This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

DEUTSCHES

AUSLEGESCHRIFT 1083174

W 21279 XII/81a

ANMELDETAG:

3. JUNI 1957

BEKANNTMACHUNC DER ANMELDUNG UND AUSGABE DER AUSLEGESCHRIFT:

9. JUNI 1960

Die Erfindung bezieht sich zunächst auf ein Verfahren zur Verpackung von Gegenständen zwischen die übereinanderliegenden Hälften einer längsgefalteten Bahn von wärmeversiegelbarem Material, die außer an der Faltlinie an drei Seiten offen ist und durch Anbringung von Siegelquernähten in einzelne Beutel unterteilt wird.

Der moderne Warenverkehr fordert eine individuelle Verpackung in den Waren angepaßten zugeschnittenen Beuteln oder Umhüllungen. Zu den 10 Waren, die in Klarsichtpackungen, wie solchen aus Polyäthylen und Glashaut (Cellophan, Pliofilm), verpackt werden, gehören die verschiedensten Gegenstände, insbesondere Textilien, Kleidungsstücke od. dgl., aber auch Spielzeug, Werkzeuge, Nahrungs- 15 mittel und zahlreiche andere Waren. Die gebräuchliche Art der Verpackung dieser Gegenstände erfordert die Bereitstellung besonders hergestellter Beutel, die im allgemeinen bedruckt und von Hand gefüllt wurden. Dieses Einfüllen der einzelnen Beutel von 20 Hand ist schwierig und zeitraubend, insbesondere wenn Beutel verwendet werden, die der Form des Gegenstands genau angepaßt sind. Die Verpackung mittels vorgefertigter Beutel ist daher für zahlreiche Verwendungszwecke wenig geeignet, selbst wenn be- 25 sondere Einfüllvorrichtungen angewendet werden.

Eine Abhilfe bringt das bekannte Verfahren zur Herstellung der Verpackung unter gleichzeitigem Einführen des zu verpackenden Gegenstandes in einem anderliegenden Bahnen werden dann unter Ausbildung von Nähten miteinander verbunden. Ein bekanntes Verfahren bedient sich dabei einer in nach packenden Gegenstände über einen Tisch geführten Verpackungsbahn.

Ein älterer Vorschlag offenbart die Lehre, die Querenden des herzustellenden Beutels sowie dessen offene, während die Füllung nur durch das noch offene Querende erfolgt. Die Füllung derartiger an drei Seiten geschlossener Beutel erfordert jedoch besondere Hilfsmittel für den Füllvorgang, ohne daß dieser jedoch die Form des zu verpackenden Gegenstandes erfolgen kann.

Diese Nachteile beseitigt das erfindungsgemäße Verfahren in besonders vorteilhafter und überaus einfacher Weise, wodurch die Betriebssicherheit des Ver- 50 fahrens beträchtlich erhöht und gleichzeitig eine erhebliche Materialersparnis erzielt wird.

Verfahren und Vorrichtung zum Verpacken von Gegenständen zwischen die übereinanderliegenden Hälften einer längsgefalteten Bahn

Anmelder:

Wrapak Inc., Flushing, N.Y. (V.St.A.)

Vertreter: Dipl.-Ing. H. Leinweber, Patentanwalt, München 2, Rosental 7

> Beanspruchte Priorität: V. St. v. Amerika vom 25. Juli 1956

Samuel J. Rivman, Roslyn Heights, N. Y., Julius Rivman, Forest Hills, N. Y., und William A. Jacobs, Flushing, N. Y. (V. St. A.), sind als Erfinder genannt worden

einer quer zu der Faltlinie verlaufenden Versiegeder Maschine in einer V-förmig gefalteten Bahn oder 30 lungslinie miteinander versiegelt werden, worauf der in zwei Bahnen zugeführten Hüllstoff. Die übereinzu verpackende Gegenstand in den so nur teilweise zu verpackende Gegenstand in den so nur teilweise fertiggestellten und gespreizten Beutel hinter die gebildete Versiegelungslinie durch Einsatz von der offenen Seite und dem offenen Ende des Beutels her ohen geöffneter Form zum Einfüllen der zu ver- 35 eingebracht wird, worauf dann die aus dem teilweise fertiggestellten Beutel und dem Gegenstand bestehende Einheit über die Versiegelungsstelle vorgeschoben und nach Einstellung des Vorschubes die Bahnhälften an dieser Versiegelungsstelle auch hinter dem Gegender Faltlinie gegenüberliegende Seite zu verschließen, 40 stand längs einer zweiten Versiegelungslinie quer zu der Faltlinie versiegelt werden, während das Vorderende des so gebildeten und gefüllten Beutels offengelassen wird.

Nach einem weiteren Merkmal der Erfindung wird reibungslos und unter weitestgehender Anpassung an 45 die Verpackungsmaterialbahn in annähernd waagerechter Lage durch die Bearbeitungsmaschine geführt.

Dabei werden bei der Bildung der Quernähte die beiden Bahnhälften, wie an sich bekannt, zunächst unter nachgiebigem Druck zusammengepreßt und anschließend die vereinigten Abschnitte durch einen erhitzten Draht zur Bildung der Einzelverpackungen durchgeschnitten. Das Versiegeln und Durchschneiden

