Constant v locity driv joint has three journals with rollers with needle bearings s cured by retaining rings with rolled over dges

Patent Number:

DE19834142

Publication date:

2000-02-03

Inventor(s):

OLSZEWSKI PIOTR (FR)

Applicant(s):

SCHAEFFLER WAELZLAGER OHG (DE)

Requested Patent:

☐ DE19834142

Application Number: DE19981034142 19980729 Priority Number(s): DE19981034142 19980729

IPC Classification:

F16D3/205; F16C19/26

EC Classification:

F16D3/205C

Equivalents:

Abstract

A constant velocity drive joint has three journals (2) with outer spherical surfaces to grip the inside rings (7) of rollers whose outer rings roll inside the profiled tracks of the outer housing (12). The rollers are secured onto the journals by a simple axial fitting action and each roller is fitted with needle bearings secured by an outer ring (5) with rolled over edges. The rollers are bench assembled with the bearings and are fitted with a holding/transfer ring which is removed after fitting. The inner edge of the retaining ring has a wider flange.

Data supplied from the esp@cenet database - I2

® BUNDESREPUBLIK DEUTSCHLAND

[®] Off nl gungsschrift[®] DE 198 34 142 A 1

(5) Int. Cl.⁷: **F 16 D 3/205** F 16 C 19/26

DEUTSCHES
PATENT- UND
MARKENAMT

(1) Aktenzeichen:(2) Anmeldetag:

198 34 142.3 29. 7. 1998

(43) Offenlegungstag:

3. 2.2000

(1) Anmelder:

INA Wälzlager Schaeffler oHG, 91074 Herzogenaurach, DE (72) Erfinder:

Olszewski, Piotr, Dipl.-Ing., Haguenau, FR

(5) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

DE 41 30 963 C2 DE 196 36 508 A1 DE 195 44 174 A1 DE 94 08 057 U1 FR 27 52 890 A1 FR 23 52 206 A1 US 50 19 016

JP 09310723 A.,In: Patent Abstracts of Japan;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (§) Homokinetisches Antriebsgelenk in einer Tripodebauart
- Die Erfindung bezieht sich auf ein Antriebsgelenk in einer Tripodebauart mit einem ersten Drehteil, einem Gelenkaußenteil 12, in den ein zweites Drehteil, ein Tripodestern 3 verschiebbar geführt ist. Der Tripodestern 3 ist mit drei umfangsverteilt angeordneten Zapfen 2 versehen, auf denen jeweils ein Wälzlager 1 angeordnet ist, das in eine Lauffläche 14 des Gelenkaußenteils 12 eingreift. Das Wälzlager 1 umfaßt einen im Außenring 4 gehaltenen Haltering 5, der beidseitig die Wälzkörper 6 lagepositioniert und einseitig einen Axialanschlag für den Innenring 7 bildet.

No shafts

1

Beschreibung

Zusammenfassung der Erfindung

Anwendungsgebiet der Erfindung

Die Erfindung bezieht sich auf ein homokinetisches Antriebsgelenk in einer Tripodebauart, die mit einem ersten Drehteil, ausgebildet als Gelenkaußenteil, das mit drei umfangsverteilten Laufbahneinrichtungen versehen ist, von denen jede zwei parallel ausgerichtete, ebene Laufflächen aufweist. Ein zweites, als Tripodestern gestaltetes Drehteil um- 10 faßt drei jeweils um 120° versetzt angeordnete und radial ausgerichtete Zapfen, deren Achsen in einer Ebene angeordnet sind und die sich in einer Gelenkachse des Antriebsgelenks treffen. Dabei ist jedem Zapfen ein schwenkbares, mit zylindrischen Wälzkörpern versehenes Wälzlager zugeordnet, dessen Innenring formschlüssig auf dem Haltezapfen gehalten ist und dessen Außenring jeweils in den Laufflächen der Laufbahneinrichtung geführt ist. Das Antricbsgelenk umfaßt weiterhin einen Haltering, deren endseitig radial ausgerichtete Borde jeweils einen Axialanschlag für die 20 Wälzkörper bilden.

