Prvi međuispit iz Linearne algebre

19. travr

 $A = \begin{bmatrix} 2 & 3 \\ 4 & 2 \end{bmatrix}$ s koeficijentima iz polja V. (5b) (a) (3b) Zadana (Svi koeficienti matrice A⁻¹ moraju biti u Z₅.) (b) (2b) Definire pojam polia

2. (7b) Zadan je skup X svih matrica oblika $A = \begin{bmatrix} 2\lambda + 3\mu & 2\lambda + \mu \\ 2\lambda + \mu & 3\lambda - 2\mu \end{bmatrix}$,

(a) (2b) Dokaži da je X vektors

ki jodprostor prostora matrica M2. (b) (2b) Nađi neku bazu u X

rojeri da se radi o bazi. (c) (3b) Definirati pojam baze (c)

- X. Provjeri da je rastav bilo kojeg vektor općeg vektorskog prostora - X po toj bazi jedincat.
- 3. (8b) U vektorskom prostoru R4 (u redčanom zap... a = (1, 2, 1, 2).radan je vektor
 - (a) (3b) Naći neku bazu u podprostoru $X = \{a\}^{\perp}$.
 - (b) (3b) Naći ortogonalnu projekciju Pe vektora e = (1,0,0,0) podprostor X.
 - (c) (2b) Ako je $\{e_1,\ldots,e_n\}$ zadana ortogonalna baza nekog unitarnog prostora X, odredite koeficijente u rastavu bilo kojeg vektora $\mathbf{x} \in X$ po toj bazi.
- 4. (5b) Dijagonalizirajte matricu $A = \begin{bmatrix} 3 & 0 \\ 4 & 2 \end{bmatrix}$, ako je moguće (tj. odredite regularnu matricu T i dijagonalnu D, takve da je $T^{-1}AT = D$ ako je moguće).

5. (7b) Zadan je operator $A: P_2 \to P_2$ sa $Ap(x) = (x+1) \cdot p'(x)$, gdje je P_2 vektorski prostor polinoma stupnja najviše 2.

(a) (2b) Provjeri da je A lipearni operator

(b) (5b) Odredi matricu A log linearnog operatora. Odredi rang i defekt operatora A. Je li Aizomorfizam?

6. (6b) Neka je $A: V^2 \to V$ operator rotacije ravnine ravnine za kut $\varphi = \pi/3$, a $B: V^2 \to V^2$ op rator zrcaljenja ravnine s obzirom y-os.

(a) (3b) Odredite matricu (operatora $A \circ B : V^2 \to V^2$ s obzirom na kanonsku bazu u V^2 .

(b) (2b) Koristeći Hamiltor Cayleyev teorem, izračunaj matricu C⁻¹ (ako postoji).

(c) (1b) Je li $A \circ B = B \circ A$?

7. (7b) (a) (2b) Provjeri da aki su matrice A i B slične (tj. postoji regularna matrica T takva de je B = T⁻¹AT), onda one imaju iste determinante.

(b) (2b) Provjeri da svoje vlastite vrijednosti.

(c) (3 $\mathbf{A} = \lambda_1 \dots \lambda_n$, gdje su $\lambda_1, \dots, \lambda_n$ sve vlastite vrijednosti od \mathbf{A} . ivaputak: koristite Schurov teorem)