# Deep Generative Models

Lecture 12

Roman Isachenko



2025, Spring

### Recap of previous lecture

#### Theorem (continuity equation)

If f is uniformly Lipschitz continuous in x and continuous in t, then

$$\frac{d\log p_t(\mathbf{x}(t))}{dt} = -\mathrm{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)}\right)$$
$$\log p_1(\mathbf{x}(1)) = \log p_0(\mathbf{x}(0)) - \int_0^1 \mathrm{tr}\left(\frac{\partial \mathbf{f}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)}\right) dt.$$

- **Discrete-in-time NF**: evaluation of determinant of the Jacobian costs  $O(m^3)$  (we need invertible  $\mathbf{f}$ ).
- ▶ Continuous-in-time NF: getting the trace of the Jacobian costs  $O(m^2)$  (we need smooth  $\mathbf{f}$ ).

#### Hutchinson's trace estimator

$$\log p_1(\mathbf{x}(1)) = \log p_0(\mathbf{x}(0)) - \mathbb{E}_{p(\epsilon)} \int_0^1 \left[ \epsilon^T \frac{\partial f}{\partial \mathbf{x}} \epsilon \right] dt.$$

## Recap of previous lecture

Forward pass (Loss function)

$$L(\mathbf{x}) = -\log p_1(\mathbf{x}(1)|\boldsymbol{\theta}) = -\log p_0(\mathbf{x}(0)) + \int_0^1 \operatorname{tr}\left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)}\right) dt$$

Adjoint functions

$$\mathbf{a}_{\mathbf{x}}(t) = \frac{\partial L}{\partial \mathbf{x}(t)}; \quad \mathbf{a}_{\boldsymbol{\theta}}(t) = \frac{\partial L}{\partial \boldsymbol{\theta}(t)}.$$

Theorem (Pontryagin)

$$\begin{split} \frac{d\mathbf{a}_{\mathbf{x}}(t)}{dt} &= -\mathbf{a}_{\mathbf{x}}(t)^{T} \cdot \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)}{\partial \mathbf{x}}; \quad \frac{d\mathbf{a}_{\boldsymbol{\theta}}(t)}{dt} = -\mathbf{a}_{\mathbf{x}}(t)^{T} \cdot \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)}{\partial \boldsymbol{\theta}}. \\ \frac{\partial L}{\partial \boldsymbol{\theta}(0)} &= \mathbf{a}_{\boldsymbol{\theta}}(0) = -\int_{1}^{0} \mathbf{a}_{\mathbf{x}}(t)^{T} \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{x}(0)} &= \mathbf{a}_{\mathbf{x}}(0) = -\int_{1}^{0} \mathbf{a}_{\mathbf{x}}(t)^{T} \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t)}{\partial \mathbf{x}(t)} dt + \frac{\partial L}{\partial \mathbf{x}(1)} \end{split}$$

## Recap of previous lecture

#### Forward pass

$$\mathbf{x}(1) = \mathbf{x}(0) + \int_0^1 \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t), t) dt \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

#### Backward pass

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{\theta}(0)} &= \mathbf{a}_{\boldsymbol{\theta}}(0) = -\int_{1}^{0} \mathbf{a}_{\mathbf{x}}(t)^{T} \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t),t)}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{x}(0)} &= \mathbf{a}_{\mathbf{x}}(0) = -\int_{1}^{0} \mathbf{a}_{\mathbf{x}}(t)^{T} \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t),t)}{\partial \mathbf{x}(t)} dt + \frac{\partial L}{\partial \mathbf{x}(1)} \\ \mathbf{x}(0) &= -\int_{0}^{1} \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}(t),t) dt + \mathbf{x}(1). \end{split} \right\} \Rightarrow \mathsf{ODE} \; \mathsf{Solver}$$

**Note:** These scary formulas are the standard backprop in the discrete case.

# Outline

## Summary

- ► KFP equation defines the dynamic of the probability function for the SDE.
- Langevin SDE has constant probability path.
- There exists special probability flow ODE for each SDE that gives the same probability path.
- It is possible to revert SDE using the score function.
- Score matching (NCSN) and diffusion models (DDPM) are the discretizations of the SDEs (variance exploding and variance preserving).