1 Vectors in \mathbb{R}^n

Equality of vectors:

 $\overrightarrow{u} = \overrightarrow{v}$ if $u_i = v_i$ for all i = 1, ..., n.

Properties of Vector Addition:

- 1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ (Symmetry)
- 2. $\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w}) = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w}$ (Associativity)
- 3. $\overrightarrow{0} + \overrightarrow{u} = \overrightarrow{v} + \overrightarrow{0} = \overrightarrow{v}$
- 4. $\vec{u} \vec{u} = \vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$ (Additive Inverse)

Properties of Scalar Multiplication:

- 1. $(c+d)\overrightarrow{v} = c\overrightarrow{v} + d\overrightarrow{v}$
- 2. $(cd)\overrightarrow{v} = c(d\overrightarrow{v})$
- 3. $c(\overrightarrow{u} + \overrightarrow{v}) = c\overrightarrow{u} + c\overrightarrow{v}$
- 4. $0\vec{v} = \vec{0}$
- 5. If $c\vec{v} = \vec{0}$, then c = 0 or $\vec{v} = \vec{0}$ (Cancellation Law).

Dot Product in \mathbb{R}^n :

 $\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + \dots + u_n v_n$

Properties of the Dot Product:

- 1. $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$
- 2. $(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w}$
- 3. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$
- 4. $\vec{v} \cdot \vec{v} \ge 0$, with $\vec{v} \cdot \vec{v} = 0 \iff \vec{v} = \vec{0}$

Standard Inner Product in \mathbb{F}^n :

 $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = u_1 \overline{v_1} + \dots + u_n \overline{v_n}$

Properties of the Standard Inner Product:

- 1. $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \overline{\langle \overrightarrow{v}, \overrightarrow{u} \rangle}$ (Conjugate Symmetry)
- 2. $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$ (Linearity in the First Argument)
- 3. $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$ (Linearity in the First Argument)
- 4. $\langle \vec{u}, \vec{v} + \vec{w} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{u}, \vec{w} \rangle$ (Conjugate Linearity in the Second Argument)
- 5. $\langle \vec{u}, c\vec{v} \rangle = \overline{c} \langle \vec{u}, \vec{v} \rangle$ (Conjugate Linearity in the Second Argument)
- 6. $(\overrightarrow{v}, \overrightarrow{v}) \ge 0$, with $(\overrightarrow{v}, \overrightarrow{v}) = 0 \iff \overrightarrow{v} = \overrightarrow{0}$

Length (norm/magnitude):

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle} = \sqrt{\vec{v} \cdot \vec{v}} \text{ (in } \mathbb{R}^n)$$

Unit vector:

 \overrightarrow{v} is a unit vector if $\|\overrightarrow{v}\| = 1$

We can produce a unit vector in the direction of \overrightarrow{v} (normalization) by taking $\hat{v} = \frac{\overrightarrow{v}}{\|\overrightarrow{v}\|}$

Properties of the Length:

- 1. $\|c\overrightarrow{v}\| = |c| \|\overrightarrow{v}\|$ (absolute value for $c \in \mathbb{R}$, modulus for $c \in \mathbb{C}$)
- 2. $\|\vec{v}\| \ge 0$, with $\|\vec{v}\| = 0 \iff \vec{v} = \vec{0}$

Angle between vectors:

$$\overrightarrow{v} \cdot \overrightarrow{w} = \|\overrightarrow{v}\| \|\overrightarrow{w}\| \cos \theta$$

Cauchy-Schwartz Inequality:

$$|\overrightarrow{v} \cdot \overrightarrow{w}| \le ||\overrightarrow{v}|| ||\overrightarrow{w}||$$
 for all $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$

Orthogonal:

 $\overrightarrow{v}, \overrightarrow{w}$ are orthogonal if $\langle \overrightarrow{v}, \overrightarrow{v} \rangle = \overrightarrow{v} \cdot \overrightarrow{w}$ (in \mathbb{R}^n) = 0.

Every vector is orthogonal to $\overrightarrow{0}$.

Projection:

Let $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{F}^n$ with $\overrightarrow{w} \neq \overrightarrow{0}$. The projection of \overrightarrow{v} onto \overrightarrow{w} is defined as

In
$$\mathbb{R}^n : \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v}) = \frac{(\overrightarrow{v} \cdot \overrightarrow{w})}{\overrightarrow{w} \cdot \overrightarrow{w}} \overrightarrow{w} = \frac{(\overrightarrow{v} \cdot \overrightarrow{w})}{\|\overrightarrow{w}\|^2} \overrightarrow{w} = \frac{\|\overrightarrow{v}\| \|\overrightarrow{w}\| \cos \theta}{\|\overrightarrow{w}\|^2} \overrightarrow{w} = (\|\overrightarrow{v}\| \cos \theta) \hat{w}$$

In
$$\mathbb{C}^n : \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v}) = \frac{\langle \overrightarrow{v}, \overrightarrow{w} \rangle}{\langle \overrightarrow{w}, \overrightarrow{w} \rangle} \overrightarrow{w} = \frac{\langle \overrightarrow{v}, \overrightarrow{w} \rangle}{\|\overrightarrow{w}\|^2} \overrightarrow{w} = \langle \overrightarrow{v}, \hat{w} \rangle \hat{w}$$

Component:

Let $\vec{v}, \vec{w} \in \mathbb{R}^n$ with $\vec{w} \neq \vec{0}$. Then $\|\vec{v}\| \cos \theta = \vec{v} \cdot \hat{w}$ is the scalar component of \vec{v} along \vec{w} .

Perpendicular:

Let $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ with $\overrightarrow{w} \neq \overrightarrow{0}$. The quantity

$$\operatorname{perp}_{\overrightarrow{w}}(\overrightarrow{v}) = \overrightarrow{v} - \operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})$$

is the perpendicular of \vec{v} onto \vec{w} .

- 1. $\operatorname{perp}_{\overrightarrow{w}}(\overrightarrow{v})$ is the height of the right triangle whose hypotenuse is \overrightarrow{v} and other leg is $\operatorname{proj}_{\overrightarrow{w}}(\overrightarrow{v})$.
- 2. The projection and perpendicular are orthogonal: $\operatorname{perp}_{\vec{w}}(\vec{v}) \cdot \operatorname{proj}_{\vec{w}}(\vec{v}) = 0$

Cross Product in \mathbb{R}^3 :

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ -(u_1 v_3 - u_3 v_1) \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

Properties of the Cross Product:

Let $\vec{z} = \vec{u} \times \vec{v}$

- 1. $\vec{z} \cdot \vec{u} = \vec{z} \cdot \vec{v} = \vec{0}$ (Cross Product is Orthogonal)
- 2. $\overrightarrow{v} \times \overrightarrow{u} = -\overrightarrow{u} \times \overrightarrow{v} = -\overrightarrow{z}$ (Skew-symmetry)
- 3. $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$ (Parallelogram Area)
- 4. $(\vec{u} + \vec{v}) \times \vec{w} = (\vec{u} \times \vec{w}) + (\vec{v} \times \vec{w})$ (Linearity in First)
- 5. $(c\vec{u}) \times \vec{v} = c(\vec{u} \times \vec{v})$ (Linearity in First)
- 6. $\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$ (Linearity in Second)
- 7. $\overrightarrow{u} \times (c\overrightarrow{v}) = c(\overrightarrow{u} \times \overrightarrow{v})$ (Linearity in Second)

2 Span, Lines, and Planes

Linear combination:

Let $c_1, \ldots, c_k \in \mathbb{F}$ and $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k} \in \mathbb{F}^n$. We refer to any vector of the form $c_1\overrightarrow{v_1} + \cdots + c_k\overrightarrow{v_k}$ as a linear combination of $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$.

Span:

Span $\{\{\}\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}=\{c_1\overrightarrow{v_1}+\cdots+c_k\overrightarrow{v_k}:c_1,\ldots,c_k\in\mathbb{F}\}\$ (i.e. the set of all linear combinations of $\overrightarrow{v_1},\ldots,\overrightarrow{v_k}$). We call $\{\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}$ a **spanning set** of its span. We also say Span $\{\{\}\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}$ is **spanned by** $\{\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}$.

Vector Equations in \mathbb{R}^n :

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$. The vector equation of a line through \vec{u} with direction \vec{v} is given by

$$\vec{\ell} = \vec{u} + t\vec{v}, \ t \in \mathbb{R}$$

If $\overrightarrow{\ell_1}$ and $\overrightarrow{\ell_2}$ are two lines with direction vectors such that $\overrightarrow{v_1} = c\overrightarrow{v_2}$ for some $c \neq 0 \in \mathbb{R}$, then they have the **same direction**.

