Documentation for the pyroll-thermal-2d Plugin

Max Weiner

January 13, 2023

1 Model Description

1.1 Heat Flow Balance

see Figure 1, i index of layer in radial direction, n index of disk element in x-direction

$$0 = \dot{q}_1 - \dot{q}_2 - \dot{q}_3 + \dot{q}_4 + \dot{q}_S \tag{1}$$

heat flow contributions

$$\dot{q}_1 = \varrho c_{\rm p} \dot{V} T_i^n \tag{2}$$

$$\dot{q}_2 = \varrho c_{\rm p} \dot{V} T_i^{n+1} \tag{3}$$

$$\dot{q}_3 = -\lambda \frac{T_{i+1}^n - T_i^n}{\Delta r} \times 2\pi \left(r_i + \frac{\Delta r}{2} \right) \Delta x \tag{4}$$

$$\dot{q}_4 = -\lambda \frac{T_i^n - T_{i-1}^n}{\Delta r} \times 2\pi \left(r_i - \frac{\Delta r}{2} \right) \Delta x \tag{5}$$

$$\dot{q}_{\rm S} = \eta_{\rm S} \frac{k_{\rm f}}{\eta_{\rm co}} \dot{\varphi} \tag{6}$$

at surface different \dot{q}_3 , with surface temperature $T_{\rm S}$

$$\dot{q}_{3} = \left[-\alpha \left(T_{\infty} - T_{S} \right) - \epsilon_{0} \epsilon_{r} \left(T_{\infty}^{4} - T_{S}^{4} \right) \right] \times 2\pi \left(r_{i} + \frac{\Delta r}{2} \right) \Delta x \tag{7}$$

surface temperature estimation as stationary state between environment and outer layer, numerical solution

$$2\lambda \frac{T_{\rm S} - T_{\hat{i}}^n}{\Delta r} = \alpha \left(T_{\infty} - T_{\rm S} \right) + \epsilon_0 \epsilon_{\rm r} \left(T_{\infty}^4 - T_{\rm S}^4 \right) \tag{8}$$

Figure 1: Heat Flows on a Disk Element Ring

1.2 Temperature Increment Functions

for core layer $\dot{q}_4 = 0$

$$\Delta T_0 = \frac{1}{\varrho c_p \dot{V}_0} \left[\pi \lambda \Delta x \left(T_1^n - T_0^n \right) + \dot{q}_{S0} \right]$$
 (9)

for intermediate layers with Equation 4

$$\Delta T_{i} = \frac{1}{\varrho c_{p} \dot{V}_{i}} \left[\frac{2\pi \lambda \Delta x}{\Delta r} \left[\left(T_{i+1}^{n} - T_{i}^{n} \right) \left(r_{i} + \frac{\Delta r}{2} \right) - \left(T_{i}^{n} - T_{i-1}^{n} \right) \left(r_{i} - \frac{\Delta r}{2} \right) \right] + \dot{q}_{Si} \right]$$

$$(10)$$

for surface layer with Equation 7

$$\Delta T_{\hat{i}} = \frac{1}{\varrho c_{\mathrm{p}} \dot{V}_{i}} \left[2\pi \Delta x \left[\left[-\alpha \left(T_{\infty} - T_{\mathrm{S}} \right) - \epsilon_{0} \epsilon_{\mathrm{r}} \left(T_{\infty}^{4} - T_{\mathrm{S}}^{4} \right) \right] \left(r_{i} + \frac{\Delta r}{2} \right) - \lambda \frac{T_{i}^{n} - T_{i-1}^{n}}{\Delta r} \left(r_{i} - \frac{\Delta r}{2} \right) \right] + \dot{q}_{\mathrm{S}i} \right]$$

$$(11)$$

2 Plugin Usage

Symbols

Symbol	Description
α	Heat transfer coefficient
$c_{ m p}$	Thermal Capacity
ϵ_0	Radiation coefficent of black radiator
$\epsilon_{ m r}$	Relative radiation coefficient
$\eta_{ m S}$	Efficiency of heat source by deformation
η_{arphi}	Efficiency of deformation
i	Index of raster in radius
$\hat{\imath}$	Maximum index of raster in radius
$k_{ m f}$	Flow stress
λ	Thermal conductivity
\dot{m}	Mass flow in x-direction
n	Index of raster in x
\hat{n}	Maximum index of raster in x
φ	Equivalent strain
\dot{arphi}	Equivalent strain rate
\dot{q}	Heat flow
$\dot{q}_{ m S}$	Heat source (generation)
r	Radius coordinate in polar systems
Δr	Discretization width in radius
ϱ	Density
t	Time
Δt	Discretization width in time
T	Absolute temperature
ΔT	Increment of temperature
T_{∞}	Environemnt temperature
$T_{ m S}$	Absolute surface temperature
V	Volume of the disk element rep. layer
\dot{V}	Volume flow
x	X Coordinate
Δx	Discretization width in x