

LLM2VEC: LARGE LANGUAGE MODELS ARE SECRETLY POWERFUL TEXT ENCODERS

TEAM MEMBERS:

* AANANDHI SONDURI PANTHANGI *

* AKHILAA SONDURI PANTHANGI *

* MOHAN SAI GANESH KANNA *

* MONA TEJA KURAKULA *

* EMMA LEIHE *

MAIN RESEARCH QUESTION IN THE PAPER

CAN DECODER-ONLY
LLMS BE ADAPTED
INTO ROBUST TEXT
ENCODERS?

• CHALLENGES:

DECODER-ONLY MODELS ARE TYPICALLY UNIDIRECTIONAL, LIMITING CONTEXT.

• SOLUTION (LLM2VEC):

CONVERTS LLMS INTO TEXT ENCODERS WITH MINIMAL ADAPTATION

STEPS:

- 1. BI-DIRECTIONAL ATTENTION
- 2. MASKED NEXT TOKEN PREDICTION (MNTP)
- 3. UNSUPERVISED CONTRASTIVE LEARNING

MAIN RESULTS SUMMARIZED

Categories → # of datasets →	Retr. 15	Rerank.	Clust.	PairClass.	Class. 12	STS 10	Summ.	Avg 56
		E	ncoder-o	nly				
BERT	10.59	43.44	30.12	56.33	61.66	54.36	29.82	38.33
BERT + SimCSE	20.29	46.47	29.04	70.33	62.50	74.33	31.15	45.43
		S	-LLaMA-1	.3B				
Uni + w. Mean	9.47	38.02	28.02	42.19	59.79	49.15	24.98	35.0
LLM2Vec (w/o SimCSE)	15.48	40.99	31.83	50.63	64.54	62.06	26.82	41.43
LLM2Vec	25.93	47.70	37.45	72.21	67.67	71.61	31.23	49.4
Echo	10.36	41.52	30.03	52.08	63.75	59.36	22.79	39.1
		- 9	LLaMA-2-	78				
Ui + w. Mean	15.16	46.94	36.85	61.41	69.05	63.42	26.64	44.5
LLM2Vec (w/o SimCSE)	19.86	44.74	35.31	61.60	67.94	66.74	26.83	45.7
LLM2Vec	36.75	52.95	40.83	77.89	71.57	76.41	31.38	55.3
Echo	16.16	46.84	34.25	63.54	69.82	67.95	25.57	45.3
		33	Mistral-	7B				
Uni + w. Mean	10.43	45.11	35.82	60.28	71.14	58.59	26.57	42.4
Bi + Mean	15.84	47.40	35.55	66.53	72.18	71.04	29.93	46.8
LLM2Vec (w/o SimCSE)	19.74	50.43	40.06	70.95	72.51	71.90	27.84	49.4
LLM2Vec	38.05	53.99	40.63	80.94	74.07	78.50	30.19	56.8
Echo	22.68	51.07	36.78	75.87	72.69	73.60	29.54	50.2
		Met	a-LLaMA	-3-8B				
Uni + w. Mean	15.17	46.22	36.84	60.94	67.41	62.80	25.51	43.9
Bi + Mean	3.90	34.56	14.27	42.71	57.89	51.15	23.26	30.5
LLM2Vec (w/o SimCSE)	24.75	49.20	39.74	65.91	69.00	67.85	25.59	48.8
LLM2Vec	39.19	53.09	41.99	78.01	71.88	75.86	31.45	56.2
Echo	12.58	49.79	36.32	68.95	70.22	67.43	26.44	45.3

Table 1: Unsupervised results on MTEB. We compare S-LLAMA-1.3B, LLAMA-2-7B, Mistral-7B, and Meta-LLAMA-3-8B with and without LLMZVec to the unsupervised BERT models of Kao et al [2021] as well as Echo embeddings (Springer et al], [2024].

Model	EOS	Mean	W. mean
S-LLaMA-1.3B	90		
Uni	27.72	33.03	34.99
Bi	21.16	30.26	30.20
Bi + MNTP	29.16	42.10	38.67
Uni + SimCSE	37.44	44.95	47.13
Bi + SimCSE	40.43	44.46	44.83
Bi + MNTP + SimCSE	45.57	52.40	50.23
LLaMA-2-7B			
Uni	33.23	45.83	47.85
Bi	34.47	38.22	37.50
Bi + MNTP	32.66	48.00	44.30
Uni + SimCSE	38.47	52.03	53.55
Bi + SimCSE	40.37	44.13	44.08
Bi + MNTP + SimCSE	50.61	58.97	55.75
Mistral-7B			
Uni	22.12	43.00	44.01
Bi	25.17	50.07	45.20
Bi + MNTP	26.54	53.89	48.93
Uni + SimCSE	34.60	52.04	53.95
Bi + SimCSE	49.73	60.29	56.56
Bi + MNTP + SimCSE	53.67	60.50	57.55

Table 5: Unsupervised results on MTEB subset for different models.

SUMMARY:

LLM2VEC TRANSFORMS DECODER-ONLY
LLMS INTO COMPETITIVE TEXT ENCODERS,
OUTPERFORMING SEVERAL ENCODER-ONLY
MODELS WITH MINIMAL COMPUTATION,
CONFIRMING THE EFFECTIVENESS OF
BIDIRECTIONAL AND CONTRASTIVE
LEARNING ENHANCEMENTS.

Figure 3: Unsupervised results on our 15 task subset of the MTEB dataset. We ablate three different pooling choices: EOS, mean pooling, and weighted mean pooling. LLM2Vec is compatible with all three approaches and works best with mean pooling.

HOW THIS INFLUENCES OUR PROJECT

CONTEXTUAL CANDIDATE MATCHING: AN INTELLIGENT APPROACH TO RESUME RETRIEVAL FOR A GIVEN JOB DESCRIPTION

- 1.LLM2VEC'S BIDIRECTIONAL ATTENTION AND CONTRASTIVE LEARNING CAN CAPTURE NUANCES LIKE "AWS AND GCP" AS EQUIVALENT TO "CLOUD-BASED SYSTEMS."
- 2. OUR PROJECT COULD INCORPORATE THESE METHODS WITHOUT THE NEED FOR HIGH COMPUTATIONAL RESOURCES.
- 3. THE TRANSFORMATION PROCESS ALLOWS THE USE OF EXISTING MODELS WITHOUT MAJOR RETRAINING.
- 4.DPR CAN BENEFIT FROM CONTRASTIVE LEARNING TO PRODUCE HIGHER COSINE SIMILARITY SCORES, ENSURING BETTER RESUME-TO-JOB DESCRIPTION MATCHING.
- 5. FURTHER FINE-TUNING WITH LLM2VEC OPENS DOORS TO HYBRID MODELS (E.G., BM-25 + DPR) FOR EVEN HIGHER RETRIEVAL PRECISION.

METRIC	BM-25	DPR-BASE	DPR-FT 63.0%	
ACCURACY	63.0%	48.6%		
MAP	0.9368	0.7101	0.8549	
MMAP	0.8052	0.5459	0.7327	

Table 1: Results on Test Data of 100 Job Descriptions

from transformers import (

DPRContextEncoder,

DPRQuestionEncoder,

DPRContextEncoderTokenizer,

DPRQuestionEncoderTokenizer,

