ComS 474 Homework 4

Sean Gordon

Oct 11, 2020

1)
$$\begin{pmatrix} w1\\w2\\w3 \end{pmatrix} = \lambda_1 * \begin{pmatrix} a_1\\b_1\\c_1 \end{pmatrix} - \lambda_3 * \begin{pmatrix} a_3\\b_3\\c_3 \end{pmatrix} = 4.5 * (1) * \begin{pmatrix} .5\\.25\\.125 \end{pmatrix} + 1.5 * (-1) * \begin{pmatrix} .3\\.75\\.325 \end{pmatrix} = \begin{pmatrix} 1.8\\0\\.075 \end{pmatrix}$$

Prediction = $(1, 1, 0) * \begin{pmatrix} 1.8 \\ 0 \\ .075 \end{pmatrix} = 1.8 > 0$, thus the predicted class is 1.

- 2) As the gutters span from $wx + w_b 1$ to $wx + w_b + 1$, the size of the margin is $\frac{2}{||w||}$, and the size of each gutter is 1/2 that $\Rightarrow \frac{1}{||w||} = \frac{1}{\sqrt{w_1^2 + w_2^2}} = \frac{1}{\sqrt{1.8^2 + .075^2}} = \frac{1}{1.802} = 0.555$.
- 3) A point is inside the margin when $|wx + w_b| < 2d = |wx + 1| < 1.11$

(1)
$$|(0.5, 0.25, 0.125) * \begin{pmatrix} 1.8 \\ 0 \\ .075 \end{pmatrix} + 1| = 1.909 > 1.11$$
, so this sample is inside the margin.

(2)
$$|(0.4, 0.15, 0.225) * \begin{pmatrix} 1.8 \\ 0 \\ .075 \end{pmatrix} + 1| = 1.737 > 1.11$$
, so this sample is inside the margin.

(3)
$$|(0.3, 0.75, 0.325) * \begin{pmatrix} 1.8 \\ 0 \\ .075 \end{pmatrix} + 1| = 1.564 > 1.11$$
, so this sample is inside the margin.

(4)
$$|(0.2, 0.65, 0.425) * \begin{pmatrix} 1.8 \\ 0 \\ .075 \end{pmatrix} + 1| = 1.392 > 1.11$$
, so this sample is inside the margin.

- 4) (1) If $y_i = 1$ and $w^T x_i + w_b \le -1$, $y_i(w^T x_i + w_b) \le -1$, disproving the condition.
 - (2) This condition holds for $y_i = 1$ and $w^T x_i + w_b \le -1$ and for $y_i = -1$ and $w^T x_i + w_b \le 1$. Both of these sets of values when input into $y_i(w^T x_i + w_b) \le -1$
 - (3) If $y_i = 1$ and $w^T x_i + w_b \le -1$, $y_i(w^T x_i + w_b) \le -1$, disproving the condition.
 - (4) This condition holds for $y_i = 1$ and $w^T x_i + w_b \le -1$ and for $y_i = -1$ and $w^T x_i + w_b \le 1$. Both of these sets of values when input into $y_i(w^T x_i + w_b) \le 1$
 - (5) If $y_i = 1$ and $w^T x_i + w_b \le -1$, $y_i(w^T x_i + w_b) \le -1$, disproving the condition.
 - (6) This condition holds for $y_i = 1$ and $w^T x_i + w_b \le -1$ and for $y_i = -1$ and $w^T x_i + w_b \le 1$. Both of these sets of values when input into $y_i(w^T x_i + w_b) \le 0$