Chapter 5

Rijndael – The Advanced Encryption Standard

5.1 History

5.1.1 Basic Facts about AES

- Successor to DES.
- The AES selection process was administered by NIST.
- Unlike DES, the AES selection was an open (i.e., public) process.
- Likely to be the dominant secret-key algorithm in the next decade.
- Main AES requirements by NIST:
 - Block cipher with 128 I/O bits
 - Three key lengths must be supported: 128/192/256 bits
 - Security relative to other submitted algorithms
 - Efficient software and hardware implementations

• See http://www.nist.gov/aes for further information on AES

5.1.2 Chronology of the AES Process

- Development announced on January 2, 1997 by the National Institute of Standards and Technology (NIST).
- 15 candidate algorithms accepted on August 20th, 1998.
- 5 finalists announced on August 9th, 1999
 - Mars, IBM Corporation.
 - RC6, RSA Laboratories.
 - Rijndael, J. Daemen & V. Rijmen.
 - Serpent, Eli Biham et al.
 - Twofish, B. Schneier et al.
- Monday October 2nd, 2000, NIST chooses Rijndael as the AES.

A lot of work went into software and hardware performance analysis of the AES candidate algorithms. Here are representative numbers:

Algorithm	Pentium-Pro @ 200 MHz	FPGA Hardware
	(Mbit/sec) [WWGP00]	(Gbit/sec) [EYCP00]
MARS	69	-
RC6	105	2.4
Rijndael	71	1.9
Serpent	27	4.9
Twofish	95	1.6

Table 5.1: Speeds of the AES Finalists in Hardware and Software

5.2 Rijndael Overview

Figure 5.1: AES Block and Key Sizes

• Both blocksize and keylength of Rijndael are variable. Sizes shown in Figure 5.2 are the ones required by the AES Standard. The number of rounds (or iterations) is a function of the key length:

Key lengths (bits)	$n_r = \# \text{ rounds}$
128	10
192	12
256	14

Table 5.2: Key lenghts and number of rounds for Rijndael

• However, Rijndael also allows *blocksizes* of 192 and 256 bits. For those blocksizes the number of rounds must be increased.

Important: Rijndael does *not* have a Feistel structure. Feistel networks do not encrypt an entire block per iteration (e.g., in DES, 64/2 = 32 bits are encrypted in one iteration). Rijndael encrypts all 128 bits in one iteration. As a consequence, Rijndael has a comparably small number of rounds.

Rijndael uses three different types of layers. Each layer operates on all 128 bits of a block:

1. Key Addition Layer: XORing of subkey.

2. Byte Substitution Layer: 8-by-8 SBox substitution.

3. Diffusion Layer: provides difussion over all 128 (or 192 or 256) block bits. It is split

in two sub-layers:

(a) ShiftRow Layer.

(b) MixColumn Layer.

Remark: The ByteSubstitution Layer introduces confusion with a non-linear operation.

The ShiftRow and MixColumn stages form a linear Diffusion Layer.

Some Mathematics: A Very Brief Introduction to 5.3

Galois Fields

"Galois fields" are used to perform substitution and diffusion in Rijndael.

Question: What are Galois fields?

Galois fields are fields with a finite number of elements. Roughly speaking, a field is a

structure in which we can add, subtract, multiply, and compute inverses. More exactly a field

is a ring in which all elements except 0 are invertible.

Fact 5.3.1 Let p be a prime. GF(p) is a "prime field," i.e., a Galois field with a

prime number of elements. All arithmetic in GF(p) is done modulo p.

Example: $GF(3) = \{0, 1, 2\}$

47

Figure 5.2: Rijndael encryption block diagram

addition				additive invers	
+	0	1	2		
0	0	1	2	-0 = 0	
1	1	2	0	-1 = 2	
2	2	0	1	-2 = 1	

multiplication

multiplicative inverse

$$0^{-1}$$
 does not exist

$$1^{-1} = 1$$

$$2^{-1} = 2$$
, since $2 \cdot 2 \equiv 1 \mod 3$

Theorem 5.3.1 For every power p^m , p a prime and m a positive integer, there exists a finite field with p^m elements, denoted by $GF(p^m)$.

