COMPSCI 689 Lecture 15: Joint Probability Models

Benjamin M. Marlin

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu).

Machine Learning Tasks

Supervised

Learning to predict.

Regression

Unsupervised

Learning to organize and represent.

Clustering

Dimensionality Reduction

Probabilistic Unsupervised Learning

Basic Definitions:

- Input: $\mathbf{X} = [X_1, ..., X_D] \in \mathcal{X} = \mathcal{X}_1 \times ... \times \mathcal{X}_D$
- True Distribution: $P_*(\mathbf{X} = \mathbf{x}) = P_*(\mathbf{x})$
- Parametric Model: $P(\mathbf{X} = \mathbf{x}|\theta) = P(\mathbf{x}|\theta)$

In probabilistic unsupervised learning, our goal is to find a model $P(\mathbf{x}|\theta)$ that is as close as possible to $P_*(\mathbf{x})$.

Losses for Distributions

Unlike in supervised learning, there are few commonly used losses between distributions:

- Absolute Loss: $L_1(P_*||P_\theta) = \mathbb{E}_{P_*(\mathbf{X})}[|P_*(\mathbf{x}) P(\mathbf{x}|\theta)|]$
- Squared Loss: $L_2(P_*||P_\theta) = \mathbb{E}_{P_*(\mathbf{X})} \left[(P_*(\mathbf{x}) P(\mathbf{x}|\theta))^2 \right]$
- KL Divergence: $KL(P_*||P_\theta) = \mathbb{E}_{P_*(\mathbf{X})} \left[\log \left(\frac{P_*(\mathbf{x})}{P(\mathbf{x}|\theta)} \right) \right]$

Question: Which of these losses can we minimize using a sample of data $\mathcal{D} = \{\mathbf{x}_n\}_{1:N}$?

Optimizing KL Divergence

$$\min_{\theta} KL(P_*||P_{\theta}) = \min_{\theta} \int_{\mathcal{X}} P_*(\mathbf{x}) \Big(\log P_*(\mathbf{x}) - \log P(\mathbf{x}|\theta) \Big) d\mathbf{x}$$

$$= \min_{\theta} \int_{\mathcal{X}} P_*(\mathbf{x}) \log P_*(\mathbf{x}) d\mathbf{x} - \int_{\mathcal{X}} P_*(\mathbf{x}) \log P(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \max_{\theta} \int_{\mathcal{X}} P_*(\mathbf{x}) \log P(\mathbf{x}|\theta) d\mathbf{x}$$

$$\approx \max_{\theta} \int_{\mathcal{X}} P_{\mathcal{D}}(\mathbf{x}) \log P(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \max_{\theta} \frac{1}{N} \sum_{\theta} \log P(\mathbf{x}_n|\theta)$$

Optimization-Based Unsupervised Learning

- As we can see, selecting the value of θ that makes the data the most likely is a Monte Carlo approximation to selecting the value of θ that minimizes $KL(P_*||P_{\theta})$.
- The dominant approaches to optimization-based unsupervised learning of probabilistic models are thus maximum likelihood estimation and its penalized/regularized derivatives, which are again equivalent to MAP estimation.
- Unsupervised learning with single random variables that follow standard distributions (Bernoulli, multinomial, Poisson, normal, exponential etc.) is easy using off-the-shelf MLE results.
- The interesting question is how to efficiently model complex distributions of many random variables?

Optimization-Based Unsupervised Learning

The Multivariate Normal

- The multivariate normal (or Gaussian) distribution is a fundamental building block for unsupervised learning with multiple real-valued random variables $\mathbf{X} \in \mathbb{R}^D$.
- The distribution has two parameters $\theta = [\mu, \Sigma]$. μ is the mean vector and Σ is the covariance matrix.
- We have $\mu \in \mathbb{R}^D$ and $\Sigma \in \mathbb{S}^D_+$, the space of symmetric, positive definite $D \times D$ matrices.
- The probability density is given below (assuming \mathbf{x} and μ are column vectors):

$$\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)$$

Example: Bivariate Normal

MLE for the Multivariate Normal

■ Given a data set $\mathcal{D} = \{\mathbf{x}_n\}_{1:N}$, the MLE for the multivariate normal is found by solving the optimization problem:

$$\mu^*, \Sigma^* = \underset{\mu, \Sigma}{\operatorname{arg\,max}} \sum_{n=1}^N \log \mathcal{N}(\mathbf{x}_n; \mu, \Sigma)$$

■ The solutions are:

$$\mu^* = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n, \qquad \Sigma^* = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \mu^*) (\mathbf{x}_n - \mu^*)^T$$

Marginalization

- Suppose we have a joint distribution on a vector-valued random variable $\mathbf{X} \in \mathbb{R}^D$. Let $A \subseteq \{1,...,D\}$, M = |A|, and $\mathbf{X}_A = [X_{A_1},...,X_{A_M}]$.
- The probability distribution $P(\mathbf{X}_A = \mathbf{x}_A)$ is called the *marginal distribution* of \mathbf{X}_A .
- Let $B = \{1, ..., D\}/A$. The marginal distribution of \mathbf{X}_A is then given by:

$$P(\mathbf{X}_A = \mathbf{x}_A) = \int_{\mathcal{X}_B} P(\mathbf{X}_A = \mathbf{x}_A, \mathbf{X}_B = \mathbf{x}_B) d\mathbf{x}_B$$

Marginalization for MVNs

- The multivariate normal distribution has the remarkable (and convenient) property of being closed under marginalization.
- Suppose we have an MVN $P(\mathbf{X}|\theta) = \mathcal{N}(\mathbf{X}; \mu, \Sigma)$ for $\mathbf{X} \in \mathbb{R}^D$. Let $A \subseteq \{1, ..., D\}$, $B = \{1, ..., D\}/A$, and M = |A|. We have:

$$P(\mathbf{X}_A = \mathbf{x}_A) = \mathcal{N}(\mu_A, \Sigma_{AA})$$

where
$$\mu_A = [\mu_{A_1}, ..., \mu_{A_M}]$$
 and $(\Sigma_{AA})_{ij} = \Sigma_{A_i, A_j}$.

■ In other words, we get the marginal distribution on a subset of X just by discarding the elements of μ that correspond to B, and the rows and columns of Σ that correspond to B.

Marginalization for MVNs: Example

Conditioning

- Suppose we have a joint distribution on a vector-valued random variable $\mathbf{X} \in \mathbb{R}^D$. Let $A \subseteq \{1,...,D\}$ and let $B = \{1,...,D\}/A$.
- The *conditional distribution* of X_A given X_B is defined as shown below:

$$P(\mathbf{X}_A = \mathbf{x}_A | \mathbf{X}_B = \mathbf{x}_B) = \frac{P(\mathbf{X}_A = \mathbf{x}_A, \mathbf{X}_B = \mathbf{x}_B)}{P(\mathbf{X}_B = \mathbf{x}_B)}$$

- This definition follows from the definition of conditional probability for events.
- Note that the numerator is the joint distribution and the denominator is the marginal distribution of X_B .

Conditioning for MVNs

- The multivariate normal distribution has the remarkable (and convenient) property of also being closed under conditioning.
- Suppose we have an MVN $P(\mathbf{X}|\theta) = \mathcal{N}(\mathbf{X}; \mu, \Sigma)$ for $\mathbf{X} \in \mathbb{R}^D$. Let $A \subseteq \{1, ..., D\}$, $B = \{1, ..., D\}/A$. We have:

$$P(\mathbf{X}_A = \mathbf{x}_A | \mathbf{X}_B = \mathbf{x}_B) = \mathcal{N}(\mathbf{x}_A; \mu_{A|B}, \Sigma_{AA|B})$$

