Riemannian and Lorentzian Geometry

Rasmus Curt Raschke

October 21, 2025

Contents

1	Introduction												2							
	1.0	Review of important topics														2				
		1.0.1	Lecture	14.10.25																2
2 Riemannian Geometry														6						
		2.0.1	Lecture	17.10.202	5															7

Chapter 1

Introduction

1.0 Review of important topics

1.0.1 Lecture 14.10.25

Definition 1.1 (Integral Curve). Let $X \in \Gamma(TM)$ and $\gamma: I \to M$ be a smooth curve. We call γ integral curve of X if

$$\dot{\gamma}(t) = X_{\gamma(t)}.$$

Furthermore, γ is maximal if for all other integral curves $\omega: J \to M$ with $I \cap J \neq \emptyset$ and $\omega|_{I \cap J} = \gamma|_{I \cap J}$ we have $J \subseteq I$.

Theorem 1.2 (Existence of Integral Curves). Let $X \in \Gamma(TM)$. For all $p \in M$ exists a unique maximal integral curve $\gamma_p : I_p \to M$ of X with $\gamma_p(0) = p$.

Definition 1.3 (Local Flow). Let $X \in \Gamma(TM)$. A local flow of X is a smooth map

$$\Theta:I\times U\to M$$

where $I \subseteq \mathbb{R}$ is an open interval, $0 \in I$ and $U \subseteq M$ is open such that

$$\Theta(t, p) = \gamma_p(t),$$

where γ_p is the maximal integral curve of X with $\gamma_p(0) = p$ for all $(t, p) \in I \times U$.

Note. Similarly, a maximal flow for $X \in \Gamma(TM)$ is a smooth map $\Theta : \mathcal{D} \to M$ with

$$\mathcal{D} := \bigcup_{p \in M} I_p \times \{p\} \subseteq \mathbb{R} \times M$$

being open. We call \mathcal{D} the **maximal domain**. It always containes $\{0\} \times M$. A **global flow** is then a unique maximal flow with $\mathcal{D} = \mathbb{R} \times M$.

Notation. To emphasize that Θ depends on X, we write Θ_X and \mathcal{D}^X . Fixing $t \in \mathcal{D}$, we write

$$\theta_t: \mathcal{D} \cap (\{t\} \times M) \to M$$

with $\theta_t(p) := \Theta(t, p)$.

Definition 1.4 (Riemannian and Lorentzian Metrics). Let $\nu \in \mathbb{N}$ with $0 \le \nu \le n$. A **semi-Riemannian metric** of **index** ν is a (0,2)-tensor field such that

$$g_p: T_pM \times T_pM \to \mathbb{R}$$

is a symmetric non-degenerate bilinear form on T_pM with index ν . We say:

- $\nu = 0$: g is **Riemannian**.
- $\nu = 1$: g is **Lorentzian**.

In the Lorentzian case, we take the convention (-, +, +, ...).

Theorem 1.5 (Levi-Civita Connection). Given a semi-Riemannian manifold (M, g), there exists exactly one connection

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$

, called the Levi-Civita connection, such that:

- ∇^g is torsion-free: $\nabla_X Y \nabla_Y X = [X, Y]$
- ∇^g is compatible with $g: Zg(X,Y) = g(\nabla_Z X,Y) + g(X,\nabla_Z Y)$
- The Koszul identity is satisfied:

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(X, Z)) - Z(g(X, Y))$$
$$-g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y])$$

.

Definition 1.6 (Riemann Curvature Tensor). The Riemann Curvature **Tensor** is the (1,3)-tensor field

$$R:\mathfrak{X}(M)^3\to\mathfrak{X}(M)$$

given by
$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$
.

Remark. In local coordinates (x^i) , we have

$$R_{ijk}^l := (R(\partial_i, \partial_j)\partial_k)^l = \partial_i \Gamma_{jk}^l - \partial_j \Gamma_{ik}^l + \Gamma_{is}^l \Gamma_{jk}^s - \Gamma_{js}^l \Gamma_{ik}^s.$$

Definition 1.7 (Geodesic). A \mathcal{C}^{∞} -curve $\gamma:(a,b)\to M$ is called a **geodesic** if $\dot{\gamma}$ is ∇^g -parallel along γ , i.e.

$$\ddot{\gamma}(t) = \nabla^g_{\frac{d}{dt}} \dot{\gamma} = 0.$$

In local coordinates, one finds the geodesic equation

$$0 = \frac{d^2}{dt^2}(x^i \circ \gamma) + (\Gamma^i_{kl} \circ \gamma) \frac{d}{dt}(x^k \circ \gamma) \frac{d}{dt}(x^l \circ \gamma).$$

Theorem 1.8 (Maximal Geodesic). For all $v \in TM$, there is exactly one geodesic

$$\gamma_v:I_v\to M$$

such that $\gamma_v(0) = \pi ||v||$ and $\dot{\gamma}_v(0) = v$ and I_v is maximal.

