形式语言与自动机理论

课程简介与基础知识

王春宇

计算机科学与技术学院 哈尔滨工业大学 课程简介与基础知识

• 课程简介

• 基础知识

计算理论

核心问题

计算机的基本能力和限制是什么?

- 究竟哪些问题, 可通过计算解决? 可计算性理论
- ❷ 解决可计算的问题,究竟需要多少资源? 计算复杂性理论
- ❸ 为了研究计算,要使用哪些计算模型? 形式语言与自动机理论

什么是自动机理论?

自动机理论: 研究抽象机器及其所能解决问题的理论.

- 图灵机
- 有限状态机
- 文法, 下推自动机

什么是形式语言?

形式语言: 经数学定义的语言.

		自然语言		形式语言	
		English	中文	化学分子式	C 语言
语言	字符	A,a,B,b,\dots	天, 地,	A-Z,a-z,0-9	A-Z,a-z,0-9
	单词	apple	苹果	$_{ m H_2O}$	char
	句子	How're you?	早上好!	$2H_2 + O_2 = 2H_2O$	char $a=10$;
	语法	Grammar	语法规则	精确定义的规则	

课程内容

- 正则语言
 - 有穷自动机
 - 正则表达式
 - 正则语言的性质
- 上下文无关语言
 - 上下文无关文法
 - 下推自动机
 - 上下文无关语言的性质
- 计算导论
 - 图灵机及其扩展
 - 不可判定性

- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman.
 Introduction to Automata Theory, Languages, and Computation.
 《自动机理论、语言和计算导论》机械工业出版社
- Michael Sipser. Introduction to the Theory of Computation. 《计算理论导引》机械工业出版社

课程简介与基础知识

- 课程简介
- 基础知识
 - 基本概念
 - 语言和问题
 - 形式化证明

基本概念

1. 字母表: 符号 (或字符) 的非空有穷集.

$$\Sigma_1 = \{0, 1\},$$

 $\Sigma_2 = \{a, b, \dots, z\},$
 $\Sigma_3 = \{x \mid x$ 是一个汉字 $\}.$

2. 字符串: 由某字母表中符号组成的有穷序列. 若 $\Sigma_1 = \{0,1\}$, 那么 0,1,00,111001 为 Σ_1 上的字符串;

若
$$\Sigma_1 = \{0,1\}$$
, 那么 $0,1,00,111001$ 为 Σ_1 上的字符串; 若 $\Sigma_2 = \{a,b,\ldots,z\}$, 那么 $ab,xkcd$ 为 Σ_2 上的字符串.

3. 空串: 记为 ϵ , 有 0 个字符的串.

字母表 Σ 可以是任意的, 但都有 $\varepsilon \notin \Sigma$.

4. 字符串的长度: 字符串中符号所占位置的个数, 记为 [...]. 若字母表为 Σ, 可递归定义为:

若字母表为
$$\Sigma$$
, 可递归定义为:
$$|w| = \left\{ \begin{array}{ll} 0 & w = \varepsilon \\ |x| + 1 & w = xa \end{array} \right.,$$

其中 $a \in \Sigma$, w 和 $x \neq \Sigma$ 中字符组成的字符串.

- 字符: a, b, c, . . .

 - 字符串: ..., w, x, y, z
 - 集合: A, B, C,...

5. 字符串 x 和 y 的连接: 将首尾相接得到新字符串的运算, 记为 $x \cdot y$ 或 xy. 同样, 可递归定义为

$$x \cdot y = \begin{cases} x & y = \varepsilon \\ (x \cdot z)a & y = za \end{cases},$$

其中 $a \in \Sigma$. 且 x, y, z 都是字符串.

对任何字符串 x. 有 $\varepsilon \cdot x = x \cdot \varepsilon = x$.

连接运算的符号"."一般省略。

6. 字符串
$$x$$
 的 n 次幂 $(n \ge 0)$, 递归定义为

$$x^n = \left\{ \begin{array}{ll} \varepsilon & n = 0 \\ x^{n-1}x & n > 0 \end{array} \right.$$

 $(ba)^2 = (ba)^1 ba$

= baba

 $= (ba)^0 baba$ $= \varepsilon baba$

 $ba^{2} = ba^{1}a$

 $=ba^0aa$

 $=b\varepsilon aa$

= baa

例如,

7. 集合 A 和 B 的连接, 记为 $A \cdot B$ 或 AB, 定义为 $A \cdot B = \{ w \mid w = x \cdot y, \ x \in A \perp y \in B \}.$

8. 集合 A 的 n 次幂 $(n \ge 0)$, 递归定义为

$$A^n = \begin{cases} \{\varepsilon\} & n = 0 \\ A^{n-1}A & n > 1 \end{cases}.$$

那么, 若 Σ 为字母表, 则 Σ^n 为 Σ 上长度为 n 的字符串集合. 如果 $\Sigma = \{0,1\}$, 有

如来
$$\Sigma = \{0,1\}$$
、有
$$\Sigma^0 = \{\varepsilon\}$$

$$\Sigma^1 = \{0,1\}$$

$$\Sigma^2 = \{00,01,10,11\}$$

$$\Sigma^3 = \{000,001,010,011,100,101,110,111\}$$
 .

9. 克林闭包(Kleene Closure):

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i.$$

10. 正闭包(Positive Closure):

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i.$$

显然,

$$\Sigma^* = \Sigma^+ \cup \{\varepsilon\}.$$

其他的概念如有向图, 树, 字符串的前缀, 后缀等定义这里省略.

语言

定义

若 Σ 为字母表且 $\forall L \subseteq \Sigma^*$, 则 L 称为字母表 Σ 上的语言.

- 自然语言, 程序设计语言等
- $\bullet \ \{0^n 1^n \mid n \ge 0\}$
- The set of strings of 0's and 1's with an equal number of each:

$$\{\varepsilon, 01, 10, 0011, 0101, 1100, \ldots\}$$

• \emptyset , $\{\varepsilon\}$ 和 Σ^* 分别都是任意字母表 Σ 上的语言, 但注意 $\emptyset \neq \{\varepsilon\}$

关于语言

唯一重要的约束就是所有字母表都是有穷的.

问题

典型问题

判断给定的字符串 w 是否属于某个具体的语言 L,

$$w \in L$$
?

- 任何所谓问题, 都可以转为语言成员性的问题
- 语言和问题其实是相同的东西

形式化证明: 演绎法, 归纳法和反证法

例 1. 若 x 和 y 是 Σ 上的字符串, 请证明 |xy| = |x| + |y|.

证明: 通过对 |y| 的归纳来证明

 $lacksymbol{\bullet}$ 基础: 当 |y|=0, 即 $y=\varepsilon$

$$|x\varepsilon| = |x|$$
 连接的定义 $= |x| + |\varepsilon|$ 长度的定义

② 递推: 假设 $|y| = n \ (n \ge 0)$ 时命题成立, 那么当 |y| = n + 1, 即 y = wa

$$|x(wa)| = |(xw)a|$$
 连接的定义
 $|x(wa)| = |(xw)a|$ 连接的定义
 $= |xw| + 1$ 长度的定义
 $= |x| + |w| + 1$ 归纳假设
 $= |x| + |wa|$ 长度的定义

形式化证明: 演绎法, 归纳法和反证法

例 1. 若 x 和 y 是 Σ 上的字符串, 请证明 |xy| = |x| + |y|.

证明: 通过对 y 的结构归纳来证明

 \bullet 基础: $y = \varepsilon$ 时

$$|x\varepsilon| = |x|$$
 连接的定义
$$= |x| + |\varepsilon|$$
 长度的定义

② 递推: 假设 $y = w \ (w \in \Sigma^*)$ 时命题成立, 那么当 y = wa 时

$$|x(wa)| = |(xw)a|$$
 连接的定义
 $= |xw| + 1$ 长度的定义
 $= |x| + |w| + 1$ 归纳假设
 $= |x| + |wa|$ 长度的定义

形式语言与自动机理论 有穷自动机

王春宇

计算机科学与技术学院 哈尔滨工业大学

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机

有穷状态系统

- 有限状态机: Moore Machine, Mealy Machine
- 数字电路设计
- 电脑游戏的 AI 设计
- 各种通讯协议: TCP, HTTP, Bluetooth, Wifi
- 文本搜索, 词法分析

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
 - 形式定义
 - DFA 的设计举例
 - 扩展转移函数
 - DFA 的语言与正则语言
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机

确定的有穷自动机

- 一条输入带
- 一个读头
- 一个有穷控制器

确定的有穷自动机

例 1. 用有穷自动机识别 $\{w \in \{0,1\}^* \mid w \text{ 的长度 } |w|$ 是偶数.}

确定的有穷自动机的形式定义

定义

确定的有穷自动机(DFA, Deterministic Finite Automaton) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- ② Σ:有穷输入符号集或字母表;
- **③** $\delta: Q \times \Sigma \rightarrow Q$, 状态转移函数;
- **4** $q_0 ∈ Q$: 初始状态;
- **⑤** $F \subseteq Q$: 终结状态集或接受状态集.

例 2. 请设计 DFA, 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串.

- 例 2. 请设计 DFA, 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串.
- 未发现 01, 即使 0 都还没出现过:
- ② 未发现 01, 但刚刚读入字符是 0;

❸ 已经发现了 01.

例 2. 请设计 DFA, 在任何由 0 和 1 构成的串中, 接受含有 01 子串的全部串.

- ★发现 01, 即使 0 都还没出现过;
- ② 未发现 01, 但刚刚读入字符是 0;
- **❸** 已经发现了 01.

因此 DFA A 的可定义为:

$$A = (\{q_1, q_2, q_3\}, \{0, 1\}, \delta, q_1, \{q_3\})$$

其中 δ 为:

$$\delta(q_1, 1) = q_1$$
 $\delta(q_2, 1) = q_3$ $\delta(q_3, 1) = q_3$ $\delta(q_3, 0) = q_3$ $\delta(q_3, 0) = q_3$

状态转移图

- 每个状态 q 对应一个节点, 用圆圈表示;
- ② 状态转移 $\delta(q,a) = p$ 为一条从 q 到 p 且标记为字符 a 的有向边;
- \bullet 开始状态 q_0 用一个标有 start 的箭头表示;
- 接受状态的节点, 用双圆圈表示.

续例 2. 含有 01 子串的全部串的状态转移图

状态转移表

- 每个状态 q 对应一行, 每个字符 a 对应一列;
- ② 若有 $\delta(q,a) = p$, 用第 q 行第 a 列中填入的 p 表示;
- **3** 开始状态 q_0 前, 标记箭头 \rightarrow 表示;
- Φ 接受状态 $q \in F$ 前, 标记星号 * 表示.

续例 2. 含有 01 子串的全部串的状态转移表

	0	1
$\rightarrow q_1$	q_2	q_1
q_2	q_2	q_3
$*q_3$	q_3	q_3

典型问题

设计 DFA 使其接受且仅接受给定的语言 L.

例 3. 若 $\Sigma = \{0,1\}$, 给出接受全部含有奇数个 1 的串 DFA.

典型问题

设计 DFA 使其接受且仅接受给定的语言 L.

例 3. 若 $\Sigma = \{0,1\}$, 给出接受全部含有奇数个 1 的串 DFA.

例 4. 若 $\Sigma = \{0,1\}$, 给出接受全部含有偶数个 0 和偶数个 1 的串 DFA.

例 4. 若 $\Sigma = \{0,1\}$, 给出接受全部含有偶数个 0 和偶数个 1 的串 DFA.

思考题

4 5

- - 如何设计接受 Σ* 的 DFA?
 - $oldsymbol{3}$ 如何设计接受 $\{arepsilon\}$ 的 DFA?

扩展转移函数

定义

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to Q$ 为

$$\hat{\delta}(q, w) = \begin{cases} q & w = \varepsilon \\ \delta(\hat{\delta}(q, x), a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

扩展转移函数

定义

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to Q$ 为

$$\hat{\delta}(q, w) = \begin{cases} q & w = \varepsilon \\ \delta(\hat{\delta}(q, x), a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

那么, 当 $w = a_0 a_1 \cdots a_n$, 则有

$$\hat{\delta}(q, w) = \delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-1}), a_n)$$

$$= \delta(\delta(\hat{\delta}(q, a_0 a_1 \cdots a_{n-2}), a_{n-1}), a_n) = \cdots$$

$$= \delta(\delta(\cdots \delta(\hat{\delta}(q, \varepsilon), a_0) \cdots, a_{n-1}), a_n)$$

续例 2. 接受全部含有 01 子串的 DFA , $\hat{\delta}$ 处理串 0101 的过程.

$$\hat{\delta}(q_0, 0101) = \delta(\hat{\delta}(q_0, 010), 1)
= \delta(\delta(\hat{\delta}(q_0, 01), 0), 1)
= \delta(\delta(\delta(\hat{\delta}(q_0, 0), 1), 0), 1)
= \delta(\delta(\delta(\delta(\hat{\delta}(q_0, \varepsilon), 0), 1), 0), 1)
= \delta(\delta(\delta(\delta(q_0, 0), 1), 0), 1)
= \delta(\delta(\delta(q_1, 1), 0), 1)
= \delta(\delta(q_2, 0), 1) = \delta(q_2, 1) = q_2$$

思考题

lackled 扩展转移函数 $\hat{\delta}$ 必须从开始状态 q_0 处理字符串吗?

② 对任意的串 w, $\hat{\delta}$ 能保证一定会跳转到某个状态吗?

例 5. 对任何状态 q 及字符串 x 和 y, 证明 $\hat{\delta}(q,xy) = \hat{\delta}(\hat{\delta}(q,x),y)$. 证明: 对 y 使用归纳法.

① 当 $y = \varepsilon$ 时

$$\begin{split} \hat{\delta}(\hat{\delta}(q,x),\varepsilon) &= \hat{\delta}(q,x) & \hat{\delta} \, \mathfrak{h} \, \mathbb{定} \, \mathbb{X} \\ &= \hat{\delta}(q,x\varepsilon) \end{split}$$

② 假设 $y = w \ (w \in \Sigma^*)$ 时命题成立, 当 $y = wa \ (a \in \Sigma)$ 时

$$\hat{\delta}(q,xwa) = \delta(\hat{\delta}(q,xw),a)$$
 $\hat{\delta}$ 和连接的定义
$$= \delta(\hat{\delta}(\hat{\delta}(q,x),w),a)$$
 归纳假设
$$= \hat{\delta}(\hat{\delta}(q,x),wa)$$
 $\hat{\delta}$ 的定义

DFA 的语言与正则语言

定义

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个*DFA*, 则 D 接受的语言为

$$\mathbf{L}(D) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$$

定义

如果语言 L 是某个 DFA D 的语言, 即 $L = \mathbf{L}(D)$, 则称 L 是正则语言.

- \emptyset , $\{\varepsilon\}$ 都是正则语言
- $\Xi \Sigma$ 是字母表, Σ^* , Σ^n 都是 Σ 上的正则语言

例 6. 设计 DFA 接受 $\{0,1\}$ 上的字符串 w, 且 w 是 3 的倍数的二进制表示.

例 6. 设计 DFA 接受 $\{0,1\}$ 上的字符串 w, 且 w 是 3 的倍数的二进制表示.

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
 - 形式定义
 - 扩展转移函数
 - NFA 的语言
 - DFA 与 NFA 的等价性
- 带有空转移的非确定有穷自动机

例 7. 由 0 和 1 构成的串中,接受全部以 01 结尾的串,如何设计 DFA?

例7. 由 0 和 1 构成的串中,接受全部以 01 结尾的串,如何设计 DFA?

状态的非确定转移

- 同一个状态在相同的输入下, 可以有多个转移状态
- 自动机可以处在多个当前状态
- 使自动机的设计更容易

续例7. 由 0 和 1 构成的串中,接受全部以 01 结尾的串.

思考题

有穷自动机有了非确定性,能否增加它识别语言的能力?

非确定有穷自动机的形式定义

定义

非确定有穷自动机(NFA, Nondeterministic Finite Automaton) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- ② ∑:有穷输入符号集或字母表;
- **3** $\delta: Q \times \Sigma \rightarrow 2^Q$ 状态转移函数;
- **4** $q_0 \in Q$: 为初始状态;
- **6** F ⊆ Q: 为终结状态集或接受状态集.

续例 7. 接受全部以 01 结尾的串的 NFA.

$$\begin{array}{ccc}
0,1 \\
0 & 0 \\
\end{array}$$
start $\xrightarrow{(q_0)} (q_0) \xrightarrow{(q_1)} (q_2)$

五元组为
$$A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\}),$$
 转移函数 δ :

$$\delta(q_0, 0) = \{q_0, q_1\} \qquad \qquad \delta(q_1, 0) = \varnothing \qquad \qquad \delta(q_2, 0) = \varnothing$$

$$\delta(q_0, 1) = \{q_0\} \qquad \qquad \delta(q_1, 1) = \{q_2\} \qquad \qquad \delta(q_2, 1) = \varnothing$$

续例 7. 接受全部以 01 结尾的串的 NFA. 识别字符串 00101 的过程.

续例7. 接受全部以01 结尾的串的 NFA.

状态转移表:

$$\begin{array}{c|cc} & 0 & 1 \\ \hline \rightarrow q_0 & \{q_0, q_1\} & \{q_0\} \\ q_1 & \varnothing & \{q_2\} \\ *q_2 & \varnothing & \varnothing \end{array}$$

扩展转移函数

定义

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}$: $Q \times \Sigma^* \to 2^Q$ 为

$$\hat{\delta}(q, w) = \begin{cases} \{q\} & w = \varepsilon \\ \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

续例 7. 接受 01 结尾的串的 NFA, $\hat{\delta}$ 处理 00101 时每步的状态转移.

$$\bullet \ \hat{\delta}(q_0,\varepsilon) = \{q_0\}$$

$$\hat{\delta}(q_0,0) = \delta(q_0,0) = \{q_0,q_1\}$$

$$\hat{\delta}(q_0, 00) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, 001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

$$\delta(q_0,001) = \delta(q_0,1) \cup \delta(q_1,1) = \{q_0\} \cup \{q_2\} = \{q_0,q_2\}$$

$$\delta(q_0,0010) = \delta(q_0,0) \cup \delta(q_2,0) = \{q_0,q_1\} \cup \emptyset = \{q_0,q_1\}$$

$$\delta(q_0, 0010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \mathcal{D} = \{q_0, q_1\}$$

$$\delta(q_0, 00101) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

因为 q2 是接受状态, 所以 NFA 接受 00101.

NFA 的语言

回顾

若
$$D = (Q, \Sigma, \delta, q_0, F)$$
 是一个 DFA, 则 D 接受的语言为

$$\mathbf{L}(D) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}.$$

若
$$N = (Q, \Sigma, \delta, q_0, F)$$
 是一个 NFA , 则 N 接受的语言为

$$\mathbf{L}(N) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \varnothing \}.$$

例 8. 设计 $L = \{w \in \{0,1\}^* \mid w \text{ 的首尾字符相同.}\}$ 的 NFA.

例 9. 设计 $L = \{w \in \{0,1\}^* \mid w \text{ either begin or ends with 01.} \}$ 的 NFA.

例 9. 设计 $L = \{w \in \{0,1\}^* \mid w \text{ either begin or ends with } 01.\}$ 的 NFA.

DFA 与 NFA 的等价性

定理 1

如果语言 L 被 NFA 接受, 当且仅当 L 被 DFA 接受.

子集构造法

如果 NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ 构造 DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

- $\mathbf{0} \ Q_D = 2^{Q_N};$
- $P_D = \{ S \mid S \subseteq Q_N, S \cap F_N \neq \emptyset \};$

$$\delta_D(S,a) = \bigcup_{a} \delta_N(p,a).$$

那么有 $\mathbf{L}(D) = \mathbf{L}(N)$.

证明: 为证明 $\mathbf{L}(D) = \mathbf{L}(N)$, 对 |w| 用归纳法, 往证

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w).$$

• 归纳基础: 当 $w = \varepsilon$ 时,

$$\hat{\delta}_D(\{q_0\}, \varepsilon) = \{q_0\} = \hat{\delta}_N(q_0, \varepsilon)$$

② 归纳递推: 假设 $w=x\;(x\in\Sigma^*)$ 时成立, 当 $w=xa\;(a\in\Sigma)$ 时

$$\hat{\delta}_N(q_0,xa) = \bigcup_{p \in \hat{\delta}_N(q_0,x)} \delta_N(p,a)$$
 NFA 的 $\hat{\delta}$ 定义
$$= \bigcup_{p \in \hat{\delta}_D(\{q_0\},x)} \delta_N(p,a)$$
 归纳假设
$$= \delta_D(\hat{\delta}_D(\{q_0\},x),a)$$
 D的构造
$$= \hat{\delta}_D(\{q_0\},xa)$$
 DFA 的 $\hat{\delta}$ 定义

因此上式成立.

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

所以, 对 $\forall w \in \Sigma^*$ 有

$$w \in \mathbf{L}(N) \iff \hat{\delta}_N(q_0, w) \cap F_N \neq \emptyset$$
 NFA 的语言
$$\iff \hat{\delta}_D(\{q_0\}, w) \cap F_N \neq \emptyset$$
 刚证明的
$$\iff \hat{\delta}_D(\{q_0\}, w) \in F_D$$
 D的构造
$$\iff w \in \mathbf{L}(D)$$
 DFA 的语言

所以

$$\mathbf{L}(D) = \mathbf{L}(N).$$

非确定性没能增加有穷自动机识别语言的能力,原因是什么呢?

思考题

子集构造法: 构造与 NFA 等价的 DFA

续例 7. 将接受全部以 01 结尾的串的 NFA 转换为 DFA.

		0	1
start $\longrightarrow Q_0 \longrightarrow Q_1 \longrightarrow Q_2$ 0.1	$\rightarrow q_0$	$ \begin{cases} q_0, q_1 \\ \varnothing \end{cases} $	$\{q_0\}$
	q_1	Ø	$\{q_2\}$
		Ø	Ø

子集构造法: 构造与 NFA 等价的 DFA

续例 7. 将接受全部以 01 结尾的串的 NFA 转换为 DFA.

例 10. 设计 NFA 识别 $L = \{w \in \{0,1\}^* \mid w$ 倒数第 3 个字符是 $1\}$.

例 10. 设计 NFA 识别 $L = \{w \in \{0,1\}^* \mid w$ 倒数第 3 个字符是 1}.

有穷自动机

- 有穷状态系统
- 确定的有穷自动机
- 非确定有穷自动机
- 带有空转移的非确定有穷自动机
 - 形式定义
 - ε-闭包
 - 扩展转移函数
 - ε-NFA 的语言
 - ε-NFA 与 DFA 等价性

例 11. 设计 $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 $1\}$ 的 NFA.

例 11. 设计 $L = \{w \in \{0,1\}^* \mid w \text{ 倒数 } 3 \text{ 个字符至少有一个是 } 1\}$ 的 NFA.

例 11. 设计 $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1} 的 NFA.

状态的 ε 转移

- 允许状态因空串 ε 而转移, 即不消耗输入字符就发生状态的改变
- 使自动机的设计更容易

续例 11. 设计 $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1} 的 NFA.

$$tart \longrightarrow \overbrace{q_0}^{0,1} \xrightarrow{1} \overbrace{q_1}^{0,1,\varepsilon} \underbrace{q_2}^{0,1,\varepsilon} \xrightarrow{0,1,\varepsilon} \overbrace{q_3}^{0,3}$$

带空转移非确定有穷自动机的形式定义

定义

带空转移非确定有穷自动机 $(\varepsilon$ -NFA) A 为五元组

$$A = (Q, \Sigma, \delta, q_0, F)$$

- Q:有穷状态集;
- Σ:有穷输入符号集或字母表;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$, 转移函数;
- **4** $q_0 \in Q$: 初始状态;
- **⑤** F ⊆ Q: 终结状态集或接受状态集.

 ε -NFA, NFA, DFA 之间的主要区别

● 自动机在某状态, 读入某个字符时, 可能有多个转移;

❷ 自动机在某状态, 读入某个字符时, 可能没有转移;

❸ 自动机在某状态, 可能不读入字符, 就进行转移.

注意

此后, 不再明确区分 ε -NFA 和 NFA, 而认为它们都是 NFA.

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1} 的 ε-NFA.

利用 ε 转移设计的有穷自动机:

Start — (40)

状态转移表:

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 $1\}$ 的 ε -NFA. 利用 ε 转移设计的有穷自动机:

$$\begin{array}{ccc}
0,1 \\
& \downarrow \\
\text{start} \xrightarrow{Q_0} & 1 \xrightarrow{Q_1} & 0,1,\varepsilon \\
& \downarrow \\
&$$

状态转移表:

$$\begin{array}{c|ccccc} & 0 & 1 & \varepsilon \\ \hline \to q_0 & \{q_0\} & \{q_0, q_1\} & \varnothing \\ q_1 & \{q_2\} & \{q_2\} & \{q_2\} \\ q_2 & \{q_3\} & \{q_3\} & \{q_3\} \\ *q_3 & \varnothing & \varnothing & \varnothing \end{array}$$

续例 11. $L = \{w \in \{0,1\}^* \mid w \text{ 倒数 } 3 \text{ 个字符至少有一个是 } 1\}$ 的 ε-NFA.

利用 ε 转移设计的有穷自动机:

$$0,1$$
start $\xrightarrow{Q_0}$ $\xrightarrow{1}$ $\xrightarrow{Q_1}$ $\xrightarrow{0,1,\varepsilon}$ $\xrightarrow{Q_2}$ $\xrightarrow{0,1,\varepsilon}$

 $\operatorname{start} \longrightarrow (q_0) \xrightarrow{1} (q_1) \xrightarrow{s,z,z} (q_2) \xrightarrow{s,z,z} (q_2)$

当输入字符串是 011 时, ε -NFA 的状态变化.

