Lecture Notes: Coordinates and Differentials on a Plane Curve

1 Setup: The Plane Curve and Its Tangent

Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 -function, and define the plane curve

$$C = \{(x,y) \in \mathbb{R}^2 \mid y = f(x)\} \subseteq \mathbb{R}^2.$$

Fix a point

$$p = (a, f(a)) \in C$$

and consider the standard parametrization

$$\Phi \colon \mathbb{R} \longrightarrow C, \qquad \Phi(t) = (t, f(t)).$$

At t = a, the tangent (velocity) is

$$\Phi'(a) = \begin{pmatrix} 1 \\ f'(a) \end{pmatrix} = \vec{v} \in T_p C,$$

so the tangent space is the one-dimensional subspace

$$T_pC = \operatorname{span}\{\vec{v}\} = \operatorname{span}\{(1, f'(a))\} \subset T_p\mathbb{R}^2 \cong \mathbb{R}^2.$$

2 Points vs. Tangent Vectors

- A point $p \in C$ is an element of the set $C \subseteq \mathbb{R}^2$. We denote it by unadorned parentheses, e.g. p = (a, f(a)).
- A tangent vector $v \in T_pC$ is an element of the tangent space (a copy of \mathbb{R}^2) at the point p. We denote it in bold or arrow notation, e.g. $\vec{v} = (1, f'(a))^T$.

3 Coordinates on the Curve C

Define the ambient coordinate functions

$$x, y: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad x(x, y) = x, \quad y(x, y) = y.$$

Restricted to C, these give a chart

$$(C \subseteq \mathbb{R}^2) \longrightarrow \mathbb{R}^2, \quad p \mapsto (x(p), y(p)) = (a, f(a)).$$

Thus the point-coordinates of p are (x(p), y(p)).

4 Coordinates on the Tangent Line T_pC

On the ambient tangent plane $T_p\mathbb{R}^2\cong\mathbb{R}^2$, introduce the dual basis $\{dx,dy\}$ defined by

$$dx(e_1) = 1$$
, $dx(e_2) = 0$, $dy(e_1) = 0$, $dy(e_2) = 1$,

where $e_1 = (1,0), e_2 = (0,1)$. Then for any $v = (v^1, v^2)^T$,

$$dx(v) = v^1, \quad dy(v) = v^2.$$

Restricted to the tangent line $T_pC = \text{span}\{(1, f'(a))\}$, these give the fiber-chart

$$T_pC \longrightarrow \mathbb{R}^2, \qquad \vec{v} \mapsto \begin{pmatrix} dx(\vec{v}) \\ dy(\vec{v}) \end{pmatrix} = \begin{pmatrix} 1 \\ f'(a) \end{pmatrix}.$$

Thus the vector-coordinates of \vec{v} in the basis $\{\partial_x, \partial_y\}$ are $(dx(\vec{v}), dy(\vec{v}))$.

5 Summary of Maps

$$\underbrace{C \subseteq \mathbb{R}^2}_{\text{curve}} \longrightarrow \mathbb{R}^2, \qquad p \longmapsto (x(p), y(p)) = (a, f(a));$$

$$\underbrace{T_p C}_{\text{tangent line}} \longrightarrow \mathbb{R}^2, \qquad \vec{v} \longmapsto (dx(\vec{v}), dy(\vec{v})) = (1, f'(a)).$$