IN THE CLAIMS

Please amend the claims of the present application under the provisions of 37 C.F.R. §1.121(c), as indicated below:

- 1. (Cancelled):
- 2. (Previously presented): The derivatives according to claim 17, characterized in that the compound having formula (I) are present as tautomeric forms, pure or as blends of tautomeric forms, in any proportion whatsoever.
- 3-12 (Cancelled):
- 13. (Previously presented): Herbicidal compositions containing, one or more compounds having general formula (I):

wherein A, B and R have the meanings according to claim 17, possibly also as a blend of tautomers.

- 14. (Previously presented): The herbicidal compositions according to claim 13, including other herbicides, fungicides, insecticides, acaricides, fertilizers, compatible with the compounds having general formula (I).
- 15. (Original): The herbicidal compositions according to claim 14, characterized in that the additional herbicides are selected from: acctochlor, acifluorfen, aclonifen, AKH-7088, alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, amitrole, anilofos, asulam, atrazine, azafenidin,

azimsulfuron, aziprotryne, BAS 670 H, BAY MKH 6561, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, benzthiazuron, bifenox, bilanafos, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, butachlor, butafenacil, butarnifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, chlomethoxyfen, chloramben, chlorbromuron, chlorbufam, chlorflurenol, chloridazon, chlorimuron, chlormitrofen, chlorotoluron, chloroxuron, chlorpropham, chlorsulfuron, chlorthal, chlorthiamid, cinidon ethyl, cinmethylin, cinosulfuron, clethodim, clodinafop, clomazone, clomeprop, clopyralid, cloransulammethyl, cumyluron (JC-940), cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D, 2,4-DB, daimuron, dalapon, desmedipham, desmetryn, dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclosulam, diethatyl, difenoxuron, difenzoquat, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dinitramine, dinosseb, dinoseb acetate, dinoterb, diphenamid, dipropetryn, diquat, dithiopyr, 1-diuron, eglinazine, endothal, EPTC, espropearb, ethalfluralin, ethametsulfuron-methyl, ethidimuron, ethiozin (SMY 1500), ethofumesate, ethoxyfen-ethyl (HC-252), ethoxysulfuron, etobenzanid (HW 52), fenoxaprop, fenoxaprop-P, fentrazamide, fenuron, flamprop, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazolate (JV 485), flucarbazonesodium, fluchloralin, flufenacet, flufenpyr cthyl, flumetsulam, flumiclorac-pentyl, flumioxazin, flumipropin, fluometuron, fluoroglycofen, fluoronitrofen, flupoxam, fluproanate, flupyrsulfuron, flurenol, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, furyloxyfen, glufosinate, glyphosate, halosulfuron-methyl, haloxyfop, haloxyfop-P-methyl, hexazinone, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodosulfuron, ioxynil, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, KPP-421, lactofen, lenacil, linuron, LS830556, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mesosulfuron, mesotrione, metamitron, metazachlor,

04/20/2010 11:29

Application Number: 10/573,052 Examiner: HAVLIN, ROBERT H

methabenzthiazuron, methazole, methoprotryne, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, molinate, monalide, monolinuron, naproanilide, napropamide, naptalam, NC-330, neburon, nicosulfuron, nipyraclofen, norflurazon, orbenearb, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, pebulate, pendimethalin, penoxsulam, pentanochlor, pentoxazone, pethoxamid, phenmedipham, picloram, picolinafen, piperophos, pretilachlor, primisulfuron, prodiamine, profluazol, proglinazine, prometon, prometryne, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propyzamide, prosulfocarb, prosulfuron, pyracionil, pyraflufen-cthyl, pyrazogyl (HAS-961), pyrazolynate, pyrazosulfuron, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, quinclorac, quinmerac, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6-TBA, TCAsodium, tebutam, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthyl-azine, terbutryn, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, triclopyr, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, UBI-C4874, vernolate.

16. (Orignal): The compositions according to any of the claims 13-15, characterized in that the concentration of active substance ranges from 1 to 90%.

