APPENDIX B1

REPRESENTATION OF URBAN WATER DEMANDS AND LOCAL SUPPLIES

Marion W. Jenkins

10 January 2000

INTRODUCTION

This appendix explains how state-wide urban (M&I) water demands and local urban water supplies in California are represented in the CALVIN model. State-wide M&I demands are separated into three groups depending on the degree to which their water supplies are included in CALVIN. Demand areas that are served exclusively by supplies outside the inter-tied water system model of CALVIN (see the schematic model) are excluded from analysis. Demand areas supplied by water sources optimized in the CALVIN model are included as economic value functions or as fixed required diversions, depending on conditions described further in this appendix. The aggregation of local M&I demands into larger areas is also explained in this appendix. Demands represented in CALVIN are projected at 2020 levels according to the California Department of Water Resources (DWR) data on per capita urban water use by county and population by detailed analysis unit (DAU) assembled for Bulletin 160-98. According to these data, the total 2020 projected population in California is 47,507,399. The total annual demand is then divided into sectors (residential, industrial, and other) and monthly levels according to regional and agency information about sector and monthly use patterns in Bulletin 166-4 (DWR 1994). The last section of this appendix describes the different ways that local urban water sources and projected supply availability in 2020 are represented in CALVIN.

URBAN WATER DEMANDS INCLUDED IN CALVIN

Statewide urban water demands in California at the DAU level are separated into three groups according to their water supply sources and their size. The three groups are explained next. Details of the DAU assignments are provided in the file "Daulist.xls" (Software and Data Appendices).

Demands Excluded from CALVIN Analysis

These are demands fully supplied by water sources outside the CALVIN model. For example, all M&I water use in the North Coast and North Lahontan hydrologic regions and most in the Central Coast hydrologic region of California are excluded because water supplies for these areas are completely isolated from supplies modeled in CALVIN. DAUs with isolated water systems in other hydrologic regions are also excluded. Excluded DAUs were identified from M&I water purveyor information in Bulletin 166-4 (DWR 1994), from examination of DAU

boundary maps, and examination of CVPM groundwater region boundaries. The list of excluded DAUs, representing 7.6% of the projected 2020 population, is provided in Table B1-1.

Demands Included in CALVIN as Fixed Diversions (Type "TS")

Small demands that may be important to the mass balance accounting of water sources modeled in CALVIN are generally included as fixed diversions. These consist mostly of exclusive M&I groundwater users in the Central Valley and several small surface water diverters at various other locations in CALVIN. A complete list is provided in Table B1-2. About 12% of the statewide projected population in 2020 is represented by these fixed diversion demands. In all cases, these fixed urban diversions are explicitly identified on the schematic and in the input and output data. M&I water use for approximately 12% of the 2020 projected California population is represented as fixed diversions in CALVIN. These demands represented as a fixed time-series of deliveries are designated as "TS" demands.

Fixed diversions from groundwater for Central Valley M&I users in Table B1-2 are detailed in files "Urbnode.xls" and "GWpump.xls" (Software and Data Appendices). Deep percolation of applied water for these urban regions is calibrated to match the CVGSM "No Action Alternative" (USBR 1997).

Table B1-1. Detailed Analysis Units Excluded from CALVIN Analysis of Urban Demands

		2222	
Hydrologic	Excluded DAUs	2020	Reason
Regions		Population	
North Coast	All	835,320	Isolated water supply
San Francisco	38, 39a, 39b, 42	514,900	Isolated water supply
Central Coast	48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,	1,017,810	isolated water supply
	61, 63, 64, 65, 66, 69, 70, 72, 73, 76		
South Coast	None	0	
Sacramento	130, 132, 134, 136, 137, 139, 145, 147, 154,	411,885	isolated water supply
River	156, 160, 174, 175		or too small population
San Joaquin	176, 194, 195, 196, 198, 217, SJ05, SJ08	427,585	isolated water supply
			or too small population
Tulare Lake	234, 247, all of TL01, all of TL04	146,165	isolated water supply
			or too small population
North Lahontan	262, 263, 264, 265, 266, 268, 270	124,460	isolated water supply
South Lahontan	SL01, SL02	43,350	isolated water supply
Colorado River	all in CR02, CR03 and CR05	73,050	isolated water supply
	Total Excluded	3,594,525	

Demands Included in CALVIN as Economic Values

Economically modeled urban water demand areas in CALVIN are generally large M&I water users with water supply systems integrated into the inter-tied California state-wide water distribution system and dependent on imported water from outside their service area boundaries. Two approaches presently are used in CALVIN to approximate the economic value of these urban water demands. The first approach combines all urban water use sectors and develops a single economic value function (type "CF", a single combined demand function of all urban demands for a local area). The second approach separates industrial water use from residential and other water uses and develops two separate value functions (type "SF", a split economic value function with separate industrial and residential/other value functions). Appendix B2

describes in detail the methods, assumptions, and data used to develop these economic value functions.

All economically modeled urban demand areas located outside the San Francisco Bay and South Coast Hydrologic Regions are represented by a combined ("CF") water value function because data on industrial water values are unavailable for these areas at present. Industrial production data to assess the value of industrial water use is only available for the twelve San Francisco Bay Area and South Coast Counties at this time (see Appendix B2 for more details). In a few cases, such as Antelope Valley, Mojave River Valley, and Coachella Valley in the eastern parts of Southern California, industrial water use as a percentage of total urban water use is extremely small (1 to 2 %) and can be neglected (DWR 1993a).

