 640 | 639 | 639 | 639 | 638 | 637        | 637 | 636 | 635 | 634 | 633 | 632 | 631 | 630 |
| 60        | 651 | 651 | 650 | 650 | 650 | 650 | 649 | 649 | 649        | 648 | 648 | 647 | 646 | 646 | 645 | 644 | 644 |
| 70        | 659 | 659 | 659 | 659 | 659 | 659 | 659 | 659 | 658        | 658 | 658 | 658 | 657 | 657 | 656 | 656 | 655 |
| 80        | 666 | 666 | 667 | 667 | 667 | 667 | 667 | 667 | 667        | 667 | 667 | 667 | 667 | 666 | 666 | 666 | 666 |
| 90        | 672 | 672 | 673 | 673 | 673 | 674 | 674 | 674 | 674        | 675 | 675 | 675 | 675 | 675 | 675 | 675 | 675 |
| 100       | 676 | 677 | 678 | 678 | 679 | 679 | 680 | 680 | 681        | 681 | 681 | 682 | 682 | 682 | 682 | 682 | 683 |
| 110       | 680 | 681 | 682 | 683 | 683 | 683 | 684 | 685 | 685        | 686 | 687 | 687 | 688 | 688 | 688 | 689 | 689 |
| 120       | 682 | 683 | 684 | 685 | 686 | 686 | 687 | 688 | 689        | 690 | 691 | 691 | 692 | 693 | 693 | 694 | 694 |
| 130       | 683 | 685 | 686 | 687 | 688 | 688 | 690 | 691 | 692        | 693 | 694 | 695 | 695 | 696 | 697 | 698 | 699 |
| 140       | 684 | 685 | 687 | 688 | 689 | 689 | 691 | 692 | 693        | 694 | 696 | 697 | 698 | 699 | 700 | 701 | 702 |
| 150       | 683 | 684 | 686 | 688 | 688 | 689 | 691 | 692 | 694        | 695 | 696 | 698 | 699 | 700 | 701 | 702 | 703 |
| 160       | 681 | 683 | 684 | 686 | 687 | 688 | 690 | 691 | 693        | 694 | 696 | 697 | 699 | 700 | 701 | 703 | 704 |
| 170       | 678 | 680 | 682 | 684 | 685 | 686 | 687 | 689 | 691        | 693 | 694 | 696 | 698 | 699 | 701 | 702 | 704 |
| 180       | 674 | 676 | 678 | 680 | 681 | 682 | 684 | 686 | 686        | 690 | 692 | 694 | 695 | 697 | 699 | 700 | 702 |

<sup>\* &</sup>quot;Normal" seawater.

Source: Ref. 3 with permission.

Table 2.26 Prandtl Number of Seawater at Various Temperatures and Salinities



|           |          |          |          |          |          |          |          | Sa       | alinity, g | ⁄kg      |          |          |          |          |          |          |          |
|-----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Т<br>(°С) | 0        | 10       | 20       | 30       | 35*      | 40       | 50       | 60       | 70         | 80       | 90       | 100      | 110      | 120      | 130      | 140      | 150      |
| 0         | 13.      | 13.      | 13.      | 13.      | 13.      | 13.      | 13.      | 13.      | 13.        | 13.      | 14.      | 14.      | 14.      | 14.      | 15.      | 15.      | 16.      |
|           | 1        | 1        | 1        | 2        | 2        | 3        | 4        | 5        | 6          | 8        | 0        | 3        | 5        | 8        | 2        | 5        | 0        |
| 10        | 9.2      | 9.3      | 9.3      | 9.4      | 9.4      | 9.5      | 9.6      | 9.7      | 9.8        | 9.9      | 10.      | 10.      | 10.      | 10.      | 11.      | 11.      | 11.      |
|           | 9        | 5        | 9        | 6        | 9        | 3        | 2        | 2        | 4          | 7        | 1        | 3        | 5        | 7        | 0        | 2        | 6        |
| 20        | 6.9      | 6.9      | 7.0      | 7.1      | 7.1      | 7.1      | 7.2      | 7.3      | 7.4        | 7.5      | 7.6      | 7.8      | 7.9      | 8.1      | 8.3      | 8.5      | 8.7      |
|           | 5        | 9        | 4        | 1        | 3        | 7        | 4        | 3        | 3          | 3        | 7        | 0        | 6        | 3        | 2        | 2        | 6        |
| 30        | 5.4      | 5.4      | 5.4      | 5.5      | 5.5      | 5.6      | 5.6      | 5.7      | 5.8        | 5.9      | 6.0      | 6.1      | 6.2      | 6.3      | 6.5      | 6.6      | 6.8      |
|           | 0        | 5        | 9        | 4        | 8        | 0        | 7        | 4        | 2          | 2        | 1        | 2        | 4        | 9        | 4        | 9        | 8        |
| 40        | 4.3      | 4.3      | 4.4      | 4.4      | 4.4      | 4.5      | 4.5      | 4.6      | 4.7        | 4.7      | 4.8      | 4.9      | 5.0      | 5.1      | 5.2      | 5.4      | 5.5      |
|           | 3        | 8        | 1        | 6        | 8        | 1        | 7        | 3        | 0          | 8        | 6        | 5        | 5        | 6        | 8        | 2        | 6        |
| 50        | 3.5<br>6 | 3.6<br>0 | 3.6<br>4 | 3.6<br>8 | 3.7<br>1 | 3.7<br>3 | 3.7<br>7 | 3.8      | 3.8<br>9   | 3.9<br>5 | 4.0<br>2 | 4.1<br>0 | 4.1<br>8 | 4.2<br>8 | 4.3<br>8 | 4.4<br>8 | 4.6<br>0 |
| 60        | 2.9<br>9 | 3.0<br>3 | 3.0<br>6 | 3.1<br>0 | 3.1<br>2 | 3.1<br>4 | 3.1<br>9 | 3.2<br>4 | 3.2<br>8   | 3.3<br>4 | 3.4<br>0 | 3.4<br>7 | 3.5<br>4 | 3.6<br>1 | 3.6<br>9 | 3.7<br>8 | 3.8      |
| 70        | 2.5<br>7 | 2.6<br>0 | 2.6      | 2.6<br>6 | 2.6<br>8 | 2.7<br>0 | 2.7      | 2.7      | 2.8        | 2.8<br>7 | 2.9      | 2.9      | 3.0<br>4 | 3.1<br>1 | 3.1<br>8 | 3.2<br>5 | 3.3      |
| 80        | 2.2      | 2.2      | 2.2      | 2.3      | 2.3<br>4 | 2.3<br>5 | 2.3<br>9 | 2.4      | 2.4<br>6   | 2.5<br>0 | 2.5<br>5 | 2.6<br>0 | 2.6<br>5 | 2.7<br>1 | 2.7<br>7 | 2.8      | 2.9<br>0 |
| 90        | 1.9      | 2.0      | 2.0      | 2.0      | 2.0      | 2.0      | 2.1      | 2.1      | 2.1        | 2.2      | 2.2      | 2.2      | 2.3      | 2.3      | 2.4      | 2.5      | 2.5      |
|           | 7        | 0        | 2        | 5        | 6        | 8        | 1        | 4        | 8          | 1        | 5        | 9        | 4        | 9        | 4        | 0        | 6        |
| 100       | 1.7<br>5 | 1.7<br>8 | 1.8<br>0 | 1.8<br>3 | 1.8<br>4 | 1.8<br>6 | 1.8<br>8 | 1.9<br>2 | 1.9<br>4   | 1.9<br>8 | 2.0      | 2.0<br>5 | 2.0<br>9 | 2.1<br>3 | 2.1<br>8 | 2.2      | 2.2      |
| 110       | 1.5      | 1.6      | 1.6      | 1.6      | 1.6      | 1.6      | 1.7      | 1.7      | 1.7        | 1.7      | 1.8      | 1.8      | 1.8      | 1.9      | 1.9      | 2.0      | 2.0      |
|           | 9        | 1        | 3        | 5        | 6        | 8        | 0        | 3        | 5          | 8        | 1        | 4        | 8        | 2        | 6        | 0        | 5        |
| 120       | 1.4      | 1.4      | 1.4      | 1.5      | 1.5      | 1.5      | 1.5      | 1.5      | 1.6        | 1.6      | 1.6      | 1.6      | 1.7      | 1.7      | 1.7      | 1.8      | 1.8      |
|           | 4        | 7        | 9        | 1        | 1        | 3        | 5        | 7        | 0          | 2        | 5        | 8        | 1        | 5        | 8        | 2        | 6        |
| 130       | 1.3      | 1.3      | 1.3      | 1.3      | 1.3      | 1.4      | 1.4      | 1.4      | 1.4        | 1.4      | 1.5      | 1.5      | 1.5      | 1.6      | 1.6      | 1.6      | 1.7      |
|           | 3        | 5        | 7        | 8        | 9        | 0        | 2        | 4        | 6          | 9        | 1        | 4        | 7        | 0        | 3        | 6        | 0        |
| 140       | 1.2      | 1.2      | 1.2      | 1.2      | 1.2      | 1.3      | 1.3      | 1.3      | 1.3        | 1.3      | 1.3      | 1.4      | 1.4      | 1.4      | 1.5      | 1.5      | 1.5      |
|           | 3        | 4        | 6        | 8        | 9        | 0        | 1        | 3        | 5          | 7        | 9        | 2        | 4        | 7        | 0        | 3        | 6        |
| 150       | 1.1      | 1.1      | 1.1      | 1.1      | 1.2      | 1.2      | 1.2      | 1.2      | 1.2        | 1.2      | 1.3      | 1.3      | 1.3      | 1.3      | 1.3      | 1.4      | 1.4      |
|           | 4        | 6        | 8        | 9        | 0        | 1        | 2        | 4        | 6          | 7        | 0        | 2        | 4        | 6        | 9        | 2        | 5        |
| 160       | 1.0      | 1.0      | 1.1      | 1.1      | 1.1      | 1.1      | 1.1      | 1.1      | 1.1        | 1.1      | 1.2      | 1.2      | 1.2      | 1.2      | 1.3      | 1.3      | 1.3      |
|           | 8        | 8        | 0        | 1        | 2        | 3        | 4        | 6        | 7          | 9        | 1        | 3        | 5        | 8        | 0        | 2        | 5        |
| 170       | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 1.1        | 1.1      | 1.1      | 1.1      | 1.1      | 1.2      | 1.2      | 1.2      | 1.2      |
|           | 1        | 3        | 4        | 5        | 6        | 6        | 7        | 9        | 0          | 2        | 3        | 6        | 7        | 0        | 2        | 4        | 6        |

|           |           |           |           |           |          |          |          | S        | alinity, g, | /kg      |          |          |          |          |          |          |          |
|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| 7<br>(°C) | 0         | 10        | 20        | 30        | 35*      | 40       | 50       | 60       | 70          | 80       | 90       | 100      | 110      | 120      | 130      | 140      | 150      |
| 180       | 0.9<br>59 | 0.9<br>75 | 0.9<br>83 | 0.9<br>97 | 1.0<br>0 | 1.0<br>0 | 1.0<br>2 | 1.0<br>3 | 1.0<br>4    | 1.0<br>6 | 1.0<br>7 | 1.0<br>9 | 1.1<br>0 | 1.1<br>3 | 1.1<br>4 | 1.1<br>7 | 1.1<br>9 |
| * "Noi    | rmal" se  | eawater   | •         | -         |          |          | -        | -        | -           |          | -        |          |          |          |          |          |          |

Source: Ref. 3 with permission.

Table 2.27 Density of Seawater (kg/m³) at Various Temperatures and Salinities

|                                 |                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                                     | Salinity, g/                                        | kg                                                  |                                                     |                                                     |                                                     |                                                     |                                                     |                                                     |
|---------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| T (°C)                          | 30                                                |                                                     | 31                                                  | 32                                                  | 3:                                                  | 3                                                   | 34                                                  | 35*                                                 |                                                     | 36                                                  | 37                                                  | 38                                                  |                                                     | 39                                                  | 40                                                  |
| 0<br>10<br>20<br>30<br>40       | 1,024<br>1,023<br>1,020<br>1,017<br>1,013         | 3.2<br>3.8<br>7.6                                   | 1,024.9<br>1,023.9<br>1,021.5<br>1,018.4<br>1,014.7 | 1,025.7<br>1,024.7<br>1,022.3<br>1,019.1<br>1,015.4 | 1,02<br>1,02<br>1,02<br>1,01<br>1,01                | 25.4<br>23.0<br>19.9                                | 1,027.3<br>1,026.2<br>1,023.8<br>1,020.6<br>1,016.9 | 1,028.1<br>1,027.0<br>1,024.5<br>1,021.4<br>1,017.7 | 1,0<br>1,0<br>1,0                                   | 028.9<br>027.7<br>025.3<br>022.1<br>018.4           | 1,029.6<br>1,028.5<br>1,026.0<br>1,022.9<br>1,019.1 | 1,030.<br>1,029.<br>1,026.<br>1,023.<br>1,019.      | 3 1<br>8 1<br>6 1                                   | ,031.2<br>,030.0<br>,027.5<br>,024.4<br>,020.6      | 1,032.0<br>1,030.8<br>1,028.3<br>1,025.1<br>1,021.4 |
| 50<br>60<br>70<br>80<br>90      | 1,009<br>1,004<br>999<br>993                      | 1.9<br>0.5<br>3.7                                   | 1,010.4<br>1,005.6<br>1,000.3<br>994.4<br>988.1     | 1,011.2<br>1,006.3<br>1,001.0<br>995.2<br>988.8     |                                                     | 7.1                                                 | 1,012.6<br>1,007.8<br>1,002.5<br>996.6<br>990.3     | 1,013.4<br>1,008.6<br>1,003.2<br>997.4<br>991.1     | 1,0<br>1,0                                          | 014.1<br>009.3<br>003.9<br>998.1<br>991.8           | 1,014.8<br>1,010.0<br>1,004.7<br>998.8<br>992.5     | 1,015.<br>1,010.<br>1,005.<br>999.<br>993.          | 8 1<br>4 1<br>6 1                                   | ,016.3<br>,011.5<br>,006.2<br>,000.3<br>994.0       | 1,017.1<br>1,012.2<br>1,006.9<br>1,001.1<br>994.7   |
| 100<br>110<br>120<br>130<br>140 | 980<br>973<br>965<br>957<br>949                   | 3.3<br>5.7<br>7.6                                   | 981.3<br>974.1<br>966.4<br>958.4<br>949.9           | 982.1<br>974.8<br>967.2<br>959.1<br>950.7           | 97<br>96<br>95                                      | 32.8<br>5.6<br>57.9<br>59.9<br>51.4                 | 983.5<br>976.3<br>968.7<br>960.6<br>952.2           | 984.3<br>977.1<br>969.4<br>961.4<br>953.0           | 9                                                   | 985.0<br>977.8<br>970.2<br>962.1<br>953.7           | 985.8<br>978.6<br>970.9<br>962.9<br>954.5           | 986.<br>979.<br>971.<br>963.<br>955.                | 3<br>7<br>7                                         | 987.2<br>980.0<br>972.4<br>964.4<br>956.0           | 988.0<br>980.8<br>973.2<br>965.2<br>956.8           |
| 150<br>160<br>170<br>180        | 940<br>931<br>921<br>911                          | 1<br>6                                              | 941.1<br>931.9<br>922.4<br>912.6                    | 941.8<br>932.7<br>923.2<br>913.4                    | 93<br>92                                            | 12.6<br>13.5<br>14.0<br>14.2                        | 943.4<br>934.3<br>924.8<br>915.0                    | 944.2<br>935.1<br>925.6<br>915.8                    | ģ                                                   | 945.0<br>935.8<br>926.4<br>916.7                    | 945.7<br>936.6<br>927.2<br>917.5                    | 946.<br>937.<br>928.<br>918.                        | 4<br>0                                              | 947.3<br>938.2<br>928.8<br>919.1                    | 948.1<br>939.0<br>929.6<br>919.9                    |
|                                 | 10                                                | 20                                                  | 30                                                  | 40                                                  | 50                                                  | 60                                                  | 70                                                  | 80                                                  | 90                                                  | 100                                                 | 110                                                 | 120                                                 | 130                                                 | 140                                                 | 150                                                 |
| 0<br>10<br>20<br>30<br>40       | 1,008.1<br>1,007.7<br>1,005.8<br>1,002.8<br>999.2 | 1,016.2<br>1,015.5<br>1,013.3<br>1,010.2<br>1,006.6 | 1,024.2<br>1,023.2<br>1,020.8<br>1,017.6<br>1,013.9 | 1,032.0<br>1,030.2<br>1,028.3<br>1,025.1<br>1,021.4 | 1,039.8<br>1,038.4<br>1,035.9<br>1,032.6<br>1,028.8 | 1,047.6<br>1,046.0<br>1,043.5<br>1,040.2<br>1,036.3 | 1,055.5<br>1,053.8<br>1,051.2<br>1,047.8<br>1,043.8 | 1,063.5<br>1,061.6<br>1,058.9<br>1,055.4<br>1,051.4 | 1,071.6<br>1,669.6<br>1,066.7<br>1,063.1<br>1,059.0 | 1,079.7<br>1,077.6<br>1,074.5<br>1,070.8<br>1,066.6 | 1,088.0<br>1,085.7<br>1,082.4<br>1,078.5<br>1,074.2 | 1,096.2<br>1,093.9<br>1,090.3<br>1,086.3<br>1,081.9 | 1,104.4<br>1,102.0<br>1,098.2<br>1,094.1<br>1,089.6 | 1,112.5<br>1,110.1<br>1,106.2<br>1,102.0<br>1,097.4 | 1,120.4<br>1,118.0<br>1,114.2<br>1,109.9<br>1,105.2 |
| 50<br>60<br>70<br>80<br>90      | 995.0<br>990.2<br>984.9<br>979.0<br>972.7         | 1,002.3<br>997.5<br>992.2<br>986.4<br>980.0         | 1,009.7<br>1,004.9<br>999.5<br>993.7<br>987.4       | 1,017.1<br>1,012.2<br>1,006.9<br>1,001.1<br>994.7   | 1,024.5<br>1,019.6<br>1,014.3<br>1,008.4<br>1,002.1 | 1,031.9<br>1,027.0<br>1,021.7<br>1,015.8<br>1,009.5 | 1,039.4<br>1,034.5<br>1,029.1<br>1,023.2<br>1,017.0 | 1,046.9<br>1,041.9<br>1,036.5<br>1,030.6<br>1,024.4 | 1,054.4<br>1,049.4<br>1,043.9<br>1,038.1<br>1,031.8 | 1,062.0<br>1,056.9<br>1,051.4<br>1,045.5<br>1,039.3 | 1,069.5<br>1,064.4<br>1,058.9<br>1,053.0<br>1,046.8 | 1,077.1<br>1,072.0<br>1,066.4<br>1,060.5<br>1,054.3 | 1,084.8<br>1,079.5<br>1,074.0<br>1,068.0<br>1,061.8 | 1,092.4<br>1,087.1<br>1,081.5<br>1,075.6<br>1,069.3 | 1,100.1<br>1,094.8<br>1,089.1<br>1,083.1<br>1,076.8 |
| 100<br>110<br>120<br>130<br>140 | 965.8<br>958.5<br>950.7<br>942.4<br>933.8         | 973.2<br>965.9<br>958.2<br>950.0<br>941.4           | 980.6<br>973.3<br>965.7<br>957.6<br>949.1           | 988.0<br>980.8<br>973.2<br>965.2<br>956.8           | 995.4<br>988.3<br>980.7<br>972.8<br>964.5           | 1,002.8<br>995.7<br>988.2<br>980.4<br>972.2         | 1,010.3<br>1,003.2<br>995.8<br>988.0<br>979.9       | 1,017.7<br>1,010.7<br>1,003.3<br>995.6<br>987.6     | 1,025.2<br>1,018.2<br>1,010.9<br>1,003.2<br>995.2   | 1,032.7<br>1,025.7<br>1,018.4<br>1,010.8<br>1,002.9 | 1,040.2<br>1,033.2<br>1,026.0<br>1,018.5<br>1,010.6 | 1,047.7<br>1,040.8<br>1,033.6<br>1,026.1<br>1,018.3 | 1,055.2<br>1,048.3<br>1,041.2<br>1,033.7<br>1,026.0 | 1,062.7<br>1,055.9<br>1,048.7<br>1,041.3<br>1,033.7 | 1,070.3<br>1,063.4<br>1,056.3<br>1,049.0<br>1,041.4 |
| 150<br>160<br>170<br>180        | 924.7<br>915.2<br>905.4<br>895.3                  | 932.5<br>923.2<br>913.5<br>903.5                    | 940.3<br>931.1<br>921.6<br>911.7                    | 948.1<br>939.0<br>929.6<br>919.9                    | 955.9<br>946.9<br>937.7<br>928.1                    | 963.7<br>954.8<br>945.7<br>936.3                    | 971.4<br>962.7<br>953.7<br>944.4                    | 979.2<br>970.6<br>961.7<br>952.6                    | 987.0<br>978.5<br>969.7<br>960.7                    | 994.8<br>986.3<br>977.6<br>968.7                    | 1,002.5<br>994.2<br>985.6<br>976.8                  | 1,010.3<br>1,002.0<br>993.5<br>984.8                | 1,018.0<br>1,009.9<br>1,001.4<br>992.8              | 1,025.8<br>1,017.7<br>1,009.3<br>1,000.8            | 1,033.6<br>1,025.5<br>1,017.2<br>1,008.7            |

\* "Normal" seawater.

Source: Ref. 3 with permission.

Table 2.28 Thermophysical Properties of Selected Liquids at Temperatures Below Their Boiling Points



|            |                                                                                |                                                              |        |        |        |        |        |        | T (°C) |        |        |        |        |        |        |
|------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|            |                                                                                |                                                              | -150   | -100   | -75    | -50    | -25    | 0      | 20     | 50     | 100    | 150    | 200    | 250    | 300    |
|            |                                                                                |                                                              |        |        |        |        |        |        | T(K)   |        |        |        |        |        |        |
| Substance  | Data                                                                           | Property                                                     | 123.15 | 173.15 | 198.15 | 223.15 | 248.15 | 273.15 | 293.15 | 323.15 | 373.15 | 423.15 | 473.15 | 523.15 | 573.15 |
| Acetone    | Chemical formula: C₃H₅O<br>Molecular weight: 58.08                             | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity     | S      | S      | 893    | 868    | 840    | 812    | 791    | 756    | V      | V      | V      | V      | V      |
|            | Melting point: -93.2°C<br>Boiling point: 56.1°C                                | c <sub>pl</sub> (kJ/kg K)<br>Thermal conductivity            | S      | S      | 2.010  | 2.039  | 2.072  | 2.102  | 2.156  | 2.252  | V      | V      | V      | V      | V      |
|            | Critical temperature:<br>235°C                                                 | λ <sub>ι</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity           | S      | S      | 0.179  | 0.175  | 0.170  | 0.165  | 0.160  | 0.154  | V      | V      | V      | V      | V      |
|            | Critical pressure: 4.761 MPa                                                   | η <sub>1</sub> (10-5 Ns/m²)                                  | S      | S      | 134.1  | 82.0   | 56.0   | 39.8   | 32.5   | 24.9   | V      | V      | V      | V      | V      |
| Acetylene  | Chemical formula: C <sub>2</sub> H <sub>2</sub><br>Molecular weight: 26.04     | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity     | S      | S      | 612    | V      | V      | V      | V      | V      | V      | V      | V      | V      | V      |
|            | Melting point: -80.75°C<br>Boiling point: -83.95°C                             | c <sub>p,t</sub> (kJ/kg K)<br>Thermal conductivity           | S      | S      | (3.1)  | V      | V      | V      | V      | V      | V      | V      | V      | V      | V      |
|            | Critical temperature:<br>35.55°C                                               | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity           | S      | S      | (0.54) | V      | V      | V      | V      | V      | V      | V      | V      | V      | V      |
|            | Critical pressure: 6.24 MPa                                                    | $\eta_I (10^{-5} \text{ Ns/m}^2)$                            | S      | S      | (16)   | V      | V      | V      | V      | V      | V      | V      | V      | V      | V      |
| Benzene    | Chemical formula: C <sub>6</sub> H <sub>6</sub><br>Molecular weight: 78.11     | Density p <sub>1</sub> (kg/m³)<br>Specific heat capacity     | S      | S      | S      | S      | S      | S      | 879    | 847    | V      | V      | V      | V      | V      |
|            | Melting point: 5.55°C<br>Boiling point: 80.11°C                                | c <sub>p.t</sub> (kJ/kg K)<br>Thermal conductivity           | S      | S      | S      | S      | S      | S      | 1.729  | 1.821  | V      | V      | V      | V      | V      |
|            | Critical temperature:<br>289.45°C                                              | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity           | S      | S      | S      | S      | S      | S      | 0.144  | 0.134  | V      | V      | V      | V      | V      |
|            | Critical pressure: 4.924 MPa                                                   | $\eta_I (10^{-5} \text{ Ns/m}^2)$                            | S      | S      | S      | S      | S      | S      | 64.9   | 43.6   | V      | V      | V      | V      | V      |
| Dowtherm A | Chemical formula:<br>Mixture ( $C_6H_5$ ) <sub>2</sub> O (73.5%);              | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity     | S      | S      | S      | S      | S      | S      | 1,060  | 1,036  | 995    | 951    | 906    | 858    | V      |
|            | (C <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> (26.5%)<br>Molecular weight: 166 | c <sub>p,t</sub> (kJ/kg K)<br>Thermal conductivity           | S      | S      | S      | S      | S      | S      | 1.574  | 1.660  | 1.800  | 1.947  | 2.087  | 2.219  | V      |
|            | Melting point: 12°C<br>Boiling point: 257.1°C                                  | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity           | S      | S      | S      | S      | S      | S      | 0.141  | 0.137  | 0.132  | 0.125  | 0.119  | 0.113  | V      |
|            | Critical temperature:<br>497°C<br>Critical pressure: 3.134 MPa                 | $\eta_l (10^{-5} \text{ Ns/m}^2)$                            | S      | S      | S      | S      | S      | S      | 380    | 215    | 100    | 58     | 39     | 28     | -      |
| Dowtherm J | Chemical formula: C <sub>10</sub> H <sub>14</sub>                              | Density ρ <sub>1</sub> (kg/m³)                               | S      | S      | S      | 917    | 897    | 888    | 872    | 842    | 801    | 754    | V      | V      | V      |
|            | Molecular weight: 134<br>Melting point: —                                      | Specific heat capacity $c_{p,t}(kJ/kg K)$                    | S      | S      | s      | 1.650  | 1.713  | 1.772  | 1.830  | 1.924  | 2.093  | 2.278  | v      | v      | v      |
|            | Boiling point: 181°C<br>Critical temperature:                                  | Thermal conductivity $\lambda_t [(W/m^2)/(K/m)]$             | S      | S      | s      | 0.137  | 0.135  | 0.134  | 0.133  | 0.130  | 0.126  | 0.122  | v      | v      | v      |
|            | 383°C<br>Critical pressure: 2.837 MPa                                          | Dynamic viscosity<br>η <sub>l</sub> (10 <sup>-5</sup> Ns/m²) | S      | S      | s      | 410    | 225    | 140    | 90     | 62     | 36     | 22     | V      | v      | v      |

S, solid; V, vapor; values in parentheses are estimated values.



|                    |                                                                                                         |                                                                                         |        |              |              |              |              |              | T (°C)       |              |        |         |        |        |        |
|--------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|---------|--------|--------|--------|
|                    |                                                                                                         |                                                                                         | -150   | -100         | -75          | -50          | -25          | 0            | 20           | 50           | 100    | 150     | 200    | 250    | 300    |
|                    |                                                                                                         |                                                                                         |        |              |              |              |              |              | T(K)         |              |        |         |        |        |        |
| Substance          | Data                                                                                                    | Property                                                                                | 123.15 | 173.15       | 198.15       | 223.15       | 248.15       | 273.15       | 293.15       | 323.15       | 373.15 | 423.15  | 473.15 | 523.15 | 573.15 |
| Ethanol            | Chemical formula: C <sub>2</sub> H <sub>6</sub> O<br>Molecular weight: 46.07<br>Melting point: −114.5°C | Density $\rho_l$ (kg/m <sup>3</sup> )<br>Specific heat capacity<br>$c_{nl}$ (kJ/kg K)   | s<br>s | 892<br>1.901 | 870<br>1.947 | 850<br>2.014 | 825<br>2.093 | 806<br>2.232 | 789<br>2.395 | 763<br>2.801 | V<br>V | v<br>v  | V<br>V | v<br>v | V<br>V |
|                    | Boiling point: 78.3°C<br>Critical temperature:<br>243.10°C                                              | Thermal conductivity<br>λ <sub>i</sub> [(W/m <sup>2</sup> )/(K/m)]<br>Dynamic viscosity | S      | 0.197        | 0.193        | 0.188        | 0.183        | 0.177        | 0.173        | 0.165        | V      | v       | V      | v      | v      |
|                    | Critical pressure: 6.39 MPa                                                                             | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                                       | S      | 4,701        | 1,526        | 640          | 324.1        | 1768.6       | 120.1        | 70.1         | V      | V       | V      | V      | V      |
| Ethylene           | Chemical formula: C₂H₄<br>Molecular weight: 28.05                                                       | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                                | 630    | V            | V            | V            | V            | V            | V            | V            | V      | V       | V      | V      | V      |
|                    | Melting point: –169.15°C<br>Boiling point: –103.72°C                                                    | c <sub>p,i</sub> (kJ/kg K) Thermal conductivity                                         | 2.433  | V            | V            | V            | V            | V            | V            | V            | V      | V       | V      | V      | V      |
|                    | Critical temperature:                                                                                   | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                                      | 0.242  | V            | V            | V            | V            | V            | V            | V            | V      | V       | V      | V      | V      |
|                    | Critical pressure: 5.06 MPa                                                                             | $\eta_l (10^{-5} \text{ Ns/m}^2)$                                                       | 41.0   | v            | V            | V            | V            | V            | V            | V            | V      | v       | V      | V      | V      |
| Ethylene<br>Glycol | Chemical formula: C₂H <sub>6</sub> O<br>Molecular weight: 62.07                                         | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                                | S      | S            | S            | S            | S            | 1,128        | 1,115        | 1091         | 1,055  | 1,016   | V      | V      | V      |
| -                  | Melting point: -12.95°C<br>Boiling point: 197.25°C                                                      | c <sub>p.t</sub> (kJ/kg K)<br>Thermal conductivity                                      | S      | S            | S            | S            | S            | 2.261        | 2.357        | 2.500        | 2.847  | (2.94)  | V      | V      | V      |
|                    | Critical temperature:<br>371.85C                                                                        | λ, [(W/m²)/(K/m)]<br>Dynamic viscosity                                                  | S      | S            | S            | S            | S            | 0.254        | 0.256        | 0.260        | 0.265  | (0.252) | V      | V      | V      |
|                    | Critical pressure: 7.7 MPa                                                                              | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                                       | S      | S            | S            | S            | S            | 5,701        | 2,041        | 707          | 202    | 85.9    | V      | V      | V      |
| Glycerol           | Chemical formula: C₃H <sub>8</sub> O₃<br>Molecular weight: 92.09                                        | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                                | S      | S            | S            | S            | S            | S            | 1,260        | 1,242        | 1,209  | 1,154   | 1,090  | (1007) | V      |
|                    | Melting point: 17.85°C<br>Boiling point: 290°C                                                          | c <sub>p,l</sub> (kJ/kg K)<br>Thermal conductivity                                      | S      | S            | S            | S            | S            | S            | 2.366        | 2.512        | 2.805  | 3.06    | 3.34   | (3.74) | V      |
|                    | Critical temperature:<br>452.85°C                                                                       | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                                      | S      | S            | S            | S            | S            | S            | 0.286        | 0.290        | 0.297  | 0.300   | 0.295  | 0.282  | V      |
|                    | Critical pressure: 6.69 MPa                                                                             | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                                       | S      | S            | S            | S            | S            | S            | 149900       | (18000)      | 1300   | 170     | 22.0   | (3.0)  | V      |
| Heptane            | Chemical formula: C <sub>7</sub> H <sub>16</sub><br>Molecular weight: 100.20                            | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                                | S      | S            | 761          | 741          | 721          | 701          | 684          | 658          | V      | V       | V      | V      | V      |
|                    | Melting point: -90.55°C                                                                                 | c <sub>p,l</sub> (kJ/kg K)                                                              | S      | S            | 2.104        | 2.035        | 2.081        | 2.144        | 2.198        | 2.307        | V      | V       | v      | V      | v      |
|                    | Boiling point: 98.45°C<br>Critical temperature:<br>267.46°C                                             | Thermal conductivity<br>λ <sub>t</sub> [(W/m <sup>2</sup> )/(K/m)]<br>Dynamic viscosity | S      | S            | 0.156        | 0.148        | 0.139        | 0.131        | 0.124        | 0.114        | V      | V       | V      | V      | v      |
|                    | Critical pressure: 2.736 MPa                                                                            |                                                                                         | S      | S            | 129.0        | 96.6         | 72.5         | 52.6         | 41.3         | 30.2         | V      | V       | V      | V      | V      |
| Hexane             | Chemical formula: C <sub>6</sub> H <sub>14</sub>                                                        | Density ρ <sub>1</sub> (kg/m³)                                                          | S      | S            | 742          | 721          | 700          | 678          | 659          | 631          | V      | V       | V      | V      | V      |





|                     | Molecular weight: 86.18<br>Melting point: -95.32°C<br>Boiling point: 68.73°C | Specific heat capacity $c_{\mu l}$ (kJ/kg K) Thermal conductivity | s     | S       | 1.993   | 2.035   | 2.093 | 2.165 | 2.227 | (2.37) | V     | v     | v     | v | v |
|---------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|-------|---------|---------|---------|-------|-------|-------|--------|-------|-------|-------|---|---|
|                     | Critical temperature:<br>234.29°C                                            | λ <sub>t</sub> [(W/m <sup>2</sup> )/(K/m)]  Dynamic viscosity     | S     | S       | 0.156   | 0.146   | 0.137 | 0.127 | 0.120 | 0.110  | V     | V     | V     | V | V |
|                     | Critical pressure: 3.031 MPa                                                 | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                 | S     | S       | 92.0    | 68.5    | 51.5  | 38.3  | 30.8  | 22.9   | V     | V     | V     | V | V |
| Ketene              | Chemical formula: C₂H₂O<br>Molecular weight: 42.04                           | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity          | S     | (1080)  | (1030)  | (979)   | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Melting point: -135.15°C<br>Boiling point: -41.15°C                          | c <sub>p,t</sub> (kJ/kg K)<br>Thermal conductivity                | S     | (1.79)  | (1.92)  | (2.02)  | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Critical temperature:<br>106.85°C                                            | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                | S     | (0.267) | (0.250) | (0.233) | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Critical pressure: 6.48 MPa                                                  | $\eta_l (10^{-5} \text{ Ns/m}^2)$                                 | S     | _       | _       | (110)   | V     | V     | V     | V      | V     | V     | V     | V | V |
| Naphthalene         | Chemical formula: C <sub>10</sub> H <sub>8</sub><br>Molecular weight: 128.17 | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity          | S     | S       | S       | S       | S     | S     | S     | S      | 963   | 922   | (878) | V | V |
|                     | Melting point: 80.35°C<br>Boiling point: 217.95°C                            | c <sub>p,t</sub> (kJ/kg K)<br>Thermal conductivity                | S     | S       | S       | S       | S     | S     | S     | S      | 1.805 | 1.993 | 2.139 | V | V |
|                     | Critical temperature:<br>475.25°C                                            | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                | S     | S       | S       | S       | S     | S     | S     | S      | 0.137 | 0.130 | 0.123 | V | V |
|                     | Critical pressure: 4.05 MPa                                                  | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                 | S     | S       | S       | S       | S     | S     | S     | S      | 77.4  | 52.0  | 37.5  | V | V |
| Nitrogen<br>Dioxide | Chemical formula: NO <sub>2</sub><br>Molecular weight: 46.01                 | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity          | S     | S       | S       | S       | S     | S     | S     | 1,494  | 1,446 | V     | V     | V | V |
|                     | Melting point: -11.25°C<br>Boiling point: 21.15°C                            | c <sub>p,t</sub> (kJ/kg K)<br>Thermal conductivity                | S     | S       | S       | S       | S     | S     | S     | 1.505  | 1.535 | V     | V     | V | V |
|                     | Critical temperature:<br>158.25°C                                            | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                | S     | S       | S       | S       | S     | S     | S     | 0.140  | 0.130 | V     | V     | V | V |
|                     | Critical pressure: 1.013 MPa                                                 | $\eta_l (10^{-5} \text{ Ns/m}^2)$                                 | S     | S       | S       | S       | S     | S     | S     | 49.4   | 4.21  | V     | V     | V | V |
| Pentane             | Chemical formula: C₅H <sub>12</sub><br>Molecular weight: 72.15               | Density ρ <sub>l</sub> (kg/m³)<br>Specific heat capacity          | S     | 737     | 715     | 693     | 670   | 646   | 626   | V      | V     | V     | V     | V | V |
|                     | Melting point: -129.75°C<br>Boiling point: 36.05°C                           | c <sub>p.t</sub> (kJ/kg K)<br>Thermal conductivity                | S     | 1.972   | 2.001   | 2.060   | 2.123 | 2.206 | 2.273 | V      | V     | V     | V     | V | V |
|                     | Critical temperature:<br>196.45°C                                            | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                | S     | 0.155   | 0.151   | 0.148   | 0.144 | 0.140 | 0.136 | V      | V     | V     | V     | V | V |
|                     | Critical pressure: 3.369 MPa                                                 | $\eta_I (10^{-5} \text{ Ns/m}^2)$                                 | S     | 125.0   | 66.0    | 48.4    | 36.4  | 27.7  | 22.7  | V      | V     | V     | V     | V | V |
| Propylene           | Chemical formula: C₃H <sub>6</sub><br>Molecular weight: 42.08                | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity          | 729   | 671     | 641     | 612     | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Melting point: –185.25°C<br>Boiling point: –47.7°C                           | c <sub>p.t</sub> (kJ/kg K)<br>Thermal conductivity                | 2.098 | 2.085   | 2.123   | 2.177   | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Critical temperature:<br>91.65°C                                             | λ <sub>ι</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                | 0.217 | 0.179   | 0.160   | 0.145   | V     | V     | V     | V      | V     | V     | V     | V | V |
|                     | Critical pressure: 4.61 MPa                                                  | η <sub>1</sub> (10-5 Ns/m²)                                       | 129.1 | 37.0    | 26.5    | 19.2    | V     | V     | V     | V      | V     | V     | V     | V | V |

S, solid; V, vapor; values in parentheses are estimated values.



|               |                                                                                                       |                                                                                       |         |        |              |              |              |              | T (°C)       |                |                |                |        |        |        |
|---------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|--------|--------------|--------------|--------------|--------------|--------------|----------------|----------------|----------------|--------|--------|--------|
|               |                                                                                                       |                                                                                       | -150    | -100   | -75          | -50          | -25          | 0            | 20           | 50             | 100            | 150            | 200    | 250    | 300    |
|               |                                                                                                       |                                                                                       |         |        |              |              |              |              | T(K)         |                |                |                |        |        |        |
| Substance     | Data                                                                                                  | Property                                                                              | 123.15  | 173.15 | 198.15       | 223.15       | 248.15       | 273.15       | 293.15       | 323.15         | 373.15         | 423.15         | 473.15 | 523.15 | 573.15 |
| Toluene       | Chemical formula: C <sub>7</sub> H <sub>8</sub><br>Molecular weight: 92.14<br>Melting point: −94.99°C | Density $\rho_l$ (kg/m <sup>3</sup> )<br>Specific heat capacity<br>$c_{gl}$ (kJ/kg K) | s<br>s  | s<br>s | 955<br>1.465 | 932<br>1.507 | 908<br>1.553 | 885<br>1.612 | 867<br>1.717 | 839<br>1.800   | 793<br>1.968   | v<br>v         | v<br>v | v<br>v | v<br>v |
|               | Boiling point: 110.63°C<br>Critical temperature:                                                      | Thermal conductivity<br>$\lambda_{\ell}[(W/m^2)/(K/m)]$                               | S       | S      | 0.156        | 0.152        | 0.148        | 0.144        | 0.141        | 0.136          | 0.128          | v              | v      | v      | v      |
|               | 320.85°C<br>Critical pressure: 4.05 MPa                                                               | Dynamic viscosity<br>η <sub>l</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> )             | s       | S      | 500          | 212          | 117.0        | 77.3         | 58.6         | 41.9           | 26.9           | v              | v      | V      | v      |
|               |                                                                                                       |                                                                                       |         |        |              |              |              |              | T (°C)       |                |                |                |        |        |        |
|               |                                                                                                       |                                                                                       | -200    | -180   | -160         | -140         | -120         | -100         | -50          | 0              | 20             | 50             | 100    | 150    | 200    |
|               |                                                                                                       |                                                                                       |         |        |              |              |              |              | T(K)         |                |                |                |        |        |        |
| Substance     | Data                                                                                                  | Property                                                                              | 73.15   | 93.15  | 113.15       | 133.15       | 153.15       | 173.15       | 223.15       | 273.15         | 293.15         | 323.15         | 373.15 | 423.15 | 473.15 |
| Ammonia       | Chemical formula: NH <sub>3</sub><br>Molecular weight: 17.03                                          | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                              | S       | S      | S            | S            | S            | S            | 695          | V              | V              | V              | V      | V      | V      |
|               | Melting point: -77.7°C<br>Boiling point: -33.41°C                                                     | c <sub>p,l</sub> (kJ/kg K)<br>Thermal conductivity                                    | S       | S      | S            | S            | S            | S            | 4.45         | V              | V              | V              | V      | V      | V      |
|               | Critical temperature:<br>132.4°C                                                                      | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                                    | S       | S      | S            | S            | S            | S            | 0.547        | V              | V              | V              | V      | V      | V      |
|               | Critical pressure: 11.29 MPa                                                                          | η <sub>1</sub> (10-5 Ns/m²)                                                           | S       | S      | S            | S            | S            | S            | 31.7         | V              | V              | V              | V      | V      | V      |
| Bromine       | Chemical formula: Br <sub>2</sub><br>Molecular weight: 159.81                                         | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                              | S       | S      | S            | S            | S            | S            | S            | 3,208          | 3,140          | (3040)         | V      | V      | V      |
|               | Melting point: -8.25°C<br>Boiling point: 58.75°C                                                      | c <sub>p,t</sub> (kJ/kg K) Thermal conductivity                                       | S       | S      | S            | S            | S            | S            | S            | 0.448          | 0.452          | 0.456          | V      | V      | V      |
|               | Critical temperature:<br>310.85°C                                                                     | λ <sub>t</sub> [(W/m <sup>2</sup> )/(K/m)]<br>Dynamic viscosity                       | s<br>s  | s<br>s | s<br>s       | s<br>s       | s<br>s       | S<br>S       | S<br>S       | (0.129)        | 0.124<br>99.6  | 0.117<br>76.2  | V<br>V | v<br>v | v<br>v |
| Carbon        | Critical pressure: 10.3 MPa                                                                           | η <sub>t</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> )                                  | S       | S      | S            | S            | S            | S            | S            |                |                |                | V      | v      |        |
| Tetrachloride | Chemical formula: CCl <sub>4</sub> Molecular weight: 153.82 Melting point: -22.9°C                    | Density $\rho_l$ (kg/m <sup>3</sup> )<br>Specific heat capacity<br>$c_{gl}$ (kJ/kg K) | s       | S      | s            | S            | S            | S            | s            | 1,633<br>0.842 | 1,594<br>0.850 | 1,534<br>0.862 | v<br>V | v<br>V | v      |
|               | Boiling point: 76.7°C<br>Critical temperature:                                                        | Thermal conductivity $\lambda_t [(W/m^2)/(K/m)]$                                      | S       | S      | S            | S            | S            | S            | S            | 0.107          | 0.106          | 0.105          | v      | v      | v      |
|               | 283.21°C<br>Critical pressure: 4.56 MPa                                                               | Dynamic viscosity<br>η <sub>l</sub> (10 <sup>-5</sup> Ns/m²)                          | S       | S      | s            | S            | S            | S            | S            | 134.9          | 96.1           | 65.4           | v      | v      | v      |
| Chlorine      | Chemical formula: Cl <sub>2</sub><br>Molecular weight: 70.91                                          | Density ρ <sub>1</sub> (kg/m³)<br>Specific heat capacity                              | S       | S      | S            | S            | S            | 1,717        | 1,598        | V              | V              | V              | V      | V      | V      |
|               | Melting point: -100.50°C<br>Boiling point: -34.04°C                                                   | c <sub>gl</sub> (kJ/kg K)<br>Thermal conductivity                                     | S       | S      | S            | S            | S            | 0.883        | 0.892        | V              | V              | v              | v      | v      | V      |
|               | Critical temperature:<br>144.0°C                                                                      | λ <sub>t</sub> [(W/m²)/(K/m)]  Dynamic viscosity                                      | S       | S      | S            | S            | S            | 0.198        | 0.186        | V              | V              | v              | V      | V      | V      |
|               | Critical pressure: 7.71 MPa                                                                           | η <sub>1</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> )                                  | S       | S      | S            | S            | S            | 104.0        | 55.4         | V              | V              | V              | V      | V      | V      |
| Fluorine      | Chemical formula: F <sub>2</sub><br>Molecular weight: 38.00                                           | Density ρ <sub>l</sub> (kg/m³)<br>Specific heat capacity                              | 1,140   | V      | V            | V            | V            | V            | V            | V              | V              | V              | V      | V      | V      |
|               | Melting point: -220.15°C<br>Boiling point: -187.95°C                                                  | c <sub>p,l</sub> (kJ/kg K)<br>Thermal conductivity                                    | 1.51    | V      | V            | V            | V            | V            | V            | V              | V              | V              | V      | V      | V      |
|               | Critical temperature:<br>-129.15°C                                                                    | λ <sub>t</sub> [(W/m²)/(K/m)]<br>Dynamic viscosity                                    | (0.155) | V      | V            | V            | V            | V            | V            | V              | V              | V              | V      | V      | V      |
|               | Critical pressure: 5.32 MPa                                                                           | η <sub>1</sub> (10 <sup>-5</sup> Ns/m <sup>2</sup> )                                  | 34.9    | V      | V            | V            | V            | V            | V            | V              | V              | V              | V      | V      | V      |

S, solid; V, vapor; values in parentheses are estimated values.  $\label{eq:Source:Source:Source:Source:Additional} Source: \quad \text{Ref. 5 with permission.}$ 



Table 2.29 Thermophysical Properties of Liquid Metals

| Composition        | Melting point (K) | T (K) | ρ (kg/m³) | c <sub>p</sub> (kJ/kg⋅K) | v · 10 <sup>7</sup> (m <sup>2</sup> /s) | k (W/m⋅K) | α·10 <sup>5</sup> (m <sup>2</sup> /s) | Pr    |
|--------------------|-------------------|-------|-----------|--------------------------|-----------------------------------------|-----------|---------------------------------------|-------|
| Bismuth            | 544               | 589   | 10,011    | 0.1444                   | 1.617                                   | 16.4      | 0.138                                 | 0.014 |
|                    |                   | 811   | 9,739     | 0.1545                   | 1.133                                   | 15.6      | 1.035                                 | 0.011 |
|                    |                   | 1033  | 9,467     | 0.1645                   | 0.8343                                  | 15.6      | 1.001                                 | 0.008 |
| Lead               | 600               | 644   | 10,540    | 0.159                    | 2.276                                   | 16.1      | 1.084                                 | 0.024 |
|                    |                   | 755   | 10,412    | 0.155                    | 1.849                                   | 15.6      | 1.223                                 | 0.017 |
|                    |                   | 977   | 10,140    | _                        | 1.347                                   | 14.9      | _                                     | -     |
| Potassium          | 337               | 422   | 807.3     | 0.80                     | 4.608                                   | 45.0      | 6.99                                  | 0.006 |
|                    |                   | 700   | 741.7     | 0.75                     | 2.397                                   | 39.5      | 7.07                                  | 0.003 |
|                    |                   | 977   | 674.4     | 0.75                     | 1.905                                   | 33.1      | 6.55                                  | 0.002 |
| Sodium             | 371               | 366   | 929.1     | 1.38                     | 7.516                                   | 86.2      | 6.71                                  | 0.011 |
|                    |                   | 644   | 860.2     | 1.30                     | 3.270                                   | 72.3      | 6.48                                  | 0.005 |
|                    |                   | 977   | 778.5     | 1.26                     | 2.285                                   | 59.7      | 6.12                                  | 0.003 |
| NaK (45%/55%)      | 292               | 366   | 887.4     | 1.130                    | 6.522                                   | 25.6      | 2.552                                 | 0.026 |
|                    |                   | 644   | 821.7     | 1.055                    | 2.871                                   | 27.5      | 3.17                                  | 0.009 |
|                    |                   | 977   | 740.1     | 1.043                    | 2.174                                   | 28.9      | 3.74                                  | 0.005 |
| NaK (22%/78%)      | 262               | 366   | 849.0     | 0.946                    | 5.797                                   | 24.4      | 3.05                                  | 0.019 |
|                    |                   | 672   | 775.3     | 0.879                    | 2.666                                   | 26.7      | 3.92                                  | 0.006 |
|                    |                   | 1033  | 690.4     | 0.883                    | 2.118                                   | _         | _                                     | _     |
| PbBi (44.5%/55.5%) | 398               | 422   | 10,524    | 0.147                    | _                                       | 9.05      | 0.586                                 | -     |
|                    |                   | 644   | 10,236    | 0.147                    | 1.496                                   | 11.86     | 0.790                                 | 0.189 |
|                    |                   | 922   | 9,835     | _                        | 1.171                                   | _         | _                                     | _     |

Adapted from Liquid Materials Handbook, 23rd ed., the Atomic Energy Commission, Department of the Navy, Washington, DC, 1952.

