Electromagnetism

Course Objectives:

To provide basic understanding of the fundamentals of Electromagnetics.

- 1.Introduction(3 hours)
 - a.Co-ordinate system
 - b.Scalar and vector fields
 - c. Operations on scalar and vector fields
- S =1
- 2. Electric field(11 hours)
 - a.Coulomb's law
 - b. Electric field intensity
 - c. Electric flux density
 - d. Gauss's law and applications
 - e.Physical significance of divergence; Divergence theorem.
 - f. Electric potential, Potential gradient
 - g. Energy density in electrostatic field
 - h.Electric properties of material medium
 - i. Free and bound Charges, Polarization, Relative permittivity, Electric dipole
 - j. Electric Boundary conditions
 - k.Current, Current density, Conservation of charge, Continuity equation, Relaxation time
 - I.Boundary value problems, Laplace and Poisson equations and their solutions, Uniqueness theorem.
 - m. Graphical field plotting, Numerical integration.
- •
- 3. Magnetic field (9 hours)
 - a.Biot-Savart's law
 - b.Magnetic field intensity
 - c. Ampere's circuital law and its application
 - d.Magnetic flux density
 - e.Physical significance of curl, Stoke's theorem
 - f.Scalar and Magnetic vector potential
 - g. Magnetic properties of material medium
 - h.Magnetic force, Magnetic torque, Magnetic moment, Magnetic dipole, Magnetization
 - i.Magnetic boundary condition
- •
- 4. Wave equation and Wave propagation (12 hours)
 - a. Faraday's law, Transformer emf, Motional emf
 - b.Displacement current
 - c.Maxwell's equations in integral and point forms
 - d. Wave propagation in lossless and lossy dielectric
 - e. Plane waves in free space, lossless dielectric, good conductor
 - f. Power and pointing vector
 - g.Reflection of plane wave at normal and oblique incidence
- •
- 5. Transmission lines (5 hours)
 - a. Transmission line equations
 - b.Input impedance, Reflection coefficient, Standing wave ratio
 - c.Impedance matching, Quarter wave transformer, Single stub matching, Double stub matching

- 6. Wave guides (4 hours)
 - a.Rectangular wave guide
 - b. Transverse electric mode, transverse magnetic mode

7. Antennas(1 hour)

a. Introduction to antenna, antenna types and properties

Practical:

- 1. Teledeltos (electro-conductive) paper mapping of electrostatic fields.
- 2. Determination of dielectric constant, display of a magnetic Hysteresis loop
- 3. Studies of wave propagation on a lumped parameter transmission line
- 4. Microwave sources, detectors, transmission lines
- 5. Standing wave patterns on transmission lines, reflections, power patterns on transmission lines, reflections, power measurement.
- 6. Magnetic field measurements in a static magnetic circuit, inductance, leakage flux.

References:

- 1.W. H. Hayt, "Engineering Electromagnetics", McGraw-Hill Book Company.
- 2.J. D. Kraus, "Electromagnetics", McGraw-Hill Book Company.
- 3.N. N. Rao, "Elements of Engineering Electromagnetics", Prentice Hall.
- 4. Devid K. Cheng, "Field and Wave Electromagnetics", Addison-Wesley.
- 5.M. N. O. Sadiku, "Elements of Electromagnetics", Oxford University Press.

Evaluation Scheme

The questions will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:

Chapters	Hours	Marks distribution*
1	3	5
2	11	20
3	9	16
4	12	21
5, 6, 7	10	16
Total	45	80

^{*}Note: There may be a minor deviation in the marks distribution.