Intro to Functional Analysis Assignment 7 Due on Wednesday, May 1

Please hand in Solutions to all 5 problems.

- 1. Let X be a topological vector space, C be a closed subset of X, and K be a compact subset of X. Show that C + K is closed.
- 2. Let X be a locally convex topological vector space and let $x \in X \setminus \{0\}$ be given. Show that there exists a continuous linear functional $f: X \to \mathbb{K}$ such that $f(x) \neq 0$.
- 3. Let $\mathbb{K} = \mathbb{C}$ and let X be the set of all continuous functions $f : [0,1] \to \mathbb{C}$. Define the metric ρ on X by

$$\rho(f,g)) = \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx.$$

Let (X, σ) denote X equipped with the topology induced by ρ and let (X, τ) denote X equipped with the topology defined by the separating family $\{p_x : x \in [0, 1]\}$ of seminorms, where

$$p_x(f) = |f(x)|$$
 for all $x \in X$.

Let I denote the identity mapping on X.

- (a) Show that $I:(X,\tau)\to (X,\sigma)$ is bounded. (Notice that this is equivalent to showing that every set that is topologically τ -bounded is also topologically σ -bounded.)
- (b) Show that $I:(X,\tau)\to (X\sigma)$ fails to be continuous.

(Note: This is also an example of a linear mapping between two TVS that is sequentially continuous, but not continuous.)

- 4. Let X be a topological vector space and let E be a subset of X. Show that E is topologically bounded if and only if the following property holds: For every sequence $\{\alpha_n\}_{n=1}^{\infty}$ in \mathbb{K} such that $\alpha_n \to 0$ as $n \to \infty$ and every sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \in E$ for all $n \in \mathbb{N}$, we have $\alpha_n x_n \to 0$ as $n \to \infty$.
- 5. Let X be a loveally convex topological vector space with a countable local base. Let $\{V_n : n \in \mathbb{N}\}$ be a local base such that for each $n \in \mathbb{N}$, V_n is balanced and convex. (Each V_n is automatically absorbing.) For each $n \in \mathbb{N}$ put

$$p_n(x) = p^{V_n}(x)$$
 for all $x \in X$,

where p^{V_n} is the Minkowski functional for V_n . Define $F: X \to \mathbb{R}$ by

$$F(x) = \max \left\{ \frac{1}{n} \min\{1, p_n(x)\} : n \in \mathbb{N} \right\} \text{ for all } x \in X.$$

Define $\rho: X \times X \to \mathbb{R}$ by

$$\rho(x,y) = F(x-y)$$
 for all $x, y \in X$.

- (a) Convince yourself that ρ is a translation invariant metric on X. You do not need to hand anything in for this part, just make sure that you convince yourself, and that you could convince me if I were to ask for details.
- (b) Show that each open ρ -ball centered at 0 is balanced.
- (c) Show that each open ρ -ball is convex.
- (d) Show that ρ induces the topology of X.

(Observe that radii r > 1 are irrelevant since $F(x) \le 1$ for all $x \in X$. For $0 < r \le 1$, there is an elegant formula for $\{x \in X : F(x) < r\}$.)