

Tucuxi CLI Software Usability Specification

Release 1.0

Tucuxi dev team

Contents

1	Tucucli specification	1
2	Query format	3
3	Query dosage	17
4	Query response format	23
5	General elements	33
6	Indices and tables	39

Tucucli specification

The command line tool tucucli allows to use all the Tucuxi core functionalities.

The main purpose of *tucucli* is to perform computations. This will return a complete computation for a specific query. Such query embeds information about the patient (covariates), the drug treatment (dosage history + samples concentrations), as well as the specification of the calculation to be done.

The following computations can be performed:

- Single points prediction
- Concentration prediction at time of samples
- Full concentration prediction
 - Typical patient
 - A priori prediction (with the patient's covariates)
 - A posteriori prediction (with covariates and samples)
- Percentiles computation
 - With typical patient PK parameters
 - A priori percentiles (with the patient's covariates)
 - A posteriori percentiles (with covariates and samples)
- Suggestions of dosage adjustments

All required information of a computation is given thanks to an XML format. The details of this format are here: *Query Format*.

The global structure of the XML file is a tucuxiComputation. More details on page Query Response Format.

1.1 Running Tucucli

tucucli has a very simple interface: It can have five arguments:

- 1. The path where to find the drug model files
- 2. The path to the file containing the query
- 3. The path to the output file (not yet created)
- 4. An optional path to a directory in which query files will be stored
- 5. An optional path to a directory in which csv files (containing only numericals values) will be stored

```
Usage:
    ./tucucli [OPTION...]

-d, --drugpath arg Drug files path
-i, --input arg Input request file
-o, --output arg Output response file
-q, --querylogpath arg Query folder path
--csv arg Csv file path (.dat)
--help Print help
```

The drug files path is not mandatory, and has a default value which is <path_to_tucucli>/drugs2.

The query folder path is not mandatory.

Both the input request file and the output response folder are mandatory

Some logs are sent to the standard output, and allow to get some

Data file path is not mandatory. If argument not filled, data file won't be created.

1.1.1 Return value

The return value of the tucucli process can be any of the following:

Table 1: Return value

Value	Description
0	Everything went well
1	Some requests are wrong, but some are good
2	None of the requests could be calculated correctly
3	Error during xml query import
4	Xml file or string with bad format (not imported yet)
5	Undefined error (should not happen)
-1	Error in the format of arguments
-2	Missing argument -i and/or -o

If the computation is partially or fully correct, then the response file will contain information about what happened.

Query format

Contents

- Covariates
- Drugs
- Treatment
- Samples
- Targets
- Requests

This chapter presents the way computing queries have to be described. The input format is valid for both the command line interface and the REST server.

The global structure of the XML file is the following:

```
<?xml version="1.0" encoding="UTF-8"?>
   <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
     <queryId>123_ch.heig-vd.Tucuxi.gentamincin_neonates/queryId>
     <clientId>123</clientId>
     <date>28.04.2020</date>
     <language>en</language>
     <drugTreatment>
       <patient>
         <covariates></covariates>
10
       </patient>
11
       <drugs></drugs>
12
     </drugTreatment>
13
     <requests></requests>
   </query>
```

Tag name	Format	Occ.	Description
<query></query>		1:1	Data about the query
<queryid></queryid>	string	1:1	Query ID
_ <clientid></clientid>	string	1:1	Client ID
<date></date>	date	1:1	Query date
<language></language>	string	1:1	Languages specifications
<drugtreatment></drugtreatment>		1:1	Drug treatment specifications
<patient></patient>		1:1	Patient specifications
<covariates></covariates>	Covariates	1:1	Covariates specifications
<drugs></drugs>	Drugs	1:1	Drugs specifications
<requests></requests>	Requests	1:1	Requests specification

The XML format is described in the file computing_query.xsd which is used by Tucuxi in order to check the structure correctness before loading the query description file.

The <language> tag is an string enumerate. It can be "en", "fr", "de" or "it", but currently this tag is not used by the computing engine.

2.1 Covariates

The covariates of the file is described inside the <covariates> tag. A standard covariates looks like this:

Tag name	Format	Occ.	Description
<covariate></covariate>		0:∞	Description of a covariate
<covariateid></covariateid>	string	1:1	The covariate's unique identifier
<date></date>	date	1:1	The covariate's measure date
<value></value>	string	1:1	The covariate's value
<unit></unit>	string	1:1	The covariate's unit
<datatype></datatype>	string	1:1	The covariate's value data type
<nature></nature>	string	0:1	The covariate's nature

A covariate ID must identify the covariate. The <date> refer to the date of the covariate measurement.

The <unit> of the covariate is the unit presented to the user - for example kg for the covariate weight. The <dataType>, on the other hand, is the internal type used to store the covariate's value. It can be either an int, a double or a boolean. In case of boolean, then the term is bool, and the value shall be 1 for true and 0 for false.

The <dataType> tag is an string enumerate. It can be "int", "double", "bool" or "date". Typically, a birthdate would be of type "date".

Warning: If the drug model deals with the age, then a birthdate instead of an age has to be given, as it is used to calculate the age.

The <nature> tag is a string enumerate. It cab be "continuous", "discrete" or "categorical". Standard covariates are "continuous", and currently this field is not used by the computing engine.

2.2 Drugs

The drugs embed information about various drug treatments the patient could be in. The *drugId* is then referenced by the computing requests, and the computing engine gets the information from the corresponding drug treatment. A standard *drugs* looks like this:

```
drugs>
drug/
drugId>gentamincin</drugId>
drugId>
cactivePrinciple>vancomycin</activePrinciple>
brandName>somebrand</brandName>
catc>J01XA01</atc>
treatment></treatment>
samples></samples>
drugs>
drugs
</drugs>
```

Tag name	Format	Occ.	Description
<drug></drug>		0:∞	Description of a drug
<drugid></drugid>	string	1:1	The drug's unique id
<activeprinciple></activeprinciple>	string	1:1	The drug's active principle
 brandName>	string	1:1	The drug's brand name
<atc></atc>	string	1:1	The drug's atc
<treatment></treatment>	Treatment	1:1	The drug's treatment
<samples></samples>	Samples	0:1	The drug's samples
<targets></targets>	Targets	0:1	The drug's targets

The drugId uniquely identifies the drug. It should be equal to the drugId of the selected drug models.

