

Regularization and reproducing kernels

BREEFILE PROPERTY.

Pattern Recognition OS14

- Chapitre 2 -

Learning problem :

We are looking for a function ψ of a function space $\mathcal H$ which contains candidate functions from $\mathcal X$ to $\mathcal Y$. For each $x\in \mathcal X$, these functions predict a corresponding label y. Thus :

$$y = \psi(\boldsymbol{x})$$

We have a training set $A_n = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$

▶ Empirical risk minimization and generalization!

Definition (Well-posed Problem / Ill-posed Problem (Hadamard))

A problem is well-posed if

- it has a solution
- the solution is unique
- the solution is a continuous function of the data. (a small perturbation of the data produces a small perturbation of the solution)

A problem is ill-posed if it is not well-posed...

The empirical risk minimization

$$J_{emp}(\psi) = \frac{1}{n} \sum_{k=1}^{n} Q(\psi(\boldsymbol{x}_k), y_k),$$

is an ill-posed Problem.

Solution: Regularization

Ivanov regularization

Find the function ψ which minimizes

$$\frac{1}{n}\sum_{k=1}^{n}Q(\psi(\boldsymbol{x}_k),y_k),$$

under the constraint:

$$\|\psi\|^2 \leq A$$

Empirical risk penalization:

$$\mathsf{RisqEmp}(\psi) + \eta \; \mathsf{Pen}(\psi),$$

with $\eta \in \mathbb{R}^{+*}$ which is a positive parameter controlling the tradeoff between these two terms.

> The penalty term is used to incorporate a smoothing effect

Tikhonov regularization

Determine the function ψ in a space ${\cal H}$ of candidate functions, which minimizes :

$$\frac{1}{n} \sum_{k=1}^{n} Q(\psi(\mathbf{x}_{k}), y_{k}) + \eta \|\psi\|_{\mathcal{H}}^{2},$$

for a parameter $\eta > 0$, and where $\|\psi\|_{\mathcal{H}}$ is the function norm in the space \mathcal{H} .

This problem is well-posed.

Problem

Given $A_n = \{(X_i, Y_i)\}_{i=1}^n$ with $X_i \in \mathbb{R}^d$ and $Y \in \mathbb{R}$ a training set.

Find a linear regression $\hat{y} = \boldsymbol{a}^T \boldsymbol{x}$ with :

$$Q(\psi(\boldsymbol{x}_k), y_k) = \left(y_k - \boldsymbol{a}^T \boldsymbol{x}_k - a_0\right)^2$$

and

$$\|\psi\|_{\mathcal{H}}^2 = \|[\boldsymbol{a} \ a_0]\|^2$$

Define

$$\tilde{\boldsymbol{x}} = [\boldsymbol{x} \ 1]^T$$

$$\bullet \ \tilde{\boldsymbol{a}} = [\boldsymbol{a} \ a_0]^T$$

•
$$X = [\tilde{\boldsymbol{x}}_1 \tilde{\boldsymbol{x}}_2 \dots \tilde{\boldsymbol{x}}_n] \in \mathbb{R}^{(d+1) \times n}$$

$$y = [y_1 y_2 \dots y_n]^T \in \mathbb{R}^n$$

Define $\eta > 0$.

Formulation

Find:

$$\begin{split} \tilde{\boldsymbol{a}}^* &= \underset{\tilde{\boldsymbol{a}} \in R^{d+1}}{\operatorname{arg\,min}} \left(\sum_{i=1}^n \left(y_i - \tilde{\boldsymbol{a}}^T \tilde{x}_i \right)^2 + \eta \, \|\tilde{\boldsymbol{a}}\|^2 \right) \\ &= \underset{\tilde{\boldsymbol{a}} \in R^{d+1}}{\operatorname{arg\,min}} \left(\left\| \mathbf{y}^T - \tilde{\boldsymbol{a}}^T \tilde{\mathbf{X}} \right\|^2 + \eta \, \|\tilde{\boldsymbol{a}}\|^2 \right) \end{split}$$

Solution

$$\tilde{a}^* = \left(\tilde{\mathbf{X}}\tilde{\mathbf{X}}^T + \eta \mathbf{I}\right)^{-1}\tilde{\mathbf{X}}\mathbf{y}$$

 $\begin{array}{ll} \textbf{Figure: True function (blue), regressions using cubic polynomial with 2 datasets (red and green) - no regularization (letf) - regularization (right) } \\ \end{array}$

