测量误差和数据处理

张欣睿*

北京大学化学与分子工程学院 学号: 1600011783

摘 要:本次实验对测量误差表示方式进行了讲解,并对给定钢杯和小钢球的参数和体积进行了测量,在实验中运用了误差分析理论,并通过习题加以复习,使我充分理解了误差分析和数据处理方法。

关键词:测量误差;数据处理;游标卡尺;螺旋测微器

^{*} e-mail: zhangxinrui16@pku.edu.cn; mobile number: 18801391162

1 引言

物理实验离不开测量,测量离不开测量误差。测量误差是指测量某一物理量 时测量值和真值之差,根据习惯的分类方法,可以分为系统误差和随机误差,系 统误差可以在测量结果中进行扣除,而随机误差可以在测量后用统计规律进行结 果分析。学习如何处理误差,对于物理实验的实验结果十分重要。本次实验通过 讲解结合实验的方法,讲授了误差分析和数据处理的方法,为之后的实验打下了 基础。

2 数据处理

在实验部分中,进行了"测量钢杯含钢体积"和"测量小钢球的直径与体积"两个实验。对钢杯的测量结果如表 1 所示。

测量项目	外径 D / cm	内径 d / cm	高度 H / cm	深度 h / cm
零点读数	$D_0 = 0.000$	$d_0 = 0.002$	$H_0 = 0.000$	$h_0 = 0.002$
1	2.810	1.998	4.520	3.226
2	2.810	1.990	4.514	3.214
3	2.808	1.996	4.508	3.206
4	2.810	1.994	4.508	3.210
5	2.806	1.990	4.512	3.212
6	2.812	1.996	4.508	3.214
平均值	2.809	1.994	4.512	3.214
平均值的标准差	0.001	0.001	0.002	0.003
考虑仪器允差后的标准差	0.002	0.002	0.002	0.003
修正零点后的平均值	2.809	1.992	4.512	3.212

表 1 钢杯含钢体积测量结果

根据表中数据可得出测量结果:

$$\overline{D} \pm \sigma_D = (2.809 \pm 0.002) \text{ cm}$$
 $\overline{d} \pm \sigma_d = (1.992 \pm 0.002) \text{ cm}$

$$\overline{H} \pm \sigma_H = (4.512 \pm 0.002) \text{ cm}$$
 $\overline{h} \pm \sigma_h = (3.212 \pm 0.003) \text{ cm}$

计算结果:

$$V = \frac{\pi}{4} (\overline{D}^2 \overline{H} - \overline{d}^2 \overline{h}) = 17.95 \text{ cm}^3$$

$$\sigma_V = \sqrt{(\frac{\partial V}{\partial D} \sigma_D)^2 + (\frac{\partial V}{\partial H} \sigma_H)^2 + (\frac{\partial V}{\partial d} \sigma_d)^2 + (\frac{\partial V}{\partial h} \sigma_h)^2}$$

$$= \sqrt{(\frac{\pi}{2}\,\overline{D}\overline{H}\sigma_{D})^{2} + (\frac{\pi}{4}\,\overline{D}^{2}\sigma_{H})^{2} + (\frac{\pi}{2}\,\overline{d}\overline{h}\sigma_{d})^{2} + (\frac{\pi}{4}\,\overline{d}^{2}\sigma_{h})^{2}} = 0.05~cm^{3}$$

故有 $V \pm \sigma_V = (17.95 \pm 0.05) \text{ cm}^3$ 。

对小钢球直径及体积的测量结果如表 2 所示。

测量次数	零点读数	1	2	3	4	5	6	
d/cm	-0.0003	1.2706	1.2702	1.2708	1.2710	1.2709	1.2706	
项目	平均值	平均值	平均值的标准差		考虑仪器允差后的标准差		修正零点后的平均值	
值/cm	1.2707	0.0	0004	0.0004		1.2	1.2710	

