Limites et dérivées Applications aux polynômes

1 Limites

1.1 Rappels

Définition 1 *Une fonction* f *est un processus qui* à *un nombre* x *associe un unique nombre* y.

Le nombre y est appelé image de x.

Le nombre x est un antécédent de y : il peut y avoir plusieurs antécédent par f pour un même nombre y.

Les antécédents se lisent sur l'axe des abscisses tandis que les images se lisent sur l'axed des ordonnées.

1.2 Limites en un point a

Définition 2 On dit que la fonction f admet une limite $l \in \mathbb{R}$ en a si $f(x+\epsilon)$ est de plus en plus proche de l quand ϵ s'approchent de 0.

On dit que la fonction f tend vers $+\infty$ en a si $f(x+\epsilon)$ peut devenir plus grand que n'importe quel nombre positif quand ϵ s'approche de 0.

On dit que la fonction f tend vers $-\infty$ en a si $f(x+\epsilon)$ peut devenir plus petit que n'importe quel nombre négatif quand ϵ s'approche de 0.

Définition 3 (Limite à droite) On dit que la fonction f tend vers $+\infty$ en a^+ si $f(x+\epsilon)$ peut devenir plus grand que n'importe quel nombre positif quand ϵ s'approche de 0 en restant positif (à droite de a sur un dessin).

On dit que la fonction f tend vers $-\infty$ en a^+ si $f(x+\epsilon)$ peut devenir plus petit que n'importe quel nombre négatif quand ϵ s'approche de 0 restant positif.

Définition 4 (Limite à gauche) On dit que la fonction f tend vers $+\infty$ en a^- si $f(x+\epsilon)$ peut devenir plus grand que n'importe quel nombre positif quand ϵ s'approche de 0 en restant négatif (à gauche de a sur un dessin).

On dit que la fonction f tend vers $-\infty$ en a^- si $f(x+\epsilon)$ peut devenir plus petit que n'importe quel nombre négatif quand ϵ s'approche de 0 restant positif.

1.3 Limites en $\pm \infty$

Définition 5 On dit que la fonction f admet une limite $l \in \mathbb{R}$ en $+\infty$ si f(x) est de plus en plus proche de l quand x devient un nombre positif de plus en plus grand.

On dit que la fonction f admet une limite $l \in \mathbb{R}$ en $-\infty$ si f(x) est de plus en plus proche de l quand x devient un nombre négatif de plus en plus petit.

On dit que la fonction f tend vers $+\infty$ en a si f(x) peut devenir plus grand que n'importe quel nombre positif quand x devient un nombre positif de plus en plus grand. On dit que la fonction f tend vers $-\infty$ en a si $f(x+\epsilon)$ peut devenir plus petit que n'importe quel nombre négatif quand x devient un nombre négatif de plus en plus petit..

1.4 Opérations sur les limites et formes indéterminées

$$+\infty + \infty = +\infty$$

$$-\infty - \infty = -\infty$$

$$+\infty \times (+\infty) = +\infty$$

$$+\infty \times (-\infty) = -\infty$$

$$-\infty \times (-\infty) = +\infty$$

$$l \pm \infty = \pm \infty$$

$$l \times \infty = \infty \text{ si } l \neq 0$$

$$\frac{\infty}{l} = \infty$$

$$\frac{\infty}{0} = \infty \times \infty = \infty$$

$$\frac{0}{\infty} = 0$$

$$\frac{0}{0} = \frac{\infty}{\infty} = 0 \times \infty = \text{ forme indéterminée} = \text{ EI}$$

La dénomination forme indéterminée signifie qu'on ne peut pas conclure sans avoir des informations supplémentaires sur les fonctions intervenants dans le calculs des limites.

1.5 Interprétation géométrique et asymptotes

Exemple 1 Le graphique suivant illustre la notion de limites en un point et en l'infini:

Propriétés 1 (Asymptotes horizontales et verticales)

- \Longrightarrow $Si\lim_{x\to-\infty} f(x)=l$, alors on dit que la droite d'équation y=l est asymptote horizontale à la courbe représentant f en $-\infty$.
- \implies $Si \lim_{x \to a^+} f(x) = \pm \infty$, alors on dit que la droite d'équation x = a est asymptote verticale à la courbe représentant f.

1TSELT 2 Septembre 2019

 \implies $Si \lim_{x \to a^{-}} f(x) = \pm \infty$, alors on dit que la droite d'équation x = a est asymptote verticale à la courbe représentant f.

Sur le graphique précédent, la droite d'équation y=2 est à la fois asymptote à la courbe en $+\infty$ et en $-\infty$ tandis que la droite d'équation x=-3 est asymptote à la courbe.

Propriétés 2 (Asymptote oblique) Si $\lim_{x \to +\infty} f(x) - (ax + b) = 0$ avec $a \neq 0$ alors la droite y = ax + b est asymptote oblique à la courbe représentant f en $+\infty$. Si $\lim_{x \to -\infty} f(x) - (ax + b) = 0$ avec $a \neq 0$ alors la droite y = ax + b est asymptote oblique à la courbe représentant f en $-\infty$.

Exemple 2 Dans le graphique qui suit, la courbe \mathscr{C}_f admet deux asymptotes obliques :

- \Rightarrow $y = 2x + 1 en + \infty$.
- $\Rightarrow y = x \ en \infty$.

2 Dérivation

2.1 Taux d'accroissement et limite en un point

Définition 6 Soit f une fonction définie sur un intervalle I. Soit x un point de cet intervalle et ϵ un nombre réel tel que $x + \epsilon$ soit encore un point

1TSELT 3 Septembre 2019

de I.

On appelle taux d'accroissement de f en x, la fonction de $\epsilon > 0$ définie par :

$$\tau_x(\epsilon) = \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

Propriétés 3 On dit que la fonction f est dérivable en x si la fonction τ_x admet une limite finie l en quand ϵ tend vers 0. Dans ce cas, le nombre l est appelé nombre dérivée de f en x: f'(x).

Définition 7 On dit que la fonction f est dérivable sur I si elle est dérivable en tout point x de I.

Propriétés 4 Si f est dérivable en a, l'équation de la tangente à la courbe représentant f en a est :

$$y = f'(a)(x - a) + f(a)$$

2.2 Dérivées et variations

Propriétés 5 Soit f est dérivable sur I :

- **1.** Si f' est positive sur I alors f est croissante sur I.
- **2.** Si f' est négative sur I alors f est décroissante sur I.
- **3.** Si f' s'annule en x en changeant de signe alors x est un maximum ou un minimum pour la fonction f.

2.3 Opérations sur les dérivées

$$(k \times f)' = k \times f'$$

$$(f+g)' = f' + g'$$

$$(f \times g)' = f' \times g + f \times g'$$

$$\left(\frac{f}{g}\right)' = \frac{f' \times g - f' \times g}{g^2}$$

$$\left[f(u(x))\right]' = u'(x) \times f'(u(x))$$

3 Polynômes

3.1 Polynômes, cas général

Définition 8 *Une fonction polynômiale est une fonction f de la forme :*

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + .. + a_1 x + a_0$$

avec n un entier plus grand que 1, appelé degré de f, et $a_n, a_{n-1}, ..., a_1, a_0$ des nombres réels.

Propriétés 6 Pour n un entier plus grand que 1, on a :

$$(x^n)' = nx^{n-1}$$

1TSELT 4 Septembre 2019

3.2 Fonctions affines

Définition 9 *Une fonction affine est une fonction polynômiale de degré* 1 :

$$f(x) = ax + b \ avec \ a \neq 0$$

Propriétés 7 La dérivée d'une fonction affine f'(x) = ax + b est a.

Par conséquent, la fonction f sera soit toujours croissante, soit toujours décroissante.

Exemple 3 Quand on fait la mesure d'une grandeur physique, il y a plusieurs types d'erreurs possibles.

L'une d'entre elle est l'erreur de zéro ou offset, la valeur mesurée present un décalage constant avec la valeur attendue : cela vient souvent d'une mauvaise tare de l'appareil de mesure. La représentation graphique, en prenant le bon repère, de cette erreur consiste en deux fonctions affines :

3.3 Polynôme du second degré

Définition 10 Une fonction du second degré est une fonction polynômiale de degré 2 :

$$f(x) = ax^2 + bx + c \ avec \ a \neq 0$$

Propriétés 8 La dérivée d'une fonction du second degré est :

$$f'(x) = 2ax + b$$

If y a un maximum en $x = -\frac{b}{2a}$ quand a < 0 et un minimum en $x = -\frac{b}{2a}$ quand a > 0.

3.4 Limites

Propriétés 9 La limite d'un polynôme $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ en $\pm \infty$ est la même que la limite de $a_n x^n$ en $\pm \infty$:

$$\lim_{x \to +\infty} a_n x^n = \text{ signe de } a_n \infty$$

$$\lim_{x \to -\infty} a_n x^n = \begin{cases} \text{ signe de } a_n \infty & \text{ sin est pair} \\ -\text{ signe de } a_n \infty & \text{ sin est impair} \end{cases}$$

4 Fractions rationnelles

Définition 11 *Une fraction rationnelle est une fonction de la forme :*

$$f(x) = \frac{P(x)}{Q(x)}$$

avec P et Q des polynômes.

Propriétés 10 Soit $f(x) = \frac{P(x)}{Q(x)}$ avec :

$$P(X) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

$$Q(X) = b_n x^m + b_{m-1} x^{n-1} + ... + b_1 x + b_0$$

- 1. Si le degré de P(x) est strictement plus grand que celui de Q(X), la limite en $\pm \infty$ sera $\pm \infty$: il faudra regarder la limite de $\frac{a_n}{b_n} x^{n-m}$ à l'endroit concerné pour avoir plus de précisions sur le signe.
- **2.** Si le degré de P(x) est strictement plus petit que celui de Q(X), la limite en $\pm \infty$ sera 0.
- **3.** Si P(X) et Q(X) ont le même degré, la limite en $\pm \infty$ sera $\frac{a_n}{b_m}$.

Remarque 1 Si le degré de P est égal au degré de Q plus 1 alors on aura des asymptotes obliques en $\pm \infty$.

L'énoncé guidera la détermination de l'équation de ces asymptotes.