## 2.4. THERMOPHYSICAL PROPERTIES OF SOLIDS

Table 2.30 Density of Selected Elements (kg/m³)



|      |      |      |      |      | Symbol |      |      |      |      |
|------|------|------|------|------|--------|------|------|------|------|
| T(K) | Al   | Sb*  | Ba   | Be*  | Bi*    | Cd*  | Ca   | Ce   | Cs   |
| 50   | 2736 | 6734 | 3650 | 1863 | 9880   | 8830 | 1572 |      | 1962 |
| 100  | 2732 | 6726 | 3640 | 1862 | 9870   | 8800 | 1568 |      | 1944 |
| 150  | 2726 | 6716 | 3630 | 1861 | 9850   | 8760 | 1563 |      | 1926 |
| 200  | 2719 | 6706 | 3620 | 1860 | 9830   | 8720 | 1559 |      | 1907 |
| 250  | 2710 | 6695 | 3610 | 1858 | 9810   | 8680 | 1554 |      | 1887 |
| 300  | 2701 | 6685 | 3600 | 1855 | 9790   | 8640 | 1550 | 6860 | 1866 |
| 400  | 2681 | 6662 | 3580 | 1848 | 9750   | 8560 | 1539 | 6850 | 1781 |
| 500  | 2661 | 6638 | 3555 | 1840 | 9710   | 8470 | 1528 | 6840 | 1723 |
| 600  | 2639 | 6615 | 3530 | 1831 |        | 8010 | 1517 | 6820 | 1666 |
| 800  | 2591 | 6569 |      | 1812 |        | 7805 |      | 6790 | 1552 |
| 1000 | 2365 | 6431 |      | 1790 |        | 7590 |      | 6760 | 1438 |
| 1200 | 2305 | 6307 |      | 1768 |        |      |      |      | 1311 |
| 1400 | 2255 | 6170 |      | 1744 |        |      |      |      | 1182 |
| 1600 |      |      |      |      |        |      |      |      |      |
| 1800 |      |      |      |      |        |      |      |      |      |
| 2000 |      |      |      |      |        |      |      |      |      |

<sup>\*</sup> Polycrystalline form tabulated. Above the horizontal line the condensed phase is solid; below, it is liquid.  $^{\dagger}$  Hysteresis effect present.





|                                                                                           |                                                                              |                                                                      |                                                                                                      |                                                                 |                                                                                                      | Symb                                                                         | ool                                                                                                                 |                                                                                                |                                                                                              |                                                                                              |                                                                                                                                |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| T(K)                                                                                      | Cr                                                                           | Cu                                                                   | Co                                                                                                   | Dy*                                                             | Er                                                                                                   | Eu*                                                                          | Gd*                                                                                                                 | Ga                                                                                             | Ge                                                                                           | Au                                                                                           | Hf                                                                                                                             |
| 50<br>100<br>150<br>200<br>250                                                            | 7160<br>7155<br>7150<br>7145<br>7140                                         | 9019<br>9009<br>8992<br>8973<br>8951                                 | 8925<br>8919<br>8905<br>8892<br>8876                                                                 | 8578<br>8579<br>8581<br>8580<br>8567                            | 9090                                                                                                 |                                                                              | 7966<br>7960<br>7954<br>7949<br>†                                                                                   |                                                                                                | 5363<br>5358<br>5353<br>5348<br>5344                                                         | 19,490<br>19,460<br>19,420<br>19,380<br>19,340                                               | 13,350<br>13,340<br>13,330<br>13,320<br>13,310                                                                                 |
| 300<br>400<br>500<br>600<br>800<br>1000<br>1200<br>1400<br>1600                           | 7135<br>7120<br>7110<br>7080<br>7040<br>7000<br>6945<br>6890<br>6830         | 8930<br>8884<br>8837<br>8787<br>8686<br>8568<br>8458<br>7920<br>7750 | 8860<br>8823<br>8784<br>8744<br>8642<br>8561<br>8475                                                 | 8554<br>8530<br>8507<br>8484<br>8431<br>8377                    | 9000                                                                                                 | 5190<br>5155<br>5127                                                         | 7926<br>7907<br>7866<br>7818<br>7754                                                                                | 5910<br>6010<br>5946<br>5880<br>5770<br>5650<br>5540<br>5420                                   | 5340<br>5330<br>5320<br>5310<br>5290<br>5265<br>5240                                         | 19,300<br>19,210<br>19,130<br>19,040<br>18,860<br>18,660<br>18,440<br>17,230<br>16,950       | 13,300<br>13,275<br>13,250<br>13,220<br>13,170<br>13,110<br>13,050                                                             |
| 1800<br>2000                                                                              | 6760<br>6700                                                                 | 7600<br>7460                                                         | 7630<br>7410                                                                                         |                                                                 |                                                                                                      |                                                                              |                                                                                                                     |                                                                                                |                                                                                              |                                                                                              |                                                                                                                                |
| 2000                                                                                      | Но                                                                           | In*                                                                  | Ir                                                                                                   |                                                                 | Fe                                                                                                   | La*                                                                          | Pb                                                                                                                  | Li                                                                                             | Lu*                                                                                          | Mg                                                                                           | Mo                                                                                                                             |
| 50<br>100<br>150<br>200<br>250<br>300<br>400<br>500<br>600<br>800<br>1000<br>1200<br>1400 | 8820<br>8815<br>8810<br>8800<br>8790<br>8780<br>8755<br>8730<br>8700<br>8650 | 7460<br>7430<br>7400<br>7370<br>7340<br>7310<br>7230<br>6980<br>6810 | 22,6<br>22,5<br>22,5<br>22,5<br>22,5<br>22,4<br>22,4<br>22,4<br>22,3<br>22,2<br>22,1<br>22,0<br>21,9 | 80<br>60<br>60<br>40<br>20<br>50<br>50<br>10<br>60<br>550<br>40 | 7910<br>7900<br>7890<br>7880<br>7870<br>7860<br>7830<br>7800<br>7760<br>7690<br>7650<br>7620<br>7520 | 6203<br>6200<br>6196<br>6193<br>6190<br>6187<br>6180<br>6160<br>6170<br>6140 | 11,570<br>11,520<br>11,470<br>11,430<br>11,380<br>11,330<br>11,230<br>11,130<br>11,010<br>10,430<br>10,190<br>9,940 | 547<br>546<br>543<br>541<br>537<br>533<br><u>526</u><br>492<br>482<br>462<br>442<br>442<br>402 | 9830<br>9840<br>9840<br>9850<br>9840<br>9830<br>9800<br>9770<br>9740<br>9660<br>9580<br>9500 | 1765<br>1762<br>1757<br>1752<br>1746<br>1740<br>1736<br>1731<br>1726<br>1715<br>1517<br>1409 | 10,260<br>10,260<br>10,250<br>10,250<br>10,250<br>10,240<br>10,220<br>10,210<br>10,190<br>10,160<br>10,120<br>10,080<br>10,040 |
| 1600<br>1800                                                                              |                                                                              |                                                                      | 21,7<br>21,6                                                                                         |                                                                 | 7420<br>7320                                                                                         |                                                                              |                                                                                                                     | 381<br>361                                                                                     |                                                                                              |                                                                                              | 10,000<br>9,950                                                                                                                |
| 2000                                                                                      |                                                                              |                                                                      | 21,5                                                                                                 | 10                                                              | 7030                                                                                                 |                                                                              |                                                                                                                     | 341                                                                                            |                                                                                              |                                                                                              | 9,900                                                                                                                          |
|                                                                                           | Ni                                                                           | N                                                                    | Лb                                                                                                   | Os                                                              |                                                                                                      | Pd                                                                           | Pt                                                                                                                  | ,                                                                                              | Pu                                                                                           | K                                                                                            | Pa*                                                                                                                            |
| 50<br>100<br>150<br>200<br>250                                                            | 8960<br>8960<br>8940<br>8930<br>8910                                         | 86<br>85<br>85                                                       | 510<br>500<br>590<br>580<br>570                                                                      | 22,55<br>22,54<br>22,52<br>22,51<br>22,49                       | 0 1<br>0 1<br>0 1                                                                                    | 12,110<br>12,100<br>12,090<br>12,070<br>12,050                               | 21,570<br>21,550<br>21,530<br>21,500<br>21,470                                                                      | 20<br>20<br>19                                                                                 | 0,270<br>0,170<br>0,080<br>0,990<br>0,860                                                    | 905<br>898<br>890<br>882<br>873                                                              |                                                                                                                                |
| 300<br>400<br>500<br>600<br>800                                                           | 8900<br>8860<br>8820<br>8780<br>8690                                         | 85<br>85<br>85                                                       | 570<br>550<br>530<br>510<br>470                                                                      | 22,48<br>22,45<br>22,42<br>22,39<br>22,32                       | 0 1<br>0 1<br>0 1                                                                                    | 12,030<br>11,980<br>11,940<br>11,890<br>11,790                               | 21,450<br>21,380<br>21,330<br>21,270<br>21,140                                                                      | 17<br>17<br>15                                                                                 | 0,730<br>1,720<br>1,920<br>5,300<br>5,370                                                    | 863<br>814<br>790<br>767<br>720                                                              | 15,370<br>15,320<br>15,280<br>15,230<br>15,150                                                                                 |

<sup>\*</sup> Polycrystalline form tabulated. Above the horizontal line the condensed phase is solid; below, it is liquid.
† Hysteresis effect present.



|      |        |             |        |        |      | Syn    | nbol   |          |      |       |      |        |
|------|--------|-------------|--------|--------|------|--------|--------|----------|------|-------|------|--------|
| T(K) | Ni     | 1           | Nb     | Os     |      | Pd     | Pt     |          | Pu   | K     |      | Pa*    |
| 1000 | 8610   | ) 84        | 430    | 22,250 | )    | 11,680 | 21,010 | )        |      | 672   | 2    | 15,050 |
| 1200 | 8510   |             | 380    |        |      | 11,570 | 20,870 | )        |      | 623   |      | 14,910 |
| 1400 | 8410   |             | 340    |        |      |        | 20,720 |          |      | 574   |      |        |
| 1600 | 8320   |             | 290    |        |      |        | 20,570 |          |      | 527   |      |        |
| 1800 | 7690   |             | 250    |        |      |        | 20,400 |          |      |       |      |        |
| 2000 | 7450   | ) <u>87</u> | 200    |        | -    |        | 20,220 | <u>)</u> |      |       |      |        |
|      | Re     | ık          | Rh     | R      | lb.  | Sc*    | Ag     |          | Na   | Sr    |      | Ta     |
| 50   | 21,1   |             | 12,490 |        |      |        | 10,62  |          | 1014 | 2655  |      | 16,500 |
| 100  | 21,0   |             | 12,480 |        |      |        | 10,60  |          | 1007 | 2638  |      | 16,490 |
| 150  | 21,0   |             | 12,470 |        |      |        | 10,57  |          | 999  | 2632  |      | 16,480 |
| 200  | 21,0   |             | 12,460 |        |      |        | 10,55  |          | 990  | 2621  |      | 16,460 |
| 250  | 21,0   |             | 12,445 |        |      |        | 10,52  |          | 980  | 2618  |      | 16,450 |
| 300  | 21,0   |             | 12,430 |        |      | 3000   | 10,49  |          | 970  | 261:  | )    | 16,440 |
| 400  | 20,9   |             | 12,400 |        | 320  | 2990   | 10,43  |          | 921  |       |      | 16,410 |
| 500  | 20,9   |             | 12,360 |        | 860  | 2980   | 10,36  |          | 897  |       |      | 16,370 |
| 600  | 20,8   |             | 12,330 |        | 400  | 2970   | 10,30  |          | 874  |       |      | 16,340 |
| 800  | 20,8   |             | 12,250 | -      | 340  | 2950   | 10,16  |          | 826  |       |      | 16,270 |
| 1000 | 20,7   |             | 12,170 |        | 560  | 2930   | 10,01  |          | 779  |       |      | 16,200 |
| 1200 | 20,6   |             | 12,080 |        | 640  | 2910   | 9,85   |          | 731  |       |      | 16,130 |
| 1400 | 20,5   |             | 11,980 | 9,     | 720  |        | 9,17   |          | 683  |       |      | 16,060 |
| 1600 | 20,4   |             | 11,880 |        |      |        | 8,98   | 30       | 638  |       |      | 15,980 |
| 1800 | 20,3   | 50          |        |        |      |        |        |          |      |       |      | 15,910 |
| 2000 | 20,2   | 50          |        |        |      |        |        |          |      |       |      | 15,820 |
|      | T1     | Th          | Tm*    | Sn     | Ti   | W      | U*     | V        | Yb   | $Y^*$ | Zn*  | Zr*    |
| 50   | 12,080 | 11,745      | 9370   |        | 4530 | 19,320 | 19,240 | 6080     |      | 4500  | 7280 | 6540   |
| 100  | 12,040 | 11,740      | 9360   |        | 4510 | 19,310 | 19,210 | 6074     |      | 4490  | 7260 | 6535   |
| 150  | 12,000 | 11,745      | 9350   |        | 4515 | 19,300 | 19,170 | 6068     |      | 4485  | 7230 | 6530   |
| 200  | 11,950 | 11,750      | 9340   |        | 4520 | 19,290 | 19,140 | 6062     |      | 4480  | 7200 | 6525   |
| 250  | 11,900 | 11,735      | 9330   |        | 4515 | 19,280 | 19,100 | 6056     |      | 4475  | 7170 | 6520   |
| 300  | 11,850 | 11,720      | 9320   | 7280   | 4510 | 19,270 | 19,070 | 6050     | 7020 | 4470  | 7135 | 6515   |
| 400  | 11,730 | 11,680      | 9280   |        | 4490 | 19,240 | 18,980 | 6030     | 6960 | 4450  | 7070 | 6510   |
| 500  | 11,500 | 11,630      | 9250   | 6900   | 4480 | 19,220 | 18,890 | 6010     | 6900 | 4440  | 7000 | 6490   |
| 600  | 11,250 | 11,590      | 9210   | 6900   | 4470 | 19,190 | 18,790 | 6000     | 6850 | 4420  | 6935 | 6480   |
| 800  | 10,960 | 11,500      | 9150   | 6760   | 4440 | 19,130 | 18,550 | 5960     | 6720 | 4390  | 6430 | 6450   |
| 1000 |        | 11,400      | 9080   | 6620   | 4410 | 19,080 | 18,110 | 5920     | 6590 | 4360  | 6260 | 6420   |
| 1200 |        | 11,300      |        | 6480   | 4380 | 19,020 | 17,760 | 5880     |      | 4320  |      | 6410   |
| 1400 |        |             |        | 6340   | 4350 | 18,950 | 17,530 | 5830     |      |       |      | 6380   |
| 1600 |        |             |        |        | 4320 | 18,890 |        | 5780     |      |       |      | 6340   |
| 1800 |        |             |        |        |      | 18,830 |        | 5730     |      |       |      | 6300   |
| 2000 |        |             |        |        | 4110 | 18,760 |        |          |      |       |      | 6260   |

<sup>\*</sup> Polycrystalline form tabulated. Above the horizontal line the condensed phase is solid; below, it is liquid. † Hysteresis effect present.

Table 2.31 Heat Capacity of Selected Elements (kJ/kg K)



|               |                |                |                |                |                |                |                |               |               | T              | (K)           |               |               |               |               |               |               |               |               |               |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sy<br>m<br>bo | 10             | 15             | 20             | 25             | 30             | 40             | 50             | 60            | 80            | 10<br>0        | 15<br>0       | 20<br>0       | 25<br>0       | 30<br>0       | 40<br>0       | 50<br>0       | 60<br>0       | 80<br>0       | 10<br>00      | 12<br>00      |
| Ĩ             |                |                |                |                |                |                |                |               |               |                |               |               |               |               |               |               |               |               |               |               |
| Al            | 0.<br>00<br>14 | 0.<br>00<br>40 | 0.<br>00<br>89 | 0.<br>01<br>75 | 0.<br>03<br>15 | 0.<br>07<br>75 | 0.<br>14<br>2  | 0.<br>21<br>4 | 0.<br>35<br>7 | 0.<br>48<br>1  | 0.<br>68<br>3 | 0.<br>79<br>7 | 0.<br>85<br>9 | 0.<br>90<br>2 | 0.<br>94<br>9 | 0.<br>99<br>7 | 1.<br>04<br>2 | 1.<br>13<br>4 | 0.<br>92<br>1 | 0.<br>92<br>1 |
| Sb            | 0.<br>00<br>21 | 0.<br>00<br>69 | 0.<br>02<br>60 | 0.<br>04<br>02 | 0.<br>05<br>46 | 0.<br>08<br>32 | 0.<br>10<br>3  | 0.<br>13<br>5 | 0.<br>16<br>0 | 0.<br>16<br>9  | 0.<br>19<br>1 | 0.<br>20<br>0 | 0.<br>20<br>5 | 0.<br>20<br>9 | 0.<br>21<br>3 | 0.<br>21<br>9 | 0.<br>22<br>5 | 0.<br>23<br>7 | 0.<br>25<br>8 | 0.<br>25<br>8 |
| Ва            | _              | _              | _              | _              | _              | _              | _              | _             | _             | _              | _             | _             | _             | 0.<br>19<br>2 | 0.<br>20<br>2 | 0.<br>21<br>3 | 0.<br>22<br>2 | 0.<br>24<br>7 | 0.<br>20<br>9 | 0.<br>22<br>9 |
| Be            | 0.<br>00<br>03 | 0.<br>00<br>09 | 0.<br>00<br>14 | 0.<br>00<br>28 | 0.<br>00<br>42 | _              | 0.<br>01<br>86 | _             | _             | 0.<br>19<br>5  | 0.<br>61<br>0 | 1.<br>10<br>9 | 1.<br>53<br>7 | 1.<br>84<br>0 | 2.<br>19<br>1 | 2.<br>44<br>2 | 2.<br>60<br>5 | 2.<br>82<br>3 | 3.<br>01<br>8 | 3.<br>21<br>7 |
| Bi            | 0.<br>01<br>04 | 0.<br>02<br>40 | 0.<br>03<br>40 | 0.<br>04<br>87 | 0.<br>05<br>79 | 0.<br>07<br>29 | 0.<br>08<br>55 | 0.<br>09<br>2 | 0.<br>10<br>2 | 0.<br>10<br>9  | 0.<br>11<br>7 | 0.<br>12<br>0 | 0.<br>12<br>1 | 0.<br>12<br>2 | 0.<br>12<br>3 | _             | 0.<br>14<br>2 | 0.<br>13<br>6 | 0.<br>13<br>1 | _             |
| Cd            | 0.<br>00<br>82 | 0.<br>02<br>33 | 0.<br>04<br>62 | 0.<br>06<br>36 | 0.<br>08<br>60 | 0.<br>11<br>8  | 0.<br>14<br>5  | 0.<br>15<br>9 | 0.<br>18<br>3 | 0.<br>19<br>8  | 0.<br>21<br>3 | 0.<br>22<br>1 | 0.<br>22<br>7 | 0.<br>23<br>1 | 0.<br>24<br>2 | 0.<br>25<br>2 | _             | _             | _             | _             |
| Ca            | 0.<br>00<br>42 | 0.<br>01<br>57 | 0.<br>03<br>96 | 0.<br>06<br>47 | 0.<br>09<br>30 | 0.<br>19<br>4  | 0.<br>27<br>1  | 0.<br>34<br>0 | 0.<br>42<br>7 | 0.<br>48<br>6  | 0.<br>57<br>3 | 0.<br>61<br>7 | 0.<br>64<br>0 | 0.<br>65<br>6 | 0.<br>68<br>5 | 0.<br>72<br>9 | 0.<br>76<br>3 | 0.<br>84<br>3 | 0.<br>99<br>1 | 0.<br>77<br>2 |
| Ce            | 0.<br>03<br>14 | 0.<br>03<br>40 | 0.<br>05<br>26 | 0.<br>07<br>35 | 0.<br>09<br>20 | _              | 0.<br>09<br>26 | _             | _             | 0.<br>19<br>3  | 0.<br>20<br>0 | 0.<br>20<br>6 | 0.<br>20<br>9 | 0.<br>21<br>2 | 0.<br>21<br>8 | 0.<br>23<br>0 | 0.<br>24<br>2 | 0.<br>26<br>6 | 0.<br>29<br>0 | _             |
| Cs            | 0.<br>08<br>31 | 0.<br>12<br>31 | 0.<br>14<br>70 | 0.<br>15<br>99 | 0.<br>16<br>87 | _              | 0.<br>18<br>26 | _             | _             | 0.<br>19<br>39 | 0.<br>20<br>2 | 0.<br>20<br>8 | 0.<br>21<br>8 | _             | 0.<br>24<br>0 | 0.<br>23<br>2 | 0.<br>22<br>4 | 0.<br>21<br>7 | 0.<br>23<br>1 | 0.<br>24<br>8 |
| Cr            | 0.<br>00<br>08 | 0.<br>00<br>12 | 0.<br>00<br>21 | 0.<br>00<br>45 | 0.<br>00<br>77 | 0.<br>01<br>07 | 0.<br>03<br>8  | 0.<br>05<br>9 | 0.<br>12<br>7 | 0.<br>19<br>0  | 0.<br>31<br>7 | 0.<br>38<br>2 | 0.<br>42<br>4 | 0.<br>45<br>0 | 0.<br>50<br>1 | 0.<br>53<br>7 | 0.<br>56<br>5 | 0.<br>61<br>1 | 0.<br>65<br>3 | 0.<br>69<br>2 |
| Co            | 0.<br>00<br>12 | 0.<br>00<br>26 | 0.<br>00<br>48 | 0.<br>01<br>06 | 0.<br>01<br>71 | 0.<br>04<br>04 | 0.<br>07<br>0  | 0.<br>11<br>0 | 0.<br>18<br>4 | 0.<br>23<br>4  | 0.<br>32<br>9 | 0.<br>37<br>6 | 0.<br>40<br>6 | 0.<br>42<br>6 | 0.<br>45<br>1 | 0.<br>48<br>4 | 0.<br>50<br>9 | 0.<br>54<br>3 | 0.<br>63<br>1 | 0.<br>65<br>1 |
| Cu            | 0.<br>00<br>09 | 0.<br>00<br>27 | 0.<br>00<br>76 | 0.<br>01<br>58 | 0.<br>02<br>70 | 0.<br>05<br>9  | 0.<br>09<br>9  | 0.<br>13<br>7 | 0.<br>20<br>3 | 0.<br>25<br>4  | 0.<br>32<br>3 | 0.<br>35<br>7 | 0.<br>37<br>7 | 0.<br>38<br>6 | 0.<br>39<br>6 | 0.<br>40<br>6 | 0.<br>43<br>1 | 0.<br>44<br>8 | 0.<br>44<br>6 | 0.<br>48<br>0 |
| Dy            | 0.<br>00<br>46 | 0.<br>01<br>54 | 0.<br>03<br>45 | 0.<br>05<br>66 | 0.<br>07<br>83 | _              | 0.<br>14<br>2  | _             | _             | 0.<br>21<br>4  | 0.<br>28<br>0 | 0.<br>17<br>9 | 0.<br>17<br>3 | 0.<br>16<br>8 | 0.<br>17<br>0 | 0.<br>17<br>6 | 0.<br>18<br>1 | 0.<br>19<br>0 | 0.<br>19<br>8 | 0.<br>20<br>5 |
| Er            | 0.<br>01<br>18 | 0.<br>04<br>00 | 0.<br>12<br>56 | 0.<br>09<br>33 | 0.<br>11<br>51 | _              | 0.<br>17<br>0  | _             | _             | 0.<br>14<br>7  | 0.<br>15<br>5 | 0.<br>16<br>2 | 0.<br>16<br>5 | 0.<br>16<br>8 | 0.<br>17<br>2 | 0.<br>17<br>6 | 0.<br>17<br>9 | 0.<br>18<br>7 | 0.<br>19<br>4 | 0.<br>20<br>0 |



|                    |    | -  | -  |    |    |    |    |    |    | T | (K) |         |         | - | -       |         | -        |          |
|--------------------|----|----|----|----|----|----|----|----|----|---|-----|---------|---------|---|---------|---------|----------|----------|
| Sy<br>m<br>bo<br>I | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 |   |     | 25<br>0 | 40<br>0 |   | 60<br>0 | 80<br>0 | 10<br>00 | 12<br>00 |

