Seq2Bubbles: Region-Based Embedding Learning for User Behaviors in Sequential Recommenders

Qitian Wu, Chenxiao Yang, Shuodian Yu, Xiaofeng Gao, Guihai Chen Shanghai Jiao Tong University

Background for Recommendation

- □ Predict the next item based on historically clicked items of the user
- Most existing sequential recommendation models:
 - I. Embedding: transform the item sequence into a sequence of vectors
 - II. Encoding: encode the sequence to estimate user interests
 - III. Decoding: compute similarity between the user state and a target item

Squash a high-dimensional sequence into a single point

Motivation

- User interests often distribute over items of different aspects
 - Distribution of user interest tends to be multi-modal
- ☐ User interests for different items have distinct concentration levels
 - user's concentration: variance of user's clicked items in a specific aspect
 - more (less) diverse items in the aspect with stronger (weaker)

concentration

Traditional point embedding fails to capture such distinct concentration levels!

Our Solutions: Region-based Embedding

□ Basic idea: embed a sequence into a set of bubbles

- a hyper-ellipsoid in vector space
- bubble center: clicked item embedding
- bubble radius: embody concentration of user interests
- a union of bubble embedding for sequence reflect user interests

$$\bigcup_{k=1}^{m} \{ \mathbf{x} : \| (\mathbf{x} - \mathbf{c}_k) \odot \frac{1}{\mathbf{r}_k} \|_2 \le 1 \}$$

□ Advantages:

- Superior Expressiveness
- Enough Flexibility
- Interpretability

Key insight: regions enclosed by bubbles represent multimodal interest and user intent

Proposed Model Overview

Model: Encoding Layer

□ Encode item embedding sequence to extract useful information:

- Filter out noise existing in behavior sequences
- Mine temporal dependency and user's interests evolution
- Distinguish the importance of different historical behaviors

Model: Encoding Layer (cont.)

□ Self-attentive architecture:

• Lower-level sequential uni $\Phi_A(\cdot)$ to aggregate historical items

$$\mathbf{z}_{k} = \sum_{j=1}^{k} \alpha_{jk} \mathbf{q}_{i_{j}}, \quad \text{where } \alpha_{jk} = \sigma \left(\frac{(\mathbf{W}_{K}^{1} \mathbf{q}_{i_{k}})^{\top} (\mathbf{W}_{Q}^{1} \mathbf{q}_{i_{j}})}{\sqrt{d}} \right) \qquad \mathbf{h}_{k} = Dropout(PReLU(\mathbf{W}_{N}^{1} \mathbf{z}_{k} + \mathbf{b}_{N}^{1}))$$

• High-level readout uni $\Phi_R(\cdot)$ to estimate radius of bubbles

$$\mathbf{z}_{k} = \sum_{j=1}^{m} \beta_{jk} \cdot \mathbf{h}_{j}, \quad \text{where } \beta_{jk} = \sigma \left(\frac{(\mathbf{W}_{K}^{2} \mathbf{h}_{k})^{\top} (\mathbf{W}_{Q}^{2} \mathbf{h}_{j})}{\sqrt{d}} \right) \qquad \mathbf{r}_{k} = Softplus(\mathbf{W}_{N}^{2} \mathbf{z}_{k} + \mathbf{b}_{N}^{2}), \quad k = 1, \dots, m$$

Model: Decoding Layer

Compute the similarity between bubble embedding and target item

→ the distance from a point to the surface of a hyper-ellipsoid?

□ Approximation:

Consider a circumscribed hyper-cube outside the hyper-ellipsoid region

$$\mathbf{b} = {\mathbf{c}, \mathbf{r}}: [c_1 - r_1, c_1 + r_1] \times \cdots \times [c_d - r_d, c_d + r_d]$$

$$D(\mathbf{b}, \mathbf{q}) := \min_{\mathbf{e} \in \{-1, 1\}^d} d(\mathbf{c} + \mathbf{e} \odot \mathbf{r}, \mathbf{q})$$

$$\mathcal{D}(\mathcal{B}^m, \mathbf{q}_i) := \min_{1 \le k \le m} D(\mathbf{b}_k, \mathbf{q}_i),$$

$$= \min_{1 \le k \le m} d(\mathbf{c}_k + \delta(\mathbf{q}_i - \mathbf{c}_k) \odot \mathbf{r}_k, \mathbf{q}_i)$$

$$S(\mathcal{B}^m, \mathbf{q}_i) = \max_{1 \le k \le m} s(\mathbf{c}_k + \delta(\mathbf{q}_i - \mathbf{c}_k) \odot \mathbf{r}_k, \mathbf{q}_i)$$

Model: Decoding Layer (cont.)

