Introduction à *l'apprentissage par* renforcement (RL)

Léo Gagnon

July 6, 2021

Université de Montréal

Plan

- 1. Contexte
- 2. Cadre formel
- 3. Comment apprendre de ses expériences
- 4. Algorithmes efficaces
- 5. Conclusion

Contexte

Le <u>RL</u> s'intéresse à comment un <u>agent</u> peux <u>apprendre</u> un comportement en intéragissant avec l'environnement.

 $\mathsf{RL} = \mathsf{Info} \, \cap \, \mathsf{Math} \, \cap \, \mathsf{Neuro} \, \cap \, \mathsf{Psyco} \, \cap \, \mathsf{\acute{E}co}$

Exemples et importance de l'apprentissage

On pourrais vouloir apprendre à :

- jouer aux échecs
- jouer à Dota II
- marcher
- conduire

L'histoire a montré que sans apprentissage, bien résoudre ce genre de tâche est extrêmement difficile.

De façon générale, notre agent sera dans la situation suivante

Figure 1: Boucle perception-action

Où la boucle commence par un état initial S_0 et finit potentiellement par un état S_T .

De façon générale, notre agent sera dans la situation suivante

Figure 1: Boucle perception-action

Où la boucle commence par un état initial S_0 et finit potentiellement par un état S_T .

De façon générale, notre agent sera dans la situation suivante

Figure 1: Boucle perception-action

Où la boucle commence par un état initial S_0 et finit potentiellement par un état S_T .

Il manque quelque chose : comment équipe-t-on l'agent de motivation vers un but?

De façon générale, notre agent sera dans la situation suivante

Figure 2: Boucle perception-action avec une notion de récompense

La façon généralement acceptée est de le concevoir de façon à maximiser une récompense fournie par l'environnement.

De façon générale, notre agent sera dans la situation suivante

Figure 2: Boucle perception-action avec une notion de récompense

La façon généralement acceptée est de le concevoir de façon à maximiser une récompense fournie par l'environnement.

Matière à réflexion : étant dans la position de cet agent, comment sommes-nous équipé d'un but? Qu'est-ce qui constitue notre l'environnement?

De façon générale, notre agent sera dans la situation suivante. Ce genre de système est naturellement modélisé par un *processus stochastique*.

Figure 3: Boucle perception-action avec une notion de récompense

Un processus stochastique est une suite de variables aléatoire. Dans le cas qui nous intéresse, à chaque temps t l'agent

- reçoit une représentation de l'état de l'environnement $S_t \in \mathcal{S}$
- choisi une action $A_t \in \mathcal{A}$
- reçoit une récompense $R_t \in \mathcal{R}$ pour l'action au temps t-1

Un processus stochastique est une suite de variables aléatoire. Dans le cas qui nous intéresse, à chaque temps t l'agent

- reçoit une représentation de l'état de l'environnement $S_t \in \mathcal{S}$
- choisi une action $A_t \in \mathcal{A}$
- reçoit une récompense $R_t \in \mathcal{R}$ pour l'action au temps t-1

Ceci produit une suite (souvent appelé *trajectoire*) de variables aléatoire chronologiquement dépendantes

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots S_{T-1}, A_{T-1}, S_T$$

7

Un processus stochastique est une suite de variables aléatoire. Dans le cas qui nous intéresse, à chaque temps t l'agent

- reçoit une représentation de l'état de l'environnement $S_t \in \mathcal{S}$
- choisi une action $A_t \in \mathcal{A}$
- reçoit une récompense $R_t \in \mathcal{R}$ pour l'action au temps t-1

Ceci produit une suite (souvent appelé *trajectoire*) de variables aléatoire chronologiquement dépendantes

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

7

Pour simplifier notre modélisation, on suppose généralement que le processus stochastique est Markovien (MDP). Cela signifie que les V.A au temps t peuvent seulement dépendre de celles au temps t-1. Dans ce cas, il existe une fonction

$$p(s', r|s, a) \doteq \Pr\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

définissant complètement la dynamique de l'environnement

L'hypothèse de Markov permet à l'agent de pouvoir agir uniquement en fonction de l'état précédant. Son comportement peut alors être complètement décrit par une distribution conditionnelle qu'on appelle sa *stratégie*

$$\pi(a|s): \mathcal{S} \to \mathcal{P}(\mathcal{A})$$

Cadre formel : résumé

L'apprentissage par renforcement est formalisé par un MDP défini par une distribution $p(s^\prime,r|s,a)$.

