Causal Inference Libraries: What They Do and What I'd Like Them to Do

Agenda

- 1. Why Causal Inference and why heterogeneity?
- 2. How can we estimate heterogeneous treatment effects on paper?
- 3. How can we estimate heterogeneous treatment effects in practice?
- 4. What are we missing from EconML and CausalML?

Risotto

- Can either be prepared
 - in a laborous and delicate fashion, involving a lot of stirring
 - in a cut-throat, cantine style fashion, not involving a lot of stirring
- Consumers of risotto are free to decide how much they pay for their risotto.
- Naturally we wonder: should we be stirring?

When prediction fails

What happens when we intervene on a data point from the left, i.e. stirring = 0, and now - keeping everything else unchanged - make sure that a gas stove is used, i.e.

stirring = 1?

Why heterogeneity

To stir or not to stir, the math

- Assume that the cost of stirring amounts to 1\$ per unit.
- Also assume that the revenue when never stirring is R.
- Then, the revenue when **always stirring** is $R-n\cdot 1+\delta_1$
 - \circ The plot from the previous slide tells us that $n \cdot 1 > \delta$.
- ullet Revenue of stirring when we expect it to pay off: $R-k\cdot 1+\delta_\pi$
 - We can condition on certain 'covariates'/features to decide for whom it pays off.
 - \circ When doing this 'right', we get that $\delta_\pi > k \cdot 1$.

Estimating heterogeneity on paper

The fundamental problem of Causal Inference

Desire

Consumer	Age of consumer	Non-stirred outcome/payment	Stirred outcome/payment	Individual treatment effect
Bob	28	21	21.8	.8
Anne	10	12	12	0

The fundamental problem of Causal Inference

Reality

Consumer	Age of consumer	Non-stirred outcome/payment	Stirred outcome/payment	Individual treatment effect
Bob	28	21	?	?
Anne	10	?	12	?

Conventional assumptions for estimating heterogeneous treatment effects

- Positivity/overlap
- Conditional ignorability/unconfoundedness
- Consistency

A randomized control trial usually gives us the first two for free.

What now?

- We still can't estimate the ITE.
- Yet, we can define an estimand, the Conditional Average Treatment Effect (CATE), which we can actually estimate:
 - $au(X) := \mathbb{E}[\mathrm{payment}|X, \mathrm{stirring}] \mathbb{E}[\mathrm{payment}|X, \mathrm{no} \ \mathrm{stirring}]$

The DR-Learner

Estimating heterogeneity in practice

Risotto consumption: a simulation

Risotto consumption: a simulation

age	nationality	chef_rating	gas_stove	μ	T	au	Y
50.77	Indonesia	0.53	1	20.7378	1	0.344297	21.0821
59.48	Iraq	0.46	0	20.4627	0	0.760332	20.4627
47.25	India	0.46	0	24.2942	0	0.194722	24.2942
22.21	Italy	0.58	0	15.9038	1	0.887621	16.7914
100.4	India	0.58	1	29.9518	1	0.307483	30.2593

where $Y = \mu + T \cdot au$

```
X = pd.concat([
        df[numerical_covariates],
        pd.get_dummies(df["nationality"])
], axis=1)
reg = lgbm.LGBMRegressor(verbosity=-1, num_leaves=4)
clf = lgbm.LGBMClassifier(verbosity=-1, num_leaves=4)
model = causalml.BaseRRegressor(
    outcome_learner=reg,
    effect_learner=reg,
    propensity_learner=clf,
model.fit(X=X, treatment=df[treatment], y=df[outcome])
cate_estimates = model.predict(X)
```


