5118006-03 Data Structures

Heap

17 May 2024

Shin Hong

Heap

- Heap is a complete binary tree where a consistent ordering exists in every pair of parent and child nodes
 - each element must have a key to represent its priority
 - e.g. the element of a parent node is always greater than or equal to that of its children nodes
- Heap is frequently used for implementing priority queues

Max Heap

- A max heap is a complete binary tree where the key of a parent is no smaller than the keys of its children
 - c.f., min heap

• Ex.

Abstract Data Type

 Objects: an array of elements each of which has a key

Operations

- create(M): create a heap of capacity M
- is_empty(h): check if heap h is empty or not
- top(h): returns the greatest element in heap h
- pop(h): remove the greatest element from heap h
- push(h, e): insert an element e to heap h

Push

- Called insertion or enqueue
- Two requirements
 - keep the binary tree as complete
 - keep the heap property
- Bubble-up algorithm
 - 1. create the "next" node of the complete tree
 - place a newly given element to the last node temporary
 - replace the new node with its parent if they violate the heap property; repeat this until there's no violation

Push: Algorithm

Input

E [1..*M*], an array of capacity *M* holding *N* elements as a heap elem, a new element to push in the heap

Output

E [1..M] holding N + 1 elements as a heap

Procedure:

```
if N + 1 > M then raise an error
N = N + 1
E[N] = elem
i = N
while i > 1 and E[parent(i)] < E[i] do
    swap E[parent(i)] and E[i]
    i = parent(i)</pre>
```

Pop

Called Dequeue

Algorithm

- replace the element in "last" node with that of the root and remove the last node
- replace X with the child whose key is greater than its sibling if X violates the heap property; repeat this until there's no violation

Example

Heap Sort

- Idea
 - Push all elements to sort to a max heap
 - Pop the greatest one repeatedly until no element remains
- Adjust operation on a heap (i.e., heapify)
 - Assume that a child of the root is already a heap,
 but the root may not be greater than its children
 - Swap the root node and its greatest child until the heap property is satisfied