$C. A. Ложкин^1, Л. И. Высоцкий^2$

О НЕКОТОРЫХ АСИМПТОТИЧЕСКИ ОПТИМАЛЬНЫХ ОДНОСТОРОННИХ ВЛОЖЕНИЯХ ДЕРЕВЬЕВ ПОДОБНЫХ ФОРМУЛ В ПРЯМОУГОЛЬНЫЕ РЕШЕТКИ

В данной работе рассматривается задача оптимального размещения в прямоугольных решетках деревьев формул. Проведено построение и анализ двух типов указанных деревьев и соответствующих способов их вложения (размещения) в такие решетки: на основе полных двоичных деревьев и на основе специальных двоичных деревьев. Для вложений деревьев второго типа доказана асимптотическая оптимальность по высоте получаемой решетки среди деревьев всех подобных исходной формуле формул не большей глубины.

Ключевые слова: вложение деревьев, прямоугольные решетки, подобные формулы, оптимизация по высоте.

1. Введение. Проблема оптимального взаимного моделирования вычислений является одной из актуальных задач теории дискретных управляющих систем. Обычно она сводится к задаче оптимизации размещения вычислительных узлов и связей между ними в геометрических структурах определенного вида, например, в прямоугольной решетке.

В такой постановке проблема возникает при проектировании различных цифровых и аналоговых схем в связи со стремлением производителей минимизировать размеры своего продукта, к примеру, при разработке сверхбольших интегральных схем или блока дискретного преобразования Фурье — важной части цифрового сигнального процессора.

В качестве модели геометрической структуры были выбраны прямоугольные решетки, в узлах которых можно размещать вычислительные узлы, а по ребрам проводить соединяющие их проводники. Моделью размещаемого устройства являются деревья формул над произвольным базисом двуместных ассоциативных и коммутативных операций. Само размещение задается т. н. вложением, т. е. отображением вершин дерева в узлы, а ребер — в непрерывные цепи решетки. На это отображение могут накладываться определенные ограничения, следующие из физических или технологических особенностей моделируемой системы. Например, в данной работе требуется, чтобы цепи—образы

¹Факультет ВМК МГУ, проф., д.ф.-м.н., e-mail: lozhkin@cs.msu.su

 $^{^2}$ Факультет ВМК МГУ, студ., e-mail: vysotskylev@yandex.ru

ребер не пересекались друг с другом в узлах, отличных от вычислительных, а входы устройства располагались на одной (горизонтальной) стороне решетки.

Рассматривается следующая задача: для заданной формулы среди всех подобных ей (т.е. получающихся из нее применением тождеств ассоциативности и коммутативности) формул определенной глубины найти такую, для которой возможно указанное выше вложение в решетку минимальной высоты.

В данной работе приводится метод построения искомых подобных формул и их вложений на основе полных двоичных деревьев, а также на основе специальных двоичных деревьев. Для последнего метода доказана его асимптотическая оптимальность в смысле описанной задачи.

2. Постановка задачи и формулировка полученных результатов. Приведем определение формулы (те понятия, которые здесь не определены, могут быть найдены в [1]). Пусть задан счетный упорядоченный алфавит переменных $\mathfrak{X} = \{x_1, x_2, \dots, x_n, \dots\}$, а также базис Б $=\{\varphi_1,\varphi_2,\ldots,\varphi_b\}$, где φ_i-k_i -местная функция. Формула над базисом Б задается рекуррентно: переменная $x_i \in \mathcal{X}$ считается формулой; если $\mathcal{F}_1, \ldots, \mathcal{F}_{k_i}$ — формулы, то запись вида $\mathcal{F} = \varphi_i(\mathcal{F}_1, \dots, \mathcal{F}_{k_i})$ тоже считается формулой. В данной работе рассматривается базис двуместных ассоциативных и коммутативных функций. Каждой формуле естественным образом ставится в соответствие реализуемая ею функция, а также дерево, листья которого помечены переменными, а нелистовые вершины — функциями из базиса Б. Сложностью $L(\mathcal{F})$ формулы \mathcal{F} называется число вхождений в нее функциональных символов, ее глубиной — глубина соответствующего дерева, а альтернированием $\mathrm{Alt}(\mathfrak{F})$ — максимальное число изменений пометок функций вдоль пути от листа дерева, соответствующего формуле \mathcal{F} , до его корня. Формула \mathcal{F}_2 называется подобной формуле \mathcal{F}_1 , если \mathcal{F}_2 может быть получена из \mathcal{F}_1 путем нескольких эквивалентных преобразований с помощью тождеств ассоциативности и коммутативности для базисных функций.

