What will the following commands do?

- echo "Hello, World!" prints "Hello , World!"
- name="Productive" setting variable with value
- touch file.txt
 Creating New File
- **ls -a** list all files including hidden

Part A

- rm file.txt removing/deleting file
- **cp file1.txt file2.txt** copy of one file to another file
- mv file.txt /path/to/directory/ moving file to specific directory
- **chmod 755 script.sh**user =all permission group and others= read and executr
- grep "pattern" file.txt getting matching lines
- **kill PID**Terminating process with id

• mkdir mydir && cd mydir && touch file.txt && echo "Hello, World!" > file.txt && cat file.txt

directory creates of name mydir doing to that firectory creates files printing Hello, World! And displays it

• ls -l | grep ".txt"

listing and ,atching .txt files

• cat file1.txt file2.txt | sort | uniq

conacanicating and then sorting it to the unique values

• ls -l | grep "^d"

listing all directories and filters for directories

• grep -r "pattern" /path/to/directory/

recursively searching for patterns in all files

• cat file1.txt file2.txt | sort | uniq -d

concanates and shows only duplicate lines

• chmod 644 file.txt

owner=rw group= r other=x

• cp -r source_directory destination_directory

copying recursively sourve directory and its contents to destination directory

• find /path/to/search -name "*.txt"

searches for all files ending with txt

• chmod u+x file.txt

user having executive permission

echo \$PATH

print value of path variable

Identify True or False:

- 1. **Is** is used to list files and directories in a directory. :**True**
- 2. **mv** is used to move files and directories. **True**
- 3. **cd** is used to copy files and directories.: **False.it is used for changing directory**
- 4. **pwd** stands for "print working directory" and displays the current directory.:**True**
- 5. **grep** is used to search for patterns in files.:**True**
- 6. **chmod 755 file.txt** gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.:**True**
- 7. **mkdir -p directory1/directory2** creates nested directories, creating directory2 inside directory1 if directory1 does not exist.:**True**
- 8. **rm -rf file.txt** deletes a file forcefully without confirmation. **True**

chmod 755 file.txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.
 True

10. **mkdir -p directory1/directory2** creates nested directories, creating directory2 inside directory1 if directory1 does not exist.

True

11. **rm -rf file.txt** deletes a file forcefully without confirmation **True**

Identify the Incorrect Commands:

1. **chmodx** is used to change file permissions.

chmod is use to change file permission

2. **cpy** is used to copy files and directories.

Cp is used to copy files and direcrories

3. **mkfile** is used to create a new file.

Touch is use to create files

4. catx is used to concatenate files.

cat is used to concatenate files

5. **rn** is used to rename files.

my is used to rename files

Part C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

- o cdac@LAPTOP-6DTFV1AJ:~\$ echo "Hello, World!"
- o Hello, World!
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

- o cdac@LAPTOP-6DTFV1AJ:~\\$ name="CDAC Mumbai"
- o cdac@LAPTOP-6DTFV1AJ:~\$ echo \$name
- o CDAC Mumbai
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 3: Write a shell script that takes a number as input from the user and prints it.

- o cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt
 - echo enter what you want to print:
 - read sentence
 - echo \$sentence
- o cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt
- o enter what you want to print:
- o sanket sanjay kavanekar
- o sanket sanjay kavanekar
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

- o cdac@LAPTOP-6DTFV1AJ:~\$ echo \$((5+3))
- 0 8
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

- o cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt
 - echo enter number
 - read number
 - if $((\text{number } \% \ 2 == 0))$
 - then
 - echo \$number is even
 - else
 - echo \$number is odd
 - fi
- o cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt
- o enter number
- o **13**
- o 13 is odd
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

0	cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt					
	• i=1					
	• while [\$i -le 5]					
	• do					
	echo \$i					
	• i=\$((i+1))					
	done					
0	cdac@LAPTOP-6DTFV1AJ:~\$ bash as.	txt				
0	1					
0	2					
0	3					
0	4					

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt

- if [-f "file.txt"]
- then

0 5

- echo "File exists"
- else
- echo "file does not exist"

o cdac@LAPTOP-6DTFV1AJ:~\$

• fi

cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt file does not exist cdac@LAPTOP-6DTFV1AJ:~\$

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

- o cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt
 - echo enter number
 - read number
 - if [\$number -gt 10]
 - then
 - echo "\$number is greater than 10"
 - else
 - echo "\$number is not greater than 10"
 - fi
- o cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt
- o enter number
- 0 13
- o 13 is greater than 10
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

- o cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt
 - for i in {1..5}
 - do
 - for j in {1..5}
 - do
 - result=\$((i*j))
 - printf "%3d " \$result
 - done
 - echo ""
 - done
- o cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt
- 0 1 2 3 4 5
- 0 2 4 6 8 10
- 0 3 6 9 12 15
- 0 4 8 12 16 20
- o **5 10 15 20 25**
- o cdac@LAPTOP-6DTFV1AJ:~\$

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

- o cdac@LAPTOP-6DTFV1AJ:~\$ nano as.txt
 - while true
 - do
 - read -p "Enter a number: " num
 - if [\$num -lt 0]
 - then
 - break
 - fi
- square=\$((num*num))
- echo "square of \$num is \$square"
- done
- o cdac@LAPTOP-6DTFV1AJ:~\$ bash as.txt
- o Enter a number: 12
- o square of 12 is 144
- o Enter a number: 13
- o square of 13 is 169

Part E

1. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

j			
P1	0	5	
P2	1	3	
P3	12	6	1

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Ans: **waiting time = 0 + 4 + 6 = 10**

Number of process=3

Avg wait = 10/3 = 3.33

2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

FIOC	ess A111	ivai i iiile E	ourst rii
P1	0	3	
P2	1	5	
P3	2	1	
P4	3	4	

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Tat Time = 3 + 12 + 2 + 5 = 22

No of Process = 4

Aveg Tat = 22/4 = 5.5

3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

Process Arrival Time Burst Time Priority								
							··	
P1	0		6		3			
P2	1		4		1			
P3	2		7		4			
P4	3		2		2			

Calculate the average waiting time using Priority Scheduling.

Waiting Time = 0 + 5 + 10 + 7 = 22

No 0f process=4

Average Waiting Time = 22 / 4 = 5.5

4. Consider the following processes with arrival times and burst times, and the time quantum for Round Robin scheduling is 2 units:

Calculate the average turnaround time using Round Robin scheduling.

Ans: 10 + 13 + 4 + 10 = 37

Process=4

Average tat =37/4=9.25

5. Consider a program that uses the **fork**() system call to create a child process. Initially, the parent process has a variable **x** with a value of 5. After forking, both the parent and child processes increment the value of **x** by 1.

What will be the final values of \mathbf{x} in the parent and child processes after the **fork**() call?

Parent will be 6

Child will be 6

Submission Guidelines:

- Document each step of your solution and any challenges faced.
- Upload it on your GitHub repository

Additional Tips:

- Experiment with different options and parameters of each command to explore their functionalities.
- This assignment is tailored to align with interview expectations, CCEE standards, and industry demands.
- If you complete this then your preparation will be skyrocketed.