0.1 Exact functors

Let $F: \mathcal{A} \to \mathcal{A}'$ be an additive functor.

Definition 0.1. F is called

- (a) left exact \iff F commutes with finite limits.
- (b) $right\ exact\iff F$ commutes with finite colimits.
- (c) $exact \iff F$ is left and right exact.

Remark. Since $\mathcal{A}, \mathcal{A}'$ are additive categories, all finite limits and colimits exist in \mathcal{A} and \mathcal{A}' . So if $D: J \to \mathcal{A}$ is a finite diagram, we have $\lim_J D$ exists in \mathcal{A} , $\lim_J F \circ D$ exists in \mathcal{A}' and we have a natural morphism

$$F(\lim_I D) \to \lim_I F \circ D$$

in \mathcal{A}' . F is left exact if this morphism is an isomorphism $\forall D$.

Proposition 0.2. Let $F: A \to A'$ be additive, then:

- (a) The following are equivalent:
 - (i) F is left exact.
 - (ii) F commutes with the formation of kernels, i.e. $\forall f: X \to Y \text{ in } A$, the natural morphism

$$F(\ker f) \to \ker F(f)$$

is an isomorphism.

- (iii) \forall exact sequence $0 \to X' \to X \to X''$ in A, the sequence $0 \to FX' \to FX \to FX''$ is exact in A'.
- (iv) \forall exact sequence $0 \to X' \to X \to X'' \to 0$ in A, the sequence $0 \to FX' \to FX \to FX''$ is exact in A'.
- (b) The following are equivalent:
 - (i) F is right exact.
 - (ii) F commutes with the formation of cokernels.
 - (iii) \forall exact sequence $X' \to X \to X'' \to 0$ in A, the sequence $FX' \to FX \to FX'' \to 0$ is exact in A'.
 - (iv) \forall exact sequence $0 \to X' \to X \to X'' \to 0$ in \mathcal{A} , the sequence $FX' \to FX \to FX'' \to 0$ is exact in \mathcal{A}' .
- (c) F is exact $\iff \forall$ exact sequences $X' \xrightarrow{f} X \xrightarrow{g} X''$, the sequence

$$FX' \xrightarrow{Ff} FX \xrightarrow{Fg} FX''$$

is exact.

Proof. TODO. \Box

Proposition 0.3. $\forall X \in \mathcal{A}$ the co- and contravariant Hom functors $\operatorname{Hom}_{\mathcal{A}}(X, -), \operatorname{Hom}_{\mathcal{A}}(-, X)$ are left exact.

Proof. TODO.

Proposition 0.4. Let $F: A \to A'$ and $G: A' \to A$ be additive functors with $F \dashv G$. Then F is right exact and G is left exact.

Proof. TODO.

Example 0.5. By Hom- \otimes Adjunction (roughly Hom $(M \otimes -, N) = \text{Hom}(M, \text{Hom}(-, N))$) $M \otimes -$ is left adjoint to Hom $(-,) \implies M \otimes_R - : {}_R\text{Mod} \to \text{Ab}$ is right exact, as is $- \otimes_R M : \text{Mod}_R \to \text{Ab}$.

$$(-\otimes_R M:\mathsf{Mod}_R o Ab)=(M\otimes_{R^\mathrm{op}}-:{}_{R^\mathrm{op}}\mathsf{Mod} o \mathsf{Ab})$$

Remark. Next small goal: J any small index category. Are $\lim_{J}: \mathcal{A}^{J} \to \mathcal{A}$, $\operatorname{colim}_{J} \mathcal{A}^{J} \to \mathcal{A}$ exact?

Proposition 0.6. $A^J = \operatorname{Fun}(J, A)$ is an abelian category.

Proposition 0.7. Suppose A contains all limits (colimits) for a given small index category J, then $\lim_{J} : A^{J} \to A$ is left exact. (colim $_{J} : A^{J} \to A$ is right exact.)

Corollary 0.8. Let I be a set and I the discrete category associated to I. Then:

- (a) $\prod_{i \in I} : A^I \to A, (A_i)_{i \in I} \mapsto \prod_{i \in I} A_i$
- (b) $\bigoplus_{i \in I} : A^I \to A, (A_i)_{i \in I} \mapsto \bigoplus_{i \in I} A_i$) assuming existence, are exact functors

Definition 0.9. (a) A non-empty category J is called *filtered* iffy

- (i) $\forall i, j \in J : \exists \text{ diagram } i \longrightarrow k \in J.$
- (ii) $\forall f, g : i \Rightarrow j \exists h : j \to k \text{ such that }$

$$h \circ f = h \circ g : i \to k$$

(b) A directed poset (I, \subseteq) is a poset such that $\forall i, j \in I \exists h \in I$ such that $h \geq i, h \geq j$ (\Longrightarrow (I, \subseteq) is directed \Longrightarrow ord (I, \subseteq) is filtered.)

Definition 0.10. \mathcal{A} has exact filtered colimits \iff for each filtered index category J, the functor colim $\mathcal{A}^J \to \mathcal{A}$ is exact (and defined).

Theorem 0.11. $_R$ Mod has exact filtered colimits.

Fundamental question: how to investigate the non-exactness of functors (that are left or right exact). Answer of homological algebra: e.g. $F: A \to B$ left exact, define "higher right derived functors" $(R^i F)_{i\geq 0}$ from F such that \forall s.e.s.

$$0 \to X' \to X \to X'' \to 0$$

in A

$$0 \longrightarrow FX' \longrightarrow FX \longrightarrow FX''$$

$$R^1FX' \stackrel{\longleftarrow}{\longmapsto} R^1FX \longrightarrow R^1FX''$$

$$R^2FX' \stackrel{\longleftarrow}{\longmapsto} R^2FX \longrightarrow R^2FX'' \longrightarrow \cdots$$

and $R^0F = F$. Study R^iF to understand the nonexactness of F, or to gain insight into some invariants of A. Some R^iF (typically $i \leq 3$) have concrete meanings.

0.1.1 To define R^iF (or L_iF)

One wants "enough" injectives (projectives) in A.

Theorem-Definition 0.12. For $I \in A$ the following are equivalent:

(i) \forall diagrams with ι monomorphism \exists extension $g: B \rightarrow I$ such that the following commutes

- (ii) The functor $\operatorname{Hom}_{\mathcal{A}}(-,I): \mathcal{A}^{\operatorname{op}} \to \operatorname{\mathsf{Ab}}\ is\ exact.$
- (iii) Every s.e.s. $0 \to I \xrightarrow{h} C \xrightarrow{k} D \to 0$ in \mathcal{A} is split.