Parametric Equations in \mathbb{R}^n :

The parametric equations of the line $\overrightarrow{\ell} = \overrightarrow{u} + t\overrightarrow{v}$ are

$$\overrightarrow{\ell_1} = u_1 + tv_1$$

$$\vdots$$

$$\overrightarrow{\ell_n} = u_n + tv_n, \ t \in \mathbb{R}$$

Line in \mathbb{R}^n :

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{v} \neq \vec{0}$. The set of vectors

$$\mathcal{L} = \{ \overrightarrow{u} + t\overrightarrow{v}, \ t \in \mathbb{R} \}$$

is the line \mathcal{L} through \overrightarrow{u} with direction \overrightarrow{v} .

- 1. Letting t = 0 gives us that the vector \vec{u} is on the line.
- 2. The line passes through the terminal point U associated with \vec{u} . The other points on the line move from U in the \vec{v} direction by scalar multiples of \vec{v}
- 3. We say that \vec{v} is parallel to the line and that \vec{v} is a direction vector to the line.
- 4. The vector \vec{v} is parallel to the line. However, the terminal point V associated with \vec{v} is not usually a point on the line; in fact, V is a point on the line if and only if the vector \vec{v} is a scalar multiple of the vector \vec{u}

Plane in \mathbb{R}^n Through the Origin:

Let $\vec{u}, \vec{v} \in \mathbb{R}^n$ with $\vec{u}, \vec{v} \neq \vec{0}$ and $\vec{u} \neq c\vec{v}$ for all $c \in \mathbb{R}$. Then

$$\mathcal{P} = \operatorname{Span} \{\{\} \overrightarrow{u}, \overrightarrow{v}\} = \{s\overrightarrow{u} + t\overrightarrow{v} : s, t \in \mathbb{R}\}$$

is the plane \mathcal{P} through the origin with direction vectors \overrightarrow{u} and \overrightarrow{v} .

- 1. \mathcal{P} contains U and V, which are the terminal points of the vectors \overrightarrow{u} and \overrightarrow{v} , respectively.
- 2. If a point P with associated vector \overrightarrow{p} lies on the plane, then $\overrightarrow{p} \in \mathcal{P}$.
- 3. Any plane defined by the span of two vectors passes through the origin.
- 4. If two vectors are parallel or one is zero, their span is not a plane but a line. If both are zero, their span is simply $\{\overrightarrow{0}\}$, the origin.

Vector Equation of a Plane in \mathbb{R}^n Through the Origin:

Let $\overrightarrow{u}, \overrightarrow{v} \in \mathbb{R}^n$ with $\overrightarrow{u}, \overrightarrow{v} \neq \overrightarrow{0}$ and $\overrightarrow{u} \neq c\overrightarrow{v}$ for all $c \in \mathbb{R}$. Then

$$\overrightarrow{p} = s\overrightarrow{u} + t\overrightarrow{v}$$

is a vector equation of the plane \mathcal{P} through the origin with direction vectors \vec{u} and \vec{v} .

Plane in \mathbb{R}^n :

Let $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$ with $\overrightarrow{v}, \overrightarrow{w} \neq \overrightarrow{0}$ and $\overrightarrow{v} \neq c\overrightarrow{w}$ for all $c \in \mathbb{R}$. Then

$$\mathcal{P} = \{ \overrightarrow{u} + s \overrightarrow{v} + t \overrightarrow{w} : s, t \in \mathbb{R} \}$$

is the plane \mathcal{P} through \overrightarrow{u} with direction vectors \overrightarrow{v} and \overrightarrow{w} . We say that \overrightarrow{v} and \overrightarrow{w} are parallel to \mathcal{P}

- 1. s = t = 0 gives us that \vec{u} lies on the plane.
- 2. The plane passes through U. The other points on the plane move from U as linear combinations of \overrightarrow{v} and \overrightarrow{w} .
- 3. V and W are usually not on the plane. V is on the plane iff \overrightarrow{u} is parallel to \overrightarrow{v} and likewise for W.

Vector Equation of a Plane in \mathbb{R}^n :

Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ with $\vec{v}, \vec{w} \neq \vec{0}$ and $\vec{u} \neq c\vec{v}$ for all $c \in \mathbb{R}$. Then

$$\overrightarrow{p} = \overrightarrow{u} + s\overrightarrow{v} + t\overrightarrow{w}$$

is a **vector equation** of the plane \mathcal{P} through \vec{u} with direction vectors \vec{v} and \vec{w} .

Normal Form of a Plane:

Let \mathcal{P} be a plane in \mathbb{R}^3 with direction vectors \overrightarrow{v} and \overrightarrow{w} and a normal vector $\overrightarrow{n} \neq \overrightarrow{0}$. Let \overrightarrow{u} , $\overrightarrow{p} \in \mathcal{P}$ with $\overrightarrow{u} \neq \overrightarrow{p}$. A normal form of \mathcal{P} is given by

$$\vec{n} \cdot (\vec{p} - \vec{u}) = 0$$

Scalar Equation of a Plane:

Expanding above, we get

$$ax + by + cz = d$$

where $d = \vec{n} \cdot \vec{u}$.

 \mathcal{P} goes through the origin if and only if

- 1. $\overrightarrow{0}$ satisfies the scalar equation
- 2. $(\overrightarrow{v} \times \overrightarrow{w}) \cdot (\overrightarrow{u}) = 0$
- 3. $\overrightarrow{u} = a\overrightarrow{v} + b\overrightarrow{v}$ for some $a, b \in \mathbb{R}$
- 4. Both V and W lie on the plane

3 Systems of Linear Equations

Solve, Solution:

The scalars $y_1, \ldots, y_n \in \mathbb{F}$ solve the system if when we set $x_i = y_i$ for all $i = 1, \ldots, n$ each equation is satisfied. We also say that the vector $\overrightarrow{y} = \begin{bmatrix} y_1 & \ldots & y_n \end{bmatrix}^T$ is a solution to the system. The solution set is all solutions to a system.

A system either has no solutions, a unique solution, or infinite solutions.

Inconsistent, Consistent:

A system is inconsistent if its solution set is empty, and consistent otherwise.

Equivalent systems:

Two linear systems are equivalent if they have the same solution set.

Elementary Operations:

- 1. Swap: interchange two equations
- 2. Scale: multiply one equation by a non-zero scalar
- 3. Add: add a multiple of one equation to another

Performing a finite number of elementary operations on a system yields an equivalent system.

Coefficient, augmented matrix:

Let a system be

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_m.$$

The **coefficient matrix,** A, of the system is given by

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

The **augmented matrix**, $[A|\overrightarrow{b}]$, of the system is given by

$$\begin{bmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & b_m \end{bmatrix}$$

The entry in the i^{th} row and j^{th} column of a matrix is the $(i,j)^{th}$ entry, denoted a_{ij} or $(A)_{ij}$

Trivial equation:

0 = 0. Any other equation is **non-trivial**.

Elementary Row Operations:

These are analogous to the Elementary Operations, and a matrix B obtained from A by a finite number of EROs is **row equivalent** to A.

Zero Row:

In a matrix, a row whose entries are all zero.

Row Echelon Form:

- 1. All zero rows occur as the final rows in the matrix
- 2. The leading entry in a non-zero row appears in a column to the right of any leading entries of a row above it

Pivots:

The leading entries of a matrix in REF are called **pivots** and their positions are called **pivot positions**. Any row/column containing a pivot position is called a **pivot row/column**.

Reduced Row Echelon Form:

- 1. The matrix is in REF
- 2. All pivots are 1
- 3. The only entry in a pivot column is the pivot itself

The RREF of a matrix is unique.

Basic, free variables:

If the i^{th} column is a pivot column, x_i is a basic variable. Otherwise, it is a free variable.

Rank:

If RREF(A) has r pivots, then rank(A) = r.

Rank bounds:

Let $A \in M_{m \times n}(\mathbb{F})$. rank $(A) \leq \min\{m, n\}$.

Consistent System Test:

A system with augmented matrix $[A|\overrightarrow{b}]$ is consistent if and only if $\operatorname{rank}(A) = \operatorname{rank}([A|\overrightarrow{b}])$.

System Rank Theorem:

Let $A \in M_{m \times n}(\mathbb{F})$ with rank(A) = r.

- 1. Let $\vec{b} \in \mathbb{F}^m$. If the system with augmented matrix $[A|\vec{b}]$ is consistent, then its solution set contains n-r parameters.
- 2. The system with augmented matrix $[A|\overrightarrow{b}]$ is consistent for all $\overrightarrow{b} \in \mathbb{F}^m$ if and only if r = m.

Nullity:

The nullity of an $m \times n$ matrix A, denoted nullity (A), is n - rank(A).

Homogeneous system:

A system is **homogeneous** if all the constant terms on the right-hand side are zero (i.e. a system of the form $A\vec{x} = \vec{0}$), and **non-homogeneous** otherwise.

A homogeneous system always has the **trivial solution** $\vec{x} = \vec{0}$.

Nullspace:

The solution set of a *homogeneous* system with coefficient matrix A is the **nullspace** of A, denoted Null (A).

Matrix-Vector Multiplication:

Let $A \in M_{m \times n}(\mathbb{F})$. M-V M is only defined for $\overrightarrow{x} \in \mathbb{F}^n$ as

$$A\overrightarrow{x} = x_1\overrightarrow{a_1} + \cdots + x_n\overrightarrow{a_n}$$
.

Linearity of Matrix-Vector Multiplication:

Let $A \in M_{m \times n}(\mathbb{F})$, let $\overrightarrow{x}, \overrightarrow{y} \in \mathbb{F}^n$, and let $c \in \mathbb{F}$.

- 1. $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y}$
- 2. $A(c\vec{x}) = cA\vec{x}$

Matrix-Vector Representation of a System:

We can represent the system with augmented matrix $[A|\overrightarrow{b}]$ as $A\overrightarrow{x} = \overrightarrow{b}$.

If $\overrightarrow{Ax} = \overrightarrow{e_i}$ is consistent for all i = 1, ..., m, then rank(A) = m.

Let $A\vec{x} = \vec{0}$ be a homogeneous system with solution set S. If $\vec{v}, \vec{w} \in S$, then $\vec{v} + \vec{w}, c\vec{v} \in S$ for all $c \in \mathbb{F}$. We combine these results to state that $a\vec{v} + b\vec{w} \in S$ for all $a, b \in \mathbb{F}$.

Associated Homogeneous System:

Let $A\vec{x} = \vec{b}$, $\vec{b} \neq \vec{0}$ be a non-homogeneous system. The **associated homogeneous system** is the system $A\vec{x} = \vec{0}$.

Particular Solution:

Let $\overrightarrow{Ax} = \overrightarrow{b}$ be a consistent system. We refer to any vector $\overrightarrow{x_p}$ that satisfies this system as a particular solution to the system.

Solutions to $A\vec{x} = \vec{0}$ and $A\vec{x} = \vec{b}$:

Let S_b be the solution set to $A\vec{x} = \vec{b}$. If S is the solution set to the associated homogeneous system $A\vec{x} = \vec{0}$ and $\vec{x_p}$ is any element of S_b , then

$$S_b = \{ \overrightarrow{x_p} + \overrightarrow{x} : \overrightarrow{x} \in S \}$$

Solutions to $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{c}$:

Let S_b, S_c be the solution sets to $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{c}$ with particular solutions $\vec{x_b}$ and $\vec{x_c}$, respectively. Then,

$$S_c = \{ (\overrightarrow{x_c} - \overrightarrow{x_b}) + \overrightarrow{z} : \overrightarrow{z} \in S_b \}$$

4 Matrices

Column Space:

We define the column space of A, denoted Col(A) to be the span of the columns of A.

$$\operatorname{Col}(A) = \operatorname{Span}\left\{\overrightarrow{a_1}, \dots, \overrightarrow{a_n}\right\}$$

Consistent System and Column Space:

The system $A\vec{x} = \vec{b}$ is consistent if and only if $b \in \text{Col}(A)$.

Transpose:

The transpose of A, denoted A^T , is defined as $(A^T)_{ij} = (A)_{ji}$.

Row Space:

The span of the transposed rows of A, i.e. Row $(A) = \operatorname{Col}(A^T)$.

Row Spaces of Row Equivalent Matrices:

If A and B are row equivalent, then Row(A) = Row(B).

This property is not true for the column space.

Matrix Equality:

A = B if they are the same size and each entry is equal.

Column Extraction:

 $\overrightarrow{Ae_i} = \overrightarrow{a_i}$ for all i = 1, ..., n. That is to say, the matrix-vector product of A with the i^{th} standard basis vector yields the i^{th} column of A.

Equality of Matrices:

 $A = B \iff A\overrightarrow{x} = B\overrightarrow{x} \text{ for all } \overrightarrow{x} \in \mathbb{F}^n.$

Matrix Addition:

Let $A, B \in M_{m \times n}(\mathbb{F})$. We define the matrix sum A + B = C to be the matrix whose entries are $c_{ij} = a_{ij} + b_{ij}$ for all i = 1, ..., m and j = 1, ... n.

Additive Inverse:

The additive inverse of A, denoted -A, is the matrix whose entries are all $-a_{ij}$.

Zero Matrix:

The zero matrix \mathcal{O} is the matrix whose entries are all 0.

Properties of Matrix Addition:

- 1. A + B = B + A
- 2. A + B + C = (A + B) + C = A + (B + C)
- 3. $A + (-A) = (-A) + A = \mathcal{O}$
- $4. A + \mathcal{O} = \mathcal{O} + A = A$

Matrix Multiplication:

The matrix product of $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times p}(\mathbb{F})$, is defined as the matrix $AB = C, C \in M_{m \times p}(\mathbb{F})$

$$C = AB = A \begin{bmatrix} \overrightarrow{b_1} & \overrightarrow{b_2} & \dots & \overrightarrow{b_n} \end{bmatrix} = \begin{bmatrix} A\overrightarrow{b_1} & A\overrightarrow{b_2} & \dots & A\overrightarrow{b_n} \end{bmatrix}.$$

That is, $\overrightarrow{c_j} = A\overrightarrow{b_j}$ for all $j = 1, \dots, p$.

- 1. The number of columns of A must equal the number of rows of B for the product AB to be defined.
- 2. Matrix multiplication is non-commutative: AB = BA does not hold for all A, B.
- 3. The j^{th} column of C is by definition in Col (A).

We may also construct the product entry-by-entry:

$$(C)_{ij} = (\overrightarrow{c_j})_i = (\overrightarrow{Ab_j})_i = \sum_{k=1}^n a_{ik} b_{kj}$$

Note that the sum is the dot product between the (transposed) i^{th} row of A and the j^{th} column of B.

Properties of Matrix Multiplication:

- 1. (A+B)C = AC + BC
- 2. A(C+D) = AC + AD
- 3. ACE = A(CE) = (AC)E

Matrix-Scalar Multiplication:

The product of $c \in \mathbb{F}$ and A is the matrix whose entries are all ca_{ij} .

Properties of Matrix-Scalar Multiplication:

1.
$$s(A+B) = sA + sB$$

$$2. (r+s)A = rA + sA$$

3.
$$r(sA) = (rs)A$$

4.
$$s(AC) = (sA)C = A(sC)$$

Properties of Transpose:

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(sA)^T = sA^T$$

3.
$$(AC)^T = C^T A^T$$

4.
$$(A^T)^T = A$$

Square Matrix:

A matrix is square if it is $n \times n$.

Upper Triangular:

A square matrix is upper triangular if $a_{ij} = 0$ for all i > j with i = 1, ..., m, j = 1, ..., n.

Lower Triangular:

A square matrix is lower triangular if $a_{ij} = 0$ for all i < j with i = 1, ..., m, j = 1, ..., n.

- 1. The transpose of an upper (lower) triangular matrix is a lower (upper) triangular matrix, respectively.
- 2. The product of upper (lower) triangular matrices is upper (lower) triangular, respectively.

Diagonal:

A matrix is diagonal if it is both upper and lower triangular. That is, $a_{ij} = 0$ for all $i \neq j$ with i = 1, ..., m, j = 1, ..., n. We denote A in shorthand by $A = \text{diag}(a_{11}, ..., a_{nn})$.

Identity Matrix:

I = diag(1, ..., 1). We specify size by I_n .

I behaves as a multiplicative identity: $I_m A = AI_n = A$, and $I_n \overrightarrow{x} = \overrightarrow{x}$ for all $\overrightarrow{x} \in \mathbb{F}^n$.

Elementary Matrix:

A matrix that can be obtained by performing a single ERO on the identity matrix is called an elementary matrix.

