Class (buys)

Info (0) =
$$-\frac{8}{2}$$
 p; $\log_2(p_i)$
= I (9,5)
= $-\left(\frac{9}{14}\log_2\frac{9}{14}\right) + \left(\frac{-5}{14}\log_2\frac{5}{14}\right)$
= $-\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14}$
= $-\frac{9}{14}(-0.637) - \frac{5}{14}(-1.495)$
= 0.940 #

Feature

Info age (0) =
$$\frac{2}{J^{2}1} \left| \frac{D_{ij}}{D} \right| \times Info (D_{ij})$$

= $\frac{5}{J^{2}1} \left| \frac{D_{ij}}{D} \right| \times Info (D_{ij})$

= $\frac{5}{J^{2}1} \left| \frac{D_{ij}}{D} \right| \times Info (D_{ij})$

= $\frac{5}{J^{2}1} \left| \frac{D_{ij}}{D} \right| \times \frac{1}{J^{2}1} \left| \frac{1}{J^{2}1} \right| + \frac{1}{J^{2}1} \left| \frac{-\frac{1}{4} \log_{2}(\frac{1}{4}) - 0 \log_{2}(\frac{1}{4})}{0 + \frac{1}{J^{2}1} \log_{2}(\frac{1}{5}) - \frac{1}{2} \log_{2}(\frac{1}{5}) - \frac{1}{2$

Info income (0) =
$$\frac{\sum_{j=1}^{n} \left| \frac{D_{ij}}{D} \right| \times Info(D_{ij})}{\sum_{j=1}^{n} \left| \frac{D_{ij}}{D} \right|}$$

$$= \frac{4}{14} \left[-\frac{1}{4} \log_{1}\left(\frac{2}{4}\right) - \frac{2}{4} \log_{1}\left(\frac{2}{4}\right) \right] + \frac{6}{14} \left[-\frac{4}{5} \log_{1}\left(\frac{4}{6}\right) - \frac{2}{5} \log_{1}\left(\frac{2}{5}\right) \right] + \frac{4}{14} \left[-\frac{3}{4} \log_{2}\left(\frac{1}{4}\right) - \frac{1}{4} \log_{2}\left(\frac{1}{4}\right) \right]$$

$$\frac{1}{14} \frac{(0.5 + 0.5) + 6 (0.390 + 0.527) + 4 (0.311 + 0.5)}{14}$$

$$\frac{4}{14} + \frac{6}{7}(0.919) + \frac{4}{14}(0.811)$$

Info studing (0) =
$$\sum_{j=1}^{N} \left| \frac{D_{ij}}{D_{ij}} \right| < \text{Info} (D_{ij})$$

= $\frac{1}{2} \text{I} (S, +) + \frac{2}{2} \text{I} (S, 1)$

= $\frac{1}{2} \text{I} (S, +) + \frac{2}{2} \text{I} (S, 1)$

= $\frac{1}{2} \left(\frac{1}{2} \right) \log_{1} \left(\frac{1}{2} \right) - \frac{1}{2} \log_{1} \left(\frac{1}{2} \right) \right] + \frac{1}{2} \left[\frac{1}{2} \log_{1} \left(\frac{1}{2} \right) - \frac{1}{2} \log_{2} \left(\frac{1}{2} \right) \right]$

= $\frac{1}{2} \left(0.52 + 0.481 \right) + \frac{3}{2} \left(0.181 + 0.401 \right)$

= $\frac{1}{14} \left(0.181 + 0.401 \right)$

= $\frac{1}{14} \left(0.315 \right) + \frac{1}{2} \left(0.582 \right)$

= $\frac{1}{14} \left(0.483 + 0.286 \right)$

= $\frac{1}{14} \left(0.484 + 0.486 \right)$

= $\frac{1}{14}$

Gain

· เลือก Gain (age) เพราะมีค่าเยอะทั่สุด แปลว่าเป็นทางเลือกที่ถัก็สุด

Gain (age) = Info (D) - Info age (D) = 0.940 - 0.649 = 0.291

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

F, age <= 30

a g e	income	student	eredit	buys
۷= 30	high	n ₀	fäir	nı
<= 30	high	n 0	excellent	no
<= 30	me dium	no	fair	'no
< ≥ 30	10 M	yes	fair	yes
< = 30	medium	yes	excellent	462

