

Page 2

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows.

1. (Currently presented) A semiconductor laser device comprising:

a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;

an active layer, which is made of In_yGa_{1-y}N and is formed over the first cladding layer; and

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer[[,]]; and

wherein an in Gal N layer of the first conductivity type is formed between the substrate and the first cladding layer, and

wherein 0 < x < 1, 0 < y < 1 and $x \ge y$ in the composition of In.

- 2. (Previously presented) The device of claim 1, wherein the In_xGa_{1-x}N layer is formed in contact with the first cladding layer.
- 3. (Previously presented) The device of Claim 1, wherein the In_xGa_{1-x}N layer is formed in contact with the substrate.
 - 4. (Currently presented) A semiconductor laser device comprising:

a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;

an active layer, which is made of In_yGa_{1-y}N and is formed over the first cladding layer;

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer; and

an electrode formed over the second cladding layer[[,]]; and

NO.

Application No.: 09/504,782 Attorney Docket No.: 740819-337

Art Unit 2828

Page 3

wherein an In_xGa_{1-x}N layer of the second conductivity type is formed between the second cladding layer and the electrode, and

wherein 0 < x < 1, 0 < y < 1 and $x \ge y$ in the composition of In.

- 5. (Previously presented) The device of Claim 4, wherein the In_xGa_{1-x}N layer is formed in contact with the second cladding layer.
- 6. (Previously presented) The device of Claim 4, wherein the In_xGa_{1-x}N layer is formed in contact with the electrode.

7. (Withdrawn) A semiconductor laser device comprising a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer, and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein a spontaneous emission protective film for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on a surface of the substrate, the surface being opposite to another surface of the substrate over which the active layer is located.

- 8. (Withdrawn) The device of Claim 7, wherein the spontaneous emission protective film is made of silicon or a metal containing gold.
- 9. (Withdrawn) A semiconductor laser device comprising a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the

NVA275350.1

65

NO. 8428

Application No.: 09/504,782 Attorney Docket No.: 740819-337 Art Unit 2828

Page 4

first cladding layer, and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on an emissive end facet of the laser diode body, except for a portion of the active layer from which laser radiation is emitted, and on a reflective end facet of the laser diode body, the reflective end facet facing the emissive end facet.

- (Withdrawn) The device of Claim 9, wherein the spontaneous 10. emission protective films are made of silicon or a metal containing gold.
- (Withdrawn) A semiconductor laser device comprising a laser diode 11. body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on side faces of the laser diode body, the side faces being parallel to a direction in which the laser radiation is emitted.

- 12. (Withdrawn) The device of Claim 11, wherein the spontaneous emission protective films are made of silicon or a metal containing gold.
 - (Withdrawn) A semiconductor laser device comprising: 13.
 - a first cladding layer, which is made of a nitride semiconductor of a first

Page 5

conductivity type and is formed over a substrate:

an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer;

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer; and

an electrode, which is formed over the second cladding layer and injects striped current into the active layer,

wherein a recess is formed in the active layer beside and along a region of the active layer to which the striped current is injected, and

wherein the recess is filled in with a spontaneous-emission-absorbing member for absorbing spontaneous emission that has been radiated from the active layer.

- (Withdrawn) The device of Claim 13, wherein the spontaneous-14. emission-absorbing member is made of silicon or a metal containing gold.
- 15. (Withdrawn) A semiconductor laser device comprising a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein a spontaneous emission protective member for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on or over a surface of the substrate, which is opposite to another surface of the substrate over which the active layer is located, and

wherein another spontaneous emission protective member is formed to be spaced apart from at least one side face of the laser diode body.

(Withdrawn) The device of Claim 15, wherein the substrate is made of 16.

Art Unit 2828

Page 6

sapphire, silicon carbide or gallium nitride.

17. (Withdrawn) An optical disk apparatus comprising:

- a semiconductor laser device;
- a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and
- a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises:

- a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;
- an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and
- a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein a spontaneous-emission-absorbing layer, which is made of yet another nitride semiconductor of the first conductivity type and absorbs spontaneous emission that has been radiated from the active layer, is formed between the substrate and the first cladding layer.

18. (Withdrawn) An optical disk apparatus comprising:

- a semiconductor laser device;
- a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and
- a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises:

Page 7

a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;

an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer;

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer; and

an electrode formed over the second cladding layer,

wherein a spontaneous-emission-absorbing layer, which is made of yet another nitride semiconductor of the second conductivity type and absorbs spontaneous emission that has been radiated from the active layer, is formed between the second cladding layer and the electrode.

