Uma análise numérica do atrator de Lorenz

Lucas Amaral Taylor

Julio Cezar de Moura Lima

30 de maio de 2024

Resumo

No presente relatório aplicaremos os métodos numéricos no sistema de equações diferenciais do atrator de Lorenz.

Palavras-chave: Métodos numéricos; Atrator de Lorenz;

1 Introdução

Edward Norton Lorenz (1917–2008) foi um matemático e meteorologista que realizou uma grande contribuição para o estudo de previsões meteorológicas utilizando-se equações diferenciais. O **Atrator de Lorenz** foi uma das principais contribuições do matemático nesta área de estudo. Publicado na revista *Journal of the Atmospheric Sciences* em 1963 com o título *Deterministic Nonperiodic Flow* [3], Lorenz desenvolveu um modelo matemático simplificado para convecção atmosférica de três equações diferenciais ordinárias expressas abaixo:

$$\begin{cases} \frac{dx}{dt} &= \sigma(y - x) \\ \frac{dy}{dt} &= x(\rho - z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{cases}$$
 (1)

Além da clara importância do modelo para a meteorologia, o modelo é conhecido por ser caótico e inaugurar o estudo da Teoria do Caos.

Neste relatório, assim como Edward Norton Lorenz, Ellen Cole Fetter Gille e Margaret Elaine Hamilton — estas duas importantes matemáticas que contribuíram com o trabalho de Lorenz — faremos simulações numéricas para estudar o sistema de equações expostas em (1).

Logicamente, com a diferença de ser em um nível de graduação e, assim como orientado, utilizando o conteúdo aprendido em aula. Para tal tarefa, seguiremos a seguinte abordagem: primeiro, usaremos o método Runge-Kutta para discretizar e resolver o sistema de equações diferenciais que define o atrator. Em seguida, para a representação gráfica, utilizaremos o splines cúbicas. O atrator de Lorenz tem curvas suaves e acreditamos que essa seja o melhor método para isso. Por fim, usaríamos o Método dos Mínimos Quadrados (MMQ) para ver a sensibilidade do sistema (o sistema é conhecido por ser bem sensível). Com o MMQ criaremos um conjunto de simulações com variações leves em cada um dos parâmetros e comparamos ao final.

2 Modelagem Matemática

Nesta seção, apresentaremos considerações e premissas que levam à equação diferencial que modela matematicamente. Além disso, mostraremos como o sistema de equações é consistente em relação ao Problema de Cauchy e, ao final, apresentaremos as condições iniciais e o domínio de definição do problema.

2.1 Considerações e premissas

Na introdução de seu artigo, Lorenz afirma que o sistema de equações expostos em (1) é um modelo determinístico de sistemas hidrodinâmicos ideais e que tais sistemas foram desenvolvidos para representar sistema hidrodinâmico dissipativo de força. Além disso, cabe destacar que que o trabalho do artigo de *Deterministic Nonperiodic Flow*[3], tem como principal base o artigo *Finite Amplitude Free Convection as an Initial Value Problem—I* publicado em 1962 de autoria de Barry Saltzman [8].

A partir do artigo de Saltzman, introduziremos ao leitor os conceitos meteorológicos, metodologia utilizada pelo autor e, por fim, o raciocínio matemático para chegar nas equações propostas por Saltzman até o sistema de equações de (1) trabalhados por Lorenz.

Os detalhes do desenvolvimento da equação podem ser consultados pelo leitor nos artigos citados [3] e [8].

Antes de iniciar, é necessário explicar o que seria o fenômeno de convecção. Convecção é um processo de transferência de calor que ocorre em fluidos, como líquidos e gases. Esse fenômeno envolve o movimento do próprio fluido, transferindo energia térmica de uma região para outra.

Em [8], o autor como base experimentos meteorológicos e hidrodinâmicos. Neles, os pesquisadores trabalham com modelos de um fenômeno de convecção de natureza não-linear, devido às variações espaciais de movimento e temperatura. Saltzman tem dois objetivos: formular um modelo matemático e um método de solução de um caso de movimento convectivo dependente do tempo bidimensionais. Para isso, ele utiliza um número fixo e limitado de componentes de Fourier e resultados de trabalhos precedentes, destacando-se: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side [7] e Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen [4].

