임베디드 시스템 개요 Chapter 01

목차

- I. 임베디드 시스템의 개념
- Ⅱ. 임베디드 시스템의 활용 분야
- Ⅲ. 임베디드 시스템 산업의 특성
- Ⅳ. 임베디드 시스템의 중요성

- ▶임베디드 시스템 (Embedded System)
 - ▶마이크로 컨트롤러나 마이크로 프로세서를 내장(embedded)하여 원래 제작자가 지정한 기능만을 수행하는 장치
 - ▶마이크로 컨트롤러(MCU : Micro Controller Unit)
 - 마이크로 프로세서와 기억장치(RAM, ROM), 입출력 제어 회로 등을 포함하고 있는 통합형 칩셋
 - 마이크로 컨트롤러 하나만으로 LED나 모터 등의 주변 장치들을 제어할 수 있음
 - 마이크로 컴퓨터라고도 불림
 - 전원과 입출력 장치를 연결하면 소형 컴퓨터처럼 사용 가능
 - ▶마이크로 프로세서(MPU: Micro Processing Unit)
 - CPU의 한 종류로 기계어를 해석하고 연산을 수행하는 기능에 중점
 - MPU와 달리 주변에 RAM, ROM, I/O 등이 필요
 - MCU가 하나의 컴퓨터를 소형화 시켜놓은 칩셋이라면 MPU는 CPU를 소형화 시켜놓은 칩셋
 - 일반 PC에서 사용되는 중앙처리장치는 CPU를 사용하고 전자기기나 산업용 장비 등에 사용되는 소형화 PC는 MPU라고 명칭

- ▶임베디드 시스템 (Embedded System)
 - ▶특별한 업무(목적)를 수행하기 위한 하드웨어와 소프트웨어를 포함하고 있는 응용 시스템
 - ▶ 전자제품에 들어가는 칩에 내장되는 운영체제
 - ▷기존에는 주로 펌웨어 방식으로 사용되었으나 현재는 임베디드 시스템에서도 다양한 기능을 필 요로 하며 하드웨어의 성능향상으로 운영체제를 탑재
 - ▶마이크로 시스템을 구동하면 미리 정해진 기능을 수행하도록 프로그램이 내장되어 있는 시스템
 - ▶지리 정보 시스템, 의료 정보 단말, 주식 시장 정보 단말, 의료 및 산업 원격 조종 장비 등의 시스템 을 총칭
 - ▷내부에 다양한 센서와 초소형 고성능 컴퓨터를 탑재하고 있는 스마트폰도 임베디드 장치라고 볼 수 있음
 - ▶수천 개의 전자회로로 구성되어 있는 자동차도 대표적인 임베디드 장치임

- ▶임베디드 시스템의 특징
 - ▶마이크로 프로세서(또는 마이크로 컨트롤러)를 비롯한 하드웨어와 소프트웨어를 내장(embedded) 하여 특정한 기능을 수행
 - ▷ 컴파일 된 기계어를 MPU에서 해석하여 물리적인 현상을 통해서 결과물을 실행
 - ▶소형, 경량, 저전력
 - ▶가격 민감성이 높음
 - ▶ 안정성, 신뢰성이 높아야 함
 - ▶ Real-time 기능을 필요로 하는 시스템이 대부분
 - ▷외부 자극에 대하여 어떠한 환경 아래에서도 마감시간 이내에 논리적으로 정확한 결과를 출력(적 시성 : Timeliness)
 - ▶세한된 시스템 자원
 - ▶깔끔한 오류 처리
 - ▶ 대부분 비전문가들이 사용하므로 사용자의 개입을 최소화해야 함

