DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8

MSc in Applied Mathematics and Theoretical Physics DT238

Supplemental Examinations 2011

INTRODUCTION TO BIOMATHEMATICS

Dr. Rossen Ivanov Dr. Chris Hills Dr. Alan Hegarty

Tuesday, 18 January 2011

9:30am - 1 pm

Answer any FOUR questions. All questions carry 25 marks. If more than four questions are attempted, only the best four will be graded.

Dept. of Education Tables allowed

Question 1. (i) Find the steady states of the logistic population growth model and determine their stability:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(1 - \frac{N}{K}\right), \qquad N(0) > 0$$

with r and K positive constants.

[7 marks]

(ii) Solve explicitly the model and compute the limit of N(t) when $t \to \infty$. Compare the obtained limit with the results from (i) and explain your findings.

[9 marks]

(iii) Find the steady states and determine their stability for the logistic model with harvesting

$$\frac{\mathrm{d}N}{\mathrm{d}t} = rN\left(1 - \frac{N}{K}\right) - EN,$$

where the positive constant E measures the harvesting effort. Comment on the ecological implications of the results in the two cases: E > r and E < r.

[9 marks]

Question 2. A population growth model is described by a differential equation with delay T > 0:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = rN(t)\Big(1 - \frac{N(t-T)}{K}\Big),$$

with r > 0, K > 0 and N(0) > 0.

(i) Show that in the new nondimensional variables $u=N/K, \ \tau=rt$ and $\Theta=rT$ the equation has the form

$$\frac{\mathrm{d}u(\tau)}{\mathrm{d}\tau} = u(\tau)[1 - u(\tau - \Theta)],$$

[2 marks]

(ii) Show that $u^* = 1$ is a steady state and linearize the equation about the steady state by writing $u(\tau) = u^* + n(\tau)$, where $|n(\tau)| \ll 1$.

[5 marks]

(iii) Look for solutions of the form $n(\tau) = ce^{\lambda \tau}$, where c is a constant, and write the corresponding equation for λ .

[3 marks]

(iv) Decompose λ into real and imaginary parts ($\lambda = \mu + i\omega$) and write separately the real and imaginary parts of the equation for λ , obtained in (iii) in terms of μ and ω .

[5 marks]

(v) Analyze the equations obtained in (iv) when the delay Θ increases from 0 to $\frac{\pi}{2}$, having in mind that μ and ω depend on Θ . Show that the steady state solution u^* is stable when $0 \le \Theta < \pi/2$. Demonstrate that the first bifurcation value of Θ for which the steady state u^* becomes unstable and the solution becomes oscillatory corresponds to $\Theta = \pi/2$, (and $\mu = 0$, $\omega = \pm 1$) or, in dimensional terms, $rT = \pi/2$. Show that this bifurcation occurs when μ , being negative when $\Theta = 0$ reaches the bifurcation value $\mu = 0$ when $\Theta = \pi/2$.

[5 marks]

(vi) Show that the period of oscillations (in nondimensional units) at the bifurcation value is 4Θ .

[5 marks]

Question 3. Consider the effect of regularly harvesting the population of a species for which the model equation is

$$N_{t+1} = \frac{bN_t^2}{1 + N_t^2} - EN_t \equiv f(N_t; E), \qquad b > 2, \qquad E > 0,$$

where E is a measure of the effort expended in obtaining the harvest EN_t .

(i) Determine the steady states and hence show that if the effort $E > E_m = (b-2)/2$ no harvest is obtained.

[9 marks]

(ii) If $E < E_m$ show that the model is realistic only if the population N_t always lies between two positive values which you should determine analytically.

[9 marks]

(iii) With $E < E_m$ evaluate the eigenvalue of the largest positive steady state. Demonstrate that a bifurcation exists as $E \to E_m$.

[7 marks]

Question 4. Consider the discrete population model with delay

$$U_{t+1} = U_t e^{r(1 - U_{t-1})},$$

where t is the discrete time and r is a positive parameter.

