Case Study: Production Planning

Prakash Kotecha, Associate Professor Debasis Maharana, Teaching Assistant & Remya Kommadath, Teaching Assistant Indian Institute of Technology Guwahati

Case study: https://www.youtube.com/watch?v=PRjExZxWsNc

Implementation on MATLAB: https://www.youtube.com/watch?v=VjTDGJUQAcg

Constraint handling using correction approach: https://www.youtube.com/watch?v=HwWvfQ9QbYo

Single-Level Production Planning in Petrochemical Industries Using Novel Computational Intelligence Algorithms

MILP formulation of Production Planning Problem: https://www.youtube.com/watch?v=9Y99qRwObtk

Additional resources: tinyurl.com/sksopti, tinyurl.com/sksoptivid

Production Planning: Problem Definition

K type of raw materials, J processes, T different products.

A product can be produced by more than one process.

Production cost and investment costs are known at different production capacity levels.

Cost between successive known levels are a linear function of the quantity that is produced.

- If produced, production below the minimum level or greater than the maximum level is NOT possible.
- Limited amount of budget is available.
- Limited amount of raw materials are available.
- Not all products need to be produced.
- **Maximize** the profit (diff. b/w total selling price and production costs)

Case Study: Production Planning Industry

Sale Price (monetary unit/	Product	Process	(units	Capacity of produ			oduction onetary uni			vestment co			aterial re	-
unit of product)			I_j	m_{j}	h_{j}	cl_j	cm_j	ch_j	il_j	im _j	ih _j	rm1	rm2	rm3
		P1	70	135	270	50.7	90.1	170.7	55	81.1	131.6	0.948	0	0
0.975	T1	Р2	75	150	300	56.8	103.8	196.2	58	85.1	132.4	0.9432	0	0
		Р3	77.5	155	310	56.9	103.7	195.7	60.2	86.8	134.1	0.949	0	0
0.975	Т2	P4	70	145	2 90	51.7	97.6	184.8	55.1	83.1	132	0.9546	0	0
0.973	12	Р5	47.5	95	190	38.2	69.8	130.4	43.3	66.8	104.3	0.955	0	0
0.780	Т3	P6	40	80	160	38.5	65.2	120.7	66.2	92.8	153.2	1.045	0	0
0.760	13	P 7	40	80	160	31.8	57.1	105.5	40	61.4	95.1	1.05	0	0
0.735	T4	P8	45	90	180	37.8	57.7	94.9	106.6	151.7	231.5	0.5103	0	0
1.450	Т5	P9	40	80	160	38.5	65.6	119.1	82.8	125.4	207	0.6289	0	0
		P10	90	180	360	92.2	159.2	290.9	233.5	390.7	698.7	0.8648	0	0
		P11	90	180	360	86.7	154.1	287.7	185.8	304.5	537.1	0.9546	0	0
1.130	Т6	P12	90	180	360	95.8	175	330.9	119	179.4	289.2	0.8265	0	0
1.130	10	P13	90	180	360	87.5	157.2	294.9	212.3	362.7	657.7	0.7875	0	0
		P14	90	180	360	105.9	196.6	375.2	109.8	164.3	263.1	0.8101	0	0
		P15	90	180	360	93.1	131.1	239.4	221.7	376.1	672.7	0.8782	0	0
0.830	Т7	P16	50	100	200	41.4	68.7	117.2	115.5	180.4	287.4	0.815	0	0
0.030	1 /	P17	50	100	200	34.9	62	111.6	63.7	100.2	156.3	0.6994	0	0
0.450	Т8	P18	60	120	240	36.6	62.1	120.8	23.1	33.2	50.7	0.3784	0	0

Case Study: Production Planning Industry

Sale Price (monetary unit/	Product	Process		Capacit of prod	•		roduction c			v estment co nonetary uni			naterial re	_
unit of product)			I_j	m_{j}	h_{j}	cl_j	cm_j	ch_j	il_j	im _j	ih _j	rm1	rm2	rm3
0.74	TO	P19	100	200	400	67.6	125.2	237.2	117.6	186	307.5	0	0	0
0.74	Т9	P20	50	100	300	33	63.1	163.8	62.5	114	209.6	0	0	0
1.25	T10	P21	25	50	100	28.7	48.3	86	73.1	101.1	148	0	0	0
1.25	T10	P22	25	50	100	24	43.1	79.5	46.5	70.7	110.1	0	0	0
		P23	125	250	500	63.8	123.5	241	49.2	74.4	112.8	0	0	0
0.43	T11	P24	125	250	500	68.5	134.5	264	79.1	144.2	258.1	0	0	0
		P25	250	500	1000	101.5	195	377	134	229.9	392.2	0	0.4678	0
0.6	T12	P26	90	180	360	50.3	90	165.6	142.6	234.8	397.5	0	0.7267	0
0.69	T13	P27	67.5	135	200	53.9	101.2	146.4	82.7	133.6	181.3	0	0.393	0
		P28	70	135	270	42.1	75.1	141.8	56.9	84.5	131.5	0	1.02	0
0.86	T14	P29	70	135	270	44.6	77.5	147.7	63.4	84.5	136.9	0	1.02	0
		P30	70	135	270	44.6	78.8	148	66.5	96.2	147.7	0	1.02	0
		P31	100	200	400	55.7	106.8	208.4	51.4	83	144.5	0	0.9461	0
0.9	T15	P32	75	150	300	48.3	90.2	172.8	46.9	66	98.6	0	0.9387	0
		P33	122.5	245	490	92	174	336.2	82.4	116.6	175.6	0	0.943	0
0.87	T16	P34	50	100	200	34.9	63.9	120.4	72	117.7	199.7	0	1.06	0
		P35	182.5	365	540	63.2	111.4	156.6	125.6	195.9	259.6	0	0	0
0.48	T17	P36	182.5	365	540	60.3	103	142.6	116.4	168.2	213.5	0	0	0
		P37	180	360	550	64.7	110.2	154.6	133.2	196.3	248.9	0	0	0

