Curve e integrali curvilinei

Lucrezia Bioni

Curva parametrizzata in parametro d'arco

Data una curva φ regolare, φ è detta curva parametrizzata in parametro d'arco quando $\|\varphi'(t)\| = 1$ $\forall t$

Lunghezza della curva

Data una curva $\varphi:[a,b]\to\mathbb{R}^n$ di classe $\mathcal{C}^1([a,b])$ chiamo lunghezza di φ il numero

$$\mathcal{L}_{\varphi} := \int_{a}^{b} \|\varphi'(t)\| \, dt$$

Integrale curvilineo

Sia $\phi: [a, b] \to \mathbb{R}^n$ una curva regolare.

Sia $f:\Omega\subset\mathbb{R}^n\to\mathbb{R},\Omega$ aperto, f continua

Dove $\phi([a,b]) \subseteq \Omega$

Chiamiamo integrale di f
 lungo la curva ϕ la quantità

$$\int_{a}^{b} f(\phi(t)) \|\phi'(t)\| dt = \int_{\text{sost.}\phi} f ds$$

Triedro fondamentale (di Frenet/moving frame)

Data una curva $\varphi:[a,b]->\mathbb{R}^3$, $\varphi\in\mathcal{C}^2$ regolare

Parametro d'arco

Riparametrizzo per lunghezza d'arco (= arclength o lunghezza curvilinea):

Trovo $s(t) = \int_0^t |\varphi'(t)| dt$.

Trovo t(s) invertendo la relazione precedente e ottengo $\tilde{\varphi}(s) = \varphi(t(s))$.

1. Versore tangente

Parametro d'arco s

Approssima la curva al primo ordine. Per la parametrizzazione scelta, è già di lunghezza 1.

$$T(s) = \frac{d\tilde{\varphi}}{ds}$$

Generico parametro t

$$T(t) = \frac{d\varphi}{dt} \frac{dt}{ds}$$

2. Versore normale

Parametro d'arco s

$$T(s) = \frac{\frac{dT}{ds}}{\left|\frac{dT}{ds}\right|}$$

Generico parametro t

$$T(t) = \frac{\frac{dT}{dt}}{\left|\frac{dT}{dt}\right|}$$

3. Versore binormale

$$B(s) = T \times N$$

Formule di Frenet-Serret

La base ortonormale (T, N, B) soddisfa il seguente sistema di ODE:

$$\begin{cases} \frac{dT}{ds} = kN \\ \frac{dN}{ds} = -kT + \tau B \\ \frac{dB}{ds} = -\tau N \end{cases}$$
 (1)

Dove

Curvatura della curva $k=\left|\frac{dT}{ds}\right|$ Torsione della curva $\tau=-\langle\frac{dB}{ds},N\rangle, |\tau|=|\frac{dB}{ds}|$