Канално ниво в локалните мрежи

6. Методи на достъп до съобщителната среда в Ethernet.
7. Управление на канала в Ethernet. Превключватели и мостове. Виртуални локални мрежи и протокол Spanning Tree.

Какво ще научим

- Втори слой в мрежовата архитектура по отношение на локалнит мрежи. Методи на достъп до преносната среда.
- Логическа и физическа топология на локална мрежа
- ✓ История на възникване на метода на достъп CSMA/CD
- Ethernet технологичната конвергенция в Internet
- Формат на кадъра в Ethernet. MAC адрес.
- МТU и производителност на мрежата
- У Жична преносна среда в Ethernet. 10/100/1000 Mbps, 10/40/100 Gbps и по-високи скорости
- От хъбове към суичове. Технология на превключването.
- Протокол Spanning Tree. Виртуални локални мрежи (VLANs).
- Ethernet в глобалните мрежи

LANs - мрежите с общодостъпно предаване

- Мрежите с общодостъпно предаване се характеризират с общ комуникационен канал, който се споделя от всички машини, включени в мрежата.
- Всеки изпратен кадър минава през общия канал и достига до всички машини в мрежата. Адресно поле в кадъра посочва за кой е предназначен този кадър.
- Когато една машина получи кадър, тя проверява дали той е предназначен за нея. Ако това е така, кадърът се приема и обработва, в противен случай се отхвърля.

Мрежи с общодостъпно предаване

- При мрежите с общодостъпно предаване основен проблем е да се определи кой да започне да използва канала, дали да има състезание или поредност.
- Протоколите, които разрешават този проблем се отнасят към подниво на каналния слой, наречено подниво за достъп до средата (medium access control MAC). Нариичат се още протоколи за множествен достъп (Multiple Access)
- Регионалните мрежи използват връзки "точка-точка" (point-to-point), докато общодостъпни многоточкови (multipoint) канали се използват най-вече при локалните мрежи.

Мрежи с общодостъпно предаване

- Протоколите (процедурите) за достъп до канала се делят на две основни групи:
 - детерминирани и
 - състезателни
- От първите най-известни са Token Ring (разработка на IBM) и FDDI. Те могат да се сравнят с кръгово кръстовище, регулирано със светофари.
- Поради сложността им бяха изместени изцяло от състезателните. По-нататък ще се занимаваме с тях.

Локална мрежа Token Ring

"Чиста" ALOHA

- Идва от мрежата в Университета в Хонолулу Хавайските острови.
- Множество радиостанции, разположени на различните острови.
- Всяка предава, "когато си поиска", без да се съобразява с другите.
- Aloha си e Multiple Access (MA) и
- Съответства на "нерегулируемо кръстовище"

ALOHA

Чиста ALOHA

User			
Α			
В			
С			
D			
Ε			
	Time —	-	

Кадрите се предават в произволно време.

Чиста ALOHA. Колизии.

Колизии с началото и края на долния кадър.

Slotted ALOHA

Предава само в началото на синхронизирани отрязъци от време - "slot times"

Колизиите се ограничават само във времето на предаване на един кадър

Pure vs. Slotted ALOHA

Пропускателна способност спрямо ниво на трафика

Carrier Sense Multiple Access (CSMA)

- Можем да го сравним със знака "Пропусни движещите се по пътя с предимство!"
- Протоколите, които прослушват носещата, се наричат carrier sense multiple access (множествен достъп с откриване на носещата МДОН).
- Предлложени са от **Kleinrock и Tobagi** (1975), които са анализирали техни варианти.
- Един от тях се нарича 1-persistent CSMA (1 настойчив).
- Протоколът се нарича 1-persistent, защото станцията започва да предава с вероятност 1, ако има свободен канал.

Nonpersistent CSMA

- Този протокол не е толкова "лаком". Станцията прослушва канала, ако никой не предава, започва тя.
- Ако каналът е зает, станцията не продължава да прослушва, а изчаква произволен период от време, след което повтаря алгоритъма.
- Постига се по-добро оползотворяване на канала от 1persistent CSMA.
- p-persistent CSMA се отнася към канали с времеделене (time slot).
- Ако каналът е свободен готовата станция започва да предава с вероятност p. С вероятност q = 1 p отлага за следващия слот. Ако и той е свободен, или предава, или отлага с вероятност p или q.

