النهايات

 $-\infty$ غيبة لا منتهية لدالة عند ∞ أو عند

 $a\in\mathbb{R}$ لتكن f دالة عددية معرفة على مجال $[a,+\infty[$ حيث $a\in\mathbb{R}$. $[a,+\infty[$ عندما يؤول $a+\infty[$ اذا كان $a\in\mathbb{R}$ يؤول إلى $a\in\mathbb{R}$ عندما يؤول $a+\infty[$ الى $a\in\mathbb{R}$ فإثنا نكتب $a\in\mathbb{R}$.

 $\lim_{x\to -\infty} f(x) = -\infty$ و $\lim_{x\to -\infty} f(x) = +\infty$ و $\lim_{x\to +\infty} f(x) = -\infty$: بنفس الطريقة يمكنك التعبير عن الحالات التالية : $\lim_{x\to -\infty} f(x) = -\infty$

- $\lim_{x \to +\infty} \sqrt{x} = +\infty \quad \bullet$
- $\lim_{x \to +\infty} x^3 = +\infty \quad \bullet$
- $\lim_{x \to +\infty} x^2 = +\infty \quad \bullet$
- $\lim_{x \to +\infty} x = +\infty$

- $\lim_{x \to -\infty} x^3 = -\infty \quad \bullet$
- $\lim_{x \to \infty} x^2 = +\infty \quad \bullet$
- $\lim_{x \to -\infty} x = -\infty \quad \bullet$

 $\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{if } n \in \mathbb{N} \\ -\infty & \text{if } n \end{cases}$ و $\lim_{x \to +\infty} x^n = +\infty : \text{the sum } n \text{ if } n \text{ if$

نهاية منتهية لدالة عند ∞+ أو عند ∞-

- لتكن f دالة عددية معرفة على مجال $[a,+\infty[$ حيث $a\in\mathbb{R}$ و ليكن l عددا حقيقيا. $\lim_{x\to a} f\left(x\right)=l$ اذا كان l يؤول إلى العدد l عندما يؤول l عندما يؤول r الى r
- $n \in \mathbb{N}^*$; $\lim_{x \to -\infty} \frac{1}{x^n} = 0$ •
- $n \in \mathbb{N}^*; \lim_{x \to +\infty} \frac{1}{x^n} = 0$
- $\lim_{x \to -\infty} \frac{1}{x} = 0$
- $\lim_{x \to +\infty} \frac{1}{x} = 0$

لتكن f دالة عددية و I عددا حقيقيا.

- اذا كانت f تقبل نهاية l في $\infty +$ (أو في $\infty -$) فإن هذه النهاية وحيدة.
 - $\lim_{x \to +\infty} (f(x) l) = 0$ يكافئ $\lim_{x \to +\infty} f(x) = l$
 - $\lim_{x \to \infty} (f(x) l) = 0$ يكافئ $\lim_{x \to \infty} f(x) = l$

النهايات المنتهية و اللامنتهية لدالة في نقطة

لتكن f دالة عددية و a و عددين حقيقيين بحيث f معرفة على مجال على الشكل $a-\alpha,a+\alpha$ حيث a على الشكل $a-\alpha,a+\alpha$ المحموعة على الشكل $a-\alpha,a+\alpha$ المحموعة على الشكل $a-\alpha,a+\alpha$ عندما يؤول $a-\alpha,a+\alpha$ الحد a ، فإننا نكتب $a-\alpha,a+\alpha$ المحد a عندما يؤول a الى المحد a ، فإننا نكتب a

لتكن f دالة عددية و a و l عددين حقيقيين. إذا كانت f تقبل نهاية l في a ، فإن هذه النهاية وحيدة.

 \mathbb{N}^* کن n کن $\lim_{x \to 0} x^n = 0$ • $\lim_{x \to 0} x^3 = 0$ • $\lim_{x \to 0} x^2 = 0$ • $\lim_{x \to 0} x = 0$ •

لتكن f دالة عددية و a عددا حقيقيا . $\lim_{x\to a} f\left(x\right) = +\infty \text{ , if } a$. اذا كان $f\left(x\right) = +\infty$ عندما يؤول $f\left(x\right)$ الى a ، فإننا نكتب $f\left(x\right)$

النهاية على اليمين و النهاية على اليسار لدالة في نقطة

لتكن f دالة عددية و a و l عددين حقيقيين.

