Jacobians of Matrix Transforms

김성민

서울대학교 통계학과, 베이즈통계 연구실

2021. 10. 28

CONTENTS

- Material
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

CONTENTS

- Material
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

Material

- http://web.mit.edu/18.325/www/handouts.html
 - Edelman (2005b)
 - Edelman (2005a)
 - Edelman (2005c)
- Muirhead (2009)

CONTENTS

- Materia
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

Jacobian of $Y = BXA^T$

•
$$Y = X^{-1}$$

$$\Rightarrow dY = -X^{-1}dXX^{-1}$$

• By using "Kronecker Product", we can instantly write down the Jacobian.

Operator Definition

Definition

 $A \otimes B$ is the operator from $X \in \mathbb{R}^{m,n}$ to $Y \in \mathbb{R}^{m,n}$ where $Y = BXA^T$

• We write down as follows:

$$(A \otimes B)X = BXA^T$$

 By using "Kronecker Product", we can instantly write down the Jacobian.

Matrix Definition

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1m_2}B \\ \vdots & & \vdots \\ a_{m_1}B & \dots & a_{m_1m_2} \end{bmatrix}$$

Concretely, we have that

$$vec(BXA^T) = (A \otimes B)vec(X)$$

Properties

- $(A \otimes B)^T = A^T \otimes B^T$
- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
- $det(A \otimes B) = (detA)^m (detB)^n, \ A \in \mathbb{R}^{n,n}, \ B \in \mathbb{R}^{m,m}$
- $tr(A \otimes B) = tr(A)tr(B)$
- $A \otimes B$ is orthogonal if A and B is orthogonal
- $\bullet \ (A \otimes B)(C \otimes D) = (AC) \otimes (BD)$
- $A \otimes B$ and $B \otimes A$ have the same eigenvalues, and transposed eigenvectors.

Linear Subspace Kronecker Products

Definition

Let S denote a linear subspace of \mathbb{R}^{mn} and π_S a projection onto S. If $A \in \mathbb{R}^{n,n}$ and $B \in \mathbb{R}^{m,m}$ then we define $(A \otimes B)_S X = \pi_S(BXA^T)$ for $X \in S$.

•

$$(A \otimes B)_{sym}X = \frac{BXA^T + AXB^T}{2}$$

•

$$(A \otimes B)_{upper}X = upper(BXA^T)$$

Jacobians of $(A \otimes B)_{upper}$

- Special case : A is lower triangular, B is upper.
- $(A \otimes B)_{upper}X = BXA^T$
- The eigenvalues of A and B are $\lambda_i = A_{ii}$ and $\mu_j = B_{jj}$ respectively, where $Au_i = \lambda_i u_i$ and $Bv_i = \mu_i v_i$.
- Let $M_{ij} = v_i u_j^T$ for $i \leq j$, then $BM_{ij}A^T = \mu_i \lambda_j M_{ij}$
- $det(J) = \prod_{i \leq j} \mu_i \lambda_j$

CONTENTS

- Material
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

Jacobians of Linear Functions, Powers and Inverses

• $Y = X^2$

$$dY = XdX + dXX$$
$$= XdXI + IdXX$$
$$= (I \otimes X + X^{T} \otimes I)dX$$

- u_i, v_j are eignevectors of X, X^T , repectively.
- Let $E_{ij} = u_i v_j^T$

$$(I \otimes X + X^{T} \otimes I)E_{ij} = XE_{ij} + E_{ij}X$$
$$= \lambda_{i}u_{i}v_{j}^{T} + u_{i}(\lambda_{j}v_{j})^{T}$$
$$= (\lambda_{i} + \lambda_{j})E_{ij}$$

• So that $det(J) = \Pi_{i,j}(\lambda_i + \lambda_j)$

Jacobians of Matrix Factorizations

- Gaussian Elimination : A = LU (L : unit lower triangular, U : upper triangular)
- Gram-Schmidt : A = QR (Q : Orthogonal, R : upper triangular)
- Eigenvalue Decomposition : $A = X\Lambda X^T$ (X : eigenvectors, Λ : eigenvalues)

Jacobian of Gauss Elimination

- The mapping $dU \rightarrow dUU^{-1}$ only affects the upper triangular part.
- The mapping $dL \rightarrow L^{-1}dL$ only affects the lower triangular part.

$$dA = LdU + dLU$$

$$= L(dUU^{-1} + L^{-1}dL)U$$

$$= (U^{T} \otimes L)((U^{T} \otimes_{upper} I)^{-1}dU + (I \otimes_{lower} L)^{-1}dL)$$

$$= (U^{T} \otimes L) \begin{pmatrix} U^{T} \otimes_{upper} I & \\ & I \otimes_{lower} L \end{pmatrix}^{-1} \begin{pmatrix} dU \\ dL \end{pmatrix}$$

