컴퓨터공학 기초 실험2

Lab #6

Latch & flip-flop design with/without reset/set

Latch & Flip-Flop

D Latch & D Flip-Flop

✓ Latch와 flip-flop은 이전에 값을 유지하고 있는 저장 소자 역할을 한다.

✓ D latch는 clock이 enable 상태를 유지하는 동안 입력 D 값의 변화를 출력

한다.

	Cl	K	
_	D	Q	_
		Q	_

CLK	Q
0	이전 Q
1	D

✓ D flip-flop는 clock의 rising edge나 falling edge에서만 D 값으로 출력이 바뀌게 된다. 해당 실습에서는 rising edge를 사용한다. 다른 경우에는 D 값이 바뀌더라도 이전 Q 값을 그대로 유지한다.

CLK	Q
↑	D
Other case	이전 Q

Latch & Flip-Flop(Cont.)

▶ 다음의 그림을 통해 latch와 flip-flop의 차이를 알 수 있다.

Resettable D Flip-Flop

- > Resettable D Flip-Flop
 - ✓ D flip-flop에 reset이 기능이 추가된 D flip-flop이다. 실습에서 구현하는 resettable D flip-flop에서 reset은 active low에 동작한다.

	Input			
R	D	CLK	Q	
0	X	X	0	
1	0	↑	0	
1	1	1	1	
1	X	↓ or 0 or 1	이전 Q	

PRACTICE

D Latch (1/3)

- > New Project Wizard
 - ✓ Project name : _dlatch
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files : gates.v
 - ✓ New files : _dlatch.v, tb_dlatch.v

D Latch (2/3)

> D Latch

Inj	out	Out	tput
CLK	D	Q	$ar{Q}$
0	X	Q_{prev}	$ar{Q}_{prev}$
1	0	0	1
1	1	1	0

Symbol

Truth table

D Latch (3/3)

> Implementation

Waveform

D Flip-Flop (1/3)

- New Project Wizard
 - ✓ Project name : _dff
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- > Verilog file
 - ✓ Add files: gates.v, _dlatch.v
 - ✓ New files : _dff.v, tb_dff.v

파일을 추가할 때 해당 프로젝트 폴더에 복사하여 집어넣는다. gates.v는 기존 Week 5 – ALU32에 사용한 file이다. _dlatch.v는 앞서 생성한 file이다.

D Flip-Flop (2/3)

D Flip-Flop

D Flip-Flop (3/3)

> Implementation

Schematic

Waveform

Enabled D Flip-Flop (1/2)

- New Project Wizard
 - ✓ Project name : _dff_en
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files: gates.v, _dlatch.v, _dff.v, mx2.v
 - New files : _dff_en.v, tb_dff_en.v

파일을 추가할 때 해당 프로젝트 폴더에 복사하여 집어넣는다. gates.v는 기존 Lab 4 – ALU32에 사용한 file이다. mx2.v는 기존 Lab 4 – ALU4에 사용한 file이다. _dlatch.v와 _dff.v는 앞서 생성한 file이다.

Enabled D Flip-Flop (2/2)

Enabled D Flip-Flop

Waveform

Resettable D Flip-Flop (1/2)

- New Project Wizard
 - ✓ Project name : _dff_r
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files : gates.v, _dlatch.v, _dff.v
 - ✓ New files : _dff_r.v, tb_dff_r.v

파일을 추가할 때 해당 프로젝트 폴더에 복사하여 집어넣는다. gates.v는 기존 Lab 3 – ALU32에 사용한 file이다. mx2.v는 기존 Lab 3 – ALU4에 사용한 file이다. _dlatch.v와 _dff.v는 앞서 생성한 file이다.

Resettable D Flip-Flop (2/2)

> D flip-flop with active-low synchronous reset

Waveform

Instance

Synchronous Set/Resettable D Flip-Flop (1/2)

- New Project Wizard
 - ✓ Project name : _dff_rs
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- > Verilog file
 - ✓ Add files : gates.v, _dlatch.v, _dff.v
 - ✓ New files : _dff_rs.v, tb_dff_rs.v

파일을 추가할 때 해당 프로젝트 폴더에 복사하여 집어넣는다. gates.v는 기존 Lab 4 – ALU32에 사용한 file이다. mx2.v는 기존 Lab 4 – ALU4에 사용한 file이다. _dlatch.v와 _dff.v는 앞서 생성한 file이다.

