Algorithms for NLP

Classification II

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

Minimize Training Error?

A loss function declares how costly each mistake is

$$\ell_i(\mathbf{y}) = \ell(\mathbf{y}, \mathbf{y}_i^*)$$

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)
- We could, in principle, minimize training loss:

$$\min_{\mathbf{w}} \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

This is a hard, discontinuous optimization problem

Examples: Perceptron

Separable Case

Examples: Perceptron

Non-Separable Case

Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:

$$\sum_{i} step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

- This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
- Maximum entropy and SVMs have other objectives related to zero-one loss

$$\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}^{i}) - \max_{\mathbf{y} \neq \mathbf{y}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})$$

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

Make

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked

Regularization (smoothing)

$$\begin{aligned} & \max_{\mathbf{w}} & \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - k ||\mathbf{w}||^{2} \\ & \min_{\mathbf{w}} & k ||\mathbf{w}||^{2} - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) \end{aligned}$$

Log-Loss

• If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} \ k ||\mathbf{w}||^2 + \sum_i - \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))\right)$$

This minimizes the "log loss" on each example

$$-\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right) = -\log P(\mathbf{y}_{i}^{*}|\mathbf{x}_{i}, \mathbf{w})$$

$$step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

One view: log loss is an upper bound on zero-one loss

Maximum Margin

Note: exist other choices of how to penalize slacks!

Non-separable SVMs

- Add slack to the constraints
- Make objective pay (linearly) for slack:

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_{i}$$

$$\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) + \xi_{i} \geq \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(\mathbf{y})$$

 C is called the capacity of the SVM – the smoothing knob

Learning:

- Can still stick this into Matlab if you want
- Constrained optimization is hard; better methods!
- We'll come back to this later

Remember SVMs...

We had a constrained minimization

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i
\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

• ...but we can solve for ξ_i

$$\forall i, \mathbf{y}, \quad \xi_i \ge \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*)$$
$$\forall i, \quad \xi_i = \max_{\mathbf{y}} \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*)$$

Giving

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

Hinge Loss

Plot really only right in binary case

Consider the per-instance objective:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 + \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

- This is called the "hinge loss"
 - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with sub-gradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)

$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})
ight)$$

Max vs "Soft-Max" Margin

SVMs:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) \right)$$

You can make this zero

Maxent:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) \right) \right)$$

... but not this one

- Very similar! Both try to make the true score better than a function of the other scores
 - The SVM tries to beat the augmented runner-up
 - The Maxent classifier tries to beat the "soft-max"

Loss Functions: Comparison

Zero-One Loss

$$\sum_{i} step \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

Hinge

$$\sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(\mathbf{y}) \right) \right)$$

Log

$$\sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$

$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})\right)$$

Structure

Handwriting recognition

X

Sequential structure

CFG Parsing

Recursive structure

Bilingual Word Alignment

X

What is the anticipated cost of collecting fees under the new proposal?

En vertu de nouvelle propositions, quel est le côut prévu de perception de les droits?

Combinatorial structure

Structured Models

$$prediction(\mathbf{x}, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{arg \max score}(\mathbf{y}, \mathbf{w})$$

space of feasible outputs

Assumption:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}_{p})$$

Score is a sum of local "part" scores

Parts = nodes, edges, productions

Named Entity Recognition

$$f(x,y) = \sum_{(y_{i-1},y_i)\in y} f(y_{i-1},y_i) + \sum_{(x_i,y_i)} f(x_i,y_i)$$

ORG ORG ---
$$f(y_{i-1},y_i)$$
 y_{i-1} y_i
 $f(x_i,y_i)$

Apple Computer bought Smart Systems Inc. located in Arkansas. x_i

Bilingual word alignment

$$w^{\top} f(x, y) = \sum_{y_{jk} \in y} w^{\top} f(x, y_{jk}) \qquad f(x, y) = \sum_{y_{jk} \in y} f(x, y_{jk})$$

 $f(x,y_{jk})$

- association
- position
- orthography

Efficient Decoding

Common case: you have a black box which computes

$$prediction(\mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{arg \, max \, \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})}$$

at least approximately, and you want to learn w

- Easiest option is the structured perceptron [Collins 01]
 - Structure enters here in that the search for the best y is typically a combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)
 - Prediction is structured, learning update is not

Structured Margin (Primal)

Remember our primal margin objective?

$$\min_{w} \frac{1}{2} ||w||_{2}^{2} + C \sum_{i} \left(\max_{y} \left(w^{\top} f_{i}(y) + \ell_{i}(y) \right) - w^{\top} f_{i}(y_{i}^{*}) \right)$$

Still applies with structured output space!