EROs by Elementary Matrices:

Suppose a single ERO is performed on A to yield B. Suppose we perform the same ERO on I_m to produce the elementary matrix E. Then,

$$EA = B$$
.

We can also carry out a sequence of k EROs on A, which gives $C = E_k \dots E_2 E_1 A$.

Invertible:

An $n \times n$ matrix is **invertible** if there exist $n \times n$ matrices B and C such that $AB = CA = I_n$. We denote the unique inverse of A by A^{-1} such that $AA^{-1} = A^{-1}A = I_n$

The inverse of an invertible matrix is unique.

Invertibility Criteria:

For a square matrix A,

A is invertible
$$\iff$$
 rank $(A) = n \iff$ RREF $(A) = I_n$

Algorithm for Checking Invertibility and Finding the Inverse:

- 1. Construct the super-augmented matrix $[A \mid I_n]$.
- 2. Find the RREF, $[R \mid B]$ of $[A \mid I_n]$.
- 3. If $R = I_n$, A is invertible and $A^{-1} = B$. Otherwise, A is not invertible.

Inverse of a 2×2 Matrix:

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. A is invertible iff $ad - bc \neq 0$, and its inverse is given by

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

5 Linear Transformations

Function Determined by a Matrix:

Let $A \in M_{m \times n}(\mathbb{F})$. The function determined by the matrix A is the function

$$T_A: \mathbb{F}^n \to \mathbb{F}^m$$

defined by

$$T_A(\overrightarrow{x}) = A\overrightarrow{x}$$

Linear Transformation:

We say that the function $T: \mathbb{F}^n \to \mathbb{F}^m$ is a linear transformation (or linear mapping) if T satisfies the following for all $\overrightarrow{x}, \overrightarrow{y} \in \mathbb{F}^n$ and $c \in \mathbb{F}$:

- 1. $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ (linearity over addition)
- 2. $T(c\vec{x}) = cT(\vec{x})$ (linearity over scalar multiplication)

The function determined by any matrix is linear.

More succinctly, T is a linear transformation if and only if for all \overrightarrow{x} , $\overrightarrow{y} \in \mathbb{F}^n$ and $c \in \mathbb{F}$,

$$T(c\overrightarrow{x} + \overrightarrow{y}) = cT(\overrightarrow{x}) + T(\overrightarrow{y})$$

If T is linear, $T(\overrightarrow{0}_{\mathbb{F}^n}) = \overrightarrow{0}_{\mathbb{F}^m}$ (Zero Maps to Zero).

Range:

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a transformation. The range of T, denoted Range (T) is defined as

Range
$$(T) = \{T(\overrightarrow{x}) : \overrightarrow{x} \in \mathbb{F}^n\}$$

That is, the set of all outputs of T. Note that Range $(T) \subseteq \mathbb{F}^m$.

The range of a linear transformation, T_A , determined by a matrix A is given by

Range
$$(T_A) = \operatorname{Col}(A)$$

The system $A\overrightarrow{x} = \overrightarrow{b}$ is consistent if and only if $\overrightarrow{b} \in \text{Range}(T_A)$.

Onto/Surjective:

We say the transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ is surjective if Range $(T) = \mathbb{F}^m$.

Onto Criteria:

Let T_A be the linear transformation determined by $A \in M_{m \times n}(\mathbb{F})$. The following are equivalent:

- 1. T_A is surjective.
- 2. Col $(A) = \mathbb{F}^m$.
- 3. $\operatorname{rank}(A) = m$.

Kernel:

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a transformation. The kernel of T, denoted Ker (T) is defined as

$$\operatorname{Ker}(T) = \{ \overrightarrow{x} \in \mathbb{F}^n : T(\overrightarrow{x}) = \overrightarrow{0}_{\mathbb{F}^m} \}$$

That is, the set of all inputs that get mapped to zero. Note $\operatorname{Ker}(T) \subseteq \mathbb{F}^n$.

The kernel of a linear transformation, T_A , determined by a matrix A is given by

$$Ker(T_A) = Null(A)$$

The kernel of T_A is equal to the solution set of the homogeneous system $A\vec{x} = \vec{0}$.

One-to-One/Injective:

We say the transformation $T: \mathbb{F}^n \to \mathbb{F}^m$ is injective if whenever $T(\vec{x}) = T(\vec{y})$ then $\vec{x} = \vec{y}$.

Taking the contrapositive, we have that

$$\forall \vec{x}, \vec{y} \in \mathbb{F}^n, \vec{x} \neq \vec{y} \implies T(\vec{x}) \neq T(\vec{y})$$

That is, T maps distinct elements from the domain to distinct elements in the codomain.

One-to-One Test:

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Then T is injective if and only if $\operatorname{Ker}(T) = \{\overrightarrow{0}_{\mathbb{F}^n}\}$.

One-to-One Criteria:

- 1. T_A is one-to-one.
- 2. Null $(A) = \{\overrightarrow{0}_{\mathbb{F}^m}\}.$
- 3. nullity (A) = 0.
- 4. $\operatorname{rank}(A) = n$.

Invertibility Criteria:

Let T_A be the linear transformation determined by $A \in M_{n \times n}(\mathbb{F})$. The following are equivalent:

- 1. A is invertible.
- 2. T_A is injective.
- 3. T_A is surjective.
- 4. Null $(A) = \{\vec{0}\}.$
- 5. $\operatorname{Col}(A) = \mathbb{F}^n$.
- 6. nullity (A) = 0.
- 7. $\operatorname{rank}(A) = n$.
- 8. RREF(A) = I_n .

Standard Matrix:

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. We define the standard matrix of T, denoted $[T]_{\mathcal{E}}$, as

$$[T]_{\mathcal{E}} = [T(\overrightarrow{e_1}) \quad T(\overrightarrow{e_2}) \quad \cdots \quad T(\overrightarrow{e_n})]$$

Every Linear Transformation is Determined by a Matrix:

Let $T: \mathbb{F}^n \to \mathbb{F}^m$ be a linear transform with standard matrix $[T]_{\mathcal{E}}$. Then for all $\vec{x} \in \mathbb{F}^n$,

$$T(\vec{x}) = [T]_{\varepsilon} \vec{x}$$

That is, $T=T_{\left[T\right]_{\mathcal{E}}}$ is the linear transformation determined by $\left[T\right]_{\mathcal{E}}.$

If $T: \mathbb{R} \to \mathbb{R}$ is a linear transformation, then there exists an $m \in \mathbb{R}$ such that T(x) = mx for all $x \in \mathbb{R}$.

Properties of a Standard Matrix:

Let $A \in M_{m \times n}(\mathbb{F})$, let T_A be the linear transformation determined by A, and let $T : \mathbb{F}^n \to \mathbb{F}^m$ be a linear transformation. Then

- 1. $T_{[T]_{\varepsilon}} = T$.
- $2. \left[T_A \right]_{\mathcal{E}} = A.$
- 3. T is onto if and only if $rank([T]_{\mathcal{E}}) = m$.
- 4. T is one-to-one if and only if $\operatorname{rank}([T]_{\mathcal{E}}) = n$.

Identity Transformation:

The linear transformation $\mathrm{id}_n:\mathbb{F}^n\to\mathbb{F}^n$ such that $\mathrm{id}_n(\overrightarrow{x})=\overrightarrow{x}$ for all $\overrightarrow{x}\in\mathbb{F}^n$. Note that $\left[\mathrm{id}_n\right]_{\mathcal{E}}=I_n$.

Special Linear Transformations:

The standard matrix for a counter-clockwise rotation by θ in \mathbb{R}^2 is given by

$$[R_{\theta}]_{\mathcal{E}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Let $\vec{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^T$ be non-zero in \mathbb{R}^2 . The standard matrix for projection onto \vec{w} is given by

$$\left[\operatorname{proj}_{\overrightarrow{w}}\right]_{\mathcal{E}} = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{bmatrix}$$

The standard matrix for reflection along the line Span $\{()\}\vec{w}$) is given by

$$\left[\operatorname{refl}_{\overrightarrow{w}}\right]_{\mathcal{E}} = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 - w_2^2 & 2w_1w_2 \\ 2w_1w_2 & w_2^2 - w_1^2 \end{bmatrix}$$

The projection of \vec{v} onto a plane through the origin, \mathcal{P} , can be defined using the normal vector, \vec{n} , and some nice geometric intuition as

$$\operatorname{proj}_{\mathcal{D}}(\overrightarrow{v}) = \operatorname{perp}_{\overrightarrow{v}}(\overrightarrow{v})$$

Composition of Linear Transformations:

Let $T_1: \mathbb{F}^n \to \mathbb{F}^m$ and $T_2: \mathbb{F}^m \to \mathbb{F}^p$ be linear transformations. We define the function $T_2 \circ T_1: \mathbb{F}^n \to \mathbb{F}^p$ for all $\overrightarrow{x} \in \mathbb{F}^n$ by

$$(T_2 \circ T_1)(\overrightarrow{x}) = T_2(T_1(\overrightarrow{x}))$$

The function $T_2 \circ T_1$ is the **composite function** of T_2 and T_1 .