If any of these hold then I is called an injective object.

Theorem-Definition 0.13. For $P \in \mathcal{A}$ the following are equivalent:

(i) \forall diagrams with π epimorphism \exists lifting $g: P \rightarrow B$ such that $\pi \circ g = f$

- (ii) The functor $\operatorname{Hom}_{\mathcal{A}}(P,-): \mathcal{A} \to \operatorname{\mathsf{Ab}}$ is exact.
- (iii) Every s.e.s. $0 \to A \to B \to P \to 0$ is split.

If these hold, then P is called a projective object in A.

Remark. I injective in $A \iff I$ projective in A^{op} .

Proposition 0.14. (a) If $(I_j)_{j\in J}$ (J a set) is a family of injectives in A, such that $\prod_J I_j$ exist, then $\prod_J I_j$ is injective.

(b) If $(P_j)_{j\in J}$ (J a set) is a family of projectives in A, such that $\bigoplus_{j\in J} P_j$ exist, then $\bigoplus_{J} P_j$ is projective.

Example 0.15. (a) R is a projective R-module (hence so is $R^{(I)}$)

- (b) \mathbb{Q}/\mathbb{Z} is an injective in $\mathbb{Z}Mod$.
- **Definition 0.16.** (a) \mathcal{A} has enough injective $\iff \forall X \in \mathcal{A} \exists$ monomorphism $X \to I$ with $I \in \mathcal{A}$ injective.
- (b) \mathcal{A} has enough projectives $\iff \forall X \in \mathcal{A} \exists$ epimorphism $P \to X$ with $P \in \mathcal{A}$ projective.

Definition 0.17. $Q \in \mathcal{A}$ is called a

- (a) generator \iff Hom_{\mathcal{A}} $(Q, -) : \mathcal{A} \to \mathsf{Ab}$ is faithful.
- (b) cogenerator \iff Hom_A $(-,Q): \mathcal{A}^{\mathrm{op}} \to \mathsf{Ab}$ is faithful.

Remark 0.18. For $Q \in \mathcal{A}$ the following are equivalent:

- 1. Q is a generator.
- 2. $\forall X, Y \in \mathcal{A} \forall f, g \in \mathcal{A}(X, Y)$:

$$f \neq g \implies \exists h \in \mathcal{A}(Q, X) : f \circ h \neq g \circ h$$

3. $\forall X, Y \in \mathcal{A} \forall f \in \mathcal{A}(X, Y)$:

$$f \neq 0 \implies \exists h \in \mathcal{A}(Q, X) : f \circ h = 0$$

- **Examples 0.19.** 1. R is a generator for RMod: Suppose $f: M \to N$ in RMod is nonzero. Then $\exists m \in M: f(m) \neq 0$. Define $h: R \to M, r \mapsto rm \implies f \circ h: R \to N$ is nonzero.
 - 2. \mathbb{Q}/\mathbb{Z} is a cogenerator in $\mathsf{Ab} = \mathbb{Z}\mathsf{Mod}$ let $f: M \to N$ be non-zero in Ab . Let $X \in \mathrm{im}(f) \setminus \{0\}$. TODO

Definition 0.20. A is called a Grothendieck abelian category (GAC) iffy

- 1. \mathcal{A} is cocomplete.
- 2. For any filtered small category $J: \text{colim}: A^J \to A$ is exact.
- 3. \mathcal{A} possesses a cogenerator.

Theorem 0.21. For a GAC \mathcal{A} the following hold:

- 1. The subobjects and quotient objects of any $A \in \mathcal{A}$ form a set.
- 2. A has enough injectives.
- 3. A has an injective cogenerator.
- 4. A is complete.

Example 0.22. 1. _RMod is a GAC by examples 19(a) Thm 11 Cor II48

2. If A is a GAC and J is a small category then PSh(J, A) is a GAC

Lemma 0.23. Suppose $F: A \to A'$ and $G: A' \to A$ are functors such that $F \dashv G$, then:

- 1. F exact \implies G maps injectives in A' to injectives in A.
- 2. G exact \implies F maps projectives in A to projectives in A'.
- 3. F faithful \implies G maps cogenerators in \mathcal{A}' to cogenerators in \mathcal{A} .
- 4. G faithful \implies F maps generators in \mathcal{A} to generators in \mathcal{A}' .

Theorem 0.24. Let A be a GAC with generator Q, then:

Corollary 0.25. \mathbb{Q}/\mathbb{Z} is injective in Ab.

Corollary 0.26. For any ring R, $\operatorname{Hom}(R,\mathbb{Q}/\mathbb{Z})$ is an injective R-module and a cogenerator.

Proposition 0.27. Let $Q, J \in \mathcal{A}$, then

- 1. Suppose A contains all coproducts over index sets. Then the following are equivalent:
 - (a) Q is a generator.
 - (b) $\forall X \in \mathcal{A} \exists \text{ set } I, \exists \text{ epimorphism } Q^{(I)} := \coprod_{i \in I} Q \to X.$ Moreover, if Q is a rojective generator then \mathcal{A} has enough projectives of the form $Q^{(I)}$, where I is a set.
- 2. Suppose A contains all products over index sets then the following are equivalent:
 - (a) J is a cogenerator.
 - (b) $\forall Y \in \mathcal{A} \exists$ set I, monomorphism $Y \to J^I := \prod_{i \in I} J$. Moreover if J is an injective cogenerator then \mathcal{A} has enough injectives of the form J^I where I is a set.

Corollary 0.28. $_R$ Mod has enough injectives of the form $\operatorname{Hom}_{\mathbb{Z}}(R,\mathbb{Q}/\mathbb{Z})^I$, I a set.

Remark 0.29. TODO

0.2 (Co-)chain complexes, (co-)homology

Let \mathcal{A} be an additive category.

Definition 0.30. (a) A chain complex (C_*, ∂_*) over \mathcal{A} is a sequence $(\partial_i : C_i \to C_{i-1})_{i \in \mathbb{Z}}$ of morphisms in \mathcal{A} such that $\partial_i \circ \partial_{i+1} = 0, \forall i \in \mathbb{Z}$. The map ∂_i is called the *i*-th differential or *i*-th boundary map of the complex. A morphism $f_* : C_* \to D_*$ of chain complexes is a sequence of morphisms $f_* = (f_i : C_i \to D_i)_{i \in \mathbb{Z}}$ such that the diagram commutes $\forall i \in \mathbb{Z}$

$$C_{i-1} \xleftarrow{\partial_i^C} C_i$$

$$f_{i-1} \downarrow \qquad \qquad \downarrow f_i$$

$$D_{i-1} \xleftarrow{\partial_i^D} D_i$$

The category of chain complexes over A is denoted $Ch_*(A)$.

(b) A cochain complex (C^*, δ^*) over \mathcal{A} is a sequence $(\delta^i : C^i \to C^{i+1})_{i \in \mathbb{Z}}$ of morphisms in \mathcal{A} , such that $\delta^{i+1} \circ \delta^i = 0, \forall i \in \mathbb{Z}$. A morphism $f^* : C^* \to D^*$ of cochain complexes is a sequence $f^* = (f^i : C^i \to D^i)_{i \in \mathbb{Z}}$ of morphisms in \mathcal{A} such that the following diagram commutes $\forall i \in \mathbb{Z}$

$$D_{i} \xrightarrow{\delta_{D}^{i}} D_{i+1}$$

$$f_{i} \uparrow \qquad \uparrow f_{i+1}$$

$$C_{i} \xrightarrow{\delta_{C}^{i}} C_{i+1}$$

The category of cochain complexes over A is denoted $Ch^*(A)$

Exercise 0.31. TODO

In the following we do most things only for cochain complexes.

Definition 0.32. (a) The *support* of a cochain complex $C^* \in \mathsf{Ch}^*(\mathcal{A})$ is supp $C = \{i \in \mathbb{Z} \mid C^i \neq 0\}$

(b) The full subcategory of $\mathsf{Ch}^*(\mathcal{A})$ on complexes supported on \mathbb{N}_0 (or on $-\mathbb{N}_0$) is denoted $\mathsf{Ch}^*_{>0}(\mathcal{A})$ (or $\mathsf{Ch}^*_{<0}(\mathcal{A})$).

Proposition 0.33. If \mathcal{A} is additive (or abelian), then so are $\mathsf{Ch}^*(\mathcal{A}), \mathsf{Ch}^*_{\geq 0}(\mathcal{A}), \mathsf{Ch}^*_{\leq 0}(\mathcal{A})$.

Definition 0.34. For $i \in \mathbb{Z}$ define left shift by i by

$$\begin{array}{ccc} \mathsf{Ch}^*(\mathcal{A}) & \longrightarrow & \mathsf{Ch}^*(\mathcal{A}) \\ C & \longmapsto & C[i] \\ f \downarrow & & & \downarrow f[i] \\ D & \longmapsto & D[i] \end{array}$$

where $C[i]^n = C^{n+i}, \delta^n_{C[i]} = \delta^{n+i}_C$ and $f[i]^n = f^{n+1}$.

Convention 0.35. We regard \mathcal{A} as a subcategory of $\mathsf{Ch}^*(\mathcal{A})$, as the subcategory of complexes C^* with supp $C^* \subseteq \{0\}$. Identify $X \in \mathcal{A}$ with complex

$$cdots \rightarrow 0 \rightarrow 0 \rightarrow X \rightarrow 0 \rightarrow 0 \rightarrow \cdots$$

Example 0.36. TODO

0.3 Double complexes

Can iterate the formation of $\mathcal{A} \to \mathsf{Ch}^*(\mathcal{A})$.

Definition 0.37. The category of double (cochain) complexes is $\mathsf{Ch}^{**}(\mathcal{A}) := \mathsf{Ch}^*(\mathsf{Ch}^*(\mathcal{A}))$, so objects of $\mathsf{Ch}^{**}(\mathcal{A})$ are complexes of complexes

Definition 0.38. $C \in \mathsf{Ch}^{**}(\mathcal{A})$ is called bounded $\iff \forall k \in \mathbb{Z} : \#\{(i,j) \in \mathbb{Z}^2 \mid i+j=k, C^{ij} \neq 0\} < \infty$. Write $\mathsf{Ch}_b^{**}(\mathcal{A}) \subseteq \mathsf{Ch}^{**}(\mathcal{A})$ for the full subcategory on bounded double complexes.

Exercise 0.39. If \mathcal{A} is additive or abelian, then so is $\mathsf{Ch}_{b}^{**}(\mathcal{A})$.

Definition 0.40. The *total complex* $\operatorname{Tot}(C)$ of $C \in \mathsf{Ch}_b^{**}(\mathcal{A})$ is the complex $\overline{C} \in \mathsf{Ch}^*(\mathcal{A})$ defined as follows:

$$\overline{C}^k := \bigoplus_{\substack{(i,j) \in \mathbb{Z}^2 \\ i+j=k}} C^{ij}$$

 $\delta_{\overline{C}}^{\underline{k}}$ is constructed as follows:

$$\delta^{ij}:C^{ij}\xrightarrow{(\delta^{ij}_1,(-1)^i\delta^{ij}_2)}C^{i+1,j}\oplus C^{i,j+1}\hookrightarrow\bigoplus_{i'+j'=k+1}C^{i'j'}=\overline{C}^{k+1}$$

Use the universal property of the direct sum to define

$$\delta_{\overline{C}}^{k} = \bigoplus_{i+j=k} \delta^{ij} : \overline{C}^{k} \to \overline{C}^{k+1}$$

TODO

Exercise 0.41. TODO

Definition 0.42. For $C = (C^*, \delta^*) \in \mathsf{Ch}^*(\mathcal{A})$ define:

- $Z^{i}(C) := \ker(\delta^{i})$ as the *i*-th cocycle object.
- $B^i(C) := \operatorname{im}(\delta^{i-1})$ as the *i*-th coboundary object.
- $u^i(C): B^i(C) \to Z^i(C)$ the canonical monomorphism.
- $H^i(C) := \operatorname{coker}(u^i(C)) = Z^i(C)/B^i(C)$ as the *i*-th cohomology object.

(Co-)homology measures the non-exactness of the complex C.

Lemma 0.43 (Alternative description of cohomology object). For $C \in \mathsf{Ch}^*(\mathcal{A})$ consider TODO

Lemma 0.44 (exer). *TODO*

Theorem 0.45. (a) Given a s.e.s.

$$\mathcal{E}: 0 \to C \xrightarrow{f} D \xrightarrow{g} E \to 0$$

one obtains a long exact sequence

$$\cdots \to H^{i}(C) \xrightarrow{H^{i}(f)} H^{i}(D) \xrightarrow{H^{i}(g)} H^{i}(E) \xrightarrow{d_{\mathcal{E}}^{i}} H^{i+1}(C) \xrightarrow{H^{i+1}(f)} \cdots$$

for $i \in \mathbb{Z}$, where the connecting homomorphism $d_{\mathcal{E}}^i$ is defined by the snake lemma and $\mathcal{E} \mapsto d_{\mathcal{E}}^i$ is "functorial".

