Interpréteur de programmes à base de connaissances multi-agents

Projet annuel

27 mars 2022

Guillaume LETELLIER
Corentin PIERRE

Introduction

Problème des enfants sales

Présentation Résolution

Interpréteur

Son utilité

Comment faire?

Démonstration

Introduction

Problème des enfants sales Présentation

Résolution

Interpréteur

Son utilité

Comment faire?

Démonstration

Introduction

But du projet

- ▶ Implémentation d'un interpréteur de programmes multi-agents
- Langage de programmation utilisé : Java
- Complétion d'une bibliothèque de code de l'équipe MAD du GREYC

Introduction

Problème des enfants sales Présentation Résolution

Interpréteur Son utilité Comment faire?

Démonstration

Présentation

Énoncé

- 1. Enfants jouent en extérieur et certains reviennent sales
- 2. Mère: "au moins un de vous est sale"
- 3. Enfants : se dénoncent ou se taisent
- Retour à l'étape 2 jusqu'à que tous les enfants se soient dénoncés

Théorème

Soit n le nombre d'enfants et parmi eux, k sont sales. Tous les enfants sales se dénoncent au k-ième tour.

Exemple de KBP

Algorithme 1 Programme de l'agent A

Entrée: un modèle de Kripke \mathcal{M} et un monde pointé w

1: **si** *K_A a* **alors**

2: Se dénoncer

3: **sinon**

4: Se taire

5: **fin si**

Initialisation

Figure – Structure de Kripke initiale

Tour 1 : annonce de la mère

Annonce publique

"Au moins un de vous est sale"

Formulation logique

Tour 1 : annonce de la mère

Figure – Structure au tour 1 après l'annonce $a \lor b \lor c$

Tour 1 : déduction des enfants

Structure actuelle

Déduction pour chaque agent

- ▶ Agent $A: K_A (\neg K_B b \land \neg K_C c)$
- ▶ Agent $B: K_B(\neg K_A a \land \neg K_C c)$
- ▶ Agent $C: K_C(\neg K_A a \land \neg K_B b)$

Tour 1 : déduction de l'enfant A

Figure – Structure de l'agent A après l'annonce $K_A (\neg K_B b \land \neg K_C c)$

Tour 1 : déduction de l'enfant B

Figure – Structure de l'agent B après l'annonce $K_B (\neg K_A a \land \neg K_C c)$

Tour 1 : déduction de l'enfant C

Figure – Structure de l'agent C après l'annonce $K_C (\neg K_A a \land \neg K_B b)$

Tour 2 : annonce de la mère

Annonce publique

"Au moins un de vous est sale"

Formulation logique

Fin de l'exécution

- ► Les agents A et B se sont dénoncés
- L'agent C s'est tu
- ► Exécution terminé au 2nd tour

Introduction

Problème des enfants sales Présentation Résolution

Interpréteur Son utilité Comment faire?

Démonstration

Son utilité

Que doit-il prendre en entrée?

- → L'environnement
- ightarrow Les agents et leurs programmes

Que doit-il faire?

► Simuler l'environnement d'exécution

Comment faire?

- 1. Annoncer des formules publiquement
- 2. Exécuter les actions des agents
- Raisonner à partir d'un agent sur les connaissances d'autres de par leurs actions

Introduction

Problème des enfants sales Présentation Résolution

Interpréteur Son utilité Comment faire?

Démonstration

Introduction

Problème des enfants sales Présentation

Interpréteur
Son utilité
Comment faire 3

Démonstration

Conclusion

Conclusion générale

- ► Projet par moments complexe ...
- ... mais très intéressant et complet

Axes d'amélioration

- Implémenter de la logique d'ordre supérieur
- Utiliser une structure au lieu de n (où n est le nombre d'agents dans l'environnement)
- Optimiser l'utilisation mémoire et la quantité de calculs

Merci de votre attention!

