Representation

CS236, Stanford University

Lecture 2

Overview

- What is a generative model
- Representing probability distributions
 - Curse of dimensionality
 - Crash course on graphical models (Bayesian networks)
 - Generative vs discriminative models
 - Neural models

Learning a generative model

• We are given a training set of examples, e.g., images of dogs

- We want to learn a probability distribution p(x) over images x such that
 - **Generation:** If we sample $x_{new} \sim p(x)$, x_{new} should look like a dog (sampling)
 - **Density estimation:** p(x) should be high if x looks like a dog, and low otherwise (anomaly detection)
 - Unsupervised representation learning: We should be able to learn what these images have in common, e.g., ears, tail, etc. (features)
- First question: how to represent p(x)

Basic discrete distributions

- Bernoulli distribution: (biased) coin flip
 - $D = \{ Heads, Tails \}$
 - Specify P(X = Heads) = p. Then P(X = Tails) = 1 p.
 - Write: $X \sim Ber(p)$
 - Sampling: flip a (biased) coin
- Categorical distribution: (biased) m-sided dice
 - $D = \{1, \cdots, m\}$
 - Specify $P(Y = i) = p_i$, such that $\sum p_i = 1$
 - Write: $Y \sim Cat(p_1, \cdots, p_m)$
 - Sampling: roll a (biased) die

Example of joint distribution

Modeling a single pixel's color. Three discrete random variables:

- Red Channel *R*. $Val(R) = \{0, \dots, 255\}$
- Green Channel G. $Val(G) = \{0, \dots, 255\}$
- Blue Channel B. $Val(B) = \{0, \cdots, 255\}$

Sampling from the joint distribution $(r, g, b) \sim p(R, G, B)$ randomly generates a color for the pixel. How many parameters do we need to specify the joint distribution p(R = r, G = g, B = b)?

$$256 * 256 * 256 - 1$$

Example of joint distribution

- Suppose $X_1, ..., X_n$ are binary (Bernoulli) random variables, i.e., $Val(X_i) = \{0, 1\} = \{Black, White\}.$
- How many possible states?

$$\underbrace{2 \times 2 \times \cdots \times 2}_{n \text{ times}} = 2^n$$

- Sampling from $p(x_1, ..., x_n)$ generates an image
- How many parameters to specify the joint distribution $p(x_1, ..., x_n)$ over n binary pixels?

$$2^{n} - 1$$

Structure through independence

• If X_1, \ldots, X_n are independent, then

$$p(x_1,\ldots,x_n)=p(x_1)p(x_2)\cdots p(x_n)$$

- How many possible states? 2ⁿ
- How many parameters to specify the joint distribution $p(x_1, ..., x_n)$?
 - How many to specify the marginal distribution $p(x_1)$? 1
- 2^n entries can be described by just n numbers (if $|Val(X_i)| = 2$)!
- Independence assumption is too strong. Model not likely to be useful
 - For example, each pixel chosen independently when we sample from it.

Two important rules

① Chain rule Let $S_1, \ldots S_n$ be events, $p(S_i) > 0$.

$$p(S_1 \cap S_2 \cap \cdots \cap S_n) = p(S_1)p(S_2 \mid S_1) \cdots p(S_n \mid S_1 \cap \ldots \cap S_{n-1})$$

2 Bayes' rule Let S_1, S_2 be events, $p(S_1) > 0$ and $p(S_2) > 0$.

$$p(S_1 \mid S_2) = \frac{p(S_1 \cap S_2)}{p(S_2)} = \frac{p(S_2 \mid S_1)p(S_1)}{p(S_2)}$$

Structure through conditional independence

Using Chain Rule

$$p(x_1,...,x_n) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1,x_2)\cdots p(x_n \mid x_1,\cdots,x_{n-1})$$

- How many parameters? $1 + 2 + \cdots + 2^{n-1} = 2^n 1$
 - $p(x_1)$ requires 1 parameter
 - $p(x_2 \mid x_1 = 0)$ requires 1 parameter, $p(x_2 \mid x_1 = 1)$ requires 1 parameter Total 2 parameters.
 - . . .
- $2^n 1$ is still exponential, chain rule does not buy us anything.
- Now suppose $X_{i+1} \perp X_1, \ldots, X_{i-1} \mid X_i$, then

$$p(x_1,...,x_n) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1,x_2) \cdots p(x_n \mid x_1,...,x_{n-1})$$

= $p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_2) \cdots p(x_n \mid x_{n-1})$

• How many parameters? 2n-1. Exponential reduction!

