Badanie momentu bezwładności - doświadczenie 104 (sala 217)

Sebastian Maciejewski 132275 i Jan Techner 132332

24 listopada 2017

1 Wstęp teorytyczny

W opisie dynamiki ruchu postępowego pojawia się pojęcie bezwładności związane z masą m poruszającego się ciała. W przypadku ruchu obrotowego znajomość masy ciała jest niewystarczająca, istotny jest również jej przestrzenny rozkład względem osi obrotu. Wielkością fizyczną zawierającą informacje o masie ciała i jej przestrzennym rozkładzie względem osi obrotu jest moment bezwładności I.

Dla pojedynczego punktu materialnego o masie m wirującego wokół osi oddalonej od niego o odległość r możemy zapisać następującą zależność na moment bezwładności:

$$I = mr^2 (1)$$

W przypadku układu N punktów materialnych sztywno połączonych ze sobą względem osi obrotu, zwanej osią bezwładności, moment bezwładności układu jest równy sumie momentów bezwładności poszczególnych punktów materialnych.

$$I = m_1 r_1^2 + m_2 r_2^2 + \dots + m_N r_N^2 = \sum_{i=1}^N m_i r_i^2.$$
(2)

gdzie m_i jest jest masą *i*-tego punktu materialnego, a r_i jego odległością od osi bezwładności.

Twierdzenie Steinera

Jeżeli chcemy obliczyć moment bezwładności względem dowolnej osi nieprzechodzącej przez środek masy bryły, przydatna staje się twierdznie Steinera. Mówi ono, że jeżeli moment bezwładności bryły sztywnej względem osi przechodzącej przez jej środek masy równa się I_0 to moment bezwładności tej bryły obracającej się względem innej osi równoległej do osi przechodzącej przez jej środek masy wynosi:

$$I = I_0 + md^2, (3)$$

gdzie m jest masą bryły, a d odległością między osiami.

Opis doświadczenia

W ćwiczeniu zostaną wyznaczone momenty bezwładności stalowego pręta oraz dysku. Dodatkowym zadaniem będzie eksperymentalne potwierdzenie twierdzenia Steinera. Do badań posłuży wahadło skrętne złożone ze stabilnej podstawy oraz pionowej osi osadzonej na łożyskach o bardzo małym tarciu. Oś oraz podstawa połączone są przy pomocy spiralnej sprężyny, która umożliwia wahania skrętne. Na końcu osi znajduje się śruba umożliwiająca mocowanie na niej brył.

Wahadło skrętne jest szczególnym przypadkiem wahadła fizycznego. Jeżeli założymy, że wychylenia wahadła są niewielkie (do około 180°) oraz zaniedbamy siły oporu, jego ruch można opisać jako ruch harmoniczny prosty. W takim przypadku okres T drgań wahadła można zapisać następująco:

$$T = 2\pi \sqrt{\frac{I}{D}},\tag{4}$$

gdzie I jest momentem bezwładności bryły zamocowanej na osi wahadła, a D jest parametrem charakterystycznym dla danej sprężyny - jej momentem kierującym.

2 Wyniki pomiarów

Masa ciężarków, masa i długość pręta, odległości między nacięciami na pręcie zostały zmierzone na początku doświadczenia i wynosiły:

Mierzona wartość	Pomiar	Dokładność pomiarowa
Masa ciężarków	0.259 [kg]	$\pm 0.001 [kg]$
Masa pręta	0.136 [kg]	$\pm 0.001 \text{ [kg]}$
Masa dysku	0.435 [kg]	$\pm 0.001 \text{ [kg]}$
Długość pręta	0.62 [m]	± 0.001 [m]
Średnica dysku	0.32 [m]	$\pm 0.001 [m]$
Odległość między nacięciami	0.05 [m]	± 0.001 [m]

Dokładność pomiaru czasu ze względu na pomiar manualny wynosi $\pm~0.1\mathrm{s}$

Odległość od osi obrotu [cm]	Próba 1 [s]	Próba 2 [s]	Próba 3 [s]	Śr. 5T [s]	Śr. T [s]
0	12.45	12.50	12.60	12.517	2.503
5	14.21	14.16	14.37	14.247	2.849
10	18.39	18.46	18.62	18.490	3.698
15	24.04	24.09	24.00	24.043	4.809
20	30.20	30.06	29.75	30.003	6.001
25	36.29	36.47	36.53	36.430	7.286
30	42.87	42.83	42.91	42.870	8.574