Case Study: Production Planning Industry

Sale Price (monetary unit/	Product	Process		Capacity of produ			roduction onetary uni			vestment co			naterial re unit of pro	-
unit of product)			I_j	m_{j}	h_{j}	cl_j	cm _j	ch_j	il_j	im _j	ih _j	rm1	rm2	rm3
		P38	300	430	590	48.3	65	85	210.9	278.2	356	0	0	6.35
0.16	T18	P39	300	430	590	52.8	71.4	92.7	243.5	322.4	412.6	0	0	5.928
		P40	105	170	340	19.4	27.4	47.3	87	119.5	196.7	0	0	6.678
0.5	T19	P41	15	25	50	6.6	9.7	17.7	15.3	20.2	32.7	0	0	0
0.5	117	P42	15	25	50	6.9	10.6	19.4	17.9	26.2	44.9	0	0	0
		P43	415	830	1660	55.2	96.3	184.3	224.6	365.5	682.1	0	0	7.867
0.15	T20	P44	415	830	1660	56.5	100.5	194.3	228.5	384.6	727.6	0	0	7.778
		P45	415	830	1660	51.9	98	187.6	199.1	371.5	702.9	0	0	7.661
		P46	225	45 0	680	105.8	204.8	306	116.9	190	265.1	0	0.2891	0
0.76	T21	P47	225	450	680	108	209.7	313.5	115.6	191.8	266.8	0	0.2878	0
0.70	121	P48	225	450	680	105.6	202.5	302.6	125.2	192.7	269	0	0.2843	0
		P49	225	450	680	106.7	206.1	308.1	125.2	202	285.5	0	0.2874	0
0.7	T22	P50	12.5	25	50	9.4	16.4	28.4	26	40.8	63.9	0	0	0
0.7	122	P51	12.5	25	50	9	15.4	27.3	27.7	39.6	56.9	0	0	0
0.735	T23	P52	45	90	180	36.8	64	118.7	108.8	157.2	251.6	0	0	0
0.68	T24	P53	125	250	500	81.4	145.8	275.5	208.1	308.6	515.5	0	0	0
0.00	124	P54	125	250	500	78.4	145	277	170.5	267.3	452.7	0	0	0

Decisions

- Products that need to be produced
- Processes to be used for producing selected products
- Amount of production from the processes that have been selected for producing a particular product

					X 							
	Product			Pro	cess		F		n quantit	y		
T 1	T2	T 3	P 1	P2	•••	P6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6		
Bin	Binary variables											
						U		•](i) <	x < h(i)		

P	roduc	ts			Pro	cess				Prod	luctio	n qua	ntity	
1	1	0	1	0	1	1	1	0	6	0	10	5	20	0
T1	T2	T3	P 1	P 2	P 3	P 4	P 5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6

Consistent

Product	Process	Pro	oduct level	ion
		1	m	h
Т1	P1	5	10	20
11	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

					X 					
	Product			Pro	cess		F		n quantit	y
T 1	T 2	T 3	P 1	P2	•••	P6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6
Bin	ary variab	oles		Binary v	ariables		Continu	ous varia	bles: 0 ≤ 3	$x(j) \le h(j)$

P	roduc	ts			Pro	cess				Prod	luctio	n qu	antity	У
1	1	0	1	0	1	1	1	0	6	0	10	5	20	0
T 1	T2	T3	P 1	P2	P 3	P 4	P 5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	xe
	T1 and T2 P1, P3, P4 and P5 are used produced									(1 Quanti	ty pro	d uce	d
										Γ	1	-	Γ2	
				C	onsi	sten	t			P	'1 I	23 I	P 4	P5
										(5 1	10	5	20

Product	Process	Pro	oduct level	ion
		1	m	h
Т1	P1	5	10	20
11	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

					X						
	Product			Pro	cess				n quantit	y	
T 1	T2	T3	P 1	P2	•••	P 6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6	
Binary variables											

P	roduc	ts			Pro	cess				Prod	luctio	n qua	ntity	
1	0	1	1	0	0	1	0	0	6	8	10	5	20	10
T 1	T2	T3	P 1	P 2	P 3	P 4	P 5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
]	Proces	ss P2 n	ot use	d		Proc	ess P2	† 2 produ	ices 8	units		
Inconsistent														

Product	Process	Pro	oduct level	ion
		1	m	h
T1	P1	5	10	20
11	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

					X						
Product Process Production quantity											
T 1	T2	T 3	P 1	P2	•••	P 6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6	
Bin	Binary variables										

	Products Process Production quant								ntity						
	1	0	1	1	0	0	1	0	0	6	8	10	5	20	10
	T1	T2	T3	P 1	P 2	P3	P 4	P 5	P 6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
	1 / 1/1											1	1	1	
7	T2 is not produced P4 for T2 is								2		35	units using	of T2 i	_	

Inconsistent

Product	Process	Production level					
		1	m	h			
T1	P1	5	10	20			
11	P2	8	13	22			
	Р3	4	9	20			
T2	P4	2	7	20			
	P5	10	15	25			
Т3	P6	3	8	20			

					X					
Product Process Production quanti										y
T1	T 2	T 3	P1	P2	•••	P6	<i>x</i> 1	<i>x</i> 2	•••	<i>x</i> 6
Binary variables Binary variables Continuous variables: $0 \le x(j) \le n$									$x(j) \le h(j)$	

Products Process								Production quantity						
1	0	1	1	0	0	1	0	0	6	8	10	5	20	10
T 1	T2	T3	P 1	P2	P3	P 4	P5	P6	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
t dy t													1	
	T3 is produced P6 for T3 is inactive													its of roduce
Inconsistent														

Product	Process	Production level					
		1	m	h			
T1	P1	5	10	20			
11	P2	8	13	22			
	Р3	4	9	20			
T2	P4	2	7	20			
	P5	10	15	25			
Т3	P6	3	8	20			

Domain of decision variables: $0 \le x_j \le h_j \ \forall j = 1, 2, ..., J$

X	12	9	5	18	14	7

Product	Process used	Total amount
T1	P1, P2	$x_1 + x_2 = 12 + 9 = 21$
T2	P3, P4, P5	$x_3 + x_4 + x_5 = 5 + 18 + 14 = 37$
Т3	Р6	$x_6 = 7$

J is the total number of processes

Product	Process	Production level						
		1	m	h				
T1	P1	5	10	20				
11	P2	8	13	22				
	Р3	4	9	20				
T2	P4	2	7	20				
	P5	10	15	25				
Т3	P6	3	8	20				