17. (Currently amended): Derivatives of 1,3-diones having general formula (I):

4

wherein:

-A represents:

an aryl group optionally substituted by one or more substituents selected from halogen; NO2; CN; CHO; OH; linear or branched C1-C6 alkyl; linear or branched C1-C₆ haloalkyl; linear or branched C₁-C₆ alkoxyl; linear or branched C₁-C₆ haloalkoxyl; $C_1\text{-}C_6 \, cyanoalkyl; \, C_2\text{-}C_6 \, alkoxyalkyl; \, C_2\text{-}C_6 \, alkylthioalkyl; \, C_2\text{-}C_6 \, alkylsulfinylalkyl; \, C_2\text{-}C_6 \, alkylsulfinylalkyl;$ C_2 - C_6 alkylsulfonylalkyl; C_2 - C_6 haloalkoxyalkyl; C_2 - C_6 haloalkylthioalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfonylalkyl; C_2 - C_6 alkoxyalkoxyl or C_2 - C_6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C_1 - C_4 haloalkoxyl; C_2 - C_6 alkylthioalkoxyl; C_2 - C_6 haloalkylthioalkoxyl; C_3 - C_{12} dialkoxyalkyl; C_3 - C_{12} dialkylthioalkyl; C_3 - C_{12} dialkylthioalkoxyl; C_3 - C_{12} dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C3-C10 alkoxyalkoxyalkyl; C2-C6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8 alkenyloxyalkoxyl; C₂-C₆ haloalkenyloxyalkoxyl; C₂-C₆ alkynyl; C₂-C₆ haloalkynyl; C_2 - C_6 alkynyloxy; C_2 - C_6 haloalkynyloxy; C_3 - C_8 alkynyloxyalkoxyl; C_3 - C_8 haloalkynyloxyalkoxyl; C3-C12 acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C₃-C₈ alkenyloxyiminoalkyl; C₃-C₈ haloalkenyloxyiminoalkyl; C3-C8 alkynyloxyiminoalkyl; C3-C8 haloalkynyloxyiminoalkyl; C5-C10 alkoxyalkynyloxyl; C₆-C₁₂cycloalkylideneiminooxyalkyl; C₆-C₁₂ dialkylidenciminooxyalkyl; — $S(O)_mR_1$; — $OS(O)_iR_1$; — $SO_2NR_2R_3$; — CO_2R_4 ; — COR_5 ; — $CONR_6R_7$; — $CSNR_8R_9$; — $NR_{10}R_{11}$; — $NR_{12}COR_{13}$; — $NR_{14}CO_2R_{15}$; — $NR_{16}CONR_{17}R_{18}; --PO(R_{19})_2; -Q; -ZQ_1; --(CR_{20}R_{21})pQ_2; -Z(CR_{22}R_{23})pQ_3; --PO(R_{19})_2; -Q_1; -(CR_{20}R_{21})pQ_2; -Z(CR_{22}R_{23})pQ_3; --PO(R_{19})_2; -Q_1; -(CR_{20}R_{21})pQ_2; -Z(CR_{22}R_{23})pQ_3; --PO(R_{19})_2; -Q_1; -(CR_{20}R_{21})pQ_2; -Z(CR_{22}R_{23})pQ_3; --PO(R_{19})_2; -Q_1; -(CR_{20}R_{21})pQ_2; -($ $Z_2(CR_{34}R_{35})p(C=Y)T; -Z_3(CR_{36}R_{37})v(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;$

or it represents a heterocyclic group selected from pyridyl; pyrimidyl; quinolinyl; pyrazolyl; thiazolyl; oxazolyl; thienyl; furyl; henzothienyl; dihydrobenzothienyl;

