CSE 575 Statistical Machine Learning

Lecture 2 YooJung Choi Fall 2022

Announcements

- Additional references for prerequisites
- Slack workspace—through Canvas

Example: Hand-written digits

- 28x28 pixel images (784-dim vector)
- Each image corresponds to a digit

Basic terminology

- Training set $\{x_1, x_2, ..., x_N\}$ of N digits
- Each associated with a target vector t (identity of the digit)
- Training (learning) phase: determining a function y(x) that generates an output vector for a digit image x
- An instance of supervised learning
- "How well can the trained model categorize new images (i.e. test set)?"

Equivalently... "how well does it generalize?"

Example: Polynomial curve fitting

- Training set of 10 points
- Can we learn the green function that maps x to t?
- Another example of supervised learning (regression)

Example: Polynomial curve fitting

Use a polynomial to approximate:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Example: Polynomial curve fitting

- How to determine the weights w?
- Sum-of-squares error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- Minimize E(w) to determine the optimal parameters
- How to minimize E(w)? "E(w) is convex quadratic"

0th-order polynomial

1st-order polynomial

3rd-order polynomial

9th-order polynomial

Overfitting

Root-mean-square error: $E_{RMS} = \sqrt{2E(\mathbf{w}^*)/N}$

Learned polynomial coefficients

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Increasing the size of datasets

Increasing the size of datasets

Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

• What is the best value of λ ?

Regularization

Regularization

Polynomial coefficients

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

RMSE vs. λ

