Haematology

Prof. Dr. Osama Mohamed Ahmed

Blood

- Study of blood and its components is known as haematology.
- Blood is a homogenous fluid connective tissue which circulates within cardiovascular system.
- The total blood volume is about 5600ml in a 70 kg man (8% of body weight).
- It is composed of two main parts
 - -plasma 55%
 - -cellular elements 45%..RBC's, WBC's and platelets

Blood

55% Plasma

- Water (90%)
- Inorganic substances
 Na, Cl
- -Organic substances

 plasma proteins

 plasma lipids

 glucose & amino acids

45 % blood elements

Erythrocytes Leucocytes Platelets

Haematocrit or packed cell volume (PCV) is the percentage volume of blood that is contributed by red cells alone. In severe vomiting, diarrhea and severe burns, there is haemoconcentration and increase in PCV while in severe anemias, there is haemodilution and decrease in PCV.

Functions of the blood

- Transport function (transport of O₂ and CO₂ between lungs and tissues, transport of excretory products to the kidneys to be excreted, transport of absorbed nutritive substances from the alimentary canal to almost all parts of the body and transport of hormones)
- Defensive or protective function (With the help of leukocytes and antibodies present in the plasma, blood helps the body to sustain resistance against infection)
- Hemostatic function
- Homeostatic function

what's homeostasis?

Regulation of body temperature leading to thermal balance of the body

Homeostasis maintenance of constant conditions in the internal environment

<u>Plasma</u>

It is a straw yellow clear fluid composed of

- 1. Water 90%
- 2. Inorganic substances 0.9% Na⁺, Cl⁻, HCO₃⁻
- 3. Organic substances 9.1%
 - -plasma proteins
 - -lipids...triglycerides, cholesterol & fatty acids
 - -other organic substances glucose, amino acids, vitamins, hormones, enzymes, waste products
- 4 Blood gases O₂, CO₂

Plasma Proteins

```
[albumin (4-5 g%), globulins (2.3g%), prothrombin (15-40mg%) and fibrinogen (0.3g%)]
```

- -Concentration..... 7 gm/dl
- -Site of formation....?

liver

lymphocytes (plasma cells)

- -albumin/globulin ratio (normal 2:1).
- -Separation of plasma proteins can be done by electrophoresis.

Functions of plasma proteins

(albumin, globulins (α , β & γ), prothrombin and fibrinogen)

- Maintenance of colloidal osmotic pressure ...albumin
- Defensive function..... γ globulins
- Blood clotting.....prothrombin and fibrinogen
- Maintenance of viscosity of the blood: viscosity is one of the factors which tries to maintain the normal blood pressure...... fibrinogen
- Buffer function (prevents drastic variations of the pH of the blood.
- transport function...(hormones, metals, drugs.....)

Figure The blood cells and platelets. The white blood cells depicted above are granular leukocytes; the lymphocytes and monocytes are nongranular leukocytes.

Component	Description	Number Present	Function
Erythrocyte (red blood cell)	Biconcave disc without nucleus; contains hemoglobin; survives 100 to 120 days	4,000,000 to 6,000,000 / mm ³	Transports oxygen and carbon dioxide
Leukocytes (white blood cells)		5,000 to 10,000 / mm ³	Aid in defense against infections by microorganisms
Granulocytes	About twice the size of red blood cells; cytoplasmic granules present; survive 12 hours to 3 days		
I. Neutrophil	Nucleus with 2 to 5 lobes; cytoplasmic granules stain slightly pink	54% to 62% of white cells present	Phagocytic
2. Eosinophil	Nucleus bilobed; cytoplasmic granules stain red in eosin stain	1% to 3% of white cells present	Helps to detoxify foreign substances; secretes enzymes that dissolve clots; fights parasitic infections
3. Basophil	Nucleus lobed; cytoplasmic granules stain blue in hematoxylin stain	Less than 1% of white cells present	Releases anticoagulant heparin
Agranulocytes	Cytoplasmic granules not visible; survive 100 to 300 days (some much longer)	edin T. Barania Sirika Kahangara	
I. Monocyte	2 to 3 times larger than red blood cell; nuclear shape varies from round to lobed	3% to 9% of white cells present	Phagocytic
2. Lymphocyte	Only slightly larger than red blood cell; nucleus nearly fits cell	25% to 33% of white cells present	Provides specific immune response (including antibodies)
Platelet (thrombocyte)	Cytoplasmic fragment; survives 5 to 9 days	130,000 to 400,000 / mm ³	Enables clotting; releases serotonin, which causes vasoconstriction

