TD 2

Séries entières

Exercice 1. Soit $(c_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs.

a) Montrer que

$$\overline{\lim}_{n \to \infty} \ c_n^{1/n} \le \overline{\lim}_{n \to \infty} \ \frac{c_{n+1}}{c_n} \ .$$

b) Montrer que si $L = \lim_{n \to \infty} \frac{c_{n+1}}{c_n}$ existe dans $[0, \infty]$, alors

$$L = \lim_{n \to \infty} c_n^{1/n}.$$

Exercice 2. Donner le rayon de convergence de la série entière $\sum_{n\geq 1} a_n z^n$ dans les cas suivants :

- a) $a_{2n} = a^{2n}$ et $a_{2n+1} = b^{2n+1}$, avec 0 < a < b.
- b) $a_n = \frac{n!}{n^n}$.
- c) $a_{2n+1} = 0$ et $a_{2n} = \frac{(-1)^n n!}{(n+\sin n)^n}$.

Exercice 3. Soit α un réel strictement positif.

- a) Étudier, en discutant suivant la valeur de α , la sommabilité de la famille de nombres positifs $\{(m+n)^{-\alpha}\}_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$.
- b) Même question pour la famille $\{(m^{\alpha} + n^{\alpha})^{-1}\}_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$.

Exercice 4.

a) Montrer que la série

$$\sum_{n=1,\,n\neq m}^{\infty} \frac{1}{m^2 - n^2}$$

est convergente de somme $-\frac{3}{4m^2}$.

b) On définit

$$u_{nm} = \begin{cases} 0 & \text{if} \quad n = m \\ \frac{1}{m^2 - n^2} & \text{if} \quad n \neq m \end{cases}.$$

Montrer que

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} u_{nm} = -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} u_{nm} \neq 0.$$

La famille $(u_{nm})_{(n,m)\in\mathbb{N}^*\times\mathbb{N}^*}$ est-elle sommable?

Exercice 5. Soit $p \geq 2$ un entier fixé. On note $\omega_0, \ldots, \omega_{p-1}$ les p racines p-ièmes de l'unité.

a) Calculer pour tout entier $n \geq 0$, la somme $\omega_0^n + \cdots + \omega_{p-1}^n$.

b) Soit

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

une série entière de rayon de convergence r>0. On définit $g:D(0,r^p)\to\mathbb{C}$ par

$$g(z) = \begin{cases} 0 & \text{if } z = 0 \\ f(w_0) + \dots + f(w_{p-1}) & \text{if } z \neq 0 \end{cases},$$

où w_0, \ldots, w_{p-1} sont les racines p-ièmes de z. Montrer que g est la somme d'une série entière, que l'on déterminera à partir de celle que définit f.

Exercice 6. Soit

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

une série entière de rayon de convergence r > 0. Montrer que si f n'est pas constante au voisinage de 0, alors il existe un voisinage V de 0 tel que

$$\forall z \in V$$
 $f(z) = f(0) \Rightarrow z = 0$.

Exercice 7. Que peut-on dire de la convergence uniforme des séries suivantes dans les régions indiquées?

- a) $\sum_{n=1}^{\infty} \frac{z^n}{n\sqrt{n+1}}, |z| \le 1.$
- b) $\sum_{n=1}^{\infty} \frac{1}{n^2 z^2}$, $1 \le |z| \le 2$
- c) $\sum_{n=1}^{\infty} \frac{\cos(nz)}{n^3}$, $1 \le |z| \le 2$.

Exercice 8. Montrer que si $a_n = \lambda_n b_n$ avec $\lambda_n = \mathcal{O}(n^{\alpha})$ ($\alpha \in \mathbb{R}$), alors le rayon de convergence de $\sum a_n z^n$ est supérieur à celui de $\sum b_n z^n$.

Exercice 9. Déterminer le rayon de convergence des séries entières suivantes :

- 1. $\sum_{n} \frac{n!}{(2n)!} x^n$ 2. $\sum_{n} \ln n x^n$ 3. $\sum_{n} \frac{\sqrt{n} x^{2n}}{2^n + 1}$ 4. $\sum_{n} \frac{(1+i)^n z^{3n}}{n \cdot 2^n}$ 5. $\sum_{n} (2+ni)^n z^n$ 6. $\sum_{n} \frac{(-1)^n}{1 \times 3 \times \dots \times (2n-1)} z^n$ 7. $\sum_{n} a^{\sqrt{n}} z^n$, a > 0 8. $\sum_{n} z^{n!}$ 9. $\sum_{n} n^{\ln n} z^n$

Exercice 10. Calculer le rayon de convergence de la série entière $\sum_n a_n z^n$ lorsque a_n est donné par :

2

2. $a_n = \ln \left(1 + \sin \frac{1}{n}\right)$

1. $a_n = \frac{1}{\sqrt{n}}$ 3. $a_n = \frac{n!}{2^{2n}\sqrt{(2n)!}}$

- **4**. $a_n = \tan(\frac{n\pi}{7})$
- **5**. a_n est le nombre de diviseurs de n
- **6.** $a_n = \exp(1/n) 1$.