Курсовая Работа по Дискретной Математике

- 1. Определить для орграфа, заданного матрицей смежности:
 - а) матрицу односторонней связности (2 способа, включая итерационный алгоритм);
 - б) матрицу сильной связности;
 - в) компоненты сильной связности;
 - г) матрицу контуров;
 - д) изображение графа и компонент сильной связности.
- **2.** Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.
- **3.** Используя алгоритм "фронта волны", найти все минимальные пути из первой вершины в последнюю орграфа, заданного матрицей смежности.
- **4.** Используя алгоритм Форда, найти минимальные пути из первой вершины во все достижимые вершины в нагруженном графе, заданном матрицей длин дуг.
 - 5. Найти остовное дерево с минимальной суммой длин входящих в него ребер.

Значения $X_1 - X_{13}$ приведены в задании, значения $X_{14} - X_{17}$ равны 5.

- **6.** Пусть каждому ребру неориентированного графа соответствует некоторый элемент электрической цепи. Составить линейно независимые системы уравнений Кирхгофа для токов и напряжений. Пусть первому и пятому ребру соответствуют источники тока с ЭДС E_1 и E_2 (полярность выбирается произвольно), а остальные элементы являются сопротивлениями. Используя закон Ома, и, предполагая внутренние сопротивления источников тока равными нулю, получить систему уравнений для токов.
 - 7. Построить максимальный поток по транспортной сети.

Значения величин a, b, c, d, e, f, g приведены в задании. Начинать с окаймляющих цепей.

- 1. Изучить алгоритм.
- 2. Составить программу алгоритма (На оценку «отлично» с графическим интерфейсом и визуализацией графа).
- 3. Отладить тестовые примеры.
- 4. Провести оценку сложности алгоритма.
- 5. Составить прикладную задачу, для решения которой используется данный алгоритм.

ОБЩИЕ СВЕДЕНИЯ О КУРСОВОЙ РАБОТЕ

Курсовая работа предназначена для выполнения студентами Института «Информационные технологии и прикладная математика» по дисциплинам «Дискретная математика» и «Теория графов и математическая логика». Работа содержит семь типовых заданий и одно индивидуальное. Выполнение восьмого, индивидуального задания, требует самостоятельного изучения теории по спец литературе, применения изученного метода к решению поставленной задачи, программной реализации алгоритма с применением графических средств.

Правила оформления

Курсовая работа выполняется, а затем сдается преподавателю в <u>набранном</u> виде на листах формата A4.

Первая страница – титульный лист оформляется согласно образцу.

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ПРИКЛАДНОЙ МАТЕМАТИКИ КАФЕДРА МАТЕМАТИЧЕСКОЙ КИБЕРНЕТИКИ

КУРСОВАЯ РАБОТА

НАЗВАНИЕ ТЕМЫ ЗАДАНИЯ № 8

Студент: Иванов И.И. Группа 80-101Б

Преподаватель: доц. Петров П.П.

Оценка:

Дата:

Вторая и третья страницы – индивидуальное задание на выполнение курсовой работы. Оформляется согласно выданному варианту.

Выполнение курсовой работы

С четвертой страницы курсовой работы начинается решение заданий. Первые семь заданий стандартные для всех студентов.

Восьмое задание индивидуальное для каждого студента. Оформление этого задания должно содержать следующие пункты.

- 1. Основные понятия и определения по теме работы.
- 2. Описание алгоритма.
- 3. Логическая блок-схема.
- 4. Описание программы и инструкции по работе с ней.
- 5. Вычисление сложности алгоритма.
- 6. Тестовый пример с решением.
- 7. Скриншоты программы для данного примера.
- 8. Прикладная задача.

(Листинг не нужен!)

