ACS234 Maths and Data Modelling

Find in this sheet a series of exercises to work during the holidays and which take up all the topics mentioned during the 3 previous tutorials.

Interpolation

Exercice 1 - Find the function of degree 3 that goes though these 3 points using :

- a) Polynomial interpolation
- b) Lagrange interpolation
- c) Newton interpolation

х	-1	0	1	2
f(x)	-1	1	0	0

Exercice 2 - We have the data below representing the water kinematic viscosity v (in m² s⁻¹) as a function of temperature T (in °C):

Т	15	16	17	18	19	20	21	22	23	24	25	26	27	28
V	1.14	1.11	1.08	1.06	1.03	1.01	0.983	0.960	0.938	0.917	0.896	0.876	0.857	0.839

- 1. What is the kinematic viscosity when $T = 26.5 \,^{\circ}\text{C}$?
- 2. For which temperature do we have $v = 0.9 \text{ m}^2 \text{ s}^{-1}$?

Exercice 3

- a) Find the Lagrange polynomial going though the first three points in red.
- b) Find the Lagrange polynomial going though the first four points in red and blue.
- c) Using both functions, interpolate the value of the f(3). Is it close to the real value in green?

х	0.0	1.0	2.0	3.0	4.0
f(x)	0.0	2.0	36.0	252.0	1040.0

Simple Linear Regression

Exercice 1 - We have the weight of father and son given below. Calculate the coefficients of the linear model as well as the coefficient of determination \mathbb{R}^2 . Give an interpretation.

Father	65	63	67	64
Son	68	66	68	65

Exercice 2 - We have the following linear model $y=a_0+a_1x+e$ and we know : a) the regression line goes though $(x_1,y_1)=(2,2.5)$ b) $\bar{x}=3.0$ and $\bar{y}=5.0$

Find \hat{a}_0 and \hat{a}_1 .

Exercice 3 - Can you write a Matlab (or python) code to solve the 2 exercices above ?

Multiple Linear Regression

Exercice

Using Matlab or Python code, construct a Multiple Linear Model of your choice. For that, you can use any data that you will find online. Calculate the performance of your model: MSE, \mathbb{R}^2 ...

You can use the famous dataset **Titanic** and participate in the competition to predict which passengers survived the Titanic shipwreck. Data available at : https://www.kaggle.com/c/titanic

If you want your work to be shown to other students, please send us the Jupyter notebook or code with plots by email:)