Cell type	Occurrence in blood (per mm ³)	Cell anatomy*	Function
Erythrocytes (red blood cells, or RBCs)	4–6 million	Salmon-colored biconcave disks; anucleate; literally, sacs of hemoglobin; most organelles have been ejected	Transport oxygen bound to hemoglobin molecules; also transport small amount of carbon dioxide
Leukocytes (white blood cells, or WBCs)	4000-11,000		
Granulocytes			
Neutrophils	3000-7000 (40-70% of WBCs)	Cytoplasm stains pale pink and contains fine granules, which are difficult to see; deep purple nucleus consists of three to seven lobes connected by thin strands of nucleoplasm	Active phagocytes; number increases rapidly during short-term or acute infections
Eosinophils	100-400 (1-4% of WBCs)	Red coarse cytoplasmic granules; figure-8 or bilobed nucleus stains blue-red	Kill parasitic worms; increase during allergy attacks; might phagocytize antigen-antibody complexes and inactivate some inflammatory chemicals

^{*}Appearance when stained with Wright'

Cell type	Occurrence in blood (per mm ³)	Cell anatomy*	Function
Basophils	20-50 (0-1% of WBCs)	Cytoplasm has a few large blue-purple granules; U- or S-shaped nucleus with con- strictions, stains dark blue	Granules contain histamine (vasodilator chemical), which is discharged at sites of inflammation
Agranulocytes			
• lymphocytes	1500–3000 (20–45% of WBCs)	Cytoplasm pale blue and appears as thin rim around nucleus; spherical (or slightly indented) dark purple-blue nucleus	Part of immune system; one group (B lymphocytes) pro- duces antibodies; other group (T lymphocytes) involved in graft rejection, fighting tumors and viruses, and activating B lymphocytes
• Monocytes	100-700 (4-8% of WBCs)	Abundant gray-blue cytoplasm; dark blue-purple nucleus often kidney-shaped	Active phagocytes that become macrophages in the tissues; long-term "clean-up team"; increase in number during chronic infections such as tuberculosis
Platelets	250,000– 500,000	Essentially irregularly shaped cell fragments; stain deep purple	Needed for normal blood clotting; initiate clotting cascade by clinging to broken area; help to control blood loss from broken blood vessels

^{*}Appearance when stained with Wright'

Erythrocytes

Biconcave discs

count ? /mm³

structure

- -semipermeable membrane
 - -hemoglobin (content and function)
- -no nucleus

Erythropoiesis.....??? Define
Site of hematopoiesis.....in fetus & in adult

Erythropoiesis.....??? formation of new red blood cells Site of hematopoiesis.....

- mesoderm of yolk sac in the 1st three months of fetal life
- liver and spleen during 3-6 months of fetal life
- red bone marrow in the rest the period of fetal life and in post- natal period

- RBCs production occurs in red bone marrow. The primitive cells, the pro-erythroblasts develop through normoblasts of various types and reticulocytes, until mature erytherocytes are formed.
- During the normoblast stage, the nucleus is lost. In the healthy adult only mature erytherocytes and few (1%) reticulocytes are found in the peripheral blood.
- Appearance of nucleated red cells indicates abnormal blood formation or irritation of the bone marrow.

Hemoglobin

Hem.....iron containing porphyrin derivatives

Globin...protein part formed of 4 polypeptide chains

Hb A2 α & 2 β (96-98% of Hb in adult)

Hb A2 2 α & 2 δ (2.5 % of adult Hb)

Hb F2 α & 2 γ (Hb of fetus-more affinity to O_2)

Function of Hb

transport oxygen from lung to tissues and carbon dioxide from tissues to the lungs

Haemoglobin abnormalities

- 1- Synthesis of an abnormal haemoglobin
- **2- Reduced rate of synthesis of normal** α & β chains (the α & β -thalassaemiais).

Hemoglobin

Factors affecting erythropoiesis

- Oxygen supply to the tissues
 decreased oxygen →increased erythropoietin → increased RBC number
 (erythropoietin hormone ?)
- 2. Healthy bone marrow
- 3- healthy liver (why?) storage of Fe, Vit B12, erythropoesis in fetus
- 4. Diet.....iron, vitamin B₁₂ and folic acid as well as proteins
 - iron → hemoglobin formation
 - Vit B₁₂ & folic acid → DNA synthesis & cell division
 - proteins → globin formation
- 5. Hormones
 - androgen, thyroid & glucocorticoid hormones stimulates erythropoiesis

Erythropoietin

- Glycoprotein hormone
- Hypoxia is the main stimulus for its secretion
- In adult, 85% is formed by the kidney and 15% is formed by the liver
- It stimulates all steps of erythropoiesis and increases the production of RBCs

(anemia ?? Polycythemia ??)

Hypoxia, cobalt salts, androgens (testosterone), catecholamines, corticosteroids, growth hormone, and thyroxine

Erythropoietin

- 1. production of proerythroblast from the stem cells.
- Increasing the speed of conversion of one step to the other in the erythroblastic stages.
- 3. It accelerates the synthesis of Hb.

Iron

- Gastric HCI & vitamin C reduce iron from ferric state to ferrous state
- Iron is reabsorbed in upper small intestine

Folic acid

Essential for DNA synthesis & cell division

Vitamin B₁₂

- Essential for DNA synthesis, cell division & metabolism of myelin sheath
- It unites with intrinsic factor from the stomach then reabsorbed from terminal ileum
- Deficiency----macrocytic anemia & neurological symptoms
- Treatment by injection of vit B₁₂

Anemia

It is a decrease in number of RBCs, hemoglobin content or both.

normal RBCs count......4.5 - 5.5 million/ mm³

normal Hb content......13.5 15.5 gm/dl

Types

1- normocytic normochromic anemia

hemorrhage, hemolytic anemia & bone marrow depression (aplastic anemia)

2-microcytic hypochromic anemia

iron deficiency (Causes: decreased iron intake & absorption –chronic blood loss)

3- macrocytic hyperchromic anemia

Vit. B₁₂ deficiency → absent intrinsic factor, disease of lower ileum, decreased storage in liver disease

folic acid deficiency --> decreased intake, disease of small intestine, cytotoxic drugs

Hemostasis

It is a prevention of blood loss after injury Mechanism

- Constriction of the blood vessel
- Formation of platelet plug
- Conversion of platelet plug to a definitive clot by fibrin threads (blood clot)

Blood clotting (coagulation) is the conversion of fluid blood into semisolid jelly like mass to prevent blood loss.

Platelet plug formation

Platelet reactions

- 1- Platelet adhesion (to subendothelial collagen)
- 2- Platelet activation (swell & change the shape)
- 3- Platelet **release** reaction (Ca²⁺, coagualtion factors, serotonin, thromboxane A₂......
- 4- Platelet aggregation (platelet plug)
- 5- Platelet procoagulant activity (activation of coagulation factors)
- 6- Platelet fusion (fusion of aggregated platelets)

There are 4 basic steps in the coagulation of blood

- 1- Platelet plug formation
- 2- Formation of prothrombin activator
- 3- Conversion of prothrombin into thrombin
- 4- Conversion of fibrinogen to fibrin

Vessel damage, blood loss Vascular spasm.

