Лабораторная работа № 17

Задания для самостоятельной работы

Джахангиров Илгар Залид оглы

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра	6 9 12
4	Выводы	20

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Модель работы аэропорта	10
3.4	Отчёт по модели работы аэропорта	11
3.5	Модель работы морского порта	12
3.6	Отчет по модели работы морского порта	13
3.7	Модель работы морского порта с оптимальным количеством при-	
	чалов	14
3.8	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	15
3.9	Модель работы морского порта	16
3.10	Отчет по модели работы морского порта	17
3.11	Модель работы морского порта с оптимальным количеством при-	
	чалов	18
3.12	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	19

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. ??).

```
center STORAGE 2
;task A
GENERATE 20,5
QUEUE gueue a
ENTER center, 1
DEPART gueue a
ADVANCE 20,5
LEAVE center, 1
TERMINATE
;task B
GENERATE 20,10
QUEUE gueue b
ENTER center, 1
DEPART gueue b
ADVANCE 21,3
LEAVE center, 1
TERMINATE
;task C
GENERATE 28,5
QUEUE gueue_C
ENTER center, 2
DEPART gueue_c
ADVANCE 28,5
LEAVE center, 2
TERMINATE
;timer
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. ??, ??).

START T	IME END 000 480	TIME BLOCKS FA	CILITIES STORA	GES	
0.	480	0.000 23	0 1		
NAME		VALUE			
CENTER		10000.000			
GUEUE A		10001.000			
GUEUE_B		10002.000			
GUEUE_C		10003.000			
LABEL	TOO BLOOK BYDE	PARTON CONTRA	COMPANY COMPANY D	- TOV	
LABEL	LOC BLOCK TYPE	ENTRY COUNT	O CURRENT COUNT RE		
	1 GENERATE 2 QUEUE	240 240	•	0	
	3 ENTER	236		0	
	4 DEPART	236	_	0	
	5 ADVANCE	236		0	
	6 LEAVE	235	0	0	
	7 TERMINATE	235	0	0	
	8 GENERATE	236	0	0	
	9 QUEUE	236	-	0	
	10 ENTER	231	•	0	
	11 DEPART	231	•	0	
	12 ADVANCE	231	-	0	
	13 LEAVE	230	•	0	
	14 TERMINATE	230		0	
	15 GENERATE 16 QUEUE	172 172	_	0	
	17 ENTER	0		0	
	18 DEPART	0		0	
	19 ADVANCE	0	0	0	
	20 LEAVE	0	0	0	
	21 TERMINATE	0	0	0	
	22 GENERATE	_	_	0	
	23 TERMINATE	1	0	0	
ormen.	Way com name				
QUEUE >	MAX CONT. ENTRY :	ANIKI(U) AVE.CONT	. AVE.TIME AVE	6. (-U) KETKY	
GUEUE_A GUEUE B	7 4 240 7 5 236	1 2.280	66.702	66 987 0	
	172 172 172				
***************************************			20011100		
STORAGE					
CENTER	2 0 0	2 467 1	1.988 0.994	0 181	
FEC XN PRI	RDT 1000M	CURRENT NEXT	DIDIMPTED IN	THE	
	4803.512 650		FRENERICE VA	LUL	
636 0	4805.704 626	5 6			
651 0	4807.869 651	0 15			
637 0	4807.869 651 4810.369 637	12 13			
652 0	4813.506 652	0 8			
653 0	9600.000 653	0 22			

Рис. 3.2: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. ??).

```
;arrive
GENERATE 10,5,,,1
ASSIGN count circle,0
CHECK_RUNWAY GATE NU runway, MAKE_CIRCLE
SEIZE runway
ADVANCE 2
RELEASE runway
TERMINATE
MAKE CIRCLE TEST L count circle, 5, ALTERNATE AIRPORT
ADVANCE 5
ASSIGN count circle+,1
TRANSFER CHECK RUNWAY
ALTERNATE AIRPORT TERMINATE
;depart
GENERATE 10,2,,,2
QUEUE gueue depart
SEIZE runway
DEPART gueue depart
ADVANCE 2
RELEASE runway
TERMINATE
:timer
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 3.3: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах – 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. ??, ??).

