

Estratégias de Busca Busca Informada ou

Busca Heurística

Solange Rezende

Departamento de Ciências de Computação ICMC-USP, São Carlos solange@icmc.usp.br

Esta aula descreve algumas estratégias de busca informada em espaço de estados

A palavra heurística vem da palavra grega heuriskein, que significa "descobrir," que é também a origem de eureka, a famosa exclamação de Arquimedes ("Eu achei").

- A **busca em grafos** pode atingir uma **complexidade elevada** devido ao número de alternativas. Existem várias formas de reduzir o tempo/custo de busca.
- A estratégia de busca com informação utiliza conhecimento específico do problema, além da definição do próprio problema e pode encontrar solução de forma mais eficiente que uma estratégia sem informação – Busca Heurística.
- O principal **papel da heurística é eliminar** (ou podar) **ramos da busca**.

- Alguns autores consideram as **heurísticas** como funções baseadas em cálculos numéricos.
 - É conveniente diferenciar e chamar essas funções baseadas em cálculos numéricos de funções de avaliação.
- O Uma função de avaliação, também conhecida como função heurística de avaliação ou função estática de avaliação é uma função matemática utilizada para estimar o valor ou uma boa posição e será representada por h(n).
 - A função de avaliação é escrita para ser rápida e precisão e procura na posição atual e não explora os movimentos possíveis (é estática).
- A <u>tradução</u> de uma **heurística** para um valor numérico é realizado pela **função de avaliação**.
 - São não negativas e tal que o estado associado com o menor valor é considerado o estado mais promissor e frequentemente, a FA do estado meta é zero.

EXEMPLO

o Dado o grafo abaixo, encontrar a menor distância de S a G

PROBLEMA DO CAIXEIRO VIAJANTE (TSP – TRAVELLING SALESMAN PROBLEM)

- Um vendedor tem uma lista de cidades, que ele deve visitar apenas uma vez. Existem estradas diretas ligando cada par de cidades da lista. Encontre a rota que o vendedor deve seguir para a viagem mais curta possível que começa e termina em uma das cidades.
 - A cada viagem esta associado um custo
 - É recomendado que o caixeiro percorra a rotamais curta

O PROBLEMA Caixeiro Viajante

Considere as rotas definidas entre estas 4 cidades:

O PROBLEMA TSP representado como árvore de busca

PROBLEMA: EXPLOSÃO COMBINATÓRIA

- o Com quatro cidades, temos 6 caminhos possíveis.
- o Com dez cidades, temos 362.880 caminhos possíveis.
- Quanto mais cidades adicionarmos ao problema do caixeiro viajante, mais caminhos possíveis há.
 - O que nos leva a uma *explosão* combinatória.
 - Como prevenir ou pelo menos limitar isto?

BUSCA INFORMADA

- O problema do caixeiro viajante é basicamente um problema de busca.
- o Limitar o espaço de busca, e assim tornar o processo de busca mais rápido e eficiente.
- o Humanos utilizariam "macetes"; em IA são chamados de **Heurísticas**.
- o Estratégias de busca informada utilizam informação heurística sobre o problema para calcular estimativas para os nós no espaço de estados. Essa estimativa indica o quanto o nó é promissor com relação a atingir a meta.

Heurística do vizinho mais próximo

- 1. Arbitrariamente selecione uma cidade inicia
- Para selecionar a próxima cidade, olhe todas as cidades ainda não visitadas e selecione a mais próxima a cidade corrente. Vá a ela.
- 3. Repita o passo 2 até que todas as cidades tenham sido visitadas.

Este procedimento é executado em tempo proporcional a N², uma melhora significativa sobre *N!*, que seria o tempo gasto caso fosse usada uma estratégia não informada (que geraria uma explosão *combinatorial*).

