

# Sigenergy Modbus Protocol

Version: V2.5

Release date: 2025-02-19







# **Copyright Notice**

Copyright© 2023 Sigenergy Technology Co., Ltd. All Rights Reserved.

Description in this document may contain predictive statements regarding financial and operating results, product portfolio, new technology, configurations and features of product. Several factors could cause difference between actual results and those expressed or implied in the predictive statements. Therefore, description in this document is provided for reference purpose only and constitutes neither an offer nor an acceptance. Sigenergy Technology Co., Ltd. may change the information at any time without notice.



# SIĢENERĢY

and other Sigenergy trademarks are owned by Sigenergy Technology Co., Ltd.

All trademarks and registered trademarks in this document belong to their owners.

# **Contents**

| 1. Introduction                                                         |
|-------------------------------------------------------------------------|
| 2. Applicable Model 2                                                   |
| 3. Communication Interface                                              |
| 3.1 RS4853                                                              |
| 3.2 Fast Ethernet/WLAN/Optical fiber/4G3                                |
| 3.3 Fast Ethernet/WLAN/Optical fiber/4G*4                               |
| 4. Technical Terms5                                                     |
| 4.1 Technical item name specification:5                                 |
| 4.2 Interaction timeout6                                                |
| 4.3 Alarm severity level definition7                                    |
| 5. Register Address Definition                                          |
| 5.1 Plant running information address definition (read-only register)7  |
| 5.2 Plant parameter setting address definition (holding register) 11    |
| 5.3 Hybrid inverter running information address definition (read-only   |
| register)14                                                             |
| 5.4 Hybrid inverter parameter setting address definition (holding       |
| register)19                                                             |
| 5.5 AC-Charger running information address definition (read-only        |
| register)20                                                             |
| 5.6 AC-Charger parameter setting address definition (holding register)2 |
| 6. Modbus Protocol Command Overview21                                   |



| 6.1 Funct   | ion code                | 22 |
|-------------|-------------------------|----|
| 6.1.1 Read  | d Read-only Register    | 22 |
| 6.1.2 Rea   | d Holding Register      | 23 |
| 6.1.3 Writ  | e a single Register     | 24 |
| 6.1.4 Writ  | e multiple Registers    | 25 |
| 6.2 Excep   | otion code              | 26 |
| Appendix 1  | Running state           | 28 |
| Appendix 2  | PCS alarm code 1        | 28 |
| Appendix 3  | PCS alarm code 2        | 29 |
| Appendix 4  | ESS alarm code          | 30 |
| Appendix 5  | Gateway alarm code      | 30 |
| Appendix 6  | Remote EMS control mode | 31 |
| Appendix 7  | AC-Charger system state | 32 |
| Appendix 8  | AC-Charger alarm code 1 | 32 |
| Appendix 9  | AC-Charger alarm code 2 | 33 |
| Appendix 10 | AC-Charger alarm code 3 | 34 |
| Appendix 11 | DC-Charger alarm code   | 34 |



| Version   | Date             | Change Description                                                                                                                                                                                                                                                             |
|-----------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V1.0-V1.8 | 2023-08-15<br>to | Added description for interaction timeout. Supporting plant-wide power control. Added definition for alarm severity. Added a few phase power related registers and mode controlling registers. Added DC Charger related registers. Modified and added a few remote EMS and ESS |
|           | 2024-08-05       | control related registers.  Added description of using different Modbus slave address querying different devices or power plant.                                                                                                                                               |
| V2.0      | 2024-10-14       | Added AC-Charger model and it's related registers.  Added AC-Charger related system state and alarm appendix.  Added DC-Charger related alarm appendix.  Modified appendix names.  Modified descriptions of RTU frame and PDU examples in chapter 6.                           |
| V2.1      | 2024-10-30       | Added "Applicable model abbreviation" definition.  Added applicable model columns in chapter 5.  Added descriptions for communication interfaces.  Added PV related registers. Modified alarm code names.                                                                      |
| V2.2      | 2024-11-28       | Added description for plant broadcast address. Added inverter level power control related registers. Modified plant parameter registers.                                                                                                                                       |
| V2.3      | 2024-12-09       | Added new applicable models.                                                                                                                                                                                                                                                   |
| V2.4      | 2025-02-05       | Modified a few inverter's registers.                                                                                                                                                                                                                                           |



|      |            | Added a few plant ESS related registers, two grid |
|------|------------|---------------------------------------------------|
|      |            | point and two PCS power control registers.        |
| V2.5 | 2025-02-19 | Modified comments of a few holding registers.     |
|      | -0         | Added a few hybrid inverter battery temperature   |
|      |            | and voltage-related registers.                    |



## 1. Introduction

This Modbus protocol complies the standard Modbus Application protocol specification. The physical media is multiple, such as RS485, Fast Ethernet, WLAN, Optical fiber and 4G. The figure below shows a simple host-slave mode in Modbus protocol.

Specifically, in a inverter-consisted power plant, to request information or control an individual devices, Modbus frames should be sent to the corresponding device's Modbus slave address, which must be set to a unique value among a inverter-consisted power plant in App. To request plant information or control plant behavior, Modbus frames should be sent to Modbus slave address 247, known as the "plant address". To control plant behavior and to not receive Modbus reply, Modbus frames should be sent to Modbus slave address 0, known as the "plant broadcast address".





# 2. Applicable Model

Table 2-1 lists the machine models applicable to this protocol. Each applicable model abbreviation in the table represents all the machine models listed to its right. In Chapter 5, "Register Address Definition," each register corresponds to a specific applicable model abbreviation, indicating that the register can only be read or written by the machine models the abbreviation represents.

Table 2-1 Applicable models

| Applicable<br>model<br>abbreviation | Model                                                                                 | Note                              |
|-------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------|
|                                     | SigenStor EC (3.0, 3.6, 4.0, 4.6, 5.0, 6.0, 8.0, 10.0, 12.0) SP series                | MPPT count: 2-4<br>PV count: 2-4  |
|                                     | Sigen Hybrid (3.0, 3.6, 4.0, 4.6, 5.0, 6.0) SP                                        | MPPT count: 2-4<br>PV count: 2-4  |
| 512.2                               | Sigen Hybrid (5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 17.0, 20.0, 25.0, 30.0) TP series      | MPPT count: 2-4<br>PV count: 2-4  |
| Hybrid Inv.                         | SigenStor EC (5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 17.0, 20.0, 25.0, 30.0) TP/TPLV series | MPPT count: 2-4<br>PV count: 2-4  |
|                                     | Sigen PV (50, 60, 80, 100, 110, 125)M1-HYA series                                     | MPPT count: 4-8<br>PV count: 8-16 |
|                                     | PG Controller (3.8, 4.8, 5.7, 7.6, 9.6, 11.4) series                                  | MPPT count: 2-4<br>PV count: 2-4  |
|                                     | Sigen EVAC (7, 11, 22) 4G T2 WH                                                       | 1                                 |
| EVAC                                | Sigen EVAC (7, 11, 22) 4G T2SH WH                                                     | 1                                 |
|                                     | PG EVAC (9.6, 11.5) series                                                            | 1                                 |
|                                     | Sigen PV Max (3.0, 3.6, 4.0, 4.6, 5.0, 6.0) SP                                        | MPPT count: 2-4<br>PV count: 2-4  |
| PV Inv.                             | Sigen PV Max (5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 17.0, 20.0, 25.0) TP                   | MPPT count: 2-4<br>PV count: 2-4  |
| 5,00                                | Sigen PV (50, 60, 75, 80, 99.9, 100, 110, 125)M1 series                               | MPPT count: 4-8<br>PV count: 8-16 |



## 3. Communication Interface

#### 3.1 RS485

For applicable model abbreviation type "EVAC" devices, the interface described in this section is not supported.

For applicable model abbreviation type "Hybrid Inv." and "PV Inv." devices, third-party controllers only need to connect to one device in the power plant through the interface (RS485) described in this section and can read or write registers of all devices within the power plant (with different modbus slave addresses). The power plant can consist of multiple parallel-connected "Hybrid Inv." or "PV Inv." devices.

Table 3-1 RS485 interface description

| Parameter          | Description      |
|--------------------|------------------|
| Transfer mode      | RTU mode         |
| Communication mode | Half duplex      |
| Baud rate          | 9600bps(default) |
| Start bit          | 1                |
| Data bit           | 8                |
| Check bit          | None             |
| Stop bit           | 1                |

## 3.2 Fast Ethernet/WLAN/Optical fiber/4G

For applicable model abbreviation type "Hybrid Inv." and "PV Inv." devices,



third-party controllers only need to connect to one device in the power plant through the interface described in this section and can read or write registers of all devices within the power plant (with different modbus slave addresses). The power plant can consist of multiple parallel-connected "Hybrid Inv." or "PV Inv." devices.

