Refinement of Trace Abstraction

Tuesday, December 15, 2011

Craig interpolants

Craig interpolant - logical formulas

Given: Unsatisfiable conjuction A \land B Interpolant is a formula I such that:

- ullet I and I \wedge B unsatisfiable
- I contains only common symbols of A and B

William Craig

Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory

Journal of Sybolic Logic (1957))

Craig interpolants

Craig interpolant - logical formulas

Given: Unsatisfiable conjuction $\boxed{\mathtt{A}} \wedge \boxed{\mathtt{B}}$

Interpolant is a formula I such that:

- ullet I and I \wedge B unsatisfiable
- I contains only common symbols of A and B

Example (propositional logic) unsatisfiable conjuction: possible Craig interpolant:

 $\neg p \wedge r$

Example (SMT)
unsatisfiable conjuction:
possible Craig interpolant:

$$f(x_1) = y \wedge x_1 = x_2$$

 $x_2 = x_3 \wedge f(x_3) \neq y$

$$y=f(x_2)$$

Interpolants

Interpolant - execution traces

Given: Infeasible trace $st_1 \dots st_i st_{i+1} \dots st_n$

Interpolant is assertion I such that:

- $\bullet \ \textit{post}(\texttt{true}, \underbrace{\textit{st}_1} \dots \underbrace{\textit{st}_i}) \subseteq \underbrace{\texttt{I}} \subseteq \textit{wp}(\texttt{false}, \underbrace{\textit{st}_{i+1}} \dots \underbrace{\textit{st}_n})$
- I contains only program variables occurring in both, $st_1 ... st_i$ and $st_{i+1} ... st_n$

Kenneth L. McMillan

Interpolation and SAT-Based Model Checking (CAV 2003)

Interpolants

Interpolant - execution traces

Given: Infeasible trace $st_1 \dots st_i st_{i+1} \dots st_n$

Interpolant is assertion | I | such that:

- $post(true, st_1 ... st_i) \subseteq I \subseteq wp(false, st_{i+1} ... st_n)$
- I contains only program variables occurring in both, $st_1...st_i$ and $st_{i+1}...st_n$

Example infeasible t

infeasible trace:

v:=0

x==-1

possible interpolant:

Inductive interpolants

Inductive sequence of interpolants

Given: Infeasible trace (st_1) ... (st_n)

There exists sequence of assertions $l_0 \dots l_n$ such that:

- $post(I_i, st_i) \subseteq I_{i+1}$
- I_0 = true and I_n = false
- I_i contains only variables occurring in both, $(st_1)...(st_i)$ and $(st_{i+1})...(st_n)$

Ranjit Jhala, Kenneth L. McMillan

A Practical and Complete Approach to Predicate Refinement (TACAS 2006)

Inductive interpolants

Inductive sequence of interpolants

Given: Infeasible trace (st_1) ... (st_n)

There exists sequence of assertions $I_0 \dots I_n$ such that:

- $post(I_i, st_i) \subseteq I_{i+1}$
- I_0 = true and I_n = false
- l_i contains only variables occurring in both, st_1 ... st_i and st_{i+1} ... st_n

Example

SmtInterpol

- SMT-Solver Computes sequences of Craig interpolants for the quantifier free combined theory of uninterpreted functions and linear arithmetic over rationals and integers.
- Developed by

Jürgen Christ

Jochen Hoenicke

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

Schematic Example – Use Interpolants for Generalization

Schematic Example – Use Interpolants for Generalization

Schematic Example – Use Interpolants for Generalization

Interpolant automaton obtained by merging all states labelled with same interpolant

CEGAR for Trace Abstraction

