Splitting fields: Definitions and Examples

Jiang-Hua Lu The University of Hong Kong MATH4302 Algebra II Thursday April 3, 2025

Outline

In this file:

- **1** §3.2.1: Definition of splitting fields.
- ② §3.2.2: Examples of splitting fields.

Main issue: Roots of polynomials in fields.

<u>Definition</u>: Let K be a field and $f(x) \in K[x]$ non-constant.

- An element $\alpha \in K$ is called a root of f(x) in K if $f(\alpha) = 0$.
- If $K \subset L$ is a field extension, regard $f(x) \in L[x]$.
- If $\alpha \in L$ is such that $f(\alpha) = 0$, call α a root of f(x) in L.

Central question: If $f(x) \in K[x]$ is non-constant, is there a field extension $K \subset L$ such that f(x) has a root in L?

Example: $f(x) = x^2 + 1$ has no root in \mathbb{R} but has roots in \mathbb{C} .

Construction: |X| = |X| + 1

Answer to the central question: Yes:

- Let $f \in K[x]$ be non-constant.
- f must have an irreducible factor p(x).
- Take $L = K[x]/\langle p(x) \rangle$ and let $\alpha = \overline{x} \in L$.
- Then α is a root of f in L.

Now set up some precise definitions on roots.

4 / 26

Multiplicities of roots of polynomials. Let K be any field.

Let $f(x) \in K[x]$ be monic, and let $\alpha \in K$ be a root of f.

By Euclidean algorithm, there exists $g_1(x) \in K[x]$ such that

$$f(x) = (x - \alpha)g_1(x) \in K[x].$$

• If $g_1(\alpha) = 0$, continue to get $g_2(x) \in K[x]$ such that

$$f(x) = (x - \alpha)^2 g_2(x) \in K(x).$$

• Continue to get $g(x) \in K[x]$ such that $g(\alpha) \neq 0$ and

$$f(x) = (x - \alpha)^m g(x) \in K[x].$$

- $m \ge 1$ is called the multiplicity of α as a root of f.
- Call α a repeated root if $m \ge 2$.

 The largest $m \le t (x \alpha)$ $f(x)_{5/2}$

Derivative test for repeated roots.

Let
$$f = a_0 + a_1x + \cdots + a_nx^n \in K[x]$$
, with $n \ge 1$ and $a_n \ne 0$.

Obegine $f'(x) \in K[x]$, the derivative of f , by

$$f'(x) = a_1 + 2a_2x + \cdots + na_nx^{n-1} \in K[x].$$

• Use sum and product rules in Calculus when computing f'(x).

Warnings:

• If $\operatorname{Char}(K) = 0$, and $n = \deg f(x) \ge 1$, then $na_n \ne 0$, so

$$f'(x) \neq 0$$
 and $\deg(f'(x)) = n - 1$.

- If Char(K) > 0, possible that f(x) non-constant but f'(x) = 0.
- For example, $f(x) = x^p 1 \in \mathbb{F}_p[x]$ has f'(x) = 0.

Derivative test for repeated roots.

<u>Lemma:</u> Let $f(x) \in K[x]$ with $\deg(f(x)) \ge 2$. An element $\alpha \in K$ is a repeated root of f(x) if and only if $f(\alpha) = 0 \quad \text{and} \quad f'(\alpha) = 0.$

Proof. Let α be a root of f(x) in K with multiplicity $m \geq 1$.

- Write $f(x) = (x \alpha)^m g(x)$, where $g(x) \in K[x]$ and $g(\alpha) \neq 0$.
- By definition, α is a repeated root if and only if $m \geq 2$.
- If α is a repeated root, then

$$f'(x) = m(x - \alpha)^{m-1}g(x) + (x - \alpha)^m g'(x),$$
so $f(\alpha) = f'(\alpha) = 0$.

• If $f(\alpha) = f'(\alpha) = 0$, and if m = 1, then $f'(\alpha) = g(\alpha) \neq 0$, a contradiction, so m > 2.

