ГЕОЛОГИЯ УРУПСКОГО МЕСТОРОЖДЕНИЯ

Образование Урупского медно-колчеданного месторождения было связано с гидротермальной активностью вблизи островной дуги, где океаническая кора погружается под континентальную окраину (процесс субдукции) (Рисунок 1).

Рисунок 1 – Стадия погружения океанической коры под континентальную окраину

Расплавление горных пород океанической коры и их дальнейшее восходящее движение приводят к вулканической активности по периферии континентальной окраины и образованию островной дуги. Интенсивная тектоническая и вулканическая активность приводит к выходу гидротермальных растворов, обогащенным сульфидными минералами, на поверхность морского дна. Такие скопления сульфидных толщ образуют металлоносные провинции, то есть группу медноколчеданных месторождений на северном Кавказе, а Урупское, Скалистое и Первомайское месторождения является немногими из их числа.

Накопление сульфидных отложений происходит одновременно с активной деятельностью вулканического фронта. Рудоотложение часто прерывается и перекрывается вулканогенно-осадочными толщами, что определяет небольшую мощность рудных тел. Содержание металлов определяется химическим составом сульфидных растворов, выходящих из точек разгрузки. Одновременное отложение сульфидных взвесей и вулканического материала приводит к образованию тонкослоистых и вкрапленных руд (Рисунок 2).

Накопление сульфидных отложений

Рисунок 2 – Накопление сульфидных отложений на морском дне

По мере закрытия океана (океаническая кора полностью поглощается) и увеличения возраста островной дуги происходит рост мощности перекрывающих пород, а состав перекрывающих толщ сменяется с вулканогенно-осадочных на осадочные (песчаники, алевролиты и известняки).

С увеличением глубины залегания рудная толща и вмещающие породы подвергаются литофикации и метаморфическим преобразованиям (Рисунок 3). Наибольшие изменения претерпевают вмещающие породы вблизи рудной толщи.

Рисунок 3 – Стадия перекрытия рудных отложений

При полном закрытии океана и столкновения континентов происходит смятие островной дуги, образуется горный хребет (Рисунок 4). Тектонические нарушения способствуют образованию сбросов и надвигов, а по образованным нарушениям идет внедрение даек и вторичных кварц-карбонатных растворов.

Рисунок 4 – Стадия орогенеза (горообразование)

Под воздействием атмосферных осадков и морозного выветривания покрывающие рыхлые отложения сносятся и перемещаются в область предгорья, тем самым обнажая древние породы в ядрах складкок(Рисунок 5).

Рисунок 5 – Стадия роста и разрушения гор

Тектонические нарушения проходят как по измененным эффузивным породам, разделяющим различные рудные тела, так и вкрест простирания. Вблизи разломов, особенно на контакте прочных пород, происходит интенсивное трещинообразование.

Сплошные медноколчеданные руды на этапе орогенеза испытывают высокие нагрузки, в результате чего в рудном массиве развивается интенсивная микротрещиноватость. Серный колчедан, одновременно обладая повышенной вязкостью и прочностью, остается устойчив к сжимающим и изгибающим нагрузкам.

На текущий момент, рудная толща представляет собой сближенные тонкие линзы, пересеченные разломами со сместителями от нескольких метров до десятков, а в некоторых случаях до ста (Рисунок 6). Вмещающие породы около разломов и вдоль рудной толщи интенсивно переработаны гидротермальными растворами. При удалении от рудной толщи интенсивность их воздействия падает.

Рисунок 6 – Текущее состояние рудной толщи

С учетом описанной геологической характеристики Урупского месторождения, можно выделить ряд определяющих факторов, оказывающих влияние на устойчивость вмещающих пород – действие гидротермальных изменений массива и характер наслоения вулканогенного материала. Устойчивость рудного массива зависит от их состава и характера накопления рудной толщи. Номограмма геологических классов устойчивости вмещающих пород и руд представлена на рисунке 7.

