MATHEMATICS

F.Sc / ICS – 1st Year

Chapter 1

MCQs

1.	The mi	ultiplicative inv	erse of	(1,0) is:			(LHR G	i-I, 2024)
	(A)	(1,0)	(B)	(0,1)	(C)	(-1,0)	(D)	(0,-1)
2.	The va	lue of $(-i)^9$ is:					(LHR G	i-I, 2024)
	(A)	-1	(B)	1	(C)	i	(D)	-i
3.	The m	ultiplicative inv		-i is:		-II, <mark>2024), (FS</mark> D		24), (SWL G-II, 2024)
	(A)	(1,-1)	(B)	(0,-1)	(C)	(0,1)	(D)	(1,0)
4.	Which	of the followin	g set ha	as closure prop	erty w.r	t. addition:	(LHR G	i-II, 2024)
	(A)	{1}	(B)	{0}	(C)	$\{0,1\}$		$\{1, -1\}$
5.	Multip	licative inverse	of $-3i$			1	(GRW	G-I, 2024)
	(A)	3i	(B)	$\frac{1}{3}i$	(C)	$-\frac{1}{3}i$	(D)	-3i
6.	$\sqrt{3}$ is:					5	(GRW	G-I, 2024)
	(A)	rational numb	er		(B)	irrational num	ber	
	(C)	even number			(D)	odd number		
7.	$(-1)^{-\frac{21}{2}}$	=:					(GRW	G-II, 2024)
_	(A)	1	(B)	-1	(C)	i	(D)	-i
8.	Recurr (A)	ing decimal is a prime	B (B)	number: rational	(C)	irrational	(GRW (D)	G-II, 2024) integer
9.		prime, then \sqrt{n}	•	Tational	(C)	irrational		i-I, 2024)
Э.	(A)	Rational numb			(B)	Whole numbe	•	1-1, 2024)
	(/ (C)	Natural numb			(5)		nal num	nber
10						,		
10.	imagin	ary part of $\frac{i}{1+}$	$\stackrel{-}{i}$ is:				(FSD G	i-II, 2024)
	(A)	1	(B)	$\frac{1}{2}$	(C)	$\frac{i}{2}$	(D)	$-\frac{i}{}$
	· —			2	(0)	2	(D)	2
11.		elongs to the s					(FSD G	i-II <i>,</i> 2024)
	(A)	Rational numb			(B)	Real numbers		
12.	(C) The mo	Complex num odulus of Comp		wher $4+5i$ is:	(D)	Integers	(SGD 6	G-I, 2024)
	(A)	$\sqrt{41}$	(B)	$-\sqrt{41}$	(C)	$\sqrt{31}$	(D)	$-\sqrt{31}$
13.	` '	licative inverse		,	(-)	V = -		G-I, 2024)
			`	<i>'</i>		(1)		
	(A)	$\left(\frac{1}{2},0\right)$	(B)	$\left(\frac{1}{2},-2\right)$	(C)	$\left(\frac{1}{4},0\right)$	(D)	$\left(-\frac{1}{4},0\right)$
14.	The re		y of equ	iality of real nu	mbers i	s that $\forall a \in R$:	(SGD G	G-II, 2024)
	(A)	a = a	(B)	$a \neq a$	(C)	a < a	(D)	a > a
15.	$ z ^2=$:			_		-2	(SGD 6	6-II, 2024)
	` '	z^2	(B)		(C)	z^{2}	(D)	Z
16.	$\forall z \in C$	C, which one is	true:				(RWP	G-I, 2024)
	(A)	z = -z		$\overline{z} = -z$	(C)	$\overline{z} = z$	(D)	$\overline{z} = z$
17.	-			-	=	occurs in at lea		(RWP G-I, 2024)
	(A)	Once	(B)	Twice	(C)	Thrice	(D)	Four times

A complex number 1+i can also be expressed as: (RWP G-II, 2024) 18. $\sqrt{2}(\cos 45^{\circ} - i \sin 45^{\circ})$ $2(\cos 45^{\circ} + i \sin 45^{\circ})$ (B) $\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$ $2(\cos 45^{\circ} - i \sin 45^{\circ})$ (C) (D) If z is a complex number and z = z then z must be: 19. (RWP G-II, 2024) Rational (B) **Imaginary** (D) Irrational $3x + y^2i = 1 - 2i^2$, then vale of x is: 20. (MTN G-I, 2024) 3 (C) (D) Zero If $z = \sqrt{3} + i$, then |z| = :(MTN G-I, 2024) 21. $\sqrt{3} - 1$ $-\sqrt{3}+1$ (B) (C) (A) (D) 22. Every non-recurring, non-terminating decimal represents ----- number: (MTN G-II, 2024), (SWL G-II, 2024) Natural number (C) Irrational number (D) Whole number (A) Rational number(B) The multiplicative inverse of complex number (0,1) is: (MTN G-II, 2024), (DGK G-I, 2024) 23. (0,-1)(B) (0,1)(-1,0)(C) (D) (0,0)24. 1 is not ----(DGK G-I, 2024) (A) (B) (C) Prime Odd Real (D) Rational 25. If z = 1 - i, then |z| = :(DGK G-II, 2024) $\sqrt{-2}$ $\sqrt{2}$ (A) 2 -2 (C) (D) (B) $a < b \Rightarrow -a > -b$, $a, b \in R$ property used is: (DGK G-II, 2024) 26. Transitive (B) Additive (C) Multiplicative (D) Trichotomy 27. Modulus of 5-3i is: (BWP G-II, 2024)

Answers

(C)

(C)

Reflexive

(D)

(D)

 $\sqrt{34}$

Commutative

(BWP G-II, 2024)

1.	(A)	2.	(D)	3.	(C)	4.	(B)	5.	(B)	6.	(B)	7.	(D)
8.	(B)	9.	(D)	10.	(B)	11.	(C)	12.	(A)	13.	(A)	14.	(A)
15.	(B)	16.	(D)	17.	(B)	18.	(C)	19.	(A)	20.	(B)	21.	(D)
22.	(C)	23.	(A)	24.	(C)	25.	(D)	26.	(C)	27.	(D)	28.	(C)

Solutions

1. (A) Let
$$z = (1,0)$$

$$z^{-1} = \left(\frac{1}{1^2 + 0^2}, -\frac{0}{1^2 + 0^2}\right) = (1,0)$$

$$\vdots z^{-1} = \left(\frac{a}{a^2 + b^2}, -\frac{b}{a^2 + b^2}\right)$$
2. (D) $(-i)^9 = -i^9 = -\left(i^2\right)^4 . i = -\left(-1\right)^4 i = -i$
3. (C) Let $z = -i$

$$z^{-1} = \left(\frac{0}{0^2 + (-1)^2}, -\frac{(-1)}{0^2 + (-1)^2}\right) = (0,1)$$
4. (B) $0 + 0 = 0 \in \{0\}$, Closure property w.r.t. addition holds.

4. (B)
$$0+0=0\in\{0\}$$
, Closure property w.r.t. addition holds

 $\sqrt{16}$

Transitive

(B)

(B)

The property $\forall a \in R$, a = a, is called:

5. **(B)** Let
$$z = -3i$$

$$z^{-1} = \left(\frac{0}{0^2 + (-3)^2}, -\frac{(-3)}{0^2 + (-3)^2}\right) = \left(0, \frac{3}{9}\right) = \left(0, \frac{1}{3}\right) = \frac{1}{3}i$$

irrational number 6. (B)

 $\sqrt{4}$

Symmetric

(A)

(A)

28.

7. **(D)**
$$(-1)^{\frac{-21}{2}} = (i^2)^{\frac{-21}{2}} = i^{-21} = \frac{1}{i^{21}} = \frac{1}{(i^2)^{10} \cdot i} = \frac{1}{(-1)^{10} \cdot i} = \frac{1}{i} \times \frac{i}{i} = \frac{i}{i^2} = -i$$

- 8. (B) rational
- Irrational number 9. (D)

10. (B)
$$\frac{i}{1+i} = \frac{i}{1+i} \times \frac{1-i}{1-i} = \frac{i-i^2}{1-i^2} = \frac{i+1}{2} = \frac{1}{2} + \frac{i}{2} \Rightarrow \text{Imaginary part} = \frac{1}{2}$$
11. (C) Complex numbers

- (C) 11.
- $|4+5i| = \sqrt{16+25} = \sqrt{41}$ (A) 12.
- Let z = (2,0)13. (A)

$$z^{-1} = \left(\frac{2}{2^2 + 0^2}, -\frac{0}{2^2 + 0^2}\right) = \left(\frac{2}{4}, 0\right) = \left(\frac{1}{2}, 0\right)$$

- 14. (A)
- $\left|z\right|^2 = z\overline{z}$ 15. (B)
- 16. (D) z = z
- Twice 17. (B)

18. (C) Let
$$z = 1 + i \Rightarrow |z| = \sqrt{1 + 1} = \sqrt{2}$$

$$\theta = \tan^{-1} \left(\frac{1}{1}\right) = 45^{\circ}$$

$$1 + i = |z|(\cos\theta + i\sin\theta) = \sqrt{2}(\cos 45^{\circ} + i\sin 45^{\circ})$$

19. (A)
$$z = \underline{a} + ib \Rightarrow \overline{z} = a - ib$$

 $z = \overline{z} \Rightarrow a + ib = a - ib \Rightarrow -2ib = 0 \Rightarrow b = 0$
 $z = a + ib = a$ (Real)

20. (B)
$$3x + y^2i = 1 - 2i^2 \Rightarrow 3x + y^2i = 3 \Rightarrow 3x = 3 \Rightarrow x = 1$$

21. (D)
$$z = \sqrt{3} + i \Rightarrow |z| = \sqrt{3+1} = 2$$

- Irrational number 22. (C)
- 23. (A) Let z = (0,1)

$$z^{-1} = \left(\frac{0}{0^2 + 1^2}, -\frac{1}{0^2 + 1^2}\right) = (0, -1)$$

- 24. (C) Prime
- $z=1-i \Rightarrow |z|=\sqrt{1+1}=\sqrt{2}$ 25. (D)
- Multiplicative 26. (C)
- $|5-3i| = \sqrt{(5)^2 + (-3)^2} = \sqrt{25+9} = \sqrt{34}$ (D) 27.
- Reflexive 28. (C)

Chapter 2

MCQs

 $A \cap B = B$

{0}

 $\sim q \rightarrow p$

 $A \subset B$

- (A) 2
- (B) 4

(B)

(B)

(B)

(C) 6

(C)

(C)

(C)

(D) 8

2. If $A \subseteq B$, then:

(A)

(A)

(LHR G-I, 2024)

 $B \cup A = A$

 $\sim p \rightarrow q$

The converse of $\sim p \rightarrow q$ is: 3.

