TREĆI TJEDAN

1. Definirati pojmove: tautologija, kontradikcija.

Kažemo da je formula P algebre sudova **tautologija** ako je P uvijek istina, tj. $P \equiv T$, oznaka:

 $\models P$, i čitamo "P je tautologija".

Kažemo da je formula Q **kontradikcija** ako je $Q \equiv \bot$. Formula F je kontradikcija onda i samo onda ako je \vdash F tautologija.

F je tautologija $\leftrightarrow \vdash F$ kontradikcija (

Za formulu G kažemo da je $logička\ posljedica$ formule F ako iz pretpostavke da je F istinita slijedi i da je G istinita ($\tau(F) = \top \implies \tau(G) = \top$) što pišemo $F \models G$.

Teorem dedukcije:

Ako vrijedi
$$F_1, F_2, ... F_n \models G$$
 onda je $(F_1 \land F_2 \land \cdots \land F_n) \Longrightarrow G$ tautologija.

- 2. Zapisati formulama pa dokazati (algebarski i tablicom) sljedeća pravila zaključivanja: zakon isključenja trećega, pravilo silogizma, zakon neproturječnosti, zakon dvostruke negacije, pravilo kontrapozicije, zakoni apsorpcije.
- a) pravilo isključenja trećeg:

 $\models A \lor \lnot A$ " $tertium\ non\ datur$ " - svaki sud je ili istinit ili lažan, trećega nema

"A ili neA"

A	⊢A	AV⊢A	
Т	Τ	Т	
	T	T	

Iz svojstva: **komplementiranost**: $A \lor \neg A \equiv \bot$, $A \land \neg A \equiv \bot$

b) pravilo silogizma (tranzitivnost implikacije):

$$\models (A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

$$\begin{array}{l}
(+) = (A \Rightarrow B) \wedge (B \Rightarrow C) \Rightarrow (A \Rightarrow C) \\
Dolaz: (*) = (TA \vee B) \wedge (TB \vee C) \Rightarrow (TA \vee C) = T((TA \vee B) \wedge (TB \vee C)) \vee (TA \vee C) \\
= T(TA \vee B) \vee T(TB \vee C) \vee (TA \vee C) = (A \wedge TB) \vee (B \wedge TC) \vee TA \vee C = TA \vee (A \wedge TB)) \vee (C \vee B) \wedge (C \vee TC)
\\
= (TA \vee A) \wedge (TA \vee TB) \vee (C \vee B) \wedge T
\\
= (TA \wedge TA \wedge TB) \vee (C \wedge B) \wedge T
\\
= TA \wedge (TA \wedge TB) \vee (C \wedge B) \wedge T
\\
= TA \wedge (TA \wedge TB) \vee (C \wedge B) \wedge T
\\
= TA \wedge (TA \wedge TB) \vee (C \wedge B) \wedge T$$

Α	В	С	$A \rightarrow B$	$B \rightarrow C$	$A \rightarrow C$	$(A \rightarrow B) \land (B \rightarrow C)$	$(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C)$
T	T	Т	Т	Т	Т	Т	Т
T	T	Т	Т	Τ	Τ	Τ	Т
T	Τ	Т	Τ	T	Т	Τ	Т
T	Τ	Т	Τ	T	Τ	Τ	Т
1	T	Т	Т	T	Т	T	Т
1	T	Т	Т	Τ	Т	Τ	Т
1	Τ	Т	Т	T	Т	T	Т
T	T	T	Т	T	Т	T	Т

c) zakon neproturječnosti

$$\models \neg (A \land \neg A)$$

Α	⊢A	$A \land \vdash A$	$\vdash(A \land \vdash A)$
T	Τ	1	T
	T	Τ	T

$$= 7(A \wedge 7A)$$

$$= T$$

$$=$$

d) zakon dvostruke negacije

$$\models \neg \neg A \Leftrightarrow A$$

Α	⊢A	A	$\vdash \vdash A \leftrightarrow A$
Т	Τ	T	Т
1	T	Τ	T

e) pravilo kontrapozicije

$$\models (A \Rightarrow B) \leftrightarrow (\neg B \Rightarrow \neg A)$$

Α	В	⊢A	⊢B	$A \rightarrow B$	$\vdash B \rightarrow \vdash A$	$(A \to B) \leftrightarrow (\neg B \to \neg A)$
T	T	1	1	T	Т	Т
T	Т	Τ	T	1	Т	T
Τ	T	T	Τ	T	Т	Т
1	Τ	T	T	Т	Т	T

Valjda:

$$(A \Rightarrow B) \iff (\exists B \Rightarrow \exists A) \equiv (\exists A \lor B) \iff (B \lor \exists A)$$

$$\equiv [(\exists A \lor B) \Rightarrow (B \lor \exists A)] \land [(B \lor \exists A) \Rightarrow (\exists A \lor B)] \equiv$$

$$\equiv [\exists (\exists A \lor B) \lor (B \lor \exists A)] \land [\exists (B \lor \exists A) \lor (\exists A \lor B)] \equiv$$

$$\equiv [(A \land \exists B) \lor (B \lor \exists A)] \land [(\exists B \land A) \lor (\exists A \lor B)] \lor \exists A$$

$$\equiv [(A \lor B) \lor B \lor \exists A \equiv [(A \lor B) \land (\exists B \lor B)] \lor \exists A$$

$$\equiv [(A \lor B) \land T] \lor \exists A \equiv (A \lor B) \lor \exists A \equiv A \lor \exists A \lor B \equiv T$$

$$D = (\exists B \land A) \lor \exists A \lor B \equiv [(\exists B \lor \exists A) \land (A \lor \exists A)] \lor B$$

$$\equiv \exists B \lor B \lor \exists A \equiv T \lor \exists A \equiv T$$

$$D \land L \equiv T \land T \equiv T$$

f) zakoni apsorpcije

\models	$A \vee ($	$A \wedge B$	$\Leftrightarrow A$	i dualno	$\models A \land ($	$(A \vee B)$	$\Leftrightarrow A$
-----------	------------	--------------	---------------------	----------	---------------------	--------------	---------------------

A	В	ΑΛВ	A V (A Λ Β)	$A V (A \wedge B) \leftrightarrow A$
T	Т	T	Т	T
T	1	Τ	Т	T
1	Т	Τ	Τ.	T
	1	Τ	1	T

$$\begin{aligned}
& \models A \vee (A \wedge B) \Leftarrow > A \\
& [A \vee (A \wedge B)] \Leftarrow > A = [(A \vee (A \wedge B))] \Rightarrow A] \wedge [A \Rightarrow [A \vee (A \wedge B)]] = \\
& = [\neg (A \vee (A \wedge B)) \vee A] \wedge [\neg A \vee (A \vee (A \wedge B))] = \\
& = [(\neg A \wedge \neg (A \wedge B)) \vee A] \wedge [\neg A \vee A \vee (A \wedge B)] = \\
& = [(A \wedge (\neg A \vee \neg B)) \vee A] \wedge T = (A \vee \neg A) \wedge [A \vee (\neg A \vee \neg B)] \\
& = [(A \wedge (\neg A \vee \neg B)) \vee A] \wedge T = (A \vee \neg A) \wedge [A \vee (\neg A \vee \neg B)] \\
& = [(A \wedge (\neg A \vee \neg B)) \vee A] \wedge T = (A \vee \neg A) \wedge [A \vee (\neg A \vee \neg B)]
\end{aligned}$$

3. Definirati pojmove logička posljedica sudova, premise, zaključak.

Kažemo da je sud A logička posljedica (zaključak) sudova P₁, P₂, ..., P_n i pišemo

 $P_1, \ldots, P_n \models A$, ako iz istinitosti sudova P_1, \ldots, P_n slijedi istinitost suda A.

Sudovi P_1, \ldots, P_n , zovu se **premise** (pretpostavke), a sud A je **konzekvenca (zaključak)**.

5. Iskazati i dokazati teorem koji karakterizira pojam logičke posljedice sudova pomoću implikacije.

Teorem 1. Ako vrijedi $P_1, \ldots, P_n \models A$, onda $je \models P_1 \land \ldots \land P_n \Rightarrow A$, i obratno.

