CatBoost

4 типа важностей.

Feature importance by Prediction Values Change (Internal Feature Importance) — Internal Feature Importance считается по формуле, в точности равной формуле Prediction Values Change. Разница между важностями в том, что Internal Feature Importance также возвращает важности автоматически добавленных комбинаций на основе категориальных признаков.

$$feature_importance_F = \sum_{trees, leafs_F} \left(v_1 - avr\right)^2 \cdot c_1 + \left(v_2 - avr\right)^2 \cdot c_2,$$

https://t.me/jdata_blog

- $avr = rac{v_1 \cdot c_1 + v_2 \cdot c_2}{c_1 + c_2}, where$
 - с1, с2 представляют общий вес объектов в левом и правом листах соответственно. Этот вес равен количеству объектов на каждом листе, если для набора данных не указаны веса.
 - v^1, v^2 представляют собой прогнозы модели. v^1 это ответ дерева для примеров, для которых выполнено условие разделения, v^2 ответ для остальных примеров

Prediction Difference – важность признака для сравнения принятия решений на двух конкретных объектах.

Рассмотрим признак x10, разбитый на n частей (бинов). Сделаем прогноз модели для пары объектов, получив y1, y2.

- 1. Для каждого бина от 1 до n
- 2. Поменяем значение признака x_10 так, чтобы попало в бин (т.е. так что x $^{10} \in bin_i, \forall i$), получим $x_{10}^{'}$
- 3. Вычислим прогноз модели для каждого нового x^{10}
- 4. Для каждого нового полученного значения вычислим difference $i_1=y_1-cb(x_{10}^{'})$, difference $i_2=y_2-cb(x_{10}^{'})$

После агреггируем полученные значения по всем разбиениям и для пары объектов. Получим среднее изменение прогноза модели, при изменении признака, которое и будет отражать интересующую нас важность.

Loss function change – способ вычисления важности вычисляет разницу между значением потерь модели с этим признаком и без него.

Пусть:

Eiv — математическое ожидание прогноза модели, обученной без i—го признака;

v — вектор со значениями прогноза для исходного набора данных;

metric — это функция потерь, указанная в параметрах обучения.

В зависимости от задачи, вычислим лучшее значение метрики, как:

 $bestValue = \pm (metric(E_iv) - metric(v))$

Тогда важность признака по LossFunctionChange есть:

 $featureImportancei = \\abs(metric(Eiv)-bestvalue)-abs(metric(v)-bestvalue)$

https://t.me/jdata_blog

XgBoost and LightGbm

3 типа важностей и 2 соответственно.

Cover importnaces — это относительное количество наблюдений, связанных с этим признаком.

Пример:

Пусть у нас есть 100 наблюдений, 6 признаков и 3 дерева. Пусть также признак feature1 используется для определения конечного узла для 13,5 и 2 наблюдений в tree1, tree2 и tree3 соответственно.

Тогда мы посчитаем cover1 данного объекта, как:

 $cover_1 = 13 + 5 + 2 = 20$

Это будет рассчитано для всех 6-ти признаков и итоговое покрытие будет равно 20, выраженному в процентах от показателей покрытия всех функций. Таким образом:

$$cover_{fi} = \frac{cover_{i}}{\sum_{i}^{n} cover_{n}}$$

где n количество признаков. В нашем случае n=3.

Действительно, если просуммировать все покрытия, мы получим значение pprox 100

Важно: такая простая интерпретация справедлива только для квадратичной функции потерь (то есть для **линейной регрессии**) Но объяснить данную метрику на классификации проще.

В случае другой функции потерь это есть сумма градиента второго порядка на обучающих данных, классифицированных благодаря признаку по листьям. Для этого используется Гессиан функции.

Gain importances — важность по приросту. Она аналогична важности, вычисляемой в дереве решений.

В XGB также для gain importances можно получить и полную сумму и нормированную на количество деревьев. В LightGBM — только полную.

Строится она по такому алгоритму:

- Для каждого дерева в ансамбле
- ...посчитать вклад каждого признака в чистоту в узлах каждого дерева в модели
- Усреднить по количеству деревьев;

Более высокое значение этого показателя по сравнению с другим признаком означает, что он более важен для создания прогноза в среднем для деревьев.

Frequence (или weight) importances — представляет собой количество раз, когда конкретный признак встречается в деревьях модели. Разница: в Igbm weight importance называется split importance.

Пусть у нас есть 100 наблюдений, 4 признака и 3 дерева. Пусть также признак $feature^2$ используется для определения конечного узла для *скольких-то* наблюдений в $tree^1$, $tree^2$ и $tree^3$ соответственно и пусть $feature^2$ участвует в 3x, 2x и снова 3x разбиениях в деревьях 1, 2, 3. Тогда его вес:

 $weight = spits_1 + splits_2 + splits_3 = 3 + 2 + 2 = 7.$

	Feature name	Weight importances
0	Pregnancies	102.0
1	Glucose	247.0
2	BloodPressure	180.0
3	SkinThickness	125.0
4	Insulin	102.0
5	BMI	231.0
6	DiabetesPedigreeFunction	268.0
7	Age	188.0

https://t.me/jdata_blog

В общем виде вес признака можно записать как:

$$weight = splits_1 + splits_2 + ... + splits_j + ... + splits_n$$

где п - число дереьев в ансамбле.