Busca pela Melhor Escolha

- Ideia: usar uma função de avaliação f(n) para cada nó
 - estimativa da "desejabilidade"
 - expandir o nó não expandido mais desejável
- Implementação:
 - Ordenar os nós na lista ABERTOS na ordem decrescente de "desejabilidade"
- Casos especiais:
 - busca gulosa pela melhor escolha
 - busca A*

Vamos considerar Romênia com Custo para explorar Busca Heurística Fonte: Russel e Norvig

Straight-line distance	
26.00	
366	
366	
160	
242	
161	
176	
77	
151	
226	
244	
241	
234	
380	
100	
193	
253	
329	
80	
199	

374

Busca Gulosa pela Melhor Escolha GREEDY BEST-FIRST (GULOSO)

- A função de avaliação f(n) = h(n)
 (heurística) estima o custo de n ao objetivo
- No exemplo a seguir h(n) será $h_{\text{DLR}}(n) = a$ distância em linha reta de n a Bucharest (estado final)
- Busca gulosa pela melhor escolha expande o nó que parece levar mais perto do objetivo

Problema de localização de rotas na Romênia Qual o caminho para sair de *Arad* e chegar em *Bucharest* usando

Busca gulosa pela Melhor Escolha?

GREEDY BEST-FIRST Exemplo

GREEDY BEST-FIRST Exemplo

GREEDY BEST-FIRST Exemplo

GREEDY BEST-FIRST Exemplo

Propriedades da Busca Gulosa pela Melhor Escolha

- oCompleta? Não pode ficar presa em loops (Lasi→Neamt→Lasi→Neamt →)
- o<u>Tempo?</u> $O(b^m)$, mas uma boa heurística pode melhorar ele muito
- <u>Espaço?</u> O(b^m) mantém todos os nós em memória
- o<u>Ótimo?</u> Não

FUNÇÕES DE AVALIAÇÃO E CUSTO

- Uma função de avaliação, é uma função utilizada para estimar o valor ou uma boa posição e é representada por h(N). São usadas para evitar expandir caminhos que são caros.
- Além das FAs há outras funções que podem auxiliar o processo de busca, denominadas funções de custo.
 - São funções não negativas que medem a dificuldade de ir de um estado para um outro.
- É importante observar que:
 - FAs se referem ao futuro, denominadas h(n), "estimam" o quão perto está um estado n do estado meta,
 - FCs se referem ao passado, denominadas g(n), sabem quão longe está um estado n do estado inicial. Assim as FCs são mais concretas que as FAs

Heurística

A função heurística é a estimativa de custo de ir do estado inicial s até o estado final t passando pelo nó n e é representada por

$$f(n) = g(n) + h(n)$$
no qual

- g(n) a FC do nó n, i.e. o custo do caminho de s até n (o passado)
- h(n) é FA do no n, i.e. uma estimativa para ir de n até t (o futuro)

Então considere:

- og(n) a FC do nó n, i.e. o custo do caminho de s até n (o passado)
- oh(n) é FA do nó n, i.e. uma estimativa para ir de n até t (futuro)
- of(n) = g(n) + h(n) é a estimativa de custo de ir da raiz s até a meta t passando pelo nó n

Os efeitos da heurística são locais no sentido de "oferecer um conselho" referente a escolha do sucessor de um estado específico, mas não referente a toda a estratégia de busca.

A* - minimizando o custo total estimado da solução

- O A ideia do A* é adicionar os valores da FC e FA dos sucessores de um dado estado e usar esses valores para selecionar o estado sucessor mais promissor para evitar a expansão de caminhos que são muito custosos
 - Para isso é importante que as unidades de ambas as funções sejam iguais.
 - Usada quando conhece tanto a FA quanto a FC (busca pela melhor escolha).
- O processo de busca visto como um conjunto de **sub-processos**, cada um explorando sua própria alternativa, ou seja, sua própria sub-árvore

Dentre todos os sub-processos apenas um mantém-se ativo a cada momento: aquele que lida com a alternativa atual mais promissora -- aquela com menor valor de f

$$f(n) = g(n) + h(n)$$

- OOs sub-processos restantes aguardam até que a estimativa f atual se altere e alguma outra alternativa se torne mais promissora
 - O Então, a atividade é comutada para esta alternativa
 - OO algoritmo usa um mecanismo de ativaçãodesativação

- OA busca, começando pelo nó inicial continua gerando novos nós sucessores, sempre expandindo na direção mais promissora de acordo com os valores f
- Podemos imaginar o mecanismo de ativaçãodesativação da seguinte forma
 - O processo trabalhando na alternativa atual recebe um orçamento limite e permanece ativo até que o orçamento seja exaurido
 - Durante o período em que está ativo, o processo continua expandindo sua sub-árvore e relata uma solução caso um nó final seja encontrado
 - O orçamento limite para essa execução é definido pela estimativa heurística da alternativa competidora mais próxima

•Considere o Grafo Exemplo 1

- Dado um mapa, o objetivo é encontrar o caminho mais curto entre a cidade inicial s e a cidade destino t
 - **FC** (g(X)) Distância entre duas cidades
 - Para estimar FA (h(X))uma heurística para calcular
 o caminho restante da cidade
 X até a cidade t é utilizada a
 distância em linha reta
 denotada por dist(X,t)

- Neste exemplo, podemos imaginar a busca consistindo em dois processos, cada um explorando um dos caminhos alternativos
- Processo 1 explora o caminho via **a**
- Processo 2 explora o caminho via e

- f(a)=g(a)+dist(a,t)=2+5=7
- f(e)=g(e)+dist(e,t)=2+7=9
- Como o valor-f de a é menor do que de e,
- processo 1 (busca via a) permanece ativo

enquanto

 processo 2 (busca via e) fica em estado de espera

- f(a)=g(a)+dist(a,t)=2+5=7
- f(e)=g(e)+dist(e,t)=2+7=9
- Como o valor-f de a é menor do que de e,
- processo 1 (busca via a) permanece ativo

enquanto

 processo 2 (busca via e) fica em estado de espera

f(b)=g(b)+dist(b,t)=4+4=8

- f(a)=g(a)+dist(a,t)=2+5=7
- f(e)=g(e)+dist(e,t)=2+7=9
- Como o valor-f de a é menor do que de e,
- processo 1 (busca via a) permanece ativo

enquanto o

- processo 2 (busca via e) fica em estado de espera
- f(b)=g(b)+dist(b,t)=4+4=8
- f(c)=g(c)+dist(c,t)=6+4=10
- Como f(e)<f(c) agora o processo 2 prossegue para a cidade f

- f(f)=g(f)+dist(f,t)=7+4=11
- Como f(f)>f(c) agora
- processo 2 espera e
- processo 1 prossegue

- f(f)=g(f)+dist(f,t)=7+4=11
- Como f(f)>f(c) agora
- processo 2 espera e
- processo 1 prossegue
- f(d)=g(d)+dist(d,t)=9+3=12
- Como f(d)>f(f)
- o processo 2 reinicia

- f(f)=g(f)+dist(f,t)=7+4=11
- Como f(f)>f(c) agora o processo
 2 espera e o processo
 prossegue
- f(d)=g(d)+dist(d,t)=9+3=12
- Como f(d)>f(f) o processo 2 reinicia chegando até o destino t
- f(g)=g(g)+dist(g,t)=9+2=11

- f(f)=g(f)+dist(f,t)=7+4=11
- Como f(f)>f(c) agora o processo 2 espera e o processo 1 prossegue
- f(d)=g(d)+dist(d,t)=9+3=12
- Como f(d)>f(f) o processo 2 reinicia chegando até o destino t
- f(g)=g(g)+dist(g,t)=9+2=11
- f(t)=g(t)+dist(t,t)=11+0=11

•Exemplo 1 – Arvore de Busca

- •Durante o processo, uma **árvore de busca** é gerada tendo como raiz o **nó inicial** e
- •o algoritmo A* continua expandindo a árvore de busca até que uma solução seja encontrada

Problema de localização de rotas na Romênia Qual o caminho para sair de *Arad* e chegar em *Bucharest* usando A*?

