BERT を用いた原文と要約文の 分散表現の最適な統合手法の検討

創発ソフトウェア研究室 高山裕成

一研究背景

大規模言語モデル (Large Language Models, LLM) の進化

Transformer 構造を持つ <u>BERT</u> や <u>GPT</u> (Generative Pre-trained Transformer) などを 活用した LLM の商業利用への需要拡大

⇒文章全体の適切な分散表現を得るための プーリング戦略が重要

先行研究

CLS-Average Pooling (CAP) 層の導入 [大和, 2024][1]

学習可能なパラメータp, q (≥ 0) を用いて $E_{[CLS]}$ 及び, $E_{Av,q}$ の重み付き和

 $pE_{[CLS]} + qE_{Avg}$

を文の分散表現とする

⇒テキスト分類タスクにおいて, $E_{[CLS]}$, E_{Avg} のみを用いた場合よりも高い性能を発揮

提案手法

CAP 層における要約文ベクトル項 E_{sum} の追加

学習可能なパラメータp, q, r(≥ 0)を用いて $E_{[CLS]}$, E_{Avg} , 及び E_{sum} の重み付き和

$$pE_{[CLS]} + qE_{Avg} + rE_{sum}$$

を文の分散表現とする

- 1. 2 つの入力系列を独立した<u>訓練済み日本語 BERT モデル</u>へ入力 日本語 BERT-base モデル (東北大学)
- 2. 各 BERT モデルの最終層の出力より $E_{[CLS]}$, E_{Avg} , 及び E_{sum} を 算出し、提案手法であるプーリング層へ入力

実験設定

【livedoor ニュースコーパスデータセットを用いたテキスト分類】

データセットに含まれる各記事データ D は記事タイトル D_{title} , 記事本文 D_{body} , カテゴリーラベル $D_{label} \in \{0, 1, ..., 8\}$ を持つ

-要約文 $D_{summary}$ の生成

ℒ: 大規模言語モデル API (e.g., ChatGPT API, <u>PLaMo API</u>)

学習パラメータ	値		重み初期値
エポック数	20	従来手法	$(p,q) = (\frac{1}{2}, \frac{1}{2})$
バッチサイズ	16	提案手法	$(p,q,r) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
最適化手法	Adam		\- \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
学習率	3.0×10^{-5}		
損失関数	Cross Entropy Loss		
分類器	全結合層		

今後の課題

- 要約文の妥当性, 生成手法改善の検討
- 他のデータセットを用いた提案手法の有効性の確認
- 最適な学習パラメータやアーキテクチャの探索
- [1] 大和秀徳. BERT の分散表現に対する学習可能な重みを持つプーリング手法の提案, 大阪公立大学大学院情報学研究科 基幹情報学専攻 知能情報分野 修士論文, 2024.