5) Checking whether two given DFAs accept the same language

Given B_1 , B_2 DFAs, test whether $L(B_1) = L(B_2)$. We rewrite this problem as the language $EQ_{DFA} = \{ < B_1, B_2 > | B_1 \text{ and } B_2 \text{ are DFAs and } L(B_1) = L(B_2) \}$.

Theorem: EQ_{DEA} is a Turing-decidable language.

Proof:

Given two sets Γ and Σ , $\Gamma \neq \Sigma$ if $\exists x \in M$ such that $x \notin \Sigma$ (i.e. $\Gamma \setminus \Sigma \neq \emptyset$) or $\exists x \in \Sigma$ such that $x \notin \Gamma$ (i.e. $\Sigma \setminus \Gamma \neq \emptyset$).

Recall from our unit on set theory that $\Gamma \setminus \Sigma = \Gamma \cap \sim \Sigma$, Γ intersect the complement of Σ . Similarly, $\Sigma \setminus \Gamma = \Sigma \cap \sim \Gamma$.

Therefore, $\Gamma \neq \Sigma \Leftrightarrow (\Gamma \cap \sim \Sigma) \cup (\Sigma \cap \sim \Gamma) \neq \emptyset$. This expression is called the **symmetric difference** of sets Γ and Σ in set theory.

Now, returning to our problem, note that B_1 and B_2 are DFAs \Rightarrow L(B_1) and L(B_2) are regular languages. Furthermore, we showed that the set of regular languages is closed under union, intersection and the taking of complements \Rightarrow (L(B_1) \cap ~(L(B_2)) U (L(B_2) \cap ~(L(B_1)) is a regular language \Rightarrow C a DFA that recognises the symmetric difference of L(B_1) and L(B_2) (L(B_1) \cap ~(L(B_2)) U (L(B_2) \cap ~(L(B_1)).

 $L(B_1) = L(B_2)$ if this symmetric different is empty $\Rightarrow \forall < B_1, B_2 > \in EQ_{DFA} \exists < C > \in E_{DFA}$, the language corresponding to the emptiness testing problem.

Since E_{DFA} is Turing-decidable, EQ_{DFA} is Turing-decidable. (q.e.d)

Next, we look at context-free grammars (CFGs) that we studied last term.

6) L_{cfg} = {<G, w> | G is a CFG and w is a string}

Theorem: L_{CFG} is a Turing-decidable language.

Sketch of Proof:

We could try to go through all possible applications of production rules allowable under G to see whether we can generate w, but infinitely many derivations may need to be tried.

Therefore, if G does not generate w, our algorithm would not halt. We would thus have a Turing machine that is a recogniser but **not** a decider.

To get a decider we have to put G into a special form called a Chomsky normal form that takes 2n-1 steps to generate a string w of length n. We do not need to know what a Chomsky normal form is, just that one exists in order to write down our decider M.

M = on input <G, w>, where G is a context-free grammar and w is a string.

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w if n > 0. If n = 0 list all derivations with one step.
- 3. If any of these derivations generate w then accept, otherwise reject.

7) Emptiness testing for context-free grammars

Given a context-free grammar G, figure out whether the language it generates L(G) is empty or not.

Rewrite as a language $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset \}$

Theorem: E_{CFG} is a Turing-decidable language.

Proof:

We use a similar marking argument as we did to show $E_{\rm DFA}$ was Turing-decidable. We define the Turing machine as:

M = on input <G>, where G is a CFG:

- 1. Mark all terminal symbols in G.
- 2. Repeat until no new variables get marked.
- 3. Mark any nonterminal <T> if G contains a production rule <T> \Rightarrow u₁, ..., u_k has already been marked.
- 4. If the start symbol <S> is not marked then accept, otherwise reject.

As we can see from step 4, if <S> is marked then the context-free grammar will end up generating at least one string as all terminals have already been marked in step 1. Therefore, $L(G) \neq \emptyset$ and we reject G. (q.e.d)

8) Equivalence problem for context-free grammars

Given two context-free grammars G_1 and G_2 , determine whether they generate the same language, i.e. $L(G_1) = L(G_2)$.

Rewrite this problem as a language:

$$EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}'$$
.

To solve the equivalence problem for DFAs, we used the symmetric difference and the fact that the emptiness problem for DFAs is Turing-decidable. In this case, the emptiness problem for CFGs is Turing-decidable as we just proved, but the symmetric difference argument does **not** work as the set of languages produced by context-free grammar is **not** closed under complements or intersection so the following result is true instead:

Proposition: EQ_{CFG} is **not** a Turing-decidable language.

This proposition is proven using a technique called reducibility. An even more general result is true, the equivalence problem for Turing machines is undecidable:

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}.$$

Proposition: E_{TM} is **not** a Turing-decidable language.

Returning to context-free grammars, we now know that L_{CFG} and E_{CFG} are Turing-decidable, but EQ_{CFG} is not.

Recall that a language is context-free if it can be generated by a context-free grammar.

Moral of the Story:

We know how the main types of languages relate to each other: $\{Regular\ Languages\} \subset \{Context-Free\ Languages\} \subset \{Turing-Recognisable\ Languages\}$

Visually we represent the relationship with a Venn diagram:

So Turing machines provide a very powerful computational model. What is surprising is that once we have build a Turing machine to recognise a language, we do not know whether there is a simpler computational model such as a DFA that recognises the same language. Define:

Regular_{TM} = $\{<M> \mid M \text{ is a Turing machine and } L(M) \text{ is a regular language}\}$.

Theorem: Regular $_{TM}$ is **not** a Turing-decidable language.

This theorem is proven using reducibility. In fact, even more is true:

Rice's Theorem: Any property of the languages recognised by Turing machines is not Turing-decidable.

Undecidability

Task: Understand why certain problems are algorithmically unsolvable.

Recall that a Turing machine is defined as a 7-tuple (S, A, Ã, t, i, S_{acc}, S_{rei}) where:

- S = Set of States
- A = Input Alphabet **not** containing the blank symbol _
- \tilde{A} = Tape Alphabet where $_ \subseteq \tilde{A}$ and $A \subseteq \tilde{A}$
- t = Transition Mapping t : S x à S x à x {L, R}
- i = Initial State
- S_{acc} = Accept State
- S_{rei} = Reject State

Definition: An **encoding** <M> of a Turing machine M refers to the 7-tuple (S, A, \tilde{A} , t, i, S_{acc} , S_{rej}) that defines M and is therefore a finite string. Recall that earlier in the module we proved the following results:

Theorem:

If A is a finite alphabet, then the set of all words over A ($A^* = A^0 \cup A^1 \cup ... \cup A^*$) is countably infinite.

Corollary 1:

If A is a finite alphabet, then the set of all languages over A is uncountably infinite.

Corollary 2:

The set of all programs in any programming language is countably infinite.

Recall that we proved *corollary 2* by realising that for any programming language, a program is a finite string over the finite alphabet of all allowable character in that programming language.

Corollary 3:

Given a finite alphabet A, the set of all Turing-recognisable languages over A is countably infinite.

Proof:

An encoding M> of a Turing machine M is the 7-tuple $(S, A, \tilde{A}, t, i, S_{acc}, S_{rej})$, which is a finite string over a language B that contains A and is finite.

By the theorem, $B^* = B^0 \cup B^1 \cup ... \cup B^{\infty}$ is countably infinite.