第十五章 代数系统

定理 15.1 设 o 为 A 上的二元运算, 若 o 运算适合结合律, 则 o 运算适合广义结合律.

定理 **15.2** 设 \circ 为 A 上的二元运算,若存在 $e_l \in A$ 和 $e_r \in A$ 满足 $\forall x \in A$ 有 $e_l \circ x = x$ 和 $x \circ e_r = x$,则 $e_l = e_r = e$,且 e 就是 A 中关于 \circ 运算的惟一的单位元.

定理 **15.3** 设 \circ 为 A 上的二元运算,若存在 $\theta_l \in A$ 和 $\theta_r \in A$ 使得 $\forall x \in A$ 有 $\theta_l \circ x = \theta_l$ 和 $x \circ \theta_r = \theta_r$,则 $\theta_l = \theta_r = \theta$,且 θ 是 A 中关于 \circ 运算的惟一的零元.

定理 15.4 设集合 A 至少含有两个元素,e 和 θ 分别为 A 中关于。运算的单位元和零元,则 $e \neq \theta$.

定理 **15.5** 设 \circ 为 A 上可结合的二元运算且单位元为 e. 对于 $x \in A$ 若存在 $y_l, y_r \in A$,使得 $y_l \circ x = e$ 和 $x \circ y_r = e$,则 $y_l = y_r = y$,且 $y \not\in X$ 是 x 关于 \circ 运算的惟一的逆元.

定理 **15.6** 设代数系统 $V_1 = \langle A, \circ_{11}, \circ_{12}, \cdots, \circ_{1r} \rangle, V_2 = \langle B, \circ_{21}, \circ_{22}, \cdots, \circ_{2r} \rangle$ 是同类型的, V 是 V_1 与 V_2 的积代数. 对任意的二元运算 $\circ_{1i}, \circ_{1i}, \circ_{2i}, \circ_{2i}$,

- (1) $\dot{\pi} \circ_{1i}$, \circ_{2i} 在 V_1 和 V_2 中是可交换的(或可结合的,幂等的),则 \circ_i 在 V 中也是可交换的(或可结合的,幂等的).
- (2) $\overline{A} \circ_{1i}$ 对 \circ_{1j} 在 V_1 上是可分配的, \circ_{2i} 对 \circ_{2j} 在 V_2 上是可分配的,则 \circ_i 对 \circ_j 在 V 上也是可分配的.
- (3) $\overline{A} \circ_{1i}, \circ_{1j}$ 在 V_1 上是可吸收的,且 \circ_{2i}, \circ_{2j} 在 V_2 上也是可吸收的,则 \circ_i, \circ_j 在 V 上是可吸收的.
- (4) 若 e_1 (或 θ_1)为 V_1 中关于 o_{1i} 运算的单位元(或零元), e_2 (或 θ_2)为 V_2 中关于 o_{12} 运算的单位元(或零元),则 $\langle e_1, e_2 \rangle$ (或 $\langle \theta_1, \theta_2 \rangle$)为 V 中关于 o_i 运算的单位元(或零元).
- (5) 若 \circ_{1i} , \circ_{2i} 为含有单位元的二元运算,且 $a \in A, b \in B$ 关于 \circ_{1i} 和 \circ_{2i} 运算的逆元分别为 a^{-1} , b^{-1} , 则 $\langle a^{-1}, b^{-1} \rangle$ 是 $\langle a, b \rangle$ 在 V 中关于 \circ_i 运算的逆元.

定理 **15.7** 设 $V_1 = \langle A, \circ_1, \circ_2, \cdots, \circ_r \rangle, V_2 = \langle B, \bar{\circ}_1, \bar{\circ}_2, \cdots, \bar{\circ}_r \rangle$ 是同类型的代数系统,对于 $i = 1, 2, \cdots, r, \ \circ_i, \bar{\circ}_i$ 是 k_i 元运算. $\varphi : A \to B$ 是 V_1 到 V_2 的同态,则 $\varphi(A)$ 关于 V_2 中的运算构成代数系统,且是 V_2 的子代数,称为 V_1 在 φ 下的同态像.

定理 **15.8** 设 $V_1 = \langle A, \circ_1, \circ_2, \cdots, \circ_r \rangle, V_2 = \langle B, \bar{\circ}_1, \bar{\circ}_2, \cdots, \bar{\circ}_r \rangle$ 是同类型的代数系统, $\varphi : A \to B$ 是 V_1 到 V_2 的满同态, \circ_i, \circ_i 是 V_1 中的两个二元运算.

- (1) 若 o; 是可交换的(或可结合的, 幂等的), 则 ō; 也是可交换的(或可结合的, 幂等的).
- (2) $\dot{\pi}$ o_i 对 o_i 是可分配的,则 \bar{o}_i 对 \bar{o}_i 也是可分配的.
- (3) 若 o_i , o_i 是可吸收的,则 \bar{o}_i , \bar{o}_i 也是可吸收的.
- (4) 若 e (或 θ)是 V_1 中关于 o_i 运算的单位元(或零元),则 $\varphi(e)$ (或 $\varphi(\theta)$)是 V_2 中关于 \bar{o}_i 运算的单位元(或零元).