```
In [1]: from sklearn import datasets
        import pandas as pd
        iris=datasets.load_iris()
        print(iris)
        {'data': array([[5.1, 3.5, 1.4, 0.2],
               [4.9, 3., 1.4, 0.2],
               [4.7, 3.2, 1.3, 0.2],
               [4.6, 3.1, 1.5, 0.2],
               [5., 3.6, 1.4, 0.2],
               [5.4, 3.9, 1.7, 0.4],
               [4.6, 3.4, 1.4, 0.3],
               [5., 3.4, 1.5, 0.2],
               [4.4, 2.9, 1.4, 0.2],
                [4.9, 3.1, 1.5, 0.1],
               [5.4, 3.7, 1.5, 0.2],
               [4.8, 3.4, 1.6, 0.2],
               [4.8, 3., 1.4, 0.1],
               [4.3, 3., 1.1, 0.1],
               [5.8, 4., 1.2, 0.2],
               [5.7, 4.4, 1.5, 0.4],
               [5.4, 3.9, 1.3, 0.4],
               [5.1, 3.5, 1.4, 0.3],
               [5.7, 3.8, 1.7, 0.3],
In [2]: |print(type(iris))
        <class 'sklearn.utils.Bunch'>
In [3]: print(iris.keys())
        dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_na
        mes', 'filename', 'data_module'])
In [4]: |print(type(object))
        <class 'type'>
In [5]: |print(type(iris.data))
        <class 'numpy.ndarray'>
In [7]: print(type(iris.target))
        <class 'numpy.ndarray'>
In [8]: print(iris.data.shape)
        (150, 4)
In [9]: |print(iris.target_names)
        ['setosa' 'versicolor' 'virginica']
```

```
In [10]: |x=iris.data
         y=iris.target
         print(x)
         print(y)
         [[5.1 3.5 1.4 0.2]
           [4.9 3. 1.4 0.2]
           [4.7 3.2 1.3 0.2]
           [4.6 3.1 1.5 0.2]
           [5. 3.6 1.4 0.2]
           [5.4 3.9 1.7 0.4]
           [4.6 3.4 1.4 0.3]
           [5. 3.4 1.5 0.2]
           [4.4 2.9 1.4 0.2]
           [4.9 3.1 1.5 0.1]
           [5.4 3.7 1.5 0.2]
           [4.8 3.4 1.6 0.2]
           [4.8 3. 1.4 0.1]
           [4.3 3. 1.1 0.1]
           [5.8 4. 1.2 0.2]
           [5.7 4.4 1.5 0.4]
           [5.4 3.9 1.3 0.4]
           [5.1 3.5 1.4 0.3]
           [5.7 3.8 1.7 0.3]
```

In [13]: a=pd.DataFrame(x,columns=iris.feature_names) print(a)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width
(cm)				
0	5.1	3.5	1.4	
0.2				
1	4.9	3.0	1.4	
0.2				
2	4.7	3.2	1.3	
0.2				
3	4.6	3.1	1.5	
0.2		2.6		
4	5.0	3.6	1.4	
0.2				
• •	• • •	• • •	• • •	
 145	6.7	3.0	5.2	
2.3	0.7	5.0	3.2	
146	6.3	2.5	5.0	
1.9	0.5	2.5	3.0	
147	6.5	3.0	5.2	
2.0				
148	6.2	3.4	5.4	
2.3				
149	5.9	3.0	5.1	
1.8				

[150 rows x 4 columns]

```
In [16]:
         print(a.head())
             sepal length (cm)
                                  sepal width (cm)
                                                     petal length (cm)
                                                                          petal width (c
          m)
          0
                            5.1
                                                3.5
                                                                     1.4
                                                                                        0.
          2
          1
                            4.9
                                                                                        0.
                                                3.0
                                                                     1.4
          2
          2
                            4.7
                                                3.2
                                                                     1.3
                                                                                        0.
          2
          3
                            4.6
                                                3.1
                                                                     1.5
                                                                                        0.
          2
          4
                            5.0
                                                3.6
                                                                     1.4
                                                                                        0.
          2
In [17]: print(a.tail())
               sepal length (cm)
                                    sepal width (cm)
                                                        petal length (cm)
                                                                            petal width
          (cm)
          145
                               6.7
                                                  3.0
                                                                       5.2
          2.3
          146
                               6.3
                                                                       5.0
                                                  2.5
          1.9
                               6.5
          147
                                                  3.0
                                                                       5.2
          2.0
                               6.2
          148
                                                  3.4
                                                                       5.4
          2.3
          149
                               5.9
                                                  3.0
                                                                       5.1
          1.8
In [19]: print(a.describe())
                 sepal length (cm)
                                      sepal width (cm)
                                                          petal length (cm)
                         150.000000
                                             150.000000
                                                                 150.000000
          count
          mean
                           5.843333
                                               3.057333
                                                                    3.758000
          std
                           0.828066
                                               0.435866
                                                                    1.765298
                           4.300000
                                               2.000000
                                                                    1.000000
          min
          25%
                           5.100000
                                               2.800000
                                                                    1.600000
          50%
                           5.800000
                                               3.000000
                                                                    4.350000
                                               3.300000
          75%
                           6.400000
                                                                    5.100000
                           7.900000
                                               4.400000
                                                                    6.900000
          max
                 petal width (cm)
          count
                        150.000000
                          1.199333
          mean
          std
                          0.762238
          min
                          0.100000
          25%
                          0.300000
          50%
                          1.300000
          75%
                          1.800000
                          2.500000
          max
In [20]: |print(a.min())
          sepal length (cm)
                                 4.3
          sepal width (cm)
                                 2.0
                                 1.0
          petal length (cm)
                                 0.1
          petal width (cm)
          dtype: float64
```

