

Figure 24.20: The effect of a central dilatation $H_{d,\lambda}(x)$.

Proposition 24.9. Given any affine space E, for any affine bijection $f \in \mathbf{GA}(E)$, if $\overrightarrow{f} = \lambda \operatorname{id}_{\overrightarrow{E}}$, for some $\lambda \in \mathbb{R}^*$ with $\lambda \neq 1$, then there is a unique point $c \in E$ such that $f = H_{c,\lambda}$.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [70]. \Box

Clearly, if $\overrightarrow{f} = \operatorname{id}_{\overrightarrow{E}}$, the affine map f is a translation. Thus, the group of affine dilatations $\operatorname{DIL}(E)$ is the disjoint union of the translations and of the dilatations of ratio $\lambda \neq 0, 1$. Affine dilatations can be given a purely geometric characterization.

Another point worth mentioning is that affine bijections preserve the ratio of volumes of parallelotopes. Indeed, given any basis $B = (u_1, \ldots, u_m)$ of the vector space \overrightarrow{E} associated with the affine space E, given any m+1 affinely independent points (a_0, \ldots, a_m) , we can compute the determinant $\det_B(\overrightarrow{a_0a_1}, \ldots, \overrightarrow{a_0a_m})$ w.r.t. the basis B. For any bijective affine map $f: E \to E$, since

$$\det_{B}\left(\overrightarrow{f}(\overrightarrow{a_{0}a_{1}}),\ldots,\overrightarrow{f}(\overrightarrow{a_{0}a_{m}})\right) = \det\left(\overrightarrow{f}\right)\det_{B}\left(\overrightarrow{a_{0}a_{1}},\ldots,\overrightarrow{a_{0}a_{m}}\right)$$

and the determinant of a linear map is intrinsic (i.e., depends only on \overrightarrow{f} , and not on the particular basis B), we conclude that the ratio

$$\frac{\det_B\left(\overrightarrow{f}(\overrightarrow{a_0a_1}),\ldots,\overrightarrow{f}(\overrightarrow{a_0a_m})\right)}{\det_B(\overrightarrow{a_0a_1},\ldots,\overrightarrow{a_0a_m})} = \det\left(\overrightarrow{f}\right)$$

is independent of the basis B. Since $\det_B(\overrightarrow{a_0a_1},\ldots,\overrightarrow{a_0a_m})$ is the volume of the parallelotope spanned by (a_0,\ldots,a_m) , where the parallelotope spanned by any point a and the vectors