DEVOIR À LA MAISON N°01

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 -

Dans tout le problème, n désigne un entier naturel non nul.

A tout entier naturel non nul n, on associe la fonction f_n définie sur $]-1,+\infty[$ par

$$f_n(x) = x^n \ln(1+x)$$

On note C_n la courbe représentative de la fonction f_n dans un repère orthonormé.

Partie I – Etude des fonctions f_n

1. Soit h_n la fonction définie sur $]-1,+\infty[$ par

$$h_n(x) = n \ln(1+x) + \frac{x}{1+x}$$

Etudier le sens de variation de h_n.

- 2. Dresser le tableau de variations de f_n et préciser ses limites en -1 et $+\infty$. On traitera séparément le cas n pair et le cas n impair.
- **3.** Etudier les positions relatives des courbes C_1 et C_2 puis les tracer.

Partie II - Etude d'une suite

A tout entier naturel non nul n, on associe l'intégrale

$$U_n = \int_0^1 f_n(x) \ dx$$

4. Démontrer que pour tout $n \in \mathbb{N}^*$

$$0 \leqslant U_n \leqslant \frac{\ln 2}{n+1}$$

En déduire que la suite (U_n) est convergente et donner sa limite.

5. Exprimer $f'_{n+1}(x)$ en fonction de $f_n(x)$ pour $x \in]-1, +\infty[$.

6. En déduire que

$$U_n = \frac{\ln 2}{n+1} - \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx$$

- 7. Calculer U_1 à l'aide de la formule précédente.
- 8. On pose pour tout entier naturel non nul n

$$V_n = \int_0^1 \frac{x^{n+1}}{1+x} \ dx$$

Montrer que

$$V_n = (-1)^{n+1} \left(\ln 2 - \sum_{k=0}^n \frac{(-1)^k}{k+1} \right)$$

et en déduire une expression de U_n.

EXERCICE 1.

Soient a, b et c trois nombres complexes non nuls de même module et deux à deux distincts. On note A, B, C et B les points d'affixes respectifs B, B, B et B et

- 1. On pose $w = \overline{b}c b\overline{c}$. Calculer \overline{w} et en déduire que w est imaginaire pur.
- **2.** Montrer que $(b+c)(\overline{b}-\overline{c})$ est également imaginaires pur.
- 3. Montrer que si \vec{u} et \vec{v} sont deux vecteurs d'affixes respectifs z_1 et z_2 , alors leur produit scalaire est la partie réelle de $z_1\overline{z_2}$.
- **4.** Montrer que les droites (AH) est (BC) sont perpendiculaires.
- 5. En déduire que H est l'orthocentre du triangle ABC.