The composite function of two linear transformations is a linear transformation.

The standard matrix of a composite function is given by

$$[T_2 \circ T_1]_{\varepsilon} = [T_2]_{\varepsilon} [T_1]_{\varepsilon}$$

 T^p

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ and let p > 1 be an integer. We define the p^{th} power of T inductively by

$$T^p = T \circ T^{p-1}$$
.

We also define $T^0 = id_n$.

If T is linear, the standard matrix of T^p is given by

$$\big[T^p\big]_{\mathcal{E}} = (\big[T\big]_{\mathcal{E}})^p.$$

6 The Determinant

Determinant of 1×1 and 2×2 Matrices:

The determinant of a 1×1 matrix is

$$\det(A) = a_{11}.$$

The determinant of a 2×2 matrix is

$$\det(A) = a_{11}a_{22} - a_{12}a_{21}.$$

Submatrix, Minor:

Let $A \in M_{n \times n}(\mathbb{F})$. The $(i, j)^{\text{th}}$ submatrix of A, denoted $M_{ij}(A)$, is obtained by removing the i^{th} row and j^{th} column of A:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{12} & a_{33} \end{bmatrix} \Longrightarrow M_{21}(A) = \begin{bmatrix} a_{12} & a_{13} \\ a_{12} & a_{33} \end{bmatrix}$$

The determinant of $M_{ij}(A)$ is called the $(i,j)^{\text{th}}$ minor of A.

Determinant Function:

Let $A \in M_{n \times n}(\mathbb{F})$ for $n \ge 2$. We define $\det : M_{n \times n}\mathbb{F} \to \mathbb{F}$ as

$$\det(A) = \sum_{j=1}^{n} a_{1j} (-1)^{1+j} \det(M_{1j}(A)).$$

We can also expand along any row. Let $i \in \{1, ..., n\}$. Then

$$\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij}(A)).$$

Furthermore, we can expand along any column. Let $j \in \{1, ..., n\}$. Then

$$\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij}(A)).$$

Easy Determinants:

Let $A \in M_{n \times n}(\mathbb{F})$. Then

- 1. If A has a zero row, then det(A) = 0.
- 2. If A has a zero column, then det(A) = 0.
- 3. If A is upper or lower triangular, then $det(A) = a_{11} \dots a_{nn}$.

$$\det(I_n) = 1$$

Properties of the Determinant:

Let $A, B \in M_{n \times n}(\mathbb{F})$. Then

- 1. $\det(A) = \det(A^T)$.
- 2. det(AB) = det(A) det(B) = det(BA).
- 3. If A is invertible, $\det(A^{-1}) = \frac{1}{\det(A)}$.

It is not true in general that det(A + B) = det(A) + det(B).

Effect of EROs on the Determinant:

Let $A \in M_{n \times n}(\mathbb{F})$.

- 1. If B is obtained from A by row swap, then det(B) = -det(A).
- 2. If B is obtained from A by multiplying a row by $m \neq 0$, then det(B) = m det(A).
- 3. If B is obtained from A by a non-zero row addition, then det(B) = det(A).

Since $det(A) = det(A^T)$, the above holds for column operations as well.

If A has two rows or columns that are scalar multiples of each other, then det(A) = 0.

If E is an elementary matrix, then

- 1. (Row swap) det(E) = -1.
- 2. (Row scale) det(E) = m.
- 3. (Row addition) det(E) = 1.

Suppose we perform k EROs on A, each with elementary matrix E_i such that $B = E_k \dots E_1 A$. Then

$$\det(B) = \det(E_k \dots E_1 A) = \det(E_k) \dots \det(E_1) \det(A),$$

Invertible Iff Non-Zero Determinant:

Let $A \in M_{n \times n}(\mathbb{F})$. Then A is invertible if and only if $\det(A) \neq 0$.

Cofactor:

Let $A \in M_{n \times n}(\mathbb{F})$. The $(i, j)^{\text{th}}$ cofactor of A, denoted $C_{ij}(A)$, is defined as

$$C_{ij}(A) = (-1)^{i+j} \det(M_{ij}(A)).$$

Adjugate:

Let $A \in M_{n \times n}(\mathbb{F})$. The **adjugate** of A, denoted adj(A), is the $n \times n$ matrix whose $(i, j)^{\text{th}}$ entry is

$$(\operatorname{adj}(A))_{ij} = C_{ji}(A).$$

That is, the adjugate of A is the transpose of the matrix of cofactors of A.

$$A \operatorname{adj}(A) = \operatorname{adj}(A) A = \det(A) I_n$$

Inverse by Adjugate:

Let $A \in M_{n \times n}(\mathbb{F})$. If $\det(A) \neq 0$, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Cramer's Rule:

Let $A \in M_{n \times n}(\mathbb{F})$ and suppose the system $A\overrightarrow{x} = \overrightarrow{b}$ has a unique solution \overrightarrow{x} . If we construct B_j by replacing the j^{th} column of A with \overrightarrow{b} , then for all $j = 1, \ldots, n$:

$$x_j = \frac{\det(B_j)}{\det(A)}.$$

Area of Parallelogram:

Let $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ be vectors in \mathbb{R}^2 . The area of the parallelogram with sides \vec{v} and \vec{w} is

$$\left| \det \left(\begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \right) \right|$$

7 Eigenvalues and Diagonalization:

Eigenvector, Eigenvalue, Eigenpair:

Let $A \in M_{n \times n}(\mathbb{F})$. A non-zero vector \vec{x} is called an **eigenvector** of A over \mathbb{F} if there exists some $\lambda \in \mathbb{F}$ such that

$$A\overrightarrow{x} = \lambda \overrightarrow{x}$$
.

The scalar λ is called an **eigenvalue** of A over \mathbb{F} , and (λ, \vec{x}) is called an **eigenpair** of A over \mathbb{F} .

Characteristic Polynomial:

Let $A \in M_{n \times n}(\mathbb{F})$ and $\lambda \in \mathbb{F}$. The characteristic polynomial of A is

$$C_A(\lambda) = \det(A - \lambda I_n).$$

The characteristic equation of A is

$$C_A(\lambda) = 0.$$

Features of the Characteristic Polynomial:

Let $A \in M_{n \times n}(\mathbb{F})$ have characteristic polynomial $C_A(\lambda) = \det(A - \lambda I_n)$. Then $C_A(\lambda)$ is an n degree polynomial of the form

$$C_A(\lambda) = c_n \lambda^n + c_{n-1} \lambda^{n-1} + \dots + c_0$$

where:

- 1. $c_n = (-1)^n$.
- 2. $c_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$.
- 3. $c_0 = \det(A)$.

A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Let A have n (possibly repeated) eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ over \mathbb{C} . Then

1.
$$c_{n-1} = (-1)^{n-1} \sum_{i=1}^{n} \lambda_i = (-1)^{n-1} \operatorname{tr}(A)$$
, and

2.
$$c_0 = \prod_{i=1}^{n} \lambda_i = \det(A)$$

Eigenspace:

Let $A \in M_{n \times n}(\mathbb{F})$ and let $\lambda \in \mathbb{F}$. The eigenspace of A associated with λ , denoted $E_{\lambda}(A)$, is the solution set to the system

$$E_{\lambda}(A) = \text{Null}(A - \lambda I)$$
.

Note that $\overrightarrow{0}$ is always in E_{λ} . However, $\overrightarrow{0}$ is not an eigenvector. Thus E_{λ} consists of all the eigenvectors that have eigenvalue λ together with the zero vector.

 λ is an eigenvalue for A if and only if $E_{\lambda} \neq \{\overrightarrow{0}\}.$

$$E_0(A) = \text{Null}(A - 0I) = \text{Null}(A).$$

Similar Matrices:

Let $A, B \in M_{n \times n}(\mathbb{F})$. We say that A is similar to B over \mathbb{F} if there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ such that $A = P^{-1}BP$.

