1. Karnaugh maps

- a. Method of simplifying Boolean expressions visually
- b. Hamming distance minimum number of bits needed to change a binary number to another number
 - i. 101 to 110 has a Hamming distance of two
- c. Karnaugh maps have a Hamming distance of one between all adjacent cells
 - i. Why the order on a 2-variable row/column goes 00, 01, 11, 10, see below
- d. Map wraps around top, bottom, sides
- e. Place a 1 wherever the function is true, 0 elsewhere
- f. Examples below

		AB					AB				
		00	01	11	10			00	01	11	10
	0	0	0	d	0		00	0_	0	0	1
	1	1	0	d	0	CD	01	(1	1)	0	1
					CD	11	d	0	d	0	
						10	d	0	d	0	
Three variable Karnaugh map						0115.10	riabla	Varna	ugh ma		

2. Terminology

- a. Literal each variable in a product term, either uncomplemented or complemented
 - i. Example: A in $A\overline{BC}$
- b. Don't cares combinations of inputs that will never occur (represented by a d or D)
 - i. Thus, the output at that point can be either 1 or 0
 - ii. Binary to decimal converters if they use 4 bits to represent a decimal digit, we'll never see 1010, 1011, 1100, 1101, and 1111 and thus those are don't cares
 - iii. Don't cares are useful for simplifying function further
- c. Implicant product term for which the function is 1 (e.g., 11 for AND)
- d. Prime implicant the largest possible implicant
 - i. Essential prime implicant prime implicant that contains a 1 that no other prime implicant has
 - ii. Don't cares can be included in these
- e. Cover set of implicants that cover all the 1's in the map
- f. Cost of a circuit number of gates + the total number of inputs to the gates

3. Minimization

- a. Generate all prime implicants
 - i. Draw rectangles around entries that include 1s and not 0s
 - ii. Size of rectangles must be powers of 2 (remember, 1 is a power of 2 as well!)
 - iii. Make sure rectangles are as large as possible
 - iv. Remember that you can wrap around sides
- b. Eliminate prime implicants that overlap until you find the essential implicants
 - i. Other considerations: may want to minimize cost

- 4. Examples
 - a. $f_1 = m0 + m1 + m4 + m5 + m7 = \Sigma(0, 1, 4, 5, 7) = \bar{B} + AC$

		AB						
		00	01	11	10			
С	0	1	0	0	$\widetilde{1}$			
	1	7	0	1	D			

b. $f_2 = \Sigma(6, 8, 9, 10, 11, 12, 13, 14) = A\overline{C} + A\overline{B} + BC\overline{D}$

		AB					
		00	01	11	10		
	00	0	0	1	1		
CD	01	0	0	1	1		
CD	11	0	0	0	1		
	10	0	1	1	1		

- c. Further examples with don't cares and wrapping
 - i. $f_2 = m0 + D2 + D5 + D7 + m8 + m10 = \overline{BD}$

		AB					
		00	01	11	10		
	00	1\	0	0	1		
CD	01	d	d	0	0		
CD	11	0	d	0	0		
	10	(5	0	0 (1		
					1		

- d. Whether or not don't cares are included depends on your desired use case
 - i. Example: whenever we see an illegal input, raise a flag
 - ii. Wouldn't want to include don't cares in this case