

CS32F031x6/x8 数据手册

32-bit ARM® M0-based MCU REV 1.2

芯海科技(深圳)股份有限公司

地 址:深圳市南山区蛇口南海大道1079号花园城数码大厦A座9楼

电 话: +(86 755)86169257 传 真: +(86 755)86169057

网 站: www.chipsea.com 邮 编: 518067

微信号: 芯海科技

版本历史

版本号	说明	日期
1.0	初版	2019-6-17
1.1	1. 增加型号 E6Y6, 更新 WLCSP25 封装引脚图和封装框图 2. LRC 频率: min(30->27), max(50->62) 3. ADC 特性更新: fADC	2020-7-16
1.2	1.更新温度传感器线性度参数,区分不同温度范围	2020-8-26

目录

版	版本历史	
E	目录	3
1		
2		
3	3 器件一览	9
4	4 引脚描述	11
	4.1 LQFP48	11
	4.2 QFN32L	
	4.3 QFN28L	
	4.4 WLCSP25	
	4.5 引脚描述	13
5	5 I/O 复用	
	5.1 PA 口复用功能	17
	5.2 PB 口复用功能	
6	6 存储器	19
7		
′		
	7.1 ARM® CORTEX®-M0 内核	
	7.2 存储器 7.3 时钟	
	7.4 工作环境	
	7.4.1 工作电压	
	7.5 启动模式	
	7.6 电源管理	
	7.6.1 低功耗模式	
	7.6.2 RTC 和不掉电寄存器	
	7.6.3 上电复位/掉电复位(POR/PDR)	
	7.6.4 低电压复位模块(LVD)	26
	7.7 通用输入输出端口(GPIO)	
	7.8 模数转换器(ADC)	
	7.8.1 温度传感器(TS)	
	7.8.2 内部参考电压	
	7.8.3 VBAT 监测	
	7.9 定时器	
	7.9.1 高级定时器 (TIM1)	
	7.9.2 通用定时器 (TIM2, 3, 14, 15,16, 17)	
	7.9.3 基本定时器(TIM6)	
	7.9.4 独立看门狗定时器(FWDT)	
	7.9.5 窗看门狗定时器(WWDT)	
	7.9.6 滴答定时器(SysTick)	
	7.10 直接内存存取(DMA)	28

	7.11	中断和事件	28
	7.12	> (- /) (- /) (- /)	
	7.13	串行外设总线(SPI)/集成电路内置音频总线(I2S)	29
	7.14	通用同步异步收发器(USART)	29
	7.15	I2C接口	30
	7.16	循环冗余校验	30
	7.17	串行调试端口(SWD-DP)	30
8	电		31
	8.1	说明	31
	8.2	绝对最大额定值	
	8.3	工作条件	
	8.4	I/O 端口特性	
	8.5	低功耗模式唤醒时间	34
	8.6	RC 振荡器特性	
	8.7	晶振特性	35
	8.8	外部时钟特性	
	8.9	PLL 特性	
	8.10		
	8.11	内部参考电压特性	39
	8.12		
	8.13		
	8.14	VBAT 监测器特性	40
	8.15		
	8.16	定时器特性	40
	8.17		
	8.18	I2C 特性	44
	8.19	ESD 特性	45
9	主	装信息	46
	9.1	LQFP48	46
	9.2	QFN32L	
	9.3	QFN28L	
	9.4	WLCSP25	49
10	0	订货信息	51
1	1	勘误表	52
12	2	缩略语	53
11	2	銷 售和服 冬	55

1 介绍

CS32F031 系列微控制器采用高性能的 32 位 ARM® Cortex®-M0 内核,嵌入高达 64Kbytes flash 和 8Kbytes SRAM,最高工作频率 48MHz。031 系列包含 3 种不同封装类型,涵盖 28 脚到 48 脚等多款产品。芯片提供标准的通信接口(I2C、SPI/I2S 和 USART),1 路 12bit ADC,7 个 16bit 定时器,1 个 32bit 定时器,1 个增强控制型 PWM 定时器。

CS32F031 系列微控制器的工作温度范围为-40℃~105℃,工作电压范围 2V~5.5V。芯片提供一系列电源工作模式,以满足不同的低功耗应用。

CS32F031 系列微控制器适用于多种应用场景,例如控制器、手持设备、A/V 接收器、PC 外设、游戏和 GPS 平台,工业应用等。

2 功能

- 内核
 - 32 位 ARM® Cortex® -M0 CPU
 - 一 最高 48MHz 工作频率
- 存储器
 - 32K/64 Kbytes 的 flash 存储器
 - 192B Flash 数据存储
 - 一 4K/8Kbytes 的 SRAM, 带硬件奇偶校验
- 时钟模块
 - 一 内部 8MHz RC 振荡器(HRC), 典型情况下精度±1%
 - 一 内部 14MHz RC 振荡器(HRC14), 典型情况下精度±1%
 - 一 内部 40KHz RC 振荡器(LRC), 典型情况下精度±10%
 - 4~32MHz 晶体振荡器(HXT)
 - 32.768KHz 低速晶体振荡器(LXT)
 - x2,x3,..,x16 锁相环(PLL), 最高支持 48MHz
- 工作环境
 - VDD 电压: 2.0~5.5V
 - VDDA 电压: 2.0~5.5V
 - VBAT 电压: 1.65~5.5V
 - 一 温度范围: -40~105℃
- 启动方式
 - 一 支持从闪存存储器启动
 - 一 支持从系统存储器启动
 - 一 支持从内部 SRAM 启动
- 电源管理
 - 低功耗模式: 睡眠,深度睡眠 1,深度睡眠 2 和掉电模式
 - 一 备用电源 VBAT 为 RTC 和不掉电寄存器供电
 - 一 支持上电/掉电复位 (POR/PDR)
 - 一 支持低电压检测 (LVD)
- 通用输入输出(I/O)
 - 39 个 I/O 支持最高 48MHz 工作频率
 - 一 所有 I/O 映射外部中断向量
- 模数转换器(ADC)
 - 1路12位ADC
 - 一 最高 1us 转换时间
 - 一 支持 10 个外部输入通道
 - 一 工作电压范围: 2.4~5.5V
 - 一 输入电压转换范围: 0~VDDA

● 定时器

- 1路 16bit 高级控制定时器(TIM1),每路有 6个带死区控制的 PWM 输出通道
- 一 5路通用的16位定时器
- 一 1 路通用的 32 位定时器
- 一 1 路基本的 16 位定时器
- 一 1 路独立看门狗定时器 (FWDT): 8 位预置数 和 12 位自减型计数器
- 一 1 路窗看门狗定时器 (WWDT): 7 位自减型计数器
- 一 1个系统时间定时器: 24位自减型计数器

• DMA

- 一 5 通道 DMA 控制器
- 一 支持的外设: SPIx, I2Sx, I2Cx, USARTx, TIMx, ADC
- 中断和事件
 - 一 多达 32 个可单独屏蔽的中断通道
 - 一 4种优先级可选
 - 16 个外部中断线
- RTC 和不掉电寄存器
 - 一 日历功能
 - 报警和周期性地从深度睡眠 1/深度睡眠 2/掉电模式下唤醒的功能
 - RTC 时钟源: 32.768KHz 晶振时钟, 内部 40KHz 低速时钟, 32 分频的外部晶振时钟
 - 一 VDD 关闭时保存 20 bytes 的用户数据
- 串行外设接口(SPI)
 - 一 两个 SPI 接口
 - One I2S multiplexing with SPI1
 - 一 支持 I2S 和 SPI1 端口复用
 - 一 3位预分频器可以产生8种主模式频率
 - 一 4到16位可配置的帧格式
- 通用同步/异步收发器(USART)
 - 5 ↑ USART
 - 支持: ISO7816 接口, LIN 主从功能, IrDA 传输编解码
 - 一 自动波特率检测
 - 一 支持从深度睡眠 1/深度睡眠 2 模式唤醒

• I2C

- 一 2路 I2C 支持主/从模式
- 支持: 标准模式 (100k bit/s), 快速模式 (高达 400k bit/s), 超快模式 (高达 1M bit/s)
- 一 支持 7 位或 10 位寻址模式
- CRC 发生/校验器
- 串行单线调试 (SWD)
- 封装
 - QFN28L
 - QFN32L
 - LOFP48

- WLCSP25

3 器件一览

CS32F031 系列封装类型包括: WLCSP25, QFN28L, QFN32L 和 LQFP48。

表 1 CS32F031 系列

			CS32F031XXXX								
器件	E6Y6	G6U6	K6U6	<u>K8U6</u>	C6T6	C8T6					
闪存(Kby	ytes)	32	32	32	64	32	64				
SRAM (Kt	oytes)	4	4	4	8	4	8				
	16 位高级控 制		1								
	32 位通用			1							
定时器	16 位通用			5							
	基本型			1							
	独立看门狗		1								
	窗看门狗	1									
	滴答定时器	1									
	SPI/I2S	1	1	1	1	1	2				
Communication interfaces	I2C	1	1	1	1	1	2				
interraces	USART	4	4	4	5	4	5				
ADC	个数	1									
	外部通道数			10							
	内部通道数			3							
I/O	I/O		23	2	7	3	9				
Clocks:HXT/LXT/HRC/LRC/PLL		0/1/1/1/1	1/0/1/1/1	1/0/1	/1/1	1/1/	1/1/1				
工作电		2~5.5V									
工作温	工作温度		环境温度:	-40~105°C;	结温: -	-40~125°C					
封装类	 型	WLCSP25	QFN28L	QFN	[32L	LQF	FP48				
2,20,00		`									

图 1 模块框图

4 引脚描述

4.1 LQFP48

图 2 LQFP48 封装引脚图(顶视图)

4.2 QFN32L

图 3 QFN32L 封装引脚图(顶视图)

4.3 QFN28L

图 4 QFN28L 封装引脚图 (顶视图)

4.4 WLCSP25

图 5 WLCSP25 封装引脚图 (marking side)

4.5 引脚描述

表2引脚描述

引脚号						描述		
LQFP48	QFN32L	QFN28L	WLCSP25	引脚名称 类型 复用功能		特殊功能		
1				VBAT	S	备用电源		
2				PC13	I/O	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2	
3			B5	PC14/LXT_IN (PC14)	I/O	-	LXT_IN	
4			C5	PC15/LXT_OUT (PC15)	I/O	-	LXT_OUT	
5	2	2		PF0/HXT_IN (PF0)	I/O	-	HXT_IN	
6	3	3		PF1/HXT_OUT (PF1)	I/O	-	HXT_OUT	
7	4	4	D5	NRST	I/O	复位输入/ 内部复 (低电平有效		
8				GNDA	S	模拟地		
9	5	5	C4	VDDA	S	模拟电源		
10	6	6	E5	PA0	I/O	TIM2_CH1_ETR, USART1_CTS ⁽²⁾ , USART2_CTS ⁽³⁾	ADC_IN0, RTC_TAMP2, WKUP1	
11	7	7	B4	PA1	I/O	TIM2_CH2, EVENTOUT, USART1_RTS ⁽²⁾ , USART2_RTS ⁽³⁾	ADC_IN1	
12	8	8	D4	PA2	I/O	TIM2_CH3, TIM15_CH1, USART1_TX ²² , USART2_TX ⁽³⁾	ADC_IN2	
13	9	9	E4	PA3	I/O	TIM2_CH4, TIM15_CH2, USART1_RX ⁽²⁾ , USART2_RX ⁽³⁾	ADC_IN3	
14	10	10	В3	PA4	I/O	SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK ⁽²⁾ , USART2_CK ⁽³⁾ , USART6_TX	ADC_IN4	
15	11	11	D3	PA5	I/O	SPI1_SCK, I2S1_CK, TIM2_CH1_ETR, USART6_RX, USART7_TX, USART8_TX	ADC_IN5	

