8 Queens Chess Problem

In chess it is possible to place eight queens on the board so that no one queen can be taken by any other. Write a program that will determine all such possible arrangements for eight queens given the initial position of one of the queens.

Do not attempt to write a program which evaluates every possible 8 configuration of 8 queens placed on the board. This would require 8⁸ evaluations and would bring the system to its knees. There will be a reasonable run time constraint placed on your program.

Input

The first line of the input contains the number of datasets, and it's followed by a blank line. Each dataset will be two numbers separated by a blank. The numbers represent the square on which one of the eight queens must be positioned. A valid square will be represented; it will not be necessary to validate the input.

To standardize our notation, assume that the upper left-most corner of the board is position (1,1). Rows run horizontally and the top row is row 1. Columns are vertical and column 1 is the left-most column. Any reference to a square is by row then column; thus square (4,6) means row 4, column 6.

Each dataset is separated by a blank line.

Output

Output for each dataset will consist of a one-line-per-solution representation.

Each solution will be sequentially numbered 1...N. Each solution will consist of 8 numbers. Each of the 8 numbers will be the ROW coordinate for that solution. The column coordinate will be indicated by the order in which the 8 numbers are printed. That is, the first number represents the ROW in which the queen is positioned in column 1; the second number represents the ROW in which the queen is positioned in column 2, and so on.

The sample input below produces 4 solutions. The full 8 8 representation of each solution is shown below.

DO NOT SUBMIT THE BOARD MATRICES AS PART OF YOUR SOLUTION!

SOLUTION : SOLUTION 4	1	SOLUTION	2 SOLUTION	3
1 0 0 0 0 0 0	0 0 1	0 0 0 0 0	0 0 1 0 0 0 0 0	0 0 1 0 0
0 0 0 0 0 0	1 0 0	0 0 0 0 0	1 0 0 0 0 0 1	0 0 0 0
	0 0 0	0 0 1 0 0	0 0 0 0 0 0 0	0 1 0 0 0
	0 1 0	0 0 0 0 1	0 0 0 1 0 0 0	0 0 0 0
	0 0 0	0 0 0 0 0	0 1 0 0 0 0 0 0	1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	1 0 0 0 0	0 0 0 0 1 0 0	0 0 0 0 0
0 0 0 1 0 0 0 0 1	0 0 0	0 0 0 1 0	0 0 0 1 0 0 0 0	0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	0 0 0	0 1 0 0 0	0 0 0 0 0 1 0	0 0 0 0 0
1 0 0 0 0				

Submit only the one-line, 8 digit representation of each solution as described earlier. Solution #1 below indicates that there is a queen at Row 1, Column 1; Row 5, Column 2; Row 8, Column 3; Row 6, Column 4; Row 3, Column 5; ... Row 4, Column 8.

Include the two lines of column headings as shown below in the sample output and print the solutions in **lexicographical order**.

Print a blank line between datasets.

Sample Input

1

1 1

Sample Output

SOLN	COLUMN							
#	1	2	3	4	5	6	7	8
1	1	5	8	6	3	7	2	4
2	1	6	8	3	7	4	2	5
3	1	7	4	6	8	2	5	3
4	1	7	5	8	2	4	6	3