MODULI WITH A GENERATOR FOR THE UNITS

The table below lists all moduli $2 \le m \le 302$ such that the units of \mathbf{Z}/m have a generator. Every prime below 302 appears on the list. They don't factor. For each non-prime m in the table we include its factorization.

\overline{m}	Factored	m	Factored	m	Factored	m	Factored	m	Factored
2		38	$2 \cdot 19$	94	$2 \cdot 47$	158	$2 \cdot 79$	229	
3		41		97		162	$2 \cdot 3^4$	233	
4	2^{2}	43		98	$2 \cdot 7^2$	163		239	
5		46	$2 \cdot 23$	101		166	$2 \cdot 83$	241	
6	$2 \cdot 3$	47		103		167		242	$2 \cdot 11^{2}$
7		49	7^{2}	106	$2 \cdot 53$	169	13^{2}	243	3^5
9	3^{2}	50	$2 \cdot 5^2$	107		173		250	$2 \cdot 5^3$
10	$2 \cdot 5$	53		109		178	$2 \cdot 89$	251	
11		54	$2 \cdot 3^3$	113		179		254	$2 \cdot 127$
13		58	$2 \cdot 29$	118	$2 \cdot 59$	181		257	
14	$2 \cdot 7$	59		121	11^{2}	191		262	$2 \cdot 131$
17		61		122	$2 \cdot 61$	193		263	
18	$2 \cdot 3^2$	62	$2 \cdot 31$	125	5^{3}	194	$2 \cdot 97$	269	
19		67		127		197		271	
22	$2 \cdot 11$	71		131		199		274	$2 \cdot 137$
23		73		134	$2 \cdot 67$	202	$2 \cdot 101$	277	
25	5^{2}	74	$2 \cdot 37$	137		206	$2 \cdot 103$	278	$2 \cdot 139$
26	$2 \cdot 13$	79		139		211		281	
27	3^{3}	81	3^{4}	142	$2 \cdot 71$	214	$2 \cdot 107$	283	
29		82	$2 \cdot 41$	146	$2 \cdot 73$	218	$2 \cdot 109$	289	17^{2}
31		83		149		223		293	
34	$2 \cdot 17$	86	$2 \cdot 43$	151		226	$2 \cdot 113$	298	$2 \cdot 149$
37		89		157		227		302	$2 \cdot 151$