Multiple Choice Electric Fields Paper Questions Jan 2002—Jan 2010 (old spec)

- 9 If the potential difference between a pair of identical, parallel, conducting plates is known, what is the only additional knowledge required to determine the electric field strength between the plates?
 - **A** the permittivity of the medium between the plates

Jan 2002

- **B** the separation and area of the plates
- C the separation and area of the plates and the permittivity of the medium between the plates
- **D** the separation of the plates
- 10 Which one of the following statements about *electric field strength* and *electric potential* is **incorrect**?
 - A Electric potential is a scalar quantity.
 - **B** Electric field strength is a vector quantity.
 - C Electric potential is zero whenever the electric field strength is zero.
 - **D** The potential gradient is proportional to the electric field strength.

12

Jun 2002

The diagram shows how the electric potential varies along a line XX' in an electric field. What will be the electric field strength at a point P on XX' which is mid-way between R and S?

- $\mathbf{A} \qquad \qquad 5.0 \,\mathrm{V} \,\mathrm{m}^{-1}$
- **B** $10 \,\mathrm{V \,m^{-1}}$
- \mathbf{C} 20 V m⁻¹
- $\mathbf{D} \qquad 30 \,\mathrm{V} \,\mathrm{m}^{-1}$

Two horizontal parallel plate conductors are separated by a distance of $5.0 \, \text{mm}$ in air. The lower plate is earthed and the potential of the upper place is $+50 \, \text{V}$.

Which line, **A** to **D**, gives correctly the electric field strength, E, and the potential, V, at a point midway between the plates?

Jan 2003

	electric field strength E/V m ⁻¹	potential V/V	
A	1×10^4 upwards	25	
В	1×10^4 downwards	25	
C	1×10^4 upwards	50	
D	1×10^4 downwards	50	

- The force between two point charges is F when they are separated by a distance r. If the separation is increased to 3r what is the force between the charges?
 - A $\frac{F}{3r}$
 - $\mathbf{B} \qquad \frac{F}{Q_{\nu}}$
 - $C \qquad \frac{F}{3}$
 - **D** $\frac{F}{9}$

13

Two parallel metal plates of separation a carry equal and opposite charges. Which one of the following graphs, A to D, best represents how the electric field strength E varies with the distance x in the space between the plates?

 \mathbf{C}

Jun 2003

At a distance R from a fixed charge, the electric field strength is E and the electric potential is V. Which line, A to D, gives the electric field strength and electric potential at a distance 2R from the charge?

Jan 2004

	electric field strength	electric potential
A	$\frac{E}{2}$	$\frac{V}{4}$
В	$\frac{E}{2}$	$\frac{V}{2}$
C	$\frac{E}{4}$	$\frac{V}{2}$
D	$\frac{E}{4}$	$\frac{V}{4}$

11 Two charges, P and Q, are 100 mm apart.

X is a point on the line between P and Q. If the potential at X is 0 V, what is the distance from P to X?

- **A** 40 mm
- **B** 45 mm
- **C** 50 mm
- **D** 60 mm

10

The diagram shows two particles at a distance d apart. One particle has charge +Q and the other -2Q. The two particles exert an electrostatic force of attraction, F, on each other. Each particle is then given an additional charge +Q and their separation is increased to a distance of 2d. Which one of the following gives the force that now acts between the two particles?

- **A** an attractive force of $\frac{F}{4}$
- **B** a repulsive force of $\frac{F}{4}$
- C an attractive force of $\frac{F}{2}$
- **D** a repulsive force of $\frac{F}{2}$

11 The electrical field strength, E, and the electrical potential, V, at the surface of a sphere of radius r carrying a charge Q are given by the equations

$$E = \frac{Q}{4\pi\epsilon_0 r^2}$$
 and $V = \frac{Q}{4\pi\epsilon_0 r}$.

A school van de Graaff generator has a dome of radius $100\,\mathrm{mm}$. Charge begins to leak into the air from the dome when the electric field strength at its surface is approximately $3\times10^6\,\mathrm{V\,m^{-1}}$.

What, approximately, is the maximum potential to which the dome can be raised without leakage?

- $\mathbf{A} = 3 \times 10^4 \mathrm{V}$
- $\mathbf{B} = 3 \times 10^5 \mathrm{V}$
- $\mathbf{C} = 3 \times 10^6 \mathrm{V}$
- $\mathbf{D} = 3 \times 10^7 \mathrm{V}$
- Two isolated point charges are separated by $0.04 \, \text{m}$ and attract each other with a force of $20 \, \mu \text{N}$. If the distance between them is increased by $0.04 \, \text{m}$, what is the new force of attraction?

Jan 2005

Jun 2005

- \mathbf{A} 40 μN
- \mathbf{B} 20 μ N
- C $10\,\mu\text{N}$
- \mathbf{D} 5 μ N

11

The diagram shows a uniform electric field of strength $10\,\mathrm{Vm}^{-1}$

A charge of $4\,\mu\text{C}$ is moved from P to Q and then from Q to R. If the distance PQ is $2\,\text{m}$ and QR is $3\,\text{m}$, what is the charge in potential energy of the charge when it is moved from P to R?

- \mathbf{A} 40 μJ
- **B** 50 μJ
- C 120 μJD 200 μJ
- 9 Two protons, each of mass m and charge e, are a distance d apart. Which one of the following expressions correctly gives the ratio $\left(\frac{\text{electrostatic force}}{\text{gravitational force}}\right)$ for the forces acting between them?

