A - Operations on a Stack

Time Limit: 2 sec / Memory Limit: 1024 MiB

 $\mathsf{Score} : 400 \, \mathsf{points}$

Problem Statement

You are given an integer sequence of length N: (A_1, A_2, \ldots, A_N) . There is also a sequence S, which is initially empty.

For each $i=1,2,\ldots,N$ in this order, you perform exactly one of the following two operations:

- Append A_i as an element to the end of S.
- Delete the last element of S. You cannot choose this operation if S is empty.

Print the maximum possible value of the sum of the elements of S after all operations.

Constraints

- $1 < N < 2 \times 10^5$
- $-10^9 \le A_i \le 10^9$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

Sample Output 1

8

Starting from the initial state where S is an empty sequence, consider the following operations:

- For i=1, append $A_1=3$ to the end of S. Now, S=(3).
- ullet For i=2, append $A_2=-1$ to the end of S. Now, S=(3,-1).
- ullet For i=3 , delete the last element of S . Now, S=(3) .
- ullet For i=4, append $A_4=5$ to the end of S. Now, S=(3,5).
- ullet For i=5, append $A_5=-9$ to the end of S. Now, S=(3,5,-9).
- ullet For i=6 , delete the last element of S . Now, S=(3,5) .

Here, the sum of the elements of S after all operations is 3+5=8, which is the maximum possible value.

Sample Input 2

1 -1

Sample Output 2

-1

Note that if S is empty, you must choose to append an element.

Sample Input 3

```
20
-14 74 -48 38 -51 43 5 37 -39 -29 80 -44 -55 59 17 89 -37 -68 38 -16
```

Sample Output 3

B - Minimum Cost Sort

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

You are given a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$. Takahashi can repeatedly perform the following operation on P (possibly zero times):

• Choose an integer i satisfying $1 \leq i \leq N-1$. Pay a cost of i, and swap P_i and P_{i+1} .

Find the minimum total cost required to sort P in ascending order.

Constraints

- $2 < N < 2 \times 10^5$
- (P_1,P_2,\ldots,P_N) is a permutation of $(1,2,\ldots,N)$.
- All input values are integers.

Input

The input is given from Standard Input in the following format:

$$N$$
 $P_1 P_2 \dots P_N$

Output

Print the minimum total cost required to sort ${\cal P}$ in ascending order.

Sample Input 1

3 3 2 1

Sample Output 1

4

Takahashi can sort P in ascending order as follows:

- Pay a cost of 1 and swap $P_1=3$ and $P_2=2$. Now, P=(2,3,1).
- ullet Pay a cost of 2 and swap $P_2=3$ and $P_3=1$. Now, P=(2,1,3).
- Pay a cost of 1 and swap $P_1=2$ and $P_2=1$. Now, P=(1,2,3).

The total cost for these operations is 4, which is the minimum possible.

Sample Input 2

5 2 4 1 3 5

Sample Output 2

6

Sample Input 3

2 1 2

Sample Output 3

C - Cost to Flip

Time Limit: 2 sec / Memory Limit: 1024 MiB

 $\mathsf{Score} : 600 \, \mathsf{points}$

Problem Statement

You are given two integer sequences of length $N, A = (A_1, A_2, \dots, A_N)$ and $B = (B_1, B_2, \dots, B_N)$, each consisting of 0 and 1.

You can perform the following operation on A any number of times (possibly zero):

- 1. First, choose an integer i satisfying $1 \le i \le N$, and flip the value of A_i (if the original value is 0, change it to 1; if it is 1, change it to 0).
- 2. Then, pay $\sum_{k=1}^{N} A_k C_k$ yen as the cost of this operation.

Note that the cost calculation in step 2 uses the A after the change in step 1.

Print the minimum total cost required to make A identical to B.

