Process Mining: Data Science in Action

Alpha Algorithm: Limitations

prof.dr.ir. Wil van der Aalst www.processmining.org

Where innovation starts

Let L be an event log over T.

 $\alpha(L)$ is defined as follows.

- 1. $T_L = \{ t \in T \mid \exists_{\sigma \in L} t \in \sigma \},\$
- $\overline{2. \ T_1} = \{ \ t \in \overline{T} \ | \ \exists_{\sigma \in L} \ t = \mathit{first}(\sigma) \ \},$
- 3. $T_O = \{ t \in T \mid \exists_{\sigma \in I} t = last(\sigma) \},$
- 4. $X_{L} = \{ (A,B) \mid A \subseteq T_{L} \land A \neq \emptyset \land B \subseteq T_{L} \land B \neq \emptyset \land \forall_{a \in A} \forall_{b \in B} a \rightarrow_{L} b \land \forall_{a1,a2 \in A} a_{1} \#_{L} a_{2} \land \forall_{b1,b2 \in B} b_{1} \#_{L} b_{2} \},$
- 5. $Y_L = \{ (A,B) \in X_L \mid \forall_{(A',B') \in X_L} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B') \},$
- 6. $P_L = \{ p_{(A.B)} \mid (A,B) \in Y_L \} \cup \{i_L,o_L\},\$
- 7. $F_L = \{ (a, p_{(A,B)}) \mid (A,B) \in Y_L \land a \in A \} \cup \{ (p_{(A,B)},b) \mid (A,B) \in Y_L \land b \in B \} \cup \{ (i_I,t) \mid t \in T_I \} \cup \{ (t,o_I) \mid t \in T_O \}, and$
- 8. $\alpha(L) = (P_L, T_L, F_L)$.

Alpha algorithm

case id	event id	properties				
case id	event Id					
		timestamp	activity	resource	cost	• • • •
	35654423	30-12-2010:11.02	register request	Pete	50	
1	35654424	31-12-2010:10.06	examine thoroughly	Sue	400	
	35654425	05-01-2011:15.12	check ticket	Mike	100	
	35654426	06-01-2011:11.18	decide	Sara	200	
	35654427	07-01-2011:14.24	reject request	Pete	200	
	35654483	30-12-2010:11.32	register request	Mike	50	
2	35654485	30-12-2010:12.12	check ticket	Mike	100	
	35654487	30-12-2010:14.16	examine casually	Pete	400	
	35654488	05-01-2011:11.22	decide	Sara	200	
	35654489	08-01-2011:12.05	pay compensation	Ellen	200	
	35654521	30-12-2010:14.32	register request	Pete	50	
3	35654522	30-12-2010:14:52	examine casually	Mike	400	
3	35654524	30-12-2010:15.00	check ticket	Ellen	100	
	35654525	06-01-2011:09.18	decide	Sara	200	
	35654526	06-01-2011:12.18	reinitiate request	Sara	200	•••
	35654527	06-01-2011:12.18	examine thoroughly	Sara Sean	400	• • • •
	35654527	08-01-2011:13.06	check ticket	Pete	100	
	35654531	09-01-2011:11.43	decide	Sara	200	
	35654533	15-01-2011:10.45	pay compensation	Ellen	200	
	35654641	06-01-2011:15.02	register request	Pete	50	
4	35654643	07-01-2011:12.06	check ticket	Mike	100	
	35654644	08-01-2011:14.43	examine thoroughly	Sean	400	
	35654645	09-01-2011:12.02	decide	Sara	200	
	35654647	12-01-2011:15.44	reject request	Ellen	200	
	35654711	06-01-2011:09.02	register request	Ellen	50	
5	35654712	07-01-2011:10.16	examine casually	Mike	400	
	35654714	08-01-2011:11.22	check ticket	Pete	100	
	35654715	10-01-2011:13.28	decide	Sara	200	
	35654716	11-01-2011:16.18	reinitiate request	Sara	200	
	35654718	14-01-2011:14.33	check ticket	Ellen	100	
	35654719	16-01-2011:15.50	examine casually	Mike	400	
	35654720	19-01-2011:11.18	decide	Sara	200	
	35654721	20-01-2011:12.48	reinitiate request	Sara	200	
	35654722	21-01-2011:09.06	examine casually	Sue	400	
	35654724	21-01-2011:11.34	check ticket	Pete	100	
	35654725	23-01-2011:13.12	decide	Sara	200	
	35654726	24-01-2011:14.56	reject request	Mike	200	
	35654871	06-01-2011:15.02	register request	Mike	50	
6	35654873	06-01-2011:16.06	examine casually	Ellen	400	
0	35654874	07-01-2011:16.22	check ticket	Mike	100	
	35654875	07-01-2011:16.52	decide	Sara	200	
	35654877	16-01-2011:11.47	pay compensation	Mike	200	
	55054011	10-01-2011.11.47	pay compensation	WIIKC	200	

case id	trace	
1	$\langle a,b,d,e,h \rangle$	
2	$\langle a,d,c,e,g \rangle$	
3	$\langle a,c,d,e,f,b,d,e,g \rangle$	
4	$\langle a,d,b,e,h \rangle$	
5	$\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$	
6	$\langle a,c,d,e,g angle$	
• • •	• • •	

Limitation of the α algorithm: Implicit places

$$L_6 = [\langle a, c, e, g \rangle^2, \langle a, e, c, g \rangle^3, \langle b, d, f, g \rangle^2, \langle b, f, d, g \rangle^4]$$

p₁ and p₂ are implicit places!

