

Déploiement d'un modèle de reconnaissance de

Fruits!

dans le CLOUD

Sommaire

- 1. Contexte Objectifs
- 2. Présentation des données (images)
- 3. Traitement parallélisé
 - 3.1 Choix de Spark
 - 3.2 Architecture de Spark
 - 3.3 Réduction dimensionnelle en local
- 4. Traitement à l'échelle AWS
- 5. Architecture AWS
- 6. Réduction dimensionnelle avec AWS

Contexte: Start-up de l'AgriTech: Fruits!

Ses fondamentaux:

- Respecter la biodiversité des fruits en leur associant un traitement spécifique.
- Sensibiliser le grand public à la biodiversité.
- Être force d'innovation.

Objectifs de la Start-up

Court terme:

- Mise en place d'une 1ère app mobile de reconnaissance de fruits.
- Développer cette app dans l'écosystème BigData **aws** pour une future mise à l'échelle du volume de données.

Long terme:

• Développement de robots cueilleurs intelligents.

Données : 2 groupes

- 67 692 images de fruits labellisées.
- 62 espèces de fruits dont 25 fruits totalisent
 95 variétés, soit un total de 131 catégories.

- Fruits présentés sous différents angles.
- 1 fruit/image encouleur sur fond blanc
- Taille de l'image (100 x 100 x 3) pixels.
- image identifiée par son répertoire et son nom

- **22 688** images de fruits.
- 131 catégories.
- 1 fruit/image encouleur sur fond blanc
- Taille de l'image (100 x 100 x 3) pixels.

Données: description

- . Les fruits sont centrés dans l'image
- . les images sont de qualité acceptable
- . les images sont de même taille

- Pas de normalisation de la taille des images
- . Pas de correction de l'exposition des images
- . Pas d'amélioration du constraste

Fruits - Espèces

pomme (13)	abricot	avocat (2)	banane (3)	betterave	myrtille	figue de barbarie
choufleur	cerise (6)	châtaigne	clementine	noix de coco	maïs (2)	concombre (3)
figue	gingembre	fruit de la passion (3)	raisin (6)	pamplemousse (3)	goyave	noisette (2)
chou-rave	kumquat	citron(3)	lychee (2)	mandarine	mangue (2)	mangoustan
mûre	nectarine (2)	noix de pecan	oignon (3)	orange	papaye	pêche (3)
physalis (2)	ananas (2)	pitahaya rouge	prune (3)	grenade	patate (4)	coing
salak	fraise (2)	Tamarillo	tangelo	tomate (9)	noix	pastèque
carambole	aubergine	kaki	melon piel de sapo	poivron (4)	groseille	framboise
cantaloup (2)	datte	airelle	maracuja	poire (9)	kiwi	

Poids des images (avocat+banane) = 3.21 Mo

Nombre d'images = 644

Choix de Spark

* PANDAS: librairie python qui permet de manipuler des données à analyser sur un ordinateur.

*SPARK : framework open-source permettant de paralléliser le traitement de larges volumes de données de manière distribuée.

Architecture de Spark

Cluster Manager: instancie et supervise les différents workers. (gestion des erreurs, ...)

Driver Program : répartie les tâches sur les différents executors.

Worker Node : un worker instancie un executor qui exécute n tâches.

La structure de données essentiel de Spark : le RDD

RDD (Resilient Distributed Dataset): collection de données distribuée en lecture seule.

- Un RDD est organisé en lignes, des blocs non modifiables qui n'excédent 2 Go.
- Une partition de RDD est un ensemble de lignes traitées par le même processus.
- Un RDD se crée soit à partir d'une source de donnée stable soit depuis un autre RDD.

DAG (Directed Acyclic Graph)

Le DAG recense l'ensemble des transformations et actions à réaliser sur les RDD.

Opération	résultat	
Transformation	donne en sortie un autre RDD. (ex: map, filter,)	
Action	donne en sortie autre chose qu'un RDD. (ex: show,)	

N.B: Seule une Action provoque l'évaluation des Transformations <u>lazy</u> précédentes.

1) Instantiation d'un contexte_Spark

```
spark = SparkSession.builder.appName('name').getOrCreate()
sc = SparkContext.getOrCreate()
```

2) Enregistrement des données dans un dataframe_Spark

```
# Création d'un DataFrame PySpark avec une lère colonne
# représentant le chemin complet des images.

lst_path = []
sub_folders = os.listdir(folder)
print(sub_folders)

for f in sub_folders:
    lst_categ = os.listdir(folder+f)
    for file in lst_categ:
        lst_path.append(folder+f+"/"+file)

print("Nombre d'images chargées :", len(lst_path))

rdd = sc.parallelize(lst_path)
row_rdd = rdd.map(lambda x: Row(x))
df = spark.createDataFrame(row_rdd, [ci])
```

Fonctions parallélisées

```
# 2eme colonne du dataframe: catégorie du fruit

def give_categ(chemin):
    return chemin.split('/')[-2]
```

```
# 3eme colonne du dataframe: matrice de chaque image mise à plat

def image_to_list(chemin):
    try:
        image = Image.open(chemin)
        image = np.asarray(image)
        image = image.flatten().tolist()
        return image
    except:
        return [0]
```