04/20/2010 11:29

Application Number: 10/573,052 Examiner: HAVLIN, ROBERT H

benzofuranyl; dihydrobenzofuranyl; benzoxazolyl; benzoxazolonyl; benzothiazolyl; benzothiazolonyl; benzoimidazolyl; benzoimidazolonyl; benzotriazolyl; chromanonyl; chromanyl; thiochromanonyl; thiochromanyl; 3a,4-dihydro-3H-indeno[1,2-c]isoxazolyl, 3a,4-dihydro-3H-chromeno[4, 3c]isoxazolyl, 5,5-dioxide-3a,4-dihydro-3H-thiochromeno[4,3-c]isoxazolyl, 2,3,3a,4tetrahydrochromeno[4,3-c]pyrazolyl, 6,6-dioxide-2,3-dihydro-5H-[1,4]dithiino[2,3c]thiochromenyl, 5,5-dioxide-2,3,3a,4-tetrahydrothiochromeno[4,3-c]pyrazolyl, 1',1'dioxide-2',3'-dihydrospiro[1,3-dioxolano-2,4'-thiochromen]-yl, 1,1,4,4-tetraoxide-2,3dihydro-1,4-benzodithiin-6-yl, 4,4-dioxide-2,3-dihydro-1,4-benzoxathiin-7-yl, 1,1dioxide-3-oxo-2,3-dihydro-1,2-benzoisothiazol-5-yl, 4-(alkoxyimino)-1,1-dioxide-3,4-dihydro-2H-thiochromen-6-yl, 1,1-dioxide-4-oxo-3,4-dihydro-2H-thiochromen-6yl, 2,3-dihydro-1,4-benzoxathiin-7-yl, with said heterocyclic groups optionally substituted by one or more substituents selected from halogen; NO2; CN; CHO; OH; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 haloalkoxyl; C_1 - C_6 cyanoalkyl; C_2 - C_6 alkoxyalkyl; C_2 - C_6 alkylthioalkyl; C_2 - C_6 alkyl sulfinylalkyl; C_2 - C_6 alkylsulfonylalkyl; C_2 - C_6 haloalkoxyalkyl; C_2 - C_6 haloalkylthioalkyl; C_2 - C_6 haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfonylalkyl; C_2 - C_6 alkoxyalkoxyl or C_2 - C_6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C1-C4 haloalkoxyl; C2-C6 alkylthioalkoxyl; C_2 - C_6 haloalkylthioalkoxyl; C_3 - C_{12} dialkoxyalkyl; C_3 - C_{12} dialkylthioalkyl; C3-C12 dialkylthioalkoxyl; C3-C12 dialkoxyalkoxyl; C2-C6 haloalkoxyhaloalkoxyl; C_3 - C_{10} alkoxyalkoxyalkyl; C_2 - C_6 alkenyl; C_2 - C_6 haloalkenyl; C_2 - C_6 alkenyloxy; C_2 - C_6 haloalkenyloxy; C_3 - C_8 alkenyloxyalkoxyl; C_3 - C_8 haloalkenyloxyalkoxyl; C_2 - C_6 alkynyl; C_2 - C_6 haloalkynyl; C_2 - C_6 alkynyloxy; C_2 - C_6 haloalkynyloxy; C_3 - C_8 alkynyloxyalkoxyl; C_3 - C_8 haloalkynyloxyalkoxyl; C_3 - C_{12} acylaminoalkoxy; C2-C8 alkoxyiminoalkyl; C2-C8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl; C3-C8 alkynyloxyiminoalkyl; C_3 - C_8 haloalkynyloxyiminoalkyl; C_5 - C_{30} alkoxyalkynyloxyl; C_6 - C_{12} cycloalkylideneiminooxyalkyl; C_6 - C_{12} dialkylideneiminooxyalkyl; — $S(O)_mR_1$;

$$\begin{split} &- OS(O)_{1}R_{1}; - SO_{2}NR_{2}R_{3}; - CO_{2}R_{4}; - COR_{5}; - CONR_{6}R_{7}; - CSNR_{8}R_{9}; - \\ &- NR_{10}R_{11}; - NR_{12}COR_{13}; - NR_{14}CO_{2}R_{15}; - NR_{16}CONR_{17}R_{18}; - PO(R_{19})_{2}; - Q; - ZQ_{1}; \\ &- (CR_{20}R_{21})_{p}Q_{2}; - Z(CR_{22}R_{23})_{p}Q_{3}; - (CR_{24}R_{25})_{p}ZQ_{4}; - (CR_{26}R_{27})_{p}Z(CR_{29}R_{29})_{q}Q_{5}; - \\ &- (CR_{30}R_{31})_{p}Z(CR_{32}R_{33})_{q}Z_{1}Q_{6}; - Z_{2}(CR_{34}R_{35})_{p}(C=Y)T; - Z_{2}(CR_{36}R_{37}); (CR_{38}R_{39})_{q}Z_{1}Q_{6}; - Z_{2}(CR_{34}R_{35})_{p}(C=Y)T; - Z_{2}(CR_{36}R_{37}); (CR_{38}R_{39})_{q}Z_{1}Q_{6}; - Z_{2}(CR_{34}R_{35})_{q}Z_{1}Q_{6}; -$$

-B represents a D-(Rx)n group;

-R represents a hydrogen atom; a linear or branched C_1 - C_6 alkyl group; a linear or branched C_1 - C_6 haloalkyl group; a C_3 - C_6 cycloalkyl or C_4 - C_{12} cyclo-alkylaikyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl or C_1 - C_6 thioalkyl or C_1 - C_6 alkoxyl or C_2 - C_6 alkoxycarbonyl groups; C_2 - C_6 alkenyl groups; C_2 - C_6 alkynyl groups; the latter two groups; in turn; optionally substituted with halogen atoms; a C_5 - C_6 cycloalkenyl group optionally substituted with halogen atoms or C_1 - C_6 alkyl groups;

