1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2022	1	공학	16	16
2022	2	자연과학	1	1
2022	2	공학	7	7
2023	2	공학	9	9
2024	2	공학	39	39

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	19	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	20	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	26	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.92	
2016	2	3.49	3.16	3.61	3.48	
2015	2	3.51	3.28	3.6	3.44	

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2022	1	A+	3	18.75
2022	1	Α0	6	37.5
2022	1	B+	5	31.25
2022	1	ВО	2	12.5
2022	2	Α+	2	25
2022	2	A0	3	37.5
2022	2	B+	3	37.5
2023	2	Α+	6	66.67
2023	2	A0	2	22.22
2023	2	B+	1	11.11
2024	2	Α+	8	20.51
2024	2	A0	8	20.51
2024	2	B+	10	25.64
2024	2	ВО	6	15.38
2024	2	C+	6	15.38
2024	2	C0	1	2.56

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	98	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	87	
2022	2	90.98	92.48	90.7	86	

6. 강의평가 문항별 현황

		нол			점수별 인원분포				-		
번호	평가문항	본인평 균 (가중 치적용)	소속 [†]	학과,다 차 +초과,	학평균 이 ,-:미달		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점 미만	학	과	대	학	· 1점	2점	3점	4점	5점
	교강사:	미만	차이	평균	차이	평균	12	42	28	42	2.5

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2022/1
유기나노공학과	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)

8. 강좌유형별 현황

강좌유형	2022/1	2022/2	2023/2	2024/2	2025/2
일반	1강좌(16)	1강좌(8)	0강좌(0)	1강좌(39)	0강좌(0)
옴니버스	0강좌(0)	0강좌(0)	1강좌(9)	0강좌(0)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
	서울 공과대학 유기나노공학 과	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
	서울 공과대학 유기나노공학 과	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
학부 2016 -	서울 공과대	고분자 재료의 단량체 설계, 합성, 구조 및 물성,	This course deals with the principles of	

교육과정	관장학과	국문개요	영문개요	수업목표
2019 교육과 정	학 유기나노공 학과	응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
	서울 공과대학 유기나노공학 과	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
	서울 공과대학 유기나노공학 과	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
학부 2009 - 2012 교육과 정	응용화공생명	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	
학부 2005 - 2008 교육과 정	응용화공생명 공학부 분자시	고분자 재료의 단량체 설계, 합성, 구조 및 물성, 응용, 가공, 현황과 미래에 대해 강의 한다. 열가 소성 고분자 및 열경화성 고분자를 이해하며, 플 라스틱, 섬유, 고무로의 응용에 대해 논의한다. 고분자의 산업적 응용분야인 전자 및 반도체, 생 체 및 생명공학산업, 항공우주산업, 자동차산업 등에의 응용에 대해 설계하고 단기 과제 (Term Project)를 수행한다.	This course deals with the principles of synthetic fiber, rubber, plastics; processing, properties, application and presentation. It introduces conventional polymeric materials.	

10. CQI 등록내역
No data have been found.

