WORKSHOP IN ADVANCED BAYESIAN PHYLOGENETICS

NOV 17-21, 2014, ADELAIDE

WHY CALIBRATING?

FIXED-RATE CALIBRATION

NODE CALIBRATION

TIP DATING

WHY CALIBRATING?

Seraina Klopfstein, 17.-21. Nov 2014

WHY CALIBRATING?

what do branches mean in clock trees?

time length_{branch i} =

substitution length_{branch i} / rate_{branch i}

CALIBRATION

several sources of information about time scale

- molecular clock rate estimates from other study
- node calibration:
 - fossils
 - biogeography, e.g. continental breakups
 - secondary calibration: previous dating studies
- tip dating (viruses, ancient DNA, total-evidence)

molecular clock rate estimates from other study

- e.g., in insects, mtDNA evolves at a rate of ~2.3 substitutions per million years (?)
- pretty inexact way: large variation in rates among lineages observed!
- only works if genes not saturated -> more recent time scales

Brower 1994, PNAS

- independent rate estimates from 7 studies of insects and crustaceans
- 2.34% per my

CO1 sequence,

critique of fixed-rate approach

- lineage-specific effects
- gene-specific effects
- evolutionary model

critique of fixed-rate approach

- lineage-specific effects
- gene-specific effects
- evolutionary model

Papadopoulou et al. 2010, MBE

critique of fixed-rate approach

- lineage-specific effects
- gene-specific effects
- evolutionary model
- time-dependency: higher rates close to population level (< 1 my) than above species level (delayed effect of purifying selection?)

Seraina Klopfstein, 17.-21. Nov 2014

fossils

derive calibration point(s) from fossils

minimum? or maximum? or both?

some amphibian
some mammal
a crocodile
some bird
some other bird
and yet another bird

fossils

- derive calibration point(s) from fossils
- give a minimum age only, and of the node below the group to which it belongs
- hard minimum, + usually an arbitrary probability distribution...

Warnock, Yang & Donoghue 2011, Biol. Lett.

- sensitivity to priors on calibration points
- uniform prior
- lognormal prior with different mean and std deviation

Warnock, Yang & Donoghue 2011, Biol. Lett.

- sensitivity to priors on calibration points
- uniform prior
- lognormal prior with different mean and std deviation

BIOGEOGRAPHIC CALIBRATION

biogeography, e.g. continental breakups

- associate a split on phylogeny with a geographic event
- corresponding node calibrated to the estimated time of this event (or time range)
- gives minimum and maximum

BIOGEOGRAPHIC CALIBRATION

Papadopoulou et al. 2010, MBE

- Agean sea, mid-agean trench (9-12 my)
- flightless beetles
- eight beetle lineages split into West and East group
- → CO1 substitution rate of 3.5% per my

BIOGEOGRAPHIC CALIBRATION

Songbirds (Passeriformes)

- New Zealand wrens sister to remaining songbirds
- NZ split off gradually 52-85 Mya
- vicariance?
- Ericson et al. 2014: large impact!

SECONDARY CALIBRATION

using results from previous dating studies

- use posterior 95% range from a previous study as a calibration point
- either with normal or uniform distribution
- danger of propagating error... and not adding much to the previous results!

multiple calibrations

- interactions of node age priors!
- effective priors even on uncalibrated nodes
- > run without data

Heled & Drummond 2012

analysis is as good as your prior!

- assess realized node calibration priors
- test sensitivity to age priors
- investigate alternative interpretations (of fossils, biogeography, previous studies...)

Dinosaurs didn't have fleas

"... we estimated divergence dates with a validated set of 37 fossils."

supplementary:

- 37 fossils, careful placement, for minima
- maxima: sufficient land masses
- •'log-normal' (μ = 2; d = 0.5) distribution

Dinosaurs didn't have fleas

example: calibration on ant-bee divergence

tip dating

- calibrating the tree by tips that are sampled through time
- various data sources
 - viruses: sampled in different years
 - using ancient DNA: samples from different times
 - fossils: treat morphology as original data (scored for fossils and extant taxa alike)

- trees with terminals at different times
- no external calibration needed!
- most elegant way, fewest assumptions

fossils used to derive priors on node ages

fossils used as primary observations (morphology)

- explicitly includes fossil evidence (as data, not as prior assumptions)
- capable of including all fossil evidence
- no need for a priori placement of fossils, instead integrates over the uncertainty in fossil placement
- assumes morphological clock

TIP CALIBRATION: HYMENOPTERA

uncertain fossil placement

TIP CALIBRATION: HYMENOPTERA

- usually higher precision with TE
- older ages in Hymenoptera

CALIBRATING THE CLOCK

- most vital step of any dating analysis
- most prone to error
- most neglected

Opinion

TRENDS in Genetics Vol.20 No.2 February 2004

Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision

Dan Graur¹ and William Martin²

¹Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA ²Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany