

Three phases/components of the project:

Building Data Model

Analysis and forecasting questions

Visualization Dashboard

Due Date (all components): 11/04/2025

Brainstorm	Plan	Indicate KPIs	Review	Gather	Analyze Data & Implement &		
BIGINSIOITI	riuii	ilidicale Kris	literature	Requirements	design	execute code	

Project Proposal

The overview and the objective of the project:

A dataset of manufacturing line productivity of drinks needs to be cleaned and analysed to extract insights in order to achieve the following objective: "addressing the most downtime factors affecting the productivity in August and September 2024 in order to reduce manufacturing downtime by 20% at least".

To reach this objective we need to answer the following questions through the project:

- How does batch processing time compare to the minimum batch time for each product?
- What are the most common downtime factors?
- What is the total production time per operator?
- Which operators have the highest and lowest downtime incidents?
- What is the overall efficiency of the manufacturing line (productive time vs. downtime)?

The scope of the project:

• In-scope:

- o clean, preprocess and build a data model for the dataset.
- Determine all the possible analysis and forecast questions to be answered.
- o Analyse the downtime keys/factors and predict the downtime in the next period.
- o Highlight the number of batches to be produced after predicting the downtime.
- o Build a dashboard to visualize the answers of the questions.
- o Prepare a report summarizing the work of the project.

Out-of-scope:

- o Real time monitoring the system of manufacturing.
- o Changes the workflow or scheduling of production.

Roles of Data analyst Team members:

- The leader: Mohamed Abdelghaffar.
- Data governors:
 - Mohamed Abdelghaffar:
 - Follow up the procedures of the project plan.
 - Preprocess the dataset and prepare the analysis questions.
 - Madonna Wadeaa):
 - Clean the data and handle the missing or null value in the dataset.
 - Answer the analysis questions using SQL.

Data storyteller:

- Yasser Mabrouk:
 - Answer the analysis questions using Python.
 - Prepare the dashboard using PowerBi.
- Saif Tarek:
 - Answer the analysis questions using Python.
 - prepare the forecasting questions

Deliverables:

- Cleaned dataset ready for analysis.
- o Preprocessing notebook.
- Set of analysis and forecasting questions.
- Visualization dashboard for answering the questions.
- Final report and presentation.

Project Plan

Key Milestones:

Project Kickoff:

- •Define the scope and objective.
- Brainstorm the roles of the members.

Preprocessing stage:

- •clean and handle the data.
- Build data model.

analysis questions:

- determine set of questions to be analysed.
- •answering the questions in sql/python.

forecasting questions:

- •determine set of questions to predict the downtime.
- •answering the questions using the trends of the data.

build a dashboard:

visualize the answers on a dashboard.

prepare the final report:

- •summarize the project work on a report.
- •prepare a presentation.

Project Timeline (Gantt Chart):

Task	Assigned to	Period	Notes		
Project kick off	Mohamed Abdelghaffar	January, 2025 24 25 26 27	online meeting with all team members		
Preprocess and clean the data	Madonna Wadeaa Saif Tarek	Jan., February, 2025 30 31 1 2 3 4	The leader follows up work and gathers the cleaned dataset		
Build the data model	Mohamed Abdelghaffar	February, 2025 5 6 7 8 9 10	Meeting with the instructor to show him our work.		
Set the analysis questions	Yasser Mabrouk Madonna Wadeaa	February, 2025 13 14 15 16 17	Meeting at Eljazera club to discuss the questions		

			(AT)
Task	Assigned to	Period	Notes
Answer the analysis question using tool (sql or Python)	Mohamed Abdelgh. Saif Tarek	February, 2025 18 19 20 21 22	Meeting with the instructor to discuss the progress of the project.
Set the forecasting questions	Saif Tarek Yasser Mabrouk	February, 2025 24 25 26 27 28	The due date of submitting the project planner on GitHub.
Answering the questions using the trends of the data	Yasser Marbouk Mohamed Abdelgh.	March, 2025 3 4 5 6 7	Online meeting with the leader to discuss the project progress.
Build the dashboard	Madonna Wadeaa Saif Tarek	March, 2025 8 9 10 11 12	The leader is following up work and gathering the dashboard.
Prepare the final report	Mohamed Abdelghaffar	March, 2025 20 21 22 23 24	online meeting with all team members
Prepare the final presentation	Mohamed Abdelghaffar Yasser Marbouk	April, 2025 1 2 3 4 5	Assign the final steps and methods of presentation
Closing the project	All the team members	April, 2025 8 9 10 11 12	The due date for the final presentation, testing and reports