▶임베디드 시스템 구성

- ▶임베디드 시스템 구성
 - ▶하드웨어
 - ▷프로세서, 메모리 장치(ROM, RAM), 입출력 장치(네트워크 장치, 센서, 구동기(Actuator)) 등
 - RAM(Random Access Memory)
 - 데이터를 저장하고 읽을 수 있는 휘발성 메모리(전기적 신호로 데이터를 저장)
 - 데이터를 읽거나 저장할 때 순차적 접근이 아닌 특정 위치에 곧바로 접근
 - 램의 크기가 클수록 시스템은 각종 작업을 할 때 원활하게 할 수 있음
 - ROM(Read Only Memory)
 - 전원이 켜지면 실행되어야 할 정해진 작업이 미리 프로그래밍되어 있는 읽기 전용 기억장치(비휘발성)
 - 대부분 운영체제가 실행되기 전 시스템의 각 구성요소를 점검하기 위한 기본 요소들이 포함
 - 시스템의 전원이 켜지면 키보드나 마우스 등의 I/O 장치의 연결 여부를 확인하고 가용 가능상태로 만듦
 - 이후 각종 장치 및 드라이버를 메모리에 로딩
 - 예) 윈도우의 BIOS, 임베디드 시스템의 부팅 정보 등

- ▶임베디드 시스템 구성
 - ▶하드웨어
 - ▷프로세서, 메모리 장치(ROM, RAM), 입출력 장치(네트워크 장치, 센서, 구동기(Actuator)) 등
 - ▷마이크로 프로세서 보다는 주로 마이크로컨트롤러(Microcontroller)를 사용
 - ▶소프트웨어
 - ▷임베디드 운영체제(OS), 시스템 S/W, 응용 S/W

▶ PC환경과 임베디드 시스템 비교

▶하드웨어

HW 항목	범용 PC	임베디드 시스템
프로세서	고성능탑재	필요한 최소한의 성능 탑재
메모리	대용량 메모리	필요한 최소한의 성능 탑재
보조기억장치	HDD, ODD, DVD	플래시 메모리
		(거의 사용하지 않음)
주변장치	키보드, 마우스, 모니터 등	센서나 엑츄에이터 등
		필요한 장치만 사용

▶소프트웨어

SW 항목	범용 PC	임베디드 시스템
운영체제	Windows	RTOS, Linux
시스템 SW	Windows API	RTOS & Linux API
응용 SW	HDD에 저장	메모리에 저장
개발환경	Visual Studio	교차 개발 환경

▶임베디드 기술의 분류(스택)

▶임베디드 기술의 분류(스택)

- ▶임베디드 하드웨어: 프로세서의 발전
 - ▶무어의 법칙(Moore's law)
 - ▶ 하드웨어 성능은 1.5 ~ 2년(18 ~ 24개월)마다 약 2배로 증가
 - ▷ 현재는 적용되지 않음

- ▶무어의 법칙과 반도체 발전 현황
 - ▶ 1970년대부터 반도체 업체들은 무어의 법칙에 따라 칩의 개발 로드맵을 정의
 - ▷무어의 법칙이 깨지기 전까지 제품 수요를 따지지 않고 일단 칩을 개발한 이후 제품 생산업체가 반도체 수준에 맞는 제품을 개발
 - ▶ CPU는 자체 발열 문제로 5GHz이상 속도를 높이기가 어려움
 - ▷ 반도체 기판의 크기가 소형화되고 있는 상황에서 많은 기판을 회로에 넣을 경우 발열량이 높아짐
 - 일반 PC는 열을 발산하는 것이 수월하지만 스마트 폰 환경에서는 처리하는 기술이 복잡함
 - ▶ 칩이 작아지고 트랜지스터 수가 늘면 새로운 생산 설비 구축으로 제작비용 증가
 - ▶ 현재 추세는 멀티코어를 장착하는 방식으로 발전되고 있음
 - ▶코어가 8개인 옥타코어octa-core의 대중화
 - ▶ 멀티스레드 방식의 발전
 - ▶ 멀티스레드: 하나의 코어에서 여러 개의 명령어를 실행하는 기술
 - ▶ 현재 시장에서 1개의 코어에서 2개의 스레드를 사용하는 4코어 8스레드 제품이 널리 보급

- ▶임베디드 하드웨어: 저장매체의 발전
 - ▶황의 법칙
 - ▷황창규 회장이 2002년에 발표한 것으로 향후 메모리의 크기는 매년 2배씩 증가한다는 내용

- ▶ 임베디드 하드웨어: SoC(System on a Chip)
 - ▶단일 칩 시스템
 - ▶프로세서 코어, 메모리, 디지털 신호 처리(DSP, Digital Signal Processing) 및 주변장치 등을 하나의 칩에 통합하여 제조 가능

- ▶ 임베디드 하드웨어: SoC(System on a Chip)
 - ▶ SoC 특징
 - ▷제품의 크기가 보드가 아니라 칩 크기로 소형화되기 때문에 저전력 소모, 제품 가격 하락, 안정성 증가 뿐만 아니라 혁신적인 디자인도 가능.
 - ▶모듈별로 재사용 가능한 IP(Intellectual Property) 개발이라는 새로운 사업 모델의 등장
 - 이전에는 일부 반도체 회사에서만 프로세서 칩을 설계, 제조 및 판매가 가능했지만, 이제는 영국의 ARM처럼 프로세서 코어 IP를 판매하는 회사도 등장.
 - ASIC(Application Specific Integrated Circuit) 제조 기술만 있는 회사이면 IP를 라이센스하여 프로세서와 같은 칩 생산이 가능

- ▶ 임베디드 소프트웨어
 - ▶ 하드웨어를 제어하기 위해 임베디드 시스템에 내장된 명령어 집합
 - ▶ 제한된 하드웨어 자원에서 동작해야 하므로 소프트웨어의 용량이 작음
 - ▶따라서 소프트웨어를 하드웨어에 최적화하여 사용
 - ▶ 임베디드 시스템의 하드웨어가 다양하기 때문에 탑재되는 소프트웨어의 종류도 다양하고 복잡
 - ▶대부분의 임베디드 소프트웨어는 센서나 스위치(버튼)을 통해 입력된 외부 자극에 의한 사건 구동 방식으로 동작

▶ 임베디드 소프트웨어: (운영체제에 유무에 따른 분류)

▶임베디드 소프트웨어: 스택에 따른 분류

구 분	사 례	
임베디드 OS	■ 임베디드 OS 커널 ■ 기본 디바이스 드라이버 및 라이브러리 ■ GUI(Graphic User Interface) 도구	
임베디드 미들웨어	■ 멀티미디어 코덱(Codec) ■ 네트워크 프로토콜 스택(stack) ■ 애플리케이션 엔진 ■ 임베디드 VM(Virtual Machine)	
애플리케이션 소프트웨어	■ PIMS(Personal Information Management System) ■ 웹브라우저, DMV/미디어 플레이어 ■ 메시징/카메라, 특수 업무용 애플리케이션	
임베디드 SW 개발툴	■ 통합개발 솔루션 - 원격 디버거 기술, 시스템 성능 분석 및 실시간 모니터링, 개발 자동화 도구 ■ 시험자동화 솔루션 - 시행 데이터 생성 기술, 정적/동적 분석 기술, 모델 검증 및 자동 증명 기술 ■ 설계자동화 솔루션 - 개발 프로세스 기술, 시스템 분석 및 모델링 기술, 아키텍처 기반 개발 기술	

▷출처: 소프트웨어산업백서(KIPA,2008.12)

- ▶참고 : 실시간 시스템 (Realtime system)
 - ▶ 대다수의 임베디드 시스템이 실시간 특성을 요구한다
 - ▶ Realtime OS(RTOS) 사용
 - ▶주어진 입력에 대하여 정해진 시간 내에 행동 혹은 반응할 수 없을 때 문제가 발생하는 시스템
 - ▶ 외부 자극에 대하여 어떠한 환경 아래에서도 마감시간 이내에 논리적으로 정확한 출력 혹은 결과를 내는 적시성(Timeliness)을 가진 시스템
 - ▶마감시간 내에 결과를 얻지 못할 경우 발생하는 문제의 심각성에 따라 크게 경성 실시간 시스템과 연성 실시간 시스템으로 분류
- ▶ 경성 실시간 시스템(Hard RT system)
 - ▶마감시간을 못 지키면 응용 프로그램이 실패하며 시스템에 치명적인 손실을 줄 수 있음
 - ▶원자력 발전소 제어, 화재 발생 검출 시스템, 항공기, 우주 왕복선, 자동차, 미사일 제어 등
- ▶ 연성 실시간 시스템(Soft RT system)
 - ▶지연된 반응에 대해 치명적 영향을 미치지 않고 시스템에 미세한 영향
 - ▶카드 단말기 등

