Insper

Teste de Hipóteses para Comparação de Duas Médias Populacionais

Objetivo

Construir um teste de hipóteses para a comparação entre duas médias populacionais quando há independência entre as subpopulações (grupos).

Ao final desta aula, você será capaz de:

- ✓ Definir as hipóteses em termos do problema e em termos das médias provenientes de subpopulações (grupos) independentes;
- ✓ Escrever a estatística de teste sob H₀, quando essa considera que as variâncias populacionais são conhecidas;
- ✓ Estender a metodologia para uma estatística de teste adequada no caso em que as variâncias populacionais são desconhecidas;
- ✓ Identificar o uso de cada estatística de teste adequada em cada problema real.

Baseado na PI de 2014/2º. semestre

Alunos das duas turmas de um curso de Gastronomia fizeram o mesmo exame final da disciplina Cortes de Carne II, cuja nota varia de 0 a 100. Admita que uma amostra aleatória de tamanho 25 foi selecionada na turma A e uma outra amostra aleatória de tamanho 16 foi selecionada na turma B. A amostra da turma A teve nota média amostral (\bar{x}_A) de 72. Já a amostra da turma B, obteve uma nota média amostral (\bar{x}_B) de 79.

- Ainda, é assumido que as notas do exame final da turma A têm média μ_A desconhecida e variância populacional conhecida igual a 19 ($\sigma_A^2 = 19$). Finalmente, também é assumido que as notas do exame final da turma B têm média μ_B também desconhecida e variância populacional $\sigma_B^2 = 21$.
- Existe uma desconfiança de que o desempenho médio no exame final da disciplina de Cortes de Carne II não foi o mesmo nas duas turmas.
- Com um teste de hipóteses adequado, com 10% de nível de significância, o que pode ser dito sobre a desconfiança levantada: procede ou não procede?

Hipóteses

Do exposto, para o Exercício da PI, a hipótese de interesse será

H₀: desconfiança levantada não procede
H_A: desconfiança levantada procede

em que

 μ_A – é o verdadeiro desempenho médio no exame final da disciplina de Cortes de Carne II da turma A;

μ_B – é o verdadeiro desempenho médio no exame final da disciplina de Cortes de Carne II da turma B.

Buscando uma Estatística de Teste

$$H_0: \mu_A = \mu_B \Leftrightarrow \frac{\mu_A}{\mu_B} = 1?$$
 ou $\mu_A - \mu_B = 0$?

A idéia, aqui, é comparar os parâmetros em termos de sua diferença $\mu_A - \mu_B$ (Pq???).

Perguntas:

- Qual a estatística de teste?
- Qual a distribuição de probabilidades da estatística de teste?

Comparação entre 2 Médias Populacionais

<u>Caso 1</u> (com variâncias conhecidas) Temos duas amostras aleatórias, cada uma retirada da respectiva subpopulação (grupo A e grupo B) de interesse

e

$$X_{B,1}, ..., X_{B,n_B},$$

em que

$$X_A \rightarrow E(X_A) = \mu_A e Var(X_A) = \sigma_A^2;$$

$$X_B \rightarrow E(X_B) = \mu_B e Var(X_B) = \sigma_B^2; e$$

 σ_A^2 e σ_B^2 , que são as variâncias populacionais e são conhecidas.

[Neste caso, a distribuição da estatística de teste pode ou não ter distribuição normal exata!]

Caso 1: (variâncias populacionais conhecidas)

$$H_0$$
: $\mu_A - \mu_B = \delta_0$

(caso particular: H_0 : $\mu_A = \mu_B \rightarrow H_0$: $\mu_A - \mu_B = 0$)

Sob H₀:

$$Z = \frac{(\overline{X}_A - \overline{X}_B) - \delta_0}{\sqrt{\frac{\sigma_A^2 + \sigma_B^2}{n_A + n_B}}} \sim N(0;1)$$

9

PI de 2014/2º. – Variâncias populacionais desconhecidas

Alunos das duas turmas de um curso de Gastronomia fizeram o mesmo exame final da disciplina Cortes de Carne II, cuja nota varia de 0 a 100. Admita que uma amostra aleatória de tamanho 25 foi selecionada na turma A e uma outra amostra aleatória de tamanho 16 foi selecionada na turma B. A amostra da turma A teve nota média amostral (\bar{x}_A) de 72 e variância amostral (s_A^2) de 16. Já a amostra da turma B, teve nota média amostral (\bar{x}_B) de 79 e variância amostral (s_B^2) de 25.

Ainda, é assumido que as notas do exame final da turma A têm distribuição normal com média μ_A e variância σ_A^2 . Finalmente, também é assumido que as notas do exame final da turma B têm uma distribuição normal com média μ_B e variância σ_B^2 .

Existe uma desconfiança de que o desempenho médio no exame final da disciplina de Cortes de Carne II não foi o mesmo nas duas turmas.

