Breast Cancer Detection Project

By Yordanos Simegnew Muche

1. Importing The Necessary Libraries

```
In [1]: # importing the necessary libraries
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import warnings
    from datetime import datetime
    pd.set_option("display.max_columns", None)
```

2. Loading The Dataset and Data Exploration

```
In [2]: # Loading the Dataset
         df = pd.read_csv("C:\\Users\\yozil\\Desktop\\My projects\\3.0 brest cancer det
In [3]: # displaying sample records
         df.sample(3)
Out[3]:
                   id diagnosis radius mean texture mean perimeter mean area mean smoothness n
          556
               924964
                              В
                                       10.16
                                                    19.59
                                                                   64.73
                                                                                              0.1
                                                                              311.7
          276 8911230
                              В
                                       11.33
                                                    14.16
                                                                   71.79
                                                                              396.6
                                                                                              0.0
          450 9111596
                              В
                                       11.87
                                                    21.54
                                                                   76.83
                                                                              432.0
                                                                                              0.0
                                                                                               •
```

```
In [4]: # shape of the dataset
df.shape
```

Out[4]: (569, 33)

In [5]: # General information about the dataset df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

#	Column	Non	-Null Count	
0	 id		non-null	 int64
1	diagnosis		non-null	object
2	radius_mean		non-null	float64
3	texture_mean		non-null	float64
4	perimeter_mean		non-null	float64
5	area mean		non-null	float64
6	smoothness_mean		non-null	float64
7	compactness_mean	569	non-null	float64
8	concavity_mean	569	non-null	float64
9	concave points_mean	569	non-null	float64
10	symmetry_mean	569	non-null	float64
11	fractal_dimension_mean	569	non-null	float64
12	radius_se	569	non-null	float64
13	texture_se	569	non-null	float64
14	perimeter_se	569	non-null	float64
1 5	area_se	569	non-null	float64
16	smoothness_se	569	non-null	float64
17	compactness_se	569	non-null	float64
18	concavity_se	569	non-null	float64
19	<pre>concave points_se</pre>	569	non-null	float64
20	symmetry_se	569	non-null	float64
21	<pre>fractal_dimension_se</pre>	569	non-null	float64
22	radius_worst	569	non-null	float64
23	texture_worst	569	non-null	float64
24	perimeter_worst	569	non-null	float64
25	area_worst	569	non-null	float64
26	smoothness_worst	569	non-null	float64
27	compactness_worst	569	non-null	float64
28	concavity_worst	569	non-null	float64
29	concave points_worst	569	non-null	float64
30	symmetry_worst	569	non-null	float64
31	<pre>fractal_dimension_worst</pre>	569	non-null	float64
32	Unnamed: 32	0 n	on-null	float64
dtvne	es: float64(31), int64(1)	. oh	iect(1)	

dtypes: float64(31), int64(1), object(1)

memory usage: 146.8+ KB

```
In [6]: # columns
          df.columns
 Out[6]: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean',
                 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
                 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
                 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
                 'compactness se', 'concavity se', 'concave points se', 'symmetry se',
                 'fractal dimension se', 'radius worst', 'texture worst',
                 'perimeter_worst', 'area_worst', 'smoothness_worst',
'compactness_worst', 'concavity_worst', 'concave points_worst',
                 'symmetry worst', 'fractal dimension worst', 'Unnamed: 32'],
                dtype='object')
 In [7]: # number of categorical columns
         len(df.select dtypes("object").columns)
 Out[7]: 1
 In [8]: # we only have one categorical column, let's see this categorical column
          df.select dtypes("object").columns
 Out[8]: Index(['diagnosis'], dtype='object')
 In [9]: # number of numerical columns
         len(df.select_dtypes(["int64","float64"]).columns)
 Out[9]: 32
In [10]: # we have 32 numerical columns and let's see them
          df.select_dtypes(["int64","float64"]).columns
Out[10]: Index(['id', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
                 'smoothness_mean', 'compactness_mean', 'concavity_mean',
                 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
                 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
                 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                 'fractal_dimension_se', 'radius_worst', 'texture_worst',
                 'perimeter_worst', 'area_worst', 'smoothness_worst',
                 'compactness_worst', 'concavity_worst', 'concave points_worst',
                 'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
                dtype='object')
```

```
In [11]: # statistical summary in numerical columns
    df.describe()
```

