Лекция 12 **Уменьшение размерности**

Машинное обучение **Андрей Фильченков** / Сергей Муравьёв

20.11.2020

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли
- Слайды доступны: shorturl.at/ltVZ3
- Видео доступны: shorturl.at/hjyAX

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Задача уменьшения размерности

Объекты описаны признаками $\mathcal{F} = (f_1, ..., f_n)$. Задача: построить множество признаков $\mathcal{G} = (g_1, ..., g_k)$: k < n (часто $k \ll n$), при переход к которым сопровождается наименьшей потерей информации.

- Ускорение обучение и обработку
- Борьба с шумом и мультиколлинеарностью
- Интерпретация и визуализация данных

Проклятие размерности

Проклятие размерности (curse of dimensionality) это набор проблем, возникающих с ростом размерности

- Увеличиваются требования к памяти и вычислительной мощности
- Данные становятся более разреженными
- Проще найти гипотезы, не имеющие отношения к реальности

Когда применять

Уменьшение размерности — шаг в предобработки данных

- Меньше памяти для хранения
- Уменьшение времени обработки
- Увеличение качества обработки
- Понимание природы признаков

Обучение представлению это тоже уменьшение размерности, но с учителем

Методы уменьшения размерности

Два основных подхода

Выбор признаков (feature selection) включает методы, для которых $\mathcal{G} \subset \mathcal{F}$. Они

- быстро работают;
- не могут «выдумывать» сложных признаков.

Извлечение признаков (feature extraction) включает все другие методы (в том числе даже те, у которых k > n).

- в целом, дольше работают;
- могут извлекать сложные признаки.

Извлечение признаков

Цель методов извлечения признаков:

- Уменьшение числа ресурсов, требуемых для обработки больших данных
- Поиск новых признаков
- Эти признаки могут быть линейными и нелинейными относительно исходных

Выбор признаков

Цели выбора признаков:

- Уменьшение переобучения у улучшение качества предсказания
- Улучшее понимание моделей

Типы ненужных признаков

- Избыточные (redundant) признаки не привносят дополнительной информации относительно существующих
- Нерелевантные (irrelevant) признаки просто неинформативны

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Мотивация извлечения признаков

Соберем большой набор данных размерности 50

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human	7.000	Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	`56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	

Синтез признаков

Извлечение признаков позволяет получить другое представление объектов

Country	z_1	z_2
Canada	1.6	1.2
China	1.7	0.3
India	1.6	0.2
Russia	1.4	0.5
Singapore	0.5	1.7
USA	2	1.5

Извлечение линейных признаков

Бывает линейным и нелинейным Линейный быстрее и интерпретируемее Нелинейные находят более сложные признаки

Метод главных компонент (Principal Component Analysis, PCA) наиболее известный метод для извлечения линейных признаков

Одномерный случай

Дано множество точек в R^n . Хотим описать эти данные при помощи одной переменной. Это задача регрессии без учителя.

Основная идея: будем проецировать на прямую, такую, что

- 1) расстояние от точек до нее минимально;
- 2) дисперсия проекций максимальна.
- Эти условия эквивалентны.

Иллюстрация

Общий случай

Приблизить данные линейным многообразием меньшего размера:

- минимизация расстояния
- максимизация дисперсии проекций
- максимизация расстояния между проекциями
- корреляция между осями проекций равна нулю (новинка!)

Много вариантов того, как можно описать требования к решению

Математическая постановка

Постановка:

$$||GU^{\mathsf{T}} - F||^2 \to \min_{G,U}$$

где
$$F = \begin{pmatrix} f_1(x_1) & \dots & f_1(x_{|\mathcal{D}|}) \\ \dots & \dots & \dots \\ f_n(x_1) & \dots & f_n(x_{|\mathcal{D}|}) \end{pmatrix},$$

$$G = \begin{pmatrix} g_1(x_1) & \dots & g_1(x_{|\mathcal{D}|}) \\ \dots & \dots & \dots \\ g_k(x_1) & \dots & g_k(x_{|\mathcal{D}|}) \end{pmatrix},$$
rank(U) = rank(C) = k

$$rank(U) = rank(G) = k$$
.

Основная теорема

Теорема:

если $k \leq \text{rank}(F)$, то минимум достигается, когда столбцы U являются собственными столбцами $F^{\mathsf{T}}F$, соответствующим k максимальным собственным значениям, и G = UF.

Следствия:

1.
$$U^{\mathsf{T}}U = \mathbf{E}_r$$
.

2.
$$G^{\mathsf{T}}G = \Lambda = \operatorname{diag}(\lambda_1, ..., \lambda_r)$$
.