Persistent u Nonpersistent CSMA

Използване на канала спрямо натоварването

CSMA плюс Collision Detection

- Друго подобрение е станциите да прекратятват предаването в момента, когато "забележат" колизия.
- Т.е, ако две станции открият свободен канал и започнат да предават едновременно, едновременно ще разпознаят и колизията.
- Те спират предаването веднага щом разпознаят колизията.
- Този протокол е CSMA/CD (CSMA with Collision Detection) и се използва в LAN Ethernet.

Ethernet. Логическа шина.

CSMA/CD

CSMA/CD е в едно от трите състояния: състезание, предаване и свободно.

CSMA/CD

- Малко по-подробно за състезателната процедура. Нека двете станции започнат да предават в момент t_0 . Колко време им трябва да разберат за колизията?
- Най-лошият случай. Нека времето за пътуване между двете най-отдалечени станции е τ . В t_0 една станция започва да предава. В $\tau \epsilon$ най-отдалечената също започва да предава. Тя веднага разпознава колизията и спира, но

CSMA/CD

- Шумът от колизията достига до оригиналната за време 2τ ϵ .
- Т.е, в най-лошият случай една станция не може да е сигурна, че е "хванала" канала, докато не е предавала за 2τ , без да е чула колизия.
- В 1-km коаксиален кабел $\tau \approx 4.8$ µsec.

Предаване на Ethernet кадри

Приемане на Ethernet кадри

Robert M. "Bob" Metcalfe. Една жива легенда.

Откривателят на Ethernet

ART: DALE STEPHANOS

Най-разпространената LAN Ethernet

- Описана в стандарта IEEE (Institute of Electrical and Electronic Engineers) 802.3, издаден през 70-те години.
- Един персонален компютър се свързва в Ethernet мрежа с помощта на NIC (Network Interface Card), която изпраща и приема кадри (frames).

802.3 Кадър (Novell raw)

Preamble = 56 бита 0-и и 1-ци.

SOF = Start of frame: "10101011"

Data / Pad = ако няма достатъчно данни (payload), полето за данни се допълва, за да имаме минимален размер на кадъра

FCS = Frame check sequence – CRC

Днес се използва Ethernet II frame, DIX frame (DEC, Intel и Xerox); директно от Internet Protocol.

Ethernet II кадър (DIX)

Destination address съдържа адресът на получателя на кадъра Source address - адресът на изпращача на кадъра.

Най-младшият бит на най-старшия байт на адреса на получателя е 0 за нормален адрес и 1 за групов адрес. При групов адрес, кадърът е предназначен за група станции (multicast). Адрес на получател, състоящ се само от 1 означава, че кадърът е предназначен за всички станции (broadcast).

Полето *Ether Type*: 0x0800 кадърът носи IPv4 дейтаграма; 0x0806 - ARP, 0x8100 - IEEE 802.1Q и 0x86DD - IPv6.

Формат на кадрите в Ethernet

- Данните се съдържат в полето *Data* и максималната им дължина е **1500 байта**. Това е т.нар. **payload**.
- Освен максимална дължина на кадъра има и **минимална дължина** на кадъра.
- В стандарта 802.3 минималната дължина на кадъра е 64 байта.
- Защото времето за разпознаване на колизия (конфликт) е времето за предаване на 64 байта.
- Полето *Pad* за запълване на кадъра до 64 байта.
- Полето *Checksum* е контролна сума, която се използва за откриване на грешки при предаването.

Maximum Transmission Unit (MTU)

В компютърните мрежи MTU в протокол на даден слой е максималната дължина на полето за данни (в байтове), който може да понесе дадения слой. Т.е максималния payload.

По-голям MTU означава по-висока ефективност:

- един пакет носи повече потребителски данни;
- по-малко служебна информация (overhead).

