(5) 多自由度マニピュレータの運動学

E	多次	. 高水學科特別的 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	V)
1	実懸	章目的	-1
2	多自		-1
	2.1		5 - 1
	2.2		5 - 1
	2.3		5 - 2
			5 - 2
	1.11	2.3.2 逆運動学 5	5 - 2
	2.4	マニピュレータの姿勢表現	5-4
3	ロオ		-6
	3.1		5 - 6
	3.2		5 - 6
	3.3	300000000000000000000000000000000000000	5-7
4	実騎	1-1 :ティーチング実験	-8
	4.1	実験概要 5	5-8
	4.2	AN AND A TOTAL CONTRACTOR OF THE PARTY OF TH	5-8
		A O A POTENT HE	5-8
		4.0.0 ctrs64t m	5 - 9
			5-9
	4.3	オンラインティーチング実験	-10
		4.3.1 実験手順	-10
		4.3.2 実験結果および考察5-	-11
		4.3.3 考察	-11
5	中形	1-2:運動学(3 自由度)実験 5-	n.t.
э	天歌 5.1		-12
	5.2	実験手順	-12
	5.3	実験結果 5	-12
	5.4	考察	-13
	0.4	- 1 M = Needle - 1	-13
6	実験	2-1: 画像処理実験 5-	14
	6.1	実験概要 5-	-14
	6.2	実験手順	-14
	6.3	実験結果	-14
	6.4	考察	- 16
	r +		
7		12-2:3次元位置計測と物体の把持収納実験 5-	17
		実験概要	-17
		実験手順	-17
		実験結果 5-	-18
	1.4	考察 5-	
8	課題	MALL minut	10
		逆運動学の導出 5-	10
		回転行列とオイラー角の変換式	- 19
	8.3	空間フィルタリング 5-	- 10
		<u> </u>	- 10
	8.5	ロボットビジョンの実用例 5	-19
,e			
参	考文献	5-	19

1 実験目的

産業用ロボットの多くは、複数のリンクと回転関節から構成されるシリアルリンク型である。本実験では、6 自由度垂直多関節型のマニピュレータを用いて、ティーチングと呼ばれる産業用ロボットのプログラムを作成 する方法を学ぶ、また、マニピュレータの制御で用いられる運動学の基礎知識を学習する。さらに、カメラを 用いた物体検知と3次元位置計測を通して、ロボットビジョンの基礎技術を学ぶ。

2 多自由度マニピュレータ

2.1 ティーチング

マニピュレータ(産業用ロボット)の制御は、運動学や軌道などを計算し、モータを制御するなどのマニピュレータの動きを総合的にコントロールする部分と、マニピュレータの動作入力や設定を行う部分に分けて考える必要がある。前者については、4年後期の講義「ロボティクス II」にて基礎知識を学ぶ、後者のマニピュレータへの動作入力には、ティーチングとよばれる教示方法が用いられている。

ティーチングは、ダイレクトティーチング、オンラインティーチング、オフラインティーチングに分類される。ダイレクトティーチングはマニピュレータ本体に直接(ダイレクト)に触れながらマニピュレータの動作を記録し、記録した動作をプレイバック(再現)する。オンラインティーチングはティーチングペンダントと呼ばれるリモコンなどを利用して、マニピュレータを手動操作し、動作を記録、プレイバックさせる。オフラインティーチングは、コンピュータ上でマニピュレータを動作させる指令(プログラム)を作成、もしくはシミュレータ上で3Dモデルのマニピュレータを操作し、動作を記録する。そして、実際のマニピュレータにデータを送信し、プレイバックさせる方法である。

2.2 システム構成

本実験で用いる多自由度マニピュレータは、 $xArm\ 6$ (UFACTORY 製) である。6 個の回転関節を有するため、自由度は3 次元空間の位置姿勢を任意に決めることができる6 自由度である。各関節は サーボモータによって駆動され、関節角度はアブソリュート型エンコーダによって取得される。

本実験システムは、マニピュレータ、空圧駆動型ロボットグリッパおよび制御 PC、ノート PC から構成される。図 2.1 にマニピュレータのシステム構成を示す。制御 PC は Linux と呼ばれる OS が搭載されており、制御周期 10[ms] でマニピュレータを制御している。制御 PC 内では、マニピュレータの運動学、経路、軌道の計算、モータの制御などが行われており、マニピュレータの動きを総合的にコントロールしている。ノート PC は、専用の制御ソフトウェアを用いることで、マニピュレータの手動操作、状態の確認やティーチング、各種設定を行うことができる。つまり、ティーチングペンダントと同等の操作ができる。また、Python を用いることで、ロボットビジョンや AI を活用したマニピュレータへの動作指示の送信や、マニピュレータの状態を受信することも可能である。

