Reg. No.:

Name

TERM END EXAMINATION (TEE) - NOV./DEC. 2018

Programme	B.Tech.	Semester	Fall 2018-19
Course Name	Calculus and Laplace Transforms	Course Code	MAT1001
Faculty Name	Dr. Anant Kant Shukla	Slot / Class No	B2+LB2+TB2/1076
Time	3 Hrs.	Max. Marks	100

Answer ALL the Questions

Q. No. Question Description Marks
PART A – (60 Marks)

1 (a) Find the absolute extreme values of the temperature $T(x,y) = 4x^2 + 9y^2 - 8x - 12$ 12y + 4 which is defined on a rectangle x = 0, x = 2, y = 0, y = 3.

OR

- (b) (i) Expand $e^x \sin y$ in ascending powers of (x-0) and $(y-\frac{\pi}{2})$ up to three terms by using Taylor's formula.
 - (ii) About how accurately may, the volume of a right circular cylinder be calculated if its radius and height are in error by 0.5%.
- 2 (a) Evaluate $\iint_R (x y^2) \cos^2(x + y) dx dy$ where R is the region in xy -plane with 12 vertices $(\pi, 0), (2\pi, \pi)$ and $(0, \pi)$. Use the transformation u = x + y and v = x y to find its value.

OR

- (b) (i) Write the transformation to convert Cartesian co-ordinate system to cylindrical and spherical polar co-ordinates. Also find the associated Jacobian of the transformation for both the cases.
 - (ii) Evaluate the volume of the region bounded above by the surface $z = e^{-(x^2+y^2)}$ 6 and bounded below by the region $x^2 + y^2 = 1$ in second quadrant of the xy -plane.
- 3 (a) Verify the Green's theorem for $\vec{F} = [y \sin x, \cos x]$ where C is the boundary of a triangle with vertices $(0,0), (\frac{\pi}{2},0), (\frac{\pi}{2},1)$ in xy -plane.

(b)	(i) Evaluate ∮ _c	\vec{r} . $d\vec{r}$ where the notation	\vec{r} and C have their usual meanings.	4
-----	-----------------------------	---	--	---

- (ii) Check whether the vector function $\vec{F} = [\sin y + z, x \cos y z, x y]$ is 8 irrotational. If so, find the corresponding potential.
- 4 (a) Find a general solution of the differential equation $y''(x) + 16y(x) = 32 \sec 2x$.

OR

(b) (i) A drop of liquid evaporates at a rate proportional to its surface area. If the radius initially is 4 mm and it reduced to 2 mm in first 5 minutes then find the radius of the drop as a function of time.

(ii) Solve
$$(x-4)y'(x) + 3y(x) - 12(x-4)^3 = 0$$
.

5 (a) Find the solution of the differential equation 12

$$y''(t) + 5y'(t) + 6y(t) = 1 - u(t - 3) - u(t - 5)$$
 with initial conditions $y(0) = 0, y'(0) = 0.$

OR

- (b) (i) Find $L\{\sinh t\}$ by using the first shifting theorem.
 - (ii) Find the value of the integral $\int_0^\infty t \ e^{-3t} \cos 2t \ dt$ by using Laplace transform.

PART B - (40 Marks)

6 Check whether the function
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is differentiable. What about its partial derivatives at origin with respect to x and y?

7 Evaluate
$$\int_0^2 \int_{\frac{y^2}{2}}^{\frac{y}{(2-x)(2x-y^2)^{\frac{1}{2}}}} dx dy$$
. 8

- Find the directional derivative of $f(x, y) = x^2y^3 + xy$ at (2,1) in the direction of a unit vector which makes an angle of 60° with the positive x –axis in the xy –plane.
- 9 Solve $(3x^2 + 2e^y)dx + (2xe^y + 3y^2)dy = 0, y(0) = 1.$

Find
$$L^{-1}\left\{\frac{4s+16}{(s^2+8s+25)^2}\right\}$$
.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

Reg. No.:

Name

TERM END EXAMINATION (TEE) - NOV./DEC. 2018

Programme	B.Tech.	Semester	Fall 2018-19
Course Name	Calculus and Laplace Transforms	Course Code	MAT1001
Faculty Name	Dr. Anant Kant Shukla	Slot / Class No	C2+LC2+TC2/1077
Time	3 Hrs.	Max. Marks	100

Answer ALL the Questions

Q. No. Question Description Marks
PART A – (60 Marks)

1 (a) An aquarium with rectangular sides and bottom (with no top) is to hold 32 litres of water. Find its dimensions so that it will use the least amount of material.

OR

- (b) (i) Find the equation of the tangent plane to the surface $x^2 + y^2 + z 16 = 0$ at the point (1,3,6).
 - (ii) Check whether the $\lim_{(x,y)\to(0,1)} \tan^{-1}\left(\frac{y}{x}\right)$ exist or not. If it exists then find the value of it.
- 2 (a) Evaluate $\int_0^3 \int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \left(\frac{2x-y}{2} + \frac{z}{3}\right) dx dy dz$ by using the transformation $u = \frac{2x-y}{3}, v = \frac{y}{3}, w = \frac{z}{3}.$

OR

- (b) (i) If f(x, y) = 200(y + 1) gives the density of population of a plane region on earth where x and y are measured in miles. Find the number of people in the region bounded by the curves $x = y^2$ and $x = 2 y^2$.
 - (ii) Evaluate $\iint_R e^{x^2} dx dy$, where the region R is given by $2y \le x \le 2$, $0 \le y \le 1$.
- 3 (a) Verify the Gauss Divergence theorem if $\vec{F} = [4xz, -y^2, yz]$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.

OR

- (b) (i) Evaluate $\int_{(0,0)}^{(2,1)} [(10x^4 2xy^3)dx 3x^2y^2dy]$ along the path $x^4 6xy^3 = 4y^2$.
 - (ii) Write the standard parametric representation of cone, circular cylinder and sphere.
- 4 (a) Find the solution of the differential equation $y''(x) 2y'(x) + y(x) = x^{1.5} e^x$ by the method of variation of parameters.

OR

- (b) (i) A particle moves on a straight line so that its acceleration is equal to four times of its velocity. At time t = 0 its displacement from the origin is 2 feet and its velocity is 3 feet/sec. Find an approximation to the time when the displacement is 10 feet.
 - (ii) Solve $(y y^2x^2 \sin x)dx + x dy = 0.$
- 5 (a) Solve y''(t) + 4y(t) = f(t) with y(0) = 1, y'(0) = 0 where f(t) = 12 $\begin{cases} 0, & 0 \le t < 1 \\ 1, & 1 \le t < 2 \text{ by using Laplace transform.} \\ 0, & t \ge 2 \end{cases}$

OR

- (b) (i) Find $L\{e^{-2t}\cos t \cos 2t\}$.
 - (ii) Evaluate $L^{-1}\left\{\frac{2as}{(s^2+a^2)^2} + \frac{a}{(s-a)^2}\right\}$.

PART B - (40 Marks)

- If f(u, v, w) is a differentiable function and u = x y, v = y z and w = z x then find the value of $f_x + f_y + f_z$.
- Evaluate $\iint_R \sqrt{x^2 + y^2} dx dy$ where *R* is the region in the xy -plane bounded by the circles $x^2 + y^2 = 16$ and $x^2 + y^2 = 25$.
- 8 Calculate the flux of the vector function $\vec{F} = [y^3, x^3, z^3]$ across the surface 8 $S: x^2 + 4y^2 = 4, x \ge 0, y \ge 0, 0 \le z \le h$ where h be a constant.
- Solve $y''(x) 4y'(x) 5y(x) = c^{-3x} + e^x$ by using the method of undetermined 8 coefficients.
- Find inverse Laplace transform of $\frac{s^2+2s-9}{(s^2+2s+17)(s^2+2s-24)}$.