Hintergrund der Erfindung

Ein derartiges Antriebsgelenk ist aus dem gattungsbilden- 25 den Stand der Technik, dem DE-GM 94 08 057 bekannt. In bekannter Weise sind die Wälzkörper auf einem Haltering geführt, der auf dem zylindrischen Zapfen des Tripodesterns befestigt ist. An beiden Stirnseiten der Wälzkörper bildet der Haltring radial nach außen gerichtete Borde, die einen 30 Axialanschlag für die Wälzkörper darstellen. Die Wälzkörper sind von der Tripoderolle umschlossen, die eine ballige Außenkontur aufweist und die über eine Kontaktzone im Außenring abgestützt ist, der in Laufbahnen des Gelenkau-Benteils geführt ist. Zur Schaffung einer vormontierbaren 35 Einheit, bestehend aus dem Haltering, den Wälzkörpern und der Tripoderolle schließen sich an die Borde des Halterings jeweils zylindrisch verlaufende Abschnitte an, an deren Enden sich ein weiterer nach außen gerichteter umlaufender Bord anschließt. Der Außendurchmesser der zylindrischen 40 Abschnitte ist dabei kleiner als der Innendurchmesser der Tripoderolle, wodurch sich diese bei einer Auslenkung des Antriebsgelenks axial zu den Wälzkörpern verschieben kann. Die am freien Ende der Abschnitte angeordneten Borde besitzen eine radiale Überdeckung zur Innenkontur 45 der Tripoderolle und schaffen damit eine Verliersicherung der Bauteile Haltering, Wälzkörper und Tripoderolle. Diese bekannte vormontierbare Rolleneinheit schließt den Außenring nicht mit ein und erfaßt damit auch nicht alle unmittelbar zur Wälzlagerung gehörigen Bauteile.

Die bekannte Wälzlagerung für ein Tripodegelenk besitzt weiterhin den Nachteil, daß bei einer Axialverschiebung unabhängig von der Richtung die Tripoderolle sich nicht über die gesamte Breite an den Wälzkörpern abstützt. Damit kommt es zu einer reduzierten Kontaktzone zwischen diesen 55 Bauteilen, verbunden mit einer erhöhten Flächenpressung, die den Verschleiß erhöht.

Aufgabe der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, ein vormontierbares, alle Bauteile umfassendes Antriebsgelenk zu realisieren, das eine große Axialverschiebung innerhalb einer Längserstreckung der Wälzkörper ermöglicht, die Montage vereinfacht und kostengünstig herstellbar ist.

Die zuvor genannte Problemstellung wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Danach ist ein Wälzlager vorgesehen, bei dem ein die Wälzkörper umschließender Haltering im Außenring des Wälzlagers befestigt ist. An beiden Endseiten ist der Haltering mit radial nach innen gerichteten Borden versehen, die stirnseitig die Wälzkörper übergreifen. Einer der Borde ist dabei verlängert und erstreckt sich bis über die Außenkontur des Wälzlager-Innenrings und stützt sich an dessen Stirnseite ab. Zur Erzielung einer vormontierbaren Rolleneinheit, bestehend aus dem Innenring, den Wälzkörpern, dem Haltering sowie dem Außenring ist in das Wälzlager ein elastischer Sicherungsring eingesetzt, der als Transportsicherung bzw. als Einbauhilfe dient.

Aufgrund einer Längenerstreckung der Wälzkörper, die eine Breite des Innenrings übertrifft, ist sichergestellt, daß unabhängig von einer Axialverschiebung des Innenrings zu den Wälzkörpern bzw. des Außenrings eine Kontaktfläche zwischen dem Innenring und den Wälzkörpern unverändert bleibt. Aufgrund dieser Konstruktion stellt sich bei einer Axialverschiebung keine nachteilige erhöhte Flächenpressung bei einzelnen Wälzkörperbauteilen ein. Damit wird die Lebensdauer des Wälzlagers erhöht und damit die Standzeit des gesamten Antriebsgelenks verbessert.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Ansprüche 2 bis 15.