Out[11]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mea
cou	nt 5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.00000
me	an 3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.09636
s	td 1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.01406
m	in 8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.05263
25	% 8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.08637
50	% 9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.09587
75	% 8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.10530
m	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.16340
4						>

3. Data Cleaning

3.1 Standardizing column names

```
In [12]:
         # here we make all column names to be in title case format
         def title_maker(column_name):
             return column name.str.title()
In [13]: # now let's apply our title maker function to our column names
         df.columns = title maker(df.columns)
In [14]: df.columns
Out[14]: Index(['Id', 'Diagnosis', 'Radius_Mean', 'Texture_Mean', 'Perimeter_Mean',
                 'Area_Mean', 'Smoothness_Mean', 'Compactness_Mean', 'Concavity_Mean',
                 'Concave Points_Mean', 'Symmetry_Mean', 'Fractal_Dimension_Mean',
                 'Radius_Se', 'Texture_Se', 'Perimeter_Se', 'Area_Se', 'Smoothness_Se',
                'Compactness_Se', 'Concavity_Se', 'Concave Points_Se', 'Symmetry_Se',
                'Fractal_Dimension_Se', 'Radius_Worst', 'Texture_Worst',
                'Perimeter_Worst', 'Area_Worst', 'Smoothness_Worst',
                'Compactness_Worst', 'Concavity_Worst', 'Concave Points_Worst',
                 'Symmetry_Worst', 'Fractal_Dimension_Worst', 'Unnamed: 32'],
               dtype='object')
```

3.2 Standardizing Values in the Text columns

```
In [15]: # let's make sure all the text entries are standardized by making them all tit
def text_maker(df):
    return df.str.title()
```

```
In [16]: # Now let's apply our text maker function to the text columns.
df[df.select_dtypes("object").columns] =df.select_dtypes("object").apply(text_
```

3.3 Removing Unecessary Space from Values in the text columns(if any)

```
In [17]: # Now let's make sure there is no unecessary space in the values of text column
def space_remover(text_column):
    return text_column.str.strip()
```

```
In [18]: # let's apply the space remover function to our text columns.
df[df.select_dtypes("object").columns] = df.select_dtypes("object").apply(space)
```

3.4 Removing Duplicated Records (if any)

```
In [19]: # first let's check the existance of duplicated records
    df.duplicated().any()
Out[19]: False
In [20]: df.duplicated().sum()
Out[20]: 0
```

The above result show us there is no duplicated record in our dataset.

