TARGETED ADVERTISING IN ELECTIONS

BY

Maria (Masha) Titova

VANDERBILT UNIVERSITY

March 6, 2023

MOTIVATION

- ► Targeted Advertising was an important part of winning campaigns in recent U.S. Presidential Elections:
 - ♦ **2016 Trump**: used voter data from Cambridge Analytica
 - ♦ 2008 Obama: first social media campaign
 - ♦ 2000 Bush: targeting voters by mail

CAN TARGETED ADVERTISING SWING ELECTIONS? \rightarrow Yes

Preview of Results

- \blacktriangleright some elections are unwinnable for challengers without targeted advertising
 - (pivotal) voters prefer policies on opposite sides of status quo
 - no public message convinces them to approve challenger's policy
- ▶ any such election can be won with targeted advertising
 - challenger makes each voter believe his policy is a sufficient improvement over status quo
 - challenger wins if his policy is sufficiently close to status quo
 - voters regret their choices
- ▶ if voters become more extreme, challenger's odds of winning increase

Related Literature

private vs. public voter persuasion

- ♦ verifiable info: Schipper and Woo (2019)
 - unraveling does not have to happen if only one candidate advertises
- \diamond <u>cheap talk</u>: Farrell and Gibbons (1989), Koessler (2008), Goltsman and Pavlov (2011), Bar-Isaac and Deb (2014)
 - sender prefers private communication if his messages are verifiable
- ♦ Bayesian persuasion: Arieli and Babichenko (2019), Bardhi and Guo (2018), Chan et al. (2019), Heese and Lauermann (2019)
 - sender does not need commitment to benefit from targeted advertising
 - $\bullet\,$ targeting does not just improve odds of winning, it swings unwinnable elections

political ambiguity

- Shepsle (1972), Alesina and Cukierman (1990), Aragonès and Neeman (2000), Meirowitz (2005), Alesina and Holden (2008), Kartik, Van Weelden, and Wolton (2017), Callander and Wilson (2008), Tolvanen (2021)
 - ambiguity allows challenger to convince multiple voters at once without lying (by commission) to any of them

Baseline Election (2 Voters)

Model Setup

- \blacktriangleright policy space is X := [-1, 1]
 - \diamond policies range from far-left (-1) to far-right (1)
 - ♦ status quo policy is fixed, known, normalized to 0
- ► challenger (he/him)
 - \diamond privately observes his policy $x \in X$
 - x is drawn from common atomless prior $\mu_0 \in \Delta X$ with full support
 - ♦ gets 1 if wins the election, 0 otherwise
 - winning requires unanimous approval of both voters

MODEL SETUP: COMMUNICATION

- ▶ challenger communicates with voter using verifiable messages
 - \diamond each message m
 - is a statement about policy: $m \subseteq X$
 - contains a grain of truth: $x \in m$
- ightharpoonup example: m = [-1/2, 0], or "my policy is moderately left"

Model Setup: Voters

- voters have spatial preferences
- ▶ voter (she/her) with bliss point $v \in X$ has

utility of approval
$$u_v(\text{approve}, x) = -(v - x)^2$$

utility of rejection $u_v(\text{reject}, x) = -(v - 0)^2$

net payoff from approval approval set

$$\alpha_v(x) := -(v-x)^2 + v^2$$

$$A_v := \{x \in X \mid \alpha_v(x) \ge 0\}$$

 \blacktriangleright two voters: left (with v=L<0) and right (with v=R>0)

Voter's Preferences: Illustration

TIMELINE AND EQUILIBRIUM CONCEPT

```
challenger challenger voter v \in \{L, R\} voter v \in \{L, R\} learns his \rightarrow selects m_L \rightarrow privately observes \rightarrow chooses between policy x \in X and m_R message m_v approval and rejection
```

▶ Perfect Bayesian Equilibrium

- \diamond for every policy $x \in X$, private messages $m_L \subseteq X$ and $m_R \subseteq X$ maximize challenger's utility subject to $x \in m_L$ and $x \in m_R$
- voter approves whenever expected net payoff from approval is non-negative under her posterior
 - expressive / does not condition on the event of being pivotal
- voters' posteriors are Bayes-consistent

Incompatible Voters

ightharpoonup left and right voters prefer policies on opposite sides of status quo

Lemma 1

If voter with bliss point $v \in X$ approves under a non-degenerate belief $\mu \in \Delta X$, then $\mathbb{E}_{\mu}[x]$ is strictly between 0 and 2v.