(LHR G-I, 2024), (RWP G-I, 2024)

(D)

(D)

(D)

(A) $p \rightarrow q$ (B) $p \rightarrow \sim q$

 $\sim p \rightarrow \sim q$

 $A \cup B = A$

 $q \rightarrow \sim p$

If $A = \{ \}$, then the power set of A is: 4.

(LHR G-II, 2024)

{**\phi**}

 $A \cup B = B$

(LHR G-II, 2024), (GRW G-I, 2024)

5. The converse of $p \rightarrow q$ is:

> (C) $q \rightarrow p$ (D) $p \rightarrow \sim p$

6. If $A \cap B = A$, then: (LHR G-II, 2024)

 $B \subset A$ (A)

(C) $A \cup B = A$

{ }

(D) $B \cup A = A$

```
(GRW G-I, 2024)
7.
        A' \cap B' = :
                A'-B'
                                         A' \cup B'
                                                                 (A \cap B)'
                                                                                         (A \cup B)'
        (A)
                                (B)
                                                                                 (D)
                                                        (C)
                                                                                 (GRW G-I, 2024)
8.
        Let A = \{1, 2, 3\}, then the number of its subsets is:
                                                                                 (D)
                                (B)
                                        3
                                                        (C)
                                                                                         8
9.
        If A = \{1,2,3\} and B = \{4,5\}, which is not element of A \times B:
                                                                                 (GRW G-II, 2024)
                                                                 (3,4)
                                                                                         (4,3)
        (A)
                 (1,4)
                                (B)
                                        (2,4)
                                                        (C)
                                                                                 (D)
                                                                                 (GRW G-II, 2024)
                                   is called biconditional:
10.
        Preposition
                                         p \leftrightarrow q
                p \rightarrow q
                                (B)
                                                        (C)
                                                                                 (D)
                                                                                         p \vee q
                                                                 p \wedge q
                                                                                 (GRW G-II, 2024)
11.
        Set having no proper subset:
                                                        (C)
        (A)
                                (B)
                                         {1}
                                                                 \{1, 2\}
                                                                                 (D)
                                                                                         \{1, 2, 3\}
                { }
        Which symbol is used for membership of a set?
12.
                                                                                 (FSD G-I, 2024)
                                                        (C)
                                (B)
                                                                                 (D)
                                                                 \in
13.
        Set of integers is a group with respect to:
                                                                                 (FSD G-I, 2024)
        (A)
                                                        (C)
                                (B)
                                                                                 (D)
                                                                 X
14.
        A function f: A \rightarrow B is surjective if:
                                                                                 (FSD G-I, 2024)
                Range f = A (B)
                                                                Range f \neq A (D)
                                        Range f = B (C)
                                                                                         Range f \neq B
        The domain of f = \{(a,1), (b,1), (c,1)\} is:
15.
                                                                                 (FSD G-II, 2024)
        (A)
                \{a,b,c\}
                                (B)
                                         {1}
                                                        (C)
                                                                 \{b,c\}
                                                                                 (D)
                                                                                         \{a,b,c,1\}
16.
        A function which is 1-1 and onto is called:
                                                                                         (FSD G-II, 2024)
                Injective
                                (B)
                                        Surjective
                                                                                         Bijective
        (A)
                                                        (C)
                                                                Objective
                                                                                 (D)
17.
        The set \{(a,b)\} is called:
                                                                (FSD G-II, 2024), (RWP G-II, 2024)
                Infinite set
                                                        (B)
                                                                Set with two elements
        (A)
        (C)
                Singelton set
                                                        (D)
                                                                Empty set
                                                                                 (SGD G-I, 2024)
18.
        If A \subset B, then A \cap B equals:
                                (B)
                                         \boldsymbol{A}
                                                        (C)
                                                                 A'
                                                                                 (D)
                                                                                         B'
19.
        Disjunction of two Logical statements p and q is:
                                                                         (SGD G-I, 2024), (DGK G-I, 2024)
                                (B)
                                         p \wedge q
                                                        (C)
                                                                 p \vee q
                                                                                 (D)
                                                                                         p \cap q
20.
        The solution of linear equation ax = b where a, b \in G is:
                                                                                 (SGD G-I, 2024)
                                                                 x = a^{-1}b^{-1}
                                         x = ab^{-1}
                                                                                         x = a^{-1}b
                x = ab
                                (B)
                                                        (C)
                                                                                 (D)
21.
        \{x \mid x \in \mathbb{N}, x \ge 10\} is the:
                                                                                 (SGD G-II, 2024)
                Descriptive method
                                                        (B)
        (A)
                                                                 Tabular method
        (C)
                Set builder method
                                                        (D)
                                                                Non-descriptive method
22.
                                                                                 (SGD G-II, 2024)
        p:4<7, q:6>11, the disjunction p\vee q is:
                                (B)
                False
                                        True
                                                        (C)
                                                                Not valid
                                                                                 (D)
                                                                                         Unknown
23.
        The identity element of a set X with respect to intersection in P(X) is: (SGD G-II, 2024)
                                                                Does not exist (D)
        (A)
                                (B)
                                        φ
                                                        (C)
                                                                                         X
        If A and B are disjoint sets, then A-B=:
                                                                                 (RWP G-I, 2024)
24.
        (A)
                В
                                (B)
                                                        (C)
                                                                 B-A
                                                                                 (D)
                                                                                         ø
        p \wedge q is called:
25.
                                                                                 (RWP G-I, 2024)
                Conjunction
                                (B)
                                        Disjunction
                                                        (C)
                                                                Conditional
                                                                                 (D)
                                                                                         Equivalence
26.
        Drawing conclusion from premises believed to be true is called:
                                                                                 (RWP G-II, 2024)
                Proposition
                                (B)
                                        Contradiction (C)
                                                                Induction
                                                                                 (D)
                                                                                         Deduction
27.
                                                                 (RWP G-II, 2024), (BWP G-II, 2024)
        If p is a logical statement p \land \sim p is always:
                Absurdity
                                (B)
                                        Contingency (C)
                                                                Tautology
                                                                                         Conditional
                                                                                 (D)
28.
        Inverse of p \rightarrow q is:
                                                                                 (MTN G-I, 2024)
        (A)
                \sim p \rightarrow \sim q
                                (B)
                                                        (C)
                                                                                 (D)
                                        \sim q \rightarrow \sim p
                                                                 \sim q \rightarrow p
                                                                                         q \rightarrow \sim p
29.
        Set A contains 4 elements, then number of elements in its power set P(A):
                                                                (MTN G-I, 2024), (BWP G-II, 2024)
        (A)
                8
                                (B)
                                        12
                                                        (C)
                                                                 16
                                                                                 (D)
30.
        \{1,-1\} is a group with respect to:
                                                                                 (MTN G-I, 2024)
        (A)
                Addition
                                (B)
                                        Subtraction
                                                        (C)
                                                                Square root
                                                                                 (D)
                                                                                         Multiplication
31.
        How many inverse elements correspond to each element of group?
                                                                                         (MTN G-II, 2024)
                                                                At least one
                                                                                         Only one
        (A)
                At least two
                                        Two
                                                        (C)
                                                                                 (D)
```

32.	Set co	ntaining eleme	ents A o	r B is denoted	l by:	(MTN G-II, 20	24), (B	WP G-II, 2024)
	(A)		(B)	$A \bigcup B$	(C)	$A \subseteq B$	(D)	
33 .	-	q is called conv						G-II, 2024)
	(A)	$\sim p \rightarrow q$	(B)	$p \rightarrow q$	(C)	$q \rightarrow p$	(D)	$\sim q \rightarrow p$
34.	Set G i	is closed and a	ssociativ	e with respect	to bina	ry operation, t	hen set	G is called:
							(DGK	G-I, 2024)
	(A)	Groupoid	(B)	Semi-Group	(C)	Monoid	(D)	Group
35.	Tabula	ar form of $\{x \mid z\}$	$x \in N \wedge .$	x + 4 = 0 is:			(DGK	G-I, 2024)
	(A)	{ }	(B)	$\{0\}$	(C)	{-4}	(D)	$\{0,4\}$
36.	The se	et A has mele	ments, r	number of elen	nents in	power set of	A:(DG K	(G-II, 2024)
	(A)	2^{m-1}	(B)	2^m	(C)	2^{m+1}	(D)	$2^{m/2}$
37.		B are disjoint s		า:	` ,			G-II, 2024)
	(A)	$A \cap B = \emptyset$	(B)	$A \cup B = \emptyset$	(C)	$A - B = \phi$	(D)	$B-A=\phi$
38.	Tabula	ar form of $\{x \mid x\}$	$x \in E \land 2$	$2 < x \le 4 \}:$			(DGK	G-II, 2024)
	(A)	${2,3,4}$	(B)	$\{2,4\}$	(C)	{4}	(D)	$\{\phi\}$
39.	$(A \cup A)$	$B)^c =:$					(SWL	G-II, 2024)
	(A)	$A \cup B$	(B)	$A \cap B$	(C)	$A^c \cup B^c$	(D)	$A^c \cap B^c$
40.	(Z,+)	has identity el			` '		(SWL	G-II, 2024)
	(A)	0	(B)	i	(C)	1	(D)	-1
41.	$A \subseteq B$	then complen	nent of	A in B (B -Ur	niversal)	:	(SWL	G-II, 2024)
	(A)	A - B	(B)	B-A	(C)	$A \cap B$	(D)	$A \cup B$
42.	If $A \subseteq$	B and $A - B =$	ϕ , then	n(A-B)=:			(BWP	G-II, 2024)
		_		` ´				

