Tools and Techniques of Problem Analysis

There are 3 techniques for problem analysis:

- 1. Algorithm
- 2. Flow chart
- 3. Pseudo code

Algorithm characteristics

- 1. It should have finite number of steps. No one can be expected to execute infinite number of steps.
- 2. The steps must be in order and simple
- 3. Each step should be defined clearly stated i.e. without un-ambiguity (without doubtfulness)
- **4.** Must include all required information
- 5. Should exhibit at least one output

Algorithm	Flowchart	Program
An algorithm is defined as sequence of steps to solve a problem (task).	A flowchart is pictorial (graphical) representation of an algorithm.	Set of instructions. Instruction is a command to the computer to do some task.
Algorithm can also be defined as a plan to solve a problem and represents its logic.	A picture is worth of 1000 words. We can understand more from picture than words.	Implementation of Algorithm or flowchart

Different algorithms have different performance characteristics to solve the same problem. Some algorithms are fast. Some are slow. Some occupy more memory space. Some occupy less memory space. Some are complex and some algorithms are simple.

Logically algorithm, flowchart and program are the same.

Flow chart Notations:

Name	Symbol	Function
Start/End		Used to markup the starting and ending point
Arrows		Used for connection
Input/Output		Used for input and output information
Process		Used to represent single step
Decision	\Diamond	Used for branching or decision making

Examples of Algorithms and Flowcharts (with C code)

1. To find sum of two numbers

Algorithm

Flowchart

- 1. Start
- 2. Read a, b
- 3. c = a + b
- 4. Print or display c
- 5. Stop

2. Finding Area of the square

Algorithm

- 1. Start
- 2. Read length, L
- 3. area = L*L
- 4. Print or display area
- 5. Stop

3. Finding Area of the rectangle

Algorithm

Flowchart

Start

- 1. Start
- 2. Read side length, a
- 3. Read side length b
- **4.** area = a*b
- 5. Print or display area
- 6. Stop

4. Area of a triangle where three sides are given

Algorithm

- 1. Start
- 2. Read a, b, c
- 3. s = (a+b+c)/2
- A=sqrt (s *(s-a)*(s-b)*(s-c))
 Print or display A
- 6. Stop

5. Find the area & perimeter of a square

Algorithm

Flowchart

- 1. Start
- 2. Read length L
- 3. Area A = L*L
- 4. Perimeter P = 4*L
- 5. Print or display A,P
- 6. Stop

6. Calculating the average for 3 numbers

Algorithm

- 1. Start
- 2. Read 3 numbers A, B, C
- **3.** Calculate the average by the equation:

$$Average = (A + B + C)/3$$

- **4.** Print average
- 5. Stop

7. Greatest of two numbers

Algorithm

Flowchart

- 1. Start
- 2. Read A,B
- 3. If A > B then

Print A is large

else

Print B is large

4. Stop

8. Interchange the value of two numbers

Algorithm

- 1. Start
- 2. Read two values into two variables a, b
- 3. Declare third variable, c

$$c = a$$

$$a = b$$

$$\mathbf{b} = \mathbf{c}$$

- 4. Print or display a, b
- 5. Stop

9. Calculate simple interest using the expression (SI=PNR/100)

Algorithm

Flowchart

- 1. Start
- 2. Read P, N, R
- 3. SI=(PNR)/100
- 4. Print SI
- 5. Stop

10. Convert temperature from Fahrenheit to Celsius

Algorithm

- 1. Start
- 2. Initialize F = 0, C = 0
- 3. Read F
- 4. C = (F-32) * 5/9
- 5. Write C
- 6. Stop

11. Draw a flowchart for computing factorial N, where $N! = 1 * 2 * 3 * \dots N$

Algorithm

Flowchart

i = i + 1

No

i = N?

Stop

Yes
Write F

12. Find the Sum of First Five Natural Numbers

Algorithm

Flowchart

- 1. Start
- 2. Initialize count = 0, sum = 0
- 3. count = count + 1
- 4. sum = sum + count
- 5. Repeat steps 3,4 until count > 5
- 6. Print sum
- 7. Stop

13. Calculating sum of integers 1 to 100

Algorithm

- 1. Start
- 2. Initialize count i = 1, sum = 0
- 3. sum = sum + i
- 4. Increment i by 1
- 5. Repeat steps 3 & 4 until i > 100
- 6. Print sum
- 7. Stop

14. To find the sum of n natural Numbers

Algorithm

- 1. Start
- 2. Read n
- **3.** count=0
- **4.** sum=0
- 5. count = count + 1
- 6. sum = sum + count7. Repeat steps 5 & 6 until count > n
- 8. Print sum
- 9. Stop

15. Sum of squares of n natural numbers

Algorithm **Flowchart** Start 1. Start 2. Read n 3. i = 0, sum = 0 Read n 4. i = i + 1 $5. \quad sum = sum + (i*i)$ 6. Repeat steps 4 and 5 until i > ni = 07. Print sum sum = 08. Stop $\begin{aligned} &i=i+1\\ sum &= sum + (i*i) \end{aligned}$ Is i > n Yes Write sum Stop

16. To find the sum of all even numbers up to 'n'

Algorithm Flowchart Start 1. Start 2. Read n 3. count=0READ n 4. sum=0 5. count = count + 26. sum = sum + countcount = 07. Repeat steps 5 & 6 until count ≤ n sum = 08. Print sum 9. Stop count = count + 2sum = sum + countcount ≤ n Yes Write sum Stop

17. To find Product of numbers up to N

18. Sum of first 50 odd numbers

Algorithm Flowchart 1. Start Start 2. sum=0, n=1sum = 03. sum=sum + n 4. n = n + 2sum = sum + n 5. Repeat steps 4 and 5 until n 599 Print sum n = n + 27. Stop n = 99? Current sum Previous: Yes Write sum Initial count = 0, s m = 0 sum = sum + coicount Stop 1 sum = 0 + 1 = 12 sum = 1 + 2 = 33 sum = 3 + 2 = 54 sum = 5 + 2 = 75 sum = 7 + 2 = 9Up to n<=99