

ICND2110

(12-Channel PWM Constant Current LED Sink Driver)

Description

The ICND2110 is 12-channel PWM constant current sink LED driver. All 12-channels constant current can be set by a single external resistor, which provides users flexibility in controlling the light intensity of LEDs.

ICND2110 is designed for dual line concatenated transmission. SDI, CLK double line data and control instruction serial transmission, the number of cascades is greater than 512.

The use of dual line protocol transmission can simplify the design, and the application of QFN20 super small package to more design occasions. Using the PWM design of 16bit, the super high refresh rate of 3840Hz can be easily reached.

Features

- ♦ 12-channel constant current output
- Output current setting range:
 0.5~25mA×16@V_{DD}=5V constant current output
 0.5~15mA×16@V_{DD}=3.3Vconstant current output
- ♦ Current accuracy
 Between channel :< ±1.5%
 Between ICs :< ± 3.0%
- ♦ Fast response of output current
- ♦ I/O: Schmitt trigger input
- ♦ 16 bit PWM gray scale
- ♦ Data transfer frequency:f_{MAX}=30MHz(Max)
- ♦ Power supply voltage: V_{DD} =3.3 ~ 5V
- ♦ Operating Temperature: –40°C to +85°C
- ♦ Pre-Charge for Ghosting Reduction
- ♦ LED Protection Circuit

Package

ICND2110

Pin Configuration

QFN20-4. 5*2. 5*0. 8

		ICND2110 (QFN20)
Pin No.	Pin Name	Function
1	CLKI	Clock input terminal for data shift on rising edge
2,3	NC	NC
4~9,17~12	OUT	Constant current output
10	CLKO	Clock output to the following IC
11	SDO	Serial-data or command output to the following IC
18	VCC	Power-supply voltage
19	REXT	Constant-current value setting .Connection to an external resistor to GND.
20	SDI	Serial-data or command input
Thermal-Pad	GND	Power ground

Maximum Ratings (T_a =25℃)

Characteristics	Symbol	Rating	Unit
Supply Voltage	$V_{ exttt{DD}}$	0~5.5	٧
Output Current	I _o	25	mA
Input Voltage	V _{IN}	-0. 4~V _{DD} +0. 4	٧
Output voltage	V _{OUT}	10V	
Clock Frequency	F _{CLK}	30	MHz
Operating Temperature	Topr	-40 ~ 85	Ĵ
Storage Temperature	T_{stg}	−55 ~ 150	°C

Electrical Characteristics (Unless otherwise specified, V_{DD} =4.5~5.5V, T_a =25℃)

Characteristics	Symbol	Test circuit	Test Conditions	Min	Тур	Max	Unit
	I _{DD1}	4	Rext=Open, OUT off	_	2. 7		mA
	I _{DD2}	4	Rext=1.24K Ω , OUT off	-	4. 8		mA
Power supply current	I _{DD3}	4	Rext=8.8KΩ, OUT off	1	3. 2		mA
	I _{DD4}	4	Rext=1.24K Ω , OUT on	1	5. 5		mA
	I _{DD5}	4	Rext=8.8KΩ, OUT on	-	3. 9		mA
Constant ourrent output	I 01	5	V_{DD} =5. 0V, V_0 =1. 0V, R_{EXT} =1. 23k Ω	-	15	-	mA
Constant current output	I 02	5	V _{DD} =5. 0V, V _D =1. 0V, R _{EXT} =12K Ω	-	1. 54	_	mA
Constant current error	Δ Ι ₀	5	V_{DD} =5. 0V, V_{O} =1. 0V, R_{EXT} =1. 23k Ω , OUTO $^{\sim}$ 0UT11	-	±0.23	±0.45	mA
Constant current power supply voltage regulation	% V _{DD}	5	V_{DD} =4. 5 $^{\circ}$ 5. 5V, V_{0} =1. 0V, R_{EXT} =1. 24k Ω , $OUTO^{\circ}OUT11$	-	±0.2	-	%/V
Constant current output voltage regulation	%V оит	5	V_{DD} =5. 0V, V_0 =1. 0~3. 0V, R_{EXT} =1. 24k Ω , 0UT0~0UT11	-	±0.1		%/V

DC Items (Unless otherwise specified, T_a =-40 $^{\circ}$ C ~85 $^{\circ}$ C)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Voltage	$V_{\scriptscriptstyle DD}$	-	3. 3	5	5. 5	٧
Output Voltage when ON	V _{o (on)}	0UTn	0.6	-	5	٧
High level logic input voltage	V _{IH}	-	0. 7*V _{DD}	-	V_{DD}	٧
Low level logic input voltage	VıL	-	GND	-	0. 3*V _{DD}	V
Constant current output	I ₀	0UTn	0. 5	1	25	mA

Application Information

ICND2110 exploits current precision controlling technology, and provides nearly no current variations from channel to channel and from IC to IC.

