H18T2A1

Betrachte die Funktionenfolge $(f_n)_{n\in\mathbb{N}}$, gegeben durch

$$f_n: \mathbb{R} \to \mathbb{R}, \ x \mapsto \frac{x^{2n}}{1+x^{2n}}.$$

- a) Zeige, dass $(f_n)_{n\in\mathbb{N}}$ auf \mathbb{R} punktweise konvergiert und bestimme die Grenzfunktion $f:\mathbb{R}\to\mathbb{R}$.
- b) Zeige, dass $(f_n)_{n\in\mathbb{N}}$ nicht gleichmäßig auf \mathbb{R} gegen f konvergiert.
- c) Sei $q \in [0, 1[$ und $A = \{x \in \mathbb{R} : |x| \le q\}$. Zeige, dass $(f_n)_{n \in \mathbb{N}}$ auf A gleichmäßig gegen f konvergiert.

Zu a):

Wir unterscheiden die folgenden drei Fälle:

1. Fall 1: $x \in]-1,1[$. In diesem Fall ist

$$0 \le |f_n(x) - 0| = \frac{x^{2n}}{1 + x^{2n}} = x^{2n} \cdot \underbrace{\frac{1}{1 + x^{2n}}}_{\le 1} \le x^{2n} \xrightarrow{n \to \infty} 0 \tag{1}$$

und damit $f(x) = \lim_{n \to \infty} f_n(x) = 0$ nach dem Einschließungskriterium.

- 2. Fall 2: $x = \pm 1$. In diesem Fall ist $f(x) = \lim_{n \to \infty} f_n(x) = \frac{1^n}{1+1^n} = \frac{1}{2}$.
- 3. Fall 3: |x| > 1: In diesem Fall ist

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^2 n}{1 + x^{2n}} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^{2n}}} = 1.$$

Also konvergiert $(f_n)_{n\in\mathbb{N}}$ punktweise gegen die Grenzfunktion

$$f: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \begin{cases} 0 & |x| < 1 \\ \frac{1}{2} & |x| = 1 \\ 1 & |x| > 1 \end{cases}$$

Zu b):

Nehmen wir an, $(f_n)_{n\in\mathbb{N}}$ würde gleichmäßig gegen f konvergieren.

Da die einzelnen Funktion f_n offensichtlich (als Quotient und Summe stetiger Funktionen) stetig sind, müsste aus der gleichmäßigen Konvergenz $f_n \stackrel{gm.}{\to} f$ auch die Stetigkeit der Grenzfunktion f folgen.

Wegen $\lim_{x \nearrow 1} f(x) = 0 \neq 1 = \lim_{x \searrow 1} f(x)$ ist f aber nicht stetig und die Konvergenz von f_n gegen f nicht gleichmäßig.

Zu c):

Mithilfe von Gleichung (??) folgt für $x \in A$: $|f_n(x) - 0| \le x^{2n} \le q^{2n}$. Ist damit $\varepsilon > 0$ vorgegeben, so folgt wegen der Konvergenz $q^{2n} \stackrel{n \to \infty}{\longrightarrow} 0$ zunächst die Existenz eines $N \in \mathbb{N}$ mit $|q^{2n}| < \varepsilon$ für alle $n > N, n \in \mathbb{N}$. Hieraus ergibt sich wiederum für alle $x \in A$:

$$|f_n(x) - 0| \le q^{2n} < \varepsilon$$

und damit die gleichmäßige Konvergenz von $(f_n)_{n\in\mathbb{N}}$ gegen f auf A.