The active Principle uniquely identifies the active principle of the drug.

The brandName is currently unused.

The ATC is currently unused but could serve to double check that the drug model implements the correct drug.

The tags <treatment>, <samples> and <targets> are developped in chapter below.

2.2. Drugs 5

2.3 Treatment

The Treatment of the file is described inside the <treatment> tag. It contains the dosage history of the patient for a specific drug.

A standard treatment looks like this:

Tag name	Format	Occ.	Description
<dosagehistory></dosagehistory>		0:1	History of dosages
<dosagetimerange></dosagetimerange>		0:∞	Dosage specifications
<start></start>	date	1:1	The dosage's start date
<end></end>	date	1:1	The dosage's end date
<dosage></dosage>	Query dosage	0:∞	Dosage specifications

The dosage specifications are described *here*.

2.4 Samples

The samples are described inside the <samples> tag. It is a list of drug concentration measurements.

A standard samples looks like this:

```
<samples>
     <sample>
       <sampleId>1</sampleId>
       <sampleDate>2018-01-10T14:41:54</sampleDate>
       <concentrations>
         <concentration>
6
           <analyteId>gentamincin</analyteId>
           <value>23</value>
           <unit>mg/l</unit>
         </concentration>
10
       </concentrations>
11
     </sample>
12
   </samples>
```

Tag name	Format	Occ.	Description
<sample></sample>		1:∞	Description of a sample
<sampleid></sampleid>	int	1:1	The sample's unique id
<sampledate></sampledate>	date	1:1	The sample's date
<concentrations></concentrations>		1:1	Concentrations
<concentration></concentration>		0:∞	Concentration specification
<analyteid></analyteid>	string	1:1	Analyte unique id
<value></value>	decimal	1:1	Concentration's value
<unit></unit>	string	1:1	Concentration's unit

A sample contain an ID, a date and one or more concentration.

For one sample there can be more than one concentration, as the drug could be composed of multiple analytes. So, for each concentration the *analyteId* identifies the analyte for which the concentration has been measured.

2.5 Targets

The targets are used by the adaptation engine to fit the dosage to the specific needs of the patient. A drug model embeds such targets, but it is possible to override them by supplying new targets.

A standard targets looks like this:

2.5. Targets 7

Tag name	Format	Occ.	Description
<target></target>		1:∞	List of targets
<activemoietyid></activemoietyid>	string	1:1	active moiety for this target
<targettype></targettype>	string	1:1	Target's type
<unit></unit>	string	1:1	Target's unit
<min></min>	decimal	1:1	Target's minimum value
_ <best></best>	decimal	1:1	Target's best value
<max></max>	decimal	1:1	Target's maximum value
<tmin></tmin>	decimal	0:1	Target's minimum time, for peaks
_ <tbest></tbest>	decimal	0:1	Target's best time, for peaks
_ <tmax></tmax>	decimal	0:1	Target's maximum time, for peaks
_ <inefficacyalarm></inefficacyalarm>	decimal	0:1	Target's inefficacy alarm value
<toxicityalarm></toxicityalarm>	decimal	0:1	Target's toxicity alarm value
<mic></mic>	mic	0:1	Minimum inhibitory concentration

The tags <tMin>, <tBest>, and <tMax> are only required in case of a target mentionning a peak: **peak** or **peakDividedByMic**.

The mic is defined as:

Tag name	Format	Occ.	Description
<mic></mic>		0:1	A MIC field
<unit></unit>	string	1:1	MIC's unit
<micvalue></micvalue>	decimal	1:1	MIC's value

For more information about targets, please have a look here.

2.6 Requests

The *drugTreatment* contains all information known about the patient (dosage history, samples, covariates). All computations are performed based on this knowledge.

The requests represent what kind of computation needs to be done on what drug. A query can be composed of many requests.

The Requests of the file are described inside the <requests> tag. A standard Requests looks like this:

```
requests>
request>
requestId></requestId>
```

(continues on next page)

(continued from previous page)

Tag name	Format	Occ.	Description
<request></request>		1:∞	Request specifications
<requestid></requestid>	string	1:1	Request's unique id
<drugid></drugid>	string	1:1	Drug's unique id
<drugmodelid></drugmodelid>	string	1:1	Drug model unique id
<comput- ING_TRAIT></comput- 		1:1	This tag doesn't exist, see warning below

The *requestId* uniquely identifies the request. It shall be unique within a query.

The *drugId* identifies the drug for which the computation has to be performed. The engine will look for that drug in the first part of the XML to extract the corresponding information (samples, dosages).

The *drugModelId* identifies the drug model to be used for the computation. It has to be a valid one, typically retrieved from the list of available drug models. Obviously it should be compatible with the *drugId*, else no computation can be performed.

The last tag is a choice between the various computation possibilities. Each type of computation then embeds the required information specific to it. Each trait will have a *computingOption* field, and some other specific fields.

Warning: The tag <COMPUTING_TRAIT> only exist for the representation above. This tag must be replaced by one of the following tags: predictionTraits, predictionAtTimesTraits, predictionAtSampleTimesTraits, percentilesTraits or adjustmentTraits

2.6.1 PredictionTraits

A prediction trait is used compute a prediction over a certain period of time.

For instance:

```
computingOption></computingOption>
computingOption>
```

2.6. Requests 9

Tag name	Format	Occ.	Description
<pre><pre><pre><pre>oredictionTraits></pre></pre></pre></pre>		1:∞	Prediction Traits specifications
<computingoption></computingoption>	ComputingOp- tion	1:1	computing options
_ <nbpointsperhour></nbpointsperhour>	int	0:1	Number of points per hour
<dateinterval></dateinterval>		0:1	Date interval specifications
<start></start>	date	1:1	Start date
<end></end>	date	1:1	End date

The number of points per hour defines the density of the resulting concentrations. Internally the software checks whether there are not too many points to calculate. If this is the case, then no computation is performed and a status code *TooBig* is returned.

