

Trajectory Prediction

19 июля-8 августа 2021

СОВРЕМЕННЫЕ МЕТОДЫ ТЕОРИИ ИНФОРМАЦИИ, ОПТИМИЗАЦИИ И УПРАВЛЕНИЯ

By Petyushko Alexander, Komkov Stepan 2021-07-23

SDV: Stack of technologies

• **SDV** = Self-Driving Vehicle

• SDV is one of the most complex tasks theoretically and practically

Safety is crucial

SDV: Stack of technologies

- The main software parts are the so-called P³:
 - Perception, Prediction and Planning

- Hardware parts:
 - Input: Sensors
 - Output: Control (steering, acceleration)
- High-Definition Map as the helper
 - HD-Map contains info about the road

SDV: Sensors

Various sensors are used:

• LIDAR

- Radar
- Ultra Sound
- Cameras (x N)

Expensive

• Hard to synchronize

SDV: HD-Map

- Helpful for prediction and planning
 - Contains information about road:
 - Lanes, crosswalks, traffic lights, etc.
- Every company has its own format

SDV: Detection

- The *first* step of the Perception part:
 - **Detection** (segmentation, depth-estimation, etc.) of the objects around

SDV: Tracking

- The *second* step of the Perception part:
 - **Tracking** of the detected objects and estimation of their coordinates for the Prediction part

SDV: Prediction

- Future trajectories prediction of all surrounding objects based on the tracking history and HD-Map
 - Usually, 1-10 second

SDV: Planning

 Planning of SDV future actions based on the predictions and HD-Map

SDV: Control

- Realization and control of SDV actions based motion plan
 - Steering control, acceleration control, etc.

Task formulation

More about Prediction

- Usually, consists of 5 blocks
 - We are going to concentrate on 3 basic blocks

What we have

ullet Set of observed coordinates for each agent in the scene for the last T timestamps

Agent 1	x_1^1, y_1^1	x_2^1, y_2^1	x_3^1, y_3^1	***	x_{T-2}^1, y_{T-2}^1	x_{T-1}^1, y_{T-1}^1	x_T^1, y_T^1
Agent 2	x_1^2, y_1^2	x_2^2, y_2^2	x_3^2, y_3^2		x_{T-2}^2, y_{T-2}^2	x_{T-1}^2, y_{T-1}^2	x_T^2 , y_T^2
Agent 3	Not detected	Not detected	x_3^3, y_3^3		x_{T-2}^3, y_{T-2}^3	x_{T-1}^3, y_{T-1}^3	x_T^3, y_T^3
	•••	•••	•••	•••		•••	•••
Agent N-1	x_1^{N-1}, y_1^{N-1}	x_2^{N-1} , y_2^{N-1}	x_3^{N-1} , y_3^{N-1}		$x_{T-2}^{N-1}, y_{T-2}^{N-1}$	Not detected	Not detected
Agent N	Not detected	Not detected	x_3^N , y_3^N		x_{T-2}^N, y_{T-2}^N	x_{T-1}^N, y_{T-1}^N	Not detected
	Timestamp 1	Timestamp 2	Timestamp 3		Timestamp <i>T</i> -2	Timestamp T -1	Timestamp T

Available history of agents positions

What we need

• We need to predict the next *P* positions for the predefined set of agents

x_1^1, y_1^1	x_2^1, y_2^1	x_3^1, y_3^1		x_{T-2}^1, y_{T-2}^1	x_{T-1}^1, y_{T-1}^1	x_T^1, y_T^1	$\hat{\chi}^1_{T+1}, \hat{y}^1_{T+1}$		$\hat{x}_{T+P}^1, \hat{y}_{T+P}^1$
x_1^2, y_1^2	x_2^2, y_2^2	x_3^2, y_3^2	•••	x_{T-2}^2, y_{T-2}^2	x_{T-1}^2, y_{T-1}^2	x_{T}^{2}, y_{T}^{2}	$\hat{x}_{T+1}^2, \hat{y}_{T+1}^2$	•••	$\hat{x}_{T+P}^2, \hat{y}_{T+P}^2$
Not detected	Not detected	x_3^3, y_3^3		x_{T-2}^3, y_{T-2}^3	x_{T-1}^3, y_{T-1}^3	x_T^3, y_T^3	$\hat{x}_{T+1}^3, \hat{y}_{T+1}^3$		$\hat{x}_{T+P}^3, \hat{y}_{T+P}^3$
•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
x_1^{N-1}, y_1^{N-1}	x_2^{N-1}, y_2^{N-1}	x_3^{N-1}, y_3^{N-1}		$x_{T-2}^{N-1}, y_{T-2}^{N-1}$	Not detected	Not detected	Uninteresting		Uninteresting
Not detected	Not detected	x_3^N , y_3^N		x_{T-2}^N, y_{T-2}^N	x_{T-1}^N, y_{T-1}^N	Not detected	Uninteresting		Uninteresting

How to measure

$$d_p = \sqrt{(x_p - \hat{x}_p)^2 + (y_p - \hat{y}_p)^2}, 1 \le p \le P$$

Average Displacement Error (ADE):

$$ADE = \frac{d_1 + d_2 + \dots + d_{P-1} + d_P}{P}$$

Final Displacement Error (FDE):

$$FDE = d_P$$

How it will be

- Automatic system to evaluate your solutions on the subset of the test set
 - https://eval.ai/web/challenges/challenge-page/1194/phases
- The final results will be ranked based on the full test results.

Task benefits

- Data is simple enough to process on an ordinary laptop
 - The whole dataset takes less than 7 Gbyte
 - GPU is helpful but not necessary
- Despite the small scale of data, the task formulation is close to the real product tasks
 - Findings for this challenge may be beneficial for the state-of-the-art solutions
- Trajectory Prediction solution consists of several blocks
 - Scene preprocessing, history encoder, agents interaction, trajectory forecaster, loss function, etc.
 - So, there are a wealth of ways to improve baseline solutions

Contacts

- Stepan Komkov
 - Until the July 31st
- Alexander Petyushko
 - From the July 29th
- Chat of the challenge
 - https://t.me/joinchat/Km7p wYqHcU3MGFi
- News of the challenge
 - https://t.me/joinchat/GewH2zFxBpYyZGRi

