DSM Quiz 2 Solutions

October 22, 2024

Answer 1

Subpart(a)

Full marks will be awarded if you write either of the cases.

Overlapping Case

Figure 1: State transition diagram for detecting a double zero (Overlapping)

- State a denotes the state "0".
- State b denotes the state "1".

Non-Overlapping Case

Figure 2: State transition diagram for detecting a double zero (Non-overlapping)

- State a denotes the state "00".
- State b denotes the state "10".
- State c denotes the state "01".

Subpart(b)

Full marks will be awarded if you write either of the cases.

Overlapping Case

In the overlapping case, we detect the sequence "00" even if it appears consecutively with overlapping bits. There are two states in total, and the state table is as follows:

Present State (Q)	Input (I)	Next State (Q')	Output
0	0	0	1
0	1	1	0
1	0	0	0
1	1	1	0

In this state table: - When the present state is 0 and the input is 0, the next state remains 0 and the output is 1, indicating that the sequence "00" has been detected. - For other inputs, the next state transitions accordingly and the output remains 0.

Non-Overlapping Case

In the non-overlapping case, we detect the "00" sequence only once for each distinct occurrence, ensuring no overlap. We use two states, X and Y, to represent the current state of the system. The state meanings are as follows:

- State 00: This state indicates that we have detected no zeros currently.
- State 01: This state indicates that we are currently on a single zero (i.e., the first zero in a possible "00" sequence has been detected).
- State 10: This state indicates that we have detected 2 zeros, and we are waiting for a new potential sequence.

The state table for this case is given below:

X(Present)	Y(Present)	Input (I)	X'(Next)	Y'(Next)	Output
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	0	0	0
1	1	0	X	X	X
1	1	1	X	X	X

Here: - When X=1 and Y=0 and the input is 0, the output is 1, indicating that a non-overlapping "00" has been detected. - The system transitions between states depending on the input to avoid detecting the sequence in an overlapping manner.

Subpart(c)

Full marks will be awarded if you write either of the cases.

Overlapping case

The JK flip-flop input conditions based on the state transitions are as follows:

Present State (Q)	Input (I)	Next State (Q')	J	K	Output
0	0	0	0	X	1
0	1	1	1	X	0
1	0	0	X	1	0
1	1	1	X	0	0

Given the above state table, we get the expressions:

$$J = I$$

$$K = \overline{I}$$

$$\mathrm{Output} = \overline{Q} \cdot \overline{I}$$

Non-Overlapping case

The JK flip-flop input conditions for X and Y are as follows (P = Present State, N = Next State):

For X:

X(Present)	Input (I)	X'(Next)	J_X	K_X
0	0	1	1	X
0	1	0	0	X
1	0	0	X	1
1	1	0	X	1

For Y:

Y(Present)	Input (I)	Y'(Next)	J_Y	K_Y
0	0	0	0	X
0	1	1	1	X
1	0	0	X	1
1	1	1	X	0

X(P)	Y(P)	Input (I)	X'(N)	J_X	K_X	Y'(N)	J_Y	K_Y	Output
0	0	0	0	0	X	1	1	X	0
0	0	1	0	0	X	0	0	X	0
0	1	0	1	1	X	0	X	1	1
0	1	1	0	0	X	0	X	1	0
1	0	0	0	X	1	1	1	X	0
1	0	1	0	X	1	0	0	X	0
1	1	0	X	X	X	X	X	X	X
1	1	1	X	X	X	X	X	X	X

$$J_x = Y \cdot \overline{I}$$

$$K_x = X \text{ (or 1)}$$

$$J_y = \overline{I}$$

$$K_y = Y \text{ (or 1)}$$
Output = $Y \cdot \overline{I}$

Answer 2

(a) SR Latch vs. JK Flip-Flop

SR Latch

- The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and two inputs labeled S and R.
- We realize that the outputs Q and Q' are normally the complement of each other.
- The latch has two stable states.
- When the output Q = 1 and Q' = 0, the latch is said to be in the set state.
- When Q = 0 and Q' = 1, it is in the reset state.
- Setting and resetting can be done through the two inputs (S and R).
- After setting or resetting, applying 00 at the input retains the previous state.
- However, when both inputs are equal to 1 at the same time, a condition in which both outputs are equal to 0 (rather than be mutually complementary) occurs.
- If both inputs are then switched to 0 simultaneously, the device will enter an unpredictable or undefined state or a metastable state.

S	R	Q Q	<u>'</u>
1	0	1 0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	0	1 0	(after $S = 1, R = 0$)
0	1	0 1	
0	0	0 1	(after $S = 0, R = 1$)
1	1	0 0	(forbidden)
			_

5

JK Flip-Flop

- There are four operations we are looking to perform in a flip-flop: set it to 1, reset it to 0, retain or complement its output.
- With only a single input, the D flip-flop can set or reset the output, depending on the value of the D input immediately before the clock transition.
- \bullet Synchronized by a clock signal, the JK flip-flop has two inputs and performs all four operations.
- The J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled, the output is complemented.
- This can be obtained if the D input is:

$$D = JQ' + KQ$$

- When J=1 and K=0, D=Q'+Q=1, so the next clock edge sets the output to 1.
- When J=0 and K=1, D=0, so the next clock edge resets the output to 0.
- When both J = K = 1 and D = Q', the next clock edge complements the output.
- When both J = K = 0 and D = Q, the clock edge leaves the output unchanged.

• Because of their versatility, JK flip-flops are called universal flip-flops.

(b) Shift Register vs. Parallel Register

Shift Register	Parallel Register
Moves data bits sequentially	Transfers data bits simultaneously
Pros: Simple, good for serial data	Pros: Faster data transfer
Cons: Slower due to sequential operation	Cons: More complex wiring

(c) Equivalent States

Two states are equivalent if they produce the same output for every possible input sequence. This concept helps in minimizing state machines.

(d) Synchronous Reset

A synchronous reset occurs in sync with the clock signal. The reset action only takes place when the clock edge occurs, making the operation predictable and avoiding glitches.

Answer 3

Design a 4-bit universal shift register using T flip-flops and explain its operation. [5M]

A normal universal shift register using D-flip flops:

Figure 3: Using D flip-flops

Using a T-Flip flop instead of D-Flip flop:

Figure 4: Using T-flip flops

Explanation:

Since, T flip flop works on the basis of toggling, when T is 1 then the output is toggled, and when T is 0, output remains same. The workking of a D flip flop can be accheived using T flip flop simply by making $T = Q(t) \oplus Q'(t+1)$, where Q' is the expected output