PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	A1	(11) International Publication Number	WO 99/64618
C12P 19/00, 17/04, C12N 1/12, 1/20, 5/00, 5/04		(43) International Publication Date:	16 December 1999 (16.12.99)

(21) International Application Number: PCT/US99/11576

(22) International Filing Date: 26 May 1999 (26.05.99)

(30) Priority Data:

60/088,549 8 June 1998 (08.06.98) US 60/125,073 17 March 1999 (17.03.99) US 60/125,054 18 March 1999 (18.03.99) US

(71) Applicant: DCV, INC., doing business as BIO-TECHNICAL RESOURCES [US/US]; 1035 South Seventh Street, Manitowoc, WI 54220 (US).

(72) Inventors: BERRY, Alan; 126 Beverly Road, Bloomfield, NJ 07003 (US). RUNNING, Jeffrey, A.; 612 St. Clair Street, Manitowoc, WI 54220 (US). SEVERSON, David, K.; 1816 26th Street, Two Rivers, WI 54241 (US). BURLINGAME, Richard, P.; 808 North 9th Street, Manitowoc, WI 54220 (US).

(74) Agents: CONNELL, Gary, J. et al.; Sheridan Ross P.C., Suite 3500, 1700 Lincoln Street, Denver, CO 80203-4501 (US). (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

(57) Abstract

A biosynthetic method for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA) is disclosed. Such a method includes fermentation of a genetically modified microorganism or plant to produce L-ascorbic acid. In particular, the present invention relates to the use of microorganisms and plants having at least one genetic modification to increase the action of an enzyme involved in the ascorbic acid biosynthetic pathway. Included is the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway and homologues thereof for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

Serial No. 10/606,300

Ref. B1

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				-			
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	[srae]	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	211	Zimoaowe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS

FIELD OF THE INVENTION

The present invention relates to vitamin C (L-ascorbic acid) production using genetically modified microorganisms and plants. In particular, the present invention relates to the use of nucleotide sugar epimerase enzymes for the biological production of ascorbic acid in plants and microorganisms.

BACKGROUND OF THE INVENTION

Nearly all forms of life, both plant and animal, either synthesize ascorbic acid (vitamin C) or require it as a nutrient. Ascorbic acid was first identified to be useful as a dietary supplement for humans and animals for the prevention of scurvy. Ascorbic acid, however, also affects human physiological functions such as the adsorption of iron, cold tolerance, the maintenance of the adrenal cortex, wound healing, the synthesis of polysaccharides and collagen, the formation of cartilage, dentine, bone and teeth, the maintenance of capillaries, and is useful as an antioxidant.

For use as a dietary supplement, ascorbic acid can be isolated from natural sources, such as rosehips, synthesized chemically through the oxidation of L-sorbose, or produced by the oxidative fermentation of calcium D-gluconate by Acetobacter suboxidans. Considine, "Ascorbic Acid," Van Nostrand's Scientific Encyclopedia, Vol. 1, pp. 237-238, (1989). Ascorbic acid (predominantly intracellular) has also been obtained through the fermentation of strains of the microalga, Chlorella pyrenoidosa. See U.S. Patent No. 5,001,059 by Skatrud, which is assigned to the assignee of the present application. It is believed that ascorbic acid is produced inside the chloroplasts of photosynthetic microorganisms and functions to neutralize energetic electrons produced during photosynthesis. Accordingly, ascorbic acid production is known in photosynthetic organisms as a protective mechanism.

Therefore, products and processes which improve the ability to biosynthetically produce ascorbic acid are desirable and beneficial for the improvement of human health.

SUMMARY OF THE INVENTION

One embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism. The method includes the steps of: (a)

10

15

20

25

30

culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase; and (b) recovering the ascorbic acid or esters produced by the microorganism. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In one embodiment of the method of the present invention, the microorganism further includes a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase. Such a genetic modification can include, for example, a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.

In one embodiment, the genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, which can include GDP-D-mannose:GDP-L-galactose epimerase. In one embodiment, the epimerase binds NADPH. In one embodiment of this method, the genetic modification includes transformation of the microorganism with a recombinant nucleic acid molecule that expresses the epimerase. Such an epimerase can have a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the epimerase has a structure having an average root mean square deviation of less than about 2.5 Å, and more preferably less than about 1 Å, over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In one embodiment, the epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by

4.7

5

10

15

20

25

30

atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Such a substrate binding site preferably has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

In another embodiment, the epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code Ibws. Such a catalytic site preferably has a tertiary structure with an average root mean square deviation of less than about 1 Å over at least about 25% of Ca positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code Ibws. The catalytic site preferably includes the amino acid residues serine, tyrosine and lysine and in one embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code Ibws.

In yet another embodiment of this method, the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50%, and in another embodiment with at least about 75%, and in yet another embodiment with at least about 90% of non-Xaa residues in SEQ ID NO:11. In another embodiment, the epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12

10

15

20

25

30

contiguous nucleotides of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.

In yet another embodiment of this method of the present invention, the epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly. In yet another embodiment, the recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical, and in another embodiment, at least about 20% identical, and in another embodiment, at least about 25% identical, to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

In yet another embodiment of this method of the present invention, the recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The nucleic acid sequence encoding the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes nucleic acid sequences selected from the group of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5, and the GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can include an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.

In one embodiment of the method of the present invention, the microorganism is selected from the group of bacteria, fungi and microalgae. In one embodiment, the microorganism is acid-tolerant. Preferred bacteria include, but are not limited to Azotobacter and Pseudomonas. Preferred fungi include, but are not limited to, yeast, including, but not limited to Saccharomyces yeast. Preferred microalgae include, but are not limited to, microalgae of the genera Prototheca and Chlorella, with microalgae of the genus Prototheca being particularly preferred.

In yet another embodiment of the method of the present invention, the microorganism is acid-tolerant and the step of culturing is conducted at a pH of less than about 6.0, and more preferably, at a pH of less than about 5.5, and even more preferably, at a pH of less than about 5.0. The step of culturing can be conducted in a fermentation medium that comprises a carbon source other than D-mannose in one embodiment, and

10

15

20

25

30

<u>:</u>,

į.

in another embodiment, the step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.

In yet another embodiment of the present method, the step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited. Preferably, the step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase. In one embodiment, the fermentation medium includes less than about 0.5 g/L of Mg during a cell growth phase, and more preferably, less than about 0.2 g/L of Mg during a cell growth phase, and even more preferably, less than about 0.1 g/L of Mg during a cell growth phase.

Another embodiment of the present invention relates to a microorganism for producing ascorbic acid or esters thereof. The microorganism has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Preferably, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and even more preferably, to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, the microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a

10

15

20

25

30

CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11. Preferred microorganisms are disclosed as for the method discussed above.

Yet another embodiment of the present invention relates to a plant for producing ascorbic acid or esters thereof. Such a plant has a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, the genetic modification is a genetic modification to increase the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase, and in a more preferred embodiment, the genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.

In one embodiment, the plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-Dmannose:GDP-L-galactose epimerase. Such a genetic modification includes a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase. Such a plant also includes a plant that has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose, wherein the epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Ca positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In another embodiment, such a plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-Dmannose to GDP-L-galactose, wherein the epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in the amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

20

25

In one embodiment, a plant for producing ascorbic acid or esters thereof according to the present invention is a microalga. Preferred microalgae include, but are not limited to microalgae of the genera *Prototheca* and *Chlorella*, with microalga of the genus *Prototheca* being particularly preferred. In another embodiment, the plant is a higher plant, with consumable higher plants being more preferred.

BRIEF DESCRIPTION OF THE FIGURES

- Fig. 1A is a schematic drawing of the pathway from glucose to GDP-D-mannose in plants.
- Fig. 1B is a schematic drawing of the pathway from GDP-D-mannose to L-galactose-1-phosphate in plants.
 - Fig. 1C is a schematic drawing of the pathway from L-galactose to L-ascorbic acid in plants.
 - Fig. 2A is a schematic drawing of selected carbon flow from glucose in *Prototheca*.
- Fig. 2B is a schematic drawing of selected carbon flow from glucose in Prototheca.
 - Fig. 3 is a schematic drawing that shows the lineage of mutants derived from *Prototheca moriformis* ATCC 75669, and their ability to produce L-ascorbic acid.
 - Fig. 4 is a bar graph illustrating the conversion of substrates by resting cells of strain NA45-3 following growth in media containing various magnesium concentrations and resuspension in media containing various magnesium concentrations.
 - Fig. 5 is a line graph showing the relationship between specific ascorbic acid formation in cultures of *Prototheca* strains and the specific activity of GDP-D-mannose:GDP-L-galactose epimerase in extracts prepared from cells harvested from the same cultures.
 - Fig. 6 is a line graph showing the relationship between specific epimerase activity and the degree of magnesium limitation in two strains, ATCC 75669 and EMS13-4.
 - Fig. 7 depicts the overall catalytic mechanism of GDP-D-mannose: GDP-L-galactose epimerase proposed by Barber (1979, J. Biol. Chem. 254:7600-7603).

10

15

20

25

30

Fig. 8A depicts the catalytic mechanism of GDP-D-mannose-4,6-dehydratase (converts GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose).

Fig. 8B depicts the catalytic mechanism of GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (converts GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose) (Chang, et al., 1988, *J. Biol. Chem.* 263:1693-1697; Barber, 1980, *Plant Physiol.* 66:326-329).

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a biosynthetic method and production microorganisms and plants for producing vitamin C (ascorbic acid, L-ascorbic acid, or AA). Such a method includes fermentation of a genetically modified microorganism to produce L-ascorbic acid. In particular, the present invention relates to the use of nucleotide sequences encoding epimerases, including the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, as well as epimerases having structural homology (e.g., by nucleotide/amino acid sequence and/or tertiary structure of the encoded protein) to GDP-4-keto-6-deoxy-D-mannose epimerase/reductases, or UDP-galactose 4-epimerases, for the purposes of improving the biosynthetic production of ascorbic acid. The present invention also relates to genetically modified microorganisms, such as strains of microalgae, bacteria and yeast useful for producing L-ascorbic acid, and to genetically modified plants, useful for producing consumable plant food products.

One embodiment of the present invention relates to a method to produce L-ascorbic acid by fermentation of a genetically modified microorganism. This method includes the steps of (a) culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono- γ -lactone dehydrogenase; and (b) recovering L-ascorbic acid or esters thereof. The various enzymes in this list represent the enzymes involved in the vitamin C biosynthetic pathway in plants. It is uncertain at this time

10

15

20

25

30

whether the enzyme represented by GDP-L-galactose phosphorylase is actually a phosphorylase or a pyrophosphorylase (i.e., GDP-L-galactose pyrophosphorylase). Therefore, use of the term "GDP-L-galactose phosphorylase" herein refers to either GDP-L-galactose phosphorylase or GDP-L-galactose pyrophosphorylase. In one aspect of the invention, this method includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. This aspect of the present invention is discussed in detail below.

Another embodiment of the present invention relates to a genetically modified microorganism for producing L-ascorbic acid or esters thereof. Another embodiment of the present invention relates to a genetically modified plant for producing L-ascorbic acid or esters thereof. Both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an enzyme selected from the group of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. In a preferred embodiment, both genetically modified microorganisms (e.g., bacteria, yeast, microalgae) and plants (e.g., higher plants, microalgae) have a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes the transformation of the microorganism or plant with the epimerase as described above.

To produce significantly high yields of L-ascorbic acid by the method of the present invention, a plant and/or microorganism is genetically modified to enhance production of L-ascorbic acid. As used herein, a genetically modified plant (such as a higher plant or microalgae) or microorganism, such as a microalga (*Prototheca*, *Chlorella*), *Escherichia coli*, or a yeast, is modified (i.e., mutated or changed) within its genome and/or by recombinant technology (i.e., genetic engineering) from its normal (i.e., wild-type or naturally occurring) form. In a preferred embodiment, a genetically modified plant or microorganism according to the present invention has been modified by

10

15

20

25

30

recombinant technology. Genetic modification of a plant or microorganism can be accomplished using classical strain development and/or molecular genetic techniques, include genetic engineering techniques. Such techniques are generally disclosed herein and are additionally disclosed, for example, in Sambrook et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press; Roessler, 1995, *Plant Lipid Metabolism*, pp. 46-48; and Roessler et al., 1994, in Bioconversion for Fuels, Himmel et al. eds., American Chemical Society, Washington D.C., pp 255-70). These references are incorporated by reference herein in their entirety.

In some embodiments, a genetically modified plant or microorganism can include a natural genetic variant as well as a plant or microorganism in which nucleic acid molecules have been inserted, deleted or modified, including by mutation of endogenous genes (e.g., by insertion, deletion, substitution, and/or inversion of nucleotides), in such a manner that the modifications provide the desired effect within the plant or microorganism. As discussed above, a genetically modified plant or microorganism includes a plant or microorganism that has been modified using recombinant technology.

As used herein, genetic modifications which result in a decrease in gene expression, an increase in inhibition of gene expression or inhibition of a gene product (i.e., the protein encoded by the gene), a decrease in the function of the gene, or a decrease in the function of the gene product can be referred to as inactivation (complete or partial), deletion, interruption, blockage, down-regulation, or decreased action of a gene. For example, a genetic modification in a gene which results in a decrease in the function of the protein encoded by such gene can be the result of a complete deletion of the gene encoding the protein (i.e., the gene does not exist, and therefore the protein does not exist), a mutation in the gene encoding the protein which results in incomplete or no translation of the protein (e.g., the protein is not expressed), or a mutation in the gene which decreases or abolishes the natural function of the protein (e.g., a protein is expressed which has decreased or no enzymatic activity).

Genetic modifications which result in an increase in gene expression or function can be referred to as amplification, overproduction, overexpression, activation, enhancement, addition, up-regulation or increased action of a gene. Additionally, a genetic modification to a gene which modifies the expression, function, or activity of the gene can

10

15

20

25

30

have an impact on the action of other genes and their expression products within a given metabolic pathway (e.g., by inhibition or competition). In this embodiment, the action (e.g., activity) of a particular gene and/or its product can be affected (i.e., upregulated or downregulated) by a genetic modification to another gene within the same metabolic pathway, or to a gene within a different metabolic pathway which impacts the pathway of interest by competition, inhibition, substrate formation, etc.

In general, a plant or microorganism having a genetic modification that affects L-ascorbic acid production has at least one genetic modification, as discussed above, which results in a change in the L-ascorbic acid production pathway as compared to a wild-type plant or microorganism grown or cultured under the same conditions. Such a modification in an L-ascorbic acid production pathway changes the ability of the plant or microorganism to produce L-ascorbic acid. According to the present invention, a genetically modified plant or microorganism preferably has an enhanced ability to produce L-ascorbic acid compared to a wild-type plant or microorganism cultured under the same conditions.

The present invention is based on the present inventors' discovery of the biosynthetic pathway for L-ascorbic acid (vitamin C) in plants and microorganisms. Prior to the present invention, the metabolic pathway by which plants produce L-ascorbic acid, was not completely elucidated. The present inventors have demonstrated that L-ascorbic acid production in plants, including L-ascorbic acid-producing microorganisms (e.g., microalgae), is a pathway which uses GDP-D-mannose and involves sugar phosphates and NDP-sugars. In addition, the present inventors have made the surprising discovery that both L-galactose and L-galactono-γ-lactone can be rapidly converted into L-ascorbic acid in L-ascorbic acid-producing microalgae, including Prototheca and Chlorella pyrenoidosa. The entire pathway for L-ascorbic acid production in plants is set forth in Figs. 1A-1C. More particularly, Fig. 1A shows that the production of L-ascorbic acid in plants proceeds through the production of mannose intermediates to GDP-D-mannose, followed by the conversion of GDP-D-mannose to GDP-L-galactose by GDP-Dmannose: GDP-L-galactose epimerase (also known as GDP-D-mannose-3,5-epimerase) (Fig. 1B), and then by the subsequent progression to L-galactose-1-P, L-galactose, Lgalactonic acid (optional), L-galactono-y-lactone, and L-ascorbic acid (Fig. 1C). Fig. 1B also illustrates alternate pathways for the use of various intermediates, such as GDP-D-mannose. Certain aspects of this pathway have been independently described in a publication (Wheeler, et al., 1998, *Nature* 393:365-369), incorporated herein by reference in its entirety.

5

10

15

Points within the L-ascorbic acid production pathway which can be targeted by genetic modification to affect the production of L-ascorbic acid can generally be catagorized into at least one of the following pathways: (a) pathways affecting the production of GDP-D-mannose (e.g., pathways for converting a carbon source into GDP-D-mannose); (b) pathways for converting GDP-D-mannose into other compounds, (c) pathways associated with or downstream of the action of GDP-D-mannose GDP-L-galactose epimerase, (d) pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

20

25

30

A genetically modified plant or microorganism useful in a method of the present invention typically has at least one genetic modification in the L-ascorbic acid production pathway which results in an enhanced production of L-ascorbic acid. In one embodiment, a genetically modified plant or microorganism has at least one genetic modification that results in: (a) an enhanced production of GDP-D-mannose; (b) an inhibition of pathways which convert GDP-D-mannose into compounds other than GDP-L-galactose; (c) an enhancement of action of the GDP-D-mannose:GDP-L-galactose epimerase; (d) an enhancement of the action of enzymes downstream of the GDP-D-mannose:GDP-L-galactose epimerase; (e) an inhibition of pathways which compete for substrates involved in the production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid; and (e) an inhibition of pathways which inhibit production of any of the intermediates within the L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway, and in particular, with GDP-D-mannose, GDP-L-ascorbic acid production pathway.

10

15

20

25

30

galactose, L-galactose-1-phosphate, L-galactose, L-galactono-γ-lactone, and/or L-ascorbic acid.

An enhanced production of GDP-D-mannose by genetic modification of the plant or microorganism can be achieved by, for example, overexpression of enzymes such as hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase (PMM) and/or GDP-D-mannose pyrophosphorylase (GMP). Inhibition of pathways which convert GDP-D-mannose to compounds other than GDP-Lgalactose can be achieved, for example, by modifications which inhibit polysaccharide synthesis, GDP-D-rhamnose synthesis, GDP-L-fucose synthesis and/or GDP-Dmannuronic acid synthesis. An increase in the action of the GDP-D-mannose:GDP-Lgalactose epimerase and of enzymes downstream of the epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to: overexpression of the epimerase gene (i.e, by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof (discussed in detail below), and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene) and/or overexpression of genes downstream of the epimerase which encode subsequent enzymes in the L-ascorbic acid pathway. Finally, metabolic pathways which compete with or inhibit the L-ascorbic acid production pathway can be inhibited by deleting or mutating enzymes, substrates or products which either inhibit or compete for an enzyme, substrate or product in the L-ascorbic acid pathway.

As discussed above, a genetically modified plant or microorganism useful in the method of the present invention can have at least one genetic modification (e.g., mutation in the endogenous gene or addition of a recombinant gene) in a gene encoding an enzyme involved in the L-ascorbic acid production pathway. Such genetic modifications preferably increase (i.e., enhance) the action of such enzymes such that L-ascorbic acid is preferentially produced as compared to other possible end products in related metabolic pathways. Such genetic modifications include, but are not limited to, overexpression of the gene encoding such enzyme, and deletion, mutation, or downregulation of genes encoding competitors or inhibitors of such enzyme. Preferred enzymes for which the action of the gene encoding such enzyme can be genetically modified include: hexokinase, glucose phosphate isomerase, phosphomannose isomerase (PMI), phosphomannomutase

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

(PMM), GDP-D-mannose pyrophosphorylase (GMP), GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. More preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of an enzyme selected from the group of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and/or L-galactono-γ-lactone dehydrogenase. Even more preferably, a genetically modified plant or microorganism useful in the present invention has a genetic modification which increases the action of GDP-D-mannose:GDP-L-galactose epimerase. These enzymes and the reactions catalyzed by such enzymes are illustrated in Figs. 1A-1C.

Prior to the present invention, without knowing the L-ascorbic acid biosynthetic (i.e., production) pathway, previous mutagenesis and screening efforts were limited in that only non-lethal mutations could be detected. One embodiment of the present invention relates to elimination of a key competing enzyme that diverts carbon flow from L-ascorbic acid synthesis. If such enzyme is absolutely required for growth on glucose, then mutants lacking the enzyme (and, therefore, having increased carbon flow to L-ascorbic acid) would have been nonviable and not have been detected during prior screening efforts. One such enzyme is phosphofructokinase (PFK) (See Fig. 2A). PFK is required for growth on glucose, and is the major step drawing carbon away from L-ascorbic acid biosynthesis (Fig. 2A). Elimination of PFK would render the cells nonviable on glucosebased media. Selection of a conditional mutant where PFK was inactivated by temperature shift, for example, may allow development of a L-ascorbic acid process where cell growth is achieved under permissive fermentation conditions, and L-ascorbic acid production (from glucose) is initiated by a shift to non-permissive condition. In this example, the temperature shift would eliminate carbon flow from glucose to glycolysis via PFK, thereby shunting carbon into the L-ascorbic acid branch of metabolism. This approach has application not only in natural L-ascorbic acid producing organisms, but also in L-ascorbic acid recombinant systems (genetically engineered plant or microorganisms) as discussed herein.

10

15

20

25

30

Knowing the identity and mechanism of the rate-limiting pathway enzymes in the L-ascorbic acid production pathway allows for design of specific inhibitors of the enzymes that are also growth inhibitory. Selection of mutants resistant to the inhibitors allows for the isolation of strains that contain L-ascorbic acid-pathway enzymes with more favorable kinetic properties. Therefore, one embodiment of the present invention is to identify inhibitors of the enzymes that are also growth inhibitory. These inhibitors are then used to select genetic mutants that overcome this inhibition and produce L-ascorbic acid at high levels. In this embodiment, the resultant plant or microorganism is a non-recombinant strain which can then be further modified by recombinant technology, if desired. In recombinant L-ascorbic acid producing strains, random mutagenesis and screening can be used as a final step to increase L-ascorbic acid production.

In yet another embodiment genetic modifications are made to an L-ascorbic acid producing organism directly. This allows one to build upon a base of data acquired during prior classical strain improvement efforts, and perhaps more importantly, allows one to take advantage of undefined beneficial mutations that occurred during classical strain improvement. Furthermore, fewer problems are encountered when expressing native, rather than heterologous, genes. The most advanced system for development of genetic systems for microalgae has been developed for Chlamydomonas reinhardtii. Preferably, development of such a genetically modified production organism would include: isolation of mutant(s) with a specific nutritional requirement for use with a cloned selectable marker gene (similar to the ura3 mutants used in yeast and fungal systems); a cloned selectable marker such as URA3 or alternatively, identification and cloning of a gene that specifies resistance to a toxic compound (this would be analogous to the use of antibiotic resistance genes in bacterial systems, and, as is the case in yeast and other fungi, a means of inserting/removing the marker gene repeatedly would be required, unless several different selectable markers were developed); a transformation system for introducing DNA into the production organism and achieving stable transformation and expression; and, a promoter system (preferably several) for high-level expression of cloned genes in the organism.

-

Another embodiment of the present invention, discussed in detail below, is to place key genes or allelic variants and homologues thereof from L-ascorbic acid producing WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

organisms (i.e., higher plants and microalgae) into a plant or microorganism that is more amenable to molecular genetic manipulation, including endogenous L-ascorbic acid producing microorganisms and suitable plants. For example, it is possible to identify a suitable non-pathogenic organism based on the requirement of growth (on glucose) at low pH (i.e., acid-tolerant organisms, discussed in detail below).

One suitable candidate for recombinant production in any suitable host organism is the gene (nucleic acid molecule) encoding GDP-D-mannose:GDP-L-galactose epimerase and homologues of the GDP-D-mannose:GDP-L-galactose epimerase, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Many microorganisms produce GDP-D-mannose as a precursor to exopolysaccharide and glycoprotein production, even though such organisms may not make L-ascorbic acid. This aspect of the present invention is discussed in detail below.

Referring to Figs. 1A-1C, at least some of the enzymes from glucose-6-phosphate to GDP-D-mannose are present in many organisms. In fact, the entire sequence is present in bacteria such as Azotobacter vinelandii and Pseudomonas aeruginosa, and make up the early steps in the biosynthesis of the exopolysaccharide alginate. In this regard, it is possible that the only thing preventing these organisms from producing L-ascorbic acid could be the lack of GDP-D-mannose:GDP-L-galactose epimerase. The presence of PMI, PMM and GMP (see Fig. 1A) in so many organisms is important for two reasons. First, these organisms themselves could serve as alternate hosts for L-ascorbic acid production, by building on the existing early pathway enzymes and adding the required cloned genes (the epimerase and possibly others). Second, the genes encoding PMI, PMM and GMP can be cloned into a new organism where, together with the cloned epimerase, they would encode the overall pathway from glucose-6-phosphate to GDP-L- galactose.

In order to screen genomic DNA or cDNA libraries from different organisms and to isolate nucleic acid molecules encoding these enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase, one can use any of a variety of standard molecular and biochemical techniques. For example, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino

10

15

20

25

30

acid sequence can be determined (including, if necessary, the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism's DNA. This fragment would then be used to probe the library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

It is to be understood that the present invention discloses a method comprising the use of a microorganism with an ability to produce commercially useful amounts of Lascorbic acid in a fermentation process (i.e., preferably an enhanced ability to produce Lascorbic acid compared to a wild-type microorganism cultured under the same conditions). This method is achieved by the genetic modification of one or more genes encoding a protein involved in an L-ascorbic acid pathway which results in the production (expression) of a protein having an altered (e.g., increased or decreased) function as compared to the corresponding wild-type protein. Preferably, such genetic modification is achieved by recombinant technology. It will be appreciated by those of skill in the art that production of genetically modified plants or microorganisms having a particular altered function as described elsewhere herein (e.g., an enhanced ability to produce GDP-D-mannose:GDP-L-galactose epimerase), such as by transformation of the plant or microorganism with a nucleic acid molecule which encodes a particular enzyme, can produce many organisms meeting the given functional requirement, albeit by virtue of a variety of different genetic modifications. For example, different random nucleotide deletions and/or substitutions in a given nucleic acid sequence may all give rise to the same phenotypic result (e.g., decreased enzymatic activity of the protein encoded by the sequence). The present invention contemplates any such genetic modification which results in the production of a plant or microorganism having the characteristics set forth herein.

A microorganism to be used in the fermentation method of the present invention is preferably a bacterium, a fungus, or a microalga which has been genetically modified according to the disclosure above. More preferably, a microorganism useful in the present

10

15

20

25

30

invention is a microalga which is capable of producing L-ascorbic acid, although the present invention includes microorganisms which are genetically engineered to produce L-ascorbic acid using the knowledge of the key components of the pathway and the guidance provided herein. Even more preferably, a microorganism useful in the present invention is an acid-tolerant microorganism, such as microalgae of the genera Prototheca and Chlorella. Acid-tolerant yeast and bacteria are also known in the art. Acid-tolerant microorganisms are discussed in detail below. Particularly preferred microalgae include microalgae of the genera, Prototheca and Chlorella, with Prototheca being most preferred. All known species of Prototheca produce L-ascorbic acid. Production of ascorbic acid by microalgae of the genera Prototheca and Chlorella is described in detail in U.S. Patent No. 5,792,631, issued August 11, 1998, and in U.S. Patent No. 5,900,370, issued May 4, 1999, both of which are incorporated herein by reference in their entirety. Preferred bacteria for use in the present invention include, but are not limited to. Azotobacter, Pseudomonas, and Escherichia, although acid-tolerant bacteria are more preferred. Preferred fungi for use in the present invention include yeast, and more preferably, yeast of the genus, Saccharomyces. A microorganism for use in the fermentation method of the present invention can also be referred to as a production organism. According to the present invention, microalgae can be referred to herein either as microorganisms or as plants.

A preferred plant to genetically modify according to the present invention is preferably a plant suitable for consumption by animals, including humans. More preferably, such a plant is a plant that naturally produces L-ascorbic acid, although other plants can be genetically modified to produce L-ascorbic acid using the guidance provided herein.

The L-ascorbic acid production pathways of the microalgae *Prototheca* and *Chlorella pyrenoidosa* will be addressed as specific embodiments of the present invention are described below. It will be appreciated that other plants and, in particular, other microorganisms, have similar L-ascorbic acid pathways and genes and proteins having similar structure and function within such pathways. It will also be appreciated that plants and microorganisms which do not naturally produce L-ascorbic acid can be modified according to the present invention to produce L-ascorbic acid. As such, the principles

10

15

20

25

30

discussed below with regard to *Prototheca* and *Chlorella pyrenoidosa* are applicable to other plants and microorganisms, including genetically modified plants and microorganisms.

In one embodiment of the present invention, the action of an enzyme in the Lascorbic acid production pathway is increased by amplification of the expression (i.e., overexpression) of an enzyme in the pathway, and particularly, the GDP-Dmannose: GDP-L-galactose epimerase, homologues of the epimerase, and/or enzymes downstream of the epimerase. Overexpression of an enzyme can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the enzyme. It is preferred that the gene encoding an enzyme in the L-ascorbic acid production pathway be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of enzyme expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding a gene in the L-ascorbic acid production pathway is integrated into the chromosomes of the microorganism.

It is another embodiment of the present invention to provide a microorganism having one or more enzymes in the L-ascorbic acid production pathway with improved affinity for its substrates. An enzyme with improved affinity for its substrates can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

Recombinant nucleic acid molecules encoding proteins in the L-ascorbic acid production pathway can be modified to enhance or reduce the function (i.e., activity) of the protein, as desired to increase L-ascorbic acid production, by any suitable method of genetic modification. For example, a recombinant nucleic acid molecule encoding an

WO 99/64618 PCT/US99/11576

enzyme can be modified by any method for inserting, deleting, and/or substituting nucleotides, such as by error-prone PCR. In this method, the gene is amplified under conditions that lead to a high frequency of misincorporation errors by the DNA polymerase used for the amplification. As a result, a high frequency of mutations are obtained in the PCR products. The resulting gene mutants can then be screened for enhanced substrate affinity, enhanced enzymatic activity, or reduced/increased inhibitory ability by testing the mutant genes for the ability to confer increased L-ascorbic acid production onto a test microorganism, as compared to a microorganism carrying the non-mutated recombinant nucleic acid molecule.

Another embodiment of the present invention includes a microorganism in which competitive side reactions are blocked, including all reactions for which GDP-D-mannose is a substrate other than the production of L-ascorbic acid. In a preferred embodiment, a microorganism having complete or partial inactivation (decrease in the action of) of genes encoding enzymes which compete with the GDP-D-mannose:GDP-L-galactose epimerase for the GDP-D-mannose substrate is provided. Such enzymes include GDP-D-mannase and/or GDP-D-mannose-dehydrogenase. As used herein, inactivation of a gene can refer to any modification of a gene which results in a decrease in the activity (i.e., expression or function) of such a gene, including attenuation of activity or complete deletion of activity.

As discussed above, a particularly preferred aspect of the method to produce L-ascorbic acid by fermentation of a genetically modified microorganism of the present invention includes the step of culturing in a fermentation medium a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. According to the present invention, such an epimerase can include the endogenous GDP-D-mannose:GDP-L-galactose epimerase from the L-ascorbic acid pathway, described above, as well as any other epimerase that has structural homology at the primary (i.e., sequence) or tertiary (i.e., three dimensional) level, to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or to a UDP-galactose 4-epimerase. Such structural homology is discussed in detail below. Preferably, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. In one embodiment, the genetic modification includes transformation of the

10

15

20

25

30

microorganism with a recombinant nucleic acid molecule that expresses such an epimerase.

Therefore, the epimerase encompassed in the method and organisms of the present invention includes the endogenous epimerase which operates in the naturally occurring ascorbic acid biosynthetic pathway (referred to herein as GDP-Dmannose:GDP-L-galactose epimerase), GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases, and any other epimerase which is capable of catalyzing the conversion of GDP-D mannose to GDP-L-galactose and which is structurally homologous to a GDP-4keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase. epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose according the present invention can be identified by biochemical and functional characteristics as well as structural characteristics. For example, an epimerase according to the present invention is capable of acting on GDP-D-mannose as a substrate, and more particularly, such an epimerase is capable of catalyzing the conversion of GDP-D-mannose to GDP-Lgalactose. It is to be understood that such capabilities need not necessarily be the normal or natural function of the epimerase as it acts in its endogenous (i.e., natural) environment. For example, GDP-4-keto-6-deoxy-D-mannose epimerase/reductase in its natural environment under normal conditions, catalyzes the conversion of GDP-D-mannose to GDP-L-fucose and does not act directly on GDP-D-mannose (See Fig. 8A, B), however, such an epimerase is encompassed by the present invention for use in catalyzing the conversion of GDP-D-mannose to GDP-L-galactose for production of ascorbic acid, to the extent that it is capable of, or can be modified to be capable of, catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. Therefore, the present invention includes epimerases which have the desired enzyme activity for use in production of ascorbic acid, are capable of having such desired enzyme activity, and/or are capable of being modified or induced to have such desired enzyme activity.

In one embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the reaction depicted in Fig. 7. In another embodiment, an epimerase according to the present invention includes an epimerase that catalyzes the first of the reactions depicted in Fig. 8B. In one embodiment, an epimerase according to the

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

22

present invention binds to NADPH. In another embodiment, an epimerase according to the present invention is NADPH-dependent for enzyme activity.

As discussed above, the present inventors have discovered that a key enzyme in L-ascorbic acid biosynthesis in plants and microorganisms is GDP-D-mannose: GDP-Lgalactose epimerase (refer to Figs. 1A-1C). One embodiment of the invention described herein is directed to the manipulation of this enzyme and structural homologues of this enzyme to increase L-ascorbic acid production in genetically engineered plants and/or microorganisms. More particularly, the GDP-D-mannose: GDP-L-galactose epimerase of the L-ascorbic acid pathway and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases are believed to be structurally homologous at both the sequence and tertiary structure level; a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is believed to be capable of functioning in the L-ascorbic acid biosynthetic pathway; and a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase or homologue thereof may be superior to a GDP-Dmannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, the present inventors disclose the use of a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase as a probe to identify the gene encoding GDP-Dmannose: GDP-L-galactose epimerase. Similarly, the present inventors disclose the use of a nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/reductase to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose: GDP-L-galactose epimerase.

Without being bound by theory, the present inventors believe that the following evidence supports the novel concept that the GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases have significant structural homology at the level of sequence and/or tertiary structure, and that the GDP-4-keto-6-deoxy-D-mannose epimerase/reductases and/or homologues thereof would be useful for production of ascorbic acid and/or for isolating the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Although prior to the present invention, it was not known that the GDP-D-mannose:GDP-L-galactose epimerase enzyme (also known as GDP-D-mannose-3,5-epimerase) plays a critical role in L-ascorbic acid biosynthesis, this enzyme was previously

10

15

20

25

30

described to catalyze the overall reversible reaction between GDP-D-mannose and GDP-L-galactose (Barber, 1971, Arch. Biochem. Biophys. 147:619-623; Barber, 1975, Arch. Biochem. Biophys. 167:718-722; Barber, 1979, J. Biol. Chem. 254:7600-7603; Hebda, et al., 1979, Arch. Biochem. Biophys. 194:496-502; Barber and Hebda, 1982, Meth. Enzymol., 83:522-525). Despite these studies, GDP-D-mannose:GDP-L-galactose epimerase has never been well characterized nor has the gene encoding this enzyme been cloned and sequenced. Since the original work by Barber, GDP-D-mannose:GDP-L-galactose epimerase activity has been detected in the colorless microalga Prototheca moriformis by the assignee of the present application, and in Arabidopsis thaliana and pea embryonic axes (Wheeler, et al., 1998, ibid.).

Barber (1979, J. Biol. Chem. 254:7600-7603) proposed a mechanism for GDP-D-mannose:GDP-L-galactose epimerase partially purified from the green microalga Chlorella pyrenoidosa. The overall conversion of GDP-D-mannose to GDP-L-galactose was proposed to proceed by oxidation of the hexosyl moiety at C-4 to a keto intermediate, ene-diol formation, and inversion of the configurations at C-3 and C-5 upon rehydration of the double bonds and stereospecific reduction of the keto group. The proposed mechanism is depicted in Fig. 7.

Based on Barber's work, Feingold and Avigad (1980, In *The Biochemistry of Plants*, Vol. 3: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, eds., Academic Press, NY) elaborated further on the proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase. This mechanism is based on the assumption that the epimerase contains tightly bound NAD⁺, and transfer of a hydride ion from C-4 of the substrate (GDP-D-mannose) to enzyme-associated NAD⁺ converts the enzyme to the reduced (NADH)form, generating enzyme-bound GDP-4-keto-D-mannose. The latter would then undergo epimerization by an ene-diol mechanism. The final product (GDP-L-galactose) would be released from the enzyme after stereospecific transfer of the hydride ion originally removed from C-4, simultaneously regenerating the oxidized form of the enzyme.

L-fucose (6-deoxy-L-galactose) is a component of bacterial lipopolysaccharides, mammalian and plant glycoproteins and polysaccharides of plant cell walls. L-fucose is synthesized *de novo* from GDP-D-mannose by the sequential action of GDP-D-mannose-

10

15

20

25

30

4,6-dehydratase (an NAD(P)-dependent enzyme), and a bifunctional GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (NADPH-dependent), also referred to in scientific literature as GDP-fucose synthetase (Rizzi, et al., 1998, Structure 6:1453-1465; Somers, et al., 1998, Structure 6:1601-1612). This pathway for L-fucose biosynthesis appears to be ubiquitous (Rizzi, et al., 1998, Structure 6:1453-1465). The mechanisms for GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are shown in Fig. 8A, B (Chang, et al., 1988, J. Biol. Chem. 263:1693-1697; Barber, 1980, Plant Physiol. 66:326-329).

Comparison of Figs. 7 and 8A, B reveals that Barber's proposed mechanism for GDP-D-mannose:GDP-L-galactose epimerase is analogous to the reaction mechanism for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase. The same mechanism has also been demonstrated for the epimerization reaction that occurs in the biosynthesis of two TDP-6-deoxy hexoses, TDP-L-rhamnose and TDP-6-deoxy-L-talose, from TDP-D-glucose (Liu and Thorson, 1994, Ann. Rev. Microbiol. 48:223-256). In the latter cases, however, the final reduction at C-4 is catalyzed by NADPH-dependent reductases that are separate from the epimerase enzyme. These reductases have opposite stereospecificity, providing either TDP-L-rhamnose or TDP-6-deoxy-L-talose (Liu and Thorson, 1994, Ann. Rev. Microbiol. 48:223-256).

In all of the mechanisms described above, NAD(P)H is required for the final reduction at C-4 (refer to Fig. 8B). In the work of Hebda, et al. (1979, Arch. Biochem. Biophys. 194:496-502), it was reported that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa did not require NAD, NADP or NADH for activity. Strangely, NADPH was not tested. Based on the analogous mechanisms shown in Figs. 7 and 8A, B, the present inventors believe that it is likely that GDP-D-mannose:GDP-L-galactose epimerase from C. pyrenoidosa requires NADPH for the final reduction step. Why activity was detected in vitro without NADPH addition is not known, but tight *binding of NADPH to the enzyme could explain this observation. On the other hand, if the proposed mechanism of Feingold and Avigad (1980, in The Biochemistry of Plants, Vol. 3, p. 101-170: Carbohydrates; Structure and Function, P.K. Stompf and E.E. Conn, ed., Academic Press, NY) is correct, the reduced enzyme-bound cofactor generated in the first oxidation step of the epimerase reaction would serve as the source of electrons for

5

10

15

20

25

30

the final reduction of the keto group at C-4 back to the alcohol. Thus no addition of exogenous reduced cofactor would be required for activity in vitro.

Recently, a human gene encoding the bifunctional GDP-4-keto-6-deoxy-Dmannose epimerase/reductase was cloned and sequenced (Tonetti, et al., 1996, J. Biol. Chem. 271-27274-27279). This amino acid sequence of the human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase shows significant homology (29% identity) to the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (Tonetti, et al., 1998, Acta Cryst. D54:684-686; Somers, et al., 1998, Structure 6:1601-1612, both of which are incorporated herein by reference in their entireties). Tonetti et al. and Somers et al. additionally disclosed the tertiary (three dimensional) structure of the E. coli GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (also known as GDP-fucose synthetase), and noted significant structural homology with another epimerase, UDP-galactose 4-epimerase (GalE). These epimerases also share significant homology at the sequence level. Since no gene encoding a GDP-D-mannose:GDP-L-galactose epimerase has been cloned and sequenced, homology with genes encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductases or with genes encoding a UDP-galactose 4-epimerase has not been demonstrated. However, based on the similarity of the reaction products for GDP-Dmannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase (i.e., GDP-L-galactose and GDP-6-deoxy-L-galactose [i.e., GDP-L-fucose], respectively) and the common catalytic mechanisms (Figs. 7 and 8A, B) the present inventors believe that the genes encoding the enzymes will have a high degree of sequence homology, as well as tertiary structural homology.

Significant structural homology between GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductases may allow a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, or a homologue thereof, to function in the L-ascorbic acid biosynthetic pathway, and a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase could potentially be even better than a GDP-D-mannose-GDP-L-galactose epimerase for increasing L-ascorbic acid production in genetically engineered plants and/or microorganisms. Furthermore, a nucleotide sequence encoding all or part of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be used as a probe to identify the gene encoding GDP-D-mannose:GDP-L-galactose epimerase. Likewise, the

10

15

20

25

30

nucleotide sequence of the gene encoding GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase can be used to design oligonucleotide primers for use in a PCR-based strategy for identifying and cloning a gene encoding GDP-D-mannose:GDP-L-galactose epimerase.

The ability to substitute GDP-4-keto-6-D-mannose epimerase/reductase for GDP-D-mannose:GDP-L-galactose epimerase to enhance L-ascorbic acid biosynthesis in plants or microorganisms depends on the ability of GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase to act directly on GDP-D-mannose to form GDP-L-galactose. Evidence supporting this possibility already exists. Arabidopsis thaliana murl mutants are defective in GDP-D-mannose-4,6-dehydratase activity (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). These mutants are thus blocked in GDP-L-fucose biosynthesis, and consequently have less than 2% of the normal amounts of L-fucose in the primary cell walls of aerial portions of the plant (Zablackis, et al., 1996, Science 272:1808-1810). The murl mutants are more brittle than wild-type plants, are slightly dwarfed and have an apparently normal life cycle (Zablackis, et al., 272:1808-1810). When murl mutants are grown in the presence of exogenous L-fucose, the L-fucose content in the plant is restored to the wild-type state (Bonin, et al., 1997, Proc. Natl. Acad. Sci. 94:2085-2090). It was discovered (Zablackis, et al., 1996, Science 272:1808-1810) that murl mutants contain, in the hemicellulose xyloglucan component of the primary cell wall, L-galactose in place of the normal L-fucose. L-galactose is not normally found in the xyloglucan component, but in murl mutants L-galactose partly replaces the terminal L-fucosyl residue. Bonin, et al. (1997, Proc. Natl. Acad. Sci. 94:2085-2090) hypothesized that in the absence of a functional GDP-D-mannose-4,6-dehydratase in the murl mutants, the GDP-4-keto-6deoxy-D-mannose epimerase/reductase normally involved in L-fucose synthesis may be able to use GDP-D-mannose directly, forming GDP-L-galactose. Another possibility, however, is that the enzymes involved in L-ascorbic acid biosynthesis in A. thaliana are responsible for forming GDP-L-galactose in the murl mutant. If this were true, it would suggest that in the wild-type plant, some mechanism exists that prevents GDP-L-galactose formed in the L-ascorbic acid pathway from entering cell wall biosynthesis and substituting for (competing with) GDP-L-fucose for incorporation into the xyloglucan

10

15

20

25

30

component (since L-galactose is not present in the primary cell wall of the wild-type plant).

Because of the similar reaction mechanisms of GDP-D-mannose:GDP-L-galactose epimerase and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, and because of the evidence that GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can act directly on GDP-D-mannose to form GDP-L-galactose, the present inventors believe that genes encoding all epimerases and epimerase/reductases that act on GDP-D-mannose have high homology. As such, one aspect of the present invention relates to the use of any epimerase (and nucleic acid sequences encoding such epimerase) having significant homology (at the primary, secondary and/or tertiary structure level) to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or to a UDP-galactose 4-epimerase for the purpose of improving the biosynthetic production of L-ascorbic acid.

Therefore, as described above, one embodiment of the present invention relates to a method for producing ascorbic acid or esters thereof in a microorganism, which includes culturing a microorganism having a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Also included in the present invention are genetically modified microorganisms and plants in which the genetic modification increases the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.

According to the present invention, an increase in the action of the GDP-D-mannose:GDP-L-galactose epimerase in the L-ascorbic acid production pathway can be achieved by genetic modifications which include, but are not limited to overexpression of the GDP-D-mannose:GDP-L-galactose epimerase gene, a homologue of such gene, or of any recombinant nucleic acid sequence encoding an epimerase that is homologous in primary (nucleic acid or amino acid sequence) or tertiary (three dimensional protein) structure to a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, such as by overexpression of a recombinant nucleic acid molecule encoding the epimerase gene or a homologue thereof, and/or by mutation of the endogenous or recombinant gene to enhance expression of the gene.

According to the present invention, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

28

reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws (Table 12). In another embodiment, an epimerase that has a tertiary structure that is homologous to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/ reductase is an epimerase that has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS. As used herein, a "tertiary structure" or "three dimensional structure" of a protein, such terms being interchangeable, refers to the components and the manner of arrangement of the components in three dimensional space to constitute the protein. The use of the term "substantially conforms" refers to at least a portion of a tertiary structure of an epimerase which is sufficiently spatially similar to at least a portion of a specified three dimensional configuration of a particular set of atomic coordinates (e.g., those represented by Brookhaven Protein Data Bank Accession Code 1bws) to allow the tertiary structure of at least said portion of the epimerase to be modeled or calculated (i.e., by molecular replacement) using the particular set of atomic coordinates as a basis for estimating the atomic coordinates defining the three dimensional configuration of the epimerase.

More particularly, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, a structure that substantially conforms to a given set of atomic coordinates is a structure wherein such structure has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the

10

15

20

25

30

recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Methods to calculate RMSD values are well known in the art. Various software programs for determining the tertiary structural homology between one or more proteins are known in the art and are publicly available, such as QUANTA (Molecular Simulations Inc.).

A preferred epimerase that catalyzes conversion of GDP-D-mannose to GDP-Lgalactose according to the method and genetically modified organisms of the present invention includes an epimerase that comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the substrate binding site of the epimerase has an average root-meansquare deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions

۲)

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

30

as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the substrate binding site of the epimerase has the recited average root-mean-square deviation (RMSD) value over about 100% of the Cα positions as compared to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

Another preferred epimerase according to the present invention includes an epimerase that comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-Dmannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. Preferably, the tertiary structure of the catalytic site of the epimerase has an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å, over at least about 25% of the Ca positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws. In other embodiments, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over at least about 50% of the $C\alpha$ positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited

3,

average root-mean-square deviation (RMSD) value over at least about 75% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws, and in another embodiment, the tertiary structure of the catalytic site of the epimerase has the recited average root-mean-square deviation (RMSD) value over 100% of the Cα positions as compared to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

5

In one embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. In a preferred embodiment, the tertiary structure positions of the amino acid residues serine, tyrosine and lysine substantially conform to the tertiary structure position of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws. The tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws is discussed in detail in Rizzi et al., 1998, *ibid*. Additionally, the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by the atomic coordinates having Brookhaven Protein Data Bank Accession Code 1GFS is discussed in detail in Somers et al., 1998, *ibid*.

20

25

30

In an even more preferred embodiment, the above definition of "substantially conforms" can be further defined to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structures which substantially conforms to a given set of atomic coordinates and the structure that is actually represented by such atomic coordinates. Preferably, a tertiary structure that substantially conforms to a given set of atomic coordinates is a structure having an average root-mean-square deviation (RMSD) of less than about 2.5 Å, and more preferably, less than about 2 Å, and, in increasing preference, less than about 1.5 Å, less than about 1 Å, less than about 0.5 Å, and most preferably, less than about 0.3 Å over at least about 25% of the common amino acid side chains as

10

15

20

25

30

32

PCT/US99/11576

compared to the tertiary structure represented by the given set of atomic coordinates. In another embodiment, a structure that substantially conforms to a given set of atomic coordinates is a structure having the recited average root-mean-square deviation (RMSD) value over at least about 50% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such structure has the recited average root-mean-square deviation (RMSD) value over at least about 75% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates, and in another embodiment, such a structure has the recited average root-mean-square deviation (RMSD) value over 100% of the common amino acid side chains as compared to the tertiary structure represented by the given set of atomic coordinates.

A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled by a suitable modeling computer program such as MODELER (A. Sali and T.L. Blundell, J. Mol. Biol., vol. 234:779-815, 1993 as implemented in the Insight II Homology software package (Insight II (97.0), MSI, San Diego)), using information, for example, derived from the following data: (1) the amino acid sequence of the epimerase; (2) the amino acid sequence of the related portion(s) of the protein represented by the specified set of atomic coordinates having a three dimensional configuration; and, (3) the atomic coordinates of the specified three dimensional configuration. Alternatively, a tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can be modeled using data generated from analysis of a crystallized structure of the epimerase. A tertiary structure of an epimerase which substantially conforms to a specified set of atomic coordinates can also be calculated by a method such as molecular replacement. Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, Meth. Enzym., vol. 276, pp. 558-580, 1997; Navaza and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, XPLOR (Brunger, et al., Science, vol. 235, p. 458, 1987). In addition, a structure can be modeled using techniques generally described by,

Ş

5

10

15

20

25

30

for example, Sali, Current Opinions in Biotechnology, vol. 6, pp. 437-451, 1995, and algorithms can be implemented in program packages such as Homology 95.0 (in the program Insight II, available from Biosym/MSI, San Diego, CA). Use of Homology 95.0 requires an alignment of an amino acid sequence of a known structure having a known three dimensional structure with an amino acid sequence of a target structure to be modeled. The alignment can be a pairwise alignment or a multiple sequence alignment including other related sequences (for example, using the method generally described by Rost, Meth. Enzymol., vol. 266, pp. 525-539, 1996) to improve accuracy. Structurally conserved regions can be identified by comparing related structural features, or by examining the degree of sequence homology between the known structure and the target structure. Certain coordinates for the target structure are assigned using known structures from the known structure. Coordinates for other regions of the target structure can be generated from fragments obtained from known structures such as those found in the Protein Data Bank maintained by Brookhaven National Laboratory, Upton, NY. Conformation of side chains of the target structure can be assigned with reference to what is sterically allowable and using a library of rotamers and their frequency of occurrence (as generally described in Ponder and Richards, J. Mol. Biol., vol. 193, pp. 775-791, 1987). The resulting model of the target structure, can be refined by molecular mechanics (such as embodied in the program Discover, available from Biosym/MSI) to ensure that the model is chemically and conformationally reasonable.

According to the present invention, an epimerase that has a nucleic acid sequence that is homologous at the primary structure level (i.e., is a homologue of) to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase includes any epimerase encoded by a nucleic acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. Similarly, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-

10

15

20

25

30

galactose 4-epimerase includes any epimerase having an amino acid sequence that is at least about 15%, and preferably at least about 20%, and more preferably at least about 25%, and even more preferably, at least about 30% identical to an amino acid sequence of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase or a UDP-galactose 4-epimerase, and preferably to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10.

According to one embodiment of the present invention, homology or percent identity between two or more nucleic acid or amino acid sequences is performed using methods known in the art for aligning and/or calculating percentage identity. To compare the homology/percent identity between two or more sequences as set forth above, for example, a module contained within DNASTAR (DNASTAR, Inc., Madison, Wisconsin) can be used. In particular, to calculate the percent identity between two nucleic acid or amino acid sequences, the Lipman-Pearson method, provided by the MegAlign module within the DNASTAR program, is preferably used, with the following parameters, also referred to herein as the Lipman-Pearson standard default parameters:

- (1) Ktuple = 2;
- (2) Gap penalty = 4;
- (3) Gap length penalty = 12.

Using the Lipman-Pearson method with these parameters, for example, the percent identity between the amino acid sequence for *E. coli* GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (SEQ ID NO:4) and human GDP-4-keto-6-deoxy-D-mannose epimerase/reductase (FX) (SEQ ID NO:6) is 27.7%, which is comparable to the 27% identity described for these enzymes in Tonetti et al., 1998, *Acta Cryst.* D54:684-686.

According to another embodiment of the present invention, to align two or more nucleic acid or amino acid sequences, for example to generate a consensus sequence or evaluate the similarity at various positions between such sequences, a CLUSTAL alignment program (e.g., CLUSTAL, CLUSTAL V, CLUSTAL W), also available as a module within the DNASTAR program, can be used using the following parameters, also referred to herein as the CLUSTAL standard default parameters:

Multiple Alignment Parameters (i.e., for more than 2 sequences):

(1) Gap penalty = 10;

5

10

15

20

25

30

(2) Gap length penalty = 10;

Pairwise Alignment Parameters (i.e., for two sequences):

- (1) Ktuple = 1;
- (2) Gap penalty = 3;
- (3) Window = 5;
 - (4) Diagonals saved = 5.

According to the present invention, a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase can be a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from any organism, including Arabidopsis thaliana, Escherichia coli, and human. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Arabidopsis thaliana is represented herein by SEQ ID NO:1. SEQ ID NO:1 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:2. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from Escherichia coli is represented herein by SEQ ID NO:3. SEQ ID NO:3 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:4. A nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase from homo sapiens is represented herein by SEQ ID NO:5. SEQ ID NO:5 encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase having an amino acid sequence represented herein as SEQ ID NO:6.

According to the present invention, a UDP-galactose 4-epimerase can be a UDP-galactose 4-epimerase from any organism, including *Escherichia coli* and human. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *Escherichia coli* is represented herein by SEQ ID NO:7. SEQ ID NO:7 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:8. A nucleic acid sequence encoding a UDP-galactose 4-epimerase from *homo sapiens* is represented herein by SEQ ID NO:9. SEQ ID NO:9 encodes a UDP-galactose 4-epimerase having an amino acid sequence represented herein as SEQ ID NO:10.

In a preferred embodiment, an epimerase encompassed by the present invention has an amino acid sequence that aligns with the amino acid sequence of SEQ ID NO:11, for example using a CLUSTAL alignment program, wherein amino acid residues in the

WO 99/64618 PCT/US99/11576

amino acid sequence of the epimerase align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11, and preferably at least about 75% of non-Xaa residues in SEQ ID NO:11, and more preferably, at least about 90% of non-Xaa residues in SEQ ID NO:11, and even more preferably 100% of non-Xaa residues in SEQ ID NO:11. The percent identity of residues aligning with 100% identity with non-Xaa residues can be simply calculated by dividing the number of 100% identical matches at non-Xaa residues in SEQ ID NO:11 by the total number of non-Xaa residues in SEQ ID NO:11. A preferred nucleic acid sequence encoding an epimerase encompassed by the present invention include a nucleic acid sequence encoding an epimerase having an amino acid sequence with the above described identity to SEQ ID NO:11. Such an alignment using a CLUSTAL alignment program is based on the same parameters as previously disclosed herein. SEQ ID NO:11 represents a consensus amino acid sequence of an epimerase which was derived by aligning at least portions of amino acid sequences SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8, as described in Somers et al., 1998, Structure 6:1601-1612, and can be approximately duplicated using CLUSTAL.

In another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a catalytic site which includes amino acid residues: serine, tyrosine and lysine. Preferably, such serine, tyrosine and lysine residues are located at positions in the epimerase amino acid sequence which align using a CLUSTAL alignment program with positions Ser105, Tyr134 and Lys138 of consensus sequence SEQ ID NO:11, with positions Ser109, Tyr138 and Lys142 of sequence SEQ ID NO:2, with positions Ser107, Tyr136 and Lys140 of SEQ ID NO:4, with positions Ser114, Tyr143 and Lys147 of sequence SEQ ID NO:6, with positions Ser124, Tyr149 and Lys153 of sequence SEQ ID NO:8 or with positions Ser132, Tyr157 and Lys161 of sequence SEQ ID NO:10.

In another embodiment, an epimerase that has an amino acid sequence that is homologous to an amino acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase includes any epimerase that has an amino acid motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly, which is found, for example in positions 8 through 14 of the consensus sequence SEQ ID NO:11, in positions 12 through 18 of SEQ ID NO:2, in positions 10 through 16 of SEQ ID NO:4, in positions 14 through 20 of SEQ ID NO:6, in positions

.33

5

10

15

20

25

30

7 through 13 of SEQ ID NO:8, and in positions 9 through 15 of SEQ ID NO:10. Such a motif can be identified by its alignment with the same motif in the above-identified amino acid sequences using a CLUSTAL alignment program. Preferably, such motif is located within the first 25 N-terminal amino acids of the amino acid sequence of the epimerase.

In yet another embodiment, an epimerase encompassed by the present invention includes an epimerase that has a substrate binding site which includes amino acid residues that align using a CLUSTAL alignment program with at least 50% of amino acid positions Asn177, Ser178, Arg187, Arg209, Lys283, Asn165, Ser107, Ser108, Cys109, Asn133, Tyr136 and His179 of SEQ ID NO:4. Alignment with positions Ser107, Tyr136, Asn165, Arg209, is preferably with 100% identity (i.e., exact match of residue, under parameters for alignment).

In another embodiment of the present invention, an epimerase encompassed by the present invention comprises at least 4 contiguous amino acid residues having 100% identity with at least 4 contiguous amino acid residues of an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters. According to the present invention, the term "contiguous" means to be connected in an unbroken sequence. For a first sequence to have "100% identity" with a second sequence means that the first sequence exactly matches the second sequence with no gaps between nucleotides or amino acids.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises at least 12 contiguous nucleic acid residues having 100% identity with at least 12 contiguous nucleic acid residues of a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:10, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters or by comparing an alignment using a CLUSTAL program with CLUSTAL standard default parameters.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that hybridizes under stringent

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

hybridization conditions to a nucleic acid sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9. As used herein, stringent hybridization conditions refer to standard hybridization conditions under which nucleic acid molecules are used to identify similar nucleic acid molecules. Such standard conditions are disclosed, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Labs Press, 1989. Sambrook et al., *ibid.*, is incorporated by reference herein in its entirety (see specifically, pages 9.31-9.62). In addition, formulae to calculate the appropriate hybridization and wash conditions to achieve hybridization permitting varying degrees of mismatch of nucleotides are disclosed, for example, in Meinkoth et al., 1984, *Anal. Biochem.* 138, 267-284; Meinkoth et al., *ibid.*, is incorporated by reference herein in its entirety.

More particularly, stringent hybridization and washing conditions, as referred to herein, refer to conditions which permit isolation of nucleic acid molecules having at least about 70% nucleic acid sequence identity with the nucleic acid molecule being used to probe in the hybridization reaction, more particularly at least about 75%, and most particularly at least about 80%. Such conditions will vary, depending on whether DNA:RNA or DNA:DNA hybrids are being formed. Calculated melting temperatures for DNA:DNA hybrids are 10°C less than for DNA:RNA hybrids. In particular embodiments, stringent hybridization conditions for DNA:DNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 20°C and about 35°C, more preferably, between about 28°C and about 40°C, and even more preferably, between about 35°C and about 45°C. In particular embodiments, stringent hybridization conditions for DNA:RNA hybrids include hybridization at an ionic strength of 6X SSC (0.9 M Na⁺) at a temperature of between about 30°C and about 45°C, more preferably, between about 38°C and about 50°C, and even more preferably, between about 45°C and about 55°C. These values are based on calculations of a melting temperature for molecules larger than about 100 nucleotides, 0% formamide and a G+ C content of about 40%. Alternatively, T_m can be calculated empirically as set forth in Sambrook et al., supra, pages 9.31 to 9.62.

In another embodiment of the present invention, an epimerase encompassed by the present invention is encoded by a nucleic acid sequence that comprises a nucleic acid

4.3

ું પૂર્વ

5

10

15

20

25

30

sequence selected from the group of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 or SEQ ID NO:9 or a fragment thereof, wherein the fragment encodes a protein that is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, such as under physiological conditions. In another embodiment, an epimerase encompassed by the present invention comprises an amino acid sequence selected from the group of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or a fragment thereof, wherein the fragment is capable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose. It is to be understood that the nucleic acid sequence encoding the amino acid sequences identified herein can vary due to degeneracies. As used herein, nucleotide degeneracies refers to the phenomenon that one amino acid can be encoded by different nucleotide codons.

One embodiment of the present invention relates to a method to identify an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose. Preferably, such a method is useful for identifying the GDP-D-mannose:GDP-L-galactose epimerase which catalyzes the conversion of GDP-D-mannose to GDP-L-galactose in the endogenous (i.e., naturally occurring L-ascorbic acid biosynthetic pathway of microorganisms and/or plants). Such a method can include the steps of: (a) contacting a source of nucleic acid molecules with an oligonucleotide at least about 12 nucleotides in length under stringent hybridization conditions, wherein the oligonucleotide is identified by its ability to hybridize under stringent hybridization conditions to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5; and, (b) identifying nucleic acid molecules from the source of nucleic acid molecules which hybridize under stringent hybridization conditions to the oligonucleotide. Nucleic acid molecules identified by this method can then be isolated from the source using standard molecular biology techniques. Preferably, the source of nucleic acid molecules is obtained from a microorganism or plant that has an ascorbic acid production pathway. Such a source of nucleic acid molecules can be any source of nucleic acid molecules which can be isolated from an organism and/or which can be screened by hybridization with an oligonucleotide such as a probe or a PCR primer. Such sources include genomic and cDNA libraries and isolated RNA.

10

15

20

In order to screen cDNA libraries from different organisms and to isolate nucleic acid molecules encoding enzymes such as the GDP-D-mannose:GDP-L-galactose epimerase and related epimerases, one can use any of a variety of standard molecular and biochemical techniques. For example, oligonucleotide primers, preferably degenerate primers, can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence, and such primers can be used in a polymerase chain reaction (PCR) protocol to amplify the same or related epimerases, including the GDP-D-mannose:GDP-L-galactose epimerase from the ascorbic acid pathway, from nucleic acids (e.g., genomic or cDNA libraries) isolated from a desired organism (e.g., a microorganism or plant having an L-ascorbic acid pathway). Similarly, oligonucleotide probes can be designed using the most conserved regions of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase nucleic acid sequence and such probe can be used to identify and isolate nucleic acid molecules, such as from a genomic or cDNA library, that hybridize under conditions of low, moderate, or high stringency with the probe.

Alternatively, the GDP-D-mannose:GDP-L-galactose epimerase can be purified from an organism such as *Prototheca*, the N-terminal amino acid sequence can be determined (including the sequence of internal peptide fragments), and this information can be used to design degenerate primers for amplifying a gene fragment from the organism cDNA. This fragment would then be used to probe the cDNA library, and subsequently fragments that hybridize to the probe would be cloned in that organism or another suitable production organism. There is ample precedent for plant enzymes being expressed in an active form in bacteria, such as *E. coli*. Alternatively, yeast are also a suitable candidate for developing a heterologous system for L-ascorbic acid production.

25

30

As discussed above in general for increasing the action of an enzyme in the L-ascorbic acid pathway according to the present invention, in one embodiment of the present invention, the action of an epimerase that catalyzes the conversion of GDP-D-mannose to GDP-L-galactose is increased by amplification of the expression (i.e., overexpression) of such an epimerase. Overexpression of an epimerase can be accomplished, for example, by introduction of a recombinant nucleic acid molecule encoding the epimerase. It is preferred that the gene encoding an epimerase according to

the present invention be cloned under control of an artificial promoter. The promoter can be any suitable promoter that will provide a level of epimerase expression required to maintain a sufficient level of L-ascorbic acid in the production organism. Preferred promoters are constitutive (rather than inducible) promoters, since the need for addition of expensive inducers is therefore obviated. The gene dosage (copy number) of a recombinant nucleic acid molecule according to the present invention can be varied according to the requirements for maximum product formation. In one embodiment, the recombinant nucleic acid molecule encoding an epimerase according to the present invention is integrated into the chromosome of the microorganism.

10

15

5

It is another embodiment of the present invention to provide a microorganism having one or more epimerases according to the present invention with improved affinity for its substrate. An epimerase with improved affinity for its substrate can be produced by any suitable method of genetic modification or protein engineering. For example, computer-based protein engineering can be used to design an epimerase protein with greater stability and better affinity for its substrate. See for example, Maulik et al., 1997, Molecular Biotechnology: Therapeutic Applications and Strategies, Wiley-Liss, Inc., which is incorporated herein by reference in its entirety.

in 20 pa ap m L ca 25 sa m

30

As noted above, in the method for production of L-ascorbic acid of the present invention, a microorganism having a genetically modified L-ascorbic acid production pathway is cultured in a fermentation medium for production of L-ascorbic acid. An appropriate, or effective, fermentation medium refers to any medium in which a genetically modified microorganism of the present invention, when cultured, is capable of producing L-ascorbic acid. Such a medium is typically an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. One advantage of genetically modifying a microorganism as described herein is that although such genetic modifications can significantly alter the production of L-ascorbic acid, they can be designed such that they do not create any nutritional requirements for the production organism. Thus, a minimal-salts medium containing glucose as the sole carbon source can be used as the fermentation medium. The use of a minimal-salts-glucose medium for the L-ascorbic acid fermentation will also facilitate recovery and purification of the L-ascorbic acid product.

10

15

20

25

30

42

PCT/US99/11576

In one mode of operation of the present invention, the carbon source concentration, such as the glucose concentration, of the fermentation medium is monitored during fermentation. Glucose concentration of the fermentation medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, e.g., a cell-free component of the fermentation medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial. Accordingly, when glucose is used as a carbon source the glucose concentration in the fermentation medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is preferred to maintain the carbon source concentration of the fermentation medium by addition of aliquots of the original fermentation medium. The use of aliquots of the original fermentation medium are desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the fermentation medium by addition of aliquots of the trace metals solution.

In an embodiment of the fermentation process of the present invention, a fermentation medium is prepared as described above. This fermentation medium is inoculated with

an actively growing culture of genetically modified microorganisms of the present invention in an amount sufficient to produce, after a reasonable growth period, a high cell density. Typical inoculation cell densities are within the range of from about 0.1 g/L to about 15 g/L, preferably from about 0.5 g/L to about 10 g/L and more preferably from about 1 g/L to about 5 g/L, based on the dry weight of the cells. The cells are then grown to a cell density in the range of from about 10 g/L to about 100 g/L preferably from about

10

15

20

25

30

20 g/L to about 80 g/L, and more preferably from about 50 g/L to about 70 g/L. The residence times for the microorganisms to reach the desired cell densities during fermentation are typically less than about 200 hours, preferably less than about 120 hours, and more preferably less than about 96 hours.

The microorganisms useful in the method of the present invention can be cultured in conventional fermentation modes, which include, but are not limited to, batch, fedbatch, and continuous. It is preferred, however, that the fermentation be carried out in fed-batch mode. In such a case, during fermentation some of the components of the medium are depleted. It is possible to initiate fermentation with relatively high concentrations of such components so that growth is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the fermentation by making additions as levels are depleted by fermentation. Levels of components in the fermentation medium can be monitored by, for example, sampling the fermentation medium periodically and assaying for concentrations. Alternatively, once a standard fermentation procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the fermentation. As will be recognized by those in the art, the rate of consumption of nutrient increases during fermentation as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the fermentation medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the fermentation.

The present inventors have determined that high levels of magnesium in the fermentation medium inhibits the production of L-ascorbic acid due to repression of enzymes early in the production pathway, although enzymes late in the pathway (i.e., from L-galactose to L-ascorbic acid) are not negatively affected (See Examples). Therefore, in a preferred embodiment of the method of the present invention, the step of culturing is carried out in a fermentation medium that is magnesium (Mg²⁺) limited. Even more preferably, the fermentation is magnesium limited during the cell growth phase. Preferably, the fermentation medium comprises less than about 0.5 g/L of Mg²⁺ during the cell growth phase of fermentation, and even more preferably, less than about 0.2 g/L of Mg²⁺, and even more preferably, less than about 0.1 g/L of Mg²⁺.

10

15

20

25

30

The temperature of the fermentation medium can be any temperature suitable for growth and ascorbic acid production, and may be modified according to the growth requirements of the production microorganism used. For example, prior to inoculation of the fermentation medium with an inoculum, the fermentation medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 30°C to about 38°C.

It is a further embodiment of the present invention to supplement and/or control other components and parameters of the fermentation medium, as necessary to maintain and/or enhance the production of L-ascorbic acid by a production organism. For example, in one embodiment, the pH of the fermentation medium is monitored for fluctuations in pH. In the fermentation method of the present invention, the pH is preferably maintained at a pH of from about pH 6.0 to about pH 8.0, and more preferably, at about pH 7.0. In the method of the present invention, if the starting pH of the fermentation medium is pH 7.0, the pH of the fermentation medium is monitored for significant variations from pH 7.0, and is adjusted accordingly, for example, by the addition of sodium hydroxide. In a preferred embodiment of the present invention, genetically modified microorganisms useful for production of L-ascorbic acid include acid-tolerant microorganisms. Such microorganisms include, for example, microalgae of the genera *Prototheca* and *Chlorella* (See U.S. Patent No. 5,792,631, *ibid.* and U.S. Patent No. 5,900,370, *ibid.*).

The production of ascorbic acid by culturing acid-tolerant microorganisms provides significant advantages over known ascorbic acid production methods. One such advantage is that such organisms are acidophilic, allowing fermentation to be carried out under low pH conditions, with the fermentation medium pH typically less than about 6. Below this pH, extracellular ascorbic acid produced by the microorganism during fermentation is relatively stable because the rate of oxidation of ascorbic acid in the fermentation medium by oxygen is reduced. Accordingly, high productivity levels can be obtained for producing L-ascorbic acid with acid-tolerant microorganisms according to the methods of the present invention. In addition, control of the dissolved oxygen content to very low levels to avoid oxidation of ascorbic acid is unnecessary. Moreover, this

10

15

20

25

30

advantage allows for the use of continuous recovery methods because extracellular medium can be treated to recover the ascorbic acid product.

Thus, the present method can be conducted at low pH when acid-tolerant microorganisms are used as production organisms. The benefit of this process is that at low pH, extracellular ascorbic acid produced by the organism is degraded at a reduced rate than if the fermentation medium was at higher pH. For example, prior to inoculation of the fermentation medium with an inoculum, the pH of the fermentation medium can be adjusted, and further monitored during fermentation. Typically, the pH of the fermentation medium is brought to and maintained below about 6, preferably below 5.5, and more preferably below about 5. The pH of the fermentation medium can be controlled by the addition of ammonia to the fermentation medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the fermentation medium.

The fermentation medium can also be maintained to have a dissolved oxygen content during the course of fermentation to maintain cell growth and to maintain cell metabolism for L-ascorbic acid formation. The oxygen concentration of the fermentation medium can be monitored using known methods, such as through the use of an oxygen probe electrode. Oxygen can be added to the fermentation medium using methods known in the art, for example, through agitation and aeration of the medium by stirring or shaking. Preferably, the oxygen concentration in the fermentation medium is in the range of from about 20% to about 100% of the saturation value of oxygen in the medium based upon the solubility of oxygen in the fermentation medium at atmospheric pressure and at a temperature in the range of from about 30°C to about 40°C. Periodic drops in the oxygen concentration below this range may occur during fermentation, however, without adversely affecting the fermentation.

The genetically modified microorganisms of the present invention are engineered to produce significant quantities of extracellular L-ascorbic acid. Extracellular L-ascorbic acid can be recovered from the fermentation medium using conventional separation and purification techniques. For example, the fermentation medium can be filtered or centrifuged to remove microorganisms, cell debris and other particulate matter, and L-ascorbic acid can be recovered from the cell-free supernate by conventional methods, such

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

46

as, for example, ion exchange, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

One such example of L-ascorbic acid recovery is provided in U.S. Patent No. 4,595,659 by Cayle, incorporated herein in its entirety be reference, which discloses the isolation of L-ascorbic acid from an aqueous fermentation medium by ion exchange resin adsorption and elution, which is followed by decoloration, evaporation and crystallization. Further, isolation of the structurally similar isoascorbic acid from fermentation medium by a continuous multi-bed extraction system of anion-exchange resins is described by K. Shimizu, Agr. Biol. Chem. 31:346-353 (1967), which is incorporated herein in its entirety by reference.

Intracellular L-ascorbic acid produced in accordance with the present invention can also be recovered and used in a variety of applications. For example, cells from the microorganisms can be lysed and the ascorbic acid which is released can be recovered by a variety of known techniques. Alternatively, intracellular ascorbic acid can be recovered by washing the cells to extract the ascorbic acid, such as through diafiltration.

Development of a microorganism with enhanced ability to produce L-ascorbic acid by genetic modification can be accomplished using both classical strain development and molecular genetic techniques, and particularly, recombinant technology (genetic engineering). In general, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to (1) inactivate or delete at least one, and preferably more than one of the competing or inhibitory pathways in which production of L-ascorbic acid is negatively affected (e.g., inhibited), and more significantly to (2) amplify the L-ascorbic acid production pathway by increasing the action of a gene(s) encoding an enzyme(s) involved in the pathway.

In one embodiment, the strategy for creating a microorganism with enhanced L-ascorbic acid production is to amplify the L-ascorbic acid production pathway by increasing the action of GDP-D-mannose:GDP-L-galactose epimerase, as discussed above. Such strategy includes genetically modifying the endogenous GDP-D-mannose:GDP-L-galactose epimerase such that L-ascorbic acid production is increased, and/or expressing/overexpressing a recombinant epimerase that catalyzes the conversion

10

15

20

25

30

of GDP-D-mannose to GDP-L-galactose, which includes expression of recombinant GDP-D-mannose:GDP-L-galactose epimerase and/or homologues thereof, and of other recombinant epimerases such as GDP-4-keto-6-deoxy-D-mannose epimerase reductase and epimerases that share structural homology with such epimerase as discussed in detail above.

It is to be understood that a production organism can be genetically modified by recombinant technology in which a nucleic acid molecule encoding a protein involved in the L-ascorbic acid production pathway disclosed herein is transformed into a suitable host which is a different member of the plant kingdom from which the nucleic acid molecule was derived. For example, it is an embodiment of the present invention that a recombinant nucleic acid molecule encoding a GDP-D-mannose:GDP-L-galactose epimerase from a higher plant can be transformed into a microalgal host in order to overexpress the epimerase and enhance production of L-ascorbic acid in the microalgal production organism.

As previously discussed herein, in one embodiment, a genetically modified microorganism can be a microorganism in which nucleic acid molecules have been deleted, inserted or modified, such as by insertion, deletion, substitution, and/or inversion of nucleotides, in such a manner that such modifications provide the desired effect within the A genetically modified microorganism is preferably modified by microorganism. recombinant technology, such as by introduction of an isolated nucleic acid molecule into a microorganism. For example, a genetically modified microorganism can be transfected with a recombinant nucleic acid molecule encoding a protein of interest, such as a protein for which increased expression is desired. The transfected nucleic acid molecule can remain extrachromosomal or can integrate into one or more sites within a chromosome of the transfected (i.e., recombinant) host cell in such a manner that its ability to be expressed is retained. Preferably, once a host cell of the present invention is transfected with a nucleic acid molecule, the nucleic acid molecule is integrated into the host cell genome. A significant advantage of integration is that the nucleic acid molecule is stably maintained in the cell. In a preferred embodiment, the integrated nucleic acid molecule is operatively linked to a transcription control sequence (described below) which can be induced to control expression of the nucleic acid molecule.

10

15

20

25

30

A nucleic acid molecule can be integrated into the genome of the host cell either by random or targeted integration. Such methods of integration are known in the art. For example, an E coli strain ATCC 47002 contains mutations that confer upon it an inability to maintain plasmids which contain a ColE1 origin of replication. When such plasmids are transferred to this strain, selection for genetic markers contained on the plasmid results in integration of the plasmid into the chromosome. This strain can be transformed, for example, with plasmids containing the gene of interest and a selectable marker flanked by the 5'- and 3'-termini of the E coli lacZ gene. The lacZ sequences target the incoming DNA to the lacZ gene contained in the chromosome. Integration at the lacZ locus replaces the intact lacZ gene, which encodes the enzyme β -galactosidase, with a partial lacZ gene interrupted by the gene of interest. Successful integrants can be selected for β -galactosidase negativity.

A genetically modified microorganism can also be produced by introducing nucleic acid molecules into a recipient cell genome by a method such as by using a transducing bacteriophage. The use of recombinant technology and transducing bacteriophage technology to produce several different genetically modified microorganism of the present invention is known in the art.

According to the present invention, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, includes all nucleic acid sequences related to a natural epimerase gene such as regulatory regions that control production of the epimerase protein encoded by that gene (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself. In another embodiment, a gene, for example the GDP-D-mannose:GDP-L-galactose epimerase gene, can be an allelic variant that includes a similar but not identical sequence to the nucleic acid sequence encoding a given GDP-D-mannose:GDP-L-galactose epimerase gene. An allelic variant of a GDP-D-mannose:GDP-L-galactose epimerase gene which has a given nucleic acid sequence is a gene that occurs at essentially the same locus (or loci) in the genome as the gene having the given nucleic acid sequence, but which, due to natural variations caused by, for example, mutation or recombination, has a similar but not identical sequence. Allelic variants typically encode proteins having similar activity to that of the protein encoded by the gene to which they are being

10

15

20

25

30

compared. Allelic variants can also comprise alterations in the 5' or 3' untranslated regions of the gene (e.g., in regulatory control regions). Allelic variants are well known to those skilled in the art and would be expected to be found within a given microorganism or plant and/or among a group of two or more microorganisms or plants.

In accordance with the present invention, an isolated nucleic acid molecule is a nucleic acid molecule that has been removed from its natural milicu (i.e., that has been subject to human manipulation). As such, "isolated" does not reflect the extent to which the nucleic acid molecule has been purified. An isolated nucleic acid molecule can include DNA, RNA, or derivatives of either DNA or RNA. There is no limit, other than a practical limit, on the maximal size of a nucleic acid molecule in that the nucleic acid molecule can include a portion of a gene, an entire gene, or multiple genes, or portions thereof.

An isolated nucleic acid molecule of the present invention can be obtained from its natural source either as an entire (i.e., complete) gene or a portion thereof capable of forming a stable hybrid with that gene. An isolated nucleic acid molecule can also be produced using recombinant DNA technology (e.g., polymerase chain reaction (PCR) amplification, cloning) or chemical synthesis. Isolated nucleic acid molecules include natural nucleic acid molecules and homologues thereof, including, but not limited to, natural allelic variants and modified nucleic acid molecules in which nucleotides have been inserted, deleted, substituted, and/or inverted in such a manner that such modifications provide the desired effect within the microorganism. A structural homologue of a nucleic acid sequence has been described in detail above. Preferably, a homologue of a nucleic acid sequence encodes a protein which has an amino acid sequence that is sufficiently similar to the natural protein amino acid sequence that a nucleic acid sequence encoding the homologue is capable of hybridizing under stringent conditions to (i.e., with) a nucleic acid molecule encoding the natural protein (i.e., to the complement of the nucleic acid strand encoding the natural protein amino acid sequence). A nucleic acid molecule homologue encodes a protein homologue. As used herein, a homologue protein includes proteins in which amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation,

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

amidation and/or addition of glycosylphosphatidyl inositol) in such a manner that such modifications provide the desired effect on the protein and/or within the microorganism (e.g., increased or decreased action of the protein).

A nucleic acid molecule homologue can be produced using a number of methods known to those skilled in the art (see, for example, Sambrook et al., *ibid.*). For example, nucleic acid molecules can be modified using a variety of techniques including, but not limited to, classic mutagenesis techniques and recombinant DNA techniques, such as site-directed mutagenesis, chemical treatment of a nucleic acid molecule to induce mutations, restriction enzyme cleavage of a nucleic acid fragment, ligation of nucleic acid fragments, PCR amplification and/or mutagenesis of selected regions of a nucleic acid sequence, synthesis of oligonucleotide mixtures and ligation of mixture groups to "build" a mixture of nucleic acid molecules and combinations thereof. Nucleic acid molecule homologues can be selected from a mixture of modified nucleic acids by screening for the function of the protein encoded by the nucleic acid and/or by hybridization with a wild-type gene.

Although the phrase "nucleic acid molecule" primarily refers to the physical nucleic acid molecule and the phrase "nucleic acid sequence" primarily refers to the sequence of nucleotides on the nucleic acid molecule, the two phrases can be used interchangeably, especially with respect to a nucleic acid molecule, or a nucleic acid sequence, being capable of encoding a gene involved in an L-ascorbic acid production pathway.

Knowing the nucleic acid sequences of certain nucleic acid molecules of the present invention allows one skilled in the art to, for example, (a) make copies of those nucleic acid molecules and/or (b) obtain nucleic acid molecules including at least a portion of such nucleic acid molecules (e.g., nucleic acid molecules including full-length genes, full-length coding regions, regulatory control sequences, truncated coding regions). Such nucleic acid molecules can be obtained in a variety of ways including traditional cloning techniques using oligonucleotide probes to screen appropriate libraries or DNA and PCR amplification of appropriate libraries or DNA using oligonucleotide primers. Preferred libraries to screen or from which to amplify nucleic acid molecule include bacterial and yeast genomic DNA libraries, and in particular, microalgal genomic DNA libraries. Techniques to clone and amplify genes are disclosed, for example, in Sambrook et al., ibid.

10

15

20

25

30

The present invention includes a recombinant vector, which includes at least one isolated nucleic acid molecule of the present invention, inserted into any vector capable of delivering the nucleic acid molecule into a host microorganism of the present invention. Such a vector can contain nucleic acid sequences that are not naturally found adjacent to the isolated nucleic acid molecules to be inserted into the vector. The vector can be either RNA or DNA and typically is a plasmid. Recombinant vectors can be used in the cloning, sequencing, and/or otherwise manipulating of nucleic acid molecules. One type of recombinant vector, referred to herein as a recombinant molecule and described in more detail below, can be used in the expression of nucleic acid molecules. Preferred recombinant vectors are capable of replicating in a transformed bacterial cells, yeast cells, and in particular, in microalgal cells.

Transformation of a nucleic acid molecule into a cell can be accomplished by any method by which a nucleic acid molecule can be inserted into the cell. Transformation techniques include, but are not limited to, transfection, electroporation, microinjection and biolistics.

A recombinant cell is preferably produced by transforming a host cell with one or more recombinant molecules, each comprising one or more nucleic acid molecules operatively linked to an expression vector containing one or more transcription control sequences. The phrase, operatively linked, refers to insertion of a nucleic acid molecule into an expression vector in a manner such that the molecule is able to be expressed when transformed into a host cell. As used herein, an expression vector is a DNA or RNA vector that is capable of transforming a host cell and of effecting expression of a specified nucleic acid molecule. Preferably, the expression vector is also capable of replicating within the host cell. In the present invention, expression vectors are typically plasmids. Expression vectors of the present invention include any vectors that function (i.e., direct gene expression) in a yeast host cell, a bacterial host cell, and preferably a microalgal host cell.

Nucleic acid molecules of the present invention can be operatively linked to expression vectors containing regulatory sequences such as transcription control sequences, translation control sequences, origins of replication, and other regulatory sequences that are compatible with the recombinant cell and that control the expression

WO 99/64618 PCT/US99/11576

52

of nucleic acid molecules of the present invention. In particular, recombinant molecules of the present invention include transcription control sequences. Transcription control sequences are sequences which control the initiation, elongation, and termination of transcription. Particularly important transcription control sequences are those which control transcription initiation, such as promoter, enhancer, operator and repressor sequences. Suitable transcription control sequences include any transcription control sequence that can function in yeast or bacterial cells or preferably, in microalgal cells. A variety of such transcription control sequences are known to those skilled in the art.

5

10

15

20

25

It may be appreciated by one skilled in the art that use of recombinant DNA technologies can improve expression of transformed nucleic acid molecules by manipulating, for example, the number of copies of the nucleic acid molecules within a host cell, the efficiency with which those nucleic acid molecules are transcribed, the efficiency with which the resultant transcripts are translated, and the efficiency of posttranslational modifications. Recombinant techniques useful for increasing the expression of nucleic acid molecules of the present invention include, but are not limited to. operatively linking nucleic acid molecules to high-copy number plasmids, integration of the nucleic acid molecules into the host cell chromosome, addition of vector stability sequences to plasmids, substitutions or modifications of transcription control signals (e.g., promoters, operators, enhancers), substitutions or modifications of translational control signals, modification of nucleic acid molecules of the present invention to correspond to the codon usage of the host cell, deletion of sequences that destabilize transcripts, and use of control signals that temporally separate recombinant cell growth from recombinant enzyme production during fermentation. The activity of an expressed recombinant protein of the present invention may be improved by fragmenting, modifying, or derivatizing nucleic acid molecules encoding such a protein.

The following experimental results are provided for the purposes of illustration and are not intended to limit the scope of the invention.

EXAMPLES

Example 1

5

10

15

20

25

30

The present example describes the elucidation of the pathway from glucose to L-ascorbic acid through GDP-D-mannose in plants.

Since the present inventors have previously shown that *Prototheca* makes L-ascorbic acid (AA) from glucose, it was worthwhile to examine cultures for some of the early conversion products of glucose. In the past, the present inventors had concentrated on pathways from glucose to organic acids, based on the published pathway of L-ascorbic acid synthesis in animals and proposed pathways in plants. The present inventors demonstrate herein that the pathway from glucose to L-ascorbic acid involves not organic acids, but rather sugar phosphates and nucleotide diphosphate sugars (NDP-sugars).

Prior to the present invention, it was known that all cells synthesize polysaccharides by first forming NDP-sugars. The sugar moiety is then incorporated into polymer, while the cleaved NDP is recycled. A variety of polysaccharides are known, and are usually named based on the relative proportions of the sugar residues in the polymers. For example, a "galactomannan" contains mostly galactose, and to a lesser degree, mannose residues. The "biopolymer" from *Prototheca* strains isolated by the present inventors was analyzed and found to be 80% D-galactose, 18% rhamnose (D- or L-configuration not determined), and 2% L-arabinose. The present inventors provide evidence herein of how the respective NDP-sugars that make up the *Prototheca* biopolymer are formed, and what correlations exist between L-ascorbic acid synthesis and the formation of the NDP-sugar forms of the sugar residues found in the biopolymer.

The common NDP-sugar UDP-glucose is shown in Fig. 2B. This is formed in plants from glucose-I-P by the action of UDP-D-glucose pyrophosphorylase. UDP-glucose can be epimerized in plants to form UDP-D-galactose, using UDP-D-glucose-4-epimerase. UDP-D-galactose can also be formed by phosphorylation of D-galactose by galactokinase to form D-galactose-I-P, which can be converted to UDP-D-galactose by UDP-D-galactose pyrophosphorylase. These known routes were believed to account for the D-galactose in the *Prototheca* biopolymer. The UDP-L-arabinose can be formed by known reactions beginning with the oxidation of UDP-D-glucose to UDP-D-glucuronic acid (by UDP-D-glucose dehydrogenase), decarboxylation to UDP-D-xylose, and epimerization to UDP-L-arabinose. This accounts for the arabinose residues in the

10

15

20

25

30

biopolymer. UDP-L-rhamnose is known to be formed from UDP-D-glucose, thus all three of the sugar moieties in the *Prototheca* biopolymer can be accounted for by a pathway through glucose-1-P and UDP-glucose. Alternatively, if the rhamnose in the biopolymer is D-rhamnose, it is not formed via UDP-D-glucose, but by oxidation of GDP-D-mannose (See Fig. 1).

GDP-D-rhamnose is formed by converting glucose, in turn, to D-glucose-6-P, Dfructose-6-P, D-mannose-6-P, D-mannose-1-P, GDP-D-mannose, and GDP-D-rhamnose. It was of interest to the present inventors that this route passes through GDP-D-mannose. Exogenous mannose is known to be converted to D-mannose-6-P in plants, and can enter the path above. D-mannose is converted to L-ascorbic acid by Prototheca cells cultured by the present inventors as well or better than glucose (see Example 4). The mechanism of conversion, in Chlorella pyrenoidosa, of GDP-D-mannose to GDP-L-galactose by GDP-D-mannose:GDP-L-galactose epimerase, has been known for years (See, Barber, 1971, Arch. Biochem. Biophys. 147:619-623, incorporated herein by reference in its entirety). The present inventors have discovered herein that L-galactose and L-galactonoγ-lactone are rapidly converted to L-ascorbic acid by strains of Prototheca and Chlorella pyrenoidosa. Prior to the present invention, it was known that L-galactono-y-lactone is converted to L-ascorbic acid in several plant systems, but the synthesis steps prior to this step were unknown. Based on the published literature and the present experimental evidence, the present inventors have determined that the L-ascorbic acid biosynthetic pathway in plants passes through GDP-D-mannose and involves sugar phosphates and NDP-sugars. The proposed pathway is shown in Fig. 1. Salient points relevant to the design and production of genetically modified microorganisms useful in the present method include:

- 1. The enzymes leading from D-glucose to D-fructose-6-P are well known enzymes in the first, uncommitted steps of glycolysis.
- 2. The enzymes involved in the conversion of D-fructose-6-P to GDP-D-mannose have been well characterized in plants, yeast, and bacteria, particularly Azotobacter vinelandii and Pseudomonas aeruginosa, which convert GDP-D-mannose to GDP-D-mannuronic acid, which is the precursor for alginate (See for example, Sa-Correia et al., 1987, J. Bacteriol. 169:3224-3231; Koplin et al., 1992, J. Bacteriol. 174:191-199; Oesterhelt et al., 1996, Plant Science 121:19-27; Feingold et al., 1980, The

10

15

20

25

30

Biochemistry of Plants: Vol 3: Carbohydrates, structure and function, P.K. Stampf & E.E. Conn, eds., Academic Press, New York, pp. 101-170; Smith et al., 1992, *Mol. Cell Biol.* 12:2924-2930; Boles et al., 1994, *Eur. J. Med.* 220:83-96; Hashimoto et al., 1997, *J. Biol. Chem.* 272:16308-16314, all of which are incorporated herein by reference in their entirety).

- 3. Barber (1971, supra, and 1975) identified in Chlorella pyrenoidosa the enzyme activities for the conversion of GDP-D-mannose to GDP-L-galactose and L-galactose-l-P.
- 4. The present inventors have shown herein the rapid conversion of L-galactose and L-galactono-γ-lactone to L-ascorbic acid by *Prototheca* cells.
 - 5. L-galactono-γ-lactone and L-galactonic acid can be interconverted in solution by changing the pH of the solution; addition of base shifts the equilibrium to L-galactonic acid, while addition of acid shifts the equilibrium to the lactone. Cells may have an enzymatic means for this conversion in addition to this non-enzymatic route.
 - 6. In plants, GDP-L-fucose is also formed from GDP-D-mannose, presumably for incorporation into polysaccharide. Roberts (1971) fed labeled D-mannose to corn root tips and found the label in polysaccharide, specifically in the residues of D-mannose, L-galactose, and L-fucose. No label was detected in D-glucose, D-galactose, L-arabinose, or D-xylose. Prototheca and C. pyrenoidosa cells have the ability to convert L-fucose (6-deoxy-L-galactose) to a dipyridyl-positive product that was shown by HPLC not to be L-ascorbic acid. The present inventors believe that it is was the 6-deoxy analog of L-ascorbic acid.

Example 2

This example shows that in *Prototheca*, like other plants (Loewus, F.A. 1988. In: J. Priess (ed.), The Biochemistry of Plants, 14:85-107. New York, Academic Press) and the green microalga *Chlorella pyrenoidosa* (Renstrom, *et al.*, 1983. Plant Sci. Lett. 28:299-305), ascorbic acid (AA) production from glucose proceeds by a biosynthetic pathway that allows retention of the configuration of the carbon skeleton of glucose.

Cultures of the strain UV77-247 were grown to moderate cell density in shake flasks with 1-13C-labeled glucose as 10% of the total glucose (40 g/L). Incubation was

WO 99/64618

5

10

15

20

25

as per the standard Mg-limited screen (see Example 3). The culture supernates were clarified, deionized to remove salts, lyophilized, and subjected to nuclear magnetic resonance (nmr) analysis to determine where in the AA molecule the ¹³C was located. In each case, approximately 85% of the label was found at the C-1 position of AA, with most of the remaining label at the C-6 position. This strongly indicated that AA is synthesized from glucose by a pathway that retains the carbon chain configuration, i. e., C-1 of glucose becomes C-1 of AA. This has typically been observed in plants (Loewus, F.A. 1988. Ascorbic acid and its metabolic products. In: The Biochemistry of Plants, ed. J. Priess, 14:85-107. New York, Academic Press). Animals (Mapson, L.W. and F.A. Isherwood 1956. Biochem. J. 64:151-157; Loewus, F.A. 1960. J. Biol. Chem. 235(4):937-939) and protists such as Euglena (Shigeoka, S., et al., 1979. J. Nutr. Sci. Vitaminol. 25:299-307), on the other hand, synthesize AA by a pathway that involves the inversion of configuration, i. e., C-1 of glucose becomes C-6 of AA. Demonstration of the inversion/non-inversion nature of the pathway was an important step in determining the pathway of AA biosynthesis since the two types of pathways require different types of enzymatic reactions. The label found at C-6 of AA is thought to be due to metabolism of glucose and subsequent gluconeogenesis. The metabolism of glucose in glycolysis proceeds through triose-phosphate intermediates. After this, the C-1 and C-6 carbons of glucose become biochemically equivalent. Hexose phosphates can be regenerated from the triose phosphates by gluconeogenesis, which is essentially a reversal of the degradative pathway. Consequently, metabolism of C-1-labeled glucose to triose phosphates with subsequent gluconeogenesis would result in the formation of hexose phosphate molecules labeled at either or both C-1 and C-6. If those hexose phosphates were precursors to AA, one would expect the AA to be similarly labeled. Consistent with this type of "isotopic mixing" is the observation that sucrose obtained from 1-13C-labeled glucose was labeled at positions 1, 6, 1' and 6'.

Glucose can also be metabolized by the pentose phosphate pathway, the overall balanced equation for which is:

3 Glucose-6-phosphate → 2 Fructose-6-phosphate + Glyceraldehyde-3-phosphate + 3 CO,

Based on the known biochemistry, it would then be expected that the label at each of the carbons in glucose (Table 1 left column) would appear at the positions for the other molecules shown, and that these patterns would be reflected in the AA formed from C-2-and C-3-labeled glucose.

TABLE 1
Predicted Carbon Labeling of Metabolites of Glucose in the Pentose Phosphate Pathway

Labeled Glucose	Position of Labeled Carbon in:			
Carbon	CO ₂	F6P(1)	F6P(2)	G3P
1	+	-	-	-
2	•	1,3	1	-
3	-	2	2,3	-
4	-	4	4	1
5	-	5	5	2
6	-	6	6	3

AA recovered from cultures fed glucose labeled at C-2 or C-3 was also analyzed for its labeling patterns (Table 2).

TABLE 2
Labeling Pattern in AA after Cells were Fed 2-13C and 3-13C-glucose

0-4-	Isotopic enhancement after growth on:					
Carbon Position in AA	C-2 labeled glucose	C-3 labeled glucose				
1	1.0	0.4				
2	10.0	0.9				
3	0.5	9.9				
4	0	2.8				
5	2.2	0.2				
6	0	0				

The data above again suggest a pathway from glucose to AA that proceeds by retention of configuration. As in the experiments with C-1 labeled glucose, approximately one-fifth of the label is present in "mirror image" position to the glucose label (C-5 for C-2 labeled glucose and C-4 for C-3 labeled glucose), indicating levels of gluconeogenesis consistent with those previously observed.

The small, but significant amount of enhancement observed in other positions is consistent with flux through the pentose phosphate pathway. As predicted above, carbon

10

15

5

20

25

30

flux through this pathway would result in isotopic enhancement at positions 1 and 3 when cells were grown on 2-13C glucose and enhancement at position 2 when cells were grown on 3-13C glucose. This is indeed observed. That there is twice as much enhancement at C-1 as there is at C-3 after growth on 2-13C glucose is also predicted. These data indicate a small but measurable amount of carbon flux through the pentose phosphate pathway.

Example 3

5

10

15

This example shows the methods for generating, screening and isolating mutants of *Prototheca* with altered AA productivities compared to the starting strain ATCC 75669.

ATCC No. 75669, identified as *Prototheca moriformis* RSP1385 (unicellular green microalga), was deposited on February 8, 1994, with the American Type Culture Collection (ATCC), Rockville, Maryland, 20852, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Initial screening of *Prototheca* species and strains was reported in U.S. Patent No. 5,900,370, *ibid*. Table 3 lists the formulations of the media for growth and maintenance of the strains. Glucose for fermentors was supplied as glucose monohydrate and calculated on an anhydrous basis. The recipe for the trace metals solution is given in Table 4. The standard growth temperature was 35°C. All organisms were cultured axenically.

20

TABLE 3

Media for Growth and Maintenance of *Prototheca* Strains
All quantities are in g/L unless otherwise specified

	Li	quid		Agar	
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates
Potassium phosphate monobasic	1.3	1.3	2.0	0.27	2.0
Potassium phosphate dibasic	3.8	3.8	2.0	1.4	2.0
Trisodium citrate dihydrate	7.7	7.7	2.6	1.3	2.6
Magnesium sulfate heptahydrate	0.40	0.02	0.4	0.01	0.4
Ammonium sulfate	3.7	3.7	1.0	1.0	1.0
Trace Metals Solution	2 mL	2 mL	2 mL	2 mL	2 mL
Ferrous sulfate heptahydrate	1.5 mg	4.5 mg	1.5 mg	-	1.5 mg
Calcium chloride dihydrate	-	0.25	-	-	-

25

30

	Liquid		Agar		
Ingredient	Standard	Mg-limiting	Slants	Ferrozine Plates	Standard Plates
Manganous sulfate monohydrate	-	0.08	•	-	-
Yeast extract	-	-	2.5	-	•
Agar	-	-	15	15 (Nobie)	15
pH before autoclaving	7.2	7.2	7.2	7.2	7.2

Autoclave, then add

Copper sulfate, pentahydrate, 100 g/L		-	-	2 mL	-
40 g/L Ferrozine in 5 mM phosphate (pH 7.5 final)	-	-	-	8.8 mL	-
Ferric ammonium sulfate dodecahydrate, 40 g/L	-	-	-	3.8 mL	-
50% glucose with 25 mg/L thiamine HCI	40 mL	60 mL	10 mL	10 mL	10 mL

15

10

TABLE 4

Trace Metals Solution

Conc. of Individ. mL Indiv. Stock per Compound Molecular Weight Solutions, g/L liter of Working Stock **Distilled Water** 823 Hydrochloric Acid Conc. 20 20 Cobalt Chloride hexahydrate 24.0 6.5 237.9 38.1 24 Boric acid 61.8 Zinc sulfate heptahydrate 287.5 35.3 50 169.0 24.6 50 Manganous sulfate monohydrate Sodium molybdate dihydrate 242.0 23.8 2.0 147.0 11.4 g Calcium chloride dihydrate Vanadyl sulfate dihydrate 199.0 10.0 8.0 5.0 8.0 Nickel nitrate hexahydrate 290.8

25

30

Sodium selenite

agents: nitrous acid (NA); ethyl methane sulfonate (EMS); or ultraviolet light (UV). Typically, glucose-depleted cells grown in standard liquid medium were washed and resuspended in 25 mM phosphate buffer, pH 7.2, diluted to approximately 10⁷ colony-forming units per mL (cfu/mL), exposed to the mutagen to achieve about 99% kill, 35

Mutant isolates were generated by treatment with one or more of the following

173.0

5.0

8.0

incubated 4-8 hours in the dark, and spread onto standard agar medium, or agar media containing differential agents.

WO 99/64618 PCT/US99/11576

5

10

15

20

25

30

Some mutant colonies on standard agar medium were picked randomly and subcultured to master plates. Other isolation plates were inverted over chloroform to lyse cells on the surface of the colonies and allow them to release AA. Released AA was detected by spraying the treated plates with a solution of 2,6-dichrorophenol-indophenol (1.25 g/L in 70% EtOH). The ability of AA to reduce this blue redox dye to its colorless form is the basis for a standard assay of AA (Omaye, et al., 1979. Meth. Enzymol. 62:3-11.). Colonies derived from mutagenized cells were saved to master plates for further evaluation if their clear halos were significantly larger than the halos typical of the other mutants in that group. Other mutagenized cells were spread onto plates containing an AA detection system incorporated directly into the agar. This system is based on the ability of AA to reduce ferric iron to ferrous iron. The compound ferrozine (3-(2-pyridyl)-5,6- bis(4-phenylsulfonic acid)-1,2,4-triazine) was present in the agar to complex with the ferrous iron and give a violet color reaction. The ferrozine agar formulation is shown in Table 3. Colonies giving the darkest color reactions were master-plated. When screening for non-AA-producing strains (blocked mutants), white colonies were chosen against a background of relatively dark colonies.

For primary screening of tube cultures, cells were inoculated from master plates into 4 mL of Mg-limiting medium in 16 x 125 mm test tubes, and tubes were shaken in a slanted position on a rotary shaker at 300 rpm for four days. After both three and four days of incubation aliquots were removed for AA assay and cell density determination. Those for AA assay were centrifuged at 1500 x g for 5 min and the resulting supernates were removed for either colorimetric assay or high pressure liquid chromatography (HPLC). Promising isolates were retested in tube culture. Those passing the tube screen were tested in shake flasks.

For secondary screening of flask cultures, cells were inoculated into 50 mL of standard flask medium in 250 mL baffled shake flasks, and incubated on a rotary shaker at 180 rpm until glucose depletion (24-48 hours). A second series of flasks of Mg-sufficient standard medium was inoculated from the first set to a cell density of 0.15 A₆₂₀, and incubated for 24 hours. A third series of Mg-limiting flask medium was inoculated from the second set by a 1/50 dilution and incubated for 96 hours. Flasks were sampled for AA analysis and cell density measurements during this time as required.

10

15

20

Aliquots for supernatant AA analysis were centrifuged at 5000 x g for 5 min. Aliquots for total whole broth AA analysis were first extracted for 15 min with an equal volume of 5% trichloroacetic acid (TCA) before centrifugation. Aliquots of the resulting supernates were removed for either colorimetric assay or HPLC analysis.

For colorimetric assay of AA, a modification of the method of Omaye, et al. (1979. Meth. Enzymol. 62:3-11) was used. Twenty-five µL aliquots of culture supernates were added to wells of 96-well microplates, and 125 µL of color reagent was added. The color reagent consisted of four parts 0.5% aqueous 2,2'-dipyridyl and one part 8.3 mM ferric ammonium sulfate in 27 % (v/v) o-phosphoric acid, the two components being mixed immediately before use. After one hour, the absorbance at 520 nm was read. AA concentration was calculated by comparison of the absorbances of AA standards.

HPLC analysis was based on that of Running, et al., (1994). Supernates were chromatographed on a Bio-Rad HPX-87H organic acid column (Bio-Rad Laboratories, Richmond, CA) with 13 mM nitric acid as solvent, at a flow rate of 0.7 mL/min at room temperature. Detection was at either 254 nm using a Waters 441 detector (Millipore Corp., Milford, MA), or at 245 nm using a Waters 481 detector. This system can distinguish between the L- and D- isomers of AA.

For dry weight determinations of cell density, 5 mL whole broth samples were centrifuged at 5000 x g for 5 min, washed once with distilled water, and the pellet was washed into a tared aluminum weighing pan. Cells were dried for 8-24 h at 105°C. Cell weight was calculated by difference.

Table 5 shows the abilities of various mutants of Prototheca to synthesize AA.

TABLE 5

AA Synthesizing Ability of Various *Protothece* Mutants in Flask Screen

Strain	Specific AA Formation, mg AA per L/Culture A during Mg-limited Incubation		
	2 Days Incubation	4 Days Incubation	
ATCC 75669	22	35	
EMS13-4	79	166	
UV213-1	0	0	
UV218-1	0	0	
UV244-1	0	0	

25

30

Strain	Specific AA Formation, mg AA per L/Culture Acc				
	during Mg-limited Incubation				
	2 Days Incubation	4 Days Incubation			
UV244-15	58	68			
UV77-247	56	83			
UV140-1	67	100			
UV164-6	91	131			
NA21-14	27	78			
UV82-21	0	0			
UV127-10	50	95			
SP2-3	3	4			

10 The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3. ATCC No. _____, identified as Prototheca moriformis EMS13-4 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. ATCC No. _____, identified as Prototheca 15 moriformis UV127-10 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. 20 ATCC No. ____, identified as Prototheca moriformis SP2-3 (unicellular green microalga), was deposited on May 25, 1999, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure.

25 Example 4

30

5

The following example shows that both growing and resting cells of *Prototheca* can rapidly convert L-galactose and L-galactono-γ-lactone to AA, and that conversion of D-mannose to AA by *Prototheca* is more rapid than conversion of D-glucose.

Shake flask cultures of the mutant strain UV77-247 were grown to glucose depletion in standard liquid medium (Table 3). Cells were washed twice and resuspended in complete medium with the glucose substituted by one of the compounds listed below.

15

20

25

30

35

Cell suspensions were incubated for 24 hours at 35° C with shaking, and the entire suspension was extracted with TCA as above and assayed for AA.

Tables 6-8 show that both growing and resting cells of strain UV77-247 can rapidly convert L-galactose and L-galactono-γ-lactone to AA. In these experiments, D-fructose and D-galactose were converted to AA at the same rate as D-glucose, suggesting that they are metabolized to AA through the same route as D-glucose. None of the organic acids suggested in the literature to be intermediates in the biosynthesis of AA were converted to AA, including sorbosone, which has been proposed as an intermediate by Saito et al. (1990 Plant Physiol. 94:1496-1500).

10 TABLE 6

Conversion of Compounds by Resting Cells of Strain UV77-247

		AA Relative to No
Substrate (50 mM)	Total AA, mg/L	Substrate Control
L-galactose	965	623
L-galactono-γ-lactone	818	476
D-fructose	590	248
D-glucosone	589	247
D-glucose	584	242
D-galactose	542	200
D-glucose (10 mM)	388	46
D-gluconolactone	382	40
D-gulono-γ-lactone	366	24
D-glucuronate	364	22
L-sorbosone	342	0
None	342	0
2-keto-D-gluconic acid	341	-1
D-isoascorbic acid (10 mM)	330	-12
D-glucuronolactone	329	-13
D-gluconic acid	309	-33
D-galacturonic acid	297	-45
L-idonate	296	-46

Since strain UV77-247 converted L-galactose and L-galactono-γ-lactone to AA much more rapidly than it did glucose, it suggests that these compounds are intermediates in the AA biosynthetic pathway and that they are "downstream" from glucose.

The data in Tables 7 and 8 also show that growing and resting cells of UV77-247 consistently convert D-mannose to AA at a rate greater than that of glucose.

TABLE 7

Conversion of Compounds to AA by Resting Cells of Strain UV77-247

	Ascorbic Acid, mg/L			
Compound	25.5 h	30 h	47 h	
L-galactose	667	718	620	
L-galactono-γ-lactone	644	681	749	
D-glucosone	465	462	354	
D-mannose	448	462	399	
D-fructose	402	408	367	
d-glucose	395	404	351	
D-galactose	352	361	337	
none	287	288	258	

TABLE 8

Conversion of Compounds to AA by Growing Cells of Strain UV77-247

	Ascorbic A	Ascorbic Acid, mg/L		AA/A ₆₂₀
Compound	25.5 h		A ₆₂₀	
L-galactose	249	506	4.5	112
D-mannose	228	488	5.6	87
L-galactono-y-lactone	214	342	5.0	68
D-glucose	178	398	5.9	67
D-fructose	181	383	5.9	65
D-glucosone	176	362	5.7	64
D-galactose	185	380	5.9	64
none	182	249	4.4	57
D-gluconic acid (K)	178	262	5.0	52
L-idonate (Na)	182	232	4.7	49
2-keto-D-gluconic acid	182	255	5.3	48
2-deoxy-D-glucose	181	227	4.8	47
D-glucuronic acid lactone	165	218	5.0	44
D-glucuronic acid (Na)	173	241	5.6	43
L-gulono-γ-lactone	152	195	5.0	39
L-sorbosone	178	160	4.7	34
D-glucono-δ-lactone	130	190	5.7	33
D-galacturonic acid	130	180	6.0	30

These cells converted L-galactose, L-galactono- γ -lactone and D-mannose to AA more rapidly than they did glucose, suggesting that mannose exerts its effect in the biosynthetic pathway "downstream" from glucose.

Example 5

Using the methods described above, a collection of mutants was assembled. The specific AA formation for representative mutants are shown in Table 5. The genealogy of these isolates is presented graphically in the "family tree" of Fig. 3.

These isolates were tested for their ability to convert compounds which could be converted to AA by strain UV77-247. Testing was done as in Example 4. Results are shown in Table 9.

TABLE 9

Conversion of Compounds to AA by Resting Cells

of Mutant Strains of *Prototheca* of Varying Abilities to Synthesize AA

			Absolut	e AA, mg/L		i
Strain	Buffer	Glucose	L-galactose	L-gal-γ-lact.	Mannose	Fructose
EMS13-4	53	97	191	173	139	ND
UV127-10	45	140	213	140	128	143
SP2-3	19	19	204	146	24	27
NA21-14	61	80	147	158	118	115
UV82-21	15	16	183	175	18	17
UV213-1	16	15	170	135	17	16
UV218-1	16	18	136	176	19	21
UV244-1	16	16	164	162	16	16
UV244-15	26	77	30	21	94	89
UV244-16	28	64	53	53	53	66

ND = Not Determined

These data suggest that the mutational blocks in those strains which convert fructose and mannose to AA poorly are before ("upstream" from) L-galactose and L-galactono- γ -lactone in the pathway.

Example 6

The following example shows that magnesium inhibits early steps in the production of AA.

To address the question of whether magnesium actually inhibits AA synthesis, strain NA45-3 (ATCC 209681) was grown in magnesium (Mg)-limited and Mg-sufficient medium. ATCC No. 209681, identified as *Prototheca moriformis* NA45-3 (Source:

15

10

5

20

25

30

repeated mutagenesis of ATCC No. 75669; Eucaryotic alga. Division Chlorophyta, Class Chlorophyceae, Order Chlorococcales), was deposited on March 13, 1998, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110, USA, under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. Cells from both cultures were harvested and resuspended in the cell-free supernate from the Mg-limited culture, and to half of each cell suspension additional magnesium was added in order to bring the level in the suspension to the Mg-sufficient level. The four conditions under which assays were run were as follows.

10 TABLE 10

Conditions Used to Test the Effect of Magnesium on AA Production

Condition	Magnesium concentration, g/L, during		
	Growth	Assay	
1Mg>1Mg	0.02	0.02	
1Mg>10Mg	0.02	0.2	
10Mg>1Mg	0.2	0.02	
10Mg>10Mg	0.2	0.2	

15

20

25

30

5

Substrates previously shown to lead to the formation of AA, namely D-glucose, D-glucosone, D-fructose. D-galactose, D-mannose, and L-galactono-γ-lactone, were added at 20 g/L to the four cell suspensions. Accumulation of AA after 24 hours was measured and compared to a control in which no substrate was added. The results of this study are shown graphically in Fig. 4.

When cells growing under magnesium-limited conditions were incubated with substrates in low-magnesium broth (1Mg>1Mg condition), all showed significant and similar accumulation of AA over the control condition. When the same cells were incubated in high magnesium broth (1Mg>10Mg condition), the accumulation of AA was reduced about 40% for all substrates except D-mannose and L-galactono-γ-lactone, suggesting that 1) the rate-limiting step in the conversion of D-glucose, D-glucosone, D-fructose, and D-galactose to AA is inhibited by magnesium or 2) magnesium stimulates an enzyme which results in the conversion of these compounds to some other compound(s), reducing the amount of substrate available for AA synthesis. On the other

10

15

20

25

hand, conversion of D-mannose and L-galactono- γ -lactone appeared to be unaffected by the presence of magnesium in the resuspension buffer, indicating that either 1) magnesium-inhibited enzymes are not involved in the conversion of these substrates to AA or 2) D-mannose and L-galactono- γ -lactone enter the pathway far enough downstream from the point where they can be siphoned off by side reactions involving Mg-requiring enzymes.

When cells were grown under magnesium-sufficient conditions, very little AA accumulation from any of the D-sugars was observed, regardless of the level of magnesium in the resuspension broth. Accumulation of AA from L-galactono- γ -lactone, however, was enhanced over that observed when cells are grown in Mg-limited conditions. This suggests that enzymes early in the pathway are repressed under Mg-sufficient conditions. Thus, the D-substrates all behaved similarly, with the exception of the apparent lack of magnesium inhibition of D-mannose conversion to AA. This would suggest that D-mannose enters the AA biosynthetic pathway at a point other than the other D-sugars.

Figs. 2A and 2B represent some of the fates of glucose in plants. The first enzymatic step in this scheme which commits carbon to glycolysis is the conversion of fructose-6-P to fructose-1,6-diP by phosphofructokinase (PFK). This reaction is essentially irreversible, and leads to the well known TCA cycle and oxidative phosphorylation, with concomitant ATP and NADH/NADPH generation. PFK has an absolute requirement for magnesium. If magnesium is limiting, this reaction could slow and eventually stop, blocking the flow of carbon through glycolysis and beyond, and would result in cessation of cell division even in the presence of excess glucose. One would expect fructose-6-P to accumulate under these conditions, fueling AA synthesis by the pathway shown in Figs. 1 and 2.

Example 7

The following example shows the correlation in *Prototheca* between AA production and the activity levels of the enzymes in the AA pathway.

10

15

20

25

Phosphomannose isomerase (PMI) Assay

PMI activity was first assayed (See Fig. 1). Ten strains representing a range of AA productivities were grown according to the standard protocol to measure AA-synthesizing ability. Cells were harvested 96 hours into magnesium-limited incubation, washed and resuspended in buffer containing 50 mM Tris/10 mM MgCl₂, pH 7.5. The suspended cells were broken in a French press, spun at 30,000 x g for 30 minutes, and desalted through Sephadex G-25 (Pharmacia PD-10 columns). Reactions were carried out in the reverse direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 0.15 U phosphoglucose isomerase (EC 5.3.1.9), 0.5 U glucose-6-phosphate dehydrogenase (EC 1.1.1.49), and 1.0 mM NADP. Reactions were initiated by addition of 3 mM (final) mannose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities was subtracted the activities measured in identical reaction mixtures lacking the M-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reactions. Protein in the original extracts was determined by the method of Bradford, using a kit from Bio-Rad Laboratories (Hercules, CA). All enzymes and nucleotides were purchased from Sigma Chemical Co. (St. Louis, MO).