Com um teste de hipóteses adequado, com 10% de nível de significância, o que pode ser dito sobre a desconfiança levantada: procede ou não procede

Comparação entre 2 Médias Populacionais

Caso 2
(com variâncias desconhecidas e diferentes)

Temos duas amostras aleatórias, cada uma retirada da respectiva subpopulação (grupo A e grupo B) de interesse

$$X_{A,1}, ..., X_{A,n_A}$$

e

$$X_{B,1}, ..., X_{B,n_B},$$

em que

$$X_A \sim N(\mu_A, \sigma_A^2);$$

$$X_{B} \sim N(\mu_{B}, \sigma_{B}^{2}); e$$

 σ_A^2 e σ_B^2 , que são as variâncias populacionais e são desconhecidas e diferentes.

Neste caso, σ_A^2 e σ_B^2 devem ser estimadas pelos seus respectivos estimadores. ,

Caso 2: (variâncias desconhecidas e desiguais)

$$H_0$$
: $\mu_A - \mu_B = \delta_0$

(caso particular: H_0 : $\mu_A = \mu_B \rightarrow H_0$: $\mu_A - \mu_B = 0$)

Sob H₀:

$$t = \frac{\left(\overline{X}_{A} - \overline{X}_{B}\right) - \delta_{0}}{\sqrt{\frac{S_{A}^{2} + S_{B}^{2}}{n_{A}}}} \sim t_{k} \text{, sendo } k = \frac{\left[\frac{S_{A}^{2} + S_{B}^{2}}{n_{A}}\right]^{2}}{\left(\frac{S_{A}^{2}}{n_{A}}\right)^{2} + \left(\frac{S_{B}^{2}}{n_{B}}\right)^{2}}}{\frac{\left(n_{A} - 1\right)}{n_{A}} + \frac{\left(n_{B} - 1\right)}{n_{B}}}$$

Comparação entre 2 Médias Populacionais

Caso 3

(com variâncias desconhecidas e iguais)

Temos duas amostras aleatórias, cada uma retirada da respectiva subpopulação de interesse

e

$$X_{B,1}, ..., X_{B,n_B},$$

em que

$$X_A \sim N(\mu_A, \sigma_A^2);$$

$$X_B \sim N(\mu_B, \sigma_B^2)$$
; e

 σ_A^2 e σ_B^2 , que são as variâncias populacionais e são desconhecidas e iguais.

Neste caso, essa única variância ($\sigma^2 = \sigma_A^2 = \sigma_B^2$) deve ser estimada por um único estimador.

Caso 3: (variâncias desconhecidas e iguais)

$$H_0$$
: $\mu_A - \mu_B = \delta_0$

(caso particular: H_0 : $\mu_A = \mu_B \rightarrow H_0$: $\mu_A - \mu_B = 0$)

Sob H₀:

$$t = \frac{\left(\overline{X}_A - \overline{X}_B\right) - \delta_0}{\sqrt{S^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} \sim t_{n_A + n_B - 2} ,$$

sendo
$$S^2 = \frac{(n_A-1) S_A^2 + (n_B-1) S_B^2}{n_A + n_B - 2}$$

Exemplo 1

Uma empresa decidirá onde instalar sua próxima filial. Existem duas cidades que satisfazem aos critérios técnicos necessários. Decidiu-se, então, instalar a filial no município que apresentasse a maior renda familiar per capita (em salários mínimos). O quadro abaixo traz os resultados de uma pesquisa amostral envolvendo esses municípios.

Município	Tamanho amostral	Renda familiar per capita média	Desvio-padrão amostral
А	35	4,26	4,21
В	27	3,59	3,27

Baseando-se nestes dados, é possível tomar alguma decisão com 95% de confiança? Justifique sua resposta,

Comparação de variâncias

$$H_0: \sigma_A^2 = \sigma_B^2 \Leftrightarrow \frac{\sigma_A^2}{\sigma_B^2} = 1$$

$$H_A: \sigma_A^2 \neq \sigma_B^2$$

Sob H₀:

$$F_{obs} = \left(\frac{4,21}{3,27}\right)^2 = 1,657$$

$$RC = [0; F_{crit_1}[\cup]F_{crit_2}; +\infty[$$

$$F_{crit_1} = stats.f.ppf(0.025,34,26) = 0,487$$

$$F_{crit_2} = stats.f.ppf(0.975,34,26) = 2,126$$

- \Rightarrow Não rejeita H_0 pois $F_{obs} \notin RC$
- ⇒ Deve ser considerada que as variâncias são desconhecidas e iguais

Exemplo 1 (cont.) – Resolução via RC

Comparação entre as Médias Populacionais (Caso 3)

$$H_0: \mu_A = \mu_B \iff \mu_A - \mu_B = 0$$

$$H_A: \mu_A \neq \mu_B$$

$$S^{2} = \frac{(35-1)\cdot(4,21)^{2} + (27-1)\cdot(3,27)^{2}}{35+27-2} = 14,677$$