DOKAZ. Neka je $P_1, \ldots, P_n \models A$. Pretpostavimo da $P_1 \land \ldots \land P_n \Rightarrow A$ nije tautologija. Onda je moguće odabrati semantičke vrijednosti za P_1, \ldots, P_n tako da vrijedi $P_1 \land \ldots \land P_n \equiv \top$ i $A \equiv \bot$. To je nemoguće, jer je onda $P_1 \equiv \ldots \equiv P_n \equiv \top$ i $A \equiv \bot$.

Obratno, neka je $P_1 \wedge \ldots \wedge P_n \Rightarrow A$ tautologija. Ako je $P_1 \equiv \ldots \equiv P_n \equiv T$, onda mora biti i $A \equiv T$. Time je dokazano da $P_1, \ldots, P_n \models A$. Q.E.D.

Sa sata:

6. Iskazati i dokazati pravila modus ponens i modus tollens.

Za sudove A i B vrijedi

$$A, A \Rightarrow B \models B$$

Takvo pravilo zaključivanja zove se modus ponens ili pravilo otkidanja.

DOKAZ. Ako su premise istinite, tj. $A \equiv \top$ i $A \Rightarrow B \equiv \top$, onda mora biti i $B \equiv \top$ (vidi tablicu istinitosti za \Rightarrow).

Dokaz možemo lako provesti i s pomoću tablice istinitosti za $A \land (A \Rightarrow B) \Rightarrow B$, koja je identički istinita, tj. tautologija. Q.E.D.

PRIMJEDBA 4. Prema tome, modus ponens je ekvivalentan s ovom tautologijom: $\models A \land (A \Rightarrow B) \Rightarrow B$. Tradicionalni zapis modusa ponensa izgleda ovako:

$$\begin{array}{c}
A \Rightarrow B \\
\underline{A} \\
B
\end{array}$$

A	В	$A \rightarrow B$	$A \land (A \rightarrow B)$	$A \land (A \rightarrow B) \rightarrow B$ Iz teorema 1
Т	Т	Т	Т	T
Т	1	Τ	1	T
1	T	T	Τ	Т
T	T	T	1	T

Primjer 3. U svakom logičkom posljedku smijemo pojedine sudove na svim mjestima zamijeniti sa nekim drugim. Isto tako smijemo pojedine sudove zamijeniti sa njima logički ekvivalentnima. Npr. u modusu ponensu $A \Rightarrow B$, $A \models B$ možemo A zamijeniti sa $\neg B$, B sa $\neg A$. Dobivamo $\neg B \Rightarrow \neg A$, $\neg B \models \neg A$. Zbog pravila kontrapozicije onda vrijedi

$$A \Rightarrow B, \neg B \models \neg A.$$

Ovo pravilo zaključivanja zove se **modus tollens.**³ Tradicionalni zapis za modus tollens glasi:

$$\begin{array}{c}
A \Rightarrow B \\
\hline
\neg B \\
\hline
\neg A
\end{array}$$

$$I = (A \rightarrow B) \land \vdash B \rightarrow \vdash A$$

Α	В	гA	⊢ В	$A \rightarrow B$	$(A \rightarrow B) \land \vdash B$	$(A \rightarrow B) \land \vdash B \rightarrow \vdash A$
T	T	1	1	T	Τ	T
T	Τ	Τ	T	Τ	Т	Т
	T	T	Τ	T	Т	Т
1	T	T	T	Т	Т	T

7. Definirati pojam Booleove algebre (raspisati sva svojstva).

Skup B (skup bilo kakvih objekata) u kojemu su istaknuta 2 različita elementa: 0 i 1, zajedno sa 3 operacije: množenje '*', zbrajanje '+' i komplement ' -- ' naziva se **Booleova algebra**, ako su ispunjena sljedeća svojstva:

- (1) idempotentnost operacija zbrajanja i množenja: a + a = a, $a \cdot a = a$;
- (2) asocijativnost: (a+b)+c=a+(b+c), $(a \cdot b) \cdot c=a \cdot (b \cdot c)$;
- (3) komutativnost: a + b = b + a, $a \cdot b = b \cdot a$;
- (4) distributivnost: $a \cdot (b+c) = a \cdot b + a \cdot c$, $a + (b \cdot c) = (a+b) \cdot (a+c)$;
- (5) **DeMorganove formule**: $\overline{a+b} = \overline{a} \cdot \overline{b}$, $\overline{a \cdot b} = \overline{a} + \overline{b}$;
- (6) $a+0=a, a\cdot 1=a,$
- (7) a+1=1, $a\cdot 0=0$;
- (8) komplementiranost: $a + \bar{a} = 1$, $a\bar{a} = 0$;
- (9) involutivnost komplementiranja: $\bar{a} = a$.

