#### Vladimir Podolskii

Computer Science Department, Higher School of Economics

#### **Outline**

From Expectation to Probability

Markov's Inequality

Application to Algorithms

## **Expectation vs. Probability**

 In this week we have introduced random variables and their expected values

### **Expectation vs. Probability**

- In this week we have introduced random variables and their expected values
- We will see now how these notions can help in studies of probabilities of events

#### **Problem**

#### **Problem**

A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

We will use proof by contradiction

#### **Problem**

- We will use proof by contradiction
- Assume the contrary: the probability to win 500 dollars or more is at least 0.01

#### **Problem**

- We will use proof by contradiction
- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by n

#### **Problem**

- We will use proof by contradiction
- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by  $\boldsymbol{n}$
- Then the budget of the lottery is 10n dollars

#### **Problem**

- We will use proof by contradiction
- Assume the contrary: the probability to win 500 dollars or more is at least 0.01
- Denote the number of tickets sold by  $\boldsymbol{n}$
- Then the budget of the lottery is 10n dollars
- $10n \times 0.4 = 4n$  dollars are spent on the prizes

#### **Problem**

A lottery ticket costs 10 dollars. A 40% of a lottery budget goes to prizes. Show that the chances to win 500 dollars or more are less than 1%

• By our assumption at least  $\frac{n}{100}$  tickets win at least 500 dollars

#### **Problem**

- By our assumption at least  $\frac{n}{100}$  tickets win at least 500 dollars
- In total these tickets win  $\frac{n}{100} \times 500 = 5n$  dollars

#### **Problem**

- By our assumption at least  $\frac{n}{100}$  tickets win at least 500 dollars
- In total these tickets win  $\frac{n}{100} \times 500 = 5n$  dollars
- This exceeds the total prize budget of 4n!

#### **Problem**

- By our assumption at least  $\frac{n}{100}$  tickets win at least 500 dollars
- In total these tickets win  $\frac{n}{100} \times 500 = 5n$  dollars
- This exceeds the total prize budget of 4n!
- We arrived into contradiction and the problem is solved

### **Outline**

From Expectation to Probability

Markov's Inequality

Application to Algorithms

#### Markov's Inequality

Suppose that f is a non-negative random variable. Then for any number a>0 we have

$$\Pr[f \ge a] \le \frac{\mathsf{E}f}{a}$$

#### Markov's Inequality

Suppose that f is a non-negative random variable. Then for any number a>0 we have

$$\Pr[f \ge a] \le \frac{\mathsf{E}f}{a}$$

 The inequality allows to use expected value to bound probability of certain events

#### Markov's Inequality

Suppose that f is a non-negative random variable. Then for any number a>0 we have

$$\Pr[f \ge a] \le \frac{\mathsf{E}f}{a}$$

- The inequality allows to use expected value to bound probability of certain events
- For the proof it is convenient to rewrite the inequality:

$$a \times \Pr[f \ge a] \le \mathsf{E} f$$

• We need to prove the inequality  $a \times \Pr[f \ge a] \le \mathsf{E} f$ 

- We need to prove the inequality  $a \times \Pr[f \ge a] \le \mathsf{E} f$
- Consider the following random variable g on the same probability space: for an outcome such that  $f=a_i$  we let g=a on this outcome if  $a\leq a_i$  and g=0 otherwise; that is

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- We need to prove the inequality  $a \times \Pr[f \ge a] \le \mathsf{E} f$
- Consider the following random variable g on the same probability space: for an outcome such that  $f=a_i$  we let g=a on this outcome if  $a\leq a_i$  and g=0 otherwise; that is

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

ullet g is less or equal than f on each outcome

- We need to prove the inequality  $a \times \Pr[f \geq a] \leq \mathsf{E} f$
- Consider the following random variable g on the same probability space: for an outcome such that  $f=a_i$  we let g=a on this outcome if  $a\leq a_i$  and g=0 otherwise; that is

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- g is less or equal than f on each outcome
- So the average value Eg of g is less or equal than the average value Ef of f:

$$\mathsf{E} g \leq \mathsf{E} f$$

$$g = \begin{cases} a & \text{if } f = a_i \geq a \\ 0 & \text{if } f = a_i < a \end{cases}$$

What is the expectation of g?

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- What is the expectation of g?
- g has only one nonzero value;

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- What is the expectation of g?
- g has only one nonzero value;
- so Eg is this value multiplied by the sum of probabilities of all outcomes for this value

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- What is the expectation of g?
- g has only one nonzero value;
- so Eg is this value multiplied by the sum of probabilities of all outcomes for this value
- But these outcomes are exactly the outcomes that form the event " $f \geq a$ "

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- What is the expectation of g?
- g has only one nonzero value;
- so Eg is this value multiplied by the sum of probabilities of all outcomes for this value
- But these outcomes are exactly the outcomes that form the event " $f \geq a$ "
- Thus the sum of their probabilities is equal to  $\Pr[f \geq a]$

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- What is the expectation of *g*?
- *g* has only one nonzero value;
- so Eg is this value multiplied by the sum of probabilities of all outcomes for this value
- But these outcomes are exactly the outcomes that form the event " $f \geq a$ "
- Thus the sum of their probabilities is equal to  $\Pr[f \geq a]$
- Thus  $Eg = a \times Pr[f \ge a]$

$$g = \begin{cases} a & \text{if } f = a_i \geq a \\ 0 & \text{if } f = a_i < a \end{cases}$$

• Finally, we have  $Eg \le Ef$ 

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- Finally, we have  $Eg \le Ef$
- And  $Eg = a \times Pr[f \ge a]$

