

What is claimed is:

		1
1	1. A proc	essing machine comprising:
2	(a) a d	ata memory;
3	(b) a c	ontrol engine, linked in communication with the data
4	memory;	
5	(c) an	instruction memory in which instructions may be stored,
6	having an input	or receiving control information from the control engine;
7	(d) ap	lurality of coprocessors, each connected in
8	communication v	vith the data memory and the control engine,
9	each of sa	aid control engine and plurality of coprocessors being
10	enabled to perfor	rmance simultaneous functions in response to a single
11	instruction.	
1	2. The pr	ocessing machine of claim 1, wherein the control engine
2	comprises a mici	ocontroller.
1	3. The pr	ocessing machine of claim 1, further comprising a main
2	memory linked in	communication with at least one of said plurality of
3	coprocessors.	

1	4. The processing machine of claim 3, wherein said at least one
2	coprocessor comprises a bus interface coprocessor.

- 1 5. The processing machine of claim 1, wherein the processing
- 2 machine is used to perform a particular task and wherein each
- 3 coprocessor is designated to perform at least one specific subtask of that
- 4 particular task.
- 1 6. The processing machine of claim 5, wherein the particular task
- 2 comprises processing a data manipulation algorithm, and specific
- 3 subtasks performed by separate coprocessors include a memory bus
- 4 interface function and a data processing algorithm function.
- 1 7. The processing machine of claim 6, wherein the data
- 2 processing algorithm comprises an encryption algorithm.
- 1 8. A processing machine comprising:
- 2 (a) a data memory;
- 3 (b) a main memory;
- 4 (c) a microcontroller, linked in communication with the data
- 5 memory;
- 6 (d) an instruction memory in which instructions may be stored,
- 7 having an input for receiving control information from the microcontroller;

8	(e) a first coprocessor providing a bus interface function when		
9	operational, linked in communication with each of the main memory, the		
10	data memory, and the microcontroller, and having an input to receive		
11	instructions from the instruction memory; and		
12	(f) a second coprocessor, linked in communication with the		
13	data memory and the microcontroller and having an input to receive		
14	instructions from the instruction memory.		
1	9. The processing machine of claim 8, further comprising:		
2	a third coprocessor, linked in communication with the data memory		
3	and the microcontroller and having an input to receive instructions from		
4	the instruction memory.		
1	10. The processing machine of claim 9, further comprising:		

- a fourth ϕ oprocessor, linked in communication with the data 2
- memory and the microcontroller and having an input to receive 3
- instructions from the instruction memory. 4
- 1 11. The processing machine of claim 8, wherein each of the first
- 2 and second processors and the microcontroller perform simultaneous
- 3 coordinated functions in response to a single instruction issued from the
- instruction memory. 4

1	12. The processing machine of claim β , wherein the second
2	coprocessor is enabled to process a data manipulation algorithm.
1	13. The processing machine of claim 9, wherein the third
2	processor is enabled to perform an ATM data transfer interface function.
1	14. The processing machine of claim 10, wherein the third
2	processor is enabled to perform an ATM data transfer interface function
3	when operational and the fourth processor is enabled to perform an ATM
4	Adaptation Layer (AAL) function when operational.
1	15. A method of processing a data manipulation task with a
2	processing machine including a control engine and a plurality of
3	coprocessors, comprising/
4	dividing the data manipulation task into a plurality of subtasks;
5	issuing a sequence of instructions having a plurality of portions to
6	the control engine and each of said plurality of coprocessors;
7	performing separate subtasks with the control engine and each of
8	said plurality of coprocessors in response to corresponding portions of the
9	instructions received by each of these components; and
10	coordinating an execution of each portion of instructions received
11	by the control engine and each of said plurality of coprocessors such that

- 12 the subtasks performed by these components are performed substantially
- 13 in parallel.
 - 1 16. The method of claim 15, wherein the coordination of the
 - 2 execution of the portions of instructions is performed by the control engine
 - 3 via execution control signals sent to each of said plurality of coprocessors.
 - 1 17. The method of claim 16, wherein the processing machine
 - 2 comprises a programmed state machine and wherein each of the control
 - 3 engine and said plurality of copfocessors is caused to cycle through a
 - 4 respective set of machine states in response to instruction portions
 - 5 received by that component.
 - 1 18. The method of daim 15, wherein one of the subtasks
 - 2 comprises a bus interface function.
 - 1 19. The method of claim 15, wherein the control engine comprises
 - 2 a microcontroller.
 - 1 20. The method of claim 15, wherein each instruction is issued
 - 2 from an instruction memory in response to an address sent to the
 - 3 instruction memory from the control engine.