Sparse H-colourable graphs of large girth

Hossein Hajiabolhassan

Department of Mathematics Shahid Beheshti University P.O. Box 19834, Tehran, Iran hhaji@sbu.ac.ir

(Joint work with Professor Xuding Zhu)

Definition 1. A graph G is called k-colorable if there is a function $c:V(G)\to\{1,\ldots,k\}$, such that $c(u)\neq c(v)$ whenever u and v are adjacent in G. The minimum number k such that G is k-colorable is called the chromatic number of G and it is denoted by $\chi(G)$.

Definition 2 The girth g(G) of a graph G is the length of a shortest cycle in G.

Problem 1. (1947) Are there graphs of arbitrary large girth that have arbitrary large chromatic number?

Kneser graphs:

Suppose $m \geq 2n$ are positive integers. We denote by [m] the set $\{1, 2, \dots, m\}$, and denote by $\binom{[m]}{n}$ the collection of all n-subsets of [m]. The $Kneser\ graph\ \mathrm{KG}(m,n)$ has vertex set $\binom{[m]}{n}$, in which $A \sim B$ if and only if $A \cap B = \emptyset$.

Theorem A (Lovász 1978) Suppose $m \ge 2n$ are positive integers. Then,

$$\chi(\mathrm{KG}(m,n)) = m - 2n + 2.$$

G(n,p):

Theorem B (Erdős 1959) For all k, l there exists a graph G with g(G) > l and $\chi(G) > k$.

Proof. Let $G \sim G(n, p)$ and X be the number of cycles of sizes at most l. Then,

$$E(X) = \sum_{i=3}^{l} \frac{(n)_i}{2i} p^i \le o(n),$$

Consequently,

$$P(X \ge \frac{n}{2}) = o(1). \tag{1}$$

Also,

$$P(\alpha(G) \ge \lceil \frac{3ln(n)}{p} \rceil) = o(1). \tag{2}$$

On the other hand,

$$\chi(G') \ge \frac{|V(G')|}{\alpha(G')} \tag{3}$$

Definition 3 A graph G is said to be *uniquely* k-colorable if G is k-colorable and every k-coloring of G induces the same k-partition of V(G).

Problem 2 Are there uniquely colorable graphs of arbitrary large girth that have arbitrary large chromatic number?

Problem 3 Are there uniquely colorable graphs of arbitrary large girth and bounded maximum degree that have arbitrary large chromatic number?

 $G(n, K_k, p)$:

- **Lemma 1.** If n is sufficiently large, then there exists a graph G in $G(n, K_k, p)$ with the following properties:
 - 1. For any edge ij of K_k and any $U \subset V_i, W \subset V_j$, of size $|U| = \lceil \frac{k^{-3}n}{2} \rceil$ and $|W| = \lceil \frac{(k-1)n}{k} \rceil$, there are at least $\frac{k^7n}{4}$ edges between U and W in G.
- 2. For any edge ij of K_k and any $U \subset V_i, W \subset V_j$, of size $|U| = |W| = \lceil \frac{n}{40k} \rceil$, there is at least one edge between U and W in G.
- 3. For any edge ij of K_k and any $U \subset V_i, W \subset V_j$, of size $k \leq |W| = k|U| \leq \frac{n}{40}$, there are less than $\frac{|U|k^{10}}{2}$ edges between U and W in G.
- 4. Let $g := \lfloor \frac{1}{11} \frac{logn}{logk} \rfloor$ and define $C := \{v : v \text{ is a vertex contained in a cycle in } G \text{ of length at most } g-1\}$. Then $|C| \leq \frac{n}{4k}$.
- 5. Let $Y := \{v : v \text{ has degree in } G \text{ larger than } 5k^{13}\}$. Then $|Y| \leq \frac{n}{4k} 1$.

Definition 4 Let G and H be two graphs. A homomorphism from a graph G to a graph H is a map $f:V(G)\longrightarrow V(H)$, such that $uv\in E(G)$ implies $f(u)f(v)\in E(H)$.

Observation: Let G and H be two graphs. If there exists a homomorphism $f: G \longrightarrow H$ then

- $\omega(G) \le \omega(H)$
- $\chi(G) \le \chi(H)$
- $\bullet \ oddg(G) \ge oddg(H)$

Theorem 1. (Hajiabolhassan and Zhu, 2004) Let k and l be positive integers. For every graph F on at most k vertices there exists a graph G together with a surjective homomorphism $c: G \to F$ with the following properties:

- 1. $g(G) > l \text{ and } \Delta(G) \leq 5k^{13};$
- 2. For every graph H with at most k vertices, there exists a homomorphism $g: G \to H$ if and only if there exists a homomorphism $f: F \to H$.

G(n, F, p):

Problem 4 Is true that any cubic graphs with sufficiently large girth is homomorphic to C_5 ?

Thanks for your attention!