Numerical Analysis II: Homework 3

Peter Shaffery

February 22, 2017

1 Problems

Problem 1. Let A be a symmetric positive definite matrix and set $A_0 = A$. Take the Cholesky decomp $A_k = G_k G_k^T$ and then set $A_{k+1} = G_k^T G_k$. Prove that any A_k found this way is also PD and symmetric. Show that, if A is a symmetric, 2×2 matrix with two distinct eigenvalues $\lambda_1 > \lambda_2 \ge 0$ and an ordered diagonal that A_k converges to diag (λ_1, λ_2) .

Proof that Sequence is Well-Defined. First note that $G_kG_k^T=A_k$ implies $G_k^T=G_k^{-1}A_k$, hence $A_{k+1}=G_k^TG_k=G_k^{-1}A_kG_k$. Since A_{k+1} and A_k are similar then they have the same eigenvalues, so if A_k is PD then so is A_{k+1} .

Proof of Convergence to Diagonal Matrix. Now consider $A_k = \begin{bmatrix} a_k & b_k \\ b_k & c_k \end{bmatrix} = \begin{bmatrix} l_1 & 0 \\ l_2 & l_3 \end{bmatrix} \begin{bmatrix} l_1 & l_2 \\ 0 & l_3 \end{bmatrix}$. Note that $a_k = l_1^2$, $c_k = l_2^2 + l_3^2$, and $b_k = l_1 l_2$. Since $a_k \geq c_k$ then $l_1^2 \geq l_2^2 + l_3^2$. Now consider $A_{k+1} = \begin{bmatrix} l_1 & l_2 \\ 0 & l_3 \end{bmatrix} \begin{bmatrix} l_1 & 0 \\ l_2 & l_3 \end{bmatrix}$. We still have that $a_{k+1} \geq c_{k+1}$, and he off-diagonal elements of A_{k+1} are $b_{k+1} = l_2 l_3$. Assuming $l_2 \neq 0$ (in which case the matrix A_k would already be diagonal), then from $l_1^2 > l_3^2$ we have that $|l_1| > |l_3|$, so $|b_k| > |b_{k+1}|$. Therefore the absolute values of the off-diagonals of the A_k form a strictly decreasing sequence and therefore the $b_k \to 0$.

Since the off-diagonals of A_k approach 0, then for k sufficiently large the eigenvalues of A_k are ϵ -close to the diagonal elements of A_k (this is a direct consequence of the Gershgorin Circle Theorem). Since all A_k have the same, fixed eigenvalues (see previous proof), then this is equivalent to the diagonal elements of the A_k becoming ϵ -close to λ_1 and λ_2 . Therefore the diagonal elements of A_k go to λ_1 and λ_2 and the off-diagonals go to 0, hence the A_k converge in the Frobenius norm, completing the proof.

Problem 2. Show that the Jacobi eigenvalue algorithm converges quadratically.

Proof. After one rotation with angle parameter θ we have from class that:

$$\frac{a_{pq}}{a_{pp} - a_{qq}} = \frac{\cos(\theta)\sin(\theta)}{\cos^2(\theta) - \sin^2(\theta)} = \frac{1}{2}\tan(\theta)$$
 (1)

Since all $a_{pq} \propto \mathcal{O}(\epsilon)$ then $\theta \propto \arctan(\mathcal{O}(\epsilon))$. From the Taylor expansion of $\arctan(\mathcal{O}(\epsilon))$ we see that $\theta \propto \mathcal{O}(\epsilon)$. We can then show, again from their Taylor expansions, that $\cos(\theta) \propto 1 - \mathcal{O}(\epsilon^2)$ and $\sin(\theta) \propto \mathcal{O}(\epsilon)$. Therefore every rotation matrix in the sweeps is of the form outlined in the problem statment (I really don't want to have to typeset that array).

Since (again from class), of $f^2(B) = of f^2(A) - 2a_{pq}^2$ then $|of f^2(B) - of f^2(A)| \propto |a_{pq}|^2 \propto \mathcal{O}(\epsilon^2)$. Therefore the sum of squared, off-diagonal elements of this sequence decreases quadratically in terms of the individual rotations.