	,		パロイツス				******
16	12	12	E3	PA6	I/O	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT, USART7_RX, USART8_RX	ADC_IN6
17	13	13	C3	PA7	I/O	SPI1_MOSI,	ADC_IN7
18	14	14	E2	PB0	I/O	TIM3_CH3, TIM1_CH2N, EVENTOUT	ADC_IN8
19	15	15	D2	PB1	I/O	TIM3_CH4, TIM14_CH1, TIM1_CH3N	ADC_IN9
20	16			PB2	I/O	-	-
21				PB10	I/O	TIM2_CH3, I2C1_SCL ⁽²⁾ , I2C2_SCL ⁽³⁾	I2C 端口, 支持超 快模式
22				PB11	I/O	TIM2_CH4, EVENTOUT, I2C1_SDA ⁽²⁾ , I2C2_SDA ⁽³⁾	I2C 端口, 支持超 快模式
23		16	E1	GND	S	芯片地	
24	17	17	D1	VDD	S	数字电源	
25				PB12	I/O	数字电源 TIM1_BKIN, EVENTOUT, SPI1_NSS ⁽²⁾ , SPI2_NSS ⁽³⁾	
26				PB13	I/O	TIM1_CH1N, SPI1_SCK ⁽²⁾ , SPI2_SCK ⁽³⁾	-
27				PB14	I/O	TIM1_CH2N, TIM15_CH1, SPI1_MISO ⁽²⁾ , SPI2_MISO ⁽³⁾	-
28				PB15	I/O	TIM1_CH3N, TIM15_CH1N, TIM15_CH2, SPI1_MOSI ⁽²⁾ , SPI2_MOSI ⁽³⁾	RTC_REFIN
29	18	18	C1	PA8	I/O	USART1_CK, TIM1_CH1, EVENTOUT, CKO	-
30	19	19	B1	PA9	I/O	USART1_TX, TIM1_CH2, TIM15_BKIN,	I2C 端口, 支持超 快模式

			11 II II I				•
						I2C1_SCL	
						USART1_RX,	
						TIM1_CH3,	I2C 端口, 支持超
31	20	20	C2	PA10	I/O	TIM17_BKIN,	快模式
							伏侯八
						I2C1_SDA	
					7.10	USART1_CTS,	
32	21			PA11	I/O	TIM1_CH4,	-
						EVENTOUT	
						USART1_RTS,	
33	22			PA12	I/O	TIM1_ETR,	-
						EVENTOUT	
						IR_OUT,	
				2112		SWDIO,	
34	23	21	A1	PA13	I/O	USART6_RX,	_
				(SWDIO) (2)	1,0	USART7_RX,	
						USART8_RX	
							I2C 端口, 支持超
35				PF6	I/O	I2C1_SCL (2),	
						I2C2_SCL (3)	快模式
26				DEZ	1/0	$I2C1_SDA^{(2)}$,	I2C 端口, 支持超
36				PF7	I/O	I2C2_SDA (3)	快模式
						USART1_TX ²² ,	D C D C C
						USART2_TX (3)	
				PA14		SWCLK,	
37	24	22	A2		I/O		-
				(SWCLK) (2)		USART6_TX,	
						USART7_TX,	
						USART8_TX	
						SPI1_NSS,	
						I2S1_WS,	
						TIM2_CH_ETR,	
						EVENTOUT,	
38	25	23		PA15	I/O	USART1_RX ²² ,	-
						USART2_RX (3)	
						USART6_CK_RTS,	
						USART7_CK_RTS,	
						USART8_CK_RTS	
					+	SPI1_SCK,	
						12S1_CK,	
39	26	24	B2	PB3	I/O		-
						TIM2_CH2,	
						EVENTOUT	
						SPI1_MISO,	
40	27	25		PB4	I/O	I2S1_MCK,	_
70	21	2.5		דע ז		TIM3_CH1,	
						EVENTOUT	
]				SPI1_MOSI,	
						I2S1_SD,	
41	28	26		PB5	I/O	I2C1_SMBA,	-
						TIM16_BKIN,	
						TIM3 CH2	
					+	I2C1_SCL,	
						USART1_TX,	
						TIM16_CH1N,	I2C 端口, 支持超
42	29	27	A3	PB6	I/O		
						USART6_TX,	快模式
						USART7_TX,	
					1	USART8_TX	
43	30	28	A4	PB7	I/O	I2C1_SDA,	I2C 端口, 支持超
43	30	20	Λ4	I D /	1/0	USART1_RX,	快模式
-							•

						TIM17_CH1N,		
						USART6_RX,		
						USART7_RX,		
						USART8_RX		
44	31	1	A5	BOOT0	I	启动方式选择		
15	22			DD 0	1/0	I2C1_SCL,	I2C 端口, 支持超	
45	32				PB8	I/O	TIM16_CH1	快模式
						I2C1_SDA,		
46				PB9	I/O	IR_OUT,	I2C 端口, 支持超	
40				РБ9	1/0	TIM17_CH1,	快模式	
						EVENTOUT		
47	0			GND	S	芯片地		
48	1			VDD	S	数字电源		
	0					EVENTOUT 芯片地		

说明:

- (1) 适用于 CS32F031x6系列
- (2) 适用于 CS32F031x8系列
- (3) 复位后,这些引脚被配置为 SWDIO 和 SWCLK 复用功能时, SWDIO 引脚上的内部上拉电阻和 SWCLK 引脚上的内部下拉电阻有效。

5 I/O 复用

5.1 PA 口复用功能

表 3 PA 口复用功能描述

引脚名	复用功能 0	复用功能 1	复用功能 2	复用功能 3	复用功能 4	复用功能 5	复用功能 6	复用功能 7
PA0		USART1_CTS (2) USART2_CTS (3)	TIM2_CH1_ ETR					
PA1	EVENTOUT	USART1_RTS (2) USART2_RTS (3)	TIM2_CH2					
PA2	TIM15_CH1 (1)	USART1_TX (2) USART2_TX (3)	TIM2_CH3					
PA3	TIM15_CH2 (1)	USART1_RX (2) USART2_RX (3)	TIM2_CH4					
PA4	SPI1_NSS, I2S1_WS	USART1_CK (2) USART2_CK (3)			TIM14_CH1	USART6_TX (1)		
PA5	SPI1_SCK, I2S1_CK	CS/IRC12_CR	TIM2_CH1_ ETR	USART7_TX		USART6_RX (1)		USART8_TX
PA6	SPI1_MISO, I2S1_MCK	TIM3_CH1	TIM1_BKIN	USART7_RX		TIM16_CH1	EVENTOUT	USART8_RX
PA7	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM1_CH1N	USART7_CK_R TS	TIM14_CH1	TIM17_CH1	EVENTOUT	USART8_CK _RTS (1)
PA8	СКО	USART1_CK	TIM1_CH1	EVENTOUT				
PA9	TIM15_BKIN	USART1_TX	TIM1_CH2		I2C1_SCL			
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3		I2C1_SDA			
PA11	EVENTOUT	USART1_CTS	TIM1_CH4					
PA12	EVENTOUT	USART1_RTS	TIM1_ETR					
PA13	SWDIO	IR_OUT			USART6_RX (1)	USART7_RX	USART8_RX (1)	
PA14	SWCLK	USART1_TX (2) USART2_TX (3)			USART6_TX (1)	USART7_TX	USART8_TX (1)	
PA15	SPI1_NSS, I2S1_WS	USART1_RX (2) USART2_RX (3)	TIM2_CH1_ ETR	EVENTOUT	USART6_CK_R TS (1)	USART7_CK_R TS (1)	USART8_CK_R TS (1)	

⁽¹⁾ 适用于 CS32F031Gxxxx/Kxxxx/Cxxxx/Exxxx系列

⁽²⁾ 适用于 CS32F031x6系列 ■ 3) 适用于 CS32F031x8系列

5.2 PB 口复用功能

表 4 PB 口复用功能描述

引脚名	复用功能 0	复用功能 1	复用功能 2	复用功能3	复用功能 4	复用功能 5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N			
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N			
PB2						
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2			
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT			
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA		
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	USART6_TX (1)	USART7_TX (1)	USART8_TX (1)
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	USART6_RX (1)	USART7_RX (1)	USART8_RX (1)
PB8		I2C1_SCL	TIM16_CH1			
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT		
PB10		I2C1_SCL (2) I2C2_SCL (3)	TIM2_CH3			
PB11	EVENTOUT	I2C1_SDA (2) I2C2_SDA (3)	TIM2_CH4			
PB12	SPI1_NSS (2) SPI2_NSS (3)	EVENTOUT	TIM1_BKIN			
PB13	SPI1_SCK (2) SPI2_SCK (3)		TIM1_CH1N			
PB14	SPI1_MISO (2) SPI2_MISO (3)	TIM15_CH1 (1)	TIM1_CH2N			
PB15	SPI1_MOSI (2) SPI2_MOSI (3)	TIM15_CH2 (1)	TIM1_CH3N	TIM15_CH1N		

- (1) 适用于 CS32F031Gxxxx/Kxxxx/Cxxxx/Exxxx系列
- (2) 适用于 CS32F031x6系列
- (3) 适用于 CS32F031x8系列

6 存储器

图 6 存储器映射(F031G6/K6/C6/E6)

0x0000 00000 -	
	Flash,system memory or SRAM, configured by BOOT
0x0000 8000	Reserved
0x0800 0000	Flash Code Memory
0x0800 8000	Reserved
0x1FFF EC00	
0x1FFF F800	System Memory
0x1FFF F840	Option Bytes
	Flash Data Memory
0x1FFF F900 -	Reserved
0x2000 0000	SRAM
0x2000 1000	Reserved
0x4000 0000	
0x4000 8000	APB
0x4001 0000	Reserved
	APB
0x4001 8000	Reserved
0x4002 0000	AHB1
0x4002 4400	Reserved
0x4800 0000	
0x4800 1800	AHB2
0xE000 0000	Reserved
	Cortex-M0 Internal Peripherals
0xE010 0000	Reserved
0xFFFF FFFF	

图 7 存储器映射(F031K8/C8)

0x0000 0000 _	
00001 0000	Flash,system memory or SRAM, configured by BOOT
0x0001 0000	Reserved
0x0800 0000 —	Flash Code Memory
0x0801 0000	·
0x1FFF EC00	Reserved
0.45555000	System Memory
0x1FFF F800 -	Option Bytes
0x1FFF F840	
0x1FFF F900	Flash Data Memory
	Reserved
0x2000 0000	SRAM
0x2000 2000	Reserved
0x4000 0000	Reserved
0x4000 8000	APB
0.4000 8000	Reserved
0x4001 0000	APB
0x4001 8000	Arb
0x4002 0000	Reserved
0x4002 0000	АНВ1
0x4002 4400	Reserved
0x4800 0000	Reserved
0x4800 1800	AHB2
	Reserved
0xE000 0000	Cortov MO Intomal Parinherale
0xE010 0000	Cortex-M0 Internal Peripherals
O-PEEEE PEEE	Reserved
0xFFFF FFFF □	

表 5 存储器映射表

存储	架	起始地址	大小		
1于14	「白	是知地址	F031G6/K6/C6/E6	F031K8/C8	
Flash, 系统存储区或 选项程		0x0000 0000	32Kbytes	64Kbytes	
Flash 程序存储区		0x0800 0000	32Kbytes	64Kbytes	
系统存储区		0x1FFF EC00 3Kbytes 3Kbytes		3Kbytes	
选项=	字节	0x1FFF F800	64bytes	64bytes	
FLASH 数据存储区		0x1FFF F840	192bytes	192bytes	
SRA	M	0x2000 0000	4Kbytes	8Kbytes	
	TIM2	0x4000 0000	1Kbytes	1Kbytes	
APB	TIM3	TIM3 0x4000 0400 1Kbytes	1Kbytes	1Kbytes	
	Reserved	0x4000 0800	2Kbytes	2Kbytes	

	TIM6	0x4000 1000	1Vbytes	1Kbytes
	TIM7	0x4000 1000 0x4000 1400	1Kbytes	TRoyles
-			- 0VI	2VI
-	Reserved	0x4000 1800	2Kbytes	2Kbytes
	TIM14	0x4000 2000	1Kbytes	1Kbytes
	Reserved	0x4000 2400	1Kbytes	1Kbytes
	RTC	0x4000 2800	1Kbytes	1Kbytes
	WWDT	0x4000 2C00	1Kbytes	1Kbytes
	FWDT	0x4000 3000	1Kbytes	1Kbytes
	Reserved	0x4000 3400	1Kbytes	1Kbytes
	SPI2	0x4000 3800	1Kbytes	1Kbytes
	Reserved	0x4000 3C00	2Kbytes	2Kbytes
	USART2	0x4000 4400	1Kbytes	1Kbytes
	USART3	0x4000 4800	-	-
	USART4	0x4000 4C00	-	-
	USART5	0x4000 5000	-	-
	I2C1	0x4000 5400	1Kbytes	1Kbytes
	I2C2	0x4000 5800	1Kbytes	1Kbytes
	Reserved	0x4000 5C00	5Kbytes	5Kbytes
	PMU	0x4000 7000	1Kbytes	1Kbytes
	Reserved	0x4000 7400	3Kbytes	3Kbytes
	SYSCFG	0x4001 0000	1Kbytes	1Kbytes
	EXTI	0x4001 0000 0x4001 0400	1Kbytes	1Kbytes
	Reserved	0x4001 0400 0x4001 0800	3Kbytes	3Kbytes
-		0x4001 0800 0x4001 1400	•	•
-	USART6		1Kbytes	1Kbytes
-	USART7	0x4001 1800	1Kbytes	1Kbytes
-	USART8	0x4001 1C00	1Kbytes	1Kbytes
	Reserved	0x4001 2000	1Kbytes	1Kbytes
-	ADC	0x4001 2400	1Kbytes	1Kbytes
	Reserved	0x4001 2800	1Kbytes	1Kbytes
	TIM1	0x4001 2C00	1Kbytes	1Kbytes
	SPI1/I2S1	0x4001 3000	1Kbytes	1Kbytes
	Reserved	0x4001 3400	1Kbytes	1Kbytes
	USART1	0x4001 3800	1Kbytes	1Kbytes
	Reserved	0x4001 3C00	1Kbytes	1Kbytes
	TIM15	0x4001 4000	1Kbytes	1Kbytes
	TIM16	0x4001 4400	1Kbytes	1Kbytes
	TIM17	0x4001 4800	1Kbytes	1Kbytes
	Reserved	0x4001 4C00	3Kbytes	3Kbytes
	DBGMCU	0x4001 5800	1Kbytes	1Kbytes
	Reserved	0x4001 5C00	9Kbytes	9Kbytes
	DMA	0x4002 0000	1Kbytes	1Kbytes
	Reserved	0x4002 0400	3Kbytes	3Kbytes
	RCU	0x4002 1000	1Kbytes	1Kbytes
	Reserved	0x4002 1400	3Kbytes	3Kbytes
AHB1	Flash interface	0x4002 1400 0x4002 2000	1Kbytes	1Kbytes
	Reserved	0x4002 2400	3Kbytes	3Kbytes
	CRC	0x4002 2400 0x4002 3000	1Kbytes	1Kbytes
	Reserved	0x4002 3000 0x4002 3400	3Kbytes	3Kbytes
	GPIOA	0x4800 0000	1Kbytes	1Kbytes
	GPIOA	0x4800 0000 0x4800 0400	1Kbytes	1Kbytes
				•
AHB2	GPIOC	0x4800 0800	1Kbytes	1Kbytes
	GPIOD	0x4800 0C00	1771. 4	1771
	Reserved	0x4800 1000	1Kbytes	1Kbytes
	GPIOF	0x4800 1400	1Kbytes	1Kbytes
	nal peripherals	0xE000 0000	1Mbytes	1Mbytes

7 功能描述

7.1 ARM® Cortex®-M0 内核

ARM® Cortex®-M0 是一种 ARM 32 位 RISC 处理器。

ARM® Cortex®-M0 支持低功耗和高效的操作,以及高性能的中断响应。相比于其他 8 位和 16 位的 微控制器,它具有更高的代码密度,可以应用在更广泛的嵌入式系统中。它具有优异的性能,并且和 其他 Cortex-M 处理器兼容。

7.2 存储器

CS32F031 支持以下特性

- Flash 有三个部分:
 - 32/64Kbytes Flash 程序存储区
 - 192bytes 的 Flash 数据存储区
 - 一 选项字节和系统存储区
- 4/8Kbyte 嵌入式 SRAM,可产生奇偶校验异常

Flash 程序存储区支持以扇区为单位的写保护功能。根据选项字节,Flash 程序存储区支持不同级别的读保护。

- 一级别 0: 无保护
- 一 级别 1: 在调试模式或者从 SRAM/bootloader 启动时, 无法读写
- 一级别 2: 调试模式和从 SRAM、bootloader 启动功能不可用

7.3 时钟

时钟系统包含下列时钟:

- 8MHz 内部高速 RC 振荡器(HRC)
- 14MHz 内部高速 RC 振荡器(HRC14)
- 40KHz 内部低速 RC 振荡器(LRC)
- 4~32MHz 晶体振荡器(HXT)
- 32.768KHz 晶体振荡器(LXT)
- 倍乘系数为 2, 3, ...16 的锁相环(PLL)

图 8 芯片时钟树

7.4 工作环境

7.4.1 工作电压

芯片有3个不同的电源管脚:

VDD: 为 I/O, Regulator, HXT 模块供电, 电压范围 2.0V 到 5.5V;

VDDA: 为 ADC, HRC, HRC14, PLL, POR/PDR 和 LVD 等模块供电. 电压范围从 VDD 到 5.5V. 当 ADC 工作时, VDDA 应大于 2.4V;

VBAT:为 RTC, LXT, 和不掉电寄存器供电. 电压范围从 1.65V 到 5.5V。

7.5 启动模式

CS32F031 支持多种启动方式:

表 6 启动模式

BOOT0 管脚	nBOOT1 位	启动位置
0	X	闪存存储器
1	1	系统存储器
1	0	SRAM

7.6 电源管理

7.6.1 低功耗模式

芯片有 4 种低功耗模式:

● 睡眠模式

在睡眠模式下,只有 CPU 停止工作,所有外设继续运行并在发生中断/事件时唤醒 CPU。

● 深度睡眠 1 模式

在深度睡眠模式 1 下,PLL, HRC 和 HXT 被禁止。调压器正常工作,同时保持 SRAM 和寄存器的内容。任意 EXTI 中断信号将器件从深度睡眠 1 模式唤醒。

● 深度睡眠 2 模式

在深度睡眠模式 2 下,PLL, HRC 和 HXT 被禁止。调压器处于低功耗模式,同时保持 SRAM 和寄存器内容,因此深度睡眠 2 的唤醒时间比深度睡眠 1 要长。任意 EXTI 中断信号将器件从深度睡眠 2 模式唤醒。

● 掉电模式

掉电模式下,调压器关闭,因此整个 1.5 V 域将断电。进入掉电模式后,除 RTC 域和掉电电路中的寄存器外, SRAM 和寄存器的内容都将消失。 PLL、HSI 和 HSE 晶振也会关闭。当发生外部复位 (NRST 引脚)、 IWDG 复位、WKUP 引脚上出现上升沿或者触发 RTC 事件时,器件退出掉电模式。

7.6.2 RTC 和不掉电寄存器¹

芯片支持备用电源供电,当 VDD/VDDA 关断时,RTC 和不掉电寄存器可以在 VBAT 域保持其状态。

7.6.3 上电复位/掉电复位(POR/PDR)

芯片包含上电复位和掉电复位电路。上电复位模块 POR 监测 VDD 的电压,掉电复位模块监测 VDD 和 VDDA 的电压。

25/55 文件编号: CS-QR-YF-054A02

¹ VBAT 电压域不能用于 CS32F031E6Y6

此电路始终处于工作状态,可确保器件在电压不低于 2V 时能够正常工作。当监控的供电电压低于规定阈值 V_{POR}/V_{PDR} 时,器件处于复位模式。

7.6.4 低电压复位模块(LVD)

LVD 用于监视 VDD 电源并将其与 阈值 V_{LVD} 进行比较。当 VDD 低于 V_{LVD} 或高于 V_{LVD} 阈值时,将产生中断。LVD 的阈值是可编程控制的。

7.7 通用输入输出端口(GPIO)

每个 GPIO 引脚都可以由软件配置成输入(带或不带上拉或下拉)、输出(推挽或开漏)或复用的外设功能端口。多数 GPIO 引脚都与数字或模拟的复用外设共用。

在需要的情况下,I/O 引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入 I/O 寄存器。

7.8 模数转换器(ADC)

CS32F031 包含一个 12 位的逐次逼近型模数转换器。支持最多 13 个通道,包括 10 个外部通道和 3 个内部通道。3 个内部通道分别用来监测 VBAT 的电压,测量内部参考电压和测量芯片的温度。不同通道的转换模式包括单次、扫描模式。在扫描模式下,将自动对选定的模拟输入通道组进行转换。它支持不同的转换设置,包含采样时间、转换器分辨率、数据格式对齐和通道扫描方向选择。

ADC 转换可以由不同定时器产生的软硬件事件触发。ADC 时钟可以是内部 14MHz RC 振荡器产生的,也可以是 PCLK 分频后的时钟产生的,硬件触发 AD 转换与时钟同步。

ADC 内置模拟看门狗功能,它允许监控一路、多路或所有选中的通道,当被监视的信号超过预设的阈值时,将产生中断。

输出数据可以被 DMA 搬运。DMA 单次模式支持搬运一定量数据后将中止 AD 转换; DMA 循环模式允许 AD 转换数据被连续搬运直至 ADC 停止工作。

7.8.1 温度传感器(TS)

温度传感器模块产生一个与温度成线性关系的输出电压 TS_OUT。TS_OUT 被送入 ADC 的 ADCIN_16 通道,然后被转换为数字码值。为了获得较好的线性,温度传感器需要首先被校准。校准值被存在系统存储器区域,它是只读的。

校准值名称	描述	地址
NIEE IN	TS 在 30°C(+/-5°C),	7 67.111
TEMP30_CAL	VDDA=3.3V(+/-10mV)时	0x1FFF F7B8 - 0x1FFF F7B9
	ADC 转换数据	
	TS 在 110°C(+/-5°C),	
TEMP110_CAL	VDDA=3.3V(+/-10mV)时	0x1FFF F7C2 - 0x1FFF F7C3
	ADC 转换数据	

表 7 TS 校准值

7.8.2 内部参考电压

内部参考电压 Vrefint 为 ADC 提供一个基准电压输出。Vrefint 接到 ADC_IN17 输入通道。每颗芯片的 Vrefint 电压在量产测试时被测量并存储在系统存储区,它是只读的。

表 8 Vrefint 校准值

校准值名称	描述	存储地址
VREFINT_CAL	数值在 30℃(±5℃), V _{DDA} =3.3V(±10mV)获得	0x1FFF F7BA - 0x1FFF F7BB

26/55 文件编号: CS-QR-YF-054A02

7.8.3 VBAT 监测

电池电压 VBAT 被送入 ADC 通道 ADC_IN18 来监控其是否位于正常工作范围内。由于 VBAT 电压可能高于 VDDA,超出 ADC 输入范围。因此 VBAT 电压被内部连接到一个 1/2 分压电路,于是转换数值是 VBAT 电压的一半。

7.9 定时器

芯片包括1个高级定时器、6个通用定时器和1个基本定时器

表 9 各类定时器 特点对比

类型	定时器	计数器 位宽	方向	预分频数	产生 DMA 请 求	通道数	互补通道数
高级控制	TIM1	16位	向上,向下, 向上/下	1 ~65536 中的任 意整数	可以	4	3
	TIM2	32 位	向上, 向下, 向上/下	1 ~65536 中的任 意整数	可以	4	0
	TIM3	16位	向上, 向下, 向上/下	1 ~65536 中的任 意整数	可以	4	0
海田	TIM14	16位	向上	1 ~65536 中的任 意整数	不可以	1	0
通用	TIM15	16位	向上	1 ~65536 中的任 意整数	可以	2	1
	TIM16	16位	向上	1 ~65536 中的任 意整数	可以	1	1
	TIM17	16 位	向上	1 ~65536 中的任 意整数	可以	1	1
基本	TIM6	16位	向上	1 ~65536 中的任 意整数	可以	0	0

7.9.1 高级定时器 (TIM1)

TIM1 是一个带有 16 位预分频的 16 位计数器,可以向上、向下和向上向下计数。它有四个通道,都支持输入捕获和输出比较。输出的 PWM 信号可以用用来控制电机或者应用在功耗管理上。各个通道的互补输出共用同一个嵌入式死区时间配置。

TIM1 可以通过通过定时器之间的连接特性,和其它定时器协同工作。当打开 DMA 使能时,DMA 可以读写 TIM1 的寄存器。

在调试模式下,可以让计数器停止计数。

7.9.2 通用定时器 (TIM2, 3, 14, 15,16, 17)

6个通用定时器可以用来作为简单的时间基准或输出 PWM。

• TIM2/TIM3

TIM2 是一个带有 16 位预分频的 32 位计数器,可以向上、向下和向上向下计数。TIM3 是一个带有 16 位预分频的 16 位计数器,可以向上、向下和向上向下计数。它们有四个通道,都支持独立的输入捕获、输出比较和产生 PWM。

TIM2 和 TIM3 可以通过定时器之间的连接特性,和其它定时器协同工作。当打开 DMA 使能时, DMA 可以读写 TIM2 和 TIM3 的寄存器。

在调试模式下,可以让计数器停止计数。

27/55 文件编号: CS-QR-YF-054A02

• TIM14

TIM14 是一个带有 16 位预分频的 16 位计数器,只有 1 个通道用于输入捕获、输出比较和产生 PWM。

在调试模式下,可以让计数器停止计数。

• TIM15/TIM16/TIM17

TIM15(双通道)、TIM16(单通道)和TIM17(单通道)都带有一个16位预分频和16位计数器。通道可以输入捕获、输出比较和产生PWM。一个可配置的死区时间发生器可用于互补通道输出。当DMA使能打开时,它们的寄存器可以被DMA读写。在调试模式下,可以让计数器停止计数。

7.9.3 基本定时器(TIM6)

一个可以作为定时基准的 16 位计数定时器。

7.9.4 独立看门狗定时器(FWDT)

独立看门狗定时器以内部 40KHz LRC 作为时钟源,独立于主时钟。FWDT 由一个 8 位的预分频器和 1 个带窗选项的 12 位向下计数器组成,可以在深度睡眠 1、深度睡眠 2 和掉电模式下独立运行。当计数器计到 0 时,FWDT 产生一个复位。

在调试模式下,可以让计数器停止计数。

7.9.5 窗看门狗定时器(WWDT)

窗看门狗定时器以PCLK作为主时钟,由1个预分频器和7位自由运行的向下计数器组成。当计数器计到0x40时,产生提醒中断标志。当计数器计到0x3F时,产生一个复位。

在调试模式下,可以让计数器停止计数。

7.9.6 滴答定时器(SysTick)

滴答定时器可以用于实时操作系统,同时也是一个标准的向下计数器。

它是以 HCLK 或 HCLK/8 作为时钟源,具有自动重加载功能的 24 位向下计数器。当计数器计到 0 时,滴答定时器会产生一个可屏蔽的系统中断。

7.10 直接内存存取(DMA)

DMA 控制器实现了外设和存储器之间数据的硬件传输。DMA 有 5 个通道。每个通道连接到特定的外设单元,包括 SPIx、I2S、I2Cx、USARTx 和 TIMx,来管理读写存储器的请求。内部的仲裁器用来处理 DMA 请求的优先级。

DMA 控制器包括循环数据传输模式,当当前数据传输完成时,不需要用户软件参与。

7.11 中断和事件

Cortex-M0 集成的嵌入向量中断控制器能够高效的处理异常和中断。更多细节请参考 Cortex-M0 技术参考手册。

EXTI包含32个独立的边沿检测器,产生中断请求和事件给到CPU或中断控制器。EXTI有三种触发方式,包括上升沿触发、下降沿触发和双边沿触发。每个边沿检测器可以独立的配置和使能。

7.12 实时时钟(RTC)和不掉电寄存器

RTC 有以下特性:

- BCD 格式的日历支持亚秒、秒、分钟、小时、星期、日期、月份、年份
- 一 自动补偿夏令时及月份的天数,如 28 天、29 天(闰年)、30 天、31 天闹钟支持配置亚秒、秒、分钟、小时、日期和星期,可以唤醒深度睡眠模式 1、深度睡眠模式 2 和掉电模式
- 一 支持时间戳功能,保存日历内容,唤醒深度睡眠模式1、深度睡眠模式2和掉电模式
- 一 侵入事件检测, 复位 5 个不掉电寄存器并唤醒深度睡眠模式 1、深度睡眠模式 2 和掉电模式

28/55 文件编号: CS-QR-YF-054A02

- 支持数字校准,补偿 RTC 时钟源的误差
- 支持外部精准时钟检测(50Hz或60Hz)自动校准日历
- 支持亚秒级快慢调整

RTC 和不掉电寄存器有 VDD 或 VBAT 脚供电。5 个 32 位的不掉电寄存器不会被系统复位和电源复位清除。

7.13 串行外设总线(SPI)/集成电路内置音频总线(I2S)

SPI/I2S 模块可以通过 SPI 协议或者 I2S 音频协议和外部器件通信。

SPI 支持主从机的发送和接收。它支持全双工模式和简单模式,最大通信速率可以达到 18Mbit/s。模块还实现了硬件 CRC 功能。

I2S 仅可以工作在主机半双工和从机半双工模式,支持4种音频标准:飞利浦标准、MSB 对齐标准、LSB 对齐标准、PCM 标准。

SPI和 I2S都可以用 DMA实现数据的连续传输。

 SPI 特性/模式
 SPI1
 SPI2

 Rx/Tx FIFO
 √
 √

 NSS 脉冲模式
 √
 √

 TI 模式
 √
 √

 硬件 CRC
 √
 √

 I2S 功能
 √
 X

表 10 SPIx 功能表

7.14 通用同步异步收发器(USART)

通用同步异步收发器为 MCU 和外部器件连续通信提供了一个通用接口。USART 支持同步、异步全双工通信和单线半双工通信。一个可编程的波特率发生器,可提供不同的通信波特率,最高可达 6Mbit/s。

除此之外,USART 也支持 DMA 连续传输、自动波特率检测、多处理器通信、Modbus 通信、智能卡模式、LIN 模式、IrDA 模式、RS232 硬件流控和 RS485 驱动使能。USART1 可以将 MCU 从深度睡眠模式 1 和深度睡眠模式 2 唤醒。

USART 特性/模式	USART1	USART2	USART6	USART7	USART8
异步全双工通信	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
同步模式	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
单线半双工模式	√	~	√	√	√
DMA 功能	$\sqrt{}$	\checkmark	X	X	X
自动波特率检测	$\sqrt{}$	X	X	X	X
多处理器通信	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Modbus 通信	$\sqrt{}$	X	X	X	X
智能卡模式	$\sqrt{}$	X	X	X	X
LIN 模式	$\sqrt{}$	X	X	X	X
IrDA 模式	$\sqrt{}$	X	X	X	X
RS232 硬件流控	$\sqrt{}$	$\sqrt{}$	X	X	X
RS485 驱动使能	√		V	$\sqrt{}$	√
唤醒深度睡眠模式1、2	V	X	X	X	X

表 11 USARTx 功能表

29/55 文件编号: CS-QR-YF-054A02

7.15 I2C接口

I2C 模块提供了一个工业级标准的 I2C 接口,可以工作在主机模式和从机模式。接口实现了标准模式、快速模式和超快速模式,CRC 计算和检查,系统管理总线和电源管理总线。I2C 接口支持 DMA 模式用于存储器和外设之间的高速通信,无需 CPU 参与。

主要包括以下特性:

- 支持主机模式和从机模式
- 多主机功能
- 一 可配置的数字滤波器和模拟滤波器
- 支持7位和10位地址模式
- 支持标准模式(高达 100KHz)、快速模式(高达 400KHz)和超快速模式(高达 1MHz)
- 系统管理总线和电源管理总线
- PEC 生成和检查
- 一 唤醒深度睡眠模式 1 和深度睡眠模式 2
- 支持 DMA 模式

表 12 I2Cx 功能表

I2C 特性/模式	I2C1	I2C2
7位地址模式	$\sqrt{}$	$\sqrt{}$
10 位地址模式	$\sqrt{}$	$\sqrt{}$
标准模式	$\sqrt{}$	$\sqrt{}$
快速模式	$\sqrt{}$	$\sqrt{}$
超快速模式	$\sqrt{}$	$\sqrt{}$
独立工作时钟	$\sqrt{}$	X
系统管理总线	$\sqrt{}$	X
唤醒深度睡眠模式1、2	$\sqrt{}$	X

7.16 循环冗余校验

在数据存储和通信领域,为了确保数据的正确性,循环冗余校验被广泛使用。 CRC 计算单元可以根据固定的 CRC 多项式计算出 32 位的 CRC 码。

7.17 串行调试端口(SWD-DP)

ARM Cortex-M0 内部集成调试组件,SW 调试口用来连接这些调试组件。

8 电气特性

8.1 说明

图 9 给出了 CS32F031 的电源方案。

除非特别说明,所有典型值是基于温度 T_{range} =25 $^{\circ}$ 和电压 VDD=3.3V 的条件下给出的。

除非特别说明,所有电压都是以 GND 为参考的。

除非特别说明,所有数据由设计保证。

图 9 电源方案

引脚的输入电压和负载等测试条件如图 10 所示。

图 10 引脚的输入电压和负载条件

8.2 绝对最大额定值

表 13 绝对最大额定值

符号	描述	最小值	典型值	最大值	单位
VDD	VDD 和 GND 之间的电压	-0.3	-	6	V
VDDA	VDDA 和 GND 之间的电压	-0.3	-	6	V
VBAT	VBAT 和 GND 之间的电压	-0.3	-	6	V
VDD-VDDA	VDD 和 VDDA 之间的电压	-	-	0.4	V
$V_{i/o}$	I/O 管脚电压	GND- 0.3	-	6	V
$T_{storage}$	存储温度	-65	-	150	$^{\circ}\!\mathbb{C}$
T _{junction}	结温	-	-	150	$^{\circ}\!\mathbb{C}$
I _{total-pwr}	流入 VDD 电源线的总电流	-	-	120	mA
I _{total-GND}	流出 GND 接地线的总电流	-120	-	-	mA
I _{pwr-pin}	流入每个电源管脚的电流	-	-	100	mA
$I_{ m GND ext{-}pin}$	流入每个地管脚的电流	-100	-		mA
I _{total-sunk}	流入所有 I/O 管脚的总电流	-	-	80	mA
I _{total-source}	流出所有 I/O 管脚的总电流	-80	-		mA
$I_{sunk-pin}$	流入任意一个 I/O 管脚的电流	-	-	25	mA
I _{source-pin}	流出任意一个 I/O 管脚的总电流	-25	-	-	mA

8.3 工作条件

表 14 工作条件

符号	描述	最小值	典型值	最大值	单位
V _{VDD-range}	VDD 的工作电压范围	2	-	5.5	V
$V_{VDDA\text{-range}}$	VDDA 的工作电压范围	2	-	5.5	V
$V_{VBAT\text{-range}}$	VBAT 的工作电压范围	1.65	-	5.5	V
T_{range}	芯片环境温度	-40	-	105	$^{\circ}\mathbb{C}$
$T_{junction\text{-}range}$	芯片结温范围	-40	ı	125	$^{\circ}$
$f_{AHB ext{-}clock}$	内部 AHB 时钟频率	0	-	48	MHz
$f_{APB\text{-}clock}$	内部 APB 时钟频率	0	-	48	MHz
$V_{\text{IO-range}}$	I/O 输入电压范围	-0.3	ı	5.5	V
	LQFP48 在 T _{range} =105℃下的功率耗散	-	ı	377	mW
P _{dissipation}	QFN32L 在 T _{range} =105℃下的功率耗散	-	ı	484	mW
	QFN28L 在 T _{range} =105℃下的功率耗散	-	ı	-	mW
T _{supply-rise}	VDD/VDDA 上升时间速率	0	ı	-	uS/V
$T_{supply-fall}$	VDD/VDDA 下降时间速率	20	ı	-	uS/V
T _{VDD-POR}	VDD 上电复位阈值	1.84	1.92	2	V
$T_{\mathrm{VDD-fall}}$	VDD 掉电复位阈值	1.80	1.88	1.96	V
$T_{VDDA ext{-fall}}$	VDDA 掉电复位阈值	1.80	1.88	1.96	V
т	V _{VDD-range} ≤5.5V 的复位持续时间	-	4.2	10	mS
$T_{reset\text{-tempo}}$	V _{VDD-range} ≤3.6V 的复位持续时间	-	4.2	7.5	mS
	LVD 上升阈值电压 0	2.11	2.18	2.25	V
	LVD 下降阈值电压 0	2.01	2.08	2.15	V
V	LVD 上升阈值电压 1	2.20	2.28	2.36	V
$V_{ m LVD}$	LVD 下降阈值电压 1	2.10	2.18	2.26	V
	LVD 上升阈值电压 2	2.29	2.38	2.47	V
	LVD 下降阈值电压 2	2.19	2.28	2.37	V

LVD 上升阈值电压 3	2.39	2.48	2.57	V
LVD 下降阈值电压 3	2.29	2.38	2.47	V
LVD 上升阈值电压 4	2.48	2.58	2.68	V
LVD 下降阈值电压 4	2.38	2.48	2.58	V
LVD 上升阈值电压 5	2.58	2.68	2.78	V
LVD 下降阈值电压 5	2.48	2.58	2.68	V
LVD 上升阈值电压 6	2.67	2.78	2.89	V
LVD 下降阈值电压 6	2.57	2.68	2.79	V
LVD 上升阈值电压 7	2.77	2.88	2.99	V
LVD 下降阈值电压 7	2.67	2.78	2.89	V

8.4 I/O 端口特性

表 15 I/O 端口特性

符号	描述	最小值	典型值	最大值	单位
V_{IH}	输入高电平	0.7*VDD	1	-	V
$V_{ m IL}$	输入低电平	-	-	0.3*VDD	V
V _{IL-BOOT0}	BOOT0 的低电平输入电压	-	-	0.3*VDD -0.3	V
	输出高电平, I _{source-pin} =20mA, VDD≥2.7V	VDD-1.5	-	-	V
V _{OH}	输出高电平, I _{source-pin} =6mA	VDD-0.4, VDD- 0.45 ⁽³⁾ VDD- 0.55 ⁽⁴⁾	-	-	V
Vor	输出低电平, I _{sunk-pin} =20mA, VDD≥2.7V	-	-	1.1	V
V OL	输出低电平 I _{sunk-pin} =6mA	-	-	0.36	V
**	I2C 超快模式, 输出低电平, I _{sunk-nin} =20mA, VDD≥2.7V	-	-	0.4	V
V _{OL-FMP}	I2C 超快模式, 输出低电平,	-	-	0.3	V
R _{pull-up}	I/O 上拉电阻	30	40	55	Ω
R _{pull-down}	I/O 下拉电阻	30	40	58	Ω
	配置为数字端口时的漏电流, GND< V _{IO-range} <vdd< td=""><td>-</td><td>-</td><td>±0.5</td><td>uA</td></vdd<>	-	-	±0.5	uA
T (f)	配置为数字端口时的漏电流, VDD< V _{IO-range} < VDDA	-	-	±0.5	uA
1leakage\"	配置为模拟端口时的漏电流, GND< V _{IO-range} < VDDA	-	ı	± 0.5	uA
	配置为模拟端口时的漏电流, VDD< V _{IO-range} <5V	ı	ı	5	uA
	配置为数字端口时的漏电流, GND< V _{IO-range} <vdd< td=""><td>-</td><td>-</td><td>± 0.8</td><td>uA</td></vdd<>	-	-	± 0.8	uA
$I_{leakage}^{(2)}$	配置为数字端口时的漏电流,VDD< V _{IO-range} <vdda< td=""><td>ı</td><td>ı</td><td>± 0.8</td><td>uA</td></vdda<>	ı	ı	± 0.8	uA
	配置为模拟端口时的漏电流,GND< V _{IO-range} <vdda< td=""><td>ı</td><td>ı</td><td>± 0.8</td><td>uA</td></vdda<>	ı	ı	± 0.8	uA
	GPIOx_OSj[1:0]=x0 时的 IO 输出频率,CL=50pf	-	-	2	MHz
	GPIOx_OSj[1:0]=01 时的 IO 输出频率,CL=50pf	-	-	10	MHz
	¥	-	-	50	MHz
$ m f_{IO}$	GPIOx_OSj[1:0]=11 时的 IO 输出频率,CL=50pf, VDD ≥2.7V	-	-	30	MHz
V _{II} 输入低电平 0.7*VDD -	20	MHz			
	I2C 超快模式下的输出频率, CL=50pf	-	-	2	MHz
$T_{io\text{-fall}}$	GPIOx_OSj[1:0]=x0时 IO输出下降时间,CL=50pf	-	-	12	nS

	GPIOx_OSj[1:0]=01 时 IO 输出下降时间,CL=50pf	-	=	11	nS
	GPIOx_OSj[1:0]=11 时 IO 输出下降时间,CL=30pf, VDD≥2.7V	-	-	6	nS
	GPIOx_OSj[1:0]=11 时 IO 输出下降时间,CL=50pf, VDD≥2.7V	-	-	8	nS
	GPIOx_OSj[1:0]=11 时 IO 输出下降时间,CL=50pf, VDD<2.7V	-	-	11	nS
	I2C 超快模式下的输出下降时间, CL=50pf	-	-	11	nS
	GPIOx_OSj[1:0]=x0 时 IO 输出上升时间,CL=50pf	-	-	15	nS
	GPIOx_OSj[1:0]=01 时 IO 输出上升时间,CL=50pf	-	-	14	nS
	GPIOx_OSj[1:0]=11 时 IO 输出上升时间,CL=30pf, VDD≥2.7V	-	-	7	nS
$T_{ ext{io-rise}}$	GPIOx_OSj[1:0]=11 时 IO 输出上升时间,CL=50pf, VDD≥2.7V	-	-	10	nS
	GPIOx_OSj[1:0]=11 时 IO 输出上升时间,CL=50pf, VDD<2.7V	-	-	14	nS
T _{ext-pw}	EXTI 可被检测脉宽	10	-	-	nS
T _{nrst-fp}	NRST 输入滤波脉冲宽度	-	-	60	nS
-	NRST 输入非滤波脉宽, 2.7V≤V _{VDD-range} ≤3.6V	300	-	-	nS
$T_{nrst\text{-}nfp}$	NRST 输入非滤波脉宽, 2V≤V _{VDD-range} ≤3.6V	500	-	-	nS
	NRST 输入非滤波脉宽, 2V≪V _{VDD-range} ≪5.5V	390	-	-	nS
(1) 21/51/	<2 CV 2V/V <2 CV				•

