Prova tipo A

P2 de Álgebra Linear I – 2003.2 13 de outubro de 2003

Gabarito

1) Considere os vetores

$$v_1 = (2, 1, 0),$$
 $v_2 = (3, 0, -1),$ $v_3 = (1, -1, -1),$ $v_4 = (0, 3, 2),$ $v_5 = (8, 4, 0),$ $v_6 = (7, 2, a).$

- **1.a)** Determine o valor de **a** no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem exatamente um plano (e não \mathbb{R}^3).
- **1.b)** Considere a base

$$\beta = \{(1,0,1), (1,1,1), (1,1,0)\}$$

de \mathbb{R}^3 . Considere o vetor v cujas coordenadas na base canônica são (4,2,4). Determine as coordenadas de v na base β .

- **1.c)** Encontre uma base $\alpha = \{u_1, u_2, u_3\}$ tal que o vetor v = (1, 2, 3) tenha coordenadas (1, 1, 0) na base α .
- **1.d)** Considere o plano π : x y z = 0 e a base $\gamma = \{(1, 1, 0), (0, 1, -1)\}$ de π . Dado o vetor v = (2, 1, 1) do plano π , encontre as coordenadas de v na base γ .

Respostas:

- a) a = -1.
- **b)** $(v)_{\beta} = (2, 2, 0).$
- c) $\alpha = \{(1,0,0), (0,2,3), (0,0,1)\}.$

d)
$$(v)_{\gamma} = (2, -1).$$

2)

a) Seja w um vetor de \mathbb{R}^3 e $M: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por

$$M(u) = u \times w$$
.

Sabendo que a matriz de M é

$$[M] = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{array}\right).$$

Determine o vetor w.

b) Considere agora o vetor u = (1, -1, -1) e a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

definida por

$$T(v) = v \times u$$
.

Determine a matriz [T] de T.

Respostas:

a)
$$w = (1, 0, 1)$$
.

b)
$$[T] = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
.

3)

(a) Determine a matriz $[P_{\pi,i}]$ da projeção $P_{\pi,i}$ no plano $\pi: x - y - z = 0$ na direção do vetor $\mathbf{i} = (1,0,0)$.

(b) Considere a matriz

$$[P_{\rho,w}] = \begin{pmatrix} 1/2 & -1/2 & -1/2 \\ -1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix},$$

Sabendo que esta matriz representa uma projeção em um plano ρ (contendo a origem) na direção de um vetor w, determine ρ e w.

(c) Sabendo que a matriz

$$[P] = \begin{pmatrix} 1 & a & b \\ 1 & 1 & c \\ 1 & 1 & -1 \end{pmatrix}$$

representa uma projeção em uma reta, determine a, b, e c.

Respostas:

a)
$$[P_{\pi,i}] = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

b)
$$\rho$$
: $x + y + z = 0$, $w = (1, 1, 0)$.

c)
$$a = 1,$$
 $b = -1,$ $c = -1.$

4)

- a) Escreva a matriz [R] da rotação $R \colon \mathbb{R}^2 \to \mathbb{R}^2$ de ângulo 60 graus no sentido anti-horário.
- b) Considere os pontos A=(1,0) e B=(2,3) de \mathbb{R}^2 . Determine um ponto C tal que A,B e C sejam os vértices de um triângulo equilátero.

Respostas:

a)
$$[R] = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$
.

b)
$$C = (3/2 - 3\sqrt{3}/2, 3/2 + \sqrt{3}/2)$$

5) Determine a equação cartesiana do plano π do espelhamento E em um plano,

$$E: \mathbb{R}^3 \to \mathbb{R}^3,$$

que verifica E(1,2,2) = (-2,1,-2).

Resposta:

$$\pi: 3x + y + 4z = 0.$$