ML2017FALL HW1 Report

學號:R05945012 系級:生醫電資碩二 姓名:張凱崴

Method: Adam

• Parameters: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\eta = 1e-4$, max_iteration = 1e6

1. (2%)記錄誤差值 (RMSE), 討論兩種 feature 的影響

	Model	All pollutant, 9hr, 1st order	Only pm2.5, 9hr, 1 st order,
Training score Testing score		5.679520	6.123022
		6.569768	6.596244

運用較多污染物去訓練的模型必定會有較好的 training score,但 testing score 則不一定有這樣的關係,因為做 feature selection 有機會得到更好的結果。而根據以上表格我們可以看到,包含所有 18 種汙染物的模型仍然有較好的 testing score,應該是因為若只用 pm2.5 做預測,feature 會太單一的關係。實際上我也測試了其他汙染物的組合,發現使用 pm2.5, pm10, O₃, CO 的組合可以得到最好的結果。

2. (1%)將 feature 從抽前 9 小時改成抽前 5 小時,討論其變化

Model	All pollutant, 5hr, 1st order	Only pm2.5, 5hr, 1 st order	
Training score	5.805064	6.207004	
Testing score	6.643333	6.744917	

如同問題一,在相同小時數下,所有汙染物的模型得到的分數(包含 training score 和 testing score)比只用 pm2.5 的模型還要好。另外,比較 9hr 與 5hr,我們也可以發現 9hr 的各項分數都比 5hr 還要好,代表 9hr 的模型更能夠準確預測 pm2.5 的數值。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 All pollutant, 9hr, 1st order:

Model	λ=0	λ=0.0001	λ=0.001	λ=0.01	λ=0.1
Training score	5.679520	5.679521	5.679522	5.679540	5.679714
Testing score	6.569768	6.570187	6.569766	6.569715	6.569237
因 λ 小,而導致分數的變化不大。因此我額外再多做了幾種 λ 數值。					

Model	λ=1	λ=10	λ=100	λ=1000	λ=10000
Training score	5.681114	5.686518	5.699580	5.744231	5.965416
Testing score	6.565624	6.553855	6.519410	6.482602	6.586142

Only pm2.5, 9hr, 1st order:

Model	$\lambda = 0$	$\lambda = 0.0001$	$\lambda = 0.001$	$\lambda = 0.01$	$\lambda=0.1$	
Training score	6.123022	6.123022	6.123022	6.123022	6.123029	
Testing score	6.596244	6.596244	6.596244	6.596244	6.596244	
回 搓 田 戀 化 不 十 · 加 上 更 名 括 〕 後 佐 図 。						

同樣因變化不大,加上更多種允後作圖。

Model	$\lambda=1$	λ=10	λ=100	$\lambda = 1000$	λ=10000
Training score	6.123093	6.123730	6.129891	6.177838	6.432964
Testing score	6.596239	6.596198	6.596096	6.609867	6.789559

對於訓練所有汙染物的模型,隨著 λ 提高,我們可以看到 training score 逐漸升高,但 testing score 卻有逐漸下降的趨勢,直到 λ =1000 時到達最小值。只用 pm2.5 的模型也有相似的趨勢,雖然 testing score 的變化非常小,但也會逐漸下降,並在 λ =100 時達到最小值。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (\mathbf{y}^n - \mathbf{x}^n \cdot \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ ... \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ ... \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ?請寫下算式並選出正確答案。(其中 $\mathbf{X}^T\mathbf{X}$ 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^{T}X)^{-1}X^{T}y$
- (d) $(X^{T}X)^{-2}X^{T}y$

Ans:

C為正確答案。推導如下:

$$L = \sum_{n=1}^{N} (y^n - w \cdot x^n)^2 = \sum_{n=1}^{N} (w \cdot x^n - y^n)^2 = (Xw - Y)^T (Xw - Y)$$

$$L(w) = \min(L), when \frac{\partial L}{\partial w} = \frac{\partial}{\partial w} ((Xw - Y)^T (Xw - Y)) = 0$$

$$\Rightarrow \frac{\partial}{\partial w} (w^T X^T Xw - w^T X^T Y - Y^T Xw + Y^T Y) = 0$$

$$\Rightarrow X^T Xw - X^T Y = 0$$

$$\Rightarrow w = (X^T X)^{-1} X^T Y$$