図 2.1 マニピュレータ とシステム構成

2.3 マニピュレータの運動学

各関節角度を入力として、手先の位置姿勢を求める問題を順運動学という。一方で、手先の位置姿勢を入力として各関節角度を求める問題を逆運動学という。本実験では、マニピュレータの第4~第6関節を固定し、3自由度マニピュレータとして運動学を考える。これは、マニピュレータを簡単な構造として、運動学を幾何学計算するためである。

2.3.1 順運動学

図 2.2 に 3 自由度マニピュレータの順運動学の模式図を示す。グローバル座標系 Σ_0 の原点から 0z 軸方向に l_1 平行移動した座標系 Σ からみた手先位置を計算する。幾何学的に考える場合,まず図 2.2 のように x'z 平面で考える。三角関数を用いると,手先位置 $[x'z]^T$ は,

$$x' = l_2 \cos(\varphi_1 - \theta_2) - l_3 \cos\{(\varphi_1 - \theta_2) + (\varphi_2 - \theta_3)\}\$$

$$z = l_2 \sin(\varphi_1 - \theta_2) - l_3 \sin\{(\varphi_1 - \theta_2) + (\varphi_2 - \theta_3)\}\$$
(2.1)

となる、次に、座標系 Σ の原点から手先位置を xy 平面に射影すると、式 (2.1) より大きさ |x'| を用いて、

$$x = |x'| \cos \theta_1$$

$$y = |x'| \sin \theta_1$$
(2.2)

と計算することができる. また、グローバル座標系 Σ_0 からみた手先位置は、式 (2.1)、式 (2.2) を用いて、

$$\begin{bmatrix} 0 & x \\ 0 & y \\ 0 & z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z + l_1 \end{bmatrix}$$
 (2.3)

となる.

2.3.2 逆運動学

逆運動学について説明する. グローバル座標系からみた手先位置 $[{}^0x{}^0y{}^0z]^\mathsf{T}$ が既知の場合,

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} {}^{0}x \\ {}^{0}y \\ {}^{0}z - l_{1} \end{bmatrix}$$
 (2.4)

と座標系 Σ からみた手先位置を求めることができる.つまり,手先位置 $[xyz]^\mathsf{T}$ が既知となった.次に,図 2.3 左のように,座標系 Σ の xy 平面を考えると,関節角度 θ_1 は,

$$\theta_1 = \tan^{-1} \frac{y}{x} \tag{2.5}$$

と x,y を用いて計算できる。なお、 $x^2+y^2=0$ のときは、 θ_1 は一意に決まらず、任意の値になる。ここで、アークタンジェントは、プログラミング言語において atan と atan2 の 2 種類存在する。今回は、戻り値の範囲が広い atan2 を使用する。

$$\theta_1 = \operatorname{atan2}(y, x) \tag{2.6}$$

以下,アークタンジェントは atan2 で表記する.

図 2.2 3自由度マニピュレータの順運動学

次に関節角度 θ_3 を余弦定理から求める. 先に計算に必要な x' について求める. 図 **2.3** 左から, xy 平面の原点から手先位置を射影した点までの長さは

$$|x'| = \sqrt{x^2 + y^2} \tag{2.7}$$

とx,yを用いて計算できる。絶対値を外すと、

$$x' = \pm \sqrt{x^2 + y^2} \tag{2.8}$$

である。この値を用いて余弦定理を適用する。余弦定理は、三角形 ABC に対し、辺 AB、AC のなす角を θ とすると、

$$BC^2 = AB^2 + AC^2 - 2AB * AC\cos\theta \tag{2.9}$$

という関係式が成立する定理である. 図 2.3 右のように x'z 平面の三角形に注目すると、余弦定理を適用して

$$\cos(\varphi_2 - \theta_3) = \frac{l_2^2 + l_3^2 - x^2 - y^2 - z^2}{2l_2 l_3}$$
(2.10)

が成立する.

また, $\sin^2\theta + \cos^2\theta = 1$ の関係から,

$$\sin(\varphi_2 - \theta_3) = \pm \sqrt{1 - \cos^2(\varphi_2 - \theta_3)} \tag{2.11}$$

となるため、式 (2.6) と同様に atan2 を用いると、

$$\theta_3 = \varphi_2 - \operatorname{atan2}\left(\sin(\varphi_2 - \theta_3), \cos(\varphi_2 - \theta_3)\right) \tag{2.12}$$

となる.

