Differential Drive

1 Continuous Sampling

Consider sampling in a 1D real line L. Let $S_c = \{q_x | \forall x \in L\}$, where q_x is a sphere centered at x. Let $C(S_c)$ be the space covered by S_c .

Theorem 1.1 Continuously sample spheres from left to right in the real line L, let the set of sphere be S_n , such that no sphere in S_n is centered within any sphere of S_n . Then $C(S_n) = C(S_c)$.

Proof:

 $\forall x \in L, \exists q_x \in S_c$, meaning every point in L is covered by one sphere centered at x in S_c , $C(S_c) = L$. If sphere q_p is not centered inside any spheres in S_n , then $q_p \in S_n$ and $p \in C(S_n)$. Assume point p is inside some existing spheres centered to the left of p, then $p \in C(S_n)$, but we don't sample spheres at p.

To sum up, if point p is sampled, then $p \in C(S_c)$ and $p \in C(S_n)$, if point p is not sampled, still $p \in C(S_c)$ and $p \in C(S_n)$. Therefore, $C(S_n) = C(S_c)$.

Theorem 1.2 Continuously sample spheres from left to right in the real line L, such that no sphere has radius less than r_{min} and no sphere in S_m is centered within any sphere of S_n . $C(S_m) = C(S_c)$.

Proof:

(....)

Theorem 1.3 Let S_{in} be a subset of S_m by continuously sampling spheres from left to right in the real line L with inaccurate metric. Assume the metric returns 1/n of the accurate metric, then any point p within $(n-1) \cdot r_{min}$ distance away from obstacles, $p \notin C(S_{(in)})$.

Proof:

Assume p is $(n-1) \cdot r_{min}$ distance away from obstacles, if there exists point x that is $n \cdot r_{min}$ distance away from obstacles, then sphere q_x has radius r_{min} , $p \in q_x$.

If p is $(n-1) \cdot r_{min} - \epsilon$ distance away from obstacles, where $\epsilon >= 0$, we need a point x that is within $n \cdot r_{min} - \frac{n \cdot \epsilon}{n-1}$ distance from obstacle. The sphere sampled at x has radius less than r_{min} thus will not cover point p.

Theorem 1.4 Let S_d be a subset of S_{in} by discrete sampling in the real line. Assume every two neighbor samples are d distance away from each other. If $d <= \frac{r_{min}}{k}, k >= 1$, in the worst case, any point p that has clearance less than $c + (n-1) \cdot r_{min}, p \notin C(S_d)$.

As is shown in last theorem, the smallest clearance a point x should have in order to be sampled is $n \cdot r_{min}$. $\exists \epsilon > 0$, point x_t with clearance $n \cdot r_{min} + d - \epsilon$. The point the sphere q_{x_t} can cover has clearance more than $(n-1) \cdot r_{min} + \frac{d \cdot (n-1)}{n} - \frac{(n-1) \cdot \epsilon}{n}$. The worst case is $\epsilon = 0$, so the clearance is $(n-1) \cdot r_{min} + \frac{d \cdot (n-1)}{n} = (n-1) \cdot r_{min} + \frac{r_{min} \cdot (n-1)}{k \cdot n}$

References

[1] Balkcom, Devin J., and Matthew T. Mason. "Time optimal trajectories for bounded velocity differential drive vehicles." The International Journal of Robotics Research 21.3 (2002): 199-217.