For applicable model abbreviation type "EVAC" device, it must be connected to a "Hybrid Inv." or "PV Inv." device. Third-party controllers have to connect to the "Hybrid Inv." or "PV Inv." device using the interface described in this section to access registers of the "EVAC" device.

Table 3-2 Fast Ethernet/WLAN/Optical fiber/4G interface description

| Parameter              | Description |
|------------------------|-------------|
| Transfer mode          | TCP mode    |
| Communication mode     | Full duplex |
| Link layer Mode        | TCP Server  |
| Application layer Mode | Slave       |
| Port                   | 502         |

## 3.3 Fast Ethernet/WLAN/Optical fiber/4G\*

For applicable model abbreviation type "Hybrid Inv." and "PV Inv." devices, third-party controllers only need to connect to one device in the power plant through the interface described in this section and can read or write registers of all devices within the power plant (with different modbus slave addresses). The power plant can consist of multiple parallel-connected "Hybrid Inv." or "PV



Inv." devices.

For applicable model abbreviation type "EVAC" device, it must be connected to a "Hybrid Inv." or "PV Inv." device. Third-party controllers have to connect to the "Hybrid Inv." or "PV Inv." device using the interface described in this section to access registers of the "EVAC" device.

Table 3-3 Fast Ethernet/WLAN/Optical fiber/4G interface description

| Parameter              | Description |
|------------------------|-------------|
| Transfer mode          | TCP mode    |
| Communication mode     | Full duplex |
| Link layer Mode        | TCP Client  |
| Application layer Mode | Slave       |
| Port                   | custom      |

<sup>\*</sup>Note :To be specific, if 4G is the only physical communication media, the protocol then only supports one inverter device to connect the third party cloud as a client.

## 4. Technical Terms

## 4.1 Technical item name specification:

Table 4-1 Technical item description

| Item                    | Description                                               |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Host                    | The one that initiates an application request is referred |  |  |  |  |  |
| HOST                    | to the host                                               |  |  |  |  |  |
| Slave                   | The one that responds to an application request is        |  |  |  |  |  |
| Sidve                   | referred to the slave                                     |  |  |  |  |  |
| Access plant address    | 247                                                       |  |  |  |  |  |
| Plant broadcast address | 0                                                         |  |  |  |  |  |



| Slave address range | 1-246                                          |  |  |  |
|---------------------|------------------------------------------------|--|--|--|
| U16                 | Unsigned integer of 16-bit                     |  |  |  |
| U32                 | Unsigned integer of 32-bit                     |  |  |  |
| U64                 | Unsigned integer of 64-bit                     |  |  |  |
| S16                 | Signed integer of 16-bit                       |  |  |  |
| S32                 | Signed integer of 32-bit                       |  |  |  |
| STRING              | Character string in ASCII                      |  |  |  |
| RO                  | Read only, only support 0x04 command           |  |  |  |
| WO                  | Write only, only support 0x06 command          |  |  |  |
| RW                  | Read and write, support 0x04、0x06、0x10 command |  |  |  |

#### 4.2 Interaction timeout

A communication process following the Modbus protocol should always be stared by a host.

#### Minimum Request period: 1000 ms

After sending an unicast request, before receiving a respond from the slave device, the host should wait for up to 1000ms to send a new unicast request to the slave device. If no respond is received from the slave device after waiting for 1000 ms, the host should regard this request as a timeout. In poor network conditions or when using extra-long RS485 connections, it may be necessary to appropriately increase the minimum request period.

#### Plant broadcast address:



When the host sends a broadcast request to Modbus slave address 0, the devices will perform but will not reply Modbus frame.

### 4.3 Alarm severity level definition

There are only two levels of alarms, and their definitions are as follows:

Critical Alarm: The external environment does not meet the operating conditions for the device, or a serious device fault has occurred. The device will enter fault mode and stop operating. The alarm can be automatically cleared once the external conditions or the device fault is resolved.

General Alarm: Due to minor faults either in the external environment or within the device, the device can still operate normally or at a reduced capacity. The alarm can be automatically cleared once the external conditions or the device fault is resolved.

# 5. Register Address Definition

# 5.1 Plant running information address definition (read-only register)

The registers below can only be accessed by slave address 247, namely "plant address". To obtain power plant data, inquiries should be send to address 247.

Table 5-1 Plant running information address definition

| ı | No | Name | Add. | QT | Per | Data | Gain | Unit | Hyb  | PV   | Comment |
|---|----|------|------|----|-----|------|------|------|------|------|---------|
| ı |    |      |      | Υ  | m.  | Туре |      |      | rid  | inv. |         |
|   |    |      |      |    |     |      |      |      | Inv, |      |         |





| 1  | System time                   | 30000 | 2 | RO | U32 | 1    | S    | 1 | 1 | Epoch seconds                                                                                               |
|----|-------------------------------|-------|---|----|-----|------|------|---|---|-------------------------------------------------------------------------------------------------------------|
| 2  | System time zone              | 30002 | 1 | RO | S16 | 1    | min  | 1 | 1 |                                                                                                             |
| 3  | EMS work mode                 | 30003 | 1 | RO | U16 | N/A  | N/A  | 1 | 1 | 0: Max self consumption; 1: Al Mode; 2: TOU 7: Remote EMS mode                                              |
| 4  | [Grid Sensor]<br>Status       | 30004 | 1 | RO | U16 | N/A  | N/A  | 1 | 1 | (gateway or meter connection status) 0: not connected 1: connected                                          |
| 5  | [Grid sensor]<br>Active power | 30005 | 2 | RO | S32 | 1000 | kW   | 1 | 1 | Data collected from grid<br>sensor at grid to system<br>checkpoint;<br>>0 buy from grid; <0 sell to<br>grid |
| 6  | [Grid sensor] reactive power  | 30007 | 2 | RO | S32 | 1000 | kVar | 1 |   | Data collected from grid sensor at grid to system checkpoint;                                               |
| 7  | On/Off Grid status            | 30009 | 1 | RO | U16 | N/A  | N/A  | √ |   | 0: on grid 1: off grid (auto) 2: off grid (manual)                                                          |
| 8  | Max active power              | 30010 | 2 | RO | U32 | 1000 | kW   | V | 1 | This is should be the base value of all active power adjustment actions                                     |
| 9  | Max apparent power            | 30012 | 2 | RO | U32 | 1000 | kVar | 1 | 1 | This is should be the base value of all reactive power adjustment actions                                   |
| 10 | [ESS] SOC                     | 30014 | 1 | RO | U16 | 10   | %    | 1 |   |                                                                                                             |
| 11 | Plant phase A active power    | 30015 | 2 | RO | S32 | 1000 | kW   | 1 | 1 |                                                                                                             |
| 12 | Plant phase B active power    | 30017 | 2 | RO | S32 | 1000 | kW   | 1 | 1 |                                                                                                             |
| 13 | Plant phase C active power    | 30019 | 2 | RO | S32 | 1000 | kW   | 1 | 1 | ~~07                                                                                                        |
| 14 | Plant phase A reactive power  | 30021 | 2 | RO | S32 | 1000 | kVar | 1 | 1 |                                                                                                             |
| 15 | Plant phase B reactive power  | 30023 | 2 | RO | S32 | 1000 | kVar | 1 | 1 | \$100°                                                                                                      |
| 16 | Plant phase C reactive power  | 30025 | 2 | RO | S32 | 1000 | kVar | 1 | 1 |                                                                                                             |



