CIRCUNFERENCIA III

• TEOREMAS RELACIONADAS A LAS DIFERENTES POSICIONES, EXTERNAS, INTERNAS Y TANGENTES.

CURSO DE GEOMETRÍA

CIRCUNFERENCIAS EXTERNAS

Son aquellas circunferencias que no se intersecan y sus regiones internas son disjuntas.

• Si A, B, C, D son puntos de tangencia.

$$a = b$$

$$m\widehat{AD} = m\widehat{BC}$$

$$\theta = \alpha$$

$$\overleftarrow{AD} \parallel \overleftarrow{BC}$$

CIRCUNFERENCIA III

DEMOSTRACIÓN:

- Por observación: $En C_1 AP = PD = m$ $En C_2 BP = PC = n$ $En C_2$
 - a = b

- Por observación: En C_1 β + θ =180° E
- En C_2 β + α =180°

$$\theta = \alpha$$

• Por \triangleleft semi inscrito: En C_1 $m \triangleleft ADP = \alpha/2$

En
$$C_1$$
 $m \triangleleft ADP = \alpha/2$
En C_2 $m \triangleleft BCP = \alpha/2$

CIRCUNFERENCIA III

Del gráfico A, B, C y D son puntos de tangencia. Si AM=3 y MD=BN=4. Calcular NC.

RESOLUCIÓN:

Nos piden NC=X

Dato:

AM=3

MD=BN=4

Como A, B, C y D son puntos de tangencia:

$$\overrightarrow{AB} = \overrightarrow{CD} = a$$

 $\overrightarrow{AD} \parallel \overrightarrow{BC}$

- Por lo tanto ABCD es un trapecio isósceles.
- Al trazar \overline{AP} y \overline{DQ} perpendiculares a \overline{BC} se forma APNM y MNQD rectángulos:

$$NP=3$$
 $NQ=4$

Por observación:

$$BP=CQ=1$$

$$X = 4 + 1$$

CIRCUNFERENCIAS TANGENTES EXTERNAS

Son aquellas circunferencias que se intersecan en un punto y sus regiones internas son disjuntas.

• Si T es puno de tangencia:

T, O y O_1 son colineales

$$\theta = \alpha$$

CIRCUNFERENCIA III

Según el gráfico, calcule X. Si EB=10, CB=12 y m \widehat{ET} = m \widehat{TC} . (T es punto de tangencia)

- Por ≼ inscrito y semi inscrito: m≼TAC=X
- Como T es punto de tangencia: $m\widehat{AT} = m\widehat{TE} = 2X$
- Por dato: $m\widehat{TC} = 2X$

$$m \sphericalangle TEC=X$$
 $m \sphericalangle EBC=2X$

- En los $\triangle ACE$ y $\triangle CEB$ son isósceles, trazamos $\overline{EH} \perp \overline{BC}$:
- △EHB es notable de 37° y 53°

CIRCUNFERENCIAS SECANTES

Son aquellas circunferencia que se intersecan en dos puntos.

Si <u>PQ</u> es cuerda común:

$$PM = MQ$$

$$\overline{O_1O_2} \perp \overline{PQ}$$

CIRCUNFERENCIA III

ÁNGULO ENTRE CIRCUNFERENCIAS

Es aquel ángulo determinado por las rectas tangentes, sobre uno de los puntos de intersección, de las circunferencias secantes.

 $\stackrel{\longleftarrow}{L_1}$: Tangente a la \mathcal{C}_1

 $\overleftrightarrow{L_2}$: Tangente a la \mathcal{C}_2

θ: Medida del ángulos entre dos circunferencias secantes

CIRCUNFERENCIAS ORTOGONALES

Son aquellas circunferencias secantes cuya medida determinada es 90°

Las C_1 y C_2 se le conocen como circunferencias ortogonales.

CIRCUNFERENCIA III

Del gráfico, se tiene dos circunferencias ortogonales. Calcule PQ.

RESOLUCIÓN:

Nos piden PQ

• Como las circunferencias son ortogonales, trazamos $\overline{O_1P}$ y $\overline{O_2P}$:

$$m < O_1 P O_2 = 90^{\circ}$$

• Como los radios son constantes:

$$O_1 P = 2\sqrt{5}$$
 $O_2 P = \sqrt{5}$

• De las circunferencias son secantes:

$$\overline{O_1O_2} \perp \overline{PQ}$$

• Los $\triangle O_1PO_2$ y $\triangle PMO_2$ son notables de 53°/2:

$$PM=2$$

Además:

CIRCUNFERENCIAS TANGENTES INTERNAS

Son aquellas circunferencias que se intersecan en un punto y sus regiones internas están una incluida en la otra.

Si T es puno de tangencia:

T, O y O_1 son colineales

 $\theta = \alpha$

CIRCUNFERENCIA III

Del gráfico T, P y Q son puntos de tangencia. Calcule AQ.

RESOLUCIÓN:

Nos piden AQ=X

Como las circunferencias son tangentes interiores en T:

T, O y O_1 son colineales

- Además Q y P son puntos de tangencia entonces trazamos $\overline{O_1Q}$ y $\overline{O_1P}$.
- Se forma OQO₁P un cuadrado:

$$OQ=2$$
 $OO_1=2\sqrt{2}$

En el cuadrante el radio es constante:

$$OT=OA=2+2\sqrt{2}$$

$$X+2=2+2\sqrt{2}$$

$$\therefore X=2\sqrt{2}$$

CIRCUNFERENCIAS CONCÉNTRICAS

Son aquellas circunferencias que tienen el mismo centro.

• Si T es punto de tangencia:

$$a = b$$

• Si P es punto de tangencia:

$$AB = CD$$

CIRCUNFERENCIA III

Del gráfico las circunferencias son concéntricas. Si \widehat{mACB} =140°, calcule \widehat{mCB} .

RESOLUCIÓN:

Nos piden $\widehat{mCB} = 0$ Dato: $\widehat{mACB} = 140^{\circ}$

En las circunferencias concéntricas T, P y Q son puntos de tangencia:

$$AB=AD=CD=a$$

• Por teorema de circunferencia:

$$m\widehat{AB} = m\widehat{AD} = m\widehat{CD} = 140^{\circ}$$

En el ΔAOD isósceles:

Por ∢ inscrito:

