МФТИ, ФИВТ

Алгоритмы и структуры данных, осень 2022 Семинар №01. Базовые строковые алгоритмы

- **1.** (Парадокс дней рождения) Пусть $|B| \geqslant |U|^2$, а функция $h: U \to B$ на элементах U принимает независимые значения, равномерно распределённые в B. Покажите, что $\mathbb{P}\left(\exists x \neq y: h(x) = h(y)\right) \leqslant 1/2$. Убедитесь, что чем больше |B|, тем меньше вероятность коллизии.
- **2.** Китайская теорема об остатках гласит следующее: если m_1, \ldots, m_k попарно взаимно просты, то для произвольного набора целых чисел r_1, \ldots, r_k система сравнений $\{x \equiv r_i \pmod{m_i}\}_{i=1}^k$ имеет единственное решение среди чисел $\{0, 1, \ldots, p-1\}$, где $p = m_1 \cdot \ldots \cdot m_k$. Как можно расширить размер множества хешей до чисел порядка 10^{40} ? Указание: Используйте несколько хеш-функций.
- **3.** Почему префикс-функцию нельзя искать с помощью бинарного поиска и проверки равенства подстрок хешами? Можно ли так считать z-функцию?
- **4.** Алгоритм Кнута—Морриса—Пратта ищет все вхождения шаблона s в текст t. Для этого рассматривается префикс-функция строки s#t. Покажите, зачем нужен разделитель #. Покажите, как оптимизировать алгоритм для потребления O(|s|) памяти.
- **5.** Строгим периодом строки s называется такая строка t минимальной длины, что существует целое $k \geqslant 1$, т. ч. $t^k = s$. Нестрогим периодом называется такая t минимальной длины, что существует целое $m \geqslant 1$, т. ч. $s \sqsubset t^m$ (то есть s является префиксом t^m). Найдите строгий и нестрогий периоды s за O(|s|).
- **6.** В строке s за $O(|s|^2)$ найдите количество её различных подстрок, то есть размер множества $\{s_l \dots s_r \mid l \leqslant r\}$.
- 7. По z-функции строки постройте её префикс-функцию.
- 8. В данной строке s за O(|s|) предподсчёта научитесь отвечать на запрос "равна ли подстрока $s_l \dots s_r$ префиксу соответствующей длины?" за O(1).
- 9. В данной строке найдите все префиксы, являющиеся палиндромами.
- **10.** Дан шаблон p и текст t. Найдите все вхождения p в t не более чем с одной ошибкой (то есть нужно найти подстроки t, которые равны p с точностью до замены одного символа).
- 11^* . По данной префикс-функции строки найдите количество строк над алфавитом мощности m с той же префикс-функцией.

- 1. Используйте union bound: вероятность существования не больше суммы вероятностей.
- **2.** Возьмите 4 хеш-функции по 4 взаимно простым модулям порядка 10^{10} .
- **3.** Для произвольного i множество таких j, что $s_j s_{j+1} \dots s_i = s_0 s_1 \dots s_{i-j}$, необязательно является отрезком.
- **4.** Достаточно хранить префикс-функцию строки s, а также значение префикс-функции на последнем рассмотренном символе t.
- **5.** Если p[n-1] последнее значение префикс-функции, рассмотрите n-p[n-1].
- **6.** Расширяйте строку s символами влево, насчитывайте префикс-функцию. Сколько новых строк добавляется после введения нового символа?
- 7. Если $z(i) \geqslant x$, то $\pi(i+x-1) \geqslant x$. Для каждого i поставьте пометку x в точке i+x-1, затем пройдите справа налево по строке.
- 8. Постройте дерево префикс-функции: если $\pi(k) = \ell$, проведите ребро $\ell \to k$. Тогда нужно будет научиться проверять, что одна вершина является предком другой.
- **9.** Запишите подряд (или с разделителем) s и s^R , тогда нужно будет найти, какие суффиксы равны соответствующим префиксам.
- **10.** В позиции i возьмите максимальную подстроку t, начинающуюся в i и равную префиксу p. Пропустите один символ. Проверьте, что остаток равен суффиксу p. Отдельно обработайте точные вхождения p.
- **11*.** Я не знаю, как решать :(