Но, по-големите пакети окупират за по-голям период бавните линии. Например, 1500-байтов Ethernet кадър "захваща" за цяла секунда 14.4k модемна линия. Затова се налага фрагментиране.

Ефективност и нетна скорост

$$Efficiency = \frac{Payload\ size}{Frame\ size}$$

Максимална ефективност се постига с максимален payload:

$$\frac{1500}{1538} = 97.53\%$$

за untagged ethernet кадри и е $\frac{1500}{1542} = 97.28\%$ за 802.1Q VLAN tagging.

Net bit rate: Net bit rate = Efficiency × Wire bit rate

Максималната нетна скорост за 100BASE-TX Ethernet без 802.1Q is **97.53 Mbit/s**.

MTU. Jumbo Frames.

- jumbo frames ca Ethernet кадри с дължина по-голяма от 1500 байта payload (MTU). Приема се, че jumbo frames носят до 9000 bytes.
- Много, не и всички, Gigabit Ethernet суичове и карти поддържат jumbo frames, но всички Fast Ethernet поддържат само стандартните 1500 байта.
- Дължина на Ethernet кадъра от 1518 байта е избрана въз основа на оценка нанадеждността и скоростта на канала.
- От друга страна, ако увеличим размера, по-големи обеми от данни ще се предадат с по-малко усилия:
- по-малко СРU цикли;
- по-малко прекъсвания;
- CPU се съсредоточава върху потребителските данни.

Jumbo Frames. Super Jumbo Frames

- 9000 байта като предпочитан размер на jumbo frames е резултат от споразумение между Joint Engineering Team of Internet2 и правителствените мрежи в САЩ.
- Super jumbo frames (SJFs) са кадри с дължина над 9000 байта.
- С растежа на скоростта на линията пропорционално би трябвало да расте и payload. Това обаче зависи от възможностите на логическите схеми, обработващи пакетите.
- Колкото и да са трудни преговорите в тази насока, възможно е да се достигне дължина от 64000 байта.

Шестнадесетични числа (Hexadecimal)

Ед на шестнадесетична цифра:

– 4 двоични разряда:

Шестнадесетични числа към десетични

Decimal	Hex	Decimal	Hex	Decimal	Hex
1	1	11	В	30	1E
2	2	12	С	40	28
3	3	13	D	50	32
4	4	14	E	60	3C
5	5	15	F	70	46
6	6	16	10	80	50
7	7	17	11	90	5A
8	8	18	12	100	64
9	9	19	13	500	1F4
10	А	20	14	1000	3E8

Формат на МАС адрес

Формат на МАС адрес

- Media Access Control адресът (MAC адрес), Ethernet Hardware Address (EHA) или хардуерен адрес, адрес на адаптера или физически адрес е квазиуникален идентификатор, присвоен на мрежов адаптер или NIC от производителя. В този случай МАС адресът съдържа закодиран идентификатора на производителя.
- IEEE дефинира три схеми за формулиране на MAC адрес: MAC-48, EUI-48 и EUI-64. Търговски марки на IEEE са "EUI-48" и "EUI-64" (EUI Extended Unique Identifier). Разликата между EUI-48 и MAC-48 е чисто семантична (но не и синтактическа): MAC-48 се използва за мрежов хардуер, а EUI-48 идентифицира други устройства и софтуер.

Записва се с шестнадесетични цифри.

MAC spoofing

- Макар че е смятан за перманентен и глобално уникален, днес е възможно да се смени МАС адреса (т.е не е "прогорен") MAC spoofing.
- Оригиналният IEEE 802 MAC произлиза от Xerox Ethernet. Съдържа 2⁴⁸ или 281,474,976,710,656 възможни адреси.
- Според IEEE MAC-48 пространството няма да се изчерпи до 2100 г.
- Адресите могат да бъдат "универсално администрирани" или "локално администрирани".