Booleova algebra je **uređena šestorka** (B, +, *, ¯, 0, 1). Kod dokazivanja je dovoljno provjeriti svojstva: 3, 4, 6 i 8 jer se sva druga svojstva mogu izvući iz tih svojstava.

8. Dokazati da su, u Booleovoj algebri, nula i jedinica jedinstvene, te da vrijede pravila apsorpcije.

Propozicija 1:

- a) Elementi 0 i 1 u Booleovoj algebri B određeni su jednoznačno.
- b) U svakoj Booleovoj algebri vrijede pravila apsorpcije:

$$a + ab = a$$
, $a(a + b) = a$,

Ne znam jel ovo za '1' točno:

Pretpostavimo suprotno, tj. melia
$$\exists 01,02 \in \mathcal{B}$$
, $01 \neq 02$

Tada po svojstvu 6) $a+0=a$, $\forall a \in \mathcal{B}$ vrijedi:

a + 0=a

(1) $01 + 02 = 01$
element nivia

(2) $02 + 01 = 02$

Zbog homutativnosti zbrojanja u Boolalg slijeti

 $01 + 02 = 02 + 01$ pa zalitjučijemo

 $01 = 02$

=> Pretpostavlica je pogrešna. O mora biti jedinstvema

Za 1

Pretpostavimo suprotno, tj. nelia $\exists 11, 12 \in \mathcal{B}$, $11 \neq 12$

Tada po svojstu 6) $a\cdot 1 = a$, $\forall a \in \mathcal{B}$ vrijedi

(1) $11 \cdot 12 = 11$

(2) $12 \cdot 11 = 12$

12 homutativnosti množenja u Boolalg. slijedi

 $1 \cdot 12 = 12 \cdot 11$
 $1 \cdot$

(b)
$$a + a \cdot b = (a \cdot 1) + (a \cdot b) = a \cdot (1 + b) = a \cdot 1 = a$$

 $a \cdot (a + b) = (a + 0) \cdot (a + b) = a + 0 \cdot b = a$

9. Definirati pojam izomorfizma Booleovih algebri.

Neka su B_1 i B_2 Booleove algebre. Za funkciju $f: B_1 \rightarrow B_2$ kažemo da je **izomorfizam** ako je f bijekcija i vrijedi:

$$f(a \cdot b) = f(a) \cdot f(b) \tag{1}$$
$$f(\overline{a}) = \overline{f(a)}. \tag{2}$$

- 1) čuva umnožak
- 2) čuva komplement

(Najmanja Booleova algebra može imati 2 elementa i izomorfna je sa bilo kojom drugom dvočlanom B. algebrom.)

10. Dokazati da izomorfizam Booleovih algebri čuva zbrajanje, nulu i jedinicu.

Propozicija 2:

Ako je j : $B_1 \rightarrow B_2$ izomorfizam Booleovih algebara, onda vrijedi:

$$f(a+b) = f(a) + f(b), \quad f(0_1) = 0_2, \quad f(1_1) = 1_2.$$

1, 2 označava u kojoj Booleovoj algebri.

Dokaz:

a)
$$f(a + b) = f(a) + f(b)$$

 $f(a + b) = f(\overline{a + b}) = f(\overline{a \cdot b}) = f($

$$f(O_1) = O_2$$

$$f(O_1) = f(O_1 \cdot \overline{O_1}) = f(O_1) \cdot 2 \cdot f(\overline{O_1}) = f(O_1) \cdot 2 \cdot \overline{f(O_1)} = O_2$$

$$A \cdot \overline{A} = O \cdot \forall A \in B \quad (\alpha = O_1)$$

c)
$$f(1_i) = 1_1$$

 $f(1_i) = f(\overline{0_i}) = \overline{f(0_i)} = \overline{0_2} = 1_2$
 $0_2 \in b$