Abstract Algebra

HECHEN HU

November 26, 2017

Contents

1	Groups				
	1.1	Semigroups, Monoids and Groups	1		
	1.2	Homomorphisms and Subgroups	3		
	1.3	Cyclic Groups	5		
	1.4	Cosets and Counting	5		
	1.5	Normality, Quotient Groups, and Homomorphisms	5		
	1.6	Symmetric, Alternating, and Dihedral Groups	5		
	1.7	Categories: Products, Coproducts, and Free Objects	5		
	1.8	Direct Products and Direct Sums	5		
	1.9	Free Groups, Free Products, Generators and Relations	5		
2	The	e Structure of Groups	7		
	2.1	Free Abelian Groups	7		
	2.2	Finitely Generated Abelian Groups	7		
	2.3	The Krull-Schmidt Theorem	7		
	2.4	The Action of a Group on a Set	7		
	2.5	The Sylow Theorem	7		
	2.6	Classification of Finite Groups	7		
	2.7	Nilpotent and Solvable Groups	7		
	2.8	Normal and Subnormal Series	7		
3	Rin	$_{ m lgs}$	9		
	3.1	Rings and Homomorphisms	9		
	3.2	Ideals	9		
	3.3	Factorization in Commutative Rings	9		
	3.4	Rings of Quotients and Localization	9		
	3.5	Rings of Polynomials and Formal Power Series	9		
	3.6	Factorization in Polynomial Rings	9		
4	Modules 11				
	4.1	Modules, Homomorphisms and Exact Sequences	11		
	4.2	Free Modules and Vector Spaces	11		
	43	Projective and Injective Modules	11		

iv CONTENTS

	4.4	Hom and Duality	11		
	4.5	Tensor Products	11		
	4.6	Modules over a Principal Ideal Domain	11		
	4.7	Algebras	11		
5	Fields and Galois Theory 1				
	5.1		13		
	5.2	The Fundamental Theorem	13		
	5.3	Splitting Fields, Algebraic Closure and Normality	13		
	5.4	The Galois Group of a Polynomial	13		
	5.5	Finite Fields	13		
	5.6	Separability	13		
	5.7	Cyclic Extensions	13		
	5.8	Cyclotomic Extensions	13		
	5.9	Radical Extensions	13		
6	The	Structure of Fields	15		
	6.1	Transcendence Bases	15		
	6.2	Linear Disjointness and Separability	15		
7	Commutative Rings and Modules 1				
	7.1	Chain Conditions	17		
	7.2	Prime and Primary Ideals	17		
	7.3	Primary Decomposition	17		
	7.4	Noetherian Rings and Modules	17		
	7.5	Ring Extensions	17		
	7.6	Dedekind Domains	17		
	7.7	The Hilbert Nullstellensatz	17		
8	The	Structure of Rings	19		
	8.1	Simple and Primitive Rings	19		
	8.2	The Jacobson Radical	19		
	8.3	Semisimple Rings	19		
	8.4	The Prime Radical; Prime and Semiprime Rings	19		
	8.5	Algebras	19		
	8.6	Division Algebras	19		
9	Categories 2				
	9.1	Functors and Natural Transformations	21		
	9.2	Adjoint Functors	21		
	9.3	Morphisms	21		

Groups

1.1 Semigroups, Monoids and Groups

Definition. A *semigroup* is a nonempty set G together with a binary operation on G which is associative.

Definition. A monoid is a semigroup G which contains a (two-sided) identity element $e \in G$ such that ae = ea = a for all $a \in G$.

Definition. A group is a monoid G such that there exists a (two-sided) inverse element and the operation between the inverse element and the original element yields the identity element regardless of order of operation.

Definition. A semigroup G is said to be *abelian* or *commutative* if its binary operation is commutative.

Definition. The *order* of a group G is the cardinal number |G|. G is said to be finite(resp. infinite) if |G| is finite(resp. infinite).

Theorem 1.1.1. If G is a monoid, then the identity element e is unique. If G is a group, then

- $c \in G$ and $(cc = c) \Rightarrow (c = e)$;
- for all $a, b, c \in G$ we have $(ab = ac) \Rightarrow (b = c)$ and $(ba = ca) \Rightarrow (b = c)$ (left and right cancellation);
- for each element in G its inverse element is unique;
- for each element in G the inverse of its inverse is itself;
- for $a, b \in G$ we have $(ab)^{-1} = b^{-1}a^{-1}$;
- for $a, b \in G$ the equation ax = b and ya = b have unique solutions in $G: x = a^{-1}b$ and $y = ba^{-1}$.

1. GROUPS

Proposition. Let G be a semigroup. G is a group iff the following conditions hold:

- there exists an element $e \in G$ such that ea = a for all $a \in G$ (left identity element);
- for each $a \in G$, there exists an element $a^{-1} \in G$ such that $a^{-1}a = e$ (left inverse).

and an analogous result holds for "right inverses" and a "right identity".

Proposition. Let G be a semigroup. G is a group iff for all $a, b \in G$ the equations ax = b and ya = b have solutions in G.

