UNIVERSIDADE DE COIMBRA DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

INTRODUÇÃO ÀS REDES DE COMUNICAÇÃO

RELATÓRIO TRABALHO 1

Novembro, 2016

Autores: Teresa Salazar, 2015234237 Gonçalo Amaral

INTRODUÇÃO

Com este trabalho pretende-se analisar e comparar a transmissão de dados usando os protocolos UDP e TCP utilizando o NS2.

Usando a rede especificada, constituída por PCs e routers, em que os PCs também fazem o routing de pacotes de dados, o "PC A" vai enviar ao "PC E" um bloco de dados de 2MB, que começa a ser transmitido no instante 0.5 segundos.

Dependendo do cenário, poderá haver um envio adicional de informação por UDP.

O Protocolo UDP (User Datagram Protocol) é um protocolo de envio de informação que, entre os dois protocolos, é o mais rápido e mais simples pois não fornece garantia na entrega dos pacotes.

O Protocolo TCP (Transmission Control Protocol) é mais seguro porque, ao contrário do Protocolo UDP, existe um checksum que vai actualizando o Receptor da informação que já recebeu.

NOTAS

Argv0: Cenário – Permite escolher o cenário.

Argv1: Protocolo – Permite alternar o protocolo usado - TCP ou UDP.

Argv2: Janela – Permite definir a janela de transmissão para envios para o protocolo do tipo TCP.

Argv3: Quebra – Permite escolher se queremos activar a quebra de liagação entre "PC C" e o "PC D" – 0 ou 1.

Argv4: velocidade – Permite escolher a velocidade de ligação entre o "PC A" e o "PC B". Para a todos os exercícios, exceto o 4.3, deverá ter o valor de 10Mb.

Para correr o projecto é necessário correr o comando:

ns project.tcl <cenario> <protocol> <window> <break> <velocidade>
Para chamar o trace_analyzer fomos modificando os valores de type - cbr ou tcp caso a ligação seja udp ou tcp. O float, source e destination são sempre 1, 0 e 7.

EXERCÍCIO 2

Tamanho por omissão das filas nos nós	50
Tamanho por omissão dos pacotes TCP	1000
Tamanho por omissão dos pacotes UDP	1000
Tamanho por omissão da janela do TCP	20

EXERCÍCIO 3.1

ns project.tcl 1 udp 0 0 10Mb awk -f trace_analyzer.awk type=cbr src=0 dest=7 flow=1 out.tr

Statistics for cbr from node 0 to 7 in flow 1

Total sent: 2098 Total received: 2098 Lost packets: 0

Average delay: 000,859867 Total transmission time: 002,000000

No caso do TCP, a janela influencia o resultado. Para janelas abaixo de 34, o número total de pacotes enviados não era enviado. No entanto, à medida que a janela aumenta, o Average delay e o total transmission time variam.

Após várias tentativas, a janela que minimiza o tempo total de transmissão do bloco de dados entre o "PC A" e o "PC E" sem perda de pacotes é 88.

ns project.tcl 1 tcp 88 0 10Mb awk -f trace analyzer.awk type=tcp src=0 dest=7 flow=1 out.tr

Statistics for tcp from node 0 to 7 in flow 1

Total sent: 2099 Total received: 2099 Lost packets: 0

Average delay: 000,021915 Total transmission time: 002,000000

TCP			UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos	
002,000000	88	0	002,000000	0	

EXERCÍCIO 3.2

Statistics for cbr from node 0 to 7 in flow 1

Total sent: 2098 Total received: 1304 Lost packets: 794 Average delay: 000,879601

Total transmission time: 002,000000

TCP		UDP		
Tempo min	Janela min	Nº pacotes perdidos	Tempo min	Nº pacotes perdidos
			002,000000	794

EXERCÍCIO 4.1

ns project.tcl 2 udp 0 0 10Mb awk -f trace_analyzer.awk type=cbr src=0 dest=7 flow=1 out.tr

Statistics for cbr from node 0 to 7 in flow 1

Total sent: 2098
Total received: 1318
Lost packets: 780
Average delay: 000,872534
Total transmission time: 00

Total transmission time: 002,000000 ns project.tcl 2 tcp 20 0 10Mb

awk -f trace_analyzer.awk type=tcp src=0 dest=7 flow=1 out.tr

Statistics for tcp from node 0 to 7 in flow 1 $\,$

Total sent: 1251 Total received: 1245 Lost packets: 6 Average delay: 000,011245 Total transmission time: 005,000000

TCP		UDP		
Tempo	Nº pacotes perdidos	Tempo	Nº pacotes perdidos	
5,000000	6	2,000000	780	

EXERCÍCIO 4.2

ns project.tcl 2 udp 0 1 10Mb awk -f trace analyzer.awk type=cbr src=0 dest=7 flow=1 out.tr

Statistics for cbr from node 0 to 7 in flow 1

Total sent: 2098 Total received: 1304 Lost packets: 794 Average delay: 000,879601

Total transmission time: 002,000000

ns project.tcl 2 tcp 20 1 10Mb

awk -f trace analyzer.awk type=tcp src=0 dest=7 flow=1 out.tr

Statistics for tcp from node 0 to 7 in flow 1

Total sent: 1101 Total received: 1087 Lost packets: 14

Average delay: 000,036799 Total transmission time: 005,000000

TCP		UDP		
Tempo	Nº pacotes perdidos	Tempo	Nº pacotes perdidos	
005,000000	14	002,000000	794	

EXERCÍCIO 4.3

ns project.tcl 2 udp 0 0 39Mb awk -f trace_analyzer.awk type=cbr src=0 dest=7 flow=1 out.tr

Statistics for cbr from node 0 to 7 in flow 1

Total sent: 2098 Total received: 507 Lost packets: 1591 Average delay: 000,000000

Total transmission time: 000,000000

TCP		UDP			
Tempo min	Janela min	Nº pacotes enviados/recebidos	Tempo min	Nº pacotes perdidos	Velocidade
			0,000	1591	39Mb

EXERCÍCIO 5

Primeiramente, confirma-se que o Protocolo UDP é menos eficiente pois existe perda de pacotes. Prova-se então a importância da presença do checksum no protocolo TCP para garantir o envio da informação.

Como consequência, o Protocolo UDP consegue reduzir o seu tempo de execução, enquanto que o TCP tem que confirmar qual a informação que já foi recebida e assim perde mais tempo.

EXERCÍCIO 6

O problema surge com o facto de o PC E ter de manusear mais informação. Isto faz com que o PC E tenha mais trabalho, logo mais tempo de execução e maior probabilidade de perda de pacotes.

A janela mínima do checksum (no TCP) tem que ser maior para que haja o mínimo de reenvio de pacotes, e a velocidade de envio de pacotes (no UDP) tenha de ser menor, de modo a conseguir minimizar perda de pacotes.

Além disso, o facto de ambas as streams passarem em nós comuns faz com eles tenham de diferenciar a informação e de onde vem.

Esta espera e alternância de vários pacotes vai fazer com que a fila de receção de pacotes aumente significativamente.

As soluções para resolver estes problemas serão: diminuir a velocidade de envio dos pacotes para a fila não crescer substancialmente e não existir uma maior perda de pacotes; aumentar o tamanho da fila, permitindo assim uma maior acumulação de pacotes, contribuindo para a não perda dos mesmos.