- ▶임베디드 시스템의 활용 분야
 - ▶정보가전: 세탁기, 오디오, 인터넷 냉장고, HDTV 등
 - ▶ 제어분야 : 공장자동화, 가정자동화, 로봇 제어, 공정제어 등
 - ▶ 정보기기 : 핸드폰, PDA, 스마트 폰, LBS 등
 - ▶네트워크기기 : 교환기, Router, 공유기, 홈 게이트웨이 등
 - ▶게임기기: 가정용 게임기(PS2, XBox), 지능형 장난감 등
 - ▶항공/군용: 비행기, 우주선, 로켓, 야전 이동단말(GPS, GIS)
 - ▶물류/금융 : ATM, RFID, 물류단말, 영업단말 등
 - ▶차량/교통 : 자동차, ITS, 조선 등
 - ▶사무, 의료 : 전화기, 프린터, Heart pacer, 수술로봇, 증강현실장비

▶정보가전

- ▶ 기술의 발전에 따라 일반 가전 제품에 다양한 기능이 요구됨
- ▶다양한 기능의 처리를 위한 가전제품 전용 임베디드 시스템 적용
- ▶ 가정 내 네트워크 구성에 따른 원격 제어, 정보 수집 등이 가능
- ▶홈 오토메이션, 홈 네트워킹과 함께 가정 자동화의 핵심 부분
- ▶인터넷 냉장고, HDTV, 인터넷 전자레인지, DVR, 세탁기

- ▶ 가정 자동화 : HA (Home Automation)
 - ▶집안의 모든 것들을 리모컨 혹은 원격으로 제어하는 것이 목표
 - ▶ 현재는 리모컨이 아닌 음성인식 등을 이용한 제어로 발전 중임
 - ▶모든 기기는 네트워크에 연결되고 각종 자동화 기능 및 기기 별 특정 기능을 수행하기 위해 임베디 드 시스템이 탑재되어 있음

- ▶ 공장자동화 : FA (Factory Automation)
 - ▶특정 기계나 장비를 통해 생산 과정을 자동적으로 관리하는 시스템
 - ▶센서와 제어 시스템, 로봇 등으로 구성하여 무인시스템을 구축
 - ▶ 공장 자동화 및 로봇은 실시간 시스템과 임베디드 시스템 발전의 원동력
 - ▶생산성증대: 인건비감소, 오류감소, 품질의 균일화, 생산기간단축
 - ▶로봇, conveyor belt

- ▶정보단말기기
 - ▶ 단순한 통화 중심의 이동 전화기에서 각종 정보검색, 오락, 메시징 등의 복합 기능이 수행되는 디지털 정보단말기기로 발전
 - ▶ 단말기기 각각의 기능에 맞는 마이크로프로세서, 메모리, 운영체제, 응용 프로그램 등으로 구성
 - ▶ 앞으로는 다양한 단말기기가 하나의 기기로 통합될 것으로 예상됨
 - ▶핸드폰, PDA, 스마트 폰, MP3 플레이어, 게임기기 등

- ▶스마트 단말 (스마트폰, 태블릿 PC)
 - ▶임베디드 시스템 or 범용시스템?

- ▶항공기
 - ▶보통 수 백 개의 프로세서 탑재
- ▶우주왕복선
 - ▶보통 수 백 개의 프로세서 탑재
 - ▶ Pathfinder -실시간 운영체제인 VxWorks가 탑재된 것으로 유명
 - ▶대표적인 실시간 시스템의 하나
 - ▶ 영상처리, 통신 등 모든 처리기능을 복합적으로 가짐

- 교통
 - ▶ 자동차의 엔진 및 각종 제어 시스템, 무인 자동화 시스템
 - ▶지능형 교통시스템(ITS: Intelligent Transport Systems) 등
- ▶ 지능형 장난감
 - ▶ 단순한 장난감의 형태에서 지능성을 갖는 형태로 변화