Figure 4: Boucle perception-action avec une notion de récompense

Le problème maintenant : créer un agent capable d'apprendre une stratégie $\pi(a|s)$ qui obtient beaucoup de récompenses.

Que signifie "obtenir beaucoup de récompenses"?

• Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.

- Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.
 - Mauvaise idée

- Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.
 - Mauvaise idée
- Un choix plus sensé pour la quantité d'intéret serait $\mathbb{E}[\sum_{k=0}^{\infty} R_{t+k+1}]$ (expected return)

- Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.
 - Mauvaise idée
- Un choix plus sensé pour la quantité d'intéret serait $\mathbb{E}[\sum_{k=0}^{\infty} R_{t+k+1}]$ (expected return)
 - Pas réalisable

- Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.
 - Mauvaise idée
- Un choix plus sensé pour la quantité d'intéret serait $\mathbb{E}[\sum_{k=0}^{\infty} R_{t+k+1}]$ (expected return)
 - Pas réalisable
- La quantité généralement utilisée est une hybride appelée le expected discounted return

$$\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}] \text{ pour } \gamma \in [0,1]$$

- Naïvement, on pourrait toujours vouloir maximiser $\mathbb{E}[R_{t+1}]$.
 - Mauvaise idée
- Un choix plus sensé pour la quantité d'intéret serait $\mathbb{E}[\sum_{k=0}^{\infty} R_{t+k+1}]$ (expected return)
 - Pas réalisable
- La quantité généralement utilisée est une hybride appelée le expected discounted return

$$\mathbb{E}[\sum_{k=0}^{\infty} G_t] \text{ pour } \gamma \in [0,1]$$

Cadre formel : résumé

L'apprentissage par renforcement est formalisé par un MDP défini par une distribution $p(s^\prime,r|s,a)$.

Figure 5: Boucle perception-action avec une notion de récompense

Le problème maintenant : créer un agent capable d'apprendre une stratégie $\pi(a|s)$ qui maximise

$$\mathbb{E}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1}]$$

pour tout les états $s \in \mathcal{S}$

Itération de stratégie

Si on veux parler d'amélioration de stratégie, on doit être capable d'évaluer et de comparer différentes stratégies. Les notions suivantes sont très utiles pour ça.

Définition

La value function $v_{\pi}: \mathcal{S} \to \mathbb{R}$ d'une stratégie π est une fonction qui associe à chaque état $s \in \mathcal{S}$ le expected discounted return si on suit la stratégie en partant de s:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s \right]$$

Si on veux parler d'amélioration de stratégie, on doit être capable d'évaluer et de comparer différentes stratégies. Les notions suivantes sont très utiles pour ça.

Définition

La *q-function* $q_{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ d'une stratégie π est une fonction qui associe à chaque état+action le expected discounted return si on suit la stratégie par la suite:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s, A_{t} = a \right]$$

Si on veux parler d'amélioration de stratégie, on doit être capable d'évaluer et de comparer différentes stratégies. Les notions suivantes sont très utiles pour ça.

Définition

La q-function $q_\pi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ d'une stratégie π est une fonction qui associe à chaque état+action le expected discounted return si on suit la stratégie par la suite:

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \middle| S_t = s, A_t = a \right]$$

Les value functions définissent un ordre partiel sur les stratégies :

$$\pi_1 \geq \pi_2 \iff v_{\pi_1}(s) \geq v_{\pi_2}(s) \text{ pour tout } s \in \mathcal{S}$$

Les value functions définissent un ordre partiel sur les stratégies :

$$\pi_1 \geq \pi_2 \iff v_{\pi_1}(s) \geq v_{\pi_2}(s) \text{ pour tout } s \in \mathcal{S}$$

Grace au facteur $\gamma,$ il existe toujours une value function maximale

$$v_* = \max_{\pi} v_{\pi}$$

associée à une stratégie optimale π_* (pas nécéssairement unique)

Comment calculer v_{π} ? On y revient bientôt.

