	Señal, $x(n)$	Transformada z , $X(z)$	ROC
1	$\delta(n)$	1	Todo z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^nu(-n-1)$	$\frac{1}{1 - az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\operatorname{sen} \omega_0 n) u(n)$	$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n \operatorname{sen} \omega_0 n) u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Tabla 3.3. Algunas parejas comunes de trasformadas z.

Ahora vamos a deducir muchas de las transformadas z que se emplean en muchas aplicaciones prácticas. Estas parejas de transformadas z se resumen en la Tabla 3.3 como referencia rápida. Una simple inspección de esta tabla demuestra que estas transformadas z son todas ellas funciones racionales (es decir, relaciones de polinomios en z^{-1}). Como pronto será evidente, las transformadas z racionales no sólo se emplean como transformadas z de varias señales importantes, sino también en la caracterización de sistemas LTI discretos en el tiempo descritos mediante ecuaciones en diferencias de coeficientes constantes.

Transformadas z racionales 3.3

Como se ha indicado en la Sección 3.2, una importante familia de transformadas z son aquellas para las que X(z) es una función racional, es decir, una relación de dos polinomios en z^{-1} (o z). En esta sección, vamos a ver algunas cuestiones relacionadas con la clase de transformadas z racionales.

3.3.1 Polos y ceros

Los *ceros* de una transformada z X(z) son los valores de z para los que X(z) = 0. Los *polos* de una transformada z son los valores de z para los que $X(z) = \infty$. Si X(z) es una función racional, entonces

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
(3.3.1)