Phosphomannomutase (PMM) Assay

Phosphomannomutase was measured in a similar manner in the same strains, but these assay reaction mixtures also contained 0.25 mM glucose-1,6-diphosphate, 0.5 U commercially available PMI, and the reactions were started with the addition of 3.0 mM (final) mannose-1-phosphate rather than mannose-6-phosphate.

Phosphofructokinase (PFK) Assay

To shed light on the possibility that the enhancement of AA concentration in cultures which were limited for magnesium was due to a diversion of carbon from normal metabolism by a reduced activity of the first committed step in glycolysis (PFK) the strains were also assayed to confirm the presence of this enzyme activity. Cells were cultured, washed and broken as above. Extracts were centrifuged at 100,000 x g for 90 min before

desalting. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of Tris/Mg buffer containing 1.5 mM dithiothreitol, 0.86 U aldolase (EC 4.1.2.13), 1.4 U α-glycerophosphate dehydrogenase (EC 1.1.1.8), 14 U triosephosphate isomerase (EC 5.3.1.1), 0.11 mM NADH, and 1.0 mM ATP. Reactions were initiated by addition of 5 mM (final) fructose-6-phosphate. Final reaction volume was 1.0 mL. All components were dissolved in Tris/Mg buffer. Activities were taken as the change in A₃₄₀/min. From these activities were subtracted the activities measured in identical reaction mixtures lacking the F-6-P substrate. Specific activities were calculated by normalizing the activities for protein concentration in the reaction. Protein in the original extracts was determined as above.

GDP-D-mannose pyrophosphorylase (GMP) Assay

5

10

15

20

25

30

These same mutant strains were assayed for the next enzyme in the proposed pathway, GMP. Strains were grown both according to the standard Mg-limiting protocol (harvested 43-48 hours into magnesium-limited incubation) and in standard Mg-sufficient medium (harvesting all cells before glucose depletion). Washed cell pellets were resuspended in 50 mM phosphate buffer, pH 7.0, containing 20% (v/v) glycerol and 0.1 M sodium chloride (3 mL buffer/g wet cells), and broken in a French press. Crude extracts were spun at 15,000 x g for 15 minutes. Reactions were carried out in the forward direction by adding various volumes of extracts to solutions of 50 mM phosphate/4 mM MgCl, buffer, pH 7.0, containing 1 mM GTP. Reactions were initiated by addition of 1 mM (final) mannose-1-phosphate. Final reaction volume was 0.1 mL. Reaction mixtures were incubated at 30 C for 10 min, filtered through a 0.45 µm PVDF syringe filter, and analyzed for GDP-mannose by HPLC. A Supelcosil SAX1 column (4.6 x 250 mm) was used with a solvent gradient (1 mL/min) of: A - 6 mM potassium phosphate, pH 3.6; B - 500 mM potassium phosphate, pH 4.5. The gradient was: 0-3 min, 100% A; 3-10 min, 79% A; 10-15 min, 29% A. Column temperature was 30 C. Two assays that showed enzyme activity proportional to the amount of protein were averaged. Control no-substrate and no-extract reactions were also run. Specific activity was calculated by normalizing the activity for protein concentration in the reaction. Protein in the original extracts was determined as above.

10

15

20

25

GDP-D-mannose: GDP-L-galactose Epimerase Assay

Further tests measured the activities of the next enzyme in the proposed pathway. GDP-D-mannose:GDP-L-galactose epimerase. Strains were grown according to the standard protocol, harvested 43-48 hours into magnesium-limited incubation, washed, and resuspended in buffer containing 50 mM MOPS/5 mM EDTA, pH 7.2. Washed pellets were broken in a French press, and spun at 20,000 x g for 20 min. Protein determinations were made as above and a dilution series of each was made, ranging from 0.4 to 2.2 mg protein/mL. 50 µL aliquots of these dilutions were added to 10 µL aliquots of 6.3 mM GDP-D-mannose in which a portion of this substrate was universally labeled with ¹⁴C in the mannose moiety. This substrate had an activity of 16 µCi/mL before dilution into the reaction mixture. Reactions were stopped after 10 min by transferring 20 µL of the mixture into microfuge tubes containing 20 µL of 250 mM trifluoroacetic acid (TFA) containing 1.0 g/L each D-mannose and L-galactose. These tubes were sealed and boiled for 10 min, cooled, spun for 60 sec in a Beckman Microfuge E, and 5 µL of each hydrolysate was spotted on 20 x 20 cm plastic-backed EM Science Silica gel 60 thin-layer chromatography plates (#5748/7), with 1 cm lanes created by scoring with a blunt stylus. After drying, plates were twice chromatographed for 2.5 hours in ethyl acetate:isopropanol:water, 65:22.3:12.7 (plates were dried between runs). Spots of free sugars were visualized by spraying dried plates with 0.5% p-anisaldehyde in a 62% ethanolic solution of 0.89 M sulfuric acid and 0.17 mM glacial acetic acid, and heating at 105 C for about 15 min. Spots of L-galactose and D-mannose were cut from the plates and counted in a scintillation counter (Beckman model 2800). For time-zero control counts, 16.7 µL of each extract dilution was added to 23.3 µL of the labeled substrate above, which had been diluted 1:7 with the TFA/mannose/galactose solution.

Table 11 summarizes the results of the five enzyme assays for the strains tested, along with their specific AA formations.

20

25

30

35

TABLE 11 Specific Enzyme Activities (mU)* of Selected Mutant Prototheca Strains

						G	MP		
	Strain	AA Specific Form, mg/g	PMI	PMM	PFK	Mg- limited	Mg- sufficient	Epimerase	
	UV164-6	78.4						0.79	
5	EMS13-4	73.7	10.8	69.6	13.5	2.6	6.8	0.78	
	UV140-1	69.9						0.78	
	NA45-3	61.4						0.58	
	UV77-247	44.4						0.52	
	UV127-10	40.1	11.1	45.8	24.4	4.3	5.9	0.39	
10	UV244-15	24.5	14.3	41.5		3.1	5.3	0.42	
	NA21-14	23.6	12.1	60.3	47.4	2.4	7.6	0.27	
	ATCC 75669	21.9						0.28	
	UV244-16	5.0	16.5	85.6		4.3	5.2		
	SP2-3	2.0	17.7	47.0	64.5	2.0	7.5	0.03	
15	UV218-1	0.4	15.9	72.1		2.7	7.0	0.83	
	UV213-1	0.1	19.7	47.7	32.6	3.2	6.7	0.60	
	UV82-21	0.0	14.6	70.6	30.4	4.1	7.5	0.15	
	UV244-1	0.0	18.2	51.1		5.5	12	0.15	

Units: PMI and PMM, nmoles NADP reduced per min/mg protein; PFK, nmoles NADH oxidized per min/mg protein; GMP, nmoles GDP-D-mannose formed per min/mg protein; epimerase, nmoles GDP-L-galactose formed per min/mg protein.

The only enzyme which showed a strong correlation between activity and the ability to synthesize AA was the GDP-D-mannose:GDP-L-galactose epimerase. This correlation is depicted in Fig. 5. All of the strains which produced measurable amounts of AA had measurable amounts of epimerase activity. The converse was not true: four of the strains which synthesize little or no AA had significant epimerase activities. These strains are candidates for having mutations which affect enzymatic steps downstream from the epimerase. Since all of the strains tested can synthesize AA from L-galactose and L-galactono-y-lactone (see Examples 4 and 5), the genetic lesion(s) in these four mutants must lie between GDP-L-galactose and free L-galactose.

Example 8

The next example shows the relationship between GDP-D-mannose; GDP-Lgalactose epimerase activity and the degree of magnesium limitation in two strains, the original unmutagenized parent strain ATCC 75669, and one of the best AA producers, EMS13-4 (ATCC).

5

10

15

20

25

30

Four flasks of each strain were grown according to the standard protocol. One culture of each was harvested 24 hours into magnesium-limited incubation, and every 24 hours thereafter for a total of four days. One flask of each strain was also harvested 24 hours into magnesium sufficient incubation. All cultures had glucose remaining when harvested. Fig. 6 shows graphically the AA productivity and epimerase activity in EMS13-4 and ATCC 75669 as the cultures became Mg-limited. Epimerase activity in EMS13-4 was significantly greater than that in ATCC 75669 at all time points. There was also a concurrent rapid rise in both AA productivity and epimerase activity in EMS13-4 as the cultures became increasingly Mg-limited. While there was a moderate increase in AA productivity in ATCC 75669 as Mg became more limiting, there was no effect on epimerase activity.

Example 9

The following example shows the results of epimerase assays performed with extracts of two *E. coli* strains into which were cloned the *E. coli* gene for GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The E. coli K12 wca gene cluster is responsible for cholanic acid production; wcaG encodes a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.

The *E. coli wcaG* sequence (nucleotides 4 through 966 of SEQ ID NO:3) was amplified by PCR from *E. coli* W3110 genomic DNA using primers WG EcoRI 5 (5' TAGAATTCAGTAAACAACGAGTTTTTATTGCTGG 3'; SEQ ID NO:12) and WG Xhol 3 (5' AACTCGAGTTACCCCCAAAGCGGTCTTGATTC 3'; SEQ ID NO:13). The 973-bp PCR product was ligated into the vector pPCR-Script SK(+) (Stratagene, LaJolla, CA). The 973-bp ExoRII/XhoI fragment was moved from this plasmid into the ExoRII/XhoI sites of pGEX-5X-1 (Amersham Pharmacia Biotech, Piscataway, NJ), creating plasmid pSW67-1. Plasmid pGEX-5X-1 is a GST gene fusion vector which adds a 26-kDa GST moiety onto the N-terminal end of the protein of interest. *E. coli* BL21(DE3) was transformed with pSW67-1 and pGEX-5X-1, resulting in strains BL21(DE3)/pSW67-1 and BL21(DE3)/pGEX-5X-1.

The E. coli wcaG sequence (nucleotides 1 through 966 of SEQ ID NO:3) was also amplified by PCR from E. coli W3110 genomic DNA using primers WG EcoRI 5-2 (5' CTGGAGTCGAATTCATGAGTAAACAACGAG 3'; SEQ ID NO:14) and WG PstI 3

5

10

15

20

25

30

(5' AACTGCAGTTACCCCCGAAAGCGGTCTTGATTC 3'; SEQ ID NO:15). The 976-bp PCR product was ligated into a pPCR-Script (Stratagene). The 976-bp ExoRII/PstI fragment was moved from this plasmid into the ExoRII/PstI sites of expression vector pKK223-3 (Amersham Pharmacia Biotech), creating plasmid pSW75-2. *E. coli* JM105 was transformed with pKK223-3 and pSW75-2, resulting in strains JM105/pKK223-3 and JM105/pSW75-2.

All six strains were grown in duplicate at 37°C with shaking in 2X YTA medium until an optical density of 0.8-1.0 at 600 nm was reached (about three hours). 2X YTA contains 16 g/L tryptone, 10 g/L yeast extract, 5 g/L sodium chloride and 100 mg/L ampicillin. One of each culture was induced by adding isopropyl β-D-thiogalactopyranoside (IPTG) to 1 mM final concentration. All 12 cultures were incubated for an additional four hours, washed in 0.9% NaCl, and the cells were frozen at -80°C. Prior to pelleting the cells for preparation of extracts, a portion of each culture was used for a plasmid DNA miniprep to confirm the presence of the appropriate plasmids in these strains. A protein preparation of each culture was also run on SDS gels to confirm expression of a protein of the appropriate size where expected. Frozen pellets were thawed, resuspended in 2.5 mL MOPS/EDTA buffer, pH 7.2, broken in a French Press (10,000 psi), spun for 20 min at 20,000 x g, assayed for protein as above and diluted to 0.01, 0.1, 1.0 and 3 mg/mL protein.

Induction of the strain BL21(DE3)/pGEX-5X-1 resulted in high-level expression of a 26-kDa protein indicating the synthesis of the native GST protein. Induction of strain BL21(DE3)/pSW67-1 resulted in high-level expression of a 62-kDa protein, indicating the synthesis of the native GST protein (26K) fused to the wcaG gene product (36K). An aliquot of the fusion protein was treated with the protease Factor Xa (New England Biolabs, Beverly, MA), which cleaves near the GST/wcaG junction. Induction of the strain JM105/pSW75-2 resulted in high level expression of a 36-kDa protein, indicating the synthesis of the wcaG gene product. No such protein was detected in JM105/pKK223-3 (vector only).

Next, it was of interest to test extracts in the standard epimerase assay described in Example 7 to determine if any of the extracts containing the wcaG product could bring

about the conversion of GDP-D-mannose to GDP-L-galactose. The extracts to be assayed are:

BL21(DE3) Group

- 1. BL21(DE3) uninduced
- 5 2. BL21(DE3) induced with 1mM IPTG
 - 3. BL21(DE3)/pGEX-5X-1 uninduced
 - 4. BL21(DE3)/pGEX-5X-1 induced with 1mM IPTG
 - 5. BL21(DE3)/pSW67-1 uninduced
 - 6. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; fusion protein intact
- 10 7. BL21(DE3)/pSW67-1 induced with 1 mM IPTG; GST moiety cleaved

JM105 Group

20

25

30

35

- 1. JM105 uninduced
- 2. JM105 induced with 1mM IPTG
- 3. JM105/pKK223-3 uninduced
- 15 4. JM105/pKK223-3 induced with 1 mM IPTG
 - 5. JM105/pSW75-2 uninduced
 - 6. JM105/pSW75-2 induced with 1 mM IPTG

Extracts 1 and 7 from the BL21(DE3) group and extracts 1 and 6 from the JM105 group were tested for GDP-D-mannose: GDP-L-galactose epimerase-like activity in a pilot experiment. In this initial experiment, no epimerase activity was detected in any of the extracts. At this time, such a result can be attributed to a number of possibilities. First, it is possible that the wcaG gene product is incapable of catalyzing the conversion of GDP-D-mannose to GDP-L-galactose, although this conclusion can not be reached until several other parameters are tested. Second, it is possible that under the assay conditions which are satisfactory to measure activity for the endogenous GDP-D-mannose:GDP-Lgalactose epimerase, the wcaG gene product does not have GDP-D-mannose:GDP-Lgalactose epimerase-like activity. Therefore, alternate conditions should be tested. Additionally, confirmation experiments should be performed to confirm the accuracy of the pilot conditions. Third, although the BL21(DE3) and the JM105 clones produce proteins of the expected size, the constructs have not been sequenced to confirm the proper coding sequence for the wcaG gene product and thereby rule out PCR or cloning errors which may render the wcaG gene product inactive. Fourth, the protein formed from the cloned sequence is full-length, but inactive, for example, due to incorrect tertiary structure (folding). Fifth, the gene is overexpressed, resulting in accumulation of insoluble and inactive protein products (inclusion bodies). Future experiments will attempt to

determine whether the constructs have or can be induced to have the ability to catalyze the conversion of GDP-D-mannose to GDP-L-galactose, and to use the sequences to isolate the endogenous GDP-D-mannose:GDP-L-galactose epimerase.

Table 12 provides the atomic coordinates for Brookhaven Protein Data Bank

5 Accession Code 1bws:

TABLE 12

	HEADER EPIMERASE/REDUCTASE 27-SEP-98 1BWS	
	TITLE CRYSTAL STRUCTURE OF GDP-4-KETO-6-DEOXY-D-MANNOSE	
	TITLE 2 EPIMERASE/REDUCTASE FROM ESCHERICHIA COLI A KEY ENZYME IN	
10	TITLE 3 THE BIOSYNTHESIS OF GDP-L-FUCOSE	
	COMPND MOL_ID: 1;	
	COMPND 2 MOLECULE: GDP-4-KETO-6-DEOXY-D-MANNOSE EPIMERASE/REDUCTASE	<u></u>
	COMPND 3 CHAIN: A;	
	COMPND 4 ENGINEERED: YES:	_
15	COMPND 5 BIOLOGICAL UNIT: HOMODIMER	
	SOURCE MOL ID: 1;	
	SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI:	
	SOURCE 3 EXPRESSION SYSTEM: ESCHERICHIA COLI	
	KEYWDS EPIMERASE/REDUCTASE, GDP-L-FUCOSE BIOSYNTHESIS	
20	EXPDTA X-RAY DIFFRACTION	
	AUTHOR DE M.RIZZITONETTIFLORA	
	REVDAT 1 13-JAN-99 1BWS 0	
	JRNL AUTH DE D.RIZZITONETTIVIGEVANISTURLABISSOFLORA	
	JRNL TITL GDP-4-KETO-6-DEOXYD-MANNOSE EPIMERASE/REDUCTASE	
25	JRNL TITL 2 FROM ESCHERICHIA COLI, A KEY ENZYME IN THE	
	JRNL TITL 3 BIOSYNTHESIS OF GDP-L-FUCOSE, DISPLAYS THE	
	JRNL TITL 4 STRUCTURAL CHARACTERISTICS OF THE RED PROTEIN	
	JRNL TITL 5 HOMOLOGY SUPERFAMILY	
	JRNL REF STRUCTURE (LONDON) 1998	
30	JRNL REFN 999	9
	REMARK 1	
	REMARK 2	
	REMARK 2 RESOLUTION. 2.2 ANGSTROMS.	
	REMARK 3	
35	REMARK 3 REFINEMENT.	
	REMARK 3 PROGRAM : TNT	
	REMARK 3 AUTHORS : TRONRUD, TEN EYCK, MATTHEWS	
	REMARK 3	
	REMARK 3 DATA USED IN REFINEMENT.	
40	REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2	
	REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS) : 15.0	

	REMARK 3 DATA CUTOFF (SIGNA (F)) . 0.0
	DEMARK 2 CONTRACTOR OF THE PROPERTY OF THE PRO
	DEMANDS 101 MAINT (F) ; 79, 1
	: 24481
5	REMARK 3 USING DATA ABOVE SIGNA CUTOETE
,	THAT PART OF THE PARTY COLUMN
	REMARK 3 CROSS-VALIDATION METHOD : NONE
	REMARK 3 FREE R VALUE TEST SET SELECTION : NULL REMARK 3 R VALUE (WORKING + TREET SET) - NULL
	INDIVIDUE TEST SETT : NULL
10	THORATAY SEXT : NONE
10	PENADE 1 PURE 1
	SET STEP (8) : NONE
	REMARK 3 FREE R VALUE TEST SET COUNT : NULL REMARK 3
15	TARRA NY DANG CUIVET.
	TEST SET, NO COTOFF) : NOLL
	REMARK 3 FORE D VALUE
	REMARK 3 FOFF D VALUE MECH CER CER CARD (A 100 -
	REMARK 3 FORE D VALUE MECH CHE COURTS (10)
20	REMARK 3 TOTAL NUMBER OF REPRESENTATIONS
	REMARK 3
	REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
	REMARK 3 PROTEIN ATOMS ; 2527
	REMARK 3 NUCLEIC ACID ATOMS : NULL
25	REMARK 3 OTHER ATOMS : 109
	REMARK 3
	REMARK 3 WILSON B VALUE (FROM FCALC, A**2) : NULL
	REMARK 3
	REMARK 3 RMS DEVIATIONS FROM IDEAL VALUES. RMS WEIGHT COUNT
30	REMARK 3 BOND LENGTHS (A): 0.016; NULL; NULL
	REMARK 3 BOND ANGLES (DEGREES): 1.65; NULL; NULL
	REMARK 3 TORSION ANGLES (DEGREES) : NULL : NULL : NULL
	REMARK 3 PSEUDOROTATION ANGLES (DEGREES) ; NULL ; NULL ; NULL
	REMARK 3 TRIGONAL CARBON PLANES (A): NULL ; NULL ; NULL
35	REMARK 3 GENERAL PLANES (A): NULL; NULL; NULL
	REMARK 3 ISOTROPIC THERMAL FACTORS (A**2) : NULL : NULL : NULL
	REMARK 3 NON-BONDED CONTACTS (A): NULL ; NULL ; NULL
	REMARK 3
	REMARK 3 INCORRECT CHIRAL-CENTERS (COUNT) : NULL
40	REMARK 3
	REMARK 3 BULK SOLVENT MODELING.
	REMARK 3 METHOD USED : NULL
	REMARK 3 KSOL : NULL
4-	REMARK 3 BSOL : NULL
45	REMARK 3

	A DECEMBER TO DESCRIPTION OF THE PROPERTY OF T
	REMARK 3 RESTRAINT LIBRARIES.
	REMARK 3 STEREOCHEMISTRY: NULL
	REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS : NULL
	REMARK 3
5	REMARK 3 OTHER REFINEMENT REMARKS: NULL
	REMARK 4
	REMARK 4 1BWS COMPLIES WITH FORMAT V. 2.2. 16-DEC-1996
	REMARK 5
	REMARK 5 WARNING
10	REMARK 5 1BWS; THIS IS LAYER 1 RELEASE.
	REMARK 5
	REMARK 5 PLEASE NOTE THAT THIS ENTRY WAS RELEASED AFTER DEPOSITOR
	REMARK 5 CHECKING AND APPROVAL BUT WITHOUT PDB STAFF INTERVENTION.
	REMARK 5 AN AUXILIARY FILE, AUXIBWS.RPT, IS AVAILABLE FROM THE
15	REMARK 5 PDB FTP SERVER AND IS ACCESSIBLE THROUGH THE 3DB BROWSER.
	REMARK 5 THE FILE CONTAINS THE OUTPUT OF THE PROGRAM WHAT CHECK AND
	REMARK 5 OTHER DIAGNOSTICS.
	REMARK 5
	REMARK 5 NOMENCLATURE IN THIS ENTRY, INCLUDING HET RESIDUE NAMES
20	REMARK 5 AND HET ATOM NAMES, HAS NOT BEEN STANDARDIZED BY THE PDB
	REMARK 5 PROCESSING STAFF. A LAYER 2 ENTRY WILL BE RELEASED SHORTLY
	REMARK 5 AFTER THIS STANDARDIZATION IS COMPLETED AND APPROVED BY THE
	REMARK 5 DEPOSITOR. THE LAYER 2 ENTRY WILL BE TREATED AS A
05	REMARK 5 CORRECTION TO THIS ONE, WITH THE APPROPRIATE REVDAT RECORD.
25	REMARK 5
	REMARK 5 FURTHER INFORMATION INCLUDING VALIDATION CRITERIA USED IN REMARK 5 CHECKING THIS ENTRY AND A LIST OF MANDATORY DATA FIELDS
30	REMARK 5 HTTP://WWW.PDB.BNL.GOV/.
30	REMARK 200
	REMARK 200 EXPERIMENTAL DETAILS REMARK 200 EXPERIMENT TYPE : X-RAY DIFFRACTION
	REMARK 200 DATE OF DATA COLLECTION : AUG-1997
	REMARK 200 DATE OF DATA COMMECTION . AVG 1257 REMARK 200 TEMPERATURE (KELVIN) : 120
35	REMARK 200 PH : 6.5
33	REMARK 200 NUMBER OF CRYSTALS USED : 1
	REMARK 200 NOMBER OF CRISING USED
	REMARK 200 SYNCHROTRON (Y/N) : N
	REMARK 200 SINCHAPAN (A/A/ : NONE : NONE
40	REMARK 200 BEAMLINE : NULL
40	REMARK 200 X-RAY GENERATOR MODEL : RIGAKU RU200
	REMARK 200 MONOCHROMATIC OR LAUE (M/L) : M
	REMARK 200 MONOCHROMATIC OR LAUE (M/L) : M REMARK 200 WAVELENGTH OR RANGE (A) : 1.5418
	REMARK 200 MONOCHROMATOR : NULL
45	
43	REMARK 200 OPTICS : NULL

	REMARK 200
	REMARK 200 DETECTOR TYPE : IMAGE PLATE
	REMARK 200 DETECTOR MANUFACTURER : RAXIS
	REMARK 200 INTENSITY-INTEGRATION SOFTWARE : MOSFIM
5	REMARK 200 DATA SCALING SOFTWARE : SCALA
	REMARK 200
	REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 24481
	REMARK 200 RESOLUTION RANGE HIGH (A): 2.2
	REMARK 200 RESOLUTION RANGE LOW (A): 15.0
10	REMARK 200 REJECTION CRITERIA (SIGMA(I)) : NONE
	REMARK 200
	REMARK 200 OVERALL.
	REMARK 200 COMPLETENESS FOR RANGE (%) ; 99.7
	REMARK 200 DATA REDUNDANCY : 4.3
15	REMARK 200 R MERGE (I): 0.057
	REMARK 200 R SYM (I) : NONE
	REMARK 200 <1/SIGMA(I) > FOR THE DATA SET : 13.6
	REMARK 200
	REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
20	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : NULL
	REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A) : NULL
	REMARK 200 COMPLETENESS FOR SHELL (%): NULL
	REMARK 200 DATA REDUNDANCY IN SHELL : NULL
	REMARK 200 R MERGE FOR SHELL (I): NULL
25	REMARK 200 R SYM FOR SHELL (I) : NULL
	REMARK 200 <i sigma(i)=""> FOR SHELL : NULL</i>
	REMARK 200
	REMARK 200 DIFFRACTION PROTOCOL: NULL
20	REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MIR
30	REMARK 200 SOFTWARE USED: NULL
	REMARK 200 STARTING MODEL: NULL
	REMARK 200
	REMARK 200 REMARK: NULL
25	REMARK 280
35	REMARK 280 CRYSTAL
	REMARK 280 SOLVENT CONTENT, VS (%): NULL
	REMARK 280 MATTHEWS COEFFICIENT. VM (ANGSTROMS**3/DA): NULL
	REMARK 280
40	REMARK 280 CRYSTALLIZATION CONDITIONS: NULL
40	REMARK 290
	REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
	REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 32 2 1
	REMARK 290
15	REMARK 290 SYMOP SYMMETRY
45	REMARK 290 NNNMM OPERATOR

	REMARK 290	1555	X.Y.E				
	REMARK 290	2555	-Y, X-Y, Z+	2/3	Ì		
	REMARK 290	3555	Y-X,-X,Z+	1/3			
	REMARK 290	4555	Y.XZ				
5	REMARK 290	5555	x-y,-y,1/	3-Z			
	REMARK 290	6555	-x, y-x, 2/	3-Z			
	REMARK 290						
	REMARK 290	WHERE N	NN -> OPERAT	FOR NUMBER			
	REMARK 290	M	MM -> TRANS	LATION VEC	ror		· · · · · · · · · · · · · · · · · · ·
10	REMARK 290						
	REMARK 290	CRYSTALLOGR	APHIC SYMMET	RY TRANSFO	RMATIONS		··
	REMARK 290	THE FOLLOWI	NG TRANSFORM	ATIONS OPE	RATE ON THE	ATOM/HETATM	
	REMARK 290	RECORDS IN	THIS ENTRY J	O PRODUCE	CRYSTALLOGRA	PHICALLY	
	REMARK 290	RELATED MOL	ECULES.				·
15	REMARK 290	SMTRY1	1 1.000000	0.000000	0.000000	0.00000	
	REMARK 290	SMTRY2	1 0.000000	1.000000	0.000000	0.00000	
	REMARK 290	SMTRY3	1 0.000000	0.000000	1.000000	0.00000	
	REMARK 290	SMTRY1	2 -0.500045	-0.865974	0.000000	0.00000	
	REMARK 290	SMTRY2	2 0.866077	-0.499955	0.000000	0.00000	
20	REMARK 290	SMTRY3	2 0.000000	0.000000	1.000000	50.58553	
	REMARK 290	SMTRY1	3 -0.499955	0.865974	0.000000	0.00000	
	REMARK 290	SMTRY2	3 -0.866077	-0.500045	0.000000	0.00000	
	REMARK 290	SMTRY3	3 0.000000	0.000000	1.000000	25.29276	
05	REMARK 290		4 -0.500045	0.865922	0.000000	0.00000	
25	REMARK 290		4 0.866077	0.500045	0.000000	0.00000	
	REMARK 290		4 0.000000		-1.000000	0.00000	
	REMARK 290		5 1.000000	0.000104	0.000000	0.00000	
	REMARK 290			-1.000000	0.000000	0.00000	
30	REMARK 290		5 0.000000 6 -0.499955		-1.000000	25.29276 0.00000	
30	REMARK 290 REMARK 290		6 -0.866077	0.499955	0.000000	0.00000	
						50 58553	
*	REMARK 290	SMTRY3	0.000000	0.000000	-1,000000	30,30333	
		REMARK: NULI					
35		TANKATANA MOAR					
55		MISSING RES					
		THE FOLLOWIN		WERE NOT L	OCATED IN TH	P.	
						; C=CHAIN	
		IDENTIFIER;					
40	REMARK 465				/ A. A.D. # 1.1 E. E.		
		M RES C S	SSEOI				
	REMARK 465						
	REMARK 465		2				
	REMARK 465		317				
45	REMARK 465						

	REMARK 465 PHE A 319
	REMARK 465 ARG A 320
	REMARK 465 GLY A 321
	REMARK 800
5	REMARK 800 SITE
	REMARK 800 SITE IDENTIFIER: CAT
	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
10	REMARK 800 SITE IDENTIFIER: CAT
	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
1.0	REMARK 800 SITE IDENTIFIER: CAT
15	REMARK 800 SITE DESCRIPTION:
	REMARK 800 CATALYTIC RESIDUE
	REMARK 800
	DBREF 1BWS A 3 316 SWS P32055 FCL ECOLI
20	SECRES 1 A 321 MET SER LYS GLN ARG VAL PHE ILE ALA GLY HIS ARG GLY
20	SEORES 2 A 321 MET VAL GLY SER ALA ILE ARG ARG GLN LEU GLU GLN ARG
	SEORES 3 A 321 GLY ASP VAL GLU LEU VAL LEU ARG THR ARG ASP GLU LEU
	SEORES 4 A 321 ASN LEU LEU ASP SER ARG ALA VAL HIS ASP PHE PHE ALA SEORES 5 A 321 SER GUI ARG LUR AGO CON AND AND AND AND AND AND AND AND AND AN
	DATE ASP GEN VAL TYR LEU ALA ALA LYS
25	THE VALUE ALLA ASN ASN THE TYE PRO ALA ASP
	THE TAN MET MET ILE GLU SER ASN ILE ILE
	ALE ALE ALE ALE ALE SELVE ASV LYS LEU LEU PHE
	SEA CIS THE TYR PRO LYS LEU ALA LYS GIN
	THE ALL GLU SER GLU LEU GLN GLY THR LEU GLU
30	AND SEE PRO THE ALA ILE ALA LYS ILE ALA GLY
	DEC CIS GLU SER TYR ASN ARG GIN TYR GLY ARG
	THE PRO THE ASN LEU TYR GLY PRO
	THE ALL AND PRO SER ASN SER HIS VAL ILE PRO
	SEORES 15 A 321 ALA LEU LEU ARG ARG PHE HIS GLU ALA THR ALA GLN ASN SEORES 16 A 321 ALA PRO ASP VAL VAL VAL TRP GLY SER GLY THR PRO MET
35	SEORES 17 A 321 ARG GLU PHE LEU HIS VAL ASP ASP MET ALA ALA ALA SER
	SEORES 18 A 321 ILE HIS VAL MET GLU LEU ALA HIS GLU VAL TRP LEU GLU
	SEORES 19 A 321 ASN THE GLN PRO MET LEU SER HIS ILE ASN VAL GLY THE
	SEORES 20 A 321 GLY VAL ASP CYS THR ILE ARG ASP VAL ALA GLN THR ILE
	SEORES 21 A 321 ALA LYS VAL VAL GLY TYR LYS GLY ARG VAL VAL PHE ASP
40	SEORES 22 A 321 ALA SER LYS PRO ASP GLY THR PRO ARG LYS LEU LEU ASP
	SEORES 23 A 321 VAL THR ARG LEU HIS GLN LEU GLY TRP TYR HIS GLU ILE
	SEORES 24 A 321 SER LEU GLU ALA GLY LEU ALA SER THR TYR GLN TRP PHE
	SEORES 25 A 321 LEU GLU ASN GLN ASP ARG PHE ARG GLY
	HET NDP 1 0
45	HETNAM NDP NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE
	A A A A A A A A A A A A A A A A A A A

	HETSYN NDP NADP	
	FORMUL 2 NDP C21 H23 N7 O17 P3 3-	
	FORMUL 3 HOH +109 (H2 O1)	
	HELIX 1 1 MET A 14 GLN A 25 1	12
5	HELIX 2 2 SER A 44 GLU A 54 1	11
	HELIX 3 3 ILE A 69 THR A 74 1	6
	HELIX 4 4 PRO A 76 ASN A 97 1	22
	HELIX 5 5 SER A 108 ILE A 110 5	3
	HELIX 6 6 GLU A 121 GLU A 123 5	3
10	HELIX 7 7 GLU A 134 TYR A 154 1	21
	HELIX 8 8 VAL A 180 ALA A 193 1	14
	HELIX 9 9 VAL A 214 GLU A 226 1	13
	HELIX 10 10 HIS A 229 GLU A 234 1	6
	HELIX 11 11 ILE A 253 VAL A 264 1	12
15	HELIX 12 12 THR A 288 GLN A 292 1	5
	HELIX 13 13 LEU A 301 GLU A 314 1	_14
	SHEET 1 A 6 VAL A 29 VAL A 32 0	
	SHEET 2 A 6 GLN A 4 ALA A 9 1 N GLN A 4 O GLU A 30	
	SHEET 3 A 6 GLN A 58 LEU A 61 1 N GLN A 58 O PHE A 7	
20	SHEET 4 A 6 LYS A 101 LEU A 105 1 N LYS A 101 O VAL A 59	
	SHEET 5 A 6 ASP A 157 PRO A 163 1 N ASP A 157 O LEU A 102	
	SHEET 6 A 6 ILE A 243 VAL A 245 1 N ILE A 243 O MET A 162	
	SHEET 1 B 2 ASN A 165 TYR A 167 0	
	SHEET 2 B 2 PHE A 211 HIS A 213 1 N LEU A 212 O ASN A 165	
25	SHEET 1 C 2 ASP A 198 TRP A 202 0	
	SHEET 2 C 2 ARG A 269 ASP A 273 1 N ARG A 269 O VAL A 199	
	SITE 1 CAT 1 TYR 136	
	SITE 2 CAT 1 LYS 140	
	SITE 3 CAT 1 SER 107	
30	CRYST1 104.200 104.200 75.880 90.00 90.00 120.00 P 32 2 1 6	
	ORIGX1 1.000000 0.000000 0.000000 0.00000	
	ORIGX2 0.000000 1.000000 0.000000 0.00000	
	ORIGX3 0.000000 0.000000 1.000000 0.00000	
	SCALE1 0.009597 0.005541 0.000000 0.00000	
35	SCALE2 0.000000 0.011081 0.000000 0.00000	
	SCALE3 0.000000 0.000000 0.013179 0.00000	
	HETATM 1 O HOH 1 55.652 -16.806 22.535 1.00 8.73	0
	HETATM 2 O HOH 3 58.494 -10.639 18.740 1.00 13.17	0
	HETATM 3 O HOH 4 58.230 -11.715 27.770 1.00 19.07	0
40	HETATM 4 O HOH 5 57.252 -3.759 30.107 1.00 11.21	0
	HETATM 5 0 HOH 6 58.298 -10.011 25.527 1.00 15.74	0
	HETATM 6 O HOH 7 49.321 6.583 38.815 1.00 19.33	0
	HETATM 7 O HOH 8 53.785 -4.262 22.464 1.00 10.94	0
	HETATM 8 0 HOH 10 74.652 2.888 9.141 1.00 17.80	0
45	HETATM 9 0 HOH 11 49.761 0.826 32.896 1.00 22.02	0

	HETATM	<u>10 o</u>	НОН	12	55.530 -11.162 28.526 1.00 11.39	0
	HETATM	<u> 11 o</u>	НОН	13	75.027 7.034 27.353 1.00 16.30	
	HETATM	12 0	нон	14	49,994 -2.314 11.032 1.00 21.33	0
	HETATM	13 0	нон	15	61.323 -8.959 29.657 1.00 22.84	0
5	HETATM	<u> 14 0</u>	нон	16	61,029 -11,560 29,131 1.00 21,24	0
	HETATM	15 O	НОН	17	50,684 5.881 10.130 1.00 15.88	
	HETATM	<u> 16 0</u>	НОН	18	64.506 -6.302 32.989 1.00 21.05	
	HETATM	17 o	нон	19	57.856 -16.398 25.085 1.00 22.86	
	HETATM	18 O	нон	20	30 000 00 000	0
10	HETATM	19 0	нон	21	20.010	0
	HETATM	20 0	НОН	24	20 470 07 07	0
	HETATM	21 0	нон	25	70.016 41 407	0
	HETATM	22 O	нон	26		0
	HETATM	23 0	НОН	27	50 426 0 071	0
15		24 0	нон	28	50 602 10 100 00 00	0
		25 0	НОН	20 29	69.692 19.108 38.979 1.00 49.77	0
		26 0	НОН		56,432 -8,877 19,303 1.00 22.52	0
		27 0	НОН	30	60.832 3.415 42.349 1.00 17.39	
		28 O		31	53,889 -12.706 29.764 1.00 22.40	<u>, o</u>
20		29 0	HOH	32	37.887 26.373 28.058 1.00 18.09	0
		_	HOH	33	49.201 11.173 26.867 1.00 33.95	0
			HOH	34	46.762 -0.278 31.394 1.00 20.63	0
		31 0	НОН	35	41.731 27.568 43.302 1.00 27.39	0
		32 0	нон	36	66.827 11.202 28.929 1.00 13.23	0
25		33 0	нон	37	46.834 14.396 40.819 1.00 46.02	0
23		34 0	нон	38	61.342 1.064 43.868 1.00 26.68	0
		35 O	нон	42	70.597 16.422 37.837 1.00 19.26	0
		36 O	нон	44	72.275 -9.089 33.407 1.00 22.11	0
		<u> 37 o</u>	нон	45	42.685 34.461 33.955 1.00 17.32	0
30		8 0	нон	46	53.480 13.394 38.364 1.00 20.19	0
30		9 0	НОН	47	56.085 21.757 44.744 1.00 33.50	0
		0 0	нон	48	35.741 32.691 23.517 1.00 19.49	
	HETATM 4	1 0	нон	49	40.458 36.700 34.312 1.00 34.53	0
	HETATM 4	2 0	нон	50	75.440 7.267 29.948 1.00 18.07	
25	HETATM 4	3 0	нон	51	47.476 18.347 20.851 1.00 34.16	0
35		4 0	нон	53	52.837 -16.344 19.587 1.00 25.92	0
	HETATM 4	5 0	нон	55	46,415 9.073 20.108 1.00 31.91	0
	HETATM 4	6 0	НОН	57	45.912 35.170 36.133 1.00 35.55	0
	HETATM 4	7 0	нон	58	60.247 -2.880 41.919 1.00 16.85	
	HETATM 4	8 0	нон	60	64.974 6.086 24.501 1.00 32.16	0
40	HETATM 4	9 0	нон	61	52,103 4,683 4,978 1.00 35,72	0
	HETATM 5	0 0	нон	62	50.888 40.154 36.463 1.00 38.35	0
	HETATM 5	1 0	нон	63	44.373 31.233 37.336 1.00 20.07	0
	HETATM 5	2 0	нон	64		
	HETATM 5	3 0	нон	65	57.280 27.757 42.451 1.00 21.74 58.409 23.769 45.517 1.00 58.42	0
45		4 0	НОН	66		0
					68.690 -11.764 35.335 1.00 57.07	0

	HETATM	55	0	нон	67	42.746 25.153 23.465 1.00 27.05	0
	HETATM	56	0	нон	68	53.638 -16.457 32.292 1.00 31.71	0
	HETATM	57	0	нон	69	33.390 41.716 31.408 1.00 29.92	0
	HETATM	58	0	нон	70	57.768 17.897 42.434 1.00 25.75	0
5	HETATM	59	0	нон	71	75,647 9.164 11.766 1.00 35.13	0
	HETATM	60	0	нон	72	62.032 33.292 44.749 1.00 46.18	0
	HETATM	61	0	нон	73	47.310 14.312 34.285 1.00 31.18	0
	HETATM	62	0	нон	74	79.660 -3.947 15.913 1.00 34.63	0
	HETATM	63	0	нон	75	46.929 5.343 4.550 1.00 23.14	0
10	HETATM	64	0	нон	76	73.475 12.039 28.412 1.00 27.26	0
	HETATM	65	0_	нон	77	46.297 -6.982 30.032 1.00 43.41	0
	HETATM	66	0	нон	78	68.528 -3.422 40.869 1.00 38.47	0
	HETATM	67	0	нон	79	62.080 -1.448 42.803 1.00 24.60	0
	HETATM	68	0	нон	80	65.330 18.150 40.726 1.00 41.00	0
15	HETATM	69	0	нон	81	51.775 16.128 37.607 1.00 25.11	0
	HETATM	70	0	нон	83	54.266 28.682 43.313 1.00 27.61	0
	HETATM	71	0	нон	85	73,291 -15,479 20,603 1,00 37,54	0
	HETATM	72	0	нон	86	34.760 21.479 28.544 1.00 43.87	0
	HETATM	73	0	нон	87	37.326 24.131 29.677 1.00 24.47	0
20	HETATM	74	0	нон	88	65,168 20,148 6,735 1,00 26,10	<u> </u>
	HETATM	75	0	нон	89	59.196 12.089 13.630 1.00 25.24	0
	HETATM	76	0	нон	91	66,576 -6,235 40,279 1.00 43,11	0
	HETATM	77.	0	нон	93	37.339 29.394 25.515 1.00 27.56	0
	HETATM	78	0	нон	94	52.339 -17.014 42.271 1.00 48.96	0
25	HETATM	79	0	нон	95	40.511 32.927 31.717 1.00 22.46	0
	HETATM	80	0	нон	96	78.580 13.121 34.138 1.00 27.98	0
	HETATM	81	0	нон	97	65.090 15.704 34.876 1.00 18,96	0
	HETATM	82	0	нон	99	84.562 2.951 27.181 1.00 35,92	<u> </u>
	HETATM	83	<u> </u>	нон	100	50.386 9.761 9.646 1.00 23.18	0
30	HETATM	84	0	нон	101	67.649 -0.851 38.764 1.00 24.99	0
	HETATM	85	0	нон	102	44.001 4.293 34.315 1.00 31.13	<u>Q</u>
	HETATM	86	0	нон	103	59.386 -5.071 26.211 1.00 29.10	<u> </u>
	HETATM	87_	0	нон	104	77.364 4.745 41.506 1.00 35.32	0
	HETATM	88	Q	нон	105	59.034 21.201 32.414 1.00 23.43	0
35	HETATM	89	0	нон	106	42.463 34.698 14.327 1.00 38.86	0
	HETATM	90	0	нон	107	70.217 14.292 20.864 1.00 42.39	<u>Q</u>
	HETATM	91	_0_	нон	108	76.999 8.130 25.862 1.00 32.91	0
	HETATM	92	0	НОН	109	49.766 29.937 22.173 1.00 42.52	0
	HETATM	93	0	нон	110	72.473 13.536 38.823 1.00 33.32	<u>Q</u>
40	HETATM	94	0	нон	_111	64.328 -12.084 38.608 1.00 37.99	0
	HETATM	95	_0_	нон	112	60.161 16.382 42.682 1.00 35.68	0
	HETATM	96	0	HOH	113	47.602 13.639 27.016 1.00 26.01	<u>e</u>
	HETATM	97	0	НОН	115	64.606 11.644 40.107 1.00 30.33	0
	HETATM	98	0	нон	116	61.231 -15.137 27.255 1.00 38.76	0
45	HETATM	99	O	нон	117	65.324 -11.223 35.098 1.00 30.45	0

	HETATM 100 O HOH 119	56.602 17.219 44.932 1.00 36.53	0
	HETATM 101 O HOH 120	37.564 19.860 23.135 1.00 31.27	0
	HETATM 102 O HOH 121	64.845 5.057 21.132 1.00 45.57	0
	HETATM 103 O HOH 123	63.391 16.801 26.898 1.00 38.46	0
5	HETATM 104 O HOH 124	42.567 6.134 32.635 1.00 31.56	0
	HETATM 105 O HOH 125	72.485 13.236 35.059 1.00 29.61	0
	HETATM 106 O HOH 126	65.229 3.650 44.032 1.00 36.86	o
	HETATM 107 O HOH 127	37.089 7.148 31.083 1.00 39.58	0
	HETATM 108 O HOH 128	73.327 10.546 12.123 1.00 34.97	0
10	HETATM 109 O HOH 129	74.450 10.299 26.598 1.00 30.80	0
	HETATM 110 AO5* NDP A 1	67.524 13.055 26.692 1.00 36.42	0
	HETATM 111 AC5* NDP A 1	68.089 12.297 25.614 1.00 9.30	с
	HETATM 112 AC4+ NDP A 1	69.601 12.124 25.858 1.00 27.73	C
	HETATM 113 AO4* NDP A 1	70.193 11.258 24.848 1.00 22.87	0
15	HETATM 114 AC3* NDP A 1	70.484 13.390 25.873 1.00 17.83	c
	HETATM 115 A03* NDP A 1	71.192 13.436 27.066 1.00 16.11	0
	HETATM 116 AC2* NDP A 1	71.373 13.220 24.626 1.00 11.46	C
	HETATM 117 A02* NDP A 1	72.623 13.886 24.655 1.00 31.96	0
	HETATM 118 AC1* NDP A 1	71.510 11.702 24.656 1.00 19.02	с
20	HETATM 119 03 NDP A 1	65.336 13.590 26.129 1.00 20.59	0
	HETATM 120 NO5* NDP A 1	63.536 11.943 26.448 1.00 28.99	0
	HETATM 121 NC5* NDP A 1	64.328 10.843 25.957 1.00 24.89	С
	HETATM 122 NC4* NDP A 1	63.467 9.646 25.686 1.00 31.79	С
	HETATM 123 NO4* NDP A 1	62.837 9.337 26.908 1.00 28.82	0
25	HETATM 124 NC3* NDP A 1	62.340 9.837 24.665 1.00 11.50	С
	HETATM 125 NO3* NDP A 1	62.891 9.402 23.461 1.00 28.60	0
	HETATM 126 NC2* NDP A 1	61.152 8.996 25.138 1.00 28.11	c
	HETATM 127 NO2* NDP A 1	60.881 7.662 24.715 1.00 24.30	0
	HETATM 128 NC1* NDP A 1	61.547 8.875 26.580 1.00 35.35	С
30	HETATM 129 AP2* NDP A 1	73.104 15.069 23.823 1.00 32.96	Р
	HETATM 130 AOP1 NDP A 1	74.500 15.308 24.308 1.00 37.84	o
	HETATM 131 AOP2 NDP A 1	72.797 14.925 22.348 1.00 36.66	0
	HETATM 132 AOP3 NDP A 1	72.163 16.217 23.958 1.00 31.97	0
	HETATM 133 AP NDP A 1	66.660 14.257 26.393 1.00 26.17	XX
35	HETATM 134 AO1 NDP A 1	66,886 14,795 25,047 1.00 15,31	XX
	HETATM 135 AO2 NDP A 1	66.439 15.207 27.521 1.00 34.39	XX
	HETATM 136 AN9 NDP A 1	71.820 11.224 23.353 1.00 13.63	XX
	HETATM 137 ACS NDP A 1	71.104 11.316 22.200 1.00 12.41	XX
	HETATM 138 AN7 NDP A 1	71.758 10.835 21.161 1.00 15.71	XX
40	HETATM 139 AC5 NDP A 1	72.933 10.313 21.710 1.00 16.17	хх
	HETATM 140 AC6 NDP A 1	74.053 9.657 21.140 1.00 31.35	XX
	HETATM 141 ANG NDP A 1	74.165 9.464 19.819 1.00 12.59	XX
	HETATM 142 AN1 NDP A 1	75.078 9.280 21.942 1.00 17.56	ХХ
	HETATM 143 AC2 NDP A 1	74.971 9.578 23.251 1.00 15.44	XX
45	HETATM 144 AN3 NDP A 1	74.027 10.302 23.889 1.00 24.82	XX

	HETATM 145 AC4 NDP A	_1_	73.036 10.653 23.047 1.00 17.48	XX
	HETATM 146 NP NDP A	1_	64.183 13.106 27.191 1.00 25.47	N
	HETATM 147 NO1 NDP A	_1_	63.142 14.169 27.253 1.00 28.69	N
	HETATM 148 NO2 NDP A	1	64.837 12.643 28.492 1.00 24.32	N
5	HETATM 149 NN1 NDP A	1	60.598 9.775 27.109 1.00 23.63	N
	HETATM 150 NC2 NDP A	1	60.143 10.905 26.442-99.00 78.36	N
	HETATM 151 NC3 NDP A	_1_	59.070 11.648 27.007-99.00100.00	N
	HETATM 152 NC7 NDP A	_1_	58.497 13.017 26.528-99.00100.00	N
	HETATM 153 NO7 NDP A	1	59.358 13.703 25.972-99.00100.00	N
10	HETATM 154 NN7 NDP A	1	57,207 13,400 26,912-99,00 84,38	N
	HETATM 155 NC4 NDP A	1	58.442 11.146 28.137-99.00100.00	N
	HETATM 156 NC5 NDP A	1	58.912 9.963 28.754-99.00100.00	N
	HETATM 157 NC6 NDP A	1	59.951 9.266 28.147-99.00100.00	N
	ATOM 158 N LYS A	3	76.227 -5.632 44.315 1.00 61.49	N
15	ATOM 159 CA LYS A	3	76.152 -4.302 43.684 1.00 58.00	С
	ATOM 160 C LYS A	3	75.985 -4.421 42.171 1.00 52.79	С
	ATOM 161 O LYS A	3	76.921 -4.737 41.419 1.00 44.76	0
	ATOM 162 CB LYS A	3	77.359 -3.417 44.030 1.00 59.74	С
	ATOM 163 CG LYS A	3	77.011 -1.944 44.314 1.00 50.87	<u>c</u>
20	ATOM 164 CD LYS A	3	78.208 -1.161 44.894 1.00 61.21	<u> </u>
	ATOM 165 CE LYS A	3	77.855 -0.377 46.186 1.00100.00	С
	ATOM 166 NZ LYS A	3	78.857 -0.401 47.343 1.00 70.61	N
	ATOM 167 N GLN A	4	74.746 -4.242 41.747 1.00 45.15	N
	ATOM 168 CA GLN A	4	74.408 -4.326 40.347 1.00 37.18	<u></u>
25	ATOM 169 C GLN A	4	74.983 -3.166 39.561 1.00 34.93	С
	ATOM 170 O GLN A	4	75.127 -2.050 40.087 1.00 28.48	0
	ATOM 171 CB GLN A	4	72.915 -4.445 40.221 1.00 34.65	C
	ATOM 172 CG GLN A	4	72.456 ~5.854 40.584 1.00 31.82	<u>c</u>
	ATOM 173 CD GLN A	4	72.570 -6.788 39.405 1.00 79.25	С
30	ATOM 174 OE1 GLN A	4	72.165 -6.452 38.286 1.00100.00	_0
	ATOM 175 NE2 GLN A	4	73,206 -7,925 39,623 1,00 80.24	N
	ATOM 176 N ARG A	5	75.475 -3.495 38.375 1.00 27.16	N
	ATOM 177 CA ARG A	5	76.146 -2.546 37.483 1.00 39.16	<u>c</u>
	ATOM 178 C ARG A	5_	75.191 -2.018 36.433 1.00 38.22	<u>c</u>
35	ATOM 179 O ARG A	5	74.938 -2.698 35.438 1.00 32.44	0
	ATOM 180 CB ARG A	5	77.398 -3.163 36.826 1.00 41.76	С
	ATOM 181 CG ARG A	_5_	78.692 -2.954 37.663 1.00 37.34	С
	ATOM 182 CD ARG A	5	80.015 -3.236 36.876 1.00 32.99	C
	ATOM 183 NE ARG A	5	81.036 -2.203 37.125 1.00 25.71	N
40	ATOM 184 CZ ARG A	5	81.617 -1.488 36.169 1.00 32.53	<u>c</u>
	ATOM 185 NH1 ARG A	 5	81,293 -1.704 34,904 1.00 40.07	N
	ATOM 186 NH2 ARG A	5	82.516 -0.551 36.474 1.00100.00	N
	ATOM 187 N VAL A	6	74.743 -0.773 36.659 1.00 32.08	N
	ATOM 188 CA VAL A	6	73.715 -0.082 35.881 1.00 28.89	C
45	ATOM 189 C VAL A	6	74.161 1.021 34.897 1.00 29.37	С

	MOTA	190	0	VAL A	6	74.745	2.041	35.274	1.00 22.50	0
	MOTA	191	СВ	VAL A	6	72.577	0.378	36,813	1.00 23.52	С
	MOTA	192	CG1	VAL A	6	71.366	0.960	36.006	1.00 20.29	С
	MOTA	193	CG2	VAL A	6	72.108	-0.852	37.644	1.00 18.45	С
5	MOTA	194	N	PHE A		73.948	0.749	33.615	1.00 22.92	N
	MOTA	195	CA	PHE A		74.267	1.710	32.573	1.00 27.15	с
	MOTA	196	С	PHE A	7	72,975	2.423	32.192	1.00 20.24	с
	MOTA	197	0	PHE A		71.994	1.788	31.815	1.00 20.71	0
	MOTA	198	СВ	PHE A		74.864	1.004	31.374	1.00 18.98	C
10	MOTA	199	CG	PHE A	7	74.916	1.836	30.115	1.00 21.83	с
	MOTA	200	CD1	PHE A	7	75.521	3.087	30.108	1.00 19.36	с
	MOTA	201	CD2	PHE A	7_	74.483	1.284	28.886	1.00 23.50	c
	ATOM	202	CE1	PHE A	_1_	75.614	3.828	28.902	1.00 27.52	c
	ATOM	203	CE2	PHE A	7	74.548	1.996	27.685	1.00 19.33	c
15	ATOM	204	CE	PHE A	_7_	75.128	3.255	27.673	1.00 18.59	c
	ATOM	205	N_	ILE A	8	72.959	3.727	32.454	1.00 18.75	N
	ATOM	206	CA	ILE A	В	71.844	4.588	32.112	1.00 14.25	c
	MOTA	207	c	ILE A	8	72.337	5.351	30.909	1.00 11.22	c
	ATOM	208	0	ILE A	. 8	73.259	6.165	30.998	1.00 17.76	0
20	MOTA	209	СВ	ILE A	8	71.507	5.605	33.212	1.00 14.15	c
	ATOM	210	CG1	ILE A	88	71.356	4.949	34.582	1.00 8.24	
	ATOM	211	CG2	ILE A	8	70.183	6.342	32.874	1.00 16.85	C
	ATOM	212	CD1	ILE A	8	71.091	5.961	35.707	1.00 10.32	c
	MOTA	213	N	ALA A	9	71.896	4.906	29.752	1.00 16.42	N
25	ATOM	214	CA	ALA A	9	72.256	5.559	28.513	1.00 18.74	c
	MOTA	215	С	ALA A	9	71.530	6.913	28.511	1.00 28.45	c
	ATOM	216	0	ALA A	9	70.411	7.032	29.045	1.00 22.39	o
	MOTA	217	СВ	ALA A	9	71.808	4.731	27.311	1.00 14.43	с
	MOTA	218	N	GLY A	10	72.199	7.922	27.940	1.00 20.06	N
30	MOTA	219	CA	GLY A	10	71.706	9.284	27.911	1.00 18.62	с
	MOTA	220	С	GLY A	10	71.407	9.819	29.305	1.00 16.40	с
	MOTA	221	0	GLY A	10	70.379	10.448	29.481	1.00 17.36	0
	MOTA	222	N	HIS A	11	72.295	9.581	30.272	1.00 10.32	N N
	MOTA	223	CA	HIS A	11	72.068	9.966	31.688	1.00 13.90	с
35	MOTA	224	С	HIS A	11	72.008	11.504	31.916	1.00 21.52	С
	ATOM	225	0	HIS A	_11	71,700	11.994	32.983	1.00 13.22	0
	MOTA	226	СВ	HIS A	11	73.153	9.350	32,581	1.00 14.88	с
	MOTA	227	CG	HIS A	11	74.502	9.948	32.326	1.00 23.73	С
	MOTA	228	ND1	HIS A	11	75.239	9.648	31.197	1.00 24.90	N
40	MOTA	229	CD2	HIS A	11	75.167	10.952	32.956	1.00 16.35	C
	MOTA	230	CE1	HIS A	_11	76.317	10.407	31.170	1.00 22.54	c
	ATOM	231	NE2	HIS A	11_	76.271	11.240	32.197	1.00 17.56	N N
	MOTA	232	N	ARG A	12_	72.310	12.288		1.00 22.31	N
	MOTA	233	CA	ARG A	12				1.00 18.90	С
45	MOTA	234		ARG A	12	70.851	14.244		1.00 26.34	С

