2023 数学分析 C 期末考试

捡到试卷的群友

某平凡的数学讨论群

版本: 0.10

日期: 2023年2月22日

注 意

这张试卷是王奕倩老师和苗栋老师一起出的,同时具有两个老师的出题特点,

一、(10分)

1. 将 e^{-x} , $x \in (0,\pi)$ 分别作奇延拓和偶延拓, 求其 Fourier 展开. 2. 求 $\sum_{k=1}^{+\infty} \frac{(-1)^k (2k-1)}{4k^2+1}$.

2.
$$\vec{x} \sum_{k=1}^{+\infty} \frac{(-1)^k (2k-1)}{4k^2+1}$$

二、(10 分) 设 $f(x,y) = F''_{xy}(x,y)$ 在 [a,b] 和 [c,d] 上连续. 求

$$\iint_{a,b]\times[c,d]} f(x,y) \,\mathrm{d}x \,\mathrm{d}y$$

 $\iint\limits_{[a,b]\times[c,d]} f(x,y)\,\mathrm{d}x\,\mathrm{d}y$ 三、(10 分) 设三角级数 $\sum\limits_{n\in\mathbb{N}} (a_n\cos nx + b_n\sin nx)$ 一致收敛, 其中 $a_n,b_n\in\mathbb{R}$.

证明: $\sum_{n\in\mathbb{N}}(a_n^2+b_n^2)<+\infty$

若仅知该级数收敛,是否仍然有相同结论?说明理由.

四、(10分)计算:

$$\lim_{\varepsilon \to 0} \int_{-\infty}^{+\infty} dx \int_{t_{*}}^{t_{2}} \frac{\varepsilon}{(x-t)^{2} + \varepsilon^{2}} dt$$

五、(10 分) 设 f(x,y) 在 $x,y \ge 0$ 上非负连续, 广义积分 $J(x) = \int_0^{+\infty} f(x,y) \, \mathrm{d}y$ 和 I(y) = $\int_0^{+\infty} f(x,y) \, \mathrm{d}x$ 分别关于 x 和 y 在 y 在 y 在 $[0,+\infty)$ 上内闭一致收敛. 设广义积分 $\int_0^{+\infty} I(y)$ 收敛

证明: 广义重积分 $\int_{x,y\geqslant 0} f(x,y) \, \mathrm{d}x \mathrm{d}y$ 收敛并等于 S. 六、(20 分) 设周期为 1 的函数 f 在 [0,1] 上广义可积且平方可积. 设 $\varepsilon>0$ 定义 $f_{\varepsilon}: \mathbb{R} \ni x \mapsto \int_{-\varepsilon}^{\varepsilon} f(x+t) \, \frac{\mathrm{d}t}{2\varepsilon}$.

证明
$$\lim_{\varepsilon \to 0} \int_{0}^{1} |f - f_{\varepsilon}|^{2} = 0$$

七、(20 分) 设 $B \subset \mathbb{R}^3$ 是单位球, $y \in \mathbb{R}^3$ 模长为 $\frac{1}{2}$. 求积分:

$$\int_{B} \frac{\mathrm{d}x}{\|y - x\|}.$$

八、(5 分) 设 $\Omega \subset \mathbb{R}^n$ 为凸开集, $K \subset \Omega$ 为紧集. 证明: 存在常数 C 使得对任何定义在 Ω 上的凸函数 F(可能无界), 皆有

$$\sup_{K} |F(x)| \leqslant C \int_{\Omega} |F(x)|$$

九、(5 分) 记 $\|v\|_2 = \left(\int_{\mathbb{R}^6} v^2\right)^{\frac{1}{2}}$. 设 u 是 \mathbb{R}^6 上具有紧支集的光滑函数.

证明: $\|\nabla u\|_2 \cdot \|u\| \geqslant 2.5 \|\|x\|^{-\frac{1}{2}}u\|_2^2$.

其中 ||x|| 表示 \mathbb{R}^6 中向量 x 的欧氏范数.

(编者注) 原题最后一个范数符号外没平方, 经验证需要加上平方.