교류회로에서의 전력

12.1 한 소자에서의 전력

12.5 전력공학의 문제

12.2 일반회로에서의 전력 - 역률 12.6 역률개선

12.3 유효전력, 무효전력

12.7 최대전력의 전달

12.4 피상전력

연습문제

이제까지 우리는 교류회로에서의 전류, 전압을 구하는 것을 위주로 하였다. 그 러나 회로해석의 또 하나의 중요한 문제는 전력과 에너지를 구하는 것이다. 일 단 회로의 전류, 전압의 분포가 알려지면 **순간전력**은 p=vi에 의하여 구할 수 있고, 에너지는 p를 시간에 대하여 적분함으로써 구할 수 있다. 실제적으로는 p 의 평균치, 즉 **평균전력**이 더 문제가 된다.

이 장을 통하여 2단자회로의 단자전류, 단자전압의 기준방향은 그림 12.1과 같 이 가정한다. 즉, 전류 i의 방향으로의 전압강하를 v라 한다. 그러면 p=vi는 이 회로에 공급되는 순간전력을 나타낸다. p>0이면 실제로 이 회로에 에너지가 공 급되고, 반대로 p < 0이면 이 회로에서 외부회로로 에너지가 반환됨을 의미한다.

이 장에서는 먼저 사인파에 대한 각 수동소자에서의 전력과 에너지문제를 고 찰한 다음 일반회로에서의 전력의 문제를 고찰한다.

이 장을 통하여 전류, 전압의 순간치, 실효치, 페이저에 대한 기호의 구별(예: v, V, V)을 항상 명심해야 한다.

그림 12.1 v, i, p의 기준방향

12.1 한 소자에서의 전력

저 항

저항R에

$$v = \sqrt{2} V \sin \omega t \tag{12.1}$$

로 표시되는 전압이 인가될 때 흐르는 전류는 이와 동상이므로 $i=\sqrt{2}\ I\sin\omega t$ 와 같이 표시된다. 단, I=V/R이므로 저항에 공급됨으로써 소비되는 전력의 순간치는

$$p = vi = 2 V I \sin^2 \omega t = V I (1 - \cos 2 \omega t)$$
 (12.2)

윗식에서 p는 일정항과 v, i의 주파수의 2배의 주파수를 갖는 사인항의 합을 나타낸다. 일반적으로 진폭과 위상이 임의이나 주파수가 동일한 두 사인량의 곱에는 항상 2배의 주파수를 갖는 사인항이 나타난다. 사인량의 평균치는 0이므로 저항에서의 평균전력은

$$P = VI = RI^2 = GV^2 (12.3)$$

등 여러 가지로 표현할 수 있다. 여기서 V=RI, I=GV의 관계를 이용하였다. 보통 전력이라 할 때에는 이 평균전력을 의미하며, 순간전력과 구별하기 위하여 대문자 P를 쓴다.

그림 12.2의 (a)는 v, i, (b)는 p의 시간적 변화를 그렸다. 이 그림에서 보는 바와 같이 저항에서는 항상 p>0이고 최대치 $2VI=V_mI_m$ 의 1/2인 레벨(level)을 중심으로 하여 상하로 v, i의 2배의 주파수를 가지고 변동하며, 이 레벨이 곧 평균전력을 준다.

다음으로 시간 $t(\gg T)$ 동안에 저항에서 소비되는 에너지 w_R 은

그림 12.2 저항에서의 v, i, p의 변화

$$w_R = Pt$$
 W·s (12.4)

이며, W·s의 단위가 너무 작으므로 kW·h의 단위가 흔히 사용된다.

인덕턴스

인덕턴스 L에 $i=\sqrt{2}~I\sin\omega t$ 로 표시되는 전류가 흐를 때 전압은 이보다 90° 앞서므로 $v=\sqrt{2}~V\sin(\omega t+90^\circ)=\sqrt{2}~V\cos\omega t$ 와 같이 표시된다. 단, $V=\omega LI$. 그러므로 인덕턴스에 공급되는 순간전력은

$$p = vi = 2 VI \sin \omega t \cdot \cos \omega t = VI \sin 2\omega t \tag{12.5}$$

여기서 $\sin 2\omega t$ 의 평균치는 0이므로 인덕턴스에 공급되는 평균전력은 0이 된다.

그림 12.3 인덕턴스에서의 v, i, p의 변화

그림 12.3에는 인덕턴스에서의 v, i 및 p의 변화를 그렸다. v, i는 90° 의 상차가 있고 그 곱인 p는 v, i의 주파수의 2배의 주파수를 가지며, 음, 양의 값을 교대로 취하면서 변한다. p>0는 외부회로에서 인덕턴스에 에너지가 공급됨을 의미하고, p<0는 인덕턴스에서 외부회로로 에너지가 반환됨을 의미한다. 즉, 인덕턴스에 교류가 흐를 때에는 외부회로와(전원이 직접 연결되어 있으면 전원과)인덕턴스 사이에 에너지교환이 주기적으로 일어남을 알 수 있다.