Es sind verschiedene automatisch arbeitende Maschinen zur Herstellung von Beuteln und zum Füllen derselben bekannt. Typisch ist für diese Maschinen, daß ein fortlaufender Materialstreifen längsgefalzt wird, um diese dadurch gebildeten Hälften dann an einer Falzlinie zu vereinigen. Der gefalzte Streifen wird dann zu einer Reihe von miteinander verbundenen Beuteln oder Umhüllungen ausgebildet, von denen jeder eine nach aufwärts gerichtete Öffnung für das Einfüllen von Gegenständen oder Füllmengen hat. 10 stellbare Tischverlängerung der Verpackungsmaschine, Die einzelnen Beutel werden hergestellt, indem die gegenüberliegenden Abschnitte entlang Linien verschweißt werden, die sich im rechten Winkel zum Falz erstrecken. Dem Füllen dient im allgemeinen ein Einfülltrichter, welcher in die offene Mündung des 15 in anderer Stellung des Schweißkopfes und Beutels eingeführt und durch welchen eine abgemessene Menge von Füllmaterial oder ein Gegenstand in den Beutel eingeführt wird. Dieser Einfüllvorgang gestaltet sich ziemlich schwierig, da das Verpackungsmaterial auf Grund statischer Kräfte zum Zusammen- 20 10 dargestellt, die einen Tisch 12 mit einer verlängerhaften oder -kleben neigt. Daher sind Einrichtungen erforderlich, um die gegenüberliegenden Teile nahe der Offnung nach der Einführung des Einfülltrichters in den vollständigen Beutel zu trennen. Aus praktischen Gründen werden daher die Beutel etwas größer 25 längs zur Tischplatte geführt wird. Für große und als die zu verpackenden Gegenstände hergestellt, um die Einführung zu erleichtern und die Massenproduktion zu ermöglichen. Die Verwendbarkeit dieser Maschinen beschränkt sich im allgemeinen auf die Verpackung harter Güter, vorzugsweise, wenn abge- 30 messene Mengen von kleinen Gegenständen, welche als eine Einheit verpackt werden sollen, zu verpacken sind. Für die Verpackung von weichen Gütern sind sie nicht geeignet, teilweise wegen der Neigung der weichen Güter, auf den Boden der Verpackung zu 35 fallen. Das ergibt eine Zerstörung der Verpackung und kein sauberes und anziehendes Aussehen für den Verkauf.

Zur Durchführung des neuen Verfahrens findet vor allem eine Vorrichtung Verwendung, die einen Tisch 40 aufweist, über den die V-förmig längsgefaltete, nach vorn offene Verpackungsbahn hinweggeführt wird. Die Vorrichtung gemäß der Erfindung zeichnet sich dadurch aus, daß auf dem Tisch ein in die Faltung der Verpackungsbahn eingreifendes V-förmig gebildetes Spreizorgan und in Bewegungsrichtung der Verpackungsbahn hinter dem Spreizorgan ein die Quernähte bildender und mit einem erhitzbaren Schneiddraht ausgerüsteter Schweißkopf vorgesehen sind.

Unter Anwendung einer derart ausgestalteten Vor- 50 richtung bietet das neue Verfahren die Möglichkeit, beliebige Gegenstände in eine Verpackung von wärmeversiegelbarem Material bequem und schnell einzulegen. Dabei ist die Form des gebildeten Verpackungsbeutels weitgehend der Form des zu verpackenden 55 Gegenstandes angepaßt. Hierdurch ergeben sich beträchtliche Ersparnisse an Rohmaterial sowie Arbeitskosten und Verpackungszeit. Die Leistungsfähigkeit des neuen Verfahrens ebenso wie der hierzu dienenden erfindungsgemäßen Vorrichtung beweist sich insbe- 60 sondere dann, wenn in oftmaligem Wechsel Gegenstände von unterschiedlicher Größe in entsprechenden Umhüllungen zu verpacken sind. Die fertige Verpackung besitzt schließlich immer noch eine Öffnung, was für zahlreiche Anwendungsfälle besonders er- 65 wünscht ist. Schließlich können den Füllvorgang behindernde statische Kräfte nicht mehr störend in Erscheinung treten, was zur Folge hat, daß außerordent-

Weitere Merkmale, Einzelheiten und Vorzüge der Erfindung ergeben sich aus der Beschreibung einer besonders zweckmäßigen Ausführungsform der Erfindung sowie an Hand der Zeichnungen, von denen

Fig. 1 die Vorderansicht einer Verpackungs-

maschine nach der Erfindung,

Fig. 2 die Seitenansicht der Vorrichtung nach Fig. 1, von links gesehen,

Fig. 3 eine Draufsicht auf den Tisch und die ver-

Fig. 4 eine Seitenansicht des Schweißkopfes der Verpackungsmaschine in vergrößertem Maßstab,

Fig. 5 einen Querschnitt nach Linie 5-5 in Fig. 4, Fig. 6 einen Querschnitt nach Linie 6-6 in Fig. 4

Fig. 7 eine schematische Darstellung des Steuerstromkreises der Verpackungsmaschine veranschau-

In den Zeichnungen ist eine Verpackungsmaschine ten flachen Platte 14 aufweist. Die Platte 14 kann

gegebenenfalls geneigt sein.

Eine Vorratsrolle S des Verpackungsmaterials ist nahe der Tischplatte 14 so angeordnet, daß dieses schwere Rollen kann eine Verlängerung an der rechten Seite des Tisches vorgesehen werden (s. Fig. 1), um die Versorgung mit Material zu erleichtern. Die Zuführung des Verpackungsmaterials S erfolgt in Form einer längsgefalzten Bahn mit übereinanderliegenden Hälften s₁, s₂, die an einer Falzlinie f vereinigt sind. Die Materialrolle wird von Lagern 16, 18 getragen, welche die Enden einer Lagerwelle 20 der Rolle aufnehmen. Geeignete Stellringe 22, 24 richten die Materialrolle S in Beziehung zum Tisch 12 aus. Das Material läuft über eine Leitrolle 26, welche drehbar am benachbarten Ende des Tisches 14 befestigt ist und von dort über die flache Oberseite der Tischplatte 14. Die gefalzte Materiallänge passiert dann den Tisch bis zu einer Verschlußstelle 28 am Ende der Tischplatte 14.