思考题

 \bullet 如果初始状态有 ε 转移, 第 \bullet 个字符该如何处理?

 \mathbf{Q} 如果最后的字符所到的状态有 ϵ 转移呢?

状态的 ε -闭包

定义

状态 q 的 ε -闭包 (ε -Closure), 记为 $\mathrm{ECLOSE}(q)$, 表示从 q 经过 ε 序列可达的全部状态集合, 递归定义为:

状态集合的 ε -闭包

定义

状态集 S 的 ε -闭包为

$$Eclose(S) = \bigcup_{q \in S} Eclose(q).$$

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 $1\}$ 的 NFA.

$$0.1$$
start $0.1.\varepsilon$
 $0.1.\varepsilon$
 $0.1.\varepsilon$
 $0.1.\varepsilon$

 $\operatorname{start} \longrightarrow (q_0) \longrightarrow (q_1) \longrightarrow (q_2) \longrightarrow (q_3)$

状态转移表及每个状态的闭句:

续例 11. $L = \{w \in \{0,1\}^* \mid w$ 倒数 3 个字符至少有一个是 1} 的 NFA.

状态转移表及每个状态的闭包:

扩展转移函数

扩展 δ 到字符串, 定义扩展转移函数 $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ 为

$$\hat{\delta}(q, w) = \begin{cases} \text{Eclose}(q) & w = \varepsilon \\ \text{Eclose}\left(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)\right) & w = xa \end{cases}$$

其中 $a \in \Sigma$, $w, x \in \Sigma^*$.

续例 11. 若 $L = \{w \in \{0,1\}^* \mid w \text{ 倒数 } 3 \text{ 个字符至少有一个是 } 1\} \text{ 的 } \varepsilon\text{-NFA}$ 如下. 求 $\hat{\delta}(q_0, 10)$.

如下, 求
$$\hat{\delta}(q_0, 10)$$
.

$$0.1$$

$$0.1$$

$$0.1,\varepsilon$$

$$0.1,\varepsilon$$

$$0.1,\varepsilon$$

续例 11. 若 $L=\{w\in\{0,1\}^*\mid w$ 倒数 3 个字符至少有一个是 1} 的 ε -NFA 如下, 求 $\hat{\delta}(q_0,10)$.

$$\begin{split} \hat{\delta}(q_0,\varepsilon) &= \text{Eclose}(q_0) = \{q_0\} \\ \hat{\delta}(q_0,1) &= \text{Eclose}\big(\cup_{p \in \hat{\delta}(q_0,\varepsilon)} \delta(p,1)\big) \\ &= \text{Eclose}(\hat{\delta}(q_0,1)) = \text{Eclose}(\{q_0,q_1\}) = \{q_0,q_1,q_2,q_3\} \\ \hat{\delta}(q_0,10) &= \text{Eclose}\big(\cup_{p \in \hat{\delta}(q_0,1)} \delta(p,0)\big) \\ &= \text{Eclose}\big(\delta(q_0,0) \cup \delta(q_1,0) \cup \delta(q_2,0) \cup \delta(q_3,0)\big) \\ &= \text{Eclose}(\{q_0,q_2,q_3\}) = \{q_0,q_2,q_3\} \end{split}$$

ε -NFA 的语言

回顾

DFA $D = (Q, \Sigma, \delta, q_0, F)$ 和 NFA $N = (Q, \Sigma, \delta, q_0, F)$ 的语言分别为

$$\mathbf{L}(D) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \},$$

$$\mathbf{L}(N) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}.$$

定义

$$\mathbf{L}(E) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \cap F \neq \varnothing \}.$$

消除空转移的子集构造法

构造方法

如果 ε -NFA $E = (Q_E, \Sigma, \delta_E, q_E, F_E)$, 构造 DFA

$$D = (Q_D, \Sigma, \delta_D, q_D, F_D)$$

- $\mathbf{2} \ q_D = \mathrm{Eclose}(q_E);$
- $F_D = \{ S \mid S \in Q_D, S \cap F_E \neq \emptyset \};$

$$\delta_D(S, a) = \text{Eclose}\Big(\bigcup_{p \in S} \delta_E(p, a)\Big).$$

那么有 $\mathbf{L}(D) = \mathbf{L}(E)$.

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

$$0.1$$
exact $0.1, \varepsilon$

$$0.1, \varepsilon$$

$$0.1, \varepsilon$$

$$0.1, \varepsilon$$

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

		_			_
	0	1	ε	Eclose()	
$\rightarrow q_0$	$\{q_0\}$	$\{q_0,q_1\}$	Ø	$\{q_0\}$	
q_1	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$	$\{q_1,q_2,q_3\}$	
q_2	$\{q_3\}$	$\{q_3\}$	$\{q_3\}$	$\{q_2,q_3\}$	
$*q_3$	Ø	Ø	Ø	$\{q_3\}$	

续例 11. 将下图 L 的 ε -NFA, 转为等价的 DFA.

ε-NFA 与 DFA 等价性

定理 2

如果语言 L 被 ε -NFA 接受, 当且仅当 L 被 DFA 接受.

证明: 必要性显然成立, 因为任何 DFA 都是 ε -NFA. 为证明充分性, 对 w 归纳, 往证 $\hat{\delta}_E(q_E,w)=\hat{\delta}_D(q_D,w)$.

① 当 $w = \varepsilon$ 时

$$\hat{\delta}_E(q_E, \varepsilon) = \text{Eclose}(q_E) = q_D = \hat{\delta}_D(q_D, \varepsilon).$$

② 当 w = xa 时

$$\hat{\delta}_{E}(q_{E}, xa) = \text{Eclose}\Big(\bigcup_{p \in \hat{\delta}_{E}(q_{E}, x)} \delta_{E}(p, a)\Big) = \text{Eclose}\Big(\bigcup_{p \in \hat{\delta}_{D}(q_{D}, x)} \delta_{E}(p, a)\Big)$$
$$= \delta_{D}(\hat{\delta}_{D}(q_{D}, x), a) = \hat{\delta}_{D}(q_{D}, xa)$$

例 12. Design ε -NFA for language: $\{0^k \mid k \text{ is a multiple of 2 or 3}\}$.

例 12. Design ε -NFA for language: $\{0^k \mid k \text{ is a multiple of 2 or 3}\}.$

形式语言与自动机理论

正则表达式

王春宇

计算机科学与技术学院 哈尔滨工业大学

正则表达式

- 正则表达式
 - 语言的运算
 - 正则表达式的递归定义
 - 运算符的优先级
 - 正则表达式示例
- 有穷自动机和正则表达式
- 正则表达式的代数定律

正则表达式

- 有穷自动机
 - 通过机器装置描述正则语言
 - 用计算机编写相应算法, 易于实现
- 正则表达式
 - 通过表达式描述正则语言,代数表示方法,使用方便
 - 应用广泛
 - grep 工具 (Global Regular Expression and Print)
 - Emacs / Vim 文本编辑器
 - lex / flex 词法分析器
 - 各种程序设计语言 Python / Perl / Haskull / ···

语言的运算

设L和M是两个语言,那么

例 1. 若有语言
$$L=\{0,11\}$$
 和 $M=\{\varepsilon,001\}$,那么 $L\cup M=$ $L^0=$ $LM=$ $L^1=$ $ML=$ $L^2=$

例2. 对于空语言 ∅

 $\forall n \geq 1, \quad \varnothing^n =$

四则运算表达式的递归定义: ● 任何数都是四则运算表达式:

都是四则运算表达式。

- ② 如果 a 和 b 是四则运算表达式, 那么

a+b, a-b, $a\times b$, $a\div b \not\leftarrow b$

正则表达式的递归定义

定义

如果 Σ 为字母表, 则 Σ 上的正则表达式递归定义为:

- ① \varnothing 是一个正则表达式,表示空语言; ε 是一个正则表达式,表示语言 $\{\varepsilon\}$; $\forall a \in \Sigma$, α 是一个正则表达式,表示语言 $\{a\}$;
- ② 如果正则表达式 \mathbf{r} 和 \mathbf{s} 分别表示语言 R 和 S, 那么

$$\mathbf{r} + \mathbf{s}, \ \mathbf{r}\mathbf{s}, \ \mathbf{r}^* \not \sim (\mathbf{r})$$

都是正则表达式,分别表示语言

 $R \cup S$, $R \cdot S$, $R^* \not\vdash R$.

运算符的优先级

正则表达式中三种运算以及括号的优先级:

- 首先,"括号"优先级最高;
- ❷ 其次, "星"运算: r*;
- ❸ 然后, "连接"运算: rs, r·s;
- f 4 最后, "加"最低: r+s, $r \cup s$;

例 3.

$$egin{aligned} \mathbf{1} + \mathbf{0} \mathbf{1}^* &= \mathbf{1} + (\mathbf{0} (\mathbf{1}^*)) \\ &
eq \mathbf{1} + (\mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0} \mathbf{1})^* \\ &
eq (\mathbf{1} + \mathbf{0}) \mathbf{1}^* \end{aligned}$$

正则表达式示例

例 4.

E	$\mathbf{L}(E)$
a + b	$\mathbf{L}(\mathbf{a}) \cup \mathbf{L}(\mathbf{b}) = \{a\} \cup \{b\} = \{a, b\}$
bb	$\mathbf{L}(\mathbf{b}) \cdot \mathbf{L}(\mathbf{b}) = \{b\} \cdot \{b\} = \{bb\}$
$(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b})$	$\{a,b\}\{a,b\}=\{aa,ab,ba,bb\}$
$(\mathbf{a} + \mathbf{b})^*(\mathbf{a} + \mathbf{b}\mathbf{b})$	$\{a,b\}^*\{a,bb\} = \{a,b\}^*\{a\} \cup \{a,b\}^*\{bb\} = \{w \in \{a,b\}^* \mid w \ Q \ Q \ a \ \underline{a} \ bb \ 4 \underline{\epsilon}.\}$
$1 + (01)^*$	$\{1, \varepsilon, 01, 0101, 010101, \ldots\}$
$(0+1)^*01(0+1)^*$	$\{x01y \mid x, y \in \{0, 1\}^*\}$

例 5. 给出正则表达式 $(aa)^*(bb)^*b$ 定义的语言.

$$\mathbf{L}((\mathbf{a}\mathbf{a})^*(\mathbf{b}\mathbf{b})^*\mathbf{b}) = \mathbf{L}((\mathbf{a}\mathbf{a})^*) \cdot \mathbf{L}((\mathbf{b}\mathbf{b})^*) \cdot \mathbf{L}(\mathbf{b})$$

$$= (\{a\}\{a\})^*(\{b\}\{b\})^*\{b\})$$

$$= \{a^2\}^*\{b^2\}^*\{b\}$$

$$= \{a^{2n}b^{2m+1} \mid n \ge 0, m \ge 0\}$$

例 6. Design regular expression for $L=\{w\mid w \text{ consists of 0's and 1's, and the third symbol from the right end is 1.}\}$

$$(0+1)^*1(0+1)(0+1)$$

例 7. Design regular expression for

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has no pair of consecutive 0's.} \}$

$$\mathbf{1}^*(\mathbf{011}^*)^*(\mathbf{0}+\varepsilon)$$
 或 $(\mathbf{1}+\mathbf{01})^*(\mathbf{0}+\varepsilon)$

- 例. Write a regular expression for $L = \{w \in \{0,1\}^* \mid 0 \text{ and } 1 \text{ alternate in } w\}.$ 例. Find a regular expression for the set $\{a^nb^m \mid (n+m) \text{ is odd }\}$.

例. Design regular expression for $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ contains } 01\}.$

例. Give regular expression for the complement of $L = \{a^n b^m \mid n > 3, m < 4\}.$

例. Write a regular expression for the set of all C real numbers.

正则表达式

- 正则表达式
- 有穷自动机和正则表达式
 - 由 DFA 到正则表达式, 递归表达式法
 - 由 DFA 到正则表达式, 状态消除法
 - 由正则表达式到 ε -NFA
- 正则表达式的代数定律

DFA, NFA, ε -NFA 和正则表达式的等价性

由 DFA 到正则表达式, 递归表达式法

定理 3

若 $L = \mathbf{L}(A)$ 是某 DFA A 的语言, 那么存在正则表达式 R 满足 $L = \mathbf{L}(R)$.

由 DFA 到正则表达式, 递归表达式法

定理 3

若 $L = \mathbf{L}(A)$ 是某 DFA A 的语言, 那么存在正则表达式 R 满足 $L = \mathbf{L}(R)$.

证明:对 DFA A 的状态编号,令 1 为开始状态,即

$$A = (\{1, 2, \dots, n\}, \Sigma, \delta, 1, F),$$

设正则表达式 $R_{ij}^{(k)}$ 表示从 i 到 j 但中间节点不超过 k 全部路径的字符串集:

$$R_{ij}^{(k)} = \{x \mid \hat{\delta}(i,x) = j, x$$
经过的状态除两端外都不超过 $k \}$.

那么与 $A = (\{1,2,\ldots,n\},\Sigma,\delta,1,F)$ 等价的正则表达式为

$$\bigcup_{i} R_{1j}^{(n)}$$

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

$$R_{ij}^{(0)} = \begin{cases} \{a \mid \delta(q_i, a) = q_j\} & i \neq j \\ \{a \mid \delta(q_i, a) = q_j\} \cup \{\varepsilon\} & i = j \end{cases}$$

下面对 k 归纳, 证明可用以上递归式求得 $R_{ii}^{(k)}$.

且递归式为

归纳基础: 当 $i \neq j, k = 0$ 时, 即 i 到 j 没经过任何中间节点

• 没有i到j的状态转移

$$(i) (j) R_{ij}^{(0)} = \varnothing$$

$$R_{ij}'=8$$

• 有多个 i 到 j 的状态转移

$$R_{ij}^{(0)} = \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_t$$

归纳基础 (续): 当 i=j, k=0 时, 即从 i 到自身没经过任何中间节点

• 状态 i 没有到自己的转移

$$R_{ii}^{(0)} = \boldsymbol{arepsilon}$$

• 状态 i 有一个到自身的转移 $\widehat{i} \bigcirc a \qquad \qquad R_{i:i}^{(0)} = \mathbf{a} + \boldsymbol{\varepsilon}$

状态 i 有多个到自身的转移

$$R_{ii}^{(0)} = \mathbf{a}_1 + \mathbf{a}_2 + \dots + \mathbf{a}_t + \boldsymbol{\varepsilon}$$

归纳假设: 假设已知 $R_{ij}^{(k-1)}$, $R_{ik}^{(k-1)}$, $R_{kk}^{(k-1)}$ 和 $R_{kj}^{(k-1)}$.

归纳递推: 那么 $R_{ij}^{(k)}$ 中全部路径, 可用节点 k 分为两部分

• 从 i 到 j 不经过 k 的

从 i 到 j 经过 k 的

$$(i) \sim \sim (k) \sim (k) \sim (j)$$

$$R_{ij}^{(k)} = R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

因此
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$
.

例 8. 将如图 DFA 转换为正则表达式.

计算 R_{ij}⁽⁰⁾

例 8. 将如图 DFA 转换为正则表达式.

$$\begin{array}{cccc}
1 & 0, 1 \\
 & 0 & Q_1 \\
\end{array}$$
start $\xrightarrow{q_1} 0$ q_2

计算 R_{ij}⁽⁰⁾

$$egin{array}{cccc} R_{ij}^{(k)} & k=0 \ \hline R_{11}^{(0)} & oldsymbol{arepsilon} + \mathbf{1} \ R_{12}^{(0)} & \mathbf{0} \ R_{21}^{(0)} & arnothing \ R_{22}^{(0)} & oldsymbol{arepsilon} + \mathbf{0} + \mathbf{1} \end{array}$$

• 计算
$$R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$$

$$egin{array}{ccc} R_{ij}^{(k)} & k=0 \ R_{11}^{(0)} & oldsymbol{arepsilon}+\mathbf{1} \ R_{12}^{(0)} & \mathbf{0} \ R_{21}^{(0)} & oldsymbol{arepsilon} \ R_{22}^{(0)} & oldsymbol{arepsilon}+\mathbf{0}+\mathbf{1} \end{array}$$

• 计算 $R_{ij}^{(1)} = R_{ij}^{(0)} + R_{i1}^{(0)} (R_{11}^{(0)})^* R_{1j}^{(0)}$

• 几个基本的化简规则

$$(oldsymbol{arepsilon}+\mathbf{r})^*=\mathbf{r}^* \ (oldsymbol{arepsilon}+\mathbf{r})\mathbf{r}^*=\mathbf{r}^*$$

$$=\mathbf{r}_{*}$$

$$\mathbf{r} + \mathbf{r}\mathbf{s}^* = \mathbf{r}\mathbf{s}^*$$
 $\emptyset \mathbf{r} = \mathbf{r}\emptyset = \emptyset$

 $\emptyset + \mathbf{r} = \mathbf{r} + \emptyset = \mathbf{r}$

(零元)

(单位元)

化简 R_{ij}⁽¹⁾

$R_{ij}^{(k)}$	k = 1	化简
$R_{11}^{(1)}$	$(arepsilon+1)+(arepsilon+1)(arepsilon+1)^*(arepsilon+1)$	1*
$R_{12}^{(1)}$	$0 + (\boldsymbol{\varepsilon} + 1)(\boldsymbol{\varepsilon} + 1)^*0$	1^*0
$R_{21}^{(1)}$	$arnothing + arnothing (oldsymbol{arepsilon} + 1)^*(oldsymbol{arepsilon} + 1)$	Ø
$R_{22}^{(1)}$	$oldsymbol{arepsilon} + 0 + 1 + arnothing (oldsymbol{arepsilon} + 1)^* 0$	$oldsymbol{arepsilon} + 0 + 1$

• 计算
$$R_{ij}^{(2)} = R_{ij}^{(1)} + R_{i2}^{(1)} (R_{22}^{(1)})^* R_{2j}^{(1)}$$

化简 R_{ii}⁽²⁾

• 因只有 q_2 是接受状态, 所以该 DFA 正则表达式为

$$R_{12}^{(2)} = \mathbf{1}^* \mathbf{0} (\mathbf{0} + \mathbf{1})^*.$$

例 9. 将如图 DFA 转换为正则表达式.

例 9. 将如图 DFA 转换为正则表达式.

例 9. 将如图 DFA 转换为正则表达式.

仅状态2和3是接受状态:

又状态 2 和 3 是接受状态:
$$R_{12}^{(3)} = R_{12}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{32}^{(2)}$$
$$= \mathbf{0}(\mathbf{0}\mathbf{0})^* + \mathbf{0}^* \mathbf{1}(\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{0}\mathbf{0})^*$$
$$= \mathbf{0}(\mathbf{0}\mathbf{0})^* + \mathbf{0}^* \mathbf{1}((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\mathbf{0} + \mathbf{1})(\mathbf{0}\mathbf{0})^*$$
$$R_{13}^{(3)} = R_{13}^{(2)} + R_{13}^{(2)}(R_{33}^{(2)})^* R_{33}^{(2)}$$
$$= \mathbf{0}^* \mathbf{1} + \mathbf{0}^* \mathbf{1}(\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^* (\boldsymbol{\varepsilon} + (\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})$$
$$= \mathbf{0}^* \mathbf{1}((\mathbf{0} + \mathbf{1})\mathbf{0}^* \mathbf{1})^*$$

 $R_{12}^{(3)} + R_{13}^{(3)} = \mathbf{0}^* \mathbf{1} ((\mathbf{0} + \mathbf{1}) \mathbf{0}^* \mathbf{1})^* (\varepsilon + (\mathbf{0} + \mathbf{1}) (\mathbf{0} \mathbf{0})^*) + \mathbf{0} (\mathbf{0} \mathbf{0})^*.$

由 DFA 到正则表达式, 状态消除法

- 从 DFA 中逐个删除状态
- 用标记了正则表达式的新路径替换被删掉的路径
- 保持"自动机"等价.

- 更一般的情况如图
- 若要删除状态 E, 需添加相应路径

● 利用空转移,添加新的开始 8 和结束状态 f:

● 利用空转移,添加新的开始 s 和结束状态 f:

② 消除状态 q_1 , 添加路径 $q_0 \to q_2$ 和 $q_2 \to q_2$: $1 \qquad \qquad 00*1$ $\text{start} \longrightarrow s \qquad \varepsilon \qquad 00*1$

② 消除状态 q_1 , 添加路径 $q_0 \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

3 消除状态 q_0 , 添加路径 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

3 消除状态 q_0 , 添加路径 $s \rightarrow q_2$ 和 $q_2 \rightarrow q_2$:

④ 消除状态 q_2 , 添加路径 $s \to f$:

● 消除状态 q_2 , 添加路径 $s \to f$:

❺ 因此该自动机的正则表达式为

$$1*00*1(00*1 + 11*00*1)*.$$

由正则表达式到有穷自动机

定理 4

正则表达式定义的语言, 都可被有穷自动机识别.

由正则表达式构造 ε -NFA

任何正则表达式 \mathbf{r} , 都存在等价的 ε -NFA A, 即 $\mathbf{L}(A) = \mathbf{L}(\mathbf{r})$, 并且 A 满足:

- 仅有一个接收状态;
- ② 没有进入开始状态的边;
- 3 没有离开接受状态的边.

证明: 归纳基础:

① 对于 Ø, 有 ε -NFA:

2 对于 ε, 有 ε-NFA:

start
$$\overbrace{\hspace{1cm}}^{\varepsilon}$$

3 $\forall a \in \Sigma$, 对于 **a**, 有 ε -NFA:

归纳递推: 假设正则表达式 ${f r}$ 和 ${f s}$ 的 ${f \varepsilon}$ -NFA 分别为 ${\cal R}$ 和 ${\cal S}$

$$\operatorname{start} \longrightarrow R \bigcirc R \bigcirc S \bigcirc S$$

那么正则表达式 $\mathbf{r} + \mathbf{s}$, $\mathbf{r}\mathbf{s}$ 和 \mathbf{r}^* , 可由 R 和 S 分别构造如下:

② 对于
$$\mathbf{rs}$$
, 有 ε -NFA: start $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$

$$3$$
 对于 \mathbf{r}^* , 有 ε -NFA: start \rightarrow ε

因此任何结构的正则表达式, 都可递归构造出等价的 ε -NFA.

例 11. 正则表达式 (0+1)*1(0+1) 构造为 ε-NFA.

思考题

正则表达式到 ε -NFA 构造方法中的 3 个限制条件, 都有必要吗?

正则表达式

- 正则表达式
- 有穷自动机和正则表达式
- 正则表达式的代数定律
 - 基本的代数定律
 - 发现与验证代数定律

正则表达式的代数定律

定义

含有变量的两个正则表达式,如果以任意语言替换其变量,二者所表示的语言仍然相同,则称这两个正则表达式等价.在这样的意义下,正则表达式满足一些代数定律.

• 并运算

$$(L+M)+N=L+(M+N)$$
 (结合律)
 $L+M=M+L$ (交换律)
 $L+L=L$ (幂等律)
 $\varnothing+L=L+\varnothing=L$ (单位元 \varnothing)

• 连接运算

$$egin{aligned} oldsymbol{arepsilon} L &= L oldsymbol{arepsilon} &= L \ \varnothing L &= L \varnothing &= \varnothing \ &= L \varnothing &= Z \varnothing \ &= L \varnothing \ &= L \varnothing &= Z \varnothing \ &= L \varnothing \$$

(结合律)

(左分配律)

(右分配律)

(LM)N = L(MN)

L(M+N) = LM + LN

(M+N)L = ML + NL

• 分配率

• 闭包运算

 $(L^*)^* = L^*$ $\varnothing^* = \varepsilon$ $\varepsilon^* = \varepsilon$

 $(\varepsilon + L)^* = L^*$

 $L^* = L^+ + \varepsilon$

发现与验证正则表达式的代数定律

检验方法

要判断表达式 E 和 F 是否等价, 其中变量为 L_1, \ldots, L_n :

- 将变量替换为具体表达式, 得正则表达式 \mathbf{r} 和 \mathbf{s} , 例如, 替换 L_i 为 \mathbf{a}_i ;
- ② 判断 $\mathbf{L}(\mathbf{r}) \stackrel{?}{=} \mathbf{L}(\mathbf{s})$, 如果相等则 E = F, 否则 $E \neq F$.

例 12. 判断 $(L+M)^* = (L^*M^*)^*$.

2 $(\mathbf{a} + \mathbf{b})^* \stackrel{?}{=} (\mathbf{a}^* \mathbf{b}^*)^*$:

3 因为
$$L((a+b)^*) = L((a^*b^*)^*);$$

4 所以 $(L+M)^* = (L^*M^*)^*$.

● 将 L 和 M 替换为 a 和 b;

例 13. 判断 L + ML = (L + M)L.

- 将 L 和 M 替换为 a 和 b:
- 2 判断 $a + ba \stackrel{?}{=} (a + b)a$:
- **3** 因为 $aa \notin \mathbf{a} + \mathbf{ba}$ 而 $aa \in (\mathbf{a} + \mathbf{b})\mathbf{a}$;

a 所以 $a + ba \neq (a + b)a$;

6 $\mathbb{P} L + ML \neq (L+M)L$.

注意

这种方法仅限于判断正则表达式, 否则可能会发生错误.

例 14. 若用此方法判断 $L \cap M \cap N \stackrel{?}{=} L \cap M$, 以 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ 替换 L, M, N, 有

$$\{a\}\cap\{b\}\cap\{c\}=\varnothing=\{a\}\cap\{b\},$$

而显然

$$L \cap M \cap N \neq L \cap M$$
.