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

6 12 ∞ ∞ ∞ ∞ 1 ∞ 3 ∞ 6 ∞ ∞ ∞ 3 ∞ ∞ 2 ∞ ∞ ∞ $3 \propto 2$ $\infty \quad \infty$ ∞ ∞ ∞ 3 ∞ 2 5 13 ∞ ∞ ∞ 2 ∞ 6 ∞ ∞ ∞ 2 3 7 8

5. 1,2,1,4,2,7,2,1,8,3,2,4,5

- **7.** 3,4,5,8,4,9,3
- **8**. Кратчайшие пути между всеми парами вершин графа. Липский В. Комбинаторика для программистов.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

 $\begin{pmatrix}
\infty & 3 & 5 & 6 & \infty & \infty & \infty & \infty \\
2 & \infty & 1 & 2 & \infty & \infty & \infty & \infty \\
\infty & 1 & \infty & \infty & 3 & \infty & \infty & \infty \\
3 & \infty & \infty & \infty & 4 & 7 & \infty & 9 \\
5 & \infty & \infty & 4 & \infty & \infty & 4 & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 1 & 2 \\
7 & \infty & \infty & \infty & \infty & \infty & \infty & \infty
\end{pmatrix}$

5. 5,1,6,1,4,3,2,5,6,7,2,1,4

6.

- **7**. 4,3,6,7,3,10,4
- 8. Эйлеровы и гамильтоновы пути (циклы).

Липский В. Комбинаторика для программистов

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix}
\infty & 4 & 5 & 3 & \infty & \infty & \infty \\
10 & \infty & 2 & \infty & 3 & \infty & \infty \\
\infty & 2 & \infty & 3 & 1 & 4 & 7 \\
\infty & \infty & 2 & \infty & \infty & 7 & \infty \\
\infty & \infty & 1 & \infty & \infty & \infty & 4 \\
\infty & \infty & 4 & \infty & \infty & \infty & 2 \\
2 & \infty & 3 & \infty & 5 & 7 & \infty
\end{pmatrix}$

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

6.

- **7.** 3,4,6,10,2,9,2
- 8. Нахождение компонент сильной связности графа;

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

4. $\begin{pmatrix}
\infty & 3 & 5 & \infty & 6 & \infty & \infty & \infty \\
2 & \infty & 1 & 4 & \infty & \infty & \infty & \infty \\
3 & \infty & \infty & 4 & 2 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 3 & 5 & \infty \\
4 & \infty & \infty & \infty & \infty & 6 & \infty & 7 \\
\infty & \infty & \infty & \infty & \infty & \infty & 3 & 2 \\
6 & \infty & 1 \\
8 & \infty & \infty & \infty & 11 & \infty & \infty & \infty
\end{pmatrix}$

5. 7,1,2,8,9,7,4,6,7,1,3,5,6

6.

7. 3,3,4,9,2,7,5

8. Перечисление путей ориентированного графа методом латинской композиции.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

 ∞ 5 9 ∞ 13 3 1 4 ∞ ∞ ∞ ∞ 2 ∞ ∞ ∞ **2** ∞ ∞ ∞ ∞ ∞ 3 ∞ 2 2 2 2 3

5. 4,3,2,5,4,7,8,2,3,7,1,8,5

- **7.** 3,5,5,10,3,11,5
- **8**. Нахождение максимального пути в нагруженном графе. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

5. 1,5,4,8,9,2,3,4,6,7,1,8,2

6.

- **7**. 3,4,6,7,5,10,3
- 8. Нахождение наименьшего покрытия простого графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

5. 5,6,3,4,2,1,6,7,3,5,4,2,5

6.

- **7**. 4,3,7,8,4,8,5
- 8. Раскраска вершин графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 5 & 2 & 7 & \infty & \infty & \infty & \infty \\
3 & \infty & 2 & 3 & \infty & \infty & \infty & \infty \\
\infty & 2 & \infty & \infty & 3 & \infty & \infty & \infty \\
5 & \infty & \infty & \infty & 1 & 4 & \infty & 9 \\
4 & \infty & \infty & 1 & \infty & \infty & 2 & \infty \\
6 & \infty & \infty & \infty & \infty & \infty & 4 & 5 \\
\infty & \infty & \infty & \infty & \infty & \infty & 4 & \infty & 9 \\
8 & \infty & \infty & \infty & \infty & \infty & \infty & 15 & \infty
\end{pmatrix}$$

