12/14

Continuation of last class:

Case 1:
$$A \neq B$$
 (=> $1 \neq \frac{av}{p}$ => $p \neq v$)

 $A \neq B$ (=> $1 \neq \frac{av}{p}$ => $p \neq v$)

 $A \neq B$ (=> $1 \neq \frac{av}{p}$)

 $A \neq B$ (=> $1 \neq \frac{av}{p}$)

 $A \neq B$ (Since $A \neq B$)

(Since $A \neq B$)

Subcase 1: PCq (This is the case for most of the Casinos)

Therefore, He restriction 0 5 h; 51
for every i

$$\Rightarrow h_{i} = A \quad (b_{0} \oplus b_{i}) = 1 \quad \text{for every}$$

From (0), A=1 (: B=0) 11;=P;(Lit 0)=1

 $k_{i} = A + (1-A) \left(\frac{a}{p}\right)^{i}$ $L_{i} = \left(\frac{\alpha}{P}\right)^{2} + A\left(1 - \left(\frac{\alpha}{P}\right)^{2}\right)$ A > 0.V is (A=0) minimal colution L; = (~) X= P (=> P= 9) Case 2: > for sure it returns Simple for => h; = 0 way: Recurrance relation solution; Another h; = A + B; , ho = A + B = 6 h; = A, h=1 h; = 1 il; = P; (Lit 0)=1

Example: (Birth-and-death chair)
Consider the Markov chair is with
O Pi Pr Pitl O VY 2 3 2 it 1 OVY
where $i=1,2,$ $0 < p_i = 1-q_i < 1$
O is the absorbing state. Onestion: Calculate the absorption probability Starting from i C P:, 9: depends on i) We want to compute hi= P; (hito
=> extinction probability starting

By (c) and (d)

$$P_{i} u_{i+1} = q_{i} u_{i}$$
 $= \frac{q_{i}}{p_{i}} \frac{q_{i-1}}{p_{i-1}} u_{i-1}$
 $= \frac{q_{i}}{q_{i}} \frac{q_{i}}{q_{i}} u_{i-1}$
 $= \frac{q_{i}}{q_{i$

by (F) by (F) . + (n; = (8, n) + ... + 8, n) $\int \int \left(u_{1}\right) + \left(u_{2}\right) +$ $= \left(\frac{1}{\sum_{n=0}^{i-1}} x_n\right) u_i \cdots H$ $h_{i} = \begin{cases} 2 & \text{lo} - \text{lo} \\ \text{lo} - \text{lo} \\ \text{lo} \\ \text{lo} \end{cases} \begin{pmatrix} h_{1} + h_{2} + \dots + h_{i} \\ h_{i} \end{pmatrix}$ $= \begin{cases} 1 - \begin{cases} 2 - 1 \\ h_{2} = 0 \end{cases} \end{pmatrix} \begin{pmatrix} h_{1} + h_{2} + \dots + h_{i} \\ h_{i} \end{pmatrix}$ $= \begin{cases} 1 - \begin{cases} 2 - 1 \\ h_{2} = 0 \end{cases} \end{pmatrix} \begin{pmatrix} h_{1} + h_{2} + \dots + h_{i} \\ h_{i} \end{pmatrix}$ L; = 1 - A(80+ ····+ 8;-1) (where A= ") A: not determined yet. Case 1: \(\sum_{n=0}^{\infty} \forall n=\infty\), the since \(\lambda \) \(\lambda 0 £ L; £ 1 hi = 1 > Population will so extinct with probal/

 $\sum_{n} \lambda_n$ (li) Then 0 = (1 - A (80+ ... + 8 in A (80+ ... + 8i-1) >, 0 => A 7,0 A (80+ ... + 8;-1

14

$$k_{i} = \frac{\sum_{n=0}^{\infty} x_{n}}{\sum_{n=0}^{\infty} x_{n}}$$

= =