

Pauta Ayudantía 8 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

12 de mayo de 2022

Problema 1. Sea V un espacio vectorial sobre K y $T: V \to V$ lineal.

1. Si $S: \mathbf{V} \to \mathbf{V}$ es una aplicación lineal que conmuta con T, esto es, ST = TS, entonces $\ker(S)$ es un subespacio invariante bajo T.

Para un polinomio $P=a_0+a_1X+\ldots+a_nX^n\in K[X]$ defina la aplicación lineal

$$P(T) := a_0 \operatorname{id}_V + a_1 T + a_2 T^2 + \ldots + a_n T^n$$

Esto nos permite definir una función

$$\varphi_T: K[X] \to \mathcal{L}(\mathbf{V}), \qquad P \mapsto P(T)$$

- 2. Verifique que la función φ_T está bien definida y muestre que es lineal
- 3. Muestre que para todo $P \in K[X]$, $\ker(P(T))$ es invariante bajo T.
- 4. Pruebe que si $\mathbf{W} \leq \mathbf{V}$ es un subespacio invariante bajo T y $P \in K[X]$, entonces \mathbf{W} es invariante bajo P(T).

Demostración.

- 1. Suponemos que S, T conmutan y sea $\mathbf{v} \in \ker S$, ie, $S(\mathbf{v}) = \mathbf{0}$. Luego $S(T(\mathbf{v})) = T(S(\mathbf{v})) = \mathbf{0}$ de donde obtenemos que $T(\mathbf{v}) \in \ker(T)$, teniendo así la conclusión.
- 2. Dado que la composición de aplicaciones lineales es lineal, deducimos que T^n es lineal para todo $n \in \mathbb{N}$. Luego, como P(T) es una suma de aplicaciones lineales también es lineal, y la aplicación φ_T está bien definida pues $P(T) \in \mathcal{L}(\mathbf{V})$ para todo P. Para verificar que es lineal sea $\lambda \in K, P, Q \in K[X]$. Entonces si escribimos $P(X) = a_0 + a_1 X + \ldots + a_n X^n$ y $Q(X) = b_0 + b_1 X + \ldots + b_n X_n$ (asumimos que son del mismo pues sino definimos todos los coeficientes cero desde el principal) vemos que

$$\varphi_T(\alpha P + Q) = (\alpha a_0 + b_0) + (\alpha a_1 + b_1)X + \dots + (\alpha a_n + b_n)X^n$$

= $\alpha(a_0 + a_1X + \dots + a_nX^n) + (b_0 + b_1X + \dots + b_nX^n)$
= $\alpha\varphi_T(P) + \varphi_T(Q)$

- 3. Gracias al punto 1. basta notar que para todo $P \in K[X]$, se tiene que T y P(T) conmutan.
- 4. Sea W subespacio invariante bajo T. Entonces si $\mathbf{v} \in \mathbf{W}$ se tiene que

$$P(T)(\mathbf{v}) = a_0 \operatorname{id}(\mathbf{v}) + a_1 T(\mathbf{v}) + a_2 T^2(\mathbf{v}) + \ldots + a_n T^n(\mathbf{v}) \in \mathbf{W}$$

pues como \mathbf{W} es invariante bajo T se tiene que $T^n(\mathbf{v}) \in \mathbf{W}$ para todo $n \in \mathbb{N}$, y luego $P(T)(\mathbf{v})$ es combinación lineal de elementos en \mathbf{W} . Así $P(T)(\mathbf{W}) \subseteq \mathbf{W}$.

Problema 3. Sea V espacio vectorial y $T:V\to V$ aplicación lineal. Se definen los siguientes subespacios vectoriales.

$$\mathbf{V}_{+} = {\mathbf{v} \in \mathbf{V} : T\mathbf{v} = \mathbf{v}} \qquad \mathbf{V}_{-} = {\mathbf{v} \in \mathbf{V} : T\mathbf{v} = -\mathbf{v}}$$

Pruebe que, en efecto, los conjuntos anteriores son subespacios. Demuestre que si $T^2 = id$, donde id denota la aplicación identidad en \mathbf{V} , entonces $\mathbf{V} = \mathbf{V}_+ \oplus \mathbf{V}_-$.

MAT210 UTFSM

Demostración. Probamos primero que V_+ es subespacio. Sean $v_1, v_2 \in V_+, \alpha \in K$. Luego

$$T(\alpha \mathbf{v}_1 + \mathbf{v}_2) = \alpha T(\mathbf{v}_1) + T(\mathbf{v}_2) = \alpha \mathbf{v}_1 + \mathbf{v}_2 \Rightarrow \alpha \mathbf{v}_1 + \mathbf{v}_2 \in \mathbf{V}_+$$

de donde se concluye. El caso de V_{-} es análogo.

