

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Spa

independence

01111050111111

. . .

Quadratic forms

Regression Analysis Linear Algebra

Buddhananda Banerjee

Department of Mathematics Centre for Excellence in Artificial Intelligence Indian Institute of Technology Kharagpur

bbanerjee@maths.iitkgp.ac.in

1/16

Simple linear regression with Vector notation

Linear Algebra

SLR

■ Consider a data set
$$D = \{(x_i, y_i) | x_i \in \mathbb{R}, y_i \in \mathbb{R}, \forall i = 1, 2, \dots, n\}$$

- \blacksquare x_i s are non stochastic
- \blacksquare y_i s are stochastic and realized values of random variable Y_i s
- $\mathbf{v} = (y_1, y_2, \dots, y_n)^T, \mathbf{x} = (x_1, x_2, \dots, x_n)^T, \boldsymbol{\beta} = (\beta_0, \beta_1)^T \text{ and } \mathbf{1} = (1, 1, \dots, 1)^T$

Problem statement (Redefined)

We are interested to have a prediction vector

$$\hat{\mathbf{y}} = g(\mathbf{x}, \boldsymbol{\beta}) = [\mathbf{1} \ \mathbf{x}] \boldsymbol{\beta}$$

which will approximate well the observed vector v for known vector x.

It is a problem in \mathbb{R}^n now !!

Other uses of vector representation

Linear Algebra

Vector Space

- Weighted sum / Averaging
- Expectation of discrete random variable
- Combing audio signals for music composition
- Image representation in pic-cell.
- Principal component Analysis
- \blacksquare \mathbb{P}_n = Polynomial up to degree n

Vector Space $(V, +, \cdot)$

Linear Algebra

B Banerje

SLR

Vector Space

Sub-Spa

.

Orthogonali

Column Spar

Quadratic forms

Definition

A vector space V over real numbers $\mathbb R$ is a collection of vectors such that

- $1 + : V \times V \rightarrow V$ [closed under vector addition]
- (x + y) + z = x + (y + z), for all $x, y, z \in V$ [associative]
- There exists $0 \in V$ such that 0 + x = x + 0 = x for all $x \in V$ [identity element exists]
- 1 There exists $-\mathbf{x} \in \mathbf{V}$ for each \mathbf{x} such that $(-\mathbf{x}) + \mathbf{x} = \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$ [inverse exists]
- $\mathbf{z} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ [commutative]
- **6** $a \cdot (b \cdot \mathbf{x}) = (ab) \cdot \mathbf{x}$ for all $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathbf{V}$
- 7 $1 \cdot \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbf{V}$
- **8** $(a+b) \cdot \mathbf{x} = (a \cdot \mathbf{x}) + (b \cdot \mathbf{x})$ for all $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathbf{V}$
- $\mathbf{9} \ a \cdot (\mathbf{x} + \mathbf{y}) = a \cdot (\mathbf{x}) + a \cdot (\mathbf{y})$

Sub-Space $(S, +, \cdot)$

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Space

эран

Independen

....

Orthogonan

Column Spac

Column Spac

Quadratic

Definition

If a subset S of V is a vector space itself then S is celled subspace of V.

How to check S is a subspace of V?

- (1) Whether $\mathbf{0} \in \mathbf{S}$?
- (2) Whether $\mathbf{x} + a \cdot \mathbf{y} \in \mathbf{S}$? for all $\mathbf{x}, \mathbf{y} \in \mathbf{S}$ and $a \in \mathbb{R}$.

Example:

- (1) All lines passing through (0,0) in \mathbb{R}^2 .
- (2) All planes passing through origin in \mathbb{R}^n .
- (3) \mathbb{P}_5 in \mathbb{P}_7

Span

Linear Algebra

B Banerje

SLI

Vector Spa Sub-Space

Span

Independenc

Dacie

Orthogonalit

Ducioation

Column Spac

0...1.................

Definition

The span of a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\} \in \mathbf{V}$ is the collection

$$Sp\{\mathbf{v}_1,\mathbf{v}_2,\cdots\mathbf{v}_k\} = \left\{\sum_{i=1}^k c_i\mathbf{v}_i|c_i\in\mathbb{R}\right\}$$

which is the collection of all possible linear combinations of $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$.

Note: A span is always a subspace.

Example:

(a)
$$Sp\{(0,1),(1,1)\} = Sp\{(0,1),(1,0)\} = \mathbb{R}^2$$

(b)
$$Sp\{(0,1,0),(1,1,0)\} = \mathbb{R} \times \mathbb{R} \times \{0\} = xy$$
 - pane in \mathbb{R}^3

In regression $\hat{\mathbf{y}} \in Sp\{1,\mathbf{x}\}$ which is closest to $\mathbf{y} \in \mathbb{R}^n$

Linear Independence

Linear Algebra

B Banerje

SLF

ector Spa

Sub-Spa

Span

Independence

. .

