A concise explanation of Japanese Examined Patent Application Publication No. Sho-56-14508 in light of the present invention in the US Patent Application No. 10/580,127

Fig. 1 is a side view of a crawler unit according to an embodiment of the invention. Fig. 2 is a plan view of an endless belt of the crawler unit of Fig. 1. Fig. 3 is a cross-sectional view of the endless belt of the crawler unit of Fig. 1.

Figs. 4 to 6 show different embodiments of the invention. Fig. 7 shows a prior art crawler unit. Figs. 8 to 10 show different embodiments of the invention.

In the first embodiment of the invention shown in Figs. 1 to 3, reference numeral 1 denotes an endless belt, reference numeral 2 denotes a driving wheel and reference numeral 3 denotes an idle wheel. The endless belt 1 is formed of rubber and includes a lug 5. High-tensile-strength members 6 extending in a longitudinal direction of the endless belt 1 are embedded in the endless belt 1. A groove 7 is formed in a center in a width direction of the endless belt 1. Core metals 8 are embedded in the endless belt 1 and arranged in the longitudinal direction thereof at certain intervals. Engaging holes 11 for engaging teeth 12 of a sprocket as the driving wheel are formed between adjoining core metals 8.

# ⑩日本国特許庁(JP)

#### 特 公 **载** (B2) (12) 許 昭56 - 14508

端帯履帯。

(1) Int.Ci.3 B 62 D 55/24 識別記号

庁内整理番号 6927-3D

**网**公告 昭和56年(1981) 4月 4日

発明の数 3

2

(全7頁)

## 回無端帯履帯および無端帯装置

顧 昭48-54952 ②特

(22)出 願 昭48(1973)5月16日

公 開 昭50-4732

鐵昭50 (1975) 1月18日

者 酒井謙一 ⑫発 明

岸和田市額原町652の2番地

创出 願 人 オーツタイヤ株式会社 泉大津市河原町9番1号

何代 理 人 弁理士 安田敏雄 69引用文献

昭48-30899(JP,Y1) 実 公

実 開 昭47-24728(JP,U)

## の特許請求の範囲

1 無端帯の中央部が長手方向に亘つて無端帯接 地側に向つて断面樋形に凹入された中央凹入部と され、該無端帯の長手方向に亘り定間隔に列設埋 される樋形凹入部を有し、かつ、該芯金の凹入部 側壁でかつ、芯金底壁より反接地面側に無端帯の 幅員方向に それぞれ延長して埋入された一対の埋 入部を有すると共に、同無端帯の中央凹入部の両 向つて連続し、かつ接地面と反対方向に膨出形成 され、前記芯金の凹入部底壁と埋入部との間に位 置して一対の伸張阻止体が無端帯の長手方向に埋 入されている他、無端帯の前記中央凹入部におけ の各付根部に、ガイドレールに向つて延在する突 隆部をそれぞれ形成し、この各突隆部の延在端は ガイドレールのレール頂面より少なくとも接地面 側にて終つているを特徴とする無端帯履帯。

地側に向つて断面樋形に凹入された中央凹入部と され、該無端帯の長手方向に亘り定間隔に列設埋

入された芯金が、前記中央凹入部の内側面に嵌入 される樋形凹入部を有し、かつ、該芯金の凹入部 側壁でかつ、芯金底壁より反接地面側に無端帯の 幅員方向にそれぞれ延長して埋入された一対の埋 5 入部を有すると共に、同無端帯の中央凹入部の両 肩部に一対のガイドレールが無端帯の長手方向に 向つて連続し、かつ接地面と反対方向に膨出形成 され、前記芯金の凹入部底壁と埋入部との間に位 **置して一対の伸張阻止体が無端帯の長手方向に埋** 10 入されている他、無端帯の前記中凹入部における 芯金底壁間に嚙合孔を列設し、前記芯金埋入部の 各付根部に、ガイドレールに向つて延在する突隆 部をそれぞれ形成し、この各突隆部の延在端はガ イドレールのレール頂面より少なくとも接地面側 15 にて終つていると共に、前記芯金は無端帯の接地 側に設けた接地ラグにて該芯金の凹入部底壁にお ける接地側が覆設されていることを特徴とする無