Exponential Map

Definition 1.9 (Exponential Map). Define the (Riemannian) **exponential** map

$$\exp_p: \mathcal{D}_p \subseteq T_pM \to M$$

by

$$(p, v) \mapsto \exp_p(v) := \gamma_v(1)$$

where γ_v is the unique maximal geodesic.

We always have

$$\mathcal{D}_p \supseteq \{tv \in T_pM \mid t \in [0,1]\}.$$

We can consider $s \mapsto \gamma_v(st)$ for fixed $t \in \mathbb{R}$. Then, we have

$$\dot{\gamma}_v(st) = t\dot{\gamma}_v(0) = tv = \dot{\gamma}_{tv}(s)$$

for all s, and therefore $\gamma_{tv}(s) = \gamma_v(ts)$. This yields the useful formula

$$\exp_{n}(tv) = \gamma_{tv}(1) = \gamma_{v}(t).$$

Lemma 1.10. For all $p \in M$,

$$d(\exp_p)_0: T_0(T_pM) \cong T_pM \to T_pM$$

is the identity $d(\exp_p)_0 = id$ under the identification $id(v^i \partial_{u_i}|_0) = v^i \partial_{x_i}|_p$.

Definition 1.11 (Normal Neighbourhood). An open set $U \ni p$ is a **normal neighbourhood** of p if there exists an open set $\tilde{U} \ni o_p \subseteq \mathcal{D}_p$ which is star-shaped such that

$$\exp_p|_{\tilde{U}}: \tilde{U} \to U$$

is a diffeomorphism.

Theorem 1.12 (Existence of Normal Neighbourhoods). For any $p \in M$, there is a normal neighbourhood around p.

Proof. Inverse function theorem.

Definition 1.13 (Convex Neighbourhood). U is a **convex neighbourhood** if it is a normal neighbourhood for all $q \in U$.

Remark. If U is a normal neighbourhood of p, then for all $q \in U$ there is exactly one geodesic γ_{pq} in U from p to q, called **radial geodesic**.

Theorem 1.14 (Normal Coordinate Lines). For all $p \in M$ and a basis $\{v_1, \ldots, v_n\}$ of T_pM exists a chart $(U, (x^1, \ldots, x^n))$ such that:

- 1. U is a normal neighbourhood of p.
- 2. $\partial_i|_p = v$
- 3. $\Gamma_{ij}^k = 0$ for all i, j, k.

If the basis $\{v_1, \ldots, v_n\}$ is orthonormal, we also have

$$g_{ij}(p) = \epsilon_i \delta_{ij}$$

and

$$\partial_k g_{ij}(p) = 0.$$

The chart $(U,(x^1,\ldots,x^n))$ is called **normal coordinate chart**.

Chapter 2

Riemannian Geometry

In this chapter, we are concerned with Riemannian manifolds as metric spaces. The main goal is to prove the theorem of Hopf-Rinow.

Definition 2.1 (Regular Curve). A piecewise C^1 -curve

$$\gamma:[a,b]\to M$$

is called regular if

$$\forall s \in [a, b] : \dot{\gamma}(s) \neq 0$$

and

$$\dot{\gamma}_+(t_i) \neq 0$$

at all C^1 -break-points.

Definition 2.2 (Arc-length). Let (M,g) be a semi-Riemannian manifold and $\gamma:[a,b]\to M$ a (piecewise) \mathcal{C}^1 -curve. The **arc-length** is defined to be the functional

$$L[\gamma] = \int_a^b \sqrt{|g(\dot{\gamma}(t), \dot{\gamma}(t))|} dt.$$

Remark. 1. In the Riemannian case, the $|\cdot|$ is redundant.

- 2. In semi-Riemannian geometry, there are curves with $L[\gamma] = 0$.
- 3. The arc-length functional is invariant under length parametrization.
- 4. If γ is regular, there exists a strictly monotonous reparametrization

$$\varphi: [\tilde{a}, \tilde{b}] \to [a, b]$$

such that $\tau := \gamma \circ \varphi$ satisfies $g(\dot{\tau}, \dot{\tau}) = 1$. This is a reparametrization by arc-length:

$$L[\tau_{[\tilde{a},s]}] = s - \tilde{a}$$

for all $s \in [\tilde{a}, \tilde{b}]$.

Theorem 2.3 (Gauß' Lemma). The exponential map is a radial isometry: For any $p \in M$, $x \in \mathcal{D}_p$ and $v, w \in T_x(T_pM) \cong T_pM$ with $v = \alpha x$ for some $\alpha \in \mathbb{R}$, the equations

$$g_{\exp_p(x)}(d(\exp_p(v))_x, d(\exp_p(w))_x) = g_p(v, w)$$

and

$$\dot{\gamma}(t) = \frac{d}{dt} \exp_p(tv)$$

hold.

2.0.1 Lecture 17.10.2025

Theorem 2.4 (Minimizing Geodesic). Let (M, g) be a Riemannian manifold and U be a normal neighbourhood of $p \in M$. Then, γ_{pq} is the shortest curve from p tp q unique up to monotonically increasing, piecewise \mathcal{C}^1 reparametrization.

Proof. Let $\omega : [a, b] \to M$ be a piecewise C^1 curve in U from p to q. W.l.o.g., a = 0, b = 1 and $\omega([0, 1]) \subseteq U \setminus \{p\}$. We can write

$$\omega(t) = \exp_p(R(t)v(t))$$

with $R(t):=|\exp_p^{-1}(\omega(t))|_{g_p}$ and $v(t):=\frac{\exp_p^{-1}(\omega(t))}{|\exp_p^{-1}(\omega(t))|_{g_p}}$ such that $v\in\mathbb{S}_{g_p}^{m-1}\subseteq T_pM$. Both R and v are piecewise \mathcal{C}^1 and $R(t)\in(0,\infty)$ for t>0, since $\omega(t)$ does not meet p again. Away from the breakpoints, we have

$$\dot{\omega}(t) = d_{R(t)v(t)} \exp_p([R(t)v(t)]) = R(t) \underbrace{d_{R(t)v(t)} \exp_p(\dot{v}(t))}_{:=A} + \dot{R}(t) \underbrace{d_{R(t)v(t)} \exp_p(v(t))}_{:=B}.$$

With this, we can calculate

$$q(\dot{\omega}(t), \dot{\omega}(t)) = R^2(t)q(A, A) + R(t)\dot{R}(t)q(A, B) + \dot{R}(t)q(B, B)$$

and

$$g(B,B) = g(d_{R(t)v(t)} \exp_p(v(t)), d_{R(t)v(t)} \exp_p(v(t))) = g_p(v(t), v(t)) = 1,$$

where we used Gauß' Lemma.

Turning our attention to the second term, we obtain

$$g(A, B) = g(d_{R(t)v(t)} \exp(v(t)), d_{R(t)v(t)} \exp_p(\dot{v}(t)))$$

= $g_p(v(t), \dot{v}(t)) = \frac{1}{2} \frac{d}{dt} g_p(v(t), v(t)) = 0.$

For the arc-length, this yields

$$L[\omega] = \int_0^1 \sqrt{g(\dot{\omega}(t), \dot{\omega}(t))} dt$$
 (2.1)

$$\geq \int_{0}^{1} \sqrt{\dot{R}^{2}(t)} dt \geq \int_{0}^{1} \dot{R}(t) dt \tag{2.2}$$

$$= R(1) - R(0) = |\exp_p^{-1}(q)|_{g_p} = L[\gamma_{pq}]$$
(2.3)

where the last equation is left as an exercise.

Remark. We actually have equality if:

- 1. If $d_{R(t)v(t)} \exp_p(\dot{v}(t)) = 0$, we have $\dot{v}(t) = 0$ and $v = \frac{\exp_p^{-1}(q)}{|\exp_p^{-1}(q)|_{g_p}}$, hence $\omega(t) = \exp_p\left(\frac{R(t)}{|\exp_p^{-1}(q)|_{g_p}}\exp_p^{-1}(q)\right)$.
- 2. If $\dot{R}(t) > 0$

With this result and the convex neighbourhood theorem, one obtains that any piecewise \mathcal{C}^1 -curve minimizing L from p to q must be a broken geodesic.

