Планирование расписаний и управления доходами ПМ-1801

Контрольная точка №1 (Вариант I)

Задача №1 (2 балла)

Сформулировать и реализовать точную постановку задачи о покрытии множества (set covering problem) как задачи целочисленного программирования в системе Wolfram Mathematica. Найти решение при помощи функции *LinearProgramming*.

Задача №2 (3 балла)

Сформулировать задачу разбиения множества векторов с одинаковой размерностью на k групп (multidimensional multiway NPP) при минимизации взвешенной по координатной суммы разностей между наибольшей суммой по координате среди групп и наименьшей.

Задача №3 (5 баллов)

Сформулировать задачу о постановке контейнеров на платформы при заданных приоритетах у платформ, партий контейнеров и добавлением критериев оптимизации, связанных с партиями контейнеров: минимизация числа платформ, на которых располагается партия.

Описание исходных данных

Дано множество платформ P на железнодорожных путях для размещения и отправки на них множества контейнеров C.

Каждая платформа $p \in P$ характеризуется:

- приоритетом использования платформы для постановки на нее контейнеров $t_p \in \{1,...,T\}$, где T число приоритетов для всех платформ; чем приоритет использования платформы выше, тем меньше значение его характеризующее;
- $-\,$ множеством вариантов A_p размещения контейнеров на ней.

Обозначим множество платформ с приоритетом t как P_t ($t \in \{1, ..., T\}$). Каждый вариант размещения контейнеров $a \in A_p$ характеризуется:

- числом контейнеров на которое рассчитана платформа $n_{p,a}$ при выбранном варианте размещения;
- простыми требованиями к массе контейнеров для постановки на платформу при выбранном варианте размещения;
- требованиями к массе контейнеров типа *if...then...* для постановки на платформу при выбранном варианте размещения;
- требуемой длиной контейнера для постановки его на i-ую позицию при выбранном варианте размещения $l_{p,a,i}$, где $i \in \{1, ..., n_{p,a}\}$.

Каждый контейнер $c \in C$ характеризуется:

- габаритами l_c , h_c , w_c (длина, высота, ширина);
- массой m_c ;
- номер партии $b_c \in \{1, ..., B\}$, где B число партий для всех контейнеров, такая характеристика является опционной.

Обозначим множество контейнеров с партией b как C_b ($b \in \{1, ..., B\}$).

Необходимо найти расстановку контейнеров на платформах, учитывая следующие критерии оптимизации:

- максимизация количества контейнеров, помещенных на платформы;
- минимизация количества задействованных платформ;
- минимизация числа платформ, на которых располагается партия b $(b \in \{1, ..., B\}).$

при удовлетворении следующих ограничений:

- расстановка контейнеров должна удовлетворять условия на допустимые значения массы контейнеров и их длину для каждой платформы;
- платформа $p \in P$ может быть использована для постановки на нее контейнеров при условии, что все платформы с более высоким

приоритетом $\bigcup_{t \in \{1,\dots,t_p-1\}} P_t$ задействованы для размещения контейнеров;

— партия контейнеров C_b , где $b \in \{1, ..., B\}$ должна быть размещена на платформах целиком или не подлежит отправке вовсе.