Data Science

3. Teil – Visualisierung und Plotten

Vorlesung an der DHBW Stuttgart, Prof. Dr. Monika Kochanowski

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski |

Charles Joseph Minard Infografik von 1869

1

Inhalte der heutigen Vorlesung

- Grundlagen visueller Exploration
- Informationsvisualisierung
- Einsatzzwecke
- Richtlinien
- Plotten
- Python Übung Plotten

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 4

Wiederholung

Gedanken zu Informationsvisualisierung

- Zwei Hauptanwendungsfälle
 - Exploration und Bestätigung
 - Visuelle Exploration der Daten
 - Erklärung
 - Vermittlung von Informationen (und Wissen) anhand der Daten
- Informationsvisualisierung beschäftigt sich mit der Darstellung von abstrakten Daten (wie z. B. Betrugsquoten)
- Wissenschaftliche Visualisierung beschäftigt sich mit physischen Daten (z. B. Wellen visualisieren im Meer)

Diskussion: welche Zielgruppen haben die verschiedenen Anwendungen? Welche Erwartungshaltung haben diese? Welche Vorkenntnisse liegen vor?

Gedanken zu Informationsvisualisierung

- Zwei Hauptanwendungsfälle
 - Exploration und Bestätigung
 - Visuelle Exploration der Daten
 - Zielgruppe: DATA SCIENTIST
 - Erklärung
 - Vermittlung von Informationen (und Wissen) anhand der Daten
 - Zielgruppe: KUNDE
- Informationsvisualisierung beschäftigt sich mit der Darstellung von abstrakten Daten (wie z. B. Betrugsquoten)
- Wissenschaftliche Visualisierung beschäftigt sich mit physischen Daten (z. B. Wellen visualisieren im Meer)
 - Zielgruppe: WISSENSCHAFTLER

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 7

Erste Karte (9000 Jahre alt) Çatalhöyük

Bildquelle: https://www.zeit.de/wissen/geschichte/2014-01/karte-catalhoeyuek-vulkan-tuerkei

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 8

Älteste Balkendiagramme Schottland 18. Jahrhundert

 $Bild quelle: https://en.wikipedia.org/wiki/William_Playfair$

Moderne Ansichten Sparklines

	17,172.48	11,760.20	9,951.90		5.57	~	1.89
1	1,290.77	1,440.00	639.05	~~	-30.13	VV	14.14
	225.66	7,200.00	4,500.00	~~	22.79	ww	11.74
	1,069.53	677.95	481.25	~~	16.65	my	3.85
	465.00	1,490.60	1,090.10	~	23.11	my	6.70
	67.32	383.45	242.25	m	-26.65	Mw	0.94
	765.39	2,994.00	1,511.20	~~~	47.54	ww	9.79
	781.69	332.75	232.35	The same	-6.08	my	3.94
	405.38	4,599.90	3,260.45		-4.99	M	1.56
	131.91	542.50	238.55	June .	-31.52	m	11.63
	261.63	993.00	694.00	~~~	-48.35	2	0.58
	205 52	445.00	1/3 00	~	4/ 10	M	3.57

 $Begriff Sparkline: Edward Tufte (2006). Beautiful Evidence. Graphics Press. \\ \underline{158N 0-9613921-7-7}. \\ Bildquelle: https://stackoverflow.com/questions/53852739/creating-sparkline-chart-inside-table-in-data-studional formula for the following properties of the following properties$

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 10

Moderne Ansichten Treemaps

https://en.wikipedia.org/wiki/Treemapping

Ziel: Erklärung Ein Anwendungsfall der Visualisierung

- Titel soll eine Aussage transportieren (wir erklären etwas)
- Achsenbeschriftungen & Intervalle klug wählen
- Einheiten angeben
- Keine 3D Effekte oder sonstige Hervorhebungen
- Einfache Grafiken sind besser als komplexe
- Achsen
 - Korrekte Intervalle
 - Einheiten müssen erkennbar sein
 - Überflüssige Information vermeiden
- Auch in Grautönen zu lesen
 - Noch besser: Barrierefrei (rot-grün vermeiden)
 - Wenn Farbe dann muss diese eine Bedeutung haben!

d unten: https://de.statista.com/infografik/22496/anzahl-der-gesamten-positiven-corona-tests-und-positivenrate

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 14

Anti-Beispiel

Diskussion

DHBW Duale Mochschule

Die Sache mit den Farben Idealerweise ist Ihre Grafik in Graustufen lesbar Wenn Farben dann mit Bedeutung! Rot-Grün-Kontraste vermeiden Einfarbig wo möglich/sinnvoll Andere Skalen verwenden 0,0084 0,0084 Form Schraffierung 0,0074 0,0074 0,0074 0,0074 0,0086 0,0086 0,0116 0,0116 0,0122 0,0122

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 20

DHBW

Formatierung von Tabellen

- Schattierung ist besser als Linien
- Abstand ist besser als Schattierung
- Vergleichbarkeit
- Symbole zentriert
- Text linksbündig
- Zahlen
 - Format gleich
 - Rechtsbündig
 - Überschrift analog
- Inhalt IMMER links nach rechts

Nam	e	Matrikelnr.	Anwesend	Durchschnitt
Anto	n	123	x	1,2
Max		234		1
Miria	ım	342	x	2
Jonas	5	1234	x	3,1
Julia		1212	x	3,2
Sabir	ne	1212		1

Name	Matrikelnr.	Anwesend	Durchschnitt
Anton	123	х	1,2
Max	234		1,0
Miriam	342	х	2,0
Jonas	1234	х	3,1
Julia	1212	х	3,2
Sabine	1212		1,0

Name	Matrikelnr.	Anwesend	Durchschnitt
Anton	123	x	1,2
Max	234		1,0
Miriam	342	x	2,0
Jonas	1234	x	3,1
Julia	1212	x	3,2
Sabine	1212		1,0

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 23

Beispiele für weitere Visualisierung Animation, Verdichtung, Interaktion, ...

- Interaktive Datenexploration
 - https://sense-demo.qlik.com/sso/sense/app/1413a7f0-a1cb-4009-9395c3b4ae0d0c62/sheet/VXmZj/state/analysis
- Animation und Visualisierung von Zusammenhängen
 - http://www.randalolson.com/2015/08/23/small-multiples-vs-animated-gifs-for-showing-changes-in-fertility-rates-over-time/
- Verdichtung von Information über parallele Koordinaten
 - https://www.csc.kth.se/~weinkauf/gallery/catpalmas14a.html
- Visualisierung und Big Data
 - Transformieren, Reduzieren, Animieren, Verdichten, Interaktion
- 1. Overview 2. Zoom & Filter 3. Details-on-Demand
 - Am Beispiel Google Maps

Ziel: Exploration Ein Anwendungsfall der Visualisierung

■ Titel – soll eine Aussage transportieren (wir erklären etwas)

Achsenbeschriftungen & Intervalle klug wählen

Einheiten angeben

- Keine 3D Effekte oder sonstige Hervorhebungen
- Einfache Grafiken sind besser als komplexe
- Achsen
 - Korrekte Intervalle
 - Einheiten müssen erkennbar sein
 - Überflüssige Information vermeiden
- Auch in Grautönen zu lesen
 - Noch besser: Barrierefrei (rot-grün vermeiden)

ild unten: https://de.statista.com/infografik/22496/anzahl-der-gesamten-positiven-corona-tests-und-positivenrate

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 25

Datentypen und -skalen

Skala	Alias	Mögliche Operationen	Beispiele und Aussagen
Nominalskala	Kategoriale Daten, qualitatives Merkmal	Gleichheit, Ungleichheit (== / !=), Häufigkeit (Modus)	Zweitstimme bei der Bundestagswahl, Geschlecht (gleiche Wahl wie)
Ordinalskala	Rangordnung	Ordnen möglich (==, !=, >, <), Häufigkeit, Reihenfolge, Median	Likert-Skala (stimme zu, stimme eher zu, teils / teils, stimme eher nicht zu, lehne ab), Schulnoten (mehr / weniger als)
Intervallskala (Kardinalskala)	Quantitative Merkmale, metrische Daten, numerical data	Abstände (Intervalle) besitzen eine Bedeutung (==, !=, >, <, +, -, *, %), Häufigkeit, Reihenfolge, Abstand, arith. Mittel	Temperatur (Celsius), Geburtsjahr (Unterschied ist), IQ
Verhältnisskala (Kardinalskala)		Mit absolutem Nullpunkt, Häufigkeit, Reihenfolge, Abstand	Einkommen, Alter (doppelt so viel), Geschwindigkeit, Längen, Zeiten,

Plotten in Python

- https://seaborn.pydata.org/examples/index.html
- https://matplotlib.org/3.1.1/gallery/index.html

Literaturquellen zu Visualisierung

- Online-Ressource zu Visualisierung
 - https://www.visualisingdata.com/
- Storytelling with Data [Buch]: Klassiker für Überzeugungsarbeit in Präsentationen von Ergebnissen
 - http://www.bdbanalytics.ir/media/1123/storytelling-with-data-cole-nussbaumer-knaflic.pdf
- Show Me the Numbers [Buch]: Ganz konkrete Tipps für die Praxis
 - https://courses.washington.edu/info424/2007/readings/Show_Me_the_Numbers_v2.pdf
- Now you see it [Buch]: Ebenfalls ganz konkrete Inhalte

Data Science Vorlesung | DHBW Stuttgart | Prof. Dr. Monika Kochanowski | 43

Literaturliste

- [James et al. 2013] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani: An introduction to statistical learning
 - Favorit: Sehr gut gemachte Einführung, jedoch Beispiele in R, verständlich mit Mathematik, als pdf frei erhältlich
- [Hastie et al. 2008] Trevor Hastie, Robert Tibshirani, Jerome Friedman: The elements of statistical learning
 - DIE Referenz, für Mathematiker geschrieben, als pdf frei erhältlich
- [O'Neil and Schutt 2013] Cathy O'Neil and Rachel Schutt: Doing Data Science
 - Spannend zu lesen, teilweise Erfahrungsberichte (durch Drittautoren)
- [Mueller and Guido 2017] Andreas C. Müller & Sasha Guido: An Introduction to Machine Learning with Python
 - Interessant da Python 3 tatsächlich genutzt wird für die Einführung inklusive der üblichen Bibliotheken
- [Grues 2016] Joel Grues (übersetzt von Kristian Rother): Einführung in Data Science
 - Auf deutsch gut übersetzt, nutzt Python für grundlegendes Verständnis ohne die üblichen Bibliotheken, extrem leicht lesbar
- [Alpaydin 2008]: Ethem Alpaydin (übersetzt von Simone linke): Maschinelles Lernen
 - Auf deutsch gut übersetzt, relativ viel Mathematik, in Deutschland scheint das weit verbreitet zu sein
- [Bruce et al. 2020]: Peter Bruce, Andrew Bruce, Peter Gedeck: Practical Statistics for Data Scientists
 - Das einzig wahre Statistikbuch was keines ist
- [Reinhart 2016]: Alex Reinhart (übersetzt von Knut Lorenzen): Statistics done wrong
 - Bevor man wirklich Konfidenzintervalle oder p-Werte angibt und über "Signifikanz" spricht, sollte man das gelesen haben

