L. Mereu – A. Nanni Funzioni in due variabili

5. Differenziale totale

Definizione

Sia f(x; y) una funzione definita in E e ivi parzialmente derivabile rispetto a x e y, per ogni punto $(x_0; y_0)$ interno ad E, l'espressione

$$df = f_x(x_0; y_0) \Delta x + f_y(x_0; y_0) \Delta x$$

è detta **differenziale totale** della funzione f(x; y) relativa al punto $(x_0; y_0)$ e all'incremento $\Delta x = x - x_0$ e $\Delta y = y - y_0$ delle variabili.

Il differenziale totale , quanto più Δx e Δy sono piccoli, fornisce una buona approssimazione dell'incremento della funzione :

$$\Delta f = f(x_0 + \Delta x; y_0 + \Delta y) - f(x_0; y_0) \cong df$$

da cui

$$f(x_0 + \Delta x; y_0 + \Delta y) \cong f(x_0; y_0) + f_x(x_0; y_0) \Delta x + f_y(x_0; y_0) \Delta y$$

e posto $(x; y) = (x_0 + \Delta x; y_0 + \Delta y)$ si ha:

$$f(x; y) \cong f(x_0; y_0) + f_x(x_0; y_0) \Delta x + f_y(x_0; y_0) \Delta y = f(x_0; y_0) + df$$

Quindi, il differenziale consente di valutare i valori di una funzione nei punti (x; y) vicini al punto $(x_0; y_0)$ in cui la funzione è nota.

Interpretazione geometrica

La superficie di equazione z = f(x; y), per le ipotesi fatte, è dotata in ogni suo punto interno $P_0(x_0; y_0; z_0)$ di piano tangente di equazione

$$z - z_0 = f_x(x_{0}, y_0)(x - x_0) + f_y(x_{0}, y_0)(y - y_0) = df$$

Da ciò si riconosce che il differenziale totale rappresenta l'incremento che subisce la quota del punto variabile sul piano tangente in P_0 quando la sua proiezione sul piano xy passa dalla posizione $P(x_0; y_0)$ alla posizione posizione (x; y).

Geometricamente l'approssimazione

$$f(x; y) \cong f(x_0; y_0) + f_x(x_0; y_0) \Delta x + f_y(x_0; y_0) \Delta y = f(x_0; y_0) + df$$

equivale dunque a confondere la superficie con il piano a essa tangente nel punto $P_0(x_0; y_0; z_0)$.

Esercizi

Gli esercizi con asterisco sono avviati

Calcolare il differenziale totale delle seguenti funzioni relativamente al punto P_0 a fianco indicato:

1.
$$f(x;y) = x^3 - y^2 + xy$$
 $P_0(1;-1)$

2.
$$f(x;y) = \sqrt{x^2 + y^2}$$
 $P_0(-2;1)$

3.
$$f(x;y) = \frac{x+y}{x^2+y^2}$$
 $P_0(1;3)$

4.
$$f(x; y) = sin x + cos^2 y$$
 $P_0\left(0; \frac{\pi}{4}\right)$

5.
$$f(x; y) = log(3x + y)$$
 $P_0(1; 1)$

6.
$$f(x; y) = x log(x + y)$$
 $P_0(-1; 2)$

7.
$$f(x; y) = e^{x+y}$$
 $P_0(0; 0)$

8.
$$f(x;y) = e^{y^2 - x}$$
 $P_0(1;-1)$

9.
$$f(x;y) = (2x + 3y)e^x$$
 $P_0(0;3)$

*10. Si abbia un cilindretto di acciaio di raggio $r_0=10mm$ e altezza $h_0=3cm$ con base superiore fissa e si applichi alla base inferiore una coppia di forze di momento M. Indicata con α la misura in radianti dell'angolo di torsione, cioè dell'angolo di cui ruotano l'una rispetto all'altra le basi , si ha

$$\alpha = \frac{2hM}{\pi G r^4} radianti$$

dove $G=13350k_P/mm^2$. Si valuti in modo approssimato la variazione di α se r e h variano entrambe di 1mm.

*11. Consideriamo un cilindretto di acciaio di raggio $r_0 = 10cm$ e altezza $h_0 = 3m$ soggetto a una forza verticale F di trazione parallela all'asse del cilindro.

L'allungamento Δh subito dal cilindretto è dato da:

$$\Delta h = \frac{1}{E} \cdot \frac{F \cdot h}{\pi r^2} mm$$

dove il coefficiente E per l'acciaio è $2 \cdot 10^4 k_P/mm^2$.

Supposto F costante, calcolare in modo approssimato la variazione Δh se r e h variano entrambe di 1cm.

L. Mereu – A. Nanni Funzioni in due variabili

Soluzioni

1. S.
$$df = 2\Delta x + 3\Delta y;$$
 2.S. $df = \frac{\sqrt{5}}{5}(-2\Delta x + \Delta y);$

3. S.
$$\frac{1}{50} \Delta x - \frac{7}{50} \Delta y$$
; **4.** S. $\Delta x - \Delta y$;

5. S.
$$df = \frac{3}{4}\Delta x + \frac{1}{4}\Delta y;$$
 6.S. $df = -\Delta x - \Delta y;$

7. S.
$$df = \Delta x + \Delta y$$
; **8. S.** $-\Delta x - 2\Delta y$;

9. S.
$$11 \Delta x + 3\Delta y$$
;

*10. S
$$-\frac{22M}{\pi G \cdot 10^4} rad$$

$$(\alpha = f(r;h); \quad \Delta \alpha = \Delta f(r;h) \cong df = f_r(r_0;h_0)\Delta r + f_h(r_0;h_0)\Delta h; \quad \Delta r = \Delta r = 1mm$$

$$f_r = \frac{2hM}{\pi G} \cdot \left(-\frac{4}{r^5}\right) \text{ da cui } f_r(r_0;h_0) = \frac{M}{\pi G} \cdot \left(-\frac{24}{10^4}\right); \quad f_h = \frac{2M}{\pi G r^4} \quad \text{da cui } f_h(r_0;h_0) = \frac{M}{\pi G} \cdot \frac{2}{10^4}$$

$$\Delta \alpha \cong -\frac{22M}{\pi G \cdot 10^4} rad)$$

*11. S.
$$\Delta (\Delta h) \cong -\frac{59F}{10^3 \pi E} mm;$$

$$\begin{split} &(\Delta h = f(r;h); \quad \Delta \Delta h = \Delta f(r;h) \cong df = f_r(r_0;h_0)\Delta r + f_h(r_0;h_0)\Delta h; \quad \Delta r = \Delta h = 10mm \\ &f_r = \frac{Fh}{\pi E} \left(-\frac{2}{r^3} \right) \quad \text{da cui } f_r(r_0;h_0) = \frac{F}{\pi E} \left(-\frac{6}{10^3} \right); \quad f_h = \frac{F}{\pi E} \left(\frac{1}{r^2} \right) \text{da cui } f_h(r_0;h_0) = \frac{F}{\pi E} \left(\frac{1}{10^4} \right); \\ &\Delta \Delta h \cong -\frac{59F}{10^3 \pi E} mm \end{split}$$