Definition. Let X and Y be two non-empty sets. A function or mapping 'f' from X into Y written as $f: X \to Y$ is a rule by which each element $x \in X$ is associated to a unique element $y \in Y$. We then say that f is a mapping of X into Y or f is a function of X to Y if the elements of X are mapped on the elements of Y by the rule f.

The number y is called the value of the function f at x and is written as y = f(x).

Note: Usually the word function is used when X and Y are the sets of numbers while the word mapping is used in the case of general sets of any type. Thus function is a special case of mapping.

Elements $y \in Y$ to which the elements $x \in X$ is associated under the mapping f is called **f**-image of x or image of x or the value of the function at x and x is called **pre-image** of y.

The set X is called **domain** and Y is called **co-domain** of the function. Clearly range is the subset of Y and is denoted by f(x).

The numbers x and y, where y is an image of x are also denoted by ordered pairs (x, y) or [x, f(x)]. The mapping can be illustrated by the following examples:

Illustration 1. Let $X = \{2, 3, 4\}, Y = \{3, 4, 5, 6, 7\}$ and let f be a function defined as f(2) = 3, f(3) = 5, f(4) = 7.

Here
$$f(2) = 3$$
, $f(3) = 5$, $f(4) = 7$.

Let us draw its diagram.

We observe that every element of X has an image in Y (or equivalently, we do not have any element in X which does not have an image in Y) and image of each element of X is unique (or equivalently no element of X has more than one image.)

Illustration 2. Let $X = \{a, b, c\}, Y = \{2, 3, 4, 5\}$

Let us define f(a) = 2, f(b) = 4

Here f is not a function as $c \in X$ does not have its image.

Illustration 3. Let $X = \{a, b, c\}$ and $Y = \{2, 3, 4, 5\}$ and let f be a function defined by

$$f(a) = 2$$
, $f(b) = 3$, $f(b) = 4$, $f(c) = 5$.

Fig. 3

Here every element of X has an image in Y but there is one element $b \in X$ which has more than one image i.e., the image is not unique.

Hence f is not a function.

Remark. The important thing to remember is that when the value of x is given, there is exactly one value of f(x). If f assigns two or more values of y to a single value of x, then f is not a function.

For example, $f(x) = \sqrt{x}$ or $f(x) = -\sqrt{x}$ defines a function f, whereas $f(x) = \pm \sqrt{x}$ does not define a function according to this definition.

Classification of Mappings

1. Into mapping. If f is a mapping from Xto Y i.e., $f: X \rightarrow Y$ defined in such a way that there exists atleast one element in $y \in Y$ which has no pre-image in X, then the mapping f is called into mapping.

Thus f is a mapping from X to Y. We observe that in an into function $\{f(x)\}\subset Y$ for all $x\in X$.

The mapping defined in the adjoining fig. is an into mapping.

The mapping defined in the adjoining fig. is an onto mapping because every element of Y has a pre-image in X (here 3 has two pre-images c and d). We observe that in an onto function $\{f(x)\} = Y$ for all $x \in X$.

An onto mapping is also known as surjective mapping.

Thus, $f: X \to Y$ is surjective if f(X) = Y.

3. One-one mapping. Let f be a mapping from X to Y i.e., $f: X \to Y$ defined in such a way that different elements of X are mapped on different elements of Y, then f is said to be one-one mapping (No two different elements of X have the same image in Y)

A mapping which is one-one is also called injective mapping.

- **4. One-one into mapping.** If the mapping $f: X \to Y$ is
- (i) one-one and
- (ii) into, then f is called one-one into mapping.
- **5. One-one onto mapping.** If the mapping $f: X \to Y$ is
- (i) one-one and
- (ii) onto, then f is called one-one onto mapping.

A mapping which is one-one and onto is also called bijective mapping or bijection.

- **6. Many-one mapping.** A mapping $f: X \to Y$ is said to be many one mapping if two or more elements of X have the same image in Y.
 - 7. Many-one into mapping. If the mapping $f: X \to Y$ is
 - (i) many one and
 - (ii) into, then f is called many-one into mapping.

In this case at least one element $y \in Y$ has no pre-image.

- 8. Many-one onto mapping. If the mapping $f: X \to Y$ is
- (i) many one and
 - (ii) onto, then f is called many-one onto mapping.

In this case each element of Y has atleast one pre-image.

The diagrams given below will make mapping more clear.

One-one into function

One-one onto mapping

Many-one into function

Fig. 6

Many-one onto mapping

1.6. Ordered Pairs of Elements of a Set

Let A and B be the two given non-empty sets.

Let $a \in A$ and $b \in B$, then a pair of the form (a, b) is called an **ordered pair**.

Thus, in ordered pair (a, b); 'a' is regarded as 'the first element' and 'b' as the 'second element'.

