Nonlinear difference subspace method of motor imagery EEG classification in Brain-Computer Interface

C Sivananda Reddy a, M Ramasubba Reddy a

^a Dept. of Applied Mechanics & Biomedical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.

SUPPLEMENTARY MATERIAL

Algorithm 1: K-SM classification

Input: Training data $F_x^m \in \mathbb{R}^{2C \times N_m}$, $m = \{1, 2, ...M\}$; Testing data $F_y \in \mathbb{R}^{2C \times N_t}$; σ^2 ; Dimension v of nonlinear subspace.

Output: Class labels of F_y .

- 1. Compute kernel matrix $\mathbf{K}^m \in \mathbb{R}^{N_m \times N_m}$ on training data \mathbf{F}_x^m .
- 2. Center the kernel matrix K^m

$$\tilde{\mathbf{K}}^m = \mathbf{K}^m - \mathbb{1}_{N_m} \mathbf{K}^m - \mathbf{K}^m \mathbb{1}_{N_m} + \mathbb{1}_{N_m} \mathbf{K}^m \mathbb{1}_{N_m}; \text{ where } \mathbb{1}_m \in \mathbb{R}^{N_m \times N_m} \text{ is a matrix of all elements as } \frac{1}{N_m}.$$

3. Solve eigenvalue problem

$$\widetilde{\mathbf{K}}^m \mathbf{A}^m = \Delta \mathbf{A}^m$$

 $A^m = [a_1^m, a_2^m, \dots, a_{N_m}^m] \in \mathbb{R}^{N_m \times N_m}$ is the eigenvector matrix of \widetilde{K}^m , Δ is the diagonal matrix of eigenvalues of \widetilde{K}^m sorted in decreasing value.

- **4.** for $i = 1: N_t$
 - Compute the kernel matrix $K_{test}^m \in \mathbb{R}^{N_m \times 1}$ as

$$K_{test}^{m} = [k(\mathbf{f}_{x,1}^{m}, \mathbf{f}_{y,i}), k(\mathbf{f}_{x,2}^{m}, \mathbf{f}_{y,i}) \dots k(\mathbf{f}_{x,N_{m}}^{m}, \mathbf{f}_{y,i})]^{T}$$

• Project test trial onto class-m subspace

$$\mathbf{p}_{1} = [\mathbf{a}_{1}^{1}, \mathbf{a}_{2}^{1}, \dots, \mathbf{a}_{v}^{1}]^{T} \mathbf{K}_{test}^{m}
\mathbf{p}_{2} = [\mathbf{a}_{1}^{2}, \mathbf{a}_{2}^{2}, \dots, \mathbf{a}_{v}^{2}]^{T} \mathbf{K}_{test}^{m}$$

 $\boldsymbol{p}_{M} = [\boldsymbol{a}_{1}^{2}, \boldsymbol{a}_{2}^{2}, \dots, \boldsymbol{a}_{v}^{2}]^{T} \boldsymbol{K}_{test}^{m}$

• Classify test trial $f_{y,i}$ to the subspace of maximum projection

$$Class(i) = {max \atop m}(norm(\boldsymbol{p}_m))$$

5. end

Algorithm 2: K-DSM classification

Input: Training data $\mathbf{F}_{x}^{m} \in \mathbb{R}^{2C \times N_{m}}$, $m = \{1, 2, ...M\}$; Testing data $\mathbf{F}_{y} \in \mathbb{R}^{2C \times N_{t}}$; σ^{2} ; Dimension v of nonlinear subspaces.

Output: Class labels of F_{ν} .

- 1. Compute kernel matrix $K^{m,m'} \in \mathbb{R}^{N_m \times N_{m'}}$ on training data F_x^m and $F_x^{m'}$, $\forall m \& m' = \{1, 2, ... M\}$. The elements of matrix $K^{m,m'}$ are defined as $[k_{ij}]$, where $k_{ij} = k(f_{x,i}^m, f_{x,j}^{m'}) = (\emptyset(f_{x,i}^m), \emptyset(f_{x,j}^{m'}))$ is the dot product between the i^{th} point of F_x^m and j^{th} point of $F_x^{m'}$ in the feature space.
- 2. Solve the eigenvalue problem

$$K^{m,m}A^m = \Delta A^m$$

 $A^m = [a_1^m, a_2^m, \dots, a_{v_m}^m] \in \mathbb{R}^{N_m \times v}$ are the eigenvectors corresponding to v largest eigenvalues of $K^{m,m}$, Δ is the diagonal matrix of v eigenvalues of $K^{m,m}$ sorted in decreasing value.