### Modbus Protocol

| 17 | General                              | 30027 | 1 | RO | U16 | N/A  | N/A  | 1        | 1 | If any hybrid inverter has                                                                      |
|----|--------------------------------------|-------|---|----|-----|------|------|----------|---|-------------------------------------------------------------------------------------------------|
|    | Alarml                               |       |   | ~2 | 20  |      |      | V        | V | alarm , then this alarm will<br>be set accordingly. Refer to<br>Appendix 2                      |
| 18 | General<br>Alarm2                    | 30028 | 1 | RO | U16 | N/A  | N/A  | √        | 1 | If any hybrid inverter has alarm, then this alarm will be set accordingly.  Refer to Appendix 3 |
| 19 | General<br>Alarm3                    | 30029 | 1 | RO | U16 | N/A  | N/A  | √        |   | If any hybrid inverter has alarm, then this alarm will be set accordingly. Refer to Appendix 4  |
| 20 | General<br>Alarm4                    | 30030 | 1 | RO | U16 | N/A  | N/A  | <b>V</b> | 1 | If any hybrid inverter has alarm, then this alarm will be set accordingly. Refer to Appendix 5  |
| 21 | Plant active power                   | 30031 | 2 | RO | S32 | 1000 | kW   | 1        | 1 |                                                                                                 |
| 22 | Plant reactive power                 | 30033 | 2 | RO | S32 | 1000 | kVar | 1        | 1 |                                                                                                 |
| 23 | Photovoltaic power                   | 30035 | 2 | RO | S32 | 1000 | kW   | 1        | 1 | .12                                                                                             |
| 24 | [ESS] power                          | 30037 | 2 | RO | S32 | 1000 | kW   | <b>V</b> |   | <0: discharging >0: charging                                                                    |
| 25 | Available max active power           | 30039 | 2 | RO | U32 | 1000 | kW   | 1        | 1 | Feed to the ac terminal.  Count only the running inverters                                      |
| 26 | Available min active power           | 30041 | 2 | RO | U32 | 1000 | kW   | 1        |   | Absorb from the ac terminal. Count only the running inverters                                   |
| 27 | Available max reactive power         | 30043 | 2 | RO | U32 | 1000 | kVar | <b>V</b> | 1 | Feed to the ac terminal.  Count only the running inverters                                      |
| 28 | Available min reactive power         | 30045 | 2 | RO | U32 | 1000 | kVar | <b>V</b> | 1 | Absorb from the ac terminal. Count only the running inverters                                   |
| 29 | [ESS]Available max charging power    | 30047 | 2 | RO | U32 | 1000 | kW   | 1        |   | Count only the running inverters                                                                |
| 30 | [ESS]Available max discharging power | 30049 | 2 | RO | U32 | 1000 | kW   | 1        |   | Count only the running inverters                                                                |



### Modbus Protocol

| 31 | Plant running state                     | 30051 | 1 | RO | U16  | N/A  | N/A  | 1        | 1      | Refer to Appendix 1                                                                             |
|----|-----------------------------------------|-------|---|----|------|------|------|----------|--------|-------------------------------------------------------------------------------------------------|
| 32 | [Grid sensor] Phase A active power      | 30052 | 2 | RO | \$32 | 1000 | kW   | √<br>√   | √<br>√ | Data collected from grid sensor at grid to system checkpoint; >0 buy from grid; <0 sell to grid |
| 33 | [Grid sensor] Phase B active power      | 30054 | 2 | RO | \$32 | 1000 | kW   | V        | 1      | Data collected from grid sensor at grid to system checkpoint; >0 buy from grid; <0 sell to grid |
| 34 | [Grid sensor] Phase C active power      | 30056 | 2 | RO | \$32 | 1000 | kW   | V        | 1      | Data collected from grid sensor at grid to system checkpoint; >0 buy from grid; <0 sell to grid |
| 35 | [Grid sensor] Phase A reactive power    | 30058 | 2 | RO | S32  | 1000 | kVar | √        | 1      | Data collected from grid sensor at grid to system checkpoint;                                   |
| 36 | [Grid sensor] Phase B reactive power    | 30060 | 2 | RO | S32  | 1000 | kVar | 1        | 1      | Data collected from grid<br>sensor at grid to system<br>checkpoint;                             |
| 37 | [Grid sensor] Phase C reactive power    | 30062 | 2 | RO | S32  | 1000 | kVar | <b>√</b> | 1      | Data collected from grid sensor at grid to system checkpoint;                                   |
| 38 | [ESS]Available max charging capacity    | 30064 | 2 | RO | U32  | 100  | kWh  | 1        |        | Count only the running inverters                                                                |
| 39 | [ESS]Available max discharging capacity | 30066 | 2 | RO | U32  | 100  | kWh  | <b>V</b> |        | Count only the running inverters                                                                |
| 40 | [ESS] Rated charging power              | 30068 | 2 | RO | U32  | 1000 | kW   | 1        |        |                                                                                                 |
| 41 | [ESS] Rated discharging power           | 30070 | 2 | RO | U32  | 1000 | kW   | 1        |        | 2025-0                                                                                          |
| 42 | General<br>Alarm5                       | 30072 | 1 | RO | U16  | N/A  | N/A  | <b>√</b> | , De   | If any hybrid inverter has alarm, then this alarm will be set accordingly.                      |
|    |                                         |       |   |    |      |      |      |          |        | Refer to Appendix 11                                                                            |



| 44 | [ESS] rated energy capacity    | 30083 | 2 | RO | U32 | 100 | kWh | <b>√</b> |                                                                                                                              |
|----|--------------------------------|-------|---|----|-----|-----|-----|----------|------------------------------------------------------------------------------------------------------------------------------|
| 45 | [ESS] charge Cut-Off SOC       | 30085 | 1 | RO | U16 | 10  | %   | <b>√</b> |                                                                                                                              |
| 46 | [ESS] discharge<br>Cut-Off SOC | 30086 | 1 | RO | U16 | 10  | %   | 1        |                                                                                                                              |
| 47 | [ESS] SOH                      | 30087 | 1 | RO | U16 | 10  | %   | <b>V</b> | This value is the weighted average of the SOH of all ESS devices in the power plant, with each rated capacity as the weight. |

## 5.2 Plant parameter setting address definition (holding register)

The registers below can only be accessed by slave address 0 or 247. To modify plant-level registers, send commands to address 0 or 247. When sending commands to address 0, the device will only execute and will not reply. When sending commands to address 247, the device will both execute and respond. Note: Power control related registers not explicitly mentioned in the "Comment" will take effect only when the remote EMS control mode value is 0.

Table 5-2 Plant parameter setting address definition

| No. | Name                    | Add.  | Q | Perm. | Data | Gain | Unit | Hyb  | PV   | Comment                     |
|-----|-------------------------|-------|---|-------|------|------|------|------|------|-----------------------------|
|     |                         |       | Т |       | Туре |      |      | rid  | inv. |                             |
|     |                         |       | Υ |       |      |      |      | Inv, |      |                             |
| 1   | Start/Stop              | 40000 | 1 | WO    | U16  | N/A  | N/A  |      |      | 0: Stop                     |
|     |                         |       |   |       |      |      |      | V    | V    | 1: Start                    |
| 2   | Active power fixed      | 40001 | 2 | RW    | S32  | 1000 | kW   |      | V    |                             |
|     | adjustment target value |       |   |       |      |      |      | V    | V    |                             |
| 3   | Reactive power fixed    | 40003 | 2 | RW    | S32  | 1000 | kVar | V    | 2/   | Range: [-60.00 * base       |
|     | adjustment target value |       |   |       |      |      |      | V    | 1    | value ,60.00 * base value]. |
|     |                         |       |   |       |      |      |      |      |      | Takes effect globally       |
|     | 200                     |       |   |       |      |      |      |      |      | regardless of the EMS       |
| (   | 0.7                     |       |   |       |      |      |      |      |      | operating mode.             |
| 4   | Active power            | 40005 | 1 | RW    | S16  | 100  | %    |      |      | Range: [-100.00,100.00]     |
|     | percentage adjustment   |       |   |       |      |      |      | V    | V    |                             |
|     | target value            |       |   |       |      |      | 4    | (6)  |      |                             |
| 5   | Q/S adjustment          | 40006 | 1 | RW    | S16  | 100  | %    |      |      | Range: [-60.00,60.00].      |
|     | target value            |       |   |       |      |      |      | V    | ٧    | Takes effect globally       |



|    |                                                         |       |   |    |     | 1    |      |   |   | regardless of the EMS operating mode.                                                                           |
|----|---------------------------------------------------------|-------|---|----|-----|------|------|---|---|-----------------------------------------------------------------------------------------------------------------|
| 6  | Power factor<br>adjustment<br>target value              | 40007 | 1 | RW | S16 | 1000 | N/A  | √ | V | Range:  (-1, -0.8] U [0.8,1].  Grid Sensor needed.  Takes effect globally regardless of the EMS operating mode. |
| 7  | Phase A active power fixed adjustment target value      | 40008 | 2 | RW | S32 | 1000 | kW   | 1 |   | Valid only when output type is L1/L2/L3/N                                                                       |
| 8  | Phase B active power fixed adjustment target value      | 40010 | 2 | RW | S32 | 1000 | kW   | 1 |   | Valid only when output type is L1/L2/L3/N                                                                       |
| 9  | Phase C active power fixed adjustment target value      | 40012 | 2 | RW | S32 | 1000 | kW   | 1 |   | Valid only when output type is L1/L2/L3/N                                                                       |
| 10 | Phase A reactive power fixed adjustment target value    | 40014 | 2 | RW | S32 | 1000 | kVar | 1 |   | Valid only when output<br>type is L1/L2/L3/N                                                                    |
| 11 | Phase B reactive power fixed adjustment target value    | 40016 | 2 | RW | S32 | 1000 | kVar | 1 |   | Valid only when output<br>type is L1/L2/L3/N                                                                    |
| 12 | Phase C reactive power fixed adjustment target value    | 40018 | 2 | RW | S32 | 1000 | kVar | 1 |   | Valid only when output<br>type is L1/L2/L3/N                                                                    |
| 13 | Phase A Active power percentage adjustment target value | 40020 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-100.00,100.00]                                        |
| 14 | Phase B Active power percentage adjustment target value | 40021 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-100.00,100.00]                                        |
| 15 | Phase C Active power percentage adjustment target value | 40022 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-100.00,100.00]                                        |
| 16 | Phase A Q/S fixed<br>adjustment<br>target value         | 40023 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-60.00,60.00]                                          |
| 17 | Phase B Q/S fixed<br>adjustment<br>target value         | 40024 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-60.00,60.00]                                          |
| 18 | Phase C Q/S fixed<br>adjustment<br>target value         | 40025 | 1 | RW | S16 | 100  | %    | 1 |   | Valid only when output<br>type is L1/L2/L3/N.<br>Range: [-60.00,60.00]                                          |



|    |                                        |       |   |    |     |      | A .7 |          |          |                                                                                                                                                                           |
|----|----------------------------------------|-------|---|----|-----|------|------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Reserved                               | 40026 | 3 | RW | N/A | N/A  | N/A  |          |          |                                                                                                                                                                           |
| 20 | Remote EMS enable                      | 40029 | 1 | RW | U16 | N/A  | N/A  | V        | <b>√</b> | 0: disabled 1: enabled When needed to control EMS remotely, this register needs to be enabled. When enabled, the plant's EMS work mode (30003) will switch to remote EMS. |
| 21 | Independent phase power control enable | 40030 | 1 | RW | U16 | N/A  | N/A  | 1        |          | Valid only when output type is L1/L2/L3/N. To enable independent phase control, this parameter must be enabled. 0: disabled 1: enabled                                    |
| 22 | Remote EMS control mode                | 40031 | 1 | RW | U16 | N/A  | N/A  | 1        | 1        | Mode values' definition refer to Appendix 6                                                                                                                               |
| 23 | ESS max charging limit                 | 40032 | 2 | RW | U32 | 1000 | kW   |          |          | [0, Rated ESS charging power]. Takes effect when Remote EMS control mode (40031) is 3 or 4.                                                                               |
| 24 | ESS max discharging<br>limit           | 40034 | 2 | RW | U32 | 1000 | kW   | <b>V</b> |          | [0, Rated ESS discharging power]. Takes effect when Remote EMS control mode (40031) is 5 or 6.                                                                            |
| 25 | PV max power limit                     | 40036 | 2 | RW | U32 | 1000 | kW   | <b>V</b> |          | Takes effect when Remote<br>EMS control mode (40031)<br>is 3, 4, 5 or 6.                                                                                                  |
| 26 | [Grid Point]Maximum export limitation  | 40038 | 2 | RW | U32 | 1000 | kW   | 1        | 1        | Grid Sensor needed. Takes effect globally regardless of the EMS operating mode.                                                                                           |
| 27 | [Grid Point] Maximum import limitation | 40040 | 2 | RW | U32 | 1000 | kW   | 1        | 1        | Grid Sensor needed.  Takes effect globally regardless of the EMS operating mode.                                                                                          |
| 28 | PCS maximum export limitation          | 40042 | 2 | RW | U32 | 1000 | kW   | 1        | 1        | Range:[0, 0xFFFFFFE]。With value 0xFFFFFFFF, register is                                                                                                                   |



|    |                    |       |   |    |     | A, I |    |    |    | not valid. In all other cases, |
|----|--------------------|-------|---|----|-----|------|----|----|----|--------------------------------|
|    |                    |       |   |    |     |      |    |    |    | Takes effect globally.         |
| 29 | PCS maximum import | 40044 | 2 | RW | U32 | 1000 | kW | ٦/ | اء | Range:[0, 0xFFFFFFE]。With      |
|    | limitation         |       |   |    |     |      |    | V  | V  | value 0xFFFFFFF, register is   |
|    |                    |       |   |    |     |      |    |    |    | not valid. In all other cases, |
|    |                    |       |   |    |     |      |    |    |    | Takes effect globally.         |

# 5.3 Hybrid inverter running information address definition (read-only register)

The registers below can only be accessed with a valid Hybrid inverter's Modbus slave address (1-246). When using PV string related registers, please refer to the PV count listed in Tabel2-1 in Chapter 2, to ensure if the register is available.

Table 5-3 Hybrid inverter running information address definition

| No. | Name                       | Add.  | QT<br>Y | Per<br>m. | Data<br>Type | Gain | Unit | Hyb<br>rid | PV<br>inv. | Comment |
|-----|----------------------------|-------|---------|-----------|--------------|------|------|------------|------------|---------|
| 1   | Model type                 | 30500 | 15      | RO        | STRING       | N/A  | N/A  | Inv, √     | <b>√</b>   | ~ O     |
| 2   | Serial number              | 30515 | 10      | RO        | STRING       | N/A  | N/A  | <b>√</b>   | 1          |         |
| 3   | Machine firmware version   | 30525 | 15      | RO        | STRING       | N/A  | N/A  | <b>V</b>   | <b>V</b>   |         |
| 4   | Rated active power         | 30540 | 2       | RO        | U32          | 1000 | kW   | <b>V</b>   | <b>V</b>   |         |
| 5   | Max. apparent power        | 30542 | 2       | RO        | U32          | 1000 | kVA  | <b>V</b>   | <b>V</b>   |         |
| 6   | Max. active power          | 30544 | 2       | RO        | U32          | 1000 | kW   | <b>V</b>   | <b>V</b>   |         |
| 7   | Max.<br>absorption power   | 30546 | 2       | RO        | U32          | 1000 | kW   | <b>V</b>   |            | -2.02   |
| 8   | Rated battery capacity     | 30548 | 2       | RO        | U32          | 100  | kWh  | <b>V</b>   |            | . 294   |
| 9   | [ESS]Rated charge power    | 30550 | 2       | RO        | U32          | 1000 | kW   | <b>V</b>   |            | 9,7     |
| 10  | [ESS]Rated discharge power | 30552 | 2       | RO        | U32          | 1000 | kW   | 1          |            |         |
| 11  | Reserved                   | 30554 | 12      | RO        | N/A          | N/A  | N/A  |            |            |         |