The <computingOption> tag is developped *here*.

2.6.2 PredictionAtTimesTraits

This type of traits allows to specify specific times at which we need a concentration calculation.

```
computingOption></computingOption>
cdates>
cdate></date>
cdates>
```

Tag name	Format	Occ.	Description
<pre><pre><pre><pre><pre><pre>Traits></pre></pre></pre></pre></pre></pre>		1:∞	Prediciton at times traits specifications
<computingoption></computingoption>	ComputingOp- tion	1:1	computing options
<dates></dates>		1:1	Dates specifications
<date></date>	date	0:∞	Actual date

The <computingOption> tag is developed *here*.

2.6.3 PredictionAtSampleTimesTraits

This trait asks for concentration predictions at the time of each sample.

Tag name	Format	Occ.	Description
<pre><pre><pre><pre><pre><pre><pre>TimesTraits></pre></pre></pre></pre></pre></pre></pre>		1:∞	Prediction at sample times traits specifications
<computingoption></computingoption>	ComputingOp- tion	1:1	computing options

The <computingOption> tag is developped here.

2.6.4 PercentilesTraits

This trait is meant to be used to calculate percentiles. As for a single prediction, it requires a number of points per hour, a start and an end date. Moreover, a list of percentiles ranks define what percentiles have to be calculated.

For instance the following example asks 5 percentiles (10, 25, 50, 75, 90):

```
<percentilesTraits>
     <computingOption></computingOption>
2
     <nbPointsPerHour>20</nbPointsPerHour>
     <dateInterval>
       <start>2018-01-12T07:00:00</start>
       <end>2018-03-15T12:59:00</end>
6
     </dateInterval>
     <ranks>
       <rank>10</rank>
       <rank>25</rank>
10
       <rank>50</rank>
11
       <rank>75</rank>
12
       <rank>90</rank>
13
     </ranks>
14
   </percentilesTraits>
```

Tag name	Format	Occ.	Description
<pre><percentilestraits></percentilestraits></pre>		1:∞	Percentile traits specifications
<computingoption></computingoption>	ComputingOp- tion	1:1	Computing options
_ <nbpointsperhour></nbpointsperhour>	int	0:1	Number of points on graph
<dateinterval></dateinterval>		0:1	Date interval specifications
<start></start>	date	1:1	Start date
<end></end>	date	1:1	End date
_ <ranks></ranks>		1:1	Percentile ranks
<rank></rank>	double	1:∞	Percentile rank number

The <computingOption> tag is developped here.

2.6. Requests

2.6.5 AdjustmentTraits

This trait is used to ask for a dosage adjustment.

The response greatly depends on the adjustment options, but will mainly consist in a list of potential adjustements, being a dosage history and calculated points. These calculated points are the one in the period defined in the *dateInterval*.

Here is an example:

```
<adjustmentTraits>
     <computingOption></computingOption>
     <nbPointsPerHour>20</nbPointsPerHour>
     <dateInterval>
       <start>2018-01-12T07:00:00</start>
       <end>2018-03-15T12:59:00</end>
6
     </dateInterval>
     <adjustmentDate></adjustmentDate>
     <options>
       <bestCandidatesOption>bestDosage</bestCandidatesOption>
10
       <loadingOption>noLoadingDose
11
       <restPeriodOption>noRestPeriod/restPeriodOption>
12
       <steadyStateTargetOption>atSteadyState</steadyStateTargetOption>
       <targetExtractionOption>populationValues</targetExtractionOption>
14
       <formulationAndRouteSelectionOption>lastFormulationAndRoute/

→formulationAndRouteSelectionOption>

     </options>
   </adjustmentTraits>
```

Tag name	Format	Occ.	Description
<adjustmenttraits></adjustmenttraits>		1:∞	Adjustement traits specifications
<computingoption></computingoption>	ComputingOp- tion	1:1	General computing options
<nbpointsperhour></nbpointsperhour>	int	0:1	Number of points on graph
<dateinterval></dateinterval>		0:1	Date interval specifications
<start></start>	date	1:1	Start date
<end></end>	date	1:1	End date
<adjustmentdate></adjustmentdate>	date	0:1	Date of adjustment
<options></options>		1:1	Options specifications
<bestcandidatesoption></bestcandidatesoption>	string	1:1	What candidates are retrieved
<loadingoption></loadingoption>	string	1:1	loading dose or not
<restperiodoption></restperiodoption>	string	1:1	restint period or not
<steadystatetargetoption></steadystatetargetoption>	string	1:1	computation at steady state or not
<targetextractionoption></targetextractionoption>	string	1:1	Extraction option for targets
<formulationandrouteselectionoption></formulationandrouteselectionoption>	string	1:1	Selection of the potential formulations and routes

The <computingOption> tag is developped *here*.

The <bestCandidatesOption> tag is an string enumerate. It can be "bestDosage", "allDosages" or "bestDosagePerInterval".

bestCandidatesOption	Description
bestDosage	Only the best dosage is sent back in the response
allDosages	All dosages that are within the [min,max] range are sent back
bestDosagePerInterval	For each possible interval only the best dosage is sent back

The <loadingOption> tag is an string enumerate. It can be "noLoadingDose" or "loadingDoseAllowed".

loadingOption	Description
noLoadingDose	No loading dose can be added to the new dosage
loadingDoseAllowed	If the current dosage is under the target, a loading dose can be added at the beginning of the new dosage to more rapidly reach the optimum

The <restPeriodOption> tag is an string enumerate. It can be "noRestPeriod" or "restPeriodAllowed".

restPeriodOption	Description
noRestPeriod	No rest period can be added to the new dosage
restPeriodAllowed	If the current dosage is over the target, a rest period can be added at the beginning of the new dosage to more rapidly reach the optimum

The <steadyStateTargetOption> tag is an string enumerate. It can be "atSteadyState" or "withinTreatmentTimeRange".

steadyStateTargetOp- tion	Description
atSteadyState	The targets are evaluated at steady state
withinTreatment- TimeRange	The targets are evaluated within the treatment range. Typically useful when the treatment duration is fixed, and for cumulative AUC targets.

