

Artificial Intelligence Lecture 4b: Dealing with Uncertainty

Henrique Lopes Cardoso, Luís Paulo Reis

hlc@fe.up.pt, lpreis@fe.up.pt

The Need to Act under Uncertainty

- Partial observability
- Nondeterminism
- Adversaries

- How?
 - Keeping track of a belief state: the set of all possible world states that the agent might be in
 - Generating contingency plans for every possible eventuality
- But we should take into account that certain states are more likely to occur than others!

The Need to Act under Uncertainty

- Automated taxi: delivering a passenger to the airport on time
 - Plan A_{90} : leave home 90 minutes before (airport is only 5 miles away), drive at reasonable speed
 - Will plan A₉₀ get us to the airport in time?
 - car doesn't break down or run out of gas
 - I don't get into an accident, and there are no accidents on the bridge
 - plane doesn't leave early
 - no meteorite hits the car
 - ...
 - The plan's success cannot be inferred! Is plan A_{qq} the right thing to do?
 - Is it expected to maximize the agent's performance measure?
 - What about plan A_{180} ?
- The rational decision depends on the relative importance of various goals and the likelihood that, and degree to which, they will be achieved

Uncertainty and Rational Decisions

- Choosing a plan:
 - Plan A₉₀: 97% of catching the flight
 - Plan A₁₈₀: 99% of catching the flight
 - Perhaps not a good choice, because it probably involves an intolerable wait at the airport!
- Preferences over outcomes
 - Where an outcome is a completely specified state: arriving on time, waiting time at the airport, ...
- Utility theory: represent and reason with preferences
- Combining preferences with probabilities:

Decision theory = probability theory + utility theory

 A rational agent chooses the action that yields the highest expected utility, averaged over all the possible outcomes: maximum expected utility

Probability Theory

- One way of dealing with uncertain knowledge: probabilities
- Let Ω be the set of possible worlds (the **sample space**)
- A probability model associates a probability $P(\omega)$ with each possible world $\omega \in \Omega$
 - $0 \le P(\omega) \le 1$ for every ω and $\sum_{\omega \in \Omega} P(\omega) = 1$
- Assign a degree of belief (between 0 and 1) to events that cannot be precisely obtained or determined
 - 0 / 1 indicates an undisputable belief that certain event is false / true
 - Probabilities between 0 and 1 correspond to intermediate degrees of belief regarding the truthfulness of the event
 - The event itself is true or false! A prob of 0.8 simply says that in 80% of the states indistinguishable from the current state we expect the event to be true

Axioms of Probability Theory

•
$$0 \le P(a) \le 1$$

•
$$P(True) = 1$$

•
$$P(False) = 0$$

•
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

• Mutually exclusive events: $P(a \lor b) = P(a) + P(b)$

•
$$P(a \lor \neg a) = P(a) + P(\neg a) - P(a \land \neg a) =$$

 $P(a) + P(\neg a) - P(False) = P(a) + P(\neg a)$

• It also follows that $P(\neg a) = 1 - P(a)$, because $P(a \lor \neg a) = 1$

Prior and Conditional Probabilities

- Prior (or unconditional) probabilities
 - P(Flu) = 0.1 may indicate, in the absence of further information, a probability of 10% that a person has a flu
- Conditional probabilities: calculated based on the presence of other interdependent events
 - $P(Flu \mid Fever) = 0.8$ is indicative that if a patient has fever, and in the absence of further information, the probability of having a flu is 80%

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$
 or $P(a \land b) = P(a \mid b) P(b)$ or $P(a \land b) = P(b \mid a) P(a)$

- With independent events: $P(a \land b) = P(a) P(b)$
- Two coin-tosses: $P(Heads \land Heads) = 1/2 \times 1/2 = 1/4$

In knowledge-based systems, conditional probabilities are important because usually we have only partial information on the data needed to employ certain domain knowledge

Joint Probabilities

Conditional probabilities are defined in terms of joint events

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}$$

- This means that in order to calculate $P(a \mid b)$, we need to know the probability that a and b occur simultaneously
- *P*(*Flu* | *Fever*)
 - We can build a truth table with the joint probabilities for both events:

	Fever	$\neg Fever$
Flu	0.04	0.06
$\neg Flu$	0.01	0.89

$$P(Flu \mid Fever) = \frac{P(Flu \land Fever)}{P(Fever)} = \frac{0.04}{0.04 + 0.01} = 0.80$$

- What if there are more than two variables to consider?
 - For *n* variables $\Rightarrow 2^n$ cells in the table!