5. 6,1,3,5,4,3,9,2,6,7,2,3,1

- **7.** 4,2,4,9,5,9,4
- **8**. Пересчет прадеревьев ориентированного графа и их построение. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

4. $\begin{pmatrix}
\infty & 2 & 5 & \infty & 6 & \infty & \infty & \infty \\
\infty & \infty & 2 & 7 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 1 & \infty & \infty & \infty \\
9 & \infty & \infty & \infty & \infty & 4 & 5 & \infty \\
\infty & \infty & \infty & \infty & \infty & 3 & \infty & 4 \\
\infty & \infty & \infty & \infty & \infty & \infty & 2 & 9 \\
\infty & 8 & \infty
\end{pmatrix}$

5. 1,3,5,4,3,2,6,7,8,1,5,4,3

6.

7. 5,5,5,10,4,8,2

8. Нахождение минимального потока в транспортной сети.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

4. $\begin{pmatrix} \infty & 6 & 3 & \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & 2 & 5 & \infty & 3 & \infty & \infty \\ 13 & 2 & \infty & \infty & 10 & \infty & 7 & \infty \\ \infty & \infty & \infty & \infty & 7 & \infty & \infty & 3 \\ \infty & \infty & \infty & 7 & \infty & \infty & \infty & 3 \\ \infty & \infty & \infty & 3 & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & \infty & 2 & 1 & \infty & \infty \\ \infty & 3 & 2 & \infty & \infty & 4 & 8 & \infty \end{pmatrix}$

5. 2,3,5,4,1,6,7,1,4,5,8,9,2

6.

- **7.** 5,4,6,7,2,9,4
- 8. Нахождение максимального паросочетания.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{pmatrix}$$

5 ∞ 6 ∞ ∞ 12 3 ∞ $\infty \quad \infty$ ∞ 7 $\infty \quad \infty$ 1 ∞ $\infty \quad \infty$ 5 6 2 ∞ ∞ ∞ 1 ∞ ∞ 3 ∞ ∞ ∞ 4 3 2 ∞ ∞ 2 ∞ ∞ ∞ ∞ 3 ∞ ∞ ∞

5. 3,4,2,1,5,7,6,2,4,3,6,7,8

6.

- **7.** 4,3,4,8,4,10,4
- 8. Построение максимальной клики в графе.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

4.
$$\begin{pmatrix}
\infty & 5 & 2 & 7 & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 6 & \infty & \infty \\
12 & \infty & \infty & 5 & \infty & 3 & \infty \\
\infty & 3 & 5 & \infty & 4 & 1 & 7 \\
\infty & \infty & \infty & 4 & \infty & \infty & 2 \\
\infty & \infty & \infty & 1 & \infty & \infty & 8 \\
\infty & 3 & 6 & 4 & 5 & 7 & \infty
\end{pmatrix}$$

5. 5,1,3,2,6,9,7,8,1,4,5,6,3

- **7.** 3,5,5,9,5,8,5
- **8**. Нахождение максимально внутренне устойчивых подмножеств графа. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

6 ∞ ∞ ∞ ∞ **7** ∞ ∞ ∞ ∞ 3 10 13 ∞ ∞ ∞ ∞ 3 $\infty \quad \infty$ ∞ ∞ ∞ 1 2 ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ 17

5. 3,9,8,7,6,1,5,4,3,2,7,8,2

- **7.** 3,4,6,10,2,9,2
- **8.** Нахождение минимальных внешне устойчивых подмножеств графа. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{vmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ \end{vmatrix}$$

5 ∞ 8 ∞ 6 ∞ ∞ $\infty \quad \infty$ 3 2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3 6 ∞ 2 3 5 7 ∞

5. 1,2,5,4,6,7,8,2,7,2,5,4,3

6.

