POLYTHIOL

Patent Number:

JP1090168

Publication date:

1989-04-06

Inventor(s):

KANEMURA YOSHINOBU; others: 02

Applicant(s):

MITSUI TOATSU CHEM INC

Requested Patent:

JP1090168

Application Number: JP19870244951 19870929

Priority Number(s):

IPC Classification:

C07C149/20

EC Classification:

Equivalents:

JP2077582C, JP7116127B

Abstract

NEW MATERIAL: A polythiol expressed by the formula (m and n are 1-3; p is 1 or 2).

EXAMPLE:Bis(2-mercaptoethyl thioglycolate).

USE: Useful as a polymerization regulator, raw material for synthetic resins, crosslinking agent, vulcanizing agent, curing agent for epoxy resins, agent for forming metallic complexes, biochemical drug and additive for lubricating oils. Especially, sulfur-containing polyurethane resins obtained by thermally polymerizing a polyisocyanate, such as xylylene diisocyanate, isophorone diisocyanate or hexamethylene diisocyanate, have a high-degree refractive index and low decomposability and excellent other various physical properties and are useful as optical parts, etc.

PREPARATION:2-Mercaptoethanol is reacted with thiodiglycolic acid, thiodipropionic acid, etc., in the presence of an acid catalyst, such as p-toluenesulfonic acid, at 60-200 deg.C while removing formed water to the outside of the system to afford the aimed compound expressed by the formula.

Data supplied from the esp@cenet database - 12

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑩ 公開特許公報(A) 昭64-90168

<pre> ⑤Int.Cl.⁴ </pre>	識別記号	庁内整理番号	•	❸公開	昭和64年(198	89)4月6日
C 07 C 149/20 // C 08 G 18/38	NQD	7188-4H 7602-4J				
59/66: C 09 K 3/00: 15/12	N J K 1 0 6	7602-4 J 7537-4 H 6926-4 H				
C 10 M 135/26 C 10 N 30:10		6926-4H 8217-4H	審査請求	未請求	発明の数 1	(全4頁)

図発明の名称

ポリチオール

②特 願 昭62-244951

20出 願 昭62(1987)9月29日

⑫発 明 者 村 神奈川県横浜市栄区飯島町2882 金 芳 信 73発 明者 笹 Ш 矷 神奈川県横浜市港北区北折吉田町151 70発 明者 井 夫 神奈川県横浜市瀬谷区橋戸町1-11-10 雅 の出 願人 三井東圧化学株式会社 東京都千代田区霞が関3丁目2番5号

明和中華

1.発明の名称

ポリチオール

2.特許請求の範囲

1) 一般式(I)

HS(CH2) " OC(CH3) " - 2 b-(CH3) " CO(CH3) " 2H

(式中、m、nは1~3の整数を示し、pは1または2の整数を示す。)で表されるポリチオール。
3.発明の詳細な説明

〔産業上の利用分野〕

本発明は、新規なポリチオールに関するものである。これらのポリチオールは、重合調整剤、合成樹脂の原料、架橋剤、加硫剤、エポキシ樹脂の硬化剤、酸化防止剤、金属錯体生成剤、生化学的薬物、潤滑油添加剤等として広範囲な用途を有するものである。

〔従来の技術〕

近年ポリチオール化合物は、樹脂の改賞すなわ

ち架構や酸化防止に利用され始めている。

(発明が解決しようとする問題点)

例えば、ペンタエリスリトールテトラキス(2 ーメルカプトアセテート)および、ペンタエリス リトールテトラキス(3ーメルカプトプロピオネ ート)をポリイソシアネートと反応させた含硫ウ レタン樹脂は、ポリオレフィン系樹脂に比べ、良 好な諸物性を有しているが、特に屈折率と分散の パランスの面からは未だ高度なものとは言えない。 (問題点を解決するための手段)

そこで、本発明者らは、ベンタエリスリトール
テトラキス(2-メルカプトアセテート)、ベン
タエリスリトールテトラキス(3-メルカプトア
ロピオネート)を用いた場合よりもより高度の歴
哲率と分散特性を有し、かつ、それら以外の諸物
性でも同等又はより高度の物性を有する樹脂原料
について鋭意研究を行った。その結果、本発明の
ポリチオールを用いることにより、この目的を成
就しうることを見出し、本発明に至った。