	MOTA	235	0	ARG A	12	70.572	15.426	30.604	1.00 25.37	0
	MOTA	236	СВ	ARG A	12	73.352	14.418	30,587	1.00 25.93	С
	MOTA	237	CG	ARG A	12	74.582	13.943	31.279	1.00 53.87	С
	MOTA	238	CD	ARG A	12	75.757	14.619	30.699	1.00 32.53	С
5	ATOM	239	NE	ARG A	12	76.359	15.576	31.605	1.00 69.90	N
	ATOM	240	CZ	ARG A	12	76.971	16.675	31,178	1.00100.00	C
	MOTA	241	NH	L ARG A	12	77.001	16.948	29.867	1.00100.00	N
	MOTA	242	NH	ARG A	12	77.526	17.508	32,056	1.00100.00	N
	MOTA	243	N_	GLY A	13	70.078	13.420	29.800	1.00 18.25	N
10	MOTA	244	CA	GLY A	13	68,802	13.904	29.258	1.00 16.50	с
	ATOM	245	С	GLY A	13	67.849	14.144	30.428	1.00 18.88	C
	ATOM	246	0	GLY A	13	68.202	13.902	31.624	1.00 14.04	0
	ATOM	247	N	MET A	14	66.653	14.632	30.103	1.00 16.00	N
	ATOM	248	CA	MET A	14	65.688	14.981	31.128	1.00 13.49	с
15	ATOM	249	С	MET A	14	65.293	13.760	31.901	1.00 14.02	с
	MOTA	250	0	MET A	14	65.408	13.713	33.145	1.00 17.06	o
	MOTA	251	СВ	MET A	14	64.442	15.605	30.524	1.00 11.57	с
	MOTA	252	CG	MET A	14	63.320	15.628	31.559	1.00 20.77	<u>c</u>
	ATOM	253	SD	MET A	14	61.926	16.766	31.110	1.00 29.16	
20	MOTA	254	CE	MET A	14	62.527	17.108	29.574	1.00 30.68	C
	MOTA	255	N	VAL A	15	64.798	12.769	31.158	1.00 25.23	N.
	MOTA	256	CA	VAL A	15	64.439	11.468	31.738	1.00 20.90	<u>C</u>
	MOTA	257	С	VAL A	15	65.654	10.713	32.378	1.00 17.26	С
	ATOM	258	0	VAL A	15	65.590	10.239	33.524	1.00 18.41	Q
25	MOTA	259	СВ	VAL A	15	63.752	10.550	30.680	1.00 23.25	С
	MOTA	260	CG1	VAL A	15	63.330	9.253	31.310	1.00 15.71	С
	MOTA	261	CG2	VAL A	15	62.528	11.193	30.183	1.00 13.40	C
	MOTA	262	N_	GLY A	16	66.784	10.642	31.665	1.00 20.39	N
	MOTA	263	CA	GLY A	16	67.941	9.904	32.186	1.00 19.54	C
30	MOTA	264	С	GLY A	16	68.522	10.432	33.492	1.00 29.29	C
	MOTA	265	Q	GLY A	16	68.896	9.659	34.434	1.00 16.91	0
	ATOM	266	N	SER A	17_	68.642	11.755	33.499	1.00 12.53	N
	MOTA	267	CA	SER A	_17_	69.154	12.460	34.650	1.00 21.93	<u>c</u>
	MOTA	268	С	SER A	17	68.209	12.214	35.818	1.00 13.35	c
35	MOTA	269	0	SER A	17	68.677	11.957	36,915	1.00 24.19	o
	MOTA	270	СВ	SER A	17	69.378	13.942	34.333	1.00 15.52	<u>c</u>
	MOTA	271	OG	SER A	17	68.153	14.619	34.372	1.00 22.95	o
	MOTA	272	N	ALA A	18	66.896	12.143	35,590	1.00 17.52	N
	MOTA	273	CA	ALA A	18	65.991	11.828	36.729	1.00 13.14	c
40	MOTA	274	C	ALA A	16	66.220	10.393	37.307	1.00 19.29	<u> </u>
	MOTA	275	0	ALA A	18	66,149	10.150	38.522	1.00 16.94	0
	MOTA	276	СВ	ALA A	18	64,460	12.046	36.334	1.00 14.33	<u>C</u>
	ATOM	277	N	ILE A	19	66.484	9.432	36.430	1.00 20.80	N
	ATOM	278	CA	ILE A	19	66.705	8.078	36.900	1.00 18.08	с
45	ATOM	279	С	ILE A	19	67.975	8.090	37.730	1.00 16.09	<u>C</u>

WO 99/64618 PCT/US99/11576

_	TOM	280 281	СВ	ILE A	19	68.018	7,530	38.820	1.00 20.73	<u>Q</u>
A		281	CB	~~~						
			<u> </u>	ILE A	19	66.804	7.079	35.710	1.00 17.58	c
A	MOT	282	CG1	ILE A	19	65.444	6.812	35,162	1.00 10.09	<u>C</u>
	MOT	283	CG2	ILE A	19	67.309	5.666	36.133	1.00 21.60	<u>C</u>
5 A	TOM	284	CD1	ILE A	19	65.528	6.361	33.741	1.00 19.05	<u>C</u>
A	MOT	285	N_	ARG A	20	68.984	8.771	37.198	1.00 18.13	N
A	MOT	286	CA	ARG A	20	70.286	8.897	37.836	1.00 20.25	
A	TOM	287	<u>C</u>	ARG A	20	70.231	9.491	39.242	1.00 30.62	C
A	TOM	288	0	ARG A	20	70.957	9.091	40.129	1.00 33.00	
10 a	MOT	289	CB	ARG A	20	71.201	9.743	36.957	1.00 11.71	C
A	TOM	290	CG	ARG A	20	72.610	9.781	37.449	1.00 23.79	<u>C</u>
A	MOTA	291	CD	ARG A	20	72.881	11.107	38.060	1.00 36.76	<u>c</u>
A	TOM	292	NE	ARG A	20	74.297	11.443	38.062	1.00 48.34	N
A	MOTA	293	CZ	ARG A	20	74.990	11.841	36.988	1.00100.00	<u>c</u>
15 a	TOM	294	NH1	ARG A	20	74.393	11.931	35.808	1.00100.00	N
A	MOTA	295	NH2	ARG A	20	76.289	12.139	37.076	1.00100.00	N
2	MOT	296	N_	ARG A	21	69.368	10.461	39.439	1.00 22.10	N
2	ATOM	297	CA	ARG A	21	69.216	11.052	40.750	1.00 17.45	<u>c</u>
2	MOTA	298	С	ARG A	21	68.721	10.007	41.730	1.00 26.71	<u>c</u>
20	MOTA	299	0_	ARG A	21	69.147	10.001	42.885	1.00 30.27	0
2	MOTA	300	СВ	ARG A	_21	68.142	12.144	40.708	1.00 17.93	<u>c</u>
2	MOTA	301	CG	ARG A	21	68.682	13.522	40.321	1.00 27.57	c
Z	MOTA	302	CD	ARG A	21	67.586	14.599	40.130	1.00 23.02	<u>c</u>
	ATOM	303	NE_	ARG A	_21	67.619	15.000	38.743	1.00 55.12	N
25	ATOM	304	CZ	ARG A	21	66.538	15.103	37.995	1.00 10.55	<u> </u>
2	ATOM	305	NH1	ARG A	21	65.343	14.974	38.552	1.00 29.80	N
Z	MOTA	306	NH2	ARG A		66.665	15.435	36.715	1.00 61.45	N
2	ATOM	307	N.	GLN A	22	67.713	9.223	41.345	1.00 27.48	N
	ATOM	308	CA	GLN A	22	67.167	8.257	42.313	1.00 24.79	C
_	MOTA	309	<u>_C</u>	GLN A		68.137	7.127	42.547	1.00 31.37	<u> </u>
_	MOTA	310	0	GLN A	22	68.394	6.724	43.685	1.00 27.47	0
	MOTA	311	СВ	GLN A	22	65.818	7.706	41.894	1.00 17.11	<u>C</u>
_	MOTA	312	CG	GLN A		64.921	8.745		1.00 66.14	
0.5	ATOM	313		GLN A		63.425			1.00 41.27	
35 z	ATOM	314		GLN A		63.002	7.329		1.00 29.34	<u>0</u>
ı	ATOM			GLN A		62,610			1.00 20.12	N
	MOTA	316		LEU A		68.697	6.652	_	1.00 27.99	N
1	ATOM	317		LEU A		69.649	5.575		1.00 24.48	<u>C</u>
40	ATOM	318	<u> </u>	LEU A		70.828	5.971		1.00 28.87	
	ATOM	319	0	LEU A		71.288	5.218		1.00 30.79	<u>0</u>
	ATOM	320		LEU A		70.036	5.107		1.00 22.72	
	MOTA	321		LEU A		68.966	4.072		1.00 26.16	<u>c</u>
	MOTA	322		LEU A		69.271	3.083		1.00 24.80	<u>C</u>
40	MOTA	323		LEU A		68.427	3.284		1.00 22.91	
45	ATOM	324	N_	GLU A	24	71.279	7.192	42,153	1.00 28.77	N

	MOTA	325	CA	GLU A	24	72,419	7.675	42.909	1.00 33.79	C
	MOTA	326	С	GLU A	24	72,363	7.388	44.412	1.00 35.94	С
	MOTA	327	0	GLU A	24	73.381	7.140	45.031	1.00 39.07	0
	MOTA	328	СВ	GLU A	24	72.647	9.165	42.653	1.00 36.21	с
5	MOTA	329	CG	GLU A	24	74.068	9.482	42.243	1.00 42.54	C
	MOTA	330	CD	GLU A	24	74.158	10.689	41.333	1.00 89.51	c
	MOTA	331	OE1	GLU A	24	73.386	11.663	41.549	1.00 43.21	0
	MOTA	332	OE2	GLU A	24	74.994	10.646	40.398	1.00 66.28	0
	MOTA	333	N	GLN A	25	71.182	7.422	45.000	1.00 45.70	N
10	MOTA	334	CA	GLN A	25_	71.039	7.152	46.432	1.00 47.57	C
	MOTA	335	С	GLN A	25	70.887	5.669	46.740	1.00 67.34	c
	MOTA	336	0	GLN A	25	70.285	5.286	47.726	1.00 74.06	0
	MOTA	337	CB	GLN A	25	69.783	7.842	46.905	1.00 51.85	C
	MOTA	338	CG	GLN A	25	69.500	9.084	46.109	1.00 44.91	C
15	MOTA	339	CD	GLN A	25	68.419	9.913	46.742	1.00100.00	c
	ATOM	340	OE1	GLN A	25	68.271	9.947	47.972	1.00100.00	o
	MOTA	341	NE2	GLN A	25	67.624	10.602	45.911	1.00100.00	N
	MOTA	342	N	ARG A	26	71.322	4.831	45.825	1.00 75.37	N
	MOTA	343	CA	ARG A	26	71.182	3.407	46.026	1.00 74.87	с
20	ATOM	344	С	ARG A	26	72.568	2.791	46.147	1.00 74.08	c
	ATOM	345	0	ARG A	26	73.440	2,997	45.289	1.00 77.00	0
	ATOM	346	CB	ARG A	26	70.390	2,790	44.885	1.00 52.44	с
	MOTA	347	CG	ARG A	26	68.916	2.927	45.070	1.00 43.51	c
	MOTA	348	CD	ARG A	26	68.428	1.752	45.864	1.00 40.70	<u>c</u>
25	MOTA	349	NE	ARG A	26	67.200	1.176	45.338	1.00 42.33	N
	MOTA	350	CZ	ARG A	26	67.126	0.508	44.196	1.00 32.07	с
	MOTA	351	NH1	ARG A	26	68.215	0.324	43.486	1.00 44.02	N
	ATOM	352	NH2	ARG A	26	65.968	0.017	43.771	1.00 77.32	N
	MOTA	353	N	GLY A	27	72.778	2.114	47.266	1.00 46.30	N
30	ATOM	354	CA	GLY A	27	74.060	1.531	47.549	1.00 46.82	С
	MOTA	355	C	GLY A	27	74.140	0.165	46.923	1.00 55.45	<u>C</u>
	ATOM	356	0	GLY A	27	75.204	-0.453	46.877	1.00 64.43	<u> </u>
	MOTA	357	N	ASP A	_28	73.017		46.428	1.00 40.98	N
0.5	ATOM	358		ASP A		73.016	-1.647		1.00 40.35	<u>c</u>
35	ATOM	359		ASP A		73.266	-1.536		1.00 39.55	<u>c</u>
	ATOM	360		ASP A		73.109			1.00 48.80	0
	ATOM	361	CB	ASP A	28	71.680	-2.335		1.00 47.80	<u>c</u>
	MOTA	362		ASP A	28	70.503	-1.373	46.064	1.00 35.34	<u>c</u>
40	ATOM	363	OD1	ASP A	28	70.705	-0.140	46.095	1.00 39.23	0
40	ATOM	364		ASP A		69.383	-1.870		1.00 69.86	0
	ATOM	365		VAL A		73,651	-0.329		1.00 31.03	N
	MOTA	366		VAL A		73.881			1.00 28.44	C
	ATOM	367		VAL A		75.166	0.676	42.281	1.00 28.00	<u>c</u>
4-	ATOM	368		VAL A		75.505			1.00 34.83	0
45	MOTA	369	CB	VAL A	29	72.696	0.760	42.000	1.00 30.68	с

	ATOM 3	70 CG1	VALA	29	72.935	1.088	40.549	1.00 2	3.65	С
	ATOM 3	71 CG2	VAL A	29	71.416	-0.028	42,156	1.00 2	7.95	c
	ATOM 3	72 N	GLU A	30	75.824	0.219	41.230	1.00 3	0.76	_N
	ATOM 3	73 CA	GLU A	30	76.995	0.924	40.736	1.00 2	8.38	c
5	ATOM 3	74 C	GLU A	30	76.678	1.471	39.332	1.00 3	1.03	С
	ATOM 3	75 0	GLU A	30	76.368	0.720	38.397	1.00 2	6.64	_
	ATOM 3	76 CB	GLU A	30	78.199	0.006	40.722	1.00 3	1.84	
	ATOM 3	77 CG	GLU A	30	79.355	0.539	41.533	1.00 8	9.26	
	ATOM 3	78 CD	GLU A	30	80.667	0.264	40.858	1,0010	0.00	_ <u>c</u>
10	ATOM 3	79 OE1	GLU A	30	81.082	-0.922	40.872	1.00 8	8.94	0
	ATOM 3	80 OE2	GLU A	30	81.202	1.206	40.219	1,0010	0.00	0
	ATOM 3	81 N	LEU A	31	76.665	2.789	39.207	1.00 2	2.24	_N
	ATOM 3	82 CA	LEU A	31	76.269	3.391	37.945	1.00 2	9,37	
	ATOM 3	83 C	LEU A	31	77.404	3.507	36.941	1.00 2	5.79	
15	ATOM 3	84 0	LEU A	31	78.485	3.969	37.256	1.00 2	9.41	_
	ATOM 3	85 CB	LEU A	31	75.632	4.760	38.191	1.00 3	0.20	
	ATOM 3	86 CG	LEU A	31	74.329	4.763	38.994	1.00 2	9.37	
	ATOM 3	87 CD1	LEU A	31	73.841	6.143	39.240	1.00 2	3.43	
	ATOM 3	88 CD2	LEU A	31	73.275	3.962	38,281	1.00 2	3.04	
20	ATOM 3	89 N	VAL A	32	77.146	3.100	35.711	1.00 2	1.94	N
	ATOM 3	90 CA	VAL A	32	78.143	3.265	34.685	1.00 2	5.48	c
	ATOM 3	91 C	VAL A	32	77.535	4.242	33.669	1.00 3	3.76	С
	ATOM 3	92 0	VAL A	32	76,429	3.999	33.180	1.00 2	9.70	0
	ATOM 3	93 CB	VAL A	32	78.517	1.902	34.055	1.00 3	1.25	c
25	ATOM 3	94 CG1	VAL A	32	79.587	2.079	32.970	1.00 30		<u> </u>
	ATOM 3	95 CG2	VAL A	32	79.003	0.950	35.139	1.00 2		
	ATOM 3	96 N	LEU A	33	78.219	5.375	33.457	1.00 30		N
	ATOM 3	97 CA	LEU A	33	77.732	6.463	32.621	1.00 2		c
	ATOM 3	98 C	LEU A	33	78,727	6.979	31.645	1.00 29		
30	ATOM 3	99 O	LEU A	33	79.896	7.152	31.988	1.00 30	0.09	٥
	ATOM 4	00 СВ	LEU A	33	77.423	7.635	33.514	1.00 19	7.75	c
	ATOM 4	01 CG	LEU A	33	76.729	7.200	34.779	1.00 19	9.38	c
	ATOM 4	02 CD1	LEU A	33	76.814			1.00 27		c
	ATOM 4	03 CD2	LEU A	33	75.271		34.444			
35	ATOM 4	04 N	ARG A	34	78,239	7.421	30.496			N
	ATOM 4	05 CA	ARG A	34	79.154	8.008		1.00 26		c
	ATOM 4	06 C	ARG A	34	78.469	9.173	28.916			
	ATOM 4	07 0	ARG A	34	77.288		28.651			<u> </u>
	ATOM 4	08 CB	ARG A	34	79.486			1.00 22		
40	ATOM 4	09 CG	ARG A	34	80.579	6.081	28.706			<u>_</u>
	ATOM 4	10 CD	ARG A	34	81.370		29.860			_ <u></u>
	ATOM 4		ARG A		81.783	5.458	30.711			N
	ATOM 4		ARG A		82.646	4.530	30.323			<u>c</u>
	ATOM 4		ARG A		83.173		29.104			N
45	ATOM 4		ARG A		82.983		31.148			_N
								TVV LY		-17

	MOTA	415	N	THR A	35	79,248	10.156	28.539	1.00	31,58	N
	MOTA	416	_CA_	THR A	35	78.703	11.282	27.833	1,00	29.33	C
	MOTA	417	С	THR A	35	78.719	10.951	26,340	1.00	32.53	C
	ATOM	418	0	THR A	35	79.350	9,944	25.962	1.00	28.08	0
5	MOTA	419	СВ	THR A	35	79.527	12.527	28.145	1.00	37.49	c
	ATOM	420	0G1	THR A	35	80.844	12.429	27.560	1.00	31.91	0
	MOTA	421	CG2	THR A	35	79.627	12.642	29,651	1.00	19.38	<u>c</u>
	ATOM	422	N	ARG A	36	78.032	11.780	25,529	1.00	30.02	N
	MOTA	423	CA	ARG A	36	78.002	11.639	24.056	1.00	29.37	<u>C</u>
10	ATOM	424	С	ARG A	36	79.406	11.765	23.503	1.00	31.46	С
	MOTA	425	0	ARG A	36	: 79.772	11.012	22.591	1.00	36.56	<u> </u>
	MOTA	426	СВ	ARG A	36	77.054	12.650	23,354	1.00	37.34	c
	MOTA	427	CG	ARG A	36	76.937	12.465	21.846-	99.00	49.47	<u>C</u>
	MOTA	428	CD	ARG A	36	76.020	13.515	21,232-	99.00	63.09	С
15	ATOM	429	NE	ARG A	36	75.528	13.124	19.915-	99.00	75.23	N
	MOTA	430	CZ	ARG A	36	74.381	13.549	19.391-	99.00	91.44	С
	MOTA	431	NH1	ARG A	36	73.605	14.375	20.079-	99.00	79.32	N
	MOTA	432	NH2	ARG A	36	74.009	13.144	18.185-	99.00	78.73	
	ATOM	433	N	ASP A	37	80.217	12.677	24.063	1.00	41.30	N
20	MOTA	434	CA	ASP A	37	81,606	12.710	23.601	1.00	44.91	С
	MOTA	435	С	ASP A	37	82.410	11.481	24.043	1.00	24.99	Ç
	MOTA	436	0	ASP A	37	83.211	10.978	23.261	1.00	42.22	0
	MOTA	437	СВ	ASP A	37	82.347	14.048	23.718-	99.00	47.07	С
	MOTA	438	CG	ASP A	37	81.881	14.887	24.876-	99.00	62.99	C
25	MOTA	439	OD1	ASP A	37	80.679	14.839	25.204-	99.00	64.45	<u> </u>
	MOTA	440	OD2	ASP A	37	82.711	15.638	25.429-	99.00	69.84	0
	MOTA	441	N	GLU A	38	82.129	10.950	25.235	1.00	19.39	N
	MOTA	442	CA	GLU A	38	82.790	9.717	25.682	1.00	27.84	<u>C</u>
	MOTA	443	С	GLU A	38	82.203	8.527	24.901	1.00	37.14	<u>c</u>
30	MOTA	444	0	GLU A	38	82.873	7.511	24.699	1.00	35.04	0
	MOTA	445	СВ	GLU A	38	82.691	9.435	27.207	1.00	25.18	c
•	MOTA	446	CG	GLU A	38	83.116	10.549	28,183	1.00	37.45	<u>c</u>
	ATOM	447	CD	GLU A	38	82.807	10.212	29.655	1.00	21.13	<u>c</u>
	MOTA	448	OE1	GLU A	38	81.623	9,997	30.014	1.00	55.97	0
35	ATOM	449	OE2	GLU A	38	83.757	9.978	30.419	1.00	98.78	0
	MOTA	450	N_	LEU A	39	80.948	8.610	24.478	1.00	25.52	N
	ATOM	451	CA	LEU A	39	80.440	7.483	23.739	1.00	18.17	c
	MOTA	452	С	LEU A	39	79.291	7.764	22.825	1.00	20.34	<u>C</u>
	MOTA	453	0	LEU A	39	78.152	7.810	23.259	1.00	26.35	0
40	MOTA	454	СВ	LEU A	39	80.123	6.313	24.657	1.00	14.56	<u>C</u>
	MOTA	455	CG	LEU A	39	79.410	5.075	24.058	1.00	19.52	c
	MOTA	456	CD1	LEU A	39	80.205	4.392	22.994	1.00	18.84	с
	ATOM	457	CD2	LEU A	39	78.890	4.051	25.084	1.00	17.41	<u> </u>
	MOTA	458	N_	ASN A	40	79.598	7.880	21.543	1.00	16.73	N
45	MOTA	459	CA	asn a	40	78.548	7.971	20.540	1.00	21.55	с

	ATOM 460 C ASN A 40	77.798 6.649 20.308 1.00 24.53	с
	ATOM 461 0 ASN A 40	78.328 5.720 19.688 1.00 19.96	
	ATOM 462 CB ASN A 40	79.130 8.367 19.216 1.00 18.45	c
	ATOM 463 CG ASN A 40	78.054 8.727 18.225 1.00 42.19	c
5	ATOM 464 OD1 ASN A 40	78.327 9.093 17.080 1.00 38.89	0
	ATOM 465 ND2 ASN A 40	76,827 8.730 18.697 1.00 23.71	N
	ATOM 466 N LEU A 41	76.543 6.622 20.754 1.00 21.08	N
	ATOM 467 CA LEU A 41	75.649 5.465 20.650 1.00 15.03	C
	ATOM 468 C LEU A 41	75.225 5.068 19.213 1.00 18.22	c
10	ATOM 469 O LEU A 41	74.681 3.971 18.980 1.00 15.72	
	ATOM 470 CB LEU A 41	74.426 5.705 21.532 1.00 15.85	
	ATOM 471 CG LEU A 41	74.822 6.029 22.974 1.00 21.90	C
	ATOM 472 CD1 LEU A 41	73.604 6.413 23.749 1.00 20.59	C
	ATOM 473 CD2 LEU A 41	75.481 4.796 23.609 1.00 17.97	<u>c</u>
15	ATOM 474 N LEU A 42	75.542 5.916 18.238 1.00 12.45	N
	ATOM 475 CA LEU A 42	75.256 5.607 16.831 1.00 15.99	c
	ATOM 476 C LEU A 42	76.290 4.680 16.280 1.00 26.18	C
	ATOM 477 O LEU A 42	76.066 4.039 15.257 1.00 22.41	0
	ATOM 478 CB LEU A 42	75.282 6.873 15.984 1.00 17.85	C
20	ATOM 479 CG LEU A 42	74.180 7.854 16.399 1.00 30.70	c
	ATOM 480 CD1 LEU A 42	74.318 9.184 15.704 1.00 24.31	C
	ATOM 481 CD2 LEU A 42	72.764 7.241 16.208 1.00 31.13	С
	ATOM 482 N ASP A 43	77.462 4.705 16.911 1.00 26.87	N
	ATOM 483 CA ASP A 43	78.579 3.875 16.486 1.00 19.29	C
25	ATOM 484 C ASP A 43	78.583 2.519 17.163 1.00 13.33	
	ATOM 485 O ASP A 43	79.051 2.348 18.297 1.00 18.75	0
	ATOM 486 CB ASP A 43	79.870 4.580 16.776 1.00 31.06	C
	ATOM 487 CG ASP A 43	81.083 3.758 16.380 1.00 30.68	c
	ATOM 488 OD1 ASP A 43	80.971 2.551 16.082 1.00 32.36	0
30	ATOM 489 OD2 ASP A 43	82.187 4.308 16.499 1.00 37.83	0
	ATOM 490 N SER A 44	78.139 1.544 16.377 1.00 16.89	N
	ATOM 491 CA SER A 44	77.978 0.173 16.789 1.00 17.67	C
	ATOM 492 C SER A 44	79.237 -0.463 17.392 1.00 20.40	<u>C</u>
2.5	ATOM 493 O SER A 44	79,206 -1.126 18.444 1.00 26.27	0
35	ATOM 494 CB SER A 44	77.504 -0.617 15.581 1.00 13.85	c
	ATOM 495 OG SER A 44	76.800 -1.740 16.063 1.00 43.83	0
	ATOM 496 N ARG A 45	80.335 -0.301 16.682 1.00 15.63	N
	ATOM 497 CA ARG A 45	81,616 -0.788 17.154 1.00 19.94	<u>c</u>
40	ATOM 498 C ARG A 45	81.910 -0.225 18.521 1.00 29.48	С
40	ATOM 499 O ARG A 45	82.244 ~0.937 19.457 1.00 27.65	0
	ATOM 500 CB ARG A 45	82.684 -0.261 16.203 1.00 27.46	<u>C</u>
	ATOM 501 CG ARG A 45	83.463 -1.338 15.495 1.00 92.03	<u>_</u>
	ATOM 502 CD ARG A 45	84.854 -1.418 16.077 1.00100.00	<u>_</u>
AF	ATOM 503 NE ARG A 45	85.636 -2.533 15.527 1.00100.00	N
45	ATOM 504 CZ ARG A 45	86.092 -3.570 16.236 1.00100.00	<u>c</u>

	MOTA	505	NH1	ARG A	45	85.791	-3.695	17.547	1.00100	.00	N
	MOTA	506	NH2	ARG A	45	86.773	-4.544	15.642	1.00100	,00	N
	MOTA	507	N	ALA A	46	81.772	1.090	18.629	1.00 31	.04	N
	MOTA	508	CA	ALA A	46	82.045	1.743	19.881	1.00 24	.72	<u>C</u>
5	MOTA	509	<u> </u>	ALA A	46	81.111	1.176	20.899	1.00 17	7.73	. <u> </u>
	MOTA	510	0	ALA A	46	81.512	0.825	22.027	1.00 22	.73	0
	MOTA	511	CB	ALA A	46	81.839	3.221	19.751	1.00 27	1.16	<u>c</u>
	ATOM	512	N	VAL A	47	79.835	1.119	20.531	1.00 17	7.54	<u> </u>
	MOTA	513	CA	VAL A	47	78.878	0.608	21.508	1.00 21	.41	с
10	ATOM	514	С	VAL A	47	79.262	-0.812	21.914	1.00 30	25	c
	MOTA	515	0	VAL A	47	79.192	-1.202	23.097	1.00 15	.85	0
	MOTA	516	СВ	VAL A	47	77.470	0.668	20.989	1.00 18	3.59	С
	MOTA	517	CG1	VAL A	47	76.503	0.042	22.012	1.00 16	5.88	с
	MOTA	518	CG2	VAL A	47	77.115	2.096	20.756	1.00 16	5.28	<u>C</u>
15	MOTA	519	N	HIS A	48	79.692	-1.585	20.920	1.00 21	.00	N
	MOTA	520	CA	HIS A	48	80.028	-2.969	21.192	1.00 20	.17	c
	MOTA	521	С	HIS A	48	81.268	-3.079	22.117	1.00 32	2.98	с
	MOTA	522	0_	HIS A	48	81.289	-3.850	23.102	1.00 28	3.20	0
	MOTA	523	СВ	HIS A	48	80.063	-3.801	19.855	1.00 14	1.93	с
20	MOTA	524	CG	HIS A	48	78.686	-4.172	19.338	1.00 26	5.67	с
	MOTA	525	ND1	HIS A	48	78.085	-5.394	19.600	1.00 26	3.83	N
	MOTA	526	CD2	HIS A	48	77.758	-3.448	18.659	1.00 25	5.56	<u>c</u>
	MOTA	527	CE1	HIS A	48	76.887	-5.430	19.043	1.00 20	0.08	<u>c</u>
	MOTA	528	NE2	HIS A	48	76.660	-4.260	18.475	1.00 25	22	N
25	MOTA	529	_N	ASP A	49	82.217	-2.170	21.902	1.00 22	2.62	N
	MOTA	530	_CA_	ASP A	49	83.455	-2.169	22.674	1.00 25	.23	<u>C</u>
	MOTA	531	С	ASP A	49	83.171	-1.899	24.122	1.00 38	. 72	<u>C</u>
	MOTA	532	0	ASP A	49	83.708	-2.551	25.027	1.00 35	. 44	0
	MOTA	533	СВ	ASP A	49	84.396	-1.112	22.127	1.00 30	.29	<u>c</u>
30	MOTA	534	CG	ASP A	49	84.991	-1.503	20.775	1.00 52	.45	<u>c</u>
	MOTA	535	OD1	ASP A	49	85.007	-2.726	20.449	1.00 42	.67	0
	MOTA	536	OD2	ASP A	49	85.416	-0.587	20.029	1.00 73	.76	0
	MOTA	537	N	PHE A	50	82.294	-0.929	24.324	1.00_32	.19	N
	MOTA	538	CA	PHE A	50	81.902	-0.550	25.649	1.00 29	76	<u>c</u>
35	MOTA	539	С	PHE A	50	81.299	-1.765	26.359	1.00 30	31	<u>C</u>
	MOTA	540	0	PHE A	50	81.715	-2.124	27.449	1.00 29	22	0
	MOTA	541	СВ	PHE A	50	80.892	0.610	25.576	1.00 23	1.82	<u>C</u>
	MOTA	542	CG	PHE A	50	80.137	0.843	26.859	1.00 19	9.13	<u> </u>
	ATOM	543	CD1	PHE A	50	80.740	1.515	27.931	1.00 20	.14	C
40	ATOM	544	CD2	PHE A	50	78.835	0.360	27.018	1.00 13	3.99	с
	ATOM	545	CE1	PHE A	50	80.034	1.742	29.129	1.00 2	5.81	с
	MOTA	546	CE2	PHE A	50	78.114	0.553	28.212	1.00 22	2.84	£
	ATOM	547	CZ	PHE A	50	78.698	1.276	29,259	1.00 23	3.40	с
	MOTA	548	N	PHE A	51	80.280	-2.367	25.768	1.00 2	.75	N
45	ATOM	549	CA	PHE A	51	79.655	-3.451	26,457	1.00 22	2.61	C

WO 99/64618

	ATOM	550	С	PHE A	51	80.646	-4.603	26.612	1.00 3	4.01	С
	ATOM	551	0	PHE A	51	80.550	-5.401	27.590	1.00 2	5.28	0
	MOTA	552	СВ	PHE A	51	78.389	-3.898	25.751	1.00 2	2.63	с
	MOTA	553	CG	PHE A	51	77.158	-3.140	26.170	1.00 2	7.58_	<u> </u>
5	MOTA	554	CD1	PHE A	51	76,426	-3.525	27,280	1.00 2	1.78	С
	MOTA	555	CD2	PHE A	51	76,663	-2.100	25.380	1.00 1	9.55	c
	MOTA	556	CE1	PHE A	51	75.267	-2,796	27.662	1.00 2	8.34	С
	MOTA	557	CE2	PHE A	51	75.492	-1.403	25.734	1.00 1	4.47	C
	MOTA	558	CZ	PHE A	51	74.797	-1.744	26.878	1.00 1	4.55	С
10	MOTA	559	N	ALA_A	52	81.576	-4.706	25.659	1.00 2	6.43	N
	MOTA	560	CA	ALA A	52	82.587	-5.793	25.714	1.00 2	9.44	С
	MOTA	561	С	ALA A	52	83.687	-5.560	26.768	1.00 4	3.76	С
	MOTA	562	0	ALA A	52	84.502	-6.446	27.022	1.00 4	0.33	. 0
	MOTA	563	СВ	ALA A	52	83.228	-6.049	24.344	1.00 2	4.25	С
15	MOTA	564	N	SER A	53	83.702	-4.382	27.385	1.00 3	1.96	N
	MOTA	565	CA	SER A	53	84.705	-4.090	28.377	1.00 2	1.06	С
	MOTA	566	С	SER A	53	84.196	-3.625	29.709	1.00 2	6.41	С
	MOTA	567	0	SER A	53	84.985	-3.492	30.611	1.00 3	6.12	0
	MOTA	568	СВ	SER A	53	85.709	-3.088	27.843	1.00 1	4.22	c
20	MOTA	569	O G	SER A	53	85.140	-1.807	27,790	1.00 5	6.90	0
	MOTA	570	N	GLU A	54	82.892	-3.431	29.874	1.00 2	2.38	N
	MOTA	571	CA	GLU A	54	82.380	-2.893	31.139	1.00 1	7.27	с
	ATOM	572	c	GLU A	54	81.584	-3.735	32.118	1.00 2	6.32	<u>c</u>
	MOTA	573	0	GLU A	54	81.229	-3.281	33,191	1.00 3	7.43	0
25	MOTA	574	СВ	GLU A	54	81.677	-1.563	30.906	1.00 2	7.30	<u>C</u>
	MOTA	575	CG	GLU A	54	82.573	-0.543	30.262	1.00 4	4.77	c
	MOTA	576	CD	GLU A	54	83.669	-0.142	31.194	1.00 8	6.31	C
	MOTA	577	OE1	GLU A	54	83.392	-0.232	32.428	1.00 5	0.11	0
	MOTA	578	OE2	GLU A	54	84.785	0.198	30.692	1.00 5	0.99	0
30	MOTA	579	N	ARG A	55	81.268	-4.971	31.804	1.00 2	9.63	N
	MOTA	580	CA	ARG A	55	80.636	-5.748	32.854	1.00 3	3.32	<u>C</u>
	MOTA	581	С	ARG A	55	79.347	-5.149	33.378	1.00 3	8.45	<u>c</u>
	MOTA	582	0	ARG A	55	79.214	-4.897	34.576	1.00 4	0.18	0
	MOTA	583	СВ	ARG A	55	81.621	-5.875	34.045	1.00 5	7.61	c
35	MOTA	584	CG	ARG A	55	82.666	-7.028	33.960	1.0010	0.00	C
	MOTA	585	CD	ARG A	55	82.805	-7.805	35.305	1.0010	0.00	c
	MOTA	586	NE	ARG A	55	82.838	-9.270	35.146	1.0010	0.00	N
	MOTA	587	CZ	ARG A	55	83.206	-10.129	36.102	1.0010	0.00	<u>c</u>
	MOTA	588	NH1	ARG A	55	83.583	-9.681	37.301	1.0010	0.00	N
40	ATOM	589	NH2	ARG A	55	83,208	-11.440	35.855	1.0010	0.00	N
	MOTA	590	N	ILE A	56	78.367	-5.029	32,491	1.00 4	2.25	N
	MOTA	591	CA	ILE A	56	77.064	-4.434	32.794	1.00 2	5.49	C
	MOTA	592	<u>c</u>	ILE A	56	75.982	-5.474	33.244	1.00 2	0.18	c
	MOTA	593	0	ILE A	56	75.897	-6.579	32.704	1.00 2	4.74	0
45	ATOM	594	СВ	ILE A	56	76.672	-3.512	31.531	1.00 2	6.89	c

	MOTA	595	CG1	ILE A	56	77.643	-2.301	31.442	1.00 18.30	с
	MOTA	596	CG2	ILE A	56	75.214	-3.016	31.549	1.00 19.84	<u>c</u>
	MOTA	597	CD1	ILE A	56	77.998	-1.936	30.026	1.00 60.42	c
	MOTA	598	N	ASP A	57	75.166	-5.133	34.237	1.00 16.84	N
5	MOTA	599	CA	ASP A	57	74.040	-5.999	34.630	1.00 16.33	с
	MOTA	600	С	ASP A	57	72.676	-5.451	34.123	1.00 28.40	с
	MOTA	601	0	ASP A	57	71.836	-6.198	33.657	1.00 25.50	0
	MOTA	602	СВ	ASP A	57	74.009	-6.194	36.164	1.00 16.94	с
	MOTA	603	CG	ASP A	57	75.369	-6.720	36.703	1.00 34.27	<u>C</u>
10	MOTA	604	OD1	ASP A	57	75,875	-7.729	36.141	1.00 31.76	
	MOTA	605	OD2	ASP A	57	76.040	-6.007	37.499	1.00 28.36	0
	MOTA	606	N	GLN A	58	72.443	-4.152	34.220	1.00 28.91	N
	MOTA	607	CA	GLN A	58	71.183	-3.590	33.755	1.00 25.68	c
	MOTA	608	С	GLN A	58	71.425	-2.364	32.881	1.00 23.21	c
15	ATOM	609	0	GLN A	58	72.403	-1.620	33.067	1.00 18.16	0
	MOTA	610	СВ	GLN A	58	70.342	-3.151	34.946	1.00 33.14	C
	MOTA	611	CG	GLN A	58	69.798	-4.241	35.807	1.00 30.00	с
	MOTA	612	CD	GLN A	58	69.226	-3.712	37.105	1.00 27.18	с
	MOTA	613	OE1	GLN A	58	68.722	-2.601	37.161	1.00 31.20	0
20	MOTA	614	NE2	GLN A	58	69.455	-4.436	38.186	1.00 16.89	N N
	MOTA	615	N	VAL A	59	70.496	-2.138	31.961	1.00 18.35	N
	MOTA	616	_CA_	VAL A	59	70.562	-0.998	31.045	1.00 15.59	<u>C</u>
	MOTA	617	С	VAL A	59	69.238	-0.240	31.039	1.00 26.28	<u>C</u>
	MOTA	618	0	VAL A	59	68.178	-0.820	30.762	1.00 19.51	0
25	MOTA	619	СВ	VAL A	59	70.707	-1.456	29.601	1.00 15.32	<u>c</u>
	MOTA	620	CG1	VAL A	59	70.477	-0.274	28,649	1.00 11.93	<u>C</u>
	MOTA	621	CG2	VAL A	59	72.080	-2.111	29.364	1.00 15.83	с
	MOTA	622	N	TYR A	60	69.306	1.064	31,293	1.00 21.71	N
	MOTA	623	CA	TYR A	60	68.113	1.927	31.197	1.00 21.40	<u>c</u>
30	MOTA	624	С	TYR A	60	68.289	2.756	29.928	1.00 18.69	C
	MOTA	625	0	TYR A	60	69.250	3.532	29.796	1.00 15.51	<u>0</u>
	MOTA	626	СВ	TYR A	60	68.021	2.817	32.413	1.00 17.24	<u>C</u>
	MOTA	627	CG	TYR A	60	67.493	2.131	33.658	1.00 19.71	<u>C</u>
	MOTA	628	CD1	TYR A	60	68.345	1.583	34.586	1.00 21.14	<u>C</u>
35	MOTA	629	CD2	TYR A	60	66.154	2.223	33.991	1.00 20.16	с
	MOTA	630	CE1	TYR A	60	67.835	1.080	35.794	1.00 19.11	<u>c</u>
	MOTA	631	CE2	TYR A	60	65.648	1.698	35.163	1.00 10.77	<u>c</u>
	MOTA	632	CZ	TYR A	60	66.476	1.094	36.054	1.00 20.07	C
	MOTA	633	ОН	TYR A	60	65.921	0.585	37.248	1.00 16.04	0
40	MOTA	634	N	LEU A	61	67.491	2.452	28.916	1.00 17.46	N
	ATOM	635	CA	LEU A	61	67,685	3.053	27.585	1.00 20.17	с
	MOTA	636	С	LEU A	61	67.003	4.412	27.409	1.00 23.36	c
	MOTA	637	0	LEU A	61	65.925	4.526	26.799	1.00 14.86	Q
	MOTA	638	СВ	LEU A	61	67.267	2.060	26.485	1.00 14.78	с
45	MOTA	639	CG	LEU A	61	68.117	2.142	25.208	1.00 15.52	C

	ATOM 640 CD1 LEU A 61	67.815 1.010 24.109 1.00 7.75	<u>c</u>
	ATOM 641 CD2 LEU A 61	68.087 3.541 24.580 1.00 15.20	c
	ATOM 642 N ALA A 62	67.656 5.434 27.956 1.00 20.35	N
	ATOM 643 CA ALA A 62	67.120 6.784 27.963 1.00 18.55	с
5	ATOM 644 C ALA A 62	67.779 7.739 26.949 1.00 18.57	С
	ATOM 645 O ALA A 62	67.455 8,924 26,920 1.00 24,31	0
	ATOM 646 CB ALA A 62	67.071 7.377 29.439 1.00 11.69	С
	ATOM 647 N ALA A 63	68.681 7.231 26.101 1.00 14.09	N
	ATOM 648 CA ALA A 63	69.249 8.095 25.052 1.00 12.84	с
10	ATOM 649 C ALA A 63	68.310 8.005 23.877 1.00 27.00	c
	ATOM 650 O ALA A 63	67.845 6.916 23.511 1.00 24.51	0
	ATOM 651 CB ALA A 63	70.665 7.660 24.634 1.00 4.89	С
	ATOM 652 N ALA A 64	68.076 9.148 23.262 1.00 21.05	N
	ATOM 653 CA ALA A 64	67.202 9.286 22.086 1.00 13.50	С
15	ATOM 654 C ALA A 64	67.435 10.664 21.416 1.00 28.08	С
	ATOM 655 O ALA A 64	67.987 11.600 22.021 1.00 26.63	0
	ATOM 656 CB ALA A 64	65.642 9.171 22.518 1.00 7.63	С
	ATOM 657 N LYS A 65	66.953 10.781 20.182 1.00 23.98	N N
	ATOM 658 CA LYS A 65	66,966 12,012 19,409 1,00 20,47	C
20	ATOM 659 C LYS A 65	65.488 12.443 19.551 1.00 24.37	C
	ATOM 660 O LYS A 65	64.594 11.807 18.976 1.00 20.29	
	ATOM 661 CB LYS A 65	67.317 11.658 17.951 1.00 25.59	c
	ATOM 662 CG LYS A 65	66,808 12,630 16,923 1.00 27,54	C
	ATOM 663 CD LYS A 65	67.518 13.926 17.169 1.00 21.08	C
25	ATOM 664 CE LYS A 65	67.316 14.905 16.029 1.00 55.15	C
	ATOM 665 NZ LYS A 65	67.876 16.263 16.392 1.00 81.63	и
	ATOM 666 N VAL A 66	65.228 13.362 20.485 1.00 22.47	N
	ATOM 667 CA VAL A 66	63.873 13.850 20.755 1.00 18.99	С
	ATOM 668 C VAL A 66	63.711 15.343 20.394 1.00 31.44	
30	ATOM 669 O VAL A 66	64.665 16.107 20.460 1.00 34.61	
	ATOM 670 CB VAL A 66	63.440 13.623 22.204 1.00 16.66	
	ATOM 671 CG1 VAL A 66	64.269 12.623 22.869 1.00 15.01	c
	ATOM 672 CG2 VAL A 66	63.379 14.904 22.950 1.00 19.21	c
	ATOM 673 N GLY A 67	62.514 15.755 19.994 1.00 18.03	N
35	ATOM 674 CA GLY A 67	62.298 17.149 19.614 1.00 14.90	Ç
	ATOM 675 C GLY A 67	60.792 17.518 19.585 1.00 32.35	С
	ATOM 676 O GLY A 67	59.922 16.666 19.888 1.00 18.88	0
	ATOM 677 N GLY A 68	60.503 18.787 19.256 1.00 23.21	N
	ATOM 678 CA GLY A 68	59.132 19.288 19.183 1.00 23.83	C
40	ATOM 679 C GLY A 68	58.540 19.137 17.771 1.00 19.31	<u>C</u>
	ATOM 680 O GLY A 68	59.165 18.550 16.870 1.00 30.64	0
	ATOM 681 N ILE A 69	57.343 19.684 17.588 1.00 15.20	
	ATOM 682 CA ILE A 69	56.595 19.632 16.317 1.00 16.80	N
	ATOM 683 C ILE A 69	57.387 20.153 15.112 1.00 19.33	<u>c</u>
45	ATOM 684 O ILE A 69	57.425 19.519 14.061 1.00 14.66	
			0

	MOTA	685 CB	ILE A	69	55.257 20.432	16.480	1.00 30.11	c
	MOTA	686 CG	1 ILE A	69	54.271 19.683	17.385	1.00 24.27	<u>C</u>
	MOTA	687 CG	2 ILE A	69	54.610 20.749	15.181	1.00 47.53	<u>C</u>
	MOTA	688 CD	1 ILE A	69	53.259 20.608	18.056	1.00 85.71	<u>c</u>
5	MOTA	689 N	VAL A	70	58.010 21.327	15.269	1.00 23.03	N
	MOTA	690 CA	VAL A	70	58.797 21.913	14.183	1.00 19.34	<u>C</u>
	ATOM	691 C	VAL A	70	59.983 21.011	13.840	1.00 24.42	<u>c</u>
	MOTA	692 O	VAL A	70	60.335 20.829	12.662	1.00 24.14	0
	MOTA	693 CB	VAL A	70	59,304 23,404	14.467	1.00 21.37	<u>c</u>
10	MOTA	694 CG	1 VAL A	70	60.137 23.907	13,281	1.00 17.79	с
	ATOM	695 CG	2 VAL A	70_	58.136 24.410	14.678	1.00 15.74	<u>C</u>
	MOTA	696 N	ALA A	71	60.621 20.450	14.861	1.00 19.68	N
	ATOM	697 CA	ALA A	71	61.782 19.617	14.572	1.00 16.57	C
	MOTA	698 C	ALA A	71	61.427 18.289	13.910	1.00 23.36	с
15	MOTA	699 O	ALA A	71	61.980 17.923	12.849	1.00 21.84	<u> </u>
	MOTA	700 CB	ALA A	71	62.685 19.439	15.805	1.00 9.36	<u>c</u>
	ATOM	701 N	ASN A	72	60.463 17.598	14.511	1.00 16.80	_ <u>N</u>
	MOTA	702 CA	ASN_A	72	59.998 16.357	13.923	1.00 18.84	<u>_</u>
	MOTA	703 C	ASN A	72	59.608 16.539	12.440	1.00 23.87	C
20	MOTA	704 0	ASN A	72	59.919 15.696	11.593	1.00 21.52	<u>Q</u>
	ATOM	705 CB	ASN A	72	58.835 15.806	14.738	1.00 8.60	C
	MOTA	706 CG	ASN A	72	59.309 15.013	15.911	1.00 23.75	С
	ATOM	707 OD	1 ASN A	72	59.558 13.809	15.810	1.00 23.98	O
	ATOM	708 ND	2 ASN A	72	59.572 15.701	16.996	1.00 9.96	N
25	MOTA	709 N	ASN A	73_	58.931 17.647	12.138	1.00 23.07	N
	MOTA	710 CA	ASN A	_73_	58.521 17.971	10.761	1.00 26.05	с
	MOTA	711 C	ASN A	73	59.665 18.454	9.817	1.00 26.95	C
	ATOM	712 0	ASN A	73	59.613 18.276	8.569	1.00 22.13	0
	MOTA	713 CB	ASN A	73	57.383 19.001	10.800	1.00 14.86	<u>C</u>
30	ATOM	714 CG	ASN A	73	56.015 18.349	10.987	1.00 19.88	<u>c</u>
	MOTA	715 OD	l asn a	73	55.620 17.468	10.217	1.00 27.02	0
	MOTA	716 ND	2 ASN A	73	55.322 18.732	12.051	1.00 20.78	N
	MOTA	717 N	THR A	74	60.710 19.029	10.419	1.00 18.69	N
	MOTA	718 CA	THR A	74	61.845 19.540	9,657	1.00 10.07	<u>C</u>
35	MOTA	719 C	THR A	74	62.968 18.548	9.375	1.00 21.00	2
	MOTA	720 O	THR A	74	63.537 18.561	8.289	1.00 11.75	0
	ATOM	721 CB	THR A	74	62.411 20.746	10.306	1.00 29.10	с
	ATOM	722 OG	1 THR A	74	61.370 21.714	10.457	1.00 23.24	0
	MOTA	723 CG	2 THR A	74	63.541 21.299	9,452	1.00 21.63	c
40	MOTA	724 N	TYR A	75_	63.230 17.636	10.310	1.00 17.10	N
	ATOM	725 CA	TYR A	75	64.267 16.620	10.112	1.00 9.07	c
	ATOM	726 C	TYR A	75	63.733 15.203	10.318	1.00 6.17	<u>c</u>
	ATOM	727 0	TYR A	75	64.143 14.542	11.267	1.00 15.58	0
	ATOM	728 CB	TYR A	75			1.00 11.89	<u>c</u>
45	ATOM	729 CG	TYR A	75	65.779 18.234	11.252	1.00 27.12	<u>c</u>

	MOTA	730	CD	L TYR A	75	66.712	18.696	10.321	1.00 28.4	6 с
	MOTA	731	CD2	TYR A	75	65.234	19.151	12.173	1.00 24.8	3 с
	MOTA	732	CE:	TYR A	75	67.117	20.045	10.305	1.00 28.3	4 C
	MOTA	733	CE2	TYR A	75	65.652	20.523	12.180	1.00 21.0	0 C
5	MOTA	734	CZ	TYR A	75	66.593	20.940	11.234	1.00 45.4	2 C
	MOTA	735	OH	TYR A	75	67.066	22.230	11.215	1.00 35.3	7 0
	MOTA	736	N_	PRO A	76	62.759	14.775	9.532	1.00 13.3	0N
	ATOM	737	CA	PRO A	76	62.185	13.438	9.742	1.00 14.6	4 C
	MOTA	738	С_	PRO A	76	63.209	12.264	9.618	1.00 14.4	0 с
10	MOTA	739	0_	PRO A	76	63.157	11.335	10.409	1.00 20.5	4 0
	MOTA	740	СВ	PRO A	76	61.055	13.366	8.709	1.00 7.8	3 с
	MOTA	741	CG	PRO A	76	61.447	14.388	7.617	1.00 12.6	
	MOTA	742	CD	PRO A	76	62.068	15.504	8.455	1.00 11.1	C C
	ATOM	743	N	ALA A	77	64.163	12.339	8.681	1.00 15.2	
15	ATOM	744	CA	AIA A	77	65.206	11.312	8.538	1.00 6.7	
	MOTA	745	С	A AJA	77	66.053	11.166	9.820	1.00 17.2	
	MOTA	746	0	ALA A	77	66.306	10.069	10.292	1.00 18.7	
	MOTA	747	СВ	ALA A	77	66.097	11.601	7.330	1.00 9.0	
	MOTA	748	N	ASP A	78	66,466	12.267	10.424	1.00 10.9	
20	MOTA	749	CA	ASP A	78	67.256	12.191	11.659	1.00 11.8	
	MOTA	750	<u></u>	ASP A	78	66,572	11.486	12.827	1.00 16.09) c
	MOTA	751	0_	ASP A	78	67.212	10.741	13.601	1.00 18.0	7o
	ATOM	752	СВ	ASP A	78	67.578	13.609	12.088	1.00 19.10	5с
	ATOM	753	CG	ASP A	78	68.424	14.325	11.068	1.00 26.82	<u> </u>
25	MOTA	754	OD1	ASP A	78	68.836	13.694	10.044	1.00 33.93	3 <u> </u>
	MOTA	755	OD2	ASP A	78	68.673	15.514	11.316	1.00 32.00	5 o
	MOTA	756	N_	PHE A	79	65.279	11.771	12.975	1.00 14.70) и
	ATOM	757	CA	PHE A	79	64.471	11.192	14.044	1.00 20.69) с
	ATOM	758	С	PHE A	79	64.224	9.707	13.876	1.00 20.22	<u> </u>
30	ATOM	759	0	PHE A	79	64.269	8.987	14.862	1.00 22.37	0
	ATOM	760	СВ	PHE A	79	63.144	11.933	14.219	1.00 27.38	СС
	MOTA	761	CG	PHE A	79	63.264	13.218	14.990	1.00 28.59	С С
	MOTA	762	CD1	PHE A	79	63.137	13.230	15.386	1.00 27.49	c
	MOTA	763	CD2	PHE A	79	63.509	14.415	14.325	1.00 28.20	С
35	MOTA	764	CE1	PHE A	79	63.281	14.413	17.109	1.00 21.76	<u> </u>
	MOTA	765	CE2	PHE A	79	63.625	15.593	15.037	1.00 31.48	
	MOTA	766	CZ	PHE A	79	63.509	15,582		1.00 26.31	
	MOTA	767	N	ILE A	80	63.942	9.249	12.650	1.00 10.79	
	MOTA	768	CA	ILE A	80	63.828	7.795	12.410	1.00 18.12	
40	MOTA	769	С	ILE A	80	65.197	7.052		1.00 10.97	
	MOTA	770	0	ILE A	80	65.406	6.090		1.00 8.92	
	MOTA	771	СВ	ILE A	80	62.944	7.408		1.00 17.41	
	MOTA	772	CG1	ILE A	80	62.651	5.886	11.105	1.00 10.16	
	ATOM	773	CG2	ILE A	80	63.583	7.888		1.00 17.46	
45	ATOM	774	CD1	ILE A	80	61.722	5.410		1.00 7.30	

	MOTA	775	N_	TYR A	81	66.151	7.539	11.658	1.00 11.18	N
	MOTA	776	CA	TYR A	81	67.488	6.902	11.630	1.00 15.06	<u> </u>
	MOTA	777	Ç	TYR A	81	68.237	6.782	12.959	1.00 16.83	Ç
	ATOM	778	0	TYR A	81	68.714	5.702	13.383	1.00 16.74	0
5	ATOM	779	СВ	TYR A	81	68.384	7.599	10.616	1.00 9.43	c
	MOTA	780	CG	TYR A	81	69.749	6.966	10.541	1.00 22.54	C
	ATOM	781	CD1	TYR A	81	69.963	5.824	9.747	1.00 22.37	<u>C</u>
	ATOM	782	CD2	TYR A	81	70.818	7.466	11,299	1.00 18.07	с
	MOTA	783	CE1	TYR A	81	71.202	5.163	9.746	1.00 15.02	C
10	MOTA	784	CE2	TYR A	81	72.080	6.893	11.201	1.00 17.37	С
	MOTA	785	CZ	TYR A	81	72.255	5.698	10.472	1.00 24.27	С
	ATOM	786	OH	TYR A	81	73.491	5.063	10.409	1.00 19.57	0
	ATOM	787	N_	GLN A	82	68.385	7.918	13.612	1.00 11.39	N
	ATOM	788	CA	GLN A	82	69.193	7.930	14.810	1.00 12.23	С
15	ATOM	789	С	GLN A	82	68.544	7.089	15.834	1.00 14.18	c
	ATOM	790	0	GLN A	82	69.180	6.415	16.631	1.00 11.35	0
	MOTA	791	СВ	GLN A	82	69.280	9.354	15.291	1.00 18.73	C
	MOTA	792	CG	GLN A	82	69.986	10.209	14.250	1.00 13.54	Ç
•	ATOM	793	CD	GLN A	82	70.285	11.617	14.736	1.00 26.00	c
20	MOTA	794	OE1	GLN A	82	70.410	11.850	15.927	1.00 22.99	o
	ATOM	795	NE2	GLN A	82	70.404	12.561	13.808	1.00 16.59	и
	ATOM	796	N	ASN A	83	67.235	7,181	15.869	1.00 11.35	N
	ATOM	797	CA	ASN A	83	66.549	6.408	16.860	1.00 13.71	<u>C</u>
	ATOM	798	С	ASN A	83	66,623	4.902	16.557	1.00 21.43	<u>c</u>
25	MOTA	799	0	ASN A	83	66.831	4.101	17.463	1.00 12.10	o
	ATOM	800	СВ	ASN A	63	65.132	6.945	17.074	1.00 13.51	<u>C</u>
	ATOM	801	CG	ASN A	83	65.131	8,245	17.871	1.00 28.91	<u>C</u>
	MOTA	802	OD1	ASN A	83	65.628	8.263	18.990	1.00 22.28	<u> </u>
	MOTA	803	ND2	ASN A	83	64.756	9.354	17.237	1.00 20.17	N
30	MOTA	804	N	MET A	84	66.592	4.517	15.290	1.00 15.63	N
	MOTA	805	CA	MET A	84	66.704	3.101	15.007	1.00 15.66	<u>c</u>
	MOTA	806	С	MET A	84	68.054	2.588	15.348	1.00 14.66	<u>C</u>
	MOTA	807	0	MET A	84	68.148	1.514	15.902	1.00 11.45	0
	MOTA	808	СВ	MET A	84	66.418	2.815	13.563	1.00 17.59	<u>c</u>
35	MOTA	<u>608</u>	CG	MET A	84	64.911	2.894	13.220	1.00 14.40	<u>C</u>
	MOTA	810	SD	MET A	84	64.638	2.811	11.387	1.00 15.99	<u>\$</u>
	MOTA	811	CE	MET A	84	65.164	1.105	10.952	1.00 8.90	c
	MOTA	812	N	MET A	85	69.098	3.338	15.024	1.00 11.20	N
	MOTA	813	CA	MET A	85	70.468	2.879	15.321	1.00 11.67	c
40	MOTA	814	C	MET A	85	70.779	2.831	16.774	1.00 13.04	с
	MOTA	815	0	MET A	85	71.359	1.893	17.265	1.00 15.26	0
	MOTA	816	СВ	MET A	85	71.525	3.798	14.693	1.00 15.07	<u>c</u>
	MOTA	817	CG	MET A	85	71.530	3.726	13,173	1.00 32.01	c
	MOTA	818	SD	MET A	85	71,918	2.027	12.487	1.00 37.79	s
45	MOTA	819	CE	MET A	85	73.379	1.801	13.320	1.00 15.94	C