An der Verschlußstelle 28 ist ein Schweiß- und Schneidkopf 30 angeordnet, um aufeinanderfolgende, beschnittene Versiegelungslinien p_1 , p_2 herzustellen, welche die übereinanderliegenden Bahnhälften s_1 , s_2 in im wesentlichen rechten Winkel zur Falzlinie f vereinigen. Der Schweißkopf 30 ist beweglich befestigt und kann in die strichpunktierte Stellung gemäß Fig. 1 gebracht werden, in der er mit einer nachgiebigen Unterlage zwecks Herstellung der Schweißlinien zusammenwirkt. Der Schweißkopf 30 und sein zugeordneter Mechanismus sind auf einen Rahmen 34 montiert, der Ständer 36, 38 an der Rückseite der Tischplatte 14 und eine überhängende Plattform 40 aufweist, die sich von den Ständern 36, 38 nach vorn über die Tischplatte14 erstreckt. Die Plattform 40 trägt den Mechanismus zur Bewegung des Schweißkopfes 30 in die in Fig. 1 strichpunktiert angegebenen Stellungen.

Einzelheiten des Schweiß- und Schneidkopfes 30 sind aus den Fig. 4 bis 6 zu ersehen. Der Kopf besitzt einen Widerstandsdraht 42 zum Schweißen und Schneiden, welcher von der Führungsfläche 44a eines Tragteiles 44 getragen wird. Der Draht 42 ist teilweise in einer Nut gelagert, die in der Führungsfläche 44 a des Tragteiles 44 ausgebildet ist. Ein wesent-

licher Teil ragt unter die Fläche 44a.

Die entgegengesetzten Enden des Drahtes 42 sind A 1.1..01.1 16 10 Ann C+#+++++1 11 50, 52 verbunden ist, die zu einer Hochstrom-Niederspannungsquelle führen, die durch die Sekundärseite eines Regeltransformators 54 (Fig. 1) gebildet wird.

Auf dem Stützteil 44 ist ein kombinierter Drahtschutz und Abstreifer 56 gleitbar angebracht, welcher Schutzplatten 58, 60 und eine Abstandsstange 61 aufweist. Bei eingezogenem Schweißkopf 30 liegt die Abstandsstange 61 an dem oberen Rand des Stützteiles 44 (vgl. Fig. 5) an, und die Enden 58a, 60a der Platten 58, 60 erstrecken sich bis unter den Draht 42. 10 Auf diese Art wird der Widerstandsdraht 42 umschlossen und geschützt. In den Schutzplatten 58, 60 sind eine Anzahl Ventilationsöffnungen vorgesehen, von denen eine mit dem Bezugszeichen 62 bezeichnet ist.

Sowohl der Stützteil 44 als auch die Schutzplatten 15 58, 60 können aus lamellierter Glasfaser bestehen.

Der kombinierte Drahtschutz und Abstreifer 56 ruht auf dem Stützteil 44, welches wiederum von den Blöcken 64, 66 einer Federaufhängung 78 getragen Blöcke 64, 66 mit dem Stützteil 44 durch Bolzen 68, 70 verbunden. Die Schutzplatten 58, 60 weisen Ausschnitte 72 auf, um eine Relativbewegung zwischen dem Stützteil 44 und den Platten 58, 60 zu ermög-Blöcken 64, 66 getragen werden, spreizen sich gegen die Abstandsstange 61 des kombinierten Drahtschutzes und Abstreifers 56, um den Draht 42 in die eingezogene Stellung gemäß der Fig. 4 und 5 zu

Die Federaufhängung 78 weist Befestigungsstangen 80, 82 auf, welche mit den entsprechenden Aufhängeblöcken 64, 66 verbunden sind. Die Befestigungsstangen 80, 82 erstrecken sich durch Gleitlager 84, 86, die mittels Zapfen 88 in Tragarmen 90 befestigt sind. 35 Die oberen Enden der Stangen 80, 82 sind durch eine Kreuzwelle 92 miteinander verbunden, die drehbar zwischen Winkelhebeln 94, 96 gelagert ist. Diese sind wiederum an eine in den Lagern 100, 102 gelagerte Welle 98 angelenkt. Die Winkelhebel 94, 96 sind 40 durch eine weitere Kreuzwelle 104 miteinander verbunden, welche durch einen Lenker 106 mit dem Druckkolben 108 eines Druckluftmotors 110 verbunden ist, dessen Zylinder mit 112, Druckfeder mit 114 und Lufteinlaß mit 116 bezeichnet sind. Durch den 45 Hub des Druckkolbens werden die Winkelhebel 94, 96 im Gegenuhrzeigersinn bewegt und der Schweißkopf 30 aus der durch volle Linie angegebenen Stellung in die durch gestrichelte Linie angegebene Stellung gebracht. Bei Nachlassen des Druckes läßt die Feder 50 114 den Kolben in ihre eingezogene Stellung zurück-

Federn 120 dienen als Abfederung für den Schweißkopf 30, wenn er mit einer Druckunterlage 32 des Tisches 14 in Berührung gebracht wird. Beim Rück- 55 gang des Kopfes in die Ausgangsstellung dienen Federn 122 als Absederung für die Aushängung. Bewegt sich der Schweißkopf 30 nach unten, so treffen die Führungsenden 58 a, 60 a der Schutzplatten 58, 60 auf die Druckunterlage 32 an der Stelle auf, wo ge- 60 schweißt und abgeschnitten werden soll. Wenn der Druck anhalt, wird er vom Stützteil 44 nach unten übertragen, und der erhitzte Widerstandsdraht 42 gelangt in Kontakt mit dem zwischen den Platten 58, 60 und der Druckunterlage 32 eingeklemmten gefalteten 65 Materials S. Die Berührung des erhitzten Widerstandsdrahtes 42 mit den übereinanderliegenden Bahnhälften s,, se bildet eine Versieglungsnaht zwischen

nähte, eine, die die zweite Seite eines Beutels vervollständigt, und eine, die die erste Seite des nächstfolgenden Beutels bildet.