Synchronous Set/Resettable D Flip-Flop (2/2)

> D flip-flop with active-low synchronous reset and set

Symbol

Register (1/3)

- New Project Wizard
 - ✓ Project name : _register32
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files: gates.v, _dlatch.v, _dff.v
 - ✓ New files : _register8.v, _register32.v, tb_register32.v

파일을 추가할 때 해당 프로젝트 폴더에 복사하여 집어넣는다. gates.v는 기존 Lab 4 – ALU32에 사용한 file이다. mx2.v는 기존 Lab 4 – ALU4에 사용한 file이다. _dlatch.v와 _dff.v는 앞서 생성한 file이다.

Register (2/3)

- > N-bits Register
 - ✓ N-bits register는 N개의 flip-flop을 한 줄로 늘어놓음으로써 구현

Register (3/3)

- > Implementation
 - ✓ 32-bits register

Symbol

/tb_register32/tb_clk	1															
/tb_register32/tb_d	98765 4 32	1234567	9876543	2	ffeeddcc	bbaa	7766	5544		33221100)	12345678				
/tb_register32/tb_q	98765432			9876	5432),	7766	5544				(:	1234	5678	

Async/Sync Set/Resettable D Flip-Flop (1/4)

- New Project Wizard
 - Project name : _dff_rs_sync_async
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files : -
 - New files: _dff_rs_sync.v, _dff_rs_async.v, _dff_rs_sync_async.v tb_dff_rs_sync_async.v

해당 프로젝트는 기존의 structural implementation과 다르게 behavioral implementation을 통하여 asynchronous/synchronous 차이를 확인하는 것으로 별도의 파일 추가는 하지 않는다.

Async/Sync Set/Resettable D Flip-Flop (2/4)

> D flip-flop with active-low synchronous reset and set

```
module dff rs sync(clk, set n, reset n, d, q);
   input clk, set n, reset n, d;
   output q;
   req q;
   always@(posedge clk)
   begin
      if(reset n == 0)      q <= 1'b0;</pre>
      else if (set n == 0) q <= 1'b1;
                        q <= d;
      else
   end
endmodule
```

Async/Sync Set/Resettable D Flip-Flop (3/4)

- > D flip-flop with active-low asynchronous reset and set
 - ✓ What is difference with previous D flip-flop?

endmodule

Async/Sync Set/Resettable D Flip-Flop (4/4)

- ▶ 앞서 작성한 두 개의 set/resettable D FF를 추가하고 이에 대한 testbench를 작성하여 두 개의 차이점을 확인하여 본다.
 - ✓ Hint : set_n과 reset_n이 모두 active low에 동작

Assignment 5

- > Report
 - ✓ 자세한 사항은 lab document 참고
- > Submission
 - ✓ 과제 기한은 공지 참고
 - ✓ 늦은 숙제는 제출 이틀 후 까지만 받음(20% 감점)

채점기준

세부사항				상	사	하	최하
소스코드	Source code가 잘 작성 되었는가? (Structural design으로 작성되었는가?)	10	10	8	5	3	0
	주석을 적절히 달았는가? (반드시 영어로 주석 작성)	20	20	15	10	5	0
설계검증 (보고서)	보고서를 성실히 작성하였는가? (보고서 형식에 맞추어 작성)	30	30	20	10	5	0
	합성결과를 설명하였는가?	10	10	8	5	3	0
	검증을 제대로 수행하였는가? (모든 입력 조합, waveform 설명)	30	30	20	10	5	0
총점							

References

- > Altera Co., <u>www.altera.com/</u>
- > D. M. Harris and S. L. Harris, Digital Design and Computer Architecture, Morgan Kaufmann, 2007
- > 이준환, 디지털논리회로2 강의자료, 광운대학교, 컴퓨터 공학과, 2021

Q&A

THANK YOU