 $\lim_{x \to a^+} f(x) = l$ او $\lim_{x \to a} f(x) = l$ او الحق اليمين فإننا نكتب $\lim_{x \to a^+} f(x) = l$ او الحق الحق العقول إلى الحق الحق العقول العق

الله على اليمين فإننا نكتب f(x) يؤول إلى ∞ (على التوالي إلى ∞) عندما يؤول x إلى x على اليمين فإننا نكتب ($\lim_{x \to a^+} f(x) = -\infty$) $\lim_{x \to a^+} f(x) = +\infty$) $\lim_{x \to a^+} f(x) = +\infty$) $\lim_{x \to a^+} f(x) = +\infty$ ($\lim_{x \to a^+} f(x) = +\infty$) $\lim_{x \to a^+} f(x) = +\infty$) $\lim_{x \to a^+} f(x) = +\infty$

نعرف بنفس الطريقة النهاية على ليسار لدالة في نفطة.

 $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{\sqrt{x}} = +\infty \quad \bullet \quad \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty \quad \bullet \quad \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x} = 0 \quad \bullet \quad \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \quad \bullet$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = -\infty$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = -\infty$

 $\lim_{\begin{subarray}{l} x \to a \\ x > a \end{subarray}} f\left(x\right) = \lim_{\begin{subarray}{l} x \to a \\ x < a \end{subarray}} f\left(x\right) = l$ يكافئ $\lim_{x \to a} f\left(x\right) = l$

العمليات على النهايات

$\lim f$	1	l	1	+∞	-∞	+∞
lim g	l'	+∞	-∞	+∞		
$\lim f + g$	1+1'	+∞	-∞	+∞		شكل غير
						محدد

$\lim f$	l	1>0	<i>l</i> > 0	1<0	1<0	+∞	+∞	-∞		±∞
lim g	1'	+∞		+∞		+∞		+∞		0
$\lim f \times g$	l×l'	+∞		-∞	+∞	+∞		-∞	+∞	شكل غير
										محند

$\lim f$	<i>l</i> ≠ 0	0+	0-	+∞	-∞
lim_	1	+∞	-∞	0	0
f	1				

$\lim f$	1	<i>l</i> > 0	1>0	1<0	<i>l</i> < 0	1	±∞	+∞	+∞	-∞	-∞
$\lim g$	$l' \neq 0$	0+	0-	0+	0-	±∞	±∞	0+	0-	0+	0-
$\lim \frac{f}{g}$	$\frac{l}{l}$	+∞		-∞	+∞	0	شکل غیر محدد	+∞	-∞	-∞	+∞

نهاية دالة حدودية - نهاية دالة جذرية

و
$$Q$$
 و التين حدوديتين و x_0 عدا حقيقيا .

$$Q(x_0) \neq 0$$
 في حالة $\lim_{x \to x_0} \frac{P(x)}{Q(x)} = \frac{P(x_0)}{Q(x_0)}$

$$\lim_{x \to x_0} P(x) = P(x_0) \quad \bullet$$

و إذا كاتت ax^n و Ax^n و Ax^n و Ax^n و Ax^n و الأكبر درجة ، فإن :

$$\lim_{x \to \infty} P(x) = \lim_{x \to \infty} ax^n \quad \blacksquare$$

$$\lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^{n} \quad \bullet$$

$$\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{ax^{n}}{bx^{m}} \quad \bullet$$

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^{n}}{bx^{m}} \quad \bullet$$

نهاية الدوال اللاجذرية

لتكن
$$f$$
 دالة عددية معرفة على مجال $[a,+\infty[$ بحيث $a,+\infty[$ بحيث $a,+\infty[$ بحيث $a,+\infty[$ التكن $a,+\infty[$ التكن $a,+\infty[$ $a,+\infty$

النهايات و الترتيب