Introduction to statistics and probability

Prepared by Ranju Mohan, PhD student, CE dept, IITM For CE302 class by Gitakrishnan Ramadurai, AP, CE dept, IITM

Statistics:

Working with data.....

Descriptive statistics

Speed data collected for 10 vehicles:

Speed (km/hr.)

27.8

29.5

32.4

32.4

32.4

36.9

43.5

49.8

52.3

58.9

Arranging in increasing order,

$$Median = \frac{32.4 + 36.9}{2} = 34.65$$

Measures of Central Tendency

Descriptive statistics – Measures of spread

Speed (km/hr.)

Range = Max value -Min value = 58.9- 27.8 = 31.1

27.8

29.5

32.4

32.4

32.4

36.9

43.5

49.8

52.3

58.9

Absolute deviation: |value - mean|

 \Rightarrow Ex: Absolute deviation = |52.3-39.59|=12.71

Arranging in increasing order,

Quartiles	Ist (25% of data)	2 nd (25% of data)	3 rd (25% of data)	4 th (25% of data)
V alue	[I(I0)+2]/4 th	[2(10)+2]/4 th	[3(10)+2]/4 th	-
	= 32.4 (QI)	=34.65 (Q2)	=49.8 (Q3)	

Interquartile range = Q3-Q1 = 17.4

Descriptive statistics - Measures of spread

$(32.4 - 39.59)^2$

$$(27.8 - 39.59)^2$$

$$(43.5 - 39.59)^2$$

$$(52.3 - 39.59)^2$$

$$(36.9 - 39.59)^2$$

$$(29.5 - 39.59)^2$$

$$(32.4 - 39.59)^2$$

$$(49.8 - 39.59)^2$$

$$(58.9 - 39.59)^2$$

$$(32.4 - 39.59)^2$$

$$\Sigma = 684.21$$

Variance:

$$s^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{n - 1} = 684.21/9 = 76.02$$

Standard deviation:

$$S = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1}} = \sqrt{684.21/9} = \sqrt{76.02} = 8.72$$

Data:

• Groups of information that represents the qualitative or quantitative attributes of a variable or a set of variables.

- Visual/Graphical Representation:
 - Frequency distributions
 - Graphs
 - Box plot
 - Scatter plot
 - Stem and leaf

No. of

Frequency distribution table

Previous data,

Year	No. of Accidents
2002	П
2003	13
2004	10
2005	8
2006	6
2007	6

Frequency polygon

Daily volume of vehicles observed:

Vehicle type	frequency
Bus	35
Car/Jeep	160
Truck	22
Bicycle	40
Others	25
TOTAL	282

Pie Diagram

No. of vehicles (%)

Car 57%

Given speed data:

63.2	49.9	36.9	44.2	54.8	49	42.9	32.4
54.3	37.5	45.I	51.7	47.5	43.8	55.9	48.8
41.1	47.5	52.3	39.2	57.3	36.3	42.8	58.7
52.9	42.5	46.4	53.3	46.5	43.2	56.9	47.7
47.8	35.6	50.3	44.7	46.2	38.4	62.4	39.4
56.4	55.1	64.8	52.8				

3	2.4	5.6	6.3	6.9	7.5	8.4	9.2	9.4											
4	1.1	2.5	2.8	2.9	3.2	3.8	4.2	4.7	5.1	6.2	6.4	6.5	7.5	7.5	7.7	7.8	8.8	9	9.9
5	0.3	1.7	2.3	2.8	2.9	3.3	4.3	4.8	5.1	5.9	6.4	6.9	7.3	8.7					
6	2.4	3.2	4.8																

Stem and Leaf plot

57.3

Given speed data (km/hr.),

63.2	49.9	36.9	44.2	54.8	49	42.9	32.4
54.3	37.5	45.1	51.7	47.5	43.8	55.9	48.8
41.1	47.5	52.3	39.2	57.3	36.3	42.8	58.7
52.9	42.5	46.4	53.3	46.5	43.2	56.9	47.7
47.8	35.6	50.3	44.7	46.2	38.4	62.4	49.4
56.4	55.1	64.8	52.8				