形式语言与自动机理论

正则语言的性质

王春宇

计算机科学与技术学院 哈尔滨工业大学

正则语言的性质

- 证明语言的非正则性
 - 正则语言的泵引理
 - 泵引理的应用
 - 泵引理只是必要条件
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

例 1. $L = \{0^m 1^n \mid m, n > 0\}$ 是否是正则语言?

例 2.
$$L = \{0^m 1^n \mid m \ge 2, n \ge 4\}$$
 是否是正则语言?

例 3. $L_{01} = \{0^n 1^n \mid n \ge 0\}$ 是否是正则语言?

正则语言的泵引理

定理 5 (正则语言的泵引理)

如果语言 L 是正则的, 那么存在正整数 N, 它只依赖于 L, 对 $\forall w \in L$, 只要 |w| > N, 就可以将 w 分为三部分 w = xyz 满足:

- $|xy| \le N;$
- $\forall k \ge 0, \ xy^k z \in L.$

证明:

① 如果 L 正则, 那么存在有 n 个状态 DFA A 使 $\mathbf{L}(A) = L$;

- ② 取 $w = a_1 \dots a_m \in L \ (m \ge n), \ \not \subset \ \not \downarrow \ q_i = \hat{\delta}(q_0, a_1 \dots a_i);$ start $\longrightarrow q_0 \xrightarrow{a_1 a_2 \dots a_i} q_i \xrightarrow{a_{i+1} \dots a_j} q_j \xrightarrow{a_{j+1} \dots a_m} q_m$
- **❸** 由鸽巢原理, 必有两状态相同 $q_i = q_j \ (0 \le i < j \le n)$;
- 那么 w = xyz 如图, 且有 $\forall k > 0$, $xy^kz \in L$;

$$y = a_{i+1} \cdots a_j$$

$$x = a_1 a_2 \cdots a_i$$

$$y = a_{i+1} \cdots a_m$$

$$y = a_{i+1} \cdots a_j$$

$$z = a_{j+1} \cdots a_m$$

$$y = a_{i+1} \cdots a_j$$

6 而因为 i < j 所以 $y \neq \varepsilon$ (即 |y| > 0), 因为 $j \le n$ 所以 $|xy| \le n$.

泵引理的应用

续例 3. 证明 $L_{01} = \{0^n 1^n \mid n \ge 0\}$ 不是正则语言.

证明:

- 假设 L_{01} 是正则的.
- ② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L_{01}(|w| \geq N)$ 满足泵引理.
- **3** 从 L_{01} 中取 $w = 0^N 1^N$, 显然 $w \in L_{01}$ 且 $|w| = 2N \ge N$.
- 那么, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- **6** 因此 y 只能是 0^m 且 m > 0.
- **6** 那么 $xy^2z = 0^{N+m}1^N \notin L_{01}$, 而由泵引理 $xy^2z \in L_{01}$, 矛盾.
- \bullet 所以假设不成立, L_{01} 不是正则的.

例 4. 证明 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的.

思考题

刚刚已经证明了

$$L_{01} = \{0^n 1^n \mid n \ge 0\}$$

不是正则语言, 那么能否使用

$$L_{01} \subseteq L_{\mathrm{eq}}$$

来说明 L_{eq} 也不是正则的呢?

续例 4. 证明 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$ 不是正则的. 证明:

- \blacksquare 假设 L_{eq} 是正则的.
- ② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L_{eq}(|w| > N)$ 满足泵引理.
- **3** 从 L_{eq} 中取 $w = 0^N 1^N$, 显然 $w \in L_{eq}$ 且 $|w| = 2N \ge N$.
- 那么, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.
- **6** 因此 y 只能是 0^m 且 m > 0.
- **6** 那么 $xy^2z = 0^{N+m}1^N \notin L_{eq}$, 而由泵引理 $xy^2z \in L_{eq}$, 矛盾.
- $oldsymbol{\Theta}$ 所以假设不成立, L_{eq} 不是正则的.

例 5. 证明 $L = \{0^i 1^j \mid i > j\}$ 不是正则的.

证明:

● 假设 *L* 是正则的.

② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L(|w| \geq N)$ 满足泵引理.

3 从 L 中取 $w = 0^{N+1}1^N$,则 $w \in L$ 且 $|w| = 2N + 1 \ge N$.

• 由泵引理, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.

5 那么, y 只能是 0^m 且 $m \ge 1$.

6 那么, $xz = xy^0z = 0^{N+1-m}1^N \notin L$, 因为 $N+1-m \le N$, 而由泵引理 $xy^0z \in L$, 矛盾.

→ 所以假设不成立, L 不是正则的.

例 6. Prove $L = \{a^3b^nc^{n-3} \mid n \ge 3\}$ is not regular.

证明:

 \blacksquare 假设 L 是正则的.

② 那么, 存在 $N \in \mathbb{Z}^+$, 对 $\forall w \in L(|w| \geq N)$ 满足泵引理.

3 从 L 中取 $w = a^3 b^N c^{N-3}$, 则 $w \in L$ 且 $|w| = 2N \ge N$.

● 由泵引理, w 可被分为 w = xyz, 且 $|xy| \le N$ 和 $y \ne \varepsilon$.

⑤ 那么,则 y 只可能有 3 种情况 (m > 0, r > 0, s > 0):

- $y = a^m$, $\mathbb{N} xy^2z = a^{3+m}b^Nc^{N-3} \notin L$;
- **2** $y = b^m$, \mathbb{N} $xy^2z = a^3b^{N+m}c^{N-3} \notin L$;
- **3** $y = a^r b^s$, $\mathbb{N} xy^2 z = a^3 b^s a^r b^N c^{N-3} \notin L$.
- **6** 无论 y 为何种情况, xy^2z 都不可能在 L 中, 与泵引理矛盾.
- 所以假设不成立, L 不是正则的.

思考题

- $L = \{0^n 1^n \mid 0 \le n \le 100\}$ 是否是正则语言?
- 有限的语言, 是否符合泵引理呢?
- Ø

• $\{\varepsilon\}$

• {0,00}

泵引理只是必要条件

• 泵引理只是正则语言的必要条件

• 只能用来证明某个语言不是正则的

• 与正则语言等价的定理 — Myhill-Nerode Theorem

例7. 语言 L 不是正则的, 但每个串都可以应用泵引理 $L = \{ca^nb^n \mid n > 1\} \cup \{c^kw \mid k \neq 1, w \in \{a, b\}^*\}$

• 其中
$$A = \{ca^nb^n \mid n \ge 1\}$$
 部分不是正则的

- 而 $B = \{c^k w \mid k \neq 1, w \in \{a, b\}^*\}$ 部分是正则的

• 而
$$A$$
 的任何串 $w = ca^i b^i$, 都可应用泵引理, 因为

 $w = (\varepsilon)(c)(a^ib^i)$

$$\omega = (\varepsilon)(\varepsilon)(u \ v)$$

重复字符 c 生成的新串都会落入 B 中

思考题

对任何正则语言 L, 在泵引理中, 与 L 相关联的正整数 N

- - 与识别 L 的 DFA 的状态数 n 之间有何关系?

• 与识别 L 的 NFA 的状态数之间呢?

思考题

是否是正则语言?

 $L = \{0^n x 1^n \mid n \ge 1, x \in \{0, 1\}^*\}$

语言

正则语言的性质

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化

正则语言的封闭性

定义

正则语言经某些运算后得到的新语言仍保持正则, 称为在这些运算下封闭.

正则语言 L 和 M, 在这些运算下封闭

- 并: L∪M交: L∩M
- 连接: LM 反转: $L^R = \{w^R \mid w \in L\}$
- 闭包: L^* 同态: $h(L) = \{h(w) \mid w \in L,$ 同态 $h: \Sigma \to \Gamma^*\}$
- $\not E$: L-M $h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \subseteq \Gamma^*, \, \operatorname{plot} h : \Sigma \to \Gamma^* \}$

定理 6 (并/连接/闭包的封闭性)

正则语言在并,连接和闭包运算下保持封闭.

证明: 由正则表达式的定义得证.

定理7(补运算封闭性)

如果 $L \in \Sigma$ 上的正则语言, 那么 $\overline{L} = \Sigma^* - L$ 也是正则的.

证明: 设接受语言 L 的 DFA

$$A = (Q, \Sigma, \delta, q_0, F)$$

即 $\mathbf{L}(A) = L$. 构造 DFA

$$B = (Q, \Sigma, \delta, q_0, Q - F)$$

则有 $\overline{L} = \mathbf{L}(B)$, 因为 $\forall w \in \Sigma^*$

$$w \in \overline{L} \iff \hat{\delta}(q_0, w) \notin F \iff \hat{\delta}(q_0, w) \in Q - F \iff w \in \mathbf{L}(B).$$

注意

使用这种方法求正则语言的补时, DFA 不能有缺失状态.

例 8. 若
$$\Sigma=\{0,1\},\,L=\{\varepsilon\}$$
 的 DFA 如图, 请给出 \overline{L} 的 DFA. start \longrightarrow \bigcirc \bigcirc \bigcirc

应使用完整的 DFA 去求补:

start
$$\longrightarrow q_0 \longrightarrow q_1 \longrightarrow 0,1$$

思考题

如何求正则表达式的补?

例 9. 证明 $L_{\text{neq}} = \{w \mid w \text{ 由数量不相等的 } 0 \text{ 和 } 1 \text{ 构成 } \}$ 不是正则的.

证明:

- 由泵引理不易直接证明 L_{neq} 不是正则的;
- 因为无论如何取 w, 将其分为 w = xyz 时, 都不易产生 L_{neq} 之外的串;
- 而证明 Lea 非正则很容易;
- 由补运算的封闭性, 所以 $L_{\text{neq}} = \overline{L_{\text{eq}}}$ 也不是正则的.

定理8

若 DFA A_L , A_M 和 A 的定义如下

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

$$A = (Q_L \times Q_M, \Sigma, \delta, (q_L, q_M), F_L \times F_M)$$

其中

$$\delta: (Q_L \times Q_M) \times \Sigma \to Q_L \times Q_M$$
$$\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a)).$$

则对任意 $w \in \Sigma^*$,

$$\hat{\delta}((q_L, q_M), w) = (\hat{\delta}(q_L, w), \hat{\delta}(q_M, w)).$$

证明: 对w的结构归纳.

归纳基础: 当 $w = \varepsilon$ 时

$$\hat{\delta}((q_L, q_M), \varepsilon) = (q_L, q_M)$$
 $\hat{\delta}$ 的定义
$$= (\hat{\delta}_L(q_L, \varepsilon), \hat{\delta}_M(q_M, \varepsilon))$$
 同理

归纳递推: 当 w = xa 时

$$\hat{\delta}((q_L,q_M),xa) = \delta(\hat{\delta}((q_L,q_M),x),a)$$
 $\hat{\delta}$ 的定义
$$= \delta((\hat{\delta}(q_L,x),\hat{\delta}(q_M,x)),a)$$
 归纳假设
$$= (\delta_L(\hat{\delta}_L(q_L,x),a),\delta_M(\hat{\delta}_M(q_M,x),a))$$
 δ 的构造
$$= (\hat{\delta}_L(q_L,xa),\hat{\delta}_M(q_M,xa))$$
 $\hat{\delta}$ 的定义

定理 9 (交运算封闭性)

如果 L 和 M 是正则语言, 那么 $L \cap M$ 也是正则语言.

证明 1: 由 $L \cap M = \overline{\overline{L} \cup \overline{M}}$ 得证.

证明 9. 中字理 9 构件识别 1 0 M 的 DEA 4 则 You

证明 2: 由定理 8 构造识别
$$L \cap M$$
 的 DFA A , 则 $\forall w \in \Sigma^*$, $w \in L \cap M \iff \hat{\delta}_L(q_L, w) \in F_L \land \hat{\delta}_M(q_M, w) \in F_M \iff (\hat{\delta}_L(q_L, w), \hat{\delta}_M(q_M, w)) \in F_L \times F_M \iff \hat{\delta}((q_L, q_M), w) \in F_L \times F_M \iff w \in \mathbf{L}(A).$

因此 $L(A) = L \cap M$, 所以 $L \cap M$ 也是正则的.

例 10. 如果已知语言

$$L_{01} = \{0^n 1^n \mid n > 0\}$$

不是正则的, 请用封闭性证明语言

$$L_{\text{eq}} = \{ w \in \{0,1\}^* \mid w \text{ 由数量相等的 } 0 \text{ 和 } 1 \text{ 构成} \}$$

也不是正则的.

证明:

- 首先, 因为 0*1* 是正则语言;
- **2** In $L_{01} = \mathbf{L}(\mathbf{0}^*\mathbf{1}^*) \cap L_{eq}$;
- **3** 如果 L_{eq} 是正则的, L_{01} 必然也是正则的;
- 因为已知 L_{01} 不是正则的, 所以 L_{eq} 一定不是正则的.

为什么又能用 L_{eq} 的子集 L_{01} 是非正则的,来证明 L_{eq} 是非正则的呢?

思考题

例 11. 如果 L_1 和 L_2 都不是正则的, 那么 $L_1 \cap L_2$ 一定不是正则的吗?

不一定. 因为. 如果令

 $L_1 = \{0^n 1^n \mid n \ge 0\}$ $L_2 = \{a^n b^n \mid n \ge 0\}$

显然两者都不是正则语言, 但

 $L_1 \cap L_2 = \{\varepsilon\}$

是正则语言。

定理 10 (差运算封闭性)

如果 L 和 M 都是正则语言, 那么 L-M 也是正则的.

证明: $L-M=L\cap\overline{M}$.

例12. 证明正则语言在以下运算下封闭

 $\min(L) = \{ w \mid w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L \}$

证明 1: 设 L 的 DFA 为 $A=(Q,\Sigma,\delta,q_0,F)$, 构造 $\min(L)$ 的 DFA $B=(Q,\Sigma,\delta',q_0,F)$ 其中 δ' 如下,往证 $L(B)=\min(L)$:

$$\delta'(q, a) = \begin{cases} \delta(q, a) & \text{if } q \notin F \\ \varnothing & \text{if } q \in F \end{cases}$$

- $\forall w \in L(B)$, 存在转移序列 $q_0q_1 \cdots q_n \in F$ 使 B 接受 w, 其中 $q_i \notin F (0 < i < n-1)$. ∴ $w \in \min(L)$.
- ② $\forall w \in \min(L)$, 有 $w \in L$, A 接受 w 的状态序列为如果 $q_0q_1 \cdots q_n \in F$, 则显然 $q_i \notin F (0 \le i \le n-1)$, 否则 w 会有 L 可接受的前缀. $w \in L(B)$

例12. 证明正则语言在以下运算下封闭

$$\min(L) = \{ w \mid w \text{ is in } L, \text{ but no proper prefix of } w \text{ is in } L \}$$

证明 2:

由封闭性

$$\min(L) = L - L\Sigma^+,$$

得证.

字符串
$$w = a_1 a_2 \dots a_n$$
 的反转, 记为 w^R , 定义为

$$w^R = a_n a_{n-1} \dots a_1.$$

 $L^R = \{ w^R \in \Sigma^* \mid w \in L \}.$

定义
语言
$$L$$
 的反转, 记为 L^R , 定义为

定理 11 (反转的封闭性)

如果 L 是正则语言, 那么 L^R 也是正则的.

两种证明方法:

• 对正则表达式 E 的结构归纳, 往证

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

- 构造识别 L 的 NFA $A=(Q,\Sigma,\delta_A,q_0,F)$, 将其转换为识别 L^R 的 NFA $B=(Q,\Sigma,\delta_B,q_s,\{q_0\})$
 - 将 A 的边调转方向;
 - ② 将 A 的初始状态 q_0 , 改为唯一的接受状态;
 - 3 新增初始状态 q_s , 且令 $\delta_B(q_s,\varepsilon) = F$.

例 13. 语言 L 及其反转 L^R 分别为

$$L = \{w \in \{0, 1\}^* \mid w \text{ ends in } 01.\}$$

 $L^R = \{ w \in \{0, 1\}^* \mid w \text{ starts with } 10. \}$

正则表达式分别为

$$L = (\mathbf{0} + \mathbf{1})^* \mathbf{0} \mathbf{1} \ L^R = \mathbf{10} (\mathbf{0} + \mathbf{1})^*.$$

0,1

自动机分别为

start
$$\xrightarrow{q_0} \xrightarrow{0} \xrightarrow{q_1} \xrightarrow{1} \xrightarrow{q_2}$$

$$0,1$$

$$q_0 \leftarrow 0 \qquad q_1 \leftarrow 1 \qquad q_2 \leftarrow \varepsilon \qquad q_s \leftarrow 0$$

证明: 往证如果有正则表达式 E, 则存在正则表达式 E^R 使

$$\mathbf{L}(E^R) = (\mathbf{L}(E))^R.$$

归纳基础:

• 当
$$E = \emptyset$$
 时. 有 $\emptyset^R = \emptyset$:

$$\bullet$$
 当 $F-\epsilon$ 时 有 $\epsilon^R-\epsilon$

② 当
$$E = \varepsilon$$
 时, 有 $\varepsilon^R = \varepsilon$;

3 $\forall a \in \Sigma$. 当 $E = \mathbf{a}$ 时. 有 $\mathbf{a}^R = \mathbf{a}$:

都满足 $\mathbf{L}(E^R) = (\mathbf{L}(E))^R$, 因此命题成立.

② 当
$$E = \varepsilon$$
 时,有 $\varepsilon^n = \varepsilon$

1 $\exists E = E_1 + E_2 \text{ tf. } f(E_1 + E_2)^R = E_1^R + E_2^R$

归纳递推.

$$(\mathbf{L}(E_1 + E_2))^R$$

$$= (\mathbf{L}(E_2) + \mathbf{L}(E_2))^R$$

 $= (\mathbf{L}(E_1) \cup \mathbf{L}(E_2))^R$ 正则表达式的加 语言的反转

$$= \{ w^R \mid w \in \mathbf{L}(E_1) \cup w \in \mathbf{L}(E_2) \}$$
 语
$$= (\mathbf{L}(E_1))^R \cup (\mathbf{L}(E_2))^R$$
 同

同上

$$=\mathbf{L}(E_1^R)\cup\mathbf{L}(E_2^R)$$

归纳假设 $= \mathbf{L}(E_1^R + E_2^R)$ 正则表达式的加 归纳递推:

① 当 $E = E_1 + E_2$ 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$ ② 当 $E = E_1 E_2$ 时,有 $(E_1 E_2)^R = E_2^R E_1^R$ $(\mathbf{L}(E_1 E_2))^R = (\mathbf{L}(E_1) \mathbf{L}(E_2))^R \qquad \qquad \text{正则表达式的连接}$ $= \{w_1 w_2 \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\}^R \qquad \qquad \text{语言的连接}$ $= \{(w_1 w_2)^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\} \qquad \qquad \text{语言的反转}$

 $= \{w_2^R w_1^R \mid w_1 \in \mathbf{L}(E_1), w_2 \in \mathbf{L}(E_2)\}\$

 $= (\mathbf{L}(E_2))^R (\mathbf{L}(E_1))^R$

 $= \mathbf{L}(E_{2}^{R})\mathbf{L}(E_{1}^{R}) = \mathbf{L}(E_{2}^{R}E_{1}^{R})$

 $= \{w_2^R \mid w_2 \in \mathbf{L}(E_2)\}\{w_1^R \mid w_1 \in \mathbf{L}(E_1)\}$

字符串的反转

语言的连接

语言的反转

正则表达式的连接

归纳递推:

① 当
$$E = E_1 + E_2$$
 时,有 $(E_1 + E_2)^R = E_1^R + E_2^R$
② 当 $E = E_1E_2$ 时,有 $(E_1E_2)^R = E_2^RE_1^R$
③ 当 $E = E_1^*$ 时,有 $(E_1^*)^R = (E_1^R)^*$
 $(\mathbf{L}(E_1^*))^R$
 $= \{w_1w_2 \dots w_n \mid n \geq 0, w_i \in \mathbf{L}(E_1)\}^R$ 正则表达式的闭包
 $= \{(w_1w_2 \dots w_n)^R \mid n \geq 0, w_i \in \mathbf{L}(E_1)\}$ 语言的反转
 $= \{w_n^R w_{n-1}^R \dots w_1^R \mid n \geq 0, w_i \in \mathbf{L}(E_1)\}$ 字符串的反转
 $= \{w_n^R w_{n-1}^R \dots w_1^R \mid n \geq 0, w_i^R \in \mathbf{L}(E_1^R)\}$ 归纳假设
 $= \{w_1w_2 \dots w_n \mid n \geq 0, w_i \in \mathbf{L}(E_1^R)\}$ 空量重命名
 $= \mathbf{L}((E_1^R)^*)$ 正则表达式的闭包

都满足 $(\mathbf{L}(E))^R = \mathbf{L}(E^R)$, 因此命题成立, 所以 L^R 也是正则语言.

同态

定义

若 Σ 和 Γ 是两个字母表, 同态定义为函数 $h: \Sigma \to \Gamma^*$

$$\forall a \in \Sigma, \ h(a) \in \Gamma^*.$$

扩展 h 的定义到字符串,

(1)
$$h(\varepsilon) = \varepsilon$$

$$(2) \quad h(xa) = h(x)h(a)$$

再扩展
$$h$$
 到语言, 对 $\forall L \subseteq \Sigma^*$,

$$h(L) = \{h(w) \mid w \in L\}.$$

例 14. 若由 $\Sigma = \{0,1\}$ 到 $\Gamma = \{a,b\}$ 的同态函数 h 为

则
$$\Sigma$$
 上的字符串 0011, 在 h 的作用下
$$h(0011) = h(\varepsilon)h(0011)$$

$$h(0011) = h(\varepsilon)h(0$$

 $h(0011) = h(\varepsilon)h(0)h(0)h(1)h(1)$

$$h(0011) = h(\varepsilon)h(0)$$

语言 $L = \mathbf{1}^*\mathbf{0} + \mathbf{0}^*\mathbf{1}$, 在 h 的作用下, h(L) 为:

则 Σ 上的字符串 0011. 在 h 的作用下

 $h(0) = ab, h(1) = \varepsilon.$

 $= \varepsilon \cdot ab \cdot ab \cdot \varepsilon \cdot \varepsilon$

 $h(\mathbf{1}^*\mathbf{0} + \mathbf{0}^*\mathbf{1}) = (h(\mathbf{1}))^*h(\mathbf{0}) + (h(\mathbf{0}))^*h(\mathbf{1})$

 $= (\varepsilon)^*(\mathbf{ab}) + (\mathbf{ab})^*(\varepsilon)$

=abab.

 $= (ab)^*$

定理 12 (同态的封闭性)

若 L 是字母表 Σ 上的正则语言, h 是 Σ 上的同态, 则 h(L) 也是正则的.

• 若 L 的正则表达式为 E, 即 $L = \mathbf{L}(E)$, 按如下规则构造表达式 h(E)

$$h(\varnothing) = \varnothing$$
 $h(\mathbf{r} + \mathbf{s}) = h(\mathbf{r}) + h(\mathbf{s})$
 $h(\varepsilon) = \varepsilon$ $h(\mathbf{rs}) = h(\mathbf{r})h(\mathbf{s})$
 $\forall a \in \Sigma, \ h(\mathbf{a}) = h(a)$ $h(\mathbf{r}^*) = (h(\mathbf{r}))^*$

• 往证 L(h(E)) = h(L(E)), 而 h(E) 显然也是正则表达式, 因此 h(L) 正则

证明: 对 E 的结构归纳, 往证 $\mathbf{L}(h(E)) = h(\mathbf{L}(E))$. 归纳基础:

当 E = ε 时

$$h(\mathbf{L}(\boldsymbol{\varepsilon})) = h(\{\varepsilon\}) = \{\varepsilon\} = \mathbf{L}(\boldsymbol{\varepsilon}) = \mathbf{L}(h(\boldsymbol{\varepsilon}))$$

 $h(\mathbf{L}(\mathbf{a})) = h(\{a\}) = \{h(a)\} = \mathbf{L}(h(a)) = \mathbf{L}(h(\mathbf{a}))$

当 E = ∅ 时

$$h(\mathbf{L}(\varnothing)) = h(\varnothing) = \varnothing = \mathbf{L}(\varnothing) = \mathbf{L}(h(\varnothing))$$

• $\forall a \in \Sigma, \ \mathbf{i} \ E = \mathbf{a} \ \mathbf{i} \mathbf{f}$

$$\mathbf{v} u \in \Delta, \ \mathbf{g} \ \mathbf{E} - \mathbf{a}$$

所以命题成立.

归纳递推: 假设对正则表达式 F, G 分别有

$$\mathbf{L}(h(F)) = h(\mathbf{L}(F)), \ \mathbf{L}(h(G)) = h(\mathbf{L}(G))$$

$$h(\mathbf{L}(F+G)) = h(\mathbf{L}(F) \cup \mathbf{L}(G))$$
 正则表达式的加
$$= h(\mathbf{L}(F)) \cup h(\mathbf{L}(G)) \qquad h$$
作用在每个集合的串上
$$= \mathbf{L}(h(F)) \cup \mathbf{L}(h(G)) \qquad$$
 归纳假设
$$= \mathbf{L}(h(F) + h(G)) \qquad$$
 正则表达式的加
$$= \mathbf{L}(h(F+G)) \qquad h(F+G)$$
 的定义

- 当 E = FG 时: 略
- 当 E = F* 时: 略

逆同态

定义

若 h 是字母表 Σ 到 Γ 的同态, 且 L 是 Γ 上的语言, 那么使 $h(w) \in L$ 的 w $(w \in \Sigma^*)$ 的集合, 称为语言 L 的 h $\overset{\cdot}{\omega}$, 记为 $h^{-1}(L)$, 即

$$h^{-1}(L) = \{ w \in \Sigma^* \mid h(w) \in L \}.$$

定理 13 (逆同态的封闭性)

如果 h 是字母表 Σ 到 Γ 的同态, L 是 Γ 上的正则语言, 那么 $h^{-1}(L)$ 也是正则语言.

证明: 由 L 的 DFA $A = (Q, \Gamma, \delta, q_0, F)$, 构造识别 $h^{-1}(L)$ 的 DFA

 $B = (Q, \Sigma, \delta', q_0, F),$

$$^{1}(L)$$
 的 DFA

证明: 由 L 的 DFA $A = (Q, \Gamma, \delta, q_0, F)$, 构造识别 $h^{-1}(L)$ 的 DFA $B = (Q, \Sigma, \delta', q_0, F),$

为证明 $\mathbf{L}(B) = h^{-1}(L)$, 先证明 $\hat{\delta}'(q, w) = \hat{\delta}(q, h(w))$.

对 |w| 归纳, 往证 $\hat{\delta}'(q,w) = \hat{\delta}(q,h(w))$.

 \blacksquare 归纳基础: 若 $w = \varepsilon$

$$\hat{\delta}(q, h(\varepsilon)) = \hat{\delta}(q, \varepsilon) = q = \hat{\delta}'(q, \varepsilon),$$

❷ 归纳递推: 若 w = xa

$$\hat{\delta'}(q,xa) = \delta'(\hat{\delta'}(q,x),a)$$
 $\hat{\delta'}$ 定义
$$= \delta'(\hat{\delta}(q,h(x)),a)$$
 归纳假设
$$= \hat{\delta}(\hat{\delta}(q,h(x)),h(a))$$
 δ' 构造
$$= \hat{\delta}(q,h(x)h(a))$$
 DFA 节例 5
$$= \hat{\delta}(q,h(xa)).$$

所以 $\forall w \in \Sigma^*$, $\hat{\delta'}(q_0, w) = \hat{\delta}(q_0, h(w)) \in F$, 即 w 被 B 接受当且仅当 h(w) 被 A 接受, B 是识别 $h^{-1}(L)$ 的 DFA, 因此 $h^{-1}(L)$ 是正则的.

例 15. Prove that $L = \{0^n 1^{2n} \mid n \ge 0\}$ is a language not regular.

证明: 设同态 $h: \{0,1\} \rightarrow \{0,1\}^*$ 为

$$h(0) = 0,$$

$$h(1) = 11,$$

 $h^{-1}(L) = \{0^n 1^n \mid n \ge 0\} = L_{01},$

$$h^{-1}(L) = \{0^n 1^n \mid n \ge 0\} =$$

我们已知 L_{01} 非正则, 由封闭性, L 不是正则的.

例 16. 若语言 $L = (\mathbf{00} + \mathbf{1})^*$, 同态 $h: \{a, b\} \rightarrow \{0, 1\}^*$ 为

$$h(a) = 01, h(b) = 10,$$

请证明 $h^{-1}(L) = (\mathbf{ba})^*$.

证明: 往证 $h(w) \in L \iff w = (ba)^n$.

- (\Leftarrow) 若 $w = (ba)^n$, 而 h(ba) = 1001, 因此 $h(w) = (1001)^n \in L$.
- (\Rightarrow) 若 $h(w) \in L$, 假设 $w \notin (\mathbf{ba})^*$, 则只能有四种情况:
 - **●** $w \bowtie a \text{ } H \text{ } H, \text{ } M \text{ } h(w) \bowtie 01 \text{ } H \text{ } H, \text{ } L \text{ } M \text{ } M \text{ } \# \text{ } (\mathbf{00} + \mathbf{1})^*;$
 - ② w 以 b 结尾, 则 h(w) 以 10 结尾, 显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;
 - **3** w 有连续的 a, 即 w = xaay, 则 h(w) = z1010v, 显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;
 - **●** w 有连续的 b, 即 w = xbby, 则 h(w) = z0101v, 显然 $h(w) \notin (\mathbf{00} + \mathbf{1})^*$;

因此 w 只能是 $(ba)^n, n \ge 0$ 的形式.

 \mathfrak{P} 17. For a language L, define head(L) to be the set of all prefixes of strings in L. Prove that if L is regular, so is head(L).

证明. 设 $L \neq \Sigma$ 上的正则语言且 $\Sigma = \{0,1\}, \Gamma = \{0,1,a,b\}.$ 定义同态 $h:\Gamma \to \Sigma^*$ 和 $q:\Gamma \to \Sigma^*$ 分别为:

$$h(0) = 0$$
 $h(a) = 0$ $g(0) = 0$ $g(a) = \varepsilon$
 $h(1) = 1$ $g(b) = \varepsilon$

则因为 $(0+1)^*(a+b)^*$ 是 Γ 上的正则语言, 所以

$$(\mathbf{0} + \mathbf{1})^* (\mathbf{a} + \mathbf{b})^* \cap h^{-1}(L)$$

是 Γ 上的正则语言, 所以

head(L) =
$$g((\mathbf{0} + \mathbf{1})^*(\mathbf{a} + \mathbf{b})^* \cap h^{-1}(L))$$

是
$$\Sigma$$
 上的正则语言, 因此 head(L) 是正则的.

正则语言的性质

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
 - 空性, 有穷性和无穷性
 - 等价性
- 自动机的最小化

正则语言的判定性质

正则语言, 或任何语言, 典型的 3 个判定问题:

- 以某种形式化模型描述的语言是否为空? 是否无穷?
- ② 某个特定的串 w 是否属于所描述的语言?
- ❸ 以两种方式描述的语言, 是否是相同的? 语言的等价性

我们想知道,要回答这类问题的具体算法,是否存在.

空性,有穷性和无穷性

定理 14

具有 n 个状态的有穷自动机 M 接受的集合 S:

- S 是非空的, 当且仅当 M 接受某个长度小于 n 的串;
- ② S 是无穷的, 当且仅当 M 接受某个长度为 m 的串, $n \leq m < 2n$.

所以,对于正则语言:

- 存在算法,判断其是否为空,只需检查全部长度小于 n 的串;
- 存在算法, 判断其是否无穷, 只需检查全部长度由 n 到 2n-1 的串.

证明: 设接受正则语言 S 的 DFA 为 A.

- 必要性: 显然成立. 充分性:
 - \bullet 如果 S 非空, 设 w 是 A 接受的串中长度最小者之一;
- ② 必要性: 由泵引理, 显然成立. 充分性:

 - **册** 那么取 $w \in \mathbf{L}(A)$ 是长度 $\geq 2n$ 中最小者之一;
 - \mathbf{m} 由泵引理 w = xyz, 且 A 会接受更短的串 xz;
 - 于是, 或者 w 不是长度最小的, 或者长度 n 到 2n-1 之间有被接受的串, 因此假设不成立.

正则语言的等价性

定理 15

存在算法, 判定两个有穷自动机是否等价(接受语言相同).

证明:

- \bullet 设 M_1 和 M_2 是分别接受 L_1 和 L_2 的有穷自动机;
- ② 则 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ 是正则的, 所以可被某个有穷自动机 M_3 接受;
- 3 而 M_3 接受某个串, 当且仅当 $L_1 \neq L_2$;
- lack a 由于存在算法判断 $\mathbf{L}(M_3)$ 是否为空, 因此得证.

正则语言的性质

- 证明语言的非正则性
- 正则语言的封闭性
- 正则语言的判定性质
- 自动机的最小化
 - DFA 状态的等价性
 - 填表算法与 DFA 最小化

DFA 状态的等价性

定义

 $DFA\ A = (Q, \Sigma, \delta, q_0, F)$ 中两个状态 p 和 q, 对 $\forall w \in \Sigma^*$:

$$\hat{\delta}(p, w) \in F \Leftrightarrow \hat{\delta}(q, w) \in F$$
,

则称这两个状态是等价的, 否则称为可区分的.

• 等价性只要求 $\hat{\delta}(p,w)$ 和 $\hat{\delta}(q,w)$ 同时在或不在 F 中, 而不必是相同状态.

填表算法

递归寻找 DFA 中全部的可区分状态对:

- **●** 如果 $p \in F$ 而 $q \notin F$, 则 [p,q] 是可区分的;
- $2 \exists a \in \Sigma$, 如果

$$a \in \Sigma$$
,如果 $[r = \delta(p, a), s = \delta(q, a)]$

是可区分的,则 [p,q] 是可区分的.

定理 16

如果填表算法不能区分两个状态,则这两个状态是等价的,

■ 直接标记终态和非终态之间的状态对:

 $\{C\} \times \{A, B, D, E, F, G, H\}.$

② 标记所有经过字符 () 到达终态和非终态的状态对:

 ${D,F} \times {A,B,C,E,G,H}.$

❸ 标记所有经过字符 1 到达终态和非终态的状态对:

 ${B,H} \times {A,C,D,E,F,G}.$

● 此时还有 [A, E], [A, G], [B, H], [D, F], [E, G] 未标记, 只需逐个检查.

- 此时还有 [A, E], [A, G], [B, H], [D, F], [E, G] 未标记, 只需逐个检查.
 - \times [A,G] 是可区分的, 因为经串 01 到可区分的 [C,E];
 - \times [E,G] 是可区分的, 因为经串 10 到可区分的 [C,H].

⑤ 而 [A, E], [B, H] 和 [D, F] 在经过很短的字符串后, 都会到达相同状态, 因此都是等价的.

DFA 最小化

根据等价状态,将状态集划分成块,构造等价的最小化 DFA. 续例 18. 构造其最小化的 DFA.

思考题

NFA 能否最小化?

形式语言与自动机理论

上下文无关文法

王春宇

计算机科学与技术学院 哈尔滨工业大学

上下文无关文法

- 上下文无关文法
 - 形式定义
 - 归约和派生
 - 最左派生和最右派生
 - 文法的语言
- 语法分析树
- 文法和语言的歧义性
- 文法的化简与范式

自然语言的文法

```
\langle sentence \rangle \rightarrow \langle noun-phrase \rangle \langle verb-phrase \rangle
\langle noun-phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle \mid \langle article \rangle \langle adjective \rangle \langle noun \rangle
 \langle \text{verb-phrase} \rangle \rightarrow \langle \text{verb} \rangle \mid \langle \text{verb} \rangle \langle \text{noun-phrase} \rangle
               \langle article \rangle \rightarrow a \mid the
                  \langle noun \rangle \rightarrow \text{boy} \mid \text{girl} \mid \text{cat}
         \langle adjective \rangle \rightarrow big \mid small \mid blue
                    \langle verb \rangle \rightarrow \text{sees} \mid \text{likes}
```

自然语言的文法

使用文法规则产生句子:

$$\langle sentence \rangle \Rightarrow \langle noun\text{-}phrase \rangle \langle verb\text{-}phrase \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle \langle noun\text{-}phrase \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$$

$$\Rightarrow \text{the } \langle noun \rangle \langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$$

$$\Rightarrow \text{the } \text{girl } \langle verb \rangle \langle article \rangle \langle adjective \rangle \langle noun \rangle$$

$$\Rightarrow \cdots$$

$$\Rightarrow \text{the } \text{girl } \text{sees a blue } \text{cat}$$

如果字符串 $w \in \Sigma^*$ 满足

$$w = w^R,$$

则称字符串 w 为回文(palindrome).

定义

如果语言 L 中的字符串都是回文, 则称 L 为回文语言

$$L = \{ w \in \Sigma^* \mid w = w^R \}.$$

- ε , 010, 0000, radar, racecar, drawkward
- A man, a plan, a canal Panama
- 僧游云隐寺, 寺隐云游僧

例 1. 字母表 $\Sigma = \{0,1\}$ 上的回文语言

$$L_{\text{pal}} = \{ w \in \{0, 1\}^* \mid w = w^R \}.$$

- 很容易证明是 L_{pal} 是非正则的. 但如何表示呢?
 - 可使用递归的方式来定义:

 - \bullet 首先 ε . 0.1 都是回文
 - ② 如果 w 是回文, 0w0 和 1w1 也是回文
- 使用嵌套定义表示这种递归结构:

 $A \to \varepsilon$ $A \to 0A0$ $A \rightarrow 0$ $A \rightarrow 1A1$

$$A \to 0 \qquad A \to 1A1$$

$$A \to 1$$

上下文无关文法的形式定义

定义

上下文无关文法(CFG, Context-Free Grammar, 简称文法) G 是一个四元组 G = (V, T, P, S),

- V: 变元的有穷集, 变元也称为非终结符或语法范畴;
- ② T: 终结符的有穷集, 且 $V \cap T = \emptyset$;
- ③ P: 产生式的有穷集, 每个产生式包括:
 - 一个变元, 称为产生式的头或左部;
 - \oplus 一个产生式符号 \rightarrow , 读作定义为;
 - 一个 $(V \cup T)^*$ 中的符号串, 称为体或右部;
- ♠ S ∈ V: 初始符号, 文法开始的地方.

- 产生式 $A \rightarrow \alpha$. 读作 A 定义为 α
- 如果有多个 A 的产生式

 $A \to \alpha_1, A \to \alpha_2, \cdots, A \to \alpha_n$

可简写为

$$A
ightarrow lpha_1 \mid lpha_2 \mid \cdots \mid lpha_n$$

续例 1. 回文语言 $L_{\text{pal}} = \{w \in \{0,1\}^* \mid w = w^R\}$ 的文法可设计为

$$G = (\{A\}, \{0, 1\}, \{A \to \varepsilon \mid 0 \mid 1 \mid 0A0 \mid 1A1\}, A).$$

字符使用的一般约定

- 终结符: 0,1,..., a,b,...
- 终结符串: ..., w, x, y, z
- 非终结符: S, A, B, . . .
- ◆ 终结符或非终结符: ..., X, Y, Z
- 终结符或非终结符组成的串: $\alpha, \beta, \gamma, ...$

例2. 简化版的算数表达式:

运算只有"加"和"乘"(+,*),参数仅为标识符;

• 标识符: 以 {a,b} 开头由 {a,b,0,1} 组成的字符串.

这样的表达式集合可用文法 Geon 表示

$$G_{\text{exp}} = (\{E, I\}, \{a, b, 0, 1, +, *, (,)\}, P, E),$$

其中产生式集 P 中有 10 条产生式

$$1. E \rightarrow I$$
 $5. I \rightarrow a$ $9. I \rightarrow I0$ $2. E \rightarrow E + E$ $6. I \rightarrow b$ $10. I \rightarrow I1$ $3. E \rightarrow E * E$ $7. I \rightarrow Ia$ $4. E \rightarrow (E)$ $8. I \rightarrow Ib$

注意, 变元 I 所定义的标识符集合, 刚好是 $(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b}+\mathbf{0}+\mathbf{1})^*$.

归约和派生

非形式定义

从字符串到文法变元的分析过程, 称为递归推理或归约; 从文法变元到字符串的分析过程, 称为推导或派生.

- 归约: 自底向上, 由产生式的体向头的分析
- 派生: 自顶向下, 由产生式的头向体分析

续例 2. 用算数表达式文法 G_{exp} , 将 a*(a+b00) 归约的过程.

1.
$$E \rightarrow I$$

2. $E \rightarrow E + E$

$$3. E \rightarrow E * E$$

$$5. E \rightarrow E * E$$

$$4. E \rightarrow (E)$$

$$4. E \rightarrow (E)$$

$$4. E \rightarrow (E)$$

5. $I \rightarrow a$

6. $I \rightarrow b$ 7. $I \rightarrow Ia$ 8. $I \rightarrow Ib$ 9. $I \rightarrow I0$ 10. $I \rightarrow I1$

续例 2. 用算数表达式文法 $G_{\text{exp}},$ 将 a*(a+b00) 归约的过程.

1. $E \to I$		串归约到变元		应用产生式	重用结果
$2. E \rightarrow E + E$	$\overline{(1)}$	a	I	5. $I \rightarrow a$	_
$3. E \rightarrow E * E$	(2)	b	I	5. $I \rightarrow b$	_
$4. E \rightarrow (E)$	(3)	b0	I	9. $I \rightarrow I0$	(2)
5. $I \rightarrow a$	(4)	b00	I	9. $I \rightarrow I0$	(3)
	(5)	a	E	1. $E \to I$	(1)
$6. I \rightarrow b$	(6)	b00	E	1. $E \to I$	(4)
7. $I \rightarrow Ia$	(7)	a + b00	E	$2. E \rightarrow E + E$	(5), (6)
8. $I \rightarrow Ib$	(8)	(a + b00)	E	4. $E \to (E)$	(7)
9. $I \rightarrow I0$	(9)	a*(a+b00)	E	$3. E \to E * E$	(5), (8)
10. $I \rightarrow I1$					

派生和归约的形式定义

定义

若 $CFG\ G = (V, T, P, S)$, 设 $\alpha, \beta, \gamma \in (V \cup T)^*$, $A \in V$, $A \to \gamma \in P$, 那么称 在 G 中由 $\alpha A \beta$ 可派生出 $\alpha \gamma \beta$, 记为

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
.

相应的, 称 $\alpha\gamma\beta$ 可归约为 $\alpha A\beta$.

- $\alpha A\beta \Rightarrow \alpha \gamma \beta$, 即用 $A \to \gamma$ 的右部 γ 替换串 $\alpha A\beta$ 中变元 A 得到串 $\alpha \gamma \beta$
- 如果语境中 G 是已知的, 可省略, 记为 $\alpha A\beta \Rightarrow \alpha \gamma \beta$

$$\alpha_i \Longrightarrow \alpha_{i+1}$$

成立. 即 α_1 经过零步或多步派生可得到 α_m

$$\alpha_1 \underset{\overrightarrow{G}}{\Rightarrow} \alpha_2 \underset{\overrightarrow{G}}{\Rightarrow} \cdots \underset{\overrightarrow{G}}{\Rightarrow} \alpha_{m-1} \underset{\overrightarrow{G}}{\Rightarrow} \alpha_m,$$

$$\alpha_1 \stackrel{*}{\underset{G'}{\longrightarrow}} \alpha_m$$
.

• $\dot{\pi}$ 在 α 派生出 β 刚好经过了 i 步. 可记为

$$lpha \stackrel{i}{\overrightarrow{G}} eta.$$

续例 2. 算数表达式 a*(a+b00) 在文法 $G_{\rm exp}$ 中的派生过程.

续例 2. 算数表达式 a*(a+b00) 在文法 $G_{\rm exp}$ 中的派生过程.

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow I * (E)$$

$$\Rightarrow I * (E + E) \Rightarrow I * (E + I) \Rightarrow I * (I + I)$$

$$\Rightarrow I * (a + I) \Rightarrow a * (a + I) \Rightarrow a * (a + I0)$$

$$\Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

最左派生和最右派生

定义

为限制派生的随意性,要求只替换符号串中最左边变元的派生过程, 称为最左派生,记为

$$ightharpoonup^*, \quad \stackrel{*}{\underset{
m lm}{\longrightarrow}},$$

只替换最右的, 称为最右派生, 记为

$$\Rightarrow$$
, \Rightarrow .

• 任何派生都有等价的最左派生和最右派生

 $A \stackrel{*}{\Rightarrow} w$ 当且仅当 $A \stackrel{*}{\underset{\longrightarrow}{\Longrightarrow}} w$ 当且仅当 $A \stackrel{*}{\underset{\longrightarrow}{\Longrightarrow}} w$.

续例 2. 表达式 a*(a+a) 在 $G_{\rm exp}$ 中的最左派生和最右派生分别为: $1. \ E \to I \qquad \qquad E \underset{\rm lm}{\rightleftharpoons} E*E \qquad \qquad E \underset{\rm lm}{\rightleftharpoons} E*E$

$$2. E \rightarrow E + E \qquad \qquad \Rightarrow I * E \qquad \qquad \Rightarrow E * (E)$$

$$3. E \rightarrow E * E \qquad \Rightarrow a * E \qquad \Rightarrow E * (E + E)$$

$$4. E \rightarrow (E) \qquad \Rightarrow a * (E) \qquad \Rightarrow E * (E + I)$$

$$5. I \rightarrow a \qquad \Rightarrow a * (E + E) \qquad \Rightarrow E * (E + a)$$

$$5. I \rightarrow a \qquad \qquad \underset{\text{Im}}{\Rightarrow} a * (E + E) \qquad \qquad \underset{\text{rm}}{\Rightarrow} E * (E + a)$$

$$6. I \rightarrow b \qquad \qquad \underset{\text{Im}}{\Rightarrow} a * (I + E) \qquad \qquad \underset{\text{rm}}{\Rightarrow} E * (I + a)$$

$$7. I \rightarrow Ia \qquad \qquad \underset{\text{Im}}{\Rightarrow} a * (a + E) \qquad \qquad \underset{\text{rm}}{\Rightarrow} E * (a + a)$$

$$8. I \rightarrow Ib \qquad \qquad \underset{\text{Im}}{\Rightarrow} a * (a + I) \qquad \qquad \underset{\text{rm}}{\Rightarrow} I * (a + a)$$

$$9. I \rightarrow I0 \qquad \qquad \underset{\text{rm}}{\Rightarrow} a * (a + a) \qquad \qquad \underset{\text{rm}}{\Rightarrow} a * (a + a)$$

10. $I \rightarrow I1$

文法的语言

定义

$$CFGG = (V, T, P, S)$$
 的语言定义为

$$\mathbf{L}(G) = \{ w \mid w \in T^*, \ S \stackrel{*}{\Longrightarrow} w \}.$$

那么符号串 w 在 L(G) 中, 要满足:

- w 仅由终结符组成;
- ② 初始符号 S 能派生出 w.

上下文无关语言

定义

语言 L 是某个 CFG G 定义的语言, 即 $L = \mathbf{L}(G)$, 则称 L 为上下文无关语言 $(CFL, Context\text{-}Free\ Language)$.

• 上下文无关是指在文法派生的每一步

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$
,

符号串 γ 仅根据A 的产生式派生, 而无需依赖A 的上下文 α 和 β .

文法的等价性

定义

如果有两个文法 $CFGG_1$ 和 $CFGG_2$, 满足

$$\mathbf{L}(G_1) = \mathbf{L}(G_2),$$

则称 G_1 和 G_2 是等价的.

句型

定义

若 CFGG = (V, T, P, S), 初始符号 S 派生出来的符号串, 称为 G 的句型, 即

$$\alpha \in (V \cup T)^* \perp S \stackrel{*}{\Rightarrow} \alpha.$$

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 称 α 为左句型. 如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 称 α 为右句型.

- 只含有终结符的句型, 也称为 G 的句子
- 而 L(G) 就是文法 G 全部的句子

例 3. 给出语言 $L = \{w \in \{0,1\}^* \mid w \text{ contains at least three 1s} \}$ 的文法.

解 $\colon S o A1A1A1A,\, A o 0A\mid 1A\mid arepsilon$

例 4. 描述 CFG $G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow ab\}, S)$ 定义的语言?

解: $\mathbb{L}(G) = \{a^n b^n \mid n \ge 1\}$,因为 $S \Rightarrow aSb \Rightarrow \cdots \Rightarrow a^{n-1}Sb^{n-1} \Rightarrow a^n b^n$.

例 5. 请为语言 $L = \{0^n 1^m \mid n \neq m\}$ 设计文法.

$$egin{array}{lll} S
ightarrow AC \mid CB & A
ightarrow A0 \mid 0 \ C
ightarrow 0C1 \mid arepsilon & B
ightarrow 1B \mid 1 \ \end{array}$$

例 6. 设计 $L_{eq} = \{w \in \{0,1\}^* \mid w \neq 0 \text{ 和 1 个数相等}\}$ 的文法.

 \mathbb{H} 1: $S \to 0.51 \mid 1.50 \mid SS \mid \varepsilon$, 可找地归结构, 用发重构造地归结构; \mathbb{H} 2: $S \to S0.S1S \mid S1.S0S \mid \varepsilon$, "目标串"这样构成, 由变量定义变量.

例 7. 设计 $L_{j\geq 2i} = \{a^i b^j \mid j \geq 2i\}$ 的文法.

程序设计语言的文法定义

. . .

• C — ISO C 1999 definition
...
selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement
...

例 8. [Exe. 5.1.3] Show that every regular laugnage is a context-free laugnage.

例 8. [Exe. 5.1.3] Show that every regular laugnage is a context-free laugnage.

证明:对正则表达式 R 中运算符的个数 n 进行归纳.

归纳基础: 当 n=0 时, R 只能是 ε , \varnothing 或 a ($a \in \Sigma$), 可以构造仅有一条产生式的文法 $S \to \varepsilon$, $S \to \varnothing$ 或 $S \to a$ 得到.

归纳递推: 假设当 $n \le m$ 时成立. 当 n = m + 1 时, R 的形式只能由表达式 R_1 和 R_2 由连接、并或闭包形成:

- 若 $R = R_1 + R_2$, 则 R_1 和 R_2 中运算符都不超过 m, 所以都存在文法 G_1 和 G_2 , 分别开始于 G_1 和 G_2 , 只需构造新产生式和开始符号 G_1 为 G_2 的产生式, 构成 G_2 的文法;
- 若 $R = R_1 R_2$, 则同理构造 $S \rightarrow S_1 S_2$ 即可;
- 若 $R = R_1^*$, 则构造 $S \to SS_1 \mid \varepsilon$ 即可.

且每种构造, 文法的语言与该表达式的语言等价.

 \mathfrak{P} 9. [Exe. 5.1.5] Let $T = \{0, 1, (,), +, *, \varnothing, e\}$. We may think of T as the set of symbols used by regular expressions over the alphabet $\{0, 1\}$; the only difference is that we use e for symbol ε , to avoid potential confusion in what follows. Your task is to design a CFG with set of terminals T that generates exactly the regular expressions with alphabet $\{0, 1\}$.

