ФГБОУ ВО «Самарский государственный технический университет»

Кафедра прикладной математики и информатики

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ курса «Теория вероятностей и математическая статистика» Вариант 6

Выполнил студент:

Калачиков Алексей Юрьевич группа: 3-ИАИТ-10

Проверил:

к.ф.-м.н., доцент Попов Николай Николаевич

Содержание

1.	Статистическая обработка малой выборки				
	1.1. Цел	ь работы	2		
		работы			
	1.2.1.	Построить эмпирическую функцию распределения $F^*(x)$	3		
	1.2.2.	Найти оценку математического ожидания	4		
	1.2.3.	Найти несмещенную оценку дисперсии и среднеквадратичного			
		отклонения.	4		
	1.2.4.	Найти доверительный интервал для математического ожида-			
		ния и дисперсии при значениях доверительной вероятности			
		$\beta=0,9$ и $\beta=0,95$	4		
	1.2.5.	Выдвинуть гипотезу о законе распределения генеральной сово-			
		купности. В качестве гипотического закона принять нормаль-			
		ный закон распределения	5		
	1.2.6.	На чертеже с графиком эмпирической функции $F^*(x)$ постро-			
		ить график теоретической функции $F(x)$	6		
	1.2.7.	Оценить меру расхождения между теоретическим и статисти-			
		ческим распределениями по критерию Колмогорова	7		
	1.3. Выв	вод	7		
	1.4. Пистинг				

Лабораторная работа 1

Статистическая обработка малой выборки

1.1. Цель работы

- 1. Построить эмпирическую функцию распределения $F^*(x)$.
- 2. Найти оценку математического ожидания.
- 3. Найти несмещенную оценку дисперсии и среднеквадратичного отклонения.
- 4. Найти доверительный интервал для математического ожидания и дисперсии при значениях доверительной вероятности $\beta=0,9$ и $\beta=0,95$.
- 5. Выдвинуть гипотезу и законе распределения генеральной совокупности. В качестве гипотического закона принять нормальный закон распределения.
- 6. На чертеже с графиком эмпирической функции $F^*(x)$ построить график теоретической функции F(x).
- 7. Оценить меру расхождения между теоретическим и статистическим распределениями по критерию Колмогорова.

1.2. Ход работы

1.2.1. Построить эмпирическую функцию распределения $F^*(x)$.

Начальные данные	Отсортированные данные	Накопленная частота
7,03	4,71	0,05
4,71	5,73	0,1
7,72	6,42	0,15
5,73	6,83	0,2
10,27	6,83	0,25
10,71	6,89	0,3
6,83	7,03	0,35
8,03	7,06	0,4
6,89	7,57	0,45
7,57	7,72	0,5
9,12	7,72	$0,\!55$
8,28	7,95	0,6
8,61	8,03	$0,\!65$
6,42	8,21	0,7
7,95	8,28	0,75
7,06	8,61	0,8
7,72	9,12	0,85
9,44	9,44	0,9
6,83	10,27	0,95
8,21	10,71	1

Построим эмпирическую функцию распределения на основе отсортированных данных. График эмпирической функции.

1.2.2. Найти оценку математического ожидания.

Математическое ожидание — среднее значение случайной величины. Оно находится по формуле:

$$\tilde{m} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Найдем оценку математического ожидания: m = 7,757.

1.2.3. Найти несмещенную оценку дисперсии и среднеквадратичного отклонения.

Несмещенная оценка дисперсии находится по формуле:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{x})^{2}.$$

Найдем несмещенную оценку дисперсии: $S^2 = 2,092$.

Среднеквадратичное отклонение находится по формуле:

$$\sigma = \sqrt{S^2}$$
.

Найдем среднеквадратичное отклонение: $\sigma = 1,446$.

1.2.4. Найти доверительный интервал для математического ожидания и дисперсии при значениях доверительной вероятности $\beta=0,9$ и $\beta=0,95$.

Доверительный интервал для математического ожидания вычисляется по формуле:

$$\bar{x} - \frac{t_{\beta,n-1}\bar{S}}{\sqrt{n}} < m < \bar{x} + \frac{t_{\beta,n-1}\bar{S}}{\sqrt{n}}$$
 $t_{\beta,n-1} = t_{0,9,19} = 1,73;$
 $t_{\beta,n-1} = t_{0,95,19} = 2,09.$

При значении доверительной вероятности $\beta = 0, 9$:

При значении доверительной вероятности $\beta = 0,95$:

Доверительный интервал для дисперсии вычисляется по формуле:

$$\frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2},n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2},n-1}}$$

При значении доверительной вероятности $\beta = 0, 9$:

$$\chi_{1-\frac{\alpha}{2},n-1}^2 = \chi_{0,95,19}^2 = 30, 14;$$

$$\chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0,05,19}^2 = 10, 17.$$

$$1, 148 < \sigma < 1, 977.$$

При значении доверительной вероятности $\beta = 0,95$:

$$\chi^{2}_{1-\frac{\alpha}{2},n-1} = \chi^{2}_{0,975,19} = 32,85;$$

$$\chi^{2}_{\frac{\alpha}{2},n-1} = \chi^{2}_{0,025,19} = 8,91.$$

$$1,099 < \sigma < 2,112.$$

1.2.5. Выдвинуть гипотезу о законе распределения генеральной совокупности. В качестве гипотического закона принять нормальный закон распределения.

Предполагаемый закон распределения— нормальный. Выдвигаем гипотезу H_0 о подчинении случайной величины X нормальному закону распределения

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$
$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dt$$

где σ^2 — несмещенная оценка дисперсии, m — выборочное среднее.

1.2.6. На чертеже с графиком эмпирической функции $F^*(x)$ построить график теоретической функции F(x).

Начальные данные	Отсортированные данные	Накопленная частота	F(x)
7,03	4,71	0,05	0,02
4,71	5,73	0,1	0,08
7,72	6,42	0,15	0,18
5,73	6,83	0,2	0,26
10,27	6,83	0,25	0,26
10,71	6,89	0,3	0,27
6,83	7,03	0,35	0,31
8,03	7,06	0,4	0,31
6,89	7,57	0,45	0,45
7,57	7,72	0,5	0,49
9,12	7,72	0,55	0,49
8,28	7,95	0,6	0,55
8,61	8,03	0,65	0,57
6,42	8,21	0,7	0,62
7,95	8,28	0,75	0,64
7,06	8,61	0,8	0,72
7,72	9,12	0,85	0,83
9,44	9,44	0,9	0,88
6,83	10,27	0,95	0,96
8,21	10,71	1	0,98

Графики теоретической и эмпирической функций.

1.3. Вывод 7

1.2.7. Оценить меру расхождения между теоретическим и статистическим распределениями по критерию Колмогорова.

Максимальное значение модуля разности между значениями эмпирической и теоретической функциями равно

$$U = \sup_{x \in R} |F(x) - F^*(x)|.$$

Определяя разницу U, получаем $U_0 = 0, 11$. Вычисляем λ_0 :

$$\lambda_0 = U_0 \sqrt{n} = 0,49.$$

Для
$$\alpha = 0,01$$
: $\lambda_{kp} = 1,63 > 0,49$
Для $\alpha = 0,05$: $\lambda_{kp} = 1,36 > 0,49$

Поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.

1.3. Вывод

Построил эмпирическую функцию распределения на основе отсортированных данных, вычислил мат. ожидание, несмещенную оценку дисперсии и среднеквадратичного отклонения и т.д. Гипотеза о том, что данное распределение было нормальным - принята.

1.4. Листинг

Листинг 1.1: lab1.py

- ı # ЛАБОРАТОРНАЯ РАБОТА №1
- 2 # Предмет: Теория вероятностей и математическая статистика
- з|# Тема: Статистическая обработка малой выборки
- 4 # Задания:
- $_{5}|\#\ 1$. Построить эмпирическую функцию распределения F*(x).
- $_{6}|\#\ 2$. Найти оценку математического ожидания.
- 7 # 3. Найти несмещенную оценку дисперсии и среднеквадратичного отклонения.
- в # 4. Найти доверительный интервал для математического ожидания и дисперсии при значениях доверительной вероятности
- 9 | # = 0, 9 u = 0, 95.
- # 5. Выдвинуть гипотезу и законе распределения генеральной совокупности. В качестве гипотического закона принять
- 11 # нормальный закон распределения.
- # 6. На чертеже с графиком эмпирической функции F*(x) построить график теоретической функции F(x).
- # 7. Оценить меру расхождения между теоретическим и статистическим распределениями по критерию Колмогорова.

16 # Импортируем модули

14

```
17
18 import pandas as pd
19 import numpy as np
20 import scipy.stats
21 from matplotlib import pyplot as plt
22
_{23} # Загрузим данные из .xlsx файла
24 df = pd.read_excel("data.xlsx")
_{25} \# x = [4.71, 5.73, 6.42, 6.83, 6.83, 6.89, 7.03, 7.06, 7.57, 7.72,
     7.72, 7.95, 8.03, 8.21, 8.28, 8.61, 9.12, 9.44,
_{26} # 10.27, 10.71
27
 x = df['Oтсортированные данные']. tolist()
<sub>29</sub>| y = dfНакопленная[" частота "]. tolist ()
 n = len(x) \# объем выборки
31
32
 # Постороение эмпирической функции распределения на основе отсортированных
     данных.
  def histogram():
34
       print ("1. Построить эмпирическую функцию распределения F*(x).")
35
      fig , ax = plt.subplots()
36
      ax.bar(x, y, width=1.02)
37
38
      ax.set titleПостороение("эмпирической функции распределения на основе
39
     отсортированных данных")
      ax.set xlabelЭкспериментальные(" данные")
40
      ax.set ylabelНакопленная(" частота")
41
42
      ax.set facecolor('white')
43
      fig . set facecolor('white')
      fig.set figwidth (10) # ширина Figure
45
      fig.set figheight(6) # высота Figure
46
47
      plt.show()
48
      # print(df.head(20))
49
50
51
 # Оценка математического ожидания
52
  def mathematical expectation():
       print("\n2. Оценка математического ожидания")
54
       print Объем("выборки: "+ str(len(x)) +
55
             "\Максимумп: " + str("%.3f" \% max(x)) +
56
             "\Минимумп: " + str("%.3f" % min(x)) +
57
             "\Размахи выборки: " + str("\%.1f" \% ((max(x)) - min(x))))
58
59
      # Математическое ожидание — среднее значение случайной величины
60
      global mean
61
      mean = sum(x) / len(x)
62
       print Mateмatuческое (" ожидание: " + str ("%.3f" % mean))
63
```

```
64
65
  # Несмещенная оценка дисперсии и среднеквадратичное отклонение
  def standard deviation():
67
       print ("\n3. Найти несмещенную оценку дисперсии и среднеквадратичного
      отклонения. ")
       # Несмещенная оценка дисперсии
69
       s2 = 1 / (len(x) - 1) * sum((i - mean) ** 2 for i in x)
70
71
       # Среднеквадратическое отклонение
72
       s2n = s2 ** (1 / 2)
73
       print Несмещенная ( "оценка дисперсии: " + str("%.3f" % s2) +
              "\Среднеквадратическоеп отклонение: " + str("\%.3f" \% s2n))
75
76
77
  # Доверительный интервал для математического ожидания и дисперсии при значениях
78
      доверительной вероятности
    = 0.9 \text{ u} = 0.95.
  def confidence interval():
       print (
81
            "\n4. Найти доверительный интервал для математического ожидания и
82
      дисперсии при значениях доверительной "
            вероятности" = 0.9 \text{ и} = 0.95.")
83
       confidence1 = 0.9
84
       confidence2 = 0.95
85
86
       # Доверительный интервал для математического ожидания
87
       a = 1.0 * np.array(x)
88
       n = len(a)
89
       m, se = np.mean(a), scipy.stats.sem(x)
90
       h1 = se * scipy.stats.t.ppf((1 + confidence1) / 2., n - 1)
91
       h2 = se * scipy.stats.t.ppf((1 + confidence2) / 2., n - 1)
93
       print("\\Piput = 0. 9, получаем: \t\t\t\t\t\\Piput = 0. 95, получаем:"
94
              "\n\ttt распределение—: ", "%.3f" % scipy.stats.t.ppf((1 +
95
      confidence1) / 2., n - 1),
              ''\t\t\t\t\ttpаспределение—: ", "%.3f" % scipy.stats.t.ppf((1 +
96
      confidence 2) / 2, n - 1),
              "\n\Леваяt граница: ", str("\%.3f" \% (m - h1)), "ttttt
97
      Леваяt граница: ", str("%.3f" \% (m - h2)),
              "\n\Праваяt граница: ", str("%.3f" % (m + h1)), "\t\t\t\t\t\t
98
      Праваят граница: ", str("\%.3f" \% (m + h2)))
99
       # Выдвинуть гипотезу о законе распределения генеральной совокупности. В
100
      качестве гипотического закона принять
       # нормальный закон распределения.
101
102
103
  def hypothesis():
104
       print (
105
```

```
"\n5. Выдвинуть гипотезу и законе распределения генеральной совокупности.
106
       В качестве гипотического закона"
            принять нормальный закон распределения. )
107
108
        printПредполагаемый(" закон распределения — нормальный. Выдвигаем
109
      гипотезу НО о подчинении "
              случайной величины Х нормальному закону распределения )
110
111
112
  # На чертеже с графиком эмпирической функции F*(x) построить график
113
      теоретической функции F(x).
   def theoretical function():
       print (
115
            "\n6. На чертеже с графиком эмпирической функции F*(x) построить
116
      график теоретической функции F(x).")
117
       # Гос — среднее значение случайно величины
118
       # scale — среднее отклонение случайно величины
119
       cdf = scipy.stats.norm.cdf(x, loc=7.757, scale=1.446)
121
       fig = plt.figure(figsize = (10, 5))
122
       ax = fig.add subplot()
123
124
       # ax.set titleГрафик(" теоретический функции")
125
       \# ax.set xlabelЭкспериментальные(" данные")
126
       # ax.set ylabelНакопленная(" частота")
127
128
       ax.step(x, y, label = "F(x)")
129
       ax.plot(x, cdf, color='red', labelЧастота="")
130
       ax.grid()
131
       ax.legend()
132
133
       plt.show()
134
       # print(cdf)
135
136
137
  # Оценить меру расхождения между теоретическим и статистическим распределениями
138
      по критерию Колмогорова.
   def kolmogorov criterion():
139
       print (
140
            "\n7. Оценить меру расхождения между теоретическим и статистическим
141
      распределениями по критерию Колмогорова. ")
       cdf = scipy.stats.norm.cdf(x, loc=7.757, scale=1.446)
142
143
       # Вычислим максимальное значение модуля разности между значениями
144
      эмпирической и теоретической функциями:
       u = max(y - cdf)
145
        print Maксимальное ( " значение модуля разности между значениями эмпирической
146
      и теоретической функциями: U = ",
              "%.2f" % u)
147
```

```
148
       # Вычислям лямбда 0:
149
       lambda0 = u * np.sqrt(n)
150
       print("lambda0 =", "%.2f" % lambda0)
151
152
       # Проверим выполнение условий для критерия Колмогорова
153
       \# alpha = 0.01
154
       lambda_kr1 = 1.63
155
       \# alpha = 0.05
156
       lambda kr2 = 1.36
157
158
       if lambda kr1 > lambda0 and lambda kr2 > lambda0:
159
            print (
160
                 "\Гипотезап о нормальном распределении по критерию Колмогорова
161
      принимается как не противоречащая опытном "
                 данным ".")
162
       else:
163
            print (
164
                 "\Гипотезап о нормальном распределении по критерию Колмогорова не
165
      принимается как не противоречащая опытном "
                 данным ".")
166
167
168
   def main():
169
       histogram ()
170
       mathematical expectation()
171
       standard deviation()
172
       confidence interval()
173
       hypothesis()
174
       theoretical function()
175
       kolmogorov criterion()
176
177
178
                  = '__main__':
      __name
179
       main()
180
```