■ Maximum operation only selects one bubble

- The gradient only update one item
- Ignore effects from different feature dimensions

□ A generalized version:

max-pooling to select dominant bubbles in each feature dimension

$$\mathbf{p}_{k} = [\mathbf{c}_{k} + \delta(\mathbf{q}_{i} - \mathbf{c}_{k}) \odot \mathbf{r}_{k}] \odot \mathbf{q}_{i}, \quad k = 1, \dots, m,$$

$$\mathbf{a}_{m} = \text{MaxPooling}\{[\mathbf{p}_{1}, \mathbf{p}_{2}, \dots, \mathbf{p}_{m}]\} \qquad \qquad \hat{y}_{ui}^{m} = (\mathbf{q}_{i})^{\top} \mathbf{a}_{m}$$

$$\mathcal{S}(\mathcal{B}_{m}, \mathbf{q}_{i}) = s(\mathbf{a}_{m}, \mathbf{q}_{i}).$$

Model: Context-Aware Representation

□ Context-aware bubble

incorporate information of clicked items related to the target item

$$\tilde{\mathbf{c}}_{m} = \sum_{k=1}^{m} \gamma_{km} \mathbf{q}_{i_{k}}, \quad \text{where } \gamma_{km} = \sigma \left(\frac{(\mathbf{W}_{K}^{3} \mathbf{h}_{k})^{\top} (\mathbf{W}_{Q}^{3} \mathbf{q}_{i})}{\sqrt{d}} \right) \quad \tilde{\mathbf{r}}_{u}^{m} = Softplus(\mathbf{W}_{N}^{3} [\tilde{\mathbf{c}}_{m} || \mathbf{q}_{i}] + \mathbf{b}_{N}^{3})$$

□ Estimate with bubble embedding and context-aware state

inherent interests from observed sequence

relations between historical behaviors and target items

$$\tilde{\mathbf{p}}_{m} = \tilde{\mathbf{c}}_{m} + \delta(\mathbf{q}_{i} - \tilde{\mathbf{c}}_{m}) \odot \tilde{\mathbf{r}}_{m}$$
$$\hat{\mathbf{y}}_{ui}^{m} = (\mathbf{q}_{i_{t}})^{\top} \mathbf{a}_{m} + (\mathbf{q}_{i_{t}})^{\top} \tilde{\mathbf{p}}_{m}$$

Model Optimization: Supervised Learning

☐ The model estimate the probability with the relevance score

$$P(i|\mathcal{T}_u^m) = \sigma(\hat{y}_{ui}^m)$$

□ Adopt Bayesian Personalized Ranking as objective

$$\mathcal{L} = \sum_{u \in \mathcal{U}} \sum_{m=1}^{n_u - 1} \log P(i_{m+1}^u \succcurlyeq \bar{i}_{m+1}^u | \mathcal{T}_u^m)$$

 \square For the mini-batch data $\{\mathcal{T}_u\}_{u\in\mathcal{U}_b}$

$$\mathcal{L}_{sup} = \sum_{u \in \mathcal{U}_b} \sum_{m=1}^{n_u - 1} \log \sigma(\hat{y}_{u, i_{m+1}^u}^m - \hat{y}_{u, \bar{i}_{m+1}^u}^m)$$

Model Optimization: Contrastive Regularization

- □ Directly optimize the loss function lead to over-fitting
 - Radius vectors of bubbles tend to be updated radically

- □ Inspired by contrastive learning
 - Enforce self-consistency within a user sequence
 - Enlarge the mutual information between estimated bubble embedding and historical items
 - Guide the model to 'look back'

$$\mathcal{L}_{reg} = -\sum_{u \in \mathcal{U}_b} \sum_{m=t+1}^{n_u} \log \frac{\exp(\mathcal{S}(\overline{\mathcal{B}}_u^m, \mathbf{q}_{i_{m-t}^u}))}{\sum_{u' \in \mathcal{U}_b} \exp(\mathcal{S}(\overline{\mathcal{B}}_u^m, \mathbf{q}_{i_{m-t}^{u'}}))}$$