- **7.** 4,3,4,7,3,10,3
- 8. Кодирование и декодирование с использованием матричного кодирования, групповые коды.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{vmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ \end{vmatrix}$$

 ∞ 3 10 3 ∞ ∞ 11 ∞ 7 2 ∞ 2 ∞ ∞ ∞ ∞ ∞ $\infty \infty 7$ 5 ∞ ∞ 2 ∞ 2 17

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

6.

- **7.** 5,5,5,8,3,8,6
- **8.** Перечисление контуров ориентированного графа методом латинской композиции.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

10 6 5 ∞ 15 ∞ ∞ 3 ∞ ∞ ∞ 1 **7** ∞ ∞ ∞ ∞ 17 ∞ ∞ ∞ ∞ **4** ∞ **3** ∞ $\infty \quad \infty$ ∞ ∞ 2 8 ∞ ∞ ∞ ∞ 2 ∞ 10 ∞ ∞ ∞ ∞ 7 6 5 4 ∞

5. 8,9,1,2,4,3,5,6,7,9,8,9,1

- **7.** 5,4,6,9,6,9,3
- **8.** Построение графа группы по образующим и определяющим соотношениям. И. Гроссман, В. Магнус. Группы и их графы.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

2.

 $\begin{pmatrix}
\infty & 8 & 3 & 6 & \infty & \infty & \infty \\
3 & \infty & \infty & 1 & 3 & \infty & \infty \\
4 & \infty & \infty & 2 & \infty & 6 & \infty \\
\infty & 1 & 2 & \infty & 5 & 4 & 9 \\
2 & \infty & \infty & 5 & \infty & \infty & 3 \\
5 & \infty & \infty & 4 & \infty & \infty & 5 \\
7 & \infty & \infty & \infty & 12 & \infty & \infty
\end{pmatrix}$

5. 5,4,2,3,8,1,2,7,2,4,1,2,1

6.

- **7.** 4,3,7,10,6,10,4
- 8. Раскраска ребер графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}$$

2 ∞ 4 6 13 ∞ ∞ ∞ ∞ ∞ $\infty \infty 4 \infty$ ∞ ∞ $4 \infty \infty \infty$ 5

5. 4,1,2,7,6,5,2,3,4,1,6,1,5

- **7.** 3,3,4,7,4,8,6
- 8. Разложение графа на максимально сильно связные подграфы. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

2 ∞ ∞ 2 $6 \infty \infty \infty \infty$ ∞ 6 **5** ∞ 3 ∞ ∞ 2 4 ∞ ∞ ∞ ∞ ∞ 3 ∞ ∞ ∞ ∞ ∞ 3 6 ∞ ∞ $\infty \quad \infty$ ∞ 1 5 ∞ ∞ ∞ ∞ ∞ 11 ∞ ∞ ∞

5. 6,5,3,4,2,11,8,1,5,4,6,2,3

6.

- **7.** 3,4,5,8,6,9,5
- 8. Раскраска планарных графов.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

4. $\begin{pmatrix}
\infty & 3 & \infty & \infty & 6 & \infty & \infty & \infty \\
13 & \infty & 3 & 9 & 2 & \infty & \infty & \infty \\
\infty & \infty & \infty & 5 & \infty & 2 & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 1 & 3 \\
\infty & 2 & \infty & \infty & \infty & 2 & 4 & \infty \\
\infty & \infty & 2 & \infty & \infty & \infty & 3 & \infty \\
\infty & \infty & \infty & 1 & \infty & \infty & \infty & 5 \\
2 & \infty & 5 & 7 & 4 & \infty & 8 & \infty
\end{pmatrix}$

5. 6,5,3,1,7,6,4,7,9,8,2,1,7

- **7.** 2,5,6,9,5,10,6
- **8.** Построение таблицы Кэли группы, заданной образующими и определяющими соотношениям.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

2.