| Eu     | 0.<br>02<br>56 | 0.<br>05<br>73 | 0.<br>06<br>55 | 0.<br>09<br>11 | _              | _              | _              | _             | _             | _              | _             | _             | _             | 0.<br>17<br>6 | 0.<br>18<br>2 | 0.<br>18<br>7 | 0.<br>19<br>3 | 0.<br>20<br>4 | 0.<br>21<br>5 | -             |
|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Gd     | 0.<br>00<br>48 | 0.<br>01<br>22 | 0.<br>02<br>82 | 0.<br>04<br>71 | 0.<br>06<br>49 | -              | 0.<br>12<br>35 | -             | -             | 0.<br>18<br>4  | 0.<br>20<br>8 | 0.<br>23<br>0 | 0.<br>26<br>5 | 0.<br>23<br>1 | 0.<br>18<br>6 | 0.<br>19<br>1 | 0.<br>19<br>5 | 0.<br>20<br>4 | 0.<br>21<br>3 | -             |
| Ga     | 0.<br>00<br>35 | 0.<br>01<br>50 | 0.<br>03<br>22 | 0.<br>05<br>04 | 0.<br>07<br>14 | 0.<br>11<br>0  | 0.<br>15<br>4  | 0.<br>17<br>7 | 0.<br>21<br>6 | 0.<br>26<br>6  | 0.<br>31<br>6 | 0.<br>34<br>1 | 0.<br>35<br>9 | 0.<br>37<br>7 | _             | _             | _             | _             | _             | _             |
| Ge     | 0.<br>00<br>08 | 0.<br>00<br>44 | 0.<br>01<br>29 | 0.<br>02<br>36 | 0.<br>03<br>63 | 0.<br>06<br>19 | 0.<br>08<br>60 | 0.<br>10<br>8 | 0.<br>15<br>3 | 0.<br>19<br>2  | 0.<br>25<br>7 | 0.<br>28<br>6 | 0.<br>30<br>5 | 0.<br>32<br>3 | 0.<br>34<br>3 | 0.<br>35<br>5 | 0.<br>36<br>4 | 0.<br>37<br>7 | 0.<br>39<br>0 | 0.<br>39<br>6 |
| Au     | 0.<br>00<br>26 | 0.<br>00<br>74 | 0.<br>01<br>63 | 0.<br>02<br>63 | 0.<br>03<br>70 | 0.<br>05<br>69 | 0.<br>07<br>2  | 0.<br>08<br>4 | 0.<br>10<br>0 | 0.<br>10<br>9  | 0.<br>11<br>9 | 0.<br>12<br>4 | 0.<br>12<br>7 | 0.<br>12<br>9 | 0.<br>13<br>1 | 0.<br>13<br>3 | 0.<br>13<br>6 | 0.<br>14<br>1 | 0.<br>14<br>7 | 0.<br>15<br>3 |
| Hf     | 0.<br>00<br>09 | 0.<br>00<br>38 | 0.<br>00<br>96 | 0.<br>01<br>80 | 0.<br>02<br>81 | _              | 0.<br>06<br>8  | _             | _             | 0.<br>11<br>5  | 0.<br>13<br>1 | 0.<br>13<br>7 | 0.<br>14<br>1 | 0.<br>14<br>3 | 0.<br>14<br>6 | 0.<br>14<br>9 | 0.<br>15<br>1 | 0.<br>15<br>7 | 0.<br>16<br>3 | 0.<br>16<br>9 |
| H<br>0 | 0.<br>01<br>62 | 0.<br>03<br>98 | 0.<br>05<br>80 | 0.<br>07<br>56 | 0.<br>09<br>31 | _              | 0.<br>14<br>9  | _             | _             | _              | 0.<br>16<br>1 | 0.<br>16<br>1 | 0.<br>16<br>3 | 0.<br>16<br>5 | 0.<br>17<br>0 | 0.<br>17<br>4 | 0.<br>17<br>8 | 0.<br>18<br>7 | 0.<br>19<br>5 | _             |
| In     | 0.<br>01<br>55 | 0.<br>03<br>67 | 0.<br>06<br>08 | 0.<br>08<br>57 | 0.<br>10<br>8  | 0.<br>14<br>0  | 0.<br>15<br>9  | 0.<br>17<br>6 | 0.<br>19<br>3 | 0.<br>21<br>4  | 0.<br>22<br>0 | 0.<br>22<br>4 | 0.<br>22<br>7 | 0.<br>23<br>3 | 0.<br>25<br>2 | _             | -             | -             | _             | -             |
| Ir     | 0.<br>00<br>03 | 0.<br>00<br>08 | 0.<br>00<br>21 | 0.<br>00<br>48 | 0.<br>00<br>94 | -              | 0.<br>03<br>81 | -             | -             | 0.<br>09<br>03 | 0.<br>11<br>3 | 0.<br>12<br>2 | 0.<br>12<br>8 | 0.<br>13<br>1 | 0.<br>13<br>3 | 0.<br>13<br>7 | 0.<br>14<br>0 | 0.<br>14<br>6 | 0.<br>15<br>2 | _             |
| Fe     | 0.<br>00<br>13 | 0.<br>00<br>26 | 0.<br>00<br>39 | 0.<br>00<br>75 | 0.<br>01<br>24 | 0.<br>02<br>76 | 0.<br>05<br>4  | 0.<br>08<br>6 | 0.<br>15<br>4 | 0.<br>21<br>6  | 0.<br>32<br>4 | 0.<br>38<br>4 | 0.<br>42<br>2 | 0.<br>45<br>0 | 0.<br>49<br>1 | 0.<br>52<br>4 | 0.<br>55<br>5 | 0.<br>69<br>2 | 1.<br>03<br>4 | -             |
| La     | 0.<br>00<br>78 | 0.<br>02<br>41 | 0.<br>04<br>46 | 0.<br>06<br>63 | 0.<br>07<br>50 | 0.<br>11<br>3  | 0.<br>13<br>3  | 0.<br>14<br>5 | 0.<br>16<br>1 | 0.<br>17<br>0  | 0.<br>18<br>2 | _             | _             | 0.<br>20<br>0 | 0.<br>20<br>5 | 0.<br>21<br>0 | 0.<br>21<br>5 | 0.<br>22<br>4 | 0.<br>23<br>4 | _             |
| Pb     | 0.<br>01<br>35 | 0.<br>03<br>51 | 0.<br>05<br>31 | 0.<br>06<br>78 | 0.<br>07<br>96 | 0.<br>09<br>44 | 0.<br>10<br>3  | 0.<br>10<br>8 | 0.<br>11<br>4 | 0.<br>11<br>8  | 0.<br>12<br>2 | 0.<br>12<br>5 | 0.<br>12<br>7 | 0.<br>12<br>9 | 0.<br>13<br>2 | 0.<br>13<br>7 | 0.<br>14<br>2 | -             | -             | -             |



|                    |                |                |                |                |                |                |                |                |               | T             | (K)           |               |               |               |               |               |               |               |               |               |
|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sy<br>m<br>bo<br>I | 10             | 15             | 20             | 25             | 30             | 40             | 50             | 60             | 80            | 10<br>0       | 15<br>0       | 20<br>0       | 25<br>0       | 30<br>0       | 40<br>0       | 50<br>0       | 60<br>0       | 80<br>0       | 10<br>00      | 12<br>00      |
| Li                 | 0.<br>00<br>90 | 0.<br>02<br>59 | 0.<br>05<br>73 | 0.<br>10<br>25 | 0.<br>16<br>88 | _              | 0.<br>54<br>9  | _              | _             | 1.<br>92<br>3 | 2.<br>70<br>1 | 3.<br>10<br>5 | 3.<br>37<br>7 | 3.<br>54      | 3.<br>76      | 4.<br>34      | 4.<br>26      | 4.<br>17      | 4.<br>15      | 4.<br>14      |
| Lu                 | 0.<br>00<br>29 | 0.<br>00<br>96 | 0.<br>02<br>10 | 0.<br>03<br>49 | 0.<br>04<br>83 | -              | 0.<br>09<br>1  | -              | -             | 0.<br>12<br>9 | 0.<br>14<br>1 | 0.<br>14<br>7 | 0.<br>15<br>1 | 0.<br>15<br>4 | 0.<br>15<br>8 | 0.<br>16<br>1 | 0.<br>16<br>5 | 0.<br>17<br>2 | 0.<br>17<br>9 | -             |
| M<br>g             | 0.<br>00<br>17 | 0.<br>00<br>66 | 0.<br>01<br>48 | 0.<br>03<br>10 | 0.<br>05<br>68 | 0.<br>13<br>8  | 0.<br>24<br>3  | 0.<br>33<br>6  | 0.<br>51<br>3 | 0.<br>64<br>8 | 0.<br>84<br>2 | 0.<br>92<br>9 | 0.<br>98<br>5 | 1.<br>00<br>5 | 1.<br>08<br>2 | 1.<br>13<br>1 | 1.<br>17<br>7 | 1.<br>26<br>3 | _             | _             |
| Μ<br>n<br>(α<br>)  | 0.<br>00<br>31 | 0.<br>00<br>52 | 0.<br>00<br>91 | 0.<br>01<br>45 | 0.<br>02<br>51 | 0.<br>04<br>6  | 0.<br>08<br>8  | 0.<br>12<br>7  | 0.<br>21<br>3 | 0.<br>26<br>8 | 0.<br>36<br>5 | 0.<br>42<br>0 | 0.<br>45<br>4 | 0.<br>48<br>1 | 0.<br>51<br>0 | 0.<br>55<br>1 | 0.<br>58<br>1 | 0.<br>63<br>5 | 0.<br>68<br>8 | _             |
| H<br>g             | 0.<br>02<br>25 | 0.<br>03<br>59 | 0.<br>05<br>15 | 0.<br>06<br>33 | 0.<br>07<br>37 | 0.<br>08<br>95 | 0.<br>09<br>93 | 0.<br>10<br>7  | 0.<br>11<br>6 | 0.<br>12<br>1 | 0.<br>12<br>9 | 0.<br>13<br>6 | 0.<br>14<br>1 | 0.<br>13<br>9 | 0.<br>13<br>6 | 0.<br>13<br>5 | 0.<br>13<br>5 | 0.<br>10<br>4 | _             | -             |
| M<br>o             | 0.<br>00<br>05 | 0.<br>00<br>13 | 0.<br>00<br>29 | 0.<br>00<br>58 | 0.<br>00<br>96 | 0.<br>02<br>36 | 0.<br>04<br>10 | 0.<br>06<br>10 | 0.<br>10<br>5 | 0.<br>14<br>0 | 0.<br>19<br>6 | 0.<br>22<br>3 | 0.<br>24<br>1 | 0.<br>24<br>8 | 0.<br>26<br>1 | 0.<br>26<br>8 | 0.<br>27<br>4 | 0.<br>28<br>0 | 0.<br>29<br>2 | -             |
| N<br>d             | 0.<br>03<br>65 | 0.<br>05<br>19 | 0.<br>07<br>11 | 0.<br>08<br>27 | 0.<br>09<br>83 | 0.<br>12<br>0  | 0.<br>15<br>0  | 0.<br>16<br>0  | 0.<br>17<br>8 | 0.<br>18<br>5 | 0.<br>19<br>6 | _             | _             | -             | 0.<br>22<br>5 | 0.<br>24<br>0 | 0.<br>25<br>5 | 0.<br>28<br>7 | 0.<br>31<br>8 | _             |
| Ni                 | 0.<br>00<br>18 | 0.<br>00<br>31 | 0.<br>00<br>58 | 0.<br>01<br>00 | 0.<br>01<br>66 | 0.<br>03<br>80 | 0.<br>06<br>8  | 0.<br>10<br>3  | 0.<br>17<br>3 | 0.<br>23<br>2 | 0.<br>32<br>9 | 0.<br>38<br>3 | 0.<br>41<br>6 | 0.<br>44<br>4 | 0.<br>49<br>0 | 0.<br>54<br>0 | 0.<br>59<br>0 | 0.<br>53<br>0 | 0.<br>55<br>6 | 0.<br>58<br>2 |
| N<br>b             | 0.<br>00<br>22 | 0.<br>00<br>54 | 0.<br>01<br>73 | 0.<br>02<br>10 | 0.<br>03<br>50 | 0.<br>06<br>80 | 0.<br>09<br>9  | 0.<br>12<br>7  | 0.<br>17<br>3 | 0.<br>20<br>2 | 0.<br>23<br>8 | 0.<br>25<br>4 | 0.<br>26<br>3 | 0.<br>26<br>8 | 0.<br>27<br>2 | 0.<br>27<br>7 | 0.<br>28<br>1 | 0.<br>29<br>0 | 0.<br>29<br>8 | 0.<br>30<br>7 |
| Os                 | _              | _              | -              | -              | _              | -              | -              | -              | _             | _             | -             | _             | -             | 0.<br>13<br>1 | 0.<br>13<br>3 | 0.<br>13<br>5 | 0.<br>13<br>7 | 0.<br>14<br>1 | 0.<br>14<br>5 | 0.<br>14<br>8 |
| Pd                 | 0.<br>00<br>21 | 0.<br>00<br>47 | 0.<br>00<br>91 | 0.<br>01<br>61 | 0.<br>02<br>59 | 0.<br>05<br>09 | 0.<br>07<br>7  | 0.<br>10<br>1  | 0.<br>14<br>1 | 0.<br>16<br>8 | 0.<br>20<br>8 | 0.<br>22<br>8 | 0.<br>23<br>8 | 0.<br>24<br>5 | 0.<br>25<br>0 | 0.<br>25<br>5 | 0.<br>26<br>1 | 0.<br>27<br>1 | 0.<br>28<br>2 | 0.<br>29<br>3 |
| Pt                 | 0.<br>00<br>11 | 0.<br>00<br>34 | 0.<br>00<br>77 | 0.<br>01<br>39 | 0.<br>02<br>11 | 0.<br>03<br>82 | 0.<br>05<br>4  | 0.<br>06<br>9  | 0.<br>08<br>8 | 0.<br>10<br>1 | 0.<br>11<br>8 | 0.<br>12<br>7 | 0.<br>13<br>2 | 0.<br>13<br>4 | 0.<br>13<br>6 | 0.<br>13<br>8 | 0.<br>14<br>0 | 0.<br>14<br>6 | 0.<br>15<br>2 | 0.<br>15<br>8 |
| Pu                 | -              | -              | -              | -              | -              | -              | -              | -              | -             | -             | 0.<br>09<br>6 | 0.<br>11<br>1 | 0.<br>12<br>4 | 0.<br>13<br>2 | -             | -             | -             | -             | -             | -             |



|               | <i>T</i> (K)   |                |                |                |                |                |                |               |               |               |               |               |               |               |               |               |               |               |               |               |
|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sy<br>m<br>bo | 10             | 15             | 20             | 25             | 30             | 40             | 50             | 60            | 80            | 10<br>0       | 15<br>0       | 20<br>0       | 25<br>0       | 30<br>0       | 40<br>0       | 50<br>0       | 60<br>0       | 80<br>0       | 10<br>00      | 12<br>00      |
| 1             |                |                |                |                |                |                |                |               |               |               |               |               |               |               |               |               |               |               |               |               |
| K             | _              | _              | _              | _              | _              | _              | _              | _             | _             | _             | 0.<br>67<br>2 | 0.<br>69<br>4 | 0.<br>71<br>8 | 0.<br>76<br>8 | 0.<br>80<br>5 | 0.<br>78<br>5 | 0.<br>77<br>1 | 0.<br>76<br>1 | 0.<br>79<br>2 | 0.<br>84<br>6 |
| Pr            | 0.<br>02<br>94 | 0.<br>06<br>00 | 0.<br>09<br>44 | 0.<br>12<br>90 | 0.<br>15<br>05 | _              | 0.<br>18<br>4  | _             | _             | 0.<br>18<br>6 | 0.<br>19<br>1 | 0.<br>19<br>3 | 0.<br>19<br>5 | 0.<br>19<br>7 | 0.<br>20<br>1 | 0.<br>21<br>1 | 0.<br>22<br>0 | 0.<br>24<br>0 | 0.<br>25<br>8 | _             |
| Pa            | _              | _              | _              | _              | _              | _              | _              | _             | _             | _             | _             | _             | _             | 0.<br>12<br>6 | 0.<br>13<br>1 | 0.<br>13<br>7 | 0.<br>14<br>3 | 0.<br>15<br>3 | 0.<br>16<br>5 | -             |
| Re            | -              | -              | 0.<br>00<br>34 | 0.<br>00<br>72 | 0.<br>01<br>21 | -              | 0.<br>04<br>3  | _             | _             | 0.<br>09<br>7 | 0.<br>12<br>0 | 0.<br>13<br>0 | 0.<br>13<br>7 | 0.<br>13<br>8 | 0.<br>13<br>9 | 0.<br>14<br>2 | 0.<br>14<br>5 | 0.<br>15<br>1 | 0.<br>15<br>6 | -             |
| Rh            | 0.<br>00<br>07 | 0.<br>00<br>14 | 0.<br>00<br>27 | 0.<br>00<br>56 | 0.<br>01<br>06 | 0.<br>02<br>66 | 0.<br>04<br>89 | 0.<br>07<br>2 | 0.<br>11<br>4 | 0.<br>14<br>7 | 0.<br>19<br>5 | 0.<br>22<br>0 | 0.<br>23<br>4 | 0.<br>24<br>6 | 0.<br>25<br>7 | 0.<br>26<br>5 | 0.<br>27<br>4 | 0.<br>29<br>0 | 0.<br>30<br>7 | -             |
| Rb            | 0.<br>08<br>47 | 0.<br>14<br>44 | 0.<br>18<br>75 | 0.<br>21<br>98 | 0.<br>23<br>99 | _              | 0.<br>27<br>41 | _             | _             | 0.<br>29<br>9 | 0.<br>31<br>0 | 0.<br>32<br>1 | 0.<br>33<br>5 | 0.<br>36<br>5 | 0.<br>36<br>7 | _             | _             | _             | _             | -             |
| Ru            | 0.<br>00<br>04 | 0.<br>00<br>09 | 0.<br>00<br>17 | 0.<br>00<br>35 | 0.<br>00<br>70 | _              | 0.<br>03<br>68 | _             | _             | 0.<br>13<br>4 | 0.<br>18<br>7 | 0.<br>21<br>5 | 0.<br>22<br>9 | 0.<br>23<br>8 | 0.<br>24<br>2 | 0.<br>24<br>8 | 0.<br>25<br>5 | 0.<br>26<br>7 | 0.<br>27<br>9 | -             |
| Sc            | 0.<br>00<br>35 | 0.<br>00<br>81 | 0.<br>01<br>58 | 0.<br>02<br>70 | 0.<br>04<br>37 | _              | 0.<br>14<br>33 | _             | _             | 0.<br>36<br>5 | 0.<br>47<br>0 | 0.<br>52<br>0 | 0.<br>54<br>8 | 0.<br>56<br>4 | 0.<br>57<br>0 | 0.<br>58<br>0 | 0.<br>58<br>9 | 0.<br>61<br>0 | 0.<br>63<br>0 | -             |
| Ag            | 0.<br>00<br>19 | 0.<br>00<br>66 | 0.<br>01<br>59 | 0.<br>02<br>91 | 0.<br>04<br>43 | 0.<br>07<br>78 | 0.<br>10<br>8  | 0.<br>13<br>3 | 0.<br>16<br>6 | 0.<br>18<br>7 | 0.<br>21<br>3 | 0.<br>22<br>5 | 0.<br>23<br>2 | 0.<br>23<br>6 | 0.<br>24<br>0 | 0.<br>24<br>5 | 0.<br>25<br>1 | 0.<br>26<br>4 | 0.<br>27<br>6 | 0.<br>29<br>1 |
| N<br>a        | _              | _              | _              | _              | -              | _              | _              | _             | _             | _             | _             | _             | _             | -             | 1.<br>37      | 1.<br>33      | 1.<br>30      | 1.<br>26      | 1.<br>26      | 1.<br>29      |
| Sr            | _              | _              | _              | -              | _              | -              | _              | _             | _             | _             | _             | _             | _             | 0.<br>30<br>1 | 0.<br>31<br>8 | 0.<br>33<br>4 | 0.<br>34<br>9 | 0.<br>38<br>2 | 0.<br>45<br>4 | 0.<br>35<br>3 |
| Та            | 0.<br>00<br>12 | 0.<br>00<br>36 | 0.<br>00<br>82 | 0.<br>01<br>52 | 0.<br>02<br>37 | 0.<br>04<br>21 | 0.<br>05<br>90 | 0.<br>07<br>5 | 0.<br>09<br>5 | 0.<br>10<br>8 | 0.<br>12<br>5 | 0.<br>13<br>2 | 0.<br>13<br>7 | 0.<br>14<br>1 | 0.<br>14<br>5 | 0.<br>14<br>8 | 0.<br>14<br>9 | 0.<br>15<br>2 | 0.<br>16<br>0 | -             |
| Те            | 0.<br>00<br>69 | 0.<br>02<br>03 | 0.<br>03<br>54 | 0.<br>05<br>08 | 0.<br>07<br>37 | 0.<br>09<br>22 | 0.<br>11<br>6  | 0.<br>13<br>2 | 0.<br>15<br>5 | 0.<br>16<br>9 | 0.<br>18<br>6 | 0.<br>19<br>3 | 0.<br>19<br>7 | 0.<br>20<br>1 | 0.<br>20<br>6 | 0.<br>21<br>1 | 0.<br>21<br>6 | 0.<br>22<br>5 | _             | -             |



|         | <i>T</i> (K)   |                |                |                |                |                |                |               |               |               |               |               |               |               |               |               |               |               |               |               |
|---------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sy<br>m | 10             | 15             | 20             | 25             | 30             | 40             | 50             | 60            | 80            | 10<br>0       | 15<br>0       | 20<br>0       | 25<br>0       | 30<br>0       | 40<br>0       | 50<br>0       | 60<br>0       | 80<br>0       | 10<br>00      | 12<br>00      |
| bo<br>I |                |                |                |                |                |                |                |               |               |               |               |               |               |               |               |               |               |               |               |               |
| TI      | 0.<br>01<br>66 | 0.<br>03<br>26 | 0.<br>04<br>91 | 0.<br>06<br>51 | 0.<br>07<br>78 | 0.<br>09<br>20 | 0.<br>10<br>3  | 0.<br>10<br>8 | 0.<br>11<br>6 | 0.<br>12<br>0 | 0.<br>12<br>4 | 0.<br>12<br>6 | 0.<br>12<br>8 | 0.<br>13<br>0 | 0.<br>13<br>6 | 0.<br>14<br>3 | _             | _             | _             | -             |
| Th      | 0.<br>00<br>29 | 0.<br>00<br>94 | 0.<br>02<br>00 | 0.<br>03<br>25 | 0.<br>04<br>33 | _              | 0.<br>07<br>3  | _             | _             | 0.<br>09<br>9 | 0.<br>10<br>8 | 0.<br>11<br>2 | 0.<br>11<br>5 | 0.<br>11<br>8 | 0.<br>12<br>4 | 0.<br>12<br>9 | 0.<br>13<br>4 | 0.<br>14<br>5 | 0.<br>15<br>6 | 0.<br>16<br>7 |
| T<br>m  | 0.<br>01<br>16 | 0.<br>03<br>27 | 0.<br>06<br>29 | 0.<br>09<br>73 | 0.<br>13<br>05 | _              | 0.<br>22<br>6  | _             | _             | 0.<br>15<br>0 | 0.<br>15<br>4 | 0.<br>15<br>7 | 0.<br>15<br>8 | 0.<br>16<br>0 | 0.<br>16<br>3 | 0.<br>16<br>7 | 0.<br>17<br>1 | 0.<br>17<br>8 | 0.<br>18<br>6 | _             |
| Sn      | 0.<br>00<br>78 | 0.<br>02<br>26 | 0.<br>04<br>00 | 0.<br>05<br>82 | 0.<br>07<br>60 | 0.<br>10<br>8  | 0.<br>13<br>0  | 0.<br>14<br>9 | 0.<br>17<br>3 | 0.<br>18<br>9 | 0.<br>20<br>6 | 0.<br>21<br>4 | 0.<br>22<br>0 | 0.<br>22<br>2 | 0.<br>24<br>5 | 0.<br>26<br>7 | 0.<br>25<br>7 | 0.<br>25<br>7 | 0.<br>25<br>7 | -             |
| Ti      | 0.<br>00<br>13 | 0.<br>00<br>33 | 0.<br>00<br>69 | 0.<br>01<br>40 | 0.<br>02<br>48 | 0.<br>05<br>16 | 0.<br>09<br>4  | 0.<br>14<br>4 | 0.<br>22<br>7 | 0.<br>29<br>5 | 0.<br>40<br>6 | 0.<br>46<br>4 | 0.<br>50<br>1 | 0.<br>52<br>5 | 0.<br>55<br>5 | 0.<br>57<br>8 | 0.<br>59<br>7 | 0.<br>62<br>7 | 0.<br>65<br>2 | _             |
| W       | 0.<br>00<br>02 | 0.<br>00<br>07 | 0.<br>00<br>19 | 0.<br>00<br>42 | 0.<br>00<br>78 | 0.<br>01<br>84 | 0.<br>03<br>32 | 0.<br>04<br>8 | 0.<br>07<br>2 | 0.<br>08<br>9 | 0.<br>11<br>3 | 0.<br>12<br>5 | 0.<br>13<br>1 | 0.<br>13<br>5 | 0.<br>13<br>7 | 0.<br>13<br>9 | 0.<br>14<br>0 | 0.<br>14<br>4 | 0.<br>14<br>8 | -             |
| U       | 0.<br>00<br>15 | 0.<br>00<br>55 | 0.<br>01<br>28 | 0.<br>02<br>30 | 0.<br>03<br>39 | _              | 0.<br>06<br>59 | _             | _             | 0.<br>09<br>4 | 0.<br>10<br>3 | 0.<br>10<br>9 | 0.<br>11<br>4 | 0.<br>11<br>7 | 0.<br>12<br>4 | 0.<br>13<br>4 | 0.<br>14<br>5 | 0.<br>17<br>4 | 0.<br>17<br>8 | -             |
| V       | 0.<br>00<br>23 | 0.<br>00<br>43 | 0.<br>00<br>72 | 0.<br>01<br>07 | 0.<br>01<br>89 | 0.<br>04<br>20 | 0.<br>07<br>30 | 0.<br>11<br>5 | 0.<br>19<br>0 | 0.<br>25<br>7 | 0.<br>37<br>9 | 0.<br>43<br>4 | 0.<br>46<br>2 | 0.<br>48<br>3 | 0.<br>51<br>2 | 0.<br>52<br>8 | 0.<br>54<br>0 | 0.<br>56<br>3 | 0.<br>59<br>8 | -             |
| Yb      | 0.<br>00<br>85 | 0.<br>02<br>54 | 0.<br>04<br>57 | 0.<br>06<br>53 | 0.<br>08<br>08 | _              | 0.<br>11<br>6  | _             | _             | 0.<br>13<br>9 | 0.<br>14<br>5 | 0.<br>14<br>9 | 0.<br>15<br>1 | 0.<br>15<br>5 | 0.<br>16<br>0 | 0.<br>17<br>1 | 0.<br>17<br>2 | 0.<br>17<br>8 | 0.<br>18<br>5 | 0.<br>21<br>3 |
| Υ       | 0.<br>00<br>26 | 0.<br>00<br>89 | 0.<br>02<br>12 | 0.<br>03<br>29 | 0.<br>05<br>93 | _              | 0.<br>13<br>7  | _             | _             | 0.<br>23<br>3 | 0.<br>26<br>5 | 0.<br>28<br>2 | 0.<br>29<br>2 | 0.<br>29<br>8 | 0.<br>30<br>5 | 0.<br>31<br>3 | 0.<br>32<br>1 | 0.<br>33<br>8 | 0.<br>35<br>4 | 0.<br>37<br>2 |
| Zn      | 0.<br>00<br>25 | 0.<br>01<br>09 | 0.<br>02<br>69 | 0.<br>04<br>93 | 0.<br>07<br>60 | 0.<br>12<br>3  | 0.<br>17<br>0  | 0.<br>20<br>5 | 0.<br>25<br>8 | 0.<br>29<br>5 | 0.<br>34<br>5 | 0.<br>36<br>6 | 0.<br>38<br>0 | 0.<br>38<br>9 | 0.<br>40<br>4 | 0.<br>41<br>9 | 0.<br>43<br>5 | 0.<br>47<br>9 | 0.<br>47<br>9 | -             |
| Zr      | 0.<br>00<br>14 | 0.<br>00<br>46 | 0.<br>01<br>19 | 0.<br>02<br>20 | 0.<br>03<br>44 | 0.<br>09<br>41 | 0.<br>10<br>1  | 0.<br>10<br>8 | 0.<br>11<br>6 | 0.<br>12<br>0 | 0.<br>12<br>4 | 0.<br>12<br>6 | 0.<br>12<br>8 | 0.<br>13<br>0 | 0.<br>13<br>6 | 0.<br>14<br>3 | 0.<br>15<br>3 | 0.<br>15<br>3 | 0.<br>15<br>3 | -             |

