P1 - ESPACES PROBABILISÉS

1 Ensembles dénombrables

Définition 1

Un ensemble est dit $d\acute{e}nombrable$ s'il est en bijection avec \mathbb{N} .

Conséquence

Tout ensemble au plus dénombrable peut être écrit sous la forme $\{x_n; n \in \mathbb{N}\}$.

Exemple 1

ullet N et $\mathbb Z$ sont des ensembles dénombrables.

Vocabulaire

Un ensemble est dit au plus dénombrable s'il est fini ou dénombrable.

Proposition 1

- Toute partie infinie de N est dénombrable.
- Un ensemble est au plus dénombrable si et seulement si il est en bijection avec une partie de N.

Conséquence

Tout ensemble au plus dénombrable peut être écrit sous la forme $\{x_n; n \in I\}$, où $I \subset \mathbb{N}$.

Proposition 2

 \mathbb{R} n'est pas un ensemble dénombrable.

Proposition 3

Le produit cartésien de deux ensembles dénombrables est dénombrable.

Exemple 2

• Q est un ensemble dénombrable.

2 Espace probabilisé

Dans la suite du chapitre, on s'intéresse à des expériences aléatoires dont l'univers sera noté Ω .

Comme cela a été vu dans le cas d'un univers fini, dans le cas d'un univers dénombrable, on peut considérer $\mathscr{P}(\Omega)$ comme l'ensemble des événements.

Toutefois, lorsque l'univers n'est pas dénombrable, il n'est pas toujours possible d'appréhender cet ensemble. C'est pourquoi on définit des familles particulières de parties de Ω , adaptées à l'étude de probabilités.

2.1 Notion de tribu

Définition 2

- Une tribu sur un ensemble Ω est un sous-ensemble \mathscr{T} de $\mathscr{P}(\Omega)$ vérifiant les propriétés suivantes :
 - 1. $\Omega \in \mathscr{T}$.
 - **2.** Pour tout $A \in \mathcal{T}$, le complémentaire \overline{A} de A appartient à \mathcal{T} .
 - **3.** Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathscr{T} , $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{T}$.

- Le couple (Ω, \mathcal{T}) est appelé espace probabilisable.
- Un élément de \mathcal{T} est appelé événement.

Remarque 1

• Tout événement d'un espace probabilisable (Ω, \mathcal{T}) est un sous ensemble de Ω , en revanche, si $\mathcal{T} \neq \mathcal{P}(\Omega)$, les sous-ensembles de Ω ne sont pas tous des événements.

Proposition 4

Soit (Ω, \mathcal{T}) un espace probabilisable.

- $\emptyset \in \mathscr{T}$.
- Toute réunion finie d'éléments de \mathcal{T} est un élément de \mathcal{T} .
- Toute intersection finie ou dénombrable d'éléments de \mathscr{T} est un élément de \mathscr{T} .
- Pour tous A et B dans \mathscr{T} , $A \cap \overline{B} \in \mathscr{T}$.

Vocabulaire

- Si ω est un résultat d'une expérience aléatoire associée à un espace probabilisable $(\Omega, \mathscr{P}(\Omega)), \{\omega\}$ est appelé événement élémentaire.
- Un événement est dit *réalisé* s'il contient l'issue de l'expérience.
- L'événement Ω , toujours réalisé, est appelé univers certain ; l'événement \varnothing , jamais réalisé, est appelé événement impossible.
- Deux événements sont dits incompatibles s'ils sont disjoints.

2.2 Probabilité sur un espace probabilisable

Définition 3

- Une probabilité sur l'espace probabilisable (Ω, \mathcal{T}) est une application $\mathbb{P}: \mathcal{T} \to [0, 1]$ telle que :
 - **1.** $\mathbb{P}(\Omega) = 1$.
 - **2.** Pour toute suite $(A_n)_{n\in\mathbb{N}}$ d'éléments de \mathscr{T} deux à deux incompatibles, la série de terme général $\mathbb{P}(A_n)$ converge, et :

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

Cette égalité est dite propriété de σ -additivité.

• Le triplet $(\Omega, \mathcal{T}, \mathbb{P})$ est appelé espace probabilisé.

Conséquences :

- $\bullet \ \mathbb{P}(\varnothing) = 0.$
- La probabilité d'une union finie d'événements deux à deux disjoints est égale à la somme de leurs probabilités.

Remarque 2

• Dans le cas où Ω est fini, et $\mathscr{T} = \mathscr{P}(\Omega)$, la définition induit celle vue dans le cas d'univers finis.

Proposition 5

Soit $(\Omega, \mathscr{P}(\Omega), \mathbb{P})$ un espace probabilisé, où Ω est un ensemble dénombrable. Alors pour tout $A = \{\omega_i, i \in \mathbb{N}\} \subset \Omega$, avec $\omega_i \neq \omega_j$ si $i \neq j$,

$$\mathbb{P}(A) = \sum_{i=0}^{+\infty} \mathbb{P}(\{\omega_i\}).$$

Cette somme est indépendante de l'ordre d'énumération, et on écrit : $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}((\{\omega\}).$

Proposition 6

Soient une expérience aléatoire d'univers $\Omega = \mathbb{N}$ et $(p_n)_{n \in \mathbb{N}}$ une suite de termes positifs de somme 1. Alors il existe une probabilité $\mathbb{P} : \mathscr{P}(\mathbb{N}) \to [0,1]$ telle que

$$\forall n \in \mathbb{N}, \quad \mathbb{P}(\{n\}) = p_n$$

2.3 Propriétés

Proposition 7

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé. Alors pour tous A et B dans \mathcal{T} :

- $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$.
- $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$.
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Théorème 1 Théorème de la limite monotone

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé.