INSIGHTOPIA SEA DISCRETE SPACE

Risk Assessment and Mitigation Plan

Potential risks that could impact on the success of the analysis and its implementation:

- a) Data collection issues:
- Risk: incomplete data or too many missing values in the dataset.
- Impact: poor analysis leading to incorrect downtime cause identification.
- Mitigation: validate, clean and preprocess the data before the analysis.
- b) Analysis challenges:
- Risk: incorrect statistical and data model leading to misleading conclusions.
- Impact: ineffective decision making and wasted time.
- Mitigation: use multiple analysis tools (SQL, python, Power BI) and continuously refine models with the instructor reflection.
- c) Lack of actionable insights:
- Risk: analysis results are too complex or do not translate into clear improvements.
- Impact: difficulty in implementing recommendations leading to no improvements in downtime
- Mitigation: present the findings in a clear visual dashboard (e.g. charts) and provide actionable recommendations.
- d) Lack of meeting time:
- Risk: team members have their work hours or it's hard to agree on specific time for all members.
- Impact: delay in following the project plan procedures leading to poor willingness to work.
- Mitigation: schedule online meetings via MS. Teams and send the instructions on WhatsApp group of the team.

Risk Assessment Matrix:

Risk category	Likelihood	Impact	Priority
Data collection issues	Medium	High	High
Analysis challenges	Medium	Medium	Medium
Lack of actionable	Medium	High	Medium
insights			
Lack of meeting time	High	High	Medium

Key performance indicators (KPIs)

Production Efficiency KPIs

- 1. Total Production Time (hours) Sum of all batch production times.
- 2. Average Cycle Time (minutes per batch) Average time taken to complete one batch.
- 3. Production Throughput (batches per shift/day) Number of batches produced per shift or day.
- 4. Operator Efficiency (%) Production output per operator per shift.

Downtime Analysis KPIs

- 5. Total Downtime (minutes/hours per day) Sum of all downtime across batches.
- 6. **Mean Downtime per Batch (minutes)** Average downtime per production batch.
- 7. **Downtime as % of Production Time (%)** Ratio of downtime to total available production time.
- 8. Top Downtime Causes (%) Percentage contribution of different downtime factors.

Literature Review

Lecturer's feedback and evaluation:

Date	Feedback	Team's Response
8/2/2025	Add the duration time per product.	Doing the requirements
	Answer some analysis questions with	
l	Python and the others with SQL.	
22/2/2025	Write stakeholder's analysis in the	Finish the requirements
	project planner's file	
	Modify the code for some analysis	
	questions to make their answer clear	

Final Grading Criteria – Breakdown of Marks:

Final Grading Criteria – Breakdown of Marks

Category	Weight (%)	Evaluation Criteria
Documentation	30%	Clarity, completeness, and structure of reports (e.g., risk
Documentation	30%	assessment, KPIs, methodology).
Implementation	30%	Quality of analysis, data accuracy, downtime reduction
Implementation	30%	strategies, and process improvements.
Testing &	2007	Effectiveness of downtime predictions, accuracy of models,
Validation	20%	and validation against historical data.
Dragontotion	0007	Clarity, engagement, visual representation of data (charts,
Presentation	20%	dashboards), and ability to answer questions.

Detailed Breakdown

- 1. Documentation (30%)
 - 10% Clearly defined objectives, problem statement, and project scope.
 - 10% Detailed methodology, including data collection and analysis techniques.
 - 10% Well-structured reports with risk assessment, KPIs, and conclusions.
- 2. Implementation (30%)
 - 15% Correct use of downtime analysis techniques and data-driven insights.

15% – Effectiveness of proposed mitigation strategies and recommendations.

3. Testing & Validation (20%)

- 10% Accuracy of downtime predictions and effectiveness of implemented solutions.
- 10% Validation against historical downtime records and real-world conditions.

