Question	Scheme	Marks
number 10 (a) (i)	a + c	B1
10 (a) (1)		D1
(ii)	$\frac{1}{2}(\mathbf{c}-\mathbf{a})$	B1
		(2)
(b)	$\overrightarrow{OX} = OA + AM + \lambda MN$	M1
	$\mathbf{a} + \frac{1}{2}\mathbf{c} + \lambda(\frac{1}{2}\mathbf{c} - \frac{1}{2}\mathbf{a})$	A1
	$\mu(\mathbf{a} + \mathbf{c})$	B1
	1 . (1 1)	M1
	$\mathbf{a} + \frac{1}{2}\mathbf{c} + \lambda \left(\frac{1}{2}\mathbf{c} - \frac{1}{2}\mathbf{a}\right) = \mu(\mathbf{a} + \mathbf{c})$	IVI I
	$1 - \frac{1}{2}\lambda = \mu \qquad \frac{1}{2} + \frac{1}{2}\lambda = \mu$	M1
	$1 - \frac{1}{2}\lambda = \frac{1}{2} + \frac{1}{2}\lambda$	M1
	$\lambda = \frac{1}{2}$ $\mu = \frac{3}{4}$	A1 A1
	2 4	(8)
(c)	Triangle $XBN = \frac{1}{8}$ of $\frac{1}{2}$ the parallelogram	M1
	Quadrilateral $OXNC = \frac{7}{8}$ of $\frac{1}{2}$ the parallelogram	M1
	So Quadrilateral $OXNC = \frac{7}{16}$ of the parallelogram $\therefore 7:16$	A1
	16	(3)
		[13]

Part	Mark	Additional Guidance
(a)(i)	B1	For the correct vector $\mathbf{a} + \mathbf{c}$
(ii)	B1	For the correct vector $\frac{1}{2}(\mathbf{c} - \mathbf{a})$
(b)	M1	For the correct vector statement $OX = OA + AM + \lambda MN$
	A1	For the correct vector (need not be simplified)
		$OX = \mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) \text{ or } OX = \mathbf{a} + \frac{1}{2}\mathbf{c} + \lambda\left(\frac{\mathbf{c}}{2} - \frac{\mathbf{a}}{2}\right)$
	B1ft	For $OX = \mu(\mathbf{a} + \mathbf{c})$ ft their $OB = '\mathbf{a} + \mathbf{c}'$
		For equating their two vector statements for \overrightarrow{OX}
	M1	$\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) = \mu(\mathbf{a} + \mathbf{c})$
	M1	For equating coefficients of a and c
		$\mathbf{a} + \frac{1}{2}\mathbf{c} + \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) = \mu(\mathbf{a} - \mathbf{c}) \Rightarrow \mathbf{a}\left(1 - \frac{\lambda}{2}\right) + \mathbf{c}\left(\frac{1}{2} + \frac{\lambda}{2}\right) = \mu\mathbf{a} + \mu\mathbf{c}$
		$\Rightarrow \mu = 1 - \frac{\lambda}{2}, \mu = \frac{1}{2} + \frac{\lambda}{2}$
		For attempting to solve their two simultaneous equations in terms of λ and μ .
	M1	$1 - \frac{\lambda}{2} = \frac{1}{2} + \frac{\lambda}{2} \Rightarrow \lambda = \dots \Rightarrow \mu = \dots \qquad 1 - \mu = \mu - \frac{1}{2} \Rightarrow \mu = \dots \Rightarrow \lambda = \dots$

