CONVEXITÉ

Résumé

Dans ce court chapitre, nous abordons la notion fine de convexité en étudiant son aspect graphique puis analytique.

1 Fonctions convexes et concaves

Définition 1 | Fonction convexe

Soientt f une fonction définie sur un intervalle I et \mathscr{C}_f sa courbe représentative. f est dite **convexe** sur I si :

Pour tout $A, B \in \mathcal{C}_f$, la courbe \mathcal{C}_f est "en dessous" du segment [AB].

Propriété 2 | Définition analytique

On peut aussi définir que f est convexe sur I si, et seulement si, $\forall a,b\in I, \forall\,t\in[0;1]$,

$$f(ta+(1-t)b) \leqslant tf(a)+(1-t)f(b).$$

Démonstration. Soient A et B points distincts de \mathscr{C}_f distincts.

Tous les points de [AB] ont pour uniques coordonnées (ta+(1-t)b; tf(a)+(1-t)f(b)) avec $t \in [0;1]$.

Définition 3 | Fonction concave

Soientt f une fonction définie sur un intervalle I et \mathscr{C}_f sa courbe représentative. f est dite **concave** sur I si :

Pour tout $A, B \in \mathcal{C}_f$, la courbe \mathcal{C}_f est "au dessus" du segment [AB].

Propriété 4 | Définition analytique

On peut aussi définir que f est concave sur I si, et seulement si, $\forall a,b \in I, \forall t \in [0;1]$,

$$f(ta+(1-t)b) \ge tf(a)+(1-t)f(b).$$

2 Propriétés

Propriétés <u>5</u>

- ▶ La somme de deux fonctions convexes sur I (resp. concaves sur I) est convexe sur I (resp. concave sur I).
- ► Le produit d'une fonction convexe sur *I* (resp. concave sur *I*) par un nombre réel **strictement positif** est convexe sur *I* (resp. concave sur *I*).
- ► Le produit d'une fonction convexe sur *I* (resp. concave sur *I*) par un nombre réel **strictement négatif** est concave sur *I* (resp. convexe sur *I*).

Démonstration. Directe en utilisant les définitions analytiques.

Théorème 6 | Utilisation de la dérivée seconde

Soit f une fonction **dérivable deux fois** sur I.

Les propriétés suivantes sont équivalentes :

f est convexe sur I;

- \Leftrightarrow f' est croissante sur I;
- $\Leftrightarrow f'' \geqslant 0 \operatorname{sur} I;$
- \Leftrightarrow \mathscr{C}_f est au dessus de ses tangentes.

Démonstration. Nous allons faire une preuve circulaire.

- ▶ \mathscr{C}_f est au dessus de ses tangentes $\Rightarrow f$ est convexe sur I; par définition. En effet, si une tangente traverse \mathscr{C}_f alors elle crée un segment "au dessus" de \mathscr{C}_f .
- ▶ On admet que f est convexe sur $I \Rightarrow f'$ est croissante sur I.
- ▶ f' est croissante sur $I \Rightarrow f'' \ge 0$ sur I car f est deux fois dérivable sur I.
- ▶ Montrons que $f'' \ge 0$ sur $I \Rightarrow \mathscr{C}_f$ est au dessus de ses tangentes.

Soit f deux fois dérivable telle que $f'' \geqslant 0$ sur I. Prenons $a \in I$. Nous souhaitons que \mathscr{C}_f soit au dessus de $T_a(f)$.

$$T_a(f): y = f'(a)(x-a) + f(a)$$

Pour étudier les positions relatives de \mathcal{C}_f et $T_a(f)$, on étudie :

$$g: x \mapsto f(x) - (f'(a)(x-a) + f(a)).$$

g est dérivable sur I et $\forall x \in I$, g'(x) = f'(x) - f'(a). f'' étant croissante sur I, on a $g'(x) \geqslant 0$ si $x \leqslant a$ et $g'(x) \leqslant 0$ si $x \geqslant a$: par continuité de g' (car dérivable) et le TVI, g'(a) = 0. g(a) est le minimum de g sur I et vaut f(a) - (f'(a)(a-a) + f(a)) = 0.

Finalement, $g \ge 0$ sur I donc \mathcal{C}_f est au dessus de $T_a(f)$.

Exemples 7 \blacktriangleright La fonction **ex**ponentielle est conv**ex**e car $\exp'' = \exp > 0$.

► Toute parabole ouverte est convexe. En effet, ce sont les représentations graphiques d'expressions $f: x \mapsto a(x-\alpha)^2 + \beta$ avec a > 0.

f est deux fois dérivable : $\forall x \in \mathbf{R}$, $f'(x) = 2a(x - \alpha)$ donc f''(x) = 2a > 0.

Exercice 8

Soit f définie sur \mathbf{R}_+^* par $f(x) = x + \frac{1}{x}$.

- 1. Démontrer que f est convexe sur \mathbf{R}_{+}^{*} .
- **2.** Déterminer une équation de la tangente $T_1(f)$.
- **3.** En déduire que $\forall x > 0, x + \frac{1}{x} \ge 2$.

Définition 9 | Point d'inflexion

Soit f une fonction dérivable sur un intervalle I. $A \in \mathcal{C}_f$ est un point d'inflexion si en ce point \mathcal{C}_f traverse la tangente.

Théorème 10

Soient f définie sur I et $a \in I$.

- ▶ Le point (a; f(a)) est un point d'inflexion de \mathscr{C}_f si, et seulement si, la convexité de f change en a.
- ▶ Si de plus, f est deux fois dérivable sur I, alors le point (a; f(a)) est un point d'inflexion si, et seulement si, f'' s'annule et change de signe en a.

Démonstration. Admis.

Exercice 11

Déterminer les éventuels points d'inflexion de la courbe représentative de f définie sur **R** par : $f(x) = x^3 - 21x^2 + 19$.