

Semester: August 2022 – December 2022 Maximum Marks: 100 **Examination: ESE Examination** Duration:3 Hrs. Programme code: 01 Class: SY Semester: III (SVU 2020) Programme: B. Tech Computer Engineering Name of the Constituent College: Name of the department: Computer K. J. Somaiya College of Engineering Engineering Name of the Course: Integral transform and Vector Calculus. Course Code: 116U01C301 Instructions: 1) Draw neat diagrams 2) All questions are compulsory 3) Assume suitable data wherever necessary

MARKING SCHEME

MARKING SCHEME				
Que. No.	Question	Max. Marks		
Q1	Solve any Four of the following	20		
i)	Find $L\left[\frac{1}{t}(e^{-at}-e^{-bt})\right]$.	05		
	15-at -6+7 1	(02)		
	0 L[out = bt] (00)			
	$\int_{S} \left[\frac{e^{-1} - e^{-1}}{e^{-1}} \right] = \int_{S+a}^{\infty} \frac{1}{s+a} - \frac{1}{s+b} ds = \left[\log(s+a) - \log(s+b) \right]$ $= \log\left(\frac{s+b}{s+a}\right)$ $= \log\left(\frac{s+b}{s+a}\right)$ $= \log\left(\frac{s+b}{s+a}\right)$ $= \log\left(\frac{s+b}{s+a}\right)$	64		
	$= \log \left(\frac{s+b}{s+a} \right) $	(05)		
ii)	Find $L^{-1}\left\{\frac{4s+12}{s^2+8s+12}\right\}$. $= \frac{1}{4}\left\{\frac{(5+3)}{(5+4)^2-4}\right\}$	05		
	$(5+4)^2-4$ $(5+4)^2-4$	(02)		
	$= 4 e^{4t} \left[\frac{s-1}{s^2-4} \right]$	04)		
	1 -4t [-1 () -4t-	04)		
	= 4 e [$\frac{L}{S^2-4}$] - $\frac{1}{L}\left(\frac{s}{S^2-4}\right)$ = 4 e [$\frac{1}{S^2-4}$] = 4 e [$\frac{1}{S^2$	nh2t]		
iii)		(05)		
111)	Obtain half – range Fourier cosine series for $f(x) = x$ in $0 < x < 2$.	05		
	$\alpha_0 = \frac{2}{2} \int \mathcal{R} d\mathbf{r} = \left[\frac{\mathbf{r}^2}{2}\right]^2 = 2$	(02)		
	$C = \frac{2}{2} \left(\frac{2}{3} \left(\frac{1}{3} \left(\frac{1}{3} \right) \right) \right) = \frac{1}{3} \left(\frac{1}{3} \right) \left(1$			
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	2		
	$=4(-1)^{n}$ 4 • $\frac{3(1)^{2}}{\sqrt{2}}$			
	$Q_{n} = \frac{2}{2} \int_{-\infty}^{\infty} 2 \cos(\frac{m \pi x}{2}) dx = \left[2 \cos(\frac{m \pi x}{2}) + \cos(\frac{n \pi x}{2}) \right]^{2}$ $= 4 \frac{(-1)^{n}}{n^{2} \pi^{2}} - \frac{4}{m^{2} \pi^{2}} \circ \pi \times = 1 + 4 \frac{(-1)^{n} - 1 \cos(\frac{n \pi x}{2})}{\pi^{2}}$ Find Z-Transform of $\sin \alpha k$ for $k \ge 0$	(F)		
iv)	Find Z-Transform of $\sin \alpha k$ for $k \ge 0$	05		
		02)		
	1 3 3 7 7 2 6 7			
	21 3-eix 3-ix = 851nx			
L	7 - 2 8 001 2 + 1	(20		