最後に、関節角度 θ_2 を求める。上記で求めた関節角度 θ_3 の値が既知になったと考えると、順運動学で求めた式 (2.1) を $\cos(\varphi_2-\theta_2)$, $\sin(\varphi_2-\theta_2)$ の連立方程式として考えることができる。連立方程式を解くと、 $K_c=l_2-l_3\cos(\varphi_2-\theta_3)$, $K_s=l_3\sin(\varphi_2-\theta_3)$ として、

$$\cos(\varphi_1 - \theta_2) = \frac{K_c x' - K_s z}{K_c^2 + K_s^2}, \sin(\varphi_1 - \theta_2) = \frac{K_s x' + K_c z}{K_c^2 + K_s^2},$$
(2.13)

と解を導出できる. atan2 を用いると,

$$\theta_2 = \varphi_1 - \operatorname{atan2}(\sin(\varphi_1 - \theta_2), \cos(\varphi_1 - \theta_2)) \tag{2.14}$$

となる. なお、本実験では逆運動学の式中に正負が混在している場合はすべて正の場合で考えるものとする.

図 2.3 3自由度マニピュレータの逆運動学

2.4 マニピュレータの姿勢表現

マニピュレータの手先姿勢は 2 つの座標系 Σ_0 と Σ_e を用いて表現することができる。 グローバル座標系 Σ_0 はマニピュレータのベースに固定された静止座標系であり、手先座標系 Σ_e はロボットアームの手先に固定された座標系である。 図 2.4 にロボットアームと上述の座標系の模式図を示す。

手先の姿勢を表現する際は、座標系 Σ_0 からみた座標系 Σ_e の各軸 $({}^ex, {}^ey, {}^ez)$ の単位ベクトル ${}^\mathbf{0}\mathbf{e_x}, {}^\mathbf{0}\mathbf{e_y}, {}^\mathbf{0}\mathbf{e_z}$ を用いる.単位ベクトルとは、大きさ(長さ)が1 のベクトルである.つまり、 ${}^\mathbf{0}\mathbf{e_x}, {}^\mathbf{0}\mathbf{e_y}, {}^\mathbf{0}\mathbf{e_z}$ はそれぞれ座標系 Σ_e の軸 $({}^ex, {}^ey, {}^ez)$ 方向を向く大きさ1 のベクトルを意味している.この3 つのベクトルをまとめて、 3×3 の行列で表記されたものを回転行列と呼ぶ.

$${}^{\mathbf{0}}\mathbf{e}_{\mathbf{x}} = \begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}, {}^{\mathbf{0}}\mathbf{e}_{\mathbf{y}} = \begin{bmatrix} r_{12} \\ r_{22} \\ r_{32} \end{bmatrix}, {}^{\mathbf{0}}\mathbf{e}_{\mathbf{z}} = \begin{bmatrix} r_{13} \\ r_{23} \\ r_{33} \end{bmatrix}$$
(2.15)

$${}_{\mathbf{e}}^{\mathbf{0}}\mathbf{R} = [{}^{\mathbf{0}}\mathbf{e_{x}}{}^{\mathbf{0}}\mathbf{e_{y}}{}^{\mathbf{0}}\mathbf{e_{z}}] = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(2.16)

図 2.4 ロボットアームの 2 つの座標系

また, 固定角の ψ, θ, ϕ が既知のとき, 回転行列は,

$${}_{\mathbf{e}}^{\mathbf{0}}\mathbf{R} = \mathbf{R}_{z}\mathbf{R}_{y}\mathbf{R}_{x} = \begin{bmatrix} \cos\theta\cos\phi & -\cos\psi\sin\phi + \sin\psi\sin\theta\cos\phi & \sin\psi\sin\phi + \cos\psi\sin\theta\cos\phi \\ \cos\theta\sin\phi & \cos\psi\cos\phi + \sin\psi\sin\theta\sin\phi & -\sin\psi\cos\phi + \cos\psi\sin\theta\sin\phi \\ -\sin\theta & \sin\psi\cos\theta & \cos\psi\cos\phi \end{bmatrix}$$
(2.17)