Bayes' Theorem

- Bayes' rule is obtained from the equations
 - $P(a \land b) = P(a \mid b) P(b)$ and $P(a \land b) = P(b \mid a) P(a)$

• Equating both right-hand sides and dividing by P(a), we obtain

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

- P(b): prior probability of b, that is, before discovering a
- $P(b \mid a)$: conditional probability, that is, after discovering a

Bayes' Theorem

$$P(b \mid a) = \frac{P(a \mid b) P(b)}{P(a)}$$

- Why is it useful?
 - Requires 3 terms to calculate a conditional probability!
 - But in certain domains such as in medical diagnosis we know conditional probabilities in causal relations and need to derive a diagnosis

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- The doctor knows the causal P(symptoms|disease)
- ...and wants to derive a diagnosis P(disease|symptoms)

Applying Bayes' Rule

- A patient has a symptom say, a stiff neck (S)
- We want to determine if the symptom is due to something potentially serious say, meningitis (M)
 - Doctor knows meningitis causes *stiff necks* in 70% of cases: $P(S \mid M) = 0.7$
 - The prior probability of a patient having *meningitis* is P(M) = 1/50000
 - The prior probability of a patient having a *stiff neck* is P(S) = 0.01

$$P(M \mid S) = \frac{P(S \mid M) P(M)}{P(S)} = \frac{0.7 \times 1/50000}{0.01} = 0.0014$$

- Thus, only 0.14% of patients with stiff necks have meningitis
 - Even though having a *stiff neck* is common (70% of the cases) what happens is that the prior probability of *stiff necks* is much higher than that of *meningitis*

Applying Bayes' Rule

- Why don't we know $P(M \mid S)$ right from the start?
- Diagnostic knowledge is often more fragile than causal knowledge
 - There may be no information on the probability of a person with a stiff neck having meningitis
 - $P(M \mid S)$ is diagnostic knowledge
 - But we may have a consistent notion of how many patients with *meningitis* have *stiff necks*
 - $P(S \mid M)$ is causal knowledge
- If there is a meningitis epidemic:
 - P(M) will increase
 - $P(M \mid S)$ should raise proportionally to P(M)
 - Causal knowledge $P(S \mid M)$ will stay the same it reflects how the disease works!

General Form of Bayes' Rule

- What if we have more than one evidence (or symptom)?
- With 2 evidence:

$$P(M \mid S_1 \land S_2) = \frac{P(S_1 \land S_2 \mid M) P(M)}{P(S_1 \land S_2)}$$

- We need to compute $P(S_1 \land S_2) = P(S_1 \mid S_2) P(S_2)$
- For *n* evidence, we get the **general form of Bayes' Rule**:

$$P(d \mid s_1 \land \dots \land s_n) = \frac{P(s_1 \land \dots \land s_n \mid d) P(d)}{P(s_1 \land \dots \land s_n)}$$

We need to compute

$$P(s_1 \wedge \cdots \wedge s_n) = P(s_1 \mid s_2 \wedge \cdots \wedge s_n) P(s_2 \mid s_3 \wedge \cdots \wedge s_n) \dots P(s_n)$$

• If some of these evidence are independent of each other, i.e.,

$$P(s_i) = P(s_i \mid s_j)$$
, we can simplify to $P(s_i \land s_j) = P(s_i) P(s_j)$

Conditional Independence

- Sometimes, we can assume **conditional independence** between evidence in the presence of additional evidence E (domain knowledge):
 - $P(s_i \mid s_j, E) = P(s_i \mid E)$
 - Car with a flat tire and faint lights: 2 independent symptoms
 - Car doesn't start and faint lights: dependent! (both need battery to work)

Naïve Bayes

$$P(d|s_1 \land s_2 \land \dots \land s_n) = P(d) \prod_i P(s_i|d)$$

- Naive because the variables are typically not actually conditionally independent given the cause variable
- In practice, naive Bayes systems can work surprisingly well, even when the conditional independence assumption is not true!

Other Approaches to Model Uncertainty

- Bayesian (or Belief) Networks
- Default reasoning
- Rule-based approaches (e.g., the Certainty Factors model)
- Dempster–Shafer theory (representing ignorance)
- Fuzzy logic and fuzzy set theory (representing vagueness)