Sets, Functions, and Predicates

CSC165 Week 1 - Part 2

From last class:

 $x \in S$ "x is an element of A"

 $A \subset S$ "A is a subset of S"

A ⊆ S "A is a subset of S or A is equal to S"

A ⊆ A is always true

Ø ⊆ A always true (but not always an element)

$$\emptyset$$
 = the empty set = { }

Let
$$A = \{1, x, \emptyset\}$$

Let
$$B = \emptyset = \{\}$$

Let
$$C = \{ \emptyset \} = \{ \{ \} \}$$

$$\mathsf{P}(\varnothing) = \mathsf{P}(\{\ \}) = \varnothing$$

$$\mathsf{P}(\{\varnothing\}) = \mathsf{P}(\{\{\}\}) = \{\ \{\varnothing\},\ \varnothing\}$$

$$A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \}$$

Example of Cartesian Product:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x,y) \mid x \in \mathbb{R} \text{ and } y \in \mathbb{R} \}$$

$$\mathbb{Z} \times \mathbb{R} = \{ (n,y) \mid n \in \mathbb{Z} \text{ and } y \in \mathbb{R} \}$$

$$\mathbb{Z} \times \mathbb{Z} = \{ (n,m) \mid n \in \mathbb{Z} \text{ and } m \in \mathbb{Z} \}$$

$$R \times \emptyset = \emptyset$$

Functions

A function is a mapping from its Domain to its Codomain.

f: A
$$\longrightarrow$$
 B means f(a) = b where a \in A and b \in B

Example:
$$f(x) = 1 | f: \mathbb{R} \setminus \{0\} \longrightarrow (0, \infty)$$

For $k \in \mathbb{Z}^+$, we say f is a k-ary function if

f:
$$A_1 \times A_2 \times ... \times A_k \longrightarrow B$$

$$f(a_1,a_2,...,a_k) = b$$

Summation Notation

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 =$$

$$1 + 2 + 3 + ... + 99 + 100 =$$

$$1 + 4 + 9 + \dots + 81 + 100 =$$

$$3 + 9 + 19 + ... + 163 + 201 =$$

Summation Notation

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = \sum_{i=1}^{n} i_{i=1}^{n}$$

$$1 + 2 + 3 + \dots + 99 + 100 = \sum_{i=1}^{10} i$$

$$4 + 9 + ... + 81 + 100 + 121 = \sum_{i=2}^{11} i^2$$

$$3 + 9 + 19 + ... + 163 + 201 = \sum_{i=1}^{10} 2i^2 + 1$$

$$\sum_{i=1}^{3} 3\sin(2i) =$$

$$\sum_{i=1}^{5} 3i + i^2 =$$

$$\sum_{i=8}^{2} (i+3)^{1/2} - 6 =$$

Product Notation

$$\int_{k=-1}^{2} 3k + 2 =$$

$$\int_{i=2}^{5} (x-i)^2 =$$

$$\int_{i=10}^{9} i - 5 =$$

Propositional Logic

A proposition is a statement that can be true or false.

Examples:

$$S = 3 < 4$$

$$T = 3 \ge 4$$

U = "It is raining right now."

V = "This loop will terminate in a finite number of iterations."

NOT (negation)

Ex: Let $q = \neg (x < 3)$

p	ρ
TRUE	
FALSE	

AND (conjunction)

Ex: $(x < 2) \land (x > 3)$

Ex: It is January and it is sunny.

p	q	p ∧ q

OR inclusive (disjuction)

Ex: $(x < 2) \lor (x > 3)$

Ex: It is January or it is sunny.

þ	q	p v q

Exclusive OR is used here:

"I want a red car or a blue car"

We understand here that the person is not looking for two cars: one of each.

Implies (implication) (conditional) ~p ∨ q
p ⇒ q "if p is true, then q must be true"

p is the hypothesis

q is the conclusion

Ex: If it rains, then I bring an umbrella

Ex: $(n \in \mathbb{N}) \Longrightarrow (n \in \mathbb{Z})$

þ	q	$p \Rightarrow q$

iff (if and only if) (biconditional) $p \Longrightarrow q \land q \Longrightarrow p$

p is true if and only if q is true

Ex: $(n \in \mathbb{N}) \iff (n \in \mathbb{Z})$

Ex: It is Monday if and only if it is the first CSC165 lecture of the week

Ex: A number is a natural number if and only if it is a positive integer.

p	q	$p \Leftrightarrow q$

All definitions are biconditional statements.

Example of Evaluating a Truth Table: $(p \lor q) \Longrightarrow (r \Longrightarrow (p \land q))$

р	q	r	(b^d)	(b∨d)	r ⇒ (p∧q)	$(p \lor q) \Rightarrow (r \Rightarrow (p \land q))$
Т	Т	Т				
Т	Τ	F				
Т	F	Т				
Т	F	F				
F	Т	Т				
F	Т	F				
F	F	Т				
F	F	F				

Two statements are said to be logically equivalent if they are true for the same input and false for the same input:

 $p \Leftrightarrow q$ means that p and q are logically equivalent to each other.

Example:

$$(x = 2) \iff ((x \in \mathbb{Z}) \land (x \ge 0))$$

(x = 2)	$((x \in \mathbb{Z}) \land (x \ge 0))$	$(x = 2) \iff ((x \in \mathbb{Z}) \land (x \ge 0))$
Т	Т	
Т	F	
F	Т	
F	F	

The original implication

$$\longleftrightarrow$$

$$\overset{}{\longleftrightarrow}$$

$$\neg p \Longrightarrow \neg q$$

Contrapositive

Inverse

The original statement is "All cats are animals".

This is logically equivalent to the implication:

"If it is a cat, then it is an animal"

Let A = "it is a cat" and B = "it is an animal"

 $A \Rightarrow B =$ the original statement

(contrapositive) $\neg B \Rightarrow \neg A =$

(converse) $B \Rightarrow A =$

(inverse) $\neg A \Rightarrow \neg B =$

The original implication

 $p \Longrightarrow q$

$$\neg q \Longrightarrow \neg p$$

Contrapositive

Inverse

 $\mathsf{q} \Longrightarrow \mathsf{p}$

 $\neg p \Longrightarrow \neg q$

Inverse