НОМОГРАММА ГЕОЛОГИЧЕСКИХ КЛАССОВ УСТОЙЧИВОСТИ ДЛЯ ВМЕЩАЮЩИХ ПОРОД

СТЕПЕНЬ ТЕКТОНИЧЕСКОГО ВОЗДЕЙСТВИЯ И ВЛИЯНИЯ ГИДРОТЕРМАЛЬНЫХ РАСТВОРОВ

НОМОГРАММА ГЕОЛОГИЧЕСКИХ КЛАССОВ УСТОЙЧИВОСТИ ДЛЯ РУД

СОСТАВ И СТРУКТУРА СУЛЬФИДОВ

Рисунок 7 – Номограмма устойчивости для вмещающих пород и руд Урупского месторождения

Согласно представленной номограмме, шахтное поле Урупского месторождения разделено на семь геологических классов устойчивости, где четыре класса соответствуют вмещающим породам и два рудной толще.

Первый геологический класс соответствует массиву кварцевых альбитофиров не затронутых гидротермальными процессами. Имеет мелкоблочную, слоистую структуру с шероховатыми поверхностями, требуется несколько ударов геологического молотка для отделения фрагмента от массива. Массив находится в зажатом состоянии.

Второй геологический класс представлен гидротермально измененными кварцевыми альбитофирами. Возможно наличие сульфидной минерализации. Массив имеет слоисто-чешуйчатую структуру с гладкими поверхностями и глянцевым блеском, изза присутствия минералов талька и серицита на ощупь жирный. При ударе геологического молотка остаются значительные вмятины, отделение фрагмента от массива не требует подручных инструментов и физических усилий. При намокании массива описанные

свойства усиливаются. При наличии минерализации может наблюдаться некоторая сыпучесть.

Третий геологический класс представлен гидротермально измененными туфами темного цвета (ближе к черному). Возможно наличие вкрапленной и прожилкововкрапленной минерализации. Массив туфов имеет перемятую мелкочешуйчатую структуру с невыдержанным направлением слоистости, фрагменты черного цвета со стеклянным блеском. В месте удара геологического молотка остаются глубокие вмятины или происходит высыпание множества мелких фрагментов. Образец этого массива легко отбирается без усилия и подручных инструментов, при этом сохранить его изначально в отобранной форме затруднительно. В этом классе иногда присутствуют кварц-карбонатные заполнители в виде жил и узлов, которые достаточно хрупкие и находятся в зажатом состоянии, а при ударе геологического молотка легко колются на острые фрагменты.

Четвертый геологический класс представлен неизмененными туфами красноватого цвета. Массив имеет слоистую крупноблочную структуру. При ударе геологического молотка остаются небольшие царапины и сколы, а для откалывания представительного фрагмента требуются подручные инструменты и физическое усилие.

Пятый геологический класс соответствует сплошному рудному массиву медной руды. Сплошные руды на первый взгляд имеют весьма крупноблочную структуру, но при ударе геологического молотка может происходить раскалывание блоков на мелкие фрагменты из-за микротрещиноватости, а получить свежий скол проблематично.

Шестой геологический класс представлен сплошным массивом серной руды. При ударе геологического молотка на обнажение остаются небольшие вмятины и царапины. Сочетание высокой прочности и вязкости массива требуют использования подручных инструментов и приложения физических усилий.

Рисунок 8 – Массив туфов кислого состава не затронутых гидротермальными процессами. Имеет мелкоблочную, слоистую структуру с шероховатыми поверхностями. Массив находится в зажатом состоянии. Требуется несколько ударов геологического молотка чтобы выбить фрагмента из массива

Рисунок 9 – Гидротермально измененные туфы кислого состава. Массив имеет слоисто-чешуйчатую структуру с гладкими поверхностями и глянцевым блеском, из-за присутствия минералов талька и серицита на ощупь жирный. При ударе геологического молотка остаются значительные вмятины, отделение фрагмента от массива не требует подручных инструментов и физических

усилий. При намокании массива, описанные свойства усиливаются. Пересечен поперечными трещинами большой протяженности

Рисунок 10 — Гидротермально переработанные туфы кислого состава. Массив имеет перемятую мелкочешуйчатую структуру с невыдержанным направлением слоистости, фрагменты черного цвета со стеклянным блеском. В месте удара геологического молотка остаются глубокие вмятины или происходит высыпание множества мелких фрагментов. Образец этого массива легко отбирается без усилия и подручных инструментов, при этом сохранить его изначально в отобранной форме затруднительно. В этой категории присутствуют кварц-карбонатные заполнители в виде жил и узлов, которые достаточно хрупкие и находятся в зажатом состоянии, а при ударе геологического молотка легко колются на острые фрагменты