커패시턴스

커패시턴스에서도 평균전력은 0이 된다. 지금 커패시턴스 C에 식 (12.1)로 표시되는 전압이 인가될 때 흐르는 전류는 이보다 90° 앞서므로 $i=\sqrt{2}~I\sin(\omega t+90^\circ)$ = $\sqrt{2}~I\cos~\omega t$ 와 같이 표시된다. 단, $I=\omega CV$. 그러므로 커패시턴스에 공급되는 순간전력은

$$p = vi = 2 V I \sin \omega t \cdot \cos \omega t = V I \sin 2\omega t \tag{12.6}$$

따라서 커패시턴스에 공급되는 평균전력 P는 0이 된다.

그림 12.4에는 v, i 및 p의 시간에 따른 변화를 그렸다. 커패시턴스에서도 에너지가 외부회로와 커패시턴스 사이를 왔다갔다 하지만 커패시턴스에서 소비되는 일이 없다.

12.2 일반회로에서의 전력 - 역률

이상에서 우리는 각 회로소자에서의 전력을 고찰하였으므로 이번에는 그것들

그림 12.4 커패시턴스에서의 v, i, p의 변환

이 임의로 접속된 일반 2단자회로에 대해서 고찰한다. 그림 12.1에서 2단자회로의 등가임피던스를 Z/θ 라 하면

$$v = \sqrt{2} V \sin \omega t \tag{12.7}$$

로 표시되는 전압이 단자에 인가될 때 흐르는 전류는 이보다 θ 만큼 늦을 것이므로

$$i = \sqrt{2} I \sin(\omega t - \theta) \tag{12.8}$$

와 같이 표시된다. 단, I=V/Z. 그러므로 회로에 공급되는 전력의 순간치는

$$p = vi = 2 VI \sin \omega t \cdot \sin(\omega t - \theta)$$
 (12.9)

여기서 $2\sin x \sin y = \cos(x-y) - \cos(x+y)$ 의 관계식을 이용하면

$$p = VI\cos\theta - VI\cos(2\omega t - \theta) \tag{12.10}$$

그림 12.5에는 θ 의 특정치에 대한 v, i 및 p의 시간적 변화를 그렸다. p의 곡선은 v의 곡선과 i의 곡선의 곱으로써 그려진다. 식 (12.10)에서 보듯이 p의 곡선은 일정치 $VI\cos\theta$ 를 중심으로 하여 진폭 VI의 진동을 한다. v, i가 같은 부호(둘다 + 또는 둘다 -)를 가지는 동안 p>0이고, 따라서 이 동안 에너지가이 회로에 유입된다. 반대로 v, i의 부호가 다른 동안 p<0이고 따라서 이 동안에는 회로에 축적되었던 에너지(자기에너지 또는 전기에너지)가 외부회로에 다시 반환된다.

식 (12.10)에서 제 2 항의 평균치는 0이므로 2단자망에 공급되는 평균전력은

그림 12.5 2단자회로에서의 v, i 및 p의 변화 $(\theta = 60^{\circ}$ 의 경우)

$$P = VI\cos\theta \tag{12.11}$$

식 (12.11)은 매우 중요한 의미를 갖는다. 저항회로의 전력계산에서는 전압과 전류를 곱하기만 하면 되지만 교류회로의 전력계산에서는 전류, 전압이 동상인 경우를 제외하고는 이렇게 해서는 안된다. 반드시 전압, 전류의 실효치에 $\cos\theta$ 라는 계수를 곱해야 한다. 이 계수를 역률(power factor)이라고 하며 보통 pf로약기한다. 즉,

$$pf = \cos \theta = \frac{P}{VI}$$
 (12.13)

역률을 %로 표시할 때가 많다. 즉, $\mathrm{pf} = \frac{P}{VI} \times 100\%$ 이다.

2단자회로가 수동소자만으로 되어 있는 경우 여기서 평균전력이 발생할 수는 없다. 따라서 수동 2단자회로에 대해서는 $P \ge 0$, 따라서 $\cos \theta \ge 0$, 그러므로

$$-90^{\circ} \le \theta \le 90^{\circ}$$
, $0 \le \text{pf} \le 1$ (수동회로에 대하여) (12.14)

 θ 는 전압과 전류와의 상차(相差)이다. 따라서 저항회로에서와 같이 단자전압과 전류가 동상일 때에는 $\theta=0$, $\mathrm{pf}=1$, P=VI가 되고, 순리액턴스회로에서와 같이 단자전압과 전류가 90° 상차를 가질 때에는 $\theta=\pm 90^\circ$, $\mathrm{pf}=0$, P=0이 된다. $\theta>0$ 이면 전류가 전압보다 위상이 늦으므로 이때의 역률을 지상역률 (lagging power factor)이라 하고, 반대로 $\theta<0$ 이면 전류가 전압보다 앞서므로이때의 역률을 **진상역률** (leading power factor)이라고 한다.

2단자회로의 입력임피던스 또는 입력어드미턴스가 알려져 있을 때에는 그림 12.6의 임피던스도 또는 어드미턴스도로부터

그림 12.6 임피던스도 및 어드미턴스도($\theta > 0$ 인 경우)

$$pf = \cos \theta = \frac{R}{Z} = \frac{G}{Y}$$
 (12.15)

등 여러 가지로 표현할 수 있다.

또 이 관계식과 $\frac{V}{Z}$ = I, $\frac{I}{Y}$ = V 를 이용하면 평균전력은

$$P = VI\cos\theta = RI^2 = GV^2 \tag{12.16}$$

등 여러 가지로 표현할 수 있다. 식 (12.15), (12.16)에서 특히 강조하고 싶은 것 은 $R = Re(\mathbf{Z})$, $G = Re(\mathbf{Y})$ 이며 또 일반적으로 $G \neq 1/R$ 이라는 것이다.

- [수치에] (a) 임피던스가 $3+j4\Omega$ 인 회로에 10A의 전류가 유입할 때 공급되는 평균전력은 $RI^3=3\times 10^2=300\,\mathrm{W},$ 역률은 $\frac{R}{Z}=\frac{3}{\sqrt{3^2+4^2}}=0.6$
 - (b) 같은 회로에 $10\,\mathrm{V}$ 의 전압이 인가할 때 공급되는 평균전력은 $GV^2 = \frac{3}{3^2+4^2} \times 10^2 = 12\,\mathrm{W},\ \mbox{Φ} 은 0.6$

수동회로에 대해서는 $P \ge 0$ 이므로 식 (12.16)으로부터 $Re\left(\mathbf{Z}\right) \ge 0$, $Re\left(\mathbf{Y}\right) \ge 0$ 이 된다. 그러므로 2단자수동회로의 입력임피던스 또는 어드미턴스를 나타내는 점은 복소평면상에서 항상 제 1, 4 상한 내에 있게 된다.

예제 12.1

 $R=20\,\Omega,\,L=0.1\mathrm{H}$ 의 직렬회로에 $60\,\mathrm{Hz},\,115\,\mathrm{V}$ 의 교류전압이 인가되어 있다. 다음을 구하라.

(a) 이 회로의 역률

- (b) 회로에 공급되는 평균전력
- (c) 저항에 공급되는 평균전력
 - (d) 인덕턴스에 공급되는 평균전력

풀 이

- (a) $\omega L = 377 \times 0.1 = 37.7 \Omega$
 - \therefore **Z** = 20 + j 37.7 = 42.6/62.1° Ω
 - ∴ pf = cos θ = cos 62.1° = 0.47 (θ > 0이므로 지상역률)

또는 pf =
$$\frac{R}{Z}$$
 = $\frac{20}{42.6}$ = 0.47

(b)
$$I = \frac{V}{Z} = \frac{115}{42.6} = 2.7 \,\text{A}$$

- ∴ P= VI cos θ = 115 × 2.7 × 0.47 = 146 W
 (c) P_R= RI² = 20 × 2.7² = 146 W
 이것은 (b)에서 구한 회로에 공급되는 평균전력과 같다.

12.3 유효전력, 무효전력

어떤 2단자회로의 단자전압과 전류가 θ 의 상차를 가지고 있을 때 그림 12.7 (a) 와 같이 전류를 전압과 동상인 성분 $I\cos\theta$ 와 90° 상차를 갖는 성분 $I\sin\theta$ 로 나 누어 생각하면 전자는 평균전력 $V(I\cos\theta)$ 를 전적으로 담당하는 반면, 후자는 평 균전력에 전혀 기여하지 못한다. 이러한 의미에서 $I\cos\theta$ 를 유효전류(active current), $I\sin\theta$ 를 무효전류(reactive current)라고 한다. 그리고 $VI\cos\theta$, $VI\sin\theta$ 를 각각 **유효전력**, **무효전력**이라고 하며 $P,\ Q$ 로 표시한다. 유효전력(= 평균전력 또는 단순히 전력)의 단위는 물론 와트(watt)이고, 무효전력의 단위는 바(voltamperes reactive; var)이다. 이상으로

유효전력(평균전력)
$$P = VI\cos\theta$$
 W (12.17)

무효전력
$$Q = VI\sin\theta$$
 var (12.18)

 $\theta = \theta_v - \theta_i = \mathbf{Z}$ 의 각 단.

무효전력의 표시식에 나타나는 계수 $\sin \theta$ 를 무효율이라고 하며, 보통 rf 라고 표시한다. 즉,

$$rf = \sin\theta = \frac{Q}{VI} \tag{12.19}$$

식 (12.17), (12.18)로부터

$$\tan \theta = \frac{Q}{P} \tag{12.20a}$$

그림 12.7 V, I의 동상성분 및 90° 상차성분

$$Q = \pm P \frac{\sqrt{1 - (\text{pf})^2}}{\text{pf}}$$
 (±부호는 θ 의 부호로 결정된다) (12.20b)

2단자회로의 임피던스 또는 어드미턴스를 알고 있을 때에는 그림 12.6을 참고로

$$rf = \sin\theta = \frac{X}{Z} = -\frac{B}{Y} \tag{12.21}$$

등 여러 가지 표시식이 얻어지고, 또 이것들을 이용하면 무효전력은

$$Q = VI\sin\theta = XI^2 = -BV^2 \tag{12.22}$$

와 같이 여러 가지로 표현된다. 임피던스의 허수부 X>0일 때에는 어드미턴스의 허수부 B<0이 되고 Q>0이 된다. 반대로 X<0일 때에는 B>0, Q<0이 된다(그림 10.14 참고).

- [수치에] (a) 임피던스가 $3-j4\Omega$ 인 회로에 10A의 전류가 유입할 때 공급되는 무효전력 Q는 $XI^2 = -400 \, \mathrm{var}$, 무효율은 X/Z = -0.8
 - (b) 같은 회로에 $10{
 m V}$ 의 전압이 인가될 때 공급되는 무효전력 Q는 $-BV^2$ = $-\frac{4}{3^2+4^2}$ × 10^2 = $-16{
 m var}$, 무효율은 X/Z=-0.8

무효전력은 무효전류에 전압(둘다 실효치)을 곱한 것이다. 전력수송시 전압과 동상인 유효전류만이 직접적으로 유용한 성분이다. 한편 발전기, 송전선, 변압기 등에서의 열손실은

$$RI^2 = RI^2 \cos^2 \theta + RI^2 \sin^2 \theta \tag{12.23}$$

에서 보는 바와 같이 무효전류의 존재로 말미암아 증가된다.

식 (12.22)에서 알 수 있는 바와 같이 인덕턴스에 공급되는 Q는 +, 커패시턴스에 공급되는 Q는 -이다. 따라서 인덕턴스는 무효전력을 흡수하고 커패시턴스는 무효전력을 발생한다고 생각할 수 있다. 그러므로 한 회로에 L와 C가 공존할 때 이들 사이에 무효전력의 주고받음이 일어난다.

12.4 피상전력

2단자회로의 단자전압과 전류의 실효치의 곱을 **피상전력**(apparent power 또는 volt-ampere)이라 하며 VA라 표시한다. 그 단위는 **볼트암페어**(VA)이다. 즉,

$$VA = VI = ZI^2 = YV^2 \qquad VA \tag{12.24}$$

P, Q, VA 사이에는 다음 관계가 있다.

$$P^2 + Q^2 = (VI\cos\theta)^2 + (VI\sin\theta)^2 = (VI)^2$$
즉, 피상전력 = $\sqrt{(유효전력)^2 + (무효전력)^2}$ (12.25)

이 세 가지 전력의 상호관계는 그림 12.8의 **전력삼각도**(power triangle)에 의하여 기억하면 편리하다. 이것들은 그림 12.6의 임피던스도에 I^2 , 어드미턴스도에 V^2 을 곱해서 얻은 것이다.

공학적으로 발전기, 변압기, 케이블 또는 냉장고, 세탁기 등의 가전제품 등의 정격 또는 용량(capacity)은 VA로써 표시한다. 이것은 이들의 전기적 용량이 기기의 최대허용온도에 따라 기기 내에서의 최대허용열손실에 의해서, 즉 pf=1일 때의 전압 \times 전류에 의해서 결정되기 때문이다.

그림 12.8 전력삼각도($\theta > 0$ 인 경우)

[수치예] (a) 임피던스가 $3-j4\Omega$ 인 회로에 $10\,\mathrm{A}$ 의 전류가 유입할 때 피상전력은 $Z\!I^2 = 500\,\mathrm{VA}$

(b) 같은 회로에 10V의 전압이 인가될 때 피상전력은

$$YV^2 = \frac{10^2}{|3-j4|} = 20 \,\text{VA}$$

예제 12.2

그림 12.9의 회로에서 다음을 구하라.

- (a) 회로의 pf 및 rf
- (b) 전원에 의하여 공급되는 평균전력 및 무효전력
- (c) 회로의 피상전력

그림 12.9 예제 12.2의 회로

풀 이

(a)
$$\mathbf{Z}_{cd} = \frac{4(j4)}{4+j4} = \frac{j4}{1+j} = \frac{j4(1-j)}{2} = 2+j2\Omega = \sqrt{8} / 45^{\circ}$$

$$\mathbf{Z}_{cd} = 1 - j + (2 + j2) = \sqrt{10} / 18.435^{\circ} \Omega$$

$$\therefore \text{ pf} = \cos \theta = \cos \theta = \cos (18.435^{\circ}) = 0.9487$$
$$\text{rf} = \sin (18.435^{\circ}) = 0.3162$$

(b)
$$I = \frac{V_{ab}}{Z_{ab}} = \frac{5\sqrt{10}/0^{\circ}}{\sqrt{10}/18.435^{\circ}} = 5/-18.435^{\circ}$$

$$P_{ab} = VI\cos\theta = 5\sqrt{10} \times 5 \times \text{pf} = 75 \text{ W}$$

$$Q_{ab} = VI \sin \theta = 510 \times 5 \times 0.3162 = 25 \text{ var}$$

(c) 식 (12.25)에 의하여 (
$$VA$$
) $_{ab} = \sqrt{P_{ab}^2 + Q_{ab}^2} = \sqrt{75^2 + 25^2} = 75 \text{ VA}$

예제 12.3

예제 12.2의 회로에서 (a) 회로 내의 각 소자에서 소비되는 전력과 (b) 회로 내의 각소자가 취하는 무호전력을 구하고, 이것들이 각각 예제 12.2의 풀이 (b)에서 얻은 전원이 공급한 평균전력 P 및 무효전력 Q와 같음을 보여라.