Vor dem Schweißbereich 28 ist auf der Tischplatte 14 ein V-förmiger Spreizkörper 124 angeordnet, welcher zur Trennung der übereinanderliegenden Bahnhälften s_1 , s_2 des gefalteten Verpackungsmaterials S dient. Dieser weist ein Befestigungsstück 126 auf zur Halterung der unteren Platte 128 des Spreizkörpers in parallelem Abstand zur Tischplatte. Die untere Platte 128 trägt eine obere Spreizplatte 130, welche von der Rückseite der Platte 128 nach vorn ragt und dazwischen einen Winkel von annähernd 45° bildet. Die Spreizplatten 128, 130 treffen sich an einer Scheitellinie 132, entlang welcher der Falz f der Vorratsrolle S geschoben wird und bilden so den Spreizkörper 124. Der zwischen den Spreizplatten 128, 130 gebildete Winkel kann geändert werden, um den erforderlichen Raum zwischen den Bahnhälften s1, s2 wird. Wie aus Fig. 4 und 5 zu ersehen ist, sind die 20 für die Einfügung des zu verpackenden Gegenstandes zu gewährleisten. Die Schenkel des Spreizkörpers sind gegeneinander verstellbar. Weiter ist der Spreizkörper 124 zur Behandlung von Material unterschiedlicher Breite geeignet. Er ermöglicht ein einfaches Einlichen. Geeignete Blattfedern 74, 76, die von den 25 schieben eines zu verpackenden Gegenstandes in den besonders geformten Beutel am Schweißort.

Am Tisch 12 ist, wie aus Fig. 1 ersichtlich ist, eine in der Höhe verstellbare Tischverlängerung 134 angeordnet, welche eine Platte 136 aufweist, die auf einer Stützwelle 138 befestigt ist, welche gleitend in einem Lager 140 ruht. Ein Handrad 142 ist in das Gleitlager 140 geschraubt und erlaubt eine Einstellung der Verlängerung 136 in verschiedene Höhen in bezug auf die Tischplatte 14.

Die höhenverstellbare Tischverlängerung 134 trägt ein elektro-optisches Fühlgerät 144. Das Fühlgerät 144 weist einen Rahmen 146 auf, dessen einer Arm 146 a sich über die Tischplatte 136 erstreckt, während der andere Arm 146 b unter die Tischplatte ragt. Der obere Arm 146a trägt eine Lichtquelle 148, welche durch eine Längsausnehmung 150 in der Tischverlängerung 134 nach einem Lichtzellenrelais 152 hin gerichtet ist. Das gesamte Fühlgerät 144 ist mittels Befestigungszapfen 154, 156 einstellbar befestigt, welche innerhalb einer Ausnehmung 158 auf der Rückseite der Tischverlängerung reiten. Die Einstellung des Fühlgeräts 144 entspricht der Breite der erwünschten Verpackung.
Zur Führung des Verpackungsmaterials S dienen

die Führungen 160 bzw. 162 auf der Platte 14 des Tisches 12 und auf der Platte 136 der Tischverlängerung 134. Die Führung 160 ist von der Scheitellinie 132 des Spreizkörpers 124 um einen Abstand entfernt, der die Einfügung des Verpackungsmaterials S erlaubt.

Vor dem Spreizkörper 124 ist ein Druckorgan 164 angeordnet, welches elektrisch gesteuert wird und geeignete Angaben auf dem Material S für die einzelnen zu verpackenden Gegenstände anbringt. Es arbeitet gleichzeitig mit dem Schweißkopf 30 in der Zeit, in welcher das Material S stillsteht.

Der Materialzuführung ist eine Bremsvorrichtung 166 zugeordnet, die aus einer Bremstrommel 168 und einem beweglichen Bremsschuh 170 besteht, der von einem Hebel 172 getragen wird. Der Hebel 172 ist im Punkt 174 drehbar gelagert, und eine Feder 176 ist mit seinem kurzen Arm verbunden, um normalerweise den Schuh 170 durch Gegenkraft vor Berührung mit der Trommel 168 zu bewahren. Ein von einer

rung des Fühlmittels 144 als Bremse auf das Material S ein. Gelangt die Verpackung P in eine Stellung, die das Fühlgerät auslöst, dann wirkt eine Bremse auf die Zuführung, welche ein zu weites Vorrücken der Materialbahn verhütet.

In Fig. 7 ist ein Hauptschalter 180 in der Eingangsleitung 50a vorgesehen. Der geschlossene Schalter 180 verbindet den Widerstandsdraht 42 über einen Transformator 54 mit den Eingangsleitungen 50a, 52a und erregt das Fotorelais 152, welches den Bremsmechanismus 166 steuert. Das Druckgerät 164 ist ebenfalls mit den Eingangsleitungen 50a, 52a verbunden. Die Spule 184a eines von einem Elektromagneten gesteuerten Luftventils 184 ist mit den Eingangsleitungen 50a, 52a über den Fußschalter 182 verbunden. 15 Das Ventil dient zur Verbindung eines Luftkompressors 186 mit dem Einlaß 116 des pneumatischen Antriebs 110.

Die Arbeitsfolge wird im Zusammenhang mit den Fig. 1 und 3 beschrieben. Die Bedienungsperson führt 20 den zu verpackenden Gegenstand A zwischen die übereinanderliegenden Bahnhälften s₁, s₂ im Bereich des Spreizkörpers 124 ein, und zwar in die erste strichpunktiert angegebene Stellung, in welcher der Gegenstand A rechts von der nachgiebigen Druckunterlage 25 32 und von dem nach der Druckunterlage gerichteten Seitenverschluß p_2 liegt. Wenn der Gegenstand A im teilweise fertigen Beutel oder der Verpackung an der einen seitlichen Verschweißung p2 und der Falte f anliegt, zieht die Bedienungsperson die Verpackung mit 30 ihrer linken Hand H1 über die Verlängerung 134 der Tischplatte. Wenn der an die erste Kante p₁ angrenzende Teil der Verpackung unter das Fühlgerät 144 gelangt, wird die Rotation der Rolle S vom Bremsmechanismus 166 angehalten, und die nicht vollstän- 35 dige und offene Seite der Verpackung P liegt auf der nachgiebigen Druckplatte 32, die aus einem Kunststoffpolster bestehen kann, zum Schweißen mittels Schweißkopfes bereit. Durch Betätigung des Fußschalters 182 bildet der Schweißkopf die zweite be- 40 schnittene Seitenschweißung p_1 zur Vervollständigung der Verpackung P und die erste Seitenschweißung der nächstfolgenden Verpackung aus.

Die Teile 58, 60 und die Unterlage 32 können, wie an sich bekannt, aus lamellierten Glasfasern bestehen 45 oder mit ihnen oder mit Teflon überzogen sein.

PATENTANSPRUCHE:

1. Verfahren zur Verpackung von Gegenständen zwischen die übereinanderliegenden Hälften einer 50 längsgefalteten Bahn von warmeversiegelbarem Material, die außer an der Faltlinie an drei Seiten offen ist und durch Anbringung von Siegelquernähten in einzelne Beutel unterteilt wird, dadurch gekennzeichnet, daß die Bahnhälften (s_1, s_2) an der 55 Verpackungsstelle auseinandergespreizt und gleich dahinter zur Bildung einer Beutelnaht längs einer quer zu der Faltlinie verlaufenden Versiegelungslinie miteinander versiegelt werden, worauf der zu verpackende Gegenstand in den so nur teilweise 60 fertiggestellten und gespreizten Beutel hinter die gebildete Versiegelungslinie durch Einsatz von der offenen Seite und dem offenen Ende des Beutels her eingebracht wird, worauf dann die aus dem teilweise fertiggestellten Beutel und dem 65 Gegenstand bestehende Einheit über die Versiegelungsstelle vorgeschoben und nach Einstellung

des Vorschubes die Bahnhälften an dieser Versiegelungsstelle auch hinter dem Gegenstand längs einer zweiten Versiegelungslinie quer zu der Faltlinie versiegelt werden, während das Vorderende des so gebildeten und gefüllten Beutels offengelassen wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verpackungsmaterialbahn in annähernd waagerechter Lage durch die Bearbei-

tungsmaschine geführt wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei der Bildung der Quernähte die beiden Bahnhälften, wie an sich bekannt, zunächst unter nachgiebigem Druck zusammengepreßt und anschließend die vereinigten Abschnitte durch einen erhitzten Draht zur Bildung der Einzelverpackungen durchgeschnitten werden.

4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Versiegeln und Durchschneiden, wie an sich bekannt, in einem

einzigen Arbeitsgang erfolgt.

5. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4 mit einem Tisch, über den die V-förmig längsgefaltete, nach vorn offene Verpackungsbahn hinweggeführt wird, dadurch gekennzeichnet, daß auf dem Tisch (14) ein in die Faltung (f) der Verpackungsbahn (S) eingreifendes V-förmig gebildetes Spreizorgan (124) und in Bewegungsrichtung der Verpackungsbahn (S) hinter dem Spreizorgan (124) ein die Ouernähte bildender und mit einem erhitzbaren Schneiddraht (42) ausgerüsteter Schweißkopf (30) vorgesehen sind.

6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Schweißkopf (30) in an sich bekannter Weise mit einem Abstreifer (58,60) versehen ist, der unter Zwischenschaltung von Federn (80) an dem mit dem Heizdraht (42) verbundenen auf- und abwärts bewegbaren Träger

(82) abgestützt ist.

7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Abstreifer (58, 60), wie an sich bekannt, durch zwei aus lamellierten Glasfasern bestehende Platten (58, 60) gebildet ist, zwischen denen der Heizdraht (42) bewegbar angeordnet ist.

8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Maschinentisch (14) im Arbeitsbereich des Schweißkopfes (30) mit einem nachgiebigen Kunststoffpolster (32) versehen ist, das in an sich bekannter Weise mit blattartigen Glasfasern und einem hitzebeständigen und das Anhaften vermeidenden Stoff, vorzugsweise Teflon, überzogen ist.

9. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß zum Auslösen einer Bremsvorrichtung (168, 170) der Vorratsrolle (S) ein elektro-optisches Fühlgerät (144) vorgesehen ist.

In Betracht gezogene Druckschriften:
Deutsche Patentschriften Nr. 934 755, 938 777;
schweizerische Patentschrift Nr. 233 322;
USA.-Patentschriften Nr. 2 330 361, 2 433 176,
2 405 675, 2 618 814.

In Betracht gezogene ältere Patente: Deutsches Patent Nr. 1024868.

Bei der Bekanntmachung der Anmeldung ist ein Prioritätsbeleg ausgelegt worden.

FEDERAL REPUBLIC OF GERMANY

Class 81a 7/01

International class: B 65b

GERMAN PATENT OFFICE

AUSLEGESCHRIFT 1 083 174 (Published Patent Application)

W 21279 XII / 81a

Filing date:

June 3, 1957

Publication and issuance date of the published

patent application: June 9, 1960

Method and Device for Packaging Objects between the Superposed Halves of a Longitudinally Folded Web

Applicant: Wrapak Inc., Flushing, N.Y. (U.S.A.)

Representative: Grad.Ing. M. Lainweber, Patent Attorney, Munich 2, Rosental 7

Claimed priority: United States of America of July 25, 1956

Samuel J. Rivman, Roslyn Heights, N.Y., Julius Rivman, Forest Hills, N.Y., and William A. Jacobs, Flushing, N.Y. (U.S.A.) are the inventors.

[page 1, column 1]

The invention relates, first of all, to a method for packaging objects between the superposed halves of a longitudinally folded web of heat sealable material, which is open on three sides, except on the fold line, and is divided into individual bags by affixing transverse sealing seams.

The modern traffic of goods demands an individual packaging in bags or wrappings that are cut and adapted to the goods. Goods that are packaged in transparent packagings, made, for example, of polyethylene and cellophane (cellophane, pliofilm), include diverse objects, in particular textiles,

clothing, or the like, and also toys, tools, food and numerous other goods. The customary method of packaging these objects requires that specially produced bags that were generally printed and filled by hand be provided. This filling of the individual bags by hand is difficult and time consuming, especially when bags are used that are adapted exactly to the shape of the object. Therefore, packaging by means of prefabricated bags is less appropriate for numerous applications, even if special filling devices are used.

This problem is solved by means of the known method for producing the packaging while simultaneously introducing the object to be packaged in a wrapping material, fed to the machine in a web, folded in the shape of a V, or in two webs. Then the superposed webs are connected together so as to form seams. A known method also makes use of a shape, which is open at the top, in order to fill the objects to be packaged by means of a packaging web guided over a table.

An older proposal discloses the teaching of sealing the transverse ends of the bag to be produced and its open side opposite the fold line, while the filling process is done only through the still open transverse end. However, the filling of such bags, closed on three sides, requires special aids for the filling operation; furthermore, said operation does not run smoothly, nor does it offer the option of making comprehensive adjustments with respect to the shape of the object to be packaged.

These drawbacks are remedied with the inventive method in an especially advantageous and extremely simple manner, with the result that the reliability of the method is significantly increased and at the same time a significant material saving is achieved.

The new method is characterized in that for the purpose of forming a bag seam, the web halves

[page 1, column 2]

are sealed together along a sealing line, which runs at right angles to the fold line. Then the object to be packaged is inserted, starting from the open side and the open end of the bag, into the only partially finished and spread

apart bag behind the formed sealing line. Then the unit, comprising the partially finished bag and the object, is advanced over the sealing site. After the feed operation has stopped, the web halves at this sealing site are sealed also behind the object along a second sealing line at right angles to the fold line, while the front end of the bag, which is formed and filled thus, is left open.

According to another feature of the invention, the web of packaging material is guided in an approximately horizontal position through the processing machine.

During the formation of the transverse seams, the two halves of the web are pressed together, as well known, first under yielding pressure; and then the united segments are severed by means of a heated wire, thus forming the individual packagings. The sealing and severing is done, according to the invention, as well known, in a single operation.

[page 2, column 3]

There exist various automatic machines for manufacturing bags and for filling the same. Typical for these machines is that a continuous strip of material is folded longitudinally in order to join these halves, formed thus, at a fold line. The folded strip is then formed into a number of connected bags or wrappings, of which each has an upward facing opening for filling objects or quantities. The individual bags are produced by welding the opposite segments along lines that extend at a right angle to the fold. The filling operation makes use in general of a funnel, which is inserted into the open mouth of the bag and through which a measured quantity of fill material or an object is inserted into the bag. This filling operation is rather difficult, because the packaging material tends to stick or glue together owing to static forces. Therefore, devices are necessary to separate the opposite parts near the opening after insertion of the funnel into the finished bag. For practical reasons, therefore, the bags are produced somewhat larger than the objects to be packaged, in order to facilitate the insertion and to enable mass production. The use of these machines is limited in general to the packaging of hard goods, preferably when measured quantities of small objects, which are supposed to be packaged as one unit, are to be packaged. To package soft goods,

they are not appropriate, in part due to the tendency of soft goods to fall to the bottom of the packaging. The result is the destruction of the packaging and no clean and attractive appearance for the sale.

To carry out this new method, there is primarily a device that exhibits a table over which is guided the packaging web, which is open at the top and is folded longitudinally in the shape of a V. The device, according to the invention, is characterized in that on the table there is a V-shaped expansion element, which reaches into the fold of the packaging web; and in the direction of motion of the packaging web behind the expansion element there is a welding head, which forms the transverse seams and is equipped with a heatable cutting wire.

With the use of such a designed device, the new method offers the possibility of putting effortlessly and quickly arbitrary objects into a packaging of heat sealable material. In this respect the shape of the formed packaging bag is largely adapted to the shape of the object to be packaged. The result is a significant saving in raw material and labor and packaging time. The efficiency of the new method and related device of the invention is especially obvious when frequently rotated objects of different sizes are to be packaged in matching wrappings. Lastly, the finished packaging still has an opening, a factor that is especially desirable for numerous applications. Finally the filling operation can no longer be disturbed by impeding static forces, with the result that extraordinarily thin packaging materials can be used.

[page 2, column 4]

Other features, details and advantages of the invention follow from the description of an especially expedient embodiment of the invention and with reference to the drawings, of which

Figure 1 is a front view of a packaging machine, according to the invention.

Figure 2 is a side view of the device, according to Figure 1, seen from the left hand side.

Figure 3 is a top view of the table and the adjustable table extension of the packaging machine.

Figure 4 is a side view of the welding head of the packaging machine on an enlarged scale.

Figure 5 is a cross section along line 5 - 5 in Figure 4.

Figure 6 is a cross section along line 6 - 6 in Figure 4 in another position of the welding head; and

Figure 7 is a schematic drawing of the signal circuit of the packaging machine.

The drawings depict a packaging machine 10, which exhibits a table 12 with an extended flat plate 14. The plate 14 may or may not be tilted.

A supply roll S of the packaging material is disposed in the vicinity of the table plate 14 in such a manner that it is guided lengthwise in relation to the table plate. For large and heavy rolls, an extension can be provided on the right side of the table (see Figure 1), in order to facilitate the supply of material. The packaging material S is fed in the form of a longitudinally folded web with superposed halves \mathbf{s}_1 , \mathbf{s}_2 , which are joined at a fold line f. The roll of material is carried by bearings 16, 18, which receive the ends of a bearing shaft 20 of the roll. Suitable adjusting rings 22, 24 align the roll of material S in relation to the table 12. The material runs over a guide roller 26, which is attached at the adjacent end of the table 14 so as to rotate and from there runs over the flat top side of the table plate 14. Then the folded length of material passes beyond the table as far as to a sealing site 28 at the end of the table plate 14.