Sob H₀:

$$t_{obs} = \frac{(4,26-3,59)-0}{\sqrt{14,677\left(\frac{1}{35} + \frac{1}{27}\right)}} = 0,683$$

$$RC =]-\infty; -t_{crit}[\cup]t_{crit}; +\infty[t_{crit} = stats.t.ppf(0.975,60) = 2,000297]$$

Exemplo 1 (cont.) – Resolução via valor-p

Comparação entre as Médias Populacionais (Caso 3)

$$H_0: \mu_A = \mu_B \Leftrightarrow \mu_A - \mu_B = 0$$

$$H_A: \mu_A \neq \mu_B$$

Sob H₀:

$$t_{obs} = \frac{(4,26-3,59)-0}{\sqrt{14,677\left(\frac{1}{35} + \frac{1}{27}\right)}} = 0,683$$

$$valor - p = 2 \cdot P(t_{60} > 0.683) = 2 * stats.t.cdf(-0.683,60) = 0.497$$

 \Rightarrow Não rejeita H_0 , pois $valor - p > \alpha$

Observação

Quando temos os dados brutos, como será o caso dos próximos exemplos, o *software* Excel pode ser utilizado para a geração dos resultados úteis que o auxiliarão na resolução do problema.

Exemplo 2

Um armazém de cargas aéreas está estudando o peso das cargas que chegam em seu terminal no interior de São Paulo. Usualmente, o terminal recebe dois tipos de cargas: doméstica (D) e administrativa (A). Ao longo de um mês foram coletadas, aleatoriamente, cargas e seus pesos foram aferidos, fornecendo os dados a seguir (em Kg):

Tipo de Carga					
(D)oméstica	(A)dministrativa				
24,9	27,9				
20,3	28,1				
26,4	28,3				
21,3	26,3				
20,3	25,3				
20,6	28,5				
23,8	27,9				

Um responsável pelo armazém desconfia que há diferenças entre os pesos médios dos dois tipos de cargas. Sendo assim, formule as hipóteses estatísticas do teste, adote um nível de significância de 10% e gere as respectivas conclusões.

Análise Descritiva

	Grupo			
	(A)	(D)		
n	7	7		
Mínimo	25,30	20,30		
1º Quartil	27,10	20,45		
2º Quartil	27,90	21,30		
3º Quartil	28,20	24,35		
Máximo	28,50	26,40		
Amplitude	3,20	6,10		
Intervalo Interquartílico	1,10	3,90		

Comparação de variâncias

$$H_o$$
: $\sigma^2_D = \sigma^2_A$
 H_A : $\sigma^2_D \neq \sigma^2_A$

Teste-F: duas amostras para variâncias

	D	Α
Média	22.51	27.47
Variância	6.23	1.43
Observações	7	7
gl	6	6
F	4.350	

valor-p= $2*0,048=0,096 < 0,10=\alpha$

Há evidências que as variâncias são diferentes com 95% de confiança → Usar Caso 2!

Comparação entre as Médias Populacionais (Caso 2)

 H_0 : desconfiança do responsável pelo armazém não procede H_A : desconfiança do responsável pelo armazém procede

em que

μ_D – é o verdadeiro peso médio das cargas domésticas;

μ_A – é o verdadeiro peso médio das cargas administrativas.

Comparação entre as Médias Populacionais (Caso 2)

$$\rightarrow t_{obs} = -4,738$$

- → valor-p=0,001063
- \rightarrow RC={ $|t_{obs}|>1,833$ }

Exemplo 3

Responsáveis por controlar as bagagens estão desconfiados que o peso da carga doméstica é, em média, mais do que 10% mais leve do que o peso médio da carga administrativa.

Formule as novas hipóteses estatísticas do teste, Adote um nível de significância de 10% e gere as respectivas conclusões.

Tipo de Carga					
(D)oméstica	(A)dministrativa				
24,9	27,9				
20,3	28,1				
26,4	28,3				
21,3	26,3				
20,3	25,3				
20,6	28,5				
23,8	27,9				

Comparação de variâncias

Como os valores das observações mudaram, portanto, é necessário refazer o teste de hipóteses para as variâncias.

A não ser que observe pelo resultado do <u>slide 26</u> que a variável 90% da carga administrativa terá uma variância menor ainda. Assim, mais diferentes serão as variâncias.

Veja teste abaixo para confirmar.

 $valor-p=2*0,030=0,060 < 0,10=\alpha$

Comparação entre as Médias Populacionais (Caso 2)

H₀: desconfiança dos responsáveis por controlar as bagagens

não procede

H_A: desconfiança dos responsáveis por controlar as bagagens procede

em que

μ_D – é o verdadeiro peso médio das cargas domésticas;

μ_Δ – é o verdadeiro peso médio das cargas administrativas.