▶ 자동차는 복잡한 분산 컴퓨터

- 국방
 - ▶패트리어트 미사일
- ▶조선
 - ▶이지스함

- ▶게임기
 - ▶고성능 프로세서 탑재
 - ▶마이크로소프트의 Xbox
 - ▶소니의 playstation 2
 - ▶닌텐도 Wii, DS

▶물류/금융

▶물류: POS 단말기

▶금융 : 자동 현금 입출금기 혹은 ATM 단말기

▶사무용기기

▶프린터, 스캐너, 팩스, 복사기, 이들의 기능을 하나로 모은 복합기

- ▶통신 기기
 - ▶디지털 교환기, PABX (private automatic branch exchange) 등의 음성 서비스 통신기기
 - ▶라우터, 게이트웨이, 공유기 등의 유무선 데이터 통신 장비
 - ► Set-top box

DASAN Network ,Inc.

- ▶최근의 동향
 - ▶사용자 Requirements의 증대
 - ▶ 자동 제어 기기의 복잡도 증가
 - 단순 제어 (세탁기) → System 제어 (휴대폰)
 - ▶SOC의 발전으로 SW의 기능을 HW/FW가 담당
 - ▶인터넷의 발전 및 Digital 방송에 따른 인터넷 기기/방송용 기기의 발전
 - ▶ WebPAD, Web on Cellular Phone, ….
 - ▷ Cable Set-top Box (STB), Satellite STB, WebTV 등
 - ▶ SoC(System On a Chip)의 발전
 - ▶ Embedded Application에 적당한 CPU의 출현: ARM processor, MIPS processor
 - ▶ CPU 설계 기술 및 VLSI 기술의 발전: CPU + 주변 회로 + 제어 회로의 one chip화
 - ▶SOC를 이용한 기기의 보편화
 - (예) 리모컨, Digital Watch, MP3, Cellular Phone, Headphone, ID Card,

- ▶최근의 동향 계속
 - ▶ Digital Consumer Electronics 제품의 증대
 - ▷새로운 Digital Data 처리 기능 위주의 제품 출현: Digital TV, DVD Player, PDA
 - ▷기존의 제품의 부가 가치를 SW로 처리: 인공 지능 세탁기, 인공지능 로봇 청소기
 - ▶ Mobile 가전 기기의 증대: 휴대폰, PDA, WebPad, …
 - ▶Home Network 기술의 발전
 - ▶ Home Server 형태의 가전 기기
 - ▶ Media Center 혹은 Media Server 형태의 가전 기기의 출현

▶ 제품전략산업의 SW 융합: 6대 주력분야, 9개 융합제품

산업	융합제품	대상 기술 및 SW(예시)
① 자동차	① 자율주행 자동차	· 차내/차외 네트워크 연동 기술
		· 센서 융합 장애울 검출 기술
		· 보안기능 내장형 V2X 기술
		· 영상 및 맵 연동 자차위치 파악 기술
② 항공	② 고속-수직 이착륙 우인항공기	·고속 네트워크 기반 안전 항행 플랫폼
		· 고성능 고안전 비행제어 SW
		· 항공SW 검증 툴 개발
		·지상 비행 시뮬레이터 개발
③ 조선	③ 지능형 선박	· 자율운항 관련 <u>임베디드</u> 플랫폼
		·에너지 제어 SW 플랫폼 기술
		· 방향제어·진동·압전 센서, 인버터
	예 웨어러블 스마트 디바이스,	·에너지 절감형 실시간 운영체제
④ 전자	⑤ 가상 훈련 플랫폼	· 특수업우 환경에 맞는 UK, UI 기술
		· 다중 객체간 가상공간 동기화 기술
		· 신체 신호 입력·연산·출력 기술
⑤ 의료기기	⑥ 나노기반 생체모사 디바이스,	・초소형/초저전력 정보 전송 모듈
	① 개인맞춤형 건강관리 시스템	·건강/질병 관리 및 예측 시스템
	2	· 바이오 센서 데이터 분석 기술
		·건강/질병 관리 예측 기술
⑥ 기계·로봇	⑧ 국민 안전 건강 로봇,	
	③ 산업용 3D 프린터	· 간병·보조 특화형 임베디드 SW
	0 2 10 00 22 4	· 소화기관용 초소형 로봇 기술 개발
		·3D 프린터 속도/코드/해석/분석 기술
		· SoC 기반형 저전력 초소형 플랫폼 기술

