Reinforcement Learning Cheat Sheet

Notation

In general, random variables are upper case and the values of the random variable are lower case. Matrices are bold.

Symbol	Meaning
t	a discrete time
S_t	state at time t
A_t	action at time t
R_t	reward at time t
$\mathcal S$	set of all non-terminal states
\mathcal{A}	set of all actions
$\mathcal R$	set of all rewards

Problem setup: Markov decision processes

Figura 1: Actor-critic relation

In a Markov decision process shown in Figure 1, a game agent interacts with an environment to achieve a certain goal. The interaction happens at every discrete time t=1,2,3,... The agent observes certain state of the environment $S_t \in \mathcal{S}$, selects some action $A_t \in \mathcal{A}$ and then receives certain reward $R_{t+1} \in \mathcal{R}$. A policy π take

Actor-critic

Figura 2: Actor-critic relation

Actor-critic (AC) methods lay between value-based and policy gradient methods as shown in figure 2. They both estimate the policy and state-action functions, whereas value-based methods only estimate state-value functions and have an implicit ϵ -greedy policy, and policy gradient methods do not have value function and only estimates the policy.

Variation of Parameters

$$F(x) = y'' + y'$$

$$y_h = b_1 y_1(x) + b_2 y_2(x), y_1 y_2 \text{ are L.I.}$$

$$y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$$

$$u_1 = \int_0^t -\frac{y_2 F(t) dt}{w[y_1, y_2](t)}$$

$$u_2 = \int_0^t \frac{y_1 F(t) dt}{w[y_1, y_2](t)}$$

$$y = y_h + y_p$$

ODEs

- ODEs	
1st Order Linear	Use integrating factor, $I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	$\frac{dy}{dx} = f(x, y) = f(xt, yt)$ sub $y = xV$ solve, then sub
	V = y/x
Exact:	If $M(x,y) + N(x,y)dy/dx =$
	0 and $M_y = N_x$ i.e.
	$\langle M, N \rangle = \nabla F \text{ then } \int_x M + \int_x N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y, $\frac{dv}{dx} = v\frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$
·	F contains $\ln x$, $\sec x$, $\tan x$,
	÷
Bernoulli	$y' + P(x)y = Q(x)y^n$
	$\div y^n$
	$y^{-n}y' + P(x)y^{1-n} = Q(x)$ Let $U(x) = y^{1-n}(x)$
	$\frac{dU}{dx} = (1 - n)y^{-n}\frac{dy}{dx}$ $\frac{1}{1 - n}\frac{du}{dx} + P(x)U(x) = Q(x)$
	$\frac{1}{1-n}\frac{du}{dx} + P(x)U(x) = Q(x)$ solve as a 1st order
Cauchy-Euler	solve as a 1st order $x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \cdots +$
J	$a_{n-1}y^{n-2} + a_n y = 0$
	guess $y = x^r$
3 Cases:	
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots	$y = Ax^r + y_2$
	$Guess y_2 = x^r u(x)$
	Solve for $u(x)$ and choose
2) Distinct commless seeds	one $(A=1,C=0)$
3) Distinct complex roots	$y = B_1 x^a \cos(b \ln x) + B_2 x^a \sin(b \ln x)$

Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
Guess $y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$

$$\frac{e^x \sum_{n=0}^{\infty} x^n/n!}{\sin x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}}$$

$$\cos x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$\mathbf{Systems}$ $\vec{x}' = A\vec{x}$ $\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \dots + a_n e^{\lambda_n t} \vec{v_n}$ $A\ is\ diagonalizable$ $\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1})$ A is not diagonalizable where $(A - \lambda I)\vec{w} = \vec{v}$ \vec{v} is an Eigenvector w/ value i.e. \vec{w} is a generalized Eigen- $\vec{x}' = A\vec{x} + \vec{B}$ Solve y_h $\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$ $\vec{X} = [\vec{x_1}, \vec{x_2}]$ $\vec{X}\vec{u}' = \vec{B}$ $y_p = \vec{X}\vec{u}$ $y = y_h + y_p$

Matrix Exponentiation

$$A^n = SD^nS^{-1}$$

D is the diagonalization of A

Laplace Transforms

$$L[f](s) = \int_0^\infty e^{-sx} f(x) dx$$

$$f(t) = t^n, n \ge 0 \qquad F(s) = \frac{n!}{s^{n+1}}, s > 0$$

$$f(t) = e^{at}, a \ constant \qquad F(s) = \frac{1}{s-a}, s > a$$

$$f(t) = \sin bt, b \ constant \qquad F(s) = \frac{b}{s^2 + b^2}, s > 0$$

$$f(t) = \cos bt, b \ constant \qquad F(s) = \frac{s}{s^2 + b^2}, s > 0$$

$$f(t) = t^{-1/2} \qquad F(s) = \frac{\pi}{s^{1/2}}, s > 0$$

$$f(t) = \delta(t - a) \qquad F(s) = e^{-as}$$

$$f' \qquad L[f'] = sL[f] - f(0)$$

$$f'' \qquad L[f''] = s^2 L[f] - sf(0) - f'(0)$$

$$L[e^{at} f(t)] \qquad L[f](s - a)$$

$$L[f](s - a)$$

$$L[f](s - a)$$

If $\vec{w_1} = \vec{u(t)} + i\vec{v(t)}$ is a so-

lution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$

are solutions

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi}^n}{\sqrt{\det A}}$$

Complex Numbers Systems of equations