Comparação entre as Médias Populacionais (Caso 2)

$$\rightarrow$$
 t_{obs}=-2,151

→
$$RC = \{t_{obs} < -1,397\}$$

Exercício

Exercício 1

Para estudar a influência da opção profissional no salário inicial de recém-formados, investigaram-se dois grupos de profissionais: um de jornalistas e outro de formados em Administração de Empresas. O pesquisador responsável pelo estudo acredita que os salários dos administradores são, em média, mais de um salário mínimo maior e têm menor variabilidade que o salário dos jornalistas. Com os resultados abaixo, expressos em salários mínimos, a um nível de significância de 1%, há evidências de que o pesquisador tem razão?

Jornalistas	5,6	6,4	6,9	13,1	2,2	7,8	4,5	6,1	
Administradores	8,1	9,8	8,7	10,8	10,2	8,2	8,7	10,1	9,7

Exercício 2

Qual o número de filhos que as pessoas desejam ter?

Gênero	Média Amostral	Desvio Padrão		
Cenero	Wicaia / Wilostiai	Populacional		
Mulheres (<i>n</i> =150)	2,75	0,96		
Homens (n=120)	2,45	1,09		

Deixando bem claro todo desenvolvimento do teste de hipóteses, verifique se, em média, as mulheres desejam ter um número de filhos maior do que os homens.

Considere um nível de significância de 5%.

7
g
=
<u>E</u>
ec
<u>1</u>
<u>e</u> :
orim
e
ıteira
<u>.</u>
Parte

				Segun	da dec	imal d	e 7			
	O	1	2	3eguii	4	5 5	6	7	8	9
0.0		0.5040		0.5120					0.5319	0.5359
0.1	0.5398	0.5438	0.5478				0.5636		0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910				0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293		0.6368		0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628			0.6736		0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054			0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389		0.7454		0.7517	0.7549
0.7	0.7580	0.7611	0.7642		0.7704			0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023		0.8078		0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531		0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708		0.8749		0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944		0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946		0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960		0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978		0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984		0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992		0.9992		0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994					0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Insper

Teste de Hipóteses
para Comparação de
Duas Variâncias
Populacionais

Leitura Complementar

Uma v.a. contínua Y que assume valores não-negativos tem uma distribuição F de Fisher-Snedecor com k_1 e k_2 graus de liberdade.

Denota-se: $Y \sim F(k_1; k_2)$

Neste caso, a esperança e a variância da variável aleatória é dada, respectivamente, por

E(Y) =
$$\frac{k_2}{k_2 - 2}$$
 $Var(Y) = \frac{2k_2^2(k_1 + k_2 - 2)}{k_1(k_2 - 2)^2(k_2 - 4)}$

Insper

Teorema – Sejam U e V duas variáveis aleatórias independentes, cada uma com distribuição qui-quadrado, com k_1 e k_2 graus de liberdade, respectivamente, ou seja, $U{\sim}\chi^2_{(k_1)}$

e $V \sim \chi^2_{(k_2)}$. Então a v.a.:

$$\mathbf{F} = \frac{U/k_1}{V/k_2} \sim F_{(k_1;k_2)},$$

ou seja, segue uma distribuição F com parâmetros k_1 e k_2 graus de liberdade.

Construção da Estatística de Teste

Na primeira população a variável de interesse tem média μ_1 e desvio padrão σ_1 ; já na segunda, a média é igual a μ_2 e o desvio padrão é igual a σ_2 .

As suposições:

- (i) as amostras das duas populações são independentes;
- (ii) as duas populações são finitas grandes ou infinitas.
- (iii) ambas as amostras são coletadas ao acaso;
- (iv) cada amostra é proveniente de uma população cuja variável de interesse é normalmente distribuída.

Construção da Estatística de Testel

Já vimos que, sob certas suposições,

$$U = \frac{(n_1 - 1) S_1^2}{\sigma_1^2} \sim \chi_{(n_1 - 1)}^2$$

De maneira análoga,

$$V = \frac{(n_2 - 1) S_2^2}{\sigma_2^2} \sim \chi_{(n_2 - 1)}^2$$

Finalmente, se U e V forem v.a.'s independentes, então

$$\frac{\frac{U}{n_1 - 1}}{\frac{V}{n_2 - 1}} = F \sim F(n_1 - 1, n_2 - 1)$$

Construção da Estatística de Teste

Todavia, a v.a. *F*, anteriormente definida, não pode ser considerada uma estatística, uma vez que as variâncias populacionais não são conhecidas.

Por outro lado, se

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (= σ^2)

for verdadeira, então

$$F_{obs} = \frac{S_1^2}{S_2^2} \sim F(n_1 - 1; n_2 - 1)$$

Região Crítica

Levando-se em conta a formulação da hipótese alternativa, teremos evidências para rejeitarmos H_0 se $0 < F_{obs} < f_1$

Teste unicaudal à esquerda

Insper

Região Crítica

Levando-se em conta a formulação da hipótese alternativa, teremos evidências para rejeitarmos H_0 se $F_{obs} > f_2$

Teste unicaudal à direita

Região Crítica

Levando-se em conta a formulação da hipótese alternativa, teremos evidências para rejeitarmos H₀ se

Teste bicaudal

Insper

Exemplo 1

O pesquisador Juca Bird acredita que, embora a desigualdade salarial esteja caindo, ela ainda é alta e varia de acordo com o município brasileiro.

Particularmente, Juca Bird acredita que a desigualdade salarial não é a mesma entre sua cidade natal, Presidente Prudente, e sua cidade atual, Americana.

Assim, ele coletou uma amostra aleatória de 11 trabalhadores de Presidente Prudente e 31 de Americana, obtendo a seguinte tabela de valores amostrais (valores em Reais):

Cidade	Média	Desvio padrão
Presidente Prudente	2297,29	2721,07
Americana	1995,86	1843,50

Exemplo 1

Será que existem evidências estatísticas, a 10% de significância, para afirmar que desigualdade salarial não é a mesma nos 2 municípios analisados?

Utilize alguma técnica inferencial adequada para auxiliar a sua análise.

Exemplo 1

$$H_0: \sigma_{PP}^2 = \sigma_A^2 \Leftrightarrow \frac{\sigma_{PP}^2}{\sigma_A^2} = 1?$$
 ou $\sigma_{PP}^2 - \sigma_A^2 = 0?$

$$H_A: \sigma_{PP}^2 \neq \sigma_A^2$$

Perguntas:

- Qual a estatística de teste?
- Qual a distribuição de probabilidades da estatística de teste, se a hipótese nula for verdadeira?

Resolução (via RC)

$$H_0: \sigma_{PP}^2 = \sigma_A^2 \Leftrightarrow \frac{\sigma_{PP}^2}{\sigma_A^2} = 1$$

$$H_A: \sigma_{PP}^2 \neq \sigma_A^2$$

Neste caso, $RC = \{0 < F_{obs} < f_1\} \cup \{F_{obs} > f_2\}$

Para $\alpha = 10\%$

$$f_1 = F_{(0,95; 10; 30)} = stats.f.ppf(0.05, 10, 30) = 0,370$$

 $f_2 = F_{(0,05; 10; 30)} = stats.f.ppf(0.95, 10, 30) = 2,165$

Assim,
$$RC = \{0 < F_{obs} < 0.370\} \cup \{F_{obs} > 2.165\}$$

Resolução (via RC)

Sob a hipótese nula,

$$F_{obs} = \frac{s_{PP}^2}{s_A^2} = \frac{7.404.209}{3.398.492} = 2,18$$

E como,
$$RC = \{0 < F_{obs} < 0.370\} \cup \{F_{obs} > 2.165\}$$

Verificamos que
$$F_{obs} \in RC \Rightarrow rej. H_0$$

Conclusão: A amostra trouxe evidências para refutarmos a hipótese nula, uma vez que, a 10% de significância, $F_{obs} \in RC$. Assim, Americana e Presidente Prudente apresentam desigualdade salarial diferentes, ao nível de significância de 10%.

Resolução (via valor-p)

$$H_0: \sigma_{PP}^2 = \sigma_A^2 \Leftrightarrow \frac{\sigma_{PP}^2}{\sigma_A^2} = 1$$

$$H_A: \sigma_{PP}^2 \neq \sigma_A^2$$

Sob H₀,

$$valor - p = 2.P(F_{[10; 30]} \ge 2.18) =$$

= $2*(1-stats.f.cdf(2.18, 10, 30)) = 2*(0.0485) = 0.097$

Assim, adotando α = 0,10, podemos notar que

$$valor - p < \alpha \Rightarrow rej. H_0$$

Exercícios

Exercício 1

Uma das maneiras de comparar duas empresas quanto à coerência da política salarial é por meio do desvio padrão de seus salários. A fábrica A diz ser mais coerente na política salarial do que a fábrica B. Para verificar essa afirmação, sorteou-se uma amostra de 10 funcionários não especializados de A, e 15 de B, obtendo-se os desvios padrão $s_A = 1000$ reais e $s_B = 1600$ reais. Com base na aplicação de uma técnica inferencial adequada, qual seria a sua conclusão? Adote um nível de significância de 5%.

Insper

Exercício 2

Uma empresa exportadora de peças deve produzir uma esfera dentro de determinadas especificações. O diâmetro médio das esferas produzidas atualmente está dentro das especificações, no entanto, há um grande prejuízo causado pela produção de peças com diâmetros muito acima ou abaixo do especificado. Para tentar resolver esse problema sugeriu-se a adoção de um novo processo de produção.

Pergunta-se: Como a empresa pode avaliar se o novo processo é eficaz?

Exercício 2 (cont.)

Para escolher entre o novo ou o antigo processo, a empresa resolveu fazer um experimento. Foram produzidas 25 peças com o processo atual. Para essas peças, observou-se uma média dentro das especificações e uma variância de 2,7 cm². Foram produzidas, também, 35 peças com o novo processo. Não se encontrou problemas na média do lote e observou-se uma variância de 1,6 cm². Você recomendaria a adoção do novo processo? Utilize alguma técnica inferencial adequada na sua tomada de decisão. Adote α = 0,10.

