Problem# 1:

Show a truth table for each of the following circuits

$$\gamma = \overline{\widehat{A} + 0}$$

Truth Table:

A	B	Ā	A+D	Y= A+B
001	0	000	0	0

Truth tuble:

Y= A.B	B	B	A
0	1		
Ó	·	0	0
J	0	1	0
l	1	O	1
	0	ì	ì
	1		

$$y = \overline{\overline{A} + B + \overline{C}}$$

Truth table: ABC	IAC	1 A + D + C	- LY
000	11		0
001	10	1	0
010	11	1	0
011	10	1	0
100	01	1	0
101	00	0	1
110	01	1	0
114	00	1	٥

	ble: A'BC	ĀB	A+B+C	Y
Truth tal	000	1 //	1	0
	001	11	1	0
	010	10	ĺ	D
	0 1 1	()	1	O
	1 0 1	01		O
		00	0	l
		00		0

(E)
$$A \rightarrow B + C$$

Truth Table:	A	B	C	Y= ABC
	0	0	0	
	0	0	ţ	0
		1	0	0
	0	í	1	0
	0		0	0
	1	0	U	
	1	0	į	
	ſ	1	Ø	0
	i	ì	1	
		<u> </u>		

Problema:

Determine, using a truth table, whether the two circuits are equivalent in terms of logic.

AND

A	ß	%P
0	0	0
0	١	0
1	O	0
		1

C	D	% %
0	0	0
0	i	0
	0	0
	The state of the s	1

Ī	AB	CD	F=AB+CD
	0	0	0
	0	1	0
	A COL	0	0
	1		

NAND GATE

A	B	0/P
0	0	
0	((
0	0	i
		0

C	D	0/P
0	0	,
0	1	1
	0	The control of the co
		0

AB	$\subset \mathcal{D}$	G=ABCD
		0
		0
		0
0	0	

Both gates have the same truth table so the two circuits are equivalent in terms of logic.

Problem 3: Show a truth table for each of the following circuits.

							T	
Truth table:	A	B	C	Ā	A +B	$\overline{\overline{A}+B}$	Ā+B	14
	0	0	0	ſ	l	0		0
	0	0	(1	l	0		1
	0	1	0	l	(0		0
	0	l	l	-		0		
•		0	0	Ó	0		0	0
		0	1	0	0		0	0
			0	0		0		0
	1	l		0		0		***************************************

Truth	table:	A	B	Ā	Ā	Ā+B	1 1
	•	0	0	1	0	0	
		0			0	1	0
			0	0			0
				0	7	PCCHARACTE CASTOR PARTY	0

Problem 4:

you are asked to build a digital logic circuit for a security alarm system. The system has four motion sensors which indicate the presence of an intruder. Each individual motion sensor should be able to trigger an alarm. The system should be completely disabled via a master switch. In addition, the siren, the flash light and the automated call to security company should have separate enable switches. The inputs and outputs are specified as below:

Inputs: 5; 52 53,54: Motion Sensor's (0= no intrusion, 1=intrusion)

M: Master switch: (0 = security disabled, 1= Security enabled)

A: Audible Alarm: (0 = audible a larm disabled,)
Enable switch: (1 = audible a larm enabled)

L'. Light Enable: (0= flash lish disabled, 1= flash lisht enabled)

P: Phone Call (0 = Call disabled, 1 = call enabled)
enable switch; (0 = Call disabled, 1 = call enabled)

Outputs: B: Harm Buzzer

F: Flash Light

C: Call Box

Draw the logic circuit diagram of the digital logic Using AND and OB gates inverters.

Truth Table X = don't care

		output								
M	5,	5	53	Sig	A	٢	P	B	F	<u> </u>
0	×	×	×	×	*	×	*	-		
	l	×	×	×	1	σ	0	1	0	0
	×	l	×	X	0	1	0	0	1	0
l	*	×	1	×	0	0		0	3	l
1	1	1	*	*	(1	0	1	ĺ	0
1	1	ı		X	1	0		1	0	
l		l		1	l	j	1			

If at least one of the input sensors gets activated then the output will come on.

Problem 5:

The Security alarm system you designed in problem 4 has an issue that it accidentally gets triggered by pets. You considered improving the system by triggering an alarm only if at least two motion sensors are activated at the same time. Show a truth table that has the four motion sensors as inputs and an alarm trigger as the output which shows how to implement the improved security system design.

		Outputs								
M	5,	Sz	Sz	54	A	L	P	B	F	C
Ö	X	Х	×	×	Х	×	×		1	_
l		0	0	0	×	×	×		1	
1	1	1	0	σ	1	0	0	1	0	0
-	Ŏ	0	1	l	0	t	0	Û	1	0
I	X	l	*	l	0	0		0	0	1
١	×	1	1	X		١	0	1	1	0
ı	١	×	X		1	0	1	1	0	j
١	ł	×	١	Х	l	ĺ	Ì		1	1

Problem 6:

Design a 4-input XOR gate circuit that outputs a 1 if the humber of 1's on the four inputs A, B', C, D is odd.

Truth Table:

A	B	C	\mathcal{D}	Output
0	0	0	0	0
0	0	0	1	
Ô	0	l	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	l	1	1	ı
l	0	0	0	1
	0	O	1	0
- 1	0	1	0	0
	O	l	-	1
l	ı	0	0	0
	j	0	1	1 /
1	1	1	0	1
	1	1	1	0

Problem 7:

Design a minority gate for three inputs. The outputs of Such a gate becomes I if a smaller number of inputs is I than O. Show a truty table and a logic gate implemation using AND and OR gates and inverters.

Truth table.

				
	A	B	C	Y
	0	0	0	0
	0	0	1	0
1	Ô		0	0
1	0	1	1	
	1	0	0	0
	l	0	1	1
	l	l	0	1
	I	1	1	1

K-map:

Logic gate:

Problem 8:

Construct the truth table for the following circuit:

Truth Table

				//	-119			I
a	Ь	C	d	ab	c+d	C+ abc	ab·[c+d]	(C+ab·c) ab·[C+d])
0	0	0	ð	(l	0	0
0	0	0	(1	0	1		(
0	D	1	0	1	0	0	1	0
O	Ò	l	ι	1	0	Ò		0
6	1	0	0	(1		0	0
0	1	0	l	1	0	1		
0	t	l	0	(0	0	1	0
0	1	1	l		Ó	D	1	0
)		0	0	1	1	l	0	0
l	0	0	l	1	Ó		(1
	\bigcirc	l	0	(0	Ó		0
	0	l	1		0	O	1	0
	T.	0	0	0	. (1	1	
-		0	1	0	0		l	
•			0		0 0	0,	(0
Į	Į		l	0	D	0	•	
								Ô
					·	ı		: 1