|    |                                                                    |       |   | Τ  |     |      |            |          | Τ   |                     |
|----|--------------------------------------------------------------------|-------|---|----|-----|------|------------|----------|-----|---------------------|
| 12 | [ESS]Daily charge<br>energy                                        | 30566 | 2 | RO | U32 | 100  | kWh        | <b>√</b> |     |                     |
| 13 | [ESS]Accumulated charge energy                                     | 30568 | 4 | RO | U64 | 100  | kWh        | 1        |     |                     |
| 14 | [ESS]Daily discharge energy                                        | 30572 | 2 | RO | U32 | 100  | kWh        | 1        |     | X                   |
| 15 | [ESS]Accumulated discharge energy                                  | 30574 | 4 | RO | U64 | 100  | kWh        | 1        |     | . 15 <sup>h</sup>   |
| 16 | Running state                                                      | 30578 | 1 | RO | U16 | N/A  | N/A        | 1        | 1   | Refer to Appendix 1 |
| 17 | Max.active power adjustment value                                  | 30579 | 2 | RO | S32 | 1000 | kW         | <b>√</b> | 1   |                     |
| 18 | Min. active power adjustment value                                 | 30581 | 2 | RO | S32 | 1000 | kW         | <b>V</b> |     |                     |
| 19 | Max. reactive power adjustment value fed to the ac terminal        | 30583 | 2 | RO | U32 | 1000 | kVar       | √        | √   |                     |
| 20 | Max. reactive power adjustment value absorbed from the ac terminal | 30585 | 2 | RO | U32 | 1000 | kVar       | 1        | 1   |                     |
| 21 | Active power                                                       | 30587 | 2 | RO | S32 | 1000 | kW         | <b>V</b> | 1   | A ()                |
| 22 | Reactive power                                                     | 30589 | 2 | RO | S32 | 1000 | kVar       | <b>V</b> | 1   |                     |
| 23 | [ESS]Max. battery charge power                                     | 30591 | 2 | RO | U32 | 1000 | kW         | 1        |     |                     |
| 24 | [ESS]Max. battery discharge power                                  | 30593 | 2 | RO | U32 | 1000 | kW         | <b>V</b> |     |                     |
| 25 | [ESS]Available battery charge Energy                               | 30595 | 2 | RO | U32 | 100  | kWh        | <b>V</b> |     |                     |
| 26 | [ESS]Available battery discharge Energy                            | 30597 | 2 | RO | U32 | 100  | kWh        | <b>V</b> |     |                     |
| 27 | [ESS] Charge / discharge power                                     | 30599 | 2 | RO | S32 | 1000 | kW         | <b>V</b> |     | a co                |
| 28 | [ESS]Battery SOC                                                   | 30601 | 1 | RO | U16 | 10   | %          | <b>√</b> |     | 2877                |
| 29 | [ESS]Battery SOH                                                   | 30602 | 1 | RO | U16 | 10   | %          | <b>V</b> | 255 | 9)                  |
| 30 | [ESS]Average cell temperature                                      | 30603 | 1 | RO | S16 | 10   | $^{\circ}$ | <b>V</b> |     |                     |



| 31 | [ESS] Average cell voltage                   | 30604 | 1  | RO | U16 | 1000 | V            | <b>√</b> |          |                                                    |
|----|----------------------------------------------|-------|----|----|-----|------|--------------|----------|----------|----------------------------------------------------|
| 32 | Alarmi                                       | 30605 | 1  | RO | U16 | N/A  | N/A          | 1        | <b>√</b> | Refer to Appendix 2                                |
| 33 | Alarm2                                       | 30606 | 1  | RO | U16 | N/A  | N/A          | 1        | <b>√</b> | Refer to Appendix 3                                |
| 34 | Alarm3                                       | 30607 | 1  | RO | U16 | N/A  | N/A          | 1        |          | Refer to Appendix 4                                |
| 35 | Alarm4                                       | 30608 | 1  | RO | U16 | N/A  | N/A          | 1        | 1        | Refer to Appendix 5                                |
| 36 | Alarm5                                       | 30609 | 1  | RO | U16 | N/A  | N/A          | <b>V</b> | 1        | Refer to Appendix 11                               |
| 37 | Reserved                                     | 30610 | 10 | RO | N/A | N/A  | N/A          |          |          |                                                    |
| 38 | [ESS]Maximum battery (cluster) temperature   | 30620 | 1  | RO | S16 | 10   | $^{\circ}$   | 1        |          |                                                    |
| 39 | [ESS]Minimum battery (cluster) temperature   | 30621 | 1  | RO | S16 | 10   | $^{\circ}$ C | 1        |          |                                                    |
| 40 | [ESS] Maximum battery (cluster) cell voltage | 30622 | 1  | RO | U16 | 1000 | V            | 1        |          |                                                    |
| 41 | [ESS] Minimum battery (cluster) cell voltage | 30623 | 1  | RO | U16 | 1000 | V            | 1        |          | .12-                                               |
| 42 | Rated grid voltage                           | 31000 | 1  | RO | U16 | 10   | V            | 1        | 1        | ~0                                                 |
| 43 | Rated grid frequency                         | 31001 | 1  | RO | U16 | 100  | Hz           | 1        | 1        | V*                                                 |
| 44 | Grid frequency                               | 31002 | 1  | RO | U16 | 100  | Hz           | 1        | 1        |                                                    |
| 45 | [PCS] Internal temperature                   | 31003 | 1  | RO | S16 | 10   | $^{\circ}$   | 1        | 1        |                                                    |
| 46 | Output type                                  | 31004 | 1  | RO | U16 | N/A  | N/A          | 1        | V        | 0: L/N 1: L1/L2/L3 2: L1/L2/L3/N 3: L1/L2/N        |
| 47 | A-B line voltage                             | 31005 | 2  | RO | U32 | 100  | V            | 1        | 1        | Invalid when output                                |
| 48 | B-C line voltage                             | 31007 | 2  | RO | U32 | 100  | V            | 1        | 1        | type is L/N, L1/L2/N, or L1/L2/N                   |
| 49 | C-A line voltage                             | 31009 | 2  | RO | U32 | 100  | V            | 1        | <b>V</b> | 9)                                                 |
| 50 | Phase A voltage                              | 31011 | 2  | RO | U32 | 100  | V            | <b>V</b> | <b>V</b> | When output type is L/N, refers to "Phase voltage" |





| 51 | Phase B voltage       | 31013 | 2 | RO | U32 | 100  | V   | 1        | <b>√</b> | Invalid when output type is L/N, L1/L2/N, or                                                          |
|----|-----------------------|-------|---|----|-----|------|-----|----------|----------|-------------------------------------------------------------------------------------------------------|
| 52 | Phase C voltage       | 31015 | 2 | RO | U32 | 100  | V   | 1        | √        | L1/L2/N                                                                                               |
| 53 | Phase A current       | 31017 | 2 | RO | S32 | 100  | A   | 1        | <b>√</b> | When output type is L/N, refers to "Phase current"                                                    |
| 54 | Phase B current       | 31019 | 2 | RO | S32 | 100  | А   | 1        | 1        | Invalid when output type is L/N, L1/L2/N, or                                                          |
| 55 | Phase C current       | 31021 | 2 | RO | S32 | 100  | А   | 1        | 1        | L1/L2/N                                                                                               |
| 56 | Power factor          | 31023 | 1 | RO | U16 | 1000 | N/A | 1        | 1        |                                                                                                       |
| 57 | PACK count            | 31024 | 1 | RO | U16 | 1    | N/A | 1        |          |                                                                                                       |
| 58 | PV string count       | 31025 | 1 | RO | U16 | 1    | N/A | 1        | 1        |                                                                                                       |
| 59 | MPPT count            | 31026 | 1 | RO | U16 | 1    | N/A | 1        | 1        |                                                                                                       |
| 60 | PV1 voltage           | 31027 | 1 | RO | S16 | 10   | V   | <b>V</b> | 1        | Please refer to the PV count listed in Tabel2-1 in chapter 2, to ensure if the register is available. |
| 61 | PV1 current           | 31028 | 1 | RO | S16 | 100  | А   | 1        | 1        | V*                                                                                                    |
| 62 | PV2 voltage           | 31029 | 1 | RO | S16 | 10   | V   | 1        | 1        |                                                                                                       |
| 63 | PV2 current           | 31030 | 1 | RO | S16 | 100  | А   | 1        | 1        |                                                                                                       |
| 64 | PV3 voltage           | 31031 | 1 | RO | S16 | 10   | V   | 1        | 1        |                                                                                                       |
| 65 | PV3 current           | 31032 | 1 | RO | S16 | 100  | А   | 1        | 1        |                                                                                                       |
| 66 | PV4 voltage           | 31033 | 1 | RO | S16 | 10   | V   | 1        | 1        | κ2:                                                                                                   |
| 67 | PV4 current           | 31034 | 1 | RO | S16 | 100  | А   | 1        | 1        | 4072                                                                                                  |
| 68 | PV power              | 31035 | 2 | RO | S32 | 1000 | kW  | 1        | 1        | 9)                                                                                                    |
| 69 | Insulation resistance | 31037 | 1 | RO | U16 | 1000 | МΩ  | 1        | 1        |                                                                                                       |