Suponemos ahora que $T^2 = id$. Claramente $\mathbf{V}_+ \cap \mathbf{V}_- = \{0\}$ pues

$$T(\mathbf{v}) = \mathbf{v} = -\mathbf{v} \Rightarrow 2\mathbf{v} = \mathbf{0} \Rightarrow \mathbf{v} = \mathbf{0}$$

Basta entonces con probar que $V_+ + V_- = V$. Consideramos entonces $v \in V$ y descomponemos como sigue

$$\mathbf{v} = \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{v} + \frac{1}{2}T(\mathbf{v}) - \frac{1}{2}T(\mathbf{v}) = \frac{1}{2}(\mathbf{v} + T(\mathbf{v})) + \frac{1}{2}(\mathbf{v} - T(\mathbf{v}))$$

Notamos ahora que

$$T\left(\frac{1}{2}(\mathbf{v}+T(\mathbf{v}))\right) = \frac{1}{2}(T(\mathbf{v}) + \underbrace{T(T(\mathbf{v}))}_{=\mathbf{v}}) = \frac{1}{2}(T(\mathbf{v}) + \mathbf{v}) \Rightarrow \frac{1}{2}(\mathbf{v}+T(\mathbf{v})) \in \mathbf{V}_{+}$$

$$T\left(\frac{1}{2}(\mathbf{v}-T(\mathbf{v}))\right) = \frac{1}{2}(T(\mathbf{v}) - \underbrace{T(T(\mathbf{v}))}_{=\mathbf{v}}) = -\frac{1}{2}(\mathbf{v}-T(\mathbf{v})) \Rightarrow \frac{1}{2}(\mathbf{v}-T(\mathbf{v})) \in \mathbf{V}_{-}$$

Concluimos entonces que $V_+ \oplus V_- = V$.

Problema 4. Sean \mathbf{U}, \mathbf{V} espacios vectoriales sobre un cuerpo K con $\dim(\mathbf{U}) = m$ y $\dim(\mathbf{V}) = n$. Sobre el producto cartesiano de conjuntos $\mathbf{U} \times \mathbf{V}$ se definen las siguientes operaciones:

$$(\mathbf{u}_1, \mathbf{v}_1) + (\mathbf{u}_2, \mathbf{v}_2) = (\mathbf{u}_1 + \mathbf{u}_2, \mathbf{v}_1 + \mathbf{v}_2), \quad \alpha(u, v) = (\alpha u, \alpha v), \quad \forall \mathbf{u}_1, \mathbf{u}_2 \in \mathbf{U}, \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}, \alpha \in K$$

en donde las sumas y productos correspondientes a las de los espacios respectivos. El producto $\mathbf{U} \times \mathbf{V}$ junto con las operaciones definidas posee entonces estructura de espacio vectorial sobre K. Con respecto a este espacio pruebe lo siguiente:

- 1. Verifique que $\{\mathbf{0}_U\} \times \mathbf{V}$ es subespacio vectorial de $\mathbf{U} \times \mathbf{V}$.
- 2. Demuestre que $\dim(\mathbf{U} \times \mathbf{V}) = \dim(\mathbf{U}) + \dim(\mathbf{V})$.
- 3. Considere $T: \mathbf{U} \to \mathbf{V}$ función. Se define el **grafo** de T como el conjunto

$$G = \{(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V} : T(\mathbf{u}) = \mathbf{v}\} \subseteq \mathbf{U} \times \mathbf{V}$$

Demuestre que T es una aplicación lineal si y solo si G es subespacio vectorial de $\mathbf{U} \times \mathbf{V}$.

4. Sea $T: \mathbf{U} \to \mathbf{V}$ aplicación lineal. Demuestre que $\mathbf{U} \times \mathbf{V} = G \oplus (\{0\} \times \mathbf{V})$.

Demostración.

1. Sean $(\mathbf{0}, \mathbf{v}_1), (\mathbf{0}, \mathbf{v}_2) \in {\mathbf{0}} \times \mathbf{V}, \lambda \in K$. Luego notamos que

$$\lambda(\mathbf{0}, \mathbf{v}_1) + (\mathbf{0}, \mathbf{v}_2) = (\mathbf{0}, \lambda \mathbf{v}_1) + (\mathbf{0}, \mathbf{v}_2) = (\mathbf{0}, \lambda \mathbf{v}_1 + \mathbf{v}_2) \in \{0\} \times \mathbf{V}$$

2. Sean $\mathcal{B}_1\{\mathbf{u}_1,\dots,\mathbf{u}_m\}$ y $\mathcal{B}_2\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ bases de U y V respectivamente. Se probará que el conjunto

$$\mathscr{B} = \{ (\mathbf{u}_1, \mathbf{0}_V), \dots, (\mathbf{u}_m, \mathbf{0}_V), (\mathbf{0}_U, \mathbf{v}_1), \dots, (\mathbf{0}_U, \mathbf{v}_n) \}$$

$$\tag{1}$$

En primer lugar vemos al independencia lineal. Consideramos

$$\alpha_1(\mathbf{u}_1, \mathbf{0}_V) + \ldots + \alpha_m(\mathbf{u}_m, \mathbf{0}_V) + \beta_1(\mathbf{0}_U, \mathbf{v}_1) + \ldots + \beta_n(\mathbf{0}_U, \mathbf{v}_n) = (\mathbf{0}_U, \mathbf{0}_V)$$

