Distribution Theory and Applications — Example Sheet 1

Lucas Riedstra

4 November 2020

For both question 2, we need the following lemma:

Lemma 1. Let $K, V \subseteq \mathbb{R}^n$ where K is compact, V is closed, and $K \cap V = \emptyset$. Then there is a nonzero distance between K and V, i.e.,

$$\inf_{x \in K, v \in V} ||x - v|| > 0.$$

Proof. We know that $K \subseteq V^{\complement}$ and that V^{\complement} is open, so for every $x \in K$ there exists an open ball $B(x, \varepsilon_x)$ around x such that $B(x, 2\varepsilon_x) \subseteq V^{\complement}$. Since $\{B(x, \varepsilon_x)\}$ is an open covering of K, there exist finitely many balls $B(x_1, \varepsilon_1), \ldots, B(x_n, \varepsilon_n)$ that cover K. Let $\varepsilon := \min \{\varepsilon_1, \ldots, \varepsilon_n\}$ and $x \in K$, then there is an x_i such that $||x - x_i|| < \varepsilon$, and since $B(x_i, 2\varepsilon) \subseteq B(x_i, 2\varepsilon_i) \subseteq V^{\complement}$ it is clear that $B(x, \varepsilon) \subseteq V^{\complement}$ as well.

We conclude that $B(x,\varepsilon) \subseteq V^{\complement}$ for any $x \in K$, and therefore that $\inf_{x \in K, v \in V} ||x-v|| \ge \varepsilon > 0$. \square

Question 2. Given $\varphi \in \mathcal{D}(X)$, Taylor's theorem gives

$$\varphi(x+h) = \sum_{|\alpha| \le N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h).$$

Prove that supp (R_N) is contained in some fixed compact $K \subseteq X$ for |h| sufficiently small. Show also that $\partial^{\alpha} R_N = o(|h|^N)$ uniformly in x for each multi-index α , i.e. prove

$$\lim_{|h| \to 0} \frac{\sup_{x} \left| \partial^{\alpha} R_{N}(x,h) \right|}{\left| h \right|^{N}} = 0$$

for each multi-index α .

Hint: you may find it convenient to use the following form of the remainder

$$R_N(x,h) = \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_0^1 (1-t)^N (\partial^{\alpha} \varphi)(x+th) dt,$$

and note that $(N+1)! \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} = (h_1 + \dots + h_n)^{N+1}$.

Proof. Let $\varphi \in \mathcal{D}(X)$ with $K = \text{supp } \varphi$, then by lemma 1 we know there exists a nonzero distance d > 0 between K and $\mathbb{R}^n \setminus X$. We claim that if $||h|| \leqslant \frac{d}{2}$, then

$$\operatorname{supp}(R_N) \subseteq \left\{ x \in X \mid d(x, K) \leqslant \frac{d}{2} \right\} =: \hat{K},$$

which is clearly a compact set contained in X. Indeed, if $||h|| \leq \frac{d}{2}$ we have

$$\varphi(x+h) \neq 0 \implies x+h \in K \implies d(x,K) \leqslant ||h|| \leqslant \frac{d}{2}.$$

By Taylor's theorem, we have

$$\varphi(x+h) = \sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x) + R_N(x,h),$$

and since $\sum_{|\alpha| \leq N} \frac{h^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(x)$ vanishes for $x \notin K$, it is clear that $\sup(R_N(\cdot, h))$ must be contained in \hat{K} (for $||h|| \leq \frac{d}{3}$).

Now let β be a multi-index and define $C := \frac{1}{N!} \max_{|\alpha|=N+1, x \in \mathbb{R}^n} |(\partial^{\alpha+\beta})\varphi(x)|$ (note that C exists and is finite since all partial derivatives of φ have compact support), then we have

$$\begin{aligned} \left| \partial^{\beta} R_{N}(x,h) \right| &= \left| \partial^{\beta} \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\stackrel{\star}{=} \left| \sum_{|\alpha|=N+1} \frac{h^{\alpha}}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} (\partial^{\alpha+\beta} \varphi)(x+th) \, \mathrm{d}t \right| \\ &\leqslant \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \int_{0}^{1} (1-t)^{N} \left| \left(\partial^{\alpha+\beta} \varphi \right)(x+th) \right| \, \mathrm{d}t \\ &\leqslant \left[\max_{|\alpha|=N+1, x \in \mathbb{R}^{n}} \left| \left(\partial^{\alpha+\beta} \right) \varphi(x) \right| \right] \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} (N+1) \\ &= C(N+1)! \sum_{|\alpha|=N+1} \frac{|h^{\alpha}|}{\alpha!} = C(|h_{1}| + \dots + |h_{n}|)^{N+1}. \end{aligned}$$

Here, \star follows from differentiation under the integral sign since the integrand is bounded. Since this upper bound does not depend on x, we also have

$$\sup_{x} \left| \partial^{\beta} R_{N}(x,h) \right| \leqslant C(|h_{1}| + \dots + |h_{n}|)^{N+1},$$

and we conclude that

$$\frac{\sup_{x} \left| \partial^{\beta} R_{N}(x,h) \right|}{\left\| h \right\|^{N}} \leqslant \frac{C(|h_{1}| + \dots + |h_{n}|)^{N+1}}{\left\| h \right\|^{N}} \leqslant \frac{CN^{N+1} \left\| h \right\|^{N+1}}{\left\| h \right\|^{N}} = CN^{N+1} \left\| h \right\| \to 0,$$

and therefore that $\partial^{\beta} R_N(x,h) = o(\|h\|^n)$ for all multi-indices β .

Question 4. Find the most general solution to the equations

- (a) u' = 1,
- (b) $xu' = \delta_0$,
- (c) $(e^{2\pi ix} 1)u' = 0$

in $\mathcal{D}'(\mathbb{R})$.

Solution. Let $\varphi \in \mathcal{D}(X)$.

(a) It is clear that x'=1 in the distributional sense, since for any test function φ we have

$$\langle x', \varphi \rangle = -\langle x, \varphi' \rangle = -\int_{\mathbb{R}} x \varphi'(x) \, \mathrm{d}x = \int_{\mathbb{R}} \varphi(x) \, \mathrm{d}x = \langle 1, \varphi \rangle.$$

Therefore, the equation u'=1 is equivalent to the equation (u-x)'=0. We know that this implies that u-x=c for some constant $c \in \mathbb{C}$, so the most general solution is u=x+c.

(b) If $xu' = \delta_0$ then we have

$$\varphi(0) = \langle \delta_0, \varphi \rangle = \langle xu', \varphi \rangle = \langle u', x\varphi \rangle = \langle u, -(x\varphi)' \rangle = \langle u, -x\varphi' - \varphi \rangle$$

Note that the above is satisfied for $u = -\delta_0 + c$ for any constant $c \in \mathbb{C}$.

I do not know if this is the most general solution and/or how one would show this.

(c) Since $e^{2\pi ix} = 1 \iff x \in \mathbb{Z}$, it is clear that $\operatorname{supp}(u') \subseteq \mathbb{Z}$. We will show that this is also sufficient, i.e., that any distribution u with $\operatorname{supp}(u') \subseteq \mathbb{Z}$ yields a solution.

It is easily seen that

$$\operatorname{supp}(u') \subseteq \mathbb{Z} \iff u' = \sum_{n \in \mathbb{Z}} \alpha_n \delta_n \quad \text{for some } (\alpha_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}$$
$$\iff u = c + \sum_{n \in \mathbb{Z}} \alpha_n \mathbb{1}_{x \geqslant n} \quad \text{for some } c \in \mathbb{C}, \ (\alpha_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}.$$

Indeed, if $u = c + \sum_{n \in \mathbb{Z}} \alpha_n \mathbb{1}_{x \ge n}$ then

$$\langle u', \varphi \rangle = -\langle u, \varphi' \rangle \stackrel{\star}{=} -\alpha_n \sum_{n \in \mathbb{Z} \cap \text{supp } \varphi} \int_n^{\infty} \varphi'(x) \, \mathrm{d}x = \sum_{n \in \mathbb{Z} \cap \text{supp } \varphi} \alpha_n \varphi(n) = \langle \sum_{n \in \mathbb{Z}} \alpha_n \delta_n, \varphi \rangle,$$

where \star follows from the fact that there are only finitely many n in $\mathbb{Z} \cap \operatorname{supp} \varphi$ (since φ has compact support).

Finally, we compute that

$$\langle (e^{2\pi ix} - 1)u', \varphi \rangle = \langle u', (e^{2\pi ix} - 1)\varphi \rangle = \sum_{n \in \mathbb{Z}} \alpha_n (e^{2\pi in} - 1)\varphi(n) = 0,$$

so u satisfies the equation.