

WHAT IS CLAIMED IS:

- 1 1. A method of patterning an attenuated phase-shifting mask, comprising:
 - 2 providing a mask blank, wherein the mask blank has an attenuating and phase-shifting
 - 3 layer formed over a transparent layer, the phase-shifting layer having an initial thickness,
 - 4 wherein the initial thickness of the phase-shifting layer is adapted to provide a first
 - 5 predetermined phase shift for a first wavelength of light passing therethrough;
 - 6 reducing the initial thickness of the phase shifting layer to a first thickness; and
 - 7 removing portions of the phase-shifting layer to form a pattern of clear areas, wherein the
 - 8 first thickness of the phase-shifting layer at dark areas is adapted to provide a second
 - 9 predetermined phase shift for a second wavelength of light passing therethrough relative to the
 - 10 same light of the second wavelength passing through the clear areas, wherein the first
 - 11 wavelength differs from the second wavelength.
- 1 2. The method of claim 1, further comprising:
 - 2 removing portions of the transparent layer to form a recess with a first recess depth at the
 - 3 clear areas.
- 1 3. The method of claim 2, wherein the portions of the transparent layer are removed by
2 reactive ion etching using an etch chemistry including at least one of SF₆ and CF₄.
- 1 4. The method of claim 1, wherein part of the phase-shifting layer with a second thickness
2 remains at the clear areas, wherein the second thickness is less than the first thickness.
- 1 5. The method of claim 1, wherein the second predetermined phase shift is approximately
2 equal to or greater than the first predetermined phase shift.

- 1 6. The method of claim 5, wherein the second wavelength is greater than the first
- 2 wavelength.
- 1 7. The method of claim 1, wherein the first predetermined phase shift is about 180 degrees.
- 1 8. The method of claim 1, wherein the second predetermined phase shift is equal to or
- 2 greater than about 180 degrees.
- 1 9. The method of claim 1, wherein the initial thickness of the phase-shifting layer is adapted
- 2 to provide a first optical transmission for light of the first wavelength, and wherein the first
- 3 thickness of the phase-shifting layer at the dark areas is adapted to provide a second optical
- 4 transmission.
- 1 10. The method of claim 9, wherein the second optical transmission is less than or equal to
- 2 about 6%.
- 1 11. The method of claim 1, wherein the transparent layer comprises a quartz material.
- 1 12. The method of claim 1, wherein the initial thickness of the attenuation and phase-shifting
- 2 layer is reduced by reactive ion etching using an etch chemistry including at least one of SF₆ and
- 3 CF₄.

1 13. A method of making a patterned attenuated phase-shifting mask from a mask blank, the
2 mask blank including an attenuation and phase-shifting layer with a first default thickness and a
3 transparent layer with a second default thickness, the attenuation and phase-shifting layer
4 covering the transparent layer, the method comprising:

5 forming a circuit design pattern that includes forming a plurality of clear areas and
6 forming a plurality of dark areas;

7 wherein the forming dark areas includes reducing a thickness of the attenuation and
8 phase-shifting layer from the first default thickness to a first adjusted thickness; and

9 wherein forming clear areas includes:

10 removing portions of the attenuation and phase-shifting layer at clear areas, and
11 reducing a thickness of the transparent layer at the clear areas from the second default
12 thickness to a second adjusted thickness.

1 14. The method of claim 13, wherein the transparent layer comprises a quartz material.

1 15. The method of claim 13, wherein the attenuated phase-shifting mask is designed for light
2 with a target wavelength, and wherein the first adjusted thickness and the second adjusted
3 thickness are designed so that the phase of light passing through dark areas differs from the
4 phase of light passing through clear areas by a predetermined phase shift.

1 16. The method of claim 15, wherein the predetermined phase shift is about 180 degrees.

1 17. The method of claim 13, wherein the attenuated phase-shifting mask is designed for light
2 with a target wavelength, and wherein the first thickness is designed so that light passing through
3 dark areas has a predetermined optical transmission.

1 18. The method of claim 17, wherein the predetermined optical transmission is between
2 about 5% and about 15%.

1 19. The method of claim 17, wherein the predetermined optical transmission is between
2 about 2% and about 20%.