Qual o caminho para sair de *Arad* e chegar em *Bucharest* usando A*?

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	30
Vaslui	199
Zarind	271

37-

- A* possui uma propriedade muito importante:
 - Se a FA para qualquer estado e é sempre menor ou igual ao custo real de e para a meta, então o primeiro caminho encontrado pela estratégia de busca A* é o caminho de custo mínimo (ótimo).

HEURÍSTICA ADMISSÍVEL

- Uma heurística h(n) é admissível se para cada nó n, h(n) ≤ h*(n), em que h*(n) é o custo real de atingir o estado objetivo desde n.
- Uma heurística admissível nunca superestima o custo de atingir o objetivo; ela é otimista
 - Obs: A distância em linha reta é uma heurística admissível (nunca superestima a distância rodoviária real)

Teorema:

Se h(n) é admissível, a estratégia A* que usa busca em grafos é ótima

Busca Admissível

- Um algoritmo de busca é admissível se ele sempre produz uma solução ótima (caminho de custo mínimo), assumindo que uma solução exista
- O Para cada nó n no espaço de estados vamos denotar h*(n) como sendo o custo de um caminho ótimo de n até um nó final
- o Um teorema sobre a admissibilidade de A* diz que um algoritmo A* que utiliza uma função heurística,
 - i.e. FA h tal que para todos os nós no espaço de estados

$$h(n) \le h^*(n)$$
 é admissível

Admissibilidade

- o Considerando $h^*(n)$ o custo real para atingir o objetivo, então $h(n) \le h^*(n)$. Há um limite inferior trivial
 - h(n) = 0 para todo n no espaço de estados
- Embora este limite trivial garanta admissibilidade sua desvantagem é que não há nenhuma heurística e assim não há como fornecer nenhum auxílio para a busca, resultando em alta complexidade

• A* usando h=0 comporta-se de forma similar à busca em largura

Contornos

- A* expande nós na forma de contornos. Se C* é o custo da solução ótima:
 - Todos os nós $f(n) < C^*$ são expandidos
 - Nenhum nó $f(n) > C^*$ é expandido. Por exemplo, Timisoara não é expandido, mesmo sendo vizinho a Arad

Admissibilidade

- o Portanto é interessante utilizar h>0 e o mais próximo possível de h^* ($h \le h^*$) para garantir eficiência
- Se múltiplas heurísticas estão disponíveis busque a melhor
 - $h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$
- o De maneira ideal, se h^* é conhecida, podemos utilizar h^* diretamente
 - A* utilizando h* encontra uma solução ótima diretamente, sem precisar realizar backtracking

Sobre A* e Heurísticas Admissíveis e

- Este resultado tem grande valor prático
- Mesmo que não conheçamos o exato valor de h*, nós só precisamos encontrar um limite inferior para h* e utilizá-la como FA h em A*
- olsto é suficiente para garantir que A* irá encontrar uma solução ótima

Algoritmo A*

```
A fila F é uma fila ordenada pela função f(n) = g(n) + h(n)
```

- 1) Insere na fila F o nó **u** e marque-o como alcançado
- 2) Enquanto fila F não está vazia faça

v ← elemento da frente da fila

(retire v (elemento com menor h(n) da fila)

se v não é o estado final

para todo w que partir de v que ainda
não foi alcançado

- marque **w** como alcançado
- insira \mathbf{w} na fila \mathbf{F} (ordenado por f(n))

Propriedades A*

- A utilização de heurística para guiar o algoritmo reduz a busca apenas a uma região do espaço do problema
- O Apesar da redução no esforço da busca, a ordem de complexidade é ainda exponencial na profundidade de busca
 - Isso é válido para tempo e memória uma vez que o algoritmo mantém todos os nós gerados
- Em situações práticas o espaço de memória é mais crítico e A* pode utilizar toda a memória disponível em questão de minutos