 $^{(1) \}quad 2V {\leqslant} V_{\text{VDD-range}} {\leqslant} 3.6V, 2V {\leqslant} V_{\text{VDDA-range}} {\leqslant} 3.6V$

8.5 低功耗模式唤醒时间

表 16 低功耗模式唤醒时间

符号	描述	最小值	典型值.	最大值	单位
$T_{wk\text{-sleep}}$	睡眠模式的唤醒时间	-	5 system clk	-	uS
Twk-deepsleep1	深度睡眠 1 模式下的唤醒时间	-	3	5.3	uS
$T_{wk\text{-}deepsleep2}$	深度睡眠 2 模式下的唤醒时间	-	4	7.2	uS
Twk-powerdown	掉电模式下的唤醒时间	-	57	157	uS

8.6 RC 振荡器特性

表 17 HRC 特性

符号	描述	最小值	典型	最大值	单位
			值.		
f_{HRC}	HRC 输出频率	-	8	-	MHz
TRIMHRC	HRC 校准精度	-	-	1	%
Duty _{HRC}	HRC 占空比	46	-	54	%
f _{voltage-HRC}	HRC 频率的电压特性	-0.5	-	0.5	%
$f_{temp-HRC}$	HRC 频率的温度特性	-2	-	2	%
T_{setup_HRC}	HRC 的建立时间	0.14	-	1.2	uS
$I_{pd ext{-HRC}}$	HRC 模块功耗		66	102	uA

⁽²⁾ $2V \leq V_{VDD\text{-range}} \leq 5.5V$, $2V \leq V_{VDDA\text{-range}} \leq 5.5V$

⁽³⁾ 适用于 PF0

⁽⁴⁾ 适用于 PC14

表 18 HRC14 特性

符号	描述	最小值	典型	最大值	单位
			值.		
f_{HRC14}	HRC14 输出频率	-	14	-	MHz
TRIM _{HRC14}	HRC14 校准精度	-	-	1	%
Duty _{HRC14}	HRC14 占空比	46	-	54	%
f _{voltage-HRC14}	HRC14 频率的电压特性	-0.5	-	0.5	%
f _{temp-HRC14}	HRC14 频率的温度特性	-2	-	2	%
T _{setup_HRC14}	HRC14的建立时间	0.09	-	0.5	uS
I _{pd-HRC14}	HRC14 模块功耗		96	152	uA

表 19 LRC 特性

符号	描述	最小值	典型	最大值	单位
			值.		
f_{LRC}	LRC 输出频率	27	40	62	KHz
T_{setup_LRC}	LRC 的建立时间	-	-	84	uS
$I_{ ext{pd-LRC}}$	LRC 模块功耗	-	0.71	1.27 ⁽¹⁾ , 2.47 ⁽²⁾	uA

- (1) VDDA=3.3V, -40° C $\leq T_{range} \leq 105^{\circ}$ C
- (2) VDDA=5.5V, -40°C $\leq T_{\text{range}} \leq 105$ °C

8.7 晶振特性

图 11 给出了晶振的晶体和负载及寄生电容等外部条件。

图 11 晶振的晶体和负载及寄生电容

 C_{L1} 和 C_{L2} PCB 板上的电容器件, C_{L1P} 和 C_{L2P} 是 PCB 板和封装的寄生电容。 $CL(CL_{LXT}$ 或者 CL_{HXT}) 是晶振的负载电容. 特定的晶体需要接特定范围的负载电容。

$$\begin{split} C'_{L1} &= C_{L1} + C_{L1P} \\ C'_{L2} &= C_{L2} + C_{L2P} \\ CL &= C'_{L1} * C'_{L2} / (C'_{L1} + C'_{L2}) \end{split}$$

表 20 LXT 特性

符号	描述	最小	典型	最大	单位
		值	值.	值	
${ m I}_{ m pd ext{-}LXT}$	LXT 模块功耗, LXTDRV[1:0]=00, 低驱动电流	ı	0.5	0.9	uA
	LXT 模块功耗, LXTDRV[1:0]=01, 中等驱动电流	-	-	1.2	uA
	LXT 模块功耗, LXTDRV[1:0]=10,	-	-	1.5	uA

	中等驱动电流				
	LXT 模块功耗, LXTDRV[1:0]=11, 高驱动电流	-	-	2.0	uA
	LXT 的跨导, LXTDRV[1:0]=00, 低驱动电流	1.5	-	-	uA/V
	LXT 的跨导, LXTDRV[1:0]=01, 中等驱动电流	3.5	-	-	uA/V
gm _{LXT}	LXT 的跨导, LXTDRV[1:0]=10, 中等驱动电流	10.6	-	-	uA/V
	LXT 的跨导, LXTDRV[1:0]=11, 高驱动电流	16.7	-	-	uA/V
	LXT 的负载电容, LXTDRV[1:0]=00, 低驱动电流, -40℃ ≤ Trange ≤ 105℃	4	-	6	pF
	LXT 的负载电容, LXTDRV[1:0]=00, 低驱动电流, -40℃≤ Trange ≤ 85℃	3	-	7	pF
	LXT 的负载电容, LXTDRV[1:0]=01, 中等驱动电流, -40℃ ≤ Trange ≤ 105℃	5	-	9	pF
CI	LXT 的负载电容, LXTDRV[1:0]=01, 中等驱动电流, -40℃ ≤ Trange ≤ 105℃	4	-	11	pF
CL _{LXT}	LXT 的负载电容, LXTDRV[1:0]=10, 中等驱动电流, -40℃ ≤ Trange ≤ 105℃	6	-	15	pF
	LXT 的负载电容, LXTDRV[1:0]=10, 中等驱动电流, -40℃ < Trange < 105℃	5	-	18	pF
	LXT 的负载电容, LXTDRV[1:0]=11, 高驱动电流, -40℃ < Trange < 105℃	7	-	22	pF
	LXT 的负载电容, LXTDRV[1:0]=11, 高驱动电流, -40℃ < Trange < 105℃	5	-	23	pF
T _{setup}	LXT 建立时间	-	1	-	S

表 21 HXT 特性

符号	描述	最小	典型	最大	单位
		值	值.	值	
f_{HXT-IN}	HXT 频率	4	8	32	MHz
	启动时功耗	ı	1.8	6.5	mA
	VDD=3.3V, Rm=30Ω, CL=10pF@8MHz	0.12	0.22	0.45	mA
I_{pd-HXT}	VDD= 3.3 V, Rm= 45Ω , CL= 10 pF@8MHz	0.13	0.24	0.46	mA
*pd-HX1	VDD=3.3V, Rm=30Ω, CL=5pF@32MHz	0.21	0.34	0.6	mA
	VDD=3.3V, Rm=30Ω, CL=10pF@32MHz	0.33	0.46	0.7	mA
	VDD=3.3V, Rm=30Ω, CL=20pF@32MHz	0.58	0.72	0.87	mA
	HXT 跨导, HXTDRV[1:0]=00, 低驱动电流	0.7	-	16.4	mA/V
-	HXT 跨导, HXTDRV[1:0]=01, 中等低驱动电流	5.0	-	27.3	mA/V
gm _{HXT}	HXT 跨导, HXTDRV[1:0]=10, 中等高驱动电流	6.2	-	32.6	mA/V
	HXT 跨导, HXTDRV[1:0]=11, 高驱动电流	13.1	-	43.4	mA/V
CL_{HXT}	HXT 的负载电容	5	10	20	pF
T _{setup}	HXT 建立时间	-	1	-	mS

8.8 外部时钟特性

表 22 LXT 外部时钟特性

符号	描述	最小值	典型值.	最大值	单位
$f_{LXT\text{-}IN}$	外部输入时钟源频率	-	32.768	1000	KHz
V _{LXT-L}	LXT 外部输入时钟源低电平	GND	-	0.3*VD D	V
V _{LXT-H}	LXT 外部输入时钟源高电平	0.7*VD D	-	VDD	V
$T_{width\text{-}LXT}$	LXT 外部输入时钟源低/高电平持续时间	450	-	-	nS
T _{rise-LXT}	LXT 外部输入时钟源上升时间	-	-	50	nS
$T_{\text{fall-LXT}}$	LXT 外部输入时钟源下降时间	-	-	50	nS

表 23 HXT 外部时钟特性

符号	描述	最小值	典型值.	最大值	单位
F_{HXT-IN}	外部输入时钟源频率	-	8	32	MHz
V_{HXT-L}	HXT 外部输入时钟源低电平	GND	-	0.3*VDD	V
$V_{\text{HXT-H}}$	HXT 外部输入时钟源高电平	0.7*VD D	-	VDD	V
$T_{width\text{-}HXT}$	HXT 外部输入时钟源低/高电平持续时间	15	-	-	nS
$T_{rise-HXT}$	HXT 外部输入时钟源上升时间	-	-	20	nS
$T_{\text{fall-HXT}}$	HXT 外部输入时钟源下降时间	-	-	20	nS

8.9 PLL 特性

表 24 PLL 特性

符号	描述	最小值	典型 值.	最大值	单位
f _{PLL-IN}	PLL 输入时钟频率	1	8	24	MHz
Duty _{PLL-IN}	PLL 输入时钟占空比	40	Ī	60	%
$f_{\mathrm{PLL-OUT}}$	PLL 输出时钟频率	16	-	48	MHz
T_{lock}	PLL 锁定时间	-	-	200	us
Jitter _{c-c}	周期到周期间抖动	-	=	300	ps

8.10 功耗

表 25 运行和睡眠模式的功耗特性

运行模式	代码执行位置	条件	f _{HCLK} (MHz)		IVDD 卜设打 (mA)		(\$	IVDD 卜设关 (mA)			IVDDA (uA)	A
			,	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾
正常模式	flash	HXT 旁路, PLL 打开	48	15.6	20.5		9.13	11.2		316	430	
正常模式	flash	HXT 旁路, PLL 打开	32	10.41	12.6		6.82	8.4		240		
正常模式	flash	HXT 旁路, PLL 打开	24	8.47	10		5.69	6.9		207	301	
正常模式	flash	HXT 旁路, PLL 关闭	8	4	7.6		3.1	4		2.86		
正常模式	flash	HXT 旁路, PLL 关闭	1	2.1	3		2	2.9		2.86		