Tablica 1: Pomiary czasu 5 wahnięć pręta przy różnych odległościach ciężarków od osi obrotu

Odległość od osi obrotu [cm]	Próba 1 [s]	Próba 2 [s]	Próba 3 [s]	Śr. 5T [s]	Śr. T [s]
0	14.14	14.18	14.23	14.185	2.837
2	14.26	14.22	14.18	14.22	2.844
4	14.59	14.41	14.58	14.525	2.905
6	15.77	15.86	15.98	15.87	3.174
8	17.27	17.14	17.27	17.225	3.445
10	19.08	18.97	18.99	19.015	3.803
12	20.96	20.81	20.76	20.845	4.169
14	22.80	22.84	22.83	22.825	4.565

Tablica 2: Pomiary czasu 5 wahnięć dysku przy różnych odległościach od osi obrotu

3 Opracowanie wyników

W celu obliczenia momentów bezwładności z danych pomiarowych posłużymy się równaniem:

$$T^2 = \frac{8\pi^2 m_c}{D} r^2 + T_p^2 \tag{5}$$

gdzie T jest okresem drgań naszego wahadła, m_c jest zmierzoną masą ciężarka, r jest odległością ciężarków (lub środka dysku) od osi obrotu, zaś D jest momentem kierującym.

Równanie (3) oznacza, że zależność kwadratu okresów T od kwadratów odległości r jest liniowa (co w przybliżeniu widać na wykresie). Można zatem policzyć współczynnik nachylenia prostej przy pomocy metody regresji liniowej (gdzie $x=r^2$ i $y=T^2$). Współczynnik a wyraża się wzorem:

$$a = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2},\tag{6}$$

zaś jego jednostką jest $a=\frac{\frac{1}{s^2}*m^2-\frac{1}{s^2}*m^2}{m^4-m^4}=\frac{s^2}{m^2}.$

Kwadrat odległości ciężarków od osi obrotu r^2

Rysunek 1: Zależność wydłużenia pręta od zmiany temperatury podczas ogrzewania

W takiej sytuacji możemy łatwo policzyć D ze wzoru:

$$D = \frac{8\pi^2 m_c}{a},\tag{7}$$

jednostką Djest, jak widać $D=\frac{kg}{\frac{s^2}{m^2}}=\frac{kg*m^2}{s^2}.$

	a	D		
pomiar	$24366,1434802235\pm$	$0,000839271932206056\pm$		
dokładność	zmyślona	zmyślona		
po zaokrągleniu	ileś tam	ileś tam		

Tablica 3: Współczynnik nachylenia linii a i moment kierujący D wraz z dokładnościami Δa i ΔD

Z wyników uzyskanych dla nieobciążonego pręta obliczyliśmy jego moment bezwładności wraz z niepew-

nością jako: $I=\frac{0.136kg*(0.62m)^2}{12}=(0.00436\pm0.00300)kg*m^2$ W podobny sposób, znając średni okres T=2,837s obrotu dysku wokół osi przechodzącej przez jego środek, możemy policzyć jego moment bezwładności, który wynosi $I=\frac{0.435kg*(0.16m)^2}{2}=(0.00557\pm0.00300)kg*$

	Śr. Okres T	Teoretyczny	Zmierzony	Niepewność
Pręt	2,503	0,004357	0,004212	0,003000
Ciężarki 5 cm od osi	2,849	0,005652	0,005457	0,006000
Ciężarki 10 cm od osi	3,698	0,009537	0,009192	0,006000
Ciężarki 15 cm od osi	4,809	0,016012	0,015542	0,006000
Ciężarki 20 cm od osi	6,001	0,025077	0,024203	0,006000
Ciężarki 25 cm od osi	7,286	0,036732	0,035682	0,006000
Ciężarki 30 cm od osi	8,574	0,050977	0,049412	0,006000
Dysk	2,837	0,005568	0,005409	0,003000
Dysk 2 cm od osi	2,844	0,005742	0,005437	0,006000
Dysk 4 cm od osi	2,905	0,006264	0,005674	0,006000
Dysk 6 cm od osi	3,174	0,007134	0,006771	0,006000
Dysk 8 cm od osi	3,445	0,008352	0,007979	0,006000
Dysk 10 cm od osi	3,803	0,009918	0,009719	0,006000
Dysk 12 cm od osi	4,169	0,011832	0,011680	0,006000
Dysk 14 cm od osi	4,565	0,014094	0,014005	0,006000