| 70 | Startup time  | 31038 | 2 | RO | U32  | 1   | s |   | 1        |                                                                                                       |
|----|---------------|-------|---|----|------|-----|---|---|----------|-------------------------------------------------------------------------------------------------------|
| 71 | Shutdown time | 31040 | 2 | RO | U32  | 1   | S | 1 | 1        |                                                                                                       |
| 72 | PV5 voltage   | 31042 | 1 | RO | \$16 | 10  | V | V | <b>V</b> | Please refer to the PV count listed in Tabel2-1 in chapter 2, to ensure if the register is available. |
| 73 | PV5 current   | 31043 | 1 | RO | S16  | 100 | A |   | 1        | 31.0                                                                                                  |
| 74 | PV6 voltage   | 31044 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 75 | PV6 current   | 31045 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |
| 76 | PV7 voltage   | 31046 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 77 | PV7 current   | 31047 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |
| 78 | PV8 voltage   | 31048 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 79 | PV8 current   | 31049 | 1 | RO | S16  | 100 | А | 1 | 1        | 1/2                                                                                                   |
| 80 | PV8 current   | 31050 | 1 | RO | S16  | 10  | V | 1 | 1        | , 20                                                                                                  |
| 81 | PV9 current   | 31051 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |
| 82 | PV10 voltage  | 31052 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 83 | PV10 current  | 31053 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |
| 84 | PV11 voltage  | 31054 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 85 | PVII current  | 31055 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |
| 86 | PV12 voltage  | 31056 | 1 | RO | S16  | 10  | V | 1 | 1        | 40.07                                                                                                 |
| 87 | PV12 current  | 31057 | 1 | RO | S16  | 100 | А | 1 | 1        | 204                                                                                                   |
| 88 | PV13 voltage  | 31058 | 1 | RO | S16  | 10  | V | 1 | 1        |                                                                                                       |
| 89 | PV13 current  | 31059 | 1 | RO | S16  | 100 | А | 1 | 1        |                                                                                                       |



| 90  | PV14 voltage                           | 31060 | 1 | RO | S16 | 10   | V   | √        | <b>√</b> |             |
|-----|----------------------------------------|-------|---|----|-----|------|-----|----------|----------|-------------|
| 91  | PV14 current                           | 31061 | 1 | RO | S16 | 100  | А   | <b>V</b> | <b>V</b> |             |
| 92  | PV15 voltage                           | 31062 | 1 | RO | S16 | 10   | V   |          |          |             |
| 93  | PV15 current                           | 31063 | 1 | RO | S16 | 100  | А   |          |          |             |
| 94  | PV16 voltage                           | 31064 | 1 | RO | S16 | 10   | V   |          |          |             |
| 95  | PV16 current                           | 31065 | 1 | RO | S16 | 100  | А   |          | 1        |             |
| 96  | [DC Charger] Vehicle battery voltage   | 31500 | 1 | RO | U16 | 10   | V   | <b>V</b> |          |             |
| 97  | [DC Charger] Charging current          | 31501 | 1 | RO | U16 | 10   | A   | 1        |          |             |
| 98  | [DC Charger] Output power              | 31502 | 2 | RO | S32 | 1000 | kW  | <b>V</b> |          |             |
| 99  | [DC Charger] Vehicle SOC               | 31504 | 1 | RO | U16 | 10   | %   | <b>V</b> |          |             |
| 100 | [DC Charger] Current charging capacity | 31505 | 2 | RO | U32 | 100  | kWh | √        |          | Single time |
| 101 | [DC Charger] Current charging duration | 31507 | 2 | RO | U32 | 1    | S   | √        |          | Single time |

# 5.4 Hybrid inverter parameter setting address definition (holding register)

The registers below can only be accessed with a valid Hybrid inverter's Modbus slave address (1-246).

Table 5-4 Hybrid inverter parameter setting address definition

| No. | Name       | Add.  | QTY | Perm. | Data | Gain | Unit | Hybrid   | PV       | Comment  |
|-----|------------|-------|-----|-------|------|------|------|----------|----------|----------|
|     |            |       |     |       | Туре |      |      | Inv,     | inv.     |          |
| 1   | Start/Stop | 40500 | 1   | WO    | U16  | N/A  | N/A  | 1        | V        | 0: Stop  |
|     |            |       |     |       |      |      |      | <b>V</b> | <b>'</b> | 1: Start |
| 2   | Grid code  | 40501 | 1   | RW    | U16  | N/A  | N/A  | V        | V        |          |



| 3 | [DC Charger] | 41000 | 1 | WO | U16 | N/A  | N/A  | ., |          | 0: Start                |
|---|--------------|-------|---|----|-----|------|------|----|----------|-------------------------|
|   | Start/Stop   |       |   |    |     |      |      | √  |          | 1: Stop                 |
| 4 | Remote EMS   | 41500 | 1 | RW | U16 | N/A  | N/A  |    | V        | 0: disabled             |
|   | dispatch     |       |   | ~~ |     |      |      |    |          | 1: enabled              |
|   | enable       |       |   | 5  |     |      |      |    |          | The enabled inverter    |
|   |              |       |   |    |     |      |      |    |          | only reacts on power    |
|   |              |       |   |    |     |      |      |    |          | control command from    |
|   | 7/1/         |       |   |    |     |      |      |    |          | register: 41501, 41503, |
|   |              |       |   |    |     |      |      |    | ,        | 41505, 41506, 40507。    |
| 5 | Active power | 41501 | 2 | RW | S32 | 1000 | kW   |    | √        |                         |
|   | fixed value  |       |   |    |     |      |      |    |          |                         |
|   | adjustment   |       |   |    |     |      |      |    |          |                         |
| 6 | Reactive     | 41503 | 2 | RW | S32 | 1000 | kVar |    |          |                         |
|   | power fixed  |       |   |    |     |      | a 27 |    |          |                         |
|   | value        |       |   |    |     |      | 3 6  |    |          |                         |
|   | adjustment   |       |   |    |     | 2.2  |      |    | ļ.,      |                         |
| 7 | Active power | 41505 | 1 | RW | S16 | 100  | %    |    |          |                         |
|   | percentage   |       |   |    | 3   |      |      |    |          |                         |
|   | adjustment   |       |   |    |     |      |      |    | ļ.,      |                         |
| 8 | Reactive     | 41506 | 1 | RW | S16 | 100  | %    |    |          |                         |
|   | power Q/S    | 9,.   |   |    |     |      |      |    |          |                         |
|   | adjustment   |       |   |    |     |      |      |    | <u> </u> |                         |
| 9 | Power factor | 41507 | 1 | RW | S16 | 1000 | N/A  |    |          |                         |
|   | adjustment   |       |   |    |     |      |      |    |          | _ ^ ^                   |

# 5.5 AC-Charger running information address definition (read-only register)

The registers below can only be accessed with a valid AC-Charger's Modbus slave address (1-246). And are only applicable for "EVAC" devices.

Table 5-5 AC-Charger running information address definition

| No | Name         | Add.  | QTY | Perm. | Data | Gain | Unit | Comment                |
|----|--------------|-------|-----|-------|------|------|------|------------------------|
|    |              |       |     |       | Туре |      |      |                        |
| 1  | System state | 32000 | 1   | RO    | U16  | N/A  | N/A  | System states          |
|    |              |       |     |       |      |      |      | according to           |
|    |              |       |     |       |      |      |      | IEC61851-1 definition. |
|    |              |       |     |       |      | A S  |      | Refer to Appendix 7.   |
| 2  | Total energy | 32001 | 2   | RO    | U32  | 100  | kWh  |                        |
|    | consumed     |       |     |       |      |      |      |                        |



| 3  | Charging power   | 32003 | 2 | RO | S32 | 1000 | kW  |                      |
|----|------------------|-------|---|----|-----|------|-----|----------------------|
| 4  | Rated power      | 32005 | 2 | RO | U32 | 1000 | kW  |                      |
| 5  | Rated current    | 32007 | 2 | RO | S32 | 100  | Α   |                      |
| 6  | Rated voltage    | 32009 | 1 | RO | U16 | 10   | V   |                      |
| 7  | AC-Charger input | 32010 | 2 | RO | S32 | 100  | Α   |                      |
|    | breaker rated    |       |   |    |     |      |     |                      |
|    | current          |       |   |    |     |      |     |                      |
| 8  | Alarm1           | 32012 | 1 | RO | U16 | N/A  | N/A | Refer to Appendix 8  |
| 9  | Alarm2           | 32013 | 1 | RO | U16 | N/A  | N/A | Refer to Appendix 9  |
| 10 | Alarm3           | 32014 | 1 | RO | U16 | N/A  | N/A | Refer to Appendix 10 |

# 5.6 AC-Charger parameter setting address definition (holding register)

The registers below can only be accessed with a valid AC-Charger's modbus slave address (1-246). And are only applicable for "EVAC" devices.

