Molekulargenetik

Guanin -> Purinbase

Adunin -> Purinbase

Thymn -> Pyrimidinbase

Cytosin -> Pyrimidinbase

Thymn -> Pyrimidinbase

Thymn -> Pyrimidinbase

Thymn -> Pyrimidinbase

G-3H-B==C T-2H-B==A DNA-Strange sind komplementar (organizand)

Replikation Verdoppeding DNA

Heterse affect Doppelstrang

Polymorase III verlängert Leitstrang kontinuierlich

Polymerase I essetet RNA. Primer

Primase erzengt RNA-Primer (1x am Leitstrang Regulmässig am Folgestrang)

Ligase varknipft Okazaki Fragmente Ohazaki F. entstehen am Folgestrang

Proteinbiosynthese (vom Gen zum Merkmal)

- Bedeutung 4 DNA sathalt Gene for Probin
- 2. Transkription (Kopieran)
- 3. Translation
- 4. Probin wirkt als Enzym / Struktur probin

Markande worden zichtber

Ablauf

Transkription

Translation

garagionen für +RNA

(Proterlate)

Besonderheiten: Exon, Introns Exon: bleiben erhalten nach Spleissen

Intron: werden herausgeschnitten

Genetischer Code

redundant: mehrere Tripletts codieren gleiche AS universell: bei fast allen Lebewesen codiert ein Triplett die gleiche AS Leserichtung: 3' zu 5'

DUASTAC CAG TTA ATC 5' GUC AAU UAG

Achtungl

A -> U (middet)

-RN4:54 U G AS: Met (Short)

Val (Stop) Arn

3'-5'

DNA -> mRNA mRNA -> AS 5'-3"

Genexpression, E.coli

E.coli braucht Glucose, deshalb merkt es, wenn Laktose anwesend ist und stellt Enzyme her. (Repressor wird maktiv)

Wenn E.coil genug Tryptophan hergestellt hat, stellt es Produktion ein

Krebsfaktoren

Rauchen (Häufig Lungenkrebs) Ernährung (Zu viel Fett, zu wenige Ballaststoffe)

Alkohol

Infektionen (In Tumorzellen hat man Viren entdeckt) Erbliche Faktoren (defektes Gen -> mutiert) Berufliche Faktoren (chemische Schadstoffe) Luftschadstoffe (weniger Schlimm als angenommen) Ionisierende Strahlung (Röntgenstrahlen, UV-Licht)

Unterschied Tumor/ Krebs

Tumor: lokalisiert an einem Ort, gutartig und bösartig, Neubildung von Körpergewebe Krebs: bösartig, Krankheit, bei welcher Körperzellen unkontrolliert wuchern Männer haben häufiger Krebs als Frauen, weil sie häufiger in Kontakt mit Schadstoffen bei Arbeit kommen

Tumorzellen

Eigenschaften

Kein Kontrollmechanismus = kein Zelltod

HeLa-Zellen: Krebszellen einer Frau, die im Labor schon sehr lange existieren.

Meistens Multi-Drug-Resistance (Resistent gegen Medikamente) Angiogenese: Auswachsen neuer Blutgefässe zum Tumor kontaktinhibiert: Verlust der Zellteilungskontrolle und Positionskontrolle

Bösartig vs. gutartig

	gutartig (benigne)	bösartig (maligne)
Wachstum	langsam, verdrängend	schnell, invasiv
Abgrenzung	gut (z.B. Kapsel)	überwuchern
Zellveränderung	nicht vorhanden	vorhanden
Zeilteilungsrate	niedrig	hoch
Verlauf	lang dauernd, symptomarm	kurz, häufig tödlich
Metastasen (Ableger, "Kolonien")	nicht vorhanden	vorhanden

Krebsentstehung (Mutation - Metastase)

Normale Zelle:

Tumorsuppressoren (Proteine hemmen Zellzyklus) ->
Proto-Onkogen (Proteine steuern und aktivieren Zellzyklus) ->

Tumorzelle:

mutiertes T.S. (wird nicht gehemmt) Onkogen (Zellzyklus zu aktiv)

- <- kein Bremspedal mehr
- <- Gaspedal fest gedrückt

Metastasen entstehen, wenn die Zellen über die Blutbahnen an andere Orte gelangen

Chemotherapie vs. Strahlentherapie

Chemo

· medikamentöse Behandlung (Zytostatika)

- greift DNA von Zellen an, die sich in der Zellteilung befinden
- unspezifisch (Teilungsaktive Zellen z.B. Haarzellen werden auch angegriffen

Strahlen

- · DNA der bestrahlten Zelle wird geschädigt
- unspezifisch
- · nicht systemisch (ist lokal)
- bei gut zugänglichen Krebsarten (z.B. Kehlkopfkrebs)

Gene bei Krebsentstehung

Tumor-Suppressor-Gene:

- Kontrolle und Regulierung der Zellteilung
- . Es müssen beide Allele betroffen sein, um Hemmung zu unterdrücken
- p53
 - o schreitet ein, wenn eine Zelle geschädigt wird
 - o Blockiert Zyklus bis repariert oder Zelltod (Apoptose)
- · pro Tag haben wir 10hoch10 Mutationen, alle werden behoben (:

Proto-Onkogen/ Onkogen:

- · Proto-Onkogene sind Vorläufer
- · Onkogene verursachen unkontrolliertes Wachstum
- 3-Mutationsereignisse, die die Umwandlung auslösen
 - o Translokation (Gen wird an anderen Ort verlagert)
 - o Genamplikation (Kopien eines Gens)
 - Punktmutation (hyperaktives/ resistentes Protein entsteht)
- · Alle Mutationen führen dazu, dass ein Protein im Überschuss vorliegt