Cost determination

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Production cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$c = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$
$$y_1 = cm, y_2 = ch$$

$$c = cm + \frac{ch - cm}{h - m} (X - m)$$

Cost determination

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

$$y = y_1 + \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Production cost between lower and medium level

$$x = X$$

A
$$x_1 = l, x_2 = m$$

 $y_1 = cl, y_2 = cm$

$$x_1 = l, x_2 = m$$

$$v_1 = cl, v_2 = cm$$

$$PC = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x_1 = m, x_2 = h$$
$$y_1 = cm, y_2 = ch$$

x = X

$$PC = cm + \frac{ch - cm}{h - m} (X - m)$$

Investment cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = il, y_2 = im$$

$$IC = il + \frac{im - il}{m - l} (X - l)$$

Investment cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$

$$y_1 = im, y_2 = ih$$

$$IC = im + \frac{ih - im}{h - m} (X - m)$$

Cost determination

Production cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = cl, y_2 = cm$$

$$PC = cl + \frac{cm - cl}{m - l} (X - l)$$

Production cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$

$$y_1 = cm, y_2 = ch$$

$$PC = cm + \frac{ch - cm}{h - m} (X - m)$$

Investment cost between lower and medium level

$$x = X$$

$$x_1 = l, x_2 = m$$

$$y_1 = il, y_2 = im$$

$$IC = il + \frac{im - il}{m - l} (X - l)$$

Investment cost between medium and high level

$$x = X$$

$$x_1 = m, x_2 = h$$

$$y_1 = im, y_2 = ih$$

$$IC = im + \frac{ih - im}{h - m} (X - m)$$

Production cost between lower and medium level

$$x(j) = X(j) x_1 = l(j), x_2 = m(j) y_1 = cl(j), y_2 = cm(j)$$

$$PC(j) = cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j))$$

$$x(j) = X(j) x_1 = l(j), x_2 = m(j) y_1 = il(j), y_2 = im(j)$$

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X(j) - l(j))$$

Production cost between medium and high level

$$x(j) = X(j) x_1 = m(j), x_2 = h(j)$$
 $PC(j) = cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j))$
$$x_1 = m(j), x_2 = h(j)$$
 $IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X(j) - m(j))$
$$y_1 = im(j), y_2 = ih(j)$$
 $IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X(j) - m(j))$

Investment cost between lower and medium level

$$x(j) = X(j).$$

$$x_1 = l(j), x_2 = m(j)$$

$$y_1 = il(j), y_2 = im(j)$$

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X(j) - l(j))$$

Investment cost between medium and high level

$$x(j) = X(j)$$

 $x_1 = m(j), x_2 = h(j)$ $IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X(j) - m(j))$
 $y_1 = im(j), y_2 = ih(j)$

Products	Processes	Production level			Production cost			In	vestme cost	ent	Raw n requ	Selling	
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

$$PC(j) = cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X - l(j)).$$

$$PC(1) = 10 + \frac{20 - 10}{10 - 5} (6 - 5) = 12$$

$$PC(j) = cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X - m(j)).$$

$$PC(3) = 18 + \frac{29 - 18}{20 - 9} (10 - 9) = 19$$

Products	Processes	Production level			Production cost			In	vestme cost	ent	Raw m	Selling	
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

$$IC(j) = il(j) + \frac{im(j) - il(j)}{m(j) - l(j)} (X - l(j)).$$

$$IC(1) = 50 + \frac{60 - 50}{10 - 5} (6 - 5) = 52$$

$$IC(j) = im(j) + \frac{ih(j) - im(j)}{h(j) - m(j)} (X - m(j)).$$

$$IC(3) = 65 + \frac{76 - 65}{20 - 9} (10 - 9) = 66$$

Products	Processes	Production level		Production cost		Investment cost			Raw material required		Selling		
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Raw material 1 used
6	$6 \times 0.6 = 3.6$
0	0
10	$10 \times 0.4 = 4$
5	$5 \times 0.7 = 3.5$
20	$20 \times 0.9 = 18$
0	0

Products Processes		Production level		Production cost		Investment cost			Raw material required		Selling		
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Reve	enue
6	6 x 10	= 60
0	0	
10	10 x 30	= 300
5	5 x 30	= 150
20	20 x 30	= 600
0	0	

Products	Processes	Production level		Pr	Production cost		Investment cost			Raw material required		Selling	
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Solution	6	0	10	5	20	0	Total
Production cost	12	0	19	16	27	0	74
Investment cost	52	0	66	64	75	0	257
Raw material 1	3.6	0	4	3.5	18	0	29.1
Raw material 2	4.8	0	6	4.5	22	0	37.3
Revenue	60	0	300	150	600	0	1110
Profit	48	0	281	134	573	0	1036

X	Profit
6	60 - 12 = 48
0	0
10	300 - 19 = 281
5	150 - 16 = 134
20	600 - 27 = 573
0	0

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X	12	20	5	4	18	0

- P1 produces T1 between M and H valid
- P2 produces T1 between M and H valid
- P3 produces T2 between L and M valid
- P4 produces T2 between L and M valid
- P5 produces T2 between M and H valid
- P6 has not produced T3

Values of all variable are within their domains -
Feasible solution with respect to the domain

$$P^{domain} = \sum_{j=1}^{J} P^{domain}(j) = 0$$

Product	Process	l	m	h
T1	P1	5	10	20
	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X	4	5	2	1	5	2

- P1 produces T1 between 0 and L not valid
- P2 produces T1 between 0 and L not valid
- P3 produces T2 between 0 and L not valid
- P4 produces T2 between 0 and L not valid
- P5 produces T2 between 0 and L not valid
- P6 produces T3 between 0 and L not valid

Values of all variables are in the invalid region –
Infeasible solution with respect to the domain

Product	Process	l	m	h
T1	P1	5	10	20
	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
Т3	P6	3	8	20

$$P^{domain} = \sum_{j=1}^{J} P^{domain}(j) = 6 \times 10^{5}$$

Domain constraint

Quantity produced by a process can be zero or should be greater than or equal to its low level production capacity.

Penalty incurred for a violated variable is $P^{domain}(j) = \begin{cases} 10^5 & \text{if } 0 < X(j) < l(j) \\ 0 & \text{if } l(j) \le X(j) \le h(j) \end{cases} \forall j = 1, 2, ..., J$

X 9	7	8	0	6	18
------------	---	---	---	---	----

- P1 produces T1 between L and M valid
- P2 produces T1 between 0 and L not valid
- P3 produces T2 between L and M valid
- P4 is not produced T2
- P5 produces T2 between 0 and L not valid
- P6 produces T3 between L and M valid

Values of some variables are in the invalid region –
Infeasible solution with respect to the domain

$$P^{domain} = \sum_{j=1}^{J} P^{domain}(j) = 2 \times 10^{j}$$

Product	Product Process		m	h
T1	P1	5	10	20
	P2	8	13	22
	Р3	4	9	20
T2	P4	2	7	20
	P5	10	15	25
T3	P6	3	8	20

Production cost

Production cost of j^{th} process can be determined as

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$
 $\forall j = 1, 2, ..., J$

- Permissible production for each process is known.
- ➤ Production cost cannot be determined if production not in the permissible range.

