

Daniel Garcia-Briseno Matthew Ostovarpour Thomas O'Brien Douglas Peterson

Faculty Mentor: James Palmer

- Professor of Computer Science
- Computer Science and Electrical Engineering Chair

United States Geological Survey (USGS)

Sponsor: Trent Hare

- Graduated from NAU with B.S. in Computer Mathematics and M.S.
 E in Computer Science.
- GIS-based analysis
- Creation of geospatial tools.

Our Goals

- Refine last year's work
- Reduce current sampling times
- Develop robust GUI
- Probably should combine this with the our project slide

Last Year's Project

What they did:

- Implement stochastic sampling
- Create primitive viewer
- Showed increased speed

What they did not:

• Build on Linux

The Problem

- Slow read times
- Panning/Zooming non-processed images
- Pyramids

Requirements Acquisition

Talk about how and from where we got our requirements

We should go into a medium amount of detail for this

I left the pyramid picture here so that we can use it for something else if we need it

Image Viewers

- Tuiview
- Cartographica for Mac
- ArcGIS
- Geographic Imager plugin for Photoshop
- OpenEV
- QuantumGIS

Our Project

- 1. Create a stochastic image reader inside GDAL.
- 2. Create an interactive image viewer to utilize the reader.

Why inside GDAL?

- Accessible through C, C++, and Python
- Support for plenty of image formats (Listed Below)

Aeronay FAA files AmigoCloud API ESRI ArcObiects

Arc/Info Binary Coverage Arc/Info .E00 (ASCII) Coverage

Arc/Info Generate Atlas BNA AutoCAD DWG AutoCAD DXF CartoDB

Cloudant / CouchDB CouchDB / GeoCouch Comma Separated Value (.csv)

OGC CSW (Catalog Service for the Web)

Czech Cadastral Exchange Data Format

DODS/OPeNDAP **FDIGEO** ElasticSearch **FSRI FileGDB**

ESRI Personal GeoDatabase

FSRI ArcSDF ESRI Shapefile **FMEObjects Gateway** GeoJSON Géoconcept Export Geomedia mdb GeoPackage **GeoRSS**

Google Fusion Tables Google Maps Engine

GML GMT GPSBabel

GRASS Vector Format GPSTrackMaker (.gtm, .gtz)

Hydrographic Transfer Format

Idrisi Vector (.VCT) Informix DataBlade **INTREST Data Format**

INTERLIS KML

LIBKML Mapinfo File Microstation DGN

Memory MvSQL NAS - ALKIS **Oracle Spatial** MS SQL Spatial

Open Document Spreadsheet OGDI Vectors (VPF, VMAP, DCW) More Vector formats...

Arc/Info ASCII Grid

ACF2

ADRG/ARC Digitilized Raster Graphics (.gen/.thf)

Arc/Info Binary Grid (.adf) AIRSAR Polarimetric Azavea Raster Grid

Magellan BLX Topo (.blx, .xlb) Bathymetry Attributed Grid (.bag)

Microsoft Windows Device Independent Bitmap (.bmp)

BPG (Better Portable Graphics) BSB Nautical Chart Format (.kap) VTP Binary Terrain Format (.bt) CALS Type I

CEOS (Spot for instance)

DRDC COASP SAR Processor Raster TerraSAR-X Complex SAR Data Product

Convair PolGASP data

USGS LULC Composite Theme Grid

DirectDraw Surface Spot DIMAP (metadata.dim)

FLAS DIPEX DODS / OPeNDAP

First Generation USGS DOQ (.dog) New Labelled USGS DOQ (.dog) Military Elevation Data (.dt0, .dt1, .dt2)

Arc/Info Export E00 GRID

ECRG Table Of Contents (TOC.xml) ERDAS Compressed Wavelets (.ecw)

FSRI hdr Labelled Erdas Imagine Raw NASA FLAS

FNVI hdr Labelled Raster

Epsilon - Wavelet compressed images

ERMapper (.ers)

Envisat Image Product (.n1)

EOSAT FAST Format

FITS (.fits)

Fuii BAS Scanner Image

Generic Binary (.hdr Labelled) GeoPackage

Oracle Spatial GeoRaster **GSat File Format**

Graphics Interchange Format (.gif)

WMO GRIB1/GRIB2 (.grb) GMT Compatible netCDF **GRASS Raster Format** GRASS ASCII Grid Golden Software ASCII Grid Golden Software Binary Grid

Golden Software Surfer 7 Binary Grid

GSC Geogrid

Generic Tagged Arrays (.gta) TIFF / BigTIFF / GeoTIFF (.tif) More Raster Formats

Image Downsampling Process

- Averaging
 - Average each pixel in a block

- Decimation
 - Use only the first pixel in each block

Downsampling a 1 gigapixel image (1 billion pixels)

32 x 32 Pixels per block = 1024 pixel blocks

976,563 blocks per image

average block value =
$$\frac{1}{1024} \sum_{i=1}^{1024} pixel_i$$

1023 adds + 1 divide

1024 calculations/block * 976,563 blocks = 1,000,000,000 mathematical operations for the image, plus 1,000,000,000 reads for each pixel.

Risks

- Quality is lost during downsampling
 - Will the increased speed be worth the quality that is lost?
 - Testing different amounts of samples could help to mediate this risk.
- High Color Variation
 - Result in slow sampling speed
 - Just test for RGB to speed up

	Red	Gre	een	Blue		Red
Value	FFxx00	xxFF00	00FFxx	00xxFF	xx00FF	FFxx00
0	#FF 00 00	# 00 FF00	#00FF 00	#00 00 FF	# 00 00FF	#FF00 00
5	#FF 05 00	# 05 FF00	#00FF 05	#00 05 FF	# 05 00FF	#FFOO OS
10	#FF OA OO	# OA FFOO	#OOFF OA	#00 OA FF	# OA OOFF	SFF00 OA
15	SEE OF OO	# OF FFOO	#OOFF OF	#00 OF FF	# OF OOFF	#FF00 OF
20	#FF 14 00	# 14 FF00	#00FF 14	#00 14 FF	# 14 OOFF	#FF00 14
25	#FF 19 00	# 19 FF00	#00FF 19	#00 19 FF	# 19 00FF	#FF00 19
30	#FF 1E 00	# 1E FF00	#00FF 1E	#00 1E FF	# 1E OOFF	#FF00 1E
35	#FF 23 00	# 23 FF00	#00FF 23	#00 23 FF	# 23 OOFF	#FF00 23
40	#FF 28 00	# 28 FF00	#00FF 28	#00 28 FF	# 28 00FF	#FF00 28
45	#FF 2D 00	# 2D FF00	#00FF 2D	#00 2D FF	# 2D 00FF	#FF00 2D
50 55	#FF 32 00	# 32 FF00	#00FF 32	#00 32 FF	# 32 OOFF	#FF00 32
	#FF 37 00	# 37 FF00	#00FF 37	#00 37 FF	# 37 00FF	#FF00 37
60 65	#FF 3C 00 #FF 41 00	# 3C FF00	#00FF 3C	#00 3C FF #00 41 FF	# 3C 00FF # 41 00FF	#FF00 3C
70		# 41 FF00 # 46 FF00	#00FF 41	#00 41 FF #00 46 FF	# 41 00FF # 46 00FF	#FF00 41 #FF00 46
75	#FF 46 00 #FF 4B 00	# 4B FF00	#00FF 46 #00FF 4B	#00 46 FF	# 46 UUFF	#FF00 46 #FF00 4B
80	#FF 50 00	# 45 FF00	#00FF 4B	#00 45 FF	# 50 OOFF	#FF00 4B
85	#FF 55 00	# 55 FF00	#OOFF 55	#00 55 FF	# SS COFF	#FF00 55
90	#FF 5A 00	# SA FFOO	#OOFF SA	#00 SA FF	# SA OOFF	#FF00 5A
95	SFF SF 00	# SF FFOO	#OOFF SF	#00 SF FF	# SF OOFF	#FF00 SF
100	#FF 64 00	# 64 FF00	#00FF 64	#00 64 FF	# 64 00FF	#FF00 64
105	#FF 69 00	# 69 FF00	#00FF 69	#00 69 FF	# 69 00FF	#FF00 69
110	#FF 6E 00	# 6E FF00	#00FF 6E	#00 6E FF	# 6E OOFF	#FF00 6E
115	#FF 73 00	# 73 FF00	#00FF 73	#00 73 FF	# 73 00FF	#FF00 73
120	#FF 78 00	# 78 FF00	#00FF 78	#00 78 FF	# 78 00FF	#FF00 78
125	#FF 7D 00	# 7D FF00	#00FF 7D	#00 7D FF	# 7D 00FF	#FF00 7D
130	#FF 82 00	# 82 FF00	#00FF 82	#00 82 FF	# 82 OOFF	#FF00 82
135	#FF 87 00	# 87 FF00	#00FF 87	#00 87 FF	# 87 OOFF	#FF00 87
140	#FF 8C 00	# 8C FF00	#OOFF SC	#00 8C FF	# 8C 00FF	#FF00 8C
145	#FF 91 00	# 91 FF00	#00FF 91	#00 91 FF	# 91 00FF	#FF00 91
150	#FF 96 00	# 96 FF00	#00FF 96	#00 96 FF	# 96 00FF	#FF00 96
155	#FF 9B 00	# 9B FF00	#00FF 9B	#00 9B FF	# 9B 00FF	#FF00 9B
160	#FF A0 00	# A0 FF00	#OOFF AO	#00 A0 FF	# AO 00FF	#FF00 A0
165	#FF A5 00	# A5 FF00	#00FF A5	#00 A5 FF	# AS OOFF	#FFOO A5
170 175	#FF AA OO	# AA FFOO # AF FFOO	#OOFF AA	#00 AA FF #00 AF FF	# AA OOFF # AF OOFF	#FFOO AA #FFOO AF
180		# B4 FF00			# B4 00FF	#FF00 B4
185	#FF B4 00 #FF B9 00	# B9 FF00	#00FF B4 #00FF B9	#00 B4 FF #00 B9 FF	# B9 OOFF	#FF00 B9
190	#FF BE 00	# BE FF00	#OOFF BE	#00 BE FF	# BE OOFF	#FFOO BE
195	#FF C3 00	# C3 FF00	#OOFF C3	#00 C3 FF	# C3 OOFF	#FF00 C3
200	#FF C8 00	# C8 FF00	#OOFF C8	#00 C8 FF	# CS COFF	#FF00 C8
205	#FF CD 00	# CD FFOO	#OOFF CD	#00 CD FF	# CD OOFF	#FF00 CD
210	#FF D2 00	# D2 FF00	#00FF D2	#00 D2 FF	# D2 00FF	#FF00 D2
215	#FF D7 00	# D7 FF00	#00FF D7	#00 D7 FF	# D7 OOFF	#FF00 D7
220	#FF DC 00	# DC FF00	#OOFF DC	#00 DC FF	# DC OOFF	#FF00 DC
225	#FF E1 00	# E1 FF00	#00FF E1	#00 E1 FF	# El COFF	#FF00 E1
230	#FF E6 00	# E6 FF00	#00FF E6	#00 E6 FF	# E6 OOFF	#FF00 E6
235	#FF EB 00	# EB FF00	#OOFF EB	#00 EB FF	# BB OOFF	#FF00 EB
240	#FF FO 00	# FO FF00	#00FF F0	#00 FO FF	# FO COFF	#FF00 F0
245	#FF F5 00	# F5 FF00	#OOFF FS	#00 F5 FF	# F5 OOFF	#FFOO F5
250	#FF FA 00	# FA FFOO	#OOFF FA	#00 FA FF	# FA COFF	#FF00 FA
255	#FF FF 00	# FF FF00	#OOFF FF	#00 FF FF	# FF OOFF	#FF00 FF
	FFFF00		00FFFF		FF00FF	
1	Vallow		Cyan		Purple	
- 4	Yellow		Cyan		Purple	

Key Requirements

- Must be faster than current readers.
- Must produce a viewable image
 - Image quality must be high enough to view features in the image
- Scalable image quality
 - When zooming in on image, the quality should increase
- Support for multiple image formats

Schedule

ID	Task Name	Start	Finish	Duration	Nov 2015 Dec 2015 Jan 2016 Feb 2016 Mar 2016 Apr 2016
1	Get familiar with GDAL	11/17/2015	11/23/2015		
2	Implement primitive stochastic reader	11/24/2015	11/30/2015		
3	Study outputs to find most efficient outputs based on viewing area	12/2/2015	12/14/2015	1.8w	
4	Implement "smart read"	1/12/2016	2/8/2016		
5	Optimize reader	2/9/2016	4/22/2016	10.8w	
6	Render GDAL output in bgfx application.	1/12/2016	1/21/2016		
7	Implement image panning	1/22/2016	2/2/2016		
8		2/3/2016	2/12/2016		
9	Implement "recently viewed" cache	2/15/2016	3/4/2016		
10	Create toolbar	3/7/2016	3/16/2016		
11	Optimization/Optional Features	3/17/2016	4/22/2016	5.4w	

Conclusion

- Current image readers are inefficient.
- Stochastic reader has potential to improve productivity.
- GDAL integration will allow it to be used by anyone.