Erfindungsgemäß ist vorgesehen, daß der Haltering mit seinem die Außenkontur des Innenrings übertreffenden Bord so eingebaut ist, daß dieser auf der zur Gelenkachse ausgerichteten Seite des Wälzlagers angeordnet ist.

Diese Einbaulage ermöglicht eine Montagehilfe, indem der Wälzlager-Innenring bis an den verlängerten Bord des Halterings verschoben wird, bevor diese Lage durch den Sicherungsring gehalten wird.

In einer bevorzugten Ausführungsform besitzt der Haltering eine Längserstreckung, die eine Breite des Außenrings übertrifft. Vorzugsweise ist dieser Haltering symmetrisch im Außenring eingesetzt, d. h., die an beiden Stirnseiten aus dem Außenring austretenden Abschnitte des Halterings sind gleich lang.

Bedingt durch die Breite des Halterings, die sowohl die Breite des Innen- als auch des Außenrings vom Wälzlager übertrifft, stellt sich eine Längserstreckung der Wälzkörper ein, die ebenfalls die Breite beider Lagerringe übertrifft. Eine weitere Ausgestaltung des Wälzlagers sieht vor, daß die Breite des Innenrings deutlich schmaler ist als die Breite des Außenrings. Durch dieses Konstruktionsmerkmal wird eine konstante Kontaktfläche zwischen der Außenkontur des Innenrings und den Wälzkörpern erreicht, unabhängig von einer Axialverschiebung des Innenrings zum Außenring.

Im eingebauten Zustand des Tripodesterns einschließlich der zugehörigen Wälzlager im Gelenkaußenteil ergibt sich in einer Neutrallage des Tripodesterns eine Einbausituation, bei der die Stirnseiten des Innen- und des Außenrings vom Wälzlager auf der von der Gelenkachse abgewandten Seite zueinander fluchtend ausgerichtet sind. Diese Einbausituation ermöglicht bei einer Auslenkung des Antriebsgelenks eine max. axiale Verschiebung zwischen dem Innenring und dem Außenring unter Beibehaltung der Kontaktflächengröße.

Zur Erzielung einer kostengünstigen Herstellung des erfindungsgemäßen Halterings ist dieser durch ein Tiefziehverfahren aus einem Stahlblech gefertigt. Die Wandstärke des Halterings ist dabei gleich oder größer dem Radius der Wälzkörper.

Als Sicherungsring, der eine vormontierbare alle Bauteile

des Wälzlagers beinhaltende Rolleneinheit umfaßt, dient erfindungsgemäß ein an den Wälzkörpern innengeführter radial vorgespannter Sicherungsring, der sich stirnseitig am Innenring abstützt. Dazu bietet es sich an, einen aus Kunststoff gefertigten Sicherungsring mit einer Trennfuge zu verwenden, der eine einfache Handhabung, d. h. Montage des Sicherungsrings ermöglicht.

In einer Ausgestaltung des sphärisch gestalteten Zapfens des Tripodesterns ist vorgesehen, daß dieser im Bereich eiwie folgt gestaltet ist. Im größten Durchmesserbereich des Zapfens weist dieser einen flach gerundeten Bereich mit einem relativ großen Radius auf, an dem sich beidseitig ein gerundeter Übergang mit kleineren gleich dimensionierten Radien anschließt. Die kleineren Radien sind dabei kleiner 15 als der Kugelradius des Zapfens ausgelegt.

Die Kontaktzone des Zapfens ist weiterhin mit rechtwinkelig zu den Laufflächen des Gelenksaußenteils angeordneten Abflachungen versehen. Die einer Ellipse gleichenden Abflachungen sind beidseitig, parallel zueinander angeordnet. Dabei bewirken diese Abflachungen eine Montagehilfe für das Wälzlager, dessen Innenring durch eine geneigte Lage weitestgehend ohne eine zusätzliche Kraftausübung auf den Zapfen aufgebracht werden kann und nach einer rechtwinkeligen Ausrichtung zur Zapfenachse, aufgrund der 25 konkaven Aufnahme des Innenrings formschlüssig auf den Zapfen befestigt ist.

