What is claimed is:

- 1. A semiconductor device comprising:
- a substrate having an insulating layer formed thereon;
- a silicon layer having a thickness ts formed on the insulating layer, the silicon layer including a first area having a first impurity concentration of Df cm⁻³, and a second area having a second condition of Dp cm⁻³;
- a fully-depleted MOSFET formed in the first area of the silicon substrate; and
- a partially-depleted MOSFET formed in the second area of the silicon layer;

wherein the semiconductor device satisfies the following condition:

 $28 \text{ nm} \le \text{ts} \le 42 \text{ nm}$

 $Df \le 9.29 * 10^{15} * (62.46 - ts)$

 $Df \le 2.64 * 10^{15} * (128.35 -ts)$

 $Dp \ge 9.29 * 10^{15} * (62.46 - ts)$

 $Dp \ge 2.64 * 10^{15} * (129.78 \cdot ts).$

- 2. A semiconductor device according to claim 1, wherein the device satisfies condition of Df \leq 3.00 * 10¹⁵ * (102.67 · ts).
- 3. A semiconductor device according to claim 1, wherein the device satisfies condition of $Dp \ge 3.29 * 10^{15} * (125.70 ts)$.
- 4. A semiconductor device according to claim 1, wherein the thickness of the silicon layer has a range 38 nm to 42 nm, the impurity concentration Df is equal or more than $1.9 * 10^{17}$ cm⁻³, and the impurity concentration Dp is equal or less than $2.2 * 10^{17}$ cm⁻³.

- 5. A semiconductor device according to claim 1, wherein the thickness of the silicon layer has a range 33 nm to 37 nm, the impurity concentration of Df is equal or less than 2.5 * 10^{17} cm⁻³, and the impurity concentration Dp is equal or more than $2.7 * 10^{17}$ cm⁻³.
- 6. A semiconductor device according to claim 1, wherein the thickness of the silicon layer has a range 28 nm to 32 nm, the impurity concentration of Df is equal or less than $2.7 * 10^{17}$ cm⁻³, and the impurity concentration Dp is equal or more than $3.2 * 10^{17}$ cm⁻³.