1 Aufgabe: Korrelation zweier Zufallsvariablen

Von den Zufallsvariablen X und Y ist bekannt, dass Var(X) = a, Var(Y) = b und Var(dX + eY) = c, wobei a, b, c, d, e > 0. Wie groß ist dann der Korrelationskoeffizient zwischen X und Y?

2 Aufgabe: Kleinste Quadrate Schätzer

Der gängigste Schätzer für die Koeffizienten β_0 und β_1 einer linearen Regression ist gegeben durch den sogenannten "Kleinste Quadrate (KQ) Schätzer". Hat man Daten $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ gegeben, ergibt sich der KQ-Schätzer durch Minimierung von

$$KQ := \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Berechnen Sie den KQ-Schätzer von β_0 und β_1 .

3 Aufgabe: Regressionskoeffizient und Korrelation

1. Leiten Sie die Beziehung zwischen den Regressionskoeffizienten β_{XY} (von X auf Y) und β_{YX} (von Y auf X) und der Korrelation für die Variablen X und Y her, wobei

$$Y = \beta_{XY}X + \epsilon_1$$
 und
 $X = \beta_{YX}Y + \epsilon_2$

gilt.

2. Zeigen Sie, dass der Regressionskoeffizient β_{XY} unterschiedlich sein kann zu dem Regressionskoeffizient β_{YX} .

4 Aufgabe: Regressionsmodell-Output

In diesem Datensatz wird die Wegstrecke untersucht, die ein Spielzeugauto zurückgelegt hat, nachdem man es in unterschiedlichen Winkeln eine Rampe herunterfahren ließ.

Der Datensatz enthält folgende Variablen

- distance: Gibt an, wie weit ein Auto von einer Rampe herab gefahren ist.
- angle: Bezeichnet den Winkel der Rampe.

Angle	Distance
1.3	0.37
4.0	0.92
2.7	0.64
2.2	0.70
3.6	0.89
4.9	1.30
0.9	0.38
1.1	0.43
3.1	0.69

Das Statistikprogramm R liefert folgende Ergebnisse: Coefficients:

	Wert	Standardfehler	t-Wert	Pr(> t)	
β_0	0.14811	0.06503			
β_1	0.20954	0.02203			

- (a) Testen Sie, ob die Regressionskoeffizienten signifikant von 0 verschieden sind. Interpretieren Sie diese Ergebnisse.
- (b) Berechnen Sie auch das \mathbb{R}^2 und interpretieren Sie es.

5 Aufgabe: Diagnosegraphiken für die Regression

- (a) Wiederholen Sie die Voraussetzungen für die lineare Regression. Wie können Sie diese Annahmen mittels graphischer Verfahren untersuchen?
- (b) In den folgenden Graphiken finden Sie Diagnosegraphiken für verschiedene lineare Einfachregressionen. (Erste Zeile: gefittete Werte gegen Residuen, zweite Zeile gefittete Werte gegen standardisierte Residuen.) Überprüfen Sie, ob in diesen Graphiken Abweichungen von den Annahmen zu erkennen sind.