풀 이

(a) 전력(평균전력)은 두 저항에서만 소비된다.

$$P_{(1\Omega)} = 1 \times 5^2 = 25 \,\mathrm{W}$$

 $P_{(4\Omega)}$ 을 구하기 위해서는 V_{cd} 을 알아야 한다.

$$V_{cd} = I \times Z_{cd} = 5/-18.435^{\circ} \times \sqrt{8}/45^{\circ} = 5\sqrt{8}/26.565^{\circ}$$

$$V_{cd} = 5\sqrt{8} \text{ V}$$

$$P_{(4\Omega)} = \frac{(5\sqrt{8})^2}{4} = 50 \text{ W}$$

$$\therefore P_{ab} = P_{(1\Omega)} + P_{(4\Omega)} = 75 \text{ W}$$
 또 식 (12.22) 로부터 커페시턴스의 $Q = Q_c = -1 \times I^2 = -25 \text{ var}$ 인터턴스에서의 $Q - Q_L = 4I_L^2 = 4\left(\frac{V_{cd}}{4}\right)^2 = \frac{200}{16} = 50 \text{ var}$
$$\therefore Q_{ab} = Q_c + Q_L = 25 \text{ var}$$

이 예제에서와 같이 <u>회로에 공급된 P,Q는 각각 회로 내의 각 소자에서의 P,Q를 합한 것과 같다(단,Q는 대수적으로 합하여야 한다). 즉,일반적으로</u>

2단자회로에 공급되는 $P=\sum$ (각 저항소자에서의 P) 2단자회로에 공급되는 $Q=\sum$ (각 리액턴스소자에서의 Q) (12.26)

이것을 각각 **유효전력의 평형**, **무효전력의 평형**이라고 한다. 이것은 에너지 보존법칙에 기인하는 사실이다.

그러나 VA에 관한 한 각 소자에서의 VA를 합해서는 회로 전체의 VA가 되지 않는다. 반드시 회로 전체의 P, Q를 따로따로 계산한 다음 식 (12.25)에 의하여 회로 전체의 VA를 구해야 한다.

그리고 전력계산에서는 항상 그것이 회로의 어느 부분에 관계된 것인가를 확실히 하여 적당한 수치들을 택하여야 한다. 예를 들면, 단자 a, b를 통하여 회로에 공급되는 전력을 RI^2 에 의하여 계산할 때에는 $R=Re\left(\mathbf{Z}_{ab}\right)$, $I=I_{ab}$ 이며 결코 회로의 다른 부분의 R이나 I를 써서는 안된다. 이것은 지극히 당연함에도 불구하고 초학자는 흔히 틀리기 쉽다.

표 12.1에는 2단자회로의 전력에 관한 중요한 관계식들을 총괄하였다. 그 중실제적으로는 평균전력을 구하는 것이 가장 흔히 문제된다. 이에 대한 세 가지식 중 경우에 따라 편리한 것을 택하여 써야 한다. Q도 전력공학에서는 널리쓰이지만 전자공학에서는 거의 쓰이지 않는다. 표 12.1에 각 양에 대한 여러 가지 표시식이 주어져 있는데, 이것들을 다 기억할 필요는 없고 처음의 정의식만기억하면 나머지는 임피던스도, 어드미턴스도 또는 전력삼각도로부터 쉽게 유도될 수 있다는 것을 다시 한번 상기시키고자 한다.

기호	명 칭	관 계 식	비고
p	순간전력	p = vi	관계식 중에서 처음 것이 정의 식이며 기타는 임피던스도, 어 드미턴스도 또는 전력삼각도로 부터 유도할 수 있다.
P	(평균)전력	$P = VI \cos \theta = RI^2 = GV^2$	$R = Re(\mathbf{Z}), G = Re(\mathbf{Y})$
Q	무효전력	$Q = VI \sin \theta = XI^2 = -BV^2$	$X = Im(\mathbf{Z}), B = Im(\mathbf{Y})$
VA	피상전력	$VA = VI = ZI^2 = YV^2 = \sqrt{P^2 + Q^2}$	
pf	역 률	$pf = \cos \theta = \frac{R}{Z} = \frac{G}{Y} = \frac{P}{VA}$	$\begin{split} \theta &= \theta_v - \theta_i \\ &= (\mathbf{Z}^{\underline{o}} \mid \mathbf{Z}^{\underline{c}}) = - (\mathbf{Y}^{\underline{o}} \mid \mathbf{Z}^{\underline{c}}) \end{split}$
rf	무효율	$rf = \sin \theta = \frac{X}{Z} = -\frac{B}{Y} = \frac{Q}{VA}$	

표 12.1 2단자망의 전력관계식

12.5 전력공학의 문제

전력공학에서는 흔히 여러 개의 병렬부하를 고려해야 하며, 각 부하를 흔히 복소임피던스로서가 아니라 전력과 pf(지상, 진상 구별)로서 준다. 그리고 수전단전압과 송전선로의 임피던스를 주고 송전단전압을 계산하는 문제가 생기는데, 이 문제는 식 (12.26)을 이용하여 푸는 것이 가장 쉽다. 이 경우 모든 계산이 실수로 이루어진다. 다음 예제를 보고 그 요령을 체득하라.