Após manipulações algumas manipulações algébricas, cujo leitor pode conferir os detalhes em [8], Saltzman chega ao seguinte sistema de equações diferencias:

$$\frac{\partial}{\partial t} \nabla^2 \psi = -\frac{\partial(\psi, \nabla^2 \psi)}{\partial(x, z)} + v \nabla^4 \psi + g \alpha \frac{\partial \theta}{\partial x}$$

$$\frac{\partial}{\partial t} \theta = \frac{\partial(\psi, \theta)}{\partial(x, z)} + \frac{\Delta T}{H} \frac{\partial \psi}{\partial x} + \kappa \nabla^2 \theta$$
(2)

$$\frac{\partial}{\partial t}\theta = \frac{\partial(\psi,\theta)}{\partial(x,z)} + \frac{\Delta T}{H}\frac{\partial\psi}{\partial x} + \kappa\nabla^2\theta \tag{3}$$

Onde:

- ψ : função de fluxo bidimensional $(m^2 \cdot s^{-1})$
- θ : desvio de temperatura (K);
- g: aceleração da gravidade $(m \cdot s^{-2})$;
- α : coeficiente de expansão térmica (K^{-1}) ;
- v: constante de viscosidade cinemática $(m^2 \cdot s^{-1})$;
- κ : constante de condutividade térmica $(W \cdot m^{-1} \cdot K^{-1})$.

Manipulando os termos e adicionando os componentes de Fourier, obtemos a seguinte expressão [5] [8]:

$$\frac{a}{(1+a^2)^k}\psi = x(t)\sqrt{2}\sin\left(\frac{\pi u}{a}\right)\sin\left(\frac{\pi v}{H}\right) \tag{4}$$

$$\frac{\pi R_o \theta}{R \Delta T} = y(t) \sqrt{2} \cos\left(\frac{\pi u}{a}\right) \sin\left(\frac{\pi v}{H}\right) - z(t) \sin\left(\frac{2\pi}{H}v\right) \tag{5}$$

Onde:

- u: coordenada espacial horizontal (m);
- x(t), y(t), z(t): coeficientes dependentes do tempo (amplitudes) (Unidade depende do contexto);
- $\frac{\pi}{H}$: inverso da profundidade da camada de fluido (máximo de v) (m^{-1}) ;
- a: parâmetro de geometria;
- Ra: número de Rayleigh [7];
- R_c : valor crítico de $Ra~(R_c=\pi^4(1+a^2)^3/a^2)$;
- ΔT : diferença de temperatura total (K).

Finalmente, em posse de todas essas equações. Realizando a substituição de 4 e 5 em 2 e 3 e eliminando as funções trigonométricas, obtemos 1, isto é:

$$\begin{cases} \frac{dx}{dt} &= \sigma(y - x) \\ \frac{dy}{dt} &= x(\rho - z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{cases}$$

- σ controla a sensibilidade do sistema à diferença entre as variáveis x e y (número de Prandtl).
- ρ está associado à taxa de convecção do sistema.(número de Rayleigh)
- β está associado à geometria do sistema e à diferença entre as taxas de crescimento das variáveis x e z.

2.2 O problema de Cauchy

Lorenz em seu artigo, considera o sistema de equações como um sistema dissipativo de energia composto por um conjunto finito de equações lineares em um espaço de fase.

2.2.1 Um sistema dissipativo em um espaço de fase

Primeiramente, é importante definir o que é um sistema dissipativo de energia e o que é um espaço de fase e como estes conceitos dialogam com o atrator de Lorenz.

Sistemas dissipativos de energia tem como característica o fato de perder energia em processos não conservativos, como atrito, transformando-se em formas menos úteis, como calor. O Atrator de Lorenz é um exemplo desses sistemas, por se tratar do fenômeno convecção atmosférica (fenômeno devidamente explicado na seção anterior), onde a energia constantemente alimentada e dissipada.

O espaço de fase é uma representação que descreve todos os possíveis estados de um sistema dinâmico através de suas variáveis. Cada ponto neste espaço indica um estado específico do sistema.

