

# Graphulo: Native Linear Algebra in a NoSQL DB

Jeremy Kepner<sup>2,3,4</sup> Bill Howe<sup>1</sup> <sup>2</sup>MIT Lincoln Laboratory <sup>3</sup>MIT CSAIL <sup>4</sup>MIT Math Department

Dylan Hutchison<sup>1</sup> Vijay Gadepally<sup>2,3</sup> <sup>1</sup>University of Washington

http://graphulo.mit.edu



An open source library to orchestrate server-side graph processing in the **Apache Accumulo database** 

- > Problem: to analyze graph and matrix data stored in Accumulo
- > Non-solution: always pull data from the DB before processing
  - > MapReduce or an in-memory matrix library
- >The Graphulo solution— A tighter coupling: reuse Accumulo's native data access method, iterators, for query processing
  - > Use Accumulo as a Big Index
  - > Distribute with Accumulo's tablet servers
  - > Generalize to BigTable NoSQL design **Data model suits Sparse Matrices:**

| Key |        |           |            |           |              |
|-----|--------|-----------|------------|-----------|--------------|
| Row | Column |           |            |           | <u>Value</u> |
|     | Family | Qualifier | Visibility | Timestamp |              |

#### **GraphBLAS Matrix Math**

| GraphBLAS Kernel        | Graphulo Implementation                         |  |  |  |
|-------------------------|-------------------------------------------------|--|--|--|
| BuildMatrix (⊕)         | Accumulo BatchWriter                            |  |  |  |
| ExtracTuples            | Accumulo BatchScanner                           |  |  |  |
| $MxM (\oplus, \otimes)$ | TwoTableIterator ROW mode, performing ATB       |  |  |  |
| EwiseMult $(\otimes)$   | TwoTableIterator EWISE mode                     |  |  |  |
| EwiseAdd $(\oplus)$     | Similar to EwiseMult, with non-matching entries |  |  |  |
| Extract                 | Row and column filtering                        |  |  |  |
| Apply $(f)$             | Extra Iterators                                 |  |  |  |
| Assign                  | Apply with a key-transforming function          |  |  |  |
| Reduce $(\oplus)$       | Reducer module on RemoteWriteIterator           |  |  |  |
| Transpose               | Transpose option on RemoteWriteIterator         |  |  |  |
| -                       |                                                 |  |  |  |

# **Graphulo's TwoTable Iterator Stack**



#### **Future Work**

- > More multi-node evaluation
- > Expand to Relational Algebra
- > Use an Optimizer to choose the best implementation

### Reference

- > IPDPS '15
- > **HPEC '15**
- > HPEC '16 x2

# Performance Comparison

- > D4M: Sparse Matrix Library for MATLAB
- > MTJ: Dense Matrix Library for Java



#### Results

- > Jaccard coefficient algorithm is ideal for Graphulo
- > k-Truss subgraph algorithm is better in an external matrix library, assuming sufficient memory

#### Guideline

Use an in-DB solution when I/O is within an order of magnitude of alternative solutions























benchmarks