Рассматриваются неориентированные графы без петель и кратных ребер. Они представляют собой пару множеств $G = (V_G, E_G)$, где V_G и E_G — множества вершин и ребер соответственно. Множество всех простых (без самопересечений) цепей графа F будем обозначать C(F).

Вложением графа G в граф F назовем пару отображений (φ, ψ) :

$$\varphi: V_G \to V_F, \ \psi: E_G \to C(F),$$

обладающую тем свойством, что для любого ребра $e=(u,v)\in E_G$ цепь $\psi(e)$ соединяет вершины $\varphi(u)$ и $\varphi(v)$. При этом образы вершин из V_G будем называть основными вершинами вложения, цепи, являющиеся образами ребер из E_G , — транзитными цепями

вложения, ребра и внутренние вершины (т.е. не совпадающие с концами) транзитных цепей — транзитными ребрами и вершинами соответственно.

Будем рассматривать лишь те вложения, для которых различные вершины графа G переходят в различные вершины графа F, транзитные цепи не имеют общих ребер, а через одну транзитную вершину проходит не более 1 транзитной цепи.

Обозначим через $A_{l,h}^{a,b}$ целочисленную прямоугольную решетку (ПР) высоты h и длины l с началом в точке (a,b), т.е. граф, множеством вершин которого является множество точек (x,y) плоскости с целочисленными координатами из прямоугольника $[a,a+(l-1)]\times[b,b+(h-1)]$, а ребра соединяют все пары точек (x_1,y_1) и (x_2,y_2) , таких, что $|x_1-x_2|+|y_1-y_2|=1$. Если не оговорено иное, будем считать, что a=b=0, а $h\leqslant l$.

Вложение дерева в ПР назовем каноническим, если образ корня находится в первой строке решетки (т. е. имеет ординату 0), и строго каноническим, если дополнительно он является единственной основной вершиной в первой строке решетки.

Рассматривается следующая задача: для формулы \mathcal{F} над конечным базисом (хотя результат естественным образом обобщается и на бесконечный базис) \mathcal{F} из коммутативных и ассоциативных функций построить подобную ей формулу \mathcal{F}' минимальной глубины, допускающую вложение ее дерева в $\Pi \mathcal{F}$ минимальной высоты с расположением листьев на одной стороне решетки. При этом в ситуации неоднозначности решения задачи минимизации двух функционалов была выбрана следующая интерпретация: необходимо построить формулу \mathcal{F}' глубины не более $\log L(\mathcal{F}) + c \operatorname{Alt}(\mathcal{F}) + 1$ (все логарифмы, если не указано иное, берутся по основанию 2), где c — некоторая константа, и с минимальной высотой решетки, в которую возможно ее вложение.

В данной работе приведен метод построения для произвольной формулы \mathcal{F} в базисе двуместных коммутативных и ассоциативных операций подобной ей формулы \mathcal{F}_1 глубины не более $d_1 = \lceil \log(L(\mathcal{F}) + 1) \rceil + \operatorname{Alt}(\mathcal{F})$ с указанием канонического вложения дерева формулы \mathcal{F}_1 в прямоугольную решетку высоты не более $\lfloor d_1/2 \rfloor + 1$. Также разработан метод построения подобной формуле \mathcal{F} формулы \mathcal{F}_2 глубины не более

$$d_2 = \lceil \log(L(\mathcal{F}) + 1) + \log 6 \cdot \text{Alt}(\mathcal{F}) \rceil + 1,$$

с указанием канонического вложения дерева формулы \mathcal{F}_2 в прямоугольную решетку высоты не более $(d_2/3)(1+o(d_2))$, которое является асимптотически оптимальным среди всех вложений деревьев рассматриваемых формул глубины не более d_2 .

3. Вложение деревьев формул на основе полных двоичных деревьев.

Для построения эффективных вложений в дальнейшем будем использовать идею

композиции вложений. Формально, если заданы два вложения (φ_1, ψ_1) и (φ_2, ψ_2) :

$$G \xrightarrow{\varphi_1,\psi_1} F \xrightarrow{\varphi_2,\psi_2} H$$
,

то можно естественным образом определить новое вложение (φ, ψ) :

$$\varphi(v) = \varphi_2(\varphi_1(v)), \quad \psi(e) = \psi_2(e_1') \cup \cdots \cup \psi_2(e_n'),$$

где $(e'_1,\ldots,e'_n)=\varphi_1(e)$, а $\mbox{$\mathbb{U}$}$ – операция конкатенации цепей. Заметим, что построенная пара функций действительно будет вложением: все цепи $\psi(e)$ будут простыми, так как две различные цепи $\psi_2(e')$ и $\psi_2(e'')$ могут пересечься лишь в основных вершинах вложения (φ_2,ψ_2) .