1	
A1	For either $\lambda = \frac{1}{2}$ or $\mu = \frac{3}{4}$
A1	For either $\lambda = \frac{1}{2}$ or $\mu = \frac{3}{4}$ For both $\lambda = \frac{1}{2}$ and $\mu = \frac{3}{4}$
ALT	
M1	For the correct vector statement $MX = MO + OX$
A1	For the correct vector (need not be simplified)
	$MX = -\frac{\mathbf{c}}{2} - \mathbf{a} + \mu(\mathbf{a} + \mathbf{c})$
B1ft	ULLIM $ \frac{d}{dX} = -\frac{\mathbf{c}}{2} - \mathbf{a} + \mu(\mathbf{a} + \mathbf{c}) $ ULLIM $ \frac{d}{dX} = \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) \text{ ft their } \frac{d}{dX} = \frac{1}{2}(\mathbf{c} - \mathbf{a})' $ ULLIM $ \frac{d}{dX} = \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) \text{ ft their } \frac{d}{dX} = \frac{1}{2}(\mathbf{c} - \mathbf{a})' $ ULLIM $ \frac{d}{dX} = \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) \text{ ft their } \frac{d}{dX} = \frac{1}{2}(\mathbf{c} - \mathbf{a})' $
M1	For equating the two vector statements for MX
	$-\frac{\mathbf{c}}{2} - \mathbf{a} + \mu(\mathbf{a} + \mathbf{c}) = \frac{\lambda}{2}(\mathbf{c} - \mathbf{a})$
M1	For equating coefficients of a and c
	$-\frac{\mathbf{c}}{2} - \mathbf{a} + \mu(\mathbf{a} + \mathbf{c}) = \frac{\lambda}{2}(\mathbf{c} - \mathbf{a}) \Rightarrow \mathbf{c}\left(-\frac{1}{2} + \mu\right) + \mathbf{a}(\mu - 1) = \mathbf{c}\frac{\lambda}{2} - \mathbf{a}\frac{\lambda}{2}$
	$\Rightarrow \frac{\lambda}{2} = \mu - \frac{1}{2} \text{and} -\frac{\lambda}{2} = \mu - 1$
M1	For attempting to solve their two simultaneous equations in terms of λ and μ .
	$\mu - \frac{1}{2} = -(\mu - 1) \Rightarrow \mu = \left(\frac{3}{4}\right) \frac{\lambda}{2} = 1 - \frac{3}{4} \Rightarrow \lambda = \left(\frac{1}{2}\right)$
A1	For either $\lambda = \frac{1}{2}$ or $\mu = \frac{3}{4}$ For both $\lambda = \frac{1}{2}$ and $\mu = \frac{3}{4}$
A1	For both $\lambda = \frac{1}{2}$ and $\mu = \frac{3}{4}$
M1	For area of $\triangle XBN = \frac{1}{8}\triangle OBC$ so $\frac{1}{8}$ of $\frac{1}{2}$ of the area of parallelogram $OABC$
	$\Delta OBC = \frac{1}{2} \times OB \times BC \times \sin \angle XBN$
	$\Delta XBN = \frac{1}{2} \times \frac{1}{4} OB \times \frac{1}{2} BC \times \sin \angle XBN = \frac{1}{8} \Delta OBC$
M1	Therefore Quadrilateral $OXNC = \frac{7}{8}$ of $\frac{1}{2}$ of the area of parallelogram $OABC$
1411	ft their fraction from the first M mark provided it is $<\frac{1}{2}$
A1	Quadrilateral $OXNC = \frac{7}{16}$ of the area of parallelogram $OABC$ so ratio is 7:16
	A1 ALT M1 A1 B1ft M1 M1 M1 M1 M1 M1

Question number	Scheme	Marks
11 (a)	Let $x =$ the length of the side of the triangle and $h =$ the length of the prism	
	$\frac{1}{2}x^2 \sin 60 h = 72 \text{ or } \frac{1}{2} \left(\sqrt{\left(x^2 - \left(\frac{1}{2}x\right)^2\right)} \right) x h = 72$	M1
	$\frac{2}{\sqrt{3}x^2h} = 72$	M1
	$h = \frac{288}{\sqrt{3}x^2}$	A1
	$S = 2 \times \frac{1}{2} x^2 \sin 60 + 3xh$	M1
	or $2 \times \frac{1}{2} \left(\sqrt{\left(x^2 - \left(\frac{1}{2}x\right)^2\right)} \right) x + 3xh$	
	$S = \frac{\sqrt{3}x^2}{2} + 3x\left(\frac{288}{\sqrt{3}x^2}\right)$ $S = \frac{\sqrt{3}x^2}{2} + \frac{288\sqrt{3}}{3} *$	M1
	$3 - \frac{1}{2} + \frac{1}{x}$	A1 cso (6)
(b)	$\frac{dS}{dx} = \sqrt{3}x - \frac{288\sqrt{3}}{x^2} (=0)$	M1
	$x^3 = 288$ $x = \sqrt[3]{288} = 6.604$	dM1 A1
	$\frac{d^2S}{dx^2} = \sqrt{3} + \frac{576\sqrt{3}}{x^3}$	ddM1 A1
	$\frac{\mathrm{d}^2 S}{\mathrm{d}x^2} > 0$ (when $x = 6.6$) \therefore value is a minimum	(5)
(c)	Substitutes their <i>x</i> into $S = \frac{\sqrt{3}x^2}{2} + \frac{288\sqrt{3}}{x}$	M1 A1
	S = 113	(2)
		[13]