Die Erfindung schließt weiterhin Wälzlager ein, die mit Außenringen kombinierbar sind, deren Außenkontur unterschiedlich profiliert sein kann, mit der diese formschlüssig in den Laufflächen des Gelenkaußenteils geführt sind. Beispielsweise bietet es sich an, das Außenprofil radial gestuft auszubilden, das mit einer entsprechend profilierten Lauffläche im, Gelenkaußenteil korrespondiert. Weiterhin kann die Außenkontur des Außenrings weitestgehend spitzdachför- 35 mig gestaltet sein mit gerundeten Übergängen. Eine Alternative sieht nahezu halbrundartig gestaltete Außenprofile vor, die in Laufflächen des Gelenkaußenteils geführt sind, deren Profilierung angepaßt ist an den Radius bzw. die Rundung der Außenringprofilierung oder von dieser abweicht. 40

Kurze Beschreibung der Zeichnungen

Ausführungsbeispiele der Erfindung sind in den 8 Figuren abgebildet, die nachfolgend näher erläutert werden.

Fig. 1 die Schnittansicht eines erfindungsgemäßen Antriebsgelenks in einer Tripodebauart;

Fig. 2 den Aufbau eines Tripode-Antriebsgelenks;

Fig. 3-6 jeweils einen Ausschnitt des in Fig. 2 abgebilde- 50 ten Antriebsgelenks, wobei sich diese Zeichnungen durch unterschiedlich gestaltete Außenringe des Wälzlagers unter-

Fig. 3 ein Wälzlager für ein Antriebsgelenk, dessen Au-Benring mit einer nahezu spitzdachförmigen Außenprofilie- 55 rung versehen ist;

Fig. 4 einen Außenring mit einem radial gestuften zylindrischen Außenprofil;

Fig. 5 ein Wälzlager, dessen Außenring mit einer nahezu halbkreisförmigen Profilierung versehen ist, wobei dieser 60 Außenring in Laufflächen des Gelenkaußenteils geführt ist, dessen Aufnahmeprofil vom Außenprofil des Lagerrings abweicht;

Fig. 6 einen Lagerring, dessen halbkreisförmige Profilierung übereinstimmt mit der in den Laufflächen des Gelen- 65 kaußenteils eingebrachten Führungsprofils;

Fig. 7 ausschnittsweise einen Tripodestern sowie beabstandet dazu das erfindungsgemäße Wälzlager in einer Schräglage, wobei diese Bauteile entsprechend der Montage ausgerichtet sind;

Fig. 8 den Zapfen eines Tripodesterns, der mit Radien und speziellen Kennzeichnungen versehen ist, zur Bestim-5 mung der genauen Ausgestaltung.

