## Autocovariance function and stationarity

**Definition 2.1:** Let  $\{X_t, t \in T\}$ , where  $T \subset \mathbb{R}$ , be a stochastic process with finite second moments, i.e.  $\mathbb{E}|X_t|^2 < \infty$  for all  $t \in T$ . (In general complex) function of two arguments defined on  $T \times T$  by the formula

$$R(s,t) = \mathbb{E}(X_s - \mathbb{E}X_s)(\overline{X_t - \mathbb{E}X_t})$$

is called the autocovariance function of the process  $\{X_t, t \in T\}$ .

**Definition 2.2:** Let  $\{X_t, t \in T\}$  be a stochastic process. We call the process

• strictly stationary if for any  $n \in \mathbb{N}$ ,  $x_1, \ldots, x_n \in \mathbb{R}$ ,  $t_1, \ldots, t_n \in T$  and h > 0 such that  $t_1 + h, \ldots, t_n + h \in T$  it holds that

$$\mathbb{P}(X_{t_1} \le x_1, \dots, X_{t_n} \le x_n) = \mathbb{P}(X_{t_1+h} \le x_1, \dots, X_{t_n+h} \le x_n),$$

- weakly stationary if the process has finite second moments, a constant mean value  $\mathbb{E}X_t = \mu$  and its autocovariance function R(s,t) depends only on t-s,
- covariance stationary if the process has finite second moments and its autocovariance function R(s,t) depends on s-t only,
- process of uncorrelated random variables if the process has finite second moments and for its autocovariance function it holds that R(s,t) = 0 for all  $s \neq t$ ,
- centered if  $\mathbb{E}X_t = 0$  for all  $t \in T$ ,
- Gaussian if for all  $n \in \mathbb{N}$  and  $t_1, \ldots, t_n \in T$  the vector  $(X_{t_1}, \ldots, X_{t_n})^{\mathrm{T}}$  has n-dimensional normal distribution,
- process with independent increments if for all  $t_1, \ldots, t_n \in T$  fulfilling  $t_1 < \cdots < t_n$  the random variables  $X_{t_2} X_{t_1}, \ldots, X_{t_n} X_{t_{n-1}}$  are independent,
- process with stationary increments if for all  $s, t \in T$  fulfilling s < t the distribution of increments  $X_t X_s$  depends on t s only.

## **Theorem 2.1:** The following implications hold:

- a) strictly stationary with finite second moments  $\Rightarrow$  weakly stationary,
- b) weakly stationary and Gaussian  $\Rightarrow$  strictly stationary,
- c) weakly stationary  $\Rightarrow$  covariance stationary,
- d) process of uncorrelated random variables  $\Rightarrow$  covariance stationary,
- e) centered process of uncorrelated random variables  $\Rightarrow$  weakly stationary.

## **Theorem 2.2:** The autocovariance function has the following properties:

- it is non-negative on the diagonal:  $R(t,t) \geq 0$ ,
- it is Hermitian: R(s,t) = R(t,s),
- it fulfills the Cauchy-Schwarz inequality:  $|R(s,t)| \leq \sqrt{R(s,s)} \sqrt{R(t,t)}$ ,
- it is positive semidefinite: for all  $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{C}$  and  $t_1, \ldots, t_n \in T$  it holds that

$$\sum_{j=1}^{n} \sum_{k=1}^{n} c_j \overline{c_k} R(t_j, t_k) \ge 0.$$

*Remark:* The non-negative values on the diagonal and the Hermitian property follow from the positive semidefiniteness.

**Theorem 2.3:** For each positive semidefinite function R on  $T \times T$  there is a stochastic process  $\{X_t, t \in T\}$  with finite second moments such that R is its autocovariance function.

Corollary 2.4: Any complex valued function R on  $T \times T$  is positive semidefinite if and only if it is an autocovariance function of some stochastic process.

**Exercise 2.1:** Let  $X_t = a + bt + Y_t$ ,  $t \in \mathbb{Z}$ , where  $a, b \in \mathbb{R}$ ,  $b \neq 0$  and  $\{Y_t, t \in \mathbb{Z}\}$  be a sequence of independent identically distributed random variables with zero mean and finite positive variance  $\sigma^2$ .

