```
In [9]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as ny
In [1]: pip install pymysql sqlalchemy pandas
       Requirement already satisfied: pymysql in c:\users\admin\appdata\local\progr
       ams\python\python313\lib\site-packages (1.1.1)
       Requirement already satisfied: sqlalchemy in c:\users\admin\appdata\local\pr
       ograms\python\python313\lib\site-packages (2.0.41)
       Requirement already satisfied: pandas in c:\users\admin\appdata\local\progra
       ms\python\python313\lib\site-packages (2.3.0)
       Requirement already satisfied: greenlet>=1 in c:\users\admin\appdata\local\p
       rograms\python\python313\lib\site-packages (from sqlalchemy) (3.2.3)
       Requirement already satisfied: typing-extensions>=4.6.0 in c:\users\admin\ap
       pdata\local\programs\python\python313\lib\site-packages (from sqlalchemy)
       (4.14.0)
       Requirement already satisfied: numpy>=1.26.0 in c:\users\admin\appdata\local
       \programs\python\python313\lib\site-packages (from pandas) (2.3.1)
       Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\admin\appd
       ata\local\programs\python\python313\lib\site-packages (from pandas) (2.9.0.p
       ost0)
       Requirement already satisfied: pytz>=2020.1 in c:\users\admin\appdata\local
       \programs\python\python313\lib\site-packages (from pandas) (2025.2)
       Requirement already satisfied: tzdata>=2022.7 in c:\users\admin\appdata\loca
       l\programs\python\python313\lib\site-packages (from pandas) (2025.2)
       Requirement already satisfied: six>=1.5 in c:\users\admin\appdata\local\prog
       rams\python\python313\lib\site-packages (from python-dateutil>=2.8.2->panda
       s) (1.17.0)
       Note: you may need to restart the kernel to use updated packages.
In [1]: from sqlalchemy import create engine
        import pandas as pd
        user = "root"
        password = "Aryan%402004" # '@' becomes '%40'
        host = "localhost"
        port = 3306
```

Out[6]:		Client ID	Name	Age	Location ID	Joined Bank	Banking Contact	Nationality	Occupatio
	0	IND81288	Raymond Mills	24	34324	06-05- 2019	Anthony Torres	American	Safet Technicia I'
	1	IND65833	Julia Spencer	23	42205	10-12- 2001	Jonathan Hawkins	African	Softwar Consultar
	2	IND47499	Stephen Murray	27	7314	25-01- 2010	Anthony Berry	European	Help Des Operato
	3	IND72498	Virginia Garza	40	34594	28-03- 2019	Steve Diaz	American	Geologist
	4	IND60181	Melissa Sanders	46	41269	20-07- 2012	Shawn Long	American	Assistar Professo

 $5 \text{ rows} \times 25 \text{ columns}$

In [7]: #Generate Descriptive statistics for the database
 df.describe()

Out[7]:

	Age	Location ID	Estimated Income	Superannuation Savings	Amount of Credit Cards
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000
mean	51.039667	21563.323000	171305.034263	25531.599673	1.463667
std	19.854760	12462.273017	111935.808209	16259.950770	0.676387
min	17.000000	12.000000	15919.480000	1482.030000	1.000000
25%	34.000000	10803.500000	82906.595000	12513.775000	1.000000
50%	51.000000	21129.500000	142313.480000	22357.355000	1.000000
75 %	69.000000	32054.500000	242290.305000	35464.740000	2.000000
max	85.000000	43369.000000	522330.260000	75963.900000	3.000000