Answers

(C) n(B)

(D) n(A)-n(B)

1.	(B)	2.	(D)	3.	(D)	4.	(D)	5.	(C)	6.	(B)	7.	(D)	8.	(D)
9.	(D)	10.	(B)	11.	(A)	12.	(C)	13.	(A)	14.	(B)	15.	(A)	16.	(D)
17.	(C)	18.	(B)	19.	(C)	20.	(D)	21.	(C)	22.	(B)	23.	(D)	24.	(B)
25.	(A)	26.	(D)	27.	(A)	28.	(A)	29.	(C)	30.	(D)	31.	(D)	32.	(B)
33.	(C)	34.	(B)	35.	(A)	36.	(B)	37.	(A)	38.	(C)	39.	(D)	40.	(A)
41.	(B)	42.	(A)		<u>-</u>	•		•	<u>-</u>	•			•	•	•

Solutions

1.	(B)	$2^2 = 4$
2.	(D)	If $A \subseteq B$, then $A \cup B = B$
3.	(D)	The converse of $\sim p \rightarrow q$ is $q \rightarrow \sim p$
4.	(D)	$\{oldsymbol{\phi}\}$
5.	(C)	The converse of $p \rightarrow q$ is $q \rightarrow p$
6.	(B)	If $A \cap B = A$, then $A \subseteq B$
7.	(D)	$A' \cap B' = (A \cup B)'$
8.	(D)	$2^3 = 8$
9.	(D)	(4,3)
10.	(B)	$p \leftrightarrow q$
11.	(A)	{}
12.	(C)	€
13.	(A)	+

(B) n(A)

(A) 0

- **14. (B)** Range f = B
- **15. (A)** The domain of $f = \{(a,1),(b,1),(c,1)\}$ is $\{a,b,c\}$
- **16. (D)** Bijective
- **17. (C)** Singleton set
- **18.** (B) If $A \subseteq B$, then $A \cap B$ equals A
- **19. (C)** $p \lor q$
- **20. (D)** ax = b where $a, b \in G$ $a^{-1}(ax) = a^{-1}b \Rightarrow (a^{-1}a)x = a^{-1}b \Rightarrow ex = a^{-1}b \Rightarrow x = a^{-1}b$
- **21. (C)** Set builder method
- **22.** (B) p:4<7, q:6>11:

p is true, q is false, then $p \lor q$ is true.

- 23. (D) X
- **24.** (B) If A and B are disjoint sets, then A-B=A
- **25.** (A) $p \wedge q$ is called conjunction.
- 26. (D) Deduction
- 27. (A)

p	~ p	<i>p</i> ∧ ~ <i>p</i>
Т	F	F
F	Т	F

 $p \land \sim p$ is an absurdity

- **28.** (A) Inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$
- **29.** (C) $2^4 = 16$
- **30. (D)** Let $G = \{1, -1\}$

×	1	-1
1	1	-1
-1	-1	1

From table we see that closure and associative properties holds in $\,G\,$ w.r.t. multiplication.

1 is the identity element in G w.r.t. multiplication.

From table we see that 1 and -1 has inverses 1 and -1 w.r.t. multiplication. $G = \{1, -1\}$ is a group w.r.t. multiplication.

- **31. (D)** Only one
- 32. (B) $A \cup B$
- **33. (C)** $p \rightarrow q$ is called converse of $q \rightarrow p$
- 34. (B) Semi-Group
- 35. (A) $\{x \mid x \in N \land x + 4 = 0\} \Rightarrow x = -4 \notin N$ Tabular form = $\{\}$
- **36. (B)** Number of elements in power set of $A = 2^m$
- **37. (A)** $A \cap B = \emptyset$
- **38. (C)** $\{x \mid x \in E \land 2 < x \le 4\}$ Tabular form = $\{4\}$
- **39. (D)** $(A \cup B)^c = A^c \cap B^c$
- **40. (A)** 0
- **41.** (B) B-A
- **42. (A)** 0

Chapter 3

MCQs

If A is a square matrix of order 3 and |A|=2, then |2A|=:(LHR G-I, 2024) 1.

(A) 16 (B)

8

6 (C)

(D) 8

2. Rank of the matrix 0 is: (LHR G-I, 2024)

 2×3

(A) 0 (B) 1 (C) 2 (D) 3

If A is a matrix of order 2×3 , then order of A^tA is: 3.

(B)

(LHR G-II, 2024)

 3×3

 3×2 (C)

(D) 2×2

If |A|=9, then $|A^t|$ is: 4.

(LHR G-II, 2024)

(A) 81 (B) 9

(C) -9 (D) 9

A square matrix A is symmetric if $A^t =$: (GRW G-I, 2024), (SGD G-I, 2024), (DGK G-I, 2024) 5.

(A) -A (B) A

 \overline{A} (C)

-A(D)

12 25 15 is: 6. The value of the determinant |0|3

(GRW G-I, 2024)

0 0 8 (A) 0 (B) 1

(C) 8 (D) 24 (GRW G-II, 2024)

(GRW G-II, 2024)

The matrix [1 2 3] is 7. matrix: square (B) (A) unit

(C) null (D) row

is singular, then x =: 8. (A) -3(B)

(C) 1 (D) -1

For any non-singular matrix A, A^{-1} is: 9.

> |A| adj(A)(B) |A| adj(A)

(C)

(D) adi(A)

(FSD G-I, 2024)

10. Transpose of diagonal matrix is:

Scalar matrix (B)

Null matrix Row matrix (C)

(FSD G-I, 2024) Diagonal matrix (D)

11. The additive inverse of matrix A is:

(B)

 A^2

(FSD G-II, 2024) (D)

12. The trivial solution of homogenous linear equations is:

(A) (1,0,0)(B) (0,1,0)(C) (0,0,1)

(C)

1 (FSD G-II, 2024)

(0,0,0)

If $A = \begin{bmatrix} 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then A_{23} will be: 13.

(SGD G-I, 2024)

(D)

(A)

(A)

3

(C) -2

(D) 2

If $A = \begin{vmatrix} x & 1 \\ 1 & 1 \end{vmatrix}$ and $\frac{1}{|A|}$ 14.

(SGD G-II, 2024)

(A)

(C)

(D) 7

15. The transpose of a rectangular matrix is a:

(SGD G-II, 2024)

Square matrix (A) Rectangular matrix

(B) Diagonal matrix Scalar matrix (D)

(C) $(AB)^{t} = :$ 16.

(RWP G-I, 2024)

(A) A^tB^t

(B) A^tB (C) AB (D) $B^t A^t$ **17.** A square matrix *A* is anti-symmetric if: (RWP G-I, 2024) $A^t = -A$ (B) $A^t = A$ (C) A = AA = -AIf $A = [a \ b \ c]$, then order of A^t is: (RWP G-II, 2024) 18. 1×3 (C) 3×3 3×1 1×1 (B) (D) is singular then λ =: 19. If the matrix (RWP G-II, 2024) (A) (C) -2(B) -1(D) 20. Inverse of square matrix exists if it is: (MTN G-I, 2024), (MTN G-II, 2024) Singular (B) Non-singular (C) Null Symmetric (A) (D) If A is skew symmetric, then A^2 will be: 21. (MTN G-I, 2024) Symmetric (A) (B) Skew symmetric (C) Hermitian (D) **Skew Hermitian** 22. If A is a square matrix of order 2×2 then |KA| equals: (MTN G-II, 2024) (B) $\frac{1}{K}|A|$ $K^2 |A|$ (C) (A) K|A|(D) 2K|A|If order of matrix A is 2×5 and order of B is 5×7 , then order of AB is ----23. (DGK G-I, 2024) 5×2 (A) (B) 7×5 7×2 (D) (C) 2×7 Rank of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is: 24. (DGK G-II, 2024) (A) Zero (B) 1 (C) -1 (D) 2 Determinant of $\begin{bmatrix} -5 \end{bmatrix}$ is: 25. (DGK G-II, 2024) (A) Zero Not possible (C) 5 (B) -5 (D) Rank of the matrix (SWL G-II, 2024) 26. (A) -1(C) 0 (D) =20 then k =27. (SWL G-II, 2024) +24 (C) ±16 (A) ±36 (B) (D) ±6 28. A matrix of order $m \times 1$ is called: (BWP G-II, 2024) Column Matrix **Row Matrix** (B) (A) (C) Diagonal Matrix (D) **Null Matrix** and |A|=4, then x=: 29. (BWP G-II, 2024) (C) (D) 5

Answers

1.	(A)	2.	(B)	3.	(A)	4.	(D)	5.	(B)	6.	(D)	7.	(D)	8.	(B)
9.	(C)	10.	(D)	11.	(B)	12.	(D)	13.	(C)	14.	(A)	15.	(C)	16.	(D)
17.	(A)	18.	(B)	19.	(D)	20.	(B)	21.	(A)	22.	(C)	23.	(D)	24.	(B)
25.	(C)	26.	(A)	27.	(D)	28.	(B)	29.	(D)						

Solutions

|A| = 2, then $|2A| = 2^3 |A| = 8(2) = 16$ 1. (A)

2. (B)
$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 by $R_3 + R_1$ then $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, there is one non-zero row, so rank is 1.

