Dimensionnement d'une poutre

Description du modèle :

Le modèle décrit ci-après est tiré de [1] par M. Jean Bigeon, ORCID : 0000-0002-6112-6913.

Nomenclature:

- E le module de Young en $Pa = kq.m^{-1}.s^{-2}$
- I le moment d'inertie en m^4
- I_x le moment d'inertie selon x en m^4
- I_y le moment d'inertie selon y en m^4
- L la longueur de la poutre en m
- M la masse de la poutre en kg
- P la force appliquée au centre de masse de la Poutre en $N=kg.m.s^{-2}$
- S la surface de la section de la poutre en m^2
- w_{max} la déformation maximum de la poutre en m
- x_1 la hauteur de la poutre en m
- $-x_2$ la largeur de la poutre en m
- x_3 la largeur de la barre centrale de la poutre en m
- x_4 l'épaisseur des faces de la poutre en m
- ρ_{acier} la masse volumique de l'acier en $kg.m^{-3}$
- σ_{max} la contrainte maximale appliquée à la poutre en $kg.m^{-1}.s^{-2}$

Equations:

Cahier des Charges:

Dans cet exemple, on fixe L, E, P et ρ_{acier} et on cherche à minimiser M

en respectant des contraintes sur σ_{max} et w_{max}

Variables de Décision						
Paramètre	Valeur min	Valeur max	Valeur initiale	Unité		
E	$2*10^{11}$			$kg.m^{-1}.s^{-2}$		
L	4			m		
P	10^{4}			$kg.m^{-1}.s^{-2}$		
x_1	0.1	0.8	0.45	m		
x_2	0.1	0.6	0.35	m		
x_3	0.01	0.05	0.03	m		
x_4	0.01	0.05	0.03	m		
$ ho_{acier}$	7800			$kg.m^{-3}$		

Sorties					
Paramètre	Type	Valeur	Unité		
σ_{max}	Intervalle	$[0; 12.8 * 10^6[$	$kg.m^{-1}.s^{-2}$		
w_{max}	Libre	_	m		

${\bf F} onction \ Object if:$

$$f_{obj}(V) = M = L * S * \rho_{acier}$$

<u>Test de Fiabilité</u>:

Afin de vérifier la validité du modèle proposé, il convient de tester ce dernier avec plusieurs sets de valeurs. Vous trouverez ci-après un ensemble de valeurs d'entrée et les résultats attendus sur la base des valeurs de [1].

Numéro du set	Set 1	Set 2
x_1	0.1	0.1
x_2	0.2566	0.6
x_3	0.01	0.01
x_4	0.01	0.01273
S	0.005938	0.0160
M	185.26	500
I_x	$3.906 * 10^{-5}$	$4.879 * 10^{-4}$
σ_{max}	$12.79994 * 10^6$	$1.0247 * 10^6$
w_{max}	$1.706 * 10^{-3}$	$1.366*10^{-4}$

Références

[1] J. Bigeon and K. Babanezhad, "Engineering model description | i-beam." https://gitlab.univ-nantes.fr/chenouard-r/optimizationbenchmarklibrary/-/tree/main/Mod%C3%A8les/Poutre/Refs.