# МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

### Ордена Трудового Красного Знамени

# Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский технический университет связи и информатики»

Кафедра математическая кибернетика и информационные технологии

# Отчет по лабораторной работе

по дисциплине «Системный анализ и исследование операций»

Выполнили:

студенты группы БВТ2003

Зайцева А. Ю

Готовко А. В

Гиндуллина А.

Ушаков М.С

Проверил:

Говоров П.М.

#### Задание:

Фирма планирует реализовать два типа товаров Т1, Т2. Известны затраты на реализацию единицы товара, а также прибыль от реализации единицы товара.

|               | T1 | T2 | Суммарный        |
|---------------|----|----|------------------|
|               |    |    | объем (не более) |
| Рабочее время | 2  | 9  | 50               |
| Торговая      | 9  | 3  | 200              |
| площадь       |    |    |                  |
| Складские     | 5  | 10 | 100              |
| помещения     |    |    |                  |

Прибыль для 1-го типа товара составляет 9 тыс. руб., для 2-го типа товара 11 тыс. руб. Суммарная прибыль должна быть максимальной. Составить модель, решить задачу графическим методом и симплекс методом.

# Решение графическим методом:

Необходимо найти максимальное значение целевой функции

F = 9x1+11x2 → max, при системе ограничений:

 $2x1+9x2 \le 50$ , (1)

 $9x1+3x2 \le 200$ , (2)

 $5x1+10x2 \le 100, (3)$ 

 $x1 \geq 0, (4)$ 

 $x2 \geq 0, (5)$ 

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи. Построим прямую, отвечающую значению функции F = 9x1+11x2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление максимизации F(X). Начало вектора — точка (0; 0), конец — точка (9;11). Будем двигать эту прямую параллельным образом. Поскольку нас интересует максимальное решение, поэтому двигаем прямую до последнего касания обозначенной области. На графике эта прямая обозначена пунктирной линией. Прямая F(x) = const пересекает область в точке D. Так как точка D получена в результате пересечения прямых (5) и (3), то ее координаты удовлетворяют уравнениям этих прямых:

$$5x1+10x2=100$$

$$x1 = 20, x2 = 0$$

$$F(x) = 9*20 + 11*0 = 180$$



# Решение симплекс методом:

F(X) = 9x1+11x2, условия-ограничения:

 $2x1+9x2 \le 50$ 

 $9x1+3x2 \leq 200$ 

 $5x1+10x2 \le 100$ 

Переход к канонической форме: В 1-м неравенстве вводим базисную переменную х3. В 2-м неравенстве вводим базисную переменную х4. В 3-м неравенстве вводим базисную переменную х5.

2x1+9x2+x3 = 50

9x1+3x2+x4 = 200

5x1+10x2+x5 = 100

Матрица коэффициентов A = a(ij) этой системы уравнений имеет вид:

Базисное решение называется допустимым, если оно неотрицательно.

| Бази<br>с             | В   | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> |
|-----------------------|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>X</b> <sub>3</sub> | 50  | 2                     | 9                     | 1                     | 0                     | 0                     |
| <b>X</b> <sub>4</sub> | 200 | 9                     | 3                     | 0                     | 1                     | 0                     |
| <b>X</b> <sub>5</sub> | 100 | 5                     | 10                    | 0                     | 0                     | 1                     |
| F(X0)                 | 0   | -9                    | -11                   | 0                     | 0                     | 0                     |

| Базис                 | В     | <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | $X_4$ | <b>X</b> <sub>5</sub> |
|-----------------------|-------|-----------------------|----------------|-----------------------|-------|-----------------------|
| <b>X</b> <sub>2</sub> | 50/9  | 2/9                   | 1              | 1/9                   | 0     | 0                     |
| <b>X</b> <sub>4</sub> | 550/3 | 25/3                  | 0              | -1/3                  | 1     | 0                     |
| <b>X</b> <sub>5</sub> | 400/9 | 25/9                  | 0              | -10/9                 | 0     | 1                     |
| F(X1)                 | 550/9 | -59/9                 | 0              | 11/9                  | 0     | 0                     |

| Базис                 | В  | <b>X</b> <sub>1</sub> | X <sub>2</sub> | <b>X</b> <sub>3</sub> | X <sub>4</sub> | <b>X</b> <sub>5</sub> |
|-----------------------|----|-----------------------|----------------|-----------------------|----------------|-----------------------|
| <b>X</b> <sub>2</sub> | 2  | 0                     | 1              | 1/5                   | 0              | -2/25                 |
| <b>X</b> <sub>4</sub> | 50 | 0                     | 0              | 3                     | 1              | -3                    |
| <b>X</b> <sub>1</sub> | 16 | 1                     | 0              | -2/ <sub>5</sub>      | 0              | 9/25                  |
| F(X2)                 | 16 | 0                     | 0              | -7/ <sub>5</sub>      | 0              | 59/25                 |

| 6 |  |  |  |
|---|--|--|--|
|   |  |  |  |

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Окончательный вариант симплекс-таблицы:

| Бази<br>с             | В   | <b>X</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> |
|-----------------------|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| X <sub>3</sub>        | 10  | 0                     | 5                     | 1                     | 0                     | -2/ <sub>5</sub>      |
| <b>X</b> <sub>4</sub> | 20  | 0                     | -15                   | 0                     | 1                     | -9/5                  |
| <b>X</b> <sub>1</sub> | 20  | 1                     | 2                     | 0                     | 0                     | 1/5                   |
| F(X3)                 | 180 | 0                     | 7                     | 0                     | 0                     | 9/5                   |

Оптимальный план можно записать так:

$$x1 = 20, x2 = 0$$

$$F(X) = 9*20 + 11*0 = 180$$

## Вывод:

В ходе лабораторной работы мы решили задачу линейного программирования с помощью графического и симплекс методов. Все результаты сошлись, что позволяет сделать вывод, что решение правильное и оптимальное.