(i) Show that $U^* = 1$ is a steady state of the model. Linearize the equation about $U^* = 1$ by writing $U_t = U^* + v_t$, where $|v_t| \ll 1$. Obtain the linearized equation

$$v_{t+1} - v_t + rv_{t-1} = 0.$$

[7 marks]

(ii) Prove that, for 0 < r < 1, $U^* = 1$ is a stable steady state.

[6 marks]

(iii) Show that r = 1 is a bifurcation value for which the steady state bifurcates to a periodic solution of period 6.

[6 marks]

(iv) Prove that, for r > 1 the steady state $U^* = 1$ is unstable.

[6 marks]

Question 5. (i) Describe the interaction between two species with populations N_1 and N_2 that is implied by the model

$$\begin{array}{rcl} \frac{\mathrm{d}N_1}{\mathrm{d}t} & = & r_1 N_1 \Big(1 - \frac{N_1}{K_1 + b_{12} N_2} \Big), \\ \frac{\mathrm{d}N_2}{\mathrm{d}t} & = & r_2 N_2 \Big(1 - \frac{N_2}{K_2 + b_{21} N_1} \Big), \end{array}$$

where all parameters, b_{12} , b_{21} , K_1 , K_2 , r_1 , r_2 are positive.

[5 marks]

(ii) Determine the steady states and their stability.

[15 marks]

(iii) Briefly describe the ecological implications of the results of the analysis.

[5 marks]

Question 6. An epidemic model involves only two interacting populations, infectives with density $i(\mathbf{x},t)$, and susceptibles with density $s(\mathbf{x},t)$, both functions of the space variable $\mathbf{x}=(x_1,x_2,x_3)$ as well as time t. The model is described by the system

$$egin{array}{ll} rac{\partial s}{\partial t} &=& -rsi + D\Delta s, \\ rac{\partial i}{\partial t} &=& rsi - ai + D\Delta i, \end{array}$$

where r, a and D are positive constants and $\Delta \equiv \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$.

(i) Explain briefly the rationale of the model and the meaning of the constants r, a and D.

[3 marks]

(ii) Consider the one-dimensional problem, $i = i(x_1, t)$, $s = s(x_1, t)$. Nondimensionalise the system by writing

$$I=rac{i}{s_0},\quad S=rac{s}{s_0},\quad x=\sqrt{rac{rs_0}{D}}x_1,\quad au=rs_0t,\quad \lambda=rac{a}{rs_0},$$

where s_0 is the population density in the absence of epidemic. Show that the system takes the form

$$\begin{array}{ll} \frac{\partial S}{\partial \tau} & = & -SI + \frac{\partial^2 S}{\partial x^2}, \\ \frac{\partial I}{\partial \tau} & = & SI - \lambda I + \frac{\partial^2 I}{\partial x^2}. \end{array}$$

[2 marks]

(iii) Look for travelling wave solutions by setting $I(x,\tau)=I(z), S(x,\tau)=S(z),$ where $z=x-c\tau$ and c is the travelling speed. Obtain the system of ordinary differential equations:

$$I'' + cI' + I(S - \lambda) = 0,$$
 $S'' + cS' - IS = 0,$

where the prime denotes differentiation with respect to z.

[5 marks]

(iv) Consider solutions, such that $I(-\infty) = I(\infty) = 0$, I(z) > 0, S(z) > 0,

 $0 \le \sigma = S(-\infty) < S(\infty) = 1$, where σ is a constant. Explain the meaning of σ . Prove that for all finite z, $\sigma < S(z) < 1$. Prove that S(z) is monotonic for all z with S'(z) > 0.

[5 marks]

(v) Prove that

$$\int_{-\infty}^{\infty} I(z) dz > \int_{-\infty}^{\infty} I(z) S(z) dz = \lambda \int_{-\infty}^{\infty} I(z) dz$$

and hence deduce that the threshold criterion for travelling epidemic wave solution to exist is $\lambda < 1$.

