APUNTES DE MATEMÁTICA - UCE FACULTAD DE CIENCIAS EXACTAS

Juan Sebastian Obando Pallo

FOLLETO - CAPÍTULO 5: EL AXIOMA DE ELECCIÓN Y PRINCIPIOS RELACIONADOS.

LÓGICA Y TEORÍA DE CONJUNTOS.

FOLLETO DE LÓGICA Y TEORÍA DE CONJUNTOS DE LA FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICA No. 1 (1)

FOLLETO - CAPÍTULO 5: EL AXIOMA DE ELECCIÓN Y PRINCIPIOS RELACIONADOS.: LÓGICA Y TEORÍA DE CONJUNTOS.

Sebastian Obando.

Responsable de la Edición: J.S.Obando

Registro de derecho autoral No. *(1)

ISBN: 000-0-00000-000

Publicado en linea, Quito, Ecuador.

Primera edición: 2024 Primera impresión: 2024

© 6-001 2024

ÍNDICE GENERAL

CAP. 1	CLASES Y CONJUNTOS 1					
CAP. 2	FUNCIONES	3				
CAP. 3	RELACIONES	5				
CAP. 4	CLASES PARCIALMENTE ORDENADAS.					
	7					
CAP. 5 EL AXIOMA DE ELECCIÓN Y PRI						
	PIOS RELACIONADOS.	9				
5.1	Introducción	. 9				
5.2	El Axioma de Elección	10				
	5.2.1 Ejercicios de la Sección 5.2	. 12				
5.3	Una aplicación del axioma de elección	15				
5.4	Principios maximales	17				
	5.4.1 Ejercicios de la Sección 5.4	. 19				
5.5	Teorema de Buen Orden	26				

CAPÍTULO 1

CLASES Y CONJUNTOS

https://github.com/Sebastian0142/Apuntes-de-logica

CAPÍTULO 2

FUNCIONES

4 Funciones

CAPÍTULO 3

RELACIONES

6 Relaciones

CAPÍTULO 4

CLASES PARCIALMENTE ORDENADAS.

https://github.com/Sebastian0142/Apuntes-de-logica

CAPÍTULO 5

EL AXIOMA DE ELECCIÓN Y PRINCIPIOS RELACIONADOS.

5.1 Introducción

Lema 5.1. Sea A un conjunto no vacío y parcialmente ordenado se supone que no hay elementos máximos en A entonces existe una sucesión creciente y no terminante.

$$x_1 < x_2 < x_3 < \dots$$

Demostración. Por hipotesis A no es vacío y parcialmente ordenada, podemos escoger arbitrariamente $x \in A$, el cual llamaremos $x_1 \in A$

Pot inducción tenemos:

Como A es parcialmente ordenado suponemos que cumple

$$x_1 < x_2 < x_3 < \dots < x_n$$

Entonces por la definicón de "segmento inicial"se puede definir

$$A_n = \{x \in A : x < x_n\} \neq \emptyset$$

 $A_n = \emptyset x_n$ es máximo en donde se nota que es una contradicción.

Tomamos un elemento arbitrario de A_n y lo llamaremos x_{n+1} , entonces:

$$x_1 < ... < x_n < x_{n+1}$$

Se define como una sucesión creciente $S_n = \{x_1, x_2, x_3, ..., x_n\}$ para todo n elemento de los Naturales.

Por la definición de Segmento inicial

$$S_1 = \{x_1\}$$

$$S_2 = \{x_1, x_2\}$$

Luego.

$$\bigcup_{n\in\mathbb{N}} S_n = S_1 \cup S_2 \cup S_3 \cup \dots$$

entonces si la sucesión no terminante de elemnetos de A

$$x_1 < x_2 < x_3 < \dots < x_n < x_{n+1} < \dots$$

• Observación. –Idea Intuitiva– Axioma de Elección - Mates Mike.

https://www.youtube.com/watch?v=pMJavN4d27E

Definición 5.1: -Función Elección-

Sea A un conjunto, por convección se escribirá como $\mathscr{P}(A)' := \mathscr{P}(A) - \{\varnothing\}.$

Por función de elección nos referimos a la función:

$$r: \mathscr{P}(A)' \to A$$

 $B \to r(B)$

Tal que:

$$\forall B \in \mathscr{P}(A) - \{\varnothing\}, r(B) \in B$$

• Observación. En ocasiones se escribirá r_B en lugar de r(B) y llamaremos r(B) el representante de B.

5.2 EL AXIOMA DE ELECCIÓN.

Axioma 5.1: -Axioma de Elcción.-

Cada conjunto tiene una función de elección. En la literatura existen varias otras formas de enunciar el axioma de Elección que son equivalentes.

Ch 1. Sea $\mathscr A$ un conjunto cuyos elementos son conjuntos mutuamente disjuntos y no vacíos. Existe un conjunto C que consta exactamente de un elemento de cada $A \in \mathscr A$

Demostración. Se probará que el Axioma de elección (Axioma 1) implica Ch1 y viceversa. Primero se va a demostrar que el Axioma 1 implica Ch1. Suponga que se cumple el Axioma 1. Suponga que A es un conjunto cuyos elementos son conjuntos mutuamente disjuntos no vacíos, y sea:

$$A = \bigcup_{x \in \mathscr{A}} x$$

Claramente $\mathscr{A} \subseteq \mathscr{P}(\mathscr{A})$, pues, para cada $x \in A$ se tiene que $x \subseteq \bigcup_{x \in \mathscr{A}x} = A$, así, por definición $x \in \mathscr{P}(A)$, por tanto, $\mathscr{A} \subseteq \mathscr{P}(\mathscr{A})$. Así, por el Axioma de elección, existe una función $r : \mathscr{P}(A) - \{\varnothing\} \to A$ tal que $r(B) \in B$ para cada $B \in \mathscr{P}(A) - \{\varnothing\}$; si $C = \overline{r}(\mathscr{A})$, se sigue inmediatamente que C es el conjunto requerido en Ch1.

Ahora, se probará que Ch1 implica el Axioma 1. Suponga que se cumple Ch1. Si A es un conjunto y $B \subseteq A$, sea:

$$Q_B = \{(B, x) : x \in B\}.$$

Entonces, si $B \neq D$, entonces, $Q_B \cap Q_D \neq \emptyset$. Ahora, tome la familia $\{Q_B\}_{B \in \mathscr{P}(A)}$, esta familia es un conjunto de conjuntos disjuntos no vacíos. De Ch1 se sigue que existe C el cual contiene un elemento (B, x) de cada Q_B , luego C es la función de elección, tal que:

$$C(B) = x \quad \forall B \in \mathscr{P}(A), x \in B$$

A

Ch 2. Sea $\{A_i\}_{i\in I}$ un conjunto de conjuntos. Si I es no vacío y cada A_i es no vacío, entonces $\prod_{i\in I}$ es no vacío.

Demostración. Demostraremos la equivalencia entre A10 Y Ch2.

PD) $A10 \Rightarrow Ch2$.

Por la definición de producto de conjuntos, sea $\{A_i\}_{i\in I}$ un conjunto de conjuntos no vacío, y sea $A=\bigcup_{i\in I}A_i$. Por A10, existe una función $r:\mathscr{P}(A)-\{\varnothing\}\to A$) tal que $r(B)\in B$ para cada $B\in\mathscr{P}(A)-\{\varnothing\}$.

En particular, $r(A_i) \in A_i$ para cada $i \in I$. Si definimos a por a(i) = r(Ai), entonces a es una función de I a A tal que $a(i) \in A_i$ para cada $i \in I$. Por la definición de producto de conjuntos, $a \in \prod_{i \in I} A_i$.

Finalmente, $\prod_{i \in I} A_i$ es no vacío. **PD)** $Ch2 \Rightarrow A10$.

La demostración es bastante similar a la realizada anteriormente en la otra implicación.

Teorema 5.2

Sea A un conjunto y sea $f: A \to B$ una función; $f: A \to B$ es sobreyectiva si y solo si existe una función $g: B \to A \ni f \circ g = I_B$.

Demostración. La demostración consta de dos partes:

 \Rightarrow) Primero, suponemos que f es sobreyectiva, se va a probar que existe g tal que $f \circ g = I_B$.

Sea $y \in B$, se sabe que $\dot{f}(y) \subseteq A$, así definimos:

$$g:B\to A$$

$$y \to g(y) = r(\check{f}(y)).$$

donde r es una función de elección de A. Así sea $u \in B$

Pd)
$$f \circ g(u) = I_B(u)$$
.

Si
$$x = g(u)$$
, se tiene $x \in \check{f}(y)$, entonces $f \circ g(u) = f(g(u)) = f(x) = I_B(u)$ por tanto $f \circ g(u) = I_B(u)$.

 \Leftarrow) Ahora, suponemos que existe g tal que $f \circ g = I_B$, se va a probar que f es sobreyectiva.

Sea $y \in B$

Pd)
$$\exists x \in A$$
 tal que $f(x) = y$.
 $y = IB(y) = f(g(y)) = f(x)$.
Por tanto queda demostrado

5.2.1 Ejercicios de la Sección 5.2

Ejercicio 5.1. Sea A un conjunto y sea $f:A\to B$ una función sobreyectiva. Pruebe que existe un subconjunto $C\subseteq A$ tal que C está en correspondencia uno a uno con B.

Demostración. Para mostrar que $C \subseteq A$ es uno a uno con B, se va a probar que existe $h : C \to B$ inyectiva.

Por el teorema 63, existe $g:B\to A$ tal que $f\circ g=I_B$, así consideramos la función restricción de f

$$f_{[C]}: C \to B$$
 $x \to f_{[C]}(x) = f(x)$ para todo $x \in C$.
Tomamos $h = f_{[C]} \circ g$ PD) h es inyectiva.
Sea $x,y \in C$ tal que $h(x) = h(y)$ PD) $x = y$.
 $h(x) = f_{[C]} \circ g(x) = I_B(x) = h(y) = f_{[C]} \circ g(y) = I_B(y)$ Por tanto C es uno a uno con B .

Ejercicio 5.2. . Sea A un conjunto, sea $f: B \to C$ y $g: A \to C$ funciones, y suponga que $ranf \subseteq rang$. Pruebe que existe una función $h: B \to A$ tal que $g \circ h = f$. [Pista: Use el Axioma de Elección.]

Demostración. Definimos la función,

$$h: B \to A$$
 $b \to h(b) = a$ por el axioma de elección elegimos un a tal que $g(a) = f(b)$. Así, sea $b \in B$ PD) $g \circ h(b) = f(b)$. $g \circ h(b) = g(h(b)) = g(a)$. por el axioma de elección a fue elegido de forma que $g(a) = f(b)$, entonces $g \circ h(b) = f(b)$ por tanto $g \circ h = f$

Ejercicio 5.3. Sea $\{A_i\}_{i\in I}$ una familia indexada de clases, donde I es un conjunto. Pruebe que existe $J\subseteq I$ tal que $\{A_i:i\in I\}=\{A_j:j\in J\}$ y, en $\{A_j\}_{j\in J}$, cada A_j se indexa solo una vez (eso es, $A_i=A_j\Rightarrow i=j$). [Pista: Use la Observación 2.38 y el Axioma de Elección.]

Demostración. Antes de probar la existencia de dicho J, se puede ver que como I es un conjunto, entonces, por la Observación 2.38, $\{A_i : i \in I\}$ es un conjunto, luego se puede ocupar el Axioma de elección y Ch1 sobre $\{A_i : i \in I\}$. Ahora vamos a definir una relación de equivalencia en I tal que:

$$i \sim j \operatorname{si} A_i = A_i$$

esta induce una clase de equivalencia G tal que $G=\{(A_i,A_j):i\sim j\}$. El conjunto $\{A_i:i\in I\}$ induce las siguientes clases de equivalencia $G_{A_k}=\{A_j\in \{A_i:i\in I\}:(A_j,A_k)\in G\}$, los cuales son conjuntos, pues $G_{Ak}\subseteq \{A_i:i\in I\}$. Así, por la caracterización del Axioma de elección Ch1, existe un conjunto G tal que G consta de exactamente un elemento de cada una de las clases de equivalencia G_{A_k} , luego, se tiene que G = G (G), tome G is tal que: G = G (G), entonces,

$${A_i : i \in I} = {A_j : j \in J}$$

y, si i=j, entonces $A_i=A_j$, pues caso contrario, contradice el que C haya tomado un solo representante de cada clase de equivalencia. Por tanto, $J\subseteq I$ satisface las condiciones de la hipótesis.

