Project 1: Dimension Reduction, Predictive Modeling, and Mislabeling

Group 27:

Daniel González Muela Francisco Boudagh

Purusothaman Seenivasen Sky Sunsaksawat

MVE441 Statistical Learning for Big Data

18th April 2024

Scale data and explore PCA

Both methods suggest the number of principle components around >20

3 different classifiers of different character

kNN, small k

the closer 2 points
the more similar
they are

QDA

- p(x|i) ~ Normal (should be tested)
- QDA assumes that each class has its own covariance matrix

Logistic Regression

- Binary classification (extended to multiclass using softmax)
- No multicollinearity (reduced with PCA)
- Large sample (sample of 2000)
- Linear relationship of variables to log odds
- No outliers
- Independent observations

Flexible Moderate Rigid

Setup

Limitations

- Training data sizes: 50%, 65%, 80%
- Mislabeling in training data: 0%, 5%, 30%, 70%
- Optimization method: *GridSearchCV* for parameters (k in kNN, # of PCs)
- Evaluation metric: Recall or Sensitivity
 - Recall = TP/(TP + FN)
 - Ideal for ensuring detection of positive cases

(Due to limited time and compute resources)

- Only 3 mislabeling levels
- Only 3 iterations per test to minimze randomness
- Few parameters given to GridSearchCV

Data Visualization

Original Data

KNN

QDA

Recall Evaluation on 80% Training Data

Recall Evaluation on 65% Training Data

Recall Evaluation on 50% Training Data

Feature Selection

Keeping features with maximum variance

Training data size (% of dataset)	% of Mislabeling data				
	0%	5%	30%	70%	
80%	0	0	10	10	
65%	0	0	10	10	
50%	0	0	10	10	

The table shows the maximum variance threshold for feature selection that optimizes predictive performance in each condition

Keeping feature with ANOVA F-test

 the score is obtained by comparing the variances of each feature to the target variable.

Training data size (% of dataset)	% of Mislabeling data				
	0%	5%	30%	70%	
80%	40 th	90 th	5 th	5 th	
65%	40 th	80 th	5 th	5 th	
50%	60 th	60 th	5 th	5 th	

The table show the percentile for features selection that optimize predictive performance in each condition

Recall Evaluation on Feature Selection with Maximum Variance and F test

Keeping features with maximum variance

Keeping feature with ANOVA F-test

• the score is obtained by comparing the variances of each feature to the target variable.

Conclusion and Key Findings

Top performer: Logistic Regression

Indicates (a likely) linear relationship between the variables.

Stability against mislabeling (noise):

- Logistic regression without feature selection shows the highest robustness to mislabeling.
- Regularization techniques help to prevent overfitting.

Impact of mislabeling:

- Even a small percentage of mislabeling significantly impacts performance.
- This effect is amplified when feature selection is applied.