Data Analysis

Chapter IV - part 2: Regression evaluation Data leakage

- Evaluating regression models

 1. Visualize data, compute statistics: We can do Plat (high in four Own)
- Plot original data (if we are in lower dimensions) Compute column means, standard deviation.
- If we want to fit a linear model, compute correlation r (also might be R^2)
- 2. Performance metrics:

Root Mean Square Error (RMSE) $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$

- It is the square root of MSE, which is the average loss that we've been minimizing to determine optimal model parameters.
- RMSE is in the same units as y.
- A lower RMSE indicates more "accurate" predictions (lower "average loss" across data)
- 3. Visualization:

Look at a residual plot of errors to visualize the difference between actual and $% \left(1\right) =\left(1\right) \left(1\right)$ predicted values.

The modeling process

Minimize average loss with calculus, geometry,

Evaluating regression models - R²

How do we evaluate whether this process gave rise to a good model?

- But how low is low? RMSE can be difficult to interpret by itself.
- A more easily interpretable number is the R² value.
- - An alternative way to measure how good a fit the model is to the data. $R^2 \text{ takes values between 0 and 1}$ We define R^2 in relation to the SSR and TSS (Total Sum of Squares).

We define
$$R^2$$
 in relation to the SSR and TSS (Total Sum of Squares).

$$SSR = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 \quad \text{and} \quad TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2. \qquad R^2 = 1$$
SSR measures the amount of variability left unexplained after the linear regression.

TSS measures the total variance in the target data

2 house the proportion of the proportion of variability that models.

- R² shows the proportion of the variance explained by the model
 - For regression with 1 predictor R² relates to the value of correlation
 - For multiple regression problems we usually control for the number of predictors (p) and the number of data points (n)

$$\begin{array}{l} \mathrm{adj.}R^2 = 1 - \frac{(1-R^2)(n-1)}{n-p-1} \\ \text{ fively the file of } \end{array}$$

Evaluating regression models – Residual plots

Residual plots (the code)

fig, ax = plt.subplots(1, 2, figsize=(15, 8))
ax[0].scatter(xxx, yresid, color=blue*, aiph=0.8, label='residual
ax[0].axhine(y-0, color='goid*, label='reco error')
ax[0].axet | axet |

Evaluating regression models - Residual plots

Residels: how mot aff am I mill seed for

Evaluating regression models

Which model is a better fit? X-axis here shows fitted values (no problem for us)

Let's pick up the variance thingie...

- At the end of the notebook, we had two lingering thoughts:

 The idea of "unseen" data data that the model did not encounter during training

 The idea of model complexity a model's complexity influences if it under- or overfits

Test Sets Ist Separation We lake

A **test set** is a portion of our dataset that we set aside for testing purposes.

- We do not consider the test set when fitting/training the model.
- The test set is only ever touched <u>once</u>: to compute the performance (MSE, RMSE, etc) of the model after all fine-tuning has been completed.

Our workflow for modeling: First, perform a **train-test split** (see $\underline{\text{documentation}}$). Consider only the training set when designing the model. Then, evaluate on the test set.

Validation Sets

A validation set is a portion of our training set that we set aside for assessing model performance while it is still being developed.

- Train model on the training set. Assess performance on the validation set. Adjust the model, then repeat.
- After all model development is complete, assess final performance on the test set.

Model Complexity

Typically, as model complexity increases:

- Training error decreases
- Variance increases
- Error on validation set decreases, then increases

Our goal: Choose the model complexity that minimizes validation

That will come handy when we discuss regularization

Validation Folds

In our original validation split, we set aside x% of the training data to use for

• For example, 20% of the training data is used for validation

We could have selected any 20% portion of the training data for validation.

In total, there are 5 non-overlapping "chunks" of datapoints we could set aside for validation.

Validation Folds

The common term for one of these chunks is a "fold".

• Our training data has 5 folds, each containing 20% of the datapoints.

Another perspective: we actually have 5 validation sets "hidden" in our training set

In **cross-validation**, we perform validation splits for each of these folds.

K-Fold Cross-Validation

For a dataset with K folds:

- Pick one fold to be the validation fold.
- Train model on data from every fold other than the validation fold.
- Compute the model's error on the validation fold and record it.
- Repeat for all K folds.

The **cross-validation error** is the average error across all K validation folds.

Cross-validation error = mean of validation errors #1 to #5

Model Selection Workflow

Hyperparameters

Cross-validation is often used for **hyperparameter** selection.

Hyperparameter: Value in a model chosen before the model is fit to data.

- Cannot solve for hyperparameters via calculus, OLS, gradient descent, etc we must choose it ourselves.
- Examples
 - \circ Degree of polynomial model α
 - Gradient descent learning rate,
 Regularization penalty, λ (coming up)

Hyperparameter Tuning

To select a hyperparameter value via cross-validation:

- List out several different "guesses" for the best hyperparameter.
- For each guess, run cross-validation to compute the CV error for that choice of hyperparameter value.
- Select the hyperparameter value with lowest CV error.

Example: Guesses for learning rate are 0.1, 1, and 10. We decide to apply 3-fold cross-validation.

Hyperparameter Tuning

To select a hyperparameter value via cross-validation:

- List out several different "guesses" for the best hyperparameter
- For each guess, run cross-validation to compute the CV error for that choice of hyperparameter value
- Select the hyperparameter value with lowest CV error

Example: Guesses for learning rate are 0.1, 1, and 10. We decide to apply 3-fold cross-validation.

16

Data leakage

- Some form of the label "leaks" into the features
- This same information is not available during inference

Data leakage: example 1

- Problem: detect lung cancer from CT scans
- Data: collected from hospital A
- Performs well on test data from hospital A
- Performs poorly on test data from hospital B

Patient ID	Date	Doctor note	Medical record	Scanner type	CT scan	
Patient ID	Date	Doctor note	Medical record	Scanner type	Crscan	

Data leakage: example 1

- Problem: detect lung cancer from CT scans
- Data: collected from hospital A
- Performs well on test data from hospital A
- Performs poorly on test data from hospital B

Data leakage: example 2

- Problem: predicting how many views an article will get
- Data: historical data on the site
- Where might data leakage come from?

Article ID Date Title Article Author Language

Translations

Data leakage: example 2

- Problem: predicting how many views an article will get
- Data: historical data on the site

Causes of data leakage

1. Splitting time-correlated data randomly instead of by time

23

Partition: shuffle then split

	Week 1	Week 2	Week 3	Week 4	Week 5	
Test split	X11	X21	X31	X41	X51	
Valid split	X12	X22	X32	X42	X52	
Train split	X13	X23	X33	X43	X53	
	X14	X24	X34	X44	X54	

Aim for similar distributions of labels across splits e.g. each split has 90% NEGATIVE, 10% POSITIVE

Partition: shuffle then split

	Week 1	feek 2	Weel	Week 4	Week 5
Test split	X11			X41	X51
Valid split	X12		4	X42	X52
Train split	X13			X43	X53
	X14	-24	Xs	X44	X54

A source of data leakage. Examples:

- stock price prediction song recommendation

Solution: split data by time

		olit	Train sp		
	Week 5	Week 4	Week 3	Week 2	Week 1
Valid split	X51	X41	X31	X21	X11
	X52	X42	X32	X22	X12
Test split	X53	X43	X33	X23	X13
rest sput	X54	X44	X34	X24	X14
		out	to think abo	so forces voi	Al

the cold-start problem

Causes of data leakage

- 1. Splitting time-correlated data randomly instead of by time
- 2. Data processing before splitting
 - a. Use the whole dataset (including valid/test) to generate global statistics/info

2. Data processing before splitting

- Use the whole dataset (including valid/test) to generate global statistics/info
 - mean, variance, min, max, n-gram count, vocabulary, etc.

Statistics are then used to process test data o scale, fill in missing values, etc.

- Solution:

 o Split your data before scaling/filling in missing values
- to ensure you're blind to the test set

azon Ble 29

Causes of data leakage

- 1. Splitting time-correlated data randomly instead of by time
- 2. Data processing before splitting
- 3. Poor handling of data duplication before splitting
 - a. Test set includes data from the train set

€ D0

3. Poor handling of data duplication before splitting

- Datasets come with duplicates & near-duplicates
 - o 3.3% CIFAR-10 and 10% CIFAR-100 test images have dups in training set
 - $\circ \quad \text{Removing dups increases errors 17.05\%} \rightarrow 19.38\% \text{ on CIFAR-100 [PyramidNet-272-200]}$

3. Poor handling of data duplication before splitting

- Datasets come with duplicates & near-duplicates
- Oversampling can cause duplications (relevant for clinic 1?)
- Solution:

 - Deduplicate data before splitting
 Oversample after splitting (we will discuss this when we cover class imbalances)

Causes of data leakage

- 1. Splitting time-correlated data randomly instead of by time
- 2. Data processing before splitting
- 3. Poor handling of data duplication before splitting
- 4. Group leakage
 - A group of examples have strongly correlated labels but are divided into different splits
 Example: CT scans of the same patient a week apart

o Solution: Understand your data and keep track of its metadata

Causes of data leakage

- 1. Splitting time-correlated data randomly instead of by time
- 2. Data processing before splitting
- 3. Poor handling of data duplication before splitting
- 4. Group leakage
- 5. Leakage from data generation & collection process
 - Example: doctors send high-risk patients to a better scanner
 Solution: Data normalization + subject matter expertise

How to detect leakage?

- 1. Measure correlation of a feature with labels
 - o A feature alone might not cause leakage, but 2 features together might
- 2. Feature ablation study
 - If removing a feature causes the model performance to decrease significantly, figure out why.
- 3. Monitor model performance as more features are added
 - Sudden increase: either a very good feature or leakage!