Group into different speed class

Class Interval =
$$\frac{\max value - \min value}{1 + 3.22 \log (No. of veh)}$$
$$= \frac{64.8 - 32.4}{1 + 3.22 \log(48)}$$
$$= 5.05, say 5$$

Speed class	No. of vehicles
30-35	Ī
35-40	6
40-45	8
45-50	12
50-55	8
55-60	6
60-65	3

Speed class	No. of vehicles
30-35	I
35-40	6
40-45	8
45-50	12
50-55	8
55-60	6
60-65	3

Histogram

Speed class	No. of vehicles	Cumulative no. of veh.
30-35	I	I
35-40	6	7
40-45	8	15
45-50	12	27
50-55	8	35
55-60	6	41
60-65	3	44

Q: Number of vehicles with speed less than 50 km/hr.?

Ans: 31

Paired data set:

(Number of accidents, Vehicle speed)

Speed (km/ hr.)	No. of accidents	
22	Ī	
45	3	How to rel
32	4	
75	8	
66	10	
58	6	

Scatter plot

When having several simultaneous comparison: 11 observations in 3 diff. days. (n=11)

Box Plot

	Speed (km/hr)						
	Mon	Wed	Fri				
L	25	22	24				
	28	29	29				
Q١	33	30	31				
	38	33	33				
	39	40	36				
Q2	42	42	38				
	46	55	40				
	55	60	41				
Q3	59	64	45				
	60	70	50				
Н	65	72	58				

Points to be plotted	Speed (km/hr.)			
	Mon	Wed	Fri	
Lowest (L)	25	28	28	
$QI = [I(n)+2]/4^{th} \text{ value}$ = 3^{rd} value	33	30	31	
Q2 = median	42	42	38	
Q3= [3(n)+2]/4 th value =9 th value	59	64	45	
Highest (H)	65	72	58	

Inferential statistics- basic concepts

- Use sample statistics and probability concepts to make inferences about the population
- Probability (P): The likelihood of something happening or being true.

Based on the assumption that sampling is random

Inferential statistics: Probability concepts-Random variables

Probability concepts – Random variables

Disc	rete Rando	m variable	Continuous Random variable		
Probability mass function, pmf = $p(x)$			Probability density function, pdf = $f(x)$		
p(x) = P(X=x)			$\int_{a}^{b} f(x) dx = P(a < x < b)$		
$0 \le p(x) \le I$			$\int_{a} f(x)dx = P(a < x < b)$ $f(x) > I$		
$\sum p(x) = I$		$\mathbf{r}(\mathbf{r}) = \mathbf{I}$	$\int f(x) = I$		
			$\int f(x) = I$		
	Cumulative distribution function $F(X \le x)$ Examples:				
x	P(X=x)		$(2\mathbf{x} \cdot \mathbf{x} > 0)$		
I	0.13		$\int f(x)dx = \begin{cases} 2x; x \ge 0 \\ 0; x < 0 \end{cases}$		
2	0.27	F(3) = 0.13 + 0.27 + 0.25	$[0, X \setminus 0]$		
3	0.25	= 0.65	0 3		
4	0.15	3.33	$F(3) = \int_{0}^{0} 0 dx + \int_{0}^{3} 2x dx = 9$		

0.20

 $F(3) = \int 0 dx + \int 2x dx = 9$

Probability concepts – Random variables

Discrete Random variable	Continuous Random variable		
Given x_i 's and $p(x_i)$'s	Given x_i 's and $f(x_i)$'s		
Expectation of a random variable, $E(X)$:	Weighted average of the possible values		
$E(X) = \sum_{i} x_{i} p(x_{i})$	$E(X) = \int xf(x)$		
$E(X^2) = \sum_{i} x_i^2 p(x_i)$	$E(X^2) = \int x^2 f(x)$		
Mean = E(X) = First moment about origin			
Variance =V(X) Second moment about mean $V(X) = E(x - \mu)^2$ or $V(X) = E(x^2) - E(x)^2$			

Some common probability distributions used in traffic engineering

Discrete data	Continuous data
Bernoulli distribution	Exponential distribution
Binomial distribution	Normal distribution & distribution arising from
Multinomial distribution	normal
Poisson distribution	Chi-square distribution
	t- distribution
	F – distribution

