Lecture 7: Block Ciphers

COSC362 Data and Network Security

Book 1: Chapters 4 and 6 - Book 2: Chapters 2 and 20

Spring Semester, 2021

Motivation

- Block ciphers are the main bulk encryption algorithms used in commercial applications.
- Standardised block cipher AES and legacy cipher DES are widely deployed in real applications.
- ► AES algorithm validation list (by NIST) includes over 5000 implementations:
 - USB drives
 - door controllers
 - media server encryption
 - disk encryption
 - Bluetooth devices

Outline

```
Block Cipher Principles
   Product Cipher and Iterated Cipher
   Substitution-Permutation Network
   Feistel Cipher
   Standard Security Properties
DES
   History
   Algorithm
   Brute Force Attack
   Double and Triple DES
AFS
   History
   Algorithm
   Comparisons between AES and DES
Conclusion
```

Outline

```
Block Cipher Principles
   Product Cipher and Iterated Cipher
   Substitution-Permutation Network
   Feistel Cipher
   Standard Security Properties
   History
   Algorithm
   Brute Force Attack
AES
   History
   Algorithm
```

Block Ciphers

- Symmetric key ciphers where each block of plaintext is encrypted with the SAME key.
- A block is a set of plaintext symbols of a fixed size:
 - Typical block sizes for modern block ciphers between 64 and 256 bits.
- ▶ Used in certain configurations called *modes of operation* (next lecture).

Notations

- ▶ Plaintext block *P* (length is *n* bits)
- ► Ciphertext block *C* (length is *n* bits)
- ► Key *K* (length is *k* bits)
- ightharpoonup Encryption: C = E(P, K)
- ▶ Decryption: P = D(C, K)

Criteria for Block Cipher Design

Claude Shannon discussed 2 important encryption techniques in 1940:

- ► *Confusion:* involving substitution to make the relationship between *K* and *C* as complex as possible.
- ▶ *Diffusion:* involving transformations to dissipate the statistical properties of *P* across *C*.

Shannon proposed to use these techniques repeatedly using the concept of *product cipher*.

Product Cipher

- Cryptosystem where encryption is formed by applying (also composing) several sub-encryption functions.
- ▶ Most block ciphers are composition of simple functions f_i , for $1 \le i \le r$, s.t. each f_i has its own key K_i :

$$C = E(P, K) = f_r(\cdots(f_2(f_1(P, K_1), K_2)\cdots), K_r)$$

Iterated Cipher

Most modern block ciphers are special product ciphers, called *iterated ciphers*:

- Encryption is divided into r similar rounds.
- Sub-encryption functions are all the same function g, called the round function.
- \blacktriangleright Key K_i is derived from the overall master key K:
 - \triangleright K_i is called the *round key* or *subkey*
 - $ightharpoonup K_i$ is derived from K using a process called *key schedule*

Encryption in Iterated Ciphers

Given a plaintext block P, a round function g and round keys K_1, K_2, \dots, K_r , the ciphertext block C is derived through r rounds as follows:

$$W_0 = P$$
 $W_1 = g(W_0, K_1) = g(P, K_1)$
 $W_2 = g(W_1, K_2)$
...
 $W_r = g(W_{r-1}, K_r) = C$

Decryption in Iterated Ciphers

There must be an inverse function g^{-1} s.t. $g^{-1}(g(W, K_i), K_i) = W$ for all keys K_i and blocks W:

$$W_r = C$$
 $W_{r-1} = g^{-1}(W_r, K_r) = g^{-1}(C, K_r)$
 $W_{r-2} = g^{-1}(W_{r-1}, K_{r-1})$
...
 $W_0 = g^{-1}(W_1, K_1) = P$

Decryption is thus the reverse of encryption.

Types of Iterated Cipher

- ► Substitution-Permutation Network (SPN)
 - Example: Advanced Encryption Standard (AES)
- Feistel Cipher
 - Example: Data Encryption Standard (DES)

Substitution-Permutation Network

- ▶ Block length n must allow each block to be split into m sub-blocks of length I:
 - $ightharpoonup n = 1 \times m$
- ▶ 2 operations:
 - Substitution π_S (called substitution box or simply S-box) operates on sub-blocks of length *I* bits:

$$\pi_{\mathcal{S}}: \{0,1\}^I \to \{0,1\}^I$$

Permutation π_P (called permutation box or simply P-box) swaps the inputs from $\{1, \dots, n\}$, similarly to transposition ciphers:

$$\pi_P: \{1, \cdots, n\} \rightarrow \{1, \cdots, n\}$$

Substitution-Permutation Network

Steps in the SPN Round Function

- 1. Round key K_i is XORed with the current state block W_i :
 - $ightharpoonup K_i \oplus W_i$
- 2. Each sub-block is substituted by applying π_S
- 3. The whole block is permuted using π_P

Substitution-Permutation Network

Illustration with 3 Rounds

- Encrypting a plaintext block of n bits into a ciphertext block of n bits.
- ▶ 4 S-boxes S_i (m = 4)
- 1 P-box P
- ▶ 4 Round keys K_i

Feistel Cipher

Feistel Cipher

- ► From Horst Feistel, a cryptographer at IBM who influenced the design of DES.
- Round function swaps the 2 halves of the block and forms a new right hand half.
- Process sometimes called Feistel network:
 - ▶ It can be seen as a network where the 2 halves of plaintext block travel through.

Feistel Cipher

Encryption

- 1. Split plaintext block $P = W_0$ into 2 halves (L_0, R_0)
- 2. For each round, perform:

►
$$L_i = R_{i-1}$$

► $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

3. Output ciphertext block $C = W_r = (L_r, R_r)$

Decryption

- 1. Split ciphertext block C into 2 halves (L_r, R_r)
- 2. For each round, perform:

$$\blacktriangleright \ L_{i-1} = R_i \oplus f(L_i, K_i)$$

$$ightharpoonup R_{i-1} = L_i$$

- 3. Output plaintext block $P = (L_0, R_0)$
- ▶ No need to invert f:
 - Decrypt for ANY function f
- ► Choice of *f* is critical for security:
 - f is the only non-linear part of the encryption

Standard Security Properties

Differential and Linear Cryptanalysis

Differential cryptanalysis:

- First published in 1992.
- Chosen plaintext attack.
- Based on the idea that the difference between 2 input plaintexts can be correlated to the difference between 2 output ciphertexts.

Linear cryptanalysis:

- First published in 1993.
- Known plaintext attack.
- Theoretically used to break DES.

Modern block ciphers normally designed to be immune to both differential and linear cryptanalysis.

Standard Security Properties

Avalanche Effects

Key avalanche:

- ➤ A SMALL change in the key (with the same plaintext) should result in a LARGE change in the ciphertext.
- Related to Shannon's notion of confusion.

Plaintext avalanche:

- ▶ A SMALL change in the plaintext should result in a LARGE change in the ciphertext.
- ► Changing 1 bit of plaintext should change each of the bits in the ciphertext with probability 1/2.
- Related to Shannon's notion of diffusion.

Outline

```
Block Cipher Principles
   Substitution-Permutation Network
DES
   History
   Algorithm
   Brute Force Attack
   Double and Triple DES
   History
   Algorithm
```

Data Encryption Standard (DES)

- Designed by researchers from IBM.
- Submitted to the National Bureau of Standards (NBS) in US in a call for publicly available ciphers.
- ▶ Approved in 1977 as the US standard for encryption.
- Encryption and decryption definitions are public property.
- Security resides in difficulty of decryption without knowledge of key.
- ▶ 16-round Feistel cipher with key length of 56 bits and data block length of 64 bits.

Encryption Steps

P is an input plaintext block of 64 bits:

- 1. ALL bits of *P* are permuted using an initial fixed permutation *IP*.
- 2. 16 rounds of Feistel operation are applied, denoted by function *f*:
 - ▶ A different 48-bit subkey is used for each round
- 3. A final fixed inverse permutation IP^{-1} is applied.

Output the ciphertext block C of 64 bits.

Feistel Operation

For each round:

- 1. Expand 32 bits to 48 bits
- 2. XOR 48 bits to 48-bit subkey
- 3. Break 48 bits into 8 blocks of 6 bits
- Put each block W_i into its substitution table S_i, resulting into blocks of length 4
- 5. Apply permutation to result into 32 (= 4×8) bits.

└ Algorithm

S-box Example

Row								Colu	mn No.							
No.	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

- Let input block W be $x_1x_2x_3x_4x_5x_6$
- \triangleright Digits x_1 and x_6 define row number between 0 and 3
- ▶ Digits x₂, x₃, x₄, x₅ define column number between 0 and 15
- ► Example: *W* = 100101
 - $x_1 = 1$ and $x_6 = 1$, thus 11, that is 3
 - $x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0,$ thus 0010, that is 2

Key Schedule

- Each of the 16 rounds involves 48 bits of the 56-bit key
- Each 48-bit subkey is defined by a series of permutations and shifts on the full 56-bit key

Brute Force Attack

Brute Force Attack

- ▶ Testing all possible 2^k keys in order to find the key K:
 - ▶ k is the size of K
- Key identified by using a small number of ciphertext blocks or by looking for low entropy in decrypted plaintext.
- ▶ 2⁵⁶ DES keys to test:
 - ▶ On average, it would take $2^{56}/2 = 2^{55}$ trial samples to find the key:
 - Trying all keys with last bit equal to 0
- ▶ Short DES key size was criticised from the start.

Brute Force Attack

Real World Attacks - Part 1

- **▶** 1997:
 - ▶ \$10,000 DES challenge in February (RSA)
 - Solved in June
 - Linked together thousands of computers over the Internet (parallel processing)
- **▶** 1998:
 - ► EFF DES cracker built, costing less than \$25,000
 - Less than 3 days to find 56-bit DES key
 - Searched 88 billion keys per second
- **1999:**
 - EFF DES cracker plus distributed search
 - 22 hours and 15 minutes to find 56-bit DES key
 - Searched 245 billion keys per second
- **2007**:
 - Parallel FGPA-based machine Copacobana built, costing \$10,000
 - Less than 1 week to find 56-bit DES key

Brute Force Attack

Real World Attacks - Part 2

2016:

- Open source password cracking software hashcat added in DES brute force searching on general purpose GPUs
- Systems with 8 GTX 1080 Ti GPUs (each costing \$1,000) recover a key under 2 days

2017:

- Chosen plaintext attacks utilizing rainbow tables (precomputed tables for caching the output of cryptographic hash functions)
- ▶ Recovering the DES key for a single specific chosen plaintext 1122334455667788 in 25 seconds.

Double Encryption

- ▶ Let K_1 and K_2 be 2 block cipher keys.
- ▶ Encryption: $C = E(E(P, K_1), K_2)$.
- If both keys have length k, then exhaustive attacks require 2^{2k-1} trials on average. Why? (cf slide 27)
- Time-memory trade-off which reduces it using Meet-In-The-Middle (MITM) method.

MITM Attack Steps

Let (P, C) be a single plaintext-ciphertext pair:

- 1. For each key K, store C' = E(P, K) in memory.
- 2. Check if D(C, K') = C' for any key K':
 - \blacktriangleright K from 1. is K_1 and K' from 2. is K_2
- 3. Check if key values in 2. work for other (P, C) pairs.

MITM Attack Applied to Double DES

It requires:

- Storage of 1 plaintext block for every key:
 - ▶ Storage of 2⁵⁶ 64-bit blocks
- ▶ A single encryption for every key:
 - ▶ 2⁵⁶ encryption operations
- A single decryption for every key:
 - ▶ 2⁵⁶ decryption operations

Expensive but much easier than brute force search through $2^{2\cdot 56-1}=2^{111}$ keys.

Triple Encryption

- Much better security
- → 3 keys K₁, K₂, K₃
- ▶ Encryption: $C = E(D(E(P, K_1), K_2), K_3)$.
- Secure against MITM attack. Why?

Standardised Options

Options for 1999 DES version:

- ▶ 3 independent keys K₁, K₂, K₃
 - ▶ the most secure
- ightharpoonup 2 keys $K_1 = K_3$ and K_2
 - still secure enough
- ▶ 1 key $K_1 = K_2 = K_3$
 - backward compatible with single key DES (hence vulnerable to brute force search)

NIST SP 800-131A (2015):

- 2-key triple DES allowed ONLY for legacy use (decryption only).
- ▶ 3-key triple DES remains approved.

Current Usage

- OpenSSL does not include Triple DES by default since V1.1.0 (August 2016), considering it as "weak cipher".
- ▶ In December 2018, Microsoft announced the retirement of Triple DES throughout their Office 365 service.

Outline

```
Block Cipher Principles
   Substitution-Permutation Network
   Standard Security Properties
   History
   Algorithm
   Brute Force Attack
AES
   History
   Algorithm
   Comparisons between AES and DES
```

Conclusion

Advanced Encryption Standard (AES)

- ► AES was designed in an open competition due to controversy over DES.
- ▶ Process over several years with much public debate.
- ▶ 15 original submissions.
- ▶ 5 finalists widely believed secure.
- ▶ Winner is "Rijndael" by Belgian cryptographers Vincent Rijmen and Joan Daeman.

Overview

- 128-bit data block
- ▶ 128-, 192- or 256-bit master key
- ▶ 10, 12 or 14 rounds (for 128-, 192- or 256-bit master key respectively)
- Byte-based design
- Substitution-permutation network (SPN):
 - Initial round key addition
 - ▶ 10, 12 or 14 (encryption/decryption) rounds w.r.t. to the length of the master key
 - Final round

State Matrix (byte-based)

16-byte data block size:

<i>a</i> ₀₀	<i>a</i> ₀₁	<i>a</i> ₀₂	<i>a</i> ₀₃
a ₁₀	a ₁₁	a ₁₂	a ₁₃
a ₂₀	<i>a</i> ₂₁	a ₂₂	a 23
a ₃₀	<i>a</i> ₃₁	a 32	a 33

Mixture of finite field operations in $GF(2^8)$ and bit string operations.

Round Transformation

4 basic operations:

- 1. ByteSub (non-linear sustitution)
- 2. ShiftRow (permutation)
- 3. MixColumn (diffusion)
- AddRoundKey
- Substitution-permutation network with block length n = 128 and sub-block length l = 8.
- S-box is a look-up table, mathematically defined in GF(2⁸).
- Cryptool has a nice animation of the encryption process.

Key Schedule

- Master key is 128 bits (resp. 192 and 256).
- ► Each of the 10 (resp. 12 and 14) rounds uses a 128-bit subkey.
- ▶ 1 subkey per round + 1 initial subkey:
 - ▶ 11 subkeys in total (resp. 13 and 15)
- Deriving the 128-bit subkeys from the master key.

Security

- Some cracks have appeared but no significant breaks.
- Attacks exist on reduced-round versions.
- Related key attack: requiring the attacker to obtain a ciphertext encrypted with a key related to the actual key in a specified way.
- Most serious real attacks so far reduce effective key size by around 2 bits.

Comparisons between AES and DES

Comparison

Data block size:

▶ DES: 64 bits

AES: 128 bits

Key size:

DES: 56 bits

► AES: 128, 192 or 256 bits

Design structure:

- Both are iterated ciphers
- DES has a Feistel structure while AES is SPN
- DES is bit-based and AES is byte-based
- ▶ AES is substantially faster in both hardware and software

Outline

```
Block Cipher Principles
   Substitution-Permutation Network
   History
   Algorithm
   Brute Force Attack
   History
   Algorithm
```

Conclusion

Conclusion

- Block ciphers are the workhorses of secure communications.
- ▶ AES is the current choice, and Triple DES is still important.
- Designing good block ciphers is difficult and time-consuming.
- ▶ Block ciphers are used as building blocks for confidentiality and authentication.