FIRST-ORDER METHODS IN OPTIMIZATION

MOS-SIAM Series on Optimization

This series is published jointly by the Mathematical Optimization Society and the Society for Industrial and Applied Mathematics. It includes research monographs, books on applications, textbooks at all levels, and tutorials. Besides being of high scientific quality, books in the series must advance the understanding and practice of optimization. They must also be written clearly and at an appropriate level for the intended audience.

Editor-in-Chief

Katya Scheinberg Lehigh University

Editorial Board

Santanu S. Dey, Georgia Institute of Technology Maryam Fazel, University of Washington Andrea Lodi, University of Bologna Arkadi Nemirovski, Georgia Institute of Technology Stefan Ulbrich, Technische Universität Darmstadt Luis Nunes Vicente, University of Coimbra David Williamson, Cornell University Stephen J. Wright, University of Wisconsin

Series Volumes

Beck, Amir, First-Order Methods in Optimization

Terlaky, Tamás, Anjos, Miguel F., and Ahmed, Shabbir, editors, *Advances and Trends in Optimization with Engineering Applications*

Todd, Michael J., Minimum-Volume Ellipsoids: Theory and Algorithms

Bienstock, Daniel, Electrical Transmission System Cascades and Vulnerability: An Operations Research Viewpoint Koch, Thorsten, Hiller, Benjamin, Pfetsch, Marc E., and Schewe, Lars, editors, Evaluating Gas Network Capacities Corberán, Ángel, and Laporte, Gilbert, Arc Routing: Problems, Methods, and Applications

Toth, Paolo, and Vigo, Daniele, Vehicle Routing: Problems, Methods, and Applications, Second Edition

Beck, Amir, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB

Attouch, Hedy, Buttazzo, Giuseppe, and Michaille, Gérard, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, Second Edition

Shapiro, Alexander, Dentcheva, Darinka, and Ruszczyński, Andrzej, *Lectures on Stochastic Programming: Modeling and Theory, Second Edition*

Locatelli, Marco and Schoen, Fabio, Global Optimization: Theory, Algorithms, and Applications

De Loera, Jesús A., Hemmecke, Raymond, and Köppe, Matthias, Algebraic and Geometric Ideas in the

Theory of Discrete Optimization
Blekherman, Grigoriy, Parrilo, Pablo A., and Thomas, Rekha R., editors, Semidefinite Optimization and Convex
Algebraic Geometry

Delfour, M. C., Introduction to Optimization and Semidifferential Calculus

Ulbrich, Michael, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Biegler, Lorenz T., Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
Shapiro, Alexander, Dentcheva, Darinka, and Ruszczyński, Andrzej, Lectures on Stochastic Programming: Modeling
and Theory

Conn, Andrew R., Scheinberg, Katya, and Vicente, Luis N., Introduction to Derivative-Free Optimization

Ferris, Michael C., Mangasarian, Olvi L., and Wright, Stephen J., Linear Programming with MATLAB

Attouch, Hedy, Buttazzo, Giuseppe, and Michaille, Gérard, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization

Wallace, Stein W. and Ziemba, William T., editors, Applications of Stochastic Programming

Grötschel, Martin, editor, The Sharpest Cut: The Impact of Manfred Padberg and His Work

Renegar, James, A Mathematical View of Interior-Point Methods in Convex Optimization

Ben-Tal, Aharon and Nemirovski, Arkadi, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications

Conn, Andrew R., Gould, Nicholas I. M., and Toint, Phillippe L., Trust-Region Methods

FIRST-ORDER METHODS IN OPTIMIZATION

Amir Beck

Tel-Aviv University Tel-Aviv Israel

Philadelphia

Copyright © 2017 by the Society for Industrial and Applied Mathematics and the Mathematical Optimization Society

10987654321

All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended.

Publisher Kivmars Bowling Acquisitions Editor Paula Callaghan Developmental Editor Gina Rinelli Harris Kelly Thomas Managing Editor Production Editor Louis R. Primus Copy Editor **Bruce Owens** Donna Witzleben Production Manager Production Coordinator Cally Shrader Compositor Cheryl Hufnagle Lois Sellers Graphic Designer

Library of Congress Cataloging-in-Publication Data

Please visit www.siam.org/books/mo25 to view the CIP data.

For My wife, Nili My daughters, Noy and Vered My parents, Nili and Itzhak

CHANGE OF THE PARTY.

Contents

Preface					
1	Vector Spaces				
	1.1	Definition	1		
	1.2	Dimension	2		
	1.3	Norms	2		
	1.4	Inner Products	2		
	1.5	Affine Sets and Convex Sets	3		
	1.6	Euclidean Spaces	3		
	1.7	The Space \mathbb{R}^n	4		
	1.8	The Space $\mathbb{R}^{m \times n}$	6		
	1.9	Cartesian Product of Vector Spaces	7		
	1.10	Linear Transformations	8		
	1.11	The Dual Space	9		
	1.12	The Bidual Space	10		
	1.13	Adjoint Transformations	11		
	1.14	Norms of Linear Transformations	12		
2	Extended Real-Valued Functions 1				
	2.1	Extended Real-Valued Functions and Closedness	13		
	2.2	Closedness versus Continuity	18		
	2.3	Convex Functions	21		
	2.4	Support Functions	26		
3	Subgradients 3				
•	3.1	Definitions and First Examples	35		
	3.2	Properties of the Subdifferential Set	39		
	3.3	Directional Derivatives	44		
	3.4	Computing Subgradients	53		
	3.5	The Value Function	67		
	3.6	Lipschitz Continuity and Boundedness of Subgradients	71		
	3.7	Optimality Conditions	72		
	3.8	Summary of Weak and Strong Subgradient Calculus Results	84		
4	Conjugate Functions 87				
	4.1	Definition and Basic Properties	87		
	4.2	The Biconjugate	89		

viii Contents

	4.3	Conjugate Calculus Rules	91		
	4.4	Examples			
	4.5	Infimal Convolution and Conjugacy			
	4.6	Subdifferentials of Conjugate Functions			
5	Smoothness and Strong Convexity				
	5.1	L-Smooth Functions	107		
	5.2	Strong Convexity			
	5.3	Smoothness and Strong Convexity Correspondence	123		
6	The Proximal Operator				
	6.1	Definition, Existence, and Uniqueness	129		
	6.2	First Set of Examples of Proximal Mappings	131		
	6.3	Prox Calculus Rules	135		
	6.4	Prox of Indicators—Orthogonal Projections	146		
	6.5	The Second Prox Theorem	157		
	6.6	Moreau Decomposition	160		
	6.7	The Moreau Envelope	163		
	6.8	Miscellaneous Prox Computations	170		
	6.9	Summary of Prox Computations			
7	Spectral Functions 179				
	7.1	Symmetric Functions	179		
	7.2	Symmetric Spectral Functions over \mathbb{S}^n	182		
	7.3	Symmetric Spectral Functions over $\mathbb{R}^{m \times n}$	188		
8	Primal and Dual Projected Subgradient Methods 19				
	8.1	From Gradient Descent to Subgradient Descent	195		
	8.2	The Projected Subgradient Method	201		
	8.3	The Stochastic Projected Subgradient Method	221		
	8.4	The Incremental Projected Subgradient Method	229		
	8.5	The Dual Projected Subgradient Method	232		
9	Mirror Descent 247				
	9.1	From Projected Subgradient to Mirror Descent	247		
	9.2	Convergence Analysis	252		
	9.3	Mirror Descent for the Composite Model	260		
10	The Proximal Gradient Method 26				
	10.1	The Composite Model			
	10.2	The Proximal Gradient Method	270		
	10.3	Analysis of the Proximal Gradient Method—The Nonconvex			
	40.	Case	272		
	10.4	Analysis of the Proximal Gradient Method—The Convex Case .			
	10.5	The Proximal Point Method	288		
	10.6	Convergence of the Proximal Gradient Method—The Strongly Convex Case	288		
	10.7	The Fast Proximal Gradient Method—FISTA			
	10.8	Smoothing			
	- 0.0		~ ~ 1		

Contents ix

	10.9	Non-Euclidean Proximal Gradient Methods	. 315
11	The I 11.1 11.2 11.3 11.4 11.5	Block Proximal Gradient Method Decomposition Methods	. 332 . 333 . 338
12	Dual- 12.1 12.2 12.3 12.4 12.5 12.6	Based Proximal Gradient Methods The Primal and Dual Models	. 358. 358. 360. 369
13	13.1 13.2 13.3 13.4	Generalized Conditional Gradient Method The Frank-Wolfe/Conditional Gradient Method The Generalized Conditional Gradient Method The Strongly Convex Case The Randomized Generalized Block Conditional Gradient Method	. 380
14	Alter 14.1 14.2 14.3 14.4 14.5	The Method	. 407 . 411 . 413
15	ADM 15.1 15.2 15.3 15.4	The Augmented Lagrangian Method	. 425 . 427
\mathbf{A}	Stron	ng Duality and Optimality Conditions	439
В	Table	es	443
\mathbf{C}	Symbols and Notation		451
D	Biblio	ographic Notes	457
Bibliography			463
Index			473

Preface

This book, as the title suggests, is about first-order methods, namely, methods that exploit information on values and gradients/subgradients (but not Hessians) of the functions comprising the model under consideration. First-order methods go back to 1847 with the work of Cauchy on the steepest descent method. With the increase in the amount of applications that can be modeled as large- or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage.

The primary goal of the book is to provide in a self-contained manner a comprehensive study of the main first-order methods that are frequently used in solving large-scale problems. This is done by gathering and reorganizing in a unified manner many results that are currently scattered throughout the literature. Special emphasis is placed on rates of convergence and complexity analysis. Although the name of the book is "first-order methods in optimization," two disclaimers are in order. First, we will actually also consider methods that exploit additional operations at each iteration such as prox evaluations, linear oracles, exact minimization w.r.t. blocks of variables, and more, so perhaps a more suitable name would have been "simple methods in optimization." Second, in order to be truly self-contained, the first part of the book (Chapters 1–7) is actually purely theoretical and contains essential topics that are crucial for the developments in the algorithmic part (Chapters 8–15).

The book is intended for students and researchers with a background in advanced calculus and linear algebra, as well as prior knowledge in the fundamentals of optimization (some convex analysis, optimality conditions, and duality). A MATLAB toolbox implementing many of the algorithms described in the book was developed by the author and Nili Guttmann-Beck and can be found at www.siam.org/books/mo25.

The outline of the book is as follows. Chapter 1 reviews important facts about vector spaces. Although the material is quite fundamental, it is advisable not to skip this chapter since many of the conventions regarding the underlying spaces used in the book are explained. Chapter 2 focuses on extended real-valued functions with a special emphasis on properties such as convexity, closedness, and continuity. Chapter 3 covers the topic of subgradients starting from basic definitions, continuing with directional derivatives, differentiability, and subdifferentiability and ending with calculus rules. Optimality conditions are derived for convex problems (Fermat's optimality condition), but also for the nonconvex composite model, which will be discussed extensively throughout the book. Conjugate functions are the subject of Chapter 4, which covers several issues, such as Fenchel's

xii Preface

inequality, the biconjugate, calculus rules, conjugate subgradient theorem, relations with the infimal convolution, and Fenchel's duality theorem. Chapter 5 covers two different but closely related subjects: smoothness and strong convexity—several characterizations of each of these concepts are given, and their relation via the conjugate correspondence theorem is established. The proximal operator is discussed in Chapter 6, which includes a large amount of prox computations as well as calculus rules. The basic properties of the proximal mapping (first and second prox theorems and Moreau decomposition) are proved, and the Moreau envelope concludes the theoretical part of the chapter. The first part of the book ends with Chapter 7, which contains a study of symmetric spectral functions. The second, algorithmic part of the book starts with Chapter 8 with primal and dual projected subgradient methods. Several stepsize rules are discussed, and complexity results for both the convex and the strongly convex cases are established. The chapter also includes discussions on the stochastic as well as the incremental projected subgradient methods. The non-Euclidean version of the projected subgradient method, a.k.a. the mirror descent method, is discussed in Chapter 9. Chapter 10 is concerned with the proximal gradient method as well as its many variants and extensions. The chapter also studies several theoretical results concerning the so-called gradient mapping, which plays an important part in the convergence analysis of proximal gradient-based methods. The extension of the proximal gradient method to the block proximal gradient method is discussed in Chapter 11, while Chapter 12 considers the dual proximal gradient method and contains a result on a primal-dual relation that allows one to transfer rate of convergence results from the dual problem to the primal problem. The generalized conditional gradient method is the topic of Chapter 13, which contains the basic rate of convergence results of the method, as well as its block version, and discusses the effect of strong convexity assumptions on the model. The alternating minimization method is the subject of Chapter 14, where its convergence (as well as divergence) in many settings is established and illustrated. The book concludes with a discussion on the ADMM method in Chapter 15.

My deepest thanks to Marc Teboulle, whose fundamental works in first-order methods form the basis of many of the results in the book. Marc introduced me to the world of optimization, and he is a constant source and inspiration and admiration. I would like to thank Luba Tetruashvili for reading the book and for her helpful remarks. It has been a pleasure to work with the extremely devoted and efficient SIAM staff. Finally, I would like to acknowledge the support of the Israel Science Foundation for supporting me while writing this book.