Structured Margin (Primal)

Just need efficient loss-augmented decode:

$$\bar{y} = \operatorname{argmax}_{y} \left(w^{\top} f_i(y) + \ell_i(y) \right)$$

$$\min_{w} \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i} \left(w^{\top} f_{i}(\bar{y}) + \ell_{i}(\bar{y}) - w^{\top} f_{i}(y_{i}^{*}) \right)$$

$$\nabla_w = w + C \sum_i \left(f_i(\bar{y}) - f_i(y_i^*) \right)$$

Still use general subgradient descent methods! (Adagrad)

Structured Margin (Dual)

Remember the constrained version of primal:

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$

$$\forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \xi_i$$

Dual has a variable for every constraint here

Full Margin: OCR

We want:

$$\operatorname{arg\,max}_y \ \mathbf{w}^{\top} \mathbf{f}(\mathbf{brace}, \mathbf{y}) = \text{``brace''}$$

Equivalently:

Parsing example

We want:

arg max
$$_{y}$$
 $w^{ op}f($ 'It was red' $,y)$ $=$ $^{\S}_{c^{\circ}}$

Equivalently:

Alignment example

We want:

$$\underset{\text{`Quel est le'}}{\text{arg max}} \mathbf{w}^{\top} \mathbf{f}(\underset{\text{`Quel est le'}}{\text{`What is the'}}, \mathbf{y}) = \underset{\mathbf{3} \leftrightarrow \mathbf{3}}{\overset{\mathbf{1} \leftrightarrow \mathbf{1}}{\mathbf{2}}}$$

Equivalently:

$$w^\top f(\begin{tabular}{c} \be$$

Cutting Plane (Dual)

- A constraint induction method [Joachims et al 09]
 - Exploits that the number of constraints you actually need per instance is typically very small
 - Requires (loss-augmented) primal-decode only
- Repeat:
 - Find the most violated constraint for an instance:

$$\forall \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

$$\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

 Add this constraint and resolve the (non-structured) QP (e.g. with SMO or other QP solver)

Cutting Plane (Dual)

Some issues:

- Can easily spend too much time solving QPs
- Doesn't exploit shared constraint structure
- In practice, works pretty well; fast like perceptron/MIRA, more stable, no averaging

Likelihood, Structured

$$L(\mathbf{w}) = -k||\mathbf{w}||^2 + \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$
$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = -2k\mathbf{w} + \sum_{i} \left(\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i})\mathbf{f}_{i}(\mathbf{y}) \right)$$

- Structure needed to compute:
 - Log-normalizer
 - Expected feature counts
 - E.g. if a feature is an indicator of DT-NN then we need to compute posterior marginals P(DT-NN|sentence) for each position and sum
- Also works with latent variables (more later)

Comparison

Margin		Cutting Plane
		Online Cutting Plane
		Online Primal Subgradient & L_1
	_	Online Primal Subgradient & L_2
Mistake Driven		Averaged Perceptron
		MIRA
		Averaged MIRA (MST built-in)
Llhood	_	Stochastic Gradient Descent

Option 0: Reranking

[e.g. Charniak and Johnson 05]

Input

N-Best List (e.g. n=100)

Output

 χ = "The screen was a sea of red."

Reranking

Advantages:

- Directly reduce to non-structured case
- No locality restriction on features

Disadvantages:

- Stuck with errors of baseline parser
- Baseline system must produce n-best lists
- But, feedback is possible [McCloskey, Charniak, Johnson 2006]

M3Ns

- Another option: express all constraints in a packed form
 - Maximum margin Markov networks [Taskar et al 03]
 - Integrates solution structure deeply into the problem structure

Steps

- Express inference over constraints as an LP
- Use duality to transform minimax formulation into min-min
- Constraints factor in the dual along the same structure as the primal;
 alphas essentially act as a dual "distribution"
- Various optimization possibilities in the dual

Example: Kernels

Quadratic kernels

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^{2}$$

$$= \sum_{i,j} x_{i} x_{j} x_{i}' x_{j}' + 2 \sum_{i} x_{i} x_{i}' + 1$$

$$\downarrow \downarrow \downarrow$$

$$K(\mathbf{y}, \mathbf{y}') = (\mathbf{f}(\mathbf{y})^{\top} \mathbf{f}(\mathbf{y}') + 1)^{2}$$

Non-Linear Separators

 Another view: kernels map an original feature space to some higher-dimensional feature space where the training set is (more) separable

Why Kernels?

- Can't you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
 - Some kernels not as usefully thought of in their expanded representation, e.g. RBF or data-defined kernels [Henderson and Titov 05]
- Kernels let us compute with these features implicitly
 - Example: implicit dot product in quadratic kernel takes much less space and time per dot product
 - Of course, there's the cost for using the pure dual algorithms...