- 1) The maximum current variation between channels is less than ±1.5%, and that between ICs<±3.0%.
- 2) The current characteristic of output stage is flat, and can be kept constant regardless of the variations of LED forward voltage.

Setting Output Current

The output current (lout) of ICND2110 is set by an external resistor, Rext. The relationship between lout and Rext is

Iout=
$$(V_{R-EXT}/R_{ext})*15$$
 $V_{R-EXT}=1.24V;$

Application Circuit

The above is a display driver circuit using ICND2110. Each chip drives 4 sets of RGB, a total of 4 RGB-LED lights. The data is transferred and configured by dual line serial concatenation. The data of chip0 is sent first, and the data of chip N is sent at last. It shows that the static mode is used only to send instructions and data at each frame.

Control and Data

Using dual line transmission mode, the CLK signal is transmitted at a fixed frequency and needs to be sent continuously, without interruption. The SDI signal is transmitted for the data and instruction, and is collected and written when the CLK signal is on the rising edge.

Command and descriptions are as follows:

Name	Command	Description
Start	Frame start	128bit date=1
End	Frame end	145bit date=1
Blank	Blank signal	16bit data=0, Blank should be send between Start, Reg, Data of each
Bialik	Dialik Signal	chip, End
Reg	Reg input	16bit Register
		96bit data, Corresponding to OUT5~OUT0 and OUT11~OUT6 output
Data	Date input	channel 16bit data, first send OUT5 or OUT11, high bit in front, low bit in
		the rear

Waveform of Display

- 1. Send Start at the begin of each frame;
- 2. Send Blank;
- 3. Send Reg, input 16bit register;
- 4. Send Blank;
- 5. Send *Date* of chip1- OUT5~OUT0;
- 6. Send Blank;
- 7. Send Date of chip1- OUT11~OUT6;
- 8. Send Blank;
- 9. Repeat step 5~8, in turn, write chip 1, chip 2, until chip N;
- 10. Send *End*, frame data transmission end;
- 11. SDI pulls down until the next frame begins.

Note:

- 1. Data 0 is sent when no data or instruction is sent;
- 2. CLK needs to be sent continuously, without interruption.

Register

Reg	Name	Default	Description
15:5	Reserved	0	
4	PWM-wider	1'h0	Enhancement for low gray 1:enable 0:disable
3	UP	1'h0	Ghosting reduction: 1:enable 0:disable
2:0	Test	3'h7	Test Only

Package Outline

DIM SYMBOL	MIN.	N□M.	MAX.		
	0.70	0.75	0.80		
Α	0.80	0.85	0.90		
A1	0	0.02	0.05		
A3	-	0.20 REF	_		
b	0.20	0.25	0.30		
D					
E		4,50BSC			
D1	0.70	0.80	0.90		
E1	2.70	2.80	2.95		
е		0.50BSC			
L	0.35	0.40	0.45		
K	0.20	_	_		
۵۵۵	0.15				
bbb	0.10				
CCC	0.10				
ddd	0.05				
eee	0.08				
fff	0.10				

BOTTOM VIEW

Product Ordering Information

Product number	Package (Pb-Free)	Weight (mg)
ICND2110	QFN20-4.5*2.5*0.85	25.9

Important information

Chipone Technology (Beijing) Co., Ltd. (Chipone) reserves the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Chipone warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Chipone's standard warranty. Testing and other quality control techniques are utilized to the extent Chipone deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CHIPONE SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CHIPONE PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

Chipone assumes no liability for applications assistance or customer product design. Chipone does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of Chipone covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Chipone's publication of information regarding any third party's products or services does not constitute Chipone's approval, warranty or endorsement thereof.

Copyright ©2015, Chipone Technology (Beijing) Co., Ltd.