Tecnología Digital IV: Redes de Computadoras

Clase 2: Introducción a las Redes de Computadoras - Parte 2

Lucio Santi & Emmanuel Iarussi

Licenciatura en Tecnología Digital Universidad Torcuato Di Tella

11 de marzo de 2025

Encolamiento de paquetes

El encolamiento sucede cuando el trabajo llega más rápido que lo que puede ser atendido

Encolamiento de paquetes

Encolamiento y pérdida de paquetes

Si la tasa de arribo al *packet switch* (en bps) supera a la tasa de transmisión durante un período de tiempo...

- Se encolarán paquetes esperando a ser transmitidos
- Podrían descartarse paquetes si la memoria se satura

Circuit switching: conmutación de circuitos

Se produce una reserva previa de recursos para la comunicación entre dos interlocutores

- En la figura, cada enlace posee cuatro circuitos. La conexión destacada emplea el segundo circuito del enlace superior y el primero del enlace derecho
- Recursos dedicados, no compartidos
- Un circuito permanece inactivo si no está siendo utilizado en una conexión
- Usualmente utilizado en las redes telefónicas

Circuit switching: FDM y TDM

Multiplexación por División de Frecuencia (FDM)

- Ancho de banda total dividido en bandas de frecuencias
- Cada conexión recibe su propia banda

Multiplexación por División de Tiempo (TDM)

- Tiempo dividido en intervalos (slots)
- Cada conexión recibe intervalos periódicos durante las cuales puede transmitir empleando todo el ancho de banda

Conmutación de paquetes vs. circuitos

- Conmutación de paquetes: ideal para datos "en ráfagas" (i.e. donde no siempre hay datos para transmitir)
 - Recursos compartidos
 - No precisa una etapa de reserva de recursos
- Pasible de sufrir congestión: latencias altas y pérdidas de paquetes por buffers saturados
 - Se debe contar con protocolos confiables y con control de congestión

1D4 2025

Delay y pérdida de paquetes

- Los paquetes se encolan en los routers esperando a ser transmitidos
 - La cola crece cuando la tasa de arribo de paquetes supera a la capacidad de transmisión
- Los paquetes se pierden si se satura la memoria para almacenar los paquetes por transmitir

buffers disponibles: pérdida de paquetes si están todos ocupados

Pérdida de paquetes

- Los buffers en la memoria de los routers tienen capacidad finita
- Si un nuevo paquete encuentra los buffers completos, se descarta y se pierde
- Este paquete perdido puede ser (o no) retransmitido

Tipos de latencia

d_{proc} : delay de procesamiento

- Tiempo de examinar header, decidir enlace de salida, etc
- Se mide en microsegundos

d_{queue} : delay de encolamiento

- Tiempo de espera en los buffers del enlace de salida hasta ser transmitido
- Depende de la congestión en el router

Tipos de latencia

d_{trans}: delay de transmisión

 L / R (L: longitud del paquete en bits; R: tasa de transmisión en bps)

d_{prop} : delay de propagación

 d / s (d: longitud del enlace físico; s: velocidad de propagación en dicho medio)

Ejercicio!

- Supongamos lo siguiente:
- La cabina de peaje demora 12 segundos en atender un auto
- Los autos se "propagan" a 100 km/h
- ¿Cuánto tiempo pasa hasta que la caravana queda alineada en la segunda cabina?

Ejercicio!

- Supongamos lo siguiente:
- La cabina de peaje demora 12 segundos en atender un auto
- Los autos se "propagan" a 100 km/h
- ¿Cuánto tiempo pasa hasta que la caravana queda alineada en la segunda cabina?

- Tiempo para pasar a todos los autos por la cabina: 12*10 = 120 segundos
- Tiempo para "propagar" al último auto a la segunda cabina:

100 km/(100 km/h) = 1 h

Entonces, 62 minutos en total

Tasa de transferencia (throughput)

- Es la cantidad efectiva de bits por unidad de tiempo (b/s) a la que se está recibiendo un archivo.
 - instantáneo: en un punto dado del tiempo
 - medio: a lo largo de un período de tiempo prolongado

Throughput

 $R_s < R_c$ ¿Cuál es el throughput end-to-end medio?

 $R_s > R_c$ ¿Cuál es el throughput end-to-end medio?

Cuello de botella - bottleneck

enlace que limita el throughput end-to-end

Throughput: ejemplo basado en Internet

10 conexiones comparten de forma equitativa el enlace backbone de R bits/s

- Throughput por conexión mín(R_c, R_s, R/10)
- En la práctica, R_c o R_s suelen ser los cuellos de botella

Protocolos, capas y estructura

Las redes son **complejas** y contemplan diversos elementos:

- hosts
- routers
- enlaces (de distintos tipos)
- aplicaciones
- protocolos
- hardware, software

¿Cómo podemos organizar la estructura de una red de computadoras?

104 2025

Organización en capas (layers)

Enfoque para abordar el diseño de sistemas complejos

- Una estructura explícita permite identificar y vincular los componentes del sistema
 - Modelo de referencia organizado en capas
- La modularización facilita el mantenimiento del sistema
 - Los cambios en las implementaciones de una capa son transparentes para el resto del sistema

104 2025

Stack de protocolos de Internet

Capa de aplicación

Soporte para aplicaciones (HTTP, FTP, IMAP, SMTP, DNS)

Capa de transporte

Transferencia de datos entre procesos (TCP, UDP)

Capa de red

 Ruteo de datagramas de origen a destino (IP, OSPF, BGP)

Capa de enlace

 Transferencia de datos entre dispositivos de red adyacentes (Ethernet, 802.11 (WiFi))

Capa física

Transferencia de bits en el medio físico

aplicación transporte red enlace física

D4 2025

Servicios, capas y encapsulamiento

aplicación transporte red enlace fícica origen

Las apps intercambian mensajes para implementar servicios usando servicios de la capa de transporte

El protocolo de transporte transmite M desde un proceso a otro en el destino usando servicios de la capa de red

 El protocolo de transporte encapsula el mensaje M de la capa superior con un header H_t: segmento de la capa de transporte

Servicios, capas y encapsulamiento

Servicios, capas y encapsulamiento

Un vuelo en capas

1961-1972: principios de conmutación de paquetes

- 1961: Kleinrock (MIT) muestra eficacia utilizando teoría de colas
- 1964: Paul Baran (RAND Institute) investiga sobre su uso en redes militares.
- 1967: surgimiento de ARPAnet (ancestro de la Internet moderna)
- 1969: primer switch de ARPAnet operacional (cuatro nodos al final del año)

1961-1972: principios de conmutación de paquetes

- 1972:
 - Primera demo pública de ARPAnet
 - Uso de NCP (Network Control Protocol): protocolo entre hosts
 - Primer software de e-mails sobre NCP

1972-1980: redes propietarias e Internetworking

- 1970s: surgen otras redes como ALOHAnet (red satelital para conectar universidades en Hawaii)
- 1974: Cerf y Kahn delinean fundamentos de interconexión de redes – internetting
- 1975: Ethernet (Xerox PARC)
- 1979: ARPAnet alcanza los 200 nodos

Principios de *internetworking* de Cerf y Kahn:

- Minimalismo y autonomía
- Servicio best-effort
- Ruteo stateless
- Control descentralizado

Los principios definen la arquitectura de la Internet moderna (TCP)

TCP

1990, 2000s: el boom de Internet

- Principios de 1990s: ARPAnet decomisada
- 1991: NSF permite usos comerciales de NSFnet (decomisada en 1995)
- Principios de 1990s: <u>la Web</u>
 - Hipertexto [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic (Netscape)
 - Fines de 1990s: comercialización de la Web

1990, 2000s: el boom de Internet

Fines de 1990s – 2000s:

- Nuevas aplicaciones: mensajería instantánea, P2P file sharing (Napster)
- Más atención a seguridad en redes
- Alrededor de 50 millones de hosts (más de 100 millones de usuarios)
- Enlaces backbone con velocidades en los Gbps

Historia de I

1990, 2000s: el bo

Fines de 1990s – 200

- Nuevas aplicacione instantánea, P2P fi (Napster)
- Más atención a seg
- Alrededor de 50 m (más de 100 millor
- Enlaces backbone en los Gbps

2005-presente: escalabilidad, movilidad, la nube

- Despliegue masivo de accesos de banda ancha en hogares (10-100s Mbps)
- Acceso inalámbrico de alta velocidad (WiFi, 4G/5G)
- Redes de proveedores de servicios y contenidos (e.g. Google)
 - Conexiones próximas a usuarios finales: acceso "instantáneo" a contenido multimedia, redes sociales, etc.
- Servicios en la nube (e.g. AWS, GCP)
- Surgimiento de smartphones: más dispositivos móviles que fijos en Internet more mobile than fixed devices on Internet (2017)
- ~18 miles de millones de dispositivos conectados a Internet (2017)

D4 2025