AGGREGATION OF DEMAND AREAS

Fixed diversion demands, the second category above, are aggregated by supply source and by diversion point. For example, sparsely populated areas and small isolated communities who depend exclusively on groundwater for their M&I supplies are aggregated for each Central Valley groundwater basin. These DAUs are assigned to a groundwater basin based on location over that basin (see details in files "Daulist.xls", "Daubase.xls", and "Urbnode.xls" in Software and Data Appendices). Sub-division of DAUs is not done unless specifically noted. In several locations, for example at Shasta Lake, the water requirements of small isolated M&I surface water users who divert from this source are aggregated together and represented as a fixed urban diversion. Presently, there are 21 fixed diversion urban demand areas in the CALVIN model schematic of which 19 withdraw from Central Valley groundwater basins and three from surface water sources. Table B1-2 lists the fixed diversion demand areas, their aggregated DAUs, and their diversion points.

For urban demands which are economically represented in CALVIN (the third category above), water users are aggregated into a demand area based on adjacency, a shared institutional framework, and an integrated physical system for managing water supply. This means that urban demand areas in CALVIN generally respect the boundaries of the major urban water supply agencies in the San Francisco Bay Area and in Southern California requiring several DAUs to be split in these areas. Small water agencies that are expected to experience high growth in water demand by 2020 are represented as separate economic demands rather than as fixed diversions. Table B1-3 lists CALVIN's economically represented urban demand areas which account for about 80% of the 2020 projected California population.

Table B1-2. Fixed Diversion Urban Demand Areas in CALVIN

CALVIN Node	DAUs	2020 Pop. ^a	CALVIN Diversion Point	2020	Portion	Diversion
	DAUS	2020 Pop.	CALVIN Diversion Point			
Name				Demand	Supplied	KAF/year
				KAF/year		
Redding	141, 143	231,495	1) SR-4 (Lake Shasta)	79.4	64%	50.8
			2) GW-1 (CVPM Region 1		36%	28.6
			Groundwater Basin)			
Ventura Co	81	1,022,850	SR-29 (Castaic Lake)	218.8	SWP import only	15.8
El Centro et al	all of	214,250	C312 (on the All Amercian	51.8	100%	51.8
	CR06 ^e		Canal)			
CVPM 2 Urban	142, 144	190,110	GW-2 (CVPM Region 2	63.8	100%	63.8
			Groundwater Basin)			
CVPM 3 Urban	163	42,275	GW-3 (CVPM Region 3	15.7	100%	15.7
			Groundwater Basin)			
CVPM 4 Urban	164, 165,	13,590	GW-4 (CVPM Region 4	5.24	100%	5.24
	167	-,	Groundwater Basin)			
CVPM 5 Urban	159, 166,	358,800 ^c	GW-5 (CVPM Region 5	112.1	166, 170- 1, 17%	59.34 ^d
	168, 170-		Groundwater Basin)		of 159+168	
	1				0. 100 / 100	
CVPM 6 Urban	162, 191,	894,299 ^c	GW-6 (CVPM Region 6	200.9	162, 9% of	65.4 ^d
OVI W O OIDAN	40, 41	001,200	Groundwater Basin)	200.0	191+40+41	00.1
CVPM 8 Urban	180, 181,	92,445	GW-8 (CVPM Region 8	26.4	100%	26.4
OVI W O OIDAN	184	02,110	Groundwater Basin) ^b	20.1	10070	20.1
CVPM 9 Urban	185	391,700	GW-9 (CVPM Region 9	77.1	100%	77.1
OVI W 5 Orban	100	001,700	Groundwater Basin)	77.1	10070	,,
CVPM 10 Urban	216	150,580	GW-10 (CVPM Region 10	41.9	100%	41.9
CVI WI TO OTDAIT	210	130,300	Groundwater Basin)	71.3	10070	41.5
CVPM 11 Urban	205, 206,	653,470	GW-11 (CVPM Region 11	231.7	100%	231.7
CVI WITT OIDAIT	203, 200,	055,470	Groundwater Basin) ^b	251.7	10076	231.7
CVPM 12 Urban	208, 209	297,770	GW-12 (CVPM Region 12	109.6	100%	109.6
CVI W 12 Olbali	200, 209	231,110	Groundwater Basin)	109.0	10076	109.0
CVPM 13 Urban	210-215	422,150	GW-13 (CVPM Region 13	160.8	100%	160.8
CVFIVI 13 OIDAII	210-213	422,150	Groundwater Basin)	100.6	100 /6	100.0
CVPM 14 Urban	244, 245	69,375	GW-14 (CVPM Region 14	17.4	100%	17.4
CVPIVI 14 OIDAII	244, 245	09,375	`	17.4	100%	17.4
CV/DM 45 Llish as	225 244	240,200	Groundwater Basin)	63.3	4000/	60.0
CVPM 15 Urban	235, 241,	216,200	GW-15 (CVPM Region 15	63.3	100%	63.3
	246, 237-		Groundwater Basin)			
CVPM 17 Urban	8 236, 239,	294,210	CM 47 (C) (DM Decise 47	05.0	100%	05.0
CVPW 17 Urban		294,210	GW-17 (CVPM Region 17	85.0	100%	85.0
CVPM 18 Urban	240 242, 243	534,140	Groundwater Basin)	147.1	4000/	4 4 7 4
CVPINI 18 Urban	242, 243	534,140	GW-18 (CVPM Region 18	147.1	100%	147.1
OV/DM 40 LU-	055 050	44.400	Groundwater Basin)	00.4	4000/	00.4
CVPM 19 Urban	255, 259,	41,100	GW-19 (CVPM Region 19	23.4	100%	23.4
OV/DM oo Llate	260	450.075	Groundwater Basin)	F0.0	4000/	FO.0
CVPM 20 Urban	256, 257	156,675	GW-20 (CVPM Region 20	53.9	100%	53.9
O) (D) (C) () ()	050 004	04.150	Groundwater Basin)	05.0	40001	05.0
CVPM 21 Urban	258, 261	84,150	GW-21 (CVPM Region 21	25.8	100%	25.8
		2 2 2 4 2 5 1	Groundwater Basin) ^D	10111:		4440.6
Total	<u> </u>	6,371,634 ^c		1811.14		1418.9
^a DWR DAU 2020 population data (DWR 1998b)						