In [8]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3000 entries, 0 to 2999
        Data columns (total 25 columns):
             Column
                                      Non-Null Count Dtype
             -----
        - - -
                                      _____
                                                     ----
                                                      object
         0
            ï»;Client ID
                                      3000 non-null
         1
            Name
                                      3000 non-null
                                                      object
         2
            Age
                                      3000 non-null
                                                      int64
         3
            Location ID
                                      3000 non-null
                                                      int64
         4
            Joined Bank
                                      3000 non-null
                                                      object
         5
             Banking Contact
                                      3000 non-null
                                                      object
         6
            Nationality
                                      3000 non-null
                                                      object
         7
            Occupation
                                      3000 non-null
                                                      object
         8
             Fee Structure
                                      3000 non-null
                                                      object
             Loyalty Classification
                                                      object
         9
                                      3000 non-null
         10 Estimated Income
                                      3000 non-null
                                                      float64
         11 Superannuation Savings
                                      3000 non-null
                                                      float64
         12 Amount of Credit Cards
                                      3000 non-null
                                                      int64
         13 Credit Card Balance
                                                      float64
                                      3000 non-null
         14 Bank Loans
                                      3000 non-null
                                                      float64
         15 Bank Deposits
                                      3000 non-null
                                                      float64
         16 Checking Accounts
                                      3000 non-null
                                                      float64
         17 Saving Accounts
                                      3000 non-null
                                                      float64
         18 Foreign Currency Account 3000 non-null
                                                      float64
         19 Business Lending
                                      3000 non-null
                                                      float64
         20 Properties Owned
                                      3000 non-null
                                                      int64
         21 Risk Weighting
                                      3000 non-null
                                                      int64
         22 BRId
                                      3000 non-null
                                                      int64
         23 GenderId
                                      3000 non-null
                                                      int64
         24 IAId
                                      3000 non-null
                                                      int64
        dtypes: float64(9), int64(8), object(8)
        memory usage: 586.1+ KB
In [10]: df.shape
Out[10]: (3000, 25)
         bins=[0,100000,300000, float('inf')]
In [12]:
         labels=['low', 'med', 'high']
         df['Income Band'] =pd.cut(df['Estimated Income'], bins=bins, labels=labels,
In [13]: df['Income Band'].value counts().plot(kind='bar')
Out[13]: <Axes: xlabel='Income Band'>
```



```
In [28]: #Examine the distribution of unique categories in categorical columns
         categorical_cols = df[["BRId", "GenderId", "IAId", "Amount of Credit Cards", "N
         for col in categorical cols:
             print(f"Value Counts for '{col}':")
             display(df[col].value_counts())
        Value Counts for 'BRId':
        BRId
        3
             1352
        1
              660
        2
              495
              493
        Name: count, dtype: int64
        Value Counts for 'GenderId':
        GenderId
             1512
             1488
        Name: count, dtype: int64
        Value Counts for 'IAId':
```

```
IAId
1
      177
2
      177
3
      177
4
      177
8
      177
9
      176
13
      176
12
      176
10
      176
11
      176
14
      176
15
      176
6
       89
5
       89
7
       89
16
       88
17
       88
18
       88
19
       88
20
       88
21
       88
22
       88
Name: count, dtype: int64
Value Counts for 'Amount of Credit Cards':
Amount of Credit Cards
1
     1922
2
      765
      313
Name: count, dtype: int64
Value Counts for 'Nationality':
Nationality
European
              1309
Asian
               754
American
               507
Australian
               254
African
               176
Name: count, dtype: int64
Value Counts for 'Occupation':
Occupation
Associate Professor
                                28
Structural Analysis Engineer
                                28
Recruiter
                                25
Account Coordinator
                                24
Human Resources Manager
                                24
Office Assistant IV
                                 8
Automation Specialist I
                                 7
Computer Systems Analyst I
                                 6
Developer III
                                 5
Senior Sales Associate
Name: count, Length: 195, dtype: int64
Value Counts for 'Fee Structure':
```

```
Fee Structure
High 1476
Mid
         962
         562
Low
Name: count, dtype: int64
Value Counts for 'Loyalty Classification':
Loyalty Classification
Jade
            1331
Silver
             767
Gold
             585
Platinum
             317
Name: count, dtype: int64
Value Counts for 'Properties Owned':
Properties Owned
     777
2
1
     776
3
    742
    705
Name: count, dtype: int64
Value Counts for 'Risk Weighting':
Risk Weighting
2
     1222
1
      836
3
     460
4
      322
5
      160
Name: count, dtype: int64
Value Counts for 'Income Band':
Income Band
med
        1517
       1027
low
hiah
       456
Name: count, dtype: int64
```

Univariate Analysis