Формат на МАС адрес

- Универсално администриран е присвоен от производителя, още "прогорен" "burned-in addresses" (BIA). Първите три октета показват организацията, издала идентификатора Organizationally Unique Identifier (OUI).
- Следващите три октета (MAC-48 и EUI-48) или пет (EUI-64) се дават от самата организация.
- Локално администриран се присвоява от мрежовия администратор, отменяйки "прогорения". Те нямат OUI.
- Разпознават се по bit 2 (21) в най-старшия октет на МАС-а. Ако е 0, адресът е универсален. Ако е 1, адресът е локален. Т.е е 0 на всички OUI-та.
- Ако най-младшият бит bit 1 (2°) е 0, кадърът е предназначен за конкретна NIC unicast. Ако е 1, кадърът трябва да достигне няколко (група) NIC-ве. Нарича се групов multicast.

EUI-64 формат

64-Bit IPv6 Modified EUI-64 Interface Identifier

EUI-64 формат

EUI-64 се използват:

- * FireWire
- * IPv6 (младшите 64 бита в unicast мрежов адрес или link-local адрес)
- Преобразуване на 48-бит MAC адрес в IPv6 модифициран EUI-64 идентификатор:
 - 1. Вземаме 24-бит ОUI частта и я поставяме в най-левите 24 бита на interface ID. А 24-бит локална част слагаме в най-десните 24 бита на interface ID.
 - 2. В оставащите в средата 16 бита на interface ID поставяме стойността "11111111 11111110" ("FFFE" hex).
 - 3. Така адресът ни е в EUI-64 формат. Променяме "universal/local" бита (бит 7 отляво) от 0 на 1.
- И получаваме модифицирания EUI-64 interface ID.

Name	Cable	Max. seg.	Nodes/seg.	Advantages	
10Base5	Thick coax	500 m	100	Original cable; now obsolete	
10Base2	Thin coax	185 m	30	No hub needed	
10Base-T	Twisted pair	100 m	1024	Cheapest system	
10Base-F	Fiber optics	2000 m	1024	Best between buildings	

100BASE-TX: Използва 2 чифта по Category 5 (IEEE 802.3u).

100BASE-FX: 100 Mbit/s Ethernet по FO.

1000BASE-T: 1 Gbit/s over Category 5e copper cabling (802.3ab).

1000BASE-SX: 1 Gbit/s πο MM FO.

1000BASE-LX: 1 Gbit/s по SM FO (големи разстояния).

10GBASE-LX4: WDM - 240 m i 300 m по MM FO. 10 km по SM FO (802.3ae).

10GBASE-LR и 10GBASE-ER: 10 km и 40 km по SM FO.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW. Върху WAN PHY

10GBASE-Т: меден кабел Категория 6a (802.3an)

Сигнали с много нива

Предавайки сигнали с много нива на напрежение, кодираме групи от битове, а не с две нива да се кодира един единствен бит.

bw ~ 1/бр.нива

На фигурата имаме 4 нива, кодираме два бита на ниво. Така по по един и същ кабел предаваме 10/100/1000 Mbps.

1000Base-T

10BASE-Т и 100BASE-Т предава по два от чифтовете.

1000BASE-T Twisted-pair cabling (Cat-5, Cat-5e, Cat-6, or Cat-7) 100 meters използва и 4-те чифта.

1000BASE-TX Twisted-pair cabling (Cat-6, Cat-7) 100 meters. Не се използва.

10GBase-T

- 10GBASE-Т предава и по 4-те чифта 100 m SFTP кабел (Cat. 6a).
- 2.5 Gbit/s на чифт.

40/100 Gigabit Ethernet

PHY	40 Gigabit Ethernet	100 Gigabit Ethernet
at least 1 m over a backplane	40GBASE-KR4	
approximately 7 m over copper cable	40GBASE-CR4	100GBASE-CR10
at least 100 m over OM3 MMF	40GBASE-SR4	100GBASE-SR10
at least 125 m over OM4 MMF ^[7]	40GBASE-SR4	100GBASE-SR10
at least 10 km over SMF	40GBASE-LR4	100GBASE-LR4
at least 40 km over SMF		100GBASE-ER4

40 Gigabit Ethernet (40GbE) и 100 Gigabit Ethernet (100GbE) са разработени от IEEE P802.3ba.

Ethernet кадрите се предават по множество 10 Gb/s или 25 Gb/s ленти. (50/125 μm (OM2) и 62.5/125 μm (OM1) multi-mode fiber. 50/125 μm "лазерно оптимизиран" OM3 fiber.)