DWR DAU 2020 population data (DWR 1998b)
 There is additional groundwater extracted for additional urban demand in this CVPM region represented by a separately modeled economic demand area (see Sacramento, Stockton, and Bakersfield in Table B1-3).

c A portion of this population's water demand is supplied by surface water from outside the groundwater region and represented by another urban demand area of CALVIN (see "Yuba City et al" and "Napa-Solano Co Urban" in Table B1-3).

Actual diversion amount reflects portion of 2020 demand supplied by groundwater.

CR06 is Colorado River Hydrologic Region Planning Sub-Area 6 "Imperial Valley"

Set equal to deliveries in DWRSIM run 514 where diversion in mean annual DWRSIM run 514 delivery.

Table B1-3. Economically Represented Urban Demand Areas in CALVIN

		,				Id Areas III CALVIN
#	CALVIN Node	DAUs	2020		CALVIN	Description of Major Cities,
	Name	Included ^b	Population	Demand	Maximum	Agencies, or Associations
				KAF/year	Delivery	
20	Yuba City et al	159, 168	210,450	63.83	53.0 ^a	Oroville, Yuba City
30	Sacramento	172, 173,	2,181,605	678.51	678.51	Sacramento Water Forum,
	Area	158, 161,				Isleton, Rio Vista, PCWA, EID,
		186				W. Sacramento, N. Auburn
50	Napa-Solano	191, 40, 41	711,324	148.8	124.3 ^a	Cities of Napa and Solano
	Tapa Colailo		, •= .			Counties
60	Contra Costa	192, 70%	565,352	134.8	134.8	Contra Costa Water District
	WD	of 46				
70	EBMUD	70% of 47,		297.3	297.3	East Bay Municipal Utility
, ,	LDIVIOD	30% of 46	1,326,460	207.0	257.0	District
80	SFPUC	43	1,501,900	238.01	238.01	San Francisco PUC City and
00	31100	43	1,301,300	230.01	230.01	County and San Mateo County
						service areas not in node 90
90	SCV	44, 45, 62,	2,971,513	657.7	657.7	Santa Clara Valley, Alameda
90	SCV		2,971,313	637.7	657.7	
		30% of 47				County and Alameda Zone 7
440	Canta Daulana	07 00 74	740.075	400.0	400.0	Water Districts
110	Santa Barbara-	67, 68, 71,	713,675	139.2	139.2	Central Coast Water Authority
	San Luis	74, 75				
	Obispo					
130	Castaic Lake	83	688,500	176.58	126.58 ^a	Castaic Lake Water Agency
140	SBV	44% of	878,944	282.52	282.52	San Bernadino Valley Water
		100				District
150	Central MWD	87, 89, 90,	15,645,756	3730.70 ^c	3730.70	Mainly Los Angeles and
		92, 96,				Orange County portions of
		114, 56%				Metropolitan Water District of
		of 100				Southern California (MWD)
170	Eastern &	98, 104,	2,251,030	740.04 ^c	740.04	Mainly Riverside County
	Western MWD	110				portion of MWD
190	Antelope Valley	SL03,	1,079,650	283.3	277.3 ^a	AVEKWA, Palmdale, Littlerock
	Area	SL04	, ,			Creek
200	Mojave River	SL05,	1,075,775	354.9	354.9	Mojave Water Agency and Hi
		CR01	1,010,110	000	000	Desert Water Agency
210	Coachella	CR04(348,	628,820	600.73	600.73	Dessert Water Agecny,
	Valley	349)	020,020	000.70	000.70	Coachella Valley Water Agency
230	San Diego	120	3,839,800	988.12 ^c	988.12	all of San Diego County
200	MWD	0	5,000,000	300.12	300.12	a. c. can bloge county
240	Stockton	182	421,575	94.90	94.90	City of Stockton
250	Fresno	233	1,142,125	383.74	383.74	Cities of Fresno and Clovis
260	Bakersfield	254	612,100	260.50	260.50	City of Bakersfield
		Total	38,446,354	10,250.2	10,170.0	
		Included				
2	l		<u> </u>	l	l	I

CALVIN demand reduced from 2020 demand by the amount of local water supplies not modeled in CALVIN (see Table B1-5) and/or by the amount of fixed groundwater diversions modeled at another urban node (see CVPM 5 Urban and CVPM 6 Urban in Table B1-2).

b 100% of DAU population included in demand area unless otherwise indicated

^c Based on the sum of the maximum monthly demands from a hydrologic sequence of varying 2020 monthly demands provided by MWD (see file "Adjusted MWD Demands.xls" in Software and Data Appendices).