- Total number of processes
- **X(j)** Quantity produced by jth process
- cl(j) Production cost of jth process at level l
- cm(j) Production cost of jth process at level m
- **ch(j)** Production cost of j^{th} process at level h
- *l(j)* Low level production capacity of jth process
- m(j) Medium level production capacity of j^{th} process
- h(j) High level production capacity of j^{th} process

Production cost

Let the solution be

X 9 7 8 15 6 18

Values of some variables are in the invalid region – Infeasible solution with respect to the domain

➤ Production cost of variables violating their domains cannot be calculated.

18	-	16	28	-	35

Total production cost = 18 + 16 + 28 + 35 = 97

	Product	Process	l	m	h	cl	cm	ch
	T1	P1	5	10	20	50	60	70
	11	P2	8	13	22	52	62	71
T2		Р3	4	9	20	55	65	76
	T2	P4	2	7	20	58	68	81
		P5	10	15	25	60	70	80
	Т3	P6	3	8	20	54	64	76

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

Production cost

Let the solution be

X 4 5 2 1 5 2

Values of all variables are in the invalid region - Infeasible solution with respect to the domain

➤ Production cost cannot be calculated.

Product	Process	l	m	h	cl	cm	ch
T1	P1	5	10	20	50	60	70
	P2	8	13	22	52	62	71
T2	Р3	4	9	20	55	65	76
	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, \dots, J$$

► Investment cost of jth process can be determined as

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

- Investment cost of the entire production plan should not exceed the available budget.
- \triangleright Violation incurs penalty (P^I)

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

- **J** Total number of processes
- **X(j)** Quantity produced by jth process
- *il(j)* Investment cost of j^{th} process at level l
- im(j) Investment cost of jth process at level m
- *ih*(j) Investment cost of jth process at level h
- *l(j)* Low level production capacity of jth process
- **m(j)** Medium level production capacity of jth process
- **h(j)** High level production capacity of jth process
- **B** Budget available

Let the available budget be 400 monetary units

X 12 20 5 4 18 0

Values of all variables are within their domains - Feasible solution with respect to the domain

Investment cost corresponding to each process is as

 62
 69
 57
 62
 73
 0

 \triangleright Total investment cost = 323

Total investment cost < Available budget Feasible solution with respect to the budget constraint

$$P^I = 0$$

Product	Process	l	m	h	il	im	ih
T1	P1	5	10	20	50	60	70
11	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 20 21 20 19 23 20

Values of all variables are within their domains - Feasible solution with respect to the domain

Investment cost to each process is as

 70
 70
 76
 80
 78
 76

ightharpoonupTotal investment cost = 450

Total investment cost > Available budget Infeasible solution with respect to the budget constraint

$$P^I = (400 - 450)^2 = 2500$$

Product	Process	l	m	h	il	im	ih
Т1	P1	5	10	20	50	60	70
11	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) \left(X(j) - l(j)\right) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) \left(X(j) - m(j)\right) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 4 5 2 1 5 2

Values of all variables are in invalid region - Infeasible solution with respect to the domain

Investment cost cannot be calculated.

Product	Process	l	m	h	il	im	ih
T1	P1	5	10	20	50	60	70
11	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available budget be 400 monetary units

X 9 7 8 15 6 18

Values of some variables are in the invalid region -Infeasible solution with respect to the domain

Investment cost for domain violating variables is not calculated.

58 - 63 76 - 74

Total investment cost = 58 + 63 + 76 + 74 = 271

Total investment cost < Available budget Feasible solution with respect to the budget constraint

$$P^I = 0$$

Product	Process	l	m	h	il	im	ih
T1	P1	5	10	20	50	60	70
11	P2	8	13	22	52	62	71
	Р3	4	9	20	55	65	76
T2	P4	2	7	20	58	68	81
	P5	10	15	25	60	70	80
Т3	P6	3	8	20	54	64	76

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \leq X(j) \leq m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \leq X(j) \leq h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

Let the available raw material be 120 units

X 12 20 5 4 18 0

Values of all variables are within their domains - Feasible solution with respect to the domain

Amount of raw material required for each process is

24 26 4 6 45 0

Product	Process	l	m	h	required (rm)
T1	P1	5	10	20	2
11	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
Т3	P6	3	8	20	1

Total raw material required = 105

Total raw material required < Available raw material Feasible solution with respect to the raw material constraint

$$P^R = 0$$

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases} \quad \forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 20 10 20 16 24 20

Values of all variables are within their domains - Feasible solution with respect to the domain

Amount of raw material required for each process is

40 13 16 24 60 20

➤ Total raw material required = 173

Total raw material required > Available raw material Infeasible solution with respect to the raw material constraint

$$P^I = (120 - 173)^2 = 2809$$

Product	Process	l	m	h	Raw material required (rm)
T1	P1	5	10	20	2
11	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
T3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 4 5 2 1 5 2

Values of all variables are in the invalid region Infeasible solution with respect to the domain

Amount of raw material required cannot be calculated.

	Product	Process	l	m	h	Raw material required (rm)
	T1	P1	5	10	20	2
	11	P2	8	13	22	1.3
		Р3	4	9	20	0.8
	T2	P4	2	7	20	1.5
		P5	10	15	25	2.5
	Т3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, ..., K$$

Let the available raw material be 120 units

X 9 7 10 18 6 18

Values of some variables are in the invalid region - Infeasible solution with respect to the domain

Raw material required for the domain violating variables is not calculated.

