1.

(a) This is easiest solved using matrix notation. Write the model as $y = X_1\beta_1 + X_2\beta_2 e$ and the short regression as $y = X_1\hat{\beta}_1 + \hat{e}$. Let $M_1 = I - X_1\left(X_1'X_1\right)^{-1}X_1'$. By the properties of least-squares and the fact that $M_1X_1 = 0$,

$$\hat{e} = M_1 y$$

= $M_1 (X_1 \beta_1 + X_2 \beta_2 + e)$
= $M_1 (X_2 \beta_2 + e)$

Thus since M_1 is idempotent

$$(n - k_1) s^2 = (X_2 \beta_2 + e)' M_1 M_1 (X_2 \beta_2 + e)$$

= $(X_2 \beta_2 + e)' M_1 (X_2 \beta_2 + e)$
= $e' M_1 e + \beta'_2 X_2 M_1 X_2 \beta_2 + 2\beta'_2 X'_2 M_1 e$.

Since X_2 and M_1 are functions of X, and $E(e \mid X) = 0$

$$(n - k_1) E(s^2 | X) = E(e'M_1e | X) + \beta_2'X_2M_1X_2\beta_2$$

= $(n - k_1) \sigma^2 + \beta_2'X_2'M_1X_2\beta_2$.

the second equality since $E(ee' \mid X) = I\sigma^2$ and $\operatorname{tr}[M_1] = rank(M_1) = n - k_1$ imply that

$$E(e'M_1e \mid X) = \operatorname{tr}[M_1E(ee' \mid X)] = \operatorname{tr}[M_1]\sigma^2 = (n - k_1)\sigma^2$$

Therefore we find

$$E(s^2 \mid X) = \sigma^2 + \frac{1}{n - k_1} \beta_2' X_2' M_1 X_2 \beta_2.$$

Common errors:

- i. Assuming (implicitly or explicitly) that $\beta_2 = 0$
- ii. Pretending that $\hat{e}'\hat{e} = e'e$
- iii. Assuming that s^2 must be unbiased because it is in a correctly-specified model.
- (b) Note that

$$s^{2} = \left(\frac{n}{n - k_{1}}\right) \left(\frac{1}{n}e'M_{1}e + \frac{1}{n}\beta'_{2}X'_{2}M_{1}X_{2}\beta_{2} + 2\frac{1}{n}\beta'_{2}X'_{2}M_{1}e\right)$$

and $\frac{n}{n-k_1} \longrightarrow 1$. We learned in class that

$$\frac{1}{n}e'M_1e \longrightarrow_p \sigma^2.$$

Indeed,

$$\frac{1}{n}e'M_1e = \frac{1}{n}e'e - \frac{1}{n}e'X_1\left(\frac{1}{n}X_1'X_1\right)^{-1}\frac{1}{n}X_1'e \longrightarrow_p \sigma^2$$

since $\frac{1}{n}X_1'X_1 \longrightarrow_p Q_{11}$ and $\frac{1}{n}X_1'e \longrightarrow_p 0$.

Next,

$$\frac{1}{n}\beta_2'X_2'M_1e = \beta_2'\left(\frac{1}{n}X_2'e - \frac{1}{n}X_2'X_1\left(\frac{1}{n}X_1'X_1\right)^{-1}\frac{1}{n}X_1'e\right)
\xrightarrow{p}\beta_2'\left(0 - Q_{21}(Q_{11})^{-1}0\right)
= 0$$

Finally,

$$\frac{1}{n}\beta_2'X_2'M_1X_2\beta_2 = \beta_2' \left[\frac{1}{n}X_2'X_2 - \frac{1}{n}X_2'X_1 \left(\frac{1}{n}X_1'X_1 \right)^{-1} \frac{1}{n}X_1'X_2 \right] \beta_2$$

$$\xrightarrow{p} \beta_2' \left[Q_{22} - Q_{21} \left(Q_{11} \right)^{-1} Q_{12} \right] \beta_2$$

In sum

$$s^2 \xrightarrow{p} \sigma^2 + \beta_2' \left[Q_{22} - Q_{21} (Q_{11})^{-1} Q_{12} \right] \beta_2.$$

Common errors:

- i. Confusing probability limits and expectations
- ii. Assuming that s^2 must be consistent because it is under correct specification.

2.

