

Universidad Nacional Autónoma de México Facultad de Ingeniería

Laboratorio de Computación Gráfica e Interacción Humano Computadora

Reporte de Práctica No. 7 Animación Computación Gráfica

Beto Pérez Iván Alejandro

Grupo: 11

Prof. Ing. Jose Roque Roman Guadarrama

Semestre 2021-2

Gpo. Teoría: 03

No. Cuenta: 315131437

Ingeniería en Computación.

Fecha de entrega límite: 11/Julio/2021

1. Ejecución de ejercicios

Para el primer ejercicio, que era el movimiento del helicóptero, primero se modificaron los casos en donde se detenía para dar la vuelta en su propio eje y se agregaron dos casos que eran los que determinaban las vueltas del helicóptero para el sentido de ida y el sentido de regreso.

Y tambien se agregó otra linea de rotación con una nueva variable de angulo para la vuelta que hace que el modelo rote en el eje Y.

```
//Para el mov al frente del helicoptero
if (banderaBH == 0) {
    posXavion -= 0.08f;
     //angle = 0.0;
     posZavion += 0.0f;
     if (posXavion <= -250) {
         banderaBH = 0.5;
if (banderaBH == 0.5) {
    posXavion += 0.0f;
     angle -= 0.2;
     posZavion -= 0.02f;
     if (angle <= -180) {
         banderaBH = 1;
//Para el caso de mov de atras del helicoptero
if (banderaBH == 1) {
   posXavion += 0.08f;
   posZavion += 0.0f;
   if (posXavion >= 250) {
       banderaBH = 0.25;
if (banderaBH == 0.25) {
   posXavion += 0.0f;
   angle -= 0.2;
   posZavion += 0.02f;
   if (angle <= -360) {
       banderaBH = 0;
```

```
model = glm::mat4(1.0);
//model = glm::translate(model, glm::vec3(-20.0f+mainWindow.getmuevex(), 6.0f+mainWindow.getmueveblackhawky(), -1.0));
model = glm::translate(model, posblackhawk + desplazamiento);
model = glm::scale(model, glm::vec3(0.8f, 0.8f, 0.8f));
model = glm::rotate(model, -90 * toRadians, glm::vec3(1.0f, 0.0f, 0.0f));
model = glm::rotate(model, 90 * toRadians, glm::vec3(0.0f, 0.0f, 1.0f));
model = glm::rotate(model, angle * toRadians, glm::vec3(0.0f, 0.0f, 1.0f));
```

Y para el movimiento del automóvil, se declaró una nueva bandera llamada "animación", y haciendo uso de esta variable, se declararon los casos de movimiento para mi circuito personalizado, por lo se muestran algunos de los casos que se implementaron de movimiento.

```
if (animacion == 0) {
    posXauto -= 0.09f;
    //angle_auto += 0.0f;
    posZauto += 0.0f;
    spotLights[1].SetFlash(glm::vec3(6.0f + posXauto, 0.16, 0.5f + posZauto), glm::vec3(-1.0f, 0.0f,
    if (posXauto <= -190) {
        animacion = 0.25;
    }

//Primera curva

if (animacion == 0.25) {
    posXauto += 0.0f;
    angle_auto -= 0.12;
    posZauto -= 0.075f;
    spotLights[1].SetFlash(glm::vec3(6.0f + posXauto, 0.16, -1.6f + posZauto), dirLight);
    if (angle_auto <= -180) {
        animacion = 0.5; //0.16
    }
}</pre>
```

```
if (animacion == 1.25) {
   posXauto += 0.01f;
   posYauto -= 0.0101;
   angle_height += 0.046;
   if (angle_height >= 4.5) {
       animacion = 1.5;
 /caso de la bajada de la primera rampa
f (animacion == 1.5) {
   posXauto += 0.04f;
   posYauto -= 0.0037;
   spotLights[1].SetFlash(glm::vec3(-4.0f + posXauto, 0.16f, -3.5f + posZauto), glm::vec3(1.0f, 0.0f
   if (posXauto >= 140) {
       angle_height -= 0.05;
       posXauto += 0.0f;
       posYauto -= 0.01;
        if (angle_height <= 0.95) {</pre>
            //recorrido antes de llegar a la segunda curva
            posXauto += 0.08f;
            posYauto = 0.06f;
            angle_height = 0.0f;
            if (posXauto >= 170) {
```

En donde, para este caso particular, la pista o circuito cuanta con 2 vueltas y dos rampas; por lo que los casos de subida y bajada son 2 por cada rampa, y para añadir lo de la tecla que reinicie la animación, en el codigo de window.h se declaró una nueva variable flotante y una nueva función para que devuelva la variable flotante.

```
GLfloat animacion;
GLfloat initAnimation() { return animacion; }
```

Y en el window.cpp se declararon los casos para que se reinicie la animación presionando la tecla H del teclado.

```
if (key == GLFW_KEY_H) {
    if (action == GLFW_PRESS) {
        theWindow->animacion = 0.0;
    }
    if (action == GLFW_RELEASE) {
        theWindow->animacion = 3.5;
    }
}
```

Como 3.5 es el valor de mi ultimo caso de movimiento, se inicia el movimiento cuando el valor cambia a 0 en el programa principal.

```
if (animacion == 3.5) {
    posXauto = posAuto.x;
    posXauto += 0.0f;
    posYauto = posAuto.y;
    posYauto += 0.0f;
    posZauto = posAuto.z;
    posZauto += 0.0f;
    animacion = mainWindow.initAnimation();
}
```

2. Problemas presentados

- Para el tema de las curvas, se mostraba que a veces no subia o se elevaba mucho el modelo del auto para subir
- Lo mismo para la bajada, fueron problemas que llevaron mucho tiempo debido a la singularidad de la pista, se tuvieron que hacer varias pruebas para poner bien los valores.
- Para el caso de la tecla, cuando termina de hacer la primera vuelta el automóvil, se presiona la tecla y parece que dará la segunda, pero se va en reversa y hace al secuencia rara, se intentó cambiar el nombre de las variables, de las bandera, pero ese problema siguió presentándose y no lo pude resolver.

3. Conclusiones.

Esta practica fue una de las que más me costó trabajo y tiempo, debido a que no logré cubrir el ultimo punto de la practica, pero me pareció buena y satisfactoria con que el modelo pudiera dar la vuelta en mi circuito que fue un desafio ya que le incluí dos rampas, además de las dos curvas que se pedía.