Edith Cowan University CSG1207 Systems & Database Design Assignment 2A

Martin Ponce Student 10371381

Tutor: Greg Baatard April 27, 2015

Contents

1	1 Pizza store database design brief				
2	Assumptions 2.1 ER diagrams 2.2 Data dictionary	4 4			
3	Logical E-R diagram	5			
4	Physical E-R diagram	6			
5	Data dictionary & creation order	7			

1 Pizza store database design brief

You are required to design and create a database for a pizza store. The database must encompass the customers, staff, pizza details, and the pizza orders made by customers. You have the following information about the way the store operates:

- Customer details must be recorded. This includes a customer ID number, name, address and email. Customer details are recorded when they make their first order.
- Staff details must be recorded. This includes a staff ID number, first name, last name, date of birth and phone number.
 - Each staff member may have a supervisor, which is another staff member.
 A staff member may supervise many other staff members. Not all staff have a supervisor.
- The details of pizza orders must be recorded. This includes an order ID number, the date and time that the order was placed, the ID number of the customer who made the order, and the ID number of the staff member who took the order.
 - The table also needs to contain the staff ID number of the staff who delivered the order. Since the pizza order will be recorded before the pizzas are delivered, this value will originally be empty.
 - Each order can contain multiple pizzas.
- The store has divided their pizza selection into "ranges" (e.g. "traditional" and "gourmet") to simplify pricing. All of the pizzas in a range have the same price.
 - The database must store an ID, name and price for each range.
- The details of the types of pizza available must be recorded. This includes a pizza ID number, the pizza's name, a description and a foreign key identifying which pizza range it is in.
- The database also needs two tables to store the details of crust types and sauce types that can be chosen when ordering a pizza. Some crust/sauce types attract a surcharge.
 - These tables require an ID number, name and surcharge (default of 0) column.
 - When ordering a pizza, a customer must choose which crust and sauce they want.
- The database must track which pizzas were ordered in which orders. This will involve:
 - An auto-incrementing ordered pizza ID number.
 - A foreign key identifying the order that this pizza is part of.

- A foreign key identifying which pizza was chosen.
- A foreign key identifying which crust was chosen.
- A foreign key identifying which sauce was chosen.
- A "ready" column containing a "Y" or "N" to indicate whether the pizza has been made and cooked yet (default of "N").

2 Assumptions

2.1 ER diagrams

- A customer must make at least one customer_order to exist on database
- A customer_order must contain at least one pizza_order
- A pizza_order must include one pizza_type selection
 - It is possible that a pizza_type may never be selected for a pizza_order
- A pizza_order must include one pizza_crust selection
 - It is possible that a pizza_crust may never be selected for a pizza_order
- A pizza_order must include one pizza_sauce selection
 - It is possible that a pizza_sauce may never be selected for a pizza_order
- A pizza_type must include one pizza_range selection
 - It is possible that a pizza_range may never be selected for a pizza_order
- A staff member may be a supervisor to many staff members
 - A staff member may only have one supervisor
 - Some staff may not have a supervisor
- A staff member may not deliver any pizzas

2.2 Data dictionary

- Database will not be implented in SQL 2005
- Total number of staff will not exceed 255
- Total number of customer will not exceed 32,767
- Price of pizza_crust or pizza_sauce will each not exceed \$9.99
- Price of pizza_range will not exceed \$99.99
- Total number of pizza_crust, pizza_sauce or pizza_range will each not exceed 255
- Total number of customer_order or pizza_order will each not exceed 2,147,483,647

3 Logical E-R diagram

staff customer_order customer staff_id cust_order_id cust_id staff_last_name cust_order_datetime cust_name staff_first_name cust_adrs staff_dob staff_phone cust_email pizza_crust pizza_order pizza_sauce pizza_crust_id pizza_sauce_id pizza_order_id pizza_crust_name pizza_sauce_name pizza_ready surcharge surcharge pizza_range pizza_type pizza_range_id pizza_type_id pizza_range_name pizza_name pizza_range_price pizza_desc