(a) By definition,

$$V = (Ex_i^2)^{-1} (E(x_i^2 e_i^2)) (Ex_i^2)^{-1} = E(x_i^2 e_i^2)$$

and

$$V^0 = (Ex_i^2)^{-1} Ee_i^2 = \sigma^2$$

where $\sigma^2 = Ee_i^2$.

(b) By the definition of covariance and the above equations,

$$C = cov(x_i^2, e_i^2)$$

$$= E(x_i^2 e_i^2) - E(x_i^2) E(e_i^2)$$

$$= V - V^0$$

Thus $C = V - V^0$ (or $V = C + V^0$).

Common errors:

- i. Assuming that e_i is homoskedastic (e.g., stating that the assumptions imply homoskedasticity)
- ii. Assuming that C=0
- 3. A point forecast of y_{n+1} takes the form $x'\hat{\beta}$ for some estimate $\hat{\beta}$ of β . A complete answer requires describing the choice of estimator $\hat{\beta}$, and it is best if this choice is justified.
 - (a) One option is least-squares $\hat{\beta} = (X'X)^{-1} X'y$. While this estimator is not semiparametrically efficient in the model, it can be justified as simple and robust to misspecification.
 - (b) Another option is FGLS. $\hat{\beta} = \left(X'\hat{D}^{-1}X\right)^{-1}X'\hat{D}^{-1}y$ where $\hat{D} = diag\left(\hat{\sigma}_{\hat{i}}^2\right)$, $\hat{\sigma}_{\hat{i}}^2 = z'_i\hat{\gamma}$ and $\hat{\gamma} = (Z'Z)^{-1}Z'\hat{\eta}$ where $\hat{\eta}$ is the vector with i'th entry $\hat{e}_{\hat{i}}^2$ where $\hat{e}_i = y_i x'_i\hat{\beta}$ and $\hat{\beta}$ is the OLS estimator. Given that the model is specified as a regression with a parametric variance equation, the FGLS estimator is semiparametrically efficient.

A standard forecast interval takes the form

$$x'\hat{\beta} \pm 2\sqrt{z'\hat{\gamma} + \frac{1}{n}x'\hat{V}x'}$$

where $\hat{\gamma}$ is an estimate of γ and \hat{V} is an estimate of the asymptotic variance of the estimator $\hat{\beta}$. The natural estimator for $\hat{\gamma}$ is described above. The estimate \hat{V} depends on the choice for $\hat{\beta}$. If $\hat{\beta}$ is OLS, then either $\hat{V} = \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}\sum_i x_i x_i'\hat{e}_i^2\right)\left(\frac{1}{n}X'X\right)^{-1}$ or $\hat{V} = \left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}\sum_i x_i x_i'(z_i'\hat{\gamma})\right)\left(\frac{1}{n}X'X\right)^{-1}$. If $\hat{\beta}$ is FGLS, a good choice is $\hat{V} = \left(\frac{1}{n}X'\hat{D}^{-1}X\right)^{-1}$.

On a cautionary note, it may be observed that this forecast interval is correct only when the error e_i is normally distributed.

Common errors:

- i. Assuming that the error is homoskedastic (even though the question explicitly assumes a heteroskedastic variance equation).
- ii. Assuming that γ is known
- iii. Assuming that β is known
- iv. Stating that the forecast is $\hat{\beta}'x$ without describing $\hat{\beta}$.
- v. Picking the least-squares estimator but not describing why this choice is made.
- vi. Specifying the forecast interval as $x'\hat{\beta} \pm 2\sqrt{\hat{\sigma}^2 + \frac{1}{n}x'\hat{V}x'}$ or $x'\hat{\beta} \pm 2\sqrt{\frac{1}{n}x'\hat{V}x'}$
- 4. It was not stated explicitly, but implicit in the notation we can see that γ is real valued. A convenient way to write the estimator $\hat{\gamma}$ is

$$\hat{\gamma} = \left(\hat{\beta}' X' X \hat{\beta}\right)^{-1} \hat{\beta}' X' Z$$

Since $Z = X\beta\gamma + u$, we see

$$\hat{\gamma} = (\hat{\beta}' X' X \hat{\beta})^{-1} \hat{\beta}' X' (X \beta \gamma + u)$$

$$= (\hat{\beta}' \frac{1}{n} X' X \hat{\beta})^{-1} \hat{\beta}' \frac{1}{n} X' X \beta \gamma + (\hat{\beta}' \frac{1}{n} X' X \hat{\beta})^{-1} \hat{\beta}' \frac{1}{n} X' u$$

Then since $\hat{\beta} \longrightarrow_p \beta$ and $\frac{1}{n}X'u \frac{1}{n}X'u \longrightarrow_p 0$

$$\hat{\gamma} \xrightarrow{p} (\beta' Q \beta)^{-1} \beta' Q \beta \gamma + (\beta' Q \beta)^{-1} \beta' 0 = \gamma$$

(Technically, this result requires that $\beta'Q\beta > 0$, otherwise γ is not identified.)

