1Jozsef Morrisseyjtmorri2@illinois.edu

Problem 1:

a.)

$$f_0 = f_0$$

$$f_1 = f(x_0 + h) = f_0 + hf'_0 + \frac{h^2}{2!}f''_0 + \frac{h^3}{3!}f'''_0$$

$$f_2 = f(x_0 + 2h) = f_0 + 2hf'_0 + \frac{4h^2}{2!}f''_0 + \frac{8h^3}{3!}f'''_0$$

$$f_2 - 2f_1 = -f_0 + h^2f''_0 + \frac{6h^3}{3!}f'''_0$$

$$f''_0 = \frac{f_2 - 2f_1 + f_0}{h^2}$$

b.)

h

c.)

 $\frac{4\epsilon}{h}$

ed.)

from __future__ import division
import matplotlib.pyplot as plt
import math

helper functions:

def f(h):

return (math.sin(.7+2*h)-2*math.sin(0.7+h)+math.sin(0.7))/(h*h)

```
def g(x):
    return -math.sin(.7+x)
def gangster(x):
    return x
def prostitute(x):
    return 4*math.pow(2, -53)/(x*x)
# setup domain:
x0 = 0.7
xmax = 1
steps = 25
h = [math.pow(2, -x) for x in range(xmax, xmax*steps)]
# function evaluations:
f_vals = [gangster(x) for x in h]
g_vals = [prostitute(x) for x in h]
difference = [abs(f(x)-g(x)) for x in h]
# plot:
# (uncomment these for log scale)
sub = plt.subplot(111)
sub.set_xscale('log')
sub.set_yscale('log')
plt.plot(h, f_vals, h, g_vals, h, difference)
plt.show()
```


Figure 1: Error Plot

f.)

$$4^{1/3}*\epsilon^{1/3}$$

g.)

$$4^{1/3} * \epsilon^{1/3} = h$$

Problem 2:

a.)

Table 1: Finite-difference errors when using $f_0, ..., f_3$ for f = sin(x)

Derivative	Truncation	Round-Off	h_{min}	min.err.
f'_0	$\approx h^3$	$\approx \varepsilon_{mach}/h$	$E_{mach}^{1/4}$	$E_{mach}^{3/4}$
f_0''	$pprox h^2$	$pprox arepsilon_{mach}/h^2$	$E_{mach}^{1/4}$	$E_{mach}^{1/2}$
$f_0^{\prime\prime\prime}$	$\approx h$	$\approx \varepsilon_{mach}/h^3$	$E_{mach}^{1/4}$	$E_{mach}^{1/4}$

```
bc.)
from __future__ import division
import matplotlib.pyplot as plt
import math
# helper functions:
def f(h):
    return (math.sin(.7+3*h)-3*math.sin(.7+2*h)+3*math.sin(.7+h)-math.sin(.7))/(h*h*h)
def g(x):
    return -math.cos(.7+x)
def gangster(x):
return x
def prostitute(x):
return math.pow(2, -53)/(x*x*x)
# setup domain:
x0 = 0.7
xmax = 1
steps = 15
h = [math.pow(2, -x) for x in range(xmax, xmax*steps)]
# function evaluations:
f_vals = [gangster(x) for x in h]
g_vals = [prostitute(x) for x in h]
difference = [abs(f(x)-g(x)) for x in h]
# plot:
# (uncomment these for log scale)
sub = plt.subplot(111)
sub.set_xscale('log')
sub.set_yscale('log')
plt.plot(h, f_vals, h, g_vals, h, difference)
```

plt.show()

Figure 2: Error Plot

d.)

To evaluate high order derivatives using this method more points need to be evaluated and an n*n matrix must be solved to determine the coefficients of the formula that cancels out all other derivatives.

To improve the estamates use more points to cancel more terms.

Problem 3:

a.)

$$\varepsilon_{mach} = 2^{-52} \approx 1.1 * 10^{-16}$$

b.)

from __future__ import division

```
import matplotlib.pyplot as plt
import math
y=.1
nprev=0
#i chose to do 15 iterations of increasingly smaller division values to clearly
#illustrate that the error is approaching 2^(-53) also my divisor approaches the
#the limit of precision.
for x in range (0, 15):
n=nprev
while (1+n>1): #testing if the error has an impact on the value.
nprev=n
n=n/(1+y) #decreasing n
y=y/10
               #decreasing the divisor
print (nprev)
Output:
1.15828708536e-16 = $2^{-52.938856643719}$
1.11309112229e-16 = $2^{-52.996277815639}$
1.11086827488e-16 = $2^{-52.999161763977}$
1.11031300733e-16 = $2^{-52.999883075437}$
1.11022418629e-16 = $2^{-52.999998490459}$
1.11022307606e-16 = $2^{-52.999999933162}$
1.11022307606e-16 = $2^{-52.999999933162}$
1.11022303166e-16 = $2^{-52.999999933162}$
1.11022302499e-16 = $2^{-52.999999999858}$
1.11022302466e-16 = $2^{-52.99999999955}$
1.11022302463e-16 = $2^{-52.99999999999}
```

 $1.11022302463e-16 = $2^{-52.999999999999}$ $1.11022302463e-16 = $2^{-52.99999999999}$ $1.11022302463e-16 = $2^{-52.99999999999}$ $1.11022302463e-16 = $2^{-52.99999999999}$ **c.**)

$$2^{10} = 1 * 10^{3}$$
$$2^{20} = 1 * 10^{6}$$
$$2^{30} = 1 * 10^{9}$$
$$2^{-53} = 1 * 10^{-16}$$

d.)

$$k = \log_2(10^6) = 20$$