3. (A) Order of matrix
$$A = 2 \times 3$$
, Order of matrix $A^t = 3 \times 2$, then order of $A^t A = 3 \times 3$

4. (D)
$$|A^t| = |A| = 9$$

5. (B)
$$A^{t} = A$$
 (Definition of symmetric matrix)

6. **(D)**
$$\begin{vmatrix} 1 & 12 & 25 \\ 0 & 3 & 15 \\ 0 & 0 & 8 \end{vmatrix} = 1 \times 3 \times 8 = 24$$
 (If a matrix is in triangular form, then the value of its

determinant is the product of entries on its main diagonal.)

8. (B)
$$\begin{vmatrix} x & 1 \\ 3 & 1 \end{vmatrix} = 0 \Rightarrow x - 3 = 0 \Rightarrow x = 3$$

9. **(C)**
$$A^{-1} = \frac{adj(A)}{|A|}$$

11. (B)
$$-A$$

13. (C)
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix} \Rightarrow A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ -2 & -2 \end{vmatrix} = -(-2+4) = -2$$

14. (A)
$$|A| = \begin{vmatrix} x & 1 \\ 1 & 1 \end{vmatrix} = x - 1$$

$$\frac{1}{|A|} = 7 \Rightarrow \frac{1}{x-1} = 7 \Rightarrow 1 = 7x - 7 \Rightarrow 7x = 8 \Rightarrow x = \frac{8}{7}$$

$$16. (D) (AB)^t = B^t A^t$$

17. (A)
$$A^t = -A$$

19.

18. (B)
$$A = \begin{bmatrix} a & b & c \end{bmatrix}$$
 Order of $A^t = 3 \times 1$

(D)
$$\begin{vmatrix} \lambda & 1 \\ -2 & 1 \end{vmatrix} = 0 \Rightarrow \lambda + 2 = 0 \Rightarrow \lambda = -2$$

21. (A) If
$$A$$
 is skew symmetric matrix then $A^t = -A$
$$\left(A^2\right)^t = \left(A^t\right)^2 = (-A)^2 = A^2 \implies A^2 \text{ is symmetric.}$$

22. (C)
$$|KA| = K^2 |A|$$

23. (D) Order of matrix A is
$$2 \times 5$$
 and order of B is 5×7 , then order of AB is 2×7 .

24. (B)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 by $R_2 - R_1$ then $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, there is one non-zero row, so rank is 1.

25. (C)
$$|-5| = -5$$

26. (A)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, there are two non-zero rows, so rank is 2.
27. (D)
$$\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix} = 20 \Rightarrow k^2 - 16 = 20 \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$$

27. (D)
$$\begin{bmatrix} k & 4 \\ 4 & k \end{bmatrix} = 20 \Rightarrow k^2 - 16 = 20 \Rightarrow k^2 = 36 \Rightarrow k = \pm 6$$

28. (B) A matrix of order
$$m \times 1$$
 is called column matrix.

29. (D)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & x \end{bmatrix}$$
 and $|A| = 4 \Rightarrow \begin{vmatrix} 1 & 1 \\ 1 & x \end{vmatrix} = 4 \Rightarrow x - 1 = 4 \Rightarrow x = 5$

Chapter 4

MCQs

1.	The roots of $2x^2 - 2$	7x + 3 = 0), are:			(LHR G-I, 2024)
	(A) Equal	(B)	Complex	(C)	Irrational	(D) Rational
2.	If ω is a cube root	of unity,	then value of $($	$1+\omega-\alpha$	$\left(\omega^2\right)^3$ is:	(LHR G-I, 2024)
	(A) 8ω	(B)	$8\omega^2$	(C)	-8	(D) 8
3.	If $4^{1+x} = 2$, then $x = 2$			(- /	_	(LHR G-II, 2024)
			2	(6)	1	
	(A) 0	(B)	-2	(C)	$-{2}$	(D) $\frac{1}{2}$
4.	If ω is a cube root α	of unity, t	then $(1+\omega+\omega)$	$(2)^8 = :$		(LHR G-II, 2024)
	(A) 0	(B)	256	(C)	256ω	(D) $256\omega^2$
5.	When $3x^4 + 4x^3 + x^4 + 4x^3 + x^4 + 4x^4 + x^4 + x$	-5 is div	vided by $x+1$,	then rer	mainder is:	
_	(A) –7	(B)	-6	(C)	6	(D) 7
6.						s are: (GRW G-I, 2024)
7.	(A) real Sum of roots of equ		equal $3-5x+6-0$ is		Tational	(D) irrational (GRW G-II, 2024)
, .	(A) 6	(B)	-6	(C)	5	(D) -5
8.	$3^{2x} + 4.3^x + 4 = 0$ is (A) cubic		_ equation:			(GRW G-II, 2024)
						(D) exponential
9.	If ω is complex roo		=			(FSD G-I, 2024)
	(A) 6	` '		` '	0	(D) 13
10.	A quadratic equation					
11				(C)	c = 0	
11.	Complex cube root (A) ω, ω^2			(C)	$1 \alpha \alpha^2$	(FSD G-II, 2024) (D) $-\omega, -\omega^2$
12.	(A) ω, ω^2 Sum of all the three			(C)	$-1,-\omega,-\omega^2$	(FSD G-II, 2024)
12.	(A) 1	(B)	-1	(C)	3	(D) 0
13.	The product of four					(SGD G-I, 2024)
		(B)		(C)	0	(D) 4
14.	If α and β are root			$\alpha + \beta$	will be:	(SGD G-I, 2024)
	(A) $-\frac{1}{7}$	(B)	$\frac{1}{\overline{}}$	(C)	$\frac{2}{7}$	(D) $-\frac{2}{7}$
15	7 The quadratic equa		,	2 1 /2	7	
15.						$0 (D) x^2 - 6x - 6 = 0$
16.	$1-\omega+\omega^2=:$	– U (b)	x = 4x + 1 =	0 (C)	x = 0x + 0 = 0	(SGD G-II, 2024)
10.		(B)	0	(C)	$-\omega$	(D) -2ω
17.	Four 4 th roots of 62	5 are:				(RWP G-I, 2024)
	(A) $\pm 4, \pm 4i$	(B)	$\pm 5, \pm 5i$	(C)	$\pm 16, \pm 16i$	(D) $\pm 25, \pm 25i$
18.	$1+\omega+\omega^2=:$					(RWP G-I, 2024)
	(A) 1		(B) ω		(C) ω^2	(D) 0
19.	If $4^{3x} = \frac{1}{2}$ then x is	equal to:				(RWP G-II, 2024)
	1			(6)	1	(5)
	(A) $-\frac{1}{6}$	(B)	-6	(C)	- 6	(D) 6
	•				-	

If ω is cube root of unity, then $\omega + \omega^2 =$: 20. (RWP G-II, 2024)

(A)

-1

(C)

21. Product of roots of $x^2 - 5x + 6 = 0$ is: (MTN G-I, 2024)

-6

(B)

(B)

(C) 5 (D) **-5**

Roots of equation $cx^2 + ax + b = 0$ are complex if: 22.

(MTN G-I, 2024)

 $b^2 - 4ac < 0$

 $c^2 - 4ab < 0$ (B)

1

 $a^2 - 4bc < 0$ (C)

(D) $a^2 - 4ac < 0$

If $4^x = \frac{1}{2}$ then x is equal to: 23.

(MTN G-II, 2024), (SWL G-II, 2024)

(B)

(C)

(D)

The roots of the equation $x^2 - 5x + 6 = 0$ are: (MTN G-II, 2024), (BWP G-II, 2024) 24.

-2, -3(B)

(C) 2.3 (D)

 α , β are roots of $x^2 + 2x + 1 = 0$, then $\alpha^2 + \beta^2 = ----$ (DGK G-I, 2024) 25.

(B)

(D) 2

If $\,\omega\,$ is cube root of unity, then $\left(1+\omega+\omega^2\,\right)^2=-----$ 26. (DGK G-I, 2024)

(A)

(B)

(C)

(D)

 α , β are roots of $ax^2 - bx + c = 0$, then $\alpha + \beta =$: 27.

(DGK G-II, 2024)

(B)

(C)

(D)

If polynomial x^2-2x+2 is divided by x-1, then remainder is: 28.

(DGK G-II, 2024)

(A) -1 (B)

(D) 2

The product of the roots of equation $x^2 + 2x + 1 = 0$ is: 29.

(SWL G-II, 2024) (D) -1

30.

(B)

(C)

1

(BWP G-II, 2024)

Degree of constant polynomial is: (A) n

(B)

(D)

Answers

(C)

1.	(D)	2.	(C)	3.	(C)	4.	(A)	5.	(A)	6.	(A)	7.	(C)	8.	(D)
9.	(B)	10.	(A)	11.	(D)	12.	(D)	13.	(B)	14.	(B)	15.	(C)	16.	(D)
17.	(B)	18.	(D)	19.	(A)	20.	(B)	21.	(B)	22.	(C)	23.	(A)	24.	(C)
25.	(D)	26.	(C)	27.	(A)	28.	(B)	29.	(C)	30.	(D)			•	

Solutions

1. **(D)**
$$2x^2 - 7x + 3 = 0$$

Disc. $=b^2-4ac=49-24=25$ which is a perfect square, so roots are rational.

