Oblig 1 - INF3410

Krister Borge Hamza Muftic Bartas Venckus

September 25, 2015

0.1 Task1

In matlab we coded a simple modell and ploted the results. The code:

```
function [ Ids ] = nmosmodel(Vgs)
%nmos-model plotting vds as function of Vgs
%
%%
% $W/L=10m/0.4um$
% $uC_{ox}W/Lm=beta =190*10/0.4$
  V_{tn}=0.57
%
   C_{ox}=4.5
% $ 0.35 um prosess$
   V_T=kT/q=26mV at 300 degree Kelvin
%
%
  n=1.5 for weak inversion
  n=1.7 for strong ionversion
%
   no length modulation lambda
W=10;
L=0.4;
vt=1.7;
bolt=1.38e-23;
beta=190*W/L;
Veff=Vgs-vt;
Vds=Veff;
if Vgs<vt
    Ids=0;
%triode region
else if (Vgs>vt && Vds<=Veff);</pre>
    vt=vt;
    Ids=beta*(Veff)*Vds-(Vds^2/2);
%active region
else % (Vgs>vt && Vds>=Veff)
    Ids=0.5*beta*Veff^2;
end
end
the plotting code:
Vgs=linspace(0, 5, 100);
Ids=zeros(length(Vgs),1)';
for n= 1:length(Vgs);
    Ids(n)=nmosmodel(Vgs(n));
end
figure();
title('I_{ds} as funtion of V_{gs}')
xlabel('V_{gs}')
ylabel('V_{ds}')
plot (Vgs, Ids)
figure()
title('logaritmic I_{ds} as funtion of V_{gs}')
```

```
xlabel('V_{gs}')
ylabel('I_{ds}')
plot (Vgs,log(Ids))
See fig1 and 2.
```

0.2 Task2

Comparing cadence plot of V_{gs} and I_{ds} and adjusting model parameters so the simple nmosmodel is more accurate.

See fig 3 and 4.

0.3 Task3

Measuring the current through a $47k\Omega$ resistor. Using Matlab and GPIB-interface to the Agilent voltage suply. and agilent multimetersee fig 5

0.4 Task4

We soldered on the mc1400qb to a perfboard and measured the current of the drain node. We used both channels on the Agilent Voltagesuply, one channel for the V_{gs} -sweep and one channel to suply a sufficiently large V_{ds}

```
function [ iout ] = gpib_function( vinmin, vinmax, steps )
HPE3631_Init;
HPE3631_SetILimit(1,0.1);
%HPE3631_SetVolt(1,1);
HPE3631_Operate;
K617_Init;
iout=zeros(1,steps)';
K617_SetRange(0);
K617_SetMode('A');
i=linspace(vinmin, vinmax, steps);
for k=1:length(i)
   HPE3631_SetVolt(1,i(k));
   pause(0.5);
   iout(k) = K617_ReadQuick();
end
plot(i,iout)
return
end
```

0.5 Task5

See Figure 10

0.6 Task6

We didn't take the gnd-connection of V_{gs} into account when we ran the script. Therefor the we plot from zero. We have also connected the Keithley reversed so the values are negative.

0.7Task7

The difference between nMOS and pMOS is that the nMOS when the V_{gsn} is high the I_{dsn} is high. The pMOS is inverted: When the V_{gsp} is high the I_{dsp} is low.

0.8 Task8

See fig 13

0.9 Task9

- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0000
- 0.0001
- 0.0005
- 0.0008
- 0.0007
- 0.0006
- 0.0006 0.0010
- 0.0017
- 0.0031
- 0.0045
- 0.0060
- 0.0077 0.0096
- 0.0118
- 0.0140
- 0.0163
- 0.0188
- 0.0211
- 0.0233
- 0.0257
- 0.0277

```
0.0294
0.0310
0.0326
0.0337
0.0344
0.0350
0.0348
```

0.0341

0.0334

0.0315

0.0289

0.0257

0.0219

0.0165

Dette er relativ error mellom n
mosmodel.
m og $\mathrm{mc}14007\mathrm{ub}.$

0.10 Task10

```
close all
figure
hold on

plot(Vgs,cadence)
legend('Cadence');
plot(Vgs,ans)

Data fra cadence:
0.0000
```

0.0000

0.0000

0.0000

0.0000

0.0002

0.0016

0.0056

0.0123 0.0211

0.0319

0.0443

0.0581

0.0733

0.0896

0.1069

0.1250

0.1435

0.1620

0.1796

0.1960

0.2109

0.2240

0.2356

0.2448

```
0.2527
0.2590
0.2635
0.2664
0.2674
0.2670
0.2650
0.2612
0.2561
0.2497
0.2415
0.2323
0.2219
0.2101
0.1967
0.1824
0.1670
0.1500
0.1323
0.1137
0.0934
0.0727
0.0510
0.0284
0.0046
0.0193
see fig 14 - viser cadence og transistoren i samme plot.
```

0.11 Task11

```
her skal vi trekke ut /Beta fra nMOS-transistoren.
```

```
function [ betas ] = calcBeta( )
%calcBeta finds beta for a cmos transistor.
iout=zeros(1,1,100)';
iout=gpib_function(0,5,100)
vgs=linspace(0,5,100);
betas=zeros(1,1,100)';
for K= i:length(iout)
    betas(K)=sqrt(iout(K)-sqrt(K+1))/(vgs(K)-vgs(K+1))
end
return
end
```

0.12Task12

0.13 **Pictures**

And now the logaritmic I_{ds} Logaritmic scaling of I_{ds}

Figure 3: Task 2 not Matched parameters

Figure 4: task 2 Matched parameters

Figure 5: Task2 nMOS Not matched parameters

Figure 6: Task 2 nMOSMatched parameters

Figure 7: Task 3 Resistor I_{out}

Figure 8: Task 4

Figure 9: task 4 log

Figure 10: Task 5: Circuit for measuring the cmos's

pMOS

Figure 11: task6: pMOS

Figure 12: Task6: pMOS logaritmic

Figure 13: Task8:

Figure 14: Task10:

