PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

Temporada Académica de Verano 2020 Profesor: Luis Zegarra (lzegarra@uc.cl) Ayudante: Odette Ríos (ovrios@uc.cl)

Calculo II - MAT1620

Ayudantia 6

Ejercicio 1

Determinar la ecuación del plano tangente en los puntos dados:

a)
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

b)
$$z = xe^{xy}, (2,0,2)$$

Ejercicio 2

Suponga que f es una función derivable en x e y y que $g(u, v) = f(e^u + \sin(v), e^u + \cos(v))$. Mediante la tabla de valores calcule $g_v(0,0)$ y $g_u(0,0)$.

	f	g	f_x	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5

Ejercicio 3

a) Considere la función u = f(x, y), donde $x = e^s \cos t$ y $y = e^s \sin t$, demuestre que:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = e^{-2s} \left[\frac{\partial^2 u}{\partial s^2} + \frac{\partial^2 u}{\partial t^2} \right]$$

b) Si u=u(x,y,t) tiene derivadas de segundo orden continuas y $x=\alpha^2\beta,\,y=\beta^2\gamma$ y $t=\gamma^2\alpha$. Calcular $\frac{\partial^2 u}{\partial \alpha^2}$

Ejercicio 4

Encontrar $\frac{dy}{dx}$

a)
$$\cos xy = 1 + \sin y$$

$$b) y\cos x = x^2 + y^2$$

Ejercicio 5

Calcule la aproximación lineal de la función $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ en (3,2,6) y con ella aproxime el número $\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}$.

Cálculo II - MAT1620 Ayudantia 2

Ejercicio 6

Determine la derivada direccional de f en el punto dado en la dirección que indica el ángulo θ :

a)
$$f(x,y) = e^x \cos y, (0,0), \theta = \pi/4$$

b)
$$g(r,s) = \tan^{-1} rs, (1,2), \vec{v} = 5\hat{i} + 10\hat{j}$$

c)
$$f(x, y, z) = \sqrt{xyz}, (3, 2, 6), \vec{v} = (-1, -2, 2)$$