Q.E.D.

Example:

every student's dream

For a prime number p, what is the multiplicity of $\alpha = 1$ as a root of

$$f(x) = x^p - 1 \in \mathbb{F}_p[x]?$$

(Derivative test says $\alpha = 1$ is a repeated root).

$$f(x) = (x-1)^{\rho} \in f_{\rho}[x]$$

so
$$\alpha = 1$$
 has multiplicity

Roots of irreducible polynomials because f(x) = 0 $f(x) = (x^{-1})$ Lemma: If Char(K) = 0 and $p(x) \in K[x]$ is irreducible, then there exist

Lemma: If
$$Char(K) = 0$$
 and $p(x) \in K[x]$ is irreducible, then there exist $h(x), k(x) \in K[x]$ such that

Proof. Let
$$n = \deg p(x)$$
. identity holds in L(x) for any f . Since $\operatorname{Char}(K) = 0$ and $p(x)$ not a constant, $p'(x) \neq 0$.

 $h(x)p(x) + k(x)p'(x) = 1 \in K[x].$

- Thus deg p'(x) = n 1.
- Since p(x) is irreducible, p(x) and p'(x) are co-prime.
- Since K[x] is a PID, (1) holds for some $h(x), k(x) \in K[x]$.

Lemma: If Char(K) = 0 and $p(x) \in K[x]$ is irreducible, then p(x) has no repeated roots in any field extension L of K.

Proof: Let $K \subset L$ be an extension and that α is a root of p in L.

• By previous Lemma, there exist $h(x), k(x) \in K[x]$ such that

$$h(x)p(x) + k(x)p'(x) = 1 \in K[x].$$

- Plugging in $x = \alpha$, one gets $p'(\alpha) \neq 0$.
- By the Derivative Test, α is not a repeated root of p(x) in L.

Q.E.D.

Complete splitting of polynomials:

<u>Definition.</u> Let K be a field, and let $f(x) \in K[x]$ with degree $n \ge 1$.

- We say that f(x) splits completely over K or splits over K) if one of the following three equivalent conditions hold:
 - **1** ∃ $c_0 \in L \setminus \{0\}$ and $\alpha_1, \dots, \alpha_n \in K$ (not necessarily pairwise distinct), such that

$$f(x) = c_0(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

- 2 all the irreducible factors of f(x) in K[x] are linear;
- **3** f(x) has n roots in K counting multiplicity.
- If $K \subset L$ is a field extension, say f(x) splits completely over L if f(x), as an element in L[x], is a product of linear factors.

Examples:

- $f(x) = x^3 x^2 x + 1 = x^2(x 1) (x 1) = (x + 1)(x 1)^2$ splits comletely in $\mathbb{Q}[x]$;
- $g(x) = (x-2)(x^2+1)$ does not completely splits in $\mathbb{R}[x]$.

Lemma. If L is an algebraically closed field, then every $f \in L[x]$ splits completely over L.

Proof. Direct consequence of the Euclidean Algorithm.

Taylors theorem

Definition of splitting fields:

Let K be a field and let $f \in K[x]$ with $n = \deg(f) > 1$.

Definition: A splitting field of f over K is a field extension $K \subset L$ s.t.

1 f(x) splits completely over L;

- 2 L is generated by K and all the roots of f(x) in L, i.e.,

$$L = K(\alpha_1, \alpha_2, \cdots, \alpha_n),$$

where $\alpha_1, \ldots, \alpha_n$ are the *n* roots (with multiplicity) of *f* in *L*.

Remarks on the definition of splitting fields: Let $f(x) \in K[x]$ with $n = \deg f(x) \ge 1$, and let L be a splitting field of f(x) over K.

- 1 f splits completely over L;
- 2 L is a finite extension of K;
- **3** L depends on both f(x) and K such that $f(x) \in K[x]$.
- 4 A splitting field of $f(x) = x^2 + 1$ over \mathbb{Q} is $\mathbb{Q}[i]$;
- **6** A splitting field of $f(x) = x^2 + 1$ over \mathbb{R} is \mathbb{C} ;
- **1** If f(x) already completely splits over K, then L = K.