Reproducing Kernel Hilbert Space

Intuitions

- **(1)** Simplest function ψ : linear
- 2 Role of η : How far from $\psi_i = C^{te}$

Space \mathcal{H}

Map to higher dimension : Feature space Example : $\phi(x) = [x_1 \ x_2 \ x_1^2 + x_2^2] \in \mathbb{R}$

Reproducing Kernel Hilbert Space (RKHS)

Outline

- Hilbert space
- Kernels
- Reproducing property

Definition

 ${\cal H}$ is an Hilbert space if :

- $oldsymbol{0}$ \mathcal{H} is a functional space
- with a dot product
- and which has a norm deduced from the dot product that enable to measure distances.

Definition - dot product

Let $\mathcal H$ be a functional space over $\mathbb R$. A function $\langle .,. \rangle_{\mathcal H}: \mathcal H \times \mathcal H \to \mathbb R$ is a dot product on $\mathcal H$ if :

- Linear : $\langle \alpha \psi, \phi \rangle_{\mathcal{H}} = \alpha \langle \phi, \psi \rangle_{\mathcal{H}}$ and $\langle \psi_1 + \psi_2, \phi \rangle_{\mathcal{H}} = \langle \psi_1, \phi \rangle_{\mathcal{H}} + \langle \psi_2, \phi \rangle_{\mathcal{H}}$
- Symmetric : $\langle \psi, \phi \rangle_{\mathcal{H}} = \langle \phi, \psi \rangle_{\mathcal{H}}$
- Positive : $\langle f, f \rangle_{\mathcal{H}} \geq 0$ and $\langle f, f \rangle_{\mathcal{H}} = 0 \quad \Rightarrow \quad f = 0$

Norm

$$||f||_{\mathcal{H}} = \sqrt{\langle f, f \rangle_{\mathcal{H}}}$$

It is a generalization of Euclidian Space.

The dimension of an Hilbert space can be infinite.

Properties of norm

The $norm \parallel \cdot \parallel_{\mathcal{H}}$ defined on a space \mathcal{H} is an application from \mathcal{H} in \mathbb{R} , nonnegative, which satisfy the following properties, for any $\psi, \phi \in \mathcal{H}$,

- Positivity : $\|\psi\|_{\mathcal{H}} \geq 0$, with equality if and only if $\psi = 0$
- Homogeneity : $\|\alpha\psi\|_{\mathcal{H}} = |\alpha| \ \|\psi\|_{\mathcal{H}}$ for any $\alpha \in \mathbb{R}$
- \bullet Triangular inequality : $\|\psi+\phi\|_{\mathcal{H}} \leq \|\psi\|_{\mathcal{H}} + \|\phi\|_{\mathcal{H}}$

Example : $\mathcal{L}_2[a,b]=\{\psi\mid \int_a^b|\psi^2(x)|dx<\infty\}$ is a Hilbert space where the dot product is defined by :

$$\langle \psi, \phi \rangle = \int_{a}^{b} \psi(x)\phi(x)dx$$

A Hilbert space is a (possibly) infinite dimensional vector space endowed with a dot product.

Definition

Let \mathcal{X} be a representation space.

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists:

- ullet ${\cal H}$, an ${
 m I\!R}$ -Hilbert space and
- ullet a mapping function $\phi: \mathcal{X} \to \mathcal{H}$

such that :

$$\forall \boldsymbol{x}, \boldsymbol{x}' \in \mathcal{X}, \quad \kappa\left(\boldsymbol{x}, \boldsymbol{x}'\right) = \left\langle \phi\left(\boldsymbol{x}\right), \phi\left(\boldsymbol{x}'\right) \right\rangle_{\mathcal{H}}$$

- Almost no conditions on $\mathcal X$ No need for dot product Documents Structured data
- A kernel can correspond to several mapping functions : Example : ${\cal X}$ is ${\bf I\!R}$:

$$\phi_1(x) = x$$

$$\phi_2\left(x\right) = \left[\begin{array}{c} \frac{1}{\sqrt{2}}x\\ \frac{1}{\sqrt{2}}x \end{array}\right]$$

Sum

Let κ_1 and κ_2 be two kernels on \mathcal{X} , then $\kappa_1 + \kappa_2$ is also a kernel on \mathcal{X} .

A difference of kernel may not be a kernel.