Limitation of the α algorithm:

Loops of length 1

$$L_7 = [\langle a, c \rangle^2, \langle a, b, c \rangle^3, \langle a, b, b, c \rangle^2, \langle a, b, b, b, b, c \rangle^1]$$

Limitation of the α algorithm: Loops of length 2

$$L_8 = [\langle a, b, d \rangle^3, \langle a, b, c, b, d \rangle^2, \langle a, b, c, b, c, b, d \rangle]$$

a>b b||c|

Limitation of the α algorithm:

Non-local dependencies

$$L_9 = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}]$$

Limitation of the α algorithm:

Non-local dependencies

$$L_9 = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}]$$

p₁ and p₂ are not discovered!

Two event logs: Same discovered model

$$L_9 = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}]$$

$$L_4 = [\langle a, c, d \rangle^{45}, \langle b, c, d \rangle^{42}, \langle a, c, e \rangle^{38}, \langle b, c, e \rangle^{22}]$$

Difficult constructs for the Alpha algorithm

Question

Consider the event log:

$$L = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}, \langle a, c, e \rangle^{20}]$$

What model will the Alpha algorithm create?

Give a sound WF-net that can produce the observed behavior and nothing more?

Answer (1/2):

Model generated by Alpha algorithm

$$L = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}, \langle a, c, e \rangle^{20}]$$

Model generated by Alpha algorithm also allows for trace starting with *b* and ending with *d*!

Answer (2/2):

A sound WF-net that can produce the observed behavior and nothing more

$$L = [\langle a, c, d \rangle^{45}, \langle b, c, e \rangle^{42}, \langle a, c, e \rangle^{20}]$$

Note the duplicated e transition! The Alpha algorithm will never create a WF-net with two transitions having the same label.

Limitation of the α algorithm: representational bias

$$L_{10} = [\langle a, a \rangle^{55}]$$

There is no WF-net with unique visible labels that exhibits this behavior.

Another example

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

There is no WF-net with unique visible labels that exhibits this behavior.

OR-split/join model

- Let us take an event log containing all possible full firing sequences and apply the Alpha algorithm.
- What will happen?

Applying the Alpha algorithm using ProM

Region-based miner (with label splitting)

Limitation of the α algorithm:

resulting model does not need to be a sound WF-net

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

The discovered model is not sound (has deadlock).

Challenge: Noise and Incompleteness

- To discover a suitable process model it is assumed that the event log contains a representative sample of behavior.
- Two related phenomena:
 - Noise: the event log contains rare and infrequent behavior not representative for the typical behavior of the process.
 - Incompleteness: the event log contains too few events to be able to discover some of the underlying control-flow structures.

Flower model

What is the best model?

What is the best model?

What is the best model?

Related to noise: Completeness

Infinitely many possible traces, 7 possible states

k	number of states: 2 ^k +2	number of different traces: k!
1	4	1
2	6	2
5	34	120
10	1026	3628800
20	1048578	2.432902e+18

Alpha algorithm depends on the directly follows relation

k	number of states: 2 ^k +2	number of different traces: k!
1	4	1
2	6	2
5	34	120
10	1026	3628800
20	1048578	2.432902e+18

Only k(k-1) observations are needed to discover the concurrent part. However, if one of these is missing, the result will be incorrect.

Limitations (1/2)

- Implicit places (places that are redundant): harmless and be solved through preprocessing.
- Loops of length 1: can be solved in multiple ways (change of algorithm or pre/postprocessing).
- Loops of length 2: idem.
- Non-local dependencies: foundational problem, not specific for Alpha algorithm.

Limitations (2/2)

- Representational bias (cannot discover transitions with duplicate or invisible labels): other algorithms may have a different bias.
- Discovered model does not need to be sound: some algorithms ensure this.
- Noise: foundational problem, not specific for Alpha algorithm.
- Incompleteness: also a foundational problem.

How to measure the quality of a discovered model?

- There may be conflicting requirements (simplicity versus accuracy).
- Confusion matrix and F1-score have the problem that we do not have negative examples.
- Topics will be discussed later.
- For the moment, we only mention the rediscovery problem as a quality criterion.

Rediscovering process models

The rediscovery problem: Is the discovered model N' "equivalent" to the original model N?

Part I: Introduction

Chapter 1 Data Science in Action

Chapter 2 Process Mining: The Missing Link

Part II: Preliminaries

Chapter 3 Process Modeling and Analysis

Chapter 4 **Data Mining**

Part III: From Event Logs to Process Models

Chapter 5 Getting the Data

Chapter 6 Process Discovery: An Introduction

Chapter 7

Advanced Process Discovery Techniques

Part IV: Beyond Process Discovery

Chapter 8 Conformance Checking

Chapter 9 Mining Additional Perspectives

Chapter 10 **Operational Support**

Part V: Putting Process Mining to Work

Chapter 12

Process Mining in the Large

Chapter 13 Analyzing "Lasagna Processes"

Chapter 14 Analyzing "Spaghetti Processes"

Part VI: Reflection

Chapter 15 Cartography and

Navigation

Chapter 16 **Epilogue**

Data Science in Action

Process

Mining

Second Edition

Wil van der Aalst