The <targetExtractionOption> tag is an string enumerate. It can be "populationValues", "aprioriValues", "individualTargets", "individualTargetsIfDefinitionExists", "definitionIfNoIndividualTarget" or "individualTargetsIfDefinitionExistsAndDefinitionIfNoIndividualTarget".

targetExtractionOption	Description
populationValues	Forces the population values to be used
aprioriValues	Forces the a priori values to be calculated and used
individualTargets	Only use the individual targets
individualTargetsIfDefinitionExists	Only use the individual targets if a target definition exists
definitionIfNoIndividualTarget	Use the individual target, and if for an active moiety and a target type no individual target exists, then use the definition
individualTargetsIfDefinitionExist- sAndDefinitionIfNoIndividualTarget	Use the individual target if a target definition exist, and if for an active moiety and a target type no individual target exists, then use the definition

The <formulationAndRouteSelectionOption> tag is an string enumerate. It can be "lastFormulationAndRoute", "defaultFormulationAndRoute" or "allFormulationAndRoutes".

2.6. Requests 13

formulationAn- dRouteSelectionOp- tion	Description
lastFormulationAn-dRoute	Use only the last formulation and route used in the current treatment. If the treatment is empty, then use the default formulation and route of the drug model.
defaultFormulationAn-dRoute	Use only the default formulation and route of the drug model
allFormulationAn-dRoutes	Use all available formulation and routes of the drug model

2.6.6 ComputingOption

The *ComputingOption* field is common to all computing traits. It defines what type of PK parameters to use, and what information should be sent back with the response.

Here is an example:

```
computingOption>
cparametersType>aposteriori</parametersType>
compartmentOption>allActiveMoieties</compartmentOption>
cretrieveStatistics>true</retrieveStatistics>
cretrieveParameters>true</retrieveParameters>
cretrieveCovariates>true</retrieveCovariates>
c/computingOption>
```

Tag name	Format	Occ.	Description
<computingoption></computingoption>		1:1	Computing option specifications
<parameterstype></parameterstype>	string	1:1	Parameters type
<compartmentoption></compartmentoption>	string	0:1	Compartment option
<retrievestatistics></retrievestatistics>	bool	1:1	If yes, then statistics for all dosage intervals are retrieved
<retrieveparameters></retrieveparameters>	bool	1:1	If yes, then PK parameters are retrieved for all dosage intervals
<retrievecovariates></retrievecovariates>	bool	1:1	If yes, then covariates values are retrieved for all dosage intervals

parametersType	Description
population	Use the typical patient parameters, without any information about the patient
apriori	Use a priori parameters, updated thanks to the patient covariates
aposteriori	Use a posteriori parameters, updated thanks to the patient covariates and the available drug concentration measurements

The <compartmentOption> tag is an string enumerate. It can be "allActiveMoieties", "allAnalytes", "allCompartments" or "specific".

compartmentOption	Description
allActiveMoieties	Retrieve concentrations for all active moieties (the default that should be used)
allAnalytes	Retrieve concentrations for all analytes (and all active moieties)
allCompartments	Retrieve concentrations for all compartments (not yet implemented)
specific	Not yet supported

2.6. Requests 15

Query dosage

Contents

- DosageSteadyState
- DosageRepeat
- DosageSequence
- LastingDosage
- DailyDosage
- WeeklyDosage

A dosage history is a list of dosage time ranges. Each range has a start and end date, and is composed of a dosage. The dosage subsystem is extremely flexible, and allows to describe dosages such that "take a drug at 8:00 every day, except on Sunday".

This flexibility comes with a quite complex management of the XML structure.

Warning: For each specific dosage where a formulation and route has to be given, this formulation and route shall be identical to the one proposed by the selected drug model.

The dosage of a dosage time range is described inside the <dosage> tag. A standard dosage looks like this:

Tag name	Format	Occ.	Description
<dosagesteadystate></dosagesteadystate>		1:1	Steady state (without a starting time)
<dosageloop></dosageloop>		1:1	Dosage treatment without time limit
<dosage_choice></dosage_choice>		1:∞	This tag doesn't exist, see warning below

A dosage contains only one of the 2 proposed tags at the same time.

The dosageSteadyState is used to represent the fact that the dosage already reached steady state. It acts like a dosageLoop, except it requires a date of a specific dose.

The dosageLoop is used when the dosage is repeated continually (without limit of time).

The DOSAGE_CHOICE is used when the dosage has a duration.

Warning: The tag <DOSAGE_CHOICE> only exist for the representation above. This tag must be replaced by one of the following tags: dosageRepeat, dosageSequence, lastingDosage, dailyDosage or weeklyDosage.

3.1 DosageSteadyState

A DosageSteadyState represents a dosage at steady state. It is defined by a last dose (that can be anywhere in time), and a dosageLoop that has been repeated to reach the steady state.

```
<dosageSteadyState>
<lastDoseDate>2018-07-07T20:00:00</lastDoseDate>
<dosageSteadyState>
<dosageSteadyState>
```

Tag name	Format	Occ.	Description
<dosagesteadystate></dosagesteadystate>		1:1	Dosage Repeat specifications
_ <lastdosedate></lastdosedate>	xs:datetime	1:1	Date and time of a dose
<dosage_choice></dosage_choice>		1:∞	This tag doesn't exist, see warning below

See Dosage warning for <DOSAGE_CHOICE> tag.

3.2 DosageRepeat

A DosageRepeat represents a repeated dosage. This is used when the dosage must be taken a defined number of times.

Tag name	Format	Occ.	Description
<dosagerepeat></dosagerepeat>		1:1	Dosage Repeat specifications
<iterations></iterations>	int	1:1	Number of repetitions
<dosage_choice></dosage_choice>		1:∞	This tag doesn't exist, see warning below

The iteration tag corresponds to the the number of dosing repetitions.

See Dosage warning for <DOSAGE_CHOICE> tag.