2020 DEMAND PROJECTIONS

CALVIN urban water demands, whether modeled economically or as fixed diversions, are based on 2020 projections and average conditions (i.e., climatologically normal years) except for those of the Metropolitan Water District (MWD) of Southern California. MWD's demands are based on varying hydrologic conditions. The data and method used to derive 2020 urban demands for the three MWD areas are described in more detail below. For all other areas besides MWD, 2020 projected average demands are computed from California Department of Water Resources 2020 DAU population projections and 1995 baseline per capita water consumption levels by county from Bulletin 160-98 data (DWR 1998a, DWR 1998b). These projected data put the 2020 state-wide population at 47.5 million and suggest a state-wide average M&I (applied) water use level in 1995 of 224 gallons per capita per day (Table 4-8, Bulletin 160-98). By using the 1995 baseline per capita consumption to compute 2020 maximum target demands (deliveries), no additional conservation beyond that in place in DWR's 1995 normalized baseline calculations is assumed in CALVIN (DWR 1998a, 1998b). This is the case for all urban demands in CALVIN except those of MWD. Under other assumptions, another set of population and per capita use data could easily be input into the EXCEL spreadsheet-based software developed to pre-process the inputs for each urban demand area in CALVIN (see file "URBAN3 v2.xls" in Software and Data Appendices).

To compute the per capita water use value for each DAU, a simple average was taken of county values in the DWR database that overlap with the DAU boundary. The per capita use value for each CALVIN urban demand area is then determined by computing a population-weighted average value of the DAUs composing the area.

For the three MWD areas modeled in CALVIN (Central MWD, Eastern & Western MWD, and San Diego), the 2020 projected water demands were provided directly by MWD as a time series varying with hydrologic conditions from January 1922 to December 1991. The current version of CALVIN is limited to a single value function for each month irrespective of year type. To capture MWD's variability in demands, given the present limits of CALVIN, several adjustments were developed. First, the time series was extended at both ends to cover the 72 year hydrologic sequence used in this analysis (October 1921 to September 1993). The most similar years to the missing years, based on inflow to the City of San Diego, were used to fill in the sequence (see file "Adjusted MWD Demands.xls" in Software and Data Appendices). The 2020 maximum monthly demands were then extracted from the MWD time series data and summed to get a 2020 maximum annual demand. This latter value is taken as the 2020 maximum target demand used to construct the economic value functions of water. Additionally, a monthly time series of the difference between the maximum monthly demand and the actual MWD projected monthly demand over the hydrologic sequence was computed and is included in CALVIN as an inflow at the water treatment plant node directly upstream of each MWD demand area. Thus, each month this inflow serves to adjust the maximum target demand value function downward by the appropriate amount so that the month's maximum target demand matches the actual projected MWD demand for that hydrologic period.

BREAKDOWN OF DEMAND BY SECTOR

Once overall annual demand for a CALVIN urban area has been estimated, the demand by sector is calculated as a percentage of the total. State-wide information up to 1991 on the breakdown of urban demand into residential, commercial, government/public, industrial, and unaccounted use in each of the 10 hydrologic regions of California is available from DWR (1993a, Table 6-9). This information reflects the most recent statewide data and is used to split demand into three sectors (residential, industrial, and other). Each sector is treated differently for valuation purposes (see Appendix B2).

MONTHLY DEMAND PATTERN

For each CALVIN urban area, whether a fixed withdrawal or an economically represented demand, annual demand must also be dissagreggated into monthly demands. An overall monthly use pattern for each CALVIN urban demand area is derived from 1980-1990 statewide agency monthly M&I production data published in Bulletin 166-4 (DWR 1994). Production data for the major water agencies listed in this Bulletin located within each CALVIN demand area according to referenced DAU are averaged to determine a production-weighted monthly use pattern. Details of the agencies, their production data, and the calculations can be found in the file "Monthp90.xls" (Software and Data Appendices). Figures B1-1 and B1-2 respectively, display computed monthly use patterns for coastal and interior urban demand areas in CALVIN.

Figure B1-1. Urban Coastal Monthly Use Patterns
1=Napa/Solano 2=SCV 3=EBMUD 4=CCWD 5=SFPUC 6=Santa Barbara
7=Ventura 8=San Diego

Figure B1-2. Urban Interior Monthly Use Patterns

1=Sacramento 2=Redding 3=Mojave 4=Antelope 5=Coachella 6=Stockton 7= Bakersfield 8= Fresno

In urban demand areas with separate industrial value functions (see above), an industrial statewide average monthly use pattern (see Figure B1-3), taken from the CUWA study (1991; Figure 4-5 on p.4-27), is applied to the industrial portion of demand. The overall agency-based monthly production pattern is applied only to the residential and other portion of demand or to total demand for demand areas represented by either a fixed withdrawal or a combined value function (all sectors together).

Figure B1-3. State-wide Average Industrial Monthly Use Pattern

PRICE OF WATER

Where urban demands are economically represented, the price of water is an important parameter in deriving the elasticity-based demand function, used to value urban water use. Analysis in CALVIN is done in present value dollars (1995). Thus, prices for urban water are based on the 1995 California survey of residential water prices (Black and Vetch 1995). Again, to determine the average retail price for a unit of water in 1995, a population-weighted average price of agencies listed in the Black and Vetch survey was computed for each economically represented CALVIN urban demand area. Details of the agencies, prices, and calculations are provided in worksheet "Water Prices 1995" in the file "URBAN3 v2.xls" (Software and Data Appendices).

URBAN APPLIED WATER RETURN FLOWS AND RECLAMATION

To estimate return flows from urban applied water statewide, a simple approach was taken. The generalized depletion analysis of water applied in the urban sector from Figures 4-1 and 4-2 in the Bulletin 160-98 Public Review Draft (DWR 1998c) is used. According to these figures, 20% of urban applied water deep percolates to the groundwater underlying an urban area, 40% is discharged wastewater, 30% is lost to consumptive use, and 10% is irrecoverable losses from conveyance facilities within the urban area due to evaporation, evapotranspiration, or deep percolation to salt sinks. These percentages are used to estimate the following return flow portions of urban deliveries:

- 1. deep percolation to groundwater recharge (20%)
- 2. wastewater discharges (total of 40%) routed to a large number of possible destinations

The final destination in CALVIN of these two return flow components depends on the representation of local groundwater, the type of urban node, and the specific water operations and management activities (recycling, artificial recharge, and disposal of treated wastewater) that now occur or are planned to occur in that node's area. Further details and cases are elaborated next with application to specific CALVIN urban areas summarized in Table B1-4. Discussion of operating costs for urban return flow water is provided in Appendix G.

Return flows from urban areas can follow a number of paths, illustrated in Figure B1-4 and discussed below.

Figure B1-4. Schematic of Possible Return flows from Urban Regions

Urban Groundwater Return Flows in CALVIN

There are three different return flow pathways by which urban applied water can contribute to groundwater storage. These are direct deep percolation of applied landscape water, incidental recharge of discharged wastewater flows via streambeds, evaporation ponds, or land treatment, and artificial recharge through active management of wastewater treatment plant effluent using percolation ponds, injection wells, or controlled release flows into streams. Treatment and representation in CALVIN of these possible pathways is discussed next.

Deep Percolation of Landscape Irrigation

There are four different ways that deep percolation of urban applied water is treated in CALVIN. The different ways depend on how the groundwater basin and urban demand are represented.

The first case concerns fixed urban groundwater pumping areas in the Central Valley (i.e., CVPM Urban areas shown in Table B1-2). According to the USBR's application of CVGSM in the CVPIA EIS (1997), there are no surface water returns from urban applied water in these areas. All of indoor water use is assumed to end up deep percolating to groundwater in addition to some outdoor landscape use. The gain in CALVIN on the exiting link from these fixed urban groundwater pumping demands in the Central Valley is set to the average fraction of annual urban applied water (both landscape and indoor) that returns to groundwater in each CVPM region in the CVGSM no action alternative model (USBR 1997). In most such cases, deep percolation is approximately 50% of applied water.

The second case concerns urban demands (both fixed and economically represented) that overlay groundwater basins that are not modeled in CALVIN. In these cases, there is no groundwater return flow component and deep percolation is treated as an irrecoverable loss. Gain on the exiting link from these demand areas is set to 0.40 in CALVIN as return flows consist only of the wastewater discharges (see Yuba, Napa-Solano, SB-SLO, Ventura, CLWA, SBV, the three MWD areas, and El Centro et al.).

The third case concerns economically-represented urban demands that overlay CALVIN groundwater basins in the Central Valley. Here, deep percolation of urban applied water is explicitly represented as a fixed lower bound time series equal to 20% of the monthly maximum target demand on the link from the wastewater treatment plant node to the groundwater basin (see Sacramento, Stockton, Fresno, and Bakersfield). The gain on the link exiting these urban demand nodes is set to 0.6 to account for both deep percolation (0.2) and wastewater dishcarge (0.4) return flow components.

The fourth case concerns economically-represented urban demands that overlay CALVIN groundwater basins outside the Central Valley. Here, deep percolation return flow to groundwater is not represented because this component of groundwater recharge appears to be included in the estimates of "natural" recharge used to develop the inflow time series for these non-Central Valley CALVIN basins. They include SCV, Antelope Valley, Mojave River, and Coachella Valley urban areas and basins in CALVIN. Natural recharge estimates for these basins have been taken from local agency planning reports and are based mostly on historic water balance analyses that lump recharge sources together.

<u>Incidental Recharge Component</u>

Urban demand areas that discharge wastewater into streams or evaporation ponds by which incidental (i.e., cost-free and passively managed) infiltration to groundwater occurs have an additional fixed component added to the cost-free deep percolation component on the link exiting a wastewater treatment plant node to a groundwater basin. This additional component reflects additional recharge to groundwater from infiltration of treated wastewater discharges. Currently, the amount assumed in CALVIN, where this occurs, varies from ½ to ½ of the 40% return flow component of treated wastewater discharges.