- Jacobian determinant of $U^T \otimes L : \Pi u_{ii}^n$
- $\bullet \ (U^T \otimes I)^{-1} : \Pi u_{ii}^{-i}$
- *I* ⊗ *L* : 1

$$\therefore$$
 $det(J) = \prod u_{ii}^{n-i}$

Jacobian of Gram-Schmidt

$$dA = QdR + dQR$$

$$= Q(dRR^{-1} + Q^{T}dQ)R$$

$$= (R^{t} \otimes Q)((R^{t} \otimes_{upper} I)^{-1}dR + Q^{T}dQ)$$

• $det(J) = (\Pi r_{ii}^n)(\Pi r_{ii}^{-i}) = \Pi r_{ii}^{n-i}$

CONTENTS

- Material
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

Wedge Product

$$(2dx + x^2dy + 5dw + 2dz) \wedge (ydx - xdy)$$

$$= (-2x - x^2y)dx \wedge dy + 5y(dw \wedge dx) - 5x(dw \wedge dy)$$

$$- 2y(dx \wedge dz) + 2x(dy \wedge dz)$$

- $(du \wedge dv) = -(dv \wedge du)$
- $du \wedge du = 0$

Wedge Product

$$F = \begin{pmatrix} 2 & x_2 \\ x_1^2 & -x_1 \\ 5 & 0 \\ 2 & 0 \end{pmatrix}$$

- $(2dx_1 + x_1^2dx_2 + 5dx_3 + 2dx_4) \wedge (x_2dx_1 x_1dx_2) = \bigwedge_{i=1}^2 (F(x)^Tdx)_i$
- $\bullet = \sum_{i_1 < i_2} det(F[(i_1, i_2), :]) dx_{i_1} dx_{i_2}$

Wedge Product

We use the notation

$$(F(x)^T dx)^{\wedge} \equiv \wedge_{i=1}^p (F(x)^T dx)_i$$

We extend ()^{\(\Lambda\)} notation from vectors to matrices of differentials.

$$(dM)^{\wedge} = \wedge_{i,j} dM_{ij}$$

Wedge Product to Square Matrix

- $A = lower(M) lower(M)^T$: Anti-symmetric
- $R = upper(M) + lower(M)^T$: Upper Triangular
- M = A + R
- $(dM)^{\wedge} = (lower(dA) + dR)^{\wedge} = (dA)^{\wedge}(dR)^{\wedge}$

CONTENTS

- Materia
- 2 Kronecker Product
- 3 Jacobians
- Wedge Product
- 5 Volumes and Integration

Integration Using Differential Forms

• y = y(x) is som function from \mathbb{R}^n to \mathbb{R}^n

$$\int_{y(S)} f(y)dy_1 \wedge \ldots \wedge dy_n = \int_{S} f(y(x))dx_1 \wedge \ldots \wedge dx_n$$

• Integration of surfaces of sphere $\Rightarrow dx_1 \wedge ... \wedge dx_n = 0$

Plucker Coordinates

Definition 1.

PI(F) is the vector of $p \times p$ subdeterminants of F ($F \in \mathbb{R}^{n,p}$).

$$F = (f_{ij})_{\substack{i \leq n \\ j \leq p}} \quad \stackrel{Pl}{\longrightarrow} \left(det(f_{ij})_{\substack{i=i_1, \dots, i_n \\ j=1, \dots, p}} \right)_{\substack{i_1 < \dots < i_p}}$$

Definition 2.

Let vol(F) denote the volume of parallelopiped $\{Fx: 0 \le x_i \le 1\}$, i.e., the volume of the parallelopiped with edges equal to the columns of F.

Plucker Coordinates

Theorem 1.

 $vol(F) = \prod_{i=1}^p \sigma_i = det(F^T F)^{1/2} = \prod_{i=1}^p r_{ii} = ||Pl(F)||$, where the σ_i are the singular values of F, and the r_{ii} are the diagonal elements of R in F = YR, where $Y \in \mathbb{R}^{n,p}$ has orthonormal columns and R is upper triangular.

Corollary 3.

Let $F \in \mathbb{R}^{n,p}$ have orthonormal columns, i.e., $F^TF = I_p$. Let $X \in \mathbb{R}^{n,p}$. If span(F) = span(X), then $vol(X) = det(F^TX) = Pl(F)^T Pl(X)$.

Volume Measurement

Remark 1.