3 無端帯の中央部が長手方向に亘つて無端帯接 入された芯金が、前記中央凹入部の内側面に嵌入 20 地側に向つて断面樋形に凹入された中央凹入部と され、該無端帯の長手方向に亘り定間隔に列設埋 入された芯金が、前記中央凹入部の内側面に嵌入 される樋形凹入部を有し、かつ、該芯金の凹入部 側壁でかつ、芯金底壁より反接地面側に無端帯の 肩部に一対のガイドレールが無端帯の長手方向に 25 幅員方向にそれぞれ延長して埋入された一対の埋 入部を有すると共に、同無端帯の中央凹入部の両 肩部に一対のガイドレールが無端帯の長手方向に 向つて連続し、かつ接地面と反対方向に膨出形成 され、前記芯金の凹入部底壁と埋入部との間に位 る芯金底壁間に嚙合孔を列設し、前記芯金埋入部 30 置して一対の伸張阻止体が無端帯の長手方向に埋 入されている他、無端帯の前記中央凹入部におけ る芯金底壁間に嚙合孔を列設し、前記芯金埋入部 の各付根部に、ガイドレールに向つて延在する突 隆部をそれぞれ形成し、この各突隆部の延在端は 2 無端帯の中央部が長手方向に亘つて無端帯接 35 ガイドレールのレール頂面より少なくとも接地面 側にて終つていると共に、前記嚙合孔に駆動輪の

係合体が嚙合され、該駆動輪と対応する遊動輪お

3

よび中間遊転輪はいずれも前記無端帯の中央凹入 部に臨む中央胴部とガイドレールのレール頂面に 接支する一対の側胴部より形成されて成る無端帯 装置。

### 発明の詳細な説明

本発明はクロールを初めとする無端帯履帯とこ れを利用した無端帯装置に関する。

周知のようにクロール型式の無端帯は、ゴムそ の他の弾性材による無端帯を、スプロケットホイ 動によつて循環回走させるのであるが、駆動輪と 対応する遊動輪や中間遊転輪と無端帯の係合が離 脱し易く、脱輪傾向が大であると共に、また駆動 輪との係合用の爪を有する埋入芯金を変形させた り、折損させたりする等の問題点が多い。

本発明はこれらの問題を解決し、脱輪の阻止と 無端帯の軽量化、乗り心地の良好や排土性能の良 好を期し、走行性と耐用性を改善したもので、以 下、図面を参照して本発明の具体例を詳述する。

たもので、1は無端帯、2は駆動輪、3は遊動輪、 4は中間遊転輪である。

無端帯1は第2,3図で示すように、ゴムその 他の弾性材で形成されると共に、接地面にはラグ 5が形成され、又その内部には長手方向に亘り張 25 する。さらに、このガイドレール15を補強する 力保持用コード層からなる一対の伸張阻止体6が 埋設されている。同無端帯1の中央部には長手方 向に亘り、U字状等の断面樋形の凹入部7が凹設 され、かつ無端帯1には帯長手方向に亘り一定間 隔を置いて芯金8が埋入される。同芯金8はその 30 であるが、その変形実施例としては、第4図と第 中央部に前記無端帯 1 の中央凹入部7 と同様形状 であつて、該凹入部7の内側面に嵌込み状に臨む 樋形の凹入部8aが形成されると共に、中央凹入 部7 において前記凹入部8 a の両側壁 9 . 9 の内 面9a,9aと底壁10が凹入部7面に好ましく 35 大である。また、芯金8の樋形凹入部8aが無端 は露出するようにされる。即ち内面9a,9aは 中央凹入部7の内側面7 a , 7 a と同一面に露出 するか、又はわずかに膜程度のもので被覆され、 底壁10はプリッジ状に内側面7a,7a間に亘 つて露出するようにされる。尚ラグ5は凹入部7 40 化し、突隆部8 c として突壁を形成している。こ 下面で2分されても、又全巾に亘るものでもよい。

又本発明ではこの芯金8が定間隔に帯長手方向 に亘り埋入され、かつ凹入部 8 a が無端帯 1 の中 凹入部1に位置し、底壁10が渡ることによつ

て、各底壁10,10間に嚙合孔11が窓孔状に 形成されるもので、これにより駆動輪 2 をスプロ ケツトホイル状に形成し、そのスプロケット即ち 円周面に形成した各歯12を同噛合孔11に噛合 5 させることにより、この無端帯1が駆動されるよ うにする。

また、芯金8には無端帯1の幅員方向に延長し て埋入された埋入部8 b が図では一対あて翼片状 に連設されている。そして、この埋入部8bと底 ルやドラムホイル等によつて嚙合あるいは摩擦連 10 壁 1 0 との間の間隔 t 内にコード層で示す伸張阻 止体 6 が帯長手方向に埋入されている。

一方前記駆動輪2に対応する他方の遊動輪3は、 前記無端帯1の中央凹入部7内に、前記凹入部7 並び凹入部7内の芯金8の側壁9,9底壁10と 15 遊隊を存する大きさの中央胴部13と、この中央 胴部13の両側に胴部13より小径に張り出し、 かつその周面が無端帯1の中央凹入部7の両肩に 続くガイトレールの頂面に接支される左右の側胴部 14,14から形成され、又中間遊転輪4の一部 第1図は本発明に係る各部材の配置係合を示し20又は全部も全く同様の構造で、ただその形状が遊 動輪に比し小径とされたものである。

> また、無端帯1の中央凹入部7の両肩部に一対 の台形状ガイドレール15が突出して帯長手方向 に延び、この頂面15aに前記側胴部14が接支 ための芯金8の埋入部8bの付根部にガイドレー ル15に向つて延在した突隆部8cの一対が形成 されている。

以上は第1図から第3図に示した実施例の説明 5 図に示すものがあげられる。

即ち第4図に示したものは、第3図の芯金8の 形態が異るもので、突隆部8 c が彎曲を呈して突 出したもので、かつ、芯金8の厚さも第3図より 帯1の接地面より接地方向に突出したもので、そ の他は第3図と同様である。第5図は重荷重用で 樋形凹入部 8 a と突隆部 8 c が厚肉化された点が 異る。また、第6図は芯金8の凹入部8aを厚肉 のさい両肩部の左右一対のガイドレール15は長 手方向と直角の可及的狭い巾の切欠構又は斜交す る切欠費16を芯金8,8間に設けておけば屈撓 が容易になり、後者のように構16をガイドレー

5

ル15に斜交状に設けたものでは特に振動が小さ くなる。その他の構成要件は全て第3,4,5図 のものと同様である。

第8図乃至第10図は本発明の他の好ましい具 体例であつて、第8図は前記第3図の具体例と、5確実になるおそれは全くない。 第9図は前記第4図の具体例と、第10図は前記 第5図の具体例とそれぞれ大部分が対応すること から、以下、差異構成についてのみ説明し、共通 部分は共通符号で示す。

つても芯金8の凹入部底壁10における接地側が 無端帯1の全巾に亘つて設けたラグ5の中央部に おいて覆設されているのである。

なお、前述のいずれの実施例の場合でも、左右 一対の芯金埋入部8bの各付根部に形成された突15止体6は、中央胴部13の外周面よりも、両輪2, 隆部8cはその延在端が一対のガイドレール15 のレール頂面 15 a より少なくとも接地面側にて 終つているのである。

第7図は従来の埋入芯金形成のものを示してお り、無端帯Aのコード層B上に帯長手方向に亘る 20 脱輪が防止される。特に、芯金8の樋形凹入部 芯金Cを埋入し、同芯金Cの両側より係合爪片D Dを無端帯A面上に突出させてある。従つて駆動 輪はこれら係合爪片D,Dと係合する嚙合孔をド ラム周面に形成するか、又は爪片 D, Dと係合す るバーを列設した中空ドラム形状等として嚙合駆 25 とされていることから、凹入部8aの溝深さを大 動させ、遊動輪Eは図のように爪片D,D間に入 り込む輪周をもつて転輪であり、又遊転輪Fは爪 片D,Dに亘つて係合する凹周溝Gを有するドラ ム形状とされる。従つてこのような形式の場合、 駆動輪はともかく、遊動輪E遊転輪Fは共に脱輪 30 から、無端帯1の長手方向所定間隔に列設埋入の し易く、又係合爪片 D, Dの変形や芯金の折損が 大であり、爪片D,Dの破損は駆動輪との係合も 不確実を示し、走行不可能や耐用性の低下を生じ、 又芯金重量が全体として重くなつて無端帯 A の全 重量をも重くする等の問題点が生じるのである。35 じ易いのに比べ優れている。しかも無端帯1の長

本発明の構成による無端帯1とその駆動輪2及 び遊動輪3と遊転輪4によれば、以下のような利 点が生じる。 即ち無端帯1の循環回走は、無端帯1の中央凹

入部7の底に形成された、埋入芯金8の凹入部 8 a の底壁 1 0 , 1 0 によつて仕切られた嚙合孔 11に、駆動輪2の嚙合歯12が嚙合することに より駆動され、遊動輪3及び遊転輪4における各 側胴部14,14が無端帯1のガイドレール15

の頂面1**5**am接支する摩擦によつて行なわれる が、駆動輪2の歯12と嚙合孔11との係合は常 に確実であるし、その歯12は中央凹入部7内に 入り込んで係合するため、振動衝撃等で係合が不

又脱輪の生じ易い遊動輪3遊転輪4側において は、中央凹入部7内に遊隙を存して入り込む中央 胴部1.3 が、摩擦伝動を行なう側胴部14.14 の中心に位置し、このさい埋入芯金8の凹入部 即ち、第8図乃至第10図のいずれの場合であ 108 aの底壁10と埋入部8bとの間に伸張阻止体 6が位置するので、中央胴部13も当然伸張阻止 体6よりも接地側に架く位置し、従つて第1図の ように両輪2,3間に無端帯1を巻掛けた場合、 無端帯1の屈撓面における曲率中心である伸張阻 3の中心側に位置するので、この無端帯 1 が脱輪 するには、両輪2,3間の軸間距離が小さくなる か、伸張阻止体6が破断しない限り、脱輪しない ことになる。また、ガイドレール15によつても 8 a の両側壁 9 , 9 に形成された左右一対の埋入 部8bが凹入部8aの底壁10よりも反接地面、 つまり、第3図~第5図、第8図~第10図では 埋入部8bが上位で、底壁10が下位となる関係 にしたにも拘らず埋入部 8 b を接地面側に近ずけ ることができ、これに基づいて芯金凹入部8aの 移動量を極めて小さくおさえることができる利点 がある。芯金8が斯様に移動量が小さくなること 芯金8同志が拡縮したりすることがない利点があ る。従来の第7図のものでは遊動輪 E及び遊転輪 F の何れでもその外周面はコード層 B よりも内側 で、従つて両輪中心側に近くなるので、脱輪を生 手方向においても、中央胴部13は中央凹入部7 内に入り込んでいるので、揺動を生じてもその胴 部の両外側面の無端帯の凹入部7と芯金凹入部 8aの内側面に当つて阻止され、この際、両側壁 40 内面 9 a , 9 a が露出状としてあれば、中央胴部 13の周面が乗上げても、すぐ滑り落ちるので脱 輪防止が確実であると共に、又胴部13の周面及 び周側面は凹入部7と8 aと遊隙を有しているの で、正常の場合嚙合孔11と離間しているので振

動等を防止するにも有効である。

又無端帯1の中央凹入部7は芯金8の凹入部 8 aによつて補強整形されているので、この凹入 部7の形状が変形したりして、中央胴部13が浮 び上つたり乗り越えたりするおそれも全く生じな 5 地面側がラグ5にて覆設されていることから、芯 いのである。かとこれにより左右の側胴部14, 14が無端帯1に突出のガイドレール15の頂面 15aとの接触伝動をより確実化できるものであ る。又芯金8も従来のように爪片の突起等を全く 必要としないので、構造の簡単と軽量化、従つて 10 作業専用を初めとして利用範囲大である。 無端帯1全般の軽量化と低コストによる製作が容 易である。かつ駆動輪2以外は走行面がフラット な面を走るため、その乗り心地がきわめて良好で あるし、このさい遊動輪3遊転輪4と無端帯1の 当り面を、左右一対のガイドレール15によつて 15 5 図は変形実施 2 例の断面図、第 6 図は他の変形 高くしているので、排土性能も良好化されるし、 乗り心地も更に良好にできるのであり、確実な走 行、脱輪の完全な防止、無り心地の良好において 優れると共に、無端帯1の中央凹入部7に芯金8 の樋形凹入部8 a が嵌入され、芯金8 の凹入部 20 転輪、5 … ラグ、6 … 伸張阻止体、7 … 中央凹入 8aにおける両側壁9より突隆部8cがガイドレ ール15に向つて延在していることから、突降部 8 c において無端帯 1 の巾方向に関する剛体部分 が大となる利点があるし、また、突隆部8 cはガ

8

イドレール15の頂面15aよりも接地側にて延 在端が位置することから、突隆部8 cにおいて剛 体部分を大きくしつつ振動抑止効果が期待できる 利点がある。更に、芯金8の底壁10はこれの接 金底壁10に石等が衝突することがないし、かつ、 ラグ5にて振動抑止効果と芯金底壁10の変形吸 収効果が期待できるのである。又構造の簡単と軽 量化、製作の容易等においても格段に優れ、農機、

#### 図面の簡単な説明

第1図は本発明実施例の全体側面図、第2図は 同無端帯の平面図、第3図は同遊動輪、遊転輪と の係合状態を併せて示す無端帯の横断面図、第4 例斜視図、第7図は従来例の説明的な斜視図であ る。更に第8図乃至第10図は本発明の他の実施 例を示す無端帯の各断面図である。

1 …無端帯、2 …駆動輪、3 …遊動輪、4 …遊 部、8…埋入芯金、8 a …芯金凹入部、9 …側壁、 10…底壁、11…嚙合孔、12…歯、13…中 央胴部、14…側胴部、15…ガイドレール。



第4図







第5図



第6図



第9図







第10図