Artificial Recharge Component

Urban demand areas that actively recharge wastewater into the groundwater usually have a separate explicit link in CALVIN for this groundwater return flow component, going from the wastewater treatment plant node to a junction node for artificial groundwater recharge. A cost and capacity on this link reflect additional treatment costs and limits on the amount of wastewater used for active artificial recharge. These flows come from the 40% component of treated wastewater discharge return flow. Additionally, total artificial recharge capacity for all sources of water is set downstream of the recharge junction node to reflect the combined installed capacity of percolation ponds (infiltration rate/day x area x days/month) and of injection wells (gpm).

Demand areas in CALVIN with artificial wastewater recharge include the SCV, Mojave River, and Coachella Valley urban areas.

Urban Return Flows to Surface Water in CALVIN

Apart from the portions of wastewater return flow (40%) that end up recharging groundwater via incidental or artificial recharge (see above), and that are recycled to serve demand (see next section), wastewater discharges return to the surface system. In some cases these surface water return flows contribute to usable stream flow and in others they are lost going to non-usable salt sinks. The former case tends to occur in interior regions of California with drainage such as the Sacramento and San Joaquin Valleys, and in some parts of the South Coast region. An exception is the fixed withdrawal CVPM urban areas where wastewater discharges are dispersed and distant and therefore do not contribute to stream flows in CALVIN. In interior regions without drainage where discharges are made to salt water bodies or evaporate in ponds, such as in the Tulare Lake, South Lahontan, and Colorado River regions, the return flow is lost to a sink. This also occurs in coastal regions where discharges are made to the ocean or bay. Wastewater return flows to stream flow are explicitly represented in CALVIN by a direct link from the wastewater treatment plant node to the most appropriate downstream surface system node. Lost wastewater return flows are represented in CALVIN by a direct link from the treatment plant to a sink node.

Urban Return Flow to Recycling in CALVIN

The final portion of treated wastewater return flow that must be accounted for in CALVIN is that going to recycling and reuse in the urban sector. This component of return flow is represented on a direct link from the wastewater treatment plant node to the water treatment plant node of the urban area concerned. A cost and constraint is associated with this recycled flow. Table B1-4 shows those demands where recylcing is represented in CALVIN and Table B1-5 shows the 2020 recycling capacities on these links in CALVIN.

Table B1-4. Representation of Urban Return Flow Components in CALVIN

	1-4. Kepi esei		,				
CALVIN Urban	Deep Percol.	Incid. GW	Artific.GW	WW to	WW to	WW to	Return
Demand Area(s)		Recharge	Recharge	Stream	Sink	Recycle	Flow Gain
Fixed Urban GW	Yes	Yes (10%)	None	No	Yes	No	0.3 ^b
pumping in the							
Central Valley							
Redding	Yes	None	None	Yes	No	No	0.6
Yuba et al	No	None	None	Yes	No	No	0.4
El Centro et al	No (GW not	No (GW not	None	No	Yes	No	0.4
	modeled)	modeled)					
Greater	Yes	None	None	Yes	No	Yes	0.6
Sacramento							
Napa-Solano	No (GW not	No (GW not	None	No	Yes	No	0.4 (add
	modeled)	modeled)					dp for
							CVP6
							area)
CCWD &	No (GW not	No (GW not	No (GW not	No	Yes	Yes	0.4
EBMUD	modeled)	modeled)	modeled)				
SFPUC	No (GW not	No (GW not	No (GW not	No	Yes	Yes	0.4
	modeled)	modeled)	modeled)				
SCV	Implicit in	None	Yes	No	Yes	Yes	0.4
	inflow to GW						
Stockton and	Yes	No	None	Yes	No	No	0.6
Fresno							
Bakersfield	Yes	No	None	No	Yes	No	0.6
Ventura Co &	No (GW not	No (GW not	No (GW not	No	Yes	No	0.4
SB-SLO	modeled)	modeled)	modeled)				
Castaic Lake WA	No (GW not	None	None	No	Yes	Included	0.4
	modeled)					in local	
						supply	
Antelope Valley	Implicit in	Yes	None	No	Yes	No	0.4
	inflow to GW						
Mojave River	Implicit in	Yes	Yes	No	Yes	Yes	0.4
	inflow to GW						
Coachella Valley	Implicit in	Yes	Yes	No	Yes	Yes	0.4
	inflow to GW						
SBV	No (Implicit	No (Implicit	No (Implicit	No	Yes	Yes	0.4
	in local	in local	in local				
	supply)	supply)	supply)				ļ
Central MWD	No (GW not	No (GW not	No (GW not	No	Yes	Included	0.4
	modeled) ^c	modeled) ^c	modeled) ^c			in local	<should< td=""></should<>
			(5)			supply	reduce>d
E&W MWD &	No (GW not	No (GW not	No (GW not	No	Yes	Included	0.4
San Diego MWD	modeled)	modeled)	modeled)			in local	<should< td=""></should<>
						supply	reduce>d

^a From the wastewater discharge component of return flow

Correction to 0.40 for incidental recharge of wastewater and for net withdrawal = (0.4-0.1)/0.7

The only groundwater modeled in MWD, "GW-MWD", represents proposed conjunctive use space available in existing groundwater basins within the MWD service area for storage of wet weather excess flows from imported sources.