[5 marks]

(vi) Linearize the equation for I in the region $z \to \infty$ where $S \to 1$, $I \to 0$. Demonstrate that if the travelling wave solution exists, the wavespeed c must satisfy $c \ge 2\sqrt{1-\lambda}$.

[5 marks]

30LO HO N SIZE		
COURSE / YEAR DT 238	EXAMINATION SITTING:	SUMMER CO
SUBJECT: INTRODUCTION TO BLOW ASH	ematics	AUTUMN (
EXAMINER: ROSSEN IVANOV	EXPECTED SOLUTION TO QUESTION NO:	/
PAGEOF	PROPOSED MARK ALLOCATION:	25
(i) The two steady states as $f(N) = rN(1 - \frac{N}{K}) = rN - \frac{r}{K}N$	re $N^{\#}=0$ and 2	dN=K
$f'(N) = r - \frac{2r}{r}N$	13	marks]
$f'(0) = r > 0 => N_1 = 0$ is $f'(K) = r - 2r = -r < 0 => N_2 =$	an <u>unstable</u> s K is a <u>stable</u> s	Jeody State [2 marks] feady State
(ii) $\frac{dN}{N(1-\frac{N}{K})} = r dt$, $\frac{1}{N(1-\frac{N}{K})}$		ades]
= => luN -lu(K-N) = rt+co	nst	
	[3 marks]	
N= Cert, C= const	At t=0 N(0)=	· No
$\frac{N_0}{K-N_0} = Ce^{\circ} \Rightarrow C = \frac{N_0}{K-N_0}$	= [3 ma	1457
$N=K$ $\frac{No}{(k-N_0)e^{-rt}} + N_0$ k State, which is Stable	$\zeta = N_2^* - the Sec$	ond Steady
State, which is Stable	[3 marks	7

COURSE / YEAR		EXAMINATION SITTING:	SUMMER COSUMPLEMENTAL
SUBJECT:			WINTER
EXAMINER:	66	EXPECTED SOLUTION TO QUESTION NO:	1-ctd.
page 2 of	15	PROPOSED MARK ALLOCATION:	25

(iii)
$$f(N) = rN(1-\frac{N}{K}) - EN$$

 $f(N) = 0$ has two roots: $N_1^* = 0$, $N_2^* = K(1-\frac{E}{r})$, which exists if $E < r!$
 $f'(N) = r - E - \frac{2r}{K}N$ [3 marks]
 $f'(0) = r - E$ $f'(0) = r$

$$f'(N_{i}^{*}) = -(r-E) < 0$$
 when N_{i}^{*} exists

=> when N_{i}^{*} exists it is stable (i.e. $E(r)$)

[2 marks]

=, O If E>r only N=0 exists and is stable => harvesting destrojs the population! (2) If ELT $N_2^* = K(1-\frac{E}{r})$ is a stable steady the population number approaches N2#

[1 mark]

COURSE / YEAR DT 238 EXAMINATION SUMMER SITTING SUPPLEMENTAL AUTUMN SUBJECT: INTRODUCTION TO BLOMATHEMATICS WINTER EXPECTED SOLUTION EXAMINER: ROSS EN IVANOV TO QUESTION NO: PAGE 3 OF 15 PROPOSED MARK 25 ALLOCATION: (i) $\frac{d(N/K)}{d(rt)} = \left(\frac{N}{K}\right)\left(1 - \frac{N(t-T)}{K}\right) = u = \frac{N}{K}, \text{ Tert, } \Theta = rT$ $\frac{du(t)}{dt} = u(t) \left[1 - u(t-\theta) \right] \qquad [2 \text{ marks}]$ (ii) The steady state satisfies u* (1-u*)=0 => u*=1 is a steady state; if u= 1+ n(T) $\frac{dn(\tau)}{dx} = (1+n(\tau))\left(1-1/-n(\tau-\theta)\right) = -n(\tau-\theta)$ $\frac{dn(\tau)}{d\tau} = -n(\varepsilon - \Theta) \qquad [3 \text{ warks}]$ (iii) $n(a) = ce^{\lambda t} = c \lambda e^{\lambda c} = -ce^{\lambda(c-\theta)}$ => \ \ \ \ \ = - \ \end{aligned} [3 marks] (iV) $\lambda = \mu + i\omega$ $\mu + i\omega = -\frac{e^{-(\mu + i\omega)\theta}}{2} \left[\lim_{\omega \to 0} \frac{e^{-\mu\theta}}{2} \left(\cos \omega \theta - i \sin \omega \theta \right) \right]$ $\mu = -e^{-\mu\theta}\cos\omega\theta$ [2 marks]