Existence and Uniqueness of splitting fields (to be proved later):

<u>Theorem</u>: Let K be a field and $f \in K[x]$ non-constant.

- splitting fields of f over K exist;
- 2 if $K \subset L$ and $K \subset L'$ are two splitting fields of f over K, then there exists an isomorphism $\sigma: L \to L'$ such that $\sigma(a) = a$ for all $a \in K$.

Easy case of constructing splitting fields:

Suppose that K is a sub-field of an algebraically closed field L. Let $f \in K[x]$ with $n = \deg(f) \ge 1$, and let $a_1, \ldots, a_n \in L$ be the roots of f in L.

Lemma-Definition. The sub-field $K(a_1, \ldots, a_n)$ of L is a splitting field of f over K, also called the splitting field of f in L over K.

Example. The splitting field of $f(x) = x^n - 1 \in \mathbb{Q}[x]$ over \mathbb{C} is called the *n*th cyclotomic field. $C_n = \mathbb{Q}(e^{\frac{2\pi i}{n}})$

Example. For any sub-field K of \mathbb{C} and $f = x^2 + bx + c \in K[x]$:

• The roots of f in \mathbb{C} are

$$\alpha = \frac{1}{2}(-b \pm \sqrt{b^2 - 4bc}).$$

• Thus the splitting field of f over K is

$$L=K(\sqrt{b^2-4ac}).$$

The case of cubic polynomials:

Assume now that K is a subfield of \mathbb{C} , and $f \in K[x]$ is cubic, i.e.,

$$f(x) = x^3 + ax^2 + bx + c \in K[x].$$

Easy fact. Setting x = z - a/3, one gets

$$\tilde{f}(z) = f(z - \frac{a}{3}) = z^3 + pz + q \in K[z],$$

where

$$p = -\frac{a^2}{3} + b, \quad q = \frac{2a^3}{27} - \frac{ab}{3} + c.$$
 (2)

The following fact already known in the middle of the 16th century.

Lemma. Let $a, b, c \in \mathbb{C}$, and let p, q be given as in (2). Then the three roots of $f(x) = x^3 + ax^2 + bx + c$ in \mathbb{C} are

$$\alpha_1 = -\frac{a}{3} + \beta_1 + \beta_2, \quad \alpha_2 = -\frac{a}{3} + \omega \beta_1 + \omega^2 \beta_2, \quad \alpha_3 = -\frac{a}{3} + \omega^2 \beta_1 + \omega \beta_2,$$

where $\omega=e^{2\pi i/3}$ and $\beta_1,\beta_2\in\mathbb{C}$ are any cubic roots

$$\beta_1 = \sqrt[3]{rac{1}{2}\left(-q + \sqrt{q^2 + rac{4p^3}{27}}
ight)}, \qquad \beta_2 = \sqrt[3]{rac{1}{2}\left(-q - \sqrt{q^2 + rac{4p^3}{27}}
ight)},$$

satisfying $\beta_1\beta_2 = -p/3$.

Lemma. Let $a, b, c \in \mathbb{C}$, and let p, q be given as in (2). Then the three roots of $f(x) = x^3 + ax^2 + bx + c$ in \mathbb{C} are

$$\alpha_1 = -\frac{a}{3} + \beta_1 + \beta_2, \qquad \alpha_2 = -\frac{b}{3} + \omega \beta_1 + \omega^2 \beta_2, \qquad \alpha_3 = -\frac{a}{3} + \omega^2 \beta_1 + \omega \beta_2,$$

where $\omega = e^{2\pi i/3}$ and $\beta_1, \beta_2 \in \mathbb{C}$ are any cubic roots

$$\beta_1 = \sqrt[3]{\frac{1}{2}\left(-q + \sqrt{q^2 + \frac{4p^3}{27}}\right)}, \qquad \beta_2 = \sqrt[3]{\frac{1}{2}\left(-q - \sqrt{q^2 + \frac{4p^3}{27}}\right)},$$

satisfying $\beta_1\beta_2=-p/3$. Define

$$\Delta_f = (\alpha_1 - \alpha_2)^2 (\alpha_2 - \alpha_3)^2 (\alpha_3 - \alpha_1)^2.$$

Then

$$\Delta_f = -4p^3 - 27q^2 = a^2b^2 + 18abc - 4b^3 - 4a^3c - 27c^2 \in K$$
.