 $\mathbf{A} \qquad \frac{4\pi\varepsilon_0 e^2}{Gm^2}$

$$\mathbf{B} = \frac{Ge^2}{4\pi\varepsilon_0 m^2}$$

$$\mathbf{C} \qquad \frac{e^2 m^2}{4\pi \varepsilon_0 G}$$

$$\mathbf{D} = \frac{e^2}{4\pi\varepsilon_0 Gm^2}$$

The diagram shows two charges, $+4\,\mu\text{C}$ and $-16\,\mu\text{C}$, $120\,\text{mm}$ apart. What is the distance from the $+4\,\mu\text{C}$ charge to the point between the two charges, where the resultant electric potential is zero?

- **A** 24 mm
- **B** 40 mm
- **C** 80 mm
- **D** 96 mm
- 12 An electron travelling at constant speed enters a uniform electric field at right angles to the field. While the electron is in the field it accelerates in a direction which is
 - **A** in the same direction as the electric field.
 - **B** in the opposite direction to the electric field.
 - **C** in the same direction as the motion of the electron.
 - **D** in the opposite direction to the motion of the electron.
- Two parallel metal plates separated by a distance d have a potential difference V across them. What is the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

Jan 2006

- $\mathbf{A} \qquad \frac{2VQ}{d}$
- $\mathbf{B} \qquad \frac{VQ}{2d}$
- $\mathbf{C} = \frac{VQ}{d}$
- $\mathbf{D} \qquad \frac{Qd}{V}$

- 12 Two protons are 1.0×10^{-14} m apart. Approximately how many times is the electrostatic force between them greater than the gravitational force between them?
 - **A** 10²³ **Jun 2006**
 - **B** 10^{30}
 - $C 10^{36}$
 - **D** 10^{42}

11

The diagram shows a charged oil drop of weight mg, which is stationary in the electric field between two parallel plates. If the potential difference between the plates is V and the separation of the plates is d, what is the charge on the oil drop?

$$\mathbf{A} \qquad -\frac{Vd}{mg}$$

$$\mathbf{B} = -\frac{V}{mgd}$$

$$\mathbf{C} - mgVd$$

$$\mathbf{D} \qquad - \frac{mgd}{V}$$

When two point charges, each +Q, are distance r apart, the force between them is F. What is the force between point charges of +Q and +2Q when they are distance $\frac{r}{2}$ apart?

Jan 2008

 \mathbf{A} F

 \mathbf{B} 2F

 \mathbf{C} 8F

D 16*F*

$$x = \frac{\alpha z}{r}$$
 and $y = \frac{\beta z}{r^2}$,

where r is a distance, z is either a mass or a charge, and α and β are constants.

Which line, A to D, in the table shows correctly the meaning of the symbols when used in this way?

	gravitational field	electric field
A	$\alpha = G$	y = potential
В	$\beta = \frac{1}{G}$	x = potential
C	x = field strength	$\beta = 4\pi \varepsilon_0$
D	y = field strength	$\alpha = \frac{1}{4\pi\varepsilon_0}$

- A charged particle of mass $4.80 \times 10^{-13} \, kg$ and charge $8.00 \times 10^{-19} C$ is stationary in a vertical 10 electric field. What is the value of the electric field? Jun 2008 (Assume that the gravitational field strength is 10.0 N kg⁻¹)
 - $\begin{array}{l} 6.00\times10^5 V\,m^{-1} \\ 1.67\times10^6 \,V\,m^{-1} \\ 6.00\times10^6 \,V\,m^{-1} \end{array}$ A
 - В
 - C
 - $1.67 \times 10^7 \,\mathrm{V \, m}^{-1}$ D
 - The diagram shows four point charges, each +Q, at the corners of a square of side 2a. What is 11 the electric field strength at P, the centre of the square?

- A zero
- В

9 Which one of the following is a quantity that can be resolved into different directions?

A electrical potential

Jan 2009

- **B** gravitational potential
- **C** electric field strength
- **D** induced emf
- A positive ion, with a charge/mass ratio of $2.40 \times 10^7 \,\mathrm{C\,kg}^{-1}$, is stationary in a vertical electric field. Which line, **A** to **D**, in the table shows correctly both the strength and the direction of the electric field?

	electric field strength /V m ⁻¹	direction
A	4.09×10^{-7}	upwards
В	4.09×10^{-7}	downwards
C	2.45×10^{6}	upwards
D	2.45×10^6	downwards

12

The diagram shows how the electric potential varies along a line XY in an electric field. What will be the electric field strength at a point P on XY, which is mid-way between R and S?

- $\mathbf{A} \qquad 5.0 \,\mathrm{V\,m}^{-1}$
- **B** $10 \,\mathrm{Vm}^{-1}$

10

The diagram shows a uniform electric field of strength 10 V m⁻¹.

A charge of $4.0\,\mu\text{C}$ is moved from P to Q and then from Q to R. If the distance PQ is $2.0\,\text{m}$ and QR is $3.0\,\text{m}$, what is the change in potential energy of the charge when it is moved from P to R?

- \mathbf{A} 40 μJ
- \mathbf{B} 50 μJ
- \mathbf{C} 120 $\mu \mathbf{J}$
- \mathbf{D} 200 μJ