예제 12.4

다음과 같은 2개의 부하가 660 V, 60 Hz의 배전선에 병렬로 연결되어 있다[그림 12.10 (a)].

부하 I: 40 kW, 0.82지상역률 부하 II: 5 kW, 0.707진상역률

- 이 부하들은 1.1Ω 의 저항과 무시할 수 있는 리액턴스를 갖는 케이블에 의하여 변전 소에 연결되어 있다고 한다. 다음을 구하라.
- (a) 수전단에서의 전부하에 대한 P, Q, pf
- (b) 수전단전류

(송전단전압을 구하는 문제는 연습문제 12.8로 미룬다)

그림 12.10 예제 12.4의 회로도

풀 이

각 부하에 대하여 전력, 역률, 선전압이 주어졌으므로 각 부하의 복소어드미턴스를 계산할 수 있을 것이다. 예를 들면, 부하 I에 대해서는

$$Y_1 = \frac{I_1}{V} = \frac{P}{V \cos \theta_1} / V = \frac{40,000}{660^2 \times 0.82} = 0.112 \,\mathrm{S}$$

또 $\theta_1 = \cos^{-1}0.82 = 35^{\circ}$ (지상역률이므로 $\theta_1 > 0$)

$$\therefore Y_1 = 0.112 / -35^{\circ} S$$

이와 같이 하여 부하의 전(全 복소어드미턴스를 구하면 이 문제를 풀 수 있을 것이다 (독자 스스로 실제로 해볼 것). 그러나 Y를 계산할 필요없이 아래와 같이 P 및 Q의 평형을 이용하여 풀어 보자. 이 경우 모든 계산이 실수로 이루어진다.

(a) 부하의 총전력은

$$P_{cb} = P_1 + P_2 = 40 + 5 = 45 \,\mathrm{kW}$$

식 (12.20)에 의하여 각 부하에 대한 Q를 구하면

$$Q_1 = 40 \times \frac{\sqrt{1 - 0.82^2}}{0.82} = 27.9 \,\mathrm{kvar}$$

$$Q_2 \! = -5 \! \times \! \frac{\sqrt{1 - 0.707^2}}{0.707} \! = -5 \, \mathrm{kvar}$$

그러므로 수전단 c-b 우측은 $45\,\mathrm{kW}$ 와 $22.9\,\mathrm{kvar}$ 를 흡수하는 하나의 등가부하로 대치될 수 있다[그림 $12.10\,(\mathrm{b})$]. 이 등가부하에 대한 피상전력은

$$(VA)_{cb} = \sqrt{P_{cb}^2 + Q_{cb}^2} = 50.5 \,\text{kVA}$$

그러므로 수전단에서의 역률은

$$(pf)_{cb} = \frac{P_{cb}}{(VA)_{cb}} = \frac{45}{50.5} = 0.89$$

(b) 송전선을 흐르는 전류의 크기는

$$I_{ac} = I_{cb} = \frac{(VA)_{cb}}{V_{cb}} = \frac{50.5 \times 10^3}{660} = 76.5 \,\mathrm{A}$$

그림 12.10 (a)에서 부하가 여러 개 병렬로 된 경우에도 위와 같이 해석한다.

12.6 역률개선

 $I = P/(V\cos\theta)$ 의 관계식에서 보는 바와 같이 어떤 부하에 소정의 전력을 공급해야 할 때 부하의 역률이 낮으면 동일전압하에 큰 전류를 흘려야 한다. 전류가 크면 발전기, 송전선, 변압기 등을 포함한 송전계통에서의 열손실이 커지고, 따라서 이와 같은 기기의 용량(보통 VA로 표시된다)이 큰 것이 요구된다. 뿐만 아니라 송전선에서의 전압강하가 증가하여 전압변동률이 나빠진다. 그러므로 부하의 역률을 개선하여 이것을 가급적 1에 가깝게 하는 것이 경제적으로 매우 유리하다.

전력계통의 공업용 부하는 대개 지상역률을 가지므로 이 경우 <u>부하와 병렬로</u> 커패시터를 연결함으로써 합성역률을 개선할 수 있다.

요구되는 역률개선용 커패시터의 크기는 그림 12.11의 전력삼각도를 참고로 다음 관계식으로 구할 수 있다.

$$\omega CV^2 =$$
 (개선 전의 Q) — (개선 후의 Q)
$$= (개선 전의 Q) — $P \times \frac{\sqrt{1-(\mathrm{pf})^2}}{\mathrm{pf}}$ (12.27)$$

여기서 pf는 개선 후의 값이다(개선 후의 $Q = P \tan \theta = P \frac{\sin \theta}{\cos \theta}$ 임에 주목).

그림 12.11 역률개선용 커패시터와 전력삼각도 $(\tan\theta = \sqrt{1 - (pf)^2}/pf)$

예제 12.5

예제 12.4의 세 부하에 병렬로 커패시터를 연결함으로써 0.95지상역률로 개선하려고 한다. 커패시터의 커패시턴스를 얼마로 해야 하는가?

