Instrukcja - lista 3

12 listopada 2024

Rozpatrzymy klasyczny model regresji dany następującym wzorem:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, 2, ..., n, \tag{1}$$

gdzie $\varepsilon_i, i=1,2,...,n$ są niezależnymi zmiennymi losowymi o rozkładzie $N(0,\sigma^2)$. Skonstruuj przedziały ufności dla parametrów β_0 i β_1 na danym poziomie ufności α . Wyniki wykonaj dla różnych długości prób n, $\alpha \in \{0.01,0.05\}$ oraz $\sigma \in \{0.01,0.5,1\}$. Przy konstrukcji przedziałów ufności zakładamy, że σ jest wielkością znaną. Za pomocą metody Monte Carlo, sprawdź jakie jest prawdopodobieństwo, że teoretyczne wartości parametrów należą do wyznaczonych przedziałów ufności dla wybranych parametrów β_0 i β_1 . W symulacjach przyjmij, że $x_i=i$ dla każdego i = 1, 2, \cdots , n.

1 Konstrukcja przedziału ufności dla β_0 :

$$P\Big(\underbrace{\hat{\beta}_0 - z_{1-\alpha/2} \cdot \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}}_{\mathbf{a}} \leqslant \beta_0 \leqslant \underbrace{\hat{\beta}_0 + z_{1-\alpha/2} \cdot \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}}_{\mathbf{b}}\Big) = 1 - \alpha$$

 $z_{1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ ze standardowego rozkładu normalnego.

2 Konstrukcja przedziału ufności dla β_1 :

$$P\left(\underbrace{\hat{\beta}_{1} - z_{1-\alpha/2} \cdot \sigma \sqrt{\frac{1}{\sum (x_{i} - \bar{x})^{2}}}}_{c} \leqslant \beta_{1} \leqslant \underbrace{\hat{\beta}_{1} + z_{1-\alpha/2} \cdot \sigma \sqrt{\frac{1}{\sum (x_{i} - \bar{x})^{2}}}}_{d}\right) = 1 - \alpha$$

 $z_{1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ ze standardowego rozkładu normalnego.

Podstawy teoretyczne

3 Estymacja parametru $\hat{P}U = 1 - \alpha$. Równania z poprzednich slajdów mówią nam, że prawdopodobieństwo tego, że estymowany parametr β_0 znajdzie się w skonstruowanym przedziale ufności [a,b] wynosi $1-\alpha$. Tak samo: prawdopodobieństwo tego, że estymowany parametr β_1 znajdzie się w skonstruowanym przedziale ufności [c,d] wynosi $1-\alpha$. Zatem możemy obliczyć estymatory parametru $1-\alpha$ w następujący sposób:

$$\hat{P}U_{\beta_0} = \frac{\#\{\beta_0 \in [a,b]\}}{M}, \quad \hat{P}U_{\beta_1} = \frac{\#\{\beta_1 \in [c,d]\}}{M}$$

gdzie *M* to liczba powtórzeń Monte Carlo.

Χ

Algorytm

- 1 Weź $\beta_1 = 4$, $\beta_0 = 2$. Ustal α, σ tak jak w zadaniu. Generuj X = 1, 2, ..., n.
- **2** Generuj Y_i dla i = 1, 2, ..., n.
- **3** Wyznacz $\hat{\beta}_0, \hat{\beta}_1$, a, b, c, d.
- **4** Sprawdź czy $\beta_0 \in [a,b]$ i czy $\beta_1 \in [c,d]$.
- **5** Powtórz krok 2-4 MC=1000 razy. Wyznacz $\hat{P}U_{\beta_0}$ oraz $\hat{P}U_{\beta_1}$.

Oczkiwany wynik

Rysunek: Oczekiwany wynik dla β_0

Wykonaj zad. 1 przy założeniu, że σ nie jest znane. Jakie są różnice pomiędzy skonstruowanymi przedziałami ufności uzyskanymi w zad.1 i zad. 2? Wyniki porównaj w zależności od długości próby, wielkości α oraz σ . Jakie możesz wyciągnąć wnioski na podstawie uzyskanych wyników.