Propriedades de A*

o Completa? Sim

(a menos que existam infinitos nós com $f \le f(G)$)

o<u>Tempo?</u> Exponencial

o Espaço? Mantém todos os nós em memória

o Ótima? Sim

ALGUNS PROBLEMAS CLÁSSICOS DE BUSCA

- Encontrar um caminho para um objetivo
- o Missionários e canibais
- o N-rainhas
- Jogos
 - Xadrez
 - Gamão
- o Torres de Hanói
- Simplesmente encontrar um objetivo
- Problema do tabuleiro de xadrez
 danificado

HEURÍSTICA – EXEMPLOS GERAIS

Exemplos de heurísticas:

- •Para planejar um caminho dentro de uma cidade, por exemplo:
 - não vire sucessivamente a esquerda (ou direita) em uma rua, pois fazendo isso há uma tendência a voltar ao mesmo lugar
 - virar quando se chega aos limites da cidade
- Para reparar máquinas, retire primeiro as peças externas mais pequenas, etc...

OBSERVAR QUE ALGUNS ESTADOS SÃO MELHORES QUE OUTROS...

7	8	4
3	5	1
6	2	

1	2	3
4	5	6
7		8

FUNÇÕES DE AVALIAÇÃO

- O Uma estratégia popular para construir funções de avaliação é ponderar a soma de vários fatores através de sua influência no valor da posição.
- Exemplos de funções de avaliação:
 - Por exemplo, uma função de avaliação para o xadrez poderia ter a seguinte forma:

```
c_1 * material + c_2 * mobilidade + c_3 * segurança-rei + c_4 * controle-centro + ...
```

- Para planejar um caminho dentro de uma cidade, pegue uma *linha reta*, *i.e.*, prefira o estado sucessor que está mais perto do estado meta em uma linha reta.
- Para reparar máquinas, considere o número de peças removidas da máquina mais o número de peças defeituosas ainda dentro da máquina.

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

•H1:Traduzir usando a distância de Manhattan até a meta.

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

•H2: Também poderia ser utilizada a distância Euclidiana.

6,3	5,4	4,5	3,6	2,8	2,2	2,0	2,2	2,8	3,6	4,5
6,1		4,1	3,2	2,2						4,1
6,0			3,0	2,0	1,0	0,0	1,0	2,0		4,0
6,1	5,1									4,1
6,3	5,4	4,5	3,6	2,8	2,2	2,0	2,2	2,8	3,6	4,5

HEURISTICA Quebra-cabeça 8 peças

Heurística 1:
Número de
peças fora do
lugar
(ignorando
espaço vazio)

Estado Atual

1	2	3
4	5	6
7		8

Meta

1	2	3
4	5	6
7	8	

Neste caso, somente "8" está fora do lugar, assim a função de avaliação seria igual a 1. Ou seja a FA traduz a heurística para um valor numérico

N	N	N
N	N	N
N	Y	

OUTRA HEURISTICA Quebra-cabeça 8

peças

Heurística 2:
Distância de
Manhattan
(sem
considerar
espaço vazio)

Estado Atual

3	2	8
4	5	6
7	1	

Meta

1	2	3
4	5	6
7	8	

Neste caso somente "3", "8" e "1" estão fora do lugar por 2, 3, e 3 lugares respectivamente, assim a função de avaliação $\mathbf{h}(\mathbf{n}) = \mathbf{8}$.

2 espaços

3 espaços

3 espaços

Total 8

Por exemplo, num plano que contem os pontos P_1 e P_2 , respectivamente com as coordenadas (x_1,y_1) e (x_2,y_2) , a **distância de Manhattan** é definida pela soma das diferenças absolutas entre as suas coordenadas - r: $|x_1-x_2|+|y_1-y_2|$

Heurísticas Admissíveis Fonte: Russel e Norvig

- Síntese: para o quebra-cabeça de 8 peças:
 - h1(n) = número de peças fora do lugar
 - h2(n) = total da distância de Manhattan (i.e., número de quadrados da posição desejada de cada peça)
 - h1(S) = 8
 - h2(S) = 3+1+2+2+3+3+2 = 18