 \mathfrak{P} 9. [Exe. 5.1.5] Let $T = \{0, 1, (,), +, *, \varnothing, e\}$. We may think of T as the set of symbols used by regular expressions over the alphabet $\{0, 1\}$; the only difference is that we use e for symbol ε , to avoid potential confusion in what follows. Your task is to design a CFG with set of terminals T that generates exactly the regular expressions with alphabet $\{0, 1\}$.

 $\mathfrak{M}: S \to S + S \mid SS \mid S^* \mid (S) \mid 0 \mid 1 \mid \varnothing \mid e.$

上下文无关文法

- 上下文无关文法
- 语法分析树
 - 形式定义
 - 语法树和派生的等价性
- 文法和语言的歧义性
- 文法的化简与范式

派生或归约的过程可以表示成树形结构.

- 例 2 文法 G_{exp} 中推导算数表达式 a*(a+a) 的过程
- 例 6 中语言 L_{eq} 的文法中推导 0011 的过程

语法分析树的形式定义

定义

CFGG = (V, T, P, S) 的语法分析树 (语法树或派生树) 为:

- 每个内节点标记为 V 中的变元符号;
- ② 每个叶节点标记为 $V \cup T \cup \{\varepsilon\}$ 中的符号;
- ❸ 如果某内节点标记是 A, 其子节点从左至右分别为

$$X_1, X_2, \cdots, X_n$$

那么

$$A \to X_1 X_2 \cdots X_n \in P$$
,

若有 $X_i = \varepsilon$, 则 ε 是 A 唯一子节点, 且 $A \to \varepsilon \in P$.

定义

语法树的全部叶节点从左到右连接起来, 称为该树的产物或结果.

• 如果树根节点是初始符号 S, 叶节点是终结符或 ε , 那么该树的产物属于 $\mathbf{L}(G)$.

定义

语法树中标记为 A 的内节点及其全部子孙节点构成的子树, 称为 A 子树.

语法分析树和派生的等价性

定理 17

$$CFG\ G = (V, T, P, S)$$
 且 $A \in V$, 那么文法 G 中

$$A \stackrel{*}{\Rightarrow} \alpha$$

当且仅当 G 中存在以 A 为根节点产物为 α 的语法树.

证明: $[\widehat{\mathbf{z}} \widehat{\mathbf{j}}]$ 对 $A \Rightarrow \alpha$ 的步骤数 j 归纳证明.

证明: [充分性] 对 $A \rightarrow \alpha$ 的步骤数 i 归纳证明.

归纳基础: 当 j=1 时, 即 $A\Rightarrow\alpha$, 那么有 $A\to\alpha\in P$, 可构造 $\stackrel{A}{\wedge}$.

归纳递推: 假设 i < n 时命题成立. 当 i = n + 1 时, $A \stackrel{n+1}{\Longrightarrow} \alpha$ 的派生过程为

$$A \Rightarrow X_1 \cdots X_m \stackrel{n}{\Rightarrow} \alpha_1 \cdots \alpha_m = \alpha.$$

即第 1 步一定由某产生式 $A \to X_1 X_2 \cdots X_m \in P$ 派生.

而 X_i 若非终结符, 一定有 $X_i \Rightarrow \alpha_i$ 且不超过 n 步, 由归纳假 设存在语法树 $\bigwedge_{\alpha_i}^{X_i}$. 因此可以构造以 A 为根, 以 X_i 为子树 $X_1\cdots X_m$ (或叶子) 的语法树, 其产物刚好为 α .

 $\alpha_1 \cdots \alpha_m$

[必要性] 对语法分析树的内节点数 j 归纳证明.

[必要性] 对语法分析树的内节点数 j 归纳证明.

归纳基础: 当 j=1 时, 即 $\stackrel{A}{\underset{\alpha}{\wedge}}$, A 必为根, 则 $A \rightarrow \alpha \in P$, 所以 $A \stackrel{*}{\Rightarrow} \alpha$.

归纳递推: 假设 $j \leq n$ 时命题成立. 当 j = n+1 时, 根节点 A 的儿子依次为 X_1, X_2, \ldots, X_m , 则

$$A \to X_1 \cdots X_m \in P$$
, $\mathbb{A} A \Rightarrow X_1 \cdots X_m$.

而 X_i 子树 (或叶子) 内节点数都不超过 n,由归纳假设有

$$X_i \stackrel{*}{\Rightarrow} \alpha_i$$

从左至右连接 α_i , 刚好为树的产物 α , 所以有

$$X_1X_2\cdots X_m \stackrel{*}{\Rightarrow} \alpha_1X_2\cdots X_m \stackrel{*}{\Rightarrow} \cdots \stackrel{*}{\Rightarrow} \alpha_1\alpha_2\cdots \alpha_m = \alpha.$$

因此 $A \Rightarrow \alpha$ 命题成立.

语法树唯一确定最左 (右) 派生

- 每棵语法分析树都有唯一的最左 (右) 派生
- 给定 CFG $G = (V, T, P, S), A \in V$, 以下命题等价:
 - lackloss 通过递归推理, 确定串 w 在变元 A 的语言中.
 - ② 存在以 A 为根节点, 产物为 w 的语法分析树.
 - $A \stackrel{*}{\Rightarrow} w.$
 - $A \stackrel{*}{\Longrightarrow} w.$
 - $\bullet A \stackrel{*}{\underset{\rm rm}{\Longrightarrow}} w.$

orall 10. [Exe. 5.2.2] Suppose that G is a CFG without any productions that have ε as the right side. If w is in L(G), the length of w is n, and w has a derivation of m steps, show that w has a parse tree with n+m nodes.

 \emptyset 10. [Exe. 5.2.2] Suppose that G is a CFG without any productions that have ε as the right side. If w is in L(G), the length of w is n, and w has a derivation of m steps, show that w has a parse tree with n+m nodes.

证明:

- ① 派生 w 的每一步推导都对应语法树的一个内节点, 所以 w 语法树中共有 m 个内节点:
- ② 每个 w 的终结符都构成一个叶节点, 所以至少有 n 个叶节点, 而由于 G 中没有空产生式, 因此不会有标记为 ε 的叶节点, 所以只能有 n 个叶节点. 所以 w 的语法树有 n+m 个节点.

例 11. [Exe. 5.2.3] Suppose all is as in Exercise 5.2.2, but G may have some productions with ε as the right side. Show that a parse tree for a string w other than ε may have as many as n+2m-1 nodes, but no more.

例 11. [Exe. 5.2.3] Suppose all is as in Exercise 5.2.2, but G may have some productions with ε as the right side. Show that a parse tree for a string w other than ε may have as many as n + 2m - 1 nodes, but no more.

证明:

- ① 派生 w 的每一步推导都对应语法树的一个内节点, 所以 w 语法树中共有 m 个内节点
- ② 每个 w 的终结符都构成一个叶节点, 所以至少有 n 个叶节点.
- ③ 推导过程中, 每次空产生式的应用, 都会增加一个标记 ε 的叶节点, 但显然不能全部的 m 步都使用空产生式, 所以最多增加 m-1 个 ε 叶节点. 因此 w 的语法树有最多 m+n+m-1=n+2m-1 个节点.

上下文无关文法

- 上下文无关文法
- 语法分析树
- 文法和语言的歧义性
 - 文法歧义性的消除
 - 语言的固有歧义性
- 文法的化简与范式

文法的歧义性

定义

如果 CFGG 使某些符号串有两棵不同的语法分析树, 称文法 G 是歧义的.

续例 2. 算数表达式的文法 G_{exp} 中, 对句型 a+a*a 有下面两棵语法分析树:

文法歧义性的消除

有些文法的歧义性, 可以通过重新设计文法来消除. 续例 2. 文法 G_{\exp} 重新设计为文法 G_{\exp} 可消除歧义.

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid I$$

$$I \rightarrow a$$

$$I \rightarrow b$$

$$I \rightarrow Ia$$

$$I \rightarrow Ib$$

$$I \rightarrow Ib$$

$$I \rightarrow I0$$

$$I \rightarrow I1$$

语言的固有歧义性

定义

定义同样的语言可以有多个文法,如果 CFLL 的所有文法都是歧义的,那么称语言 L 是固有歧义的.

• 固有歧义的语言确实存在, 如语言

$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

中任何形为 $a^nb^nc^n$ 的串, 总会有两棵语法树.

• "判定任何给定 CFG G 是否歧义"是一个不可判定问题.

上下文无关文法

- 上下文无关文法
- 语法分析树
- 文法和语言的歧义性
- 文法的化简与范式
 - 消除无用符号
 - 消除 ε -产生式
 - 消除单元产生式
 - 乔姆斯基范式
 - 格雷巴赫范式

为什么要化简

- 典型问题: 给定 CFG G 和串 w, 判断 $w \in L(G)$?
- 编译器设计和自然语言处理的基本问题之一
- 但文法的形式非常自由, 过于复杂不易于自动处理
- 以不改变语言为前提, 化简文法和限制文法的格式

例12. 如下文法中, 有无意义的变元和产生式

$$S \to 0DS1D \mid B \mid \varepsilon$$

$$B \to BC1 \mid 0CBC$$

$$A \to A0 \mid A1 \mid \varepsilon$$

$$C \to D$$

$$D \to \varepsilon$$

文法的化简

- 消除无用符号: 对文法定义语言没有贡献的符号
- ② 消除 ε 产生式: $A \to \varepsilon$ (得到语言 $L \{\varepsilon\}$)
- 3 消除单元产生式: $A \rightarrow B$

无用符号

定义

CFG G = (V, T, P, S),符号 $X \in (V \cup T)$:

- 如果 $S \Rightarrow \alpha X \beta$, 称 X 是可达的;
- **2** 如果 $\alpha X \beta \stackrel{*}{\Rightarrow} w \ (w \in T^*)$, 称 X 是产生的;
- 3 如果 X 同时是产生的和可达的, 即

$$S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w \quad (w \in T^*),$$

则称 X 是有用的, 否则称 X 为无用符号.

消除无用符号

消除无用符号: 删除全部含有"非产生的"和"非可达的"符号的产生式

计算"产生的"符号集

- 每个 T 中的符号都是产生的;
- **2** $A \rightarrow \alpha \in P$ 且 α 中符号都是产生的, 则 A 是产生的.

计算"可达的"符号集

- \blacksquare 符号 S 是可达的;
- ② $A \to \alpha \in P$ 且 A 是可达的, 则 α 中符号都是可达的.

定理 18

每个非空的 CFL 都能被一个不带无用符号的 CFG 定义.

注意

- 先寻找并消除全部非"产生的"符号
- 再寻找并消除全部非"可达的"符号
- 否则可能消除不完整

例 13. 消除如下文法无用符号 $S \rightarrow AB \mid a$ $A \rightarrow b$

解: 先消除非产生的 $S \rightarrow a$ $A \rightarrow b$ 再消除非可达的 $S \rightarrow a$

消除 ε-产生式

定义

文法中形如 $A \rightarrow \varepsilon$ 的产生式称为 ε -产生式. 如果变元 $A \stackrel{*}{\Rightarrow} \varepsilon$. 称 A 是可空的.

- ε-产生式在文法定义语言时,除产生空串外没有其他帮助
- 对于 CFL L, 消除其文法中全部的 ε -产生式后, 得到语言 $L-\{\varepsilon\}$

确定"可空变元"

- ① 如果 $A \rightarrow \varepsilon$, 则 A 是可空的; ② 如果 $B \rightarrow \alpha$ 且 α 中的每个符号都是可空的. 则 B 是可空的.
- # 10 11 1.

- 将含有可空变元的一条产生式 $A \rightarrow X_1 X_2 \cdots X_n$,
- 用一组产生式 $A \rightarrow Y_1 Y_2 \cdots Y_n$ 代替, 其中:
- ① 若 X_i 不是可空的, Y_i 为 X_i ;
- ② 若 X_i 是可空的, Y_i 为 X_i 或 ε ;
- 3 但 Y_i 不能全为 ε .

定理 19

任何 CFGG, 都存在一个不带无用符号和 ε -产生式的 CFGG', 使 $\mathbf{L}(G') = \mathbf{L}(G) - \{\varepsilon\}$.

例 14. 消除 CFG
$$G=(\{S,A,B\},\{a,b\},P,S)$$
 的 ε -产生式.

$$S \to AB$$

$$A \to AaA \mid \varepsilon$$
$$B \to BbB \mid \varepsilon$$

$$A \rightarrow AaA \mid Aa \mid aA \mid a$$

 $A \rightarrow Bab \mid Bb \mid bb \mid b$

消除单元产生式

确定"单元对"

如果有 $A \Rightarrow B$, 则称 [A,B] 为单元对.

- $A \rightarrow B \in P$, 则 [A, B] 是单元对;
- ② 若 [A,B] 和 [B,C] 都是单元对,则 [A,C] 是单元对.

消除单元产生式

- \blacksquare 删除全部形为 $A \rightarrow B$ 的单元产生式;
- ② 对每个单元对 [A,B],将 B 的产生式复制给 A.

定理 20

定义.

每个不带 ε 的 CFL 都可由一个不带无用符号, ε -产生式和单元产生式的文法

例 15. 消除文法的单元产生式

$$S \rightarrow A \mid B \mid 0S1$$
$$A \rightarrow 0A \mid 0$$
$$B \rightarrow 1B \mid 1$$

$$S o 0S1$$
 $A o 0A \mid 0$ $B o 1B \mid 1$

文法化简的可靠顺序

- **①** 消除 ε-产生式;
- ❷ 消除单元产生式;
- ③ 消除非产生的无用符号;
- 消除非可达的无用符号.

- 例 16. [Exe. 7.1.2] Begin with the grammar:
 - $S \to ASB \mid \varepsilon$
 - $A \rightarrow aAS \mid a$
 - $B \rightarrow SbS \mid A \mid bb$
 - Eliminate ε -productions.
 - Eliminate any unit productions in the resulting gramme
 - Eliminate any unit productions in the resulting grammar.
 Eliminate any useless symbols in the resulting grammar.

限制文法格式

将任意形式的文法转换为:

- 乔姆斯基范式 (CNF, Chomsky Normal Form)
- ❷ 格雷巴赫范式 (GNF, Greibach Normal Form)

乔姆斯基范式

定理 21 (乔姆斯基范式 CNF)

每个不带 ε 的 CFL 都可由这样的 CFG G 定义, G 中每个产生式都形为

$$A \to BC$$
 $\not A \to a$

其中 A, B 和 C 都是变元, a 是终结符.

- 利用 CNF 派生长度为 n 的串, 刚好需要 2n-1 步
- 因此存在算法判断任意字符串 w 是否在给定的 CFL 中
- 利用 CNF 的 CYK 算法 $O(n^3)$ 时间复杂度的解析算法

CFG 转为 CNF 的方法

● 将产生式

$$A \to X_1 X_2 \cdots X_m \quad (m > 2)$$

中每个终结符 a 替换为新变元 C_a , 并增加新产生式 $C_a \rightarrow a$

② 引入新变元
$$D_1, D_2, \cdots, D_{m-2}$$
, 将产生式
$$A \to B_1 B_2 \cdots B_m \quad (m > 2)$$
 替换为一组级联的产生式

 $A o B_1 D_1$ $D_1 o B_2 D_2$

$$D_1 \to B_2 D_2 \\ \cdots$$

 $D_{m-2} \to B_{m-1}B_m$

例 17. CFG $G = (\{S, A, B\}, \{a, b\}, P, S)$, 产生式集合 P 为:

$$S \rightarrow bA \mid aB$$
$$A \rightarrow bAA \mid aS \mid a$$
$$B \rightarrow aBB \mid bS \mid b$$

请设计等价的 CNF 文法.

#: CNF 为
$$A \to C_b A \mid C_a B$$
 $A \to C_a S \mid C_b D_1 \mid a$ $D_1 \to AA$ $C_a \to a$ $B \to C_b S \mid C_a D_2 \mid b$ $D_2 \to BB$ $C_b \to b$

证明: 设 CFL L 不含 ε , 由定理 20, 存在不含 ε -产生式和单元产生式的等价 文法 $G_1 = (V, T, P, S)$. 考虑 P 中一条产生式 $A \to X_1 X_2 \dots X_m \ (m > 2)$.

- 若某个 X_i 是终结符 a, 则引入新变元 C_a 和新产生式 $C_a \rightarrow a$, 并用 C_a 替换 X_i , 得文法 $G_2 = (V', T, P', S)$.
- ② 显然 $L(G_1) \subseteq L(G_2)$, 因为如果 $\alpha \underset{G_1}{\Rightarrow} \beta$, 那么 $\alpha \underset{G_2}{*} \beta$.
- **3** 用归纳法证明 $A \stackrel{?}{\rightleftharpoons} w \Longrightarrow A \stackrel{*}{\rightleftharpoons} w$, 这里的 $A \in V$, $w \in T^*$.
 - ① 当 i = 1 时是显然的, 或者用了 P 中未修改的产生式, 或者用了被修改的产生式, 而二者都有 $A \gtrsim w$.
 - 假设当 $i \leq n$ 时命题成立. 当 i = n + 1 时, $A \stackrel{i}{\rightleftharpoons}_{G_2} w$ 的第 1 步, 必然使用了某个产生式 $A \rightarrow B_1 B_2 \cdots B_m$, 即 $A \stackrel{i}{\rightleftharpoons}_{G_2} B_1 B_2 \cdots B_m \stackrel{n}{\rightleftharpoons}_{G_2} w = w_1 w_2 \cdots w_m$ 那么, 如果 $B_i \in V' V$, B_i 一定是对应某个终结符 a_i 的 C_{a_i} , w_i 必然是 a_i , 令 $X_i = a_i$; 如果 $B_i \in V$, $B_i \stackrel{*}{\rightleftharpoons}_{G_2} w_i$ 一定不超过 n 步, 由归纳假设, $B_i \stackrel{*}{\rightleftharpoons}_{G_1} w_i$, 那么令 $X_i = B_i$. 由 P' 的结构, $A \rightarrow X_1 X_2 \cdots X_m$ 是 P 的一条产生式, 所以 $A \stackrel{*}{\rightleftharpoons}_{G_1} X_1 X_2 \cdots X_m \stackrel{*}{\rightleftharpoons}_{G_1} w_1 w_2 \cdots w_m = w$.

所以 $L(G_2) \subseteq L(G_1)$.

格雷巴赫范式

定理 22 (格雷巴赫范式 GNF)

每个不带 ε 的 CFL 都可由这样的 CFGG 定义, G 中每个产生式都形为

$$A \to a\alpha$$

其中 A 是变元, a 是终结符, α 是零或多个变元的串.

- GNF 每个产生式都会引入一个终结符
- 长度为 n 的串的派生恰好是 n 步

例 18. 将以下文法转换为 GNF.

$$S \to AB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

解: GNF 为

直接左递归

定义

文法中形式为 $A \rightarrow A\alpha$ 的产生式, 称为直接左递归.

消除直接左递归

 $A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$

- 其中 $\alpha_i \neq \varepsilon$, β_j 不以 A 开始;
- 到入新变元 B, 并用如下产生式替换

$$A \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_m \mid \beta_1 B \mid \beta_2 B \mid \dots \mid \beta_m B$$
$$B \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n \mid \alpha_1 B \mid \alpha_2 B \mid \dots \mid \alpha_n B$$

间接左递归

定义

文法中如果有形式为

$$A \to B\alpha \mid \dots$$

 $B \to A\beta \mid \dots$

的产生式, 称为间接左递归.

• 会有 $A \Rightarrow B\alpha \Rightarrow A\beta\alpha$, 无法通过代换消除递归

消除间接左递归

- **①** 将文法中变元重命名为 A_1, A_2, \cdots, A_n ;
- ② 通过代入, 使产生式都形如

$$A_i o A_j lpha$$

- $A_i \to a\alpha$
 - 但要求 i < j;
- 3 消除直接左递归 A_i → $A_i\beta$, 再代入其他产生式.

例 19. Convert the following grammar to GNF.

 $S \to AB$

 $A \rightarrow BS \mid b$

 $B \to SA \mid a$

解· 1. 重命名变元, 代换 i > j 的 A_i 2. 消除直接左递归 $A_1 \rightarrow A_2 A_3$ $A_1 \rightarrow A_2 A_3$ $A_2 \rightarrow A_3 A_1 \mid b$ $A_2 \rightarrow A_3 A_1 \mid b$ $A_3 \rightarrow a \mid A_1A_2 \mid A_2A_3A_2 \mid$ $A_3 \rightarrow bA_3A_2 \mid a \mid bA_3A_2B_1 \mid aB_1$ $A_3A_1A_3A_2 \mid bA_3A_2$ $B_1 \to A_1 A_3 A_2 \mid A_1 A_3 A_2 B_1$ $3. A_0$ 产生式代入到 A_0 , A_0 产生式代入到 A_1 , A_1 产生式代入 B_1 $A_3 \to bA_3A_2 \mid a \mid bA_3A_2B_1 \mid aB_1$ $A_2 \to bA_3A_2A_1 \mid aA_1 \mid bA_3A_2B_1A_1 \mid aB_1A_1 \mid b$ $A_1 \rightarrow bA_3A_2A_1A_3 \mid aA_1A_3 \mid bA_3A_2B_1A_1A_3 \mid aB_1A_1A_3 \mid bA_3$ $B_1 \to bA_3A_2A_1A_3A_3A_2 \mid aA_1A_3A_3A_2 \mid bA_3A_2B_1A_1A_3A_3A_2 \mid$ $aB_1A_1A_3A_3A_2 \mid bA_3A_3A_2 \mid bA_3A_2A_1A_3A_3A_2B_1 \mid aA_1A_3A_3A_2B_1 \mid$ $bA_3A_2B_1A_1A_3A_3A_2B_1 \mid aB_1A_1A_3A_3A_2B_1 \mid bA_3A_3A_2B_1$

GNF 引理 1

如果有文法 G = (V, T, P, S), 设 $A \rightarrow \alpha_1 B \alpha_2$ 是 P 中的一个产生式, 且 $B \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$ 是 P 中的全部 B 产生式. 将产生式 $A \to \alpha_1 B \alpha_2$ 从 P

 $A \to \alpha_1 \beta_1 \alpha_2 \mid \alpha_1 \beta_2 \alpha_2 \mid \cdots \mid \alpha_1 \beta_n \alpha_2$

中删除,并增加

一组产生式 得到文法
$$G_1 = (V T P' S)$$
 那久 $L(G) = L(G)$

一组产生式, 得到文法 $G_1 = (V, T, P', S)$, 那么 $\mathbf{L}(G) = \mathbf{L}(G_1)$.

GNF 引理 1

如果有文法 G=(V,T,P,S), 设 $A\to\alpha_1B\alpha_2$ 是 P 中的一个产生式, 且 $B\to\beta_1\mid\beta_2\mid\cdots\mid\beta_n$ 是 P 中的全部 B 产生式. 将产生式 $A\to\alpha_1B\alpha_2$ 从 P 中删除, 并增加

$$A \to \alpha_1 \beta_1 \alpha_2 \mid \alpha_1 \beta_2 \alpha_2 \mid \dots \mid \alpha_1 \beta_n \alpha_2$$

一组产生式, 得到文法 $G_1 = (V, T, P', S)$, 那么 $\mathbf{L}(G) = \mathbf{L}(G_1)$.

证明:

- 显然 $L(G_1) \subseteq L(G)$, 因为 G_1 的派生中, 如果用到了 $A \to \alpha_1 \beta_i \alpha_2$, 在 G 中可以使用 $A \rightleftharpoons \alpha_1 B \alpha_2 \rightleftharpoons \alpha_1 \beta_i \alpha_2$.
- ② 而因为 $A \to \alpha_1 B \alpha_2$ 是唯一在 G 中而不再 G_1 中的产生式, 每当 G 的派生中用到了 $\alpha_1 B \alpha_2$ 时, 一定会在后面某一步中用到形如 $B \to \beta_i$ 的产生式来派生 B, 这两步在 G_1 中可以使用一步 $A \rightleftharpoons_{G_1} \alpha_1 \beta_i \alpha_2$ 来代替, 所以 $\mathbf{L}(G) \subset \mathbf{L}(G_1)$.

GNF 引理 2

如果有文法 G = (V, T, P, S), 设带有直接左递归的 A 产生式为

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$$

其中 β_i 不以 A 开头. 在 V 中引入新的变元 B 并用以下产生式

$$A \to \beta_1 \mid \beta_2 \mid \dots \mid \beta_m \mid \beta_1 B \mid \beta_2 B \mid \dots \mid \beta_m B$$

$$B \to \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n \mid \alpha_1 B \mid \alpha_2 B \mid \dots \mid \alpha_n B$$

替换全部 A 产生式, 得到文法 $G_1 = (V \cup \{B\}, T, P', S)$, 那么 $\mathbf{L}(G) = \mathbf{L}(G_1)$.

证明: 在文法 G 中一系列使用 $A \to A\alpha_i$ 的最左派生, 最后必以 $A \to \beta_j$ 结束, 而这样的最左派生

$$A \underset{\overline{\text{Im}}}{\Longrightarrow} A\alpha_{i_1} \underset{\overline{\text{Im}}}{\Longrightarrow} A\alpha_{i_2}\alpha_{i_1} \underset{\overline{\text{Im}}}{\Longrightarrow} \cdots$$
$$\underset{\overline{\text{Im}}}{\Longrightarrow} A\alpha_{i_p}\alpha_{i_{p-1}} \dots \alpha_{i_1}$$
$$\underset{\overline{\text{Im}}}{\Longrightarrow} \beta_j\alpha_{i_p}\alpha_{i_{p-1}} \dots \alpha_{i_1},$$

在 G_1 中可以使用一系列最右派生来代替

$$A \underset{\text{rm}}{\Longrightarrow} \beta_{j}B \underset{\text{rm}}{\Longrightarrow} \beta_{j}\alpha_{i_{p}}B \underset{\text{rm}}{\Longrightarrow} \beta_{j}\alpha_{i_{p}}\alpha_{i_{p-1}}B \underset{\text{rm}}{\Longrightarrow} \cdots$$

$$\underset{\text{rm}}{\Longrightarrow} \beta_{j}\alpha_{i_{p}}\alpha_{i_{p-1}}\dots\alpha_{i_{2}}B$$

$$\underset{\text{rm}}{\Longrightarrow} \beta_{j}\alpha_{i_{p}}\alpha_{i_{p-1}}\dots\alpha_{i_{2}}\alpha_{i_{1}}.$$

而且, 相反的转换也成立, 因此 $L(G) = L(G_1)$.