Podstawy teoretyczne

1 Konstrukcja przedziału ufności dla β_0 :

$$P\left(\underbrace{\hat{\beta_0} - t_{n-2,1-\alpha/2} \cdot S\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}}_{a} \leqslant \beta_0 \leqslant \underbrace{\hat{\beta_0} + t_{n-2,1-\alpha/2} \cdot S\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}}}_{b}\right) = 1 - \alpha$$

 $t_{n-2,1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ z rozkładu t-Studenta o n-2 stopniach swobody.

$$S^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}$$

2 Konstrukcja przedziału ufności dla β_1 :

$$P\left(\underbrace{\hat{\beta}_{1} - t_{n-2,1-\alpha/2} \cdot S\sqrt{\frac{1}{\sum(x_{i} - \bar{x})^{2}}}}_{c} \leqslant \beta_{1} \leqslant \underbrace{\hat{\beta}_{1} + t_{n-2,1-\alpha/2} \cdot S\sqrt{\frac{1}{\sum(x_{i} - \bar{x})^{2}}}}_{d}\right) = 1 - \alpha$$

 $t_{n-2,1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ z rozkładu t-Studenta o n-2 stopniach swobody.

$$S^2 = \frac{\sum (y_i - \hat{y}_i)^2}{n-2}$$

Wysymuluj dwuwymiarowy wektor (x, y) opisany ogólnym modelem regresji liniowej:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

gdzie $\varepsilon_i \sim N(0,\sigma)$, oraz $\{\varepsilon_i\}$ i.i.d. Wybierz dowolne wartości β_0,β_1 oraz σ . Niech $x_1,x_2,...,x_n$ będą zdefiniowane tak jak w zad. 1. Wyznacz przedziały ufności dla wartości średniej zmiennej $Y(x_0)$ dla $x_0 = x + \gamma$ dla pewnej wielkości γ dla różnych wielkości n przy założeniu, że:

- $oldsymbol{a}$ σ jest wielkością znaną,
- **b** σ jest wielkością nieznaną.

Wyniki przedstaw w zależności od n, σ oraz γ . Przyjmij $\alpha = 0.05$.

Podstawy teoretyczne

1 Konstrukcja przedziału ufności w zależności od długości wektora danych (σ znana):

W pierwszej części zadania zajmiemy się wyznaczaniem przedziału ufności dla $Y(x_0)$ na podstawie wyprowdzonej na wykładzie zależności. Zakładając, że parametr σ jest znany, przedział ufności ma postać:

$$P\Big(\underbrace{\hat{\mu}_{Y(x_0)} - z_{1-\alpha/2} \cdot \sigma \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{\mathbf{a}} \leqslant \mu_{Y(x_0)} \leqslant$$

$$\leqslant \underbrace{\hat{\mu}_{Y(x_0)} + z_{1-\alpha/2} \cdot \sigma \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{\mathbf{b}}\Big) = 1 - \alpha$$

 $z_{1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ ze standardowego rozkładu normalnego.

Short Title 12 listopada 2024 12/20

Podstawy teoretyczne

2 Konstrukcja przedziału ufności w zależności od długości wektora danych (σ nieznana):

Zakładając, że parametr σ jest nieznany, przedział ufności ma postać:

$$\begin{split} P\Big(\underbrace{\hat{\mu}_{Y(x_0)} - t_{1-\alpha/2, n-2} \cdot S\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{\text{a}} \leqslant \mu_{Y(x_0)} \leqslant \\ \leqslant \underbrace{\hat{\mu}_{Y(x_0)} + t_{1-\alpha/2, n-2} \cdot S \cdot \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{\text{b}}\Big) = 1 - \alpha, \end{split}$$

gdzie $S^2=\frac{1}{n-2}\sum (Y_i-\hat{Y}_i)^2$, $t_{1-\alpha/2,n-2}$ - kwantyl na poziomie $1-\alpha/2$ rozkładu t-Studenta z n-2 stopniami swobody.

13/20

Podstawy teoretyczne

3 Estymacja parametru $\hat{P}U = 1 - \alpha$. Równanie z poprzedniego slajdu mówi nam, że prawdopodobieństwo tego, że estymowany parametr znajdzie się w skonstruowanym przedziale ufności [a,b] wynosi $1-\alpha$. Zatem możemy obliczyć estymator parametru $1-\alpha$, który ma następującą postać:

$$\hat{P}U = \frac{\#\mu_{Y(x_0)} \in (a,b)}{M},$$

gdzie *M* to liczba powtórzeń Monte Carlo.

