

NEST

Nurturing Excellence, Strengthening Talent.

ABSTRACT SUBMISSION GUIDELINES

Problem Statement – # 4

Utilizing data to predict recruitment rate (RR) in clinical trial for benchmarking

Data Handling and Preprocessing

Dataset Overview

- Dataset: Clinical Trials Data
- Target Variable: Study Recruitment Rate (Numerical)
- Task: Regression to predict the recruitment rate based on study features.

Number of rows: 20676 Number of columns: 50

Size- rows and columns after preprocessing

Training data size: (16540, 46)
Testing data size: (4136, 46)

Split the data
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42)

Methodology

- Data has been collected from the file usecase_4_.xlsx containing numerous clinical trial records.
- Handling missing values for columns like Collaborators and Results First Posted and using one-hot encoding encoding categorical variables such as Study Status, Sex, and Funder Type.
- Derived features like Study Duration, Start Year and Phases Count have been created.
- Selecting Key Variables like Study Status, Conditions, Locations, Study Duration, Enrollment and Derived Variables like Interventions Count, Has DRUG Intervention.
- Evaluating the model using Root Mean Square Error(RMSE), Mean Absolute Error(MAE), R-squared(R²) score, Mean Absolute Percentage Error(MAPE) as these metrics ensure the model's reliability.

Framework / tools used

- Libraries used are Scikit-learn, XGBoost, pandas, numpy, matplotlib, seaborn, SHAP, LIME.
- Scikit-learn for preprocessing and metrics.
- XGBoost for its superior handling of tabular data.
- Other libraries for visualization and for better interpretability.

Model Training & Evaluation

Evaluation Metrics

- Model Training Process:-
 - Split data into training (80%) and testing (20%) subsets.
 - Applied cross-validation (5-fold) to ensure robustness.
 - Fine-tuned the XGBoost model using grid search for optimal hyperparameters.
- Evaluation Criteria and Metrics:-
 - ⋄ Root Mean Square Error (RMSE) :- 0.012

 - ∘ R-squared(R²) score :- 98.6%

Confusion Matr	ix:			
[[6 199	3]			
0 1778	0]			
[2 380				
•	5]]			
Classification	Report:			
	precision	recall	f1-score	support
High	0.75	0.03	0.06	208
Low	0.75	1.00	0.86	1778
Medium	0.62	0.01	0.03	387
accuracy			0.75	2373
macro avg	0.71	0.35	0.31	2373
_				
weighted avg	0.73	0.75	0.65	2373

Results and Metrics

Model Selection

- We selected the XGBoost Regressor for various reasons:-
 - The capability of this model to handle missing values efficiently.
 - The model's superior performance on structured or tabular datasets.
 - Built-in feature importance and interpretability.
- Additionally, we also developed a baseline Linear Regression model to validate the effectiveness of the chosen model.

- Technical Flow :
 - Data Loading and Preprocessing
 - Feature Engineering
 - Model Training and Evaluation
 - Results Visualization and Interpretation

Results and visualization

Model Outcomes

- We shall interpret and and present the key findings using visualizations tools or libraries like SHAP
- Model Outcomes:-
 - High accuracy in predicting Recruitment Rates.
 - Top predictors: Study Duration, Enrollment, Phases Count, Has DRUG Intervention.
- Key Findings:
 - Trials with Phase 3 studies showed higher recruitment rates.
 - Industry-funded trials have a 30% faster recruitment rate compared to other funder types.
- Visual Aids:
 - Feature Importance Summary Plot showing Study Duration as the most critical variable.
 - SHAP Plot for a Single Weightage Prediction

Feature Importance

- Used SHAP (SHapley Additive exPlanations)
 values to interpret feature contributions.
- Example: A longer Study Duration positively impacts recruitment, while a higher Conditions Count slightly slows it down.

Explainability

- Used SHAP (SHapley Additive exPlanations) values to interpret feature contributions.
- Example: A longer Study Duration positively impacts recruitment, while a higher Conditions Count slightly slows it down.

Challenges & Next Steps

Limitations

- Limitations :-
 - Limited external competition data restricts capturing real-world scenarios.
 - Missing values in columns like Collaborators may introduce minor biases.
 - The current dataset doesn't account for all niche/rare diseases lacking trial history.

Next Steps

- Incorporate additional external datasets (e.g., SOC availability, competitor trials).
- Explore ensemble models for further performance improvement.
- Validate the model on a broader dataset to ensure generalizability.
- Automate real-time prediction integration into the internal planning system.

General guidelines

Do's:

- Be clear and concise: Ensure each slide is easy to understand and free of unnecessary jargon
- Use visuals: Incorporate visuals to make the data and results more accessible
- Emphasize key points: Highlight the most important aspects of your approach and findings
- Highlight Limitation: Clearly state any limitations or challenges faced during the project

Don'ts:

- Overload slides: Avoid cluttering slides with too much text or too many details
- Ignore explainability: Ensure you address how the model's decisions can be interpreted
- Skip data details: Provide enough information about data sources and preprocessing steps
- Neglect metrics: Clearly define and report the metrics used to evaluate the model's performance

All the Best!

