

INTERNSHIP PROGRESS

Modeling curriculum learning

TABLE OF CONTENTS

3 WEEKLY OBJECTIVES

4 LAST WEEK'S OBJECTIVES

5 CURRENT STATE

10 QUESTIONS

13 THIS WEEK'S OBJECTIVES

WEEKLY OBJECTIVES

	FEBRUARY	MARCH	APRIL	MAY
W1	/	Level 2: accuracy RL Level 2: learning progress RL	Level 3: integrate all LVL2 and manually set weights	Compare performances Written report
W2	/	Unify level 1 Compare different versions of the model	Fix LP + learn about policy gradient	Written report
W3	Level 1: implement tasks and neural network	Prepare the presentation	Hyperspace/Grid search + simple policy gradient exercise	(exams)
W4	Finish 3 models for Level 1 Level 2: accuracy RL learning	LAB PRESENTATION Integrate all suggestions	Level 3: policy gradient	(exams)

Past week

Upcoming week

LAST WEEK'S OBJECTIVES

ADD PERCENTILE (95) CLOUD TO GRAPHS Instead of standard deviation clouds CLEAN UP CODE TO MAKE IT EASIER TO LOOP

CREATE A GRID SEARCH

Loop over a grid of 10

2

4

OPTIMISE GRID SEARCH TIME

Train parameter 1 in parallel + add a sum condition

3)

SUMMARISE FINDINGS

Write a short summary of findings, questions and plan for next week.

(5)

	Performance of combined criteria compared to iid + 2 different windows		
5	Current state	2025	

Combined criteria, manual weights (window = 60)

What the models look like -

Combined criteria, manual weights (window = 40)

Note: change to single value comparison

		Grid search		
	-			
1 0		Current state	2025	

Grid is on a range of 11 (0 - 10)

```
grid range = range(0, 11) #values from 0 - 10
total_weight = 10
w1 = int(sys.argv[1])
for w2 in grid range:
    for w3 in grid range:
        #the 4th weight depends on the others (fixed total)
        w4 = total weight - w1 - w2 -w3
        #check and skip negative weights
        if w4 < 0:
            continue
        #run the search
        weight task = {
            'LP signed': w1,
            'LP unsigned': w2,
            'acc': w3,
            'novelty': w4
        complete_run(weight_task, parameters, w1, w2, w3, w4)
```

```
#!/bin/bash
#PBS -1 nodes=11:ppn=16
#PBS -1 mem=16gb
#PBS -1 walltime=240:00:00
#PBS -m ae
#PBS -M andrea.burda@ugent.be
#PBS -N grid search criteria weights
module load Anaconda3/2024.06-1
module load TensorFlow/2.15.1-foss-2023a
cd $PBS O WORKDIR
python ./grid_search_criteria_weights.py 0 &
python ./grid_search_criteria_weights.py 1 &
python ./grid_search_criteria_weights.py 2 &
python ./grid_search_criteria_weights.py 3 &
python ./grid_search_criteria_weights.py 4 &
python ./grid_search_criteria_weights.py 5 &
python ./grid_search_criteria_weights.py 6 &
python ./grid search criteria weights.py 7 &
python ./grid_search_criteria_weights.py 8 &
python ./grid search criteria weights.py 9 &
python ./grid_search_criteria_weights.py 10 &
wait
```

Note: Window = 40 Learning rate = 0,3

Inverse temperature = 1

Objective: to allow parameters to be at 0 or 10

QUESTIONS

QCIESTICT (S		
QUESTION 1	■ Time limit? How high can I set it? (72 hours)	
QUESTION 2	• Are files saved as it goes?	
NOTES	 Should I add CPU cores for parallel training? (1 -> 11), what about memory 	

12

QUESTIONS

NOTES	Grid range of 11? What about inverse temperature and learning rate?	
NOTES	 The results will be based on the average mean accuracy accross all trials and conditions (cause accounts for both quality of minima and speed of conversion) 	
NOTES	 Mean accuracy will be the reward used for LVL3 policy gradient (but on a single-trial basis) 	

NEXT WEEK'S OBJECTIVES

MAKE A SIMPLE POLICY GRADIENT MODEL

APPLY POLICY GRADIENT

To the complete model

CREATE A ANALYSIS SCRIPT

For the grid search

2

 $\overline{(4)}$

OPTIMISE AND RUN THE GRID SEARCH

. . .

SUMMARISE FINDINGS

Write a short summary of findings, questions and plan for next week.

 \bigcirc