Dominância

- Se h₂(n) >= h₁(n) para todo n (ambas admissíveis), então h₂ domina h₁
- h₂ é melhor para busca

Custos de busca típicos (número médio de nós expandidos).

d	BAI	$A*(h_1)$	A*(h ₂)
12	3.644.035	227	73
24	muitos nós	39.135	1.641

BAI = Busca por Aprofundamento Iterativo

Problemas Relaxados

- Um problema com poucas restrições nas ações é chamado de **problema relaxado**.
- O custo de uma solução ótima para um problema relaxado é uma heurística admissível para o problema original
- Se as regras do quebra-cabeça de 8 peças são relaxadas tal que uma peça possa ser movida para qualquer lugar, então h₁(n) fornece a solução mais curta
- Se as regras são relaxadas tal que uma peça possa ser movida para qualquer quadrado adjacente, então h₂(n) fornece a solução mais curta

ALGORITMOS DE BUSCA LOCAL

- Em alguns problemas de otimização, o caminho até o objetivo é irrelevante; o estado meta é a solução
 - Espaço de Estados = conjunto completo de configurações
- Encontrar a configuração que satisfaz as restrições. Ex: problema *n* rainhas
 - Em tais casos, pode-se usar algoritmos de busca local
 - Manter um estado atual, tente melhorá-lo
 - **Hill-Climbing** (ou otimização discreta) "parece" uma busca em profundidade usando FA.

Exemplo: n Rainhas

HILL-CLIMBING – Busca de Subida de Enconsta

- Os métodos de busca local, que é o caso do "hill climbing", são usados para resolver problemas de otimização discreta iniciados a partir de uma configuração inicial e movendo-se repetidamente para uma melhor configuração vizinha.
 - Uma trajetória é gerada no espaço de busca, que mapeia um ponto inicial para um local ótimo, onde a busca local é impedida de prosseguir.
 - "É como": "escalar o monte Everest em um nevoeiro denso com amnésia" ou "usar óculos que limitam sua visão a 3 metros"

função Hill-Climbing(problema) **retorna** um estado que é um máximo local

```
entradas: problema, um problema variáveis locais: corrente, um no vizinho, um nó
```

corrente <- CRIAR-NO(ESTADO-INICIAL[problema])
repita</pre>

vizinho <- um sucessor de corrente com valor mais alto se VALOR[vizinho] ≤ VALOR[corrente) então retornar ESTADO [corrente]

corrente <- vizinho

- Em cada passo do algoritmo, o nó corrente é substituído pelo melhor vizinho (vizinho com VALOR mais alto).
- Se for usada uma estimativa de custo de heurística h(n), o algoritmo deve ser alterado para encontrar o vizinho com o h(n) com valor mais baixo.

função de avaliação Se há mais de um vizinho com a melhor qualidade:

- Escolher o primeiro melhor
- Escolher um entre todos de forma aleatória

estado atual

espaço de estados

Problema: dependendo do estado inicial, pode ficar em máximos locais

Considerações na BUSCA LOCAL

- •Manter k estados como alternativa a um estado
- Comece gerando k estados aleatoriamente
 - •A cada iteração, todos os sucessores de todos os k estados devem ser gerados
 - •Se qualquer um deles for o objetivo, pare; caso contrário selecione *k* melhores sucessores da lista completa e repita

8-PUZZLE (HILL-CLIMBING)

Usando como função de distância de Manhattan, em alguns casos, seguir, hillclimbing pode

avaliação h(n) a como o mostrado a

chegar rapidamente na solução.

 1
 2
 3

 4
 5
 8

 6
 7

 $h(\mathbf{n})$

Neste exemplo, hill climbing não encontra a solução!