正常模式	flash	HRC 打开,	48	14.6		9.11	376		
正常模式	flash	PLL 打开 HRC 打开,	32	10.44		6.86	302		
		PLL 打开 HRC 打开,							
正常模式	flash	PLL打开	24	8.5		5.67	269		
正常模式	flash	HRC 打开, PLL 关闭	8	4.06		3.08	61.5	104	
正常模式	SRAM	HXT 旁路, PLL 打开	48						
正常模式	SRAM	HXT 旁路, PLL 打开	32						
正常模式	SRAM	HXT 旁路, PLL 打开	24						
正常模式	SRAM	HXT 旁路, PLL 关闭	8						
正常模式	SRAM	HXT 旁路, PLL 关闭	1						
正常模式	SRAM	HRC 打开, PLL 打开	48						
正常模式	SRAM	HRC 打开, PLL 打开	32						
正常模式	SRAM	HRC 打开, PLL 打开	24						
正常模式	SRAM	HRC 打开, PLL 关闭	8						
睡眠模式	-	HXT 旁路, PLL 打开	48	9.43		3.45	316		
睡眠模式	-	HXT 旁路, PLL 打开	32	7		2.92	240		
睡眠模式	-	HXT 旁路, PLL 打开	24	5.74		2.67	207		
睡眠模式	-	HXT 旁路, PLL 关闭	8	3.07		2.11	2.86		
睡眠模式	-	HXT 旁路, PLL 关闭	1	2.02		1.91	2.86		
睡眠模式	-	HRC 打开, PLL 打开	48	9.48		3.42	376		
睡眠模式	-	HRC 打开, PLL 打开	32	7.05		2.89	302		
睡眠模式	-	HRC 打开, PLL 打开	24	5.78		2.64	269		
睡眠模式	-	HRC 打开, PLL 关闭	8	3.12		2.09	61.5		

表 26 深睡和掉电模式的功耗特性

运行模式	代码执行位置	条件	f _{HCLK} (MHz)	IVDD (外设打开) (uA)		IVDD (外设关闭) (uA)			IVDDA (uA)		A	
			,	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾	Typ ⁽¹⁾	Max ⁽²⁾	Max ⁽³⁾
深睡模式 1	-	VDDA monitor 打开	-	21.3	42	-				2.73	15.8	
深睡模式 1	-	VDDA monitor 关闭	-	21.3	42	-				1.24		
深睡模式 2	-	VDDA monitor 打开	-	5.6	21	-				2.71	15.8	
深睡模式 2	-	VDDA monitor 关闭	-	5.6	21	-				1.21		
掉电模式	-	LRC 打开, FWDT 打开, VDDA monitor 打开	-	1.2	-	-				3.6		
掉电模式	-	LRC 关闭, FWDT 关闭, VDDA monitor 打开	-	1.0	-	-				2.3		

掉电模式	-	LRC 打开, FWDT 打开, VDDA monitor 关闭	-	1.2	- 1	- 1		2.5	
掉电模式	-	LRC 关闭, FWDT 关闭, VDDA monitor 关闭	-	1.0	-	-		1.2	

- VDD=VDDA=VBAT=3.3V, T_{range}=25 °C
- VDD=VDDA=VBAT=3.6V, T_{range}=105 °C
- (3) VDD=VDDA=VBAT=5.5V, T_{range} =105°C

8.11 内部参考电压特性

表 27 内部参考电压特性

符号	描述	最小值	典型	最大值	单位
			值.		
V_{refint}	内部参考电压	1.19	1.22	1.25	V
$deltV_{refint}$	内部参考电压随温度的变化范围	-	-	11	mV
Tc	温度漂移	-60	-	60	ppm/0C

8.12 ADC 特性

表 28 ADC 特性

符号	描述	最小值	典型	最大值	单位
TIDD A	ADG T当て作用 (1/2)/2)/()	2.4	值.		* 7
VDDA	ADC 正常工作时 VDDA 电压范围 (1)(2)(3)(4)	2.4	-	5.5	V
I _{VDDA-ADC}	ADC 功耗(VDDA), Autoff=0, VDDA=3.3V	-	0.9	-	mA
f_{ADC}	ADC 时钟频率	0.6	-	14	MHz
T_{sample}	ADC 采样时间	1.5	-	236.5	$1/f_{ADC}$
$T_{convert-time}$	ADC 转换时间	14	-	252	$1/f_{ADC}$
T _{swtich-on}	ADC 开关导通时间	-	-	1	uS
$T_{calibration}$	ADC 校准时间	-	83	-	$1/f_{ADC}$
V _{range-input}	ADC 输入电压范围	0	-	VDDA	V
C _{input-ADC}	ADC 输入电容	-	-	8	pF
R _{ext-input}	外部输入阻抗	-	-	50	kΩ
B _{-3dB}	输入信号的 -3dB 带宽		50		kHz
Iso _{input}	输入信号隔离	-	-	-100	dB
Resolution	ADC 分辨率(可设置)	6	-	12	Bit
ERR _{absolute}	ADC 绝对误差	-	±3.3	±4	LSB
INL	ADC INL, f _{ADC} =14MHz, R _{ext-input} <10kΩ, VDDA≥2.7V	-	±1.2	±2.3	LSB
INL	ADC INL, f_{ADC} =14MHz, $R_{ext-input}$ <10k Ω , VDDA=2.4V	-	±1.5	±3.5	LSB
DMI	ADC DNL, $f_{ADC}=14MHz$, $R_{ext-input}<10k\Omega$, $VDDA\geq2.7V$	-	±0.7	±1.3	LSB
DNL	ADC DNL, f_{ADC} =14MHz, $R_{ext-input}$ <10k Ω , VDDA=2.4V	-	±2.8	±3	LSB
Official	ADC offset, f _{ADC} =14MHz, R _{ext-input} <10kΩ, VDDA≥2.7V	-	±1.9	±2.8	LSB
Offset	ADC offset, f _{ADC} =14MHz, R _{ext-input} <10kΩ, VDDA=2.4V	-	±2	±3.5	LSB
EDD	ADC 增益误差, f _{ADC} =14MHz, R _{ext-input} <10kΩ, VDDA≥2.7V	-	±2.8	±3	LSB
$\mathrm{ERR}_{\mathrm{Gain}}$	ADC 增益误差, f _{ADC} =14MHz, R _{ext-input} <10kΩ, VDDA=2.4V	-	±2.8	±3	LSB

- (1) -40℃ ≤ Trange ≤ 85℃,fADC≤14MHz,支持电压范围 2.65≤ VDDA ≤5.5V;
- (2)
- -40 °C ≤ Trange ≤ 105 °C,fADC≤14MHz,支持电压范围 2.7≤ VDDA ≤5.5V;-40 °C ≤ Trange ≤ 105 °C,fADC≤12MHz,支持电压范围 2.4≤ VDDA ≤5.5V; (3)
- 进入校准模式, fADC≤12MHz。进入正常转换模式,fADC≤14MHz。 支持: -40℃ ≤ Trange ≤ 105℃和电压范围 2.4≤ VDDA (4) ≤5.5V;

表 29 f_{ADC}=14MHz 时 R_{ext-input} 的最大值

$T_{sample}(1/f_{ADC})$	$T_{\text{sample}}(uS)$	Max. $R_{ext-input}(k\Omega)$
1.5	0.11	0.15
2.5	0.18	0.4
8.5	0.61	5.9
14.5	1.04	11.4
29.5	2.11	25.2
42.5	3.04	37.2
56.5	4.04	50
71.5	5.11	-
239.5	17.1	-

8.13 温度传感器特性

表 30 温度传感器特性

符号	描述	最小值	典型	最大值	单位
			值.		
Ţ	温度传感器的线性度(0~105℃)	-	±1	±2	$^{\circ}\mathbb{C}$
Ltemp	温度传感器的线性度(-40~0℃)	-	±2	±4	$^{\circ}$ C
S_{temp}	温度传感器电压的平均斜率	4.35	4.47	4.60	mV/℃
V _{temp30}	在 30±5℃时温度传感器电压	1.37	1.43	1.50	V
T _{start-temp}	温度传感器的建立时间	-	-	6	uS
T _{sample-temp}	读取温度时,ADC采样时间	4	-	-	uS

8.14 VBAT 监测器特性

表 31 VBAT 监测器特性

符号	描述	最小值	典型	最大值	单位
			值.		
R_{VBAT}	VBAT 电阻桥	-	2*50	-	kΩ
Ratio _{VBAT}	VBAT 测量比值	-	2	-	-
Err	VBAT 的比例误差	-1	-	+1	%
T _{sample-VBAT}	VBAT 测量时 ADC 的采样时间	4	-	-	uS

8.15 Flash 特性

表 32 Flash 特性

符号	描述	最小值	典型	最大值	单位
			值.		
т	16 位编程时间	33.6	35	36.4	uS
$T_{ m prog}$	32 位编程时间	67.2	70	72.8	uS
T _{erase}	页(1 kbytes) 擦除时间	17.6	18.3	19.1	mS
T _{mass-erase}	整体擦除时间	29.1	30.3	31.6	mS
Cycendurance	可擦写次数	20,000	-	-	Cycles
	数据保存期限, Trange =25℃	100	-	-	Year
$T_{retention}$	数据保存期限, Trange =85℃	20	-	-	Year
	数据保存期限, Trange = 105℃	10	-	-	Year

8.16 定时器特性

表 33 TIMx 特性

符号	描述	最小	典型值.	最大	单位
		值		值	
$T_{resolution}$	时间分辨率	-	T _{TIMx CLK}	-	nS
$f_{\mathrm{ext-clk}}$	CHx 外部时钟频率	-	T _{TIMx CLK} /2	-	MHz
т	16位定时器最大定时时间	-	$2^{16} * T_{TIMx CLK}$	-	nS
1 max-count	32 位定时器最大定时时间	-	$2^{32} * T_{TIMx CLK}$	-	nS

表 34 FWDT 特性

预分频	PDIV[2:0]	最小溢出值 UVAL[11:0]=0x000	最大溢出值 UVAL[11:0]=0x000	单位
/4	0	4 * T _{40K}	16384 * T _{40K}	mS
/8	1	8 * T _{40K}	32768 * T _{40K}	mS
/16	2	16 * T _{40K}	65536 * T _{40K}	mS
/32	3	32 * T _{40K}	131072 * T _{40K}	mS
/64	4	64 * T _{40K}	262144 * T _{40K}	mS
/128	5	128 * T _{40K}	524288 * T _{40K}	mS
/256	6 or 7	256 * T _{40K}	1048576 * T _{40K}	mS

表 35 WWDT 特性

预分频	PDIV[1:0]	最小溢出值	最大溢出值	单位
/1	0	4096 * T _{PLCK}	262144 * T _{PLCK}	mS
/2	1	8192 * T _{PLCK}	524288 * T _{PLCK}	mS
/4	2	16384 * T _{PLCK}	1048576 * T _{PLCK}	mS
/8	3	32768 * T _{PLCK}	2097152 * T _{PLCK}	mS