-R₁ and R₁₉ represent a C₁-C₆ alkyl group or a C₁-C₆ haloalkyl group; a C₃-C₆ cycloalkyl group; an aryl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₃-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarboxyl;

-m is equal to 0, 1 or 2;

-t is equal to 1 or 2;

- R_2 , R_3 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} , R_{17} and R_{18} , the same or different, represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_1 - C_6 alkoxyl group; a C_3 - C_6 cycloalkyl group; an arylalkyl group or an aryl group; said arylalkyl and aryl groups also optionally substituted by

one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl, or, together with the group bonded to the same N atom, they jointly represent a C₂-C₅ alkylene group;

-R₄, R₅ and R₄₂ represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇ group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO₂, CN, CHO, linear or branched C₁-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ alkoxyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxyl-carbonyl;

- R_{12} , R_{14} and R_{16} represent a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_3 - C_6 cycloalkyl group; a C_1 - C_6 alkoxyl group; a C_1 - C_6 haloalkoxyl group;

-R₁₃ and R₁₅ represent a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇, NH₂, NHCN, NHNH₂, NHOH group, an arylalkyl group optionally substituted by one or more substituents selected from halogen, NO2, CN, CHO, linear or branched C₃-C₆ alkyl, linear or branched C₁-C₆ haloalkyl, linear or branched C₁-C₆ haloalkoxyl, C₁-C₆ alkylsulfonyl, C₂-C₆ alkoxycarbonyl;

 R_{20} , R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{39} , R_{40} and R_{41} , the same or different, represent: a hydrogen atom; a linear or branched C_1 - C_6 alkyl group in turn optionally substituted with halogen atoms; a C_1 -

 C_6 alkoxyl group; or the two groups attached to the same carbon atom can be joined to each other by C_2 - C_5 alkylene groups, the alkylene groups can in turn be substituted with C_1 - C_3 alkyl groups;

