Ich komm ums Verrecken nicht drauf, was der "Fehler" bei den weighting functions sein könnte

Rein theoretisch ist alles mathematisch korrekt implementiert

One wants to obtain coefficients \vec{p} of a function $f(\vec{x}; \vec{p})$ from minimizing the following term:

$$\frac{1}{\sum_{i}^{n} w_{i}} \sum_{i}^{n} w_{i} (f(\vec{x}; \vec{p}) - z_{i})^{2}$$

Wich can be done by

$$\frac{\partial}{\partial p_k} \sum_{i=1}^{n} w_i (f(\vec{x}; \vec{p}) - z_i)^2 = \sum_{i=1}^{n} w_i (f(\vec{x}; \vec{p}) - z_i) \frac{\partial}{\partial p_k} f(\vec{x}; \vec{p}) = 0$$

When written as a matrix equation $A\vec{x} = b$:

$$\begin{pmatrix} \sum_{i}^{n} w_{i} \cdot x_{1,i}^{2} & \sum_{i}^{n} w_{i} \cdot x_{1,i} x_{2,1} & \dots \\ \sum_{i}^{n} w_{i} \cdot x_{1,i} x_{2,i} & \ddots & \vdots & \vdots & \vdots \end{pmatrix} \cdot \vec{p} = \begin{pmatrix} \sum_{i}^{n} w_{i} \cdot z_{i} x_{1,i} \\ \sum_{i}^{n} w_{i} \cdot z_{i} x_{2,i} \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Es liegt daran dass sich kleine Ungenauigkeiten aufaddieren an den Intervallgrenzen

Wie sieht es dann bei sehr viel kleineren Intervallen aus? Die Ungenauigkeiten müssten kleiner sein

OOOPS!

Probieren wir es mal mit der weighting function:

Können wir die weighting function so verändern, dass es kontinuierlich gut ist?

JA! (naja)

Es scheint so weiter möglich zu sein

Hier wurde noch nicht weiter gemacht wir oben beschrieben