B1	For finding the area of the segment, awrt 41
	OR for finding the area of the triangle $OAB = \frac{1}{2} \times 10^2 \times \sin 1.8 = [48.692]$
	This is not a ft mark.
M1	For finding the area of the logo
	Area = Their area of semicircle – their area of the segment.
	Or Area = Area of whole shape – area of sector
A1	For the correct value of the area of the logo.

Question	Scheme	Marks
10(a)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$	
	$\frac{115}{8} = \left(-\frac{5}{2}\right)^3 - 3\alpha\beta\left(-\frac{5}{2}\right)$	M1
	$\Rightarrow \alpha\beta = \frac{-\frac{115}{8} + \left(-\frac{5}{2}\right)^3}{3 \times \left(-\frac{5}{2}\right)}$	dM1
	$3 \times \left(-\frac{5}{2}\right)$ $\Rightarrow \alpha\beta = 4$	A1 cso [3]
(b)	<i>⇒αρ</i> – 4 Sum:	
(b)	~ 4111	
	$\frac{\alpha^2 + 1}{\beta} + \frac{\beta^2 + 1}{\alpha} = \frac{\alpha^3 + \beta^3 + \alpha + \beta}{\alpha\beta}$	
	115 (5)	
	$\Rightarrow \frac{\alpha^2 + 1}{\beta} + \frac{\beta^2 + 1}{\alpha} = \frac{\frac{115}{8} + \left(-\frac{5}{2}\right)}{4} = \frac{95}{32}$	M1A1
	$p \alpha 4 32$ Product:	N/1
	$\frac{\alpha^2 + 1}{\beta} \times \frac{\beta^2 + 1}{\alpha} = \frac{\alpha^2 \beta^2 + \alpha^2 + \beta^2 + 1}{\alpha \beta}$	M1
	$\Rightarrow \frac{\alpha^2 + 1}{\beta} \times \frac{\beta^2 + 1}{\alpha} = \frac{\alpha^2 \beta^2 + \left[(\alpha + \beta)^2 - 2\alpha\beta \right] + 1}{\alpha\beta}$	M1
	$\Rightarrow \frac{\alpha^2 + 1}{\beta} \times \frac{\beta^2 + 1}{\alpha} = \frac{4^2 + \left(-\frac{5}{2}\right)^2 - 2 \times 4 + 1}{4} = \frac{61}{16}$	A1
	Equation: $x^2 - \left(\frac{95}{32}\right)x + \left(\frac{61}{16}\right) = 0 \Rightarrow 32x^2 - 95x + 122 = 0$ oe	M1A1 [7]
		Total 10 marks

Part	Mark	Notes	
(a)			
		ward of the A mark	
	M1	For the correct algebra and substitution of the given values into a correct expression	
		for $\alpha^3 + \beta^3$	
		There is more than one acceptable form of this expansion.	
		They must be able to substitute the given values of $\alpha + \beta$ and $\alpha^3 + \beta^3$ with $\alpha\beta$	
		as the value to find in any version they use.	
		For example: $\alpha^3 + \beta^3 = (\alpha + \beta) [(\alpha + \beta)^2 - 3\alpha\beta]$	
	dM1	For an attempt to solve the linear equation to find a value for $\alpha\beta$	
		Allow one processing error for this mark.	
		Note, this is a dependent M mark.	
	A1	For $\alpha\beta = 4$	
	cso	This is a show question, you must check their algebra carefully.	
(b)	M1	For the correct algebra and substitution of the given values to find the sum.	
	A1	95	
		For the correct sum $=\frac{95}{32}$	
	M1	For the correct algebra and substitution to find $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left[-\frac{7}{4}\right]$	
	M1	For the correct algebra and substitution of the given values to find the product	
	A1		
		For the correct product $=\frac{61}{16}$	
	M1	For forming an equation using their sum and product correctly.	
		$x^2 - (\text{their sum})x + (\text{their product}) = (0)$	
		Allow missing = 0 for this mark	
	A1	For a correct equation with integer coefficients.	
		For example: $64x^2 - 190x + 244 = 0$	
		For example: $64x^2 - 190x + 244 = 0$	

Question	Scheme	Marks
11(a)	$\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OC} = \mathbf{p} - 2\mathbf{q}$	B1
	$\overrightarrow{MA} = -OM + OA$	M1
	$\overrightarrow{MA} = -(\mathbf{p} - 2\mathbf{q}) + (4\mathbf{p} + 5\mathbf{q}) = 3\mathbf{p} + 7\mathbf{q}$	A1 [3]
(b)	$\overrightarrow{MN} = \lambda \left(3\mathbf{p} + 7\mathbf{q} \right)$	M1
	$\overrightarrow{MN} = -(\mathbf{p} - 2\mathbf{q}) + \mu(3\mathbf{p} + \mathbf{q})$	M1
	$\lambda (3\mathbf{p} + 7\mathbf{q}) = -(\mathbf{p} - 2\mathbf{q}) + \mu (3\mathbf{p} + \mathbf{q})$	M1
	$\Rightarrow 3\lambda \mathbf{p} + 7\lambda \mathbf{q} = (-1 + 3\mu)\mathbf{p} + (2 + \mu)\mathbf{q}$	
	$3\lambda = -1 + 3\mu$ $7\lambda = 2 + \mu$	dM1
	$\Rightarrow 18\lambda = 7 \Rightarrow \lambda = \frac{7}{18}$	A1
		A1
	$NIV \cdot IVA = I \cdot II$	[6]
		Total 9 marks

Useful sketch

Dowt	Moule	Notes		
Part (a)	Mark	Notes		
(a)		For finding either vector $\overrightarrow{OM} = \mathbf{p} - 2\mathbf{q}$ or $\overrightarrow{MO} = -\mathbf{p} + 2\mathbf{q}$		
	B 1	$\stackrel{\circ}{\rightarrow}$		
		This may be embedded in their working for MA		
	M1	This may be embedded in their working for \overrightarrow{MA} For the correct vector statement $\overrightarrow{MA} = -\overrightarrow{OM} + \overrightarrow{OA}$ or $\overrightarrow{MA} = -\frac{1}{2}\overrightarrow{OC} + \overrightarrow{OA}$		
	A1	For the correct simplified vector		
(b)	Genera	l principle of marking part (b)		
		at two M marks are for two vector statements for MN or AN that will allow them to be		
	_	equated. Note that they can use any path that involves either of these two vectors.		
		third M mark is for equating coefficients and forming a pair of simultaneous equations.		
	• The	final M mark is for solving their simultaneous equations.		
	M1	For one vector for \overrightarrow{MN} or \overrightarrow{AN} involving a constant One example is: $\rightarrow \qquad \rightarrow \qquad$		
	M1	For a second vector for \overrightarrow{MN} or \overrightarrow{AN} following a different path involving a different constant. One example is: $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow AN = AO + L OB = -4\mathbf{p} - 5\mathbf{q} + L(3\mathbf{p} + \mathbf{q})$		
	M1	For equating the two vectors and forming a pair of simultaneous linear equations, both of which must be in terms of λ and μ		
	dM1	For an attempt to solve their linear equations. Allow up to one processing error. This mark is dependent on the previous M mark.		
	A1	For the value of $\lambda = \frac{7}{18}$ μ is not required but the value is $\frac{13}{18}$		
	A1	For the correct ratio $MN: NA = 7:11$		