```
In [29]: sns.set(style="whitegrid")

for col in categorical_cols:
    plt.figure(figsize=(6, 6))

# Try to sort the categories numerically if possible
    try:
        categories = sorted(df[col].dropna().unique(), key=lambda x: int(x))
    except:
        categories = df[col].value_counts().index

# Draw countplot
    ax = sns.countplot(data=df, x=col, order=categories, color="#4c72b0")

# Add value labels on top of bars
    for p in ax.patches:
        height = int(p.get_height())
        ax.annotate(f'{height}', (p.get_x() + p.get_width() / 2., height),
```

```
ha='center', va='bottom', fontsize=10, color='black')

# Final formatting
plt.title(f"Count Plot for '{col}'", fontsize=14)
plt.xlabel(col, fontsize=12)
plt.ylabel("Count", fontsize=12)
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
```

Count Plot for 'BRId'

Count Plot for 'Genderld'

Count Plot for 'IAId'

Properties Owned

က

100

0

0

Bivariate Analysis

```
In [32]: sns.set(style="whitegrid")
for col in categorical_cols:
    if col == "GenderId":
        continue # Skip GenderId since it's used as hue

plt.figure(figsize=(5, 5))

# Try to sort categories numerically if possible
    try:
        categories = sorted(df[col].dropna().unique(), key=lambda x: int(x))
    except:
        categories = df[col].value_counts().index

# Plot with hue
ax = sns.countplot(data=df, x=col, hue="Nationality", order=categories,
```

Bivariate Count Plot of 'BRId' by GenderId

Bivariate Count Plot of 'IAId' by GenderId

Bivariate Count Plot of 'Amount of Credit Cards' by Genderld

C:\Users\admin\AppData\Local\Temp\ipykernel_11452\1761577546.py:31: UserWarn ing: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no a rgument.

plt.legend(title="GenderId")

Bivariate Count Plot of 'Nationality' by Genderld

Bivariate Count Plot of 'Fee Structure' by Genderld

Bivariate Count Plot of 'Loyalty Classification' by Genderld

Bivariate Count Plot of 'Properties Owned' by Genderld

Bivariate Count Plot of 'Risk Weighting' by Genderld

Bivariate Count Plot of 'Income Band' by Genderld


```
In []: # Histplot of value counts for different occupation

In [38]: for col in categorical_cols:
    if col == "Occupation":
        continue # Skip Occupation column

    plt.figure(figsize=(8, 4))
    sns.histplot(df[col])
    plt.title(f'Histogram of {col}')
    plt.xlabel(col)
    plt.ylabel("Count")
    plt.show()
```


Numerical Analysis

```
In [47]: numerical_cols=['Estimated Income', 'Superannuation Savings','Credit Card Ba
#Univariate analysis and Visualization
plt.figure(figsize=(10,4))
for i,col in enumerate(numerical_cols):
    plt.subplot(4,3,i+1)
    sns.histplot(df[col],kde=True)
    plt.title(col)
    plt.show()
```


Credit Card Balance

Bank Loans

Bank Deposits

Saving Accounts 200 0 1 Saving Accounts


```
In [53]: numerical_cols=['Estimated Income', 'Superannuation Savings','Credit Card Ba
    correlation_matrix= df[numerical_cols].corr()
    plt.figure(figsize=(10,8))
    sns.heatmap(correlation_matrix, annot=True, cmap='crest',fmt=".2f")
    plt.title("Correlation_matrix")
    plt.show()
```


Insight of EDA:

1. The strongest posituve correlation occurs among "Bank Deposits" and "Checking Accounts", "Saving Account" AND "Foreign Currency Account" imdicating customers wip maintain high balances in one account type often hold substantial amount/funds across other accounts as well.

This notebook was converted with convert.ploomber.io