

## 🏥 Proyecto de Análisis de Datos de Salud



## Descripción del Proyecto

Este proyecto presenta un análisis completo de datos de salud con 100,000 registros ficticios de pacientes, utilizando tecnologías modernas de análisis de datos como Dask, Matplotlib, Seaborn y Plotly para crear visualizaciones estáticas e interactivas.

## **©** Objetivos Cumplidos

- 🔽 Generación de Base de Datos Ficticia: 100,000 registros realistas de salud
- 🔽 Análisis Exploratorio con Dask: Procesamiento eficiente de grandes volúmenes de datos
- ✓ Visualizaciones Estáticas: Gráficos con Matplotlib y Seaborn
- Visualizaciones Interactivas: Dashboards con Plotly
- ✓ Datos Estructurados: Archivos CSV y JSON para reutilización

## **III** Datos Generados

#### Base de Datos Principal

- Archivo: data/health\_data\_100k.csv
- Registros: 100,000 pacientes
- Columnas: 27 variables
- **Tamaño**: ~115 MB

#### Variables Incluidas

- Demográficas: Edad, género, provincia, fecha de nacimiento
- Métricas de Salud: IMC, presión arterial, frecuencia cardíaca, glucosa, colesterol, hemoglobina
- Diagnósticos: Diagnóstico principal, medicamento principal
- Temporales: Fechas de consultas, número de consultas
- Económicas: Costos de tratamiento, tipo de seguro médico
- Estilo de Vida: Actividad física, estado de fumador

## Análisis Realizados

### 1. Estadísticas Descriptivas con Dask

- Archivo: analysis/estadisticas\_descriptivas.csv
- Estadísticas completas de todas las variables numéricas
- · Distribuciones categóricas
- · Métricas de tendencia central y dispersión

## 2. Análisis Demográfico

- **Visualizaciones**: analisis\_demografico.png , demografico\_interactivo.html
- Distribución de edades por género
- · Pirámide poblacional

- · Distribución geográfica por provincias
- · Análisis de seguros médicos

#### 3. Análisis de Métricas de Salud

- **Visualizaciones**: metricas\_salud.png , metricas\_3d.html
- Matriz de correlaciones entre variables de salud
- · Análisis de IMC por género
- Relaciones entre presión arterial, edad e IMC
- Visualización 3D interactiva

## 4. Análisis de Diagnósticos

- **Visualizaciones**: diagnosticos\_comunes.png , diagnosticos\_sunburst.html
- Top 15 diagnósticos más comunes
- Distribución por grupos de edad y género
- · Análisis de costos por diagnóstico
- Número de consultas por diagnóstico

### 5. Análisis Temporal

- Visualizaciones: tendencias\_temporales.png, temporal\_interactivo.html
- Evolución de consultas por mes
- Análisis estacional
- Tendencias temporales por diagnóstico

# Visualizaciones Generadas

## **Gráficos Estáticos (PNG)**

- 1. analisis\_demografico.png Análisis demográfico completo
- 2. analisis\_diagnosticos.png Análisis de diagnósticos por grupos
- 3. diagnosticos\_comunes.png Top diagnósticos más frecuentes
- 4. metricas\_salud.png Correlaciones y distribuciones de métricas
- 5. tendencias\_temporales.png Evolución temporal de consultas

#### **Dashboards Interactivos (HTML)**

- 1. dashboard\_completo.html Dashboard principal con 9 visualizaciones
- 2. demografico\_interactivo.html Análisis demográfico interactivo
- 3. metricas\_3d.html Visualización 3D de métricas de salud
- 4. diagnosticos\_sunburst.html Diagnósticos en formato sunburst
- 5. temporal\_interactivo.html Tendencias temporales interactivas

#### Gráficos Plotly Especializados (HTML)

- 1. distribucion\_edad\_genero.html Distribución de edades por género
- 2. correlaciones\_heatmap.html Mapa de calor de correlaciones
- 3. scatter\_3d\_metricas.html Scatter 3D de métricas principales
- 4. treemap\_costos.html Treemap de costos por diagnóstico y provincia
- 5. violin\_metricas.html Distribuciones violin por diagnóstico
- 6. timeline\_consultas.html Timeline de consultas médicas
- 7. radar\_perfiles.html Perfiles de salud por grupo de edad

