

·목차

- [1] 타원곡선
- [2] 타원곡선 암호
- [3] 아이소제니 기반 암호 개요

타원곡선

- 1) 타원곡선 정의
- 2) 타원곡선 연산

Elliptic Curve over K

- Smooth projective curve of genus 1 with a distinguished point
- 모든 타원곡선은 다음과 같은 형태로 나타낼 수 있음

$$y^2 = x^3 + Ax + B$$

$$y^2 = x^3 + 4x + 20$$
 over F(191)

Forms of elliptic curve

Weierstrass curve

$$E: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Short Weierstrass curve

$$E: y^2 = x^3 + Ax + B$$

Montgomery curve

$$E: By^2 = x^3 + Ax^2 + x$$

(twisted) Edwards curves

$$E: ax^2 + y^2 = 1 + dx^2y^2$$

Operations on Elliptic curves

Point addition

$$E/K: y^2=x^3+Ax+B$$
 , $char(K) \neq 2,3$
Let $P=(x_1,y_1), Q=(x_2,y_2) \in E$
If $P\neq -Q=(x_2,-y_2)$ then

$$P + Q = (\lambda^2 - x_1 - x_2, \lambda(x_1 - x_3) - y_1) \text{ with } \lambda = \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & \text{if } P \neq Q \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P = Q \end{cases}$$

Operations on Elliptic curves

• Point addition $(P \neq Q)$

Operations on Elliptic curves

• Point addition $(P \neq Q)$

Operations on Elliptic curves

• Point addition $(P \neq Q)$

Operations on Elliptic curves

• Point doubling (P = Q)

Operations on Elliptic curves

• Point doubling (P = Q)

Operations on Elliptic curves

• Point doubling (P = Q)

Elliptic curve group

Theorem (Poincare)

Let K be a field and suppose that an elliptic curve E is given by the equation of the form

$$E: y^2 = x^3 + Ax + B$$

Let E(K) denote the set of points of E with coordinates in K

$$E(K) = \{(x, y) \in E\} \mid x, y \in K\} \cup \{0\}$$

Then E(K) is a **subgroup** of the group of all points of E

Cyclic subgroups

- Let E be an elliptic curve defined over a field K
- Let $P \in E$ be a point on E with order n ([n]P = O)
- Then $\langle P \rangle$ is a cyclic subgroup of E of order n

Hasse's Bound

•주어진 타원 곡선 $E \mod p$ 에 대해서, $E \mod \infty$ 제하는 점의 개수는 다음과 같이 제한된다

$$p+1-2\sqrt{p} \leq \#E \leq p+1+2\sqrt{p}$$

Discrete Logarithm Problem for Elliptic Curves

• 주어진 타원 곡선 E 와 타원곡선위의 점 P,Q 가 주어졌을 때, ECDLP는 다음을 만족하는 정수 d 를 찾는 것이다

$$P + P + \cdots + P = dP = Q$$
d times

• 암호 시스템에서 d는 개인키, Q는 공개키로 여겨 사용한 다

스 타원곡선 암호

Introduction to elliptic curve cryptography

- 1980년대 중반 Miller와 Koblitz가 각각 독립적으로 타원 곡선을 암호에 적용
- 2000년도에 FIPS 186-2 에 ECC가 표준으로 채택
- 초반에는 RSA 암호보다 느렸으나 점차 속도가 향상
- ECDLP의 어려움에 기반

Elliptic Curve Diffie-Hellman (EC오)

- Parameter
 - Large prime power q
 - Elliptic curve E_{F_q}
 - $P \in E(F_q)$ with large prime order n

Elliptic Curve Diffie-Hellman (ECDH)

Protocol

PKC and attack complexity

	Proposed	Security base	Complexity
RSA	1978	Hardness of factoring large integer	Sub-exponential (GNFS)
DSA	1977 (DH) 1985 (ElGamal) 1991 (DSA)	Hardness of solving discrete logarithm problem over finite field (DLP)	Sub-exponential (GNFS)
ECC	1985	Hardness of solving elliptic curve discrete logarithm problem over finite field (ECDLP)	Exponential (Summation Polynomial)

Recommended key sizes for a target security level

Security Level	Symmetric Key	FFC	IFC	ECC
112	3TDEA	L=2048 N=224	K=2048	F=224~255
128	AES-128	L=3072 N=256	K=3072	F=256~383
192	AES-192	L=7680 N=384	K=7680	F=384~511
256	AES-256	L=153600 N=512	K=15360	F=512+

Introduction to Isogeny-based Cryptography

Introduction to Isogeny-based Cryptography

Standard elliptic curve cryptography

Introduction to Isogeny-based Cryptography

Isogeny-based cryptography

