#### Linear Algebra

[KOMS120301] - 2023/2024

### 15.3 - Applications

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 15 (December 2023)

### Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of "Least Square Problem";
- 2. compute the least square solution, error vector, and the least square error;
- explain how least square is applied to fit a polynomial curve to data;
- 4. explain how least square is applied to approximate a function.

# Part 1: Least Square

# What is least square? (1)

Let us given a linear system  $A\mathbf{x} = \mathbf{b}$  of m equations and n variables, that is not consistent due to errors in the entries of A or  $\mathbf{b}$ .

**Possible solution**  $\to$  look for a vector  $\hat{\mathbf{x}}$  that comes as "close as possible" to being a solution.

# What is least square? (1)

Let us given a linear system  $A\mathbf{x} = \mathbf{b}$  of m equations and n variables, that is not consistent due to errors in the entries of A or  $\mathbf{b}$ .

**Possible solution**  $\to$  look for a vector  $\hat{\mathbf{x}}$  that comes as "close as possible" to being a solution.

#### Problem (Least Squares Problem)

Given a linear system  $A\mathbf{x} = \mathbf{b}$  of m equations in n variables, find a vector  $\mathbf{x}$  in  $\mathbb{R}^n$  that minimizes  $\|\mathbf{b} - A\mathbf{x}\|$  w.r.t. the Euclidean inner product on  $\mathbb{R}^m$ .

**Question:** Can you explain why do we minimize  $\|\mathbf{b} - A\mathbf{x}\|$ ?

# What is least square? (1)

Let us given a linear system  $A\mathbf{x} = \mathbf{b}$  of m equations and n variables, that is not consistent due to errors in the entries of A or  $\mathbf{b}$ .

**Possible solution**  $\to$  look for a vector  $\hat{\mathbf{x}}$  that comes as "close as possible" to being a solution.

#### Problem (Least Squares Problem)

Given a linear system  $A\mathbf{x} = \mathbf{b}$  of m equations in n variables, find a vector  $\mathbf{x}$  in  $\mathbb{R}^n$  that minimizes  $\|\mathbf{b} - A\mathbf{x}\|$  w.r.t. the Euclidean inner product on  $\mathbb{R}^m$ .

**Question:** Can you explain why do we minimize  $\|\mathbf{b} - A\mathbf{x}\|$ ?

**Terminology:**  $\mathbf{x}$  is called least squares solution,  $\mathbf{b} - A\mathbf{x}$  is called least squares error vector, and  $\|\mathbf{b} - A\mathbf{x}\|$  is called least squares error.

# What is least square? (2)

**Question:** Can you explain why do we minimize  $\|\mathbf{b} - A\mathbf{x}\|$ ?

Finding solution of the least square  $\mathbf{b} - A\mathbf{x}$  is equivalent to **finding the** vector  $A\hat{\mathbf{x}}$  in the column space A that is **the closest to b**.





# What is least square? (2)

**Question:** Can you explain why do we minimize  $\|\mathbf{b} - A\mathbf{x}\|$ ?

Finding solution of the least square  $\mathbf{b} - A\mathbf{x}$  is equivalent to **finding the** vector  $A\hat{\mathbf{x}}$  in the column space A that is **the closest to b**.



Question: Why is it named "least square"?

# What is least square? (2)

**Question:** Can you explain why do we minimize  $\|\mathbf{b} - A\mathbf{x}\|$ ?

Finding solution of the least square  $\mathbf{b} - A\mathbf{x}$  is equivalent to **finding the** vector  $A\hat{\mathbf{x}}$  in the column space A that is the closest to  $\mathbf{b}$ .



Question: Why is it named "least square"?

