Q-Learning Homework

Q-Learning in a Deterministic 4-State World

Environment Setup

• States: There are four states arranged linearly:

State	Description
S1	Leftmost state (absorbing)
S2	Second state from the left
S3	Third state from the left
S4	Rightmost state

Actions:

- S1: No actions (absorbing state).
- S2:
 - Move Left: Transitions to S1.
 - Move Right: Transitions to S3.
- S3:
 - Move Left: Transitions to S2.
 - Move Right: Transitions to S4.
- S4:
 - Move Left: Transitions to S3.

Rewards:

- Entering **S1**: Reward = 10 (absorbing state).
- Entering **S2**, **S3**, **S4**: Reward = 0.
- Discount Factor: $\gamma=0.8$
- Initial Q-Values: All Q-values are initialized to 0.

Q-Learning Update Rule

The Q-Learning update rule for each state-action pair (s, a) is given by:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[R(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

Where:

- R(s, a) is the immediate reward after taking action a in state s.
- s' is the next state after taking action a.
- α is the learning rate (not specified here, assuming convergence).

Since the environment is deterministic and we aim for the optimal Q-values, we can directly compute them using the Bellman optimality equations.

Bellman Optimality Equations

For each non-absorbing state, the optimal Q-values are:

• S2:

$$Q^*(S2, ext{Left}) = R(S2, ext{Left}) + \gamma V(S1) = 10 + 0.8 imes 10 = 18$$
 $Q^*(S2, ext{Right}) = R(S2, ext{Right}) + \gamma V(S3) = 0 + 0.8 imes V(S3)$

• S3:

$$Q^*(S3, ext{Left})=R(S3, ext{Left})+\gamma V(S2)=0+0.8 imes V(S2)$$
 $Q^*(S3, ext{Right})=R(S3, ext{Right})+\gamma V(S4)=0+0.8 imes V(S4)$

S4:

$$Q^*(S4, \text{Left}) = R(S4, \text{Left}) + \gamma V(S3) = 0 + 0.8 \times V(S3)$$

The value function V(s) for each state is defined as:

$$V(s) = \max_a Q^*(s,a)$$

Solving for Optimal Q-Values

1. From State S2:

$$V(S2) = \max(Q^*(S2, \operatorname{Left}), Q^*(S2, \operatorname{Right})) = \max(18, 0.8 \times V(S3))$$

2. From State S3:

$$V(S3) = \max(Q^*(S3, \operatorname{Left}), Q^*(S3, \operatorname{Right})) = \max(0.8 \times V(S2), 0.8 \times V(S4))$$

3. From State S4:

$$V(S4)=Q^*(S4, \mathrm{Left})=0.8 imes V(S3)$$

Assuming:

• V(S1) = 10 (absorbing state).

Solving the Equations:

• From **S4**:

$$V(S4) = 0.8 \times V(S3)$$

• From **S3**:

$$V(S3) = \max(0.8 \times V(S2), 0.8 \times V(S4)) = \max(0.8 \times V(S2), 0.8 \times 0.8 \times V(S3))$$

Let's denote $V(S3) = \max(0.8V(S2), 0.64V(S3))$. Since $V(S3) \ge 0$, this simplifies to:

$$V(S3) = 0.8V(S2)$$

• From **S2**:

$$V(S2) = \max(18, 0.8 \times V(S3)) = \max(18, 0.8 \times 0.8 V(S2)) = \max(18, 0.64 V(S2))$$

To satisfy the equation:

$$18 \geq 0.64 V(S2) \Rightarrow V(S2) \leq rac{18}{0.64} pprox 28.125$$

Since $V(S2) = \max(18, 0.64V(S2))$, and assuming V(S2) = 18, we get:

$$V(S3) = 0.8 \times 18 = 14.4$$

$$V(S4) = 0.8 \times 14.4 = 11.52$$

Final Q-Values:

State	Action	Q*(State, Action)
S2	Left	18
S2	Right	0.8 imes 14.4 = 11.52
S3	Left	0.8 imes 18 = 14.4
S3	Right	0.8 imes 11.52 = 9.216
S4	Left	0.8 imes 14.4 = 11.52

Optimal Q-Values Summary

State	Action	Q*(State, Action)
S2	Left	18
S2	Right	11.52
S3	Left	14.4
S3	Right	9.216
S4	Left	11.52

Optimal Policy

The optimal policy selects the action with the highest Q^* value in each state.

State	Optimal Action
S1	No Action (Terminal)
S2	Move Left
S3	Move Left
S4	Move Left

Description:

- **S2:** Moving left leads directly to the absorbing state **S1** with a high reward.
- S3: Moving left transitions to S2, which can then lead to S1.
- **S4:** Only action available is to move left towards **S3**.

Final Optimal Q-Values and Policy

The final optimal Q-values and the corresponding optimal policy are as follows:

Q-Values Table

State	Action	Q*(State, Action)
S2	Left	18
S2	Right	11.52
S3	Left	14.4
S3	Right	9.216
S4	Left	11.52

Optimal Policy Table

State	Optimal Action
S1	No Action (Terminal)
S2	Move Left
S3	Move Left
S4	Move Left

Interpretation:

•	The optimal policy directs the agent to always move left from states S2 , S3 , and S4 , effectively guiding it towards the absorbing state S1 to receive the maximum possible reward of 10.