Congratulations! You passed!

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

$$\begin{split} a &= np.random.randn(1,3) \ \sharp \ a.shape = (1,3) \\ b &= np.random.randn(3,3) \ \sharp \ b.shape = (3,3) \end{split}$$

Grade received 80%

Latest Submission Grade 80% To pass 80% or higher

Go to next item

0/1 point

1.	In logistic regression given the input ${f x}$, and parameters $w\in\mathbb{R}^{n_x},b\in\mathbb{R}$, how do we generate the output \hat{y} ?	1/1 point
	$\bigcirc \ anh(W{f x}+b)$	
	\bigcirc $\sigma(W\mathbf{x})$	
	$\bigcirc Wx+b$	
	∠ ² Expand	
	Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y , referred to as \hat{y} , such that $0<\hat{y}<1$.	
	another y, refered a by justification $x,y \in \Sigma$	
2.	Suppose that $\hat{y}=0.9$ and $y=1$. What is the value of the "Logistic Loss"? Choose the best option.	0 / 1 point
	0.005	
	$ \textcircled{\tiny 0} \mathcal{L}(\hat{y},y) = -\left(\hat{y}\log y + (1-\hat{y})\log(1-y)\right) $	
	0.105	
	○ +∞	
	∠ ⁸ Expand	
	No. This is not the definition of the Logistic Loss function.	
3.	Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do	1/1 point
	you reshape this into a column vector x ?	1/1 point
	x = img.reshape((1.32*32.3))	
	x = img.reshape((3.32*32))	
	ⓐ $x = \text{img.reshape}((32*32*3.1))$	
	x = img.reshape((32*32.3))	
	∠ ³ Expand	
	© Correct	
4.	Consider the following random arrays a and b , and c :	1/1 point
	a = np.random.randn(3, 4) # a.shape = (3, 4)	
	b = np.random.randn(1,4) # b.shape = (1,4)	
	c = a + b	
	What will be the shape of c?	
	 The computation cannot happen because it is not possible to broadcast more than one dimension. 	
	c.shape = (1, 4)	
	© c.shape = (3, 4)	
	∠ ⁿ Expand	
	Correct Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.	

for i in range(3):

for j in range(3): c[i][j] = a[i][j]**2 + b[i][j]**2

- for i in range(3): c[i] = a[i]**2 + b[i]**2
- The computation cannot happen because the sizes don't match. It's going to be an "Error"!
- for i in range(3):
 for j in range(3):
 c[i][j] = a[i][j]**2 + b[j][i]**2

 ✓ Correct
 Yes. This code squares each entry of a and adds it to the transpose of b square.

10. Consider the following computational graph.

1/1 point

What is the output of J?

- $a^2 c^2$
- $\bigcirc \quad a^2-b^2$
- $\bigcirc \quad a^2 + b^2 c^2$
- $\bigcirc \quad (a-b)*(a-c)$

∠ Expand

 \bigodot correct Yes, $J = r + s = u * v + w * x = (a+b) * (a-b) + (b+c) * (b-c) = a^2 - b^2 + b^2 - c^2 = a^2 - c^2$