	ATOM	820	N	ILE A	86	70.471	3.892	17.481	1.00 13.92	N
	ATOM	821	CA	ILE A	86	70.760	3.893	18.912	1.00 12.58	с
	MOTA	822	С	ILE A	86	70.159	2.662	19.591	1.00 21.61	с
	MOTA	823	0	ILE A	86	70.813	1.981	20.362	1.00 18.68	o
5	MOTA	824	CB_	ILE A	86	70.225	5.189	19.606	1.00 11.84	С
	MOTA	825	CG1	ILE A	86	70.978	6.429	19.119	1.00 19.78	С
	MOTA	826	CG2	ILE A	86	70.435	5.132	21.112	1.00 6.59	C
	ATOM	827	CD1	ILE A	86	70.505	7.694	19.772	1.00 20.37	C
	ATOM	828	N	GLU A	87	68.893	2.383	19.316	1.00 18.78	N
10	ATOM	829	CA	GLU A	87	68.263	1.237	19.930	1.00 14.00	С
	ATOM	830	С	GLU A	87	68.797	-0.116	19,454	1.00 15.93	с
	ATOM	831	0	GLU A	. 87	69.017	-0.991	20.268	1.00 11.04	0
	MOTA	832	СВ	GLU A	87	66.734	1.324	19.900	1.00 14.89	С
	ATOM	833	CG	GLU A	87	66.085	1.327	18.538	1.00 28.96	C
15	MOTA	834	CD	GLU A	87	64.635	1.922	18.544	1.00 11.12	С
	MOTA	835	OE1	GLU A	87	64.307	2.801	19.376	1.00 25.46	0
	MOTA	836	OE2	GLU A	87	63.845	1.547	17.663	1.00 29.87	0
	MOTA	837	N_	SER A	88	69.054	-0.259	18.155	1.00 16.18	N
	ATOM	838	CA	SER A	88	69.650	-1.482	17.569	1.00 19.52	C
20	ATOM	839	С	SER A	88	71,029	-1.792	18.160	1.00 22.54	с
	MOTA	840	0	SER A	88	71.313	-2.929	18.592	1.00 13.80	0
	MOTA	841	СВ	SER A	88	69.815	-1.326	16.023	1.00 14.61	C
	ATOM	842	OG-	SER A	88	68.551	-1.201	15.355	1.00 15.41	
	ATOM	843	N	ASN A	89	71.884	-0.773	18.143	1.00 22.63	N N
25	ATOM	844	CA	ASN A	89	73.227	-0.869	18.693	1.00 27.23	С
	ATOM	845	С	ASN A	89	73.195	-1.363	20.134	1.00 21.34	С
	MOTA	846	0	ASN A	89	73.795	-2.384	20.476	1.00 23.68	
	MOTA	847	СВ	ASN A	89	73.980	0.487	18.597	1.00 13.71	С
	MOTA	848	CG	ASN A	89	74.440	0.825	17.168	1.00 20.40	С
30	MOTA	849	OD1	ASN A	89	74.305	-0.006	16.255	1.00 14.93	0
	MOTA	850	ND2	ASN A	89	74.937	2.067	16.960	1.00 13.32	N
	MOTA	851	N	ILE A	90	72.488	-0.646	20.979	1.00 16.55	N.
	MOTA	852	CA	ILE A	90	72.437			1.00 21.51	C
	MOTA	853	С	ILE A	90	71.876	-2.421	22.729	1.00 26.50	С
35	MOTA	854	0	ILE A	90	72.384	-3.159		1.00 19.71	0
	MOTA	855	СВ	ILE A	90	71.670	0.070		1.00 13.32	Ç
	MOTA	856	CG1	ILE A	90	72.539	1.299	23.401	1.00 11.05	C
	MOTA	857	CG2	ILE A	90	71.371	-0.445		1.00 7.54	C
	MOTA	858	CD1	ILE A	90	71,749	2.597		1.00 20.71	
40	ATOM	859	N	ILE A	91	70.755	-2.733		1.00 14.98	N .
	MOTA	860	CA	ILE A		70.047			1.00 21.33	C
	MOTA	861	С	ILE A	91				1.00 26.27	c
	MOTA	862	0	ILE A		71.211	-6.011		1.00 26.56	0
	ATOM	863	СВ	ILE A		68.556			1.00 20.39	c
45	ATOM	864	CG1	ILE A		67.692			1.00 13.51	c
							<u> </u>			<u>\</u>

	MOTA	865	CG2	ILE A	91	67.841 -5.316	21.845 1.00 11.31	c
	MOTA	866	CD1	ILE A	91	66.320 -2.648	21.907 1.00 16.23	c
	MOTA	867	N	HIS A	92	71.446 -4.983	20.785 1.00 24.12	N
	MOTA	868	CA	HIS A	92	72.293 -6.015	20.243 1.00 26.71	С
5	MOTA	869	С_	HIS A	92	73.609 -6.251	21.071 1.00 29.30	C
	MOTA	870	0_	HIS A	92	73.983 -7.366	21.443 1.00 18.58	0
	MOTA	871	СВ	HIS A	92	72.561 -5.682	18.775 1.00 22.23	<u>_</u>
	ATOM	872	CG	HIS A	92	73.366 -6.720	18.077 1.00 26.32	c
	MOTA	873	ND1	HIS A	92	72.798 -7.711	17.307 1.00 27.19	N
10	MOTA	874	CD2	HIS A	92	74.699 -6.978	18.106 1.00 21.95	<u>c</u>
	MOTA	875	CE1	HIS A	92	73.755 -8.487	16.826 1.00 23.66	C
	MOTA	876	NE2	HIS A	92	74.918 -8.062	17.296 1.00 17.36	N
	MOTA	877	N_	ALA A	93	74.328 -5.187	21.333 1.00 15.66	N
	MOTA	878	CA	ALA A	93	75.530 -5.301	22.110 1.00 11.88	C
15	MOTA	879	С	ALA A	93	75.222 -5.900	23.512 1.00 28.78	С
	MOTA	880	0	ALA A	93	75.912 -6.790	24.037 1.00 25.23	0
	MOTA	881	СВ	ALA A	93	76.139 -3.959	22.221 1.00 6.30	C
	MOTA	882	N	ALA A	94	74.142 -5.442	24.113 1.00 18.82	N
	MOTA	883	CA	ALA A	94	73.777 -5.971	25.399 1.00 15.61	C
20	MOTA	884	С	ALA A	94	73.593 -7.503	25.301 1.00 28.39	C
	ATOM	885	0	ALA A	94	74.133 -8.263	26.099 1.00 21.67	0
	MOTA	886	СВ	ALA A	94	72.449 -5.279	25.911 1.00 18.46	<u>C</u>
	MOTA	887	N	HIS A	95	72.814 -7.966	24.329 1.00 26.35	N
	MOTA	888	CA	HIS A	95	72.551 -9.396	24.271 1.00 24.89	c
25	MOTA	889	С	HIS A	95	73.845 -10.176	24.140 1.00 22.81	C
	MOTA	890	0	HIS A	95	74.077 -11.136	24.865 1.00 21.44	0
	MOTA	891	СВ	HIS A	95	71.571 -9.778	23.129 1.00 22.39	C
	MOTA	892	CG	HIS A	95	71.554 -11.250	22.831 1.00 28.73	<u>C</u>
	MOTA	893	ND1	HIS A	95	70.979 -12.182	23.682 1.00 22.83	N
30	MOTA	894	CD2	HIS A	95	72,159 -11.964	21.845 1.00 25.22	С
	MOTA	895	CE1	HIS A	95	71.171 -13.397	23.196 1.00 22.72	C
	MOTA	896	NE2	HIS A	95	71.911 -13.296	22.101 1.00 24.80	N
	MOTA	897	N	GLN A	96	74.709 -9.658	23.281 1.00 19.97	N
	MOTA	898	CA	GLN A	96	75.960 -10.299	22.917 1.00 22.27	<u>C</u>
35	MOTA	899	С	GLN A	96	76.877 -10.353	24.086 1.00 26.58	<u>C</u>
	MOTA	900	0	GLN A	96	77.836 -11.093	24.088 1.00 24.17	0
	MOTA	901	СВ	GLN A	96	76.642 -9.492	21.818 1.00 23.38	<u>C</u>
	MOTA	902	CG	GLN A	96	77.043 -10.299	20.596 1.00 61.06	Ç
	MOTA	903	CD	GLN A	96	78.033 -9.557	19.675 1.00 75.83	C
40	MOTA	904	OE1	GLN A	96	78.999 -8.941	20.131 1.00 56.89	0
	MOTA	905	NE2	GLN A	96	77.815 -9.668	18.366 1.00100.00	N
	MOTA	906	N	ASN A	97	76.652 -9.500	25.060 1.00 22.15	N N
	MOTA	907	CA	ASN A	97	77.537 -9.536	26,208 1.00 14.74	c
	MOTA	908	С	ASN A	97	76.732 -10.022	27.387 1.00 29.78	c
45	ATOM	909	0	ASN A	97	77.049 -9.762	28.564 1.00 27.09	0

	MOTA	910	СВ	ASN A	97	78.24	1 -8	.201	26.462	1.00	12.93	C
	MOTA	911	CG	ASN A	97	79.26	0 -7	.897	25.407	1.00	24.91	с
	MOTA	912	OD1	asn a	97	80.33	1 -8	.518	25.375	1.00	57.17	0
	MOTA	913	ND2	ASN A	97	78.83	9 -7	.135	24.392	1.00	34.88	N
5	MOTA	914	N	ASP A	98	75.66	6 -10	.732	27.055	1.00	27.98	N
	MOTA	915	CA	ASP A	98	74.90	7 -11	.361	28.089	1.00	29.25	с
	MOTA	916	С	ASP A	98	74.40	0 -10	.379	29.164	1.00	37.53	c
	MOTA	917	0	ASP A	98	74.50	5 -10	. 634	30.367	1.00	36.42	0
	ATOM	918	СВ	ASP A	98	75.79	1 -12	. 450	28.700	1.00	36.37	С
10	MOTA	919	CG	ASP A	98	75.01	6 -13	.712	29.053	1.00	88.62	с
	MOTA	920	OD1	ASP A	98	73.77	5 -13	.749	28.877	1.00	82.53	
	MOTA	921	OD2	ASP A	98	75.65	6 -14	. 670	29.542	1.001	00.00	0
	ATOM	922	N	VAL A	99	73.87	9 -9	.235	28.730	1.00	27.13	N
	ATOM	923	CA	VAL A	99	73.15	7 -8	.351	29.635	1.00	21.57	C
15	MOTA	924	С	VAL A	99	71.70	6 -8	.868	29.530	1.00	16.15	c
	MOTA	925	0	VAL A	99	71.15	9 -9	.088	28.422	1.00	19.47	
	MOTA	926	СВ	VAL A	99	73.26	4 -6	.900	29.206	1.00	24.18	c
	MOTA	927	CG1	VAL A	99	72.51	7 -6	.015	30.198	1.00	14.58	c
	MOTA	928	CG2	VAL A	99	74.72	0 -6	.515	29.225	1.00	30.10	С
20	MOTA	929	N_	ASN A	100	71.14	9 -9	.262	30.662	1.00	17.39	N
	MOTA	930	CA	ASN A	100	69.85	2 -9	. 925	30.613	1.00	25.77	с
	MOTA	931	С	ASN A	100	68.64	8 -9	.034	30.910	1.00	24,95	С
	MOTA	932	0	ASN A	100	67.49	8 -9	.377	30.582	1.00	20.88	0
	MOTA	933	СВ	ASN A	100	69.84	6 -11	.157	31.527	1.00	14.98	<u>C</u>
25	MOTA	934	CG	ASN A	100	68.72	4 -12	.112	31.180	1.00	20.38	C
	MOTA	935	OD1	ASN A	100	68.73	7 -12	.709	30.100	1.00	29.59	0
	MOTA	936	ND2	ASN A	100	67.71	6 -12	.240	32.076	1.00	16.35	N
	MOTA	937	N_	LYS A	101	68.94	1 -7	.923	31.584	1.00	17.91	N
	ATOM	938	CA	LYS A	101	67.97	0 -6	.916	31.994	1.00	25.43	C
30	MOTA	939	С	LYS A	101	68,10	7 -5	.510	31.323	1.00	25.29	C
	MOTA	940	0	LYS A	101	69.15	1 -4	.850	31.377	1.00	19.88	0
	ATOM	941	СВ	LYS A	101	67.99	6 -6	.807	33.521	1.00	29.28	C
	ATOM	942	CG	LYS A	101	67.46	4 -8	.054	34.205	1.00	9.31	c
	MOTA	943	CD	LYS A	101	67.21	8 -7	.719	35.668	1.00	38.93	C
35	MOTA	944	CE	LYS A	101	66.20	6 -6	.569	35.885	1.00	13.38	<u>c</u>
	MOTA	945	NZ	LYS A	101	64.75	0 -7	.006	35.825	1.00	15.26	N
	ATOM	946	N	LEU A	102	67.01	3 -5	.043	30.732	1.00	22.22	N
	MOTA	947	CA	LEU A	102	67.00	3 -3	.744	30.092	1.00	15.40	c
	ATOM	948	С	LEU A	102	65.61	2 -3	.115	30.156	1.00	18.55	c
40	ATOM	949	0	LEU A	102	64.59	0 -3	.811	30.102	1.00	18.92	o
	MOTA	950	СВ	LEU A	102	67.46	5 -3	.898	28.636	1.00	11.23	c
	MOTA	951	CG	LEU A	102	67.55	3 -2	.711	27.651	1.00	15.51	С
	MOTA	952	CD1	LEU A	102	68.62	8 -2	.985	26,559	1.00	9.65	C
	MOTA	953	CD2	LEU A	102	66.16	2 -2	.407	26.995	1.00	13.10	С
45	MOTA	954	N	LEU A	103	65.59	5 -1	.798	30.318	1.00	17.05	N

	MOTA	955	CA	LEU A 10	3 64.35	-1.036	30.265	1.00 1	6.23	c
	MOTA	956	С	LEU A 10	3 64.34	6 -0.072	29.046	1.00 1	9.65	c
	MOTA	957	0	LEU A 10	65.21	0.789	28.875	1.00 1	9.68	0
	MOTA	958	СВ	LEU A 10	64.09	-0.289	31.562	1.00 1	2.28	C
5	MOTA	959	CG	LEU A 10	62.68	0.259	31.594	1.00 1	4.13	<u> </u>
	MOTA	960	CD1	LEU A 10	3 61.64	-0.822	31.902	1.00 1	0.31	<u>c</u>
	MOTA	961	CD2	LEU A 10	3 62.64	1.360	32.601	1.00 1	2.30	<u>C</u>
	MOTA	962	N	PHE A 10	63.41	7 -0.333	28.140	1.00 1	6.41	N
	MOTA	963	CA	PHE A 10	63.21	0.486	26.956	1.00 1	8.32	С
10	MOTA	964	С	PHE A 10	62.12	1.546	27.249	1.00 2	1.85	<u> </u>
	MOTA	965	0	PHE A 10	4 61,16	1.271	27.992	1.00 1	8.36	0
	MOTA	966	СВ	PHE A 10	4 62.79	-0.386	25.793	1.00	9.86	<u>c</u>
	MOTA	967	CG	PHE A 10	62.73	0.348	24.508	1.00 1	6.81	C
	ATOM	968	CD1	PHE A 10	4 63.89	0.714	23.840	1.00 2	5.04	<u>c</u>
15	ATOM	969	CD2	PHE A 10	4 61.51	0.795	24.005	1.00 2	2.59	c
	MOTA	970	CE1	PHE A 10	4 63.83	1.448	22.619	1.00 3	1.26	<u>c</u>
	MOTA	971	CE2	PHE A 10	4 61.44	1,535	22,814	1.00 1	5.59	c
	MOTA	972	CZ	PHE A 10	62.62	1.895	22.139	1.00 1	1.67	<u> </u>
	MOTA	973	N	LEU A 10	5 62.34	2.762	26.734	1.00 2	0.33	и
20	MOTA	974	CA	LEU A 10	5 61.41	3.897	26.904	1.00 1	8.10	<u>c</u>
	MOTA	975	С	LEU A 10	60.71	4,237	25.634	1.00 1	7.04	<u>c</u>
	MOTA	976	0	LEU A 10	5 61.31	4.680	24.665	1.00 1	8.83	0
	ATOM	977	СВ	LEU A 10	5 62.17	5.146	27.214	1.00 1	7.49	<u>C</u>
	ATOM	978	CG	LEU A 10	5 62.43	5.544	28.644	1.00 2	7.17	C
25	MOTA	979	CD1	LEU A 10	5 62.63	4.349	29.574	1.00 1	9.16	<u>C</u>
	MOTA	980	CD2	LEU A 10	5 63.681	6.347	28.529	1.00 2	3.59	c
	MOTA	981	N.	GLY A 10	6 59.40	4.153	25,652	1.00 20	0.66	N
	MOTA	982	CA	GLY A 10	6 58.679	4.536	24.455	1.00 2	1.03	<u>c</u>
	MOTA	983	С	GLY A 10	6 58.080	5.935	24.597	1.00 1	7.32	<u>c</u>
30	MOTA	984	0	GLY A 10	6 58.690	6.858	25.113	1.00 2	6.89	0
	ATOM	985	N	SER A 10	7 56.83	6.047	24.219	1.00 2	2.05	N
	MOTA	986	CA_	SER A 10	7 56.17	7.317	24.288	1.00 2	2.12	с
	MOTA	987	С	SER A 10	7 54.68	7.212	23.923	1.00 1	9.06	<u>c</u>
	MOTA	988	0	SER A 10	7 54.31	6.545	22.963	1.00 2	7.42	0
35	ATOM	989	СВ	SER A 10	7 56.882	8.232	23.300	1.00 20	0.99	C
	MOTA	990	og	SER A 10	7 55.94	9.133	22.776	1.00 4	2.85	0
	MOTA	991	N	SER A 10	8 53.820	7.890	24.671	1.00 2	7.42	N
	MOTA	992	CA	SER A 10	8 52.382	7.947	24.339	1.00 2	6.43	<u>C</u>
	ATOM	993	С	SER A 10	8 52.14	8.259	22.842	1.00 3	0.97	c
40	MOTA	994	0	SER A 10	8 51.242	7.709	22.217	1.00 3	3.46	0
	MOTA	995	СВ	SER A 10	8 51.710	9.072	25.144	1.00 1	9.87	<u>c</u>
	MOTA	996	OG	SER A 10	8 52.49	10.266	25.071	1.00 7	0.88	0
	MOTA	997	N_	CYS A 10	9 52.92	9.180	22.278	1.00 2	4.73	N
	ATOM	998	CA	CYS A 10	9 52.728	9.549	20.880	1.00 2	5.61	<u>c</u>
45	MOTA	999	С	CYS A 10	9 52.970	8.482	19,815	1.00 2	1.29	С

	ATOM 1000 O CYS A 109	52.967 8.737 18.623 1.00 31.31	0
	ATOM 1001 CB CYS A 109	53.369 10.899 20.544 1.00 39.55	C
	ATOM 1002 SG CYS A 109	55.153 11.077 20.847 1.00 49.24	s
_	ATCM 1003 N ILE A 110	53.101 7.264 20.258 1.00 18.31	N
5	ATOM 1004 CA ILE A 110	53.329 6.150 19.379 1.00 28.10	С
	ATOM 1005 C ILE A 110	51.977 5.489 19.082 1.00 15.38	c
	ATOM 1006 0 ILE A 110	51.895 4.592 18.268 1.00 16.52	
	ATOM 1007 CB ILE A 110	54.154 5.153 20.206 1.00 40.45	c
	ATOM 1008 CG1 ILE A 110	55.604 5.510 20.136 1.00 39.02	C
10	ATOM 1009 CG2 ILE A 110	53.879 3.715 19.875 1.00 61.33	С
	ATOM 1010 CD1 ILE A 110	56.429 4.338 20.549 1.00 82.74	c
	ATOM 1011 N TYR A 111	50.951 5.842 19.854 1.00 14.91	N
	ATOM 1012 CA TYR A 111	49.630 5.227 19.678 1.00 13.96	C
	ATOM 1013 C TYR A 111	48.956 5.831 18.459 1.00 20.40	c
15	ATOM 1014 O TYR A 111	49.302 6.933 18.056 1.00 11.71	0
	ATOM 1015 CB TYR A 111	48.763 5.468 20.921 1.00 9.63	C
	ATOM 1016 CG TYR A 111	49.117 4.550 22.065 1.00 14.94	C
	ATOM 1017 CD1 TTR A 111	48.985 3.159 21.938 1.00 9.73	
	ATOM 1018 CD2 TYR A 111	49.755 5.038 23.216 1.00 14.96	<u>c</u>
20	ATOM 1019 CE1 TYR A 111	49.344 2.273 23.014 1.00 6.53	c
	ATOM 1020 CE2 TYR A 111	50.146 4.155 24.272 1.00 13.66	C
	ATOM 1021 CZ TYR A 111	49.873 2.787 24.171 1.00 17.86	<u>c</u>
	ATOM 1022 OH TYR A 111	50.266 1.927 25.157 1.00 11.37	0
	ATOM 1023 N PRO A 112	47.974 5.145 17.872 1.00 22.56	N
25	ATOM 1024 CA PRO A 112	47.279 5.743 16.721 1.00 23.44	<u></u>
	ATOM 1025 C PRO A 112	46.589 7.111 16.988 1.00 17.82	<u>c</u>
	ATOM 1026 O PRO A 112	46.197 7.453 18.115 1.00 19.72	
	ATOM 1027 CB PRO A 112	46.290 4.644 16.252 1.00 15.69	<u>U</u>
	ATOM 1028 CG PRO A 112	46.895 3.343 16.769 1.00 22.83	
30	ATOM 1029 CD PRO A 112	47.593 3.733 18.086 1.00 16.10	<u>C</u>
	ATOM 1030 N LYS A 113	46.418 7.866 15.915 1.00 19.48	
	ATOM 1031 CA LYS A 113	45.793 9.167 15.994 1.00 23.50	<u>N</u>
	ATOM 1032 C LYS A 113	44.396 9.077 16.655 1.00 34.28	<u>C</u>
	ATOM 1033 O LYS A 113	44.046 9.887 17.524 1.00 46.14	c
35	ATOM 1034 CB LYS A 113	45.675 9.735 14.593 1.00 30.04	0
	ATOM 1035 CG LYS A 113		c
	ATOM 1036 CD LYS A 113		c
	ATOM 1037 CE LYS A 113		c
	ATOM 1038 NZ LYS A 113		<u>c</u>
40	ATOM 1039 N LEU A 114		N
	ATOM 1040 CA LEU A 114	40.048	N
	ATOM 1041 C LEU A 114	42.267 7.957 16.833 1.00 20.65	<u>C</u>
	ATOM 1042 O LEU A 114	42.083 6.792 17.760 1.00 18.44	<u>C</u>
	ATOM 1043 CB LEU A 114	41.002 6.278 17.918 1.00 34.04	Q
45	ATOM 1044 CG LEU A 114	41.194 8.002 15.780 1.00 24.37	<u>c</u>
	1011 CG LEU A 114	41.587 9.122 14.830 1.00 40.86	<u>C</u>

					<u> </u>	
	ATOM 104	5 CD1 LEU A 114	40.991	8.797	13.504 1.00 49.29	c
	ATOM 104	6 CD2 LEU A 114	41.139	10.512	15.300 1.00 26.85	C
	ATOM 104	7 N ALA A 115	43.103	6.473	18.527 1.00 29.00	N
	ATOM 104	8 CA ALA A 115	42,920	5.446	19.528 1.00 25.66	<u>C</u>
5	ATOM 104	9 C ALA A 115	41.722	5.727	20.454 1.00 28.76	с
	ATOM 105	0 O ALA A 115	41.364	6.855	20.682 1.00 24.12	0
	ATOM 105	1 CB ALA A 115	44.177	5.272	20.326 1.00 16.86	C
	ATOM 105	2 N LYS A 116	41.137	4.675	20.998 1.00 30.21	N
	ATOM 105	3 CA LYS A 116	40.036	4.792	21.928 1.00 25.85	<u>c</u>
10	ATOM 105	4 C LYS A 116	40.668	5.248	23.195 1.00 14.18	c
	ATOM 105	5 O LYS A 116	41.750	4.781	23.535 1.00 23.51	0
	ATOM 105	6 CB LYS A 116	39,369	3.415	22.116 1.00 22.05	С
	ATOM 105	7 CG LYS A 116	39.053	3.032	23.524 1.00 55.38	c
	ATOM 105	8 CD LYS A 116	37.963	1.955	23.549 1.00100.00	С
15	ATOM 105	9 CE LYS A 116	37.120	1.953	24.835 1.00100.00	c
	ATOM 106	0 NZ LYS A 116	35.767	1.310	24.630 1.00100.00	N.
	ATOM 106	1 N GLN A 117	40.021	6,208	23.856 1.00 18.23	N
	ATOM 106	2 CA GLN A 117	40,456	6.757	25.180 1.00 21.01	c
	ATOM 106	3 C GLN A 117	39.695	6.178	26.383 1.00 30.96	c
20	ATOM 106	4 0 GLN A 117	38.483	6.009	26.345 1.00 27.66	0
	ATOM 106	5 CB GLN A 117	40.215	8.263	25.179 1.00 11.32	<u>C</u>
	ATOM 106	6 CG GLN A 117	40.849	8.912	23.948 1.00 12.12	c
	ATOM 106	7 CD GLN A 117	42.404	8.823	23.954 1.00 24.10	<u> </u>
	ATOM 106	8 OE1 GLN A 117	43.041	8.628	22.896 1.00 47.88	0
25	ATOM 106	9 NE2 GLN A 117	43.001	8,953	25.131 1.00 14.24	N
	ATOM 107	0 N PRO A 118	40.374	5.992	27.499 1.00 30.02	N
	ATOM 107	1 CA PRO A 118	41.826	6.194	27.655 1.00 26.44	C
	ATOM 107	2 C PRO A 118	42.450	5.050	26.899 1.00 24.37	<u>c</u>
	ATOM 107	3 O PRO A 118	41.792	4.027	26.726 1.00 25.34	0
30	ATOM 107	4 CB PRO A 118	42.055	· 5.994	29.167 1.00 23.89	C
	ATOM 107	5 CG PRO A 118	40.847	5.240	29.654 1.00 23.20	C
	ATOM 107	6 CD PRO A 118	39,695	5.519	28.709 1.00 15.79	c
	ATOM 107	77 N MET A 119	43.684	5.228	26.432 1.00 16.00	N
	ATOM 107	8 CA MET A 119	44.372	4.215	25.644 1.00 10.80	C
35		9 C MET A 119	45.062	3.083	26.444 1.00 23.61	c
	ATOM 108	0 0 MET A 119	46.013	3.281	27.209 1.00 18.02	0
	ATOM 108		45.384	4.894	24.791 1.00 13.52	c
	ATOM 108		44.801	6.014	23.989 1.00 18.52	с
	ATOM 108		46.157	7.054	23.271 1.00 26.27	s
40	ATOM 108		46.264	6.524	21.845 1.00 33.79	c
-	ATOM 108		44.559	1.875	26.271 1.00 26.64	N
	ATOM 108		45.177	0.712	26.884 1.00 29.17	С
	ATOM 108		46.356	0.308	25.984 1.00 23.21	c
	ATOM 108		46,439	0.759	24.833 1.00 20.19	0
45	ATOM 108		44.169	-0.419	26.944 1.00 26.02	с

	ATOM 1090 N GLU A 121	47.238 -0.553 26.507 1.00 12.30	N
	ATOM 1091 CA GLU A 121	48.427 -1.009 25.788 1.00 9.45	c
	ATOM 1092 C GLU A 121	48.070 -1.697 24.450 1.00 11.68	<u>c</u>
	ATOM 1093 O GLU A 121	48.828 -1.670 23.450 1.00 14.84	0
5	ATOM 1094 CB GLU A 121	49.321 -1.883 26.715 1.00 16.74	С
	ATOM 1095 CG GLU A 121	50.132 -1.122 27.763 1.00 18.14	С
	ATOM 1096 CD GLU A 121	49.458 -1.000 29.137 1.00 13.00	С
	ATOM 1097 OE1 GLU A 121	48.252 -1.294 29.276 1.00 20.79	0
	ATOM 1098 OE2 GLU A 121	50.123 -0.521 30.080 1.00 17.86	0
10	ATOM 1099 N SER A 122	46.887 -2.273 24.409 1.00 11.79	N
	ATOM 1100 CA SER A 122	46.427 -2.977 23.218 1.00 12.16	c
	ATOM 1101 C SER A 122	46.030 -2.058 22.100 1.00 11.70	С
	ATOM 1102 O SER A 122	45.717 -2.529 21.010 1.00 13.91	0
	ATOM 1103 CB SER A 122	45.186 -3.781 23.568 1.00 21.50	С
15	ATOM 1104 OG SER A 122	44.143 -2.908 23.976 1.00 28.52	
	ATOM 1105 N GLU A 123	46.041 -0.754 22.341 1.00 14.65	N
	ATOM 1106 CA GLU A 123	45.783 0.202 21.243 1.00 17.15	
	ATOM 1107 C GLU A 123	46.959 0.313 20.240 1.00 11.48	
	ATOM 1108 O GLU A 123	46.821 0.844 19.141 1.00 11.19	
20	ATOM 1109 CB GLU A 123	45.481 1.600 21.805 1.00 21.66	С
	ATOM 1110 CG GLU A 123	44.127 1.694 22.523 1.00 24.68	С
	ATOM 1111 CD GLU A 123	42.984 1.374 21.585 1.00 35.56	С
	ATOM 1112 OE1 GLU A 123	43.019 1.865 20.426 1.00 41.73	0
	ATOM 1113 OE2 GLU A 123	42.158 0.497 21.940 1.00100.00	
25	ATOM 1114 N LEU A 124	48.134 -0.185 20.618 1.00 14.02	N
	ATOM 1115 CA LEU A 124	49.296 -0.082 19.740 1.00 15.32	C
	ATOM 1116 C LEU A 124	49.082 -0.754 18.458 1.00 17.76	c
	ATOM 1117 O LEU A 124	48.752 -1.917 18.445 1.00 18.91	0
	ATOM 1118 CB LEU A 124	50.564 -0.680 20.362 1.00 18.07	С
30	ATOM 1119 CG LEU A 124	51.922 -0.222 19.803 1.00 21.52	С
	ATOM 1120 CD1 LEU A 124	52.080 1.258 20.117 1.00 20.35	С
	ATOM 1121 CD2 LEU A 124	53.042 -0.919 20,550 1.00 14.07	C
	ATOM 1122 N LEU A 125	49.514 -0.071 17.409 1.00 18.44	N
	ATOM 1123 CA LEU A 125	49.445 -0.564 16.052 1.00 19.92	С
35	ATOM 1124 C LEU A 125	48.034 -0.754 15.509 1.00 25.56	c
	ATOM 1125 O LEU A 125	47.854 -1.188 14.364 1.00 18.26	0
	ATOM 1126 CB LEU A 125	50.355 -1.800 15.840 1.00 20.79	C
	ATOM 1127 CG LEU A 125	51.890 -1.511 15.778 1.00 17.21	С
	ATOM 1128 CD1 LEU A 125	52.744 -2.649 16.316 1.00 19.95	с
40	ATOM 1129 CD2 LEU A 125	52.334 -1.219 14.338 1.00 5.81	С
	ATOM 1130 N GLN A 126	47.027 -0.327 16.276 1.00 21.97	N
	ATOM 1131 CA GLN A 126	45.652 -0.504 15.790 1.00 19.97	
	ATOM 1132 C GLN A 126	45.213 0.447 14.724 1.00 28.31	C
	ATOM 1133 O GLN A 126	44.076 0.391 14.293 1.00 47.49	0
45	ATOM 1134 CB GLN A 126	44.652 -0.404 16.911 1.00 19.87	C

	ATOM 1135	CG GLN A 126	44.949 -1.312	18.048 1.00 18.39	с
	ATOM 1136	CD GLN A 126	44.319 -2.626	17.835 1.00 66.80	c
	ATOM 1137	OE1 GLN A 126	44.064 -3.376	18.792 1.00 40.75	Q
	ATOM 1138	NE2 GLN A 126	44.015 -2.952	16.565 1.00 71.74	N
5	ATOM 1139	N GLY A 127	46.080 1.330	14.270 1.00 28.29	N
	ATOM 1140	CA GLY A 127	45.627 2.260	13.252 1.00 23.31	<u>c</u>
	ATOM 1141	C GLY A 127	46.662 3.315	12.953 1.00 22.90	с
	ATOM 1142	O GLY A 127	47.755 3.254	13.474 1.00 25.30	0
	ATOM 1143	N THR A 128	46.311 4.219	12.046 1.00 19.51	N
10	ATOM 1144	CA THR A 128	47.149 5.314	11.588 1.00 22.12	<u> </u>
	ATOM 1145	C THR A 128	47.705 6.219	12.695 1.00 22.60	<u>c</u>
	ATOM 1146	O THR A 128	47.061 6.461	13.731 1.00 18.58	0
	ATOM 1147	CB THR A 128	46.392 6.182	10.544 1.00 35.98	c
	ATOM 1148	OG1 THR A 128	46.533 5.594	9.239 1.00 58.05	0
15	ATOM 1149	CG2 THR A 128	46.942 7.639	10.542 1.00 43.41	<u>c</u>
	ATOM 1150	N LEU A 129	48.907 6.715	12.425 1.00 18.32	N
	ATOM 1151	CA LEU A 129	49.674 7.534	13.356 1.00 16.76	с
	ATOM 1152	C • LEU A 129	49.504 8.959	12.967 1.00 4.89	c
	ATOM 1153	O LEU A 129	49.232 9.260	11.814 1.00 16.14	0
20	ATOM 1154	CB LEU A 129	51.205 7.191	13.261 1.00 17.91	С
	ATOM 1155	CG LEU A 129	51.769 5.804	13.752 1.00 18.21	c
	ATOM 1156	CD1 LEU A 129	53.132 5.379	13.193 1.00 12.12	<u>c</u>
	ATOM 1157	CD2 LEU A 129	51.683 5.532	15.251 1.00 3.89	c
	ATOM 1158	N GLU A 130	49.816 9.827	13.917 1.00 10.23	N
25	ATOM 1159	CA GLU A 130	49.912 11.268	13.691 1.00 13.22	<u>c</u>
	ATOM 1160	C GLU A 130	51,128 11,544	12.775 1.00 23.44	c
	ATOM 1161	O GLU A 130	52.249 11.162	13.090 1.00 21.23	0
	ATOM 1162	CB GLU A 130	50.150 11.979	15.035 1.00 18.48	<u>c</u>
	ATOM 1163	CG GLU A 130	50.754 13.376	14.886 1.00 77.44	<u>c</u>
30	ATOM 1164	CD GLU A 130	49.833 14.328	14.121 1.00100.00	<u>c</u>
	ATOM 1165	OE1 GLU A 130	48.588 14.205	14.340 1.00 36.19	0
	ATOM 1166	OE2 GLU A 130	50.347 15.161	13.295 1.00 21.03	0
	ATOM 1167	N PRO A 131	50.920 12.219	11.648 1.00 21.35	<u> </u>
	ATOM 1168	CA PRO A 131	52.023 12.409	10.731 1.00 14.78	<u>c</u>
35	ATOM 1169	C PRO A 131	53.201 13.132	11.265 1.00 14.98	<u>c</u>
	ATOM 1170	O PRO A 131	54.325 12.847	10.853 1.00 20.99	0
	ATOM 1171	CB PRO A 131	51.413 13.154	9.552 1.00 14.76	<u> </u>
	ATOM 1172	CG PRO A 131	50.071 13.485	9.949 1.00 20.99	<u>c</u>
	ATOM 1173	CD PRO A 131	49.641 12.626	11.047 1.00 17.25	c
40	ATOM 1174	N THR A 132	52.986 14.095	12.159 1.00 18.77	N
	ATOM 1175	CA THR A 132	54.131 14.838	12.689 1.00 16.44	С
	ATOM 1176	C THR A 132	55.102 13.951	13.408 1.00 21.91	<u>c</u>
	ATOM 1177	O THR A 132	56.317 14.088	13.234 1.00 24.17	0
	ATOM 1178	CB THR A 132	53.716 15.907	13.606 1.00 23.45	с
45	ATOM 1179	OG1 THR A 132	52.976 16.883	12.850 1.00 31.15	·0

	ATOM 1180 CG2 THR A 132	54.969 16.519 14.341 1.00 9.28	c
	ATOM 1181 N ASN A 133	54.551 12.970 14.122 1.00 28.59	N
	ATOM 1182 CA ASN A 133	55.359 12.007 14.875 1.00 26.38	c
_	ATOM 1183 C ASN A 133	55.666 10.682 14.207 1.00 14.85	С
5	ATOM 1184 O ASN A 133	56.446 9.884 14.755 1.00 18.67	0
	ATOM 1185 CB ASN A 133	54.661 11.699 16.168 1.00 23.70	с
	ATOM 1186 CG ASN A 133	54.480 12.894 16.968 1.00 50.55	С
	ATOM 1187 OD1 ASN A 133	53.354 13.272 17.252 1.00 40.07	0
	ATOM 1188 ND2 ASN A 133	55.568 13.638 17.163 1.00 40.36	N
10	ATOM 1189 N GLU A 134	55.100 10.469 13.022 1.00 9.98	N
	ATOM 1190 CA GLU A 134	55.237 9.210 12.365 1.00 9.66	c
	ATOM 1191 C GLU A 134	56.648 8.530 12.274 1.00 13.86	c
	ATOM 1192 O GLU A 134	56.814 7.388 12.706 1.00 22.89	
	ATOM 1193 CB GLU A 134	54.448 9.200 11.070 1.00 17.55	C
15	ATOM 1194 CG GLU A 134	54.750 7.930 10.227 1.00 20.89	С
	ATOM 1195 CD GLU A 134	53.926 7.868 8.970 1.00 13.59	C
	ATOM 1196 OE1 GLU A 134	52.678 7.738 9.085 1.00 35.28	
	ATOM 1197 OE2 GLU A 134	54.497 8.048 7.869 1.00 13.44	
	ATOM 1198 N PRO A 135	57,680 9.222 11.789 1.00 15.72	N
20	ATOM 1199 CA PRO A 135	59.014 8.600 11.699 1.00 18.91	C
	ATOM 1200 C PRO A 135	59.544 8.174 13.073 1.00 18.68	
	ATOM 1201 O PRO A 135	60.072 7.069 13.271 1.00 15.69	0
	ATOM 1202 CB PRO A 135	59.896 9.755 11.169 1.00 13.84	С
	ATOM 1203 CG PRO A 135	59.036 10.514 10.350 1.00 9.78	С
25	ATOM 1204 CD PRO A 135	57.594 10.395 10.908 1.00 14.43	С
	ATOM 1205 N TYR A 136	59.449 9.117 13.994 1.00 B.64	N
	ATOM 1206 CA TYR A 136	59.873 8.915 15.324 1.00 13.27	С
	ATOM 1207 C TYR A 136	59.056 7.728 15.907 1.00 16.84	C
	ATOM 1208 O TYR A 136	59.578 6.903 16.658 1.00 12.90	0
30	ATOM 1209 CB TYR A 136	59.604 10.234 16.100 1.00 15.51	С
	ATOM 1210 CG TYR A 136	59.912 10.168 17.614 1.00 18.26	c
	ATOM 1211 CD1 TYR A 136	61,200 10,062 18,072 1,00 20,53	с
	ATOM 1212 CD2 TYR A 136	58,904 10.150 18.568 1.00 17.38	С
	ATOM 1213 CE1 TYR A 136	61.484 9.959 19.440 1.00 30.44	<u>c</u>
35	ATOM 1214 CE2 TYR A 136	59,184 10.084 19.953 1.00 9.85	С
	ATOM 1215 CZ TYR A 136	60.476 9.949 20.377 1.00 20.65	С
	ATOM 1216 OH TYR A 136	60.792 9.873 21.734 1.00 24.41	0
	ATOM 1217 N ALA A 137	57.760 7.687 15.638 1.00 7.19	N
	ATOM 1218 CA ALA A 137	56.923 6.633 16.227 1.00 12.68	C
40	ATOM 1219 C ALA A 137	57.345 5.265 15.737 1.00 15.21	C
	ATOM 1220 O ALA A 137	57.425 4.272 16.488 1.00 14.58	
	ATOM 1221 CB ALA A 137	55.517 6.849 15.871 1.00 11.40	
	ATOM 1222 N ILE A 138	57.567 5.213 14.447 1.00 8.93	N
	ATOM 1223 CA ILE A 138	57.954 3.971 13.831 1.00 11.77	С
45	ATOM 1224 C ILE A 138	59.246 3.494 14.492 1.00 16.20	С

	ATOM	1225	0	ILE A 138	59.307	2.377	14.970	1.00 13.79	0
	ATOM 1	1226	СВ	ILE A 138	58.064	4.172	12.316	1.00 17.85	С
	ATOM 1	1227	CG1	ILE A 138	56.680	4.473	11.757	1.00 28.21	с
	ATOM	1228	CG2	ILE A 138	58.674	2.986	11.602	1.00 9.81	c
5	ATOM 1	1229	CD1	ILE A 138	55.695	3.376	11.970	1.00 18.17	<u>C</u>
	ATOM 1	1230	N	ALA A 139	60.243	4.361	14.625	1.00 11.54	N
	ATOM 1	1231	CA_	ALA A 139	61.494	3.937	15.288	1.00 13.22	C
	ATOM	232	C	ALA A 139	61.256	3.364	16.675	1.00 18.73	<u>c</u>
	ATOM 1	1233	0	ALA A 139	61.791	2.318	17.031	1.00 20.44	0
10	ATOM]	1234	СВ	ALA A 139	62.434	5.073	15.390	1.00 13.62	с
	ATOM 1	1235	N	LYS A 140	60.397	4.033	17.448	1.00 16.36	N
	ATOM 1	1236	CA.	LYS A 140	60.083	3.600	18.815	1.00 15.14	С
		1237	С	LYS A 140	59.392	2,262	18.824	1.00 15.18	С
	ATOM 1	1238	0	LYS A 140	59.824	1.346	19.475	1.00 21.42	0
15	ATOM I	1239	СВ	LYS A 140	59.193	4.606	19.525	1.00 17.86	C
		1240	CG	LYS A 140	59.925	5.806	20.152	1.00 21.11	c
		241	CD	LYS A 140	61.208	5,478	20.958	1.00 16.75	
		1242		LYS A 140	61.664	6.735	21.835	1.00 10.06	C
		1243	NZ	LYS A 140	62.688	6.496	22.921	1.00 14.40	N
20		244	N	ILE A 141	58.356	2.116	18.027	1.00 11.49	N
	ATOM 1	1245	CA	ILE A 141	57.703	0.828	17.977	1.00 17.92	С
	ATOM 1	246	С	ILE A 141	58.729	-0.282	17.577	1.00 13.46	c
	ATOM]	247	0	ILE A 141	58,730	-1.374	18.148	1.00 13.92	0
	ATOM 1	248	СВ	ILE A 141	56.497	0.925	17.019	1.00 22.59	с
25	ATOM 1	249	CG1	ILE A 141	55.466	1.906	17.557	1.00 17.61	с
	ATOM 1	250	CG2	ILE A 141	55.863	-0.411	16.700	1.00 10.49	<u>C</u>
	ATOM 1	251	CD1	ILE A 141	54.530	2.327	16.449	1.00 13.43	c
	ATOM 1	252	N	ALA A 142	59.637	0.028	16.650	1.00 10.29	N N
	ATOM 1	253	CA_	ALA A 142	60.657	-0.931	16.228	1.00 7.15	C
30	ATOM 1	254	c	ALA A 142	61.456	-1.301	17.456	1.00 16.58	C
	ATOM 1	255	0	ALA A 142	61.839	-2.454	17.621	1.00 13.04	0
	ATOM 1	256	СВ	ALA A 142	61.604	-0.288	15.130	1.00 4.44	с
	ATOM 1	257	N	GLY A 143	61.703	-0.307	18.316	1.00 9.56	N
	ATOM 1	258	CA	GLY A 143	62.448	-0.525	19.527	1.00 5.15	c
35	ATOM 1	259	C	GLY A 143	61.770	-1.555	20.430	1.00 16.36	С
	ATOM 1	260	0	GLY A 143	62.392	-2.482	20.967	1.00 14.11	0
	ATOM 1	261	N	ILE A 144	60.476	-1.418	20.564	1.00 20.33	N
		262	CA_	ILE A 144	59.725	-2.314	21.407	1.00 15.35	c
	ATOM 1	263	С	ILE A 144	59.706	-3.732	20.859	1.00 19.84	с
40				ILE A 144	59.836	-4.700		1.00 17.93	0
			-	ILE A 144	58.317	-1.819		1.00 10.60	С
				ILE A 144	58.311	-0.610	22.516	1.00 9.80	С
				ILE A 144	57.410	-2.928		1.00 9.60	С
				ILE A 144	57.022	0.076		1.00 18.32	С
45		269		LYS A 145				1.00 7.20	N

	ATOM 1270 CA LYS A 145	59.459 -5.139 18.926 1.00 7.64	c
	ATOM 1271 C LYS A 145	60.840 -5.788 18.931 1.00 15.32	c
	ATOM 1272 0 LYS A 145	60.923 -6.989 18.981 1.00 14.76	0
	ATOM 1273 CB LYS A 145	58.891 -5.001 17.516 1.00 11.25	c
5	ATOM 1274 CG LYS A 145	57.414 ~4.581 17.489 1.00 12.13	c
	ATOM 1275 CD LYS A 145	56.642 -5.434 18.495 1.00 25.23	C
	ATOM 1276 CE LYS A 145	55.189 -4.995 18.692 1.00 13.64	c
	ATOM 1277 NZ LYS A 145	54.441 -6.111 19.392 1.00 11.94	N
	ATOM 1278 N LEU A 146	61.934 -5.011 18.986 1.00 26.98	N
10	ATOM 1279 CA LEU A 146	63.261 -5.642 19.167 1.00 19.72	
	ATOM 1280 C LEU A 146	63.262 -6.316 20.542 1.00 18.20	C
	ATOM 1281 O LEU A 146	63.590 -7.511 20.703 1.00 19.86	0
	ATOM 1282 CB LEU A 146	64.398 -4.618 19.150 1.00 13.56	C
	ATOM 1283 CG LEU A 146	64.895 -4.258 17.759 1.00 21.84	C
15	ATOM 1284 CD1 LEU A 146	65.672 -2.945 17.817 1.00 17.94	
	ATOM 1285 CD2 LEU A 146	65.745 -5.397 17.102 1.00 16.10	<u>c</u>
	ATOM 1286 N CYS A 147	62.931 -5.523 21.548 1.00 7.91	N
	ATOM 1287 CA CYS A 147	62.875 -6.064 22.893 1.00 9.14	A
	ATOM 1288 C CYS A 147	62.072 -7.378 22.945 1.00 22.72	c
20	ATOM 1289 O CYS A 147	62.568 -8.401 23.383 1.00 16.90	0
	ATOM 1290 CB CYS A 147	62.232 -5.058 23.809 1.00 12.63	c
	ATOM 1291 SG CYS A 147	63.411 -3.823 24.316 1.00 15.02	s
	ATOM 1292 N GLU A 148	60.823 -7.352 22.508 1.00 20.03	N
	ATOM 1293 CA GLU A 148	60.016 -8.555 22.567 1.00 16.09	c
25	ATOM 1294 C GLU A 148	60.685 -9.715 21.802 1.00 22.61	c
	ATOM 1295 O GLU A 148	60.651 -10.888 22.226 1.00 12.05	0
	ATOM 1296 CB GLU A 148	58.597 -8.268 22.046 1.00 14.66	C
	ATOM 1297 CG GLU A 148	57.864 -7.189 22.840 1.00 11.45	C
20	ATOM 1298 CD GLU A 148	56.471 -6.821 22.277 1.00 11.75	c
30	ATOM 1299 OE1 GLU A 148	56.117 -7.055 21.080 1.00 11.65	
	ATOM 1300 OE2 GLU A 148	55.728 -6.231 23.081 1.00 22.56	
	ATOM 1301 N SER A 149	61.368 -9.377 20.715 1.00 15.57	N
	ATOM 1302 CA SER A 149	61.938 -10.428 19.887 1.00 10.21	C
25	ATOM 1303 C SER A 149	63.040 -11.245 20.502 1.00 15.83	C
35	ATOM 1304 O SER A 149	63.102 -12.458 20.291 1.00 12.72	
	ATOM 1305 CB SER A 149	62,270 -9,936 18.488 1.00 9.44	C
	ATOM 1306 OG SER A 149	61.053 -9.650 17.782 1.00 15.91	0
	ATOM 1307 N TYR A 150	63.910 -10.546 21.224 1.00 18.44	N
40	ATOM 1308 CA TYR A 150	65.065 -11.100 21.948 1.00 20.50	
40	ATOM 1309 C TYR A 150	64.514 -11.848 23.158 1.00 21.87	c
	ATOM 1310 O TYR A 150	64.939 -12.949 23.486 1.00 31.39	0
	ATOM 1311 CB TYR A 150	66.005 -9.950 22.425 1.00 13.71	
	ATOM 1312 CG TYR A 150	66.994 -9.509 21.365 1.00 14.13	С
15	ATOM 1313 CD1 TYR A 150	66.611 -8.673 20.317 1.00 14.64	c
45	ATOM 1314 CD2 TYR A 150	68.288 -10.000 21.360 1.00 18.32	с

	ATOM 1315 CE1 TYR A 150	67.487 -8.390 19.278 1.00 11.91	<u>C</u>
	ATOM 1316 CE2 TYR A 150	69,198 -9.682 20.345 1.00 11.10	<u>c</u>
	ATOM 1317 CZ TYR A 150	68.804 -8.900 19.326 1.00 20.95	<u>C</u>
	ATOM 1318 OH TYR A 150	69.739 -8.685 18.333 1.00 27.73	0
5	ATOM 1319 N ASN A 151	63.536 -11.249 23.801 1.00 14.83	N
	ATOM 1320 CA ASN A 151	62.903 -11.889 24.937 1.00 23.62	<u> </u>
	ATOM 1321 C ASN A 151	62.417 -13.244 24.410 1.00 28.53	c
	ATOM 1322 O ASN A 151	62.630 -14.248 25.072 1.00 25.89	0
	ATOM 1323 CB ASN A 151	61.655 -11.113 25.439 1.00 20.95	<u>C</u>
10	ATOM 1324 CG ASN A 151	61.988 -9.867 26.284 1.00 15.07	<u>C</u>
	ATOM 1325 OD1 ASN A 151	61,126 -9.020 26,466 1.00 26,72	0
	ATOM 1326 ND2 ASN A 151	63.231 -9.709 26.700 1.00 6.31	N
	ATOM 1327 N ARG A 152	61.731 -13.249 23.259 1.00 19.91	N
	ATOM 1328 CA ARG A 152	61.129 -14.465 22.687 1.00 17.62	<u>c</u>
15	ATOM 1329 C ARG A 152	62.090 -15.523 22.188 1.00 21.34	c
	ATOM 1330 O ARG A 152	61.959 -16.687 22.542 1.00 15.44	0
	ATOM 1331 CB ARG A 152	60.086 -14.148 21.610 1.00 15.30	c
	ATOM 1332 CG +ARG A 152	58.672 -13.754 22.157 1.00 17.22	<u>c</u>
	ATOM 1333 CD ARG A 152	57.652 -13.297 21.049 1.00 9.11	<u>C</u>
20	ATOM 1334 NE ARG A 152	57.161 -14.419 20.241 1.00 21.05	N
	ATOM 1335 CZ ARG A 152	57.159 -14.447 18.912 1.00 28.61	<u>C</u>
	ATOM 1336 NH1 ARG A 152	57.590 -13.387 18.221 1.00 21.98	N
	ATOM 1337 NH2 ARG A 152	56.717 -15.528 18.262 1.00 26.11	N
	ATOM 1338 N GLN A 153	63.098 -15.104 21.434 1.00 16.54	N
25	ATOM 1339 CA GLN A 153	64.044 -16.036 20.842 1.00 9.74	c
	ATOM 1340 C GIN A 153	65.082 -16.443 21.807 1.00 16.70	с
	ATOM 1341 O GLN A 153	65,529 -17,545 21,763 1.00 24.35	0
	ATOM 1342 CB GLN A 153	64.789 -15.372 19.714 1.00 8.99	<u>c</u>
	ATOM 1343 CG GLN A 153	65.935 -16.225 19.116 1.00 4.63	с
30	ATOM 1344 CD GLN A 153	66.315 -15.637 17.762 1.00 14.17	<u>c</u>
	ATOM 1345 OE1 GLN A 153	65,611 -14,763 17.254 1.00 12.53	0
	ATOM 1346 NE2 GLN A 153	67.466 -16.024 17.228 1.00 13.38	N
	ATOM 1347 N TYR A 154	65.566 -15.518 22.608 1.00 14.35	N
	ATOM 1348 CA TYR A 154	66.677 -15.839 23.483 1.00 12.16	c
35	ATOM 1349 C TYR A 154	66.323 -15.930 24.954 1.00 19.06	c
	ATOM 1350 O TYR A 154	67.185 -16.207 25.777 1.00 25.59	0
	ATOM 1351 CB TYR A 154	67.829 -14.816 23.326 1.00 16.89	<u>c</u>
	ATOM 1352 CG TYR A 154	68,418 -14,733 21,943 1,00 17.53	c
	ATOM 1353 CD1 TYR A 154	69.259 -15.726 21.467 1.00 18.91	<u>c</u>
40	ATOM 1354 CD2 TYR A 154	68.080 -13.712 21.091 1.00 13.97	c
	ATOM 1355 CE1 TYR A 154	69.782 -15.686 20.190 1.00 10.98	<u>c</u>
	ATOM 1356 CE2 TYR A 154	68,621 -13,639 19,806 1,00 23,81	с
	ATOM 1357 CZ TYR A 154	69.488 -14.634 19.380 1.00 23.08	c
	ATOM 1358 OH TYR A 154	70,002 -14.619 18.118 1.00 23.87	0
45	ATOM 1359 N GLY A 155	65.080 -15.686 25.313 1.00 12.08	N

	ATOM 1360 CA GLY A 155	64.747 -15.702 26.731 1.00 15.80	_
	ATOM 1361 C GLY A 155	CF 200 44 400 00 000	<u>c</u>
	ATOM 1362 O GLY A 155	65 400 44 440 DD DD	<u>c</u>
	ATOM 1363 N ARG A 156		0
5	ATOM 1364 CA ARG A 156	66 066 10 116 00 00	N
	ATOM 1365 C ARG A 156	66.066 -12.146 27.734 1.00 14.13	с
	ATOM 1366 O ARG A 156	64.971 -11.486 28.581 1.00 16.23	<u>c</u>
	ATOM 1367 CB ARG A 156	63.802 -11.919 28.583 1.00 22.61	
	ATOM 1368 CG ARG A 156	66.601 -11.124 26.750 1.00 13.16	c
10	ATOM 1369 CD ARG A 156	67.875 -11.570 26.099 1.00 15.18	с
	ATOM 1370 NE ARG A 156	68.930 -11.418 27.121 1.00 26.42	c
	ATOM 1371 CZ ARG A 156	70.200 -11.912 26.633 1.00 21.25	N
	ATOM 1372 NH1 ARG A 156	71.092 -12.555 27.386 1.00 42.25	<u>C</u>
	ATOM 1373 NH2 ARG A 156	70,870 -12,795 28,679 1.00 20.02	N
15		72.221 -12.966 26.843 1.00 20.88	N
		65.343 -10.446 29.321 1.00 16.00	N
		64.370 -9.749 30.166 1.00 16.20	<u>C</u>
	ATOM 1376 C ASP A 157 ATOM 1377 O ASP A 157	64.444 -8.245 29.841 1.00 19.20	<u>C</u>
	ATOM 1378 CB ASP A 157	64.865 -7.429 30.650 1.00 10.71	0
20	ATOM 1379 CG ASP A 157	64.609 -10.061 31.652 1.00 16.50	<u>C</u>
	ATOM 1380 OD1 ASP A 157	63.489 -9.560 32.566 1.00 26.45	с
	ATOM 1381 OD2 ASP A 157	62.433 -9.060 32.108 1.00 26.82	0
	ATOM 1382 N TYR A 158	63.673 -9.653 33.784 1.00 21.88	
	ATOM 1383 CA TYR A 158	64.038 -7.921 28.620 1.00 19.41	N
25	ATOM 1384 C TYR A 158	64.099 -6.564 28.083 1.00 18.96 62.688 -5.977 28.127 1.00 22 62	<u>c</u>
	ATOM 1385 O TYR A 158	(1.054	<u>c</u>
	ATOM 1386 CB TYR A 158		0
	ATOM 1387 CG TYR A 158	CC 000	c
	ATOM 1388 CD1 TYR A 158	((700 - 700	<u>C</u>
30	ATOM 1389 CD2 TYR A 158	CC 544 5 000 00 00 00 00 00 00 00 00 00 00 00	c
	ATOM 1390 CE1 TYR A 158	10.10	<u>c</u>
	ATOM 1391 CE2 TYR A 158		c
	ATOM 1392 CZ TYR A 158		c
	ATOM 1393 OH TYR A 158	68.676 -7.942 26.186 1.00 24.45 69.993 -8.338 25.997 1.00 14.36	<u>c</u>
35	ATOM 1394 N ARG A 159	40	0
	ATOM 1395 CA ARG A 159	62,423 -5,200 29,175 1.00 23,53	N
	ATOM 1396 C ARG A 159	61.105 -4.603 29.483 1.00 21.15	<u>c</u>
	ATOM 1397 O ARG A 159	60,930 -3.172 28.878 1.00 23.55	c
	ATOM 1398 CB ARG A 159	61.911 -2.566 28.424 1.00 18.12	0
40	ATOM 1399 CG ARG A 159	60.891 -4.608 31.034 1.00 21.68	c
	ATOM 1400 CD ARG A 159	60.986 -6.029 31.722 1.00 16.41	<u>C</u>
	ATOM 1401 NE ARG A 159	61.135 -6.052 33.233 1.00 18.10	<u>c</u>
	ATOM 1402 CZ ARG A 159	61,305 -7,402 33,772 1.00 19.25	N
	ATOM 1403 NH1 ARG A 159	61.164 -7.720 35.058 1.00 36.67	<u>C</u>
45	ATOM 1404 NH2 ARG A 159	60.886 -6.776 35.962 1.00 15.32	N
	101 MAC AND A 139	61.309 -8.986 35.448 1.00 11.79	<u> </u>

	ATOM 1405 N SER A 160	59.689 -2.661 28.859 1.00 24.44	N
	ATOM 1406 CA SER A 160	59.312 -1.393 28.200 1.00 21.59	<u>c</u>
	ATOM 1407 C SER A 160	58.242 -0.577 28.950 1.00 25.07	с
	ATOM 1408 O SER A 160	57.257 -1.127 29.454 1.00 17.02	0
5	ATOM 1409 CB SER A 160	58.719 -1.747 26.797 1.00 13.05	с
	ATOM 1410 OG SER A 160	59.782 -1.897 25.885 1.00 37.57	o
	ATOM 1411 N VAL A 161	58.378 0.742 28.927 1.00 21.01	N
	ATOM 1412 CA VAL A 161	57,369 1.644 29,509 1.00 9.70	<u>C</u>
	ATOM 1413 C VAL A 161	57.068 2.747 28.504 1.00 16.77	<u>c</u>
10	ATOM 1414 0 VAL A 161	57.955 3.149 27.729 1.00 16.33	0
	ATOM 1415 CB VAL A 161	57.806 2.248 30.862 1.00 17.94	<u>C</u>
	ATOM 1416 CG1 VAL A 161	57.873 1.185 31.984 1.00 16.16	<u>c</u>
	ATOM 1417 CG2 VAL A 161	59.137 2.992 30.750 1.00 21.10	<u>c</u>
	ATOM 1418 N MET A 162	55.794 3.147 28.443 1.00 22.46	N
15	ATOM 1419 CA MET A 162	55.296 4.185 27.513 1.00 19.23	<u>c</u>
	ATOM 1420 C MET A 162	54.880 5.312 28.397 1.00 25.19	<u>C</u>
	ATOM 1421 O MET A 162	53.788 5.269 28.961 1.00 18.35	0
	ATOM 1422 CB MET A 162	53.979 3.796 26.850 1.00 15.55	<u>c</u>
	ATOM 1423 CG MET A 162	54.013 2.630 25.949 1.00 37.79	c
20	ATOM 1424 SD MET A 162	54.354 3.100 24.235 1.00 52.07	S
20	ATOM 1425 CE MET A 162	56.193 3.134 24.410 1.00 36.30	<u></u>
	ATOM 1426 N PRO A 163	55.730 6.313 28.521 1.00 18.43	N
	ATOM 1427 CA PRO A 163	55.390 7.472 29.337 1.00 17.76	<u>c</u>
	ATOM 1428 C PRO A 163	54.300 8.384 28.667 1.00 21.23	с
25	ATOM 1429 O PRO A 163	54.208 8.448 27.433 1.00 15.20	0
23	ATOM 1430 CB PRO A 163	56.727 8.196 29.423 1.00 11.43	С
	ATOM 1431 CG PRO A 163	57.352 7.874 28.031 1.00 13.99	c
	ATOM 1432 CD PRO A 163	57.086 6.401 27.949 1.00 12.24	С
	ATOM 1433 N THR A 164	53,478 9.060 29,478 1.00 13.95	N
30	ATOM 1434 CA THR A 164	52,581 10,121 28,963 1.00 25.82	c
30	1100 mm 2 164	53,406 11,441 28,781 1.00 19.67	С
		54,633 11,393 28,868 1.00 13.97	0
		51.373 10.391 29.903 1.00 25.51	С
		50.470 11.321 29.267 1.00 14.77	0
35		51.818 10.886 31.298 1.00 9.06	С
33		52.751 12.589 28.556 1.00 14.99	N
		53.448 13.901 28.481 1.00 7.83	С
		54.167 14.064 29.824 1.00 11.21	c
		53.554 13.929 30.894 1.00 17.66	0
40	ATOM 1443 O ASN A 165	52.434 15.061 28.416 1.00 14.48	C
40	ATOM 1444 CB ASN A 165		С
	ATOM 1445 CG ASN A 165	51.492 14.941 27.262 1.00 23.70 51.939 14.800 26.129 1.00 22.37	0
	ATOM 1446 OD1 ASN A 165		NN
	ATOM 1447 ND2 ASN A 165		N
	ATOM 1448 N LEU A 166		
45	ATOM 1449 CA LEU A 166	56.187 14.604 30.994 1.00 14.40	

	ATOM 1450 C LEU A 166	56.629 16.017 31.120 1.00 25.05	с
	ATOM 1451 O LEU A 166	56.624 16.718 30.125 1.00 25.09	0
	ATOM 1452 CB LEU A 166	57,460 13,743 30,870 1.00 17,48	С
_	ATOM 1453 CG LEU A 166	57.423 12.218 30.652 1.00 16.63	С
5	ATOM 1454 CD1 LEU A 166	58.837 11.639 31.000 1.00 22.52	<u> </u>
	ATOM 1455 CD2 LEU A 166	56,336 11,539 31,514 1,00 7,46	<u>c</u>
	ATOM 1456 N TYR A 167	57.146 16.391 32.300 1.00 19.78	N
	ATOM 1457 CA TYR A 167	57.678 17.760 32.511 1.00 18.58	С
	ATOM 1458 C TYR A 167	58.534 17.763 33.767 1.00 15.53	с
10	ATOM 1459 O TYR A 167	58.474 16.852 34.575 1.00 16.71	0
	ATOM 1460 CB TYR A 167	56.509 18.778 32.665 1.00 18.33	С
	ATOM 1461 CG TYR A 167	55.671 18.561 33.931 1.00 14.23	C
	ATOM 1462 CD1 TYR A 167	54.624 17.618 33.977 1.00 13.35	C
	ATOM 1463 CD2 TYR A 167	55.984 19.258 35.106 1.00 16.52	С
15	ATOM 1464 CE1 TYR A 167	53.889 17.446 35.146 1.00 21.17	С
	ATOM 1465 CE2 TYR A 167	55.302 19.084 36.264 1.00 8.26	С
	ATOM 1466 CE TYR A 167	54,228 18.203 36.296 1.00 23.56	C
	ATOM 1467 OH TYR A 167	53.526 18.078 37.504 1.00 22.81	0
	ATOM 1468 N GLY A 168	59.334 18.797 33.952 1.00 16.59	N
20	ATOM 1469 CA GLY A 168	60.158 18.817 35.152 1.00 18.21	c
	ATOM 1470 C GLY A 168	61.534 19.428 34.880 1.00 13.69	C
	ATOM 1471 O GLY A 168	61.746 20.028 33.837 1.00 16.52	0
	ATOM 1472 N PRO A 169	62.473 19.263 35.817 1.00 20.33	N
	ATOM 1473 CA PRO A 169	63.801 19.822 35.656 1.00 16.07	С
25	ATOM 1474 C PRO A 169	64.430 19.353 34.387 1.00 27.18	C
	ATOM 1475 O PRO A 169	64.305 18.186 33.981 1.00 21.23	0
	ATOM 1476 CB PRO A 169	64.595 19.206 36.805 1.00 17.28	c
	ATOM 1477 CG PRO A 169	63.649 18.919 37.830 1.00 19.89	C
	ATOM 1478 CD PRO A 169	62.263 18.772 37.189 1.00 22.47	C
30	ATOM 1479 N HIS A 170	65,226 20,235 33,829 1.00 19,48	N
	ATOM 1480 CA HIS A 170	65.952 19.877 32.638 1.00 25.56	C
	ATOM 1481 C HIS A 170	65.096 19.707 31.428 1.00 29.15	С
	ATOM 1482 O HIS A 170	65.553 19.091 30.479 1.00 29.71	0
	ATOM 1483 CB HIS A 170	66.783 18.600 32.845 1.00 28.94	C
35	ATOM 1484 CG HIS A 170	67.703 18.671 34.034 1.00 33.88	С
	ATOM 1485 ND1 HIS A 170	68.975 19.203 33.969 1.00 25.46	N
	ATOM 1486 CD2 HIS A 170	67.518 18.298 35.326 1.00 34.77	С
	ATOM 1487 CE1 HIS A 170	69.531 19.151 35.166 1.00 25.63	С
	ATOM 1488 NE2 HIS A 170	68.673 18.603 36.008 1.00 31.72	N
40	ATOM 1489 N ASP A 171	63.881 20.245 31.440 1.00 21.52	N
	ATOM 1490 CA ASP A 171	63.041 20.267 30.218 1.00 28.63	
	ATOM 1491 C ASP A 171	63.630 21.459 29.359 1.00 41.94	C
	ATOM 1492 O ASP A 171	64.534 22.171 29.835 1.00 29.69	
	ATOM 1493 CB ASP A 171	61.552 20.558 30.602 1.00 26.40	C
45	ATOM 1494 CG ASP A 171	60.552 20.097 29.540 1.00 22.32	c
			E

	ATOM 1495 OD1	ASP A 171	60.890	20.067	28.325	1.00 3	2.03	0
	ATOM 1496 OD2	ASP A 171	59,427	19.719	29.916	1.00 4	2.13	0
	ATOM 1497 N	ASN A 172	63.141	21.712	28.137	1.00 4	2.08	N
	ATOM 1498 CA	ASN A 172	63.616	22.893	27.388	1.00 3	5.95	<u>C</u>
5	ATOM 1499 C	ASN A 172	62.665	24.056	27.674	1.00 3	3.71	<u>c</u>
	ATOM 1500 O	ASN A 172	61.586	24.102	27.104	1.00 3	2.69	0
	ATOM 1501 CB	ASN A 172	63.632	22.667	25.869	1.00 4	1.60	<u> </u>
	ATOM 1502 CG	ASN A 172	63.807	23.987	25.086	1.00 3	9.09	<u>c</u>
	ATOM 1503 OD1	ASN A 172	62.973	24.347	24.259	1.00 B	3.94	0
10	ATOM 1504 ND2	ASN A 172	64.855	24.740	25.418	1.00 6	5.07	N
	ATOM 1505 N	PHE A 173	63.021	24.953	28.583	1.00 3	1.93	N
	ATOM 1506 CA	PHE A 173	62.082	26.030	28.944	1.00 4	8.24	<u>C</u>
	ATOM 1507 C	PHE A 173	61.989	27.260	28.045	1.00 6	9.01	<u> </u>
	ATOM 1508 O	PHE A 173	62.278	28.395	28.465	1.00 5	8.79	0
15	ATOM 1509 CB	PHE A 173	62.225	26.459	30,390	1.00 4	3.43	С
	ATOM 1510 CG	PHE A 173	61.867	25.399	31.356	1.00 3	4.19	<u>c</u>
	ATOM 1511 CD1	PHE A 173	62.810	24.488	31.751	1.00 2	4.68	<u></u>
	ATOM 1512 CD2	PHE A 173	60.621	25.354	31.925	1.00 2	4.84	
	ATOM 1513 CE1	PHE A 173	62.524	23.548	32.682	1.00 2	3.64	<u>C</u>
20	ATOM 1514 CE2	PHE A 173	60.305	24.366	32.804	1.00 3	1.32	C
	ATOM 1515 CZ	PHE A 173	61.263	23.457	33.192	1.00 2	4.30	C
	ATOM 1516 N	HIS A 174	61.510	27.036	26.831	1.00 6	8.16	N
	ATOM 1517 CA	HIS A 174	61.401	28.109	25.871	1.00 6	4.53	<u>C</u>
	ATOM 1518 C	HIS A 174	59.973	28.221	25.400	1.00 7	1.58	<u>C</u>
25	ATOM 1519 0	HIS A 174	59.309	27.186	25,249	1.00 7	3.20	0
	ATOM 1520 CB	HIS A 174	62.418	27.870	24.736	1.00 7	1.71	<u>c</u>
	ATOM 1521 CG	HIS A 174	63.835	27.868	25.229	1.00 9	2.29	C
	ATOM 1522 ND1	HIS A 174	64.921	27.539	24.440	1.0010	0.00	N
	ATOM 1523 CD2	HIS A 174	64.338	28.133	26.463	1.0010	0.00	<u>c</u>
30	ATOM 1524 CE1	HIS A 174	66.032	27.628	25.160	1.0010	0.00	<u>c</u>
	ATOM 1525 NE2	HIS A 174	65.705	27.981	26.393	1.0010		N
	ATOM 1526 N	PRO A 175	59.469	29.461	25.262	1.00 6	5.71	N
	ATOM 1527 CA	PRO A 175	58.109	29.658	24.770	1.00 5	5.72	<u> </u>
	ATOM 1528 C	PRO A 175	58.233	29.297	23.267	1.00 7	5.83	<u>c</u>
35	ATOM 1529 O	PRO A 175	57.224	29.226	22.554	1.00 6	9.59	0
	ATOM 1530 CB	PRO A 175	57.866	31.142	25.026	1.00 4	9.14	<u>c</u>
	ATOM 1531 CG	PRO A 175	59.258	31.790	24.901	1.00 4	2.23	<u>c</u>
	ATOM 1532 CD	PRO A 175	60.286	30.695	25.109	1.00 4	19.59	<u>c</u>
	ATOM 1533 N	SER A 176	59.480	28.954	22.879	1.00 8	5.09	N
40	ATOM 1534 CA	SER A 176	59.954	28.474	21.548	1.00 8	1.18	
	ATOM 1535 C	SER A 176	59.660	26.965	21.343	1.00 7	73.90	<u>c</u>
	ATOM 1536 O	SER A 176	59.617	26.458	20,213	1.00 5	57.03	0
	ATOM 1537 CB	SER A 176	61.493	28.666	21.447	1.00 7	71.32	c
	ATOM 1538 OG	SER A 176	62.048	29.349	22.578	1.00 5	51.93	0
45	ATOM 1539 N	ASN A 177	59.520	26.276	22.480	1.00 6	56.23	N

	ATOM 1540	CA ASN A 177	59.274 24.847	22.619 1.00 56.41	c
	ATOM 1541	C ASN A 177	57.810 24.497	22.353 1.00 60.91	с
	ATOM 1542	O ASN A 177	56.914 25.215	22.811 1.00 55.58	0
	ATOM 1543	CB ASN A 177	59.619 24.469	24.065 1.00 50.45	С
5	ATOM 1544	CG ASN A 177	59.562 22.970	24.319 1.00 66.57	с
	ATOM 1545	OD1 ASN A 177	59.095 22.216	23.476 1.00100.00	0
	ATOM 1546	ND2 ASN A 177	60.099 22.546	25.464 1.00 35.61	N
	ATOM 1547	N SER A 178	57.583 23.387	21.627 1.00 57.10	N
	ATOM 1548	CA SER A 178	56.234 22.853	21.279 1.00 50.50	C
10	ATOM 1549	C SER A 178	55.557 22.159	22.491 1.00 76.24	С
	ATOM 1550	O SER A 178	54.575 21.400	22.304 1.00 99.63	
	ATOM 1551	CB SER A 178	56.316 21.800	20.118 1.00 10.17	c
	ATOM 1552	OG SER A 178	57.397 22.112	19.217 1.00 71.69	
	ATOM 1553	N HIS A 179	56.134 22.284	23.694 1.00 37.39	N
15	ATOM 1554	CA HIS A 179	55.569 21.587	24.855 1.00 30.96	C
	ATOM 1555	C HIS A 179	54.961 22.616	25,767 1.00 21.93	C
	ATOM 1556	O HIS A 179	55.641 23.598	26.138 1.00 25.17	0
	ATOM 1557	CB HIS A 179	56.634 20.683	25.575 1.00 36.20	C
	ATOM 1558	CG HIS A 179	56.973 19.419	24.835 1.00 42.90	С
20	ATOM 1559	ND1 HIS A 179	56.973 19.335	23.457 1.00 49.52	N
	ATOM 1560	CD2 HIS A 179	57.323 18.190	25.278 1.00 52.42	Ç
	ATOM 1561	CE1 HIS A 179	57.283 18.109	23.084 1.00 44.78	С
	ATOM 1562	NE2 HIS A 179	57.500 17.393	24.168 1.00 50.49	N
	ATOM 1563	N VAL A 180	53.661 22.454	26.038 1.00 19.14	N
25	ATOM 1564	CA VAL A 180	52.886 23.449	26.789 1.00 29.03	С
	ATOM 1565	C VAL A 180	53.373 23.890	28.142 1.00 31.29	C
	ATOM 1566	O VAL A 180	53.348 25.075	28.447 1.00 19.55	0
	ATOM 1567	CB VAL A 180	51.403 23.115	26.914 1.00 35.47	c
	ATOM 1568	CG1 VAL A 180	50.630 24.399	27.217 1.00 35.84	c
30	ATOM 1569	CG2 VAL A 180	50.923 22.550	25.663 1.00 36.11	<u>c</u>
	ATOM 1570	N ILE A 181	53.684 22.935	29.005 1.00 26.57	N
	ATOM 1571	CA ILE A 181	54.138 23.285	30.360 1.00 24.49	<u> </u>
	ATOM 1572	C ILE A 181	55.371 24.213	30.361 1.00 16.51	с
	ATOM 1573	O ILE A 181	55.326 25.315	30.909 1.00 24.42	0
35	ATOM 1574	CB ILE A 181	54.285 22.018	31.264 1.00 20.20	<u>C</u>
	ATOM 1575	CG1 ILE A 181	52.878 21.428	31.528 1.00 18.22	c
	ATOM 1576	CG2 ILE A 181	55.014 22.315	32.581 1.00 13.37	с
•	ATOM 1577	CD1 ILE A 181	52.867 20.086	32,286 1.00 8.03	<u>C</u>
	ATOM 1578	N PRO A 182	56.452 23.779	29.718 1.00 22.21	N
40	ATOM 1579	CA PRO A 182	57.664 24.605	29.640 1.00 22.07	<u>c</u>
	ATOM 1580	C PRO A 182	57.379 25.852	28.828 1.00 24.18	С
	ATOM 1581	O PRO A 182	57.811 26.949	29.210 1.00 18.35	0
	ATOM 1582	CB PRO A 182	58.682 23.725	28.890 1.00 24.97	С
	ATOM 1583	CG PRO A 182	57.925 22.473	28.471 1.00 25.77	с
45	ATOM 1584	CD PRO A 182	56.727 22.359	29.401 1.00 18.23	<u>c</u>

	MOTA	1585	N	ALA A 183	56.628	25.707	27.729	1.00 21.45	N
	MOTA	1586	CA	ALA A 183	56.261	26.896	26.943	1.00 21.66	<u>C</u>
	MOTA	1587	С	ALA A 183	55.464	27.900	27.811	1.00 26.10	c
	MOTA	1588	0	ALA A 183	55.773	29.091	27.856	1.00 19.50	0
5	MOTA	1589	СВ	ALA A 183	55.473	26.513	25.703	1.00 13.26	c
	MOTA	1590	N	LEU A 184	54.472	27.389	28.543	1.00 23.34	N
	MOTA	1591	CA	LEU A 184	53.642	28.215	29.401	1.00 19.05	C
	MOTA	1592	С	LEU A 184	54.312	28.693	30.655	1.00 21.91	C
	MOTA	1593	0	LEU A 184	54.017	29.771	31.158	1.00 19.71	0
10	MOTA	1594	СВ	LEU A 184	52.309	27.553	29.715	1.00 14.41	C
	MOTA	1595	CG	LEU A 184	51.342	27.595	28.525	1.00 23.42	C
	MOTA	1596	CD1	LEU A 184	49.918	27.244	28.928	1.00 31.06	c
	MOTA	1597	CD2	LEU A 184	51.380	28.896	27.690	1.00 21.73	C
	MOTA	1598	N	LEU A 185	55.178	27.879	31.213	1.00 18.39	N
15	MOTA	1599	CA	LEU A 185	55.833	28.332	32.417	1.00 16.39	c
	MOTA	1600	С	LEU A 185	56.669	29.528	31.985	1.00 23.67	c
	MOTA	1601	0	LEU A 185	56.681	30.590	32.644	1.00 29.38	o
	MOTA	1602	СВ	LEU A 185	56.723	27.233	33.015	1.00 15.05	с
	MOTA	1603	CG	LEU A 185	56.021	26.348	34.041	1.00 15.56	с
20	MOTA	1604	CD1	LEU A 185	56.819	25.022	34.301	1.00 21.06	c
	MOTA	1605	CD2	LEU A 185	55.722	27.113	35.321	1.00 11.02	c
	MOTA	1606	N	ARG A 186	57.337	29.397	30.852	1.00 17.09	N
	MOTA	1607	CA_	ARG A 186	58.137	30.523	30.429	1.00 18.82	c
	MOTA	1608	С	ARG A 186	57.308	31.752	30.069	1.00 29.00	<u>C</u>
25	MOTA	1609	0_	ARG A 186	57.629	32.880	30.476	1.00 23.91	0
	MOTA	1610	СВ	ARG A 186	59.026	30.146	29.281	1.00 22.06	с
	MOTA	1611	CG	ARG A 186	59.653	31.365	28.652	1.00 38.46	<u>c</u>
	MOTA	1612	CD	ARG A 186	60.825	31.804	29.462	1.00 83.66	с
	MOTA	1613	NE	ARG A 186	62,012	31.861	28.631	1.00 70.77	N
30	MOTA	1614	CZ	ARG A 186	63.058	32.622	28.904	1.00 91.68	c
	ATOM	1615	NH1	ARG A 186	63.053	33.386	29.995	1.00 56.56	N
	MOTA	1616	NH2	ARG A 186	64.098	32.639	28.082	1.00100.00	N
	MOTA	1617	N	ARG A 187	56.234	31.544	29.310	1.00 20.96	N
	MOTA	1618	_CA_	ARG A 187	55.361	32.662	28.941	1.00 19.32	С
35	MOTA	1619	<u>c</u>	ARG A 187	54.765	33.453	30.142	1.00 28.41	С
	MOTA	1620	0	ARG A 187	54.823	34.700	30.193	1.00 17.23	0
	MOTA	1621	СВ	ARG A 187	54.270	32.223	27.957	1.00 17.05	c
	MOTA	1622	CG	ARG A 187	54.813	31.546	26.720	1.00 61.42	C
	MOTA	1623	CD	ARG A 187	53.696	31.244	25.757	1.00 44.57	C
40	MOTA	1624	NE	ARG A 187	53.033	32,472	25.354	1.00 29.47	N
	MOTA	1625	CZ	ARG A 187	51.831	32.534	24.790	1.00 17.82	c
	MOTA	1626	NH1	ARG A 187	51.136	31.427	24.544	1.00 24.95	N
	MOTA	1627	NH2	ARG A 187	51.341	33.716	24.447	1.00 37.77	N
	MOTA	1628	N_	PHE A 188	54.192	32.734	31.101	1.00 23.48	N
45	MOTA	1629	CA	PHE A 188	53,604	33.399	32.259	1.00 21.24	<u>C</u>

	ATOM 1630 C PHE A 188	54.638 34.080 33.095 1.00 21.39	с
	ATOM 1631 O PHE A 188	54.394 35.126 33.626 1.00 23.90	0
	ATOM 1632 CB PHE A 188	52.723 32.466 33.077 1.00 19.95	c
_	ATOM 1633 CG PHE A 188	51.389 32.215 32.435 1.00 22.28	C
5	ATOM 1634 CD1 PHE A 188	50.440 33.229 32.375 1.00 19.42	C
	ATOM 1635 CD2 PHE A 188	51.144 31.038 31.734 1.00 23.82	· C
	ATOM 1636 CE1 PHE A 188	49.191 33.026 31.742 1.00 24.77	C
	ATOM 1637 CE2 PHE A 188	49.936 30.826 31.057 1.00 20.17	C
	ATOM 1638 CZ PHE A 188	48.945 31.815 31.068 1.00 23.14	c
10	ATOM 1639 N HIS A 189	55,831 33.513 33.118 1.00 24.15	N
	ATOM 1640 CA HIS A 189	56.933 34.122 33.837 1.00 28.79	С
	ATOM 1641 C HIS A 189	57.303 35.506 33.315 1.00 28.58	c
	ATOM 1642 O HIS A 189	57.480 36.463 34.083 1.00 20.07	0
	ATOM 1643 CB HIS A 189	58.148 33.268 33.641 1.00 31.38	c
15	ATOM 1644 CG HIS A 189	59.364 33.844 34.290 1.00 29.98	
	ATOM 1645 ND1 HIS A 189	59.548 33.833 35.658 1.00 31.00	<u>C</u>
	ATOM 1646 CD2 HIS A 189	60.449 34.464 33.766 1.00 21.79	— И
	ATOM 1647 CE1 HIS A 189	60.722 34.371 35.945 1.00 24.04	<u>c</u>
	ATOM 1648 NE2 HIS A 189	61.257 34.815 34.821 1.00 19.53	<u>C</u>
20	ATOM 1649 N GLU A 190	57.539 35.561 32.006 1.00 28.43	N
	ATOM 1650 CA GLU A 190	57.876 36.816 31.324 1.00 27.72	N
	ATOM 1651 C GLU A 190	56.725 37.829 31.437 1.00 32.56	c
	ATOM 1652 O GLU A 190	56.949 38.995 31.717 1.00 27.06	0
	ATOM 1653 CB GLU A 190	58.122 36.529 29.849 1.00 28.55	<u>c</u>
25	ATOM 1654 CG GLU A 190	59.150 35.461 29.614 1.00 35.29	C
	ATOM 1655 CD GLU A 190	60.553 35.941 29.892 1.00 99.81	`
	ATOM 1656 OE1 GLU A 190	60.913 36.037 31.085 1.00 86.56	0
	ATOM 1657 OE2 GLU A 190	61.293 36.167 28.910 1.00100.00	0
	ATOM 1658 N ALA A 191	55.493 37.391 31.196 1.00 32.67	N
30	ATOM 1659 CA ALA A 191	54.349 38.286 31.311 1.00 25.30	X
	ATOM 1660 C ALA A 191	54.287 38.795 32.742 1.00 36.20	<u>`</u>
	ATOM 1661 O ALA A 191	53.920 39.924 33.014 1.00 27.52	0
	ATOM 1662 CB ALA A 191	53.055 37.563 31.000 1.00 16.48	c
	ATOM 1663 N THR A 192	54.549 37.927 33.693 1.00 29.39	N
35	ATOM 1664 CA THR A 192	54.395 38.386 35.041 1.00 19.08	c
	ATOM 1665 C THR A 192	55,420 39,494 35,298 1.00 44,78	C
	ATOM 1666 O THR A 192	55,094 40.550 35.839 1.00 40.58	0
	ATOM 1667 CB THR A 192	54.515 37.235 35.983 1.00 18.99	<u>v</u>
	ATOM 1668 OG1 THR A 192	53.410 36,348 35.755 1.00 34.36	0
40	ATOM 1669 CG2 THR A 192	54.461 37.738 37.425 1.00 21.15	v
	ATOM 1670 N ALA A 193	56.617 39.312 34.757 1.00 48.58	
	ATOM 1671 CA ALA A 193	57.705 40.286 34.905 1.00 50.59	N C
	ATOM 1672 C ALA A 193	57.496 41.613 34.145 1.00 54.42	<u>c</u>
	ATOM 1673 O ALA A 193	57.952 42.698 34.553 1.00 48.28	_
45	ATOM 1674 CB ALA A 193	59.047 39.640 34.496 1.00 51.78	0
		7, VV VI, 10	<u>c</u>

	ATOM 1675 N GLN A 194	56.810 41.530 33.022 1.00 43.16	N
	ATOM 1676 CA GLN A 194	56.586 42.722 32.242 1.00 38.03	c
	ATOM 1677 C GLN A 194	55.264 43.389 32.576 1.00 40.85	c
	ATOM 1678 O GLN A 194	54.830 44.284 31.845 1.00 51.20	0
5	ATOM 1679 CB GLN A 194	56.599 42.358 30.750 1.00 35.96	c
	ATOM 1680 CG GLN A 194	57.910 41.692 30.290 1.00100.00	c
	ATOM 1681 CD GLN A 194	57.715 40.661 29.158 1.00100.00	C
	ATOM 1682 OE1 GLN A 194	56.619 40.546 28.579 1.00100.00	0
	ATOM 1683 NE2 GLN A 194	58.782 39.904 28.848 1.00100.00	N
10	ATOM 1684 N GLY A 195	54.583 42.949 33.630 1.00 32.29	N
	ATOM 1685 CA GLY A 195	53.236 43.464 33.864 1.00 36.26	c
	ATOM 1686 C GLY A 195	52.299 43.332 32.593 1.00 45.33	С
	ATOM 1687 O GLY A 195	51.515 44.242 32.346 1.00 45.16	0
	ATOM 1688 N GLY A 196	52.405 42.245 31.788 1.00 36.33	N
15	ATOM 1689 CA GLY A 196	51.515 41.965 30.608 1.00 19.06	С
	ATOM 1690 C GLY A 196	50.037 41.958 31.117 1.00 22.49	C
	ATOM 1691 O GLY A 196	49.724 41.479 32.223 1.00 33.09	
	ATOM 1692 N PRO A 197	49.144 42.657 30.431 1.00 29.22	N
	ATOM 1693 CA PRO A 197	47.790 42.732 30.953 1.00 25.29	
20	ATOM 1694 C PRO A 197	47.091 41.413 30.674 1.00 24.64	С
	ATOM 1695 O PRO A 197	46.192 40.991 31.411 1.00 24.75	
	ATOM 1696 CB PRO A 197	47.162 43.911 30.176 1.00 26.31	C
	ATOM 1697 CG PRO A 197	48.188 44.407 29.252 1.00 26.56	С
	ATOM 1698 CD PRO A 197	49.307 43.454 29.203 1.00 30.25	C
25	ATOM 1699 N ASP A 198	47.572 40.723 29.658 1.00 16.88	_N
	ATOM 1700 CA ASP A 198	47.067 39.418 29.405 1.00 21.65	С
	ATOM 1701 C ASP A 198	48.046 38.522 28.677 1.00 31.28	C
	ATOM 1702 O ASP A 198	49.062 38.978 28.172 1.00 34.57	Q
	ATOM 1703 CB ASP A 198	45.739 39.507 28.669 1.00 32.80	С
30	ATOM 1704 CG ASP A 198	45.868 40.055 27.256 1.00 46.13	с
	ATOM 1705 OD1 ASP A 198	46.982 40.230 26.725 1.00 57.45	
	ATOM 1706 OD2 ASP A 198	44.817 40.271 26.640 1.00 67.61	0
	ATOM 1707 N VAL A 199	47.713 37.234 28.614 1.00 38.67	N
	ATOM 1708 CA VAL A 199	48.499 36.226 27.901 1.00 27.79	C
35	ATOM 1709 C VAL A 199	47.462 35.469 27.065 1.00 25.88	·c
	ATOM 1710 O VAL A 199	46.460 35.023 27.598 1.00 24.22	
	ATOM 1711 CB VAL A 199	49.163 35.229 28.905 1.00 24.37	C
	ATOM 1712 CG1 VAL A 199	49.874 34.047 28.160 1.00 20.28	C
	ATOM 1713 CG2 VAL A 199	50.121 35.942 29.835 1.00 22.25	С
40	ATOM 1714 N VAL A 200	47.661 35.386 25.757 1.00 23.72	N
	ATOM 1715 CA VAL A 200	46.701 34.694 24.903 1.00 23.99	c
	ATOM 1716 C VAL A 200	47.167 33.286 24.499 1.00 22.85	
	ATOM 1717 O VAL A 200	48.321 33.108 24.188 1.00 29.77	
	ATOM 1718 CB VAL A 200	46.358 35.548 23.680 1.00 23.11	c
45	ATOM 1719 CG1 VAL A 200	45.561 34.737 22.598 1.00 16.25	c
	TANK A TAY WAT TON D AV	ANIANA MILIAL MAINAN ALAN ANIAN	

	ATOM 1720 CG2 VAL A 200	45.652 36.823 24.130 1.00 27.86	c
	ATOM 1721 N VAL A 201	46.296 32.278 24.632 1.00 27.39	N
	ATOM 1722 CA VAL A 201	46.588 30.893 24.265 1.00 9.63	С
_	ATOM 1723 C VAL A 201	45.653 30.529 23.165 1.00 19.63	c
5	ATOM 1724 O VAL A 201	44.452 30.755 23.312 1.00 17.61	0
	ATOM 1725 CB VAL A 201	46.306 29.952 25.426 1.00 19.95	С
	ATOM 1726 CG1 VAL A 201	46.703 28.519 25.054 1.00 20.85	C
	ATOM 1727 CG2 VAL A 201	47.086 30.439 26.661 1.00 16.73	C
	ATOM 1728 N TRP A 202	46.210 30.080 22.030 1.00 14.36	N
10	ATOM 1729 CA TRP A 202	45.422 29.693 20.865 1.00 18.97	С
	ATOM 1730 C TRP A 202	44.495 28.572 21.313 1.00 36.22	C
	ATOM 1731 O TRP A 202	44.934 27.694 22.057 1.00 31.46	0
	ATOM 1732 CB TRP A 202	46.292 29.055 19.823 1.00 19.14	C
	ATOM 1733 CG TRP A 202	47.243 29.894 19.066 1.00 33.65	C
15	ATOM 1734 CD1 TRP A 202	48.391 29.463 18.429 1.00 35.28	<u>c</u>
	ATOM 1735 CD2 TRP A 202	47.126 31.282 18.772 1.00 39.90	C
	ATOM 1736 NEI TRP A 202	48.941 30.481 17.693 1.00 37.86	N
	ATOM 1737 CE2 TRP A 202	48.228 31.624 17.922 1.00 38.35	
	ATOM 1738 CE3 TRP A 202	46.206 32.281 19.138 1.00 39.39	c
20	ATOM 1739 CZ2 TRP A 202	48,380 32,884 17,367 1.00 36,15	<u>c</u>
	ATOM 1740 C23 TRP A 202	46.356 33.542 18.578 1.00 39.60	c
	ATOM 1741 CH2 TRP A 202	47.428 33.828 17.684 1.00 40.99	<u>c</u>
	ATOM 1742 N GLY A 203	43.245 28.564 20.842 1.00 25.59	N
	ATOM 1743 CA GLY A 203	42.332 27.483 21.169 1.00 13.09	
25	ATOM 1744 C GLY A 203	41.260 27.813 22.193 1.00 21.12	C
	ATOM 1745 0 GLY A 203	41.340 28.815 22.886 1.00 22.86	0
	ATOM 1746 N SER A 204	40.270 26.919 22.262 1.00 16.88	N
	ATOM 1747 CA SER A 204	39.163 26.979 23.192 1.00 18.36	<u>c</u>
	ATOM 1748 C SER A 204	39.561 26.664 24.659 1.00 22.07	<u>c</u>
30	ATOM 1749 O SER A 204	38.888 27.096 25.604 1.00 34.39	
	ATOM 1750 CB SER A 204	38.053 25.998 22.740 1.00 9.99	
	ATOM 1751 OG SER A 204	20 027 04 605 00 004	<u>c</u>
	ATOM 1752 N GLY A 205	40.562 25.813 24.854 1.00 12.42	
	ATOM 1753 CA GLY A 205	40.963 25.411 26.208 1.00 11.64	N
35	ATOM 1754 C GLY A 205	40.208 24.178 26.711 1.00 19.49	<u>c</u>
	ATOM 1755 O GLY A 205	40.422 23.723 27.838 1.00 13.59	<u>c</u>
	ATOM 1756 N THR A 206	39.292 23.683 25.881 1.00 15.38	0
	ATOM 1757 CA THE A 206	38.432 22.594 26.281 1.00 10.80	N
	ATOM 1758 C THR A 206		<u>c</u>
40	ATOM 1759 O THR A 206		<u>c</u>
	ATOM 1760 CB THR A 206		
	ATOM 1761 OG1 THR A 206		<u>c</u>
	ATOM 1762 CG2 THR A 206		<u>e</u>
	ATOM 1763 N PRO A 207		
45	ATOM 1764 CA PRO A 207		N
	A/OT CA PRO A ZUI	40.658 19.743 25.175 1.00 18.15	с

	ATOM 1765 C PRO A 207	41.316 19.181 26.423 1.00 21.75	<u>c</u>
	ATOM 1766 O PRO A 207	41.951 19.925 27.215 1.00 20.65	0
	ATOM 1767 CB PRO A 207	41.638 19.909 24.013 1.00 17.51	<u>c</u>
	ATOM 1768 CG PRO A 207	41.146 21.213 23.307 1.00 21.45	c
5	ATOM 1769 CD PRO A 207	40.698 22.062 24.431 1.00 23.44	C
	ATOM 1770 N MET A 208	41.112 17.876 26.624 1.00 15.60	N
	ATOM 1771 CA MET A 208	41.694 17.167 27.775 1.00 22.94	c
	ATOM 1772 C MET A 208	43.058 16.427 27.579 1.00 21.90	<u>C</u>
	ATOM 1773 O MET A 208	43.248 15.677 26.633 1.00 23.16	0
10	ATOM 1774 CB MET A 208	40.645 16.273 28.386 1.00 32.86	<u>c</u>
	ATOM 1775 CG MET A 208	39.630 17.057 29.223 1.00 46.17	C
	ATOM 1776 SD MET A 208	38.301 15.990 29.826 1.00 57.85	S
	ATOM 1777 CE MET A 208	37.999 15.028 28.343 1.00 58.23	<u>C</u>
	ATOM 1778 N ARG A 209	44.022 16.681 28.456 1.00 17.75	N
15	ATOM 1779 CA ARG A 209	45.318 16.042 28.324 1.00 19.88	с
	ATOM 1780 C ARG A 209	45.871 15.534 29.639 1.00 16.92	c
	ATOM 1781 O ARG A 209	45,433 15,946 30,697 1,00 16,58	0
	ATOM 1782 CB ARG A 209	46.340 16.963 27.658 1.00 21.07	C
	ATOM 1783 CG ARG A 209	45.980 17.478 26.275 1.00 22.57	
20	ATOM 1784 CD ARG A 209	45.833 16.357 25.282 1.00 28.26	c
	ATOM 1785 NE ARG A 209	45.586 16.819 23.906 1.00 23.15	N
	ATOM 1786 CZ ARG A 209	44.420 16.742 23.267 1.00 34.52	с
	ATOM 1787 NH1 ARG A 209	43.336 16.267 23.890 1.00 18.03	N
	ATOM 1788 NH2 ARG A 209	44.339 17.175 22.012 1.00 29.78	N
25	ATOM 1789 N GLU A 210	46.878 14.675 29.547 1.00 20.87	N
	ATOM 1790 CA GLU A 210	47.530 14.079 30.720 1.00 17.37	C
	ATOM 1791 C GLU A 210	49.031 14.490 30.851 1.00 20.96	c
	ATOM 1792 O GLU A 210	49.748 14.622 29.841 1.00 22.44	0
	ATOM 1793 CB GLU A 210	47,400 12,562 30.571 1.00 16,26	<u>c</u>
30	ATOM 1794 CG GLU A 210	47.807 11.785 31.809 1.00 19.91	<u>c</u>
	ATOM 1795 CD GLU A 210	48.057 10.304 31.531 1.00 27.81	c
	ATOM 1796 OE1 GLU A 210	48.111 9.919 30.343 1.00 17.29	0
	ATOM 1797 OE2 GLU A 210	48,268 9.540 32,494 1.00 21.63	0
	ATOM 1798 N PHE A 211	49.504 14.712 32.084 1.00 14.02	<u>N</u>
35	ATOM 1799 CA PHE A 211	50.887 15.159 32.353 1.00 17.48	<u>C</u>
	ATOM 1800 C PHE A 211	51.458 14.414 33.531 1.00 33.62	<u>c</u>
	ATOM 1801 O PHE A 211	50.716 14.031 34.443 1.00 27.96	0
	ATOM 1802 CB PHE A 211	50,933 16,677 32,644 1.00 17.78	<u>C</u>
	ATOM 1803 CG PHE A 211	50.303 17.490 31.541 1.00 21.49	<u>C</u>
40	ATOM 1804 CD1 PHE A 211	51.009 17.676 30.320 1.00 17.36	с
	ATOM 1805 CD2 PHE A 211	48,933 17.844 31.618 1.00 15.09	с
	ATOM 1806 CE1 PHE A 211	50.399 18.334 29.237 1.00 16.37	с
	ATOM 1807 CE2 PHE A 211	48.288 18.491 30.533 1.00 9.61	c
	ATOM 1808 CZ PHE A 211	49.053 18.756 29.344 1.00 12.71	c
45	ATOM 1809 N LEU A 212	52.761 14.161 33.495 1.00 23.76	N

PCT/US99/11576

	ATOM 1810 CA	LEU A 212	53.405	13.448	34.603	1.00 21.	24 (2
	ATOM 1811 C	LEU A 212	54.772	14.053	34.898	1.00 14.	00 0	2
	ATOM 1812 O	LEU A 212	55.519	14.398	33.985	1.00 13.	99	2
	ATOM 1813 CB	LEU A 212	53.548	11.954	34.294	1.00 21.	52 (2
5	ATCM 1814 CG	LEU A 212	54.033	11.039	35.406	1.00 21.	09	2
	ATOM 1815 CD	LEU A 212	52.866	10.634	36.280	1.00 20.	84	2
	ATOM 1816 CD	2 LEU A 212	54.768	9.829	34.832	1.00 13.	18 (2
	ATOM 1817 N	HIS A 213	55.023	14.302	36,175	1.00 9.	60	N
	ATOM 1818 CA	HIS A 213	56.290	14.864	36.555	1.00 13.	66 (2
10	ATOM 1819 C	HIS A 213	57.380	13.828	36.293	1.00 20.	37 (2
	ATOM 1820 O	HIS A 213	57.238	12.614	36.542	1.00 16.	08	2
	ATOM 1821 CB	HIS A 213	56,280	15.250	38.002	1.00 18.	72	C
	ATOM 1822 CG	HIS A 213	57.491	16.017	38,408	1.00 21.	22	C
	ATOM 1823 ND	1 HIS A 213	58.703	15.406	38,656	1.00 24.	29 1	N
15	ATOM 1824 CD	2 HIS A 213	57.716	17.353	38.499	1.00 23.	67	Ç
	ATOM 1825 CE	1 HIS A 213	59.615	16.331	38.917	1.00 19.	13	Ç
	ATOM 1826 NE	2 HIS A 213	59.041	17.523	38.847	1.00 21.	99	N
	ATOM 1827 N	VAL A 214	58.459	14.295	35.698	1.00 21.		N
00	ATOM 1828 CA	VAL A 214	59.532	13.383	35.361	1.00 19.		Ç
20	ATOM 1829 C	VAL A 214	60.067	12.523	36.551	1.00 27.		Ç
	ATOM 1830 O	VAL A 214	60.604	11.444	36.359	1.00 22.		Q
	ATOM 1831 CB		60.625	14.125	34.566	1.00 11.		<u>c</u>
		1 VAL A 214 2 VAL A 214	61.390 61.560	15.199 13.097	35.485 33.902	1.00 B. 1.00 12.		C C
25	ATOM 1833 CG	ASP A 215	59.893	12.984	37.790	1.00 25.		¥ N
23	ATOM 1835 CA	ASP A 215	60.406	12.228	38.936	1.00 23.		C Z
	ATOM 1836 C	ASP A 215	59.530	11.023	39.230	1.00 13.		c
	ATOM 1837 O	ASP A 215	59.988	9.981	39.666	1.00 17.		0
	ATOM 1838 CB		60.575	13.129	40.155	1.00 16.	27	c
30	ATOM 1839 CG	ASP A 215	61.859	13.979	40.068	1.00 30.	73	c
	ATOM 1840 OD	1 ASP A 215	62.782	13.614	39.308	1.00 23.	02	Q
	ATOM 1841 OD	2 ASP A 215	61.957	15.029	40.730	1.00 26.	00	Q
	ATOM 1842 N	ASP A 216	58.276	11.136	38.863	1.00 20.	08	N
	ATOM 1843 CA	ASP A 216	57.378	10.017	39.016	1.00 18.	78	C
35	ATOM 1844 C	ASP A 216	57.761	9.083	37.894	1.00 23.	56	C
	ATOM 1845 O	ASP A 216	57.715	7,880	38.026	1.00 20.	79	Q
	ATOM 1846 CB	ASP A 216	55.912	10.457	38.821	1.00 17.	18	C
	ATOM 1847 CG	ASP A 216	55,193	10.757	40.162	1.00 38.	03	C
	ATOM 1848 OD	1 ASP A 216	55.503	10.119	41.223	1.00 26.	02	0
40	ATOM 1849 OD	2 ASP A 216	54.249	11.587	40.124	1.00 25.	41	0
	ATOM 1850 N	MET A 217	58.092	9.653	36.755	1.00 18.	11	N
	ATOM 1851 CA	MET A 217	58.394	8.785	35.636	1.00 22.	41	C
	ATOM 1852 C	MET A 217	59.572	7.942	35.992	1.00 27.	.54	C
	ATOM 1853 O	MET A 217	59.579	6.752	35.710	1.00 20.		Q
45	ATOM 1854 CB	MET A 217	58.637	9.592	34.345	1.00 21.	.24	C

	ATOM 1855	CG MET A 217	59.478	8.918	33.287 1.00 16.37	C
	ATOM 1856	SD MET A 217	58.962	7.412	32,473 1.00 30.51	
	ATOM 1857	CE MET A 217	57.465	7.608	32.391 1.00 19.57	С
	ATOM 1858	N ALA A 218	60.561	8.562	36.623 1.00 19.09	N
5	ATOM 1859	CA ALA A 218	61.774	7.841	37.002 1.00 13.65	C
	ATOM 1860	C ALA A 218	61.436	6.778	38.028 1.00 22.61	C
	ATOM 1861	O ALA A 218	61.934	5.670	37.967 1.00 19.36	0
	ATOM 1862	CB ALA A 218	62.809	8.780	37.579 1.00 12.23	с
	ATOM 1863	N ALA A 219	60.605	7.109	39.000 1.00 19.34	N
10	ATOM 1864	CA ALA A 219	60.310	6.105	40.023 1.00 18.01	c
	ATOM 1865	C ALA A 219	59.630	4.901	39.413 1.00 23.57	<u> </u>
	ATOM 1866	O ALA A 219	59.781	3.777	39.898 1.00 22.71	0
	ATOM 1867	CB ALA A 219	59.387	6.678	41.083 1.00 10.11	С
	ATOM 1868	N ALA A 220	58.753	5.174	38.454 1.00 18.99	N
15	ATOM 1869	CA ALA A 220	57.905	4.158	37.855 1.00 14.12	c
	ATOM 1870	C ALA A 220	58.753	3.213	37.034 1.00 25.33	C
	ATOM 1871	O ALA A 220	58.584	2.006	37.114 1.00 20.63	0
	ATOM 1872	CB ALA A 220	56.796	4.798	37.023 1.00 8.53	<u>c</u>
	ATOM 1873	N SER A 221	59.770	3.772	36.379 1.00 23.92	N
20	ATOM 1874	CA SER A 221	60.702	3.011	35.556 1.00 18.38	С
	ATOM 1875	C SER A 221	61.537	1.989	36.353 1.00 20.90	с
	ATOM 1876	O SER A 221	61.683	0.799	35.983 1.00 19.84	0
	ATOM 1877	CB SER A 221	61.604	3.985	34.804 1.00 10.67	с
	ATOM 1878	OG SER A 221	60.847	4.744	33.867 1.00 15.61	<u> </u>
25	ATOM 1879	N ILE A 222	62.083	2.476	37.463 1.00 18.12	N
	ATOM 1880	CA ILE A 222	62.866	1.644	38.381 1.00 21.56	C
	ATOM 1881	C ILE A 222	62.020	0.554	39.068 1.00 29.10	c
	ATOM 1882	O ILE A 222	62.504	-0.566	39.307 1.00 19.03	0
	ATOM 1883	CB ILE A 222	63.467	2.516	39.432 1.00 24.56	c
30	ATOM 1884	CG1 ILE A 222	64.465	3.473	38.765 1.00 32.13	c
	ATOM 1885	CG2 ILE A 222	64.129	1.671	40.500 1.00 28.26	C
	ATOM 1886	CD1 ILE A 222	64.973	4.585	39.649 1,00 15.61	С
	ATOM 1887	N HIS A 223	60.772	0.907	39.384 1.00 19.34	N
	ATOM 1888	CA HIS A 223	59.829	-0.031	39.996 1.00 20.46	<u>c</u>
35	ATOM 1889	C HIS A 223	59.599	-1.097	38.964 1.00 24.82	c
	ATOM 1890	O HIS A 223	59.723	-2.283	39.270 1.00 24.66	0
	ATOM 1891	CB HIS A 223	58.465	0.637	40.359 1.00 19.53	<u>c</u>
	ATOM 1892	CG HIS A 223	57.373	-0.333	40.759 1.00 28.64	<u>c</u>
	ATOM 1893	ND1 HIS A 223	57.021	-0.564	42.082 1.00 24.16	N
40	ATOM 1894	CD2 HIS A 223	56.497	-1.062	40.004 1.00 30.39	с
	ATOM 1895	CE1 HIS A 223	55.983	-1.399	42.112 1.00 30.39	c
	ATOM 1896	NE2 HIS A 223	55.652	-1.727	40.869 1.00 28.13	N N
	ATOM 1897	N VAL A 224	59.354	-0.684	37.725 1.00 22.06	<u> </u>
	ATOM 1898	CA VAL A 224	59.111	-1.657	36.652 1.00 19.15	с
45	ATOM 1899	C VAL A 224	60.350	-2.490	36.333 1.00 25.89	с

	ATOM 1900 O VAL A 224	60,282 -3,709 36.250 1.00 22.37	0
	ATOM 1901 CB VAL A 224	58.559 -1.022 35.377 1.00 22.59	c
	ATOM 1902 CG1 VAL A 224	58.512 -2.050 34.231 1.00 22.61	c
	ATOM 1903 CG2 VAL A 224	57.161 -0.491 35.650 1.00 23.44	<u>c</u>
5	ATOM 1904 N MET A 225	61.499 -1.838 36.255 1.00 27.83	N
	ATOM 1905 CA MET A 225	62.710 -2.577 36.004 1.00 23.69	c
	ATOM 1906 C MET A 225	62.896 -3.678 37.071 1.00 31.95	c
	ATOM 1907 O MET A 225	63.290 -4.805 36.785 1.00 24.33	0
	ATOM 1908 CB MET A 225	63.902 -1.604 36.056 1.00 21.34	С
10	ATOM 1909 CG MET A 225	65.295 -2.296 35.999 1.00 17.83	<u>C</u>
	ATOM 1910 SD MET A 225	65.750 -2.958 34.306 1.00 23.33	s
	ATOM 1911 CE MET A 225	67.080 -1.896 33.785 1.00 16.46	С
	ATOM 1912 N GLU A 226	62.644 -3.319 38.316 1.00 19.54	N
	ATOM 1913 CA GLU A 226	62.988 -4.161 39.428 1.00 21.58	c
15	ATOM 1914 C GLU A 226	61.999 -5.200 39.918 1.00 30.77	С
	ATOM 1915 O GLU A 226	62.308 -6.012 40.780 1.00 29.39	0
	ATOM 1916 CB GLU A 226	63.613 -3.323 40.547 1.00 20.47	<u>C</u>
	ATOM 1917 CG GLU A 226	64.937 -2.673 40.122 1.00 23.03	<u>C</u>
	ATOM 1918 CD GLU A 226	65.504 -1.809 41.208 1.00 32.62	С
20	ATOM 1919 OE1 GLU A 226	64.721 -1.455 42.122 1.00 26.12	0
	ATOM 1920 OE2 GLU A 226	66.711 -1.479 41.152 1.00 17.67	0
	ATOM 1921 N LEU A 227	60.837 -5.248 39.295 1.00 34.11	N
	ATOM 1922 CA LEU A 227	59.883 -6.296 39.642 1.00 35.26	c
	ATOM 1923 C LEU A 227	60.537 -7.644 39.320 1.00 27.91	с
25	ATOM 1924 O LEU A 227	61.291 -7.766 38.340 1.00 19.89	0
	ATOM 1925 CB LEU A 227	58.693 -6.236 38.678 1.00 36.48	<u>c</u>
	ATOM 1926 CG LEU A 227	57.381 -5.569 38.955 1.00 40.30	с
	ATOM 1927 CD1 LEU A 227	57.697 -4.194 39.382 1.00 42.04	c
	ATOM 1928 CD2 LEU A 227	56.610 -5.577 37.647 1.00 46.21	<u>c</u>
30	ATOM 1929 N ALA A 228	60.026 -8.688 39.955 1.00 27.15	N
	ATOM 1930 CA ALA A 228	60.425 -10.051 39.616 1.00 25.26	<u>c</u>
	ATOM 1931 C ALA A 228	59.801 -10.435 38.279 1.00 27.93	<u>c</u>
	ATOM 1932 O ALA A 228	58.624 -10.093 37.934 1.00 31.26	0
	ATOM 1933 CB ALA A 228	60.003 -11.052 40.703 1.00 22.05	<u>c</u>
35	ATOM 1934 N HIS A 229	60.624 -11.160 37.539 1.00 27.05	N
	ATOM 1935 CA HIS A 229	60.275 -11.605 36.222 1.00 24.42	<u>C</u>
	ATOM 1936 C HIS A 229	58.905 -12.260 36.184 1.00 21.74	<u>C</u>
	ATOM 1937 O HIS A 229	58.015 -11.851 35.398 1.00 22.22	0
	ATOM 1938 CB HIS A 229	61.351 -12.520 35.698 1.00 17.71	c
40	ATOM 1939 CG HIS A 229	61.284 -12.701 34.220 1.00 27.24	<u>c</u>
	ATOM 1940 ND1 HIS A 229	61.060 -11.650 33.350 1.00 34.38	N
	ATOM 1941 CD2 HIS A 229	61.292 -13.821 33.465 1.00 31.45	C
	ATOM 1942 CE1 HIS A 229	60.992 -12.113 32.115 1.00 30.50	c
	ATOM 1943 NE2 HIS A 229	61.124 -13.427 32.159 1.00 35.23	N
45	ATOM 1944 N GLU A 230	58.681 -13.161 37.140 1.00 20.24	N

