Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики"

Московский институт электроники и математики им. А.Н.Тихонова

Направление подготовки/специальности **«01.03.04 Прикладная математика»** Образовательная программа **«Прикладная математика»**

ОТЧЁТ о прохождении производственной практики

Студент Хлебко Никита Игоревич БПМ 174

Руководитель практики студента: МИЭМ НИУ ВШЭ, Старший преподаватель	Бобер С.А.	Старший преподаватель			
МИЭМ НИУ ВШЭ, Доцент	Внуков А.А	к.т.н., PhD, доцент			
Практика	Практика пройдена с оценкой				
Лата					

Содержание

1.	Введение	3
2.	Содержательная часть 2.1. Краткая характеристика организации	
3.	Исполненное индивидуальное задание 3.1. Обзор возможностей GMAT (General Mission Analysis Tool) 3.2. Обзор библиотек Рython для баллистического проектирования космических миссий 3.3. Заглушка для расчётов	4
4.	Заключение	5
5.	Приложение	6

1. Введение

- Сделать обзор возможностей программного продукта GMAT (General Mission Analysis Tool).
- Провести поиск и сделать обзор библиотек Python для баллистического проектирования космических миссий с аналогичным функционалом.
- Выполнение расчётов и сравнение результатов, сделанных в Python и GMAT.

2. Содержательная часть

2.1. Краткая характеристика организации

• Практика проходила в Московском институте электроники и математики имени А. Н. Тихонова Национального исследовательского университета «Высшая школа экономики», дистанционно.

2.2. Описание профессиональных задач, решаемых студентом на практике

• Во время практики были произведены сбор, систематизация и обобщение материалов, подготовлен обзор программных продуктов для проведения дальнейших исследований в рамках выпускной квалификационной работы.

3. Исполненное индивидуальное задание

3.1. Обзор возможностей GMAT (General Mission Analysis Tool)

• General Mission Analysis Tool (GMAT) – программный комплекс, предназначенный для выполнения анализа, оптимизации и моделирования траекторий космических аппаратов в режимах околоземной орбиты и межпланетных траекторий. Система позволяет создавать различные астрономические объекты, спутники и другие тела для космических миссий, редактировать их параметры и добавлять сторонние силы. Также в GMAT имеются механизмы расчёта траектории космического аппарата, которые учитывают влияния других астрономический объектов, импульсов и малой тяги. Программный комплекс содержит интерактивные модули для отображения данных и траекторий в пространстве с возможностью масштабирования и анимирования, построения графиков по мере выполнения миссий.

3.2. Обзор библиотек Python для баллистического проектирования космических миссий

- Poliastro библиотека с открытым исходным кодом для решения задач в области астродинамики, акцент сделан на межпланетные миссии. Имеет схожий функционал с GMAT и имеет удобный API для взаимодействия с функциями. Также, присутствуют очень важные функции для проектирования миссий: возможности проведения аналитических и численных расчётов, преобразования в другие системы координат, добавления импульсов и малой тяги, проведения манёвров. Кроме того, в библиотеки имеется набор заготовленных астрономических объектов.
- Рукер научная библиотека Европейского космического агентства. Основной идеей библиотеки является быстрое проведение точных расчётов. В Рукер имеется большое количество механизмов расчета для выполнения задач оптимизации. Также, поддерживает импульсы и малую тягу.
- Astropy библиотека, которая плохо справляется с задачами проектирования космических миссий, в ней отсутствует поддержка импульсов, тяги, манёвров, при расчёте траекторий присутствует большая погрешность по сравнению с аналогичными библиотеками. Но Astropy является хорошим инструментом для проведения расчетов совместно с другими библиотеками, так как способна ввести в вычисления время и физические величины.
- Rebound модуль для расчёта траектории объекта. Имеет схожий функционал с библиотекой Poliastro, но присутствует более гибкий инструмент настройки миссий, что позволяет добиться высокой точности, также имеет большее количество интеграторов. Но модуль имеет более сложный API для работы с миссиями, меньшее количество классов объектов.

Libraries	Different reference frame	Orbit object	Propagation	Thrust	Maneuver	Bodies presets	Low Thrust
Poliastro	+	+	+	+	+	+	+
Pykep	-	+	+	+	-	+	+
Astropy	+	-	+	-	-	+	-
Rebound	-	+	+	+	-	-	-

Таблица 1. Сравнение функционала библиотек и модулей Python

3.3. Заглушка для расчётов

- Заглушка 1
- Заглушка 2

4. Заключение

• Анализируя произведённые вычисления, обзоры возможностей General Mission Analysis Tool и библиотек, модулей Python, которые были выполнены во время производственной практики, выявлены и выбраны для продолжения работы в рамках выпускной квалификационной работы две библиотеки: Poliastro и Astropy. Так как использование двух этих библиотек вместе делает проектирование космических миссий наиболее удобным и похожим на General Mission Analysis Tool, позволяют использовать наиболее похожий набор инструментов в Python и точность вычислений имеют минимальную погрешность. Также, во время практики, были улучшены навыки использования программных продуктов, разработки программного обеспечения в соответствии с существующими стандартами и оформления результатов работы в соответствии с существующими стандартами.

5. Приложение

Libraries	Different reference frame	Orbit object	Propagation	Thrust	Maneuver	Bodies presets	Low Thrust
Poliastro	+	+	+	+	+	+	+
Pykep	-	+	+	+	-	+	+
Astropy	+	-	+	-	-	+	-
Rebound	-	+	+	+	-	-	-

Таблица 1. Сравнение функционала библиотек и модулей Python