400-Gigabit Ethernet

- Все повече нарастват нуждите от трафик: Web 2.0, cloud услуги, Facebook още в 2010 г. Казаха, че им трябват Terabit Ethernet в центровете им за обработване на данни.
- Анализът необходимата пропускателна способност доведе до извода, че най-разумно е следващата скорост на Етернет да бъде 400 Gbps.
- Така се създаде IEEE 802.3 400Gbps Study Group да пише новата глава в историята на Ethernet.
- 400-Gigabit Ethernet би се получила най-добре с 4 * 100-Gigabit интерфейси.
- Други възможности са 8 * 50 Gbps или 16 * 25 Gbps.

Към Terabit Ethernet

- Terabit Ethernet изисква подобрение на PCI Express стандарта.
- Голямо предизвикателство за технологията.
- Интегриране на оптика в силициеви чипове 40 лазера, всеки предаващ по 40Gbps.

- В началото в Ethernet се използва коаксиален кабел и скоростта на предаването е достигала 10 Mb/s.
- По-нататък се въвежда използването на **хъбове** (hub). При окабеляване 100Base-T4 каналните станции се свързват към хъба чрез четири усукани двойки UTP Category 3
- 100Base-TX чрез две усукани двойки (UTP Category 5). По една от усуканите двойки се предава към хъба, а по другата се приема от него (при 100Base-T4 останалите две усукани двойки се превключват по посока на предаването). Скоростта на предаване достига 100 Mb/s
- Хъбът не премахва проблема с колизиите. Подобно на коаксиалния сегмент е един колизионен домейн и един бродкаст домейн.

- Станциите се свързват към хъба в прав кабел, т.е. предаващата двойка на всяка станция съответства на предаващата двойка на хъба и съответно приемащата двойка на всяка станция съответства на приемащата двойка на хъба.
- При свързване на два хъба чрез усукана двойка, обаче, се използва кръстосан (cross) кабел, т.е. предаващата двойка на единия хъб се свързва с приемащата двойка на другия хъб и обратно.

Прав (Straight-Through) кабел

Прав (Straight-Through) кабел

Кръстосан (Crossover) кабел

Straight vs. Cross (теория)

Хъб и повторител

- Ако хъбът получи кадър по някоя линия, той изпраща този кадър по всички останали линии. Хъбът не знае адресите на каналните станции.
- Хъбът е пример за устройство, чрез което се препредават кадри от един кабел към друг. Той работи на физическо ниво.
- Друго подобно устройство на физическо ниво е **повторителят** (repeater).
- Той приема сигнал на единия си порт, усилва го и предава сигналът на другия си порт. По този начин може да се увеличи максималната дължина на кабела в една локална мрежа

Коаксиални кабели и хъб

Три вида Ethernet cabling.

(a) 10Base5, (b) 10Base2, (c) 10Base-T.

Топологии на Ethernet окабеляване

(a) Шина, (b) вертикално, (c) Дървоводна, (d) Сегментирана.

Bridge и switch

- Мостът (bridge) работи на канално ниво и служи за свързване на две локални мрежи. За разлика от повторителите и хъбовете, мостът анализира получените кадри.
- Той прочита адреса на получателя и по него определя към коя изходна линия да изпрати кадъра (за целта се поддържа специална таблица).
- Мостът предава кадъра само към определената от него изходна линия, а не по всички изходни линии.
- Подобно устройство е превключвателят (switch) многопортов мост. Той също прочита адресите на постъпилите в него кадри.

Bridge и switch

Bridge и switch

- Всяка линия (порт) е самостоятелна и представлява отделен колизионен домейн. Това се нарича още микросегментиране.
- Но бродкастите се разпространяват по всички портове, т.е той е един бродкаст домейн.
- При превключване между сегменти кадри не могат да бъдат изгубени поради колизии.
- За целта превключвателя трябва да има достатьчно буферно пространство за да може да се препращат кадрите.