В наших дальнейших рассуждениях будут строиться композиции вида $F \to D \to A$, где F – некоторое дерево формулы, D – дерево с некоторой регулярной структурой (например, полное), а A – прямоугольная решетка.

Заметим, что вложение одного дерева в другое обладает тем свойством, что оно полностью определяется отображением вершин. Действительно, в дереве существует ровно один путь между любыми двумя вершинами, позволяя определить $\psi(e)$ однозначно.

Построение канонических вложений полного двоичного дерева: a — базовое каноническое вложение дерева D_1 ; b — базовое строго каноническое вложение D_1 ; b — каноническое вложение дерева D_{k+1} (для строго канонического вложения D_k); b — строго каноническое вложение дерева D_{k+1} (для нестрого канонического вложения D_k)

Теорема 1. Для любой формулы \mathcal{F} в базисе двуместных коммутативных и ассоциативных функций $\mathbf{E} = \{\varphi_1, \dots, \varphi_b\}$ существует подобная ей формула \mathcal{F}' глубины не более $d = \lceil \log(L(\mathcal{F}) + 1) \rceil + \mathrm{Alt}(\mathcal{F})$, а также каноническое вложение дерева этой формулы в прямоугольную решетку высоты не более $\lfloor d/2 \rfloor + 1$.

Доказательство. Построим искомое вложение как композицию двух вложений. Сначала найдем подобную \mathcal{F} формулу \mathcal{F}' , дерево которой мы могли бы вложить в полное двоичное дерево D глубины d, а затем воспользуемся доказанным в [2] фактом о вложении полного дерева в ПР высоты $\lfloor d/2 \rfloor + 1$ (см. рисунок).

Покажем индукцией по сложности, что для \mathcal{F} существует подобная формула \mathcal{F}' и ее вложение в полное двоичное дерево глубины $\lceil \log(L(\mathcal{F}) + 1) \rceil + \operatorname{Alt}(\mathcal{F})$.

База $(L(\mathcal{F})=1)$ очевидна: $\mathcal{F}'=\mathcal{F}=x_i$. Обоснуем шаг индукции. Представим формулу \mathcal{F} в виде $\mathcal{F}=\mathcal{F}_1\circ\mathcal{F}_2\circ\cdots\circ\mathcal{F}_s$, где $\circ\in \mathsf{B}$. По аналогии с теоремой 2.1 из [1] выделим в полном дереве глубины d непересекающиеся поддеревья D_i , $i=1,\ldots,s$, глубины $d_i=\lceil\log(L(\mathcal{F}_i)+1)\rceil+\mathrm{Alt}\,(\mathcal{F}_i)$ и обозначим через v_i корень дерева D_i . Применим индуктивное предположение к подформулам \mathcal{F}_i , $i=1,\ldots,s$, построив подобные им формулы \mathcal{F}_i' и их вложения в D_i . Рассмотрим такой подграф T дерева D, который сам явяется деревом, имеет корень в корне D, а листьями являются только вершины v_i , $i=1,\ldots,s$. Это можно сделать, рассмотрев в качестве такого подграфа объединение всех цепей, соединяющих v_i , $i=1,\ldots,s$, с корнем D.

Построим формулу $\mathcal{H}(y_1,\ldots,y_s)$ следующим образом: рассмотрим в дереве T множество $W\subset V_T$, состоящее из всех вершин степени 3 (и корня, если его степень равна 2) и листьев, а затем проведем ребро (w_1,w_2) , если путь от w_1 до w_2 (определяемый однозначно) не содержит других вершин из W. Ясно, что полученный граф $T'=(W,E_{T'})$ является деревом: связность и наличие ровно одного пути между вершинами из W следует из построения. Корнем T' назначим ближайшую к корню дерева D вершину. Это и будет дерево формулы \mathcal{H} — достаточно приписать всем вершинам функциональный символ \circ . Вложение $T' \to T$ очевидно из построения.

Теперь определим формулу $\mathcal{F}' = \mathcal{H}(\mathcal{F}'_1, \dots, \mathcal{F}'_s)$. Ее вложение в дерево D определяется однозначно на основе вложений $\mathcal{F}'_i \to D_i$, а также $\mathcal{H} \to T$. Несложно также видеть, что глубина формулы \mathcal{F}' не превосходит глубины D. Теорема доказана.

