

West Tambaram, Chennai - 44

YEAR II

SEM III

CS 8351

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

UNIT NO.1

1.3 BOOLEAN ALGEBRA

Version: 1.0

INFORMATION TECHNOLOGY

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

INTRODUCTION

- In 1854, George Boole, an English mathematician, proposed algebra for symbolically representing problems in logic so that they may be analyzed mathematically.
- The mathematical systems founded upon the work of Boole are called *Boolean algebra* in his honor.
- The application of a Boolean algebra to certain engineering problems was introduced in 1938 by C.E. Shannon.
- For the formal definition of Boolean algebra, we shall employ the postulates formulated by E.V. Huntington in 1904.

Fundamental postulates of Boolean algebra:

- The postulates of a mathematical system forms the basic assumption from which it is possible to deduce the theorems, laws and properties of the system.
- The most common postulates used to formulate various structures are—

i) <u>Closure</u>:

A set S is closed w.r.t. a binary operator, if for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.

The result of each operation with operator (+) or (.) is either 1 or 0 and 1, 0 \in B.

ii) Identity element:

A set S is said to have an identity element w.r.t a binary operation * on S, if there exists an element e E S with the property,

$$e^* x = x * e = x$$

INFORMATION TECHNOLOGY

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

Eg:
$$0 + 0 = 0$$
 $0 + 1 = 1 + 0 = 1$ a) $x + 0 = x$
 $1 \cdot 1 = 1$ $1 \cdot 0 = 0 \cdot 1 = 0$ b) $x \cdot 1 = x$

iii) **Commutative law**:

A binary operator * on a set S is said to be commutative if, for all x, y & S

$$\mathbf{x} * \mathbf{y} = \mathbf{y} * \mathbf{x}$$

Eg:
$$0+1=1+0=1$$

a)
$$x+y=y+x$$

$$0.1 = 1.0 = 0$$

b)
$$x. y= y. x$$

iv) **Distributive law**:

If * and \bullet are two binary operation on a set S, \bullet is said to be distributive over +whenever,

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Similarly, + is said to be distributive over • whenever,

$$x + (y. z) = (x+ y). (x+ z)$$

v) <u>Inverse</u>:

A set S having the identity element e, w.r.t. binary operator * is said to have an inverse, whenever for every $x \in S$, there exists an

element x' & S such that,

a)
$$x + x' = 1$$
, since $0 + 0' = 0 + 1$ and $1 + 1' = 1 + 0 = 1$

b)
$$x. x' = 1$$
, since $0.0' = 0.1$ and $1.1' = 1.0 = 0$

INFORMATION TECHNOLOGY

DIGITAL PRINCIPLES&SYSTEM DESIGN(Common to CSE & IT)

Summary:

Postulates of Boolean algebra:

POSTULATES	(a)	(b)
Postulate 2 (Identity)	$\mathbf{x} + 0 = \mathbf{x}$	$x \cdot 1 = x$
Postulate 3 (Commutative)	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$
Postulate 4 (Distributive)	x (y+z) = xy+	$\mathbf{x} + \mathbf{y}\mathbf{z} = (\mathbf{x} + \mathbf{y}). (\mathbf{x} +$
	XZ	z)
Postulate 5 (Inverse)	x+x' = 1	$\mathbf{x.}\ \mathbf{x'}=0$