Table 2.32 Thermal Conductivity and Density of Selected Elements



| Substance           | Chemical<br>formula | T (°C) | T (°K)  | Density<br>ρ (kg/m³) | Thermal conductivity<br>λ (W/m K) |
|---------------------|---------------------|--------|---------|----------------------|-----------------------------------|
| Aluminum, 99.75%    | Al                  | -190   | 83.15   |                      | 255.860                           |
|                     |                     | 0      | 273.15  | 2,700                | 229.111                           |
|                     |                     | 200    | 473.15  |                      | 229.111                           |
|                     |                     | 300    | 573.15  |                      | 222.133                           |
|                     |                     | 800    | 1073.15 |                      | 125.604                           |
| 99%                 |                     | -100   | 173.15  | _                    | 209.340                           |
|                     |                     | 0      | 273.15  |                      | 209.340                           |
|                     |                     | 100    | 373.15  |                      | 207.014                           |
|                     |                     | 300    | 573.15  |                      | 222.133                           |
| Antimony, very pure | Sb                  | -190   | 83.15   |                      | 20.934                            |
|                     |                     | -100   | 173.15  |                      | 19.190                            |
|                     |                     | 0      | 273.15  |                      | 17.678                            |
|                     |                     | 100    | 373.15  | 6,690                | 16.282                            |
|                     |                     | 300    | 573.15  |                      | 15.817                            |
|                     |                     | 500    | 773.15  |                      | 18.608                            |
| Beryllium, 99.5%    | Be                  | -250   | 23.15   |                      | 94.203                            |
|                     |                     | -100   | 173.15  |                      | 125.604                           |
|                     |                     | 0      | 273.15  | 1,850                | 160.494                           |
|                     |                     | 100    | 373.15  |                      | 190.732                           |
|                     |                     | 200    | 473.15  |                      | 215.155                           |
| Bismuth             | Bi                  | -190   | 83.15   |                      | 25.586                            |
|                     |                     | -100   | 173.15  |                      | 12.095                            |
|                     |                     | 0      | 273.15  | 9,800                | 8.374                             |
|                     |                     | 100    | 373.15  |                      | 7.211                             |
|                     |                     | 200    | 473.15  |                      | 7.211                             |
| Cadmium, pure       | Cd                  | -190   | 83.15   |                      | 104.670                           |
| -                   |                     | -100   | 173.15  |                      | 96.529                            |
|                     |                     | 0      | 273.15  | 8,620                | 93.040                            |
|                     |                     | 100    | 373.15  |                      | 91.877                            |
|                     |                     | 200    | 473.15  |                      | 91.296                            |
|                     |                     | 300    | 573.15  |                      | 87.807                            |
| Cobalt, 97.1%       | Co                  | 20     | 293.15  | ≈8,900               | 69.780                            |
| Copper, pure        | Cu                  | -180   | 93.15   |                      | 464.037                           |
| 99.9–98%            |                     | -100   | 173.15  |                      | 407.050                           |
|                     |                     | 0      | 273.15  | 8,930                | 386.116                           |
|                     |                     | 100    | 373.15  |                      | 379.138                           |
|                     |                     | 200    | 473.15  |                      | 373.323                           |
|                     |                     | 400    | 673.15  |                      | 364.019                           |
|                     |                     | 600    | 873.15  |                      | 353.552                           |
| Commercial          |                     | 20     | 293.15  | 8,300                | 372.160                           |
| Electrolytic, pure  |                     | -180   | 93.15   |                      | 488.460                           |
|                     |                     | 0      | 273.15  | 8,900                | 395.420                           |
|                     |                     | 100    | 373.15  | -                    | 391.931                           |
|                     |                     | 300    | 573.15  |                      | 381.464                           |
|                     |                     | 800    | 1073.15 |                      | 367.508                           |
| Gold 99.999%        | Au                  | -190   | 83.15   |                      | 327.966                           |
|                     |                     | 0      | 273.15  | 19,290               | 310.521                           |
|                     |                     | 100    | 373.15  | -                    | 310.521                           |
|                     |                     | 300    | 573.15  |                      | 304.706                           |
| 99.98%              |                     | 0      | 273.15  |                      | 294.239                           |
|                     |                     | 100    | 373.15  |                      | 294.239                           |



| Substance                  | Chemical<br>formula | T (°C)                        | T (°K)                                          | Density<br>ρ (kg/m³) | Thermal conductivity<br>λ (W/m K)              |
|----------------------------|---------------------|-------------------------------|-------------------------------------------------|----------------------|------------------------------------------------|
| Iridium, pure              | Ir                  | 0<br>100                      | 273.15<br>373.15                                | 22,420               | 59.313<br>56.987                               |
| Iron (Armc)<br>99.92%      | Fe                  | 20<br>100                     | 293.15<br>373.15                                | 7,850                | 73.169<br>67.454                               |
|                            |                     | 200<br>400                    | 473.15<br>673.15                                |                      | 61.639<br>48.846                               |
|                            |                     | 600<br>800                    | 873.15<br>1073.15                               |                      | 38.379<br>29.075                               |
| Cast, 1% Ni                |                     | 20<br>100<br>300              | 293.15<br>373.15<br>573.15                      | 7,280                | 50.009<br>49.428<br>46.520                     |
| G . 20/ G                  |                     | 500                           | 773.15                                          | <b>7.0</b> 00        | 37.216                                         |
| Cast, 3% C                 |                     | 20                            | 293.15                                          | 7,280                | 55.824 63.965                                  |
| Steel, 99.2%<br>Fe, 0.2% C |                     | 0<br>100<br>300<br>500<br>800 | 273.15<br>373.15<br>573.15<br>773.15<br>1073.15 | 7,800                | 45.357<br>45.357<br>43.031<br>37.216<br>30.238 |
| Wrought, pure              |                     | 0                             | 273.15                                          | 7,800                | 59.313                                         |
| wrought, pure              |                     | 100<br>200<br>400             | 373.15<br>473.15<br>673.15                      | 7,800                | 56.987<br>52.335<br>44.194                     |
|                            |                     | 600<br>800                    | 873.15<br>1073.15                               |                      | 37.216<br>29.075                               |
| Lead, pure                 | Pb                  | -250<br>-200<br>-100          | 23.15<br>73.15<br>173.15                        |                      | 48.846<br>40.705<br>36.867                     |
|                            |                     | 0<br>20<br>100<br>300         | 273.15<br>293.15<br>373.15<br>573.15            | 11,340               | 35.123<br>34.774<br>33.378<br>29.773           |
|                            |                     | 500                           | 773.15                                          |                      | 16.747                                         |
| Lithium, pure              | Li                  | 0<br>100                      | 273.15<br>373.15                                | 530                  | 70.943<br>70.943                               |
| Magnesium, pure            | Mg                  | -190<br>0<br>200              | 83.15<br>273.15<br>473.15                       | 1,740                | 186.080<br>172.124<br>162.820                  |
| 99.6%                      |                     | 0<br>100<br>300<br>500        | 273.15<br>373.15<br>573.15<br>773.15            | ≈1,740               | 144.212<br>139.560<br>131.419<br>131.419       |
| Manganese                  | Mn                  | 0                             | 273.15                                          | 7,300                | 50.242                                         |
| Mercury                    | Hg                  | -190<br>-100<br>-50           | 83.15<br>173.15<br>223.15                       |                      | 48.846<br>36.053<br>27.912                     |
|                            | (Liquid)            | 0                             | 273.15                                          | 13,595               | 8.141                                          |



| Substance         | Chemical<br>formula | T (°C) | T (°K)  | Density<br>ρ (kg/m³) | Thermal conductivity<br>λ (W/m K) |
|-------------------|---------------------|--------|---------|----------------------|-----------------------------------|
| Molybdenum 99.84% | Мо                  | -180   | 93.15   |                      | 174.450                           |
|                   |                     | -100   | 173.15  |                      | 138.397                           |
|                   |                     | 0      | 273.15  | 10,200               | 137.234                           |
|                   |                     | 100    | 373.15  |                      | 137.234                           |
|                   |                     | 1000   | 1273.15 |                      | 98.855                            |
| Nickel 99.94%     | Ni                  | -180   | 93.15   |                      | 110.485                           |
|                   |                     | 0      | 273.15  | 8,800                | 93.040                            |
|                   |                     | 100    | 373.15  |                      | 82.573                            |
|                   |                     | 200    | 473.15  |                      | 73.269                            |
|                   |                     | 300    | 573.15  |                      | 63.965                            |
|                   |                     | 400    | 673.15  |                      | 59.313                            |
|                   |                     | 500    | 773.15  |                      | 61.639                            |
| 99.2%             |                     | 0      | 273.15  |                      | 67.454                            |
|                   |                     | 100    | 373.15  |                      | 62.802                            |
|                   |                     | 200    | 473.15  | _                    | 58.150                            |
|                   |                     | 400    | 673.15  |                      | 52.335                            |
|                   |                     | 600    | 873.15  |                      | 56.987                            |
|                   |                     | 800    | 1073.15 |                      | 62.802                            |
| 97 to 99%         |                     | -100   | 173.15  |                      | 55.824                            |
|                   |                     | 0      | 273.15  |                      | 58.150                            |
|                   |                     | 100    | 373.15  |                      | 56.987                            |
|                   |                     | 200    | 473.15  | _                    | 54.661                            |
|                   |                     | 400    | 673.15  |                      | 48.846                            |
|                   |                     | 600    | 873.15  |                      | 53.498                            |
|                   |                     | 800    | 1073.15 |                      | 58.150                            |
| Palladium, pure   | Pd                  | -190   | 83.15   |                      | 76.758                            |
|                   |                     | 0      | 273.15  | _                    | 68.617                            |
|                   |                     | 100    | 373.15  |                      | 73.269                            |
| Platinum, pure    | Pt                  | -190   | 83.15   |                      | 77.921                            |
|                   |                     | 0      | 273.15  | 21,400               | 70.013                            |
|                   |                     | 100    | 373.15  |                      | 71.408                            |
|                   |                     | 300    | 573.15  |                      | 75.595                            |
|                   |                     | 500    | 773.15  |                      | 79.084                            |
|                   |                     | 800    | 1073.15 |                      | 86.062                            |
|                   |                     | 1000   | 1273.15 |                      | 89.551                            |
| Potassium, pure   | K                   | 0      | 273.15  | 860                  | 136.071                           |
|                   |                     | 100    | 373.15  |                      | 118.626                           |
| Rhodium, pure     | Rh                  | -190   | 83.15   |                      | 212.829                           |
|                   |                     | 0      | 273.15  | 12,500               | 88.388                            |
|                   |                     | 100    | 373.15  |                      | 80.247                            |
| Silver > 99.98%   | Ag                  | -190   | 83.15   |                      | 425.658                           |
|                   |                     | 0      | 273.15  | 10,500               | 418.680                           |
|                   |                     | 100    | 373.15  |                      | 416.354                           |
|                   |                     | 300    | 573.15  |                      | 407.050                           |
| 99.9%             |                     | -100   | 173.15  |                      | 419.843                           |
|                   |                     | 0      | 273.15  | 10,500               | 410.539                           |
|                   |                     | 100    | 373.15  | -                    | 391.931                           |
|                   |                     | 300    | 573.15  |                      | 361.693                           |
|                   |                     | 500    | 773.15  |                      | 362.856                           |



|                | Chemical |        |         | Density                     | Thermal conductivity |
|----------------|----------|--------|---------|-----------------------------|----------------------|
| Substance      | formula  | T (°C) | T (°K)  | $\rho$ (kg/m <sup>3</sup> ) | λ (W/m K)            |
| Sodium, pure   | Na       | -100   | 173.15  |                             | 154.679              |
|                |          | 0      | 273.15  | 970                         | 100.018              |
|                |          | 50     | 323.15  |                             | 93.040               |
|                |          | 100    | 373.15  |                             | 83.736               |
| Tantalum       | Ta       | 0      | 273.15  | 16,650                      | 54.661               |
|                |          | 100    | 373.15  |                             | 54.080               |
|                |          | 1000   | 1273.15 |                             | 63.965               |
|                |          | 1400   | 1673.15 |                             | 72.106               |
|                |          | 1800   | 2073.15 |                             | 82.573               |
| Thallium, pure | T1       | -190   | 83.15   |                             | 62.802               |
|                |          | 0      | 273.15  | 11,840                      | 51.172               |
|                |          | 100    | 373.15  |                             | 41.868               |
| Tin, pure      | Sn       | -150   | 123.15  |                             | 79.084               |
|                |          | -100   | 173.15  |                             | 74.432               |
|                |          | 0      | 273.15  | 7,300                       | 66.058               |
|                |          | 100    | 373.15  |                             | 59.313               |
|                |          | 200    | 473.15  |                             | 56.987               |
| Wolfram        | W        | -190   | 83.15   |                             | 217.481              |
|                |          | 0      | 273.15  | 19,300                      | 166.309              |
|                |          | 100    | 373.15  |                             | 151.190              |
|                |          | 500    | 773.15  |                             | 119.789              |
|                |          | 1000   | 1273.15 |                             | 98.855               |
|                |          | 1500   | 1773.15 |                             | 113.974              |
|                |          | 2000   | 2273.15 |                             | 136.071              |
|                |          | 2400   | 2673.15 |                             | 146.538              |
| Zinc, pure     | Zn       | -100   | 173.15  |                             | 115.137              |
|                |          | 0      | 273.15  | 7,130                       | 112.811              |
|                |          | 100    | 373.15  |                             | 109.904              |
|                |          | 200    | 473.15  |                             | 105.833              |
|                |          | 300    | 573.15  |                             | 101.181              |

Source: Ref. 2 with permission.

Table 2.33 Thermal Diffusivity of Selected Elements (m<sup>2</sup>/s)



|                                   |                                                       |                                                  |                                           |                                          |                                      | Elem                                 | ent                                            |                                           |                                                |                                        |                                           |                                      |
|-----------------------------------|-------------------------------------------------------|--------------------------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------|
| T(K)                              | Al                                                    | Sb                                               | Be                                        | Cd                                       | Ca                                   | Ce                                   | Cs                                             | Cr                                        | Co                                             | Cu                                     | Dy                                        | Er                                   |
| 10<br>15<br>20<br>25<br>30        | 9.90<br>2.40<br>0.50<br>0.15<br>0.06                  | 0.0339<br>0.00735<br>0.00177<br>6.8.–4<br>4.1.–4 |                                           | 0.0148<br>0.0020<br>6.14<br>3.54<br>2.24 |                                      |                                      | 4.24<br>2.54<br>1.94<br>1.74<br>1.54           | 0.072<br>0.061<br>0.038<br>0.018<br>0.010 | 0.025<br>0.016<br>0.011<br>0.005<br>0.003      | 2.30<br>0.70<br>0.16<br>0.047<br>0.018 | 2.54<br>1.04<br>4.75<br>3.15<br>2.45      | 6.65<br>2.35<br>6.86<br>1.05<br>8.46 |
| 40<br>50<br>60<br>80<br>100       | 0.012<br>3.33<br>1.43<br>4.44<br>2.34                 | 2.04<br>1.24<br>8.85<br>5.65<br>4.25             | 3.58.–3                                   | 1.55<br>1.14<br>8.65<br>6.85<br>6.35     |                                      |                                      | 1.34<br>1.264<br>1.204<br>1.124<br>1.064       | 3.73<br>7.54<br>5.94<br>2.04<br>1.24      | 1.13<br>4.84<br>2.64<br>1.24<br>7.75           | 4.03<br>1.43<br>6.94<br>3.14<br>2.24   | 1.55<br>1.15<br>9.06<br>6.56<br>5.56      | 6.86<br>6.06<br>5.96<br>7.46<br>9.16 |
| 150<br>200<br>250<br>300<br>400   | 1.34<br>1.14<br>1.14<br>9.75<br>9.45                  | 2.85<br>2.35<br>2.05<br>1.75<br>1.55             | 4.04<br>1.54<br>8.35<br>5.95<br>4.05      | 5.65<br>5.25<br>5.05<br>4.95<br>4.65     | 2.14<br>2.04<br>1.84                 | 8.06<br>9.06                         | 9.7.–5<br>9.3.–5<br>8.8.–5<br>8.0.–5<br>4.8.–5 | 5.75<br>4.15<br>3.35<br>2.95<br>2.65      | 4.7.–5<br>3.7.–5<br>3.1.–5<br>2.7.–5<br>2.2.–5 | 1.94<br>1.34<br>1.24<br>1.24<br>1.14   | 3.86<br>6.36<br>7.06<br>7.46<br>7.56      | 9.76<br>9.96<br>9.96<br>9.46<br>9.06 |
| 500<br>600<br>800<br>1000<br>1200 | 8.9.–5<br>8.4.–5<br>7.4.–5<br>6.6.–5<br><u>6.1.–5</u> | 1.3.–5<br>1.2.–5<br>1.1.–5                       | 3.15<br>2.65<br>2.15<br>1.75<br>1.45      | 4.35<br>1.85<br>2.05<br>2.45             | 1.6.–4<br>1.5.–4                     | 1.05<br>1.05<br>1.15<br>1.15         | 5.15<br>5.55<br>5.85<br>5.35<br>4.65           | 2.35<br>2.05<br>1.75<br>1.45<br>1.35      | 1.85<br>1.55<br>1.25<br>1.05<br>9.06           | 1.14<br>1.04<br>9.05<br>9.05<br>8.05   | 7.7.–6<br>7.9.–6<br>8.6.–6<br>9.2.–6      | 8.96<br>8.96<br>9.06<br>9.16         |
| 1400<br>1600<br>1800<br>2000      |                                                       |                                                  | <u>1.2.–5</u>                             |                                          |                                      |                                      | 3.9.–5                                         | 1.2.–5<br>1.1.–5                          |                                                |                                        |                                           |                                      |
|                                   | Gd                                                    | Ge                                               | Au                                        | Hf                                       | Но                                   | In                                   | Ir                                             | Fe                                        | La                                             | Pb                                     | Li                                        | Lu                                   |
| 10<br>15<br>20<br>25<br>30        | 8.23<br>3.53<br>1.43<br>7.54<br>4.84                  | 0.46<br>0.072<br>0.021<br>0.010<br>0.006         | 0.060<br>0.015<br>0.005<br>0.002<br>0.001 | 8.04<br>3.04<br>1.44<br>9.05<br>6.05     | 9.85<br>4.05<br>2.95<br>2.25<br>1.95 | 4.33<br>9.14<br>4.04<br>2.34<br>1.64 | 0.183<br>0.091<br>0.046<br>0.016<br>0.007      | 0.133<br>0.075<br>0.043<br>0.025<br>0.013 | 3.45<br>2.65                                   | 1.13<br>2.04<br>9.35<br>6.45<br>5.15   | 0.124<br>0.052<br>0.023<br>0.011<br>0.006 | 7.14<br>2.54<br>1.24<br>0.74<br>0.54 |
| 40<br>50<br>60<br>80              | 2.74<br>1.64<br>1.44<br>1.04                          | 2.43<br>1.33<br>8.24<br>4.04                     | 4.54<br>3.04<br>2.34<br>1.84              | 3.85<br>2.85<br>2.35<br>2.15             | 1.55<br>1.25<br>1.15<br>0.95         | 1.14<br>8.95<br>7.85<br>7.05         | 5.6.–4                                         | 3.23<br>1.23<br>4.94<br>1.64              | 1.45<br>1.15<br>1.05<br>0.95                   | 3.95<br>3.55<br>3.35<br>3.15           | 2.33<br>0.83<br>0.53<br>0.23              | 3.05<br>2.45<br>2.05<br>1.75         |

Above the solid line a substance is solid; below it, it is liquid. The notation 5.4.–3 signifies  $5.4\times10^{-3}$ .