Amélioration de stratégie

La value function v_{π} nous donne toute l'information qu'on a besoin pour améliorer la stratégie π . En effet, v_{π} nous dit quelle est la meilleure action à prendre pour chaque état si on continue à appliquer π par la suite. On peut donc prendre comme nouvelle stratégie la **stratégie greedy/gloutone**

$$\pi'(s) = \arg\max_{a} q_{\pi}(s, a)$$

et

$$\pi' \geq \pi$$

Amélioration de stratégie

La value function v_π nous donne toute l'information qu'on a besoin pour améliorer la stratégie π . En effet, v_π nous dit quelle est la meilleure action à prendre pour chaque état si on continue à appliquer π par la suite. On peut donc prendre comme nouvelle stratégie la **stratégie greedy/gloutone**

$$\pi'(s) = \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

et

$$\pi' \geq \pi$$

Itération de stratégies

On répéter successivement les opération d'évaluation (E) et amélioration (A) pour obtenir une séquence de stratégies de plus en plus efficaces. Puisqu'il y a un nombre fini de stratégies on converge en un nombre fini d'opérations.

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

Évaluation de stratégie (retour)

Il existe différentes façon d'évaluer une stratégie. On peux généralement les classer dans deux familles : avec ou sans modèle de l'environnement (Model-based ou Model-free)

Évaluation Model-based

Model-based:

Figure 6: Évalution model-based

Évaluation Model-based

Model-based : Si la dynamique p(s',r|s,a) est connue, on peux simplement résoudre le système de $|\mathcal{S}|$ équations linéaires à $|\mathcal{S}|$ inconnues

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Évaluation Model-based

Model-based : Si la dynamique p(s',r|s,a) est connue, on peux simplement résoudre le système de $|\mathcal{S}|$ équations linéaires à $|\mathcal{S}|$ inconnues

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

Pas pratique du tout : p(s',r|s,a) est rarement connue et $\mathcal S$ est souvent grand

Si on ne connais pas p(s',r|s,a), on va approximer $v_\pi(s)=\mathbb{E}_\pi[G_t|S_t=s]$ en échantillonant des discounted returns G_t (en intéragissant avec l'environnement).

Figure 7: Évalution Model-free de type Monte-Carlo

Si on ne connais pas p(s',r|s,a), on va approximer $v_\pi(s)=\mathbb{E}_\pi[G_t|S_t=s]$ en échantillonant des discounted returns G_t (en intéragissant avec l'environnement).

Évaluation de v_{π} Monte-Carlo

- 1. Commencer avec une approximation V(s) de $v_{\pi}(s)$
- 2. Répéter pour toujours
 - 2.1 Générer une épiosode en suivant la stratégie π avec probabilité $(1-\epsilon)$ et en agissant aléatoire sinon.
 - 2.2 À la fin de l'épisode, mettre à jour V(s) pour tout les états visités dans l'épisode avec la formule suivante

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Si on ne connais pas p(s',r|s,a), on va approximer $v_\pi(s)=\mathbb{E}_\pi[G_t|S_t=s]$ en échantillonant des discounted returns G_t (en intéragissant avec l'environnement).

Évaluation de v_{π} Monte-Carlo

- 1. Commencer avec une approximation V(s) de $v_{\pi}(s)$
- 2. Répéter pour toujours
 - 2.1 Générer une épiosode en suivant la stratégie π avec probabilité $(1-\epsilon)$ et en agissant aléatoire sinon.
 - 2.2 À la fin de l'épisode, mettre à jour V(s) pour tout les états visités dans l'épisode avec la formule suivante

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Problème : Avec seulement la value-function et sans p(s',r|s,a) on ne peux pas faire l'amélioration de stratégie.

Si on ne connais pas p(s',r|s,a), on va approximer $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$ en échantillonant des discounted returns G_t (en intéragissant avec l'environnement).

Évaluation de q_{π} Monte-Carlo

- 1. Commencer avec une approximation Q(s,a) de $q_{\pi}(s,a)$
- 2. Répéter pour toujours
 - $2.1\,$ Générer une épiosode en suivant la stratégie π
 - 2.2 À la fin de l'épisode, mettre à jour Q(s,a) pour tout les paires d'état-action visitées dans l'épisode avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [G_t - Q(S_t, A_t)]$$

Si on ne connais pas p(s',r|s,a), on va approximer $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$ en échantillonant des discounted returns G_t (en intéragissant avec l'environnement).

