CONVOLUTIONAL NEURAL NETWORK

Neural Network & Deep Learning

Algoritma yang mengimitasi kemampuan otak manusia (biological neuron) untuk mengenali pola tertentu dan dapat melakukan proses pembelajaran.

Neuron

Unit Cerdas yang Memiliki Kemampuan Untuk Belajar

$$z = \theta_1 a_1 + \theta_2 a_2 + \dots + \theta_n a_n + b$$

• Local receptive fields Convolutional • Shared weights Neural Network • Spatial subsampling

The state of the s

上五

CONVOLUTIONAL LAYER

What is the second of the second

CONVOLUTIONAL LAYER

$$g_k^l = I_p^{l-1*} W_k^l$$

CONVOLUTIONAL LAYER

A CONTRACTOR OF THE SECOND

$$(\omega^{l-1}-m^l+1)$$

$$X$$

$$(\omega^{l-1}-m^l+1)$$

MAX-POOLING LAYER

Activation Function: Relu

$$x^l = f(g_k^l) = \max(0, \mathbf{X})$$

ACTIVATION FUNCTION

Sigmoid

$$g(z) = \frac{1}{1 + e^{-z}}$$

Tanh

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Relu

$$g(z) = \max(0, z)$$

ACTIVATION FUNCTION

Loss function: Gap antara prediction dan actual

$$J(a^{(L)}, y) = a^{(L)} - y$$

Loss function Regresi

	ranction itesies	
Mean Absolute Error	$MAE\left(a^{(L)},y\right) = \frac{1}{n}\sum_{i=1}^{n} a_i^L - y $	(2.13)
Mean Square Error	$MSE = \frac{1}{n} \sum_{i=1}^{n} (a_i^L - y)^2$	(2.14)
Mean Square Logarithmic Error	$MSLE = \frac{1}{n} \sum_{i=1}^{n} (\log(a_i^L + 1) - \log(y + 1))^2$	(2.15)
L1	$L1 = \sum_{i=1}^{n} a_i^L - y $	(2.16)
L2	$L2 = \sum_{i=1}^{n} (a_i^L - y)^2$	(2.17)

Loss function Klasifikasi

Negative log likelihood	$NLL = -\frac{1}{n} \sum_{i=1}^{n} \log(a_i^L)$	(2.18)
Binary Cross Entropy	$BCE = - \left(y_i \log(a_i^L) \right) + \left((1 - y_i) \log(1 - a_i^L) \right)$	(2.19)
Cross Entropy	$CE = -\sum_{i=1}^{n} y \log(a_i^L))$	(2.20)
Kullback Leibler	$KL = \frac{1}{n} \sum_{i=1}^{n} (y_i \log(y_i)) - \frac{1}{n} \sum_{i=1}^{n} y_i \log(a_i^L))$	(2.21)
Hinge	$HINGE = \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i \cdot a_i^L)$	(2.22)

LOSS FUNCTION

$$\delta^{(l)} = \sum_{i=1}^{n} \left(\delta_i^{(l+1)} \cdot \theta_i^{(l+1)} \right) \cdot g'(z^{(l)})$$

$$\delta_{\theta}^{(l)} = \delta^{(l)} \cdot a^{(l-1)}$$

$$\delta_b^{(l)} = \delta^{(l)}$$

LEARNING ALGORITHM (BACKPROPAGATION)

$$\theta_{new}^{l} = \theta_{old}^{l} - \gamma \frac{\partial J(a^{(L)}, y)}{\partial \theta}$$

GRADIENT DESCENT

TERIMA KASIH

