## Lab 1 Report

Name 張家齊 Student ID 110598109 Date 2022/03/16

### 1 Test Plan

### 1.1 Test requirements

The Lab 1 requires to (1) select **15 methods** from **6 classes** of the SUT (GeoProject), (2) design Unit test cases based on the experience or intuition for the selected methods, (3) develop test scripts to implement the test cases, (4) execute the test script on the selected methods, and (5) report the test results.

In particular, based on the statement coverage criterion, the **test requirements** for Lab 1 are to design test cases for each selected method so that "each statement of the method will be covered by <u>at least one test case</u> and the <u>minimum</u> statement coverage is 40%".

## 1.2 Strategy

To satisfy the test requirements listed in Section 1, a proposed strategy is to

- (1) select those <u>public</u> methods that are easy to understand and have <u>primitive</u> <u>types</u> of input and output parameters (if possible).
- (2) set the objective of the minimum statement coverage to be 50% initially and (if necessary) adjust the objective based on the time available.
- (3) learn the necessary skills and tools as soon as possible.
- (4) design the test cases for those selected methods by considering
  - i. the possible valid values and combinations of the input parameters.
  - ii. the **boundary values** of the <u>input parameters</u>.

#### 1.3 Test activities

To implement the proposed strategy, the following activities are planned to perform.

| No. | Activity Name                              | Plan hours | Schedule Date |
|-----|--------------------------------------------|------------|---------------|
| 1   | Study GeoProject                           | 3          | 2022/03/11    |
| 2   | Learn JUnit                                | 3          | 2022/03/12    |
| 3   | Design test cases for the selected methods | 5          | 2022/03/13-15 |
| 4   | Implement test cases                       | 5          | 2022/03/13-15 |
| 5   | Perform test                               | 2          | 2022/03/15    |
| 6   | Complete Lab1 report                       | 2          | 2022/03/16    |

## 1.4 Success criteria

All test cases designed for the selected methods must pass (or "90% of all test cases must pass) and *the statement coverage should have achieved at least 45%*.

# 2 Test Design

To fulfill the test requirements listed in section 1.1, the following methods are selected and corresponding test cases are designed.

| No. | Class      | Method                            | Test<br>Objective                 | Inputs                                                                                          | Expected Outputs                                                                                                                 |
|-----|------------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1   | Info       | id()                              | Funct<br>ional<br>correc<br>tness | None                                                                                            | Optional <string> "this is id"</string>                                                                                          |
| 2   | Info       | lat()                             | Funct<br>ional<br>correc<br>tness | None                                                                                            | double 25.04360                                                                                                                  |
| 3   | Info       | lon()                             | Funct<br>ional<br>correc<br>tness | None                                                                                            | double<br>121.533823                                                                                                             |
| 4   | Info       | time()                            | Funct<br>ional<br>correc<br>tness | None                                                                                            | long 30                                                                                                                          |
| 5   | Info       | value()                           | Funct<br>ional<br>correc<br>tness | None                                                                                            | String "this is the info"                                                                                                        |
| 6   | Info       | toString()                        | Funct<br>ional<br>correc<br>tness | None                                                                                            | String "Info<br>[lat=25.043608,<br>lon=121.533823,<br>time=30,<br>value=this is the<br>info,<br>id=Optional.of(th<br>is is id)]" |
| 7   | Base32     | encodeBase32(lon g i, int length) | Funct<br>ional<br>correc<br>tness | long i = 753 $int length = 1$ $long i = 753$ $int length = 12$ $long i = -753$ $int length = 1$ | String "rj"  String  "00000000  00rj"  String "-rj"                                                                              |
| 8   | Base<br>32 | encodeBase<br>32(long i)          | Funct<br>ional<br>correc          | i = 753                                                                                         | String<br>"00000000<br>00rj"                                                                                                     |