Lemma 2

For any common non-degenerate belief $\mu \in \Delta X$, at most one of the voters prefers to approve.

Unwinnable Election

- \blacktriangleright baseline election is <u>unwinnable</u> for challenger <u>without targeted advertising</u>
 - no advertising
 - full disclosure
 - public disclosure
- ▶ true for any communication protocol (evidence, cheap talk, Bayesian persuasion) that induces common posterior

EQUILIBRIUM OUTCOMES

- ▶ focus on equilibrium sets of approved policies
 - \diamond voter $v \in \{L, R\}$ approves set of policies $W_v \subseteq X$, rejects $W_v^c := X \setminus W_v$
 - \diamond direct implementation: when talking to v, challenger sends message
 - W_v if his policy is $x \in W_v \leftarrow$ recommendation to approve
 - W_v^c if his policy is $x \notin W_v \leftarrow$ recommendation to reject
- ▶ Titova (2022): $(W_L, W_R) \subseteq X^2$ is an equilibrium outcome iff $\forall v \in \{L, R\}$
 - $\diamond A_v \subseteq W_v$: challenger does not want to deviate to full disclosure
 - $\diamond \int_{W_{v}} \alpha_{v}(x) d\mu_{0}(x) \geq 0$: voter's **obedience constraint**

CHALLENGER-PREFERRED EQUILIBRIUM

- ▶ I focus on challenger-preferred PBE
 - one with highest odds of unanimous approval/winning
- ▶ problem:

problem:
$$(\overline{W}_L, \overline{W}_R) = \arg\max_{(W_L, W_R) \subseteq X^2} \int_{W_L \cap W_R} d\mu_0(x)$$
 subject to
$$\int_{W_v} \alpha_v(x) d\mu_0(x) \ge 0 \text{ for each } v \in \{L, R\}$$

I call $(\overline{W}_L, \overline{W}_R)$ the (challenger-preferred) equilibrium outcome (under targeted advertising)

Proposition 1

Proposition 1: Swinging Unwinnable Elections

In equilibrium of the baseline election game, the challenger's ex-ante odds of winning are always positive.

idea of proof: for each voter $v \in \{L, R\}$

- ▶ observe that v always approves own approval set: $\int_{A_v} \alpha_v(x) d\mu_0(x) > 0$
- ▶ select subset $B_v \subseteq A_{-v}$ of the other voter's approval set that satisfies

$$\int_{A_v} \alpha_v(x) d\mu_0(x) + \int_{B_v} \alpha_v(x) d\mu_0(x) \ge 0 \quad \text{ and } \quad \mu_0(B_v) > 0$$

- \blacktriangleright let $W_v = A_v \cup B_v$
- we have $\mu_0(W_L \cap W_R) = \mu_0(B_R \cup B_L) > 0$
- ⇒ odds in equilibrium are positive

Auxiliary Problem

question: what is the largest subset of $[l, r] \subseteq X$ can voter v approve?

$$I_v(l,r) := \max_{W \subseteq [l,r]} \mu_0(W)$$
 subject to $\int_W \alpha_v(x) d\mu_0(x) \ge 0$ (AUX)

▶ answer: Alonso and Câmara (2016) and Titova (2022)

Corollary 2

Consider voter $v \in X$. The solution to Problem (AUX) with $l \in [-1, \lfloor A_v \rfloor]$ and $r \in [\lceil A_v \rceil, 1]$ is almost surely an interval such that