START T	IME	END '	TIME BLOCKS	FACILITIES	STORAGES	
0	000	1440	.000 21	1	0	
0.	000	1440	.000 21	_	0	
NAME			VALUE			
NAME			VALUE			
ALTERNAT	E_AIRPO	ORT	12.000			
CHECK_RU	NWAY	DRT	3.000			
COUNT_CI	RCLE		10002.000			
GUEUE_DE	PART		10000.000			
MAKE_CIR	CLE		8.000			
RUNWAY			10001.000			
		DIAGN BURB				
LABEL	LOC	BLOCK TYPE	ENTRY CO	UNI CURRENI (COUNT RETRY	
	1	GENERATE	146		0 0	
	2	ASSIGN	146		0 0	
CHECK_RUNWAY	3	GATE	146	(0 0	
	4	SEIZE	122	(0 0	
	5	ADVANCE	122	(0 0	
CHECK_RUNWAY	6	RELEASE	122	(0 0	
MAKE_CIRCLE	7	TERMINATE	122	(0 0	
MAKE CIRCLE	8	TEST	24		0 0	
_	9	ADVANCE	0		0 0	
	10	ASSIGN	0		0 0	
	11	TRANSFER	0		0 0	
MAKE_CIRCLE ALTERNATE_AIRPORT	12	TERMINATE	24	,	0 0	
UNITE ALKEORI	13	CENEDATE	142		n n	
	14	OUDID	142		0 0	
	15	CETTE	142			
	15	SEIZE	142			
	16	DEPART	142			
	17	ADVANCE	142	(0 0	
	18	RELEASE	142	(0 0	
	19	TERMINATE	142	(0 0	
	20	GENERATE	1	(0 0	
	21	TERMINATE	1	(0 0	
FACILITY E	NTRIES	UTIL. AV	E. TIME AVAI	L. OWNER PENI	D INTER RETRY	DELAY
RUNWAY	264	0.367	2.000 1	0 (0 0 0	0
OUEUE	MAX C	ONT. ENTRY E	NTRY(0) AVE.	CONT. AVE.TI	ME AVE. (-0)	RETRY
	1	0 142	114 0	017 0 1	75 0.888	0
GUEUE DEDART	-	, 110				-
QUEUE GUEUE_DEPART						
	BDT	ASSEM	CURRENT NE	KT PARAMETE	R VALUE	
	BDT 1440.	ASSEM 749 290	CURRENT NE	KT PARAMETE	R VALUE	
FEC XN PRI 290 2 291 1	BDT 1440.1	ASSEM 749 290 367 291	CURRENT NEX 0 13 0 1	KT PARAMETE	R VALUE	
FEC XN PRI 290 2 291 1	BDT 1440.1 1445.1 2880.0	ASSEM 749 290 367 291 000 292	CURRENT NET 0 13 0 1 0 20	KT PARAMETE	R VALUE	

Рис. 3.4: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

```
1) a=20 ч, \delta=5 ч, b=10 ч, \varepsilon=3 ч, N=10, M=3;
```

2)
$$a = 30 \text{ y}, \delta = 10 \text{ y}, b = 8 \text{ y}, \varepsilon = 4 \text{ y}, N = 6, M = 2.$$

Первый вариант модели

Построим модель для первого варианта (рис. ??).

```
pier STORAGE 10
GENERATE 20,5
;моделирование занятия причала
QUEUE arrive
ENTER pier,3
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0
;timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.5: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. ??).

lab 17-3-1	.9.1 - REPORT	
	GPSS World Simulation Report - lab 17-3-1.9.1	
	Friday, May 09, 2025 04:27:53	
	START TIME END TIME BLOCKS FACILITIES STORAGES 0.000 4320.000 8 0 1	
	NAME VALUE ARRIVE 10001.000 PIER 10000.000	
LABEL	LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 215 0 0 2 QUEUE 215 0 0 3 ENTER 215 0 0 4 ADVANCE 215 1 0 5 LEAVE 214 0 0 6 TERMINATE 214 0 0 7 GENERATE 180 0 0 8 TERMINATE 180 0 0	
QUEUE ARRIVE	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 215 215 215 0 106.886 2147.667 2147.667 0	
STORAGE PIER	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 10 7 0 3 645 1 1.485 0.148 0 0	
396	PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 0 4324.260 395 4 5 0 4335.233 396 0 1 0 4344.000 397 0 7	

Рис. 3.6: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. ??), получаем оптимальный результат, что видно на отчете (рис. ??).

