Математика для Data Science. Линейная алгебра. Условия задач

Содержание

Определит	эль																																								2
Задача 1																																									2
Задача 2																																									2
Задача 3																																									2
Задача 4																																									2
Переход в	дру	уг	ой	ба	131/	ıс	и	oc	бра	ат	на	я	M	ат	י ס י	ИΙ	ιa																								2
Задача 1									_						_																						 				2
Задача 2																																									3
Задача 3																																									3
Задача 4																																									3
Задача 5																																									3
Длина, угл	ты і	и	ска	ЛЯ	ъ	но	e :	пр	ю	131	ве,	дε	н	ие	•																										3
Задача 1																																									3
Задача 2																																					 				3
Задача 3																																									4
Задача 4																																									4
Задача 5																																									4
Задача 6																																									4
Ортогонали	ьны	e 1	ма	тр	ип	ĮЫ																																			5
Задача 1																																					 				E
Задача 2																																									5
Задача 3																																									E
Задача 4																																									F
Задача 5																																									6
Задача 6																																									6
Dagara 7	•	٠	•	•		•	•			•		•	•	·	•	- '		•	·	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	 •	•	•	-	6

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Определитель

Задача 1

Докажите, что если в матрице есть нулевой столбец, то определитель матрицы равен 0.

Подсказка. Обозначьте определитель за x. Домножьте нулевой столбец на 2- какое равенство на x можно тогда записать?

Задача 2

Свойства 2 и 4 обычно объединяют в одно свойство: линейность по столбцам. То есть для всех $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n, \vec{b}, \vec{c} \in \mathbb{R}^n$, всех $\lambda, \mu \in \mathbb{R}$ и для всех $1 \leqslant i \leqslant n$ выполнено

$$\det(\vec{a}_1, \dots, \vec{a}_{i-1}, \lambda \vec{b} + \mu \vec{c}, \vec{a}_{i+1}, \dots, \vec{a}_n) = \lambda \det(\vec{a}_1, \dots, \vec{a}_{i-1}, \vec{b}, \vec{a}_{i+1}, \dots, \vec{a}_n) + \mu \det(\vec{a}_1, \dots, \vec{a}_{i-1}, \vec{c}, \vec{a}_{i+1}, \dots, \vec{a}_n)$$

Докажите, что это действительно следует из свойств с предыдущих шагов.

Задача 3

В конце предыдущей недели вы изучили метод Гаусса. С его помощью можно искать и определитель матриц! В этой задаче мы разберемся, как будет меняться определитель при элементарных преобразованиях столбцов матрицы:

- 1. Перестановка местами любых двух столбцов матрицы.
- 2. Прибавление к любому столбцу матрицы другого столбца, умноженного на некоторую константу.

Как мы знаем из определения, при первом преобразовании определитель поменяет знак. Докажите, что второе преобразование не меняет определитель.

Подсказка. Докажите, что определитель матрицы с двумя одинаковыми столбцами равен 0. Как изменится определитель, если поменять одинаковые столбцы местами?

Задача 4

Докажите, что если столбцы матрицы линейно зависимы (то есть матрица имеет не полный ранг), то её определитель равен 0.

Переход в другой базис и обратная матрица

Задача 1

Рассмотрим базис
$$g$$
 в \mathbb{R}^n из векторов $\vec{g}_1 = \begin{pmatrix} g_{11} \\ g_{12} \\ \vdots \\ g_{1n} \end{pmatrix}, \vec{g}_2 = \begin{pmatrix} g_{21} \\ g_{22} \\ \vdots \\ g_{2n} \end{pmatrix}, \dots \vec{g}_n = \begin{pmatrix} g_{n1} \\ g_{n2} \\ \vdots \\ g_{nn} \end{pmatrix}$.

Покажите, что G — матрица, в которой по столбцам записаны векторы базиса g, является матрицей перехода от базиса g к стандартному.

То есть, если $(v_1^g, v_2^g, \dots, v_n^g)$ — координаты вектора \vec{v} в базисе g, то его координаты в стандартном базисе

— это
$$G \begin{pmatrix} v_1^g \\ v_2^g \\ \vdots \\ v_n^g \end{pmatrix}$$
 .

Задача 2

Докажите, что матрица перехода обязательно имеет полный ранг. Тут пригодится метод от противного.

Подсказка. Покажите, что если матрица A имеет неполный ранг, то найдётся вектор, который в одном базисе не равен $\vec{0}$, а в другом базисе равен $\vec{0}$.

Задача 3

Докажем, что элементарному преобразованию "поменять местами строки i и j" соответствует умножение слева на некоторую матрицу.

Задача. Даны натуральные числа i и j (не большие n). Докажите, что существует матрица M размера $n \times n$ со следующим свойством. У любой матрицы A размера $n \times n$ в результате домножения слева на M меняются местами i-ая и j-ая строки. То есть MA это матрица, полученная из A перестановкой i-ой и j-ой строк

Задача 4

Докажем, что элементарному преобразованию "прибавить к одной строке другую строку, умноженную на число" соответствует умножение слева на некоторую матрицу.

Задача. Даны натуральные числа i и j (не большие n), и действительное число $c \in \mathbb{R}$. Докажите, что существует матрица M размера $n \times n$ со следующим свойством. У любой матрицы A размера $n \times n$ в результате домножения слева на M к i-ой строке прибавляется j-ая строка, умноженная на c. То есть MA это матрица, полученная из A прибавлением к i-ой строке j-ой строки, умноженной на c.

Задача 5

Докажем, что элементарному преобразованию "умножить строку на ненулевое число" соответствует умножение слева на некоторую матрицу.

Задача. Даны натуральное число i (не большее n) и действительное число $c \in \mathbb{R}, c \neq 0$. Докажите, что существует матрица M размера $n \times n$ со следующим свойством. У любой матрицы A размера $n \times n$ в результате домножения слева на M строка номер i умножается на c. То есть MA это матрица, полученная из A умножением i-ой строки на c.

Длина, углы и скалярное произведение

Задача 1

Является ли длина линейной функцией? Другими словами, является ли функция длины линейным отображением из \mathbb{R}^n в \mathbb{R} ?

Задача 2

В этой задаче мы докажем несколько простых, но полезных свойств скалярного произведения. Для любых $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$:

- 1. Докажите, что $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$. То есть скалярное произведение коммутативно.
- 2. Докажите, что $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$ для любого $c \in \mathbb{R}$. То есть скалярное произведение хорошо себя ведёт с умножением на число.

Подсказка. В этой задаче нужно расписать скалярное произведение по определению (как сумму покоординатных произведений).

Задача 3

- 1. Докажите, что для любых $\vec{x}, \vec{y} \in \mathbb{R}^n$ выполнено $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$. В левой части равенства стоит произведение матриц размера 1 на n и n на 1, то есть произведение строки и столбца.
- 2. Докажите, что для любого линейного отображения $f: \mathbb{R}^n \to \mathbb{R}$ можно найти вектор \vec{a} , такой что $f(\vec{x}) = \langle \vec{a}, \vec{x} \rangle$. То есть функция "возьмите скалярное произведение с вектором \vec{a} " является линейной, и любая линейная функция из \mathbb{R}^n в \mathbb{R} имеет такой вид.

Задача 4

Для любых $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$:

- 1. Докажите, что $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$. То есть скалярное произведение хорошо себя ведёт с суммой.
- 2. Используя предыдущий пункт, докажите, что $||\vec{x}+\vec{y}||^2 = \langle \vec{x}, \ \vec{x} \rangle + 2 \langle \vec{x}, \ \vec{y} \rangle + \langle \vec{y}, \ \vec{y} \rangle = ||x||^2 + 2 \langle \vec{x}, \ \vec{y} \rangle + ||y||^2$. Переформулировать это можно так:

$$2\langle \vec{x}, \ \vec{y} \rangle = ||\vec{x} + \vec{y}||^2 - ||x||^2 - ||y||^2,$$

или, что то же самое

$$\langle \vec{x}, \ \vec{y} \rangle = \frac{||\vec{x} + \vec{y}||^2 - ||x||^2 - ||y||^2}{2}.$$

Это утверждение будет нам очень полезно на следующих шагах.

Задача 5

Это самые часто используемые свойства скалярного произведения.

- 1. Докажите, что $\langle \vec{x}, \vec{y} \rangle = 0$ если и только если векторы \vec{x} и \vec{y} перпендикулярны.
- 2. Докажите, что все $\vec{e_i}$ ортогональны друг другу.

Получается, что скалярное произведение даёт удобный способ проверять, перпендикулярны векторы или нет.

Подсказка. Воспользуйтесь теоремой Пифагора для векторов и пунктом 4 предыдущей задачи.

Задача 6

Теорема Пифагора говорит о прямых углах. Обобщение (и в то же время следствие) теоремы Пифагора это теорема косинусов, которая говорит о произвольных углах. Мы обсудили, как скалярное произведение связано с прямыми углами. Давайте посмотрим, как скалярное произведение связано с произвольными углами.

- 1. Докажите, что $\langle \vec{x}, \vec{y} \rangle = \cos \alpha \cdot ||\vec{x}|| \cdot ||\vec{y}||$, где α это угол между векторами \vec{x} и \vec{y} .
- 2. Докажите, что скалярное произведение двух векторов единичной длины равно косинусу угла между ними.
- 3. Найдите косинус угла между векторами $\binom{5}{12}$ и $\binom{-3}{4}$.

Получается, что скалярное произведение даёт удобный способ находить косинус угла между векторами. Это уже очень нетривиальное свойство. Действительно, пусть нам дали два вектора из \mathbb{R}^{100} . Как найти косинус угла между ними, не используя теорему косинусов и скалярное произведение? Как хотя бы подступиться к этой задаче? Это риторические вопросы, мы просто хотели обратить внимание, что задача нахождения косинуса между векторами в \mathbb{R}^{100} выглядит не очень просто.

Подсказка. Воспользуйтесь теоремой косинусов для векторов и пунктом второй устной задачи этого урока.

Ортогональные матрицы

Задача 1

Пример. Докажем, что преобразование E ортогонально. По определению E имеем $E\vec{x}=\vec{x}$. Отсюда следует, что $||E\vec{x}||=||\vec{x}||$. Значит, преобразование E ортогонально – оно сохраняет длину вектора.

Докажите, что преобразование, переводящее каждый вектор в противоположный, ортогонально. Найдите матрицу этого преобразования.

Задача 2

На этом шаге мы докажем, что поворот плоскости \mathbb{R}^2 это ортогональное преобразование. Для этого сначала мы узнаем удобный способ интерпретировать координаты векторов из \mathbb{R}^2 .

Задача. В \mathbb{R}^2 вектор длины r, направленный под углом α к оси OX, имеет координаты $\begin{pmatrix} r\cos(\alpha) \\ r\sin(\alpha) \end{pmatrix}$. Докажите, что длина этого вектора действительно равна r.

В этой задаче вам поможет такая тригонометрическая формула: $\cos^2\alpha + \sin^2\alpha = 1$ Доказывать эту формулу мы не будем.

Задача 3

- 1. Докажите, что поворот вокруг $\vec{0}$ на угол β задаётся матрицей $\begin{pmatrix} \cos(\beta) & -\sin(\beta) \\ \sin(\beta) & \cos(\beta) \end{pmatrix}$. Другими словами, если применить эту матрицу к вектору $\begin{pmatrix} r\cos(\alpha) \\ r\sin(\alpha) \end{pmatrix}$, то он повернётся на угол β . То есть перейдёт в вектор $\begin{pmatrix} r\cos(\alpha+\beta) \\ r\sin(\alpha+\beta) \end{pmatrix}$.
- 2. Докажите, что поворот вокруг $\vec{0}$ на угол β сохраняет длину вектора, то есть является ортогональным преобразованием (это очевидное следствие Пункта 1). Тем самым, матрица из Пункта 1 это ортогональная матрица.

В этой задаче вам помогут такие тригонометрические формулы:

- $\cos^2 \gamma + \sin^2 \gamma = 1$
- $\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) \sin(\alpha)\sin(\beta)$
- $\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$

Доказывать эти формулы мы не будем

Задача 4

- 1. Докажите, что в \mathbb{R}^1 есть ровно два ортогональных преобразования, найдите их.
- 2. Докажите, что ортогональное преобразование \mathbb{R}^2 это либо поворот, либо отражение относительно прямой, проходящей через $\vec{0}$.

В этой задаче мы не требуем от вас написания формул, здесь они не сильно добавляют понимания. Достаточно геометрической интерпретации длины, перпендикулярности, отражения относительно прямой и т.д. Вероятно, вам потребуется что-нибудь нарисовать на бумаге.

Задача 5

Это самая важная задача этого урока. В ней мы докажем, что если Q – ортогональное преобразование, то выполнено

$$Q^TQ = E.$$

Посмотрим на векторы $\vec{e}_1, \dots, \vec{e}_n \in \mathbb{R}^n$. Их длины равны 1, и любые два из них ортогональны друг другу. На языке формул это можно записать так:

- $||e_i|| = \sqrt{\langle e_i, e_i \rangle} = 1$ для всех i
- $\langle e_i, e_j \rangle = 0$ для любых $i \neq j$

Ортогональное преобразование сохраняет длину и скалярное произведение. В частности, оно переводит ортогональные векторы в ортогональные. Значит, ортогональное преобразование Q переводит $\vec{e}_1, \ldots, \vec{e}_n$ в векторы $Q\vec{e}_1, \ldots, Q\vec{e}_n$, которые тоже имеют длину 1 и попарно ортогональны.

Докажите, что $Q^TQ = E$.

Задача 6

Ранее мы определили ортонормированный базис в \mathbb{R}^n , но не доказали, что он действительно является базисом. Докажем это сейчас.

- 1. Дан набор ненулевых векторов $\vec{a}_1,\dots,\vec{a}_k$. Известно, что эти вектора попарно ортогональны. Докажите, что этот набор линейно независим.
- 2. Докажите, что ортонормированный базис действительно является базисом.

Ясно, что трудный пункт – пункт 1, а пункт 2 это несложное следствие пункта 1.

Заметим, что на уровне геометрической интуиции пункт 1 очевиден. Действительно, раз вектор \vec{a}_i перпендикулярен остальным векторам набора, то его нельзя выразить через остальные вектора набора. Но мы всё же просим доказать это строго.

Задача 7

Докажите, что композиция двух ортогональных преобразований будет ортогональным преобразованием. Другими словами, если Q и P – ортогональные преобразования \mathbb{R}^n , то PQ тоже будет ортогональным преобразованием \mathbb{R}^n .

На уровне геометрической интуиции это верно. Преобразование Q не смещает части пространства друг относительно друга, двигает пространство целиком. Про P верно то же самое. Тогда если мы применим Q, а потом P, то в результате пространство подвигается целиком, без смещения частей пространства друг относительно друга. То есть PQ будет ортогональным преобразованием.

Пример. В \mathbb{R}^2 композиция поворота на угол α и поворота на угол β будет поворотом на угол $\alpha + \beta$.