Exercício 3

Do Exercício 2, assuma que há um custo alto por adotar o novo processo de produção. Dessa forma, tal processo será adotado apenas se reduzir o desvio padrão dos diâmetros das esferas, comparado ao do processo atual, em mais do que 15%.

Pergunta: Como a empresa pode avaliar se o novo processo é eficaz, sob as novas condições?

Utilize os mesmos dados amostrais e adote $\alpha = 0,10$.

Insper

Valores a 2,5% na cauda a direita

Valores a 2,5%

na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	647,789	799,500	864,163	899,583	921,848	937,111	948,217	956,656	963,285	968,627
2	38,506	39,000	39,165	39,248	39,298	39,331	39,355	39,373	39,387	39,398
3	17,443	16,044	15,439	15,101	14,885	14,735	14,624	14,540	14,473	14,419
4	12,218	10,649	9,979	9,605	9,364	9,197	9,074	8,980	8,905	8,844
5	10,007	8,434	7,764	7,388	7,146	6,978	6,853	6,757	6,681	6,619
6	8,813	7,260	6,599	6,227	5,988	5,820	5,695	5,600	5,523	5,461
7	8,073	6,542	5,890	5,523	5,285	5,119	4,995	4,899	4,823	4,761
8	7,571	6,059	5,416	5,053	4,817	4,652	4,529	4,433	4,357	4,295
9	7,209	5,715	5,078	4,718	4,484	4,320	4,197	4,102	4,026	3,964
10	6,937	5,456	4,826	4,468	4,236	4,072	3,950	3,855	3,779	3,717
20	5,871	4,461	3,859	3,515	3,289	3,128	3,007	2,913	2,837	2,774
30	5,568	4,182	3,589	3,250	3,026	2,867	2,746	2,651	2,575	2,511
40	5,424	4,051	3,463	3,126	2,904	2,744	2,624	2,529	2,452	2,388
50	5,340	3,975	3,390	3,054	2,833	2,674	2,553	2,458	2,381	2,317
60	5,286	3,925	3,343	3,008	2,786	2,627	2,507	2,412	2,334	2,270
70	5,247	3,890	3,309	2,975	2,754	2,595	2,474	2,379	2,302	2,237
80	5,218	3,864	3,284	2,950	2,730	2,571	2,450	2,355	2,277	2,213
90	5,196	3,844	3,265	2,932	2,711	2,552	2,432	2,336	2,259	2,194
100	5,179	3,828	3,250	2,917	2,696	2,537	2,417	2,321	2,244	2,179
110	5,164	3,815	3,237	2,904	2,684	2,525	2,405	2,309	2,232	2,167
120	5,152	3,805	3,227	2,894	2,674	2,515	2,395	2,299	2,222	2,157
130	5,142	3,796	3,218	2,886	2,666	2,507	2,386	2,291	2,213	2,148

Valores a 5% na cauda a direita

Valores a

5,0%

na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	161,448	199,500	215,707	224,583	230,162	233,986	236,768	238,883	240,543	241,882
2	18,513	19,000	19,164	19,247	19,296	19,330	19,353	19,371	19,385	19,396
3	10,128	9,552	9,277	9,117	9,013	8,941	8,887	8,845	8,812	8,786
4	7,709	6,944	6,591	6,388	6,256	6,163	6,094	6,041	5,999	5,964
5	6,608	5,786	5,409	5,192	5,050	4,950	4,876	4,818	4,772	4,735
6	5,987	5,143	4,757	4,534	4,387	4,284	4,207	4,147	4,099	4,060
7	5,591	4,737	4,347	4,120	3,972	3,866	3,787	3,726	3,677	3,637
8	5,318	4,459	4,066	3,838	3,687	3,581	3,500	3,438	3,388	3,347
9	5,117	4,256	3,863	3,633	3,482	3,374	3,293	3,230	3,179	3,137
10	4,965	4,103	3,708	3,478	3,326	3,217	3,135	3,072	3,020	2,978
20	4,351	3,493	3,098	2,866	2,711	2,599	2,514	2,447	2,393	2,348
30	4,171	3,316	2,922	2,690	2,534	2,421	2,334	2,266	2,211	2,165
40	4,085	3,232	2,839	2,606	2,449	2,336	2,249	2,180	2,124	2,077
50	4,034	3,183	2,790	2,557	2,400	2,286	2,199	2,130	2,073	2,026
60	4,001	3,150	2,758	2,525	2,368	2,254	2,167	2,097	2,040	1,993
70	3,978	3,128	2,736	2,503	2,346	2,231	2,143	2,074	2,017	1,969
80	3,960	3,111	2,719	2,486	2,329	2,214	2,126	2,056	1,999	1,951
90	3,947	3,098	2,706	2,473	2,316	2,201	2,113	2,043	1,986	1,938
100	3,936	3,087	2,696	2,463	2,305	2,191	2,103	2,032	1,975	1,927
110	3,927	3,079	2,687	2,454	2,297	2,182	2,094	2,024	1,966	1,918
120	3,920	3,072	2,680	2,447	2,290	2,175	2,087	2,016	1,959	1,910
130	3,914	3,066	2,674	2,441	2,284	2,169	2,081	2,010	1,953	1,904

Valores a 10% na cauda a direita

Valores a 10,0% na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	39,863	49,500	53,593	55,833	57,240	58,204	58,906	59,439	59,858	60,195
2	8,526	9,000	9,162	9,243	9,293	9,326	9,349	9,367	9,381	9,392
3	5,538	5,462	5,391	5,343	5,309	5,285	5,266	5,252	5,240	5,230
4	4,545	4,325	4,191	4,107	4,051	4,010	3,979	3,955	3,936	3,920
5	4,060	3,780	3,619	3,520	3,453	3,405	3,368	3,339	3,316	3,297
6	3,776	3,463	3,289	3,181	3,108	3,055	3,014	2,983	2,958	2,937
7	3,589	3,257	3,074	2,961	2,883	2,827	2,785	2,752	2,725	2,703
8	3,458	3,113	2,924	2,806	2,726	2,668	2,624	2,589	2,561	2,538
9	3,360	3,006	2,813	2,693	2,611	2,551	2,505	2,469	2,440	2,416
10	3,285	2,924	2,728	2,605	2,522	2,461	2,414	2,377	2,347	2,323
20	2,975	2,589	2,380	2,249	2,158	2,091	2,040	1,999	1,965	1,937
30	2,881	2,489	2,276	2,142	2,049	1,980	1,927	1,884	1,849	1,819
40	2,835	2,440	2,226	2,091	1,997	1,927	1,873	1,829	1,793	1,763
50	2,809	2,412	2,197	2,061	1,966	1,895	1,840	1,796	1,760	1,729
60	2,791	2,393	2,177	2,041	1,946	1,875	1,819	1,775	1,738	1,707
70	2,779	2,380	2,164	2,027	1,931	1,860	1,804	1,760	1,723	1,691
80	2,769	2,370	2,154	2,016	1,921	1,849	1,793	1,748	1,711	1,680
90	2,762	2,363	2,146	2,008	1,912	1,841	1,785	1,739	1,702	1,670
100	2,756	2,356	2,139	2,002	1,906	1,834	1,778	1,732	1,695	1,663
110	2,752	2,351	2,134	1,997	1,900	1,828	1,772	1,727	1,689	1,657
120	2,748	2,347	2,130	1,992	1,896	1,824	1,767	1,722	1,684	1,652
130	2,745	2,344	2,126	1,989	1,892	1,820	1,764	1,718	1,680	1,648

Valores a 90% na cauda a direita

Valores a 90,0% na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	0,025	0,117	0,181	0,220	0,246	0,265	0,279	0,289	0,298	0,304
2	0,020	0,111	0,183	0,231	0,265	0,289	0,307	0,321	0,333	0,342
3	0,019	0,109	0,186	0,239	0,276	0,304	0,325	0,342	0,356	0,367
4	0,018	0,108	0,187	0,243	0,284	0,314	0,338	0,356	0,371	0,384
5	0,017	0,108	0,188	0,247	0,290	0,322	0,347	0,367	0,383	0,397
6	0,017	0,107	0,189	0,249	0,294	0,327	0,354	0,375	0,392	0,406
7	0,017	0,107	0,190	0,251	0,297	0,332	0,359	0,381	0,399	0,414
8	0,017	0,107	0,190	0,253	0,299	0,335	0,363	0,386	0,405	0,421
9	0,017	0,107	0,191	0,254	0,302	0,338	0,367	0,390	0,410	0,426
10	0,017	0,106	0,191	0,255	0,303	0,340	0,370	0,394	0,414	0,431
20	0,016	0,106	0,193	0,260	0,312	0,353	0,385	0,412	0,435	0,454
30	0,016	0,106	0,193	0,262	0,315	0,357	0,391	0,420	0,444	0,464
40	0,016	0,106	0,194	0,263	0,317	0,360	0,394	0,423	0,448	0,469
50	0,016	0,106	0,194	0,263	0,318	0,361	0,396	0,426	0,451	0,472
60	0,016	0,106	0,194	0,264	0,318	0,362	0,398	0,428	0,453	0,475
70	0,016	0,106	0,194	0,264	0,319	0,363	0,399	0,429	0,454	0,476
80	0,016	0,105	0,194	0,264	0,319	0,363	0,399	0,430	0,455	0,477
90	0,016	0,105	0,194	0,265	0,320	0,364	0,400	0,430	0,456	0,478
100	0,016	0,105	0,194	0,265	0,320	0,364	0,400	0,431	0,457	0,479
110	0,016	0,105	0,194	0,265	0,320	0,364	0,401	0,431	0,457	0,480
120	0,016	0,105	0,194	0,265	0,320	0,365	0,401	0,432	0,458	0,480
130	0,016	0,105	0,194	0,265	0,320	0,365	0,401	0,432	0,458	0,481

