5.5. FAN - OUT DTL

Si conectamos la salida de un DTL en NB (T1 saturado) a una entrada, entonces la corriente pasará de V_{cc} a través de R1, del diodo de entrada y de la unión colectoremisor T1 a tierra. Esta corriente es conocida como I_{sink} .

La caída de potencial a través del colector emisor de T1 es realmente cercana a 0,4 V, es decir NB = 0,4 V. Si conectamos más entrada a esta salida, cada una aportará una corriente conocida como I_{IL} . La salida entonces recibirá una corriente I_{OL} igual a:

$$I_{OL} = \sum I_{IL}$$
 (Según Kirchhoff para el nudo A)

 $I_{OL} \rightarrow Corriente de salida NB.$

 $I_{IL} \rightarrow Corriente de entrada NB.$

Debido a que T1 no puede permitir el paso de una corriente infinita I_{ce} , los fabricantes determinan un valor máximo I_{OL} , por encima del cual el circuito se puede dañar, según esto, el fan-out para el NB se determina:

$$\sum$$
 I_{IL} \leq I_{OL}

Tanto I_{OL} como I_{IL} son especificados por los fabricantes en los manuales de CI.

Cuando se conecta una salida en NA (T1 en corte), este valor se verá disminuido por las corrientes inversas a través de los diodos de entrada. Esta corriente se conoce como $I_{so\,u\,r\,c\,e}$.

Si conectamos más entrada a esta salida, cada entrada permitirá el paso de una corriente inversa, esta corriente es conocida como I_{IH} . La corriente a través de la salida se conoce como I_{OH} .

Entonces:

$$I_{OH} = \sum I_{IH}$$
 (Según Kirchhoff para el nudo A)

 I_{OH} \rightarrow Corriente de salida NA I_{IH} \rightarrow Corriente de entrada NA

Puesto que el valor de NA en la salida de puede caer por debajo de 4V, el fabricante define una corriente I_{OH} máxima que garantice esta condición.

Los valores de $\,I_{OH}\,$ y $\,I_{IH}\,$ los especifican los fabricantes en los manuales de circuitos integrados. De acuerdo a lo anterior para el NA se debe cumplir:

$$\sum$$
 I_{IH} \leq I_{OH}

El fan-out final será el menor de cualquiera de los niveles.