となり、x,y,z軸まわりにそれぞれ単回転した際の回転行列の積で計算することができる.また、回転行列の各要素が既知のときは、

$$\theta = \operatorname{atan2}\left(-r_{31}, \pm \sqrt{r_{11}^2 + r_{21}^2}\right) \tag{2.18}$$

$$\psi = \begin{cases} \tan 2 (r_{21}, r_{11}) & \text{if } \cos \theta > 0, \\ \tan 2 (-r_{21}, -r_{11}) & \text{if } \cos \theta < 0 \end{cases}$$
(2.19)

$$\phi = \begin{cases} \tan 2 (r_{32}, r_{33}) & \text{if } \cos \theta > 0, \\ \tan 2 (-r_{32}, -r_{33}) & \text{if } \cos \theta < 0 \end{cases}$$
(2.20)

と計算できる。この計算は、式 (2.16) と式 (2.17) の各要素を比較し、方程式を立式することで求めることができる。式 (2.16) の値を既知として、それぞれの求め方は以下の通りである。

ピッチ角 θ : $(1,1)\cdot(2,1)$ 要素を二乗して和を取る。また、(3,1)要素も用いて、atan2を用いる。

ロール角 ψ : (3,2) 要素および(3,3) 要素を比較して、atan2 を用いる.

3 ロボットビジョン

3.1 概要

マニピュレータは、カメラによる画像処理を組み合わせることで、用途の幅を広げることができる。例えば、図 3.1 に示すように、ステレオカメラ(RGB-D カメラ)を取り付けることで、対象物体の3次元位置情報を得ることができる。そして、その位置情報を利用することで、把持対象の検出や手先位置の微調整が可能となる。この一連の作業をリアルタイムで実行できるとすれば、カメラが介在したフィードバックシステム(ビジュアルフィードバックシステムと呼ばれる)が完成する。

本実験では画像処理による対象物体の3次元位置計測を行う.そして,位置情報からマニピュレータの手先位置を決定し,オンラインティーチングによる動作の入力を行う.

図 3.1 ロボットビジョンと座標変換

3.2 画像処理

本実験では、次の手順で画像処理を行い、3次元位置を計測する.

- (1) 画像の取得: カメラから取得される画像は、カラー画像であり、赤色成分 (R)、緑色成分 (G)、青色成分 (B) から構成されている。それぞれの成分は、0 から 255 の 256 諧調の値を持つため、1 画素 (pixel) は 3 バイトである。色は RGB 色空間と HSV 色空間と呼ばれる 2 つの色の表現方法がある。本 実験では HSV 色空間で画像を処理する。
- (2) 空間フィルタリング: 画像には外乱光などの影響により色の明るさやコントラストなどが変化する. その変化を低減するために, 画像フィルタに通す. 本実験では, 空間フィルタリングと呼ばれる「平均化フィルタ」,「ガウシアンフィルタ」,「メディアンフィルタ」,「双方向フィルタ」をそれぞれ用いる.
- (3)2 値化処理: HSV 色空間から特定の色を検出し、白黒画像を生成する. これには2値化と呼ばれる処理を行う. 2値化は任意の値(しきい値)を定め、それを基準として、各ピクセルを白または黒に割り当てる. この操作によって、抽出したい物体とそれ以外を区別する. 実際、しきい値の決定方法には、Pタイル法、判別分析法、微分ヒストグラム法、モード法など多くあるが、ここではヒストグラムを参考に試行錯誤的に決定するものとする. この2値化処理によって対象物体が特定できる画像が得られる.
- (4) 特徴パラメータの抽出: 対象物体の特徴となるパラメータには、面積、周囲長、重心位置、形状などが挙げられる. 本実験では、画像全体を1つの物体と仮定し、2値化された白部分の面積と重心位置を求める. この重心位置を3次元位置計測に利用する.

(5) ステレオ法による 3 次元位置の計測: 2 台のカメラ画像それぞれにある (4) で取得した画像上の物体の重心位置から三角測量の原理を用いると、3 次元位置を計測できる。また、本実験で使用するステレオカメラ (Realsense D435f) にはプロジェクタによるパターンが照射されており、そのパターンを 2 台のカメラが検出することでカメラ画像同士のマッチングを行っている。

3.3 座標変換

カメラから取得された画像はマニピュレータのグローバル座標系とは異なる視点を持っている。そこで、カメラに固定された座標系からみた対象物体の位置を、グローバル座標系に変換して考える必要がある。本実験では、マニピュレータの手先にカメラが固定されているため、図 3.1に示されるようにカメラに固定された座標系は手先座標系 Σ_e と等しいものとして考える。

