

CM 2607 Advanced Mathematics for Data Science

Tutorial No 03

- Q1) Find $\frac{dy}{dx}$ for the function $y = 3x^3 2x + 7$ and evaluate at x= -1. Interpret the result.
- Q2) Calculate the gradient of the straight line joining the points (1,1) and (-3,-15). Compare the result with the first derivative of the function y = 4x 3 at any arbitrary point.
- Q3) Consider the function $f(x) = 2x^3 3x^2 + 6x 3$.
 - I. Find f'(x)
 - II. Show that the derivative function of f(x) has its minimum when x = 0.5.
 - III. Find the minimum value of f'(x)
 - IV. Find the equation of the tangent line drawn to the function f(x) at x = -1.
 - V. Find the equation of the normal line drawn to the function f(x) at x = -1.
 - VI. Find the equation of the normal line to the curve f(x) at x = 0.
- Q4) Consider the parametric function given.

$$x = \sin t \left(e^{\cos t} - 2\cos 4t - \sin^5 \left(\frac{t}{12} \right) \right)$$

$$y = \cos t \left(e^{\cos t} - 2\cos 4t - \sin^5 \left(\frac{t}{12} \right) \right)$$

- I. Find $\frac{dy}{dx}$
- II. Plot the parametric function for $t = [0.12\pi]$ as $\delta t = 1/16$.
- Q5) Find the critical points of the functions given and determine the nature of the critical points.

$$1. \qquad y = 2x + e^{-2x}$$

II.
$$y = x^3$$

III.
$$y = \frac{1}{3}x^3 + 2x^2 + 7$$

IV.
$$y = x^3 - x$$

$$V. y = 3x^4 + 4x^3 - 12x^2 + 60$$

Q6) Determine the Hessian matrix for the following functions.

Self-study: Discuss how you can use the Hessian matrix to determine the nature of the critical points. Plot the functions.

I.
$$f(x, y) = x^2 + y^2$$

II.
$$f(x, y) = -x^2 - y^2$$

III.
$$f(x, y) = x^2 - y^2$$

IV.
$$f(x, y) = 2x^2 + 5xy + 3y^2$$

V.
$$f(x, y) = 3x^2 + 7xy + 5y^2$$

VI.
$$f(x, y) = -3x^2 + 7xy - 5y^2$$

VII.
$$f(x, y) = 4 + x^3 + y^3 - 3xy$$

- Q7) Challenge: Self-Study: Explain about the statements given below.
 - I. x = a is a root of the function y = f(x).
 - II. There is a root for the function y = f(x) in between $x = x_1$, and $x = x_2$.
 - III. Plot the function $f(x) = x^3 + 2x^2 5x 1$ over [-4,4].
 - IV. Using the above two results show that, there exists a root for the function $f(x) = x^3 + 2x^2 5x 1$ in between x = 1 and x = 2.
 - V. Study about the iterative methods to approximate the root lies between x = 1 and x = 2 for the function $f(x) = x^3 + 2x^2 5x 1$.
 - VI. Develop an algorithm to approximate the root for iv) using the selected iterative method.
 - VII. Explain the results to the class. Make sure that you have a well-prepared summary to present to the audience. It may be an individual work or group work. If it is a groupwork make sure to mention the team members.