Neka je V_1 realni dvodimenzionalni vektorski prostor koji predstavlja list papira. Prostor V_1 osim vektorske strukture ima i točkovnu strukturu pa ga možemo gledati i kao realni afini prostor. Veza između točkovne i afine strukture je intuitivno jasna u smislu da je orijentirana dužina uređeni par dvije točke pa je na taj način jasna klasična veza između vektora i točaka. Isto tako, na V_1 imamo standardni skalarni produkt pa na V_1 imamo metriku, tj. možemo preko skalarnog produkta definirati duljinu vektora, kut između vektora, okomitost vektora.

Neka je V_2 realni dvodimenzionalni vektorski prostor koji predstavlja površinu monitora. Sve što smo rekli o vektorskoj i točkovnoj strukturi prostora V_1 vrijedi također i za prostor V_2 . Štoviše, prostori V_1 i V_2 su izomorfni kao vektorski prostori, također i kao afini prostori, te isto tako i kao unitarni prostori.

Neka su

$$A_1 = \{(x_{max} - x_{min}, 0), (0, y_{max} - y_{min})\}, \quad A_2 = \{(1, 0), (0, 1)\}$$

dvije baze za vektorski prostor V_1 .

Isto tako, neka su

$$\mathcal{B}_1 = \{(w,0), (0,-h)\}, \quad \mathcal{B}_2 = \{(1,0), (0,1)\}$$

dvije baze za vektorski prostor V_2 .

Najprije tražimo linearni operator $K:V_1\to V_2$ koji vektore iz baze \mathcal{A}_1 preslikava u bazu \mathcal{B}_1 . Matrica tog operatora u paru baza $(\mathcal{A}_1,\mathcal{B}_2)$ je

$$K_{(\mathcal{A}_1,\mathcal{B}_2)} = \begin{bmatrix} w & 0 \\ 0 & -h \end{bmatrix}.$$

Nas zapravo zanima matrica operatora K u paru kanonskih baza (A_2, \mathcal{B}_2) . Iz teorije znamo da je

$$K_{(\mathcal{A}_2,\mathcal{B}_2)} = T^{-1}K_{(\mathcal{A}_1,\mathcal{B}_2)}S$$

gdje su S i T matrice prijelaza između odgovarajućih baza, tj.

$$A_1 \xrightarrow{S} A_2, \quad B_2 \xrightarrow{T} B_2.$$

Iz toga je jasno da je $T = T^{-1} = I$. Nadalje, odmah se dobije

$$S^{-1} = \begin{bmatrix} x_{max} - x_{min} & 0\\ 0 & y_{max} - y_{min} \end{bmatrix}$$

pa je

$$S = \begin{bmatrix} \frac{1}{x_{max} - x_{min}} & 0\\ 0 & \frac{1}{y_{max} - y_{min}} \end{bmatrix}.$$

Sada iz $K_{(A_2,B_2)} = T^{-1}K_{(A_1,B_2)}S$ slijedi

$$K_{(\mathcal{A}_2,\mathcal{B}_2)} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} w & 0 \\ 0 & -h \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{x_{max} - x_{min}} & 0 \\ 0 & \frac{1}{y_{max} - y_{min}} \end{bmatrix}$$

odnosno nakon množenja

$$K_{(\mathcal{A}_2,\mathcal{B}_2)} = \begin{bmatrix} \frac{w}{x_{max} - x_{min}} & 0\\ 0 & \frac{h}{y_{min} - y_{max}} \end{bmatrix}.$$

Uvedemo li oznake

$$s_x = \frac{w}{x_{max} - x_{min}}, \quad s_y = \frac{h}{y_{min} - y_{max}}$$

možemo kratko pisati

$$K = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}.$$

Sada još želimo da se točka (x_{min}, y_{max}) iz prirodnog koordinatnog sustava preslika u točku na ekranu s koordinatama (0,0). Zapravo tražimo afino preslikavanje u obliku

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$
 (4)

pri čemu treba odrediti vektor translacije (p_x, p_y) . Iz

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x_{min} \\ y_{max} \end{bmatrix} + \begin{bmatrix} p_x \\ p_y \end{bmatrix}$$

dobivamo

$$p_x = -s_x \cdot x_{min}, \quad p_y = -s_y \cdot y_{max}.$$

Uočite sljedeće stvari:

- Jedinična dužina na x-osi iz prirodnog koordinatnog sustava ima duljinu $\lfloor s_x \rfloor$ piksela na monitoru.
- Jedinična dužina na y-osi iz prirodnog koordinatnog sustava ima duljinu $\lfloor -s_y \rfloor$ piksela na monitoru.
- Ishodište prirodnog koordinatnog sustava preslika se u točku (piksel) na monitoru koja ima koordinate $(\lfloor p_x \rfloor, \lfloor p_y \rfloor)$.
- Točka (x, y) iz prirodnog koordinatnog sustava se preko (\clubsuit) preslikava u piksel s koordinatama $(\lfloor x' \rfloor, \lfloor y' \rfloor)$.