2. (C)
$$(1+\omega-\omega^2)^3 = (-\omega^2-\omega^2)^3 = (-2\omega^2)^3 = -8\omega^6 = -8(\omega^3)^2 = -8$$

3. (C)
$$4^{1+x} = 2 \Rightarrow (2^2)^{1+x} = 2 \Rightarrow 2^{2+2x} = 2^1 \Rightarrow 2+2x = 1 \Rightarrow 2x = -1 \Rightarrow x = -\frac{1}{2}$$

4. (A)
$$(1+\omega+\omega^2)^8=(0)^8=0$$

5. **(A)**
$$f(x) = 3x^4 + 4x^3 + x - 5$$

 $x + 1 = 0 \Rightarrow x = -1$
Remainder = $f(-1) = 3 - 4 - 1 - 5 = -7$

```
6.
        (A)
                real
```

7. (C)
$$x^2 - 5x + 6 = 0$$

Sum of roots $= -\frac{b}{a} = -\frac{(-5)}{1} = 5$

8. (D) exponential

9. **(B)**
$$(3+\omega)(3+\omega^2) = 9+3\omega^2+3\omega+\omega^3 = 9+3(\omega^2+\omega)+1=10+3(-1)=10-3=7$$

10. (A)
$$a = 0$$

11. (D)
$$-\omega, -\omega^2$$

12. (D)
$$1+\omega+\omega^2=0$$

13. (B)
$$(1)(-1)(i)(-i) = i^2 = -1$$

14. (B)
$$7x^2 - x - 2 = 0$$
, then $\alpha + \beta = -\frac{b}{a} = -\frac{(-1)}{7} = \frac{1}{7}$

15. (C)
$$S = 3 - \sqrt{3} + 3 + \sqrt{3} = 6$$
, $P = (3 - \sqrt{3})(3 + \sqrt{3}) = 9 - 3 = 6$
Quadratic equation is $x^2 - Sx + P = 0 \Rightarrow x^2 - 6x + 6 = 0$

16. (D)
$$1-\omega+\omega^2=-\omega-\omega=-2\omega$$

17. (B)
$$\pm 5, \pm 5i$$

18. (D)
$$1 + \omega + \omega^2 = 0$$

19. (A)
$$4^{3x} = \frac{1}{2} \Rightarrow (2^2)^{3x} = 2^{-1} \Rightarrow 2^{6x} = 2^{-1} \Rightarrow 6x = -1 \Rightarrow x = -\frac{1}{6}$$

20. (B)
$$\omega + \omega^{2} = -1$$

21. (B)
$$x^2 - 5x + 6 = 0 \Rightarrow \text{Product of roots} = P = \frac{c}{a} = \frac{6}{1} = 6$$

22. (C) $cx^2 + ax + b = 0 \Rightarrow \text{Roots are complex if } a^2 - 4bc < 0$

22. (C)
$$cx^2 + ax + b = 0 \Rightarrow$$
 Roots are complex if $a^2 - 4bc < 0$

23. (A)
$$4^x = \frac{1}{2} \Rightarrow 2^{2x} = 2^{-1} \Rightarrow 2x = -1 \Rightarrow x = -\frac{1}{2}$$

24. (C)
$$x^2 - 5x + 6 = 0 \Rightarrow x^2 - 3x - 2x + 6 = 0 \Rightarrow x(x-3) - 2(x-3) = 0 \Rightarrow (x-3)(x-2) = 0$$

 $x - 3 = 0$ or $x - 2 = 0$

25. (D)
$$x = 3$$
 $x = 2$
 $\alpha^2 + 2x + 1 = 0$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = (-2)^2 - 2(1) = 2$

26. (C)
$$(1+\omega+\omega^2)^2=(0)^2=0$$

27. (A)
$$ax^2 - bx + c = 0$$
, then $\alpha + \beta = -\frac{(-b)}{a} = \frac{b}{a}$

28. (B)
$$f(x) = x^2 - 2x + 2$$

 $x - 1 = 0 \Rightarrow x = 1$
Remainder = $f(1) = 1 - 2 + 2 = 1$

29. (C)
$$x^2 + 2x + 1 = 0 \Rightarrow \text{Product of roots} = P = \frac{1}{1} = 1$$

3.

Chapter 5

MCQs

1. The fraction
$$\frac{x+1}{x^2+2}$$
 is: (LHR G-I, 2024), (FSD G-II, 2024)

2. The equation
$$x(x-1) = x^2 - x$$
 is: (LHR G-II, 2024)

(A) Conditional (B) Identity (C) Exponential (D) Radical Conditional equation
$$3x-1=0$$
 is true only if: (GRW G-I, 2024)

(A)
$$x = 3$$
 (B) $x = -3$ (C) $x = \frac{1}{3}$ (D) $x = -\frac{1}{3}$

4.	$\ln \frac{p(x)}{q(x)}$	$\frac{1}{2}$, degree of p	(x) is le	ss than degree	of $q(x)$), then fractior	ı is:	(GRW	G-II, 2024)
5.	(A)	proper proper fraction	(B) can be	improper changed into	(C) proper f	combined fraction by:	(D) (FSD G	partial - I, 202 4)
6.	Rationa	al fraction $\frac{x^2 + x^2}{x^2}$	$\frac{-2x+3}{2}$	will be imprope	er fracti	on if degree of	Q(x) is	(SGD 6	i-I, 2024)
7.	$(x-4)^2$	3 $2^{2} = x^{2} - 8x + 16$ A linear equat	(B) is:	4	(C)	2 Cubic equation	(D)	5	
	ici	An equation			(D)	An identity			
8.	Partial	fractions of $\frac{1}{(x)}$	$\frac{x^2+1}{(x+1)(x-1)}$	${-1}$ are of the f	orm:	An identity	(RWP (G-I, 202	4)
	(A)	$\frac{A}{x+1} + \frac{B}{x-1}$	(B)	$\frac{Ax}{x+1} + \frac{B}{x-1}$	(C)	$1 + \frac{A}{x+1} + \frac{B}{x-1}$	(D)	$\frac{Ax+B}{x+1}$	$\frac{B}{x+1} + \frac{Cx+D}{x-1}$
9.	From tl (A)	he identity $5x - 3$	+4 = A($\begin{array}{c} (x-1) + B(x+2) \\ 3 \end{array}$) , value (C)	of B is: -2	(RWP (D)	3-II, 20 2	24)
10.	$\frac{1}{x^3+1}$ =	$=\frac{A}{x+1}+{x^2-x}$	_ +1 (Nu	merator of x^2	-x+1)		(MTN	G-I, 202	4)
		Bx+C				C	(D)	B+C	
11.	The fra	ction $\frac{x-3}{x+1}$ is:					(MTN	G-II, 20	24)
	(A)	Improper			(C)	Identity		(D)	Equivalent
12.	$\frac{2}{x^2-1}$ =	$=\frac{1}{x-1}+\frac{B}{x+1},$	then va	lue of B is:			(DGK G	6-I, 202	4)
	(A)	1	(B)	-1	(C)	2	(D)	-2	
13.	Partial	fraction of $\frac{1}{(x-1)^n}$	$\frac{x}{-1)(x+2}$	$\frac{1}{2} = \frac{1}{3(x-1)} + \frac{1}{3(x-1)}$	$\frac{B}{x+2}$, the	nen value of B i	s:	(DGK C	G-II, 2024)
	(A)	$-\frac{3}{2}$	(B)	$\frac{3}{2}$	(C)	$\frac{2}{3}$	(D)	$-\frac{2}{3}$	
14.	$\frac{A}{x-1}$ +	$\frac{B}{x+1}$ is a partia	ıl fractio	n of:			(SWL G	i-II, 202	4)
			(B)		(C)	$\frac{1}{1-x^2}$	(D)	$\frac{1}{x^2 + 1}$	
15.	$\frac{x}{2x+3}$	is:					(BWP (3-II, 20	24)
	(A) (C)	Proper Fractio Identity Fracti			(B) (D)	Improper Frac Mixed Fraction			

Answers

1.	(B)	2.	(B)	3.	(C)	4.	(A)	5.	(D)	6.	(C)	7.	(D)	8.	(C)
9.	(B)	10.	(A)	11.	(A)	12.	(B)	13.	(C)	14.	(B)	15.	(B)		

Solutions

- Proper fraction Identity
- (B) (B) 1. 2.
- $3x 1 = 0 \Longrightarrow x = \frac{1}{3}$ (C) 3.

- 4. (A) proper
- Division 5. (D)
- 6. (C)
- (D) An identity
- $\frac{x^2+1}{(x+1)(x-1)} = \frac{x^2+1}{x^2-1}$ which is an improper rational fraction (C) 8.

$$\frac{x^2+1}{x^2-1} = 1 + \frac{2}{x^2-1} = 1 + \frac{2}{(x+1)(x-1)} = 1 + \frac{A}{x+1} + \frac{B}{x-1}$$

 $5x+4=A(x-1)+B(x+2) \Rightarrow 5x+4=(A+B)x+(-A+2B)$ 9. (B) $5 = A + B \cdots (1), 4 = -A + 2B \cdots (2)$

Adding Eq.(1) and Eq.(2), we get $9 = 3B \Rightarrow B = 3$

- 10. (A) Bx+C
- (A) **Improper** 11.