If A and B are similar over \mathbb{F} , then they have the same characteristic polynomial and the same eigenvalues over \mathbb{F} . Furthermore,

- 1. $\det(A) = \det(B)$.
- 2. $\operatorname{tr}(A) = \operatorname{tr}(B)$.

Diagonalizable:

Let $A \in M_{n \times n}(\mathbb{F})$. We say that A is **diagonalizable** over \mathbb{F} if it is similar over \mathbb{F} to a diagonal matrix $D \in M_{n \times n}(\mathbb{F})$; that is, is there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ such that $P^{-1}AP = D$. We say that P diagonalizes A.

It is possible for a real matrix to be diagonalizable over $\mathbb C$ and not over $\mathbb R$ (it will have at least one complex eigenvalue).

Diagonalizable $\implies n$ Eigenvalues:

Let $A \in M_{n \times n}(\mathbb{F})$. If A is diagonalizable over \mathbb{F} , then $C_A(\lambda)$ has n roots (possibly repeated) over \mathbb{F} . Moreover, if P diagonalizes A, then the entries of $D = P^{-1}AP$ are the eigenvalues of A.

n Distinct Eigenvalues \implies Diagonalizable:

Let $A \in M_{n \times n}(\mathbb{F})$ have n distinct eigenvalues over $\lambda_1, \lambda_2, \ldots, \lambda_n$ over \mathbb{F} , let $(\lambda_1, \overrightarrow{v_1}), \ldots, (\lambda_n, \overrightarrow{v_n})$ be corresponding eigenpairs over \mathbb{F} , and let $P = [\overrightarrow{v_1}, \ldots, \overrightarrow{v_n}]$. Then,

- 1. P is invertible, diagonalizes A, and
- 2. $P^{-1}AP = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

8 Subspaces and Bases

Subspace:

A subset V of \mathbb{F}^n is called a **subspace** of \mathbb{F}^n if the following properties are satisfied:

- 1. $\overrightarrow{0} \in V$.
- 2. For all \vec{x} , $\vec{y} \in V$, $\vec{x} + \vec{y} \in V$ (closure under addition).
- 3. For all $\vec{x} \in V$ and $c \in \mathbb{F}$, $c\vec{x} \in V$ (closure under scalar multiplication).

It is important to note that $c \in \mathbb{F}$, and so is not necessarily an element of V.

Examples of Subspaces:

- 1. $\{\vec{0}\}$ and \mathbb{F}^n are subspaces of \mathbb{F}^n .
- 2. If $\{\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}$ is a subset of \mathbb{F}^n , then $\mathrm{Span}\{\overrightarrow{v_1},\ldots,\overrightarrow{v_k}\}$ is a subspace of \mathbb{F}^n .
- 3. If $A \in M_{m \times n}(\mathbb{F})$, then
 - (a) Null (A) is a subspace of \mathbb{F}^n .
 - (b) $\operatorname{Col}(A)$ is a subspace of \mathbb{F}^m .
- 4. If $T: \mathbb{F}^n \to \mathbb{F}^m$ is a linear transformation, then
 - (a) Ker (T) is a subspace of \mathbb{F}^n .
 - (b) Range (T) is a subspace of \mathbb{F}^m .
- 5. If $A \in M_{n \times n}(\mathbb{F})$ and if $\lambda \in \mathbb{F}$, then the eigenspace E_{λ} is a subspace of \mathbb{F}^n .

Subspace Test:

Let V be a subset of \mathbb{F}^n . Then V is a subspace of \mathbb{F}^n if and only if:

- 1. V is non-empty, and
- 2. for all \overrightarrow{x} , $\overrightarrow{y} \in V$ and $c \in \mathbb{F}$, $c\overrightarrow{x} + \overrightarrow{y} \in V$.

Linear Dependence and Independence:

We say that the vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_k} \in \mathbb{F}^n$ are linearly dependent if there exist scalars $c_1, \dots, c_k \in \mathbb{F}$, not all zero, such that

$$c_1 \overrightarrow{v_1} + \cdots + c_k \overrightarrow{v_k} = \overrightarrow{0}$$
.

If $U = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$, then we say that U is **linearly independent** to mean the vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_k}$ are linearly dependent.

If the only solution to $c_1\overrightarrow{v_1} + \cdots + c_k\overrightarrow{v_k} = \overrightarrow{0}$ is the **trivial solution** $c_1 = \cdots = c_k = 0$, then we say that $\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}$ are **linearly independent**, and the set $U = \{\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}\}$ is linearly independent.

Ø is by convention linearly **independent** as it vacuously satisfies the definition.

Linear Dependence Check:

- 1. The vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_k}$ are linearly dependent if and only if one of the vectors can be written as a linear combination of some of the other vectors.
- 2. The vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_k}$ are linearly independent if and only if

$$c_1\overrightarrow{v_1} + \cdots + c_k\overrightarrow{v_k} = \overrightarrow{0} \ (c_i \in \mathbb{F}) \implies c_1 = \cdots = c_k = 0.$$

Let $S \subseteq \mathbb{F}^n$.

- 1. If $\overrightarrow{0} \in S$, then S is linearly dependent.
- 2. If $S = \{\vec{x}\}\$ contains only one vector, then S is linearly dependent if and only if $\vec{x} = \vec{0}$.
- 3. If $S = \{\vec{x}, \vec{y}\}$ contains only two vectors, then S is linearly dependent if and only if \vec{x} is parallel to \vec{y} .

Pivots and Linear Dependence:

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n . Let $A = \begin{bmatrix} \overrightarrow{v_1} & \cdots & \overrightarrow{v_k} \end{bmatrix}^T$ be the $n \times k$ matrix whose columns are the vectors in S. Suppose that $\operatorname{rank}(A) = r$ and that A has pivot columns q_1, \dots, q_r . Let $U = \{\overrightarrow{v_{q1}}, \dots, \overrightarrow{v_{qk}}\}$ be the set of pivot columns labelled above. Then

- 1. S is linearly independent if and only if r = k.
- 2. U is linearly independent.
- 3. if $\overrightarrow{v} \in S$ but $\overrightarrow{v} \notin U$, then the set $\{\overrightarrow{v_{q1}}, \dots, \overrightarrow{v_{qk}}, \overrightarrow{v}\}$ is linearly dependent.
- 4. $\operatorname{Span}(U) = \operatorname{Span}(S)$.

Bound on Number of Linearly Independent Vectors:

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n . If n < k, then S is linearly dependent.

Every Subspace Has a Spanning Set:

Let V be a subspace of \mathbb{F}^n . Then there exist vectors $\overrightarrow{v_1}, \dots, \overrightarrow{v_k} \in V$ such that

$$V = \operatorname{Span} \left\{ \overrightarrow{v_1}, \dots, \overrightarrow{v_k} \right\}.$$

Span of a Subset:

Let V be a subspace of \mathbb{F}^n and let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\} \subseteq V$. Then $\mathrm{Span}(S) \subseteq V$.

Spans \mathbb{F}^n iff rank is n:

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n and let $A = [\overrightarrow{v_1} \dots \overrightarrow{v_k}]$ be the matrix whose columns are the vectors in S. Then

$$\operatorname{Span}(S) = \mathbb{F}^n \iff \operatorname{rank}(A) = n.$$

Basis:

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a finite set of vectors contained in V. We say that \mathcal{B} is a **basis** for V if

- 1. \mathcal{B} is linearly independent, and
- 2. $V = \operatorname{Span}(\mathcal{B})$.

Ordered Basis:

Let V be a subspace of \mathbb{F}^n . An ordered basis for V is a basis $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ for V with a fixed ordering.

By convention, \emptyset is a basis for the zero subspace $V = \{\overrightarrow{0}\}.$

Standard Basis:

In \mathbb{F}^n , let $\overrightarrow{e_i}$ be the vector whose i^{th} component is 1 with all other components 0. The set

$$\mathcal{E} = \{\overrightarrow{e_1}, \dots, \overrightarrow{e_n}\}$$

is called the standard basis for \mathbb{F}^n .

Every Subspace Has a Basis:

Let V be a subspace of \mathbb{F}^n . Then V has a basis.

Size of Basis for \mathbb{F}^n :

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a set of k vectors in \mathbb{F}^n . If S is a basis for \mathbb{F}^n , then k = n.

n Vectors in \mathbb{F}^n Span iff Independent:

Let $S = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}, \overrightarrow{v_1}, \dots, \overrightarrow{v_n} \in \mathbb{F}^n$. Then S is linearly independent iff $\mathrm{Span}(S) = \mathbb{F}^n$.

