DataCo Supply Chain Data Warehousing

FEUP - MECD - Data Warehouse Middle presentation

Carlos Miguel Veloso Cátia Teixeira Luís Henriques Rojan Aslani

Introduction

Assignment Goals

• To design a data warehouse, implement it, and exemplify its use

Assignment Requirements

- The number of rows must be over 10000 with, at least, one additive measure
- There must be aggregated facts or snapshots with at least one semi-additive measure
- There must be at least 4 dimensions, one of which temporal, and some of them are common to both kinds of facts.

Introduction

Kimball Lifecycle diagram Technical Product Architecture Selection & Design Installation ETL Design & Program/ Project Planning **Business** Physical Design Requirements Modeling Development Definition Maintenance Application Application Design Development Program/Project Management

Assignment steps

Project phase	Tasks			
Project Planning	Timeline, general tasks definition and distributionFinding data			
Business Requirements Definition	Data understandingScope definition and data filtering			
Dimensional Modeling	 Relational model Entity relationship Bus Matrix Dimensional design 			
Physical Design	Data warehouse implementation			
ETL Design & Development	ETL process definitionLoading data do Postgres			
Deployment	Data analysis and business analytics			

Source

Dataset source

Identify and profile operational data (OLTP) sources

Dataset

Online store transactions

• Product data

• Financial data

• Sales and demand data

	Original dataset	Reduced dataset			
Columns	53	47			
Rows	180000+	27128			
Timespan	2015 to 2018	2nd Semester of 2017			

kaggle

Data set was sourced from Kaggle platform

Made available by Politécnico de Leiria

Data related to Datco Company

Transactional schema

Segment

PK segment id

segment desc

Customer

PK customer id

Dimensional Model

Develop a dimensional model that includes Dimensions and Facts

Dimensional Model

Dimensional Bus Matrix

		Dimensions				
				L		С
				О	Р	u
				С	r	s
				а	o	t
		Т	D	t	d	О
		i	a	i	u	m
		m	t	О	С	е
Stars (fact tables)	Granularity	е	е	n	t	r
Order	1 / customer / date	X		Х		X
Order items	1 / product	х			x	
Sales (aggregation)	1 / month		х	х	X	X

Order star

Order item star

DM Implementation + ETL

Implement the dimensional model in an appropriate database system

Implementation

- Communicate with database
- Creating dimension and fact tables
- ETL process
 - Extract
 - Transform (calculate fields and process data)
 - Load

Input file

Manual correction of the data fields

Load

Slowly changing dimensions - allows easy future updates

Dimensions made using data from CSV file:

- Customer_dim
- Product_dim
- Location_dim

Load

Dimensions rows generated in Pentaho:

Date_dim

Done!

Job scheduling

Schedule a set of ETL jobs to perform incremental data loads as new data is added to the operational (OLTP) systems and/or as operational data is changed.

Querying & Data Analysis

Develop business analytics reports, dashboards, or other user interfaces for the data warehouse.

Querying

- Cubes
- Rollups

Data Analytics

- Data Insights
- Visualization
- Transform & Clean data

Conclusions

Conclusions

Datawarehouse VS Operational system

- Scalability
- Data Integration
- Performance: complex analytical queries
- Historical Analysis

Future works

- Finish the ETL process
- Querying and Analytics
- Use data to feed models and make forecasting systems to predict supply chain management

DataCo Supply Chain Data Warehousing

FEUP - MECD - Data Warehouse Middle presentation

Carlos Miguel Veloso Cátia Teixeira Luís Henriques Rojan Aslani

LEVELS

