§ 11. Приближение непрерывных функций многочленами

1°. Интерполяционная формула Лагоранжа, Многочлен Лагранжа

$$P_{n}(x) = \sum_{i=0}^{n} \frac{(x-x_{0}) \cdot (x-x_{i-1}) (x-x_{i+1}) \cdot (x-x_{n})}{(x_{i}-x_{0}) \cdot (x_{i}-x_{i-1}) (x_{i}-x_{i+1}) \cdot (x_{i}-x_{n})} y_{\delta}$$

обладает свойством $P_n(x_i) = y_i$ (i = 0, 1, ..., n).

2°. Многочлены Бериштейна. Если f(x) — непрерывная на сегменте [0, 1] функция, то многочлены Бериштейна

$$B_n(x) = \sum_{i=0}^{n} i \left(\frac{i}{n} \right) C_n^i x^i (1-x)^{n-i}$$

при $n \to \infty$ сходятся равномерно на сегменте [0, 1] к функция f(x).

3121. Построить многочлен $P_n(x)$ наименьшей степени n, принимающий заданную систему значений:

x	-2	0	4	5
y	5	1	— 3	1

Чему приближенно равны

$$P_n(-1), P_n(1), P_n(6)$$
?

3122. Написать уравнение параболы $y = ax^2 + bx + c$, проходящей через три точки: $A(x_0-h, y_{-1})$, $B(x_0, y_0)$, $C(x_0 + h, y_1)$.

3123. Вывести формулу для приближенного извлечения корней $y=\sqrt{x}$ ($1 \le x \le 100$), используя значения $x_0=1$, $y_0=1$; $x_1=25$, $y_1=5$; $x_2=100$, $y_2=10$.

3124. Вывести приближенную формулу вида

$$\sin x^{\circ} \approx ax + bx^{\circ}$$
 (0 $\leq x \leq$ 90; $x = \text{arc } x^{\circ}$),

используя значения

$$\sin 0^{\circ} = 0$$
, $\sin 30^{\circ} = \frac{1}{2}$, $\sin 90^{\circ} = 1$.

Пользуясь этой формулой, приближенно найти: sin 20°, sin 40°, sin 80°.