18 - 8 27 - 18

Total raw material required = 18 + 8 + 27 + 18 = 71

Total raw material required < Available raw material Feasible solution with respect to the raw material constraint

$$P^R = 0$$

Product	Product Process		m	h	Raw material required (rm)
T'1	P1	5	10	20	2
T1	P2	8	13	22	1.3
	Р3	4	9	20	0.8
T2	P4	2	7	20	1.5
	P5	10	15	25	2.5
Т3	P6	3	8	20	1

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$
$$\forall k = 1, 2, ..., K$$

Determination of Profit

➤ Profit calculation

$$Profit = \sum_{j=1}^{J} \left(SP(j)X(j) - PC(j) \right)$$

$$X$$
6 4 10 5 20 0

SP(j):	Selling	price for	product	produced	using jth	process
--------	---------	-----------	---------	----------	-----------	---------

PC(j): Production cost for product produced using j^{th} process

X(j): Quantity of product produced from j^{th} process

X	Production cost	Revenue	Profit
6	12	60	48
4	-	-	K - 3
10	19	300	281
5	16	150	134
20	27	600	573
0	0	0	0

	Products	Processes	Production level		Production cost		Investment cost			Raw material required		Selling price		
			1	m	h	cl	cm	ch	iI	im	ih	rm1	rm2	price
7	T1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
	11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
		Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
	Т2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
		P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
	Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Total Profit = 1036

Determination of fitness function value

$$P = \lambda \left(\left(\sum_{j=1}^{J} P^{domain} \left(j \right) \right) + \left(\sum_{k=1}^{K} P^{R} \left(k \right) \right) + \left(P^{I} \right) \right)$$

$$f = Profit - \lambda(P)$$

 $f = -Profit + \lambda(P)$

Maximization

Minimization

X	Domain constraint	Penalty Budget violation	Raw M	alty Iaterial ation	Profit
20	0				170
21	0	5476	506.25	0	180
2	10^{5}				0
19	0				538
23	0				660
20	0				963

$$P = 10^{15} (10^5 + 5476 + 506.25 + 0)$$

$$f = -2511 + 10^{15} (10^5 + 5476 + 506.25 + 0)$$

 $\lambda = 10^{15}$

$$f = 1.06 \times 10^{20}$$

SP(j): Selling price for product produced using *j*th process

PC(j): Production cost for product produced using j^{th} process

X(j): Quantity of product produced from j^{th} process

Products	Processes	Production level		Production cost		Investment cost			Raw material required		Selling price		
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
T'1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
T1	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	Р6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

X	20	21	2	19	23	20	Total	Available
IC	70	70	0	80	78	76	374	300
rm1	12	10.5	0	13.3	20.7	16	72.5	50
rm2	16	25.2	0	17.1	25.3	26	109.6	120

Products Processes		Production level		Production cost		Investment cost		Raw material required		Selling			
		1	m	h	cl	cm	ch	il	im	ih	rm1	rm2	price
Т1	P1	5	10	20	10	20	30	50	60	70	0.6	0.8	10
11	P2	8	13	22	12	22	31	52	62	71	0.5	1.2	10
	Р3	4	9	20	8	18	29	55	65	76	0.4	0.6	30
T2	P4	2	7	20	10	20	33	58	68	81	0.7	0.9	30
	P5	10	15	25	12	22	32	60	70	80	0.9	1.1	30
Т3	P6	3	8	20	15	25	37	54	64	76	0.8	1.3	50

Available budget = 300

Available raw material 1 = 50

Available raw material 2 = 50

$$\lambda = 10^{15}$$

	$X = [6\ 10\ 5\ 20\ 0\ 0]$	$X = [18 \ 15 \ 8 \ 10 \ 5 \ 20]$
Penalty Domain Hole	0	1×10^5
Penalty Investment Cost	0	1764
Penalty Raw Material 1	0	0
Penalty Raw Material 2	0	492.84
Total Penalty	0	1.02×10^6
Total Production Cost	71	128
Total Revenue	910	1870
Max. Profit (Objective function)	839	1742
Min. Fitness	-839	1.02×10^{20}
PK_DM_RK_IIT Guwahati		

Metaheuristic techniques and optimization problem

Metaheuristic techniques and optimization problem

$$P^{domain}(j) = \begin{cases} 10^5 & if \ 0 < X^j < l^j \\ 0 & if \ l^j \le X^j \le h^j \end{cases} \ \forall j = 1, 2, ..., J$$

$$P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j)X(j)\right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j)X(j) \\ 0 & \text{if } R(k) \ge \sum_{j=1}^{J} rm(j)X(j) \end{cases}$$

$$\forall k = 1, 2, \dots, K$$

$$IC(j) = \begin{cases} il(j) + \left(\frac{im(j) - il(j)}{m(j) - l(j)}\right) (X(j) - l(j)) & \text{if } l(j) \le X(j) \le m(j) \\ im(j) + \left(\frac{ih(j) - im(j)}{h(j) - m(j)}\right) (X(j) - m(j)) & \text{if } m(j) \le X(j) \le h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

$$P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j)\right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B\\ 0 & \text{otherwise} \end{cases}$$

$$PC(j) = \begin{cases} cl(j) + \frac{cm(j) - cl(j)}{m(j) - l(j)} (X(j) - l(j)) & \text{if } l(j) \le X(j) \le m(j) \\ cm(j) + \frac{ch(j) - cm(j)}{h(j) - m(j)} (X(j) - m(j)) & \text{if } m(j) \le X(j) \le h(j) \end{cases}$$

$$\forall j = 1, 2, ..., J$$

ΔN

Metaheuristic techniques and optimization problem

Different correction approaches

Processes		P1	P2	P3	P 4	P5
Low level capacity (l)	5	9	1	3	4
Decision variables	X	12	6	2	19	2
Approach 1 (Fix it to zero)	X_{c}	12	0	2	19	0
Approach 2 (Fix it to low level)	X_{c}	12	9	2	19	4
Approach 3 (Fix randomly)	X_{c}	12	0	2	19	4

r = 0.3

$$r = 0.8$$

Approach 1

$$x_{i} = \begin{cases} 0 & if \quad x_{i} < l_{i} \quad and \quad x_{i} \neq 0 \\ x_{i} & else \end{cases}$$
$$\forall i = \{1, 2, ..., D\}$$

$$\forall i = \{1, 2, ..., D\}$$

where D is the problem dimension

Approach 2

$$x_{i} = \begin{cases} l_{i} & if \quad x_{i} < l_{i} \quad and \quad x_{i} \neq 0 \\ x_{i} & else \end{cases}$$

$$\forall i = \{1, 2, ..., D\}$$

where D is the problem dimension

Approach 3

$$x_{i} = \begin{cases} 0 & \text{if } x_{i} < l_{i} \text{ and } x_{i} \neq 0 \text{ and } r \leq 0.5 \\ l_{i} & \text{if } x_{i} < l_{i} \text{ and } x_{i} \neq 0 \text{ and } r > 0.5 \\ x_{i} & \text{else} \end{cases}$$

$$\forall i = \{1, 2, ..., D\}$$

where D is the problem dimension

MILP Formulation of Production Planning Problem

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l}(X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m}(X - m)$

$$(X = 0) \lor (l \le X \le h)$$

$$X = 0 \Rightarrow PC = 0, IC = 0$$

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l}(X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m}(X - m)$

$$(X = 0) \lor (l \le X \le h)$$

$$X = 0 \Rightarrow PC = 0, IC = 0$$

$$Y = \begin{cases} 1, & X \le m \\ 0, & X \ge m \end{cases} \qquad Z = \begin{cases} 1, \\ 0, \end{cases}$$

$$L \le Y$$
 (1)

$$H \le 1 - Y \tag{2}$$

$$L + M + H = Z$$
(3)
$$L, M, H \in \mathbb{R}$$

$$U \text{ is a large number}$$

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \qquad (5)$$

$$X_j \le U \cdot Z_j \tag{6}$$

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l}(X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m}(X - m)$

