Question 1

(2 marks) Let $\Sigma = \{0, 1\}$ and consider languages $A = \{01, 00, 1\}$, $B = \{10, 11, 0\}$.

- (a) Write down all strings in the set A \cdot B. How many strings there are in A \cdot B?
- (b) Write down all strings in the set B \cdot A. How many string there are in B \cdot A?

part (a)

 $\{0110,0111,010,\ 0010,0011,000,\ 110,111,10\}$ there are 9 strings in A·B

part (b)

 $\{1001,1000,101,\ 1101,1100,111,\ 001,000,01\}$ there are 9 strings in B·A

Question 2

(3 marks) In this question the alphabet is $\Sigma = \{0, 1\}$. Let R = (00 + 10*1)* and S = (10*1 + 0*10*)*.

- (a) Give two examples of a string z that is both in R and in S (that is, $z \in R \cap S$).
- (b) If possible, give two examples of a string x that is in R and is not in S (that is, $x \in R \cap S$ where S is the complement of S). If no such strings exist, write "R \cap S does not have two strings".
- (c) If possible, give two examples of a string y that is in S and is not in R (that is, $y \in R \cap S$). If no such strings exist, write "R n S does not have two strings".

In each case briefly explain (using natural language) why your example strings have the required property.

part (a)

 $z_1 = 101$

 $z_2 = 11$

both of these are in R and S because the concatenation within allows us to [ignore 00] and then create a string that will match [(10*1 + 0*10*)*, ignoring 0*10*].

part (b)

 $X_1 = 00$

 $x_2 = 0000$

these 2 strings are only in R as it is impossible to make a string solely from 0's in S as 1 is contained in both parts of the concatenation and none of the 1's have closure, meaning they cannot be removed.

part (c)

 $y_1 = 010$ $y_2 = 0001000$

these 2 strings are only in S because it is impossible to create a string with a a string in R with a substring of '1' with a suffix and prefix of [0*] as only one part of the concatenation in R has a substr '1', and there are 2 of them as the prefix and suffix with a substring of [0*]. none of the 1's in R have closure thus it is impossible to make the above strings using said set.

Question 3

(5 marks) Show how to define the following languages over $\Sigma = \{0, 1\}$ using only ϵ , the alphabet symbols 0 and 1, and the operations of union, concatenation, and closure. Note: Your answer cannot use the intersection or complementation operation. Below "or" always means "inclusive or".

- (a) All strings that have both 000 and 111 as a substring.
- (b) All strings that have 0000 or 1111 as a substring.
- (c) All strings that both begin and end with 0110. (Note that the prefix 0110 and the suffix 0110 may overlap.)
- (d) All strings that do not have 111 as a substring.
- (e) All strings that have even length and, at the same time, have 010 as a substring.

part (a)

A = (0+1)*(111)(0+1)*(000)(0+1)* + 111000 + 000111

part (b)

B = (0+1)*(1111+0000)(0+1)* + 1111 + 0000

part (c)

C = 0110(0+1)*0110 + 0110110 + 0110

part (d)

 $D = (0+01+10+101+010)*(1+\varepsilon)$

part (e)

E = (00+01+10+11)*(010)(1+0)

Question 4

(2 marks) Let Σ = {a, b} and consider the state-transition diagram given in Figure 1. Figure 1: State-transition diagram for Question 4.

- (a) Give examples of three strings that are accepted by the state diagram and examples of three strings that are not accepted by the state diagram.
- (b) Write out explicitly the transition table (or transition function) that defines the state transitions of the diagram.

part (a)

accepted = {ab,abbab,abbba}
accepted = {abb,abba,a}

part (b)

	inpu	t 	a	b
state	Α	-+- 	Α	В
	В		В	С
	C		Α	В

Question 5

(3 marks) Let Σ = {a, b, c, d} and consider the nondeterministic state diagram with ϵ -transitions given in Figure 2.

Using the systematic method described in the lectures (and in the text), convert the state diagram into an equivalent (non)deterministic state diagram without ϵ -transitions. You should not further modify/simplify the resulting state diagram.

NOTE: $[\downarrow x\uparrow]$ is a self loop over x

in order to transform this ϵ -NFA into an NFA we must first remove all ϵ -transitions as well as any states that only recieve ϵ -transitions.

copy diagram />---- ϵ ---------\ \Rightarrow (E) $\epsilon \epsilon < //>a \Rightarrow$ ((F)) $\epsilon b < //>c \Rightarrow$ (G) $\downarrow b \uparrow$

remove
$$\rightarrow$$
 (E) $-a\rightarrow$ ((F)) \leftarrow bc \rightarrow (G) ϵ -trans \downarrow b \uparrow \downarrow d \uparrow

make final ϵ -trans final states final states in copy. there is nothing to change for this step.

thus the final NFA sans ϵ -transitions:

Question 6

(5 marks) Let $\Sigma = \{a, b\}$. Using the systematic method described in the lectures (the subset construction), convert the nondeterministic state diagram given in Figure 3 into a deterministic state diagram. Your answer should indicate how the deterministic state diagram is obtained from the nondeterministic one: the states of the deterministic diagram should be labeled by sets of states of the nondeterministic diagram.

to use the state subset algorithm we must first create a state transition diagram using subsets of the states.

input		a	b	b	
	+-				
Α		BC	Α		
BC		Α	В	D	
BD		BA	В	D	
BA		BA	В	Α	
	A BC BD	===+- A BC BD	A BC BC A BD BA	A BC A BC A B BD BA B	

now that we have the transition table, we can make the a DFA for this NFA

$$\downarrow b\uparrow$$

$$\rightarrow (A) \leftarrow a < //>b \rightarrow (BC) -b \rightarrow (BD) -a \rightarrow (BA)$$

$$\downarrow a\uparrow \qquad \qquad \downarrow b\uparrow \qquad \downarrow a\uparrow$$

thus, this is the DFA derived from the given NFA using the subset algorithm