Regularization and Shrinkage: Why do They Matter?

- Content covered:
 - Motivation
 - From linear regression to Ridge and Lasso
 - Connections with Singular Value Decomposition and Principle Component Analysis
 - Example
- This lecture will be held online on Microsoft Teams.
- The event will be recorded and will be publicly available.
- Attendance is FREE for members! Whether you are a student at Imperial College or not, sign up to be a member at www.icdss.club/joinus
- We encourage participants of this workshop to have looked at our previous sessions on YouTube. Prerequisites: basic understanding of Bayesian statistics
- A schedule of our lecture series is currently available

Motivation and Setup

Given covariates $x_i = (x_{i1}, x_{i2}, \dots, x_{id})^{\mathsf{T}} \in \mathbb{R}^d$ and response variables $y_i, i = 1, \dots, n$, so that

$$y_i = f(x_i) + \epsilon_i,$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ is a Gaussian noise.

For convenience, we write everything in matrix form: for $\epsilon \sim \mathcal{N}(0, \sigma^2 I_n)$,

$$Y = f(X) + \epsilon$$
,

where $Y = (y_1, \dots, y_n)^{\mathsf{T}}$, and $X \in \mathbb{R}^{n \times d}$ whose *i*-th row is x_i .

E.g. When $f(X) = \alpha_0 \mathbf{1} + X \beta_0$, $Y = X \beta_0 + \epsilon$, and $(\alpha_0, \beta_0) \in \mathbb{R}^{d+1}$ are the true parameters.

Want to learn f.

Linear regression

Assume $Y = \alpha_0 \mathbf{1} + x \beta_0$.

Least-square (LS) solution: Find the optimal $(\hat{\alpha}, \hat{\beta}) \in \mathbb{R}^{d+1}$ by minimizing the least-square error:

$$(\hat{\alpha}, \hat{\beta}) = \operatorname{argmin}_{(\alpha, \beta) \in \mathbb{R}^{d+1}} \|Y - \alpha \mathbf{1} - X\beta\|_2^2.$$

Let $\tilde{X} = [1 \ X]$ be the design matrix with an intercept. Simple linear algebra gives the LS solution:

$$(\hat{\alpha}, \hat{\beta}^{\mathsf{T}})^{\mathsf{T}} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^{\mathsf{T}} Y.$$

Caveat: For the LS solution to be well-defined, the $d \times d$ matrix $\tilde{X}^T \tilde{X}$ needs to be invertible, or equivalently, \tilde{X} need to have full-rank ($n \geq d$).

Problem: What about when d >> n?

E.g. 1. In cancer prediction problems, it is common to have thousands of gene expressions as your covariates, but only a few hundreds of patients' record.

E.g. 2. In a customer behaviour analysis where you are given whether a customer has purchased a product from Amazon as the response, and some features (type of product, price, time of visit etc.) as covariates. You don't really want to *predict* buy/not buy, but to understand which features, amongst a handful of them, are most correlated to the purchase behaviour.

Summary

LS is good, but does not give us an answer when:

- 1. The problem is high-dimensional and we have more features than cases.
- 2. We are interested in selecting features that are most "important".

Ridge Regression

Ridge solution: Find the optimal $(\hat{\alpha}, \hat{\beta}) \in \mathbb{R}^{d+1}$ by minimizing the least-square error with L_2 -penalty:

$$(\hat{\alpha}, \hat{\beta}) = \operatorname{argmin}_{(\alpha, \beta) \in \mathbb{R}^{d+1}} \|Y - \alpha \mathbf{1} - X\beta\|_2^2 + \lambda \|\beta\|_2^2,$$

where $\|\beta\|_2^2 = \sum_{j=1}^d \beta_j^2$ is called the penalty/regularization term, and $\lambda > 0$ is a hyperparameter we need to choose (often by cross-validation).

Why adding in a regularization helps?

Under some conditions (Y is centred, columns of X are standardized), the Ridge solution can be derived analytically:

$$\hat{\alpha} = \frac{1}{n} \sum_{i=1}^{n} Y_i = 0,$$

$$\hat{\beta} = (X^{\mathsf{T}} X + \lambda I_n)^{-1} X^{\mathsf{T}} Y,$$

Key observations: Comparing with LS solution $\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$,

- $(X^{\intercal}X + \lambda I_n)$ is always invertible for **any** X, as long as $\lambda > 0$. So the Ridge solution is always well-defined.
- Adding the penalty term shrinks the fitted coefficients in $\hat{\beta}$ towards zero (more on this later).
- $\hat{\beta}$ is now biased, but always has a smaller variance for a judicious choice of λ (biasvariance trade-off):

Mean-Square Error = Variance + Bias^2.

Choosing λ

The optimal λ is often chosen by cross-validation:

- 1. Split training data into various subsets, called **folds**.
- 2. For each λ over a pre-defined grid of values $\lambda_1, \ldots, \lambda_k$, calculate Ridge solution from all but one folds, compute out-of-sample error on the rest fold, and repeat to get an averaged loss.
- 3. Pick the λ that gave the smallest averaged cross-validation loss over all folds.

1	2	3	4	5
Train	Train	Validation	Train	Train

Connections with PCA

Idea of Principal Value Analaysis (PCA):

Find the directions along which the **features** X with the largest variance (i.e. most informative), and only look at the first few of them.

The variance is quantified by the **eigenvalues** of the matrix $X^{T}X$, and the directions are given by their **eigenvectors**, called principal components (PCs).

Principal component regression: Use the top, say s, eigenvectors as the covariates, and perform least-square fit to find $\hat{\beta}$.

Principal component regression:

- 1: Perform PCA to create PCs as our new input features
- 2: Use these PCs as input features to train our model for a least-square fit.
- 3: Transform these PCs back to the original input features, in order to make predictions on the actual dataset.

$$\begin{pmatrix} X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \end{pmatrix} \xrightarrow{PCA} \begin{pmatrix} Z_{1} \\ Z_{2} \end{pmatrix}$$

$$OLS \longleftarrow Y = \beta_{0} + \beta_{1} \times_{1} + \beta_{2} \times_{2} + \beta_{3} \times_{3} + \beta_{4} \times_{4}$$

$$PCA \longleftarrow Y = \beta_{0} + \beta_{1}' Z_{1} + \beta_{2}' Z_{2}$$

Connections with PCA

Adding the penalty term in Ridge regression effectively shrinks the Ridge solution $\hat{\beta}$ according to the **eigenvalues** of the matrix $X^{T}X$.

- Let $\hat{\boldsymbol{\beta}}^{(LS)}$ = LS solution, $\hat{\boldsymbol{\beta}}_s^{(PC)}$ = PC regression with s PCs, $\hat{\boldsymbol{\beta}}_{\lambda}^{(R)}$ = Ridge solution with regularization parameter $\lambda > 0$.
- Let $D_1 \geq D_2 \geq \ldots \geq D_d$ be the eigenvalues of $X^{\intercal}X$ with corresponding eigenvectors u_1, \ldots, u_d .

Fact: The fitted values can be rewritten as

$$X\hat{\beta}^{(LS)} = \sum_{j=1}^{d} (u_j^{\mathsf{T}} Y) u_j$$

$$X\hat{\beta}_s^{(PC)} = \sum_{j=1}^{s} (u_j^{\mathsf{T}} Y) u_j$$

$$X\hat{\beta}_{\lambda}^{(R)} = \sum_{j=1}^{d} \frac{D_j^2}{D_j^2 + \lambda} (u_j^{\mathsf{T}} Y) u_j$$

Connections with PCA

Key observations:

- Ridge shrinks the directions with the smallest eigenvalues the most.
- λ 1, shrinkage 1

Lasso Regression

Lasso solution: Find the optimal $(\hat{\alpha}, \hat{\beta}) \in \mathbb{R}^{d+1}$ by minimizing the least-square error with L_1 -penalty:

$$(\hat{\alpha}, \hat{\beta}) = \operatorname{argmin}_{(\alpha, \beta) \in \mathbb{R}^{d+1}} \frac{1}{2} \|Y - \alpha \mathbf{1} - X\beta\|_2^2 + \lambda \|\beta\|_1,$$

where $\|\beta\|_1 = \sum_{j=1}^d |\beta_j|, \lambda > 0$ is a hyperparameter we need to choose.

Key observations:

- Lasso is more likely to give rise to $\hat{\beta}$ that are **exactly** zero.
- Lasso solutions has nice theoretical properties: with judicious choice of λ and under regularity conditions, $\hat{\beta} \approx \beta_0$ with high probability.
- Lasso can be combined with Ridge to give the *elastic net* penalty: for $\alpha \in [0, 1]$ $\lambda \left(\alpha \|\beta\|_2^2 + (1-\alpha) \|\beta\|_1 \right)$.