Si consideri un sistema di vettori $\mathbf{u}_1, \dots, \mathbf{u}_h$ in uno spazio vettoriale V. A lezione abbiamo dimostrato che sono equivalenti le seguenti proprieta':

- α) il sistema di vettori $\mathbf{u}_1, \dots, \mathbf{u}_h$ e' linearmente dipendente;
- β) tra i vettori $\mathbf{u}_1, \ldots, \mathbf{u}_h$ c'e' un vettore \mathbf{u}_i che dipende linearmente dai rimanenti vettori $\mathbf{u}_1, \ldots, \hat{\mathbf{u}}_i, \ldots, \mathbf{u}_h$ (l'accento su \mathbf{u}_i sta a significare che \mathbf{u}_i non appartiene al sistema $\mathbf{u}_1, \ldots, \hat{\mathbf{u}}_i, \ldots, \mathbf{u}_h$, cioe' che e' stato tolto dal sistema $\mathbf{u}_1, \ldots, \mathbf{u}_h$ cui appartiene);
 - γ) tra i vettori $\mathbf{u}_1, \dots, \mathbf{u}_h$ c'e' un vettore \mathbf{u}_i tale che

$$Span(\mathbf{u}_1,\ldots,\mathbf{u}_h) = Span(\mathbf{u}_1,\ldots,\hat{\mathbf{u}}_i,\ldots,\mathbf{u}_h).$$

Definizione

Un vettore \mathbf{u}_i come nella proprieta' γ) si dice *sovrabbondante* rispetto al sistema di vettori $\mathbf{u}_1, \ldots, \mathbf{u}_h$.

Un criterio operativo per riconoscere un vettore sovrabbondante e' il seguente

Corollario Sia \mathbf{u}_i un vettore del sistema di vettori $\mathbf{u}_1, \dots, \mathbf{u}_h$. Allora \mathbf{u}_i e' sovrabbondante rispetto al sistema $\mathbf{u}_1, \dots, \mathbf{u}_h$ se e solo se esistono pesi $a_1, \dots, a_i, \dots, a_h$ con $a_i \neq 0$ tali che $a_1\mathbf{u}_1 + \dots + a_i\mathbf{u}_i + \dots + a_h\mathbf{u}_h = \mathbf{0}$.

Dimostrazione del Corollario. Cominciamo con il supporre che il vettore \mathbf{u}_i sia sovrabbondante, e per semplificare le notazioni supponiamo che i=1. Allora sappiamo che $Span(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_h)=Span(\mathbf{u}_2,\ldots,\mathbf{u}_h)$. Quindi \mathbf{u}_1 e' un elemento di $Span(\mathbf{u}_2,\ldots,\mathbf{u}_h)$, e percio', secondo opportuni pesi a_2,\ldots,a_h possiamo scrivere $\mathbf{u}_1=a_2\mathbf{u}_2+\cdots+a_h\mathbf{u}_h$, cioe'

$$\mathbf{u}_1 - a_2 \mathbf{u}_2 - \dots - a_h \mathbf{u}_h = \mathbf{0}.$$

E questa e' una relazione tra i vettori $\mathbf{u}_1, \dots, \mathbf{u}_h$ in cui \mathbf{u}_1 appare con peso diverso da 0 (in questo caso il peso e' 1).

Viceversa supponiamo che esista una relazione del tipo

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \cdots + a_h\mathbf{u}_h = \mathbf{0}$$

con $a_1 \neq 0$. Allora possiamo scrivere anche

$$\mathbf{u}_1 = \left(-\frac{a_2}{a_1}\right)\mathbf{u}_2 + \dots + \left(-\frac{a_h}{a_1}\right)\mathbf{u}_h.$$

Cio' ci dice che $\mathbf{u}_1 \in Span(\mathbf{u}_2, \dots, \mathbf{u}_h)$. Deduciamo che $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_h\} \subseteq Span(\mathbf{u}_2, \dots, \mathbf{u}_h)$ e percio' $Span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_h) \subseteq Span(\mathbf{u}_2, \dots, \mathbf{u}_h)$. Poiche' l'inclusione opposta e' sempre verificata, l'argomento precedente implica che

$$Span(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_h) = Span(\mathbf{u}_2, \dots, \mathbf{u}_h),$$

cioe' che \mathbf{u}_1 e' sovrabbondante rispetto al sistema di vettori $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_h$.

Fine della dimostrazione del Corollario.

Quindi in generale per trovare un vettore sovrabbondante ci calcoliamo le eventuali relazioni non banali tra i generatori assegnati. E' sovrabbondante quel vettore che appare con peso diverso da 0 nella relazione.

Esempio.

Sia U := Span((1,0,0),(0,1,0),(1,1,0)). Osserviamo che (1,0,0)+(0,1,0)-(1,1,0)= **0**. Quindi la terna (1,1,-1) e' una relazione non banale tra i tre generatpri di U. E' sovrabbondante ogni vettore che appare con peso $\neq 0$, Quindi ciascuno dei tre vettori e' sovrabbondante, cioe' possiamo scrivere indifferentemente U = Span((1,0,0),(0,1,0)) oppure U = Span((1,0,0),(1,1,0)) oppure U = Span((0,1,0),(1,1,0)).