Let 
$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix}$$
. Hence:  $\|\mathbf{b} - A\mathbf{x}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$ 

# How do we make the error $\mathbf{e} = \mathbf{b} - A\mathbf{x}$ to be as small as possible?

#### Theorem (Best Approximation: the vector closest to **b**)

If W is a finite-dimensional subspace of an inner product space V, and if  $\mathbf{b}$  is a vector in V. Then:

$$\|\mathbf{b} - proj_W \mathbf{b}\| \le \|\mathbf{b} - \mathbf{w}\|$$

for every vector  $\mathbf{w}$  in W, where  $\mathbf{w} \neq \operatorname{proj}_W \mathbf{b}$ 

# How do we make the error $\mathbf{e} = \mathbf{b} - A\mathbf{x}$ to be as small as possible?

#### Theorem (Best Approximation: the vector closest to b)

If W is a finite-dimensional subspace of an inner product space V, and if  $\mathbf{b}$  is a vector in V. Then:

$$\|\mathbf{b} - proj_W \mathbf{b}\| \le \|\mathbf{b} - \mathbf{w}\|$$

for every vector  $\mathbf{w}$  in W, where  $\mathbf{w} \neq proj_W \mathbf{b}$ 

 $\rightarrow$  This means that  $\operatorname{proj}_W \mathbf{b}$  is the best approximation to  $\mathbf{b}$  from W.





 $\rightarrow$  A least square solution is a vector  $\mathbf{x}$  satisfying:  $A\mathbf{x} = \text{proj}_{\text{col}(A)}\mathbf{b}$ .

#### How to obtain a solution of least square problem?

#### Theorem (The least square solutions)

For every linear system  $A\mathbf{x} = \mathbf{b}$ , the least square solutions of the system is given by <u>all solutions</u> of the system:

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Moreover, if  $\hat{\mathbf{x}}$  is any least square solution of  $A\mathbf{x} = \mathbf{b}$ , then the orthogonal projection of  $\mathbf{b}$  on the column space of A is:

$$proj_{col(A)}\mathbf{b} = A\hat{\mathbf{x}}$$

#### How to obtain a solution of least square problem?

#### Theorem (The least square solutions)

For every linear system  $A\mathbf{x} = \mathbf{b}$ , the least square solutions of the system is given by <u>all solutions</u> of the system:

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Moreover, if  $\hat{\mathbf{x}}$  is any least square solution of  $A\mathbf{x} = \mathbf{b}$ , then the orthogonal projection of  $\mathbf{b}$  on the column space of A is:

$$proj_{col(A)}\mathbf{b} = A\hat{\mathbf{x}}$$





**Exercise:** Give a mathematical proof of correctness of first statement!



#### Conclusion

When  $A\mathbf{x} = \mathbf{b}$  has no solution, then:

1. Multiply both sides of  $A\mathbf{x} = \mathbf{b}$  by  $A^T$ , so we obtain:

$$A^{\mathsf{T}}A\hat{\mathbf{x}} = A^{\mathsf{T}}\mathbf{b} \tag{1}$$

- 2. Solve system (1), so we obtain all least squares solutions  $\hat{\mathbf{x}}$ .
- 3. Solve:  $\mathbf{b} A\hat{\mathbf{x}}$  to obtain the *error vector*.
- 4. Compute  $\|\mathbf{b} A\hat{\mathbf{x}}\|$  to obtain the *error vector*.

#### Example: Unique least square solution

Find the least squares *solution*, the least squares *error vector*, and the least squares *error* of the linear system:

$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

#### Example: Unique least square solution

Find the least squares *solution*, the least squares *error vector*, and the least squares *error* of the linear system:

$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

#### Solution:

From the linear system, we can derive:

$$A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$$

#### Example solution

**1. Finding solution:** Compute  $A^TA$ ,  $A^T\mathbf{b}$ , and solve  $A^TA\mathbf{x} = A^T\mathbf{b}$ .

$$A^{T}A = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix}$$
$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

Now, solve linear system  $A^T A \mathbf{x} = A^T \mathbf{b}$ .

$$\begin{bmatrix} 14 & -3 \\ -3 & 21 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 10 \end{bmatrix}$$

which yields a unique least square solution:

$$x_1 = \frac{17}{95}, \quad x_2 = \frac{143}{285}$$



### Example solution (cont.)

**2. Error vector:** It is given by  $\mathbf{b} - A\mathbf{x}$ , that is,

$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} 4\\1\\3 \end{bmatrix} - \begin{bmatrix} 1&-1\\3&2\\-2&4 \end{bmatrix} \begin{bmatrix} \frac{17}{95}\\\frac{143}{285} \end{bmatrix} = \begin{bmatrix} 4\\1\\3 \end{bmatrix} - \begin{bmatrix} -\frac{92}{285}\\\frac{439}{285}\\\frac{95}{57} \end{bmatrix} = \begin{bmatrix} \frac{1232}{285}\\-\frac{154}{285}\\\frac{4}{3} \end{bmatrix}$$

