CS & IT ENGINERING

Operating System

CPU Scheduling

Recap of Previous Lecture

Topic SJF Scheduling

Topic

SRTF Scheduling

Topic SRTF Scheduling

Topic LJF & LRTF Scheduling

Topic HRRN Algorithm

Topic Priority based algorithm

for non-preemptive also =>

no. of context switches = no. of processes - 1

(considering no switch

(considering no switch counted before first process after (ast process)

Topic: SRTF (Shortest Remaining Time First)

H.w. Quest'

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	6			
P2	0	7			
P3	1	1			
P4	2	3			
P5	9	1			

PI	P3	P4	PI	P5	P2
1				1	18
			10		

Topic: SRTF (Shortest Remaining Time First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time	Response
P1	0	9	15	15	6	0
P2	1	2	3	2	0	0
P3	4	1	5	1	0	0
P4	6	2	8	2	0	0
P5	9	1	٥١	1	0	0

PI	P2	PI	P3	PI	14	PI	P5 P1
) 1	3	Ч	5	6	8	9	10 /

[NAT]

- #Q. Response time of processes in non-preemptive scheduling algorithms are equal to waiting time of processes?
 - Frue or False

Justify your answer with appropriate explanation.

Topic: LJF (Longest Job First)

Scheduling Criteria: Schedule process with longest B.T. The breaker FCFS

Type of Algorithm: Non-preemptive

Topic: LJF (Longest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	6			
P2	0	3			
P3	0	4			
P4	0	2			

	PI	P3		P2	P4
0		6	10	13	15

Topic: LJF (Longest Job First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	2			
P2	1	3			
P3	2	4			
P4	3	2			

	PI P3			P2	P4
0		2	6	9	11

Advantages:-____ None

Disadvantages:-

-> Suffers from Convoy effect -> starvation for shorter processes

Topic: LRTF (Longest Remaining Time First)

Scheduling Criteria: schedule process with longest BT FCFS

Type of Algorithm: Breemptive

Topic: LRTF (Longest Remaining Time First)

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time	Waiting Time
P1	0	9			
P2	0	6			
P3	0	4			
P4	0	2			

81	968 4 4 2	4															
92 83	4	PI		P2	PI	12	PI	P2	PI	PI	P2 1	73 81	pe	73	124	P1 1:	12 P3 P4
PY	2	0	8	5	6	Ŧ	8	9	10) 1	2	13	14 1	5 10	3 17	18	19 20 21

18 19 20 21 Sum of all BTS

AT DT 0 PI 0 P2 11 12 10

P1 P2 P3 37 38 39

when all processes arrive before any process completes.

Here P3 arrives & Completes (=) draw full gantt chart before any other process arrives.

GATE-PYQ

#Q. Consider three processes (process id 0, 1, 2 respectively) with compute time bursts 2, 4 and 8 time units. All processes arrive at time zero. Consider the longest remaining time first (LRTF) scheduling algorithm. In LRTF ties are broken by giving priority to the process with the lowest process id. The average turn around time is:

A 13 units

B 14 units

C 15 units

D 16 units

	AT	BT	CT	TAT
PO	6	2	12	12
PI	0	4	13	13
P2	D	8	14	$avg TAT = \frac{12+13+14}{3}$
				= 13

Adv.:-

> none

Disadv:-

> starvation > Convoy effect Not practical

Objective: Not only favors short jobs but decreases the WT of longer jobs.

Scheduling Criteria: Response Ratio Tie breaker = SJF

Type of Algorithm: Non-preemptive

Resonse Ratio =
$$\frac{W+S}{S}$$

W = Wait Time
S = Service/Burst Time

Process	Arrival Time	Burst Time
P1	0	3
P2	2	6
P3	4	4
P4	6	5
P5	8	2

	PI	P2	P5	P3	Pu
0	3	9	- 116		20

Process	Arrival Time	Burst Time			
P1	0	3			
P2	2	6			
P3	4	4			
P4	6	5			
P5	8	2			

AT time 9:-

$$RR(P3) = \frac{5+4}{4} = 2.25$$
 [righest]

 $RR(P4) = \frac{3+5}{5} = 1.6$
 $RR(P5) = \frac{1+2}{2} = 1.5$

At time 13:-

$$RR(PY) = \frac{7+5}{5} = 2.4$$
 $RR(PS) = \frac{5+2}{2} = 3.5$ [Righest]

Adv:
No starvation

No Convoy effect

No Convoy effect

Dis:
Not practical

Scheduling Criteria: Highest priority process first The breaker => given in Question

Type of Algorithm: Non-preemptive

Preemptive

Process	Arrival Time	Burst Time	Priority
P1	0	4	4
P2	1	2	5
P3	2	3	6
P4	3	1	10(Highest)
P5	4	2	9
P6	5	6	7

	PI		PY	P5	P6	P3	1 92
0		4	5	F	13	16	5 18

Process	Arrival Time	Burst Time	Priority
P1	0	4	4
P2	1	2	5
P3	2	3	6
P4	3	1	10(Highest)
P5	4	2	9
P6	5	6	7

P1	P2	P3	P4	P5	96	P3	P2	PI
		3						18

Topic: Priority Based Algorithm Question Non-Preemptive

Process	Arrival Time	Burst Time	Priority
P1	0	7	9
P2	1	3	4
P3	2	5	2
P4	3	2	1 (Highest)
P5	4	6	3
P6	5	1	8

Topic: Priority Based Algorithm Question Preemptive

Process	Arrival Time	Burst Time	Priority
P1	0	7	9
P2	1	3	4
P3	2	5	2
P4	3	2	1 (Highest)
P5	4	6	3
P6	5	1	8

Advantages:

1. Better response for real time situations

Disadvantages:

2. Low Priority Processes may suffer from starvation

2 mins Summary

Topic

SJF Scheduling

Topic

SRTF Scheduling

Topic

HRRN Algorithm

Topic

Priority based algorithm

Happy Learning THANK - YOU