Listing of Claims

1. (Currently Amended) A method for <u>managing</u> reducing overall network delays and efficient management of ATM resources, the method comprising:

passing an ATM cell received by an ATM switch to a cell processing circuit; adding an α Byte of routing information to a front portion of an ATM cell header of the ATM cell when processing a cell having end destination information, so that the destination information is not lost, allowing interfacing between each network element to perform cell processing and routing operations with a single cell switching operation;

removing the routing information added to the ATM cell after processing by the cell processing circuit; and

routing the ATM cell to a destination based on the removed routing information, wherein the routing information is added after the ATM cell passes through the ATM switch and wherein the ATM cell is routed along a signal path that bypasses the ATM switch after the routing information is removed.

2. (Currently Amended) A method of switching an asynchronous transfer mode (ATM) cell having a payload portion and a header portion comprising:

passing the ATM cell through an ATM switch;
adding an information field to before the header portion of the ATM cell;
processing the ATM cell having a total of more than 53 bytes; and

Reply to Office Action of August 8, 2007

forwarding the ATM cell to a destination after the information field is removed, the ATM cell forwarded to said destination along a signal path that bypasses the ATM switch.

- 3. (Currently Amended) The method of claim 2, wherein the ATM cell during processing has $(53 + \alpha)$ bytes, and α corresponds to is a size of the information field.
 - 4. (Canceled)
- 5. (Currently Amended) A method of processing an asynchronous transfer mode (ATM) cell comprising:

performing cell switching on a received ATM cell through an ATM switch; adding routing information in front of a header of the ATM cell that has been switched; and

forwarding the ATM cell according to the added routing information without any further cell switching through the ATM switch, the ATM cell being forwarded along a signal path that bypasses the ATM switch.

6. (Original) The method of claim 5, wherein the received ATM cell has a size of 53 bytes.

Amendment dated February 7, 2008

Reply to Office Action of August 8, 2007

- 7. (Original) The method of claim 6, wherein the added routing information has a size of 1 byte.
- 8. (Original) The method of claim 7, wherein the forwarded ATM cell has a size of 53 bytes, after the 1 byte routing information has been removed.
- 9. (Currently Amended) The method of claim 5, further <u>comprising</u> including a step of processing the ATM cell before forwarding.
- 10. (Currently Amended) The method of claim 9, wherein <u>said</u> the processing step comprises [[a]] changing of an ATM adaptation layer (AAL) type or a changing of payload information.
- 11. (Currently Amended) An asynchronous transfer mode (ATM) cell switching system comprising:
 - a first memory to receive and store an ATM cell to be handled;
- a cell switching unit to receive the ATM cell stored in the first memory, and to assign an appropriate path for the ATM cell to be forwarded to; and
- a second memory to receive and store the ATM cell having the appropriate path assigned thereto from the cell switching unit;

Amendment dated February 7, 2008

Reply to Office Action of August 8, 2007

a cell processor to receive and process the ATM cell from the second memory eell switching unit, and to output the ATM cell-without going through the cell switching unit; and a third memory to receive and store the ATM cell processed by the cell processor processing unit, and to output the ATM cell without going through the cell switching unit.

12. (Canceled)

- 13. (Currently Amended) The system of claim 11 12, wherein the cell switching unit provides an output to a physical layer and to a loop back, or an output for further processing.
- 14. (Currently Amended) The system of claim 13, wherein the cell switching unit adds an end destination field in front of a header of the ATM cell.
- 15. (Currently Amended) The system of claim 14, wherein the added end destination field is maintained as the ATM cell passes through the second memory, the cell <u>processor</u> processing unit, and the third memory.
- 16. (Currently Amended) The system of claim 15, wherein the third memory outputs the ATM cell directly to a physical layer or to a loop back in accordance with information included in the end destination field.

- 17. (Original) The system of claim 11, wherein the cell switching unit requires a one virtual path identifier/virtual channel identifier (VPI/VCI) and one type of routing information for any received ATM cell.
- 18. (Currently Amended) The system of claim 12, wherein the cell <u>processor</u> processing unit processes the received ATM cell by changing an ATM adaptation layer (AAL) type or by changing payload information.

19-21 (Canceled)

- 22. (New) The method of claim 1, wherein processing by the cell processing circuit includes at least one of changing an ATM adaptation layer type or changing payload information.
- 23. (New) The method of claim 1, wherein the routing information included in the α Byte identifies one of the following as a destination of the ATM cell: one of a plurality of physical connections or a loop-back path of a network.