EEE-521 Sinyaller ve Sistemler HW-IV

Dr. Öğr. Üyesi: H. Oktay ALTUN18/10/2018

İsim ve Soyisim:			
Numara:			

1. Aşağıda verilen blok diyagrama göre sistemin kutupları aşağıdakilerden hangisidir?

- A. $p_0 = e^{j \cdot \frac{\pi}{2}}$ ve $p_1 = e^{-j \cdot \frac{\pi}{2}}$
- B. $p_0 = e^{j \cdot \frac{\pi}{6}}$ ve $p_1 = e^{-j \cdot \frac{\pi}{6}}$
- C. $p_0 = e^{j \cdot \frac{\pi}{3}}$ ve $p_1 = e^{-j \cdot \frac{\pi}{3}}$
- D. $p_0 = e^{j \cdot \pi}$ ve $p_1 = e^{-j \cdot \pi}$
- E. $p_0 = e^{j \cdot \frac{\pi}{4}}$ ve $p_1 = e^{-j \cdot \frac{\pi}{4}}$
- 2. Kutupları $p_0=e^{j\cdot\frac{\pi}{4}}$ ve $p_1=e^{-j\cdot\frac{\pi}{4}}$ olan sistemin blok diyagramı aşağıdakilerden hangisidir?

3. $x[n] = \delta[n]$ ve $y[n] = 3 \cdot x[n] - \frac{2}{5} \cdot y[n-1] + 7 \cdot y[n-2]$ olan bir sistemin impulse-response'ın z transformu alınmış hali olan H(z) aşağıdakilerden hangisidir?

A.
$$H(z) = \frac{3 \cdot z^2}{5 \cdot z^2 + 2 \cdot z - 35}$$

B.
$$H(z) = \frac{3 \cdot z^2}{z^2 + 2 \cdot z - 7}$$

C.
$$H(z) = \frac{15 \cdot z^2}{5 \cdot z^2 + 2 \cdot z - 35}$$

D.
$$H(z) = \frac{3 \cdot z^2}{z^2 - 2 \cdot z - 7}$$

E.
$$H(z) = \frac{15 \cdot z^2}{z^2 + 2 \cdot z - 7}$$

4. $H(z) = \frac{36 \cdot z^2}{3 \cdot z^2 - 5 \cdot z + 2}$ olan bir sistemin y[n] difference equation'ı aşağıdakilerden hangisidir?

A.
$$y[n] = 12 \cdot x[n] + \frac{5}{3} \cdot y[n-1] - \frac{2 \cdot y[n-2]}{3}$$

B.
$$y[n] = 12 \cdot x[n] + \frac{5}{3} \cdot y[n-1] + \frac{2 \cdot y[n-2]}{3}$$

C.
$$y[n] = 12 \cdot x[n] - \frac{5}{3} \cdot y[n-1] + \frac{2 \cdot y[n-2]}{3}$$

D.
$$y[n] = 12 \cdot x[n] + \frac{5}{3} \cdot y[n+1] - \frac{2 \cdot y[n-2]}{3}$$

E.
$$y[n] = 12 \cdot x[n] + \frac{5}{3} \cdot y[n+1] - \frac{2 \cdot y[n+2]}{3}$$

5. Aşağıda blok diyagrama göre sistemin impulse response'nın z-transform alınmış hali olan H(z) aşağıdakilerden hangisidir?

A.
$$H(z) = \frac{z^2}{2 \cdot z^2 + 4 \cdot z - 7}$$

B.
$$H(z) = \frac{2 \cdot z^2}{2 \cdot z^2 - 7 \cdot z - 4}$$

C.
$$H(z) = \frac{z^2}{4 \cdot z^2 - 4 \cdot z - 7}$$

D.
$$H(z) = \frac{2 \cdot z^2}{2 \cdot z^2 - 7 \cdot z + 4}$$

E.
$$H(z) = \frac{z^2}{2 \cdot z^2 - 4 \cdot z + 7}$$