Bayes Network: General Idea

- Use conditional parameterization (instead of joint parameterization)
- For each random variable X_i , specify $p(x_i|x_{A_i})$ for set X_{A_i} of random variables
- Then get joint parametrization as

$$p(x_1,\ldots,x_n)=\prod_i p(x_i|x_{A_i})$$

• Need to guarantee it is a *legal* probability distribution. It has to correspond to a chain rule factorization, with factors simplified due to assumed conditional independencies

Bayesian networks

- A Bayesian network is specified by a directed acyclic graph (DAG) G = (V, E) with:
 - **①** One node $i \in V$ for each random variable X_i
 - ② One conditional probability distribution (CPD) per node, $p(x_i \mid x_{Pa(i)})$, specifying the variable's probability conditioned on its parents' values
- Graph G = (V, E) is called the structure of the Bayesian Network
- Defines a joint distribution:

$$p(x_1,\ldots x_n)=\prod_{i\in V}p(x_i\mid x_{\mathrm{Pa}(i)})$$

- Claim: $p(x_1, ... x_n)$ is a valid probability distribution because of ordering implied by DAG
- **Economical representation**: exponential in |Pa(i)|, not |V|

Example

DAG stands for Directed Acyclic Graph

Example

- Consider the following Bayesian network:
- What is its joint distribution?

$$p(x_1, \dots x_n) = \prod_{i \in V} p(x_i \mid x_{Pa(i)})$$

$$p(d, i, g, s, l) = p(d)p(i)p(g \mid i, d)p(s \mid i)p(l \mid g)$$

Bayesian network structure implies conditional independencies!

The joint distribution corresponding to the above BN factors as

$$p(d, i, g, s, l) = p(d)p(i)p(g \mid i, d)p(s \mid i)p(l \mid g)$$

However, by the chain rule, any distribution can be written as

$$p(d, i, g, s, l) = p(d)p(i | d)p(g | i, d)p(s | i, d, g)p(l | g, d, i, s)$$

• Thus, we are assuming the following additional independencies: $D \perp I$, $S \perp \{D, G\} \mid I$, $L \perp \{I, D, S\} \mid G$.

Summary

- Bayesian networks given by (G, P) where P is specified as a set of local conditional probability distributions associated with G's nodes
- Efficient representation using a graph-based data structure
- Computing the probability of any assignment is obtained by multiplying CPDs
- Can sample from the joint by sampling from the CPDs according to the DAG ordering
- Can identify some conditional independence properties by looking at graph properties
- In this class, graphical models will be simple (e.g., only 2 or 3 random vectors)
- Next: generative vs. discriminative; functional parameterizations

Naive Bayes for single label prediction

- Classify e-mails as spam (Y = 1) or not spam (Y = 0)
 - Let 1: n index the words in our vocabulary (e.g., English)
 - $X_i = 1$ if word i appears in an e-mail, and 0 otherwise
 - E-mails are drawn according to some distribution $p(Y, X_1, \dots, X_n)$
- Words are conditionally independent given Y:
- Then

$$p(y,x_1,\ldots x_n)=p(y)\prod_{i=1}^n p(x_i\mid y)$$

Example: naive Bayes for classification

- ullet Classify e-mails as spam (Y=1) or not spam (Y=0)
 - Let 1: n index the words in our vocabulary (e.g., English)
 - $X_i = 1$ if word i appears in an e-mail, and 0 otherwise
 - E-mails are drawn according to some distribution $p(Y, X_1, ..., X_n)$
- Suppose that the words are conditionally independent given Y. Then,

$$p(y,x_1,\ldots x_n)=p(y)\prod_{i=1}^n p(x_i\mid y)$$

Estimate parameters from training data. **Predict** with Bayes rule:

$$p(Y = 1 \mid x_1, \dots x_n) = \frac{p(Y = 1) \prod_{i=1}^n p(x_i \mid Y = 1)}{\sum_{y=\{0,1\}} p(Y = y) \prod_{i=1}^n p(x_i \mid Y = y)}$$