- ▶ if $\int_{0}^{r} \alpha_v(x) d\mu_0(x) \geq 0$, then $I_v(l,r) = [l,r]$
- ▶ otherwise, $I_v(l,r) = \{x \in [l,r] \mid \alpha_v(x) \ge -c_v^*(l,r)\}$, where $c_v^*(l,r) > 0$ is obtained from the binding constraint $\int\limits_{I_v(l,r)} \alpha_v(x) d\mu_0(x) = 0$

LARGEST UNCONSTRAINED INTERVAL OF APPROVED POLICIES

- ▶ solve (AUX) for l = -1 and r = 1 to get $I_v(-1,1) =: I_v^{UC} = [a_v^{UC}, b_v^{UC}]$ ♦ v's largest unconstrained interval of approved policies
- ightharpoonup example: left voter, v = L

LARGEST ASYMMETRIC INTERVAL OF APPROVED POLICIES

 \triangleright left voter: how many right policies can she approve?

$$I_L^{AS} = [\lfloor A_L \rfloor, b_L^{AS}] := I_L(\lfloor A_L \rfloor, 1)$$

▶ right voter: how many left policies can she approve?

$$I_R^{AS} = \begin{bmatrix} a_R^{AS}, \lceil A_R \rceil \end{bmatrix} := I_R(-1, \lceil A_R \rceil)$$

CANDIDATE SOLUTION

When Candidate Solution Fails

► right voter is significantly more persuadable, or $\int_{|A_L|}^{|A_R|} \alpha_R(x) d\mu_0(x) > 0$

 \blacktriangleright assume *left* voter is not significantly more persuadable than *right* voter

$$\int_{A_L}^{\lceil A_R \rceil} \alpha_L(x) d\mu_0(x) \le 0$$

Proposition 2

Proposition 2: Equilibrium Intervals of Approved Policies

- (1) if neither voter is significantly more persuadable than the other, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right] \text{ and } \overline{W}_L = \left[\lfloor A_L \rfloor, b_L^{AS} \right]$
 - $\blacktriangleright\,$ equilibrium set of unanimously approved policies is $\overline{W}=[a_R^{AS},b_L^{AS}]$
- (2) if right voter is significantly more persuadable than left voter, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{BS}, 1)$
 - ▶ the equilibrium set of unanimously approved policies is $\overline{W} = \overline{W}_L$

Proposition 2: Case 1

Proposition 2

- (1) if neither voter is significantly more persuadable than the other, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right] \text{ and } \overline{W}_L = \left[\lfloor A_L \rfloor, b_L^{AS} \right]$
 - $\blacktriangleright\,$ equilibrium set of unanimously approved policies is $\overline{W}=[a_R^{AS},b_L^{AS}]$

Proposition 2, Case 2

Proposition 2

- (2) if right voter is significantly more persuadable than left voter, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{AS}, 1)$
 - \blacktriangleright the equilibrium set of unanimously approved policies is $\overline{W}=\overline{W}_L$

Proposition 2, Case 2.5

Proposition 2

- (2) if right voter is significantly more persuadable than left voter, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{AS}, 1)$
 - \blacktriangleright the equilibrium set of unanimously approved policies is $\overline{W}=\overline{W}_L$

EXTREMISM AND POLARIZATION

- ▶ The *left* voter *becomes more extreme* if L strictly decreases; the *right* voter *becomes more extreme* if R strictly increases.
- ▶ The baseline electorate $\{L, R\}$ becomes more polarized if R increases and L decreases, with one of the changes being strict.

More Extreme → More Persuadable

Lemma 2

If R' > R, then $\left[a_{R'}^{AS}, \lceil A_{R'} \rceil\right] \supseteq \left[a_R^{AS}, \lceil A_R \rceil\right]$, with $a_{R'}^{AS} \le a_R^{AS}$ and $\lceil A_{R'} \rceil \ge \lceil A_R \rceil$; the former inequality is strict unless $a_R^{AS} = -1$

Proposition 3

Proposition 3: Comparative Statics

Suppose that the left voter is not significantly more persuadable than the right voter. Then, as the right voter becomes more extreme,

- ▶ the challenger's odds of winning increase;
- ▶ the equilibrium set of unanimously approved policies shifts to the left.