4. Вложение деревьев формул на основе специальных двоичных деревьев.

В работе [3] описываются двоичные деревья, имеющие максимальное число листьев среди деревьев глубины не более d и допускающие вложение в решетку высоты не более h. Это максимальное число листьев, зависящее от d и h, обозначается через N(d,h) и равно

$$N(d,h) = 2^{d} - 2^{h} \sum_{k=0}^{d-2h} C_{d-h}^{k}.$$

Оказывается, при построении различных схем, оптимальных по высоте или площади вложения в прямоугольные решетки, во многих случаях разумнее использовать указанные "специальные" деревья вместо "классических" полных.

- **4.1.** Асимптотически оптимальное по высоте вложение деревьев формул. Рассмотрим деревья $\widehat{D}(d,h)$ (определяемые лишь при $d \leq 3h+2$) и $\widehat{D}_L(d,h)$ (определяемые лишь при $d \leq 3h+1$), которые в случае d=0 представляют собой отдельные вершины, а при d>0 задаются рекуррентно следующим образом:
 - 1) $\widehat{D}(d,h)$ имеет два одинаковых поддерева $\widehat{D}_L(d-1,h)$;

2) $\widehat{D}_L(d,h)$ при d=3h+1 имеет два поддерева $\widehat{D}_L(d-2,h)$ и $\widehat{D}(d-2,h-1)$, а при $d\leqslant 3h$ два поддерева $\widehat{D}_L(d-1,h)$ и $\widehat{D}(d-1,h-1)$ (таким образом, деревья $\widehat{D}_L(3h+1,h)$ и $\widehat{D}_L(3h,h)$ совпадают).

Заметим, что глубина деревьев $\widehat{D}(d,h)$ и $\widehat{D}_L(d,h)$ не превосходит d. Кроме того, для них несложно определить каноническое вложение в решетку высоты h. Дерево $\widehat{D}(d,h)$ назовем регулярным симметричным, а $\widehat{D}_L(d,h)$ — регулярным асимметричным. Для числа листьев у рассматриваемых деревьев можно записать следующие рекуррентные соотношения:

$$\widehat{N}(d,h) = 2\widehat{N}_L(d-1,h),\tag{1}$$

$$\widehat{N}_{L}(d,h) = \begin{cases} 2\widehat{N}(d-1,h-1) + \widehat{N}_{L}(d-1,h), & \text{если } d \leq 3h, \\ \widehat{N}_{L}(d-1,h), & \text{иначе.} \end{cases}$$
 (2)

По построению первое соотношение должно выполнятся при всех $d \le 3h + 2$, а второе — при всех $d \le 3h + 1$.

4.2. Вспомогательные утверждения.

Лемма 1. Пара функций

$$\widehat{N}(d,h) = 2^h \sum_{k=d-2h+1}^{h+3} C_{d-h}^k, \quad \widehat{N}_L(d,h) = \frac{1}{2} \widehat{N}(d+1,h)$$
(3)

удовлетворяет соотношениям (1), (2).

Доказательство. Соотношение (1), очевидно, выполнено. Перепишем соотношение (2), выразив $\widehat{N}_L(d,h)$ через $\widehat{N}(d,h)$:

$$\widehat{N}(d+1,h) = \begin{cases} 2\widehat{N}(d-1,h-1) + \widehat{N}(d,h), & \text{если } d \leqslant 3h, \\ \widehat{N}(d,h), & \text{иначе.} \end{cases}$$

В обоих случаях равенство проверяется прямой подстановкой и применением тождества $C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$. Лемма доказана.

Лемма 2 (о регулярном делении). Для величины r(d,h), определяемой равенством

$$r(d,h) = \frac{\widehat{N}_L(d-1,h)}{\widehat{N}_L(d,h)},$$

 $npu\ h > 1\ u\ d \leqslant 3h\ выполнены неравенства\ 1/2 \leqslant r(d,h) \leqslant 5/6.$

Доказательство. В соответствии с доказанным рекуррентным соотношением (3)

$$r(d,h) = \frac{\widehat{N}(d,h)}{\widehat{N}(d+1,h)} = \frac{\sum_{k=d-2h+1}^{h+3} C_{d-h}^k}{\sum_{k=d-2h+2}^{h+3} C_{d-h+1}^k} = \frac{\sum_{k=d-2h+1}^{h+3} C_{d-h}^k}{2\sum_{k=d-2h+1}^{h+3} C_{d-h}^k - C_{d-h}^{d-2h+1} - C_{d-h}^{h+3}}.$$