[2 warks]

W= EMB SIN WO

COURSE / YEAR SUBJECT:	EXAMINATION SITTING:	SUMMER COMPLEMENTAL COMPLICATION COMPLEMENTAL COMPLEMENTA
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	2-cont
PAGE 4 OF 15	PROPOSED MARK ALLOCATION:	25
(v) Suppose $w=0 \Rightarrow \mu=-$ no positive roots for μ , we also notice that if ω so we need only to consid	(Solution U=1	is steble)
when $\theta=0$, $\mu=-1$, $\omega=0$ is stable, $n(\tau) \rightarrow 0$. The when μ reaches $\mu=0$ and unstable, since $ n(\tau) $ does If $\mu=0$ we have $ 0=1$	first bifurca then U=1 be not approach	ation occurs ecomes
$\Rightarrow \sin \omega \theta = \pm 1 \Rightarrow \omega = 0$ $\omega = 0$	±1 leut we [2 marks] [2 marks]	consider
(vi) When $\theta = \frac{\pi}{2}$ $\lambda = \mu$ $m(\tau) = ce^{\lambda \tau} = ce^{\pm i\tau}$ $t_p = 2\pi \left[2 \text{ marks}\right]$ $= \frac{t_p}{\pi} = \frac{2\pi}{\pi/2} = 4 \Rightarrow 2 t$	and has per	[[mark] iod marks]

COURSE / YEAR DT 238 EXAMINATION SUMMER STITING: SUPPLEMENTAL AUTUMN SUBJECT: INTRODUCTION TO BIOMATHEMATICS WINTER EXPECTED SOLUTION TO QUESTION NO: ROSSEN IVANOV PAGE 5 OF 15 PROPOSED MARK (á) The Stendy states silve the equation [1 mark] $u = \frac{bu^2}{\mu^2} - Eu \implies u = 0$ U23 = 6 = (62-4(HE)2 [3 marks] If there is no real steady state => there is no stable [2 marks] steady state or no horvest => b= 4(I+E)2 => b= 2(I+E), [3 marks] $E \leq \frac{b-2}{3} \implies E_m = \frac{b-2}{3}$ [3 marks] => E42- 64 +E LO => b- 16-4E2 < UE < b+ 164E2 (ili) $u_{t+1} = f(u_t)$ where $f(u) = \frac{bu^2}{1+u^2} - \bar{x}u$ $f'(u) = \frac{2bu}{(1+u^2)^2} - E$ Out the Steady State (I+E)(I+u2)=b4

SUBJECT:

COURSE / YEAR

EXAMINATION

SUMMER

Q

SITTING:

AUTTINA

EXPECTED SOLUTION TO QUESTION NO:

3-ctd.