Reduced from 0.4 by the amount of recycling and reclamation for groundwater recharge included in 2020 projected local supplies.

Table B1-5. Urban Recylcing Links and Capacities in CALVIN

		<u> </u>		1 0
CALVIN Urban Node	Recycling Link	2020 Planned Capacity (MGD or KAF/yr)	Unplanned Add'l Capacity (MGD)	Source for Estimate ^a
		` ,		DWD (4000)
Redding, Yuba et al,	None	0	0	DWR (1998a)
CVPM Urban areas,				
El Centro et al.				
Sacramento	T13 to T4	6 MGD	0	Montgomery Watson
				(1998)
Stockton	T27 to T26	0	0	DWR (1998a)
Fresno	T25 to T24	0	0	DWR (1998a)
Bakersfield	T29 to T28	0	0	DWR (1998a)
CCWD	T18 to T16	20.4 KAF	0	DWR (1998a)
EBMUD	T35 to T17	22.7 MGD	0	EBMUD (1991) and
				web site (1998)
Napa-Solano	T15 to T14	0	0	DWR (1998a)
SFPUC	T21 to T20	0	0	SFPUC web site (1998)
SCV	T19 to T7	16 KAF	0	SCVWD (1997) and
				ACWD (1995)
Antelope Valley	T33 to T6	0	0	USGS (1995)
Mojave River	T32 To T3	7 KAF	0	DWR (1993b, 1998a)
Coachella Valley	T11 to T31	15 KAF	0	Desert Water Agency
				web site (1999) and
				DWR (1998a)
Central MWD	T10 to T5	236 KAF ^b included in	0	see file "Adjusted MWD
		pre-operated local		Demands.xls" in
		supply inflow		Software and Data
				Appendices
Eastern & Western	T12 to T34	57.2 KAF ^b included in	0	"
MWD		pre-operated local		
		supply inflow		
San Diego MWD	T8 to T30	35.2 KAF ^b included in	0	ű
3.5		pre-operated local		
		supply inflow		
CLWA	None	Removed from demand	0	McClean (1999)
SBV	T9 to T2	12 KAF	0	u ·
		· · · · · · · · · · · · · · · · · · ·		L

Notes:

LOCAL SUPPLY SOURCES IN CALVIN

Local water supplies of urban demand areas in CALVIN (i.e., local surface water or groundwater that is not managed as part of the inter-tied state-wide water distribution system) are handled in one of the several ways discussed next.

Local Supplies Deducted from Target Demand

In these cases, the annual average water production of local supplies that are not modeled in CALVIN is estimated in 2020 and deducted from the 2020 maximum target demand prior to

^a See details in files "Reg 1-4 Urban documentation.doc" and "Reg 5 Urban documentation.doc" in Software and Data Appendices

^a Not actual capacity, represents annual average production from projected 2020 capacity over varying hydrologic sequence from MWD projections.

developing the fixed diversion requirement or the economic value functions included in the analysis. This is usually the case for local supplies that provide a rather small amount of supply. A list of urban demand areas with excluded local supplies is provided in Table B1-6.

Table B1-6. Fixed Urban Demands Reduced by Local Supplies

CAVLIN Urban	2020 Supplies Removed	Demand Reduction	Determination/ Source
Area	2020 Supplies Removed	KAF/year	Determination/ Source
		,	0 " " 5 111
Antelope	Local surface water for	6	See file "Region 5 Urban
Valley	Palmdale		Documentation.doc" in
			Software and Data Appendices
Napa-Solano	Local surface water	11.05	DWR Bulletin 166-4, estimated
County	collected in Lake Milliken		9% of demand supplied by
	and Hennessey for Napa		groundwater and 18.8% by
	area		local surface water in 1990 (see
	2) Local groundwater	13.4	file "Monthp90.xls" and "Region
	production, included in		1-4 Urban Documentation.doc"
	CVPM region 6 fixed urban		in Software and Data
	groundwater pumping		Appendices
Castaic Lake	Local ground and reclaimed	50	Personal communication with
WA	water production of member		Mr. McClean (see file "Region 5
	agencies		Urban Documentation.doc" in
	agonolos		Software and Data Appendices)
Ventura Co	All local surface, ground,	203	Difference between DAU-based
Vontara 00	and reclaimed water	200	2020 demand and annual
	production		average delivery from DWRSIM
	production		run 514, see file "Ventura
			Co.xls" in Software and Data
			Apendices
Yuba City et al	Local groundwater	10.8	DWR Bulletin 166-4, estimated
Tuba City et al	production, included in	10.0	16.5% of demand supplied by
	CVPM region 5 fixed urban		groundwater in 1990, assumed
	groundwater pumping		same % in 2020 (see file
			"Monthp90.xls" in Software and
			Data Appendices)
Total		294.3	

Local Supplies Represented Explicitly as Local Inflow Time Series

In these cases, local supplies are explicitly labeled and included in the model as a time-series of pre-processed inflow to the appropriate urban demand area. See for example Santa Barbara-San Luis Obispo or San Bernadino Valley Urban demand areas on the CALVIN schematic. A list of explicitly represented local supply inflows is provided in Table B1-7. Metadata are provided in the database with each inflow item and details of the derivation and data sources are provided in files "Region 1-4 Urban Documentation.doc" and "Region 5 Urban Documentation.doc" in Software and Data Appendices. In this case, the sequence of monthly production of these local sources for the hydrologic period of analysis from October 1921 to September 1993 has been estimated for 2020. When information on the production of local supplies was insufficient to estimate a hydrologically varying time series, than a repeating time series of 12 average monthly production values was constructed, based on the 2020 estimated annual total and the derived monthly use pattern for the demand area.