Basis for Col(A):

Let $A = [\overrightarrow{a_1} \dots \overrightarrow{a_n}] \in M_{m \times n}(\mathbb{F})$ and suppose that RREF(A) has pivots in columns q_1, \dots, q_r where $r = \operatorname{rank}(A)$. Then $\{\overrightarrow{a_{q_1}}, \dots, \overrightarrow{a_{q_r}}\}$ is a basis for Col(A).

Note it is the columns of A, not RREF(A), that form the basis.

Basis for Null(A):

Let $A \in M_{m \times n}(\mathbb{F})$ and consider the homogeneous system $A\overrightarrow{x} = \overrightarrow{0}$. Suppose after applying the Gauss-Jordan algorithm that we obtain k free parameters so that the solution set is given by

Span
$$\{\overrightarrow{x_1},\ldots,\overrightarrow{x_k}\}$$
.

Then, $\{\overrightarrow{x_1}, \dots, \overrightarrow{x_k}\}$ is a basis for Null (A).

Here, k = nullity(A) = n - rank(A).

Dimension:

The number of elements in a basis for a subspace V of \mathbb{F}^n is called the **dimension** of V. We denote this number by $\dim(V)$.

Dimension is Well-Defined:

Let V be a subspace of \mathbb{F}^n . If $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \dots, \overrightarrow{w_\ell}\}$ are bases for V, then $k = \ell$.

Bound on Dimension of Subspace:

Let V be a subspace of \mathbb{F}^n . Then $\dim(V) \leq n$.

Rank-Nullity Theorem:

Let $A \in M_{m \times n}(\mathbb{F})$. Then

$$n = \operatorname{rank}(A) + \operatorname{nullity}(A) = \dim(\operatorname{Col}(A)) + \dim(\operatorname{Null}(A)).$$

Unique Representation Theorem:

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a basis for V. Then, for every $\overrightarrow{v} \in V$, there exist *unique* scalars $c_1, \dots, c_k \in \mathbb{F}$ such that

$$c_1 \overrightarrow{v_1} + \cdots + c_k \overrightarrow{v_k} = \overrightarrow{v}$$
.

Coordinates and Components:

Let V be a subspace of \mathbb{F}^n and let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be a basis for V. Let the vector $\overrightarrow{v} \in V$ have the representation

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \dots + c_k \overrightarrow{v_k} = \sum_{i=1}^k c_i \overrightarrow{v_i}, \quad (c_i \in \mathbb{F}).$$

We call the scalars c_1, \ldots, c_k the **coordinates** (or **components**) of \overrightarrow{v} with respect to \mathcal{B} , or the \mathcal{B} -coordinates of \overrightarrow{v} .

Coordinate Vector:

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ be an ordered basis for the subspace V of \mathbb{F}^n . Let $\overrightarrow{v} \in V$ have \mathcal{B} -coordinates c_1, \dots, c_k with matching ordering to \mathcal{B} . Then, the coordinate vector of \overrightarrow{v} with respect to \mathcal{B} (or the \mathcal{B} -coordinate vector of \overrightarrow{v}) is the column vector in \mathbb{F}^n :

$$[\overrightarrow{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix}.$$

Linearity of Taking Coordinates:

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}\$ be an ordered basis for V. Then the function $[]_{\mathcal{B}}: V \to \mathbb{F}^k$ given by $\overrightarrow{x} \mapsto [\overrightarrow{x}]_{\mathcal{B}}$ is a linear transformation.

Change of Basis Matrix:

Let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_k}\}$ and $\mathcal{C} = \{\overrightarrow{w_1}, \dots, \overrightarrow{w_\ell}\}$ be ordered bases for a subspace V of \mathbb{F}^n .

The change of basis matrix from \mathcal{B} -coordinates to \mathcal{C} -coordinates is the $k \times k$ matrix

$$_{\mathcal{C}}[I]_{\mathcal{B}} = [[\overrightarrow{v_1}]_{\mathcal{C}} \dots [\overrightarrow{v_k}]_{\mathcal{C}}]$$

whose columns are the C-coordinates of the vectors in \mathcal{B} . Similarly, the change of basis matrix from C-coordinates to \mathcal{B} -coordinates is the $k \times k$ matrix

$$_{\mathcal{B}}[I]_{\mathcal{C}} = [[\overrightarrow{w_1}]_{\mathcal{B}} \dots [\overrightarrow{w_\ell}]_{\mathcal{B}}.]$$

Changing a Basis:

$$\left[\overrightarrow{x}\right]_{\mathcal{C}} = {}_{\mathcal{C}}\left[I\right]_{\mathcal{B}}\left[\overrightarrow{x}\right]_{\mathcal{B}} \text{ and } \left[\overrightarrow{x}\right]_{\mathcal{B}} = {}_{\mathcal{B}}\left[I\right]_{\mathcal{C}}\left[\overrightarrow{x}\right]_{\mathcal{C}} \text{ for all } \overrightarrow{x} \in V.$$

Let $\overrightarrow{x} = \begin{bmatrix} \overrightarrow{x} \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ be a vector in \mathbb{F}^n , where \mathcal{E} is the standard ordered basis. If \mathcal{C} is any ordered basis for \mathbb{F}^n , then $\begin{bmatrix} \overrightarrow{x} \end{bmatrix}_{\mathcal{C}} = {}_{\mathcal{C}}[I]_{\mathcal{E}}[\overrightarrow{x}]_{\mathcal{E}}$.

Inverse of Change of Basis Matrix:

Let \mathcal{B} and \mathcal{C} be two ordered bases of \mathbb{F}^n . Then

$$_{\mathcal{C}}[I]_{\mathcal{B}}\ _{\mathcal{B}}[I]_{\mathcal{C}}=I_{n}\quad \text{and}\quad _{\mathcal{B}}[I]_{\mathcal{C}}\ _{\mathcal{C}}[I]_{\mathcal{B}}=I_{n}.$$

That is, $_{\mathcal{C}}[I]_{\mathcal{B}}=(_{\mathcal{B}}[I]_{\mathcal{C}})^{-1}$ and $_{\mathcal{B}}[I]_{\mathcal{C}}=(_{\mathcal{C}}[I]_{\mathcal{B}})^{-1}.$

9 Diagonalization

\mathcal{B} -Matrix of T:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ be an ordered basis for \mathbb{F}^n . We define the \mathcal{B} -matrix of T as follows:

$$[T]_{\mathcal{B}} = [[T(\overrightarrow{v_1})]_{\mathcal{B}} \dots [T(\overrightarrow{v_n})]_{\mathcal{B}}]$$

That is, after applying T to each vector in \mathcal{B} , we construct $[T]_{\mathcal{B}}$ from the \mathcal{B} -coordinate vectors of these images.

If $\overrightarrow{v} \in \mathbb{F}^n$, then

$$[T(\overrightarrow{v})]_{\mathcal{B}} = [T]_{\mathcal{B}} [\overrightarrow{v}]_{\mathcal{B}}$$

Similarity of Matrix Representations:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Let \mathcal{B} and \mathcal{C} be ordered bases for \mathbb{F}^n . Then

$$[T]_{\mathcal{C}} = {}_{\mathcal{C}}[I]_{\mathcal{B}}[T]_{\mathcal{B}}[I]_{\mathcal{C}} = ({}_{\mathcal{B}}[I]_{\mathcal{C}})^{-1}[T]_{\mathcal{B}}[I]_{\mathcal{C}}$$

and

$$[T]_{\mathcal{B}} = {}_{\mathcal{B}}[I]_{\mathcal{C}}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}} = \left({}_{\mathcal{C}}[I]_{\mathcal{B}}\right)^{-1}[T]_{\mathcal{C}} {}_{\mathcal{C}}[I]_{\mathcal{B}}.$$

That is, $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ are similar over \mathbb{F} .