- a) Determine the autocovariance function of the sequence  $\{X_t, t \in \mathbb{Z}\}$  and discuss its stationarity.
- b) For  $q \in \mathbb{N}$  we define random variables  $V_t$  by the formula

$$V_t = \frac{1}{2q+1} \sum_{j=-q}^{q} X_{t+j}, \quad t \in \mathbb{Z}.$$

Determine the autocovariance function of the sequence  $\{V_t, t \in \mathbb{Z}\}$  and discuss its stationarity.

Exercise 2.2: Let X be a random variable with a uniform distribution on the interval  $(0, \pi)$ . Consider the sequence of random variables  $\{Y_t, t \in \mathbb{N}\}$  where  $Y_t = \cos(tX)$ . Discuss the properties of such a random sequence.

**Exercise 2.3:** Consider the stochastic process  $X_t = \cos(t+B)$ ,  $t \in \mathbb{R}$ , where B is a random variable with a uniform distribution on the interval  $(0, 2\pi)$ . Check whether the process is weakly stationary.

**Exercise 2.4:** Let X be a random variable such that  $\mathbb{E}X = 0$  and  $\operatorname{var}X = \sigma^2 < \infty$ . We define  $X_t = (-1)^t X$ ,  $t \in \mathbb{N}$ . Discuss the properties of the sequence  $\{X_t, t \in \mathbb{N}\}$ .

Exercise 2.6: Let  $\{N_t, t \geq 0\}$  be a Poisson process with intensity  $\lambda > 0$  and let A be a real-valued random variable with zero mean and unit variance, independent of the process  $\{N_t, t \geq 0\}$ . We define  $X_t = A(-1)^{N_t}, t \geq 0$ . Determine the autocovariance function of  $\{X_t, t \geq 0\}$ .

**Exercise 2.8:** Let  $\{W_t, t \geq 0\}$  be a Wiener process. We define the so-called *Ornstein-Uhlenbeck process*  $\{U_t, t \geq 0\}$  by the formula  $U_t = e^{-\alpha t/2}W_{\exp\{\alpha t\}}, t \geq 0$ , where  $\alpha > 0$  is a parameter. Decide whether  $\{U_t, t \geq 0\}$  is weakly (strictly) stationary and determine its autocovariance function.

**Exercise 2.11:** Let  $\{X_t, t \in \mathbb{Z}\}$  be a sequence of independent identically distributed random variables. Prove that the process is strictly stationary. Is it also weakly stationary?

**Exercise 2.12:** Let  $\{X_t, t \in \mathbb{Z}\}$  be a sequence of uncorrelated random variables with zero mean and finite positive variance (so-called *white noise*). Prove that it is weakly stationary. Is it also strictly stationary?

**Exercise 2.13:** Let  $X_0 = 0$ ,  $X_t = Y_1 + \cdots + Y_t$  for  $t = 1, 2, \ldots$ , where  $Y_1, Y_2, \ldots$  are independent identically distributed random variables with zero mean and finite positive variance. Show that  $\{X_t, t \in \mathbb{N}_0\}$  is a Markov chain. Determine its autocovariance function. What can we say about the properties of such a random sequence?

**Exercise 2.14:** Let  $\{X_t, t \in T\}$  a  $\{Y_t, t \in T\}$  be uncorrelated weakly stationary processes, i.e. for all  $s, t \in T$  the random variables  $X_s$  and  $Y_t$  are uncorrelated. Show that in such a case also the process  $\{Z_t, t \in T\}$  with  $Z_t = X_t + Y_t$  is weakly stationary.

**Exercise 2.18:** Determine the autocovariance function of the Wiener process  $\{W_t, t \geq 0\}$ . For  $0 \leq t_1 < t_2 < \dots < t_n$  determine the variance matrix of the random vector  $(W_{t_1}, \dots, W_{t_n})^{\mathrm{T}}$ .