Proof. Exercise (see lecture notes).

Definition of Discriminants:

1 For a quadratic polynomial $f(x) = x^2 + bx + c \in K[x]$,

$$\Delta_f = b^2 - 4c \in K$$

is called the discriminant of f(x).

2 For a cubic polynomial $f(x) = x^3 + ax^2 + bx + c \in K[x]$,

$$\Delta_f = a^2b^2 + 18abc - 4b^3 - 4a^3c - 27c^2 \in K$$

is called the discriminant of f.

<u>Lemma</u> f(x) has a repeated root iff $\Delta_f = 0$.

Splitting fields of cubic polynomials: Let K be a subfield of \mathbb{C} .

<u>Theorem.</u> Let $f(x) \in K[x]$ be cubic and monic, and let $\alpha_1, \alpha_2, \alpha_3$ be its roots in \mathbb{C} . Let

$$L_f = K(\alpha_1, \alpha_2, \alpha_3)$$

be the splitting field of f in \mathbb{C} over K.

- ① If f is reducible over K. then $[L_f : K] = 2$ or 1, depending on whether only one or all the three of $\alpha_1, \alpha_2, \alpha_3$ are in K;
- 2 If f is irreducible over K, then

Proof. May assume that $f(x) = x^3 + px + q$.

• Let $\alpha_1, \alpha_2, \alpha_3$ be the three roots of f in \mathbb{C} , and let

$$\delta = (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3) \in \mathbb{C}.$$

• By definition $\delta^2=\Delta_f\in K$, but δ may or may not in K. Using $\alpha_1+\alpha_2+\alpha_3=0$ and definition of δ , one has

$$\alpha_2 = \frac{\delta + 2\alpha_1 p + 3q}{2(3\alpha_1^2 + p)}.$$

• Thus $L = K(\alpha_1, \delta)$.

Proof cont'd:

- Assume $\delta \in K$. Then $L = K(\alpha_1)$.
- Since f is the minimal polynomial of α_1 , we have $[\underline{l}:K]=3$.
- Assume $\delta \notin K$. Then $[L:K] = [K(\alpha_1)(\delta) : K(\alpha_1)][K(\alpha_1) : K] = 3[K(\alpha_1)(\delta) : K(\alpha_1)].$
- Thus [L: K] is divisible by 3.
- Now $\delta^{2} \Delta_{f} = 0$, where $\Delta_{f} = -4p^{3} 27q^{2} \in K \subset K(\alpha_{1})$.
- So $[\underline{I}_{\mathfrak{C}}:K(\alpha_1)]=1$ or 2 depending on whether $\delta\in K(\alpha_1)$ or $\delta\notin K(\alpha_1)$. Thus $[L:K]\leq 6$.
- Thus As $\delta \notin K$ but $\delta^2 \in K$, $[K(\delta) : K] = 2$, so

$$[\mathbf{L}_{\mathbf{f}}:K] = [K(\delta)(\alpha_1):K(\delta)][K(\delta):K] = 2[K(\delta)(\alpha_1):K(\delta)],$$

Q.E.D.

Example:

The polynomial $f(x) = x^3 - 4x + 2 \in \mathbb{Q}[x]$ is irreducible by Eisenstein's criterion. We have

$$\Delta_f = -4(-4)^3 - 27 \times 4 = 4 \times 37,$$

which has no square root in $\mathbb Q$. Let L be the splitting field of f over $\mathbb Q$ in $\mathbb C$. Then $[L:\mathbb Q]=6$.