Special Random variables and probability distributions

Discrete Random variables

Bernoulli:

Two possible outcomes for one trial: 'success' (X=I) or 'failure' (X=0)

$$pmf = \begin{cases} P(X = 0) = I - p \\ P(X = I) = p \end{cases} \quad 0 \le p \le 1$$

Mean = p; Variance = p(I-p)

Binomial:

'n' independent trials, each having two outcomes

pmf = p(X = x) =
$$\frac{n!}{x!(n-x)!}$$
p^xq^{n-x}; x = 0,1,...,n

Mean = np; Variance = np(1-p)

Special Random variables and probability distributions

Discrete Random variables

Poisson:

When 'n' is large and p is small

pmf = P(X = x) =
$$\frac{e^{-v}v^{x}}{x!}$$
; i = 0,1,....

v = mean number of successes = np

x = actual number of successes

Mean = v; Variance = v

Continuous Random variables

Normal:

$$pdf = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}; -\infty < x < \infty$$

Mean = μ ; Variance = σ^2

Special Random variables and probability distributions

Continuous Random variables

Normal random variable, z

$$z = \frac{x - \mu}{\sigma}$$

When $\mu=0$ and $\sigma=1$;

$$pdf = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}; -\infty < x < \infty$$

Exponential:

$$P(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Mean = I/λ ; Variance = I/λ^2

• Que: On a particular junction, out of two routes to a particular destination, probability of choosing 1st route is twice as that of the 2nd route. How many number of vehicles will turn to Route 1 when a total of 5 vehicles reach at the junction at a specified time?

$$p(\text{route 1}) = p^{x} (1-p)^{1-x}$$

$$x = 0 \text{ with probability 0.33}$$

$$x = 1 \text{ with probability 0.67}$$

p(route 1) =
$$0.33^{0} (I - 0.33)^{I}$$

or
p(route 1) = $0.67^{1} (I - 0.67)^{0}$ = 0.67

Ans: Number of vehicles choosing Route I = $0.67 \times 5 = 3.3$, say 3

• Que: Probability of choosing a particular route is 1/5. Find out the probabilities that out of 5 vehicles reaching that location, exactly 0, 1, 2, 3, 4, 5 vehicles will choose that particular route.

With Binomial distribution,

$$P(x) = \frac{n!}{x!(n-x)!}p^{x}q^{n-x}$$

$$n = 5$$
; $p = 1/5$

Ans:

x	P(x)
0	0.33
I	0.41
2	0.20
3	.05
4	.006
5	.0003

• Ques: For 3 different routes at a particular location, probability of choice is given by 0.35, 0.40, 0.25 respectively. What is the probability that out of 5 vehicles reaching at the location, one, three and two vehicles will choose the route 1, 2 and 3 respectively.

By multinomial distribution,

$$p(x_1, x_2, x_k) = \frac{n!}{x_1! x_2! ... x_k!} p_1^{x_1} p_2^{x_2} p_k^{x_k}$$

$$p(1, 3, 2) = \frac{5!}{1! \ 3! \ 2!} 0.35^{1} \times 0.4^{3} \times 0.25^{2}$$

Ans: 0.014

• On a motorway, the number of vehicles arriving from one direction in successive 10 sec intervals was counted and is given below. Find out the probabilities P(0), P(>3), P(3< X<6) etc.

By Poisson distribution,

$$p(x) = \frac{e^{-v}v^x}{x!}$$

$$v = (200/1000)*10 = 2$$

Ans:

$$P(0) = 0.135$$

$$P(X>3) = 0.144$$

$$P(3 < X < 6) = 0.127$$

No. of veh. in 10 sec (i)	Frequency (ii)
0	П
1	28
2	30
3	18
4	8
5	4
6	I
7	0

Total no. of veh. (i*ii)	Total time (ii*10)
0	110
28	280
60	300
54	180
32	80
20	40
6	10
0	0

$$\Sigma = 200$$
 $\Sigma = 1000$

Example:

• Ques: If an average of 3 trucks arrive per hour to be unloaded at a warehouse, what are the probability that the time between the arrivals of successive trucks will be (i) less than 5 min., (ii) at least 45 min.

