BST BALANCE AND HEIGHT

Advantages of keeping a BST balance

Search= O(height)

Learning Objectives

- Understand what the height of a node is.
 - State the AVL property.
 - Show that trees satisfying the AVL property have low depth.

Outline

Basic Idea

<u>Analysis</u>

Balance

- Want to maintain balance.
- Need a way to measure balance.

Height

Definition

The height of a node is the maximum depth

Problem

What is the height of the selected node?

Problem

What is the height of the selected node?

Recursive Definition

```
N.Height equals
1 if N is a leaf,
1 + max(N.Left.Height, N.Right.Height)
otherwise.
```

Field

Add height field to nodes.

Field

Add height field to nodes.

(Note: We'll have to work to ensure that this is kept up to date)

Balance

- Height is a rough measure of subtree size.
- Want size of subtrees roughly the same.
- Force heights to be roughly the same.

Why?

What is this telling me about Time of operations?

AVL Property

AVL trees maintain the following property: For all nodes *N*,

```
/N.Left.Height - N.Right.Height/ \leq 1
```

We claim that this ensures balance.

Check here

Conclusion

AVL Property

If you can maintain the AVL property, you can perform operations in $O(\log(n))$ time.