3. Compute $\mathbf{D}^{m,m'} \in \mathbb{R}^{v \times v} = \mathbf{A}^{mT} \mathbf{K}^{m,m'} \mathbf{A}^{m'}$

4. Compute
$$D \in \mathbb{R}^{Mv \times Mv} = \begin{bmatrix} D^{1,1} & D^{1,2} & . & D^{1,M} \\ D^{2,1} & D^{2,2} & . & D^{2,M} \\ . & . & . & . & . \\ D^{M,1} & D^{M,2} & . & D^{M,M} \end{bmatrix}$$

5. Solve the eigenvalue problem

$$DB = \Lambda B$$

 $B = [b_1, b_2, \dots, b_{n_0}] \in \mathbb{R}^{Mv \times n_0}$ are the eigenvectors corresponding to least n_0 eigenvalues of D.

6. Project all class-*m* trials onto KDS:

• Compute kernel matrix $K_{pj}^m \in \mathbb{R}^{MN_m \times N_m}$ to project class-m data onto KDS as

matrix
$$K_{pj}^{m} \in \mathbb{R}^{m m \times N m}$$
 to project class- m data onto KDS k

$$K_{pj}^{m} = \begin{bmatrix} k(f_{x,1}^{1}, f_{x,1}^{m}) & k(f_{x,1}^{1}, f_{x,2}^{m}) & \dots & k(f_{x,1}^{1}, f_{x,N_{m}}^{m}) \\ k(f_{x,N_{1}}^{1}, f_{x,1}^{m}) & k(f_{x,N_{1}}^{1}, f_{x,2}^{m}) & \dots & k(f_{x,1}^{1}, f_{x,N_{m}}^{m}) \\ k(f_{x,1}^{2}, f_{x,1}^{m}) & k(f_{x,1}^{2}, f_{x,2}^{m}) & \dots & k(f_{x,1}^{1}, f_{x,N_{m}}^{m}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ k(f_{x,N_{2}}^{2}, f_{x,1}^{m}) & k(f_{x,N_{2}}^{2}, f_{x,2}^{m}) & \dots & k(f_{x,1}^{1}, f_{x,N_{m}}^{m}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ k(f_{x,N_{m}}^{M}, f_{x,1}^{m}) & k(f_{x,N_{m}}^{M}, f_{x,2}^{m}) & \dots & k(f_{x,1}^{1}, f_{x,N_{m}}^{m}) \end{bmatrix}$$

• The projected class-m data F_x^m onto the KDS is

- 7. Compute linear subspace of class-m projected data $F_{x_{KDS}}^{m}$,
 - Find covariance matrix R_{ds}^{m} of $F_{x_{KDS}}^{m}$
 - Solve the singular-value decomposition problem:

$$R_{ds}^{\ m} = U_{ds}^{\ m} E_{ds}^{\ m} V_{ds}^{\ m}$$

- 8. for $i = 1: N_t$
 - Compute the kernel matrix $K_{pj}^{test} \in \mathbb{R}^{MN_m \times 1}$ as

$$[k(\boldsymbol{f}_{x,1}^{1},\boldsymbol{f}_{y,i}),\dots k(\boldsymbol{f}_{x,N_{1}}^{1},\boldsymbol{f}_{y,i})\dots k(\boldsymbol{f}_{x,1}^{M},\boldsymbol{f}_{y,i})\dots k(\boldsymbol{f}_{x,N_{M}}^{M},\boldsymbol{f}_{y,i})]^{T}$$

• Project $f_{v,i}$ onto KDS

$$f_{y_{KDS},i} \in \mathbb{R}^{n_{\emptyset} \times 1} = B^{T} \begin{bmatrix} [A^{1}]^{T} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & [A^{2}]^{T} & \dots & \mathbf{0} \\ \dots & \dots & \dots & \dots \\ \mathbf{0} & \mathbf{0} & \dots & [A^{M}]^{T} \end{bmatrix}^{K_{pj}^{test}}$$

• On KDS, project test trial $f_{y_{KDS},i}$ onto the v_{DS} -dimensional class-m subspace

$$\mathbf{p_1} = \mathbf{U}_{ds}^1(:,1:v_{DS})^T \mathbf{f}_{y_{KDS},i}$$
$$\mathbf{p_2} = \mathbf{U}_{ds}^2(:,1:v_{DS})^T \mathbf{f}_{y_{KDS},i}$$

$$\boldsymbol{p}_{M} = \boldsymbol{U}_{ds}^{M}(:,1:v_{DS})^{T}\boldsymbol{f}_{y_{KDS},i}$$

• Classify test trial $f_{y,i}$ to the subspace of maximum projection

$$Class(i) = \max_{m}(norm(\boldsymbol{p}_{m}))$$

9. end

Algorithm 3: I-SM classification

Input: Training data $F_x^m \in \mathbb{R}^{2C \times N_m}$, $m = \{1, 2, ...M\}$; Class labels $\mathbf{z} \in \mathbb{R}^{1 \times N}$ of the training data; Testing data $F_v \in \mathbb{R}^{2C \times N_t}$; σ^2 ; Dimension v_m of class-m subspace.

Output: Class labels of F_y .