|                                        |                                           |                                                |                                                   |                                              |                                                | Elem                                           | ent                                                      |                                              |                                              |                                              |                                           |                                              |
|----------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------|
| T(K)                                   | Gd                                        | Ge                                             | Au                                                | Hf                                           | Но                                             | In                                             | Ir                                                       | Fe                                           | La                                           | Pb                                           | Li                                        | Lu                                           |
| 100<br>150<br>200<br>250<br>300<br>400 | 9.0.–5<br>7.0.–5<br>6.0.–5                | 2.24<br>1.04<br>6.35<br>4.65<br>3.55<br>2.45   | 1.54<br>1.404<br>1.344<br>1.314<br>1.274<br>1.234 | 1.75<br>1.45<br>1.35<br>1.35<br>1.25<br>1.25 | 0.75<br>0.95<br>1.05<br>1.15<br>1.15<br>1.25   | 6.25<br>5.85<br>5.45<br>5.15<br>4.85<br>4.15   | 8.4.–5<br>6.3.–5<br>5.6.–5<br>5.2.–5<br>5.0.–5<br>4.8.–5 | 8.25<br>4.15<br>3.15<br>2.65<br>2.25<br>1.85 | 1.05<br>1.05<br>1.05<br>1.15<br>1.15<br>1.25 | 2.95<br>2.75<br>2.65<br>2.55<br>2.45<br>2.35 | 0.13<br>6.55<br>5.45<br>4.85<br>4.55      | 1.55<br>1.35<br>1.25<br>1.15<br>1.15<br>1.15 |
| 500<br>600<br>800<br>1000<br>1200      |                                           | 1.85<br>1.45<br>1.05<br>0.95<br>0.85           | 1.194<br>1.154<br>1.074<br>9.85<br>9.05           | 1.15<br>1.15<br>1.05<br>1.05<br>9.05         | 1.25                                           | 2.25<br>2.45                                   | 4.65<br>4.45<br>4.15<br>3.55<br>3.35                     | 1.55<br>1.35<br>1.15<br>1.05                 | 1.35<br>1.45<br>1.55<br>1.65                 | 2.25<br>2.05<br>1.35<br>1.55<br>1.75         | 2.15<br>2.35<br>2.85<br>3.35<br>3.75      |                                              |
| 1400<br>1600<br>2000                   |                                           |                                                | 4.1.–5<br>4.4.–5                                  |                                              |                                                |                                                | 3.15<br>3.05                                             |                                              |                                              |                                              |                                           |                                              |
|                                        | Mg                                        | Мо                                             | Ni                                                | Nb                                           | Pd                                             | Pt                                             | K                                                        | Pu                                           | Rh                                           | Rb                                           | Ag                                        | Na                                           |
| 10<br>15<br>20<br>25<br>30             | 0.395<br>0.116<br>0.050<br>0.023<br>0.010 | 0.0292<br>0.0167<br>0.0095<br>0.0057<br>0.0037 | 0.163<br>0.079<br>0.033<br>0.014<br>0.006         | 1.62<br>6.73<br>2.63<br>1.03<br>4.64         | 0.0428<br>0.0166<br>0.0054<br>0.0021<br>0.0009 | 0.0517<br>0.0114<br>0.0029<br>0.0010<br>0.0005 |                                                          |                                              | 0.357<br>0.224<br>0.115<br>0.044<br>0.017    |                                              | 0.835<br>0.140<br>0.031<br>0.009<br>0.004 |                                              |
| 40<br>50<br>60<br>80<br>100            | 2.63<br>9.24<br>4.94<br>2.14<br>1.54      | 1.43<br>7.14<br>4.04<br>2.04<br>1.34           | 1.73<br>6.24<br>3.14<br>1.34<br>8.05              | 1.64<br>1.34<br>6.05<br>3.95<br>3.25         | 2.84<br>1.34<br>8.25<br>4.85<br>3.85           | 1.64<br>9.25<br>6.35<br>4.35<br>3.65           | 2.34<br>2.14<br>1.94<br>1.84                             | 2.16                                         | 5.13<br>9.34<br>4.14<br>1.84<br>1.04         |                                              | 1.33<br>6.64<br>4.54<br>2.84<br>2.34      |                                              |
| 150<br>200<br>250<br>300<br>400        | 1.14<br>1.04<br>9.15<br>8.95<br>8.25      | 7.4.–5<br>6.3.–5<br>5.7.–5<br>5.4.–5<br>5.1.–5 | 4.25<br>3.15<br>2.65<br>2.35<br>1.95              | 2.65<br>2.45<br>2.45<br>2.35<br>2.45         | 2.95<br>2.65<br>2.55<br>2.45<br>2.55           | 2.95<br>2.75<br>2.55<br>2.55<br>2.55           | 7.3.–5                                                   | 2.16<br>2.26<br>2.36<br>2.66                 | 6.55<br>5.65<br>5.25<br>4.95<br>4.65         | 6.1.–5                                       | 1.94<br>1.84<br>1.84<br>1.74<br>1.74      | 6.9.–5                                       |
| 500<br>600<br>800                      | 7.7.–5<br>7.3.–5<br><u>6.7.–5</u>         | 4.85<br>4.55<br>4.25                           | 1.5.–5<br>1.3.–5<br>1.4.–5                        | 2.45<br>2.45<br>2.55                         | 2.55<br>2.65<br>2.85                           | 2.55<br>2.55<br>2.55                           | 7.35<br>7.25<br>6.75                                     |                                              | 4.35<br>4.05<br>3.65                         | 5.9.–5<br>5.8.–5<br>5.5.–5                   | 1.7.–4<br>1.6.–4<br>1.5.–4                | 6.85<br>6.75<br>6.45                         |



| 1000<br>1200<br>1400<br>1600<br>1800 | 4.35                                 | 3.85<br>3.55<br>3.35<br>3.15<br>3.05 | 1.55<br>1.55<br>1.65<br>1.65         | 2.65<br>2.65<br>2.75<br>2.75<br>2.85 | 2.9.–5<br>3.0.–5                     | 2.55<br>2.55<br>2.65<br>2.65<br>2.75      | 6.05<br>4.75                         |                                      | 3.25<br>3.05<br>2.85<br>2.65         |                                      | 1.4.–4<br>1.3.–4                     | 6.05<br>5.35<br>4.75<br>4.15 |
|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------|
| 2000                                 |                                      | <u>2.85</u>                          |                                      | <u>2.8.−5</u>                        |                                      | 2.8 - 5                                   |                                      |                                      |                                      |                                      |                                      |                              |
|                                      | Ta                                   | Te                                   | Th                                   | Sn                                   | Ti                                   | W                                         | U                                    | V                                    | Y                                    | Zn                                   | Zr                                   |                              |
| 10<br>15<br>20<br>25<br>30           | 5.43<br>2.43<br>1.13<br>5.44<br>2.94 | 8.04<br>2.44<br>1.44<br>9.15<br>7.25 |                                      |                                      | 2.43<br>1.33<br>8.04<br>4.74<br>3.14 | 1.140<br>0.350<br>0.105<br>0.039<br>0.013 | 3.44<br>1.34<br>4.55<br>3.85<br>2.75 | 1.03<br>7.74<br>5.74<br>4.64<br>3.04 |                                      | 2.52<br>4.63<br>1.73<br>7.04         | 1.12<br>3.83<br>1.43<br>6.34<br>3.34 |                              |
| 40<br>50<br>60<br>80<br>100          | 1.34<br>7.75<br>5.55<br>4.05<br>3.35 | 5.85<br>5.05<br>4.65<br>4.15<br>3.95 | 5.2.–5                               |                                      | 1.64<br>9.65<br>6.35<br>3.85<br>2.75 | 2.53<br>7.54<br>3.54<br>2.34<br>1.64      | 2.05<br>1.55<br>1.45<br>1.35<br>1.25 | 1.54<br>9.25<br>5.95<br>3.45<br>2.35 | 2.45<br>2.05<br>1.85<br>1.55         | 3.14<br>1.74<br>1.04<br>7.05<br>5.55 | 9.65<br>7.45<br>5.95<br>5.05<br>4.35 |                              |
| 150<br>200<br>250<br>300<br>400      | 2.85<br>2.65<br>2.55<br>2.45<br>2.45 | 3.55<br>3.35<br>3.15<br>3.05<br>2.85 | 4.55<br>4.15<br>4.05<br>3.95<br>3.85 |                                      |                                      |                                           | 1.25<br>1.25<br>1.25<br>1.25<br>1.35 | 1.45<br>1.25<br>1.15<br>1.15<br>1.05 | 1.45<br>1.35<br>1.35<br>1.35<br>1.35 | 5.15<br>4.75<br>4.35<br>4.15<br>3.95 |                                      |                              |
| 500<br>600<br>800<br>1000<br>1200    | 2.45<br>2.45<br>2.45<br>2.35<br>2.35 | <u>2.6.–5</u>                        | 3.75<br>3.65<br>3.45<br>3.25<br>3.15 | 1.8.–4<br>2.1.–4<br>2.4.–4<br>2.7.–4 |                                      |                                           | 1.35<br>1.35<br>1.35<br>1.45         | 1.05<br>1.05<br>1.15<br>1.15<br>1.15 | 1.45<br>1.45<br>1.55<br>1.55<br>1.65 | 3.7.–5<br>3.4.–5<br>1.8.–5<br>2.2.–5 |                                      |                              |
| 1400<br>1600<br>1800<br>2000         | 2.3.–5<br>2.4.–5                     |                                      |                                      |                                      |                                      |                                           |                                      |                                      |                                      |                                      |                                      |                              |

Above the solid line a substance is solid; below it, it is liquid. The notation 5.4.–3 signifies  $5.4\times10^{-3}.$ 

Table 2.34 Density and Thermal Conductivity of Alloys



| Alloy              | Composition (%)                          | T (°C)     | T(K)             | Density<br>ρ (kg/m³) | Thermal conductivity λ (W/m K) |
|--------------------|------------------------------------------|------------|------------------|----------------------|--------------------------------|
| Aluminum alloys    | 96 Al, 1.8 Cu, 0.9 Fe,<br>0.9 Cr, 0.4 Si | 20         | 293.15           | _                    | 104.670                        |
| Aluminum bronze    | 95 Cu, 5A1                               | 20         | 293.15           | 7800                 | 82.573                         |
| Aluminum magnesium | 92 Al, 8 Mg                              | -180       | 93.15            |                      | 75.595                         |
|                    | , ,                                      | -100       | 173.15           |                      | 84.899                         |
|                    |                                          | 0          | 273.15           |                      | 102.344                        |
|                    |                                          | 20         | 293.15           | ≈2600                | 105.833                        |
|                    |                                          | 100        | 373.15           |                      | 123.278                        |
|                    |                                          | 200        | 473.15           |                      | 147.701                        |
| Alusil             | 80 Al, 20 Si                             | -180       | 93.15            |                      | 122.115                        |
|                    |                                          | -100       | 173.15           |                      | 141.886                        |
|                    |                                          | 0          | 273.15           |                      | 158.168                        |
|                    |                                          | 20         | 293.15           | ≈2650                | 160.494                        |
|                    |                                          | 100        | 373.15           |                      | 168.635                        |
|                    |                                          | 200        | 473.15           |                      | 174.450                        |
| Bismuth-antimony   | 80 Bi, 20 Sb                             | 0          | 273.15           | _                    | 6.606                          |
|                    |                                          | 100        | 373.15           |                      | 8.618                          |
|                    | 50 Bi, 50 Sb                             | 0          | 273.15           | _                    | 8.327                          |
|                    |                                          | 100        | 373.15           |                      | 9.374                          |
|                    | 30 Bi, 70 Sb                             | 0          | 273.15           | _                    | 9.653                          |
|                    |                                          | 100        | 373.15           |                      | 11.660                         |
| Brass              | 90 Cu, 10 Zn                             | -100       | 173.15           |                      | 88.388                         |
|                    | ,                                        | 0          | 273.15           | ≈8600                | 102.344                        |
|                    |                                          | 100        | 373.15           |                      | 117.463                        |
|                    |                                          | 200        | 473.15           |                      | 133.745                        |
|                    |                                          | 300        | 573.15           |                      | 148.864                        |
|                    |                                          | 400        | 673.15           |                      | 166.309                        |
|                    |                                          | 500        | 773.15           |                      | 180.265                        |
|                    |                                          | 600        | 873.15           |                      | 195.384                        |
|                    | 70 Cu, 30 Zn                             | 0          | 273.15           | ≈8600                | 105.833                        |
|                    |                                          | 100        | 373.15           |                      | 109.322                        |
|                    |                                          | 200        | 473.15           |                      | 110.485                        |
|                    |                                          | 300        | 573.15           |                      | 113.974                        |
|                    |                                          | 400        | 673.15           |                      | 116.300                        |
|                    |                                          | 500        | 773.15           |                      | 119.789                        |
|                    |                                          | 600        | 873.15           |                      | 120.952                        |
|                    | 66 Cu, 33 Zn                             | 0          | 273.15           | ≈8600                | 100.018                        |
|                    |                                          | 100        | 373.15           |                      | 106.996                        |
|                    |                                          | 200        | 473.15           |                      | 112.811                        |
|                    |                                          | 300        | 573.15           |                      | 120.952                        |
|                    |                                          | 400<br>500 | 673.15<br>773.15 |                      | 127.930<br>134.908             |
|                    |                                          | 600        | 873.15           |                      | 151.190                        |
|                    | 60 Cu. 40 Zu                             |            |                  | . 9,600              |                                |
|                    | 60 Cu, 40 Zn                             | 0<br>100   | 273.15           | ≈8600                | 105.833                        |
|                    |                                          | 200        | 373.15<br>473.15 |                      | 119.789<br>137.234             |
|                    |                                          | 300        | 573.15           |                      | 152.353                        |
|                    |                                          | 400        | 673.15           |                      | 168.635                        |
|                    |                                          | 500        | 773.15           |                      | 186.080                        |
|                    |                                          | 200        |                  |                      | 100.000                        |



| Alloy               | Composition (%)          | T (°C)    | T(K)             | Density<br>ρ (kg/m³) | Thermal conductivity λ (W/m K) |
|---------------------|--------------------------|-----------|------------------|----------------------|--------------------------------|
| Brass               | 61.5 Cu, 38.5 Zn         | 20<br>100 | 293.15<br>373.15 |                      | 79.084<br>88.388               |
| Bronze              | 90 Cu, 10 Sn             | 20        | 293.15           | 8766                 | 41.868                         |
|                     | 75 Cu, 25 Sn             | 20        | 293.15           | ≈8900                | 25.586                         |
|                     | 88 Cu, 10 Sn, 2 Zn       | 20        | 293.15           | ≈8800                | 47.683                         |
|                     | 84 Cu, 6 Sn, 9 Zn, 1 Pb  | 20        | 293.15           |                      | 58.150                         |
|                     | 86 Cu, 7 Zn, 6.4 Sn      | 20        | 293.15           | ≈8600                | 60.476                         |
|                     |                          | 100       | 373.15           |                      | 70.943                         |
| Chrome-nickel steel | 0.8 Cr, 3.5 Ni, 0.4 C    | 20        | 293.15           | 8100                 | 34.890                         |
|                     |                          | 100       | 373.15           | 8700                 | 36.053                         |
|                     |                          | 200       | 473.15           |                      | 37.216                         |
|                     |                          | 400       | 673.15           |                      | 37.216                         |
|                     |                          | 600       | 873.15           |                      | 31.401                         |
|                     | Cr Ni                    | 20        | 293.15           | 7900                 | 13.956                         |
|                     |                          | 200       | 473.15           |                      | 17.445                         |
|                     |                          | 500       | 773.15           |                      | 20.934                         |
|                     | 17 19 Cr, 8 Ni,          | 20        | 293.15           | 8100                 | 14.538                         |
|                     | 0.1 0.2 C                | 100       | 373.15           | 9000                 | 15.701                         |
|                     |                          | 200       | 473.15           |                      | 16.864                         |
|                     |                          | 300       | 573.15           |                      | 18.608                         |
|                     |                          | 500       | 773.15           |                      | 20.934                         |
|                     | 10 Cr, 34 Ni             | 20        | 293.15           |                      | 12.212                         |
|                     |                          | 100       | 373.15           |                      | 13.375                         |
|                     |                          | 200       | 473.15           | _                    | 15.119                         |
|                     |                          | 300       | 573.15           |                      | 16.282                         |
|                     |                          | 500       | 773.15           |                      | 19.190                         |
|                     | 15 Cr, 27 Ni, 3 W, 0.5 C | 20        | 293.15           |                      | 11.281                         |
|                     |                          | 100       | 373.15           |                      | 12.793                         |
|                     |                          | 200       | 473.15           | _                    | 13.956                         |
|                     |                          | 300       | 573.15           |                      | 15.119                         |
|                     |                          | 500       | 773.15           |                      | 18.608                         |
|                     | 15 Cr, 13 Ni, 2 W,       | 20        | 293.15           |                      | 11.630                         |
|                     | 0.5 C                    | 100       | 373.15           |                      | 11.630                         |
|                     |                          | 200       | 473.15           | _                    | 11.630                         |
|                     |                          | 300       | 573.15           |                      | 12.212                         |
|                     |                          | 500       | 773.15           |                      | 12.793                         |
|                     |                          | 800       | 1073.15          |                      | 16.282                         |
| Chrome steel        | 0.8 Cr, 0.2 C            | 100       | 373.15           | ≈7850                | 39.542                         |
|                     |                          | 200       | 473.15           |                      | 37.216                         |
|                     |                          | 400       | 673.15           |                      | 31.401                         |
|                     | 50.0511.010              | 600       | 873.15           | 0100                 | 26.749                         |
|                     | 5 Cr, 0.5 Mn, 0.1 C      | 20        | 293.15           | 8100                 | 37.216                         |
|                     |                          | 100       | 373.15           | 9000                 | 31.635                         |
|                     |                          | 200       | 473.15           |                      | 31.053                         |
|                     | 150 010                  | 500       | 773.15           | 0100                 | 33.727                         |
|                     | 15 Cr, 0.1 C             | 20        | 293.15           | 8100                 | 25.586                         |
|                     |                          | 500       | 773.15           | 9000                 | 25.586                         |



|                   |                     |            |                            | D 1:                 | 779 4 4 4 1                    |
|-------------------|---------------------|------------|----------------------------|----------------------|--------------------------------|
| Alloy             | Composition (%)     | T (°C)     | $T\left(\mathbf{K}\right)$ | Density<br>ρ (kg/m³) | Thermal conductivity λ (W/m K) |
| Chrome steel      | 14 Cr, 0.3 C        | 20         | 293.15                     | 8100                 | 24.423                         |
|                   |                     | 100        | 373.15                     | 9000                 | 25.005                         |
|                   |                     | 200        | 473.15                     |                      | 25.586                         |
|                   |                     | 300<br>500 | 573.15<br>773.15           |                      | 25.586<br>25.586               |
|                   | 16.0-00.0           |            |                            | 0100                 |                                |
|                   | 16 Cr, 0.9 C        | 100<br>200 | 373.15<br>473.15           | 8100<br>9000         | 23.842<br>23.260               |
|                   |                     | 300        | 573.15                     | 9000                 | 23.260                         |
|                   |                     | 500        | 773.15                     |                      | 23.260                         |
|                   |                     | 800        | 1073.15                    |                      | 23.260                         |
|                   | 26 Cr, 0.1 C        | 20         | 293.15                     | 8100                 | 19.771                         |
|                   | 20 C1, 0.1 C        | 100        | 373.15                     | 9000                 | 20.934                         |
|                   |                     | 200        | 473.15                     | , , ,                | 22.097                         |
|                   |                     | 300        | 573.15                     |                      | 22.911                         |
|                   |                     | 500        | 773.15                     |                      | 24.423                         |
| Cobalt steel      | 5 10 Co             | 20         | 293.15                     | ≈7800                | 40.705                         |
| Constantin        | 60 Cu, 40 Ni        | -100       | 173.15                     |                      | 20.934                         |
|                   |                     | 0          | 273.15                     |                      | 22.213                         |
|                   |                     | 20         | 293.15                     | 8800                 | 22.679                         |
|                   |                     | 100        | 373.15                     |                      | 25.586                         |
| Copper alloys     | 92 Al, 8 Cu         | -180       | 93.15                      |                      | 89.551                         |
|                   |                     | -100       | 173.15                     |                      | 109.322                        |
|                   |                     | 0          | 273.15                     | 2000                 | 127.930                        |
|                   |                     | 20<br>100  | 293.15<br>373.15           | ≈2800                | 131.419<br>143.049             |
|                   |                     | 200        | 473.15                     |                      | 152.353                        |
| Copper-manganese  | 70 Cu, 30 Mn        | 200        | 293.15                     | ≈7800                | 12.793                         |
| Copper-nickel     | 90 Cu, 10 Ni        | 20         | 293.15                     | ≈8800                | 58.150                         |
| соррег-шекег      | 50 Cu, 10 141       | 100        | 373.15                     | -0000                | 75.595                         |
|                   | 80 Cu, 20 Ni        | 20         | 293.15                     | ≈8500                | 33.727                         |
|                   |                     | 100        | 373.15                     |                      | 40.705                         |
|                   | 40 Cu, 60 Ni        | 20         | 293.15                     | ≈8400                | 22.097                         |
|                   |                     | 100        | 373.15                     |                      | 25.586                         |
|                   | 18 Cu, 82 Ni        | 20         | 293.15                     |                      | 25.586                         |
|                   |                     | 100        | 393.15                     |                      | 25.586                         |
| Duralumin         | 9496 Al, 35 C       | u, -180    | 93.15                      |                      | 90.714                         |
|                   | 0.5 Mg              | -100       | 173.15                     |                      | 125.604                        |
|                   |                     | 0          | 273.15                     |                      | 159.331                        |
|                   |                     | 20         | 293.15                     | ≈2800                | 165.146                        |
|                   |                     | 100        | 373.15                     |                      | 181.428                        |
|                   |                     | 200        | 473.15                     |                      | 194.221                        |
| Electron alloy    | 93 Mg, 4 Zn, 0.5 Cu | 20         | 293.15                     | 1800                 | 116.300                        |
| German alloy      | 88 Al, 10 Zn, 2 Cu  | 0          | 273.15                     | 2900                 | 143.049                        |
|                   |                     | 20         | 293.15                     |                      | 145.375                        |
|                   |                     | 100        | 373.15                     |                      | 154.679                        |
| Gold-copper alloy | 88 Au, 12 Cu        | 0          | 273.15                     | _                    | 55.824                         |
|                   |                     | 100        | 373.15                     |                      | 67.454                         |
|                   | 27 Au, 73 Cu        | 0          | 273.15                     | _                    | 90.714                         |
|                   |                     | 100        | 373.15                     |                      | 113.974                        |



| Alloy                   | Composition (%)              | T (°C)       | T(K)             | Density<br>ρ (kg/m³)   | Thermal conductivity $\lambda (W/m K)$ |
|-------------------------|------------------------------|--------------|------------------|------------------------|----------------------------------------|
| Invar                   | 35 Ni, 65 Fe                 | 20           | 293.15           | 8130                   | 11.049                                 |
| Lautal                  | 95 Al, 4.5 5.5 Cu,<br>0.3 Si | 20           | 293.15           | _                      | 139.560                                |
| Magnesium-aluminum      | 92 Mg, 8 Al                  | -180         | 93.15            |                        | 41.868                                 |
|                         |                              | -100         | 173.15           |                        | 50.009                                 |
|                         |                              | 0            | 273.15           | ≈1800                  | 60.476                                 |
|                         |                              | 20<br>100    | 293.15<br>373.15 |                        | 61.639                                 |
|                         |                              | 200          | 473.15           |                        | 69.780<br>79.084                       |
|                         | 2.5 A1                       | 200          | 293.15           |                        | 85.597                                 |
|                         | 4.2 A1                       | 20           | 293.15           |                        | 69.082                                 |
|                         | 6.2 Al                       | 20           | 293.15           |                        | 55.591                                 |
|                         | 10.3 Al                      | 20           | 293.15           |                        |                                        |
| 16                      |                              |              |                  |                        | 43.496                                 |
| Magnesium-<br>aluminum- | 88 Mg, 10 A1, 2 Si           | -180<br>-100 | 93.15<br>173.15  |                        | 30.238<br>40.705                       |
| silicone                |                              | -100<br>0    | 273.15           | ≈1850                  | 55.824                                 |
| sincone                 |                              | 20           | 293.15           | -1050                  | 58.150                                 |
|                         |                              | 100          | 373.15           |                        | 68.617                                 |
|                         |                              | 200          | 473.15           |                        | 75.595                                 |
| Magnesium-copper        | 92 Mg, 8 Cu                  | -180         | 93.15            |                        | 88.388                                 |
|                         |                              | -100         | 173.15           |                        | 106.996                                |
|                         |                              | 0            | 273.15           | ≈2400                  | 124.441                                |
|                         |                              | 20           | 293.15           |                        | 125.604                                |
|                         |                              | 100<br>200   | 373.15<br>473.15 |                        | 130.256<br>132.582                     |
|                         | 93.7 Mg, 6.3 Cu              | 200          | 293.15           |                        | 131.419                                |
| Manganese-nickel steel  | 12 Mn, 3 Ni, 0.75 C          | 20           | 293.15           |                        | 13.956                                 |
| Manganese-meker steer   | 12 MII, 5 MI, 0.75 C         | 100          | 373.15           |                        | 14.770                                 |
|                         |                              | 200          | 473.15           | _                      | 16.282                                 |
|                         |                              | 300          | 573.15           |                        | 17.445                                 |
|                         |                              | 500          | 773.15           |                        | 19.771                                 |
| Manganese steel         | 1.6 Mn, 0.5 C                | 20           | 293.15           | ≈7850                  | 40.705                                 |
|                         |                              | 100          | 373.15           |                        | 40.705                                 |
|                         |                              | 300          | 573.15           |                        | 37.216                                 |
|                         |                              | 500          | 773.15           | <b>7</b> 0. <b>7</b> 0 | 34.890                                 |
|                         | 2 Mn                         | 20           | 293.15           | ≈7850                  | 32.564                                 |
|                         | 5 Mn                         | 20           | 293.15           | ≈7850                  | 18.608                                 |
| Manganine               | 84 Cu, 4 Ni, 12 Mn           | -100         | 173.15           | 9.400                  | 16.282                                 |
|                         |                              | 0<br>20      | 273.15<br>293.15 | 8400                   | 20.934<br>21.864                       |
|                         |                              | 100          | 373.15           |                        | 26.400                                 |
| Monel                   | 29 Cu, 67 Ni, 2 Fe           | 20           | 293.15           | 8710                   | 22.097                                 |
|                         | 25 04,07 111,210             | 100          | 373.15           | 0,10                   | 24.423                                 |
|                         |                              | 200          | 473.15           |                        | 27.563                                 |
|                         |                              | 300          | 573.15           |                        | 30.238                                 |
|                         |                              | 400          | 673.15           |                        | 33.727                                 |



