<u>Warmup</u>	rmup recall 2 x 2 inversion formula:			ormula:	in general	1 0	b 1	and	l 1 c	0 1	are	shears			
M = a c	b d	M^(-1) where	= (1/det(M		but there are others:										
		where	adj(M) =	= ad – bc = d –b –c a	M = 5/2 -3/2 $3/2 -1/2$		is a shear too: why?								
what are	the in	verses of:		–∪ a	M sends	1 1	to	1 1							
0 1	1 0	? 0	1 0	[reflection]		1 –1	to	4 2	=	3	+	1 –1			
1 0	b 1	? 1	–b 1	[shear]	[draw]										

Idea have: qualitative defns of geometric opsand examples given by matriceswant: matrix-independent defns

<u>Q</u> how to formalize "matrix-independent"?

fix linear map T: V to W

(e_1, ..., e_n) ordered basis of V, (f_1, ..., f_m) ordered basis of W M matrix of T wrt (v_i)_i, (w_j)_j

(e_1, ..., e_n) another ordered basis of V, (f_1, ..., f_m) another ordered basis of W matrix of T wrt (e_i)_i, (f_j)_j? in terms of M?

id_V T id_W
V to V to W to W
e_i v_i w_j f_j

A, B are invertible [since they represent iso's] the matrix of T wrt (e_i)_i, (f_j)_j is B • M • A

possibly confusing:

ith col of A expresses e_i as sum_j A_{k, i} v_k jth col of B w_j as sum_l B_{l, j} f_l

[id_V sends e_i to e_i; id_W sends w_j to w_j]

suppose
$$W = V$$
,
 $(w_{j})_{j} = (v_{i})_{i}$,
 $(f_{j})_{j} = (e_{i})_{i}$

A is the matrix of the id map "from e_i to v_i" B is the matrix of the id map "from v_i to e_i" so $A = B^{(-1)}$

Rem general case T : V to W also useful, but the statement is cumbersome – easier to rederive from picture of maps

Ex
$$V = \{p \text{ in } F[x] \mid p = 0 \text{ or deg } p \le 3\}$$

 $T(p) = dp/dx$
 $(v1, v2, v3, v4) = (1, x, x^2, x^3)$
 $(e1, e2, e3, e4) = (1, x, x^2/2, x^3/6)$

[compute B^(-1)] [compute BMB^(-1)]

<u>Df</u>	matrices M, N are conjugate* iff, for some matrix P, P • M • P^(-1) is well-defined, equals N	and conversely! any conjugation-invariant property of M only depends on T					
* -	·	<u>Ex</u>	entries of M are not conj-invariant				
[*] also sa <u>Rem</u>	y "M and N are <u>conjugates</u> of each other" almost always, we only use this notion in the context where M, N are <u>square</u>	but and	tr(M) = sum of diagonal entries det(M) = ??? [to be discussed later] are				
<u>Df</u>	a property of M is conjugation-invariant iff it is the same for all conjugates of M	for a 2 \times 2 matrix M = a b c d					
<u>Cor</u>	if M is the matrix of a lin op T, then any property of T is a conjugation-invariant property of M	tr(M) = a + d, det(M) = ad – bc [can check by brute force, if you want]					

Ex fix an integer k > 0

the property (M^k = 0_n) is conj-invariant because

$$(BMB^{(-1)})^k = BM^kB^{(-1)} = 0_n$$

corresponds to having $T \circ ... \circ T = zero$ where T is iterated k times

<u>Df</u> a lin op, resp. matrix, is <u>nilpotent</u> iff some iterate, resp. power, is zero

it is <u>unipotent</u> iff it takes the form id + T, resp. I_n + M, where T, resp. M, is nilpotent

<u>Ex</u> since nilpotence is conj-invariant, unipotence is conj-invariant:

$$B(I_n + M)B^{-1} = BI_nB^{-1} + BMB^{-1}$$

= $I_n + BMB^{-1}$

above, used the left & right distributive properties for matrix multiplication

Ex for fixed k > 0, the property $M^k = I_n$ is conj-invariant

M is called an <u>involution</u> iff M^2 = I_n

Rem 2 x 2 shears are unipotent [hyperplane] reflections are involutions