Isto posto, podemos explicar a abordagem tomada por Lorenz para explicar a existência e unicidade da equação diferencial. Podemos classificar o fenômeno de convecção como um sistema dissipativo de energia formado por conjunto finito de equações lineares. Isto posto, podemos tomar n variáveis x_1, \ldots, x_n e definir o seguinte sistema:

$$\frac{dx_i}{dt} = F_i(x_1, \dots, x_n) \quad i \in \{1, \dots, n\}$$
(6)

Onde F_i possui derivadas parciais de primeira ordem contínuas e t é a única variável independente. Assim, para descrever todos os possíveis estados de um sistema dinâmico através de suas variáveis, adequaremos o sistema em um espaço de fase euclidiano de dimensão n constituído pelas variáveis x_1, \ldots, x_n .

Assim, como o sistema é composto por equações lineares com variáveis dependentes e que $F_i \in C_1$, temos que, consequentemente, o sistema possui solução única diretamente. Isto é:

$$x_i = f_i(x_{1_0}, \dots, x_{n_0}, t) \quad i = \{1, \dots, n\}$$
 (7)

Para algum intervalo que contenha t_0 e satisfaça a condição abaixo:

$$f_i(x_{1_0},\ldots,x_{n_0},t_0)=x_{i_0}$$
 $i=\{1,\ldots,n\}$

Tal fato é demonstrado em [2] na forma de um Teorema, exposto a seguir:

Teorema. Considere um intervalo fechado [A, B] onde as funções $F_i(x_1, \ldots, x_n)$ são contínuas juntamente com suas derivadas parciais de primeira ordem $\frac{\partial F_i}{\partial x_j}$ para todos $1 \le i, j \le n$. Se para algum ponto t_0 em (A, B) são dadas condições iniciais $x_{i_0} = x_i(t_0)$, então existe um único conjunto de funções $x_i(t)$ que são soluções do sistema no intervalo [A, B] e satisfazem $x_i(t_0) = x_{i_0}$. Além disso, as soluções $x_i(t)$ possuem derivadas contínuas em [A, B].

Com base no teorema apresentado e na formulação das equações diferenciais $\frac{dx_i}{dt} = F_i(x_1, \dots, x_n)$, o problema de Cauchy é adequadamente satisfeito. Dadas condições iniciais em um tempo t_0 , a existência e unicidade das soluções $x_i(t)$ são garantidas para o intervalo [A, B].

2.2.2 Uma breve nota do Teorema da Existência e Unicidade de Picard

Primeiramente, expressaremos o Teorema da Existência e Unicidade de Picard utilizando a [9]:

Teorema.Seja f contínua e lipschitzana em $\Omega = I_a \times B_b$, onde $I = \{t; |t - t_0| \leq a\}$, $B_b = \{x; |x - x_0| \leq b\}$. Se $|f| \leq M$ em Ω , existe uma e única solução de

$$x' = f(t, x), \quad x(t_0) = x_0$$

em I_{α} onde $\alpha = \min\{a, b/M\}$

Geralmente, a fim de mostrar a resolução do problema de *Cauchy*, utiliza-se como abordagem o Teorema exposto acima. Este método não foi utilizado para a tratar o sistema de Lorenz.

Ao pesquisar livros e referências sobre o tema, nenhum utilizou como abordagem este método. Isso porque é fácil de demonstrar que as funções do sistema (1) tem derivada contínua, mas pelo sistema ser não-linear a demonstração de ser localmente lipschitzana

é extremamente complexa e é preferível a abordagem utilizada pelo próprio autor em [3]. Optamos por seguir a abordagem majoritariamente utilizada.

2.2.3 Condições iniciais e domínio de definição do problema

Definiremos o domínio de definição do problema da seguinte forma: as variáveis $x, y, z \in \mathbb{R}$ refletindo a capacidade do sistema de atingir qualquer estado no espaço tridimensional (cabe dizer aqui que: apesar de Lorenz tratar o sistema em um estado de fase, por questões de simplicidade e representação computacional clara, utilizaremos o espaço tridimensional em nossas simulações). Além disso, temos que $t \in [0, \infty)$, o tempo começa em zero e não tem limite superior, permitindo a análise do sistema ao longo do tempo para observar seu comportamento dinâmico.