At the sealing site 28 there is a welding and cutting head 30, in order to produce successive, cut sealing lines p_1 , p_2 , which join the superposed web halves s_1 , s_2 at an essentially right angle to the fold line f. The welding head 30 is fastened so as to move and can be moved, according to Figure 1, into the dashed-dotted position, in which it interacts with a flexible pad for the

purpose of producing weld lines. The welding head 30 and its assigned mechanism are mounted on a frame 34, which comprises supports 36, 38 on the backside of the table plate 14 and an overhanging platform 40, which extends from the supports 36, 38 to the front over the table plate 14. The platform 40 carries the mechanism for moving the welding head 30 into the positions, indicated by the dashed-dotted line in Figure 1.

Details of the welding and cutting head 30 are evident from Figures 4 to 6. The head exhibits a resistance wire 42 for welding and cutting. Said wire is carried by the guide surface 44a of a carrier element 44. The wire 42 is disposed partially in a groove, which is recessed in the guide surface 44a of the carrier element 44. A substantial part of the element projects under the surface 44a.

The opposite ends of the wire 42 are connected to the connecting terminals 46, 48 on the support element 44, which

[page 3, column 5]

is connected to the corresponding lines 50, 52, which lead to a high current - low voltage source, which is formed by the secondary side of a control transformer 54 (Figure 1).

A combined wire protection and stripper 56, which exhibits protection plates 58, 60 and a spacing bar 61, are attached so as to slide on the support element 44. When the welding head 30 is retracted, the spacing bar 61 lies on the upper edge of the support element 44 (see Figure 5); and the ends 58a, 60a of the plates 58, 60 extend as far as under the wire 42. In this manner the resistance wire 42 is enclosed and protected. The protection plates 58, 60 exhibit a plurality of ventilation openings, of which one is marked with the reference numeral 62.

Both the support element 44 and the protection plates 58, 60 can be made of laminated glass fiber.

The combined wire protection and stripper 56 rests on the support element 44, which in turn is carried by the blocks 64, 66 of a spring suspension 78. As

evident from Figures 4 and 5, the blocks 64, 66 are connected to the support element 44 by means of bolts 68, 70. The protection plates 58, 60 exhibit recesses 72, in order to enable a relative motion between the support element 44 and the plates 58, 60. Suitable leaf springs 74, 76, which are carried by the blocks 64, 66, spread apart against the spacing bar 61 of the combined wire protection and stripper 56, in order to force the wire 42 into the retracted position, according to Figures 4 and 5.

The spring suspension 78 exhibits fastening bars 80, 82, which are connected to the corresponding suspension blocks 64, 66. The fastening bars 80, 82 extend through sliding bearings 84, 86, which are fastened by means of pins 88 in the carrier arms 90. The upper ends of the bars 80, 82 are connected together by means of a cross shaft 92, which can be rotated between the angle levers 94, 96. They in turn are hinged to a shaft 98, mounted in the bearings 100, 102. The angle levers 94, 96 are connected together by means of another cross shaft 104, which is connected by means of a guide 106 to the pressure piston 108 of a compressed air motor 110, whose cylinders are marked 112, whose pressure spring is marked 114, and whose air inlet is marked 116. With the stroke motion of the pressure piston, the angle levers 94, 96 are moved counterclockwise; and the welding head 30 is moved out of the position, indicated by the continuous line, into the position, indicated by the dashed line. When the pressure decreases, the spring 114 returns the piston into its retracted position.

Springs 120 serve to absorb the shock for the welding head 30, when said head makes contact with a pad 32 of the table 14. When the head returns into the starting position, the springs 122 serve to absorb the shock for the suspension. When the welding head 30 moves in the downward direction, the guide ends 58a, 60a of the protection plates 58, 60 strike the pad 32 at the point, where the welding and severing operation is to be done. When the pressure stops, it is transferred from the support element 44 in the downward direction; and the heated resistance wire 42 makes contact with the folded material 8a, clamped between the plates 8a, 8a0 and the pad 8a2. The contact of the heated resistance wire 8a2 with the superposed web halves 8a3, 8a4 forms a sealing seam between the web halves and severs or cuts simultaneously the bags. In fact there are two sealing

[page 3, column 6]

seams -- one that completes the second side of a bag and one that forms the first side of the next bag.

In front of the welding area 28 there is on the table plate 14 a V-shaped expansion element 124, which serves to sever the superposed web halves s_1 , s_2 of the folded packaging material S. Said expansion element exhibits a fastening member 126 to hold the bottom plate 128 of the expansion element at a parallel distance from the table plate. The bottom plate 128 carries an upper expansion plate 130, which projects from the rear side of the plate 128 to the front and forms in between an angle of approximately 45 degrees. The expansion plates 128, 130 meet at a zenith line 132, along which the fold f of the supply roll S is pushed and forms thus the expansion element 124. The angle, formed between the expansion plates 128, 130, can be changed in order to guarantee the necessary space between the web halves s_1 , s_2 for insertion of the object to be legs of the expansion element are mutually adjustable. The Furthermore, the expansion element 124 is appropriate for processing material of different width. Said expansion element makes it possible to insert easily an object to be packaged into the specially shaped bag at the welding site.

The table 12 has, as evident from Figure 1, a vertically adjustable table extension 134, which exhibits a plate 136, which is mounted on a support shaft 138, which slides in a bearing 140. A hand wheel 142 is screwed into the sliding bearing 140 and permits the extension 136 to be adjusted to different heights with respect to the table plate 14.

The vertically adjustable table extension 134 carries an electro-optical sensing device 144. The sensing device 144 exhibits a frame 146, whose one arm 146a extends over the table plate 136, whereas the other arm 146b projects below the table plate. The upper arm 146a carries a light source 148, which is aimed at a light cell relay 152 by means of a longitudinal recess 150 in the table extension 134. The entire sensing device 144 is fastened by means of fastening pins 154, 156 so as to be adjustable. Said pins ride inside a recess 158 on the backside of the table extension. The adjustment of the sensing device 144 corresponds to the width of the desired packaging.

The guides 160 or 162 on the plate 14 of the table 12 and on the plate 136 of the table extension 134 serve to guide the packaging material S. The guide 160 is spaced from the zenith line 132 of the expansion element 124; said spacing allows the insertion of the packaging material S.