|        |            |                             | tness           |                          |                     |
|--------|------------|-----------------------------|-----------------|--------------------------|---------------------|
| 9      | Base<br>32 | decodeBase<br>32()          | Funct<br>ional  | String<br>"rj"           | 753                 |
|        |            |                             | correc          | String                   | 753                 |
|        |            |                             | tness           | "0000000                 |                     |
|        |            |                             |                 | 000rj")                  |                     |
|        |            |                             |                 | String "-                | -753                |
|        |            |                             |                 | rj"                      |                     |
| 1      | Base       | getCharInde                 | Funct           | Char '0'                 | 0                   |
| 0      | 32         | x()                         | ional<br>correc | Char 'z'                 | 31                  |
|        |            |                             | tness           | Char 'a'                 | Exception           |
|        |            |                             |                 |                          | Message             |
|        |            |                             |                 |                          | "not a              |
|        |            |                             |                 |                          | base32              |
|        |            |                             |                 |                          | character:          |
|        |            |                             |                 |                          | a"                  |
| 1      | Geo        | adjacentHas                 | Funct           | String                   | String              |
| 1      | Has<br>h   | h(String<br>hash,           | ional<br>correc | "gzzzzzzzz<br>zzz"       | "zzzzzzzzzzz<br>b"  |
|        |            | Direction                   | tness           | Direction.               | -                   |
|        |            | direction)                  |                 | TOP                      | G                   |
|        |            |                             |                 | String                   | String              |
|        |            |                             |                 | "rzzzzzzzz               | "2pbpbpbp           |
|        |            |                             |                 | zzz",                    | bpbp"               |
|        |            |                             |                 | Direction.               |                     |
| 1      | Caa        | a dia a ant Hag             | Funct           | RIGHT                    | String o            |
| 1 2    | Geo<br>Has | adjacentHas<br>h(String     | ional           | String<br>"wsqqmx        | String<br>"wsqqmx41 |
|        | h          | hash,                       | correc          | 41x6fs"                  | x6gu                |
|        |            | Direction direction, int    | tness           | Direction. <i>RIGHT</i>  |                     |
|        |            | steps)                      |                 | 5                        |                     |
|        |            |                             |                 | String<br>"wsqqmx        | String              |
|        |            |                             |                 | 41x6fs"                  | "wsqqmx41           |
|        |            |                             |                 | Direction.               | x6ck"               |
|        |            |                             |                 | RIGHT<br>-5              |                     |
| 1      | Geo        | encodeHash                  | Funct           | ( 25.043                 | "wsqqmx41           |
| 3      | Has<br>h   | (double latitude,           | ional<br>correc | 608 <i>,</i><br>121.5338 | x6fs"               |
|        | 11         | double                      | tness           | 23)                      |                     |
| 1      | Geo        | longitude)                  | Funct           | "7,,,,,,,                | "7,,,,,,,           |
| 1<br>4 | Geo<br>Has | neighbours(<br>String hash) | ional           | "7zzzzzzzz<br>zzz"       | "7zzzzzzzzzz<br>x", |
|        | h          | ,                           | correc          |                          | "kpbpbpbp           |
|        |            |                             | tness           |                          | bpbp"<br>"ebpbpbpb  |
|        |            |                             |                 |                          | cohohoho            |

|   |     |            |        |         | pbpb", "7zzzzzzzzz y", "ebpbpbpb pbp8", "7zzzzzzzzz w", "s00000000 000", "kpbpbpbp bpbn" |
|---|-----|------------|--------|---------|------------------------------------------------------------------------------------------|
| 1 | Geo | decodeHash | Funct  | "wsqqmx | ( 25.04360                                                                               |
| 5 | Has | (String    | ional  | 41x6fs" | 8,                                                                                       |
|   | h   | geohash)   | correc |         | 121.533823                                                                               |
|   |     |            | tness  |         | )                                                                                        |

# 3 Test Implementation

The design of test cases specified in Section 2 was implemented using JUnit 4. The test scripts of 3 selected test cases are given below. The rest of test script implementations can be found in the <u>link</u> (or JUnit files).