Switched Ethernet

MAC Address Table

Три режима на превключване

- С пълно буфериране (store and forward). В буферната памет се записва целия кадър и чак след това се превключва към изходния порт. Внася се закъснение и изисква повече памет.
- Cut-through Суичът прочита адреса на получателя при получаване на кадъра. Започва прехвърлянето към изходящия порт, преди да получи пълния кадър. Така се намалява закъснението. Имаме две форми на cut-through:
- **Fast-forward** С най-ниско закъснение, веднага превключва кадъра след приемане на адреса на получателя. Има проблеми с откриването на грешки.
- **Fragment-free** Филтрира кадри (фрагменти), претърпели колизии, най-често срещаните грешки. Обикновено това са кадри с дължина, по-малка от 64 байта. Т.е прочита първите 64 бита, за да определи дали това не е колизионен фрагмент, преди да започне превключването.

Spanning Tree (математика)

яраппіпд tree (разперено дърво) на граф G: сбор от клони на G, които формират дърво, разперващо се *spanning* от всеки връх.

Т.е всеки връх е в дървото, но няма зацикляне (no loops).

Spanning Tree (математика)

Spanning Tree. Защо?

Резервираност в топологията:

PROS: откзоустойчивост, по-висока производителност.

CONS: switched LAN: broadcast storms: задръстване на MAC таблицата и др.

Хост изпраща broadcast кадър. Разпространява се по всички портове с изключение на входящия.

broadcast се "завърта" през паралелните uplink портове – до безкрайност, защо

layer 2 няма TTL да го спре. Решението е: Spanning Tree Protocol.

Spanning Tree Protocol (STP)

- Spanning Tree Protocol (STP) е протокол на 2 слой по модела на OSI, който гарантира топология без зацикляне в Switched LAN. Базира се на алгоритъма на Radia Perlman, който е работил за Digital Equipment Corporation.
- Позволява да се включват резервни пътища, които автоматично да се активират при авария в основните без опасност от зацикляне.
- Зациклянето в тези мрежи е опасно заради липсата на механизъм TTL, както ще видим в IP протокола на 3 слой.
- **STP** се дефинира в стандарта IEEE 802.1D.

STP - стойности

Скорост (Data rate)	(STP Cost – 802.1D-1998)	(802.1t-2001)
4 Mbit/s	250	5 5 0,000,000
10 Mbit/s	100	2,000,000
16 Mbit/s	62	1,250,000
100 Mbit/s	19	200,000
1 Gbit/s	4	20,000
2 Gbit/s	3	10,000
10 Gbit/s	2	2000

Spanning Tree - алгоритъм

- Spanning Tree алгоритъмът изчислява път без зацикляне.
- Първоначално всички портове са блокирани. Отнема около 50 s, докато започнат да превключват.
- Стъпка 1: Избор на Root Bridge с най-нисък приоритет или найниско bridge ID (MAC адрес)
- Стъпка 2: Избор на Root Ports От алтернативните пътища се избират тези с най-малка стойност до Root Bridge. RPs водят към root bridge.
- Стъпка 3: Избор на Designated Ports Порт, който праща и получава трафик от Root Bridge с най-ниска стойност до Root Bridge. DPs водят от root bridge към клоните на дървото.

Пример

Номерираните кутийки -bridge ID. Номерираните облаци – мрежови сегменти.

Избор на root bridge

Най-малкият bridge ID e 3

Избор на root port

Предполагаме, че стойността на всеки сегмент е 1. Найкъсият път от bridge 4 до root bridge минава през сегмент с.

Избор на designated port

Най-късият (с най-малка стойност) път до root от мрежов сегмент е минава през bridge 92.

Spanning Tree - резултат

Активни портове, които не са root port или designated port са блокирани (blocked port).

Виртуални ЛМ (Virtual LANs)

VLAN е комутирана мрежа, която е логически сегментирана по някакви функции и не се влияе от физическото разположение на потребителите (по етажи, сгради и т.н.).

Един VLAN представлява един broadcast domain.