Table 5-6 AC-Charger parameter setting address definition

| No. | Name           | Add.  | QTY | Perm. | Data | Gain | Unit | Comment             |
|-----|----------------|-------|-----|-------|------|------|------|---------------------|
|     |                |       |     |       | Туре |      |      |                     |
| 1   | Start/Stop     | 42000 | 1   | WO    | U16  | N/A  | N/A  | 0: Start            |
|     |                |       |     |       |      |      |      | 1: Stop             |
| 2   | Charger output | 42001 | 2   | RW    | U32  | 100  | N/A  | [6, X]              |
|     | current        |       |     |       |      |      |      | X is the smaller    |
|     |                |       |     |       |      |      |      | value between the   |
|     |                |       |     |       |      |      |      | rated current and   |
|     |                |       |     |       |      |      |      | the AC-Charger      |
|     |                |       |     |       |      |      |      | input breaker rated |
|     |                |       |     |       |      |      |      | current.            |

## 6. Modbus Protocol Command Overview

#### (1) MODBUS-RTU frame format





| Filed         | Length(Bytes) | Description                                    |  |  |  |  |  |
|---------------|---------------|------------------------------------------------|--|--|--|--|--|
| Slave Address | 1             | Customized by user (1~247)                     |  |  |  |  |  |
| PDU           | X             | Described in chapter 6.1                       |  |  |  |  |  |
| Franch od     | 0             | Crc16 check. It is worth pointing out that the |  |  |  |  |  |
| Error Check   | 4             | byte order of CRC16 is the little-end mode     |  |  |  |  |  |

## (2) MODBUS-TCP frame format



| Filed         | Length(Bytes) | Description                           |  |  |  |
|---------------|---------------|---------------------------------------|--|--|--|
| Transmission  | 2             | Matching identifier between a request |  |  |  |
| identifier    | 2             | frame and a response frame            |  |  |  |
| Protocol type | 2             | 0 = Modbus protocol                   |  |  |  |
| Data length   | 2             | Follow-up data length                 |  |  |  |
| Slave Address | 1             | Customized by user (1~247)            |  |  |  |

## **6.1 Function code**

| Index | Function code | Description                  |  |  |  |
|-------|---------------|------------------------------|--|--|--|
| 1     | 0x03          | Read Read-only Register(RO)  |  |  |  |
| 2     | 0x04          | Read Holding Register(RW/WO) |  |  |  |
| 3     | 0x06          | Write a single Register      |  |  |  |
| 4     | 0x10          | Write multiple Registers     |  |  |  |

## 6.1.1 Read Read-only Register

## Request

| Filed            | Length(Bytes) | Description   |
|------------------|---------------|---------------|
| Slave address    | 1 Byte        | 1~247         |
| Function code    | 1 Byte        | 0x03          |
| Starting address | 2 Bytes       | 0x0000~0xFFFF |



| Quantity of registers | 2 Bytes | 1~124 |
|-----------------------|---------|-------|

#### Response

| Filed          | Length(Bytes) | Description             |
|----------------|---------------|-------------------------|
| Slave address  | 1 Byte        | 1~247                   |
| Function code  | 1 Byte        | 0x03                    |
| Byte count     | 1 Byte        | 2 x N                   |
| Register value | 2 x N Bytes   | N=Quantity of Registers |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x83                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

Example PDU: The following example contains only the slave address and the Protocol Data Unit (PDU). If using Modbus RTU mode, a CRC16 should be added at the end; if using Modbus TCP mode, an MBAP header should be added at the beginning.

**Example Meaning**: Read the *Rated active power* register of the hybrid inverter with Modbus slave address 1.

Host Query Command: 01 03 77 4C 00 02

Slave Normal Response: 01 03 04 00 00 61 A8

Slave Exception Response: 01 83 04

### 6.1.2 Read Holding Register

#### Request

| Filed                 | Length(Bytes) | Description   |
|-----------------------|---------------|---------------|
| Slave address         | 1 Byte        | 1~247         |
| Function code         | 1 Byte        | 0x04          |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF |
| Quantity of registers | 2 Bytes       | 1~124         |

Response



| Filed          | Length(Bytes) | Description             |
|----------------|---------------|-------------------------|
| Slave address  | 1 Byte        | 1~247                   |
| Function code  | 1 Byte        | 0x04                    |
| Byte count     | 1 Byte        | 2 x N                   |
| Register value | 2 x N Bytes   | N=Quantity of Registers |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x84                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

**Example PDU:** The following example contains only the slave address and the Protocol Data Unit (PDU). If using Modbus RTU mode, a CRC16 should be added at the end; if using Modbus TCP mode, an MBAP header should be added at the beginning.

**Example Meaning**: Read the *Active power fixed adjustment target value* register of a power plant with Modbus slave address 247.

Host Query Command: F7 04 9C 41 00 02

Slave Normal Response: F7 04 04 00 00 61 A8

Slave Exception Response: F7 83 04

### 6.1.3 Write a single Register

#### Request

| Filed            | Length(Bytes) | Description   |
|------------------|---------------|---------------|
| Slave address    | 1 Byte        | 0~247         |
| Function code    | 1 Byte        | 0x06          |
| Register address | 2 Bytes       | 0x0000~0xFFFF |
| Register value   | 2 Bytes       | 0x0000~0xFFFF |

#### Response

| Filed         | Length(Bytes) | Description |
|---------------|---------------|-------------|
| Slave address | 1 Byte        | 1~247       |



| Function code    | 1 Byte  | 0x06          |
|------------------|---------|---------------|
| Register address | 2 Bytes | 0x0000~0xFFFF |
| Register value   | 2 Bytes | 0x0000~0xFFFF |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x86                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

**Example PDU:** The following example contains only the slave address and the Protocol Data Unit (PDU). If using Modbus RTU mode, a CRC16 should be added at the end; if using Modbus TCP mode, an MBAP header should be added at the beginning.

**Example Meaning**: Write the *Grid code* register of the hybrid inverter with Modbus slave address 1.

Host Query Command: 01 06 9E 34 00 01

Slave Normal Response:01 06 9E 34 00 01

Slave Exception Response: 01 86 04

### 6.1.4 Write multiple Registers

#### Request

| Filed                 | Length(Bytes) | Description             |
|-----------------------|---------------|-------------------------|
| Slave address         | 1 Byte        | 0~247                   |
| Function code         | 1 Byte        | 0x10                    |
| Starting address      | 2 Bytes       | 0x0000~0xFFFF           |
| Quantity of registers | 2 Bytes       | 1~123                   |
| Byte count            | 1 Byte        | 2 x N                   |
| Registers value       | 2 x N Bytes   | N=Quantity of Registers |

#### Response

| Filed         | Length(Bytes) | Description |
|---------------|---------------|-------------|
| Slave address | 1 Byte        | 1~247       |



| Function code         | 1 Byte  | 0x10          |
|-----------------------|---------|---------------|
| Starting address      | 2 Bytes | 0x0000~0xFFFF |
| Quantity of registers | 2 Bytes | 1~123         |

#### Error

| Filed          | Length(Bytes) | Description          |
|----------------|---------------|----------------------|
| Slave address  | 1 Byte        | 1~247                |
| Error code     | 1 Byte        | 0x90                 |
| Exception code | 1 Byte        | 01 or 02 or 03 or 04 |

**Example PDU:** The following example contains only the slave address and the Protocol Data Unit (PDU). If using Modbus RTU mode, a CRC16 should be added at the end; if using Modbus TCP mode, an MBAP header should be added at the beginning.

**Example Meaning**: Write the *Active power fixed adjustment target value* register of a power plant with Modbus slave address 247.

