Lecture 20 Registration and Optimization Considerations: Cost Function

MP574: Applications

Sean B. Fain, PhD (sfain@wisc.edu)

Diego Hernando, PhD (dhernando@wisc.edu)

ITK/VTK Applications: Andrew Hahn, PhD (adhahn@wisc.edu)

Housekeeping

- Group 5 Presentation of project proposal
- Homework 4 questions?
- Install virtual box (https://www.virtualbox.org/wiki/Downloads)
- Download the virtual machine if you haven't already
 - Link: https://uwmadison.box.com/s/saemxuith6lbmurbys9z6xtywp96jdm6
- Lecture 20

Learning Objectives

- Review the optimization problem in image registration
- Introduce major classes of cost or "matching" function formulations for image registration
 - Geometric or Landmark-Based
 - Signal Intensity-Based
 - Information-Based

Registration Workflow

Review/Introduction

- The mapping is highly influenced by the degrees of freedom (DOFs)
- Constraining the mapping and a wide range of DOFs are used in medical image registration depending on the application and desired goals.
 - In general, the preference is to minimize the DOF's required to reach a useful registration solution,
 - ...while allowing sufficient DOF to model the actual mapping.
- Choice of DOF and transformation depends on:
 - the organ system,
 - desired accuracy,
 - level of interaction, and
 - mono- vs. multi-modality application.

Level of Interaction

- Interactive or "supervised"
- Semi-automatic
 - User initialized, corrected
 - Supervised segmentation step
- Automatic
 - Usually search-based
 - Iterative with cost function minimization

Choice of Cost Function

- The primary determining factor is the nature of the tissue signal intensity represented in the image.
 - If mono-modal registration problem, then signal intensity-based metrics such as the L1- and L2-norm and cross-correlation are common and useful.
 - If a multi-modal registration method, then signal intensities will vary by tissue type across the fixed and moving images:
 - Surface matching, or
 - Information theory approach (sometimes called "overlap" methods).

Classes of Cost Functions

- Geometric/Landmark
 - Advantage = sparse and computational simple
 - Can be noise sensitive and insensitive to local deformation
 - Detection of features in both fixed and moving images can be difficult
- Signal Intensity-Based
 - L1, L2 Norms
 - Cross-correlation
- Information-Based
 - Entropy, Joint Entropy, and Mutual Information (MI)
 - Normalized MI

Geometric/Landmark

- Two-step process:
 - Detecting points of interest
 - Determining correspondence
 - Inferring the transformation
- Examples:
 - Fiducial or Control-point registration
 - Anatomic or Feature-based registration

- $K_F = \{\kappa_1, \kappa_2, \kappa_3, ... \kappa_n\}$ and $\Lambda_M = \{\lambda_1, \lambda_2, \lambda_3, ... \lambda_n\}$,
 - the first set of landmarks contains points corresponding the fixed domain, while the second corresponds to the moving domain.
- These points can be selected manually as in Control-Point registration
- Or in an automated approach to identify "features" corresponding to prominent structures in the image.

Control Point Placement

[movingPoints, fixedPoints] = cpselect(moving, fixed)

Registration Result

scale = 0.986angle = 28.5°

tform = fitgeotrans(movingPoints,fixedPoints,transformationType)

Homework 4: Registration Script

../../Homeworks/Registration_script.m

Feature-based Registration


```
points1 = detectSURFFeatures(I1);
[f1, vpts1] = extractFeatures(I1, points1);
indexPairs = matchFeatures(f1, f2);
```

Base image

Recovered image

Generalization to 2D

• 2D Laplacian kernels:

Asymmetric: Symmetric:

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$
Separable

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Gradient Magnitude

Noise Insensitive Methods

Threshold based on "strength" of edge relative to maximum gradient

Laplacian of Gaussian Kernel

$$-\nabla^{2} e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}} = -\left[\frac{(x^{2}+y^{2})-\sigma^{2}}{\sigma^{4}}\right] e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}}$$

Reduced noise sensitivity by windowing

Frequency response for symmetric kernel:

Laplacian of Gaussian:

A Structure Tensor for Hyperspectral Images

Maider Marin-McGee and Miguel Velez-Reyes

Laboratory for Applied Remote Sensing and Image Processing, University of Puerto Rico-Mayaguez, PR, USA
E-mail: {maider.marin, miguel.velez-reves}@upr.edu

$$J_{0} = \sum_{i=1}^{m} w_{i} \underline{J}_{0i} w_{i}^{T} = \begin{bmatrix} \sum_{i=1}^{m} w_{x,i}^{2} \underline{I}_{x,i}^{2} & \sum_{i=1}^{m} w_{xy,i} \underline{I}_{x,i} \underline{I}_{y,i} \\ \sum_{i=1}^{m} w_{xy,i} \underline{I}_{x,i} \underline{I}_{y,i} & \sum_{i=1}^{m} w_{y,i}^{2} \underline{I}_{y,i}^{2} \end{bmatrix}$$

Figure 1. Smoothed Gradient vs. Structure Tensor in a fingerprint image of size 227×227 . (a) Original image. (b) Gradient orientation $\sigma=0.5$. (c) Gradient orientation $\sigma=2.5$. (d) Structure Tensor $\sigma=0.5$, $\rho=4$.

