

A Preliminary Assessment of Physical Demand during Simulated Lunar Surface Extravehicular Activities

Taylor E. Schlotman¹, PhD

taylor.e.schlotman@nasa.gov

Lauren I. Cox², Timothy M. McGrath², Alexander J. Baughman³, Brett A. Siders⁵,

Patrick N. Estep³, Andrew F. Abercromby⁴, Jeffrey T. Somers⁴

¹ KBR, ² JES Tech, ³ GeoControl Systems, ⁴ NASA Johnson Space Center, ⁵ Aegis Aerospace Inc.

Background

- ◆ Returning to the moon requires development of a new exploration spacesuit
- ◆ Artemis astronauts will complete a far more rigorous Extravehicular Activity (EVA) schedule than Apollo and ISS crew
- ◆ Metabolic rates during Apollo EVA were ~50% lower than similar tasks performed in a ground analog environment:
 - limited mobility of the Apollo suit
 - increased work capacity enabled by higher mobility space suits
 - comparison of nonequivalent flight and ground-test tasks
 - compensation for reduced-gravity simulation environments

Motivation

- ◆ The goal of this study is to enable estimation of metabolic rate profiles for expected planetary EVA tasks

- Estimated metabolic rate profiles will support human health and performance monitoring and modeling

- ◆ Secondary objectives:

- Which functional movements drive changes in metabolic rate
 - Which tasks require crew to be trained with pacing strategies
 - Compare suited work rate outcomes from simulated partial gravity offloading against planned Exploration Prebreathe simulation metabolic rates

Study Design

- ◆ Active Response Gravity Offload System (ARGOS) simulated the lunar environment (1/6thg-offload)
- ◆ Two subjects completed two simulated EVAs
 - Mark III spacesuit pressurized to 4.3 psid
- ◆ Tasks completed in two blocks
 - End-to-end (E2E) EVA task block
 - Standalone (SA) task block
- ◆ Collected continuous values of metabolic rate (MR) and heart rate (HR) to assess physical demand

Task: Lander Operations

◆ Functional tasks:

- Transfer from platform to ladder
- Descend a Ladder
- Climb a Ladder
- Transfer from ladder to platform
- Step Off Ledge
- Step Up Onto Ledge

Task: Task Board- Cable Routing

- ◆ Task is meant to represent light stationary work and postural challenges
- ◆ Functional Movements and Tasks Tested:
 - Operate Switches and Controls
 - Cranking Motion
 - Mate & Demate Umbilical, NZGL Connector, Cannon Connector, Fluid Quick Disconnect Connector, TA Clamp
 - Single Kneel
 - Single Kneel - Single Hand Object Pick-up
 - Single Kneel - Two Hand Object Pick-up
 - Double Kneel
 - Cross-Body Reach
 - Retrieve hardware from high stowage
 - Stow hardware into high stowage

Task: Incapacitated Crew Rescue

- ♦ Demonstrate conceptual operations of loading an incapacitated crewmember (EMU lo-fi mockup) onto a notional incapacitated crew rescue surface transport system by a rescuer crewmember
 - Allows combined mobility and performance assessment

Task: Geology Sampling

- ◆ E2E geology will consist of end-to-end sampling beginning at sample marker placement and ending with sample stowage
- ◆ SA geology treats each tool as a standalone task for a prescribed amount of time
- ◆ Minimum tools/sample types evaluated from mobility requirements:
 - Rake Sampling
 - Float Sampling
 - Rock Chip Sampling
 - Drive Tube Sampling Operation
 - Trenching Operations
 - Camera usage

Task: Payload Relocation

- ◆ **Performed in Sand Trailer**
 - Varied slope
 - Varied terrain
- ◆ **Move weighted bags (30lbs) across trailer for set amounts of time**
- ◆ **Functional Tasks:**
 - Walking
 - Lunar Walking - Positive Slope
 - Lunar Walking - Negative Slope
 - Carry
 - Climb up/descend steps (trailer)

Task: Traverse

- ◆ Treadmill walking simulates traversing lunar surface
 - Varied slope
 - Self selected pace
 - E2E: Instruct to not go too slow, “comfortable” EVA pace
 - SA: time limit to complete distance

- ◆ Distances and slopes determined using realistic lunar traverse paths

Testing Timelines

◆ DAY 1

◆ SA BLOCKS:

- CG_Gimbal settings
- Functional Movements
- PRIMUS
- Object Relocation
 - Slope 0, 30 lbs, rocky
 - Slope 0, 30 lbs, sandy
 - Slope 10, 30 lbs, rocky
 - Slope 10, 30 lbs, sandy
- Task Board Operations
- Incapacitated Crew Rescue Crew Loading

◆ DAY 2

◆ E2E Block:

- Lander Platform
- 1500m Traverse
 - Varied negative grades (-5%, -7%, and -10%)
- Geology
 - Slope 0°
- 500m Traverse
 - 30% grade
- Geology
 - Slope 10°
- 500m Traverse
 - 20% Grade
- Object Relocation
 - Small and Large Volumes
 - 10lb and 20lb
- 500m Traverse
 - 20% Grade

◆ BREAK

◆ SA BLOCKS:

- 2000m Traverse
 - Varied grades (-10% to +30%)
- Geology Rake
- Geology Trench
- Geology Float Sample
- Geology Scoop
- Geology Sample Tagging
- Geology Drive Tube

Collected data: Metabolic Rate & Heart Rate

♦ Metabolic Rate

- Calculated using measures of expired carbon dioxide (CO₂)
- Values categorized as:
 - Low = ≤ 700 BTU/hr
 - Medium = 700-1000 BTU/hr
 - High = ≥ 1000 BTU/hr

♦ Heart Rate

- Polar H10 Heart Rate Monitor
- Values categorized in HR zones as:

Zone	Intensity	Percentage of HRmax
Zone 1	Very light	50–60%
Zone 2	Light	60–70%
Zone 3	Moderate	70–80%
Zone 4	Hard	80–90%
Zone 5	Maximum	90–100%

Results: Metabolic Rate

◆ E2E Block: 16 total tasks

- Low 6%
- Medium 47%
- High 47%

Subject 1 E2E Block Metabolic Rates

Subject 2 E2E Block Metabolic Rates

Results: Metabolic Rate

◆ SA Block: 23 total tasks

- Low 26%
- Medium 52%
- High 22%

Subject 1 SA Block Metabolic Rates

Subject 2 SA Block Metabolic Rates

Results: Percent Full Task Time to Max Metabolic Rate

- ♦ Maximum metabolic rate reached during 500m traverse at 30% grade in the E2E block for both subjects

- Subject 1: 1747 BTU/hr
- Subject 2: 1656 BTU/hr

E2E Block Percent Full Task Time to Max Metabolic Rate

SA Block Percent Full Task Time to Max Metabolic Rate

Results: Percent Full Task Time to Max Heart Rate

- ♦ Maximum heart rate reached during 500m traverse at 30% grade in the E2E block for both subjects
 - Subject 1: **150 BPM**
 - Subject 2: **177 BPM**

E2E Block Percent Full Task Time to Max Heart Rate

SA Block Percent Full Task Time to Max Heart Rate

Results: Percent Full Task Time to Max Heart Rate

- ♦ Maximum heart rate reached during 500m traverse at 30% grade in the E2E block for both subjects
 - Subject 1: **150 BPM**
 - Subject 2: **177 BPM**

Discussion

- ♦ Understanding the physical demands to complete exploration EVA tasks will be instrumental to the future success of exploration spacesuit designs and missions
 - Harder tasks that could negatively impact an astronaut's ability to complete an EVA
- ♦ Subjects achieved a plateau HR range and maintained at that level across the full end-to-end EVA
- ♦ EVA planning must consider which tasks are more physically demanding for suited subjects
- ♦ Characterizing these tasks is especially important to ensure EVA success on the Lunar surface.

Next Steps...

- ◆ Further work in this study will be needed to characterize MR
 - Expand subject pool
 - Testing new suit design(s)
 - Compare findings to testing in other analogs (NBL)
- ◆ Define analog environment “coefficients”
 - Better comparison of suited environments
- ◆ Use findings to inform
 - Modeling capabilities
 - EVA planning
 - Training
 - Future suit design capabilities

Acknowledgements

- ◆ H-3PO Team
 - Lauren Cox
 - Brett Siders
 - Bradley Hoffmann
 - Alex Baughman
 - Tim McGrath
 - KJ Kim
 - Dillon Frisco
 - Patrick Estep
 - Alex Garbino
 - Crystal Kirkley
 - Zach Wusk
 - Monica Hew
 - Rachel Thompson
- ◆ Advanced Suit Lab Team
- ◆ ARGOS Team
- ◆ ABF Team
- ◆ BHP Team
- ◆ ICR Team
- ◆ Medical Monitoring
- ◆ Suited Subjects

Thank you!