形式语言与自动机理论

下推自动机

王春宇

计算机科学与技术学院 哈尔滨工业大学

下推自动机

- 下推自动机
 - 形式定义
 - 瞬时描述和转移符号
- 下推自动机接受的语言
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机

下推自动机的形式定义

定义

下推自动机(PDA, Pushdown Automata) P 为七元组

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q, 有穷状态集;
- ② Σ, 有穷输入符号集;
- ❸ Γ,有穷栈符号集;
- \bullet $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$, 状态转移函数;
- **6** q_0 ∈ Q, 初始状态;
- **6** Z_0 ∈ $\Gamma \Sigma$, 栈底符号;
- **7**F ⊆ Q, 接收状态集或终态集.

PDA 的动作和状态转移图

如果 $q, p_i \in Q$ $(1 \le i \le m), a \in \Sigma, Z \in \Gamma, \beta_i \in \Gamma^*, 可以有动作:$

例 1. 设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA.

例 1. 设计识别 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA.

$$0,0/00$$

$$0,Z_0/0Z_0 \qquad 1,0/\varepsilon$$

$$0,0/0Z_0 \qquad 1,0/\varepsilon \qquad Q_1 \qquad Q_2$$

$$0,0/00 \qquad 0,Z_0/0Z_0 \qquad Q_2 \qquad Q_2 \qquad Q_2 \qquad Q_2 \qquad Q_2 \qquad Q_3 \qquad Q_4 \qquad Q_2 \qquad Q_4 \qquad Q_5 \qquad$$

例 2. 设计识别 $L_{wwr}=\{ww^R\mid w\in (\mathbf{0}+\mathbf{1})^*\}$ 的 PDA.

例 2. 设计识别 $L_{wwr} = \{ww^R \mid w \in (\mathbf{0} + \mathbf{1})^*\}$ 的 PDA.

$$0,0/00 \qquad 0,1/01$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\cot \xrightarrow{Q_0} \xrightarrow{\varepsilon,Z_0/Z_0} \xrightarrow{Q_1} \xrightarrow{\varepsilon,Z_0/Z_0} \xrightarrow{Q_1} \xrightarrow{\varepsilon,Z_0/Z_0} \xrightarrow{\varphi}$$

瞬时描述

定义

为描述 PDA 瞬间的格局, 定义 $Q \times \Sigma^* \times \Gamma^*$ 中三元组

$$(q, w, \gamma)$$

为瞬时描述(ID, Instantaneous Description), 表示此时 PDA 处于状态 q, 剩余输入串 w, 栈为 γ .

转移符号

定义

在 PDA P 中如果 $(p,\beta) \in \delta(q,a,Z)$, 由 $(q,aw,Z\alpha)$ 到 $(p,w,\beta\alpha)$ 的变化, 称 为 ID 的转移 \vdash_p , 记为

 $(q, aw, Z\alpha) \vdash_{P} (p, w, \beta\alpha)$

其中 $w \in \Sigma^*$, $\alpha \in \Gamma^*$.

若有 IDI, J 和 K, 递归定义片为:

- $\bullet I \vdash_{\!\scriptscriptstyle P}^* I;$
- ② 若 $I \vdash_{P} J$, $J \vdash_{P}^{*} K$, 则 $I \vdash_{P}^{*} K$.

若 P 已知, 可省略, 记为 \vdash 和 \vdash *.

续例 1. 语言 $L_{01} = \{0^n 1^n \mid n \ge 1\}$ 的 PDA, 识别 0011 时的 ID 序列.

$$0,0/00$$

$$0,Z_0/0Z_0 \qquad 1,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,0/\varepsilon \qquad Q_0 \qquad Q_0$$

$$0,Z_0/0Z_0 \qquad Q_0 \qquad Q_0$$

有关 ID 的序列

对 PDA P 的一个合法 ID 序列 (计算):

- 把相同的字符串加到所有 ID 的输入串末尾, 所得到的计算合法;
- ② 把相同的栈符号串加到所有 ID 的栈底之下, 所得到的计算合法;
- ❸ 把所有 ID 中都未消耗的部分输入串去掉, 所得到的计算合法.

对 $\forall w \in \Sigma^*, \forall \gamma \in \Gamma^*,$ 如果

$$(q,x,\alpha) \vdash_{\!\scriptscriptstyle P}^* (p,y,\beta),$$

那么

$$(q, xw, \alpha\gamma) \vdash_{P}^{*} (p, yw, \beta\gamma).$$

$$\boxed{0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0} \dots$$

$$q_{i}$$
Finite Control
$$\boxed{1}$$

定理 24

对 $\forall w \in \Sigma^*$, 如果

$$(q,xw,\alpha) \, \vdash_{\!\!\scriptscriptstyle P}^* (p,yw,\beta),$$

那么

$$(q, xw, \alpha) \vdash_{P} (p, yw, \beta),$$

 $(q, x, \alpha) \vdash_{P}^{*} (p, y, \beta).$

下推自动机

- 下推自动机
- 下推自动机接受的语言
 - 从终态方式到空栈方式
 - 从空栈方式到终态方式
- 下推自动机与文法的等价性
- 确定型下推自动机

下推自动机接受的语言

定义

$PDA\ P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, 以两种方式接受语言:

• P 以终态方式接受的语言, 记为L(P), 定义为

$$\mathbf{L}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \gamma), \ p \in F \}.$$

• P 以空栈方式接受的语言, 记为 $\mathbf{N}(P)$, 定义为

$$\mathbf{N}(P) = \{ w \mid (q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon) \}.$$

续例 2. 识别 L_{wwr} 的 PDA P, 从终态方式接受, 改为空栈方式接受. 用 $\delta(q_1, \varepsilon, Z_0) = \{(q_1, \varepsilon)\}$ 代替 $\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$ 即可.

$$0,0/00 \qquad 0,1/01 \qquad \varepsilon, Z_0/\varepsilon$$

$$1,0/10 \qquad 1,1/11 \qquad 0,0/\varepsilon$$

$$0,Z_0/0Z_0 \qquad 1,Z_0/1Z_0 \qquad 1,1/\varepsilon$$

$$\text{start} \longrightarrow Q \qquad \varepsilon, Z_0/Z_0 \qquad Q_1$$

$$\varepsilon, 0/0 \qquad \varepsilon, 1/1$$

从终态方式到空栈方式

定理 25

如果 PDA P_F 以终态方式接受语言 L, 则存在 PDA P_N 以空栈方式接受 L.

证明: 设 $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, 构造 PDA P_N ,

$$P_N = (Q \cup \{p_0, p\}, \ \Sigma, \ \Gamma \cup \{X_0\}, \ \delta_N, \ p_0, \ X_0, \ \varnothing).$$

start
$$\longrightarrow p_0$$
 $\varepsilon, X_0/Z_0X_0$ q_0 P_F g_0 $\varepsilon, Y/\varepsilon$ $\forall Y \in \Gamma \cup \{X_0\}$

其中 δ_N 定义如下:

lacktriangle P_N 首先将 P_F 的栈底符号压栈, 开始模拟 P_F :

$$\delta_N(p_0, \varepsilon, X_0) = \{(q_0, Z_0 X_0)\};$$

- ② P_N 模拟 P_F 的动作: $\forall q \in Q, \ \forall a \in \Sigma \cup \{\varepsilon\}, \ \forall Y \in \Gamma$: $\delta_N(q,a,Y)$ 包含 $\delta_F(q,a,Y)$ 的全部元素:
- **①** 在状态 p 时, 弹出全部栈中符号, 即 $\forall Y \in \Gamma \cup \{X_0\}$: $\delta_N(p, \varepsilon, Y) = \{(p, \varepsilon)\}.$

即 $\mathbf{L}(P_F) \subset \mathbf{N}(P_N)$.

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0)$

 $\Rightarrow w \in \mathbf{N}(P_N)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_{S_t}}^* (q_f, \varepsilon, \gamma X_0) \vdash_{P_{S_t}}^* (p, \varepsilon, \varepsilon)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \delta_N$ 构造 p_0 部分

定理23

 P_N 模拟 P_F

 δ_N 构造 q_f 和p部分

$$w \in \Sigma$$

 $w \in \mathbf{L}(P_F) \Rightarrow (q_0, w, Z_0) \vdash_{P_F}^* (q_f, \varepsilon, \gamma)$

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_-}^* (q_f, \varepsilon, \gamma X_0)$

对 $\forall w \in \Sigma^*$ 有

$$w \in \mathbf{N}(P_N) \Rightarrow (p_0, w, X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon)$$
 其他状态不可能空栈
$$\Rightarrow (p_0, w, X_0) \vdash_{P_N} (q_0, w, Z_0 X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon) \qquad \text{第一个动作必然到} q_0$$

$$\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma X_0) \vdash_{P_N}^* (p, \varepsilon, \varepsilon) \qquad \text{必经} q_f \in F 消耗完} w$$

$$\Rightarrow (q_0, w, Z_0) \vdash_{P_N}^* (q_f, \varepsilon, \gamma) \qquad \qquad P_N 中未用过栈底的 X_0$$

$$\Rightarrow (q_0, w, Z_0) \vdash_{P_F}^* (q_f, \varepsilon, \gamma) \qquad \qquad 均为模拟 P_F$$

$$\Rightarrow w \in \mathbf{L}(P_F)$$

即 $\mathbf{N}(P_N) \subseteq \mathbf{L}(P_F)$. 所以 $\mathbf{N}(P_N) = \mathbf{L}(P_F)$.

从空栈方式到终态方式

定理 26

如果 PDA P_N 以空栈方式接受语言 L, 则存在 PDA P_F 以终态方式接受 L.

证明: 设 $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, \varnothing)$. 构造 PDA P_F ,

$$P_F = (Q \cup \{p_0, p_f\}, \ \Sigma, \ \Gamma \cup \{X_0\}, \ \delta_F, \ p_0, \ X_0, \ \{p_f\})$$

其中 δ_F 定义如下:

- $lackbox{0}$ P_F 开始时,将 P_N 栈底符号压入栈,并开始模拟 P_N , $\delta_F(p_0,\varepsilon,X_0)=\{(q_0,Z_0X_0)\};$
- ② P_F 模拟 P_N , $\forall q \in Q$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall Y \in \Gamma$: $\delta_F(q, a, Y) = \delta_N(q, a, Y)$;
- $oldsymbol{3}$ 在 $orall q\in Q$ 时,看到 P_F 的栈底 X_0 ,则转移到新终态 p_f : $\delta_F(q,\varepsilon,X_0)=\{(p_f,\varepsilon)\}.$

$$\forall w \in \Sigma^* \ 有$$
$$w \in \mathbf{N}(P_N) :$$

$$w \in \mathbf{N}(P_N) \Rightarrow (q_0, w, Z_0) \downarrow_{P_N}^* (q, \varepsilon, \varepsilon)$$

$$\Rightarrow (q_0, w, Z_0) \vdash_{P_N} (q, \varepsilon, \varepsilon)$$

$$\Rightarrow (q_0, w, Z_0 X_0) \vdash_{P_N}^* (q, \varepsilon, X_0)$$

$$(P_N)$$

$$(P_N)$$

 $\mathbb{P} \mathbf{N}(P_N) \subset \mathbf{L}(P_F)$.

 $\Rightarrow (q_0, w, Z_0 X_0) \vdash_{\mathbb{R}_-}^* (q, \varepsilon, X_0)$ $\Rightarrow (p_0, w, X_0) \vdash_{P_0} (q_0, w, Z_0 X_0) \vdash_{P_0}^* (q, \varepsilon, X_0) \delta_F$ 构造, p_0 部分

 $\Rightarrow (p_0, w, X_0) \vdash_{P_{-}}^* (p_f, \varepsilon, \varepsilon)$

 $\Rightarrow w \in \mathbf{L}(P_F)$

 $\Rightarrow (p_0, w, X_0) \vdash_{P_n}^* (q, \varepsilon, X_0) \vdash_{P_n} (p_f, \varepsilon, \varepsilon)$

定理23

 P_{F} 模拟 P_{N}

 δ_F 构造, p_f 部分

$yt \forall w \in \Sigma^*$ 有

$$w \in \mathbf{L}(P_{F}) \Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}}^{*} (p_{f}, \varepsilon, \varepsilon)$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0}) \vdash_{P_{F}} (p_{f}, \varepsilon, \varepsilon) \qquad \qquad \text{终 } q \text{ 才可达 } p_{f}$$

$$\Rightarrow (p_{0}, w, X_{0}) \vdash_{P_{F}} (q_{0}, w, Z_{0}X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0}) \qquad \qquad P_{F} \text{ 第一个动作}$$

$$\Rightarrow (q_{0}, w, Z_{0}X_{0}) \vdash_{P_{F}}^{*} (q, \varepsilon, X_{0}) \qquad \qquad \text{即上式}$$

$$\Rightarrow (q_{0}, w, Z_{0}) \vdash_{P_{N}}^{*} (q, \varepsilon, \varepsilon) \qquad \qquad P_{N} \text{ 与 } X_{0} \text{ 无关}$$

$$\Rightarrow w \in \mathbf{N}(P_{N})$$

即
$$\mathbf{N}(P_F) \subseteq \mathbf{L}(P_N)$$
. 所以 $\mathbf{L}(P_F) = \mathbf{N}(P_N)$.

例 3. 接受 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的数量相同} \}$ 的 PDA.

例 3. 接受 $L_{eq} = \{w \in \{0,1\}^* \mid w \text{ 中字符 } 0 \text{ 和 } 1 \text{ 的数量相同} \}$ 的 PDA.

$$0, Z_0/0Z_0$$
 $1, 0/10$ $0, 0/00$ $1, Z_0/1Z_0$ $1, 1/11$ $0, 1/01$ $\varepsilon, Z_0/\varepsilon$ $1, 0/\varepsilon$ $0, 1/\varepsilon$ start \longrightarrow

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA.

例 4. 接受 $L = \{0^n 1^m \mid 0 \le n \le m \le 2n\}$ 的 PDA.

start

$$\begin{array}{c|c}
1,0/\varepsilon \\
\hline
0,Z_0/Z_0 & \varepsilon,Z_0/\varepsilon \\
0,Z_0/0Z_0 & 1,0/0 \\
0,0/00 & 1,0/\varepsilon
\end{array}$$

下推自动机

- 下推自动机
- 下推自动机接受的语言
- 下推自动机与文法的等价性
 - 由 CFG 到 PDA
 - 由 PDA 到 CFG

• 确定型下推自动机

由 CFG 到 PDA

例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 PDA.

由 CFG 到 PDA

例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 PDA.

续例 5. 设计语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$ 的 CFG.

CFG G:

$$S \to AB$$

$$A \to 0A \mid \varepsilon$$

 $B \rightarrow 0B1 \mid 01$

字符串 00011 的最左派生:

$$S \underset{\text{lm}}{\Rightarrow} AB \underset{\text{lm}}{\Rightarrow} 0AB \underset{\text{lm}}{\Rightarrow} 0B \underset{\text{lm}}{\Rightarrow} 00B1 \underset{\text{lm}}{\Rightarrow} 00011$$

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$. 用 PDA 栈顶符号的替换, 模拟文法的最左派生:

	PDA				CFG	
PDA	A 的 ID 4	转移	PDA 的动作	产生式	最左派生	
$(q_0,$	00011,	S)			S	
$\vdash (q_0,$	00011,	AB)	$\varepsilon, S/AB$	$S \to AB$	$\Rightarrow AB$	
$\vdash (q_0,$	00011,	0AB)	$\varepsilon, A/0A$	$A \to 0A$	$\Rightarrow_{\text{lm}} 0AB$	
$\vdash (q_0,$	0011,	AB)	$0,0/\varepsilon$			
$\vdash (q_0,$	0011,	B)	arepsilon, A/arepsilon	$A \to \varepsilon$	$\Rightarrow 0B$	
$\vdash (q_0,$	0011,	0B1)	$\varepsilon, B/0B1$	$B \to 0B1$	$\Rightarrow 00B1$	
$\vdash (q_0,$	011,	B1)	$0,0/\varepsilon$			
$\vdash (q_0,$	011,	011)	$\varepsilon, B/01$	$B \to 01$	$\Rightarrow 00011$	
$\vdash (q_0,$	11,	11)	$0,0/\varepsilon$			
$\vdash (q_0,$	1,	1)	1,1/arepsilon			
$\vdash (q_0,$	$\varepsilon,$	$\varepsilon)$	$1,1/\varepsilon$			

续例 5. 语言 $L = \{0^n 1^m \mid 1 \le m \le n\}$.

任何 CFL L, 一定存在 PDA P, 使 $L = \mathbf{N}(P)$.

构造与文法等价的 PDA

如果 CFG G = (V, T, P', S), 构造 PDA

$$(T, P', S)$$
, 构造 PDA

如来 CFG
$$G = (V, T, P',$$

$$P = (\{q\}, T, V \cup T, \delta, q, S, \varnothing),$$

其中
$$\delta$$
为:

那么 L(G) = N(P).

$$\forall a \in T$$
:

$$\forall a \in T:$$

$$\bullet \ \forall A \in V:$$

$$\delta(q, \varepsilon, A) = \{(q, \beta) \mid A \to \beta \in P'\}$$

 $\delta(q, a, a) = \{(q, \varepsilon)\}$

$$\cup T, \delta, q, S, \varnothing),$$

$$\varnothing),$$

例 6. 为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

例 6. 为文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 构造 PDA.

$$\varepsilon, S/aAA$$
 $\varepsilon, A/aS$ $a, a/\varepsilon$ $\varepsilon, A/a$ $\varepsilon, A/bS$ $b, b/\varepsilon$

证明·往证

$$S \stackrel{*}{\Rightarrow} w \iff (q, w, S) \vdash_{\mathbb{P}}^{*} (q, \varepsilon, \varepsilon).$$

[充分性] 往证

$$S \stackrel{*}{\Longrightarrow} w \implies (q, w, S) \vdash^* (q, \varepsilon, \varepsilon).$$

设 $S \stackrel{*}{\Longrightarrow} w$ 中第 i 个左句型为 $x_i A_i \alpha_i$, 其中 $x_i \in \Sigma^*$, $A_i \in V$, $\alpha_i \in (V \cup T)^*$. 并将 S 看作第 0 个左句型 $x_0 A_0 \alpha_0 = S$. 那么

将 w 看作为第 n 个左句型 $x_n A_n \alpha_n = w$. 那么

$$x_n = w, A_n = \varepsilon, \alpha_n = \varepsilon.$$

 $x_0 = \varepsilon$, $A_0 = S$, $\alpha_0 = \varepsilon$.

再对派生步骤 i 归纳. 往证

$$S \stackrel{i}{\Longrightarrow} x_i A_i \alpha_i \wedge w = x_i y_i \Longrightarrow (q, w, S) \vdash^* (q, y_i, A_i \alpha_i).$$

归纳基础: 最左派生在第 0 步时, 显然成立

$$(q, w, S) \vdash^* (q, y_0, A_0 \alpha_0) = (q, w, S).$$

归纳递推: 假设第 i 步时成立, 当第 i+1 步时, 一定是 $A_i \to \beta$ 应用到 $x_i A_i \alpha_i$

 $S \stackrel{i}{\Rightarrow} x_i A_i \alpha_i \Rightarrow x_i \beta \alpha_i = x_{i+1} A_{i+1} \alpha_{i+1}$.

即最左变元 A_{i+1} 一定在 $\beta \alpha_i$ 中, 设 A_{i+1} 之前的终结符为 x', 那么由

$$x_i \beta \alpha_i = x_i x' A_{i+1} \alpha_{i+1} = x_{i+1} A_{i+1} \alpha_{i+1}$$
$$x_i y_i = x_i x' y_{i+1} = x_{i+1} y_{i+1} = w$$

则有

$$\beta \alpha_i = x' A_{i+1} \alpha_{i+1},$$
$$y_i = x' y_{i+1}.$$

那么, 在 PDA 中从 ID $(q, y_i, A_i\alpha_i)$ 模拟最左派生, 用产生式 $A_i \rightarrow \beta$ 替换栈 顶 A_i 后, 有

$$(q, w, S) \vdash^* (q, y_i, A_i \alpha_i)$$
 归纳假设
$$\vdash (q, y_i, \beta \alpha_i) \qquad A_i \rightarrow \beta$$

$$= (q, x'y_{i+1}, x'A_{i+1}\alpha_{i+1})$$
 片* $(q, y_{i+1}, A_{i+1}\alpha_{i+1})$ 弹出栈顶终结符

因此 $S \stackrel{n}{\Longrightarrow} w \Longrightarrow (q, w, S) \vdash^* (q, y_n, A_n \alpha_n) = (q, \varepsilon, \varepsilon)$, 即充分性得证.

[必要性] 往证更一般的, 对任何变元 A, 都有:

$$(q, x, A) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow A \stackrel{*}{\Rightarrow} x.$$

对 ID 转移 $(q, x, A) \vdash (q, \varepsilon, \varepsilon)$ 的次数 i 归纳证明.

归纳基础: 当 i=1 步时, 只能是 $x=\varepsilon$ 且 $A\to\varepsilon$ 为产生式, 所以 $A\Longrightarrow\varepsilon$.

归纳递推: 假设 $i \leq n \ (n \geq 1)$ 步时上式成立. 当 i = n+1 时, 因为 A 是变元, 其第 1 步转移一定是应用某产生式 $A \to Y_1 Y_2 \cdots Y_m$

$$(q, x, A) \vdash (q, x, Y_1 Y_2 \cdots Y_m)$$

其中 Y_i 是变元或终结符. 而其余的 n 步转移

$$(q, x, Y_1Y_2\cdots Y_m) \vdash^* (q, \varepsilon, \varepsilon)$$

中每个 Y_i 从栈中被完全弹出时,将消耗掉的那部分 x 记为 x_i ,那么显然有

$$x = x_1 x_2 \cdots x_m$$
.

而每个 Y_i 从栈中被完全弹出时, 都不超过 n 步, 所以由归纳假设,

$$(q, x_i, Y_i) \stackrel{*}{\vdash} (q, \varepsilon, \varepsilon) \Longrightarrow Y_i \stackrel{*}{\Longrightarrow} x_i.$$

再由产生式 $A \rightarrow Y_1 Y_2 \cdots Y_m$, 有

$$A \Rightarrow Y_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 Y_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots Y_m$$

$$\stackrel{*}{\Rightarrow} x_1 x_2 \cdots x_m = x.$$

因此当 A = S, x = w 时,

$$(q, w, S) \vdash^* (q, \varepsilon, \varepsilon) \Longrightarrow S \stackrel{*}{\Rightarrow} w$$

成立, 即必要性得证.

所以,任何 CFL 都可由 PDA 识别.

构造与 GNF 格式文法等价的 PDA

为每个产生式, 定义 δ 为:

如果 GNF 格式的 CFG G = (V, T, P', S), 那么构造 PDA

$$V, T, P', S$$
), 那么构造 PDA

 $P = (\{q\}, T, V, \delta, q, S, \emptyset),$

 $\delta(q, a, A) = \{(q, \beta) \mid A \to a\beta \in P'\}.$

续例 6. 文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

续例 6. 文法 $S \rightarrow aAA$, $A \rightarrow aS \mid bS \mid a$ 为 GNF 格式, 构造等价的 PDA.

start
$$\longrightarrow$$
 $a, S/AA$

$$a, A/S$$

$$b, A/S$$

由 PDA 到 CFG

定理 28

如果 PDA P, 有 $L = \mathbf{N}(P)$, 那么 L 是上下文无关语言.

构造与 PDA 等价的 CFG

i = 0, 为 $[qXp] \rightarrow a.$

如果 PDA
$$P = (Q, \Sigma, \Gamma, \delta, \delta)$$

如果 PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, \emptyset)$$
, 那么构造 CFG $G = (V, \Sigma, P', S)$, 其中 V 和 P' 为

如果 PDA
$$P = (Q, \Sigma, \Gamma, \delta, \epsilon)$$

1 $V = \{ [qXp] \mid p,q \in Q, X \in \Gamma \} \cup \{S\};$

2 对 $\forall p \in Q$, 构造产生式 $S \rightarrow [q_0 Z_0 p]$:

3 对 $\forall (p, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$, 构造 $|Q|^n$ 个产生式

 $[qXr_n] \to a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$

其中 $a \in \Sigma \cup \{\varepsilon\}$, $X,Y_i \in \Gamma$, 而 $r_i \in Q$ 是 n 次 |Q| 种状态的组合;

证明: 只需证明

$$(q, w, X) \vdash^* (p, \varepsilon, \varepsilon) \iff [qXp] \stackrel{*}{\Rightarrow} w.$$

并令 $X = Z_0$, $q = q_0$, 与开始符号 S 的产生式一起, 即可完成定理的证明.

[充分性] 对 PDA 中 $(q, w, X) \vdash^* (p, \varepsilon, \varepsilon)$ 的转移次数 i 归纳证明.