Сигурност. Потребителите на VLANі нямат достъп до машините на VLANј. Това може да стане единствено и само през рутер.

Гъвкавост. Опростява местене, добавяне, премахване на потребителски мшини.

Един порт на суич може да се присвои статично или динамично към VLAN.

Trunk портове за връзка между суичове.

VLANs - 802.1Q Tag

Tag Protocol Identifier (TPID): 16-битово поле: 0x8100 (IEEE 802.1Q)

Priority Code Point (PCP): 3-бита - IEEE 802.1р приоритет: 0 (най-ниско) до 7

Canonical Format Indicator (CFI): 1-бит: "0" за Ethernet суичове

VLAN Identifier (VID): 12 бита.ако е "0", кадърът не във VLAN; позволява до 4094 VLAN-а. VLAN 1 резервирана за управление.

VLANs - (QinQ)

Double-tagging (QinQ) се използва от ISPs и MAN оператори, както и техните клиенти, да прокарват вътрешни VLAN-и през външен VLAN.

Външен tag предхожда вътрешен tag.

TPID - hex 9100, 9200 или 9300 за външния; но 802.1ad определя 88a8 за външни тагове.

Физическа топология на мрежа

Логическа топология на същата моежа с VII A Nic

Конфигуриране на 802.1q VLAN в Red Hat Enterprise Linux и CentOS

1. Активиране на поддръжката на 802.1q VLAN в системата

Поддръжката на стандарта 802.1q се осигурява от модула 8021q на ядрото. Лесно може да се провери дали е наличен:

\$ /sbin/modinfo 8021q

```
filename: /lib/modules/2.6.32-
220.2.1.el6.i686/kernel/net/8021q/8021q.ko

version: 1.8

license: GPL

alias: rtnl-link-vlan

srcversion: 2763A7682EB87280D0F56F2

depends: garp

vermagic: 2.6.32-220.2.1.el6.i686 SMP

mod unload modversions 686
```

Конфигуриране на 802.1q VLAN в Red Hat Enterprise Linux и CentOS

Vi /etc/sysconfig/network

VLAN=yes

За да може да се извършва ръчна и автоматична настройка на 802.1q VLAN интефейсите в системата:

yum install vconfig

2. Как се активираме поддръжката на 802.1q VLAN в работещи системи без да прекъсваме мрежовите функции

Да заредим модула за поддръжка на 802.1q VLAN в ядрото на операционната система:

#/sbin/modprobe 8021q

\$ grep 8021q /proc/modules

8021q 25929 1 cxqb3, Live 0xf8a3c000

Конфигуриране на 802.1q VLAN в Red Hat Enterprise Linux и CentOS

3. Конфигуриране на 802.1q VLAN интерфейс /etc/sysconfig/network-scripts/ifcfg-eth1.100

```
DEVICE=eth1.100
HWADDR=00:00:CD:4A:55:6A
BOOTPROTO=none
IPADDR=10.10.10.1
NETMASK=255.255.255.0
ONBOOT=yes
REORDER_HDR=yes
```

ifup eth1.100

Added VLAN with VID == 100 to IF -:eth1:-

Carrier Ethernet

Как Ethernet да се ползва от телеком операторите:

Ethernet over SDH/SONET.

Ethernet over MPLS. Ethernet върху IP/MPLS мрежи. Ethernet се транспортира като "псевдожици" - MPLS label switched paths (LSPs) вътре в MPLS "тунел". Поддържа връзки точка-точка (Virtual Private Wire Service - VPWS) и многоточкови (Virtual Private LAN service – VPLS).

Конвенционална ("чиста") Ethernet. Прилага 802.1w - Rapid Spanning Tree Protocol за връзки точка-точка.

Carrier Ethernet 2.0

Боб Меткалф, сега съветник в MEF (Metro Ethernet Forum), обяви второ поколение Carrier Ethernet (CE 2.0).

- "... възможност за опериране с до 8 услуги (за сравнение СЕ 1.0 предлага само 3),
- 2 от тях са разпределени в направленията E-Line, E-LAN, E-Tree и E-Access"