- 1. Arrange matrix $F_x = [F_x^1 F_x^2 \dots F_x^M] \in \mathbb{R}^{2C \times N}$, where $N = N_1 + N_2 + \dots N_M$.
- **2.** Get embedding projection $P = ISoP(F_x, \mathbf{z}, \alpha, \eta)$ using SD-ISoP Algorithm (given as **Algorithm 1** in paper).
- 3. Project training data F_x^m onto the low-dimensional subspace

$$\boldsymbol{F}_{x_lowdim}^m = P\boldsymbol{F}_x^m$$

- **4.** Compute linear subspace of class-m projected data $F_{x \ lowdim}^{m}$,
 - Find covariance matrix \mathbf{R}^m of $\mathbf{F}_{x_lowdim}^m$
 - Solve singular-value decomposition problem

$$\mathbf{R}^m = \mathbf{U}^m \; \mathbf{E}^m \; \mathbf{V}^m$$

5. for $i = 1: N_t$

6. Project test trial onto low dimensional space

$$\boldsymbol{f}_{y,i_lowdim} = P\boldsymbol{f}_{y,i}$$

7. On low-dimensional space, project test trial f_{y,i_lowdim} onto d-dimensional class-m subspace

$$\boldsymbol{p}_1 = U^1(:,1:d)^T \boldsymbol{f}_{y,i_lowdim}$$

$$\boldsymbol{p}_{M} = U^{M}(:,1:d)^{T} \boldsymbol{f}_{v,i \ lowdim}$$

Classify test trial $f_{y,i}$ to the subspace of maximum 8. projection

$$Class(i) = \max_{m}(norm(\boldsymbol{p}_{m}))$$

9. end

Algorithm 5: I-DSM based MI classification.

Input: Training data $\mathbf{F}_{x}^{m} \in \mathbb{R}^{2C \times N_{m}}$, $m = \{1, 2, ...M\}$; ISoP projection matrix $\mathbf{P} \in \mathbb{R}^{d_{isop} \times 2C}$; Testing data $\mathbf{F}_{y} \in \mathbb{R}^{d_{isop} \times 2C}$ $\mathbb{R}^{2C \times N_t}$; σ^2 ; dimension of subspace d.

Output: Class labels of F_{ν} .

1. Project class-m training data F_x^m onto the ISOMap space

$$\mathbf{F}_{x,iso}^{m} = P\mathbf{F}_{x}^{m}$$

- $\mathbf{F}_{x_iso}^{\hat{m}} = P\mathbf{F}_{x}^{m}$ 2. Compute linear subspace of class-*m* projected data $\mathbf{F}_{x_iso}^{m}$,
 - Find covariance matrix \mathbf{R}^m of $\mathbf{F}_{x iso}^m$
 - Solve singular-value decomposition problem

$$R^m = U^m E^m V^m$$

3. Compute the sum of the subspace matrix

$$S = \sum_{j=1}^{d} \mathbf{U}^{1}(:,j)\mathbf{U}^{1}(:,j)^{T} + \sum_{j=1}^{d} \mathbf{U}^{2}(:,j)\mathbf{U}^{2}(:,j)^{T} + \cdots + \sum_{j=1}^{d} \mathbf{U}^{M}(:,j)\mathbf{U}^{M}(:,j)^{T}$$

4. Solve singular-value decomposition problem

$$S = U_{ds}E_{ds}V_{ds}$$

- $S = U_{ds}E_{ds}V_{ds}$ 5. Construct the difference subspace $D = U_{ds}(:,find(diag(E_{ds}) < 1))$ by considering only those eigenvectors of
- **S** whose eigenvalues are less than 1. **6.** Project training data $F_{x_{-}iso}^{m}$ onto the difference subspace

$$\boldsymbol{F}_{x_ds}^m = D^T \boldsymbol{F}_{x_iso}^m$$

- 7. Compute linear subspace of class-m on DS projected data $F_{x,ds}^m$,
 - Find covariance matrix \mathbf{R}_{ds}^{m} of $\mathbf{F}_{x ds}^{m}$
 - Solve singular-value decomposition problem

$$R_{ds}^m = U_{ds}^m E_{ds}^m V_{ds}^m$$

- 8. for $i = 1: N_t$
- Project test trial onto ISOMap space and then onto DS

$$f_{y,i_iso} = P f_{y,i}$$

 $f_{y,i_ds} = D^T f_{y,i_iso}$

 $f_{y,i_ds} = D^T f_{y,i_iso}$ On DS, project test trial f_{y,i_ds} onto d-dimensional class-m subspace *10*.

$$\boldsymbol{p}_1 = \boldsymbol{U}_{ds}^1(:,1:d)^T \boldsymbol{f}_{y,i_ds}$$

$$\boldsymbol{p}_{M} = \boldsymbol{U}_{ds}^{M}(:,1:d)^{T} \boldsymbol{f}_{y,i_ds}$$

11. Classify test trial $f_{y,i}$ to the subspace of maximum projection

$$Class(i) = {max \atop m}(norm(\boldsymbol{p}_m))$$

12. end