In [21]: print(a.max())

sepal length (cm) 7.9 sepal width (cm) 4.4 petal length (cm) 6.9 petal width (cm) 2.5

dtype: float64

In [22]: from sklearn import datasets
import pandas as pd
db=datasets.load_diabetes()
print(db)

```
{'data': array([[ 0.03807591, 0.05068012, 0.06169621, ..., -0.00259226,
        0.01990842, -0.01764613],
       [-0.00188202, -0.04464164, -0.05147406, ..., -0.03949338,
       -0.06832974, -0.09220405],
      [ 0.08529891, 0.05068012,
                                  0.04445121, ..., -0.00259226,
        0.00286377, -0.02593034],
                     0.05068012, -0.01590626, ..., -0.01107952,
      [ 0.04170844,
        -0.04687948,
                     0.01549073],
                                  0.03906215, ...,
      [-0.04547248, -0.04464164,
                                                   0.02655962,
        0.04452837, -0.02593034],
       [-0.04547248, -0.04464164, -0.0730303, ..., -0.03949338,
       -0.00421986, 0.00306441]]), 'target': array([151.,
6., 135., 97., 138., 63., 110., 310., 101.,
       69., 179., 185., 118., 171., 166., 144., 97., 168.,
                                                            68.,
       68., 245., 184., 202., 137., 85., 131., 283., 129.,
             65., 102., 265., 276., 252., 90., 100., 55.,
                                                            61.,
                              75., 142., 155., 225., 59., 104., 182.,
             53., 190., 142.,
      259.,
             52., 37., 170., 170., 61., 144., 52., 128., 71., 163.,
      128.,
                               48., 270., 202., 111., 85.,
             97., 160., 178.,
      200., 252., 113., 143.,
                               51.,
                                     52., 210., 65., 141.,
                                                            55., 134.,
                                     96., 90., 162., 150., 279.,
                  98., 164.,
                              48.,
       42., 111.,
       83., 128., 102., 302., 198., 95., 53., 134., 144., 232.,
             59., 246., 297., 258., 229., 275., 281., 179., 200., 200.,
      173., 180., 84., 121., 161.,
                                    99., 109., 115., 268., 274., 158.,
      107., 83., 103., 272., 85., 280., 336., 281., 118., 317., 235.,
       60., 174., 259., 178., 128., 96., 126., 288., 88., 292., 71.,
      197., 186., 25., 84., 96., 195., 53., 217., 172., 131., 214.,
            70., 220., 268., 152., 47., 74., 295., 101., 151., 127.,
                  81., 151., 107., 64., 138., 185., 265., 101., 137.,
      237., 225.,
      143., 141.,
                  79., 292., 178., 91., 116., 86., 122., 72., 129.,
             90., 158., 39., 196., 222., 277., 99., 196., 202., 155.,
      142.,
       77., 191., 70., 73., 49., 65., 263., 248., 296., 214., 185.,
       78., 93., 252., 150., 77., 208., 77., 108., 160., 53., 220.,
      154., 259., 90., 246., 124., 67., 72., 257., 262., 275., 177.,
                                     51., 258., 215., 303., 243.,
       71., 47., 187., 125.,
                              78.,
      150., 310., 153., 346., 63.,
                                     89., 50., 39., 103., 308., 116.,
      145., 74.,
                   45., 115., 264.,
                                     87., 202., 127., 182., 241.,
                   64., 102., 200., 265., 94., 230., 181., 156., 233.,
       94., 283.,
                   80., 68., 332., 248., 84., 200., 55., 85.,
       60., 219.,
       31., 129.,
                   83., 275., 65., 198., 236., 253., 124.,
                                                            44., 172.,
      114., 142., 109., 180., 144., 163., 147., 97., 220., 190., 109.,
      191., 122., 230., 242., 248., 249., 192., 131., 237.,
                                                            78., 135.,
      244., 199., 270., 164., 72., 96., 306., 91., 214.,
                                                            95., 216.,
      263., 178., 113., 200., 139., 139., 88., 148., 88., 243., 71.,
       77., 109., 272., 60.,
                               54., 221., 90., 311., 281., 182., 321.,
       58., 262., 206., 233., 242., 123., 167., 63., 197., 71., 168.,
      140., 217., 121., 235., 245., 40., 52., 104., 132.,
                                                           88.,
      219., 72., 201., 110.,
                               51., 277., 63., 118., 69., 273., 258.,
       43., 198., 242., 232., 175., 93., 168., 275., 293., 281.,
      140., 189., 181., 209., 136., 261., 113., 131., 174., 257.,
       84., 42., 146., 212., 233., 91., 111., 152., 120., 67., 310.,
       94., 183., 66., 173., 72., 49., 64., 48., 178., 104., 132.,
      220., 57.]), 'frame': None, 'DESCR': '.. _diabetes_dataset:\n\nDia
betes dataset\n-------\n\nTen baseline variables, age, sex, body
mass index, average blood\npressure, and six blood serum measurements were
obtained for each of n =\n442 diabetes patients, as well as the response o
f interest, a\nquantitative measure of disease progression one year after
baseline.\n\n**Data Set Characteristics:**\n\n :Number of Instances: 442
      :Number of Attributes: First 10 columns are numeric predictive value
      :Target: Column 11 is a quantitative measure of disease progression
s\n\n
```