 $X = 0 \Rightarrow PC = 0, IC = 0$

 $(X = 0) \lor (l \le X \le h)$

$$if X \ge l \text{ and } X \le m \Rightarrow Y = 1, Z = 1$$

$$L + M = 1 \Rightarrow M = 1 - L$$

$$X = l \cdot L + m \cdot M \Rightarrow X = l \cdot L + m(1 - L)$$

$$L = \left(\frac{X - m}{l - m}\right)$$

$$PC = cl \cdot L + cm \cdot M$$

$$Y = \begin{cases} 1, & X \le m \\ 0, & X \ge m \end{cases}$$

$$Z = \begin{cases} 1, & X > 0 \\ 0, & X = 0 \end{cases}$$

$$L \leq Y$$

$$H \le 1 - Y$$

 $(2)_{L,M,H\in\mathbb{R}}$

$$L+M+H=Z$$

U is a large number

$$X = l \cdot L + m \cdot M + h \cdot H$$

(4)

$$PC = cl \cdot L + cm \cdot M + ch \cdot H$$

(5)

$$X_j \leq U \cdot Z_j$$

(6)

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l}(X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m}(X - m)$

$$(X=0) \lor (l \le X \le h)$$
 $X=0 \Rightarrow PC=0, IC=0$

if
$$X \ge l$$
 and $X \le m \Rightarrow Y = 1, Z = 1$

$$L + M = 1 \Rightarrow M = 1 - L$$

$$X = l \cdot L + m \cdot M \Rightarrow X = l \cdot L + m(1 - L)$$

$$L = \left(\frac{X - m}{l - m}\right)$$

$$PC = cl \cdot L + cm \cdot M$$

$$Y = \begin{cases} 1, & X \le m \\ 0, & X \ge m \end{cases} \qquad Z = \begin{cases} 1, & X > 0 \\ 0, & X = 0 \end{cases}$$

$$L \le Y \qquad (1)$$

$$H \le 1 - Y \qquad (2) \qquad L, M, H \in \mathbb{R}$$

$$L + M + H = Z \qquad (3) \qquad U \text{ is a large number}$$

$$X = l \cdot L + m \cdot M + h \cdot H \qquad (4)$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \qquad (5)$$

$$X_i \le U \cdot Z_i \qquad (6)$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(1 - \left(\frac{X - m}{l - m}\right)\right)$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(\frac{l - X}{l - m}\right)$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot l + cl \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{X \cdot (cl - cm) + l \cdot (cm - cl)}{l - m} + \frac{cl \cdot (l - m)}{l - m}$$

$$PC = \left(\frac{cm - cl}{m - l}\right) \cdot (X - l) + cl$$

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l}(X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m}(X - m)$

$$(X=0) \lor (l \le X \le h)$$
 $X=0 \Rightarrow PC=0, IC=0$

$$if X \ge l \text{ and } X \le m \Rightarrow Y = 1, Z = 1$$

$$L + M = 1 \Rightarrow M = 1 - L$$

$$X = l \cdot L + m \cdot M \Rightarrow X = l \cdot L + m(1 - L)$$

$$L = \left(\frac{X - m}{l - m}\right)$$

$$PC = cl \cdot L + cm \cdot M$$

$$Y = \begin{cases} 1, & X \le m \\ 0, & X \ge m \end{cases} \qquad Z = \begin{cases} 1, & X > 0 \\ 0, & X = 0 \end{cases}$$

$$X = l \cdot L + m(1 - L)$$

$$X = l \cdot L + m - m \cdot L$$

$$X = m + L(l - m)$$

$$L \leq Y$$
 (

$$H \le 1 - Y \tag{2} L, M, H \in \mathbb{R}$$

$$L+M+H=Z$$
 (3) U is a large number

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \quad (5)$$

$$X_j \le U \cdot Z_j \tag{6}$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(1 - \left(\frac{X - m}{l - m}\right)\right)$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(\frac{l - X}{l - m}\right)$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot l + cl \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{X \cdot (cl - cm) + l \cdot (cm - cl)}{l - m} + \frac{cl \cdot (l - m)}{l - m}$$

$$PC = \left(\frac{cm - cl}{m - l}\right) \cdot (X - l) + cl$$

if
$$X \ge l$$
 and $X \le m \Rightarrow PC = cl + \frac{cm - cl}{m - l} (X - l)$
if $X \ge m$ and $X \le h \Rightarrow PC = cm + \frac{ch - cm}{h - m} (X - m)$

$$(X=0) \lor (l \le X \le h)$$
 $X=0 \Rightarrow PC=0, IC=0$

if
$$X \ge l$$
 and $X \le m \Rightarrow Y = 1, Z = 1$

$$L + M = 1 \Rightarrow M = 1 - L$$

$$X = l \cdot L + m \cdot M \Rightarrow X = l \cdot L + m(1 - L)$$

$$L = \left(\frac{X - m}{l - m}\right)$$

$$PC = cl \cdot L + cm \cdot M$$

$$Y = \begin{cases} 1, & X \le m \\ 0, & X \ge m \end{cases} \qquad Z = \begin{cases} 1, & X > 0 \\ 0, & X = 0 \end{cases}$$

$$L \le Y \tag{1}$$

$$H \le 1 - Y \tag{2} L, M, H \in \mathbb{R}$$

$$L+M+H=Z$$
 (3) U is a large number

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \quad (5)$$

$$X_j \le U \cdot Z_j \tag{6}$$

$$X = l \cdot L + m(1 - L)$$

$$X = l \cdot L + m - m \cdot L$$

$$X = m + L(l - m)$$

if
$$X \ge m$$
 and $X \le h \Rightarrow Y = 0, Z = 1$

$$PC = cm \cdot M + ch \cdot H$$

$$PC = \left(\frac{cm - ch}{m - h}\right) \cdot (X - m) + cm$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(1 - \left(\frac{X - m}{l - m}\right)\right)$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(\frac{l - X}{l - m}\right)$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot l + cl \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{X \cdot (cl - cm) + l \cdot (cm - cl)}{l - m} + \frac{cl \cdot (l - m)}{l - m}$$