- Are the independence assumptions made here reasonable?
- Philosophy: Nearly all probabilistic models are "wrong", but many are nonetheless useful

Discriminative versus generative models

- Using chain rule $p(Y,X) = p(X \mid Y)p(Y) = p(Y \mid X)p(X)$. Corresponding Bayesian networks:
- However, suppose all we need for prediction is $p(Y \mid X)$
- In the left model, we need to specify/learn both p(Y) and $p(X \mid Y)$, then compute $p(Y \mid X)$ via Bayes rule
- In the right model, it suffices to estimate just the **conditional** distribution $p(Y \mid X)$
 - We never need to model/learn/use p(X)!
 - Called a discriminative model because it is only useful for discriminating Y's label when given X

Discriminative versus generative models

- Since X is a random vector, chain rules will give
 - $p(Y,X) = p(Y)p(X_1 \mid Y)p(X_2 \mid Y, X_1) \cdots p(X_n \mid Y, X_1, \cdots, X_{n-1})$
 - $p(Y,X) = p(X_1)p(X_2 \mid X_1)p(X_3 \mid X_1, X_2) \cdots p(Y \mid X_1, \cdots, X_{n-1}, X_n)$

We must make the following choices:

- In the generative model, p(Y) is simple, but how do we parameterize $p(X_i \mid X_{pa(i)}, Y)$?
- ② In the discriminative model, how do we parameterize $p(Y \mid X)$? Here we assume we don't care about modeling p(X) because X is always given to us in a classification problem

Naive Bayes

① For the generative model, assume that $X_i \perp X_{-i} \mid Y$ (naive Bayes)

Logistic regression

For the discriminative model, assume that

$$p(Y = 1 \mid x; \alpha) = f(x, \alpha)$$

- Not represented as a table anymore. It is a parameterized function of x (regression)
 - Has to be between 0 and 1
 - Depend in some *simple* but reasonable way on x_1, \dots, x_n
 - Completely specified by a vector α of n+1 parameters (**compact** representation)

Linear dependence: let $z(\alpha, x) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Then, $p(Y = 1 \mid x; \alpha) = \sigma(z(\alpha, x))$, where $\sigma(z) = 1/(1 + e^{-z})$ is called the **logistic function**:

Logistic regression

Linear dependence: let $z(\alpha, x) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. Then, $p(Y = 1 \mid x; \alpha) = \sigma(z(\alpha, x))$, where $\sigma(z) = 1/(1 + e^{-z})$ is called the **logistic function**

- Decision boundary $p(Y = 1 \mid x; \alpha) > 0.5$ is linear in x
- Equal probability contours are straight lines
- Probability rate of change has very specific form (third plot)

Discriminative models are powerful

- Logistic model does *not* assume $X_i \perp X_{-i} \mid Y$, unlike naive Bayes
- This can make a big difference in many applications
- For example, in spam classification, let $X_1 = 1$ ["bank" in e-mail] and $X_2 = 1$ ["account" in e-mail]
- ullet Regardless of whether spam, these always appear together, i.e. $X_1=X_2$
- Learning in naive Bayes results in $p(X_1 \mid Y) = p(X_2 \mid Y)$. Thus, naive Bayes double counts the evidence
- ullet Learning with logistic regression sets $lpha_1=0$ or $lpha_2=0$, in effect ignoring it

Generative models are still very useful

Using chain rule $p(Y, X) = p(X \mid Y)p(Y) = p(Y \mid X)p(X)$. Corresponding Bayesian networks:

- Using a conditional model is only possible when X is always observed
 - When some X_i variables are unobserved, the generative model allows us to compute $p(Y \mid X_{evidence})$ by marginalizing over the unseen variables

Neural Models

In discriminative models, we assume that

$$p(Y = 1 \mid x; \alpha) = f(x, \alpha)$$

- 2 Linear dependence:
 - let $z(\alpha, x) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$.
 - $p(Y = 1 \mid x; \alpha) = \sigma(z(\alpha, x))$, where $\sigma(z) = 1/(1 + e^{-z})$ is the **logistic** function
 - Dependence might be too simple
- **Non-linear** dependence: let h(A, b, x) = f(Ax + b) be a non-linear transformation of the inputs (*features*).