In front of the expansion element 124 there is a printing member 164, which is electrically controlled and affixes suitable information on the material S for the individual objects to be packaged. Said printing member works simultaneously with the welding head 30 during the time in which the material S is standing still.

The material feed is assigned a brake system 166, which comprises a brake drum 168 and a movable brake shoe 170, which is carried by a lever 172. The lever 172 is pivot-mounted in the point 174; and a spring 176 is connected to its short arm in order to prevent normally the shoe 170 by means of counterforces from making contact with the drum 168. A relay 173, controlled by a magnetic coil, is fastened to the long arm of the lever 172 and acts

[page 4, column 7]

as the brake on the material under the control of the sensing means 144. Should the packaging P reach a position that actuates the sensing device, then a brake acts on the feed, which prevents the web of material from advancing.

Figure 7 depicts a main switch 180 in the input line 50a. The closed switch 180 connects the resistance wire 42 via a transformer 54 to the input lines 50a, 52a and excites the photo relay 152, which controls the brake mechanism 166. The printing device 164 is also connected to the input lines 50a, 52a. The coil 184a of an air valve 184, controlled by an electromagnet, is connected to the input lines 50a, 52a by means of the foot operated switch 182. The valve serves to connect an air compressor 186 to the inlet 116 of the pneumatic drive 110.

The sequence of operations is described in conjunction with Figures 1 and 3. The operating person feeds the object A to be packaged between the superposed web halves s_1 , s_2 in the area of the expansion element 124; and in particular into the first position, which is indicated by a dashed-dotted line

and in which the object A lies on the right of the flexible pad 32 and on the right of the side seal p_2 , arranged according to the pad. When the object A in the partially finished bag or the packaging rests against the one lateral weld p_2 and the fold f, the operating person pulls the packaging with his or her left hand H_1 over the extension 134 of the table plate. When that part of the packaging that borders the first edge p_1 passes under the sensing device 144, the rotation of the roll S is stopped by the brake mechanism 166; and the incomplete and open side of the packaging P lies on the flexible pressure plate 32, which can comprise a plastic pad, ready for welding by means of the welding head. By actuating the foot-operated switch 182, the welding head forms the second cut side weld p_1 for finishing the packaging P and forms the first side weld of the next packaging.

The parts 58, 60 and the pad 32 can be made, as well known, of laminated glass fibers or coated with said laminated glass fibers or with Teflon.

Patent Claims

1. Method for packaging objects between the superposed halves of a longitudinally folded web of heat sealable material, which is open on three sides, except on the fold line, and is divided into individual bags by affixing transverse sealing seams, characterized in that the web halves (s_1, s_2) are spread apart at the packaging site and are sealed immediately behind it in order to form a bag seam along a sealing line that runs at right angles to the fold line, whereupon the object to be packaged is inserted, starting from the open side and the open end of the bag, into the bag, which is only partially finished and spread apart, behind the formed sealing line, whereupon then the unit, comprising the partially finished bag and the object, is advanced over the sealing site; and when the advancing operation is stopped,

[page 4, column 8]

the web halves are sealed at this sealing site also behind the object along a second sealing line at right angles to the folding line, whereas the front end of the bag, which is formed and filled thus, is left open.

- 2. Method, as claimed in claim 1, characterized in that the web of packaging material is guided in an approximately horizontal position through the processing machine.
- 3. Method, as claimed in claim 1 or 2, characterized in that during the formation of the transverse seams, the two halves of the web are pressed together, as well known, first under yielding pressure, and then the united segments are severed by means of a heated wire, thus forming the individual packagings.
- 4. Method, as claimed in claims 1 to 3, characterized in that the sealing and severing is done, as well known, in a single operation.
- 5. Device for carrying out the method, as claimed in any one of the claims 1 to 4, comprising a table, over which is guided the packaging web, which is open at the top and is folded longitudinally in the shape of a V, characterized in that on the table (14) there is a V-shaped expansion element (124), which reaches into the fold (f) of the packaging web (S); and in the direction of motion of the packaging web (S) behind the expansion element (124) there is a welding head (30), which forms the transverse seams and is equipped with a heatable cutting wire (42).
- 6. Device, as claimed in claim 5, characterized in that the welding head (30) is provided in the well-known way with a stripper (58, 60), which is braced with insertion of springs (80) against the carrier (82), which can be moved up and down and is connected to the heating wire (42).
- 7. Device, as claimed in claim 6, characterized in that the stripper (58, 60) is formed, as well known, by means of two plates (58, 60), which are made of laminated glass fibers and between which the heating wire (42) can be moved.
- 8. Device, as claimed in claim 6, characterized in that the machine table (14) is provided in the work area of the welding head (30) with a flexible plastic

pad (32), which is covered in the well-known manner with lamellar glass fibers and a heat resistant, non-stick material, preferably Teflon.

9. Device, as claimed in claim 5, characterized by an electro-optical sensing device (144) for actuating a brake system (168, 170) of the supply roll (S).

Documents taken into consideration:

German patents nos. 934 755, 938 777; Swiss patent no. 233 322; USA patents nos. 2 330 361, 2 433 176, 2 405 675, 2 618 814.

Older patents taken into consideration:

German patent no. 1 024 868

When the application was published, a priority document was published for opposition.

1 sheet of drawings

[key to the drawings]

Figure 1

German

Zeichnungen Blatt 1

Ausgabetag, 9 Juni 1960

KL 81a 7/01

Internat. KL B 65b

English

Drawings sheet 1

Date of issuance, June 9, 1960

Class 81a 7/01

International class B 65b

Zeichnungen Blatt 2

Ausgabetag, 9 Juni 1960

KL 81a 7/01

Internat. KL B 65b

Drawings sheet 2

Date of issuance, June 9, 1960

Class 81a 7/01

International class B 65b

Zeichnungen Blatt 3

Ausgabetag, 9 Juni 1960

KL 81a 7/01

Internat. KL B 65b

Drawings sheet 3

Date of issuance, June 9, 1960

Class 81a 7/01

International class B 65b