第3次作业

6.1

6.1 典型的I/O接口电路通常有哪3类可编程寄存器?各自的作用是什么?

数据寄存器:保存外设给 CPU 和 CPU 发往外设的数据

状态寄存器:保存外设或接口电路的状态

控制寄存器:保存 CPU 给外设或接口电路的命令

6.2

6.2	I/O端口与存储器地址常有	_和两种编	請排方式,8088/8086	处理器支持后者,设
	计有专门的I/O指令。其中指令	IN是将数据从	传输到	,执行该指令时
	8088/8086处理器引脚产生	总线周期。	指令 "OUT DX, A	L"的目的操作数是
	寻址方式,源操作数是_	寻址方式。		

I/O 端口与存储器地址统一编址I/O端口与存储器地址独立编址外设处理器I/O 读寄存器间接寄存器

6.4

6.4 基于图6-7接口电路,编程使发光二极管循环发光。具体要求是:单独按下开关 K_0 ,发光二极管以 L_0 , L_1 , L_2 ,…, L_7 顺序依次点亮,每个维持200ms,并不断重复,直到有其他按键操作,单独按下开关 K_1 ,发光二极管以 L_7 , L_6 , L_5 ,…, L_0 顺序依次点亮,每个也维持200ms,并不断重复,直到有其他按键操作,其他开关组合均不发光,单独按下开关 K_7 ,则退出控制程序。延时200ms可以直接调用子程序DELAY实现。

图6-7 无条件传送接口

```
again: mov dx, 6000h
    mov a1, Offh
    out dx, a1 ; 全不亮
again1: in a1, dx
    cmp a1, 7fh
    jz done
    cmp a1, 0feh
    jz next1
    cmp a1, ofdh
    jz next2
    jmp again
next1: mov cx, 8
    mov a1, 1
next11: out dx, a1
    call delay
    sh1 a1, 1
    loop next11
    jmp again1
next2: mov cx, 8
    mov a1, 80h
next21: out dx, a1
    call delay
    shr a1, 1
    loop next21
    jmp again
done: mov a1, offh
    out dx, a1
```

6.8

^{6.8} 基于图6-13中断查询接口电路,按照图6-14优先权排队流程,编写中断查询程序。假设中断i的请求状态由数据Di位反映(为1表示有请求),对应中断服务子程序INTPi。

图6-13 中断查询接口

```
sti
    push ax
    push dx
    mov dx, 4000h
status: in al, dx
    test al, 01h;
    jnz intp0
    test al, 02h
    jnz intp1
    jnz al, 04h
    jmp intp2
    jnz al, 08h
    jmp intp3
    jnz al, 10h
    jmp intp4
intp0: call proc0
    jmp end
```