TMT EasyRound In June 6 problems in total! WELCOME!

 \uparrow Designed By TMC

TMT EasyRound

	三角形	Distance on Tree	为什么要出最大 值求和	拿球随机	小Q的旅 行计划	集合选数
英文 名称	triangle	${ m tree}$	meximum	ballrandom	travel	select
输入 文件 名	triangle.in	tree.in	meximum.in	ballrandom.in	travel.in	select.in
输出 文件 名	triangle.out	tree.out	meximum.out	ballrandom.out	travel.out	select.out
时间 限制	1s	$2 ext{s}\sim3 ext{s}$	1s	1s	3s	$2\mathrm{s}$
空间限制	512MB	512MB	512MB	512MB	512MB	512MB
测试 点数 量	10	20	20	20	14	20

• 编译指令: -std=c++14 -02

线下捏! 6 题捏!建立子文件夹。

• 喜报:不是数据结构大场。

三角形 (triangle)

时间限制: 1s, 空间限制: 512MB。

题目描述

给定一张无向完全图,有n个点。其中有m条边是黑色,其余的边是白色。

定义一个无序三元组 (u,v,w) 是同色三角形,当且仅当边 (u,v)、(v,w)、(u,w) 具有相同的颜色。统计图上同色三角形的数量。

输入格式

第一行输入两个整数 n, m 表示点数和黑边的数量。

接下来m行,每行输入两个整数 u_i,v_i 代表一条黑边。保证没有重边和自环。

输出格式

输出一个整数表示答案。

样例 1

输入

4 3

1 2

2 3

1 3

输出

1

样例 2

输入

5 3

3 5

3 1

5 1

输出

4

样例 3

见下放文件 triangle3.in/.out。此样例满足前 40% 数据的限制。

提示

样例解释1

只有(1,2,3)为同色三角形。

样例解释2

(1,3,5) 是三边都是黑色的同色三角形。

(1,2,4)、(2,3,4)、(2,4,5) 为三边为白色的同色三角形。

数据范围

对于前 10% 的数据, $n, m \leq 300$.

对于前 40% 的数据, $n, m \leq 2000$ 。

对于 100% 的数据, $3 \leq n \leq 10^5$, $0 \leq m \leq \min \left\{ \frac{n(n-1)}{2}, 3 \times 10^5 \right\}$ 。

Distances on Tree (tree)

时间限制: $2s\sim 3s$, 空间限制: 512MB。

题目描述

QSH 有一个有着 n 个点、n-1 条边的无向连通图,每条边的长度都是 1,第 i 个点有点权 a_i 。两个点的距离为连接它们的路径长度的最小值,特殊的,一个点到自己的距离为 0。

QSH 要在点上建造广播塔。接下来 q 天,他会依次建造 q 个广播塔,第 i 个广播塔建在点 u_i 上,广播 半径为 k_i ,所有与 u_i 距离**恰好**等于 k_i 的点都能收到广播(包括自己)。

QSH 想知道每个广播塔能广播到的点的点权之和。

输入格式

第一行输入两个整数 n, q。

第二行输入 n 个整数 a_1, a_2, \ldots, a_n 。

接下来 n-1 行每行输入两个整数 x_i, y_i 表示 x_i, y_i 之间有连边。

接下来 q 行,每行输入两个整数 u_i, k_i 表示一个广播塔。

输出格式

为了减少输出量:

- 当 q ≤ 10000 时,輸出 q 行,每行輸出一个整数表示答案;
- 否则, $\Diamond p_i$ 为第 i 次询问的答案,则你需要输出一行一个整数,其值为 (\oplus 为异或操作):

$$\bigoplus_{i=1}^{q} i \cdot p_i$$

样例 1

输入

```
4 4
1 2 3 4
1 2
1 3
1 4
1 0
1 1
2 1
4 100
```

输出

1 9 1 0

样例 2

见下放文件 ${\rm tree 2.in/.out}$ 。此样例满足 $1\sim 4$ 测试点的限制。

样例 3

见下放文件 tree3.in/.out。此样例满足 $5\sim 10$ 测试点的限制。

样例 4

见下放文件 tree 4.in/.out。此样例满足 $11 \sim 18$ 测试点的限制。

提示

【样例解释】

样例中图如下:

点权与编号相同。可以看出与 1 号点距离为 0 的只有 1 号点,距离为 1 的有 2,3,4 三个点,与 2 号点距离为 1 的只有 1 号点,不存在与 4 距离为 100 的点。

【数据范围】

对于 100% 的数据, $1 \le n \le 10^5$, $1 \le q \le 5 \times 10^5$, $1 \le a_i \le 10^4$, $1 \le u_i, k_i \le n$ 。

