CS446: Machine Learning

Spring 2017

Problem Set 4

Hsiang-Wei Hwang

Handed In: March 11, 2017

1. [PAC Learning]

(a) The radii of the examples are the learning targets. If the example is positive, r_2 should be adjusted larger or equal to the radius of the example. On the other hand, if the example is negative, r_1 should be adjusted larger or equal to the radius of the example and r_2 should be larger or equal to r_1 .

An algorithm for learning:

Initialize: first positive example x_1 , set $r_1 = |x_1|$, $r_2 = |x_1|$ for all positive examples

$$if |x| > r_2$$

$$set r_2 = |x|$$

$$if |x| < r_1$$

$$set r_1 = |x|$$

- (b) i. Only the examples satisfying $r_1 \leq |x| \leq r_2$ are considered as positive by the classifier. Thus, the region out of learned function, h_{r_1,r_2} but in target function, $h_{r_1^*,r_2^*}^*$, is the place misclassification happens which is $r_1^* \leq |x| \leq r_1$ or $r_2 < |x|_2 \leq r_2^*$.
 - ii. As mentioned, the fail rate of classification for one example is ϵ . Thus, the probability that consistent with m examples is :

$$(1-\epsilon)^m$$

(c) Assume the set H_e is a subset of H that any function g in H_e satisfies $Error(g) > \epsilon$. The probability that g is consistent with m examples is bounded by $(1 - \epsilon)^m$ which means that $P(g \in H_e \text{ consistent with } m \text{ examples}) \leq (1 - \epsilon)^m$. Thus, the probability we get h in H_e :

$$P(|H_e|/|H|) * P(g \in H_e \text{ consistent with m examples}) \le 1 * (1 - \epsilon)^m < \delta$$

 $\Rightarrow e^{-\epsilon m} < \delta \Rightarrow -\epsilon m < \ln \delta \Rightarrow m > \frac{1}{\epsilon} \ln \frac{1}{\delta}$

(d) VC = 2 (Similar to VC(intervals)). According to the formula mentioned in the slide,

1

$$m > \frac{1}{\epsilon} \{8VC(H)\log\frac{13}{\epsilon} + 4\log\frac{2}{\delta}\} \Rightarrow m > \frac{1}{\epsilon} \{16\log\frac{13}{\epsilon} + 4\log\frac{2}{\delta}\}$$

Hsiang-Wei Hwang 2

2. [VC Dimension]

We can adjust coefficients, a, b and c, to achieve any parabolic function required. Thus, 3-point case is achievable.

According to the figure above, the 4-point case cannot be separated by parabolic functions. Thus, VC = 3.

3. [Kernels]

(a) According to the slide, $\mathbf{w} = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathbf{S}} \mathbf{r} \alpha_i \mathbf{x}_i \mathbf{y}_i$, $\mathbf{y} = \mathbf{sgn}(\mathbf{w}^T \mathbf{x})$ where r is the learning rate, α_i is the number of mistakes on the example, (x_i, y_i) .

(b) Polynomial kernels functions, $K(\mathbf{x}, \mathbf{x}')$, are defined as following description: 1. Linear kernel: $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}\mathbf{x}'$. 2. Polynomial kernel of degree d: $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}\mathbf{x}')^d$ (only dth-order interactions). 3. Polynomial kernel up to degree d: $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}\mathbf{x}' + c)^d$ (c > 0) (all interactions of order d or lower). Besides, kernel functions, $K(\mathbf{x}, \mathbf{x}')$, can be constructed by few methods: 1. Multiply by a constant. 2. Multiply by a function f applied to \mathbf{x} and \mathbf{x}' . 3. Applying a polynomial (with non-negative coefficients) to $K(\mathbf{x}, \mathbf{x}')$. 4. Exponentiating $k(\mathbf{x}, \mathbf{x}')$. 5. Add it and the other kernel function together. 6. Multiply by the other

According to the description of polynomial kernels, we get:

$$K_1 = \vec{\mathbf{x}}^T \vec{\mathbf{z}}, K_2 = (\vec{\mathbf{x}}^T \vec{\mathbf{z}} + 4)^2, K_3 = (\vec{\mathbf{x}}^T \vec{\mathbf{z}})^3$$

According to the methods of constructing a kernel function, we can construct a kernel:

$$K' = K_3 + 49K_2 + 64K_1 = (\vec{\mathbf{x}}^T \vec{\mathbf{z}})^3 + 49(\vec{\mathbf{x}}^T \vec{\mathbf{z}} + 4)^2 + 64\vec{\mathbf{x}}^T \vec{\mathbf{z}} = K'(\vec{\mathbf{x}}, \vec{\mathbf{z}})$$

Thus, $K'(\vec{\mathbf{x}}, \vec{\mathbf{z}})$ is a kernel.

kernel function.

(c)
$$K(\vec{x}, \vec{z}) = \begin{cases} \begin{pmatrix} \vec{x}^T \vec{z} \\ k \end{pmatrix} & \text{if } \vec{x}^T \vec{z} \ge k \\ 0 & \text{otherwise} \end{cases}$$

It represents the inner product of monotone conjunctions containing exactly k different variables. The inner product $\vec{x}^T\vec{z}$ means the number both variables are 1 in \vec{x} and \vec{z} , and the monotone conjunctions containing exactly k different variables can be calculated by $\vec{x}^T\vec{z}$ choosing k that picking out k matches from the total matches to form a conjunction. For example, let k=2, and \vec{x} and \vec{z}

have 4 matches of 1, $\{x_2, x_5, x_6, x_8\}$ and $\{z_2, z_5, z_6, z_8\}$. We get a set that the monotone conjunctions are 1 in both vectors, $\{x_2x_5, x_2x_6, x_2x_8, x_5x_6, x_5x_8, x_6x_8\}$ and $\{z_2z_5, z_2z_6, z_2z_8, z_5z_6, z_5z_8, z_6z_8\}$, by combining all possible pairs. Thus, the number of the monotone conjunctions which inner product is 1 is 4 choose 2. This kernel can be computed in O(dm) that m means the number of the examples and d means the dimension of the vectors. Thus, this can be calculated in linear time.

4. [SVM]

- (a) 1. Define $\mathbf{w} = (-1, -1), \ \theta = 0$
 - 2. $\mathbf{w} = (-\frac{1}{2}, -\frac{1}{2}), \ \theta = 0$
 - 3. We are finding a line that the distance from the point to the line represents the absolute value of $\vec{w}^T\vec{x}$ and the different side of the line represents the sign of $\vec{w}^T\vec{x}$. To maximize the margin, I consider the perpendicular bisectors of the closest pair of positive point and negative point, (-2,0) and (0,2). If I find the perpendicular bisector with distance to the points which is also the minimal distance of all points to this line, the line is the separator we are looking for.

- (b) 1. As mentioned above, the support vectors are point 1 and point 6 which means $I = \{1,6\}.$
 - 2. $\mathbf{w}^* = \sum \alpha_i y_i x_i \Rightarrow (-\frac{1}{2}, -\frac{1}{2}) = \alpha_1 \times 1 \times (-2, 0) + \alpha_2 \times -1 \times (0, 2).$ Thus, $\{\alpha_1, \alpha_2\} = \{0.25, 0.25\}.$
 - 3. Objective function: $\frac{1}{2}||w||^2$ (||w|| calculated by L2 norm). Objective function value $=\frac{1}{2}||w||^2=\frac{1}{2}[(-0.5)^2+(-0.5)^2)]=0.25$.
- (c) For the case C=0, it shows that the algorithm will find the w with the minimal absolute value without considering the loss. Thus, ξ_i can be really big that the result can not separate the dataset anymore. More specifically, the algorithm will get $\mathbf{w}=\mathbf{0}$ and $\xi_i\geq 1$ which minimizing the objective function being zero, but

representing nothing for separating the points. Thus, the smaller C we assign the better generalization we make, but C=0 is too general that any dataset will satisfy the answer.

For the case $C = \infty$, the algorithm will try to make the term $\sum_{j=1}^{m} \xi_i$ zero because if there is anything nonzero in that term, the objective function value will blow up to ∞ . Thus, all ξ_i should be zero, and that makes the algorithm find w with the most strict margin as Hard SVM. The result would be the same as I have found in (a)-2.

For the case C=1, it is a balanced option between C=0 and $C=\infty$. The algorithm will get us a w between w with the most strict margin and w allowing any amount of loss. Thus, we will get a general and good solution for the dataset.

5. [Boosting]

(a)(b)

		Hypothesis 1				Hypothesis 2			
i	Label	D_0	$f_1 \equiv$	$f_2 \equiv$	$h_1 \equiv$	D_1	$f_1 \equiv$	$f_2 \equiv$	$h_2 \equiv$
			[x > 2]	[y > 6]	x>2		[x > 9]	[y > 11]	[y>11]
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	_	0.1	_	+	_	$\frac{1}{16}$	_	_	_
2	_	0.1	_	_	_	$\frac{1}{16}$	_	_	_
3	+	0.1	+	+	+	$\frac{1}{16}$	_	_	_
4	_	0.1	_	_	_	$\frac{1}{16}$	_	_	_
5	_	0.1	_	+	_	$\frac{1}{16}$	_	+	+
6	_	0.1	+	+	+	$\frac{1}{4}$	_	_	_
7	+	0.1	+	+	+	$\frac{1}{16}$	+	_	_
8	_	0.1	_	_	_	$\frac{1}{16}$	_	_	_
9	+	0.1	_	+	_	$\frac{1}{4}$	_	+	+
10	+	0.1	+	+	+	$\frac{\overline{1}}{16}$	_	_	_

(c)
$$\epsilon_1 = \frac{2}{10}, \alpha_1 = \frac{1}{2} \ln(1 - \epsilon_1) / \epsilon_1 = \ln 2, D_0 = \frac{1}{10},$$

$$z_0 = \sum D_0(i) \times exp(-\alpha_1 y_i h_0(xi)) = 0.1 \times (2 \times exp(\ln 2) + 8 \times exp(-\ln 2)) = 0.8$$

$$D_1(i) = D_0(i) / z_0 \times exp(-\alpha_1 y_i h_0(xi)) = \begin{cases} 0.1 / 0.8 \times 0.5 = \frac{1}{16} & \text{if } y_i h_0(xi) = 1\\ 0.1 / 0.8 \times 2 = \frac{1}{4} & \text{otherwise} \end{cases}$$

(d)
$$\epsilon_2 = Pr_{D_1}[h_2(x_i) \neg = y_i] = \frac{1}{16} \times 4 = \frac{1}{4}, \alpha_2 = \frac{1}{2} \ln(1 - \epsilon_2) / \epsilon_2 = \frac{1}{2} \ln 3$$

Then, we combine h_1 and h_2 by α_i :

$$h_{final} = \alpha_1 h_1 + \alpha_2 h_2 = \ln 2[x > 2] + \frac{1}{2} \ln 3[y > 11]$$