Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчёт

по лабораторной работе №2 Синтез помехоустойчивого кода вариант 98

Выполнил: Тимошкин Р. В., группа Р3131

Преподаватель: Авксентьева Е. Ю.

Содержание

адание	3
Эсновные этапы вычисления	
1. №82	
2. №12	
3. №54	
4. №94	
5. №96	
6. N_{Ω} ((82 + 12 + 54 + 94) * 4) = 968	
Дополнительное задание	
Вывод	
лисок литературы	

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. **Подробно прокомментировать** и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. **Умножить полученное число на 4.** Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

1. №82

r1	r2	i1	r3	i2	i3	i4
1	1	0	1	1	0	1

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1				i4	S
1	X	-	X	-	X	-	X	s1

2	-	X	X	-	<u>-</u>	X	X	s2
4	-	-	-	X	X	X	X	s3

 $s = (s1, s2, s3) = 101 \Rightarrow$ ошибка в бите i2

Правильное сообщение: 0<mark>0</mark>01

2. №12

r1	r2	i1	r3	i2	i3	i4
1	1	0	0	0	0	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	s1
2	-	X	X	-	-	X	X	s2
4	-	-	<u>-</u>	X	X	X	X	s3

 $s = (s1, s2, s3) = 110 \Rightarrow$ ошибка в бите i1

Правильное сообщение: 1000

3. №54

r1	r2	i1	r3	i2	i3	i4
1	1	0	1	0	1	1

 $s1=r1\,\oplus\,i1\,\oplus\,i2\,\oplus\,i4=1\,\oplus\,0\,\oplus\,0\,\oplus\,1=0$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	s1
2	-	X	X	-	-	X	X	s2

4	-	X	X	X	X	s3
---	---	---	---	---	---	----

 $s = (s1, s2, s3) = 011 \Rightarrow$ ошибка в бите i3

Правильное сообщение: 00<mark>0</mark>1

4. №94

r1	r2	i1	r3	i2	i3	i4
1	0	1	0	1	1	0

 $s1 = r1 \oplus i1 \oplus i2 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$

	1	2	3	4	5	6	7	
2 ^x	r1	r2	i1	r3	i2	i3	i4	S
1	X	-	X	-	X	-	X	s1
2	-	X	X	-	-	X	X	s2
4	-	-	-	X	X	X	X	s3

 $s = (s1, s2, s3) = 100 \Rightarrow$ ошибка в бите r1

Правильное сообщение: 1110

5. №96

r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
0	0	0	1	1	1	0	0	0	0	0	0	1	1	0

 $s1=r1 \,\oplus\, i1 \,\oplus\, i2 \,\oplus\, i4 \,\oplus\, i5 \,\oplus\, i7 \,\oplus\, i9 \,\oplus\, i11=0 \,\oplus\, 0 \,\oplus\, 1 \,\oplus\, 0 \,\oplus\, 0 \,\oplus\, 0 \,\oplus\, 1 \,\oplus\, 0=0$

 $s2 = r2 \oplus i1 \oplus i3 \oplus i4 \oplus i6 \oplus i7 \oplus i10 \oplus i11 = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$

 $s3 = r3 \oplus i2 \oplus i3 \oplus i4 \oplus i8 \oplus i9 \oplus i10 \oplus i11 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$

 $s4 = r4 \,\oplus\, i5 \,\oplus\, i6 \,\oplus\, i7 \,\oplus\, i8 \,\oplus\, i9 \,\oplus\, i10 \,\oplus\, i11 = 0 \,\oplus\, 0 \,\oplus\, 0 \,\oplus\, 0 \,\oplus\, 0 \,\oplus\, 1 \,\oplus\, 1 \,\oplus\, 0 = 0$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11	S
1	X	-	X	-	X	-	X	-	X	-	X	-	X	-	X	s1
2	-	X	X	<u>-</u>	-	X	X	-	-	X	X	-	-	X	X	s2

4	-	-	-	X	X	X	X	-	-	-	-	X	X	X	X	s3
8	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	s4

```
s = (s1, s2, s3, s4) = 0010 \Rightarrow ошибка в бите r3
```

Правильное сообщение: 01100000110

6.
$$N_2$$
 ((82 + 12 + 54 + 94) * 4) = 968

```
Пусть r - количество проверочных разрядов. Тогда всего бит 2^r-1, а информационных бит 2^r-r-1. Найдем r, если 2^{r-1}-(r-1)-1 < 968 \le 2^r-r-1
```

Решив, получаем r = 10:

$$2^9 - 9 - 1 = 502 > 968 > 2^{10} - 10 - 1 = 1013$$

Значит, коэффициент избыточности = $r / (i + r) = 10 / (968 + 10) \approx 0.0102249489$

Итого: r = 10, коэффициент избыточности ≈ 0.0102249489

Дополнительное задание

```
open System
let rec getInputBitsFromUser () =
    printf "Enter a 7-bit binary message (e.g., 1010101): "
    let inputString = Console.ReadLine()
    let inputBits =
            inputString.ToCharArray() |> Array.map (fun c -> int32(c.ToString()))
        with
            | _ -> [| |]
    if inputBits.Length <> 7 || Array.exists (fun bit -> bit < 0 || bit > 1) inputBits then
        printfn "Invalid input. Please enter a 7-bit binary message."
        getInputBitsFromUser ()
    else
        inputBits
let hamming74Decode (input: int[]) =
    let s1 = (input.[0] + input.[2] + input.[4] + input.[6]) % 2
    let s2 = (input.[1] + input.[2] + input.[5] + input.[6]) % 2
    let s3 = (input.[3] + input.[4] + input.[5] + input.[6]) % 2
    let errorPosition = s1 + s2 * 2 + s3 * 4
    let correctedInput =
        match errorPosition with
        | 0 -> input
            input.[errorPosition - 1] <- (input.[errorPosition - 1] + 1) % 2
            input
    let decodedData = [| correctedInput.[2]; correctedInput.[4]; correctedInput.[5];
correctedInput.[6] |]
    errorPosition, decodedData
let inputBits = getInputBitsFromUser ()
printfn $"Input: %A{inputBits}"
let errorPosition, decodedData = hamming74Decode inputBits
if errorPosition = 0 then
    printfn "No error detected."
```

```
else
    printfn $"Error detected at index: %d{errorPosition}"
printfn $"Decoded Data: %A{decodedData}"
```

Вывод

В процессе выполнения данной лабораторной работы я изучил кодирование и декодирование данных и научился работать с кодом Хэмминга.

Список литературы

- 1. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. Указания / сост. Д. В. Пьянзин. Саранск: Изд-во Мордов. ун-та, 2009. с. 16
- 2. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А. И. Мн.: Бестпринт, 2002. с. 286