3.
$$U\Lambda = F^{\mathsf{T}}FU$$
; $G\Lambda = F^{\mathsf{T}}FG$.

4.
$$||GU^{\mathsf{T}} - F||^2 = ||F||^2 - \operatorname{tr} \Lambda = \sum_{r=1}^n \lambda_i$$
.

Главные компоненты

G − линейное многообразие Оси *G* − **главные компоненты**

Итеративный поиск главных компонент:

найти прямую c_1 , расстояние до которой минимально.

Повторять: найти прямую c_i , ортогональную $\left\{c_j\right\}_{j=1}^{i-1}$, расстояние до которой минимально.

Выбор k

Проблема подобна выбору k в EM.

Отсортировать собственные значения $F^{\mathsf{T}}F$ по убыванию: $\lambda_{(1)} \ge \cdots \ge \lambda_{(n)}$.

$$E(k) = \frac{\|F - UG^{\top}\|^2}{\|F\|^2} = \frac{\lambda_{(k+1)} + \dots + \lambda_{(n)}}{\lambda_{(1)} + \dots + \lambda_{(n)}}$$

E(k) характеризует долю информацию, теряемую при проекции.

Значение k можно выбрать по E(k).

Обсуждение РСА

- Линейное преобразование со всеми достоинствами и недостатками
- Работает относительно недолго
- Широко распространено для сжатия данных и визуализации
- Улучшения: нелинейные методы (главные кривые и главные многообразия)

Вариации и родственники РСА

- Анализ независимых компонент (ICA)
- EM PCA
- Ядерный РСА
- Канонический корреляционный анализ (ССА)

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Автокодировщик

Автокодировщик (autoencoder) — глубокая нейронная сеть, способная строить низкоразмерные представления данных за счет нелинейной трансформации.

Основная идея: заставим сеть предсказывать (восстанавливать) то, что подается ей на вход, ограничив возможность обучиться тривиальному преобразованию.

Ограничение преобразования

Два варианта:

- Структурный: между входными и выходными слоями должен быть слой меньшей размерности, т.н. бутылочное горлышко (bottleneck). Это недополненный (undercomplete) автокодировщик.
- Регуляризационный: добавим регуляризационную константу к выходам этого слоя, уменьшающим его размерность. Это разреженный (sparse) автокодировщик.

Части автокодировщика

Кодировщик (encoder) — часть сети от входного слоя до бутылочного горлышка Декодировщик (decoder) — часть сети от бутылочного горлышка до выходного слоя

Модель свёрточного кодировщика

Регуляризация для автокодировщика

Вместо минимизации $\|d(c(x)) - x\|$ будем минимизировать

$$||d(c(x)) - x|| + \tau \cdot L(c(x)),$$

где c — кодировщик, d — декодировщик, L — некая регуляризация, τ — коэффициент регуляризации.

Стандартно можно взять L_1 норму (как в LASSO)

Вариации автокодировщика

- Шумоподавляющий (denoising) автокодировщик
- Сжимающий (contractive) автокодировщик
- Вариационный (variational) автокодировщик (основан на совсем других принципах!)

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

t-SNE

Стохастическое вложение соседей с tpacпределением (t-distributed stochastic neighbor embedding, t-SNE) — это алгоритм уменьшения размерности

- Нелинейный
- Используется для визуализации
- Пытается сохранять метрические отношения между объектами

Идея t-SNE

- 1. Определим вероятность для точки «выбрать ближайшим соседом» другую точку в пространстве
- 2. Построим такие распределения для высокоразменых и низкоразмерных представлений
- 3. Минимизируем расстояние между двумя распределениями

Расстояние Кульбака — Лейблера

Расстояние (дивергенция) Кульбака — Лейблера (KL divergence) — расстояние между двумя распределениями *P* и *Q*:

$$D_{\mathrm{KL}}(P||Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} d(x),$$

где p распределено согласно P, а q — согласно Q.

Также называется **относительной энтропией**.

Стохастическое вложение соседей

Определим распределения для обоих пространств так:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma^2)}{\sum_{k \neq j} \exp(-\|x_i - x_k\|^2 / 2\sigma^2)}$$
$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq j} \exp(-\|y_i - y_k\|^2)}$$

Симметричное стохастическое вложение соседей

Определим распределения для обоих пространств так:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2|X|}$$

$$q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq l} \exp(-\|y_k - y_l\|^2)}$$

Симметричное стохастическое вложение соседей

Определим распределения для обоих пространств так:

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2|X|}$$

$$q_{ij} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq l} \exp(-\|y_k - y_l\|^2)}$$