Algorytm

Niech $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, gdzie $\varepsilon_i \sim N(0, \sigma)$, oraz $\{\varepsilon_i\}$ i.i.d.

$$E[Y(x_0)] = \mu_{Y(x_0)} = E[\beta_0 + \beta_1 x_0 + \varepsilon_0] = \beta_0 + \beta_1 x_0.$$

Estymator: $\hat{\mu}_{Y(x_0)} = \beta_0 + \beta_1 x_0.$

- 1 Ustal $\alpha = 0.05$, $\sigma = 1$, $\beta_0 = 2$, $\beta_1 = 4$, x = linspace(0, 10, n), $\gamma = 0.5$.
- 2 Generuj $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, dla i = 1, ..., n.
- 3 Wyznacz $\hat{\beta}_0$ i $\hat{\beta}_1$, a oraz b.
- **4** Powtarzaj kroki 1-3 dla n = 100 : 100 : 2000.

Oczekiwane wyniki

Ustal
$$\beta_0 = 2, \beta_1 = 4, \sigma = 1, \gamma = 0.5, \alpha = 0.05, x = linspace(0, 10, n).$$

1) wynik dla pojedynczej symulacji MC

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b] to nie)
200	_
300	_
400	-
500	_
600	-
700	-
800	-
900	-
1000	-
1100	-
1200	-
1300	-
1400	-
1500	-
1600	-
1700	-
1800	-
1900	-
2000	-

Tabela 1: Zależność przedziału ufności od n.

2) Wynik dla wielu powtórzeń MC

rys. 1: Wykres pudełkowy \hat{PU} gdy teoretyczne $\alpha = 0.05$.

Wysymuluj dwuwymiarowy wektor (x, y) o długości n = 1000 opisany ogólnym modelem regresji liniowej

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i,$$

dla wybranych wielkosci parametrów β_0, β_1 oraz σ oraz $x_1, x_2, ..., x_n$ zdefiniowanych jak zad.1. Skonstruuj prostą regresji na podstawie 990 najmniejszych obserwacji wielkości x. Skonstruuj przedział ufności dla prognozy w modelu dla ostatnich 10 największych obserwacji i porównaj z danymi. Zadanie wykonaj przy założeniu, że σ jest znana i nieznana.

Podstawy teoretyczne

Z treści zadania: $Y(x_0) = \beta_0 + \beta_1 x_0 + \varepsilon_0$. Zgodnie z przyjętą notacją: $\hat{Y}(x_0) = \hat{\beta_0} + \hat{\beta_1} x_0$.

1 Konstrukcja przedziału ufności w zależności od długości wektora danych (σ znana):

Zakładając, że parametr σ jest znany, przedział ufności ma postać:

$$P\Big(\underbrace{\hat{Y}(x_0) - z_{1-\alpha/2} \cdot \sigma \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{a} \leqslant Y(x_0) \leqslant \underbrace{\hat{Y}(x_0) + z_{1-\alpha/2} \cdot \sigma \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{b}\Big) = 1 - \alpha$$

 $z_{1-\alpha/2}$ - kwantyl na poziomie 1 – $\alpha/2$ ze standardowego rozkładu normalnego.

Short Title 12 listopada 2024 18/20

Podstawy teoretyczne

2 Konstrukcja przedziału ufności w zależności od długości wektora danych (σ nieznana):

Zakładając, że parametr σ jest nieznany, przedział ufności ma postać:

$$P\Big(\underbrace{\hat{Y}(x_0) - t_{1-\alpha/2, n-2} \cdot S\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{a} \leqslant Y(x_0) \leqslant \underbrace{\hat{Y}(x_0) + t_{1-\alpha/2, n-2} \cdot S \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}}_{b}\Big) = 1 - \alpha$$

gdzie $S^2=\frac{1}{n-2}\sum (Y_i-\hat{Y}_i)^2$, $t_{1-\alpha/2,n-2}$ - kwantyl na poziomie $1-\alpha/2$ rozkładu t-Studenta z n-2 stopniami swobody.

19/20

Oczekiwane wyniki

Ustal $\beta_0=2, \beta_1=4, \sigma=2, \alpha=0.05, x=linspace(0,10,1000).$ Wykonaj symulacje, które umożliwią stworzenie poniższego wykresu:

