## Distributed word embeddings

# A szoftmax függvény

- Bináris osztályozás szigmoid függvénnyel  $\sigma(z) = \frac{1}{1 + \exp^{-z}}$ -  $z = w^T x$  mint normalizálatlan valószínűség
  - Alternatívan legyen  $z_1 = w_1^T x$  és  $z_2 = w_2^T x$  a pozitív és negatív osztályba tartozás normalizálatlan valószínűségei

- 
$$softmax(z) = \left[\frac{\exp^{z_1}}{\exp^{z_1} + \exp^{z_2}}, \frac{\exp^{z_2}}{\exp^{z_1} + \exp^{z_2}}\right]$$

 $-z=z_1-z_2$  választással a logiszikus regresszió is ezt csinálja

# Szoftmax példa

- A szoftmax függvény segítségével (-∞, ∞) intervallumból jövő értékeket szekvenciájából tudunk eloszlást gyártani
  - Osztályozást végző neurális hálók gyakori összetevője

```
[-2, 3, 0] \rightarrow [0.14 \ 20.09 \ 1.00]
[-1, 4, 1] \rightarrow [0.37 \ 54.60 \ 2.72]
[1, 2, 2.3] \rightarrow [2.72 \ 7.39 \ 9.97]
```

# Szoftmax példa

- A szoftmax függvény segítségével (-∞, ∞) intervallumból jövő értékeket szekvenciájából tudunk eloszlást gyártani
  - Osztályozást végző neurális hálók gyakori összetevője

```
[-2, 3, 0] \rightarrow [0.14 \ 20.09 \ 1.00] \rightarrow [0.006 \ 0.946 \ 0.048]
[-1, 4, 1] \rightarrow [0.37 \ 54.60 \ 2.72] \rightarrow [0.006 \ 0.946 \ 0.048]
[1, 2, 2.3] \rightarrow [2.72 \ 7.39 \ 9.97] \rightarrow [0.189 \ 0.377 \ 0.434]
```

## word2vec (Mikolov et al., 2013)

- Algoritmuscsalád több (kritikus) hiperparaméterrel
  - Alapcélja: olyan prediktív modellt tanulni, ami képes minél pontosabban megbecsülni, hogy ha egy szövegrészből kitakarunk egy/több szót, akkor mi/mik volt/voltak az/azok
- Minden szóhoz rendeljünk egy kontextus és output reprezentációt (egy-egy N dimenziós vektort)
  - Predikcióinkat a kontextus és output vektorok pontszorzatain alkalmazott szoftmax függvénnyel hozzuk meg

# Continuous bag of words (CBOW) vs. Skipgram



# Continuous bag of words (CBOW) vs. Skipgram



## A predikciós mechanizmus

 Egy-egy kontextusablak viszonyában regisztráljuk a predikció kapcsán jelentkező hibát, és frissítsük a szóreprezentációkat

$$p(o_i|c_j) = softmax(\mathbf{1}_j^T W W')$$

- 1<sub>j</sub> = [0 0 0 ... 0 0 1 0 0 ... 0] alakú ún. one-hot vektor
   j. pozíció
- W és W' paraméterek függetlenek egymástól (Miért?)
- Kezdetben random értékekeket tartalmaznak, SGD-vel frissítjük őket a tanulás során

# A frissítési szabály

- Szükségünk van a predikció hibájának gradiensére
  - A predikciós hiba az elvárt szó előrejelzésének negált log valószínűsége

$$\ell = -\log(p(o_i|c_j)) = -\log\frac{e^{w_j^T w_i'}}{\sum_{k=1}^{|V|} e^{w_j^T w_k'}} = 7$$

Mi lesz a hibatag gradiense? Hogy lehet értelmezni?

# Az elvi modell problémái

- A célfüggvény gradiensét nagyon költséges kiszámolni
  - Egyetlen frissítés alkalmával a teljes szótár (V) fölötti összegzést igényel
- A probléma javítható hierarchikus szoftmax vagy negatív mintavételezés alkalmazásával

#### Hierarchikus szoftmax

- A predikciós mechanizmust (W') cseréljük le egy bináris fára
  - N csúcsú bináris fa várható magassága log(N)
  - A bináris fa minden csúcsa egy-egy döntést hoz
  - Egy outputra vonatkozó predikció legyen a fában hozzá való eljutás során hozott döntések valószínűségeinek szorzata
- 1 db |V| kimenetelű multinomiális eloszlás helyett hozzunk log(|V|) bináris döntést

#### Hierarchikus szoftmax illusztrációja

- Minden csúcs egy-egy mini osztályozó
  - Balra vagy jobbra tovább?
- A hibát így propabáljuk vissza  $n(w_2,1)$  $n(w_2,2)$  $n(w_2,3)$  $W_{j}$

## Negatív mintavételezés

- A teljes szótár feletti predikció helyett hozzunk néhány egyszerű bináris döntést (valid/invalid kontextus)
  - Bináris döntést hozni sokkal olcsóbb, mint egy |V| kimenetelest

$$\ell = -\log(p(Y=1|o_i,c_j)) - \sum_{k=1,o_k\sim Q}^{R} \log(p(Y=0|o_k,c_j))$$

Q a szótár elemei feletti gyakorisági eloszlás

#### Negatív mintavételezés

- A teljes szótár feletti predikció helyett hozzunk néhány egyszerű bináris döntést (valid/invalid kontextus)
  - Bináris döntést hozni sokkal olcsóbb, mint egy |V| kimenetelest

$$\ell = -\log(p(Y=1|o_i,c_j)) - \sum_{k=1,o_k\sim Q}^{R} \log(p(Y=0|o_k,c_j))$$

- Q a szótár elemei feletti gyakorisági eloszlás
  - Q meghatározása során a szavak gyakoriságát emeljük egy 1-nél kisebb hatványra (pl. 0.75)
     → Miért jó ötlet ez?

#### További trükkök

- Adaptív ablakméret (távolabbi szomszédok alulsúlyozása)
- Gyakori szavak alulmintavételezése 1-sqrt(t/f(w)) valószínűséggel
  - t egy hiperparaméter
  - f(w) a szó gyakorisága
- Gyakori mintázatok (pl. *New\_York*) beazonosítása
  - Történhet pl. PPMI segítségével
- Stb, stb...