Ejercicio 5.4. Demuestre que el enunciado del teorema 5.2 implica el axioma de elección.

Demostración. Supongamos que se cumple el Teorema 63 Se va a demostrar el Axioma de Elección.

Es decir, sea $\{A_i\}_{i\in I}$ un conjunto de conjuntos. Supongamos que I es no vacío y cada A_i es no vacío. Se va a demostrar que $\prod_{i\in I}A_i$ es no vacío. Por la Definición 41, se a probar que existe una función $g:I\to\bigcup_{i\in I}A_i\land g(i)\in A_i, \forall i\in I$. Se define la función $f:\bigcup_{i\in I}A_i\to I$ tal que para todo $x\in\bigcup_{i\in I}A_i$, f(x)=i.

Se tiene que f es sobreyectiva, en efecto para todo $i \in I$ se tiene que A_i es no vacío por tanto, existe un $x \in A_i$, luego $x \in \bigcup_{i \in I} A_i$ tal que f(x) = i. Por el Teorema 63 se sigue que existe $g: I \to \bigcup_{i \in I} A_i$ tal que f(g(i)) = i. Por lo tanto $\prod_{i \in I} A_i$ es no vacío.

En cada uno de los siguientes problemas se formula una proposición. Demuestre que esta proposición es equivalente al axioma de elección.

Ejercicio 5.5. Sea $\mathscr A$ un conjunto de conjuntos disjuntos y no vacíos. Existe una función f , cuyo dominio en $\mathscr A$, tal que para todo $A \in \mathscr A$, $f(A) \in A$.

Demostración. Se va a demostrar que esta proposición es equivalente al axioma de elección. Primero, supongamos el Axioma de Elección para probar la proposición. Es decir, sea $\mathscr A$ un conjunto de conjuntos disjuntos y no vacíos. Se va a demostrar que existe una función,

$$f: \mathscr{A} \to \bigcup_{A \in \mathscr{A}} A$$
.

tal que para todo $A \in \mathscr{A}$, $f(A) \in A$. Sea $x = \bigcup_{A \in \mathscr{A}} A$. por el axioma de elección se tiene que, existe una función.

$$r: \mathscr{P} - \{\varnothing\} \to X$$
 tal que para todo $A \in \mathscr{P} - \{\varnothing\}, r(A) \in A$.

Como \mathscr{A} $\subseteq \mathscr{P} - \{\varnothing\}(X)$, se define la función

$$r_{[\mathscr{A}]}:\mathscr{A}\to X$$
,

tal que para todo $A \in \mathcal{A}$, $r_{[\mathcal{A}]}(A) = f(A)$.

Por lo tanto, se cumple la proposición.

Ahora supongamos que la proposición se cumple y mostremos que implica el Axioma de Elección. Es decir, sea $x = \bigcup_{A \in \mathscr{A}} A$, se va a demostrar que existe un función

$$r: \mathscr{P} - \{\varnothing\} \to X$$

tal que para todo $A \in \mathscr{P} - \{\varnothing\}(X), r(A) \in A$.

Por hipótesis existe una función $f: \mathscr{A} \to \bigcup_{A \in \mathscr{A}} A$. tal que para todo $A \in \mathscr{A}$, $f(A) \in A$.

Luego, se define la función $r: \mathscr{P} - \{\varnothing\} \to X$ tal que r(A) = f(A). Como $A \in \mathscr{P} - \{\varnothing\}(X)$, entonces se tiene que para todo $A \in \mathscr{P} - \{\varnothing\}(X)$, $r(A) \in A$. Por lo tanto se cumple el Axioma de Elección.

Ejercicio 5.6. Sea E un conjunto y suponga $G \subseteq EE$. Sea A = domG y B = ranG; entonces existe una función $f : A \longrightarrow B$ tal que $f \subseteq G$.

Demostración. Sea $(a,b) \subseteq G$. Se sigue $a \in dom(G)$ y $b \in ran(G)$, como A = dom(G) y B = ran(G), entonces $a \in A$ y $b \in B$.

Podemos definir

$$f = \{(a, b) \in G : a \in A \text{ y } b \in B\}$$

Luego, si $(a,b) \in f$, $a \in A$ y $b \in B$, como A = dom(G) y B = ran(G), se sigue que $a \in dom(G)$ y $b \in ran(G)$, luego $(a,b) \in G$. Por lo tanto $f \subseteq G$.

[Existencia] Sea $a \in A$, como $f \subseteq G$, entonces existe $b \in B$ tal que $(a,b) \in f$.

```
A
```

[Unicidad] Supongamos, (a,b1), $(a,b2) \in f$. Luego $a \in A$ y b1, $b2 \in B$, como $f \subseteq G$, b1 = b2.

Por lo tanto, f es una función $f : A \rightarrow B$ tal que $f \subseteq G$.

Ejercicio 5.7. Sea \mathscr{A} un conjunto cuyos elementos son conjuntos no vacíos, y sea $A = \bigcup_{A \in \mathscr{A}} X$. Entonces, correspondiente a cada función $g : \mathscr{A} \to \mathscr{A}$, existe una función $g^* : \mathscr{A} \to A$ tal que: $g^*(B) \in g(B)$.

Demostración. Para demostrar la equivalencia, primero probaremos que el Axioma de Elección implica la proposición.

Sea \mathscr{A} un conjunto cuyos elementos son conjuntos no vacíos, y sea $A = \bigcup_{A \in \mathscr{A}} X$. Claramente, $\mathscr{A} \subseteq \mathscr{P} - \{\varnothing\}(A)$. Por el Axioma de Elección, existe una función $r : \mathscr{P} - \{\varnothing\}(A) \to A$ tal que $r(B) \in \mathcal{B}$, para todo $B \in \mathscr{P} - \{\varnothing\}(A)$ Sea $g : \mathscr{A} \to \mathscr{A}$, probaremos que existe una función $g^* : \mathscr{A} \to A$ tal que $g^*(B) \in g(B)$.

Como $\mathscr{A}\subseteq\mathscr{P}-\{\varnothing\}(A)$, tomamos $r_{[\mathscr{A}]}:\mathscr{A}\to A$, así, tenemos $g^*=r_{[\mathscr{A}]}\circ g$. Sea $B\in\mathscr{A}$, tenemos que: $g^*(B)=r_{[\mathscr{A}]}\circ g(B)=(r_{[\mathscr{A}]}(g(B)))\in g(B)$.

Ahora, vamos a demostrar que la proposición implica el Axioma de Elección. Por la proposición, tenemos las funciones $g: \mathscr{A} \to \mathscr{A}y \ g^*: \mathscr{A} \to A$ tal que para todo $g(B) \in \mathscr{A}$.

$$g^*(B) \in g(B)$$
 . Definimos el conjunto $r = \{(g(B), g^*(B) : \forall B \in \mathscr{A}\}.$

Así, es evidente que r es la función de elección de A. Queda demostrada la equivalencia entre el Axioma de Elección y la proposición dada.

5.3 UNA APLICACIÓN DEL AXIOMA DE ELECCIÓN

Definición 5.2

Un subconjunto $B \subseteq A$ se llama una p-secuencia si se cumplen las siguientes condiciones:

- α) $p \in B$,
- β) Si $x \in B$, entonces $f(x) \in B$,
- γ) Si C es una cadena de B, entonces sup $C \in B$.

Existen p-secuencias; por ejemplo, A es una p-secuencia.

Lema 5.3. Cualquier intersección de p-secuencias es una p-secuencia.

● **Observación**. Sea P la intersección de todas las p-secuencias. (Nota que $P \neq \emptyset$ porque $p \in P$). Por el lema anterior, P es una p-secuencia.

Definición 5.3

Un elemento $x \in P$ se llama *selecto* si es comparable con cada elemento $y \in P$.

Lema 5.4. Supongamos que x es selecto, $y \in P$, y y < x. Entonces $f(y) \le x$.

Demostración. Sea $y \in P$. Como P es una p-secuencia, por (β), $f(y) \in P$. Ahora, dado que x es selecto, o $f(y) \le x$ o x < f(y). Por hipótesis, y < x; entonces, si x < f(y), tenemos y < x < f(y), lo que contradice la afirmación de que f(y) es el sucesor inmediato de y. Por lo tanto, $f(y) \le x$.

Lema 5.5. Supongamos que *x* es selecto. Sea

$$B_x = \{ y \in P : y \le x \text{ o } y \ge f(x) \}.$$

Entonces B_x es una p-secuencia.

Demostración. Vamos a probar que B_x satisface las tres condiciones que definen una p-secuencia.

- α) Dado que p es el elemento más pequeño de A, $p \le x$; por lo tanto, $p \in B_x$.
- β) Supongamos que $y ∈ B_x$; entonces y ≤ x o y ≥ f(x). Consideremos tres casos:
 - 1) y < x. Entonces $f(y) \le x$ por el lema 5.4, por lo tanto $f(y) \in B_x$.
 - 2) y = x. Entonces f(y) = f(x); por lo tanto, $f(y) \ge f(x)$; así que $f(y) \in B_x$.
 - 3) $y \ge f(x)$. Pero f(y) > y, por lo tanto f(y) > f(x); así que $f(y) \in B_x$.

En cada caso concluimos que $f(y) \in B_x$.

 γ) Si C es una cadena de B_x , sea $m = \sup C$. Para cada $y \in B_x$, $y \le x$ o $y \ge f(x)$. Si existe $y \in C$ tal que $y \ge f(x)$, entonces (ya que $m \ge y$) $m \ge f(x)$; por lo tanto, $m \in B_x$. De lo contrario, para todo $y \in C$, $y \le x$; por lo tanto, x es una cota superior de C, así que $x \le x$. Así que $x \in B_x$.

Corolario 5.6. Si x es selecto, entonces $\forall y \in P, y \le x$ o $y \ge f(x)$.

Demostración. B_x es una p-secuencia; P es la intersección de todas las p-secuencias; por lo tanto, $P \subseteq B_x$. Pero $B_x \subseteq P$ por definición, por lo tanto, $P = B_x$. Así que $\forall y \in P$, $y \le x$ o $y \ge f(x)$. □

Lema 5.7. El conjunto de todos los elementos selectos es una p-secuencia.

Demostración. α) p es selecto porque es menor que (por lo tanto comparable con) cada $y \in P$.

- β) Supongamos que x es selecto; por el corolario 5.6, ∀y ∈ P, o y ≤ x (en cuyo caso y ≤ f(x) porque x < f(x)) o y ≥ f(x). Así, f(x) es selecto.
- γ) Sea C una cadena de elementos selectos y sea $m = \sup C$; sea $y \in P$. Si existe $x \in C$ tal que $y \le x$, entonces $y \le m$ (porque $x \le m$). De lo contrario, para todo $x \in C$, $x \le y$, por lo tanto, y es una cota superior de C, así que $m \le y$. Así, m es selecto.

Corolario 5.8. *P* es completamente ordenado.

Demostración. El conjunto S de todos los elementos selectos es una p-secuencia; P es la intersección de todas las p-secuencias; por lo tanto, $P \subseteq S$. Pero $S \subseteq P$ (por definición, un elemento selecto está en P), así que P = S. Por lo tanto, cada elemento de P es selecto, es decir, es comparable con cada elemento de P. \square

Teorema 5.9

Sea A un conjunto parcialmente ordenado tal que

- 1. *A* tiene un elemento mínimo *p* y
- 2. cada cadena de A tiene un supremo en A.

Entonces, existe un elemento $x \in A$ que no tiene sucesor inmediato.

5.4 Principios maximales

Los principios maximales son consecuencias del axioma de elección. Además, son equivalentes al axioma de elección.

Teorema 5.10

(Principio maximal de Hausdorff). Cada conjunto parcialmente ordenado tiene una cadena maximal.

Demostración. Sea A un conjunto parcialmente ordenado, y sea $\mathscr S$ el conjunto de todas las cadenas de A, ordenado por inclusión. $\mathscr S$ tiene un elemento mínimo, es decir, el conjunto vacío. Ahora sea $\mathscr C$ una cadena de $\mathscr S$ y sea

$$K=\bigcup_{C\in\mathscr{C}}C;$$

demostraremos que $K \in \mathcal{S}$. De hecho, si $x, y \in K$, entonces $x \in D$ y $y \in E$ para algunos elementos $D \in \mathcal{C}$ y $E \in \mathcal{C}$; pero \mathcal{C} es una cadena de \mathcal{S} , por lo que $E \subseteq D$ o $D \subseteq E$, digamos que $E \subseteq D$; así, $x, y \in D$. Pero D es una cadena de A (recuerda que \mathcal{S} es el conjunto de todas las cadenas de A), por lo que x y y son comparables; esto prueba que K es una cadena de A, es decir, $K \in \mathcal{S}$. Luego, $K = \sup \mathcal{S}$; por lo tanto, las condiciones del Teorema 5.9 están satisfechas por \mathcal{S} . Así, por 5.9, existe un elemento $C \in \mathcal{S}$ que no tiene sucesor inmediato; es decir, no existe ningún $x \in A - C$ tal que $C \cup \{x\}$ sea una cadena de A. Por lo tanto, claramente, C es una cadena maximal.

Definición 5.4

Un conjunto parcialmente ordenado A se dice que es *inductivo* si cada cadena de A tiene una cota superior en A.

Teorema 5.11

(Lema de Zorn). Todo conjunto inductivo tiene al menos un elemento maximal.

Demostración. Sea A un conjunto inductivo; por el Teorema 5.10, A tiene una cadena maximal C; por la Definicion 5.4, C tiene una cota superior m. Ahora, supongamos que existe un elemento $x \in A$ tal que x > m; entonces $x \notin C$, pero x es comparable con (para ser exactos, x es mayor que) cada elemento de C. Así, $C \cup \{x\}$ es una cadena, lo que contradice la afirmación de que C es una cadena maximal; por lo tanto, no existe ningún elemento $x \in A$ tal que x > m, por lo que m es un elemento maximal de A. □

Teorema 5.12

Cada conjunto parcialmente ordenado tiene un subconjunto bien ordenado maximal.

Teorema 5.13

(Llamemos a un conjunto parcialmente ordenado *A débilmente* inductivo si cada subconjunto bien ordenado de *A* tiene una cota superior en *A*.) Todo conjunto débilmente inductivo tiene al menos un elemento maximal.

5.4.1 Ejercicios de la Sección 5.4

Ejercicio 5.8. Derive el principio máximo de Hausdorff a partir del **lema** de **Zorn**.

Demostración. Sea *A* un conjunto parcialmente ordenado, y sea *P* el conjunto de todas las cadenas de *A*, ordenado por inclusión. *P* tiene un elemento mínimo, a saber, el conjunto vacío. Ahora, sea *C* una cadena de *P* y sea

$$K=\bigcup_{C\in\mathscr{C}}C;$$

Demostraremos que $K \in \mathcal{P}$. En efecto, si $x, y \in K$, entonces $x \in D$ y $y \in E$ para algunos elementos $D \in \mathcal{C}$ y $E \in \mathcal{C}$; pero \mathcal{C} es una cadena de \mathcal{P} , por lo tanto $E \subseteq D$ o $D \subseteq E$, digamos $E \subseteq D$; así, $x, y \in D$. Pero D es una cadena de A, x y y son comparables; esto prueba que K es una cadena de A, es decir, $K \in P$. Luego, $K = \sup \mathcal{C}$; se sigue que cada cadena de \mathcal{P} tiene una cota superior en \mathcal{P} . \mathcal{P} es un conjunto inductivo. Por el lema de Zorn, \mathcal{P} tiene un elemento maximal. Así, claramente, A tiene una cadena maximal.

Ejercicio 5.9. Demuestra que el **Lema de Zorn** es equivalente a lo siguiente: Sea A un conjunto inductivo y sea $a \in A$; entonces A tiene al menos un elemento maximal b tal que $b \ge a$.

⇒) El Lema de Zorn implica la proposición

A

Lema de Zorn: Sea *A* un conjunto parcialmente ordenado en el que cada cadena tiene una cota superior. Entonces *A* tiene al menos un elemento maximal.

Proposición 5.14. Sea A un conjunto inductivo y sea $a \in A$; entonces A tiene al menos un elemento maximal b tal que $b \ge a$.

Demostración. Sea A un conjunto inductivo y sea $a \in A$. Consideremos el subconjunto $A_a = \{x \in A \mid x \geq a\}$. Note que A_a es un subconjunto no vacío de A porque $a \in A_a$. A_a es parcialmente ordenado por la misma relación de orden

que A. Verifiquemos que A_a satisface la condición del Lema de Zorn, es decir, que cada cadena en A_a tiene una cota superior en A_a . Sea $C \subseteq A_a$ una cadena. Como C es una cadena en A_a , también es una cadena en A. Dado que A es inductivo, C tiene una cota superior $u \in A$. Como $a \le x$ para todo $x \in C$, y dado que u es una cota superior de C en A, se sigue que $a \le u$. Por lo tanto, $u \in A_a$. Por el Lema de Zorn, A_a tiene un elemento maximal b. $b \in A_a$ implica que $b \ge a$ y b es maximal en A_a , es decir, no hay ningún $c \in A_a$ tal que b < c.

Por lo tanto, hemos demostrado que si suponemos el Lema de Zorn, se sigue la proposición.

←) La proposición implica el Lema de Zorn

Demostración. Sea A un conjunto parcialmente ordenado en el que cada cadena tiene una cota superior. Consideremos un elemento arbitrario $a \in A$. Dado que A es parcialmente ordenado y satisface la condición de la proposición, existe un elemento maximal $b \in A$ tal que $b \ge a$. Este elemento b es maximal en A, lo que implica que no hay ningún $c \in A$ tal que b < c.

Por lo tanto, hemos demostrado que si suponemos la proposición, se sigue el Lema de Zorn. $\hfill\Box$

Ejercicio 5.10. Demuestra que el Principio Máximo de Hausdorff es equivalente a lo siguiente: Si A es un conjunto parcialmente ordenado y B es una cadena de A, entonces A tiene una cadena máxima C tal que $B \subseteq C$.

Demostración. (Implicaciones)

 \Rightarrow) El Principio Máximo de Hausdorff implica la afirmación dada

por el principio máximo de Hausdorff, en todo conjunto parcialmente ordenado, toda cadena tiene una cota superior.

Si A es un conjunto parcialmente ordenado y B es una cadena de A, entonces A tiene una cadena máxima C tal que $B \subseteq C$.

Supongamos que el Principio Máximo de Hausdorff es verdadero. Sea A un conjunto parcialmente ordenado y B una cadena de A. Queremos encontrar una cadena máxima C tal que $B \subseteq C$.

Definimos C como el conjunto de todas las cadenas de A que contienen a B:

$$\mathcal{C} = \{D \subseteq A \mid D \text{ es una cadena y } B \subseteq D\}$$

Ordenamos $\mathcal C$ por inclusión. La colección $\mathcal C$ no está vacía porque $B\in\mathcal C$. Aplicamos el Lemma de Zorn a $\mathcal C$:

Sean $\{C_i\}_{i\in I}$ una cadena de cadenas en \mathcal{C} (es decir, $C_i\in\mathcal{C}$ y $C_i\subseteq C_j$ o $C_j\subseteq C_i$ para todo $i,j\in I$). Sea $C=\bigcup_{i\in I}C_i$.

Entonces, C es una cadena porque cada par de elementos en C proviene de alguna cadena C_i (por ser una unión dirigida). Además, $B \subseteq C$ porque $B \subseteq C_i$ para algún $i \in I$ (dado que B está contenido en todas las cadenas C_i). Por lo tanto, $C \in C$.

Por el Lema de Zorn, C tiene un elemento maximal C. Este C es una cadena máxima en A que contiene a B. Así, el Principio Máximo de Hausdorff implica la afirmación dada.

←) La afirmación dada implica el Principio Máximo de Hausdorff

Supongamos que la afirmación dada es verdadera. Sea A un conjunto parcialmente ordenado. Queremos mostrar que en A, toda cadena tiene una cota superior.

Sea B una cadena en A. Por la afirmación dada, existe una cadena máxima C en A tal que $B \subseteq C$. Ahora, dado que C es una cadena máxima, no existe ningún elemento en A que sea comparable con todos los elementos de C y no esté en C. En otras palabras, C es una cadena maximal en el sentido de inclusión.

Como $B \subseteq C$ y C es máxima, C tiene una cota superior en A. Esta cota superior de C es también una cota superior de B, ya que $B \subseteq C$.

Por lo tanto, hemos demostrado que toda cadena en A tiene una cota superior, lo que significa que el Principio Máximo de Hausdorff es verdadero. \Box

Ejercicio 5.11. Sea A cualquier conjunto con más de un elemento. Demuestra que existe una función biyectiva $f:A\to A$ tal que f(x)=x, $\forall x\in A$.

Demostración. Vamos a demostrar que existe una función biyectiva $f: A \to A$ tal que f(x) = x para todo $x \in A$, dado que A es un conjunto con más de un elemento.

Consideremos el conjunto A con más de un elemento. Queremos encontrar una función biyectiva $f: A \to A$ tal que f(x) = x para todo $x \in A$.

Definamos la función f como la función identidad en A, es decir,

$$f(x) = x \quad \forall x \in A.$$

La función f es inyectiva si, para todo par de elementos $x_1, x_2 \in A$, si $f(x_1) = f(x_2)$, entonces $x_1 = x_2$.

Dado que f(x) = x, si $f(x_1) = f(x_2)$, entonces:

$$x_1 = x_2$$
.

Por lo tanto, f es inyectiva.

Luego

La función f es sobreyectiva si para cada $y \in A$, existe al menos un $x \in A$ tal que f(x) = y.

Para cualquier $y \in A$, elige x = y. Entonces:

$$f(x) = f(y) = y.$$

Por lo tanto, f es sobreyectiva.

Ejercicio 5.12. Un conjunto de conjuntos se dice que es disjunto si $\forall C, D \in \mathcal{A}$, $C \cap D = \emptyset$. Sea \mathscr{F} un conjunto de conjuntos; demuestra que \mathscr{F} tiene un subconjunto disjunto máximo.

Demostración. Consideremos el conjunto $\mathscr A$ de subconjuntos de $\mathscr F$ que son disjuntos entre sí. Es decir,

$$\mathscr{A} = \{ \mathscr{B} \subseteq \mathscr{F} \mid \forall C, D \in \mathscr{B}, C \cap D = \emptyset \}$$

Queremos mostrar que ${\mathscr A}$ tiene un elemento maximal en el sentido de inclusión.

Definimos una relación de orden en A por inclusión:

$$\mathscr{B}_1 \leq \mathscr{B}_2$$
 si y solo si $\mathscr{B}_1 \subseteq \mathscr{B}_2$

Donde \mathcal{B}_1 y \mathcal{B}_2 son subconjuntos disjuntos de \mathcal{F} .

Aplicamos el Lema de Zorn para probar que \mathscr{A} tiene un subconjunto maximal. Necesitamos verificar que cada cadena (es decir, cada conjunto de subconjuntos disjuntos) en \mathscr{A} tiene una cota superior en \mathscr{A} .

Sea $\{\mathscr{B}_i\}_{i\in I}$ una cadena de subconjuntos disjuntos de \mathscr{F} . Es decir, para todo $i,j\in I$, se tiene que $\mathscr{B}_i\subseteq \mathscr{B}_j$ o $\mathscr{B}_j\subseteq \mathscr{B}_i$.

Definimos $\mathscr{B} = \bigcup_{i \in I} \mathscr{B}_i$. Queremos mostrar que \mathscr{B} es un subconjunto disjunto de \mathscr{F} .

Dado que cada \mathcal{B}_i en la cadena es disjunto, para cualesquiera $C, D \in \mathcal{B}$, ambos pertenecen a alguna \mathcal{B}_i y \mathcal{B}_j (para $i \neq j$) son disjuntos. Así, $C \cap D = \emptyset$ ya que C y D están en diferentes subconjuntos de \mathcal{B} .

Por lo tanto, \mathcal{B} es un conjunto disjunto.

Ejercicio 5.13. Sea A un conjunto y $\mathscr A$ un conjunto de subconjuntos de A; supongamos que $\mathscr A$ tiene la siguiente propiedad: $B \in \mathscr A$ si y solo si

todo subconjunto finito de B pertenece a \mathscr{A} . Entonces, \mathscr{A} se dice que es de carácter finito. Sea \mathscr{A} ordenado por inclusión y supongamos que \mathscr{A} es de carácter finito.

- 1. Demuestra que \mathscr{A} es un conjunto inductivo.
- 2. Demuestra que A tiene un elemento maximal.

Demostración.

1. PD) que \mathscr{A} es un conjunto inductivo

Un conjunto parcialmente ordenado \mathscr{A} es inductivo si para cada cadena $\mathscr{C} \subseteq \mathscr{A}$ (es decir, un conjunto de elementos de \mathscr{A} tales que cualquier par de elementos es comparable), existe una cota superior de \mathscr{C} en \mathscr{A} .

supongameos que \mathscr{A} es de carácter finito, es decir, $B \in \mathscr{A}$ si y solo si todo subconjunto finito de B pertenece a \mathscr{A} .

Consideremos una cadena $\mathscr{C}\subseteq\mathscr{A}$. Queremos mostrar que existe una cota superior de \mathscr{C} en \mathscr{A} .

Definimos $C = \bigcup \mathscr{C}$. Es decir, C es la unión de todos los conjuntos en \mathscr{C} .

Queremos demostrar que $C \in \mathcal{A}$.

Como $\mathscr C$ es una cadena, todos los conjuntos en $\mathscr C$ son comparables por inclusión.

Por definición de \mathscr{A} , si $C \in \mathscr{A}$ entonces todo subconjunto finito de C debe estar en \mathscr{A} .

Para cualquier subconjunto finito F de C, F está contenido en algún conjunto $B \in \mathscr{C}$ porque C es la unión de los conjuntos en \mathscr{C} . Como $B \in \mathscr{A}$ y \mathscr{A} es de carácter finito, todo subconjunto finito de B, y en particular de F, también está en \mathscr{A} .

Entonces, $F \subseteq C$ implica que $F \in \mathcal{A}$.

Dado que C contiene todos estos subconjuntos finitos y $\mathscr A$ es de carácter finito, podemos concluir que $C \in \mathscr A$.

Por lo tanto, C es una cota superior de $\mathscr C$ en $\mathscr A$, lo que demuestra que $\mathscr A$ es un conjunto inductivo.

2. PD) que A tiene un elemento maximal

Dado que hemos demostrado que $\mathscr A$ es inductivo, podemos aplicar el Teorema de Zorn.

Consideremos el conjunto parcialmente ordenado $\mathscr A$ con la relación de orden por inclusión. Por la propiedad de carácter finito de $\mathscr A$, hemos demostrado que $\mathscr A$ es inductivo.

Por el Teorema de Zorn, cualquier conjunto parcialmente ordenado inductivo (en este caso, A) tiene un elemento maximal.

Por lo tanto, $\mathscr A$ tiene un elemento maximal en $\mathscr A$, lo que completa la demostración. \qed

Ejercicio 5.14. Demuestra que cada espacio vectorial V tiene una base. [Sugerencia: Considera el conjunto $\mathscr A$ de todos los subconjuntos linealmente independientes de V. Utiliza el Lema de Zorn: se verifica fácilmente que cualquier subconjunto linealmente independiente maximal de V es una base de V.]

Demostración. Consideramos el conjunto \mathscr{A} de todos los subconjuntos linealmente independientes de V. Es decir,

$$\mathscr{A} = \{ S \subseteq V \mid S \text{ es linealmente independiente} \}.$$

Queremos demostrar que \mathscr{A} tiene un subconjunto maximal con respecto a la inclusión, y que este subconjunto maximal es una base de V.

En \mathscr{A} , definimos una relación de orden por inclusión de conjuntos. Es decir, para $S_1, S_2 \in \mathscr{A}$, se tiene que $S_1 \leq S_2$ si y solo si $S_1 \subseteq S_2$.

Para aplicar el Lema de Zorn, necesitamos verificar que cada cadena en $\mathscr A$ tiene una cota superior en $\mathscr A$.

Sea $\{S_i\}_{i\in I}$ una cadena en \mathscr{A} . Es decir, para todo $i,j\in I$, $S_i\subseteq S_j$ o $S_j\subseteq S_i$, y cada S_i es linealmente independiente.

Definimos $S = \bigcup_{i \in I} S_i$. Queremos mostrar que $S \in \mathcal{A}$, es decir, que S es linealmente independiente.

Supongamos que S no es linealmente independiente. Entonces, existe una combinación lineal no trivial de los elementos de S que da cero. Pero, dado que $\{S_i\}_{i\in I}$ es una cadena, para cualquier combinación lineal de elementos en S, los elementos involucrados están contenidos en algún S_i para algún $i\in I$. Como cada S_i es linealmente independiente, la combinación lineal debe ser trivial en cada S_i , lo cual contradice la suposición de que S no es linealmente independiente.

Por lo tanto, *S* debe ser linealmente independiente.

Así, $S \in \mathscr{A}$ es una cota superior para la cadena $\{S_i\}_{i \in I}$ en \mathscr{A} .

Por el Lema de Zorn, existe un subconjunto maximal en \mathscr{A} . Llamemos a este subconjunto maximal B. Queremos demostrar que B es una base de V.

Por definición, *B* es maximal en el sentido de inclusión entre los conjuntos linealmente independientes.

Supongamos que B no genera V. Entonces, existe un vector $v \in V$ que no está en el espacio generado por B. Consideramos el conjunto $B \cup \{v\}$. El conjunto $B \cup \{v\}$ es linealmente independiente si y solo si v no puede ser expresado como combinación lineal de los elementos de B.

Si $B \cup \{v\}$ sigue siendo linealmente independiente, entonces $B \cup \{v\} \in \mathscr{A}$ y B no es maximal, lo que contradice la maximalidad de B.

Por lo tanto, B debe generar V.

Así, B es una base de V, ya que es un conjunto linealmente independiente que genera todo el espacio vectorial V.

Ejercicio 5.15. Sea G un grupo y sea A un subconjunto arbitrario de G tal que A incluye el elemento identidad de G. Demuestra que entre los subgrupos de G que son subconjuntos de A, hay uno maximal.

Demostración. Para demostrar que existe un subgrupo máximo de *G* que es un subconjunto de *A*, dado que *A* incluye el elemento identidad de *G*, se tiene lo siguiente

Sea G un grupo. Sea A un subconjunto de G tal que el elemento identidad e de G está en A. Denotemos por \mathcal{H} el conjunto de todos los subgrupos de G que están contenidos en A. Es decir,

$$\mathcal{H} = \{ H \le G \mid H \subseteq A \}.$$

El conjunto \mathcal{H} no es vacío porque el subgrupo trivial $\{e\}$ de G está en \mathcal{H} (ya que $e \in A$).

 \mathcal{H} es un conjunto parcialmente ordenado por la inclusión. Para $H_1, H_2 \in \mathcal{H}$, decimos que $H_1 \leq H_2$ si y solo si $H_1 \subseteq H_2$.

Un subconjunto \mathcal{H} de un conjunto parcialmente ordenado puede tener un subgrupo máximo si es no vacío y si es posible aplicar el lema de Zorn.

Consideremos el conjunto \mathcal{H} con el orden definido por la inclusión. Aplicaremos el lema de Zorn, que requiere que cada cadena (es decir, un subconjunto totalmente ordenado) en \mathcal{H} tenga una cota superior en \mathcal{H} .

Sea $\{H_i\}_{i\in I}$ una cadena en \mathcal{H} . Queremos encontrar una cota superior de esta cadena en \mathcal{H} .

Consideremos el subgrupo

$$H = \bigcup_{i \in I} H_i.$$

El conjunto H es un subgrupo de G porque es la unión de una cadena de subgrupos. Esto se debe a que H es cerrado bajo la operación de grupo y la inversa

(esto se sigue de la definición de subgrupo).

Además, $H \subseteq A$ porque cada $H_i \subseteq A$.

Por lo tanto, $H \in \mathcal{H}$ y es una cota superior para la cadena $\{H_i\}_{i \in I}$ en \mathcal{H} .

Por el lema de Zorn, dado que cada cadena en \mathcal{H} tiene una cota superior, existe un subgrupo máximo en \mathcal{H} .

Por lo tanto, hemos probado que existe un subgrupo máximo de G que está contenido en A.

5.5 Teorema de Buen Orden

Lema 5.15. Sea

$$\mathscr{C} = \{(B_i, G_i)\}_{i \in I},$$

Debe ser cadena A; Sea

$$B = \bigcup_{i \in I} B$$

Υ

$$G = \bigcup_{i \in I} G_i$$
.

Entonces $(B,G) \in \mathscr{A}$.

Demostración. Se tiene $B \subseteq A$, el resultado se estable si queremos demostrar que G *Tiene Buen Orden B*. Primero vamos a verificar que G es una relación de Orden en B.

- *Reflexividad:* $x \in B \Rightarrow x \in B_i$ para algún $i \in I \Rightarrow (x, x) \in G_i \subseteq G$, por lo tanto G es reflexivo.
- Antisimétrico: $(x,y) \in G$ y $(y,x \in G) \Rightarrow (x,y) \in G_i$ y $(y,x) \in G_j$ para algún $i \in I$ y $j \in J$; pero $\mathscr C$ es una cadena de $\mathscr A$, también $G_i \subseteq G_j$ ó $G_j \subseteq G_i$, dice $G_i \subseteq G_j$. Por lo tanto $(x,y) \in G_j$ y $(y,x) \in G_j$; pero G_j es un orden de relación, también x = y. Prueba que G es antisimétrico.
- *Transitivo*: $(x,y) \in G$ y $(y,z) \in G \Rightarrow (x,y \in G_i)$ y $(y,z) \in G_j$ por algún $i \in I$ y $j \in I$; pero $\mathscr C$ es una cadena, también $G_i \subseteq G_j$ ó $G_j \subseteq G_i$. Entonces $(x,y) \in G_i$ y $(y,z) \in G_j$, también $(x,z) \in G_j \subseteq G$. Por lo tanto G es transitiva.

Ahora vamos a mostrar a que B tiene $Buen\ Orden$ en G. Suponemos que $D \neq \emptyset$ y $D \subseteq B$ entonces $D \cap B_i \neq \emptyset$ para algún $i \in I$. Ahora $D \cap B_i \subseteq B_i$, luego $D \cap B_i$ tiene un elemento b en (B_i, G_i) ; que es $\forall y \in D \cap B_i$, $(b, y) \in G_i$. Se va a mostrar

que b es un elemento de D en (B,G), que es para todo $x \in D$, $(b,x) \in G$. Sea $x \in D$, si $x \in B_i$, entonces $(b,x) \in G_i \subseteq G$. Ahora suponemos $x \notin B_i$, en es caso $x \in B_j$ para algún $j \in I$; $B_j \nsubseteq B_i$ porque $x \in B_j$ y $x \notin B_i$, entonces $(B_j, G_j) \nsubseteq (B_i, G_i)$, se ve que,

$$(B_i, G_i) \prec (B_j, G_j).$$

Ahora, se toma $b \in B_i$, $x \in (B_j - B_i)$ y $(B_i, G_i) \prec (B_j, G_j)$; Por lo tanto $(b, x) \in G_i \subseteq G$.

Lema 5.16. Si \mathscr{C} , B y G se definen sobre (B,G) esta en el límite superior de \mathscr{C} .

Lema 5.17. – **Teorema de Buen Ordenamiento.**– Cualquier conjunto *A* puede tener buen ordenamiento.

Demostración. Por los lemas anteriores, se puede aplicar el *Lema de Zorn's* de \mathscr{A} ; por lo tanto \mathscr{A} tiene un elemento maximal (B,G). Se puede mostrar que B=A, entonces A puede tener buen orden. De otro lado, $\exists x \in (A-B)$, se define un elemento $x \in B$, se puede tener la extensión G* de G con buen orden $B \cup \{x\}$. Explicitamente $G* = G \cup \{(a,x) : a \in B\}$, cual es un contradicción, desde (B,G) donde se ha asumido un maximal. □