Симметричное стохастическое вложение соседей с t-распределением

Заменим распределение на t-распределение Стьюдента

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} (1 + \|y_k - y_l\|^2)^{-1}}$$

t-SNE на MNIST

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Классификация методов выбора признаков

- Встроенные методы (embedded)
- Фильтрующие методы (filter)
 - а. Одномерные (univariate)
 - b. Многомерные (multivariate)
- Методы-обертки (wrapper)
 - а. Детерминированные (deterministic)
 - b. Стохастические (stochastic)
- Гибридные и ансамблирующие методы

Встроенные методы

Встроенные методы (embedded methods) это методы выбора признаков, при которых этот выбор осуществляется в процессе работы других алгоритмов (классификаторов и регрессоров)

- Опираются на конкретный алгоритм
- Специфичны для каждого алгоритма

Схема встроенного метода

Пример: случайный лес

Каждое дерево выбирает поднабор признаков. Лес также выбирает поднабор

Пример: SVM-RFE

- Обучить SVM на обучающем подмножестве
- Отранжировать признаки согласно их весам
- Выбросить некоторое число признаков с наименьшими весами
- Повторять, пока не останется нужное число признаков

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Метод-обертка

Метод-обертка (wrapper method) использует алгоритм (классификатор или регрессор) для оценки качества получаемого подмножества признаков и использует алгоритмы дискретной оптимизации для поиска оптимального подмножества признаков.

Схема метода-обертки

Классификация методов-оберток

- Детерминированные:
 - SFS (sequential forward selection)
 - SBE (sequential backward elimination)
 - o SVM-RFE
- Стохастические:
 - Стохастический поиск восхождением на холм (stochastic hill climbing)
 - о Генетические алгоритмы

Анализ методов-оберток

Достоинства:

- Более высокая точность, чем у фильтров
- Используют отношения между признаками
- Оптимизируют качество предсказательной модели в явном виде

Недостатки:

- Очень долго работают
- Могут переобучиться при неправильной работе с разбиением набора данных

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Методы фильтрации

Фильтры (filter methods) оценивают качество отдельных признаков или подмножеств признаков и удаляют худшие

Две компоненты:

- мера значимости признаков μ
- правило обрезки κ определяет какие признаки удалить на основе μ

Схема фильтрующих методов

Классификация фильтрующих методов

- Одномерные (univariate):
 - о Евклидово расстояние
 - о Прирост информации (IG)
 - о Коэффициент корреляции Спирмана
- Многомерные (multivariate):
 - Выбор признаков на основе корреляций (CFS)
 - Фильтр марковского одеяла (MBF)

Корреляция Спирмана

Коэффициент корреляции Спирмана

$$\rho = \frac{\sum_{ij} (x_{ij} - \bar{x}_j)(y_i - \bar{y})}{\sqrt{\sum_{ij} (x_{ij} - \bar{x}_j)^2 \sum_{i} (y_i - \bar{y})^2}}$$

$$\rho \in [-1; 1]$$

$$\rho \to 0$$

Правило обрезки к

Может быть любым

В большинстве случаев используется:

- Число признаков
- Порог значимости признаков

Анализ одномерных фильтров

Преимущества:

- Исключительно быстро работают
- Позволяют оценивать значимость каждого признака

Недостатки:

• Игнорируют отношения между признаками и то, что реально использует предсказательная модель

Анализ многомерных фильтров

Преимущества:

- Работают достаточно быстро
- Учитывают отношения между признаками

Недостатки:

- Работают существенно дольше фильтров
- Не учитывают то, что реально использует предсказательная модель

План лекции

- Уменьшение размерности
- Извлечение: Метод главных компонент
- Извлечение: Автокодировщики
- Извлечение: t-SNE
- Выбор: Встроенные методы
- Выбор: Методы-обертки
- Выбор: Фильтры
- Выбор: Гибриды и ансамбли

Гибридный подход

Будем комбинировать подходы, чтобы использовать их сильные стороны

Самый частый вариант:

- сначала применим фильтр (или набор фильтров), отсеяв лишние признаки
- затем применим метод-обертку или встроенный метод

Схема гибридного подхода

Ансамблирование в выборе признаков

Подход к ансамблированию состоит в построении ансамбля алгоритмов выбора признаков

Ансамбль на уровне моделей

Строим ансамблей предсказательных моделей

Ансамбль на уровне ранжирований

Объединяем ранжирования

Ансамбль на уровне мер значимости

Объединяем меры значимости

Анализ гибридных и ансамблирующих методов

Преимущества:

• Чаще всего лучше по времени и по качеству

Недостатки:

- Иногда теряется интерпретируемость
- Иногда требуется заботиться о проблеме переобучения