Part	Mark	Additional Guidance
(a)	M1	For the correct expression for the volume of the prism in terms of x and h (or other letter for
		the length, e.g. <i>l</i>)
		Simplification not required for this mark
		$72 = \left(\frac{1}{2} \times x \times x \times \sin 60^{\circ}\right) \times h \text{ or } 72 = \left(\frac{1}{2} \times x \times \sqrt{x^{2} - \frac{x^{2}}{4}}\right) \times h \text{ or } 72 = \left(\frac{\sqrt{3}}{4}x^{2}\right) \times h$
	M1	For an attempt to find an expression for h in terms of x
		Accept as a minimum $h = \frac{k}{x^2}$ where k is a positive integer
	A1	For $h = \frac{288}{(\sqrt{3})x^2}$ or $h = \frac{96\sqrt{3}}{x^2}$

		For an expression for S in terms of x and h (ft their area of the triangle)
	M1	$S = 2\left(\frac{1}{2} \times x \times x \times \sin 60^{\circ}\right) + 3xh \text{ or } S = 2\left(\frac{1}{2} \times x \times \sqrt{x^2 - \frac{x^2}{4}}\right) + 3xh \left(S = \frac{\sqrt{3}}{2}x + 3xh\right)$
	M1	For substituting their h into their S
		$S = 2\left(\frac{1}{2} \times x \times x \times \sin 60^{\circ}\right) + \left(3x \times \frac{288}{\left(\sqrt{3}\right)x^{2}}\right) \text{ or } S = 2\left(\frac{1}{2} \times x \times \sqrt{x^{2} - \frac{x^{2}}{4}}\right) + \left(3x \times \frac{288}{\left(\sqrt{3}\right)x^{2}}\right)$
	A1	For the correct expression for S as given.
		The expression must be set equal to S. $\sqrt{2}$
		$S = \frac{\sqrt{3}x^2}{2} + \frac{288\sqrt{3}}{x}$ exactly as seen here. *
		This is a given result so full working must be seen.
(b)	M1	For an attempt to differentiate the given expression for S
		$\frac{dS}{dx} = \sqrt{3}x - \frac{288\sqrt{3}}{x^2}$ or $\frac{dS}{dx} = \sqrt{3}x - 288\sqrt{3}x^{-2}$
		$\frac{1}{dx} - \sqrt{3x} - \frac{1}{x^2} \text{of } \frac{1}{dx} - \sqrt{3x} - 288\sqrt{3x}$
	13.61	(See General Guidance for the definition of an attempt)
	dM1	For setting their differentiated expression = 0 and attempting to solve for x
		$\sqrt{3}x - \frac{288\sqrt{3}}{x^2} = 0 \Rightarrow x^3 = 288 \Rightarrow x = (6.604) \text{ (rounded correctly)}$
		This mark is dependent on the first M mark in (b)
	A1	For $x = 6.604$ rounded correctly
	dM1	For attempting the second derivative (usual definition of an attempt)
		$\frac{d^2S}{dx^2} = \sqrt{3} + \frac{576\sqrt{3}}{x^3}$
		$\alpha x = x$
	A1ft	This mark is dependent on first M mark in (b)
	Am	Concludes either that $\frac{d^2S}{dx^2} > 0$ for all positive values of x or substitutes in their value of x to
		show that $\frac{d^2S}{dx^2} = 5.19$ hence positive so must be a minimum.
		Only ft if the final conclusion is a minimum provided their $\frac{d^2S}{dx^2}$ is algebraically correct
		for justifying the minimum using their derivative
	dM1	Chooses a value either side of their value of x and substituting them into their $\frac{dS}{dx}$
		e.g. $x = 6$ and 7
		$\frac{dS}{dx} = \sqrt{3} \times 6 - \frac{288\sqrt{3}}{6^2} = -3.46 \text{ and } \frac{dS}{dx} = \sqrt{3} \times 7 - \frac{288\sqrt{3}}{7^2} = 1.944$
	A1ft	Concludes that the gradient function moves from negative to positive hence must be a minimum.
(c)	M1	Substitutes their value of x into the given expression for S
		$S = \frac{\sqrt{3}'6.604'^2}{2} + \frac{288\sqrt{3}}{'6.604'} = \dots$
	A1	For $S = 113$ rounded correctly