Example 1.1. Let S be a nonempty set and A(S) the set of all bijections $S \to S$. Under the operation of composition of functions, \circ , A(S) is a group. The elements of A(S) are called permutations and A(S) is called the group of permutations on the set S. If $S = \{1, 2, 3, \dots, n\}$, then A(S) is called the symmetric group on n letters and denoted S_n . $|S_n| = n!$.

Definition. The *direct product* of two groups G and H with identities e_G and e_H is the group whose underlying set is $G \times H$ and whose binary operation is given by:

$$(a,b)(a',b') = (aa',bb'), \text{ where } a,a' \in G; b,b' \in H$$

 $G \times H$ is abelian if both G and H are; (e_G, e_H) is the identity and (a^{-1}, b^{-1}) is the inverse of (a, b). Clearly $|G \times H| = |G||H|$.

Theorem 1.1.2. Let $R(\sim)$ be an equivalence relation on a monoid G such that a_1 a_2 and b_1 b_2 imply a_1b_1 a_2b_2 for all $a_i, b_i \in G$. Then the set G/R of all equivalence classes of G under R is a monoid under the binary operation defined by $(\bar{a})(\bar{b}) = \bar{a}b$, where \bar{x} denoted the equivalence class of $x \in G$. If G is an [abelian] group, then so is G/R.

An equivalence relation on a monoid G that satisfies these hypothesis is called a **congruence relation** on G.

Example 1.2. The following relation on the additive froup \mathbb{Q} is a congruence relation:

$$a \sim b \Leftrightarrow a - b \in \mathbb{Z}$$

The set of equivalence classes (denoted \mathbb{Q}/\mathbb{Z}) is an infinite abelian group, with addition given by $\bar{a} + \bar{b} = a + b$, and called the group of rationals modulo one.

Definition. The meaningful product on any sequence of elements of a semi-group G, $\{a_1, a_2, \dots\}$, a_1, \dots, a_n (in this order), is defined inductively as below: If n = 1, the only meaningful product is a_1 . If n > 1, then a meaningful product is defined to be any product of the form $(a_1 \dots a_m)(a_{m+1} \dots a_n)$ where m < n and $(a_1 \dots a_m)$ and $(a_{m+1} \dots a_n)$ are meaningful products of m and n - m elements respectively.

Definition. The standard n product $\prod_{i=1}^{n} a_i$ is defined as follows:

$$\prod_{i=1}^{n} a_i = a_i; \quad \text{for } n > 1, \prod_{i=1}^{n} a_i = (\prod_{i=1}^{n-1} a_i) a_n$$

Theorem 1.1.3 (Generalized Associative Law). If G is a semigroup and $a_1, \dots, a_n \in G$, then any two meaningful products of a_1, \dots, a_n in this order are equal.

Theorem 1.1.4 (Generalized Commutative Law). If G is a commutative semigroup and $a_1, \dots, a_n \in G$, then for any permutation i_1, \dots, i_n of $1, 2, \dots, n$, $a_1 a_2 \dots a_n = a_{i_1} a_{i_2} \dots a_{i_n}$.

Definition. Let G be a semigroup, $a \in G$ and $n \in \mathbb{N}$. The element $a^n \in G$ is defined to be the standard n product $\prod_{i=1}^n a_i$ with $a_i = a$ for $1 \le i \le n$. If G is a monoid, a^0 is defined to be the identity element e. If G is a group, then for each $n \in \mathbb{N}$, a^{-n} is defined to be $(a^{-1})^n \in G$.

Theorem 1.1.5. If G is a group(resp. semigroup, monoid) and $a \in G$, then for all $m, n \in \mathbb{Z}$ (resp. \mathbb{N} and $\mathbb{N} \cup \{0\}$):

- $\bullet \ a^m a^n = a^{m+n}$
- $\bullet (a^m)^n = a^{mn}$

1.2 Homomorphisms and Subgroups

Definition. Let G and H be semigroups. A function $f: G \to H$ is a homomorphism provided

$$f(ab) = f(a) f(b)$$
 for all $a, b \in G$

If f is injective as a map of sets, f is said to be a monomorphism. If f is surjective, f is called an *epimorphism*. If f is bijective, f is called an *isomorphism*. In this case G and H are said to be *isomorphic* (written $G \cong H$). A homomorphism $f: G \to G$ is called an *endomorphism* of G and an isomorphism $f: G \to G$ is called an *automorphism* of G.

4 1. GROUPS

Definition. Let $f: G \to H$ be a homomorphism of groups. The *kernel* of f(denoted Ker f) is $\{a \in G | f(a) = e \in H\}$. If A is a subset of G, then $f(A) = \{b \in H | b = f(a) \text{ for some } a \in A\}$ is the *image of* A. f(G) is called the *image of* f and denoted Im f. If G is a subset of G, then G is the *image of* G is the *image of* G.

