Дадим строгое определение понятия "предел последовательности":

$$\lim_{n \to +\infty} a_n = A \iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} : n \geqslant N \Rightarrow |a_n - A| < \varepsilon.$$

Если добавить слов, то получится: какое бы малое число $\varepsilon > 0$ ни было задано, найдётся такой номер $N \in \mathbb{N}$, после которого все члены последовательности отличаются от A меньше, чем на ε . Говорят, что последовательность "стремится" к своему пределу (если он есть). Если у последовательности предела не существует, то она называется "расходящейся".

- 1. По аналогии с пределом функции дайте определение предела последовательности в случае $A = +\infty$, $-\infty$ и ∞ .
- 2. Докажите, что последовательности **a**) $a_n = 1 + (-n)^{-n}$ и **б**) $a_n = 2^{-1} + 2^{-2} + \ldots + 2^{-n}$ стремятся к единице, а последовательности **в**) $a_n = 1 + (-1)^n$ и **г**) $a_n = 1 + 10^{-p(n)}$, где p(n) количество различных простых делителей числа n, расходящиеся.
- 3. Докажите, что при |q| < 1 последовательность $S_n = b + bq + \ldots + bq^{n-1}$ сходится к $\frac{b}{1-q}$.

Свойства предела последовательности

Все сформулированные в предыдущем листке свойства предела функции имеют аналоги для последовательностей.

- 4. Сформулируйте эти свойства на языке предела последовательности.
- 5. Докажите, что сходящаяся последовательность ограничена, т. е. если $\lim_{n \to +\infty} a_n = A$, то существует такое число M, что $|a_n| \leq M$ для всех $n \in \mathbb{N}$.

Основные пределы

Вычислите следующие пределы, считая, что фиксировано некоторое число $a \in (1, +\infty)$:

- 6. $\lim_{n \to +\infty} \frac{1}{a^n}$.
- 7. $\lim_{n \to +\infty} \sqrt[n]{a}$.
- 8. $\lim_{n \to +\infty} \frac{n}{a_n^n}$
- 9. $\lim_{n \to +\infty} \frac{a^n}{n!}$.
- 10. $\lim_{n\to+\infty} \sqrt[n]{n}$.

Вычисление пределов

Найдите пределы последовательностей, или докажите, что они не существуют:

- 11. $\lim_{n \to +\infty} \frac{20n + 18}{n + 16}$.
- 12. $\lim_{n \to +\infty} \frac{2n^2 + n + 8}{n^2 + 1}.$
- 13. $\lim_{n \to +\infty} \frac{n^2 + 1}{n^3 20}.$
- 14. $\lim_{n \to +\infty} (\sqrt{n+2018} \sqrt{n}).$
- 15. $\lim_{n \to +\infty} (\sqrt{n^2 + 2018n} n).$
- 16. $\lim_{n \to +\infty} \frac{3n^2 + 5^n + 4^n}{n + 5^n + 2 \cdot 3^n}$

¹Нетрудно видеть, что эта сумма — сумма бесконечно убывающей геометрической прогрессии.

Второй замечательный предел

Очевидно, что не у каждого ограниченного сверху множества вещественных чисел есть максимальный элемент, например, у интервала (0,1) его нет. Оказывается², что у множества всех его верхних граней есть минимальный элемент. Он называется точной верхней гранью или супремумом:

$$\sup M = A \iff^{\text{onp}} (\forall x \in M : x \leqslant A) \& (\forall \varepsilon > 0 \exists : x \in M : A < x + \varepsilon).$$

Аналогично, если множество M вещественных чисел ограничено снизу, то у множества его нижних граней есть максимальный элемент — точная нижняя грань или инфимум ($\inf M$).

- 17. Докажите, что ограниченная сверху возрастающая последовательность сходится к супремуму множества её элементов. Т. е. для возрастающей последовательности $(a_n)_{n\in\mathbb{N}}$ верно равенство $\lim_{n\to+\infty} a_n = \sup\{a_n : n \in \mathbb{N}\}.$
- 18. Докажите, что последовательность $(1+\frac{1}{n})^n$ сходится³.
- 19. Найдите предел $(1-\frac{1}{n})^n$. 20. Найдите предел $\lim_{n\to+\infty}(\frac{n}{n+3})^n$.
- 21. Найдите предел $\lim_{n \to +\infty} \left(\frac{3^n + n}{3^n}\right)^{\frac{3^n}{2n-1}}$.
- 22. Докажите, что последовательность (x_n) , заданная рекуррентными соотношениями $x_1 = \frac{1}{2}, \ x_{n+1} = \frac{1}{2} + \frac{x_n^2}{2}$, сходится и найдите её предел.

Формула n-го члена последовательности

- 23. Выведите формулы общего члена и n-ной частичной суммы последовательности (c_n) с заданными параметрами $c_1, d \neq 0, q \neq 0$ и рекуррентной формулой $c_{n+1} = qc_n + d$.
- 24. Найдите член x_{2022} рекуррентной последовательности, заданной условиями **a)** $x_1 = 0$, $x_2 = 1, x_{n+2} = x_{n+1} - x_n;$ **6)** $x_1 = 1, x_2 = 2, x_{n+2} = x_{n+1}/x_n.$
- 25. Найдите формулу n-го члена последовательности, заданной условиями **a)** $x_1 = -7$, $x_{n+1} = 10x_n - 3 \cdot 5^n$; 6) $x_1 = 3$, $x_{n+1} = \frac{2x_n}{5 - 3x_n}$.

Линейные рекуррентные последовательности

Последовательность (a_n) называется линейной рекуррентной последовательностью второго порядка, если заданы a_0 , a_1 и рекуррентная формула $a_{n+2} = pa_{n+1} + qa_n$.

- 26. Докажите, что, если последовательности (b_n) и (c_n) удовлетворяют одному рекуррентному уравнению, то ему удовлетворяет и $a_n = xb_n + yc_n$ при любых $x, y \in \mathbb{R}$.
- 27. Докажите, что, если (характеристическое) уравнение $\lambda^2 = p\lambda + q$ имеет два различных вещественных корня λ_1 и λ_2 , то обе последовательности $b_n=\lambda_1^n$ и $c_n=\lambda_2^n$ удовлетворяют рекуррентному уравнению $a_{n+2} = pa_{n+1} + qa_n$.
- 28. Запишите формулу n-го члена линейной рекуррентной последовательности второго порядка, у которой характеристическое уравнение имеет корни $\lambda_1 \neq \lambda_2$.
- 29. Запишите формулу n-го члена линейной рекуррентной последовательности второго порядка, у которой характеристическое уравнение имеет корни $\lambda_1 = \lambda_2$.
- 30. Найдите формулу общего члена последовательности, заданной условиями $a_0=1,$ $a_1 = 5$, $a_{n+2} = a_{n+1} + 6a_n$.
- 31. Найдите формулу общего члена последовательности Фибоначчи, заданной условиями $f_0 = 1, f_1 = 1, f_{n+2} = f_{n+1} + f_n.$

²Мы поясним это строго немного позже.

 $^{^{3}}$ Предел этой последовательности принято обозначать буквой e.

 $^{^4}$ Данную последовательность иногда называют **арифметико-геометрической прогрессией**.