表 2 小钢球直径测量结果

根据表中数据可以得出测量结果:

$$\overline{d} \pm \sigma_d = (1.2707 \pm 0.0004) \text{ cm}$$

故有体积计算结果:

$$V = \frac{1}{6}\pi \overline{d}^3 = 1.0751 \text{ cm}^3$$
 $\sigma_V = \frac{\partial V}{\partial d}\sigma_d = \frac{\pi}{2} \overline{d}^2 \sigma_d = 0.001 \text{ cm}^3$ 故有 $V \pm \sigma_V = (1.075 \pm 0.001) \text{ cm}^3$ 。

3 习题

习题部分见后附页。

4 分析与讨论

在测量钢杯体积的实验中,D、d、H、h 的标准偏差值相差不多。故在误差传递公式中,各个值的误差对总体标准差的主要贡献依赖于误差传递系数(体积对各个量的偏微分的绝对值)。在各个传递系数中,最大的为 $\frac{\partial V}{\partial D} = \frac{\pi}{2} \, \overline{D} \, \overline{H}$,因而外径 D 的测量比较重要。根据本次实验数据, σ^2_V 中各部分占比如表 3 所示。

长度量x	D	d	Н	h
误差传递系数 $\left \frac{\partial V}{\partial x}\right / \text{cm}^2$	19.91	10.05	6.197	3.116
部分方差对 σ^2_V 的贡献 $(\frac{\partial V}{\partial x}\sigma_x)^2/\text{cm}^6$	1.6×10^{-3}	4.0×10^{-4}	1.5×10^{-4}	2.8×10^{-5}
贡献占 σ^2_V 百分比(保留两位)	73 %	18 %	6.9 %	1.3 %

表 3 测量钢杯实验中各量对体积方差的贡献情况

由表中分析可知,对V的标准差起决定性作用的量即为外径D。在外径D的测量中,存在以下几种误差:

- 读数误差
- 使用游标卡尺卡外径时,较大的弹力可能引起杯的微小形变
- 游标卡尺和桌面不平行,导致测量结果可能大于实际半径

经过分析,读数误差不超过允差 0.002 cm,而钢制材料的弹性形变程度较小。 实际测定数据中的偏差结果,较以上两者的总和更大,因而其中游标卡尺倾斜造 成测量结果偏大的误差应该是误差的主要来源。

在其余量的测定中,也存在一些测量的误差,其中系统误差里,可估计的如游标卡尺的零点误差,不可估计的如在使用温度下,游标卡尺的热胀冷缩。而随机误差较多,如:

- 钢杯本身并非理想几何体,且较旧,各处物理量的真值本身可能不同
- 内径的测量中,内径卡尺的松紧程度和倾斜程度不同 (实际测定时,发现卡尺测内径时,弹性形变程度比测外径时大许多)
- 高度的测量中,游标卡尺不平行于圆柱母线
- 深度的测量中,深度尺不能垂直于底面,且不能紧贴杯壁,或有所倾斜 这些误差中,系统误差的零点误差可以在测量中扣除;钢制材料的线膨胀系 数很小,可以忽略膨胀。分析随机误差得出,由于卡尺不能垂直(平行)于待测 物体的参考直线(平面)引起的误差较大,对测量结果有方和根的加和关系;真 值的不理想性无法进行估计,形变程度的不同可以多次测量,取平均值适当处理。

而在测量小钢球直径和体积的实验中,体积仅仅是单一变量 d 的函数,所以误差也只来源于 d 的测量。对这一物理量,测量的随机误差有:

- 小球不是理想的球体,各处直径可能不同
- 每次拧动棘轮转过的角度不同(夹紧程度不同)
- 每次测量小球和千分尺的温度都不同,可能有所膨胀

系统误差即为螺旋测微器的零点误差,在测量结果中可以扣除。在随机误差中,棘轮转过的角度不同可能是误差的主要原因。

5 收获与感想

本次实验通过讲解和实验结合的方式使我明白了测量误差的表示、不确定度的概念和表示、以及它们在具体数据处理方法中的应用;同时,我熟悉了长度精确测量仪器的使用,为后续实验在数据处理上打下基础。

6 致谢

感谢杨老师的讲解和李老师对实验的指导。