# 基于人体轮廓检测的体型分类的体型分类

计算机视觉第五组汇报总结

第五组: 刘意,孟庆鹏,侯飞,秦风

汇报日期











# 代码部分

```
## 导入租天限状
import numpy as np
import torchvision
import torchvision.transforms as transforms
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import math
COCO_INSTANCE_CATEGORY_NAMES = [
```

```
A 1 A 60
COCO_PERSON_KEYPOINT_NAMES = ['nose', 'left_eye', 'right_eye', 'left_ear',
model = torchvision.models.detection.keypointrcnn_resnet50_fpn(pretrained=True)
model.eval()
def euclideanDistance(p1,p2):
   return math.sqrt(((p1[0]-p2[0])**2)+((p1[1]-p2[1])**2))
odef Object_Detect(model, image_path, COCO_INSTANCE_CATEGORY_NAMES, threshold=0.5):
   # 准备需要检测的图像
   image = Image.open(image_path).convert('RGB')
   transform_d = transforms.Compose([transforms.ToTensor()]) #将图片从0~255变到0~1
   image_t = transform_d(image)
   pred = model([image_t])
   pred_class = [COCO_INSTANCE_CATEGORY_NAMES[ii] for ii in list(pred[0]['labels'].numpy())]
   pred_score = list(pred[0]['scores'].detach().numpy())
   pred_boxes = [[ii[0], ii[1], ii[2], ii[3]] for ii in list(pred[0]['boxes'].detach().numpy())]
```

```
## 只保留识别的概率大约 threshold 的结果。
pred_index = [pred_score.index(x) for x in pred_score if x > 0.5]
## 设置图像显示的字体
fontsize = np.int16(image.size[1] / 20)
font1 = ImageFont.truetype("./FreeMono.ttf", fontsize)
## 可视化对象
draw = ImageDraw.Draw(image)
box = pred_boxes[0]
draw.rectangle(box, outline="blue")
texts = pred_class[0]+":"+str(np.round(pred_score[0], 2))
draw.text((box[0], box[1]), texts, fill="blue", font=font1)
pred_keypoint = pred[0]["keypoints"]
# 检测到实例的关键点
pred_keypoint = pred_keypoint[pred_index].detach().numpy()
# 可视化出关键点的位置
fontsize = np.int16(image.size[1] / 50)
r = np.int16(image.size[1] / 150) # 圆的半径
font1 = ImageFont.truetype("./FreeMono.ttf", fontsize)
# 可视化图像
image3 = image.copy()
draw = ImageDraw.Draw(image3)
```

# 基本原理

通过人体关键点检测识别出的13个点,我们选取了肩宽、臀宽,肩部与臀部之间的距离也就是人体躯干的长度,三个系数构成比例关系,以此衡量人体体型。将肩宽与体长的比例和臀宽与体长的比例进行聚类分析,将人体比例系数分为三类,由此完成体型的分类。

# 代码调整

人体关键点检测部分参考的https://blog.csdn.net/csdnliwengi/article/details/121694973 通过加载pytorch中的torchvision库中的预训练关键点检测模型keypointronn resnet50 fpn(), 对人体部位的鼻子, 左眼, 右眼, 左耳, 右耳, 左肩, 右肩, 左胳膊肘, 右胳膊肘, 左手腕, 右手腕, 左臀,右臀,左膝,右膝,左脚踝,右脚踝这17个关键点进行检测。由于我们在后续的处理中主要需 要用到左右肩和左右臀,所以计算了肩宽、臀宽以及肩臀距离,并在实验过程中,将每个人体数据保存 到txt文件中,以方便承接后续聚类算法。原代码中对于检测人体模型,会先通过对于图片里的物品进 行一次完全地检测和定位,选取概率阈值大于0.5的物品进行定位。但由于本身是人体关键点检测,所 以关键点的检测和定位只对标签为"人"有效,所以结果图片中只会出现对标签"人"的框选。我们发 现,在照片不清晰或者人物体型不确切的情况下,关键点检测和类别框选的准确度会下降,导致我们在 利用50张单人女性照片进行实验的时候,实验结果出现了更多的情况(五十几个数据)。于是我们对 代码进行了完善,将原本对图片的关键点检测的循环操作改成了单次操作,同时将优先级选定为最高概 率对应的物品(优先定为"人"),使得最后每张图片只选取对应的女性进行人体关键点检测。此外, 针对后续聚类算法的输入精度问题,我们只保存人体关键点检测的输出数据的前六位小数。



## 聚类算法的结果

| mesult - 记事本 |           |       | result - ic |    |
|--------------|-----------|-------|-------------|----|
| 文件(F)        | 编辑(E)     | 格式    | 文件(F)       | 编辑 |
| 2.0          | 400424(2) | IHJEV | 0.0         |    |
| 0.0          |           |       | 2.0         |    |
| 2.0          |           |       | 0.0         |    |
| 2.0          |           |       | 0.0         |    |
| 0.0          |           |       | 0.0         |    |
| 0.0          |           |       | 1.0         |    |
| 1.0          |           |       | 2.0         |    |
| 0.0          |           |       | 1.0         |    |
| 0.0          |           |       | 0.0         |    |
| 2.0          |           |       | 2.0         |    |
| 2.0          |           |       | 0.0         |    |
| 2.0          |           |       | 0.0         |    |
| 2.0          |           |       | 2.0         |    |
| 0.0          |           |       | 0.0         |    |
| 0.0          |           |       | 1.0         |    |
| 0.0          |           |       | 0.0         |    |
| 0.0          |           |       | 2.0         |    |

0.0 2.0 2.0 2.0 2.0 0.0 0.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 2.0



# 数据集的分类结果

1. 分类结果结果为2的数据



## 2. 分类结果结果为1的数据









#### 3. 分类结果结果为0的数据





## 结果分析

• 首先从我们的聚类算法结果质心分布以及数据点分布的情况来看 整体为一个线性结构。比例关系为越往右上方,人体躯干越接近 于正方形: 越往左下方, 躯干越瘦长。整个分布关系是比较明确 的,证明我们在选取比例关系的时候,没有出现较大的错误。但 是这两个比例系数对干结果在分布图上的位置影响,一个是往x 轴偏移,一个是往y轴偏移。理想情况就是两个系数对结果影响 是大致在一条直线上,因为人体形态分布就是一种线性关系。

# 结果分析

• 由于我们组电脑的算力有限所以数据集的量比较小导致整体结果 看上去没有那么好。分类结果中也存在一些异常点。对于这种情 我们做了如下分析:首先,数据集的选取,对于体型分类来 说,身着宽松衣物的数据对于体型分类有较大的影响。然后,人 体的站姿也会影响分类结果,因为我们是直接用图片中坐标的比 例关系来进行计算的, 而不是利用三维空间中的真实比例关系来 计算, 这些都造成了结果的一些误差。

