

单片机技术及应用

第15讲 并行存储器扩展1

申屠晗

2021年4月1日

内容提要

6.1 MCS-51并行扩展概述

6.2 MCS-51存储器的并行扩展

6.1.1 MCS51需要扩展的原因

使单片机能运行的最少器件构成的系统,就是最小系统。

对于片内有ROM型单片机,其自身可以构成最小系统.

有ROM芯片: 89C51等,不必扩展ROM,只要有复位、晶振电路

6.1.1 MCS51需要扩展的原因

1. 需要扩展的原因

51本身的硬件资源有限,不能满足系统的需要

2. 51的扩展能力

51单片机具有很强的片外扩展能力,从方法上有并行扩展和串行扩展两种方法;从资源上可以实现程序存储器(ROM),数据存储器(RAM),I/O的扩展,中断的扩展等。

1. 以P0口的8位口线充当低8位地址线和数据线

P0口8位作为地址线时——A7~A0;

P0口8位作为数据线时——D7~D0;

一线两用需要在分时技术上将地址与数据分离。

分离办法——加一个8位锁存器(74LS373)

以高电平或者下降沿选通74LS373,以ALE作为地址锁存信号。

首先输出地址到锁存器锁存,然后传送数据(读、写)。

74LS373

Е	G	功能			
0	0	直通 Qi = Di			
0	1	保持(Qi 保持不变)			
1	X	输出高阻			

74LS373

2. 以P2口作为高8位地址线

P2口8位口线配合P0口8位口线构成16位地址总线,使得51的片外寻址范围达到64K。

3. 控制信号

ALE——地址锁存选通信号

PSEN——扩展程序存取器读选通信号

EA——内外程序存储器(ROM)选择信号

RD和WR——外括数据存储器(RAM)I/O端口读/写选通信号。

51虽有32条口线,但P0和P2口用作ROM/RAM外扩,所以能用做I/O外扩的只剩P1和P3口。

51并行扩展总线图

1/3

请继续

6.1.2 片外扩展地址

1. 存储器的两种基本结构形式

- ☆ 冯·诺依曼(Von Neumann)结构: 也称普林斯顿(Princeton)结构。程序存储器和数据存储器共用一个逻辑空间,且它们是统一编址的。如16条地址线的寻址空间是64K,则ROM和RAM 总共只有64K。(在通用微型计算机中广泛采用)
- ☆ **哈佛(Harvard)结构**:是程序存储器和数据存储器分别编址的结构。如16条地址线,可以分别寻址64K的ROM和64K的RAM。

6.1.2 片外扩展地址

2. MCS-51系列存储器结构图

8052微控制器的存储器采用哈佛结构,ROM和RAM是分开寻址的

1. 片选问题

当外扩多个存储芯片时,寻址要在芯片选择和芯片内部单元寻址两个层次进行。

其中, 芯片选择尤为重要。

芯片选择的方法有两种,线选法和译码法。

1. 片选问题

例:现有2K*8位存储芯片(如RAM芯片6116),需扩展8K*8位存

储结构

2. 线选法寻址

分析:

扩展8K的存储结构需要2K存储芯片4片;

2K存储器共11根地址线(P0.0~P0.7,P2.0~P2.2);

P2.3~P2.6口线可以用来完成线选芯片的任务。

2. 线选法寻址

2. 线选法寻址

假设空缺的P2.7位低电平,P2.3~P2.6线选时低电平有效;

则4个芯片的地址范围如下:

	二进制表示								十六进制表示	
	P2. 7	P2.6	P2.	5 P2.	4 P2.3	P2.	P2. 2 P2. 1 P2. 0 P0. 7 P0. 0			
	A15	A14	A13	A12	A11	A10	AO			
芯片 1	0	1	1	1	0	0	0	0	0 0	7000H~
	0	1	1	1	0	1	1	1	1 1	77FFH
芯片 2	0	1	1	0	1	0	ő	õ	ő o	6800H∼
	0	1	1	0	1	1	1	1	1 1	6FFFH
芯片 3	0	1	0	1	1	0	Õ	Õ	ő o	5800H∼
	0	1	0	1	1	1	1	1	1 1	5FFFH
芯片 4	0	ő	1	1,	1	0	Õ	Õ	ő o	3800H∼
	0	Q.	1	1	1	1	1	1	1 1	3FFFH

2. 线选法寻址

优点: 电路简单, 无需额外增加硬件电路, 成本低;

缺点: 1) 各片之间地址非连续;

2) 寻址芯片数量有限, 寻址范围小。

1/3

请继续

3. 译码法寻址

思路:通过译码器对系统的高位地址进行译码,以译码输出信号选择相应的存储芯片。

常用的译码芯片: 74LS138(3-8译码器); 74LS139(2-4译码器);

74LS154(4-16译码器);

3. 译码法寻址

74LS139(2-4译码器)

- ●/G: 势能端, 低电平有效。
- ●A、B: 选择端, 即译码器输入端。
- ●/Y0、/Y1、/Y2、/Y3:译码器输出信号,低电平有效。

3. 译码法寻址

74LS139译码器的真值表。

输 入 端			+A 111 AN			
允 许	选	择	输 出 端			
G	В	A	Y3	$\overline{Y2}$	\overline{Y1}	Y0
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1
1	×	×	1	1	1	1

注: 1表示高电平, 0表示低电平, ×表示任意

3. 译码法寻址

3. 译码法寻址

利用74LS139扩展时的片外芯片地址表

		十六进制表示		
	A15 A14 A	13 A12 A11	A10 A0	
芯片 1	0 0	0 0 0	0 0	0000Н~
	0 0	0 0 0	1 1	O7FFH
芯片 2	0 0	0 0 1	0 0	0800H~
	0 0	0 0 1	1 1	OFFFH
芯片 3	0 0	0 1 0	0 0	1000H~
	0 0	0 1 0	1 1	17FFH
芯片 4	0 0	0 1 1	0 0	1800H~
	S122 (2000)	0 1 1	1 1	1FFFH

3. 译码法寻址

优点: 1) 各片之间地址连续;

2) 寻址范围大。

缺点: 1) 需要额外的译码芯片, 电路相对复杂。

结束

谢!