| No. | Test method    | Source code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | adjacentHash() | <pre>@Test public void testAdjacentHash_withoutSteps() throws Exception {     String hashResult = "";      // Test border situation (at the poles)     // The geoHash in (90, 0) is "gzzzzzzzzzzz"     // The "zzzzzzzzzzzb" will be the result after go Direction.TOP     hashResult = GeoHash.adjacentHash( hash! "gzzzzzzzzzz", Direction.TOP );     assertEquals( expected: "zzzzzzzzzzzb", hashResult);  // Test border situation (at the -180,180 longitude boundaries) // The geoHash in (0, 180) is "rzzzzzzzzzzzzz" // The "2phphphphphpb" will be the result after go Direction.RIGHT     hashResult = GeoHash.adjacentHash( hash! "rzzzzzzzzzzzzz", Direction.RIGHT     hashResult = GeoHash.adjacentHash( hash! "rzzzzzzzzzzz", Direction.RIGHT );     assertEquals( expected: "2phphphphphpp", hashResult); }</pre> |

```
encodeBase32()
                                      public void encodeBase32_withParameterLength() throws Exception {
                                               int <u>length</u> = 0;
                                               long <u>i</u> = 753;
                                           String <u>encode</u> = "";
                                           length = 1;
                                           \underline{encode} = Base32.encodeBase32(\underline{i}, \underline{length});
                                           assertEquals( expected: "rj", encode);
2
                                           length = 12;
                                           \underline{encode} = Base32.encodeBase32(\underline{i}, \underline{length});
                                           assertEquals( expected: "0000000000rj", encode);
                                           length = 1;
                                           \underline{encode} = Base32.encodeBase32(\underline{i}, \underline{length});
                                           assertEquals( expected: "-rj", encode);
         getCharIndex()
                                      public void getCharIndex() throws Exception {
                                          char ch = '0'; // test first index
                                          assertEquals( expected: 0, Base32.getCharIndex(ch) );
                                          assertEquals( expected: 31, Base32.getCharIndex(ch) );
3
                                          String exceptionMessage = "not a base32 character: " + ch;
                                              Base32.getCharIndex(ch);
                                          } catch ( IllegalArgumentException throwMessage ) {
                                               assertEquals( exceptionMessage , throwMessage.getMessage());
```

#### 4 Test Results

## 4.1 JUnit test result snapshot

| ~ | ~ | Test Results                                  | 173 ms |
|---|---|-----------------------------------------------|--------|
|   |   | ✓ com.github.davidmoten.geo.CoverageLongsTest | 13 ms  |
|   | > | ✓ com.github.davidmoten.geo.Base32Test        | 47 ms  |
|   | > | ✓ com.github.davidmoten.geo.CoverageTest      |        |
|   | > | ✓ com.github.davidmoten.geo.GeoHashTest       | 110 ms |
|   | > | ✓ com.github.davidmoten.geo.mem.InfoTest      |        |

# **Test Summary**



## 4.2 Code coverage snapshot

Coverage of each selected method



Total coverage



## 4.3 CI result snapshot (3 iterations for CI)

這部分因為跑 CI 時並未每次截圖,因此改以擷取 Pipeline Jobs 部分之 coverage 紀錄

● CI#1

② passed Job #6164 triggered 4 days ago by ③ 强家資

Duration: 53 seconds Runner: #14
Coverage: 48%

Running with gittab-runner 10.5.0 (80b03db9)
on stv-gittab-ci3 240b38c9
Using Docker executor with image gradle:5.2.1-jdk8 ...
Pulling docker image sha25ci5610la227d8sbc2d868c77a9da8c7dbe20b44c7a2b228935810245saf94670d for gradle:5.2.1-jdk8 ...
test1 complete

• CI#2



## 5 Summary

In Lab 1, 15 test cases have been designed and implemented using JUnit. The test is conducted in 4 CI and the execution results of the 15 test methods are all passed. The total statement coverage of the test is 54%. Thus, the test requirements described in Section 1 are satisfied. Some lessons learned in this Lab are:

- 1. The skills of unit test, decomposition code into different part.
- 2. How to analysis code state and make the coverage higher than naive test.

### 6 Reference

https://en.wikipedia.org/wiki/Geohash https://davidmoten.github.io/geo/apidocs/index.html