#	$n \le$	$q \leq$	$k_i \leq$	时限
$1\sim 4$	10^3	10^3	n	2s
$5\sim 10$	$3 imes10^4$	$5 imes10^5$	10^3	2s
$11\sim18$	$3 imes10^4$	$5 imes10^5$	n	2s
19, 20	10^5	$5 imes10^5$	n	3s

为什么要出最大值求和 (meximum)

时间限制: 1s, 空间限制: 512MB。

题目描述

给定一个长度为 n 的数组 $\{a_n\}$ 。你需要求出

$$\sum_{i=1}^{n} \sum_{j=1}^{n-i+1} \max_{j \leq k \leq i+j-1} \{a_k\}$$

等等。这不就是单调栈板子吗, 您一眼就秒了它。

然后您不过瘾,于是想了想怎么将它变难。你注意到这个式子里有三个字母,分别是 m, a, x。你灵光一现,于是你将式子改成了

$$\sum_{i=1}^n \sum_{j=1}^{n-i+1} \max_{j \leq k \leq i+j-1} \{a_k\}$$

其中 $\max_{l\leq i\leq r}\{a_i\}$ 表示在集合 $\{a_l,a_{l+1},\ldots,a_r\}$ 中最小的没出现过的非负整数。比如 $\max\{3,1,2\}=0$ 、 $\max\{0,3,1,4\}=2$ 。

你能解决新的问题吗?

输入格式

第一行输入一个整数 n。

第二行输入 n 个整数 a_1, a_2, \ldots, a_n 。

输出格式

一行一个整数表示答案。

样例 1

输入

3 3 1 2

输出

0

样例 2

输入

3 0 1 2

输出

6

样例 3

见下放文件 meximum 3.in/.out。此样例满足 $9\sim12$ 测试点的限制。

提示

【样例解释】

对于第一个样例,容易发现每个区间都没有 0,因此所有区间的 \max 都是 0,答案自然为 0。

对于第二个样例:

- [1,1] 的 mex 是 1.
- [1,2]的 mex 是 2。
- [1,3] 的 mex 是 3。
- [2,2]、[2,3]、[3,3] 的 mex 是 0。

【数据范围】

对于 100% 的数据, $1 \le n \le 3 \times 10^5, 0 \le a_i \le 3 \times 10^5$ 。

测试点编号	$n \leq$
1,2	300
$3\sim 8$	$3 imes10^3$
$9\sim12$	$5 imes10^4$
$13\sim 20$	$3 imes10^5$

拿球随机 (ballrandom)

时间限制: 1s, 空间限制: 512MB。

题目背景

Ball Choosing Random

题目描述

QSH 家里有一个奇怪的盒子。

盒子中有一堆球,每个小球上标了一个 1 到 n 的数字。标号 i 的小球有 a_i 个。

QSH 摇匀了箱子中的球,随机拿出了一个球,记下了它的标号为 x; 他将这个球放回,再次摇匀后又拿出一个球,记下了标号为 y。

这个游戏好好玩啊! 要是他知道 $|x-y|^p$ 的期望就更好了! 但是他不知道。

于是他请你回答他的问题。

输入格式

本题一个测试点内有多组数据。

输入数据的第一行有一个正整数 T,表示数据组数。

对于每组输入数据:

第一行输入两个正整数 n, k。

第二行输入 n 个整数 a_1, a_2, \ldots, a_n 。

保证 $\sum_{i=1}^{n} a_i \not\equiv 0 \pmod{998244353}$.

输出格式

对于每组测试数据,输出一行一个整数表示期望答案。

为了避免精度丢失,请取模998244353。

样例 1

输入

输出

554580197

样例 2

见下放文件 ballrandom2.in/.out。此样例满足 $3 \sim 4$ 测试点的限制。

样例 3

见下放文件 ballrandom3.in/.out。此样例满足 $5 \sim 7$ 测试点的限制。

样例 4

见下放文件 ballrandom4.in/.out。此样例满足 $8 \sim 12$ 测试点的限制。

样例 5

见下放文件 ballrandom5.in/.out。此样例满足 $13\sim17$ 测试点的限制。

提示

答案是 $\frac{8}{9}$ 。

数据范围

记 $\sum n \cdot p$ 为一个测试点中所有数据里 $n \cdot p$ 的和。

对于 100% 的数据, $1 \le n, p \le 10^6$, $\sum n \cdot p \le 10^7$, $0 \le a_i < 998244353$ 。

