

Description

The VSM58N04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =45V,I_D =58A

 $R_{DS(ON)}$ <12m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
,	VSM58N04-T2	VSM58N04	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit V	
Drain-Source Voltage	VDS	45		
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	58	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	41	А	
Pulsed Drain Current	I _{DM}	200	А	
Maximum Power Dissipation	P _D	65	W	
Derating factor		0.43	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	240	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	2.3	°C/W	
---	-------------------	-----	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Off Characteristics			•			•	
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	45	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =45V,V _{GS} =0V	-	-	1	μA	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)			•			•	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.2	1.9	2.5	V	
Dunin Course On Ctata Desistance	Б.	V _{GS} =10V, I _D =20A	-	8.0	10	mΩ	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =15A		11.6	18		
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	20	-	-	S	
Dynamic Characteristics (Note4)			•			•	
Input Capacitance	C _{lss}	\/ -20\/\/ -0\/	-	1800	-	PF	
Output Capacitance	Coss	V_{DS} =20V, V_{GS} =0V, F=1.0MHz	-	182	-	PF	
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz	-	138	-	PF	
Switching Characteristics (Note 4)	·		•				
Turn-on Delay Time	t _{d(on)}		-	6.4	-	nS	
Turn-on Rise Time	t _r	V_{DD} =20 $V_{,,}R_{L}$ =1 Ω	-	17.2	-	nS	
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	29.6	-	nS	
Turn-Off Fall Time	t _f		-	16.8	-	nS	
Total Gate Charge	Qg	V -20VI -20A	-	36.8		nC	
Gate-Source Charge	Q _{gs}	V_{DS} =20V, I_{D} =20A, V_{GS} =10V	-	4.8		nC	
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	11.2		nC	
Drain-Source Diode Characteristics			•			•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =10A	-		1.2	V	
Diode Forward Current (Note 2)	Is		-	-	58	Α	
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	29	-	nS	
Reverse Recovery Charge	Qrr $di/dt = 100A/\mu s^{(Note3)}$		-	26	-	nC	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : $Tj=25^{\circ}C$, $V_{DD}=20V$, $V_{G}=10V$, L=0.5mH, $Rg=25\Omega$,

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

70 60 Power Dissipation (W) 50 40 30 20 10 0 0 25 75 100 125 150 175 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance