Lecture 15

Advanced Topics

STAT 8020 Statistical Methods II September 23, 2019

> Whitney Huang Clemson University

Notes			

Agenda

- Nonlinear Regression
- 2 Non-parametric Regression
- **3** Ridge Regression

Notes			

Moving Away From Linear Regression

- We have mainly focused on linear regression so far
- The class of polynomial regression can be thought as a starting point for relaxing the linear assumption
- In this lecture we are going to discuss non-linear and non-parametric regression modeling

Notes		

15.3

Population of the United States

Let's look at the ${\tt USPop}$ data set, a bulit-in data set in R. This is a decennial time-series from 1790 to 2000.

NI	~ t~	_
IV	Ole	

-			
_	 	 	

Logistic Growth Curve

A simple model for population growth is the logistic growth model,

$$\begin{split} Y &= m(X,\phi) + \varepsilon \\ &= \frac{\phi_1}{1 + \exp\left[-(x - \phi_2)/\phi_3\right]} + \varepsilon \end{split}$$

We are going to fit a logistic growth curve to the U.S. population data set

Regression Non-parametric

Non-parametric Regression Ridge Regression

Notes

Fitting logistic growth curve to the U.S. population

$$\hat{\phi}_1 = 440.83, \, \hat{\phi}_2 = 1976.63, \, \hat{\phi}_3 = 46.29$$

Nonlinear Regression Non-parametric Regression

Notes

Non-parametric Regression

Let's use the motor-cycle impact data as an illustrative example. This data set is taken from a simulated motor-cycle crash experiment in order to study the efficacy of crash helmets.

Notes			

Non-parametric Regression Fits

The main idea "non-parametric" regression modeling is to fit the data "locally". Therefore, no global structure assumption made when fitting the data.

Notes				
				_

Regression Tree

- Partitioning X-space into sub-regions and fit simple model to each sub-region
- The partitioning pattern is encoded in a tree structure

We will use Major League Baseball Hitters Data from the 1986–1987 season to give you a quick idea of what a regression tree might look like

Advanced Topics
CLEMS N
Non-parametric Regression

Notes			

Regression Tree

Notes

Longley's Economic Regression Data

We are going to use Longley's data set, which provides a well-known example of multicollinearity, to illustrate Ridge regression.

Notes			

Linear Regression Fit

Notes			

The Predictor Variables are Highly Correlated

	GNP	Unemployed	Armed.Forces	Population	Year	Employed
GNP	1.00	0.60	0.45	0.99	1.00	0.98
Unemployed	0.60	1.00	-0.18	0.69	0.67	0.50
Armed.Forces	0.45	-0.18	1.00	0.36	0.42	0.46
Population	0.99	0.69	0.36	1.00	0.99	0.96
Year	1.00	0.67	0.42	0.99	1.00	0.97
Employed	0.98	0.50	0.46	0.96	0.97	1.00

GNP	Unemployed	Armed.Forces	Population	Year
14350.70398	601.69137	98.18754	558.11084	22897.44840
Employed				
1064.78369				

Ridge Regression as Multicollinearity Remedy

- Recall least squares suffers because (X^TX) is almost singular thereby resulting in highly unstable parameter estimates
- Modification of least squares that overcomes multicollinearity problem

$$\hat{\beta}_{\mathsf{ridge}} = \operatorname*{argmin}_{\beta} \left(\tilde{Y} - Z\beta \right)^T \left(\tilde{Y} - Z\beta \right) \quad \text{s.t. } \sum_{j=1}^{p-1} \beta_j^2 \leq t,$$

where Z is assumed to be standardized and $\tilde{\mathit{Y}}$ is assumed to be centered

 Ridge regression results in (slightly) biased but more stable estimates and better prediction performance

....

Notes

Notes

Ridge Regression Fit

Call:
linearRidge(formula = response ~ ., data = trainingData) Estimate Scaled estimate Std. Error (scaled) NA 1.016e+01 4.465e+00 1.833e+00 NA 1.973e+00 2.033e+00 1.835e+00 (Intercept) -1.337e+03 GNP 2.997e-02 Unemployed 1.614e-02 Armed.Forces 8.106e-03 Population Year Employed 4.732e-02 6.940e-01 8.821e-01 1.086e+00 4.174e+00 1.114e+01 1.056e+01 1.356e+00 3.988e+00 t value (scaled) Pr(>|t|) | NA NA NA | S.151 | 2.60e-07 *** | 2.196 | 0.02807 * | 0.999 | 0.31800 | 0.260 | 0.79480 | (Intercept) GNP Unemployed Armed.Forces Population Year Employed 8.215 2.22e-16 *** 2.648 0.00809 ** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Ridge parameter: 0.01640472, chosen automatically, computed using 2 PCs Degrees of freedom: model 3.474 , variance 3.104 , residual 3.844

Advanced Topics
CLEMS N
Ridge Regression

Notes				