Vector Functions

Definition: The Limit of a Vector Function

Let $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ be a vector function with domain D, and let \mathbf{L} be a vector. We say that \mathbf{r} has **limit** \mathbf{L} as t approaches t_0 and write

$$\lim_{t \to t_0} \mathbf{r}(t) = \mathbf{L}$$

if, for every $\epsilon>0$, there exists a corresponding $\delta>0$ such that for all $t\in D$

$$||\mathbf{r}(t) - \mathbf{L}|| < \epsilon$$
 whenever $0 < |t - t_0| < \delta$

(Just take the lim of each of the funtions)

Limit Rules

Let **f** and **g** be vector functions and let u be a real-valued function. If we are given that as $t \to t_0$

$$\mathbf{f}(t) \to \mathbf{L}, \ \mathbf{g}(t) \to \mathbf{M}, \ u(t) \to U$$

Then,

(1)
$$\mathbf{f}(t) + \mathbf{g}(t) \rightarrow \mathbf{L} + \mathbf{M}$$
,

(2)
$$\alpha \mathbf{f}(t) \rightarrow \alpha \mathbf{L}$$
,

(3)
$$u(t)\mathbf{f}(t) \to U\mathbf{L}$$
,

(4)
$$\mathbf{f}(t) \cdot \mathbf{g}(t) \to \mathbf{L} \cdot \mathbf{M}$$
,

(5)
$$\mathbf{f}(t) \times \mathbf{g}(t) \to \mathbf{L} \times \mathbf{M}$$
.

Derivative

Definition: Derivative of a Vector Function

The derivative of a vector function is found by:

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{\mathbf{r}(t + \Delta t) - \mathbf{r}(t)}{\Delta t}$$

providing this limit exists. When the limit exists, we say that \mathbf{r} is differentiable at t and $\mathbf{r}'(t)$ is called the derivative of \mathbf{r} at t.

(1)
$$(\mathbf{f} + \mathbf{g})'(t) = \mathbf{f}'(t) + \mathbf{g}'(t)$$

(2)
$$(\alpha \mathbf{f})'(t) = \alpha \mathbf{f}'(t)$$

(3)
$$(\mathbf{f} \cdot \mathbf{g})'(t) = [\mathbf{f}(t) \cdot \mathbf{g}'(t)] + [\mathbf{f}'(t) \cdot \mathbf{g}(t)]$$

(4)
$$(\mathbf{f} \times \mathbf{g})(t) = [\mathbf{f}(t) \times \mathbf{g}'(t)] + [\mathbf{f}'(t) \times \mathbf{g}(t)]$$

$$(5) (u\mathbf{f})'(t) = u(t)\mathbf{f}'(t) + u'(t)\mathbf{f}(t)$$

(6)
$$(\mathbf{f} \circ u)'(t) = \mathbf{f}'(u(t)) u'(t)$$

The curve is smooth of the derivative of the curve is continuous and never 0.

The direction of motion is the direction of the velocity vector.

Integrals

Definition: Indefinite Integral

A differentiable vector function $\mathbf{R}(t)$ is an **antiderivative** of $\mathbf{r}(t)$ on some interval I if $\frac{d\mathbf{R}}{dt} = \mathbf{r}$ at each point of I. The **indefinite integral** of \mathbf{r} with respect to t is the set of all antiderivatives of \mathbf{r} , denoted by $\int \mathbf{r} \, dt$. If \mathbf{R} is any antiderivative of \mathbf{r} , then

$$\int \mathbf{r} \, dt = \mathbf{R}(t) + \mathbf{C}$$

Definition: The Definite Integral

For $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ continuous on [a, b],

$$\int_a^b \mathbf{r}(t) \, dt = \left(\int_a^b f(t) \, dt \right) \, \mathbf{i} + \left(\int_a^b g(t) \, dt \right) \, \mathbf{j} + \left(\int_a^b h(t) \, dt \right) \, \mathbf{k}$$

Properties of the Integral

(1)
$$\int_a^b [\mathbf{f}(t) + \mathbf{g}(t)] dt = \int_a^b \mathbf{f}(t) dt + \int_a^b \mathbf{g}(t) dt$$

(2)
$$\int_{a}^{b} [\alpha \mathbf{f}(t)] dt = \alpha \int_{a}^{b} \mathbf{f}(t) dt$$
 (\alpha a constant scalar)

(3)
$$\int_a^b [\mathbf{c} \cdot \mathbf{f}(t)] dt = \mathbf{c} \cdot \int_a^b \mathbf{f}(t) dt$$
 (**c** a constant vector)

(4)
$$\left\| \int_a^b \mathbf{f}(t) dt \right\| \le \int_a^b ||\mathbf{f}(t)|| dt$$