Using exponential distribution,

$$P(x) = \lambda e^{-\lambda x}$$

$$P(X < x) = \int_{0}^{x} \lambda e^{-\lambda x} dx = I - e^{-\lambda x}$$

$$\lambda = 3/60 = 0.05 \text{ veh/min.}$$

Ans:

$$P(X<5)= 1-e^{-0.05(5)} = 0.2212$$

$$P(X \ge 45) = e^{-0.05(45)} = 0.105$$

Example:

The spot speed at a particular location are normally distributed with a mean of 51.7 km/hr. and std. deviation of 8.3 km/hr. what is (ii)the probability that speed exceeds 65 km/hr. (ii) the 85th percentile speed.

$$z = \frac{x - \mu}{\sigma}$$

(i)
$$z = (65-51.7)/8.3 = 1.6$$

From the standard normal distribution table, $F(1.6) = P(X \le 65) = 0.9452$

Ans: P(X>65) = 0.0548

(ii)
$$P(X \le x) = 0.85 = F(z) = 0.85$$

From the standard normal distribution table, 7= 1.04

$$x = 1.04(8.3) + 51.7 = 60.33$$

Ans: x = 60.33 km/hr.

Standard Normal distribution table

Shows the cumulative probability associated with a particular z- score

Z	0.00	0.01	•••	••••	0.07	0.08	0.09
-3.0	0.0013	0.0013	•••	••••	0.0012	0.0010	0.0010
••••	•••	•••	•••	•••	•••	•••	••••
-1.3	0.0968	0.0951	••••	•••	0.0853	0.0838	0.0823
••••	••••	••••	••••	••••	•••	•••	••••
3.0	0.9987	0.9987	••••	••••	0.9989	0.9990	0.9990

Example: P(z<-1.31) = 0.0951

Inferential statistics: Sampling distributions

Sampling Theory:

If a random sample of size n is taken from a population of mean μ and variance σ^2 , then the sample mean \overline{X} follows a normal distribution with mean μ and variance σ^2/n . The standard error of mean is given by $\frac{\sigma}{\sqrt{n}}$.

Central limit theorem:

If \bar{x} is the mean of a sample of size n taken from a population of mean μ and variance σ^2 , then the variate $z = \frac{\bar{x} - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$ approaches a normal distribution as $n \longrightarrow \infty$

Central limit theorem-Error estimate

$$-Z_{\alpha/2} \le \frac{X - \mu}{\sigma / \sqrt{n}} \le Z_{\alpha/2}$$

$$\left| \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \right| < Z_{\alpha/2}$$

$$E = \overline{X} - \mu = \frac{z_{\alpha/2}\sigma}{\sqrt{n}}, \text{ where '}\alpha' \text{ is th level of significance}$$

Level of significance: the probability that the computed estimate will lie outside the indicated range . Here the range is the confidence level, $1-\alpha$

While determining the mean speed of veh. on a section of a road, engineer wants to be able to assert with 95% confidence that the mean speed is off by 2.5 km/hr. If std. deviation is 8.2 km/hr., how large the sample is?

$$E = \overline{X} - \mu = \frac{z_{\alpha/2}\sigma}{\sqrt{n}}$$

$$1-\alpha = 0.95$$
; $\alpha = 0.05$; $\alpha/2 = 0.025$

$$z_{\alpha/2} = 1.96$$

$$2.5 = \frac{1.96 \times 8.2}{\sqrt{n}}$$

Sample size, n = 41

Central Limit theorem

Confidence interval (C.I.) for the population mean μ

C.I. =
$$\left(\overline{X} - \frac{Z_{\alpha/2}\sigma}{\sqrt{n}}, \overline{X} + \frac{Z_{\alpha/2}\sigma}{\sqrt{n}}\right)$$

Example:

A random sample of size 100 is taken from a population with std. deviation 5.1, given that the sample mean is 21.6, construct a 95% confidence interval.

