from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

cd /content/drive/MyDrive/CSE475/project1

/content/drive/MyDrive/CSE475/project1

import pandas as pd
import matplotlib.pyplot as plt

import numpy as np
from sklearn import linear_model
from sklearn.metrics import mean_squared_error,r2_score
from sklearn.linear_model import Ridge
from sklearn.linear_model import LassoCV
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import ElasticNet
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import accuracy_score

dataset = pd.read_csv('covid_dataset.csv')
dataset

	Day	Lab Test	Confirmed case	Death Case
0	2020-04-04	434	9	2
1	2020-04-05	367	18	1
2	2020-04-06	468	35	3
3	2020-04-07	679	41	5
4	2020-04-08	981	54	3
621	2021-12-16	25203	257	3
622	2021-12-17	16310	191	2
623	2021-12-18	13991	122	4
624	2021-12-19	19332	211	1
625	2021-12-20	19955	260	2

626 rows × 4 columns

```
x= dataset [['Lab Test', 'Confirmed case']]
y= dataset[['Death Case']]
x_train , x_test ,y_train,y_test = train_test_split (x,y,test_size = 0.3 , random_state = 42
lasso model=linear model.Lasso()
lasso_model.fit(x_train,y_train)
     Lasso()
lasso_model.intercept_
     array([-4.41198328])
lasso_model.coef_
     array([0.00051562, 0.01590487])
#we determine the alpha according to the different lambda values
from sklearn.linear_model import Lasso
lasso = Lasso()
coefs = []
alphas = np.random.randint(0,1000,100)
# 10**np.linspace(10,-2,100)*0.5 -- It can be used instead of alphas and observed.
for a in alphas:
    lasso.set_params(alpha = a)
    lasso.fit(x train,y train)
    coefs.append(lasso.coef )
lasso_model.predict(x_train)[:5]
     array([22.11655481, 64.84567135, 51.98185537, 45.12226283, 27.87136441])
lasso model.predict(x test)[:5]
     array( 74.44936591, 275.00439839, 32.7350311, 29.84479005,
            265.42401616])
y pred = lasso model.predict(x test)
np.sqrt(mean squared error(y test,y pred))
     17.78687602021199
r2_score(y_test, y_pred)
```

0.8943961638378569

```
lasso_model.score(x_test,y_test)
     0.8943961638378569
```

Ridge Regression

```
x1= dataset [['Lab Test','Confirmed case']]
y1= dataset[['Death Case']]
x1_train , x1_test ,y1_train,y1_test = train_test_split (x1,y1,test_size = 0.3 , random_state
ridge_model=linear_model.Ridge()
ridge_model.fit(x1_train,y1_train)
     Ridge()
ridge_model.coef_
     array([[0.00051553, 0.01590523]])
print("Intercept : %.2f" % ridge_model.intercept_)
     Intercept : -4.41
ridge_model.predict(x1_train)[:5]
     array([[22.11677651],
            [64.84613223],
            [51.98075982],
            [45.12280958],
            [27.87113968]])
ridge model.predict(x1 test)[:5]
     array([[ 74.45219277],
            [275.0101687],
            [ 32.73517255],
            [ 29.84597799],
            [265.4304146]])
y1 pred = ridge model.predict(x1 test)
np.sqrt(mean squared error(y1 test,y1 pred))
```

17.78709823171557

r2_score(y1_test, y1_pred)

0.8943935252031947

ridge_model.score(x1_test,y1_test)

0.8943935252031947

Colab paid products - Cancel contracts here

×