Constraints

- $1 \le N \le 2 \times 10^5$
- $A_i, B_i \in [0, 1]$
- $1 \le C_i \le 10^6$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

Sample Input 1

```
4
0 1 1 1
1 0 1 0
4 6 2 9
```

Sample Output 1

16

Consider the following procedure:

- First, flip A_4 . Now, A=(0,1,1,0). The cost of this operation is 0 imes 4+1 imes 6+1 imes 2+0 imes 9=8 yen.
- Next, flip A_2 . Now, A=(0,0,1,0). The cost of this operation is 0 imes 4+0 imes 6+1 imes 2+0 imes 9=2 yen.
- Finally, flip A_1 . Now, A=(1,0,1,0), which matches B. The cost of this operation is 1 imes 4+0 imes 6+1 imes 2+0 imes 9=6 yen.

In this case, the total cost is 8+2+6=16 yen, which is the minimum possible.

Sample Input 2

```
5
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
```

Sample Output 2

0

A and B are already identical initially, so there is no need to perform any operations.

Sample Input 3

Sample Output 3

D - Reverse Brackets

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 700 points

Problem Statement

A string is defined to be a valid parenthesis sequence if and only if it satisfies one of the following conditions:

- It is an empty string.
- There exists a valid parenthesis sequence A such that the string is obtained by concatenating (, A, and) in this order.
- There exist non-empty valid parenthesis sequences A and B such that the string is obtained by concatenating A and B in this order.

You are given a valid parenthesis sequence S of length N. You can perform the following operation any number of times:

ullet Choose a contiguous substring of S that is a valid parenthesis sequence, and reverse it.

Here, reversing the substring of S from the l-th character to the r-th character means the following:

• For every integer i satisfying $l \leq i \leq r$, simultaneously replace S_i with) if S_{l+r-i} is (, and with (if S_{l+r-i} is).(Note that reversing here is different from the usual definition of reversing.)

Find the number, modulo 998244353, of distinct strings S that you can have at the end of the process.

Constraints

- $1 \le N \le 5000$
- |S|=N
- ullet S is a valid parenthesis sequence.

Input

The input is given from Standard Input in the following format:

N

S

Output

Print the answer.

Sample Input 1

6 (())()

Sample Output 1

2

For example, you can transform S into ()(()) by doing the following:

• Choose the substring from the 1st to the 6th character of S. This is a valid parenthesis sequence. S becomes ()(()).

The only other string that can be formed is (())(). Thus, the answer is 2.

Sample Input 2

2

Sample Output 2

E - Swap 0^X and 1^Y

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 900 points

Problem Statement

You are given two strings S and T, each of length N and consisting of 0 and 1, as well as two positive integers X and Y. For $i=1,2,\ldots,N$, let S_i denote the i-th character of S.

Determine whether it is possible to make S identical to T by repeatedly performing Operations A and B below any number of times (possibly zero) in any order:

- (Operation A) Choose an integer i satisfying $1 \leq i \leq N-(X+Y)+1$, $S_i=S_{i+1}=\cdots=S_{i+X-1}=\emptyset$, and $S_{i+X}=S_{i+X+1}=\cdots=S_{i+X+Y-1}=1$, then change each of $S_i,S_{i+1},\ldots,S_{i+Y-1}$ to 1 and each of $S_{i+Y},S_{i+Y+1},\ldots,S_{i+Y+X-1}$ to \emptyset .
- (Operation B) Choose an integer i satisfying $1\leq i\leq N-(X+Y)+1, S_i=S_{i+1}=\cdots=S_{i+Y-1}=$ 1, and $S_{i+Y}=S_{i+Y+1}=\cdots=S_{i+Y+X-1}=$ 0, then change each of $S_i,S_{i+1},\ldots,S_{i+X-1}$ to 0 and each of $S_{i+X},S_{i+X+1},\ldots,S_{i+X+Y-1}$ to 1.

Constraints

- $1 \le N \le 5 \times 10^5$
- $1 \leq X, Y \leq N$
- S and T are strings of length N consisting of 0 and 1.
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

If it is possible to make S identical to T, print Yes; otherwise, print No.

Sample Input 1

```
9 2 1
000111001
011000011
```

Sample Output 1

Yes

The following procedure can transform S into T:

- First, perform Operation A with i=2. Now, S= 010011001.
- Next, perform Operation B with i=6. Now, S= 010010011.
- Finally, perform Operation A with i=3. Now, $S={\tt 011000011}$.

Thus, print Yes.

Sample Input 2

Sample Output 2

No

It is impossible to make S identical to T. Thus, print No.