Examples:

- GF(5) is a finite field.
- $GF(256) = GF(2^8)$ is a finite field.
- $GF(12) = GF(3 \cdot 2^2)$ is **NOT** a finite field (in fact, the notation is already incorrect and you should pretend you never saw it).

Question: How to build "extension fields" $GF(p^m)$, m > 1?

Note: See also [Sti95, Section 5.2.1]

1. **Represent** elements as polynomials with m coefficients. Each coefficient is an element of GF(p).

Example: $A \in GF(2^8)$

$$A \to A(x) = a_7 x^7 + \dots + a_1 x + a_0, \quad a_i \in GF(2) = \{0, 1\}$$

2. Addition and subtraction in $GF(p^m)$

$$C(x) = A(x) + B(x) = \sum_{i=0}^{i=m-1} c_i x^i, \quad c_i = a_i + b_i \mod p$$

Example: $A, B \in GF(2^8)$

$$A(x) = x^{7} + x^{6} + x^{4} + 1$$

$$B(x) = x^{4} + x^{2} + 1$$

$$C(x) = x^{7} + x^{6} + x^{2}$$

3. Multiplication in $GF(p^m)$: multiply the two polynomials using polynomial multiplication rule, with coefficient arithmetic done in GF(p). The resulting polynomial will have degree 2m-2.

$$A(x) \cdot B(x) = (a_{m-1}x^{m-1} + \dots + a_0) \cdot (b_{m-1}x^{m-1} + \dots + b_0)$$

$$C'(x) = c'_{2m-2}x^{2m-2} + \dots + c'_0$$

where:

$$c'_0 = a_0 b_0 \mod p$$
 $c'_1 = a_0 b_1 + a_1 b_0 \mod p$
 \vdots
 $c'_{2m-2} = a_{m-1} b_{m-1} \mod p$

Question: How to reduce C'(x) to a polynomial of maximum degree m-1?

Answer: Use modular reduction, similar to multiplication in GF(p). For arithmetic in $GF(p^m)$ we need an *irreducible polynomial* of degree m with coefficients from GF(p). Irreducible polynomials do not factor (except trivial factor involving 1) into smaller polynomials from GF(p).

Example 1: $P(x) = x^4 + x + 1$ is irreducible over GF(2) and can be used to construct $GF(2^4)$.

$$C = A \cdot B \Rightarrow C(x) = A(x) \cdot B(x) \mod P(x)$$

$$A(x) = x^3 + x^2 + 1$$

$$B(x) = x^2 + x$$

$$C'(x) = A(x) \cdot B(x) = (x^5 + x^4 + x^2) + (x^4 + x^3 + x) = x^5 + x^3 + x^2 + 1$$

$$x^{4} = 1 \cdot P(x) + (x+1)$$

$$x^{4} \equiv x + 1 \mod P(x)$$

$$x^{5} \equiv x^{2} + x \mod P(x)$$

$$C(x) \equiv C'(x) \mod P(x)$$

$$C(x) \equiv (x^{2} + x) + (x^{3} + x^{2} + 1) = x^{3}$$

$$A(x) \cdot B(x) \equiv x^{3}$$

<u>Note</u>: in a typical computer representation, the multiplication would assign the following unusually looking operations:

Example 2: $x^4 + x^3 + x + 1$ is reducible since $x^4 + x^3 + x + 1 = (x^2 + x + 1)(x^2 + 1)$.