Info (0) =
$$\frac{2}{121}$$
 pilog₂ (pi)
= $1(2, 5)$
= $-\frac{2}{5}$ log₁ $(\frac{2}{5}) - \frac{3}{5}$ log₂ $(\frac{5}{5})$
= 0.871

$$Info_{Incore}(0) = \frac{2}{5}I(0,2) + \frac{2}{5}I(1,1) + \frac{1}{5}I(1,0)$$

$$= \frac{2}{5}\left[-\frac{0}{2}\log_2\left(\frac{0}{2}\right) - \frac{2}{2}\log_2\left(\frac{z}{2}\right)\right] + \frac{2}{5}\left[-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{5}\log_2\left(\frac{1}{2}\right) - \frac{1}{5}\log_2\left(\frac{1}{2}\right)\right]$$

$$= 0.4 \#$$

Info stydent (D) =
$$\frac{3}{5} \pm (0,3) + \frac{2}{5} \pm (2,0)$$

= $\frac{3}{5} \left[\frac{-0}{3} \log_1 \left(\frac{0}{5} \right) - \frac{3}{3} \log_1 \left(\frac{3}{5} \right) \right] + \frac{2}{5} \left[\frac{-2}{2} \log_1 \left(\frac{2}{2} \right) - \frac{0}{2} \log_2 \left(\frac{0}{2} \right) \right]$
= 0 #

In foredit (0) =
$$\frac{3}{5}$$
 I (1,2) + $\frac{2}{5}$ I (1,1)
= $\frac{3}{5} \left[-\frac{1}{3} \log_2 \left(\frac{1}{2} \right) - \frac{2}{3} \log_2 \left(\frac{2}{3} \right) \right] + \frac{2}{5} \left[-\frac{1}{2} \log_2 \left(\frac{1}{2} \right) - \frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right]$
= 0.55) + 0.4
= 0.95) #

Gain

F2 age > 40

age	income	student	eredit	buys
>40	nediun	410	fair	yes
>40	low	Yes	fair	yes
> 4 0	IOM	yes	excellent	n ()
>40	mediun	y es	fair	yes
> 40	nediun	η0	excellent	η٥

In fo (0) = 1 (3,2)
=
$$-\frac{3}{5}\log_2(\frac{5}{5}) - \frac{2}{5}\log_1(\frac{2}{5})$$

= 0.971

Infointant (D) =
$$\frac{3}{5}$$
 t(2, 1) + $\frac{2}{5}$ T (1, 1)
= $\frac{3}{5}$ $\left[-\frac{2}{3}\log_2\left(\frac{2}{3}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right]$ + $\frac{2}{5}$ $\left[-\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right]$
= 0.53 + 0.4
= 0.95 + #

Info student (D) =
$$\frac{2}{5}\frac{1}{5}(1,1) + \frac{3}{5}I(2,1)$$

= $\frac{2}{5}\left[-\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2})\right] + \frac{3}{5}\left[-\frac{2}{3}\log_2(\frac{2}{3}) - \frac{1}{3}\log_2(\frac{1}{3})\right]$
= $0.4 + 0.551$
= 0.951 #

Informedia (D) =
$$\frac{3}{5}$$
 T ($\frac{1}{2}$, 0) + $\frac{1}{2}$ T ($\frac{1}{2}$, 1)
= $\frac{3}{5}$ [- $\frac{3}{3}$ log₂ ($\frac{1}{2}$) - $\frac{0}{3}$ log₂ ($\frac{1}{3}$)] + $\frac{1}{5}$ [- $\frac{1}{2}$ log₂ ($\frac{1}{2}$) - $\frac{1}{2}$ log₂ ($\frac{1}{2}$)]
= 0.4 #

Gain

Gain ที่มากทัสดคือ Gain (credit)

