גלעד קותיאל 234247 - אלגוריתמים 1

1 הרצאה

DFS-ו BFS הקדמה, חיפוש בגרפים,

גלעד קותיאל 234247 - אלגוריתמים 1

הקדמה

אלגוריתם הוא דרך שיטתית (כלומר כזו שצעדיה מוגדרים היטב) לביצוע של משימה מסוימת, במספר סופי של צעדים

ויקיפדיה —

המושג אלגוריתם אינו חדש עבורנו, ראינו ומימשנו כבר אלגוריתמים בקורס מבוא למדעי המחשב, מבוא לתכנות מערכות ומבני נתונים.

חשיבות הקורס

בתעשייה - בעיות שמצריכות פתרון אלגוריתמי צצות במגוון תחומים. על פי glassdoor, מפתח אלגוריתמים מרוויח 20 אחוז יותר מאשר מהנדס תוכנה.

במחקר האקדמי - חלק עיקרי של המחקר האקדמי הוא בפיתוח וניתוח אלגוריתמים.

חומר הקורס

בקורס נלמד מגוון אלגוריתמים שעל פי רוב נחשבים לבסיס בתחום האלגוריתמים. הרוב המוחלט של האלגוריתמים שנלמד בקורס הם אלגוריתמים על גרפים וזאת מכיוון שגרפים הוכיחו את עצמם ככלי מאוד חזק בייצוג מגוון רחב של בעיות. לחלק מהאלגוריתמים שימושים ברורים (מסלול קצר ביותר, עצי הופמן), חלק מהאלגוריתמים מהווים פתרון למגוון גדול של בעיות שניתנות לייצוג בצורה מסוימת (זרימה), וחלק מהאלגוריתמים מהווים בסיס לפיתוח אלגוריתמים מורכבים יותר (DFS ,BFS) עץ פורש). מעבר לזה נלמד טכניקות (פשוטות יחסית) כלליות לפיתוח אלגוריתמים.

אלגוריתמי חיפוש בגרפים

דוגמה 1. רוצים למצוא (ולהדפים) את כל קבצי התמונות ששמורות על הכונן הקשיח.

למשל עבור:

כיצד עלינו לסרוק (לחפש) את מערכת הקבצים ?

- 1. במידה ורוצים להדפיס את (הנתיב המלא של) הקבצים בסדר לקסיקוגרפי?
 - 2. במידה ורוצים להדפיס קבצים לפי העומק שלהם (מספר תיקיות) ?

נשים לב שאפשר לייצג את מערכת הקבצים באמצעות גרף מכוון (ברוב מערכות הקבצים עץ אינו ייצוג מספק) ולכן נעביר את הדיון שלנו לחיפוש בגרפים.

ייצוג גרפים

קיימים שני ייצוגים סטנדרטים של גרפים (מכוונים או לא):

- 1. על ידי מטריצת שכנויות
- 2. על ידי רשימת שכנויות

אם לא מצוין אחרת, נניח שהגרף מיוצג על ידי רשימת שכנויות.

אלגוריתם כללי

s מקור (מכוון או לא) וצומת מקור G

.s- מטרה: למצוא תת עץ שפורש את כל הצמתים שישיגים מ

למשל:

הגדרה 1 (חתך). חתך בגרף, G=(V,E), הוא תת קבוצה של צפתים. $S\subseteq V$ האדרה 1 (חתך). חתך בגרף, G=(V,E) חוצה את החתך $v\notin S$ -1 $v\notin S$

- $p(v) \leftarrow \mathrm{nil}$ מציבים $v \in V$ ולכל ולכל $U \leftarrow \{s\}$, $T \leftarrow \emptyset$.1
 - U את שחוצה שח שחוצה ער 2.

$$p(v) \leftarrow u$$
 , $T \leftarrow T \cup \{uv\}$, $U \leftarrow U \cup \{v\}$ (x)

s-טענה 1. בסיום ריצת האלגוריתם U מכילה את כל הצפתים הישיגים פ

הוכחה. בשלילה, בוחרים מסלול מ-s לצומת v שלא נכנס ל-U ומסתכלים על הצומת הראשון במסלול שלא נכנס.

טענה 2. בכל שלב בריצת האלגוריתם T עץ קשיר

הוכחה. באינדוקציה על צעד האלגוריתם.

s-ט בשפט 1. בסיום ריצת האלגוריתם הכללי T הוא עץ שפורש את כל הצמתים הישיגים פ

BFS

הגדרה 2 (מרחק). בהינתן גרף G=(V,E), נגדיר את הערחק בין שני צמתים $u,v\in V$ ונסענו G=(V,E), כעספר הקשתות במסלול u.

.dist(u,v) בסימון מדובר נסתפק איזה גרף איזה ברור על איזה כאשר ברור על

s מקור (מכוון או לא) וצומת מקור G

 $dist_T(s,v)=dist_G(s,v)$ מתקיים $v\in V$ מתקיים מ-s כך שלכל אינים מ-s משיגים את עץ, T, שפורש את למצוא למשל:

- $p(v) \leftarrow nil, d(v) \leftarrow \infty$ מציבים $v \in V$, לכל $U \leftarrow \{s\}, T \leftarrow \emptyset, i \leftarrow 0$.1
 - $d(s) \leftarrow 0$.2
 - d(u)=iו ו-U את שחוצה את uv השח ג.3

$$U \leftarrow U \cup \{v\}, T \leftarrow T \cup \{uv\}$$
 (א)

$$p(v) = u, d(v) = i + 1$$
 (2)

 $i \leftarrow i+1$.4

.U את שחוצה uv שחוצה את קיימת את האלגוריתם את בסוף ריצת האלגוריתם את סענה

הוכחה. בשלילה, אם קיימת וi-i אז באיטרציה הi-i היינו מוסיפים אותה הוכחה.

גלעד קותיאל 234247 - אלגוריתמים 1

מסקנה 1. BFS הוא מקרה פרטי של האלגוריתם הכללי

 $dist_T(s,v)=d(v)$ טענה 4. לכל $v\in V$ טענה 5.

הוכחה. באינדוקציה על צעד האלגוריתם

 $dist_T(s,v) \leq dist_G(s,v)$ טענה 5. לכל $v \in V$ טענה 5.

הוכחה. באינדוקציה על צעד האלגוריתם

 $d(v) \leq dist_G(s,v)$ פשפט 2. לכל $v \in V$ מתקיים

DFS

סיכום

דוגמה 2 (פאזל הזזה). נתון לוח משחק בגודל $n \times m$ על הלוח 1-m-1 חלקים מפוספרים מ-1 עד 1-m-1 ומשבצת ריקה. נתון סידור ראשוני של החלקים ואנו רוצים לסדר את החלקים לפי הסדר כך שבכל שלב מותר לנו להזיז את אחד החלקים ששכנים למשבצת הריקה אל המשבצת הריקה.

m=m=3 למשל

1	3	6
8	4	
5	2	7

הציעו אלגוריתם לפתרון הבעיה.