one year after baseline\n\n :Attribute Information:\n - age age - bp in years\n - sex\n - bmi body mass index\n av tc, total serum cholesterol\n erage blood pressure\n **-** s1 s2 ldl, low-density lipoproteins\n **-** s3 hdl, high-density 1 **-** s4 tch, total cholesterol / HDL\n ipoproteins\n ltg, possibly log of serum triglycerides level\n - s6 glu, blood sugar level\n\nNote: Each of these 10 feature variables have been mean cen tered and scaled by the standard deviation times `n_samples` (i.e. the sum of squares of each column totals 1).\n\nSource URL:\nhttps://www4.stat.ncs u.edu/~boos/var.select/diabetes.html\n\nFor more information see:\nBradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least A ngle Regression, "Annals of Statistics (with discussion), 407-499.\n(http s://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf)', 'feature_n ames': ['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6'], ata_filename': 'diabetes_data.csv.gz', 'target_filename': 'diabetes_targe' t.csv.gz', 'data module': 'sklearn.datasets.data'}

In [24]: print(type(db))

<class 'sklearn.utils.Bunch'>

In [25]: print(db.keys())

dict_keys(['data', 'target', 'frame', 'DESCR', 'feature_names', 'data_file
name', 'target_filename', 'data_module'])

```
In [26]: x=db.data
y=db.target
print(x)
print(y)
```

```
0.06169621 ... -0.00259226
                                                       0.01990842
[[ 0.03807591
              0.05068012
  -0.01764613]
 [-0.00188202 -0.04464164 -0.05147406 ... -0.03949338 -0.06832974
  -0.09220405]
 [ 0.08529891
               0.05068012 0.04445121 ... -0.00259226
  -0.02593034]
 [ 0.04170844  0.05068012  -0.01590626  ...  -0.01107952  -0.04687948
   0.01549073]
 [-0.04547248 -0.04464164 0.03906215 ...
                                           0.02655962 0.04452837
  -0.02593034]
 [-0.04547248 -0.04464164 -0.0730303
                                      ... -0.03949338 -0.00421986
   0.00306441]]
                           97. 138.
       75. 141. 206. 135.
                                     63. 110. 310. 101.
                                                         69. 179. 185.
 118. 171. 166. 144.
                     97. 168.
                                68.
                                     49.
                                          68. 245. 184. 202. 137.
                 59. 341.
 131. 283. 129.
                          87.
                                65. 102. 265. 276. 252.
                                                          90. 100.
                 53. 190. 142.
       92. 259.
                                75. 142. 155. 225.
                                                    59. 104. 182. 128.
       37. 170. 170.
                      61. 144.
                                52. 128.
                                         71. 163. 150.
                                                         97. 160. 178.
                          42. 170. 200. 252. 113. 143.
 48. 270. 202. 111.
                      85.
                                                         51.
                                                               52. 210.
 65. 141.
           55. 134.
                     42. 111.
                                98. 164.
                                          48.
                                               96.
                                                    90. 162. 150. 279.
                                                         81. 104. 59.
       83. 128. 102. 302. 198.
                                95. 53. 134. 144. 232.
 246. 297. 258. 229. 275. 281. 179. 200. 200. 173. 180.
                                                          84. 121. 161.
 99. 109. 115. 268. 274. 158. 107. 83. 103. 272.
                                                   85. 280. 336. 281.
 118. 317. 235.
                 60. 174. 259. 178. 128. 96. 126. 288.
                                                          88. 292.
                                                                   71.
 197. 186.
           25.
                 84.
                      96. 195. 53. 217. 172. 131. 214.
                                                         59.
                 74. 295. 101. 151. 127. 237. 225.
                                                    81. 151. 107. 64.
268. 152.
           47.
                                                              86. 122.
 138. 185. 265. 101. 137. 143. 141.
                                     79. 292. 178.
                                                    91. 116.
 72. 129. 142.
                 90. 158.
                          39. 196. 222. 277.
                                              99. 196. 202. 155. 77.
       70.
           73.
                 49.
                      65. 263. 248. 296. 214. 185.
                                                    78.
                                                         93. 252. 150.
 77. 208.
           77. 108. 160.
                           53. 220. 154. 259.
                                               90. 246. 124. 67. 72.
 257. 262. 275. 177.
                           47. 187. 125.
                     71.