$$\mu_{A|B} = \mu_A + \Sigma_{AB}(\Sigma_{BB})^{-1}(\mathbf{x}_B - \mu_B)$$

$$\Sigma_{AA|B} = \Sigma_{AA} - \Sigma_{AB}(\Sigma_{BB})^{-1}\Sigma_{BA}$$

Conditioning for MVNs: Example

Posterior Predictions

- The significance of marginalization and conditioning in multivariate joint distributions is that they allow us to observe any subset of the variables *B*, and make predictions about any other subset *A*.
- In particular, conditioning in an MVN can be used to provide a regression output \hat{x}_A for any single random variable in **X** using:

$$\hat{x}_A = \mu_A + \Sigma_{AB}(\Sigma_{BB})^{-1}(\mathbf{x}_B - \mu_B)$$

The MVN model can be thought of as encoding an exponential number of different linear regression models with a quadratic number of parameters.

The Problem With General Joint Distributions

- The multivariate normal distribution is only applicable to real-valued data and makes a number of very strong assumptions.
- Most other basic continuous random variables lack tractable extensions to joint distributions over many variables.
- A finite collection of finite discrete random variables always has a joint distribution that can be represented as a look-up table with one row for each joint configuration in \mathcal{X} .
- However, if $\mathbf{X} = [X_1, ..., X_D]$, then $|\mathcal{X}| \ge 2^D$. This makes directly learning discrete joint distributions intractable for even moderate D.

Example: Finite Joint Discrete Joint Distributions

Consider the case where $\mathbf{X} \in \{0, 1\}^5$. How large is $P(\mathbf{X})$?

x	$P(X=x \theta)$
00000	$ heta_{ exttt{0}}$
00001	$ heta_{ exttt{1}}$
00010	$ heta_{ exttt{2}}$
00011	$ heta_3$
:	
11111	$ heta_{ exttt{31}}$

Structured Probability Models

- One solution to these problems is to use structured probability distributions that can be learned efficiently and have many fewer parameters.
- The primary mathematical tools are the chain rule of probability and probabilistic independence.

Chain Rule

■ The Chaine Rule of Probability states that:

$$P(X_1,...,X_D) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)\cdots P(X_D|X_1,...,X_{D-1})$$

- \blacksquare This result holds for any permutation of the indices 1, ..., D.
- It is derived from repeated application of the product rule $P(\mathbf{X}_A, \mathbf{X}_B) = P(\mathbf{X}_A | \mathbf{X}_B) P(\mathbf{X}_B)$, which is in turn derived from the conditional probability rule.

Marginal Independence

$$\mathbf{X} \perp \mathbf{Y} \iff P(\mathbf{X}|\mathbf{Y}) = P(\mathbf{X})$$

$$\mathbf{X} \perp \mathbf{Y} \iff P(\mathbf{Y}|\mathbf{X}) = P(\mathbf{Y})$$

$$\mathbf{X} \bot \mathbf{Y} \iff P(\mathbf{Y}, \mathbf{X}) = P(\mathbf{X}) P(\mathbf{Y})$$

Conditional Independence

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff P(\mathbf{X} | \mathbf{Y}, \mathbf{Z}) = P(\mathbf{X} | \mathbf{Z})$$

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff P(\mathbf{Y} | \mathbf{X}, \mathbf{Z}) = P(\mathbf{Y} | \mathbf{Z})$$

$$\mathbf{X} \perp \mathbf{Y} | \mathbf{Z} \iff P(\mathbf{Y}, \mathbf{X} | \mathbf{Z}) = P(\mathbf{X} | \mathbf{Z}) P(\mathbf{Y} | \mathbf{Z})$$

Compactness from Independence

Suppose we have a joint distribution P(A, B, C) and we know that the independence relation $A \perp B \mid C$ holds. How can we exploit this fact to simplify P(A, B, C)?

- Chain Rule: P(A, B, C) = P(A|B, C)P(B|C)P(C)
- Conditional Independence: $A \perp B \mid C \rightarrow P(A \mid B, C) = P(A \mid C)$
- Simplification: P(A, B, C) = P(A|C)P(B|C)P(C)

Structured probability models such as *Bayesian network* use exactly this approach to simplify a joint distribution. We will look as special cases of this general model class.