Отсюда сразу видно, что $r(d,h)\geqslant 1/2$, так как знаменатель не превосходит удвоенный числитель. Для получения верхней оценки величины r(d,h) достаточно оценить величины

$$A(d,h) = \frac{C_{d-h}^{d-2h+1} + C_{d-h}^{h+3}}{\sum_{k=d-2h+1}^{h+3} C_{d-h}^{k}} = \frac{C_{d-h}^{d-2h+1} + C_{d-h}^{h+3}}{C_{d-h}^{d-2h+1} + \sum_{k=d-2h+2}^{h+2} C_{d-h}^{k} + C_{d-h}^{h+3}} = \frac{1}{1 + B(d,h)},$$

$$\sum_{k=d-2h+1}^{h+2} C_{d-h}^{k}$$

$$B(d,h) = \frac{\sum_{k=d-2h+2}^{h+2} C_{d-h}^k}{C_{d-h}^{d-2h+1} + C_{d-h}^{h+3}}.$$

Для установления нижней оценки величины B(d,h) заметим, что в условиях леммы (т. е. при $d\leqslant 3h$) верно неравенство h+2>(d-h)/2, из которого вытекает неравенство $C_{d-h}^{h+2}>C_{d-h}^{h+3}$. Заметим также , что при d<3h-2 выполняется неравенство d-2h+1<(d-h)/2, из чего следует, что $C_{d-h}^{d-2h+1}\leqslant C_{d-h}^{d-2h+2}$. Учитывая это, достаточно рассмотреть случаи d<3h-2, d=3h-2, d=3h-1 и d=3h. В результате для любых d и h из условия леммы получим оценку $B(d,h)\geqslant 1/4$. Значит,

$$r(d,h) = (2 - A(d,h))^{-1} = (2 - \frac{1}{1 + B(d,h)})^{-1} \le \frac{5}{6}.$$

Лемма доказана.

Для удобства формулирования следующей леммы доопределим $\widehat{N}_L(d,h)$ в точке $(3h+2,h)\colon \widehat{N}_L(3h+2,h)=\widehat{N}_L(3h+1,h)$.

Лемма 3. Пусть заданы натуральные числа m_1, \ldots, m_n , сумма которых равна M. Тогда для целых неотрицательных чисел d u h, таких, что $d \leq 3h+2$ u $\widehat{N}(d,h) \geqslant M$ (соответственно $d \leq 3h+1$ u $\widehat{N}_L(d,h) \geqslant M$) в дереве $\widehat{D}(d,h)$ (соответственно $\widehat{D}_L(d,h)$) можно выделить n попарно не пересекающихся поддеревьев D_1, \ldots, D_n , таких, что число N_i листьев дерева D_i , $i=1,\ldots,n$, удовлетворяет следующим неравенствам:

$$N_{i} \geqslant \begin{cases} m_{i}, & ecnu \ n = 1, \\ \frac{1}{6}m_{i}, & ecnu \ n > 1 \ u \ 1 < i < n, \\ \frac{1}{3}m_{i}, & ecnu \ n > 1 \ u \ i \in \{1, n\}. \end{cases}$$

$$(4)$$

Докажем сначала часть утверждения, связанную с деревом $\widehat{D}_L(d,h)$, причем рассмотрим случай $d \leq 3h$ (случай d=3h+1 тривиален, так как $\widehat{D}_L(3h+1,h)=\widehat{D}_L(3h,h)$). Положим r=r(d,h) (см. лемму 2) и будем считать, что Mr — целое число. Если это не так, то положим $M'=r\lceil M/r \rceil$ и соответствующим образом увеличим любое из чисел m_i . Ясно, что так как $\widehat{N}_L(d,h)r=\widehat{N}_L(d-1,h)$ — целое число и $\widehat{N}_L(d,h)\geqslant M$, то $M'\leqslant \widehat{N}_L(d,h)$, т.е. условия леммы выполняются, а результирующие соотношения (4) лишь усилятся.

Выберем номера k_1 и k_2 , такие, что

$$\sum_{i=1}^{k_1} m_i \geqslant (1-r)M, \qquad \sum_{i=1}^{k_1-1} m_i < (1-r)M,$$

$$\sum_{i=1}^{k_2} m_i \geqslant rM, \qquad \sum_{i=1}^{k_2-1} m_i < rM.$$

При этом возможны две ситуации.

- 1. $\{k_1, k_2\} \subseteq \{1, n\}$. Рассмотрим два случая:
- а) $k_1=k_2$. В этом случае без ограничения общности будем считать, что $k_1=k_2=1$. Применим индуктивное предположение к поддереву $\widehat{D}_L(d-1,h)$ с набором $\mathcal{M}_1=\{rM\}$ и к поддереву $\widehat{D}(d-1,h-1)$ с набором $\mathcal{M}_2=\{m_2,\ldots,m_n\}$. В силу того, что $m_1\leqslant M$ и $r\geqslant 1/2$, получим выполнение всех условий (4) для системы поддеревьев S дерева $\widehat{N}_L(d,h)$ с набором $\mathcal{M}=\{m_1,\ldots,m_n\}$, которая является объединением указанных подсистем.
- б) $k_1 \neq k_2$. Так как $k_1 \leqslant k_2$, то $k_1 = 1$, $k_2 = n$. Без ограничения общности можно считать, что $m_1 \leqslant m_n$. Применим индуктивное предположение к поддереву $\widehat{D}(d-1,h-1)$ с набором $\mathcal{M}_1 = \{(1-r)M\}$ (ведь $(1-r)M = \widehat{N}(d-1,h-1)$) и к поддереву $\widehat{D}_L(d-1,h)$ с набором $\mathcal{M}_2 = \{m_2,\ldots,m_n\}$. Выполнение условия (4) для определенной аналогично системе S системы нужно проверить лишь для N_1 . Учитывая, что $m_1 \leqslant m_n$, а значит, $M \geqslant 2m_1$, и применяя лемму 2, получим

$$N_1 \geqslant (1-r)M \geqslant (1-r)2m_1 \geqslant \frac{2}{6}m_1 = \frac{1}{3}m_1.$$

2. $\{k_1,k_2\} \not\subseteq \{1,n\}$. Пусть для определенности $k_1 \notin \{1,n\}$. Введем обозначения

$$M^{L} = (1 - r)M, \quad M^{R} = rM, \quad m_{k}^{L} = M^{L} - \sum_{i=1}^{k-1} m_{i}, \quad m_{k}^{R} = \sum_{i=1}^{k} m_{i} - M^{L}$$

и, не ограничивая общности рассуждений, будем считать, что $m_k^L \geqslant m_k^R$. Применим индуктивное предположение к поддереву $\widehat{D}(d-1,h-1)$ с набором $\{m_1,\ldots,m_k^L\}$ и

поддереву $\widehat{D}_L(d-1,h)$ с набором $\{m_{k+1},\ldots,m_n\}$. Среди условий (4) для определенной аналогично системе S системы нужно проверить лишь условие для N_k :

$$N_k \geqslant \frac{1}{3} m_k^L \geqslant \frac{1}{3} \frac{1}{2} m_k = \frac{1}{6} m_k.$$

Таким образом, для деревьев $\widehat{D}_L(d,h)$ утверждение леммы верно. Доказательство леммы для деревьев $\widehat{D}(d,h)$ проводится аналогично: нужно лишь заменить r на 1/2. Лемма доказана.

Лемма 4. Пусть дана формула \mathcal{F} в базисе двуместных коммутативных и ассоциативных функций $\mathbf{B} = \{\varphi_1, \dots, \varphi_b\}$. Пусть также числа d и h таковы, что $\widehat{N}(d,h) \geqslant L(\mathcal{F}) \cdot 6^{\mathrm{Alt}(\mathcal{F})}$ или $\widehat{N}_L(d,h) \geqslant L(\mathcal{F}) \cdot 6^{\mathrm{Alt}(\mathcal{F})}$. Тогда существует подобная \mathcal{F} формула \mathcal{F}' , дерево которой имеет глубину не более d и допускает каноническое вложение в решетку высоты не более h.

Доказательство. Аналогично теореме 1 будем строить искомое вложение как композицию. Сначала найдем формулу \mathcal{F}' , подобную \mathcal{F} , которую мы могли бы вложить в дерево $\widehat{D}(d,h)$ (соответственно в $\widehat{D}_L(d,h)$), а затем воспользуемся тем, что деревья $\widehat{D}(d,h)$ и $\widehat{D}_L(d,h)$ можно вложить в ПР высоты h.

Покажем индукцией по сложности, что если $\widehat{N}(d,h) \geqslant L(\mathcal{F}) \cdot 6^{\mathrm{Alt}(\mathcal{F})}$ ($\widehat{N}_L(d,h) \geqslant L(\mathcal{F}) \cdot 6^{\mathrm{Alt}(\mathcal{F})}$), то существует формула \mathcal{F}' , подобная \mathcal{F} и допускающая вложение своего дерева в дерево $\widehat{D}(d,h)$ (соответственно в $\widehat{D}_L(d,h)$).

База $(L(\mathcal{F})=1)$ очевидна: $\mathcal{F}'=\mathcal{F}=x_i$. Обоснуем шаг индукции. Представим формулу \mathcal{F} в виде $\mathcal{F}=\mathcal{F}_1\circ\mathcal{F}_2\circ\cdots\circ\mathcal{F}_s$, где $\circ\in \mathcal{F}$. Обозначим $a=\mathrm{Alt}\,(\mathcal{F})$. По лемме 3 в дереве $\widehat{D}(d,h)$ (соответственно $\widehat{D}_L(d,h)$) выделим непересекающиеся поддеревья D_1,\ldots,D_s для набора чисел $\{L(\mathcal{F}_1)\cdot 6^a,\ldots,L(\mathcal{F}_s)\cdot 6^a\}$. По утверждению леммы при любом $i=1,\ldots,s$ количество листьев N_i в поддереве D_i будет не менее

$$L(\mathcal{F}_i) \cdot 6^{a-1} \geqslant L(\mathcal{F}_i) \cdot 6^{\operatorname{Alt}(\mathcal{F}_i)}$$
.

Учитывая, что все поддеревья D_i , $i=1,\ldots,s$ также имеют вид $\widehat{D}(d_i,h_i)$ или $\widehat{D}_L(d_i,h_i)$, можно применить индуктивное предположение и построить формулы \mathcal{F}'_i , подобные \mathcal{F}_i , и их вложения в поддеревья D_i , а затем провести такое же рассуждение, как в теореме 1. Лемма доказана.

4.3. Доказательство основной теоремы.

Теорема 2. Для любой формулы \mathcal{F} в базисе двуместных коммутативных и ассоциативных функций $\mathbf{B} = \{\varphi_1, \dots, \varphi_b\}$ и числа, определяемого равенством

$$n = \left\lceil \log(L(\mathcal{F}) + 1) + \log 6 \cdot \operatorname{Alt}(\mathcal{F}) \right\rceil,$$

существует формула \mathfrak{F}' , подобная \mathfrak{F} , глубины не более d=n+1, а также каноническое вложение дерева $D(\mathfrak{F}')$ в прямоугольную решетку высоты не более

$$h = \frac{n}{3}(1 + \alpha(n)), \quad \text{ide} \quad \alpha(n) = O(\frac{1}{\sqrt{n}}) = o(1) \quad npu \quad n \to \infty.$$

Доказательство. По лемме 4 мы могли бы построить подобную \mathcal{F} формулу глубины d и высоты вложения h, если только $\widehat{N}(d,h) \geqslant 2^n \geqslant 6^{\mathrm{Alt}\,(\mathcal{F})} \cdot L(\mathcal{F})$. Применяя формулу (3) для $\widehat{N}(d,h)$ при d=n+1, получим, что первое из этих неравенств равносильно следующим неравенствам:

$$2^{h} \sum_{k=n-2h+2}^{h+3} C_{n-h+1}^{k} \geqslant 2^{n}, \quad \sum_{k=0.5(n-h+1)-a}^{0.5(n-h+1)+a} C_{n-h+1}^{k} \geqslant 2^{n-h},$$

где a = 1.5(h - n/3 - 1). Обозначив сумму в этих неравенствах через S, можем записать

$$2^{n-h+1} = \sum_{k=1}^{n-h+1} C_{n-h+1}^k \leqslant S + 2 \sum_{k=1}^{0.5(n-h+1)-a} C_{n-h+1}^k < S + 2 \frac{0.5(n-h+1)+a}{2a} C_{n-h+1}^{0.5(n-h+1)-a}.$$
 (5)

Последнее неравенство следует из того факта, что при $k < \lfloor n/2 \rfloor$

$$\sum_{r=0}^{k} C_n^r < \frac{n-k}{n-2k} C_n^k$$

(см., например, [4]). Из характера монотонности биномиальных коэффициентов следует, что для всех (2a+1) целых чисел $i, i \in [0.5(n-h+1)-a, 0.5(n-h+1)+a]$ верно $C_{n-h+1}^{0.5(n-h+1)-a} \leqslant C_{n-h+1}^i$. Из этого непосредственно следует, что

$$C_{n-h+1}^{0.5(n-h+1)-a} \leqslant \frac{1}{2a+1} \sum_{k=1}^{n-h+1} C_{n-h+1}^k \leqslant \frac{2^{n-h+1}}{2a+1}.$$

Подставляя полученное неравенство в (5) и выбирая $h = \lceil n/3 + \sqrt{n} \rceil + 1$, получим

$$S \geqslant 2^{n-h+1} \left(1 - \frac{0.5(n-h+1) + a}{a(2a+1)}\right) \geqslant 2^{n-h+1} \left(1 - \frac{2}{27} - \frac{2}{9\sqrt{n}}\right) \geqslant 2^{n-h}.$$

Теорема доказана.

Доказанный в теореме результат означает, что построено дерево, допускающее асимптотически оптимальное по высоте вложение среди деревьев всех формул, подобных данной и глубины не более n+1. Имеется в виду следующее

Утверждение 1. Пусть задана последовательность формул \mathcal{F}_i , i = 1, ..., mакая, что $L(\mathcal{F}_i)$ неограниченно возрастает, причем все $\mathrm{Alt}(\mathcal{F}_i)$ совпадают. Пусть также фиксированы числа

$$n_i = \lceil \log(L(\mathcal{F}_i) + 1) + \log 6 \cdot \text{Alt}(\mathcal{F}_i) \rceil$$

 $u \ d_i = n_i + 1$. Рассмотрим последовательность формул $\{\mathcal{F}'_i\}$, таких, что \mathcal{F}'_i подобна \mathcal{F}_i , имеет глубину не более d_i и оптимальна по высоте ΠP , в которую возможно ее вложение. Обозначим последовательность оптимальных высот через $\{h_i\}$.

Тогда h_i асимптотически равно $d_i/3$, т. е. $3h_i/d_i \xrightarrow[i \to \infty]{} 1$.

Доказательство. Рассмотрим нижний предел последовательности $\{3h_i/d_i\}$. Предположим, что он меньше 1. Тогда существует подпоследовательность $\{h_{i_k}\}$, такая, что $3h_{i_k}/d_{i_k} < \gamma < 1$ (в дальнейшем индекс k будем опускать, чтобы не загромождать выкладки). Ясно, что число листьев в дереве формулы \mathcal{F}_i не превосходит

$$N(d_i, h_i) = 2^{h_i} \sum_{j=0}^{h_i-1} C_{d_i-h_i}^k \leqslant 2^{h_i} (2^{d_i-h_i} - \sum_{j=h_i}^{d_i-2h_i} C_{d_i-h_i}^k) = 2^{h_i} 2^{d_i-h_i} \left(1 - \left(1 + o(1)\right)\right) = 2^{d_i} \cdot o(1).$$

Предпоследний переход следует из того факта, что при $n \to \infty$, если $\varphi(n) \to \infty$ и $\varphi(n)\sqrt{n} < n/2$, то

$$\sum_{r=\left\lfloor\frac{n}{2}-\varphi(n)\sqrt{n}\right\rfloor}^{\left\lfloor\frac{n}{2}+\varphi(n)\sqrt{n}\right\rfloor}C_n^r\sim 2^n.$$

(см., например, [4]). Вычитаемая сумма попадает в условия этого утверждения, а следовательно, асимптотически равна $2^{d_i-h_i}$.

В силу того, что сложность формулы не превосходит числа листьев, получаем цепочку неравенств

$$o(1) \cdot 2^{d_i} = N(d_i, h_i) \geqslant L(\mathcal{F}_i) \geqslant \delta \cdot 2^{d_i}$$
, где $0 < \delta = \text{const.}$

Установленное противоречие доказывает, что нижний предел последовательности $\{3h_i/d_i\}$, $i=1,\ldots,$ не меньше 1. Из теоремы 2 следует, что верхний предел указанной последовательности не превосходит 1, из чего получаем $\lim_{i\to\infty} 3h_i/d_i=1$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ложкин С.А. Лекции по основам кибернетики. М.: Изд-во МГУ, 2004.
- 2. Ложкин С.А., Ли Да Мин. О некоторых оптимальных вложениях двоичным и троичных деревьев в плоские прямоугольные решетки// Вестн. Моск. ун-та. Сер. 15. Вычисл. матем. и кибер. 1995. №4. С.49–55. (Lozhkin S.A., Li Da Ming. On some optimal embeddings of binary and ternary trees in planar rectangular lattices. Moscow University Comp. Math. and Cybern. 1995. N4. P.47–53.)
- 3. Ли Да Мин. Некоторые оптимальные вложения древовидных графов в плоские прямоугольные решетки. Дисс. канд. физ.-матем. наук. МГУ, 1994.
- 4. Селезнева С.Н. Основы дискретной математики. М.: МАКС Пресс, 2010.

Поступила в редакцию 02.12.16