As condições iniciais que definimos são: $\sigma=10$, $\rho=28$ e $\beta=\frac{8}{3}$. Os valores apresentados são tipicamente escolhidos em simulações da literatura. Além disso, as escolhas de x,y e z são números reais arbitrariamente escolhidos, por questões de simplicidade escolheremos: x=0,y=1.0 e z=1.05.

3 Metodologia Numérica

Nesta seção, apresentaremos os métodos utilizados no desenvolvimento do trabalho, justificando devidamente o emprego de cada uma. A fim de promover uma descrição adequada de cada método utilizaremos como referência [1] e [6].

3.1 Uma breve nota sobre os métodos utilizados

Nesta seção, apresentamos os métodos numéricos de maneira teórica, detalhando as justificativas e o funcionamento teórico conforme a abordagem adotada durante as aulas. É importante ressaltar que, na aplicação prática, utilizamos as bibliotecas numpy e scipy na linguagem de programação Python. Optamos por não incluir no texto algumas divergências e detalhes específicos relacionados ao uso dessas ferramentas computacionais, pois eles se referem mais à implementação técnica nas bibliotecas e as especificações delas do que aos conceitos teóricos discutidos em aula.

3.2 Método Runge-Kutta

3.2.1 Justificativa da escolha do método

O fato do atrator de *Lorenz* ser um sistema não linear, de alta sensibilidade, principalmente, pela mudança das condições iniciais, e caótico. Pelo fato calcular as inclinações em quatro pontos dentro de cada intervalo de tempo, o método oferece uma aproximação mais precisa comparada aos demais aprendidos em aula. Por exemplo, o método de Euler não seria suficientemente eficaz para a discretização do sistema por não modelar muito bem fenômenos de natureza não linear. A

lém disso, O Runge-Kutta de quarta ordem, oferece um erro de truncamento local da ordem de h5 e um erro de truncamento global da ordem de h4, onde h é o passo de tempo [6] [1]. Isso significa que pequenos aumentos no passo de tempo podem produzir resultados precisos sem aumentar significativamente o erro, o que é ideal para lidar com a dinâmica complexa e sensível do atrator de Lorenz.

3.2.2 Funcionamento do método

O método Runge-Kutta visa discretizar os valores do sistema (1) com os valores iniciais apresentados na seção 2.2.3. Seguiremos o método apresentado em [1]:

$$\Phi(t, y, h) = \frac{1}{6}(\kappa_1 + 2\kappa_2 + 2\kappa_3 + \kappa_4)$$
(8)

De tal forma que:

$$\begin{cases}
\kappa_1 = f(t, y) \\
\kappa_2 = f\left(t + \frac{h}{2}, y + \frac{h}{2}\kappa_1\right) \\
\kappa_3 = f\left(t + \frac{h}{2}, y + \frac{h}{2}\kappa_2\right) \\
\kappa_4 = f(t + h, y + h\kappa_3)
\end{cases} \tag{9}$$

3.3 Spline Cúbico

3.3.1 Justificativa da escolha do método

Utilizaremos o método de interpolação chamado *spline* cúbico. A escolha deste método para a interpolação dos dados do atrator de Lorenz é motivada pela necessidade de repre-

sentar as curvas do sistema de maneira suave e contínua, uma característica crucial para tratar sua natureza não-linear e caótica.

Outros métodos, como, por exemplo, o método de interpolação de Lagrange não seria adequado, já que este envolve um processo de linearização que acarretaria perda de informação e, consequentemente, não representaria o sistema da melhor forma possível.