• Soit $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'événements (c'est-à-dire $\forall n\in\mathbb{N}, A_n\subset A_{n+1}$), alors :

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n)$$

• Soit $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'événements (c'est-à-dire $\forall n\in\mathbb{N}, A_{n+1}\subset A_n$), alors :

$$\mathbb{P}\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} \mathbb{P}(A_n)$$

Proposition 8 Propriété de sous-additivité (ou inégalité de Boole)

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, et $(A_n)_{n \in \mathbb{N}}$ une suite d'événements telle que la série de terme général $\mathbb{P}(A_n)$ converge. Alors :

$$\mathbb{P}\left(\bigcup_{n=0}^{+\infty} A_n\right) \le \sum_{n=0}^{+\infty} \mathbb{P}(A_n)$$

3 Conditionnement et indépendance

3.1 Conditionnement

La notion de probabilité conditionnelle vue dans le cas d'un univers fini peut être généralisée dans le cas d'un univers quelconque.

Proposition 9

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, et A un événement de probabilité non nulle. L'application :

$$\mathbb{P}_A: \left\{ \begin{array}{l} \mathscr{T} \to [0,1] \\ B \mapsto \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \end{array} \right.$$

est une probabilité, appelée probabilité conditionnellement à A (ou probabilité sachant A). L'espace $(\Omega, \mathcal{T}, \mathbb{P}_A)$ est un espace probabilisé.

Notation

On notera aussi $\mathbb{P}(B|A) = \mathbb{P}_A(B)$ la probabilité de B sachant A.

Proposition 10 Formule des probabilités composées

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, et $(A_k)_{1 \leq k \leq n}$ une suite d'événements telle que $\mathbb{P}\left(\bigcap_{k=1}^n A_k\right) > 0$.

Alors, en notant $B_p = \bigcap_{k=1}^p A_k$ pour tout entier $p \in [1, n]$, on a :

$$\mathbb{P}\left(\bigcap_{k=1}^{n} A_{k}\right) = \mathbb{P}_{B_{n-1}}(A_{n}) \, \mathbb{P}_{B_{n-2}}(A_{n-1}) ... \mathbb{P}_{A_{1}}(A_{2}) \mathbb{P}(A_{1})$$

Définition 4

Soit (Ω, \mathcal{T}) un espace probabilisable sur un univers au plus dénombrable.

On appelle système complet d'événements toute suite d'événements $(A_n)_{n\in I}$ (où I est un sous-ensemble non vide de \mathbb{N}) telle que :

$$\mathbf{1.} \ \bigcup_{i \in I} A_i = \Omega.$$

2.
$$\forall (i,j) \in I^2, i \neq j \Rightarrow A_i \cap A_j = \varnothing.$$

Proposition 11 Formule des probabilités totales

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n \in \mathbb{N}}$ un système complet d'événements. Alors pour tout $B \in \mathcal{T}$ la série de terme général $\mathbb{P}(A_k \cap B)$ converge et, en adoptant la convention : $\mathbb{P}_{A_k}(B)\mathbb{P}(A_k) = 0$ si $\mathbb{P}(A_k) = 0$, on a :

$$\mathbb{P}(B) = \sum_{k=0}^{+\infty} \mathbb{P}(A_k \cap B) = \sum_{k=0}^{+\infty} \mathbb{P}_{A_k}(B) \, \mathbb{P}(A_k)$$

Remarque 3

• Cette formule reste valable dans le cas d'une suite $(A_n)_{n\in\mathbb{N}}$ d'événements deux à deux incompatibles, tels que $\sum_{k=0}^{+\infty} \mathbb{P}(A_k) = 1$.

Proposition 12 Formule de Bayes

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n \in \mathbb{N}}$ un système complet d'événements. Alors pour tout $B \in \mathcal{T}$ de probabilité non nulle, en adoptant la convention : $\mathbb{P}_{A_k}(B)\mathbb{P}(A_k) = 0$ si $\mathbb{P}(A_k) = 0$, on a :

$$\forall i \in \mathbb{N}, \qquad \mathbb{P}_B(A_i) = \frac{\mathbb{P}_{A_i}(B) \, \mathbb{P}(A_i)}{\sum\limits_{k=0}^{+\infty} \mathbb{P}_{A_k}(B) \, \mathbb{P}(A_k)}$$

3.2 Indépendance

Définition 5

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé.

- Deux événements A et B sont indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$.
- Les événements $A_1,...,A_n$ sont deux à deux indépendants si $\forall (i,j) \in [\![1,n]\!], i \neq j \Rightarrow A_i$ et A_j indépendants.

Proposition 13

Soient $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $B \in \mathcal{T}$ tel $\mathbb{P}(B) > 0$, et $A \in \mathcal{T}$.

- A et B sont indépendants si, et seulement si $\mathbb{P}_B(A) = \mathbb{P}(A)$.
- Si A et B sont indépendants, alors A et \overline{B} sont indépendants.

Définition 6

Soit $(\Omega, \mathscr{T}, \mathbb{P})$ un espace probabilisé.

Une suite finie d'événements $(A_k)_{1 \leq k \leq n}$ est une famille d'événements mutuellement indépendants si pour tout sous-ensemble fini $I \subset [\![1,n]\!]$, non vide, $\mathbb{P}\left(\bigcap_{k \in I} A_k\right) = \prod_{k \in I} \mathbb{P}(A_k)$.

Proposition 14

Des événements mutuellement indépendants sont deux à deux indépendants.

Attention!

La réciproque est fausse.