Product

Let $\alpha>0$ a real and κ a kernel on \mathcal{X} , then $\alpha\kappa$ is also a kernel in \mathcal{X} .

Mapping

Consider:

- ullet two representation spaces \mathcal{X}_1 and \mathcal{X}_2
- ullet a mapping $\eta:\mathcal{X}_1 o\mathcal{X}_2$
- ullet a kernel $\kappa_2:\mathcal{X}_2 imes\mathcal{X}_2 o\mathbb{R}$
- ullet $oldsymbol{x}$ and $oldsymbol{x}'$ elements of \mathcal{X}_1

then $\kappa_2\left(\eta({m x}),\eta({m x}')
ight)$ is a kernel on \mathcal{X}_1

Example

Product of kernels

Consider:

- ullet two representation spaces \mathcal{X}_1 and \mathcal{X}_2
- ullet two kernels κ_1 and κ_2

then $\kappa = \kappa_1 imes \kappa_2$ is a kernel on $\mathcal{X}_1 imes \mathcal{X}_2$

If $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$ then κ is also kernel on \mathcal{X} . Interest

Consequence

Consider \boldsymbol{x} and $\boldsymbol{x}' \in \mathbb{R}^d$, $m \in \mathbb{N}^*$ and $a \in \mathbb{R}^+$:

$$\kappa\left(\boldsymbol{x}, \boldsymbol{x}'\right) = \left(\left\langle \boldsymbol{x}, \boldsymbol{x}' \right\rangle + a\right)^m$$

is a valid kernel.

Can a kernel be a dot product of an infinity of features?

The \mathcal{L}_2 norm of the kernel must be bounded.

Let $\phi_i({m x})$ be the i^{th} coordinate of $\phi({m x})$ then

$$\kappa \left(\boldsymbol{x}, \boldsymbol{x}' \right) = \left\langle \phi \left(\boldsymbol{x} \right), \phi \left(\boldsymbol{x}' \right) \right\rangle$$
$$= \sum_{i=1}^{\infty} \phi_i \left(\boldsymbol{x} \right) \phi_i \left(\boldsymbol{x}' \right)$$
$$\leq \left\| \phi \left(\boldsymbol{x} \right) \right\| \left\| \phi \left(\boldsymbol{x}' \right) \right\|$$

which is bounded if the sequence of $(\phi_i(x))_{i\geq 0}$ are in the space ℓ_2 . Space ℓ_2 is the set of all sequences squared summable.

Example

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') = exp\left(\langle \boldsymbol{x}, \boldsymbol{x}' \rangle\right)$$

Proof

Du to Cauchy-Schwarz:

$$\left|\left\langle \boldsymbol{x}, \boldsymbol{x}' \right\rangle\right| \leq \left\| \boldsymbol{x} \right\| \left\| \boldsymbol{x}' \right\|$$

Which is bounded and

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') = \sum_{i=0}^{\infty} a_i \left\langle \boldsymbol{x}, \boldsymbol{x}' \right\rangle^i$$

How can we find good kernel among all functions of 2 arguments?

- ① Try to find the mapping $\phi()$?
 - No obvious
 - May be infinite dimensional
 - The feature mapping is not unique....
- Prove that the kernel is definite positive!

Definition:

A symmetric function is said definite positive if

$$\sum_{i,j} \alpha_i \alpha_j \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) \ge 0$$

for any $\alpha_i, \alpha_j \in \mathbb{R}$ and $\boldsymbol{x}_i, \boldsymbol{x}_j \in \mathcal{X}$.

A function $\kappa(.,.)$ is *strictly definite positive* if, for distinct x_i , the equality holds only if all α_i equal 0.

The dot product of any mapping function is positive definite

Proof

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \kappa \left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left\langle \alpha_{i} \phi \left(\boldsymbol{x}_{i}\right), \alpha_{j} \phi \left(\boldsymbol{x}_{j}\right) \right\rangle$$
$$= \left\| \sum_{i=1}^{n} \alpha_{i} \phi \left(\boldsymbol{x}_{i}\right) \right\|^{2} \geq 0$$

Important

Reverse holds!

Positive definite $\kappa(.,.)$ is a dot product in \mathcal{H} .

Not definite positive - and so what?

