EMD

Durée 2h

Tout document interdit

Exercice 1 (4) (antinomie de Russel)

Montrer que l'énoncé suivant est faux :

« Il existe y tel que x appartient à y ssi x n'appartient pas à lui-même ».

(Ceci revient à montrer que l'ensemble des ensembles qui n'appartiennent pas à eux-même n'existe pas).

Exercice 2 (2)

Montrer la proposition suivante : $|= \forall x P(x) \rightarrow P(t_1) \land P(t_2) \land \land P(t_n)$

Exercice 3 (3-3)

Les propositions suivantes sont-elles valides ? Justifier.

- 1. Si $\models \forall x \alpha \text{ alors } \models \alpha$
- 2. Si $\forall x \alpha$ non satisfiable alors α non satisfiable

Exercice 4(1, 1) - (3-3)

Question 1. Montrer que les deux formules α et β sont satisfiables :

 $\alpha:\exists x(S(x)\vee P(x))$

 $\beta : (\exists x S(x)) \vee \exists x P(x))$

Question 2. La proposition $\models \alpha \rightarrow \beta$ est-elle valide? Si vous pensez que oui, le montrer :

- 1. à l'aide de la résolution;
- 2. à l'aide d'un arbre sémantique.

EMD Correction

Exercice 1 (4) (antinomie de Russel)

Montrer que l'énoncé suivant est faux :

« Il existe y tel que x appartient à y ssi x n'appartient pas à lui-même ».

$$\beta$$
 : $\exists y \forall x (A(x,y) \leftrightarrow \neg A(x,x))$ **0.5 point**

Montrer que l'énoncé est faux revient à montrer que β est non satisfiable.

 β est non satisfiable ssi β_S est non satisfiable ssi l'ensemble S des clauses issu de β_S est non satisfiable.

$$\beta_S : \forall x (A(x,a) \leftrightarrow \neg A(x,x)) \equiv \forall x ((\neg A(x,a) \lor \neg A(x,x)) \land (A(x,x) \lor A(x,a)))$$
 0.5 point

Renommer les variables **0.5 point**

L'ensemble des clauses après avoir renommé les variables est :

S:
$$\{\neg A(x,a) \lor \neg A(x,x), A(z,z) \lor A(z,a)\}$$
 0.5 point

Montrer que S est non satisfiable

1. Par la résolution	2. Arbre sémantique
$C_0: \neg A(x,a) \lor \neg A(x,x)$	\wedge
$C_1: A(z,z) \vee A(z,a)$	A(a,a) $A(a,a)$
$C_2 : \neg A(a,a)$ facteur de $C_1 [a/x]$ 1 point	
C_3 : $A(a,a)$ facteur de C_2 [a/z]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C_4 : \square Res (C_2, C_3)	
	Il existe un arbre sémantique clos pour S. S
$S \vdash \Box \Rightarrow S$ inconsistant	est donc non satisfiable.
⇒ non satisfiable (propriété de consistance)	1point
1 point	

3. En supposant l'existence d'un modèle pour β :

On suppose β satisfiable. Il existerait dans ce cas, une interprétation I telle que : $I = \beta$ **0.5 point** $I = \exists y \forall x (A(x,y) \leftrightarrow \neg A(x,x))$ ssi :

il existe au moins un élément $d \in D_I$, soit d_y l'un de ces éléments, tel que pour tout $d' \in D_I$

$$I \models A(x,y) \leftrightarrow \neg A(x,x))_{v(y=d, x=d')}$$
 1 point

Nous avons par conséquent :

Pour tout d $I(A)(d,d_y)$ ssi non A(d,d)) pour un certain $d_y \in D_I$ **0.5 point** Pour $d = d_y$ $I(A)(d_y,d_y)$ ssi non $A(d_y,d_y)$) Contradiction **0.5 point**

Conclusion : β est non satisfiable $\Rightarrow = -\beta$ **0.5 point**

Exercice 2 (2)

Montrer la proposition suivante : $|= \forall x P(x) \rightarrow P(t_1) \land P(t_2) \land \land P(t_n)$

Récurrence sur n

n = 1

 $|= \forall x P(x) \rightarrow P(t_1)$ est une instance de la formule $|= \forall x \alpha \rightarrow \alpha(t_1)$ **0.5 point**

n = 2

$$= \forall x P(x) \rightarrow P(t_1) \land P(t_2)$$

0.5 point

$$|=\forall x P(x) \rightarrow P(t_1) \text{ et } |=\forall x P(x) \rightarrow P(t_1)$$

On en déduit
$$|=(\forall x P(x) \rightarrow P(t_1)) \land (\forall x P(x) \rightarrow P(t_1))$$