8.17 SPI/I2S 特性

表 36 SPI 特性

符号	描述	最小值	典型	最大值	单位
			值		
	SPI 主模式时钟频率			18	MHz
	$(VDD \geqslant 3V, Trange \leq 85 \degree C)$	_	_	10	WILL
	SPI 从模式时钟频率			18	MHz
	$(VDD \ge 3V, Trange \le 85 \degree C)$	_	_	10	WILL
	SPI 主模式时钟频率			15	MHz
£	$(VDD \geqslant 3V, 85 \ ^{\circ}C < Trange \leq 105 \ ^{\circ}C)$	=	-	13	MITIZ
f_{SCK}	SPI 从模式时钟频率			15	MHz
	$(VDD \geqslant 3V, 85 \mathbb{C} < Trange \leq 105 \mathbb{C})$	=	-	13	MITIZ
	SPI 主模式时钟频率			13	MHz
	$(VDD \ge 2V,Trange \le 105 ^{\circ}C)$	=	-	13	MITIZ
	SPI 从模式时钟频率			13	MHz
	$(VDD \ge 2V, Trange \le 105 ^{\circ}C)$	=	-		MITIZ
Trise-SCK	15pf 容性负载下 SPI 时钟上升时间	-	-	6	nS
T _{fall-SCK}	15pf 容性负载下 SPI 时钟下降时间	-	-	6	nS
T _{setup-NSS}	从模式 NSS 建立时间	50	-	-	nS
T _{hold-NSS}	从模式 NSS 保持时间	2*T _{pclk} +10	-	-	nS
т	SCK 高电平和低电平时间(f _{PCLK} =36MHz,	2*T 2		2*T 1	C
$T_{width ext{-SCK}}$	PCLKPDIV=4)	$2*T_{pclk}-3$	-	$2*T_{pclk}+1$	nS
Т	主模式数据输入建立时间	4	-	-	nS
$T_{\text{setup-din}}$	从模式数据输入建立时间	5	-	-	nS
T _{hold-din}	主模式数据输入保持时间	4	-	-	nS

	从模式数据输入保持时间	5	-	-	nS
T _{access-dout}	从模式数据输出访问时间(f _{PCLK} =20MHz)	0	-	32	nS
$T_{disable-dout}$	从模式数据输出禁止时间	0	-	32	nS
т	从模式使能边沿之后数据输出有效时间	-	-	35	nS
I valid-dout	主模式使能边沿之后数据输出有效时间	-	-	6	nS
Т	从模式使能边沿之后数据输出保持时间	11.5	-	-	nS
$T_{hold-dout}$	主模式使能边沿之后数据输出保持时间	2	-	-	nS
Duty _{SCK}	从模式输入时钟占空比	25	-	75	nS

图 12 SPI 时序图-从机模式(1)

图 13 SPI 时序图-从机模式(2)

图 14 SPI 时序图-主机模式

表 37 I2S 特性

符号	描述	最小值	典型	最大值	单位
	100 大株子叶林柘本		值		
c c	I2S 主模式时钟频率 (数据长度=16,音频频率=48KHz)	1.597	-	1.601	MHz
f _{CK}	,	0	_	6.5	MHz
	I2S 从模式时钟频率	0	-		
T _{rise-CK}	15pf 容性负载下 I2S 时钟上升时间	-	-	10	nS
$T_{fall-CK}$	15pf 容性负载下 I2S 时钟上升时间	-	-	12	nS
T	I2S 主模式时钟高电平时间	206			C
T _{width-CKH}	(f _{PCLK} =16MHz, 音频频率=48KHz)	306	=	-	nS
T	I2S 主模式时钟高电平时间	212			
T _{width-CKL}	(f _{PCLK} =16MHz,音频频率=48KHz)	312	-	-	nS
T _{valid-WS}	主模式 WS 有效时间	1	-	-	nS
T _{hold-WS}	主模式 WS 保持时间	0	-	-	nS
T _{setup-WS}	从模式 WS 建立时间	6	-	-	nS
$T_{hold-WS}$	从模式 WS 保持时间	0	-	-	nS
Duty _{CK}	I2S 从输入时钟占空比	25	-	75	%
т	主接收器数据输入建立时间	20	-	-	nS
T _{setup-din}	从接收器数据输入建立时间	2	-	-	nS
т	主接收器数据输入保持时间	4	-	-	nS
T _{hold-din}	从接收器数据输入保持时间	0.5	-	-	nS
т	主发送器时钟输出有效时间	-	-	4	nS
T _{valid-dout}	从发送器数据输出有效时间	-	-	35	nS
т	主发送器时钟输出保持时间	0	-	-	nS
T _{hold-dout}	从发送器数据输出保持时间	13	-	-	nS

图 15 I2S 从机时序图-Philips

图 16 I2S 主机时序图-Philips

8.18 I2C 特性

表 38 I2C 特性

I2C 模式	最大速率	单位
标准模式	100	Kbit/S
快速模式	400	Kbit/S
超快速模式	1000	Kbit/S

表 39 I2C 模拟滤波特性

符号	描述	最小 值	典型 值	最大 值	单位
T _{I2C-fp}	I2C 模拟滤波器滤除外部脉冲宽度	-	-	50	nS
T _{I2C-nfp}	I2C 模拟滤波器不滤除外部脉冲宽度	160	-	-	nS

文件编号: CS-QR-YF-054A02

8.19 ESD 特性

表 40 ESD 特性

符号	描述	等级	值	单位
V _{ESD-HBM}	ESD 放电人体模型, 基于 MIL-STD-883E, 温度=23±5℃ 相对湿度: 55%±10%(RH)	3A	≥4000	V
V _{ESD-MM}	ESD 放电机器模型, 基于 JEDEC EIA/JESD22-A115, 温度 =23±5℃ 相对湿度: 55%±10%(RH)	С	≥400	V
V _{ESD-CDM}	ESD 器件放电模型, 基于 JEDEC EIA/JESD22-C101F, 温度 =23±5℃ 相对湿度: 55% ±10%(RH)	C2	≥500	V
$\mathbf{I}_{ ext{latchup}}$	ESD 放电机器模型, 基于 JEDEC STANDARD NO.78C SEPTMBER 2010, 温度 =23±5℃ 相对湿度: 55%±10%(RH)	II	≥200	mA

9 封装信息

9.1 LQFP48

表 41 LQFP48 封装尺寸

SECTION B-B

	T EQTI 10.	毫米	
符号	最小值	典型值	最大值
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
e		0.50BSC	
L	0.45	-	0.75
L1	1.00REF		
θ	0	=	7°

表 42 LQFP48 封装热特性

名称	大小	单位
⊕ JA, by 2S2P	53	°C/W
⊕ _{JC}	16.9	°C/W

表 43 LQFP48 湿度特性

名称	等级
湿度等级	MSL3

46/55

9.2 QFN32L

图 18 QFN32L 封装框图

表 44 QFN32L 封装尺寸

符号	毫米		
	最小值	典型值	最大值
A	0.50	0.55	0.60
A1	0	0.02	0.05
b	0.19	0.24	0.29
b1		0.18REF	
С	0.152REF		
D	4.90	5.00	5.10
D2	3.40	3.50	3.60
e	0.50BSC		
Nd		3.50BSC	
E	4.90 5.00 5.10		5.10
E2	3.40	3.50	3.60
Ne	3.50BSC		
L	0.35	0.40	0.45
K	0.30	0.35	0.40
h	0.30	0.35	0.40

表 45 QFN32L 封装热特性

名称	大小	单位
⊕ _{JA} , by 2S2P	41.3	°C/W
⊕ _{JC}	14.5	°C/W

表 46 QFN32L 湿度特性

名称	等级
湿度等级	MSL3

9.3 QFN28L

图 19 QFN28L 封装框图

表 47 QFN28L 封装尺寸

符号	毫米		
	最小值	典型值	最大值
A	0.50	0.55	0.60
A1	0.00	0.02	0.05
A3		0.15REF	
b	0.20	0.25	0.30
D	3.90	4.00	4.10
Е	3.90	4.00	4.10
D2	2.64	2.74	2.84
E2	2.64	2.74	2.84
e	0.40	0.50	0.60
Н		0.35REF	
K	0.13	0.23	0.33
L	0.30	0.40	0.50
L1	0.20	0.30	0.40
R	0.10	-	-
c1		0.21	-
c2	-	0.21	-

表 48 QFN28L 封装热特性

名称	大小	单位
⊕ _{JA} , by 2S2P	50.80	°C/W
⊕ _{JC}	19.7	°C/W

表 49 QFN28L 湿度特性

名称	等级
湿度等级	MSL3

9.4 WLCSP25

图 20 WLCSP25(2.410 x 2.415 mm)封装框图

1.所有单位都是毫米.

表 50 WLCSP25 封装尺寸

	毫米		
符号	最小值	典型值	最大值
A	0.525	0.555	0.585
A1	0.345	0.360	0.375
A2	0.175	0. 195	0. 215
D	2.390	2.410	2.430
Е	2.395	2.415	2. 435
D1	-	1.600	-
E1	_	1.600	_
e1	_	0.400	_

49/55

e2	-	0.400	-
bx (25)	0.248	0. 268	0.288
aaa		0.100	
bbb	0. 100		
ccc		0.050	
ddd		0.050	

表 51 WLCSP25 湿度特性

名称	等级
湿度等级	MSL1

10 订货信息

表 52 订货信息

产品型号	引脚数	存储空间	封装类型	环境工作温度
CS32F031E6Y6	25	32 KBytes	WLCSP	−40°C ~105°C
CS32F031G6U6	28	32 Kbytes	QFNL28	−40°C ~105°C
CS32F031K8U6	32	64 Kbytes	QFNL32	−40°C ~105°C
CS32F031C8T6	48	64 Kbytes	LQFP48	−40°C ~105°C

11 勘误表

参考《CS32F03X 勘误表》

12 缩略语

缩略语	描述
ADC	模数转换器
AHB	先进高性能总线。
APB	先进外围总线
ARM	英国领先的半导体知识产权提供商的名称
Cortex	ARM 公司一个系列处理器名称
CPU	中央处理器
CRC	循环冗余校验
DMA	直接存储器访问
ESD	静电放电
ETR	外部触发输入
EXTI	扩展中断/事件控制器
FLASH	闪存存储器
FWDT	独立看门狗
GPIO	通用输入输出
HXT	外部高速时钟
HRC	内部高速 RC 时钟
I2C	由 philips 公司开发的一种简单单、双向二线制同步串行总线
I2S	集成电路内置音频总线
IR	红外线
IrDA	红外数据组织提出的红外通信标准
ISO7816	国际智能卡标准
LIN	LIN 总线针对汽车分布式电子系统而定义的串行通信网络
LRC	内部低速 RC 时钟
LSB	最低有效位
LVD	低电压复位
LXT	低速晶振
MCU	微控制器
MISO	主模式进/从模式出
MOSI	主模式出/从模式进
NRST	低电平复位
NSS	选择从模式
NVIC	嵌套向量中断控制器
PCB	印刷电路板
PDR	掉电复位
PLL	锁相环,倍频时钟产生器
PMBus	电源管理总线
POR	上电复位
RAM	随机存取存储器
RTC	实时时钟
SCK	串行时钟

SD	串行数据
SMBus	系统管理总线
SPI	串行外设接口
SRAM	静态随机存取存储器
SWD	串行线调试
TIM	定时器
TS	温度传感器
USART	通用同步/异步串行接收/发送器
WS	字选择
WWDT	窗口看门狗

13 销售和服务

中国办公室:

深圳市南山区南海大道 1079 号花园城数码大厦 A座 9层

9F,Block A,Garden City Digital Building,No.1079 Nanhai Road,Nanshan District,Shenzhen

技术支持:

电话: +(86 755)86155432 传真: +(86 755)86169057

在线支持:

网站地址: www.chipsea.com

微信: chipsea