 \Rightarrow Negative norm

If $m{v}_s$ is a eigenvector in $m{\mathcal{H}}$ and let $m{z} = \sum_{i=1}^n v_{si} \phi(m{x}_i)$ then :

$$\begin{split} \|\boldsymbol{z}\|^2 & = \langle \boldsymbol{z}, \boldsymbol{z} \rangle \\ &= \sum_{i=1}^n \sum_{j=1}^n v_{si} v_{sj} \left\langle \phi\left(\boldsymbol{x}_i\right), \phi\left(\boldsymbol{x}_j\right) \right\rangle \\ &= \boldsymbol{v}_s^T K \boldsymbol{v}_s \\ &= \lambda_s \|\boldsymbol{v}_s\|^2 \end{split}$$

Thus all λ_s have to be positive. . .

We consider the functions $\kappa(x,x')$ that can act as a dot product in a space \mathcal{H} . We call *kernel* a symmetric function κ of $\mathcal{X} \times \mathcal{X}$ in \mathbb{R}

Theorem (Mercer)

If κ is a continuous positive defined kernel based on an integral operator, which means that :

$$\iint \varphi(\boldsymbol{x}) \, \kappa(\boldsymbol{x}, \boldsymbol{x}') \, \varphi^*(\boldsymbol{x}') \, d\boldsymbol{x} \, d\boldsymbol{x}' \ge 0$$

For any $\varphi \in \mathcal{L}_2(\mathcal{X})$, it can be decomposed as :

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') = \sum_{i=1}^{\infty} \lambda_i \, \psi_i(\boldsymbol{x}) \, \psi_i(\boldsymbol{x}') = \langle \boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\boldsymbol{x}') \rangle,$$

where ψ_i and λ_i are the eigenfunctions (orthogonales) and eigenvalues (positives) of the kernel κ_i respectively, such that :

$$\int \kappa(\boldsymbol{x}, \boldsymbol{x}') \, \psi_i(\boldsymbol{x}) \, d\boldsymbol{x} = \lambda_i \, \psi_i(\boldsymbol{x}').$$

It is easy to see that a kernel κ satisfying Mercer's theorem can act as a scalar product in a transformed space \mathcal{H} . Since :

$$m{\phi}(m{x}) = egin{pmatrix} \sqrt{\lambda_1} \, \psi_1(m{x}) \ \sqrt{\lambda_2} \, \psi_2(m{x}) \ & \cdots \end{pmatrix}$$

Under these conditions, it is verified that :

$$\langle \phi(x), \phi(x') \rangle = \kappa(x, x')$$

So, let define the space ${\cal H}$ as the space generated by the eigenfunctions ψ_i of kernel κ which means that :

$$\mathcal{H} = \{ f(\cdot) \mid f(x) = \sum_{i=1}^{\infty} \alpha_i \ \psi_i(x), \ \alpha_i \in \mathbb{R} \}.$$

Property

 $\phi(x)$ is often of large dimension, sometimes infinite.

The polynomial transformation makes the data linearly separable.

A linear classifier in the space defined by $\phi(x)$ is non-linear with respect to x

Property

We **never** need to explicitly calculate $\phi(x)$

In the case of the polynomial transformation of order 2, it is easy to show that :

$$\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle = (1 + \langle \mathbf{x}, \mathbf{x}' \rangle)^2 \triangleq \kappa(\mathbf{x}, \mathbf{x}')$$

$$\phi(\mathbf{x}) = [1, \quad \mathbf{x}, \quad \mathbf{x}, \quad \mathbf{x}^2]$$

\triangleright The dot product computation can be performed in \mathbb{R}^2 !

In a more general case (polynomial of order q), it generalizes to : $\kappa(\boldsymbol{x}, \boldsymbol{x'}) = (1 + \langle \phi(\boldsymbol{x}), \phi(\boldsymbol{x'}) \rangle)^q$, with $\boldsymbol{x} \in \mathbb{R}^l$.

$$\kappa(\boldsymbol{x}, \boldsymbol{x}') = (1 + \langle \boldsymbol{x}, \boldsymbol{x}' \rangle)^q = \sum_{j=0}^q \binom{q}{j} \langle \boldsymbol{x}, \boldsymbol{x}' \rangle^j.$$

Each componant $\langle x,x'\rangle^j=[x(1)\,x'(1)+\ldots+x(l)\,x'(l)]^j$ of this expression can be develop as a weighted sum of order j monomials :

$$[x(1) x'(1)]^{j_1} [x(2) x'(2)]^{j_2} \dots [x(l) x'(l)]^{j_l}$$

with $\sum_{i=1}^l j_i = j$. The expression of $\phi({m x})$ can be deduced . . .

