Statistical Inference

"Statistics is the grammar of science." – Karl Pearson

Inference v.s. Prediction

- Prediction: finding the best model that generalizes
- Inference: confirming a hypothetical (causal) relationship from data

Bayesian v.s. Frequentist

- Bayesian: parameters are random but data are fixed
 Uncertainty directly available from the posterior distribution
- Frequentist: true parameters fixed but unknown
 Uncertainty as a result from having finite samples

Population and Sample

What is the proportion of happy robots in the population, **if you only have access to one of the samples**?

Note: If you are able to acquire three sample sequentially, you can use the mark and recapture technique to estimate the size of the population.

Sampling distributions

The distribution of a statistics under repeated sampling from the same population using the same sampling mechanism

- Acknowledging uncertainty of evidence from data
- · Foundation of statistical reasoning
- · Key to propert statistical inference

Example: Central Limit Theorem and Sampling Distribution

Statistical Reasoning

Given that the observations are finite samples from a true distribution...

- Confidence Interval
 - A set of estimators that guarantee chosen coverage probability.
- Hypothesis Testing
 Assuming the null hypothesis, is the dataset an extreme case?
- Multiple Testing
 If one tests infinite number of hypotheses, one of them might be positive by chance.
 xkcd#882 and explainxkcd

The Magical Number 0.05

Cowles and Davis (1982) wrote a note on *American Psychologist* regarding the origin of such practice:

- Fisher (1925): "It is convenient to take this point as a limit in judging whether a
 deviation is to be considered significant or not. Deviations exceeding twice the
 standard deviation are thus formally regarded as significant".
 Critical value = 2 yields a two-sided p-value of 0.0456.
- Prior to $2~\rm s.~d.$, $3\rm PE$ was used by William Gosset (Student 1908). PE: probable error defined as semi interquartile range. ("Cumbrous, slipshod, and misleading phrase" Galton 1889.). $3\rm PE = 2.023~s.~d.$ for standard normal distribution.
- Prior to 3PE, Pearson (1900?) wrote '... p = .28 ("fairly represented" [p. 174]); p = .1 ("not very improbable ..." [p. 171]); p = .01 ("this very improbable result" [p. 172])'

Cowles and Davis: "Do people, scientists and nonscientists, generally feel that an event which occurs 5% of the time or less is a rare event? Are they prepared to ascribe a cause other than mere chance to such infrequent events?"

So what do we think about 5% in the era of big data and big models?

The Magical Number 0.05: Additional References

- The Magical Number Seven, Plus or Minus Two
- BASP banned NHSTP/p-values
- ASA statement on p-values
- Analysis of BASP after p-value ban
- The value of p
- Political Analysis banned p-value

Other Common Tests

- Model-based Tests
- Rank-based Tests
- Simulation-based Tests

Rank-based Tests

One way to avoid parametric assumptions is to consider the order/ranking instead of the actual numeric values.

Let $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$ denote the ordered sample. The **rank** of an observation x_i is

$$R_i = 1 + \#\{x_i : x_i < x_i j \neq i\}.$$

Bottom-line: For similar hypotheses, a parametric test is more efficient than a nonparametric test, while the nonparametric offers more robustness towards violation of assumptions.

Model-based Tests

These tests are based on the comparison between two *nested* models, where the full model contain all parameters in the reduced model.

- F-test/ANOVA
- Likelihood ratio test
- ...

Model-based Tests: F-test/ANOVA

Consider a linear regression model

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{arepsilon}, \qquad oldsymbol{arepsilon} \sim \mathcal{N}ig(\mathbf{0},\, \sigma^2 \mathbf{I}ig)$$

Want to test q linear constraints $H_0: \ \mathbf{C} oldsymbol{eta} = \mathbf{0}$

Test statistic

$$F = rac{\left(ext{RSS}_{ ext{r}} - ext{RSS}_{ ext{f}}
ight)/q}{ ext{RSS}_{ ext{f}}/(n-p)}.$$

where RSS_r is the residual sum of squares from reduced model and RSS_f is the residual sum of squares from the full model.

Then under the null hypothesis $F \sim F_{q, \; n-p} \; \; q$ = 1 here.

Likelihood Ratio test (LRT)

Using the logistic regression as an example

$$Pr(Y = 1 \mid \mathbf{x}) = logit^{-1}(\beta_0 + \beta_1 age + \beta_2 smoke).$$

To test $H_0: \beta_2 = 0$ ("smoking not associated"):

$$\Lambda = -2 igll \log \mathcal{L}_{
m r} - \log \mathcal{L}_{
m f} igrred,$$

where \mathcal{L}_r is the likelihood of the reduced model and \mathcal{L}_f is the likelihood of the full model.

Under H_0 , $\Lambda
ightarrow \; \chi^2_{df=1}$ as sample size approaches infinity.

Assumptions

Correctly specified likelihood (independence, link function); sample size large enough.

Note: For linear regression with normal errors, F-test is equivalent to LRT as sample size approaches infinity.

Simulation-based Tests

Hypothesis testing hinges on the null distribution of a chosen test statistic.

When the closed-form null distribution is unavailable, we can approximate it.

- Simulation
 - Using Monte-Carlo methods to obtain the null distribution
 - Need to know the *true distribution*
 - Uncommon in practice but require no calculous
- Permutation
 - Shuffling data to break possible relationships
 - Work for specific null hypotheses
 - Limited applications but assumption-less
- Bootstrap
 - Approximate sampling distribution via resampling
 - Require large sample size
 - Computationally expansive but universal

© 2025 Shizhe Chen. All rights reserved.