3.3 DosageSequence

A DosageSequence is composed of a series of bounded dosages.

```
<dosageSequence>

<DOSAGE_CHOICE></DOSAGE_CHOICE>

<DOSAGE_CHOICE></DOSAGE_CHOICE>

</dosageSequence>
```

Tag name	Format	Occ.	Description
<dosagesequence></dosagesequence>		1:1	Dosage Sequence specifications
<dosage_choice></dosage_choice>		1:∞	This tag doesn't exist, see warning below

See Dosage warning for <DOSAGE_CHOICE> tag.

3.4 LastingDosage

This type of dosage provides a dose and an interval. It is typically used within a dosageLoop or a dosageRepeat.

```
<lastingDosage>
     <interval>24:00:00</interval>
     <dose>
       <value>550</value>
       <unit>mg</unit>
       <infusionTimeInMinutes>600</infusionTimeInMinutes>
6
     </dose>
     <formulationAndRoute>
       <formulation>parenteralSolution</formulation>
       <administrationName>administrationName</administrationName>
10
       <administrationRoute>intramuscular</administrationRoute>
       <absorptionModel>intravascular</absorptionModel>
12
     </formulationAndRoute>
13
   </lastingDosage>
```

Tag name	Format	Occ.	Description
<lastingdosage></lastingdosage>		1:1	Lasting dosage specifications
<interval></interval>	time	1:1	Dosage interval
<dose></dose>		1:1	Description of a dose
<value></value>	decimal	1:1	Dose's value
<unit></unit>	string	1:1	Doses's unit
<infusiontimein- Minutes></infusiontimein- 	decimal	0:1	Doses's infusion time (min)
<formulationan-droute></formulationan-droute>		1:1	Description of a formulation and route
<formulation></formulation>	string	1:1	Formulation
<administra- tionName></administra- 	string	1:1	Name of administration
<administra- tionRoute></administra- 	string	1:1	Way of administration
<absorptionmodel></absorptionmodel>	string	1:1	Way of absorbing

The <formulation> tag is an string enumerate. It can be "undefined", "parenteralSolution", "oralSolution".

The <administrationRoute> tag is an string enumerate. It can be "undefined", "intramuscular", "intravenousBolus", "intravenousDrip", "nasal", "oral", "rectal", "subcutaneous", "sublingual", "transdermal" or "vaginal".

The <absorptionModel> tag is an string enumerate. It can be "undefined", "intravascular", "extravascular", "

3.5 DailyDosage

This type of dosage provides a dose and a time in the day. This is used on daily dosage. It can be used to say that the patient takes the drug every day at 8:00.

Tag name	Format	Occ.	Description
<dailydosage></dailydosage>		1:1	Daily dosage specifications
<time></time>	time	1:1	Hour of dosage
<dose></dose>		1:1	Description of a dose
<value></value>	decimal	1:1	Dose's value
<unit></unit>	string	1:1	Doses's unit
<infusiontimein- Minutes></infusiontimein- 	decimal	0:1	Doses's infusion time (min)
<formulationan- dRoute></formulationan- 		1:1	Description of a formulation and route
<formulation></formulation>	string	1:1	Formulation
<administra- tionName></administra- 	string	1:1	Administration name
<administra- tionRoute></administra- 	string	1:1	Way of administration
<absorptionmodel></absorptionmodel>	string	1:1	Way of absorbing

The <formulation> tag is an string enumerate. It can be "undefined", "parenteralSolution", "oralSolution".

The <administrationRoute> tag is an string enumerate. It can be "undefined", "intramuscular", "intravenousBolus", "intravenousDrip", "nasal", "oral", "rectal", "subcutaneous", "sublingual", "transdermal" or "vaginal".

The <absorptionModel> tag is an string enumerate. It can be "undefined", "intravascular", "extravascular", "

3.6 WeeklyDosage

This type of dosage provides a dose, a day in the week and a time in the day. It is meant to express the idea of a dose taken once a week.

```
<weeklyDosage>
     <day>2</day>
     <time>11:00:00</time>
     <dose>
       <value>550</value>
       <unit>mg</unit>
       <infusionTimeInMinutes>600</infusionTimeInMinutes>
     </dose>
     <formulationAndRoute>
       <formulation>parenteralSolution</formulation>
10
       <administrationName>someName</administrationName>
       <administrationRoute>transdermal</administrationRoute>
12
       <absorptionModel>infusion</absorptionModel>
     </formulationAndRoute>
14
   </weeklyDosage>
```

3.6. WeeklyDosage 21

Tag name	Format	Occ.	Description
<weeklydosage></weeklydosage>		1:1	Weekly dosage specifications
<day></day>	int	1:1	Day of dosage (between 0 and 6)
_ <time></time>	time	1:1	Hour of dosage
_ <dose></dose>		1:1	Description of a dose
<value></value>	decimal	1:1	Dose's value
<unit></unit>	string	1:1	Doses's unit
<infusiontimein- Minutes></infusiontimein- 	decimal	0:1	Doses's infusion time (min)
<formulationan- dRoute></formulationan- 		1:1	Description of a formulation and route
<formulation></formulation>	string	1:1	Formulation
<administra- tionName></administra- 	string	1:1	Administration name
<administra- tionRoute></administra- 	string	1:1	Way of administration
<absorptionmodel></absorptionmodel>	string	1:1	Way of absorbing

The <formulation> tag is an string enumerate. It can be "undefined", "parenteralSolution", "oralSolution".

The <administrationRoute> tag is an string enumerate. It can be "undefined", "intramuscular", "intravenousBolus", "intravenousDrip", "nasal", "oral", "rectal", "subcutaneous", "sublingual", "transdermal" or "vaginal".

The <absorptionModel> tag is an string enumerate. It can be "undefined", "intravascular", "extravascular", "

Query response format

Contents

- Structure
- Status
- Responses

This chapter presents the format of the computing query responses. This format is valid for both the command line interface and the REST server.

4.1 Structure

The global structure of the XML response is the following:

```
<tucuxiComputation xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='computing_response.xsd'>
        <queryId>ch.tucuxi.tobramycin_test</queryId>
        <queryStatus></queryStatus>
        <responses></responses>
</tucuxiComputation>
```

Table 1: Query response content

Tag name	Format	Occ.	Description
<queryid></queryid>	string	1:1	Query unique identifier
<querystatus></querystatus>	queryStatus	1:1	Query Status container
<responses></responses>	Responses	1:1	Query responses

4.2 Status

The status is a structure that contains all status information.

```
<STATUS_TYPE>
<statusCode>0</statusCode>
<statusCodeLit>0k</statusCodeLit>
<message>everything ok</message>
<description>description</description>
</STATUS_TYPE>
```

Table 2: status structure content

Tag name	Format	Occ.	Description
<statuscode></statuscode>	int	1:1	Status code identifier
<statuscodelit></statuscodelit>	string	1:1	Status signification
<message></message>	string	0:1	Status message
<description></description>	string	0:1	Status description

Warning: The tag <STATUS_TYPE> only exist for the representation above. It can be either <queryStatus> or <requestStatus>, depending on where it is used.

For status code details, please refer to QueryStatus and RequestStatus.

4.3 Responses

The responses of are described inside the <responses> tag. A standard responses looks like this:

Table 3: Response content

Tag name	Format	Occ.	Description
<response></response>		0:∞	Response specifications
<requestid></requestid>	string	1:1	Request unique Id
<requeststatus></requeststatus>	requestStatus	1:1	RequestStatus container
<requesttype></requesttype>	string	1:1	The type of request (see below)
<data_response></data_response>		1:1	This tag doesn't exist see warning below

Warning: The tag <DATA_RESPONSE> only exist for the representation above. Its value depends on the type of the request.

<DATA_RESPONSE> can be one of these tags : dataAdjustement, dataPrediction, dataPoints and dataPercentiles.
<requestType> can be one of the these values : adjustment, prediction, singlePoints and percentiles.

4.3.1 DataPrediction

DataPrediction is used when computing a prediction on a time range.

```
<dataPrediction>
  <analyteIds>
      <analyteId></analyteId>
      </analyteIds>
      <cycleDatas></cycleDatas>
</dataPrediction>
```

Table 4: DataPrediction content

Tag name	Format	Occ.	Description
<analyteids></analyteids>		1:1	Analyte id container
<analyteid></analyteid>	string	0:∞	Analyte id's
<cycledatas></cycledatas>	CycleDatas	1:1	Cycle Datas

For each analyte, the analyte Id is retrieved, as well as all the predicted concentrations, embedded in a cycleData.

4.3.2 DataPoints

DataPoints is used when single points predictions or prediction at sample times are performed. The date is quite simple and consists of a list of points. Each point is a tuple time-value.

```
<dataPoints>
<unit></unit>
<points>
<point>
    <time></time>
    <value></value>
    </point>
    </points>
</dataPoints>
```

4.3. Responses 25

Tag name	Format	Occ. Description	
<unit></unit>	unit	1:1 DataPoints unit	
<points></points>		1:1 Points specifications	
<point></point>		1:∞ Point specifications	
<time></time>	date	1:1 Point's time	
<value></value>	concentration	1:1 Point's value	

Table 5: DataPoints content

4.3.3 DataPercentiles

DataPercentiles is used when percentiles has been calculated.

Here is an example:

```
<dataPercentiles>
  <percentile>
    <rank></rank>
    <cycleData></cycleData>
    </percentile>
</dataPercentiles>
```

Table 6: DataPercentiles content

Tag name	Format	Occ.	Description	
<percentile></percentile>		0:∞	Percentile	
<rank></rank>	double	1:1	rank	
<cycledatas></cycledatas>	CycleDatas	1:1	Cycle Datas	

Each percentile is represented by its rank [0,100], and by a list of cycle data that embed the prediction curve for that percentile.

4.3.4 DataAdjustement

During an adjustment the computing engine tries to find the best dosage for the specific patient. Many options are used by this engine, but the output is similar for each option. It consists of all adjustment candidates (depending on the options), and for each candidate a dosage is proposed and a prediction is calculated.

Here is an exemple of this structure:

```
<dataAdjustment>
<analyteIds>
```

(continues on next page)

(continued from previous page)

Table 7: DataAdjustement content

Tag name	Format	Occ.	Description	
<analyteids></analyteids>		1:1	Analyte id container	
<analyteid></analyteid>	string	0:∞	Analyte id's	
<adjustments></adjustments>		1:1 Adjustment container		
<adjustment></adjustment>		1:∞	Adjustement description	
<score></score>	double	1:1	The score of this adjustment (1 is the best)	
<targetevaluations></targetevaluations>	TargetEvalua-	0:1	Target Evaluations	
	tions			
<dosagehistory></dosagehistory>	DosageHistory	1:1	Dosage History	
<cycledatas></cycledatas>	CycleDatas	1:1	Cycle Datas	

The list of analyte Ids for which the cycleDatas will contain values. Useful if there is more than one analyte in the drug model.

The score is the one calculated for the targets. The best score is 1, and it is used to sort the adjustments.

There is one targetEvaluation per target.

TargetEvaluations

The TargetEvaluations represents the evaluation of each target, for an adjustment.

Here is an example:

```
<targetEvaluations>
  <targetType></targetType>
  <unit></unit>
  <value></value>
  <score></score>
  </targetEvaluation>
</targetEvaluations>
```

4.3. Responses 27

Tag name	Format	Occ. Description	
<targetevaluation></targetevaluation>		1:∞ TargetEvaluation specification	
<targettype></targettype>	string	1:1 Type of target	
<unit></unit>	unit	1:1 Target's unit	
<value></value>	double	1:1 Target's value	
<score></score>	double	1:1 Target's score	

Table 8: TargetEvaluations content

The target type corresponds to the ones of the target definitions.

The value is the calculated value. For instance, in the case of a residual target it will be the calculated concentration.

The score is the score of the target. The best value is 1.