	ATOM 1945 CA GLU A 230	57.425 -13.895 37.209 1.00 29.41	С
	ATOM 1946 C GLU A 230	56.181 -13.051 37.341 1.00 22.20	с
	ATOM 1947 O GLU A 230	55.159 -13.359 36.679 1.00 17.78	0
	ATOM 1948 CB GLU A 230	57.464 -14.997 38.274 1.00 38.51	<u>C</u>
5	ATOM 1949 CG GLU A 230	58.085 -14.582 39.567 1.00 63.09	С
	ATOM 1950 CD GLU A 230	57.036 -14.473 40.661 1.00100.00	c
	ATOM 1951 OE1 GLU A 230	55.859 -14.872 40.400 1.00100.00	0
	ATOM 1952 OE2 GLU A 230	57.409 -14.003 41.768 1.00 81.48	0
	ATOM 1953 N VAL A 231	56.272 -12.004 38.182 1.00 16.53	N
10	ATOM 1954 CA VAL A 231	55.202 -11.029 38.356 1.00 20.23	С
	ATOM 1955 C VAL A 231	55.009 -10.164 37.102 1.00 24.45	С
	ATOM 1956 O VAL A 231	53.864 -9.834 36.705 1.00 21.00	0
	ATOM 1957 CB VAL A 231	55.541 -10.057 39.426 1.00 28.61	С
	ATOM 1958 CG1 VAL A 231	54.362 -9.098 39.610 1.00 29.78	<u>c</u>
15	ATOM 1959 CG2 VAL A 231	55.881 -10.757 40.677 1.00 28.96	c
	ATOM 1960 N TRP A 232	56.133 -9.798 36.486 1.00 17.17	N
	ATOM 1961 CA TRP A 232	56.052 -9.044 35.262 1.00 21.52	c
	ATOM 1962 C TRP A 232	55.388 -9.844 34.156 1.00 20.53	<u>c</u>
	ATOM 1963 O TRP A 232	54.588 -9.306 33.380 1.00 24.31	0
20	ATOM 1964 CB TRP A 232	57.438 -B.644 34.801 1.00 29.88	<u>c</u>
	ATOM 1965 CG TRP A 232	57.430 -7.843 33.500 1.00 27.65	<u>c</u>
	ATOM 1966 CD1 TRP A 232	57.184 -6.464 33.356 1.00 25.42	
	ATOM 1967 CD2 TRP A 232	57.714 -8.336 32.169 1.00 27.75	<u>C</u>
	ATOM 1968 NE1 TRP A 232	57,325 -6.095 32.033 1.00 22.53	N
25	ATOM 1969 CE2 TRP A 232	57.655 -7.203 31.279 1.00 25.11	c
	ATOM 1970 CE3 TRP A 232	58.037 -9.603 31.640 1.00 22.72	<u>c</u>
	ATOM 1971 CZ2 TRP A 232	57.917 -7.316 29.879 1.00 17.23	<u>C</u>
	ATOM 1972 CZ3 TRP A 232	58,238 -9,720 30,223 1.00 25,97	c
	ATOM 1973 CH2 TRP A 232	58.154 -8.581 29.368 1.00 22.07	<u>c</u>
30	ATOM 1974 N LEU A 233	55.749 -11.121 34.018 1.00 23.80	N
	ATOM 1975 CA LEU A 233	55.141 -11.949 32.937 1.00 24.78	<u>c</u>
	ATOM 1976 C LEU A 233	53.652 -12.118 33.122 1.00 24.51	с
	ATOM 1977 O LEU A 233	52.865 -12.075 32.163 1.00 28.50	0
	ATOM 1978 CB LEU A 233	55.765 -13.348 32.820 1.00 26.20	<u>C</u>
35	ATOM 1979 CG LEU A 233	57.250 -13.505 32.503 1.00 19.39	<u> </u>
	ATOM 1980 CD1 LEU A 233	57.745 -14.850 33.023 1.00 19.90	<u>c</u>
	ATOM 1981 CD2 LEU A 233	57.561 -13.287 31.017 1.00 16.01	с
	ATOM 1982 N GLU A 234	53.298 -12.343 34.372 1.00 25.45	N
	ATOM 1983 CA GLU A 234	51.929 -12.523 34.822 1.00 30.04	c
40	ATOM 1984 C GLU A 234	51.128 -11.319 34.367 1.00 35.69	с
	ATOM 1985 O GLU A 234	49.926 -11.390 34.052 1.00 28.25	0
	ATOM 1986 CB GLU A 234	52.007 -12.468 36.344 1.00 37.30	c
	ATOM 1987 CG GLU A 234	50.908 -13.133 37.118 1.00 45.39	<u>c</u>
	ATOM 1988 CD GLU A 234	51.112 -12.881 38.601 1.00100.00	<u>c</u>
45	ATOM 1989 OE1 GLU A 234	52.240 -13.137 39.104 1.00 99.09	0

			50 044 40 0F7 30 014 4 00400 00	
	ATOM 1990	OE2 GLU A 234	50.211 -12.257 39.211 1.00100.00	0
	ATOM 1991	N ASN A 235	51.802 -10.184 34.364 1.00 25.04	N
	ATOM 1992	CA ASN A 235	51.109 -8.986 33.992 1.00 26.17	c
	ATOM 1993	C ASN A 235	51.280 -8.494 32.571 1.00 30.46	c
5	ATOM 1994	O ASN A 235	50.824 -7.393 32.259 1.00 22.90	0
	ATOM 1995	CB ASN A 235	51.427 -7.895 34.981 1.00 29.23	с
	ATOM 1996	CG ASN A 235	50.878 -8.197 36.342 1.00 39.27	C
	ATOM 1997	OD1 ASN A 235	49.722 -7.882 36.628 1.00 29.06	0
	ATOM 1998	ND2 ASN A 235	51.653 -8.934 37.140 1.00 40.22	N
10	ATOM 1999	N THR A 236	51.935 -9.268 31.708 1.00 20.97	N
	ATOM 2000	CA THR A 236	52.108 -8.795 30.344 1.00 22.30	С
	ATOM 2001	C THR A 236	51.867 -9.943 29.419 1.00 29.74	С
	ATOM 2002	O THR A 236	51.551 -11.033 29.895 1.00 21.23	0
	ATOM 2003	CB THR A 236	53.545 -8.306 30.161 1.00 22.73	С
15	ATOM 2004	OG1 THR A 236	54.422 -9.325 30.636 1.00 21.23	0
	ATOM 2005	CG2 THR A 236	53.801 -7.048 31.041 1.00 19.69	<u>C</u>
	ATOM 2006	N GLN A 237	52.003 -9.699 28.109 1.00 22.23	N
	ATOM 2007	CA GLN A 237	52.097 -10.783 27.122 1.00 16.69	С
	ATOM 2008	C GLN A 237	53.335 -10.507 26.331 1.00 21.02	<u>c</u>
20	ATOM 2009	O GLN A 237	53.729 -9.362 26.204 1.00 22.19	0
	ATOM 2010	CB GLN A 237	50.913 -10.999 26.189 1.00 8.23	<u>c</u>
	ATOM 2011	CG GLN A 237	49.639 -11.096 26.904 1.00 21.04	<u>C</u>
	ATOM 2012	CD GLN A 237	48.907 -9.862 26.606 1.00 62.07	<u>c</u>
	ATOM 2013	OE1 GLN A 237	48.437 -9.712 25.460 1.00 59.32	0
25	ATOM 2014	NE2 GLN A 237	49.220 -8.847 27.388 1.00 37.82	N
	ATOM 2015	N PRO A 238	54.002 -11.579 25.917 1.00 28.76	N
	ATOM 2016	CA PRO A 238	55.275 -11.438 25.246 1.00 30.28	<u>c</u>
	ATOM 2017	C PRO A 238	55.194 -10.643 23.958 1.00 29.08	c
	ATOM 2018	O PRO A 238	56.181 -10.029 23.600 1.00 15.95	0
30	ATOM 2019	CB PRO A 238	55.733 -12.879 25.011 1.00 22.54	С
	ATOM 2020	CG PRO A 238	54.898 -13.710 25.886 1.00 18.92	с
	ATOM 2021	CD PRO A 238	53.626 -12.998 26.068 1.00 11.75	<u>C</u>
	ATOM 2022	N MET A 239	54.041 -10.635 23.286 1.00 17.26	N
	ATOM 2023	CA MET A 239	53.924 -9.807 22.104 1.00 17.85	c
35	ATOM 2024	C MET A 239	53.109 -8.509 22.362 1.00 18.63	<u>C</u>
	ATOM 2025	O MET A 239	52.792 -7.741 21.419 1.00 16.82	0
	ATOM 2026	CB MET A 239	53.460 -10.588 20.881 1.00 15.22	<u>c</u>
	ATOM 2027	CG MET A 239	54.536 -11.534 20.261 1.00 12.90	<u>c</u>
	ATOM 2028	SD MET A 239	53.994 -12.534 18.808 1.00 17.49	s
40	ATOM 2029	CE MET A 239	54.350 -11.357 17.422 1.00 13.12	С
	ATOM 2030	N LEU A 240	52.847 -8.252 23.646 1.00 18.55	N
	ATOM 2031	CA LEU A 240	52.159 -7.037 24.131 1.00 16.68	c
	ATOM 2032	C LEU A 240	52.774 -6.733 25.493 1.00 11.82	<u>c</u>
	ATOM 2033	O LEU A 240	52.124 -6.803 26.549 1.00 13.84	0
45	ATOM 2034	CB LEU A 240	50.645 -7.249 24.240 1.00 16.91	c

	MOTA	2035	CG	LEU A 240	49.646	-6.120	23.852	1.00 22.29	с
	MOTA	2036	CD1	LEU A 240	48.968	-5.488	25.033	1.00 25.51	С
	MOTA	2037	CD2	LEU A 240	50.070	-5.059	22.815	1.00 28.07	<u>c</u>
	MOTA	2038	N	SER A 241	54.076	-6.467	25.456	1.00 13.09	N
5	MOTA	2039	CA	SER A 241	54.842	-6.315	26.682	1.00 24.20	<u>c</u>
	MOTA	2040	С	SER A 241	54.947	-4.938	27.377	1.00 30.52	c
	MOTA	2041	0	SER A 241	55.363	-4.854	28.547	1.00 17.02	0
	MOTA	2042	СВ	SER A 241	56.247	-6.900	26.495	1.00 14.04	c
	MOTA	2043	OG	SER A 241	57.062	-6.144	25.598	1.00 13.95	0
10	MOTA	2044	N	HIS A 242	54.661	-3.861	26.659	1.00 17.87	N
	MOTA	2045	CA	HIS A 242	54.894	-2.548	27.221	1.00 13.55	c
	MOTA	2046	С	HIS A 242	53.990	-2.254	28.373	1.00 13.70	<u>c</u>
	MOTA	2047	0	HIS A 242	52.974	-2.885	28.539	1.00 13.29	o
	MOTA	2048	СВ	HIS A 242	54.826	-1.430	26.130	1.00 16.05	с
15	MOTA	2049	CG	HIS A 242	53.595	-1.504	25.272	1.00 18.88	C
	ATOM	2050	ND1	HIS A 242	52.591	-0.553	25.326	1.00 23.24	N
	MOTA	2051	CD2	HIS A 242	53.165	-2.461	24.413	1.00 13.19	c
	MOTA	2052	CE1	HIS A 242	51.629	-0.887	24.483	1.00 17.44	c
	MOTA	2053	NE2	HIS A 242	51.962	-2.031	23.901	1.00 19.54	N
20	MOTA	2054	N	ILE A 243	54.310	-1.203	29.095	1.00 15.84	N
	ATOM	2055	CA	ILE A 243	53.492	-0.809	30.192	1.00 19.10	C
	ATOM	2056	c_	ILE A 243	53.336	0.714	30.191	1.00 23.23	c
	MOTA	2057	0	ILE A 243	54.312	1.406	30.385	1.00 12.10	0
	MOTA	2058	СВ	ILE A 243	54.166	-1.273	31.482	1.00 24.62	C
25	ATOM	2059	CG1	ILE A 243	54.014	-2.783	31.576	1.00 25.60	с
	ATOM	2060	CG2	ILE A 243	53.497	-0.665	32.735	1.00 17.37	C
	MOTA	2061	CD1	ILE A 243	54.725	-3.365	32.714	1.00 14.82	С
	MOTA	2062	N	ASN A 244	52.112	1.217	30.013	1.00 16.43	и
	ATOM	2063	CA	ASN A 244	51.824	2.689	30.038	1.00 18.99	<u>C</u>
30	MOTA	2064	С	ASN A 244	52.252	3.292	31.348	1.00 18.83	<u>C</u>
	MOTA	2065	0	ASN A 244	51.965	2.727	32.405	1.00 19.58	0
	MOTA	2066	СВ	ASN A 244	50.304	2.987	29.910	1.00 15.67	С
	ATOM	2067	CG	ASN A 244	49.768	2.702	28.517	1.00 14.57	<u>C</u>
	MOTA	2068	OD1	ASN A 244	50.546	2.583	27.580	1.00 13.64	0
35	MOTA	2069	ND2	ASN A 244	48.443	2.491	28.393	1.00 10.16	N
	MOTA	2070	N	VAL A 245	52.800	4.499	31.326	1.00 13.50	_N
	MOTA	2071	CA_	VAL A 245	53.159	5.134	32.602	1.00 13.49	C
	MOTA	2072	С	VAL A 245	52.528	6.566	32.644	1.00 16.25	С
	MOTA	2073	0	VAL A 245	52.786	7.405	31.770	1.00 15.20	0
40	MOTA	2074	CB	VAL A 245	54.754	5.163	32,810	1.00 21.07	C
	MOTA	2075	CG1	VAL A 245	55.154	6.085	33.937	1.00 15.08	<u>C</u>
	MOTA	2076	CG2	VAL A 245	55.280	3.817	33.143	1.00 15.82	c
	MOTA	2077	N	GLY A 246	51.696	6.843	33.649	1.00 14.03	N
	MOTA			GLY A 246	51.027	8.136	33.707	1.00 16.87	c
45	MOTA	2079	С	GLY A 246	50.146	8.203	34.939	1.00 26.95	<u>c</u>

	ATOM 2080 O GLY A 24	6 50.323	7.401	35.850	1.00 23.04	0
	ATOM 2081 N THR A 24	7 49.207	9.161	34.963	1.00 21.44	N
	ATOM 2082 CA THR A 24	7 48.232	9.276	36.063	1.00 21.39	C
	ATOM 2083 C THR A 24	7 46.868	8.677	35.673	1.00 24.08	с
5	ATOM 2084 O THE A 24	7 46.069	8.306	36.508	1.00 21.03	0
	ATOM 2085 CB THR A 24	7 47.988	10.730	36.404	1.00 22.24	C
	ATOM 2086 OG1 THR A 24	7 47.409	11.389	35,265	1.00 18.62	0
	ATOM 2087 CG2 THR A 24	7 49.275	11.378	36.724	1.00 18.99	C
	ATOM 2088 N GLY A 24	8 46.583	8.651	34.384	1.00 24.95	N
10	ATOM 2089 CA GLY A 24	8 45.319	8.143	33.924	1.00 22.61	C
	ATOM 2090 C GLY A 24	8 44.223	9.160	34.226	1.00 21.42	C
	ATOM 2091 O GLY A 24	8 43.059	8.866	34.137	1.00 25.70	0
	ATOM 2092 N VAL A 24	9 44.615	10.386	34.521	1.00 30.72	N
	ATOM 2093 CA VAL A 24	9 43.673	11.464	34.827	1.00 26.09	C
15	ATOM 2094 C VAL A 24	9 43.747	12.596	33.786	1.00 32.70	c
	ATOM 2095 O VAL A 24	9 44.853	13.006	33.387	1.00 26.92	0
	ATOM 2096 CB VAL A 24	9 44.020	12.085	36.214	1.00 38.59	C
	ATOM 2097 CG1 VAL A 24	9 43.225	13.324	36.470	1.00 36.11	C
	ATOM 2098 CG2 VAL A 24	9 43.782	11.083	37.306	1.00 41.30	
20	ATOM 2099 N ASP A 25	0 42.581	13.125	33.397	1.00 27.95	N N
	ATOM 2100 CA ASP A 25	0 42.488	14.232	32.439	1.00 20.64	С
	ATOM 2101 C ASP A 25	0 42.611	15.581	33.155	1.00 27.63	C
	ATOM 2102 O ASP A 25	0 42.188	15.783	34.308	1.00 26.23	0
	ATOM 2103 CB ASP A 25	0 41.075	14.302	31.827	1.00 23.89	c
25	ATOM 2104 CG ASP A 25	0 40.768	13.180	30.850	1.00 39.52	с
	ATOM 2105 OD1 ASP A 25	0 41.283	13.184	29.688	1.00 39.96	0
	ATOM 2106 OD2 ASP A 25	0 39.767	12.501	31.153	1.00 45.34	o
	ATOM 2107 N CYS A 25	1 43.029	16.566	32.388	1.00 20.12	N
	ATOM 2108 CA CYS A 25	1 42.962	17.906	32.851	1.00 27.20	с
30	ATOM 2109 C CYS A 25	1 42.918	18.779	31.577	1.00 26.47	с
	ATOM 2110 O CYS A 25	1 43.699	18.560	30.633	1.00 19.45	0
	ATOM 2111 CB CYS A 25	1 44.148	18.157	33,778	1.00 34.86	с
	ATOM 2112 SG CYS A 25	1 45.129	19.619	33.453	1.00 29.47	s
	ATOM 2113 N THR A 25	2 41.932	19.673	31,494	1.00 14.85	N
35	ATOM 2114 CA THR A 25	2 41.834	20.588	30.335	1.00 21.21	с
	ATOM 2115 C THR A 25	2 42.999	21.592	30.236	1.00 20.53	с
	ATOM 2116 0 THR A 25	2 43.657	21.926	31.249	1.00 15.24	0
	ATOM 2117 CB THR A 25	2 40.506	21.407	30.329	1.00 32.08	<u>c</u>
	ATOM 2118 OG1 THR A 25	2 40.460	22.304	31.447	1.00 19.26	0
40	ATOM 2119 CG2 THR A 25	2 39,309	20.495	30.372	1,00 13.91	C
	ATOM 2120 N ILE A 25	3 43.228	22.095	29.024	1.00 14.81	N
	ATOM 2121 CA ILE A 25	3 44.264	23.118	28.812	1.00 16.90	c
	ATOM 2122 C ILE A 25	3 43.934	24.383	29.627	1.00 23.41	С
	ATOM 2123 O ILE A 25	3 44.834	25.012	30.247	1.00 15.27	0
45	ATOM 2124 CB ILE A 25	3 44.404	23.452	27.302	1.00 24.05	c

	ATOM 2125 CG1 ILE A 253	44.862 22.200 26.561 1.00 27.33	<u>c</u>
	ATOM 2126 CG2 ILE A 253	45.473 24.479 27.077 1.00 9.22	<u>C</u>
	ATOM 2127 CD1 ILE A 253	45.662 21.276 27.452 1.00 49.56	<u>c</u>
	ATOM 2128 N ARG A 254	42.637 24.709 29.707 1.00 19.56	N
5	ATOM 2129 CA ARG A 254	42.228 25.865 30.522 1.00 19.41	<u>c</u>
	ATOM 2130 C ARG A 254	42.712 25.713 31.970 1.00 18.10	<u>c</u>
	ATOM 2131 O ARG A 254	43.311 26.616 32.515 1.00 13.89	0
	ATOM 2132 CB ARG A 254	40.704 26.101 30.480 1.00 15.98	C
	ATOM 2133 CG ARG A 254	40.282 27.378 31.255 1.00 9.96	<u>c</u>
10	ATOM 2134 CD ARG A 254	38.809 27.702 31.218 1.00 24.79	<u>c</u>
	ATOM 2135 NE ARG A 254	38.498 28.414 29.997 1.00 29.42	N
	ATOM 2136 CE ARG A 254	38,693 29.723 29.794 1.00 59.85	С
	ATOM 2137 NH1 ARG A 254	39.194 30.527 30.732 1.00 42.58	N
	ATOM 2138 NH2 ARG A 254	38.377 30.245 28.620 1.00 18.44	N
15	ATOM 2139 N ASP A 255	42.406 24.564 32.586 1.00 20.22	N
	ATOM 2140 CA ASP A 255	42.795 24.205 33.974 1.00 16.48	<u>c</u>
	ATOM 2141 C ASP A 255	44.321 24.372 34.069 1.00 22.43	c
	ATOM 2142 O ASP A 255	44,868 24.897 35.060 1.00 18.53	0
	ATOM 2143 CB ASP A 255	42.478 22.686 34.157 1.00 19.17	С
20	ATOM 2144 CG ASP A 255	42.144 22.246 35.610 1.00 47.08	с
	ATOM 2145 OD1 ASP A 255	41.780 23.090 36.429 1.00 49.66	0
	ATOM 2146 OD2 ASP A 255	42.020 21.016 35.880 1.00 48.12	0
	ATOM 2147 N LEU A 256	45.014 23.809 33.078 1.00 15.98	<u> </u>
	ATOM 2148 CA LEU A 256	46.465 23.844 33.069 1.00 21.76	<u>c</u>
25	ATOM 2149 C LEU A 256	47.020 25.275 33.076 1.00 16.79	<u>c</u>
	ATOM 2150 O LEU A 256	47.825 25.697 33.946 1.00 15.24	0
	ATOM 2151 CB LEU A 256	46.967 23.056 31.859 1.00 23.33	<u> </u>
	ATOM 2152 CG LEU A 256	48.491 23.100 31.765 1.00 26.80	c
	ATOM 2153 CD1 LEU A 256	49.171 22.334 32.984 1.00 17.13	<u>C</u>
30	ATOM 2154 CD2 LEU A 256	49.040 22.724 30.346 1.00 15.42	<u>C</u>
	ATOM 2155 N ALA A 257	46.520 26.048 32.140 1.00 13.77	N
	ATOM 2156 CA ALA A 257	46.938 27.436 32.025 1.00 12.70	c
	ATOM 2157 C ALA A 257	46,656 28.237 33.267 1.00 10.73	c
	ATOM 2158 O ALA A 257	47.451 29.073 33.672 1.00 20.33	0
35	ATOM 2159 CB ALA A 257	46.208 28.073 30.834 1.00 13.34	c
	ATOM 2160 N GLN A 258	45.470 28.080 33.835 1.00 12.40	N
	ATOM 2161 CA GLN A 258	45.102 28.911 34.981 1.00 8.39	<u>c</u>
	ATOM 2162 C GLN A 258	45.879 28.480 36.166 1.00 13.48	<u>c</u>
	ATOM 2163 O GLN A 258	46.178 29.281 37.029 1.00 22.96	0
40	ATOM 2164 CB GLN A 258	43.614 28.761 35.305 1.00 16.12	c
	ATOM 2165 CG GLN A 258	42.674 29.096 34.130 1.00 30.19	<u>C</u>
	ATOM 2166 CD GLN A 258	42.574 30.585 33.781 1.00 37.29	С
	ATOM 2167 OE1 GLN A 258	42.911 31.471 34.610 1.00 21.24	0
	ATOM 2168 NE2 GLN A 258	42.021 30.876 32.572 1.00 15.94	N
45	ATOM 2169 N THR A 259	46.179 27.182 36.232 1.00 16.21	N

WO 99/64618

	ATOM 2170 CA THR A 259	46.982 26.678 37.336 1.00 16.85	<u>c</u>
	ATOM 2171 C THR A 259	48.410 27.186 37.233 1.00 20.56	С
	ATOM 2172 O THR A 259	49.002 27.621 38.214 1.00 21.44	0
	ATOM 2173 CB THR A 259	47.066 25.192 37.361 1.00 27.56	C
5	ATCM 2174 OG1 THR A 259	45.752 24.620 37.509 1.00 20.92	0
	ATOM 2175 CG2 THR A 259	47.936 24.796 38.545 1.00 12.85	c
	ATOM 2176 N ILE A 260	48.952 27.170 36.028 1.00 19.96	N
	ATOM 2177 CA ILE A 260	50.292 27.704 35.839 1.00 23.01	c
	ATOM 2178 C ILE A 260	50.313 29.180 36.225 1.00 31.73	С
10	ATOM 2179 O ILE A 260	51.211 29.627 36.993 1.00 25.90	0
	ATOM 2180 CB ILE A 260	50.835 27.456 34.390 1.00 22.46	c
	ATOM 2181 CG1 ILE A 260	51.153 25.940 34.232 1.00 24.12	c
	ATOM 2182 CG2 ILE A 260	52.099 28.361 34.106 1.00 13.47	c
	ATOM 2183 CD1 ILE A 260	51,501 25,443 32,810 1,00 12,58	c
15	ATOM 2184 N ALA A 261	49.280 29.910 35.764 1.00 15.35	N
	ATOM 2185 CA ALA A 261	49.177 31.355 36.048 1.00 16.00	c
	ATOM 2186 C ALA A 261	49.316 31.604 37.550 1.00 20.58	c
	ATOM 2187 O ALA A 261	50.104 32.443 37.987 1.00 16.09	0
	ATOM 2188 CB ALA A 261	47.832 31.958 35.487 1.00 13.65	С
20	ATOM 2189 N LYS A 262	48.551 30.843 38.323 1.00 11.50	N
	ATOM 2190 CA LYS A 262	48.578 30.905 39.770 1.00 10.13	c
	ATOM 2191 C LYS A 262	49.968 30.460 40.296 1.00 28.08	c
	ATOM 2192 O LYS A 262	50.503 31.084 41.205 1.00 29.37	0
	ATOM 2193 CB LYS A 262	47.453 30.032 40.335 1.00 12.50	С
25	ATOM 2194 CG LYS A 262	47.332 29.962 41.888 1.00 16.51	c
	ATOM 2195 CD LYS A 262	46.092 29.092 42.371 1.00 46.61	с
	ATOM 2196 CE LYS A 262	46.344 27.555 42.661 1.00 99.70	с
	ATOM 2197 NZ LYS A 262	45.157 26.703 43.200 1.00 36.59	N
	ATOM 2198 N VAL A 263	50.589 29.443 39.705 1.00 17.44	<u> </u>
30	ATOM 2199 CA VAL A 263	51.915 29.039 40.171 1.00 18.72	С
	ATOM 2200 C VAL A 263	52.997 30.170 39.997 1.00 32.12	c
	ATOM 2201 O VAL A 263	53.871 30.412 40.834 1.00 21.18	0
	ATOM 2202 CB VAL A 263	52.389 27.709 53.476 1.00 16.35	с
	ATOM 2203 CG1 VAL A 263	53.920 27.518 39.647 1.00 11.83	С
35	ATOM 2204 CG2 VAL A 263	51.646 26.522 40.093 1.00 14.99	<u>c</u>
	ATOM 2205 N VAL A 264	52.913 30.899 38.909 1.00 21.75	N
	ATOM 2206 CA VAL A 264	53.917 31.877 38.653 1.00 19.81	c
	ATOM 2207 C VAL A 264	53.719 33.208 39.377 1.00 35.79	<u>c</u>
	ATOM 2208 O VAL A 264	54.632 34.032 39.482 1.00 28.99	0
40	ATOM 2209 CB VAL A 264	54.059 32.014 37.175 1.00 24.27	<u>c</u>
	ATOM 2210 CG1 VAL A 264	54.728 33.269 36.822 1.00 33.58	c
	ATOM 2211 CG2 VAL A 264	54.840 30.808 36.674 1.00 23.01	<u>c</u>
	ATOM 2212 N GLY A 265	52.550 33.378 39.969 1.00 25.30	N
	ATOM 2213 CA GLY A 265	52.241 34.620 40.636 1.00 24.14	c
45	ATOM 2214 C GLY A 265	51.730 35.694 39.632 1.00 35.03	c

	ATOM 2215 O GLY A 265	51,773 36.911 39.962 1.00 33.71	0
	ATOM 2216 N TYR A 266	51,294 35,257 38,428 1,00 26,25	N
	ATOM 2217 CA TYR A 266	50,698 36,151 37,373 1.00 26,55	<u>c</u>
	ATOM 2218 C TYR A 266	49.364 36.745 37.818 1.00 31.01	c
5	ATOM 2219 O TYR A 266	48.532 36.067 38.456 1.00 27.99	0
	ATOM 2220 CB TYR A 266	50.501 35.463 36.008 1.00 24.31	<u>c</u>
	ATOM 2221 CG TYR A 266	49.994 36.381 34.884 1.00 28.64	С
	ATOM 2222 CD1 TYR A 266	50.670 37.582 34.542 1.00 35.05	C
	ATOM 2223 CD2 TYR A 266	48.860 36.038 34.118 1.00 22.60	C
10	ATOM 2224 CE1 TYR A 266	50.212 38.434 33.472 1.00 20.73	c
	ATOM 2225 CE2 TYR A 266	48.428 36.859 33.012 1.00 20.91	<u>c</u>
	ATOM 2226 CZ TYR A 266	49.088 38.062 32.735 1.00 23.85	<u>C</u>
	ATOM 2227 OH TYR A 266	48.622 38.851 31.710 1.00 33.40	0
	ATOM 2228 N LYS A 267	49.217 38.043 37.604 1.00 25.72	N
15	ATOM 2229 CA LYS A 267	47,988 38.697 38.009 1.00 30.77	c
	ATOM 2230 C LYS A 267	47.217 39.280 36.798 1.00 28.85	<u>c</u>
	ATOM 2231 O LYS A 267	46.179 39.894 36.949 1.00 31.17	0
	ATOM 2232 CB LYS A 267	48.279 39.741 39.092 1.00 27.13	с
	ATOM 2233 CG LYS A 267	48.728 39.128 40.403 1.00 23.18	<u>c</u>
20	ATOM 2234 CD LYS A 267	48.420 40.096 41.562 1.00 30.98	с
	ATOM 2235 CE LYS A 267	47.933 39.358 42.820 1.00 48.52	c
	ATOM 2236 NZ LYS A 267	47.005 38.208 42.505 1.00100.00	N
	ATOM 2237 N GLY A 268	47.716 39.054 35.594 1.00 22.67	N
	ATOM 2238 CA GLY A 268	47.019 39.518 34.394 1.00 21.38	<u>C</u>
25	ATOM 2239 C GLY A 268	45.856 38.568 34.085 1.00 31.03	<u>c</u>
	ATOM 2240 O GLY A 268	45.455 37.728 34.911 1.00 19.71	0
	ATOM 2241 N ARG A 269	45.387 38.645 32.849 1.00 30.40	N
	ATOM 2242 CA ARG A 269	44.263 37.846 32.399 1.00 26.47	c
	ATOM 2243 C ARG A 269	44.680 36.705 31.489 1.00 22.35	<u>C</u>
30	ATOM 2244 O ARG A 269	45.378 36.926 30.524 1.00 22.75	0
	ATOM 2245 CB ARG A 269	43,297 38,753 31,626 1,00 22,65	c
	ATOM 2246 CG ARG A 269	42.201 39.390 32.463 1.00 24.21	<u>C</u>
	ATOM 2247 CD ARG A 269	40.936 39.465 31.568 1.00 83.45	c
	ATOM 2248 NE ARG A 269	40.113 40.676 31.762 1.00100.00	N
35	ATOM 2249 CZ ARG A 269	38.808 40.751 31.431 1.00100.00	<u>C</u>
	ATOM 2250 NH1 ARG A 269	38.201 39.691 30.921 1.00 99.93	N
	ATOM 2251 NH2 ARG A 269	38.094 41.865 31.663 1.00100.00	и
	ATOM 2252 N VAL A 270	44.195 35.494 31.758 1.00 19.87	N
	ATOM 2253 CA VAL A 270	44.468 34.389 30.856 1.00 24.82	c
40	ATOM 2254 C VAL A 270	43.319 34.456 29.824 1.00 22.51	<u>C</u>
	ATOM 2255 O VAL A 270	42.145 34.501 30.181 1.00 25.79	0
	ATOM 2256 CB VAL A 270	44.436 32.979 31.571 1.00 24.03	c
	ATOM 2257 CG1 VAL A 270	44.576 31.861 30.533 1.00 20.72	c
	ATOM 2258 CG2 VAL A 270	45.506 32.849 32.639 1.00 11.27	<u>c</u>
45	ATOM 2259 N VAL A 271	43.660 34.409 28.554 1.00 25.18	N

	ATOM	2260	CA	VAL A	271	42.666	34.492	27.487	1.00	28.32	С
	MOTA	2261	_C	VAL A	271	42.819	33.370	26.442	1.00	24.89	с
	MOTA	2262	0	VAL A	271	43.923	33.115	25.980	1.00	21.98	0
	MOTA	2263	СВ	VAL A	271	42,901	35.813	26.736	1.00	29.25	с
5	MOTA	2264	CG1	VAL A	271	42.256	35.773	25.370	1.00	31.91	с
	MOTA	2265	CG2	VAL A	271	42.421	36.989	27.565	1.00	18.72	с
	MOTA	2266	N	PHE A	272	41.716	32.758	26,019	1.00	26.14	N
	ATOM	2267_	CA	PHE A	272	41.752	31.747	24.963	1.00	24.34	<u>C</u>
	MOTA	2268	С	PHE A	272	41.236	32.266	23.623	1.00	28.95	с
10	MOTA	2269	0	PHE A	272	40.155	32.826	23.582	1.00	22.01	o
	MOTA	2270	СВ	PHE A	272	40.960	30.506	25.391	1.00	20.97	с
	MOTA	2271	CG	PHE A	272	41.764	29.570	26.243	1.00	21.77	с
	MOTA	2272	CD1	PHE A	272	41.940	29.842	27.610	1.00	14.60	с
	MOTA	2273	CD2	PHE A	272	42,504	28.550	25.656	1.00	22.19	C
15	MOTA	2274	CE1	PHE A	272	42,763	29.041	28.434	1.00	17.89	c
	MOTA	2275	CE2	PHE A	272	43.336	27.726	26.454	1,00	27.64	c
	MOTA	2276	CZ	PHE A	272	43.478	27.979	27.851	1.00	25.14	C
	ATOM	2277	N_	ASP A	273	42.012	32.114	22.542	1.00	29.45	N
	MOTA	2278	CA	ASP A	273	41.557	32.536	21.214	1.00	22.33	C
20	ATOM	2279	С	ASP A	273	40.896	31.365	20.493	1.00	25.67	c
	MOTA	2280	Q	ASP A	273	41.539	30.570	19.793	1.00	17.81	0
	MOTA	2281	СВ	ASP A	273	42.672	33.114	20.343	1.00	21.45	c
	MOTA	2282	CG	ASP A	273	42.131	33.626	18.990	1.00	26.89	с
	MOTA	2283	OD1	ASP A	273	40.975	33.249	18.598	1.00	27.76	o
25	ATOM	2284	OD2	ASP A	273	42.838	34.421	18.327	1.00	30.06	o
	ATOM	2285	N	ALA A	274	39.589	31.284	20.649	1.00	15.59	N
	ATOM	2286	CA	ALA A	274	38.932	30.128	20.128	1.00	23.75	с
	MOTA	2287	С	ALA A	274	38.853	30.168	18.653	1.00	32.30	c
	ATOM	2288	0	ALA A	274	38.284	29.256	18.029	1.00	29.37	0
30	ATOM	2289	СВ	ALA A	274	37.567	29.905	20.777	1.00	18.87	с
	ATOM	2290	N	SER A	275	39.372	31.243	18.081	1.00	21.10	N
	ATOM	2291	CA	SER A	275	39.343	31.288	16.631	1.00	26.90	с
	ATOM	2292	С	SER A	275	40.390	30.300	16.116	1.00	43.37	C
	ATOM	2293	٥	SER A	275	40.421	29.949	14.927	1.00	46.32	
35	MOTA	2294	СВ	SER A	275	39.547	32.683	16.074	1.00	15.19	с
	ATOM	2295	OG-	SER A	275	40.904	33.070	16.078	1.00	28.71	o
	MOTA	2296	N	LYS A	276	41,192	29.780	17.037	1.00	22.98	N
	MOTA	2297	CA	LYS A	276	42.178	28.791		1.00		c
	MOTA	2298	c	LYS A	276	41.645	27.405	16.976	1.00	29.73	C
40	MOTA	2299	0	LYS A	276	40,992	27,206	18.010	1.00	25.10	o
	MOTA	2300	СВ	LYS A	276	43.544				19.19	с
	MOTA	2301	CG	LYS A	276	43.957	30.496			32.11	c
	MOTA	2302	CD	LYS A	276	44.062	30.852			22.43	C
	MOTA	2303	CE	LYS A	276	44.930	32.067	15.570		23.18	c
45	MOTA	2304	NZ	LYS A	276	45.454	32.117				N

	ATOM 2305 N PRO A 277	41.892 26.476 16.055 1.00 36.04	N
	ATOM 2306 CA PRO A 277	41.446 25.087 16.170 1.00 35.93	С
	ATOM 2307 C PRO A 277	42.022 24.332 17.363 1.00 29.30	Ç
	ATOM 2308 O PRO A 277	43.103 24.650 17.885 1.00 30.54	0
5	ATOM 2309 CB PRO A 277	41.975 24.453 14.878 1.00 39.65	c
	ATOM 2310 CG PRO A 277	43.249 25.261 14.566 1.00 42.90	с
	ATOM 2311 CD PRO A 277	42.787 26.670 14.892 1.00 37.84	c
	ATOM 2312 N ASP A 278	41.273 23.339 17.809 1.00 22.35	N
	ATOM 2313 CA ASP A 278	41.745 22.501 18.903 1.00 22.16	С
10	ATOM 2314 C ASP A 278	42.184 21.189 18.272 1.00 19.66	С
	ATOM 2315 O ASP A 278	41.905 20.917 17.117 1.00 23.49	0
	ATOM 2316 CB ASP A 278	40.636 22.241 19.971 1.00 15.09	С
	ATOM 2317 CG ASP A 278	40,216 23,503 20,702 1,00 22,86	с
	ATOM 2318 OD1 ASP A 278	41.113 24.254 21.096 1.00 25.18	0
15	ATOM 2319 OD2 ASP A 278	38.999 23.787 20.812 1.00 39.55	0
	ATOM 2320 N GLY A 279	42.846 20.355 19.044 1.00 30.65	N
	ATOM 2321 CA GLY A 279	43.229 19.034 18.546 1.00 33.78	С
	ATOM 2322 C GLY A 279	42.115 18.099 18.944 1.00 38.10	С
	ATOM 2323 O GLY A 279	40.963 18.517 19.068 1.00 47.52	0
20	ATOM 2324 N THR A 280	42.419 16.839 19.177 1.00 29.44	N
	ATOM 2325 CA THR A 280	41.328 15.990 19.587 1.00 26.68	С
	ATOM 2326 C THR A 280	40.889 16.439 20.972 1.00 23.52	C
	ATOM 2327 O THR A 280	41.670 17.067 21.713 1.00 23.62	0
	ATOM 2328 CB THR A 280	41.695 14.492 19.540 1.00 40.78	<u>c</u>
25	ATOM 2329 OG1 THR A 280	42.889 14.272 20.296 1.00 25.56	0
	ATOM 2330 CG2 THR A 280	41.893 14.054 18.095 1.00 37.71	<u>c</u>
	ATOM 2331 N PRO A 281	39.672 16.063 21.346 1.00 25.54	N
	ATOM 2332 CA PRO A 281	39.129 16.454 22.628 1.00 25.72	<u>c</u>
	ATOM 2333 C PRO A 281	39.776 15.778 23.800 1.00 26.02	c
30	ATOM 2334 O PRO A 281	39.752 16.314 24.915 1.00 22.68	0
	ATOM 2335 CB PRO A 281	37.650 15.990 22.559 1.00 28.89	<u>c</u>
	ATOM 2336 CG PRO A 281	37.417 15.540 21.201 1.00 29.39	c
	ATOM 2337 CD PRO A 281	38.761 15.138 20.646 1.00 26.82	С
	ATOM 2338 N ARG A 282	40.281 14.567 23.587 1.00 27.88	N
35	ATOM 2339 CA ARG A 282	40.806 13.817 24.720 1.00 34.08	· c
	ATOM 2340 C ARG A 282	41.977 12.918 24.384 1.00 27.62	С
	ATOM 2341 O ARG A 282	41.913 12.182 23.425 1.00 23.83	0
	ATOM 2342 CB ARG A 282	39.676 13.017 25.405 1.00 20.89	с
	ATOM 2343 CG ARG A 282	40.035 12.467 26.775 1.00 22.81	c
40	ATOM 2344 CD ARG A 282	38.762 11.925 27.442 1.00 26.77	С
	ATOM 2345 NE ARG A 282	38.963 11.345 28.781 1.00 36.48	N
	ATOM 2346 CZ ARG A 282	38.518 10.139 29.164 1.00 37.74	С
	ATOM 2347 NH1 ARG A 282	37.813 9.360 28.346 1.00 28.45	N
	ATOM 2348 NH2 ARG A 282	38.754 9.700 30.384 1.00 27.25	N
45	ATOM 2349 N LYS A 283	43.016 12.963 25.223 1.00 28.91	N
			-

	ATOM 2350	CA LYS A 283	44.217 12.171	25.051 1.00 24.32	<u>c</u>
	ATOM 2351	C LYS A 283	44.796 11.766	26.404 1.00 29.57	C
	ATOM 2352	O LYS A 283	45.262 12.626	27.138 1.00 33.16	
	ATOM 2353	CB LYS A 283	45.226 13.008	24.287 1.00 21.93	c
5	ATOM 2354	CG LYS A 283	46.111 12.251	23.316 1.00 32.38	С
	ATOM 2355	CD LYS A 283	46.526 13.171	22.143 1.00 95.77	C
	ATOM 2356	CE LYS A 283	45.710 12.937	20.836 1.00100.00	C
	ATOM 2357	NZ LYS A 283	46.418 13.332	19.535 1.00100.00	N
	ATOM 2358	N LEU A 284	44.747 10.467	26.734 1.00 23.37	N
10	ATOM 2359	CA LEU A 284	45.327 9.905	27.997 1.00 16.08	с
	ATOM 2360	C LEU A 284	45.463 8.386	28.047 1.00 20.46	c
	ATOM 2361	O LEU A 284	44.679 7.655	27.446 1.00 25.45	o
	ATOM 2362	CB LEU A 284	44.641 10.387	29.284 1.00 16.30	C
	ATOM 2363	CG LEU A 284	43.334 9.700	29.714 1.00 25.97	С
15	ATOM 2364	CD1 LEU A 284	42.881 10.089	31.152 1.00 22.11	c
	ATOM 2365	CD2 LEU A 284	42.203 9.953	28.693 1.00 23.92	<u> </u>
	ATOM 2366	N LEU A 285	46.453 7.939	28.820 1.00 18.51	N
	ATOM 2367	CA LEU A 285	46.792 6.527	29.003 1.00 16.77	С
	ATOM 2368	C LEU A 285	45.880 5.865	30.006 1.00 30.75	c
20	ATOM 2369	O LEU A 285	45.576 6.439	31.058 1.00 22.02	0
	ATOM 2370	CB LEU A 285	48.229 6.389	29.585 1.00 15.85	С
	ATOM 2371	CG LEU A 285	49.307 6.970	28.672 1.00 21.51	c
	ATOM 2372	CD1 LEU A 285	50.703 6.705	29.122 1.00 15.15	<u>c</u>
	ATOM 2373	CD2 LEU A 285	49.051 6.368	27.330 1.00 16.94	<u> </u>
25	ATOM 2374	N ASP A 286	45.565 4.599	29.734 1.00 26.62	N
	ATOM 2375	CA ASP A 286	44.945 3.726	30.698 1.00 10.90	с
	ATOM 2376	C ASP A 286	46.128 3.055	31.498 1.00 20.54	<u>c</u>
	ATOM 2377	O ASP A 286	46.991 2.372	30.938 1.00 23.38	0
	ATOM 2378	CB ASP A 286	44.073 2.702	29.970 1.00 14.65	c
30	ATOM 2379	CG ASP A 286	43.409 1.699	30.943 1.00 24.60	C
	ATOM 2380	OD1 ASP A 286	43.932 1.437	32.083 1.00 24.60	0
	ATOM 2381	OD2 ASP A 286	42.316 1.231	30.583 1.00 26.03	0
	ATOM 2382	N VAL A 287	46.230 3.317	32.791 1.00 15.44	N
	ATOM 2383	CA VAL A 287	47.354 2.816	33.556 1.00 15.58	с
35	ATOM 2384	C VAL A 287	46.973 1.695	34.521 1.00 16.48	С
	ATOM 2385	O VAL A 287	47.613 1.473	35.572 1.00 16.63	0
	ATOM 2386	CB VAL A 287	48.101 4.006	34.260 1.00 29.84	c
	ATOM 2387	CG1 VAL A 287	48.534 5.085	33.224 1.00 18.39	c
	ATOM 2388	CG2 VAL A 287	47.173 4.670	35.258 1.00 37.79	<u>C</u>
40	ATOM 2389	N THR A 288	45.904 0.992	34.152 1.00 22.27	N
	ATOM 2390	CA THR A 288	45.428 -0.152	34.956 1.00 19.34	<u>c</u>
	ATOM 2391	C THR A 288	46.561 -1.177	35.227 1.00 27.47	с
	ATOM 2392	O THR A 288	46.778 -1.586	36.365 1.00 24.87	O
	ATOM 2393	CB THR A 288	44.288 -0.909	34.244 1.00 22.86	С
45	ATOM 2394	OG1 THR A 288	43.120 -0.096	34.106 1.00 24.84	0

	ATOM 2395	CG2 THR A 288	43.916 -2.113 35.024 1.00 25.08	<u>C</u>
	ATOM 2396	N ARG A 289	47.290 -1.585 34.179 1.00 26.08	N
	ATOM 2397	CA ARG A 289	48.428 -2.506 34.319 1.00 16.92	c
	ATOM 2398	C ARG A 289	49.405 -2.037 35.408 1.00 22.96	<u>C</u>
5	ATOM 2399	O ARG A 289	49.847 -2.790 36.275 1.00 23.03	0
	ATOM 2400	CB ARG A 289	49.208 -2.607 32.976 1.00 12.43	<u>C</u>
	ATOM 2401	CG ARG A 289	48.934 -3.804 32.103 1.00 29.39	C
	ATOM 2402	CD ARG A 289	50.016 -4.102 31.037 1.00 25.88	c
	ATOM 2403	NE ARG A 289	49.441 -4.996 30.020 1.00 17.26	N
10	ATOM 2404	CZ ARG A 289	50.053 -5.459 28.930 1.00 38.82	<u>C</u>
	ATOM 2405	NH1 ARG A 289	51.306 -5.153 28.660 1.00 13.51	N
	ATOM 2406	NH2 ARG A 289	49.400 -6.262 28.096 1.00 37.68	N
	ATOM 2407	N LEU A 290	49.815 -0.786 35.306 1.00 26.60	N
	ATOM 2408	CA LEU A 290	50.809 -0.254 36.219 1.00 25.42	<u>c</u>
15	ATOM 2409	C LEU A 290	50.324 -0.376 37.656 1.00 24.17	<u>c</u>
	ATOM 2410	O LEU A 290	51.072 -0.759 38.574 1.00 19.94	0
	ATOM 2411	CB LEU A 290	51.000 1.219 35.876 1.00 24.66	<u>C</u>
	ATOM 2412	CG LEU A 290	52.281 2.019 36.066 1.00 24.67	<u>C</u>
	ATOM 2413	CD1 LEU A 290	51.992 3.479 36.504 1.00 29.25	C
20	ATOM 2414	CD2 LEU A 290	53.450 1.335 36.788 1.00 15.82	c`
	ATOM 2415	N HIS A 291	49.093 0.075 37.868 1.00 30.10	N
	ATOM 2416	CA HIS A 291	48.513 0.074 39.212 1.00 34.17	<u>c</u>
	ATOM 2417	C HIS A 291	48.411 -1.367 39.730 1.00 43.41	<u>c</u>
	ATOM 2418	O HIS A 291	48.621 -1.654 40.929 1.00 38.81	0
25	ATOM 2419	CB HIS A 291	47.113 0.674 39.143 1.00 28.01	<u>C</u>
	ATOM 2420	CG HIS A 291	47.097 2.153\ 38.984 1.00 29.68	<u>_</u>
	ATOM 2421	ND1 HIS A 291	48.242 2.921 39.015 1.00 35.63	N
	ATOM 2422	CD2 HIS A 291	46.068 3.024 38.855 1.00 31.18	<u>C</u>
	ATOM 2423	CE1 HIS A 291	47.926 4.197 38.845 1.00 24.20	<u>c</u>
30	ATOM 2424	NE2 HIS A 291	46.612 4.289 38.747 1.00 21.92	N
	ATOM 2425	N GLN A 292	48.048 -2.260 38.821 1.00 30.71	N
	ATOM 2426	CA GLN A 292	47.950 -3.654 39.181 1.00 34.82	<u>C</u>
	ATOM 2427	C GLN A 292	49,287 -4.197 39.622 1.00 36.93	С
	ATOM 2428	O GLN A 292	49.323 -5.040 40.510 1.00 27.56	0
35	ATOM 2429	CB GLN A 292	47.322 -4.487 38.069 1.00 28.23	<u>C</u>
	ATOM 2430	CG GLN A 292	45.798 -4.405 38.171 1.00 81.15	<u>C</u>
	ATOM 2431	CD GLN A 292	45.023 -4.954 36.963 1.00100.00	<u> </u>
	ATOM 2432	OE1 GLN A 292	45,597 -5.410 35.951 1.00 99.65	0
	ATOM 2433	NE2 GLN A 292	43.687 -4.895 37.073 1.00 40.86	<u>N</u>
40	ATOM 2434	N LEU A 293	50.375 -3.658 39.058 1.00 31.75	и
	ATOM 2435	CA LEU A 293	51.750 -4.072 39.383 1.00 22.67	<u>c</u>
	ATOM 2436	C LEU A 293	52,238 -3,323 40,613 1.00 28,64	C
	ATOM 2437	O LEU A 293	53.420 -3.377 41.017 1.00 22.27	0
	ATOM 2438	CB LEU A 293	52.665 -3.769 38.205 1.00 25.57	<u>C</u>
45	ATOM 2439	CG LEU A 293	52.497 -4.703 37.016 1.00 35.11	<u>c</u>

	ATOM 2440	CD1 LEU A 293	53.306 -4	170 35.836	1.00 28.25	_c
	ATOM 2441	CD2 LEU A 293	52.965 -6	110 37.439	1.00 47.81	<u>_</u> C
	ATOM 2442	N GLY A 294	<u>51.316 -2.</u>	510 41,111	1.00 33.08	N
	ATOM 2443	CA GLY A 294	51.488 -1.	793 42.347	1.00 24.90	c
5	ATOM 2444	C GLY A 294	52.272 -0.	512 42.326	1.00 29.31	С
	ATOM 2445	O GLY A 294	53.070 -0.	249 43.223	1.00 25.25	_0
	ATOM 2446	N TRP A 295	52.000 0.	347 41,368	1.00 27.83	N
	ATOM 2447	CA TRP A 295	52.687 1.	623 41.385	1.00 19.45	2
	ATOM 2448	C TRP A 295	51.684 2.	731 41.081	1.00 25.79	
10	ATOM 2449	O TRP A 295	50.765 2	527 40.297	1.00 20.43	0
	ATOM 2450	CB TRP A 295	53.961 1.	614 40.524	1.00 12.85	
	ATOM 2451	CG TRP A 295	54.750 2.	911 40.618	1.00 23.04	
	ATOM 2452	CD1 TRP A 295	55.897 3.	161 41.368	1.00 23.68	<u>_</u> C
	ATOM 2453	CD2 TRP A 295	54.415 4.	159 39.979	1.00 20.72	С
15	ATOM 2454	NE1 TRP A 295	56.258 4.	493 41.244	1.00 18.67	N
	ATOM 2455	CE2 TRP A 295	55.389 5.	113 40.373	1.00 20.95	<u>_</u> C
	ATOM 2456	CE3 TRP A 295	53.406 4.	550 39.102	1.00 21.47	C
	ATOM 2457	CZ2 TRP A 295	55.338 6.	439 39.958	1.00 17.58	_C
	ATOM 2458	CZ3 TRP A 295	53.403 5.	873 38.632	1.00 21.57	С
20	ATOM 2459	CH2 TRP A 295	54.368 6.	787 39.058	1.00 19.45	
	ATOM 2460	N TYR A 296	51.709 3.	797 41.884	1.00 25.17	_N
	ATOM 2461	CA TYR A 296	50.720 4.	883 41.731	1.00 24.90	<u>_</u>
	ATOM 2462	C TYR A 296	51. <u>5</u> 17 6.	178 41.857	1.00 30.85	
	ATOM 2463	O TYR A 296	52.363 6.	272 42.745	1.00 21.27	0
25	ATOM 2464	CB TYR A 296	49.654 4.	813 42.840	1.00 25.18	c
	ATOM 2465	CG TYR A 296	48.685 3.	651 42.744	1.00 23.04	C
	ATOM 2466	CD1 TYR A 296	49.078 2.	343 43.088	1.00 31.62	С
	ATOM 2467	CD2 TYR A 296	47.380 3.	853 42.289	1.00 26.02	<u>_C</u>
	ATOM 2468	CE1 TYR A 296	48.203 1.	268 42.935	1.00 24.42	C
30	ATOM 2469	CE2 TYR A 296	46.493 2,	770 42,127	1.00 24.81	_ <u>c</u>
	ATOM 2470	CZ TYR A 296	46.902 1.	483 42.464	1.00 39.41	c
	ATOM 2471	OH TYR A 296	45.984 0.	434 42.337	1.00 66.19	<u>Q</u>
	ATOM 2472	N HIS A 297	51.324 7.	123 40.924	1.00 20.95	N
	ATOM 2473	CA HIS A 297	52.130 8.	343 40.938	1.00 26.86	c
35	ATOM 2474	C HIS A 297	51.947 9.	175 42.210	1.00 35.01	<u></u>
	ATOM 2475	O HIS A 297	50.885 9.	132 42.874	1.00 26.92	٥
	ATOM 2476	CB HIS A 297	51.819 9.	192 39.733	1.00 25.77	c
	ATOM 2477	CG HIS A 297	50.489 9.	842 39.803	1.00 31.16	<u>c</u>
	ATOM 2478	ND1 HIS A 297	49.314 9.	145 39.633	1.00 34.21	N
40	ATOM 2479	CD2 HIS A 297	50.135 11.	094 40.167	1.00 25.83	٤
	ATOM 2480	CE1 HIS A 297	48.290 9.	972 39.776	1.00 24.14	C
	ATOM 2481	NE2 HIS A 297	48.761 11.	164 40.087	1.00 23.35	N
	ATOM 2482	N GLU A 298	52.983 9.	926 42.554	1.00 24.98	М
	ATOM 2483	CA GLU A 298	52.957 10.	683 43.798	1.00 27.65	C
45	ATOM 2484	C GLU A 298	52.831 12.	187 43.741	1.00 36.86	<u>c</u>

	ATOM 2485 O GLU A 298	52.433 12.792 44.718 1.00 43.61	0
	ATOM 2486 CB GLU A 298	54.153 10.319 44.686 1.00 22.02	<u>C</u>
	ATOM 2487 CG GLU A 298	54,004 8.943 45,285 1.00 36.42	<u>c</u>
	ATOM 2488 CD GLU A 298	54.999 8.664 46.406 1.00100.00	c
5	ATOM 2489 OE1 GLU A 298	56.223 8.561 46.152 1.00 44.79	0
	ATOM 2490 OE2 GLU A 298	54.526 8.470 47.547 1.00100.00	0
	ATOM 2491 N ILE A 299	53.232 12.800 42.639 1.00 23.49	N
	ATOM 2492 CA ILE A 299	53.268 14.244 42.562 1.00 13.25	<u>C</u>
	ATOM 2493 C ILE A 299	52.016 14.848 41.906 1.00 27.05	c
10	ATOM 2494 O ILE A 299	51,681 14.530 40.757 1.00 26.73	0
	ATOM 2495 CB ILE A 299	54.586 14.711 41.862 1.00 15.93	c
	ATOM 2496 CG1 ILE A 299	55.836 14.183 42.606 1.00 23.83	c
	ATOM 2497 CG2 ILE A 299	54.596 16.213 41.541 1.00 17.37	с
	ATOM 2498 CD1 ILE A 299	57.232 14.221 41.787 1.00 21.32	<u>c</u>
15	ATOM 2499 N SER A 300	51.323 15.716 42.648 1.00 18.55	N
	ATOM 2500 CA SER A 300	50,177 16.449 42.091 1.00 19.58	c
	ATOM 2501 C SER A 300	50.714 17.415 41.042 1.00 17.29	c
	ATOM 2502 O SER A 300	51.824 17.941 41.178 1.00 21.06	0
	ATOM 2503 CB SER A 300	49.542 17.307 43.181 1.00 16.78	c
20	ATOM 2504 OG SER A 300	50.548 17.969 43.923 1.00 75.80	0
	ATOM 2505 N LEU A 301	49.870 17.755 40.075 1.00 16.13	N
	ATOM 2506 CA LEU A 301	50.246 18.675 39.014 1.00 17.70	С
	ATOM 2507 C LEU A 301	50.689 19.964 39.646 1.00 20.11	C
	ATOM 2508 O LEU A 301	51.714 20.568 39.303 1.00 20.46	0
25	ATOM 2509 CB LEU A 301	48.990 18.981 38.197 1.00 17.92	c
	ATOM 2510 CG LEU A 301	49.182 20.030 37.112 1.00 25.15	<u>C</u>
	ATOM 2511 CD1 LEU A 301	50.233 19.552 36.086 1.00 18.82	c
	ATOM 2512 CD2 LEU A 301	47.854 20.177 36.436 1.00 25.88	<u>C</u>
	ATOM 2513 N GLU A 302	49.845 20.398 40.554 1.00 27.01	N
30	ATOM 2514 CA GLU A 302	50.053 21.636 41.280 1.00 37.72	c
	ATOM 2515 C GLU A 302	51.410 21.618 41.996 1.00 29.99	c
	ATOM 2516 O GLU A 302	52.245 22.514 41.798 1.00 27.15	0
	ATOM 2517 CB GLU A 302	48.899 21.841 42.275 1.00 43.10	С
	ATOM 2518 CG GLU A 302	49.061 23.061 43.174 1.00 90.85	c
35	ATOM 2519 CD GLU A 302	48.451 24.324 42.580 1.00100.00	C
	ATOM 2520 OE1 GLU A 302	47.566 24.209 41.706 1.00100.00	0
	ATOM 2521 OE2 GLU A 302	48.808 25.432 43.036 1.00 64.50	0
	ATOM 2522 N ALA A 303	51.646 20.591 42.801 1.00 8.72	N
	ATOM 2523 CA ALA A 303	52.937 20.455 43.459 1.00 15.03	C
40	ATOM 2524 C ALA A 303	54.102 20.355 42.450 1.00 19.85	C
	ATOM 2525 O ALA A 303	55.104 21.090 42.553 1.00 22.24	0
	ATOM 2526 CB ALA A 303	52.938 19.258 44.410 1.00 18.97	С
	ATOM 2527 N GLY A 304	53.953 19.472 41.467 1.00 13.05	N
	ATOM 2528 CA GLY A 304	54,970 19,321 40,448 1.00 8.94	С
45	ATOM 2529 C GLY A 304	55.239 20.621 39.695 1.00 20.31	С

	ATOM 25	30 o	GLY A	304	56.394	20.900	39.322	1.00	14.30	0
	ATOM 25	31 N	LEU A	305	54.191	21.383	39.361	1.00	10.76	N
	ATOM 25	32 CA	LEU A	305	54.483	22.622	38,611	1.00	20.29	С
	ATOM 25	33 C	LEU A	305	55.281	23.669	39.456	1.00	28.92	c
5	ATOM 25	34 0	LEU A	305	56.194	24.385	38.974	1.00	17.69	_0
	ATOM 25	35 CB	LEU A	305	53.202	23.245	38.033	1.00	24.03	
	ATOM 25	36 CG	LEU A	305	52.357	22.647	36.880	1.00	27.66	С
	ATOM 25	37 CD1	LEU A	305	50.975	23.384	36.789	1.00	13.44	C
	ATOM 25	38 CD2	LEUA	305	53.079	22.724	35.543	1.00	18.39	С
10	ATOM 25	39 N	ALA A	306	54.904	23.757	40.724	1.00	19.94	N
	ATOM 25	40 CA	ALA A	306	55.544	24.660	41.655	1.00	24.79	С
	ATOM 25	41 C	ALA A	306	57.035	24.380	41.743	1.00	27.51	С
	ATOM 25	42 0	ALA A	306	57.852	25.280	41.662	1.00	29.68	0
	ATOM 25	43 CB	ALA A	306	54.937	24.471	43.002	1.00	17.87	
15	ATOM 25	44 N	SER A	307	57.378	23.137	42.011	1.00	18.46	N
	ATOM 25	45 CA	SER A	307	58.793	22.756	42.162	1.00	16.31	
	ATOM 25	46 C	SER A	307	59.547	22.885	40.832	1.00	22.66	<u>c</u>
	ATOM 25	47 0	SER A	307	60.742	23.212	40.786	1.00	28.47	0
	ATOM 25	48 CB	SER A	307	58.851	21.304	42.622	1.00	20.47	C
20	ATOM 25	49 og	SER A	307	58.517	20.454	41.526	1.00	29.03	0
	ATOM 25	50 N	THR A	308	58.849	22.631	39.735	1.00	27.31	N
	ATOM 25	51 CA	THR A	308	59.458	22.738	38.413	1.00	22.89	<u>C</u>
	ATOM 25	52 C	THR A	308	5 9.7 57	24.216	38.107	1.00	26.06	
	ATOM 25	53 0	THR A	308	60.819	24.546	37.591	1.00	29.89	0
25	ATOM 25	54 CB	THR A	308	58.536	22.115	37.318	1.00	18.72	
	ATOM 25	55 OG1	THR A	308	58.356	20.714	37.545	1.00	20,17	0
	ATOM 25	56 CG2	THR A	308	59.094	22.330	35.923	1.00	12.37	С
	ATOM 25	57 N	TYR A	309	58.846	25.118	38.453	1.00	28.20	N
	ATOM 25	58 CA	TYR A	309	59.110	26.549	38.241	1.00	31.09	C
30	ATOM 25	59 C	TYR A	309	60.383	27.059	39.045	1.00	16.31	C
	ATOM 25	60 O	TYR A	309	61.179	27.858	38.577	1.00	16.91	0
	ATOM 25	61 CB	TYR A	309	57.819	27.373	38.533	1.00	31.19	<u></u> C
	ATOM 25	62 CG	TYR A	309	57.944	28.895	CC.392	1.00	14.57	C
	ATOM 25	63 CD1	TYR A	309	58.397	29.457	37.224	1.00	17.51	
35	ATOM 25	64 CD2	TYR A	309	57.575	29.757	39.442	1.00	24.99	<u>C</u>
	ATOM 25	65 CE1	TYR A	309	58.527	30.801	37.100	1.00	18.41	С
	ATOM 25	66 CE2	TYR A	309	57.744	31.129	39.351	1.00	19.04	C
	ATOM 25	67 CZ	TYR A	309	58.212	31.641	38.164	1.00	29.13	С
	ATOM 25	68 OH	TYR A	309	58,300	33.004	37.966	1.00	28.22	0
40	ATOM 25	69 ห	GLN A	310	60.560	26.579	40.260	1.00	15.41	N
	ATOM 25	70 CA	GLN A	310	61.705	26.964	41.087	1.00	22.35	<u>c</u>
	ATOM 25	71 C	GLN A	310	63.001	26.492	40.446	1.00	31.46	С
	ATOM 25	72 0	GLN A	310	64.009	27.191	40.442	1.00	33.42	_0
	ATOM 25	73 СВ	GLN A	310	61.587	26.335	42.482	1.00	17.67	Ç
45	ATOM 25	74 CG	GLN A	310	62.579	26.921	43.461	1.00	57.58	_ <u>c</u>

WO 99/64618 PCT/US99/11576

	ATOM 2575 CD GLN A 310	62.287 28.370 43.782 1.00 65.14	С
	ATOM 2576 OE1 GLN A 310	61.134 28.754 44.000 1.00 41.94	0
	ATOM 2577 NE2 GLN A 310	63.330 29.194 43.801 1.00 99.09	N
	ATOM 2578 N TRP A 311	62,957 25,321 39,830 1.00 28,76	N
5	ATOM 2579 CA TRP A 311	64.146 24.822 39.163 1.00 26.29	<u>c</u>
	ATOM 2580 C TRP A 311	64.474 25.769 38.040 1.00 17.91	c
	ATOM 2581 O TRP A 311	65.599 26.193 37.880 1.00 22.89	0
	ATOM 2582 CB TRP A 311	63.938 23.383 38.643 1.00 27.53	<u>C</u>
	ATOM 2583 CG TRP A 311	65.176 22.784 38.119 1.00 17.82	<u>c</u>
10	ATOM 2584 CD1 TRP A 311	66.132 22.090 38.826 1.00 20.21	<u>C</u>
	ATOM 2585 CD2 TRP A 311	65.652 22.881 36.784 1.00 17.99	<u>c</u>
	ATOM 2586 NEI TRP A 311	67.197 21.776 37.992 1.00 20.39	N
	ATOM 2587 CE2 TRP A 311	66.933 22.284 36.746 1.00 19.57	<u>c</u>
	ATOM 2588 CE3 TRP A 311	65.141 23.461 35.621 1.00 20.26	<u>c</u>
15	ATOM 2589 CZ2 TRP A 311	67.686 22.236 35.599 1.00 14.25	c
	ATOM 2590 CZ3 TRP A 311	65,901 23,446 34,501 1,00 18,59	<u>c</u>
	ATOM 2591 CH2 TRP A 311	67.169 22.831 34.494 1.00 16.86	<u>C</u>
	ATOM 2592 N PHE A 312	63.469 26.109 37.256 1.00 17.47	N
	ATOM 2593 CA PHE A 312	63,665 27,064 36,179 1.00 20,14	C
20	ATOM 2594 C PHE A 312	64.224 28.371 36.733 1.00 18.33	
	ATOM 2595 O PHE A 312	65.080 29.024 36.104 1.00 24.76	.0
	ATOM 2596 CB PHE A 312	62.328 27.318 35.458 1.00 29.51	<u>c</u>
	ATOM 2597 CG PHE A 312	62.328 28.544 34.603 1.00 28.52	<u>c</u>
	ATOM 2598 CD1 PHE A 312	62.883 28.508 33.338 1.00 30.53	c
25	ATOM 2599 CD2 PHE A 312	61.825 29.758 35.104 1.00 29.31	<u>c</u>
	ATOM 2600 CE1 PHE A 312	62.936 29.660 32.554 1.00 34.73	c
	ATOM 2601 CE2 PHE A 312	61.900 30.904 34.362 1.00 38.40	<u></u>
	ATOM 2602 CE PHE A 312	62.432 30.860 33.063 1.00 40.73	c
	ATOM 2603 N LEU A 313	63.697 28.787 37.876 1.00 22.46	N
30	ATOM 2604 CA LEU A 313	64.170 30.025 38.516 1.00 28.47	<u>C</u>
	ATOM 2605 C LEU A 313	65.627 29.827 38.898 1.00 37.53	<u> </u>
	ATOM 2606 O LEU A 313	66.452 30.693 38.629 1.00 34.20	0
	ATOM 2607 CB LEU A 313	63.375 30.410 39.783 1.00 20.44	C
	ATOM 2608 CG LEU A 313	61,955 30.897 39,555 1,00 16.29	<u>c</u>
35	ATOM 2609 CD1 LEU A 313	61.499 31.399 40.871 1.00 15.94	<u>C</u>
	ATOM 2610 CD2 LEU A 313	61.959 31.961 38.524 1.00 14.44	<u>C</u>
	ATOM 2611 N GLU A 314	65.953 28.685 39.508 1.00 30.70	<u>N</u>
	ATOM 2612 CA GLU A 314	67.353 28.432 39.875 1.00 24.15	c
	ATOM 2613 C GLU A 314	68.291 28.149 38.703 1.00 36.34	С
40	ATOM 2614 O GLU A 314	69.485 28.047 38.890 1.00 43.10	0
	ATOM 2615 CB GLU A 314	67.459 27.366 40.947 1.00 19.90	<u>c</u>
	ATOM 2616 CG GLU A 314	66.634 27.754 42.141 1.00 27.37	c
	ATOM 2617 CD GLU A 314	66.450 26.666 43.182 1.00 31.09	Ç
	ATOM 2618 OE1 GLU A 314	67.157 25.648 43.085 1.00 59.60	0
45	ATOM 2619 OE2 GLU A 314	65.634 26.872 44.125 1.00 46.20	0

	ATOM 2620 N ASN A 315	67.778	28.114 37.479 1.00 40.17 N
	ATOM 2621 CA ASN A 315		27.802 36.343 1.00 37.76 C
	ATOM 2622 C ASN A 315	68.383	
	ATOM 2623 O ASN A 315	68.591	28.001 34.047 1.00 39.15 0
5	ATOM 2624 CB ASN A 315		26.360 35.884 1.00 33.74 C
	ATOM 2625 CG ASN A 315		25.383 36.801 1.00 53.18 C
	ATOM 2626 OD1 ASN A 315		25.087 37.835 1.00 49.13 O
	ATOM 2627 ND2 ASN A 315	70.239	24.926 36.479 1.00 97.72 N
	ATOM 2628 N GLN A 316	67.852	
10	ATOM 2629 CA GLN A 316	67.627	30.550 33.957 1.00 77.90 C
	ATOM 2630 C GLN A 316	68.797	
	ATOM 2631 O GLN A 316	69.272	31.387 32.375 1.00 51.33 0
	ATOM 2632 CB GLN A 316	66.280	31.276 33.902 1.00 75.89 C
	ATOM 2633 CG GLN A 316	65.683	31.589 35.231 1.00 80.97 C
15	ATOM 2634 CD GLN A 316	65.233	33.036 35.350 1.00 54.58 C
	ATOM 2635 OE1 GLN A 316	64.881	33.699 34.367 1.00 46.46 O
	ATOM 2636 NE2 GLN A 316		33.538 36.566 1.00 33.46 N
	TER 2637 GLN A 316		A A
	CONECT 110 111		
20	CONECT 111 110 112		
	CONECT 112 111 113 114		
	CONECT 113 112 118		
	CONECT 114 112 115 116		
	CONECT 115 114		
25	CONECT 116 114 117 118		
	CONECT 117 116 129		
	CONECT 118 113 116		
	CONECT 120 121		
	CONECT 121 120 122		
30	CONECT 122 121 123 124	 	
	CONECT 123 122 128		
	CONECT 124 122 125 126		
	CONECT 125 124		
	CONECT 126 124 127 128		
35	CONECT 127 126		
	CONECT 128 123 126		
	CONECT 129 117 130 131 13	12	
	CONECT 130 129		
<u></u>	CONECT 131 129		
40	CONECT 132 129		
	MASTER 208 0 1 13	10 0	3 6 2636 1 22 25
	END		

WO 99/64618 PCT/US99/11576

5

141

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.

5

15

20

25

30

What is claimed:

- 1. A method for producing ascorbic acid or esters thereof in a microorganism, comprising culturing a microorganism having a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase; and recovering said ascorbic acid or esters thereof.
- A method, as claimed in Claim 1, wherein said genetic modification is a
 genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 3. A method, as claimed in Claim 1, wherein said genetic modification is a genetic modification to increase the action of an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose.
 - 4. A method, as claimed in Claim 3, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 5. The method of Claim 3, wherein said genetic modification comprises transformation of said microorganism with a recombinant nucleic acid molecule that expresses said epimerase.
 - 6. The method of Claim 5, wherein said epimerase has a tertiary structure that substantially conforms to the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
 - 7. The method of Claim 5, wherein said epimerase has a structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

10

15

20

25

- 8. The method of Claim 5, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 1 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 9. The method of Claim 5, wherein said epimerase comprises a substrate binding site having a tertiary structure that substantially conforms to the tertiary structure of the substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 10. The method of Claim 9, wherein said substrate binding site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a substrate binding site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 11. The method of Claim 5, wherein said epimerase comprises a catalytic site having a tertiary structure that substantially conforms to the tertiary structure of the catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 12. The method of Claim 11, wherein said catalytic site has a tertiary structure with an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a catalytic site of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.
- 13. The method of Claim 11, wherein said catalytic site comprises the amino acid residues serine, tyrosine and lysine.
- 14. The method of Claim 13, wherein tertiary structure positions of said amino acid residues serine, tyrosine and lysine substantially conform to tertiary structure positions of residues Ser107, Tyr136 and Lys140, respectively, as represented by atomic coordinates in Brookhaven Protein Data Bank Accession Code 1bws.
 - 15. The method of Claim 5, wherein said epimerase binds NADPH.

PCT/US99/11576

5

15

20

25

- 16. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 17. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 75% of non-Xaa residues in SEQ ID NO:11.
- 18. The method of Claim 5, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 90% of non-Xaa residues in SEQ ID NO:11.
 - 19. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having at least 4 contiguous amino acid residues that are 100% identical to at least 4 contiguous amino acid residues of an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10.
 - 20. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence comprising at least about 12 contiguous nucleotides having 100% identity with at least about 12 contiguous nucleotides of a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9.
 - 21. The method of Claim 5, wherein said epimerase comprises an amino acid sequence having a motif: Gly-Xaa-Xaa-Gly-Xaa-Xaa-Gly.
 - 22. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 15% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
 - 23. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 20% identical to a nucleic acid

ŧ:

÷

5

10

15

20

sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.

- 24. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that is at least about 25% identical to a nucleic acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7 and SEQ ID NO:9, as determined using a Lipman-Pearson method with Lipman-Pearson standard default parameters.
- 25. The method of Claim 5, wherein said recombinant nucleic acid molecule comprises a nucleic acid sequence that hybridizes under stringent hybridization conditions to a nucleic acid sequence encoding a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase.
- 26. The method of Claim 25, wherein said nucleic acid sequence encoding said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:5.
- 27. The method of Claim 25, wherein said GDP-4-keto-6-deoxy-D-mannose epimerase/reductase comprises an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4 and SEQ ID NO:6.
- 28. A method, as claimed in Claim 1, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
 - 29. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant.
 - 30. A method, as claimed in Claim 1, wherein said microorganism is a bacterium.
- 25 31. A method, as claimed in Claim 30, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 32. A method, as claimed in Claim 1, wherein said microorganism is a fungus.
 - 33. A method, as claimed in Claim 32, wherein said microorganism is a yeast.
- 34. A method, as claimed in Claim 33, wherein said yeast is selected from the group consisting of Saccharomyces yeast.

10

15

20

- 35. A method, as claimed in Claim 1, wherein said microorganism is a microalga.
- 36. A method, as claimed in Claim 35, wherein said microalga is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 37. A method, as claimed in Claim 36, wherein said microalga is selected from the genus *Prototheca*.
 - 38. A method, as claimed in Claim 1, wherein said microorganism further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase.
- 39. A method, as claimed in Claim 38, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate, other than GDP-D-mannose:GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
- 40. A method, as claimed in Claim 1, wherein said microorganism is acidtolerant and said step of culturing is conducted at a pH of less than about 6.0.
 - 41. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.5.
 - 42. A method, as claimed in Claim 1, wherein said microorganism is acid-tolerant and said step of culturing is conducted at a pH of less than about 5.0.
 - 43. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is magnesium (Mg) limited.
 - 44. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that is Mg limited during a cell growth phase.
 - 45. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.5 g/L of Mg during a cell growth phase.
 - 46. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.2 g/L of Mg during a cell growth phase.

- 47. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises less than about 0.1 g/L of Mg during a cell growth phase.
- 48. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises a carbon source other than D-mannose.
 - 49. A method, as claimed in Claim 1, wherein said step of culturing is conducted in a fermentation medium that comprises glucose as a carbon source.
- 50. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 51. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 52. A microorganism, as claimed in Claim 50, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
- 53. A microorganism, as claimed in Claim 50, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

20

25

- 54. A microorganism, as claimed in Claim 50, wherein said microorganism is selected from the group consisting of bacteria, fungi and microalgae.
- 55. A microorganism, as claimed in Claim 50, wherein said microorganism is a bacterium.
- 5 56. A microorganism, as claimed in Claim 55, wherein said bacterium is selected from the group consisting of Azotobacter and Pseudomonas.
 - 57. A microorganism, as claimed in Claim 50, wherein said microorganism is a fungus.
- 58. A microorganism, as claimed in Claim 57, wherein said microorganism is a yeast.
 - 59. A microorganism, as claimed in Claim 58, wherein said yeast is selected from the group consisting of Saccharomyces yeast.
 - 60. A plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase, phosphomannose isomerase, phosphomannomutase, GDP-D-mannose pyrophosphorylase, GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 61. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of an enzyme selected from the group consisting of GDP-D-mannose:GDP-L-galactose epimerase, GDP-L-galactose phosphorylase, L-galactose-1-P-phosphatase, L-galactose dehydrogenase, and L-galactono-γ-lactone dehydrogenase.
 - 62. A plant, as claimed in Claim 60, wherein said genetic modification is a genetic modification to increase the action of GDP-D-mannose:GDP-L-galactose epimerase.
 - 63. A plant, as claimed in Claim 60, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase has a tertiary structure having an average root mean square deviation of less than about 2.5 Å over at least about 25% of Cα positions of the tertiary structure of a GDP-4-keto-6-

. . .

5

10

15

20

MEDOCIDI JAKO - DOGAGERRAT I -

deoxy-D-mannose epimerase/reductase represented by atomic coordinates having Brookhaven Protein Data Bank Accession Code 1bws.

- 64. A plant, as claimed in Claim 60, wherein said plant further comprises a genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose:GDP-L-galactose epimerase.
- 65. A plant, as claimed in Claim 60, wherein said genetic modification to decrease the action of an enzyme having GDP-D-mannose as a substrate other than GDP-D-mannose: GDP-L-galactose epimerase is a genetic modification to decrease the action of GDP-D-mannose-dehydrogenase.
 - 66. A plant, as claimed in Claim 60, wherein said plant is a microalga.
- 67. A plant, as claimed in Claim 66, wherein said plant is selected from the group consisting of microalgae of the genera *Prototheca* and *Chlorella*.
- 68. A plant, as claimed in Claim 66, wherein said microalga is selected from the genus *Prototheca*.
 - 69. A plant, as claimed in Claim 60, wherein said plant is a higher plant.
- 70. A plant, as claimed in Claim 60, wherein said plant is a consumable higher plant.
- 71. A microorganism for producing ascorbic acid or esters thereof, wherein said microorganism has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.
- 72. A plant for producing ascorbic acid or esters thereof, wherein said plant has been genetically modified to express a recombinant nucleic acid molecule encoding an epimerase that catalyzes conversion of GDP-D-mannose to GDP-L-galactose, wherein said epimerase comprises an amino acid sequence that aligns with SEQ ID NO:11 using a CLUSTAL alignment program, wherein amino acid residues in said amino acid sequence align with 100% identity with at least about 50% of non-Xaa residues in SEQ ID NO:11.

Proposed Pathway from Glucose to L-Ascorbic Acid through GDP-D-Mannose Glucose to GDP-mannose

FIG. 1A

:

I PRETENDO ONA - CICODOS.

Proposed Pathway from Glucose to Ascorbic Acid through GDP-D-Mannose GDP-L-galactose-1-P to L-Ascorbic Acid

FIG. 1C

Selected Carbon Flow from Glucose in Prototheca

FIG. 2A

Selected Carbon Flow from Glucose in Prototheca, con't

FIG. 2B

Genealogy of Selected Isolates

FIG. 3

JOHOOTH JAKO GOOMETERAT I -

Conversion of Substrates by Resting Cells of NA45-3 (ATCC 209681)

Fig. 4

Average Specific Epimerase Activity vs. Average Whole Broth AA Specific Formation

Average Specific AA Formation, mg AA per L/Culture A620

Fig. 5

INCOCIO: JAIO COCACADA

L/Culture A620 Specific AA Formation, mg AA per

Proposed Mechanism for the Conversion of GDP-D-mannose to GDP-L-galactose in *Chlorella pyrenoidosa* (Barber)

Published Mechanism for the Conversion of GDP-D-mannose to GDP-4-keto-6-deoxy-D-mannose

Fig. 8A

Published Mechanism for the Conversion of GDP-4-keto-6-deoxy-D-mannose to GDP-L-fucose

SEQUENCE LISTING

<110> Berry, Alan Running, Jeffrey A. Severson, David K. Burlingame, Richard P. <120> "VITAMIN C PRODUCTION IN MICROORGANISMS AND PLANTS" <130> 3161-24-PCT <140> not yet assigned <141> 1999-05-25 <150> 60/125,073 <151> 1999-03-17 <150> 60/125,054 <151> 1999-03-18 <150> 60/088,549 <151> 1998-06-08 <160> 15 <170> PatentIn Ver. 2.0 <210> 1 <211> 1583 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (49)..(993) <400> 1 tagtetttaa titegeageg titttataat tgtgeagagg titegtee atg tet gae 57 Met Ser Asp 1 aaa tot goo aaa ato tto gto gog ggt cat cgt ggt ttg gtt gga tot 105 Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu Val Gly Ser 10 gcc att gtc cgc aag ctt cag gaa caa ggt ttc acc aat ctc gtt ctt 153 Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn Leu Val Leu 20 30 35

											gtt Val		201
					_		-	-			gca Ala 65	-	249
-					_						ttc Phe		297
-			-		_						tat Tyr		345
	-										tac Tyr		393
	-		_					-	_		gca Ala	_	441
-											ggg Gly 145		489
	_	_	_				-				atc Ile		537
_											ccg Pro		585
				-		-					aaa Lys		633
	_										ccg Pro		681
											gtt Val 225		729

ctg gat cgg ata cag cgg ggg ttg gag cat gtt aac att gga agt ggt 777 Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile Gly Ser Gly 230 235 240
caa gaa gtg act att aga gag ttg gct gag ttg gtg aaa gag gtt gtt 825 Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys Glu Val Val 245 250 255
ggt ttt gaa ggg aag ctt gga tgg gat tgc act aag cca gat ggc aca 873 Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro Asp Gly Thr 260 275
ccg agg aaa ctt atg gac agc tca aag ctc gcg tct ttg ggt tgg aca 921 Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu Gly Trp Thr 280 285 290
cct aag gtt tct ctt aga gat ggt ctg agc caa act tat gat tgg tat 969 Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr Asp Trp Tyr 295 300 305
ttg aag aat gtt tgc aac cga taa gttaatggtt tetettetea tatatacaca 1023 Leu Lys Asn Val Cys Asn Arg 310 315
actattgagt ctcaggtaaa tcagcttatc accacattgt gatttaaacc tttctttgag 1083
attcgagaat tgctttttt tttatcaaaa ttgattcatt tagagataag acttgcttct 1143
ttatacaaca ttgtctgagg aattttaatt ttggatctcc gagtatggtc tattattagc 1203
tetettetat acaaattate aaaacagttg taagaagttt caagaaaaac atttgatate 1263
tcactaattt ggctatcctt gcaagttgca acgctaaaat gacaaataat gaattctcgg 1323
cccaatgggc ttacacaagc cttgttaaag atagcgtgaa caaaacgcgg ctcactagcc 1383
ctaacetgte tetettege ttacettett ettegtette gttggeteag teacttgaet 1443
tcacggcccg ctcaagctct gacacgaaac tcatttcaaa ttaatttaat
tcacaaaagg ggcaaaagca atcgccggcg attatgcctt ctcctccggt gccggagacg 1563
gttgtgagcc aaccegttcg . 1583

<210> 2 <211> 314

<212> PRT

<213> Arabidopsis thaliana

<400> 2

Met Ser Asp Lys Ser Ala Lys Ile Phe Val Ala Gly His Arg Gly Leu

1 5 10 15

Val Gly Ser Ala Ile Val Arg Lys Leu Gln Glu Gln Gly Phe Thr Asn 20 25 30

Leu Val Leu Lys Thr His Ala Glu Leu Asp Leu Thr Arg Gln Ala Asp
35 40 45

Val Glu Ser Phe Phe Ser Gln Glu Lys Pro Val Tyr Val Ile Leu Ala 50 55 60

Ala Ala Lys Val Gly Gly Ile His Ala Asn Asn Thr Tyr Pro Ala Asp 65 70 75 80

Phe Ile Gly Val Asn Leu Gln Ile Gln Thr Asn Val Ile His Ser Ala 85 90 95

Tyr Glu His Gly Val Lys Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile 100 105 110

Tyr Pro Lys Phe Ala Pro Gln Pro Ile Pro Glu Ser Ala Leu Leu Thr 115 120 125

Ala Ser Leu Glu Pro Thr Asn Glu Trp Tyr Ala Ile Ala Lys Ile Ala 130 135 140

Gly Ile Lys Thr Cys Gln Ala Tyr Arg Ile Gln His Gly Trp Asp Ala 145 150 155 160

Ile Ser Gly Met Pro Thr Asn Leu Tyr Gly Pro Asn Asp Asn Phe His
165 170 175

Pro Glu Ser His Val Leu Pro Ala Leu Met Arg Arg Phe His Glu Ala 180 185 190

Lys Val Asn Trp Ser Gly Gly Ser Cys Gly Val Gly Tyr Lys Val Val 195 200 205

Pro Leu Glu Gly Lys Phe Leu His Val Asp Asp Leu Ala Asp Ala Cys 210 215 220

Val Phe Leu Leu Asp Arg Ile Gln Arg Gly Leu Glu His Val Asn Ile 225 230 235 240

Gly Ser Gly Gln Glu Val Thr Ile Arg Glu Leu Ala Glu Leu Val Lys 245 250 Glu Val Val Gly Phe Glu Gly Lys Leu Gly Trp Asp Cys Thr Lys Pro 265 Asp Gly Thr Pro Arg Lys Leu Met Asp Ser Ser Lys Leu Ala Ser Leu 280 Gly Trp Thr Pro Lys Val Ser Leu Arg Asp Gly Leu Ser Gln Thr Tyr 290 295 300 Asp Trp Tyr Leu Lys Asn Val Cys Asn Arg 305 310 <210> 3 <211> 966 <212> DNA <213> Escherichia coli <220> <221> CDS <222> (1).. (966) <400> 3 atg agt aaa caa cga gtt ttt att gct ggt cat cgc ggg atg gtc ggt Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly 1 5 10 15 tcc gcc atc agg cgg cag ctc gaa cag cgc ggt gat gtg gaa ctg gta 96 Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 tta cgc acc cgc gac gag ctg aac ctg ctg gac agc cgc gcc gtg cat Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 35 45 gat ttc ttt gcc agc gaa cgt att gac cag gtc tat ctg gcg gcg 192 Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala 50 aaa gtg ggc ggc att gtt gcc aac acc tat ccg gcg gat ttc atc Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 65 70 75 80 tac cag aac atg atg att gag agc aac atc att cac gcc gcg cat cag 288

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln aac gac gtg aac aaa ctg ctg ttt ctc gga tcg tcc tgc atc tac ccg Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro aaa ctg gca aaa cag ccg atg gca gaa agc gag ttg ttg cag ggc acg Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr ctg gag ccg act aac gag cct tat gct att gcc aaa atc gcc ggg atc Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile aaa ctg tgc gaa tca tac aac cgc cag tac gga cgc gat tac cgc tca Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser gtc atg ccg acc aac ctg tac ggg cca cac gac aac ttc cac ccg agt Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 • aat tog cat gtg atc cca gca ttg ctg cgt cgc ttc cac gag gcg acg Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr gca cag aat gcg ccg gac gtg gtg gta tgg ggc agc ggt aca ccg atg Ala Gln Asn Ala Pro Asp Val Val Val Trp Gly Ser Gly Thr Pro Met cgc gaa ttt ctg cac gtc gat gat atg gcg gcg gcg agc att cat gtc Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ala Ser Ile His Val atg gag ctg gcg cat gaa gtc tgg ctg gag aac acc cag ccg atg ttg Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu tog cac att aac gtc ggc acg ggc gtt gac tgc act atc cgc gac gtg Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val gcg caa acc atc gcc aaa gtg gtg ggt tac aaa ggc cgg gtg gtt ttt Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe gat gcc agc aaa ccg gat ggc acg ccg cgc aaa ctg ctg gat gtg acg

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

cgc ctg cat cag ctt ggc tgg tat cac gaa atc tca ctg gaa gcg ggg 912 Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

ctt gcc agc act tac cag tgg ttc ctt gag aat caa gac cgc ttt cgg 960 Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

ggg taa 966 Gly

<210> 4

<211> 321

<212> PRT

<213> Escherichia coli

<400> 4

Met Ser Lys Gln Arg Val Phe Ile Ala Gly His Arg Gly Met Val Gly
1 5 10 15

Ser Ala Ile Arg Arg Gln Leu Glu Gln Arg Gly Asp Val Glu Leu Val 20 25 30

Leu Arg Thr Arg Asp Glu Leu Asn Leu Leu Asp Ser Arg Ala Val His 35 40 45

Asp Phe Phe Ala Ser Glu Arg Ile Asp Gln Val Tyr Leu Ala Ala 50 55 60

Lys Val Gly Gly Ile Val Ala Asn Asn Thr Tyr Pro Ala Asp Phe Ile 65 70 75 80

Tyr Gln Asn Met Met Ile Glu Ser Asn Ile Ile His Ala Ala His Gln 85 90 95

Asn Asp Val Asn Lys Leu Leu Phe Leu Gly Ser Ser Cys Ile Tyr Pro 100 105 110

Lys Leu Ala Lys Gln Pro Met Ala Glu Ser Glu Leu Leu Gln Gly Thr 115 120 125

Leu Glu Pro Thr Asn Glu Pro Tyr Ala Ile Ala Lys Ile Ala Gly Ile 130 135 140

Lys Leu Cys Glu Ser Tyr Asn Arg Gln Tyr Gly Arg Asp Tyr Arg Ser 145 150 155 160

Val Met Pro Thr Asn Leu Tyr Gly Pro His Asp Asn Phe His Pro Ser 165 170 175

Asn Ser His Val Ile Pro Ala Leu Leu Arg Arg Phe His Glu Ala Thr 180 185 190

Ala Gln Asn Ala Pro Asp Val Val Trp Gly Ser Gly Thr Pro Met 195 200 205

Arg Glu Phe Leu His Val Asp Asp Met Ala Ala Ala Ser Ile His Val 210 215 220

Met Glu Leu Ala His Glu Val Trp Leu Glu Asn Thr Gln Pro Met Leu 225 230 235 240

Ser His Ile Asn Val Gly Thr Gly Val Asp Cys Thr Ile Arg Asp Val 245 250 255

Ala Gln Thr Ile Ala Lys Val Val Gly Tyr Lys Gly Arg Val Val Phe 260 265 270

Asp Ala Ser Lys Pro Asp Gly Thr Pro Arg Lys Leu Leu Asp Val Thr 275 280 285

Arg Leu His Gln Leu Gly Trp Tyr His Glu Ile Ser Leu Glu Ala Gly 290 295 300

Leu Ala Ser Thr Tyr Gln Trp Phe Leu Glu Asn Gln Asp Arg Phe Arg 305 310 315 320

Gly

<210> 5

<211> 1340

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (75)..(1040)

<400> 5

ctagaattca gcggccgctg aattctagct agaattcagc ggccgctgaa ttctagaacc 60

cag	gtgc	aac	tgac		Gly				Gly					cta Leu		110
aca Thr	Gly	ggc Gly 15	Ser	ej A aaa	ctg Leu	gta Val	ggc Gly 20	Lys	gcc Ala	atc Ile	cag Gln	aag Lys 25	gtg Val	gta Val	gca Ala	158
gat Asp	gga Gly 30	Ala	gga Gly	ctt Leu	cct Pro	gga Gly 35	gag Glu	gac Asp	tgg Trp	gtg Val	ttt Phe 40	gtc Val	tcc Ser	tct Ser	aaa Lys	206
gac Asp 45	gcc Ala	gat Asp	ctc Leu	acg Thr	gat Asp 50	aca Thr	gca Ala	cag Gl:n	acc Thr	cgc Arg 55	gcc Ala	ctg Leu	ttt Phe	gag Glu	aag Lys 60	254
gtc Val	caa Gln	ccc Pro	aca Thr	cac His 65	gtc Val	atc Ile	cat His	ctt Leu	gct Ala 70	gca Ala	atg Met	gtg Val	Gly	ggc Gly 75	ctg Leu	302
ttc Phe	cgg Arg	aat Asn	atc Ile 80	aaa Lys	tac Tyr	aat Asn	ttg Leu	gac Asp 85	ttc Phe	tgg Trp	agg Arg	aaa Lys	aac Asn 90	gtg Val	cac His	350
atg Met	aac Asn	gac Asp 95	aac Asn	gtc Val	ctg Leu	cac His	tcg Ser 100	gcc Ala	ttt Phe	gag Glu	gtg Val	ggg Gly 105	gcc Ala	cgc Arg	aag Lys	398
gtg Val	gtg Val 110	tcc Ser	tgc Cys	ctg Leu	tcc Ser	acc Thr 115	tgt Cys	atc Ile	ttc Phe	cct Pro	gac Asp 120	aag Lys	acg Thr	acc Thr	tac Tyr	446
ccg Pro 125	ata Ile	gat Asp	gag Glu	acc Thr	atg Met 130	atc Ile	cac His	aat Asn	G] À Ggà	cct Pro 135	ccc Pro	cac His	aac Asn	agc Ser	aat Asn 140	494
ttt Phe	G⊤À aaa	tac Tyr	tcg Ser	tat Tyr 145	gcc Ala	aag Lys	agg Arg	atg Met	atc Ile 150	gac Asp	gtg Val	cag Gln	aac Asn	agg Arg 155	gcc Ala	542
tac Tyr	ttc Phe	cag Gln	cag Gln 160	tac Tyr	ggc Gly	tgc Cys	acc Thr	ttc Phe 165	acc Thr	gct Ala	gtc Val	atc Ile	ccc Pro 170	acc Thr	aac Asn	590
gtt Val	ttc Phe	ggg Gly 1 7 5	ccc Pro	cac His	gac Asp	aac Asn	ttc Phe 180	aac Asn	atc Ile	gag Glu	gat Asp	ggc Gly 185	cac His	gtg Val	ctg Leu	638

W) 99/6	4618													PCT/US9	99/11576
	ggc		atc	cac	aaσ	ata	cac	ctg	gcc	aag	agc	agc	ggc	tcg	gcc	686
Pro	Gly	Leu	Ile	His	Lys	Val	His	Leu	Ala	Lys	Ser	Ser	Gly	ser	Ala	
	190					195					200					
													_ 4			724
ctg	acg	gtg	tgg	ggt	aca	ggg	aat	ccg	cgg	agg	Cln	Dhe	ata	Tac	ccg	734
	Thr	Val	Trp	Gly	Thr 210	GTÅ	Asn	Pro	Arg	215	GIII	PHE	116	TYL	220	
205					210											
cta	gac	cta	gcc	cag	ctc	ttt	atc	tgg	gtc	ctg	cgg	gag	tac	aat	gaa	782
Leu	Asp	Leu	Āla	Gln	Leu	Phe	Ile	Trp	Val	Leu	Arg	Glu	Tyr	Asn	Glu	
	_			225					230					235		
											ant	~~~	atc	tcc	atc	830
gtg	gag Glu	CCC	atc	atc	Ctc	COC	gtg	ggc	Glu	Glu	Asp	Glu	Val	Ser	Ile	
Val	GIU	Pro	240	116	rea	Ser	val	245	GIU	014	rusp		250			
			240													
aag	gag	gca	gcc	gag	gcg	gtg	gtg	gag	gcc	atg	gac	ttc	cat	ggg	gaa	878
Lys	Glu	Ala	Ala	Glu	Ala	Val	Val	Glu	Ala	Met	Asp	Phe	His	Gly	Glu	
		255					260					265				
								~~ +	~~~	C a G	+++	аап	naa	aca	acc	926
gtc	acc Thr	ttt	gat	aca	acc Thr	aag	Ser	Asp	6) v	Gln	Phe	Lvs	Lvs	Thr	gcc Ala	
vaı	270	FIIC	Asp	1111	****	275	502	. top	,		280	•	•			
	270															
agt	aac	agc	aag	ctg	agg	acc	tac	ctg	ccc	gac	ttc	cgg	ttc	aca	ccc	974
Ser	Asn	Ser	Lys	Leu	Arg	Thr	Tyr	Leu	Pro		Phe	Arg	Phe	Thr	Pro	
285					290					295					300	
		~~~	aca	ata	227	aaa	acc	tat	act.	t.aa	ttc	act	gac	aac	tac	1022
Phe	Lvs	Gln	Ala	Val	Lvs	Glu	Thr	Cys	Ala	Trp	Phe	Thr	Asp	Asn	Tyr	
20	-,,-			305				_	310					315		
																1070
	cag					agc	tgga	aga	cagg	atca	gg t	gcca	gcgg	а		1070
Glu	Gln	Ala														
			320													
cca	tcaa	cta	qcaq	agcc	ca g	cggc	cacc	a cc	cgtc	aacc	ctg	ccag	gag	ctga	gggcac	1130
cac	ccag	caa	cctg	ggcc	tg c	attc	catc	c gc	tctg	cagc	ccc	aago	atc	tttc	cagtgg	1190
														~~~	actttac	1250
ggc	cccc	att	cacg	ttgg	tc c	tcag	ggaa	a cc	aggg	cccg	999	cagg	Juliu	ggc	gctttgc	1200
+		200	2000	·ccct	.ac -a	cata	toca	a tin	taat	ccta	cat	ccca	ctc	ccto	ggagcc	1310
LCC	ccac	acc	ayet	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. y ~ y	-9-9										
221	aaad	tgc	attt	tcac	ag a	aaaa	aaaa	a							•	1340

<210> 6

<211> 321

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Glu Pro Gln Gly Ser Met Arg Ile Leu Val Thr Gly Gly Ser 1 5 10 15

Gly Leu Val Gly Lys Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Asp Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu
35 40 45

Thr Asp Thr Ala Gln Thr Arg Ala Leu Phe Glu Lys Val Gln Pro Thr 50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile
65 70 75 80

Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Met Asn Asp Asn 85 90 95

Val Leu His Ser Ala Phe Glu Val Gly Ala Arg Lys Val Val Ser Cys
100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu 115 120 125

Thr Met Ile His Asn Gly Pro Pro His Asn Ser Asn Phe Gly Tyr Ser 130 135 140

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln 145 150 155 160

Tyr Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro 165 170 175

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile 180 185 190

His Lys Val His Leu Ala Lys Ser Ser Gly Ser Ala Leu Thr Val Trp 195 200 205

Gly Thr Gly Asn Pro Arg Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala 210 215 220

Gln Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile

225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala 245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe His Gly Glu Val Thr Phe Asp 260 265 270

Thr Thr Lys Ser Asp Gly Gln Phe Lys Lys Thr Ala Ser Asn Ser Lys 275 280 285

Leu Arg Thr Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala 290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg 305 310 315 320

Lys

<210> 7

<211> 1017

<212> DNA

<213> Escherichia coli

<220>

<221> CDS

<222> (1)..(1017)

<400> 7

atg aga gtt ctg gtt acc ggt ggt agc ggt tac att gga agt cat acc 48
Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr
1 5 10 15

tgt gtg caa tta ctg caa aac ggt cat gat gtc atc att ctt gat aac 96
Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn
20 25 30

ctc tgt aac agt aag cgc agc gta ctg cct gtt atc gag cgt tta ggc 144
Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly
35 40 45

ggc aaa cat cca acg ttt gtt gaa ggc gat att cgt aac gaa gcg ttg 192 Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

atg acc gag atc ctg cac gat cac gct atc gac acc gtg atc cac ttc 240 Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe

•••	0 ///04010			PCT/US99/1157
65		70	75	80
qcc	ggg ctg aa	a acc ata aac	gaa tog gta gaa aa	

aa gcc gtg ggc gaa tcg gta caa aaa ccg ctg gaa tat Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr 85 95

tac gac aac aat gtc aac ggc act ctg cgc ctg att agc gcc atg cgc Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100

gcc gct aac gtc aaa aac ttt att ttt agc tcc tcc gcc acc gtt tat 384 Ala Ala Asn Val Lys Asn Phe Ile Phe Ser Ser Ser Ala Thr Val Tyr 115 120

ggc gat cag ccc aaa att cca tac gtt gaa agc ttc ccg acc ggc aca 432 Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr 130

ccg caa agc cct tac ggc aaa agc aag ctg atg gtg gaa cag atc ctc 480 Pro Gln Ser Pro Tyr Gly Lys Ser Lys Leu Met Val Glu Gln Ile Leu 145 150 155

acc gat ctg caa aaa gcc cag ccg gac tgg agc att gcc ctg ctg cgc 528 Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg 165

tac ttc aac ccg gtt ggc gcg cat ccg tcg ggc gat atg ggc gaa gat Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185

ccg caa ggc att ccg aat aac ctg atg cca tac atc gcc cag gtt gct 624 Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200

gta ggc cgt cgc gac tcg ctg gcg att ttt ggt aac gat tat ccg acc 672 Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215

gaa gat ggt act ggc gta cgc gat tac atc cac gta atg gat ctg gcg 720 Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala 225 230 235 240

gac ggt cac gtc gtg gcg atg gaa aaa ctg gcg aac aag cca ggc gta 768 Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 250

cac atc tac aac ctc ggc gct ggc gta ggc aac agc gtg ctg gac gtg 816 His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val

260 265 270

gtt aat gcc ttc agc aaa gcc tgc ggc aaa ccg gtt aat tat cat ttt 864 Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe 275 280 285

gca ccg cgt cgc gag ggc gac ctt ccg gcc tac tgg gcg gac gcc agc 912
Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser
290 295 300

aaa gcc gac cgt gaa ctg aac tgg cgc gta acg cgc aca ctc gat gaa 960 Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

atg gcg cag gac acc tgg cac tgg cag tca cgc cat cca cag gga tat 1008 Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

ccc gat taa 1017 Pro Asp

<210> 8 <211> 338

<212> PRT

<213> Escherichia coli

<400> 8

Met Arg Val Leu Val Thr Gly Gly Ser Gly Tyr Ile Gly Ser His Thr 1 5 10 15

Cys Val Gln Leu Leu Gln Asn Gly His Asp Val Ile Ile Leu Asp Asn 20 25 30

Leu Cys Asn Ser Lys Arg Ser Val Leu Pro Val Ile Glu Arg Leu Gly 35 40 45

Gly Lys His Pro Thr Phe Val Glu Gly Asp Ile Arg Asn Glu Ala Leu 50 55 60

Met Thr Glu Ile Leu His Asp His Ala Ile Asp Thr Val Ile His Phe 65 70 75 80

Ala Gly Leu Lys Ala Val Gly Glu Ser Val Gln Lys Pro Leu Glu Tyr 85 90 95

Tyr Asp Asn Asn Val Asn Gly Thr Leu Arg Leu Ile Ser Ala Met Arg 100 105 110

Ala Ala Asn Val Lys Asn Phe Ile Phe Ser Ser Ser Ala Thr Val Tyr 115 120 125

Gly Asp Gln Pro Lys Ile Pro Tyr Val Glu Ser Phe Pro Thr Gly Thr 130 135 140

Pro Gln Ser Pro Tyr Gly Lys Ser Lys Leu Met Val Glu Gln Ile Leu 145 150 155 160

Thr Asp Leu Gln Lys Ala Gln Pro Asp Trp Ser Ile Ala Leu Leu Arg
165 170 175

Tyr Phe Asn Pro Val Gly Ala His Pro Ser Gly Asp Met Gly Glu Asp 180 185 190

Pro Gln Gly Ile Pro Asn Asn Leu Met Pro Tyr Ile Ala Gln Val Ala 195 200 205

Val Gly Arg Arg Asp Ser Leu Ala Ile Phe Gly Asn Asp Tyr Pro Thr 210 215 220

Glu Asp Gly Thr Gly Val Arg Asp Tyr Ile His Val Met Asp Leu Ala 225 230 235 240

Asp Gly His Val Val Ala Met Glu Lys Leu Ala Asn Lys Pro Gly Val 245 250 255

His Ile Tyr Asn Leu Gly Ala Gly Val Gly Asn Ser Val Leu Asp Val 260 265 270

Val Asn Ala Phe Ser Lys Ala Cys Gly Lys Pro Val Asn Tyr His Phe 275 280 285

Ala Pro Arg Arg Glu Gly Asp Leu Pro Ala Tyr Trp Ala Asp Ala Ser 290 295 300

Lys Ala Asp Arg Glu Leu Asn Trp Arg Val Thr Arg Thr Leu Asp Glu 305 310 315 320

Met Ala Gln Asp Thr Trp His Trp Gln Ser Arg His Pro Gln Gly Tyr 325 330 335

Pro Asp

<210> 9 <211> 1047 <212> DNA <213> Homo sapiens

<220>
<221> CDS
<222> (1)..(1047)

<400> 9

atg gca gag aag gtg ctg gta aca ggt ggg gct ggc tac att ggc agc 48
Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser

1 5 10 15

cac acg gtg ctg gag ctg ctg gag gct ggc tac ttg cct gtg gtc atc 96

His Thr Val Leu Glu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile

20 25 30

gat aac ttc cat aat gcc ttc cgt gga ggg ggc tcc ctg cct gag agc 144
Asp Asn Phe His Asn Ala Phe Arg Gly Gly Ser Leu Pro Glu Ser
35 40 45

ctg cgg cgg gtc cag gag ctg aca ggc cgc tct gtg gag ttt gag gag 192 Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

atg gac att ttg gac cag gga gcc cta cag cgt ctc ttc aaa aag tac 240 Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

agc ttt atg gcg gtc atc cac ttt gcg ggg ctc aag gcc gtg ggc gag 288 Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

tcg gtg cag aag cct ctg gat tat tac aga gtt aac ctg acc ggg acc
Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr
100 105 110

atc cag ctt ctg gag atc atg aag gcc cac ggg gtg aag aac ctg gtg 384

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val

115 120 125

ttc agc agc tca gcc act gtg tac ggg aac ccc cag tac ctg ccc ctt 432
Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu
130 135 140

gat gag gcc cac ccc acg ggt ggt tgt acc aac cct tac ggc aag tcc 480
Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser
145 150 155 . 160

WO 99/64618 PCT/US99/11576 aag ttc ttc atc gag gaa atg atc cgg gac ctg tgc cag gca gac aag Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys 165 170 act tgg aac gta gtg ctg ctg cgc tat ttc aac ccc aca ggt gcc cat 576 Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 180 185 190 gcc tct ggc tgc att ggt gag gat ccc cag ggc ata ccc aac aac ctc 624 Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 atg cct tat gtc tcc cag gtg gcg atc ggg cga cgg gag gcc ctg aat 672 Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220 gtc ttt ggc aat gac tat gac aca gag gat ggc aca ggt gtc cgg gat 720 Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 tac atc cat gtc gtg gat ctg gcc aag ggc cac att gca gcc tta agg 768 Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg 245 250 aag ctg aaa gaa cag tgt ggc tgc cgg atc tac aac ctg ggc acg ggc 816 Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly 260 265 aca ggc tat tca gtg ctg cag atg gtc cag gct atg gag aag gcc tct 864 Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 285 ggg aag atc ccg tac aag gtg gtg gca cgg cgg gaa ggt gat gtg Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 gca gcc tgt tac gcc aac ccc agc ctg gcc caa gag gag ctg ggg tgg 960 Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 aca gca gcc tta ggg ctg gac agg atg tgt gag gat ctc tgg cgc tgg 1008 Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 335 cag aag cag aat cct tca ggc ttt ggc acg caa gcc tga 1047

345

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala

<210> 10

<211> 348

<212> PRT

<213> Homo sapiens

<400> 10

Met Ala Glu Lys Val Leu Val Thr Gly Gly Ala Gly Tyr Ile Gly Ser 1 5 10 15

His Thr Val Leu Glu Leu Leu Glu Ala Gly Tyr Leu Pro Val Val Ile 20 25 30

Asp Asn Phe His Asn Ala Phe Arg Gly Gly Gly Ser Leu Pro Glu Ser 35 40 45

Leu Arg Arg Val Gln Glu Leu Thr Gly Arg Ser Val Glu Phe Glu Glu 50 55 60

Met Asp Ile Leu Asp Gln Gly Ala Leu Gln Arg Leu Phe Lys Lys Tyr 65 70 75 80

Ser Phe Met Ala Val Ile His Phe Ala Gly Leu Lys Ala Val Gly Glu 85 90 95

Ser Val Gln Lys Pro Leu Asp Tyr Tyr Arg Val Asn Leu Thr Gly Thr 100 105 110

Ile Gln Leu Leu Glu Ile Met Lys Ala His Gly Val Lys Asn Leu Val 115 120 125

Phe Ser Ser Ser Ala Thr Val Tyr Gly Asn Pro Gln Tyr Leu Pro Leu 130 135 140

Asp Glu Ala His Pro Thr Gly Gly Cys Thr Asn Pro Tyr Gly Lys Ser 145 150 155 160

Lys Phe Phe Ile Glu Glu Met Ile Arg Asp Leu Cys Gln Ala Asp Lys
165 170 175

Thr Trp Asn Val Val Leu Leu Arg Tyr Phe Asn Pro Thr Gly Ala His 180 185 190

Ala Ser Gly Cys Ile Gly Glu Asp Pro Gln Gly Ile Pro Asn Asn Leu 195 200 205

Met Pro Tyr Val Ser Gln Val Ala Ile Gly Arg Arg Glu Ala Leu Asn 210 215 220

Val Phe Gly Asn Asp Tyr Asp Thr Glu Asp Gly Thr Gly Val Arg Asp 225 230 235 240

Tyr Ile His Val Val Asp Leu Ala Lys Gly His Ile Ala Ala Leu Arg
245 250 255

Lys Leu Lys Glu Gln Cys Gly Cys Arg Ile Tyr Asn Leu Gly Thr Gly
260 265 270

Thr Gly Tyr Ser Val Leu Gln Met Val Gln Ala Met Glu Lys Ala Ser 275 280 285

Gly Lys Lys Ile Pro Tyr Lys Val Val Ala Arg Arg Glu Gly Asp Val 290 295 300

Ala Ala Cys Tyr Ala Asn Pro Ser Leu Ala Gln Glu Glu Leu Gly Trp 305 310 315 320

Thr Ala Ala Leu Gly Leu Asp Arg Met Cys Glu Asp Leu Trp Arg Trp 325 330 335

Gln Lys Gln Asn Pro Ser Gly Phe Gly Thr Gln Ala 340 345

<210> 11

<211> 317

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CONSENSUS

<400> 11

Xaa Xaa Arg Xaa Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa Gly Xaa Xaa 1 5 10 15

65 70 75 80

Xaa Xaa Xaa Pro Xaa Xaa Glu Xaa Xaa Xaa Xaa Gly Xaa Xaa Xaa 115 120 125

Xaa Xaa Xaa Xaa Xaa Tyr Xaa Xaa Xaa Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa 130 135 140

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Arg Xaa Gly Xaa Gly Xaa Arg Xaa 195 200 205

Xaa Xaa Xaa Xaa Xaa Asp Xaa Ala Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 210 215 220

Xaa Thr Xaa Xaa Trp Xaa Xaa Xaa Xaa Xaa Xaa Xaa 305 310 315

WO 99/64618 PCT	C/US99/11576
<210> 12	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 12	
tagaattcag taaacaacga gtttttattg ctgg	34
<210> 13	
<211> 32	
<212> DNA	
<213> Escherichia coli	
<400> 13	
aactcgagtt acccccaaag cggtcttgat tc	32
<210> 14	
<211> 30	
<212> DNA	
<213> Escherichia coli	
<400> 14	
ctggagtcga attcatgagt aaacaacgag	30
<210> 15	
<211> 33	
<212> DNA	
<213> Escherichia coli	
<400> 15	
aactgcagtt accccgaaa gcggtcttga ttc	33

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/11576

A. CLASSIFICATION OF SUBJECT MAT	CR 00 5/04							
IPC(6) :C12P 19/00, 17/04; C12N 1/12, 1/20, US CL :435/72, 126, 252.1, 252.3, 410, 419	1							
US CL :435/72, 126, 232.1, 232.3, 410, 419 According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum documentation searched (classification	stem followed by classification symbols)							
U.S. : 435/72, 126, 252.1, 252.3, 410, 419								
Documentation searched other than minimum docu	entation to the extent that such documents are included in the fields searched							
	the search terms used)							
Electronic data base consulted during the internal	nal search (name of data base and, where practicable, search terms used)							
APS, MEDLINE, EMBASE, BIOSIS, SCISEAL	H, BIOTECHDS, NTIS, WYDDS, HEAT 200							
·								
C. DOCUMENTS CONSIDERED TO BE I								
Category* Citation of document, with indicate	on, where appropriate, of the relevant passages Relevant to claim No.							
Y WO 85/01745 A1 (KRAFT	INC.) 25 April 1985 (23.04.85), see the 1-72							
entire document specially	es 4-7.							
Y NIKISHIMI et al. Occu	ance in Yeast of L-Galactonolactone 1-72							
Ovidase which is similar	o a key enzyme for Ascorbic Acid							
biosynthesis in animals. L	Gulonolactone Oxidase. Arch. Biocem.							
Riophys, December 1978,	ol. 191, No. 2, pages 479-486, see the							
entire article, specially abs	act and introduction sections.							
	EX LIMITED) 08 July 1999 (08.07.99). 1-72							
A,P WO 99/33995 A1 (ASCO	3X LIMITED) 08 July 1999 (08.07.99), 1-72							
see the entire article.								
l								
Further documents are listed in the contin	tion of Box C. See patent family annex.							
Special categories of cited documents:	eT* later document published after the international filing date or priority date and not in conflict with the application but cited to understand							
A document defining the general state of the art which to be of particular relevance	not considered the principle or theory underlying the invention							
H earlier document published on or after the interns	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step							
ave throw doubts on priority of	(s) or which is when the document is taken alone							
cited to establish the publication date of another special reason (as specified)	document of particular relevance; the claimed invention cannot be							
O document referring to an oral disclosure, use, o								
P document published prior to the international filing the priority date claimed								
Date of the actual completion of the international	Date of mailing of the international search report							
23 AUGUST 1999	2 2 OCT 1999							
Name and mailing address of the ISA/US	Authorized officer JOYCE BRIDGERS							
Commissioner of Patents and Trademarks	MARYAM MONSHIPOURI							
Box PCT Washington, D.C. 20231	CITCOLL MATRIX							
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196							

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/11576

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This international Preliminary Examining Authority has found 2 inventions claimed in the International application covered by the claims indicated below:

Group I, claims 1-59 and 71, drawn to a method of producing ascorbic acid or esters thereof in a microorganism comprising culturing a microorganism baving a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc. as well as a microorganism genetically modified for producing ascorbic acid.

Group II, claims 60-70 and 72, drawn to a plant for producing ascorbic acid or esters thereof, wherein said plant has a genetic modification to increase the action of an enzyme selected from the group consisting of hexokinase, glucose phosphate isomerase etc.

The inventions listed as Groups I-II do not relate to a single inventive concept because they are considered to be two different categories of invention and are not drawn to combination of categories (i.e. categories 1-5), specified in 37 CFR section 1.475(b).

THIS PAGE BLANK (USPTO)