(b) Given a morphism of short exact sequences $\varphi : \mathcal{E} \to \mathcal{E}'$ in $\mathsf{Ch}^*(\mathcal{A})$:

$$\begin{array}{cccc} \mathcal{E}: & 0 & \longrightarrow & C & \stackrel{f}{\longrightarrow} & D & \stackrel{g}{\longrightarrow} & E & \longrightarrow & 0 \\ \varphi \Big| & & & & \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\ \mathcal{E}': & 0 & \longrightarrow & C' & \stackrel{f'}{\longrightarrow} & D' & \stackrel{g'}{\longrightarrow} & E' & \longrightarrow & 0 \end{array}$$

one obtains a commutative ladder of long exact sequences from (a)

$$\cdots \longrightarrow H^{i}(C) \xrightarrow{H^{i}(f)} H^{i}(D) \xrightarrow{H^{i}(g)} H^{i}(E) \xrightarrow{d_{\mathcal{E}}^{i}} H^{i+1}(C) \longrightarrow \cdots$$

$$\downarrow^{H^{i}(\alpha)} \qquad \downarrow^{H^{i}(\beta)} \qquad \downarrow^{H^{i}(\gamma)} \qquad \downarrow^{H^{i+1}(\alpha)}$$

$$\cdots \longrightarrow H^{i}(C') \xrightarrow{H^{i}(f')} H^{i}(D') \xrightarrow{H^{i}(g')} H^{i}(E') \xrightarrow{d_{\mathcal{E}'}^{i}} H^{i+1}(C') \longrightarrow \cdots$$

Definition 0.46. $C \in \mathsf{Ch}^*(\mathcal{A})$ is called *acyclic* if C is exact $\iff H^i(C) = 0, \forall i \in \mathbb{Z}$.

Corollary 0.47 (To theorem 45). Let $\mathcal{E}: 0 \to C' \to C \to C'' \to 0$ be a s.e.s. in $\mathsf{Ch}^*(\mathcal{A})$, then if any two of C', C, C'' are acyclic, then so is the third.

Theorem 0.48 (Acyclicity criterion for total complexes). Let $C \in \mathsf{Ch}_b^{**}(\mathcal{A})$ such that

- (a) Each row $(C^{ij}, \delta_1^{ij})_{i \in \mathbb{Z}}$ is acyclic $\forall j \in \mathbb{Z}$, or
- (b) Each column $(C^{ij}, \delta_1^{ij})_{j \in \mathbb{Z}}$ is acyclic $\forall i \in \mathbb{Z}$

then Tot(C) is acyclic.

Definition 0.49. An arrow $f: C \to D$ in $\mathsf{Ch}^*(\mathcal{A})$ is called a *quasi-isomorphism* (quism) $\iff \forall i \in \mathbb{Z}: H^i(f): H^i(C) \to H^i(D)$ is an isomorphism.

Lemma 0.50. *TODO*

Corollary 0.51. For $f: C \to D$ in $Ch^*(A)$ the following are equivalent:

- (a) f is a quasi-isomorphism.
- (b) Cone f is acyclic.

Definition 0.52. Let $f, g: C \to D$ in $\mathsf{Ch}^*(\mathcal{A})$.

(a) A homotopy from f to g is a sequence of morphisms $(s^i:C^i\to D^{i-1})_{i\in\mathbb{Z}}$ such that $\forall i\in\mathbb{Z}:f^i-g^i=\delta_D^{i-1}\circ s^i+s^{i+1}\circ\delta_C^i$, i.e.

- (b) f is called homotopic to g if \exists homotopy from f to g. Write $f \sim g$.
- (c) f is called *nullhomotopic* if $f \sim 0$.

Note: This definition only requires that A is additive.

Proposition 0.53. (a) For $C, D \in \mathsf{Ch}^*(\mathcal{A})$, homotopy defines an equivalence relation on $\mathsf{Hom}_{\mathsf{Ch}^*(\mathcal{A})}(C, D)$.

(b) For $f, f': C \to D$ and $g, g': D \to E$ in Ch^*A one has:

$$f \sim f', g \sim g' \implies g \circ f \sim g' \circ f'$$

(c) Suppose $F: \mathcal{A} \to \mathcal{B}$ is an additive functor, then one has a functor F: $\mathsf{Ch}^*\mathcal{A} \to \mathsf{Ch}^*\mathcal{B}\ by$

$$F(\delta^n: C^n \to C^{n+1})_{n \in \mathbb{Z}} = (F\delta^n: FC^n \to FC^{n+1})_{n \in \mathbb{Z}}$$

This functor preserves homotopy, i.e. $f \sim g \implies Ff \sim Fg$.

Proposition 0.54. Suppose $f, g: C \to D$ in $\mathsf{Ch}^* \mathcal{A}$ are homotopic, then

$$H^i(f) = H^i(g) : H^i(C) \to H^i(D), \forall i \in \mathbb{Z}$$

Definition 0.55. A morphism $f: C \to D$ in $\mathsf{Ch}^* \mathcal{A}$ is called a homotopy equivalence from C to D if $\exists g: D \to C$ in $\mathsf{Ch}^* \mathcal{A}$ such that

$$g \circ f \sim 1_C$$
, $f \circ g \sim 1_D$

and in this case C and D are called homotopy equivalent.

Proposition 0.56. Suppose $f: C \to D$ is a homotopy equivalence, then f is a quasi-isomorphism.

Example. TODO

0.4Injective and projective resolutions

Notation. Inj or $\operatorname{Inj}_{\mathcal{A}}$ and Proj or $\operatorname{Proj}_{\mathcal{A}}$ are the full subcategories of \mathcal{A} on injective or projective objects respectively. Note that $\operatorname{Inj}_{\mathcal{A}}^{\operatorname{op}} = \operatorname{Proj}_{\mathcal{A}^{\operatorname{op}}}$.

Definition 0.57. (a) An injective resolution of $A \in \mathcal{A}$ is a quism $f : \underline{A} \to I$ in $\mathsf{Ch}^*_{>0}\mathcal{A}$ with $I \in \mathsf{Ch}^*_{>0}(\mathsf{Inj}_{\mathcal{A}})$ i.e. Cone f, which is

$$0 \to A \to I^0 \to I^1 \to I^2 \to \cdots$$

is acyclic and all the I^j are injective.

(b) A projective resolution of $A \in \mathcal{A}$ is a quism $g: P \to \underline{A}$ in $\mathsf{Ch}^*_{<0}\mathcal{A}$ with $P \in \mathsf{Ch}^*_{<0}(\operatorname{Proj} \mathcal{A}).$

Proposition 0.58. Consider the functor

$$\begin{array}{ccc} \widehat{\cdot} : \mathsf{Ch}^*(\mathcal{A})^\mathrm{op} & \longrightarrow & \mathsf{Ch}^*(\mathcal{A}^\mathrm{op}) \\ & (C^n, \delta^n_C) & \stackrel{\widehat{\cdot}}{-\!\!\!\!-} & (\widehat{C}^n, \widehat{\delta}^n_C) \\ & \downarrow & & \uparrow \widehat{f} \\ & (D^n, \delta^n_D) & \stackrel{\widehat{\cdot}}{-\!\!\!\!-} & (\widehat{D}^n, \widehat{\delta}^n_D) \end{array}$$

where $\widehat{C}^n = C^{-n}$, $\widehat{\delta}^n_C = \delta^{-n-1} \in \mathcal{A}(C^{-n-1}, C^{-n}) = \mathcal{A}^{\text{op}}(\widehat{C}^n, \widehat{C}^{n+1})$ and $\widehat{f}^n := f^{-n} \in \mathcal{A}(C^{-n}, D^{-n}) = \mathcal{A}^{\text{op}}(\widehat{D}^n, \widehat{C}^n)$. Then

(a) $\hat{\cdot}$ is well defined, satisfies $\hat{\cdot} \circ \hat{\cdot} = \text{id}$ and $\hat{\cdot}$ is an isomorphism of categories.

$$(b) \ \widehat{\ } (\mathsf{Ch}^*_{\geq 0/\leq 0}(\mathcal{A})^{\mathrm{op}}) = \mathsf{Ch}^*_{\leq 0/\geq 0}(\mathcal{A}^{\mathrm{op}}).$$

- $(c) \ \widehat{\ } (\mathsf{Ch}^*_{\geq 0/\leq 0}(\mathsf{Inj}_{\mathcal{A}} \, / \, \mathsf{Proj}_{\mathcal{A}}))^{\mathrm{op}} = \mathsf{Ch}^*_{\leq 0/\geq 0}(\mathsf{Proj}_{\mathcal{A}^{\mathrm{op}}} \, / \, \mathsf{Inj}_{\mathcal{A}^{\mathrm{op}}})$
- (d) If $\underline{A} \to I$ is an injective resolution in $\mathsf{Ch}^* \geq 0(\mathcal{A})$, then $\widehat{I} \to \underline{A}$ is a projective resolution in $\mathsf{Ch}^*_{\leq 0}(\mathcal{A}^{\mathrm{op}})$

Theorem 0.59. Let \mathcal{A} be an abelian category with enough injectives, then

- (a) Each $A \in \mathcal{A}$ possesses an injective resolution.
- (b) Let $h:A\to B$ be a morphism, let $f:\underline{B}\to I^{\bullet}$ be an injective resolution and $g:\underline{A}\to C^{\bullet}$ be a quism in $\mathsf{Ch}^*_{\geq 0}(\mathcal{A})$ (C^{\bullet} is a resolution of A), then there is a commutative diagram in $\mathsf{Ch}^*_{\geq 0}\mathcal{A}$

$$\begin{array}{ccc}
\underline{A} & \xrightarrow{g} & C^{\bullet} \\
\downarrow h & & \downarrow H \\
B & \xrightarrow{f} & I^{\bullet}
\end{array}$$

(c) If diagram in (b) commutes with $H, H': C^{\bullet} \to I^{\bullet}$, then $H' \sim H$.

Corollary 0.60. Suppose $\underline{A} \xrightarrow{g} I^{\bullet}$ and $\underline{A} \xrightarrow{g} J^{\bullet}$ are inj resolutions of A. Then:

(a) $\exists H: I^{\bullet} \to J^{\bullet} \text{ such that }$

commutes.

(b) H in (a) is always a homotopy equivalence.

Lemma 0.61 (Horseshoe 2). Let $0 \to A' \to A \to A'' \to 0$ be a s.e.s. in \mathcal{A} , let $\underline{A'} \xrightarrow{f'} I^{\bullet}$ and $\underline{A''} \xrightarrow{f''} J^{\bullet}$ be injective resolutions. Then \exists commutative diagram:

in $\mathsf{Ch}^*_{\geq 0}\mathcal{A}$ with exact rows and an injective resolution $f:\underline{A}\to K^{\bullet}$. Moreover $\forall n\geq 0$ the following commutative diagram has exact rows and columns:

So
$$f' = \delta_I^{-1}$$
, $f = \delta_K^{-1}$ and $f'' = \delta_J^{-1}$.

Definition 0.62. Define Ex_A as the category of s.e.s. in A with objects:

$$\mathcal{E}_A:0\to A'\to A\to A''\to 0$$

in A, and morphisms are commutative diagrams

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$$

in \mathcal{A} with exact rows represented by $\underline{f} = (f', f, f'')$ in $\mathsf{Ex}_{\mathcal{A}}(\mathcal{E}_A, \mathcal{E}_B)$. Composition of arrows is componentwise. TODO

Proposition 0.63. (a) $\mathsf{Ex}_{\mathcal{A}}$ is an additive category.

- (b) We have additive functors $\operatorname{pr}_i : \operatorname{Ex}_{\mathcal{A}} \to \mathcal{A}$, mapping $0 \to A_1 \to A_2 \to A_3 \to 0$ to A_i .
- (c) $\mathsf{Ex}_{\mathcal{A}}$ is not abelian.

Definition 0.64. An arrow f = (f', f, f'') in $\mathsf{Ex}_{\mathcal{A}}$ is called

- (a) a strict monomorphism (strict epimorphism) \iff f', f, f'' are monics (epics) in A.
- (b) $strict \iff$

$$0 \to \ker f' \to \ker f \to \ker f'' \to 0$$

is exact which is (by the snake lemma) equivalent to exactness of

$$0 \to \operatorname{coker} f' \to \operatorname{coker} f \to \operatorname{coker} f'' \to 0$$

Proposition 0.65. If \underline{f} is strict in $\operatorname{Mor}(\mathsf{Ex}_{\mathcal{A}})$ then $\ker \underline{f}$, $\operatorname{coker} \underline{f}$, $\operatorname{im} \underline{f}$, $\operatorname{coim} \underline{f}$ exist in $\mathsf{Ex}_{\mathcal{A}}$ and the canonical map $\operatorname{coim} f \to \operatorname{im} f$ is an isomorphism.

Remark. Ex_A is an exact category.

Definition 0.66. (a) A complex $\mathcal{E}^{\bullet} = (\underline{\delta}^i)$ TODO

Theorem 0.67. TODO

0.5 Derived Functors

Let \mathcal{A}, \mathcal{B} be abelian categories.

Definition 0.68. (a) A homological (resp. cohomological) δ-functor $(T_n, \delta_n)_{n\geq 0}$ (resp $(T^n, \delta^n)_{n\geq 0}$) from \mathcal{A} to \mathcal{B} consists of

(i) a sequence of additive functors $(T_n : \mathcal{A} \to \mathcal{B})_{n \geq 0}$ resp. $(T^n : \mathcal{A} \to \mathcal{B})_{n \geq 0}$.

(ii) A sequence of natural transformations

such that this data assigns to each $\underline{\mathcal{E}}: 0 \to A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3 \to 0$ in $\mathsf{Ex}_{\mathcal{A}}$ a long exact sequence in \mathcal{B}

$$\cdots \to T_{n+1} \xrightarrow{\delta_n^{\underline{\mathcal{E}}}} T_n A_1 \xrightarrow{T_n f} T_n A_2 \xrightarrow{T_n g} T_n A_3 \xrightarrow{\delta_{n-1}^{\underline{\mathcal{E}}}} T_{n-1} A_1 \to \cdots$$

resp.

$$\cdots \to T^{n-1}A_3 \xrightarrow{\delta_{\mathcal{E}}^{n-1}} T^nA_1 \xrightarrow{T^nf} T^nA_2 \xrightarrow{T^ng} T^nA_3 \xrightarrow{\delta_{\mathcal{E}}^n} T^{n+1}A_1 \to \cdots$$

Moreover the assignmennt $\mathcal{E} \to \text{l.e.s.}$ is functorial in $\mathsf{Ex}_{\mathcal{A}}$

(iii) TODO WTF IS THIS?

Example 0.69. TODO

Construction 0.70. Suppose \mathcal{A} has enough injectives and let $F: \mathcal{A} \to \mathcal{B}$ be a left exact additive functor.

- 1. $\forall A \in \mathcal{A}$ choose an injective resolution $\iota_A : \underline{A} \to I_A^{\bullet}$ in $\mathsf{Ch}_{\geq 0}^*(\mathcal{A})$ and define $R^n F(A) := H^n(FI_A^{\bullet})$ choice in \mathcal{B} of n-th cohomology object.
- 2. $\forall f: A \to A'$ morphism in \mathcal{A} choose an arrow ι_f such that

$$\underline{\underline{A}'} \xrightarrow{\iota_{A'}} I_{A'}^{\bullet}$$

$$f \uparrow \qquad \uparrow_{\iota_f} \\
\underline{\underline{A}} \xrightarrow{\iota_A} I_{A}^{\bullet}$$

commutes in $\mathsf{Ch}^*_{\geq 0}(\mathcal{A})$ which implies that $F(\iota_f): FI^\bullet_A \to FI^\bullet_{A'}$ morphism in $\mathsf{Ch}^*_{\geq 0}(\mathcal{B})$. Define: $R^nF(f):=H^n(F(\iota_f)):R^nF(A)\to R^nF(A')$...

Lemma 0.71. (a) $R^n F$ is a functor $A \to B$ (additive.)

- (b) If one makes other choices of injective resolutions $\widetilde{\iota}_A:A\to \widetilde{I}_A^{\bullet}$ and $\widetilde{\iota}_f:\widetilde{I}_A^{\bullet}\to \widetilde{I}_{A'}^{\bullet}$ then we get a natural isomorphism $R^nF\cong \widetilde{R}^nF$
 - 3. Given $\mathcal{E}: 0 \to A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3 \to 0$ in $\mathsf{Ex}_{\mathcal{A}}$ and an injective resolution $\iota_{\mathcal{E}}: \mathcal{E} \to J_{\mathcal{E}}^{\bullet}$ in $\mathsf{Ch}_{\geq 0}^*(\mathsf{Ex}_{\mathcal{A}})$

Lemma 0.72. (a) $FJ_{\mathcal{E}}^{\bullet}$ lies in $\mathsf{Ch}_{\geq 0}^*(\mathsf{Ex}_{\mathcal{B}}),$ in particular, it is a s.e.s. of complexes in $\mathsf{Ch}_{\geq 0}^*(\mathcal{B}).$

12

(b) Write $J_{\mathcal{E}}^{\bullet} = 0 \to I_1^{\bullet} \to I_2^{\bullet} \to I_3^{\bullet} \to 0$ as a s.e.s. in $\mathsf{Ch}^*_{\geq 0}(\mathcal{A})$, then the I_i^n are injective and by (a) we have a s.e.s.

$$0 \to FI_1^{\bullet} \to FI_2^{\bullet} \to FI_3^{\bullet} \to 0 \quad (*)$$

in $\mathsf{Ch}^*_{\geq 0}(\mathcal{B})$, then the following diagram commutes and the top row is a l.e.s. in \mathcal{B} , and the vertical maps are isomorphisms.

$$\cdots \longrightarrow H^{n-1}(FI_{j}^{\bullet}) \xrightarrow{\delta_{FJ_{\mathcal{E}}^{\bullet}}^{n-1}} H^{n}(FI_{1}^{\bullet}) \longrightarrow H^{n}(FI_{2}^{\bullet}) \longrightarrow H^{n}(FI_{3}^{\bullet}) \xrightarrow{\delta_{FJ_{\mathcal{E}}^{\bullet}}^{n}} \cdots$$

$$\downarrow u_{A_{3}}^{n-1} \uparrow \qquad \qquad u_{A_{1}}^{n} \uparrow \qquad \qquad u_{A_{2}}^{n} \uparrow \qquad \qquad u_{A_{3}}^{n} \uparrow$$

$$\cdots \longrightarrow R^{n-1}F(A_{3}) \longrightarrow R^{n}F(A_{1}) \xrightarrow{R^{n}F(f)} R^{n}F(A_{2}) \xrightarrow{R^{n}F(g)} R^{n}F(A_{3}) \longrightarrow \cdots$$

This is not even funny anymore. Define $\delta^n_{RF}: R^nF \circ \operatorname{pr}_3 \Rightarrow R^nF \circ \operatorname{pr}_1$ for \mathcal{E} as $(u^{n+1}_{A_1})^{-1} \circ \delta^n_{FJ^{\bullet}_{\mathcal{F}}} \circ u^n_{A_3}$.