すなわち、本発明は、ポリウレタン樹脂の原料

としても有用な、一般式 (1)

HS(CH₂) _ OC(CH₂) _ - S _{P-}(CH₂) _ CO(CH₂) _SH

(式中、m、nは1~3の整数を示し、pは1又は2の整数を示す。) で表されるポリチオールを 提供するものである。

本発明の新規なポリチオールは具体的には、 チオジグリコール酸ピス(2-メルカプトエチルエ ステル)、チオジプロピオン酸ピス(2-メルカプ トエチルエステル)、4,4-チオジブチル酸ピス(2-メルカプトエチルエステル)、ジチオジグリコ ール酸ピス(2-メルカプトエチルエステル)、ジ チオジプロピオン酸ピス(2-メルカプトエチルエ ステル)、4,4-ジチオジプチル酸ピス(2-メルカ プトエチルエステル)等の化合物である。

これらの化合物は、2-メルカプトエタノールと チオジグリコール酸、チオジプロピオン酸、4.4-チオジブチル酸、ジチオジグリコール酸、ジチオ ジプロピオン酸または4.4-ジチオジブチル酸とを

キス(2ーメルカプトアセテート)や、ベンタエリスリトールテトラキス(3ーメルカプトプロピオネート)を用いた樹脂に比べ、高度の屈折率と低分散性を有し、かつ、その他の諸物性も良好な、光学部品などに有用な合硫ポリウレタン樹脂である。

(実施例)

以下実施例を示す。

実施例-1

チオジグリコール酸15.02g、をベンゼン100 試に懸濁させ、2-メルカプトエタノール17.19gと p-トルエンスルフォン酸 0.3gを加え、加热速 流させた。反応の進行に従い生成する水を留去し 、その量が3.4gとなったところで加熱を終了した。 次に5%重度酸ソーダ水溶液で系を洗浄したの ち、水で洗浄し、ベンゼン層を硫酸ナトリウムで 乾燥後、活性炭で処理し、減圧濃縮して、無色の シロップ 25.15g を得た。 、無溶媒または、溶媒中で、pートルエンスルホン酸、硫酸、塩酸などの触媒を加えたのち、60~200 でに加熱し、生成する水を系外に除去しながら反応させ、反応終了後、反応液を冷却し、希マルカリ水溶液、水で洗浄し、溶媒を用いた場合は、溶媒を除去して得ることができる。なお、溶媒を用いる場合は、原料と反応性を有しないへキサン、トルエン、ベンゼン、シクロヘキサン、キシレンなどの炭化水素類、テトラクロルエタン、クロホルム、モノクロルベンゼンなどのハロゲン化炭化水素類などを使用する。

(作用)

かくして得られる本発明の新規なポリチォールは、重合調整剤、合成樹脂の原料、架橋剤、加磁 剤、エポキシ樹脂の硬化剤、金属指体生成剤、生 化学的薬物、潤滑油添加剤として広範囲な用途を 有し、特にキシリレンジイソシアネート、イソホ ロンジイソシアネート、ヘキサメチレンジイソシ アネートなどのポリイソシアネートと加熱重合し て得られる樹脂は、ペンタエリスリトールテトラ

C H S 元素分析値(%) 35.31 5.38 35.32 計 算 値(%) 35.54 5.22 35.57 NMR & CDC & 3

 δ =1.45(t, 2H, SH×2)

2.65(t, 4H, $HSCH_2CH_2O \times 2$)

3.32(* 4H, SCH₂COOCH₂CH₃SH \times 2)

3.75(t, 4H, $HSCH_2CH_2O \times 2$)

実施例2~6

実施例1と同様に第1衷の原料よりポリチオールを合成した。合成したポリチオールの元素分析値とNMR分析値を第1衷に記した。

使用例1

実施例 4 で得られたジチオジグリコール酸(2-メルカプトエチルエステル)24.2 g、ペンタエリスリトールテトラキス(2-メルカプトアセテート)4.3 g、mーキシリレンジイソシアネート18.8 gを混合し、ジプチルチンラウレート0.01 gを加均一とした後、シリコン系焼付タイプの魅型剤で処理をしたガラスモールドとテフロン製ガス