Table B1-7. Explicitly Represented Local Supply Inflows in CALVIN

	ble b1-7. Explicitly Represent			
Urban Demand	Local Supply Description	Inflow	Avg. Flow	Determination/Source
Area		Node	KAF/year	
Santa Clara	Surface runoff inflow into local	SR-SC	137 (normal	IWRP, see file "Region 1-4
Valley	surface water reservoirs of		yr) 80 (dry	Urban Documentation.doc"
,	Santa Clara Valley		year) 180	and file "Santa Clara
			(wet year)	Inflows.xls" in Software and
			,	Data Appendices
Santa Barbara-	Combined local groundwater,	D849	71.5	Difference of DWRSIM run
San Luis	surface water, reclamation &			514 deliveries & 2020
Obisbo	desal. Production			maximum target demand,
00.000	accan r readcher			see file "Region 1-4 Urban
				Documentation.doc" and file
				"SB_SLO DWR TS.xls" in
				Software and Data
				Appendices
San Bernadino	Yield from local groundwater	T2	217.40	SBVWD Regional Facilities
Valley	and local surface runoff with		217.10	Plan, see file "Region 5
vanoy	Seven Oaks Dam			Urban Documentation.doc"
	Seven Saks Ban			in Software and Data
				Appendices
Central MWD	Sum of production from local	C161	1,487.50	2020 projected monthly
Ochtrar WW	groundwater, surface water, and	0101	1,407.50	times series from MWD, see
	reclamation/recycling			"Region 5 Urban
	Teolamation/Teoyoning			Documentation.doc" and file
				"Adjusted MWD
				Demands.xls" in Software
				and Data Appendices
Eastern &	Sum of production from local	C154	316.33	"
Western MWD	groundwater, surface water, and	0104	010.00	
VV GSLEITI IVIVV D	reclamation/recycling			
San Diego	Sum of production from local	T40	151.22	"
MWD	groundwater, surface water, and	140	101.22	
טועוע	, ,			
	reclamation/recycling			
	TOTAL			

Local Supplies Ignored When Small

If the production from local sources is very small (less than 5% of 2020 maximum target demand) then it is usually ignored. Several cases include local groundwater production in some parts of the CALVIN SFPUC urban area, local surface water use in the CVPM urban groundwater pumping areas, and small amounts of urban recycling in interior regions.

URBAN WATER SUPPLY COSTS

Conceptually, urban water supply costs represented in CALVIN are only the variable operating cost of delivering each unit of water (see Appendix G). Capital and overhead costs for existing or planned infrastructure are already "sunk". They are excluded from the input costs so as not to influence the economic optimization of water allocation decisions in CALVIN. Capital and overhead costs for proposed alternatives are also excluded from CALVIN because they are

separate issues from the evaluation of net water allocation benefits of alternatives for which CALVIN is used. Such investment costs can be compared to CALVIN's economic results in a subsequent benefit-cost analysis. In reality, because this phase of the project was limited to using existing data, costs numbers used in some parts of the CALVIN model at this time include more than the true variable operating cost. These other costs, for the moment, cannot be separated out without more investigation and research. Some adjustment downwards will have to be made in future. Details of the different operating cost components and their estimates for urban water supply are presented and discussed in Appendix G: Operating Costs.

REFERENCES

Black and Veatch (1995) *California Water Charge Survey*. Black and Veatch Management Consulting Division, Irvine, CA.

CUWA (California Urban Water Agencies) (1991) *Cost of Industrial Water Shortages*. Prepared by Spectrum Economics, Inc., San Francisco, CA. September 1991.

DWR (1993a) California Water Plan Update, Bulletin 160-93. State of California, Department of Water Resources, Sacramento, CA. October 1994.

DWR (1993b) 1993 Water Budget Accounting Reports. State of California, Department of Water Resources, Sacramento, CA.

DWR (1994) *Urban Water Use in California, Bulletin 166-4*. State of California, The Resources Agency, Sacramento, CA. August 1994.

DWR (1998a) California Water Plan Update, Bulletin 160-98. State of California, Department of Water Resources, Sacramento, CA. November 1998.

DWR (1998b) DAU-based population projections for California and County-based per capita water use Databases. State of California, Department of Water Resources, Division of Planning and Local Assistance, Sacramento, CA.

DWR (1998c) *The California Water Plan Update, Vol.1, Bulletin 160-98 Public Review Draft.* California Department of Water Resources, Sacramento, CA, January 1998.

See further References in files "Reg 1-4 Urban documentation.doc" and "Reg 5 Urban documentation.doc" in Software and Data Appendices