测试点编号	$\sum n\cdot p \leq$	特殊性质
1, 2	$3 imes 10^3$	保证所有测试点的 $\sum\limits_{i=1}^n a_i$ 之和 $\leq 10^3$
3,4	$3 imes10^3$	无
$5\sim7$	10^6	p=1
$8\sim12$	10^6	$p \leq 2$
$13\sim17$	10^6	无
$18\sim 20$	10^7	无

小 Q 的旅行攻略 (travel)

题目描述

Y市的旅游景点丰富多彩,小Q要去Y市旅游。

Y 市有名的景点共有 n 个,在小 Q 到达 Y 市之前他做了攻略,对第 i 个景点的评价为 a_i 。同时,Y 市也会每天播出 n 段新闻,每当小 Q 观看第 i 段新闻,他对景点 i 的评价就会发生一定的变化。记观看第 i 段新闻对景点 i 的评价变化量为 b_i 。 b_i 初始为 0。

小 Q 要在 Y 市停留 m 天, 这 m 天中每一天都会发生恰好一个事件, 事件分四种:

- 1. \cup O 要去第 l 个到第 r 个景点游玩。
- 2. Y 市天气发生变化,导致小 Q 对景点的评价也发生了变化。天气会影响第 l 个到第 r 个景点,使小 Q 对它们的评价增加 v。
- 3. 第 l 段到第 r 段新闻风向发生变化,对于所有的 $l \le i \le r$, b_i 会增大 v。
- 4. 小 Q 收看了第 l 段到第 r 段新闻,并且收到了新闻的影响,对于所有的 $l \leq i \leq r$, a_i 会增大 b_i 。

由于每天的新闻与总共的景点太多了,小Q很好奇自己游玩一次能收获的价值和是多少。由于评价和可能很大,你只需要回答答案模19260817的值就可以了。

定义景点的价值为小Q的评价。

输入格式

第一行输入两个整数 n, m,表示景点与新闻的数量,以及小 Q 停留的天数。

第二行输入 n 个整数 a_1, a_2, \dots, a_n 。

第三行输入 n 个整数 b_1, b_2, \dots, b_n 。

接下来 m 行,每行先输入一个整数 opt 表示当天事件的类型。根据类型的不同,接下来会紧接着输入 $2\sim3$ 个整数:

- 1. 1 r.
- 2. 1 r v.
- 3. 1 r v.
- 4. 1 r.

以上字母的含义见【题目描述】。

由于小Q等不了太久,因此他要求你**在线地回答这些问题**,具体的,每次事件的输入值(除了opt)都需要异或上lans才能得到真实的参数,其中lans是上一次lans,初始为lans0。

输出格式

对于每个1事件,输出答案。

你需要保证你输出的答案始终属于集合 $\mathbb{Z} \cap [0,19260817)$ 。

样例 1

输入

```
5 4

1 1 2 3 1

0 0 0 0 0

1 2 4

3 4 2 2

4 7 5

1 4 2
```

输出

```
6
14
```

样例 2

见下放文件 travel2.in/.out。此样例满足 $11 \sim 14$ 测试点的限制。

提示

【数据范围】

对于 100% 的数据, $1 \le n, m \le 3 \times 10^5$,解码后的 $1 \le l, r \le n$,解码后的 $0 \le v < 19260817$ 。

测试点编号	n, m	特殊性质
$1\sim 6$	3000	无
7,8	10^5	没有 3,4 操作
9,10	10^5	3,4 操作中 $l=r$
$11\sim14$	10^5	无

本来想弄 5e5 的但是标程跑不过去

大家想测剩下的 $15\sim 20$ 号数据的可以去 LG 上交题。

集合选数 (select)

题目描述

MO 的同学们有这么一道题,要求对于 n=5,在集合 $U=\{1,2,\ldots,n\}$ 中选择一个子集 A,使得若 $v\in A$,则满足 $2v\not\in A$, $3v\not\in A$ 。你需要求出满足条件的 A 的数量。

OI 的同学不过瘾,于是顺手把 n=5 改成了 $0 \le n \le 10^6$,然后他们找到了你。

你能解决他们的问题吗?

输入格式

只有一行,其中有一个正整数 n。

输出格式

仅包含一个正整数,表示 $\{1,2,\ldots,n\}$ 有多少个满足上述约束条件的子集。

样例 1

输入

4

输出

8

样例 2

输入

10

输出

198

样例 3

输入

1000

输出

719355637

提示

【样例1解释】

有 8 个集合满足要求,分别是空集,1, $\{1,4\}$, $\{2\}$, $\{2,3\}$, $\{3\}$, $\{3,4\}$, $\{4\}$ 。

【数据范围】

对于 30% 的数据, $n \leq 20$ 。

对于 90% 的数据, $n \le 10^5$.

对于 100% 的数据, $0 \le n \le 10^6$ 。