* retourne la matrice de chaque image mise à plat, soit un tableau (100,100,3) aplati en une liste de taille 3000

```
# 4eme colonne du dataframe: descripteurs de chaque image

def give_descripteurs(chemin):
    image = np.asarray(Image.open(chemin))
    orb = cv2.0RB_create(nfeatures=nombre_variable)
    keypoints, desc = orb.detectAndCompute(image, None)

    if desc is None:
        desc = 0
    else:
        desc = desc.flatten().tolist()
    return desc
```

* retourne les descripteurs de chaque image

Transformation

```
# Remplissage de la colonne catégorie
udf_categ = udf(give_categ, StringType())
df = df.withColumn("categ", udf_categ(ci))*

# Remplissage de la colonne image.
# Chaque image a été transformé en array numpy puis vecteur unitaire
udf_image = udf(image_to_list, ArrayType(IntegerType()))
df = df.withColumn("image", udf_image(ci))*
df = df.filter(df.image.isNotNull())*

# Remplissage de la colonne descripteur avec les descripteurs de
# chaque image transformés en vecteur unitaire
udf_desc = udf(give_descripteurs, ArrayType(IntegerType()))
df = df.withColumn("descripteurs", udf_desc(ci))*
df = df.filter(df.descripteurs.isNotNull())*
```

* Un **UDF** (User Defined Functions) permet de créer une nouvelle colonne dans un dataframe.

Action

```
# les transformations sont lancées par "df.show"
start_time = time.time()
df.show() *
print("Temps execution %sec ---" % (time.time() - start_time))
```

Dataframe final:

```
-----+
| chemin_image| categ| image| descripteurs|
|images/Avocado/0 ...|Avocado|[255, 255, 255, 2...|[197, 253, 189, 2...|
|images/Avocado/10...|Avocado|[255, 255, 255, 2...|[212, 236, 159, 2...|
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[228, 36, 157, 24...|
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[220, 140, 157, 1...
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[244, 36, 189, 25...
|images/Avocado/10...|Avocado|[255, 255, 255, 2...|[188, 164, 156, 1...|
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[68, 229, 157, 11...
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[124, 165, 29, 11...
|images/Avocado/10...|Avocado|[255, 255, 255, 2...|[228, 165, 157, 1...
|images/Avocado/10...|Avocado|[255, 255, 255, 2...|[244, 36, 189, 11...
|images/Avocado/10...|Avocado|[255, 255, 255, 2...|[84, 228, 159, 23...|
images/Avocado/10...|Avocado|[255, 255, 255, 2...|[193, 45, 29, 101...
images/Avocado/11...|Avocado|[255, 255, 255, 2...|[229, 245, 157, 1...|
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[228, 231, 253, 1...|
images/Avocado/11...|Avocado|[255, 255, 255, 2...|[228, 100, 189, 1...|
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[245, 100, 157, 9...
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[252, 116, 63, 11...
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[252, 116, 253, 1...
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[228, 164, 156, 1...|
|images/Avocado/11...|Avocado|[255, 255, 255, 2...|[212, 132, 156, 1...|
```

only showing top 20 rows

Temps execution 7.45508074760437ec ---

Traitement à l'échelle – AWS

Traitement à l'échelle – AWS

Mise en place de notre application sur le cloud AWS en plusieurs étapes :

- ✓ Création d'un compartiment dans S3
- ✓ Chargement des images dans ce compartiment
- ✓ Création d'une instance SageMaker
- ✓ Création d'un rôle permettant à l'instance d'accéder à S3
- ✓ Création d'un notebook Jupyter via SageMaker

N.B: ces étapes se font après la création d'un compte AWS.

AWS - Création d'un compartiment et chargement des Images

AWS – Création d'un rôle

Sélectionner une entité de confiance

Le rôle créé, permet à l'instance de SageMaker d'accéder aux images du compartiment \$3 (read/write) et d'utiliser la puissance des serveurs EC2.

Ajouter des autorisations

AmazonSageMaker-ExecutionRole-20211130T132804

SageMaker execution role created from the SageMaker AWS Management Console.

AWS – Création d'une instance SageMaker

N.B: La création de l'instance de bloc-notes prend quelques minutes. Il faut attendre que son statut passe à "En service" avant d'ouvrir un bloc-note.

AWS – Création d'un notebook Jupyter

AWS – Réduction dimensionnelle

Accéder aux images dans le compartiment de \$3

Librairie permettant d'accéder au compartiment \$3

```
import boto3
```

Variables permettant de construire le chemin complet de localisation des images dans \$3

```
mybucket = "lcanonne-p8"
prefix = "images"
folder = "s3://{}/{}/".format(mybucket, prefix)
```

Ouverture d'une session client de \$3 sur la région 'eu-west-1'

```
region = boto3.Session().region_name

session = boto3.session.Session(region_name=region)  # Ouverture d'une Session sur la région 'eu-west-1' (Ireland)

s3_client = session.client('s3')  # indique que le client utilise le service S3 de AWS

s3 = boto3.resource("s3", region_name=region)  # référence sur le service S3
```

Liste des répertoires contenant les images (Avocado/, Banana/)

```
sub_folders = s3_client.list_objects_v2(Bucket=mybucket, Prefix=prefix)
```

AWS – Réduction dimensionnelle

Enregistrement des Résultats

```
df.repartition(1).write.mode('overwrite').parquet('resultat') # resultat = name of folder where the dataframe
# will be stored in sagemaker instance
```

- * Choix du format de stockage Apache Parquet adapté aux trés gros volumes de données
- * Compression des données
- * De bonnes performances en lecture et en écriture

Enregristement du résultat dans \$3

Conclusion & Perspectives.