Predictive Analytics for Financial Services

Team: Nu

Koushik Srivastav Lala Sahithi Bathini Vaishnavi Jangili

CS5831 Project Presentation
Michigan Technological University
04/17/2023

INTRODUCTION

The recent expansion of the credit industry has made credit scoring a very important problem, so the bank's credit section deals with a lot of credit data.

The motto of our project is to predict if the customer is a good or bad customer based on the risk involved.

CREDIT SCORE

DATA SET

Summary Of the Dataset

- ❖ 1000 Records (Kaggle Dataset)
- **♦** 11 Features
- One redundant column (index)
- ❖ Dataset can be found at:

https://www.kaggle.com/datasets/uciml

/german-credit

Features	Data Type			
Index	Continuous			
Age	Continuous			
Sex	Categorical			
Job	Categorical			
Housing	Categorical			
Savings accounts	Categorical			
Checking account	Categorical			
Credit Amount	Continuous			
Duration	Continuous			
Purpose	Categorical			
Risk	Categorical			

CORRELATION ANALYSIS

DATA PREPROCESSING

- Removing the redundant attributes
- Removal of Null values (savings account and checking account)
- One-hot-encoding of categorical variables.

credit.isna().sum() Index Age Sex Job Housing Saving accounts 183 Checking account 394 Credit amount Duration Purpose Risk dtype: int64

DATA EXPLORATION

Cont...

CORRELATION AFTER PREPROCESSING

EXPERIMENTAL DESIGN

- Split: 70% training/validation, 30% test.
- Scaler: Standard scaler
- SMOTE: Synthesizing new examples.
- GridSearchCV for tuning models.

CLASSIFICATION MODELS & EVALUATION

In the project we have tried and tested few classification

models like

- Random forest
- K-Nearest Neighbors
- SVM
- Decision Tree

BEST HYPERPARAMETERS

Random Forest:

- 'max depth': None
- 'max features': 'auto'
- 'min samples leaf': 1
- 'min_samples_split': 4
- ♦ 'n estimators': 162

SVM:

- **♦** 'C': 10
- 'Kernel': 'rbf'

KNN:

- Best Hyperparameters: {'n_neighbors': 1}
- Best Accuracy Score: 0.686734693877551

DECISION TREE:

- 'criterion': 'gini'
- 'max_depth': 20
- 'min_samples_leaf': 1
- 'min_samples_split': 2

RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

Models	Accuracy of original Data	Recall of Original Data	Precision of original Data	Accuracy of SMOTE Data		Precision of SMOTE Data
Random Forest	0.72	0.91	0.74	0.69	0.78	0.77
KNN	0.69	0.89	0.70	0.61	0.76	0.71
SVM	0.70	0.95	0.72	0.73	0.71	0.76
Decision Tree	0.62	0.70	0.74	0.70	0.66	0.77

RESULTS AND DISCUSSION

FUTURE SCOPE

- In the future, we are going to use classification models like AdaBoost, Naive Bayes, Gradient Boost.
- We would also like to consider additional attributes to improve the accuracy of the prediction.

TO SUMMARIZE...

- The project has developed a model to classify customers as good or bad based on the various attributes related to their occupation, credit amount etc.
- The models are evaluated on basis of accuracy values and best model is selected (Random Forest).