$$PC = \left(\frac{cm - cl}{m - l}\right) \cdot (X - l) + cl$$

Y,Z: Binary variables $0 \le L, M, H \le 1$

$$L \le Y \tag{1}$$

$$H \le 1 - Y \tag{2}$$

$$L + M + H = Z \tag{3}$$

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$X_{j} \le U \cdot Z_{j} \tag{5}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \qquad (6)$$

$$IC = il \cdot L + im \cdot M + ih \cdot H$$
 (7)

$$L \le Y \tag{1}$$

$$H \le 1 - Y \tag{2}$$

$$L + M + H = Z \tag{3}$$

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$X_{j} \le U \cdot Z_{j} \tag{5}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \qquad (6)$$

$$IC = il \cdot L + im \cdot M + ih \cdot H$$
 (7)

$$L \le Y \tag{1}$$

$$H \le 1 - Y \tag{2}$$

$$L + M + H = Z \tag{3}$$

$$X = l \cdot L + m \cdot M + h \cdot H \tag{4}$$

$$X_{j} \le U \cdot Z_{j} \tag{5}$$

$$PC = cl \cdot L + cm \cdot M + ch \cdot H \qquad (6)$$

$$IC = il \cdot L + im \cdot M + ih \cdot H$$
 (7)

$$I \leq X \leq m$$

$$L + M + 0 = 1 \implies M = 1 - L$$

$$X = l \cdot L + m \cdot M + 0 \implies X = l \cdot L + m \cdot (1 - L)$$

$$L = \left(\frac{X - m}{l - m}\right)$$

$$PC = cl \cdot L + cm \cdot M$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(1 - \left(\frac{X - m}{l - m}\right)\right)$$

$$PC = cl \cdot \left(\frac{X - m}{l - m}\right) + cm \cdot \left(\frac{l - X}{l - m}\right)$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{cl \cdot X - cm \cdot X + cm \cdot l - cl \cdot l + cl \cdot l - cl \cdot m}{l - m}$$

$$PC = \frac{x \cdot (cl - cm) + l \cdot (cm - cl)}{l - m} + \frac{cl \cdot (l - m)}{l - m}$$

$$PC = \left(\frac{cm - cl}{m - l}\right) \cdot (X - l) + cl$$

$$m \leq X \leq h$$

$$PC = cm \cdot M + ch \cdot H$$

$$IC = im \cdot M + ih \cdot H$$

$$\begin{split} I_{j} \leq X_{j} \leq m_{j} \\ L_{j} + M_{j} + 0 &= 1 \Rightarrow M_{j} = 1 - L_{j} \\ X_{j} = l_{j} \cdot L_{j} + m_{j} \cdot M_{j} + 0 \Rightarrow X_{j} = l_{j} \cdot L_{j} + m_{j} \cdot \left(1 - L_{j}\right) \\ L_{j} = \left(\frac{X_{j} - m_{j}}{l_{j} - m_{j}}\right) \\ PC_{j} = cl_{j} \cdot \left(\frac{X_{j} - m_{j}}{l_{j} - m_{j}}\right) + cm_{j} \cdot \left(1 - \left(\frac{X_{j} - m_{j}}{l_{j} - m_{j}}\right)\right) \\ PC_{j} = cl_{j} \cdot \left(\frac{X_{j} - m_{j}}{l_{j} - m_{j}}\right) + cm_{j} \cdot \left(\frac{l_{j} - X_{j}}{l_{j} - m_{j}}\right) \\ PC_{j} = \frac{cl_{j} \cdot X_{j} - cm_{j} \cdot X_{j} + cm_{j} \cdot l_{j} - cl_{j} \cdot m_{j}}{l_{j} - m_{j}} \\ Add and substract & cl_{j} \cdot l_{j} \text{ in numerator} \\ PC_{j} = \frac{cl_{j} \cdot X_{j} - cm_{j} \cdot X_{j} + cm_{j} \cdot l_{j} - cl_{j} \cdot l_{j} + cl_{j} \cdot l_{j} - cl_{j} \cdot m_{j}}{l_{j} - m_{j}} \\ PC_{j} = \frac{X_{j} \cdot \left(cl_{j} - cm_{j}\right) + l_{j} \cdot \left(cm_{j} - cl_{j}\right)}{l_{j} - m_{j}} + \frac{cl_{j} \cdot \left(l_{j} - m_{j}\right)}{l_{j} - m_{j}} \\ PC_{j} = \left(\frac{cm_{j} - cl_{j}}{m_{j} - l_{j}}\right) \cdot \left(X_{j} - l_{j}\right) + cl_{j} \\ \hline m_{j} \leq X_{j} \leq h_{j} \qquad PC_{j} = cm_{j} \cdot M_{j} + ch_{j} \cdot H_{j}, \quad \forall j = 1, 2...J \\ \hline PC_{j} = cl_{j} \cdot L_{j} + cm_{j} \cdot M_{j} + ch_{j} \cdot H_{j}, \quad \forall j = 1, 2...J \\ \hline \end{split}$$

Max profit =
$$\sum_{j=1}^{J} (SP_j \cdot X_j - PC_j)$$

$$PC_{j} = cl_{j} \cdot L_{j} + cm_{j} \cdot M_{j} + ch_{j} \cdot H_{j} \quad \forall j = 1, 2, ..., J$$

Determining production cost

cl_j , cm_j and ch_j	Production cost for using process j at l_j , m_j and h_j capacity level.
SP_j	Selling price of product produced from process <i>j</i>
L_j, M_j and H_j	Portions of product produced using production levels l_j , m_j and h_j

Max profit =
$$\sum_{j=1}^{J} (SP_j \cdot X_j - PC_j)$$

$$PC_{j} = cl_{j} \cdot L_{j} + cm_{j} \cdot M_{j} + ch_{j} \cdot H_{j} \quad \forall j = 1, 2, ..., J$$

$$\sum_{j=1}^{J} IC_{j} \le B$$

$$IC_j = il_j \cdot L_j + im_j \cdot M_j + ih_j \cdot H_j \quad \forall j = 1, 2, ..., J$$

$$\sum_{j=1}^{J} rm_{jk} \cdot X_j \le R_k \qquad k = 1, ..., K$$

Determining production cost

Constraints on investment cost

Determining investment cost

cl_{j} , cm_{j} and ch_{j}	Production cost for using process j at l_j , m_j and h_j capacity level.
SP_j	Selling price of product produced from process j
il_j , im_j and ih_j	Investment cost for process j at l_j , m_j and h_j capacity level.
B	Total available budget
rm_{jk}	Amount of k type raw material consumed for the production of X_j
R_k	The total amount of k type raw material available in feedstock.
L_j, M_j and H_j	Portions of product produced using production levels l_j , m_j and h_j

