Image Denoising and Deblurring Applied Math 515 Final Project

Samuel Rudy, Kelsey Maass, Riley Molloy, and Kevin Mueller

March 12 2016

Contents

Image Denoising and Deblurring

Mathematical Formulation

Naive Solution

$$x = A^{-1}b$$

True image

Blurred image

Recovered image

Naive Solution

$$x = A^{-1}(b-w)$$

Blurred and noisy image

Recovered image

Since the naive solution is contaminated by round-off error and noise, a better approach is to solve the problem:

$$\min_{x} \quad \underbrace{f(Ax - b)}_{\text{Fidelity term}} \quad + \underbrace{\lambda R(x)}_{\text{Regularization}}$$

Fidelity Term

$$f = egin{cases} \|\cdot\|_F^2 \ h_\gamma(\cdot) \ \gamma^{-1} \log(\cosh(\gamma \cdot)) \end{cases}$$

Regularization Term

$$R = \begin{cases} TV(x) \\ \|Wx\|_1 \end{cases}$$

Fidelity Term Penalty Functions

What is Ax - b Why use different functions than frobenius norm? Use pictures as motivation. Show quadratic and huber penalty functions, show different distributions?

Image Assumptions and Regularizers

Either assume image is sparse in wavelet domain, or assume image is smooth

Talk about choice of g Haar, FFT What is TV?

Show two different definitions of TV from paper.

Kelsey's stuff here

- Loss function
- choice of lambda
- choice of wavelet
- prox gradient method

Total Variation Regularization

Loss Function

$$L_b(x) = f(Ax - b) + \lambda ||x||_{TV} + \delta(x|[0,1])$$

Proximal Gradient Step

$$\begin{split} \boldsymbol{x}^{k+1} &= \operatorname{prox}_{\mathcal{L}^{-1}(\boldsymbol{\lambda} \| \cdot \|_{TV} + \delta_{[0,1]})} (\underbrace{\boldsymbol{x}^k - \mathcal{L}^{-1} \boldsymbol{A}^T \nabla f(\boldsymbol{A} \boldsymbol{x}^k - \boldsymbol{b})}_{\boldsymbol{u}^k}) \\ &= \underset{\boldsymbol{z}}{\operatorname{arg } \min} \left(\|\boldsymbol{u}^k - \boldsymbol{z}\|_F^2 + \boldsymbol{\lambda} \|\boldsymbol{z}\|_{TV} + \delta(\boldsymbol{z}|[0,1]) \right) \\ &= P_{[0,1]} \left(\underset{\boldsymbol{z}}{\operatorname{arg } \min} \left(\|\boldsymbol{u}^k - \boldsymbol{z}\|_F^2 + \boldsymbol{\lambda} \|\boldsymbol{z}\|_{TV} \right) \right) \end{split}$$

Dual Form of Total Variation

A Few Definitions weee

Total Variation

blarg

Dual Form of TV Denoising with $\|\cdot\|_F^2$

Optimization of Dual Form

Questions?

- Codes used to generate figures https://github.com/snagcliffs/Amath575project
- Guckenheimer, J., Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983. Print.
 - Oliveira, D., Leonel, E. (2008) *Braz. J. Phys.* 38(1):62-64
- Grassberger, P., Procaccia, I. (1983) *Phys. Rev. Letters*. 50(5):346-349