Build a Personalized Online Course Recommender System with Machine Learning

Azlaan Ranjha 31/08/2023

Big Data University

BD0131EN - v2016.0

Moving Data into Hadoop

Starts: Any time, Self-paced
Course No ratings yet

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Project background and context

Acting as a new machine learning engineer, I have been given the task of leading a recommender system PoC so that we can enhance learner experience.

Problem states and hypotheses

Problem Statement: Developing an efficient recommender system for Al Training Room's diverse course offerings to enhance learner engagement and potentially drive revenue growth.

Hypothesis: Implementing personalized recommendations will improve course enrollment rates and user satisfaction, positively impacting both engagement and revenue.

Exploratory Data Analysis

Course counts per genre

Course enrollment distribution

20 most popular courses

	TITLE	Ratings	
Ø	python for data science	14936	
1	introduction to data science	14477	
2	big data 101 132		
3	hadoop 101 10599		
4	data analysis with python	8303	
5	data science methodology 7719		
6	machine learning with python 7644		
7	spark fundamentals i	7551	
8	data science hands on with open source tools	7199	
9	blockchain essentials 6719		
10	data visualization with python 6709		
11	deep learning 101 6323		
12	build your own chatbot 5512		
13	r for data science	5237	
14	statistics 101	5015	
15	introduction to cloud	4983	
16	docker essentials a developer introduction	4480	
17	sql and relational databases 101	3697	
18	mapreduce and yarn	3670	
19	data privacy fundamentals	3624	

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

```
Hyper-Parameter Settings:
Score Threshold: 10.0
```

```
import pandas as pd
# Assuming you have the 'res_df' DataFrame with columns 'USER', 'COURSE_ID', and 'SCORE'
# and the 'test users df' DataFrame with the test user interactions
# Load the test user interactions dataset
test users url = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-ML321EN-SkillsNetwork/labs/datasets/rs conten
test_users_df = pd.read_csv(test_users_url)
# Group and count the number of interactions per user
test_user_interactions = test_users_df.groupby('user')['item'].apply(list).reset index(name='interactions')
# Calculate the average number of new/unseen courses recommended per user
unseen course counts = []
for index, row in test user interactions.iterrows():
   user = row['user']
   user_recommendations = res_df[res_df['USER'] == user]['COURSE_ID'].tolist()
   user_interactions = row['interactions']
   new_courses = [course for course in user_recommendations if course not in user_interactions]
   unseen course counts.append(len(new courses))
average unseen courses = sum(unseen course counts) / len(unseen course counts)
# Display the result
print("Average new/unseen courses recommended per user: {:.2f}".format(average unseen courses))
Average new/unseen courses recommended per user: 53.41
```

	COURSE_ID	FREQUENCY
0	TA0106EN	608
1	GPXX0IBEN	548
2	excourse21	547
3	excourse22	547
4	ML0122EN	544
5	GPXX0TY1EN	533
6	excourse04	533
7	excourse06	533
8	excourse31	524
9	excourse72	516

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

```
Hyper-parameter Settings:
Similarity Threshold: 0.6
```

```
# Calculate the average number of new/unseen courses recommended per user
def calculate_average_unseen_recommendations(recommended courses):
   total unseen courses = 0
   total users = len(recommended courses)
   for courses in recommended courses:
       unseen courses = [course for course in courses if course not in enrolled course ids]
       total unseen courses += len(unseen courses)
   average unseen courses = total unseen courses / total users
   return average_unseen_courses
# Call the function to calculate the average
average unseen courses = calculate average unseen recommendations(recommended courses)
print(f"Average Unseen Courses Recommended per User: {average unseen courses:.2f}")
Average Unseen Courses Recommended per User: 0.98
```

```
Top 10 Most Frequently Recommended Courses:
Course: excourse62, Recommended 257 times
Course: excourse22, Recommended 257 times
Course: WA0103EN, Recommended 101 times
Course: TA0105, Recommended 41 times
Course: DS0110EN, Recommended 38 times
Course: excourse46, Recommended 24 times
Course: excourse47, Recommended 24 times
Course: excourse63, Recommended 23 times
Course: excourse65, Recommended 23 times
Course: TMP0101EN, Recommended 17 times
```

Flowchart of clustering-based recommender system

Evaluation results of clustering-based recommender system

Your hyper-parameter settings, such as a score or similarity threshold

Note if you have tried multiple hyper-parameters, you may show your results in a grouped bar chart

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

Flowchart of NMF based recommender system

Flowchart of Neural Network Embedding based recommender system

Compare the performance of collaborative-filtering models

Conclusions

- We can conclude, that the ratings of the courses had a direct impact on the course popularity.
 Centre of student interest were topics such as ML, Python and Data Science etc.
- Hyperparameters had a strong impact on the frequency of recommendations of a particular course.
- User-based content had a tendency of being recommended more strongly than content-based recommendations.
- Recommender Systems using Neural networks and Regression Methods etc, although are time consuming but are most accurate and consistent.