If S_p is some p-dimensional surface it is convenient for F^i to be a set of p orthonormal tangent vectors on the surface at some point $x^{(i)}$ and $V^{(i)}$ to be any "little" parallelopiped on the surface.

If we decompose the surface into parallelopipeds we have

$$vol(S_p) \approx \sum vol(V^{(i)}) = \sum PI(F^{(i)})^T PI(V^{(i)})$$
$$\int f(x)d(surface) \approx \sum f(x^{(i)})PI(F^{(i)})^T PI(V^{(i)})$$
$$= \sum f(x^{(i)})det((F^{(i)})^T V^{(i)})$$

Mathematicians write the continuous limit of the above equation as

$$\int f(x)d(surface) = \int f(x)(F^T dx)^{\wedge}$$

◆ロト ◆母ト ◆皇ト ◆皇ト ■ める()

Volume Measurement

• Notice that $(F(x)^T dx)^{\wedge}$ formally compute PI(F(x)). Indeed

$$(F(x)^T dx)^{\wedge} = PI(F(x))^T \begin{pmatrix} \vdots \\ dx_{i1} \wedge \ldots \wedge dx_{ip} \\ \vdots \end{pmatrix}_{i_1 < \ldots < i_p}$$

Overview of special surfaces

We are very interested in the following three mathematical objects:

- The sphere $\{x: ||x|| = 1\}$ in \mathbb{R}^n
- The orthogonal group O(n) of orthogonal matrices $Q\left(Q^TQ=I\right)$ in $\mathbb{R}^{n,n}$
- The Stiefel manifold of tall skinny matrices $Y \in \mathbb{R}^{n,p}$ with orthogonal columns $(Y^TY = I_p)$.

Example

- Integration over a sphere given q with ||q||=1, let H(q) be any $n \times n$ orthogonal matrix with first column q. (One way to construct H(q) is $I-2\frac{vv^T}{v^Tv}$, where $v=e_1-q$)
- The sphere is an n-1 dimensional surface in n dimensional space.
- Integration over the sphere is then,

$$\int_{\substack{x \in \mathbb{R}^n \\ ||x||=1}} f(x) dS = \int_{\substack{x \in \mathbb{R}^n \\ ||x||=1}} f(x) \wedge_{i=2}^n (H^T dx)_i$$

The Sphere

- x = qr, where r = ||x|| and q = x/||x||
- Then

$$Hdx = e_1 dr + Hdqr = \begin{pmatrix} dr \\ r(Hdq)_2 \\ \vdots \\ r(Hdq)_n \end{pmatrix}$$

Thus

$$(dx)^{\wedge} = (Hdx)^{\wedge} = r^{n-1}dr \wedge_{i=2}^{n} (Hdq)_{i}$$

Surface Area of Sphere Computation

• We directly use the formula $(dx)^{\wedge} = r^{n-1}dr(Hdq)^{\wedge}$

$$(2\pi)^{n/2} = \int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}||x||^2} dx = \int_{r=0}^{\infty} r^{n-1} e^{-\frac{1}{2}r^2} dr \int (Hdq)^{\wedge}$$

$$= 2^{\frac{n-2}{2}} \Gamma(\frac{n}{2}) \int (Hdq)^{\wedge}$$

$$\therefore \int (Hdq)^{\wedge} = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})} = A_n$$

• A_n is the surface of the sphere of radius 1.

The Stiefel Manifold

- ullet A=QR, where $Q\in\mathbb{R}^{n,p}$ such that $Q^TQ=I_p$
- Consider the orthogonal matrix $H = [Q, h_{p+1}, \dots, h_n]$, where $H \in \mathbb{R}^{n,n}$
- dA = QdR + dQR
- $\bullet \ H^T dA = H^T Q dR + H^T dQR$
- \bullet H^TQdR : n by p upper triangular matrix
- $H^T dQR$: (rectangularly) antisymmetric

Haar Measure and Volume of the Stiefel Manifold

The natural volume element on the Stiefel Manifold is as follows:

$$(H^T dQ) = \wedge_{j=1}^p \wedge_{i=j+1}^n h_i^T dh_j$$

We may define

$$\mu(S) = \int_{S} (H^{T} dQ).$$

ullet This measure μ is known as Haar measure when ${\it p}={\it n}$

References I

- Edelman, A. (2005a). 18.325: Finite random matrix theory: Jacobians of matrix transforms (with wedge products).
- Edelman, A. (2005b). 18.325: Finite random matrix theory: Jacobians of matrix transforms (without wedge products).
- Edelman, A. (2005c). 18.325: Finite random matrix theory volumes and integration.
- Muirhead, R. J. (2009). Aspects of multivariate statistical theory, Vol. 197, John Wiley & Sons.