Q2 A Find the Fourier Series of the function $(x) = e^{-x}$, $0 < x < 2\pi$. Hence deduce the value of $\sum_{x=0}^{\infty} (-1)^n$	10	
Hence deduce the value of π and π and π and π are π and π and π are π and π and π are π are π and π are π and π are π are π and π are π and π are π are π and π are π are π and π are π and π are π and π are π are π and π are π and π are π and π are π are π and π are π and π are π and π are π and π are π are π and π are π are π are π and π are π are π and π are π and π are π are π and π are π are π and π are π are π are π are π and π are π are π are π are π are π are π and π are π are π are π are π are π and π are π are π are π and π are π and π are π are π are π and π are π and π are π are π are π are π are π and π are π are π are π are π are π and π are π	10	
1 - The deduce the volume of Tax (1)n		
Hence deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2+1}$		
$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dz = -\frac{1}{2\pi} \int_{0}^{\infty} \int_{0}^{2\pi} -1 \int_{0}^{\infty} -2\pi \int_{0}^{2\pi} dz$	62	
$Q = \frac{1}{\pi} \int_{0}^{2\pi} \frac{2\pi}{n^{2}+1}$ $Q = \frac{1}{\pi} \int_{0}^{2\pi} \frac{2\pi}{n^{2}+1}$ $Q = \frac{1}{\pi} \left[\frac{2\pi}{e} \right]_{0}^{2\pi} = \frac{1}{\pi} \left[\frac{2\pi}{e^{2}} \right]_{0}^{2\pi}$ $Q = \frac{1}{\pi} \left[\frac{2\pi}{e^{2}} \right]_{0}^{2\pi}$		
$\int_{0}^{\infty} \frac{dx}{dx} = \frac{\pi}{\sqrt{2\pi}} \left[\frac{6}{\sqrt{2\pi}} \left(-(0.70x + 2.50x $		
$=\frac{1}{\pi}\left[\frac{e^{2\pi}}{e^{2\pi}}\right]$	\overline{C}	
$= \frac{1}{\pi} \left[\frac{e^{2\pi}}{e^{2\pi}} \left(-1 \right) + \frac{1}{m^{2}+1} \right] = \frac{1}{\pi \left(m^{2}+1 \right)} \left[1 - e^{2\pi} \right] 0$	(05)	
$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} e^{-x} \sin nx dx = \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-\sin nx - n\cos nx \right) \right]$	511	
1 - 211 7	77	
$\pi \left(n^{2} + 1 \right) \left[e^{-1} \right]$ $= \frac{1}{2\pi} \left(1 - e^{2\pi} \right) + \frac{\left(1 - e^{2\pi} \right) \cdot 0}{\pi} \frac{\cot n^{2} + \left(1 - e^{2\pi} \right) \cdot 0}{\pi^{2} + 1} + \frac{\cot n^{2} + 1}{\pi} $ $= \frac{1}{2\pi} \left(1 - e^{2\pi} \right) + \frac{1}{\pi} \frac{1}{\pi^{2}} \frac{\cot n^{2} + 1}{\pi} + \frac{1}{\pi} \frac{1}{\pi} \frac{1}{\pi} \frac{1}{\pi}$	(8)	
$\frac{1}{2\pi} \left(1 - e^{-\frac{1}{2}} \right) + \frac{1 - e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}} = \frac{\frac{1}{2\pi}}{1 - e^{-\frac{1}{2}}} \left(\frac{1 - e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}} \right)$	575in	りえ
Put = TT	-125t	1
$\Rightarrow e^{\pi t} = \frac{1}{2\pi t} \left(1 - e^{2\pi t} \right) + \frac{\left(1 - e^{2\pi t} \right)}{\pi} \underbrace{\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1}}_{\infty = 1} \underbrace{\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2 + 1}}_{\infty = 2} \underbrace$	TTET	-
Q2B Solve any One of the following		
i) Solve $(D^2 - 4)y = 3e^t$, $y(0) = 0$, $y'(0) = 3$ using Laplace transforms.	10	(10)
$L(y'') - 4L(y) = 3L(e^{t})$	10	
\Rightarrow c2 \downarrow SY(0) \downarrow lc \downarrow \Rightarrow 2	(F)	
$\Rightarrow (S^2 - 4) \overline{y} - 3 = \frac{3}{S - 1}$	3	
S-1		
$\Rightarrow (S^{2} + 3) = \frac{3}{S-1} + 3 = \frac{3S}{S-1}$		
$\Rightarrow \overline{Y} = \frac{32}{(5-1)(5^2-4)} = \frac{32}{(5-1)(5-2)(5+2)}$	06)	
(2-1)(2-2)(1-2)		
$\int_{-2}^{2} \frac{1}{y} = \frac{3}{2} \frac{1}{s-2} - \frac{1}{2} \frac{1}{s+2} - \frac{1}{s+1}$		
$33 y = \frac{3}{2} \overline{L}'\left(\frac{1}{2-2}\right) - \frac{1}{2} \overline{L}'\left(\frac{1}{2-1}\right) - \overline{L}'\left(\frac{1}{2-1}\right)$	\	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/	
$= \frac{3}{2} e^{t} - \frac{1}{2} e^{2t} - e^{t}$	(0	
	ン	

Q3	Solve any Two of the following	
i)	(a) Find the Fourier coefficient	20
	(a) Find the Fourier coefficient a_n in Fourier expansion of	05
	$f(x) = \begin{cases} 1+x, & -1 < x < 0 \end{cases}$	
	$f(x) = \begin{cases} 0, & -2 < x < -1\\ 1+x, & -1 < x < 0\\ 1-x, & 0 < x < 1\\ 0, & 1 < x < 2 \end{cases}$ in the range (-2, 2).	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$a_{m} = \frac{2}{l} \int_{0}^{l} f(x) \cos \frac{\pi \pi x}{l} dx, l = 2$	
	$= \int_{0}^{\infty} f(x) \cos n \pi x dx = \int_{0}^{\infty} (1-x) \cos n \pi x dx$	02
	$= \left[(1-x) \frac{2}{n\pi} \left(\sin n\pi \right) - (-1) \frac{4}{n^2\pi^2} \left(-\cos n\pi \right) \right]$	04)
	$= -\frac{4}{n^2 \pi^2} \left[\cos \frac{\pi}{2} \right] = \frac{4}{m^2 \pi^2} \left[1 - \cos \frac{\pi}{2} \right].$	(20)
	(b) Find Fourier Sine Transform of $e^{- x }$ $F_{S}(f(x)) = \int_{-\infty}^{\infty} f(x) \cdot Sinsedx$	05
	= 0 0 = 2 sin sx d 2	
	$= \left[\frac{e^{2}}{1+S^{2}}\left(-\sin \omega - \sin \omega\right)\right]^{\infty} = \frac{3}{1+S^{2}}$	05)
ii)	If the vector function $\overline{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$	10
	is irrotational find constants a, b, c. Find scalar potential function \emptyset such that	
	$\overline{F} = \nabla \emptyset$. Also find the work done of the moving partical in the same field from $(1, 2, -4)$ to $(3, 3, 2)$ along the straight line joining these points.	
	°° F is irrotational, cuel F=0	
	$\Rightarrow (C+1)^{2} - (4-a)^{2} + (b-2)^{2} = 0$	
	\Rightarrow $C = -1$, $b = 2$, $a = 4$	(A)
		03)
	? 3 9 s.t F = 7 9	
	$\Rightarrow \frac{\partial \phi}{\partial x} = x + 2y + 4s, \frac{\partial \phi}{\partial y} = 2x - 3y - 3s$	
	$\frac{34}{3} = 42 - 4 + 23$	
	$\frac{34}{33} = 42 - y + 23$ $04 = \frac{34}{32}dx + \frac{34}{33}dy + \frac{34}{33}dy$	
	= xdx -37dy +23d3+2(ydx+xdy)+4(3dx+	adz)
	$-\left(2cdu,u\right)$	
	= 0(2 - 3) +3 +2 xy +4 x3 - 43)	
	5. 9 = 3 -3 +3 +2 xy +4x3 -43+c	(0+)
W	orkdone = $\int F \cdot dt = \frac{x^2}{2} - \frac{3y^2}{2} + 3^2 + 2xy + 4x3 - y$	of 9 (3,3,2)
	$=\frac{49}{2}$	(1,2,-4)

Find the unit normal to the surface $xy^3z^2 = 4$ at (-1, -1, 2). $\nabla \phi = i \frac{\partial}{\partial x} (xy^3z^2) + j \frac{\partial}{\partial y} (xy^3z^2) + k \frac{\partial}{\partial z} (xy^3z^2)$ 05 $= i y^3 z^2 + 3 x y^2 z^2 j + 2 x y^3 z k$ $=-4^{\circ}-12(-4k)$ at (-1,-1,2).. Unit normal to scy3 32 = 4 at (-1,-1,2) $= \frac{\nabla \phi}{|\nabla \phi|} = \frac{-4i - 12j + 4k}{\sqrt{16 + 144 + 16}} = \frac{-1}{\sqrt{16 + 144 + 16}} (i + 3j - k) (65)$ In what direction from the point (2, 1, -1) is the directional derivative of vi) 05 $\Phi = x^2yz^3$ Maximum? What is its magnitude? Vd = 300; + 300 11 + 300 K $=2xyz^{3}i+x^{2}z^{3}i+3x^{2}yz^{2}k$ at (2,1,-1), $\nabla \phi = -4i - 4i + 12k$ Dir desirative is man in the dir of Th = -41 -41 +126 $=\sqrt{176}$