Using Iris for Program Verification

Abel Nieto

March 18, 2020

1 Monotone Counter

 ${\color{red} \triangleright}\ \mathbf{Coq}\ \mathbf{code:}\ \mathtt{https://github.com/abeln/iris-practice/blob/master/counter.v} \mathrel{\vartriangleleft}$

This is the counter example from Section 7.7 of the notes. The module exports three methods:

 newCounter creates a new counter. Counters are represented simply with an int reference.

```
Definition newCounter : val := \lambda: <>, ref #0.
```

• read returns the value currently stored in a counter.

```
Definition read : val := \lambda: "c", !"c".
```

• incr takes a counter, increments it, and returns unit.

```
Definition incr : val :=
rec: "incr" "c" :=
let: "n" := !"c" in
let: "m" := #1 + "n" in
if: CAS "c" "n" "m" then #() else "incr" "c".
```

The client for the counter is a program that instantiates a counter, spawns two threads each incrementing the counter, and then reads the value off the counter:

```
Definition client : val :=
\lambda: <>,
 let: "c" := newCounter #() in
 ((incr "c") ||| (incr "c")) ;;
read "c".
```

1.1 Specs

We can prove two different specs for the code above:

• Authoritative RA

In the first spec, our resource algebra is AUTH(\mathbb{N}). Elements of this RA are of the form either $\bullet n$ (authoritative) or $\circ n$ (non-authoritative), where $n \in \mathbb{N}$.

The important properties of this RA (for the counter example) are:

- $-\bullet 0\cdot \circ 0\in \mathcal{V}$
- $-\bullet m \cdot \circ n \in \mathcal{V} \text{ implies } m \geq n$
- $-\bullet m \cdot \circ n \leadsto \bullet (m+1) \cdot \circ (n+1)$
- $| \circ n | = \circ n$

Then we can define our predicate for the counter:

$$isCounter(l, n, \gamma) = \left[\circ \bar{n} \right]^{\gamma \gamma} * \exists s. \quad \exists m.l \hookrightarrow m \land \left[\bar{\bullet} \bar{m} \right]^{\gamma \gamma}$$

This predicate is persistent because the invariant component is persistent and $\circ n$ is also persistent (via the Persistently-core rule), because the core of $\circ n$ is $\circ n$ itself.

The intuition behind the predicate is that if we own is Counter (l, n, γ) then, at an atomic step (e.g. a load), we can know that l is allocated and it points to a value that's $\geq n$.

Additionally, after an increment, we can update the resource to is Counter $(l, n+1, \gamma)$.

We then prove the following specs for the counter methods:

- $\{ \top \}$ newCounter () $\{ l. \exists \gamma. isCounter(l, 0, \gamma) \}$
- {isCounter (l, n, γ) } read l { $v.v \ge n$ }. Notice how we don't have to give the counter back, because it's persistent.
- {isCounter (l, n, γ) } incr l {isCounter $(l, n + 1, \gamma)$ }

We can also prove the client spec:

$$\{\top\}$$
client $()\{n.n \ge 1\}$

The "problem" with this specification *isCounter* doesn't tell us anything about what other threads are doing with the counter. So in the verification of the client code, after both threads return, we know

$$isCounter(l, 1, \gamma) * isCounter(l, 1, \gamma) \equiv isCounter(l, 1, \gamma)$$

So we know that the counter must be ≥ 1 , but we don't know that it's 2.

• Authoritative RA + Fractions

The second spec we can give is more precise, and allows us to conclude that the client reads exactly 2 once the two threads finish.

The resource algebra we use is $Auth((\mathbb{Q}_p \times \mathbb{N})_?)$:

- \mathbb{Q}_p is the RA of positive fractions, where the valid elements are those < 1.
- The ? is the *optional RA* construction. In this case, it's needed because to use the authoritative RA we need the argument algebra to be *unital*. And $\mathbb{Q}_p \times \mathbb{N}$ is not unital because 0 is not an element of \mathbb{Q}_p .

The important properties of this RA are:

- $-\circ(1,0)\cdot\bullet(1,0)\in\mathcal{V}$
- $-\circ(p,n)\cdot\bullet(1,m)\in\mathcal{V}$ implies $m\geq n$
- $-\circ(1,n)\cdot\bullet(1,m)\in\mathcal{V}$ implies m=n
- $-\circ(p,n)\cdot\bullet(q,m)\leadsto\circ(p,n+1)\cdot\bullet(q,m+1)$

With this RA, we get the new counter resource

$$\mathrm{isCounter}(l,n,p,\gamma) = \left[\circ (p,n) \right]^{\gamma} * \exists s. \quad \exists m.l \hookrightarrow m \land \left[\bullet (1,m) \right]$$

This resource is no longer persistent, because the core |p| is undefined. However, we can show the following

$$isCounter(l, n + m, p + q, \gamma) \dashv isCounter(l, n, p, \gamma) * isCounter(l, m, q, \gamma)$$