

FUNCTIONS OF COMPLEX VARIABLES (2)

DR. Makram Roshdy Eskaros

makram_eskaros@eng.asu.edu.eg

Functions of Complex Variables

neighborhood

open circular disk

open set

boundary

closed set

Re、 |z| < R

connected set

bounded set

Limits

a along the x-axis"

Differentiable

$$\lim_{X\to X_0}\frac{f(X)-f(X_0)}{X-X_0}$$

Differentiable

Theorem:

The function f(z) = u(x,y) + i v(x,y) is differentiable if and only if it satisfies Cauchy – Riemann equations $u_x = v_y$ and $u_y = -v_x$ at which the derivative is

$$f'(z) = u_x + iv_x = v_y - iu_y$$

Note that the existence of the derivative thus implies the existence of the four partial derivatives

Example 1:

Show that $f(z) = z^2$ is differentiable everywhere and f'(z) = 2z.

Solution:

$$f(z) = z^{2} = (x + iy)^{2} = (x^{2} - y^{2}) + i(2xy) \implies u = (x^{2} - y^{2}) & v = 2xy$$

$$u_{x} = 2x, v_{y} = 2x \implies u_{x} = v_{y} \forall z$$

$$u_{y} = -2y, v_{x} = 2y \implies u_{y} = -v_{x} \forall z$$

$$\Rightarrow f(z) \text{ is differentiable everywhere.}$$

$$\Rightarrow f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z$$

Example 2:

Show that $f(z) = \overline{z}$ is not differentiable anywhere.

Solution:

$$f(z) = x - iy$$
 $\Rightarrow u = x & v = -y$

$$u_x = 1 \& v_y = -1$$

: It is impossible to equate u_x and v_y

 $\Rightarrow f(z) = \overline{z}$ is not differentiable anywhere.

Example 3:

Show that $m{W} = m{e}^{m{z}}$ is differentiable everywhere and $rac{dm{w}}{dm{z}} = m{e}^{m{z}}$

Solution:

$$w = e^{x+iy} = e^x (\cos y + i \sin y)$$

 $u(x,y) = e^x \cos y$ $v(x,y) = e^x \sin y$
 $u_x = e^x \cos y, v_y = e^x \cos y \Rightarrow u_x = v_y \quad \forall z$
 $u_y = -e^x \sin y, v_x = e^x \sin y \Rightarrow u_y = -v_x \quad \forall z$

Similarly, we can find the derivatives of all the known functions

$$\frac{d}{dz}(z^n) = n z^{n-1}$$

$$\frac{d}{dz}\Big((f(z))^n\Big) = n(f(z))^{n-1} \times f'(z)$$

$$\frac{d}{dz}(\cos z) = -\sin z$$

$$\frac{d}{dz}(\tan z) = \sec^2 z$$

$$\frac{d}{dz}(\cot z) = -\csc^2 z$$

$$\frac{d}{dz}(\sec z) = \sec z \tan z$$

$$\left| \frac{d}{dz} (\csc z) = -\csc z \cot z \right|$$

$$\left| \frac{d}{dz} \left(e^z \right) = e^z \right| \qquad \left| \frac{d}{dz} \left(\ln z \right) = \frac{1}{z} \right|$$

$$\frac{d}{dz}(\ln z) = \frac{1}{z}$$

$$\left|\frac{d}{dz}(f g) = f g' + f' g\right|$$

$$\left| \frac{d}{dz} \left(\frac{f}{g} \right) \right| = \frac{g f' - f g'}{g^2}$$

Example 4:

Show where the function $f(z) = (x^2 + y) + i(y^2 - x)$ is differentiable.

Solution:

$$u_x = 2 x$$
, $v_y = 2 y$ for $u_x = v_y \implies x = y$

$$u_y = 1$$
, $v_x = -1$ $\Rightarrow u_y = -v_x \quad \forall z$

This function is differentiable only on the line y = x

Analytic and Harmonic Functions

Definition:

A function f(z) is called analytic at a point z_{θ} if it is differentiable at z_{θ} and on a neighborhood of z_{θ} .

Definition:

A neighborhood of a point z_0 is the set of all points z such that $|z-z_0|<\varepsilon$ where $\varepsilon>0$

Definition:

A function is called **Entire** function if it is analytic everywhere and this happens if it is differentiable everywhere

We can show that the functions z^n , sin z, cos z, e^z are entire and their composite functions e^{z^n} , $sin e^z$, $e^{sin z}$, ...

Example 5:

For the function $f(z) = (x^2 + y) + i(y^2 - x)$ which is given in example 4, state where the function is analytic.

Solution:

$$u_x = 2 x$$
, $v_y = 2 y$ for $u_x = v_y \implies x = y$

$$u_{v} = 1$$
, $v_{x} = -1$ $\Rightarrow u_{v} = -v_{x} \quad \forall z$

This function is differentiable only on the line y = x

Hence, it is not analytic anywhere.

Harmonic Functions

Definition:

A function u(x,y) is called harmonic on a certain domain ''D'' if it satisfies Laplace's equation $u_{xx}+u_{yy}=0$ on D

Theorem:

If f(z) = u + iv is analytic on a certain domain "D" then both u and v are harmonic functions on the same domain "D" where u is called the harmonic conjugate of v and also v is called the harmonic conjugate of u.

Proof:

: f(z) is analytic, : it is differentiable $\Rightarrow u_x = v_y \& u_y = -v_x$

$$\Rightarrow u_{xx} = v_{yx} \& u_{yy} = -v_{xy} \Rightarrow u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$$
 : u is harmonic

Similarly, we can prove that v is also harmonic.

Example 6:

Show that $u(x, y) = y^3 - 3x^2y$ is harmonic and find its conjugate "v" hence, find the analytic function f(z) = u + i v in terms of z.

Solution:

$$u_{r} = -6 x y$$

$$u_{xx} = -6 y$$

$$u_{y} = 3y^{2} - 3x^{2}$$

$$u_{yy} = 6 y$$

$$u_{xx} + u_{yy} = -6 y + 6 y = 0$$

:. u is harmonic

$$u_x = v_y \qquad \Rightarrow v_y = -6 x y \tag{1}$$

$$u_v = -v_x \implies v_x = 3x^2 - 3y^2 \qquad (2) \implies f(z) = i(z^3 + k)$$

Integrating (1) w. r. t. y
$$\Rightarrow v = -3xy^2 + h(x)$$

Using (2)
$$\Rightarrow v_x = -3y^2 + h'(x) = 3x^2 - 3y^2$$

$$h'(x) = 3x^2 \implies h(x) = x^3 + k$$

$$v = x^3 - 3xy^2 + k$$

$$f(z) = (y^3 - 3x^2y) + i(x^3 - 3xy^2 + k)$$

Putting
$$y = 0$$

$$(1) f(x) = i(x^3 + k)$$

$$\Rightarrow f(z) = i(z^3 + k)$$

Differentiation in polar coordinates

Next time (i)

In polar coordinates
$$f(z) = u(r, \theta) + iv(r, \theta)$$

Cauchy – Riemann equations are
$$r u_r = v_\theta$$
 & $r v_r = -u_\theta$

Differentiation in polar coordinates

Laplace's equation is

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

$$|r u_r = v_\theta$$
 & $r v_r = -u_\theta$

$$f'(z) = \frac{r}{z} \left(u_r + i v_r \right) = \frac{1}{z} \left(v_\theta - i u_\theta \right)$$

Differentiation in polar coordinates

$$f'(z) = \frac{r}{z} \left(u_r + i v_r \right) = \frac{1}{z} \left(v_\theta - i u_\theta \right)$$

Example 7:

Show that
$$\frac{d}{dz}(\ln z) = \frac{1}{z}$$

Solution:

$$lnz = ln(re^{i\theta}) = lnr + i\theta$$

$$u_r = \frac{1}{r}$$
, $v_\theta = 1 \implies r u_r = v_\theta$

$$v_r = 0$$
 , $u_\theta = 0$ \Rightarrow $rv_r = -u_\theta$

 $\Rightarrow f(z) = \ln z$ is differentiable everywhere except at z = 0 or the negative real axis.

$$f'(z) = \frac{r}{z} \left(u_r + i v_r \right) = \frac{r}{z} \left(\frac{1}{r} \right) = \frac{1}{z}$$