Case Study: Polynomial ADT

Polynomial Representation using Linked Lists

Data Structures

Polynomial ADT

A single variable polynomial can be generalized as:

$$f(x) = \sum_{i=0}^{n} a_i x^i$$

An example of a single variable polynomial:

$$4x^6 + 10x^4 - 5x + 3$$

Remark: the order of this polynomial is 6 (look for highest exponent)

By definition of ADT:

A set of values and a set of allowable operations on those values.

We can now operate on this polynomial the way we like...

Polynomial ADT

What kinds of operations?

Here are the most common operations on a polynomial:

- Add & Subtract
- Multiply
- Differentiate
- Integrate
- etc...

Why implement this?

Calculating polynomial operations by hand can be very cumbersome. Take differentiation as an example:

$$d(23x^9 + 18x^7 + 41x^6 + 163x^4 + 5x + 3)/dx$$

$$= (23*9)x^{(9-1)} + (18*7)x^{(7-1)} + (41*6)x^{(6-1)} + \dots$$

How to implement this?

There are different ways of implementing the polynomial ADT:

- Array (not recommended)
- Linked List (preferred and recommended)

- Array Implementation:
- $p1(x) = 8x^3 + 3x^2 + 2x + 6$
- $p2(x) = 23x^4 + 18x 3$

 This is why arrays aren't good to represent polynomials:

•
$$p3(x) = 16x^{21} - 3x^5 + 2x + 6$$

WASTE OF SPACE!

- Advantages of using an Array:
 - only good for non-sparse polynomials.
 - ease of storage and retrieval.
- Disadvantages of using an Array:
 - have to allocate array size ahead of time.
 - huge array size required for sparse polynomials. Waste of space and runtime.

Linked list Implementation:

•
$$p1(x) = 23x^9 + 18x^7 + 41x^6 + 18x^4 + 3$$

•
$$p2(x) = 4x^6 + 10x^4 + 12x + 8$$

NODE (contains coefficient & exponent)

- Advantages of using a Linked list:
 - save space (don't have to worry about sparse polynomials) and easy to maintain
 - don't need to allocate list size and can declare nodes (terms) only as needed
- Disadvantages of using a Linked list:
 - can't go backwards through the list
 - can't jump to the beginning of the list from the end.

 Adding polynomials using a Linked list representation: (storing the result in p3)

To do this, we have to break the process down to cases:

- Case 1: exponent of p1 > exponent of p2
 - Copy node of p1 to end of p3.

[go to next node]

- Case 2: exponent of p1 < exponent of p2
 - Copy node of p2 to end of p3.

[go to next node]

- Case 3: exponent of p1 = exponent of p2
 - Create a new node in p3 with the same exponent and with the sum of the coefficients of p1 and p2.

Polynomials

$$A(x) = a_{m-1}x^{e_{m-1}} + a_{m-2}x^{e_{m-2}} + \dots + a_0x^{e_0}$$

Representation

```
struct polynode {
    int coef;
    int exp;
    struct polynode * next;
};
```

typedef struct polynode polynode; polynode *a, *b;

coef	exp	next
------	-----	------

Example

$$a = 3x^{14} + 2x^8 + 1$$

$$b = 8x^{14} - 3x^{10} + 10x^6$$

Adding Polynomials

C Program to implement polynomial Addition

```
struct polynode
  int coef;
  int pow;
  struct polynode *next;
};
typedef struct polynode poly;
```

```
void main()
  poly *poly1=NULL, *poly2=NULL, *poly3=NULL;
  int x, y;
  char choice;
  printf("Enter 1st Polynomial\n");
  do{
       printf("Enter Coefficient\n");
       scanf("%d", &x);
       printf("Enter Exponent\n");
       scanf("%d", &y);
       insert_node(x,y,&poly1);
       printf("Do you want to enter more terms: Y/N\n");
       scanf("%c", &choice);
       }while(choice != 'N');
```

```
printf("Enter 2<sup>nd</sup> Polynomial\n");
do{
     printf("Enter Coefficient\n");
     \operatorname{scanf}(\text{"%d"},\&x);
     printf("Enter Exponent\n");
     scanf("%d",&y);
     insert_node(x, y, &poly2);
     printf("Do you want to enter more terms: Y/N\n");
     scanf("%c",&choice);
     }while(choice != 'N');
```

```
printf("Entered Polynomials are:\n);
display(poly1);
printf("\n");
display(poly2);
poly3=(poly *)malloc(sizeof(poly));
add_polynomials(poly1, poly2, poly3);
printf(Resultant Polynomial after addition :\n'');
display(poly3);
```

```
void display(poly *a)
     while(a != NULL)
            printf("^{\circ}dx^{\circ}d", a->coef, a->pow);
            if(a->next != NULL)
                    printf(" + ");
             a = a->next;
```

```
void insert_node(int x, int y, poly **temp)
       poly *r, *z;
       z = *temp;
       r =(poly *)malloc(sizeof(poly));
       r->coeff = x;
       r->pow = y;
       r->next = NULL;
       if(z == NULL)
               *temp = r;
       else
               while(z->next != NULL)
                      z = z->next;
               z->next = r;
```

```
void add_polynomials(poly *a, poly *b, poly *c)
       while(a && b)
    // If power of 1st polynomial is greater then 2nd, then store
1st as it is
    // and move its pointer
              if(a->pow > b->pow)
                      c->pow = a->pow;
                      c->coef = a->coef;
                      a = a->next;
```

```
// If power of 2nd polynomial is greater then 1st, then store
2nd as it is
// and move its pointer

else if(a->pow < b->pow)
{
    c->pow = b->pow;
    c->coef = b->coef;
    b = b->next;
```

```
// If power of both polynomial numbers is same then add
their coefficients
     else
       c->pow = a->pow;
       c->coef = a->coef+b->coef;
       a = a->next;
       b = b-
    // Dynamically create new node only when terms are still
left in any of the polynomial
       if(a \parallel b)
               c->next = (poly *)malloc(sizeof(poly));
               c = c->next;
               c->next = NULL;
```

\ //End of while

```
while(a \parallel b)
        if(a)
                 c->pow = a->pow;
                 c->coef = a->coef;
                 a = a - next;
        if(b)
                 c>pow = b->pow;
                 c->coef =b->coef;
                 b = b-next;
        if(a \parallel b)
                 c->next = (poly *)malloc(sizeof(poly));
                 c = c->next;
                 c->next = NULL; 
  }//End of while
} //End of add_polynomials
```

Complexity?

What do you think about the time complexity of adding 2 polynomials of size 'm' and 'n' respectively?

O(m+n), where m is the length of 1st polynomial n is the length of 2nd polynomial

Exercise

Write a program to implement polynomial multiplication.