The Mystery of Star-forming S0 <u>Galaxies</u>

Insights from Modern Integral Field Spectroscopic Surveys

Himansh Rathore

PhD Student University of Arizona, USA

himansh@arizona.edu

https://doi.org/10.1093/mnras/stac871

Indian Institute of Technology Indore, July 4, 2023

National Initiative for Undergraduate Sciences

- An yearly initiative led by HBCSE -TIFR, to promote undergraduate research in India
- Organize funded research projects in various institutions across the country
- Faculty/postdocs can sign up as mentors

Kavin Kumar, IISERB

Yogesh Wadadekar, NCRA

Preetish Mishra, IUCAA

Omkar Bait, Univ. of Geneva

Early Types (including S0s) are generally quenched

How do S0s form?

- Theories rely on strong quenching processes on spiral galaxies
- S0s are found in both low density environments as well as high density environments
- There must be quenching mechanisms operating in both low and high density environments

But a significant number of S0s are star-forming!

- Formation of S0s is a quenching process
- However, the fraction of S0s that are star-forming can range from 10% - 30%
- How to explain the existence of star-forming S0s, given that the formation theory of S0s rely on strong quenching mechanisms?

Past attempts - first statistical samples

- Schawinski et al. 2009 for the first time constructed a statistical sample (~ 200 galaxies) of blue early types
- Morphology identification based on SDSS images
- UV color taken as a proxy for star-formation
- Most of these galaxies have stellar masses below 10¹¹ solar masses

Past attempts - multiple scenarios possible

Could be spiral galaxies which are about to fade to the quenched sequence, and are experiencing their final stage of star-formation along with transformation to S0 morphology.

Eg. Kannappan+2009, Johnston+2014

Fading spirals?

Could be quenched S0s in the past in which star-formation has been rejuvenated. The galaxy will become a quenched S0 again, after star-formation stops.

Eg. Wei+2009, George+2017

Rejuvenated S0s?

Limitations of the past studies

- Selections were based on UV color, which can be affected by dust extinction.
- Lack of deep images, making morphology identification difficult. Significant spiral contamination could be present.
- Resolved spectroscopic data not available, so spatial location of star-formation difficult to identify.
- Studied star-forming early types, which comprise of both S0s and Ellipticals. However, both can be very different.

Shallow Imaging (SDSS)

Modern Prospects

- SED fits on large catalogs available
 - Selection based on SFR possible, do not have to rely on colors
- Deep images, like that from the DECam, or Subaru available.
 - So, accurate morphology identification possible.
- Resolved spectroscopic data available from IFS surveys like SDSS -MaNGA
 - Spatially resolved analysis of star-formation possible

In our work, we specifically try to understand the star-forming S0 galaxies, using the SDSS-MaNGA survey

Questions we ask

- Where is the star-formation happening in star-forming S0 galaxies?
- Why are some of the S0s star-forming, even though we generally expect them to be quenched?
- Can we reconcile star-forming S0s with the standard theory of how S0s form?
 Or do we need a new theory?

Rathore, Himansh; Kumar, Kavin; Mishra, Preetish Kumar; Wadadekar, Yogesh; Bait, Omkar; Star-forming S0 Galaxies in SDSS-MaNGA: Fading Spirals or Rejuvenated S0s? MNRAS, Volume 513, Issue 1, June 2022, Pages 389–404

SDSS-MaNGA: peeking inside galaxies made possible !!!

Bundy+2015; Blanton+2017

The hunt for outlying galaxies begins!

Identification of a clean star-forming S0 sample in MaNGA

- Entire MaNGA sample has > 5000 objects. We first use Deep Learning based catalogs to narrow down to ~ 200 objects.
- Deep learning catalogs are trained on shallow SDSS imaging. In some cases, spiral arms may not be visible resulting in misclassification as S0.
- We perform a visual inspection using deep images from DECam and Subaru.
- Around 30% of our initial sample turned out to be spiral contaminants!
- Finally, we have ~ 120 star-forming S0s in a redshift range (z < 0.1). We also construct control samples of star-forming spirals and quenched S0s.

Deep Imaging (Subaru)

Shallow Imaging (SDSS)

Do not always rely on Machines !!!

SDSS images of two galaxies. The above were classified as S0s by the DL model !!!

Our star-forming S0 sample

Utilizing MaNGA for resolved properties

Where is the star-formation happening in SF-S0s?

Unlike spirals, the star-forming S0s have centrally driven star-formation! This was not known before!!!

Star-forming S0s: fading spirals or rejuvenated S0s?

Star-forming S0s are structurally more similar to the quenched S0s and are different from spirals

Star-forming S0s were most likely quenched S0s in the past, whose star-formation has been rejuvenated!

What rejuvenated the star-formation in SF-S0s?

- More than half of our SF-S0 sample shows disturbed gas kinematics, including misalignment and counter-rotation
- This suggests the gas has been brought in by minor mergers

Gas Rich Minor mergers have most likely rejuvenated the star-formation

Moral of the story...

Background

S0 galaxies are generally quenched, but there exists a significant number of S0s showing active star-formation.

Key Question

Key question: how to explain the existence of star-forming S0s?

Findings

The star-forming S0s were most likely quenched S0s in the past, whose star-formation has been rejuvenated. Gas rich minor mergers are likely responsible for this rejuvenation.

Broader Context

The very idea of a uniform "flow" of galaxies from the star-formation sequence to the quenched sequence needs revision. Galaxies can "flow" in the reverse direction as well through rejuvenation processes.

Backup slides