4. Presentation (20%)

- 10% Clear and engaging explanation of findings, recommendations, and impact.
- 10% Use of visuals (graphs, dashboards) and ability to answer project-related questions.

Requirement Gathering

Stakeholder's analysis:

is a process of identifying people responsible for the project of the manufacturing line; grouping them according to their levels of participation, interest, and influence in the project; and determining how best the insights of the analysis impact on each of these stakeholders.

Introduction:

The purpose of the analysis (1):

- to enlist the help of key organizational players.
- To gain early alignment among all stakeholders on goals and plans.
- Proactively address potential conflicts or concerns to mitigate risks and improve collaboration.

Overview of the stakeholders:

Internal stakeholders	External stakeholders
Production Manager	Equipment supplier
Quality control manager	Customer
Maintenance manager	
Machine operator	
Manufacturing engineer	

¹⁾ What is Stakeholder Analysis? | Definition and Overview

Stakeholders' needs and expectations:

INSIGHTOPIA MA DECORTE MANCE		
		<u>কুল</u>
SATA DISCONSTIT MINUST	INS	SIGHTOPIA
		A DISCONSEN MANUST

Stakeholder	Need	expectation			
Production Manager	Data-driven insights on downtime	Clear reports with actionable			
	causes and trends	recommendations.			
Maintenance manager	Accurate downtime root cause	Reliable maintenance scheduling			
	analysis.	based on data insights.			
Quality control manager	Analysis of defects or	Integration of downtime analysis with			
	inconsistencies linked to machine	quality control data.			
	stoppages.				
Manufacturing engineer	Insights into how automation or	Use of real-time monitoring systems.			
	process adjustments can reduce				
	downtime.				
Machine operator	Clear procedures for responding to	Timely maintenance support.			
	downtime events				
Equipment supplier	Feedback on machine	Timely reports on equipment failures.			
	performance and failure rates.				
Customer	High-quality products despite	Strong quality control despite			
	operational challenges	production issues			

Impacts of findings on stakeholders:

The analysis question	the stakeholder/s	The impact/s
How does batch processing	Production manager	
time compare to the minimum	Quality control manager	
batch time for each product?		
Are there batches with no	Manufacturing engineer	
downtime?		
How Many Batches were	Maintenance manager	
Produced Per Day?	Machine operator	
What is the total production	Production manager	
time per operator?	Machine operator	
Which product has the highest	Machine operator	
number of batches?		

The analysis question	the stakeholder/s	The impact/s
What are the avg/sum/max	Machine operator	
production time per product		
type?		
Are there significant differences	Production manager	
in batch processing time		
between operators in different		
days?		
How does productivity vary	Production manager	
throughout the day?	Quality control manager	
What are the most common	Maintenance manager	
downtime factors?		
is there any downtime factor	Production manager	
that has no impact on the		
productivity?		
Which products experience the	Manufacturing engineer	
most downtime?		
What is the average downtime	Manufacturing engineer	
per batch?		
Which operators have the	Quality control manager	
highest and lowest downtime		
incidents?		
Are certain downtime factors	Manufacturing engineer	
linked to specific operators?		

System Analysis & Design

Overview schema (Tables and attributes):

The problem is to find the downtime keys and try to reduce them by 20%, in the following lines the tables and their attributes of the dataset.

• Before modification:

We found that the table of "line downtime" is not structured very well because it has empty cells as shown:

	Downtime factor											
Batch	1	2	3	4	5	6	7	8	9	10	11	12
422111		60					15					
422112		20						20				
422113		50										
422114				25		15						
422115										24		
422116												
422117		10				5						
422118						14	16				10	20
422119				25								
422120				20	15				17			

BatchID	•	Downtime factor 🔻	downtime minutes	—
4221	11	2	6	0
4221	11	7	1	.5
4221	12	2	2	20
4221	12	8	2	20
4221	13	2	5	0
4221	14	4	2	25
4221	14	6	1	.5
4221	15	10	2	24
4221	17	2	1	.0
4221	17	6		5
4221	18	6	1	4
4221	18	7	1	.6
4221	18	11	1	.0
4221	18	12	2	20

Overview of schema after modification:

Database design & Data modeling:

• ERD (after modification):

Data Model (Galaxy Schema):

Data model (from SQL):

