

历安笔子科技大学 XIDIAN UNIVERSITY

计算机科学与技术学院

School of Computer Science and Technology

微机原理 与 系统设计

第 章 经典接口及定时器件

7.1 可编程并行接口 8255

7.2 可编程定时器 8253

2024年12月6日星期五 20:16

1

历安冠子科技大学 XIDIAN UNIVERSITY

计算机科学与技术学院

School of Computer Science and Technology

微机原理 与 系统设计

第一章 经典接口及定时器件

思考: 计算机与外设之间

如何通过接口

传送数据(非DMA情况)?

2024年12月6日星期五

20:16

无条件传送方式、程序查询方式

中断 方式,单向 传输数据

INTR: Interrupt Request

OBF: Output Buffer Full

ACK: Acknowledge

IBF: Input Buffer Full

STB: Strobe

中断 方式, 双向 传输数据

INTR: Interrupt Request

OBF: Output Buffer Full

ACK: Acknowledge

IBF: Input Buffer Full

STB: Strobe

无条件传送方式、程序查询方式

中断方式,单向传输数据

中断 方式,双向 传输数据

历安電子科技大學 XIDIAN UNIVERSITY

计算机科学与技术学院

School of Computer Science and Technology

微机原理 与 系统设计

第 章 经典接口及定时器件

可编程并行接口 8255

2024年12月6日星期五 20:16

一、8255的内部结构框图、引脚

二、8255的工作方式

工作方式 0: 基本输入输出方式

- A口 (PA0~PA7): 输入 或 输出
- B口 (PB0~PB7): 输入或输出
- C口 (PC4~PC7): 输入或输出
- C口 (PC0~PC3): 输入或输出

可按位 置位/复位 相当于 相当于 三态门 锁存器

图7.9 8255的控制字格式(方式选择字)

二、8255的工作方式

工作方式 1: 选通输入输出方式

- C口 (不用作控制/状态信号的位): 输入或输出

二、8255的工作方式 方式 1: 选通输入输出方式

二、8255的工作方式

工作方式 2: 双向输入输出方式(仅A口)

- PC3~PC7: A口方式2下的控制线
- **■** PC0~PC2:
 - 方式0下的输入或输出,或
 - B口方式1下的控制线
- B口: 方式0 或 方式1

二、8255的工作方式

工作方式 2: 双向输入输出方式(仅A口)

PA7~PA0 为三态输出,受 ACKA 控制

三、8255的

寻址及连接使用

系

统

总

线

信

号

【例1】

图 7.15 两片8255连接到 8086系统总线上

三、8255的寻址及连接使用

图7.14 PC机中8255的连接

8255地址: 380H ~ 383H

初始化程序:

INIT55: MOV DX, 0383H

MOV AL, 10000011B

OUT DX, AL

MOV AL, 00001101B

OUT DX, AL

;方式选择

;C口位操作

8255地址: 380H ~ 383H

初始化程序:

```
MOV DX, 0383H
```

MOV AL, 10100000B ;方式选择

OUT DX, AL

MOV AL, 00001101B ; C口位操作

OUT DX, AL

```
1 010 0 00 0
0 000 1101

A口方式1、输出 B口方式0、输出 PC6 置1 (输出)
```

利用8255方式1以程序控制(查询)方式实现打印机接口:

利用8255方式1以中断方式实现打印机接口:

将图7.18中8255的PC3(INTRA)引脚接至图6.33 中8259的IR0,采用与6.3.2节中相同的对8259及中断向量表进行初始化的程序,则当8255的INTRA有效时,在中断允许的情况下,CPU将执行以下中断处理程序(设要打印输出的数据存于SI指针指示的存储单元中,CL中记录将要输出的数据个数,执行一次中断,输出一个数据到打印机):

历安包子科技大学 XIDIAN UNIVERSITY

计算机科学与技术学院

School of Computer Science and Technology

微机原理 与 系统设计

第 章 经典接口及定时器件

7.2 可编程定时器 8253

2024年12月6日星期五 20:16 |

一、引脚及内部结构

功能: ① 计数; ② 产生定时信号; ③ 外部可控

图7.20 可编程定时器8253内部结构框图

方式0和方式1:

计数初值 n 时钟周期 T

方式1: Gate_「

GATE {方式0: _ 暂停计数 方式1: _ 重新计数

方式0: 计数结束产生中断

MODE 0: Interrupt on Terminal Count

方式1:可编程单稳

MODE 1: Programmable One-Shot

方式2: 频率发生器

方式3:方波发生器

- GATE为低电平:禁止计数,强迫OUT输出高电平;
- GATE为上升沿:初始化计数;
- GATE为高电平:允许计数(OUT输出对称方波)。

MODE 3: Square Wave Generator

方式4和方式5:

计数初值 n 时钟周期 T

GATE {方式4: __ 暂停计数 方式5: __ 重新计数

二、8253的6种工作方式

方式4: 软件触发选通

MODE 4: Software Triggered Strobe

二、8253的6种工作方式

方式5: 硬件触发选通

MODE 5: Hardware Triggered Strobe

39

三、8253的计数范围、控制字格式

计数范围

 $(1\sim65536)$

- 二进制计数: 0000H~FFFFH(65535) BCD计数: 0000~9999(1~10000)
- 计数初值为0000时,对应**最大计数值**

8253的连接及初始化

【例2】

 $f_{\rm osc}/3 = 4.772726 \, {\rm MHz}, \ f_{\rm osc}/4 = 3.579545 \, {\rm MHz}, \ f_{\rm osc}/6 = 2.386363 \, {\rm MHz}$

在IBM公布的软件BIOS中,对8253初始化的程序:

MOV AL, 36H、; 计数器0, 双字节, 方式3, 二进制计数

OUT 43H, AL ;写入控制寄存器, 00 11 011 0

MOV AL, 0

OUT 40H, AL ;写低字节

OUT 40H, AL ;写高字节

; 计数值: 65536

;输出对称方波

PCLK经二分频后,频率为1.19318MHz,则方波周期:

65536×(1/1.19318)μs = 55 ms → 定时中断

在IBM公布的软件BIOS中,对8253初始化的程序:

MOV AL, 54H

; 计数器1, 只写低字节,

;方式2,二进制计数

OUT 43H, AL

;写入控制寄存器,₀₁ 01 010 0

MOV AL, 18

OUT 41H, AL

;写低字节

; 计数值: 18

;频率发生器

PCLK经二分频后,频率为1.19318MHz,则负脉冲间隔时间:

18× (1/1.19318) µs = 15 µs → DRAM 刷新

在IBM公布的软件BIOS中,对8253初始化的程序:

MOV AL, 0B6H ; 计数器2, 写双字节, 方式3, 二进制计数

OUT 43H, AL ;写入控制寄存器, 10 11 011 0

MOV AX, 533H

OUT 42H, AL ;写低字节

MOV AL, AH

OUT 42H, AL ;写高字节

; 计数值: 533H

;方波发生器

;OUT。经驱动和滤波,接扬声器

【例】电源掉电检测。

我们目前使用的220 V电源为50 Hz交流电(国外通常使用110 V、60 Hz交流电),它通常作为微机系统的系统电源。当系统电源因各种原因出现故障时,为了保护系统的工作状态,需要在备用电源的支持下对重要信息进行保护等处理,以便系统恢复正常供电后能够继续原来的工作,这就需要进行电源掉电检测。

电源掉电检测电路

 $n \cdot T > 20 \text{ms}$

n > 20 ms / T

 $n > 0.02 \text{s} \times f$,

 $n > 0.02s \times 2457600Hz$

=49152

= C000H,

n 取 C002H。

【例】电源掉电检测

8253初始化程序:

(设8253的I/O地址为200H~207H中的偶地址)

```
MOV DX,0206H
```

MOV AL,00110010B ;选计数器0,16位计数长度,

;方式1,二进制计数

OUT DX, AL

MOV DX,0200H

MOV AL,02H

;取计数值N=C002H

OUT DX, AL

MOV AL, 0C0H

OUT DX, AL

五、可编程定时/计数器8253的串联使用

(一)单个定时/计数器的限制

- 一个计数器的最长定时时间
- =最大计数值 n_{max} × 时钟周期 T_{CLK}
- $=65536 \times 0.5 \mu s$
- =32.768ms

如果希望定时时间更长(输出信号的周期更长),如何实现?

——多个定时/计数器串联使用。

五、可编程定时/计数器8253的串联使用

(二)多个定时/计数器串联使用

这种设计的适用场合:

- ■要求输出信号为方波或周期性的负脉冲。
- 单个定时/计数器的定时时间不够。
- ■对输出负脉冲的宽度没有要求。

多个定时/计数器串联使用

【方法1】

要求输出为指定宽度的周期性负脉冲,如何设计?

优点: TOUT 是32位计数器的定时结果。

限制: TOUTI必须是W的整数倍。

 $n_0 = 2 \text{ms} / 0.5 \mu \text{s} = 4000$ $n_1 = 10 \text{ms} / 2 \text{ms} = 5$

【方法2】

要求输出为指定宽度的周期性负脉冲,如何设计?

即: Timer0/1的定时时间为 Touri和W。

优点: T_{OUT1} 可以不是W的整数倍。

限制: TOUTI是16位计数器的定时结果。

多个定时/计数器串联使用

根据上述分析,可以

- 设计8253硬件连接电路;
 - ◆ 8253与8086/8088系统总线侧的连接;
 - ◆8253的计数器0、计数器1之间的连接。
- 设计8253初始化程序。
 - ◆ 写计数器0、计数器1的方式字;
 - ◆写计数器0、计数器1的计数值。
 - □ 先写低8位,
 - □ 再写高8位。

