INVERZNA FUNKCIJA

Definišimo najpre bijektivno preslikavanje:

Za preslikavanje f: A → B kažemo da je :

1) "jedan – jedan" (obostrano jednoznačno), što skraćeno pišemo "1-1", ako važi

$$(\forall x_1, x_2 \in A)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

- 2) "na" ako je $(\forall y \in B)(\exists x \in A)(f(x) = y)$
- 3) bijektivno ako je "1-1" i "na"

Preslikavanje skupa A na sebe , u oznaci i_A , sa osobinom $(\forall x \in A)(i_A(x) = x)$ naziva se identičkim (jediničnim) preslikavanjem skupa A.

Ako je f: $A \rightarrow B$ bijektivno preslikavanje, onda sa f^{-1} ozačavamo preslikavanje skupa B na skup A, koje ima osobinu da je $f^{-1} \circ f = f \circ f^{-1} = i_A$. U tom slučaju f^{-1} nazivamo inverznim preslikavanjem preslikavanja f.

Postupak za rešavanje zadataka :

- i) Umesto f(x) stavimo y
- ii) Odavde izrazimo x preko y
- iii) Izvršimo izmenu: umesto x pišemo $f^{-1}(x)$, a umesto y pišemo x.

Zadaci

1. Data je funkcija f(x) = 2x - 1. Odrediti njenu inverznu funkciju i skicirati grafike funkcija f(x) i $f^{-1}(x)$. Rešenje:

$$f(x) = 2x - 1$$
 Umesto $f(x)$ stavimo y

$$y = 2x - 1$$
 Odavde izrazimo x preko y

$$2x = y + 1$$

$$x = \frac{y+1}{2}$$
 Izvršimo izmenu: umesto x pišemo $f^{-1}(x)$, a umesto y pišemo x.

 $f^{-1}(x) = \frac{x+1}{2}$ i evo nam inverzne funkcije.

Pošto obe funkcije predstavljaju prave, uzećemo po dve proizvoljne tačke(prvo x = 0, pa y = 0) i nacrtati ih.

$$f(x) = 2x - 1$$

X	0	1/2
f(x)	-1	0

$$f^{-1}(x) = \frac{x+1}{2}$$

X	0	-1
$f^{-1}(x)$	1/2	0

Primetimo da su grafici simetrični u odnosu na pravu y = x.

2. Data je funkcija $f(x) = \log_2(x-1)$. Odrediti njenu inverznu funkciju i skicirati grafike funkcija f(x) i $f^{-1}(x)$.

Rešenje:

$$f(x) = \log_2(x-1)$$
 Umesto $f(x)$ stavimo y
 $y = \log_2(x-1)$ Odavde izrazimo x preko y

$$x - 1 = 2^y$$

$$x = 2^y + 1$$
 umesto x pišemo $f^{-1}(x)$, a umesto y pišemo x

$$f^{-1}(x) = 2^x + 1$$
 evo inverzne funkcije

Skicirajmo sada grafike:

 $\mathbf{f}(\mathbf{x}) = \log_2(\mathbf{x}-\mathbf{1})$. Ova funkcija je definisana za $\mathbf{x}-\mathbf{1}>0$, odnosno za $\mathbf{x}>\mathbf{1}$, a to nam govori da je $\mathbf{x}=\mathbf{1}$ vertikalna asimptota sa leve strane. Uzmimo kao i malopre nekoliko proizvoljnih vrednosti i popunimo tablicu:

X	3/2	2	3	5
f(x)	-1	0	1	2

 $\mathbf{f}^{-1}(\mathbf{x}) = \mathbf{2}^{\mathbf{x}} + \mathbf{1}$. Ova funkcija očigledno ne može imati vrednosti manje ili jednake sa 1, što nam govori da je 1 njena horizontalna asimptota. Uzmimo nekoliko proizvoljnih vrednosti i popunimo tablicu:

X	- 1	0	1
$f^{-1}(x)$	3/2	2	3

Uočimo opet da su grafici simetrični u odnosu na pravu y = x.

