Funcionamento De Cada Estratégia

Pivô primeiro elemento: sempre seleciona o primeiro elemento do subarray como pivô. É simples, mas em vetores já ordenados ou quase ordenados tende a causar particionamento desbalanceado, aproximando-se do pior caso do QuickSort.

Pivô último elemento: assim como o anterior, mas seleciona o último elemento. O efeito é o mesmo em termos de risco de desbalanceamento.

Pivô aleatório: escolhe um índice aleatório dentro do subarray. A ideia é evitar o pior caso em entradas ordenadas, pois reduz a chance de sempre cair em particionamento ruim.

Pivô mediana de três (primeiro, meio e último): escolhe o pivô como a mediana entre o primeiro, o elemento do meio e o último. Essa técnica procura reduzir desbalanceamentos extremos, aproximando o pivô do valor central do conjunto.

Desempenho Observado Nos Testes

PRIMEIRO TESTE

Testando com 100 elementos ordenados:	Testando com 1000 elementos ordenados:	Testando com 10000 elementos ordenados:	
pivo primeiro: 0.0287 ms	pivo primeiro: 1.6136 ms	pivo primeiro: 2.9947 ms	
pivo ultimo: 0.076 ms	pivo ultimo: 0.3358 ms	pivo ultimo: 1.5516 ms	
pivo random: 0.2909 ms	pivo random: 0.6004 ms	pivo random: 4.0117 ms	
pivo mediana de tres: 0.0353	pivo mediana de tres: 0.3449	pivo mediana de tres: 1.9322	
ms	ms	ms	

SEGUNDO TESTE

Testando com 100 elementos ordenados:	Testando com 1000 elementos ordenados:	Testando com 10000 elementos ordenados:	
pivo primeiro: 0.0285 ms	pivo primeiro: 0.5067 ms	pivo primeiro: 1.5556 ms	
pivo ultimo: 0.0389 ms	pivo ultimo: 0.3364 ms	pivo ultimo: 1.3326 ms	
pivo random: 0.2869 ms	pivo random: 0.7255 ms	pivo random: 3.3254 ms	
pivo mediana de tres: 0.0475 ms	pivo mediana de tres: 0.3507 ms	pivo mediana de tres: 1.4846 ms	

TERCEIRO TESTE

Testando com 100 elementos ordenados:	Testando com 1000 elementos ordenados:	Testando com 10000 elementos ordenados:	
pivo primeiro: 0.032 ms	pivo primeiro: 0.345 ms	pivo primeiro: 1.4547 ms	
pivo ultimo: 0.0316 ms	pivo ultimo: 1.0082 ms	pivo ultimo: 3.276 ms	
pivo random: 0.2686 ms	pivo random: 0.4952 ms	pivo random: 1.6886 ms	
pivo mediana de tres: 0.0357 ms	pivo mediana de tres: 0.3737 ms	pivo mediana de tres: 1.4248 ms	

Nº elementos	Pivô Primeiro	Pivô Último	Pivô Random	Pivô Mediana de Três
100	0.0297	0.0488	0.2821	0.0395
1000	0.8218	0.5601	0.6070	0.3564
10000	2.0017	2.0534	3.0086	1.6139

Discussão dos resultados

- O pivô primeiro e o pivô último apresentam riscos maiores de gerar partições muito desbalanceadas em vetores ordenados, aproximando-se do pior caso O(n²). Nos testes, eles tiveram tempos variáveis: às vezes melhores em pequenos conjuntos, mas inconsistentes em grandes.
- O pivô aleatório foi mais lento em todos os cenários testados. Isso pode ser explicado pelo custo extra de geração de números aleatórios e pelo fato de que, em vetores ordenados, nem sempre evita partições ruins.
- O pivô mediana de três apresentou os melhores tempos nos testes com 1000 e 10000 elementos. Essa estratégia consegue, de fato, reduzir o risco de desequilíbrios extremos, mantendo a complexidade mais próxima de O(n log n)
- Em resumo:
 - o Para **pequenos vetores (100 elementos)**, a diferença é pequena.
 - Para vetores maiores (1000 e 10000 elementos), a mediana de três foi a mais eficiente e estável.