▶ IoT(Internet of Things): 사물인터넷

► Wearable Devices, Smart Devices

임베디드 시스템 산업의 특성

- ▶고부가가치 산업
 - ▶임베디드 소프트웨어가 탑재된 상품의 가치는 하드웨어보다 소프트웨어가 좌우하는 기술집약적 고부가가치 산업임
 - ▶예)통신 라우터의 경우, 하드웨어 원가가 수십 만원에 불과하나 각종 통신 및 제어 소프트웨어가 탑 재되면 최종가격이 수 백만 원으로 상승함
- ▶하드웨어 기술력이 핵심요소
 - ▶우리나라의 기술 우위 산업 분야와 임베디드 소프트웨어 기술을 접목할 경우 국가 산업 발전의 새로운 대안으로 부각 가능
 - ▶ 정보가전(디지털가전), 이동전화, 전자 자동차 등에 강점이 있음

임베디드 시스템 산업의 특성

- ▶ 소프트웨어 시장
 - ▶독점적 소프트웨어 부재
 - ▶ 가장 각축전이 치열한 분야는 임베디드 운영체제(OS)
 - ▶ PC 시장과 같이 특정 OS가 시장을 독점하지 못하고 있음
 - ▶ 적용제품의 종류, 규모에 따라 여러 종류의 상용 및 비상용 제품 다양
 - ▶임베디드 OS 및 플랫폼, 애플리케이션 시장에서 치열한 경쟁 중
 - ▷ VxWorks를 비롯한 RTOS(Real-time OS)
 - ▶ Windows Embedded CF
 - ▶ Embedded Linux
 - ▶Sun의 Java
 - ▶일본의 Tron

- ▶전 세계 임베디드 SW 시장 동향
 - ▶세계 임베디드SW 시장은 연평균 성장률이 2.9%이며 '08년 1,295억 달러에서 '15년 1,586억 달러 규모로 성장할 것이 예상됨
 - ▷임베디드SW는 자동차, 국방, 항공 등 다양한 산업분야에 내장되어 부가가치를 확대하는 핵심기 술로 중요성이 부각되고 있음
 - ▶임베디드SW 시장은 전체 SW시장에서 12.9%비중 (2011년 기준)을 차지하고 있으며 향후에도 해당 비중 수준이 유지될 것으로 전망됨

- 임베디드SW 세계 시장 규모 및 전망
- KESIC, "임베디드SW 산업현황 및 실태분석 연구", 2012.

CAGR: Compound Annual Growth Rate, 연평균 성장율

- ▶국내 임베디드 SW 시장 동향
 - ▶국내 임베디드 SW 시장은 연평균 성장률이 11.1%이며, '07년 9조 856억 원에서 '15년 21조 138억 원 규모로 성장할 것이 예상됨
 - ▷세계시장 보다 가파른 성장을 보이고 있음
 - ▶임베디드 SW 시장은 전체 SW시장에서 12.9%비중 (2011년 기준)을 차지하고 있으며 향후에도 해당 비중 수준이 유지될 것으로 전망됨

- 임베디드SW 세계 시장 규모 및 전망
- KESIC, "임베디드SW 산업현황 및 실태분석 연구", 2012.

- ▶국내 임베디드 SW 시장 동향
 - ▶임베디드 SW 산업별 시장규모는 완제품 시장 규모를 따르므로 완제품 산업규모가 클수록 임베디 드 SW 시장 규모도 상대적으로 큰 경향을 보이고 있음
 - ▶ 자동차와 유무선통신 산업의 규모가 전체의 75% 수준을 차지하고 있으나, 각 산업별 비중 측면에 서는 의료기기 산업이 가장 높은 것으로 나타남

Q & A