3. Odredi inverznu funkciju funkcije $f(x) = 3^x - 1$

Rešenje:

$$f(x) = 3^x - 1$$

$$y = 3^x - 1$$

$$3^{x} = y + 1$$
$$x = \log_{3}(y + 1)$$

$$f^{-1}(x) = \log_3(x+1)$$

4. Data je funkcija $f(x) = x^2$. Odrediti njenu inverznu funkciju i skicirati grafike funkcija f(x) i $f^{-1}(x)$.

Rešenje:

$$f(x) = x^2$$

$$y = x^2$$

$$x = \pm \sqrt{y}$$
 pa je $f^{-1}(x) = \pm \sqrt{x}$

Nije bilo teško ovo rešiti, međutim ovo rešenje nije korektno! Zašto?

Moramo voditi računa o tome gde je funkcija rastuća, a gde opadajuća!

 $f(x) = x^2$ je opadajuća za x < 0 pa njoj odgovara opadajuća grana inverzne funkcije : $f^{-1}(x) = -\sqrt{x}$

 $f(x) = x^2$ je rastuća za x > 0 pa njoj odgovara rastuća grana inverzne funkcije : $f^{-1}(x) = +\sqrt{x}$

E ovo sad je korektno rešenje!

5. Data je funkcija $f(x) = \log_2(x + \sqrt{x^2 + 1})$. Odrediti $f^{-1}(x)$.

Rešenje:

$$f(x) = \log_2(x + \sqrt{x^2 + 1})$$

$$y = \log_2(x + \sqrt{x^2 + 1})$$

$$x + \sqrt{x^2 + 1} = 2^y$$

$$\sqrt{x^2 + 1} = 2^y - x$$
 kvadriramo ...

$$x^2 + 1 = 2^{2y} - 2x \ 2^y + x^2$$
 potiremo $x^2 \dots$

$$2x \ 2^y = 2^{2y} - 1$$

$$x = \frac{2^{2y} - 1}{2^{y+1}}$$

 $f^{-1}(x) = \frac{2^{2x} - 1}{2^{x+1}}$ a ovo možemo malo da prisredimo ...

$$f^{-1}(x) = \frac{2^{2x} - 1}{2^{x+1}} = \frac{2^{2x} - 1}{2^x 2} = \frac{\frac{2^{2x}}{2^x} - \frac{1}{2^x}}{2} = \frac{2^x - 2^{-x}}{2}$$

6. Data je funkcija $f(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$. Odrediti $f^{-1}(x)$

Rešenje:

$$f(x) = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$

$$y = \sqrt[3]{x + \sqrt{1 + x^2}} + \sqrt[3]{x - \sqrt{1 + x^2}}$$
 Ovo sve ide na treći stepen.

Podsetimo se najpre formule :

$$(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3 = A^3 + 3AB(A+B) + B^3$$

$$y^{3} = x + \sqrt{1 + x^{2}} + 3\sqrt[3]{x + \sqrt{1 + x^{2}}}\sqrt[3]{x - \sqrt{1 + x^{2}}}\left(\sqrt[3]{x + \sqrt{1 + x^{2}}} + \sqrt[3]{x - \sqrt{1 + x^{2}}}\right) + x - \sqrt{1 + x^{2}}\right)$$

$$y^3 = 2x + 3 \sqrt[3]{(x + \sqrt{1 + x^2})(x - \sqrt{1 + x^2})} y$$

$$y^3 = 2x + 3 \sqrt[3]{x^2 - 1 - x^2} y$$

$$y^3 = 2x - 3y$$

$$2x = y^3 + 3y$$

$$x = \frac{y^3 + 3y}{2}$$

$$f^{-1}(x) = \frac{x^3 + 3x}{2}$$