Ausführliche Beschreibung der Zeichnungen

Ein erfindungsgemäßes Wälzlager 1, das jedem Zapfens 2 ner Kontaktzone, die zur Aufnahme des Innenrings dient, 10 eines Tripodesterns 3 (gemäß Fig. 2) zugeordnet ist, zeigt die Fig. 1. Das Wälzlager 1 umfaßt einen Außenring 4, in dem ein Haltering 5 eingepreßt ist. An einer Innenwandung des Halterings 5 sind Wälzkörper 6 geführt, die zylindrisch in Form von Nadeln ausgebildet sind. An einer Innenseite sind die Wälzkörper 6 auf einem Innenring 7 abgestützt. Der Aufbau des Wälzlagers 1 sieht vor, daß die Längserstrekkung der Wälzkörper 6 sowohl die Breite des Innenrings 7 als auch die des Außenrings 4 übertreffen. Entsprechend besitzt der die Wälzkörper 5 führende Haltering 5 eine die Längserstreckung der Wälzkörper 6 übertreffende Breite. An beiden Enden ist der Haltering 5 mit radial nach innen gerichteten, umlaufenden Borden 8, 9 unterschiedlicher Länge versehen. Der Bord 8 dient ausschließlich zur Führung der Wälzkörper 6 und besitzt damit eine Länge, die geringer ist als ein Durchmesser der Wälzkörper 6. Der gegenüberliegende Bord 9 übergreift dagegen die Außenkontur des Innenrings 7 und bildet damit einen Axialanschlag für den Innenring 7. Aufgrund einer deutlich geringeren Breite des Innenrings 7 gegenüber den Wälzkörpern 6 bietet dieser Aufbau eine relativ große axiale Verschiebung zwischen dem Innenring 7 und den Wälzkörpern 6, wobei unabhängig von der Position des Innenrings 7 dieser über die gesamte Breite an den Wälzkörpern 6 abgestützt ist. Der im Außenring beispielsweise durch eine Schrumpf- oder Preßverbindung lagegesicherte Haltering 5 ermöglicht eine dauerhafte Positionierung der Wälzkörper 6 gegenüber dem Außenring 4. In Fig. 1 ist der Innenring 7 in einer Endlage am Bord 9 abgestützt dargestellt. In dieser Lage ist der Innenring 7 durch einen Sicherungsring 10 gehalten, der radial vorgespannt an der Innenseite der Wälzkörper 6 abgestützt ist und dessen Breite ein Abstandsmaß zwischen dem Innenring 7 und dem Ende der Wälzkörper 6 überbrückt. Der vorzugsweise aus Kunststoff gefertigte Sicherungsring 10 ist mit einer Trennfuge 16 versehen, die das Handling des Sicherungsrings 10 und damit den Einbau vereinfacht. Der Sicherungsring 10 dient zum einen zur Schaffung einer Transportoder Verliersicherung, da mit diesem Bauteil alle Bauteile des Wälzlagers 1 zusammengehalten sind. Weiterhin ermöglicht der Sicherungsring 10 eine Montagehilfe, da mit diesem Bauteil der Innenring 7 in die Position gehalten wird, die eine optimale Montage ermöglicht.

Die Fig. 2 zeigt den Aufbau und damit alle Einzelteile eines homokinetischen Antriebsgelenks 11. Dieses umfaßt ein drehbares Gelenkaußenteil 12, in das der Tripodestern 3 entlang der Gelenkachse a verschiebbar ist. Der Tripodestern 3 ist mit drei jeweils um 120° versetzt zueinander angeordneten Zapfen 2 versehen, deren Zapfenachse "B" jeweils in einer Ebene angeordnet sind und die sich in der Gelenkachse A" treffen. Jeder Zapfen 2 ist am freien Ende mit einer sphärischen kugelförmigen Kontaktzone 17 versehen, die korrespondiert mit einer konkaven Innenkontur des Innenrings 7, der auf dem Zapfen 3 winkelbeweglich formschlüssig gehalten ist. Zur Längsführung der Lager 1 im Gelenkaußenteil 12 ist der Außenring 4 mit einem Außenprofil 13 versehen, das in parallel gegenüberliegenden Laufflächen 14 des Gelenkaußenteils 12 geführt ist. Die Fig. 2 zeigt, daß die Stirnseiten des Außenrings 4 und des Innenrings 7 auf der von der Gelenkachse "A" abgewandten Seite zueinander flu-

35

5

chend ausgerichtet sind. Von dieser Neutrallage ausgehend, kann sich der Innenring 7 bei einer Auslenkung des Tripodesterns 3 in Richtung der Gelenkachse "A" verlagern.

In Fig. 3 ist ein Ausschnitt des in Fig. 2 abgebildeten Antriebsgelenks 11 gezeigt. Das Wälzlager 1 ist mit einem Au-Benring 4 versehen, welches ein weitestgehend dachförmig gestaltetes Außenprofil 13a aufweist. Das in Fig. 4 abgebildete Wälzlager 1 ist mit einem Lagerring 4 versehen, dessen Außenprofil 13b radial gestuft, zylindrisch gestaltet ist.

