ECS 521/641: Spintronics and Nanomagnetics

Instructor: Dr. Kuntal Roy, EECS Dept, IISER Bhopal **HW #4**

Problem 1

Determine the effective magnetic field due to shape anisotropy of a nanomagnet with in-plane magnetization and derive the full expressions of $d\theta/dt$ and $d\phi/dt$ with incorporating the magnetic field.

Problem 2

Consider an in-plane nanomagnet of shape as elliptical cylinder with dimension (a, b, t) = (150 nm, 100 nm, 2 nm) in the (z, y, x) direction.

Use $M_s = 8 \times 10^5 A/m$ and demagnetization factor $(N_{d-xx}, N_{d-yy}, N_{d-zz}) = (0.9468, 0.0339, 0.0193)$.

- (a) Draw the potential landscape of the nanomagnet with respect to (θ, ϕ) . What is the energy barrier?
- (b) Draw the in-plane potential landscapes with the application of magnetic field in the y-direction $H_y = (0,0.2,0.5,0.7,1,1.4)H_k$. Plot how θ_{min} varies with H_y/H_k , and compare with the analytical calculations.
- (c) Draw the in-plane potential landscapes with the application of magnetic field in the z-direction $H_z = (0,0.2,0.5,0.7,1,1.4)H_k$.
- (d) Plot the magnetization dynamics for the following cases by numerically solving the Landau-Lifshitz-Gilbert equation using finite difference method with damping $\alpha=0.01$ and 0.1. Determine the switching delay and energy dissipation due to damping. Compare the switching delay and energy dissipation for the cases of two damping parameters.
 - a. Use $H_{\nu}=2H_{k}$ and initial point $\theta\cong 180^{o}$.
 - b. Use $H_z=2H_k$ and initial point $\theta\cong 180^o$.
- (e) Apply H_y and H_z together as shown in a presentation slide for magnetization switching and plot the magnetization dynamics. Choose the relevant values.

Problem 3

Consider a nanomagnet with perpendicular anisotropy of shape as elliptical cylinder and dimension (a, b, t) = (20 nm, 20 nm, 5 nm) in the (x, y, z) direction. Use $M_s = 4.8 \times 10^5 \text{A/m}$ and $H_{PMA} = M_s$.

Derive the analytical expression for switching delay with *z*-directed magnetic field. Use the expression later to match the numerical results.

Plot the magnetization dynamics by numerically solving the Landau-Lifshitz-Gilbert equation using finite difference method with damping 0.1. Determine the switching delay and energy dissipation due to damping. Use $H_z=2H_k$ and initial point $\theta\cong 180^o$.