

Dashboard My courses

CS23331-DAA-2024-CSE / 1-Number of Zeros in a Given Array

1-Number of Zeros in a Given Array

Started on	Friday, 19 September 2025, 1:34 PM
State	Finished
Completed on	Saturday, 20 September 2025, 7:42 PM
Time taken	1 day 6 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

Question 1 | Correct | Mark 1.00 out of 1.00 | Flag question

Problem Statement

Given an array of 1s and 0s this has all 1s first followed by all 0s. Aim is to find the number of 0s. Write a program using Divide and Conquer to Count the number of zeroes in the given array. Input Format

First Line Contains Integer m - Size of array

Next m lines Contains m numbers - Elements of an array

Output Format

First Line Contains Integer - Number of zeroes present in the given array.

Answer: (penalty regime: 0 %)

```
int mid = low + (high - low) / 2;
if ((mid == 0 | | arr[mid - 1] == 1) && arr[mid] == 0) {
    index = mid;
    break;
}

belse if (arr[mid] == 1) {
    low = mid + 1;
    }

else {
    high = mid - 1;
    }

if (index == -1) {
    printf("%\n", m - index);
    }

return 0;
}
```

li	nput	Expected		
5	L	2	2	*
1 0	L			
9	•			
1		0	0	*
1				
1	4			
1	Ŀ			
1	9			
1				
8	3	8	8	~
9				
0				
9				
	,			

n Dashboard My courses

CS23331-DAA-2024-CSE / 2-Majority Element

2-Majority Element

Started on	Friday, 19 September 2025, 1:44 PM
State	Finished
Completed on	Saturday, 20 September 2025, 7:56 PM
Time taken	1 day 6 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct | Mark 1.00 out of 1.00 | Flag question

Given an array nums of size n, return the majority element.

The majority element is the element that appears more than [n / 2] times. You may assume that the majority element always exists in the array.

Example 1:

Input: nums = [3,2,3]
Output: 3

Example 2:

Input: nums = [2,2,1,1,1,2,2]

Output: 2

Constraints:

- n == nums.length
- 1 <= n <= 5 * 10⁴
- $-2^{31} \le nums[i] \le 2^{31} 1$

For example:

Input	Result
3	3
3 2 3	
7	2
2 2 1 1 1 2 2	

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
~	3	3	3	•
	3 2 3			

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Finish review

Data retention summary

n Dashboard My courses

CS23331-DAA-2024-CSE / 3-Finding Floor Value

☑ 3-Finding Floor Value

Started on	Friday, 19 September 2025, 2:38 PM
State	Finished
Completed on	Saturday, 20 September 2025, 8:02 PM
Time taken	1 day 5 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

Question 1 | Correct | Mark 1.00 out of 1.00 | Flag question

Problem Statement:

Given a sorted array and a value x, the floor of x is the largest element in array smaller than or equal to x. Write divide and conquer algorithm to find floor of x.

Input Format

First Line Contains Integer n – Size of array

Next n lines Contains n numbers - Elements of an array

Last Line Contains Integer x - Value for x

Output Format

First Line Contains Integer - Floor value for x

Answer: (penalty regime: 0 %)

```
1 #include<stdio.h>
2 - int main() {
       int n, x;
scanf("%d", &n);
       int arr[n];
       for(int i = 0; i < n; i++) {
```

	Input	Expected	Got	
~	6	2	2	v
	1			
	2			
	8			
	10			
	12			
	19			
	5			
~	5	85	85	v
	10			
	22			
	85			
	108			
	129			
	100			
~	7	9	9	~
	3			
	5			
	7			
	9			
	11			
	13			
	15			
	10			

Passed all tests! 🗸

Marks for this submission: 1.00/1.00.

Finish review

Back to Course

Data retention summary

Dashboard My courses

CS23331-DAA-2024-CSE / 4-Two Elements sum to x

4-Two Elements sum to x

Started on	Friday, 19 September 2025, 2:00 PM
State	Finished
Completed on	Saturday, 20 September 2025, 8:35 PM
Time taken	1 day 6 hours
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100%)

Question 1 | Correct | Mark 1.00 out of 1.00 | Flag question

Problem Statement:

Given a sorted array of integers say arr[] and a number x. Write a recursive program using divide and conquer strategy to check if there exist two elements in the array whose sum = x. If there exist such two elements then return the numbers, otherwise print as "No".

Note: Write a Divide and Conquer Solution

Input Format

First Line Contains Integer n - Size of array

Next n lines Contains n numbers - Elements of an array

Last Line Contains Integer x - Sum Value

Output Format

First Line Contains Integer - Element1

Second Line Contains Integer - Element 2 (Element 1 and Elements 2 together sums to value "x")

Answer: (penalty regime: 0 %)

	Input	Expected	Got	
•	4	4	4	v
	2	10	10	
	4			
	8			
	10			
	14			
v	5	No	No	~
	2			
	4			
	6			
	8			
	10			
	100			

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Finish review

Data retention summary

n Dashboard My courses

CS23331-DAA-2024-CSE / 5-Implementation of Quick Sort

5-Implementation of Quick Sort

Started on	Saturday, 20 September 2025, 9:29 PM
State	Finished
Completed on	Saturday, 20 September 2025, 10:06 PM
Time taken	37 mins 16 secs
Marks	1.00/1.00
Grade	10.00 out of 10.00 (100 %)

Question 1 | Correct | Mark 1.00 out of 1.00 | Flag question

Write a Program to Implement the Quick Sort Algorithm

Input Format:

The first line contains the no of elements in the list-n

The next n lines contain the elements.

Output:

Sorted list of elements

For example:

Input	Result
5	12 34 67 78 98
67 34 12 98 78	

Answer:

```
1 #include<stdio.h>
2 + void swap(int *a, int *b) {
```

```
*a = *b;
        *b = temp;
7 - int partition(int arr[], int low, int high) {
       int pivot = arr[high];
       for(int j = low; j < high; j++) {
           if(arr[j] <= pivot) {
               swap(&arr[i], &arr[j]);
14
       swap(&arr[i + 1], &arr[high]);
19 - void quickSort(int arr[], int low, int high) {
      if(low < high) {
           int pi = partition(arr, low, high);
           quickSort(arr, low, pi - 1);
           quickSort(arr, pi + 1, high);
26 - int main() {
       scanf("%d", &n);
       int arr[n];
        scanf("%d", &arr[i]);
       quickSort(arr, 0, n - 1);
        printf("%d ", arr[i]);
       return 0;
```

	Input	Expected	Got	
~	5 67 34 12 98 78	12 34 67 78 98	12 34 67 78 98	*
~	10 1 56 78 90 32 56 11 10 90 114	1 10 11 32 56 56 78 90 90 114	1 10 11 32 56 56 78 90 90 114	*
~	12 9 8 7 6 5 4 3 2 1 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	1 2 3 4 5 6 7 8 9 10 11 90	~

Passed all tests! 🗸

Correct

Marks for this submission: 1.00/1.00.

Back to Course

Data retention summar