HEURISTIC SEARCH¹

LECTURE 4

¹The slides have been prepared using the textbook material available on the web, and the slides of the previous editions of the course by Prof. Luigia Carlucci Aiello

Summary

Russell & Norvig Chapter 3, Sec. 5–6

- Best-first search
- A*
- Variants of A*
- Heuristics

Best-first search

Idea: use an *evaluation function* for each node

– estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

frontier is a queue sorted in decreasing order of desirability

Special cases:

"best-first" search
A* search

best? "Best-first" vs greedy

Romania with step costs in km

Straight–line distance	
o Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
[asi	226
L ugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Fimisoara	329
U rziceni	80
Vaslui	199
Zerind	374

Greedy "Best-first" search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\rm SLD}(n) = {\rm straight}$ -line distance from n to Bucharest

"Best-first" search expands the node that *appears* to be closest to goal

A remark about heuristics: Usually a good h greatly improves the search (by expanding less nodes), but knowing ideal h amounts to knowing the solution ...

Greedy search example

Properties of "best-first" search

Complete No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

Time $O(b^m)$, but a good heuristic can give dramatic improvement

Space $O(b^m)$ —keeps all nodes in memory

Optimal No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

f(n) =estimated total cost of path through n to goal

A* search uses an *admissible* heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the *true* cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Key property: A* search is optimal

\mathbf{A}^* search example

\mathbf{A}^* search example

A^* search example

A^* search example

A^* search example

A* search example

Optimality of A^*

Let:

 C^* be the optimal cost and C be the cost returned n be a node in the optimal path, which is unexpanded $g^*(n)$ be the cost to reach n $h^*(n)$ be the cost of the optimal path to reach the goal.

$$\begin{split} f(n) &> C^* \\ f(n) &= g(n) + h(n) \text{ by definition} \\ f(n) &= g^*(n) + h(n) \text{ } n \text{ is on an optimal path} \\ f(n) &\leq g^*(n) + h^*(n) \text{ admissibility} \\ f(n) &\leq C^* \text{ contradiction!} \end{split}$$

Consistent Heuristics

For some admissible heuristics, f can decrease in a path. This is a problem when the search space is a graph.

A heuristics is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

This guarantees that f is not decreasing (monotonic)

$$f(n') = g(n') + h(n') = g(n) + c(n, a, n') + h(n') \ge g(n) + h(n)$$

Pathmax

Usually, admissible heuristics are consistent.

In alternative, pathmax can be build for a heuristics: Instead of f(n') = g(n') + h(n'), take

$$f(n') = max(g(n') + h(n'), f(n))$$

Using pathmax, f is always non decreasing

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. uniform search) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A*

Complete Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time Exponential in [relative error in $h \times length$ of soln.]

Space Keeps all nodes in memory

Optimal Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Limitations of: A^*

 \diamondsuit the memory to store the frontier may be exponential.

Countermeasures:

- Use good, but not admissible heuristics
- Live with sub-optimal solutions
- \Diamond space problem remains (as in breadth first).

Generalizing the use of heuristics

Weighted A^* : trade optimality for speed

$$f(n) = g(n) + W * h(n) \qquad \text{with } W > 1$$

cost is bound by a factor W wrt optimal cost

detour index: W = 1.3

Limiting the memory requirement

- \Diamond frontier + reached states
- Beam search (puts a limit on the states in the frontier)
- ♦ Remove states from reached states when not reachable

Limiting the memory requirement: IDA^*

- \diamondsuit Iterative Deepening search where f(g+h) is fixed
- $\Diamond IDA^*$ is complete and optimal as A^* using linear memory
- \diamondsuit the next limit can be chosen by increasing f of a fixed amount or looking at the values of the successors

Weakness: same sources of inefficiencies as uniform-cost search

Recursive Best First Search: RBFS

- \diamondsuit Stores the f of the unexpanded nodes and goes depth-first till f of the current node becomes worse of one of the previous alternatives
- \diamondsuit Backs up recording the best f of the nodes discarded by backtracking
- \diamondsuit more efficient than IDA^* but sometimes it wastes time in re-generating discarded nodes.
- \diamondsuit space complexity is linear O(bd)

SMA*

The problem with IDA* and RBFS is that they use $too\ little$ memory.

- ullet in IDA* at each iteration only the current cost limit for f is kept,
- in RBFS the cost of the nodes in the depth first search are recorded

SMA* (Simplified Memory-Bounded A*) can use all the available memory for the search.

Idea: better remember a node that re-generate it when needed

Basic intuition of SMA*

Like A* till there is memory available.

When a new node must be generated the node with the highest f is discarded (forgotten node), while keeping its cost f in the parent node.

A discarded node will be re-generated only when $all\ other\ paths$ are worse than the forgotten node.

Properties of SMA*

- It uses all the available memory.
- It avoids to repeat states until the available memory is exhausted.
- It is complete if the available memory allows the *shallowest* solution path to be recorded.
- It is optimal if the available memory allows the *shallowest* optimal solution path to be recorded. Otherwise it returns the best solution attainable with the available memory.
- The search is optimally efficient, when the available memory can store the whole search

Usage of SMA*

SMA* is typically the best heuristic search method

In difficult problems, SMA* **flounders** when it keeps re-generating states that have already been discarded.

Memory limitations can lead to unacceptable computing time (as for **trashing** as in pagination).

Bidirectional heuristic search

In the case of two frontier priority queues:

$$f_2(n) = max(2g(n), g(n) + h(n))$$

- ♦ can estimate the cost start-end or the cost to frontier

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) =$ number of misplaced tiles (not including the blank) $h_2(n) =$ total Manhattan distance (i.e., no. of squares from desired location of each tile)

$$h_1(S) = 6$$

 $h_2(S) = 4+0+3+3+1+0+2+1 = 14$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14\,$$
 BFS $=6783\,$ nodes $A^*(h_1)=678\,$ nodes $A^*(h_2)=174\,$ nodes $d=28\,$ BFS $=463234\,$ nodes $A^*(h_1)=202565\,$ nodes $A^*(h_2)=22055\,$ nodes

nodes expanded by A* with a dominant h is always less.

Effective branching factor

N= total number of nodes expanded by A* d= the depth of the solution b^* is the branching factor of a uniform tree of depth d with N+1 nodes.

$$N + 1 = 1 + b^* + (b^*)^2 + \dots + (b^*)^d.$$

Example: if A* finds a solution at depth 5 with 52 nodes, then the effective branching factor is 1,92.

Effective branching factor: 8-puzzle

$$d=14$$
 IDS = 1,77 ebf $A^*(h_1)=1$,47 ebf $A^*(h_2)=1$,31 ebf $d=28$ IDS = 1,53 $A^*(h_1)=1$,49ebf $A^*(h_2)=1$,36 ebf

Relaxed problems

Admissible heuristics can be derived from the *exact* solution cost of a *relaxed* version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to *any adjacent* square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Combination of heuristics

What if we have several heuristics not dominating each other? let $h_1 \dots h_m$ a collection of such heuristics, define

$$h(n) = max(h_1(n), \dots, h_m(n)).$$

h is admissible and dominates $h_1 \dots h_m$

Looking for heuristics

- Learning by looking at the "meta-level computation tree.
- Finding relaxed problems (via a formal problem specification)
- Pattern DataBases (use solutions to subproblems)
- Introducing landmarks
- Learning the heuristics by successfully solving several instances of the problem

Summary

- ♦ Heuristics make the difference
- ♦ Finding good heuristics is key to success, but ideal heuristics means no search!
- ♦ A* is optimal but uses too much memory
- ♦ SMA* Best HS (compromise between memory and time)