(Withdrawn) An optical disk apparatus comprising:

a semiconductor laser device;

a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and

a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

wherein a spontaneous emission protective film for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on a surface of the substrate, the surface being opposite to another surface of the substrate over which the active layer is located.

Art Unit 2828

Page 8

20. (Withdrawn) An optical disk apparatus comprising:

a semiconductor laser device;

a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and

a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on an emissive end facet of the laser diode body, except for a portion of the active layer from which the laser radiation is emitted, and on a reflective end facet of the laser diode body, the reflective end facet facing the emissive end facet.

21. (Withdrawn) An optical disk apparatus comprising:

a semiconductor laser device;

a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and

a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride

Page 9

semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on side faces of the laser diode body, the side faces being parallel to a direction in which the laser radiation is emitted.

22. (Withdrawn) An optical disk apparatus comprising:

a semiconductor laser device;

a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and

a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises:

a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;

an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer;

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer; and

an electrode, which is formed over the second cladding layer and injects striped current into the active layer,

wherein a recess is formed in the active layer beside and along a region of the active layer to which the striped current is injected, and

wherein the recess is filled in with a spontaneous-emission-absorbing member for absorbing spontaneous emission that has been radiated from the active layer.

Art Unit 2828

Page 10

23. (Withdrawn) An optical disk apparatus comprising:

a semiconductor laser device;

a condensing optical system for condensing laser radiation that has been emitted from the semiconductor laser device on a storage medium on which data has been recorded; and

a photodetector for detecting the laser radiation that has been reflected from the storage medium,

wherein the semiconductor laser device comprises: a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

wherein a spontaneous emission protective member for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on or over a surface of the substrate, which is opposite to another surface of the substrate over which the active layer is located, and

wherein another spontaneous emission protective member is formed to be spaced apart from at least one side face of the laser diode body.

24. (Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises:

a first cladding layer, which is made of a nitride semiconductor of a first

Page 11

conductivity type and is formed over a substrate;

an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein a spontaneous-emission-absorbing layer, which is made of yet another nitride semiconductor of the first conductivity type and absorbs spontaneous emission that has been radiated from the active layer, is formed between the substrate and the first cladding layer.

25. (Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises:

- a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;
- an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer;
- a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

an electrode formed over the second cladding layer,

wherein a spontaneous-emission-absorbing layer, which is made of yet another nitride semiconductor of the second conductivity type and absorbs spontaneous emission that has been radiated from the active layer, is formed between the second cladding layer and the electrode.

Art Unit 2828

Page 12

26. (Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

wherein a spontaneous emission protective film for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on a surface of the substrate, the surface being opposite to another surface of the substrate over which the active layer is located.

27. (Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

Art Unit 2828

Page 13

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on an emissive end facet of the laser diode body, except for a portion of the active layer from which the laser radiation is emitted, and on a reflective end facet of the laser diode body, the reflective end facet facing the emissive end facet.

28. (Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer,

wherein spontaneous emission protective films for absorbing or reflecting spontaneous emission that has been radiated from the active layer are formed on side faces of the laser diode body, the side faces being parallel to a direction in which the laser radiation is emitted.

(Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

Art Unit 2828

Page 14

wherein the semiconductor laser device comprises:

a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate;

an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer;

a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer; and

an electrode, which is formed over the second cladding layer and injects striped current into the active layer,

wherein a recess is formed in the active layer beside and along a region of the active layer to which the striped current is injected, and

wherein the recess is filled in with a spontaneous-emission-absorbing member for absorbing spontaneous emission that has been radiated from the active layer.

(Withdrawn) An optical integrated unit comprising:

- a semiconductor laser device mounted on a support member made of a semiconductor; and
- a photodetector, which is formed on the support member and detects a reflected part of laser radiation that has been emitted from the semiconductor laser device,

wherein the semiconductor laser device comprises: a laser diode body, the laser diode body including: a first cladding layer, which is made of a nitride semiconductor of a first conductivity type and is formed over a substrate; an active layer, which is made of another nitride semiconductor and is formed over the first cladding layer; and a second cladding layer, which is made of still another nitride semiconductor of a second conductivity type and is formed over the active layer, and

wherein a spontaneous emission protective member for absorbing or reflecting spontaneous emission that has been radiated from the active layer is formed on or over a surface of the substrate, which is opposite to another surface of

Page 15

the substrate over which the active layer is located, and
wherein another spontaneous emission protective member is formed to be
spaced apart from at least one side face of the laser diode body.

31. - 35. (Canceled)

314