**3. Least square error:** It is given by  $\|\mathbf{b} - A\mathbf{x}\|$ .

$$\|\mathbf{b} - A\mathbf{x}\| \approx 4.556$$

### Example solution (cont.)

**2. Error vector:** It is given by  $\mathbf{b} - A\mathbf{x}$ , that is,

$$\mathbf{b} - A\mathbf{x} = \begin{bmatrix} 4\\1\\3 \end{bmatrix} - \begin{bmatrix} 1&-1\\3&2\\-2&4 \end{bmatrix} \begin{bmatrix} \frac{17}{95}\\\frac{143}{285} \end{bmatrix} = \begin{bmatrix} 4\\1\\3 \end{bmatrix} - \begin{bmatrix} -\frac{92}{285}\\\frac{439}{285}\\\frac{95}{57} \end{bmatrix} = \begin{bmatrix} \frac{1232}{285}\\-\frac{154}{285}\\\frac{4}{3} \end{bmatrix}$$

**3. Least square error:** It is given by  $\|\mathbf{b} - A\mathbf{x}\|$ .

$$\|\mathbf{b} - A\mathbf{x}\| \approx 4.556$$

**Question:** Can you briefly explain the interpretation of this example?

#### Exercise: How many least square solutions?

Find the least squares *solution*, the least squares *error vector*, and the least squares *error* of the linear system:

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 2 \\ x_1 - 4x_2 + 3x_3 = -2 \\ x_1 + 10x_2 - 7x_3 = 1 \end{cases}$$

How many least square solutions that you find?

# Part 2: Applications

## **Application 1:** Polynomial curve

#### Problem (Fitting a curve to data)

Given experimental values of pairs (x, y), namely:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

How to obtain a mathematical relationship y = f(x)?







#### Least squares fit for linear curve

Suppose we want to fit a straight line y = a + bx. Then we solve:

$$y_1 = a + bx_1$$

$$y_2 = a + bx_2$$

$$\vdots$$

$$y_n = a + bx_n$$

which can be written in matrix form:

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$$

or as  $A\mathbf{v} = \mathbf{y}$ , where:

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}$$

#### Exercise: What about fitting a polynomial curve?

Suppose that we want to fit a polynomial function:

$$y = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

to *n* points:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

#### Hint:

- 1. Determine the system of n equations based on the data above.
- 2. Determine each component A,  $\mathbf{v}$ , and  $\mathbf{y}$ .
- 3. Solve the least squares.

#### **Application 2:** Function approximation

#### Problem (Approximation problem)

Given a function f that is continuous on an interval [a, b], find the "best possible approximation" to f using only functions from a specified subspace W of  $C[a, b]^*$ .

#### Example

Find the best possible approximation to:

- 1.  $e^x$  over [0, 1] by a polynomial of the form  $a_0 + a_1x + a_2x^2$
- 2.  $\sin \pi x$  over [-1,1] by a function of the form:

$$a_0 + a_1 e^x + a_2 e^{2x} + a_3 e^{3x}$$

3. x over  $[0, 2\pi]$  by a function of the form:

$$a_0 + a_1 \sin x + a_2 \sin 2x + b_1 \cos x + b_2 \cos 2x$$

<sup>\*</sup>the space of continuous functions on [a, b]  $\langle a \rangle \langle b \rangle$ 



# The mathematical meaning of "best possible approximation over [a, b]"



▲ Figure 6.6.1 The deviation between f and g at  $x_0$ .



▲ Figure 6.6.2 The area between the graphs of  $\mathbf{f}$  and  $\mathbf{g}$  over [a, b] measures the error in approximating f by g over [a, b].

#### Intuitive explanation