Another way to solve this is to write $\hat{\beta} = (X'X)^{-1} X'y$ and then

$$\hat{\gamma} = \left(y'X\left(X'X\right)^{-1}\left(X'X\right)\left(X'X\right)^{-1}X'y\right)^{-1}\left(y'X\left(X'X\right)^{-1}X'Z\right)
= \left(y'X\left(X'X\right)^{-1}X'y\right)^{-1}\left(y'X\left(X'X\right)^{-1}X'Z\right)
= \left(\left(\frac{1}{n}y'X\right)\left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'y\right)\right)^{-1}\left(\left(\frac{1}{n}y'X\right)\left(\frac{1}{n}X'X\right)^{-1}\left(\frac{1}{n}X'Z\right)\right)
\xrightarrow{p}\left(E\left(y_{i}x'_{i}\right)\left(E\left(x_{i}x'_{i}\right)\right)^{-1}E\left(x_{i}y_{i}\right)\right)^{-1}\left(E\left(y_{i}x'_{i}\right)\left(E\left(x_{i}x'_{i}\right)\right)^{-1}E\left(x_{i}z_{i}\right)\right)$$
(1)

We want to show that this equals γ . Since $y = x_i'\beta + e_i$ and $Ex_ie_i = 0$,

$$E(x_iy_i) = E(x_i(x_i'\beta + e_i)) = E(x_ix_i')\beta$$

and since $z_i = x_i'\beta\gamma + u_i$ and $Ex_iu_i = 0$,

$$E(x_i z_i) = E(x_i(x_i'\beta\gamma + u_i)) = E(x_i x_i')\beta\gamma$$

Therefore the right-hand-side of (1) equals

$$\left(\beta' E\left(x_{i} x_{i}'\right) \left(E\left(x_{i} x_{i}'\right)\right)^{-1} E\left(x_{i} x_{i}'\right) \beta\right)^{-1} \left(\beta' E\left(x_{i} x_{i}'\right) \left(E\left(x_{i} x_{i}'\right)\right)^{-1} E\left(x_{i} x_{i}'\right) \beta \gamma\right) = \gamma$$

The extra credit problem asked for the asymptotic distribution of $\hat{\gamma}$. In general this is tricky as you have to handle the joint distribution of $\hat{\beta}$ and $\hat{\gamma}$. But when $\gamma=0$ the problem simplifies. Note that from the above equation when $\gamma=0$

$$\sqrt{n}\hat{\gamma} = \left(\hat{\beta}'\frac{1}{n}X'X\hat{\beta}\right)^{-1}\hat{\beta}'\frac{1}{\sqrt{n}}X'u$$

$$\stackrel{d}{\longrightarrow} \left(\beta'Q\beta\right)^{-1}\beta'N(0,\Omega_u)$$

$$= N\left(0,\frac{\beta'E\left(x_ix_i'u_i^2\right)\beta}{\left(\beta'E\left(x_ix_i'\beta\right)^2\right)}\right)$$

Common errors:

- (a) Attempting to demonstrate consistency by taking expectations
- (b) Treating $\hat{\beta}$ as a constant rather than a random variable
- (c) Treating $\hat{\beta}$ as an invertible matrix
- (d) Treating $\hat{\beta}$ as if it is a function of X. e.g. $E(\hat{\beta}'x_iu_i \mid X) = \hat{\beta}'x_iE(u_i \mid X)$ (this is incorrect since $\hat{\beta}$ is a function of X and y and the problem does not make an assumption about the relationship between e_i and u_i)
- (e) Saying that the WLLN asserts that $n^{-1} \sum_{i=1}^{n} (\hat{\beta}' x_i)^2 \xrightarrow{p} E(\hat{\beta}' x_i)^2$ ($\hat{\beta}' x_i$ is not iid, as $\hat{\beta}$ depends on the full sample).