Name:			
Matric. no.:		Tutor group:	
February 200	3 CA1	TIME A	LLOWED: 50 minutes

QUESTION 1. (15 marks)

(a) [5 marks] For each element $x \in \{0, ..., 4\}$ find which element of $\{0, ..., 4\}$ is congruent to x^2 modulo 5. Fill in the following table accordingly.

$x \pmod{5}$	0	1	2	3	4
$x^2 \pmod{5}$	0	1	4	4	1

[mark distribution: 1 mark for each correct table entry]

(b) [5 marks] For each $a \in \{0, 1, \dots, 4\}$ evaluate the truth value of the following statement

$$\exists x \in \{0, 1, \dots, 4\} \text{ such that } 2x - 1 \equiv a \pmod{5}.$$

Fill in the following table accordingly.

a	0	1	2	3	4
T/F	Т	Т	Τ	Т	Т

[mark distribution: 1 mark for each correct table entry]

(c) [5 marks] Let S be the set of integers that are congruent to 2 modulo 4. Is S closed under multiplication? Justify your answer.

Solution: Not closed. Indeed $2 \in S$ but $2 \times 2 = 4 \equiv 0 \pmod{4}$.

[mark distribution: 2 marks for correct answer, 3 marks for justification]

	Ougstion	1(2)	1/h)	1(a)	2(2)	2/L)	2(c)	2(2)	2/b)	2(a)	Total
For graders only:	Question	I(a)	1(p)	1(0)	Z(a)	Z(D)	2(C)	$\mathbf{S}(\mathbf{a})$	o(n)	3 (c)	rotar
	Marks										

QUESTION 2. (15 marks)

Let \mathbb{Q} denote the set of rational numbers and S denote the set of odd integers. Determine the truth value of the following statements. Justify your answers.

(a) [5 marks] $\forall x \in \mathbb{Q}, \exists y \in \mathbb{Q}, \exists z \in S, xyz = 2023;$

Solution: False. Counterexample: x = 0 then xyz = 0 for all y and z. [mark distribution: 2 marks for correct answer, 3 marks for justification]

(b) [5 marks] $\exists x \in S, \exists y \in \mathbb{Q}, \forall z \in S, x + yz = 2023;$

Solution: True. Example: x = 2023 and y = 0 then x + yz = 2023 for all z. [mark distribution: 2 marks for correct answer, 3 marks for justification]

(c) [5 marks] $\neg (\forall x \in S, \ \forall y \in \mathbb{Q}, \ \exists z \in S, \ xy + z = 2023).$

Solution: True.

We have

 $\neg(\forall x \in S, \ \forall y \in \mathbb{Q}, \ \exists z \in S, \ xy+z=2023) \equiv \exists x \in S, \ \exists y \in \mathbb{Q}, \ \forall z \in S, \ xy+z \neq 2023.$

Example: take x=1 and y=1 then since z is odd, we have $xy+z\equiv 0\pmod 2$. Since $2023\equiv 1\pmod 2$, we know that $xy+z\neq 2023$ for all $z\in S$.

[mark distribution: 2 marks for correct answer, 3 marks for justification]

(a) [5 marks] Write out the truth table for the compound propositions $(\neg p \to q) \lor \neg q$ and $\neg (q \land p) \lor q$. Is $(\neg p \to q) \lor \neg q \equiv \neg (q \land p) \lor q$?

	p	q	$(\neg p \to q) \vee \neg q$	$\neg (q \land p) \lor q$
	Т	Т	${ m T}$	T
Solution:	${\rm T}$	F	${ m T}$	${ m T}$
	\mathbf{F}	Γ	${ m T}$	${ m T}$
	F	F	${ m T}$	${ m T}$

Therefore, $(\neg p \to q) \lor \neg q \equiv \neg (q \land p) \lor q$.

[mark distribution: 1/2 mark for each correct entry in the last two columns of the table, 1 mark for deducing equivalence.]

(b) [5 marks] Identify all the critical rows for the argument:

[mark distribution: 1 mark for each critical row]

- (c) For each of the following arguments, decide whether or not it is valid. If it is invalid give a counterexample, if it is valid then demonstrate how the conclusion follows from the premises, pointing out which inference rule you are using at each step. You may need the following inference rules: modus ponens, modus tollens, and disjunctive syllogism.
 - (i) [5 marks]

$$p \wedge q;$$

$$\neg r \to s;$$

$$q \vee r;$$

$$p \vee s;$$

$$\therefore r.$$

Solution: Invalid. Counterexample:

$$\begin{array}{c|cccc}
p & q & r & s \\
\hline
T & T & F & T
\end{array}$$

[mark distribution: 2 marks for correct validity, 3 marks for justification]

(ii) [5 marks]

$$\neg p \to r;$$

$$r \to s;$$

$$\neg p \lor q;$$

$$\neg q;$$

$$\therefore s.$$

Solution: Valid. Justification:

1.
$$\neg p \rightarrow r$$
;
2. $r \rightarrow s$;
3. $\neg p \lor q$;
4. $\neg q$;
 \therefore 5. $\neg p$ disjunctive syllogism on 3 and 4
 \therefore 6. r modus ponens on 1 and 5
 \therefore s modus ponens on 2 and 6

[mark distribution: 2 marks for correct validity, 3 marks for justification]