4. $\begin{pmatrix}
\infty & 4 & \infty & 4 & \infty & 7 & \infty & \infty \\
4 & \infty & 8 & 1 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 1 & \infty & \infty & 5 \\
\infty & 1 & \infty & \infty & 9 & 2 & \infty & \infty \\
6 & \infty & 1 & \infty & \infty & \infty & 2 & 3 \\
7 & \infty & \infty & 2 & \infty & \infty & 4 & \infty \\
5 & \infty & \infty & \infty & 2 & \infty & \infty & \infty & \infty
\end{pmatrix}$

5. 5,8,1,7,3,2,8,7,4,5,2,3,4

- **7.** 5,4,4,10,6,8,6
- **8.** Построение плоского графа, изоморфного данному. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

 ∞ ∞ 12 ∞ 6 ∞ ∞ 3 5 1 4 ∞ 7 ∞ **3** ∞ $\infty \quad \infty$ ∞ 3 5 ∞ ∞ ∞ ∞ 2 ∞ ∞ 2 3 7)

5. 2,8,1,7,6,4,3,2,9,8,4,5,1

6.

- **7.** 6,3,5,7,2,9,6
- 8. Раскраска вершин гиперграфа.

Емеличев В.А. Лекции по теории графов.

Кристофидес Н. Теория графов. Алгоритмический подход.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.	0 1 0 1 1 0	0 0 1 0 0	0 1 0 1 1	1 1 1 0 1 1	0 1 0 0 0	1 0 1 1 1 0	0 0 0 0 1 0
	0	0	1	1	0	0	0
	1	0	1	0	1	1	0)

4.
$$\begin{pmatrix}
\infty & 2 & 13 & \infty & 4 & \infty & \infty & \infty \\
2 & \infty & 10 & \infty & 1 & \infty & \infty & \infty \\
\infty & \infty & \infty & 4 & \infty & 3 & \infty & 6 \\
5 & \infty & \infty & \infty & \infty & \infty & 1 & 3 \\
6 & 1 & \infty & \infty & \infty & 5 & \infty & \infty \\
3 & \infty & 3 & \infty & \infty & \infty & 7 & \infty \\
8 & \infty & \infty & 1 & \infty & \infty & \infty & 5 \\
\infty & \infty & \infty & \infty & \infty & 17 & \infty & \infty
\end{pmatrix}$$

5. 5,2,4,5,3,7,6,1,2,4,3,6,5

- **7.** 5,5,6,8,6,10,6
- **8.** Граф конденсации для графа, заданного матрицей смежности. http://e-maxx.ru/algo/strong_connected_components

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

	∞	9	2	∞	∞	6	∞	∞
4.	∞	∞	∞	∞	∞	∞	2	8
	∞	∞	∞	5	∞	3	∞	∞
	∞	∞	∞	∞	6	∞	3	∞
	∞	4						
	13	1	∞	1	∞	∞	∞	∞
	∞	∞	∞	∞	2	∞	∞	5
	3	6	2	90	7	8	90	∞

5. 1,3,2,8,6,2,9,3,4,5,3,1,6

6.

- **7.** 4,4,7,9,6,8,4
- 8. Ядро неориентированного графа.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

5 ∞ ∞ 7 2 5 10 ∞ ∞ ∞ 2 2 ∞ $\infty \quad \infty$ ∞ ∞ ∞ 3 5 ∞ ∞ ∞ ∞ ∞ 2 ∞ 3 3 11 ∞ ∞ ∞ ∞ 2 4 7 ∞ ∞ ∞ 3 3 ∞ ∞ ∞ ∞ ∞ 17 ∞ ∞ ∞ ∞ ∞ ∞

5. 3,4,5,1,8,7,6,2,3,4,5,3,1

6.

- **7.** 6,3,4,10,4,9,6
- **8**. Построение функции Гранди графа. Изучить возможность построения функции Гранди для графа, содержащего контуры.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

2.

