

MATEMÁTICA I SECCIÓN: U1

CLASE N° 13

- Transformaciones
 - Transformaciones horizontales.
 - Transformaciones verticales.

1. Estudio de la transformación $T_{(\)+a}^H$

f(x+a) siendo a>0, es una traslación horizontal de la gráfica de la función f(x) de "a" unidades a la izquierda y la denotamos por $T_{(\cdot)+a}^H$.

2. Estudio de la transformación $T_{(\)-a}^H$

f(x-a) siendo a>0, es una traslación horizontal de la gráfica de la función f(x) de "a" unidades a la derecha y la denotamos por $T_{(\cdot)-a}^H$.

3. Estudio de la transformación $T_{-(\cdot)}^H$

f(-x), es una simetría con respecto al eje y (reflexión horizontal de la gráfica de la función f(x)) y la denotamos por $T_{-(\cdot)}^H$.

4. Estudio de la transformación $T_{a(\cdot)}^H$, a > 1.

f(ax) con a > 1, la gráfica de la función f(x) se contrae hacia el origen por un factor a, y la denotamos por $T_{a(\cdot)}^H$.

Prof. Robert Espitia

5. Estudio de la transformación $T_{a(\cdot)}^H$, 0 < a < 1

f(ax) con 0 < a < 1, la gráfica de la función f(x) se expande a partir del origen por un factor a, y la denotamos por $T_{a(\cdot)}^H$.

6. Estudio de la transformación $T_{|(\cdot)|}^H$

- f(|x|) Los puntos de la gráfica de la función f(x) a la izquierda del eje y desaparecen.
 - Los puntos de la gráfica de la función f(x) a la derecha del eje y quedan iguales y se duplican simétricamente respecto al eje y. La denotamos por $T_{|(\cdot)|}^H$.

7. Estudio de la transformación $T_{\frac{1}{(\cdot)}}^H$

Los puntos de la gráfica de la función f(x) a la derecha del eje y giran en torno $f\left(\frac{1}{x}\right)$ a x=1 y se contraen si $x\in(1,\infty)$ o se expanden si $x\in(0,1)$.

Los puntos de la gráfica de la función f(x) a la izquierda del eje y giran en torno a x=-1 y se contraen si $x\in (-\infty,-1)$ o se expanden si $x\in (-1,0)$ La denotamos por T_1^H .

1. Estudio de la transformación $T_{(\)+a}^V$

f(x) + a siendo a > 0, es una traslación vertical de la gráfica de la función f(x) de "a" unidades hacia arriba y la denotamos por $T_{(\cdot)+a}^V$.

2. Estudio de la transformación $T_{(\)-a}^V$

f(x) - a siendo a > 0, es una traslación vertical de la gráfica de la función f(x) de "a" unidades hacia abajo y la denotamos por $T_{(\cdot)-a}^V$.

3. Estudio de la transformación $T_{-(\cdot)}^V$

-f(x), es una simetría con respecto al eje x (reflexión vertical de la gráfica de la función f(x)) y la denotamos por $T_{-(\cdot)}^V$.

4. Estudio de la transformación $T_{a(\cdot)}^V$, a > 1.

af(x) con a > 1, la gráfica de la función f(x) se expande verticalmente a partir del origen por un factor a, y la denotamos por $T_{a(\cdot)}^V$.

07/02/2022

Prof. Robert Espitia

5. Estudio de la transformación $T_{a(\cdot)}^V$, 0 < a < 1

af(x) con 0 < a < 1, la gráfica de la función f(x) se contrae hacia el origen por un factor a, y la denotamos por $T_{a(\cdot)}^V$.

6. Estudio de la transformación $T_{|(\cdot)|}^V$

- |f(x)| Los puntos positivos de la gráfica de la función f(x) quedan fijos.
 - Los puntos negativos de la gráfica de la función f(x) son simetrizados con respecto al eje x. La denotamos por $T_{|(\cdot)|}^{V}$.

7. Estudio de la transformación $T_{\frac{1}{(\cdot)}}^{V}$

Los puntos de la gráfica de la función f(x), que se encuentran arriba del eje x, giran en torno a y = 1 y se contraen si $y \in (1, \infty)$ o se expanden si $y \in (0,1)$.

Los puntos de la gráfica de la función f(x), que se encuentran abajo del eje x, giran en torno a y=-1 y se contraen si $y\in (-\infty,-1)$ o se expanden si $y\in (-1,0)$ La denotamos por $T_{\underline{1}}^{V}$.

Prof. Robert Espitia

1. Graficar $Sen\left(\frac{1}{x}\right)$

2. Graficar $\frac{1}{Sen(x)}$

Graficar $2\cos(x+2) - 1$

$$T^{H}$$

$$() + 2$$

$$\cos(x + 2)$$

$$2\cos(x + 2)$$

$$T^{V}$$

$$() - 1$$

$$2\cos(x + 2) - 1$$

$$T_{(\)-1}^{V}T_{2(\)}^{V}T_{(\)+2}^{H}$$
 (Cos(x))

Graficar
$$2\cos(x+2) - 1$$

$T_{()-1}^{V}T_{2()}^{V}T_{()+2}^{H}$ (Cos(x))

