Lecture 4: Introduction to Policy-Based Learning and Humanoid Project

GEARS Program
Summer 2024
Junxi Zhu

From previous lecture...

Terminology of Reinforcement Learning

- State s_t : A state represents the status or condition of the environment at a given point t in time. It is a snapshot of all the necessary information that describes the current situation in which an agent is operating.
- Action a_t : An action is a decision or move made by the agent at a given point t in time that affects the state of the environment. It is a part of the mechanism through which the agent interacts with the environment.
- Reward r_t : A scalar feedback signal provided to the agent at time step t after taking an action a_t in a state s_t . It indicates how beneficial or detrimental the outcome of that action was with respect to the agent's objectives.
- Return U_t : Equal to the total accumulated reward received from a state onward until the end of an episode, discounted by the factor γ at each step.

$$U_t = \sum_{k=t}^n \gamma^{k-t} R_k$$

Action-Value Functions Q(s, a)

Return (discounted)

$$U_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

Optimal action-value function

$$Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$$

• Whatever policy function π is used, the result of taking a_t at state s_t cannot be better than $Q^*(s_t, a_t)$

Q Learning and DQN

- Goal: Win the game (≈maximize the total reward)
- Question: If we know $Q^*(s,a)$, what is the best action?

Q Learning and DQN

- Goal: Win the game (≈maximize the total reward)
- Question: If we know $Q^*(s,a)$, what is the best action?
- Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$
- Q^* is an indicator of how good it is for an agent to pick action a while being in the state s

Q Learning and DQN

- Goal: Win the game (≈maximize the total reward)
- Question: If we know $Q^*(s,a)$, what is the best action?
- Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$
- Q* is an indicator of how good it is for an agent to pick action a while being in the state s
- Challenge: We do not know $Q^*(s, a)$
 - Solution: Deep Q Network (DQN)
 - Use neural network Q(s, a; w) to approximate $Q^*(s, a)$

Deep Q Network (DQN)

Question: Based on the predictions, what should be the action?

Apply DQN to Play Game

Workflow

Recall

$$U_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots$$

$$= R_{t} + \gamma (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots)$$

$$= R_{t} + \gamma U_{t+1}$$

- DQN's output, $Q(s_t, a_t; w)$, is an estimate of U_t
- DQN's output, $Q(s_{t+1}, a_{t+1}; w)$, is an estimate of U_{t+1}

Recall

$$U_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots$$

$$= R_{t} + \gamma (R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots)$$

$$= R_{t} + \gamma U_{t+1}$$

- DQN's output, $Q(s_t, a_t; w)$, is an estimate of U_t
- DQN's output, $Q(s_{t+1}, a_{t+1}; w)$, is an estimate of U_{t+1}
- Thus

$$Q(s_t, a_t; w) \approx \mathbb{E}[R_t + \gamma Q(s_{t+1}, a_{t+1}; w)]$$

From previous slide...

$$Q(s_t, a_t; w) \approx \mathbb{E}[R_t + \gamma Q(s_{t+1}, a_{t+1}; w)]$$

An alternative perspective...

- Train DQN using TD learning
- Prediction: $Q(s_t, a_t; w)$
- TD Target

$$y_{t} = r_{t} + \gamma Q(s_{t+1}, a_{t+1}; w_{t})$$

= $r_{t} + \gamma \max_{a} Q(s_{t+1}, a; w_{t})$

Loss:

$$L_t = \frac{1}{2} [Q(s_t, a_t; w) - y_t]^2$$

Gradient descent:

$$w_{t+1} = w_t - \alpha \frac{\partial L_t}{\partial w} \bigg|_{w = w_t}$$

Policy-Based Reinforcement Learning

Policy Function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function
- It takes state s as input
- In output the probabilities for all the actions, e.g.

$$\pi(\text{left}|s) = 0.2$$

 $\pi(\text{right}|s) = 0.1$
 $\pi(\text{up}|s) = 0.7$

Randomly sample action a drawn from this distribution

Policy Function $\pi(a|s)$

• Question: Can We Directly Learn Policy Function $\pi(a|s)$?

16

Can We Directly Learn Policy Function $\pi(a|s)$?

- If there are only a few states and actions, then yes, we can
- Draw a table (matrix) and learn the entries

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
:					

Can We Directly Learn Policy Function $\pi(a|s)$?

- If there are only a few states and actions, then yes, we can
- Draw a table (matrix) and learn the entries
- What if there are too many (or infinite) states or actions?

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
:					

Policy Function $\pi(a|s;\theta)$

- Policy network: use a neural network to approximate $\pi(a|s)$
- Use policy network $\pi(a|s;\theta)$ to approximate $\pi(a|s)$
- θ are trainable parameters of the neural network
- $\sum_{a \in \mathcal{A}} \pi(a|s;\theta) = 1$, where $\mathcal{A} = \{\text{left, right, up}\}\$ is set of all actions

Return (discounted)

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

Optimal action-value function

$$Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$$

• Goal of value-based learning is to learn or approximate $Q^*(s_t, a_t)$

Return (discounted)

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

Optimal action-value function

$$Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$$

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)]$$

Integrate out action $A \sim \pi(\cdot | s_t)$

Return (discounted)

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

Optimal action-value function

$$Q^*(s_t, a_t) = \max_{\pi} Q_{\pi}(s_t, a_t)$$

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$

Integrate out action $A \sim \pi(\cdot | s_t)$

Return (discounted)

$$U_{t} = R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \gamma^{3} R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_A[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$

- Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t;\theta)$
- Approximate value function $V_{\pi}(s_t)$ by

$$V(s_t; \theta) = \sum_{a} \pi(a|s_t; \theta) \cdot Q_{\pi}(s_t, a)$$

Return (discounted)

$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

• Action-value function for policy π

$$Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t | S_t = s_t, A_t = a_t]$$

State-value function

$$V_{\pi}(s_t) = \mathbb{E}_{A}[Q_{\pi}(s_t, A)] = \sum_{a} \pi(a|s_t) \cdot Q_{\pi}(s_t, a)$$

- Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t;\theta)$
- Approximate value function $V_{\pi}(s_t)$ by

$$V(s_t; \theta) = \sum_{a} \pi(a|s_t; \theta) \cdot Q_{\pi}(s_t, a)$$

• Goal of policy-based learning is to learn θ that maximizes $J(\theta) = \mathbb{E}_S[V(S; \theta)]$

Let's check the code...