|                     |                      |            |                  | Density   | Thermal conductivity |
|---------------------|----------------------|------------|------------------|-----------|----------------------|
| Alloy               | Composition (%)      | T (°C)     | T(K)             | ρ (kg/m³) | λ (W/m K)            |
| New silver          | 62 Cu, 15 Ni, 22 Zn  | -150       | 123.15           | 8433      | 17.678               |
|                     |                      | -100       | 173.15           |           | 19.170               |
|                     |                      | +20        | 293.15           |           | 25.005               |
|                     |                      | 100        | 373.15           |           | 31.401               |
|                     |                      | 200        | 473.15           |           | 39.542               |
|                     |                      | 300<br>400 | 573.15<br>673.15 |           | 45.357<br>48.846     |
| Nickel alloy        | 70 Ni, 28 Cu, 2 Fe   | 20         | 293.15           | ≈8200     | 34.890               |
| Nickel-chrome       | 90 Ni, 10 Cr         | 0          |                  |           | 17.096               |
| Nickei-chrome       | 90 NI, 10 CI         | 20         | 273.15<br>293.15 | ≈8220     | 17.445               |
|                     |                      | 100        | 373.15           |           | 18.957               |
|                     |                      | 200        | 473.15           |           | 20.934               |
|                     |                      | 300        | 573.15           |           | 22.795               |
|                     |                      | 400        | 673.15           |           | 24.656               |
|                     | 80 Ni, 20 Cr         | 0          | 273.15           | ≈8200     | 12.212               |
|                     |                      | 20         | 293.15           |           | 12.560               |
|                     |                      | 100        | 373.15           |           | 13.840               |
|                     |                      | 200        | 473.15           |           | 15.584               |
|                     |                      | 300        | 573.15           |           | 17.212               |
|                     |                      | 400        | 673.15           |           | 18.957               |
|                     | 44.50.45.5.50.50     | 600        | 873.15           | 2422      | 22.562               |
| Nickel-chrome steel | 61 Ni, 15 Cr, 20 Fe, | 20         | 293.15           | ≈8190     | 11.630               |
|                     | 4 Mn                 | 100        | 373.15           |           | 11.863               |
|                     |                      | 200        | 473.15           |           | 12.212               |
|                     |                      | 300        | 573.15           |           | 12.444               |
|                     |                      | 400<br>600 | 673.15<br>873.15 |           | 12.677<br>13.142     |
|                     |                      | 800        | 1073.15          |           | 13.956               |
|                     | 61 Ni, 16 Cr, 23 Fe  | 0          | 273.15           | ≈8190     | 11.863               |
|                     | 01111,10 01,2010     | 20         | 293.15           | -0150     | 12.095               |
|                     |                      | 100        | 373.15           |           | 13.258               |
|                     |                      | 200        | 473.15           |           | 14.654               |
|                     |                      | 300        | 573.15           |           | 16.049               |
|                     |                      | 400        | 673.15           |           | 17.445               |
|                     | 70 Ni, 18 Cr, 12 Fe  | 20         | 293.15           |           | 11.514               |
|                     | 62 Ni, 12 Cr, 26 Fe  | 20         | 293.15           | ≈8100     | 13.491               |
| Nickel-silver       | _                    | 0<br>100   | 273.15<br>373.15 | _         | 29.308<br>37.216     |
| Nightal steel       | 5 Ni:                |            |                  | 9120      |                      |
| Nickel steel        | 5 Ni<br>10 Ni        | 20<br>20   | 293.15<br>293.15 | 8130      | 34.890<br>27.912     |
|                     | 15 Ni                | 20         | 293.15           |           | 22.097               |
|                     | 20 Ni                | 20         | 293.15           |           | 18.608               |
|                     | 25 Ni                | 20         | 293.15           |           | 15.119               |
|                     | 30 Ni                | 20         | 293.15           |           | 12.212               |
|                     | 35 Ni                | 20         | 293.15           |           | 11.049               |
|                     | 40 Ni                | 20         | 293.15           |           | 11.049               |
|                     | 50 Ni                | 20         | 293.15           |           | 14.538               |
|                     | 60 Ni                | 20         | 293.15           |           | 19.190               |
|                     | 70 Ni                | 20         | 293.15           |           | 25.586               |
|                     | 80 Ni                | 20         | 293.15           |           | 32.564               |



| Alloy              | Composition (%)                | T (°C)     | T (K)            | Density<br>ρ (kg/m³) | Thermal conductivity λ (W/m K) |
|--------------------|--------------------------------|------------|------------------|----------------------|--------------------------------|
| Nickel steel       | 30 Ni, 1 Mn, 0.25 C            | 20<br>100  | 293.15<br>373.15 | 8190                 | 12.095<br>13.607               |
|                    | 36 Ni, 0.8 Mn                  | 20         | 293.15           |                      | 12.095                         |
|                    | 1.4 Ni, 0.5 Cr, 0.3 C          | 20         | 293.15           | ≈7850                | 45.357                         |
|                    | 1.4111,010 C1,010 C            | 100        | 373.15           | -7050                | 44.194                         |
|                    |                                | 300        | 573.15           |                      | 40.705                         |
|                    |                                | 500        | 773.15           |                      | 37.216                         |
| Phosphor bronze    | 92.8 Cu, 5 Sn, 2 Zn,<br>0.15 P | 20         | 293.15           | ≈8766                | 79.084                         |
|                    | 91.7 Cu, 8 Sn, 0.3 P           | 20         | 293.15           | 8800                 | 45.357                         |
|                    |                                | 100        | 373.15           |                      | 52.335                         |
|                    | 07.0 (1.10.0                   | 200        | 473.15           |                      | 61.639                         |
|                    | 87.8 Cu, 10 Sn, 2 Zn,<br>0.2 P | 20         | 293.15           | _                    | 41.868                         |
|                    | 87.2 Cu, 12.4 Sn, 0.4 P        | 20         | 293.15           | 8700                 | 36.053                         |
| Piston alloy, cast | 91.5 Al, 4.6 Cu,               | 0          | 273.15           | ≈2800                | 143.049                        |
|                    | 1.8 Ni, 1.5 Mg                 | 20         | 293.15           |                      | 144.212                        |
|                    |                                | 100<br>200 | 373.15<br>473.15 |                      | 151.190<br>158.168             |
|                    | 94 A1 12 C: 1 2 Cu             | 0          | 273.15           | ≈2800                | 134.908                        |
|                    | 84 Al, 12 Si, 1.2 Cu,<br>1 Ni  | 20         | 293.15           | =2800                | 134.908                        |
|                    | 1141                           | 100        | 373.15           |                      | 137.234                        |
|                    |                                | 200        | 473.15           |                      | 139.560                        |
| Platinum-iridium   | 90 Pt, 10 Ir                   | 0          | 273.15           | _                    | 30.936                         |
|                    |                                | 100        | 373.15           |                      | 31.401                         |
| Platinum-rhodium   | 90 Pt, 10 Rh                   | 0          | 273.15           | _                    | 30.238                         |
|                    |                                | 100        | 373.15           |                      | 30.587                         |
| Rose's metal       | 50 Bi, 25 Pb, 25 Sn            | 20         | 293.15           |                      | 16.282                         |
| Silumin            | 86 89 Al, 11 14 S              |            | 273.15           | 2600                 | 159.331                        |
|                    |                                | 20         | 293.15           |                      | 161.657                        |
| -                  |                                | 100        | 373.15           | =0.50                | 170.961                        |
| Steel              | 0.1 C                          | 0<br>100   | 273.15<br>373.15 | 7850                 | 59.313<br>52.335               |
|                    |                                | 200        | 473.15           |                      | 52.335                         |
|                    |                                | 300        | 573.15           |                      | 46.520                         |
|                    |                                | 400        | 673.15           |                      | 44.194                         |
|                    |                                | 600        | 873.15           |                      | 37.216                         |
|                    |                                | 900        | 1173.15          |                      | 33.727                         |
|                    | 0.2 C                          | 20         | 293.15           | 7850                 | 50.009                         |
|                    | 0.6 C                          | 20         | 293.15           | 7850                 | 46.520                         |
| —Bessemer          | 0.52 C, 0.34 Si                | 20         | 293.15           | 7850                 | 40.240                         |
| Tungsten steel     | 1 W, 0.6 Cr, 0.3 C             | 20         | 293.15           | 7900                 | 39.542                         |
|                    |                                | 100        | 373.15           |                      | 38.379                         |
|                    |                                | 300<br>500 | 573.15<br>773.15 |                      | 36.053<br>33.727               |
| V 1 A steel        | _                              | 20         | 293.15           | _                    | 20.934                         |
| V 2 A steel        | _                              | 20         | 293.15           | 7860                 | 15.119                         |
| Wood's metal       | 48 Bi, 26 Pb, 13 Sn,<br>13 Cd  | 20         | 293.15           | _                    | 12.793                         |

Source: Ref. 1 with permission.



Table 2.35 Thermophysical Properties of Miscellaneous Materials

|                                       | T                    | ypical properties at 300 k     | (                                           |
|---------------------------------------|----------------------|--------------------------------|---------------------------------------------|
| Description/composition               | Density ρ<br>(kg/m³) | Thermal conductivity k (W/m·K) | Specific<br>heat c <sub>p</sub><br>(J/kg·K) |
| Structural building materials         |                      |                                |                                             |
| Building boards                       |                      |                                |                                             |
| Asbestos-cement board                 | 1920                 | 0.58                           | _                                           |
| Gypsum or plaster board               | 800                  | 0.17                           | _                                           |
| Plywood                               | 545                  | 0.12                           | 1215                                        |
| Sheathing, regular density            | 290                  | 0.055                          | 1300                                        |
| Acoustic tile                         | 290                  | 0.058                          | 1340                                        |
| Hardboard, siding                     | 640                  | 0.094                          | 1170                                        |
| Hardboard, high density               | 1010                 | 0.15                           | 1380                                        |
| Particle board, low density           | 590                  | 0.078                          | 1300                                        |
| Particle board, high density<br>Woods | 1000                 | 0.170                          | 1300                                        |
| Hardwoods (oak, maple)                | 720                  | 0.16                           | 1255                                        |
| Softwoods (fir, pine)                 | 510                  | 0.12                           | 1380                                        |
| Masonry materials                     |                      |                                |                                             |
| Cement mortar                         | 1860                 | 0.72                           | 780                                         |
| Brick, common                         | 1920                 | 0.72                           | 835                                         |
| Brick, face                           | 2083                 | 1.3                            | _                                           |
| Clay tile, hollow                     |                      |                                |                                             |
| 1 cell deep, 10 cm thick              | _                    | 0.52                           | _                                           |
| 3 cells deep, 30 cm thick             | _                    | 0.69                           | _                                           |
| Concrete block, 3 oval cores          |                      |                                |                                             |
| Sand/gravel, 20 cm thick              | _                    | 1.0                            | _                                           |
| Cinder aggregate, 20 cm thick         | _                    | 0.67                           | _                                           |
| Concrete block, rectangular core      |                      |                                |                                             |
| 2 core, 20 cm thick, 16 kg            | _                    | 1.1                            | _                                           |
| Same with filled cores                | _                    | 0.60                           | _                                           |
| Plastering materials                  |                      |                                |                                             |
| Cement plaster, sand aggregate        | 1860                 | 0.72                           | _                                           |
| Gypsum plaster, sand aggregate        | 1680                 | 0.22                           | 1085                                        |
| Gypsum plaster, vermiculite aggregate | 720                  | 0.25                           | _                                           |



|                                                                       | T                    | ypical properties at 300 I     | ζ                                           |
|-----------------------------------------------------------------------|----------------------|--------------------------------|---------------------------------------------|
| Description/composition                                               | Density ρ<br>(kg/m³) | Thermal conductivity k (W/m·K) | Specific<br>heat c <sub>p</sub><br>(J/kg·K) |
| Insulating materials and systems                                      |                      |                                |                                             |
| Blanket and batt                                                      | 4.0                  | 0.046                          |                                             |
| Glass fiber, paper faced                                              | 16                   | 0.046                          | _                                           |
|                                                                       | 28                   | 0.038                          | _                                           |
| Glass fiber, coated; duct liner                                       | 40<br>32             | 0.035<br>0.038                 | 835                                         |
|                                                                       | 52                   | 01000                          | 000                                         |
| Board and slab                                                        | 145                  | 0.058                          | 1000                                        |
| Cellular glass<br>Glass fiber, organic bonded                         | 105                  | 0.036                          | 795                                         |
| Polystyrene, expanded                                                 | 103                  | 0.030                          | 193                                         |
| Extruded (R-12)                                                       | 55                   | 0.027                          | 1210                                        |
| Molded beads                                                          | 16                   | 0.040                          | 1210                                        |
| Mineral fiberboard; roofing material                                  | 265                  | 0.049                          | _                                           |
| Wood, shredded/cemented                                               | 350                  | 0.087                          | 1590                                        |
| Cork                                                                  | 120                  | 0.039                          | 1800                                        |
| Loose fill                                                            |                      |                                |                                             |
| Cork, granulated                                                      | 160                  | 0.045                          | _                                           |
| Diatomaceous silica, coarse powder                                    | 350                  | 0.069                          | _                                           |
| •                                                                     | 400                  | 0.091                          | _                                           |
| Diatomaceous silica, fine powder                                      | 200                  | 0.052                          | _                                           |
|                                                                       | 275                  | 0.061                          | _                                           |
| Glass fiber, poured or blown                                          | 16                   | 0.043                          | 835                                         |
| Vermiculite, flakes                                                   | 80                   | 0.068                          | 835                                         |
|                                                                       | 160                  | 0.063                          | 1000                                        |
| Formed/foamed in place                                                |                      |                                |                                             |
| Mineral wool granules with                                            |                      |                                |                                             |
| asbestos/inorganic binders, sprayed                                   | 190                  | 0.046                          | _                                           |
| Polyvinyl acetate cork mastic, sprayed                                |                      |                                |                                             |
| or troweled                                                           |                      | 0.100                          | 1045                                        |
| Urethane, two-part mixture; rigid foam                                | 70                   | 0.026                          | 1045                                        |
| Reflective                                                            |                      |                                |                                             |
| Aluminum foil separating fluffy glass                                 |                      |                                |                                             |
| mats; 10-12 layers; evacuated; for                                    | 40                   | 0.00016                        |                                             |
| cryogenic application (150 K)                                         | 40                   | 0.00016                        | _                                           |
| Aluminum foil and glass paper                                         |                      |                                |                                             |
| laminate; 75–150 layers; evacuated;                                   | 120                  | 0.000017                       |                                             |
| for cryogenic application (150 K)<br>Typical silica powder, evacuated | 160                  | 0.00017                        | _                                           |
| Typical silica powder, evacuated                                      | 100                  | 0.0017                         | _                                           |



|                                      | Maximum         | Typical            |       |       |       | Typical | thermal | conduct | ivity k ( | W/m·K) | at vario | us temp | eratures |       |       |       |
|--------------------------------------|-----------------|--------------------|-------|-------|-------|---------|---------|---------|-----------|--------|----------|---------|----------|-------|-------|-------|
| Description/composition              | service<br>T(K) | density<br>(kg/m³) | 200 K | 215 K | 230 K | 240 K   | 255 K   | 270 K   | 285 K     | 300 K  | 310 K    | 365 K   | 420 K    | 530 K | 645 K | 750 K |
| Industrial insulation                |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| Blankets                             |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| Blanket, mineral fiber, metal        | 920             | 96-192             | _     | _     | _     | _       | _       | _       | _         | _      | 0.038    | 0.046   | 0.056    | 0.078 | _     | _     |
| reinforced                           | 815             | 40-96              | _     | _     | _     | _       | _       | _       | _         | _      | 0.035    | 0.045   | 0.058    | 0.088 | _     | _     |
| Blanket, mineral fiber, glass;       | 450             | 10                 | _     | _     | _     | 0.036   | 0.038   | 0.040   | 0.043     | 0.048  | 0.052    | 0.076   | _        | _     | _     | _     |
| fine fiber, organic bonded           |                 | 12                 | _     | _     | _     | 0.035   | 0.036   | 0.039   | 0.042     | 0.046  | 0.049    | 0.069   | _        | _     | _     | _     |
|                                      |                 | 16                 | _     | _     | _     | 0.033   | 0.035   | 0.036   | 0.039     | 0.042  | 0.046    | 0.062   | _        | _     | _     | _     |
|                                      |                 | 24                 | _     | _     | _     | 0.030   | 0.032   | 0.033   | 0.036     | 0.039  | 0.040    | 0.053   | _        | _     | _     | _     |
|                                      |                 | 32                 | _     | _     | _     | 0.029   | 0.030   | 0.032   | 0.033     | 0.036  | 0.038    | 0.048   | _        | _     | _     | _     |
|                                      |                 | 48                 | _     | _     | _     | 0.027   | 0.029   | 0.030   | 0.032     | 0.033  | 0.035    | 0.045   | _        | _     | _     | _     |
| Blanket, alumina-silica fiber        | 1530            | 48                 | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.071 | 0.105 | 0.150 |
|                                      |                 | 64                 | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.059 | 0.087 | 0.125 |
|                                      |                 | 96                 | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.052 | 0.076 | 0.100 |
|                                      |                 | 128                | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.049 | 0.068 | 0.091 |
| Felt, semirigid; organic bonded      | 480             | 50-125             | _     | _     | _     | _       | _       | 0.035   | 0.036     | 0.038  | 0.039    | 0.051   | 0.063    | _     | _     | _     |
|                                      | 730             | 50                 | 0.023 | 0.025 | 0.026 | 0.027   | 0.029   | 0.030   | 0.032     | 0.033  | 0.035    | 0.051   | 0.079    | _     | _     | _     |
| Felt, laminated; no binder           | 920             | 120                | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | 0.051    | 0.065 | 0.087 | _     |
| Blocks, boards, and pipe insulations |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| Asbestos paper, laminated and        |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| corrugated                           |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| 4-ply                                | 420             | 190                | _     | _     | _     | _       | _       | _       | _         | 0.078  | 0.082    | 0.098   | _        | _     | _     | _     |
| 6-ply                                | 420             | 255                | _     | _     | _     | _       | _       | _       | _         | 0.071  | 0.074    | 0.085   | _        | _     | _     | _     |
| 8-ply                                | 420             | 300                | _     | _     | _     | _       | _       | _       | _         | 0.068  | 0.071    | 0.082   | _        | _     | _     | _     |
| Magnesia, 85%                        | 590             | 185                | _     | _     | _     | _       | _       | _       | _         | _      | 0.051    | 0.055   | 0.061    | _     | _     | _     |
| Calcium silicate                     | 920             | 190                | _     | _     | _     | _       | _       | _       | _         | _      | 0.055    | 0.059   | 0.063    | 0.075 | 0.089 | 0.104 |
| Cellular glass                       | 700             | 145                | _     | _     | 0.046 | 0.048   | 0.051   | 0.052   | 0.055     | 0.058  | 0.062    | 0.069   | 0.079    | _     | _     | _     |
| Diatomaceous silica                  | 1145            | 345                | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.092 | 0.098 | 0.104 |
|                                      | 1310            | 385                | _     | _     | _     | _       | _       | _       | _         | _      | _        | _       | _        | 0.101 | 0.100 | 0.115 |
| Polystyrene, rigid                   |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| Extruded (R-12)                      | 350             | 56                 | 0.023 | 0.023 | 0.022 | 0.023   | 0.023   | 0.025   | 0.026     | 0.027  | 0.029    | _       | _        | _     | _     | _     |
| Extruded (R-12)                      | 350             | 35                 | 0.023 | 0.023 | 0.025 | 0.023   | 0.025   | 0.026   | 0.027     | 0.029  | _        | _       | _        | _     | _     | _     |
| Molded beads                         | 350             | 16                 | 0.026 | 0.029 | 0.030 | 0.033   | 0.035   | 0.036   | 0.038     | 0.040  | _        | _       | _        | _     | _     | _     |
| Rubber, rigid foamed                 | 340             | 70                 | _     | _     | _     | _       | _       | 0.029   | 0.030     | 0.032  | 0.033    | _       | _        | _     | _     | _     |
| Insulating cement                    |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| Mineral fiber (rock, slag or glass)  |                 |                    |       |       |       |         |         |         |           |        |          |         |          |       |       |       |
| With clay binder                     | 1255            | 430                | _     | _     | _     | _       | _       | _       | _         | _      | 0.071    | 0.079   | 0.088    | 0.105 | 0.123 |       |
| With hydraulic setting binder        | 922             | 560                | _     | _     | _     | _       | _       | _       | _         | _      | 0.108    | 0.079   | 0.123    | 0.103 | 0.123 | _     |
| Loose fill                           | 722             | 500                | _     | _     | _     | _       | _       | _       | _         | _      | 0.100    | 0.113   | 0.123    | 0.137 | _     | _     |
| Cellulose, wood, or paper pulp       |                 | 45                 |       |       |       |         |         |         | 0.038     | 0.039  | 0.042    |         |          |       |       |       |
| Perlite, expanded                    | _               | 105                | 0.036 | 0.039 | 0.042 | 0.043   | 0.046   | 0.049   | 0.051     | 0.053  | 0.042    | _       | _        | _     | _     | _     |
| Vermiculite, expanded                | _               | 122                | 0.050 | 0.059 | 0.042 | 0.043   | 0.046   | 0.049   | 0.051     | 0.053  | 0.036    | _       | _        | _     | _     | _     |
| vermicunte, expanded                 | _               | 80                 | _     | _     | 0.036 | 0.058   | 0.055   | 0.058   | 0.061     | 0.063  | 0.071    | _       | _        | _     | _     | _     |



| Description/composition        | T (K)       | Density ρ<br>(kg/m³) | Thermal conductivity k (W/m·K) | Specific<br>heat c <sub>p</sub><br>(J/kg·K) |
|--------------------------------|-------------|----------------------|--------------------------------|---------------------------------------------|
| Other materials                | 7 (K)       | (Kg/III )            | (**/III K)                     | (3/Kg K)                                    |
| Asphalt                        | 300         | 2115                 | 0.062                          | 920                                         |
| Bakelite                       | 300         | 1300                 | 1.4                            | 1465                                        |
|                                | 300         | 1300                 | 1.4                            | 1403                                        |
| Brick, refractory              | 072         |                      | 10.5                           |                                             |
| Carborundum                    | 872<br>1672 | _                    | 18.5                           | _                                           |
| Chrome brick                   | 473         | 3010                 | 11.0<br>2.3                    | 835                                         |
| Chrome brick                   | 823         | 3010                 | 2.5                            | 033                                         |
|                                | 1173        |                      | 2.0                            |                                             |
| Diatomaceous silica, fired     | 478         | _                    | 0.25                           | _                                           |
| Diatoliace du sinea, in ea     | 1145        | _                    | 0.30                           | _                                           |
| Fire clay, burnt 1600 K        | 773         | 2050                 | 1.0                            | 960                                         |
| **                             | 1073        | _                    | 1.1                            | _                                           |
|                                | 1373        | _                    | 1.1                            | _                                           |
| Fire clay, burnt 1725 K        | 773         | 2325                 | 1.3                            | 960                                         |
|                                | 1073        | _                    | 1.4                            | _                                           |
|                                | 1373        | _                    | 1.4                            | _                                           |
| Fire clay brick                | 478         | 2645                 | 1.0                            | 960                                         |
|                                | 922         | _                    | 1.5                            | _                                           |
| M2                             | 1478        | _                    | 1.8                            | 1120                                        |
| Magnesite                      | 478         | _                    | 3.8                            | 1130                                        |
|                                | 922<br>1478 | _                    | 2.8<br>1.9                     | _                                           |
|                                |             | _                    |                                | _                                           |
| Clay                           | 300         | 1460                 | 1.3                            | 880                                         |
| Coal, anthracite               | 300         | 1350                 | 0.26                           | 1260                                        |
| Concrete (stone mix)           | 300         | 2300                 | 1.4                            | 880                                         |
| Cotton                         | 300         | 80                   | 0.06                           | 1300                                        |
| Foodstuffs                     |             |                      |                                |                                             |
| Banana (75.7% water content)   | 300         | 980                  | 0.481                          | 3350                                        |
| Apple, red (75% water content) | 300         | 840                  | 0.513                          | 3600                                        |
| Cake batter                    | 300         | 720                  | 0.223                          | _                                           |
| Cake, fully done               | 300         | 280                  | 0.121                          | _                                           |
| Chicken meat, white            | 198         | _                    | 1.60                           | _                                           |
| (74.4% water content)          | 233         | _                    | 1.49                           | _                                           |
|                                | 253         | _                    | 1.35                           | _                                           |
|                                | 263<br>273  | _                    | 1.20<br>0.476                  | _                                           |
|                                | 283         | _                    | 0.480                          | _                                           |
|                                | 293         |                      | 0.489                          |                                             |
|                                | 2,55        |                      | 0.407                          |                                             |
| Glass                          | 200         | 2500                 | 1.4                            | 750                                         |
| Plate (soda lime)              | 300<br>300  | 2500<br>2225         | 1.4<br>1.4                     | 750<br>835                                  |
| Pyrex                          |             |                      |                                |                                             |
| Ice                            | 273         | 920                  | 0.188                          | 2040                                        |
|                                | 253         | _                    | 0.203                          | 1945                                        |
| Leather (sole)                 | 300         | 998                  | 0.013                          | _                                           |
| Paper                          | 300         | 930                  | 0.011                          | 1340                                        |
| Paraffin                       | 300         | 900                  | 0.020                          | 2890                                        |



| Description/composition             | T (K) | Density ρ<br>(kg/m³) | Thermal conductivity k (W/m·K) | Specific<br>heat c <sub>p</sub><br>(J/kg·K) |
|-------------------------------------|-------|----------------------|--------------------------------|---------------------------------------------|
| Other materials (continued)<br>Rock |       |                      |                                |                                             |
| Granite, Barre                      | 300   | 2630                 | 2.79                           | 775                                         |
| Limestone, Salem                    | 300   | 2320                 | 2.15                           | 810                                         |
| Marble, Halston                     | 300   | 2680                 | 2.80                           | 830                                         |
| Quartzite, Sioux                    | 300   | 2640                 | 5.38                           | 1105                                        |
| Sandstone, Berea                    | 300   | 2150                 | 2.90                           | 745                                         |
| Rubber, vulcanized                  |       |                      |                                |                                             |
| Soft                                | 300   | 1100                 | 0.012                          | 2010                                        |
| Hard                                | 300   | 1190                 | 0.013                          | _                                           |
| Sand                                | 300   | 1515                 | 0.027                          | 800                                         |
| Soil                                | 300   | 2050                 | 0.52                           | 1840                                        |
| Snow                                | 273   | 110                  | 0.049                          | _                                           |
|                                     |       | 500                  | 0.190                          | _                                           |
| Teflon                              | 300   | 2200                 | 0.35                           | _                                           |
|                                     | 400   | _                    | 0.45                           | _                                           |
| Tissue, human                       |       |                      |                                |                                             |
| Skin                                | 300   | _                    | 0.37                           | _                                           |
| Fat layer (adipose)                 | 300   | _                    | 0.2                            | _                                           |
| Muscle                              | 300   | _                    | 0.41                           | _                                           |
| Wood, cross grain                   |       |                      |                                |                                             |
| Balsa                               | 300   | 140                  | 0.055                          | _                                           |
| Cypress                             | 300   | 465                  | 0.097                          | _                                           |
| Fir                                 | 300   | 415                  | 0.11                           | 2720                                        |
| Oak                                 | 300   | 545                  | 0.17                           | 2385                                        |
| Yellow pine                         | 300   | 640                  | 0.15                           | 2805                                        |
| White pine                          | 300   | 435                  | 0.11                           | _                                           |
| Wood, radial                        |       |                      |                                |                                             |
| Oak                                 | 300   | 545                  | 0.19                           | 2385                                        |
| Fir                                 | 300   | 420                  | 0.14                           | 2720                                        |

Source: Ref. 6 with permission.