12. (B)
$$\frac{2}{x^2 - 1} = \frac{1}{x - 1} + \frac{B}{x + 1} \Rightarrow \frac{2}{(x + 1)(x - 1)} = \frac{1}{x - 1} + \frac{B}{x + 1}$$
$$x + 1 = 0 \Rightarrow x = -1$$

$$B = \frac{2}{x - 1} = \frac{2}{-1 - 1} = -1$$

13. (c)
$$\frac{x-1}{x} = \frac{1}{3(x-1)} + \frac{B}{x+2}$$
$$x+2=0 \Rightarrow x=-2$$

$$x+2=0 \Rightarrow x=-2 B = \frac{x}{x-1} = \frac{-2}{-2-1} = \frac{2}{3} \frac{1}{x-1} = \frac{2}{3}$$

- 14. (B)
- (B) **15.** Improper Fraction

Chapter 9

MCQS

- If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant: (LHR G-I, 2024) 1.
 - IV (A) (B)

(C) Ш

(C)

- (D) I
- Which angle is quadrantal angle: 2. (LHR G-II, 2024)
 - (B)
- (C) 120° 270° (D)
- If $\sin \theta > 0$ and $\sec \theta > 0$, then terminal arm of 0 lies in quadrant: (GRW G-I, 2024) 3. IV(D)
 - (B)
- (C) Ш

 2π

- (GRW G-II, 2024) Number of radians in semi-circle: 4.
 - (B)

(FSD G-I, 2024)

- The 60th part of 1 degree is called one: 5.
- (C) Degree (D) Minute
- The angle $\frac{\pi}{12}$ in degree measure is: 6. (FSD G-II, 2024)
 - (B)
 - (C) 45° (D) 15°
- If $\cot \theta = \frac{5}{2}$; $0 < \theta < \frac{\pi}{2}$, then $\cos ec^2 \theta$ is: 7. (SGD G-I, 2024)
 - (A) $\frac{-\overline{29}}{4}$ (B) $\frac{4}{29}$ 120° = radians: (A) $\frac{3\pi}{2}$ (B) $\frac{2\pi}{2}$ (C) (D)
- 8. (SGD G-II, 2024)
 - (B) $\frac{2\pi}{3}$ (C) 180π (D)

9. If $\sin \theta < 0$ and $\cos \theta > 0$, then terminal arm of θ lies in quadrant: (RWP G-I, 2024)

(A)

(B)

III

(D) *IV*

10. Which of the following is not a quadrantal angle?

(RWP G-II, 2024)

(A) $\frac{9}{2}\pi$

(B) 13π

II

(C) $\frac{4}{3}$

(C)

(D) $\frac{\pi}{2}$

11. -1035° is coterminal with _____

(MTN G-I, 2024)

(A) 60°

(B) 30°

(C) 45°

(D) 35°

12. Trigonometric ratio of -330° is same as:

(A) 60°

(B) 30°

(C) 45°

(MTN G-II, 2024) (D) 90°

13. Value of $\sin^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4} = ----$

(DGK G-I, 2024)

(A) (

(B) -1

(C) 1

(D) $\frac{1}{\sqrt{2}}$

14. One degree is equal to radian

 $\sqrt{2}$ (DGK G-II, 2024)

(A) $\frac{180}{}$

(B) $\frac{\pi}{180}$

(C) $\frac{\pi}{90}$

(D) π

15. $2\sin 45^\circ + \frac{1}{2}\cos ec45^\circ =$:

(SWL G-II, 2024)

(A) 1

(B) −1

(C) $\frac{3}{\sqrt{2}}$

(D) $\sqrt{\frac{2}{3}}$

Answers

1.	(B)	2.	(D)	3.	(A)	4.	(B)	5.	(D)	6.	(D)	7.	(C)	8.	(B)
9.	(D)	10.	(C)	11.	(C)	12.	(B)	13.	(C)	14.	(B)	15.	(C)		

Solutions

1. (B) III

2. (D) 270°

3. (A) 1

4. (B)

5. (D) Minute

6. (D) $\frac{\pi}{12} \times \frac{180}{\pi} = 15^{\circ}$

7. **(C)** $\cot \theta = \frac{5}{2}; \ 0 < \theta < \frac{\pi}{2}$

 $\cos ec^2\theta = 1 + \cot^2\theta = 1 + \frac{25}{4} = \frac{29}{4}$

8. **(B)** $120^{\circ} = 120 \times \frac{\pi}{180} = \frac{2\pi}{3}$

9. (D) *IV*

10. (C) $\frac{4}{3}\pi$

11. (C) $-1035^{\circ} = 45^{\circ} + (-3)360^{\circ} = 45^{\circ}$

12. (B) $-330^{\circ} = 30^{\circ} + (-1)360^{\circ} = 30^{\circ}$

13. (C) $\sin^2 \frac{\pi}{4} + \cos^2 \frac{\pi}{4} = 1$

14. **(B)** $\frac{\pi}{180}$

Chapter 10

MCQs

- 1. $\cos 2\theta = :$ (LHR G-I, 2024)
- (A) $1-\sin^2\theta$ (B) $1-2\sin\theta$ (C) $1-2\sin^2\theta$ (D) $2\sin^2\theta-1$ 2. $\sin(270^\circ+\theta)=:$ (LHR G-II, 2024), (SGD G-I, 2024)
 - (A) $\sin \theta$ (B) $\cos \theta$ (C) $-\cos \theta$ (D) $-\sin \theta$
- 3. $\sin(\pi \theta) = :$ (GRW G-I, 2024)
- (A) $\sin \theta$ (B) $-\sin \theta$ (C) $\cos \theta$ (D) $-\cos \theta$ 4. Co-ratio of cosine is: (GRW G-II, 2024)
- 4. Co-ratio of cosine is: (GRW G-II, 2024)
 (A) sine (B) cosine (C) tangent (D) secant
- 5. $\cot(\pi \alpha) = :$ (FSD G-I, 2024)
- (A) $\sin \alpha$ (B) $\cot \alpha$ (C) $-\cot \alpha$ (D) $\tan \alpha$ (6. $\cos(\theta-90^\circ)-\cos(\theta+90^\circ)$ equal to: (FSD G-II, 2024)
- (A) $-2\cos\theta$ (B) $2\cos\theta$ (C) $-2\sin\theta$ (D) $2\sin\theta$
- 7. $2\sin^2\left(\frac{\alpha}{2}\right) =:$ (SGD G-II, 2024) (A) $1+\sin\alpha$ (B) $1-\sin\alpha$ (C) $1+\cos\alpha$ (D) $1-\cos\alpha$
- 8. $\frac{1-\cos\theta}{2}$ =: (RWP G-I, 2024)
 - (A) $\sin \theta$ (B) $\sin^2 \frac{\theta}{2}$ (C) $\cos \theta$ (D) $\cos^2 \frac{\theta}{2}$
- 9. The angle $\frac{3\pi}{2} \theta$ lies in quadrant: (RWP G-II, 2024)
- (A) I (B) II (C) III (D) IV
- **10.** $\cos(\alpha + \beta) \cos(\alpha \beta) =:$ (MTN G-I, 2024)
- (A) $-2\cos\alpha\cos\beta$ (B) $2\cos\alpha\cos\beta$
 - (C) $2\sin\alpha\sin\beta$ (D) $-2\sin\alpha\sin\beta$
- 11. $\frac{3\pi}{2} + \theta$ lies in quadrant: (MTN G-II, 2024)
- (A) 1^{st} (B) 2^{nd} (C) 3^{rd} (D) 4^{th}
- **12.** $\sec\left(\frac{\pi}{2} \theta\right) = :$ (DGK G-I, 2024)
- (A) $-\sec\theta$ (B) $-\cos ec\theta$ (C) $\sec\theta$ (D) $\cos ec\theta$ 13. $\cot(90-\alpha)=:$ (DGK G-II, 2024)
- (A) $\tan \alpha$ (B) $-\tan \alpha$ (C) $\cot \alpha$ (D) $-\cot \alpha$
- 14. $\sin(-300^{\circ}) =:$ (SWL G-II, 2024)
- (A) $-\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{2}{\sqrt{3}}$ (D) 0
- 15. $\tan(\alpha 90^\circ) =:$ (BWP G-II, 2024) (A) $\cot \alpha$ (B) $-\cot \alpha$ (C) $\tan \alpha$ (D) $-\tan \alpha$

Answers

1.	(C)	2.	(C)	3.	(A)	4.	(A)	5.	(C)	6.	(D)	7.	(D)	8.	(B)
9.	(C)	10.	(D)	11.	(D)	12.	(D)	13.	(A)	14.	(B)	15.	(B)		

Solutions

```
\cos 2\theta = 1 - 2\sin^2 \theta
            (C)
1.
```

2. (C)
$$-\cos\theta$$

3. (A)
$$\sin \theta$$

5. (C)
$$-\cot \alpha$$

6. (D)
$$\cos(\theta - 90^{\circ}) - \cos(\theta + 90^{\circ}) = \cos(90^{\circ} - \theta) - \cos(90^{\circ} + \theta) = \sin\theta + \sin\theta = 2\sin\theta$$

7. **(D)**
$$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{2}} \Rightarrow \sin^2\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{2} \Rightarrow 2\sin^2\left(\frac{\alpha}{2}\right) = 1-\cos\alpha$$

8. **(B)**
$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}} \Rightarrow \sin^2\left(\frac{\theta}{2}\right) = \frac{1-\cos\theta}{2}$$

10. (D)
$$\cos(\alpha + \beta) - \cos(\alpha - \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta - (\cos\alpha\cos\beta + \sin\alpha\sin\beta)$$

= $-2\sin\alpha\sin\beta$

12. (D)
$$\cos ec\theta$$

13. (A)
$$\tan \alpha$$

14. (B)
$$\sin(-300^\circ) = -\sin 300^\circ = -\sin(270^\circ + 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$

15. (B)
$$\tan(\alpha - 90^\circ) = \tan(-(90^\circ - \alpha)) = -\tan(90^\circ - \alpha) = -\cot\alpha$$

Chapter 11

MCQs

The period of $\cos \frac{x}{6}$ is: (LHR G-I, 2024) 1.

(A)
$$2\pi$$

(B)
$$3\pi$$

(C)
$$6\pi$$

(LHR G-II. 2024)

2. The period of
$$\cos 2x$$
 is:

(A)
$$\pi$$

(B)
$$2\pi$$

(C)
$$4\pi$$

(D)
$$\frac{\pi}{2}$$

 $\tan \theta$ is a periodic function of period: 3.

(GRW G-I, 2024), (GRW G-II, 2024)

(A)
$$\pi$$

(B)
$$\frac{\pi}{2}$$

(C)
$$\frac{3\pi}{2}$$

(D)
$$2\pi$$

The domain of $\cos x$ is: 4.

(FSD G-I, 2024)

(A)
$$[-1,1]$$

(B)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Period of is $\cos \theta$: 5.

(FSD G-II, 2024)

(A)
$$2\pi$$

(B)
$$\frac{3\pi}{2}$$

(B)

(B)

(D)
$$\frac{\pi}{2}$$

6. Period of
$$\sin \frac{x}{3}$$
 is:

(A)
$$6\pi$$

The range of $\sin x$ is:

|-1,1|

$$3\pi$$
 (C) -6π (D) -3π (SGD G-II, 2024), (RWP G-II, 2024), (MTN G-II, 2024)

(D)
$$-3\pi$$

7. The range of
$$\sin x$$
 is:

8. Range of
$$y = \tan x$$
 is:

(A)
$$\frac{-\pi}{2} \ge y \le \frac{\pi}{2}$$
 (B) $-\infty < y < \infty$ (C) $\frac{-\pi}{2} \ge x \le \frac{\pi}{2}$ (D) $-\infty < x < \infty$

$$-\infty < y < \infty$$

$$C) \qquad \frac{-\pi}{2} \ge x \le \frac{\pi}{2}$$

(D)
$$-\infty < x < \infty$$

- Period of $\sec x$ is: 9.
 - (A) π
- (B) 2π
- (C) 3π

10. Period of $\cos ec x$ is: (DGK G-I, 2024)

(MTN G-I, 2024)

- 2π
- (B)
- (C) 3π
- (D) $\pi/2$

Range of $\sin\left(\frac{x}{2}\right)$ is: 11.

(SWL G-II, 2024)

- (B) [-2,2]
- (C) [2,-2]
- $\begin{bmatrix} -1,1 \end{bmatrix}$ (D)

12. Period of $\cot 3x$ is: (BWP G-II, 2024)

- (A)
- (B) $\frac{2\pi}{3}$
- (C) $\frac{\pi}{2}$
- (D)

Answers

1.	(D)	2.	(A)	3.	(A)	4.	(C)	5.	(A)	6.	(A)	7.	(A)	8.	(B)
9.	(B)	10.	(A)	11.	(D)	12.	(D)								

Solutions

- Period of $\cos \frac{x}{6}$ is $\frac{2\pi}{1} = 12\pi$ (D) 1.
- Period of $\cos 2x$ is $\frac{2\pi}{2} = \pi$ (A) 2.
- 3.
- (A) (C) (A) 5.
- Period of $\sin \frac{x}{3}$ is $\frac{2\pi}{\underline{1}} = 6\pi$ (A) 6.
- 7. (A)
- $\begin{bmatrix} -1,1 \\ -\infty < y < \infty \\ 2\pi \end{bmatrix}$ 8. (B)
- 9. (B)
- (A) 10.
- $2\pi \\
 [-1,1]$ 11. (D)
- Period of $\cot 3x$ is $\frac{\pi}{3}$ (D) **12.**

Chapter 12 MCQs

$$1. \qquad \sqrt{\frac{s(s-c)}{ab}} =:$$

(LHR G-I, 2024)

- (A) $\cos \frac{\alpha}{2}$ (B) $\sin \frac{\alpha}{2}$ (C) $\cos \frac{\gamma}{2}$
- (D) $\sin \frac{\gamma}{2}$

With usual notation, $\frac{abc}{4R}$ =:

(LHR G-II, 2024)

- (A)
- (B)
- (C) Δ
- (D)

- (GRW G-I, 2024) 3. $r_2 = :$ (B) $\frac{\Delta}{a}$ (C) Sum of opposite angles of cyclic quadrilateral is: 4. (GRW G-II, 2024) 120 180 270 (A) (B) (D) A circle passing through the three vertices of a triangle is called: (FSD G-I, 2024) 5. Circumcircle (B) Escribed circle (D) Both A and B In-circle (C) Angle below the horizontal line is called: (FSD G-II, 2024) 6. Right angle (B) Oblique angle (C) Angle of depression Angle of elevation (D) 7. (SGD G-I, 2024) (B) $\frac{1}{r}$ R (C) (D) r (SGD G-II, 2024) 8. $r_1r_2r_3 =:$ (A) Rr^2 (B) RS^2 (C) (D) $2R\sin\alpha =$: (RWP G-I, 2024) 9. (D) *a* (RWP G-II, 2024) (B) (C) Λ The radius of inscribed circle is: 10. abc (C) $\sqrt{\frac{s(s-a)}{hc}} =:$ 11. (MTN G-I, 2024) $\cos \frac{\alpha}{2}$ $\tan \frac{\alpha}{2}$ (D) $\cot \frac{\alpha}{2}$ (B) (C) In right triangle, no angle is greater than: (MTN G-II, 2024) 12. (B) (C) 60° (D) 90° Radius of escribed circle opposite to vertex A of triangle is: (DGK G-I, 2024) **13.** (B) $\frac{\Delta}{s-a}$

 $\cos \frac{\alpha}{2} =$ 14.

(A)

16.

(C) $\sqrt{\frac{s(s-a)}{bc}}$ (D) $\sqrt{\frac{s(s-b)}{as}}$

In any triangle *ABC*, $\frac{c^2 + a^2 - b^2}{2ac} =$: **15**. (B) $\cos \beta$

 $\frac{s(s-a)}{bc}$ (B) $\frac{s(s-b)}{ac}$

(SWL G-II, 2024) (C) (D) $\cos(\beta + \alpha)$ $\cos \gamma$

 $\sec\left(\frac{\alpha}{2}\right) =:$

 $\cos \alpha$

(BWP G-II, 2024)

(DGK G-II, 2024)

(A) $\sqrt{\frac{s(s-a)}{bc}}$ (B) $\sqrt{\frac{bc}{s(s-a)}}$

(C) $\frac{s}{\Lambda}$

(D) $\frac{\Delta}{s-h}$

Answers

	1.	(C)	2.	(C)	3.	(C)	4.	(C)	5.	(A)	6.	(C)	7.	(A)	8.	(D)
Ī	9.	(D)	10.	(D)	11.	(A)	12.	(D)	13.	(B)	14.	(C)	15.	(B)	16.	(B)

Solutions

1. (C)
$$\cos \frac{\gamma}{2}$$

2. (C)
$$\frac{abc}{4R} = \frac{abc}{4 \times \frac{abc}{4\Delta}} = \Delta$$

3. (C) $r_2 = \frac{\Delta}{s-b}$
4. (C) 180

3. (C)
$$r_2 = \frac{\Delta}{s - h}$$

7. **(A)**
$$\frac{4\Delta}{abc} = \frac{1}{\underline{abc}} = \frac{1}{R}$$

8. **(D)**
$$r_1 r_2 r_3 = \frac{\Delta}{s-a} \times \frac{\Delta}{s-b} \times \frac{\Delta}{s-c} = \frac{\Delta^3}{(s-a)(s-b)(s-c)} = \frac{s\Delta^3}{s(s-a)(s-b)(s-c)} = \frac{s\Delta^3}{\Delta^2} = s\Delta$$
$$= s \times s \times \frac{\Delta}{s} = rs^2$$

9. **(D)**
$$2R \sin \alpha = 2 \times \frac{a}{2 \sin \alpha} \times \sin \alpha = a$$

10. (D)
$$\frac{\Delta}{s}$$

11. (A)
$$\cos \frac{\alpha}{2}$$

13. (B)
$$\frac{\Delta}{s-a}$$

11. (A)
$$\cos \frac{\alpha}{2}$$
12. (D) 90°
13. (B) $\frac{\Delta}{s-a}$
14. (C) $\sqrt{\frac{s(s-a)}{bc}}$

15. **(B)**
$$b^2 = a^2 + c^2 - 2ac\cos\beta \Rightarrow 2ac\cos\beta = c^2 + a^2 - b^2 \Rightarrow \frac{c^2 + a^2 - b^2}{2ac} = \cos\beta$$

16. **(B)** $\sqrt{\frac{bc}{s(s-a)}}$

$$16. (B) $\sqrt{\frac{bc}{s(s-a)}}$$$

Chapter 13 MCQs

1. The value of
$$\sin^{-1}\left(\cos\frac{\pi}{6}\right)$$
 is equal to:

(LHR G-I, 2024), (BWP G-II, 2024)

(A)
$$\frac{\pi}{3}$$

(B)
$$\frac{\tau}{\epsilon}$$

(C)
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{2}$$
 (D) $\frac{3\pi}{2}$ (LHR G-II, 2) (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{6}$
2. $\sin^{-1}(0) + \cos^{-1}(0) = :$

(LHR G-II, 2024)

(B)
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{3}$$

(D)
$$\frac{\pi}{4}$$

$$3. \qquad \cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) =:$$

(GRW G-I, 2024), (RWP G-II, 2024)

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) 1

(C)
$$\frac{\pi}{2}$$

(C)
$$\frac{\pi}{3}$$
 (D) $\frac{\pi}{4}$

 $\cos(\tan^{-1}0) =$ 4.

(B)

(C) -1

(GRW G-II, 2024) (D)

5.

(FSD G-I, 2024)

(B)

(C)

(D) $-\frac{\pi}{3}$

Domain of $y = \tan^{-1} x$ is: 6.

(FSD G-II, 2024)

Q

N (C)

2x+1

(D) \boldsymbol{Z}

 $\cos(2\sin^{-1}x)$ will be equal to: 7.