-Q, Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ represent an aryl group; a C₃-C₆ cycloalkyl group; a C₅-C₆ cycloalkenyl group; a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolidinonyl; tetrazolyl; tetrazolonyl; isoxazolyl; furyl; thienyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyridyl; pyrimidinyl; pyrimidinonyl; pyrazinyl; pyridazinyl; oxazolyl; thiazolyl; oxadiazolyl; thiadiazolyl; isothiazolyl; benzoxazolyl; benzothiazolyl; isoxazolinyl; 1,3-dioxanyl; 1,4-dioxanyl; 1,3dioxolanyl; tetrahydropyranyl; oxethanyl; oxyranyl; thiazolidinyl; oxazolidinyl; piperidinyl; piperidinonyl; piperazinyl; morpholinyl; thiazinyl; tetrahydrofuranyl; dioxazolyl; tetrahydrofuroisoxazolyl; 2-oxa-3-azabicyclo[3.1.0]hex-3-enyl; said groups optionally substituted by one or more substituents selected from halogen: NO2: OH; CN; CHO; linear or branched C1-C6 alkyl; linear or branched C1-C6 haloalkyl; linear or branched C1-C6 alkoxyl; linear or branched C1-C6 haloalkoxyl; C_1 - C_6 cyanoalkyl; C_2 - C_6 alkoxyalkyl; C_2 - C_6 alkylthioalkyl; C_2 - C_6 alkylsulfinylalkyl; $C_2\text{--}C_6 \ alkylsulfonylalkyl; \ C_2\text{--}C_6 \ haloalkoxyalkyl; \ C_2\text{--}C_6 \ haloalkylthioalkyl; \ C_2\text{--}C_6 \ haloalkylthioalkyli; \ C_2\text{--}C_6 \ haloalkylthioalkyllhii; \ C_2\text{--}C_6 \ haloalkyllhii; \ C_2\text{--}C_6 \ haloalkyllhii; \ C_2\text{--}$ haloalkylsulfinylalkyl; C_2 - C_6 haloalkylsulfonylalkyl; C_2 - C_6 alkoxyalkoxyl or C_2 - C_6 haloalkoxyalkoxyl optionally substituted with a group selected from C1-C4 alkoxyl or C_1 - C_4 haloalkoxyl; C_2 - C_6 alkylthioalkoxyl; C_2 - C_6 haloalkylthioalkoxyl; C_3 - C_{12} dialkoxyalkyl; C_3 - C_{12} dialkylthioalkyl; C_3 - C_{12} dialkylthioalkoxyl; C_3 - C_{12} dialkoxyalkoxyl; C_2 - C_6 haloalkoxyhaloalkoxyl; C_3 - C_{10} alkoxyalkoxyalkyl; C_2 - C_6 alkenyl; C2-C6 haloalkenyl; C2-C6 alkenyloxy; C2-C6 haloalkenyloxy; C3-C8 alkenyloxyalkoxyl; C3-C8 haloalkenyloxyalkoxyl; C2-C6 alkynyl; C2-C6 haloalkynyl; C_2 - C_6 alkynyloxy; C_2 - C_6 haloalkynyloxy; C_3 - C_8 alkynyloxyalkoxyl; C_3 - C_8 haloalkynyloxyalkoxyl; C_3 - C_{12} acylaminoalkoxy; C_2 - C_8 alkoxyiminoalkyl; C_2 - C_8 haloalkoxyiminoalkyl; C3-C8 alkenyloxyiminoalkyl; C3-C8 haloalkenyloxyiminoalkyl; C_3 - C_8 alkynyloxyiminoalkyl; C_3 - C_8 haloalkynyloxyiminoalkyl; C_5 - C_{10}

```
alkoxyalkynyloxyl; C<sub>6</sub>-C<sub>12</sub> cycloalkylideneiminooxyalkyl; C<sub>6</sub>-C<sub>12</sub> dialkylideneiminooxyalkyl; aryl optionally substituted; —S(O)<sub>m</sub>R<sub>1</sub>; —OS(O)<sub>t</sub>R<sub>1</sub>; —SO<sub>2</sub>NR<sub>2</sub>R<sub>3</sub>; —CO<sub>2</sub>R<sub>4</sub>; —COR<sub>5</sub>; —CONR<sub>6</sub>R<sub>7</sub>; —CSNR<sub>8</sub>R<sub>9</sub>; —NR<sub>10</sub>R<sub>11</sub>; —NR<sub>12</sub>COR<sub>13</sub>; —NR<sub>14</sub>CO<sub>2</sub>R<sub>15</sub>; —NR<sub>16</sub>CONR<sub>17</sub>R<sub>18</sub>; —PO(R<sub>19</sub>)<sub>2</sub>; -Z<sub>2</sub>(CR<sub>34</sub>R<sub>33</sub>)<sub>p</sub>(C=Y)T; -Z<sub>1</sub>(CR<sub>36</sub>R<sub>37</sub>)<sub>v</sub>(CR<sub>38</sub>R<sub>39</sub>=CR<sub>40</sub>R<sub>41</sub>)(C=Y)T; Z, Z<sub>1</sub>, Z<sub>2</sub>=O, S(O)<sub>r</sub>; Y=O, S; r is equal to 0, 1 or 2; p, q are equal to 1, 2, 3 or 4; v is equal to 0 or 1; Z<sub>3</sub>=O, S or a direct bond;
```

T represents: a hydrogen atom; a Z_4R_{42} group; a —NR₄₃R₄₄ group; an aryl group or a heterocyclic group selected from triazolyl; triazolonyl; pyrazolyl; imidazolyl; imidazolyl; imidazolyl; tetrazolonyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyrrolyl; pyrrolidinyl; pyrrolidinonyl; pyrrolyl; pyrrolidinyl; said aryl and hetrocyclic groups optionally substituted by one or more substituents selected from halogen; NO₂; OH; CN; CHO; linear or branched C_1 - C_6 alkyl; linear or branched C_1 - C_6 haloalkyl; C_3 - C_6 cycloalkyl; C_5 - C_6 cycloalkenyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 alkoxyl; linear or branched C_1 - C_6 alkylthioalkyl; C_2 - C_6 alkylthioalkyl; C_2 - C_6 alkylthioalkyl; C_2 - C_6 haloalkylthioalkyl; C_2 - C_6 haloalkylsulfonylalkyl; C_2 - C_6

Z₄=O, S or a direct bond;

R₄₃ and R₄₄, the same or different, represent: a hydrogen atom; a linear or branched C₁-C₆ alkyl group in turn optionally substituted with halogen atoms; a C₃-C₆ alkenyl group in turn optionally substituted with halogen atoms; a Q₇ group; an arylalkyl group optionally substituted by one or more substituents selected from halogen; NO₂; CN; CHO; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ alkylsulfonyl; C₂-C₆ alkoxycarbonyl; or they jointly represent a C₂-C₅ alkylene chain;

D represents: a monocyclic heterocyclic group of the heteroaryl type, which can be mono or polycyclic and can be connected to the rest of the structure either through one of its carbon atoms or, when possible, through one of its nitrogen atoms;

R_x represents a substituent selected from: hydrogen; halogen; NO₂; CN; CHO; OH; linear or branched C₁-C₆ alkyl; linear or branched C₁-C₆ haloalkyl; linear or branched C₁-C₆ haloalkoxyl; C₁-C₆ cyanoalkyl; C₂-C₆ alkoxyalkyl; C₂-C₆ alkylthioalkyl; C₂-C₆ alkylsulfinylalkyl; C₂-C₆ alkylsulfonylalkyl; C₂-C₆ haloalkoxyalkyl; C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkylsulfonylalkyl; C₂-C₆ alkoxyalkoxyl or C₂-C₆ haloalkoxyalkoxyl optionally substituted with a group selected from C₁-C₄ alkoxyl or C₁-C₄ haloalkoxyl; C₂-C₆ haloalkylthioalkoxyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkoxyalkyl; C₃-C₁₂ dialkylthioalkyl; C₃-C₁₂ dialkoxyalkoxyl; C₂-C₆ haloalkoxyl; C₃-C₁₀ alkoxyalkoxyalkoxyl; C₂-C₆ alkenyl; C₂-C₆ haloalkenyloxy; C₃-C₈ alkenyloxyalkoxyl; C₃-C₈ haloalkenyloxy; C₃-C₈ haloalkynyloxy; C₃-C₈ alkynyloxy; C₃-C₈ haloalkynyloxyalkoxyl; C₃-C₈ alkoxyiminoalkyl; C₃-C₈ alkoxyi

alkenyloxyiminoalkyl; C_3 - C_8 haloalkenyloxyiminoalkyl; C_3 - C_8 $alkynyloxyiminoalkyl;\ C_3-C_8\ haloalkynyloxyiminoalkyl;\ C_5-C_{10}\ alkoxyalkynyloxyl;$ C_6 - C_{12} cycloalkylideneiminooxyalkyl; C_6 - C_{12} dialkylideneiminooxyalkyl; — $S(O)_mR_1$; $-OS(O)_1R_1;$ $-SO_2NR_2R_3;$ $-CO_2R_4;$ $-COR_5;$ $-CONR_6R_7;$ $-CSNR_8R_9;$ - $NR_{10}R_{11}; -NR_{12}COR_{13}; -NR_{14}CO_{2}R_{15}; -NR_{16}CONR_{17}R_{18}; -PO(R_{19})_{2}; -Q; -ZQ_{15}; -PO(R_{19})_{2}; -Q_{15}; -PO(R_{19})_{2}; --(CR20R21)_pQ_2; -Z(CR_{22}R_{23})_pQ_3; --(CR_{24}R_{25})_pZQ_4; --(CR_{26}R_{27})_pZ(CR_{28}R_{29})_qQ_5;$ $-(CR_{30}R_{31})_pZ(CR_{32}R_{33})_qZ_1Q_6; -Z_2(CR_{34}R_{35})_p(C=Y)T; Z_3(CR_{36}R_{37})_{\nu}(CR_{38}R_{39}=CR_{40}R_{41})(C=Y)T;$ if several Rx groups are present, these can be the same or different; excluding the following compounds having general formula (I) wherein A, B and R have the following meanings: A=4-chlorophenyl, B=1-methylimidazol-2-yl, R=H; A=4-nitrophenyl, B=1-(2-hydroxyethyl)-5-nitroimidazol-2-yl, R=H; A=phenyl, B=1H-benzimidazo1-2-yl, R=C₂H₅; A=phenyl, B=4H-1-benzopyran-4-yl, R=CH₃; A=4-nitrophenyl, B=3-(4-methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH₃;A=phenyl, B=4-chloro-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl, R=CH3;A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=C₂H₅; A=2-hydroxy-4-methoxyphenyl, B=thiazol-4-yl, R=CH₃; A=phenyl, B=2,5-diphenyl-1,3-oxathiol-2-yl, R=CH₃; A=4nitrophenyl, B=4,6-bis(dimethylamino)-1,3,5-triazin-2-yl, R=CH3; A=phenyl, B=furan-2-yl, R=CH3; A=phenyl, B=1,3-dithian-2-yl, R=CH3; A=phenyl, B=4chlorothien-2-yl, R=H; A=phenyl, B=5-bromothien-2-yl, R=H; A=phenyl, B=5methylthicn-2-yl, R=H; A=phenyl, B=6-phenylpyrazin-2-yl, R=CH3; A=phenyl, B=3,4-dihydro-3-methyl-2-oxo-2H-1,3-benzo-oxazin-4-yl, R=CH₃; A=phenyl, B=benzothiazol-2-yl, R=CH3; A=2-hydroxy-4-methoxyphenyl, B=2-phenylthiazol-4yl, R=CH₃; A=phenyl, B=5-methylfuran-2-yl, R=CH₃; A=phenyl, B=3-(4methylphenyl)-1,2,4-oxadiazol-5-yl, R=CH3; A=phenyl, B=tetrahydrofiiran-2-yl, R=CH₃; A=phenyl, B=2,3-dihydro-3-hydroxy-2-oxo-1H-indol-3-yl, R=CH₃, A=phenyl, B=4-chloro-1-methyl-2,5-dioxo-2,5-dihydro-pyrrol-3-yl, R=CH₃; A=phenyl, B=22-trifluoroacetyl-1,2,3,4-tetrahydroiso-quinolin-1-yl, R=C2H5;