C.I. =
$$\left(21.6 - \frac{1.96 \times 5.1}{\sqrt{100}}, 21.6 + \frac{1.96 \times 5.1}{\sqrt{100}}\right)$$
 Ans: (21.5, 22.6)

Distributions from Normal distribution

$$P(X \ge \chi_{\alpha,n}^2) = \alpha$$

$$\chi_{\alpha,n}^2$$

Standard normal distribution

Chi-square distribution with 'n' degrees of freedom

$$pdf = \frac{\frac{1}{2}e^{-\frac{x}{2}}\left(\frac{x}{2}\right)^{\frac{n}{2}-1}}{\left(\frac{n}{2}-1\right)!}, x > 0$$

Distributions from Normal distribution

z – Random variable with standard normal distribution

$$\chi^2_{\alpha,n}$$
 – Random variable with Chi-square distribution

t- distribution with 'n' degrees of freedom

$$P(t_n \ge t_{\alpha,n}) = \alpha$$

$$t_{n} = \frac{z}{\sqrt{\chi_{n}^{2}/n}}$$

As n becomes large, $\chi_n^2 = 1 \rightarrow t_n \approx z$

Distributions from Normal distribution

$$F_{n,m} = \frac{\chi_n^2}{\chi_m^2}$$

$$P(F_{n,m} > F_{\alpha,n,m}) = \alpha$$

$$\frac{1}{F_{\alpha,n,m}} = F_{1-\alpha,m,n}$$

F- distribution with degrees of freedom 'n' and 'm'

How to use these sampling distributions to draw conclusion?

Hypothesis testing

- Concerned with two distinct choices:
 - \rightarrow Null Hypothesis (H₀)
 - ▶ Alternate hypothesis (H₁)
- ► Test whether to accept or reject H₀ using various test statistics.
- Two types of errors:

Two possibilities	Decision	
	Accept H ₀	Reject H ₀
H ₀ True	Correct!	Type I error
H _I True	Type II error	Correct!

Testing the hypothesis

One tail or two tail?

- ▶ Confidence level: $I-\alpha$: probability that the computed estimate will lie in the acceptance region
- Level of significance: α :probability that the computed estimate will lie in the rejection region

- ▶ Que.No.1: The spot speed at a particular location in an expressway are known to be normally distributed with a mean of 80km/hr. and std. dev. of 15km/hr. A new radar speed meter was bought by traffic dept. and a set of 100 observations were taken. The mean speed observed was 77.3km/hr. Is there any evidence to prove that:
 - (i) the new speed meter might have been faulty
 - (ii) the new speed meter is showing lesser speed than actual. Assume 5% level of significance.

Solution to Ques.No.1(i)

Here we have to test:

 H_0 : The speedometer is not faulty ($\bar{x} \mu = 80 \text{km/hr.}$)

against

 H_1 : The speedometer is faulty (#80km/hr. i.e either >80 or <80)

Given $\alpha = 5\%$

n=100, large sample

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{77.3 - 80}{15 / \sqrt{100}} = -1.8$$

Accept H₀

Inference: The speedometer is not faulty

Solution to Ques.No.1(ii)

Here we have to test:

 H_0 : μ =80km/hr.

against

Inference: The new speedometer is showing lesser speed than actual

▶ Que. No. 2: The mean spot speed of 15 vehicles observed on a Sunday at a particular roadway was 81.2km/hr. The mean speeds of all vehicles at this location as per previous records was 75.5 km/hr. and std. dev. 10.2km/hr. Is there sufficient evidence to show that the speeds of vehicles on that Sunday was higher than the average speed? Take level of significance as 5%

Solution to Ques.No.2

Here we have to test:

$$H_0$$
: $\mu = 75.5$ km/hr.

against

 H_1 : $\mu > 75.5$ km/hr.

One tailed

Given
$$\alpha = 5\%$$

n=15, small sample

Also sample std. dev. is given, hence use t-statistics

$$t = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} = \frac{75.5 - 81.2}{10.2 / \sqrt{15}} = 2.164$$

Inference: The speeds of vehicles on that Sunday is higher than the average speed

▶ Ques. No.3: Two samples of speed data are collected are as follows:

For sample 1, mean speed is 74.3km/hr. and std. dev. is 7km/hr. $(n_1=120)$

For sample 2, mean speed is 72.5km/hr. and std. dev. is 8km/hr. $(n_2=120)$

Is there any evidence to prove that the mean speed reduced by more than 0.5km/hr. when using these samples? Assume level of significance as 10%.

Solution to Ques.No.3

Two samples and hence concerned with two means μ_1 and μ_2

Have to test:

$$H_0$$
: $\mu_1 - \mu_2 = 0.5$ km/hr.

against

$$H_1$$
: $\mu_1 - \mu_2 > 0.5 \text{km/hr}$.

Given
$$\alpha = 5\%$$

 $n_1 = n_2 = 50$, large sample

For test concerning two means, z-statistics is given by,

$$z = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
$$z = \frac{(74.3 - 72.5) - (0.5)}{\sqrt{\frac{7^2}{120} + \frac{8^2}{120}}} = 1.34$$

Inference: the mean speed reduced by more than 0.5km/hr.

▶ Que.No.4:For a given vehicle speed data sample of size 20, the standard deviation observed was 12.5km/hr. The data can be used only if the standard deviation is near to approximately equal to10km/hr. Check whether the data can be accepted at 5% level of significance.

Solution to Ques.No.4

Problem is related to the sampling distribution of variance

Have to test:

H₀:

6 = 10km/hr.

against

 H_{1} :

6 > 10km/hr.

Given $\alpha = 5\%$

Degrees of freedom = sample size-1 =19

 χ^2 statistics for variance is:

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$
$$= \frac{(20-1)12.5^2}{10^2} = 29.69$$

Accept H₀

Inference: The given speed data can be accepted

Que.No.5:It is desired to determine whether there is less variability in the speed data collected for day 1 than for day2. If independent random samples are taken for these two days as below:

For day 1: std. dev.=12km/hr.; sample size=12

For day 2:std. dev.=10km/hr.; sample size=14,

test the given hypothesis with a level of significance 5%.

Solution to Ques.No.5

Here the question concerned with the comparison of variance.

Have to test:

$$H_0$$
: $G_1^2 = G_2^2$

against

$$H_1$$
:

$$H_1$$
: $G_1^2 < G_2^2$

Given $\alpha = 5\%$

Statistics that can be used: F-statistics

Degrees of freedom = sample size-1.

Here, II and I3

For comparing sample variance, $F = (s_1^2/n_1) / (s_2^2/n_2)$

Where s_1 and s_2 are the sample standard deviations.

$$F = (12^2/12)/(10^2/14) = 1.68$$

Inference: There is no variability in the speed data measured for day I and 2

Que.No.6: Every minute vehicle count data was collected for a period of 65 minutes. Determine at 95% confidence level, whether the data follows a poisson distribution.

No. of arrival	Observed frequency
0	2
1	6
2	7
3	12
4	13
5	9
6	9
7	4
8	2
9	Í

To test the fit of data to a particular distribution,

'GOODNESS OF FIT' test

Solution to Que.No.6

H₀: Data follows poisson distribution

H₁: Data not follows poisson distribution

O_i: Observed frequency E_i: Expected frequency

Poisson probability:

$$p(x) = \frac{e^{-v}v^x}{x!}$$

v = mean number of arrival = 260/65 = 4

$$p(x) = \frac{e^{-4}4^x}{x!}$$

Arrival (x _i)	Obsv. freq (min)	Total no. of veh.	Prob. p(x _i)	E _i (prob.*65)
0	2	0	0.018	1.17
1	6	6	.0733	4.76
2	7	14	0.1465	9.52
3	12	36	0.1954	12.7
4	13	52	0.1954	12.7
5	9	45	0.1563	10.16
6	9	54	0.1042	6.77
7	4	28	0.0595	3.87
8	2	16	0.0298	1.94
9	I	9	0.0132	0.858

$$\Sigma = 65$$
 $\Sigma = 260$

Goodness of fit – solution to Que.No.6

At least 5 groups and at least 5 nos. in each group

$$\chi^2 = \sum_{i} \frac{\left(O_i - E_i\right)^2}{E_i}$$
$$= 2.31$$

Degrees of freedom = N-I-g = 5

g - no. of statistics used to calculate E_i ; here only ν

$$\chi^2_{0.05,5} = 11.07 > 2.31$$

Accept H₀

No. of arrival	Observed frequence (mintute	y	Expeding frequive (E _i)		(O _i -E _i) ² /E _i
0	2		1.17	5.93	0.7100
I	6 8		4.76	3.73	0.7189
2	7	2	9.52		0.6671
3	12	3	12.7		0.0386
4	13	4	12.7		0.007
5	9	5	10.16		0.132
6	9	6	6.77		0.7345
7	4		3.87	6.67	
8	2 7		1.94	_ 0.07	0.0165
9	1		0.858		
		N=7			∑ =2.31

Inference: The given data follows poisson distribution

Summary of test statistics for Hypothesis testing

TEST STATISTICS

Hint: μ_0 = population mean 6_0 = population std. dev. H_1

Reject H₀ if

Large sample – concerning mean

$$H_0: \mu = \mu_0$$

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$\mu < \mu_0$$

$$\mu > \mu_0$$

$$\mu \neq \mu_0$$

$$Z < -Z_{\alpha}$$

$$Z > Z_{\alpha}$$

$$z < -z_{\alpha/2}$$
 or $z > z_{\alpha/2}$

Small sample – concerning mean

$$H_0: \mu = \mu_0$$

$$t = \frac{\overline{X} - \mu}{\sqrt[S]{\sqrt{n}}}$$

$$\mu < \mu_0$$

$$< \mu_0$$

$$\mu > \mu_0$$

$$\mu \neq \mu_0$$

$$t < -t_{\alpha}$$

$$t > t_{\alpha}$$

$$t < -t_{\alpha/2}$$
 or $t > t_{\alpha/2}$

Summary of test statistics for Hypothesis testing

TEST STATISTICS

Hint: μ_0 = population mean σ_0 = population std. dev.

 H_1

Reject H₀ if

Comparison of sample mean

$$H_0: \mu_1 - \mu_2 = \delta$$

$$z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$\mu_1 - \mu_2 < \delta$$

$$\mu_1 - \mu_2 > \delta$$

$$\mu_1 - \mu_2 \neq \delta$$

$$Z < -Z_{\alpha}$$

$$z > z_{\alpha}$$

$$z < -z_{\alpha/2}$$
 or $z > z_{\alpha/2}$

One variance

$$H_0: \sigma^2 = \sigma_0^2$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

$$\sigma^2 > \sigma_0^2$$

$$\sigma^2 < \sigma_0^2$$

$$\sigma^2 \neq \sigma_0^2$$

$$\chi^2 > \chi_q^2$$

$$\chi^2 > \chi^2_{1-\alpha}$$

$$\chi^2 < \chi^2_{1-\alpha/2}$$
 or $\chi^2 > \chi^2_{\alpha/2}$

Summary of test statistics for Hypothesis testing

TEST STATISTICS

Hint: μ_0 = population mean 6_0 = population std. dev. H_1

Reject H₀ if

Two variance

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$(s_1^2/n_1)/(s_2^2/n_2)$$
 $\sigma_1^2 > \sigma_2^2$

$$\sigma_1^2 > \sigma_2^2$$

$$F > F_{\alpha, n_1 - 1, n_2 - 1}$$

$$(s_2^2/n_2)/(s_1^2/n_2)$$
 $\sigma_1^2 < \sigma_2^2$

$$\sigma_1^2 < \sigma_2^2$$

$$F > F_{\alpha, n_2 - 1, n_1 - 1}$$

$$\left(s_{\text{large}}^2 / n_L\right) / \left(s_{\text{small}}^2 / n_S\right) \left(\sigma_1^2 \neq \sigma_2^2\right)$$

$$\sigma_1^2 \neq \sigma_2^2$$

$$F > F_{\alpha, n_{large} - 1, n_{small} - 1}$$

Underlying distribution

 H_0 : Data follows given distribution

$$\chi^2 = \sum_{i} \frac{\left(O_i - E_i\right)^2}{E_i}$$

Data not follows given distribution

$$\chi^2 > \chi_\alpha^2$$

Thank You

