

CE2001/CZ2001: Algorithms

Introduction to Algorithms

Dr. Loke Yuan Ren

CE2001/ CZ2001: ALGORITHMS

Learning Objectives

At the end of this lecture, students should be able to:

- Explain what an algorithm is
- Explain the different designs of algorithms using examples
 - Summation function
 - · Fibonacci Sequence
 - Sine function
- State the criteria to choose algorithms

CE2001/ CZ2001: ALGORITHMS

What is an Algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.

Introduction to The Design & Analysis of Algorithms

-Anany Levitin

An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.

Introduction to Algorithms
-T. H. Cormen et. al.

CE2001/ CZ2001: ALGORITHMS

What is an Algorithm?

A clearly specified set of simple instructions to be followed to solve a problem or compute a function.

How to make a cake?
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 7: Step 8:

Reference: Reference Stock Vectors, Clipart and Illustrations." 123RF Stock Photos. N.p., n.d. Web. 16 May 2016.

Design of Algorithms

There are often many ways (algorithms) to solve a problem.

Example 1: Summing up 1 to n

Algorithm 1 Summing Arithmetic Sequence

- 1: **function** Method_One(n)
- 2: begin
- $3: sum \leftarrow 0$
- 4: **for** i = 1 **to** n **do**
- 5: $sum \leftarrow sum + i$
- 6: **end**

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

There are often many ways (algorithms) to solve a problem.

Example 1: Summing up 1 to n

Algorithm 2 Summing Arithmetic Sequence

- 1: **function** Method_Two(n)
- 2: begin
- 3: $sum \leftarrow n * (1+n)/2$
- 4: end

Design of Algorithms

There are often many ways (algorithms) to solve a problem.

Example 1: Summing up 1 to n

Algorithm 3 Summing Arithmetic Sequence

- 1: **function** Method_Three(n)
- 2: begin
- 3: if n=1 then
- return 1
- 5: else
- **return** $n+Method_Three(n-1)$
- 7: **end**

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

There are often many ways (algorithms) to solve a problem.

Example 2: Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Algorithm 4 Fibonacci Sequence: A Simple Recursive Function

- 1: function Fibonacci_Recursive(n)
- 3: if n<1 then 4: return 0
- 5: if n==1 OR n==2 then
- 6: return 1
- 7: return Fibonacci_Recursive(n-1)+Fibonacci_Recursive(n-2)

Algorithm 5 Fibonacci Sequence: A Simple Iterative Function

- 1: function Fibonacci_Iterative(n)
- 3: if n<1 then
- 4: return (
- 5: if n==1 OR n==2 then
- return 1
- 9: for i = 3 to n do
- 10: begin
- $F_i \leftarrow F_{i-2} + F_{i-1}$
- $F_{i-2} \leftarrow F_{i-1}$ $F_{i-1} \leftarrow F_i$

- 15: return F_n

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

Example 3: How to compute the Sine function?

By storing and referring to trigonometry table.

Trigonometric Functions

	sin	cos	tan	cot	sec	csc	1
		.00	-311				_
0°	0.0000	1.0000	0.0000		1.000		90
1°	0.0175	0.9998	0.0175	57.29	1.000	57.30	89
2*	0.0349	0.9994	0.0349	28.64	1.001	28.65	88
3°	0.0523	0.9986	0.0524	19.08	1.001	19.11	87
4°	0.0698	0.9976	0.0699	14.30	1.002	14.34	86
5°	0.0872	0.9962	0.0875	11.43	1.004	11.47	85
6°	0.1045	0.9945	0.1051	9.514	1.006	9.567	84
7*	0.1219	0.9925	0.1228	8.144	1.008	8.206	83
8°	0.1392	0.9903	0.1405	7.115	1.010	7.185	82
90	0.1564	0.9877	0.1584	6.314	1.012	6.392	81
10°	0.1736	0.9848	0.1763	5.671	1.015	5,759	80
11°	0.1908	0.9816	0.1944	5.145	1.019	5.241	75
12"	0.2079	0.9781	0.2126	4.705	1.022	4.810	78
13"	0.2250	0.9744	0.2309	4.331	1.026	4,445	77
14°	0.2419	0.9703	0.2493	4.011	1.031	4.134	76
15°	0.2588	0.9659	0.2679	3.732	1.035	3.864	75
16°	0.2756	0.9613	0.2867	3.487	1.040	3.628	74
17"	0.2924	0.9563	0.3057	3.271	1.046	3.420	73
18"	0.3090	0.9511	0.3249	3.078	1.051	3.236	72
19°	0.3256	0.9455	0.3443	2.904	1.058	3.072	71
20°	0.3420	0.9397	0.3640	2.747	1.064	2.924	70
21°	0.3584	0.9336	0.3839	2.605	1.071	2.790	65
22*	0.3746	0.9272	0.4040	2.475	1.079	2.669	68
23°	0.3907	0.9205	0.4245	2.356	1.086	2.559	67
24"	0.4067	0.9135	0.4452	2.246	1.095	2.459	66
25°	0.4226	0.9063	0.4663	2.145	1.103	2.366	65

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

Example 3: How to compute the Sine function?

- By storing and referring to trigonometry table.
- By expanding Maclaurin series.

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \ x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \text{ for all } x$$

which is a special case of Taylor series with a=0.

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3...$$

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

Example 3: How to compute the Sine function?

For computers, easier to use CORDIC.

CORDIC (for COordinate Rotation Digital Computer)

• To calculate hyperbolic and trigonometric functions.

Reference: Abelsson. (2008). Illustration of CORDIC operation. Retrieved from https://commons.wikimedia.org/wiki/File:CORDIC-illustration.pr

21

CE2001/ CZ2001: ALGORITHMS

Design of Algorithms

Example 3: How to compute the Sine function?

3 For computers, easier to use **CORDIC**.

$$v_i = Ki \begin{bmatrix} 1 & -\sigma_i 2^{-i} \\ \sigma_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix}$$

where

$$v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} K_i = \frac{1}{\sqrt{1 + 2^{-2i}}}$$

and σ_i = -1 or 1 depending on direction of rotation.

Reference: Abelsson. (2008). Illustration of CORDIC operation. Retrieved from https://commons.wikimedia.org/wiki/File:CORDIC-illustration.png

2

NANYANG TECHNOLOGICAL UNIVERSITY

How do we choose among the different algorithms?

CE2001/ CZ2001: ALGORITHMS

Choosing the Right Algorithm

At the heart of computer program design, there are two (sometimes conflicting) goals:

- 1) To design an algorithm that is easy to understand, code and debug.
 - ❖ Software Engineering
- 2) To design an algorithm that makes efficient use of the computer's resources.
 - Data structures and algorithm analysis

Choosing the Right Algorithm

In this course, we favour the most efficient algorithms.

* One that uses the least amount of resources