归纳基础: 当 i=1 时, P 只能消耗不超过一个的字符, 即 w=a

$$(q, w, X) = (q, a, X) \vdash (p, \varepsilon, \varepsilon),$$

其中
$$a \in \Sigma \cup \{\varepsilon\}$$
 且 $(p, \varepsilon) \in \delta(q, a, X)$, 则由文法的构造会有

其中 $a \in \Sigma \cup \{\varepsilon\}$ 且 $(p,\varepsilon) \in \delta(q,a,X)$, 则由丈法的构造会

$$[qXp] \to a,$$

因此 $[qXp] \stackrel{*}{\Rightarrow} a = w$.

归纳递推: 假设当 $i \leq m \ (m \geq 1)$ 时命题成立. 当 i = m+1 时, 转移的第 1 步, 一定由某个 $(r_0, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$ 开始

$$(q, ax, X) \vdash (r_0, x, Y_1Y_2 \cdots Y_n),$$

其中 $a \in \Sigma \cup \{\varepsilon\}, w = ax$. 而其余的 m 步为

$$(r_0, x, Y_1 Y_2 \cdots Y_n) \vdash^* (p, \varepsilon, \varepsilon).$$

而这些转移, 会从栈中依次弹出 Y_i 并消耗掉部分 x. 若分别记为 x_i , 则有

$$w = ax = ax_1x_2\cdots x_n.$$

若设弹出 Y_i 之前和之后的状态分别是 r_{i-1} 和 r_i , 这里 $i=1,2,\cdots n$, 那么有 $(r_{i-1},x_i,Y_i) \vdash (r_i,\varepsilon,\varepsilon)$,

且转移步数都不会超过 m. 那么, 由归纳假设有

$$(r_{i-1}, x_i, Y_i) \stackrel{*}{\vdash} (r_i, \varepsilon, \varepsilon) \implies [r_{i-1}Y_ir_i] \stackrel{*}{\Rightarrow} x_i.$$

而由动作 $(r_0, Y_1Y_2 \cdots Y_n) \in \delta(q, a, X)$ 所构造的产生式会包含

$$[qXr_n] \to a[r_0Y_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n].$$

而显然弹出 X 后的状态 p 与弹出 Y_n 后的状态 r_n 是同一个. 所以

$$[qXp] = [qXr_n] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2] \cdots [r_{n-1}Y_nr_n] \stackrel{*}{\Rightarrow} ax_1x_2 \cdots x_n = w$$

因此充分性得证. 那么当 $X = Z_0, q = q_0$ 时有

$$(q_0, w, Z_0) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon) \Longrightarrow [q_0 Z_0 p] \stackrel{*}{\Rightarrow} w,$$

以及产生式 $S \to [q_0 Z_0 p]$ 有 $S \stackrel{*}{\Rightarrow} w$, 即 PDA 接受的串可由文法派生得到.

[必要性]: 略.

例 7. 将 PDA $P = (\{p,q\}, (0,1), \{X,Z\}, \delta, q, Z)$ 转为 CFG, 其中 δ 如下:

(1) $\delta(q,1,Z) = \{(q,XZ)\}$ (2) $\delta(q,1,X) = \{(q,XX)\}$ (3) $\delta(q,0,X) = \{(p,X)\}$ (4) $\delta(q,\varepsilon,Z) = \{(q,\varepsilon)\}$

(5) $\delta(p, 1, X) = \{(p, \varepsilon)\}\$ (6) $\delta(p, 0, Z) = \{(q, Z)\}\$

	5.1 15		
δ	产生式		
$\overline{(0)}$	$S \to [qZq]$		
	$S \to [qZp]$		
(1)	$[qZq] \rightarrow 1[qXq][qZq]$		
	$[qZq] \rightarrow 1[qXp][pZq]$	消除无用符号	重命名 (可选)
	$[qZp] \rightarrow 1[qXq][qZp]$	$S \to [qZq]$	$S \to A$
	$[qZp] \rightarrow 1[qXp][pZp]$	L3	
(2)	$[qXq] \rightarrow 1[qXq][qXq]$	[qZq] o 1[qXp][pZq]	$A \to 1BC$
(2)		$[qXp] \rightarrow 1[qXp][pXp]$	$B \to 1BD$
	$[qXq] \to 1[qXp][pXq]$	$[qXp] \rightarrow 0[pXp]$	$B \to 0D$
	$[qXp] \rightarrow 1[qXq][qXp]$	[qZq] ightarrow arepsilon	$A \to \varepsilon$
	$[qXp] \rightarrow 1[qXp][pXp]$		· -
(3)	$ [qXq] \to 0[pXq] $	$[pXp] \to 1$	$D \to 1$
(3)		$[pZq] \rightarrow 0[qZq]$	$C \to 0A$
	$[qXp] \to 0[pXp]$		
(4)	$ [qZq] \rightarrow \varepsilon$		
(5)	$[pXp] \rightarrow 1$		
(6)	$[pZp] \rightarrow 0[qZp]$		
	$[pZq] \to 0[qZq]$		

下推自动机

- 下推自动机
- 下推自动机接受的语言
- 下推自动机与文法的等价性
- 确定型下推自动机
 - 正则语言与 DPDA
 - DPDA 与无歧义文法

确定型下推自动机

定义

如果 $PDA P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ 满足

- **●** $\forall a \in \Sigma \cup \{\varepsilon\}, \ \delta(q, a, X) \$ **至**多有一个动作;
- ② $\exists a \in \Sigma$, 如果 $\delta(q, a, X) \neq \emptyset$, 那么 $\delta(q, \varepsilon, X) = \emptyset$.

则称 P 为确定型下推自动机(DPDA).

DPDAP 以终态方式接受的语言 L(P) 称为 DCFL.

• DPDA $\forall (q, a, Z) \in Q \times \Sigma \times \Gamma \text{ 满} \mathcal{L} |\delta(q, a, Z)| + |\delta(q, \varepsilon, Z)| \leq 1$

DPDA 与 PDA 不等价

例 8. 任何 DPDA 都无法接受 L_{wur} , 但是可以接受

$$L_{wcwr} = \{wcw^R \mid w \in (\mathbf{0} + \mathbf{1})^*\}.$$

$$0, Z_{0}/0Z_{0} \quad 1, 0/10$$

$$1, Z_{0}/1Z_{0} \quad 0, 1/01 \quad 0, 0/\varepsilon$$

$$0, 0/00 \quad 1, 1/11 \quad 1, 1/\varepsilon$$

$$\text{start} \longrightarrow Q_{0} \quad \begin{array}{c} c, Z_{0}/Z_{0} \\ c, 0/0 \\ c, 1/1 \end{array} \longrightarrow Q_{1} \quad \begin{array}{c} \varepsilon, Z_{0}/Z_{0} \\ \end{array} \longrightarrow Q_{2} \quad \begin{array}{c} C \\ \end{array}$$

正则语言与 DPDA

定理 29

如果 L 是正则语言, 那么存在 DPDA P 以终态方式接受 L, 即 $L = \mathbf{L}(P)$.

证明: 显然, 因为 DPDA P 可以不用栈而模拟任何 DFA.

- Lucur 显然是 CFL, 所以 DCFL 语言类真包含正则语言
- DPDA 无法识别 Lwwr, 所以 DCFL 语言类真包含于 CFL

定义

如果语言 L 中不存在两个不同的字符串 x 和 y, 使 x 是 y 的前缀,称语言 L 满足前缀性质.

定理 30

如果有 DPDA P 且 $L = \mathbf{N}(P)$, 当且仅当 L 有前缀性质且存在 DPDA P' 使 $L = \mathbf{L}(P')$.

证明: $[\Rightarrow] \forall x \in \mathbf{N}(P)$ 会弹空 P 的栈, 所以不会接受以 x 为前缀的其他串; 而转换为终态方式不改变确定性. $[\Leftarrow]$ 到达终态则弹空栈, 即可.

• DPDA P 的 $\mathbf{N}(P)$ 更有限, 即使正则语言 $\mathbf{0}^*$ 也无法接受

DPDA 与无歧义文法

定理 31

DPDAP, 语言 $L = \mathbf{N}(P)$, 那么 L 有无歧义的 CFG.

证明: 利用定理 28 由 P 构造的文法 G 一定无歧义, 因为:

- P 是确定的, 那么它接受 w 的 ID 序列也是确定的;
- ② 而由 $\delta(q, a, X) = \{(p, Y_1 \cdots Y_n)\}$ 继续弹出 Y_i 后的状态 r_i 也是确定的;
- ❸ 那么由每个动作构造的一组产生式

$$[qXr_n] \to a[pY_1r_1][r_1Y_2r_2]\cdots[r_{n-1}Y_nr_n]$$

中, 仅会有一个是有效的;

lack 那么, G 中最左派生 $S \stackrel{*}{\Longrightarrow} w$ 就是唯一的, 所以是无歧义的.

定理 32

 $DPDA\ P$, 语言 $L = \mathbf{L}(P)$, 那么 L 有无歧义的 CFG.

证明:

- ① 设符号 \$ 不在 L 中出现, 令 $L' = \{w \mid w \in L\}$, 则 L' 具有前缀性质;
- ② 可修改 P 接受 L', 则由定理 30, 存在 DPDA P' 使 $\mathbf{N}(P') = L'$;
- **3** 由定理 31, 存在无歧义文法 G' 使 L(G') = L';
- 将 \$ 看作变元, 增加产生式 \$ → ε, 修改 G' 为文法 G;
- **6** 则文法 G 和 G' 一样无歧义, 且 $\mathbf{L}(G) = L$.
- \mathbf{b} MXX \mathbf{G} \mathbf{h} \mathbf{G} \mathbf{h} \mathbf{G} \mathbf{h} \mathbf{h} \mathbf{G}

DCFL/DPDA 的重要应用

• 程序设计语言的语法分析器

如 LR(k) 文法, Yacc 的基础, 解析的时间复杂度为 O(n) 的算法

• 非固有歧义语言的真子集

如 L_{wwr} 有无歧义文法 $S
ightarrow 0S0 \, | \, 1S1 \, | \, arepsilon$

语言类之间的关系

形式语言与自动机理论

上下文无关语言的性质

王春宇

计算机科学与技术学院 哈尔滨工业大学

上下文无关语言的性质

- 上下文无关语言的泵引理
 - 上下文无关语言的泵引理
 - 泵引理的应用
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

任何 Σ 上的所有语言是不可数的

不妨设 $\Sigma = \{a\}$, 对任何 $0 \le x < 1$ 的实数 x, 定义语言

$$L_x = \{a^n \mid x \cdot 2^n \bmod 1 \ge 1/2\},\$$

即 $a^n \in L_x$ 当且仅当 x 二进制表示的第 n+1 位为 1.

- 如果 $x \neq y$, 则 x 和 y 一定有某些位不同, 所以 $L_x \neq L_y$;
- ❷ 所以∑上的所有语言, 至少与 0 和 1 之间的实数一样多;
- Δ 因此, Σ 上的所有语言是不可数的。

任何 Σ 上的所有 CFL 是可数的

任何 CFG $G = (V, \Sigma, P, S)$ 可由符号集 $V \cup \Sigma \cup \{\varepsilon, \rightarrow, |, \lozenge\}$ 编码.

• 如文法 $S \to A \mid B, \ A \to aA \mid aC, \ B \to Bb \mid Cb, \ C \to \varepsilon \mid aCb$ 可编码为

$$S {\rightarrow} A |B {\diamondsuit} A {\rightarrow} a A |a C {\diamondsuit} B {\rightarrow} B b |C b {\diamondsuit} C {\rightarrow} \varepsilon |a C b;$$

用 0/1 编码这些符号

• 文法编码再转换为 0/1 字符串

• 当作二进制表示则为整数

2486025347845581444133243339142670726924.

- 而∑上两个文法如果不同,这样编码会得到不同的整数;
- 因此 ∑ 上所有 CFL 至多与正整数一样多, 是可数的.
- 因此, 并非所有的语言都是 CFL.

语法分析树的大小

定理 33

对于乔姆斯基范式文法 G=(V,T,P,S) 的语法树, 如果产物为终结符串 w, 且树中最长路径的长度是 n, 那么 $|w| \leq 2^{n-1}$.

证明: 对最长路径的长度归纳.

基础:为 1 时,只能是 $\frac{A}{a}$,显然成立.

遊推: 为 n 时根节点一定是 $A \to BC$, 而 B 和 C 子树最长路径最多为 n-1, 由归纳假设, 产物最长都为 2^{n-2} . 因此整棵树产物最长 $2^{n-2}+2^{n-2}=2^{n-1}$

上下文无关语言的泵引理

定理 34

如果语言 L 是 CFL, 那么存在正整数 N, 它只依赖于 L, 对 $\forall z \in L$, 只要 $|z| \geq N$, 就可以将 z 分为五部分 z = uvwxy 满足:

- $|vwx| \le N;$
- $\exists \forall i \geq 0, \ uv^i w x^i y \in L.$

证明:

- ① 设 CNF 格式 CFG G 中变元数 |V|=m, 令 $N=2^m$, 若有 $z\in L(G)$, 且 $|z|\geq N$.
- ② 则 z 的派生树内节点是二叉树, 最长路径长度至少 m+1, 节点至少 m+2 个.
- ③ 该路径由下至上 m+1 个内节点中, 必有两个 T_2 和 T_1 标记了相同的变元 A.
- 若记 T_2 产物为 w, 且是 T_1 的子树, T_1 的产物可记为 vwx, 则有 $A \Rightarrow vAx$ 和 $A \Rightarrow w$.

- **6** 那么 $\forall i \geq 0$, $A \stackrel{*}{\Rightarrow} v^i w x^i$. 不妨设 z = uvwxy, 则 $S \stackrel{*}{\Rightarrow} uAy \stackrel{*}{\Rightarrow} uv^i w x^i y$.
- **6** T_1 路径长不超过 m+1, 那么 T_1 产物长不超过 2^m , 所以 $|vwx| \leq 2^m$.
- \mathbf{O} T_2 必在 T_1 的左/右儿子中, 所以 v 和 x 不可能同时为空, 即 $vx \neq \varepsilon$.

泵引理的应用

例 1. 证明 $L = \{0^{n}1^{n}2^{n} \mid n \geq 1\}$ 不是上下文无关语言.

泵引理的应用

例 1. 证明 $L = \{0^n 1^n 2^n \mid n \ge 1\}$ 不是上下文无关语言. 证明:

- 假设 L 是 CFL, 那么存在整数 N, 对 $\forall z \in L(|z| \ge N)$ 满足泵引理.
- ② 从 L 中取 $z = 0^N 1^N 2^N$, 则显然 $z \in L$ 且 $|z| = 3N \ge N$.
- $oldsymbol{3}$ 由泵引理, z 可被分为 z=uvwxy, 且有 $|vwx|\leq N$ 和 $vx\neq \varepsilon$.
- 那么 vwx 只能包含一种或两种字符:

 - 冊 两种字符, 或为 0 和 1, 或为 1 和 2, 那么也有 uwy ∉ L;
- **⑤** 与泵引理 $uwy = uv^0wx^0y \in L$ 矛盾, 假设不成立.
- ⑥ L 不是上下文无关的.

例 2. 证明 $L = \{ww \mid w \in \{0,1\}^*\}$ 不是上下文无关的.

(错误的) 证明: 假设 L 是 CFL. 取 $z = 0^N 10^N 1$, 那么 z = uvwxy 为

则对任意 $i \ge 0$, 有 $uv^i w x^i y \in L$, 满足泵引理.

- (正确的) 证明: 假设 L 是 CFL. 取 $z=0^N1^N0^N1^N$, 将 z 分为 z=uvwxy 时
 - ① 若 vwx 在 z 中点的一侧, uv^0wx^0y 显然不可能属于 L;
- ② 若 vwx 包括 z 中点, 那么 uv^0wx^0y 为 $0^N1^i0^j1^N$, 也不可能属于 L.

所以假设不成立, L 不是 CFL.

CFL 的泵引理同样只是必要条件

有些非 CFL, 泵引理对它们没有什么作用. 例如

$$L = \{a^i b^j c^k d^l \mid i = 0 \text{ } \vec{A}, j = k = l\}$$

不是上下文无关的.

- 如果选 $z = b^j c^k d^l$, 则可以让 z = uvwxy 的 vwx 只含有 b, 那么对任何 m, 都有 $uv^m wx^m y \in L$;
- 如果选 $z = a^i b^j c^j d^j$, 则可以让 v 和 x 只包含 a, 那么对任何 m, 都有 $uv^m wx^m y \in L$.

所以无法使用泵引理证明 L 非 CFL.

Ogden 引理(的较弱形式)

如果语言 $L \in CFL$, 那么存在正整数 N, 它只依赖于 L, 对 $\forall z \in L$, 在 z 中

- 至少 N 个任意位置作标记后, 就可以将 z 分为五部分 z = uvwxy 满足:
- \mathbf{n} v 和 x 一起至少含有一个标记位置:
- $\forall i \geq 0, uv^iwx^iu \in L.$

2 vwx 中至多有 N 个标记位置:

上下文无关语言的性质

- 上下文无关语言的泵引理
- 上下文无关语言的封闭性
 - 代换的封闭性
 - 并/连接/闭包/同态/逆同态/反转的封闭性
 - 交和补运算不封闭
 - 封闭性的应用
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

代换

定义

两个字母表 Σ 到 Γ 的函数 $s: \Sigma \to 2^{\Gamma^*}$ 称为代换. Σ 中的一个字符 a 在 s 的作用下为 Γ 上的一个语言 L_a , 即

$$s(a) = L_a.$$

扩展 s 的定义到字符串,

$$s(\varepsilon) = \{\varepsilon\}$$
$$s(xa) = s(x)s(a)$$

再扩展 s 到语言, 对 $\forall L \subseteq \Sigma^*$,

$$s(L) = \bigcup_{x \in L} s(x).$$

定理 35

如果有 Σ 上的 CFL L 和代换 s, 且每个 $a \in \Sigma$ 的 s(a) 都是 CFL, 那么 s(L) 也是 CFL.

构造方法

设 CFL L 的文法 G = (V, T, P, S), 每个 s(a) 的文法 $G_a = (V_a, T_a, P_a, S_a)$. 那么 s(L) 的文法可以构造为

$$G' = (V', T', P', S)$$
:

- $\bullet V' = V \cup (\bigcup_{a \in T} V_a)$
- $T' = \bigcup_{a \in T} T_a$
- $\ensuremath{\mathfrak{g}}$ P' 包括每个 P_a 和 P 中产生式,但是要将 P 的产生式中每个终结符 a 均替换为文法 G_a 的开始符号 S_a .

证明: 对 $\forall w \in s(L)$, 那么一定存在某个 $x = a_1 a_2 \cdots a_n \in L$ 使

$$w \in s(x) = s(a_1)s(a_2)\cdots s(a_n).$$

由于 $S \stackrel{*}{\Rightarrow} x = a_1 a_2 \cdots a_n$, 所以

所以 $w \in \mathbf{L}(G')$, 即 $s(L) \subseteq \mathbf{L}(G')$.

$$w \in s(x) = s(a_1)s(a_2)\cdots s(a_n).$$

那么 w 可以分为 $w = w_1 w_2 \cdots w_n$ 且 $w_i \in s(a_i)$, 即

 $S_{a_i} \stackrel{*}{\Longrightarrow} w_i$.

 $S \stackrel{*}{\Longrightarrow} S_{a_1} S_{a_2} \cdots S_{a_n} \stackrel{*}{\Longrightarrow} w_1 w_2 \cdots w_n = w,$

因为 G' 的终结符仅能由每个 S_a 派生, 因此对 $\forall w \in \mathbf{L}(G')$ 有

$$S \stackrel{*}{\rightleftharpoons} \alpha = S_{a_1} S_{a_2} \cdots S_{a_n} \stackrel{*}{\rightleftharpoons} w.$$

因为 G' 中的每个 S_a 在 G 中是终结符 a. 所以

$$S \stackrel{*}{\Rightarrow} a_1 a_2 \cdots a_n = x \in L$$

又因为 $\alpha = S_{a_1} \cdots S_{a_n} \stackrel{*}{\overline{G}} w = w_1 \cdots w_n$, 所以 $S_{a_i} \stackrel{*}{\overline{G}} w_i$, 即 $w_i \in s(a_i)$. 那么

$$w = w_1 w_2 \cdots w_n \in s(a_1) s(a_2) \cdots s(a_n) = s(a_1 a_2 \cdots a_n) = s(x) \subseteq s(L),$$

所以 $w \in s(L)$, 即 $\mathbf{L}(G') \subseteq s(L)$. 因此 $\mathbf{L}(G') = s(L)$.

例 3. 设 $L = \{w \in \{a,b\}^* \mid w \text{ 有相等个数的 } a \text{ 和 } b\}$, 代换 $s(a) = L_a = \{0^n 1^n \mid n > 1\}$ $s(b) = L_b = \{ww^R \mid w \in (\mathbf{0} + \mathbf{1})^*\}$ 求 s(L) 的文法. 解: 设计 L 的文法为: $S \rightarrow aSbS \mid bSaS \mid \varepsilon$

 $S_a \rightarrow 0S_a1 \mid 01$ L_b 的文法为: $S_b \to 0 S_b 0 \mid 1 S_b 1 \mid \varepsilon$ 那么 s(L) 的文法为: $S \to S_a S S_b S \mid S_b S S_a S \mid \varepsilon$ $S_a \rightarrow 0S_a 1 \mid 01$ $S_b \rightarrow 0S_b0 \mid 1S_b1 \mid \varepsilon$

L。的文法为:

CFL 对并/连接/闭包/同态封闭

定理 36

上下文无关语言在并,连接,闭包,正闭包,同态下封闭.

CFL 对并/连接/闭包/同态封闭

定理 36

上下文无关语言在并, 连接, 闭包, 正闭包, 同态下封闭.

证明 1: 设 $\Sigma = \{1, 2\}, L_1, L_2$ 是任意 CFL. 定义代换

$$s(1) = L_1, \quad s(2) = L_2.$$

语言 {1, 2}, {12}, {1}* 和 {1}+ 显然都是 CFL, 那么

- **①** 由 $s(\{1, 2\}) = s(1) \cup s(2) = L_1 \cup L_2$, 所以并运算封闭;
- ② 由 $s(\{12\}) = s(12) = s(\varepsilon)s(1)s(2) = L_1L_2$, 所以连接运算封闭;

③ 闭包和正比包运算封闭,因为

$$s(\{1\}^*) = s(\{\varepsilon, 1, 11, \dots\})$$

$$= s(\varepsilon) \cup s(1) \cup s(11) \cup \dots$$

$$= \{\varepsilon\} \cup s(1) \cup s(1)s(1) \cup \dots$$

$$= L_1^*.$$

若 h 是 Σ 上的同态, L 是 Σ 上的 CFL, 对 $\forall a \in \Sigma$ 令代换 $s'(a) = \{h(a)\}$, 则

$$h(L) = \{h(w) \mid w \in L\} = \bigcup_{w \in L} \{h(w)\} = \bigcup_{w \in L} s'(w) = s'(L),$$

所以同态运算封闭.

证明 2: 用文法证明并/连接/闭包的封闭性. 设 CFL L_1 和 L_2 的文法分别为

$$G_1 = (V_1, T_1, P_1, S_1), G_2 = (V_2, T_2, P_2, S_2)$$

那么,分别构造

 $lackbox{1}{\bullet} L_1 \cup L_2$ 的文法为

$$G_{\text{union}} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \to S_1 \mid S_2\}, S);$$

② L₁L₂ 的文法为

$$G_{\text{concat}} = (V_1 \cup V_2 \cup \{S\}, \ T_1 \cup T_2, \ P_1 \cup P_2 \cup \{S \to S_1 S_2\}, \ S);$$

❸ *L*₁* 的文法为

$$G_{\text{closure}} = (V_1 \cup \{S\}, T_1, P_1 \cup \{S \rightarrow S_1 S \mid \varepsilon\}, S).$$

再证明所构造文法的正确性. 略.

CFL 对反转封闭

定理 37

如果 L 是 CFL, 那么 L^R 也是 CFL.

证明:

设 L 的文法 G = (V, T, P, S), 构造文法

$$G' = (V, T, \{A \to \alpha^R \mid A \to \alpha \in P\}, S),$$

则 $L(G') = L^R$. 证明略.

CFL 对逆同态封闭

定理 38

如果 L 是字母表 Δ 上的 CFL, h 是字母表 Σ 到 Δ^* 的同态, 那么 $h^{-1}(L)$ 也是 CFL.

CFL 对逆同态封闭

定理 38

如果 L 是字母表 Δ 上的 CFL, h 是字母表 Σ 到 Δ^* 的同态, 那么 $h^{-1}(L)$ 也是 CFL.

证明:

设 PDA
$$P=(Q,\Delta,\Gamma,\delta,q_0,Z_0,F),$$
 $\mathbf{L}(P)=L.$ 构造 $\mathbf{L}(P')=h^{-1}(L)$ 的 PDA
$$P'=(Q',\ \Sigma,\ \Gamma,\ \delta',\ [q_0,\overline{\varepsilon}],\ Z_0,\ F\times\{\overline{\varepsilon}\}).$$

在 P' 的状态中, 使用缓冲, 暂存字符 $a \in \Sigma$ 的同态串 h(a) 的后缀.

- P' q_i Z_0
- $lackbox{0}\ Q'\subset Q imes \Delta^*$: 状态 $[q,\overline{x}]$ 中的 \overline{x} 为缓冲;
- ② 设 $q \in Q$, 那么 δ' 定义如下:
 - $\bullet \ \forall [q, \overline{\varepsilon}] \in Q \times \{\overline{\varepsilon}\}, \, \forall a \in \Sigma, \, \forall X \in \Gamma$

$$\delta'([q,\overline{\varepsilon}],a,X) = \{([q,h(a)],X)\}\$$

番 若 $\delta(q, \overline{a}, X) = \{(p_1, \beta_1), (p_2, \beta_2), \cdots, (p_k, \beta_k)\},$ 则

$$\delta'([q,\overline{ax}],\varepsilon,X) = \{([p_1,\overline{x}],\beta_1),([p_2,\overline{x}],\beta_2),\cdots,([p_k,\overline{x}],\beta_k)\}$$

这里 $\overline{a} \in \Delta \cup \{\overline{\epsilon}\}$, \overline{x} 是某个 h(a) 的后缀.

