```
\hbox{\tt\# Customer Churn Analysis for a Subscription Business}\\
```

Goal: Identify Customers likely to churn and understand key churn factors

Business Questions:

Who are the customers likely to churn?

What are the key influencers of churn?

What actions can reduce churn?

Load Data

import pandas as pd

df = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Dataset/Telco-Customer-Churn.csv')

Handle Missing Values

df.isnull().sum()
df = df.dropna()
df

_		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No
	7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No
	7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No
	7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes

7043 rows × 21 columns

df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')
df.dropna()

-	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No
7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No
7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes

7032 rows × 21 columns

df['Churn_Yes'] = df['Churn'].map({'Yes':1, 'No':0})
df

→		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
	0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
	1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes
	2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
	3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
	4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No
	7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes
	7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No
	7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes
	7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No
	7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes

7043 rows × 22 columns

•	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No
						•••				
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No
7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No
7042	3186-AJIEK	Male	0	No	No	66	Yes	No	Fiber optic	Yes

7043 rows × 23 columns

df.drop(columns=['customerID'], inplace=True)

df.head()

→		gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup .
	0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes
	1	Male	0	No	No	34	Yes	No	DSL	Yes	No
	2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes
	3	Male	0	No	No	45	No	No phone service	DSL	Yes	No
	4	Female	0	No	No	2	Yes	No	Fiber optic	No	No

5 rows × 22 columns

Exploratory Data Analysis

import seaborn as sns
import matplotlib.pyplot as plt

Set theme
sns.set(style='whitegrid')

Churn Distribution

plt.figure(figsize=(5,4)) sns.countplot(x='Churn_Yes', data=df, palette='pastel', width=0.1) plt.title('Churn Distribution (θ = No, 1 = Yes)') plt.show()

2. Correlation Matrix (numerical features)

```
plt.figure(figsize=(10,8))
corr = df.select_dtypes(include=['float64', 'int64']).corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Matrix")
plt.show()
```


3. Churn by Contract Type

```
plt.figure(figsize=(6,4))
sns.barplot(data=df, x='Contract', y='Churn_Yes', width=0.3, estimator=lambda x: sum(x) / len(x) * 100, ci=None)
plt.title("Churn Rate by Contract Type (%)")
plt.ylabel("Churn Rate (%)")
plt.show()
```


4. Churn by Internet Service

```
plt.figure(figsize=(6,4))
sns.barplot(data=df, x='InternetService', y='Churn_Yes', width=0.3, estimator=lambda x: sum(x) / len(x) * 100, ci=None)
plt.title("Churn Rate by Internet Service (%)")
plt.ylabel("Churn Rate (%)")
plt.show()
```


5. Churn by Payment Method

```
plt.figure(figsize=(8,4))
sns.barplot(data=df, x='PaymentMethod', y='Churn_Yes', width=0.3, estimator=lambda x: sum(x) / len(x) * 100, ci=None)
plt.title("Churn Rate by Payment Method (%)")
plt.ylabel("Churn Rate (%)")
plt.xticks(rotation=45)
plt.show()
```


6. Churn by Tenure Group

```
plt.figure(figsize=(6,4))
sns.barplot(data=df, x='TenureGroup', y='Churn_Yes', width=0.3, estimator=lambda x: sum(x) / len(x) * 100, ci=None)
plt.title("Churn Rate by Tenure Group (%)")
plt.ylabel("Churn Rate (%)")
plt.show()
```


df

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup
0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes
1	Male	0	No	No	34	Yes	No	DSL	Yes	No
2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes
3	Male	0	No	No	45	No	No phone service	DSL	Yes	No
4	Female	0	No	No	2	Yes	No	Fiber optic	No	No
7038	Male	0	Yes	Yes	24	Yes	Yes	DSL	Yes	No
7039	Female	0	Yes	Yes	72	Yes	Yes	Fiber optic	No	Yes
7040	Female	0	Yes	Yes	11	No	No phone service	DSL	Yes	No
7041	Male	1	Yes	No	4	Yes	Yes	Fiber optic	No	No
7042	Male	0	No	No	66	Yes	No	Fiber optic	Yes	No

```
7043 rows × 22 columns
# Data Modeling
# Import Libraries
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import pandas as pd
import matplotlib.pyplot as plt
# Prepare the data
# Drop non-predictive and target columns
X = df.drop(['Churn', 'Churn_Yes'], axis=1)
# Convert categorical variables to dummy/one-hot encoding
X = pd.get_dummies(X, drop_first=True)
# Target variable
y = df['Churn_Yes']
# Step 3: Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train the model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
<del>_</del>
            {\tt RandomForestClassifier}
     RandomForestClassifier(random_state=42)
# Predictions
y_pred = model.predict(X_test)
print("Classification Report:\n", classification_report(y_test, y_pred))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
\rightarrow Classification Report:
                                 recall f1-score support
```

precision

```
0.82
                                  0.92
                                            0.87
                0
                                                      1036
                1
                        0.66
                                  0.46
                                            0.54
                                                       373
                                            0.79
                                                      1409
         accuracy
                        0.74
                                  0.69
                                            0.70
                                                      1409
        macro avg
                                                      1409
     weighted avg
                        0.78
                                  0.79
                                            0.78
     Confusion Matrix:
      [[949 87]
      [202 171]]
# Feature Importance Plot
# Get top 10 important features
importances = pd.Series(model.feature_importances_, index=X.columns)
top_features = importances.sort_values(ascending=False).head(10)
# Plot with labels
plt.figure(figsize=(8,6))
ax = top_features.plot(kind='barh', color='skyblue')
plt.title('Top 10 Feature Importances (Random Forest)')
plt.xlabel('Importance Score')
plt.gca().invert_yaxis()
# Add labels
for i, (value, name) in enumerate(zip(top_features, top_features.index)):
   plt.text(value + 0.001, i, f'{value:.3f}', va='center')
plt.tight_layout()
plt.show()
₹
```


from sklearn.model_selection import GridSearchCV