1 20. The method of claim 13, wherein the thickness of the attenuation and phase-shifting layer
2 is reduced by etching.

1 21. The method of claim 20, wherein the etching of the attenuation and phase-shifting layer
2 includes reactive ion etching.

1 22. The method of claim 21, wherein the reactive ion etching uses an etching chemical
2 selected from a group consisting of SF₆ and CF₄.

1 23. The method of claim 13, wherein the portions of the attenuation and phase-shifting layer
2 are removed by etching.

1 24. The method of claim 23, wherein the etching of the attenuation and phase-shifting layer
2 includes reactive ion etching.

1 25. The method of claim 24, wherein the reactive ion etching uses an etching chemical
2 selected from a group consisting of SF₆ and CF₄.

1 26. The method of claim 13, wherein the thickness of the transparent layer is reduced at the
2 clear areas by etching.

1 27. The method of claim 26, wherein the etching of the transparent layer includes reactive
2 ion etching.

1 28. The method of claim 27, wherein the reactive ion etching uses an etching chemical
2 selected from a group consisting of SF₆ and CF₄.

- 1 29. An attenuated phase-shifting mask comprising:
 - 2 a transparent layer;
 - 3 an attenuating and phase-shifting layer over the transparent layer;
 - 4 dark areas having the phase-shifting layer at a first thickness; and
 - 5 clear areas having the phase-shifting layer removed therefrom and having a recess of a
 - 6 recess depth formed in the transparent layer, wherein the first thickness at the dark areas and the
 - 7 first recess depth at the clear areas are chosen such that a certain phase-shift and transmittance is
 - 8 provided for light through the dark areas relative to the clear areas.
- 1 30. The attenuated phase-shifting mask of claim 29, wherein the transparent layer comprises
2 quartz.
- 1 31. The attenuated phase-shifting mask of claim 29, wherein the attenuated phase-shifting
2 mask is made from an attenuated phase-shifting mask blank having an attenuation and phase-
3 shifting layer with an initial thickness greater than the first thickness at the dark areas.
- 1 32. The attenuated phase-shifting mask of claim 31, wherein the mask blank is designed for
2 light with a first wavelength, but the attenuated phase-shifting mask formed therefrom is
3 designed for light with a second wavelength, wherein the second wavelength differs from the
4 first wavelength.
- 1 33. The attenuated phase-shifting mask of claim 32, wherein the second wavelength is
2 smaller than the first wavelength.

- 1 34. The attenuated phase-shifting mask of claim 29, wherein the certain phase-shift is equal
- 2 to or greater than about 180 degrees, and wherein the certain transmittance is less than or equal
- 3 to about 6%.

- 1 35. An attenuated phase-shifting mask comprising:
 - 2 a transparent layer;
 - 3 an attenuating and phase-shifting layer over the transparent layer;
 - 4 dark areas having the phase-shifting layer at a first thickness; and
 - 5 clear areas having the phase-shifting layer at a second thickness, wherein the first
 - 6 thickness at the dark areas is greater than the second thickness at the clear areas, and wherein the
 - 7 first thickness and second thickness are chosen such that a certain phase-shift and transmittance
 - 8 is provided for light through the dark areas relative to the clear areas.
- 1 36. The attenuated phase-shifting mask of claim 35, wherein the attenuated phase-shifting
- 2 mask is made from an attenuated phase-shifting mask blank having an attenuating and phase-
- 3 shifting layer with an initial thickness greater than the first thickness at the dark areas.
- 1 37. The attenuated phase-shifting mask of claim 36, wherein the mask blank is designed for
- 2 light with a first wavelength, but the attenuated phase-shifting mask formed therefrom is
- 3 designed for light with a second wavelength, wherein the second wavelength differs from the
- 4 first wavelength.
- 1 38. The attenuated phase-shifting mask of claim 37, wherein the second wavelength is
- 2 smaller than the first wavelength.
- 1 39. The attenuated phase-shifting mask of claim 35, wherein the certain phase-shift is equal
- 2 to or greater than about 180 degrees, and wherein the certain transmittance is less than or equal
- 3 to about 6%.