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- Finally, we have  $\mathsf{E} g \leq \mathsf{E} f$
- And  $Eg = a \times \Pr[f \ge a]$
- So

$$\mathsf{E} f \ge \mathsf{E} g = a \times \Pr[f \ge a]$$

$$g = \begin{cases} a & \text{if } f = a_i \ge a \\ 0 & \text{if } f = a_i < a \end{cases}$$

- Finally, we have  $\mathsf{E} g \leq \mathsf{E} f$
- And  $Eg = a \times \Pr[f \ge a]$
- So

$$\mathsf{E} f \ge \mathsf{E} g = a \times \Pr[f \ge a]$$

We have shown Markov's inequality

 $\mathsf{E} f \ge a \times \Pr[f \ge a]$ 

$$\begin{split} & \mathsf{E} f \geq a \times \Pr[f \geq a] \\ & \mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ & p_1, p_2, p_3, p_4 \end{split}$$

$$\begin{split} & \mathsf{E} f \geq a \times \Pr[f \geq a] \\ & \mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ & p_1, p_2, p_3, p_4 \end{split}$$



$$\begin{split} & \mathsf{E} f \geq a \times \Pr[f \geq a] \\ & \mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ & p_1, p_2, p_3, p_4 \end{split}$$



$$\begin{split} & \mathsf{E} f \geq a \times \Pr[f \geq a] \\ & \mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ & p_1, p_2, p_3, p_4 \end{split}$$



$$\begin{split} & \mathsf{E} f \geq a \times \Pr[f \geq a] \\ & \mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ & p_1, p_2, p_3, p_4 \end{split}$$



$$\begin{split} &\mathsf{E} f \geq a \times \Pr[f \geq a] \\ &\mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ &p_1, p_2, p_3, p_4 \end{split}$$



• Ef is the area of the gray region

$$\begin{split} &\mathsf{E} f \geq a \times \Pr[f \geq a] \\ &\mathsf{Suppose} \ f \ \mathsf{obtains} \ \mathsf{values} \ a_1, a_2, a_3, a_4 \ \mathsf{with} \ \mathsf{probabilities} \\ &p_1, p_2, p_3, p_4 \end{split}$$



- Ef is the area of the gray region
- $a \times \Pr[f \ge a]$  is the area of a red region

 $\mathsf{E} f \geq a \times \Pr[f \geq a]$ 

Suppose f obtains values  $a_1, a_2, a_3, a_4$  with probabilities  $% \left( {a_1} \right) = a_1 + a_2 + a_3 + a_4 + a_4 + a_5 +$ 

 $p_1, p_2, p_3, p_4$ 



- Ef is the area of the gray region
- $a \times \Pr[f \ge a]$  is the area of a red region
- The gray region is large and the inequality follows

### **Outline**

From Expectation to Probability

Markov's Inequality

#### **Problem**

Suppose there is a randomized algorithm that runs on average in time, say,  $n^2$ , where n is the size of input. The algorithm outputs the correct answer. Construct another randomized algorithm that always stops in time  $cn^2$  for some constant c and makes a mistake with probability at most  $10^{-3}$ 

#### **Problem**

Suppose there is a randomized algorithm that runs on average in time, say,  $n^2$ , where n is the size of input. The algorithm outputs the correct answer. Construct another randomized algorithm that always stops in time  $cn^2$  for some constant c and makes a mistake with probability at most  $10^{-3}$ 

· We will apply Markov inequality

• Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$ 

- Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$
- We know that  $\mathbf{E}f = n^2$

- Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$
- We know that  $\mathsf{E} f = n^2$
- Here is a new algorithm

- Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$
- We know that  $\mathsf{E} f = n^2$
- · Here is a new algorithm
- Run the original algorithm for  $10^3n^2$  steps

- Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$
- We know that  $\mathsf{E} f = n^2$
- · Here is a new algorithm
- Run the original algorithm for  $10^3 n^2$  steps
- If it stops, we also stop

- Running time of the algorithm is a random variable; denote it by  $\boldsymbol{f}$
- We know that  $\mathsf{E} f = n^2$
- · Here is a new algorithm
- Run the original algorithm for  $10^3 n^2$  steps
- If it stops, we also stop
- If not, stop and output, say, 0

#### **Claim**

The probability that the original algorithm does not stop after  $10^3 \, n^2$  number of steps is at most  $10^{-3}$ 

• Indeed, this probability is  $\Pr[f \ge 10^3 n^2]$ 

#### Claim

The probability that the original algorithm does not stop after  $10^3\,n^2$  number of steps is at most  $10^{-3}$ 

- Indeed, this probability is  $\Pr[f \ge 10^3 n^2]$
- By Markov's inequality it is bounded by

$$\Pr[f \ge 10^3 n^2] \le \frac{\mathsf{E}f}{10^3 n^2} = \frac{n^2}{10^3 n^2} = 10^{-3}$$

• We studied random variables

- We studied random variables
- Allow us to study quantitative aspects of randomness

- We studied random variables
- Allow us to study quantitative aspects of randomness
- Allow us to apply many analytic tools to study probability

- We studied random variables
- Allow us to study quantitative aspects of randomness
- Allow us to apply many analytic tools to study probability
- Expected value is one of the main characteristics of a random variable

- We studied random variables
- Allow us to study quantitative aspects of randomness
- Allow us to apply many analytic tools to study probability
- Expected value is one of the main characteristics of a random variable
- On one side, expectation bears a lot of information of a random variable

- We studied random variables
- Allow us to study quantitative aspects of randomness
- Allow us to apply many analytic tools to study probability
- Expected value is one of the main characteristics of a random variable
- On one side, expectation bears a lot of information of a random variable
- On the other side, expectation has very convenient mathematical properties