 $(\forall x P(x) \rightarrow P(t_I)) \land (\forall x P(x) \rightarrow P(t_I)) \equiv \forall x P(x) \rightarrow P(t_I) \land P(t_2)$ (la 1^{ière} formule est obtenue par distribution de \rightarrow à partir de la seconde :

On déduit :
$$|= \forall x P(x) \rightarrow P(t_1) \land P(t_2)$$

Hypothèse de récurrence :

On suppose la proposition valide jusqu'à l'ordre *n*

A l'ordre n+1 1 point

$$= \forall x P(x) \rightarrow P(t_{n+1})$$
 (cas où $n=1$)

$$|= \forall x P(x) \rightarrow P(t_1) \land P(t_2) \land \dots \land P(t_n)$$
 (hypothèse de récurrence)

$$|=\forall x P(x) \rightarrow P(t_1) \land P(t_2) \land \dots \land P(t_n) \text{ et } |=\forall x P(x) \rightarrow P(t_{n+1})$$

$$\Rightarrow |= (\forall x P(x) \to P(t_1) \land P(t_2) \land \dots \land P(t_n)) \land (\forall x P(x) \to P(t_{n+1}))$$

On met en facteur $\forall x P(x) \rightarrow (cas où n = 2)$

$$= \forall x P(x) \rightarrow P(t_1) \land P(t_2) \land \dots \land P(t_n) \land P(t_1)$$

Exercice 3 (3-3)

3.1. Si $\models \forall x\alpha \text{ alors } \models \alpha$

Raisonnement par l'absurde :

On suppose : $\models \forall x\alpha$ (1) et $\not\models \alpha$ (2)

(1) $\neq \alpha$ ssi $\neg \alpha$ satisfiable i-e, il existe une interprétation, appelons la J, et une valuation v (soit v_0) telles que $J = \neg \alpha_{v_0}$

Posons
$$v_0(x) = d_0$$

- (1') $J = \neg \alpha_{v0(x=d0)}$
- (2) $\models \forall x \alpha$ ssi pour toute interprétation I et pour toute valuation v, $I \models \alpha_{v(x=d)}$ pour tout $d \in D_I$. Ceci est particulièrement vrai pour l'interprétation J et pour la valuation v_0 . On en déduit : $J \models \alpha_{v(x=d0)}$ contradiction avec (1').
- (3.2) Si $\forall x \alpha$ non satisfiable alors α non satisfiable.

Cette proposition n'est pas valide. Contre-exemple :

La formule
$$\forall x P(x) \land \neg P(y)$$
 est non satisfiable mais $P(x) \land \neg P(y)$ est

satisfiable.

Exercice 4(1, 1) - (3-3)

Question 1. Montrer que les deux formules α et β sont satisfiables :

$$\alpha: \exists x (S(x) \vee P(x))$$

$$\beta : (\exists x S(x)) \vee \exists x P(x))$$

Il s'agit de trouver une interpretation I et une interprétation J telles que :

$$I \models \alpha$$

$$J |= \beta$$

 $I \models \alpha \text{ ssi } I \models (S(x) \lor P(x))_{v(x=d)}$ pour au moins un élément $d \in D_I$ – soit d_0 l'un de ces éléments $I(S)(d_0)$ ou $I(P)(d_0)$ 1 point

Exemple de modèle : $D_I = N$, I(P) = « pair »

 $J \models \beta$ ssi $J \models S(x)_{\nu(x=d)}$ pour au moins un élément $d \in D_I$ (soit d_0 l'un de ces éléments) **ou** $J \models P(x)_{\nu(x=d)}$ pour au moins un élément $d \in D_I$ (soit d_I l'un de ces éléments) $I(S)(d_0)$ ou $I(P)(d_I)$ **1 point**

Exemple de modèle : $D_I = N$, I(P) = « pair »

Question 2. La proposition $\models \alpha \rightarrow \beta$ est-elle valide? Si vous pensez que oui, le montrer :

- 3. à l'aide de la résolution :
- 4. à l'aide d'un arbre sémantique.

La proposition $\models \alpha \rightarrow \beta$ est valide ssi $\alpha \land \neg \beta$ est non satisfiable Ssi l'ensemble S des clauses issu de $(\alpha \land \neg \beta)_{PS}$ est non satisfiable **0.5 point**

On renomme les variables :

$$(\alpha \land \neg \beta) : \exists x (S(x) \lor P(x)) \land \forall u \neg S(u) \land \forall v \neg P(v)$$
 0.5 point

$$(\alpha \land \neg \beta)_P : \exists x \forall u \forall v ((S(x) \lor P(x)) \land \neg S(u) \land \neg P(v))$$

$$(\alpha \land \neg \beta)_{PS}$$
: $\forall u \forall v ((S(a) \lor P(a)) \land \neg S(u) \land \neg P(v))$ 0.5 point

S:
$$\{S(a) \vee P(a), \neg S(u), \neg P(v)\}$$
 0.5 point

