Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Виконав студент

Перевірив

(прізвище, ім'я, по батькові)

Варіант 28

По заданим координатам трикутника на площі визначити довжини його сторін та величини кутів.

Постановка задачі: по заданим координатам вершин трикутника обчислити довжини сторін трикутника, а, використовуючи сторони, обчислити величини кутів трикутника.

Блок-схема алгоритму:

Програма на С:

}

```
#include
<stdio.h>
             #define _USE_MATH_DEFINES
             #include <math.h>
             /* Варіант 28
             * По заданим координатам трикутника на площі визначити довжини його сторін і величини кутів.
             int main()
             {
               int x1, y1, x2, y2, x3, y3;
               float ab, bc, ac, abc, bac, acb;
               printf("Enter x coordinate for point A: "); //Введення координат вершин трикутника
               scanf_s("%d", &x1);
               printf("Enter y coordinate for point A: ");
               scanf_s("%d", &y1);
               printf("Enter x coordinate for point B: ");
               scanf_s("%d", &x2);
               printf("Enter x coordinate for point B: ");
               scanf_s("%d", &y2);
               printf("Enter x coordinate for point C: ");
               scanf_s("%d", &x3);
               printf("Enter x coordinate for point C: ");
               scanf_s("%d", &y3);
               ab = sqrt(pow((x2 - x1), 2) + pow((y2 - y1), 2)); //Знаходження довжин сторін
               bc = sqrt(pow((x3 - x2), 2) + pow((y3 - y2), 2));
               ac = sqrt(pow((x3 - x1), 2) + pow((y3 - y1), 2));
               abc = acos((pow(ab, 2) + pow(bc, 2) - pow(ac, 2)) / (ab * bc * 2)); //Знаходження величин кутів
               bac = acos((pow(ab, 2) + pow(ac, 2) - pow(bc, 2)) / (ab * ac * 2));
               acb = acos((pow(ac, 2) + pow(bc, 2) - pow(ab, 2)) / (ac * bc * 2));
               abc = abc * (180.0 / M_PI); // Переведення кутів з радіан у градуси
               bac = bac * (180.0 / M_PI);
               acb = acb * (180.0 / M_PI);
               printf("AB = \%f, BC = \%f, AC = \%f\\( ABC = \%f, \( ABC = \%f, \( ACB = \%f", \( ab, bc, ac, abc, bac, acb);
             //Виведення отриманих довжин сторін та величин кутів
               return 0;
```

Результат на С:

Програма на Python:

```
import math
x1 = int(input("Enter x coordinate for point A: ")) # Введення координат користувачем
y1 = int(input("Enter y coordinate for point A: "))
x2 = int(input("Enter x coordinate for point B: "))
y2 = int(input("Enter y coordinate for point B: "))
x3 = int(input("Enter x coordinate for point C: "))
y3 = int(input("Enter y coordinate for point C: "))
ab = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) # Обчичслення довжин сторін трикутника
bc = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
ac = math.sqrt((x3 - x1) ** 2 + (y3 - y1) ** 2)
abc = math.acos((ab ** 2 + bc ** 2 - ac ** 2) / (2 * ab * bc)) # Обчислення кутів трикутника
acb = math.acos((ac ** 2 + bc ** 2 - ab ** 2) / (2 * ac * bc))
bac = math.acos((ab ** 2 + ac ** 2 - bc ** 2) / (2 * ab * ac))
abc = (180 * abc / math.pi) # Переведення кутів з радіан у градуси
acb = (180 * acb / math.pi)
bac = (180 * bac / math.pi)
# Виведення отриманих сторін та кутів
print(f"AB = {ab}, BC = {bc}, AC = {ac} \setminus ABC = {abc}, ACB = {acb}, ACB = {bac} ")
```

Результат на Python:

Висновок: Отже, використовуючи формулу відстані між двома точками, отримаємо коректний результат для довжин сторін трикутника, а використовуючи теорему косинусів, отримаємо коректний результат для величин кутів у програмі.