Fica em um mínimo local...por ser um algoritmo **guloso** (*greedy*)

1	2	3
4	5	8
6		7

1	2	3	
4	5		5
6	7	8	

1	2	3
4		5
6	7	8

HILL-CLIMBING: PROBLEMAS

- Máximo local: uma vez atingido, o algoritmo termina mesmo que a solução esteja longe de ser satisfatória
- o Platôs (regiões planas): regiões onde a função de avaliação é essencialmente plana; a busca torna-se como uma caminhada aleatória
- Cumes ou "ombros": regiões que são alcançadas facilmente mas até o topo a função de avaliação cresce de forma amena; a busca pode tornar-se demorada

HILL-CLIMBING: VARIAÇÕES

- Hill-Climbing Estocástico
 - Nem sempre escolhe o melhor vizinho
- o Hill-Climbing Primeira Escolha
 - Escolha o primeiro bom vizinho que encontrar
 Útil se é grande o número de sucessores de um nó
- Hill-Climbing Reinício Aleatório
 - Conduz uma série de buscas hill-climbing a partir de estados iniciais gerados aleatoriamente, executando cada busca até terminar ou até que não exista progresso significativo
 - O melhor resultado de todas as buscas é armazenado

HILL-CLIMBING REINÍCIO ALEATÓRIO

Simulated Annealing Busca de Recozimento Simulado

- Ideia: escapar dos máximos locais permitindo alguns movimentos "ruins," mas gradualmente diminuindo sua frequência.
- Propriedades:
 - Pode-se provar: Se T diminui lentamente, então a busca de recozimento simulado (simulated annealing) achará um ótimo global com probabilidade de aproximação 1.
 - Muito usada em layout de VLSI, escalonamento de empresas aéreas, etc.

Busca em Feixe local

- Mantém a trilha de k estados ao invés de apenas um.
- Começa com k estados gerados aleatoriamente.
- A cada iteração, todos os sucessores de todos os k estados são gerados.
- Se um deles for o estado meta, para; caso contrário seleciona os k melhores sucessores a partir da lista completa e repete.

Algoritmos Genéticos

- Um estado sucessor é gerado combinando dois estados pais.
- Começa com k estados gerados aleatoriamente (população).
- Um estado é representado como uma cadeia de caracteres de um alfabeto finito (frequentemente uma cadeia de 0's e 1's).
- Função de avaliação (função de fitness).
 Valores mais altos para estados melhores.
- Produz a próxima geração de estados através de seleção, cruzamento e mutação.

Algoritmos genéticos Fonte Russel e Norvig

- Função de fitness: número de pares de rainhas que não se atacam (mín = 0, máx = 8 x 7/2 = 28).
 - -24/(24+23+20+11) = 31%.
 - -23/(24+23+20+11) = 29% etc.

Algoritmos Genéticos

Argumentos a favor do uso de heurística

- Raramente precisa-se da solução ótima; uma boa aproximação normalmente serve muito bem. De fato, existem evidências de que as pessoas, quando resolvem problemas, procuram qualquer solução que satisfaça algum conjunto de requisitos, e assim que encontram, dão-se por satisfeitas.
- Ainda que as aproximações produzidas por heurísticas possam não ser muito boas no pior caso, os piores casos raramente acontecem na vida real.
- A tentativa de entender por que uma heurística funciona, ou por que não funciona, leva a um entendimento mais aprofundado do problema.

Exercício

- Especifique uma base de dados global, regras e uma condição de terminação para um sistema de produção para resolver o seguinte problema dos jarros de água:
 - Dado um jarro de 5 litros cheio de água e um jarro de 2 litros vazio, como se pode obter precisamente 1 litro no jarro de 2 litros? A água pode ser desperdiçada ou transferida de um jarro para outro; entretanto, só os 5 litros iniciais estão disponíveis.

Exercício

 Encontrar o caminho para ir da cidade de Arad a cidade de Bucharest utilizando os algoritmos de busca informada hillclimbing, best-first e A*

Funções de Avaliação Para Bucharest (Romenia)

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

Exercício

Use as estratégias de busca informada e encontre os caminhos

Modele um Problema como uma Árvore de Busca

- Use aplicativos para facilitar o entendimento dos algoritmos de busca
- Além dos apresentados na aula prática utilizando a Biblioteca aima-java, que implementa diversos algoritmos utilizados na disciplina, é parte do material de apoio livro Artificial Intelligence - A Modern Approach, de Stuart Russel e Peter Norvig
- o Pode ser usado http://www.aispace.org/search/search.jnlp

Mais Exemplos de Funções de Avaliação h(n)

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

•H1:Traduzir usando a distância de Manhattan até a meta.