Comparative Statics

Welfare and Regret

 \triangleright if v's set of approved states is W_v , her ex-ante utility is

$$\mathbb{E}_{\mu_0} \Big[\mathbb{1}(x \in W_v) \cdot (-(v-x)^2) + \mathbb{1}(x \in W_v^c) \cdot (-v^2) \Big]$$

▶ add v^2 to get $\int_{W_v} \alpha_v(x) d\mu_0(x)$

Definition

Consider $v \in X$ and her set of approved policies W_v . Then, v's

- welfare is $\int_{W} \alpha_v(x) d\mu_0(x)$;
- ightharpoonup amount of regret is $\int_{A_v} \alpha_v(x) d\mu_0(x) \int_{W_v} \alpha_v(x) d\mu_0(x)$.

COMMUNICATION BENCHMARKS

- ▶ full disclosure outcome (A_L, A_R)
 - ♦ also the challenger-worst equilibrium of baseline game
- ightharpoonup public disclosure outcome $\left(W_L^{PD},W_R^{PD}\right)$
 - challenger's odds of winning are zero
- ▶ targeted advertising outcome $(\overline{W}_L, \overline{W}_R)$

Welfare Comparison

	v's welfare	v's regret	challenger's odds of winning
full disclosure	$\int_{A_v} \alpha_v(x) d\mu_0(x) > 0$	0	0
public disclosure	$\int_{W_v^{PD}} \alpha_v(x) d\mu_0(x) \ge 0$	≥ 0	0
targeted advertising	$\int_{\overline{W}_v} \alpha_v(x) d\mu_0(x) = 0$	> 0	$\mu_0(\overline{W}_L \cap \overline{W}_R) > 0$

LARGE ELECTORATES AND UNWINNABLE ELECTIONS

- ▶ large electorate: set of bliss points $V = \{v_1, \dots, v_n\}$
- $\triangleright \mathcal{D}$ is set of decisive coalitions
 - ⋄ challenger wins (and gets 1) iff he convinces every voter in some $D \in \mathcal{D}$

Lemma: Unwinnable Elections

The following statements are equivalent:

- \blacktriangleright election is unwinnable for the challenger without targeted advertising;
- ▶ status quo policy is a.s. socially preferred to challenger's policy under complete information;
- ▶ there is no $D \in \mathcal{D}$ such that $v < 0 \ \forall v \in D \ \text{OR} \ v > 0 \ \forall v \in D$.

UNWINNABLE ELECTIONS: EXAMPLE

▶ <u>simple majority rule</u> – which elections are unwinnable?

(version of the) Median Voter Theorem

Under simple majority, a large election is unwinnable for the challenger without targeted advertising if and only if the status quo is the bliss point of the median voter.

SWINGING LARGE UNWINNABLE ELECTIONS

- \triangleright for any (minimal) decisive coalition D, identify
 - $\diamond \text{ the left pivot: } L := \max_{v \in D \text{ s.t. } v < 0} v$
 - every other voter on the left is convinced if L is convinced
 - \diamond the right pivot: $R := \min_{v \in D \text{ s.t. } v > 0} v$
 - every other voter on the right is convinced if R is convinced
- \triangleright solve baseline election for L and R
- maximizing odds of winning requires doing this for every minimal winning coalition

Conclusion

- ▶ some elections are unwinnable without targeted advertising
 - (pivotal) voters prefer policies on opposite sides of status quo
- ▶ any such election can be won with targeted advertising
 - challenger makes each voter believe his policy is sufficient improvement over status quo
 - challenger wins if his policy is not too far from status quo
 - voters regret their choices
- ▶ if voters become more extreme, challenger's odds of winning increase

Thank You!