4. $\begin{pmatrix}
\infty & 3 & 5 & \infty & \infty & \infty & \infty & \infty \\
2 & \infty & 1 & 9 & \infty & 5 & \infty & \infty \\
3 & 1 & \infty & \infty & 4 & \infty & 3 & \infty \\
5 & \infty & \infty & \infty & 2 & \infty & \infty & 3 \\
\infty & \infty & \infty & 2 & \infty & \infty & \infty & 6 \\
\infty & \infty & \infty & 3 & \infty & \infty & 2 & \infty \\
4 & \infty & \infty & \infty & 2 & 2 & \infty & \infty \\
8 & \infty & 13 & \infty & \infty & \infty & \infty & \infty
\end{pmatrix}$

5. 7,1,2,8,9,7,4,6,7,1,3,5,6 **6.**

7. 3,4,6,7,5,10,3

8. Планарный граф. Распознать является ли граф планарным: выделить соответствующие подграфы из теоремы Понтрягина- Куратовского.

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

2.

4.
$$\begin{pmatrix}
\infty & 7 & 1 & \infty & \infty & 2 & \infty & \infty \\
11 & \infty & \infty & \infty & \infty & \infty & 2 & 6 \\
\infty & \infty & \infty & 5 & \infty & 3 & \infty & \infty \\
\infty & \infty & \infty & \infty & 4 & \infty & 2 & \infty \\
\infty & 3 \\
\infty & 6 & \infty & 3 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 1 & \infty & \infty & 5 \\
6 & \infty & \infty & 4 & 7 & 5 & 8 & \infty
\end{pmatrix}$$

5. 8,9,1,2,4,3,5,6,7,9,8,9,1

- **7.** 3,4,5,8,6,9,5
- **8**. Раскраска планарного графа. Раскраска географических карт. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

2.

 ∞ 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ $\infty \quad \infty$ ∞ ∞ ∞ 3 10 13 3 5 ∞ ∞ ∞ ∞ 2 1 1 4 ∞ ∞ ∞ ∞ 7 5 4 ∞

5. 2,8,1,7,6,4,3,2,9,8,4,5,1

- **7.** 5,5,6,8,6,10,6
- **8.** Перечисление контуров орграфа методом латинской композиции. Кофман А. Введение в прикладную комбинаторику

$$\mathbf{1.} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

2.

	ĮU	U	U	ı	ı	U	ı	υļ
	1	0	1	1	0	1	0	1
	1	1	0	1	1	1	0	0
2	1 1 0 0	0	1	0	1	1	1	0
3.	0	0	1	1	0	1	1	0
	1	1	1	0	1	0	0	0
	0	0 1	1	0	1	1	0	0
	0	1	1	0	0	0	1	0)

$$\begin{pmatrix}
\infty & 8 & 3 & 6 & \infty & \infty & \infty \\
3 & \infty & \infty & 1 & 3 & \infty & \infty \\
4 & \infty & \infty & 2 & \infty & 6 & \infty \\
\infty & 1 & 2 & \infty & 5 & 4 & 9 \\
2 & \infty & \infty & 5 & \infty & \infty & 3 \\
5 & \infty & \infty & 4 & \infty & \infty & 5 \\
7 & \infty & \infty & \infty & \infty & 12 & \infty
\end{pmatrix}$$

5. 5,6,3,4,2,1,6,7,3,5,4,2,5

6.

7. 4,2,4,9,5,9,4

8. Построение таблицы Кэли группы по образующим и определяющим соотношениям.

$$\mathbf{1.} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

2.

3.
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

	∞	1	4	6	∞	∞	∞	∞
4.	2	∞	1	∞	12	∞	∞	∞
	∞	1	∞	3	∞	6	∞	∞
	3	∞	3	∞	∞	∞	2	∞
	4	∞	∞	∞	∞	3	∞	2
	! /	∞	∞	∞	3	∞	2	၁ !
	∞	∞	∞	∞ 13	∞	2	∞	6
	8	∞	∞	13	∞	∞	∞	∞

5. 2,5,6,7,1,2,3,4,2,5,6,7,8

- **7.** 3,4,6,10,2,9,2
- **8.** Нахождение компонент связности неориентированного графа. Кофман А. Введение в прикладную комбинаторику