Évaluation de q_{π} Monte-Carlo

- 1. Commencer avec une approximation Q(s,a) de $q_{\pi}(s,a)$
- 2. Répéter pour toujours
 - 2.1 Générer une épiosode en suivant la stratégie π
 - 2.2 À la fin de l'épisode, mettre à jour Q(s,a) pour tout les paires d'état-action visitées dans l'épisode avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [G_t - Q(S_t, A_t)]$$

Problème : Cela fonctionne seulement lorsqu'il y a des épisodes et la variance des échantillons est très haute (effet papillon).

Si on ne connais pas p(s',r|s,a), on va approximer $q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s, A_t = a]$ en échantillonant des $R_{t+1} + \gamma V(S_{t+1})$ ("Temporal Difference target").

Évaluation de q_{π} TD

- 1. Commencer avec une approximation Q(s,a) de $q_{\pi}(s,a)$
- 2. Répéter pour toujours
 - 2.1 Choisir une action en suivant la stratégie π . Recevoir une récompense R_{t+1} et un état S_{t+1} .
 - 2.2 Mettre à jour Q(s,a) avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - Q(S_t, A_t)]$$

Figure 8: Différence entre échantillioner G_t et $R_{t+1} + v_{\pi}(S_{t+1})$

Relation entre TD-leaning et Monte-Carlo

Figure 9: Relation entre TD-leaning et Monte-Carlo

Évalutation de stratégie

Figure 10: Monte-Carlo vs Temporal-Difference vs Dynamic Programming

Itération de stratégies

On répéter successivement les opération d'évaluation (E) et amélioration (A) pour obtenir une séquence de stratégies de plus en plus efficaces. Puisqu'il y a un nombre fini de stratégies on converge en un nombre fini d'opérations.

$$\pi_0 \xrightarrow{E} q_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} q_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} q_*$$

Itération de stratégies

On répéter successivement les opération d'évaluation (E) et amélioration (A) pour obtenir une séquence de stratégies de plus en plus efficaces. Puisqu'il y a un nombre fini de stratégies on converge en un nombre fini d'opérations.

$$\pi_0 \xrightarrow{E} q_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} q_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} q_*$$

Pas super efficace.

Algorithmes efficaces

Itération de stratégie généralisée

L'itération de stratégie généralisée est une famille d'algorithmes qui combine l'évaluation et l'amélioration en un processus itératif efficace.

Itération de stratégie généralisée

- 1. Commencer avec une approximation Q(s,a) de $q_{\pi}(s,a)$
- 2. Répéter pour toujours
 - 2.1 Choisir une action en suivant la stratégie $\pi'(s,a) = \arg\max_a Q(S_t,a). \text{ Recevoir une récompense } R_{t+1}$ et un état $S_{t+1}.$
 - 2.2 Mettre à jour Q(s,a) avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - Q(S_t, A_t)]$$

Itération de stratégie généralisée

L'itération de stratégie généralisée est une famille d'algorithmes qui combine l'évaluation et l'amélioration en un processus itératif efficace.

Itération de stratégie généralisée (SARSA)

- 1. Commencer avec Q(s,a) aléatoire
- 2. Répéter pour toujours
 - 2.1 Choisir l'action $A_t = \arg \max_a Q(S_t, a)$. Recevoir une récompense R_{t+1} et un état S_{t+1} .
 - 2.2 Mettre à jour Q(s,a) avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - Q(S_t, A_t)]$$

Q-learning

Un autre algorithme très semblable (et un peu plus populaire) est le Q-learning

Q-learning

- 1. Commencer avec Q(s,a) aléatoire
- 2. Répéter pour toujours
 - 2.1 Choisir l'action $A_t = \arg \max_a Q(S_t, a)$. Recevoir une récompense R_{t+1} et un état S_{t+1} .
 - 2.2 Mettre à jour Q(s,a) avec la formule suivante

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Deep Q-learning

Le GROS problème avec les algorithmes qu'on a vu dans cette présentation est que nous estimons q_{π} pour chaque élément de $|\mathcal{S}| \times |\mathcal{A}|$.

- La plupart des problèmes sont complètement hors de portée car $|\mathcal{S}|$ est beaucoup trop grand

• Tic-tac-toe : 765• Échecs : $\approx 10^{43}$ • Go : $\approx 10^{170}$

ullet Nimporte quel environnement continu : ∞

- L'agent doit apprendre indépendamment q_π pour chaque état même si certains se ressemblent beaucoup.

Deep Q-learning

Solution: Deep learning

Au lieu de définir q_π en chaque points on utilise un réseau de neuronnes pour apprendre la fonction. Fun begins!