PAGE 6 OF 15

PROPOSED MARK

25

(iii) - ctd.

$$f'(u) = \frac{2}{bu} \left(\frac{bu}{1+u^2}\right)^2 - E = \frac{2}{bk} \left(1+E\right)^2 - \left(1+E\right) + 1 = \frac{2}{bu} \left(1+E\right) \left[1-\frac{2}{bu} \left(1+E\right)\right] = \frac{2}{bu} \left(1+E\right) \left[1+E\right] \left[1+E\right$$

SOLO ROXY SIZES		
COURSE / YEAR DT 238	EXAMINATION SITTING:	SUMMER O
SUBJECT: INTRUDUCTION TO BLOMATHEMATI	CS	WINTER
EXAMINER: ROSSEN IVANOU	EXPECTED SOLUTION TO QUESTION NO:	4
PAGE 7 OF 15	PROPOSED MARK ALLOCATION:	25
(i) U=1 is a steady state since	ut=uter	-(1-4 ⁴)
Ut = U+1/2 = 1+1/2 1/4/41	['	3 warks]
1+ v+1 = (1+ v+) er (1-1-v+-1)=	(1+VE) e	- VE-1
1+ 1/4, = (1+1/4) (1-1/4-1) = 1+1/4-	ry-, [2	marks]
=> V++1-V++rV+-1=0	[2 ma	rus]
(ii) The linearised equation has	s Solution	V _t = Z ^t
where 22-2+1=0, i.e.	[2ma	rks
21/2 = 2 [1 ± \1-4r]		
If OCT < 1/4 to and to are n	eal, olt	212<1
and therefore v=>0 as t>0	, and hence	u=1
and therefore $v_{t} > 0$ as $t > \infty$ is a linearly stable equilibrary	ium State	[2 marts]
Of 1>r>2 2, and to are co	ouples,	
Z1/2 = = = [(+i /4/-1], 7/11 = = = [1+41	r-1 = Vr < L	
=) again V_>0 as t->0 (V_=A		

DUBLIN INSTITUTE OF TECHNOLOGY, KEVIN STREET, OUBLIN 3

COURSE / YEAR	EXAMINATION SITTING:	SUMMER SUPPLEMENTAL AUTUMN
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	4-cont.
PAGE 8 OF 15	PROPOSED MARK ALLOCATION:	25
(iii) When r=1 2/2= 12((ti (3) = e + 11/3	
121,2 = 1 and Vt does	• ,	
Vt = Ae St + Ae - St	[3 mo	
Vtr6 = e (A e 3 + A e		
=> when r=1 Vt is p	periodic with pe	eriod 6
	E3 ma	·ks
(iv) When r>1 /t1/2/=	$\sqrt{r} > 1$ (2	marks]
	as top (2	
=> Ve grows unbounded (y and u=1	is unstable.

DT 238 SUMMER SITTING: SUPPLEMENTAL SUBJECT: IN TRODUCTION TO BIOMATHEMATICS AUTUMN EXPECTED SOLUTION ROSSEN IVANON TO QUESTION NO: PAGE 9 OF 15 PROPOSED MARK (il In comparisson to the logistic model dr = TN (1-N) we see that the carrying copacities, e.g K'= K+ 42N2>K, are increased due to the interaction = the model describles symbiosis [5 mars] (ii) The obvious steady states are (0,0), (0, K2), (K1,0) and the last one satisfies $|N_1 = K_1 + b_{12}N_2$ $|N_2 = K_2 + b_{21}N_1$ 1 N, - 6/2 N2 = K1 -b21N1 + N2= K2 $N_{1}^{*} = \frac{\begin{vmatrix} k_{1} & -b_{12} \\ k_{2} & 1 \end{vmatrix}}{\begin{vmatrix} 1 - b_{12} \\ -b_{21} & 1 \end{vmatrix}} = \frac{k_{1} + k_{2}b_{12}}{1 - b_{12}b_{21}} = \text{exists if } b_{12}b_{21} < 1$ $N_{2}^{*} = \frac{\begin{vmatrix} 1 & K_{1} \\ -b_{2} & K_{2} \end{vmatrix}}{1 - b_{12} b_{21}} = \frac{K_{2} + K_{1} b_{21}}{1 - b_{12} b_{21}} = \frac{K_{2} + K_{1} b_{21}}{1 - b_{12} b_{21}}$ ramarer?

