olist

Segmentation commerciale

SITE DE E-COMMERCE « OLIST »

1101011000010111 001001110011001 01000 00 1200000 1001001000011 10010110111 0101001001 11110110 000100 10000 001 olist

Sommaire

CONTEXTE

PRÉSENTATION / PRÉPARATION DES JEUX DE DONNÉES

ANALYSE DU JEU DE DONNÉES

MODÉLISATION FINALE

CONCLUSION

2/31

Contexte

SITE DE E-COMMERCE

SEGMENTATION COMMERCIALE

CAMPAGNE DE COMMUNICATION

Approche effectuée

Présentation des jeux de données

- Produit / Revendeur
- Commande / Client
- Géolocalisation

Préparation du fichier final

olist_order_customer_X_geolocation_dataset

```
mirror_object
 peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
"Irror_mod.use_z = False
 _operation == "MIRROR_Y"
 lrror_mod.use_x = False
 irror_mod.use_y = True
 irror_mod.use_z = False
  operation == "MIRROR_Z";
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
  election at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modifier
   irror ob.select = 0
  bpy.context.selected_obj
  ata.objects[one.name].sel
  int("please select exaction
  -- OPERATOR CLASSES ----
    X mirror to the selected
    vpes.Operator):
   ject.mirror_mirror_x"
```

Analyse du jeu de données

Analyse du jeu de données (spatial)

Données sur les commandes / clients

Données sur les commandes / clients (bis)

Données sur les commandes / clients (bis)

Nombre de nouveaux clients et rétention

Nettoyage du jeu de données

Segmentation RFM

R = RÉCENCE

F = FRÉQUENCE

M = MONÉTAIRE (MONTANT TOTAL)

Segmentation RFM (résultat)

$$R = 236,97$$

Iteration #01 (inertia: 3622.78)

Kmeans clustering (choix variables)

Récence

Fréquence

Montant

Review_score

eolocation_state (one_hot_encoder)

Rayment_value_xxxx (credit_card,voucher...)

Kmeans clustering (choix cluster)

Kmeans clustering (choix cluster) (bis)

Kmeans clustering (choix cluster) (bis)

Kmeans clustering (choix cluster) (bis)

Kmeans clustering (résultat)

R = 236,97

MOYENNE:

F = 1.03

M = 165,19

REVIEW_SCORE = 4,14

DBScan

	R_mean	F_mean	M_mean	Review_score	GroupSize
cluster					
-1	132.212121	4.363636	1288.427273	3.686195	33
0	236.697519	1.000000	156.719776	4.491350	80987
1	232.420595	1.000000	194.095607	1.000000	9080
2	220.628874	2.000000	291.281295	4.177128	2549
3	213.994220	3.000000	435.929769	4.435453	173
4	175.142857	4.000000	678.645238	4.535714	21
5	150.714286	5.000000	610.208571	4.228571	7

Kmeans ACP

Récence

Fréquence

Montant

Review_score

Geolocation_state (population)

Time_to_answer (days)

Score_evolution

Nb_review

Kmeans ACP (bis)

Kmeans ACP (bis)

Kmeans ACP (bis)

Kmeans ACP (résultat)

	monetary	review_score	review_score_evolution	nb_review	frequency	recency	time_to_answer	state_population	GroupSize
cluster									
0	97.585912	4.567887	-0.000563	1.000000	1.000000	195.341817	45.738369	30548.754208	42593
1	253.305598	2.315349	-0.000061	1.000000	1.000000	233.455080	36.931801	13310.517398	16496
2	308.264214	4.210412	-0.022251	2.113744	2.113744	217.760481	69.921144	21747.152752	2743
3	198.215649	4.521922	-0.000646	1.000000	1.000000	294.006974	136.873190	11540.474947	30974
4	306.350682	2.662879	1.367424	1.954545	1.954545	298.704545	77.034880	16698.818182	44

Modélisation finale

Représentation des données

olist

Représentation des données

0 : L'économe certainement parti

1 : Nouveau client neutre

2 : Meilleur client

3 :Dépensier occasionnel

4 :L'insatisfait

Personae

Jean-Bernard

Meilleur client Dépense moyenne : 308 réal Fréquence : 2 achats minimum Satisfaction: 4.2

Dépense moyenne : 290 réal Fréquence : 1 achat Satisfaction: 4.55

Client neutre (nouveau) Dépense moyenne : 133 réal

Léo

Fréquence : 1 achat Satisfaction: 4.57

Annette

L'économe (partie) Dépense moyenne : 66 réal

Fréquence : 1 achat Satisfaction: 4.53

Luna(tique)

L'insatisfait(e) Dépense moyenne: 186 réal

Fréquence: 1 achat

Satisfaction: 1.17

3%

30%

Mathilde

Dépensière occasionnelle

15%

40%

12%

Maintenance du clustering

Stratégie d'ajout des nouveaux clients

Calcul de distance

Calcul distance centroïde

Classification multi-classe

Apprentissage supervisé sur les données labélisées par le clustering

Conclusion

- Ajout dimension du type d'achat voir NLP pour les commentaires
- Prédiction de l'évolution des clients dans le temps

 Interprétation des résultats difficiles (équipe marketing inexistante)

