ICE503 DSP-Homework#6

- 1. Consider the system shown in Figure 1 for discrete-time processing of the continuous-time input signal $g_c(t)$. The input signal is of the form $g_c(t) = f_c(t) + e_c(t)$. The Fourier transform of $f_c(t)$ and $e_c(t)$ are shown in Figure 2. Since the total input signal is not bandlimited, a continuous-time antialiasing filter $H_{aa}(j\Omega)$ is used to combat aliasing distortion. Its frequency response is shown in Figure 3.
 - (a) If the sampling rate is $2\pi/T = 1600\pi$, determine the frequency response of the discrete-time system $H(e^{j\omega})$, so that the output is $y_c(t) = f_c(t)$.
 - (b) Is it possible that $y_c(t) = f_c(t)$ if $2\pi/T < 1600\pi$? If so, what is the minimum value of $2\pi/T$? Determine $H(e^{j\omega})$ for this choice of $2\pi/T$.

Figure 1: system

Figure 2: the Fourier transform of $f_c(t)$ and $e_c(t)$

Figure 3: the frequency response of $H_{aa}(j\Omega)$

Matlab Simulation

- (a) Generate a continuous-time signal $x_c(t) = \sin(4\pi t)$, $0 \le t \le 1$. Plot $x_c(t)$ in figure (1). (Hint: since we can't generate a real continuous time signal with MATLAB, we generate $x_c(t)$ with t = 0.0.001:1.).
- (b) Generate three discrete-time signals x[n] by sampling $x_c(t)$ with sampling period $T = 0.01 \cdot 0.05$ and 0.1 second. Use stem function to plot these three x[n] in subplot(3,2,1) \cdot subplot(3,2,3) and subplot(3,2,5) in figure (2).
- (c) After sampling, use the sinc function to reconstruct the continuous-time signal $y_c(t)$. Then, plot these three $y_c(t)$ in subplot(3,2,2) \cdot subplot(3,2,4) and subplot(3,2,6) in figure (2).
- (d) Calculate the mean square error between $x_c(t)$ and three $y_c(t)$.
- (e) When the sampling period T = 0.01, quantize the discrete-time signal x[n] with 2-bit (4 levels) \cdot 3-bit (8 levels) and 4-bit (16 levels), and round the quantized signal $x_q[n]$ with offset (midrise). Use stem function to plot these three $x_q[n]$ in subplot(3,1,1) \cdot subplot(3,1,2) and subplot(3,1,3) in figure (3).
- (f) Calculate the mean square error between x[n] and three $x_q[n]$, and discuss the advantages and disadvantages for quantizing with different numbers of bits.