座標を変換するには、グローバル座標系 Σ_0 の原点から手先座標系 Σ_e の原点までの位置ベクトル ${}^0\mathbf{p_{0,e}}$ と、手先の姿勢を表現する回転行列 ${}^0\mathbf{R}$ を用いて、

$${}^{0}\mathbf{x}_{\mathbf{p}} = {}^{0}\mathbf{p}_{\mathbf{0},\mathbf{e}} + {}^{0}\mathbf{R}^{\mathbf{e}}\mathbf{x}_{\mathbf{p}} \tag{3.1}$$

と計算する.ここで, 0 x_p はグローバル座標系からみた対象物体, e x_p は手先座標系からみた対象物体の 3 次元位置を示している.本実験では, 0 p_{0,e} がマニピュレータの手先位置, 0 x_p が求めたい対象物体の 3 次元位置, e x_p がカメラから取得した対象物体の 3 次元位置, e R がマニピュレータの手先姿勢となる.ただし,マニピュレータの制御用ソフトウェアでは,XYZ オイラー角で姿勢が表現されるため, e R に変換する必要がある.

4 実験 1-1:ティーチング実験

4.1 実験概要

本実験では、図 4.1 中に示された番号の位置で試験管を模したホワイトボードマーカーを抜き差しするマニピュレータの動作をダイレクトティーチングおよびオンラインティーチングを用いて制御 PC に入力する. P1 \sim P3 の位置には部品が配置されており、その部品をそれぞれ S1 \sim S3 に運搬する. また、運搬の途中で試験管を 3 回振る動作も行う.

図 4.1 実験環境(実験1)

4.2 ダイレクトティーチング実験

4.2.1 実験手順

実験は次の手順で行う.

- (1) 空圧駆動型ロボットグリッパの電磁弁を操作し、ホワイトボードマーカーを把持させる.
- (2) マニピュレータを初期位置姿勢付近に移動させる.
- (3) マニピュレータ制御用ソフトウェアからダイレクトティーチングを実行する.
- (4) 初期姿勢から S1 上部に移動する.
- (5) S1 と P1 の中間地点で、ホワイトボードマーカーを 3 回振る.
- (6) P1 の挿入口にホワイトボードマーカーを指す.
- (7) マニピュレータを初期位置姿勢付近に戻し、ダイレクトティーチングを終了する.
- (8) 記録した動作をプレイバックする. プレイバックの様子は動画撮影する.
- (9) P2 と S2, P3 と S3 の組み合わせでもダイレクトティーチングを実行する. ただし, 実行する人を交代すること. そして, 全員 1 度は実行すること (重複してもよい). 実行中の様子を適宜写真, 動画撮影し, ティーチングに苦労している点などを観察する. 撮影した写真は考察などに利用する. 利用する場合は図として載せること.

4.2.2 実験結果

ダイレクトティーチングの実行結果について説明する。図 4.3 にダイレクトティーチングのプレイバックの様子を示す。

上記の文章から続くように、班員全員の実行結果についてそれぞれ客観的に説明せよ. また、撮影した動画から静止画を切り出し、その様子を説明すること、特にマーカーの挿入に失敗した場合はどのような失敗だったのかを詳細に記述すること.

図 4.2 ダイレクトティーチング・プレイバックの様子

4.2.3 考察

次に, 実行結果について考察する.

上記の文章から続くように、実験結果について考察せよ、特に下記の項目について、考察すること、

- マーカーの直径と挿入穴の大きさ
- マニピュレータに直接触れてティーチングを行う点
- 運動学

4.3 オンラインティーチング実験

4.3.1 実験手順

マニピュレータ制御用ソフトウェアを用いて、オンラインティーチングを行う。オンラインティーチングはビジュアルプログラミングモードを用いて行う。実験は次の手順で行う。

- (1) マニピュレータを初期位置姿勢に移動させる.
- (2) マニピュレータ制御用ソフトウェアからオンラインティーチングを実行する.
- (3) 初期姿勢から S1 に移動し、ホワイトボードマーカーを把持する動作を行う。その後、ホワイトボードマーカーを S1 から抜く。
- (4) S1 と P1 の中間地点で、ホワイトボードマーカーを 3 回振る. なお、マーカーを振る動作のティーチングは最初の 1 名が行い、その後はティーチングのデータを複製して使用してよい.
- (5) P1 の挿入口にホワイトボードマーカーを指す.
- (6) マニピュレータを初期位置姿勢に戻す.
- (7) P2 と S2, P3 と S3 の組み合わせでも同様にティーチングを行う. ただし, 実行する人を交代すること. そして, 全員1度は実行すること. 人数が4人以上いる場合は, 挿入した P1, P2 のホワイトボードマーカーを S1, S2 にそれぞれ戻す動作とする. 実行中の様子を適宜撮影し, ティーチングに苦労している点などを観察する. 撮影した写真は考察などに利用する. 利用する場合は図として載せること.
- (7) オンラインティーチングを終了する.
- (8) 記録した動作をプレイバックする. プレイバックの様子は動画撮影する.

