

Fouille de données

▶ Data

Philippe Lenca et Romain Billot

philippe.lenca@telecom-bretagne.eu
Telecom Bretagne
2015-2016

- Data description
- 2 Attribute types
- Oataset types
- 4 Dataset characteristics
- 5 Bibliographie

- Data description
- 2 Attribute types
- 3 Dataset types
- 4 Dataset characteristics
- 6 Bibliographie

Introduction to Data Mining: Pang-Ning Tan, Michael Steinbach, Vipin Kumar [?]

Data

Attributes

)atasets

Characteristics

single

single

ida

idın

Bibliographie

A collection of data objects described by attributes

 Objects: the atomic elements from a dataset

(examples, records, prototypes, objects, cases, points, samples, instances)

Attributes:
 a property of an object
 (features, variables, fields, characteristics)

	HD	Marital status	Sex	Income	Age	Relation
	id ₁	single	М	100k€	22	▼
S	id ₂	single	F	150k€	28	A
bjects	id ₃	married	F	120k€	32	A
Obj	id ₄	single	F	250k€	42	-
_	id ₅	divorced	М	95k€	25	▼
	id ₆	single	М	120k€	55	<u> </u>
	id ₇	married	F	95k€	33	<u> </u>
	ida	divorced	М	150k€	47	

Attributes

Objects × Attributes

100k€

80k€

 \hookrightarrow Concepts: content inside the data that can be learned.

- 1 Data description
- 2 Attribute types
- 3 Dataset types
- 4 Dataset characteristics
- 6 Bibliographie

Attribute values are numbers or symbols assigned to an attribute

An attribute can be mapped to different measurement scale

Temperature can be measured in Celsius or Fahrenheit

Age can be measured in month or year

Height can be measured in feet or meter

Different attributes can be mapped to the same scale

ID and age could be integers

Customer satisfaction on price and quality can be mapped on 'bad' 'reasonable' 'good'

 \hookrightarrow But properties of attribute values can be different. Readings: [?], [?].

Attributes

TID	Marital status	Sex	Income	Age	Relation
id ₁	single	М	100k€	22	▼
id ₂	single	F	150k€	28	<u> </u>
id3	married	F	120k€	32	<u> </u>
id4	single	F	250k€	42	_
id ₅	divorced	М	95k€	25	▼
id ₆	single	М	120k€	55	<u> </u>
id7	married	F	95k€	33	<u> </u>
id ₈	divorced	М	150k€	47	
id ₉	single	F	100k€	29	<u> </u>
id ₁₀	single	М	80k€	26	_

TID	Marital status	Sex	Income	Age	Relation
id ₁	S	1	135k\$	22	▼
id ₂	S	2	202k\$	28	<u> </u>
id3	М	2	162k\$	32	<u> </u>
id4	S	2	337k\$	42	_
id ₅	D	1	128k\$	25	▼
id ₆	S	1	162k\$	55	<u> </u>
id7	М	2	128k\$	33	<u> </u>
id ₈	D	1	202k\$	47	A
id ₉	S	2	135k\$	29	<u> </u>
id ₁₀	S	1	108k\$	26	-

specified.

Four main levels of measurement

- nominal
- ordinal
- interval
- ratio

ata Attributes

atasets

Characteristics

Bibliographie

Nominal scale

Values are names or labels (identifiers):

- no ordering, no distance measure, no relation among values
- only equality tests and set membership can be performed
- categorical variables
- boolean as a special case

Examples

- ID numbers, ZIP codes
- color, marital status, sex
- \hookrightarrow Standard set structure (unordered).

Ordinal scale

Values with an order:

- no distance measure (no relative size or degree of difference)
- relation w.r.t. the order, addition does not make sense
- with a preference system one can transform an nominal scale toward an ordinal one

Examples

- rankings ('bad' < 'medium' < 'good')</p>
- height ('short' < 'medium' < 'tall')</p>

\hookrightarrow Totally ordered set.

ata Attributes

)atasets

Characteristics

Bibliographic

Interval scale

Values ordered and measured in fixed and equal units:

- zero point is not defined
- difference of two values makes sense
- sum or product does not make sense

Examples

- temperatures in Celsius or Fahrenheit
- calendar dates

Ratio scale

Values ordered and measured on a scale with a zero point:

- estimation of the ratio between a magnitude of a continuous quantity and a unit magnitude of the same kind
- ratio quantities are treated as real numbers
- all mathematical operations are allowed

Examples

- temperatures in Kelvin
- distance, time

Levels of measurement

X

Attributes

В	Brief synthesis						
			Nominal	Ordinal	Interval	Ratio	
	distinctness	$= \neq$	A	A	A	A	
	order	<>		A	A	A	
	addition	+ -					

