1. Limits

- Keywords
- Converge/Diverge
- Monotonic
- Theorems/Properties
 - Every convergent sequence is bounded.
 - o If a sequence is monotonic and bounded, it's convergent.
 - Sums/Products/Quotients(with nonzero denominator) of convergent sequences converge.
 - For k>0, 1/n^k goes to 0. |k|>1, 1/k^k goes to 0.
 - Squeeze Theorem
- Limits of functions
 - Right hand/left hand limit
 - Epsilson/delta definition
 - Limits at infinity
 - Continuity
- Can't divide by zero, take square root of negative, can't take log of 0 or negative
- Theorems of Continuous Functions
 - Extreme Values
 - Intermediate value theorem

2. Derivatives

- What is derivative
 - Limit definition
 - Slope of Tangent line
 - When is there not a derivative (limit doesn't exist)
 - If not continuous then not differentiable (If differentiable, then continuous).
- Rules for finding derivatives
 - Sum/Product/Chain
 - Inverse Function
 - Remember Derivatives of trig functions, log, exp etc.
- Find equation of tangent line
 - Tangent line gives an approximation for the function
- Implicit Differentiation
- Higher Order Derivatives
- Curve Sketching
 - First Derivative
 - Increasing/Decreasing
 - Critical Points Local Min/max
 - Second Derivative
 - Concavity

- Inflection Points
- Second derivative Test classifying CPs
- Can use curve sketch to find number of zeroes of a function
- Therorems of Differentiablity
 - Mean Value Theorem
 - Special Case Rolle's Thm
- Min/Max Problems
 - Global Max/Min can occur at critical points and along boundary
 - On closed bounded domain, always have global min/max
- Related Rates
 - Write an equation relating your variables. Take the derivative.
 Solve for unknown.

3. Integrals

- Techniques
 - U-substitution
 - Intergration by parts
 - o Trig Sub
- sqrt(a^2-u^2) u=a sin x
- \blacksquare sqrt(a^2+u^2) u=a tan x
- sqrt(u^2 -a^2) u=a sec x
- Partial Fractions
 - Degree of numerator one less than degree of denominator
 - If you have a term to a power (say n) include it it the first, second, ... to the nth
- Definite Integration
 - o area under a curve
 - Riemann Sums
 - o Limit Definition
- Fundamental Theorem of Calculus
 - Integral of Derivative (1st Fund Thm)
 - Derivative of Integral (2nd Fundamental Thm)
 - Chain rule
- Average Value of a function
- Area between curves
- Polar Coordinates
 - \circ x=r*cos(t) y=r*sin(t)
 - \circ r= sqrt(x^2+y^2) tan (t)=y/x
 - \circ Area of equation or r in terms theta $A = \int_{\alpha}^{\infty} 1/2r^2 d\theta$
- Volumes of Solids of Revolution

$$\circ \bigvee_{=a}^{b} \pi[f[x]^2]_{dx}$$

- Arc Length
- Exponentials and Logs

$$\circ \quad e = n \frac{\lim_{x \to \infty} (1+1/n)^n}{\int_{x}^{x} 1/t}$$

$$\circ \quad \log x = 1 \quad dt$$

- \circ We can use logarithmic differentiation to solve for derivatives of functions like $f(x)^{g(x)}$. Write this as $e^{g(x)\log f(x)}$. Then use implicit differentiation.
- L'Hopital's Rule

$$\begin{array}{ccc} \circ & \text{Need 0/0 or } \infty/\infty \\ & \lim_{x \to a} f(x)/g(x) = \lim_{x \to a} f\left(x\right)/g\left(x\right) \end{array}$$

- Improper Integrals
 - o If either bound is $\pm \infty$ or the function is undefined at the endpoint then the integral is improper
 - Let the bad bound be r. Take the limit as r goes to whatever it needs to.
 - Make sure to check that the function is defined for the entire interval. You may need to split it into two improper integrals.
- Infinite Series
 - Adding an infinite Sequence
 - o Geometric Series
 - Common ratio

$$\sum_{n=0}^{\infty} r^n = 1/(1-r)$$

- Divergence Test
 - if the terms don't go to 0, the sum can't
 - Converse is False e.g. Harmonic Series
- p-series
- Comparison Test
- Ratio Test

$$= \lim_{n \to \infty} a_{n+1}/a_{n=1}$$

■ If L<1
$$\sum a_n$$
 converges, if L>1 $\sum a_n$ diverges

- L=1 inconclusive
- Root Test

$$= \lim_{n \to \infty} \sqrt[n]{a_n} = L$$

■ If L<1
$$\sum a_n$$
 converges, if L>1 $\sum a_n$ diverges

- L=1 inconclusive
- Integral Test

Let f(x) be positive monotonically decreasing function for $x \ge 1$ such that $f(n) = a_n$

$$\sum_{n=1}^{\infty} a_n \iff \int\limits_{1}^{\infty} f(x) dx$$
 converges

Alternating Series Test

$$\sum_{N=1}^{\infty} (-1)^{n+1}a_n$$
 converges if a n is a positive decreasing sequence that converges to 0

- A series that converges but whose absolute value does not converge is called a conditionally convergent series
- If a series and its absolute value converge is called absolutely convergent
- Power Series
- Taylor Series