Theorem 2.5 (Normal Basis). Let (M, g) be a Riemannian manifold. Then, every point $p \in M$ has a basis of normal neighbourhoods $\{U_{\epsilon}\}$ of the form $U_{\epsilon} = \exp_p^{-1}(B_{\epsilon}(0))$ and such that for all $q \in U_{\epsilon}$, γ_{pq} is the shortest curve from p to q in M.

Proof. Idea: Show that any piecewise C^1 shortest curve starting from o and leaving U_{ϵ} has $L \geq \epsilon$ ($\Longrightarrow L < \epsilon$).

Definition 2.6 (Induced Metric). Let (M, g) be a Riemannian manifold. The **induced distance function** by g is given by

$$d_q(p,q) := \inf \{ L_q[\gamma] \mid \gamma : [a,b] \to M \text{ pw. cont.}, \gamma(a) = p, \gamma(b) = q \}$$

for all $p, q \in M$. A piecewise C^1 -curve is **minimizing** if

$$d_g(p,q) = L[\gamma]..$$

Theorem 2.7 (Hopf-Rinow). Let (M,g) be a Riemannian manifold. The induced distance function

$$d_a: M \times M \to \mathbb{R}$$

is a distance function and the topology induced by d_g conincides with the topology of M.

- **Proof.** 1. For finiteness, let γ be a \mathcal{C}^1 geodesic connecting p and q. We can cover the image of γ by a finite amount of sets and connect between the intersection points with geodesics.
 - 2. For $d(p,q) \geq 0$, we start by showing that $d(p,q) = 0 \implies p = q$. If $p \neq q$, we can find a normal neighbourhood $U_{\epsilon} \ni p$ such that $q \notin U_{\epsilon}$ by the Hausdorff condition. Hence, $d(p,q) \geq \epsilon \neq 0$.
 - 3. Next, we show symmetry. This is clear from the reparametrization invariance of L, using $t \mapsto \gamma(-t)$.
 - 4. For the triangle equality, let $p,q,x\in M.$ For any $\epsilon>0$, choose γ_1,γ_2 such that

$$L[\gamma_1] \le d(p, x) + \frac{\epsilon}{2}$$

 $L[\gamma_2] \le d(x, q) + \frac{\epsilon}{2}$.

Joining γ_1 and γ_2 , we have $\gamma = \gamma_1 * \gamma_2$ with

$$d(p,q) \le L[\gamma] = L[\gamma_1] + L[\gamma_2] \le d(p,x) + d(x,q) + \epsilon$$

and $\epsilon > 0$ is arbitrary.

5. Lastly, we have to prove that the topologies agree. This means showing that

$$U_{\epsilon} = B_{\epsilon}^{d}(p) := \{ q \in M \mid d(p,q) < \epsilon \}$$

for U_{ϵ} from theorem ??. By the same theorem, U_{ϵ} is a basis, and by definition, so is $B_{\epsilon}^{d}(p)$. Now, we have:

- $\forall q \in U_{\epsilon} \implies d(p,q) = L[\gamma_{pq}] < \epsilon \implies U_{\epsilon} \subseteq B_{\epsilon}^{d}(p)$
- $\forall q \in B^d_{\epsilon}(p)$ there is a curve such that $\gamma(a) = p, \ \gamma(b) = q$ and $L[\gamma] < \epsilon$. But any curve leaving U_{ϵ} has length $L \ge \epsilon$, so $B^d_{\epsilon}(p) \subseteq U_{\epsilon}$.

Remark. Any Riemannian manifold is metrizable.

We will now consider another kind of length.

Definition 2.8 (Piecewise Arc-length). Let $\gamma:[a,b]\to M$ be a \mathcal{C}^0 curve. The piecewise length is given by

$$L_d[\gamma] := \sup_{N \in \mathbb{N}} \sup \left\{ \sum_{i=1}^N d(\gamma(t_i), \gamma(t_{i+1})) \mid a = t < \dots < t_i < t_i + 1 < \dots < t_N = b \right\}..$$

Theorem 2.9 (Piecewise Length). If γ is piecewise $\mathcal{C}^1,$ then

$$L_d[\gamma] = L[\gamma].$$

Proof.

$$\sum_{i=1}^{N} d(\gamma(t_i), \gamma(t_{i+1})) \le L[\gamma|_{[t_i, t_{i+1}]}] \le L[\gamma].$$

Taking the supremum, we have $L_d[\gamma] \leq L[\gamma]$.