Contents

1	DONE 1 [2/2] 1.1 DONE a) $U_1 \cup U_2 \leq V \Leftrightarrow U_1 \subseteq U_2 \vee U_2 \subseteq U_1 \dots \dots$	1 1 2
2	TODO 2 [0/2] 2.1 TODO a)	2 2 3
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 3 4
4 1	TODO 4 Sei K endlicher Körper mit q Elementen $[0/3]$ DONE 1 $[2/2]$	4

Seien U_1, U_2, U_3 Unterräume eines Vektorraums V. zz:

DONE a) $U_1 \cup U_2 \leq V \Leftrightarrow U_1 \subseteq U_2 \vee U_2 \subseteq U_1$ 1.1

Proof. " \Rightarrow ":

 U_1 und U_2 sind Unterräume von V. $U_1 \cup U_2$ ist ein Unterraum von V. Es ist somit sicher, dass $U_1, U_2 \neq \emptyset$ und $U_1 \cup U_2 \neq \emptyset$. Seien $a, b \in U_1 \cup U_2$. per definitionem gilt:

 $a+b\in U_1\cup U_2 \forall a,b\in U_1\cup U_2$. Das bedeutet:

 $a+b \in U_1 \forall a,b \in U_1 \cup U_2 \vee a+b \in U_2 \forall a,b \in U_1 \cup U_2$

Das geht nur, wenn $U_1 \subseteq U_2 \vee U_2 \subseteq U_1$.

"⇐":

Wenn ein Unterraum Teilmenge des anderen ist, dann ist die Vereinigung einfach die Obermenge (der Raum, der den anderen enthält). Da dieser p.d. ein Unterraum von V ist, ist also auch die Vereinigung ein Unterraum von V.

1.2 DONE b) $\setminus ((U_1 + U_2) \cap U_3 = U_1 + (U_{2 \cap} U_3) \Leftrightarrow$

 $U_{1\subseteq} U_{3} \setminus$) (Mir kommt das komisch vor, weil der Beweis nur über Mengenlehre läuft, nicht viel über Vektorraumeigenschaften)

Proof. " \Rightarrow ":

Seien $v_1 \in U_1, v_2 \in U_3, v_1 + v_2 \in U_3$. Dann gilt $v_1 + v_2 \in (U_1 + U_2) \cap U_3$ und $v_1 + v_2 \in (U_1 + (U_2 \cap U_3))$ und somit $v_2 \in U_3$. Wegen $v_1 + v_2 \in U_3$ muss aber auch $v_1 \in U_3$ sein. Aus der linken Seite folgt also (mit $v_1 + v_2 \in U_3$), dass $U_1 \subseteq U_3$.

" \Leftarrow :" Beweis durch Kontraposition: zz.: $(U_1+U_2)\cap U_3 \neq U_1+(U_2\cap U_3) \Leftrightarrow U_1 \nsubseteq U_3$ Wenn linke Seite nicht gilt, dann für $v_1 \in U_1, v_2 \in U_2$:

$$v_1 + v_2 \notin U_3$$

denn dann ist $v_1 + v_2 \notin (U_1 + U_2) \cap U_3$ und $v_1 + v_2 \in U_1 + (U_2 \cap U_3)$. Dh. $v_2 \in U_2 \cap U_3$ und $v_1 \notin U_2 \cap U_3$ (Wegen $v_1 + v_2 \notin U_3$), also $v_1 \notin U_3 \Rightarrow U_1 \nsubseteq U_3$

2 TODO 2[0/2]

2.1 TODO a)

K Körper. Welche Vektoren sind jeweils linear abhängig, welche linear unabhängig im K-VR K^3 .

- 1. $v_1 = (1, 0, 1), v_2 = (0, 0, 0), v_3 = (0, 1, 0)$ Ein Erzeugendensystem von K^3 ist $E = \{e_1, e_2, e_3\}$ (nach Vl.). Prüfe, ob für alle v_i gilt: $v_i \notin < E \setminus \{v_i\} >$.
 - v_1 Gilt nicht, denn v_1 lässt sich aus e_1 und e_3 linear kombinieren.
 - v_2 Gilt, denn v_2 lässt sich mit inversen Elementen bzgl. Addition von K linear kombinieren.
 - v_3 Gilt, denn $v_3 = e_2$ lässt sich nicht mit e_1 und e_3 linear kombinieren.

Es sind also nicht alle v_i linear unabhängig. Jedoch sind untereinander v_1 und v_3 linear unabhängig, da nur durch skalare Multiplikation mit 0 der Nullvektor erzeugt werden kann.

1. $v_1 = (1, 1, 1), v_2 = (1, 2, 4), v_3 = (-1, 1, -1)$ Prüfe ob für alle \mathbb{K} gilt $: v_i \notin < E \setminus \{v_i\} >.$

2.2 TODO b)

Seien $v_1, ..., v_n$ paarweise verschiedene Vektoren aus einem \mathbb{R} -VR V.

1. v_1, v_2 linear unabhängig $\Leftrightarrow v_1 + v_2$ linear unabhängig und $v_1 - v_2$ linear unabhängig.

Proof. v_1, v_2 linear unabhängig $\Leftrightarrow c_1v_1 + c_2v_2 = 0$ Ersetze v_1 durch v_1+v_2 und v_2 durch v_1-v_2 :

$$c_1(v_1 + v_2) + c_2(v_1 - v_2) = 0$$

$$c_1v_1 + c_1v_2 + c_2v_1 - c_2v_2 = 0$$

$$c_1c_2(v_1) + c_1(-c_2)(v_2) = 0$$

Wegen v₁, v₂ linear unabhängig $c_1=c_2=0$, also $c_1c_2(v_1)+c_1(-c_2)(v_2)=0$

3 TODO 3 [0/4]

In \mathbb{R}^4 betrachte $v_1=(1,2,3,4)$ $v_2=(1,3,1,-1)$ $v_3=(3,8,5,2)$ $v_4=(2,1,3,1)$

Au
Serdem $U=< v_1, v_2, v_3>$ und $W=< v_3, v_4>$. Bestimmen Sie Basen für:

3.1 TODO U

Da U ja sicher durch $\{v_1, v_2, v_3\}$ erzeugt wird muss nur noch folgenden Bedingung geprüft werden: Wenn v_1, v_2, v_3 linear unabhängig, dann ist $\{v_1, v_2, v_3\}$ eine Basis.

(zz. v_1 , v_2 , v_3 linear unabhängig) Ansonsten ist klar, dass $\{e_i|i=1,...,4\}$ eine Basis ist, da $U \leq R^4$.

3.2 **TODO** W

Analog zu U

3.3 TODO U+W

 $U+W=< U\cup W>$, d
h prüfe ob alle $v\in U\cup W$ linear unabhängig. (Ist das nicht irgendwie offensichtlich, dass die linear unabhängig sind?) Dann sind wiederum die Einheitsvektoren eine Basis und $U\cup W$ selbst auch.

$3.4\quad \text{TODO }U\cap W$

4 TODO 4 Sei K endlicher Körper mit q Elementen [0/3]

- $\bullet \ \square$ a) Bestimmen Sie die Anzahl der Basen im Vektorraum K^n
- \bullet \Box b) Bestimmen Sie für jede natürliche Zahl k \leq n die Anzahl der k-dimensionalen Unterräume des K^n
- \bullet \Box c) Folgern Sie, dass es für jede natürliche Zahl k
 \le n genausoviele (n-k)-dimensionale Unterräume wi
ek-dimensionale Unterräume im K^n gibt.