CFL 对交/补运算不封闭

CFL 对交运算不封闭

因为语言

$$L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$$

$$L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$$

都是 CFL, 而

$$L_1 \cap L_2 = \{0^n 1^n 2^n \mid n \geq 1\}$$
 不是 CFL.

CFL 对补运算不封闭

因为

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}.$$

定理 39

若 $L \neq CFL$ 且 R 是正则语言, 则 $L \cap R \neq CFL$.

证明: 设 DFA $D = (Q_1, \Sigma, \delta_1, q_1, F_1)$ 且 $\mathbf{L}(D) = R$, PDA $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$ 且 $\mathbf{L}(P) = L$, 构造 PDA

$$P' = (Q_1 \times Q_2, \ \Sigma, \ \Gamma, \ \delta, \ [q_1, q_2], \ F_1 \times F_2)$$

其中 δ 为:

定理 39

若 $L \neq CFL$ 且 R 是正则语言, 则 $L \cap R \neq CFL$.

证明: 设 DFA $D = (Q_1, \Sigma, \delta_1, q_1, F_1)$ 且 $\mathbf{L}(D) = R$, PDA $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$ 且 $\mathbf{L}(P) = L$, 构造 PDA

$$P' = (Q_1 \times Q_2, \ \Sigma, \ \Gamma, \ \delta, \ [q_1, q_2], \ F_1 \times F_2)$$

其中 δ 为:

$$\delta([p,q],a,Z) = \begin{cases} \{([p,s],\beta) \mid (s,\beta) \in \delta_2(q,a,Z)\} & a = \varepsilon \\ \{([r,s],\beta) \mid r = \delta_1(p,a) \land (s,\beta) \in \delta_2(q,a,Z)\} & a \neq \varepsilon \end{cases}$$

再往证
$$\mathbf{L}(P') = L \cap R$$
, 略.

封闭性的应用

例 4. 请证明语言 L 不是 CFL

$$L = \{ w \in \{a, b, c\}^* \mid \mathbf{n}_a(w) = \mathbf{n}_b(w) = \mathbf{n}_c(w) \},\$$

其中 $n_a(w)$ 表示 w 中 a 的个数.

证明:

- 因为 a*b*c* 是正则语言,
- ② 而 $L \cap \mathbf{a}^* \mathbf{b}^* \mathbf{c}^* = \{a^n b^n c^n \mid n \ge 0\}$ 不是 CFL,
- 3 由 CFL 与正则语言的交还是 CFL, 所以 L 不可能是 CFL.

上下文无关语言的性质

- 上下文无关语言的泵引理
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

上下文无关语言的判定性质

可判定的 CFL 问题

- 空性: 只需判断文法的开始符号 S 是否为非产生的.
- 有穷性和无穷性:
 - 用不带无用符号的 CNF 的产生式画有向图:
 - ② 变元为顶点, 若有 $A \rightarrow BC$, 则 A 到 B 和 C 各画一条有向边;
- 成员性: 利用 CNF 范式, 有 CYK 算法检查串 w 是否属于 L.

CYK¹算法

- CNF G = (V, T, P, S), 以 $O(n^3)$ 时间检查 " $w = a_1 a_2 \cdots a_n \in \mathbf{L}(G)$?"
- 以动态规划方式, 在表中由下至上逐行计算 X_{ij} , 再检查 " $S \in X_{1n}$?"

$$X_{ij} = \{ A \in V \mid A \stackrel{*}{\Rightarrow} a_i a_{i+1} \cdots a_j, \ 1 \le i \le j \le n \},$$

• 计算首行

$$X_{ii} = \{ A \mid A \to a_i \in P \}$$

• 计算其他

$$X_{ij} = \left\{ A \middle| \begin{array}{l} i \le k < j, \\ BC \in X_{ik} X_{k+1,j}, \\ A \to BC \in P \end{array} \right\}$$

 X_{15}

¹J. Cocke, D. Younger, T. Kasami 分别独立发现了算法的基本思想

例 5. CNF G 如下,用 CYK 算法判断 $bbabaa \in \mathbf{L}(G)$?

$$S \to AB \mid BC$$

 $C \to AB \mid a$

$$A \to BA \mid a$$
$$B \to CC \mid b$$

例 5. CNF G 如下,用 CYK 算法判断 $bbabaa \in \mathbf{L}(G)$?

因为 $S \in X_{16} = \{S, A\}$, 所以 $bbabaa \in \mathbf{L}(G)$.

上下文无关语言的判定性质

不可判定的 CFL 问题

- 判断 CFG G 是否歧义的?
- ② 判断 CFL 是否固有歧义的?
- 3 两个 CFL 的交是否为空?
- ▲ 两个 CFL 是否相同?
- ❺ 判断 CFL 的补是否为空? 尽管有算法判断 CFL 是否为空
- ⑥ 判断 CFL 是否等于 Σ*?

上下文无关语言的性质

- 上下文无关语言的泵引理
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

乔姆斯基文法体系

如果文法 G = (V, T, P, S), 符号串 $\alpha \in (V \cup T)^*V(V \cup T)^*$, $\beta \in (V \cup T)^*$, 产生式都形如

$$\alpha \to \beta$$

即每个产生式的左部 α 中至少要有一个变元, 那么:

- 称 G 为 0 型文法或短语结构文法;
- ② 若 $|\beta| \ge |\alpha|$, 称 G 为 1 型文法或上下文有关文法;
- ③ 若 α ∈ V, 称 G 为 2 型文法或上下文无关文法;
- **④** 若 $\alpha \rightarrow \beta$ 都形如 $A \rightarrow aB$ 或 $A \rightarrow a$, 称 G 为 3 型文法或正则文法.

形式语言与自动机理论

图灵机

王春宇

计算机科学与技术学院 哈尔滨工业大学 图灵机

- 图灵机
 - 形式定义
 - 瞬时描述及其转移
 - 语言与停机
 - 整数函数计算器
- 图灵机的变形

图灵机

图灵机的形式定义

定义

图灵机(TM, Turing Machine) M 为七元组

$$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

- Q: 有穷状态集;
- ② Σ: 有穷输入符号集;
- 3 Γ: 有穷带符号集, 且总有 Σ ⊂ Γ;
- Φ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ 转移函数;
- **6** q_0 ∈ Q: 初始状态;
- **⑥** $B ∈ \Gamma \Sigma$: 空格符号;
- ⑦ $F \subseteq Q$: 终态集或接受状态集.

图灵机的动作及状态转移图

有穷控制器处于状态 q,带头所在单元格为符号 X,如果动作的定义为

$$\delta(q, X) = (p, Y, L),$$

表示状态转移到 p, 单元格改为 Y, 然后带头向左移动一个单元格.

$$q$$
 $X/Y \leftarrow p$

因为每个动作都是确定的,因此是"确定的图灵机".

例 1. 设计识别 $\{0^n1^n \mid n \ge 1\}$ 的图灵机.

例 1. 设计识别 $\{0^n1^n \mid n \ge 1\}$ 的图灵机.

续例 1. 设计识别 $\{0^n1^n \mid n \ge 1\}$ 的图灵机.

 $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, B\}, \delta, q_0, B, \{q_4\})$

δ	0	1	X	Y	B
$\overline{q_0}$	(q_1, X, R)	_	_	(q_3, Y, R)	_
q_1	$(q_1, 0, R)$	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	$(q_2, 0, L)$	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	(q_4, B, R)
q_4	_	_	_	_	_

瞬时描述

定义

图灵机虽有无穷长的带, 但非空内容总是有限的. 因此用带上全部的非空符号、当前状态和带头位置, 同时定义瞬时描述(ID) 为

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n$$

- \bullet 图灵机的当前状态 q;
- ② 带头在左起第 i 个非空格符上;
- $3X_1X_2\cdots X_n$ 是最左到最右非空格内容.
- Φ 为避免混淆, 一般假定 Q 和 Γ 不相交.

转移符号

定义

图灵机 M 中, 如果 $\delta(q, X_i) = (p, Y, L)$, 定义 ID 转移为

$$X_1 \dots X_{i-1} q X_i \dots X_n \vdash_{\scriptscriptstyle M} X_1 \dots X_{i-2} p X_{i-1} Y X_{i+1} \dots X_n$$

如果 $\delta(q, X_i) = (p, Y, R)$ 那么

$$X_1 \dots X_{i-1} q X_i \dots X_n \vdash_{M} X_1 \dots X_{i-1} Y p X_{i+1} \dots X_n$$

若某 ID 是从另一个经有限步 (包括零步) 转移而得到的, 记为 \vdash_{M} . 若 M 已知. 简记为 \vdash 和 \vdash *.

接受 0011 的 ID 序列 (M 的一个计算) 为

续例 1. 设计识别 $\{0^n1^n \mid n \ge 1\}$ 的图灵机.

续例 1. 设计识别 $\{0^n1^n \mid n \ge 1\}$ 的图灵机.

接受 0011 的 ID 序列 (M 的一个计算) 为

$$q_00011 \vdash Xq_1011 \qquad \vdash X0q_111 \qquad \vdash Xq_20Y1$$

$$\vdash q_2X0Y1 \qquad \vdash Xq_00Y1 \qquad \vdash XXq_1Y1$$

$$\vdash XXYq_11 \qquad \vdash XXq_2YY \vdash Xq_2XYY$$

$$\vdash XXq_0YY \qquad \vdash XXYq_3Y \vdash XXYYq_3B$$

$$\vdash XXYYBq_4B$$

例 2. 设计接受 $L=\{a^nb^nc^n\mid n\geq 1\}$ 的图灵机.

例 2. 设计接受 $L = \{a^n b^n c^n \mid n \ge 1\}$ 的图灵机.

$$a/a \rightarrow , Y/Y \rightarrow b/b \rightarrow , Y/Y \rightarrow 0$$

$$0 \qquad b/Y \rightarrow q_1 \qquad b/Y \rightarrow q_2 \qquad c/Y \leftarrow y/Y \rightarrow y/Y \leftarrow y/Y \rightarrow y/Y$$

例 3. 设计接受 $L = \{ww \mid w \in \{a, b\}^+\}$ 的图灵机.

例 3. 设计接受 $L = \{ww \mid w \in \{a, b\}^+\}$ 的图灵机.

思考

- DFA 和 TM 的主要区别?
- ② 计算机, 究竟是 TM 还是 DFA?

图灵机的语言

定义

如果 $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ 是一个图灵机, 则 M 接受的语言为

$$\mathbf{L}(M) = \{ w \mid w \in \Sigma^*, \ q_0 w \vdash^* \alpha p \beta, \ p \in F, \ \alpha, \beta \in \Gamma^* \}.$$

定义

如果 L 是图灵机 M 的语言, 即 $L = \mathbf{L}(M)$, 则称 L 是递归可枚举语言.

- 一般假定, 当输入串被接受时, 图灵机总会停机;
- 然而, 对于不接受的输入, 图灵机可能永远不停止.

定义

对接受和不接受的输入,都保证停机的图灵机,所接受的语言称为递归语言.

算法的形式化

保证停机的图灵机, 正是算法的好模型, 即算法概念的形式化.

- λ-caculus Alonzo Church, Stephen Kleene
- Partial recursive functions Kurt Gödel
- Post machines Emil Post
- Turing machines Alan Turing

整数函数计算器

- 传统的方法, 把整数 $i \ge 0$ 写为 1 进制, 用字符串 0^i 表示;
- 若计算 k 个自变量 i_1, i_2, \ldots, i_k 的函数 f, 用

$$0^{i_1}10^{i_2}1\cdots 10^{i_k}$$

作为 TM M 的输入;

- M 停机, 且输入带上为 0^m , 表示 $f(i_1, i_2, ..., i_k) = m$.
- M 计算的 f, 不必对所有不同的 i_1, i_2, \ldots, i_k 都有值.

定义

如果 $f(i_1, i_2, ..., i_k)$ 对所有 $i_1, i_2, ..., i_k$ 都有定义, 称 f 为全递归函数. 被图灵机计算的函数 $f(i_1, i_2, ..., i_k)$ 称作部分递归函数. 例 4. 给出计算整数真减法 (-) 的图灵机, 其定义为

$$m \dot{-} n = \left\{ \begin{array}{ll} m - n & m \ge n \\ 0 & m < n \end{array} \right..$$

例 4. 给出计算整数真减法 $(\dot{-})$ 的图灵机, 其定义为 $m \dot{-} n = \left\{ \begin{array}{ll} m-n & m \geq n \\ 0 & m < n \end{array} \right. .$

start
$$\rightarrow q_0$$
 $0/B \rightarrow q_1$ $1/1 \rightarrow q_2$ $0/1 \leftarrow q_3$ $0/0 \leftarrow 1/1 \leftarrow q_3$ $0/0 \leftarrow q_3$ $0/0 \leftarrow q_3$ $0/0 \leftarrow q_3$

例 5. 二进制数的加 1 函数, 使用符号 \$ 作为数字前的占位标记.

例如 $q_0$10011 + $q_f10100, q_0$111+q_f1000.$

例 5. 二进制数的加 1 函数, 使用符号 \$ 作为数字前的占位标记. 例如 q_0 \$10011 |* \$ q_f 10100, q_0 \$1111|* q_f 1000.

图灵机

- 图灵机
- 图灵机的变形
 - 扩展的图灵机
 - 受限的图灵机

有限控制器中可以存储有限个符号的图灵机:

$$M' = (Q', \Sigma, \Gamma, \delta, q'_0, B, F')$$

其中
$$Q' = Q \times \Gamma \times \cdots \times \Gamma$$
, $q'_0 = [q_0, B, \cdots, B]$.

多道图灵机:

$$M' = (Q, \Sigma, \Gamma', \delta, q_0, B', F)$$

其中 $\Gamma' = \Gamma \times \Gamma \times \cdots \times \Gamma$.

例 6. 利用状态中存储与多道设计 TM 识别 $L = \{wcw \mid w \in \{a, b\}^*\}.$

子程序

设计 TM 的一部分作为一个子程序:

- 具有一个指定的初始状态:
- 具有一个指定的返回状态, 但暂时没有定义动作;
- 可以具有参数和返回值.

通过进入子程序的初始状态, 实现调用; 通过返回状态的动作, 实现返回.

例 7. 设计 TM 实现全递归函数"乘法".

扩展的图灵机

多带图灵机

有穷控制器、k个带头和k条带组成. 每个动作, 根据状态和每个带头符号:

- ❶ 改变控制器中的状态;
- ② 修改带头单元格中的符号;
- ❸ 每个带头独立的向左或右移动一个单元格, 或保持不动.

开始时, 输入在第1条带上, 其他都是空的, 其形式定义非常繁琐.

定理 40

如果语言 L 被一个多带图灵机接受, 那么 L 能够被某个单带图灵机接受.

证明方法:

- **1** 用 2k 道的单带图灵机 N 模拟 k 带图灵机 M:
- ② N 用两道模拟 M 一带, 一道放置内容, 另一道标记带头;
- ❸ 模拟 M 的一个动作, N 需要从左至右, 再从右至左扫描一次;
- 第一次扫描搜集当前格局, 第二次扫描更新带头和位置.

非确定图灵机 (NTM)

在每个状态 q 和每个带符号 X 的转移, 可以有有限个选择的图灵机, 即

图灵机增加了非确定性,并未改变图灵机接受语言的能力.

$$\delta(a, Y) = \{(a_1, Y_1, D_1), (a_2, Y_2, D_2), \dots, (a_t, Y_t, D_t)\}$$

 $\delta(q, X) = \{(q_1, Y_1, D_1), (q_2, Y_2, D_2), \cdots, (q_k, Y_k, D_k)\}.$

定理 41

如果 L 被非确定图灵机接受, 那么 L 被图灵机接受.

证明方法:

- 同样用多带技术. 用确定的 TM M 模拟 NTM N:
- M 用第 1 条带存储 N 未处理的 ID. 用第 2 条带模拟 N:
- ❸ M 从第 1 条带取 N 的当前 ID 放到第 2 带:
- 若不接受, 把当前 ID 可能的 k 个转移 ID 复制到第 1 条带的最末端;
- ❺ 然后循环,继续从第 1 带取下一个 ID 去模拟.

思考题

为什么非确定性没有改变图灵机识别语言的能力?

多维图灵机

- 这种装置具有通常的有穷控制器:
- ② k 维阵列组成的带, 在 2k 个方向上都是无限的;
- ❸ 根据状态和读入符号改变状态,并沿着 k 个轴的正和负向移动;
- 开始时, 输入沿着某一个轴排列, 带头在输入的左端.

同样, 这样的扩展也没有增加额外的能力, 仍然等价于基本的图灵机.

受限的图灵机

半无穷带图灵机

图灵机的输入输出带只有一侧是无穷的.

定理 42

半无穷带图灵机, 与图灵机等价.

证明方法:

一侧无穷的图灵机带, 可使用多道技术, 模拟双侧无穷的图灵机带.

多栈机

基于下推自动机的扩展, k 栈机器是具有 k 个栈的确定型下推自动机.

定理 43

如果图灵机接受 L, 那么双栈机接受 L.

证明方法:

- 一个堆栈保存带头左边内容,一个堆栈保存带头右边内容;
- ② 带头的移动用两个栈分别弹栈和压栈模拟;
- ❸ 带头修改字符 A 为 B, 用一个栈弹出 A 而另一个压入 B 来模拟;
- 开始时输入在双栈机的输入带,但先将输入扫描并压入一个栈,再依次弹 出并压入另一个栈,然后开始模拟图灵机.

例 8. 利用双栈机器接受 $L = \{a^nb^nc^n \mid n \ge 0\}$ 和 $L = \{a^nb^nc^nd^ne^n \mid n \ge 0\}$.

形式语言与自动机理论

不可判定性

王春宇

计算机科学与技术学院 哈尔滨工业大学

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言
- 语言类的关系

不可判定问题

典型问题

给定语言 $L\subseteq \Sigma^*$ 和字符串 $w\in \Sigma^*$, 判断是否 $w\in L$ 的问题, 称为语言 L 上的一个判定性问题.

(非形式) 定义

如果一个问题, 不存在能解决它的程序, 则称为不可判定的.

不可判定问题

典型问题

给定语言 $L\subseteq \Sigma^*$ 和字符串 $w\in \Sigma^*$, 判断是否 $w\in L$ 的问题, 称为语言 L 上的一个判定性问题.

(非形式) 定义

如果一个问题, 不存在能解决它的程序, 则称为不可判定的.

是否存在不可判定的问题?

- **●** $\{L \mid L \in \Sigma^*\}$ 是不可数的;
- ② {P | P是一个程序} 是可数的;
- ❸ 问题显然比程序多,必然存在不可判定的问题.

hello-world 问题

判断带有给定输入的任意给定的程序,是否以 hello, world 为其输出的前12 个字符.

定理

hello-world 问题是不可判定的.

- "具有这个输入的这个程序是否显示 hello, world?"
- 解决这样问题的通用程序是不存在的.

(非形式) 证明: 反证法. 假设这样的程序 H 存在.

 $lackbox{1}$ H 检查程序 P 在输入 I 时的输出, 并回答 yes 或 no: I H no

② 修改 H, 在回答 no 时, 输出 hello, world: $P \longrightarrow H_1$ hello, world

③ 再修改 H_1 , 将程序 P 作为 P 的输入: $P = H_2$ hello, world

 $oldsymbol{4}$ 那么,当程序 H_2 以 H_2 为输入时: H_2 H_2 hello, world

6 H_2 的输出会出现矛盾 (悖论), 所以 H 不可能存在.

问题的归约

如何证明问题是不可判定的?

- ❶ 归谬法 (反证法)
- ② 问题的归约

不可判定问题

- 递归可枚举语言 图灵机所识别
- 递归语言 保证停机的图灵机所识别

定义

一个问题,如果它的语言是递归的,就称为可判定问题,否则称为不可判定问题.

不可判定的问题

- 不存在保证停机的图灵机识别该问题的语言
- 不存在解决该问题的算法

不可判定性

- 不可判定性
- 非递归可枚举的语言
 - 第 i 个串
 - 图灵机编码与第 i 个图灵机
 - 对角化语言 L_d
- 递归可枚举但非递归的语言
- 语言类的关系

可判定吗?

"图灵机 M 接受输入 w 吗?"

第i个串 w_i

定义

将全部 $(0+1)^*$ 中的字符串按长度和字典序排序,那么第 i 个串就是 w_i . 且刚好有

$$binary(i) = 1w_i.$$

比如:

			_				•	8		
binary(i)	1ε	10	11	100	101	110	111	1000	1001	
w_i	ε	0	1	00	01	10	11	000	001	• • •

图灵机编码

将 $\Sigma = \{0,1\}$ 上的全部图灵机, 用二进制字符串编码

$$M = (Q, \Sigma, \Gamma, \delta, q_1, B, F)$$

- $Q = \{q_1, q_2, \dots, q_{|Q|}\}$, 开始状态为 q_1 , 终态为 q_2 且停机;
- **2** $\Gamma = \{X_1, X_2, \cdots, X_{|\Gamma|}\}, \& f X_1 = 0, X_2 = 1, X_3 = B;$
- **3** 设带头移动方向 $D_1 = L, D_2 = R;$
- ① 任意的转移 $\delta(q_i, X_j) = (q_k, X_l, D_m)$ 编码为

$$C = 0^i 10^j 10^k 10^l 10^m;$$

$$C_1 \, 11 \, C_2 \, 11 \, \cdots \, C_{n-1} \, 11 \, C_n$$
.

第i个图灵机 M_i

定义

如果图灵机 M 的编码为第 i 个串 w_i , 则称 M 是 第 i 个图灵机 M_i .

- 任意图灵机 M 都对应一个字符串 w
- 任意的字符串 w 都可以看作图灵机的编码
- 如果编码不合法, 将其看作接受 Ø 且立即停机的图灵机

非递归可枚举的语言

定义

使第i个串 w_i 不属于第i个图灵机 M_i 的语言 $\mathbf{L}(M_i)$ 的所有 w_i 的集合, 称为对角化语言 L_d , 即

$$L_d = \{ w_i \mid w_i \notin \mathbf{L}(M_i), i \ge 1 \}.$$

				J				
		1	2	3	4	5	6	
M_i	1	0	0	1	1	0	1	
	2	1	0	0	1	0	0	• • •
	3	0	1 0	1	0	0	1	
	4	0	0	1	1	1	1	• • •
	5	1	1	0	0	0	1	
	6	0	1	0	1	1	1	
	:	:	÷	÷	:	÷	:	٠.

 $w_i \longrightarrow$

定理 44

 L_d 不是递归可枚举语言, 即不存在图灵机接受 L_d .

证明: 反证法.

假设存在识别 L_d 的图灵机 M, 那么 M 也可被编码, 不妨设第 i 个图灵机 $M_i = M$, 即 $\mathbf{L}(M_i) = L_d$.

那么. 考虑第i个串 w_i 是否会被 M_i 识别:

- 如果 $w_i \in \mathbf{L}(M_i) = L_d$, 那么由 L_d 的定义, 又有 $w_i \notin \mathbf{L}(M_i)$;
- ② 如果 $w_i \notin \mathbf{L}(M_i)$, 那么由 L_d 的定义, 又有 $w_i \in L_d = \mathbf{L}(M_i)$.

无论如何都会矛盾, 因此假设不成立, 不存在接受 L_d 的图灵机.

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言
 - 递归语言的封闭性
 - 通用语言与通用图灵机
- 语言类的关系

递归语言的封闭性

定理 45

如果 L 是递归的, 那么 \overline{L} 也是递归的.

定理 46

如果语言 L 和 \overline{L} 都是递归可枚举的, 那么 L 是递归的.

通用语言与通用图灵机

定义

如果图灵机 M 接受串 w, 那么由 M111w 表示的有序对 (M,w) 构成的语言 L_w . 称为通用语言

$$L_u = \{M111w \mid w \in \mathbf{L}(M)\}.$$

定义

构造图灵机 U, 当输入 M111w 时, 利用多带技术模拟 M 处理串 w 的过程. 因为 M 接受 w 时会停机, 因此 U 可以识别 L_u , 图灵机 U 称为通用图灵机.

递归可枚举但非递归的语言

定理 47

通用语言 L_u 是递归可枚举的, 但不是递归的.

证明: L_u 是递归可枚举的. 用反证法证明 L_u 不是递归的.

通用图灵机 U 使用 3 条带分别:

(1) 装载 M 的编码; (2) 放置 w, 模拟 M 的带; (3) 存储 M 的状态.

假设存在算法 A 识别 L_u , 那么可如下得到识别对角化语言 L_d 的算法 B. 将 B 的输入 $w=w_i$ 转换为 M_i 111 w_i 交给 A 判断:

- 当 A 接受, 表示 $w_i \in \mathbf{L}(M_i)$, 则 B 拒绝;
- 当 A 拒绝, 表示 $w_i \notin \mathbf{L}(M_i)$, 则 B 接受.

而由于 L_d 不是递归的, 所以 B 不可能存在, 所以 L_u 不可能是递归的.

通用图灵机的重要意义

- 识别 L_u 的通用图灵机 U, 可以模拟任意图灵机
- 冯•诺伊曼通用数字电子计算机体系结构设计思想的灵感来源
- 抽象理论的先期发展可以对实际问题有很大帮助

不可判定性

- 不可判定性
- 非递归可枚举的语言
- 递归可枚举但非递归的语言
- 语言类的关系

语言类的关系