3. Platelet plug forms

4. Coagulation

Formation of blood clot

(Mechanism of blood coagulation)

Table Som	ne Acquired and Inherited Clotting Disorder	rs and a Listing of Anticoagulant Drugs	
Category	Cause of Disorder	Comments	
Acquired clotting disorders	Vitamin K deficiency	Inadequate formation of prothrombin and other clotting factors in the liver	
Inherited clotting disorders	Hemophilia A (defective factor VIII _{AHF})	Recessive trait carried on X chromosome; results in delayed formation of fibrin	
	von Willebrand's disease (defective factor VIII _{VWF})	Dominant trait carried on autosomal chromosome; impaired ability of platelets to adhere to collagen in subendothelial connective tissue	
	Hemophilia B (defective factor IX); also called Christmas disease	Recessive trait carried on X chromosome; results in delayed formation of fibrin	
Anticoagulants			
Aspirin	Inhibits prostaglandin production, resulting in a defective platelet release reaction		
Coumarin	Inhibits activation of vitamin K		
Heparin	Inhibits activity of thrombin		

Combines with Ca²⁺, and thus inhibits the activity of many clotting factors

Citrate

Anticlotting mechanisms

General limiting reactions...smooth endothelium, rapid blood flow, heparin, liver
Specific limiting reaction

- Prostacyclin # thromboxane A₂
- Antithrombin III inhibits F IX, X, XI, XII
- Protein C & protein Sinhibit F V & VIII
- Fibrinolytic system (plasmin).....lyses of fibrin

Anticoagulants (heparin, dicumarol)

Anticoagulant

	heparin	dicumarol
origin	Mast cells & basophils	Plant
Mode of action	Facilitates antithrombin	Inhibit vitamin K
Site of action	In vivo & in vitro	Only in vivo
Onset	rapid	slow
Duration	short	long
Adminstration antidote	Iv, im Protamin sulphate	Orally Vitamin K

Functions of anticoagulants

Anticoagulants are used to

- 1- store blood in blood bank
- 2- maintain fluid state of blood while doing certain tests in the laboratory
- 3- as therapeutic agent to prevent intravascular clotting (thrombosis)

Intravascular coagulation

Causes of thromboembolic conditions

- 1-roughened endothelial surface of the vessels
- 2- slow blood flow

Causes of desseminated intravascular coagulation

- 1- Traumatised or dying tissues.....tissue factor.... small numerous clots
- 2- Septicemia (presence of pathogenic microorganisms or toxins in the blood)......bacterial toxins.....activate clotting mechanism

Abnormalities of hemostasis

Thrombocytopenic purpura

Decreased platelet count

Subcutaneous hemorrhage

Prolonged bleeding time

Vitamin k deficiency

vit K is important in formation of factors II,VII, ,IX, X in the liver It is a fat soluble vitamin & is formed by intestinal flora Its absorption is decreased in obstruction of bile duct

Hemophilia

Congenital sex-linked disease transmitted by females to males
Characterized by severe bleeding after trauma
It is due to absence of factor VIII or IX or XI

Blood groups

ABO system

Groups A- B - AB - O

Rh blood type

Rh positive

Rh negative

Blood Types Determine Blood Compatibility

	Туре А	Туре В	Туре АВ	Type O
Red blood cells	Antigen A	Antigen B	Antigens A and B	Neither A nor B antigens
Plasma antibodies	W T	A	Neither A nor B	A and B
Incidences:				
U.S. Caucasian	40%	10%	5%	45%
U.S. African-American	27%	20%	4%	49%
Native Americans	8%	1%	0%	91%

How Rh sensitization occurs.

Importance of blood group determination

- Blood transfusion
- Medico legal importance
- Erythroplastosis fetalis

White blood cells 4000-11000

Granulocytes

Neutrophils----50-70% ingest & kill bacteria
Eosinophils 1-4 % parasites & allergy
Basophils 0.5% histamine & heparin

Agranulocytes

Lymphocytes 20-40% immunity
Monocytes 2-8% tissue macrophage

Immunity

Non specific

Doesn't' depend on antigen type Mechanical & chemical barriers Cells

phagocytes & macrophages natural killer cells

Complement interferon

Specific

Antigen specific lymphocytes

Humeral Antibody-| mediated

Bacteria

B-lymphocytes

Plasma cells (antibodies)
Memory cells(2^{ry} response)

Cell-mediated

Virus

Antigen presenting cells

T-lymphocytes