COURSE / YEAR		EXAMINATION SITTING:	SUPPLEMENTAL DATE
SUBJECT:		EXPECTED SOLUTION TO QUESTION NO:	5-cont.
EXAMINER:		PROPOSED MARK	
PAGE 10 OF	<u>15</u>	ALLOCATION:	(3)
=> the fo	ourth skeady sta	ete exists only	if b12b2/<1.
	= 12 N, (1- N, K+42N2		
dt	= 12N2 (1- N2 K2+b21 N	$= f_2(N_1/N_2)$	r.b., N, 2
A(N, N2) =	$\left\{\frac{\partial f_i}{\partial N_i}\right\} = \begin{bmatrix} r_i \\ \frac{r_2}{\sqrt{12}} \end{bmatrix}$	$\left(1-\frac{2N_1}{K_1+b_{12}N_2}\right)$	(K+ 42 N2)2
	Ke	$\frac{b_{2}, N_{2}^{2}}{(b_{2}, N_{1})^{2}} \qquad V_{2} \left(\frac{b_{2}, N_{1}}{b_{2}, N_{1}} \right)^{2}$	1- 2N2 (3 marks)
A(0,0) =	$\begin{bmatrix} \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} & \lambda_{1,L} \end{bmatrix}$	= (1,2 > 0 =)	mstable [2marks]
A (K1,0)	- [-1, 1/p/2]	2, E-1, Co sadd	le point (pole [rmarks]
A (0, K2)			ddle perut

[2marks]

SOLUTION	CLERKY
COLLEGIO	SLIED I

COURSE / YEAR		EXAMINATION SITTING:	SUMMER CO
SUBJECT:		EXPECTED SOLUTION TO QUESTION NO:	WINTER -
EXAMINER:			5
PAGE // OF_	15	PROPOSED MARK ALLOCATION:	25
A (N, N2*			
$\lambda^2 + \lambda$	(1+12) + (1/2 (1-6/2/21)	= 0	
$\lambda_1\lambda_2$	$= -(r_1 + r_2) < 0$ $= r_1 r_2 (1 - b_{12} b_{11}) > 0$		
1- 6,26	Steady State (NIN2) 21 >0 it is Stable	[3	inartes 7
(ili) In the	case of small inc	teraltions steady state	
In the co	se of intensive loster	te => unli	mited growth
of both	relevance:		$b_{2i} > 1$
	pt N2		
(01 /2)	(K1,0	No point	[5 marks]

COURSE / YEAR DT 288 SUBJECT: IN TRODUCTION TO WOMASHEMATICS	EXAMINATION SITTING:	SUMMER SUPPLEMENTAL CAUTUMN CONTRACTOR CONTR
EXAMINER: ROSSEN IVANOV	EXPECTED SOLUTION TO QUESTION NO:	6
PAGE 12 OF 15	PROPOSED MARK ALLOCATION:	25
(i) The model describes the spatial simple diffusion with coefficient D. The to infectives is proportional to parameter, measuring the transmi	Crunsinon	from susceptible
de sease from infectives to suschare a disease - induced mortali the life -expectancy of an infe	ty rate as	a is
((ii) $\frac{\partial S}{\partial t} = -rsi + D \frac{\partial^2 S}{\partial x_i^2}$	2 (so S	uuris]
$\frac{3e^{2S}}{2(t/s_0)} = -rs_0^{2S} SI + D$	(VD)	
$rs_{0} \frac{\partial S}{\partial t} = -rs_{0} SI + D \frac{rs_{0}}{D} \frac{\partial^{2}S}{\partial x^{2}}$ $= -rs_{0} SI + D \frac{rs_{0}}{D} \frac{\partial^{2}S}{\partial x^{2}}$	= => [1 m	ark]
$\frac{\partial i}{\partial t} = rsi - ai + D \frac{\partial^2 i}{\partial x_i^2}$		
$\frac{s_o \delta I}{s(rs_o)} = rs_o^2 SI - as_o I + D \frac{s_o \delta}{\sqrt{p_s}}$	$\frac{I}{\int_{0}^{2} \int_{x^{2}}^{2}} \sqrt{a}$	= A rso

SUBJECT:

COURSE / YEAR

EXAMINATION

SUMMER

STITING:

SUPPLEMENTAL

AUTUMN [

WINTER.