Host Query Command: F7 10 9C 41 00 02 04 00 00 61 A8

Slave Normal Response: F7 10 9C 41 00 02

Slave Exception Response: F7 90 04

## **6.2 Exception code**

| Name                 | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ILLEGAL FUNCTION     | The function code received in the query is not an allowable action for the server (or slave).  This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave) is in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to return register values. |
| ILLEGAL DATA ADDRESS | The data address received in the query is not an allowable address for the server (or slave).                                                                                                                                                                                                                                                                                                                           |
|                      | ILLEGAL FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                        |



|        |                      | More specifically, the combination of reference  |  |
|--------|----------------------|--------------------------------------------------|--|
|        |                      | number and transfer length is invalid.           |  |
| 0x03   | ILLEGAL DATA VALUE   | A value contained in the query data field is not |  |
|        |                      | an allowable value for server (or slave). This   |  |
|        |                      | indicates a fault in the structure of the        |  |
|        | 204                  | remainder of a complex request, such as that     |  |
|        |                      | the implied                                      |  |
| 3      | (4,6)                | length is incorrect. It specifically does NOT    |  |
| - N- ^ |                      | mean that a data item submitted for storage in   |  |
| 9      |                      | a register has a value outside the expectation   |  |
|        |                      | of the application program, since the MODBUS     |  |
|        |                      | protocol is unaware of the significance of any   |  |
|        |                      | particular value of any particular register.     |  |
| 0x04   | SLAVE DEVICE FAILURE | An unrecoverable error occurred while the        |  |
|        |                      | server (or slave) was attempting to perform the  |  |
|        |                      | requested action.                                |  |



# Appendix 1 Running state

| Running State | Value |
|---------------|-------|
| Standby       | 0x00  |
| Running       | 0x01  |
| Fault         | 0x02  |
| Shutdown      | 0x03  |

# Appendix 2 PCS alarm code -- 1

| Alarm Code | Alarm Description             | Bit | Severity |
|------------|-------------------------------|-----|----------|
|            |                               |     | Level    |
| 1001       | Software version mismatch     | 0   | Critical |
| 1002       | Low insulation resistance     | 1   | Critical |
| 1003       | Over-temperature              | 2   | Critical |
| 1004       | Equipment fault               | 3   | Critical |
| 1005       | System grounding fault        | 4   | General  |
| 1006       | PV string over-voltage        | 5   | Critical |
| 1007       | PV string reversely connected | 6   | Critical |
| 1008       | PV string back-filling        | 7   | Critical |
| 1009       | AFCI fault                    | 8   | Critical |
| 1010       | Grid power outage             | 9   | Critical |
| 1011       | Grid over-voltage             | 10  | Critical |



| 1012 | Grid under-voltage                          | 11 | Critical |
|------|---------------------------------------------|----|----------|
| 1013 | Grid over-frequency                         | 12 | Critical |
| 1014 | Grid under-frequency                        | 13 | Critical |
| 1015 | Grid voltage imbalance                      | 14 | Critical |
| 1016 | DC component of output current out of limit | 15 | Critical |

# Appendix 3 PCS alarm code -- 2

| Alarm Code  | Alarm Description                | Bit     | Severity |
|-------------|----------------------------------|---------|----------|
|             |                                  |         | Level    |
| 1017        | Leak current out of limit        | 0       | Critical |
| 1018        | Communication abnormal           | 1       | General  |
| 1019        | System internal protection       | 2       | Critical |
| 1020        | AFCI self-checking circuit fault | 3       | Critical |
| 1021        | Off-grid protection              | 4       | Critical |
| 1022        | Manual operation protection      | 5       | Critical |
| 1024        | Abnormal phase sequence          | 7       | Critical |
| 1025        | Short circuit to PE              | 8       | Critical |
| 1026        | Soft start failure               | 9       | Critical |
| Not defined | Not defined                      | Not     |          |
|             |                                  | defined |          |



# Appendix 4 ESS alarm code

| Alarm Code  | Alarm Description                                                 | Bit     | Severity |
|-------------|-------------------------------------------------------------------|---------|----------|
|             |                                                                   |         | Level    |
| 2001        | Software version mismatch                                         | 0       | Critical |
| 2002        | The energy storage module has low insulation resistance to ground | 1       | General  |
| 2003        | The temperature is too high                                       | 2       | Critical |
| 2004        | Equipment fault                                                   | 3       | Critical |
| 2005        | Under-temperature                                                 | 4       | Critical |
| 2008        | Internal protection                                               | 5       | Critical |
| 2009        | Thermal runaway                                                   | 6       | Critical |
| Not defined | Not defined                                                       | Not     |          |
|             |                                                                   | defined |          |

# Appendix 5 Gateway alarm code

| Alarm Code | Alarm Description            | Bit | Severity |
|------------|------------------------------|-----|----------|
|            |                              |     | Level    |
| 3001       | Software version mismatch    | 0   | Critical |
| 3002       | The temperature is too high  | 1   | Critical |
| 3003       | Equipment fault              | 2   | Critical |
| 3004       | Excessive leakage current in | 3   | Critical |
|            | off-grid output              |     |          |



| 3005        | N line grounding fault          | 4       | Critical |
|-------------|---------------------------------|---------|----------|
| 3006        | Abnormal phase sequence of grid | 5       | Critical |
|             | wiring                          |         |          |
| 3007        | Abnormal phase sequence of      | 6       | Critical |
| 5h          | inverter wiring                 |         | -01      |
| 3008        | Grid phase loss                 | 7       | Critical |
| Not defined | Not defined                     | Not     |          |
|             | ~25- <sup>OV</sup>              | defined |          |

# Appendix 6 Remote EMS control mode

| Remote EMS control mode    | Value                 |
|----------------------------|-----------------------|
| PCS remote control         | 0x00                  |
| Standby                    | 0x01                  |
| Maximum self-consumption   | 0x02                  |
| Command charging           | 0x03                  |
| (consume grid power first) |                       |
| Command charging           | 0x04                  |
| (consume PV power first)   |                       |
| Command discharging        | 0x05                  |
| (output from PV first)     |                       |
| Command discharging        | 0x06                  |
| (output from ESS first)    | a 3\ <sup>8</sup> · \ |



# Appendix 7 AC-Charger system state

| System State | Value |
|--------------|-------|
| System innit | 0x00  |
| A1/A2        | 0x01  |
| ВІ           | 0x02  |
| B2           | 0x03  |
| Cl           | 0x04  |
| C2           | 0x05  |
| F            | 0x06  |
| Е            | 0x07  |

# Appendix 8 AC-Charger alarm code -- 1

| Alarm Code | Alarm Description           | Bit | Severity |
|------------|-----------------------------|-----|----------|
|            |                             |     | Level    |
| 5001_1     | Grid overvoltage            | 0   | Critical |
| 5001_2     | Grid undervoltage           | 1   | Critical |
| 5001_3     | Overload                    | 2   | Critical |
| 5001_4     | Short circuit               | 3   | Critical |
| 5001_5     | Charging output overcurrent | 4   | Critical |
| 5001_6     | Leak current out of limit   | 5   | Critical |



| 5001_7      | Grounding fault                 | 6       | Critical |
|-------------|---------------------------------|---------|----------|
| 5001_8      | Abnormal phase sequence of grid | 7       | Critical |
|             | wiring                          |         |          |
| 5001_9      | PEN Fault                       | 8       | Critical |
| Not defined | Not defined                     | Not     | ο Δ      |
|             |                                 | defined | 12-3     |

# Appendix 9 AC-Charger alarm code -- 2

| Alarm Code  | Alarm Description                    | Bit     | Severity |
|-------------|--------------------------------------|---------|----------|
|             |                                      |         | Level    |
| 5002_1      | Leak current detection circuit fault | 0       | Critical |
| 5002_2      | Relay stuck                          | 1       | Critical |
| 5002_3      | Pilot circuit fault                  | 2       | Critical |
| 5002_4      | Auxiliary power supply module        | 3       | Critical |
|             | fault                                |         |          |
| 5002_5      | Electric lock fault                  | 4       | Critical |
| 5002_6      | Lamp panel communication fault       | 5       | General  |
| Not defined | Not defined                          | Not     |          |
| 02-12       |                                      | defined |          |



# Appendix 10 AC-Charger alarm code -- 3

| Alarm Code  | Alarm Description             | Bit     | Severity |
|-------------|-------------------------------|---------|----------|
|             |                               |         | Level    |
| 5003        | Too high internal temperature | 0       | Critical |
| 5004        | Charging cable fault          | 1       | Critical |
| 5005        | Meter communication fault     | 2       | General  |
| Not defined | Not defined                   | Not     |          |
|             | 2025                          | defined |          |

# Appendix 11 DC-Charger alarm code

| Alarm Code  | Alarm Description            | Bit     | Severity |
|-------------|------------------------------|---------|----------|
|             |                              |         | Level    |
| 5101        | Software version mismatch    | 0       | Critical |
| 5102        | Low insulation resistance to | 1       | Critical |
|             | ground                       |         |          |
| 5103        | Over-temperature             | 2       | Critical |
| 5104        | Equipment fault              | 3       | Critical |
| 5105        | Charging fault               | 4       | Critical |
| 5106        | Equipment protection         | 5       | Critical |
| Not defined | Not defined                  | Not     | 3 707    |
|             |                              | defined |          |