47
য
3
m
2
9
-
0
_

Richard Colvin

EAST SEARCH

1/28/06

		00/07/1	
	Hits	Search String Databases	
S1	1716	eservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))	SM TDB
25	18	(reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (automated with (IUS-PGPUB; USPAT; EPO, JPO; DERWENT; IBM, TDB	3M_TDB
S3	92	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and ("three dimension US-PGPUB: USPAT: EPO: JPO: DERWENT: IBM_TDB	AM TOB
S4	22	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and ("two dimensional US-PGPUB. USPAT: EPO: JPO: DERWENT. IBM TDB	SM_TDB
S5	13	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (("three dimensior US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM TDB	3M TDB
Se Se	56	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (filter\$3 with value US-PGPUB: USPAT: EPO: JPO: DERWENT: IBM_TDB	SM TDB
S7	106	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (cell with (location US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM	3M_TDB
		reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (select\$3 with	1
88	407	target\$1 or location\$1))	3M TDB
		reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (platform with	i
88	95	placement\$1 or location\$1))	BM TDB
S10	44	ation US-PGPUB; USPAT;	BM_TDB
S11	22	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1)) and (triangulat\$3) US-PGPUB; USPAT; EPO; JPO; DERWENT:	BM_TDB
S12	63	ation	BM_TDB
S13	13	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1)) and (cell with (matrix oUS-PGPUB; USPAT; EPO; JPO; DERWENT;	BM_TDB
S14	တ		BM_TDB
S15	16	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (window\$3 with (c US-PGPUB; USPAT; EPO; JPO; DERWENT;	IBM_TDB
S16	_	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1)) and windowing US-PGPUB, USPAT, EPO; JPO; DERWENT;	BM_TDB
S17	19	ar2 win US-PGPUB, USPAT;	IBM_TDB
S18	-	USPAT;	IBM_TDB
S19	2		IBM_TDB
S20	6	and (select\$3 with iter US-PGPUB;	IBM_TDB
S21	56	reservoir same ((well\$1 or target\$1) with (placement\$1 or location\$1))) and (platform with (pla US-PGPUB; USPAT; EPO; JPO; DERWENT;	IBM_TDB
S22	49	and (platform near2 (r US-PGPUB;	IBM_TDB
S23	222) and ((automated with 'US-PGPUB; USPAT; EPO; JPO; DERWENT;	IBM_TDB
S24	ω	5,757,663.pn. or "6,315,054".pn. or "6,006,832".pn. or "6,549,879".pn.	3M TDB
S25	4		3M_TDB
S26	7	20030204311 USPAT; EPO; JPO; DERWENT; IBM TDB	3M TDB
S27	9	("6,549,879".pn. or "5,740,342".pn.) or "20030204311"	M TDB
	9	US-PGPUB; USPAT; EPO; JPO;	3M TDB
	2003	it\$1 or location\$1)) US-PGPUB; USPAT;	3M_TDB
_	2005		3M_TDB
S31	19	S30 and (weighted near2 sum)	3M_TDB
S32	7	S30 and ((weighted near2 sum) with distance)	3M_TDB
			J

US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	()) US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB	US-PGPUB; USPAT; EPO; JPO; DERWENT; IBM_TDB
290606 (petroleum or hydocarbon or oil or gas) with (well or reservoir)	3902 1 and (platform with (locat\$3 or placement or plac\$3))	2078 2 and ((well or target) with (locat\$3 or placement or plac\$3))	3 and ((optimum or optimal or optimiz\$3) with (locat\$3 or placement or plac\$3))	7 4 and ((well or target) with distance)	2 4 and (number with well\$1)	4 and (platform near2 reach)		12 4 or 5 or 6 or 7	5 4 and (number with platform)	1 3 and ((optimum or optimal or optimiz\$3) with platform)	4 6 or 11
2906	390	207	132	37	52	0	0	132	25	41	54
7	2	E3	7	L5	7	r8	67	110	9	L11	L12

EAST SEARCH

Richard Colvin

10/623347

Results of search set L10:

1/28/06

Results of search set L10:	et L10:		
Document Kind Codes Title	ss Title	Issue Date Current OR	Abstract
US 20050149307 A1	JS 20050149307 A1 Integrated reservoir optimization	20050707 703/10	
US 20050142033 A1	Modular assay plates, reader systems and methods for test measurements	20050630 422/58	
US 20050126911 A1		20050616 204/470	
US 20050115741 A1		20050602 175/61	
US 20050080520 A1	Waste recovery and material handling process to replace the traditional trash transfer station a	20050414 701/1	
US 20050052646 A1	ASSAY PLATES, READER SYSTEMS AND METHODS FOR LUMINESCENCE TEST MEASI	20050310 356/311	
US 20050016165 A1	Method of storing and transporting wind generated energy using a pipeline system	20050127 60/398	
US 20040250700 A1	Method and apparatus for treating refuse with steam	20041216 100/38	
US 20040244982 A1		20041209 166/347	
US 20040236547 A1	System and method for automated placement or configuration of equipment for obtaining desir	20041125 703/2	
US 20040189010 A1	Hydro-electric farms	20040930 290/54	
US 20040153298 A1		20040805 703/10	
US 20040134662 A1	High power umbilicals for electric flowline immersion heating of produced hydrocarbons	20040715 166/367	
US 20040120855 A1	Source and target management system for high throughput transfer of liquids	20040624 422/67	
US 20040112980 A1		20040617 239/102.1	
US 20040112978 A1	Apparatus for high-throughput non-contact liquid transfer and uses thereof	20040617 239/71	
US 20040102742 A1		20040527 604/298	
US 20040079530 A1	Method for, and the construction of, a long-distance well for the production, transport, storage a	20040429 166/366	
US 20040039298 A1		20040226 600/558	
US 20040039297 A1		20040226 600/558	
US 20040022677 A1	Assay plates, reader systems and methods for luminescence test measurements	20040205 422/52	

20030911 290/55 20030904 405/195.1 20030724 600/558 20030515 701/1 20030424 175/61 20030410 73/861.23 200303031 166/250.15	20030220 175/61 20030206 382/129 20030206 382/129 20021128 204/461 20021107 702/12	20021031 204/620 20021024 382/128 20020919 702/19 20020523 210/750 20020425 600/558 20020103 166/244.1	20011115 166/250.15 20011101 405/195.1 20011025 204/462 20010927 204/470 20010823 204/606 20050329 340/853.3	
Offshore wind turbine Method of constructing precast modular marine structures Noninvasive measurement of chemical substances Noninvasive measurement of chemical substances PFN/TRAC systemTM FAA upgrades for accountable remote and robotics control to stop the to Well system Distributed sound speed measurements for multiphase flow measurement Wireless downwhole measurement and control for optimizing gas lift well and field performance	High power umbilicals for subterranean electric drilling machines and remotely operated vehicle Apparatus for computer-assisted isolation and characterization of proteins Method for computer-assisted isolation and characterization of proteins Computer-assisted isolation and characterization of proteins Method for enhancing production allocation in an integrated reservoir and surface flow system	Automated system for two-dimensional electrophoresis Computer-assisted methods and apparatus for identification and characterization of biomolecu Automated system for two-dimensional electrophoresis Efficiency water desalination/purification Noninvasive measurement of chemical substances Method and apparatus for the optimal predistortion of an electromagnetic signal in a downhole	Self-regulating lift fluid injection tool and method for use of same Precast modular marine structure & method of construction Automated system for two-dimensional electrophoresis Automated system for two dimensional electrophoresis Automated system for two-dimensional electrophoresis Methods and apparatus for monitoring and controlling oil and gas production wells from a remonland controlling or solution of the structure for well senticing.	Closed-loop conveyance systems for well servicing Two-phase heat-transfer systems Acoustically mediated liquid transfer method for generating chemical libraries Acoustically mediated liquid transfer method for generating chemical libraries High power umbilicals for subterranean electric drilling machines and remotely operated vehicle Wireless downwhole measurement and control for optimizing gas lift well and field performance Method of optimizing a response of a gas correlation radiometer to a trace amount of a target Method of optimizing a response of a gas correlation of an electromagnetic signal in a downhole Distributed sound speed measurements for multiphase flow measurement Method and apparatus for detecting low concentrations of target gases in the free atmosph Efficiency water desalination/purification Method of constructing precast modular marine structures Method and apparatus for controlling pressure and detecting well control problems during drillir Apparatus for computer-assisted isolation and characterization of proteins Distributed sound speed measurements for multiphase flow measurement Method and system for storing gas for use in offshore drilling and production operations Precast modular marine structure & method of construction Automated system for two-dimensional electrophoresis Determining optimal well locations from a 3D reservoir model Noninvasive measurement of chemical substances
20030168864 20030165361 20030139687 20030093187 20030075361 20030066359 20030047308	US 20030034177 A1 US 20030026466 A1 US 20030026465 A1 US 20020175078 A1 US 20020165671 A1		US 20010040033 A1 US 20010036387 A1 US 20010032786 A1 US 20010023826 A1 US 20010015320 A1 US 6873267 B1	6866092 6866092 6853362 6857486 6840317 6822236 6813962 6750453 6668943 6668943 6661458 6673803 6661458 6673803 6661458

	ant well 20020528 166/250.15 20020528 166/250.15 20020528 166/250.15 20020528 166/250.15 20020528 166/250.15 20010911 166/250.15 20010911 166/250.15 20010911 166/250.15 20010911 166/250.15 20010904 166/313 20010904 166/313 20010612 166/336 20010612 166/336 20010612 204/461 20010612 166/338 20010612 204/461 20000926 204/456 20001024 204/461 20000926 204/456 2000000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 200000926 204/456 2000000926 204/456 2000000926 204/456 2000000926 204/456 2000000926 204/456 2000000000000000000000000000000000000	19920929
Edge sealing structure for substrate in low-pressure processing environment Two-dimensional gels for separation, identification and characterization of biomolecules Automated system for two-dimensional electrophoresis Automated system for two dimensional electrophoresis Computer-assisted methods and apparatus for identification and characterization of biomolecu Application of adaptive object-oriented optimization software to an automatic optimization oilfiel Automated system for two-dimensional electrophoresis	Self-regulating tift fluid injection tool and method for use of same Protein sample preparation for electrophoresis Apparatus and method for establishing branch wells from a parent well High data rate acoustic telemetry system Self-regulating lift fluid injection tool and method for use of same Compliant offshore platform Self-regulating lift fluid injection tool and method for use of same Compliant offshore platform Apparatus and method for establishing branch wells from a parent well Apparatus for optimizing production of multi-phase fluid Apparatus for establishing branch wells from a parent well Apparatus for establishing branch wells from a parent well Apparatus for establishing branch wells from a parent well Adromated system for two-dimensional electrophoresis Closed loop drilling system Device for dismandfling vehicles, in particular for draining the latter High resolution device and method for imaging concealed objects within an obscuring medium Adromated system for two-dimensional electrophoresis Automated system for two-dimensional electrophoresis Automated system for two-dimensional electrophoresis Numerical control unit for wellbore drilling Substrate edge seal and clamp for low-pressure processing equipment Expandable tank for separating particulate material from drilling fluid and storing production flui Drilling system Multi-lateral wellbore systems and methods for forming same Closed loop drilling system Method and apparatus for well bore construction Deep water platform with buoyant flexible piles Method and apparatus for drilling and completing wells Deep water platform with buoyant flexible piles Compressor system in a subsea station for transporting a well stream Installation and method for the offshore exploitation of small fields Compressor system and method of operation Sinnal more system and method of operation of small fields	Method for installing riser/tendon for heave-restrained platform Heave-restrained platform and drilling system
6508885 6507664 6482303 6451189 6438259 6434435	US 6394181 B2 US 6394181 B2 US 6394181 B2 US 6349769 B1 US 6320820 B1 US 628596 B1 US 6283678 B1 US 6273660 B1 US 6273660 B1 US 6273660 B1 US 627364 B1 US 6273657 B1 US 6273657 A US 6073576 A US 6073576 A US 6073576 A US 6073576 A US 5893627 A US 5893762 A US 5893762 A US 5893762 A	5150987 5147148