$$p_{\text{Neural}}(Y = 1 \mid x; \alpha, A, b) = \sigma(\alpha_0 + \sum_{i=1}^{h} \alpha_i h_i)$$

- More flexible
- More parameters: A, b, α

Neural Models

In discriminative models, we assume that

$$p(Y = 1 \mid \mathsf{x}; \boldsymbol{\alpha}) = f(\mathsf{x}, \boldsymbol{\alpha})$$

- 2 Linear dependence: let $z(\alpha, x) = \alpha_0 + \sum_{i=1}^n \alpha_i x_i$. $p(Y = 1 \mid x; \alpha) = f(z(\alpha, x))$, where $f(z) = 1/(1 + e^{-z})$ is the logistic function
 - Dependence might be too simple
- **Non-linear** dependence: let h(A, b, x) = f(Ax + b) be a non-linear transformation of the inputs (*features*).

$$p_{\text{Neural}}(Y = 1 \mid x; \alpha, A, b) = f(\alpha_0 + \sum_{i=1}^{h} \alpha_i h_i)$$

- More flexible
- ullet More parameters: A, b, lpha
- Can repeat multiple times to get a neural network

Bayesian networks vs neural models

Using Chain Rule

$$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)$$

Fully General

Bayes Net

$$p(x_1, x_2, x_3, x_4) \approx p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)$$

Assumes conditional independencies

Neural Models

$$p(x_1, x_2, x_3, x_4) \approx p(x_1)p(x_2 \mid x_1)p_{\text{Neural}}(x_3 \mid x_1, x_2)p_{\text{Neural}}(x_4 \mid x_1, x_2, x_3)$$

Assume specific functional form for the conditionals. A sufficiently deep neural net can approximate any function.

Continuous variables

- If X is a continuous random variable, we can usually represent it using its **probability density function** $p_X : \mathbb{R} \to \mathbb{R}^+$. However, we cannot represent this function as a table anymore. Typically consider parameterized densities:
 - Gaussian: $X \sim \mathcal{N}(\mu, \sigma)$ if $p_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$
 - Uniform: $X \sim \mathcal{U}(a,b)$ if $p_X(x) = \frac{1}{b-a} \mathbb{1}[a \le x \le b]$
 - Etc.
- If X is a continuous random vector, we can usually represent it using its joint probability density function:
 - Gaussian: if $p_X(x) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$
- Chain rule, Bayes rule, etc all still apply. For example,

$$p_{X,Y,Z}(x,y,z) = p_X(x)p_{Y|X}(y \mid x)p_{Z|\{X,Y\}}(z \mid x,y)$$

Continuous variables

- This means we can still use Bayesian networks with continuous (and discrete) variables. Examples:
- **Mixture of 2 Gaussians**: Network $Z \to X$ with factorization $p_{Z,X}(z,x) = p_Z(z)p_{X|Z}(x \mid z)$ and
 - Z ∼ Bernoulli(p)
 - ullet $X \mid (Z=0) \sim \mathcal{N}(\mu_0, \sigma_0)$, $X \mid (Z=1) \sim \mathcal{N}(\mu_1, \sigma_1)$
 - The parameters are $p, \mu_0, \sigma_0, \mu_1, \sigma_1$
- Network $Z \to X$ with factorization $p_{Z,X}(z,x) = p_Z(z)p_{X\mid Z}(x\mid z)$
 - $Z \sim \mathcal{U}(a, b)$
 - $X \mid (Z = z) \sim \mathcal{N}(z, \sigma)$
 - The parameters are a, b, σ
- Variational autoencoder: Network $Z \to X$ with factorization $p_{Z,X}(z,x) = p_Z(z)p_{X\mid Z}(x\mid z)$ and
 - $Z \sim \mathcal{N}(0,1)$
 - $X \mid (Z = z) \sim \mathcal{N}(\mu_{\theta}(z), e^{\sigma_{\phi}(z)})$ where $\mu_{\theta} : \mathbb{R} \to \mathbb{R}$ and σ_{ϕ} are neural networks with parameters (weights) θ, ϕ respectively
 - Note: Even if $\mu_{\theta}, \sigma_{\phi}$ are very deep (flexible), functional form is still Gaussian