4. Show that δ_{RF}^n is well defined.

Lemma 0.73. *TODO*

Theorem 0.74. Suppose A has enough injectives and F is an additive left exact functor, then $RF := (R^n F, \delta_{RF}^n)_{n\geq 0}$ is a universal cohomological δ -functor and $R^n F$ is called the n-th right derived functor of F. It satisfies:

- (a) $R^0 F = F$.
- (b) $I \in \text{Inj}_{A} \implies \forall n \geq 1, R^{n}F(I) = 0.$

Suppose A has enough projectives, let $G: A \to B$ be right exact, then

- (a) \exists homological δ -functor $LG = (L_iG, \delta_i)_{i>0}$ such that (*)
 - (i) $L_0G = G$
 - (ii) $P \in \text{Proj}_{\Delta} \implies \forall n \geq 1, L_n G(P) = 0.$
- (b) LG with (*) is universal.
- (c) LG with (*) is unique up to unique isomorphism.
- (d) LG can be computed via projective resolutions, i.e. $\forall A \in \mathcal{A}$ with projective resolution $P^{\bullet} \to A$ in $\mathsf{Ch}^*_{< 0}(\mathcal{A})$ we have

$$L_iG(A) = H^{-i}(GP^{\bullet})$$

Lemma. If $T = (T_n, \delta_n)_{n \geq 0}$ is a homological δ -functor from \mathcal{A} to \mathcal{B} and if \mathcal{A} has enough projectives and $T_iP = 0, \forall P \in \operatorname{Proj}_{\mathcal{A}}, i \geq 1$, then T is universal.

0.6 The Ext Functor

Let \mathcal{A} be abelian, $M, N \in \mathcal{A}$ and suppose \mathcal{A} has enough projectives/injectives if needed.

Definition 0.75. Define

$$\operatorname{Ext}_{\mathcal{A}}^{i}(-,N) := R^{i} \operatorname{Hom}_{\mathcal{A}}(-,N)$$

with the natural transformations δ^i .

Example. To compute: if

$$\cdots \to P^{-2} \to P^1 \to P^0 \to M \quad (*)$$

is a projective resolution, then we have the complex P^{\bullet} , apply $\operatorname{Hom}_{\mathcal{A}}(-,N)$ and get

$$0 \to \operatorname{Hom}_{\mathcal{A}}(P^0, N) \to \operatorname{Hom}_{\mathcal{A}}(P^{-1}, N) \to \operatorname{Hom}_{\mathcal{A}}(P^{-2}, N) \to \cdots$$

and
$$\operatorname{Ext}_{\mathcal{A}}^{i}(M,N) = H^{i}(\operatorname{Hom}_{\mathcal{A}}(P^{\bullet},N))$$

Proposition 0.76. (a) M projective $\implies \operatorname{Ext}_{A}^{i}(M, N) = 0, \forall i \geq 1.$

(b) N injective
$$\implies \operatorname{Ext}_{\mathcal{A}}^{i}(M, N) = 0, \forall i \geq 1.$$

Definition 0.77. Define

$$\overline{\operatorname{Ext}}^i_{\mathcal{A}}(M,-) := R^i(\operatorname{Hom}_{\mathcal{A}}(M,-))$$

with the natural transformations δ^i .

Example. Compute $\overline{\operatorname{Ext}}_{\mathcal{A}}^i(M,-)$ via injective resolutions of the 2nd argument:

$$0 \to N \to I^0 \to I^1 \to I^2 \to \cdots$$

and we get

$$\operatorname{Hom}_{\mathcal{A}}(M, I^0) \to \operatorname{Hom}_{\mathcal{A}}(M, I^1) \to \operatorname{Hom}_{\mathcal{A}}(M, I^2) \to \cdots$$

so
$$\overline{\operatorname{Ext}}^i_{\mathcal{A}}(M,-) = H^i(\mathcal{A}(M,I^{\bullet})).$$

Proposition 0.78. For M projective or N injective we have $\overline{\operatorname{Ext}}_{\mathcal{A}}^i(M,N) = 0, \forall i \geq 1.$

Remark. If \mathcal{A} has enough projectives and injectives, $\operatorname{Ext}_{\mathcal{A}}^{i}(-,-)$ and $\operatorname{\overline{Ext}}_{\mathcal{A}}^{i}(-,-)$ turn out to be isomorphic!

Remark. $\operatorname{Ext}_{\mathcal{A}}^{i}(-,-)$ and $\operatorname{\overline{Ext}}_{\mathcal{A}}^{i}(-,-)$ are bifunctors.

Theorem 0.79. Suppose A has enough injectives and projectives, then \exists natural isomorphisms as bifunctors

$$\begin{array}{c} \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \to \mathsf{Ab} \\ \\ u^i_{M,N} : \mathrm{Ext}^i_{\mathcal{A}}(M,N) \to \overline{\mathrm{Ext}}^i_{\mathcal{A}}(M,N) \end{array}$$

0.6.1 Classical interpretation of Ext¹ as extension objects

Definition 0.80. (a) An extension of M by N is a s.e.s. in A:

$$\mathcal{E}: 0 \to N \to E \to M \to 0$$

(b) Extensions \mathcal{E} and

$$\mathcal{E}':0\to N\to E'\to M\to 0$$

are called *equivalent* (write \sim), iff \exists commutative diagram:

(c) $\operatorname{Ext}_{A}^{1}(M, N)$ denotes the set of equivalence classes of extensions of M by N.

Remark. (a) By the snake lemma: $\mathcal{E} \sim \mathcal{E}' \implies E \cong E'$.

(b) \sim is an equivalence relation.

Proposition 0.81. (a) $\operatorname{Ext}_{\mathcal{A}}(M,N)$ is an abelian group for addition $\mathcal{E} + \mathcal{E}'$ defined by the Baer sum:

where $E \oplus E' \coprod_{N \oplus N} N$ is the pushout by the sum $map + : N \oplus N \to N, (n,m) \mapsto n+m$ and E+E' is the pullback by the diagonal map $\Delta : M \to M \oplus M, m \mapsto (m,m)$. And the zero object is given by the split s.e.s

$$0 \to N \to N \oplus M \to M \to 0$$

(b) One has a natural isomorphism as bifunctors

$$u: \operatorname{Ext}_{\mathcal{A}}(-,-) \Rightarrow \operatorname{Ext}_{\mathcal{A}}^{1}(-,-)$$

if \mathcal{A} has enough projectives (or to $\overline{\operatorname{Ext}}^1_{\mathcal{A}}(-,-)$ if \mathcal{A} has enough injectives).

Remark. In fact, Yoneda also considered higher Ext-groups (in the absence of innjectives/projectives), e.g. $\operatorname{Ext}^2(M,N)$ is the "group" of exact sequences

$$0 \to N \to E_1 \to E_2 \to M \to 0$$

modulo a suitable equivalence relation.