 \hookrightarrow Most schemes consider just two or three levels of measurement: nominal, ordinal and numerical. See also which scales are considered by the software.

multiplication

Levels of measurement

Attributes

Brief synthesis

Type	Description	Examples	Operations
Nominal	Distinction	ID, color, sex	mode, entropy, contingency
			correlation, χ^2 test
Ordinal	Order	grades	median, percentiles, rank corre-
			lation, run tests, sign tests
Interval	Differences	temperatures in C or F	mean, standard deviation,
			Pearson's correlation, t and F
			tests
Ratio	Differences and ratio	age	geometric mean, harmonic
			mean, percent variation

 \hookrightarrow Levels of measurement & legal operations.

Brief synthesis

Туре	Transformation	Comments
Nominal	One to One	Any permutation of values
Ordinal	Monotonic increasing	$v_{new} = f(v_{old})$
Interval	Positive linear (affine)	$v_{new} = a \times v_{old} + b$
Ratio	Positive similarities	$v_{new} = a \times v_{old}$

 \hookrightarrow Levels of measurement & legal transformations.

Discrete Attribute

- finite or countably infinite set of values
- often represented as integer variables

Continuous Attribute

infinite set of values

Attributes

- real numbers
- in practice it can only be measured and represented using a finite number of digits (floating-point variables)

Under software constraints.

Consistency, efficiency analysis

- check for valid values, missing values
- make adequate comparisons and legal operations
- express the best possible patterns

 \hookrightarrow Under software constraints.

Data Attributes

Datasets

Characteristics

Bibliographie

Main roles

- id
- predictive
- label, class
- descriptive

- Data description
- 2 Attribute types
- 3 Dataset types
- 4 Dataset characteristics
- Bibliographie

Three main dataset types

- record e.g
 - data matrix
 - document data
 - transaction Data
- graph e.g.
 - World Wide Web
 - molecular structures
- ordered e.g.
 - spatial data
 - temporal data
 - sequential data
 - genetic Sequence data

Record data: tables, matrix.

A collection of records described with a fixed set of attributes.

TID	Marital status	Sex	Income	Age	Relation
id ₁	single	М	100k€	22	▼
id_2	single	F	150k€	28	<u> </u>
id ₃	married	F	120k€	32	<u> </u>
id4	single	F	250k€	42	_
id ₅	divorced	М	95k€	25	▼
id ₆	single	М	120k€	55	<u> </u>
id ₇	married	F	95k€	33	<u> </u>
id ₈	divorced	М	150k€	47	<u> </u>
id ₉	single	F	100k€	29	<u> </u>
id ₁₀	single	М	80k€	26	_

Record data: document data

Each document becomes a 'term' vector:

- each term is a component (attribute) of the vector
- the value of each component is the number of times the corresponding term occurs in the document

ID	processus	décision	données
D_1	2	1	4
D_2	1	2	1
D ₃	1	3	2

Record data: transaction data

each record (transaction) involves a set of items

TID	Items
id_1	Bread, Coke, Milk
$\overline{id_2}$	Bread, Coke
id ₃	Coke, Milk
$\overline{\sf id}_4$	Beer, Bread, Diaper, Milk

Ordered data

(CE) (A) (AE) (BD) (C) (E) (AB) (D) (CE)

AAATCGGACGCCGGGCTATA CAACCGTACCCCGGGCTATA GGTCCGTACCCCGGGCTAAA

- Data description
- 2 Attribute types
- 3 Dataset types
- 4 Dataset characteristics
- 6 Bibliographie

Main characteristics

- dimensionality: number of attributes
- class label unbalance: prior class probabilities
- size: number of samples
- quality: missing values, outliers, precision
- sparsity: presence of attributes

ata Attribut

Datasets

Characteristics

Bibliographie

Main troubles

- dimensionality: curse of dimensionality, most existing algorithms only work well on data in large quantity, with a reasonable number of attributes.
- class label balance: high-unbalanced data (large differences in prior class probabilities) & bad performance of classifiers for the minority class.
- size: robustness, complexity issues,
- quality: quality of the outputs
- sparsity: presence of attributes, mining of associations among attribute sets only works if they frequently co-occur

 \hookrightarrow Challenges to the data mining community, especially when these characteristics are mixed together.

Characteristics

Main characteristics

- dimensionality: number of attributes
- class label unbalance: prior class probabilities
- size: number of samples
- quality: missing values, outliers, precision
- sparsity: presence of attributes

characteristics are mixed together.

A first steep of the analysis is to take a 'picture' of the dataset.

- Data description
- 2 Attribute types
- 3 Dataset types
- 4 Dataset characteristics
- 5 Bibliographie

