CSC165H1 Problem Set 3

Wei CUI

December 22, 2018

1 Special numbers

Proof: we define a predicate $P(n): F_n - 2 = \prod_{i=0}^{n-1} F_i$, where $n \in \mathbb{N}$

WTP: $\forall n \in \mathbb{N}, P(n)$

Base Case: when n = 0

$$F_0-2=2^{2^0}+1-2$$
 (by the definition of F_n)
$$=1$$

$$=\prod_{i=0}^{-1}F_i$$
 (since by the course notes, when $j>k,$ $\prod_{i=j}^k=1$)

Therefore P(0) holds

<u>Inductive Step</u>: Let $k \in \mathbb{N}$ and assume P(k), which is: $F_k - 2 = \prod_{i=0}^{k-1} F_i$ WTS: P(k+1), which is: $F_{k+1} - 2 = \prod_{i=0}^k F_i$

Therefore, P(k+1) is True Therefore $\forall n \in \mathbb{N}, F_n - 2 = \prod_{i=0}^{n-1} F_i$

2 Sequences

(a)
$$a_0 = 1$$
, $a_1 = \frac{1}{\frac{1}{a_0} + 1} = \frac{1}{2}$, $a_2 = \frac{1}{\frac{1}{a_1} + 1} = \frac{1}{3}$, $a_3 = \frac{1}{\frac{1}{a_2} + 1} = \frac{1}{4}$

(b) **Proof**: we define a predicate $P(n): a_n = \frac{1}{n+1}$, where $n \in \mathbb{N}$

WTP: $\forall n \in \mathbb{N}, P(n)$

Base Case: when n = 0

$$a_0 = 1$$
 (by the definition of sequences)
= $\frac{1}{0+1}$ (left side equals to right side)

Therefore, P(0) is True

<u>Inductive Step</u>: Let $k \in \mathbb{N}$, and assume P(k) is true, which is: $a_k = \frac{1}{k+1}$

WTS: P(k+1), which is: $a_{k+1} = \frac{1}{(k+1)+1}$

$$a_{k+1} = \frac{1}{\frac{1}{a_k} + 1}$$
 (by the definition of sequences)

$$= \frac{1}{\frac{1}{\frac{1}{k+1}} + 1}$$
 (by induction hypothesis)

$$= \frac{1}{(k+1) + 1}$$

Therefore, P(k+1) holds Therefore $\forall n \in \mathbb{N}, \ a_n = \frac{1}{n+1}$

(c)
$$a_{2,0}=2, \ a_{2,1}=\frac{2}{\frac{1}{a_{2,0}}+1}=\frac{4}{3}, \ a_{2,2}=\frac{2}{\frac{1}{a_{2,1}}+1}=\frac{8}{7}, \ a_{2,3}=\frac{2}{\frac{1}{a_{2,2}}+1}=\frac{16}{15}$$
 $a_{3,0}=3, \ a_{3,1}=\frac{3}{\frac{1}{a_{3,0}}+1}=\frac{9}{4}, \ a_{3,2}=\frac{3}{\frac{1}{a_{3,1}}+1}=\frac{27}{13}, \ a_{3,3}=\frac{3}{\frac{1}{a_{3,2}}+1}=\frac{81}{40}$

(d) **Proof**: Let $k \in \mathbb{N}$, and assume k > 1 we define a predicate $P(n): a_{k,n} = \frac{k^{n+1} - k^{n+2}}{1 - k^{n+1}}$, where $n \in \mathbb{N}$

WTP: $\forall n \in \mathbb{N}, P(n)$

Base Case: when n = 0

left side:

$$a_{k,0} = k$$
 (by the definition of sequences)

right side:

$$\begin{split} \frac{k^{0+1}-k^{0+2}}{1-k^{0+1}} &= \frac{k-k^2}{1-k} \\ &= \frac{k(1-k)}{1-k} \\ &= k \end{split} \qquad \text{(since $k>1$, then $1-k\neq 0$)} \end{split}$$

Therefore, left side equals to right side Therefore, P(0) holds

Inductive Step: Let $j \in \mathbb{N}$, and assume P(j) is True, which is: $a_{k,j} = \frac{k^{j+1} - k^{j+2}}{1 - k^{j+1}}$ WTS: P(j+1) holds, which is: $a_{k,j+1} = \frac{k^{j+2} - k^{j+3}}{1 - k^{j+2}}$

$$a_{k,j+1} = \frac{k}{\frac{1}{a_{k,j}} + 1}$$
 (by the definition of sequences)
$$= \frac{k}{\frac{1}{\frac{k^{j+1} - k^{j+2}}{1 - k^{j+1}}} + 1}$$
 (by induction hypothesis)
$$= \frac{k}{\frac{1 - k^{j+1} + k^{j+1} - k^{j+2}}{k^{j+1} - k^{j+2}}}$$

$$= \frac{k^{j+2} - k^{j+3}}{1 - k^{j+2}}$$

Therefore, P(j+1) is True

This completes the proof of the inductive step and thus the proof

3 Properties of Asymptotic notation

(a) **Proof:** Translate into predicate logic: $\forall f : \mathbb{N} \to \mathbb{R}^{\geq 0}, f \in \mathcal{O}(n) \Rightarrow Sum_f \in \mathcal{O}(n^2)$ Let $f : \mathbb{N} \to \mathbb{R}^{\geq 0}$, and assume $f \in \mathcal{O}(n)$, which is: $\exists n_0, c \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow f \leq cn$ WTS: $Sum_f \in \mathcal{O}(n^2)$, which is: $\exists n_1, c_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Rightarrow Sum_f \leq c_1 n^2$

Let n_0, c be such values, and take $n_1 = \lceil n_0 \rceil$ (since $n_0 \in \mathbb{R}^+$, then $n_1 \in \mathbb{R}^+$), take $c_1 = \sum_{i=0}^{n_1-1} f(i) + (\frac{n_1 c}{2} + c)$ (since $f : \mathbb{N} \to \mathbb{R}^{\geq 0}$ and $c \in \mathbb{R}^+$, then $c_1 \in \mathbb{R}^+$) Let $n \in \mathbb{N}$, and assume $n \geq n_1$, WTP: $Sum_f \leq c_1 n^2$

$$\begin{aligned} Sum_f &= \sum_{i=0}^n f(i) = \sum_{i=0}^{n_1-1} f(i) + \sum_{i=n_1}^n f(i) \\ &\leq \sum_{i=0}^{n_1-1} f(i) + \sum_{i=n_1}^n ci \qquad \text{(since } n_1 = \lceil n_0 \rceil \geq n_0 \text{, and by our assumption)} \\ &= \sum_{i=0}^{n_1-1} f(i) + c \sum_{i=n_1}^n i \\ &= \sum_{i=0}^{n_1-1} f(i) + c \frac{(n_1+n)(n-n_1+1)}{2} \\ &= \sum_{i=0}^{n_1-1} f(i) + c \frac{n_1n-n_1^2+n_1+n^2-n_1n+n}{2} \\ &= \sum_{i=0}^{n_1-1} f(i) + c \frac{n-n_1^2+n_1+n^2}{2} \\ &\leq \sum_{i=0}^{n_1-1} f(i) + c \frac{n+n_1+n^2}{2} \\ &\leq \sum_{i=0}^{n_1-1} f(i) + \frac{c}{2}n_1 + \frac{c}{2}n^2 + \frac{c}{2}n^2 \\ &\leq \left[\sum_{i=0}^{n_1-1} f(i)\right] n^2 + \frac{c}{2}n_1n^2 + \frac{c}{2}n^2 + \frac{c}{2}n^2 \\ &\leq \left[\sum_{i=0}^{n_1-1} f(i) + (\frac{n_1c}{2} + c)\right] n^2 \\ &= c_1n^2 \end{aligned}$$

Therefore, $Sum_f \leq c_1 n^2$ Therefore, $\forall f : \mathbb{N} \to \mathbb{R}^{\geq 0}, f \in \mathcal{O}(n) \Rightarrow Sum_f \in \mathcal{O}(n^2)$

(b) **Proof:** we define a predicate $P(n): \sum_{i=1}^{2^n} \frac{1}{i} \geq \frac{n}{2}$, where $n \in \mathbb{N}$ WTP: $\forall n \in \mathbb{N}, P(n)$

Base Case: when n = 0

$$\sum_{i=1}^{2^0} \frac{1}{i} = 1 \ge 0 = \frac{0}{2}$$

Therefore, P(0) holds

<u>Inductive Step</u>: Let $k \in \mathbb{N}$, and assume P(k) is True, which is: $\sum_{i=1}^{2^k} \frac{1}{i} \geq \frac{k}{2}$ WTS: P(k+1), which is: $\sum_{i=1}^{2^{k+1}} \frac{1}{i} \geq \frac{k+1}{2}$

$$\sum_{i=1}^{2^{k+1}} \frac{1}{i} = \sum_{i=1}^{2^k} \frac{1}{i} + \sum_{i=2^{k+1}}^{2^{k+1}} \frac{1}{i}$$

$$\geq \frac{k}{2} + \sum_{i=2^{k+1}}^{2^{k+1}} \frac{1}{i}$$
 (by induction hypothesis)
$$\geq \frac{k}{2} + \sum_{i=2^{k+1}}^{2^{k+1}} \frac{1}{2^{k+1}}$$

$$= \frac{k}{2} + \frac{1}{2^{k+1}} \sum_{i=2^{k+1}}^{2^{k+1}} 1$$

$$= \frac{k}{2} + \frac{1}{2^{k+1}} (2^{k+1} - 2^k)$$

$$= \frac{k}{2} + 1 - \frac{1}{2}$$

$$= \frac{k+1}{2}$$

Therefore, P(k+1) is True Therefore, $\forall n \in \mathbb{N}, \sum_{i=1}^{2^n} \frac{1}{i} \geq \frac{n}{2}$

(c) **Proof:** we want to disprove the claim, then it is equivalent to prove its negation Translate into predicate logic: $\exists f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in \mathcal{O}(g(n)) \land Sum_f(n) \notin \mathcal{O}(n \cdot g(n))$ Let $f(n) = \frac{1}{n+1}$ and $g(n) = \frac{1}{n+1}$, First we will prove that $f(n) \in \mathcal{O}(g(n))$

WTP: $f(n) \in \mathcal{O}(g(n))$, which is: $\exists n_0, c \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow \frac{1}{n+1} \leq c \frac{1}{n+1}$ Let c = 1, and $n_0 = 1$, let $n \in \mathbb{N}$, and assume $n \geq n_0$, WTS: $\frac{1}{n+1} \leq c \frac{1}{n+1}$

$$1 \le 1$$

$$\frac{1}{n+1} \le \frac{1}{n+1}$$
(since by our assumption, $n \ge n_0 = 1$, then $n+1 > 0$)
$$= 1 \cdot \frac{1}{n+1}$$

$$= c \frac{1}{n+1}$$

Therefore, $\frac{1}{n+1} \le c \frac{1}{n+1}$ Therefore, $f(n) \in \mathcal{O}(g(n))$ Next, we will prove $Sum_f(n) \notin \mathcal{O}(n \cdot g(n))$ by contradiction Assume $Sum_f(n) \in \mathcal{O}(n \cdot g(n))$, which is: $\exists n_1, c_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Rightarrow \sum_{i=0}^n \frac{1}{i+1} \leq c_1 n \cdot \frac{1}{n+1}$

Let n_1, c_1 be such values. Let $k \in \mathbb{N}$, and let $n = 2^k - 1$ Take $k = \lceil 4c_1 + \log_2(n_1 + 1) \rceil$, since $n = 2^k - 1 \ge n_1$, then by our assumption, we have $\sum_{i=0}^n \frac{1}{i+1} \le c_1 n \cdot \frac{1}{n+1}$

$$\sum_{i=0}^{2^{k}-1} \frac{1}{i+1} \le c_1 \cdot \frac{2^k - 1}{2^k} \qquad (\text{since } n = 2^k - 1, \text{ and } n \ge n_1)$$

$$\sum_{i=1}^{2^k} \frac{1}{i} \le c_1 \cdot \frac{2^k - 1}{2^k}$$

$$\frac{k}{2} \le \sum_{i=1}^{2^k} \frac{1}{i} \le c_1 \cdot \frac{2^k - 1}{2^k} \qquad (\text{by part b})$$

$$\frac{k}{2} \le c_1 \cdot \frac{2^k - 1}{2^k}$$

$$c_1 \ge \frac{k}{2} \cdot \frac{2^k}{2^k - 1} \qquad (\text{since } k = \lceil 4c_1 + \log_2(n_1 + 1) \rceil, \text{ then } 2^k - 1 \ge 0)$$

$$c_1 \ge \frac{k}{2} \qquad (\text{since } \frac{2^k}{2^k - 1} > 1)$$

$$c_1 \ge \frac{\lceil 4c_1 + \log_2(n_1 + 1) \rceil}{2} \qquad (\text{since } k = \lceil 4c_1 + \log_2(n_1 + 1) \rceil)$$

$$c_1 \ge \frac{4c_1 + \log_2(n_1 + 1)}{2}$$

$$c_1 \ge 2c_1 + \frac{\log_2(n_1 + 1)}{2}$$

$$c_1 \ge 2c_1 \qquad (\text{since } n_1 \in \mathbb{R}^+, \text{ then } \frac{\log_2(n_1 + 1)}{2} > 0)$$

Since $c_1 \in \mathbb{R}^+$, then $c_1 \neq 0$, therefore we have a contradiction

Therefore, $Sum_f(n) \notin \mathcal{O}(n \cdot q(n))$

Therefore, $\exists f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in \mathcal{O}(g(n)) \land Sum_f(n) \notin \mathcal{O}(n \cdot g(n))$

Thus, the original claim is False.