MAT210 UTFSM

Notemos entonces que

$$\alpha_{1}(\mathbf{u}_{1}, \mathbf{0}_{V}) + \ldots + \alpha_{m}(\mathbf{u}_{m}, \mathbf{0}_{V}) + \beta_{1}(\mathbf{0}_{U}, \mathbf{v}_{1}) + \ldots + \beta_{n}(\mathbf{0}_{U}, \mathbf{v}_{n}) =$$

$$= (\alpha_{1}\mathbf{u}_{1}, \mathbf{0}_{V}) + \ldots + (\alpha_{m}\mathbf{u}_{m}, \mathbf{0}_{V}) + (\mathbf{0}_{U}, \beta_{1}\mathbf{v}_{1}) + \ldots + (\mathbf{0}_{U}, \beta_{n}\mathbf{v}_{n}) =$$

$$= (\alpha_{1}\mathbf{u}_{1} + \ldots + \alpha_{m}\mathbf{u}_{m}, \beta_{1}\mathbf{v}_{1} + \ldots + \beta_{n}\mathbf{v}_{n}) = (\mathbf{0}_{U}, \mathbf{0}_{V})$$

Por la independencia lineal de $\mathscr{B}_1, \mathscr{B}_2$ se deduce que todos los escalares son nulos. Sea $(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V}$. Luego, como $\mathscr{B}_1, \mathscr{B}_2$ son bases existen $\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n \in K$ tales que

$$(\mathbf{u}, \mathbf{v}) = (\alpha_1 \mathbf{u}_1 + \ldots + \alpha_m \mathbf{u}_m, \beta_1 \mathbf{v}_1 + \ldots + \beta_n \mathbf{v}_n)$$

$$= (\alpha_1 \mathbf{u}_1 + \ldots + \alpha_m \mathbf{u}_m, \mathbf{0}_V) + (\mathbf{0}_U, \beta_1 \mathbf{v}_1 + \ldots + \beta_n \mathbf{v}_n)$$

$$= \alpha_1(\mathbf{u}_1, \mathbf{0}_V) + \ldots + \alpha_m(\mathbf{u}_m, \mathbf{0}_V) + \beta_1(\mathbf{0}_U, \mathbf{v}_1) + \ldots + \beta_n(\mathbf{0}_U, \mathbf{v}_n)$$

Concluimos así que \mathscr{B} es base de $\mathbf{U} \times \mathbf{V}$ y por lo tanto $\dim(\mathbf{U} \times \mathbf{V}) = m + n$.

3. (\Rightarrow) Suponemos en primer lugar que T es lineal. Sean $(\mathbf{u}_1, \mathbf{v}_1), (\mathbf{u}_2, \mathbf{v}_2) \in G, \lambda \in K$. Por definición $T(\mathbf{u}_1) = \mathbf{v}_1$ y $T(\mathbf{u}_2) = \mathbf{v}_2$ y luego vemos que

$$\lambda(\mathbf{u}_1, \mathbf{v}_1) + (\mathbf{u}_2, \mathbf{v}_2) = (\lambda \mathbf{u}_1, \lambda T(\mathbf{u}_1)) + (\mathbf{u}_2, T(\mathbf{u}_2)) = (\lambda \mathbf{u}_1 + \mathbf{u}_2, T(\lambda \mathbf{u}_1 + \mathbf{u}_2)) \in G$$

Por lo tanto G es subespacio.

 (\Leftarrow) Suponemos ahora que G es subespacio. Esto significa que para todos $\mathbf{u}_1, \mathbf{u}_2 \in \mathbf{U}, \lambda \in K$ se tiene que

$$\lambda(\mathbf{u}_1, T(\mathbf{u}_1)) + (\mathbf{u}_2, T(\mathbf{u}_2)) = (\lambda \mathbf{u}_1 + \mathbf{u}_2, \lambda T(\mathbf{u}_1) + T(\mathbf{u}_2)) \in G$$

Por definición del grafo entonces se tiene que $T(\lambda \mathbf{u}_1 + \mathbf{u}_2) = \lambda T(\mathbf{u}_1) + T(\mathbf{u}_2)$.

4. Notemos que todo vector $(\mathbf{u}, \mathbf{v}) \in \mathbf{U} \times \mathbf{V}$ puede ser escrito como

$$(\mathbf{u}, \mathbf{v}) = (\mathbf{u}, T(\mathbf{u})) + (\mathbf{0}_U, \mathbf{v} - T(\mathbf{u}))$$

donde $(\mathbf{u}, T(\mathbf{u})) \in G, (\mathbf{0}_U, \mathbf{v} - T(\mathbf{u})) \in \{\mathbf{0}_U\} \times \mathbf{V}$. Resta entonces ver que $G \cap \{0\} \times \mathbf{V}$, y esto es claro del hecho que $T(\mathbf{0}_U) = \mathbf{0}_V$ por linealidad.