Calcul vectoriel et géométrie analytique

6.1 Calcul vectoriel

6.1 Soit une pyramide de sommet S et dont la base ABCD est un parallélogramme.

On pose $\overrightarrow{AB} = \vec{u}$, $\overrightarrow{AD} = \vec{v}$ et $\overrightarrow{AS} = \vec{w}$. Exprimer \overrightarrow{BS} , \overrightarrow{DS} , \overrightarrow{DB} et \overrightarrow{CA} à l'aide de \vec{u} , \vec{v} et \vec{w} .

6.2 Soit A, B, C, D et E des points quelconques. Réduire le plus possible chaque expression.

a)
$$\vec{a} = \overrightarrow{BD} + \overrightarrow{AB} + \overrightarrow{DC}$$
,

c)
$$\vec{c} = \overrightarrow{EC} - \overrightarrow{DB} + \overrightarrow{CB} - \overrightarrow{ED}$$
,

b)
$$\vec{b} = \overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{CD} - \overrightarrow{BC}$$
,

d)
$$\vec{d} = \overrightarrow{AC} + \overrightarrow{DB} - \overrightarrow{AB}$$
.

6.3 On donne deux vecteurs \vec{a} et \vec{b} . Déterminer un vecteur \vec{x} tel que

$$\frac{1}{3} \left(2 \vec{x} + \vec{a} - \vec{b} \right) = 2 \vec{b} + \frac{1}{2} \left(\vec{x} + 2 \vec{a} - 3 \vec{b} \right).$$

6.4 Soit un triangle \overrightarrow{ABC} . Soit encore \overrightarrow{M} le milieu du côté [BC] et \overrightarrow{D} tel que $\overrightarrow{MD} = \overrightarrow{BA}$. Exprimer \overrightarrow{CD} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .

6.5 Parmi les vecteurs

$$\vec{a} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \vec{c} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \qquad \vec{e} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \vec{g} = \begin{bmatrix} -1 \\ 3/2 \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \qquad \vec{d} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \qquad \vec{f} = \begin{bmatrix} 6 \\ -4 \end{bmatrix} \qquad \vec{h} = \begin{bmatrix} 0 \\ 2/3 \end{bmatrix}$$

lesquels sont colinéaires?

- On considère trois points du plan : $A(a_1, a_2)$, $B(b_1, b_2)$ et $C(c_1, c_2)$. Sachant que le centre de 6.6gravité G du triangle ABC est situé aux deux tiers des médianes du triangle,
 - a) exprimer \overrightarrow{OG} comme combinaison linéaire des vecteurs \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC}
 - b) en déduire une formule donnant les coordonnées de G en fonction de celles de A, B et C,
 - c) calculer les coordonnées du centre de gravité du triangle de sommets A(1,2), B(3,4) et C(5, -3).
- Soit les vecteurs $\vec{a} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ et $\vec{c} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Déterminer les composantes du 6.7 vecteur \vec{d} tel que $-2\vec{a} + 3\vec{d} = 4\vec{b} - 3\vec{c}$
- Calculer la distance séparant les points A et B dans les cas suivants : 6.8
 - a) A(2,-1) et B(-2,-4), b) A(5,-3,1) et B(3,0,9),
- c) A(0,0,1) et B(6,6,7).
- Trouver un vecteur unitaire \vec{e} colinéaire au vecteur $\vec{a} = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$. Existe-t-il plusieurs solutions? 6.9
- Dans chaque cas, décider si les triplets de points donnés sont alignés ou non. 6.10
 - a) A(5,2), B(6,-3) et C(7,8),
- b) A(3,8), B(5,-6) et C(-1,36).
- Déterminer complètement le point C pour que les points A, B et C soient alignés dans les cas suivants:
 - a) A(-1,5), B(3,-3) et C(x,1).
- b) A(2,-1,10), B(8,5,1) et C(y,3,z),

Soit les quatre vecteurs 6.12

$$\vec{a}_1 = \left[\begin{array}{c} 1 \\ -10 \end{array} \right], \quad \vec{b}_1 = \left[\begin{array}{c} 1 \\ 3 \end{array} \right], \quad \vec{a}_2 = \left[\begin{array}{c} 15 \\ -7 \end{array} \right] \quad \text{et} \quad \vec{b}_2 = \left[\begin{array}{c} 4 \\ -1 \end{array} \right].$$

Trouver un vecteur \vec{v} sachant que $\vec{v} + \vec{a}_1$ est colinéaire à \vec{b}_1 et $\vec{v} + \vec{a}_2$ est colinéaire à \vec{b}_2 .

Étant donné les trois vecteurs 6.13

$$\vec{a} = \left[egin{array}{c} -3 \\ -1 \end{array}
ight], \quad \vec{b} = \left[egin{array}{c} 4 \\ 2 \end{array}
ight] \quad {
m et} \quad \vec{v} = \left[egin{array}{c} 2 \\ 5 \end{array}
ight],$$

quel multiple de \vec{v} faut-il ajouter à \vec{a} pour obtenir un vecteur colinéaire à \vec{b} ?

Calculer l'angle entre les paires de vecteurs suivants :

a)
$$\vec{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 et $\vec{b} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ b) $\vec{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ et $\vec{b} = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$

Donner vos réponses en radians et en degrés (vous aurez besoin d'une machine à calculer).