```
pier STORAGE 3
GENERATE 20,5

;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

;timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.7: Модель работы морского порта с оптимальным количеством причалов

lab 17-3-1	.12.1 - REPORT								
	GPSS Wo	rld Simul	lation Rep	ort - lab	17-3-1.12.1				
	Fr	iday, May	7 09, 2025	04:33:27					
	START TIME		FND TIM	F BLOCKS	FACILITIES	STORAGE	'S		
					0				
	NAME			VALUE					
	ARRIVE			0001.000					
	PIER		1	0000.000					
LABEL	т.	OC BLOCK	TYPE	ENTRY CO	UNT CURRENT	COUNT RET	'PV		
LADLL	1	GENER	RATE	215		0 (
	2	QUEUE		215		0 ()		
	3	ENTER	₹	215		0 (
			T			0 (
			ICE			1 ()		
	6			214		0 ()		
		TERMI		214		0 0			
			RATE	180		0 (
	9	TERMI	INATE	180		0 ()		
UEUE	MΔ	X CONT. F	NTDV FNTD	V(0) AVE	CONT. AVE.TI	MF AVE	(-0) PFTRY	,	
ARRIVE					000 0.0				
TORAGE					AVL. AVE.C.				
PIER		3 0	0 3	645	1 1.485	0.495	0 0		
EC XN	PRI	BDT	ASSEM CU	RRENT NE	XT PARAMETE	R VAT.I	TE.		
	0 43						_		
	0 43	35.233	396 397	0 1					
	0 43	44 000	397	0 8					

Рис. 3.8: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. ??).

```
pier STORAGE 6
GENERATE 30,10
;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.9: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. ??).

GPSS World Simulation Report - lab 17-3-1.10.1

Friday, May 09, 2025 04:30:29 START TIME T TIME END TIME BLOCKS 0.000 4320.000 9 END TIME BLOCKS FACILITIES STORAGES 0 NAME VALUE ARRIVE 10001.000 PIER 10000.000 LABEL LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY GENERATE 143
QUEUE 143
ENTER 143
DEPART 143
ADVANCE 143 0 ENTER 143 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 143 143 4 DEPART 5 142 6 LEAVE TERMINATE 142
GENERATE 180
TERMINATE 180 7 8 QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY ARRIVE 1 0 143 143 0.000 0.000 0.000 0 CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY STORAGE PIER 6 4 0 2 286 1 0.524 0.087 FEC XN PRI BDT ASSEM CURRENT NEXT
322 0 4325.892 322 5 6
324 0 4336.699 324 0 1
325 0 4344.000 325 0 8 ASSEM CURRENT NEXT PARAMETER VALUE

Рис. 3.10: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. ??), получаем оптимальный результат, что видно из отчета (рис. ??).

```
pier STORAGE 2
GENERATE 30,10
;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0
;timer
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта с оптимальным количеством причалов

GPSS World Simulation Report - lab 17-3-1.11.1										
	Friday, May 09, 2025 04:31:34									
	START TIME 0.000 NAME ARRIVE PIER						STORAGES 1			
				VALUE 10001.000 10000.000						
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA 6 LEAV	RATE R RT NCE E INATE RATE	1 1 1 1 1 1	43 43 43 43 43 42 42 80	1 0 0	0 0 0 0 0			
QUEUE ARRIVE							AVE.(-0) 0.000			
STORAGE PIER							TIL. RETRY 1			
324	0 4	BDT 325.892 336.699 344.000	324	0	1	PARAMETER	VALUE			

Рис. 3.12: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.