Orthogonali

Decination

Column Spac

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_k\} \in \mathbf{V}$ are said to be linearly independent iff $\sum_{i=1}^k c_i \mathbf{v}_i = \mathbf{0} \implies c_1 = c_2 = \cdots = c_n = 0$. On the other hand if $\sum_{i=1}^k c_i \mathbf{v}_i = \mathbf{0}$ holds for some non zero $c_i \in \mathbb{R}$ the the vectors are called linearly dependent.

Example:

- (a) $\{(0,1),(1,1)\}$ are independent
- (b) $\{(0,1),(1,0)\}$ are independent
- (c) $\{(0,1),(1,0),(1,1)\}$ are dependent

Basis

Linear Algebra

B Banerje

SLI

ector Spa

Sub-Space

Span

Independen

Racie

...

OT HITOGOTHII

C-1..... C---

Column Space

Definition

If $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$ are linearly independent then it is a basis of $Sp\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$, and the dimension of $Sp\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$ is the number of linearly independent elements in $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$.

Example:

- (a) $\{(0,1),(1,1)\}$ is a basis of \mathbb{R}^2
- (b) $\{(0,1),(1,0)\}$ is a basis of \mathbb{R}^2 also.
- (c) $\{(0,1), (1,0), (1,1)\}$ is NOT a basis of \mathbb{R}^2

Note: Number of vectors in a basis of a vector space is known as the dimension of the vector space.

Definition

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Space

. . .

Independen

Orthogonality

Orthogonam

Column Spac

Ouadratic for

Orthogonal vectors

Two vectors $\mathbf{u}, \mathbf{v} \in \mathbf{V}$ are said to be orthogonal if $\mathbf{u}^T \mathbf{v} = \sum_i u_i v_i = 0$

Orthogonal complement

If $S \subseteq V$ is a subspace then the orthogonal complement of S denoted by S^{\perp} is a collection

$$\mathbf{S}^{\perp} = \{ \mathbf{v} | \mathbf{v} \in \mathbf{V}, \mathbf{u}^T \mathbf{v} = 0, \forall \mathbf{u} \in S \}$$

and $dim(\mathbf{S}^{\perp}) = dim(\mathbf{V}) - dim(\mathbf{S})$.

Examples:

- (a) $Sp\{(1,0,0,0), (0,0,1,0)\} \perp Sp\{(0,1,0,0), (0,0,0,1)\}$
- (b) $Sp\{(1,1,0,0),(0,1,1,0),(1,0,1,0),\} \perp Sp\{(0,0,0,1)\}$

Remarks

Linear Algebra

B Banerje

SLR

ector Spa

Sub-Space

Span

Independen

Basis

Orthogonality

Projection

Column Spac

1 Basis is not unique.

2 Elements of a basis are need not be orthogonal to each other.

3 Linear independence need not imply orthogonality.

4 Orthogonality implies independence.

5 Orthogonal vectors with unit length are called orthonormal vectors.

Projection

Linear Algebra

B Banerje

SLI

vector Spa

Sub-Space

Spar

Independen

De ete

Orthogonali

Projection

Column Spac

Quadratic

Projection Matrix

If $S \subseteq V$ then the projection matrix of subspace S is P_s satisfying

- (a) $P_s \mathbf{v} = \mathbf{v}$ if $\mathbf{v} \in \mathbf{S}$
- (b) $P_s \mathbf{v} \in \mathbf{S}$ for all $\mathbf{v} \in \mathbf{V}$

Orthogonal Projection Matrix

A projection matrix P_s is an orthogonal projection matrix of subspace $\mathbf{S} \subseteq \mathbf{V}$ if $(\mathbf{I} - P_s)$ is a projection matrix of $\mathbf{S}^{\perp} \subseteq \mathbf{V}$ too.

Theorem

If $\{\mathbf{v}_1, \mathbf{v}_2, \cdots \mathbf{v}_k\}$ is an orthonormal basis of the subspace $\mathbf{S} \subseteq \mathbf{V}$ then the orthogonal projection matrix of \mathbf{S} is $P_s = \sum_{i=1}^k v_i v_i^T$

Idempotency

Linear Algebra

B Banerje

SLI

Vector Spa

Sub-Spac

Span

Independen

Projection

Column Space

Column Space

Idempotent matrix

If a matrix P satisfies the relation that $P^2 = P$, then P is called an idempotent matrix.

Theorem

An idempotent matrix has eigen values 0 and 1.

Theorem

A projection matrix is an idempotent matrix.

In regression eventually $\hat{\mathbf{y}}$ becomes the orthogonal projection of $\mathbf{y} \in \mathbb{R}^n$ in the subspace $S = Sp\{1, \mathbf{x}\}$

Linear Algebra

R Ranerie

et i

Vector Spa

Sub-Sna

ous spe

Indonondor

macpenaen

O' HIOGOIIII

Column Spac

Ouadratic forms

