Hörsaalübungsblatt 1

Aufgabe 1. Es seien $A, B, C \subset \Omega$ Ereignisse. Drücken Sie mit Hilfe von Mengenoperationen folgende Ereignisse aus:

- (a) Keines der Ereignisse tritt ein.
- (b) Mindestens eines der Ereignisse tritt ein.
- (c) Genau eines der Ereignisse tritt ein.
- (d) Mindestens zwei der Ereignisse treten ein.
- (e) Höchstens zwei der Ereignisse treten ein.
- (f) Mindestens eines der Ereignisse tritt nicht ein.

Aufgabe 2. Beweisen Sie die Aussagen (a)-(f) des Lemmas 1.5.

Aufgabe 3. Es sei (Ω, p) ein diskreter Wahrscheinlichkeitsraum, wobei $\Omega = \{1, 2, 3, 4\}$ und $p(i) = p_i$, wobei $p = (p_1, p_2, p_3, p_4) \in \mathbb{R}^4$.

Seien $A = \{1, 2\}$ und $B = \{1, 3\}$ Teilmengen von Ω und es sei bekannt, dass für das zugehörige Wahrscheinlichkeitsmaß \mathbb{P} gilt

- (a) $\mathbb{P}(A) = \mathbb{P}(B) = 1/2$,
- (b) $\mathbb{P}(A) = \mathbb{P}(B) = 1$.

Geben Sie in beiden Fällen alle Wahrscheinlichkeitsmaße P an, die dies erfüllen.

Aufgabe 4. Für die Ereignisse A und B seien folgende Wahrscheinlichkeiten bekannt:

$$P(A) = 0.25, P(B) = 0.45, P(A \cup B) = 0.5.$$

Berechnen Sie die Wahrscheinlichkeit

$$P(A^c \cap B^c)$$
.

Aufgabe 5.

Im Folgenden veranschaulichen wir uns die Formel von Sylvester für den Fall n=2:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$$

- (a) Drücken Sie die Mengen 1-3 jeweils als Schnittmenge zweier Mengen aus.
- (b) Vervollständigen Sie folgende Tabelle.

Sylvester:	1	2	3
$\mathbb{P}(A)$			
$\mathbb{P}(B)$			
$-\mathbb{P}(A\cap B)$			
Σ :			
$\mathbb{P}(A \cup B)$			

Aufgabe 6. Ein Würfel hat drei rote, zwei gelbe und eine blaue Seite. Er wird einmal geworfen.

- (a) Geben Sie einen Wahrscheinlichkeitsraum zur Beschreibung des Zufallsexperimentes an.
- (b) Handelt es sich um einen Laplace-Raum?
- (c) Es sei A das Ereignis, dass rot geworfen wird. Bestimmen Sie $P(A^c)$ auf zwei verschiedene Rechenwege. Geben Sie die Berechnung jeweils auch formal unter Verwendung der Elementarereignisse an.