Pivoting and the PA = LU Decomposition

$$A = \left(\begin{array}{cccc} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{array}\right)$$

1. The maximum entry in the first column is $a_{3,1} = 8$ so we swap rows 1 and 3. Let U = A.

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \\ 6 & 7 & 9 & 8 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

2. Then we clear down the first column and store the multiples in L.

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 0 & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ 0 & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \end{pmatrix} \qquad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{4} & 0 & 1 & 0 \\ \frac{3}{4} & 0 & 0 & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. Now, in column 2, the last entry is the largest, so we switch rows 2 and 4. And we switch the multiplier in L.

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 0 & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ 0 & -\frac{3}{4} & -\frac{5}{4} & -\frac{5}{4} \\ 0 & -\frac{1}{2} & -\frac{3}{2} & -\frac{3}{2} \end{pmatrix} \qquad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 1 & 0 & 0 \\ \frac{1}{4} & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

4. Then we clear down in column 2 storing the multipliers in L

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 0 & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ 0 & 0 & -\frac{2}{7} & \frac{4}{7} \\ 0 & 0 & -\frac{6}{7} & -\frac{2}{7} \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 1 & 0 & 0 \\ \frac{1}{4} & -\frac{3}{7} & 1 & 0 \\ \frac{1}{2} & -\frac{2}{7} & 0 & 1 \end{pmatrix}, \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

5. The maximum entry in the 3rd column is in the 4th row so we switch rows $^{\bullet}$ and 4. Note how we change the corresponding subdiagonal entrys of L (in both columns) as well

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 0 & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ 0 & 0 & -\frac{6}{7} & -\frac{2}{7} \\ 0 & 0 & -\frac{2}{7} & \frac{4}{7} \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 1 & 0 & 0 \\ \frac{1}{2} & -\frac{2}{7} & 1 & 0 \\ \frac{1}{4} & -\frac{3}{7} & 0 & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

6. And we clear below in column 3.

$$U = \begin{pmatrix} 8 & 7 & 9 & 5 \\ 0 & \frac{7}{4} & \frac{9}{4} & \frac{17}{4} \\ 0 & 0 & -\frac{6}{7} & -\frac{2}{7} \\ 0 & 0 & 0 & \frac{2}{3} \end{pmatrix}, \qquad L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{3}{4} & 1 & 0 & 0 \\ \frac{1}{2} & -\frac{2}{7} & 1 & 0 \\ \frac{1}{4} & -\frac{3}{7} & \frac{1}{3} & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

You can now check that

$$PA = LU = \left(\begin{array}{cccc} 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \\ 4 & 3 & 3 & 1 \\ 2 & 1 & 1 & 0 \end{array}\right)$$

1