The set $\{a, b\}$ is the same as $\{b, a\}$ but $(a, b) \neq (b, a)$.

1.7. Cartesian Product of Two Sets

Let A and B be two non-empty sets. The cartesian product of A and B is denoted by $A \times B$, and is defined as the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.

Symbolically, $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$

Examples: 1. Suppose $A = \{1, 3, 5\}$ and B = (x, y)

Then $A \times B = \{(1, x), (3, x), (5, x), (1, y), (3, y), (5, y)\}$

 $B \times A = \{(x, 1), (x, 3), (x, 5), (y, 1), (y, 3), (y, 5)\}$

In general, $A \times B \neq B \times A$.

and

2. Let $A = \{1, 2, 3, 4\}$ and $B = \phi$ then $A \times B = \phi$

Cor. (1) If n(A) = m and n(B) = n, then $n(A \times B) = n(B \times A) = mn$

- (2) $A \times B$ and $B \times A$ are equivalent sets.
- (3) $A \times B \times C = \{(a, b, c); a \in A, b \in B, c \in C\}$

1.8. Mapping in Terms of Ordered Pairs

Every subset C of $A \times B$ in which every element of A appears once and only once as the first element of some ordered pair is called a mapping of A into B.

Thus, a function f from A to B is a sub-set of A × B. In set notation, it is described as $\{(x, y) : y = f(x)\}$ where $x \in A$ and $y \in B$ and x appears once and only once as first element of an ordered pair.

1.9. Operators or Transformation

If the domain and co-domain of a function f are the same i.e., $f: A \rightarrow A$ then f is called an operator or transformation on A.

1.10. Identity Mapping

If f is a mapping from a set $X \to X$ such that each element of the set X be mapped on itself, then f is called the identity function *i.e.*, the function f is said to be an identity function if f(x) = x for all $x \in X$.

b •

c

Thus in identity mapping, the domain set is equal to range set, and each element is mapped on itself. We denote this function by I.

Therefore, we have

$$I_r(x) = x \text{ for all } x \in X$$

Let

$$X = \{a, b, c, d\}$$

and

$$f(a) = a, f(b) = b, f(c) = c, f(d) = d$$

Then

$$f = \{(a, a), (b, b), (c, c), (d, d)\}$$
 is an identity mapping.

1.11 Equality of Mappings

Two functions f and g of $S \to T$ are said to be equal, if and only if f(x) = g(x) for all $x \in S$ and we write f = g.

If $f \neq g$, then there must exist at least one element $x \in S$ such that $f(x) \neq g(x)$.

Example. Let f be a function defined by fig. 8.

Let g(x) = 2x be a function whose domain is $\{1, 2, 3\}$. Then it is clear from the diagram that f and g have the same domain and both assign the same image to each element in the domain.

Therefore f = g.

Fig. 7

1.12. Constant Function

If f is a function defined on a set A such that y = f(x) = c for each $x \in A$, where c is a real number, then f is called a **constant function**.

The graph of this function is set of all points (x, c) *i.e.*, the straight line parallel to x-axis.

Range
$$\equiv \{c\}$$

Thus a mapping $f: A \to B$ is called a constant function if each element of A is mapped into a single element of B.

Example. Let $f: R \to R$ be defined by f(x) = 7.

Thus f is a constant function since 7 is assigned to every element.

1.13. Inverse Function

Let f be a one-one function of X onto Y. Since the function f is one-one and onto, therefore there is one and only one element in Y corresponding to each element in X.

Here we have

$$f(x_1) = y_1,$$
 $f(x_2) = y_2,$ $f(x_3) = y_3,$ $f(x_4) = y_4$

Let us denote

$$x_{1} = f^{-1}(y_{1}), \quad x_{2} = f^{-1}(y_{2}), \quad x_{3} = f^{-1}(y_{3}), \quad x_{4} = f^{-1}(y_{4})$$
 $x_{1} = f^{-1}(y_{1}), \quad x_{2} = f^{-1}(y_{2}), \quad x_{3} = f^{-1}(y_{3}), \quad x_{4} = f^{-1}(y_{4})$
 $x_{1} = f^{-1}(y_{1}), \quad x_{2} = f^{-1}(y_{2}), \quad x_{3} = f^{-1}(y_{3}), \quad x_{4} = f^{-1}(y_{4})$
 $x_{1} = f^{-1}(y_{1}), \quad x_{2} = f^{-1}(y_{2}), \quad x_{3} = f^{-1}(y_{3}), \quad x_{4} = f^{-1}(y_{4})$

Fig. 9

Thus we see that there exists a one-one correspondence f^{-1} which maps elements of Y onto the elements of X.

