Name:	Quiz 5 - MAT345
ivallie.	

Problem 1 (15 points; 3 points each). Decide if each of the following are true or false and provide a justification or counterexample in each case. A justification could consist of a theorem from the text. All vector spaces are assumed to be finite-dimensional here.

(a) _____ There is a unique least squares solution to Ax = b.

(b) _____ There is a unique y so that ||y - b|| is minimal and Ax = y.

(c) _____ If $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ is an orthonormal basis for V with respect to an inner product $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{C}$ and $\boldsymbol{v}=\sum_{i=1}^n\alpha_i\boldsymbol{u}_i$, then $\|\boldsymbol{v}\|_2^2=\sum_{i=1}^n|\alpha_i|^2$.

(d) _____ All norms $\|\cdot\|:\mathbb{R}^n\to[0,\infty)$ on \mathbb{R}^n come from an inner product.

(e) ______ If $C = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ is an orthonormal basis for V with respect to an inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ and $\boldsymbol{v} \in V$, then for any $(c_1, \dots, c_n) = [\boldsymbol{v}]_C$, $c_i = \langle v, u_i \rangle$.

Problem 2 (25 points). You are given some data points $\{(x_i, y_i) \mid i = 1, ..., N\}$ and want to model the data by a function of the form $f(x) = a + bx + c\cos(x) + d\sin(x)$. This involves setting up a matrix A and finding a least-squares solution to $A\mathbf{x} = \mathbf{b}$.

- a) (5 points) What is **b**? (In terms of the data.)
- b) (8 points) What is A? (Again, in terms of the data.)
- c) (7 points) Suppose you have the least-squares solution $\hat{\mathbf{x}}$. What is f(x)? (In terms of $\hat{\mathbf{x}}$)
- d) (5 points) What is the relationship between $\hat{\mathbf{b}} = A\hat{\mathbf{x}}$ and \mathbf{b} ?

This page left blank