A=phenyl, B=2-acetyl-1,2,3,4-tetrahydroisoquinolin-1-yl, R=CH3; A=4-nitrophenyl, B=2-(4-nitrophenyl)-3,5,6-triphenyl-pyridin-4-yl, R= CH₃; A=phenyl, B=4,6-bis (dimethylamino)-1,3,5-triazin-2-yl, R=CH₃; A=phenyl, B=4-methoxy-5-tert-butoxycarbonyl-1H-pyrro-2-yl, R=CH₃; A=phenyl, B=1,3-dihydro-3-oxo-isobenzofuran-1-yl, R= CH₃; A=phenyl, B=(5methoxycarbonylmethyl)thien-2-yl, R=H;A=phenyl, B=4-methylthien-2-yl, R=H; A=phenyl, B=1,4-dihydro-1-methyl-3-nitroquinolin-4-yl, R=H; A=phenyl, B=thien-2-yl, R=H; A=phenyl, B=6-methylbenzothiazol-2-yl, R=CH₃; A=2methoxycarbonylphenyl, B=phenyl, R= CH₃; A=2-benzyloxy-4-methoxyphenyl, B=2,3,4-trimethoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=3,4dimethoxyphenyl, R=H;A=2-nitrophenyl, B=phenyl, R=H; A=2,4,5trimethoxyphenyl, B=4-methoxyphenyl, R=H; A=4-bromophenyl, B=phenyl, R=H; A=4-bromophenyl, B=2,4-dinitrophenyl, R=CH3; A=4-chlorophenyl, B=phenyl, R=H;A=2,4-dibenzyloxy-5-methoxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=2,4-dibenzyloxyphenyl, B=1,3-benzodioxol-5-yl, R=H;A=4-methoxyphenyl, B=2carboxyphenyl, R=H; A=4-methylphenyl, B=2,4-dinitrophenyl, R=CH₃;A=4hydroxy-3-methoxyphenyl, B=4-hydroxy-3-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-methylphenyl, R=H; A=4-chlorophenyl, B=4-chlorophenyl, R=H; A=2,4diacetoxyphenyl, B=phenyl, R=CH₃; A=3-methoxyphenyl, B=phenyl, R=C₂R₅; A=4-nitrophenyl, B=phenyl, R=H;A=2-nitrophenyl, B=4-n-butoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4-methylphenyl, R=H; A=phenyl, B=8carboxynaphthalenyl, R=CH3; A=2,5-dimethoxyphenyl, B=2-hydroxyphenyl, $R=C_2R_5$; A=4-fluorophenyl, B=2-nitro-4-trifluoromethylphenyl, R= CH₃; A=3-chloro-4-methylphenyl, B=2,4-dinitrophenyl, R= CH₃;A=2-nitro-4chlorophenyl, B=phenyl, R=H; A=4.5-dimethoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=2-carboxy-6-nitrophenyl, B=phenyl, R=CH₃; A=2,4,5-trimethoxyphenyl, B=3-methoxyphenyl, R=H; A=phenyl, B=4-bromophenyl, R=H; A=6-benzyloxy-2,3,4-trimethoxyphenyl, B=1,3-benzodioxol-5-yl, R=H; A=4,5-dimethoxy-2-

