(BM-208) - Biomedical Electronics

Course Outline:

Theory:

1. Operational Amplifiers

- 1. Analysis of OP-AMP action
- 2. OP-AMP specifications
- 3. Interpreting OP-AMP data sheet
- 4. Offset voltage and current
- 5. Temperature rating
- 6. Output swing
- 7. Gain, CMRR

2. Basic OP-AMP Configuration Circuits

- 1. Inverting amplifiers
- 2. non-inverting amplifiers
- 3. Voltage follower
- 4. Summing amplifiers
- 5. Integrator and differentiator

3. Instrumentational Amplifier

- 1. Sensing and Measuring with the instrumentation amplifier
- 2. Instrumentation amplifier as a signal conditioning circuit

4. Active Filters Design

- 1. Basic Low Pass filters
- 2. Introduction to Butterworth filters
- 3. High pass and Bandpass Butterworth filters
- 4. Notch filters
- 5. A/D and D/A converters
- 6. Selected Applications of OP-AMPs in Biomedical Engineering
- 7. Signal Acquisition and Conditioning of ECG using OP-AMPs

List of Practicals:

- 1. Design and Analyze OP-AMP Based Inverting Amplifier
- 2. Design and Analyze OP-AMP Based Non-Inverting Amplifier
- 3. Design and Analyze the characteristics of Summing Amplifier
- 4. To study Characteristics of Differential Amplifier
- 5. To determine common mode rejection ratio (CMMR)
- 6. Design and Analyze OP-AMP Based Integrator
- 7. Design and Analyze OP-AMP Based Differentiator
- 8. Design and Analyze Instrumentation Amplifier
- 9. Designing an ECG Amplifier.
- 10. To Analyze Analog to Digital Converter
- 11. To Analyze Digital to Analog Converter
- 12. Designing and analyzing frequency response of Active Low Pass Filter
- 13. Designing and analyzing frequency response of Active High Pass Filter
- 14. Designing and analyzing frequency response of Active Band Pass Filter
- 15. Designing and analyzing frequency response of Active Band Stop Filter/
- 16. Project: ECG/EMG/ EOG/PPG Amplifier and filters

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

Text and Reference Books:

- 1. Electronics Design by Floyd 9th Edition
- $2.\,$ Operational amplifier and linear integrated circuits by Robert Coughlin