## Estructura del Proyecto

```
health_analytics_project/

data/

health_data_100k.csv  # Base de datos principal

dashboard_data.json  # Datos para dashboard web

edad_genero_data.json  # Datos edad/género

correlaciones_data.json  # Matriz de correlaciones

costos_data.json  # Datos de costos

timeline_data.json  # Datos para gráfico radar

sunburst_data.json  # Datos para gráfico radar

sunburst_data.json  # Datos para sunburst

analysis/

estadisticas_descriptivas.csv  # Estadísticas con Dask

metricas_clave.json  # Métricas principales

visualizations/

[5 archivos PNG]  # Gráficos estáticos

[13 archivos HTML]  # Dashboards interactivos

generate_health_data.py  # Generador de datos ficticios

health_analytics_dask.py  # Análisis principal con Dask

plotly_charts_generator.py  # Generador de gráficos Plotly

RESUMEN_PROYECTO.md  # Este documento
```

## 🔑 Métricas Clave del Dataset

Total de Pacientes: 100,000
Edad Promedio: 45.0 años

• IMC Promedio: 26.2

• Costo Total de Tratamientos: €75,003,901

• Costo Promedio por Paciente: €750

Total de Consultas: 500,196

• Consultas Promedio por Paciente: 5.0

Diagnósticos Únicos: 10
 Provincias Cubiertas: 24

• Pacientes en Estado Crítico: 1,140 (1.1%)

• Porcentaje con Hipertensión: 19.9%

## 🏆 Diagnósticos Más Comunes

1. Hipertensión: 19,934 pacientes (19.9%)

2. **Diabetes Tipo 2**: 14,836 pacientes (14.8%)

3. **Ansiedad**: 10,199 pacientes (10.2%)

4. **Obesidad**: 10,172 pacientes (10.2%)

5. **Artritis**: 9,704 pacientes (9.7%)

## 🏋 Tecnologías Utilizadas

• Python 3.11: Lenguaje principal

• Dask: Procesamiento eficiente de grandes datasets

• Pandas: Manipulación de datos

- NumPy: Operaciones numéricas
- · Matplotlib: Visualizaciones estáticas
- Seaborn: Visualizaciones estadísticas
- Plotly: Dashboards interactivos
- Faker: Generación de datos ficticios



## 🦚 Características Destacadas

#### **Análisis con Dask**

- Procesamiento eficiente de 100,000 registros
- Estadísticas descriptivas optimizadas
- · Manejo de memoria eficiente

#### **Visualizaciones Interactivas**

- Gráficos 3D navegables
- · Dashboards con múltiples vistas
- · Filtros y zoom interactivos
- Tooltips informativos

#### **Datos Realistas**

- · Correlaciones médicas realistas
- · Distribuciones demográficas coherentes
- · Costos de tratamiento variables
- · Fechas y temporalidad consistente



## Uso del Proyecto

#### Para Análisis de Datos

- 1. Cargar health\_data\_100k.csv en cualquier herramienta de análisis
- 2. Utilizar los archivos JSON para análisis específicos
- 3. Reproducir análisis ejecutando los scripts Python

#### Para Dashboards Web

- 1. Abrir cualquier archivo HTML en navegador
- 2. Utilizar dashboard\_completo.html como punto de entrada
- 3. Integrar datos ISON en aplicaciones web personalizadas

#### Para Desarrollo

- 1. Modificar scripts para análisis adicionales
- 2. Extender visualizaciones con nuevas métricas
- 3. Adaptar generación de datos para otros casos de uso

## Insights Principales

- 1. Correlación Edad-Salud: Clara correlación entre edad y métricas como presión arterial y colesterol
- 2. Distribución de Género: Ligero predominio femenino (52% vs 48%)

- 3. Costos Variables: Los costos varían significativamente por diagnóstico y edad
- 4. Patrones Temporales: Variaciones estacionales en consultas médicas
- 5. Riesgo Cardiovascular: Identificación de grupos de alto riesgo

## 🔮 Posibles Extensiones

- Machine Learning: Modelos predictivos de riesgo
- Dashboard Web Completo: Aplicación web interactiva
- Análisis Geoespacial: Mapas de distribución de enfermedades
- Análisis de Series Temporales: Predicción de tendencias
- Clustering: Segmentación de pacientes por perfiles de salud

#### Proyecto completado exitosamente 🔽



Fecha: Julio 2025

Autor: Yefferson josue rodriguez castillo