2D Laplacian vs. Canny

```
% convert the image to 8 bit
>> brain3 = uint8(brain2);
>> brain4 = brain3;
% threshold the image at T = 29
>> brain4(find(brain4<=29)) = 0;
% apply Laplacian edge detection to this image; kernel
  is symmetric
>> brain6 = conv2(double(brain4),double(kernel));
% apply the Canny edge detection algorithm to this
  image
>> Brain5 = edge(brain4,'canny');
```


Surface or Chamfer Matching

- Jiang and Robb
 - Rationale Edge detection to extract surfaces of objects to be registered.
 - Euclidean distance measure from base surface
 - Not all points need be evaluated

Euclidean Distance = Cost Function

$$\frac{1}{3} \left(\frac{1}{n} \sum_{m=1}^{n} \min(t^2, d_{l, i_m}, j_m, k_m) \right)^{\frac{1}{2}}$$
• Segment surfaces
• Create "distance image" for base surface

where,

t = threshold

l = resolution level

d = Euclidian distance vector

Algorithm:

- surface
- Select random points from other surface (Monte Carlo)
- Calculate cost function: sum of values where points land on the distance image
- Optimize
 - Coarse resolution emphasizes global minima
 - Threshold to eliminate outliers.

Multi-resolution

Robustness to localized surface changes

Fig. 1-1 to Fig. 1-4 are base contours at different scales. Fig. 1-5 is the match contour. At scale=1, the sizes of contours are 144x186.

Fig. 2-1 to Fig. 2-5 are distance transformed images of the base contours with different threshold values t (unit in pixels). Scale=1 for all images.

Multi-scale improvement of convergence

Signal Intensity-Based: Similarity Metrics

Sum of absolute differences (L1-norm):

$$SAD = \frac{1}{N} \sum_{i}^{N} |A(i) - B(i)|$$

Sum of squares of differences (L2-norm):

$$SSD = \frac{1}{N} \sum_{i}^{N} (A(i) - B(i))^{2}$$

Correlation coefficient:

$$CC = \frac{\sum_{i} (A(i) - \bar{A})(B(i) - \bar{B})}{(\sum_{i} (A(i) - \bar{A})^{2} \sum_{i} (B(i) - \bar{B})^{2})^{1/2}}$$

Ratio-image uniformity:

$$RIU = \frac{\sigma_R}{\mu_R}$$
 $R(i) = B(i)/A(i)$

Information Theory: Overlap Methods

- Wood's Algorithm (multi-modality)
 - Statistical method
 - Rationale gray level in one image (e.g. MRI) represent a certain tissue type in another modality image (e.g. PET).
 - Define a uniformity measure based on the correlation of voxels representing the same tissue types.
 - Define cost function:
 - Consider voxel i with value j in the MRI (base image)
 - $lpha_{i,j}$ is the value of the corresponding PET voxel at the present overlap
 - σ_j is the standard deviation of $\alpha_{i,j}$ for all voxels i with an MRI voxel value j
 - Let α_i be the mean of $\alpha_{i,j}$ for all voxels i with an MRI voxel value of j
 - Define $\sigma'_i = \sigma_i / \alpha'_i$ i.e. a coefficient of variation
 - n_i is the total number of voxels within the brain with MRI value of j and:

• Cost Function =
$$\sigma'' = \sum_j \sigma'_j \frac{n_j}{N}$$
 , where $N = \sum_j n_j$

Joint Histograms

Mutual Information (MI)

Recall:

 $p_A(a) = (No. of pixels with value a)/(Total pixels),$

 $p_{AB}(a,b)$ is the joint probability of pixel values a and b occurring at the same coordinates in images A and B.

The mutual information between images A and B can be rewritten as:

$$I(A,B) = \sum_{a} \sum_{b} p_{A,B}(a,b) \log_2(p_{A,B}(a,b)/p_A(a)p_B(b))$$

Joint Entropy

Joint probability distribution function (PDF):

$$PDF(a,b) = \frac{HIST(a,b)}{\sum_{a,b} HIST(a,b)}$$

Joint entropy:

$$H(A,B) = -\sum_{a,b} PDF(a,b)\ln(PDF(a,b))$$

$$H(A,B) \le H(A) + H(B)$$

Mutual Information (MI)

Statistical image information concepts tied to entropy

$$H(A) = \sum_{a} \left(\sum_{b} PDF(a, b) \ln \sum_{b} PDF(a, b) \right)$$

$$H(B) = \sum_{b} \left(\sum_{a} PDF(a, b) \ln \sum_{a} PDF(a, b) \right)$$

$$MI(A,B) = H(A) + H(B) - H(A,B)$$

We seek to maximize the MI by minimizing H(A, B).

Normalized MI (NMI)

The normalized mutual information between images A and B can be written as (Studholme *et al*):

$$NMI(A,B) = \frac{H(A) + H(B)}{H(A,B)}$$

We also seek to maximize the NMI by minimizing H(A, B). Alternative, and most common, cost function.

Matlab


```
pdf = HIST/sum(HIST(:));
pa = sum(pdf,1);
pb = sum(pdf,2);
pab = sum(pdf(:));

HA = sum(pb.*log2(pb));
HB = sum(pa.*log2(pa));
HAB = sum(pab*log2(pab));
```

Optimizers

- Optimizers are used to optimize the metric criterion with respect to the transform parameters.
- The basic input to an optimizer is a cost function object.
- Some optimizers also allow rescaling of their individual parameters.

Summary

- Image registration is one of the most complex post-processing operations
 - Plethora of methods classified broadly by:
 - Rigid or deformable
 - Supervised or automatic
 - Multi-modality or mono-modality
 - Method chosen will depend on application and desired accuracy
- Affine transform with mutual information cost function
 - Most universally applied algorithm routinely used in radiation therapy treatment planning
 - Locally constrained deformable registration after affine transformation when needed