3.3.2 Funcionamento do método

Este método envolve a criação de um polinômio cúbico em cada subintervalo de um intervalo total, para interpolar um conjunto de pontos dados. Seguiremos como referência a construção de *spline* proposta pela referência [6], expressa abaixo:

Seja f uma função definida no intervalo [a,b] e $\{a=x_0 < x_1 < \ldots < x_n = b\}$ um conjunto de nós. Um interpolante de spline cúbica S para f é uma função que satisfaz as seguintes condições:

- 1. S(x) é um polinômio cúbico, denotado $S_j(x)$, em cada subintervalo $[x_j, x_{j+1}]$, para $j = 0, 1, \ldots, n-1$.
- 2. $S_j(x_j) = f(x_j)$ e $S_j(x_{j+1}) = f(x_{j+1})$ para cada $j = 0, 1, \dots, n-1$.
- 3. $S_{j+1}(x_{j+1}) = S_j(x_{j+1})$ para cada $j = 0, 1, \dots, n-2$.
- 4. $S'_{j+1}(x_{j+1}) = S'_{j}(x_{j+1})$ para cada $j = 0, 1, \dots, n-2$.
- 5. $S''_{j+1}(x_{j+1}) = S''_j(x_{j+1})$ para cada $j = 0, 1, \dots, n-2$.
- 6. Uma das seguintes condições de contorno é satisfeita:
 - (a) $S''(x_0) = S''(x_n) = 0$ (contorno livre ou natural).
 - (b) $S'(x_0) = f'(x_0)$ (contorno fixado ou clampeado).

3.4 Método dos Mínimos Quadrados

3.4.1 Justificativa da escolha do método

Utilizamos o Método dos Mínimos Quadrados (MMQ) para analisar a sensibilidade do atrator de Lorenz ao longo do tempo. Embora o atrator de Lorenz seja um sistema altamente não-linear, o MMQ proporciona uma boa aproximação das dinâmicas envolvidas

nesse sistema. Além disso, ele quantifica o impacto das alterações em cada parâmetro, evidenciando como pequenas mudanças nas variáveis podem afetar o sistema. Por fim, vale destacar a alta eficiência computacional deste método.

3.4.2 Funcionamento do método

O método dos mínimos quadrados polinomial aproxima um conjunto de dados (x_i, y_i) , com um polinômio algébrico $P_n(x)$ de grau n < m-1, escolhendo os coeficientes a_0, a_1, \ldots, a_n para minimizar o erro quadrático $E = \sum_{i=1}^m (y_i - P_n(x_i))^2$. Isso resulta em n+1 equações normais para os n+1 coeficientes desconhecidos a_i :

$$\sum_{k=0}^{n} a_k \left(\sum_{i=1}^{m} x_i^{j+k} \right) = \sum_{i=1}^{m} y_i x_i^j, \quad \text{para cada } j = 0, 1, \dots, n.$$
 (10)

Resolvendo esse sistema, obtemos os coeficientes do polinômio que melhor se ajusta aos dados no sentido dos mínimos quadrados. A ser expresso em:

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Detalhes a serem vistos em [6].

4 Metodologia Computacional

A fim de aplicar os métodos citados anteriormente, essa seção traz como proposta apresentar a abordagem computacional no emprego dos métodos, comprovação do comportamento no fenômeno de atrator e por fim avaliar algumas métricas provenientes de cada uma das metodologias.

4.1 Contexto

Apresentamos métodos de "discretização" que possibilitam estimar valores para o vetor solução $S = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}$ em um dado tempo t. Durante a metodologia computacional os passos trabalhados foram:

- 1. Aplicação de Runge-Kutta no sistema de Lorenz com n_steps = 10⁴, ou seja, o vetor solução seria calculado ao longo de 10 000 períodos. A justificativa para a quantidade de pontos é dada graficamente, de modo que o atrator toma forma ao longo do tempo.
- 2. A partir das soluções encontradas em RK, os dados são tabelados e assim utilizados para interpolação *spline* cúbica. De maneira análoga, para MMQ, portanto, teremos dois polinômios interpoladores.
- 3. Com os polinômios previamente calculados desenhos os gráficos.

4.2 Dados preliminares

Utilizando o método RK, três simulações foram feitas para o sistema de Lorenz já definido, mostrando que o fenômeno atrator forma as espirais conforme os passos dados, sabendo que um tempo(t) maior gera com mais assertividade o fenômeno evidenciado por Lorenz (Visualização na figura 3).

A função em Python responsável por calcular RK é definida pelos seguintes parâmetros: σ , ρ , β , x_0 , y_0 , z_0 , h, num_steps . Considerando as variáveis comuns ao sistema convencionado, sendo (x_0, y_0, z_0) condições iniciais do sistema e h o comprimento do intervalo em que t(tempo) está compreendido.

Na execução da função, valores comuns dentro do estudo de Lorenz foram usados, de modo que:

$$\sigma = 10,$$
 $\rho = 28,$
 $\beta = \frac{8}{3},$
 $x_0 = 0,$
 $y_0 = 1,$
 $z_0 = 1.05,$
 $h = 0.01,$

num_steps = 10^4

Índice	X	Y	Z
0	0.000000	1.000000	1.050000
1	0.095105	1.003039	1.022849
2	0.182649	1.030512	0.997333
3	0.265581	1.080595	0.973428
4	0.346436	1.152210	0.951187
5	0.427432	1.244918	0.930735
6	0.510567	1.358849	0.912268
7	0.597683	1.494637	0.896062
8	0.690531	1.653393	0.882484
9	0.790823	1.836671	0.872011
10	0.900278	2.046464	0.865257
11	1.020660	2.285199	0.863005
12	1.153819	2.555743	0.866250
13	1.301723	2.861417	0.876253
14	1.466492	3.206010	0.894607
15	1.650427	3.593802	0.923322

Tabela 1: Seleção de 15 pontos

Atrator de Lorenz

Figura 1: Atrator para 100 passos.

Atrator de Lorenz

Figura 2: Atrator para 1000 passos.

Atrator de Lorenz

Figura 3: Atrator para 10000 passos.

4.3 Métodos Interpoladores

4.3.1 Spline Cúbica

No emprego do método de interpolação por *spline* cúbica foi utiliza a biblioteca Scipy do python, sendo aplicado o método *scipy.interpolate.CubicSpline*. O motivo por tal técnica

é para fins de teste e comprovação do método, dado que o número de pontos trabalhados é alto, o que gera um custo computacional significativo. Observando o método, vemos que a estratégia segue algo que Lorenz já evidenciou nos testes, assim sendo um bom método interpolador que compreende o comportamento "oscilante" descrito no problema.

20 Z X, spline Z_spline

Figura 4: Spline Cúbica

4.3.2 MMQ

Atrator de Lorenz - Visão Spline Cúbica

Já no MMQ, seguimos a mesma estratégia abordada na *spline* cúbica, mas com o pacote NumPy e para biblioteca *numpy.polyfit*, de modo que o pacote faça um *fit* através da estratégia de mínimos quadrados com os pontos previamente tabelados. De fato, não há uma boa predição de dados nas curvas do MMQ, o que se aproxima do comportamento conhecido de uma regressão linear, já que há uma alta dispersão nos pontos, grande volume e, por consequência, granularidade na interpolação.

Figura 5: MMQ

Referências

- [1] R. L. Nós A. M. Roma, J. S. Bevilacqua. Métodos para a solução numérica de equações diferenciais ordinárias a valores iniciais. Notas de aula, curso de Métodos Numéricos, USP, 2023.
- [2] L. R. Ford. Differential Equations. McGraw-Hill, 1955.
- [3] E. N. Lorenz. Deterministic nonperiodic flow. *Journal of the Atmospheric Sciences*, 20(2):130–141, 1963.
- [4] A. Oberbeck. Ueber die wärmeleitung der flüssigkeiten bei berücksichtigung der strömungen infolge von temperaturdifferenzen. *Annalen der Physik*, 243(6), 1879.
- [5] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. *Chaos and Fractals*. Springer Science & Business Media, 2013.
- [6] A. M. Burden R. L. Burden, D. J. Faires. Análise Numérica. Editora Cengage, 2016.
- [7] L. Rayleigh. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 32(192):529–546, 1916.
- [8] B. Saltzman. Finite amplitude free convection as an initial value problem—i. *Journal* of the Atmospheric Sciences, 19:329–341, 1962.
- [9] Jorge Sotomayor. Lições de Equações Diferenciais Ordinárias. IMPA, 1979.