	Company: Napior	Sheet:
Manior	Project: Seismic Loads	
Mapioi	Description: Determine the seismic loads on a project.	Engr: Charlie Misner

Seismic Loads

1 - Properties

Site Criteria

Address	= Seattle, WA	
Seismic Site Class	= D	ASCE 7-10 Chapter 20
TL	= 6 seconds	USGS.gov
S _S	= 1.37 g	USGS.gov
S ₁	= 0.50 g	USGS.gov
Fa	= 1.00	ASCE 7-10 Table 11.4-1
F_{v}	= 1.50	ASCE 7-10 Table 11.4-2
S _{ds}	= $\frac{2}{3}$ F _a S _s = $\frac{2}{3}$ (1)(1.37g)= 0.91 g	ASCE 7-10 11.4-3
S _{d1}	= $\frac{2}{3}$ F _v S ₁ = $\frac{2}{3}$ (1.5)(0.5g)= 0.53 g	ASCE 7-10 11.4-4

Building Criteria

Building Risk Category	= II	IBC Table 1604.5
System Category	= Building Frames	ASCE 7-10 Table 12.02-1
Structural System	= Special reinforced concrete shear walls	ASCE 7-10 Table 12.02-1
R	= 6	ASCE 7-10 Table 12.02-1
Ct	= 0.02	ASCE 7-10 Table 12.8-2
x	= 0.75	ASCE 7-10 Table 12.8-2

2 - Calculate Base Shear

Determine Building Period

Building period is known.

Company: Napior	Sheet:
Project: Seismic Loads	

Engr: Charlie Misner

 Known Period, T
 = 0.2 seconds
 ASCE 7-10 Table 12.8-2

 T_a = $C_t h_n^x = (0.02)(54ft)^{0.75} = 0.398$ seconds
 ASCE 7-10 Eqn. 12.8-7

 C_u = 1.4
 ASCE 7-10 Table 12.8-1

 $C_u T_a$ = $C_u T_a = (1.4)(0.398$ seconds) = 0.558 seconds
 ASCE 7-10 Section 12.8.2

 $T_a < T$ $\therefore T_a = 0.398$ seconds
 ASCE 7-10 Section 12.8.2

Determine Base Shear

 $\begin{array}{lll} \textbf{C_8} & = \frac{\mathsf{S}_{ds}}{(\mathsf{R}/\mathsf{I}_e)} = \frac{0.91\,\mathsf{g}}{(6/1)} = 0.15 & \textit{ASCE 7-10 Eqn. 12.8-2} \\ & < \frac{\mathsf{S}_{d1}}{\mathsf{T}_a(\mathsf{R}/\mathsf{I}_e)} = \frac{0.53\,\mathsf{g}}{0.398\,\mathsf{s}\,(6/1)} = 0.22 & \textit{ASCE 7-10 Eqn. 12.8-3} \\ & > 0.44\mathsf{S}_{ds}\,\mathsf{I}_e = 0.44(0.91\,\mathsf{g})(1) > 0.01 = 0.01 & \textit{ASCE 7-10 Eqn. 12.8-5} \\ \textbf{C_8} & = 0.152 & & & \end{array}$

 $V = C_s * W = (0.152)(1250 \text{ kips}) = 189.6 \text{ kips}$ ASCE 7-10 Eqn. 12.8-1

3 - Vertical Force Distribution

Table 1 - Story Forces

Story	Height	Weight	$w_x h_x^{k}$	C _{vx}	F _x (kips)
1	18	500	9000	0.23	44.1
2	30	300	9000	0.23	44.1
3	42	300	12600	0.33	61.7
4	54	150	8100	0.21	39.7