4.3.2 実験結果および考察

オンラインティーチングの実行結果について説明する. 図 ??にダイレクトティーチングのプレイバックの様子を示す.

上記の文章から続くように、実行結果について客観的に説明せよ.また、撮影した動画から静止画を切り出し、説明を補足すること.特に下記の項目について、記述すること.

- ティーチングの様子
- マーカーを把持したときの様子
 - マーカーを抜いたときの様子
- . 手先の経路
 - マーカーを挿入したときの様子

図 4.3 オンラインティーチング・プレイバックの様子

4.3.3 考察

次に, 実行結果を考察する.

上記の文章から続くように考察を記述せよ.特に下記の項目について、考察すること.

- ティーチングの様子(ダイレクトティーチングとの違い・利点欠点・手先位置と運動学)
- ロボットグリッパの特徴
- 実験環境の位置決め

5 実験1-2:運動学(3自由度)実験

5.1 実験概要

本実験では、制御 PC 内で実行されている運動学をエクセルを用いて計算する。そして、指定された手先位置にマニピュレータを移動させる実験を行う。マニピュレータは第4~第6関節が0[deg] に固定された3自由度マニピュレータとして扱う。マニピュレータへの動作入力は関節角度の数値指定によるオンラインティーチングを用いる。

また、図 **5.1** に示すように本実験における逆運動学は目標位置においてのみ計算し、実験 1-2 とは異なり途中経路では計算を行わないものとする.

図 5.1 フローチャート

5.2 実験手順

実験は以下の手順で行う.

- (1) 逆運動学 (式 (2.6), 式 (2.12)~式 (2.14))を計算するエクセルファイルを作成し、表 5.2 に記された 手先位置から関節角度を計算する. 数値は小数点第 1 位まで表記するものとする.
- (2) 初期位置, No.1~3, 初期位置の順に手先位置が到達するようにオンラインティーチングを実行する.
- (3) 記録した動作をプレイバックする. プレイバックの様子は撮影する.

Position No.	0x [mm]	0y [mm]	^{0}z [mm]
1	168.1	168.1	368.8
2	210.6	-210.6	196.0
3	541.3	0	182.8

表 5.1 手先位置

5.3 実験結果

表 **5.3** に逆運動学の計算結果を示す. また, 図 **5.2** に, 手先位置が Position No.2 から No.3 に移動した際の経路の模式図を示す.

上記の文章から続くように、実行結果について客観的に説明せよ. 特に、手先の経路について、実験1との違いを図を用いて記述せよ.

Position No. θ_1 [deg] θ_2 [deg] θ_3 [deg] θ_3 [deg] θ_3 [deg] θ_4 [deg] θ_5 [deg] θ_5

表 5.2 各関節角度の計算結果

図 5.2 手先の経路(模式図)

5.4 考察

次に, 実行結果の考察を述べる.

上記の文章から続くように、考察せよ. 特に下記の項目について、考察すること.

- 手先位置の経路が実験1と異なった理由
- マニピュレータの可動範囲を考慮して逆運動学の他の解について

6 実験 2-1: 画像処理実験

6.1 実験概要

本実験では、手先に装着した RGB-D カメラから取得した画像を処理し、対象物体の検出および 3 次元位置情報の取得を実験する。マニピュレータの卓上には、五角形の積み木(赤色、青色、黄色) および収納台座が置かれており、実験では積み木および各収納位置を対象に実験を行う。

6.2 実験手順

実験手順は以下の手順で行う.

- (1) 卓上に積み木を 1 個設置し、卓上の目盛りから各物体の ${}^0x^0y$ 座標を直接計測し、記録する.
- (2) Python の開発環境 Spyder を起動し、画像処理プログラムから空間フィルタリングを OFF にする.
- (3) 画像処理プログラムを実行後、マニピュレータの制御用ソフトウェアを用いてマニピュレータを手動操作し、画像上に積み木が現れる位置まで手先を移動する.この際、手先の位置姿勢を記録する.
- (4) ヒストグラムを参考にしながら積み木の HSV 色空間のしきい値(最大値,最小値)を設定し、記録する. また、スクリーンショット等を用いて、画像処理結果を記録する.
- (5) 得られた3次元位置情報を記録する.
- (6) 「平均化フィルタ」,「ガウシアンフィルタ」,「メディアンフィルタ」,「双方向フィルタ」において、それぞれ (1)~(5) を繰り返す.
- (6) 残りの積み木および収納位置3箇所について、(1)~(6) を繰り返す。
- (7) 式 (3.1) を用いて、座標変換を行い、各物体の 3 次元位置をグローバル座標系で表現するエクセルファイルを作成し、計算する.

6.3 実験結果

表 6.1~表 6.3 に実験結果を示す. 図 6.1 には、実位置と計測位置の誤差をまとめた図を示す。

上記の文章から続くように,実験結果について客観的に説明せよ.

特にブロックの色の違いによる HSV の大きさやブロックの違いによる計測位置の差異について記述せよ

表 6.1 積み木 (赤) の結果

	フィルタ無	平均フィルタ	ガウシアンF	メディアンF	双方向フィルタ		
実位置 (⁰ x, ⁰ y)[mm]							
手先位置 (⁰ x, ⁰ y, ⁰ z)[mm]	联图 . 司服	多點因為人們知	Tub 4 x 12 (T-fl)	Maria & Arm	MERCHANICA N		
手先姿勢 (R, P, Y)[deg]	TO THE REAL OF	ENCOSIN S	111 1102-1		ディタ=Wの作品		
H(max,min)		CONTRACTOR	PERSON	BARBIN LINE			
S(max, min)					11		
V(max, min)					和子母女 化分		
計測位置 $({}^ex, {}^ey, {}^ez)$ [mm]							
計測位置 (⁰ x, ⁰ y, ⁰ z)[mm]				THERESE	4 XXIIINE MXX		

表 6.2 積み木 (青) の結果

The state of the s	フィルタ無	平均フィルタ	ガウシアンF	メディアンF	双方向フィルタ
実位置 (⁰ x, ⁰ y)[mm]	and the same	i a filmas a	The response	SERVICE REPORTS	1 57 es -1
手先位置 (°x,°y,°z)[mm]					and tolking or gallering and
手先姿勢 (R, P, Y)[deg]	APASPI, APV	E JOSEPH V	PH OF WHITE	120年12年47	K S T K J TEL
H(max,min)	10.7(41)	· 至美国和阿姆国	1.2 Miles & 4	KE COC - III SO	
S(max, min)			2. 医糖品	& In stan the ex	n-Airlaide na
V(max, min)					
計測位置 $({}^ex, {}^ey, {}^ez)$ [mm]	Million State A	CALL ST	F. W. F. L. C. L. C.	25.26 1 1 2 20 1	CONTRACT (9)
計測位置 (°x,°y,°z)[mm]				THE PROPERTY AND	e (15) 15 1-13

表 6.3 積み木 (黄) の結果

·	フィルタ無	平均フィルタ	ガウシアンF	メディアンF	双方向フィルタ
実位置 (⁰ x, ⁰ y)[mm]					
手先位置 (⁰ x, ⁰ y, ⁰ z)[mm]					京台(4年3) リー
手先姿勢 (R, P, Y)[deg]					
H(max,min)			(主)	2000年	ta si - i n se
S(max, min)		- 10 mart - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
V(max, min)	INVALUE AL S. N. T	100 100 100 100 100 100 100 100 100 100	isa kan ini mananan		
計測位置 $({}^ex, {}^ey, {}^ez)$ [mm]		A			
計測位置 (⁰ x, ⁰ y, ⁰ z)[mm]					*

図 6.1 誤差の大きさ

次に、図 6.2 に赤ブロックのフィルタ後の画像を示す.

上記の文章から続くように、空間フィルタリングの違いによる2値化画像の比較について述べよ。

フィルタなし

平滑フィルタ ガウシアンフィルタ メディアンフィルタ

双方向フィルタ

図 6.2 画像フィルタ後の赤ブロック

6.4 考察

実位置と計測結果の誤差について、考察を行う.

上記の文章から続くように、実験結果について考察せよ、特に実位置と計測結果の誤差の要因について、 以下の点に着目して考察すること.

- フィルタの違いによる計測位置の差異
- カメラの位置によってブロックの2値化される部分
- カメラの固定方法

7 実験2-2:3次元位置計測と物体の把持収納実験

7.1 実験概要

本実験では、手先に装着した RGB-D カメラから把持物体および収納位置の 3 次元位置情報を取得し、物体の把持および収納する実験を行う。図 7.1 に実験環境の模式図を示す。マニピュレータの卓上には、把持する五角形の積み木(赤色、青色、黄色) と収納位置用の積木(黄、青、緑) が置かれている。マニピュレータは五角形の積み木を検出・把持して収納位置に配置する動作を行う。

図 7.1 実験環境 (実験 3)

7.2 実験手順

実験手順は以下の手順で行う.