예제 12.4로부터 부하에 대한 P,Q는

$$P_{ab} = 45 \,\text{kW}, \quad Q_{ab} = 22.9 \,\text{kvar}$$

$$P_{cb}=45\,\mathrm{kW},\quad Q_{cb}=22.9\,\mathrm{kvar}$$
 식 (12.27) 에서 개선 후의 $Q=45\frac{\sqrt{1-0.95^2}}{0.95}=14.7\,\mathrm{kvar}$ $\omega CV^2=22.9-14.7=8.2\,\mathrm{kvar}$ $\therefore C=\frac{8.2\times10^{-3}}{377\times660^2}=50\,\mu\mathrm{F}$

12.7 최대전력의 전달

4.3절에서 우리는 저항회로에서의 최대전력의 전달문제를 고찰하였다. 여기서 는 그림 12.12 (a)와 같이 사인파전원을 포함한 정상상태회로의 단자 a-b에 부 하임피던스 \mathbf{Z}_L 을 연결할 때 이에 최대의 전력이 전달될 조건을 구해 보자. 우선 단자 a-b 좌측을 그림 (b)와 같이 테브난의 등가회로로 바꾸어 놓고 생각한다.

 $Z_{\mathit{Th}} \!=\! R_{\mathit{Th}} \!+\! j X_{\mathit{Th}}$, $Z_{\mathit{L}} \!=\! R_{\mathit{L}} \!+\! j X_{\mathit{L}}$ 이고 R_{L} , X_{L} 이 독립적으로 가변인 경우 이 경우 부하 $oldsymbol{Z}_L$ 에의 전력은

$$P_{L} = R_{L}I^{2} = R_{L} \left(\frac{V_{Th}}{|\boldsymbol{Z}_{Th} + \boldsymbol{Z}_{L}|} \right)^{2} = \frac{V_{Th}^{2} R_{L}}{(R_{Th} + R_{L})^{2} + (X_{Th} + X_{L})^{2}}$$
(12.28)

 R_L 이 어떤 값을 갖든 $X_L = - \, X_{Th}$ 로 하면 분모가 최소가 되고 P_L 은 최대가 된 다. 그러므로 우선 $X_L = -X_{Th}$ 로 하면

$$P_L = \frac{V_{Th}^{\ 2} R_L}{(R_{Th} + R_L)^2}$$

그림 12.12 사인파 정상상태에서의 최대전력의 전달

이것은 식 (4.3)과 일치한다. 그러므로 이제 R_L 을 조정하여 $R_L = R_{Th}$ 로 하면 P_L 은 최대가 된다. 따라서

$$oldsymbol{Z}_L = oldsymbol{Z}_{Th}^*$$
 (공액정합) (12.29)

일 때, 즉 부하임피던스를 등가전원의 공액과 같게 택할 때 — 이것을 공액정합 (conjugate matching)이라 한다 — 부하에 최대전력이 전달되고 그 값은 식 (4.5)와 같다. 즉

$$P_{L(\text{max})} = \frac{V_{Th}^2}{4R_{Th}} \tag{12.30}$$

[수치예] 내부임피던스 $4+j3\Omega$ 인 $100\mathrm{V}$ 전압전원으로부터 최대전력을 얻기 위한 부하임피던스는 $4-j3\Omega$ 이고 이때의 최대전력은 $\frac{100^2}{4\times4}=625\mathrm{W}$

$Z_{\scriptscriptstyle L}$ 의 각이 고정되어 있고, 그 크기만 가변인 경우

13.7절에서 배우게 되겠지만 변압기를 이용하면 \mathbf{Z}_L 의 각은 고정시키고 그 크기만을 변화시킬 수 있다.

이 경우에는

$$\boldsymbol{Z}_L = Z_L / \theta_L = Z_L \cos \theta_L + j Z_L \sin \theta_L \tag{12.31}$$

라 놓고, $R_L = Z_L \cos \theta_L$, $X_L = Z_L \sin \theta_L$ 을 식 (12.28)에 대입하면

$$P_{L} = V_{Th}^{2} \frac{Z_{L} \cos \theta_{L}}{(R_{Th} + Z_{L} \cos \theta_{L})^{2} + (X_{Th} + Z_{L} \sin \theta_{L})^{2}}$$
(12.32)

여기서 Z_L 이외에 모든 양은 고정되어 있으므로 $dP_L/dZ_L=0$ 으로 놓음으로써 최대전력의 전달조건을 구해 보면 $Z_L^2=R_{Th}^{-2}+X_{Th}^{-2}$, 즉

$$|\boldsymbol{Z}_L| = |\boldsymbol{Z}_{Th}| \tag{12.33}$$

 $m{Z}_L$ 의 크기를 $m{Z}_{Th}$ 의 크기와 같게 할 때 부하에 최대전력이 공급된다. $m{Z}_{Th}$ 의 각이 그다지 크지 않을 때에는 $m{Z}_L$ 을 편리한 대로 순저항으로 가정하고(즉, $m{Z}_L$

의 각을 0으로 고정시키고) <u>식 (12.33)을 적용해도 [1]의 **공액정합**에 비하여 부</u>하전력이 그다지 떨어지지 않는다(다음 예제 참고).