                                          78.
                                               51. 258. 215. 303. 243.
 91. 150. 310. 153. 346.
                           63.
                                89.
                                     50.
                                          39. 103. 308. 116. 145.
 45. 115. 264.
                 87. 202. 127. 182. 241.
                                          66.
                                               94. 283.
                                                          64. 102. 200.
       94. 230. 181. 156. 233.
                                60. 219.
                                          80.
                                               68. 332. 248.
                                                              84. 200.
       85.
           89.
                 31. 129. 83. 275. 65. 198. 236. 253. 124.
                                                              44. 172.
 114. 142. 109. 180. 144. 163. 147.
                                     97. 220. 190. 109. 191. 122. 230.
 242. 248. 249. 192. 131. 237.
                               78. 135. 244. 199. 270. 164.
                                                               72.
                 95. 216. 263. 178. 113. 200. 139. 139.
                                                         88. 148.
       91. 214.
           77. 109. 272.
                           60.
                                54. 221.
                                          90. 311. 281. 182. 321.
 243.
       71.
 262. 206. 233. 242. 123. 167.
                                63. 197.
                                          71. 168. 140. 217. 121. 235.
 245.
       40.
            52. 104. 132.
                           88.
                                69. 219.
                                          72. 201. 110.
                                                         51. 277.
 118.
       69. 273. 258.
                     43. 198. 242. 232. 175. 93. 168. 275. 293. 281.
 72. 140. 189. 181. 209. 136. 261. 113. 131. 174. 257.
                                                         55.
 146. 212. 233.
                 91. 111. 152. 120.
                                     67. 310. 94. 183.
                                                          66. 173.
                                                                    72.
       64.
           48. 178. 104. 132. 220.
                                     57.]
```

In [28]: b=pd.DataFrame(x,columns=db.feature_names)
print(b)

```
bmi
                                                           s2
         age
                   sex
                                        bp
                                                 s1
                                                                     s3
\
0
    0.038076
              0.050680
                        1
    -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163
                                                              0.074412
2
    0.085299
              0.050680 0.044451 -0.005671 -0.045599 -0.034194 -0.032356
3
    -0.089063 -0.044642 -0.011595 -0.036656 0.012191
                                                     0.024991 -0.036038
4
    0.005383 -0.044642 -0.036385
                                  0.021872
                                           0.003935
                                                     0.015596
                                                              0.008142
437
    0.041708
              0.050680
                        0.019662
                                  0.059744 -0.005697 -0.002566 -0.028674
438 -0.005515
              0.050680 -0.015906 -0.067642
                                          0.049341
                                                     0.079165 -0.028674
439
    0.041708
              0.050680 -0.015906
                                 0.017282 -0.037344 -0.013840 -0.024993
440 -0.045472 -0.044642
                       0.039062
                                                     0.015283 -0.028674
                                 0.001215
                                           0.016318
441 -0.045472 -0.044642 -0.073030 -0.081414
                                           0.083740
                                                     0.027809
                                                               0.173816
          s4
                    s5
                              s6
0
    -0.002592
              0.019908 -0.017646
1
   -0.039493 -0.068330 -0.092204
2
    -0.002592
              0.002864 -0.025930
3
    0.034309
              0.022692 -0.009362
4
    -0.002592 -0.031991 -0.046641
437 -0.002592
              0.031193
                        0.007207
    0.034309 -0.018118
                        0.044485
439 -0.011080 -0.046879
                        0.015491
440
    0.026560
              0.044528 -0.025930
441 -0.039493 -0.004220
                        0.003064
[442 rows x 10 columns]
```

```
In [30]: import matplotlib.pyplot
import matplotlib.pyplot as plt
plt.plot(x,y,marker='o')
plt.xlabel('data')
plt.ylabel('names')
plt.title('Diabetes')
plt.show()
```


In []: