Лабораторная работа 4.3.2А: Дифракция света на ультразвуковой волне в жидкости

М.Шлапак

Изучено явление дифракции света на синусоидальной акустической решётке, проведено наблюдение фазовой решётки методом тёмного поля.

Ключевые слова: дифракция света, синусоидальная рещётка, фазовая решётка, метод тёмного поля, скорость ультразвука

1. Введение

В данной работе опытным путём была измерена скорость ультразвука в воде путём измерений на акустической решетке, попутно был освоен метод тёмного поля - один из методов, помогающих в визуализации фазового объекта.

2. Теоретические основы

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления и изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

, где $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, т — глубина модуляции показателя преломления $n \ (m \ll 1)$.

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

, где L — толщина жидкости в кювете, k = $2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1. Зная положение дифракционных максимумов, по формуле (3) легко определить длину ультразвуковой волны, учитывая малость θ : **акустической решётке**

 $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F— фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых волн в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

рис. 1. Дифракция световых волн на акустической решетке

3. Экспериментальная установка

(a) Схема наблюдения дифракции на

рис. 2 Экспериментальная установка

рис. З Наблюдение дифракции на акустической решётке

(b) Наблюдение акустической решетки методом тёмного поля

рис.4 Наблюдение акустической решётки методом тёмного поля

 Π - источник света, Φ - светофильтр,K - конденсор, O1 и O2 - объективы, C - кювета, M - микроскоп, O - вспомогательная положителньая линза

4. Результаты эксперимента

Запишем начальные данные: f=30~cм, $\lambda=605~n$ м

(a) Определение скрости ультразвука по дифракционной картине

1) После сборки установки и яркого освещения щели с помощью конденсора получим в поле зрения микроскопа систему дифракционных полос.

рис.5 Дифракционные полосы для зелёного светофильтра

2) Заменим широкополосный зелёный фильтр красным и измерим положения x_m дифракционных максимумов с помощью микрометрического винта для трёх частот.

2.1)	m	-2	-1	0	1	2
	x_m , MKM	1980	1840	1720	1580	1440

puc.6 Дифракционная картинка на частоте $\nu=1,115~{\it Mey}$

2.2)	m	-1	0	1
	x_m , MKM	1900	1720	1540

рис.7 Дифракционная картинка на частоте $\nu=1,477~Meq$

2 3)	m	-1	0	1
2.5)	x_m , MKM	1980	1720	1460

рис.8 Дифракционная картинка на частоте $\nu=2,106~{\rm Mey}$

3) Для каждой из трёх частот построим график зависимости координаты x_m от порядка m и по наклону прямой определим расстояние между соседними полосами:

$$\frac{l_m}{m} = \frac{\Delta x_m}{\Delta m} = \operatorname{tg} \alpha$$

Рассчитаем длину Λ УЗ-волны по формуле (4), а скорость ультразвука по формуле (5). Результаты занесём в таблицу:

ν, МΓц	1,115	1,477	2,106
$tg \alpha$, мкм	134	180	260
$\sigma_{\lg \alpha}$, MKM	10	10	10
Λ , MM	1,35	1,01	0,70
σ_{Λ} , MM	0,07	0,05	0,03
<i>v</i> , м/с	1510	1489	1470
σ_v , M/c	76	75	74

4) Таким образом, скорость ультразвука в воде по результатам экспериментов получилась:

$$v_{exp} \approx (1490 \pm 110) \ \text{M/c}$$

рис.10 Результаты эксперимента и среднее экспериментальное значение скорости ультразвука в воде

(b) Определение скорости ультразвука методом тёмного поля

5) Соберем схему, изображенную на рисунке 4. Найдем цену деления шкалы микроскопа для последующих измерений: $\delta=0,048$ мм. После закрытия нулевого максимума остаточное поле:

$$f(x) = \frac{im}{2} \exp^{i\Omega x} + \frac{im}{2} \exp^{-i\Omega x} = im \cos \Omega x \quad (6)$$

Картина интенсивности:

$$I(x) = m^2 \cos^2 \Omega x \tag{7}$$

рис. 9 Зависимость координаты максимума от порядка для различных частот

6) После закрытия проволокой центрального максимума определяем координаты первой x_1 и последней x_2 хорошо видимых полос и количество светлых промежутков между ними n. Картины наблюдения получились только при частотах

$$u_1 = 0,819 \ \text{MFu}, \quad \nu_2 = 1,052 \ \text{MFu},$$

Определим для этих данных скорость звука и длину волны:

ν , М Γ ц	x_1 , MM	σ_{x_1} , mm	x_2 , MM	σ_{x_2} , mm	n
1,052	0,029	0,05	1,651	0,05	10
0,819	0,038	0,05	1,699	0,05	13

С помощью формул (4) и (5) определим скорость ультразвука в воде методом тёмного поля:

ν , М Γ ц	l_m , mm	Λ , mm	v, м/с	σ_v , м/с
1,052	0,16	1,1	1190	370
0,819	0,13	1,4	1140	440

Таким образом, скорость ультразвука в воде, измеренная с поомщью метода темного поля, получилась:

$$v_{exp} \approx (1160 \pm 440) \ \text{M/c}$$

рис.11 Результаты эксперимента по методу тёмного поля

5. Заключение

В данной работе было изучено явление дифракции света на синусоидальной акустической решётке, а также наблюдалась фазовая решётка с помощью метода тёмного поля. Для двух экспериментов была вычислена скорость ультразвука в воде. Экспериментальные значения сходятся с теоретическими в пределах погрешности.

рис.12 Значения скорости ультразвука в воде для двух опытов

1. Общий курс физики. Оптика, Д.В.Сивухин 2. Лабораторный практикум по общей физике. Оптика, А.В. Максимычев