4. Inversion in $GF(p^m)$: the inverse A^{-1} of $A \in GF(p^m)^*$ is defined as:

$$A^{-1}(x) \cdot A(x) = 1 \bmod P(x)$$

 \Rightarrow perform the Extended Euclidean Algorithm with A(x) and P(x) as inputs

$$s(x)P(x) + t(x)A(x) = \gcd(P(x), A(x)) = 1$$
$$\Rightarrow t(x)A(x) = 1 \mod P(x)$$
$$\Rightarrow t(x) = A^{-1}(x)$$

Example: Inverse of $x^2 \in GF(2^3)$, with $P(x) = x^3 + x + 1$

$$t_0 = 0, t_1 = 1$$

$$x^3 + x + 1 = [x]x^2 + [x + 1] \qquad t_2 = t_0 - q_1t_1 = -q_1 = -x = x$$

$$x + 1 = [1]x + 1 \qquad t_3 = t_1 - q_2t_2 = 1 - q_2x = 1 - x = x + 1$$

$$x = [x]1 + 0$$

$$\Rightarrow (x^2)^{-1} = t(x) = t_3 = x + 1$$

Check:
$$(x+1)x^2 = x^3 + x = (x+1) + x \equiv 1 \mod P(x)$$
 since $x^3 \equiv x + 1 \mod P(x)$.

Remark: In every iteration of the Euclidean algorithm, you should use long division (not shown above) to uniquely determine q_i and r_i .

5.4 Internal Structure

In the following, we assume a block length of 128 bits. The ShiftRow Sublayer works slightly differently for other block sizes.

5.4.1 Byte Substitution Layer

- Splits the incoming 128 bits in 128/8 = 16 bytes.
- Each byte A is considered an element of $GF(2^8)$ and undergoes the following substitution individually

1.
$$B = A^{-1} \in GF(2^8)$$
 where $P(x) = x^8 + x^4 + x^3 + x + 1$

2. Apply affine transformation defined by:

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

where $(b_7 \cdots b_0)$ is the vector representation of $B(x) = A^{-1}(x)$.

• The vector $C = (c_7 \cdots c_0)$ (representing the field element $c_7 x^7 + \cdots + c_1 x + c_0$) is the result of the substitution:

$$C = \operatorname{ByteSub}(A)$$

The entire substitution can be realized as a look-up in a 256×8 -bit table with fixed entries.

Remark: Unlike DES, Rijndael applies the same S-Box to each byte.

5.4.2 Diffusion Layer

• Unlike the non-linear substitution layer, the diffusion layer performs a linear operation on input words A, B. That means:

$$DIFF(A) \oplus DIFF(B) = DIFF(A+B)$$

• The diffusion layer consists of two sublayers.

ShiftRow SubLayer

1. Write an input word A as 128/8 = 16 bytes and order them in a square array: Input $A = (a_0, a_1, \dots, a_{15})$

a_0	a_4	a_8	a_{12}
a_1	a_5	a_9	a_{13}
a_2	a_6	a_{10}	a_{14}
a_3	a_7	a_{11}	a_{15}

2. Shift cyclically row-wise as follows:

a_0	a_4	a_8	a_{12}		0 positions
a_5	a_9	a_{13}	a_1	→	3 positions right shift
a_{10}	a_{14}	a_2	a_6	 →	2 positions right shift
a_{15}	a_3	a_7	a_{11}	$- \longrightarrow$	1 position right shift

MixColumn SubLayer

Principle: each column of 4 bytes is individually transformed into another column.

Question: How?

Each 4-byte column is considered as a vector and multiplied by a 4×4 matrix. The matrix contains *constant* entries. Multiplication and addition of the coefficients is done in $GF(2^8)$.

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Remarks:

- 1. Each c_i, b_i is an 8-bit value representing an element from $GF(2^8)$.
- 2. The small values {01,02,03} allow for a very efficient implementation of the coefficient multiplication in the matrix. In software implementations, multiplication by 02 and 03 can be done through table look-up in a 256-by-8 table.
- 3. Additions in the vector-matrix multiplication are XORs.

5.4.3 Key Addition Layer

Simple bitwise XOR with a 128-bit subkey.

5.5 Decryption

Unlike DES and other Feistel ciphers, all of Rijndael layers must actually be inverted.

Figure 5.3: Rijndael decryption block diagram