(SGD G-I, 2024)

 $2x^{2}-1$

 $1 + 2x^2$ (B) (C)

(D)

 $2\cos^{-1}A =$: 8.

(SGD G-II, 2024)

 $\sin^{-1}\{2A^2-1\}$ (B) (A)

 $\sin^{-1}\{A^2-2\}$ (C) $\cos^{-1}\{2A^2-1\}$ (D) $\cos^{-1}\{A^2-2\}$

 $\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right) =:$ 9.

(RWP G-I, 2024), (DGK G-I, 2024)

(B) $\frac{\sqrt{3}}{2}$

(C)

(D)

 $\tan \left[\tan^{-1} \left(-1 \right) \right] =:$ 10.

(MTN G-I, 2024)

(A) 1 (B) -1 (C)

Domain of $y = \sin^{-1}(x)$ is: 11.

(MTN G-II, 2024)

 $-1 \le x \le 1$

(B) $-1 \ge x \ge 1$ (C) -1 < x < 1

 $0 \le x \le 1$ (D)

 $\sec\left(\cos^{-1}\frac{1}{2}\right) =:$ **12.**

(DGK G-II, 2024)

(A) $\frac{1}{2}$

(B) 2 (C)

(D)

The value of $\sec\left(\sin^{-1}\frac{\sqrt{3}}{2}\right) =:$ 13.

(SWL G-II, 2024)

(A) $\frac{\sqrt{3}}{2}$

(B) $\frac{1}{\sqrt{2}}$

(C)

(D)

Answers

1.	(A)	2.	(B)	3.	(A)	4.	(B)	5.	(B)	6.	(A)	7.	(D)
8.	(C)	9.	(A)	10.	(B)	11.	(A)	12.	(B)	13.	(C)		

Solutions

1. (A)
$$\sin^{-1}\left(\cos\frac{\pi}{6}\right) = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

2. **(B)**
$$\sin^{-1}(0) + \cos^{-1}(0) = 0 + \frac{\pi}{2} = \frac{\pi}{2}$$

3. (A)
$$\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

4. **(B)**
$$\cos(\tan^{-1} 0) = \cos(0) = 1$$

5. **(B)**
$$\sin^{-1}\left(-\frac{1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$$

6. (A)

7. **(D)**
$$\cos(2\sin^{-1}x)$$

Let $\sin^{-1}x = t \Rightarrow x = \sin t$
 $\cos(2\sin^{-1}x) = \cos 2t = 1 - 2\sin^2 t = 1 - 2x^2$

8. (C)
$$2\cos^{-1} A = \cos^{-1} A + \cos^{-1} A = \cos^{-1} \left[A.A - \sqrt{1 - A^2} \sqrt{1 - A^2} \right] = \cos^{-1} \left[A^2 - \left\{ 1 - A^2 \right\} \right]$$

= $\cos^{-1} \left\{ A^2 - 1 + A^2 \right\} = \cos^{-1} \left\{ 2A^2 - 1 \right\}$

9. **(A)**
$$\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$$

10. (B)
$$\tan \left[\tan^{-1} \left(-1 \right) \right] = \tan \left(-\frac{\pi}{4} \right) = -1$$
11. (A) $-1 \le x \le 1$

11.

12. (B)
$$\sec\left(\cos^{-1}\frac{1}{2}\right) = \sec\frac{\pi}{3} = \frac{1}{\cos\frac{\pi}{3}} = \frac{1}{\frac{1}{2}} = 2$$

13. (C)
$$\sec\left(\sin^{-1}\frac{\sqrt{3}}{2}\right) = \sec\frac{\pi}{3} = \frac{1}{\frac{1}{\cos\frac{\pi}{3}}} = \frac{1}{\frac{1}{2}} = 2$$

Chapter 14 **MCQs**

1. If
$$\cos x = \frac{\sqrt{3}}{2}$$
, then the reference angle is: (LHR G-I, 2024)

- (B) $\frac{\pi}{6}$
- (C) $-\frac{\pi}{3}$
- (D) $-\frac{\pi}{6}$

2. If
$$\sin x = -\frac{\sqrt{3}}{2}$$
, then the reference angle is: (LHR G-II, 2024)

- (B) $\frac{\pi}{6}$
- (C) $-\frac{\pi}{2}$
- (D)

3. Reference angle always lies in quadrant: (GRW G-I, 2024), (SGD G-I, 2024) (A)
$$I$$
 (B) II (C) III (D) IV

4.
$$\sin x = \frac{1}{2}$$
, then $x = \frac{1}{2}$ (GRW G-II, 2024)

5. If
$$\sin x = \cos x$$
, then $x = :$ (FSD G-I, 2024)
(A) 45° (B) 30° (C) 0° (D) 60°

- (C)
- (D) 60°

6. If
$$\sin x = \frac{1}{2}$$
, then $x = :$

(A)
$$\frac{\pi}{6}, \frac{5\pi}{6}$$
 (B) $-\frac{\pi}{6}, \frac{5\pi}{6}$

B)
$$-\frac{\pi}{6}, \frac{5\pi}{6}$$

(C)
$$-\frac{\pi}{6}, -\frac{5\pi}{6}$$
 (D) $\frac{\pi}{3}, \frac{2\pi}{3}$

$$(D) \qquad \frac{\pi}{3}, \frac{2\pi}{3}$$

 $\cos x = -\frac{1}{\sqrt{2}}$ and $x \in [0, \pi]$ then x =: 7.

(SGD G-II, 2024)

- (B)
- (C)

- Reference angle for $1-2\sin x = 0$ is: 8.
- (RWP G-I, 2024), (RWP G-II, 2024)

- (B)
- (C)
- (D)

 $\sin x \cos x = \frac{\sqrt{3}}{4}$, then x =: 9.

(MTN G-I, 2024)

- (B)
- (C)
- (D)

- If $\cos x = \frac{1}{\sqrt{2}}$, then reference angle is: 10.
- (MTN G-II, 2024), (SWL G-II, 2024)

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$
- (C)
- (D) $\frac{\pi}{2}$

 $\cos x = \frac{1}{2}$, then x =: 11.

(DGK G-I, 2024)

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$
- (C)
- (D) $\frac{\pi}{2}$

If $\cos x = -\frac{\sqrt{3}}{2}$, then value of x is: 12.

(DGK G-II, 2024)

- (B) $\frac{\pi}{6}$
- (C)
- (D) $-\frac{\pi}{3}$

If $\sin x = \frac{\sqrt{3}}{2}$ and $x \in [0, 2\pi]$, then x is: 13.

(BWP G-II, 2024)

- (A) $\frac{5\pi}{3}, \frac{4\pi}{3}$ (B) $\frac{\pi}{4}, \frac{3\pi}{4}$
- (C) $\frac{\pi}{3}, \frac{2\pi}{3}$
- (D) $\frac{\pi}{6}, \frac{5\pi}{6}$

Solution of $\cot \theta = \frac{1}{\sqrt{3}}$ in quad III is: 14.

(BWP G-II, 2024)

- (A) $\frac{5\pi}{3}$
- (B) $\frac{7\pi}{6}$
- (C)
- (D) $\frac{7\pi}{3}$

Answers

ĺ	1.	(B)	2.	(D)	3.	(A)	4.	(A)	5.	(A)	6.	(A)	7.	(A)
	8.	(A)	9.	(B)	10.	(B)	11.	(C)	12.	(A)	13.	(C)	14.	(C)

Solutions

- (B) 1.
- (D) 2.
- (A) 3.
- $\sin x = \frac{1}{2}$ (A) 4.

Since $\sin x$ is positive in 1st and 2nd quadrant with reference angle $\frac{\pi}{6}$

In 1st quadrant: $x = \frac{\pi}{6}$

5. (A)
$$\sin x = \cos x \Rightarrow \tan x = 1 \Rightarrow x = 45^\circ$$

6. (A)
$$\sin x = \frac{1}{2}$$

Since $\sin x$ is positive in 1st and 2nd quadrant with reference angle $\frac{\pi}{6}$

In 1st quadrant:
$$x = \frac{\pi}{e}$$

In 2nd quadrant:
$$x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

7. **(A)**
$$\cos x = -\frac{1}{\sqrt{2}} \text{ and } x \in [0, \pi]$$

Since $\cos x$ is negative in 2nd and 3rd quadrant with reference angle $\frac{\pi}{4}$

In 2nd quadrant:
$$x = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

8. (A)
$$1-2\sin x = 0 \Rightarrow -2\sin x = -1 \Rightarrow \sin x = \frac{1}{2}$$

Reference angle =
$$\frac{\pi}{6}$$

9. **(B)**
$$x = \frac{\pi}{3}$$
 satisfies $\sin x \cos x = \frac{\sqrt{3}}{4}$

10. (B)
$$\frac{\pi}{4}$$

11. (C)
$$\cos x = \frac{1}{2}$$

Since $\cos x$ is positive in 1st and 4th quadrant with reference angle $\frac{\pi}{3}$

In 1st quadrant:
$$x = \frac{\pi}{3}$$

12. (A)
$$\cos x = -\frac{\sqrt{3}}{2}$$

Since $\cos x$ is negative in 2nd and 3rd quadrant with reference angle $\frac{\pi}{6}$

In 2nd quadrant:
$$x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

13. (C)
$$\sin x = \frac{\sqrt{3}}{2} \text{ and } x \in [0, 2\pi]$$

Since $\sin x$ is positive in 1st and 2nd quadrant with reference angle $\frac{\pi}{3}$

In 1st quadrant:
$$x = \frac{\pi}{3}$$

In 2nd quadrant:
$$x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

14. (C)
$$\cot \theta = \frac{1}{\sqrt{3}} \Rightarrow \tan \theta = \sqrt{3}$$

Reference angle =
$$\frac{\pi}{3}$$

In 3rd quadrant:
$$x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$$