类比思想在高中物理解题过程中的应用

祥

(江苏省泰州中学 江苏 泰州 225300)

类比法是根据两个研究对象或两个系统在某些属性上类 似而推出其他属性也类似的思维方法 是一种由个别到个别的 推理形式. 其结论必须由实验来检验 类比对象间共有的属性 越多 则类比结论的可靠性越大. 在研究物理问题时 经常会发 现某些不同问题在一定范围内具有形式上的相似性 其中包括 数学表达式上的相似性和物理图象上的相似性. 类比法就是 在于发现和探索这一相似性 从而利用已知系统的物理规律去 寻找未知系统的物理规律. 从物理概念、现象类比、规律类比、 性质类比、方法类比、模型类比等方面结合相关案例讨论了其 在教学中的具体应用. 这里笔者在借鉴几位前辈研究的基础 上,针对普通高中学生(以江苏省泰州中学为例)的不同需求, 以不同难度的例题对类比思想在高中物理中的应用加以阐述.

物理学科模块间的类比

力学问题之间存在着很紧密的关联

各力学问题由于都遵从着相同的自然规律,可类比之处很 多. 比如我们在讲加速度的概念的时候 往往类比于速度; 讲解 电容器 C = Q/U 的时候往往类比于欧姆定律的变形式 R =U/I. 当我们发现很多概念的定义可以进行类比的时候,进一步 进行归纳总结 可以得出一种定义法 例如比值定义法 在同模 块解题时 巧妙地运用类比的思想 ,可以达到事半功倍的效果.

例1 如图1所示 半径R的光滑凹球面 容器固定在地面上,有一小物块在与容器最 低点P相距L的C点由静止无摩擦滑下 则物 块自静止下滑到第二次通过 P 点时所经历的 时间是多少?若此装置放在以加速度 a 向上运 动的实验舱中,上述所求的时间又是多少?

本题中的小物块是在重力、弹力

作用下做变速曲线运动 我们若抓住物体受力做 $\theta < 5^{\circ}$ 往复运 动的本质特征 便可以进行模型等效 ,即把小物块在凹球面上 的运动等效为单摆模型.

将上述装置等效为单摆 根据单摆的周期公式

$$T = 2\pi \sqrt{\frac{1}{g}} \ ,$$

$$t = \frac{3}{4}T = \frac{3}{2}\pi \sqrt{\frac{R}{g}}.$$

得

若此装置放在以加速度 a 向上运动的实验舱中,比较两种 情形中物体受力运动的特征,可以等效为单摆的重力加速度为

$$g' = g + a$$
 的情形 经类比推理可得 $t' = \frac{3}{4}T' = \frac{3}{2}\pi\sqrt{\frac{R}{g+a}}$.

本题的难度系数较大 属于参加物理竞赛学生需要解决的 题目 —— 单摆属于物理选修 3-4 部分的内容. 虽然可以采用 微元法进行变加速问题的求解 但相对于类比法无论计算量亦 或复杂程度都大了许多.

1.2 物理学模块之间的类比

物理学的各模块之间也存在的类似的规律. 小球的弹性碰 撞与光的粒子性之间的类比就是物理模块之间的类比. 再例如 引力势能的问题是同时适用于天体运动,电荷之间的问题,这 也是一种跨模块类比的体现. 下面就一个电学问题来阐述该种 类比思想的应用.

例2 如图2所示,一个由绝缘细线构成的刚性圆形轨道,

其半径为 R. 此轨道水平放置 圆心在 O 点 一个金属小珠 P 穿

在此轨道上,可沿轨道无摩擦地滑 动 小珠P带电荷Q. 已知在轨道平面 内A点(OA = r < R) 放有一电荷q. 若在 OA 连线上某一点 A_1 放电荷 q_1 , 则给 P 一个初速度 ,它就沿轨道做匀 速圆周运动. 求 A_1 点位置及电荷 q_1

解析 因为 P 可沿圆轨道做匀速圆周运动 说明此圆轨道 是一等势线 将此等势线看成一个球面镜的一部分. 已知半径 为 R ,所以此球面镜的焦距为 $\frac{R}{2}$.

由成像公式
$$\frac{1}{P} + \frac{1}{P'} = \frac{1}{f} ,$$

若 q 为物点 q_1 为像点不成立,只能是 q_1 为物点成虚像于 q ,

所以
$$\frac{1}{P'} - \frac{1}{R-r} = \frac{-2}{R},$$

得到
$$P' = \frac{R(R-r)}{2r-R}$$

又因为
$$\frac{q}{q_1} = \frac{|P|}{|P'|} = \frac{(R-r)(R-2r)}{R(R-r)} = \frac{R-2r}{R}$$
,

解得
$$q_1 = \frac{R}{R - 2r}q$$

该题属于物理竞赛题 采用的力学与光学原理的类比法进 行求解.

学科之间的类比

例3 地球绕太阳的运动可视为匀速圆周运动,太阳对地 球的万有引力提供地球运动所需要的向心力. 由于太阳内部的 核反应而使太阳发光 在整个过程中 太阳的质量在不断减小. 根据这一事实可以推知 在若干年后,地球绕太阳的运动情况 与现在相比

- A. 运动半径变大
- B. 运动周期变大
- C. 运动速率变大
- D. 运动角速度变大

A 选项是判断该题的关键. 如果太阳质量不变, 线速度 v 正好能够满足万有引力提供需要的向心力. 可是太阳 质量变小了,万有引力就变小了,这个时候需要的向心力就比 万有引力大了. 地球就做离心运动了, 也就离太阳越来越远了. 所以运动半径变大,故A正确.B选项,地球跑远了,同时是在背 离太阳做负功的,这个时候动能转化为势能,所以速率变小了. 同时半径又变大了 根据 $\omega = v/r$ 所以角速度就变小了 根据 T = $2\pi r/v$ 所以周期就变长了. 故 B 正确 \mathcal{L} 错误 \mathcal{D} 错误. 故选 $\mathcal{A} \times \mathcal{B}$.

解析二 高中化学上比较钠和镁的半径是很容易的,几 乎所有学生在学习天体运动之前都已经知道了 $r_{Na} > r_{Ma}$,而且 很明确这个半径由核外电子到原子核之间的距离决定(卢瑟福 模型) 那么事情就变得简单了,我们将太阳看成原子核,地球 看成核外电子 二者间的万有引力类比于原子核与电子间的吸 引力 M 那么太阳质量变小的过程就是由 Mg 到 Na 的过程 ,半径

变大. 即题中的 A 项正确 ,然后根据 $v=\sqrt{\frac{GM}{r}}$ 可知 在 M 减小 , r 增大时 p 是减小的 B 正确. 同样通过公式判断 C 错误 D 错 误. 故选 A、B.

• 80 •