Advanced Probabilistic Machine Learning and Applications

Caterina De Bacco

April 20, 2021

1 Tutorial 1: Introduction to probabilistic ML

Exercise 1: Multivariate Gaussian

Given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}^{\top}$ in which the observations $\{\mathbf{x}_n\}$ are assumed to be drawn independently from a multivariate Gaussian distribution, i.e. $\mathbf{x}_1, \dots, \mathbf{x}_N \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_x, \boldsymbol{\Sigma}_x)$:

1. Estimate the mean and covariance parameters μ_x and Σ_x , by maximum likelihood.

Hints: (i)
$$|A^{-1}| = 1/|A|$$
, (ii) $\text{Tr}[AB] = \text{Tr}[BA]$, (iii) $\frac{\partial}{\partial A} \log |A| = A^{-\top}$, (iv) $\frac{\partial}{\partial A} Tr[AB] = B^{\top}$

2. Assume the covariance matrix Σ_x to be known and a Gaussian prior over the mean parameter μ_x with mean μ_0 and identity covariance matrix, i.e. $\mathcal{N}(\mu_x|\mu_0, \mathbf{I})$. Compute the distribution a posteriori of the mean parameter μ_x given the observed data \mathbf{X} , i.e. $p(\mu_x|\mathbf{X}, \mu_0, \Sigma_x)$, and its *Maximum a posteriori* (MAP) solution.

Exercise 2: Categorical distribution

Given a data set $\mathbf{X} = \{x_1, \dots, x_N\}^{\top}$ in which the observations $x_n \in \{1, \dots, k\}$ are assumed to be drawn independently from a Categorical distribution, i.e., $x_1, \dots, x_N \sim Categorical(x|\pi_1, \dots, \pi_k)$:

1. Estimate the parameters, i.e., the category probabilities $\{\pi_k\}$ by maximum likelihood.

$$\textit{Hint: (i) Categorical distribution } p(x \mid \{\pi_k\}) = \prod_{k=1}^K \pi_k^{[x=k]}, \text{ with } [x=k] = \begin{cases} 1 \text{ if } x=k \\ 0 \text{ otherwise} \end{cases}$$

2. Assume a Dirichlet prior over the category probabilities $\{\pi_k\}$ with hyperparameter $\alpha = (\alpha_1, ..., \alpha_K)$, i.e., $\pi_1, ..., \pi_k \sim Dirichlet(\pi_1, ..., \pi_k | \alpha)$. Compute the distribution a posteriori of the category probabilities $\{\pi_k\}$ given the observed data \mathbf{X} , i.e., $p(\pi_1, ..., \pi_k | \mathbf{X}, \alpha)$.

Hint: (i) Dirichlet distribution:
$$p(\pi_1, \dots, \pi_K | \alpha_1, \dots, \alpha_K) \propto \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

1