Finding the Standard Matrix:

$$\begin{split} \big[T\big]_{\mathcal{E}} &= {}_{\mathcal{E}}\big[I\big]_{\mathcal{B}} \, \big[T\big]_{\mathcal{B}} \, {}_{\mathcal{B}}\big[I\big]_{\mathcal{E}} \\ &= ({}_{\mathcal{B}}\big[I\big]_{\mathcal{E}})^{-1} \, \big[T\big]_{\mathcal{B}} \, {}_{\mathcal{B}}\big[I\big]_{\mathcal{E}} \\ \big[T\big]_{\mathcal{B}} &= {}_{\mathcal{B}}\big[I\big]_{\mathcal{E}} \, \big[T\big]_{\mathcal{E}} \, {}_{\mathcal{E}}\big[I\big]_{\mathcal{B}} \\ &= ({}_{\mathcal{E}}\big[I\big]_{\mathcal{B}})^{-1} \, \big[T\big]_{\mathcal{E}} \, {}_{\mathcal{E}}\big[I\big]_{\mathcal{B}} \, . \end{split}$$

Eigenthings of a Linear Operator:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. We say that the *non-zero* vector $\overrightarrow{x} \in \mathbb{F}^n$ is an **eigenvector** of T to mean that there exists a scalar $\lambda \in \mathbb{F}$ such that

$$T(\vec{x}) = \lambda \vec{x}$$
.

The scalar λ is an **eigenvalue** of T and (λ, \vec{x}) is called an **eigenpair** of T.

Eigenpairs of T and $[T]_{\mathcal{B}}$:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be an ordered basis of \mathbb{F}^n . Then $(\lambda, \overrightarrow{x})$ is an eigenpair of T if and only if $(\lambda, [\overrightarrow{x}]_{\mathcal{B}})$ is an eigenpair of the matrix $[T]_{\mathcal{B}}$.

Diagonalizable:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. We say that T is diagonalizable over \mathbb{F} to mean that there exists an ordered basis \mathcal{B} of \mathbb{F}^n such that $[T]_{\mathcal{B}}$ is a diagonal matrix.

Eigenvector Basis Criterion for Diagonalizability:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator. Then T is diagonalizable over \mathbb{F} if and only if there exists an ordered basis $\mathcal{B} = \{\overrightarrow{v_1}, \dots, \overrightarrow{v_n}\}$ of \mathbb{F}^n consisting of eigenvectors of T

Matrix Version:

Let $A \in M_{n \times n}(\mathbb{F})$. Then A is diagonalizable over \mathbb{F} if and only if there exists a basis of \mathbb{F}^n consisting of eigenvectors of A.

T Diagonalizable iff $[T]_{\mathcal{B}}$ Diagonalizable:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be an ordered basis of \mathbb{F}^n . Then T is diagonalizable over \mathbb{F} if and only if $[T]_{\mathcal{B}}$ is diagonalizable over \mathbb{F} .

Eigenvectors Corresponding to Distinct Eigenvalues are Linearly Independent:

Let $A \in M_{n \times n}(\mathbb{F})$ have eigenpairs $(\lambda_1, \overrightarrow{v_1}), \dots, (\lambda_k, \overrightarrow{v_k s})$ for $1 \le k \le n$.

If the eigenvalues $\lambda_1, \ldots, \lambda_k$ are all distinct, then $\{\overrightarrow{v_1}, \ldots, \overrightarrow{v_k}\}$ is linearly independent.

Let $A \in M_{n \times n}(\mathbb{F})$ with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. If their corresponding eigenspaces, $E_{\lambda_1}, \ldots, E_{\lambda_k}$ have bases $\mathcal{B}_1, \ldots, \mathcal{B}_k$, then

$$\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_k$$

is linearly independent.

Characteristic Polynomial:

Let $T: \mathbb{F}^n \to \mathbb{F}^n$ be a linear operator and let \mathcal{B} be a basis for \mathbb{F}^n . Then

$$C_T(\lambda) = C_{T_{R}}(\lambda)$$

This definition is unambiguous because the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{C}}$ are similar for any bases \mathcal{B} and \mathcal{C} , and similar matrices have identical characteristic polynomials.

Geometric and Algebraic Multiplicities:

Let λ_i be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$. The **algebraic multiplicity** of λ_i , denoted a_{λ_i} , is the largest positive integer such that $(\lambda - \lambda_i)^{a_{\lambda_i}}$ divides $C_A(\lambda)$.

The **geometric multiplicity** of λ_i , denoted g_{λ_i} is the dimension of the eigenspace E_{λ_i} . That is, $g_{\lambda_i} = \dim(E_{\lambda_i})$.

Geometric and Algebraic Multiplicities:

Let λ_i be an eigenvalue of $A \in M_{n \times n}(\mathbb{F})$. Then

$$1 \leq g_{\lambda_i} \leq a_{\lambda_i}$$
.

Diagonalizability Test:

Let $A \in M_{n \times n}(\mathbb{F})$ with characteristic polynomial

$$C_A(\lambda) = h(\lambda)(\lambda - \lambda_1)^{a_{\lambda_1}} \cdots (\lambda - \lambda_k)^{a_{\lambda_k}}$$

where $\lambda_1, \ldots, \lambda_k$ are all distinct eigenvalues of A over \mathbb{F} with corresponding algebraic multiplicities $a_{\lambda_1}, \ldots, a_{\lambda_k}$ and $h(\lambda)$ is a polynomial irreducible over \mathbb{F} . Then A is diagonalizable if and only if $\deg(h(\lambda)) = 0$ and $a_{\lambda_i} = g_{\lambda_i}$ for all $i = 1, \ldots, k$.

That is, A is diagonalizable if and only if $C_A(\lambda)$ is reducible to linear terms over \mathbb{F} (enough eigenvalues) and each algebraic and geometric multiplicities match (enough linearly independent eigenvectors).

Powers of Similar Matrices:

Let $A, B \in M_{n \times n}(\mathbb{F})$ such that $B = P^{-1}AP$ for some invertible $P \in M_{n \times n}(\mathbb{F})$. Then for all $k \in \mathbb{N}$,

$$B^k = P^{-1}A^kP.$$

10 Vector Spaces

Vector Space:

A non-empty set, \mathbb{V} , is a vector space over a field, \mathbb{F} , under the operations of addition, \oplus , and scalar multiplication, \odot , provided the following ten axioms are met:

- 1. Closure under \oplus and \odot .
- 2. \oplus and \odot are associative and have identity elements.
- 3. \oplus is commutative and every vector in $\mathbb V$ has an additive inverse.
- 4. \odot distributes over \oplus .
- 5. Field addition distributes over \odot .

Vector:

A **vector** is an element of a vector space.

$L(\mathbb{F}^n,\mathbb{F}^m)$:

We use $L(\mathbb{F}^n, \mathbb{F}^m)$ to denote the vector space over \mathbb{F} comprised of all linear transformations $T : \mathbb{F}^n \to \mathbb{F}^m$, with the following operations for all $\vec{x} \in \mathbb{F}^n$ and $c \in \mathbb{F}$ defined as follows:

$$(T_1 + T_2)(\overrightarrow{x}) = T_1(\overrightarrow{x}) + T_2(\overrightarrow{x}),$$

$$(cT_1)(\overrightarrow{x}) = cT_1(\overrightarrow{x}).$$

$P_n(\mathbb{F})$:

We use $P_n(\mathbb{F})$ to denote the vector space over \mathbb{F} comprised of the set of all polynomials of degree at most n with coefficients in \mathbb{F} , with addition and scalar multiplication defined obviously.

Properties of Vector Spaces:

Let \mathbb{V} be a vector space over \mathbb{F} and let $\overrightarrow{x} \in \mathbb{V}$.

- 1. The zero vector in \mathbb{V} is unique.
- 2. The additive inverse of \vec{x} is unique.
- 3. $0 \odot \vec{x} = \vec{0}$.
- 4. For all $a \in \mathbb{F}$, $a \odot \overrightarrow{0} = \overrightarrow{0}$.
- 5. $-\overrightarrow{x} = (-1) \odot \overrightarrow{x}$.
- 6. If $a \odot \vec{x} = \vec{0}$, then a = 0 or $\vec{x} = \vec{0}$ (Cancellation Law).

Subspace Test:

Let $\mathbb V$ be a subspace over $\mathbb F$ and let $\mathbb U\subseteq \mathbb V$. Then $\mathbb U$ is a subspace of $\mathbb V$ if and only if:

- 1. U is non-empty, and
- 2. $\mathbb U$ is closed under addition and scalar multiplication.

Vector Space Ideas:

The following ideas carry over verbatim from \mathbb{F}^n :

- 1. Linear combinations
- 2. Span
- 3. Subspaces
- 4. Linear Independence/Dependence
- 5. Bases

The dimension of the zero space $\{\overrightarrow{0}\}$ is 0.

If $\mathbb V$ does not have a basis with a finite number of vectors in it, then $\mathbb V$ is said to be **infinite-dimensional**.

- 6. Dimension
- 7. Unique Representation Theorem
- 8. \mathcal{B} -coordinates
- 9. Change of Basis Matrix