Definition of inverse mapping: If $f: X \to Y$ be a one-one onto mapping, then the mapping $f^{-1}: Y \to X$ which associates to each element $y \in Y$, the element $x \in X$ whose image was $y \in Y$, is called the inverse of the mapping $f: X \to Y$.

i.e., if $f^{-1}: Y \to X: f^{-1}(y) = x \Leftrightarrow f(x) = y$, where $y \in Y$ and $x \in X$, then f^{-1} is called inverse of f.

Remark. A function is invertible if and only if f is one-one onto function.

Note: 1. (i) f^{-1} should not be confused with $\frac{1}{f}$ as f^{-1} simply denotes the inverse of f and not $\frac{1}{f}$.

Thus, if f is one-one and onto and y = f(x), then $x = f^{-1}(y)$.

2. The range of f is the domain of f^{-1} and the domain of f is the range of f^{-1} .

1.14. Inverse Image of a Set

Let f be a mapping from A into B and let S be any sub-set of B *i.e.*, $S \subseteq B$. Then the inverse image of S under f, denoted by $f^{-1}(S)$, consists of those elements in A, which are mapped into some elements in S. Thus $f^{-1}(S) = \{x : f(x) \in S\}$, where $x \in A$ *i.e.*, $f^{-1}(S)$ is the set of those elements of A whose f- images belongs to S.

1.15. Theorem

If $f: A \to B$ is one-one and onto then $f^{-1}: B \to A$ is also one-one and onto.

Proof. Let $x_1, x_2 \in A$ and $y_1, y_2 \in B$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$

Since f^{-1} denotes the inverse of f, we have

$$f^{-1}(y_1) = x_1 \qquad \text{and} \qquad f^{-1}(y_2) = x_2$$

$$f^{-1}(y_1) = f^{-1}(y_2) \qquad \Rightarrow \qquad x_1 = x_2$$

$$\Rightarrow \qquad f(x_1) = f(x_2) \qquad [\because f \text{ is one-one mapping from A to B}]$$

$$\Rightarrow \qquad y_1 = y_2$$

Thus, f^{-1} is a one-one mapping.

Again, let x be any element of A. Since f is a mapping from A to B, therefore there exists an element $y \in B$ such that y = f(x) or $x = f^{-1}(y)$.

Thus, each element $x \in A$ is the f^{-1} image of the element $y \in B$, where y = f(x). Hence, the mapping f^{-1} : B \rightarrow A is also onto.

SOLVED EXAMPLES

Example 1. Which of the following are functions if $X = \{a, b, c, d\}$, $Y = \{1, 2, 3, 4, 5\}$.

(i)
$$f_1 = \{(a, 1), (b, 1), (c, 3), (d, 4)\}$$

(ii)
$$f_2 = \{(a, 1), (b, 2), (c, 4), (a, 2), (d, 5)\}$$

(iii)
$$f_3 = \{(a, 2), (b, 1), (c, 4), (d, 5)\}.$$

Solution. Here $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3, 4, 5\}$

(i) f_1 is a function because each element of X has a unique image, viz.

$$f(a) = 1$$
, $f(b) = 1$, $f(c) = 3$, $f(d) = 4$.

(ii) f_2 is not a function as $a \in X$ has two images viz.,

$$f(a) = 1$$
 and $f(a) = 2$.

(iii) f_3 is a function because each element of X has a unique image, viz.,

$$f(a) = 2$$
, $f(b) = 1$, $f(c) = 4$, $f(d) = 5$.

Example 2. Examine the relation and state whether it is a function or not:

(i)
$$y = \pm \sqrt{1-x^2}$$
, for $x \le 1$

(ii)
$$y = \sqrt{x}$$
, for $x \ge 0$

(iii)
$$y = -(x)$$
, for $x \in R$

(iv)
$$y = \frac{1}{x-1}$$
, for $x \ge 0$

Solution. (i) Since $\pm \sqrt{1-x^2}$ is not defined for x < -1

Thus the points $x = -2, -3, \dots$, lying in the domain have no image.

- :. It is not a function.
- (ii) Yes, $y = \sqrt{x}$, for $x \ge 0$ is a function because for every value of x, we can find a corresponding y.
 - (iii) Yes, because for every value of x, we can find a corresponding y.
 - (iv) No, $y = \frac{1}{r-1}$ is not a function, since 1 lies in the domain but f(1) does not exist.

Example 3. Let $A = \{3, 4, 5, 6\}$ and $B = \{1, 2, 4\}$. If R_1 is from A to B, draw its figure and state the type of function where $R_1 = \{(3, 1), (4, 2), (5, 2), (6, 4)\}.$

Solution. Here $A = \{3, 4, 5, 6\}$ and $B = \{1, 2, 4\}$

The function $R_1 = \{(3, 1), (4, 2), (5, 2), (6, 4)\}$ is many-one onto as two elements 4 and 5 of A have the same image 2 in B and every element of B has atleast one pre-image in A as shown in fig.10.

