Package 'SqlRender'

September 18, 2017

7.
2 3 3 4 5 6 7

	translateSqlFile writeSql																															
Index	wntesqr	•	•	 •	•	 •	•	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	11

Description

Convert a camel case string to snake case

Usage

camelCaseToSnakeCase(string)

Arguments

string The string to be converted

Value

A string

Examples

```
camelCaseToSnakeCase("cdmDatabaseSchema")
# > 'cdm_database_schema'
```

createRWrapperForSql Create an R wrapper for SQL

Description

createRWrapperForSql creates an R wrapper for a parameterized SQL file. The created R script file will contain a single function, that executes the SQL, and accepts the same parameters as specified in the SQL.

Usage

```
createRWrapperForSql(sqlFilename, rFilename, packageName,
    createRoxygenTemplate = TRUE)
```

Arguments

sqlFilename The SQL file.

rFilename The name of the R file to be generated. Defaults to the name of the SQL file

with the extention reset to R.

packageName The name of the package that will contains the SQL file.

createRoxygenTemplate

If true, a template of Roxygen comments will be added.

Details

This function reads the declarations of defaults in the parameterized SQL file, and creates an R function that exposes the parameters. It uses the loadRenderTranslateSql function, and assumes the SQL will be used inside a package. To use inside a package, the SQL file should be placed in the inst/sql/sql_server folder of the package.

Examples

```
## Not run:
# This will create a file called CohortMethod.R:
createRWrapperForSql("CohortMethod.sql", packageName = "CohortMethod")
## End(Not run)
```

launchSqlRenderDeveloper

Launch the SqlRender Developer Shiny app

Description

Launch the SqlRender Developer Shiny app

Usage

launchSqlRenderDeveloper(launch.browser = TRUE)

Arguments

launch.browser Should the app be launched in your default browser, or in a Shiny window. Note: copying to clipboard will not work in a Shiny window.

Details

Launches a Shiny app that allows the user to develop SQL and see how it translates to the supported dialects.

loadRenderTranslateSql

Load, render, and translate a SQL file in a package

Description

loadRenderTranslateSql Loads a SQL file contained in a package, renders it and translates it to the specified dialect

Usage

```
loadRenderTranslateSql(sqlFilename, packageName, dbms = "sql server", ...,
  oracleTempSchema = NULL)
```

4 readSql

Arguments

sqlFilename The source SQL file

packageName The name of the package that contains the SQL file

dbms The target dialect. Currently 'sql server', 'oracle', 'postgres', and 'redshift' are

supported

... Parameter values used for renderSql

oracleTempSchema

A schema that can be used to create temp tables in when using Oracle.

Details

This function looks for a SQL file with the specified name in the inst/sql/<dbms> folder of the specified package. If it doesn't find it in that folder, it will try and load the file from the inst/sql/sql_server folder and use the translateSql function to translate it to the requested dialect. It will subsequently call the renderSql function with any of the additional specified parameters.

Value

Returns a string containing the rendered SQL.

Examples

readSql

Reads a SQL file

Description

```
readSql loads SQL from a file
```

Usage

```
readSql(sourceFile)
```

Arguments

sourceFile The source SQL file

Details

```
readSql loads SQL from a file
```

Value

Returns a string containing the SQL.

renderSql 5

Examples

```
## Not run:
readSql("myParamStatement.sql")
## End(Not run)
```

renderSql

renderSql

Description

renderSql Renders SQL code based on parameterized SQL and parameter values.

Usage

```
renderSql(sql = "", ...)
```

Arguments

sql The parameterized SQL
... Parameter values

Details

This function takes parameterized SQL and a list of parameter values and renders the SQL that can be send to the server. Parameterization syntax:

@parameterName Parameters are indicated using a @ prefix, and are replaced with the actual values provided in the renderSql call.

{DEFAULT @parameterName = parameterValue} Default values for parameters can be defined using curly and the DEFAULT keyword.

{if}?{then}:{else} The if-then-else pattern is used to turn on or off blocks of SQL code.

