Adversarial Search

Outline

- Games
- Minimax search (foundation)
- α-β pruning (adding intelligence into Minimax)

Games vs. search problems

- "Unpredictable" opponent → specifying a move for every possible opponent reply
- Time limits → unlikely to find goal, must approximate
- Game tree: 2-player, deterministic, turns.
- Formulate game problems
 - Initial state: the board position and identifies the player to move.
 - Successor function: return a list of (move, state) pairs.
 - Goal test: determine terminal states (where the game has ended).
 - Utility function: give a numeric value for each terminal state.

Game Tree of Tic-tac-toe

Minimax

- Perfect play for deterministic games.
- Ideas
 - assume the opponent always chooses a move that minimizes the desirability of states (from my perspective).
 - The heuristic evaluation at level i depends on the move (by the other player) at level i+1.

Minimax algorithm

- Perform a fix-level look ahead (depth-first) search.
- Evaluate the heuristic values of leaf nodes.
- Back up the heuristic values from the leaf nodes to the root by choosing the maximal values when it's turn, and choosing the minimal values when it's opponent's turn.

Example

E.g., 2-ply game:

Result

Properties of minimax (DFS)

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Time complexity? O(b^m)
- Space complexity? O(bm) (depth-first exploration)
- For chess, b ≈ 35, m ≈100 for "reasonable" games
 → exact solution completely infeasible

α-β Pruning

- Each MAX node (your ply) has an α value to keep track of the current maximum of its back-up values.
- Each MIN node (opponent's ply) has a β
 value to keep track of the current minimum
 of its back-up values.
- Use α and β values to detect two kinds of opportunities for pruning the search tree without affecting the root node's decision.
 - $-\alpha$ cutoff (cut min)
 - $-\beta$ cutoff (cut max)

a cutoff

• When β value of a MIN node $\leq \alpha$ value of an ancestor MAX node, all branches below the MIN node can be pruned.

β cutoff

• When α value of a MAX node $\geq \beta$ value of an ancestor MIN node, all branches below the MAX node can be pruned.

α-β pruning example

α-β pruning example (cont'd)

α-β pruning example (cont'd)

α-β pruning example (cont'd)

Why is it called α - β ?

MAX

MIN

MAX

MIN

- α is the value of the best (i.e., highestvalue) choice found so far at any choice point along the path for max
- If v is worse than α,
 max will avoid it
 → prune that branch
- Define β similarly for min

Properties of α - β

- Back up values from an intermediate node if
 - All children of the node has the values sent up
 - An α cut or a β cut is detected at the node
- Pruning does not affect final result
- Good move ordering improves effectiveness of pruning
 - With "best first", time complexity = O(b^{m/2})
 →b^{1/2} breadth of search
 - With "random walk", time complexity = O(b^{3m/4})

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: AlphaGo Master defeated Ke Jie, current world No. 1 ranking player, by three to zero in 2017. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Summary

- Games are fun to work on!
- They illustrate several important points about AI.
- Perfection is unattainable

 must approximate.
- Good idea to think about what to think about.