In den Fig. 5 und 6 sind Außenringe 4 abgebildet, deren 10 Außenprofile 13c, 13d nahezu halbkreisförmig gestaltet sind. In Fig. 5 ist dazu das Gelenkaußenteil 12 mit Laufflächen 14 versehen, deren Profilierung vom Außenprofil 13c des Außenrings 4 abweicht. Die Fig. 6 zeigt dagegen ein Gelenkaußenteil 12 mit Laufflächen 14, deren Profil über- 15 einstimmt mit dem des Außenprofils 13d.

Die Fig. 7 verdeutlicht die Montage des Wälzlagers 1 auf den Zapfen 2 des Tripodesterns 3. Dazu wird das Wälzlager 1 schräg ausgerichtet, wobei deren Längsachse die Zapfenachse "B" im Bereich des größten Zapfendurchmessers 20 schneidet. Aufgrund der seitlichen Abflachungen 15 am Zapfen 2 im Bereich des größten Zapfendurchmessers kann der Lagerring 7 des Wälzlagers 1 nahezu ohne eine elastische Verformung auf den Zapfen 2 montiert werden.

In Fig. 8 ist ein Ausschnitt des Tripodesterns 3 abgebil- 25 det, der Gestaltungsmerkmale des Zapfens 2 verdeutlicht. Im Bereich des größten Durchmessers "D" des Zapfens 2 besitzt dieser zwei parallel zueinander angeordnete Abflachungen 15 in einer elliptischen Form. Außenseitig im Bereich des Durchmessers "D" bildet der Zapfen 2 eine Kontur, die sich über ein Breitenmaß "X" mit einem relativ gro-Ben Radius erstreckt. An den mittleren Bereich der Kontaktzone 17, gezeichnet durch "X", schließt sich beidseitig ein ebenfalls gerundeter Abschnitt an, dessen Radius "R" kleiner ist als der Radius vom Zapfendurchmesser "D".

Bezugszeichenliste

1 Wälzlager	
2 Zapfen	40
3 Tripodestern	
4 Außenring	
5 Haltering	
6 Wälzkörper	
7 Innenring	45
8 Bord	
9 Bord	
10 Sicherungsring	
11 Antriebsgelenk	
12 Gelenkaußenteil	50
13 Außenprofil	
13a Außenprofil	
13b Außenprofil	
13c Außenprofil	
13d Außenprofil	55
14 Lauffläche	
15 Abflachung	
16 Trennfuge	
17 Kontaktzone	
A Gelenkachse	60
B Zapfenachse	
D Zapfendurchmesser	
R Radius seitlich vom größten Zapfendurchmesser	
X Kontaktzone am Zapfen mit dem größten Durchmesser	

Patentansprüche

1. Homokinetisches Antriebsgelenk (11) in einer Tri-

poderbauart mit einem ersten Drehteil, einem Gelenkaußenteil (12), das mit drei umfangsverteilten Laufbahneinrichtungen versehen ist, von denen jede zwei parallel ausgerichtete ebene Laufflächen (14) aufweist, einem zweiten als Tripoestern (3) gestalteten Drehteil. mit drei jeweils um 120° Grad beabstandet angeordneten und radial ausgerichteten Zapfen (2), deren in einer Ebene angeordnete Achsen "B" sich in einer Gelenkachse "A" treffen, dabei ist jedem Zapfen (2) ein schwenkbares, mit zylindrischen Wälzkörpern (6) versehenes Wälzlager (1) zugeordnet, dessen Innenring (7) formschlüssig auf dem Zapfen (2) gehalten ist und dessen Außenring (4) jeweils in den Laufflächen (14) der Laufbahneinrichtung geführt ist, wobei das Wälzlager (1) einen Haltering (5) umfaßt, deren endseitig radial ausgerichtete Borde (8, 9) jeweils als ein Axialanschlag für die Wälzkörper (6) dienen, dadurch gekennzeichnet, daß der im Außenring (4) befestigte Haltering (5) die Wälzkörper (6) umschließt und einer der radial nach innen gerichteten Borde (8, 9) einen im Vergleich zu den Wälzkörpern (6) längenreduzierten Innenring (7) des Wälzlagers (1) außen umfaßt und an dessen Stirnseite abgestützt ist und das Wälzlager (1) einen Sicherungsring (10) umfaßt, zur Schaffung einer vormontierbaren Rolleneinheit, die den Innenring (7), die Wälzkörper (6), den Haltering (5) sowie den Au-Benring (4) einschließt.

- 2. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß der eine Außenkontur des Innenrings (7) übertreffende Bord (9) des Halterings (5) an der zur Gelenkachse "A" ausgerichteten Seite des Wälzlagers (1) angeordnet ist.
- 3. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß der symmetrisch im Außenring (4) lagepositionierte Haltering (5) eine die Breite des Außenrings (4) übertreffende Längserstreckung besitzt.
- 4. Antriebsgelenk nach Anspruch 1, gekennzeichnet durch Wälzkörper (6), deren Länge sowohl die Breite des Innenrings (7) als auch die Breite des Außenrings (4) übertrifft.
- 5. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß der im Vergleich zum Außenring (4) eine geringere Breite aufweisende Innenring (7) im eingebauten Zustand bei einer Auslenkung des Antriebsgelenks (11) begrenzt axial verschiebbar ist.
- 6. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß in einer Neutrallage im eingebauten Zustand der Innenring (7) und der Außenring (4) auf der von der Gelenkachse "A" abgewandten Seite fluchtend angeordnet sind.
- 7. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß der spanlos durch ein Tiefziehverfahren aus Metall hergestellte Haltering (5) eine Wandstärke aufweist, die gleich oder größer dem Radius der Wälzkörper (6) ist.
- 8. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß zur Erzielung einer Transportsicherung oder Einbauhilfe die vormontierbare, alle Bauteile des Wälzlagers (1) umfassende Rolleneinheit mit einem innenseitig an den Wälzkörpern (6) geführten, radial vorgespannten Sicherungsring (10) versehen ist.
- 9. Antriebsgelenk nach Anspruch 8, gekennzeichnet durch einen aus Kunststoff gefertigten, mit einer Trennfuge (16) versehenen Sicherungsring (10).
- 10. Antriebsgelenk nach Anspruch 1, mit einem Tripodestern (3), dessen Zapfen (2) jeweils eine sphärisch gestaltete Kontaktzone (17) für den Innenring (7) aufweist, dadurch gekennzeichnet, daß der Zapfen (2) im

Bereich des größten Zapfendurchmessers "D" über ein
Axialmaß "X" eine flachgerundete Kontaktzone (17)
bildet, an die sich beidseitig ein gerundeter Abschnitt
anschließt, dessen Radius "R" kleiner ist als der Radius
des Durchmessers "D".

11. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß der Zapfen (2) rechtwinklig zu den Laufflächen (14) mit gegenüberliegenden, parallel verlaufenden Abflachungen (15) versehen ist mit einer weitestgehend elliptischen Formgebung.

12. Antriebsgelenk nach Anspruch 1, dadurch gekennzeichnet, daß das Wälzlager (1), mit Außenringen (4) kombinierbar ist, die zueinander unterschiedlich gestaltete Außenprofilierungen aufweisen.

13. Antriebsgelenk nach Anspruch 12, gekennzeichnet 15 durch einen Außenring (4), mit einem nahezu spitzdachförmigen Außenprofil (13a).

14. Antriebsgelenk nach Anspruch 12, gekennzeichnet durch ein Wälzlager (1), dessen Außenring (4) ein radial gestuftes, zylindrisches Außenprofil (13b) auf 20 weist.

15. Antriebsgelenk nach Anspruch 12, dadurch gekennzeichnet, daß der Außenring (4) mit einem nahezu halbrundartig geformten Außenprofil (13c, 13d) versehen ist

Hierzu 4 Seite(n) Zeichnungen

30

35

40

45

50

55

60

65

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 198 34 142 A1 F 16 D 3/205**3. Februar 2000

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 198 34 142 A1 F 16 D 3/2053. Februar 2000

Nummer: Int. Cl.⁷: Offenlegungstag: DE 198 34 142 A1 F 16 D 3/205 3. Februar 2000

Fig. 5

Fig. 6