Notation. For _RMod one usually abbreviates

$$\operatorname{Ext}^i_R(-,-) := \operatorname{Ext}^i_{{}_R\mathsf{Mod}}(-,-)$$

For $R = \mathbb{Z}[G]$ and a group G, one also considers the group cohomology for $M \in \mathbb{Z}[G]$ Mod as

Definition 0.82. Define

$$H^i(G,M) := \operatorname{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z},M)$$

such that \mathbb{Z} is the trivial G-action.

Proposition. In face $H^i(G, M)$ is the i-th right derived functor of

$$M \to \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M) \stackrel{exer.}{=} M^G := \{ m \in M \mid \forall g \in G : gm = m \}$$
$$\varphi_m : n \mapsto nm \longleftrightarrow m \in M^G$$

So far we had $\operatorname{Ext}_{\mathcal{A}}^{i}$ valued in Ab. But recall that $\operatorname{Hom}_{R}(-,-)$ is also a bifunctor

$$\operatorname{Hom}_R(-,-):{}_R\operatorname{\mathsf{Mod}}_{R'} imes{}_R\operatorname{\mathsf{Mod}}_{R''} o{}_{R'}\operatorname{\mathsf{Mod}}_{R''}$$

$$(M,N)\mapsto \operatorname{\mathsf{Hom}}_R(M,N)$$

Fact: ${}_R\mathsf{Mod}_{R'}$ and ${}_R\mathsf{Mod}_{R''}$ have enough injectives and projectives because ${}_R\mathsf{Mod}_{R'}$ is isomorphic to ${}_{R\otimes (R')^{\mathrm{op}}}\mathsf{Mod}$.

Proposition 0.83 (Exer). This Bifunctor induces

$$\operatorname{Ext}_{R}^{i}(-,-):{}_{R}\mathsf{Mod}_{R'}\times{}_{R}\mathsf{Mod}_{R''}\to{}_{R'}\mathsf{Mod}_{R''}$$

0.7 The Tor Functor

Let R be a ring, $M \in \mathsf{Mod}_R$ and $N \in {}_R\mathsf{Mod}$. We had the bifunctor

$$-\otimes -: \mathsf{Mod}_R \times_R \mathsf{Mod} \to \mathsf{Ab}$$

and it is right exact, and also Mod_R and ${}_R\mathsf{Mod}$ have enough projectives.

Definition 0.84. For $i \geq 0$ define:

$$\operatorname{Tor}_{i}^{R}(M, -) := L_{i}(M \otimes_{R} -)$$

$$\overline{\operatorname{Tor}_{i}^{R}}(-, N) := L_{i}(- \otimes_{R} N)$$

Proposition 0.85. If $P^{\bullet} \to M$ (or $Q^{\bullet} \to N$) are projective resolutions, then one has:

$$\overline{\operatorname{Tor}}_{i}^{R}(M,N) = H^{-i}(P^{\bullet} \otimes_{R} N)$$
$$\operatorname{Tor}_{i}^{R}(M,N) = H^{-i}(M \otimes_{R} Q^{\bullet})$$

Moreover, if M or N are projective, then

$$\operatorname{Tor}_i^R(M,N) \cong 0 \cong \overline{\operatorname{Tor}}_i^R(M,N)$$

Theorem 0.86. One has natural isomorphism of bifunctors

$$\operatorname{Tor}_{i}^{R}(-,-) \cong \overline{\operatorname{Tor}}_{i}^{R}(-,-)$$

Other ways to compute Tor_i , not using projective resolutions.

Definition 0.87. Let $T = (T_n, \delta_n)$ be a homological δ -functor from \mathcal{A} to \mathcal{B} . Call $A \in \mathcal{A}$ T-acyclic if $T_i A = 0, \forall i \geq 1$ (with T_0 right exact) For example M projective $\Longrightarrow M$ is $L(-\otimes_R N)$ -acyclic

Facts 0.88. Let $0 \to A' \to A \to A'' \to 0$ be a s.e.s. in \mathcal{A} , then

(a) A'' is T-acyclic then

$$0 \to T_0 A' \to T_0 A \to T_0 A'' \to 0$$

is a s.e.s. (because $T_1A''=0$ and l.e.s. from δ -functor).

(b) If A and A" are T-acyclic, then so is A' (because of the l.e.s. from being a δ -functor).

$$\rightarrow T_2A' \rightarrow \underbrace{T_2A}_{=0} \rightarrow \underbrace{T_2A''}_{=0} \rightarrow T_1A' \rightarrow \underbrace{T_1A}_{=0} \rightarrow \underbrace{T_1A''}_{=0} \rightarrow T_0A' \rightarrow T_0A \rightarrow T_0A''$$

(c) If $0 \to A_0 \to A_1 \to \cdots \to A_n \to 0$ is exact in $\mathcal A$ and if A_1, \cdots, A_n are T-acyclic then A_0 is also T-acyclic. This follows from (b) by ind. using the exact sequences $0 \to A_0 \to A_1 \to X \to 0$ and

$$0 \to X \to A_2 \to \cdots \to A_n \to 0$$

Lemma 0.89. If $C^{\bullet} \in \mathsf{Ch}^*_{\leq 0}(\mathcal{A})$ is acyclic with all C^i T-acyclic, then T_0C^{\bullet} is acyclic (we assume T_0 is right exact)

Corollary 0.90. Suppose A has enough projectives, $G : A \to \mathcal{B}$ is right exact and T = LG. If $Q^{\bullet} \xrightarrow{g} \underline{A}$ is a resolution by T-acyclic objects. Then:

$$L_iG(A) \cong H^{-i}(GQ^{\bullet})$$

Definition 0.91. $M \in \mathsf{Mod}_R$ is called *flat* if $M \otimes_R - :_R \mathsf{Mod} \to \mathsf{Ab}$ is exact.

Proposition 0.92. For $M \in \mathsf{Mod}_R$ the following are equivalent:

- (a) M is flat.
- (b) $\operatorname{Tor}_{1}^{R}(M, -) = 0.$
- (c) $\operatorname{Tor}_{i}^{R}(M, -) = 0 \forall i \geq 1.$

Theorem 0.93. For $M \in Mod_R$ the following are equivalent:

- (a) M is flat.
- (b) $\forall N \in {}_{R}\mathsf{Mod} : M \text{ is } L(-\otimes N)\text{-}acyclic.$

And thus $\operatorname{Tor}_{i}^{R}$ can be computed via flat resolutions.