Guía 13: El álgebra de Lindenbaum

- Relación: Sea $T = (\Sigma, \tau)$ una teoría, definimos la siguiente relación binaria sobre S^{τ} : $\varphi \dashv \vdash_T \psi$ sii $T \vdash (\varphi \leftrightarrow \psi)$
 - Propiedades:
 - * $\dashv \vdash_T$ es una relación de equivalencia
 - * $\{\varphi \in S^{\tau} : \varphi \text{ es un teorema de } T\} \in S^{\tau} / \Vdash_{T}$
 - * $\{\varphi \in S^{\tau} : \varphi \text{ es refutable en } T\} \in S^{\tau} / \dashv \vdash_{T}$
 - · Una sentencia φ se dice **refutable** en (Σ, τ) si $(\Sigma, \tau) \vDash \neg \varphi$
- Clases: Dada una teoría $T = (\Sigma, \tau)$ y $\varphi \in S^{\tau}$, $[\varphi]_T$ denotará la clase de φ con respecto a la relación de equivalencia $\dashv \vdash_T$
- Operaciones sobre $S^{\tau}/ \dashv \vdash_T$:
 - $[\varphi]_T s^T [\psi]_T = [(\varphi \lor \psi)]_T$ $[\varphi]_T i^T [\psi]_T = [(\varphi \land \psi)]_T$ $([\varphi]_T)^{c^T} = [\neg \varphi]_T$
- Constantes en $S^{\tau}/\dashv \vdash_T$:
 - $-1^T = \{ \varphi \in S^{\tau} : \varphi \text{ es un teorema de } T \}$
 - $-0^T = \{ \varphi \in S^\tau : \varphi \text{ es refutable en } T \}$
- Álgebra de Lindenbaum: Sea (Σ, τ) una teoría, denotaremos con \mathcal{A}_T a $(S^{\tau}/\dashv \vdash_T, s^T, i^T, c^T, 0^T, 1^T)$ y será llamada el álgebra de Lindenbam de la teoría T.
 - $-\mathcal{A}_T$ es un álgebra de Boole
- Orden parcial: Denotaremos con \leq^T al orden parcial asociado al álgebra de Boole \mathcal{A}_T
 - $[\varphi]_T \leq^T [\psi]_T \text{ sii } T \vDash (\varphi \to \psi)$
- Criterio para resolver ejercicios: Si queremos demostrar que en A_T se da que $[\varphi]_T \neq [\psi]_T$ entonces basta con encontrar un modelo A de T tal que $(\varphi \leftrightarrow \psi)$ sea falsa en A. Es decir, deberemos encontrar un modelo el cual haga verdadera a una de las sentencias y falsa a la otra.