It can be shown that the following kernels verify the condition of Mercer, and thus correspond to a dot product in a space ${\cal H}_{\cdot}$

Projective kernels	
monomial of degree q	$\langle oldsymbol{x}, oldsymbol{x}' angle^q$
polynomial of degree q	$(1 + \langle \boldsymbol{x}, \boldsymbol{x}' \rangle)^q$
sigmoidal	$\frac{1}{\eta_0} \tanh(\beta_0 \langle \boldsymbol{x}, \boldsymbol{x}' \rangle - \alpha_0)$

Radial kernels	
Gaussien	$\exp(-\frac{1}{2\sigma_0^2}\ m{x} - m{x}'\ ^2)$
exponential	$\exp(-rac{1}{2\sigma_0^2}\ oldsymbol{x}-oldsymbol{x}'\)$
uniform	$\frac{1}{\eta_0} 1_{\parallel \boldsymbol{x} - \boldsymbol{x}' \parallel \leq \beta_0}$
Epanechnikov	$\frac{1}{\eta_0} (\beta_0^2 - \ \boldsymbol{x} - \boldsymbol{x}' \ ^2) 1_{\ \boldsymbol{x} - \boldsymbol{x}' \ \le \beta_0}$
Cauchy	$\frac{1}{\eta_0} \frac{1}{1 + \ \boldsymbol{x} - \boldsymbol{x}'\ ^2 / \beta_0^2}$

$$\ldots$$
 and also : $\kappa_1(m{x},m{x}')+\kappa_2(m{x},m{x}')$, $\kappa_1(m{x},m{x}')\cdot\kappa_2(m{x},m{x}')$, \ldots

Let define ϕ such that :

$$\phi \qquad \qquad : \mathbb{R}^2 \to \mathbb{R}^3$$

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} \mapsto \phi(\boldsymbol{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}$$

with kernel

$$\kappa\left(x,y\right) = \left[\begin{array}{c} x_1 \\ x_2 \\ x_1x_2 \end{array}\right]^T \left[\begin{array}{c} y_1 \\ y_2 \\ y_1y_2 \end{array}\right]$$

Let the feature space be \mathcal{H} .

Define a linear function f of ${m x}$ and x_1x_2 :

$$f(\mathbf{x}) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2$$

f is a function that maps data from \mathbb{R}^2 to \mathbb{R} . A representation of f can be

$$f(.) = [f_1 \ f_2 \ f_3]^T$$

f(.) is the function as an object (a vector in \mathbb{R}^3 in that case) $f(x)\in\mathbb{R}$ is the function value at point x

$$f(\mathbf{x}) = f(.)^T \phi(\mathbf{x}) = \langle f(.), \phi(\mathbf{x}) \rangle_{\mathcal{H}}$$

Evaluation of f is a dot product in ${\mathcal H}$

 $\phi(y)$ is a mapping from \mathbb{R}^2 to \mathbb{R}^3 that corresponds also to a function mapping from \mathbb{R}^2 to \mathbb{R} .

$$\phi(\boldsymbol{y}) = [y_1 \ y_2 \ y_1 y_2]^T = \kappa(., \boldsymbol{y})$$

Given any $oldsymbol{y}$, there is a vector $\kappa(.,oldsymbol{y})$ in ${\mathcal H}$ such that :

$$\langle \kappa(., \boldsymbol{y}), \phi(\boldsymbol{x}) \rangle_{\mathcal{H}} = y_1 x_1 + y_2 x_2 + y_1 y_2 x_1 x_2$$

Due to symmetry:

$$\langle \kappa(., \boldsymbol{x}), \phi(\boldsymbol{y}) \rangle_{\mathcal{H}} = \langle \kappa(., \boldsymbol{y}), \phi(\boldsymbol{x}) \rangle_{\mathcal{H}}$$

One can write $\phi(\boldsymbol{x}) = \kappa(., \boldsymbol{x})$ and $\phi(\boldsymbol{y}) = \kappa(., \boldsymbol{y})$ thus

$$\langle \kappa(., \boldsymbol{x}), \phi(\boldsymbol{y}) \rangle_{\mathcal{H}} = \langle \phi(\boldsymbol{y}), \phi(\boldsymbol{x}) \rangle_{\mathcal{H}} = \kappa(\boldsymbol{x}, \boldsymbol{y})$$

This illustrates the definition of a RKHS:

The reproducing property

$$\forall \boldsymbol{x} \in \mathcal{X}, \langle f(.), \kappa(., \boldsymbol{x}) \rangle_{\mathcal{H}} = f(\boldsymbol{x})$$

or

$$\forall \boldsymbol{x} \in \mathcal{X}, \langle f(.), \phi(\boldsymbol{x}) \rangle_{\mathcal{H}} = f(\boldsymbol{x})$$

In particular

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X}, \kappa(\boldsymbol{x}, \boldsymbol{y}) = \langle \kappa(., \boldsymbol{x}), \kappa(., \boldsymbol{y}) \rangle_{\mathcal{H}}$$

Note that \mathcal{H} can be larger than $\phi(\boldsymbol{x})$

Example

$$[1,1,-1] \in \mathcal{H}$$

Theorem (The representer theorem)

Any function ψ in a reproducing kernel Hilbert space \mathcal{H} , with kernel κ , which minimizes the regularized empirical risk :

$$\frac{1}{n} \sum_{k=1}^{n} Q(\psi(\boldsymbol{x}_k), y_k) + \eta \ g(\|\psi\|_{\mathcal{H}}^2),$$

which implies n values $\psi(x_k)$ obtained for inputs x_k and (eventually) n desired outputs y_k , with g a strictly monotonic increasing function on \mathbb{R}^+ , any such function admits a representation of the form :

$$\psi(\cdot) = \sum_{i=1}^{n} \alpha_i \kappa(\cdot, \boldsymbol{x}_i).$$

Sketch of proof:

Any function ψ in $\mathcal H$ can be decomposed as $\psi = \sum_{i=1}^n \alpha_i \, \kappa(\cdot, \boldsymbol x_i) + \psi^\perp$, with $\langle \psi^\perp, \kappa(\cdot, \boldsymbol x_i) \rangle_{\mathcal H} = 0$ for all $i=1,\dots,n$. Since $\psi(x_j) = \langle \psi, \kappa(\cdot, \boldsymbol x_j) \rangle$, the value $\psi(x_j)$ is unaffected by ψ^\perp , for $j=1,\dots,n$.

Consequence:

The minimization on a functional Hilbert space (which can be of infinite dimension) leads to a minimization problem in \mathbb{R}^n

Evaluation functional:

A functional (linear) $\delta_x:\mathcal{H}\to\mathbb{R}$ is an evaluation functional if it evaluates any function ψ of the space \mathcal{H} at any point $x\in\mathcal{X}$. Thus :

$$\delta_{\boldsymbol{x}}(\psi) = \psi(\boldsymbol{x})$$

Definition (Reproducing Kernel Hilbert Space (RKHS))

A Hilbert space is a *Reproducing Kernel Hilbert Space* if and only if, for any $x \in \mathcal{X}$, the evaluation functional δ_x is bounded.

In other words, there exist M such that for any $\psi \in \mathcal{H}$:

$$|\delta_{\boldsymbol{x}}(\psi)| = |\psi(\boldsymbol{x})| \le M \|\psi\|_{\mathcal{H}}.$$

Riesz (Fréchet) representation theorem :

If $\mathcal H$ is a RKHS, and from the Riesz (Fréchet) representation theorem, for any $x\in\mathcal X$ it exists a unique function $\kappa(\cdot,x)$ (called representer) from $\mathcal H$ such that

$$\delta_{\boldsymbol{x}}(\psi) = \psi(\boldsymbol{x}) = \langle \psi, \kappa(\cdot, \boldsymbol{x}) \rangle_{\mathcal{H}} \quad \forall \psi \in \mathcal{H}$$

Reproducing property:

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \kappa(\cdot, \boldsymbol{x}_i), \kappa(\cdot, \boldsymbol{x}_j) \rangle_{\mathcal{H}} \qquad \kappa(\boldsymbol{x}_i, \boldsymbol{x}_i) = \|\kappa(\cdot, \boldsymbol{x}_i)\|_{\mathcal{H}}^2$$

Unicity: For a RKHS, its reproducing Kernel is unique *Sketch of proof*:

$$\langle f(.), \kappa_1(., x) \rangle = \langle f(.), \kappa_2(., x) \rangle$$