Extracting individual's affective dynamic features

Qi-Wen Ding

Individual differences in affective dynamics

Features of emotion dynamics

Dejonckheere et al. (2019, Figure 1). Nature Human Behaviour

Features of emotion dynamics

Feature	Definition	Index
Average intensity	How strong an emotion is felt on average, both between emotions within an individual and bet. individuals	Mean score over time
Variability	Intensity varies across time for a single person	Within-person variance or SD
Inertia	Tendency of an emotion to carry over from one moment to the next (i.e., resistance to change)	Autocorrelation
Cross-lag	Augmentation: emotion A↑	Cross-lag cor. between 2 emotions
Granularity	Ability of differentiating between different emotions	 # of PCs between emotions of a single person Var unexplained by 1st PC Cor. or cov. between 2 emotions within a person ICC between all emotions

Features of emotion dynamics & mental health

Features	Relationships
Average intensity $(\mu_{i, n})$	For NA: Neuroticism, depression, For PA: Emotion regulation, extraversion, agreeableness, conscientiousness
Variability ($\Sigma_{ii,n}$)	Stress level, mood disorder (+) Age, emotional well-being (-)
Inertia ($\Phi_{ii, n}$)	Rumination (+) Emotional regulation (-)
Cross-lag ($\Phi_{ij, n}$)	Increase in major depression patients in terms of higher levels of overall emotion network density
Granularity ($\Sigma_{ij,n}$)	Emotion regulation, more effective coping mechanisms (+) Neuroticism, social anxiety disorder, depression (-)

Data

• 104 participants (44 female, 7 NA)

- Age 20 ~ 52
- 7 days
- 6 time intervals in each day
- Two emotions: Valance & Arousal

Bayesian dynamic model

Observation equation

$$\mathbf{y}_{t,n} = \mathbf{\mu}_n + \mathbf{\theta}_{t,n} + \mathbf{\epsilon}_{t,n} \quad \mathbf{\epsilon}_{t,n} \sim N(\mathbf{0}, \mathbf{H}_n)$$
Average intensity

System equation

$$\mathbf{\theta}_{t,n} = \mathbf{\Phi}_n \times \mathbf{\theta}_{t-1,n} + \mathbf{\eta}_{t,n} \quad \mathbf{\eta}_{t,n} \sim N(\mathbf{0}, \mathbf{Q}_n)$$

Indep.

Inertia & Cross-lag

Model-implied covariance

$$\operatorname{vec}(\mathbf{\Sigma}_n) = (\mathbf{I} - \mathbf{\Phi}'_n \otimes \mathbf{\Phi}'_n)^{-1} \operatorname{vec}(\mathbf{Q}_n + \mathbf{H}_n)$$

Variability & Granularity

t: time

n: individual

Bayesian dynamic model

$$y_{t,n} = \mu_n + \theta_{t,n} + \epsilon_{t,n}$$
[H = diag($\mathbf{\tau}$) $\mathbf{\Omega}$ diag($\mathbf{\tau}$), where $\mathbf{\tau} \sim Cauchy(0, 2.5) \& \mathbf{\Omega} \sim LKJ(2)$]

LKJ prior for the corr. matrix of H

Half-Cauchy prior for the scale parameter of H

$$\mathbf{\theta}_{t,n} = \mathbf{\Phi}_{n} \times \mathbf{\theta}_{t-1,n} + \mathbf{\eta}_{t,n} \qquad \mathbf{\eta}_{t,n} \sim N(\mathbf{0}, \mathbf{Q}_{n})$$

$$\uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad$$

MCMC

Take subject no. 15 for example


```
# of chains = 5 
Iteration for each chain = 70000 (warm-up / burn-in first 35000 sample) 
Thin = 10 
Posterior samples = [(70000 - 35000)/10] \times 5 = 17500
\widehat{R}: 1.00 ^{\sim} 1.89 for the 15<sup>th</sup> participant
```

Model fit

Result: Descriptive Statistics (N = 104)

Features	Emotions	Mean (SD)
Avorago intensity (u.)	Valence	5.70 (0.86)
Average intensity $(\mu_{i,n})$	Arousal	5.11 (0.91)
Variability (T	Valence	2.96 (1.99)
Variability (∑ _{ii, n})	Arousal	4.10 (2.14)
Inartia (A	Valence	0.12 (0.19)
Inertia (Φ _{ii, n})	Arousal	0.11 (0.22)
Cross lag (A	$Valence_{t-1} \rightarrow Arousal_t$	0.02 (0.21)
Cross-lag ($\Phi_{ij, n}$)	$Arousal_{t-1} \rightarrow Valence_t$	0.05 (0.18)
Granularity	Corr(Valence, Arousal)	0.21 (0.23)

Result: K-means clustering