# 2.5. THERMOPHYSICAL PROPERTIES OF SATURATED REFRIGERANTS

Table 2.36 Saturation Properties for Refrigerant 22

| T <sub>s</sub> (°C) | P <sub>s</sub> (MPa) | ρ (kg/m³) | C <sub>ρ</sub> (kJ/kg K) | μ (Pas) × 10 <sup>6</sup> | к (mW/m K) | σ (mN/m) |
|---------------------|----------------------|-----------|--------------------------|---------------------------|------------|----------|
| -140                | _                    | 1675.3 L  | _                        | _                         | _          | 35.70    |
|                     |                      | - V       | 0.445                    | _                         | _          |          |
| -120                | 0.00023              | 1624.0 L  | _                        | _                         | _          | 32.00    |
|                     |                      | 0.01571 V | 0.470                    | _                         | _          |          |



| T (°C)             | P (MPa) | ρ (kg/m ) | C (kJ/kg K) | μ (Pas) × 10 | κ (mW/m K) | σ (mN/m) |
|--------------------|---------|-----------|-------------|--------------|------------|----------|
| -100               | 0.00200 | 1571.7 L  | -           | -            | -          | 28.37    |
|                    |         | 0.12051 V | 0.497       | _            | _          |          |
| -80                | 0.01035 | 1518.3 L  | 1.070       | _            | _          | 24.83    |
|                    |         | 0.56129 V | 0.527       | _            | _          |          |
| -60                | 0.03747 | 1463.6 L  | 1.076       | -            | 123.1      | 21.39    |
|                    |         | 1.86102 V | 0.563       | _            | 5.61       |          |
| -40*               | 0.10132 | 1409.1 L  | 1.092       | _            | 114.1      | 18.18    |
|                    |         | 4.7046 V  | 0.606       | -            | 6.93       |          |
| -20                | 0.24529 | 1346.8 L  | 1.125       | 260.1        | 104.8      | _        |
|                    |         | 10.797 V  | 0.667       | -            | 8.27       |          |
| 0.00               | 0.49811 | 1281.8 L  | 1.171       | 210.1        | 96.2       | _        |
|                    |         | 21.263 V  | 0.744       | 11.80        | 9.50       |          |
| 20                 | 0.91041 | 1210.0 L  | 1.238       | 169.1        | 87.8       | _        |
|                    |         | 38.565 V  | 0.849       | -            | 10.71      |          |
| 40                 | 1.5341  | 1128.4 L  | 1.338       | 136.3        | 79.8       | _        |
|                    |         | 66.357 V  | 1.009       | -            | 11.90      |          |
| 60                 | 2.4274  | 1030.5 L  | 1.528       | -            | -          | _        |
|                    |         | 111.73 V  | 1.307       | _            | _          |          |
| 80                 | 3.6627  | 894.8 L   | 2.176       | -            | _          | _        |
|                    |         | 195.69 V  | 2.268       | -            | -          |          |
| 96.14 <sup>†</sup> | 4.9900  | 523.8 L   | -           | -            | _          | 0.00     |
|                    |         | 523.8 V   | -           | -            | -          |          |
| * Boiling po       | oint.   |           |             |              |            |          |
| † Critical po      | pint.   |           |             |              |            |          |
| L, liquid; V,      | vapor.  |           |             |              |            |          |



Table 2.37 Saturation Properties for Refrigerant 123

| T <sub>s</sub> (°C) | P <sub>s</sub> (MPa) | ρ (kg/m³) | C <sub>ρ</sub> (kJ/kg K) | μ (Pas) × 10 <sup>6</sup> | к (mW/m K) | σ (mN/m) |
|---------------------|----------------------|-----------|--------------------------|---------------------------|------------|----------|
| -107.15*            | 0.0000               | 1770.9 L  | 0.9287                   | -                         | -          | -        |
|                     |                      | 0.00047 V | 0.4737                   | _                         | -          | -        |
| -100                | 0.00001              | 1754.5 L  | 0.9259                   | _                         | _          | _        |
|                     |                      | 0.00123 V | 0.4863                   | _                         | -          | -        |
| -80                 | 0.00013              | 1709.5 L  | 0.9325                   | _                         | _          | _        |
|                     |                      | 0.01195 V | 0.5202                   | _                         | -          | -        |
| -60                 | 0.00081              | 1665.0 L  | 0.9319                   | _                         | _          | _        |
|                     |                      | 0.06977 V | 0.5529                   | _                         | -          | -        |
| -40                 | 0.00358              | 1619.9 L  | 0.9480                   | _                         | _          | 23.19    |
|                     |                      | 0.28314 V | 0.5850                   | _                         | -          |          |
| -20                 | 0.01200              | 1573.7 L  | 0.9681                   | 735.33                    | 89.320     | 20.65    |
|                     |                      | 0.87999 V | 0.6174                   | 9.085                     | 8.051      |          |
| 0                   | 0.03265              | 1526.0 L  | 0.9902                   | 564.55                    | 83.816     | 18.18    |
|                     |                      | 2.2417 V  | 0.6508                   | 9.838                     | 9.089      |          |
| 20                  | 0.07561              | 1476.5 L  | 1.0135                   | 442.57                    | 78.512     | 15.77    |
|                     |                      | 4.9169 V  | 0.6861                   | 10.562                    | 10.163     |          |
| 27.46 <sup>†</sup>  | 0.10000              | 1457.5 L  | 1.0226                   | 405.86                    | 76.581     | 14.88    |
|                     |                      | 6.3917 V  | 0.6999                   | 10.825                    | 10.576     |          |
| 40                  | 0.15447              | 1424.7 L  | 1.0384                   | 352.37                    | 73.388     | 13.42    |
|                     |                      | 9.6296 V  | 0.7242                   | 11.259                    | 11.291     |          |
| 60                  | 0.28589              | 1369.9 L  | 1.0662                   | 233.84                    | 68.417     | 11.15    |
|                     |                      | 17.310 V  | 0.7667                   | 11.939                    | 12.496     |          |
| 80                  | 0.48909              | 1311.2 L  | 1.0996                   | 230.53                    | 63.563     | 8.97     |
|                     |                      | 29.188 V  | 0.8162                   | 12.625                    | 13.807     |          |
| 100                 | 0.78554              | 1246.9 L  | 1.1432                   | 188.08                    | 58.769     | 6.88     |
|                     |                      | 46.996 V  | 0.8779                   | 13.370                    | 15.260     |          |

| T (°C)              | P (MPa)            | ρ (kg/m ) | C (kJ/kg K) | μ (Pas) × 10 | к (mW/m K) | σ (mN/m) |
|---------------------|--------------------|-----------|-------------|--------------|------------|----------|
| 120                 | 1.1989             | 1174.3 L  | 1.2072      | 153.35       | _          | 4.91     |
|                     |                    | 73.471 V  | 0.9643      | 14.289       | _          |          |
| 140                 | 1.7562             | 1088.2 L  | 1.3177      | 123.81       | _          | 3.08     |
|                     |                    | 113.71 V  | 1.1106      | 15.646       | _          |          |
| 160                 | 2.4901             | 975.66 L  | 1.5835      | _            | _          | 1.44     |
|                     |                    | 180.24 V  | 1.4728      | -            | -          |          |
| 180                 | 3.4505             | 765.88 L  | 4.5494      | _            | _          | 0.14     |
|                     |                    | 341.95 V  | 5.6622      | -            | _          |          |
| 183.68 <sup>‡</sup> | 3.6618             | 550.00 L  | -           | _            | _          | 0.00     |
|                     |                    | 550.00 V  | _           | -            | _          |          |
| * Triple point      |                    |           | !           | !            | !          |          |
| † Normal boil       | ling point.        |           |             |              |            |          |
| ‡ Critical poir     | nt.                |           |             |              |            |          |
| L, liquid; V, va    | apor.              |           |             |              |            |          |
| Extracted fro       | m Ref. 9 with perr | nission   |             |              |            |          |

Table 2.38 Saturation Properties for Refrigerant 134a

| T <sub>s</sub> (°C) | P <sub>s</sub> (MPa) | ρ (kg/m³) | C <sub>ρ</sub> (kJ/kg K) | μ (Pas) × 10 <sup>6</sup> | к (mW/m K) | σ (mN/m) |
|---------------------|----------------------|-----------|--------------------------|---------------------------|------------|----------|
| -103.30*            | 0.00039              | 1591.1 L  | 1.1838                   | 2186.6                    | _          | 28.15    |
|                     |                      | 0.02817 V | 0.5853                   | 6.63                      | _          |          |
| -100                | 0.0056               | 1582.3 L  | 1.1842                   | 1958.2                    | _          | 27.56    |
|                     |                      | 0.03969 V | 0.5932                   | 6.76                      | _          |          |
| -80                 | 0.00367              | 1529.0 L  | 1.1981                   | 1109.9                    | _          | 24.11    |
|                     |                      | 0.23429 V | 0.6416                   | 7.57                      | _          |          |
| -60                 | 0.01591              | 1474.3 L  | 1.2230                   | 715.4                     | 121.1      | 20.81    |
|                     |                      | 0.92676 V | 0.6923                   | 8.38                      | _          |          |
| -40                 | 0.05121              | 1417.7 L  | 1.2546                   | 502.2                     | 111.9      | 17.66    |



| T (°C)              | P (MPa) | ρ (kg/m ) | C (kJ/kg K) | μ (Pas) × 10 | κ (mW/m K) | σ (mN/m) |
|---------------------|---------|-----------|-------------|--------------|------------|----------|
|                     |         | 2.7695 V  | 0.7490      | 9.20         | 8.19       |          |
| -26.08 <sup>†</sup> | 0.10133 | 1376.6 L  | 1.2805      | 363.1        | 105.1      | 15.54    |
|                     |         | 5.2566 V  | 0.7941      | 9.90         | 9.55       |          |
| -20                 | 0.13273 | 1358.2 L  | 1.2930      | 337.2        | 102.4      | 14.51    |
|                     |         | 6.7845 V  | 0.8158      | 10.16        | 10.11      |          |
| 0                   | 0.2928  | 1294.7 L  | 1.3410      | 265.3        | 93.67      | 11.56    |
|                     |         | 14.428 V  | 0.8972      | 11.02        | 11.96      |          |
| 20                  | 0.5717  | 1225.3 L  | 1.4048      | 208.7        | 84.78      | 8.76     |
|                     |         | 27.780 V  | 1.0006      | 11.91        | 13.93      |          |
| 40                  | 1.0165  | 1146.7 L  | 1.4984      | 162.7        | 75.69      | 6.13     |
|                     |         | 50.085 V  | 1.1445      | 12.89        | 16.19      |          |
| 60                  | 1.6817  | 1052.8 L  | 1.6601      | 124.1        | 66.36      | 3.72     |
|                     |         | 87.379 V  | 1.3868      | 14.15        | 19.14      |          |
| 80                  | 2.6332  | 928.24 L  | 2.0648      | 89.69        | 57.15      | 1.60     |
|                     |         | 115.07 V  | 2.0122      | 16.31        | 24.0       |          |
| 101.06 <sup>‡</sup> | 4.0592  | 511.94 L  | _           | _            | -          | 0.0      |
|                     |         | 511.94 V  | _           | _            | _          |          |
| * Triple point.     |         |           |             |              |            |          |

<sup>&</sup>lt;sup>†</sup> Boiling point.

Extracted from Ref. 10 with permission.

<sup>&</sup>lt;sup>‡</sup> Critical point.



Table 2.39 Saturation Properties for Refrigerant 502 (Azeotrope of R22 and R115)

| T <sub>s</sub> (°C) | P <sub>s</sub> (MPa) | ρ (kg/m³) | C <sub>ρ</sub> (kJ/kg K) | μ (Pas) × 10 <sup>6</sup> | к (mW/m K) | σ (mN/m) |
|---------------------|----------------------|-----------|--------------------------|---------------------------|------------|----------|
| -70                 | 0.02757              | 1557.6 L  | 1.024                    | 543.6                     | _          | _        |
|                     |                      | 1.8501 V  | _                        | _                         |            |          |
| -60                 | 0.04872              | 1527.2 L  | 1.042                    | 469.7                     | 97.9       | 17.41    |
|                     |                      | 3.1417 V  | 0.574                    | _                         | _          |          |
| -45.42*             | 0.10132              | 1481.5 L  | 1.071                    | 383.9                     | 92.1       | 15.16    |
|                     |                      | 6.2181 V  | 0.600                    | _                         | _          |          |
| -40                 | 0.12964              | 1464.0 L  | 1.082                    | 358.1                     | 90.0       | 14.35    |
|                     |                      | 7.8315 V  | 0.609                    | _                         | 7.11       |          |
| -20                 | 0.29101              | 1396.4 L  | 1.128                    | 282.6                     | 82.4       | 11.42    |
|                     |                      | 16.818 V  | 0.649                    | _                         | 8.47       |          |
| 0                   | 0.57313              | 1322.5 L  | 1.178                    | 229.2                     | 74.8       | 8.64     |
|                     |                      | 32.425 V  | 0.709                    | 11.69                     | 9.80       |          |
| 20                  | 1.0197               | 1239.4 L  | 1.234                    | _                         | 67.1       | _        |
|                     |                      | 58.038 V  | 0.804                    | 12.84                     | 11.21      |          |
| 40                  | 1.6770               | 1140.7 L  | 1.295                    | _                         | _          | _        |
|                     |                      | 99.502 V  | 0.949                    | 13.99                     | 12.81      |          |
| 60                  | 2.6014               | 1010.5 L  | _                        | _                         | _          | _        |
|                     |                      | 171.23 V  | _                        | _                         | _          | -        |
| 82.2 <sup>†</sup>   | 4.075                | 561 L     | _                        | _                         | _          | _        |
|                     |                      | 561 V     | -                        | _                         | -          |          |
| * Boiling poir      | nt.                  |           |                          |                           |            |          |
| † Critical poi      | nt.                  |           |                          |                           |            |          |
| Extracted fro       | om Ref. 8 with per   | mission.  |                          |                           |            |          |



Table 2.40 Saturation Properties for Ammonia

| T <sub>sat</sub> (K)  p <sub>sat</sub> (kPa)    | 239.75<br>101.3 | 250<br>165.4 | 270<br>381.9 | 290<br>775.3 | 310<br>1424.9 | 330<br>2422 | 350<br>3870 | 370<br>5891 | 390<br>8606 | 400<br>10,280 |
|-------------------------------------------------|-----------------|--------------|--------------|--------------|---------------|-------------|-------------|-------------|-------------|---------------|
| ρ <sub>ℓ</sub> ,<br>kg/m³                       | 682             | 669          | 643          | 615          | 584           | 551         | 512         | 466         | 400         | 344           |
| ρ <sub>g</sub> ,<br>kg/m³                       | 0.86            | 1.41         | 3.09         | 6.08         | 11.0          | 18.9        | 31.5        | 52.6        | 93.3        | 137           |
| h <sub>ℓ</sub> , kJ/kg                          | 808.0           | 854.0        | 945.7        | 1039.6       | 1135.7        | 1235.7      | 1341.9      | 1457.5      | 1591.4      | 1675.3        |
| <i>h<sub>g</sub></i> , kJ∕kg                    | 2176            | 2192         | 2219         | 2240         | 2251          | 2255        | 2251        | 2202        | 2099        | 1982          |
| Δh <sub>g,ℓ</sub> ,<br>kJ/kg                    | 1368            | 1338         | 1273         | 1200         | 1115          | 1019        | 899         | 744         | 508         | 307           |
| c <sub>p,ℓ</sub> ,<br>kJ/(kg<br>K)              | 4.472           | 4.513        | 4.585        | 4.649        | 4.857         | 5.066       | 5.401       | 5.861       | 7.74        |               |
| c <sub>p,g</sub> ,<br>kJ/(kg<br>K)              | 2.12            | 2.32         | 2.69         | 3.04         | 3.44          | 3.90        | 4.62        | 6.21        | 8.07        |               |
| ηℓ,<br>μNs/m²                                   | 285             | 246          | 190          | 152          | 125           | 105         | 88.5        | 70.2        | 50.7        | 39.5          |
| η <sub>g</sub> ,<br>μNs/m²                      | 9.25            | 9.59         | 10.30        | 11.05        | 11.86         | 12.74       | 13.75       | 15.06       | 17.15       | 19.5          |
| λ <sub>ℓ</sub><br>(mW/m <sup>2</sup><br>)/(K/m) | 614             | 592          | 569          | 501          | 456           | 411         | 365         | 320         | 275         | 252           |
| λ <sub>g</sub><br>(mW/m <sup>2</sup><br>)/(K/m) | 18.8            | 19.8         | 22.7         | 25.2         | 28.9          | 34.3        | 39.5        | 50.4        | 69.2        | 79.4          |
| Pr <sub>ℓ</sub>                                 | 2.06            | 1.88         | 1.58         | 1.39         | 1.36          | 1.32        | 1.34        | 1.41        | 1.43        |               |
| $Pr_g$                                          | 1.04            | 1.11         | 1.17         | 1.25         | 1.31          | 1.34        | 1.49        | 1.70        | 1.86        |               |
| σ, mN/m                                         | 33.9            | 31.5         | 26.9         | 22.4         | 18.0          | 13.7        | 9.60        | 5.74        | 2.21        | 0.68          |
| β <sub>e,ℓ</sub> , kK <sup>-1</sup>             | 1.90            | 1.98         | 2.22         | 2.63         | 3.18          | 4.01        | 5.50        | 8.75        | 19.7        | 29.2          |

#### 2.6. ACKNOWLEDGMENT

The author gratefully acknowledges the use of a number of thermophysical property tables from previous editions of *Handbook of Heat Transfer*. These include Table 12 from the first edition, prepared by Professor Warren Ibele of the University of Minnesota, and Tables 11, 12, 14, 16, 21, 29, 30, and 33, prepared by Professor Peter Liley of Purdue University.



#### 2.7. NOMENCLATURE

### 2.7.1. Symbol, Definition, SI Units, English Units

| c <sub>p</sub>  | specific heat at constant pressure: kJ/(kg·K), Btu/(lb <sub>m</sub> ·°F)         |
|-----------------|----------------------------------------------------------------------------------|
| C <sub>pf</sub> | specific heat at constant pressure of saturated liquid: kJ/(kg·K), Btu/(lb m·°F) |
| c <sub>v</sub>  | specific heat at constant volume: kJ/(kg·K), Btu/(lb <sub>m</sub> ·°F)           |
| D <sub>ij</sub> | diffusion coefficient: m <sup>2</sup> /s, ft <sup>2</sup> /s                     |
| g               | gravitational acceleration: m/s ², ft/s²                                         |
| k               | thermal conductivity: W/(m·K), Btu/(h·ft·°F)                                     |
| k <sub>f</sub>  | thermal conductivity of saturated liquid: W/(m·K), Btu/(h·ft·°F)                 |
| М               | molecular weight: kg/(kilogram-mole), lb <sub>m</sub> /(pound-mole)              |
| P               | pressure: bar, lb <sub>f</sub> /in <sup>2</sup> (psi)                            |
| Pr              | Prandtl number, $\mu c_p/k$ , dimensionless                                      |
| R               | gas constant: kJ/(kg·K), Btu/(lb <sub>m</sub> ·°R)                               |
| Т               | temperature: K, °R, °C                                                           |
| v               | specific volume: m³/kg, ft³/lb <sub>m</sub>                                      |
| Z               | compressibility factor, Pv/RT, dimensionless                                     |
| -               |                                                                                  |

#### **Greek Symbols**

| α      | thermal diffusivity: m <sup>2</sup> /s, ft <sup>2</sup> /s                      |
|--------|---------------------------------------------------------------------------------|
| β      | coefficient of volumetric thermal expansion: K <sup>-1</sup> , °R <sup>-1</sup> |
| λorκ   | thermal conductivity: W/mK, Btu/h·ft·°F                                         |
| 0 or μ | dynamic viscosity: Pa·s, lb <sub>m</sub> /(h·ft)                                |
| V      | kinematic viscosity: m <sup>2</sup> /s, ft <sup>2</sup> /s                      |
| ρ      | density: kg/m³, lb <sub>m</sub> /ft³                                            |
| σ      | surface tension: N/m, lb <sub>f</sub> /ft                                       |

#### 2.8. REFERENCES



- 1. K. Raznjavić, Handbook of Thermodynamic Tables, 2d ed., 392 pp., Begell House, New York, ISBN 1-56700-046-0, 1996.
- 2. N. B. Vargaftik, Y. K. Vinogradov, and V. S. Yargan, *Handbook of Physical Properties of Liquids and Gases*, 1370 pp., Begell House, New York, ISBN 1-56700-063-0, 1996.
- 3. C. F. Beaton and G. F. Hewitt, *Physical Property Data for the Design Engineer*, 394 pp., Hemisphere Publishing, New York, ISBN 0-89116-739-0, 1989.
- 4. T. F. Irvine Jr. and P. Liley, Steam and Gas Tables with Computer Equations, Academic Press, San Diego, ISBN 0-12-374080-0, 1984.
- 5. G. F. Hewitt, ed., Handbook of Heat Exchanger Design, Begell House, New York, ISBN 1-56700-000-2, 1992.
- 6. F. P. Incropera and D. P. De Witt, *Fundamentals of Heat and Mass Transfer*, 3d ed., Wiley, New York, ISBN 0-471042711-X, 1990.
- 7. L. Hoar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables, Hemisphere Publishing, New York, ISBN 0-89116-354-9, 1984.
- American Society of Heating and Air Conditioning Engineers, 1993 ASHRAE Handbook, Fundamentals, SI Edition, ISBN 0-910110-97-2, 1993.
- 9. International Institute of Refrigeration, Thermodynamic and Physical Properties, R123, Paris, ISBN 2-903633-70-3, 1995.
- 10. International Institute of Refrigeration, Extended Thermophysical Properties, R134a, Paris, ISBN 2-903633-73-8, 1995.

## 2.9. SELECTED ADDITIONAL SOURCES OF THERMOPHYSICAL PROPERTIES

- 1. D. S. Viswanath and G. Natarajan, *Data Book on the Viscosity of Liquids*, 990 pp., Hemisphere Publishing, New York, ISBN 0-89116-778-1, 1989.
- 2. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, *Thermophysical Properties of Matter*, vol. 1, *Thermal Conductivity, Metallic Elements and Alloys*, 1469 pp., IFI/Plenum, New York, SBN 306-67021-6, 1970.
- 3. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, *Thermophysical Properties of Matter*, vol. 2, *Thermal Conductivity, Nonmetallic Solids*, 1172 pp., IFI/Plenum, New York, SBN 306-67022-4, 1970.
- 4. Y. S. Touloukian, P. E. Liley, and S. C. Saxena, *Thermophysical Properties of Matter*, vol. 3, *Thermal Conductivity of Nonmetallic Liquids and Gases*, 531 pp., IFI/Plenum, New York, SBN 306-67023-2, 1970.
- 5. Y. S. Touloukian, S. C. Saxena, and P. Hestermans, *Thermophysical Properties of Matter*, vol. 11, *Viscosity*, 643 pp., IFI/Plenum, New York, ISBN 0-306-67031-3, 1975.
- 6. B. Platzer, A. Polt, and G. Maurer, Thermophysical Properties of Refrigerants, Springer-Verlag, Berlin, 1990.
- 7. J. T. R. Watson, Viscosity of Gases in Metric Units, National Engineering Laboratory, HSMO, Edinburgh, 1972.
- 8. R. P. Danner and T. E. Daubert, *Physical and Thermodynamic Properties of Pure Chemicals*, DIPPR, Hemisphere Publishing, New York, 1989.
- 9. Warmeatlas, VDI-Verlag GMB H, Dusseldorf, 1984.
- 10. A. L. Harvath, Physical Properties of Inorganic Compounds SI Units, Crane, Russak & Co., New York, 1975.
- 11. C. L. Yaws, Physical Properties, McGraw-Hill, New York, 1972.