EXPECTED SOLUTION TO QUESTION NO:

6-ctd.

PAGE 13 OF 15

PROPOSED MARK ALLOCATION:

25

$$-cI' = SI - \lambda I + I'' = 2 I'' + cI' + I(S - \lambda) = 0$$

$$-cS' = -SI + S'' = 2 S'' + cS' - SI = 0$$
[2 marks]

(iv)
$$t \rightarrow -\infty \iff z \rightarrow \infty$$

 $S(\infty) = 1 \iff S(\infty) = S_0 - the population density$
Before the epidemic
 $S(-\infty) = \sigma < 1$, $S(-\infty) = \sigma > 0$ the population density

S(-10) = 5 < 1, S(-0) = 5 > the population density after the epidemic => 6 represents the fraction that survives the epidemic. [1 mark]

Suppose that S(t) has a maximum. Then S(t)=0 => S'ESI>0 wich is condition for a minimum.

COURSE / YEAR	EXAMINATION SITTING:	SUPPLEMENTAL
SUBJECT:		AUTUMN WINTER
EXAMINER:	EXPECTED SOLUTION TO QUESTION NO:	6-cont
PAGE 14 OF 15	PROPOSED MARK ALLOCATION:	25
S" + eS' = IS / ecz		
$\frac{d}{dt}\left(e^{ct}S^{\prime}\right)=e^{ct}IS$		
$e^{ct}S'(t) = \int_{0}^{\infty} e^{ct} L(t')S(t')$) dx 70	
$5) S'(t) > 0 if I(t) \neq 0$	[2 m	and]
=> S(2) [nereases monotonically	y from t	01
σ ∠ S(t) < 1	[2 man	
(v) Since S(2) <1, SI(2) d2'	$\Rightarrow \int \mathcal{L}(\mathcal{X}') S$	(2!)d4!
Literative $I'' + c I' + I(S - \lambda) =$	-o gives	
[(w)-I'(-w)+c[](w)-1((-00)] +] L(2')	[3 wars]
- x S D(+1) dx' =0 =>		_
$\int_{-\infty}^{\infty} J(z')S(z')dz' = \lambda \int_{-\infty}^{\infty}$	$I(t') \mathcal{M}' =$	·>
$\int I(t')dt' > \lambda \int I(t')dt' \Rightarrow$	1 < 1	(2 marks)

	CLIPPT
SOLUTION	211111

COURSE / YEAR SUBJECT:		EXAMINATION SITTING:	SUMPLEMENTAL CAUTUMN C
-	67	EXPECTED SOLUTION TO QUESTION NO:	6 ctd.
EXAMINER:	15	PROPOSED MARK ALLOCATION:	25

(Vi) If
$$S \rightarrow 1$$
, $I \rightarrow 0$ we have
$$I'' + CI' + (I - \lambda)I = 0 \quad \text{with solution}$$

$$I = A e^{m_1^2} + B e^{m_2^2}, \quad A, B = const$$

$$m^2 + cm + (I - \lambda) = 0$$

$$m_{12} = -c \pm \sqrt{c^2 + 4(I - \lambda)}$$

$$m_{12} = \frac{1}{2} \quad [3 \text{ warks}]$$

Since at 2-700 I(P)=0 there are no oscillatory solutions, that would give I(tXO)=0 $C^2-4(1-\lambda)\geq 0 \implies C\geq 2\sqrt{1-\lambda}$.

[2 marks]