

COSI-165B Deep Learning PyTorch Tutorial

Chunhui Zhang chunhuizhang@brandeis.edu

03/27/2023

Outline

- Introduction to Deep Learning Framework
- PyTorch
- Tensor
- Networks, Forward, and Optimize
- MNIST Classification: a Toy Example
- Google Cloud Platform

Deep Learning

Learn underlying features in data using neural networks

Input: Images, Natural language, Graphs, Signals, Etc.

Output:

Image categories,
Translated Language,
Link prediction,
Signal labels,
Etc.

Multi-layer Perceptron Neural Network

3

Deep Learning

- 1. Forward: compute the output using current model and input data
- 2. Compute the loss: the error/gap between the output and ground-truth label
- 3. Backward: back propagate the loss, compute the gradient, and update the model

Deep Learning Framework

- The framework for automatic differentiation
- APIs for building neural networks, loading data, training, inference, and offering official pre-trained models

PyTorch

- A Python-based scientific computing package
 - Use the power of GPUs and other accelerators
 - Implement neural networks
 - Compute gradient in an automatic way
- Installation
 - Anaconda (Recommend): a distribution of the Python for scientific computing which makes python package installation more convenient.

Tensor

- Tensor
 - A specialized data structure
 - Similar to NumPy's ndarrays
 - Can run on GPUs to accelerate computing
- Basic Tensor Operations
 - Create
 - Convert
 - CPU/GPU
 - Matrix Operations
 - Math Operations

• ...

Neural Networks

- 1. Building neural networks
- 2. Forward
- 3. Gradient (equal to partial derivatives) computation
- 4. Update the model weights

Neural networks: Multi-layer Perceptron, Convolutional Neural Networks, Recurrent Neural Networks, Graph Neural Networks, BERT, ...

MNIST Classification: a Toy Example

- MNIST
 - A database of handwritten digits
 - Image classification

```
3840321934931840319433194933
```


MNIST Classification: a Toy Example

- MNIST
 - A database of handwritten digits
 - Image classification

Google Colab – A *free* and *easy* way to access GPU

- 1. https://colab.research.google.com
- 2. Introduction_to_PyTorch.ipynb Colaboratory (google.com)
- 3. pytorch_quick_start.ipynb Colaboratory (google.com)