- **6.35** Déterminer les équations paramétriques des droites passant par A(2,3) et équidistantes des points B(10,2) et C(0,4).
- **6.36** Déterminer les équations cartésiennes des droites passant par le point A(1,1) et situées à distance 3 du point B(-5,4).
- **6.37** Déterminer le point A' symétrique du point A(2,-4) par rapport à la droite d'équation cartésienne 3x 2y = 1.
- **6.38** Déterminer les équations cartésiennes des droites situées à distance 3 du point P(-2,3) et parallèles à la droite d'équation $8x_1 15x_2 + 34 = 0$.
- 6.39 Déterminer l'angle entre les droites de l'exercice 6.31.
- **6.40** Déterminer les équations cartésiennes des bissectrices des deux droites se coupant au sommet A du triangle de l'exercice 6.18.

6.3 Géométrie analytique de l'espace

- **6.41** On considère, dans l'espace, la droite Δ passant par les points A(2,3,1) et B(-8,7,-4).
 - a) Déterminer des équations paramétriques de cette droite.
 - b) La droite coupe-t-elle l'axe Ox_3 ? Si oui, en quel point?
 - c) La droite coupe-t-elle l'axe Ox_2 ? Si oui, en quel point?
 - d) La droite coupe-t-elle le plan Ox_1x_3 ? Si oui, en quel point?
- 6.42 Donner une équation cartésienne du plan de représentation paramétrique

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \mu \begin{bmatrix} 0 \\ -1/2 \\ 1 \end{bmatrix}, \qquad \lambda, \mu \in \mathbb{R}$$

- **6.43** Donner une équation cartésienne du plan π passant par les point A(1,1,-1), B(-2,-2,2) et C(1,-1,2).
- 6.44 Déterminer des équations paramétriques pour le plan π contenant le point A(2, 1-, 5) ainsi que la droite Δ de représentation paramétrique

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 4 \\ 5 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \qquad \lambda \in \mathbb{R}$$

6.45 Déterminer une équation cartésienne puis des équations paramétriques du plan π passant par le point A(-1, -4, 1) et de vecteur normal $\vec{n} = \begin{bmatrix} 5 & -2 & 5 \end{bmatrix}^T$

6.46 Montrer que la droite d'équations paramétriques

$$\begin{cases} x_1 &= 1 + \lambda \\ x_2 &= -2 + 2\lambda \\ x_3 &= 3 + 4\lambda \end{cases}, \quad \lambda \in \mathbb{R}.$$

est parallèle au plan $6x_1 + 7x_2 - 5x_3 - 8 = 0$.

- 6.47 Dans chaque cas, donner une équation cartésienne du plan
 - a) passant par le point P(3, -2, 4) et orthogonal au vecteur \overrightarrow{OP} .
 - b) perpendiculaire au milieu du segment AB, avec A(0,2,5) et B(4,-4,1).
 - c) passant par le pointP(5,0,1) et parallèle au plan d'équation $2x_1 + 3x_2 x_3 = 17$.
- 6.48 Soit le plan π d'équation cartésienne $6x_1 3x_2 2x_3 8 = 0$. Calculer la distance entre π et
 - a) le point P(1, 2, 3).
 - b) le plan d'équation $6x_1 3x_2 2x_3 = 0$.
 - c) le plan d'équation $x_1 + x_2 + x_3 = 1$
- **6.49** Déterminer l'équation cartésienne du plan perpendiculaire aux plans d'équation 3x-y+z=0 et x+5y+3z=0 et passant par le point A(2,2,-1).
- **6.50** On considère les quatre points A(1,3,2), B(-1,2,1), C(0,1,3) et P(5,6,7). calculer les coordonnées du point P', projection orthogonale de P sur le plan définit par A, B et C.
- **6.51** Calculer la distance entre le point P(1, -1, 1) et la droite d passant par A(1, 1, 0) et de vecteur directeur $\vec{v} = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}^T$.
- 6.52 Calculer l'angle entre les plans

$$4x_1 - 2x_2 + 2x_3 - 11 = 0$$
 et $x_1 + \frac{2}{3}x_2 - \frac{1}{3}x_3 - 4 = 0$.

6.53 On considère les plans d'équation

$$(\pi_1): 2x - y + z = 2$$
 et $(\pi_2): 3x + y - 2z = 5$.

- a) Déterminer l'angle entre ces deux plans.
- b) Déterminer des équations paramétriques de la droite d d'intersection de π_1 et π_2 .
- c) Déterminer l'équation cartésienne du plan π contenant la droite d et passant par A(1,1,0).
- **6.54** Calculer la distance séparant les droites $d_1(A_1, \vec{v}_1)$ et $d_2(A_2, \vec{v}_2)$ où

$$\overrightarrow{OA_1} = \left[egin{array}{c} 2 \ 3 \ -1 \end{array}
ight], \qquad \overrightarrow{v_1} = \left[egin{array}{c} 4 \ 5 \ -3 \end{array}
ight], \qquad \overrightarrow{OA_2} = \left[egin{array}{c} -1 \ 4 \ 1 \end{array}
ight] \quad et \quad \overrightarrow{v_2} = \left[egin{array}{c} 3 \ -2 \ 2 \end{array}
ight].$$

6.55 On considère les plans d'équation

$$(\pi_1): x + y + z = 4$$
 et $(\pi_2): x - y + 3z = 5$.

- a) Déterminer des équations paramétriques de la droite d d'intersection de π_1 et π_2 .
- b) Déterminer l'angle entre les deux plans π_1 et π_2 .
- c) Déterminer l'équation cartésienne du plan π passant par le point A(1,2,3) et qui est parallèle à la droite d ainsi qu'à l'axe Ox_1 .