3.5 Handling Missing Values(if any)

Out[21]:	Id	False
	Diagnosis	False
	Radius_Mean	False
	Texture_Mean	False
	Perimeter_Mean	False
	Area_Mean	False
	Smoothness_Mean	False
	Compactness_Mean	False
	Concavity_Mean	False
	Concave Points_Mean	False
	Symmetry_Mean	False
	Fractal_Dimension_Mean	False
	Radius_Se	False
	Texture_Se	False
	Perimeter_Se	False
	Area_Se	False
	Smoothness_Se	False
	Compactness_Se	False
	Concavity_Se	False
	Concave Points_Se	False
	Symmetry_Se	False
	Fractal_Dimension_Se	False
	Radius_Worst	False
	Texture_Worst	False
	Perimeter_Worst	False
	Area_Worst	False
	Smoothness_Worst	False
	Compactness_Worst	False
	Concavity_Worst	False
	Concave Points Worst	False
	Symmetry_Worst	False
	Fractal_Dimension_Worst	False
	Unnamed: 32	True
	dtype: bool	
	- •	

```
In [22]: # we have missing value in our last column which is (unnamed: 32), let's see he
          df.isnull().sum()
Out[22]: Id
                                        0
         Diagnosis
                                        0
          Radius_Mean
                                        0
          Texture_Mean
                                        0
          Perimeter Mean
                                        0
          Area Mean
                                        0
          Smoothness Mean
                                        0
          Compactness_Mean
                                        0
          Concavity Mean
          Concave Points_Mean
          Symmetry Mean
          Fractal Dimension Mean
                                        0
          Radius Se
                                        0
          Texture_Se
          Perimeter_Se
                                        0
          Area Se
          Smoothness Se
                                        0
          Compactness_Se
                                        0
          Concavity Se
                                        0
          Concave Points_Se
                                        0
          Symmetry_Se
          Fractal_Dimension_Se
                                        0
          Radius Worst
          Texture_Worst
                                        0
          Perimeter Worst
                                        0
          Area_Worst
          Smoothness_Worst
                                        0
          Compactness_Worst
          Concavity Worst
          Concave Points_Worst
                                        0
          Symmetry_Worst
                                        0
          Fractal_Dimension_Worst
                                        0
          Unnamed: 32
                                      569
         dtype: int64
In [23]: # we have 569 null values in this column, we handle this missing values by rem
          df.drop("Unnamed: 32", axis =1, inplace = True)
          df.sample(3)
Out[23]:
                     Id Diagnosis Radius_Mean Texture_Mean Perimeter_Mean Area_Mean Smoothness
          340
                 89813
                               В
                                        14.42
                                                     16.54
                                                                   94.15
                                                                             641.2
                                                                                            (
          322
                 894855
                               В
                                        12.86
                                                     13.32
                                                                   82.82
                                                                              504.8
          408 90524101
                              М
                                        17.99
                                                     20.66
                                                                  117.80
                                                                             991.7
In [24]: # now Let's check the shape of our dataset
         df.shape
Out[24]: (569, 32)
```

3.5 Handling an outliers

```
In [25]: # for the case of this project we assign outliers as values above and below 4
                            def outlier limits(col):
                                        mean = col.mean()
                                        std = col.std()
                                        upper_limit = mean + 4 * std
                                        lower limit = mean - 4 * std
                                        return upper limit, lower limit
In [26]: | df.select_dtypes(["int64","float64"]).apply(outlier_limits)
Out[26]:
                                                                 Id Radius_Mean Texture_Mean Perimeter_Mean
                                                                                                                                                                                            Area_Mean Smoothness_Mean
                                      5.304542e+08
                                                                                  28.223487
                                                                                                                      36.493792
                                                                                                                                                             189.164958
                                                                                                                                                                                          2062.545620
                                                                                                                                                                                                                                                  0.152617
                                   -4.697105e+08
                                                                                    0.031096
                                                                                                                         2.085505
                                                                                                                                                                -5.226891
                                                                                                                                                                                           -752.767413
                                                                                                                                                                                                                                                  0.040104
In [27]: # now let's see the outlier records
                            def outlier records(dataframe):
                                        outliers_df = pd.DataFrame()
                                        for col in dataframe.columns:
                                                    mean = dataframe[col].mean()
                                                    std = dataframe[col].std()
                                                    upper limit = mean + 4 * std
                                                    lower_limit = mean - 4 * std
                                                    outliers_rec = dataframe[(dataframe[col] > upper_limit) | (dataframe[col] > upper_limit) | (da
                                                    outliers_df = pd.concat([outliers_df, outliers_rec])
                                        return outliers_df.drop_duplicates()
In [28]: # first let's see how many outlier records we have.
                            len(outlier_records(df.select_dtypes(["int64","float64"]),))
```

In [29]: # we have 43 outlier records in the data set let's see them
outlier_records(df.drop("Id",axis = 1).select_dtypes(["int64","float64"]))

Out[29]:

	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoothness_Mean	Compactness_
239	17.460	39.28	113.40	920.6	0.09812	0.
180	27.220	21.87	182.10	2250.0	0.10940	0.
212	28.110	18.47	188.50	2499.0	0.11420	0.
461	27.420	26.27	186.90	2501.0	0.10840	0.
504	9.268	12.87	61.49	248.7	0.16340	0.
78	20.180	23.97	143.70	1245.0	0.12860	0.
108	22.270	19.67	152.80	1509.0	0.13260	0.
122	24.250	20.20	166.20	1761.0	0.14470	0.
152	9.731	15.34	63.78	300.2	0.10720	0.
25	17.140	16.40	116.00	912.7	0.11860	0.
3	11.420	20.38	77.58	386.1	0.14250	0.
505	9.676	13.14	64.12	272.5	0.12550	0.
12	19.170	24.80	132.40	1123.0	0.09740	0.
192	9.720	18.22	60.73	288.1	0.06950	0.
473	12.270	29.97	77.42	465.4	0.07699	0.
561	11.200	29.37	70.67	386.0	0.07449	0.
368	21.710	17.25	140.90	1546.0	0.09384	0.
213	17.420	25.56	114.50	948.0	0.10060	0
314	8.597	18.60	54.09	221.2	0.10740	0.
42	19.070	24.81	128.30	1104.0	0.09081	0.
190	14.220	23.12	94.37	609.9	0.10750	0.
290	14.410	19.73	96.03	651.0	0.08757	0.
68	9.029	17.33	58.79	250.5	0.10660	0.
376	10.570	20.22	70.15	338.3	0.09073	0.
146	11.800	16.58	78.99	432.0	0.10910	0.
351	15.750	19.22	107.10	758.6	0.12430	0.
71	8.888	14.64	58.79	244.0	0.09783	0.
176	9.904	18.06	64.60	302.4	0.09699	0.
265	20.730	31.12	135.70	1419.0	0.09469	0
352	25.730	17.46	174.20	2010.0	0.11490	0.
9	12.460	24.04	83.97	475.9	0.11860	0.
379	11.080	18.83	73.30	361.6	0.12160	0.
562	15.220	30.62	103.40	716.9	0.10480	0.
323	20.340	21.51	135.90	1264.0	0.11700	0.
4						+

```
In [33]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 535 entries, 0 to 568
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	Id	535 non-null	int64
1	Diagnosis	535 non-null	object
2	Radius_Mean	535 non-null	float64
3	Texture_Mean	535 non-null	float64
4	Perimeter_Mean	535 non-null	float64
5	Area_Mean	535 non-null	float64
6	Smoothness_Mean	535 non-null	float64
7	Compactness_Mean	535 non-null	float64
8	Concavity_Mean	535 non-null	float64
9	Concave Points_Mean	535 non-null	float64
10	Symmetry_Mean	535 non-null	float64
11	Fractal_Dimension_Mean	535 non-null	float64
12	Radius_Se	535 non-null	float64
13	Texture_Se	535 non-null	float64
14	Perimeter_Se	535 non-null	float64
1 5	Area_Se	535 non-null	float64
16	Smoothness_Se	535 non-null	float64
17	Compactness_Se	535 non-null	float64
18	Concavity_Se	535 non-null	float64
19	Concave Points_Se	535 non-null	float64
20	Symmetry_Se	535 non-null	float64
21	Fractal_Dimension_Se	535 non-null	float64
22	Radius_Worst	535 non-null	float64
23	Texture_Worst	535 non-null	float64
24	Perimeter_Worst	535 non-null	float64
25	Area_Worst	535 non-null	float64
26	Smoothness_Worst	535 non-null	float64
27	Compactness_Worst	535 non-null	float64
28	Concavity_Worst	535 non-null	float64
29	Concave Points_Worst	535 non-null	float64
30	Symmetry_Worst	535 non-null	float64
31	Fractal_Dimension_Worst		float64
dtype	es: $float64(30)$, $int64(1)$, object(1)	
memoi	^y usage: 137.9+ KB		

```
In [34]: # Now Let's fix the index
df.reset_index(inplace = True)
```

In [35]: # sample records
df.sample(3)

Out[35]:

	index	ld	Diagnosis	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoot
471	501	91504	М	13.82	24.49	92.33	595.9	
183	199	877500	М	14.45	20.22	94.49	642.7	
383	411	905520	В	11.04	16.83	70.92	373.2	
4								•

In [36]: # now let's drop the index columns
df.drop("index", axis = 1, inplace = True)

```
In [37]: # general information
         df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 535 entries, 0 to 534 Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
 0	Id	535 non-null	int64
1	Diagnosis	535 non-null	object
2	Radius_Mean	535 non-null	float64
3	Texture_Mean	535 non-null	float64
4	Perimeter_Mean	535 non-null	float64
5	Area_Mean	535 non-null	float64
6	 Smoothness_Mean	535 non-null	float64
7	Compactness_Mean	535 non-null	float64
8	Concavity_Mean	535 non-null	float64
9	Concave Points_Mean	535 non-null	float64
10	Symmetry_Mean	535 non-null	float64
11	Fractal_Dimension_Mean	535 non-null	float64
12	Radius_Se	535 non-null	float64
13	Texture_Se	535 non-null	float64
14	Perimeter_Se	535 non-null	float64
15	Area_Se	535 non-null	float64
16	Smoothness_Se	535 non-null	float64
17	Compactness_Se	535 non-null	float64
18	Concavity_Se	535 non-null	float64
19	Concave Points_Se	535 non-null	float64
20	Symmetry_Se	535 non-null	float64
21	<pre>Fractal_Dimension_Se</pre>	535 non-null	float64
22	Radius_Worst	535 non-null	float64
23	Texture_Worst	535 non-null	float64
24	Perimeter_Worst	535 non-null	float64
25	Area_Worst	535 non-null	float64
26	Smoothness_Worst	535 non-null	float64
27	Compactness_Worst	535 non-null	float64
28	Concavity_Worst	535 non-null	float64
29	Concave Points_Worst	535 non-null	float64
30	Symmetry_Worst	535 non-null	float64
31	Fractal_Dimension_Worst	535 non-null	float64
dtyp	es: float64(30), int64(1)	, object(1)	

memory usage: 133.9+ KB

In [38]: # displaying sample records df.sample(3)

Out[38]:

		ld	Diagnosis	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoothnes
	38	856106	М	13.28	20.28	87.32	545.2	
	139	871001501	В	13.00	20.78	83.51	519.4	
	43	857155	В	12.05	14.63	78.04	449.3	
4								

In [39]:	<pre>In [39]: # Now let's export our cleaned data df.to_csv("C:\\Users\\yozil\\Desktop\\My projects\\3.0 brest cancer detection</pre>								
	4							>	
In [40]:	pd.r	ead_csv("	C:\\Users	s\\yozil\\De	sktop\\My pro	ojects\\3.0 br	est cancer	detection	
Out[40]:		ld	Diagnosis	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoothness	
	0	842302	М	17.99	10.38	122.80	1001.0		
	1	842517	М	20.57	17.77	132.90	1326.0	(
	2	84300903	М	19.69	21.25	130.00	1203.0	(
	3	84358402	М	20.29	14.34	135.10	1297.0	(
	4	843786	М	12.45	15.70	82.57	477.1	(
				•••	***				
	530	926424	М	21.56	22.39	142.00	1479.0		
	531	926682	М	20.13	28.25	131.20	1261.0	(
	532	926954	М	16.60	28.08	108.30	858.1	(
	533	927241	М	20.60	29.33	140.10	1265.0	I	
	534	92751	В	7.76	24.54	47.92	181.0	(
	535 r	ows × 32 c	columns						
	4							.	

Here we are done with the DATA CLEANING task