Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No

Faculty of Engineering End Sem Examination May-2023

IT3EA04 Pattern Recognition

Programme: B.Tech. Branch/Specialisation: IT

Duration:	3 Hrs.	Maximum Marks: 6
Q.1 (MCQ	s) should be written in	ry. Internal choices, if any, are indicated. Answers of full instead of only a, b, c or d. Assume suitable data have their usual meaning.
Q.1 i.	-	ian network provide? tion of the domain of the domain
ii. 	What is needed to ma (a) Reliability (c) Feasibility	(b) Crucial robustness (d) None of these
iii.	are (a) Mathematically log (b) Mathematically log (c) Computationally (d) Computationally	ess complex lucid
iv.		sed for solving temporal probabilistic reasoning? 1 rch nodel
v.	Which of the follow dimensionality of dat (a) t-SNE (c) LDA False	ing algorithms cannot be used for reducing the 1 a? (b) PCA (d) None of these

P.T.O.

	vi.	 Which of the following comparison(s) are true about PCA and LDA (fisher discriminant analysis)? (a) Both LDA and PCA are linear transformation techniques. (b) LDA is supervised whereas PCA is unsupervised. (c) PCA maximizes the variance of the data, whereas LDA maximize the separation between different classes. (d) All of these 	1
	vii.	What is the minimum no. of variables features required to perform clustering?	1
	viii.	 (a) 0 (b) 1 (c) 2 (d) 3 Which of the following is required by K-means clustering? (a) Defined distance metric (b) Number of clusters (c) Initial guess as to cluster centroids (d) All of these 	1
	ix.	Consists of the hardware in a biometric device that converts biometric input into electrical signals and conveys this information to the attached computer, such as a fingerprint sensor- (a) Arch (b) Sensor (c) Identity (d) Mimic	1
	х.	The automated process of locating and encoding distinctive characteristics from a biometric sample in order to generate a template. (a) Verification (b) Extraction (c) Feature Extraction (d) Signature Verification	1
Q.2	i. ii. iii.	Write a short note on discriminant function. Explain decision tree with an example. What is Bayesian Belief Network? Also explain supervised learning.	2 3 5
OR	iv.	Explain Bayes Decision Theory and Minimum-error-rate classification.	5
Q.3	i. ii.	Explain Gibb's algorithm for sampling. What is parameter estimation? Explain Maximum-Likelihood estimation in Gaussian case.	2 8
OR	iii.	Explain Hidden Markov Models with three central issues.	8

Q.4	i.	What is dimensionality reduction?	3
	ii.	What do you mean by curse of dimensionality? Explain Principal component analysis.	7
OR	iii.	Explain Non-Parametric Techniques: Parzen windows and k-nearest neighbor estimation.	7
Q.5	i.	Write difference between classification and regression.	4
	ii.	Explain both Scatter Criteria and Trace Criterion for Criterion Functions.	6
OR	iii.	Explain K-Means algorithms for clustering. Give a two-class example.	6
Q.6		Attempt any two:	
	i.	Explain Support Vector Machine with its applications in pattern recognition.	5
	ii.	Write a note on Pattern recognition applications.	5
	iii.	Explain any two in context of pattern recognition: (a) Face recognition (b) Speech recognition (c) OCR	5

Marking Scheme

CS3EA04 / IT3EA04 Pattern Recognition

Q.1	i.	What does the bayesian network provides?		1	
		a) Complete description of the domain			
	ii.	What is needed to make probabilistic systems feasib world?	le in the	1	
		b) Crucial robustness			
	iii.	The main disadvantage of maximum likelihood met they are	nods is that	1	
		d) computationally intense			
	iv.	Which algorithm is used for solving temporal probateasoning?	bilistic	1	
		b) Hidden markov model			
	V.	Which of the following algorithms cannot be used the dimensionality of data?	d for reducing	1	
		b) none of these			
	vi.	Which of the following comparison(s) are true at LDA(fisher discriminant analysis)?	oout PCA and	1	
		d) All of above	1		
	vii.	What is the minimum no. of variables features requiclustering?	red to perform	1	
		b) 1			
	viii.	Which of the following is required by K-means clus d) all of the Mentioned		1	
	ix.	Consists of the hardware in a biometric device biometric input into electrical signals and information to the attached computer, such as a fing b) Sensor	conveys this	1	
	х.	The automated process of locating and encodi characteristics from a biometric sample in order template. c) Feature Extraction	•	1	
Q.2	i.	Write a short note on discriminant function.		2	
		Formula	-1 mark		
		Explanation	-1 mark		

	ii.	Explain decision tree with an example.	3	
		Decision tree -2 marks		
		Example -1 mark		
	iii.	What is bayesian belief network? Also explain supervised	1 5	
		learning.		
		Bayesion belief network -3 marks		
		Supervised learning -2 marks		
OR	iv.	Explain Bayes Decision Theory and Minimum-error-rate	5	
		Classification		
		Explanation -3 marks		
		Formula -2 marks		
Q.3	i.	Explain Gibb's algorithm for sampling.	2	
		Explanation -1 mark		
		Algorithm -1 mark		
	ii.	What is parameter estimation? Explain Maximum-Likelihood		
		estimation in Gaussian case.		
		Explanation -5 marks		
		Derivation -3 marks		
OR	iii.	Explain Hidden Markov Models with three central issues.	8	
		Explanation -5 marks		
		Three issues -3 marks		
0.4	:	What is Dimensionality reduction?	2	
Q.4	i.	What is Dimensionality reduction? Explanation -3 marks	3	
	ii.	What do you mean by curse of dimensionality? Explain Principal	l 7	
	11.	component analysis.	. /	
		Curse of dimensionality -3 marks		
		PCA -4 marks		
OR	iii.	Explain Non Parametric Techniques: Parzen windows and k-	. 7	
OK	111.	nearest neighbor estimation.	,	
		Parzen window (with formula) -3.5 marks		
		k- nearest neighbor (with formula) -3.5 marks -3.5 marks		
		k- hearest heighbor (with formula) -5.5 marks		
Q.5	i.	Write difference between classification and regression.	4	
`		Each difference -1 mark		

	ii.	Explain both Scatter Criteria and Trace Criterion for Criterion Functions.		
		Scatter Criteria	-3 marks	
		Trace Criterion	-3 marks	
OR	iii.	Explain K-Means algorithms for clustering give a example.	two class	6
		K-Means algorithms	-4 marks	
		two class example	-2 marks	
Q.6		Attempt any two:		
	i.	Explain Support Vector Machine with an example.		5
		Explanation	-3 marks	
		Example	-2 marks	
	ii.	Write a note on Pattern recognition applications.		5
		Each application	-1 mark	
	iii.	Explain any two in context of pattern recognition:		5
		1) Face recognition		
		2) Speech recognition		
		3) OCR		
		Each explanation	2.5 marks	
