

Borne de satisfaction avec Micro:bit

DESCRIPTION

Objectif

Le but de ce projet est de fabriquer une borne de vote pour un questionnaire de satisfaction. Une question est posée et la réponse est donnée sur une **échelle de trois valeurs**. Par exemple, la question pourra être

Journée Portes Ouvertes : votre avis nous intéresse Que pensez vous de votre visite ?

- © Très satisfaisant
- Satisfaisant
- © Non satisfaisant

Intérêt

La borne de satisfaction a été présentée et utilisée lors des journées portes ouvertes, dans nos lycées.

Projet concret Les élèves visualisent rapidement le but à atteindre. Ils ont tous déjà vu une borne de satisfaction et ils imaginent rapidement son utilité.

Motivation La *journée portes ouvertes* est l'occasion de représenter le lycée auprès de personnes extérieures. Les élèves sont fiers de montrer leurs créations.

Pluridisciplinarité La création de la borne de satisfaction peut mobiliser de nombreuses disciplines sur le lycée : maths/sciences pour la conduite du projet, mathématiques pour l'exploitation des résultats, mode-vêtement et maroquinerie pour la décoration, arts appliqués pour les visuels ou encore bois, plasturgie et métallurgie pour la boite.

Matériel

- 1 × 🔐 🔐 🔐 Micro:bit
- 1 × accès internet : IDE programmation par bloc http://makecode.microbit.org/
- 1 boite (carton, bois, métal, etc.)
- 4 câbles électriques + 4 pinces crocodiles
- 1 rouleau de papier aluminium

NIVEAU INITIATION - PREMIER MODÈLE

Activité élève

1 h

2de

Maths

Sciences

Algo boucle; évènement

La *Journée Portes Ouvertes* aura lieu dans **1 mois**! Nous souhaitons créer une borne de satisfaction.

TA MISSION : Programme Micro:bit pour simuler une borne de vote.

Ta mission doit respecter les contraintes suivantes :

lorsque le bouton A est pressé une animation de type non satisfaisant apparaît lorsque le bouton B est pressé une animation de type très satisfaisant apparaît après chaque animation afficher un petit mot de remerciement

Notes pour l'enseignant

REMARQUE

Une proposition de code accessible en ligne http://url.univ-irem.fr/w.

NIVEAU EXPERT - CUMULER LES VOTES

Activité élève

1 h

2de

Maths

effectifs

Algo boucle; évènement; variables

Bravo! Tu as réussi à simuler une borne de vote à **2 choix** : *satisfaisant* ou *non-satisfaisant*.

Notre borne finale sera légèrement différente :

- la borne aura 3 choix de votes possibles : non-satisfaisant; satisfaisant; très satisfaisant
- la borne **enregistrera** les réponses de chaque vote.

TA MISSION: (re)Programme Micro:bit pour simuler la borne de vote finale.

Modifie ton code précédent :

lorsque la broche p0 est pressée

afficher une animation de type **non satisfaisant** afficher un mot de remerciement incrémenter la variable n0

lorsque la broche p1 est pressée

afficher une animation de type **satisfaisant** afficher un mot de remerciement incrémenter la variable n1

lorsque la broche p2 est pressée

afficher une animation de type **très satisfaisant** afficher un mot de remerciement incrémenter la variable n2

lorsque le bouton A est pressé afficher les valeurs des variables n0, n1 et n2

Notes pour l'enseignant

MÉTHODE Proposition de résolution : si bouton A est pressé ou bouton B est pressé alors montrer l'icône pause (ms) 500 ▼ rsque la broche P0 est activée répéter 5 fois montrer nombre n0 faire montrer l'icône montrer l'icône définir n1 pause (ms) 100 ▼ pause (ms) 500 ▼ définir n2 montrer l'icône efface l'écran pause (ms) 100 **▼** montrer nombre nl montrer l'icône définir n0 à n0 pause (ms) 500 ▼ afficher texte Merci efface l'écran montrer l'icône montrer nombre n2 montrer l'icône lorsque la broche P2 est activé est activée répéter 5 fois répéter 5 fois faire montrer l'icône faire montrer l'icône pause (ms) 100 ▼ pause (ms) 100 **▼** pause (ms) 100 ▼ pause (ms) 100 **▼** définir n2 à n2 définir n1 à n1 afficher texte Merci afficher texte Merci montrer l'icône montrer l'icône

REMARQUE

Une proposition de code accessible en ligne http://url.univ-irem.fr/y

À propos de cette publication

Pourquoi les objets connectés?

Alors que dans certaines disciplines le temps commence à manquer pour traiter l'ensemble du programme, certains évoquent déjà l'idée d'en faire plus!

En effet, les enseignants utilisent déjà les outils numériques. Par exemple, dans les classes de mathématiques, l'utilité du tableur et de GeoGebra n'est plus à démontrer. Jusqu'à l'introduction de l'algorithmique, ces deux logiciels efficaces et maîtrisés par les enseignants étaient amplement suffisants. Est-ce donc juste un effet de mode de faire cours avec les robots (Thymio, Mbot), les objets programmables et connectés (Arduino, Micro: bit, STM education, Raspberry Pi) ou est-ce une nouvelle façon d'aborder notre enseignement? Ces nouvelles possibilités technologiques, forcément chronophages, nous permettront-elles de traiter un contenu disciplinaire exigeant dans un cadre institutionnel contraignant?

Nous n'avons bien sûr pas toutes les réponses à ces questions mais nous pensons que lorsqu'il est accompagné de certains de ces outils, notre enseignement a beaucoup à y gagner.

L'introduction de l'algorithmique en lycée professionnel nous interroge. Longtemps il nous a semblé impensable et inenvisageable d'avoir à enseigner un langage de programmation comme Python auprès d'un public d'élèves globalement en difficulté avec les mathématiques. Fort de ce constat, nous avons cherché les moyens de lier les mathématiques à la logique et au raisonnement algorithmique. C'est pourquoi nous avons exploré les potentialités des objets connectés.

Notre postulat est double. Nous pensons que :

- grâce à des situations réelles et concrètes, les objets connectés facilitent la mise en activité de tous les élèves;
- grâce à des activités simples mais évolutives centrées autour de réalisations matérielles, la dimension affective du travail est valorisée. Soyons fous et espérons que l'élève tisse une histoire personnelle avec l'activité, qu'il soit fier du travail accompli et qu'il prenne également du plaisir à expliquer et à montrer ses réalisations.

En devenant de plus en plus simples, accessibles et facilement utilisables, les objets connectés permettent d'aborder des contenus disciplinaires et de développer des compétences transversales essentielles pour l'élève.

En travaillant à partir des objets connectés, la situation de départ est plus concrète et l'objectif à atteindre suffisamment clair pour l'élève. Plus ou moins guidé selon son niveau d'expertise technique, il est alors libre dans sa démarche. Avec des interfaces de programmation accompagnées parfois de simulateurs, la démarche par essais et erreurs a ici toute sa place. Par ailleurs, l'élève devra clarifier sa pensée avant de verbaliser ses idées en langage naturel. Il pourra ainsi proposer et élaborer un modèle acceptable par la machine pour enfin traduire son algorithme en se pliant à la riqueur du langage de programmation.

Effectuant régulièrement des va-et-vient entre abstraction et réalité, cherchant à valider son algorithme à partir d'un visuel ou d'une exploitation des résultats, l'élève entre progressivement dans la modélisation.

Les scénarios proposés dans cette brochure permettent tout cela : une approche des mathématiques et des sciences qui laisse la place à l'expérimentation : manipulation, programmation et auto-validation.

QUI SOMMES-NOUS?

Nous sommes des enseignants de maths/sciences regroupés au sein d'un groupe de recherche de l'IREM de Marseille.

Notre groupe, Innovation, Expérimentation et Formation en Lycée Professionnel (InEFLP) consacre une partie de son travail à l'enseignement de l'algorithmique en classes de lycée professionnel. Dans le cadre de cette recherche, nous explorons les objets connectés tels que Arduino, Micro:bit, STM32 Éducation ou mbot.

LIENS UTILES

Page du groupe InEFLP

http://url.univ-irem.fr/ineflp

IREM de Marseille Site académique de l'IREM de Marseille

http://url.univ-irem.fr/mars

Portail des IREM Site national des IREM

http://www.univ-irem.fr/

Formation à l'algorithmique LP et SEGPA Padlet de utilisé lors de nos formations académiques http://url.univ-irem.fr/stage-algo

Collecte de ressources pour Micro:bit Padlet sur Micro:bit utilisé en formation http://url.univ-irem.fr/algo2017-microbit

Brochure sur Micro:bit Publication de la C2i TICE pour une prise en main de Micro:bit http://url.univ-irem.fr/c2it-mb-t1-pdf

Description Micro:bit Fiche sommaire de description de Micro:bit http://url.univ-irem.fr/ineflp-microbit

Site IREM dédié à Micro:bit Site de ressources sur Micro:bit du groupe http://url.univ-irem.fr/o

Un extrait de la brochure

Les objets connectés pour enseigner l'algorithmique en lycée professionnel

< version du 13 mai 2023 >