Figure 1: Pizza Store Logical E-R Diagram

4 Physical E-R diagram

Figure 2: Pizza Store Physical E-R Diagram

5 Data dictionary & creation order

Table 1: "staff" stores details about staff

Column name	Type/Length	Null	Constraints	Other
$staff_id$	TINYINT	NOT NULL	PK	IDENTITY
$staff_last_name$	VARCHAR(20)	NOT NULL		
$staff_first_name$	VARCHAR(20)	NOT NULL		
$staff_dob$	DATE	NOT NULL	CHECK (DATEDIFF(year, GETDATE(), staff_dob) $>= 16$)	
$staff_phone$	VARCHAR(10)	NOT NULL		
supervisor	TINYINT	NULL	FK (staff.staff_id)	

Table 2: "customer" stores details about customer

Column name	Type/Length	Null	Constraints	Other
cust_id	SMALLINT	NOT NULL	PK	IDENTITY
$cust_name$	VARCHAR(50)	NOT NULL		
cust_adrs	TEXT	NOT NULL		
cust email	VARCHAR(20)	NOT NULL	CHECK (cust email LIKE ' %@ %. %')	

Table 3: "customer_order" stores details about customer order

Column name	Type/Length	Null	Constraints	Other
$cust_order_id$	INT	NOT NULL	PK	IDENTITY
$\operatorname{cust_id}$	SMALLINT	NOT NULL	FK (customer.cust_id)	
$staff_order$	TINYINT	NOT NULL	FK (staff.staff_id)	
$cust_order_datetime$	DATETIME	NOT NULL		
$staff_delivery$	TINYINT	NULL	FK (staff.staff_id)	

Table 4: "pizza_crust" stores details about pizza crust

Column name	Type/Length	Null	Constraints	Other
pizza_crust_id	TINYINT	NOT NULL	PK	IDENTITY
pizza_crust_name	VARCHAR(20)	NOT NULL	UNIQUE	
surcharge	DECIMAL(3,2)	NOT NULL		DEFAULT 0.00

Table 5: "pizza_sauce" stores details about pizza sauce

Column name	Type/Length	Null	Constraints	Other
pizza_sauce_id	TINYINT	NOT NULL	PK	IDENTITY
pizza_sauce_name	VARCHAR(20)	NOT NULL	UNIQUE	
surcharge	DECIMAL(3,2)	NOT NULL		DEFAULT 0.00

Table 6: "pizza_range" stores details about pizza range

Column name	Type/Length	Null	Constraints	Other
pizza_range_id	TINYINT	NOT NULL	PK	IDENTITY
pizza_range_name	VARCHAR(20)	NOT NULL	UNIQUE	
pizza_range_price	DECIMAL(4,2)	NOT NULL		

Table 7: "pizza_type" stores details about pizza type

Column name	Type/Length	Null	Constraints	Other
pizza_type_id	TINYINT	NOT NULL	PK	IDENTITY
pizza_range_id	TINYINT	NOT NULL	FK (pizza_range.pizza_range_id)	
pizza_name	VARCHAR(20)	NOT NULL	UNIQUE	
pizza_desc	TEXT	NOT NULL		

Table 8: "pizza_order" stores details about pizza order

Column name	Type/Length	Null	Constraints	Other
pizza_order_id	INT	NOT NULL	PK	IDENTITY
pizza_ready	CHAR(1)	NOT NULL	CHECK (pizza_ready IN ('Y', 'N'))	DEFAULT 'N'
$cust_order_id$	INT	NOT NULL	FK (customer.cust_id)	
pizza_type_id	TINYINT	NOT NULL	FK (pizza_type.pizza_type_id)	
pizza_crust_id	TINYINT	NOT NULL	FK (pizza_crust.pizza_crust_id)	
pizza_sauce_id	TINYINT	NOT NULL	FK (pizza_sauce_pizza_sauce_id)	