[수치에] 내부임피던스가 $40+j30\,\Omega$ 인 전압전원에 부하임피던스 Z_L/θ (단, θ 는 고 정)을 연결할 때 $Z_L=\sqrt{40^2+30^2}=50\,\Omega$ 으로 하면 최대전력이 전달된다.

예제 12.6

그림 12.12 (b)의 회로에서 $m{V}_{Th} = 12\underline{/0^\circ}$ V이고 $m{Z}_{Th} = 600 + j150\,\Omega$ 이다.

- (a) 최대전력을 얻기 위한 부하임피던스 및 이때의 부하전력을 구하라.
- (b) 만일 부하가 순저항이어야 한다면 최대전력을 받기 위한 그 최적저항치 및 이때 받는 전력을 구하라.

풀 이

(a) 식 (12.29)에 의하여 ${\bf Z}_L = 600 - j150\,\Omega$ 으로 하면 이때의 공급전력은 식 (12.30)에 의하여

$$P_{L(\text{max})} = \frac{12^2}{4 \times 600} = 0.06 \,\text{W}$$

(b) 식 (12.33)에 의하여 $R_L = |600 - j150| = 618 \, \Omega$ 으로 하면

$$P_L {= R_L I^2 {= 618 \times \frac{12^2}{|600 + j150 + 618|^2}} = 0.0591 \,\mathrm{W}$$

불편하게 부하에 커패시터를 부가하여 공액정합을 하지 않더라도 부하전력에는 거의 손해가 없음을 알 수 있다.

공액정합을 하면 효율이 떨어지고[식 (4.6)] 또 단자전압이 개방시의 반으로 떨어지므로 대전력을 취급하는 전력계통에는 불리하지만, 저전력을 취급하는 전 자 및 통신회로에서는 효율의 저하에도 불구하고 주어진 신호원(흔히 미약함)으로부터 최대전력을 얻는 것이 큰 관심이 되므로 공액정합을 한다.

연/습/문/제

- 12.1 어떤 코일에 DC 전압 100 V를 가했더니 200 W의 전력이 소비되고, AC 60 Hz, 100 V을 가했더니 100 W가 소비되었다. 이 코일의 저항과 인덕턴스를 구하라.
- 12.2 어떤 부하에 AC 전력이 공급되고 있다. 부하의 단자전압은 200 V, 단자전류는 10 A이고 또 전압이 전류보다 40° 앞섬을 알았다. 다음을 구하라.
 - (a) 평균전력

(b) 무효전력

(c) 피상전력

- (d) 단자에서 본 등가임피던스
- 12.3 입력임피던스가 $Z=3-j4\Omega$ 인 부하가 $100\,\mathrm{V}$, $60\,\mathrm{Hz}$ 전원에 연결되어 있다. 문제 12.2의 (d)항을 제외한 각 항을 반복하라.
- **12.4** 그림 p 12.4의 회로에 대하여 다음을 구하라.
 - (a) 역 률
- (b) 무효율
- (c) 평균전력

- (d) 무효전력
- (e) 피상전력
- (f) 무효전류

- **12.5** 60 Hz, 120 V 전원에 연결된 어떤 부하가 6 A 지상전류로 500 W의 전력을 취하고 있다. 다음을 구하라.
 - (a) 역 률

(b) 전압과 전류와의 상차

(c) 무효전력

- (d) 부하임피던스
- 12.6 예제 10.5의 결과를 이용하여 그림 10.8의 회로에서 입력단자에서의 P, Q를 구하고 이것들이 각각 회로 내의 각 소자에서의 P의 합, Q의 합과 같음을 보여라.
- 12.7 그림 12.10 (b)에서 부하의 $P=45\,\mathrm{kW},\ Q=22.9\,\mathrm{kvar}$ 이고 부하전류= $76.5\,\mathrm{AP}$ 을 알았다. 송전단 $a-b\,\mathrm{MM}$ 의 P와 Q를 구하고, 이로부터 송전단전압 V_{ab}

를 구하라.

- **12.8** 그림 p 12.8과 같이 60 Hz, 120 V 발전기에 용접기, 전열기, 전동기의 세 부하가 병렬로 연결되어 있다. 다음을 구하라.
 - (a) 세 부하가 발전기에서 취하는 전전력, 전무효전력 및 전피상전력
 - (b) 부하에 커패시터를 병렬로 연결하여 발전기단자에서의 역률을 1로 할 때 발전기가 공급하는 전피상전력

- **12.9** 문제 12.8에서 발전기단자에서의 역률을 0.9로 하고자 한다. 병렬커패시터의 커패시턴스값을 결정하라.
- 12.10 내부임피던스가 $500+j100\,\Omega$ 인 $10\,\mathrm{VP}$ 의 전압전원이 부하에 전력을 공급하고 있다. 부하임피던스를 얼마로 하면 이에 최대의 전력을 공급할 수 있겠는가? 또 이때의 최대전력을 구하라.
- **12.11** 식 (12.33)을 유도하라.
- **12.12** 그림 p 12.12에서 부하에 최대전력이 공급되기 위한 \mathbf{Z}_L 와 이때의 최대전력을 구하라.

그림 p 12.12