Value

A list containing the following elements:

```
parameterizedSql The original parameterized SQL code
sql The rendered sql
```

6 renderSqlFile

renderSqlFile

Render a SQL file

Description

renderSqlFile Renders SQL code in a file based on parameterized SQL and parameter values, and writes it to another file.

Usage

```
renderSqlFile(sourceFile, targetFile, ...)
```

Arguments

```
sourceFile The source SQL file
targetFile The target SQL file
... Parameter values
```

Details

This function takes parameterized SQL and a list of parameter values and renders the SQL that can be send to the server. Parameterization syntax:

@parameterName Parameters are indicated using a **@** prefix, and are replaced with the actual values provided in the renderSql call.

{DEFAULT @parameterName = parameterValue} Default values for parameters can be defined using curly and the DEFAULT keyword.

{if}?{then}:{else} The if-then-else pattern is used to turn on or off blocks of SQL code.

```
## Not run:
renderSqlFile("myParamStatement.sql", "myRenderedStatement.sql", a = "myTable")
## End(Not run)
```

snakeCaseToCamelCase 7

snakeCaseToCamelCase

Convert a snake case string to camel case

Description

Convert a snake case string to camel case

Usage

```
snakeCaseToCamelCase(string)
```

Arguments

string

The string to be converted

Value

A string

Examples

```
snakeCaseToCamelCase("cdm_database_schema")
# > 'cdmDatabaseSchema'
```

splitSql

splitSql

Description

splitSql splits a string containing multiple SQL statements into a vector of SQL statements

Usage

```
splitSql(sql)
```

Arguments

sql

The SQL string to split into separate statements

Details

This function is needed because some DBMSs (like ORACLE) do not accepts multiple SQL statements being sent as one execution.

Value

A vector of strings, one for each SQL statement

```
splitSql("SELECT * INTO a FROM b; USE x; DROP TABLE c;")
```

8 translateSql

SqlRender	SqlRender		
Description			
SqlRender			
translateSql	translateSql		

Description

translateSql translates SQL from one dialect to another

Usage

```
translateSql(sql = "", targetDialect, oracleTempSchema = NULL,
    sourceDialect)
```

Arguments

Server is supported

Details

This function takes SQL in one dialect and translates it into another. It uses simple pattern replacement, so its functionality is limited.

Value

A list containing the following elements:

```
\label{eq:code_sql} \begin{tabular}{ll} \textbf{original parameterized SQL code} \\ \textbf{sql} \begin{tabular}{ll} \textbf{The translated SQL} \\ \end{tabular}
```

```
translateSql("USE my_schema;", targetDialect = "oracle")
```

translateSqlFile 9

translateSqlFile Translate a SQL file

Description

This function takes SQL and translates it to a different dialect.

Usage

```
translateSqlFile(sourceFile, targetFile, sourceDialect, targetDialect,
  oracleTempSchema = NULL)
```

Arguments

sourceFile The source SQL file

targetFile The target SQL file

sourceDialect Deprecated: The source dialect. Currently, only 'sql server' for Microsoft SQL Server is supported

targetDialect The target dialect. Currently 'oracle', 'postgresql', and 'redshift' are supported oracleTempSchema

A schema that can be used to create temp tables in when using Oracle.

Details

This function takes SQL and translates it to a different dialect.

Examples

writeSql

Write SQL to a SQL (text) file

Description

```
writeSql writes SQL to a file
```

Usage

```
writeSql(sql, targetFile)
```

Arguments

sql A string containing the sql targetFile The target SQL file 10 writeSql

Details

```
\label{eq:continuous_sql} \textit{writeSql} \ \textit{writeSQL} \ \textit{to} \ \textit{a} \ \textit{file}
```

```
## Not run:
sql <- "SELECT * FROM @table_name"
writeSql(sql, "myParamStatement.sql")
## End(Not run)</pre>
```

Index

```
camelCaseToSnakeCase, 2
createRWrapperForSql, 2

launchSqlRenderDeveloper, 3
loadRenderTranslateSql, 3

readSql, 4
renderSql, 5
renderSqlFile, 6

snakeCaseToCamelCase, 7
splitSql, 7
SqlRender, 8
SqlRender-package (SqlRender), 8

translateSql, 8
translateSqlFile, 9

writeSql, 9
```