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

HEURISTICA PARA NAVEGAÇÃO DE ROBÔ

•H2: Também poderia ser utilizada a distância Euclidiana.

6,3	5,4	4,5	3,6	2,8	2,2	2,0	2,2	2,8	3,6	4,5
6,1		4,1	3,2	2,2						4,1
6,0			3,0	2,0	1,0	0,0	1,0	2,0		4,0
6,1	5,1									4,1
6,3	5,4	4,5	3,6	2,8	2,2	2,0	2,2	2,8	3,6	4,5

8-PUZZLE (A*)

```
f(N) = g(N) + h(N), em que
```

g(N) = número de posições caminhadas para chegar na posição atual (N).

h(N) = número de peças fora de lugar

Custo de um movimento = 1

ALGUMAS FUNÇÕES HEURÍSTICAS

- Vamos olhar para algumas heurísticas para o quebra-cabeça-8
 - Soluções em média a distância 22
 - Fator de ramificação em média de 3
 - 9!/2 estados possíveis em um grafo = 181.440
- Possíveis heurísticas
 - h_1 = número de peças em posições erradas
 - h_2 = soma das distâncias das peças para as suas posições finais

ALGUMAS FUNÇÕES HEURÍSTICAS

o Comparação de e :

- 1200 problemas aleatórios com soluções entre 2 e 24 passos
- Solução com busca em profundidade limitada iterativa e A*
- Comparação com número de nós gerados e com fator de ramificação
- Fator de ramificação: em média, para cada nó visitado, quantos nós são expandidos
 - Quanto mais próximo de 1, melhor é a busca

Navegação de Robô (A*)

f(N) = g(N) + h(N), em que

g(N) = passos dados até estado atual (N)

h(N) = distancia de Manhattan até a meta

Custo de um passo (horizontal/vertical) = 1

8+3	7+4	6+3	5+6	4+7	3+8	2+9	3+10	4	5	6
7+2		5+6	4+7	3+8						5
6+1			3	2+9	1+10	0+11	1	2		4
7+0	6+1									5
8+1	7+2	6+3	5+4	4+5	3+6	2+7	3+8	4	5	6

Navegação de Robô (A*)

$$f(N) = g(N) + h(N)$$

com h(N) = distância Euclideana até a meta

Custo de um passo (horizontal/vertical) = 1 Custo de um passo diagonal = $\sqrt{2}$

Navegação de Robô (A*)

Ir de A3 pra E2, um passo por vez, evitando obstáculos (quadros pretos).

Operadores: (nessa ordem)

- ·esquerda
- ·abaixo
- ·direita
- ·acima

Custo unitário.

Função de avaliação h(n): distância de Manhattan

Referências

- RUSSEL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach. Prentice Hall; 3 edition (December 11, 2009).
- NILSSON, NILS J. Artificial Intelligence, SAN FRANCISCO : MORGAN KAUFMANN, 1998. 513 P. IL.
- WINSTON, P.H. Artificial Intelligence, Reading. Addison-Wesley, 1977.
- RICH, E., KNIGHT, K. Inteligência Artificial. 2^a Ed. McGraw-Hill, Inc. 1993.
- LUGER, G. F. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison-Wesley, 4th edition, 2002.
- Rosa, J. L. G. Fundamentos da Inteligência Artificial. Editora LTC. Rio de Janeiro, 2011

Material preparado pelos professores:

- Maria Carolina Monard
- Solange Oliveira Rezende
- Thiago Pardo
- Gustavo Batista
- João Rosa
- José Augusto Baranauskas (FFCLRP/USP)
- + colaboradores