- (1) 卓上に積み木を3個,収納台座をすべて無造作に配置する.
- (2) Python の開発環境 Spyder を起動し、実験 3 において最も優れた結果となった空間フィルタリングを選択する.
- (3) 画像処理プログラムを実行後、マニピュレータの制御用ソフトウェアを用いてマニピュレータを手動操作し、画像上に各物体が現れる位置まで手先を移動する。この際、手先の位置姿勢を記録する。
- (4) 実験 3 で記録した HSV 色空間のしきい値を設定し、各物体の検出を行う。また、実験 3 で作成したエクセルを用いて、各物体の 3 次元位置をグローバル座標系で表現する。
- (5) マニピュレータの制御用ソフトウェアを用いて、手先位置の数値指定によるオンラインティーチングを行う. 動作は、赤積み木の把持収納、青積み木の把持収納、黄積み木の把持収納をすべて連続で行う. ただし、手先の姿勢は $(R,P,Y)=(180,0,0)[\deg]$ とし、手先の 0z 位置は $80[\mathrm{mm}]$ (把持時)、 $110[\mathrm{mm}]$ (収納時)とすること、また、動作の様子を動画撮影する.

7.3 実験結果

表 7.1 に実験結果を示す. また、図 7.2 にマニピュレータが積木を把持・収納する様子を示す.

上記の文章から続くように、実験結果について客観的に説明せよ. ただし、また、撮影した動画から静止 画を切り出し、把持の詳細な様子を記載すること.

表 7.1 物体の位置

	赤積木	青積木	黄積木	赤収納	青収納	黄収納
手先位置 (⁰ x, ⁰ y, ⁰ z)[mm]						
手先姿勢 (R, P, Y)[deg]	"					WIP
計測位置 (ex, ey, ez)[mm]	779 3	55 St. 10	reprise	1708		
計測位置 (⁰ x, ⁰ y, ⁰ z)[mm]			V zeromoo			Tamer 1991
	成功	成功	失敗	成功	失敗	失敗

把持直前の様子

把持の様子

図 7.2 赤色積木を把持する様子

7.4 考察

次に、考察を行う.

上記の文章から続くように、実験結果について考察せよ. 特にグリッパの特徴に着目し、計測時の誤差や 把持について考察すること.

8 課題

8.1 逆運動学の導出

課題:式(2.6),式(2.12)~式(2.14)を導出せよ、手書き可、ただし、枠や枠内の文章は報告書に記載不要とする。参考文献は報告書最後の参考文献の欄に記載すること。

8.2 回転行列とオイラー角の変換式

課題:式 (2.17)~式 (2.20) を導出せよ、手書き可、ただし、枠や枠内の文章は報告書に記載不要とする。 参考文献は報告書最後の参考文献の欄に記載すること。

8.3 空間フィルタリング

「平均化フィルタ」,「ガウシアンフィルタ」,「メディアンフィルタ」,「双方向フィルタ」の特徴についてそれぞれ 100~200 字程度で説明せよ. ただし、枠や枠内の文章は報告書に記載不要とする. 参考文献は報告書最後の参考文献の欄に記載すること.

8.4 色空間

RGB 色空間と HSV 色空間について,それぞれ $100\sim200$ 字程度で説明せよ.ただし,枠や枠内の文章は報告書に記載不要とする.参考文献は報告書最後の参考文献の欄に記載すること.

8.5 ロボットビジョンの実用例

ステレオカメラ(単眼カメラでもよい)とロボットマニピュレータを統合することで可能となる作業の実用例を3例以上調査し、それぞれ200字程度で説明せよ。ただし、枠や枠内の文章は報告書に記載不要とする。参考文献は報告書最後の参考文献の欄に記載すること。

参考文献

- [1] 細田耕:実践ロボット制御,オーム社,2019.
- [2] 株式会社アールティ: 3 自由度ロボットの順運動学と逆運動学, https://rt-net.jp/humanoid/archives/2652 (2024 年 4 月 1 日閲覧).
- [3] 酒井幸市:ディジタル画像処理入門,コロナ社,2001.
- [4] 北山直洋: Python で始める OpenCV 4 プログラミング,株式会社カットシステム, 2019.