Valores a 95% na cauda a direita

Valores a 95,0% na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	0,006	0,054	0,099	0,130	0,151	0,167	0,179	0,188	0,195	0,201
2	0,005	0,053	0,105	0,144	0,173	0,194	0,211	0,224	0,235	0,244
3	0,005	0,052	0,108	0,152	0,185	0,210	0,230	0,246	0,259	0,270
4	0,004	0,052	0,110	0,157	0,193	0,221	0,243	0,261	0,275	0,288
5	0,004	0,052	0,111	0,160	0,198	0,228	0,252	0,271	0,287	0,301
6	0,004	0,052	0,112	0,162	0,202	0,233	0,259	0,279	0,296	0,311
7	0,004	0,052	0,113	0,164	0,205	0,238	0,264	0,286	0,304	0,319
8	0,004	0,052	0,113	0,166	0,208	0,241	0,268	0,291	0,310	0,326
9	0,004	0,052	0,113	0,167	0,210	0,244	0,272	0,295	0,315	0,331
10	0,004	0,052	0,114	0,168	0,211	0,246	0,275	0,299	0,319	0,336
20	0,004	0,051	0,115	0,172	0,219	0,258	0,290	0,317	0,341	0,360
30	0,004	0,051	0,116	0,174	0,222	0,263	0,296	0,325	0,349	0,370
40	0,004	0,051	0,116	0,175	0,224	0,265	0,299	0,329	0,354	0,376
50	0,004	0,051	0,117	0,175	0,225	0,266	0,301	0,331	0,357	0,379
60	0,004	0,051	0,117	0,176	0,226	0,267	0,303	0,333	0,359	0,382
70	0,004	0,051	0,117	0,176	0,226	0,268	0,304	0,334	0,360	0,383
80	0,004	0,051	0,117	0,176	0,227	0,269	0,304	0,335	0,361	0,385
90	0,004	0,051	0,117	0,176	0,227	0,269	0,305	0,336	0,362	0,386
100	0,004	0,051	0,117	0,177	0,227	0,269	0,305	0,336	0,363	0,386
110	0,004	0,051	0,117	0,177	0,227	0,270	0,306	0,337	0,363	0,387
120	0,004	0,051	0,117	0,177	0,227	0,270	0,306	0,337	0,364	0,388
130	0,004	0,051	0,117	0,177	0,227	0,270	0,306	0,337	0,364	0,388

Valores a 97,5% na cauda a direita

Valores a 97,5% na cauda a direita

Grau de Liberdade do Denominador	1	2	3	4	5	6	7	8	9	10
1	0,002	0,026	0,057	0,082	0,100	0,113	0,124	0,132	0,139	0,144
2	0,001	0,026	0,062	0,094	0,119	0,138	0,153	0,165	0,175	0,183
3	0,001	0,026	0,065	0,100	0,129	0,152	0,170	0,185	0,197	0,207
4	0,001	0,025	0,066	0,104	0,135	0,161	0,181	0,198	0,212	0,224
5	0,001	0,025	0,067	0,107	0,140	0,167	0,189	0,208	0,223	0,236
6	0,001	0,025	0,068	0,109	0,143	0,172	0,195	0,215	0,231	0,246
7	0,001	0,025	0,068	0,110	0,146	0,176	0,200	0,221	0,238	0,253
8	0,001	0,025	0,069	0,111	0,148	0,179	0,204	0,226	0,244	0,259
9	0,001	0,025	0,069	0,112	0,150	0,181	0,207	0,230	0,248	0,265
10	0,001	0,025	0,069	0,113	0,151	0,183	0,210	0,233	0,252	0,269
20	0,001	0,025	0,071	0,117	0,158	0,193	0,224	0,250	0,273	0,293
30	0,001	0,025	0,071	0,118	0,161	0,197	0,229	0,257	0,281	0,302
40	0,001	0,025	0,071	0,119	0,162	0,200	0,232	0,260	0,285	0,307
50	0,001	0,025	0,071	0,119	0,163	0,201	0,234	0,263	0,288	0,310
60	0,001	0,025	0,071	0,120	0,163	0,202	0,235	0,264	0,290	0,313
70	0,001	0,025	0,072	0,120	0,164	0,202	0,236	0,265	0,291	0,314
80	0,001	0,025	0,072	0,120	0,164	0,203	0,237	0,266	0,292	0,316
90	0,001	0,025	0,072	0,120	0,164	0,203	0,237	0,267	0,293	0,316
100	0,001	0,025	0,072	0,120	0,164	0,203	0,238	0,267	0,294	0,317
110	0,001	0,025	0,072	0,120	0,165	0,204	0,238	0,268	0,294	0,318
120	0,001	0,025	0,072	0,120	0,165	0,204	0,238	0,268	0,295	0,318
130	0,001	0,025	0,072	0,120	0,165	0,204	0,238	0,269	0,295	0,319