DosageHistory

The DosageHistory contains the dosage history of the daptation.

```
<dosageHistory>
  <dosageTimeRange>
    <start>2018-10-05T10:00:00</start>
    <end>2018-10-15T10:00:00</end>
    <dosage></dosage>
  </dosageTimeRange>
</dosageHistory>
```

Table 9: DosageHistory content

Tag name	Format	Occ.	Description
<dosagetimerange></dosagetimerange>		0:∞ Dosage Time Range specifications	
<start></start>	date	1:1	The dosage's start date
<end></end>	date	1:1	The dosage's end date
<dosage></dosage>	Query dosage	0:∞ Dosage specifications	

CycleDatas

Predictions and percentiles are retrieved thanks to cycleDatas. A cycleData embeds all information about a dosage interval, from one intake to the next one.

As example:

```
<cycleDatas>
  <cycleData>
    <start>2018-10-05T10:00:00</start>
    <end>2018-10-05T10:00:24</end>
    <unit>ug/l</unit>
    <parameters>
      <parameter>
        <id><id></id>
        <value></value>
      </parameter>
    </parameters>
    <covariates>
      <covariate>
        <id></id>
        <value></value>
      </covariate>
    </covariates>
    <times></times>
    <values></values>
    <statistics>
      <mean></mean>
      <auc></auc>
      <auc24></auc24>
      <cumulativeAuc></cumulativeAuc>
      <residual></residual>
      <peak></peak>
    </statistics>
  </cycleData>
<cycleDatas>
```

4.3. Responses 29

Table 10: CycleDatas content

Tag name	Format	Occ.	Description	
<cycledata></cycledata>		0:∞	CycleData specifications	
<start></start>	date	1:1	The cycleData start date	
<end></end>	date	1:1	The cycleData end date	
<unit></unit>	unit	1:1	The cycleData concentration values unit	
<parameters></parameters>		0:1	PK Parameters used for this cycle	
<parameter></parameter>		1:∞	A PK parameter	
<id></id>	string	1:1	Parameter ID	
<value></value>	double	1:1	Parameter value	
<covariates></covariates>		0:1	Covariates used for this cycle	
<covariate></covariate>		1:∞	A covariate	
<id></id>	string	1:1	Covariate ID	
<value></value>	double	1:1	Covariate value	
<times></times>	string	1:1	A list of times	
<values></values>	string	1:1	A list of concentration values	
<statistics></statistics>		0:1	Cycle data statistics	
<mean></mean>	double	0:1	Mean	
<auc></auc>	double	0:1	Area under curve	
<auc24></auc24>	double	0:1	Area under curve on 24h	
<cumulativeauc></cumulativeauc>	double	0:1	Cumulative area under curve since the beginning of the treatment	
<residual></residual>	double	0:1	Residual concentration	
<peak></peak>	double	0:1	Peak concentration	

The field *times* contains a comma-separated list of times, in hours, starting from 0. To get the real time of a concentration, this time should be added to *start*.

The field *values* contains a comma-separated list of concentration values. The number of values matches the number of times.

The PK parameters are the PK parameters used at this cycle, and depends on the type of parameters (population, a priori, a posteriori).

As some covariates can change in time, the list of current covariates can be retrieved as well.

The statistics are calculated on this interval and give some insight that can be useful.

The statistics, PK parameters and covariates are not mandatory, and only present if the computing options asked for their retrieval.

QueryStatus

Table 11: Query status code

Code	Name	Meaning
0	OK	Everything fine
1	PartiallyOk	Some request are wrong
2	Error	None of the requests could be calculated correctly
3	ImportError	Error during xml query import
4	BadFormat	Xml query has bad format
5	Undefined	Should not be observed

RequestStatus

Table 12: Request status code

Code	Name	Meaning
-1	Undefined	Should not be observed
0	Ok	Everything fine
1	TooBig	Too Big computation required
2	Aborted	Computation aborted by the external agent
3	ParameterExtractionError	Error in the extraction of parameters
4	SampleExtractionError	Error in the extraction of samples
5	TargetExtractionError	Error in target extraction
6	InvalidCandidate	The candidate is outside the target range
7	TargetEvaluationError	There was an internal error during target evaluation
8	CovariateExtractionError	There was an error during covariate extraction
9	IntakeExtractionError	There was an error during intake extraction
10	ErrorModelExtractionError	There was an error during residual error model extraction
11	UnsupportedRoute	The IntakeToCalculatorAssociator could not find a suitable route
12	AnalyteConversionError	Error during conversion of analytes
13	AposterioriPercentilesNoSamplesError	A posteriori percentiles calculation, but no samples
14	ConcentrationCalculatorNoParameters	The ConcentrationCalculator did not find parameters
15	BadParameters	Bad paramters in the intake calculator
16	BadConcentration	Bad concentration detected in the intake calculator
17	DensityError	Density error in the intake calculator
18	AposterioriEtasCalculationEmptyOmega	In a posteriori Etas calculation, Omega is empty
19	AposterioriEtasCalculationNoSquareOmega	In a posteriori Etas calculation, Omega is not a square matrix
20	ComputingTraitStandardShouldNotBeCalled	ComputingTraitStandard::compute() should not be called
21	CouldNotFindSuitableFormulationAndRoute	Could not find a suitable formulation and route

continues on next p

4.3. Responses 31

Table 12 – continued from previous page

Code	Name	Meaning
22	MultipleFormulationAndRoutesNotSupported	Multiple formulation and routes are not yet supported
23	NoPkModelError	Could not find a suitable Pk Model
24	ComputingComponentExceptionError	An exception was raised in ComputingComponent
25	NoPkModels	No Pk Models in the collection
26	NoComputingTraits	The ComputingTraits sent for computation are nullptr
27	RecordedIntakesSizeError	The recorded intakes size does not fit the predictions
28	NoPercentilesCalculation	No percentile calculation was performed
29	SelectedIntakesSizeError	The selected intakes size is not correct
30	NoAvailableDose	No available dose
31	NoAvailableInterval	No available interval
32	NoAvailableInfusionTime	No available infusion time
33	NoFormulationAndRouteForAdjustment	No formulation and route available for adjustments
34	ConcentrationSizeError	The concentration vector has not a correct size
35	ActiveMoietyCalculationError	Error during calculation of active moiety concentration value
36	NoAnalytesGroup	There are no analytes groups
37	IncompatibleTreatmentModel	The drug model is incompatible with the drug treatment
38	ComputingComponentNotInitialized	The computing component has not been initialized
39	UncompatibleDrugDomain	The drug domain is uncompatible with the patient covariates
40	NoSteadyState	The steady state can not be attained with this drug model
41	AposterioriPercentilesOutOfScopeSamplesError	In a posteriori Etas calculation there is no sample close enough to the int

General elements

5.1 Units

The units in Tucuxi consist of a base and a multiplier. For example in ug/l, g/l is the base, and u the multiplier, which express a unit of micrograms per liter. The convertion factors are used to convert the data produced by the models of Tucuxi. The molar mass is used to give the user the choice to use moles instead of the default units.