Experiments: Overall Results

Table 1: Comparative results for different methods

Datasets	Metric	POP	BPR-MF	NCF	FPMC	GRURec	GRURec+	Caser	SASRec	TiSASRec	BERT4Rec	DisenRec	Seq2Bubbles	Improv.
Beauty	N@5 H@5 N@10 H@10	0.0241 0.0396 0.0337 0.0755	0.0803 0.1219 0.1059 0.1998	0.0844 0.1304 0.1132 0.2146	0.0921 0.1372 0.1215 0.2415	0.0821 0.1321 0.1064 0.2347	0.1186 0.1791 0.1448 0.2646	0.1054 0.1613 0.1361 0.2593	0.1439 0.1929 0.1636 0.2656	0.1310 0.1804 0.1566 0.2581	0.1585 0.2201 0.1856 0.3029	$\begin{array}{r} 0.2404 \\ \hline 0.3225 \\ \hline 0.2709 \\ \hline 0.4171 \end{array}$	0.2767 0.3508 0.2959 0.4503	+13.1% +8.0% +8.4% +7.3%
Steam	N@5 H@5 N@10 H@10	0.0477 0.0805 0.0665 0.1389	0.0744 0.1177 0.1005 0.1993	0.0717 0.1203 0.1026 0.2169	0.0945 0.1517 0.1026 0.2551	0.1370 0.2171 0.1283 0.3313	0.1613 0.2391 0.1802 0.3594	0.1131 0.176 0.1484 0.2870	0.1727 0.2559 0.2147 0.3783	$\begin{array}{r} 0.3252 \\ \underline{0.4155} \\ 0.3557 \\ 0.5239 \end{array}$	0.1842 0.2710 0.2261 0.4013	0.2863 0.3986 0.3332 0.5437	0.3566 0.4384 0.3875 0.5661	+9.7% +5.5% +8.9% +4.1%
ML-1m	N@5 H@5 N@10 H@10	0.0416 0.0715 0.0621 0.1358	0.1903 0.2866 0.2365 0.4301	0.1146 0.1932 0.1640 0.3477	0.2885 0.4297 0.3439 0.5946	0.3196 0.4673 0.3627 0.6207	0.3705 0.5103 0.4064 0.6351	0.3832 0.5353 0.4268 0.6692	0.3980 0.5434 0.4368 0.6629	0.4243 0.5755 0.4641 0.7008	0.4454 0.5876 0.4818 0.6970	$\begin{array}{c} 0.4615 \\ 0.6025 \\ 0.5003 \\ \hline 0.7219 \end{array}$	0.5035 0.6351 0.5447 0.7422	+9.1% +5.4% +8.8% +2.8%
ML-20m	N@5 H@5 N@10 H@10	0.0511 0.0805 0.0695 0.1378	0.1332 0.2128 0.1786 0.3538	0.0771 0.1358 0.1271 0.2922	0.2239 0.3601 0.2895 0.5201	0.3090 0.4657 0.3637 0.5844	0.3630 0.5118 0.4087 0.6524	0.2538 0.3804 0.3062 0.5427	0.4208 0.5727 0.4665 0.7136	$\begin{array}{c} \underline{0.5134} \\ 0.6499 \\ \underline{0.5440} \\ \underline{0.7606} \end{array}$	0.4967 0.6323 0.5340 0.7473	0.5058 0.6528 0.5398 0.7579	0.5666 0.6931 0.6189 0.8015	+10.3% +6.1% +13.7% +5.3%

Higher H (HR) and N (NDCG) are better

Experiments: Ablation Study

Table 2: Ablation analysis

Variants	ML	-1M	Beauty			
	HR@10	NDCG@10	HR@10	NDCG@10		
w/o Contextual	0.731 (-1.4%)	0.536 (-1.5%)	0.422 (-6.2%)	0.276 (-6.4%)		
w/o Regularization	0.730 (-1.6%)	0.537 (-1.3%)	0.425 (-5.5%)	0.279 (-5.4%)		
w/o Self-Attention	0.621 (-16.3%)	0.483 (-11.2%)	0.352 (-21.7%)	0.183 (-37.9%)		
w/o Max Pooling	0.611 (-17.6%)	0.503 (-7.5%)	0.339 (-24.6%)	0.166 (-43.7%)		
Default	0.742	0.544	0.450	0.295		

□ Comparison with the simplified version that replace the bubble embedding by point embedding

Experiments: Robustness and Scalability

□ Further discussions:

- The regularization term helps to alleviate over-fitting
- The training time scales linearly w.r.t. sequence length and hidden size

Conclusions

□ Our contributions:

- Methodology: propose a new representation model for distributions of user interests with multi-modality and heterogeneous concentration
- Techniques: design an efficient distance computing scheme of new embedding and devise a self-supervised contrastive to enhance training
- Evaluation: achieve state-of-the-art performance on several benchmarks and conduct ablation studies to thoroughly dissect the effectiveness

Thanks for listening!