Theorem 1.2.1. Let $f: G \to H$ be a homomorphism of groups. Then

- f is a monomorphism iff $Ker\ f = \{e\}$.
- f is an isomorphism iff there is a homomorphism $f^{-1}: H \to G$ such that $ff^{-1} = 1_H$ and $f^{-1}f = 1_G$.

Definition. Let G be a semigroup and H a nonempty subset of it. If for every $a, b \in H$ we have $ab \in H$, we say that H is *closed* under the product in G. This is the same as saying that the binary operation on G, when restricted to H, is a binary operation on H.

Definition. Let G be a group and H a nonempty subset that is closed under the product in G. If H is itself a group under the product in G, then H is said to be a *subgroup* of G, denoted H < G.

Definition. If a subgroup H is not G itself or the *trivial subgroup*, which consists only of the identity element, is called a *proper subgroup*.

Theorem 1.2.2. Let H be a nonempty subset of a group G. Then H is a subgroup of G iff $ab^{-1} \in H$ for all $a, b \in H$.

Corollary. If G is a group and $\{H_i|i \in I\}$ is a nonempty family of subgroups, then $\bigcap_{i \in I} H_i$ is a subgroup of G.

Proof. Left for Exercise

Definition. Let G be a group and X a subset of G. Let $\{H_i|i \in I\}$ be the family of all subgroups of G which contain X. Then $\bigcap_{i \in I} H_i$ is called the subgroup of G generated by the set X and denoted $\langle X \rangle$. The elements of X are the generators of $\langle X \rangle$. If $G = \langle a_1, \dots, a_n \rangle$, $(a_i \in G)$, G is said to be finitely generated. If $a \in G$, the subgroup $\langle a \rangle$ is called the cyclic (sub)group generated by a.

Theorem 1.2.3. If G is a group and X a nonempty subset of G, then the subgroup $\langle X \rangle$ generated by X consists of all finite products $a_1^{n_1} a_2^{n_2} \cdots a_t^{n_t} (a_i \in X; n_i \in \mathbb{Z})$. In particular for every $a \in G$, $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$.

Proof. Left for Exercise

Definition. The subgroup $\langle \bigcap_{i \in I} H_i \rangle$ generated by the set $\bigcap_{i \in I} H_i$ is called the subgroup generated by the groups $\{H_i | i \in I\}$. If H and K are subgroups, the subgroup $\langle H \cup K \rangle$ generated by H and K is called the *join* of H and K and is denoted $H \vee K$.

- 1.3 Cyclic Groups
- 1.4 Cosets and Counting
- 1.5 Normality, Quotient Groups, and Homomorphisms
- 1.6 Symmetric, Alternating, and Dihedral Groups
- 1.7 Categories: Products, Coproducts, and Free Objects
- 1.8 Direct Products and Direct Sums
- 1.9 Free Groups, Free Products, Generators and Relations

6 1. GROUPS

The Structure of Groups

- 2.1 Free Abelian Groups
- 2.2 Finitely Generated Abelian Groups
- 2.3 The Krull-Schmidt Theorem
- 2.4 The Action of a Group on a Set
- 2.5 The Sylow Theorem
- 2.6 Classification of Finite Groups
- 2.7 Nilpotent and Solvable Groups
- 2.8 Normal and Subnormal Series

Rings

- 3.1 Rings and Homomorphisms
- 3.2 Ideals
- 3.3 Factorization in Commutative Rings
- 3.4 Rings of Quotients and Localization
- 3.5 Rings of Polynomials and Formal Power Series
- 3.6 Factorization in Polynomial Rings

10 3. RINGS

Modules

- 4.1 Modules, Homomorphisms and Exact Sequences
- 4.2 Free Modules and Vector Spaces
- 4.3 Projective and Injective Modules
- 4.4 Hom and Duality
- 4.5 Tensor Products
- 4.6 Modules over a Principal Ideal Domain
- 4.7 Algebras

12 4. MODULES

Fields and Galois Theory

- 5.1 Field Extensions
- 5.2 The Fundamental Theorem
- 5.3 Splitting Fields, Algebraic Closure and Normality
- 5.4 The Galois Group of a Polynomial
- 5.5 Finite Fields
- 5.6 Separability
- 5.7 Cyclic Extensions
- 5.8 Cyclotomic Extensions
- 5.9 Radical Extensions

The Structure of Fields

- 6.1 Transcendence Bases
- 6.2 Linear Disjointness and Separability

Commutative Rings and Modules

- 7.1 Chain Conditions
- 7.2 Prime and Primary Ideals
- 7.3 Primary Decomposition
- 7.4 Noetherian Rings and Modules
- 7.5 Ring Extensions
- 7.6 Dedekind Domains
- 7.7 The Hilbert Nullstellensatz

The Structure of Rings

- 8.1 Simple and Primitive Rings
- 8.2 The Jacobson Radical
- 8.3 Semisimple Rings
- 8.4 The Prime Radical; Prime and Semiprime Rings
- 8.5 Algebras
- 8.6 Division Algebras

Categories

- 9.1 Functors and Natural Transformations
- 9.2 Adjoint Functors
- 9.3 Morphisms