5.2 stdAprioriValue

In various parts of the drug model, elements can have a default value, and an apriori value calculated with the help of the patient covariates. Every time such a pattern is used, the element is of type stdAprioriValue.

1				
Tag name	Format	Occ.	Description	
<standardvalue> double 1:1</standardvalue>		The default value		
<aprioricomputation></aprioricomputation>	Operation	0:1	The operations to calculate the a priori value	

Table 1: stdAprioriValue content

When such an element is used, the software will use default values for calculation involving the typical patient. In case of a priori and a posteriori calculations, it will try to apply the operations on each of such value, in order to better fit the patient reality.

5.3 Operation

The operations are used to modify the values of the parameters in accordance with the patient's covariates. They are used to compute the a priori parameters and can be of three types: - SoftFormula - HardFormula - MultiFormula

These three options are mutually exclusive, so the possible styles of operations are:

```
<operation>
  <softFormula>
    <inputs>
      <input>
```

(continues on next page)

(continued from previous page)

```
<id>bodyweight</id>
    <type>double</type>
    </input>
    </inputs>
    <code><![CDATA[
            return bodyweight < 100.0 and bodyweight > 0.0;
            ]]>
        </code>
    </softFormula>
        <comments/>
        </operation>
```

```
<operation>
  <hardFormula>formulaId</hardFormula>
  <comments/>
</operation>
```

```
<operation>
 <multiFormula>
   <softFormula>
     <inputs>
       <input>
         <id>bodyweight</id>
         <type>double</type>
       </input>
     </inputs>
     <code><! [CDATA[
         return bodyweight < 100.0 and bodyweight > 0.0;
     </code>
   </softFormula>
   <hardFormula>formulaId
 </multiFormula>
 <comments/>
</operation>
```

Tag name	Format	Occ.	Description
<operation></operation>			Description of an operation
<softformula></softformula>		1:∞	An Javascript operation
<inputs></inputs>		1:1	The list of required inputs
<input/>		1:∞	An input for the formula
<id></id>		1:1	The Id of the required input for the formula
<type></type>		1:1	The type of data: double, int or bool
<code></code>	Code	1:∞	The operation formula
<hardformula></hardformula>	string	0:1	A hardcoded operation
<multiformula></multiformula>		0:1	A multi-operation formula
<>		1:∞	Any of softFormula and hardFormula
<comments></comments>		1:1	Comments about the operation

An operation can be used in many elements. For instance it is used in parameters, targets, covariates, in order to calculate a priori values.

A formula can use the value of any global or drug-specific covariate. To do so, you must use the covariate's ID, as shown above with *bodyweight*. You can also use any of the drug's parameters, using its ID followed by the *_population* keyword, as in *V_population*. The formula should simply return a value, nothing else is mandatory.

The formula must always be surrounded by the <![CDATA[and]] markers. The language used to express the formula is based on Javascript and supports a subset of it. A formula must always return a value.

When an operation can contain a list of formula the computing engine shall try to apply the first formula. If there are missing covariates for such formula, then the second formula is tried, and so on, until a valid formula is found.

The list of inputs is important and should contain all the inputs required by the formula (for a soft formula). The type should obviously be correct. In case the input is a covariate, the type should be the same type as the covariate, and in case of a parameter the type is *double*. The editor does not check if the input list is correct or not, so be careful.

5.4 Code

A formula is an operation returning a value, based on some inputs. The content of the element is then a source code in the correct format.

The source code must always be surrounded by the <![CDATA[and]] markers. The language used to express the formula is based on Javascript and supports a subset of it. A formula must always return a value.

The following mathematical functions are available within scripts:

```
Math.E()
Math.log(a)
Math.log10(a)
Math.exp(a)
Math.pow(a,b)
```

(continues on next page)

5.4. Code 35

(continued from previous page)

```
Math.sqr(a)
Math.sqrt(a)
Math.abs(a)
Math.round(a)
Math.min(a,b)
Math.max(a,b)
Math.range(x,a,b)
Math.sign(a)
Math.PI()
Math.toDegrees(a)
Math.toRadians(a)
Math.sin(a)
Math.asin(a)
Math.cos(a)
Math.acos(a)
Math.tan(a)
Math.atan(a)
Math.sinh(a)
Math.asinh(a)
Math.cosh(a)
Math.acosh(a)
Math.tanh(a)
Math.atanh(a)
```

5.5 Comments

Before explaining all the specific fields, a word on comments is required, as the <comments> tag can be found at different places of the file. A comment has the following structure:

Tag name	Format	Occ.	Description
<comments></comments>		1:1	List of translated comments
<comment lang="xx"></comment>	string	0:∞	Comment for a specific language

It contains as many <comment> tags as required. Each <comment> tag has an attribute *lang* defining the language of the comment, enabling multi-language support for the description of the medical drugs.

Such function must always be written with the *Math.* as prefix. Example:

```
newValue = Math.pow(aValue, anotherValue) + Math.exp(yetAnotherValue);
```

Structures such as *if/then/else* are supported, as in the following example:

```
if (sex > 0.5) {
   aValue = 12;
}
else {
   aValue = 10;
}
```

5.5. Comments 37

Indices and tables

- genindex
- modindex
- search