特開昭64-90168 (3)

第 1 丧

实短外 酸 成 分番号	アルコール チオール	ポリチオール	元末分析值(計2月首)(%)			NMR分析語 la CDC & .	
			С	Н	s	8 ррт	
1	チオジグリコール役	2-メルカプトエクノール	チオジグリコール優 ピス(2- メルカプトエチルエステル)	35.31 (35.54)	5.38 (5.22)	35.32 (35.57)	1.45(t. 21. 51/2) 2.65(m. 41. 18501_c(1.0 ×2) 3.32 (m. 41. 18501_c(0.×2) 3.75(t. 41. 18501_c(1.0 ×2)
2	チオジブロピオン酸	阿上	チオジプロピオン酸 ピス (2・メルカプトエチルエステル)	40.14 (40.25)	6.21 (6.08)	32.46 (32.22)	1.45(L, 2H, SH×2) 2.61(m, 8H, COCH_CH_S ×2) 2.66(m, 4H, HSCH_CH_O ×2) 3.74(L, 4H, HSCH_CH_O ×2)
3	4,4-ジチオジブチル酸	同上	4.4-ジチオジブチル酸 ピス (2-メルカプトエチルエステル)	43.87 (44.15)	6.95 (6.79)	29.03 (29.46)	1.44(t. 24. SII×2) 1.91(m. 48. S(CI;CI;CI;CO-);) 2.38(m. 48. S(CI;CI;CI;CO-);) 2.64(m. 48. S(I;CI;C) ×2) 2.69(m. 48. S(I;CI;CI;CO-);) 3.73(t. 48. ISCI;CI;CI;CO-2)
4	ジチオジグリコール酸	同上	ジチオジグリコール役 ビス (2・メルカプトエチルエステル)	31.67 (31.77)	4.41 (4.67)	42.68 (42.40)	1.45(t. 21, SI)×2) 2.64(s. 48, ISCII ₂ CII ₂ O ×2) 3.64(s. 48, SCII ₂ CO×2) 3.75(t. 48, ISCII ₂ CII ₂ O×2)

第 1 表 (つづき)

实验的 益 成 分 番号				元末分析值(計算值)(96)			NMR分析結果 in CDC.E.
	アルコール、チオール	ポリチオール	С	н	s	8 ppm	
5	ジチオジブロビオン酸	2-メルカプトエタノール	ジチオジプロピオン酸 ピス Q-メルカプトエチルエステル)	36.00 (36.34)	5.63 (5.49)	38.65 (38.80)	1.44(t. 28, SII×2) 2.66(m. 48, ISSII_CII_CII_CII_C ×2) 2.78(m. 88, COCI_CII_S ×2) 3.73(t. 48, BSCH_CII_O ×2)
6	4.4-ジチオジブチル位	同上	4,4-ジチオジブチル酸 ピス(2-メルカプトエチルエステル)	40.56 (40.20)	6.38 (6.18)	35.48 (35.77)	1.45(t, 28, 58,×2) 1.92(m, 48, (SCH,CH,CH,CO-);) 2.39(m, 48, (SCH,CH,CH,CH,CO-);) 2.65(m, 48, (SCH,CH,CH,CH,CO-);) 2.75(m, 48, (SCH,CH,CH,CO-);) 3.74(t, 48, (SCH,CH,C0-);)

トよりなるモールド型中に泡入した。次いで80℃で 3時間、100℃で 2時間、120℃で 3時間加熱した後、冷却し、モールドから取り出した。この 樹脂は屈折率1.62、アッペ数35であり、無色透明で加工性、耐衝撃性も良好であった。

比较例1

ベンタエリスリトールテトラキス(2ーメルカプトアセテート)21.6g、mーキシリレンジイソシアネート18.8gを混合し、使用例1と同様の方法で重合を行い樹脂を得た。得られた樹脂は、屈折率1.60、アッベ数35であり、無色透明で加工性耐衝撃性も良好であった。

出願人 三井東圧化学株式会社