Fundamentos para Álgebra Lineal

Computación Gráfica

Miguel Barrero P.¹

mbarrerop@ucentral.edu.co

¹Universidad Central

Definición de vector

Espacios vectoriales

Sub espacios vectoriales

Combinación lineal

Dependencia e independencia lineal

Conjunto generador y base

Referencias

Es un segmento de recta contado a partir de un punto en el espacio, cuya longitud representa a escala una magnitud, una dirección y un sentido que puede ser representado en 2 o 3 dimensiones.

Espacios vectoriales Computación gráfica

Un espacio vectorial es un conjunto no vacío V de objetos, llamados **vectores** en el que se ha definido dos operaciones: la suma y el producto por un escalar (número real) y que se encuentran sujetos a los siguientes axiomas.

- u + v = v + u
- $u + v \in V$
- (u+v) + w = u + (v+w)
- Existe un vector nulo $0_v \in V$ tal que $v + 0_v = v$
- Para cada v en V, existe un opuesto $(-v) \in V$ tal que $v + (-v) = 0_v$
- $\alpha v \in V$
- $(\alpha + \beta)v = \alpha v + \beta v$
- $\quad \alpha(\beta v) = (\alpha \beta) v$
- 1v = v

Sub espacios vectoriales Computación gráfica

Sea V un espacio vectorial y W un subconjunto no vacío de V. W es un sub espacio de V:

- si $u, v \in W$, entonces $u + v \in W$
- lacksquare si $a\in V$ y $u\in W$, entonces $au\in W$

Ejemplo:
$$W = \{(x,y) \in R^2/x = 0\}$$

Combinación lineal Computación gráfica

Sean $v_1, v_2, v_3, ...v_r$ de un espacio vectorial V; se dice que w es una combinación lineal de los vectores $v_1, v_2, v_3, ...v_r$ si:

$$w = k_1 v_1 + k_2 v_2 + \dots k_r v_r$$

Donde $k_1, k_2, ...k_r$ son escalares.

Ejemplo:

¿El vector (1,0,4) sería una combinación lineal de los vectores (1,0,1) y (0,0,2)?

Combinación lineal Computación gráfica

Dependencia e independencia lineal Computación gráfica

Un conjunto de vectores $\{v_1,v_2,v_3,...v_r\}$ de un espacio vectorial V es **linealmente dependiente** si y solo si al menos uno de los vectores puede expresarse como una combinación lineal del otro. Si el conjunto $\{v_1,v_2,v_3,...v_r\}$ es linealmente dependiente admite otras soluciones además de la trivial. Esto quiere decir que al menos uno de los escalares distinto de cero [ISABEL PUSTILNIK, 2017a].

Ejemplo: ¿Es el conjunto $\{(1,0,0),(0,1,0),(1,1,1)\}$ linealmente independiente(LI) o linealmente dependiente (LD)?

¿Es el conjunto $\{(1,1),(1,-1),(2,0)\}$ linealmente independiente(LI) o linealmente dependiente (LD)?

Dependencia e independencia lineal Computación gráfica

Consideremos que los vectores de las siguientes imágenes están colocados en el origen de coordenadas. Si se tienen dos vectores v_1 y v_2 son LD si y solo si uno de ellos es un múltiplo escalar del otro [ISABEL PUSTILNIK, 2017b].

Entonces se puede afirmar que dos vectores en \mathbb{R}^2 y \mathbb{R}^3 son LD si y sólo si están sobre la misma recta que pasa por el origen (vectores paralelos).

Dependencia e independencia lineal Computación gráfica

En \mathbb{R}^3 , tres vectores v_1, v_2, v_3 son LD si y sólo si están ubicados en el mismo plano.

Tres vectores LI en R3

Dependencia e independencia lineal Computación gráfica

Tres vectores LD en \mathbb{R}^3

Conjunto generador y base Computación gráfica

Sea $\{v_1,v_2,v_3,...v_r\}$ un conjunto de vectores de un espacio vectorial V; si todo vector de V puede expresarse como una combinación lineal de $v_1,v_2,...,v_r$ entonces se dice que $\{v_1,v_2,v_3,...v_r\}$ es un **conjunto generador de** V o que también $v_1,v_2,...,v_r$ generan V.

Una base es un conjunto B del espacio vectorial V si se cumplen las siguientes condiciones:

- \blacktriangleright Todos los elementos de B pertenecen al espacio vectorial V.
- ▶ Los elementos de B forman un sistema linealmente independiente.
- Todo elemento de V se puede escribir como combinación lineal de los elementos de la base B (es decir, B es un sistema generador de V).

ISABEL PUSTILNIK, FEDERICO GÓMEZ. Universidad Tecnológica Nacional, F. R. B. A. (2017a). Conjunto generador.li y ld. base. dimensión.

https://aga.frba.utn.edu.ar/conjunto-generador-li-y-ld-base-dimension/.

ISABEL PUSTILNIK, FEDERICO GÓMEZ. Universidad Tecnológica Nacional, F. R. B. A. (2017b). Espacios vectoriales.

https://aga.frba.utn.edu.ar/conjunto-generador-li-y-ld-base-dimension/.