nitrophenyl, B=4-methoxyphenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, B=4chlorophenyl, R=H; A=2,4-dibenzyloxyphenyl, B=4-methoxyphenyl, R=H; A=4-methylphenyl, B=4-methylphenyl, R=H; A=4-dimethylaminophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=H; A=4,5-dichloro-2-nitrophenyl, B=4chlorophenyl, R=H; A=2-nitrophenyl, B=4-methoxyphenyl, R=H; A=phenyl, B=2,5dimethoxycarbonylaminophenyl, R=CH₃; A=4-hydroxy-4-methoxyphenyl, B=2methoxyphenyl, R=H;A=phenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-ethoxyphenyl, R=H; A=2-nitro-4-chlorophenyl, B=4methoxyphenyl, R=H; A=4-chlorophenyl, B=phenyl, R=C2H5; A=2-tbutoxycarbonyl-5-ethyl-4-methoxyphenyl, B=2,3-dihydro-7-methyl-1,4-benzodioxin-6-yl, R=t-butyl; A=phenyl, B=2-nitro-4-trifluoromethylphenyl, R=CH3; A=3,4-dichlorophenyl, B=2,4-dinitrophenyl, R= CH₃;A=4,5-dichloro-2-nitrophenyl, B=4-methoxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-methylphenyl, R=H; A=phenyl, B=anthracene-9-yl, R=CH3; A=phenyl, B=4-methoxyphenyl, R=H; A=2,4,5-trimethoxyphenyl, B=phenyl, R=H;A=2,4-diacetoxyphenyl, B=2,4,5trimethoxyphenyl, R=CH3; A=2-hydroxyphenyl, B=phenyl, R=H; A=4-methoxy-2-nitrophenyl, B=phenyl, R=H; A=4,5-dimethoxy-2-nitrophenyl, Bphenyl, R=H;A=2,4-dinitrophenyl, B=phenyl, R=CH₃; A=phenyl, B=phenyl, R= CH₃;A=phenyl, B=4-dimethylaminophenyl, R=H;A=phenyl, B=2,4-dinitrophenyl, R=CH₃; A=4,5-dichloro-2-nitrophenyl, B=4-methylphenyl, R=H; A=4-bromophenyl, B=phenyl, R= CH₃; A=2-(4-methylphenylsulfonyloxy)-6methoxyphenyl, B=phenyl, R=H; A=4-methylsulfonylphenyl, B=2-methoxyphenyl, R=CH₃; A=4-methoxyphenyl, B=4-methoxyphenyl, R=CH₃; A=phenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-nitrophenyl, R=H; A=phenyl, B=phenyl, R=H; A=2,4-dimethoxyphenyl, B=4-methoxyphenyl, R=H; A=2-nitrophenyl, B=4-n-hexyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4methoxyphenyl, R=H; A=phenyl, B=9-carboxyphenanthren-10-yl, R=CH₃;

A=phenyl, B=phenyl, R= CH₃; A=3,4-dimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=2,4-dimethoxyphenyl, B=phenyl, R=H; A=phenyl, B=2-hydroxy-3,4,6-trimethyl-5-methoxyphenyl, R= CH₃; A=4-chloro-2-nitrophenyl, B=4-chlorophenyl, R=H; A=2-nitrophenyl, B=4-chlorophenyl, R=H; A=2,4,5-trimethoxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=4-chlorophenyl, B=2,4-dinitrophenyl, R= CH₃; A=4,5-dichloro-2-nitrophenyl, B=phenyl, R=H; A=4-methoxyphenyl, B=phenyl, R=CH₃; A=2,4-dibenzyloxyphenyl, B=3,4-dimethoxyphenyl, R=H; A=4-methylthiophenyl, B=4-methoxyphenyl, R= CH₃; A=phenyl, B=phenyl, R=C₂H₅; A=4-methoxyphenyl, B=2,4-dinitrophenyl, R=CH₃; A=2-nitrophenyl, B=3-chlorophenyl, R=H; A=2-nitrophenyl, R=H; A=2-hydroxyphenyl, R=H; A=4-methoxyphenyl, R=H; A=phenyl, B=2,5-bis(phenacylamino)phenyl, R= CH₃; A=4-nitrophenyl, B=4-methylphenyl, R=H; A=2-nitrophenyl, B=4-n-pentyloxyphenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=4-methoxy-2-nitrophenyl, B=4-chlorophenyl, R=H; A=phenyl, B=2-carboxynaphthalen-1-yl, R= CH₃.

18 (Canceled)