Probability with Martingales のギャップとかメモ

Twitter: @skbtkey

概要

タイトル通り。ネットの海からこれを見つけ出した方は参考にしていただけると嬉しい。 David Williams 著 "Probability with Martingales"。

1 Chapter 6

1.1 65ページ9行目

 $c_1U_1 + c_2U_2 \sim c_1V_1 + c_2V_2$ について。

$$\{x \mid (c_1U_1 + c_2U_2)(x) \neq (c_1V_1 + c_2V_2)(x)\}$$

 $\Leftrightarrow \{x \mid (c_1U_1 + c_2U_2)(x) - (c_1V_1 + c_2V_2)(x) \neq 0\} =: A$

の測度が 0 であることを示せばよい。明らかに、

$$c_1U_1 \sim c_1V_1, c_2U_2 \sim c_2V_2$$

である。したがって、

$$A_1 := \{x \mid c_1 U_1(x) \neq c_1 V_1(x)\}$$

$$A_2 := \{x \mid c_2 U_2(x) \neq c_2 V_2(x)\}$$

の測度はそれぞれ0である *1 。このとき、次が成立。

$$A \subset A_1 \cup A_2$$

背理法で示す。上式の左辺から任意にxを取る。 $x \notin A_1 \cup A_2$ 、つまり、

$$x \in A_1^c \cap A_2^c$$

と仮定する。このとき、 $c_1U_1(x) = c_1V_1(x)$, $c_2U_2(x) = c_2V_2(x)$ であるから、

$$(c_1U_1 + c_2U_2)(x) - (c_1V_1 + c_2V_2)(x) = 0$$

^{*1} 別に A_1 などと名前を付けなくてもいいが (むしろ名前を付けない方がわかりやすい。)、紙面のスペースの都合上名前を付けている。

より、矛盾する。また、

$$A = \{x \mid (c_1U_1 + c_2U_2)(x) - (c_1V_1 + c_2V_2)(x) < 0\}$$

$$\cup \{x \mid (c_1U_1 + c_2U_2)(x) - (c_1V_1 + c_2V_2)(x) > 0\}$$

であるから、Aは可測集合。したがって、測度の単調性より、Aの測度は0。

1.2 65ページ10行目

 $U_n \to U$ より、 $N \in \mathbb{N}$ が存在して、 $n \geq N \Rightarrow ||U_n - U|| < \varepsilon \quad (\forall \varepsilon > 0)$ である。 $U_n \sim V_n, U \sim V$ より、 $||V_N - V|| < \varepsilon$ が分かる。

1.3 67ページ 10 行目から 12 行目

(ii) ⇒ (i) について。(逆向きは本の中で証明されています。)

任意の $Z \in \mathcal{K}$ を取ると、 $||X-Z|| \ge ||X-Y|| + \alpha$ となることを示すとよい。ここで、 $\alpha > 0$ である。しかし、Z として Y+tZ $(t \in \mathbb{R})$ とすればよい。これは \mathcal{L}^p の線形性のためである。なんとなれば、 $Z = \frac{-Y+W}{t}$ $(\forall W \in \mathcal{K})$ とすればよい。 $\langle X-Y,Z \rangle = \mathbf{E}[(X-Y)Z] = 0$ 即ち、 $\mathbf{E}[XY] = \mathbf{E}[YZ]$ が成り立つことに注意して、||X-Y-tZ|| を計算すると分かる。