Max profit =
$$\sum_{j=1}^{J} (SP_j \cdot X_j - PC_j)$$

$$PC_{j} = cl_{j} \cdot L_{j} + cm_{j} \cdot M_{j} + ch_{j} \cdot H_{j} \quad \forall j = 1, 2, ..., J$$

$$\sum_{j=1}^{J} IC_{j} \le B$$

$$IC_j = il_j \cdot L_j + im_j \cdot M_j + ih_j \cdot H_j \quad \forall j = 1, 2, ..., J$$

$$\sum_{j=1}^{J} rm_{jk} \cdot X_{j} \leq R_{k} \qquad k = 1, ..., K$$

$$L_{j} \leq Y_{j} \qquad \forall j = 1, 2, ..., J$$

$$H_{j} \leq 1 - Y_{j}$$
 $\forall j = 1, 2, ..., J$

$$L_j + M_j + H_j = Z_j$$
 $\forall j = 1, 2, ..., J$

$$X_j = l_j \cdot L_j + m_j \cdot M_j + h_j \cdot H_j \quad \forall j = 1, 2, ..., J$$

$$X_{j} \leq U \cdot Z_{j}$$
 $\forall j = 1, 2, ..., J$

$$Y_j, Z_j = 0 \text{ or } 1$$
 $\forall j = 1, 2, ..., J$

$$X_{j}, L_{j}, M_{j}, H_{j} \ge 0$$
 $\forall j = 1, 2, ..., J$

Determining production cost

Constraints on investment cost

Determining investment cost

Constraints on raw material

cl_{j} , cm_{j} and ch_{j}	Production cost for using process j at l_j , m_j and h_j capacity level.
SP_j	Selling price of product produced from process j
il_j , im_j and ih_j	Investment cost for process j at l_j , m_j and h_j capacity level.
B	Total available budget
rm_{jk}	Amount of k type raw material consumed for the production of X_j
R_k	The total amount of k type raw material available in feedstock.
L_j, M_j and H_j	Portions of product produced using production levels l_j , m_j and h_j

Constraints on variables

Mathematical programming

Max profit = $\sum_{j=1}^{3} (SP_j \cdot X_j - PC_j)$ $PC_{i} = cl_{i} \cdot L_{i} + cm_{i} \cdot M_{i} + ch_{i} \cdot H_{i}$ $\sum^{s} IC_{j} \leq B$ $IC_j = il_j \cdot L_j + im_j \cdot M_j + ih_j \cdot H_j$ $\sum_{j=1}^{\infty} rm_{jk} \cdot X_j \leq R_k$ $\forall k = 1,...,K$ $L_i \leq Y_i$ $\forall j = 1, 2, ..., J$ $\forall j = 1, 2, ..., J$ $H_i \leq 1 - Y_i$ $L_{i} + M_{i} + H_{i} = Z_{i} \qquad \forall j = 1, 2, ..., J$ $X_j = l_j \cdot L_j + m_j \cdot M_j + h_j \cdot H_j \qquad \forall j = 1, 2, ..., J$ $\forall j = 1, 2, ..., J$ $X_i \leq U \cdot Z_i$ $Y_{i}, Z_{i} = 0 \text{ or } 1$ $\forall j = 1, 2, ..., J$ $X_i, L_i, M_i, H_i \ge 0$ $\forall j = 1, 2, ..., J$

77 1 .	No. of v	variables	NI C
Technique	Binary	Continuous	No. of constraints
Mathematical programming	54 x 2 = 108	54 x 4 = 216	$54 \times 5 + 2 + 1 = 273$
Metaheuristic techniques	0	54	54 + 2 + 1 = 57

Metaheuristic techniques

$$\begin{aligned} & \text{Min fitness } f = -\sum_{j=1}^{J} \left(SP_{j} \cdot X_{j} - PC_{j} \right) + \lambda(P), \quad 0 \leq X_{j} \leq h_{j} \\ & \\ & \\ & PC_{j} = \begin{cases} cl_{j} + \frac{cm_{j} - cl_{j}}{m_{j} - l_{j}} \left(X_{j} - l_{j} \right) & l_{j} \leq X_{j} \leq m_{j}, \quad \forall j = 1, 2, ..., J \\ cm_{j} + \frac{ch_{j} - cm_{j}}{h_{j} - m_{j}} \left(X_{j} - m_{j} \right) & m_{j} \leq X_{j} \leq h_{j}, \quad \forall j = 1, 2, ..., J \\ 0 & X_{j} = 0, \quad \forall j = 1, 2, ..., J \end{cases} \\ & P = \left(\left(\sum_{j=1}^{J} P^{domain}(j) \right) + \left(\sum_{k=1}^{K} P^{R}(k) \right) + \left(P^{I} \right) \right) \\ & P^{domain}(j) = \begin{cases} 10^{s} & \text{if } 0 < X_{j} < l_{j} \\ 0 & \text{otherwise} \end{cases} & \forall j = 1, 2, ..., J \end{cases} \\ & P^{R}(k) = \begin{cases} \left(R(k) - \sum_{j=1}^{J} rm(j) \cdot X(j) \right)^{2} & \text{if } R(k) < \sum_{j=1}^{J} rm(j) \cdot X(j) \\ 0 & \text{if } R(k) \geq \sum_{j=1}^{J} rm(j) \cdot X(j) \end{cases} \\ & P^{I} = \begin{cases} \left(B - \sum_{j=1}^{J} IC(j) \right)^{2} & \text{if } \sum_{j=1}^{J} IC(j) > B \\ 0 & \text{otherwise} \end{cases} \\ & O & \text{otherwise} \end{cases} \\ & IC_{j} = \begin{cases} im_{j} - il_{j} \left(X_{j} - l_{j} \right) & l_{j} \leq X_{j} \leq m_{j}, \quad \forall j = 1, 2, ..., J \\ im_{j} + \frac{ih_{j} - im_{j}}{h_{j} - m_{j}} \left(X_{j} - m_{j} \right) & m_{j} \leq X_{j} \leq h_{j}, \quad \forall j = 1, 2, ..., J \\ 0 & X_{j} = 0, \quad \forall j = 1, 2, ..., J \end{cases} \end{aligned}$$

Thank You !!!