LISTA 4

- 1. Sejam S e T dois subespaços de um espaço vetorial V.
- (a) Defina $S+T=\{s+t\;;\;s\in S\;\mathrm{e}\;t\in T\}$. Mostre que S+T é um subespaço vetorial

$$\alpha(s_{1}+t_{1}) + \beta(s_{2}+t_{2})$$

$$\alpha s_{1}+\alpha t_{1}+\beta s_{2}+\beta t_{2}$$

$$\alpha s_{1}+\beta s_{2}+\alpha t_{1}+\beta t_{2}) : \in S+T$$

$$\in S$$

(b) Defina $S \cup T = \{x \; ; \; x \in S \text{ ou } x \in T\}$. Argumente que $S \cup T$ não é necessariamente um subespaço vetorial.

(c) Se S e T são retas no \mathbb{R}^3 , o que é S+T e $S\cup T$?

ST É UM PLANO SUT É A UNIÃO DE PUAS RETAS

2. Como o núcleo N(C) é relacionado aos núcleos N(A) e N(B), onde $C = \begin{bmatrix} A \\ B \end{bmatrix}$?

$$X \in N(C) \Leftrightarrow Cx = 0 \rightarrow \begin{bmatrix} A \\ B \end{bmatrix} X = 0$$

 $Y \in N(A) \Leftrightarrow Ax = 0$

ZEN(B) ← Bz=0

3. Considere a matriz

$$A = \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 1 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix}$$

(a) Ache a sua forma escalonada reduzida.

$$\begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 4 & 7 \\ 2 & -2 & 11 & -3 \end{bmatrix} \xrightarrow{L_3 - 2L_1} \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 4 & 7 \\ 0 & -12 & -3 & -21 \end{bmatrix} \xrightarrow{L_3 + 3L_2} \begin{bmatrix} 1 & 5 & 7 & 9 \\ 0 & 4 & 4 & 7 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{L_1 - 5L_2} \begin{bmatrix} 1 & 0 & 23/4 & 1/4 \\ 0 & 1 & 4/4 & 7/4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

POSTO 2 (b) Qual é o posto dessa matriz?

(c) Ache uma solução especial para a equação Ax = 0.

(c) Ache uma solução especial para a equação
$$Ax = 0$$
.

$$D = \begin{bmatrix} -\frac{23}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{7}{4} \\ \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}$$

$$S = Span\left(\left\{\begin{bmatrix} -\frac{23}{4} & -\frac{1}{4} \\ -\frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix}\right\}\right)$$

4. Ache a matrizes A_1 e A_2 (não triviais) tais que posto $(A_1B)=1$ e posto $(A_2B)=0$ para B=

- 5. Verdadeiro ou Falso:
- (a) O espaço das matrizes simétricas é subespaço.
- (b) O espaço das matrizes anti-simétricas é um subespaço.
- (c) O espaço das matrizes não-simétricas $(A^T \neq A)$ é um subespaço.

6. Se $A \in 4 \times 4$ e inversível, descreva todos os vetores no núcleo da matriz $B = \begin{bmatrix} A & A \end{bmatrix}$ (que é 4×8).

$$N(A) \subseteq \mathbb{R}^{4} \qquad N(B) \subseteq \mathbb{R}^{8}$$

$$v \in N(B) \ T : Q \qquad v = \left[v_{1} \mid v_{2}\right]^{T}, \ v_{1}, v_{2} \in \mathbb{R}^{4}$$

$$Bv = \left[A : A\right] \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix} = Bv = Av_{1} + Av_{2}$$

$$Av_{1} = -Av_{2}$$

$$Se \quad A \quad \text{INVERTIVEL}$$

$$N(B) = \left\{\begin{bmatrix} v_{1} \\ -v_{2} \end{bmatrix}, v \in \mathbb{R}^{4}\right\}$$

- 7. Mostre por contra-exemplos que as seguintes afirmações são falsas em geral:
- (a) $A \in A^T$ tem os mesmo núcleos.

SE
$$A_{mxn}$$
 ENTÃO A_{nxm}^{T} LOGO $N(A) \subset \mathbb{R}^{n}$, $\in N(A^{T}) \subset \mathbb{R}^{m}$
SE $A_{nxn} \rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$

(b) A e A^T tem as mesmas variáveis livres

SE Amxn, com m<n

posto(A) = m, ENTÃO AT TODAS AS COLUNAS SÃO
PIVÔ.

(c) Se R é a forma escalonada de A, então R^T é a forma escalonada de A.

R=EA $R^T = A^T E^T \rightarrow PARA R^T SER A FORMA ESCALONADA

DE A, <math>E^T = A \in A^T = E$, o que nem sempre é verdade: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \in E = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$

8. Construa uma matriz cujo espaço coluna contenha (1,1,5) e (0,3,1) e cujo núcleo contenha (1,1,2)

9. Construa uma matriz cujo núcleo contenha todos os múltiplos de (4, 3, 2, 1).

$$Ax=0$$

$$N(A) = \left\{x = \alpha \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \right\}$$

$$A\alpha \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = 0$$

$$A_{n\times 4} \cdot \alpha \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix} = 0$$

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita linear se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ e $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

(a) Mostre que V^* é um espaço vetorial.

PARA V* SER ESPAGO VETORIAL, TODO h \in V* PODE SER ESCRITO COMO h(a)= f(a)+g(a), SE TODO a PODE SER ESCRITO COMO $\propto v + \beta w$, TEMOS $\approx v + \beta w$ h($\approx v + \beta w$) = $\approx f(v) + \beta f(w) + \alpha g(v) + \beta g(w)$ h($\approx v + \beta w$) = $\approx (f(v) + g(v)) + \beta (f(w) + g(w))$

$$h(\alpha v + \beta w) = \alpha h(v) + \beta h(w) \longrightarrow V^* \in ESPAGO VETORIAL$$

(b) Agora, seja $V=\mathbb{R}^n$. Mostre que existe uma bijeção $\varphi:V^*\to V$ tal que , para toda $f\in V^*$ e para todo $\mathbf{v}\in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

INJETIVIDADE $\Rightarrow \varphi(f_1) = \varphi(f_2) \therefore f_1 = f_2$

SOBREJETIVIDADE => YFE V*, Jg; P(f) = g

